

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM140400170004

Email: ee.shenzhen@sgs.com Page: 1 of 29

FCC REPORT

Application No: SZEM1507004061CR
Applicant: CANARY CONNECT INC.
Manufacturer: CANARY CONNECT INC.

Factory: SKY LIGHT Electronic (ShenZhen) Limited

Product Name: Canary Model No.(EUT): CAN100

Add Model No.: CANXXYY---XX-region(A-Z),YY-color(A-Z)

Trade Mark: Canary

FCC ID: 2ACDL-C100

47 CFR Part 15, Subpart C (2014) (only for Conducted

Standards: Emission, Conducted Peak Output Power, Spurious RF

Transmit Conducted Emissions, Radiated Transmit Spurious

Emissions)

Date of Receipt: 2015-07-09

Date of Test: 2015-07-13 to 2015-07-23

Date of Issue: 2015-07-28

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM140400170004

Page: 2 of 29

2 Version

Revision Record							
Version Chapter Date Modifier Remark							
00		2015-07-28		Original			

Authorized for issue by:		
Tested By	Eric Fu	2015-07-23
	(Eric Fu) /Project Engineer	Date
Prepared By	Jade Chen	2015-07-28
	(Jade Chen) /Clerk	Date
Checked By	Owen Zhou	2015-07-28
	(Owen Zhou) /Reviewer	Date

Report No.: SZEM140400170004

Page: 3 of 29

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2009	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2009	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

Remark:

Model No.: CAN100, CANXXYY---XX-region(A-Z), YY-color(A-Z).

Only the model CAN100 was tested, since the electrical circuit design, PCB layout, components used and internal wiring were identical for the above models, only different on region and color.

This test report (Ref. No.: SZEM140400170004) is only valid with the original test report (Ref. No.: SZEM140400170001).

Review this report and original report, this report just added an adaptor and updated the standard.

Considering to the change, pre-scan were performed on the sample in this report to find the items which can be influential to the result in the original test report for fully retest.

Therefore in this report Conducted Emission, Conducted Peak Output Power, Spurious RF Transmit Conducted Emissions and Radiated Transmit Spurious Emissions were fully retested on CAN100 and shown the data in this report, other tests please refer to original report SZEM140400170001.

Additionally, Updated the below standards:

Original report standard The newest report standard

47 CFR Part 15, Subpart C (2013) 47 CFR Part 15, Subpart C (2014)

.

Report No.: SZEM140400170004

Page: 4 of 29

4 Contents

			Page
1	CC	OVER PAGE	1
2	VE	ERSION	2
3		ST SUMMARY	
_		K:	
4		ONTENTS	
5	GE	ENERAL INFORMATION	5
	5.1 5.2	CLIENT INFORMATIONGENERAL DESCRIPTION OF EUT	5
	5.3 5.4	TEST ENVIRONMENT DESCRIPTION OF SUPPORT UNITS	7
	5.5 5.6	TEST LOCATIONTEST FACILITY	8
	5.7 5.8	DEVIATION FROM STANDARDS	8
	5.9 5.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER EQUIPMENT LIST	
6	TE	ST RESULTS AND MEASUREMENT DATA	12
	6.1 6.2 6.3 6.4	ANTENNA REQUIREMENTCONDUCTED EMISSIONSCONDUCTED PEAK OUTPUT POWERRADIATED SPURIOUS EMISSION	13 17 20
_	6.4		
7	PH	HOTOGRAPHS - EUT TEST SETUP	
	7.1 7.2 7.3	CONDUCTED EMISSIONRADIATED EMISSIONRADIATED SPURIOUS EMISSION	27
0	_	ACTOCRABLE FUT CONSTRUCTIONAL DETAILS	

Report No.: SZEM140400170004

Page: 5 of 29

5 General Information

5.1 Client Information

Applicant:	CANARY CONNECT INC.
Address of Applicant:	101 Avenue of the Americas - 18th floor,New York, NY10013,USA
Manufacturer:	CANARY CONNECT INC.
Address of Manufacturer:	101 Avenue of the Americas - 18th floor,New York, NY10013,USA
Factory:	SKYLIGHT Electronic(Shenzhen) Limited
Address of Factory:	No. 5&6 Building, JinBi Industiral Area, HuangTian, BaoAn, Shenzhen, China

5.2 General Description of EUT

Canary					
CAN100					
Canary					
2402MHz ⁻	~2480MHz				
4.0					
Frequency	Hopping Spread Spectrum(FHSS)				
GFSK					
40					
Adaptive Frequency Hopping systems					
Fixed production					
Integral					
0dBi					
Supply by	adapter through USB port				
	e: 200cm, unshielded e: 100cm, unshielded				
New: Original:	Model: CAN100USAPT Input voltage: AC 100-240V 50/60Hz 0.3A Output voltage: DC5V 2A Test voltage: AC120V 60Hz Model: PA03-050200U-U INPUT: 100-240V~50/60Hz 0.3A OUTPUT: 5V == 2A				
	CAN100 Canary 2402MHz 4.0 Frequency GFSK 40 Adaptive F Fixed proc Integral 0dBi Supply by USB cable AUX cable New:				

Report No.: SZEM140400170004

Page: 6 of 29

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The Lowest channel	2402MHz		
The Middle channel	2440MHz		
The Highest channel	2480MHz		

Report No.: SZEM140400170004

Page: 7 of 29

5.3 Test Environment

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	55 % RH		
Atmospheric Pressure:	1005mbar		

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM140400170004

Page: 8 of 29

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 10m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM140400170004

Page: 9 of 29

5.10 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2016-05-13		
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-24		
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2016-05-13		
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2015-08-30		
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2015-08-30		
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2015-08-30		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2016-05-13		
8	Coaxial Cable	SGS	N/A	SEL0025	2016-05-13		
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24		
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24		
11	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13		

Report No.: SZEM140400170004

Page: 10 of 29

			ı aye.	10 01 23			
	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)		
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2016-05-13		
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16		
3	EMI Test software	AUDIX	E3	SEL0050	N/A		
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2015-10-24		
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-24		
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2015-10-24		
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2016-05-13		
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-24		
9	Coaxial cable	SGS	N/A	SEL0027	2016-05-13		
10	Coaxial cable	SGS	N/A	SEL0189	2016-05-13		
11	Coaxial cable	SGS	N/A	SEL0121	2016-05-13		
12	Coaxial cable	SGS	N/A	SEL0178	2016-05-13		
13	Band filter	Amindeon	82346	SEL0094	2016-05-13		
14	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13		
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24		
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24		
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2016-05-13		
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2015-10-24		
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2016-05-13		

Report No.: SZEM140400170004

Page: 11 of 29

	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2016-05-13
5	Coaxial cable	SGS	N/A	SEL0179	2016-05-13
6	Barometer	ChangChun	DYM3	SEL0088	2016-05-13
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2016-04-25
8	Band filter	amideon	82346	SEL0094	2016-05-13
9	POWER METER	R&S	NRVS	SEL0144	2015-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2016-04-25
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2015-10-24

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM140400170004

Page: 12 of 29

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM140400170004

Page: 13 of 29

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2009						
Test Frequency Range:	150kHz to 30MHz						
Limit:	Francisco (MIII-)	Limit (d	lBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithn	n of the frequency.					
Test Procedure:	st Procedure: 1) The mains terminal disturbance voltage test was conducted in a shie room.						
	 The EUT was connected to Impedance Stabilization Not impedance. The power call connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Life exceeded. The tabletop EUT was place ground reference plane. At placed on the horizontal ground reference plane. At vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the ground the EUT and associated extends the EUT and associated extends in order to find the maximum equipment and all of the in ANSI C63.10: 2009 on control 	etwork) which provides oles of all other units of SN 2, which was bonder the way as the LISN 1 for et outlet strip was used ISN provided the rating oced upon a non-metallic and for floor-standing arround reference plane, the a vertical ground reference blane was bonded to the 1 was placed 0.8 m from the vertical ground reference und reference plane. The formal the ground reference plane of the LISN 1 and the quipment was at least 0 the company of the relative terface cables must be	is a 50Ω/50μH + 5Ω line is the EUT were do to the ground or the unit being do to connect multiple of the LISN was not contained the LISN was not contained the EUT were done to the EUT were done to the boundary of the plane for LISNs his distance was EUT. All other units of the positions of	e vas			

Report No.: SZEM140400170004

Page: 14 of 29

Report No.: SZEM140400170004

Page: 15 of 29

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room

Condition : 47 CFR PART 15 B AV CE LINE

Job No. : 4061CR

Test mode : a

	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15160	0.02	9.82	39.07	48.91	55.91	-7.00	Peak
2	0.19242	0.02	9.83	39.02	48.87	53.93	-5.06	Peak
3	0.28178	0.01	9.84	35.21	45.07	50.76	-5.70	Peak
4	0.40187	0.01	9.85	32.35	42.22	47.81	-5.60	Peak
5	0.83932	0.02	9.89	32.63	42.53	46.00	-3.47	Peak
6	19.635	0.02	10.29	26.97	37.28	50.00	-12.72	Peak

Report No.: SZEM140400170004

Page: 16 of 29

Neutral line:

Site : Shielding Room

Condition : 47 CFR PART 15 B AV CE NEUTRAL

Job No. : 4061CR Test mode : a

	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15816	0.02	9.79	35.71	45.52	55.56	-10.04	Peak
2	0.18152	0.02	9.83	36.54	46.39	54.42	-8.03	Peak
3	0.20833	0.02	9.85	35.51	45.38	53.27	-7.89	Peak
4	0.26724	0.01	9.86	36.39	46.27	51.20	-4.94	Peak
5	0.44679	0.01	9.88	32.62	42.50	46.93	-4.43	Peak
6	0.84826	0.02	9.99	30.94	40.95	46.00	-5.05	Peak

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM140400170004

Page: 17 of 29

6.3 Conducted Peak Output Power

Measurement Data

	GFSK mode										
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result								
Lowest	-1.04	30.00	Pass								
Middle	0.21	30.00	Pass								
Highest	1.57	30.00	Pass								

Report No.: SZEM140400170004

Page: 18 of 29

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Report No.: SZEM140400170004

Page: 19 of 29

Test mode: GFSK Test channel: Highest

Report No.: SZEM140400170004

Page: 20 of 29

6.4 Radiated Spurious Emission

6.4.1 Spurious Emiss	ions							
Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15	.205				
Test Method:	ANSI C63.10 2009							
Test Site:	Measurement Distance	: 3n	n (Semi-Anech	noic Cham	ber)		
Receiver Setup:	Frequency		Detector	RBW		VBW	Remark	
	0.009MHz-0.090MH	Z	Peak	10kHz	<u>z</u>	30kHz	Peak	
	0.009MHz-0.090MH	Z	Average	10kHz	Z	30kHz	Average	
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	Z	30kHz	Quasi-peak	
	0.110MHz-0.490MH	Z	Peak	10kHz	Z	30kHz	Peak	
	0.110MHz-0.490MH	0.110MHz-0.490MHz			<u>z</u>	30kHz	Average	
			Quasi-peak	10kHz	Z	30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kH	lz	300kHz	Quasi-peak	
	Above 1GHz		Peak	1MHz	<u>.</u>	3MHz	Peak	
	Above Tariz		Peak	1MHz	<u>.</u>	10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	n) Remark		Measureme distance (n	
	0.009MHz-0.490MHz	2	400/F(kHz)	-		-	300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-		-	30	
	1.705MHz-30MHz		30	-		-	30	
	30MHz-88MHz		100	40.0	Qı	uasi-peak	3	
	88MHz-216MHz		150	43.5	Qι	uasi-peak	3	
	216MHz-960MHz		200	46.0	Qı	uasi-peak	3	
	960MHz-1GHz		500	54.0	Qı	uasi-peak	3	
	Above 1GHz		500	54.0	1	Average	3	
	mitted ave	on peak radio erage emission ies to the tota	n					
Test Setup:								

Report No.: SZEM140400170004

Page: 21 of 29

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
- h. Repeat above procedures until all frequencies measured was complete.

Exploratory Test

Non-hopping transmitting mode with all kind of modulation and all kind of

Report No.: SZEM140400170004

Page: 22 of 29

Mode:	data type Transmitting mode.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM140400170004

Page: 23 of 29

Radiated Emission below 1GHz						
30MHz~1GHz (QP)						
Test mode:	Transmitting	Vertical				

Condition: 47 CFR PART 15B 3m VERTICAL

Job No. : 4061CR Test Mode: a

	Freq	CableAntenna F Loss Factor F		_	Preamp Read Factor Level		Limit Line	Over Limit
	MHz	d₿	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 6	38. 89 47. 66 125. 01 175. 04 383. 93 750. 11	0.77 0.91 1.61 2.01 3.18 4.85	13.72 9.73 8.00 9.70 16.08 21.60	25. 75 25. 69 25. 62 25. 21 25. 08 26. 39	41.80 45.31 54.03 46.76 42.69 40.50	30. 54 30. 26 38. 02 33. 26 36. 87 40. 56	40.00 40.00 43.50 43.50 46.00	-9.46 -9.74 -5.48 -10.24 -9.13 -5.44

Report No.: SZEM140400170004

Page: 24 of 29

Test mode: Transmitting Horizontal

Condition: 47 CFR PART 15B 3m HORIZONTAL

Job No. : 4061CR

Test Mode: a

CSC	Freq			Preamp Read Factor Level			Limit Line	Over Limit
	MHz	dB	dB/m	dB	-dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5 6	125. 01 175. 04 273. 23 438. 66 750. 11 875. 25	1.61 2.01 2.58 3.38 4.85 5.16	8.00 9.70 12.66 16.63 21.60 22.80	25. 62 25. 21 24. 31 26. 04 26. 39 25. 80	40.12 41.82 41.33	24. 41 31. 03 31. 05 35. 79 41. 39 37. 31	43.50 46.00	-19.09 -12.47 -14.95 -10.21 -4.61 -8.69

Report No.: SZEM140400170004

Page: 25 of 29

Transmitte	er Emiss	sion above	1GHz					
Test mode:	(GFSK	Test	channel:	Lowest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1750.702	2.83	29.89	38.40	45.49	39.81	74.00	-34.19	Vertical
3616.451	4.15	33.01	38.79	45.73	44.10	74.00	-29.90	Vertical
4804.000	4.29	34.70	39.24	44.04	43.79	74.00	-30.21	Vertical
7206.000	5.30	35.63	39.07	45.05	46.91	74.00	-27.09	Vertical
9608.000	6.52	37.33	37.93	42.48	48.40	74.00	-25.60	Vertical
11457.210	7.74	38.19	38.45	43.16	50.64	74.00	-23.36	Vertical
1814.218	2.89	30.22	38.41	46.60	41.30	74.00	-32.70	Horizontal
3472.118	3.89	32.86	38.73	46.95	44.97	74.00	-29.03	Horizontal
4804.000	4.29	34.70	39.24	44.99	44.74	74.00	-29.26	Horizontal
7206.000	5.30	35.63	39.07	44.97	46.83	74.00	-27.17	Horizontal
9608.000	6.52	37.33	37.93	42.84	48.76	74.00	-25.24	Horizontal
11283.550	7.60	38.13	38.36	43.52	50.89	74.00	-23.11	Horizontal

Test mode:	1	GFSK	Test	channel:	Middle	Rema	rk:	Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over limit (dB)	Polarization
1750.702	2.83	29.89	38.40	47.13	41.45	74.00	-32.55	Vertical
3653.463	4.12	33.04	38.81	46.76	45.11	74.00	-28.89	Vertical
4880.000	4.36	34.78	39.26	45.48	45.36	74.00	-28.64	Vertical
7320.000	5.21	35.51	39.06	45.25	46.91	74.00	-27.09	Vertical
9760.000	6.49	37.80	37.84	41.52	47.97	74.00	-26.03	Vertical
11399.030	7.86	38.15	38.42	44.33	51.92	74.00	-22.08	Vertical
1724.166	2.81	29.77	38.40	46.70	40.88	74.00	-33.12	Horizontal
3653.463	4.12	33.04	38.81	46.76	45.11	74.00	-28.89	Horizontal
4880.000	4.36	34.78	39.26	44.62	44.50	74.00	-29.50	Horizontal
7320.000	5.21	35.51	39.06	45.25	46.91	74.00	-27.09	Horizontal
9760.000	6.49	37.80	37.84	42.86	49.31	74.00	-24.69	Horizontal
11515.680	7.62	38.24	38.47	43.96	51.35	74.00	-22.65	Horizontal

Report No.: SZEM140400170004

Page: 26 of 29

Test mode:		GFSK	Test	channel:	Highest		Rema	rk:	Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)		mit ιV/m)	Over limit (dB)	Polarization
1933.424	2.97	31.19	38.42	45.96	41.70	74	.00	-32.30	Vertical
3728.625	4.05	33.10	38.84	46.83	45.14	74	.00	-28.86	Vertical
4960.000	4.43	34.86	39.29	45.42	45.42	74	.00	-28.58	Vertical
7440.000	5.15	35.43	39.05	42.26	43.79	74	.00	-30.21	Vertical
9920.000	6.83	38.27	37.75	41.60	48.95	74	.00	-25.05	Vertical
11933.470	7.25	38.63	38.67	44.20	51.41	74	.00	-22.59	Vertical
1880.038	2.93	30.76	38.41	45.19	40.47	74	.00	-33.53	Horizontal
3719.146	4.06	33.09	38.84	45.15	43.46	74	.00	-30.54	Horizontal
4960.000	4.43	34.86	39.29	43.74	43.74	74	.00	-30.26	Horizontal
7440.000	5.15	35.43	39.05	43.12	44.65	74	.00	-29.35	Horizontal
9920.000	6.83	38.27	37.75	39.88	47.23	74	.00	-26.77	Horizontal
12556.750	6.82	39.24	39.17	44.50	51.39	74	.00	-22.61	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM140400170004

Page: 27 of 29

7 Photographs - EUT Test Setup

Test Model No.: CAN100

7.1 Conducted Emission

7.2 Radiated Emission

Report No.: SZEM140400170004

Page: 28 of 29

7.3 Radiated Spurious Emission

Report No.: SZEM140400170004

Page: 29 of 29

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1507004061CR.