







# Performance Estimation of a Classifier

- Predictive accuracy works fine, when the classes are balanced
- · That is, every class in the data set are equally important
- In fact, data sets with imbalanced class distributions are quite common in many real life applications
- When the classifier classified a test data set with imbalanced class distributions then, predictive accuracy on its
  own is not a reliable indicator of a classifier's effectiveness.

#### Example 1: Effectiveness of Predictive Accuracy

- Given a data set of stock markets, we are to classify them as "good" and "worst". Suppose, in the data set, out of 100 entries, 98 belong to "good" class and only 2 are in "worst" class.

  - With this data set, if classifier's predictive accuracy is 0.98, a very high value!
     Here, there is a high chance that 2 "worst" stock markets may incorrectly be classified as "good"
  - On the other hand, if the predictive accuracy is 0.02, then none of the stock markets may be classified as "good"
- Thus, when the classifier classified a test data set with imbalanced class distributions, then predictive
  accuracy on its own is not a reliable indicator of a classifier's effectiveness.
- · This necessitates an alternative metrics to judge the classifier.

# **Confusion Matrix**

A confusion matrix for a two classes (+, -) is shown below.
 Predicted Value
 C1 C2

C1 True positive False negative
C2 False positive True negative

|   | +  | -  |
|---|----|----|
| + | ++ | +- |
| - | -+ |    |

- · There are four quadrants in the confusion matrix, which are symbolized as
  - True Positive (TP: f<sub>++</sub>): The number of instances that were positive (+) and correctly classified as positive (+v).
  - False Negative (FN: f<sub>+</sub>): The number of instances that were positive (+) and incorrectly classified as negative (-). It is also known as Type 2 Error.
  - False Positive (FP:  $f_+$ ): The number of instances that were negative (-) and incorrectly classified as (+). This also known as Type 1 Error.
  - True Negative (TN: f\_): The number of instances that were negative (-) and correctly classified as (-).

1

#### **Confusion Matrix**

- $N_p = \text{TP}(f_{++}) + \text{FN}(f_{+-})$ 
  - = is the total number of positive instances.
- $N_n = FP(f_+) + TN(f_-)$ 
  - is the total number of negative instances.
- $N = N_p + N_n$
- = is the total number of instances.
- . (TP + TN) denotes the number of correct classification
- . (FP+FN) denotes the number of errors in classification.
- For a perfect classifier FP = FN = 0, that is, there would be no Type 1 or Type 2

#### **Confusion Matrix**

#### Example 2: Confusion matrix

A classifier is built on a dataset regarding Good and Worst classes of stock markets. The model is then tested with a test set of 10000 unseen instances. The result is shown in the form of a confusion matrix. The result is self explanatory.

| Class | Good | Worst | Total | Rate(%) |
|-------|------|-------|-------|---------|
| Good  | 6954 | 46    | 7000  | 99.34   |
| Worst | 412  | 2588  | 3000  | 86.27   |
| Total | 7366 | 2634  | 10000 | 95.42   |

Predictive accuracy?

### Performance Evaluation Metrics

- · Let us now define a number of metrics for the measurement of a classifier.
  - Assume that there are only two classes:  $^+\mbox{(positive)}$  and  $-\mbox{(negative)}$
  - Nevertheless, the metrics can easily be extended to multi-class classifiers (with some modifications)
- True Positive Rate (TPR): It is defined as the fraction of the positive examples predicted correctly by the classifier.

$$TPR = \frac{TP}{P} = \frac{TP}{TP+FN} = \frac{f_{++}}{f_{++}+f_{+-}}$$

- This metrics is also known as Recall, Sensitivity or Hit rate.
- False Positive Rate (FPR): It is defined as the fraction of negative examples classified as positive class by the classifier.

FPR = 
$$\frac{FP}{N} = \frac{FP}{FP + TN} = \frac{f}{f_{-+} + f_{--}}$$

This metric is also known as False Alarm Rate.

# Performance Evaluation Metrics

False Negative Rate (FNR): It is defined as the fraction of positive examples
classified as a negative class by the classifier.

$$FNR = \frac{FN}{P} = \frac{FN}{TP + FN} = \frac{f_{+-}}{f_{++} + f_{+-}}$$

• True Negative Rate (TNR): It is defined as the fraction of negative examples classified correctly by the classifier  $TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = \frac{f_{--}}{f_{--} + f_{--}}$ 

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = \frac{f_{--}}{f_{--} + f_{--}}$$

· This metric is also known as Specificity.

### Performance Evaluation Metrics

Positive Predictive Value (PPV): It is defined as the fraction of the positive examples classified as positive that are really positive

$$PPV = \frac{TP}{TP + FP} = \frac{f_{++}}{f_{++} + f_{-+}}$$

- It is also known as Precision.
- $\mathbf{F}_1$  Score ( $\mathbf{F}_1$ ): Recall (r) and Precision (p) are two widely used metrics employed in analysis, where detection of one of the classes is considered more significant than the others.
- It is defined in terms of (r or TPR) and (p or PPV) as follows.

$$F_1 = \frac{2r \cdot p}{r + p} = \frac{2TP}{2TP + FP + FN}$$

$$= \frac{2f_{++}}{2f_{++} + f_{\mp} + f_{+-}} = \frac{2}{\frac{1}{r} + \frac{1}{r}}$$

- High value of F<sub>1</sub> score ensures that both Precision and Recall are reasonably high.

Predictive Accuracy ( $\varepsilon$ )

It is defined as the fraction of the number of examples that are correctly classified by the classifier to the total number of instances.

$$\begin{split} \varepsilon &= \frac{TP + TN}{P + N} \\ &= \frac{TP + TN}{TP + FP + FN + TN} \\ &= \frac{f_{++} + f_{--}}{f_{++} + f_{+-} + f_{\mp} + f_{--}} \end{split}$$

# Error Rate (ε)

- The error rate  $\bar{\epsilon}$  is defined as the fraction of the examples that are incorrectly classified.

$$\begin{split} \bar{\varepsilon} &= \frac{FP + FN}{P + N} \\ &= \frac{FP + FN}{TP + TN + FP + FN} \\ &= \frac{f_{+-} + f_{-+}}{f_{++} + f_{+-} + f_{--}} \end{split}$$

Note

 $\bar{\epsilon}=1-\epsilon.$ 

#### Analysis with Performance Measurement Metrics

- Based on the various performance metrics, we can characterize a classifier.
- · We do it in terms of TPR, FPR, Precision and Recall and Accuracy
- · Case 1: Perfect Classifier

When every instance is correctly classified, it is called the perfect classifier. In this case, TP = P, TN = N and CM is

$$TPR = \frac{P}{p} = 1 = \text{Recall}$$

$$FPR = \frac{0}{N} = 0$$

$$Precision = \frac{P}{p} = 1$$

$$F_1 Score = \frac{2 \times 1}{1 + 1} = 1$$

$$Accuracy = \frac{1}{p + N} = 1$$

|        |   | Predicted Class |   |
|--------|---|-----------------|---|
|        |   | +               | - |
| Actual | + | Р               | 0 |
|        | - | 0               | N |

\_\_\_

# Analysis with Performance Measurement Metrics

· Case 2: Worst Classifier

When every instance is wrongly classified, it is called the worst classifier. In this case, TP=0, TN=0 and the CM is

$$\begin{aligned} TPR &= \frac{0}{p} = 0 = \text{Recall} \\ FPR &= \frac{N}{N} = 1 \\ Precision &= \frac{0}{N} = 0 \\ F, Score &= \text{Not applicable} \\ \text{as } Recall + Precision &= 0 \\ \text{Accuracy} &= \frac{0}{p+N} = 0 \end{aligned}$$

|                 |   | Predicted Class |   |
|-----------------|---|-----------------|---|
|                 |   |                 | - |
| Actual<br>class |   | 0               | Р |
|                 | - | N               | 0 |

Analysis with Performance Measurement Metrics

· Case 3: Ultra-Liberal Classifier

The classifier always predicts the  $\pm$  class correctly. Here, the False Negative (FN) and True Negative (TN) are zero. The CM is

$$TPR = \frac{P}{p} = 1 = \text{Recall}$$

$$FPR = \frac{N}{N} = 1$$

$$Precision = \frac{P}{P+N}$$

$$F_1 Score = \frac{2P}{P+N}$$

$$Accuracy = \frac{P}{P+N}$$

|                 |   | Predicted Class |   |
|-----------------|---|-----------------|---|
|                 |   |                 | - |
| Actual<br>class | ٠ | P               | 0 |
|                 |   | N               | 0 |

17

# Analysis with Performance Measurement Metrics

Case 4: Ultra-Conservative Classifier

This classifier always predicts the - class correctly. Here, the False Negative (FN) and True Negative (TN) are zero. The CM is

$$TPR = \frac{0}{p} = 0$$
 = Recall  $FPR = \frac{0}{N} = 0$  Precision = Not applicable (as  $TP + FP = 0$ )  $F_1$  Score = Not applicable Accuracy =  $\frac{N}{P+N}$ 

|       |   | Predicted Class |   |
|-------|---|-----------------|---|
|       |   | ٠               |   |
| 3 8   |   | 0               | Р |
| da da | - | 0               | N |

# Predictive Accuracy versus TPR and FPR

- One strength of characterizing a classifier by its TPR and FPR is that they do not depend on the relative size of P and N.
  - The same is also applicable for FNR and TNR and others measures from CM.
- In contrast, the *Predictive Accuracy, Precision, Error Rate, F*<sub>1</sub> *Score*, etc. are affected by the relative size of *P* and *N*.
- FPR, TPR, FNR and TNR are calculated from the different rows of the CM.
  - On the other hand Predictive Accuracy, etc. are derived from the values in both rouse.
- This suggests that FPR, TPR, FNR and TNR are more effective than Predictive Accuracy, etc.

19