Solve the following questions from the Discrete Math Zybook:

Exercise 3.1.1, a - g

- a) true
- **b)** false
- c) true
- d) false
- e) true
- f) false
- g) false

Exercise 3.1.2, a - e

- a) false
- **b)** true
- c) true
- d) true
- e) false

Exercise 3.1.5, b, d

- **b)** $\{x \in \mathbb{Z}^+: x \text{ is an integer multiple of 3}\}$, the set is infinite
- d) {x \in N: x is an integer multiple of 10 and x \leq 1000}, the cardinality is 101

Exercise 3.2.1, a - k

- a) true
- b) true
- c) false
- d) false
- e) true
- f) true
- g) true
- h) false
- i) false
- j) false
- **k)** false

Solve the following questions from the Discrete Math Zybook:

Exercise 3.2.4, b

b)
$$X = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$$

Solve the following questions from the Discrete Math Zybook:

Exercise 3.3.1, c - e

- **c)** {-3, 1, 17}
- **d)** {-5, -3, 0, 1, 4, 17}
- **e)** {1}

Exercise 3.3.3, a, b, e, f

- **a)** {1}
- **b)** {1, 2, 3, 4, 5, 9, 16, 25}
- e) $\{x \in R: (-1 / 100) \le x \le (1 / 100)\}$
- **f)** $\{x \in R: -1 \le x \le 1\}$

Exercise 3.3.4, b, d

- **b)** {Ø, {a}, {b}, {c} {a, b}, {a, c}, {b, c}, {a, b, c}}
- **d)** {Ø, {a}, {b}, {c}, {a, b}, {b, c}}

Solve the following questions from the Discrete Math Zybook:

Exercise 3.5.1, b, c

- b) (foam, tall, non-fat)
- c) B x C = {(foam, non-fat), (foam, whole), (no-foam, non-fat),
 (no-foam, whole)}

Exercise 3.5.3, b, c, e

- **b)** True, the elements of both Z^2 and R^2 are pairs, and all integers are real numbers.
- c) True, since the elements in \mathbb{Z}^2 are pairs and \mathbb{Z}^3 are triples, there are no elements that intersect between the two sets and thus the intersection is the empty set.
- e) True

Exercise 3.5.6, d, e

- **d)** {01, 001, 011, 0011}
- e) {aaa, aba, aaaa, abaa}

Exercise 3.5.7, c, f, g

- c) {aa, ab, ac, ad}
- f) {Ø, {ab}, {ac}, {ab, ac}}
- g) {(Ø, Ø), (Ø, {b}), (Ø, {c}), (Ø, {b, c}), ({a}, Ø), ({a}, {b}), ({a}, {c}), ({a}, {b, c})}

Solve the following questions from the Discrete Math Zybook:

Exercise 3.6.2, b, c

b) (B u A)
$$\cap$$
 (\overline{B} u A) | Given A u (\overline{B} \cap B) | Distributive Law, 1 A u Ø | Complement Law, 2 A | Identity Law, 3

c)
$$\overline{A \cap \overline{B}}$$
 | Given | De Morgan's Law, 1 | Double Complement Law, 2

Exercise 3.6.3, b, d

b) If
$$A = \{1, 2\}$$
 and $B = \{1, 3\}$:

$$A - (B \cap A)$$

= $A - \{1\}$
= $\{2\} \neq A$

d) If
$$A = \{1, 2\}$$
 and $B = \{1, 3\}$:

$$(B - A) u A$$

= 3 u A
= {1, 2, 3} \neq A

Exercise 3.6.4, b, c

b)
$$A \cap (B - A)$$
 | Given $A \cap (B \cap \overline{A})$ | Set Subtraction Law, 1 $(A \cap \overline{A}) \cap B$ | Associative Law, 2 $\emptyset \cap B$ | Complement Law, 3 \emptyset | Domination Law, 4

c) Au(B-A) | Given $Au(B\cap \overline{A})$ | Set Subtraction Law, 1 $(AuB)\cap (Au\overline{A})$ | Distributive Law, 2 $(AuB)\cap (U)$ | Complement Law, 3 AuB | Identity Law, 4