MIT 18.06SC - Problem Set 1.4

Problem 3.1

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix}$$

$$AB + AC = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 10 & 12 \\ 30 & 34 \end{bmatrix} = \begin{bmatrix} 11 & 12 \\ 23 & 234 \end{bmatrix}$$

So A(B+C) and AB+AC are equivalent

Problem 3.2)

	,
	1 a b:100
	01010 = [UT]
	001:001
	+ Subtract axrow2 from row1
а —	11 0 b-ac 1 -a 07
	0 1 C 10 10
	0 0 1 0 0 1
	5ubtract (b-ac) x row3 from row1
_	[100 1-a-btac]
	010010
	[0 0 1 1 0 0 1]
	+ Subtract C x row3 from row 2
	1 0 00; 1 -a -btac 0 1 00; 0 1 Ø-c = [I U']
*	0011001
	$U^{-1} = \Gamma 1 - \alpha - b + \alpha c T$

U='= 1	1	-a	-btac]		
,	0	1	- C		
4	0	0	1	* _ * _ *	

