INTEL 8086 MICROPROCESSOR

OBJECTIVES

- Become familiar with MDA-8086 kit.
- Have a brief idea about the types and functions of various keys.
- Perform some basic operations using 8086 basic instructions.
- Interface 8255 peripheral devices with MDA-8086 and show output in Seven Segment Display and LED Display.

MDA-8086 Kit Diagram

Activate Windows

Go to Settings to activate Window

Function of IC's at MDA-8086 System Configuration

- CPU (Central processing unit): Using Intel 8086, using 14.7456MHz.
- ROM (Read Only Memory): It has program to control user's key input, LCD display, user's program. 64K Byte, it has data communication program. Range of ROM Address is F0000H FFFFFH.
- SRAM (Static Random-Access Memory): Input user's program & data. Address of memory is 00000H 0FFFFH, totally 64K Byte.
- DISPLAY: Text LCD Module, 16(Characters)×2(Lines)
- KEYBOARD: It is used to input machine language. There are 16 hexadecimal keys and 8 function keys.
- SPEAKER: Sound test.

Function of IC's at MDA-8086 System Configuration

- RS-232C: Serial communication with IBM compatible PC.
- DOT MATRIX LED: To understand & test the dot matrix structure and principle of display. It is interfaced to 8255A(PPI).
- A/D CONVERTER: ADC0804 to convert the analog signal to digital signal.
- D/A CONVERTER: DAC0800 (8-bits D/A converter) to convert the digital signal to the analog signal and to control the level meter.
- STEPPING MOTOR INTERFACE: Stepping motor driver circuit is designed.
- POWER: AC 110 220V, DC +5V 3A, +12V 1A, -12V 0.5A SMPS.

MDA-8086 Address Map

Memory Map

ADDRESS	MEMORY DESCRIPTION	
00000H ~ 0FFFFH	RAM PROGRAM & DATA M	
F0000H ~ FFFFFH	ROM	MONITOR ROM
10000H ~ EFFFFH	us	ER'S RANGE

MDA-8086 Address Map

■ I/O Address Map

ADDRESS	I/O PORT	DESCRIPTION	
		LCD Display	
		00H: INSTRUCTION REGISTER	
		02H: STATUS REGISTER	
00H ~ 07H	LCM & KEYBOARD	04H: DATA REGISTER	
		KEYBOARD	
		01H: KEYBOARD REGISTER (Only read)	
		01H: KEYBOARD FLAG (Only write)	
		8251(Using to data communication)	
		08H: DATA REGISTER	
		OAH: INSTRUCTION/STATUS REGISTER	
08H ~ 0FH	FH 8251/8253	8253 (TIMER/COUNTER)	
oon ~ orn	6231/6233	09H: TIMER 0 REGISTER	
		0BH: TIMER 1 REGISTER	
		ODH: TIMER 2 REGISTER	
		0FH: CONTROL REGISTER	
		8259(Interrupt controller)	
10H ~ 17H	8259/SPEAKER	10H: COMMAND REGISTER	
1011-1711	0239/3FEARER	12H: DATA REGISTER SPEAKER	. A
		11H: SPEAKER	

ivate Windows 3 Settings to activate Windows

MDA-8086 Address Map

■ I/O Address Map

ADDRESS	I/O PORT	DESCRIPTION	
18H ~ 1FH	8255A-CS1/8255A-CS2	8255A-CS1(DOT & ADC INTERFACE)	
		18H: A PORT DATA REGISTER	
		1AH: B PORT DATA REGISTER	
	•	1CH: C PORT CONTROL REGISTER	
		8255-CS2(LED & STEPPING MOTOR)	
		19H: A PORT DATA REGISTER	
		1BH: B PORT DATA REGISTER	
		1DH: C PORT CONTROL REGISTER	
		1FH: CONTROL REGISTER	
20H ~ 2FH		I/O EXTEND CONNECTOR	
30H ~ FFH		USER'S RANGE	

Operation Introduction

 MDA-8086 has high performance 64K-byte monitor program. It is designed for easy function. After power is on, the monitor program begins to work. In addition to all the key function the monitor has a memory checking routine.

1	FUNCTION KEY		DATA	A KEY	
				MON	RES
GO	STP	С	D	E	F
+	REG	8	9	Α	В
-	DA	4	5	6	7
:	AD	0	1	2	3

Operation Introduction

- RES → System reset
- STP → Execute user's program, a single step
- AD → Set memory address
- GO → Go to user's program or execute monitor functions
- DA → Update segment & Offset and input data to memory
- MON → Immediately break user's program and Non maskable interrupt.
- : → Offset set
- REG → Register Display.
- + → Segment & Offset +1 increment. Register display increment.
- → Segment & Offset -1 increment. Register display decrement.

8255 Programmable Peripheral Interface Controller

- It has 24-bit input/output pins
- It consists of three ports: port A, port B and port C- all of which are 8 bits
- It also consists of an 8-bit control register(CR)
- The eight bit of port C can be used as individual bits or be grouped in two 4-bit ports: C_{upper}(CU) and C _{lower}(CL)
- The functions of these ports are defined by writing a control word in the control register

Group A	Group B
Port A	Port B
Port C (Upper 4 bit)	Port C (Lower 4 bit)

	AX (Accumulator Register)	AH	AL
Data Registers	BX (Base Register)	ВН	BL
	CX (Count Register)	СН	CL
	DX (Data Register)	DH	DL
	CS (Code Segment)		
c	DS (Data Segment)		
Segment Registers	SS (Stack Segment)		
	ES (Extra Segment)		
	SI (Source Index)		
Index Registers	DI (Destination Index)		
	SP (Stack Pointer)		
Pointer Registers	BP (Base Pointer)		
	IP (Instruction Pointer)		
	FLAGS Registers		

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			ž	OF	DF	IF	TF	SF	ZF		AF		PF		CF

Bit	Name	Symbol		
0	Carry Flag	CF		
2	Parity Flag	PF		
4	Auxiliary Carry Flag	AF	Status Flags	
6	Zero Flag	ZF		
7	Sign Flag	SF		
11	Overflow Flag	OF		
8	Trap Flag	TF		
9	Interrupt Flag	IF	Control Flags	
10	Direction Flag	DF	Acti: ate Windows	

Data Transfer Instructions

Name	Mnemonic
Load	LD
Store	ST
Move	MOV
Exchange	XCHG
Input	IN
Output	OUT
Push	PUSH
Рор	POP

Arithmetic Instructions

Name	Mnemonic	
Increment	INC	
Decrement	DEC	
Add	ADD	
Subtract	SUB	
Multiply	MUL	
Divide	DIV	
Add with carry	ADDC	
Subtract with borrow	SUBB	
Negate	NEG	

Logical and Bit Manipulation Instructions

Name	Mnemonic	
Clear	CLR	
Complement	сом	
AND	AND	
OR	OR	
Exclusive-OR	XOR	
Clear carry	CLRC	
Set carry	SETC	
Complement carry	сомс	
Disable interrupt	DI	

Activate Windows
Go to Settings to activate Windows

Shift and Rotate Instructions

Name	Mnemonic	
Logical shift right	SHR	
Logical shift left	SHL	
Arithmetic shift right	SHRA	
Arithmetic shift left	SHLA	
Rotate right	ROR	
Rotate left	ROL	
Rotate right through carry	RORC	
Rotate left through carry	ROLC	

Program Control Instructions

Name	Mnemonic		
Branch	BR		
Jump	JMP		
Skip	SKP		
Call	CALL		
Return	RET		
Compare (Subtract)	CMP		
Test (AND)	TST		

SEVEN SEGMENT DISPLAY

Seven Segment Display

- For seven segments display we use 0 for ON and 1 for OFF.
- Control register values will be the column headings of the following table:

D7	D6	D5	D4	D3	D2	D1	DO
1	0	0	0	0	0	0	0
Control Register 0- BSR mode 1- I/O mode	Mode selection for group A 00-1/0 01- Handshaking		Port A 0- Output 1- Input	Upper 4 bit of port C	Mode selection for group B 0-1/0 1- Handshaking	For port B	For lower 4 bit of port C

Seven Segment Display

Assembly Code:
 S SEGMENT PARA PUBLIC 'CODE'
 ASSUME CS: S
 ORG 1000H

START:

;control register turn on MOV AL, 80H OUT 1FH, AL

SSD:

;display 0 MOV AL,0C0H OUT 19H,AL

;for delay MOV CX,0FFFFH L0:LOOP L0

JMP SSD

SENDS **END START**

Activate Windows

Go to Settings to activate Windows

SPLAY

LED Display

- For LED display we use 1 for ON and 0 for OFF
- Control register value will be the column headings of the following table:

D7	D6	D5	D4	D3	D2	D1	DO
1	0	0	0	0	0	0	0
Control Register 0- BSR mode 1- I/O mode	Mode selection for group A 00-1/0 01- Handshaking		Port A 0- Output 1- Input	Upper 4 bit of port C	Mode selection for group B 0-1/0 1- Handshaking	For port B	For lower 4 bit of port C

LED Display

Assembly Code: L SEGMENT PARA PUBLIC 'CODE' ASSUME CS: L ORG 1000H

START: *

control register turn on MOV AL,80H OUT 1FH,AL

segment address forcefully off MOV AL,0FFH OUT 19H,AL

LED:

;R1 LED turn on MOV AL,01H OUT 1BH,AL

;for delay MOV CX,0FFFFH L0:LOOP L0

IMP LED

L ENDS END START

				R2	Y	G	R1
0	0	0	0	0	0	0	1

Steps to Run Code in MDA-8086 Through PC

- · At first copy paste the .ASM file in the mda folder of computer
- Then open cmd and write cd\ and press enter
- Then type cd mda and press enter
- Then type MASM and press enter
- Then write the file_name.ASM and press enter.
- Then write the file_name.OBJ and press enter.
- Then write the file_name.LST and press enter. This step is used for error checking.
- Then when it wants .CRF file simply press enter
- If there is any error in the file, then after this line we can see the number of errors.
- If any error is found, then type EDIT file_name.LST and press enter.
- · If no error is found, then type LOD186 and press enter
- Then type file_name.OBJ and press enter.
- Then type file_name.ABS and press enter.

