

NASA TECHNICAL
MEMORANDUM

NASA TM X-53270

June 9, 1965

NASA TM X-53270

COMPUTER PROGRAM - CRYOGENIC STORAGE
ON THE MOON (SUBROUTINES A AND C)

by JAMES K. HARRISON AND JAMES W. HILLIARD

Research Projects Laboratory
Computation Laboratory

NASA

*George C. Marshall
Space Flight Center,
Huntsville, Alabama*

FACILITY FORM 602

(ACCESSION NUMBER)
48
(PAGES)
10X-53270
(NASA CR OR TMX OR AD NUMBER)

(THRU)
None
(CODE)
(CATEGORY)

N65-88096

TECHNICAL MEMORANDUM X-53270

COMPUTER PROGRAM-CRYOGENIC STORAGE
ON THE MOON (SUBROUTINES A AND C)

by

James K. Harrison

and

James W. Hilliard

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

The details are given of a computer program which will compute the dimensions required for a heat transfer analysis of a cryogenic storage container on the moon. The container is divided into isothermal regions and the conducting path length and cross-sectional area are calculated for each. The container may vary in size and have three basic shapes: spherical, cylindrical with hemispherical ends and cylindrical with flat ends.

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X- 53270

COMPUTER PROGRAM-CRYOGENIC STORAGE
ON THE MOON (SUBROUTINES A AND C)

By

James K. Harrison

and

James W. Hilliard

RESEARCH PROJECTS LABORATORY
COMPUTATION LABORATORY
RESEARCH AND DEVELOPMENT OPERATIONS

TECHNICAL MEMORANDUM X-53270

COMPUTER PROGRAM-CRYOGENIC STORAGE
ON THE MOON (SUBROUTINES A AND C)

SUMMARY

The details are given of a computer program which will compute the dimensions required for a heat transfer analysis of a cryogenic storage container on the moon. The container is divided into isothermal regions and the conducting path length and cross-sectional area are calculated for each. The container may vary in size and have three basic shapes: spherical, cylindrical with hemispherical ends and cylindrical with flat ends.

INTRODUCTION

The method of nodes in heat transfer calculations has become a familiar and useful tool for performing analysis where a nonuniform temperature exists. The method requires partitioning of the material into smaller regions or elements which, hopefully, will have, within the boundaries of each, a uniform temperature at any instant of time. Such uniformity, of course, will be more nearly achieved as the size of each region or element diminishes. The conducting path lengths and cross-sectional areas must be computed for each element. This computer program performs these calculations.

IDENTIFYING NOTATION AND PROGRAM DATA

The surface of a storage vessel is imagined to be covered with a thermal insulation which is partitioned into isothermal regions. The computer program can handle three vessel shapes: spherical, cylindrical with hemispherical ends, and cylindrical with flat ends. For each shape isothermal elements are constructed in three ways (Figs. 1-3). The number of elements for each case and identifying notation are given in Table I. If the insulation is divided into more than one layer the number of elements increase proportionately, i. e., two layers will double the number, three layers will triple the number, etc.

The coordinate system and numbering convention are shown in Figs. 1-3. When referring to a given element, i. e., E_{11} , the adjacent

(a) $N=8$ - NUMBER OF ELEMENTS = 8

(b) $N=32$ - NUMBER OF ELEMENTS = 32

(c) $N=72$ - NUMBER OF ELEMENTS = 72

FIGURE 1 - SPHERE - CODE NUMBER = 0

N=8. NUMBER OF ELEMENTS=12
(a)

N=32. NUMBER OF ELEMENTS = 40
(b)

N=72. NUMBER OF ELEMENTS =84
(c)

FIGURE 2 - CYLINDER WITH HEMISPHERICAL ENDS - CODE NUMBER = -1

N=8. NUMBER OF ELEMENTS=12
(a)

N=16. NUMBER OF ELEMENTS=24
(b)

N=24. NUMBER OF ELEMENTS=36
(c)

FIGURE 3. CYLINDER WITH FLAT ENDS - CODE NUMBER = +1

Table I

Identifying Notation and Elements for One Layer of Insulation

Shape	Sphere	Cylinder with Hemispherical Ends	Cylinder with Flat Ends
Code	0	-1	+1
N	Number of elements	Number of elements	N
8	8	12	8
32	32	40	16
72	72	84	24

elements are referred to in relation to E_{11} as left of, right of, front of, etc. For example, the conduction length in the direction to the right of E_{11} is indicated by $l_{r_{11}}$. Figure 4 illustrates this. The convention is:

right (r) - counterclockwise when viewing the container along the x-axis in the -x direction.

front (f) - always toward the y-z plane in the direction that is the shorter distance, i.e., for E_{11} , front is toward E_{21} , but for E_{16} front is toward E_{26} .

top (t) - in the direction from the inside toward the outside of the container.

left, back, and under are in the directions counter to right, front and top, respectively.

The insulation is assumed to be divided into slices, sections, and layers. The symbol indices refer to this division. For example, E_{322} refers to the element (or region) located in the third slice, second section, and second layer.

The computer program input and output data are shown in Tables II and III, respectively.

The quantities in Table III are computed for each isothermal element. The required formulae are shown in Table IV. Because of the symmetrical arrangement of the elements, many quantities, once computed, may be used repeatedly as is shown in Table IV and in Table V.

FIGURE 4 - CONVENTION USED WHEN REFERRING TO DIRECTIONS

Table II

Program Input Data

Formula Notation	Computer Language Notation	Remarks
N	N	Code to number of elements
J J	-	Indicates to computer when to stop
FIG	-	Indicates shape of container
L	A	Insulation thickness
h	H	Height of cylindrical part of container
r	R	Radius of container
k	B	Number of layers of insulation

Table III

Program Output Data

Notation	Remarks
A_f	Cross-sectional area toward front
A_b	Cross-sectional area toward back
A_l	Cross-sectional area toward left
A_r	Cross-sectional area toward right
A_t	Cross-sectional area toward top side
A_u	Cross-sectional area toward under side
\bar{A}_t	Projected area of A_t
l_f	Conduction path length toward front
l_b	Conduction path length toward back
l_l	Conduction path length toward left
l_r	Conduction path length toward right
l_t	Conduction path length toward top side
l_u	Conduction path length toward under side
V	Volume of isothermal element
Φ	Ratio of A_t to \bar{A}_t
ϕ	Angle defined by Fig. 4. Computed to make all values of A_t equal.
α	Angle defined by Fig. 5. Used in computing \vec{N}
α	Angle defined by Fig. 5. Used in computing γ
b	Angle defined by Fig. 5. Used in computing \vec{N}
\vec{N}	Unit vector through center of isothermal element
\vec{N}_x	x component of \vec{N}
\vec{N}_y	y component of \vec{N}
\vec{N}_z	z component of \vec{N}
γ	Angle defined by Fig. 6. Used in locating \vec{N} with respect to -z direction.

FIGURE 5 - ANGLES REQUIRED FOR COMPUTING \vec{N} .

FIGURE 6 - ANGLE γ REQUIRED FOR GEOMETRICAL VIEW FACTOR

Table IV †

Formulae used in computing dimensions for storage vessel. Identifying notation is shown in Table I and II. Formulae cover all three shapes.

N	SPHERE AND HEMISPERICAL END						CYLINDRICAL MIDDLE					
	1,1	2,1	3,1	1,2	1,3	2,2	2,3	3,2	3,3	1,6,1,10,1,14	2,10,2,14	3,14
8	$\cos^{-1}(1 - \frac{4\pi}{N\theta})$											
32	$\cos^{-1}(1 - \frac{4\pi}{N\theta})$	$\cos^{-1}(1 - \frac{8\pi}{N\theta})$	ϕ_u	ϕ_u	ϕ_u	ϕ_u	ϕ_u	ϕ_u	ϕ_u	ϕ_{1y}	ϕ_{1y}	
72	$\cos^{-1}(1 - \frac{4\pi}{N\theta})$	$\cos^{-1}(1 - \frac{8\pi}{N\theta})$	ϕ_u	ϕ_u	ϕ_u	ϕ_u	ϕ_u	ϕ_u	ϕ_u	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$		
8	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$											
A_1	32	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	
72	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$
8	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$											
A_2	32	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	$A_{1,1y}$	$A_{1,1y}$	
72	$r\phi_u \frac{L}{k} (1 - \frac{1}{2kr})$	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	$A_{1,1y}$	$A_{1,1y}$	$A_{1,1y}$
8	$\frac{rL\theta}{k} (\sin \phi_u - \frac{1}{2kr})$									$h \frac{L}{k}$		
A_f	32	$\frac{rL\theta}{k} (\sin \phi_u - \frac{1}{2kr})$	$\frac{rL\theta}{k} [\sin(\phi_u - \frac{1}{2kr})]$	$A_{f,y}$	$A_{f,y}$	$A_{f,y}$	$A_{f,y}$	$A_{f,y}$	$A_{f,y}$	$h \frac{L}{k}$	$h \frac{L}{k}$	
72	$\frac{rL\theta}{k} (\sin \phi_u - \frac{1}{2kr})$	$\frac{rL\theta}{k} [\sin(\phi_u - \frac{1}{2kr})]$	$\frac{rL\theta}{k} [\sin(\phi_u - \frac{1}{2kr})]$	$A_{f,y}$	$A_{f,y}$	$A_{f,y}$	$A_{f,y}$	$A_{f,y}$	$A_{f,y}$	$h \frac{L}{k}$	$h \frac{L}{k}$	$h \frac{L}{k}$
8	0											
A_b	32	0	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	$A_{1,1y}$	$A_{1,1y}$	
72	0	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	$A_{1,1y}$	$A_{1,1y}$	$A_{1,1y}$
8	$4\pi r^2/N$											
A_1	32	$4\pi r^2/N$	$4\pi r^2/N$	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	$r\phi_u h$	$r\phi_u h$	
72	$4\pi r^2/N$	$4\pi r^2/N$	$4\pi r^2/N$	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	A_{1y}	$r\phi_u h$	$r\phi_u h$	$r\phi_u h$
8	$4\pi r^2/N$											
A_u	32	$4\pi r^2/N$	$4\pi r^2/N$	A_{uy}	A_{uy}	A_{uy}	A_{uy}	A_{uy}	A_{uy}	$A_{1,1y}$	$A_{1,1y}$	
72	$4\pi r^2/N$	$4\pi r^2/N$	$4\pi r^2/N$	A_{uy}	A_{uy}	A_{uy}	A_{uy}	A_{uy}	A_{uy}	$A_{1,1y}$	$A_{1,1y}$	$A_{1,1y}$
8	ΦA_1											
\bar{A}_1	32	ΦA_1	ΦA_1	\bar{A}_{1y}	\bar{A}_{1y}	\bar{A}_{1y}	\bar{A}_{1y}	\bar{A}_{1y}	\bar{A}_{1y}	$2r \sin(\phi_u/2)h$	$2r \sin(\phi_u/2)h$	
72	ΦA_1	ΦA_1	ΦA_1	\bar{A}_{1y}	\bar{A}_{1y}	\bar{A}_{1y}	\bar{A}_{1y}	\bar{A}_{1y}	\bar{A}_{1y}	$2r \sin(\phi_u/2)h$	$2r \sin(\phi_u/2)h$	$2r \sin(\phi_u/2)h$

SPHERE (CODE NUMBER 0) AND CYLINDRICAL MIDDLE WITH HEMISPHERICAL ENDS (CODE NUMBER -1,0)

Table IV[†](Cont'd)

Table IV[†] (Cont'd)

SPHERE AND HEMISPHERICAL END										CYLINDRICAL MIDDLE			
N	1,1	2,1	3,1	1,2	1,3	2,2	2,3	3,2	3,3	6;1,10;14	2,10;2,14	3,14	
a	8	$\frac{1}{2}\theta$								0			
	32	$\frac{1}{2}\theta$	$\frac{1}{2}\theta$		1.5θ		1.5θ			0	0	0	
b	72	$\frac{1}{2}\theta$	$\frac{1}{2}\theta$	$\frac{1}{2}\theta$	1.5θ	2.5θ	1.5θ	2.5θ	2.5θ	0	0	0	
	32	.707 ϕ_{11}	$\frac{1}{2}\phi_{11}^*\phi_u$	$\frac{1}{2}\phi_{11}^*\phi_u^*\phi_u$	b_u	b_u	b_u	b_u	b_u	.707 ϕ_{11}	.707 ϕ_{11}	.707 ϕ_{11}	
$ \vec{N}_x $	72	.707 ϕ	$\frac{1}{2}\phi_{21}^*\phi_u$	$\frac{1}{2}\phi_{21}^*\phi_u^*\phi_u$	b_u	b_u	b_u	b_u	b_u	.707 ϕ_{11}	$\frac{1}{2}\phi_{21}^*\phi_{11}$	$\frac{1}{2}\phi_{21}^*\phi_{11}$	
	32	$\cos b_u$	$\cos b_u$	$\cos b_u$	$N_{x_1}u$	$N_{x_2}u$	$N_{x_3}u$	$N_{x_1}u$	$N_{x_1}u$	$\cos b_{11}$	$\cos b_{11}$	$\cos b_{11}$	
$ \vec{N}_y $	72	$\cos b_u$	$\cos b_u$	$\cos b_u$	$N_{x_1}u$	$N_{x_2}u$	$N_{x_3}u$	$N_{x_1}u$	$N_{x_1}u$	$\cos b_{11}$	$\cos b_{21}$	$\cos b_{21}$	
	32	$\cos a_u \sin b_u$	$\cos a_u \sin b_u$	$\cos a_u \sin b_u$	$\cos a_{2,1} \sin b_{2,1}$	$\cos a_{2,2} \sin b_{2,2}$	$\cos a_{2,3} \sin b_{2,3}$	$\cos a_{2,2} \sin b_{2,2}$	$\cos a_{2,3} \sin b_{2,3}$	$\cos a_{2,1} \sin b_{1,1}$	$\cos a_{2,1} \sin b_{1,1}$	$\cos a_{2,1} \sin b_{1,1}$	
$ \vec{N}_z $	72	$\cos a_{1,1} \sin b_{1,1}$	$\cos a_{2,1} \sin b_{2,1}$	$\cos a_{3,1} \sin b_{3,1}$	$\cos a_{1,2} \sin b_{1,2}$	$\cos a_{2,2} \sin b_{2,2}$	$\cos a_{3,2} \sin b_{3,2}$	$\cos a_{1,3} \sin b_{1,3}$	$\cos a_{2,3} \sin b_{2,3}$	$\cos a_{3,3} \sin b_{3,3}$	0	0	0
	32	$\sin a_u \sin b_u$	$\sin a_{2,1} \sin b_{2,1}$	$\sin a_{3,1} \sin b_{3,1}$	$\sin a_{1,2} \sin b_{1,2}$	$\sin a_{2,2} \sin b_{2,2}$	$\sin a_{3,2} \sin b_{3,2}$	$\sin a_{1,3} \sin b_{1,3}$	$\sin a_{2,3} \sin b_{2,3}$	$\sin a_{3,3} \sin b_{3,3}$	0	0	0
\vec{N}	72	$\sin a_u \sin b_{1,1}$	$\sin a_{2,1} \sin b_{2,1}$	$\sin a_{3,1} \sin b_{3,1}$	$\sin a_{1,2} \sin b_{1,2}$	$\sin a_{2,2} \sin b_{2,2}$	$\sin a_{3,2} \sin b_{3,2}$	$\sin a_{1,3} \sin b_{1,3}$	$\sin a_{2,3} \sin b_{2,3}$	$\sin a_{3,3} \sin b_{3,3}$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$
	32	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$	$\pm N_x \pm N_y \pm N_z$
0	8	$\sin^{-1} N_{z_{11}} $	$\sin^{-1} N_{z_{12}} $	$\sin^{-1} N_{z_{13}} $	$\sin^{-1} N_{z_{21}} $	$\sin^{-1} N_{z_{22}} $	$\sin^{-1} N_{z_{23}} $	$\sin^{-1} N_{z_{31}} $	$\sin^{-1} N_{z_{32}} $	$\sin^{-1} N_{z_{33}} $	90		
	32	$\sin^{-1} N_{z_{11}} $	$\sin^{-1} N_{z_{12}} $	$\sin^{-1} N_{z_{13}} $	$\sin^{-1} N_{z_{21}} $	$\sin^{-1} N_{z_{22}} $	$\sin^{-1} N_{z_{23}} $	$\sin^{-1} N_{z_{31}} $	$\sin^{-1} N_{z_{32}} $	$\sin^{-1} N_{z_{33}} $	γ	90	90
72	72	$\sin^{-1} N_{z_{11}} $	$\sin^{-1} N_{z_{12}} $	$\sin^{-1} N_{z_{13}} $	$\sin^{-1} N_{z_{21}} $	$\sin^{-1} N_{z_{22}} $	$\sin^{-1} N_{z_{23}} $	$\sin^{-1} N_{z_{31}} $	$\sin^{-1} N_{z_{32}} $	$\sin^{-1} N_{z_{33}} $	90	90	90
	190+a	$190 - a$										90	
γ	8	n < 3	3 < n < 6	H	$3 < n < 4$	S							
	32	n < 5	5 < n < 10	S	$5 < n < 8$	H							
72	72	n < 7	7 < n < 14	E	$7 < n < 12$	E							

Table IV[†](Cont'd)

		SPHERE AND HEMISPHERICAL END						CYLINDRICAL MIDDLE				
N	1,1	2,1	3,1	12	13	22	23	32	33	1,6;1,10;1,4	2,10;2,14	3,14
V	$\frac{4\pi}{3}Nk [r^3(r-L)^3]$									$\frac{h\phi_1}{2k}[r^2(r-L)^2]$		
	$\frac{4\pi}{3}Nk [r^3(r-L)^3]$	$\frac{4\pi}{3}Nk [r^3(r-L)^3]$	$\frac{4\pi}{3}Nk [r^3(r-L)^3]$	v_{11}		v_{21}				$\frac{h\phi_1}{2k}[r^2(r-L)^2]$	$\frac{h\phi_2}{2k}[r^2(r-L)^2]$	
	$\frac{4\pi}{3}Nk [r^3(r-L)^3]$	$\frac{4\pi}{3}Nk [r^3(r-L)^3]$	$\frac{4\pi}{3}Nk [r^3(r-L)^3]$	v_{11}	v_{11}	v_{21}	v_{21}	v_{31}	v_{31}	$\frac{h\phi_1}{2k}[r^2(r-L)^2]$	$\frac{h\phi_2}{2k}[r^2(r-L)^2]$	$\frac{h\phi_3}{2k}[r^2(r-L)^2]$

		N_x	N_y	N_z
+	8	+; M ≤ 1	$-; 2 \leq N \leq 2$	$+; 1 \leq N \leq 2$
	32	+; M ≤ 2	$-; 3 \leq N \leq 7$	$+; 1 \leq N \leq 4$
	-72	+; M ≤ 3	$-; 4 \leq N \leq 10$	$+; 1 \leq N \leq 6$
Φ	8	$\frac{N}{\pi} \sin^2(\phi_y/2) \sin \frac{\theta}{2} \cos \frac{\theta}{2}$		
	32	$\frac{N}{\pi} \sin^2(\phi_y/2) \sin \frac{\theta}{2} \cos \frac{\theta}{2}$		
	72	$\frac{N}{\pi} \sin^2(\phi_y/2) \sin \frac{\theta}{2} \cos \frac{\theta}{2}$		

□ SPHERE ONLY

† SPHERE (CODE NUMBER 0) AND CYLINDRICAL MIDDLE WITH
HEMISPHERICAL ENDS (CODE NUMBER -1.0)

Table IV[‡](Cont'd)

	N	FLAT END	CYLINDRICAL MIDDLE		N	FLAT END	CYLINDRICAL MIDDLE
ϕ	8	$4\pi/N$	$4\pi/N$	l_1	8	L/k	L/k
	16	$4\pi/N$	$4\pi/N$		16	L/k	L/k
	24	$4\pi/N$	$4\pi/N$		24	L/k	L/k
A_L	8	0	$r\phi_u L/k$	l_u	8	L/k	L/k
	16	0	$r\phi_u L/k$		16	L/k	L/k
	24	0	$r\phi_u L/k$		24	L/k	L/k
A_r	8	$r\phi_u L/k$	$r\phi_u L/k$	a	8	90°	0
	16	$r\phi_u L/k$	$r\phi_u L/k$		16	90°	0
	24	$r\phi_u L/k$	$r\phi_u L/k$		24	90°	0
A_f	8	rL/k	$\frac{hL}{k}$	b	8		$1/2\phi_u$
	16	rL/k	$\frac{hL}{k}$		16		$1/2\phi_u$
	24	rL/k	$\frac{hL}{k}$		24		$1/2\phi_{l,i}$
A_b	8	rL/k	$\frac{hL}{k}$	$ \vec{N}_x $	8		$\cos b_{l,i}$
	16	rL/k	$\frac{hL}{k}$		16		$\cos b_{l,i}$
	24	rL/k	$\frac{hL}{k}$		24		$\cos b_{l,i}$
A_t	8	$2\pi r^2/N$	$r\phi_u h$	$ \vec{N}_y $	8		$\sin b_{l,i}$
	16	$2\pi r^2/N$	$r\phi_u h$		16		$\sin b_{l,i}$
	24	$2\pi r^2/N$	$r\phi_u h$		24		$\sin b_{l,i}$
A_u	8	$2\pi r^2/N$	$r\phi_u h$	$ \vec{N}_z $	8	1.0	0
	16	$2\pi r^2/N$	$r\phi_u h$		16	1.0	0
	24	$2\pi r^2/N$	$r\phi_u h$		24	1.0	0
\bar{A}_t	8	$2\pi r^2/N$	$2r \sin(\phi_u/2)h$	$ \vec{N} $	8	1.0	$\pm N_x \pm N_y$
	16	$2\pi r^2/N$	$2r \sin(\phi_u/2)h$		16	1.0	$\pm N_x \pm N_y$
	24	$2\pi r^2/N$	$2r \sin(\phi_u/2)h$		24	1.0	$\pm N_x \pm N_y$
l_1	8	$\frac{2}{3}r$	$\frac{h}{2} + \frac{1}{3}r$	γ	8	180°	0°
	16	$\frac{2}{3}r$	$\frac{h}{2} + \frac{1}{3}r$		16	180°	0°
	24	$\frac{2}{3}r$	$\frac{h}{2} + \frac{1}{3}r$		24	180°	0°
l_r	8	$\frac{h}{2} + \frac{1}{3}r$	$\frac{h}{2} + \frac{1}{3}r$	E E M E N T S	8		
	16	$\frac{h}{2} + \frac{1}{3}r$	$\frac{h}{2} + \frac{1}{3}r$		16		
	24	$\frac{h}{2} + \frac{1}{3}r$	$\frac{h}{2} + \frac{1}{3}r$		24		
l_f	8	$8\pi r/3N$	$r\phi_{l,i}$	+	N _x		$+ , m \leq \frac{N}{8}$
	16	$8\pi r/3N$	$r\phi_u$		N _y		$- , 2 \leq n \leq 4$
	24	$8\pi r/3N$	$r\phi_u$		N _z	$+ , n \leq 2$	
l_b	8	$8\pi r/3N$	$r\phi_u$	V	8	$A_t L/k$	$\frac{2\pi h}{N_k} [r^2 - (r-L)^2]$
	16	$8\pi r/3N$	$r\phi_u$		16	$A_t L/k$	$\frac{2\pi h}{N_k} [r^2 - (r-L)^2]$
	24	$8\pi r/3N$	$r\phi_u$		24	$A_t L/k$	$\frac{2\pi h}{N_k} [r^2 - (r-L)^2]$

†† CYLINDER WITH FLAT ENDS (CODE NUMBER IS + 1.0)

Table V

This table indicates the symmetry of the elements. All elements within a given block (one of the small blocks) have equal values for the quantities listed in the heading. For example, the numerical value of ϕ for all elements in the first block (1, 1; 1, 6; 1, 13; 1, 8; etc.) is the same and need be computed only once.

SPHERE AND HEMISPHERICAL END				CYLINDRICAL MIDDLE			
$N = 72$							
$\phi, A_L, A_r, A_f, A_b, A_t, A_u$ $L_L, L_r, L_f, L_b, L_t, L_u$ $N_x, N_y, N_z, a, b, \alpha$				HEMISPHERICAL END ONLY			$\phi, A_L, A_r, A_f, A_t, A_u$ $L_L, L_r, L_f, L_b, L_t, L_u$
$1,1$	$1,6$	$1,13$	$1,8$	L_L	L_r	L_f	
$6,1$	$6,6$	$6,13$	$6,8$	$1,1$	$1,6$	$1,13$	$1,8$
$6,1$	$6,6$	$6,13$	$6,8$	$6,1$	$6,6$	$6,13$	$6,8$
$2,1$	$2,6$	$2,13$	$2,8$	$2,1$	$2,6$	$2,13$	$2,8$
$5,1$	$5,6$	$5,13$	$5,8$	$5,1$	$5,6$	$5,13$	$5,8$
$3,1$	$3,6$	$3,13$	$3,8$	$3,1$	$3,6$	$3,13$	$3,8$
$4,1$	$4,6$	$4,13$	$4,8$	$4,1$	$4,6$	$4,13$	$4,8$
$1,2$	$1,5$	$1,12$	$1,9$				
$6,2$	$6,5$	$6,12$	$6,9$				
$2,2$	$2,5$	$2,12$	$2,9$				
$5,2$	$5,5$	$5,12$	$5,9$				
$3,2$	$3,5$	$3,12$	$3,9$				
$4,2$	$4,5$	$4,12$	$4,9$				
$1,3$	$1,4$	$1,11$	$1,10$				
$6,3$	$6,4$	$6,11$	$6,10$				
$2,3$	$2,4$	$2,11$	$2,10$				
$5,3$	$5,4$	$5,11$	$5,10$				
$3,3$	$3,4$	$3,11$	$3,10$				
$4,3$	$4,4$	$4,11$	$4,10$				
$N = 32$							
$1,1$	$1,4$	$1,9$	$1,6$	$1,1$	$1,4$	$1,9$	$1,6$
$4,1$	$4,4$	$4,6$	$4,9$	$4,1$	$4,4$	$4,9$	$4,6$
$2,1$	$2,4$	$2,6$	$2,9$	$2,1$	$2,4$	$2,9$	$2,6$
$3,1$	$3,4$	$3,6$	$3,9$	$3,1$	$3,4$	$3,9$	$3,6$
$1,2$	$1,3$	$1,7$	$1,8$				
$4,2$	$4,3$	$4,7$	$4,8$				
$2,2$	$2,3$	$2,7$	$2,8$				
$3,2$	$3,3$	$3,7$	$3,8$				
$N = 8$							
$1,1$	$1,2$	$1,5$	$1,4$	$1,1$	$1,2$	$1,5$	$1,4$
$2,1$	$2,2$	$2,5$	$2,4$	$2,1$	$2,2$	$2,5$	$2,4$
				$1,2$	$1,1$	$1,4$	$1,5$
				$2,2$	$2,1$	$2,4$	$2,5$

COMPUTER PROGRAM-DECK SETUP INSTRUCTIONS

All the data for one run is punched sequentially, as it appears in title (input data), on one tabulating card.

J J ≡ is an added location that must contain a zero for the last in a stack of runs, otherwise a nonzero number.

FIG ≡ is an added location that must contain a 0.0 for a sphere, A + 1.0 for a flat end cylinder, or A - 1.0 for a cylinder with hemispherical ends.

The read statement is: 2 READ(5, 3) N, JJ, FIG, A, H, R, B

The format statement is: 3FORMAT(2I5, 5F10.0)

TABULATING CARD

1-----	5-----	10-----	20-----	30-----	40-----	50-----	60
N	JJ	FIG	A	H	R	B	

MAIN PROGRAM FLOW CHART

SUBROUTINE DK100

SUBROUTINE DK200

MAIN PROGRAM

LISTING

```

CØMMØN AT(6,14),AU(6,14),AL(6,14),AR(6,14),AF(6,14),AB(6,14),ATB(6
C,14),ALP(6,14),A1(6,14),B1(6,14),DT(6,14),DU(6,14),DB(6,14),DFT(6,1
C4),DR(6,14),DL(6,14),GA(6,14),PH(6,14),V(6,14),VX(6,14),VY(6,14),V
CZ(6,14),AØDL(6,14),AØDR(6,14),AØDF(6,14),AØDB(6,14),AØDT(6,14),AØD
CU(6,14),VØL(6,14),NE(14),N,FIG,A,B,H,R
2 READ(5,31N,JJ,FIG,A,H,R,B
3 FØRFORMAT(215,5F10.0)
PI=3.14159
AN=N
IF(FIG)145,115,116
116 IF(N-16)117,118,119
117 LL=2
L=6
TH=PI/2.0
CALL DK200(AN,LL,L,TH)
GØ TØ 875
118 LL=4
L=6
TH=PI/4.0
CALL DK200(AN,LL,L,TH)
GØ TØ 875
119 LL=6
L=6
TH=PI/6.0
CALL DK200(AN,LL,L,TH)
GØ TØ 875
115 IF(N-32)146,147,148
146 LL=2
L=4
TH=PI/2.0
CALL DK100(AN,LL,L,TH)
GØ TØ 875
147 LL=4
L=8
TH=PI/4.0
CALL DK100(AN,LL,L,TH)
GØ TØ 875
148 LL=6
L=12.
TH=PI/6.0
CALL DK100(AN,LL,L,TH)
GØ TØ 875
145 IF(N-32)6,7,8
6 L=6
LL=2
TH=PI/2.0
CALL DK100(AN,LL,L,TH)
GØ TØ 875
7 L=14
LL=4
TH=PI/4.0
CALL DK100(AN,LL,L,TH)
GØ TØ 875
8 L=14
LL=6

```

TH=PI/6.0
 CALL DK100(AN,LL,L,TH)
 875 D0 200 I=I,LL
 D0 200 J=1,L
 A0DL(I,J)=AL(I,J)/DL(I,J)
 A0DR(I,J)=AR(I,J)/DR(I,J)
 A0DF(I,J)=AF(I,J)/DF(I,J)
 A0DB(I,J)=AB(I,J)/DB(I,J)
 A0DT(I,J)=AT(I,J)/DT(I,J)
 A0DU(I,J)=AU(I,J)/DU(I,J)
 200 CONTINUE
 WRITE(6,880)N,A,H,R,B,TH,FIG
 880 F0RMMAT(IH1,46X,37H*** CRY0GENIC ST0RAGE 0N THE MOON ****//56X,3H
 C N=I3/56X,3H L=E14.5/56X,3H H=E14.5/56X,3H R=E14.5/56X,3H K=E14.5/
 C53X,6HTHETA=E14.5/730X,44HIF C0DE NUMBER = 0.0 THE FIGURE IS A SPH
 CERE,/30X,61HIF C0DE NUMBER = 1.0 THE FIGURE IS A CYLINDER WITH FLA
 CT ENDS,/30X,70HIF C0DE NUMBER =-1.0 THE FIGURE IS A CYLINDER WITH
 CHEMISPERICAL ENDS.//57X,13H C0DE NUMBER =F5.1)
 NA=0
 D0 871 J=i,L
 NA=NA+1
 871 NE(J)=NA
 IF(L=81800,800,801
 800 L02=L
 G0 T0 802
 801 L02=L/2
 L02P1=L02+1
 802 WRITE(6,803)(NE(J),J=1,L02)
 803 F0RMMAT(//7X,20HPHI ANGLE IN RADIAN\$//(3X,8I14))
 D0 804 I=1,LL
 804 WRITE(6,805)I,(PH(I,J),J=1,L02)
 805 F0RMMAT(6X,I3,8E14.5)
 IF(L=81806,806,807
 807 WRITE(6,808)(NE(J),J=L02P1,L)
 808 F0RMMAT(/3X,8I14)
 D0 809 I=1,LL
 809 WRITE(6,805)I,(PH(I,J),J=L02P1,L)
 806 WRITE(6,810)(NE(J),J=1,L02)
 810 F0RMMAT(//7X,9HAREA LEFT//(3X,8I14))
 D0 811 I=1,LL
 811 WRITE(6,805)I,(AL(I,J),J=1,L02)
 IF(L=81812,812,813
 813 WRITE(6,808)(NE(J),J=L02P1,L)
 D0 814 I=1,LL
 814 WRITE(6,805)I,(AL(I,J),J=L02P1,L)
 812 WRITE(6,815)(NE(J),J=1,L02)
 815 F0RMMAT(//7X,10HAREA RIGHT//(3X,8I14))
 D0 816 I=1,LL
 816 WRITE(6,805)I,(AR(I,J),J=1,L02)
 IF(L=81817,817,818
 818 WRITE(6,808)(NE(J),J=L02P1,L)

D0 819 I=1,LL
819 WRITE(6,805)I,(AR(I,J),J=L02P1,L)

817 WRITE(6,820)(NE(J),J=1,L02)
820 FØRFORMAT(//7X,10HAREA FRØNT//(3X,8I14))
D0 821 I=1,LL
821 WRITE(6,805)I,(AF(I,J),J=1,L02)

IF(L=8)822,822,823
823 WRITE(6,808)(NE(J),J=L02P1,L)
D0 824 I=1,LL
824 WRITE(6,805)I,(AF(I,J),J=L02P1,L)

822 WRITE(6,825)(NE(J),J=1,L02)
825 FØRFORMAT(//7X,9HAREA BACK//(3X,8I14))
D0 826 I=1,LL
826 WRITE(6,805)I,(AB(I,J),J=1,L02)

IF(L=8)827,827,828
828 WRITE(6,808)(NE(J),J=L02P1,L)
D0 829 I=1,LL
829 WRITE(6,805)I,(AB(I,J),J=L02P1,L)

827 WRITE(6,830)(NE(J),J=1,L02)
830 FØRFORMAT(//7X,8HAREA TØP//(3X,8I14))
D0 831 I=1,LL
831 WRITE(6,805)I,(AT(I,J),J=1,L02)

IF(L=8)833,833,834
834 WRITE(6,808)(NE(J),J=L02P1,L)
D0 835 I=1,LL
835 WRITE(6,805)I,(AT(I,J),J=L02P1,L)

833 WRITE(6,836)(NE(J),J=1,L02)
836 FØRFORMAT(//7X,10HAREA UNDER//(3X,8I14))
D0 837 I=1,LL
837 WRITE(6,805)I,(AU(I,J),J=1,L02)

IF(L=8)838,838,839
839 WRITE(6,808)(NE(J),J=L02P1,L)
D0 840 I=1,LL
840 WRITE(6,805)I,(AU(I,J),J=L02P1,L)

838 WRITE(6,841)(NE(J),J=1,L02)
841 FØRFORMAT(//7X,14HAREA BAR SUB T//(3X,8I14))
D0 842 I=1,LL
842 WRITE(6,805)I,(ATB(I,J),J=1,L02)

IF(L=8)843,843,844
844 WRITE(6,808)(NE(J),J=L02P1,L)
D0 845 I=1,LL
845 WRITE(6,805)I,(ATB(I,J),J=L02P1,L)

843 WRITE(6,846)(NE(J),J=1,L02)
846 FØRFORMAT(//7X,11HLENGTH LEFT//(3X,8I14))
D0 847 I=1,LL

847 WRITE(6,805)I,(DL(I,J),J=1,L02)
 IF(L=8)848,848,849
 849 WRITE(6,808)(NE(J),J=L02P1,L)
 D0 850 I=1,LL
 850 WRITE(6,805)I,(DL(I,J),J=L02P1,L)

848 WRITE(6,851)(NE(J),J=1,L02)
 851 F0RMA7(//77X,12H LENGTH RIGHT//(3X,8I14))
 D0 852 I=1,LL
 852 WRITE(6,805)I,(DR(I,J),J=1,L02)

IF(L=8)853,853,854
 854 WRITE(6,808)(NE(J),J=L02P1,L)
 D0 855 I=1,LL
 855 WRITE(6,805)I,(DR(I,J),J=L02P1,L)

853 WRITE(6,856)(NE(J),J=1,L02)
 856 F0RMA7(//77X,12H LENGTH FRONT//(3X,8I14))
 D0 857 I=1,LL
 857 WRITE(6,805)I,(DF(I,J),J=1,L02)

IF(L=8)858,858,859
 859 WRITE(6,808)(NE(J),J=L02P1,L)
 D0 860 I=1,LL
 860 WRITE(6,805)I,(DF(I,J),J=L02P1,L)

858 WRITE(6,861)(NE(J),J=1,L02)
 861 F0RMA7(//77X,11H LENGTH BACK//(3X,8I14))
 D0 862 I=1,LL
 862 WRITE(6,805)I,(DB(I,J),J=1,L02)

IF(L=8)863,863,864
 864 WRITE(6,808)(NE(J),J=L02P1,L)
 D0 865 I=1,LL
 865 WRITE(6,805)I,(DB(I,J),J=L02P1,L)

863 WRITE(6,866)(NE(J),J=1,L02)
 866 F0RMA7(//77X,10H LENGTH T0P//(3X,8I14))
 D0 367 I=1,LL
 367 WRITE(6,805)I,(DT(I,J),J=1,L02)

IF(L=8)867,867,868
 868 WRITE(6,808)(NE(J),J=L02P1,L)
 D0 371 I=1,LL
 371 WRITE(6,805)I,(DT(I,J),J=L02P1,L)

867 WRITE(6,372)(NE(J),J=1,L02)
 372 F0RMA7(//77X,12H LENGTH UNDER//(3X,8I14))
 D0 373 I=1,LL
 373 WRITE(6,805)I,(DU(I,J),J=1,L02)

IF(L=8)374,374,375
 375 WRITE(6,808)(NE(J),J=L02P1,L)
 D0 376 I=1,LL
 376 WRITE(6,805)I,(DU(I,J),J=L02P1,L)

374 WRITE(6,877)(NE(J),J=1,L02)
877 FØRFORMAT(//7X,22HANGLE ALPHA IN RADIANST//(3X,8I14))
DØ 878 I=1,LL
878 WRITE(6,805)I,(ALP(I,J),J=1,L02)

IF(L=8)879,879,380
380 WRITE(6,808)(NE(J),J=L02P1,L)
DØ 881 I=1,LL
881 WRITE(6,805)I,(ALP(I,J),J=L02P1,L)

879 WRITE(6,882)(NE(J),J=1,L02)
882 FØRFORMAT(//7X,7HSMALL A//(3X,8I14))
DØ 883 I=1,LL
883 WRITE(6,805)I,(A1(I,J),J=1,L02)

IF(L=8)884,884,885
885 WRITE(6,808)(NE(J),J=L02P1,L)
DØ 886 I=1,LL
886 WRITE(6,805)I,(A1(I,J),J=L02P1,L)

884 WRITE(6,887)(NE(J),J=1,L02)
887 FØRFORMAT(//7X,7HSMALL B//(3X,8I14))
DØ 888 I=1,LL
888 WRITE(6,805)I,(B1(I,J),J=1,L02)

IF(L=8)889,889,890
890 WRITE(6,808)(NE(J),J=L02P1,L)
DØ 891 I=1,LL
891 WRITE(6,805)I,(B1(I,J),J=L02P1,L)

889 WRITE(6,892)(NE(J),J=1,L02)
892 FØRFORMAT(//7X,9HVECTOR NX//(3X,8I14))
DØ 893 I=1,LL
893 WRITE(6,805)I,(VX(I,J),J=1,L02)

IF(L=8)894,894,895
895 WRITE(6,808)(NE(J),J=L02P1,L)
DØ 896 I=1,LL
896 WRITE(6,805)I,(VX(I,J),J=L02P1,L)

894 WRITE(6,897)(NE(J),J=1,L02)
897 FØRFORMAT(//7X,9HVECTOR NY//(3X,8I14))
DØ 898 I=1,LL
898 WRITE(6,805)I,(VY(I,J),J=1,L02)

IF(L=8)899,899,920
920 WRITE(6,808)(NE(J),J=L02P1,L)
DØ 921 I=1,LL
921 WRITE(6,805)I,(VY(I,J),J=L02P1,L)

899 WRITE(6,922)(NE(J),J=1,L02)
922 FØRFORMAT(//7X,9HVECTOR NZ//(3X,8I14))
DØ 923 I=1,LL
923 WRITE(6,805)I,(VZ(I,J),J=1,L02)

IF(L=8)924,924,925
925 WRITE(6,808)(NE(J),J=L02P1,L)
D0 926 I=1,LL
926 WRITE(6,805)I,(VZ(I,J),J=L02P1,L)

924 WRITE(6,206)(NE(J),J=1,L02)
206 F0RMA7(//7X,14HTOTAL VECTOR N//(3X,8I14))
D0 201 I=1,LL
201 WRITE(6,805)I,(V(I,J),J=1,L02)

IF(L=8)203,203,204
204 WRITE(6,808)(NE(J),J=L02P1,L)
D0 205 I=1,LL
205 WRITE(6,805)I,(V(I,J),J=L02P1,L)

203 WRITE(6,927)(NE(J),J=1,L02)
927 F0RMA7(//7X,22HANGLE GAMMA IN RADIANS//(3X,8I14))
D0 928 I=1,LL
928 WRITE(6,805)I,(GA(I,J),J=1,L02)

IF(L=8)773,773,929
929 WRITE(6,808)(NE(J),J=L02P1,L)
D0 930 I=1,LL
930 WRITE(6,805)I,(GA(I,J),J=L02P1,L)

773 WRITE(6,774)(NE(J),J=1,L02)
774 F0RMA7(//7X,22HVOLUME OF EACH ELEMENT//(3X,8I14))
D0 775 I=1,LL
775 WRITE(6,805)I,(VOL(I,J),J=1,L02)

IF(L=8)869,869,776
776 WRITE(6,808)(NE(J),J=L02P1,L)
D0 777 I=1,LL
777 WRITE(6,805)I,(VOL(I,J),J=L02P1,L)

869 IF(JJ)2,29,2
29 STOP
END

```

SUBROUTINE DK100(AN,LL,L,TH)
C0MM0N AT(6,14),AU(6,14),AL(6,14),AR(6,14),AF(6,14),AB(6,14),ATB(6
C,14),ALP(6,14),A1(6,14),B1(6,14),DT(6,14),DU(6,14),DB(6,14),DF(6,1
C4),DR(6,14),DL(6,14),GA(6,14),PH(6,14),V(6,14),VX(6,14),VY(6,14),V
CZ(6,14),A0DL(6,14),A0DR(6,14),A0DF(6,14),A0DB(6,14),A0DT(6,14),A0D
CU(6,14),V0L(6,14),NE(14),N,FIG,A,B,H,R
PI=3.14159
9 TH02=TH/2.0
CIS=1.0-(4.0*PI)/(AN*TH)
PHI=ARKC0S(CIS,IERR)
PH102=PH1/2.0
S1PI=SIN(PH102)
S1P1SC=S1P1**2
SITH=SIN(TH02)
C0TH=C0S(TH02)
CPH=(AN/PI)*S1P1SQ*SITH*C0TH
IF(IERR)4,5,4
4 WRITE(6,28)
28 F0RFORMAT(///10X,15HERR0R IN ARKC0S)
5 AL1=(R*PH1*A/B)*(1.0-(A/(2.*R*B)))
AR1=AL1
SP1=SIN(PH1)
AF1=((R*A*TH)/B)*(SP1-A/(2.*B*R))
AB1=0.0
AT1=(4.*PI*R**2)/AN
AUI=AT1
DL1=(H/2.)+(R*TH/4.)*SP1
DRI=(R*TH/2.)*SP1
DF1=R*PH1
DB1=(R/2.)*PH1
DT1=A/B
DUI=DT1
V0L1=(4.0/(3.*AN*B))*PI*(R**3-(R-A)**3)
B11=0.707*PH1
ALP1=0.5*TH
SNI=SIN(B11)
VZ11=SIN(ALP1)*SNI
VY11=C0S(ALP1)*SNI
A11=ARKSIN(ABS(VZ11),IERR)
IFT(IERR)4,150,4
150 VX1=C0S(B11)
AVX1=ABST(VX1)
AVY11=ABS(VY11)
AVZ11=ABST(VZ11)
AT1L=R*PH1*H
AU1L=AT1L
ATB1L=2.*R*H*SIN(PH1/2.)
AL1L=((R*PH1*A)/B)*(1.-(A/(2.*B*R)))
AR1L=AL1L
AF1L=A*B/R
AB1L=AF1L
ATB1=CPH*AT1
DL1L=(H/2.)+(R*TH/4.)*SP1
DR1L=DL1L
DF1L=R*PH1

```

```

DB1L=DF1L
V0L1L=(PH1/(2.*B))*H*(R**2-(R-A)**2)
IF(FIG)166,167,167
166 IF(N-32)10,11,11
10 D0 30 I=1,2
D0 30 J=1,6
30 PH(I,J)=PH1
D0 31 I=1,2
D0 31 J=1,5
IF(J-3)32,31,32
32 AT(I,J)=AT1
AR(I,J)=AR1
AF(I,J)=AF1
AB(I,J)=AB1
DF(I,J)=DF1
DB(I,J)=DB1
B1(I,J)=B11
31 CONTINUE
D0 70 I=1,2
D0 70 J=1,5
IF(J-2)71,72,73
73 IF(J-3)70,70,74
74 IF(J-4)71,71,72
71 DL(I,J)=DL1
DR(I,J)=DR1
G0 T0 70
72 DL(I,J)=DR1
DR(I,J)=DL1
70 CONTINUE
D0 33 I=1,2
D0 33 J=3,6
IF(J-4)34,35,35
35 IF(J-5)33,33,34
34 AT(I,J)=AT1L
AU(I,J)=AU1L
ATB(I,J)=ATB1L
AL(I,J)=AL1L
AR(I,J)=AR1L
AF(I,J)=AF1L
AB(I,J)=AB1L
DF(I,J)=DF1L
DB(I,J)=DB1L
B1(I,J)=B11
33 CONTINUE
G0 T0 873
167 DL1=(R*TH/2.0)*SIN(PH1)
IF(N-32)168,11,11
168 D0 169 I=1,LL
D0 169 J=1,L
PH(I,J)=PH1
AL(I,J)=AL1
AR(I,J)=AR1
AF(I,J)=AF1
AB(I,J)=AB1
DL(I,J)=DL1
DR(I,J)=DR1

```

```

DF(I,J)=DF1
DB(I,J)=DB1
B1(I,J)=B1I
169 CØNTINUE
GØ TØ 874
11 CØS1=(1.0-((8.*PI)/(AN*TH)))
PH2=ARKCØST(CØS1,IERR)-PH1
IF(IERR)4,19,4
19 AL2=(R*PH2*A/B)*(1.0-(A/(2.*B*R)))
AR2=AL2
SP2=SIN(PH1+PH2)
AF2=((A*R*TH)/B)*(SP2-(A/(2.*B*R)))
AB2=AF1
DL2=(H/2.0)+(R*TH/4.0)*(SP1+SP2)
DR2=(R*TH/2.0)*(SP1+SP2)
DF1=(R/2.0)*(PH1+PH2)
DF2=R*PH2
DB2=DF1
AT2L=R*PH2*H
AU2L=AT2L
ATB2L=2.*R*SIN(PH2/2.0)*H
AL2L=(R*PH2*A/B)*(1.0-(A/(2.*B*R)))
AR2L=AL2L
AF2L=H*A/B
AB2L=AF2L
DL2L=(H/2.0)+(R*TH/4.0)*(SP1+SP2)
DR2L=DL2L
DF1L=DF1
DF2L=R*PH2
DB1L=R*PH1
DB2L=DF1L
VØL2L=(PH2/(2.*B))*H*(R**2-(R-A)**2)
B12=0.5*PH2+PH1
ALP2=1.5*TH
SN2=SIN(B12)
VZ21=SIN(ALP1)*SN2
VZ12=SIN(ALP2)*SN1
VZ22=SIN(ALP2)*SN2
VY21=CØS(ALP1)*SN2
VY12=CØS(ALP2)*SN1
VY22=CØS(ALP2)*SN2
A21=ARKSIN(ABS(VZ21),IERR)
A12=ARKSIN(ABS(VZ12),IERR)
A22=ARKSIN(ABS(VZ22),IERR)
IF(IERR)4,12,4
12 VX2=CØS(B12)
AVX2=ABS(VX2)
AVY21=ABS(VY21)
AVY12=ABS(VY12)
AVY22=ABS(VY22)
AVZ12=ABS(VZ12)
AVZ21=ABS(VZ21)
AVZ22=ABS(VZ22)
IF(FIG)187,188,188
187 IF(IN=32)20,20,21
20 DØ 36 I=1,4

```

```

    D0 36 J=1,9
    IF(I-2)37,38,38
    38 IF(I-3)39,39,37
    37 IF(J-5)40,36,40
    40 PH(I,J)=PH1
    AL(I,J)=AL1
    AR(I,J)=AR1
    AF(I,J)=AF1
    AB(I,J)=AB1
    DF(I,J)=DF1
    DB(I,J)=DB1
    B1(I,J)=B11
    G0 T0 36
    39 IF(J-5)41,36,41
    41 PH(I,J)=PH2
    AL(I,J)=AL2
    AR(I,J)=AR2
    AF(I,J)=AF2
    AB(I,J)=AB2
    DF(I,J)=DF2
    DB(I,J)=DB2
    B1(I,J)=B12
    36 CONTINUE
    D0 42 I=1,4
    D0 42 J=5,10,5
    IF(I-2)43,45,44
    44 IF(I-3)45,45,43
    43 PH(I,J)=PH1
    AT(I,J)=AT1L
    AU(I,J)=AU1L
    ATB(I,J)=ATB1L
    AL(I,J)=AL1L
    AR(I,J)=AR1L
    AF(I,J)=AF1L
    AB(I,J)=AB1L
    DF(I,J)=DF1L
    DB(I,J)=DB1L
    B1(I,J)=B11
    G0 T0 42
    45 PH(I,J)=PH2
    AT(I,J)=AT2L
    AU(I,J)=AU2L
    ATB(I,J)=ATB2L
    AL(I,J)=AL2L
    AR(I,J)=AR2L
    AF(I,J)=AF2L
    AB(I,J)=AB2L
    DF(I,J)=DF2L
    DB(I,J)=DB2L
    B1(I,J)=B12
    42 CONTINUE
    G0 T0 873
    188 DL2=(R*TH/2.0)*(SIN(PH1)+SIN(PH1+PH2))
    IF(N-32)270,270,21
    270 D0 271 I=1,LL
    D0 271 J=1,L

```

IF(I-2)272,273,274
 274 IF(I-3)273,273,272
 272 PH(I,J)=PH1
 AL(I,J)=AL1
 AR(I,J)=AR1
 AF(I,J)=AF1
 AB(I,J)=AB1
 DL(I,J)=DL1
 DR(I,J)=DR1
 DF(I,J)=DF1
 DB(I,J)=DB1
 B1(I,J)=B11
 G0 TO 271

273 PH(I,J)=PH2
 AL(I,J)=AL2
 AR(I,J)=AR2
 AF(I,J)=AF2
 AB(I,J)=AB2
 DL(I,J)=DL2
 DR(I,J)=DR2
 DF(I,J)=DF2
 DB(I,J)=DB2
 B1(I,J)=B12
 271 CONTINUE
 G0 TO 874

21 PH3=(PI/2.)-(PH1+PH2)
 AL3=(R*PH3*A/B)*(1.-(A/(2.*R*B)))
 AR3=AL3
 AF3=(A*R*TH/B)*(1.-(A/(2.*B*R)))
 AB3=AF2
 DL3=(H/2.)+(R*TH/4.)*(SP2+1.)
 DR3=(R*TH/2.)*(SP2+1.)
 DF1=(R/2.)*(PH1+PH2)
 DF2=(R/2.)*(PH2+PH3)
 DF3=R*PH3
 DB3=DF2
 AT3L=R*PH3*H
 AU3L=AT3L
 ATB3L=2.*R*SIN(PH3/2.)*H
 AL3L=(R*PH3*A/B)*(1.-(A/(2.*B*R)))
 AR3L=AL3L
 AF3L=H*A/B
 AB3L=AF3L
 DL3L=(H/2.)+(R*TH/4.)*(SP2+1.)
 DR3L=DL3L
 DF1L=(R/2.)*(PH1+PH2)
 DF2L=(R/2.)*(PH2+PH3)
 DF3L=R*PH3
 DB1L=R*PH1
 DB2L=DF1L
 DB3L=DF2L
 V0L3L=(PH3/(2.*B))*H*(R**2-(R-A)**2)
 BI3=0.5*PH3+PH2+PH1
 ALP3=2.5*TH
 SN3=SIN(BI3)
 VZ3L=SIN(ALP1)*SN3

```

VZ13=SIN(ALP3)*SN1
VZ23=SIN(ALP3)*SN2
VZ32=SIN(ALP2)*SN3
VZ33=SIN(ALP3)*SN3
VY31=COS(ALP1)*SN3
VY13=COS(ALP3)*SN1
VY23=COS(ALP3)*SN2
VY32=COS(ALP2)*SN3
VY33=COS(ALP3)*SN3
A31=ARKSINI(ABS(VZ31),IERR)
A13=ARKSINI(ABS(VZ13),IERR)
A23=ARKSINI(ABS(VZ23),IERR)
A32=ARKSINI(ABS(VZ32),IERR)
A33=ARKSINI(ABS(VZ33),IERR)
IF(IERR)4,13,4
13 VX3=COS(B13)
AVX3=ABS(VX3)
AVY31=ABS(VY31)
AVY13=ABS(VY13)
AVY23=ABS(VY23)
AVY32=ABS(VY32)
AVY33=ABS(VY33)
AVZ31=ABS(VZ31)
AVZ13=ABS(VZ13)
AVZ23=ABS(VZ23)
AVZ32=ABS(VZ32)
AVZ33=ABS(VZ33)
IF(FIG)900,901,901
900 D0 46 I=1,6
D0 46 J=1,13
G0 T0 47,48,49,49,48,47),1
47 IF(J-7)52,46,52
52 PH(I,J)=PH1
AL(I,J)=AL1
AR(I,J)=ARI
AF(I,J)=AF1
AB(I,J)=AB1
DF(I,J)=DF1
DB(I,J)=DB1
B1(I,J)=B11
G0 T0 46
48 IF(J-7)51,46,51
51 PH(I,J)=PH2
AL(I,J)=AL2
AR(I,J)=AR2
AF(I,J)=AF2
AB(I,J)=AB2
DF(I,J)=DF2
DB(I,J)=DB2
B1(I,J)=B12
G0 T0 46
49 IF(J-7)50,46,50
50 PH(I,J)=PH3
AL(I,J)=AL3
AR(I,J)=AR3
AF(I,J)=AF3

```

AB(I,J)=AB3
DF(I,J)=DF3
DB(I,J)=DB3
B1(I,J)=B13

46 CONTINUE
D0 63 I=1,6
D0 63 J=7,14,7
G0 T0(64,65,56,56,65,64),I

64 PH(I,J)=PH1
AT(I,J)=AT1L
AU(I,J)=AU1L
ATB(I,J)=ATB1L

AL(I,J)=AL1L
AR(I,J)=AR1L
AF(I,J)=AF1L
AB(I,J)=AB1L
DF(I,J)=DF1L
DB(I,J)=DB1L

B1(I,J)=B11
G0 T0 63

65 PH(I,J)=PH2
AT(I,J)=AT2L
AU(I,J)=AU2L
ATB(I,J)=ATB2L

AL(I,J)=AL2L
AR(I,J)=AR2L
AF(I,J)=AF2L
AB(I,J)=AB2L
DF(I,J)=DF2L
DB(I,J)=DB2L

B1(I,J)=B12
G0 T0 63

56 PH(I,J)=PH3
AT(I,J)=AT3L
AU(I,J)=AU3L
ATB(I,J)=ATB3L

AL(I,J)=AL3L
AR(I,J)=AR3L
AF(I,J)=AF3L
AB(I,J)=AB3L
DF(I,J)=DF3L
DB(I,J)=DB3L

B1(I,J)=B13

63 CONTINUE
G0 T0 873

901 DL3=(R*TH/2.0)*(SIN(PH1+PH2)+1.0)

D0 902 I=1,LL
D0 902 J=1,L

IF(I-2)903,904,905

905 IF(I-4)906,906,907

907 IF(I-6)904,903,903

903 PH(I,J)=PH1
AL(I,J)=AL1
AR(I,J)=AR1
AF(I,J)=AF1
AB(I,J)=AB1

DL(I,J)=DL1
DR(I,J)=DR1
DF(I,J)=DF1
DB(I,J)=DB1
B1(I,J)=B11
GØ TØ 902

904 PH(I,J)=PH2
AL(I,J)=AL2
AR(I,J)=AR2
AF(I,J)=AF2
AB(I,J)=AB2
DL(I,J)=DL2
DR(I,J)=DR2
DF(I,J)=DF2
DB(I,J)=DB2
B1(I,J)=B12
GØ TØ 902

906 PH(I,J)=PH3
AL(I,J)=AL3
AR(I,J)=AR3
AF(I,J)=AF3
AB(I,J)=AB3
DL(I,J)=DL3
DR(I,J)=DR3
DF(I,J)=DF3
DB(I,J)=DB3
B1(I,J)=B13

902 CØNTINUE
GØ TØ 874

873 DØ 26 I=1,LL
DØ 26 J=1,L
IF(N-3)60,61,62

60 IF(J-3)66,26,67
67 IF(J-6)66,26,66
61 IF(J-5)66,26,68
68 IF(J-10)66,26,66

62 IF(J-7)66,26,69
69 IF(J-14)66,26,66

66 AT(I,J)=AT1
AU(I,J)=AU1
ATB(I,J)=ATB1

26 CØNTINUE
GØ TØ 18

874 DØ 872 I=1,LL
DØ 872 J=1,L
AT(I,J)=AT1
AU(I,J)=AU1
ATB(I,J)=ATB1

872 CØNTINUE
18 DØ 25 I=1,LL
DØ 25 J=1,L
DT(I,J)=DT1
DUT(I,J)=DUT1

25 CØNTINUE
IF(FIG)152,153,153

152 DØ 151 I=1,LL

D0 151 J=1,L
 IF(N=32)154,155,156
 154 G0 T0(157,158,159,157,158,159),J
 157 DL(I,J)=DL1
 G0 T0 160
 158 DL(I,J)=DR1
 G0 T0 160
 159 DL(I,J)=DL1L
 G0 T0 160
 155 G0 T0(161,162,162,161),I
 161 G0 T0(157,158,158,158,159,157,158,158,158,159),J
 162 G0 T0(163,164,164,164,165,163,164,164,164,165),J
 163 DL(I,J)=DL2
 G0 T0 160
 164 DL(I,J)=DR2
 G0 T0 160
 165 DL(I,J)=DL2L
 G0 T0 160
 156 G0 T0(170,171,172,172,171,170),I
 170 G0 T0(157,158,158,158,158,158,159,157,158,158,158,158,158,159),J
 171 G0 T0(163,164,164,164,164,164,165,163,164,164,164,164,164,165),J
 172 G0 T0(173,174,174,174,174,174,175,173,174,174,174,174,174,175),J
 173 DL(I,J)=DL3
 G0 T0 160
 174 DL(I,J)=DR3
 G0 T0 160
 175 DL(I,J)=DL3L
 160 IF(N=32)176,177,178
 176 G0 T0(179,180,181,179,180,181),J
 179 DR(I,J)=DR1
 G0 T0 151
 180 DR(I,J)=DL1
 G0 T0 151
 181 DR(I,J)=DR1L
 G0 T0 151
 177 G0 T0(182,183,183,182),I
 182 G0 T0(179,179,179,180,181,179,179,179,180,181),J
 183 G0 T0(184,184,184,185,186,184,184,184,185,186),J
 184 DR(I,J)=DR2
 G0 T0 151
 185 DR(I,J)=DL2
 G0 T0 151
 186 DR(I,J)=DR2L
 G0 T0 151
 178 G0 T0(189,190,191,191,190,189),I
 189 G0 T0(179,179,179,179,179,180,181,179,179,179,179,179,180,181),J
 190 G0 T0(184,184,184,184,185,186,184,184,184,184,184,185,186),J
 191 G0 T0(192,192,192,192,193,194,192,192,192,192,192,193,194),J
 192 DR(I,J)=DR3
 G0 T0 151
 193 DR(I,J)=DL3
 G0 T0 151
 194 DR(I,J)=DR3L
 151 CONTINUE
 153 D0 400 I=1,LL
 D0 400 J=1,L

```

IF(FIG)401,402,402
401 IF(N=32)403,404,405
403 G0 T0(406,406,407,406,406,407),J
406 ALP(I,J)=ALP1
G0 T0 400
407 ALP(I,J)=0.0
G0 T0 400
404 G0 T0(406,412,412,406,407,406,412,412,412,406,407),J
412 ALP(I,J)=ALP2
G0 T0 400
405 G0 T0(406,412,422,422,412,406,407,406,412,422,422,412,406,407),J
422 ALP(I,J)=ALP3
G0 T0 400
402 IF(N=32)406,424,425
424 G0 T0(406,412,412,406,406,412,412,406),J
425 G0 T0(406,412,422,422,412,406,406,412,422,422,412,406),J
400 CONTINUE
D0 430 I=1,LL
D0 430 J=1,L
IF(FIG)431,432,432
431 IF(N=32)436,437,438
436 G0 T0(433,433,434,433,433,434),J
433 A1(I,J)=A11
G0 T0 430
434 A1(I,J)=0.0
G0 T0 430
437 G0 T0(439,440,440,439),I
439 G0 T0(433,442,442,433,434,433,442,442,442,433,434),J
442 A1(I,J)=A12
G0 T0 430
440 G0 T0(447,448,448,447,434,447,448,448,447,447,434),J
447 A1(I,J)=A21
G0 T0 430
448 A1(I,J)=A22
G0 T0 430
438 G0 T0(453,454,456,456,454,454,453),I
453 G0 T0(433,442,459,459,442,433,434,433,442,459,459,442,433,434),J
459 A1(I,J)=A13
G0 T0 430
454 G0 T0(447,448,466,466,448,447,434,447,448,466,466,448,447,434),J
466 A1(I,J)=A23
G0 T0 430
456 G0 T0(472,473,475,475,473,472,434,472,473,475,475,473,472,434),J
472 A1(I,J)=A31
G0 T0 430
473 A1(I,J)=A32
G0 T0 430
475 A1(I,J)=A33
G0 T0 430
432 IF(N=32)433,481,482
481 G0 T0(483,484,484,483),I
483 G0 T0(433,442,442,433,433,442,442,433),J
484 G0 T0(447,448,448,447,447,448,448,447),J
482 G0 T0(492,493,495,495,493,492),I
492 G0 T0(433,442,459,459,442,433,433,442,459,459,442,433),J
493 G0 T0(447,448,466,466,448,447,447,448,466,466,448,447),J

```

495 G0 T0(472,473,475,475,473,472,472,473,475,475,473,472),J
430 C0NTINUE
D0 550 I=1,LL
D0 550 J=1,L
IF(FIG)551,552,552
552 IF(N-32)553,554,556
553 G0 T0(557,558,558,557),J
557 VY(I,J)=AVY11
G0 T0 550
558 VY(I,J)=-AVY11
G0 T0 550
554 G0 T0(560,561,561,560),I
560 G0 T0(557,562,564,558,558,564,562,557),J
562 VY(I,J)=AVY12
G0 T0 550
564 VY(I,J)=-AVY12
G0 T0 550
561 G0 T0(567,568,570,571,571,570,568,567),J
567 VY(I,J)=AVY21
G0 T0 550
568 VY(I,J)=AVY22
G0 T0 550
570 VY(I,J)=-AVY22
G0 T0 550
571 VY(I,J)=-AVY21
G0 T0 550
556 G0 T0(574,575,577,577,575,574),I
574 G0 T0(557,562,580,581,564,558,558,564,581,580,562,557),J
580 VY(I,J)=AVY13
G0 T0 550
581 VY(I,J)=-AVY13
G0 T0 550
575 G0 T0(567,568,587,588,570,571,571,570,588,587,568,567),J
587 VY(I,J)=AVY23
G0 T0 550
588 VY(I,J)=-AVY23
G0 T0 550
577 G0 T0(593,594,596,597,599,600,600,599,597,596,594,593),J
593 VY(I,J)=AVY31
G0 T0 550
594 VY(I,J)=AVY32
G0 T0 550
596 VY(I,J)=AVY33
G0 T0 550
597 VY(I,J)=-AVY33
G0 T0 550
599 VY(I,J)=-AVY32
G0 T0 550
600 VY(I,J)=-AVY31
G0 T0 550
551 IF(N-32)604,605,606
604 G0 T0(557,558,558,558,557,557),J
605 G0 T0(609,610,610,609),I
609 G0 T0(557,562,564,558,558,558,564,562,557,557),J
610 G0 T0(567,568,570,571,571,571,570,568,567,567),J
606 G0 T0(620,621,623,623,621,620),I

620 G0 T0(557,562,580,581,571,558,558,558,571,581,580,562,557,557),J
621 G0 T0(567,568,587,588,570,571,571,571,570,588,587,568,567,567),J
623 G0 T0(593,594,596,597,599,600,600,600,599,597,596,594,593,593),J
550 CONTINUE
G0 T0 640 I=1,LL
G0 T0 640 J=1,L
IF(IFG)641,642,642
642 IF(N-32)643,644,645
643 G0 T0(646,646,647,647),J
646 VZ(I,J)=AVZ11
G0 T0 640
647 VZ(I,J)=-AVZ11
G0 T0 640
644 G0 T0(648,649,649,648),I
648 G0 T0(646,651,651,646,647,654,654,647),J
651 VZ(I,J)=AVZ12
G0 T0 640
654 VZ(I,J)=-AVZ12
G0 T0 640
649 G0 T0(656,657,657,656,660,661,661,660),J
656 VZ(I,J)=AVZ21
G0 T0 640
657 VZ(I,J)=AVZ22
G0 T0 640
660 VZ(I,J)=-AVZ21
G0 T0 640
661 VZ(I,J)=-AVZ22
G0 T0 640
645 G0 T0(663,664,666,666,664,663),I
663 G0 T0(646,651,669,669,651,646,647,654,673,673,654,647),J
669 VZ(I,J)=AVZ13
G0 T0 640
673 VZ(I,J)=-AVZ13
G0 T0 640
664 G0 T0(656,657,676,676,657,656,660,661,680,680,661,656),J
676 VZ(I,J)=AVZ23
G0 T0 640
680 VZ(I,J)=-AVZ23
G0 T0 640
666 G0 T0(682,683,685,685,683,682,688,689,691,691,689,688),J
682 VZ(I,J)=AVZ31
G0 T0 640
683 VZ(I,J)=AVZ32
G0 T0 640
685 VZ(I,J)=AVZ33
G0 T0 640
688 VZ(I,J)=-AVZ31
G0 T0 640
689 VZ(I,J)=-AVZ32
G0 T0 640
691 VZ(I,J)=-AVZ33
G0 T0 640
641 IF(N-32)693,694,695
693 G0 T0(646,646,696,647,647,696),J
696 VZ(I,J)=0.0
G0 T0 640

694 G0 T0(698,699,699,698),I
698 G0 T0(646,651,651,646,696,647,654,654,647,696),J
699 G0 T0(656,657,657,656,696,660,661,661,660,696),J
695 G0 T0(709,710,712,712,710,709),I
709 G0 T0(646,651,669,669,651,646,696,647,654,673,673,654,647,696),J
710 G0 T0(656,657,676,676,657,656,696,660,661,680,680,661,660,696),J
712 G0 T0(682,683,685,685,683,682,696,688,689,691,691,689,688,696),J
640 CONTINUE
D0 15 I=1,LL
D0 15 J=1,L
IF(FIG)16,17,17
17 V0L(I,J)=V0L1
G0 T0 15
16 IF(N-32)22,23,24
22 G0 T0(17,17,110,17,17,110),J
110 V0L(I,J)=V0L1L
G0 T0 15
23 G0 T0(111,112,112,111),I
111 G0 T0(17,17,17,17,110,17,17,17,17,110),J
112 G0 T0(17,17,17,17,113,17,17,17,17,17,113),J
113 V0L(I,J)=V0L2L
G0 T0 15
24 G0 T0(207,208,209,209,208,207),I
207 G0 T0(17,17,17,17,17,17,110,17,17,17,17,17,17,17,110),J
208 G0 T0(17,17,17,17,17,17,113,17,17,17,17,17,17,17,113),J
209 G0 T0(17,17,17,17,17,17,210,17,17,17,17,17,17,210),J
210 V0L(I,J)=V0L3L
15 CONTINUE
D0 740 I=1,LL
D0 740 J=1,L
IF(FIG)741,742,742
741 IF(N-32)743,744,745
743 IF(I-2)746,747,747
746 VX(I,J)=AVX1
G0 T0 748
747 VX(I,J)=-AVX1
G0 T0 748
744 IF(I-2)746,749,750
750 IF(I-4)751,747,747
749 VX(I,J)=AVX2
G0 T0 748
751 VX(I,J)=-AVX2
G0 T0 748
745 IF(I-2)746,749,752
752 IF(I-4)753,754,755
755 IF(I-6)751,747,747
753 VX(I,J)=AVX3
G0 T0 748
754 VX(I,J)=-AVX3
G0 T0 748
742 IF(N-32)756,757,758
756 IF(I-2)746,747,747
757 IF(I-2)746,749,759
759 IF(I-4)751,747,747
758 IF(I-2)746,749,760
760 IF(I-4)753,754,761

```
761 IF(I=6)751,747,747
748 V(I,J)=VX(I,J)+VY(I,J)+VZ(I,J)
740 CØNTINUE
    DØ 762 I=1,LL
    DØ 762 J=1,L
    IF(FIG)763,764,764
763 IF(N=32)765,766,767
764 IF(N=32)765,766,767
765 IF(J=3)768,769,769
766 IF(J=5)768,769,769
767 IF(J=7)768,769,769
768 GA(I,J)=ABS(PI/2.+A1(I,J))
    GØ TØ 770
769 GA(I,J)=ABS(PI/2.-A1(I,J))
770 IF(IERR)771,762,771
771 WRITE(6,772)
772 FØRMMAT(//8X,15HERRØR IN ARKCØST)
762 CØNTINUE
    RETURN
    END
```

```

SUBROUTINE DK200(AN,LL,L,TH)
C0MM0N AT(6,14),AUT(6,14),AL(6,14),AR(6,14),AF(6,14),AB(6,14),ATB(6
C,14),ALP(6,14),A1(6,14),B1(6,14),DT(6,14),DU(6,14),DB(6,14),DF(6,1
C4),DR(6,14),DL(6,14),GA(6,14),PH(6,14),V(6,14),VX(6,14),VY(6,14),V
CZ(6,14),A0DL(6,14),A0DR(6,14),A0DF(6,14),A0DB(6,14),A0DT(6,14),A0D
CUL(6,14),V0L(6,14),NET(14),N,FIG,A,B,H,R
PI=3.14159
I20 PHI=4.0*PI/AN
ATM=R*PH1*H
ATE=(2.*PI*R**2)/AN
AUM=ATM
AUE=ATE
ATBM=2.*R*H*SIN(PH1/2.0)
ATBE=ATE
V0LE=(2.*PI*R**2*A)/(AN*B)
V0LM=((2.*PI*H)/(AN*B))*(R**2-(R-A)**2)
ALM=R*PH1*A/B
ALE=0.0
ARM=ALM
ARE=R*PH1*A/B
AFM=H*A/B
AFE=R*A/B
ABM=AFM
ABE=AFA
DLM=H/2.+R/3.
DEE=(2./3.)*R
DRM=DLM
DRE=DLM
DFM=R*PH1
DFE=(8.*PI*R)/(3.*AN)
DBM=DFM
DBE=DFE
DTM=A/B
DTE=DTM
DUM=DTM
DUE=DTM
A1M=0.0
A1E=PI/2.0
B1M=(1.0/2.0)*PH1
B1E=0.0
VXM=COS(B1M)
VXE=0.0
VYM=SIN(B1M)
VYE=0.0
VZM=0.0
VZE=1.0
D0 I21 I=1,LL
D0 I21 J=1,L
IF(I-N/8)I22,122,123
I22 VX(I,J)=VXM
G0 T0 124
I23 VX(I,J)=-VXM
I24 IF(J-1)I25,125,126
I26 IF(J-4)I27,127,125
I25 VY(I,J)=VYM

```

GØ TØ 121
 127 VY(I,J)=-VYM
 121 CØNTINUE
 DØ 128 I=1,LL
 DØ 128 J=1,L
 IF(J-2)129,129,130
 130 IF(J-3)131,131,132
 132 IF(J-6)133,131,131
 129 VZ(I,J)=VZE
 GØ TØ 128
 131 VZ(I,J)=VZM
 GØ TØ 128
 133 VZ11,J)=-VZE
 128 CØNTINUE
 DØ 137 I=1,LL
 DØ 137 J=1,L
 IF(J-3)134,135,136
 136 IF(J-6)134,135,135
 134 PH(I,J)=PH1
 AT(I,J)=ATE
 AU(I,J)=AUE
 ATB(I,J)=ATBE
 AL(I,J)=ALE
 AR(I,J)=ARE
 AF(I,J)=AFE
 AB(I,J)=ABE
 DL(I,J)=DLE
 DR(I,J)=DRE
 DF(I,J)=DFE
 DB(I,J)=DBE
 DT(I,J)=DTE
 DU(I,J)=DUE
 ALP(I,J)=A1E
 B1(I,J)=B1E
 VX(I,J)=VXE
 VY(I,J)=VYE
 VOL(I,J)=VØLE
 GØ TØ 870
 135 PH(I,J)=PH1
 AT(I,J)=ATM
 AU(I,J)=AUM
 ATB(I,J)=ATBM
 AL(I,J)=ALM
 AR(I,J)=ARM
 AF(I,J)=AFM
 AB(I,J)=ABM
 DL(I,J)=DLM
 DR(I,J)=DRM
 DF(I,J)=DFM
 DB(I,J)=DBM
 DT(I,J)=DTM
 DU(I,J)=DUM
 ALP(I,J)=A1M
 B1(I,J)=B1M
 VOL(I,J)=VØLM
 870 V(I,J)=VX(I,J)+VY(I,J)+VZ(I,J)

```
137 CONTINUE
D0 I4 I=1,LL
D0 I4 J=1,L
14 A1(I,J)=0.0
D0 I38 I=1,LL
D0 I38 J=1,L
IF(J=3)I39,I40,I41
141 IF(J=5)I42,I42,I43
143 IF(J=6)I42,I40,I40
139 GA(I,J)=PI
G0 T0 138
140 GA(I,J)=PI/2.0
G0 T0 138
142 GA(I,J)=0.0
138 CONTINUE
RETURN
END
```

June 9, 1965

APPROVAL

TMX-53270

COMPUTER PROGRAM-CRYOGENIC STORAGE
ON THE MOON (SUBROUTINE A AND C)

By

James K. Harrison

and

James W. Hilliard

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

Gerhard B. Heller
GERHARD B. HELLER
Dep. Director, Research Projects Division

DISTRIBUTION

DIR	MS-IL (8)
Dr. von Braun	
R-RP	MS-IP
Dr. Stuhlinger	MS-T (5)
Mr. Heller	
Dr. Schocken	MS-H
Mr. Snoddy	
Mr. Jones	I-RM-M
Mr. Arnett	
Mr. Atkins	CC-P
Mr. Bannister	
Mr. Fields	Scientific & Technical Information
Mr. Fountain	Facility (25)
Mr. Gates	Attn: NASA Representative (S-AK/RKT)
Mr. Harrison (3)	P. O. Box 5700
Mr. Miller	Bethesda, Maryland
Mr. Watkins	
Mr. Weathers	DEP-T
Dr. Lal	
Reserve (15)	
R-COMP	
Dr. Hoelzer	
Dr. Krenn	
Mr. Hilliard (3)	
Mr. Scollard	
Mr. Hodges	
Mr. Yarbrough	
R-COMP (GE)	
Miss Morgan	
Mrs. Blackwell	