Ansible Network Automation Hands-on Exercises

Exercise-1: Understand test lab

Notes:

- 1. Please collect the Ansible Cluster IP address from Instructor before going forward
- 2. We will focus on Network Infrastructure simulation using VIRL in this document. Ansible network automation exercises will be dealt in other document.

Criterion SDCloud Platform is used for simulating the Ansible network automation Learning Lab. It consists of 5 components.

- 1. VIRL Server
- 2. VMM1 (VM Maestro Client and Ansible)
- 3. VMM2 (VM Maestro Client and Ansible)
- 4. Web server
- 5. App server
- 6. Database server

VIRL is Cisco's powerful network simulation platform. It has virtual machines running the same network operating systems as used in Cisco's physical routers and switches. It also has a user-friendly GUI for network design and simulation control.

VM Maestro is the GUI client used to communicate with VIRL server for creating topologies and to run simulations.

To access VM Maestro_1 to build a topology and run simulations: VNC into the Ubuntu machine which has VMMaestro client installed on it using a VNC viewer by accessing public-ip-of-root-node:8888 using credentials **ubuntu/password**.

Similarly to access VM Maestro_2 to build topology and run simulations: VNC into the Ubuntu machine which has VMMaestro client installed on it using a VNC viewer by accessing public-ip-of-root-node:9999 using credentials **ubuntu/password**

VMs and Credential's:

VM's	IP address	Username	Password	Domain
VMM1	eth0:192.168.122.176 eth1:172.16.1.5	ubuntu	Password	vmm1.local
VMM2	eth0:192.168.122.175 eth1:172.16.1.4	ubuntu	Password	vmm2.local
Web	eth0:192.168.122.50 eth1:172.16.1.20	web	Password	web.local
Арр	eth0:192.168.122.60 eth1:172.16.1.30	арр	Password	app.local
db	eth0:192.168.122.70 eth1:172.16.1.40	db	Password	db.local
VIRL	eth0:192.168.122.169 eth1:172.168.1.X	ubuntu	Password	virl.local

Devices and credentials:

Devices	IP address	Username	Password	Domain
IosRouter1	Mgnt:172.16.1.151	cisco	cisco	router1.local
IosRouter2	Mgnt:172.16.1.152	cisco	cisco	router2.local
IosRouter3	Mgnt:172.16.1.153	cisco	cisco	router3.local
NxSwitch1	Mgnt:172.16.1.154	cisco	cisco	nxswitch1.local
NxSwitch2	Mgnt:172.16.1.155	cisco	cisco	nxswitch2.local

SSH Guide For different Operating System:

This helps to understand how to use SSH in different Operating Systems

For Linux & Mac Users:

Change the permission of the downloaded private key file like, *chmod 600* private key file.txt

Access any node using ssh - i private_key_file.txt ubuntu@<ip of the node> Example: ssh - i 1460539289 nareshcn.txt ubuntu@54.200.239.38

For Windows Users using an ssh client:

To login into the nodes using private key, you need an ssh client like PuTTY. You will also require PuTTYgen

(i). Ggenerate .ppk file from the text file downloaded before, using PuTTYgen.

(ii).Load the downloaded key file which is in .txt format.

(iii) Then save the private key in ppk format.

It is advisable not to enter pass phrase for the private key. (iv)Using PuTTY create a session to login to nodes like,

(v)Provide the IP address of the node in which you want to login. Save the session. Click on Data and enter Auto-Login Username as 'ubuntu'.

(vi)Click on Auth and select the private key you just generated using PuTTYgen tool.

(vii)Then click Session on save the session again. Now you can login to your node with the private key.

