Pregunta Para el circuito de la figura considere los siguientes datos: V_{CC} = 10 V, R_C = $2 \text{ k}\Omega$, I_{CO} = 4 mA, β = 400, V_A = 120 V. Considere V_{th} = 25 mV. V_{CC} Finalizado Puntúa como R_C Marcar pregunta R_B \bullet v_{OUT} R_s v_s La máxima tensión v_{be} [mV] sin que haya distorsión en v_{out} es: Seleccione una: a. 12,2 b. 4,3

c. 10,0

Finalizado

Puntúa como

Marcar pregunta

En la figura se muestra un diagrama de portadores minotarios de un TBJ. Seleccione la opción que se corresponde con dicho gráfico.

Seleccione una:

- a. El dispositivo es un TBJ PNP en MAD (Modo Activo Directo).
- b. El dispositivo es un TBJ PNP en Reversa (Modo Activo Inverso).
- c. El dispositivo es un TBJ PNP en Saturación.
- d. El dispositivo es un TBJ NPN en Saturación.
- e. El dispositivo es un TBJ NPN en Reversa (Modo Activo Inverso).
- f. El dispositivo es un TBJ NPN en MAD (Modo Activo Directo).

Finalizado

Puntúa como 1

Marcar pregunta

Finalizado

Puntúa como

 Marcar pregunta

Para una estructura MOS, se sabe que la tensión de bandas planas tiene un

valor V_{FR} = -250 mV. Indique cómo están dopados el gate de polysilicio y el sustrato.

- Seleccione una:
- a. Polisilicio tipo N y Sustrato tipo P
- b. Polisilicio tipo P y Sustrato tipo N
- c. Polisilicio tipo N y Sustrato tipo N
- d. Polisilicio tipo P y Sustrato tipo P

Finalizado

Puntúa como 1

Marcar pregunta

Para el amplificador Source Común de la figura, calcular la máxima tensión v_s admisible sin que el amplificador presente distorsión por alinealidad.

Datos: $V_{DD} = 3.3 \text{ V}$; $R_1 = 20 \text{ k}\Omega$; $R_2 = 60 \text{ k}\Omega$; $R_3 = 10 \text{ k}\Omega$; $R_s = 3 \text{ k}\Omega$; $V_T = -0.7 \text{ V}$; $\mu C'_{ox} = 120 \mu A/V^2$; W/L = 50; $\lambda = 0$.

Respuesta:

30mV