DESIGN ANEL DE RESSONANCIA

SEMANA 1 E 2

ESTUDO DE REFERENCIAS

GRÁFICOS TEÓRICOS

GRÁFICOS TEÓRICOS Transmissão All pass ring

GRÁFICOS TEÓRICOS Transmissão Add-drop ring

Especificações

FSR = 27.7 nm

MWHW = 0.88 nm

SOI in SiO2

Guia: 0.45/0.22 um

gap = 150 nm

Valores Teóricos

Comprimento total = 18.85 um

Comprimento de acoplamento = 5.74 um

Raio = 1.17 um

DESIGN DE UM ANEL DE RESSONÂNCIA Simulação

DESIGN DE UM ANEL DE RESSONÂNCIA Sweep comprimento de acoplamento

DESIGN DE UM ANEL DE RESSONÂNCIA Sweep comprimento de acoplamento

DESIGN DE UM ANEL DE RESSONÂNCIA Usando L acoplamento = 3.0.5 um

SEMANA 3

DESIGN ANEL BANDA C

Especificações
Centrado na banda C
FSR = 0.8 nm
MWHW = 0.2 nm

Guia: 0.45/0.22 um

SOI in SiO2

gap = 150 nm

Valores Teóricos

Comprimento total = 650.82 um

Comprimento de acoplamento = 15.13 um

Raio = 98.76 um

Q factor = 7749

Finesse = 4

DESIGN DE UM ANEL DE RESSONÂNCIA Simulação no Interconect

Analise do acoplamento

Solver usado: EME

SEMANA 4

Simulações no FDTD

DESIGN DE UM ANEL DE RESSONÂNCIA Simulação dos componentes

Analise de convergência

Analise do acoplamento

Analise do acoplamento

Circuito final

SEMANA 5

Otimização do 1º modelo

DESIGN DE UM ANEL DE RESSONÂNCIA Segunda otimização Chip buried

DESIGN DE UM ANEL DE RESSONÂNCIA Simulação FDTD otimizada

DESIGN DE UM ANEL DE RESSONÂNCIA Simulação FDTD otimizada

DESIGN DE UM ANEL DE RESSONÂNCIA Simulação FDTD otimizada

DESIGN DE UM ANEL DE RESSONÂNCIA Export Interconnect

Resultados

Resultados

Resultados finais do modelo 1

Teorico

FSR = 27.7 nm

MWHW = 0.88 nm

Finesse = 31.48

Q factor = 1761

SOI in SiO2

Obtido

FSR = 28.3 nm

MWHW = 0.9 nm

Finesse = 31.44

Q factor = 1722

Buried in Si02

SEMANA 6

Design do chip

DESIGN DE UM ANEL DE RESSONÂNCIA Chip completo

DESIGN DE UM ANEL DE RESSONÂNCIA Circuito basico

DESIGN DE UM ANEL DE RESSONÂNCIA porta Pass em cascata

porta Drop em cascata

DESIGN DE UM ANEL DE RESSONÂNCIA Aumento do comprimento do anel

