

Machine Learning (CS-601) Deep Architectures

Dr. Sudeep Sharma

IIIT Surat

sudeep.sharma@iiitsurat.ac.in

Introduction

Deep Learning

- Deep Learning isn't a single approach but rather a class of algorithms and topologies that you can apply to a broad spectrum of problems.
- Deep learning is certainly not new, it is experiencing explosive growth because of the intersection of deeply layered neural networks and the use of GPUs to accelerate their execution.
- The number of architectures and algorithms that are used in deep learning is wide and varied.

Introduction

Deep Learning Architectures

Fig: Deep Architectures

Source: Internet

Early layers recognize features (such as edges), later layers recombine these features into higher-level attributes.

The Architecture of Convolutional Neural Networks

The **convolution** is used to extract features by applying a filter/kernel to the input.

The **convolution** is used to extract features by applying a filter/kernel to the input.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

6 x 6

-0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

4 x 4

The **convolution** is used to extract features by applying a filter/kernel to the input.

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

1	0	-1
1	0	-1
1	0	-1

7x1	+4x1+3x1+
2x0	+5x0+3x0+
3x-	1+3x-1+2x-
= 6	

The **convolution** is used to extract features by applying a filter/kernel to input.

Original	Gaussian Blur	Sharpen	Edge Detection
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

Pooling is down sampling to reduce the width and height of features while retaining the information.

Sourde: Internet

> CNN Variants: LeNet

LeNet is a CNN that Yann LeCun introduced in 1989.

LeNet-1 (1990) – Early prototype for digit recognition.

LeNet-5 (1998) – The most well-known version, used in banking for check digit recognition.

>CNN Variants: AlexNet

AlexNet introduced in 2012 is a deep CNN that revolutionized computer vision and modern deep learning.

CNN Variants: ResNet: ResNet allows for the training of much deeper networks without suffering from the vanishing gradient problem.

(b)

- A recurrent neural network (RNN) is a deep learning model that is trained to process a sequential data input into sequential data output.
- Sequential data—such as words, sentences, or time-series data—where sequential components are interrelate.
- RNNs have a "memory" that captures information about what has been calculated so far.
- In RNN information is fed back into the system after each step.
- This feedback enables RNNs to remember prior inputs making them ideal for tasks where context is important.

Input Layer

Hidden Layer Hidden Layer Output Layer

Source: Internet

RNN Variants: LSTM: Long Short-Term Memory (LSTM) networks introduce memory cells, which have the ability to retain information over long sequences.

RNN Variants: GRU: Gated Recurrent Unit (GRU) has a simpler architecture than LSTM, with fewer parameters, which can make it easier to train and more computationally efficient.

Source: Internet

Self-Organizing Maps

- The Self-Organizing Maps (SOMs) are a type of artificial neural network used in machine learning and data analysis.
- It follows an unsupervised learning approach and trained its network through a competitive learning algorithm (CLA).
- CLA is based on the idea of competition between neurons in the network, where each neuron attempts to become the most active or "winning" neuron in response to a given input.
- SOM is used for clustering and dimensionality reduction to map multidimensional data onto lower-dimensions.
- SOMs can be used for image and signal processing, text and data mining, and bioinformatics.

Self-Organizing Maps

Self-Organizing Maps

Autoencoders

- The Autoencoders are a special type of unsupervised feedforward neural network.
- Autoencoder learns to represent data in a compressed form and then reconstructs it as closely as possible to the original form.
- For example if the input is a noisy image then the autoencoder can learn to remove noise by compressing the image into a smaller feature set and reconstructing a cleaner version of the original image.
- They are used in applications like image processing, anomaly detection, noise removal and feature extraction.

Autoencoders

Source: Internet

Restricted Boltzmann Machines

RBMs are generative models that can be trained to build a probabilistic distribution of data by using unsupervised learning techniques.

