"基于决策变量划分的双种群代理辅助多目标进化算法"补充 文件

1 说明

由于正文页码限制,我们将稿件中部分图表的数 据结果放入补充文件中。

2 部分实验分析及图表数据

2.1 关键策略的有效性分析

RV-DP-SAMOEA共有5个关键策略,分别为:关键变量识别策略、探索种群搜索策略、开发种群搜

索策略、基于GFK迁移学习的局部代理模型构建、搜索区间自适应调整策略。本节选择具有复杂PF的IMOP测试问题作为实验对象,分别对上述5种策略的有效性进行分析。所有测试问题的变量维度D均为10,目标函数个数为默认值。

表 S1 RV-DP-SAMOEA和V1所得HV值和运行时间的均值(方差)(单位: 秒)

Table S1 Mean (variance) of HV value and running time obtained by RV-DP-SAMOEA and V1 (unit: second)

Problem		IMOP1	IMOP2	IMOP3	IMOP4	IMOP5	IMOP6	IMOP7	IMOP8
	RV-DP-	8.6942e-1	1.0985e-1	2.7598e-1	1.0858e-1	4.9596e-1	2.1898e-1	1.3259e-1	3.8521e-1
HV	SAMOEA	3.01e-1	1.98e-2	4.66e-2	7.20e-2	7.28e-2	1.95e-2	5.13e-2	6.33e-2
11 4	V1	7.9652e-1	9.9350e-2	2.7080e-1	9.7811e-2	4.5988e-1	2.0920e-1	1.2548e-1	3.3929e-1
	V 1	9.66e-1	1.28e-1	1.11e-1	1.01e-1	1.12e-1	9.57e-2	1.16e-1	1.58e-1
	RV-DP-	1.6887e+2	1.5712e+2	1.6231e+2	3.8217e+2	3.7521e+2	3.4544e+2	3.4203e+2	3.7312e+2
Time	SAMOEA	7.65e+1	4.81+1	6.38e+1	1.63e+2	3.35e+2	2.52e+2	2.22e+2	2.10e+2
Time	V1	1.6813e+2	1.5911e+2	1.7132e+2	3.8311e+2	3.86242e+2	3.5016e+2	3.4891e+2	4.0221e+2
	7 1	3.96e+1	7.96e+1	1.01e+2	4.11e+2	5.29e+2	4.85e+2	3.65e+2	5.11e+2

表 S2 RV-DP-SAMOEA和V2所得HV值和运行时间的均值(方差)(单位:秒)

Table S2 Mean (variance) of HV value and running time obtained by RV-DP-SAMOEA and V2 (unit: second)

Problem		IMOP1	IMOP2	IMOP3	IMOP4	IMOP5	IMOP6	IMOP7	IMOP8
	RV-DP-	8.6942e-1	1.0985e-1	2.7598e-1	1.0858e-1	4.9596e-1	2.1898e-1	1.3259e-1	3.8521e-1
HV	SAMOEA	3.01e-1	1.98e-2	4.66e-2	7.20e-2	7.28e-2	1.95e-2	5.13e-2	6.33e-2
11 4	V2	6.5484e-1	9.8841e-2	2.2585e-1	9.1220e-2	4.6851e-1	2.0891e-1	1.2001e-1	3.5021e-1
		5.71e-1	9.87e-2	9.17e-2	1.28e-2	9.54e-2	5.80e-2	8.27e-2	4.65e-2
	RV-DP-	1.6887e+2	1.5712e+2	1.6231e+2	3.8217e+2	3.7521e+2	3.4544e+2	3.4203e+2	3.7312e+2
Time	SAMOEA	7.65e+1	4.81+1	6.38e+1	1.63e+2	3.35e+2	2.52e+2	2.22e+2	2.10e+2
Time	V2.	3.3541e+2	3.0454e+2	3.0457e+2	5.3421e+2	5.2101e+2	5.6513e+2	5.7445e+2	6.3124e+2
	¥ Z	1.85e+2	9.25e+1	1.12e+2	7.44e+2	8.12e+2	8.85e+2	7.12e+2	7.21e+2

表 S3 RV-DP-SAMOEA和V3所得HV值和运行时间的均值(方差)(单位:秒)

Table S3 Mean (variance) of HV value and running time obtained by RV-DP-SAMOEA and V3 (unit: second)

Problem		IMOP1	IMOP2	IMOP3	IMOP4	IMOP5	IMOP6	IMOP7	IMOP8
	RV-DP-	8.6942e-1	1.0985e-1	2.7598e-1	1.0858e-1	4.9596e-1	2.1898e-1	1.3259e-1	3.8521e-1
HV	SAMOEA	3.01e-1	1.98e-2	4.66e-2	7.20e-2	7.28e-2	1.95e-2	5.13e-2	6.33e-2
11 1	V3	8.6032e-1	1.0021e-1	2.0314e-1	8.2841e-2	4.2280e-1	1.6820e-1	1.1922e-1	3.4001e-1
	v 3	3.80e-1	2.14e-2	7.62e-2	5.81e-2	8.88e-2	1.72e-2	4.41e-2	9.98e-2
	RV-DP-	1.6887e+2	1.5712e+2	1.6231e+2	3.8217e+2	3.7521e+2	3.4544e+2	3.4203e+2	3.7312e+2
Time	SAMOEA	7.65e+1	4.81+1	6.38e+1	1.63e+2	3.35e+2	2.52e+2	2.22e+2	2.10e+2
111110	V3	9.3281e+1	1.0924e+2	1.0970e+2	2.0211e+2	2.4021e+2	2.1014e+2	1.9802e+2	2.9012e+2
	, ,	1.48e+2	2.16e+2	1.10e+2	9.24e+2	9.65e+2	4.70e+2	4.80e+2	1.24e+2

表 S4 RV-DP-SAMOEA和V4所得HV值和运行时间的均值(方差)(单位: 秒)

Table S4 Mean (variance) of HV value and running time obtained by RV-DP-SAMOEA and V4 (unit: second)

Problem		IMOP1	IMOP2	IMOP3	IMOP4	IMOP5	IMOP6	IMOP7	IMOP8
	RV-DP-	8.6942e-1	1.0985e-1	2.7598e-1	1.0858e-1	4.9596e-1	2.1898e-1	1.3259e-1	3.8521e-1
HV	SAMOEA	3.01e-1	1.98e-2	4.66e-2	7.20e-2	7.28e-2	1.95e-2	5.13e-2	6.33e-2
	V4	8.0771e-1	8.8542e-2	1.8356e-1	7.3215e-2	4.0486e-1	1.7451e-1	10010e-1	2.6945e-1
		5.45e-1	3.08e-2	3.52e-2	5.16e-2	5.72e-2	2.00e-2	9.21e-2	3.16e-2
	RV-DP-	1.6887e+2	1.5712e+2	1.6231e+2	3.8217e+2	3.7521e+2	3.4544e+2	3.4203e+2	3.7312e+2
Time	SAMOEA	7.65e+1	4.81+1	6.38e+1	1.63e+2	3.35e+2	2.52e+2	2.22e+2	2.10e+2
Time	V4	1.6894e+2	1.65494+2	1.7231e+2	3.7231e+2	3.7354e+2	3.4911e+2	3.4612e+2	3.7521e+2
	• •	3.51e+2	8.88e+1	4.61e+2	4.87e+2	7.64e+2	5.98e+2	8.34e+2	8.16e+2

表 S5 RV-DP-SAMOEA和V5所得HV值和运行时间的均值(方差)(单位: 秒)

Table S5 Mean (variance) of HV value and running time obtained by RV-DP-SAMOEA and V5 (unit: second)

Problem		IMOP1	IMOP2	IMOP3	IMOP4	IMOP5	IMOP6	IMOP7	IMOP8
	RV-DP-	8.6942e-1	1.0985e-1	2.7598e-1	1.0858e-1	4.9596e-1	2.1898e-1	1.3259e-1	3.8521e-1
HV	SAMOEA	3.01e-1	1.98e-2	4.66e-2	7.20e-2	7.28e-2	1.95e-2	5.13e-2	6.33e-2
	V5	8.0354e-1	1.0362e-1	2.6841e-1	1.0012e-1	4.5894e-1	2.1165e-1	1.2321e-1	3.3564e-1
	V 3	8.21e-1	6.65e-2	8.24e-2	1.00e-1	1.23e-1	8.13e-2	9.89e-2	1.16e-1
	RV-DP-	1.6887e+2	1.5712e+2	1.6231e+2	3.8217e+2	3.7521e+2	3.4544e+2	3.4203e+2	3.7312e+2
Time	SAMOEA	7.65e+1	4.81+1	6.38e+1	1.63e+2	3.35e+2	2.52e+2	2.22e+2	2.10e+2
Time	V5	1.6354e+2	1.6085e+2	1.5932e+2	3.9324e+2	3.6981e+2	3.3812e+2	3.3811e+2	3.9123e+2
	, 5	2.34e+2	9.56+1	8.31e+1	5.49e+2	6.84e+2	4.81e+2	9.15e+2	3.20e+2

2.1.1 关键变量识别策略有效性分析

为了验证提出的关键变量识别策略的有效性,设计如下变体算法:在RV-DP-SAMOEA中不执行关键变量识别策略,在双种群协同搜索方法中所有变量均被视为关键变量,其余部分保持不变。为了便于表示,该变体算法记为V1。表S1给出RV-DP-SAMOEA与V1在8个测试函数上的HV值和运行时间(Time)。

可以看出:1) 在所有8个测试问题上,RV-DP-SAMOEA得到的HV均优于V1。2)除IMOP1问题之外,在剩余7个测试问题

上RV-DP-SAMOEA的运行时间均略低于V1。可见,本文所提关键变量识别策略在不增加计算代价的情况下,有效了提升算法的搜索效率。

2.1.2 探索种群搜索策略有效性分析

为了验证提出的探索种群搜索策略的有效性,设计如下变体算法:在RV-DP-SAMOEA中不执行探索种群搜索策略,即双种群协同搜索方法只执行探索种群搜索策略,其余部分保持不变。为了便于表示,上述变体算法记为V2。表S2给出RV-DP-SAMOEA与V2在8个测试函数上的HV值和运行时间(Time)。

可以看出:1) 在所有8个测试问题上,RV-DP-SAMOEA得到的HV值均明显优于V2;2)由于需要频繁地构建局部代理模型,在所有8个测试问题上V2的运行时间均明显高于RV-DP-SAMOEA。由此可见,本文提出的探索种群搜索策略不仅可以减少算法的运行时间,而且能够增强算法的搜索能力。

2.1.3 开发种群搜索策略有效性分析

为了验证提出的开发种群搜索策略的有效性,设计如下变体算法:在RV-DP-SAMOEA中不执行开发种群搜索策略,即双种群协同搜索方法只执行探索种群搜索策略,其余部分保持不变。为了便于表示,本部分变体算法记为V3。表S3给出RV-DP-SAMOEA与V3在8个测试函数上的HV值和运行时间(Time)。

可以看出:1)在所有8个测试问题上,RV-DP-SAMOEA得到的HV值均优于V3。特别地,对于IMOP3-IMOP8等具有复杂PF的测试问题,V3与RV-DP-SAMOEA之间的HV差值更大。2)在8个测试问题上,RV-DP-SAMOEA所需的运行时间均高于V3。综上可知,尽管本文提出的开发种群搜索策略增加了算法的运行时间,但它显著提升了算法搜索不规则PF前沿的能力。

2.1.4 基于GFK迁移学习的局部代理模型构建策 略有效性分析

为了验证本文提出的局部代理模型构建方法的有效性,在RV-DP-SAMOEA中将其替换为:从DB中选择距离待开发区域最近的3D个样本,并用其构建局部代理模型。为了便于表示,本部分变体算法记为V4。表S4给出RV-DP-SAMOEA与V4在8个测试函数上的HV值和运行时间(Time)。

可以看出:1) 在所有8个测试问题上,RV-DP-SAMOEA得到的HV值均明显优

于V4。特别地,对于包含较多间断区域的IMOP5和IMOP8问题,V4与RV-DP-SAMOEA之间的HV差值更大。2)在大部分测试问题上,RV-DP-SAMOEA所需的运行时间要略低于V4。综上可见,本文提出的基于GFK迁移学习的局部代理模型构建方法是有效性。

2.1.5 搜索区间自适应调整策略有效性分析

为了验证提出的搜索区间自适应调整策略的有效性,设计如下变体算法:在RV-DP-SAMOEA中不执行搜索区间自适应调整策略,其余部分不变。为了便于表示,本部分变体算法记为V5。表S5 给出RV-DP-SAMOEA与V5在8 个测试函数上的HV值和运行时间(Time)。

可以看出:1)在所有8个测试问题上,RV-DP-SAMOEA得到的HV均优于V5。2)在大部分测试问题上,V5与RV-DP-SAMOEA的运算时间较为接近。由此可见,在不明显增加算法计算代价的情况下,本文所提搜索区间自适应调整策略可以有效提升算法的搜索效率。

2.2 参数敏感性分析

本文所提算法主要包含两个关键参数,分别为初始间断型变量的数目 δ 、算法每一轮迭代时设定的最大填充样本数 Max_{infill} ,本节分析这两个参数对算法性能的影响。

2.2.1 参数δ分析

本部分选择DTLZ7和IMOP8这两个具有间断PF的测试函数来分析参数 δ 取值对算法性能的影响,其中,DTLZ7为两目标问题,决策变量D=10,20;IMOP8为3目标优化问题,决策变量D=10。本节设置 δ 的取值范围为[1,0.5D],步长为1。在不同 δ 取值下,统计RV-DP-SAMOEA的HV值(均值与标准差)和运行时间(Time)。

图 S1 不同 δ 下RV-DP-SAMOEA得到的HV 值与运行时间

Fig. S1 HV value and running time obtained by RV-DP-SAMOEA under different δ values

图 S2 不同 Max_{infill} 下RV-DP-SAMOEA得到的HV 值与运行时间

Fig. S2 HV value and running time obtained by RV-DP-SAMOEA under different Maxinfill values

图S1 给出了不同取值下RV-DP-SAMOEA的运行结果。从图S1 中可以看出: 1)针对所有3个测试问题,随着 δ 值的增大,算法的运行时间逐步增大。对于两个D=10 的测试问题,当 $\delta>2$ 时,时间上升更为明显;而对于D=20 的DTLZ7 测试问题,当 $\delta>4$ 时,时间上升更为明显;2)在3个测试问题上,当 $\delta=2$ [lg (D)] 时,RV-DP-SAMOEA 得到了最好的HV值。综合可见,当 $\delta=2$ [lg (D)] 时,RV-DP-SAMOEA 在大部分测试问题上展现出了较优的性能。

2.2.2 参数 Max_{infill} 分析

本部分选择DTLZ7、IMOP3、IMOP8等三个具有不同复杂程度PF的测试问题来验证参数 Max_{infill} 对算法性能的影响,其中DTLZ7和IMOP3为2目标优化问题,IMOP8为3目标优化问题,决策变量维度D=10。本节设置 Max_{infill} 的取值范围为[5,50],步长为5。在不同 Max_{infill} 取

值下,统计RV-DP-SAMOEA 的HV值(均值与标准差)和运行时间(Time)。

图S2 给 出 了 不 同 Max_{infill} 取 值 下RV-DP-SAMOEA 的运行结果。可以看出,1)在3个测试问题上,随着 Max_{infill} 的增长,算法运行时间总体上呈上升趋势。当 Max_{infill} 在5-25之间取值时,算法运行时间仅在较小的范围内变化;然而,当 $Max_{infill} > 25$ 时,算法运行时间急剧上升;2)在3个测试问题上,当 Max_{infill} 在15-25之间取值时,RV-DP-SAMOEA可得到较好的HV值。如前所述,当 $Max_{infill} > 25$ 时,算法在每一轮迭代中调用过多次数的双种群搜索策略,导致其过度开发某些区域,进而降低了算法的性能。综合可见,当 Max_{infill} 在15-25之间取值时,RV-DP-SAMOEA 展现出了较优的性能,本文设 $Max_{infill} = 20$ 。

2.3 RV-DP-SAMOEA与4种不规则PF多目标优化算法对比结果数据

图 S3 RV-DP-SAMOEA与4种对比算法在DTLZ7上得到的非支配解

Fig. S3 The non-dominated solution of RV-DP-SAMOEA and four comparison algorithms on DTLZ7

第 x 期 5

图 S4 RV-DP-SAMOEA与4种对比算法在IMOP3上得到的非支配解

Fig. S4 The non-dominated solution of RV-DP-SAMOEA and four comparison algorithms on IMOP3

2.4 与间断PF多目标优化算法的对比

为了验证RV-DP-SAMOEA在处理间断PF的能力,本节将其与4种可处理间断PF的能力,本节将其与4种可处理间断PF的多目标进化算法进行对比。这些对比算法包括: CA-MOEA [1]、DEA-GNG [2]、GFM-MOEAD [3]、LMPFE [4]。本部分选择DTLZ7、IMOP3、IMOP5、IMOP8等4具有间断PF的测试问题作为实验对象。所有测试问题的变量维度D均为10,DTLZ7三个测试问题的目标函数设为2和3,3个IMOP测试问题的目标函数个数为默认值。4种对比算法的最大评价次数设为1000,其余参数按照其推荐参数设置。

表 S6 RV-DP-SAMOEA与4种不规则PF多目标优 化算法得到的HV的均值(方差)

Table S6 Mean (variance) of HV values obtained by RV-DP-SAMOEA and four irregular PF MOEAs

Problem	М	CAMOEA	DEAGNG	GFMMOEA	LMPFE	RV-DP- SAMOEA
	2	4.9035e-4	1.5848e-5	4.4080e-3	1.0812e-5	5.7396e-1
DTL.7.7	_	1.10e-3+	3.54e-5+	4.85e-3+	7.54e-3+	7.80e-3
DILL	3	2.0826e-3	8.6584e-3	1.2875e-3	1.2705e-5	5.5649e-1
		4.23e-3+	1.24e-2+	2.74e-3+	2.84e-5+	4.36e-3+
IMOP3	2	6.8172e-2	7.7194e-2	6.8020e-2	7.6544e-2	2.7598e-1
INIOI 3	2	6.95e-3+	1.08e-2+	1.55e-2+	2.20e-2+	4.66e-2
IMOP5	3	3.0083e-1	3.1095e-1	2.8246e-1	3.1706e-1	4.9596e-1
IIVIOI 3	3	6.29e-2+	5.55e-2+	5.21e-2+	6.24e-2+	7.28e-2
IMOP8	3	1.0749e-1	1.2065e-1	1.3258e-1	1.3466e-1	3.8521e-1
114101 6		5.93e-3+	2.62e-2+	2.80e-2+	3.43e-2+	6.33e-2
+/≈/-		5/0/0	5/0/0	5/0/0	5/0/0	-

表S6和表S7分别展示了RV-DP-SAMOEA 与4种算法 所得HV和IGD值。可以看出,在两个指标上,RV-DP-SAMOEA均显著优于4种对比

算法。进一步,以测试问题DTLE7、IMOP3为例,图S3-图S4展示了RV-DP-SAMOEA 和4种对比算法得到的一组非支配解集。可以看出,RV-DP-SAMOEA 所得非支配解集可以覆盖更大范围的真实PF。

表 S7 RV-DP-SAMOEA与4种不规则PF多目标优 化算法得到的HV 的均值(方差)

Table S7 Mean (variance) of HV values obtained by RV-DP-SAMOEA and four irregular PF MOEAs

Problem	М	CAMOEA	DEAGNG	GFMMOEA	LMPFE	RV-DP- SAMOEA
	2	2.2476e+0	1.6507e+0	1.2180e+0	1.9363e+0	2.2387e-1
DTL <i>Z</i> 7	_	6.56e-1+	4.33e-1+	3.01e-1+	5.46e-1+	2.84e-1
DILL	3	2.2572e+0	1.4606e+0	2.3801e+0	2.8149e+0	3.0424e-1
	3	5.58e-1+	5.18e-1+	5.69e-1+	7.18e-1+	1.50e-1
IMOP3	····	7.8278e-1	7.8923e-1	7.8221e-1	7.4550e-1	2.2901e-1
IMOPS	2	1.73e-2+	1.70e-2+	1.31e-2+	4.55e-2+	1.18e-1
IMOP5	3	5.5358e-1	6.2694e-1	6.3989e-1	5.9356e-1	3.4214e-1
IMOPS	3	8.86e-2+	8.62e-2+	8.07e-2+	1.13e-1+	8.53e-2
IMOP8	3	7.5155e-1	7.1597e-1	6.8924e-1	6.7292e-1	3.9064e-1
IMOP	3	6.14e-2+	1.01e-1+	7.55e-2+	8.93e-2+	8.01e-2
+/≈/-		5/0/0	5/0/0	5/0/0	5/0/0	-

2.5 RV-DP-SAMOEA与6种代理辅助多目标优 化算法对比结果数据

2.5.1 DTLZ类测试问题

表S8和S9展示了RV-DP-SAMOEA与6种对比算法在DTLZ测试问题上得到的HV和IGD值。可以看出,对于所有6个测试问题中的5个,RV-DP-SAMOEA均取得了最佳的HV值。除了对比算法EMMOEA外,大部分情况下RV-DP-SAMOEA所得HV与IGD值均显著优于所选对比算法。

表 S8 RV-DP-SAMOEA与6种对比算法在DTLZ测试问题上得到的HV的均值(方差)

Table S8 Mean (variance) of HV values obtained by RV-DP-SAMOEA and 6 comparison algorithms on DTLZs

				ייייייייייייייייייייייייייייייייייייייי				
Problem	M	AB-SAEA	EMMOEA	EDN- ARMOEA	MCEAD	PC-SAEA	REMO	RV-DP- SAMOEA
	2	1.9124e-1	3.4331e-1	1.6248e-2	1.6541e-1	5.4777e-2	1.7208e-1	2.9625e-1
DTLZ2	2	7.39e-2+	1.73e-3-	1.15e-2+	9.60e-3+	3.94e-2+	2.24e-2+	1.88e-3
	3	2.4667e-1	2.4742e-1	3.6075e-4	2.0423e-1	4.5803e-2	1.9377e-1	2.4941e-1
		6.97e-2≈	$3.16\text{e-2} \approx$	5.37e-4+	4.18e-2+	3.60e-2+	5.64e-2+	7.77e-2
	2	1.6251e-1	3.4115e-1	1.4740e-2	1.7129e-1	3.3485e-2	1.6272e-1	3.5960e-1
DTLZ5		2.85e-2+	$2.94e-3 \approx$	1.51e-2+	2.24e-2 +	2.55e-2+	1.91e-2+	3.03e-1
DILL	3	2.3804e-1	2.1541e-1	1.3520e-2	2.1504e-1	2.0234e-1	1.8757e-1	2.6586e-1
	3	1.18e-2+	2.89e-3 +	8.06e-3+	2.72e-2+	1.74e-2+	1.22e-2+	3.63e-2
	2	1.8304e-1	1.9734e-1	1.2755e-2		1	1.0033e-1	5.3708e-1
DTI 77	2	3.14e-2+	3.77e-2 +	8.32e-3+	/	/	2.97e-2+	1.31e-2
DTLZ7	3	1.9459e-1	2.2629e-1	1.6158e-2		1.4861e-2	1.3412e-1	5.6892e-1
	3	3.79e-2+	3.49e-2 +	1.03e-2+	/	1.78e-2+	2.32e-2+	1.17e-1
win/tie/lo	ose	5/0/1	3/2/1	6/0/0	6/0/0	6/0/0	6/0/0	_

表 S9 RV-DP-SAMOEA与6种对比算法在DTLZ测试问题上得到的IGDV的均值(方差)
Table S9 Mean (variance) of IGD values obtained by RV-DP-SAMOEA and 6 comparison algorithms on DTLZs

Problem	M	AB-SAEA	EMMOEA	EDN- ARMOEA	MCEAD	PC-SAEA	REMO	RV-DP- SAMOEA
	2	1.1730e-1	1.0608e-1	5.0090e-1	1.6917e-1	2.7195e-1	1.1797e-1	1.1685e-2
DTLZ2	2	6.24e-2≈	$2.30\text{e-3} \approx$	6.24e-2 +	2.10e-2 +	7.64e-2+	1.83e-2≈	5.25e-2
	3	2.2670e-1	1.4200e-1	7.4434e-1	3.1671e-1	1.8062e-1	2.8752e-1	1.4722e-1
		3.68e-2+	$2.09e$ - $2\approx$	4.85e-2+	5.60e-2+	2.08e-2+	4.72e-2+	1.02e-2
	2	1.3539e-1	1.0779e-1	4.9200e-1	1.5847e-1	3.2326e-1	1.3926e-1	1.0820e-1
DTLZ5		2.49e-2+	3.32e-3≈	4.49e-2+	3.01e-2 +	8.37e-2+	2.25e-2+	8.69e-2
DILLS		5.6753e-2	4.0366e-2	4.9584e-1	1.1071e-1	9.4965e-2	1.1538e-1	3.8384e-2
	3	7.66e-3+	4.69e-3≈	2.94e-2+	1.74e-2+	2.16e-2+	6.63e-3+	3.90e-2
	2	3.4086e-1	2.9928e-1	9.9448e-1	3.3967e+0	1.9770e+0	3.5514e-1	2.9220e-1
DTLZ7	2	2.23e-1+	$2.51e-1 \approx$	2.20e-1+	1.22e+0+	5.78e-1+	1.06e-1+	1.06e-1
DILL/	3	2.9523e-1	2.8942e-1	1.0111e+0	3.2980e+0	1.4115e+0	2.4787e-1	2.9432e-1
	3	2.51e-1≈	3.43e-1≈	4.54e-1+	7.07e-1+	6.68e-1+	6.82e-2+	2.63e-1
win/tie/lo	ose	4/2/0	0/6/0	6/0/0	6/0/0	6/0/0	5/1/0	_

2.5.2 WFG类测试问题

表S10和S11展 示 了RV-DP-SAMOEA 与6 种对 比 算 法 得 到 的HV 和IGD值 。 (1)从 表S10 可 以 看 出 , 在12 个 测 试 问题 上 ,RV-DP-SAMOEA 均 取 得 了 最 好的HV 值 。 相 比AB-SAEA、EMMOEA、EDN-ARMOEA、MCEAD、PC-SAEA 和REMO 等6 个对比算法,在所有18个测试问题上RV-DP-SAMOEA 分别在18、14、18、17、18和16个问题上获得了较好的HV 值。在大部分测试问题上,除了EMMOEA 之外,RV-DP-SAMOEA

得到的HV值均显著优于其余6种对比算法。(2)从表S11中可以看出,在所有7个算法中,RV-DP-SAMOEA在8个测试问题上取得了最好的IGD值。具体地,相比AB-SAEA、EMMOEA、EDN-ARMOEA、MCEAD、PC-SAEA和REMO等6个对比算法,在所有18个测试问题上,RV-DP-SAMOEA分别在16、9、18、16、16和15个问题上获得了较好的IGD值。在18个测试问题上,除了EMMOEA之外,RV-DP-SAMOEA得到的IGD值也要显著优于其余6种对比算法。

表 S10 RV-DP-SAMOEA与6种对比算法在WFG测试问题上得到的HV的均值(方差) Table S10 Mean (variance) of HV values obtained by RV-DP-SAMOEA and 6 comparison algorithms on WFGs

Problem	М	AB-SAEA	EMMOEA	EDN- ARMOEA	MCEAD	PC-SAEA	REMO	RV-DP- SAMOEA
	2	1.1501e-1	5.1446e-2	1.1594e-1	1.5964e-1	1	1.8469e-1	1.5046e-1
WFG1	_	3.98e-2+	5.16e-2+	1.99e-2+	5.85e-3≈	,	9.94e-3-	3.24e-2
WIGI	3	2.4358e-1	2.3994e-1	2.4934e-1	2.4804e-1	2.2859e-3	2.8910e-1	2.6254e-1
	3	1.24e-2+	1.33e-2+	5.17e-3+	7.28e-3+	1.98e-3+	3.70e-2-	4.01e-2
	2	4.5887e-1	5.1092e-1	3.6844e-1	4.3429e-1	4.2046e-1	4.4958e-1	5.0158e-1
WEC2	2	3.90e-2+	1.82e-2≈	1.71e-+	1.68e-2+	1.49e-2+	1.50e-2+	8.21e-3
WFG2	3	6.9980e-1	7.6949e-1	5.3965e-1	7.1792e-1	6.4496e-1	5.9715e-1	7.2541e-1
	3	5.72e-2+	9.54e-2-	1.32e-2+	$4.99\text{e-}2{\approx}$	3.90e-3+	5.46e-2+	2.12e-1
	2	4.3725e-1	4.2883e-1	3.1333e-1	4.0248e-1	3.5154e-1	3.7513e-1	4.6201e-1
WEC2	2	1.81e-2+	1.90e-2+	1.09e-2+	2.56e-2+	8.52e-3+	2.98e-2+	2.14e-1
WFG3	3	2.1580e-1	3.1521e-1	1.3686e-1	1.7998e-1	1.5603e-1	2.0094e-1	3.1985e-1
	3	1.78e-2+	1.28e-2≈	8.67e-3+	2.39e-2+	1.35e-4+	1.76e-2+	2.31e-2
	2	2.2670e-1	2.3874e-1	1.9006e-1	2.3540e-1	2.3378e-1	2.3959e-1	2.3992e-1
WEC4	2	7.24e-3+	1.06e-2≈	6.07e-3+	1.43e-2≈	3.91e-3≈	1.43e-2≈	1.15e-2
WFG4	3	3.9368e-1	3.6779e-1	3.4127e-1	3.4085e-1	3.6484e-1	3.4785e-1	3.9585e-1
	3	1.51e-2≈	2.67e-2+	6.13e-3+	2.54e-2+	6.34e-3+	2.17e-2+	2.58e-2
WEC5	2	2.5440e-1	2.5609e-1	1.6413e-1	2.5364e-1	1.5993e-1	2.5356e-1	2.5887e-1
		$8.80\text{e-}2{\approx}$	4.73e-2≈	6.10e-3+	1.38e-2≈	9.92e-3+	$1.55\text{e-}2{\approx}$	1.90e-2
WFG5	3	3.5247e-1	4.1493e-1	2.3960e-1	3.4931e-1	2.6755e-1	3.2849e-1	4.2341e-1
	3	1.10e-2+	4.12e-2≈	6.80e-3+	2.10e-2+	1.04e-2+	1.18e-2+	2.37e-2
	2	1.3511e-1	1.6002e-1	7.3918e-2	1.7164e-1	1.2082e-1	1.4312e-1	2.0214e-1
WFG6	2	1.15e-2+	2.95e-2+	3.02e-3+	1.51e-2+	5.27e-3+	1.78e-2+	3.89e-2
WIGO	3	1.8041e-1	3.7555e-1	1.2739e-1	1.8748e-1	2.0518e-1	1.5817e-1	3.6930e-1
	3	1.41e-2+	8.85e-3-	3.11e-3+	4.46e-2+	1.00e-2+	2.91e-2+	3.08e-2
	2	1.9922e-1	1.8584e-1	1.2212e-1	1.9613e-1	1.7384e-1	1.7301e-1	1.9943e-1
WFG7	2	8.59e-3≈	1.37e-2+	2.98e-3+	$1.04e-2\approx$	1.29e-2+	1.89e-2+	6.01e-2
WI'G/	3	3.2186e-1	3.6273e-1	2.2802e-1	2.9476e-1	2.8265e-1	2.9860e-1	3.7060e-1
	3	1.60e-2+	1.26e-2≈	4.96e-3+	3.36e-2+	3.00e-3+	1.55e-2+	2.88e-2
	2	1.6059e-1	2.1192e-1	1.2139e-1	1.4304e-1	1.4235e-1	1.5273e-1	1.6395-1
WFG8	2	$1.56e-2 \approx$	1.48e-2-	5.17e-3+	6.14e-3+	1.36e-2+	7.83e-3+	8.06e-2
WI'Go	3	2.2086e-1	3.0898e-1	3.1083e-1	2.1579e-1	2.4489e-1	2.1530e-1	3.1009e-1
	3	1.56e-2+	$3.10e-2\approx$	8.95e-3≈	1.64e-2+	9.43e-3+	1.56e-2+	9.34e-2
	2	1.5972e-1	2.0348e-1	1.0281e-1	1.4632e-1	1.4974e-1	2.1003e-1	2.6110e-1
	2	3.18e-2+	4.28e-2+	1.34e-2+	9.39e-3+	1.25e-2+	4.11e-2+	1.98e-2
WFG9	3	2.4758e-1	3.3784e-1	1.9399e-1	2.4921e-1	2.4123e-1	2.5866e-1	3.3912e-1
	3	4.02e-2+	2.34e-2≈	1.47e-2+	1.49e-2+	1.23e-2+	3.17e-2+	2.01e-2
win/tie/lo	se	14/4/0	7/8/3	17/1/0	13/5/0	17/1/0	14/2/2	_

表 S11 RV-DP-SAMOEA与6种对比算法在WFG测试问题上得到的IGD的均值(方差)
Table S11 Mean (variance) of IGD values obtained by RV-DP-SAMOEA and 6 comparison algorithms on WFGs

Problem	М	AB-SAEA	EMMOEA	EDN- ARMOEA	MCEAD	PC-SAEA	REMO	RV-DP- SAMOEA
	2	1.2270e+0	1.2769e+0	1.3426e+0	1.2237e+0	1.2288e+0	1.1919e+0	1.3069e+0
WFG1	2	5.84e-2-	1.56e-1≈	3.34e-2+	1.52e-2-	6.48e-2-	3.70e-2-	5.12e-2
WIGI	~~~	1.6072e+0	1.5872e+0	1.6358e+0	1.5274e+0	2.0455e+0	1.4573e+0	1.5716e+0
	3	5.30e-2≈	4.11e-2≈	6.39e-3≈	1.87e-2≈	3.07e-2+	9.59e-2-	3.58e-2
	~	4.4759e-1	3.3325e-1	6.5784e-1	6.0951e-1	3.8949e-1	4.4903e-1	4.0804e-1
WEGO	2	6.95e-2+	6.25e-2-	5.67e-2+	1.50e-1+	2.70e-2-	2.47e-2+	7.58e-2
WFG2	·····	5.3295e-1	3.8954e-1	9.2093e-1	8.3783e-1	6.4157e-1	7.7486e-1	3.0543e-1
	3	1.54e-1+	1.36e-1-	4.08e-2+	2.94e-1+	2.93e-2+	1.46e-1+	3.92e-2
	~	2.7685e-1	3.1080e-1	5.7026e-1	3.6198e-1	4.5128e-1	4.1880e-1	4.2415e-1
WFG3	2	4.26e-2-	3.30e-2-	3.24e-2+	4.99e-2-	2.09e-2+	5.60e-2≈	3.26e+2
WFG3	~~~~	4.4690e-1	3.4843e-1	6.7603e-1	5.1735e-1	6.2255e-1	4.4115e-1	3.4257e-1
	3	4.72e-2+	7.04e-2+	3.13e-2+	6.03e-2+	3.15e-2+	3.74e-2+	5.54e-2
	~	2.0906e-1	2.4632e-1	3.8506e-1	3.2019e-1	2.4345e-1	2.7325e-1	2.0851e-1
WEG 4	2	3.07e-2≈	1.52e-2+	1.94e-2+	5.42e-2+	7.13e-3+	5.78e-2+	1.31e-2
WFG4 ····	~~~~	4.5981e-1	4.5960e-1	5.3182e-1	5.9905e-1	4.4607e-1	4.9128e-1	4.3584e-1
	3	2.29e-2+	3.56e-2+	1.57e-2+	8.62e-2+	9.79e-3+	4.21e-2+	2.38e-2
	~	3.1858e-1	1.0345e-1	4.1347e-1	2.3197e-1	3.8042e-1	2.7256e-1	1.0173e-1
WEG5	2	2.18e-1+	8.04e-2≈	2.68e-2+	4.26e-2+	3.71e-2+	6.76e-2+	2.59e-2
WFG5	3	4.9247e-1	2.3695e-1	7.1071e-1	5.4646e-1	6.3568e-1	5.0138e-1	3.8542e-1
		3.62e-2+	7.67e-2-	2.44e-2+	4.78e-2+	1.55e-2+	2.87e-2+	3.24e-2
	~	4.0458e-1	3.5949e-1	6.9271e-1	4.0322e-1	4.7117e-1	4.0075e-1	3.984e-1
WEGG	2	2.68e-2≈	6.88e-2-	4.78e-2+	4.74e-2≈	2.26e-2+	4.52e-2≈	5.41e-2
WFG6	·····	6.0576e-1	2.4449e-1	8.5282e-1	6.1477e-1	7.9769e-1	6.1170e-1	2.3851e-1
	3	2.90e-2+	2.28e-2≈	1.31e-2+	1.23e-1+	2.45e-2+	4.93e-2+	1.6504e+3
	2	3.3378e-1	3.3515e-1	4.9051e-1	3.5594e-1	3.4507e-1	4.4075e-1	3.2512e-1
WECZ	2	2.03e-2≈	1.74e-2+	1.54e-2+	6.62e-1+	1.84e-2+	3.52e-2+	1.55e-2
WFG7	·····	5.0261e-1	5.3616e-1	6.7441e-1	6.2330e-1	6.0364e-1	5.0599e-1	4.6712e-1
	3	3.58e-2+	2.14e-2+	1.63e-2+	1.06e-1+	1.34e-2+	4.48e-2+	2.84e-2
	2.	4.4261e-1	3.4666e-1	6.2364e-1	5.4518e-1	4.3527e-1	5.0522e-1	3.5057e-1
WEGO	2	1.74e-2+	3.71e-2≈	4.61e-2+	4.82e-2+	3.50e-2+	3.78e-2+	2.34e-2
WFG8	·····	7.0105e-1	4.9785e-1	8.1258e-1	8.8053e-1	7.1525e-1	7.0466e-1	5.8131e-1
	3	3.02e-2+	6.22e-2-	2.96e-2+	4.28e-2+	2.12e-2+	4.32e-2+	8.15e-2
		4.3200e-1	3.2943e-1	2.8506e-1	4.5522e-1	4.0177e-1	2.8135e-1	2.7693e-1
WECO	2	6.44e-2+	7.89e-2+	1.94e-2≈	3.56e-2+	3.02e-2+	1.00e-1≈	4.70e-2
WFG9		6.5230e-1	5.1394e-1	6.1644e-1	6.4855e-1	7.1761e-1	6.4168e-1	4.9813e-1
	3	1.10e-1+	7.46e-2≈	4.86e-2+	4.35e-2+	2.97e-2+	8.69e-2+	3.54e-2
win/tie/lo	ose	12/4/2	8/5/5	16/2/0	15/2/1	16/0/2	13/3/2	_

2.5.3 IMOP类测试问题

针对IMOP类测试问题,表S12和S13展示了RV-DP-SAMOEA与6种对比算法得到的HV和IGD值。可以看出: (1)对于HV指标,除了IMOP6外,在所有剩余7个测试问题上,RV-DP-SAMOEA均得到了最优的HV值;在IMOP6问题上,RV-DP-SAMOEA

也获得与AB-SAEA接近的HV值,它们的HV值分别为0.22093和0.21898;此外,在大多数测试问题上,RV-DP-SAMOEA的HV值均明显优于6种对比算法。(2)对于IGD指标,除测试问题IMOP5和IMOP6外,在剩余6个测试问题上RV-DP-SAMOEA均取得了最优的IGD值。在IMPO5和IMOP6测

 \hat{y} x \hat{y} 9

试问题上,RV-DP-SAMOEA 分别与EMMOEA 和AB-SAEA 获得了相近似的IGD值。由此可见,对于大多数的IMOP测试问题,RV-DP-SAMOEA

得到的HV和IGD值要显著优于其6种对比算法。

表 S12 RV-DP-SAMOEA与6种对比算法在IMOP测试问题上得到的HV的均值(方差)
Table S12 Mean (variance) of IGD values obtained by RV-DP-SAMOEA and 6 comparison algorithms on IMOPs

Problem	М	AB-SAEA	EMMOEA	EDN- ARMOEA	MCEAD	PC-SAEA	REMO	RV-DP- SAMOEA
IMOP1	2	5.2851e-1	8.5269e-1	1.2411e-1	2.5306e-1	1.6865e-1	2.0957e-1	8.694e-1
IMOI I	2	1.12e-1+	1.91e-2≈	2.00e-2 +	1.26e-1+	1.82e-2+	1.40e-1+	3.01e-1
IMOP2	2	8.8552e-2	9.0848e-2	7.6712e-2	7.5269e-2	7.8699e-2	7.7259e-2	1.0985e-1
IMOP2	2	1.44e-3 +	2.75e-5+	2.21e-3 +	3.67e-3 +	8.32e-4+	3.13e-3+	1.98e-2
IMOP3	2.	2.7070e-1	1.8967e-1	1.0588e-1	1.4703e-1	9.4291e-2	1.4333e-1	2.7598e-1
IMOF3	2	5.93e-2≈	7.08e-2+	9.99e-3 +	6.56e-2 +	1.69e-2+	3.40e-2+	4.66e-2
IMOP4	3	4.0669e-2	3.2740e-2	2.5803e-2	9.9591e-2	3.0826e-2	3.4495e-2	1.0858e-1
IMOI 4		2.05e-3+	5.30e-3+	2.27e-3+	1.06e-1+	1.72e-3+	2.40e-3+	7.20e-2
IMOP5	3	4.0483e-1	4.5460e-1	2.4950e-1	2.6730e-1	3.2465e-1	4.9595e-1	4.9596e-1
IMOFS	3	8.31e-2+	1.33e-2+	2.43e-3+	2.56e-2+	6.02e-2+	1.84e-2≈	7.28e-2
IMOP6	3	2.2093e-1	2.1446e-1	7.3862e-2	1.8066e-1	1.0386e-1	8.9586e-2	2.1898e-1
IMOFO	3	9.99e-2≈	2.68e-2≈	6.49e-3+	7.53e-2≈	1.49e-2+	8.44e-3+	1.95e-2
IMOP7	3	9.0927e-2	9.1325e-2	7.6389e-2	9.1756e-2	8.7666e-2	8.9928e-2	1.3259e-1
IIVIOI /		1.78e-5+	1.14e-3	6.94e-3+	1.73e-3+	3.22e-3+	1.18e-3+	5.13e-2
IMOP8	3	1.5936e-1	3.3848e-1	1.0836e-1	1.0451e-1	1.2116e-1	1.3370e-1	3.8521e-1
11/10/10		3.42e-2+	1.18e-1+	1.71e-2+	1.76e-2+	1.09e-2+	3.69e-2+	6.33e-2
win/tie/lo	ose	6/2/0	6/2/0	8/0/0	7/1/0	8/0/0	7/1/0	-

表 S13 RV-DP-SAMOEA与6种对比算法在IMOP测试问题上得到的IGD的均值(方差)
Table S13 Mean (variance) of IGD values obtained by RV-DP-SAMOEA and 6 comparison algorithms on IMOPs

Problem	М	AB-SAEA	EMMOEA	EDN- ARMOEA	MCEAD	PC-SAEA	REMO	RV-DP- SAMOEA
IMOP1	2	2.8671e-1	1.5453e-1	7.7567e-1	6.1438e-1	7.3189e-1	7.0167e-1	1.9732e-1
		5.19e-2+	1.63e-2≈	2.05e-2+	1.78e-1+	1.80e-2+	1.19e-1+	2.00e-1
IMOP2	2	7.1564e-1	7.7407e-1	6.2107e-1	6.4284e-1	6.2758e-1	7.4094e-1	3.0022e-1
		1.31e-1+	1.83e-2+	3.64e-2+	3.81e-2+	3.42e-2+	2.83e-2+	2.11e-1
IMOP3	2	4.5367e-1	5.0108e-1	7.0978e-1	5.9969e-1	7.4334e-1	6.0577e-1	2.2901e-1
		1.16e-1+	8.69e-2+	9.44e-2+	2.10e-1+	4.67e-2+	1.28e-1+	1.18e-1
IMOP4	3	7.0217e-1	7.2719e-1	7.5961e-1	5.0518e-1	7.3035e-1	3.1842e-1	2.8112e-1
		3.21e-3+	2.27e-2+	1.12e-2+	2.82e-1+	1.09e-2+	8.80e-3+	7.52e-2
IMOP5	3	4.7627e-1	2.8742e-1	7.1299e-1	6.9414e-1	6.0293e-1	5.5388e-1	3.4214e-1
		1.33e-1+	9.69e-3-	1.68e-5+	3.57e-2+	8.52e-2+	8.09e-2+	8.53e-2
IMOP6	3	3.8121e-1	5.2406e-1	7.2180e-1	4.3933e-1	5.3341e-1	5.8117e-1	4.3465e-1
		1.16e-1-	1.77e-2+	8.22e-2+	$8.24\text{e-}2{\approx}$	2.67e-2+	9.23e-2+	5.13e-2
IMOP7	3	9.3559e-1	9.1890e-1	9.2451e-1	9.1419e-1	9.0925e-1	9.2050e-1	5.6210e-1
		1.70e-3+	1.84e-2+	5.28e-3+	1.78e-2+	1.60e-2+	1.25e-2+	6.24e-2
IMOP8	3	5.7957e-1	3.9630e-1	6.4068e-1	7.1336e-1	6.5611e-1	5.8730e-1	3.9064e-1
		3.76e-2+	1.26e-1≈	8.21e-2+	5.80e-2+	9.09e-2+	1.29e-1+	8.01e-2
win/tie/lose		7/0/1	5/2/1	8/0/0	7/1/0	8/0/0	8/0/0	-

参考文献:

- Hua Y, Jin Y, Hao K. A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular pareto fronts[J].
 IEEE Transactions on Cybernetics, 2019, 49(7): 2758 - 2770.
- [2] Liu Y, Ishibuchi H, Masuyama N, Nojima Y. Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(3): 439-453.
- [3] Tian Y, Zhang X, Cheng R, He C, Jin Y C. Guiding evolutionary multi-objective optimization with generic front modeling[J]. IEEE Transactions on Cybernetics, 2020, 50(3): 1106-1119.
- [4] Tian Y, Si L, Zhang X, Tan K C, Jin Y. Local model based Pareto front estimation for multi-objective optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(1): 623-634.

作者简介:

贺春林 2021年于中国矿业大学信息与控制工程学院获硕士学位。他目前在中国矿业大学(徐州)信息与控制工程学院攻读博士学

位。目前研究方向为智能优化、昂贵优化和特征选择, E-mail: 18912164815@163.com;

张 勇 2009年于中国矿业大学信息与控制工程学院获博士学位。他目前是中国矿业大学信息与控制工程学院学院教授,智能优化与控制研究所所长。目前研究方向为智能优化和数据挖掘, E-mail: yongzh401@126.com;

彭超 2018年于中国矿业大学信息与控制工程学院获硕士学位。目前研究方向为智能优化、数据挖掘、软件测试, E-mail: chaopeng_PC@163.com;

巩敦卫 青岛科技大学自动化与电子工程学院二级教授、博士生导师、常务副院长,入选教育部新世纪优秀人才、甘肃省首批飞天学者讲座教授、科睿唯安全球高被引科学家、全球前2%项尖科学家(终身榜单)。目前研究方向为多目标优化和动态不确定优化,E-mail:dwgong@vip.163.com;

高晓智 1999年在芬兰赫尔辛基工业大学获得博士学位。现任芬兰赫尔辛基工业大学讲座教授,北京师范大学和哈尔滨工业大学客座教授。目前研究方向为时序信号预测和数据挖掘,E-mail: xiao.z.gao@gmail.com;