MATHD022: Discrete Mathematics

Connor Petri

Spring 2025

Contents

1	The	Language of Mathematics	3
	1.1	Variables	3
	1.2	Sets	5
	1.3	Relations and Functions	7
2	The	Logic of Compound Statements	9
	2.1	Logical Form and Equivalence	9
	2.2	Conditional Statements	11
	2.3	Valid and Invalid Arguments	14

1. The Language of Mathematics

1.1 Variables

Definition A **variable** is a symbol that is used as a placeholder when:

- The quantity has one of more values, but is not known.
 - For example: $2x^2 x = 7$
- The quantity represents **any element** from a given set.
 - For example: The reciporical of any non-zero integer n is $\frac{1}{n}$.

Writing Sentences using Variables We can rewrite the following sentences using variables:

- Is there an integer n that has a remainder of 2 when it is divided by 5?
 - Is there an integer n such that n%5 = 2?
- The cube root of any negative real number is negative.
 - For any real number s, if s < 0, then $\sqrt[3]{s} < 0$.

Types of Statements

- A universal statement is a statement that is true always true.
 - For example: All positive numbers are greater than 0.
- A **conditional statement** is a statement that is true if a certain condition is met.
 - For example: **If** 378 is divisible by 18, **then** 378 is divisible by 6.
- A universal conditional statement is a statement that is both conditional and universal.
 - For example: For all animals a, if a is a dog, then a is a mammal.

- As a universal statement: For all dogs a, a is a mammal.
- As a conditional statement: If a is a dog, then a is a mammal.
- An **existential statement** gives a property that is true for at least one thing.
 - There is a prime number that is even.
- A universal existential statement is a statement where the first part is universal and the second part is existential.
 - Every real number has an additive inverse.
 - For all real numbers r, there is an additive inverse -r.
 - For all real numbers r, there is a real number s such that r+s=0.
- An **existential universal statement** is a statement where the first part is existential and the second part is universal.
 - There is a positive integer that is less than or equal to every positive integer.
 - There is a positive integer m such that every positive integer is greater than or equal to m.
 - There is a positive integer m with the property that for all positive integers $n, m \leq n$.

1.2 Sets

Definition A **set** is a collection of objects.

Notation

- $x \in S$: x is an element of S.
- $x \notin S$: x is not an element of S.
- $S = \{1, 2, 3, \dots\}$: is set roster notation.

Axion of Extension A set is determined by what its elements are. Orders of elements or repeated elements can't be determine the set. For example: $\{1, 2, 3\} = \{3, 2, 2, 1, 2, 3, 1\}$. There are 3 elements in both sets.

Common Sets

- \mathbb{R} : the set of all real numbers.
- \mathbb{Z} : $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ the set of all integers.
- \mathbb{N} : $\{1, 2, 3, \dots\}$ the set of all natural numbers.
- \mathbb{Q} : the set of all rational numbers.
- $\emptyset = \{\}$: the empty set, or null set.

The null set is a subset of every set.

Set Builder Notation Let S denote a set and let $x \in S$ be and element in S. P(x) is a property that some elements of S satisfy.

$$A = \{x \in S | P(x)\}$$

A constains elements in S such that (-) P(x) is true.

Subsets

Definition Let A and B be sets. A is a **subset** (\subseteq) of B if every element of A is also an element of B.

Proper Subsets Let A and B be sets. A is a **proper subset** (\subset) of B if every element of A is also an element of B, and there is at least one element in B that is not in A.

Example Let $A = \mathbb{Z}^+, B = \{n \in \mathbb{Z} | 0 \le n \le 100\}, and C = \{100, 200, 300, 400, 500\}.$

- $B \subseteq A$ is false.
- $C \subset A$ is true.
- $C \subseteq B$ is false.
- $C \subseteq C$ is true.

Cartesian Product of sets Let A and B be sets. The Cartesian product of A and B, denoted $A \times B$, is the set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

Example Let $A = \{1, 2, 3\}$ and B = u, v.

$$A \times B = \{(1, u), (1, v), (2, u), (2, v), (3, u), (3, v)\}$$

$$A \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

1.3 Relations and Functions

Relations Let A and B be sets. A **relation** from A to B is a subset of the Cartesian product $A \times B$.

$$R \subseteq A \times B$$

- If $(x,y) \in R$, we say that x is related to y by R, denoted as xRy.
- \bullet **A** is in the **domain** of **R**
- B is the codomain of R

Example Let $A = \{1, 2, 3\}$ and $B = \{1, 2\}$ and define a relation R from A to B as follows:

$$(x,y) \in R \iff \frac{x+y}{2} \in \mathbb{Z}$$

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,1)\}$$
Domain of $R = \{1,2,3\}$
Codomain of $R = \{1,2\}$

Functions

Definition Let A and B be two sets. A function F from A to B is a relation with domain A and co-domain B that satisfies the following properties:

- For every element $x \in A$, there is an element $y \in B$ such $(x,y) \in F$
- For every element $x \in A$,

Example Let $A = \{2, 4, 6\}$ and $B = \{1, 3, 5\}$. Which of the relations defined below are functions from A to B?

- $R = \{(2,5), (4,1), (4,3), (6,5)\}$
 - Not a function because 4 is related to 1 and 3. This is not a many-to-one relationship.
- For all $(x.y) \in A \times B, (x,y) \in S \iff y = x+1$
 - $S = \{(2,3), (4,5)\}$ is a function from A to B.
- $T = \{(2,5), (4,1), (6,1)\}$
 - $-\ T$ is a function from A to B as A has a many-to-one relationshop with B.

Equivalent Functions

Let A and B be two sets. Two functions f and g from A to B:

$$f = g \iff f(x) = g(x) \quad \forall \quad x \in A$$

2. The Logic of Compound Statements

2.1 Logical Form and Equivalence

Arguments

Definition An argument is a sequence of statements aimed at demonstrating the truth of an assertion.

- The assertion at the end of the sequence is called the conclusion.
- The statements that support the conclusion are called premises.
- If the premises are true, the conclusion must also be true.

Example

- If student A is a math major or student A is a computer science major,
- Then student A will take Discrete Math.

Logical Statements

Definition A logical statement is a declarative sentence that is either true or false, but not both.

- Not p: $\neg p$
- p and/but q: $p \wedge q$
- p or q: $p \lor q$
- Neither p nor q: $\neg p \land \neg q$

Example h = healthy, w = wealthy, s = wise

- John is healthy and wealthy but not wise.
 - $(h \wedge w) \wedge \neg s$
- John is neither wealthy nor wise, but he is healthy
 - $(\neg w \wedge \neg s) \wedge h$

Equivalent Statements

Definition Two logical statements are equivalent if they have the same truth tables, denoted:

$$p \equiv q$$

De Morgan's Laws The negation (\neg) of an and statement is logically equivalent to the or statement of the negations. Similarly, the negation of an or statement is logically equivalent to the and statement of the negations.

- $\bullet \ \neg (p \land q) \equiv \neg p \lor \neg q$
- $\neg (p \lor q) \equiv \neg p \land \neg q$

Tautological and Condtradictory Statements

- A tautological statement is a statement that is always true.
- A contradictory statement is a statement that is always false.

2.2 Conditional Statements

Definition A Conditional statement is in the form "If p, then q" and is denoted as $p \implies q$ This is read as p implies q.

- \bullet p is the **hypothesis** of the statement.
- \bullet q is the **conclusion** of the statement.

Order of Operations

- (): parentheses
- ¬: negation
- \langle \tau \cdots \
- \Longrightarrow : implication

Equivalent of Conditional Statements

$$p \implies q \equiv \neg p \lor q$$
$$\neg (p \implies q) \equiv p \land \neg q$$

Example Find the negation of the following statement: "If my car is in the repair shop then I cannot go to class".

- Hypothesis (p): "My car is in the repair shop"
- Conclusion (q): "I cannot go to class"
- Convert: $p \implies q \equiv \neg p \lor q$
- Negation: $\neg(p \implies q) \equiv \neg(\neg p \lor q) \equiv p \land \neg q$
- Convert back: "My car is in the repair shop and I can go to class"

Negation vs Inverse The negation of a statement is NOT the same as the inverse of the statement.

• Negation: $\neg(p \implies q)$

• Inverse: $\neg p \implies \neg q$

Example If p is a square, then p is a rectangle.

• Hypothesis (p): "p is a square"

• Conclusion (q): "p is a rectangle"

• Negation: $\neg(p \implies q) \equiv p \land \neg q$

• Convert back: "p is a square and p is not a rectangle"

• Inverse: $\neg p \implies \neg q \equiv p \vee \neg q$

• Convert: "If p is not a square, then p is not a rectangle"

More statement types

• Contrapositive of $p \implies q \equiv \neg q \implies \neg p$

• Converse of $p \implies q \equiv q \implies p$

• Inverse of $p \implies q \equiv \neg p \implies \neg q$

Example If today is Easter then tomorrow is Monday.

 \bullet Hypothesis (p): "Today is Easter"

• Conclusion (q): "Tomorrow is Monday"

• Convert: $p \implies q$

• Contrapositive: $\neg q \implies \neg p \equiv \text{If tomorrow is not Monday, then today is not Easter}$

• Converse: $q \implies p \equiv \text{If tomorrow}$ is Monday, then today is Easter

• Inverse: $\neg p \implies \neg q \equiv \text{If today is not Easter}$, then tomorrow is not Monday

Biconditional Statements A biconditional statement is in the form "p if and only if q" and is denoted as $p \iff q$. This is read as p if and only if q.

$$p \iff q \equiv (p \implies q) \land (q \implies p) \tag{1}$$

Sufficient and Necessary Conditions If r and s are statements:

- r is a sufficient condition for s if $r \implies s$.
- r is a necessary condition for s if $s \implies r$ or $s \implies r$.
- r is a necessary and sufficient condition for s if $r \iff s$.

2.3 Valid and Invalid Arguments

Definition An **argument** is a sequence of statements, and an **argument** form is a sequence of statement form.

- The final statement or statement form is called the **conclusion**. The symbol ∴ (therefore) is used to denote the conclusion.
- All the preceding statements or statement forms are called **premises**, or assumptions or hypotheses.
- An argument form is **valid** means if all premises are true, then the conclusion must also be true.

Example Determine whether the following argument form is valid or invalid:

$$\begin{array}{c} p \implies q \vee \neg r \\ q \implies p \wedge r \\ \therefore p \implies r \end{array}$$

p	q	r	$p \implies (q \vee \neg r)$	$q \implies (p \wedge r)$	$p \implies r$	Valid?
T	Т	Т	Т	T	Τ	Valid
T	Т	F	F	m T	F	Invalid
T	F	Т	${ m T}$	F	${ m T}$	Invalid
T	F	F	F	F	F	Invalid
F	Т	Т	${ m T}$	F	${ m T}$	Invalid
F	Т	F	T	F	${ m T}$	Invalid
F	F	Т	T	F	${ m T}$	Invalid
F	F	F	Т	F	${ m T}$	Invalid

Therefore the argument form is invalid.

Syllogisms

Definition An argument form with two premisies are called syllogism. The firest and second premises are called the major premise and minor premise respectively.

Modus Ponens Modus Ponens is a valid argument form that can be expressed as:

$$\begin{array}{c} p \implies q \\ p \\ \vdots q \end{array}$$

This means that if $p \implies q$ (if p then q) is true, and p is true, then we can conclude that q must also be true.

Example If there are more pigeons than there are pigeonholes, then at least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

∴ At least two pigeons roost in the same hole.

Modus Tollens Modus Tollens is a valid argument form that can be expressed as:

$$\begin{array}{c}
p \implies q \\
\neg q \\
\therefore \neg p
\end{array}$$

This means that if $p \implies q$ (if p then q) is true, and q is false, then we can conclude that p must also be false.

Rules of Inference A rule of inference is a form of argument that is valid. Both modus ponens and modus tollens are rules of inference. The following are additional examples of rules of inference:

		322241-231 8824-1	The state of the s	
Modus Ponens	$p \to q$ p $\therefore q$	Elimination	a. $p \lor q$ b. $p \lor q$ $\sim q$ $\therefore p$ $\therefore q$	
Modus Tollens	$ \begin{array}{c} p \to q \\ \sim q \\ \therefore \sim p \end{array} $	Transitivity	$p \to q$ $q \to r$ $\therefore p \to r$	
Generalization	$\begin{array}{ccc} \mathbf{a.} & p & & \mathbf{b.} & q \\ & \therefore p \lor q & & \therefore p \lor q \end{array}$	Proof by Division into Cases	$p \lor q$ $p \to r$ $q \to r$ $\therefore r$	
Specialization	a. $p \wedge q$ b. $p \wedge \dots p \wedge \dots p$			
Conjunction	<i>p q</i> ∴ <i>p</i> ∧ <i>q</i>	Contradiction Rule	$\sim p \rightarrow c$ (contradiction $\therefore p$	