The Power of Review, The Passion of Learning!

There is an old saying in China:
"Each time when you review what you have learned,
you will learn more and deeper"

TRUE!

The Power of Review, The Passion of Learning!

Yesterday, Alice was showing me Tensorflow Playground, during the data training, some lines were showing stronger thickness. Then I suddenly realized, oh, I forgot the relationship between EACH neuron and weights.

Today! I could not wait to review <u>Deep Learning Fundamentals</u> after I got up. Last year, I quickly went through it since I thought it was too basic.

It's a real good tutorial! My concept has become more clear now after reading it carefully!

The Power of Review, The Passion of Learning!

The major components are:

- Dendrites- It takes input from other neurons in form of an electrical impulse
- Cell Body- It generate inferences from those inputs and decide what action to take
- Axon terminals It transmit outputs in form of electrical impulse

Happy Review!

Happy Learning!

These images are so beautiful, aren't they?!

Diagram 1: Single NN Working

The different components are:

- 1 x₁, x₂,..., x_N: Inputs to the neuron. These can either be the actual observations from input layer or an intermediate value from one of the hidden layers.
- 2. x_o: Bias unit. This is a constant value added to the input of the activation function. It works similar to an intercept term and typically has +1 value.
- 3. $w_0, w_1, w_2, ..., w_N$: Weights on each input. Note that even bias unit has a weight.
- 4. a: Output of the neuron which is calculated as:

$$a = f(\sum_{i=0}^{N} w_i x_i)$$

The error for layer L-1 should be determined first using the following:

$$e_{L-1}^{(i)} = \left(\sum_{k=1}^{N_L} W_{ik}^{(L-1)} \cdot e_L^{(i)}\right) * f'(x)^{(i)}$$