Exploring Centered vs Non-centered Parameterizations in Stan

Susanna Makela

February 25, 2017

Introduction

In running simulations with a simple hierarchical model, I noticed that the centered parameterization often outperformed the non-centered one. I thought that was strange, since from what I've read (cite things here), it seems like the non-centered parameterization would be superior in most cases. To get a better idea of what's going on, I did a quick simulation using a simple model with varying intercepts:

$$y_i \sim N(\beta_{0j[i]} + \beta_1 x_i, \sigma_y^2), \text{ for } i = 1, ..., N$$

 $\beta_{0j} \sim N(\mu_0 + \gamma_0 w_j, \tau_0), \text{ for } j = 1, ..., J,$

where the notation j[i] indicates the group j to which unit i belongs. Here x_i is a unit-level predictor and w_j is a group-level predictor.

Models

To see how the presence of these predictors affects the efficiency of each parameterization, I created several variations on the above model as described below.

1. No unit- or group-level predictors; $\beta_1=0, \gamma_0=0$

$$y_i \sim N(\beta_{0j[i]}, \sigma_y^2)$$

$$\beta_{0i} \sim N(\mu_0, \tau_0)$$

2. Group-level predictor only; $\beta_1 = 0$

$$y_i \sim N(\beta_{0j[i]}, \sigma_y^2)$$

$$\beta_{0j} \sim N(\mu_0 + \gamma_0 w_j, \tau_0)$$

3. Unit-level predictor only; $\gamma_0 = 0$

$$y_i \sim N(\beta_{0j[i]} + \beta_1 x_i, \sigma_y^2)$$

$$\beta_{0i} \sim N(\mu_0, \tau_0)$$

4. "Full" model

$$y_i \sim N(\beta_{0i[i]} + \beta_1 x_i, \sigma_y^2)$$

$$\beta_{0j} \sim N(\mu_0 + \gamma_0 w_j, \tau_0)$$

I generated data from each model for three values of J and five values of τ_0 :

$$J = 5, 15, 30$$
, and $\tau_0 = 0.001, 0.01, 0.1, 1.0, 10$.

I set $\beta_1 = 0.5$ and $\gamma_0 = 0.8$ (except as described above), $\mu_0 = 0.2$, $\sigma_y = 0.05$, and sampled 30 values of y_i in each group, so that N = 30J. I created the predictors x_i as $x_i \sim U(-1,1)$, $i = 1, \ldots, N$ and w_j as $w_j \sim U(-1,1)$, $j = 1, \ldots, J$. I used the same seed for generating each dataset, so they have varying amounts of overlap.

Stan models

For each simulated dataset, I fit the corresponding model from which it was generated. I added the weakly informative priors,

$$\pi(\mu_0) \sim N(0, 1)$$
 $\pi(\gamma_0) \sim N(0, 1)$
 $\pi(\tau_0) \sim \text{Half-Cauchy}(0, 2.5)$
 $\pi(\beta_1) \sim N(0, 1)$
 $\pi(\sigma_y) \sim \text{Half-Cauchy}(0, 2.5),$

omitting the priors for γ_0 and μ_0 in models 1-3 as appropriate. Each time, I ran Stan for 2,000 iterations with four chains and the parameter adapt_delta set to 0.99. Note that there were some instances where Stan returned warnings about divergent transitions.

Results

Figure ?? shows the results of fitting each of the four models described above to data generated from that model, using both the centered and non-centered parameterizations. The y-axis is the effective sample size (ESS) per second for τ_0 , the group-level standard deviation of the random intercepts, against the true value of τ_0 under which the data were generated. The columns correspond to the four models and the rows to the number of groups J in the data.

Surprisingly, in contrast to the results of Betancourt and Girolami (though that was slightly different model), the centered parameterization always performs better for $\tau_0 > 0.1$. When the number of groups is small (J = 5), the non-centered parameterization is better only when the group-level variance is very small ($\tau_0 = 0.001$) and the model includes both a unit- and a group-level predictor.

Figure 1: Plots of effective sample size (ESS) per second (\log_{10} scale) against τ_0 , the group-level variability of the random intercepts. The rows are for the number of groups J, and the columns are for the four models described in Models. cp = centered parameterization; ncp = non-centered parameterization.