Lets solve some problems: Application of 1st Law

Q1. Calculate ΔU , W, q for three reversible paths

Path A: reversible isothermal expansion

Path B+C: reversible adiabatic expansion followed by heating at constant volume.

Path D+E: reversible constant-pressure expansion followed by cooling at constant volume.

ALL REVERSIBLE ROADS LEAD TO...

$$P_1, V_1, T_1 \rightarrow P_2, V_2, T_1$$

 ΔU must be the same for all paths, but q and w?

Path A: reversible isothermal expansion

Path B+C: reversible adiabatic expansion followed by heating at constant volume.

Path D+E: reversible constant-pressure expansion followed by cooling at constant volume.

PATH A

$$P_1, V_1, T_1 \rightarrow P_2, V_2, T_1$$

Since the energy of an ideal gas depends only on T

$$\Delta U_A = 0 \xrightarrow{\Delta U = q + w} -q_{\text{rev,A}} = w_{\text{rev,A}}$$

Since the process is reversible,

$$-\delta q_{\text{rev,A}} = \delta w_{\text{rev,A}} = -P_{\text{gas}}dV = -\frac{RT_1}{V}dV$$

And we have,

$$-q_{\rm rev,A} = w_{\rm rev,A} = -RT_1 \int_{V_1}^{V_2} \frac{dV}{V} = -RT_1 \ln \frac{V_2}{V_1}$$
 transfer in is required to maintain temperature

Note that heat temperature

PATH B

$$P_1, V_1, T_1 \longrightarrow P_3, V_2, T_2$$

transferred as heat, i.e., q = 0, and therefore $\Delta U = w$ and $dU = \delta w$

For an ideal gas, U depends only on T

$$C_{V}(T) = \left(\frac{\partial U}{\partial T}\right)_{V} \xrightarrow{\text{ideal gas}} C_{V}(T) = \frac{dU}{dT} \longrightarrow dU = C_{V}(T)dT$$

$$w_{\text{rev,B}} = \Delta U_{\text{B}} = \int_{T_{1}}^{T_{2}} dU = \int_{T_{1}}^{T_{2}} C_{V}(T)dT$$

$$\text{(from } T_{1} \text{ to } T_{2}\text{)}$$

PATH C

$$P_3, V_2, T_2 \xrightarrow{C} P_2, V_2, T_1$$

$$\Delta V = 0$$
, so $w_{\text{rev,C}} = -PdV = 0$

That leaves only heat, i.e., $\Delta U_{\rm C} = q_{\rm rev,C} + w_{\rm rev,C} = q_{\rm rev,C} + 0$

$$q_{\text{rev,C}} = \Delta U_{\text{C}} = \int_{T_2}^{T_1} C_V(T) dT$$
(from T_2 to T_1)

PATHS B + C

$$q_{\text{rev,B+C}} = q_{\text{rev,B}} + q_{\text{rev,C}} = 0 + \int_{T_2}^{T_1} C_V(T) dT$$

$$w_{\text{rev,B+C}} = w_{\text{rev,B}} + w_{\text{rev,C}} = \int_{T_1}^{T_2} C_V(T) dT + 0$$

For the energy,

$$\Delta U_{\text{B+C}} = \Delta U_{\text{B}} + \Delta U_{\text{C}} = \int_{T_1}^{T_2} C_V(T) dT + \int_{T_2}^{T_1} C_V(T) dT = 0$$

 ΔU =0, the same as for path A (as must be true for a state function), but $w_{\text{rev,A}} \neq w_{\text{rev,B+C}}$, $q_{\text{rev,A}} \neq q_{\text{rev,B+C}}$

PATHS D + E

For the sum of D + E

$$w_{\text{rev,D+E}} = w_{\text{rev,D}} + w_{\text{rev,E}} = -P_1(V_2 - V_1) + 0$$

$$\Delta U_{\text{D+E}} = \int_{T_1}^{T_3} C_V(T) dT + \int_{T_3}^{T_1} C_V(T) dT = 0$$

Another illustration that it's usually easiest to get q by difference from more easily computed ΔU and w

So,
$$q_{\text{rev},D+E} = P_1(V_2 - V_1)$$

COMPARISON OF PATHS

 ΔU =0 for all paths (*state function*), but $q_{\rm rev}$ and $w_{\rm rev}$ differ

QUANTITATIVE COMPARISON OF PATHS

For example if $P_1 = 4.0$ bar, $V_1 = 0.5$ dm³, $P_2 = 2.0$ bar, $V_2 = 1.0$ dm³, and we have 0.1 moles of ideal monatomic gas:

Q1. When an ideal gas is expanded in vacuum (free expansion) what happen to ΔU , W, q, final temperature?

ADIABATIC EXPANSION COOLS A GAS

Adiabatic, so q=0 and $dU=\delta w=dw$ (note that if either $\delta q=0$ or $\delta w=0$ then the remaining differential becomes exact)

For an ideal gas reversible expansion:

$$dw = dU = C_V(T)dT$$
 and $dw = -PdV = -\frac{nRTdV}{V}$

Putting them together,

$$C_V(T)dT = -\frac{nRT}{V}dV \longrightarrow \int_{T_1}^{T_2} \frac{\overline{C}_V(T)}{T}dT = -R\int_{V_1}^{V_2} \frac{dV}{V} = -R\ln\frac{V_2}{V_1}$$

For a monatomic ideal gas, $\overline{C}_V = \frac{3R}{2}$

$$\frac{3R}{2} \int_{T_1}^{T_2} \frac{dT}{T} = \frac{3R}{2} \ln \frac{T_2}{T_1} = -R \ln \frac{V_2}{V_1} \longrightarrow \left(\frac{T_2}{T_1}\right)^{3/2} = \frac{V_1}{V_2} \quad \text{The gas cools as it expands}$$

https://www4.uwsp.edu/physastr/kmenning/Phys203/Lect42.html

 $https://www.researchgate.net/publication/257688202_Exergy_Analysis_of_Vapour_Compression_Refrigeration_System/figures?lo=1$

Next: Application of calorimetry (heat measurement) in biology

- Batch Calorimetry
- Scanning calorimetry
- Differential scanning calorimetry
- Isothermal calorimetry