Notas clase 2 distancias

Rodrigo Castillo

4 de agosto de 2020

empezamos con la tarea de luisa

1. Distancia

1.1. distacia euclideana

la distancia euclideana es la distancia clásica, el teorema de pitágoras y está dada como

$$D(a,b) = \sqrt{x_1^2 + x_2^2 + \dots + x_p^2}$$
 (1)

pero en estadística la distancia euclideana no es la mas apropiada pues cada componente se pondera de la misma forma, esto aplica en longitudes pero no en variables estadísticas

1.2. distancia estadística

si hay medidas que tienen variaciones aleatorias hay que ponderar unas medidas con mayor peso y otras con menor peso , esto se hace así : distancia estadística:

$$estandarizacion = x*_1 = \frac{x_1}{\sqrt{s_{11}}} \tag{2}$$

el truco es estandarizar

una vez estandarizamos calculamos la ditancia euclideana

$$D(O,P) = \sqrt{\left(\frac{x_1}{s_{11}}\right)^2 + \left(\frac{x_2}{s_{22}}\right)^2} \tag{3}$$

distancia entre 2 puntos :

1.3. distancia estadística en p dimensiones

$$d(P,Q) = \sqrt{\frac{(x_1 - y_1)^2}{s_{11}} + \frac{(x_2 - y_2)^2}{s_{22}} + \dots + \frac{(x_p - y_p)^2}{s_{pp}}}$$

consideraciones:

1. $\sin s$ $s_{11} = s_{22} = \dots = s_{pp}$

esmejorusarladistancia
euclideana cuando hay dependencias la distancia no es la mejor

1.4. distancia estadistica con correlaciones:

$$D(o,p) = \sqrt{\frac{xgorro_2^2}{s_{11}} + \frac{xgorro_2^2}{s_{22}}}$$
 (4)

esto es si hay dependencias , si no hay dependencias volvemos a la distancia anterior

1.5. generalizacion de la distancia estadística con correlaciones

$$d(P,Q) = \sqrt{a_{11}(x_1 - y_1)^2 + 2a_{12}(x_1 - y_1)(x_2 - y_2) + a_{22}(x_2 - y_2)}$$

1.6. propiedades de las distancias

- D(P,Q) = D(Q,P)
- D(p,q) != 0 si p!=q
- desigualdad triangular

2. repaso de algebra vectorial

2.1. vectores:

las cosas clasicas de vectores de algebra lieanl

2.2. independencia lineal

un conjunto de vectores $x_1, x_2, ..., x_k$ es linealmente indepentiendes si existen constantes $c_1, c_2, ..., c_n$ tales que

$$c_1 \times x_1 + c_2 \times x_2 + \dots + c_k \times x_k = 0 \tag{5}$$

formas para saber que un conjunto de vectores son linealmente independientes

2.3. proyection vectorial

se tiene un vector y un vector y , se proyecta el vector x sobre y

$$Proy = \frac{x'y}{L_y} \times \frac{1}{L_y} y \tag{6}$$

2.4. matrices

$$transA = A' (7)$$

2.5. teorema importante

a es invertible sii las columas de A son linealmente independientes

2.6. vectores y valores propios

son fundamentales en la estadística un valor propio se caracteriza por $A_x = lamdax$