REVIEW JURNAL

PENERAPAN PREDIKSI PRODUKSI PADI MENGGUNAKAN ARTIFICIAL NEURAL NETWORK ALGORITM BACKPROPAGATION

Disusun Untuk Memenuhi Tugas Mata Kuliah Metodologi Penelitian Dosen Pengampu: Viktor Handrianus Pranatawijaya, S.T., M.T.

DISUSUN OLEH:

NAMA: ARIEF GUNAWAN

NIM : 203030503084

JURUSAN/PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNIK
UNIVERSITAS PALANGKA RAYA
2023

TUGAS

1. Buatlah topik dan ringkasan tentang jurnal review/slr/Literatur review yang anda gunakan beserta judul proposal yang akan dibuat!

Pembahasan:

Judul	Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation			
Jurnal	Jurnal Nasional Teknologi dan Sistem Informasi			
Volume dan Halaman	VOL. 06 NO. 02 (2020) Hal. 100-107			
Tahun	2020			
Penulis	Hasdi Putra & Nabilah Ulfa Walmi			
Reviewer	Arief Gunawan			
Tanggal	16 Maret 2023			
Tujuan Penelitian	Tahapan penelitian yang dilakukan adalah mengumpulkan data, melakukan pre-processing data, memproses prediksi, dan pengujian akurasi dan error serta implementasi.			
Subjek Penelitian	Produksi Padi			
Metode penelitian	Pengumpulan Data pengumpulan data adalah cara yang digunakan untuk mengumpulkan bahan riset. Dalam pengerjaannya dapat menggunakan metode pengamatan, dokumentasi, angket, wawancara, hingga tes atau pengujian.			

2. Pre-Processing Data

Teknik untuk menyiapkan data agar lebih siap untuk dilakukan lebih lanjut dalam rangka ekstraksi pengetahuan

3. Proses

proses penelitian adalah rangkaian tindakan apa saja yang dilakukan dalam melaksanakan penelitian. Dalam proses penelitian dilaksanakan secara sistematis, objektif dan logis. Sistematis artinya penelitian merupakan proses yang tersruktur dengan mengikuti aturan atau kaidah secara berurut, objektif artinya penelitian didasarkan pada fakta dan data, selanjutnya logis artinya penelitian mendasarkan pada pengkajian secara rasional, krisis dan analisis.

4. Pengujian akurasi dan error

Pengujian adalah untuk memastikan bahwa data yang diperoleh dari penelitian tersebut dapat dipercaya dan dapat digunakan untuk mendukung kesimpulan yang diambil.

5. Implementasi

Pada tahap ini, kebutuhan fungsional dan non fungsional serta arsitektur sistem diterapkan. Penerapan arsitektur yang telah didapatkan pada tahapan desain akan diimplementasikan dengan bahasa pemrograman. Data-data pengguna serta tupoksi hak akses dari pengguna juga diintegrasikan

Hasil Penelitian

Berdasarkan Hasil dari pengumpulan data adalah berupa data target luas tanam padi, target luas panen padi, dan target produktifitas padi dari tahun 2013-2017 serta target produksi padi dari tahun 2013-2018. Pada tabel 2 berikut ini akan menunjukkan data yang digunakan.

Kabupaten/Kota	X1	X2	Х3	Y
A= Kota Padang	13.511	13.323	5,64	75.168
B= Kota Bukittinggi	836	808	5,84	4.715
C= Kota Payakumbuh	7.315	7.258	5,55	40.282
D= Kota Padang Panjang	1.675	1.782	5,18	9.231
E= Kota Solok	2.296	2.196	5,90	12.956
F= Kota Sawahlunto	2.841	2.785	5,01	13.953
G= Kota Pariaman	6.063	6.179	5,10	31.513
H= Kabupaten Pasaman	50.887	46.218	5,11	236.266
I= Kabupaten Pasaman Barat	26.631	27.126	4,67	126.678
J= Kabupaten Lima Puluh Kota	47.123	47.530	4,85	230.521
K= Kabupaten Agam	55.553	55.287	5,44	300.706
L= Kabupaten Tanah Datar	43.525	43.742	5,75	251.517
M. Kab. Padang Pariaman	50.806	52.045	5,08	264.389
N= Kabupaten Solok	61.360	60.655	5,56	337.242
O= Kabupaten Solok Selatan	29.521	26.788	5,00	133.941
P= Kabupaten Sijunjung	18.339	18.689	4,52	84.530
Q= Kabupaten Dharmasraya	15.670	15.230	4,60	70.058

Hasil pengujian parameter prediksi produksi padi menggunakan jaringan saraf tiruan backpropagation seperti yang ditunjukkan pada gambar dibawah ini.

Epoch	Momen tum	Learning Rate	MAPE (%)	Akurasi (%)
200	0,5	0,1	13,271129	86,728871
		0,2	12,005893	87,994107
		0,3	11,886828	88,113172
		0,4	11,865150	88,134850
		0,5	11,861308	88,138692
	0,6	0,1	13,274849	86,725151
		0,2	12,006093	87,993907
		0,3	11,886851	88,113149
		0,4	11,865101	88,134899
		0,5	11,861311	88,138689
	0,7	0,1	13,273208	86,726792
		0,2	12,005597	87,994403
		0,3	11,886781	88,113219
		0,4	11,902695	88,097305
		0,5	11,861312	88,138688
	0,8	0,1	13,275736	86,724264
		0,2	12,006159	87,993841
		0,3	11,886636	88,113364
		0,4	11,865135	88,134865
		0,5	11,861316	88,138684
	0,9	0,1	13,276099	86,723901

Data hasil prediksi disalin, dipindahkan, dan diolah pada Microsoft Excel untuk melakukan proses denormalisasi. Prediksi produksi padi yang dilakukan dengan menggunakan metode jaringan saraf tiruan backpropagation sehingga diperoleh model yang menghasilkan akurasi dan tingkat kesalahan (error) yang optimal. Hasil denormalisasi sekaligus hasil

prediksi produksi padi pada kabupaten/kota di provinsi Sumatera Barat untuk tahun 2018 ditunjukkan pada tabel berikut

Kabupaten/Kota	Sebelum Denormalisasi	Setelah Denormalisasi
A	0,288718	97.808
В	0,110297	6.316
С	0,182405	43.292
D	0,119414	10.991
Е	0,126920	14.84
F	0,139737	21.413
G	0,170091	36.977
H	0,670671	293.667
I	0,443951	177.408
J	0,728241	323.188
K	0,900000	411.263
L	0,679379	298.132
M	0,754264	336.532
N	0,872649	397.238
O	0,408359	159.157
P	0,328559	118.237
Q	0,301161	104.188

Dari perbandingan target aktual produksi dengan prediksi target produksi, diperoleh tingkat akurasi hasil prediksi tersebut. Persentase keakuratan prediksi target produksi padi yang dihasilkan aplikasi dengan produksi padi aktual dapat ditunjukkan pada Tabel dibawah ini.

	Describedani	Prediksi	Almani
Kota/	Produksi		Akurasi
Kabupaten	Aktual	Produksi	Prediksi
	(Ton)	(Ton)	(%)
A	168.712	293.667	42,931
В	171.438	177.408	97,307
C	282.574	323.188	87,797
D	376.965	411.263	91,971
E	362.553	298.132	84,394
F	257.734	336.532	74,414
G	374.063	397.238	94,538
Н	111.424	159.157	70,475
I	118.473	118.237	99,860
J	79.690	104.188	81,146
K	411.263	359.876	88,865
L	45.081	43.292	98,123
M	4.520	6.316	96,720
N	8.765	10.991	96,227
O	82.054	97.808	88,092
P	12.883	14.840	96,900
Q	19.987	21.413	97,971
R	6.505	11.900	90,493
S	40.224	36.977	96,411

Kesimpulan

Algoritma Backpropagation merupakan salah satu prosedur yang paling populer, efektif, dan mudah dipelajari pada jaringan multilayer yang kompleks untuk mengoptimalkan pelatihan jaringan saraf tiruan. Backpropagation melakukan pembelajaran terbimbing (supervised learning) yang digunakan pada jaringan multi-layer yang terdiri dari beberapa hidden-layer yang bertujuan untuk meminimalkan error terhadap jaringan yang menghasilkan keluaran (output). Menggunakan fungsi pelatihan (training functions) variabel laju pemahaman (traingdx) untuk mempercepat pelatihan backpropagation, yang merupakan kombinasi dari parameter laju pemahaman (learning rate) dan momentum sehingga mendapatkan hasil yang relatif lebih akurat. Makalah ini membahas bagaimana menentukan banyak neuron dan jumlah layer yang diperlukan untuk prediksi hasil produksi padi.

Link Jurnal

https://teknosi.fti.unand.ac.id/index.php/teknosi/article/download/1642/pdf

RINGKASAN

Topik yang akan digunakan yaitu mengenai "Artificial Neural Network Algoritma Backpropagation". Artificial Neural Network (ANN) termasuk metode yang terbaik dalam melakukan prediksi. Masalah utamanya adalah bagaimana menentukan jumlah neuron dan hidden layer yang optimal sehingga akurasi prediksinya tinggi.

Artificial Neural Network (ANN) atau Jaringan Syaraf Tiruan (JST) merupakan suatu sistem pemrosesan informasi dengan suatu karakteristik menyerupai sistem saraf pada manusia yang dapat memecahkan masalah SVM dan KNN dengan melakukan training data yang besar dan ANN memiliki kemamuan untuk mentoleransi kesalahan sehingga dapat menghasilkan prediksi yang baik. Selain itu metode ini juga dapat digunakan untuk memodelkan hubungan yang kompleks antara masukan (input) dan keluaran (output) dalam menemukan pola pola pada data. Namun masalahnya adalah ANN memiliki kelemahan yaitu sulit untuk mengetahui berapa banyak neuron dan lapisan yang diperlukan, dan mengalami perlambatan saat learning.

Algoritma Backpropagation merupakan salah satu prosedur yang paling populer, efektif, dan mudah dipelajari pada jaringan multilayer yang kompleks untuk mengoptimalkan pelatihan jaringan saraf tiruan. Backpropagation melakukan pembelajaran terbimbing (supervised learning) yang digunakan pada jaringan multi-layer yang terdiri dari beberapa hidden-layer yang bertujuan untuk meminimalkan error terhadap jaringan yang menghasilkan keluaran (output). Menggunakan fungsi pelatihan (training functions) variabel laju pemahaman (traingdx) untuk mempercepat pelatihan backpropagation, yang merupakan kombinasi dari parameter laju pemahaman (learning rate) dan momentum sehingga mendapatkan hasil yang relatif lebih akurat. Makalah ini membahas bagaimana menentukan banyak neuron dan jumlah layer yang diperlukan untuk prediksi hasil produksi padi.

Berdasarkan dari hasil review yang ditulis oleh Hasdi Putra dan Nabilah Ulfa Walmi. Penulis memilih untuk menggunakan judul "Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation". Artikel ini bertujuan untuk merancang arsitektu ANN unutk melakukan prediksi terhadap produksi padi menggunakan ANN dengan algortima backpropagation. Tahapan penelitian yang dilakukan adalah mengumpulkan data produksi padi, melakukan pre-processing data, memproses prediksi, dan pengujian akurasi dan error serta implementasi. Dalam memproses prediksi dilakukan sesuai dengan rancangan model prediksi, yaitu parameter epoch, momentum, learning rate, hidden layer untuk menghasilkan keakuratan yang tinggi. Temuan yang diperolah berupa rancangan optimal untuk melakukan prediksi yaitu dengan menggunakan multilayer. Hasil pengujian sistem prediksi produksi padi yang terdiri dari 75 kali pengujian pada di 19 daerah di Sumatera Barat, diperoleh tingkat akurasi mencapai 88,14% atau dengan tingkat error yang relatif rendah yaitu 11,86%.