Politechnika Warszawska

Zakład Podstaw Konstrukcji

Wprowadzenie do PTC Creo

mgr inż. Grzegorz Kamiński grzegorz kaminski@pw.edu.pl

14 lipca 2023 Wersja 1.2

Głębokość otworów

- * **Blind** poprzez wartość,
- * **Symmetric** równomiernie w dwie strony,
- * **To Next** do na<mark>st</mark>ępnej <mark>po</mark>wierzc<mark>h</mark>ni,
- * ThroughAll przez cały model
- * ThroughUntil do następnej powierzchni, przez którą przechodzi,
- * ToSelected do wskazanej płaszczyzny, krawędzi, punktu,
- * **Side1/Side2** niezależnie w dwie strony.

Otwory liniowe

Wymaga podania:

- * płaszczyzny bazowej,
- referencji do odmierzenia położ<mark>en</mark>ia.

Otwory współosiowe

Wymaga podania:

* płaszczyzny bazowej,

* osi.

Otwory promieniowe i średnicowe (1)

Wymaga podania:

- * płaszczyzny bazowej walcowej,
- * płaszczyzny położenia kątowego,
- płaszczyzny odsunięcia.

Otwory promieniowe i średnicowe (2)

Wymaga podania:

- * płaszczyzny bazowej płaskiej,
- * osi definiującej średnicę podziałową,
- * płaszczyzny przesunięcia kątowego.

Profil otworu

- otwory walcowe i stożkowe.
- otwory gwintowane,
- otwory przelotowe pod gwint.
- podebrania pod łeb śruby.

Powłoki

Drążenie obiektu:

- * wskazanie powierzchni do usunięcia,
- * definicja kierunku i wielkości grubości.

Pochylenia

Wymaga podania:

- * pochylanych powierzchni,
- * krawędzi pochylenia (ang. draft hidges),
- * kierunku pochylenia,
- * kąta pochylenia.

Pochylenia (2)

Metody tworzenia pochyleń:

- * podział modelu (ang. Split by Split Object),
- * krawędzi pochylenia (ang. Split by Draft Hinge).

Split Angles Options Split options Split by split object Split object Edit... Internal Section 1 Side options Draft sides independently

Pochylenia (3)

Kontrola podziału:

- * dwa niezależne kąty pochylenia (ang. Draft sides independently),
- kąt pochylenia i kąt przeciwny (ang. Draft sides dependently),
- * pochylenie tylko wybranego fragmentu (ang. Draft first/second side only),

Split	Angles	Opti	Options	
6 Fr				
Split option	ns			
Split by split object ▼				m
				_
Split object	t			
Internal Section 1			Edit	
Side option	ns			
Draft sides independently				

Tworzenie zaokrągleń

Zaokrąglenia można stworzyć wskazując krawędzie lub kombinacje krawędzi.

Krawędzie styczne są automatycznie dodawane.

Tworzenie zaokrągleń (2)

wskazanie dwóch płaszczyzn

wskazanie płaszczyzny i krawędzi

Tworzenie zaokrągleń (3)

Zaokrąglenia pełne:

🖿 <mark>* wybór dwóch kra</mark>wędzi,

* nie steruje się promieniem zaokrąglenia.

Tworzenie zaokrągleń (4)

Tworzenie fazowań i ścięć

* D x D,

* D1 x D2,

Angle x D,

 $45 \times D$

Warszawsko

Tworzenie fazowań i ścięć (2)

wskazanie dwóch płaszczyzn

wskazanie płaszczyzny i krawędzi

Bibliografia

T. Kucharski. Mechanika ogólna: rozwiązywanie zagadnień z MATHCAD-em. Wydawnictwa Naukowo-Techniczne, 2015. isbn:

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja

E. Lisowski. Integracja modelowania 3D, kinematyki i wytrzymałości w programie Creo Parametric. Wydawnictwo PK, 2013. isbn:

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne. tom 2. WNT. 2015. isbn: 9788393491360.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.

E. Winter. Using Pro/Weld in Creo 2.0.

