РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Лабораторная работа 3.

Дисциплина: Научное программирование

Студент: Румянцева Александра Сергеевна, 1132223493

Группа: НПМмд-02-22

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2022

Содержание

1	Цель работы	6
2	Теоретические сведения	7
3	Задание	8
4	Выполнение лабораторной работы	ç
5	Библиография	30
6	Выводы	31

List of Figures

4.1	Рис. 1. Журналирование сессии	9
4.2	Рис. 2. Вычисление выражения	9
4.3	Рис. 3. Задание вектора-строки (ковектора)	10
4.4	Рис. 4. Задание вектора-столбца (вектора)	10
4.5	Рис. 5. Задание матрицы	10
4.6	Рис. 6. Задание двух векторов-столбцов	11
4.7	Рис. 7. Выполнение операции сложения векторов	11
4.8	Рис. 8. Скалярное умножение векторов	11
4.9	Рис. 9. Векторное умножение	12
	Рис. 10. Вычисление нормы вектора	12
	Рис. 11. Задание двух векторов-строк	12
	Рис. 12. Вычисление проекции вектора и на вектор v	12
	Рис. 13. Введение двух матриц А и В	13
	Рис. 14. Вычисление произведения матриц АВ	13
	Рис. 15. Вычисление произведения матриц B^TA	13
	Рис. 16. Вычисление выражения 2A - 4I	14
	Рис. 17. Нахождение определителя	14
	Рис. 18. Нахождение обратной матрицы	14
	Рис. 19. Нахождение собственных значений матрицы	15
	Рис. 20. Вычисление ранга матрицы	15
4.21	Рис. 21. Создание вектора значений х	15
	Рис. 22. Задание вектора $y = \sin(x)$	16
4.23	Рис. 23. Построение графика $y = \sin(x)$	16
4.24	Рис. 24. График $y = \sin(x)$	16
4.25	Рис. 25. Очистка графика	17
	Рис. 26. Вектора х и у	17
	Рис. 27. Задание цвета и размера линии	17
	Рис. 28. График y = sin(x) после изменения цвета и размера линии	18
	Рис. 29. Подгонка диапазона осей	18
	Рис. 30. График y = sin(x) после подгонки осей	19
	Рис. 31. Отрисовка сетки	19
	Рис. 32. График $y = \sin(x)$ после отрисовки сетки	20
	Рис. 33. Подпись осей	20
	Рис. 34. График y = sin(x) после подписи осей	21
	Рис. 35. Создание заголовка графика и задание легенды	21
	Рис. 36. График y = sin(x) после создания заголовка и задания легенды	
4.37	Рис. 37. Очистка памяти и рабочей области фигуры	2.2

4.38	Рис. 38. Задание двух векторов	3
	Рис. 39. Чертеж точек	3
4.40	Рис. 40. График с отрисованными точками	3
4.41	Рис. 41. Использование команды hold on	4
	Рис. 42. Добавление дополнительного графика	4
4.43	Рис. 43. Исходный и добавленный графики	4
4.44	Рис. 44. Задание сетки, оси и легенды	5
4.45	Рис. 45. График после задания сетки, оси и легенды	5
	Рис. 46. Очистка памяти и рабочей области фигуры	5
4.47	Рис. 47. Очищенная область	6
4.48	Рис. 48. Задание вектора х	6
4.49	Рис. 49. Построение графика $y=x^2\sin(x)$	6
4.50	Рис. 50. Построение графика $y=x^2\sin(x)$ с поэлементными возведе-	
	нием в степень и умножением	7
	Рис. 51. График после построения	7
	Рис. 52. Сохранение графиков	7
	Рис. 53. Сумма	8
	Рис. 54. Очистка памяти и рабочей области фигуры	8
4.55	Рис. 55. Создание файла loop_for.m	8
4.56	Рис. 56. Запуск файла loop_for.m	8
4.57	Рис. 57. Создание файла loop_vec.m	9
	Рис. 58. Запуск файла loop_vec.m	9
	Рис. 59. Завершение записи в файл	9

List of Tables

1 Цель работы

Познакомиться с интерфейсом Octave.

2 Теоретические сведения

Octave является свободной реализацией языка MATLAB. Графический интерфейс Octave похож на графический интерфейс MATLAB.

Язык МАТLAВ был разработан Кливом Моулером (англ. Cleve Moler) в конце 1970-х годов. Целью разработки служила задача дать студентам факультета возможность использования программных библиотек Linpack и EISPACK без необходимости изучения языка FORTRAN. Язык распространился среди других университетов и был с большим интересом встречен учёными, работающими в области прикладной математики. МАТLAВ широко используется для выполнения инженерных и научных расчётов, а также в образовании. В 1984 году была основана компания The MathWorks для коммерциализации МАТLAB.

Вся теоретическая часть по использованию интерфейса Octave была взята из инструкции по лабораторной работе №3 на сайте [1]

3 Задание

Выполните работу и задокументируйте процесс выполнения.

4 Выполнение лабораторной работы

1. Простейшие операции

• Включим журналирование сессии (см. рис. 1).

Figure 4.1: Рис. 1. Журналирование сессии

• Продемонстрируем, что Octave можно использовать как простейший калькулятор. Для этого вычислим выражение (см. рис. 2).

Figure 4.2: Рис. 2. Вычисление выражения

• Зададим вектор-строку (ковектор) (см. рис. 3).

Figure 4.3: Рис. 3. Задание вектора-строки (ковектора)

• Зададим вектор-столбец (вектор) (см. рис. 4).

Figure 4.4: Рис. 4. Задание вектора-столбца (вектора)

• Зададим матрицу (см. рис. 5).

Figure 4.5: Рис. 5. Задание матрицы

2. Операции с векторами

• Зададим два вектора-столбца (см. рис. 6).

Figure 4.6: Рис. 6. Задание двух векторов-столбцов

• Выполним операцию сложения векторов (см. рис. 7).

Figure 4.7: Рис. 7. Выполнение операции сложения векторов

• Произведем скалярное умножение векторов (см. рис. 8).

Figure 4.8: Рис. 8. Скалярное умножение векторов

• Произведем векторное умножение (см. рис. 9).

Figure 4.9: Рис. 9. Векторное умножение

• Вычислим норму вектора (см. рис. 10).

Figure 4.10: Рис. 10. Вычисление нормы вектора

3. Вычисление проектора

• Введем два вектора-строки (см. рис. 11).

Figure 4.11: Рис. 11. Задание двух векторов-строк

• Вычислим проекцию вектора и на вектор v (см. рис. 12).

Figure 4.12: Рис. 12. Вычисление проекции вектора и на вектор v

4. Матричные операции

• Введем матрицы А и В (см. рис. 13).

Figure 4.13: Рис. 13. Введение двух матриц A и В

• Вычислим произведение матриц АВ (см. рис. 14).

Figure 4.14: Рис. 14. Вычисление произведения матриц AB

• Вычислим произведение матриц B^TA .(см. рис. 15).

Figure 4.15: Рис. 15. Вычисление произведения матриц B^TA

• Вычислим 2A - 4I, где I есть единичная матрица (см. рис. 16).

Figure 4.16: Рис. 16. Вычисление выражения 2A - 4I

• Найдем определитель |А| (см. рис. 17).

Figure 4.17: Рис. 17. Нахождение определителя

• Найдем обратную матрицу A^{-1} (см. рис. 18).

Figure 4.18: Рис. 18. Нахождение обратной матрицы

• Найдем собственные значения матрицы (см. рис. 19).

Figure 4.19: Рис. 19. Нахождение собственных значений матрицы

• Вычислим ранг матрицы (см. рис. 20).

Figure 4.20: Рис. 20. Вычисление ранга матрицы

5. Построение простейших графиков

• Построим график функции $\sin(x)$ на интервале $[0, 2\pi]$. Создадим вектор значений x (см. рис. 21).

Figure 4.21: Рис. 21. Создание вектора значений х

• Зададим вектор y = sin(x) (см. рис. 22).

Figure 4.22: Рис. 22. Задание вектора $y = \sin(x)$

• Построим график (см. рис. 23, 24).

Figure 4.23: Рис. 23. Построение графика $y = \sin(x)$

Figure 4.24: Рис. 24. График $y = \sin(x)$

• Улучшим внешний вид графика. Сначала очистим получившийся график (см. рис. 25). Заметим, что заданные вектора х и у сохранились (см. рис. 26).

Figure 4.25: Рис. 25. Очистка графика

Figure 4.26: Рис. 26. Вектора x и y

• Зададим красный цвет для линии и сделаем ее потолще (см. рис. 27, 28).

Figure 4.27: Рис. 27. Задание цвета и размера линии

Figure 4.28: Рис. 28. График у = sin(x) после изменения цвета и размера линии

• Подгоним диапазон осей (см. рис. 29, 30).

Figure 4.29: Рис. 29. Подгонка диапазона осей

Figure 4.30: Рис. 30. График у = sin(x) после подгонки осей

• Нарисуем сетку (см. рис. 31, 32).

Figure 4.31: Рис. 31. Отрисовка сетки

Figure 4.32: Рис. 32. График у = sin(x) после отрисовки сетки

• Подпишем оси (см. рис. 33, 34).

Figure 4.33: Рис. 33. Подпись осей

Figure 4.34: Рис. 34. График у = sin(x) после подписи осей

• Сделаем заголовок графика и зададим легенду (см. рис. 35). В результате получим следующий график (см. рис. 36).

Figure 4.35: Рис. 35. Создание заголовка графика и задание легенды

Figure 4.36: Рис. 36. График у = sin(x) после создания заголовка и задания легенды

6. Два графика на одном чертеже

• Начертим два графика на одном чертеже. Очистим память и рабочую область фигуры (см. рис. 37).

Figure 4.37: Рис. 37. Очистка памяти и рабочей области фигуры

• Зададим два вектора (см. рис. 38).

Figure 4.38: Рис. 38. Задание двух векторов

• Начертим эти точки, используя кружочки, как маркеры (см. рис. 39, 40).

Figure 4.39: Рис. 39. Чертеж точек

Figure 4.40: Рис. 40. График с отрисованными точками

• Чтобы добавить к нашему текущему графику ещё один, нужно использовать команду hold on (см. рис. 41).

Figure 4.41: Рис. 41. Использование команды hold on

• Добавим график регрессии (см. рис. 42, 43).

Figure 4.42: Рис. 42. Добавление дополнительного графика

Figure 4.43: Рис. 43. Исходный и добавленный графики

• Зададим сетку, оси и легенду (см. рис. 44). В результате получим следующий график (см. рис. 45).

Figure 4.44: Рис. 44. Задание сетки, оси и легенды

Figure 4.45: Рис. 45. График после задания сетки, оси и легенды

7. График $y=x^2 sin(x)$

• Очистим память и рабочую область фигуры (см. рис. 46, 47).

Figure 4.46: Рис. 46. Очистка памяти и рабочей области фигуры

(4.1843, 5.9342)

Figure 4.47: Рис. 47. Очищенная область

• Зададим вектор х (см. рис. 48).

Figure 4.48: Рис. 48. Задание вектора х

• Построим график $y=x^2\sin(x)$ (см. рис. 49).

Figure 4.49: Рис. 49. Построение графика $y=x^2\sin(x)$

Ничего не получилось. Действительно, мы задали в выражении матричное умножение. В то время, как нам необходимо поэлементное.

• Построим график $y=x^2\sin(x)$, используя поэлементное возведение в степень .^ и поэлементное умножение (см. рис. 50, 51).

Figure 4.50: Рис. 50. Построение графика y=x²sin(x) с поэлементными возведением в степень и умножением

Figure 4.51: Рис. 51. График после построения

• Сохраним графики в виде файлов (см. рис. 52).

Figure 4.52: Рис. 52. Сохранение графиков

8. Сравнение циклов и операций с векторами

• Сравним эффективность работы с циклами и операций с векторами. Для этого вычислим сумму 3.1 (см. рис. 53).

$$\sum_{n=0}^{1000000} \frac{1}{n^2}.$$
(3.1)

Figure 4.53: Рис. 53. Сумма

• Очистим память и рабочую область фигуры (см. рис. 54). Вычислим сумму с помощью цикла, создадим файл loop-for.m, функции tic и toc служат для запуска и остановки таймера (см. рис. 55).

Figure 4.54: Рис. 54. Очистка памяти и рабочей области фигуры

Figure 4.55: Рис. 55. Создание файла loop_for.m

• Запустим файл loop-for.m (см. рис. 56).

Figure 4.56: Рис. 56. Запуск файла loop for.m

• Вычислим сумму с помощью операций с векторами. Создадим файл loopvec.m (см. рис. 57), запустим его (см. рис. 58).

Figure 4.57: Рис. 57. Создание файла loop vec.m

Figure 4.58: Рис. 58. Запуск файла loop_vec.m

Во втором случае сумма вычисляется значительно быстрее.

• Завершим запись в файл (см. рис. 59).

Figure 4.59: Рис. 59. Завершение записи в файл

5 Библиография

1. ТУИС РУДН https://esystem.rudn.ru/pluginfile.php/1284124/mod_resource/content/4/003-octave-intro.pdf

6 Выводы

Я познакомилась с некоторыми простейшими операциями в Octave.