BS2280 - Econometrics 1

Lecture 4 - Part 1: Review of Estimation and Hypothesis Testing

Dr. Yichen Zhu

Structure of today's lecture

Review: Hypothesis Testing in Statistics

- 2 Hypothesis Testing in Econometrics
- Estimation

Background

Statistics: Econometrics: Population Parameters μ, σ^2 β_1, β_2

Sample Coefficients \bar{x}, s^2 $\hat{\beta} = \hat{\beta}$

Background

- What are point and interval estimates?
- What is hypothesis testing?
- Make sure to revise these topics, as they will be fundamental for regression analysis
- Review the hypothesis testing in statistics first

What is a Hypothesis?

- A hypothesis is a claim (assumption) about a population parameter (e.g. population mean μ)
- For example:
 - ullet Claim: The mean age of people on the University Campus is $\mu=50$

Null Hypothesis	Alternative Hypothesis	
Begin with the assumption that the null hypothesis is true	The opposite of the null hypothesis	
Example		
The mean age of people on the University Campus is 50 $H_0: \mu = 50$	The mean age of people on the University Campus is not 50 H_A or H_1 : $\mu \neq 50$	

Hypothesis Testing Process

- If the sample mean $\bar{x}=20$, how likely is population mean $\mu=50$, say how likely is our claim correct?
- Based on the sample evidence of $\bar{x}=20$, the null hypothesis of the population mean $\mu=50$ is not realistic, we will reject the null hypothesis of the population mean $\mu=50$.

- How far is sample mean 20 away from the population mean 50?
- If sample mean 20 is far from population mean 50, reject; If sample mean 20 is not far from population mean 50, cannot reject.
- Hypothesis testing will find out when are we close enough to the population mean, then cannot reject
- Now we need a threshold to tell us.

- How far is sample mean 20 away from the population mean 50?
- If sample mean 20 is far from population mean 50, reject; If sample mean 20 is not far from population mean 50, cannot reject.
- Hypothesis testing will find out when are we close enough to the population mean, then cannot reject
- Now we need a threshold to tell us.

- How far is sample mean 20 away from the population mean 50?
- If sample mean 20 is far from population mean 50, reject; If sample mean 20 is not far from population mean 50, cannot reject.
- Hypothesis testing will find out when are we close enough to the population mean, then cannot reject.
- Now we need a threshold to tell us

- How far is sample mean 20 away from the population mean 50?
- If sample mean 20 is far from population mean 50, reject; If sample mean 20 is not far from population mean 50, cannot reject.
- Hypothesis testing will find out when are we close enough to the population mean, then cannot reject.
- Now we need a threshold to tell us.

- Level of significance α : typical values are 1%, 5%, or 10%
- Defines unlikely values of sample statistic if null hypothesis is true
- Critical value(s) for a specified level of significance α is from a table or computer
- Defines rejection region of the sampling distribution

- Level of significance α : typical values are 1%, 5%, or 10%
- Defines unlikely values of sample statistic if null hypothesis is true
- Critical value(s) for a specified level of significance α is from a table or computer
- Defines rejection region of the sampling distribution

- Level of significance α : typical values are 1%, 5%, or 10%
- Defines unlikely values of sample statistic if null hypothesis is true
- Critical value(s) for a specified level of significance α is from a table or computer
- Defines rejection region of the sampling distribution

- Level of significance α : typical values are 1%, 5%, or 10%
- Defines unlikely values of sample statistic if null hypothesis is true
- Critical value(s) for a specified level of significance α is from a table or computer
- Defines rejection region of the sampling distribution

- Cannot use sample statistics because different samples can be very different
- In our sample, sample mean $\bar{x}=20$ represents years For the marks of econometrics exam, sample mean is about exam marks

- Convert sample statistic (e.g.: \bar{x}) to test statistic (z or t statistic)
- Do not use sample statistic (e.g.: \bar{x}), but use test statistic (z or t statistic)
- If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀
- There are two cutoff values (critical values): $\pm z_{\frac{\alpha}{2}}$

- Cannot use sample statistics because different samples can be very different
- In our sample, sample mean $\bar{x}=20$ represents years For the marks of econometrics exam, sample mean is about exam marks

- Convert sample statistic (e.g.: \bar{x}) to test statistic (z or t statistic)
- Do not use sample statistic (e.g.: \bar{x}), but use test statistic (z or t statistic)
- If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀
- There are two cutoff values (critical values): $\pm z_{\frac{\alpha}{2}}$

- Cannot use sample statistics because different samples can be very different
- In our sample, sample mean $\bar{x}=20$ represents years For the marks of econometrics exam, sample mean is about exam marks

- Convert sample statistic (e.g.: \bar{x}) to test statistic (z or t statistic)
- Do not use sample statistic (e.g.: \bar{x}), but use test statistic (z or t statistic)
- If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀
- There are two cutoff values (critical values): $\pm z_{\frac{\alpha}{2}}$

- Cannot use sample statistics because different samples can be very different
- In our sample, sample mean $\bar{x}=20$ represents years For the marks of econometrics exam, sample mean is about exam marks

- Convert sample statistic (e.g.: \bar{x}) to test statistic (z or t statistic)
- Do not use sample statistic (e.g.: \bar{x}), but use test statistic (z or t statistic)
- If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀
- There are two cutoff values (critical values): $\pm z_{\frac{\alpha}{2}}$

- Cannot use sample statistics because different samples can be very different
- In our sample, sample mean $\bar{x}=20$ represents years For the marks of econometrics exam, sample mean is about exam marks

- Convert sample statistic (e.g.: \bar{x}) to test statistic (z or t statistic)
- Do not use sample statistic (e.g.: \bar{x}), but use test statistic (z or t statistic)
- If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀
- There are two cutoff values (critical values): $\pm z_{\frac{\alpha}{2}}$

- Cannot use sample statistics because different samples can be very different
- In our sample, sample mean $\bar{x}=20$ represents years For the marks of econometrics exam, sample mean is about exam marks

- Convert sample statistic (e.g.: \bar{x}) to test statistic (z or t statistic)
- Do not use sample statistic (e.g.: \bar{x}), but use test statistic (z or t statistic)
- If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀
- There are two cutoff values (critical values): $\pm z_{\frac{\alpha}{2}}$

Hypothesis testing when population variance is unknown

- Usually, the population variance is unknown. Therefore, we will use the t-distribution for hypothesis tests
- t-statistic: it measures the number of standard errors some sample mean is from an expected mean

$$t = \frac{\bar{x} - \mu}{\sqrt{\frac{s^2}{n}}} \sim t_{n-1}$$

 If the t-statistic is further away from the mean than the critical value, we can reject the null hypothesis

Example: Two-Tail Test (σ unknown)

The average cost of a hotel room in New York is said to be \$168 per night. A random sample of 25 hotels resulted in $\bar{x} = 172.50 and s = \$15.40. Test at the $\alpha = 0.05$ level. Assume the population distribution is normal.

- $H_0: \mu = 168$
- $H_1: \mu \neq 168$

Steps for hypothesis testing:

- State the null and alternative hypotheses
- Select the significance level
- Select and calculate the test statistics
- Set the decision rule
- Make statistical decisions

Example Solution: Two-Tail Test

 H_0 : μ = 168 H_A : μ ≠ 168

- $\alpha = 0.05$
- n = 25
- σ is unknown, so
 use a t statistic
- Critical Value:

$$t_{24} = \pm 2.0639$$

15.40

Do not reject H₀: not sufficient evidence that true mean cost is different than \$168

Estimation Background

What is Estimation?

Estimation is the process of using sample data to draw inferences about the population. For example, we use OLS estimator to estimate β_1 and β_2

	Population Parameters	Inference	Sample Coefficients
Statistics:	μ,σ^{2}	\leftarrow	\bar{x}, s^2
Econometrics:	$eta_{ extsf{1}},eta_{ extsf{2}}$	\leftarrow	$\hat{eta}_{ extsf{1}},\hat{eta}_{ extsf{2}}$

What about hypothesis testing for regressions?

	Statistics	Econometrics
Model	X , unknown μ , σ^2	$Y = \beta_1 + \beta_2 X + u$
Estimator	$ar{X}$ and s^2	$\hat{eta}_{ extsf{1}}$ and $\hat{eta}_{ extsf{2}}$
Null Hypothesis Alternative Hypothesis	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$H_0: \beta_1 = \beta_1^0 H_0: \beta_2 = \beta_2^0$ $H_1: \beta_1 \neq \beta_1^0 H_1: \beta_2 \neq \beta_2^0$
Test statistic	$t=rac{ar{X}-\mu_0}{s.e.(ar{X})}$	$t = rac{\hat{eta}_1 - eta_1^0}{s.e.(\hat{eta}_1)} \;\; t = rac{\hat{eta}_2 - eta_2^0}{s.e.(\hat{eta}_2)}$
Reject H ₀ if	$ t >t_{\it crit}$	$ t > t_{\it crit}$
Degrees of Freedom	<i>n</i> − 1	n-k=n-2

Point Estimate

- A point estimator of a population parameter is a function of the sample information that yields a single number.
- The corresponding realisation is called the point estimate of the parameter.
- The point estimate is a single value.
- For Example:
- The coefficient $\hat{\beta}_2$ derived through OLS is assumed to be an unbiased and most efficient estimate for parameter β_2 , if our OLS assumptions hold!

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Interval estimate: a range of values, expressing the degree of uncertainty.
- For Example: We are 95% confident that true effect of years of education on hourly wages is between USD 0.9 and USD 1.6.
- Such interval estimates are called confidence intervals.
- Confidence intervals are usually set at the 95% level.
- This can be interpreted as follows: 95% chance that the population parameter will lie in the calculated intervals.

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Interval estimate: a range of values, expressing the degree of uncertainty.
- For Example: We are 95% confident that true effect of years of education on hourly wages is between USD 0.9 and USD 1.6.
- Such interval estimates are called confidence intervals.
- Confidence intervals are usually set at the 95% level.
- This can be interpreted as follows: 95% chance that the population parameter will lie in the calculated intervals.

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Interval estimate: a range of values, expressing the degree of uncertainty.
- For Example: We are 95% confident that true effect of years of education on hourly wages is between USD 0.9 and USD 1.6.
- Such interval estimates are called confidence intervals.
- Confidence intervals are usually set at the 95% level.
- This can be interpreted as follows: 95% chance that the population parameter will lie in the calculated intervals.

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Interval estimate: a range of values, expressing the degree of uncertainty.
- For Example: We are 95% confident that true effect of years of education on hourly wages is between USD 0.9 and USD 1.6.
- Such interval estimates are called confidence intervals.
- Confidence intervals are usually set at the 95% level.
- This can be interpreted as follows: 95% chance that the population parameter will lie in the calculated intervals.

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Interval estimate: a range of values, expressing the degree of uncertainty.
- For Example: We are 95% confident that true effect of years of education on hourly wages is between USD 0.9 and USD 1.6.
- Such interval estimates are called confidence intervals.
- Confidence intervals are usually set at the 95% level.
- This can be interpreted as follows: 95% chance that the population parameter will lie in the calculated intervals.

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Interval estimate: a range of values, expressing the degree of uncertainty.
- For Example: We are 95% confident that true effect of years of education on hourly wages is between USD 0.9 and USD 1.6.
- Such interval estimates are called confidence intervals.
- Confidence intervals are usually set at the 95% level.
- This can be interpreted as follows: 95% chance that the population parameter will lie in the calculated intervals.

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Interval estimate: a range of values, expressing the degree of uncertainty.
- For Example: We are 95% confident that true effect of years of education on hourly wages is between USD 0.9 and USD 1.6.
- Such interval estimates are called confidence intervals.
- Confidence intervals are usually set at the 95% level.
- This can be interpreted as follows: 95% chance that the population parameter will lie in the calculated intervals.

Confidence Intervals

Model Null hypothesis Alternative hypothesis

$$Y = \beta_1 + \beta_2 X + u$$

 $H_0: \beta_2 = \beta_2^0$
 $H_1: \beta_2 \neq \beta_2^0$

Reject
$$H_0$$
 if $\frac{\hat{eta}_2 - eta_2^0}{\text{s.e.}(\hat{eta}_2)} > t_{\text{crit}}$ or $\frac{\hat{eta}_2 - eta_2^0}{\text{s.e.}(\hat{eta}_2)} < -t_{\text{crit}}$

Reject H_0 if $\hat{eta}_2 - eta_2^0 > \text{s.e.}(\hat{eta}_2) \times t_{\text{crit}}$ or $\hat{eta}_2 - eta_2^0 < -\text{s.e.}(\hat{eta}_2) \times t_{\text{crit}}$

Reject
$$H_0$$
 if $\hat{eta}_2 - \text{s.e.}(\hat{eta}_2) \times t_{\text{crit}} > eta_2^0$ or $\hat{eta}_2 + \text{s.e.}(\hat{eta}_2) \times t_{\text{crit}} < eta_2^0$

Do not reject
$$H_0$$
 if $\hat{eta}_2 - \text{s.e.}(\hat{eta}_2) \times t_{\text{crit}} \leq eta_2 \leq \hat{eta}_2 + \text{s.e.}(\hat{eta}_2) \times t_{\text{crit}}$

Confidence Intervals using R

```
> summary(earnfit)
Call:
lm(formula = EARNINGS ~ S. data = EAWE21.simple)
Residuals:
Min
   10 Median 30 Max
-20.079 -6.726 -2.203 3.451 79.037
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7647
                       2.8038 0.273 0.785
             1.2657
                       0.1855 6.824 2.58e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 11.36 on 498 degrees of freedom
Multiple R-squared: 0.08551, Adjusted R-squared: 0.08368
F-statistic: 46.57 on 1 and 498 DF, p-value: 2.579e-11
```

Confidence Intervals using R

```
Coefficients: Estimate Std. Error t value \Pr(>|t|) (Intercept) 0.7647 2.8038 0.273 0.785 S 1.2657 0.1855 6.824 2.58e-11 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 \hat{\beta}_2 - \mathbf{S.e.}(\hat{\beta}_2) \times t_{crit} < \beta_2 < \hat{\beta}_2 + \mathbf{S.e.}(\hat{\beta}_2) \times t_{crit}
```

• The point estimate $\hat{\beta}_2$ is 1.266 and its standard error is 0.185:

$$1.266 - 0.185 \times 1.965 \le \beta_2 \le 1.266 + 0.185 \times 1.965$$

 $0.902 \le \beta_2 \le 1.630$

• 95% confidence interval means: 95% chance that the population parameter β_2 will lie in [0.902,1.630].

Confidence Intervals using R

- confint command uses regression output as argument
- Results confirm manual calculations!