```
In []: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
salaries = pd.read_csv("Salaries.csv")
salaries.head()

C:\Users\dell\AppData\Local\Temp\ipykernel_3684\2250023808.py:4: DtypeWarning: Co
lumna (2.4.5 (4.12) have mixed types (5.4.5 (4.12) have
```

C:\Users\dell\AppData\Local\Temp\ipykernel_3684\2250023808.py:4: DtypeWarning: Co lumns (3,4,5,6,12) have mixed types. Specify dtype option on import or set low_me mory=False.

salaries = pd.read_csv("Salaries.csv")

	50	Sataries = pu.reau_csv(Sataries.csv)								
]:		Id	EmployeeName	JobTitle	BasePay	OvertimePay	OtherPay	Benefits	_1	
	0	1	NATHANIEL FORD	GENERAL MANAGER- METROPOLITAN TRANSIT AUTHORITY	167411.18	0.0	400184.25	NaN	5€	
	1	2	GARY JIMENEZ	CAPTAIN III (POLICE DEPARTMENT)	155966.02	245131.88	137811.38	NaN	53	
	2	3	ALBERT PARDINI	CAPTAIN III (POLICE DEPARTMENT)	212739.13	106088.18	16452.6	NaN	33	
	3	4	CHRISTOPHER CHONG	WIRE ROPE CABLE MAINTENANCE MECHANIC	77916.0	56120.71	198306.9	NaN	33	
	4	5	PATRICK GARDNER	DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)	134401.6	9737.0	182234.59	NaN	32	
	4								•	

Display the dimensions of the dataset

```
In [ ]: salaries.shape
Out[ ]: (148654, 13)
```

Statistical Summary of the Total pay

```
In [ ]: salaries[["TotalPay","TotalPayBenefits"]].describe().transpose()
```

Out[]:		count	mean	std	min	25%	50%	
	TotalPay	148654.0	74768.321972	50517.005274	-618.13	36168.995	71426.61	10
	TotalPayBenefits	148654.0	93692.554811	62793.533483	-618.13	44065.650	92404.09	13
	4							•

Removing unnecessary columns

In []:	<pre>salaries = salaries.drop(columns=['Notes', 'Agency', 'Id', 'EmployeeName', 'Yea salaries.head()</pre>									
Out[]:		JobTitle	BasePay	OvertimePay	OtherPay	TotalPay	TotalPayBenefits	Stat		
	0	GENERAL MANAGER- METROPOLITAN TRANSIT AUTHORITY	167411.18	0.0	400184.25	567595.43	567595.43	N		
	1	CAPTAIN III (POLICE DEPARTMENT)	155966.02	245131.88	137811.38	538909.28	538909.28	N		
	2	CAPTAIN III (POLICE DEPARTMENT)	212739.13	106088.18	16452.6	335279.91	335279.91	N		
	3	WIRE ROPE CABLE MAINTENANCE MECHANIC	77916.0	56120.71	198306.9	332343.61	332343.61	N		
	4	DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)	134401.6	9737.0	182234.59	326373.19	326373.19	N		
	4							•		

Data Cleaning:

```
In [ ]: options = ['BasePay','OvertimePay','OtherPay','TotalPay','TotalPayBenefits']
    salaries[options] = salaries[options].apply(pd.to_numeric, errors='coerce')
    salaries[salaries[options].gt(0).all(axis=1)]
```

[]:		JobTitle	BasePay	OvertimePay	OtherPay	TotalPay	TotalPayBenefits
	1	CAPTAIN III (POLICE DEPARTMENT)	155966.02	245131.88	137811.38	538909.28	538909.28
	2	CAPTAIN III (POLICE DEPARTMENT)	212739.13	106088.18	16452.60	335279.91	335279.91
	3	WIRE ROPE CABLE MAINTENANCE MECHANIC	77916.00	56120.71	198306.90	332343.61	332343.61
	4	DEPUTY CHIEF OF DEPARTMENT, (FIRE DEPARTMENT)	134401.60	9737.00	182234.59	326373.19	326373.19
	5	ASSISTANT DEPUTY CHIEF II	118602.00	8601.00	189082.74	316285.74	316285.74
	•••						
14	17467	Publ Svc Aide- Asst to Prof	1182.12	487.38	44.03	1713.53	1730.66
14	47535	Camp Assistant	1160.08	426.15	15.15	1601.38	1617.39
14	47658	Custodial Assistant Supervisor	1282.97	36.66	49.85	1369.48	1383.17
14	47659	Nurse Practitioner	426.44	273.24	431.56	1131.24	1380.03
14	17689	Special Nurse	365.68	705.24	12.19	1083.11	1328.75
643	311 rov	ws × 7 columns					
4)

Analyze Full-time vs Part-time Jobs

```
salaries_ft = salaries[salaries['Status'] == 'FT']
        salaries_ft['TotalPay'].describe()
Out[]:
                   22334.000000
        count
        mean
                  103505.761053
        std
                   40722.929492
        min
                   26363.620000
        25%
                   72355.500000
        50%
                  94271.735000
        75%
                  127856.000000
                  390111.980000
        Name: TotalPay, dtype: float64
```

```
salaries_pt = salaries[salaries['Status'] == 'PT']
         salaries_pt['TotalPay'].describe()
Out[ ]:
         count
                   15785.000000
         mean
                   35806.986627
         std
                   37706.327998
                    -618.130000
         min
         25%
                    7355.400000
         50%
                   22407.370000
         75%
                   52986.740000
         max
                  471952.640000
         Name: TotalPay, dtype: float64
```

Full-time jobs distribution

```
In [ ]: sns.histplot(salaries_ft['TotalPay'] / 1000, bins=100, color='blue', kde=False)
    plt.title('Full-time Jobs Distribution')
    plt.xlabel('Total Pay in thousands')
    plt.ylabel('Frequency')
    plt.show()
```


Full-time jobs Boxplot

```
In [ ]: sns.boxplot(y=salaries_ft['TotalPay'] / 1000, color='blue')
    plt.title('Full-time Jobs Boxplot')
    plt.ylabel('Total Pay in thousands')
    plt.show()
```


Visualizing Part-time Jobs

```
In [ ]: sns.histplot(salaries_pt['TotalPay'] / 1000, bins=100, color='red', kde=False)
    plt.title('Part-time Jobs Distribution')
    plt.xlabel('Total Pay in thousands')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [ ]: sns.boxplot(y=salaries_pt['TotalPay'] / 1000, color='red')
    plt.title('Part-time Jobs Boxplot')
    plt.ylabel('Total Pay in thousands')
    plt.show()
```


Handling Outliers

Comparing Full-time and Part-time Jobs

```
In [ ]: salaries = salaries.dropna(subset=['Status'])
    sns.histplot(data=salaries, x='TotalPay', hue='Status', multiple="stack", bins=1
    plt.title('Full-time vs Part-time Jobs')
    plt.xlabel('Total Pay in thousands')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [ ]: sns.kdeplot(data=salaries, x='TotalPay', hue='Status', fill=True, alpha=0.5)
    plt.title('Full-time vs Part-time Jobs')
    plt.xlabel('Total Pay in thousands')
    plt.ylabel('Density')
    plt.show()
```


Conclusion

The average salary for full-time jobs is 107,000 and for part-time jobs is 31,000. This shows that full-time jobs have higher salaries compared to part-time jobs.