射影行列の冪等性と対称性

「一度射影した点をもう一度射影しても変化しない」という性質は、次のような数式として表現できる

ref: 線形代数セミナー p7

・ 射影行列の冪等性 射影行列 P_U は冪等である

$$P_{\mathcal{U}}^2 = P_{\mathcal{U}}$$

☎ 証明

$$egin{aligned} P_{\mathcal{U}}^2 &= \left(\sum_{i=1}^r oldsymbol{u}_i oldsymbol{u}_i^ op oldsymbol{u}_i^ op oldsymbol{u}_i^ op oldsymbol{u}_i^ op oldsymbol{u}_i^ op oldsymbol{u}_j^ op \ &= \sum_{i=1}^r \sum_{j=1}^r oldsymbol{u}_i oldsymbol{u}_i^ op oldsymbol{u}_j^ op \ &= \sum_{i=1}^r \sum_{j=1}^r \delta_{ij} oldsymbol{u}_i oldsymbol{u}_j^ op \ &= \sum_{i=1}^r \sum_{j=1}^r \delta_{ij} oldsymbol{u}_i oldsymbol{u}_j^ op \end{aligned}$$

ここで、 δ_{ij} を含むことから、i=j の場合のみ項が残り、

$$P_{\mathcal{U}}^2 = \sum_{i=1}^r oldsymbol{u}_i oldsymbol{u}_i^ op = P_{\mathcal{U}}$$

が得られる

この $P_u^2 = P_u$ という式は、一般の(必ずしも直交射影でない)射影の定義として用いられる

次の性質は、射影が直交射影であることを示すものである

・射影行列の対称性 射影行列 P_u は、対称行列である

$$P_{\mathcal{U}}^{\top} = P_{\mathcal{U}}$$

証明

$$P_{\mathcal{U}}^{ op} = \left(\sum_{i=1}^r oldsymbol{u}_i oldsymbol{u}_i^{ op}
ight)^{ op}$$

和の転置は転置の和であることを用いて、

$$P_{\mathcal{U}}^{ op} = \sum_{i=1}^r (oldsymbol{u}_i oldsymbol{u}_i^{ op})^{ op}$$

また、積の転置は転置の積だが、積の順序が入れ替わることに注意して、

$$P_{\mathcal{U}}^{ op} = \sum_{i=1}^r (oldsymbol{u}_i^{ op})^{ op} oldsymbol{u}_i^{ op}$$

転置の転置をとると元に戻るので、

$$P_{\mathcal{U}}^{ op} = \sum_{i=1}^r oldsymbol{u}_i oldsymbol{u}_i^{ op} = P_{\mathcal{U}}$$

が得られる

射影行列は冪等かつ対称であるが、その逆も成り立つ

・ 対称性と冪等性による射影行列の特徴づけ 対称かつ冪等な 行列は、ある部分空間への射影行列となる n 次対称行列 P は、n 個の実数の固有値 $\lambda_1,\ldots,\lambda_n$ を持つ これらに属する固有ベクトルを $oldsymbol{u}_1,\ldots,oldsymbol{u}_n$ とすると、 $oldsymbol{u}_i$ は互い に直交する

固有値と固有ベクトルの関係から、

$$P\boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i$$

両辺に左から P をかけると、

$$P^2 \boldsymbol{u}_i = \lambda_i P \boldsymbol{u}_i = \lambda_i \cdot \lambda_i \boldsymbol{u}_i = \lambda_i^2 \boldsymbol{u}_i$$

 $\therefore P^2 \boldsymbol{u}_i = \lambda_i^2 \boldsymbol{u}_i$

ここで、P は冪等なので、 $P^2 = P$ が成り立つ

$$P^2 \boldsymbol{u}_i = P \boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i$$

これを用いると、

$$\lambda_i oldsymbol{u}_i = \lambda_i^2 oldsymbol{u}_i$$

固有ベクトル \mathbf{u}_i は零ベクトルではないので、

$$\lambda_i = \lambda_i^2$$

よって、

$$\lambda_i^2 - \lambda_i = 0$$
$$\lambda_i(\lambda_i - 1) = 0$$
$$\lambda_i = 0, 1$$

すなわち、固有値は 0 か 1 のいずれかである

そこで、

$$\lambda_1 = \dots = \lambda_r = 1$$
 $\lambda_{r+1} = \dots = \lambda_n = 0$

とおくと、

$$Poldsymbol{u}_i = egin{cases} oldsymbol{u}_i & (i=1,\ldots,r) \ 0 & (i=r+1,\ldots,n) \end{cases}$$

よって、P は $\{oldsymbol{u}_1,\ldots,oldsymbol{u}_r\}$ の張る部分空間への射影行列である