Билет № 12. Критерий Коши существования предела функции.

Лемма

 $f: E \to \mathbb{R}$, где x_0 — предельная точка E.

 $\forall \{x_n\} \subset E$ — последовательности Гейне в точке x_0 : $\exists \lim f(x_n) = A \in \overline{\mathbb{R}}$.

Тогда A не зависит от выбора $\{x_n\}$. Т.е. $\forall \{x_n\}, \{y_n\}$ — последовательностей Гейне: $A(\{x_n\})$ = $A(\{y_n\}).$

Доказательство:

Пусть $\exists \{x_n\}, \{y_n\} \subset E$ — последовательности Гейне в точке x_0 . Покажем, что $A(\{x_n\}) =$

Определим $z_n = \begin{cases} x_k, & n=2k \\ y_k, & n=2k-1 \end{cases}$ для $\forall n \in \mathbb{N}$.

Тогда $z_n = \{y_1, x_1, y_2, x_2, \dots\}$

- $z_n \subset E \setminus \{x_0\}$
- z_n последовательность Гейне в точке x_0
- $\exists \lim f(z_n)$ (по условию)

Но тогда $\{f(x_k)\}$ и $\{f(y_k)\}$ — подпоследовательности $\{f(z_n)\}_{n=1}^{\infty}$. Следовательно:

$$\lim f(x_k) = \lim f(y_k) = \lim f(z_n) = A$$

Поскольку $\{x_n\}, \{y_n\}$ — произвольные последовательности Гейне \Rightarrow предел не зависит от выбора последовательности Гейне.

Критерий Коши

Пусть $\exists \delta_0 > 0, \ x_0 \in \overline{\mathbb{R}}, \ f: \dot{U}_{\delta_0}(x_0) \to \mathbb{R}.$ Тогда:

Функция имеет конечный предел в точке $x_0 \iff$ выполнено условие Коши:

 $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) \in (0, \delta_0) : \forall x', x'' \in \dot{U}_{\delta(\varepsilon)}(x_0)$ выполнено: $|f(x') - f(x'')| < \varepsilon$.

Доказательство:

 (\Rightarrow) Пусть \exists конечный предел $f = A \in \mathbb{R}$.

По определению Коши: $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) \in (0, \delta_0) : \forall x \in \dot{U}_{\delta(\varepsilon)}(x_0)$ выполнено: $|f(x) - A| < \frac{\varepsilon}{2}$.

Тогда $\forall x', x'' \in U_{\delta(\varepsilon)}(x_0)$:

$$|f(x') - f(x'')| = |f(x') - A + A - f(x'')|$$

$$\leq |f(x') - A| + |A - f(x'')|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Условие Коши выполнено.

(⇐) Пусть выполнено условие Коши.

Возьмем произвольную последовательность Гейне в x_0 : $\{x_n\} \subset U_{\delta_0}(x_0)$.

 $\forall \varepsilon > 0 \; \exists \delta(\varepsilon)$ из условия Коши.

Поскольку $x_n \to x_0$, то $\exists N(\delta(\varepsilon)) \in \mathbb{N} : \forall n \geq N \Rightarrow x_n \in \dot{U}_{\delta(\varepsilon)}(x_0)$.

Возьмем $\delta = \delta(\varepsilon)$ и получим, что $\forall \varepsilon > 0 \; \exists N = N(\delta(\varepsilon)) : \forall n, m \geq N$ выполнено: $|f(x_n) - g(x_n)| = N(\delta(\varepsilon))$ $|f(x_m)| < \varepsilon.$

 \Rightarrow последовательность $\{f(x_n)\}$ удовлетворяет условию Коши для последовательностей (Последовательность сходится <=> она удовлетворяет условию Коши, т.е. фундаментальна) Тогда в силу критерия Коши для последовательности $\exists \lim f(x_n) = A \in \mathbb{R}$.

Но по предыдущей лемме число A не зависит от выбора последовательности Гейне. Следовательно, для любой последовательности Гейне, принадлежащей проколотой δ_0 -окрестности x_0 , существует конечный предел A. Тогда по Гейне \exists конечный предел $\lim_{x\to x_0} f(x) = A$.

Замечание

Критерий Коши справедлив и для пределов по множеству $E \subset \mathbb{R}$ ($E \neq \emptyset$, x_0 — предельная точка E). Просто пересечь окрестности для x с множеством E.