Optimal policy:

$$\pi^*(s) = argmax_{\pi}V^{\pi}(s) = argmax_{a \in A(s)} \sum_{s'} P(s'|s,a)V(s')$$

Bellman Equation:

$$V(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a)V(s')$$

Bellman Update:

$$V_{i+1}(s) \leftarrow BV_i = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) V_i(s')$$

Bellman=Contraction:

$$\|V\| = \max_{s} |V(s)|$$

$$||BV_i - BV_i'|| \le \gamma ||V_i - V_i'||$$

 $||BV_i - V|| \le \gamma ||V_i - V||$

Error of the estimate V_i :

$$||V_i - V||$$

$$||V_0 - V|| \le 2R_{max}/(1 - \gamma)$$

Bound on state values (utilities):

$$V(s) < \pm R_{max}/(1-\gamma)$$

To get $||V_i - V|| \le \epsilon$:

$$\gamma^N 2R_{max}/(1-\gamma) \le \epsilon$$

$$N = \left\lceil \frac{\log(2R_{max}/(\epsilon(1-\gamma)))}{\log(1/\gamma)} \right\rceil$$

If $||V_{i+1} - V_i|| \le \epsilon (1 - \gamma)/\gamma$ then $||V_{i+1} - V|| < \epsilon$ Policy loss is $||V^{\pi_i} - V||$ and is connected to V_i :

if
$$||V_i - V|| < \epsilon$$
 then $||V^{\pi_i} - V|| < 2\epsilon\gamma/(1-\gamma)$

Policy Evaluation: Given a policy π_i , calculate $V_i = V^{\pi_i}$, the utility of each state if π_i were t be executed. Do this by running Value Iteration with (or directly solving in $O(n^3)$ time the set of linear equations defined by):

$$V_i(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi_i(s)) V_i(s')$$

Policy Improvement: Calculate a new MEU policy π_{i+1} , using one-step look-ahead based on V_i .

Terminate when policy improvement yields no change in the utilities.

itilities.			
Problem	Bellman Equation	Algorithm	
Prediction	Bellman Expectation Equation	Iterative	
		Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
	+ Greedy Policy Improvement		
Control	Bellman Optimality Equation	Value Iteration	

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $q_{\pi}(s,a)$ or $q_{*}(s,a)$
- Complexity $O(m^2n^2)$ per iteration

	Full Backup (l	DP)	Sample Backup (TD)	
Bellman Expectation	$v_{r}(s) \leftrightarrow s$ $v_{r}(s) \leftrightarrow s$		•	
Equation for $v_{\pi}(s)$	Iterative Policy Evaluation		TD Learning	
Bellman Expectation	$q_1(x, a) \leftarrow s, a$ r $q_2(x', a') \leftarrow a'$		S.A. R. S.	
Equation for $q_{\pi}(s, a)$	Q-Policy Iteration		Sarsa	
Bellman Optimality	$g_1(x,a) \leftarrow x,a$ $g_2(x',a') \leftarrow a'$		A	
Equation for $q_*(s, a)$	Q-Value Iteration		Q-Learning	
Full Backup (DP)		Sample	Sample Backup (TD)	
Iterative Policy Evalua	tion	TD Learning		
$V(s) \leftarrow \mathbb{E}\left[R + \gamma V(S')\right]$) <i>s</i>]	$V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$		
Q-Policy Iteration		Sarsa		
$Q(s,a) \leftarrow \mathbb{E}\left[R + \gamma Q(s,a)\right]$	$S',A') \mid s,a]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$		
Q-Value Iteration		Q-Learning		
$Q(s,a) \leftarrow \mathbb{E}\left[R + \gamma \prod_{a'} \right]$	$\max_{s \in \mathcal{A}} Q(S', a') \mid s, a $	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$		
where $x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y - x)$				

MC converges to solution with minimum mean-squared error

Best fit to the observed returns

$$\sum_{k=1}^K \sum_{t=1}^{T_k} \left(G_t^k - V(s_t^k)\right)^2$$

■ In the AB example, V(A) = 0

TD(0) converges to solution of max likelihood Markov model

■ Solution to the MDP $\langle S, A, \hat{P}, \hat{R}, \gamma \rangle$ that best fits the data

$$\hat{\mathcal{P}}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$$

$$\hat{\mathcal{R}}_{s}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k = s, a) r_t^k$$

■ In the AB example, V(A) = 0.75

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	√
	LSMC	✓	/	-
	TD	✓	✓	×
	LSTD	✓	✓	-
Off-Policy	MC	✓	✓	√
	LSMC	✓	1	-
	TD	✓	X	×
	LSTD	✓	✓	-

Sarsa converges to the optimal action-value function, $Q(s, a) \rightarrow q_*(s, a)$, under the following conditions:

- GLIE sequence of policies $\pi_t(a|s)$
- Robbins-Monro sequence of step-sizes α_t

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	×
Sarsa	✓	(✓)	×
Q-learning	✓	X	×
LSPI	✓	(✓)	-

(✓) = chatters around near-optimal value function

PAC

w.p. at least $1-\delta$, on all but N_{ϵ} steps, select a for state s that is ϵ -close to V^* .

$$|Q(s,a) - V^*(s)| < \epsilon$$

i.e.

$$P(N_{\epsilon} \leq F_{\text{poly}}(|S|, |A|, \delta, \epsilon, \gamma)) \geq 1 - \delta$$

where N_{ϵ} is the number of episodes not ϵ close to optimal.

Comparisons/Overview

Model Free: Derive optimal policy without learning the model (transitions and rewards, leads to weaker theoretical results; ideal for large state space; dont learn a model learn value function or policy directly

Model Based: Learn transition and reward model, use it to get optimal policy, leads to stronger theoretical results (e.g. R_{max} satisfies PAC); ideal for small state space; more exploration (more of the model is learned)

Monte Carlo: resets (assume restart from state several times), wasteful (same trajectory traversed many times), does not assume Markov (works better for non-Markov), high variance, zero bias, not sensitive to initial value, wait till end of episode for reward, converges to minimum least square error between values and observed returns

TD: learns at every step, learns from incomplete sequences, works in non-terminating environments, more sensitive to initial value, more efficient, converges to solution of max-likelihood model

Value Iteration: Active, Model-Based, Neither Policy Iteration: Active, Model-Based, Neither Policy Evaluation: Passive, Model-Based, Neither

Monte Carlo: (Pred=Passive, Ctrl=Active), Model-Free, Either TD-Learning: (Pred=Passive, Ctrl=Active, Model-Free, Either

Q-Learning: Active, Model-Free, Off-Policy **SARSA**: Active, Model-Free, On-Policy

Passive: Agent executes a fixed policy and evaluates it Active:

Agents updates policy as it learns