الفصل الثاني ١٤٢٥ / ١٤٢٦ هـ	بسم الله الرحمن الرحيم	جامعة الملك سعود / كلية العلوم
الزمن // ثلاث ساعات		قسم الرياضيات
/ - 1-11-5-11	الاختار الذياز في الرقي	الأسم /
الرقم الجامعي / أستاذ المادة /	الإختبار النهائي في المقرر ٢٤٤ ريض	رقم الحضور/
		رقم العصور /

٨	٧	٦	0	٤	٣	۲	١	رقم السؤال
								رمز الإجابة
	10	١٤	18	١٢	11	١.	٩	رقم السؤال
								رمز الإجابة

ممنوع إستخدام الآلة الداسبة

الجزء الأول: [درجتان لكل سؤال] ضعرمز الإجابة الصحيحة للأسئلة من [إلى ١٥ في الجدول أعلاه:

: فإن ،
$$(A^{-1}-I)^t = 3\begin{bmatrix} 0 & 1 \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
 فإن ، فإن ،

$$A = \begin{bmatrix} 2 & -3 \\ -1 & 1 \end{bmatrix} \quad (2) \quad A = \begin{bmatrix} -2 & 3 \\ 1 & -1 \end{bmatrix} \quad (3) \quad A = \begin{bmatrix} -2 & 1 \\ 3 & -1 \end{bmatrix} \quad (4) \quad A = \begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix} \quad (5)$$

: مناوي
$$adjA$$
 ناب مناوي $A^{-1} = \begin{bmatrix} -1 & 2 & 3 \\ 1 & 0 & -1 \\ 1 & -2 & -4 \end{bmatrix}$ تساوي (۲)

$$\begin{bmatrix} 1 & -2 & -3 \\ -1 & 0 & 1 \\ -1 & 2 & 4 \end{bmatrix} (2) \frac{1}{2} \begin{bmatrix} -1 & 2 & 3 \\ 1 & 0 & -1 \\ 1 & -2 & -4 \end{bmatrix} (5) \begin{bmatrix} 2 & -4 & -6 \\ -2 & 0 & 2 \\ -2 & 4 & 8 \end{bmatrix} (4) \begin{bmatrix} -2 & 4 & 6 \\ 2 & 0 & -2 \\ 2 & -4 & -8 \end{bmatrix} (1)$$

: يساوي
$$A^5B$$
 نساوي $A = \begin{bmatrix} 4 & -2 & 2 \\ 2 & 4 & -4 \\ 1 & 1 & 0 \end{bmatrix}$ و $B = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ نساوي (٣)

$$[64 \ 96 \ 32]^t$$
 (†)

$$[32 \ 96 \ 64]^t$$

$$[32 \ 48 \ 16]^t \ (z)$$

: ساوي
$$C = \begin{bmatrix} 1 & -1 & 3 & 2 \\ 2 & 0 & -1 & 0 \\ -1 & 2 & 1 & -1 \\ 1 & -2 & 1 & 2 \end{bmatrix}$$
 تساوي (٤)

$$54 \quad (\because) \quad 432 \quad (\i)$$

$$\begin{bmatrix} 1 & -2 & 1 & 2 \end{bmatrix}$$
 - 54 (ع) 108 (ج) 54 (ب) 432 (أ) $AX = O$ الإذا كانت $AX = O$ فإن بعد فضاء الحل النظام المتجانس $AX = O$ يساوي (٥) الإذا كانت $AX = O$ الإذا كانت $AX = O$ عناوي (٥) الإذا كانت $AX = O$ الإذا كانت $AX = O$ عناوي (٥) الإذا كانت $AX = O$ الإذا كانت $AX = O$ عناوي (٥) الإذا كانت $AX = O$ الإذا كانت $AX = O$

4 (2) 3 (
$$\varepsilon$$
) 1 (φ) 2 (†)

```
\begin{bmatrix} 1 & 1 & -1 & 4 \\ 2 & 1 & 3 & 0 \\ 0 & 1 & -5 & 8 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & 4 \\ 2 & 1 & 3 & 0 \\ 0 & 1 & -5 & 8 \end{bmatrix}
                                                                                  ( ج )
                       ( 2 )
                                                                  3
    4
                                                                                                     : S = \{ v_1, v_2, v_3, v_4, v_5 \} \subseteq \{ v_1, v_2, v_3, v_4, v_5 \}
: S فإن v_1 = (0,1,3,0), v_2 = (1,-2,0,3), v_3 = (2,-5,-3,6), v_4 = (2,-1,4,-7), v_5 = (5,-8,1,2)
R^4 (1) مستقلة خطياً (ب) تولد R^4 (ج) لا تولد R^4
 B قبن مجموعة قيم الثابت A التي تجعل المجموعة B = \{x^2, x + x^2, 1 + \lambda x + x^2\} الذا كانت A الذا كانت A
                                                                                                                 P_2[x] نَسْكَلُ أَسَاسًا ۗ فِي P_2[x] هي P_2[x] P_2[x] P_2[x] P_2[x] P_2[x] P_2[x] P_2[x] P_2[x]
                  (2) \Phi (3)
 R
                R^2 في أساساً عيارياً متعامداً في \left\{ \left(1\,,\,\sqrt{3}\,\right),\,\left(-1\,,\,\sqrt{3}\,\right) \right\} متعامداً في \left\{ \left(9\,\right)\right\}
    : فإن (a,b),(a',b') >= \alpha \ aa' + \hat{\beta} \ bb' فإن المعرف بالقاعدة (a,b),(a',b') >= \alpha \ aa' + \beta \ bb'
   \alpha = \frac{1}{2}, \beta = \frac{1}{6} \quad (2) \quad \alpha = \frac{1}{3}, \beta = \frac{1}{2} \quad (\xi) \quad \alpha = \frac{1}{6}, \beta = \frac{1}{2} \quad (\psi) \quad \alpha = \frac{1}{2}, \beta = \frac{1}{3} \quad (\dagger)
                                                                                              : اذا كان R^4 \rightarrow R^4 يَحويلاً خطياً معر فا ً بالقاعدة T: R^3 \rightarrow R^4
                                                                            T(x, y, z) = (x - y + 2z, x + y - z, 2x + z, 2y - 3z)
                                                            \dim KerT = 3 \quad ( \ \ \ \ ) \quad \dim KerT = 2 \quad ( \ \ \ \ \ ) \quad \dim KerT = 1 \quad ( \ \ \ \ \ )
      \dim KerT = 4 (2)
A = \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 1 & 2 & -3 \end{vmatrix} حيث T(X) = AX معرفا ً بالقاعدة T(X) = AX حيث T(X) = AX
  \dim \operatorname{Im} T = 2 \ (2) \qquad \dim \operatorname{Im} T = 4 \ (5) \qquad \dim \operatorname{Im} T = 3 \ (4) \qquad \dim \operatorname{Im} T = 1 \ (5)
           ، T(x,y) = (x+2y,2x-y) فإن T:R^2 \to R^2 فإن (۱۲) بذا كان
                       : هي \{v_1 = (-1, 2), v_2 = (2, 0)\} هي المصفوفة الممثلة له بالنسبة للأساس
\begin{vmatrix} -2 & \frac{1}{2} \\ 2 & 2 \end{vmatrix} (2) \qquad \begin{bmatrix} -2 & 2 \\ \frac{1}{2} & 2 \end{bmatrix} (\xi) \qquad \begin{bmatrix} -1 & 2 \\ 2 & 0 \end{bmatrix} (4) \qquad \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} (5)
    S = \{ u_1 = (0, 1), u_2 = (1, 1) \} و B = \{ v_1 = (0, -1), v_2 = (2, 1) \} (۱۳)
                                  أساسا ً للفضاء R^2 ، فإن مصفوفة الإنتقال من الأساس B إلى الأساس S تساوى :
   \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix} (2) \qquad \begin{bmatrix} -1 & -1 \\ 0 & 2 \end{bmatrix} (3) \qquad \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} (4) \qquad \begin{bmatrix} 0 & -1 \\ 2 & 1 \end{bmatrix} (5)
```

r
هي المصفوفة الممثلة للتحويل الخطي $R^2 o T: R^3 o T: R^3 o R^2$ بالنسبة للأساسين (١٤) إذا كانت $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -rac{1}{2} & rac{1}{2} \end{bmatrix}$
$S = \{ u_1 = (-1, 1), u_2 = (2, 0) \} $ $B = \{ v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1) \}$
، فإن $T(x,y,z)$ تساوي :
$(x-2y,x+y+z) \qquad (\because) \qquad (2x+y,x+y-z) \qquad (\dagger)$
$(x+2y,x-y+z) \qquad (2) \qquad (2x-y,x-y-z) \qquad (z)$
· ·
: غير قابلة للإستقطار هي $\begin{bmatrix} 3 & 0 & -1 \\ 1 & 2 & a \\ 0 & 0 & 1 \end{bmatrix}$ غير قابلة للإستقطار هي a
$\{-1,3\}$ $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ $\{0,1\}$ $\{0,1\}$
الجزء الثاني: أجب على الأسئلة التالية في نفس ورقة الأسئلة :
السؤال الأول: [درجتان لكل فقرة]
. ابین فیما إذا کانت القاعدة R^2 علی R^2 أم لا R^2 تشکل ضرباً داخلیاً علی R^2 أم لا R^2
بين بين متجهين غير صفريين متعامدين في فضاء ضرب داخلي V ، فأثبت أن المجموعة u,v (b)
ستقلة خطياً . { u , v }
. متجهین في فضاء ضرب داخلي V حیث $\ u+v\ =\ u-v\ $ ، أثبت أن u,v متعامدان u,v لیکن u,v متجهین في

.....

	السؤال التاني: [درجتان لكل ففرة]
T(1,1) = (2,-1,3), T(-2,1) = (-1,-4,-6) ليا ً بحيث أن	إذا كان $R^2 \to R^2$ تحويلاً خو $T: R^2 \to R^3$
	T(x,y) ، فأوجد
T(x,y) = (x+2y, -x+y, 2x-y) ، $T(x,y) = (x+2y, -x+y, 2x-y)$	اذا کان $R^2 \to R^3$ تحویلاً خط (b)
	فبين فيما إذا كان (1,0,1) ينت
T معرفا ً بالقاعدة $T(x,y,z) = \begin{bmatrix} y & -x \\ z & 0 \end{bmatrix}$ معرفا ً بالقاعدة	$I: R^{\circ} \rightarrow M_{2\times 2}$ Let $Z \cap X = X$
	تحويلاً خطياً أم لا .
	•••••
	••••••
	••••••
	•••••••••••••••••••••••••••••••••••••••
	••••••

		ſ	أربع درجات	الثالث: [السؤ ال
			Гэ	-1 -3	
	B (المميزة) للمصفوفة	(i) عين القيم الذاتي	$R = \begin{bmatrix} - \\ 0 \end{bmatrix}$	$\begin{bmatrix} -1 & -3 \\ 4 & 6 \\ 0 & 2 \end{bmatrix}$	172:
فوفة B إلى الصورة القطرية مع	، مصفوفة P تحول المصا	(ii) عين ، إنّ أمكن	$B = \bigcup_{i=1}^{n} U_i$	4 0	سخن
فوفة B إلى الصورة القطرية مع	ر ة القطرية .	ر ابجاد تلك الصو	$\lfloor 0$	0 2	
		· · · ·			
	•••••	***************************************	• • • • • • • • • • • • • • • • • • • •		
	•••••				
	•••••	•••••	•••••	•••••	•••••
		•••••	•••••	•••••	•••••
		•••••	•••••		•••••
					•••••
		•••••			
					•••••
•••••				••••••	•••••
	••••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
		•••••		•••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
			••••••	•••••	•••••
			••••••	•••••	•••••
		•••••	•••••	•••••	
			•••••	• • • • • • • • • • • • • • • • • • • •	
		•••••			
		•••••	•••••		
			• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •

السؤ ال الرابع: [درجتان لكل فقرة]
تدل من المصعوفين
•••••••••••••••••••••••••••••••••••••

.....