(30) Priority data:

528,816

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

G06K 9/62, 15/00, 9/00

A1

(11) International Publication Number: WO 91/19274

(43) International Publication Date: 12 December 1991 (12.12.91)

US

(21) International Application Number: PCT/US91/03620

(22) International Filing Date: 24 May 1991 (24.05.91)

25 May 1990 (25.05.90)

(71) Applicant: ARIZONA TECHNOLOGY DEVELOP-MENT CORPORATION [US/US]; 1430 E. Fort Lowell Rd., Suite 200, Tucson, AZ 85719 (US).

(72) Inventors: SAMMONS, David, W.; 4635 East Calle Barril, Tucson, AZ 85718 (US). KO, Wen-Jeng; 1322 East 7th Street, Apt. C, Tucson, AZ 85719 (US). LIU, Yi-Cheng; University of Arizona, Phar/Macro Building #90, Room 114, Tucson, AZ 85721 (US). (74) Agent: FLORES, Victor; 3721 W. Goret Rd., Tucson, AZ 85745 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent), SU.

Published

With international search report.

(54) Title: A COMPUTERIZED METHOD OF MATCHING TWO-DIMENSIONAL (2-D) PATTERNS

(57) Abstract

A computerized method (200) for use in data acquisition and manipulation of two-dimensional patterns in the fields of medicine, astronomy, chemistry, biology and biotechnology. The interactive computerized method (200) facilitates matching visual patterns of polypeptide spots in two-dimensional gel electrophoretograms solubilized into polypeptide constituents that are separated by electrophoresis. The computerized method (200) manipulates spot pixel coordinates using staged coordinate transformation techniques (251) on spot markers and unknown study spots to reduce gel preparation distortions and allows a user to produce matching results in an operation (252) that compares the transformed spot data using either a single reference gel approach (255) or a multiple reference gels approach (254) for producing the matching results. The method also includes a spot matching verification step (252a) and a step (256) to extract potentially mismatched spots from reported matching results. The user can also resolve contradictions in resolve step (253) and perform spot matching analysis (270) using isoelectric focusing (PI), and molecular weight (MW) dimensional separation data.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
ΑU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France		
BE	Belgium	GA	Gabon	MN	Mongolia
BF	Burkina Faso	GB		MR	Mauritania
BG			United Kingdom	MW	Malawi
	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan .	-	
CC	Congo		•	SD	Sudan
CH	•	KP	Democratic People's Republic	SE	Sweden
	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	รบ	Soviet Union
CM	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	
DE	Germany	LU			Togo
DK	Denmark		Luxembourg	US	United States of America
~~	Dennark	MC	Monaço		

1

A COMPUTERIZED METHOD OF MATCHING TWO-DIMENSIONAL (2-D) PATTERNS

Field of the Invention

5

10

15

25

30

35

This invention relates to computerized methods for data acquisition and manipulation of two-dimensional patterns in the fields of medicine, astronomy, chemistry, biology and biotechnology. More particularly, the present invention relates to computerized methods for data manipulation of visual patterns of polypeptide spots in one-dimension (1-D) (2-D) gel electrophoretograms, and two-dimensional patterns of protein of cells (tissue, or body fluids), solubilized into polypeptide constituents that are separated by electrophoresis. Even more particularly, the present invention relates to interactive computerized methods of spot data acquisition and pixel coordinate manipulation involving coordinate transformation techniques and the use of isoelectric focusing (PI), and molecular weight (MW) dimensional separation properties during a spot matching task.

20 Description of the Prior Art:

biotechnology field. two-dimensional the In electrophoresis of polypeptides in polyacrylamide gel is a process known for separating the polypeptides, hereinafter also referred to as spots, in two dimensions, the first on the basis of charge by isoelectric focusing, the second on the basis of molecular weight by electrophoresis. resulting two-dimensional gel electrophoretograms from this process contain spot patterns that are useful for analyzing cell types as well as the genetic metabolic activity of cells. Since the gels contain thousands of two-dimensional spot patterns having geometric characteristics that need to be visualized and manipulated for gel comparisons, the need for the computational and organizational power of a computer system is apparent. The visualization of the spots on the gel has been made possible by autoradiography or staining

25

30

35

45

` . · · ·

techniques, silver-stained electrophoretograms producing adequate gel scanning data for analysis, although considered less accurate than autoradiograms. The efficiency of the results of a spot pattern matching analysis is measured in percentages of matched spots between gels and greatly on the accuracy and robustness of the underlying computer program that controls data acquisition, detection and spot pattern data comparison and matching tasks. Limitations in the accuracy of data acquisition from gel images are known to involve several factors including 10 film noise, flaws in the gels, which may include localized stretching or actual physical breaks in the gels, streaking, which are protein complexes formed during gel preparations and other positional related distortions caused by added subtracted charges that affect mobility of the protein in 15 the gel or intensity related distortions caused by faintly staining proteins due to heterozygosity characteristics of a Certainly, human intervention and introduction of spot. artifactual informalities also factors into the equation of optimizing the matching task. Further, the equipment used 20 to create gel images from which the positional and intensity data is obtained must also be scrutinized in optimizing the spot matching tasks.

The importance of pursuing and improving quantitative analysis of two-dimensional gels has been recognized in the biotechnology community and has produced the following prior art publications and patents that are of interest in considering the present invention.

For example, an article by P.F. Lemkin et al. entitled "GELLAB: A Computer System for 2D Gel Electrophoresis Analysis. II. Pairing Spots", Computers and Biomedical Research, Vol. 14, pp. 355-380 (1981).

An article by K.P. Vo et al, entitled "Computer Analysis of Two-Dimensional Gels", Analytical Biochemistry Vol. 112, pgs. 258-271 (1981).

3

An article by M.M. Skolnick et al., entitled "Computer Programs for Adapting Two-Dimensional Gels to the Study of Mutation", Clin. Chem. Vol. 28/4, pp. 969-978 (1982).

An article by M.J. Miller et al, entitled "Computer Analysis of Two-Dimensional Gels: Semi-Automatic Matching", Clin. Chem. Vol. 28/4, pgs. 867-875 (1982).

5

15

20

25

30

An article by M.J. Miller et al, entitled "Computer Analysis of Two-Dimensional Gels: Automatic Matching", Electrophoresis Vol. 5, pgs. 297-303 (1984).

An article by P. Vincens et al, entitled "HERMeS: A second generation approach to the automatic analysis of two-dimensional electrophoresis gels, Part III: Spot list matching", Electrophoresis Vol. 8, pgs. 100-107 (1987).

An article by A.D. Olson et al, entitled "Elsie 4: Quantitative Computer Analysis of Sets of Two-Dimensional Gel Electrophoretograms", Analytical Biochemistry Vol. 169, pgs. 49-70 (1988).

M.M. Skolnick et al., Chapter entitled "An Algorithm for Comparing Two-Dimensional Electrophoretic Gels, with Particular Reference to the Study of Mutations", in <u>Advances in Human Genetics</u>, Vol. 16, Chapter 2, pgs. 55-160, H. Harris & K. Hirschorn, Editors, (Plenum NY 1986).

M.M. Skolnick et al., in an article entitled "Computer Programs for Adapting Two-Dimensional Gels to the Study of Mutation", Clin. Chem. Vol. 28/4, pp. 969-978 (1982).

The prior art patents that relate to the field of the present invention concern computerized apparatus and method. spot quantitation, spot analysis, image data detection, correspondence, spot image analysis and comparison, all utilizing pixel x and y coordinate data as the primary physical characteristic of the spot or image. Included in the above teachings are U.S. Patent 4,638,456, 4,618,937, 4,592,089, 4,590,607, 4,389,670, 4,812,909, 4,811,218, 4,706,192, 4,741,043 and 4,825,388.

5

10

15

20

25

30

35

Although there have been many computerized advances in matching spots in 2-D gels, the prior art does not teach staged coordinate transformations that firstly puts all of the designated marker spots that highlight a region or investigative pattern formed by spots in the gels being analyzed into a registered relationship with marker spots in a designated reference gel, and that secondly, applies the resulting marker spot registration relationship data to the coordinates of the remaining spots bounded by the marker spots, designated hereinafter as the unknown study spot members, to achieve x-y spot localization in the study gels preparation distortional effects reduced to enable improved accuracy in spot location comparisons and improved matching efficiencies. Nor does the prior teach the use of PI and MW gel preparation data in spot analysis of 2-D gels to improve spot matching interpretation between two or more 2-D gels.

Therefore, a need is believed to exist for an improved interactive computerized method of analyzing two-dimensional gel electrophoretograms that compensates for gel preparation distortional effects using staged coordinate transformation techniques prior to comparing and matching polypeptide spots contained in the 2-D gels.

Further, a need is seen to exist for an interactive computerized method for analyzing 2-D gels that uses staged coordinate transformation techniques and that also utilizes PI and MW preparation data that enables a user to combine the improved spot localization results associated with the transformation technique with the inherent accuracy associated with the PI and MW dimensional separation values that are at the heart of the electrophoresis process.

A need is seen to exist for an interactive computerized method for analyzing 2-D gels that utilizes the transformed spot data resulting from the staged coordinate transformation technique and that further performs matching

5

verification steps to assure that reported matching spots are indeed within target geometrical boundaries.

A further need is seen to exist for an interactive computerized method for analyzing 2-D gels whereby a user can extract potentially mismatched set of spots to improve the accuracy of reported matching results.

In the broader sense, a need is seen to exist for a computerized method for analyzing 2-D patterns in the fields of medicine, astronomy, chemistry, biology and biotechnology that uses staged coordinate transformation, matching verification and matching techniques that improve the accuracy and efficiency of a 2-D pattern matching task.

Summary of the Invention

5

10

15

20

25

30

Accordingly, the primary object of the present invention is to provide a computerized method of matching 2-D image data in the fields of medicine, astronomy, chemistry, biology and biotechnology having inherent distortional effects resulting from the initial image preparation process.

A specific object of the present invention is to provide an interactive computerized method of matching polypeptide spots in 2-D gels having inherent distortional effects resulting from the initial 2-D gel preparation process.

Another specific object of the present invention is to provide an interactive computerized method for resolving spot matching contradictions in spot clusters that inadvertently result during the comparing and matching steps.

Yet another specific object of the present invention is to provide an interactive computerized method for analyzing 2-D gels whereby a user can extract potentially mismatched set of spots to improve the accuracy of reported matching results.

6

A related object of the present invention is to provide PI and MW data for the 2-D gel spots being manipulated for use during an analysis of output data resulting from the comparing and matching subroutines to provide improved interpretation of the spot matching results.

5

10

15.

20

25

30

35

According to one aspect of the invention, the foregoing objects are accomplished by a computerized method whereby each 2-D gel under investigation is scanned to generate an initial data file listing each spot's identification, the gel's name, each spot's original x-y coordinate values, each spot's integrated intensity, each spot's area, height and The user then designates one of the 2-D gels as a reference gel and the remaining gels as study gels and further designates in each gel, an investigative spot pattern of interest having a sufficient number of similarly positioned spots, generally prominent spots, referred to herein as reference marker spots in the reference gel and as study marker spots in the remaining study reference marker spots and the study marker spots form a boundary for the other spots within the spot patterns which designated as the unknown reference spots for the bounded spots in the reference gel and as unknown study spots for the bounded spots in the study gels. then further includes PI and MW for the designated reference study marker spots in each of the gels for At this point the user has effectively generated a modified initial data file for the scanned gels.

Using the modified initial data files, the user then executes several subroutines that: (1) adjust the original x-y coordinates of the spots in the investigative spot patterns in all gels by utilizing a two-stage coordinate transformation step and an interpolation step using the marker PI and MW data, (2) compare spot coordinates in a reference gel with spot coordinates in each study gel (referred to as a single reference match) to determine

7

potentially matching pairs of spots, or that compare spot coordinates in one gel with spot coordinates in the other gels, each time using one of the gels, including previously designated reference qel, as a reference qel (referred to as multiple reference match), also to determine potentially matching pairs of spots, (3) perform a verification step that vectorially manipulates potentially matching spot pair data to acertain whether match spot pair or a non-matching spot pair exists, (4) resolve contradicting matching results, (5) compare matched spot data results against potentially mismatched spot data potentially correctly matched spot data to improve accuracy, efficiency and confidence level of the matching results, and (6) that enables a user to manipulate various data bases resulting from the operation of subroutines for verifying the results as well as analyzing the data from different perspectives.

Therefore, to the accomplishments of the foregoing objects, the invention consists of the foregoing features hereinafter fully described and particularly pointed out in the claims, the accompanying drawings and the following disclosure describing in detail the invention, such drawings and disclosure illustrating but one of the various ways in which the invention may be practiced.

25 Brief Description of the Drawings:

5

10

15

20

30

Fig. 1 illustrates a typical hardware configuration for performing the interactive computerized method of matching protein spot patterns in 2-D gels in accordance with the present invention.

Fig. 2 illustrates a flow chart of the operations of a software program, that implements the present invention.

Fig. 2a illustrates a flow chart of the adjust operation portion of the present invention.

Figs. 2b, 2c and 2d illustrate a set of flow charts of 35 the compare and match operation portion of the present 5

10

15

20

25

30

35

3

3

invention, that are used to determine potentially matching pairs of spots.

Fig. 2e illustrates a flow chart of the extract potential mismatch operation portion of the present invention, that compares the matching results with a file that contains matching results that are considered more likely to be correct.

Fig. 2f illustrates a flow chart of the resolve contraditions operation portion of the present invention that eliminates ambiguous matching results.

Fig. 3 illustrates a block diagram overview of a computer monitor screen illustrating a menu of the interactive computer software program, termed "MATCHWARE", that implements the present invention.

Fig. 4 is a detailed data flow chart of the operation of "MATCHWARE" software program that implements the present invention.

Fig. 5 illustrates a pair of gels in an overlay relationship to aid in understanding a vector analysis performed by the second transformation stage of present invention.

Fig. 5a illustrates a planer vector diagram based on the graphical gel overlay depicted in Fig. 5. illustrating a study spot's nearest marker spot and the next nearest marker spot.

Fig. 5b is a diagram illustrating an acceptable rectangular area for exact matching spots constructed by using the x and y components of vectors depicted in Fig. 5a shifted and having a common origin.

Description of the Preferred Embodiment

Referring first to Fig. 1 where a typical computer workstation 100 is illustrated as a means for performing the spot matching task of the present invention. System 100 includes a gel image processing system 110, commercially available under the trademark "VISAGE", a personal computer

9

as a commercially available "IBM AT", or 120, such compatible, having a minimum system configuration, shown as unit 120b, of 640 kilo-bytes of random access memory, floppy disk storage capability, 10 mega-bytes of hard disk storage and enhanced graphics adapter card. Unit 120b is coupled to having color graphic display monitor 120a capability, a keyboard 120c, a mouse 120d for cursor manipulation. Output from the personal computer 120 can be by means of printer 130 for text data/graphical data and a plotter 140 for graphical display data. In the preferred embodiment printer 130 is a laser printer adapted for LC 890, a Silentwriter such as PostScript format, commercially available from NEC. Also, in the preferred embodiment, plotter 140 is a plotter compatible with HPGL graphic plotting format, commercially available as a FACIT 4550/4551.

5

10

15

20

25

30

35

2 illustrates a flow chart summary of the steps involved in performing the 2-D gel matching task accordance with the present invention. In the preferred embodiment, the steps are performed utilizing a software product 200 that will be commercially available under the trademark "MATCHWARE" from the University of Arizona Tucson, Arizona forthwith filing of this patent application. Initially, a gel is scanned to produce gel spot data as indicated in steps 210 and 220. The manner of generating initial spot data information is not the subject of the present invention, which generation of data includes the use of software programs that are known in the art and are thus not describe herein. The data generated includes the spot's identification, gel name, x-y coordinate values, integrated intensity, spot area, spot height and width. The state of the art being that the spot listing data available from these software programs cannot be used in its raw form to produce accurate and efficient spot comparison and spot matching task due to distortions present in the initial gel

10

preparation. Thus, in accordance with the present invention, further manipulation of the raw data is undertaken to compensate for the distortions.

÷.

The data available at computer 120 is typically a 1024 x 1024 pixel array of the gel images under investigation. Once the spot data is available at computer 120, according to the data flow steps 230 and 240 shown in Fig. 2 and further referenced in Figs. 3 and 4, the user can manipulate the raw data, labeled .lst in Fig. 4 to designate which gel is to be the reference gel and which gel are to be the study gel(s). The user can further manipulate the gel image to investigate a windowed spot pattern with marker spots and all of the unknown numbered dominant reference or study spots, depending upon which gel they are contained.

5

10

15

20

25

30

35

By example, Appendices C1, C2 and C3 provide data for three gels, labeled "a", "b" and "c", respectively which gels are used herein to aid in understanding the present invention. Appendix C provides a listing and description of data files generated by "MATCHWARE" during the spot matching task, Appendix C1-(1-6) contains the reference data for the gel labeled "a", including hardcopy of the gel's spot image the windowed spot pattern of interest containing dominant marker spots labeled m in Appendix C1-1, and the corresponding spot data listing in Appendix C1-(2-6). The gel selected as the reference gel is generally determined by the operator as representing the best specimen from the group of gels, i.e. the one with the least visible distortions. Appendices C2-(1-7) and C3-(1-6) contain information about the two study gels labeled "b" and "c". Included in the Appendices C2 and C3 are hardcopy of the two study gel's spot images and the windowed spot patterns of interest containing dominant marker spots, also labeled m, in Appendices C2-1 and C3-1 and the corresponding spot data listing C2-(2-7) and C3-(2-6). Collectively, the data is

11

referred to as 210a for the reference gel and 210b and 210c for the two study gels in Fig. 4. The PI and MW data is also inputted for later use in the analysis as indicated in step 230 in Fig. 4.

5

10

15

20

25

30

35

Once the gels under investigation are set up for step 250, as shown in Fig. 2, is executed to selectively perform various subroutines. Included in 250 is a two-stage spot coordinate transformation step 251 (labeled adjust operation and shown in more detail chart in Fig. 2a and in appendices B(1-23) which comprise a source code listing of the adjust subroutine that performs the two-stage spot coordinate transformations), a comparison and match step 252 (shown in more detail in Figs. 2b, 2c and based on using multiple or single reference gels and supported by a resolve spot matching contradiction step 253 (shown in more detail in Fig. 2f) and an extract potential mismatched spots step 256 (shown in more detail in Fig. 2e). A(1-2) provide a brief description of the Appendices subroutine steps executed during the adjust operation Appendices A(3-5) illustrated in Fig. 2a. Similarly, provide a brief description of the subroutine steps executed during the compare and match operations illustrated in Figs. Appendix A6 provides a brief description of 2b, 2c and 2d. the solve cluster operation step executed during the resolve contradiction operation illustrated in Fig.2f. Appendix A7 provides a brief description of the solve cluster operation the extract executed during potential mismatch operation illustrated in Fig.2e.

In the adjust operation 251, the two-stage coordinate transformation includes: (1) performing a first transformation step that transforms positional coordinates of the reference marker spot members and the unknown reference spot members in the reference gel, and each spot marker member in the study gel(s) set from the original scan coordinate system to a new reference coordinate system.

This first transformation step results in each member of the set of study marker spots being in a registered relationship with a corresponding spot marker member of the set reference marker spots. It should be noted that the coordinates of the spot members in reference gel "a" remain 5 same after the first transformation. (2) performing a second transformation step that transforms positional coordinates of each of the unknown study spot members from scan coordinate system to the reference coordinate 10 system, the second transformation step comprises: determining an effective range associated with each study marker spot, i.e. the distance associated with an influence which a dominant marker spot has over the surrounding spots which form a spot cluster. The effective range is calculated for each marker spot by locating the nearest 15 marker neighbor to the marker spot and then assigning onehalf of the distance between the marker and its nearest neighbor marker to be its effective range, (b) determining an attraction pairing relationship between a particular study marker spot member and a particular unknown study spot 20 this attraction pairing relationship determined by utilizing the effective range of the marker spots by a first rule for finding the nearest and second nearest markers to the unknown study spot, if this unknown study spot is within the effective range of the nearest 25 marker, then the movement value of this unknown study into the new reference coordinate system is same as the movement value of the nearest marker spot. A second rule for determining the pairing relationship can be used if the current unknown spot is within the intersection of two times 30 effective range of the nearest and second nearest marker, then the movement value of this spot is same as the average movement value of the nearest and second nearest marker, otherwise the pairing relationship defaults to the 35 first rule, (c) determining positional coordinates in the

13

reference coordinate system for each unknown study spot member by adjusting the original scan coordinates for each unknown study spot member by a shift amount, or movement values, equivalent to the first transformation shift amounts of the corresponding paired study marker spot member, and (d) repeating the pairing and new coordinate determining steps for all unknown study spot members in a gel and for all gels being investigated. After the second transformation step, the PI and MW values of the study spot members are determined using interpolation techniques based on PI and MW values previously assigned to the study marker spot members. Adjusted spot datafiles 251a (x.als), 251b (x.mks) and 251c (x.att) are produced result of the foregoing two-stage transformation and also include results of the PI and MW interpolation steps. Appendix C4-1) contains hardcopy printout of the windowed spot pattern and Appendices C4(2-4) contain corresponding spot datafiles 251a (a.als), 251b (a.mks) and 251c (a.att) for the reference gel that was manipulated by the 251 adjust operation, see Appendix C for file descriptors. Appendices C5-1 and C6-1 are also hardcopy printout of the patterns for the two study gels "b" and "c". while Appendices C5(2-6) and C6(2-4) contain the corresponding spot datafiles 251a (b.als, c.als), 251b (b.mks, c.mks) 251c (b.att, c.att), respectively, resulting from the twostage spot coordinate transformation.

10

15

20

25

30

35

At this point in the analysis, all the necessary data to perform the comparing and matching tasks, denoted in Fig. 2 as operation 252 and depicted in the flow charts of Figs. 2b, 2c and 2d, is available. The comparing task primarily involves taking every identified unknown spot in each of the gels and analyzing the recorded data, using as required, the spot's old and new x-y coordinate values, integrated intensity, spot area, PI and MW data, spot height and width for comparing against similar data of the other unknown

14

spots and grouping the results as sets of potential matching spots. In the cases involving more than two study gels, the user has an option to either conduct a matching exercise based on using a single designated reference gel and comparing other study gels against and hence following the data flow using block 255 shown in Fig. 4 and in the flow chart of Fig. 2b, or conducting a matching exercise iteratively designating every gel as a reference gel, i.e. multiple reference gels and following the data flow using block 254, also as shown in Fig. 4 and in the flow chart of Fig. 2b.

5

10

15

20

25

30

35

Before a matched spots outcome is reported, i.e. based on exact matching coordinates, spot size or intensity, the present invention also performs a verification step 252a on the set of potentially matching spots, regardless of whether conducting a matching exercise according to operation step 254 or 255. The verification inquiry is part of the query depicted in the flow chart of Fig. 2d. Verification step 252a utilizes the potentially matching spot's nearest and next nearest marker spots, and their original positional data, to construct a pair of marker spot vectors for juxtaposition comparison with an unknown spot's vector formed by joining a first and second one of the potential matching unknown spots in two gels, also using the unknown spot's original positional data. Fig. 5 shows gel G1 and G2 in an overlay relationship where a first unknown spot 61S1, having nearest marker spot G1M1 and second nearest marker spot G1M2, supposedly matching second unknown spot G2S1, having nearest marker spot G2M1 and second nearest marker The pair of marker spot vectors comprise a first vector V1 formed by graphically joining G1M1 to G2M1 second vector V2 formed by graphically joining G1M2 to G2M2, while the unknown spot's vector U1 is formed by graphically joining G1S1 to G2S1, see Fig. 5a. To maintain consistency in the vector's direction, one of the gels should be

15

designated as containing spots that form the tail of the vector and the other as containing spots that form the head juxtaposition comparison requires the vectors. The shifting the three vectors such that their tails are on a common point to establish whether the head of the unknown spot's vector U1 falls within an acceptable rectangular area A1 formed by minimum and maximum x and y limits, see Fig. 5b for construction of the acceptable rectangular area A1, and vector U1's head falling within area A1 indicating that unknown spots G1S1 and G2S1 are a matching pair. The size the acceptable rectangular area is based on x and y components of the head of vectors V1 and V2. The vertical boundaries are extended away from the actual x values for the V1 and V2 heads, while the upper y boundary is extended upward from the y value of the V2 vector and the lower boundary is extended downward from the y value of the V1 The x and y amounts extended are user adjustable tolerance amounts, typically 0.5 milli-meters. If the head U1 does not fall within the area A1, a no match situation exists for the particular pair of unknown spots, whose vector is being manipulated.

5

10

15

20

25

30

35

Assuming that a user wishes to manipulate the gel spot on multiple reference gel analysis, i.e. data based operation step 254, then the data flow depicted in Fig. 4 Fig. 3 for subroutine options would result, see also available. Following the data flow shown in Fig. 4 using step 254, the present invention addresses operation ambiguous situations in reported spot matching results (data .mmh shown as 252b in Fig. 4) by processing the affected unknown spots through the resolve contradiction subroutine 253, as shown in Fig. 4 and also as shown in the Appendices D1(1-3), D2, D3, D4(1flow chart in Fig. 2f. 3),and D5(1-2) are gel group spot data manipulation results in accordance with the present invention wherein: Appendix D1 is a listing of datafile 252b (abc.mmh) based on multiple

5

10

15

50

25

30

35

16

reference gels, i.e. results based on each gel being used as a reference in the comparison task and includes matched and unmatched spots before resolving any contradictions contained in the data for the three gels investigation. Appendix D2 is a listing of datafile 250c of a spot cluster exhibiting contradicting matching results which were extracted from datafile 252b and resolved by resolve contradiction subroutine 253, i.e. a spot(s) that is (are) found matching other spots that logically cannot be explained, for example one spot in one gel matched two spots and these two spots are in the same gel, (datafile 250c is an empty file upon resolving all contradictory clusters). Appendix D3 is a listing of datafile 250d of unmatched spots (termed "unique") as found in the three gels under investigation. Appendix D4(1-3) is a listing of datafile 250b of exact matched spots as determined by the present Appendix D5(1-2) is a composite listing of invention. datafile 250a of a pseudo gel, each member of the composite listing representing a matrix of matching spots having a plurality of rows, each row being identical to corresponding member in the composite listing. In the 250a negative record label represents matching spots, (two matching spots or three matching spots), while positive record label represents unmatched spots, as found in the three gels under investigation.

Referring now to Figs. 3 and 4, Appendix E1, listing of datafile 252c (abc.smh) similar to datafile 252b except generated using a designated single gel as Appendix E1 is generated by operation step 255 reference. based on using a designated single gel as a reference gel and comparing it against each of the other study gels before generating the results. Datafile 252c has the characteristic that matched and unmatched spots reported without any matching contradictions which normally results when the matching is based on a multiplicity of

17

It has been observed that some of the reference dels. matching spots results include mis-matched spot data and has led to reporting more matched spots in matching results such as in Appendix E1, than actually exist. Faced with this potential error in matching results using a 5 single gel as a reference gel, the user has the option of further manipulating the data using step 256 to extract potential mismatching spots to improve the accuracy of the listings, see Fig. 4 and also the flow chart depicted 10 in Fig. 2e. Step 256 allows the user to compare the 252c against a composite datafile 250a, datafile Appendix D5(1-2), abc.cmp, (generated in background during step 255 and contains the same data operation of operation 254, 253), which datafile abc.cmp generated by contains matching results that are considered more likely to 15 be correct. Comparison step 256 then generates potentially mis-matched spots datafile 256a, see Appendix E2, and a potentially correctly matched spot datafile 256b, Appendix E3, abc.pcm. In generating datafile 256a and 256b, 20 it is noted that in comparing datafiles 252c against 250a that any potentially correct matching set of spots would be found in both datafile 250a and in 252c, while any potential mis-matched set of spots would be found only in datafile 252c, but not in 250a. Further, after step 256, it is noted that any potentially correct matching set of spots would be 25 mostly found in datafile 256b and least in 256a, potential mis-matched set of spots would be found mostly in datafile 256a and least in 256b. Composite datafile 250a is given greater credibility because the matched set of spots found in datafile 250a are determined firstly as a matrix of 30 matching spots using each gel as a reference gel and then repeated according to the number of gels under Having processed spot data through operation step 255, the user can then utilize datafile 256a containing the list of potentially mis-matched sets of spots as a means of 35

18

determining whether a particular set of matching spots being examined are part of the potentially mis-matched group of spot and thereby gain a higher confidence level about reported matching results, i.e. the matching results found in datafile 256b or 250b. The spot matching result listed in datafile 256b have an improved accuracy over those listed in datafile 252c in that the potential mis-matching spots have been sorted into datafile 256a.

Referring back to Fig. 2, the results from operation 250 may be reviewed in a variety of plotting options 260, see also Figs. 3 and 4, and may be repeatedly performed after analysis step 270 until a user has thoroughly understood the matching results, which step 270 takes advantage of having the PI and MW data to reinforce matching results based on comparisons in the new x and y coordinate system, and may be repeated using the data base information and may be based on inquiry 280, 281 that considers whether any further contradiction 253a exists, or whether new markers need to be considered, such as by looping back through marker designation step 230 and bypassing step 240.

10

15

20

25

Therefore, while the present invention has been shown and described herein in what is believed to be the most practical and preferred embodiments, it is recognized that departures can be made therefore within the scope of the invention, which is therefore not to be limited to the details disclosed therein but is to be accorded the full scope of the claims so as to embrace any and all equivalent methods.

19

ADJUST OPERATION

ReadMatchCfg

Get the gel names (i.e. file names) from match.cfg file. These files will be used to compare each other later. The first gel name will be the reference gel, the others are study gels.

ReadGetCfg

Get the PI and MW values of each marker. The PI and MW values stored in get.cfg are input by user via marker_entry program.

ReadListFiles

Get all the spot information of each gel.

. AssignMarkers

Aligns all the markers of study gels to the markers of the reference gel. After alignment, all markers have the same X-Y value. The X-Y values of the reference gel are not changed. Calculates the effective range of each marker.

SetMarkersMove

Find out the movement value of each marker in the study gels. The movement value is got from the difference of old position and aligned position.

SetRefNewCoor

Set the new coordinate of the reference gel. (This new coordinate is same as old coordinate)

AdjustXY

Kicks out all the spots outside the window formed by markers. Call Adjust subroutine to adjust all the spots in each gel.

Adjust

Adjusts every unknown spot in the study gel by the following rules:

- 1. Find out the nearest and second nearest markers to this unknown spot. If this unknown spot is within the effective range of the nearest marker, then the movement value of this spot is same as the movement value of the nearest mark.
- 2. If rule 1 is not satisfied, use this rule. If the current unknown spot is within the intersection of two (2) times effective range of the nearest and

APPENDIX A-1

second nearest marker, then the movement value of this spot is same as the average movement value of the nearest and second nearest marker.

*

3. If rule 1 and rule 2 are not satisfied, then use rule 1 to get the movement value of the unknown spot.

AssignMkValues Assigns PI and MW values of the markers in each marker list.

CalMkBoundaryInfo Calculates the left, right, top, and bottom boundary delta x, y, PI, and MW for the using in GetPiMw subroutine.

GetPiMw Calculates the PI and MW values of each spot in each gel by using linear interpolation. The PI and MW values of each marker are input by user.

PrintAttMks Writes out the adjusted information and PI, MW value to the files. These files are ".als", ".att", and ".mks". The ".att" and ".mks" will be used in the comparison step.

NOTE: The algorithm to get the effective range of each marker:

Find out its nearest marker. Get half of the distance between this marker and its nearest marker to be its effective range.

COMPARISON OPERATION

OpenMatchCfg Gets the gel names (i.e. file names) from

match.cfg file. These files will be used to compare each other later. The first gel name will be the reference gel, the others are

study gels.

ReadMksAtt Gets the marker information of each gel in

.mks and the spot information of each gel in

.att.

Initialize Gives initial values to the internal

parameters of the comparison routine.

Match2Gels There is an iterative loop to call this

routine to do the comparison in any pair of

gels.

PrintOut In case that the match type is single

reference match, writes the comparative result to the file (.smh), otherwise, writes the result to the file (.mmh). The ".smh" will be used in the extract mismatch; the ".mmh" will be used in the resolve cluster

step.

NOTE: The asterisk (*) note means that the routine will be

described detailedly later.

APPENDIX A-3

22 Match2Gels description

BuildRelOfMarkers Finds out the shift of markers between two

gels.

InitMatch Gives initial value of tolerance, candidate

range, minimum neighbor match number, and

area threshold.

ClearMatch Finds out all the spot pair which are very

close. All of these spot pairs are clear matched. Takes these spot pairs from the

unmatched group.

Keep a fixed times loop to the following routines:

Callulates the new parameters for criteria of

comparison. If the spot pair satisfies these

criteria, we say it is matched.

For each spot in first gel, do the following routines:

FindCandidate Finds out the match candidates (the spots in

second gel which are fallen within the candidate range) for the current spot in the

first gel.

Match2Spot Compares pairs which are fallen within the

candidate range.

ManyToOne Solves the status that two spots in the first

gel matches with one spot in the second gel using some creteria. The scores of the previous and current matched pair depend on

area ratio and shift length.

23 Match2Spot description

MatchPattern

Finds out the number of neighbors of the first gel which are matches with the neighbors of second gel. If the number is greater than or equal to the minimum neighbor match number, then call IsCorrectMove routine to double check matching, otherwise, call SecondChance routine to give another chance to this spot pair. The reason of the existing of IsCorrectMove and SecondChance is used to make up the defect of MatchPattern routine. In the case that the spot pair match is confirmed by IsCorrectMove, they are matched and taken from unmatched group, otherwise they are not matched. Same case will happen when the program calls SecondChance routine.

OneToMany

Solves the status that one spot in the first gel matches with two spots in the second gel using some creteria. The scores of the previous and current matched pair depend on area ratio and shift length.

IsCorrectMove

Finds out whether the spot shift is similar to the shift of it's near marker (includes shift length and shift angle).

SecondChance

Finds out whether the intensity and area ratio of the match pair spot is very similar to each other.

٠

24 SOLVE_CLUSTER OPERATION

Opens the match.cfg file to get the file name which will be processed. Opens all the .mmh, .cmp, .exm, .cls, and .uni files.

getpimw Fetches PI and MW values from input file.

For each record in input file (.mmh), do the routines (2-5):

- 2. get_record Gets the record from input file (.mmh).
- 3. get_gid Finds out the gel index of a spot.

If the spot is a unique spot, then call put record to write out the spot to output, otherwise, do the routines: check pattern

- 4. check_pattern

 Does a pattern matching using the current record. If it is not matched in the cluster pattern, call cluster_insert routine to insert this new cluster into the cluster list. If it is matched, but it is not exact match, call update_pattern routine to update the pattern of the cluster, and call record_insert routine to insert a record into a cluster. If it is matched and it is exact match, call record_insert routine to insert a record into a cluster.
- 5. cluster_insert Inserts a new cluster into the cluster list.
- Outputs all the outstanding patterns/records. If the record in the cluster is an exact match, call exact_flush routine to output the record, otherwise call resolve_cluster routine to resolve the cluster and output the record. In case that it is a single reference match, don't output .cls, .exm, snd .uni.
- 7. sortcmp Rearrange the order of .cmp file by increasing of PI value.

25 EXTRACT POTENTIAL MISMATCH

ReadCmp Gets the matched records from .cmp.

GetSmhRecord Reads one matched record from .smh each time. If

there is no more record, the program is finished.

SameMatch Compares the record read in GetSmhRecord with

record of .cmp by using the record number of the first gel (reference gel in single reference match) as key. If the comparison is same, call WritePcm, otherwise, call WriePmm. Jumps back to

GetSmhRecord.

WritePcm Write the record read from .smh to .pcm (Potential

Correct Match).

WritePmm Write the record read from .smh to .pmm (Potential

Mis Match).

APPENDIX A-7

```
/*********************
* adjust.h : header file of adjust.c
* Author : Wenjeng Ko
* Date : November 1989
                                                     *
***********************
#define DOS
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#ifdef DOS
 #include <stdlib.h>
 #include <alloc.h>
#endif
#define NEWLINE
                    '\n'
#define EOS
                     101
#define BLANK
#define bool
                     char
#define TRUE
#define FALSE
#define MAXLINE
                     128
#define MAX_GELS
                     35
#define MAX_MARKERS
                    50
#define MK_BASE
                     9000
#define X
                     0
#define Y
                     1
#define PI
#define MW
                     1
#define BELL
                    7
#define SQUARE(x) ( (x) * (x))
struct { /* record #, pi, and mw of markers */
   int rec;
   float pi, mw;
} mk_info[MAX_MARKERS];
```

```
27
typedef struct tspot {
     int rec, /* record number
                                                                          */
                      /* x-coord of the marker
            x,
                                                                          */
                     /* y-coord of the marker
                                                                         */
            У,
           newX, /* new x-coord of the spot
newY, /* new y-coord of the spot
                                                                         */
                                                                          */
                     /* pi value
           pi,
                                                                          */
                       /* mw value
           mw,
                                                                          * /
                    /* spot height
/* spot width
           h,
                                                                          */
                                                                          */
     char name; /* marker name
                                                                          */
     float ii, /* intergrate intensity of the spot area; /* area
                                                                          */
                                                                          */
     struct tspot *next;  /* pointer to next spot */
struct tspot *prev;  /* pointer to previous spot */
} SPOT;
typedef struct tmarker {
          rec, /* record number of markers , oldX, oldY, /* old X and Y values */ newX, newY, /* new X and Y values */ val, /* the value of the marker */
     int rec,
     float ii,
                                 /* intensity
                                                                       */
            area;
                                 /* area
                                                                       */
     struct tmarker *next; /* pointer to next marker */
} L_MARKER;
typedef struct {
     int rec, /* record number of the spot
                                                                       */
          oldX, /* old x-coord of the spot
oldY, /* old y-coord of the spot
                                                                       */
                                                                       */
                  /* new x-coord of the spot
/* new y-coord of the spot
          newX,
                                                                       */
                                                                       */
          effect_r,/* effect radius
                                                                       */
          idx, idy, /* individual dx & dy of each marker */
          name; /* name
                                                                       */
} MARKER;
typedef struct gel {
                                              /* gel name
     char name[10];
                                              /* number of spots */
     int number_of_spots;
                                              /* spot list header */
     SPOT *head;
     int x_low,x_high,y_low,y_high; /* selected window */
    int d_hpi,d_lpi,d_hmw,d_lmw; /* delta of pi & mw */
int d_hx,d_lx,d_hy,d_ly; /* delta of x & y */
L_MARKER *Xmk_head; /* X marker list header */
L_MARKER *Ymk_head; /* Y marker list header */
} GEL;
```

```
/********************
* adjust.c : adjust the coordinate of each spot in study *
       gel
* Author : Wenjeng Ko
* Date : November 1989
******************************
#include "adjust.h"
#include "d:\turboc\csslib\twindow.h"
subroutine protocol
void ReadGetCfg();
void SetMarker();
void MarkInsert();
void AssignMarkers();
void AdjustXY();
void PrintAttMks();
MARKER *GetNearestMark();
MARKER *GetSecondNearestMark();
L_MARKER *MarkAlloc();
SPOT *SpotAlloc();
             global variables
WINDOW *msgwnd; /* message window pointer */
FILE *Fp_com; /* file pointer for common use */
int Num_gels = 0; /* number of gels */
GEL Gels[MAX_GELS];/* gel information */
char File_dir[40]; /* file directory int Num_mk; /* number of markers
                                                        */
                                                        */
MARKER Markers[MAX_GELS][MAX_MARKERS]; /* marker info. */
```

```
main(argc, argv)
int argc;
char *argv[];
  int
        i, j;
  char cmd[80], cfg[55];
  char gelname[13], lstfile[55], mksfile[55], attfile[55];
  char file_dir[40], str[80];
  if (argc != 2) error("Usage: ", "adjust data_directory");
  strcpy(File_dir, argv[1]);
 Num gels = ReadMatchCfg();
  ReadGetCfg();
  for (i = 0; i < Num_gels; i++)</pre>
    Gels[i].number of spots = ReadListFiles(i);
  /* Adjust x and y coordinates according to Ref. gel (gel[0]) */
  AssignMarkers(0);
  SetMarkersMove(0);
  SetRefNewCoor();
  for (i = 1; i < Num_gels; i++) {
   AssignMarkers(i);
    SetMarkersMove(i);
    AdjustXY(i);
  }
 for (i = 0; i < Num_gels; i++) {
   AssignMkValues(i);
   AssignNewXy(i);
  }
  /* Get the .mks and .att files in this step */
 for (i = 0; i < Num gels; i++) {
   GetPiMw(i);
 /* Print out the .att and .mks files */
 for (i = 0; i < Num gels; i++) {
   PrintAttMks(i);
 /* main */
```

```
AssignNewXy(idx)
int
       idx;
  int
             i, j;
  L MARKER
             *mp;
  mp = Gels[idx].Xmk head;
  while (mp != NULL) {
    for (i = 0; i < Num_mk; i++) {
      if (mp->rec == Markers[idx][i].rec) {
          mp->newX = Markers[idx][i].newX;
          mp->newY = Markers[idx][i].newY;
        break;
      }
    }
   mp = mp->next;
  } /* while */
  mp = Gels[idx].Xmk_head;
  j = 0;
  while (mp != NULL) {
    if (j == 0) {
      Gels[idx].d_hx = mp->newX - mp->next->newX;
      Gels[idx].d_hpi = mp->val - mp->next->val;
  . }
    else if (j == Num_mk - 2) {
      Gels[idx].d_lx = mp->newX - mp->next->newX;
      Gels[idx].d_lpi = mp->val - mp->next->val;
    }
    mp = mp->next;
    j++;
  } /* while */
  mp = Gels[idx].Ymk head;
  while (mp != NULL) {
    for (i = 0; i < Num_mk; i++) {
      if (mp->rec == Markers[idx][i].rec) {
          mp->newX = Markers[idx][i].newX;
          mp->newY = Markers[idx][i].newY;
        break;
      }
    }
    mp = mp->next;
  } /* while */
  mp = Gels[idx].Ymk_head;
  j = 0;
  while (mp != NULL) {
    if (j == 0) {
```

```
Gels[idx].d hy = mp->newY - mp->next->newY;
     Gels[idx].d hmw = mp->next->val - mp->val;
   else if (j == Num mk - 2) {
     Gels[idx].d ly = mp->newY - mp->next->newY;
     Gels[idx].d lmw = mp->next->val - mp->val;
   mp = mp->next;
   j++;
    /* while */
 /* AssignNewXy */
 ReadMatchCfg --- Open match.cfg and get the Gel list
                   (gel name table).
*/
static int ReadMatchCfg()
       line[MAXLINE+1], dm[15];
 char
        i, num;
  int
  /* Get the gel name from match.cfg file */
#ifdef UNIX
  sprintf(line, "%s//match.cfg", File dir);
#endif
#ifdef DOS
  sprintf(line, "%s\\match.cfg", File dir);
  if ((Fp com = fopen(line, "r")) == NULL)
   error("Can't open file match.cfg ", "!");
  for (i = 0; i < 4; i++)
   fgets (line, MAXLINE, Fp com);
 num = 0;
 while (fscanf(Fp_com, "%s", Gels[num].name) != EOF) {
   if (strlen(Gels[num].name) > 6)
      error("Gel name is over 6 characters --> ",
             Gels[num].name);
   num++;
  }
 fclose(Fp com);
 return num;
} /* ReadMatchCfg */
/*
 ReadGetCfg --- read marker infomation ( get.cfg )
```

3

 \boldsymbol{z}

3

```
*/
void ReadGetCfg()
 L_MARKER *mtp;
 char str[MAXLINE];
 float pi, mw;
  int i, j, chkcnt, rec, nummk;
#ifdef UNIX
  sprintf(str, "%s//get.cfg", File_dir);
#endif
#ifdef DOS
  sprintf(str, "%s\\get.cfg", File_dir);
#endif
  if ((freopen(str, "r", Fp_com)) == NULL)
    error("Can't open file ", str);
  fgets(str, MAXLINE, Fp com);
  sscanf(str, "%d ", &nummk);
  for (i = 0; i < nummk; i++) {
    fgets(str, MAXLINE, Fp_com);
    sscanf(str, "%d %f %f ", &rec, &pi, &mw);
   mk_info[i].rec = rec;
   mk_info[i].pi = pi;
   mk info[i].mw = mw;
  }
  fclose(Fp_com);
} /* ReadGetCfg */
/.* .
 ReadListFiles --- read spot information from .lst file
int ReadListFiles(idx)
int
        idx;
  SPOT *stemp;
  char imagename[15], str[MAXLINE];
        i, rec, x, y, spotname, h, w, num;
  float ii, area;
 bool is_marker;
#ifdef UNIX
  sprintf(str, "%s//%s.lst", File_dir, Gels[idx].name);
#endif
#ifdef DOS
```

٠,

3

```
sprintf(str, "%s\\%s.lst", File_dir, Gels[idx].name);
#endif
  if ((freopen(str, "r", Fp_com)) == NULL)
    error("Can't open file \overline{"}, str);
  for(i = 1; i <= 5; i++) fgets(str, MAXLINE-1, Fp_com);</pre>
\cdot \quad \text{num} = 0;
  while((fgets(str, MAXLINE, Fp com)) != 0) {
    is marker = FALSE;
    if (str[5] == BLANK)
     sscanf(str, "%d %s %d %d %f %f %d %d", &rec, imagename,
                        &x, &y, &ii, &area, &h, &w);
    else {
      is marker = TRUE;
      sscanf(str, "%d %d %s %d %d %f %f %d %d", &rec, &spotname,
                  imagename, &x, &y, &ii, &area, &h, &w);
    } /* else */
    num++;
    if(is_marker == TRUE) rec = spotname + MK_BASE;
    stemp = SpotAlloc();
    stemp->rec = rec;
               = x;
    stemp->x
                = y;
    stemp->y
    stemp->ii = ii;
    stemp->area = area;
               = h;
    stemp->h
               = w;
    stemp->w
    SpotInsert(idx, stemp);
    if (is_marker == TRUE) SetMarker(idx, stemp);
  } /* while */
  fclose(Fp com);
  return num;
} /* ReadListFiles */
/* .
  SpotInsert --- insert the node to list in decreasing order
        This is a double link list.
static SpotInsert(which_gel, stemp)
int which gel;
```

```
SPOT *stemp;
 SPOT *tp, *head;
 head = Gels[which gel].head;
 if(head == NULL) {
    stemp->prev = NULL;
   Gels[which_gel].head = stemp;
   return;
  }
 tp = head;
 while (tp != NULL) {
    if (stemp->x \le tp->x) {
      if (tp->next == NULL) { /* this is the last item */
       stemp->prev = tp;
       tp->next = stemp;
      break;
      }
      else {
              /* this is not the last item */
        if (stemp->x >= tp->next->x) {
         stemp->prev = tp;
         stemp->next = tp->next;
         tp->next->prev = stemp;
         tp->next = stemp;
         break;
        }
                /* go to next loop */
        else {
          tp = tp->next;
    } /* if */
    else { /* put in the first position */
      stemp->next = tp;
      stemp->prev = NULL;
      tp->prev = stemp;
      head = stemp;
      break;
    }
    /* while */
  Gels[which_gel].head = head;
} /* SpotInsert */
/*
/*
  SetMarker --- link the marker to marker list
```

```
void SetMarker(which_gel, stemp)
        which_gel;
SPOT
        *stemp;
{
   L MARKER *mtemp;
   mtemp = MarkAlloc();
   mtemp->rec = stemp->rec;
   mtemp->oldX = stemp->x;
   mtemp->oldY = stemp->y;
   mtemp->val = stemp->pi;
   mtemp->name = stemp->name;
   MarkInsert(which_gel, mtemp, PI);
   mtemp = MarkAlloc();
   mtemp->rec = stemp->rec;
   mtemp->oldX = stemp->x;
   mtemp->oldY = stemp->y;
   mtemp->val = stemp->mw;
   mtemp->name = stemp->name;
   MarkInsert(which_gel, mtemp, MW);
} /* SetMarker */
                                              . . . . . . */
  MarkInsert --- insert marker to marker list
void MarkInsert(which_gel, mtemp, type)
L MARKER *mtemp;
int type, which_gel;
  L MARKER *head, *tp, *prev;
   if (type == PI) head = Gels[which_gel].Xmk_head;
                  head = Gels[which_gel].Ymk_head;
  else
  tp = head;
   if(tp == NULL) head = mtemp;
   else {
    prev = head;
     while(tp != NULL) {
       if(type == PI && tp->oldX < mtemp->oldX) break;
       if(type == MW && tp->oldY < mtemp->oldY) break;
       prev = tp;
       tp = tp->next;
     } /* while */
     if(tp == prev) {
```

```
mtemp->next = tp;
     head = mtemp;
   } /* if */
   else {
     mtemp->next = tp;
     prev->next = mtemp;
    } /* else */
  } /* else */
 if (type == PI) Gels[which_gel].Xmk_head = head;
                 Gels[which_gel].Ymk_head = head;
} /* MarkInsert */
void AssignMarkers(which_gel)
int
      which_gel;
{
 L MARKER
             *m;
             xlow, xhigh, ylow, yhigh, mk_number;
  static int first = TRUE;
  xlow = ylow = 9999;
  xhigh = yhigh = -1;
  m = Gels[which_gel].Xmk head;
  mk number = 0;
  while (m != NULL) {
    if (m->oldX < xlow) xlow = m->oldX;
    if (m->oldX > xhigh) xhigh = m->oldX;
    if (m->oldY < ylow) ylow = m->oldY;
    if (m->oldY > yhigh) yhigh = m->oldY;
   Markers[which gel][mk number].rec = m->rec;
  Markers[which_gel][mk_number].oldX = m->oldX;
   Markers[which_gel][mk_number].oldY = m->oldY;
    Markers[which_gel][mk_number].name = Num_mk;
   mk number++;
   m = m->next;
  }
  if (mk number < 3)
    error ("Number of markers should be over 3", ".");
  if (mk_number > MAX MARKERS)
    error ("Number of markers should be less than 50", ".");
  if (first) {
    Num mk = mk number;
    first = FALSE;
  }
  else {
    if (mk number != Num mk)
      error (Gels[which gel].name,
```

```
" has different marker number.");
}
Gels[which_gel].x_low = xlow;
Gels[which_gel].x_high = xhigh;
Gels[which_gel].y_low = ylow;
Gels[which_gel].y_high = yhigh;
} /* AssignMarkers */
```

```
SetMarkersMove : Compare markers in Gel i with Gel 0,
                   put the difference in idx and idy.
*/
SetMarkersMove(which_gel)
       which gel;
 MARKER
             m:
  int
             i, j;
  if (which_gel == 0) {     /* This is ref gel */
    for (i = 0; i < Num_mk; i++) {
      Markers[0][i].new\overline{X} = Markers[0][i].oldX;
      Markers[0][i].newY = Markers[0][i].oldY;
      Markers[0][i].idx = Markers[0][i].idy = 0;
    }
    return;
  }
  for (i = 0; i < Num mk; i++) {
  for (j = 0; j < Num mk; j++) {
      if (Markers[which_gel][i].rec == Markers[0][j].rec)
        break;
    Markers[which_gel][i].idx =
        Markers[0][j].oldX - Markers[which_gel][i].oldX;
    Markers[which_gel][i].idy =
        Markers[0][j].oldY - Markers[which_gel][i].oldY;
   Markers[which_gel][i].newX = Markers[0][j].oldX;
   Markers[which_gel][i].newY = Markers[0][j].oldY;
  /* SetMarkersMove */
void AdjustXY (which gel)
int
       which gel;
{
 SPOT *sp;
 sp = Gels[which_gel].head;
 while (sp != NULL) {
 if (sp->x <= Gels[which_gel].x_high &&
     sp->x >= Gels[which_gel].x_low &&
      sp->y <= Gels[which_gel].y_high &&
      sp->y >= Gels[which_gel].y_low )
   Adjust (which gel, sp);
    sp = sp->next;
  }
```

39

. •

```
} /* AdjustXY */
  SetRefNewCoor --- Set the reference gel's new X, Y value.
SetRefNewCoor()
{
  SPOT *sp;
  sp = Gels[0].head;
  while (sp != NULL) {
    if (sp->x \le Gels[0].x high &&
        sp->x >= Gels[0].x_low &&
        sp->y <= Gels[0].y_high &&
  sp->y>= Gels[0].y_low) {
      sp->newX = sp->x;
      sp->newY = sp->y;
    sp = sp->next;
  /* SetRefNewCoor */
 Adjust --- Adjust the spots in the study gels to it's markers
static Adjust (which gel, sp)
        which gel;
SPOT
        *sp;
            *mark0, *mark1, *mark2;
 MARKER
             t1, t2, t3, t4, tx, ty;
 mark0 = GetNearestMark(which gel, sp);
 mark1 = GetSecondNearestMark(which gel, sp);
 t1 = mark0 -> oldX - sp->x;
 t2 = mark0 -> oldY - sp->y;
 t3 = mark1 - > oldX - sp - > x;
 t4 = mark1 - > oldY - sp - > y;
  if ( SQUARE(t1)+SQUARE(t2) <= SQUARE((long)mark0->effect_r) ) {
   tx = mark0 - > idx;
   ty = mark0 -> idy;
  else if ( (SQUARE(t1) + SQUARE(t2) <= 4 *
             SQUARE((long)mark0->effect r) ) &&
            (SQUARE(t3) + SQUARE(t4) \le 4 *
             SQUARE((long)mark1->effect_r) ) ) {
```

WO 91/19274 PCT/US91/03620

3

```
40
   tx = (mark0->idx + mark1->idx) / 2.0;
   ty = (mark0 -> idy + mark1 -> idy) / 2.0;
 else {
   tx = mark0 -> idx;
   ty = mark0->idy;
  sp->newX = sp->x + tx;
sp->newY = sp->y + ty;
} /* Adjust */
MARKER *GetNearestMark(which_gel, node)
int
      which gel;
SPOT
       *node;
  int
       i;
 unsigned
           long min = 99999999;
  long dist;
 long tp1, tp2;
  int mark;
  for ( i = 0 ; i < Num_mk ; i++ ) {
    /* Since all Study-gels' marker.newX and marker.newY are
       equal to Ref-gel's, and we use newX, newY to find the
      nearest marker, therefore gel[Ref_gel]'s marker list
       can be use for every Study-gel's marker list
   tp1 = node->x - Markers[which_gel][i].oldX;
    tp2 = node->y - Markers[which_gel][i].oldY;
    dist = SQUARE(tp1) + SQUARE(tp2);
    if (dist < min) {
     min = dist;
     mark = i;
  }
 return( &Markers[which_gel][mark] );
} /* GetNearestMark */
MARKER *GetSecondNearestMark(which_gel, node)
int
       which gel;
SPOT
       *node;
{
```

```
int
  unsigned
             long min1 = 9999999, min2 = 9999999;
  long dist;
  long tpl, tp2;
  int
        mark1, mark2;
  for ( i = 0 ; i < Num_mk ; i++ ) {
    /* Since all Study-gels' marker.newX and marker.newY are
       equal to Ref-gel's, and we use newX, newY to find the
       nearest marker, therefore gel[Ref_gel]'s marker list
       can be use for every Study-gel's marker list
    */
    tp1 = node->x - Markers[which_gel][i].oldX;
    tp2 = node->y - Markers[which_gel][i].oldY;
    dist = SQUARE(tp1) + SQUARE(tp2);
    if ( dist < min1 ) {
      min2 = min1;
      mark2 = mark1;
      min1 = dist;
     mark1 = i;
    else if (dist < min2) {
      min2 = dist;
      mark2 = i;
    }
  }
  return( &Markers[which_gel][mark2] );
} /* GetSecondNearestMark */
 GetPiMw --- get PI & MW values for each spot
GetPiMw (which_gel)
int
       which gel;
{
 SPOT *sp;
 sp = Gels[which_gel].head;
 while (sp. != NULL) {
   if( sp->x >= Gels[which_gel].x_low &&
        sp->x <= Gels[which_gel].x_high &&
        sp->y >= Gels[which_gel].y_low &&
       sp->y <= Gels[which_gel].y_high ) {</pre>
     CalPi(which gel, sp);
     CalMw(which gel, sp);
   ) /* if */
```

```
else {
      sp->pi = -1000;
      sp->mw = -1000;
    sp = sp->next;
  } /* while */
} /* GetPiMw */
 CalPi --- calculate the pi value of the spot
CalPi(which_gel, sp)
       which_gel;
SPOT
        *sp;
  L MARKER
              *mp;
  int
              i;
 long
             t;
 mp = Gels[which_gel].Xmk_head;
  i = 0;
 while (mp != NULL) {
    if (sp-\geq newX\geq mp-\geq newX && i == 0) { /* over right margin */}
      t = ((long) sp->newX - mp->newX) *
          Gels[which_gel].d hpi /
          Gels[which_gel].d_hx - mp->val;
     .sp->pi = (int) t;
      break;
    else if (sp->newX == mp->newX) {
      sp->pi = mp->val;
      break;
    }
    else {
      if(mp->next != NULL) {
        if(sp->newX > mp->next->newX) {
          t = ((long) sp->newX - mp->next->newX) *
              (mp->val - mp->next->val) /
              (mp->newX - mp->next->newX);
          sp->pi = mp->next->val + (int) t;
          break;
        }
      else {
        t = ((long) \text{ m. } -> \text{newX} - \text{sp->newX}) *
              Gels[which_gel].d lpi /
              Gels[whi.:_gel].d_lx;
        sp->pi = mp->val - (int) t;
        break;
```

```
}
    mp = mp->next;
    i++;
} /* while */
} /* CalPi */
```

```
. . . */
 CalMw --- calculate the mw value of the spot
CalMw(which_gel, sp)
int
       which gel;
SPOT *sp;
 L MARKER
             *mp;
 int
             1;
 long
             t;
 mp = Gels[which_gel].Ymk_head;
  i = 0;
 while (mp != NULL) {
   if (sp-\geq newY\geq mp-\geq newY && i == 0) { /* over right margin */}
       t = ((long) sp->newY - mp->newY) *
             Gels[which_gel].d hmw /
             Gels[which_gel].d_hy;
       sp->mw = mp->val - (int) t;
       break;
   else if (sp->newY == mp->newY) {
     sp->mw = mp->val;
     break;
   }
   else {
     if (mp->next != NULL) {
        if(sp->newY > mp->next->newY) {
          t = ((long) sp->newY - mp->next->newY) *
              (mp->val - mp->next->val) /
             (mp->newY - mp->next->newY);
          sp->mw = mp->next->val + (int) t;
          break;
        }
      }
      else {
        t = ((long) mp -> newY - sp -> newY) *
             Gels[which_gel].d_lmw /
             Gels[which_gel].d ly;
        sp->mw = mp->val - (int) t;
        break;
      }
    }
   mp = mp->next;
    i++;
  } /* while */
} /* CalMw */
```

45

```
AssignMkValue -- assign the value of marker to PI marker list
static AssignMkValues (which gel)
        which_gel;
int
  L MARKER
             *mp;
  /* Assign pi values */
  mp = Gels[which_gel].Xmk_head;
  while (mp != NULL) {
   mp->val = (int) (mk_info[mp->rec-MK BASE-1].pi * 100);
   mp = mp - next;
  }
 /* Assign mw values */
  mp = Gels[which_gel].Ymk_head;
  while (mp != NULL) {
   mp->val = (int) (mk info[mp->rec-MK BASE-1].mw * 100);
   mp = mp->next;
} /* AssignMkValues */
 MarkAlloc --- allocate the marker node in memory
static L MARKER *MarkAlloc()
 L_MARKER *mtemp;
  if( (mtemp = (L_MARKER *)malloc(sizeof(L MARKER))) == NULL )
   error("Out of memory","!");
 mtemp->val = -1000;
 mtemp->next = NULL;
 return (mtemp);
} /* MarkAlloc */
/* :
  SpotAlloc --- allocate the spot node in memory
SPOT *SpotAlloc()
  SPOT *stemp;
```

Ŧ.

```
if( (stemp = (SPOT *)malloc(sizeof(SPOT))) == NULL )
   error("Out of memory", "!");
 stemp->pi = -1000;
 stemp->mw
           = -1000;
 stemp->newX = -1;
 stemp->newY = -1;
 stemp->next = NULL;
 stemp->prev = NULL;
 return(stemp);
} /* SpotAlloc */
void PrintAttMks(which gel)
      which gel;
  SPOT *stemp, *stp;
 L MARKER *mtemp, *mtp, *tmp[MAX_MARKERS];
  int i;
 char str[55];
  /* Print out the .att files */
#ifdef UNIX
  sprintf(str, "%s//%s.att", File_dir, Gels[which gel].name);
#endif
#ifdef DOS
  sprintf(str, "%s\\%s.att", File_dir, Gels[which gel].name);
#endif
  if ((freopen(str, "w", Fp_com)) == NULL)
    error("Can't open file ", str);
  fprintf(Fp_com, "Filename: %s.att\n\n", Gels[which gel].name);
  fprintf (Fp com,
    "Rec# X___ Y___ NewX NewY PI____ MW___ II___ Area Ht
Wd__\n");
  stemp = Gels[which_gel].head;
  while ( stemp != NULL ) {
    if ( stemp->pi != -1000 \&\& stemp->mw != -1000 ) {
      fprintf(Fp com,
        "$4d $4d $4d $4d $6.2f $6.2f $7.3f $7.3f $4d $4d\n",
             stemp->rec, stemp->x, stemp->y,
             stemp->newX, stemp->newY,
             stemp->pi/100.0, stemp->mw/100.0, stemp->ii,
             stemp->area, stemp->h, stemp->w);
    stp = stemp;
    stemp = stemp->next;
```

```
} /* while */
 fclose(Fp com);
 /* Print out the .als (modified .lst) files. The spots outside
  window will be ignored.
  */
#ifdef UNIX
 sprintf(str, "%s//%s.als", File_dir, Gels[which_gel].name);
#endif
#ifdef DOS
  sprintf(str, "%s\\%s.als", File_dir, Gels[which_gel].name);
#endif
  if ((freopen(str, "w", Fp com)) == NULL)
    error("Can't open file \overline{"}, str);
 fprintf(Fp_com, "Filename: %s.als\n", Gels[which_gel].name);
 fprintf(Fp com, "Window = X : %4d ~ %4d\n",
        Gels[which_gel].x_low, Gels[which_gel].x_high);
  fprintf(Fp com, "
                           Y : %4d ~ %4d\n\n",
        Gels[which_gel].y_low, Gels[which_gel].y_high);
  fprintf(Fp com,
    "Rec# Spotname Image NewX NewY II Area Ht_
Wd__\n");
  stemp = Gels[which gel].head;
  while( stemp != NULL ) {
    if( stemp->pi != -1000 && stemp->mw != -1000 ) {
      if (stemp->rec >= MK BASE)
       fprintf(Fp com, "%4d %-10d %-10s %4d %4d %7.3f %7.3f %4d
%4d\n",
             stemp->rec, stemp->rec-MK_BASE,
             Gels[which gel].name,
             stemp->newX, stemp->newY, stemp->ii,
             stemp->area, stemp->h, stemp->w);
      else
        fprintf(Fp com, "%4d %-10s %-10s %4d %4d %7.3f %7.3f %4d
%4d\n",
             stemp->rec, " ", Gels[which_gel].name,
stemp->newX, stemp->newY, stemp->ii,
             stemp->area, stemp->h, stemp->w);
    stp = stemp;
    stemp = stemp->next;
    free (stp);
  } /* while */
  fclose(Fp com);
  /* Print out the .mks files */
```

3

```
#ifdef UNIX
 sprintf(str, "%s//%s.mks", File_dir, Gels[which gel].name);
#endif
#ifdef DOS
 sprintf(str, "%s\\%s.mks", File_dir, Gels[which gel].name);
#endif
 if ((freopen(str, "w", Fp com)) == NULL)
   error("Can't open file ", str);
  fprintf(Fp_com, "%s.mks\n", Gels[which_gel].name);
 fprintf(Fp_com, "Window = X : %4d ~ %4d\n",
   Gels[which_gel].x_low, Gels[which_gel].x high);
  fprintf(Fp_com, " Y : %4d ~ %4d\n",
   Gels[which_gel].y_low, Gels[which_gel].y_high);
  /* sort the markers by record number */
 mtemp = Gels[which gel].Xmk head;
  for (i = 0; i < Num mk; i++) {
   tmp[mtemp->rec - MK BASE] = mtemp;
   mtemp = mtemp->next;
  } /* for */
  fprintf (Fp_com,
  "\n----\n", Num_mk);
 fprintf(Fp_com, "Marker_name X____Y__\n");
  for (i = 1; i \le Num_mk; i++) {
   fprintf(Fp_com, " %4d %4d\n",
       tmp[i] ->rec, tmp[i] ->oldX, tmp[i] ->oldY);
  } /* for */
 fclose (Fp com);
} /* PrintAttMks */
                    . . . . . . . . . .
/*
  error --- give the error message
error(s1, s2)
char *s1, *s2;
 error_message(s1, s2, 0, OK);
  exit(1); .
} /* error */
```

Documentation Conventions

```
.lst = raw data file (X-Y coordinate)
.als = adjusted data file (X-Y coordinate) after run "match"
.att = adjusted data file (PI-MW coordinate) after run "match"
.mks = information about the markers
.mmh = multiple reference matched image file
.smh = single reference matched image file
.cmp = composite match image file
.pno = reference file for reading .cmp map
.exm = exact match spots file
.cls = cluster spots file
.uni = unique spots file
.pmm = potential mismatched spots
.pcm = potential correct matched spots
.lmt = metafile for drawing spot list map (X-Y coordinate)
.amt = metafile for drawing spot list map (PI-MW coordinate)
.cmt = metafile for drawing compositive map
.mmt = metafile for drawing the moving vector in any two
       matched gels
xdrawout.plt = output file for HPGL and PostScript of printer
       or plotter
get.cfg = configuration file of get pots
match.cfg = configuration file of match
draw.cfg = configuration file of comparison of .att and .cmp
```


APPENDIX C1-1

						JI				
Prin	t file	name:	a.lst,	Time: 15	:15	Date: 12	1/1989		p	age:
215			a	220	811	0.024	0.08	2	6	
125			a	222	372	0.204	0.48	8	14	
143			a	226	427	0.220	1.59	14	20	
154			a	232	453	0.077	0.77	10	16	
93			a	234	288	1.257	2.09	16	26	
8			a	236	63	0.005	0.08	2	6	
7			a	240	25	0.013	0.11	2	8	
94			a	240	312	0.531	1.19	8	26	
124	6		a	240	346		7.79	32	52	
54			a	244	175	0.075	0.64	10	16	
69	5		a	264	250	3.127	4.59	26	38	
200			a	264	715	0.298	1.91	18	22	
9			a	286	13	0.019	0.11	2	8	
68			a	290	230	0.636	1.59	16	20	
95			a	292	290	0.296	1.54	16	18	
32			a	296	124	0.121	1.17	16	16	
216			a	310	814		1.59	12	24	
96			a	322	261	0.150	0.98	16	14	
127			a	324	332	0.191	1.30	12	18	
11			a	328	49	0.060	0.74	10	14	
129			a	332	382	0.074	0.93	12	14	
99			a	334	291	0.162	1.11	14	14	
201			a	346	707	0.071	0.82	10	14	
183			a	356	576	0.547	2.41	30	20	
192			a	356	667	0.095	0.95	14	16	
70			a	· 358	246	0.250	1.11	16	14	
10			a	364	20	0.301	0.74	14	12	
98			a	366	294	0.026	0.27	4	10	
55			a	368	190	0.339	1.72	18	18	
33			a	372	80	0.054	0.50	8	10	
144			a	372	385	0.051	0.37	6	12	
202	•		а	374	759	0.004	0.11	2	8	
128			а	376	349	3.781	5.19	30	32	
97			a	380	259	0.702	1.96	20	20	
12			a	388	33	1.646	2.04	20	20	
34			а	402	64	1.203	2.01	18	22	
36			a	408	124	0.096	1.14	16	12	
185 194			a	414	618	0.532	2.36	24	20	
			a	414	697	0.007		2	8	
101			a	416	317	0.131	0.61	10	12	
130	4		a	426	360	4.162	3.90	32	28	
184 100			a	426	578	0.197	1.30	16	16	
35			a	432	261	0.884	1.91	18	18	
193			a	440	123	0.268	1.30	16	16	
203			a	440	677	0.181	1.33	14	18	
186			a	440	728	0.125	1.11	14	16	
131		•	a	450 452	607	0.006	0.08	2	6	
188			a		324	1.888	2.17	20	20	
103			a	452 454	615 298	0.086	0.72	10	14	
169			a a	454	298 569	0.437	0.98	12	16	
56			a	450	166	0.005 0.213	0.08	2	6	
145			a	460	417	0.213	1.35	16	14	
37			a	468	83	1.004	1.14	14	16	
J /			a	400	0.3	1.004	1.86	18	18	

52

Print file name: a.lsc, Time: 15:15 Date: 12/1/1989 Page:

Spotlist for 'a'. Image size 1024 x 1024. 221 spots.

Rec_ Spotname	Image	x	Y	**	_		
62	a	- î -	222	_ II	Area_	_ Ht	
153	a	16		0.044	0.16	4	6
212	a	16	482	0.060	0.32	8	6
1	a		814	0.052	0.16	4	6
165	a	22	42	0.391	1.40	14	18
167		30	517	0.740	2.89	14	36
50	a	30	555	0.158	0.93	12	18
118	a	36	135	0.236	1.19	14	18
89	a	36	337	10.508	6.84	42	46
27	a	44	280	0.210	1.14	10	24
28	a	50	74	1.438	2.23	18	24
63	a	50	104	0.064	0.69	8	16
117	a	52	252	0.921	1.91	16	22
51	a	54	346	0.214	0.24	4	10
166	a	56	165	3.456	4.13	22	38
2	a	56	550	0.128	0.95	12	16
120	a	70	35	0.006	0.08	2	6
177	a	72	360	2.635	2.70	24	28
64	a	78	618	0.162	1.27	14	18
3	a	92	238	0.100	1.01	12	16
29	a	102	32	0.102	0.64	10	14
119	a	120	100	0.026	0.61	8	12
90	a	122	346	0.277	1.33	14	18
176	a	124	292	0.523	1.75	16	22
52	a	124	618	0.026	0.27	4	10
179	a	126	174	1.358	2.62	18	28
180	a	130	598	0.063	0.69	8	14
123	a	132	625	0.007	0.08	2	6
4	a	142	367	0.199	1.09	10	20
199	a	144	34	0.146	0.66	12	14
142	a	146	711	0.004	0.08	2	6
91	a	148	421	0.468	1.72	16	24
65	a	150	268	0.392	1.46	12	22
181	a	152	236	0.704	1.86	16	22
30	a	156	624	0.123	0.95	12	16
178	a	164	110	0.076	0.74	12	14
122	a	164	592	0.096	0.95	12	14
214	a	168	349	0.412	1.48	14	20
5	a	178	810	0.140	0.32	4	14
213	a	180	55	0.823	2.46	14	34
121	a	184	786	0.226	1.33	12	20
67	a	186	321	2.968	4.16	26	34
126	a	194	217	0.764	1.99	18	22
66	a	194	383	0.795	2.07	14	30
182	a	202	198	0.023	0.16	4	6
6	a	204	596	0.216	1.46	16	18
92	a	208	20	0.565	1.35	12	24
53	a	208	256	3.188	4.66	26	36
31	a	216	142	0.179	1.46	12	22
31	a	218	104	0.555	2.65	24	22

Deie				mi 15		.55				
<u> </u>	(C + 7.16	name:	a.ist.	Time: 15	5:12	Date: 12/	1/1989		P	age:
102				470				4		
132			a	478	277	1.250	1.54	20	16	
			a	480	333	0.039	0.08	2	6	
204			a	484	746	0.237	1.54	14	22	
38			a	490	126	0.159	0.80	14	10	
104			а	490	319	1.404	1.38	14	20	
155			a	492	464	0.379	1.91	16	32	
168			a	492	559	0.681	2.54	20	24	
13			a	494	38	0.043	0.16	4	6	
187			a	494	598	0.907	2.36	24	28	
14			a	496	52	0.279	0.82	12	12	
71			a	496	194	0.813	1.83	18	30	
156			a	496	487	0.190	1.35	12	22	
217			a	496	799	0.624	1.80	14	24	
146			a	500	417	0.203	1.30	14	18	
195			a	502	672	2.796	4.29	24	34	
133			a	504	372	3.676	5.80	36	38	
189			a	504	635	0.210	1.14	10	20	
72	3		a	512	252	8.928	6.71	38	46	
15			a	518	48	1.571	2.46	20	28	
58			a	520	171	0.472	1.40	14	18	
57			a	524	132	0.875	2.84	22		
106			a	524	302	1.773	2.33		26	
39			a	532	86	0.669		20	20	
205			a	540	735		1.88 1.25	16	22	
147	2		a	556	447	0.168 4.757	5.12	14	18	
134	_		a	560	336	0.055		32	32	
16			a	562	62		0.48	8	12	
105			a	570	265	0.234	1.17	14	16	
42						0.052	0.72	10	14	
108			a	576	125	0.003	0.08	2	6	
148			a	576	302	0.111	1.09	12	18	
17			a -	586 506	389	0.264	1.54	18	16	
18			a	596	21	0.223	1.06	14	14	
109			a	600	59	0.283	1.46	18	14	
219			a a	600	316	0.022	0.19	4	8	
107				610	823	0.228	0.32	6	12	
135			a	620	268	0.049	0.19	4	8	
170			a	620	348	0.281	1.14	14	16	
40			a	620	524	0.028	0.19	4	10	
73			a	626	100	0.103	0.66	12	12	
149			a	628	250	1.006	1.80	20	20	
218			a	630	402	1.845	2.86	24	26	
110			a	634	785	0.433	1.09	14	14	
157			a	636	308	2.391	3.34	24	30	
196			a	636	457	1.162	2.20	28	24	
			a	636	690	2.274	3.79	26	30	
41			a	638	115	0.233	0.87	18	10	
21			a	642	56	1.827	3,37	26	32	
197			a	644	646	1.267	2.09	20	26	
78			a	650	239	0.037	0.13	2	10	
112			a	650	274	1.391	1.67	22	22	
171			а	650	517	0.064	0.34	6	10	
190			a	650	601	0.569	1.40	16	22	
77			a	652	235	0.021	0.08	2	6	
220			a	654	799	0.975	1.64	12	30	

APPENDIX C1-4

			<i>'</i> 54			
Print file name:	a.lst.	Time: 15:15	Date: 12	/1/1989		Page:
59	a	656 16	0.409	1 54	3.0	• •
43	a	658 10		1.54	16	18
74				0.90	10	16
137	a	658 19			8	14
	a	658 30		1.99	20	20
19	a		6 0.423	0.90	10	16
221	a	684 82	0.054	0.11	2	8
172	a	688 51		2.57	24	20
206	a	688 73			22	
113	a		9 3.868	_		24
76	a	694 22		5.06	32	36
79					14	20
150	a	694 24			10	18
44	a	694 43			22	30
	a	696 12		1.01	12	16
136	a	696 35	0.300	1.03	10	18
158 1	a	696 48	3.652	5.14	36	28
111	a	698 26		1.30	12	20
20	a		0.414		12	
75	a	702 19				18
45	a		_	0.61	10	12
81				0.19	4	8
114	a	728 24		0.08	2	6
208	a	730 29		0.16	4	8
	а	742 75	0.254	1.62	14	20
80	a	744 20		2.23	16	26
138	a	744 32	0.006		2	6
46	а	748 9	0.055	0.77	10	14
47	a	752 12		0.19	4	8
82	a	756 23		3.37		
207	a	760 72			26	28
22	a			1.33	16	20
159	a			0.77	10	14
191		762 50		2.17	24	18
84	a	762 58		0.72	8	16
174	a	782 21		0.29	6	10
	a	784 56		0.64	8	22
24	a		0.004	0.08	2	6
161	a	786 49	0.021	0.16	4	6
49	a	788 9	0.157	1.48	16	18
151	a	794 44			12	14
23	a		5 0.042	0.45	6	
60	a	796 17		0.48		14
115	a	796 27			8	12
160	a			1.62	14	22
25		810 49		0.08	2	6
173	a		0.148	0.98	12	16
83	a	816 51		1.59	18	18
	a	824 19		1.43	16	16
116	a	826 27	9 0.108	0.82	14	10
140	a	826 36	5 0.408	1.78	18	18
85	a	828 24		2.39	22	20
48	a		9 0.042	0.40		
139	a	830 33			6	12
163	a	834 49		0.80	10	14
209				1.75	24	16
198	a	834 75		0.16	4	8
	a	842 69		0.82	14	14
61	а	856 15		1.14	16	14
88	a	858 24	4 0.772	1.46	20	14

WO 91/19274 PCT/US91/03620

- 55

Fill Lile name:	a.ist. T	1me: 15	:15	Date: 12/1	1/1989		Page:
162	а	866	491	0.215	1.54	18	14
86	a	886	206	0.098	0.24	4	12
87	a	888	235	0.124	0.32	6	10
152	a	888	395	0.024	0.13	2	10
26	a	904	33	7.066	7.39	42	34
175	a	906	566	0.526	1.38	16	18
210	a	908	713	2.324	3.31	22	30
164	a	910	491	2.067	3.13	26	24
141	a	948	361	0.018	0.08	2	6
211	a	952	725	1.191	1.70	18	18

APPENDIX C1-6

APPENDIX C2-1

Print file name: b.lst, Time: 15:16 Date: 12/1/1989 Page:

Spotlist for 'b'. Image size 1024×1024 . 295 spots.

Rec_Spotname	Image_	x	Y	II	Area	_ Ht	Wd
118	b	16	270	0.071	0.48	12	- Wa <u>-</u>
265	b	18	821	0.266	0.40	16	10
91	b	22	219	0.059	0.32	6	12
216	b	22	512	0.370	1.33		
64	b	30	147	0.174		14	22
120	b	30	291	0.339	1.06	10	20
37	b	36	86		1.01	14	34
38				1.822	2.09	16	26
1	ь	38	113	0.258	1.11	12	18
217	þ	40	14	0.129	0.32	4	16
228	Ъ	40	555	2.110	3.66	18	46
153	þ	42	597	0.132	1.19	12	18
65	р	44	363	9.850	8.32	40	46
119	b	48	179	1.544	2.44	14	34
2	b	50	270	0.860	1.62	16	20
	b	52	46	0.019	0.21	4	10
182 39	b	74	386	1.421	1.72	16	26
	þ	82	78	0.007	0.16	4	8
5	р	86	46	0.083	0.66	8	16
94	р	86	253	0.094	0.87	10	14
3	b	92	15	0.438	0.74	6	20
237	þ	94	664	0.239	1.43	14	20
40	р	108	118	0.037	0.56	8	20
92	b	118	194	1.748	2.52	16	32
93	Þ	118	221	0.005	0.13	2	10
121	þ	122	315	0.345	1.40	14	20
4	p	126	15	0.240	0.56	6	16
6	b	126	55	0.034	0.29	6	10
154	þ	126	372	0.339	1.38	12	22
240	þ	140	670	0.063	0.77	10	14
183	b	144	394	0.316	1.11	12	20
239	b	144	645	0.082	0.93	12	14
122	þ	148	258	1.080	1.91	16	22
123	b	148	292	0.418	1.54	12	24
202	b	154	454	0.712	1.59	16	20
66	þ	156	133	0.112	1.03	12	16
	р	162	79	0.669	1.72	18	22
	þ	164	19	1.405	2.12	14	30
	b	164	773	0.002	0.08	2	6
	b	166	156	0.034	0.37	8	10
	b	170	378	0.714	1.72	16	22
	b	172	673	0.189	1.27	14	16
238	b	178	641	0.128	1.11	14	16
	b	188	352	2.186	2.65		26
8	ь	190	45	0.600	1.33	14	20
98	b	192	243	0.645	1.70	14	22
	b	196	415	0.704	1.62		24
	b	198	227	0.469	1.43	14	18
	b	198	898	0.883	1.27		22
	b	202	865	0.194	1.46		22

APPENDIX C2-2

						¹ 58				
Print	t file	name:	b.lst,	Time: 15	:16	Date: 12/	1/1989		Pa	qe:
124			_	224						
157			b b	204 204	284	2.900	3.47	24	30	
68			b	204	323	0.076	0.37	6	12	
69			b		130	0.842	2.23	22	20	
242			b	206 216	167	0.178	1.06	10	20	
10			b	222	647	0.168	1.19	14	16	
184			b	222	58	0.199	0.93	12	18	
9			b	224	402 22	0.949	1.33	16	20	
42			b	224	89	2.169 0.008	2.44	16	26	
283			b	230	905	0.039	0.08 0.08	2	6	
203			b	232	466	0.039	1.09	2	6	
125			b	234	318	1.405	2.04	14	16	
204			b	238	491	0.024	0.37	16 6	24 10	
95			b	240	205	0.043	0.40	6	14	
158			b	240	344	1.004	1.83	12	30	
205			b	242	497	0.003	0.08	2	6	
279			b	242	890	0.045	0.27	4	10	
43			b	244	87	0.125	0.90	10	16	
159	6		b	244	381	11.183	9.49	40	54	
97			ь	246	244	0.051	0.42	8	10	
13			þ	260	24	0.243	0.56	8	12	
127	5		Þ	262	281	4.348	4.35	26	36	
161			b	262	330	0.035	0.19	4	8	
15			b	268	41	0.061	0.29	6	8	
286			þ	268	917	0.454	0.50	6	18	
11			þ	274	16	0.836	0.93	8	22	
267			b	276	779	0.321	1.86	18	20	
285 70			ъ	278	907	1.623	1.33	12	40	
100			þ	282	155	0.250	1.43	18	18	
126			b	282	213	0.012	0.24	6	8	
160			Ъ	284	261	0.806	1.56	14	22	
12			þ	288	322	0.489	1.56	16	18	
44			b b	296	17	0.317	0.82	10	14	
14			b	310 312	85	0.169	0.98	10	18	
71			b	312	36 188	0.144	0.72	8	18	
99			b	312	197	0.035	0.40	8	12	
128			b	314	296	0.021 0.050	0.32	6	10	
284			ь	318	901	0.625	0.53 1.35	8	14	
164			b	320	369	0.406	1.43	14 14	22 20	
187			ď	326	421	0.062	0.74	10	16	
162			b	330	327	0.416	1.40	14	20	
46			b	336	107	0.005	0.08	2	6	
244			b	336	691	0.239	1.33	14	20	
18			b	348	52	0.046	0.19	4	8	
130			þ	352	284	0.232	1.19	12	20	
17			þ	354	41	0.670	1.78	16	20	
206			b	354	475	0.250	1.51	14	20	
268			þ	356	777	0.168	1.40	16	16	
229			р	358	622	0.240	0.95	12	16	
47			b	360	116	0.184	0.95	12	16	
129			þ	360	257	0.034	0.29	6	10	
101 163			b	362	228	0.545	1.59	16	24	
103			ь	364	332	0.126	0.82	12	14	

APPENDIX C2-3

.59

							. 2	9			
Pri	nt_	file	name:	b.lst,	Time: 1	5:16	Date: 12/	1/1989		1	Page:
243				ъ	364	643	0.874	1.93	10	22	
258				b	364	730			18	22	
72							0.276	1.70	16	18	
				р	372	152	0.016	0.16	4	6	
45				þ	374	73	1.430	1.83	14	24	
131				d	374	297	0.655	1.67	16	22	
186				ď	374	393	6.077	5.96	32	38	
188				b	374	429	0.119				
16				ď	380			0.72	8	18	
						17	0.246	1.06	10	18	
20				þ	388	43	0.060	0.34	6	12	
48				b	390	102	1.344	1.93	. 16	24	
132				ь	390	264	0.066	0.69	8	16	
73				b	394	162	0.307	1.56	16	18	
165				b	416	360	0.415	1.40	12	20	
246				b	420	680					
133							0.519	2.49	24	18	
				Ъ	424	271	0.082	0.69	10	14	
190	4			Ъ	424	409	2.862	3.07	22	28	
269				b	426	774	0.010	0.16	4	10	
134				b	428	303	1.068	1.75	16	22	
74				b	430	164	0.505	1.48	16	18	
245				b	432	640	0.366				
19				b				1.56	16	20	
189					434	35	0.411	1.17	14	16	
				ь	434	386	0.054	0.16	4	8	
270				Þ	446	804	0.090	0.93	12	16	
260				ь	448	748	0.130	1.09	12	18	
167				b	450	342	0.484	1.09	12	18	
192				ь	452	394	0.161	0.37	8	12	
102				b	454	211	0.225	1.35			
169				b	454	369			14	18	
248							1.840	2.07	18	22	
				þ	454	678	0.092	0.72	12	14	
50				р	458	103	0.112	0.56	8	14	
75				ь	458	130	1.149	1.75	16	22	
135				b	460	288	0.083	0.56	8	12	
22				b	462	40	1.472	2.25	20	22	
249				ь	462	702	0.026	0.42	8	10	
207				b	464	470	0.051	0.69	8		
166				b	476	326	1.525			16	
76				b				1.80	22	18	
218					484	133	0.146	0.45	10	8	
				þ	486	521	0.278	1.46	14	20	
191				þ	488	392	0.384	0.69	8	16	
103				b	490	241	0.624	1.51	14	26	
168				b	490	364	1.919	1.72	16	24	
209				b	490	499	0.031	0.40	6	14	
23				b	494	52	1.361	2.04	20	20	
77				b	494	168					
194				b	494		0.629	1.56	14	24	
219						432	0.691	1.72	16	20	
				b	494	545	0.077	0.69	10	16	
230			•	b	494	622	0.541	2.12	18	22	
288				b	494	939	4.092	2.41	12	72	
49				ь	496	94	2.192	4.19	22	42	
247				b	496	666	1.222	3.63	28		
271				b	496					34	
208						828	0.252	1.19	14	28	
				ь	500	470	0.075	0.77	10	16	
193	_			þ	504	415	2.542	3.26	20	38	
136	3			ь	506	302	6.837	6.15	32	42	

				•				
Print file	name: b.lst,	Time: 15	16	Date: 12/	1/1989		Pe	ige:
259	р	508	707	0.115	0.87	10	16	
280	đ	508	886	0.633	2.15	20	20	
287	ф	508	923	3.070	2.62	16	54	
21	p	510	17	1.457	1.83	12	26	
261	р	510	745	3.251	4.16	24	36	
172	b	512	380	0.177	0.50	8	12	
80	b	514	186	0.761	2.04	14	34	
104	b	514	222	0.508	1.51	16	18	
171	b	518	348	2.230	2.46	20	24	
79	b	522	175	0.199	0.69	10	16	
78	ъ	524	134	1.045	2.15	18	22	
170	b	530	325	0.062	0.29	6	8	
24	þ	538	44	0.232	1.01	12	16	
272	b	544	810	0.100	1.01	12	16	
51	b	550	110	0.114	0.56			
210 2	b	554	503		3.29	8 20	14	
289	b	566	942	0.095			32	
137	b	570	311		0.19	4	10	
196	b	576	408	0.007 0.014	0.13	2	10	
173	b	580	344		0.21	4	10	
250	b				0.77	8	18	
53		582	654		0.80	12	14	
138	b	584	71		1.56	14	20	
197	b	584	265		0.08	2	6	
55	þ	588	434		1.83	16	22	
290	b	592	104		1.25	12	18	
174	þ	594	930		0.16	4	10	
25	þ	596	361		0.56	6	16	
	þ	600	32		1.17	16	14	
54	b	610	78		0.19	4	8	
140	ь	618	310		1.25	12	18	
251	р	618	687		0.11	2	8	
81	р	620	147		0.80	12	14	
52	ь	622	69		0.08	2	6	
195	þ	622	392		1.35	16	16	
105	р	624	208		0.16	4	6	
231	р	624	626		0.16	4	8	
291	р	628	946		0.82	8	30	
139	b	630	292		1.19	12	20	
211	þ	636	454		2.12	18	26	
212	р	638	503	0.105	0.58	10	12	
84	p	640	162		1.01	12	16	
176	р	640	351		2.36	18	24	
56	þ	642	104	1.056	2.41	20	24	
293	b	642	929		0.13	2	10	
85	ъ	644	185	0.029	0.16	2	12	
220	þ	648	519	0.159	0.90	14	12	
263	. b	648	760		5.86	38	32	
252	b	650	641		0.13	2	10	
213	р	652	477		0.87	14	10	
26	þ	654	17		1.99	10	38	
27	b	656	45		1.86	14	26	
175	b	656	320		2.76	20	32	
262	b	656	707		1.06	10	20	
28	ď	660	63		2.01	14	30	
	_	•		3.3.1	• •		90	

Deine Sile V. V.		61	
Print file name: b.lst,	Time: 15:16	Date: 12/1/1989	Page:
82 b	662 128	0 000 1 00	
106 b	662 128		12 20
292 b			14 28
141 b	662 90: 664 27		16 34
221 b	666 530		16 26
83 b	668 154		4 8
107 b	668 240		12 20
198 b			12 24
275 b			20 20
34 b	704 793 706 63		2 6
273 b	706 63 708 783		6 12
142 b	712 27		2 6
178 b	712 357		26 24
274 b	712 789		36 34
222 1 b	714 523		2 10
232 b	714 615		30 26 24 20
87 b	716 162		
88 b	716 191		12 18 6 20
32 b	718 36		8 26
144 b	718 301		10 22
214 b	718 473		18 22
199 b	720 391		10 16
30 b	722 16		8 22
57 b	722 104		14 22
294 b	722 930		8 28
110 b	724 238		8 16
200 b	724 440		8 8
58 b	726 124		12 20
109 b	726 215		2 6
143 b	748 282		4 6
277 b	748 827		14 16
31 b	750 34		8 8
177 b	750 321		6 8
253 b	756 641		2 6
255 b	756 649		2 6
111 b	758 239		14 16
233 b	760 633	0.056 0.56	10 12
254 b	762 644		4 6
86 b	764 130		12 12
276 b	764 800		22 28
29 b	766 14		4 6
33 b	766 45		14 10
108 b	766 193		14 16
223 b	768 550		28 24
146 b	770 268		28 22
147 b	770 308		12 16
179 . b	770 361		2 8
60 b	774 89		12 16
295 b	780 939	4.609 3.05	24 52
89 b	802 129		18 22
112 b	802 201		18 22
215 b	.802 478		12 12
36 b	804 52		16 24
35 b	806 16	0.418 1.19	8 26

Print file name:	b.lst, Ti	me: 15	:16	Date: 12/	1/1989		Page:
148	b	812	309	0.508	2.25	18	22
145	b	816	263	0.108	0.50	10	10
224	b	818	561	1.720	3.50	26	24
59	b	826	82	0.324	1.19	12	18
264	b	834	747	0.005	0.08	2	6
201	b	836	431	0.340	1.59	16	-
114	ь	844	230	0.177			18
151	b	844	319	0.002	1.14	14	14
180	b	844	368		0.08	2	6
225	ь	844		0.041	0.72	12	12
62	b	846	537	0.004	0.08	2	6
90	b		104	0.008	0.16	4	6
149		846	131	0.003	0.08	2	6
61	b	846	276	2.246	2.78	22	24
113	b	876	91	0.010	0.08	2	6
150	Þ	880	195	0.277	1.35	16	16
226	b	880	284	0.761	1.75	18	20
234	р	880	543	0.134	1.38	20	14
	þ	880	597	0.004	0.08	2	6
181	р	884	371	0.080	0.66	10	12
281	ь	898	858	3.317	4.53	34	28
116	ь	912	210	0.858	2.23	22	18
117	b	912	255	0.187	0.66	10	14
256	b	912	648	0.247	1.03	16	12
227	b	920	559	1.290	2.60	26	18
152	ь	926	294	0.283	0.80	12	12
63	b	928	88	8.211	8.08	54	32
236	ď	930	609	0.033	0.08	2	6
257	ь	936	666	0.091	0.19	4	
235	b	946	594	2.900			10
115	b	950	203	0.894	3.26	20	36
	_		200	0.034	2.36	22	18

.63

APPENDIX C3-1

Print file name: c.lst, Time: 15:17 Date: 12/1/1989 Page:

Spotlist for 'c'. Image size 1024 x 1024. 244 spots.

Rec Spotname	Image	x	Y	II	7-0-	***	7.7.43
95	. c	16	261	0.010	Area_ 0.08	_ Ht.	
179	c	18	541	0.126	0.80	2	6
1	c	20	18	0.126		14	10
57	c	22	186		0.82	12	14
232		24		0.217	1.25	12	18
185	C		868	0.123	0.34	4	18
29	C	28	576	0.550	2.76	16	30
56	C	32	124	1.842	2.33	16	26
2	C	34	153	0.191	1.09	10	18
	C	36	47	0.674	1.38	14	18
150	C	38	397	8.544	7.47	38	42
186 96	C	38	613	0.187	1.38	14	20
78	C	44	305	0.879	1.86	18	20
	C	46	216	2.559	3.34	20	36
152	C	70	415	1.606	2.09	20	24
30	C	82	80	0.156	1.09	12	18
97	C	82	288	0.219	1.22	14	16
194	C	88	676	0.097	1.06	12	18
4	C	92	44	1.188	1.78	16	20
58	C	112	151	0.040	0.69	10	14
79	C	116	223	1.811	2.73	18	30
127	C	120	343	0.294	1.46	14	20
3	C	124	40	1.087	1.56	16	20
151	C	124	398	0.166	1.17	12	18
31	C	126	83	0.066	0.58	10	12
60	C	132	191	0.002	0.11	2	8
5	C	136	18	1.597	2.01	14	28
154	C	140	419	0.117	0.82	10	16
99	C	144	286	1.450	2.46	20	22
196	c	144	654	0.043	0.56	8	12
197	C	144	681	0.118	1.11	14	14
100	C	146	318	0.162	1.03	10	18
170	C	150	475	0.219	1.17	14	16
59	C	154	160	0.111	0.93	12	16
61	C	162	185	0.133	1.06	14	16
233	C	162	884	0.238	0.48	4	18
155	C	164	445	0.004	0.11	2	8
153	C	166	400	0.333	1.43	16	18
6	C	168	44	0.856	1.59	14	20
33	C	168	107	0.591	3.47	20	32
206	c	172	764	0.009	0.21	4	10
198	c	174	682	0.187	1.40	16	16
195	С	176		0.090	1.03	12	16
216	c	178	769	0.003	0.11	2	8
128	c	184	373	0.954	1.91	18	20
32	c	188	68	0.611	1.46	16	20
98	c	190	257	1.171	2.97	32	
157	c	198	432	0.603	1.70		24 22
63	c	202	187		1.40	16	
102	c	202	305	0.259		14	20
	C	202	303	2.703	3.74	28	26

APPENDIX C3-2

						63				
Pri	nt file	name:	c.lst.	Time: 15	:17	Date: 12/	1/1989		Pa	qe:
62			•	204	150	0 677	1 06		0.0	
129			C	204	153 343	0.677	1.96	18	20	
236			c	204	869	0.020 0.583	0.11 0.90	2	8	
8			c	214	19			8	22	
35				214	78	0.891	1.33	14	20	
199			c	218	650	0.118	0.69	8	16	
234			c	220	841	0.020 0.007	0.45	8	12	
9			c	222	41	3.174	0.08	2	6	
80			c	222	193	0.010	3.26	22	28	
34			c	228	72	0.010	0.11 0.16	2	8	
130			c	230	336	1.279	2.01	4 18	6	
7			c	238	18	0.124	0.40	8	20 8	
36			c	238	105	0.114	0.85	12	14	
81			c	238	225	0.142	0.87	10	22	
101			c	242	260	0.059	0.45	8	10	
131			c	242	361	0.486	1.11	10	22	
156	6		c	242	397	9.890	9.94	36	54	
235			C	254	863	0.329	0.72	10	18	
13			c	258	39	0.176	0.53	10	8	
105	5		c	258	297	2.975	3.90	26	34	
132			c	260	341	0.013	0.08	2	6	
12			c	272	25	1.544	1.88	18	18	
65			С	280	167	0.254	1.35	18	18	
83			c	280	225	0.030	0.53	10	10	
103			С	282	275	0.366	1.22	14	18	
217			c	286	770	0.013	0.27	4	12	
237			С	286	873	0.038	0.08	2	6	
133			С	288	336	0.707	1.93	20	18	
207			C	288	764	0.009	0.21	4	12	
11			C	296	23	0.581	1.25	18	12	
64			С	310	167	0.004	0.08	2	6	
37			C	312	93	0.394	1.33	14	18	
82			C	312	207	0.123	1.09	14	14	
14			C	314	45	0.242	0.95	12	16	
104			C	316	303	0.006	0.08	2	6	
10 106			C	318	15	0.012	0.08	2	6	
137			c	318	308	0.019	0.24	4	10	
159			c	320 328	377	0.582	1.70	18	20	
134			C	330	427	0.060	0.72	10	14	
238			c	338	335 867	0.608	1.80	18	18	
17			c	350	43	1.230 0.376	1.88	14	28	
108			c	356	288	0.155	1.30	14	16	
15			c	358	24	0.054	0.66 0.24	10 4	18	
39			c	358	119	0.133	0.90	10	10 16	
107			c	358	261	0.049	0.40	6		
84			c	362	232	0.049	1.64	16	14 22	
209			c	368	756	0.337	1.22	14	20	
66			c	370	157	0.038	0.32	6	10	
187			c	370	627	0.998	3.26	34	24	
38			c	372	75	0.926	1.59	14	20	
135			c	372	347	0.012	0.11	2	8	
218			c	372	793	0.002	0.08	2	6	
109			c	374	300	0.403	1.54	16	18	
								-		

Print file name: c.lst, Time: 15:17 Date: 12/1/1989 Page:									
BETU	t file	name:	c.lst,	Time: 15	:17	Date: 12	1/1989		Page:
160									
160			C	374	428	0.121	0.77	8	18
136			С	376	352	0.026	0.16	4	8
158			С	376	393	5.207	5.86	30	36
208			C	376	717	0.224	1.78	18	18
16			C	380	19	0.416	1.51	16	18
219			С	382	796	0.010	0.24	4	16
41			c	386	103	1.062	1.93	16	22
110			C	390	265	0.071	0.64	10	14
239			c	390	873	0.251	0.48	-6	16
67			C	396	163	0.325	1.70	18	16
220			c	402	801	0.001	0.11	2	8
139			C	416	358	0.485	1.43	16	16
111			C	424	269	0.100	0.77	12	12
112			c	426	301	0.747	1.78	18	18
161	4		С	426	404	4.198	4.06	30	
68			С	428	163	0.522	1.56		28
18			С	432	28	1.093		18	16
200			c	432	663	0.281	1.86	20	20
40			c	434	71	0.008	1.75	22	16
188			c	436	623	0.232	0.08	2	6
138			c	446	336		1.54	18	16
143			c	448	363	0.427 0.519	1.11	12	16
42			c	450	93		1.22	14	14
45			c	452	122	0.192	0.85	10	. 14
19			c	454	34	1.144	1.93	16	22
85			c	456	208	1.594	1.99	22	18
210			c	458	721	0.417	1.88	14	26
222			c	458	776	0.046	0.58	10	12
221			c	460	771	0.015	0.24	4	12
223			c	462	779	0.006	0.13	2	10
172			c	464	457	0.004	0.08	2	6
114			c	470	316	0.067	0.66	10	14
202			c	472	677	1.003	1.35	18	16
44			c	474	124	0.004	0.08	2	6
144			c	480	379	0.170	0.37	8	10
87			c	484		0.165	0.24	6	10
142			c	484	229	0.431	1.14	14	16
173			c	484	353	0.659	0.98	10	18
20			c	486	508	0.413	1.91	18	22
69			c	486	40	1.542	2.15	22	20
140					161	0.465	1.25	14	18
43			C	486	333	0.172	0.29	6	8
163			C	488	87	2.068	3.18	22	38
189			c	488	421	0.904	1.88	18	20
201			c	496	603	0.451	2.04	20	20
171			C	496	649	0.258	1.19	12	22
113	3		С	498	455	0.029	0.37	6	12
162	J		С	500	294	5.686	5.70	34	36
86			C	502	402	2.658	3.58	22	34
190			C	506	209	0 .53 5	1.46	14	20
224			C	506	632	0.456	1.62	20	18
70			С	506	790	0.251	1.38	14	24
141			C	508	177	0.465	1.40	14	20
240			С	508	337	1.218	1.86	18	20
240			¢	510	867	0.105	0.24	2	18

APPENDIX C3-4

Print	file name: c.lst.	Time: 15:17	Pate: 12/1/1989		Page:
48	c	514 124	1.419 2.60	22	22
211	C	516 715			34
46	c	518 96			10
241	c	520 843			22
242	C	530 870			16
47	C	550 97			20
174	2 c	554 486			26
225	c	560 776			12
226	c	562 782			8
88	c	574 255			10
24	c	578 58			32
164	c	582 423			20
191	C	584 634			14
21	c	586 16			18
116	c	600 301			20
71	c	602 132			14
146	c	606 382			12
115	c	612 282			14
49	c	618 94			22
145	c	622 346			20
165	C	622 440			20
227	C	622 817			6
22	c	632 29			20
23	c	634 46	0.533 1.14		22
175	c	634 508			10
117	C	636 310			26
50	c	638 115			12
73	c	640 139			18
89	c	640 198			16
118	c	640 268			16
176	c	640 470			18
74	c	642 171			6
91	c	642 232	0.122 0.56	8	14
212	С	644 732		26	36
193	С	646 609		10	20
167	c	648 403		14	18
203	c	650 640	0.238 1.43	12	22
181	c	652 559	0.007 0.08	2	6
205	С	656 690	0.601 2.28	20	22
228	C	656 787		8	16
229	c	656 793	0.015 0.11	2	8
25	c	668 44		12	18
51	c	670 91			14
243	c	670 841		18	40
72	С	672 133			8
148	c	672 352		16	18
90	c	674 228			14
119	c	674 263			22
166	С	674 386			12
177	С	674 475			18
168	C	678 412			16
120	С	680 295			6
180	1 c	682 514			26
192	c	682 599	0.462 2.25	22	20

· 68

Print file name:	c.lst,	Time: 15	:17	Date: 12/	1/1989		Page:	
				_				_
147	C	684	336	0.232	1.14	14	16	
204	c	688	677	0.008	0.08	2	6	
213	c	692	753	0.661	2.17	22	22	
244	c	702	863	0.051	0.11	2	8	
26	c	714	31	0.092	0.50	10	10	
93	С	716	233	0.473	1.46	18	16	
75	С	718	184	0.024	0.21	4	10	
122	C	728	262	0.915	2.07	24	18	
52	c	730	68	0.057	0.42	8	12	
121	С	752	266	0.085	0.45	8	10	
123	С	752	280	0.082	0.42	8	10	
53	С	756	118	0.124	1.03	12	18	
92	c	760	213	0.149	1.25	18	12	
27	С	762	36	0.109	0.66	10	20	
230	С	762	793	0.223	1.72	14	20	
149	c	764	339	0.002	0.08	2	6	
182	c	764	542	0.171	0.77	16	10	
125	c	768	303	0.575	2.04	18	22	
54	c	774	68	0.109	0.87	12	14	
94	С	774	253	0.157	0.77	10	20	
178	c	774	472	0.006	0.19	4	8	
214	c	788	764	0.279	1.88	18	22	
183	c	792	543	2.582	4.24	32	26	
169	С	798	426	0.147	1.22	16	16	
124	c	808	272	1.450	2.17	20	22	
76	c	838	178	0.071	0.90	12	12	
55	С	842	107	0.003	0.08	2	6	
126	C	842	274	0.531	1.62	16		
77	c	866	186	0.043	0.56	10	18	
184	C	900	528	0.029	0.16	4	10	
28	C	916	41	0.157	0.16	18	6	
215	C	918	726	0.021	0.16	4	10	
231	c	928	779	2.920	4.85	34	6	
	_			320	4.05	34	28	

APPENDIX C4-1

Print file name: a.att, Time: 15:12 Date: 12/1/1989 Page:

Filename: a.att

Rec#	x	Y			PI	MW	II	Area	Ht	Wd
9001	696	484	696	484	-1.00	19.00	3.652	5.140	36	28
136	696	357	696	357	-1.00	21.76	0.300	1.030	10	18
150	694	430	694	430	-1.02	20.61	1.023	2.620	22	30
113	690	319	690	319	-1.05	24.20	3.868	5.060	32	36
137	658	369	658	369	-1.28	21.39	0.859	1.990	20	20
112	650	274	650	274	-1.33	26.68	1.391	1.670	22	22
110	636	308	636	308	-1.43	24.81	2.391	3.340	24	30
157	636	457	636	457	-1.43	20.02	1.162	2.200	28	24
149	630	402	630	402	-1.48	20.97	1.845	2.860	24	26
73	628	250	628	250	-1.49	28.00	1.006	1.800	20	20
107	620	268	620	268	-1.55	27.01	0.049	0.190	4	8
135	620	348	620	348	-1.55	22.54	0.281	1.140	14	16
109	600	316	600	316	-1.69	24.37	0.022	0.190	4	8
148	586	389	586	389	-1.79	21.13	0.264	1.540	18	16
108	576	302	576	302	-1.86	25.14	0.111	1.090	12	18
105	570	265	570	265	-1.90	27.18	0.052	0.720	10	14
134	560	336	560	336	-1.98	23.27	0.055	0.480	8	12
9002	556	447	556	447	-2.00	20.39	4.757	5.120	32	32
106	524	302	524	302	-2.18	25.14	1.773	2.330	20	20
9003	512	252	512	252	-2.24	27.89	8.928	6.710	38	46
133	504	372	504	372	-2.32	21.35	3.676	5.800	36	38
146	500	417	500	417	-2.35	20.78	0.203	1.300	14	18
155	492	464	492	464	-2.42	19.76	0.379	1.910	16	32
104	490	319	490	319	-2.44	24.20	1.404	1.380	14	20
132	480	333	480	333	-2.53	23.43	0.039	0.080	2	6
102	478	277	478	277	-2.55	26.52	1.250	1.540	20	16
145	460	417	460	417	-2.70	20.78	0.140	1.140	14	16
103	454	298	454	298	-2.76	25.36	0.437	0.980	12	16
131	452	324	452	324	-2.78	23.93	1.888	2.170	20	20
100 9004	432	261	432	261	-2.95	27.40	0.884	1.910	18	18
101	426 416	360	426	360	-3.00	21.50	4.162	3.900	32	28
97	380	317 259	416	317	-3.07	24.31	0.131	0.610	10	12
128	376		380	259	-3.29	27.51	0.702	1.960	20	20
144	372	349 385	376	349	-3.31	22.46	3.781	5.190	30	32
98	366	294	372	385	-3.34	21.19	0.051	0.370	6	12
99	334	294	366	294	-3.38	25.58	0.026	0.270	4	10
129	332	382	334	291	-3.57	25.75	0.162	1.110	14	14
127	324	332	332	382	-3.59	21.22	0.074	0.930	12	14
96	322	261	324	332	-3.63	23.49	0.191	1.300	12	18
95	292	290	322 292	261	- 3.65	27.40	0.150	0.980	16	14
9005	264	250	264	290 250	-3.83	25.80	0.296	1.540	16	18
9006	240	346	240	346	-4.00 -4.21	28.00	3.127	4.590	26	38
94	240	312	240	312	-4.21	22.71	7.771	7.790	32	52
		J12	240	312	-4.21	24.59	0.531	1.190	8	26

Print file name: a.als, Time: 15:19 Date: 12/1/1989 Page:

Filename: a.als

Window = X : 240 ~ 696 Y : 250 ~ 484

Rec#	Spotname	Image	NewX	NewY	II	Area	Ht	Wd
9001	1	a	696	484	3.652	5.140	36	28
136		a	696	357	0.300	1.030	10	18
150		a	694	430	1.023	2.620	22	30
113		a	690	319	3.868	5.060	32	36
137		a	658	369	0.859	1.990	20	20
112		a	650	274	1.391	1.670	22	22
110		a	636	308	2.391	3.340	24	30
157		a	636	457	1.162	2.200	28	24
149		a	630	402	1.845	2.860	24	26
73		a	628	250	1.006	1.800	20	20
107		a	620	268	0.049	0.190	4	8
135		a	620	348	0.281	1.140	14	16
109		a	600	316	0.022	0.190	4	8
148		a	586	389	0.264	1.540	18	16
108		a	576	302	0.111	1.090	12	18
105		a	570	265	0.052	0.720	10	14
134		a	560	336	0.055	0.480	8	12
9002	2	a	556	447	4.757	5.120	32	32
106		a	524	302	1.773	2.330	20	20
9003	3	a	512	252	8.928	6.710	38	46
133		а	504	372	3.676	5.800	36	38
146		a	500	417	0.203	1.300	14	18
155		a	492	464	0.379	1.910	16	32
104		a	490	319	1.404	1.380	14	20
132		a	480	333	0.039	0.080	2	6
102		a	478	277	1.250	1.540	20	16
145		a	460	417	0.140	1.140	14	16
103		a	454	298	0.437	0.980	12	16
131		a	452	324	1.888	2.170	20	20
100		a .	432	261	0.884	1.910	18	18
9004	4	a	426	360	4.162	3.900	32	28
101		a	416	317	0.131	0.610	10	12
97		a	380	259	0.702	1.960	20	20
128		a	376	349	3.781	5.190	30	32
144 98		a	372	385	0.051	0.370	6	12
99		a	366	294	0.026	0.270	4	10
129		a -	334	291	0.162	1.110	14	14
127		a a	332 324	382	0.074	0.930	12	14
96		a	324	332	0.191	1.300	12	18
95		a	292	261 290	0.150 0.296	0.980	16	14
9005	5	a	264	250	3.127	1.540	16	18
9006	_	a	240	346	7.771	4.590 7.790	26	38
94	J	a	240	312	0.531		32	52
24		a	230	212	0.531	1,190	8	26

7

3

Page:	Print file name: a.mks,	Time: 15:18	Date: 12/1/198	39 Page:
-------	-------------------------	-------------	----------------	----------

a.mks

Window = X : 240 ~ 696 Y : 250 ~ 484

	6 Ma	rkers	
Marker_name	X	Y	
9001	696	484	
9002	556	447	
9003	512	252	
9004	426	360	
9005	264	250	
9006	240	346	

APPENDIX C4-4

APPENDIX C5-1

Print file name: b.att, Time: 15:14 Date: 12/1/1989 Page:

Filename: b.att

Rec#	x	Y	NewX	NewY	PI_	MW	II	Area	u +	T-22
9001	714	521	696	484	-1.00	19.00	2.609	4.350	Ht	Mq
178	712	357	694	320	-1.02	24.15	2.703	4.640	30	26
198	668	415	650	378	-1.33	21.28	0.514		36	34
175	656	320	662	270	-1.25	26.90	1.309	2.010	20	20
213	652	477	634	440	-1.45	20.48	0.173	2.760	20	32
220	648	519	630	482	-1.48	19.08	0.173	0.870	14	10
176	640	351	646	301	-1.36	25.19	0.159	0.900	14	12
212	638	503	620	466	-1.55	19.68	1.385	2.360	18	24
211	636	454	638	398	-1.42	21.02	0.105	0.580	10	12
139	630	292	636	242	-1.43		0.848	2.120	18	26
195	622	392	624	336	-1.52	27.56 23.27	0.399	1.190	12	20
140	618	310	624	260	-1.52	27.45	0.282	1.350	16	16
174	596	361	602	311	-1.68	24.64	0.349	1.250	12	18
197	588	434	590	378	-1.76	21.28	0.075	0.560	6	16
173	580	344	586	294	-1.79	25.58	0.426	1.830	16	22
196	576	408	578	352	-1.85	22.20	0.088	0.770	8	18
137	570	311	576	261	-1.86	27.40	0.014	0.210	4	10
9002	554	503	556	447	-2.00	20.39	0.007	0.130	2	10
170	530	325	536	275	-2.11	26.63	2.803	3.290	20	32
171	518	348	524	298	-2.18	25.36	0.062	0.290	6	8
172	512	380	518	330	-2.21	23.60	2.230	2.460	20	24
9003	506	302	512	252	-2.24	27.89	0.177	0.500	8	12
193	504	415	506	366	-2.30	21.43	6.837	6.150	32	42
208	500	470	502	414	-2.33	20.82	2.542	3.260	20	38
194	494	432	496	383	-2.39	21.21	0.075	0.770	10	16
209	490	499	492	443	-2.42	20.45	0.691	1.720	16	20
168	490	364	496	314	-2.39	24.48	0.031	0.400	6	14
191	488	392	490	343	-2.44	22.88	1.919	1.720	16	24
218	486	521	488	465	-2.46	19.72	0.384 0.278	0.690	8	16
166	476	326	482	276	-2.51	26.57	1.525	1.460	14	20
207	464	470	466	421	-2.65	20.73	0.051	1.800	22	18
135	460	288	466	238	-2.65	27.34	0.031	0.690	8	16
169	454	369	456	320	-2.74	24.15		0.560	8	12
192	452	394	454	345	-2.76	22.77	0.161	2.070	18	22
167	450	342	456	292	-2.74	25.69	0.181	0.370	8	12
189	434	386	436	337	-2.92	23.21	0.054	1.090 0.160	12	18
134	428	303	434	253	-2.93	27.84	1.068	1.750	4	8
9004	424	409	426	360	-3.00	21.50	2.862	3.070	16	22
165	416	360	418	311	-3.05	24.64	0.415	1.400	22	28
188	374	429	376	380	-3.31	21.25		0.720	12	20
186	374	393	376	344	-3.31	22.83	6.077	5.960	8	18
131	374	297	376	266	-3.31	27.12	0.655		32	38
163	364	332	366	283	-3.38	26.19	0.126	1.670 0.820	16	22
206	354	475	356	426	-3.44	20.66	0.250	1.510	12	14
130	352	284	354	253	-3.45	27.84	0.232	1.190	14	20
162	330	327	332	296	-3.59	25.47	0.416	1.400	12	20
187	326	421	322	386	-3.65	21.17	0.062	0.740	14 10	20
164	320	369	316	334	-3.68	23.38	0.406	1.430	14	16
128	314	296	316	265	-3.68	27.18	0.050	0.530	8	20
160	288	322	290	291	-3.84	25.75	0.489	1.560	16	14
9005	262	281	264	250	-4.00	28.00	4.348	4.350	26	18 36
									_ 0	20

75 ·

Print	file	name:	b.at	t. Ti	me: 15:	14 Dat	e: 12/1/	1989	Pá	age:
161	262	330	264	299	-4.00	25.30	0.035	0.190	4	8
9006	244	381	240	346	-4.21	22.71	11.183	9.490	40	54

Print file name: b,als, Time: 15:20 Date: 12/1/1989 Page:

Filename: b.als

Window = X : 244 ~ 714 Y : 281 ~ 521

D #	0	_						
9001	Spotname	Image		NewY		Area	Ht	Wd
178	-	b	696	484	2.609	4.350	30	26
198		b	694	320	2.703	4.640	36	34
		b	650	378	0.514	2.010	20	20
175 213		b	662	270	1.309	2.760	20	32
220		b	634	440	0.173	0.870	14	10
176		b	630	482	0.159	0.900	14	12
212		b	646	301	1.385	2.360	18	24
211		b .	620	466	0.105	0.580	10	12
139		b	638	398	0.848	2.120	18	26
195		b	636	242	0.399	1.190	12	20
140		b	624	336	0.282	1.350	16	16
174		b	624	260	0.349	1.250	12	18
197		b	602	311	0.075	0.560	6	16
173		þ	590	378	0.426	1.830	16	22
196		b	586	294	0.088	0.770	8	18
137		b	578	352	0.014	0.210	4	10
9002	2	ь	576	261	0.007	0.130	2	10
170	2	b	556	447	2.803	3.290	20	32
171		b	536	275	0.062	0.290	6	8
172		b b	524	298	2.230	2.460	20	24
9003	3	b b	518	330	0.177	0.500	8	12
193	J	b	512	252	6.837	6.150	32	42
208		b	506	366	2.542	3.260	20	38
194			502	414	0.075	0.770	10	16
209		b	496	383	0.691	1.720	16	20
168		b	492	443	0.031	0.400	6	14
191		b b	496	314	1.919	1.720	16	24
218		b	490	343	0.384	0.690	8	16
166		b	488	465	0.278	1.460	14	20
207		b	482	276	1.525	1.800	22	18
135		b	466 466	421	0.051	0.690	8	16
169		b	456	238	0.083	0.560	8	12
192		b	454	320	1.840	2.070	18	22
167		b	456	345	0.161	0.370	8	12
189		b	436	292	0.484	1.090	12	18
134		b	434	337 253	0.054	0.160	4	8
	4	ь	426		1.068	1.750	16	22
165	-	b	418	360	2.862	3.070	22	28
188		b	376	311	0.415	1.400	12	20
186		b	376	380	0.119	0.720	8	18
131		b		344	6.077	5.960	32	38
163		b	376 366	266	0.655	1.670	16	22
206		b		283	0.126	0.820	12	14
130		р	356 354	426	0.250	1.510	14	20
162		b		253	0.232	1.190	12	20
187		b	332	296	0.416	1.400	14	20
164		b	322 316	386	0.062	0.740	10	16
128		b		334	0.406	1.430	14	20
		~	316	265	0.050	0.530	8	14

77'

Print file	name: b.als,	Time: 15	:20	Date: 12,	/1/1989		Page:
160	р	290	291	0.489	1.560	16	18
9005 5	þ	264	250	4.348	4.350	26	36
161	ь	264	299	0.035	0.190	4	8
9006 6	b	240	346	11.183	9.490	40	54

APPENDIX C5-5

78 .

Print file name: b.mks, Time: 15:19 Date: 12/1/1989 Page:

b.mks

Window = X : 244 ~ 714 Y : 281 ~ 521

Marker_name X Y 9001 714 521 9002 554 503 9003 506 302 9004 424 409 9005 262 281 9006 244 381

APPENDIX C6-1

Print file name: c.att, Time: 15:15 Date: 12/1/1989 Page:

Filename: c.att

Rec#	x	Y	NewX	NewY	PI	MW	II	Area	Ht	Wd
9001	682	514	696	484	-1.00	19.00	1.216	2.860	20	26
120	680	295	692	253	-1.03	27.84	0.012	0.080	2	6
168	678	412	692	382	-1.03	21.22	0.131	0.720	12	16
177	674	475	688	445	-1.06	20.42	0.148	1.010	12	18
166	674	386	688	356	-1.06	21.85	0.076	0.480	8	12
148	672	352	686	322	-1.08	24.04	0.360	1.620	16	
167	648	403	662	373	-1.25	21.34	0.286	1.170	14	18
176	640	470	654	440	-1.30	20.48	0.289	1.270	14	18
117	636	310	648	268	-1.35	27.01	0.713	1.830	16	18
175	634	508	648	478	-1.35	19.23	0.062	0.420		26
145	622	346	634	304	-1.45	25.03	1.103	2.040	8	10
165	622	440	624	401	-1.52	20.98	0.462	1.800	20	20
146	606	382	608	343	-1.63	22.88	0.114	0.850	18	20
116	600	301	612	259	-1.60	27.51	0.425		12	12
164	582	423	584	384	-1.80	21.20	0.402	1.430	14	20
9002	554	486	556	447	-2.00	20.39	1.703	1.880	18	20
141	508	337	520	295	-2.20	25.53	1.218	2.620	20	26
162	502	402	502	358	-2.33	21.68		1.860	18	20
9003	500	294	512	252	-2.24	27.89	2.658 5.686	3.580	22	34
171	498	455	500	416	-2.35	20.79		5.700	34	36
163	488	421	488	377	-2.46	21.29	0.029 0.904	0.370	6	12
140	486	333	498	291	-2.37	25.75		1.880	18	20
173	484	508	486	469	-2.47	19.57	0.172 0.413	0.290	6	8
142	484	353	496	311	-2.39	24.64	0.659	1.910	18	22
144	480	379	480	335	-2.53	23.32	0.165	0.980	10	18
114	470	316	482	274	-2.51	26.68	1.003	0.240	6	10
172	464	457	464	413	-2.67	20.83	0.067	1.350	18	16
143	448	363	448	319	-2.81	24.20	0.519	0.660 1.220	10	14
138	446	336	458	294	-2.72	25.58	0.427	1.220	14	14
112	426	301	438	259	-2.90	27.51	0.747	1.780	12 18	16
9004	426	404	426	360	-3.00	21.50	4.198	4.060	30	18 28
139	416	358	416	314	-3.07	24.48	0.485	1.430	16	
136	376	352	376	308	-3.31	24.81	0.026	0.160	4	16 8
158	376	393	376	349	-3.31	22.46	5.207	5.860	30	36
109	374	300	380	253	-3.29	27.84	0.403	1.540	16	18
160	374	428	374	384	-3.33	21.20	0.121	0.770	8	18
135	372	347	372	303	-3.34	25.08	0.012	0.110	2	8
134	330	335	336	288	-3.56	25.91	0.608	1.800	18	18
159	328	427	326	376	-3.62	21.30	0.060	0.720	10	14
137	320	377	318	326	-3.67	23.82	0.582	1.700	18	20
106	318	308	324	261	-3.63	27.40	0.019	0.240	4	10
104	316	303	322	256	-3.65	27.67	0.006	0.080	2	6
133	288	336	294	289	-3.82	25.86	0.707	1.930	20	18
132	260	341	266	294	-3.99	25.58	0.013	0.080		
9005	258	297	264	250	-4.00	28.00	2,975	3.900	2 26	6 34
9006	242	397	240	346	-4.21	22.71	9.890	9.940	36	54 54
131	242	361	240	310	-4.21	24.70	0.486	1.110	10	22
							0.400	0	10	44

APPENDIX C6-2

δì

Print file name: c.als, Time: 15:20 Date: 12/1/1989 Page:

Filename: c.als

Window = X : 242 ~ 682 Y : 294 ~ 514

Rec#	Spotname	Image	NowY	NewY	TT	7 = 0 0	134	Wd
9001	1	C C	696	484	1.216	2.860	Ht	26
120	-	c	692	253	0.012	0.080	20	6
168		c	692	382	0.012	0.720	12	16
177		c	688	445	0.131	1.010	12	
166		c	688	356	0.146	0.480	8	18 12
148		c	686	322	0.360	1.620		
167		c	662	373	0.286	1.170	16 14	18 18
176		c	654	440	0.289	1.270	14	
117		c	648	268	0.713	1.830	16	18 26
175		c	648	478	0.062	0.420	8	10
145		c	634	304	1.103	2.040	20	20
165		c	624	401	0.462	1.800		
146		c	608	343	0.114	0.850	18 12	20 12
116		c	612	259	0.114	1.430	14	20
164		c	584	384	0.402	1.880	18	20
9002	2	c	556	447	1.703	2.620	20	26
141	_	c	520	295	1.218	1.860	18	20
162		c	502	358	2.658	3.580	22	34
9003	3	C	512	252	5.686	5.700	34	36
171		C	500	416	0.029	0.370	6	12
163		c	488	377	0.904	1.880	18	20
140		c	498	291	0.172	0.290	6	8
173		c	486	469	0.413	1.910	18	22
142		c	496	311	0.659	0.980	10	18
144		c	480	335	0.165	0.240	-6	10
114		c	482	274	1.003	1.350	18	16
172		С	464	413	0.067	0.660	10	14
143		С	448	319	0.519	1.220	14	14
138		c ·	458	294	0.427	1.110	12	16
112		С	438	259	0.747	1.780	18	18
9004	4	С	426	360	4.198	4.060	30	28
139		С	416	314	0.485	1.430	16	16
136		С	376	308	0.026	0.160	4	8
158		С	376	349	5.207	5.860	30	36
109		С	380	253	0.403	1.540	16	18
160		C	374	384	0.121	0.770	8	18
135		C	372	303	0.012	0.110	2	8
134		С	336	288	0.608	1.800	18	18
159		c	326	376	0.060	0.720	10	14,
137		С	318	326	0.582	1.700	18	20
106		С	324	261	0.019	0.240	4	10
104		С	322	256	0.006	0.080	2	6
133		C	294	289	0.707	1.930	20	18
132		C	266	294	0.013	0.080	2	6
9005	5	C	264	250	2.975	3.900	26	34
9006	6	c	240	346	9.890	9.940	36	54
131		c	240	310	0.486	1.110	10	22

Print file name: c.mks, Time: 15:19 Date: 12/1/1989 Page:

c.mks

Window = X : 242 ~ 682 Y : 294 ~ 514

	6 Ma	rkers	
Marker_name	X	Y	
9001	682	514	
9002	554	486	
9003	500	294	
9004	426	404	
9005	258	297	
9006	242	397	

Time: 17:59 Date: 3/8/1990 Print file name: abc.mmh. Page: #NS 3 /* # of scans in the match group */ #PI 0.16 /* PI maximum tolerance */ #MW 1.12 /* MW maximum tolerance */ I:C:I:I:R:R:R:R:I:I:I:I REC GEL Х PI MW II AREA MAT a b C 9001 a 696 484 -1.00 19.00 3.652 3 9001 9001 9001 5.140 218 b 486 521 -2.46 19.71 0.278 1.460 3 155 218 173 3 102 166 114 166 b 476 326 -2.50 26.56 1.525 1.800 3 113 113 a 690 319 -1.04 24.20 3.868 5.060 178 148 -1.27 21.38 198 167 137 a 658 369 0.859 1.990 3 137 112 a 650 274 -1.33 26.68 175 117 1.391 1.670 3 112 157 a 636 457 -1.42 20.02 1.162 2.200 3 157 212 175 636 308 -1.42 24.80 110 a 2.391 3.340 3 110 176 145 149 a 630 402 -1.48 20.96 1.845 2.860 3 149 211 165 207 b 464 470 -2,65 20.72 0.051 0.690 3 145 207 172 135 a 620 348 -1.54 22.54 0.281 3 135 195 146 1.140 107 a 620 268 -1.54 27.01 0.049 0.190 3 107 140 116 167 b 450 342 -2.74 25.69 0.484 1.090 3 103 167 138 148 a 586 389 -1.78 21.12 0.264 1.540 3 148 197 164 9006 c 242 397 -4.21 22.70 9.890 9.940 3 9006 9006 9006 159 c 328 427 -3.61 21.29 0.060 0.720 3 129 187 159 9005 c 258 297 -4.00 28.00 2.975 3.900 3 9005 9005 9005 556 447 -2.00 20.38 9002 a 4.757 5.120 3 9002 9002 9002 106 a 524 302 -2.18 25.13 1.773 2.330 3 106 171 141 -2.18 25.13 1.773
-2.24 27.88 8.928
-2.31 21.35 3.676
-2.34 20.78 0.203
-2.42 19.76 0.379
-2.44 24.20 1.404
-2.52 23.43 0.039
-2.54 26.52 1.250
-2.70 20.78 0.140
-2.75 25.36 0.437
-2.77 23.93 1.888 9003 a 512 252 6.710 3 9003 9003 9003 133 a 504 372 5.800 3 133 193 162 146 a 500 417 1.300 3 146 208 171 155 a 492 464 1.910 3 155 218 173 104 a 490 319 1.380 168 142 3 104 132 a 480 333 0.080 3 132 191 144 102 a 478 277 1.540 3 102 166 114 145 a 460 417 1.140 3 145 207 172 103 a 454 298 0.980 3 103 167 138 169 143 134 112 131 a 452 324 2.170 3 131 -2.95 27.39 100 a 432 261 0.884 1.910 3 100 -3.00 21.50 9004 a 426 360 4.162 3.900 3 9004 9004 9004 -3.06 24.30 101 a 416 317 0.131 0.610 3 101 165 139 97 a 380 259 -3.28 27.51 131 109 0.702 1.960 3 97 -3.30 22.45 128 a 376 349 186 158 3.781 5.190 3 128 144 a 372 385 -3.33 21.19 0.051 0.370 3 144 188 160 163 135 98 a 366 294 -3.38 25.57 0.026 0.270 98 3 99 a 334 291 -3.56 25.75 162 134 0.162 1.110 3 99 129 a 332 382 -3.58 21.21 0.074 0.930 3 129 187 159 164 137 127 a 324 332 -3.63 23.48 0.191 1.300 3 127 96 a 322 261 -3.65 27.39 0.150 0.980 96 128 106 3 95 a 292 290 -3.82 25.79 0.296 1.540 3 160 133 95 9005 a 264 250 -4.00 28.00 4.590 3.127 3 9005 9005 9005 191 b 488 392 -2.44 22.87 0.384 0.690 3 132 191 144 9006 a 240 346 -4.21 22.70 7.771 7.790 3 9006 9006 9006 9001 b 714 521 -1.00 19.00 2.609 4.350 3 9001 9001 9001 178 b 712 357 -1.01 24.14 2.703 4.640 3 113 178 148 2.010 198 b 668 415 -1.33 21.28 0.514 3 137 198 167 656 320 -1.25 26.89 1.309 2.760 3 112 175 117 175 b

Print	: file	name:	abc.m	mh,	Time	: 17:59	Date: 3	/8/:	1990		Page:
186	'n	374	393	-3 30	22.02						
160		374	428	-3.30 -3.32	22.82	ő.077	5.960	3	128	186	158
176		640	351	-1.36	21.20	0.121	0.770	3	144	188	160
158		376	393		25.19	1.385	2.360	3	110	176	145
211		636	454	-3.30	22.45	5.207	5.860	3	128	186	158
162		330		-1.41	21.02	0.848	2.120	3	149	211	165
195		622	327 392	-3.58	25.46	0.416	1.400	3	99	162	134
140		618		-1.51	23.27	0.282	1.350	3	135	195	146
187		326	310	-1.51	27.45	0.349	1.250	3	107	140	116
197		588	421	-3.65	21.17	0.062	0.740	3	129	187	159
164		320	434	-1.75	21.28	0.426	1.830	3	148	197	164
133		288	369	-3.68	23.37	0.406	1.430	3	127	164	137
128		314	336	-3.81	25.86	0.707	1.930	3	95	160	133
9002		554	296	-3.68	27.18	0.050	0.530	3	96	128	106
106		318	503	-2.00	20.38	2.803	3.290	3	9002	9002	9002
171			308	-3.63	27.39	0.019	0.240	3	96	128	106
137		518	348	-2.18	25.36	2.230	2.460	3	106	171	141
9003		320	377	-3.67	23.81	0.582	1.700	3	127	164	137
193		506	302	-2.24	27.88	6.837	6.150	3	9003	9003	9003
208		504 500	415	-2.29	21.43	2.542	3.260	3	133	193	162
160		288	470	-2.32	20.81	0.075	0.770	3	146	208	171
168			322	-3.83	25.75	0.489	1.560	3	95	160	133
9001		490 682	364	-2.39	24.47	1.919	1.720	3	104	168	142
139		416	514 358	-1.00	19.00	1.216	2.860	3	9001	9001	9001
112		426		-3.06	24.47	0.485	1.430	3	101	165	139
138		446	301 336	-2.90	27.51	0.747	1.780	3	100	134	112
143		448		-2.72	25.57	0.427	1.110	3	103	167	138
134		330	363 335	-2.80	24.20	0.519	1.220	3	131	169	143
169		454	369	-3.55 -2.74	25.90	0.608	1.800	3	99	162	134
135		372	347	-3.33	24.14	1.840	2.070	3	131	169	143
114		470	316	-2.50	25.07	0.012	0.110	3	98	163	135
109		374	300	-3.28	26.68	1.003	1.350	3	102	166	114
134		428	303	-3.26 -2.93	27.84	0.403	1.540	3	97	131	109
9004		424	409	-3.00	27.84	1.068	1.750	3	100	134	112
165		416	360	-3.04	21.50 24.63	2.862	3.070	3		9004	9004
131		374	297	-3.30	27.12	0.415	1.400	3	101	165	139
172		464	457	-2.67		0.655	1.670	3	97	131	109
188		374	429	-3.30	20.82 21.25	0.067	0.660	3	145	207	172
163		364	332	-3.38	26.19	0.119	0.720	3	144	188	160
167		648	403	-1.25	21.34	0.126	0.820	3	98	163	135
117		636		-1.35		0.286	1.170	3	137	198	167
144	C	480	379	-2.52	23.31	0.713 0.165	1.830	3	112	175	117
173		484	508	-2.47	19.56		0.240	3	132	191	144
142		484	353	-2.39	24.63	0.413	1.910	3	155	218	173
9004		426	404	-3.00	21.50	0.659	0.980	3	104	168	142
9003		500	294	-2.24	27.88	4.198	4.060	3		9004	
162		502	402	-2.32		5.686	5.700	3		9003	
9005		262	281	-4.00	21.68 28.00	2.658	3.580	3	133	193	162
9006		244	381	-4.21	22.70	4.348	4.350	3		9005	
171		498	455	-2.34	20.79	11.183	9.490	3		9006	
175		634	508	-1.35	19.22	0.029	0.370	3	146	208	171
141		508	337	-2.20	25.53	0.062	0.420	3	157	220	175
9002		554	486	-2.20	20.38	1.218 1.703	1.860	3	106	171	141
164		582	423	-1.79	21.20		2.620		9002		
	-	JU2		4.19	21.20	0.402	1.880	3	148	197	164

Print file name: abc.mmh.						8.5	5				
165 c 622 440 -1.51 20.97 0.462 1.800 3 149 211 165 116 c 600 301 -1.60 27.51 0.425 1.430 3 107 140 116 146 c 606 382 -1.62 22.87 0.114 0.880 3 135 195 146 145 c 622 346 -1.45 25.03 1.103 2.040 3 110 176 145 94 a 240 312 -4.21 24.59 0.531 1.190 2 94 0 131 105 a 570 265 -1.89 27.18 0.052 0.720 2 105 137 0 220 b 648 519 -1.48 19.07 0.159 0.900 2 0 202 175 176 c 640 470 -1.29 20.47 0.173 0.870 2 0 20 115	Print file	name:	abc.m	mh,	Time:	17:59	Date: 3/	8/1	990		Page:
165 c 622 440 -1.51 20.97 0.462 1.800 3 149 211 165 116 c 600 301 -1.60 27.51 0.425 1.430 3 107 140 116 146 c 606 382 -1.62 22.87 0.114 0.880 3 135 195 146 145 c 622 346 -1.45 25.03 1.103 2.040 3 110 176 145 94 a 240 312 -4.21 24.59 0.531 1.190 2 94 0 131 105 a 570 265 -1.89 27.18 0.052 0.720 2 105 137 0 220 b 648 519 -1.48 19.07 0.159 0.900 2 0 202 175 176 c 640 470 -1.29 20.47 0.173 0.870 2 0 20 115											
116 c 600 301 -1.60 27.51 0.425 1.430 3 107 140 116 146 c 606 382 -1.62 22.87 0.114 0.850 3 135 195 146 145 c 622 346 -1.45 25.03 1.103 2.040 3 110 176 145 94 a 240 312 -4.21 24.59 0.531 1.190 2 94 0 131 105 a 570 265 -1.89 27.18 0.052 0.720 2 02 137 0 220 b 648 519 -1.48 19.07 0.159 0.900 2 0 213 176 176 c 640 470 -1.29 20.47 0.159 0.900 2 0 213 176 213 b 652 477 -1.45 20.47 0.173 0.870 2 136 0 166	148 c	672	352	-1.08		0.360	1.620	3	113	178	148
146 c 606 382 -1.62 22.87 0.114 0.850 3 135 195 146 145 c 622 346 -1.45 25.03 1.103 2.040 3 110 176 145 94 a 240 312 -4.21 24.59 0.531 1.190 2 94 0 131 105 a 570 265 -1.89 27.18 0.052 0.720 2 105 137 0 220 b 648 519 -1.48 19.07 0.159 0.900 2 0 220 175 176 c 640 470 -1.29 20.47 0.289 1.270 2 0 213 176 176 176 c 640 470 -1.29 20.47 0.173 0.870 2 0 213 176 176 c 640 470 -1.29 20.47 0.173 0.870 2 0 213 176 176 c 640 470 -1.29 20.47 0.173 0.870 2 0 213 176 186 c 674 386 -1.05 21.85 0.076 0.480 2 136 0 166 186 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 186 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 181 b 262 330 -4.00 25.29 0.035 0.190 2 0 161 132 194 b 494 432 -2.39 21.20 0.691 1.720 2 0 194 163 122 b 638 503 -1.54 19.68 0.105 0.580 2 157 212 0 163 c 488 421 -2.46 21.29 0.904 1.880 2 0 194 163 137 b 570 311 -1.86 27.39 0.007 0.130 2 105 137 0 173 b 580 344 -1.78 25.57 0.88 0.770 2 108 173 0 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 131 c 242 361 -1.69 24.37 0.022 0.190 2 109 174 0 131 c 242 361 -1.69 24.37 0.022 0.190 2 109 174 0 131 c 242 361 -1.69 24.37 0.022 0.190 2 109 174 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 168 132 c 660 354 475 -3.44 20.65 0.250 1.510 1 0 0 168 132 c 660 354 475 -3.44 20.65 0.250 1.510 1 0 0 166 130	165 c	622	440	-1.51	20.97	0.462	1.800	3	149	211	165
145 c 622 346 -1.45 25.03 1.103 2.040 3 110 176 145 94 a 240 312 -4.21 24.59 0.531 1.190 2 94 0 131 105 a 570 265 -1.89 27.18 0.052 0.720 2 105 137 0 220 b 648 519 -1.48 19.07 0.159 0.900 2 0 220 175 176 c 640 470 -1.29 20.47 0.289 1.270 2 0 213 176 166 c 674 386 -1.05 21.85 0.076 0.480 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 136 a 698 357 -1.00 21.76 0.300 1.030 2 136 0 166 136 a 698 357 -1.00 21.76 0.300 1.030 2 136 0 166 136 a 698 357 -1.00 21.76 0.300 1.030 2 136 0 166 136 a 698 357 -1.80 21.20 0.691 1.720 2 0 194 163 131 14 1.86 27.39 0.007 0.190 2 0 194 163 137 b 570 311 -1.86 27.39 0.007 0.130 2 155 137 0 174 b 596 361 -1.67 24.63 0.075 0.580 2 157 212 0 194 163 137 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 133 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 136 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 0 0 166 0 356 475 -1.02 27.84 0.012 0.080 1 0 0 120 130 b 352 284 -3.45 27.84 0.022 0.190 1 0 0 140 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 140 c 486 333 -2.36 25.75 0.013 0.080 1 0 0 120 0 135 0 0 140 c	116 c	600	301	-1.60	27.51	0.425	1.430	3	107	140	116
94 a 240 312 -4.21 24.59 0.531 1.190 2 94 0 131 105 a 570 265 -1.89 27.18 0.052 0.720 2 105 137 0 220 b 648 519 -1.48 19.07 0.159 0.900 2 0 220 175 176 c 640 470 -1.29 20.47 0.289 1.270 2 0 213 176 166 c 674 386 -1.05 21.85 0.076 0.480 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 161 b 262 330 -4.00 25.29 0.035 0.190 2 0 161 132 194 b 494 432 -2.39 21.20 0.691 1.720 2 0 194 163 212 b 638 503 -1.54 19.68 0.105 0.580 2 157 212 0 163 c 488 421 -2.46 21.29 0.904 1.880 2 0 194 163 137 b 570 311 -1.86 27.39 0.007 0.130 2 105 137 0 173 b 580 344 -1.78 25.57 0.088 0.770 2 108 173 0 174 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 131 c 242 361 -1.67 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 168 120 c 680 295 -1.02 27.84 0.022 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 1070 0 140 c 316 303 -3.65 7.67 0.006 0.080 1 0 170 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 194 69 576 408 -2.65 27.34 0.083 0.560 1 0 135 0	146 c	606	382	-1.62	22.87	0.114	0.850	3	135	195	146
105 a 570 265 -1.89 27.18 0.052 0.720 2 105 137 0 220 b 648 519 -1.48 19.07 0.159 0.900 2 0 220 175 176 c 640 470 -1.29 20.47 0.289 1.270 2 0 213 176 213 b 652 477 -1.45 20.47 0.173 0.870 2 0 213 176 166 c 674 386 -1.05 21.85 0.076 0.480 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 161 b 262 330 -4.00 25.29 0.035 0.190 2 0 161 132 194 b 494 432 -2.39 21.20 0.691 1.720 2 0 194 163 212 b 638 503 -1.54 19.68 0.105 0.580 2 157 212 0 163 c 488 421 -2.46 21.29 0.904 1.880 2 0 194 163 137 b 570 311 -1.86 27.39 0.007 0.130 2 105 137 0 173 b 580 344 -1.78 25.57 0.088 0.770 2 108 173 0 174 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 73 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.150 1 0 0 0 170 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 0 170 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 0 170 170 b 550 336 -1.94 23.27 0.055 0.480 1 134 0 0 104 c 316 303 -3.65 i.67 0.006 0.080 1 0 0 104 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 104 c 316 303 -3.65 i.67 0.006 0.080 1 0 0 104 196 b 576 408 -2.65 27.34 0.083 0.560 1 0 170 105 50 366 336 -1.94 23.27 0.055 0.480 1 134 0 0	145 c	622	346	-1.45	25.03	1.103	2.040	3	110	176	145
220 b 648 519 -1.48 19.07 0.159 0.900 2 0 220 175 176 c 640 470 -1.29 20.47 0.289 1.270 2 0 213 176 213 b 652 477 -1.45 20.47 0.173 0.870 2 0 213 176 166 c 674 386 -1.05 21.85 0.076 0.480 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 161 b 262 330 -4.00 25.29 0.035 0.190 2 0 161 132 194 b 494 432 -2.39 21.20 0.691 1.720 2 0 161 132 194 b 638 503 -1.54 19.68 0.105 0.580 2 157 212 0 </td <td>94 a</td> <td>240</td> <td>312</td> <td>-4.21</td> <td>24.59</td> <td>0.531</td> <td>1.190</td> <td></td> <td>94</td> <td>0</td> <td>131</td>	94 a	240	312	-4.21	24.59	0.531	1.190		94	0	131
176 c 640 470 -1.29 20.47 0.289 1.270 2 0 213 176 213 b 652 477 -1.45 20.47 0.173 0.870 2 0 213 176 166 c 674 386 -1.05 21.85 0.076 0.480 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 161 b 262 330 -4.00 25.29 0.035 0.190 2 0 161 132 194 b 494 432 -2.39 21.20 0.691 1.720 2 0 194 163 212 b 638 503 -1.54 19.68 0.105 0.580 2 157 212 0 163 c 488 421 -2.46 21.29 0.904 1.880 2 0 194 163 137 b 570 311 -1.86 27.39 0.007 0.130 2 105 137 0 173 b 580 344 -1.78 25.57 0.088 0.770 2 108 173 0 174 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 138 c 678 412 -1.02 21.21 0.131 0.720 1 0 163 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 120 c 680 295 -1.02 27.84 0.032 1.190 1 0 0 168 120 c 680 295 -1.02 27.84 0.032 1.190 1 0 0 168 120 c 680 295 -1.02 27.84 0.032 1.190 1 0 0 168 120 c 680 295 -1.02 27.84 0.032 1.190 1 0 0 168 120 c 680 295 -1.02 27.84 0.032 1.190 1 0 0 168 120 c 680 295 -1.02 27.84 0.032 1.190 1 0 0 168 120 c 680 295 -1.02 27.84 0.032 1.190 1 0 0 168 120 c 680 295 -1.02 27.84 0.032 1.190 1 0 0 170 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 0 170 0 170 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 0 170 0 170 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 0 170 0 171 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 0 170 0 171 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 0 170 0 171 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 0 170 0 171 171 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 0 0 104 192 b 452 394 -2.75 22.77 0.055 0.480 1 134 0 0 0 104 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 134 0 0 0 134 0 0 0 134 0 0 0 0 0 0 0 0 0 0 0 0 0	105 a	570	265	-1.89	27.18	0.052	0.720	2	105	137	0
213 b 652 477 -1.45 20.47 0.173 0.870 2 0 213 176 166 c 674 386 -1.05 21.85 0.076 0.480 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 161 b 262 330 -4.00 25.29 0.035 0.190 2 0 161 132 194 b 494 432 -2.39 21.20 0.691 1.720 2 0 194 163 212 b 638 503 -1.54 19.68 0.105 0.580 2 157 212 0 163 c 488 421 -2.46 21.29 0.904 1.880 2 0 194 163 137 b 570 311 -1.86 27.39 0.007 0.130 2 105 137 0 173 b 580 344 -1.78 25.57 0.088 0.770 2 108 173 0 174 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 150 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 136 226 b 354 475 -3.44 20.65 0.250 1.510 1 0 0 120 136 20 136 -2.27 3.30 24.80 0.026 0.150 1 0 0 136 20 1 0 0 140 20 20 20 20 20 20 20 20 20 20 20 20 20	220 b	648	519	-1.48	19.07	0.159	0.900	2	0	220	175
166 c 674 386 -1.05 21.85 0.076 0.480 2 136 0 166 136 a 696 357 -1.00 21.76 0.300 1.030 2 136 0 166 161 b 262 330 -4.00 25.29 0.035 0.190 2 0 161 132 194 b 494 432 -2.39 21.20 0.691 1.720 2 0 194 163 212 b 638 503 -1.54 19.68 0.105 0.580 2 157 212 0 163 c 488 421 -2.46 21.29 0.904 1.880 2 0 194 163 137 b 570 311 -1.86 27.39 0.007 0.130 2 108 173 0 173 b 580 344 -1.78 25.57 0.088 0.770 2 108 173 0 174 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42	176 c	640	470	-1.29	20.47	0.289	1.270	2	0	213	176
136 a	213 b	652	477	-1.45	20.47	0.173	0.870	2	0	213	176
136 a	166 c		386	-1.05	21.85	0.076	0.480	2	136	0	166
194 b		696	357	-1.00	21.76	0.300	1.030	2	136	0	166
212 b 638 503 -1.54 19.68 0.105 0.580 2 157 212 0 163 c 488 421 -2.46 21.29 0.904 1.880 2 0 194 163 137 b 570 311 -1.86 27.39 0.007 0.130 2 105 137 0 173 b 580 344 -1.78 25.57 0.088 0.770 2 108 173 0 174 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 73 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 172 0 170 b 530 325 -2.10 26.62 0.077 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.077 0.290 1 0 174 0 174 c 316 303 -3.65 7.67 0.006 0.080 1 0 172 0 175 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 176 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209	161 b	262	330	-4.00	25.29	0.035	0.190	2	0	161	132
212 b 638 503 -1.54 19.68 0.105 0.580 2 157 212 0 163 c 488 421 -2.46 21.29 0.904 1.880 2 0 194 163 137 b 580 344 -1.78 25.57 0.088 0.770 2 108 173 0 174 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 73 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 </td <td>194 b</td> <td>494</td> <td>432</td> <td>-2.39</td> <td>21.20</td> <td>0.691</td> <td>1.720</td> <td>2</td> <td>0</td> <td>194</td> <td>163</td>	194 b	494	432	-2.39	21.20	0.691	1.720	2	0	194	163
163 c 488 421 -2.46 21.29 0.904 1.880 2 0 194 163 137 b 570 311 -1.86 27.39 0.007 0.130 2 105 137 0 173 b 580 344 -1.78 25.57 0.088 0.770 2 108 173 0 174 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 73 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 140 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0		638	503	-1.54	19.68	0.105	0.580	2	157	212	0
137 b 570 311 -1.86 27.39 0.007 0.130 2 105 137 0 173 b 580 344 -1.78 25.57 0.088 0.770 2 108 173 0 174 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 73 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177							1.880		0	194	163
173 b 580 344 -1.78 25.57 0.088 0.770 2 108 173 0 174 b 596 361 -1.67 24.63 0.075 0.560 2 109 174 0 139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 73 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 </td <td></td> <td></td> <td>311</td> <td>-1.86</td> <td></td> <td></td> <td></td> <td></td> <td>105</td> <td>137</td> <td>0</td>			311	-1.86					105	137	0
174 b							0.770	2	108	173	0
139 b 630 292 -1.42 27.55 0.399 1.190 2 73 139 0 177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 73 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 130 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 126 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209							0.560	2	109		0
177 c 674 475 -1.05 20.42 0.148 1.010 2 150 0 177 109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 0 73 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 196 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0			292	-1.42		0.399		2	73	139	0
109 a 600 316 -1.69 24.37 0.022 0.190 2 109 174 0 73 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0				-1.05	20.42	0.148	1.010		150	0	177
73 a 628 250 -1.49 28.00 1.006 1.800 2 73 139 0 150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 0 104 196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0	109 a	600	316	-1.69	24.37	0.022	0.190	2	109	174	0
150 a 694 430 -1.01 20.61 1.023 2.620 2 150 0 177 108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 170 0 105 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0				-1.49	28.00	1.006	1.800	2	73	139	0
108 a 576 302 -1.86 25.13 0.111 1.090 2 108 173 0 131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1	150 a	694	430	-1.01	20.61	1.023	2.620	2	150	0	177
131 c 242 361 -4.21 24.70 0.486 1.110 2 94 0 131 132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 104 196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 133 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0			302	-1.86	25.13	0.111	1.090	2	108	173	0
132 c 260 341 -3.99 25.57 0.013 0.080 2 0 161 132 168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 170 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0		242			24.70			2	94	0	131
168 c 678 412 -1.02 21.21 0.131 0.720 1 0 0 168 120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 170 0 196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0		260	341	-3.99	25.57	0.013	0.080	2	0	161	132
120 c 680 295 -1.02 27.84 0.012 0.080 1 0 0 120 136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 170 0 196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 133 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0	168 c		412	-1.02	21.21	0.131	0.720	1	0	0	168
136 c 376 352 -3.30 24.80 0.026 0.160 1 0 0 136 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 206 0 130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 104 196 b 576 408 -1.85 2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0		680	295	-1.02	27.84	0.012	0.080	1	0	0	120
130 b 352 284 -3.45 27.84 0.232 1.190 1 0 130 0 140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 104 196 b 576 408 -1.85 2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0		376	352	-3.30	24.80	0.026	0.160	1	0	0	136
140 c 486 333 -2.36 25.75 0.172 0.290 1 0 0 140 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 0 104 196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0	206 b	354	475	-3.44	20.65	0.250	1.510	1	0	206	0
192 b	130 b	352	284	-3.45	27.84	0.232	1.190	1	0	130	0
172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 0 104 196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0	140 c	486	333	-2.36	25.75	0.172	0.290	1	0	0	140
172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 0 104 c 316 303 -3.65 7.67 0.006 0.080 1 0 0 104 196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0	192 b	452	394	-2.75	22.77	0.161	0.370	1	0	192	0
104 c 316 303 -3.65 7.67 0.006 0.080 1 0 0 104 196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0		512	380	-2.21	23.60	0.177	0.500	1	0	172	0
196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0	170 b	530	325	-2.10	26.62	0.062	0.290	1	0	170	0
196 b 576 408 -1.85 .2.20 0.014 0.210 1 0 196 0 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0	104 c	316	303	-3.65	7.67	0.006	0.080	1	0	0	104
135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 0 134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0		576	408	-1.85			0.210	1	0	196	0
134 a 560 336 -1.99 23.27 0.055 0.480 1 134 0 0 209 b 490 499 -2.42 20.45 0.031 0.400 1 0 209 0		460	288	-2.65	27.34	0.083	0.560	1	0	135	0
		560	336	-1.94	23.27	0.055	0.480	1	134	0	0
189 b 434 386 -2.92 23.20 0.054 0.160 1 0 189 0	209 b	490	499	-2.42	20.45	0.031	0.400	1	0	209	
	189 b	434	386	-2.92	23.20	0.054	0.160	1	0	189	0

Prin	file	name:	abc.c	ls,	Tim	e: 11:06	Date: 1	<u>2/5/</u>	1989		Page	<u>:</u>
	3 /* 0.160 1.120	# of s	cans	in the	match	group */						
	I:I:R:F	R:R:R:I	:I:I:	I								
REC	GEL	x	Y	PI	MW	II	AREA	MA	Та		b	c
157	a	636	457	-1.42	20.02	1.162	2.200	3	157	212	175	
175	С	634	508	-1.35	19.22	0.062	0.420	3	157	220	175	
220	þ	648	519	-1.48	19.07		0.900	2	0	220	175	
212	p .	638	503	-1.54	19.68	0.105	0.580	2	157	212	1/2	

APPENDIX D2

.87

Print file r	Date: 1	2/5/	1989		Page	e:					
#NS 3 /* # #PI 0.160 #MW 1.120	‡ of s	cans	in the	match g	comb */						
I:C:I:I:R:R:	R:R:I	:I:I:	I								
REC GEL	x	Y	PI	MW	II	AREA	MA!	r a		b	C
168 c	678	412	-1.02	21.21	0.131	0.720	1	0	0	168	
120 c	680	295	-1.02	27.84	0.012	0.080	1	0	0	120	
136 c	376	352	-3.30	24.80	0.026	0.160	1	0	0	136	
206 b	354	475	-3.44	20.65	0.250	1.510	1	0	206	0	
130 b	352	284	-3.45	27.84	0.232	1.190	1	0	130	0	
140 c	486	333	-2.36	25.75	0.172	0.290	1	0	0	140	
192 b	452	394	-2.75	22.77	0.161	0.370	1	0	192	0	
172 b	512	380	-2.21	23.60	0.177	0.500	1	0	172	0	
170 b	530	325	-2.10	26.62	0.062	0.290	1	0	170	0	
104 c	316	303	-3.65	27.67	0.006	0.080	1	0	0	104	
196 b	576	408	-1.85	22.20	0.014	0.210	1	0	196	0	
135 b	460	288	-2.65	27.34	0.083	0.560	1	0	135	0	
134 a	560	336	-1.98	23.27	0.055	0.480	1	134	0	0	
209 b	490	499	-2.42	20.45	0.031	0.400	1	0	209	Ō	
189 Ь	434	386	-2.92	23.20	0.054	0.160	1	0	189	Ō	

APPENDIX D3

Print file name: abc.exm,					Time	11:06	6 Date: 12/5/1989			Page:		
#NS 3	/* #	of	scans	in the	match g	roup */						
#PI 0.	160				g.	.oup,						
#MW 1.	.120											
I:C:I:	I:R:R:	R:R:	I:I:I:	I								
	SEL	X	Y	PI	MW	II	AREA	M	AT a		L	
							мфи	M	71 G		b	С
177 c	3	674	475	-1.05	20.42	0.148	1.010	2	150	0	177	
150 a		694	430	-1.01	20.61	1.023	2.620	2	150	0	177	
139 t)	630	292	-1.42	27.55	0.399	1.190	2	73	139	177	
73 a	3.	628	250	-1.49	28.00	1.006	1.800	2	73	139	0	
174 b)	596	361	-1.67	24.63	0.075	0.560	2	109	174	0	
109 a		600	316	-1.69	24.37	0.022	0.190	2	109	174	0	
173 E	>	580	344	-1.78	25.57	0.088	0.770	2	108	173	0	
108 a	3.	576	302	-1.86	25.13	0.111	1.090	2	108	173	0	
194 b		494	432	-2.39	21.20	0.691	1.720	2	0	194	0 163	
163 c		488	421	-2.46	21.29	0.904	1.880	2	0	194	163	
161 b		262	330	-4.00	25.29	0.035	0.190	2	0	161	132	
132 c		260	341	-3.99	25.57	0.013	0.080	2	0	161	132	
166 c		674	386	-1.05	21.85	0.076	0.480	2	136	0	166	
136 a		696	357	-1.00	21.76	0.300	1.030	2	136	Ö	166	
176 c		640		-1.29	20.47	0.289	1.270	2	0	213	176	
213 b		652	2 477	-1.45	20.47	0.173	0.870	2	Ö	213	176	
105 a		570	-	-1.89	27.18	0.052	0.720	2	105	137	0	
137 b		570		-1.86	27.39	0.007	0.130	2	105	137	0	
94 a		240		-4.21	24.59	0.531	1.190	2	94	0	131	
131 0		242	_	-4.21	24.70	0.486	1.110	2	94	ō	131	
95 a		292		-3.82	25.79	0.296	1.540	3	95	160	133	
133 0		288		-3.81	25.86	0.707	1.930	3	95	160	133	
160 b		288		-3.83	25.75	0.489	1.560	3	95	160	133	
96 a		322		-3.65	27.39	0.150	0.980	3	96	128	106	
128 b		314		-3.68	27.18	0.050	0.530	3	96	128	106	
106 c		318		-3.63	27.39	0.019	0.240	3	96	128	106	
127 a		324		-3.63	23.48	0.191	1.300	3	127	164	137	
164 b		320		-3.68	23.37	0.406	1.430	3	127	164	137	
		320		-3.67	23.81	0.582	1.700	3	127	164	137	
99 a 162 b		334		-3.56	25.75	0.162	1.110	3	99	162	134	
134		330		-3.58	25.46	0.416	1.400	3	99	162	134	
98 a		330		-3.55	25.90	0.608	1.800	3	99	162	134	
135		366 372		-3.38	25.57	0.026	0.270	3	98	163	135	
163 b		364		-3.33	25.07	0.012	0.110	3	98	163	135	
144 a		372		-3.38	26.19	0.126	0.820	3	98	163	135	
160		374		-3.33	21.19	0.051	0.370	3	144	188	160	
188 t		374		-3.32	21.20	0.121	0.770	3	144	188	160	
128 a		376		-3.30	21.25	0.119	0.720	3	144	188	160	
186 b		374		-3.30	22.45	3.781	5.190	3	128	186	158	
158 0		376		-3.30	22.82	6.077	5.960	3	128	186	158	
97 a		380		-3.30 -3.30	22.45	5.207	5.860	3	128	186	158	
109		374		-3.28 -3.28	27.51	0.702	1.960	3	97	131	109	
131 b		374		-3.28 -3.30	27.84	0.403	1.540	3	97	131	109	
101 a		416		-3.30	27.12	0.655	1.670	3	97	131	109	
139		416		-3.06	24.30	0.131	0.610	3	101	165	139	
165 b		416		-3.06 -3.04	24.47	0.485	1.430	3	101	165	139	
9004 a		426		-3.04	24.63 21.50	0.415	1.400	3	101	165	139	
	_		. 500	-5.00	21.30	4.162	3.900	3	9004	9004	9004	

8,9

Print fi	le name:	abc.e	xm,	Time	: 11:06	Date:	12/5	/1989		Page:
9004 b	424	409	-3.00	21.50	2.862	3.070	3	9004	9004	9004
9004 c	426		-3.00	21.50	4.198	4.060				9004
100 a	432		-2.95	27.39	0.884	1.910	3	100	134	112
112 c	426		-2.90	27.51	0.747	1.780		100	134	112
134 b	428	303	-2.93		1.068	1.750		100	134	112
131 a	452		-2.77		1.888	2.170		131	169	143
143 c	448	363	-2.80		0.519	1.220		131	169	143
169 b	454		-2.74	24.14	1.840	2.070		131	169	
132 a	480		-2.52	23.43	0.039	0.080		132	191	143
191 b	488	392	-2.44		0.384	0.690		132	191	144
144 c	480		-2.52	23.31	0.165	0.240		132	191	144 144
104 a	490		-2.44	24.20	1.404	1.380		104	168	142
168 b	490		-2.39			1.720	3	104	168	142
142 c	484			24.63	0.659	0.980	3	104	168	142
146 a	500		-2.34		0.203	1.300		146	208	171
208 b	500		-2.32	20.81	0.075	0.770		146	208	171
171 c	498	455	-2.34		0.029			146	208	171
133 a	504		-2.31	21.35	3.676	5.800	3	133	193	162
193 b	504		-2.29	21.43	2.542	3.260		133	193	162
162 c	502		-2.32	21.68	2.658	3.580		133	193	162
9003 a	512	252	-2.24	27.88	8.928	6.710		9003		
9003 b	506			27.88	6.837				9003	
9003 c	500		-2.24	27.88	5.686	5.700		9003		
106 a	524		-2.18		1.773			106	171	141
171 b	518		-2.18	25.36	2.230	2.460		106	171	141
141 c	508		-2.20	25.53	1.218	1.860		106	171	141
9002 a	556			20.38	4.757	5.120		9002		
9002 b	554		-2.00	20.38	2.803	3.290		9002		
9002 c	554		-2.00	20.38	1.703	2.620		9002		
9005 c	258	297	-4.00		2.975	3.900		9005		
9005 a	264			28.00	3.127	4.590		9005		
9005 ъ	262	281	-4.00	28.00	4.348	4.350		9005		
159 c	328		-3.61	21.29	0.060	0.720	3	129	187	159
129 a	332	382	-3.58	21.21	0.074	0.930	3	129	187	159
187 b	326		-3.65	21.17	0.062	0.740	3	129	187	159
9006 c	242	397	-4.21	22.70	9.890	9.940			9006	
9006 a	240			22.70	7.771	7.790		9006		
9006 ь	244			22.70	11.183	9.490		9006		
148 a	586		-1.78	21.12	0.264	1.540		148	197	164
197 b	588	434	-1.75	21.28	0.426	1.830	3		197	164
164 c	582	423	-1.79	21.20	0.402		3		197	164
167 b	450	342	-2.74	25.69	0.484	1.090	3	103	167	138
103 a	454	298	-2.75	25.36	0.437	0.980	3	103	167	138
138 c	446	336	-2.72	25.57	0.427	1.110	3	103	167	138
107 a	620	268	-1.54	27.01	0.049	0.190	3	107	140	116
140 b	618	310	-1.51	27.45	0.349	1.250	3	107	140	116
116 c	600	301	-1.60	27.51	0.425	1.430	3	107	140	116
135 a	620	348	-1.54	22.54	0.281	1.140	3	135	195	146
195 b	622	392	-1.51	23.27	0.282	1.350	3	135	195	146
146 c	606	382	-1.62	22.87	0.114	0.850	3	135	195	146
207 b	464	470	-2.65	20.72	0.051	0.690	3	145	207	172
145 a	460	417	-2.70	20.78	0.140	1.140	3	145	207	172
172 c	464	457	-2.67	20.82	0.067	0.660	3	145	207	172
149 a	630	402	-1.48	20.96	1.845	2.860	3	149	211	165

Print file	name:	abc.e	km,	Time:	11:06	Date: 1	2/5/	1989		Page:
211 b	636	454	-1.41	21.02	0.848	2.120	3	149	211	165
165 c	622	440	-1.51	20.97	0.462	1.800	3	149	211	165
110 a	636	308	-1.42	24.80	2.391	3.340	3	110	176	145
176 b	640	351	-1.36	25.19	1.385	2.360	3	110	176	145
145 c	622	346	-1.45	25.03	1.103	2.040	3	110	176	145
112 a	650	274	-1.33	26.68	1.391	1.670	3	112	175	
175 b	656	320	-1.25	26.89	1.309	2.760	3	112	175	117
117 c	636	310	-1.35	27.01	0.713	1.830	3	112	175	117
137 a	658	369	-1.27	21.38	0.859	1.990	3	137		117
198 ъ	668	415	-1.33	21.28	0.514	2.010	3		198	167
167 c	648	403	-1.25	21.34	0.286	1.170	3	137	198	167
113 a	690	319	-1.04	24.20	3.868	5.060	3	137	198	167
178 ъ	712	357	-1.01	24.14	2.703	4.640	3	113	178	148
148 c	672	352	-1.08	24.04	0.360	1.620		113	178	148
166 b	476	326	-2.50	26.56	1.525	1.800	3	113	178	148
102 a	478	277	-2.54	26.52	1.250	1.540	3	102	166	114
114 c	470	316	-2.50	26.68	1.003	1.350	3	102	166	114
218 b	486	521	-2.46	19.71	0.278		_	102	166	114
155 a	492	464	-2.42	19.76	0.379	1.460	3	155	218	173
173 c	484	508	-2.47	19.56	0.379	1.910	3	155	218	173
9001 a	696	484	-1.00	19.00	3.652	1.910	3	155	218	173
9001 Ь	714	521	-1.00	19.00		5.140	3	9001		
9001 c	682	514	-1.00		2.609	4.350	3		9001	
	302	214		19.00	1.216	2.860	3	9001	9001	9001

APPENDIX D4-3

Print file name: abc.cmp. Time: 11:05 Date: 12/5/1989 Page: #NS 3 /* # of scans in the match group */ #PI 0.160 #MW 1.120 I:C:I:I:R:R:R:R:I:I:I:I REC GEL X Y PI MW II AREA MAT a þ C -10 abc -1 -1 -4.21 24.65 0.508 1.150 2 94 0 131 -1 -3.99 25.43 0.024 0 161 -6 abc -1 132 0.135 2 -11 abc -1 -3.82 25.80 -1 0.497 1.677 3 95 160 133 -13 abc -1 -1 -3.66 23.55 0.393 1.477 3 127 164 137 303 -3.65 27.67 104 c 316 0.006 0.080 1 0 0 104 3 -12 abc -1 -3.65 27.32 0.073 -1 0.583 96 128 106 -31 abc -1 -3.61 21.22 3 129 -1 0.065 0.797 187 159 -14 abc -1 -1 -3.56 25.70 0.395 1.437 99 162 134 3 0 130 0 206 352 284 -3.45 27.84 130 b 0.232 1.190 1 0 206 b 354 475 -3.44 20.65 0.250 1.510 1 0 -15 abc -1 -1 -3.36 25.61 0.055 0.400 3 98 163 135 -16 abc -1 -1 -3.32 21.21 0.097 0.620 3 144 188 160 136 c 376 352 -3.30 24.80 0.026 0 0 136 0.160 1 -17 abc -1 -1 -3.30 22.57 5.022 5.670 3 128 186 158 -18 abc 1.723 3 -1 -1 -3.29 27.49 0.587 97 131 109 -19 abc -1 -1 -3.05 24.47 0.344 1.147 3 101 165 139 -21 abc -1 -1 -2.93 27.58 0.900 1.813 3 100 134 112 189 b 434 386 -2.92 23.20 0.054 0.160 1 0 189 0 -22 abc -1 -1 -2.77 24.09 1.416 1.820 3 131 169 143 192 b 452 394 -2.75 22.77 0.161 0.370 1 0 192 0 -34 abc -1 -1 -2.74 25.54 0.449 1.060 3 103 167 138 -37 abc **-1 -1 -2.67 20.77 0.086** 0.830 3 145 207 172 135 b 460 288 -2.65 27.34 0.083 0.560 1 0 135 -45 abc **-1 -1 -2.51 26.59 1.259** 1.563 3 102 166 114 -23 abc -1 -1 -2.49 23.20 0.196 0.337 3 132 191 144 -1 -46 abc -1 -2.45 19.68 0.357 1.760 3 155 218 173 0.798 -5 abc -1 -1 -2.43 21.25 1.800 2 0 194 163 0.031 -2.42 20.45 -2.41 24.43 209 b 490 499 0.400 1 0 209 1 0 209 0 3 104 168 142 n -24 abc -1 -1 1.327 1.360 333 -2.36 25.75 140 c 486 0.172 0.290 1 0 0 140 3 146 208 3 133 193 -1 -2.33 20.79 -25 abc 0.102 -1 0.813 171 -2.31 21.49 -26 abc 2.959 -1 -1 4.213 193 162 172 b 512 380 -2.21 23.60 0.177 0.500 1 0 172 0 -28 abc 1.740 -1 -2.19 25.34 3 106 -1 2.217 171 141 170 b 530 325 -2.10 26.62 0.062 0.290 1 0 170 560 336 -1.98 23.27 1 134 134 a 0.055 0.480 0 0 -1.88 27.28 2 105 137 -9 abc -1 -1 0.030 0.425 0 196 b 576 408 -1.85 22.20 0.014 0.210 0 196 1 0 -4 abc -1 -1 -1.82 25.35 0.100 0.930 2 108 173 0 -33 abc -1 -1 -1.77 21.20 0.364 1.750 3 148 197 164 -3 abc -1 -1 -1.68 24.50 0.049 0.375 2 109 174 ٥ -36 abc -1 -1 -1.56 22.89 0.226 3 135 195 146 1.113 -35 abc -1 -1 -1.55 27.32 0.274 0.957 3 107 140 116 -40 abc 0 0 -1.48 19.85 0.633 1.390 2 157 212 0

APPENDIX D5-1

0.702

1.626

2.260 3 149 211 165

2.580 3 110 176 145

2

73 139

0 220 175

0

1.495

0.660 2

-1 -1 -1.47 20.98 1.052

0 0 -1.41 19.15 0.110

-1 -1 -1.45 27.77

-1 -1 -1.41 25.01

-38 abc

-2 abc

-39 abc

-41 abc

APPENDIX D5-1

.9₂

Print	fil	e name:	abc.c	, am	Time	11:05	Date: 12	2/5/	/1989		Page:	
												_
	abc	-1	-1	-1.37	20.47	0.231	1.070	2	0	213	176	
-42	abc	-1	-1	-1.31	26.86	1.138	2.087	3	112	175		
-43	abc	-1	-1	-1.28	21.33	0.553		-			117	
-11	abc	1	_				1.723	3	137	198	167	
		-1	-1	-1.04	24.13	2.310	3.773	3	113	178	148	
-1	abc	-1	-1	-1.03	20.51	0.586	1.815	2	150	_		
168	С	678	412	-1.02	21.21	0.131		_		0	177	
120	_						0.720	1	0	0	168	
	-	680	295	-1.02	27.84	0.012	0.080	1	0	0	120	
7	abc	-1	-1	-1.02	21.81	0.188	0.755	2	-	•		
-32	abc	-1	-1	-4.21				2	136	0	166	
		_	_		22.70	9.615	9.073	3	9006	9006	9006	
	abc	-1	-1	-4.00	28.00	3.483	4.280	3	9005			
-20	abc	-1	-1	-3.00	21.50	3.741	3.677					
-27		_	_						9004			
		-1	-1	-2.24	27.88	7.150	6.187	3	9003	9003	9003	
-29	abc	-1	-1	-2.00	20.38	3.088	3.677					
-47	abc	-1	-1	-1.00					9002			
• •			-1	-1.00	19.00	2.492	4.117	3	9001	9001	9001	

Print file name: abc.smh, Time: 17:33 Date: 3/6/1990 Page: 1

#NS 3 /* abc.smh 3/6/1990 */ #PI 0.12 #MW 0.80 i:c:i:i:r:r:r:i:i:i:i:i: PI MW II REC GEL X Y AREA MAT а h 0 131 94 a 240 312 -4.210 24.590 0.531 1.190 2 94 9006 a 240 346 -4.210 22.700 7.771 7.790 3 9006 9006 9006 9005 a 264 250 -4,000 28,000 3.127 4.590 3 9005 9005 9005 95 a 292 290 -3.820 25.790 0.296 1.540 3 95 160 133 96 a 322 261 -3.650 27.390 0.150 0.980 3 96 128 106 127 a 324 332 -3.630 23.480 0.191 1.300 3 127 164 137 0.930 3 129 187 159 1.110 3 99 162 134 129 a 332 382 -3.580 21.210 0.074 99 a 334 291 -3.560 25.750 0.162 0.270 3 98 163 135 98 a 366 294 -3.380 25.570 0.026 144 a 372 385 -3.330 21.190 0.051 0.370 3 144 188 160 128 a 376 349 -3.300 22.450 3.781 5.190 3 128 186 158 97 a 380 259 -3.280 27.510 0.702 1.960 3 97 131 109 101 a 416 317 -3.060 24.300 0.131 0.610 3 101 165 139 9004 a 426 360 -3.000 21.500 4.162 3.900 3 9004 9004 9004 100 a 432 261 -2.950 27.390 0.884 1.910 3 100 134 112 131 a 452 324 -2.770 23.930 1.888 2.170 3 131 169 143 103 a 454 298 -2.750 25.360 0.437 0.980 3 103 167 138 145 a 460 417 -2.700 20.780 0.140 1.140 3 145 207 172 102 a 478 277 -2.540 26.520 1.250 1.540 3 102 166 114 a 480 333 -2.520 23.430 132 0.080 3 132 191 144 0.039 104 a 490 319 -2.440 24.200 1.380 3 104 168 142 1.404 0.379 155 a 492 464 -2.420 19.760 1.910 3 155 218 173 a 500 a 504 a 512 a 524 a 556 0.203 146 417 -2.340 20.780 1.300 3 146 208 171 372 -2.310 21.350 252 -2.240 27.880 302 -2.180 25.130 447 -2.000 20.380 336 -1.980 23.270 3.676 133 5.800 3 133 193 162 9003 8.928 6.710 3 9003 9003 9003 1.773 106 2.330 3 106 171 141 5.120 3 9002 9002 9002 0.480 1 134 0 0 0.720 2 105 137 0 1.090 2 108 173 0 1.540 3 148 197 164 0.190 2 109 174 0 4.757 9002 a 560 0.055 0.052 134 a 570 265 -1.890 27.180 105 a 576 302 -1.860 25.130 0.111 108 a 586 389 -1.780 21.120 0.264 148 0.022 109 a 600 316 -1.690 24.370 107 a 620 268 -1.540 27.010 0.049 0.190 3 107 140 116 135 a 620 348 -1.540 22.540 0.281 1.140 3 135 195 146 1.800 2 73 139 73 a 628 250 -1.490 28.000 1.006 0 2.860 3 149 211 165 149 a 630 402 -1.480 20.960 1.845 3.340 3 110 176 145 110 a 636 308 -1.420 24.800 2.391 157 a 636 457 -1.420 20.020 1.162 2.200 3 157 212 175 112 a 650 274 -1.330 26.680 1.391 1.670 3 112 175 117 137 a 658 369 -1.270 21.380 0.859 1.990 3 137 198 167 113 a 690 319 -1.040 24.200 3.868 5.060 3 113 178 148 a 694 430 -1.010 20.610 1.023 150 2.620 2 150 0 177 9001 a 696 484 -1.000 19.000 3.652 5.140 3 9001 9001 9001 136 a 696 357 -1.000 21.760 0.300 1.030 2 136 0 166

Print file name: abc.pmm, Time: 17:32 Date: 3/6/1990 Page: 1

#NS 3 /* abc.pmm 3/6/1990 */ #PI 0.12

#MW 0.80

i:C:i:i:r:r:r:i:i:i:i: REC GEL X Y PI MW II AREA MAT a b c 157 a 636 457 -1.420 20.020 1.162 2.200 3 157 212 175

APPENDIX E2

Print file name: abc.pcm. Time: 17:32 Date: 3/6/1990 Page: 1

```
3/6/1990 */
#NS 3 /* abc.pcm
#PI 0.12
#MW 0.80
i:c:i:i:r:r:r:r:i:i:i:i:i:
                          MW
 REC GEL X Y
                     PI
                                 II
                                       AREA MAT
                                                     b
                                                  а
                                                         C
       a 240 312 -4.210 24.590 0.531 1.190
                                            2 94
                                                      0 131
 94
       a 240 346 -4.210 22.700 7.771 7.790
                                            3 9006 9006 9006
9006
       a 264 250 -4.000 28.000 3.127
                                       4.590 3 9005 9005 9005
9005
  95
       a 292 290
                 -3.820 25.790 0.296
                                       1.540 3 95 160 133
       a 322 261
  96
                  -3.650 27.390 0.150
                                       0.980 3 96 128 106
       a 324 332
 127
                  -3.630 23.480 0.191
                                       1.300 3 127
                                                    164 137
                  -3.580 21.210 0.074
                                      0.930 3 129
 129
       a 332 382
                                                    187 159
  99
       a 334 291
                 -3.560 25.750 0.162
                                      1.110 3 99
                                                     162 134
                  -3.380 25.570 0.026 0.270 3 98
       a 366 294
                                                    163 135
  98
 144
       a 372 385
                 -3.330 21.190 0.051 0.370 3 144
                                                    188 160
       a 376 349
                 -3.300 22.450 3.781 5.190 3 128
                                                    186 158
 128
                  -3.280 27.510 0.702 1.960 3 97
                                                    131 109
 97
       a 380 259
       a 416 317
                  -3.060 24.300 0.131 0.610 3 101
                                                    165 139
 101
                  -3.000 21.500 4.162 3.900 3 9004 9004 9004
 9004
      a 426 360
                                      1.910 3 100 134 112
       a 432 261
                  -2.950 27.390 0.884
 100
      a 452 324
                  -2.770 23.930 1.888 2.170 3 131 169 143
 131
       a 454 298
                  -2.750 25.360 0.437
                                      0.980 3 103 167 138
 103
                                      1.140 3 145 207 172
       a 460 417
                  -2.700 20.780 0.140
 145
                               1.250
       a 478 277
                  -2.540 26.520
                                       1.540 3 102 166 114
 102
                               0.039
                                                     191 144
                  -2.520 23.430
                                      0.080 3 132
       a 480 333
 132
       a 490 319
                  -2.440 24.200
                                1.404
                                       1.380
                                            3 104
                                                     168
                                                         142
 104
                                             3 155
       a 492 464
 155
                  -2.420 19.760
                                0.379
                                       1.910
                                                     218
                                                         173
                                             3 146
       a 500
                  -2.340 20.780
              417
                                0.203
                                       1.300
                                                     208 171
 146
                                             3 133
                  -2.310 21.350
                                                     193
 133
       a 504
              372
                                3.676
                                       5.800
                                                         162
                  -2.240
                         27.880
                                8.928
                                              3 9003 9003 9003
 9003
        а
          512
              252
                                       6.710
 106
        a
          524
              302
                  -2.180 25.130
                                1.773
                                       2.330
                                              3
                                                106
                                                    171 141
                  -2.000 20.380
                                              3 9002 9002 9002
          556 447
 9002
        a
                                4.757
                                       5.120
          560 336 -1.980 23.270
                                             1 134
                                0.055
                                       0.480
                                                     0
                                                          0
 134
        a
          570 265 -1.890 27.180
                                             2 105
                                                     137
 105
                                0.052
                                       0.720
                                                           0
        a
          576 302 -1.860 25.130
                                             2 108
 108
                                0.111
                                       1.090
                                                     173
                                                          O
        a
                                                    197 164
          586 389
                  -1.780 21.120
                                       1.540
                                             3 148
                                0.264
 148
        a
          600 316 -1.690 24.370
                                             2 109
                                0.022
                                       0.190
                                                     174
 109
                                                         0
        a
          620 268
                  -1.540 27.010
                                0.049
                                       0.190 3 107
                                                     140 116
 107
        a
                                       1.140 3 135
 135
          620 348 -1.540 22.540
                                0.281
                                                     195 146
        a
  73
          628 250
                  -1.490 28.000
                                1.006
                                      1.800 2
                                                 73
                                                     139
                                                          O
        a
                 -1.480 20.960
                                1.845
                                       2.860 3 149
                                                    211 165
 149
        a
          630
              402
          636 308
                  -1.420 24.800 2.391 3.340 3 110 176 145
 110
        a
 112
        a 650 274 -1.330 26.680 1.391 1.670 3 112 175 117
                  -1.270 21.380 0.859 1.990 3 137 198 167
 137
        a 658 369
                  -1.040 24.200 3.868 5.060 3 113 178 148
 113
        a 690 319
        a 694 430 -1.010 20.610 1.023
                                       2.620 2 150
 150
                                                     0 177
        a 696 484 -1.000 19.000
                               3.652 5.140 3 9001 9001 9001
 9001
       a 696 357 -1.000 21.760 0.300 1.030 2 136 0 166
 136
```

WO 91/19274

We Claim:

25

40

45

50

20 1. A method of matching two-dimensional (2-D) patterns, said method comprising the steps of:

(a) image scanning a plurality of 2-D patterns and producing corresponding data files for each scanned 2-D pattern and recording logistic data and pattern physical characteristics data in a scan coordinate system;

(b) identifying pattern members in each of said scanned 2-D pattern that bound investigative patterns and designating said identified pattern members as marker members;

30 (c) designating one of said plurality of 2-D pattern as a reference 2-D pattern, said reference 2-D pattern having a reference pattern member data file which includes a set of reference marker members and unknown reference pattern members each having respective coordinates in said scan coordinate system;

(d) designating at least one of remaining ones of said plurality of 2-D patterns as a study 2-D pattern, said study 2-D pattern having a study pattern data file which includes a set of study marker members and unknown study pattern members each having respective coordinates in said scan coordinate system;

(e) performing a first transformation step that transforms positional coordinates of said set of reference marker members, said unknown reference pattern members and each member of said set of study marker pattern members, from said scan coordinate system to a reference coordinate system, said first transformation step resulting in each member of said set of study marker members being in a registered relationship with a corresponding member of said set of reference marker members;

(f) performing a second transformation step that transforms positional coordinates of each of said unknown study pattern members from said scan coordinate system to

PCT/US91/03620

5

15

said reference coordinate system and generating at least one adjusted data file containing new coordinate information for all pattern members manipulated by said first and second transformation steps;

- (g) repeating said steps (d), (e) and (f) on any remaining one of said plurality of 2-D pattern; and
- (h) comparing coordinates of all pattern members in said at least one adjusted data file and producing results identifying matching pattern members.
- 2. A method of matching two-dimensional (2-D) patterns, as recited in claim 1, wherein said step (h) further includes the steps of:

verifying that potentially matching unknown spots are within an acceptable vector area formed by marker spot vectors before producing said matching results; and

resolving matching results having contradictory matching information among spot pattern members.

- 3. A method of matching two-dimensional (2-D) patterns, as recited in claim 1, wherein:
- said 2-D patterns being protein spot patterns in a plurality of two-dimensional gel electrophoretograms (2-D gels) and said step of identifying said pattern members as marker members further includes assigning isoelectric focusing (PI), and molecular weight (MW) dimensional separation values to said marker members; and

said method further includes after performing said second transformation step, interpolating said assigned PI and MW separation values to said marker members to determine PI and MW values for said unknown study patterns.

4. A method of matching two-dimensional (2-D) patterns, as recited in claim 3, wherein:

said step of comparing includes the step of verifying that potentially matching unknown spots are within an acceptable vector area formed by marker spot vectors before producing said matching results;

5

25

30

said method further includes the step of analyzing said matching results using PI and MW separation values resulting from said interpolating step; and

resolving matching results having contradictory matching information among pattern members.

5. A method of matching two-dimensional (2-D) patterns, as recited in claim 3, wherein after said step of comparing and producing matching results includes:

analyzing said matching results using PI and MW separation values resulting from said interpolating step; and

repeating said steps (b) through (h) and said analyzing step.

- 6. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms (2-D gels), said method comprising the steps of:
 - (a) image scanning each of said plurality of 2-D gels and producing corresponding spot data files for each 2-D gel that contain logistic data and spot physical characteristics data in a scan coordinate system;
 - (b) identifying spot members in each of said plurality of 2-D gels that bound investigative spot patterns and designating said identified spot members as marker spot members;

3.

(c) designating one of said plurality of 2-D gels as a reference 2-D gel, said reference 2-D gel having an associated reference spot data file including a set of

reference marker spot members and unknown reference spot members having respective coordinates in said scan coordinate system;

(d) designating at least one of remaining ones of said plurality of 2-D gels as a study 2-D gel, said study 2-D gel having an associated study spot data file including a set of study marker spot members and unknown study spot members having respective coordinates in said scan coordinate system;

5

20

25

- 10 (e) performing a first transformation step that transforms positional coordinates of said set of reference marker spot members, said unknown reference spot members and each member of said set of study marker spot members from said scan coordinate system to a reference coordinate system, said first transformation step resulting in each member of said set of study marker spot members being in a registered relationship with a corresponding member of said set of reference marker spot members;
 - (f) performing a second transformation step that transforms positional coordinates of each of said unknown study spot members from said scan coordinate system to said reference coordinate system and generating at least one adjusted data file containing new coordinate information for all spot pattern members manipulated by said first and second transformation steps;
 - (g) repeating said steps (d), (e) and (f) on any remaining one of said plurality of 2-D gels; and
 - (h) comparing coordinates of all spot pattern members in said at least one adjusted data file and producing results identifying matching spot pattern members.
 - 7. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 6, wherein said step of performing a second transformation step comprises:

- (i) determining an effective range associated with each study marker spot member of said set of study marker spot members,
- (ii) determining an attraction pairing relationship between a particular study marker spot member and a particular unknown study spot member, said attraction pairing relationship being determined utilizing said effective range as determined for said particular study marker spot member,
- (iii) determining positional coordinates in said reference coordinate system of said particular unknown study spot member by adjusting original scan coordinates by shift amounts equivalent to transformation shift amounts of said particular study marker spot member that resulted from said first transformation step, and
 - (iv) repeating said (ii) and (iii) steps for all unknown study spot members.
- 8. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 6, wherein:

said step of identifying said spot members as marker spot members further includes assigning isoelectric focusing (PI), and molecular weight (MW) dimensional separation values to said marker spot members; and

- said method further including, after performing said second transformation step, interpolating said assigned PI and MW separation values to said marker spot members to determine PI and MW values for said unknown study patterns.
- 9. A method of matching protein spot patterns in a 30 plurality of two-dimensional gel electrophoretograms, as recited in claim 8, wherein:

said step of comparing includes the step of verifying that potentially matching unknown spots are within an

101

acceptable vector area formed by marker spot vectors before producing said matching results; and

said producing matching results includes generating a matched and unmatched spot datafiles for said unknown study spot members.

5

10

15

30

10. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 9, wherein:

said producing matching results further includes generating a cluster datafile having contradictory matching information about certain ones of said unknown study spot members that match certain other ones of said unknown spot members in a contradictory manner; and

said method further includes resolving said contradictory matching information, producing spot matching results void of said contradictory matching information and updating matching results as required to improve accuracy and efficiency of the matching task.

11. A method of matching protein spot patterns in a 20 plurality of two-dimensional gel electrophoretograms, as recited in claim 10, wherein:

said unmatched spot datafile comprises a unique datafile having said unknown study spot members with coordinates that do not match with any other spot members.

25 12. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 10, wherein:

said verification step includes a juxtaposition comparison that involves moving a constructed unknown spot's vector formed from a pair of said potentially matching unknown spots towards a pair of marker spot's vectors such that their tails have a common point for determining whether

102

said unknown spot's vector is within said acceptable area formed by said pair of marker spot's vectors to verify that said potentially matching unknown spots indeed match; and

said matched spot datafile comprises an exact match 5 spot datafile for spot members having been manipulated by said verification step.

13. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 10, wherein:

said matched spots datafile comprises a composite datafile for producing a pseudo spot pattern representing the matched and unmatched spots.

14. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 9, wherein said producing matching results further includes:

15

20

25

30

generating a single reference gel based matching spot
datafile;

generating in background a multiple reference gel based matching spot datafile having contradictory spot matching data and resolving said contradiction and producing a composite matching spot datafile; and

comparing said single reference gel based matching spot datafile with said composite matching spot datafile and further generating a potential mis-matched spot members datafile and a potential matched spot members datafile for improving accuracy of said spot matching results.

15. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 6, wherein:

said logistic data and said spot physical characteristics data in said scan coordinate system

103

comprises:

5

10

25

30

gel record number, spot name, image (gel) name, x coordinates, y coordinates, integrated intensity and area.

16. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms (2-D gels), said method comprising the steps of:

- (a) image scanning each of said plurality of 2-D gels and producing corresponding spot data files for each 2-D gel that contain logistic data and spot physical characteristics data in a scan coordinate system;
- (b) identifying spot members in each of said plurality of 2-D gels that bound investigative spot patterns and designating said identified spot members as marker spot members;
- (c) designating one of said plurality of 2-D gels as a reference 2-D gel, said reference 2-D gel having an associated reference spot data file including a set of reference marker spot members and unknown reference spot members having respective coordinates in said scan coordinate system;
 - (d) designating at least one of remaining ones of said plurality of 2-D gels as a study 2-D gel, said study 2-D gel having an associated study spot data file including a set of study marker spot members and unknown study spot members having respective coordinates in said scan coordinate system;
 - (e) performing a first transformation step that transforms positional coordinates of said set of reference marker spot members, said unknown reference spot members and each member of said set of study marker spot members from said scan coordinate system to a reference coordinate system, said first transformation step resulting in each member of said set of study marker spot members being in a registered relationship with a corresponding member of said

104

set of reference marker spot members;

5

10

15

20

25

30

(f) performing a second transformation step that transforms positional coordinates of each of said unknown study spot members from said scan coordinate system to said reference coordinate system, said second transformation comprising:

(i) determining an effective range associated with each study marker spot member of said set of study marker spot members,

(ii) determining an attraction pairing relationship between a particular study marker spot member and a particular unknown study spot member, said attraction pairing relationship being determined utilizing said effective range as determined for said particular study marker spot member,

(iii) determining positional coordinates in said reference coordinate system of said particular unknown study spot member by adjusting original scan coordinates by shift amounts equivalent to transformation shift amounts of said particular study marker spot member that resulted from said first transformation step, and inputting said determined positional coordinates into at least one adjusted data file containing new coordinate information for all spot pattern members manipulated by said first and second transformation steps;

(iv) repeating said (ii) and (iii) steps for all
unknown study spot members;

(g) repeating said steps (d), (e) and (f) on any remaining one of said plurality of 2-D gels; and

(h) comparing coordinates of all spot pattern members in said at least one adjusted data file and producing results identifying matching spot pattern members.

105

17. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 16, wherein:

said step of comparing includes the step of verifying that potentially matching unknown spots are within an acceptable vector area formed by marker spot vectors before producing said matching results;

5

10

15

30

said producing matching results includes generating a matched and unmatched spot datafiles for said unknown study spot members;

said method further includes generating a cluster datafile having contradictory matching information about certain ones of said unknown study spot members that match certain other ones of said unknown spot members in a contradictory manner; and

resolving said contradictory matching information and producing spot matching results void of said contradictory matching information.

18. A method of matching protein spot patterns in a 20 plurality of two-dimensional gel electrophoretograms, as recited in claim 17, wherein:

said unmatched spot datafile comprises a unique datafile having said unknown study spot members with coordinates that do not match with any other spot members.

25 19. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 17, wherein:

said verification step includes a juxtaposition comparison that involves moving a constructed unknown spot's vector formed from a pair of said potentially matching unknown spots towards a pair of marker spot's vectors such that their tails have a common point for determining whether said unknown spot's vector is within said acceptable area

106

formed by said pair of marker spot's vectors to verify that said potentially matching unknown spots indeed match; and

said matched spot datafile comprises an exact match spot datafile for spot members having been manipulated by said verification step.

5

15

20

25

20. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 17, wherein:

said matched spots datafile comprises a composite

10 datafile for producing a pseudo spot pattern representing

matched and unmatched spots.

21. A method of matching protein spot patterns in a plurality of two-dimensional gel electrophoretograms, as recited in claim 16, wherein:

said step of comparing includes the step of verifying that potentially matching unknown spots are within an acceptable vector area formed by marker spot vectors before producing said matching results;

said producing matching results includes generating a single reference gel based matching spot datafile and generating a multiple reference gel based matching spot datafile having contradictory spot matching data and resolving said contradiction and producing a composite matching spot datafile; and

comparing said single reference gel based matching spot datafile with said multiple reference gel based datafile and further generating a potential mis-matched spot members datafile and a potential matched spot members datafile for improving accuracy of said spot matching results.

30 22. A method of matching two-dimensional (2-D) patterns, said method comprising the steps of:

(a) image scanning a plurality of 2-D patterns and producing corresponding data files for each scanned 2-D

pattern and recording logistic data and pattern physical characteristics data in a scan coordinate system;

- (b) identifying pattern members in each of said scanned 2-D pattern that bound investigative patterns and designating said identified pattern members as marker members;
- (c) designating one of said plurality of 2-D pattern as a reference 2-D pattern, said reference 2-D pattern having a reference pattern member data file which includes a set of reference marker members and unknown reference pattern members each having respective coordinates in said scan coordinate system;

10

15

20

25

30

- (d) designating at least one of remaining ones of said plurality of 2-D patterns as a study 2-D pattern, said study 2-D pattern having a study pattern data file which includes a set of study marker members and unknown study pattern members each having respective coordinates in said scan coordinate system;
- (e) performing at least one transformation step that transforms positional coordinates of said plurality of 2-D patterns from said scan coordinate system to a reference coordinate system for minimizing 2-D pattern preparation related distortions;
- (f) repeating said steps (d) and (e) on any remaining one of said plurality of 2-D pattern;
- (h) comparing physical characteristics of all pattern members in said 2-D patterns that were manipulated in accordance with said steps (d) through (f), said comparing including verifying that potentially matching unknown spots are within an acceptable vector area formed by marker spot vectors before producing said matching results; and
 - (i) producing matching results.

3,

¢

F1G. 2a

F1G. 26

ς

F16.2e

ς,

FIG. 2f

1.

į

3,

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/US91/03620

1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 6									
According to International Patent Classification (IPC) or to both National Classification and IPC									
IPC(5		6K 9/62, GO6K 15/00 GO6K 9/							
		<u>2/6,30,44; 358/111 364/413.</u>	13, 413.01						
II. FIELDS	SEARCH		ation Sousehod 7						
Minimum Documentation Searched 7 Classification System Classification Symbols									
Classification	on System		ilasameanon Oymbols						
US 382/6,30,44; 364/413.13, 413.01 358/111									
	Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched								
III. DOCU	MENTS (ONSIDERED TO BE RELEVANT 9		Balawash to Claim No. 13:					
Category *	Cita	ion of Document, 11 with Indication, where appr	opriate, of the relevant passages 12	Relevant to Claim No. 13.					
A A		A 4,894,786 (HARA) 16 Janua A 4,644,582 (MORISHITA et a	,						
	00,	See Figs. 1-19	2, 1, 1002 wazy 250,						
A, P	US,A 4,956,872 (KIMURA) 11 September 1990, See abstract								
A	US,A 4,825,388 (DAILEY et al) 25 April 1989, See abstract								
A	US,A	4,618,937 (ELIS et al) 21 Figs 1-6	October 1986, See						
A	US,A	4,741,043 (BACUS) 26 April and Fig. 1.	1988 See abstract						
"A" dos	ument defi	s of cited documents: 10 ning the general state of the art which is not	"T" later document published after to or priority date and not in confi- cited to understand the principl						
"E" ear	iler docum 19 date	be of particular relevance and but published on or after the international	invention "X" document of particular relevan cannot be considered novel or	ce: the claimed invention					
whi cita	ich is cited Ition or oth	ch may throw doubts on priority claim(s) or to establish the publication date of another er special reason (as specified)	"Y" document of particular relevan cannot be considered to involve document is combined with one	or more other such docu-					
oth	er means cument pub	rring to an oral disclosure, use, exhibition or lished prior to the international filing date but priority date claimed	ments, such combination being in the art. "4" document member of the same	BB41008 to a person owner					
	Actual C	ompletion of the International Search	Date of Mailing of this International S	earch Report					
	August		O 9 SEP 1991 Signature of Authorized Officer						
		ng Authority	Michael Razavi	le for					
ı IDA	VUS		· · · · · · · · · · · · · · · · · · ·						

2