

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Joachim Hossick-Schott Examiner: Ha, Nguyen T.

Serial No. 10/692,649 Group Art: 2831

Filing Date: October 23, 2003 Docket No.: P0010579.00

Title: **ADVANCED VALVE METAL ANODES WITH COMPLEX
INTERIOR AND SURFACE FEATURES AND METHODS FOR
PROCESSING SAME**

DECLARATION UNDER 37 C.F.R. § 1.131 ANTEATING A REFERENCE

I hereby declare the following:

- 1) I am currently and correctly named as an inventor in the pending patent application entitled "ADVANCED VALVE METAL ANODES WITH COMPLEX INTERIOR AND SURFACE FEATURES AND METHODS FOR PROCESSING SAME", U.S. patent application serial number 10/692,649.
- 2) The invention disclosed within the above-referenced patent application was conceived of by me and the other named inventors before May 30, 2003.
- 3) An Invention Disclosure Form was completed that described the invention and was submitted to the Medtronic, Inc. legal department for consideration before May 30, 2003 (a redacted copy of said form is attached hereto).
- 4) I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Date: 12 July 07

Anthony W. Rorick

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Joachim Hossick-Schott Examiner: Ha, Nguyen T.
Serial No. 10/692,649 Group Art: 2831
Filing Date: October 23, 2003 Docket No.: P0010579.00
Title: ADVANCED VALVE METAL ANODES WITH COMPLEX
INTERIOR AND SURFACE FEATURES AND METHODS FOR
PROCESSING SAME

DECLARATION UNDER 37 C.F.R. § 1.131 ANTEDATING A REFERENCE

I hereby declare the following:

- 1) I am currently and correctly named as an inventor in the pending patent application entitled "ADVANCED VALVE METAL ANODES WITH COMPLEX INTERIOR AND SURFACE FEATURES AND METHODS FOR PROCESSING SAME", U.S. patent application serial number 10/692,649.
- 2) The invention disclosed within the above-referenced patent application was conceived of by me and the other named inventors before May 30, 2003.
- 3) An Invention Disclosure Form was completed that described the invention and was submitted to the Medtronic, Inc. legal department for consideration before May 30, 2003 (a redacted copy of said form is attached hereto).
- 4) I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Date: 7/17/2007

Joachim Hossick-Schott

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Joachim Hossick-Schott Examiner: Ha, Nguyen T.

Serial No. 10/692,649 Group Art 2831

Filing Date: October 23, 2003 Docket No.: P0010579.00

Title: **ADVANCED VALVE METAL ANODES WITH COMPLEX
INTERIOR AND SURFACE FEATURES AND METHODS FOR
PROCESSING SAME**

DECLARATION UNDER 37 C.F.R. § 1.131 ANTEDATING A REFERENCE

I hereby declare the following:

- 1) I am currently and correctly named as an inventor in the pending patent application entitled "ADVANCED VALVE METAL ANODES WITH COMPLEX INTERIOR AND SURFACE FEATURES AND METHODS FOR PROCESSING SAME", U.S. patent application serial number 10/692,649.
- 2) The invention disclosed within the above-referenced patent application was conceived of by me and the other named inventors before May 30, 2003.
- 3) An Invention Disclosure Form was completed that described the invention and was submitted to the Medtronic, Inc. legal department for consideration before May 30, 2003 (a redacted copy of said form is attached hereto).
- 4) I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Date: 12 July 2007

Steve Joseph May

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Joachim Hossick-Schott Examiner: Ha, Nguyen T.

Serial No. 10/692,649 Group Art: 2831

Filing Date: October 23, 2003 Docket No.: P0010579.00

Title: **ADVANCED VALVE METAL ANODES WITH COMPLEX
INTERIOR AND SURFACE FEATURES AND METHODS FOR
PROCESSING SAME**

DECLARATION UNDER 37 C.F.R. § 1.131 ANTEDATING A REFERENCE

I hereby declare the following:

- 1) I am currently and correctly named as an inventor in the pending patent application entitled "ADVANCED VALVE METAL ANODES WITH COMPLEX INTERIOR AND SURFACE FEATURES AND METHODS FOR PROCESSING SAME", U.S. patent application serial number 10/692,649.
- 2) The invention disclosed within the above-referenced patent application was conceived of by me and the other named inventors before May 30, 2003.
- 3) An Invention Disclosure Form was completed that described the invention and was submitted to the Medtronic, Inc. legal department for consideration before May 30, 2003 (a redacted copy of said form is attached hereto).
- 4) I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Date: 3/16/03

J.D. Norton
John D. Norton

McClellan, Molly Malka

From: McClellan, Molly Malka
Sent: Thursday, June 28, 2007 11:37 AM
To: Hossick-Schott, Joachim; May, Steve; Norton, John; Rorwick, Anthony
Subject: Please sign declaration for P10579.00

Importance: High

Attachments: Hossick-Schott Dec Under 1.131.pdf; May Dec Under 1.131.pdf; Norton Dec Under 1.131.pdf; Rorwick Dec Under 1.131.pdf

Title: ADVANCED VALVE METAL ANODES WITH COMPLEX INTERIOR AND SURFACE FEATURES AND METHODS FOR PROCESSING SAME

Filed: 10/23/2003

Dear Inventors,

We are in need of a declaration from you for purposes of prosecution of this patent application, on which you are listed as an inventor. A copy is attached. Please print the one with your name on it, sign it and return it to me via mail. Any questions may be directed to the attorney on this matter, Carol Barry, at (763) 513-4673, or by way of response to this email.

Thanks,

Molly "Malka" McClellan
Medtronic CRDM Legal Team
Patent Legal Assistant to:
Girma Wolde-Michael
Carol F. Barry
7000 Central Avenue NE, Mail Stop T160
Minneapolis, MN 55432
Phone: (763) 514-8862
Fax: (763) 514-8982

Hossick-Schott May Dec Under Norton Dec Rorwick Dec
ec Under 1.131.131.pdf (51 KB) er 1.131.pdf (Sder 1.131.pdf (

DISCLOSURE FILE

*10579.00

Attorney: GWM

Division: LP003

Title: NET ELECTROLYTIC VALVE METAL ANODES INCORPORATING A TUNNEL
OR CHANNEL ARRAY

Inventors: Rossick-Schott, Joachim
May, Steve J.
Norton, John D.
Norwick, Anthony W.

Status: O Submitted Date:
Substatus: REV Approved to File

Last Reviewed:
Next Review: C

Related ID:

Outside Counsel:

Licensees: License File No.:

Other Information:

Minutes:

P 10579.00

INVENTION DISCLOSURE FORM

Please fill out this form as completely as possible. If the allotted space is not sufficient, use a separate sheet. Have your manager sign the form and forward it to the Patent Section of the Law Department. Please attach any drawings and technical descriptions that are available and assemble copies of the background articles, books, advertisements, etc., for use by your patent attorney. For a copy of this form on diskette or for information on network retrieval of this form, please call Systems Support at ext. 4111.

- | | | | |
|----|--------------------------|-----------|---|
| 1. | Investor(s) Full name(s) | Mail Stop | Home Address (include Zip Code) |
| | Joachim Hossick Schott | H136 | 8330 DuPont Avenue South, Minneapolis, MN 55418 |
| | Steve May | H136 | 8837 Vine Hill Road, Minnetonka, MN 55345 |
| | John D. Norton | H138 | 2153 Violet Lane, New Brighton, MN 55112 |
| | Anthony Rorwick | H136 | 10841 Shady Oak Court N, Champlin, MN 55318 |
2. Title of Invention: Wet Electrolytic Valve Metal Anodes Incorporating a Tunnel or Channel Array
3. How have others addressed this problem (List and attach any patents, books, articles, devices, Medtronic or competitor's products, other background materials you used or what prior art?)

tray, either

SD issue ...

IV
10
etc.
S) and US\$
the case of
a separate
To the best
be inserted

d.) Using the cathode rods as alignment posts during manufacture.
US # 5,801,917, US 5,908,161 and 5,983,472 (Pacesetter) and US #5,822,851 (Ventrifex) talk about 2 alignment holes punched through the anode foil and US # 5,275,729 does talk about at least three larger holes, one of which is, for reasons not obvious to the reader, not supposed to be used, for the purpose of inserting a mounting member into the holes. The present invention teaches the insertion of cathode into the hole, which may have the additional side benefit of aiding the alignment of the anode during the manufacture of the capacitor. Thus, it is believed that the present invention's intent is entirely different from what is taught in US #5,275,729, US # 5,801,917, US 5,908,161 and 5,983,472.

4. The invention is described on pages 63-84 of Lab Notebook No. 8601, 49-50 of Lab Notebook No. 8197, and 90-95 and 99-100 of Lab Notebook No. 10319 (Please see)

5. When was a device built which included the invention?

Who built it? Joachim Hossick Schott

Where is it: MECC North Building, Capacitor Research Lab

Who has supporting documents? Joachim Hossick Schott

Who witnessed tests? Capacitor Research Group
Building, Capacitor Research Lab

When and where? Dec 20, 2001, MECC North

6. Discuss the problems which the invention is designed to solve, referring to any prior devices of a similar nature with which you may be familiar.

Many types of electrolytic capacitors use anodized valve metals for their anode materials. Two methods are frequently used to increase the active surface area of the anode and the corresponding capacitor energy density. The first method consists of producing the anode by pressing a powder of the valve metal into a porous slug, sintering the slug, and subsequently anodizing the slug to form the active dielectric oxide. This method is frequently used for, but not limited to, Tantalum and Niobium electrolytic capacitors. The second method consists of electrochemically etching a thin foil of the valve metal to create a network of tunnels and subsequently anodizing the foil to form the active dielectric oxide. The foils are then stacked in layers to form anode elements. This method is frequently used for, but not limited to, Aluminum and Tantalum electrolytic capacitors. In each case, the network of pores in the resulting anode materials greatly impacts mass transport to and from the active anodic oxide. This may impact capacitor performance in two significant ways. The present invention improves capacitor performance by minimizing those impacts.

First, attempting to anodize valve metals, specifically Tantalum and Niobium, in the form of pressed and sintered powder electrodes at high voltages (> 200 V) frequently results in the failure of the samples during anodization because of thermal energy dissipated within the porous electrode structure. Therefore, the extremely hot and possibly chemically cracked electrolyte within the pores of the structures needs to be replenished with cool, fresh electrolyte from the reservoir. If, in an effort to increase the active energy density of the capacitor, anode thickness is increased and/or the anode porosity is altered, electrolyte replenishment is impeded. This may be offset by introducing an array of through-holes or channels into the anode to allow for electrolyte flow during the formation process.

Second, for both sintered slug and etched foil anodes, the porous electrode structure restricts movement of ions within the electrolyte necessary to complete the circuit between the anode and cathode. As a result, the equivalent series resistance (ESR) of the capacitor will increase if the anode thickness is increased and/or the anode porosity is altered in an attempt to increase the active energy density of the capacitor. Introduction of an array of through-holes or channels in the face or the side of the anode slug or stack will improve the ESR.

Further ESR improvements for Ta, Nb and Al anodes (the former two in the form of sintered slugs and the latter in the form of a slug composed of individual, anodized Al foil members, all with an array of through-holes either on the face or on the side of the anode) will come from inserting cathode wire coated with a thin layer (approximately

10 micron, actual thickness depending upon the hole diameter) of a high capacitance material such as RuO₂ or IrO₂ or NiO₂ or the like. The cathode wires will be wrapped with tubular sack of polymeric separator and inserted into the holes. The cathode wires are connected to the cathode terminal, which may either be the case of the capacitor or a separate cathode feedthrough wire. No prior art is known in this area. In addition, the cathode wires may be used as guide posts during production of Al, Ta or Nb anodes if they are welded to one part of the case prior to the assembly of the capacitor. Anodes then would be simply dropped into the cathode post array and the alignment of the anode to the case is significantly improved and simplified.

7. State the advantages of the invention over presently-known devices, systems or processes.

Clearly, the presently suggested method of anode preparation saves valuable formation time when compared to the known methods of anode preparation and will certainly increase yield during formation simply because the exchange of electrolyte is improved. Lab experiments have shown that Ta anodes with a tunnel array can be formed to 275 V in about 30 hours as opposed to formation times as high as 100+ hours in the case of anodes without the hole array, especially when the anode with the tunnel array is formed with the pulsed formation potential method disclosed earlier. In addition, lab experiments have shown that the ESR of the finished capacitor will go down by approximately 50% for anodes with the hole array vs those without.

The ESR is expected to further improve when the hole array is filled with cathode wire composed of a substrate wire such as Ru or Ti and coated with a thin layer of high capacitance metal oxide, e.g., RuO₂, IrO₂, NiO₂ or the like. The rods may also consist of etched, porous and nested Aluminum tubes, whereby an outer tube encloses one or several inner tubes in the fashion of Russian wood dolls in order to maximize surface area. The cathode wires prepared in this way, i.e., consisting of metal oxide coated cores or consisting of nested tubes, and separated from the anode with a thin polymeric separator may also favorably be used as guide posts for the insertion of Al anode plates, thereby simplifying the production of Al capacitors. Specifically, Medtronic may also benefit from this invention as it may enable Medtronic to utilize RuO₂ and other high capacitance metal oxides as cathode materials in conjunction with Al, Ta and Nb anodes as an alternative to what is proposed in the patents of Evans (e.g., US# 5,369,547 "Capacitor" (1994) and US # 5,462,325 "Capacitor" (1996) and US# 5,839,667, wherein RuO₂ and other metal oxide are patented as a cathode material to be coated on the case of the capacitor). This invention substantially inserts the cathode into the anode slug. The cathode wires may then be connected to the case or they may be connected to a separate cathode feedthrough wire. As a side effect in the case of flat Al capacitors, this invention may save valuable capacitor volume because the number of cathode sheets and separator sheets may be reduced or they may not be needed at all.

8. List all known and other possible uses for the invention.

Formation of Tantalum and Niobium sintered powder anodes, operation of sintered Ta and Nb sintered powder anodes, manufacture of capacitors with sintered Ta and Nb or capacitors with stacked Al foil plates, operation of capacitors with sintered Ta and Nb or capacitors with stacked Al foil plates.

9. Specifically describe the invention and its operation. You may use and attach copies of sketches, prints, photographs and illustrations which should be signed, witnessed and dated. Use numbers and descriptive names in descriptions and drawings.

An array of holes in the anode composed of Ta or Nb will shorten the formation time of these anodes drastically. At the same time, the volume of the anode is reduced only by a small amount, approximately 5%, and this volume reduction may actually not be noticeable in terms of a capacitance loss since the electrolyte access to the volume of the anode is improved. The hole array may be introduced at the time of pressing the anode. In the case of stacked anodized Aluminum plates, the holes may be drilled or die-cut at the time of die-cutting the individual Al plates. The ESR of Ta capacitors with the hole array does improve by about 50 %. The ESR of an Al slug composed of individual anodized Al plates is likely to improve, too. The ESR of Ta, Nb and Al caps will go down further if cathode wires coated with a high capacitance material such as RuO₂ or other suitable metal oxides are

inserted into the holes, of course with a proper polymeric separator between anode and cathode, e.g., a tubular sack made from GORE separator material (see sketches on lab book pages 99-100).

10. List all features of the invention that are believed to be novel.

- A. Introduction of an array of holes into valve metal anode slugs, consisting specifically of Ta, Nb and Ta/Nb alloyed sintered powders, to reduce formation time and improve formation yield (Hoessick Schott).
- B. Introduction of an array of holes into valve metal anode slugs, consisting specifically of Ta, Nb and Ta/Nb alloyed sintered powders, to improve ESR (Norton, Hoessick Schott).
- C. When using two or more anode slugs connected in parallel and in physical contact, pressing channels, grids, arrays of channel, etc into the surface of the slug prior to sintering or otherwise modifying the surface to promote electrolyte access between the slugs. (Norton)
- D. When using two or more anode slugs connected in parallel and in physical contact, periodically placing a more porous slug in the stack to increase electrolyte access. (Norton)
- E. Introduction of high capacitance cathode wire(s) into the tunnel array to further improve ESR. (~~#423144 & 44~~)
- F. Introduction of high capacitance cathode wire(s) into the tunnel array to ease placement / alignment of the anode during production of the capacitor. (May, Hoessick Schott)
- G. Using high capacitance, metal oxide coated wires as the inserted cathode material and connecting the cathode wires to either a separate cathode feedthrough wire or directly to the case of the capacitor. (Hoessick Schott)
- H. Orienting the anode plates perpendicular to the cathode plates, rather than parallel to the cathode plates, in a stacked plate capacitor to increase electrolyte access. (Norton, Horvick)
- I. In a stacked plate capacitor in which the anode and cathode plates are perpendicular, periodically placing a porous separator or other material between anode plates to increase electrolyte access. (Norton)
- J. In a stacked plate capacitor in which the anode and cathode plates are perpendicular, periodically placing a more thoroughly etched and more porous foil in the stack to increase electrolyte access. (Norton)
- K. In a stacked plate capacitor in which the anode and cathode plates are perpendicular, intentionally increase the extent of etching in the anode foil in parallel with the foil surface. (Norton)
- L. In a stacked plate capacitor in which the anode plates have through holes and an inserted cathode in the through hole, whereby the cathode consists of nested Aluminum tubes. (May)

11. Sale or Publication (Needed to establish the date of any printed publication, public use or sale, since no U.S. patent application may be filed after one year from such date.)

- a. If a device has been offered, or will be offered for sale, or used for profit or otherwise publicly disclosed-- state when and to whom delivered and how used?

N/A

- b. Has a printed description of this invention been made available to persons outside the company? How and when and was use restricted? (e.g., licensing agreement, non-disclosure agreement, etc., legends, etc.)

N/A

12. Inventor(s) Signature(s) (REQUIRED):

Steven J. May

Manager's Comments

How is this invention important to your products, plans or goals?

Manager's Signature (REQUIRED) _____

Date _____

(Manager: Please forward to Patent Section of Law Department upon completion of your review.)

/ TITLE Block Key processing idea

Project No. 1119

Book No. 1119

From Page No.

I have had not much luck trying to find
drill bits, etc., the last about 10 years but
they all, a direct all failed me, as did
the need it to a finishing village part
therefore, I came up with the idea of
drilling holes into the key, finally through
the end of the and finally got after trying
since I now have not reached a place to make
a hand drill (Walter) and I made
holes 5/16" 10 mm, one at the top and
one on an angle available they were
the size of the key using a file I made
and had the experience to make to

Tantalum anodes (Swiss cheese models)

for the anode with
cable in bending in all cases
will be the pattern to
them are bent
in too far will break
No. 2

Witnessed & Understood by me:

Guthell Goss

Witnessed by

John Weller Jr.

Recorded by

John Weller Jr.

Project No. EL69
Book No. 2020

From Page No. 2

Page No. 1
H. Accuraria of the Lake and the Woods
Second Stage Open I measured stage of

Thick slug failures

It continually goes round & round the sun. In addition, we find that the sun has a motion around the center of the solar system.

Executive Summary of a 3-Year Performance of 407 Black students measured and of 300 white public students.

Witnessed & Understood by me,

Highway 6589

www.wanhu.org

Recorded by
Dad - Wm F. G.

the results proceeding like

Project No. 1019
Book No. 1010

52

From Page No. 91

currents and made fast together here.
The reason for the improved performance is
probably improved connection to hot electrolyte
can will easily come out of the structure
and from the hot can be easily
removed through the outer structure and holes
started the work about 10 days ago and
have made now four different open faced plates
(Bam) from various powders. I took
two of the tallest open ended and one en-
closed one and could see from a few
operations the enclosed ones were all the
more stable at the following ages, 1/2 hour
the thermal and the charge results in every case

To Page No.

Witnessed & Understood by me

W. H. Waters

6

Invented by

Jackie Morris Clark

Recorded by

Jackie Morris Clark

as packed for can 21

on Page No. 92

*As indicated on page 92 the anode layer
are wound from a can with an electrode
cathode and an anode layer in the following
sequence.*

Cans + Cathodes (RuO_2)

Cans + Anodes

2. RuO_2 coated Ti

*cut from the can
and cut into shape
and spot welded*

into Re 121 G1 can

(2 tabs per can)

The following order

was used

*1) 26.750 g powder
small tabs 100 x 10 mm
joined to 225L*

2) 14.250 (2nd powder)

*small tabs 100 x 10 mm
1.0 sec joined to 225L*

*3) 9.000 powder
100 x 10 mm*

1.0 sec joined to 225L

* No.

Understood by me
John H. White 35701

Entered by

John H. White

Recorded by

John H. White

TITLE *Father Goede's Almanac*

From Page No. 50

Wrapping with separator

Cross Wise Weld

The time and day were
wrapped with grace
so far as we could get it for
the better and the day
will be numbered from the sun
with me good - will be
true friend to you
and all the best
and all the best
and all the best
and all the best

The Yes we are the
called to tell you we do
you can be you always be
the best in the case of a
and all God's people proceed
the man who has the
for you

Wittgenstein Understood by me
Diepholz 33

*Recorded by
The Band of Christ*

*Recorded by
The Band of Christ*

On Page No. 10

Charge Times

A CFCI probe was placed on a flat panel was used to the electrolyte. It had to be removed because it caused a short circuit.

After drying, I connected the capacitor to the Faraday coating voltmeter.

26,700 powder - 200 Volts
27,000 powder - 180 Volts
26,000 powder - 160 Volts

The results are plotted on the left and are surprising. Good design has a place.

One selected and the capacitor had voltage at the starting voltage.

Signed & Understood by me,

Debra Weller

Recorded by Debra Weller
Reviewed by Debra Weller

e No. 2020

23Knode.z
28_75Knode.z
40Knode.z

23Knode.z
28_75Knode.z
40Knode.z
higher node count
leads to higher conductance
and lower capacitance

Y.S.

title that precise idea

From Page No.

In your No - 95 I have introduced the
principle of adding bars to the valve and end
structure. During my talk in S. Scotland Union
on Dec. 21, I also mentioned that due date may be
full date called date the time I will indicate
at the receipt.

Hence on every end valve and liner
valve and end, will be up to the R. of the
capacity or dimensioned at the present stage
that it can be used with the
end will not interfere. The end
will be done by the
particulars for the particular valves
high capacity carry.
In this case, I have had a
very much prepared for better

Witnessed & Understood by me:

John A. Smith
35704

Signed by
John A. Smith
35704

To Page No.

printed from 100

101

wanted back to be printed by after cold
weather or later cutting out by a man

~~using~~ down with the other end forming a
carriage in the direction way until notice is
sent of it in place where a re false
writing structure

written and
undertaken by
me

Date: October 11
1870

Decorated by
John Marshall

Revised by
John Marshall

TITLE Track pricing idea

Project No. T-149
Book No. 10310

10

From Page No. 9

The array of holes with variable character may
be introduced into the face of the side of either
end (see sketch).

(top view) or (side view) the upper element

or
top view

or
side view
(see above)

The card could consist of the sequence
number (e.g. Va for 16) as it could consist
of stacked layers of the cards which have been
already formed.

In the top card, first part of the code at least
will have to additional length to fit into the
card slot, according to a convention like this
fig. the 1st card of the 1st batch, the plates

Witnessed & Understood by me,

Chris Niles 35304

Issued by
Foster Holt Scott

Recorded by

Foster Holt Scott

CSR Reduction in Hyper Alumina Capital

Page No. 8

The unique electrode assembly uses a solid cable or
ground rod connection. One method to reduce the cost is
to provide a large number of long fiber glass rods
cut off into a required size package, arranged with cable
or electrode at each edge so the cable goes

Bare cable

To slow down the oxidation current and thus parallel to the
interactions with the cables before entering the steel tanks
(the cables protect against the oxidation of the cables
internally). This results in a relatively high equivalent
copper reduction (ESR) per electrode.

Copper ESR may be reduced in several ways
by either using thin sheet copper (surprisingly good reduction
rate and life) or periodically. The standard is that the
electrodes must last at least 100 cycles at 100% reduction
efficiency.

Another method to reduce this shortcoming is to use
anodes aluminum foil or expanded aluminum in the anode
which, the anode reduce ESR while not being subjected to
excess anode volume efficiency.

Another method which is probably most easily adopted is to either
a) use a solid cable (and plan the fiber part to wind
off with all the pipe work) or the surface of the steel
sheet by some means or b) use a solid cable which
will be deep inside available for this situation
however the original function may be disturbed and connected
anode of the cable to anode will reduce the ESR of the
cables.

Assed & Understood by me,

1 - 1 - 1 - 1

Insgtated by

encl 5

E ESR Protection (Internal)

Project No. 2029

Book No. 2024

62

a Page Note 3

Alternatively if the input voltage can be changed
to be proportional to the initial value ESR may be
greatly reduced. This could be accomplished by increasing
the load and using the gear in the CW gear of
the motor. Subsequent values of the load will then
be in parallel with the shunt resistance.
The use of a relay will facilitate accurate control
in this situation.

Received & Understood by me,

John D. Miller

Invented by

John D. Miller

a Page Note 3

Examination with Salaried Office

on Page No.

Desired or agreed to go outside the
limits of the State to collect my
debts and to do so in a summary
manner only.

Using this file, examine me on each of the
aforesaid and any other facts which you
may desire to know about my
business and my financial condition.
I will answer all your questions to the best
of my knowledge and ability.

The above is true and correct to the best
of my knowledge and belief.

My hands have been
properly washed
before signing.

I declare under oath that I have not
been to the office of any attorney
or agent and have given no
specification of any kind.

This is a true statement
and is signed by me.

Page No.

Witnessed & Understood by me,

Date

Invented by

Recorded by

Shrub Hill Builders with Inc. E&R

Project No. 10169
Book No. 2122

44

Page No.

On Day 42 at your workplace a method to described how to lay round metal electrodes for concrete using a tape measure
process

If possible to identify these electrodes with they are
re like "green tape" which is used for insulation
Explain & Show Drawing (C-2) of the electrodes

1) Prepare the Super surface

This will provide copies of greater facility between
concrete and the tape, with this being the best
possible adhesion

2) Draw chalky, grey, lines of the size of the electrode
you will use. When you have electrodes of
various sizes drawn in all areas of the slab
in the required regions of the slab

3) Drill holes through the tape in the locations
accord to the large plan surface. This can be
done in single pieces, since it is not
necessary to do this

4) Lay a number of the electrodes

5) Drill holes through the tape in the locations
accord to the small plan surface. This can be
done in single pieces, since it is not
necessary to do this

ed & Understood by me,

Tom Vite

Page No.

Initiated by
Recorded by