

Model Building - Part 2

Lecture 15

STA 371G

Predicting Baseball Player Batting Averages

- load baseball.csv
- install the packages car, leaps, and corrplot if you haven't already

What predicts a player's batting average

 All of the data here came from http://seanlahman.com/baseball-archive/statistics/

What predicts a player's batting average

- All of the data here came from http://seanlahman.com/baseball-archive/statistics/
- Some data cleaning, to calculate averages mostly, was done.

What predicts a player's batting average

- All of the data here came from http://seanlahman.com/baseball-archive/statistics/
- Some data cleaning, to calculate averages mostly, was done.
- We are going to explore this dataset with best subsets regression

The 10 potential x variables

- YEAR: Year this entry calculated for
- LG: League, either NL or AL
- AVG: Batting average
- OBP: On base percentage
- SLG: Slugging average
- EXP: Years of experience
- PAYR: Plate appearances per year
- MLAVG: Batting average for the leauge for the year
- MLOBP: On base percentage for the leaugue for the year
- MLSLG: Slugging percentage for the leaugue for the year
- AVGcumLag1: Player's cumulative batting average for previous years
- OBPcumLag1: Player's cumulative on base percentage for previous years
- SLGcumLag1: Player's cumulative slugging percentage for previous years
- G: Games played (must have been at least 98)
- YRINDEX: Number of years since 1958

Build model full and check for multicollinearity

```
full <- lm(AVG ~ OBP + SLG + EXP + PAYR + MLAVG
+ MLOBP + MLSLG + AVGcumLag1 + OBPcumLag1
+ SLGcumLag1 + G + YRINDEX, data=baseball)
round(vif(full),2)
       OBP
                  SLG
                              FXP
                                        PAYR
                                                  MI AVG
                                                              MI ORP
      3.71
                 4.32
                             1.20
                                        1.37
                                                   11.07
                                                              12.69
     MLSLG AVGcumLag1 OBPcumLag1 SLGcumLag1
                                                            YRINDEX
      7.39
                 2.09
                             3.95
                                        3.82
                                                    1.12
                                                               2.18
```


Build model full and check for multicollinearity

```
full <- lm(AVG ~ OBP + SLG + EXP + PAYR + MLAVG
+ MLOBP + MLSLG + AVGcumLag1 + OBPcumLag1
+ SLGcumLag1 + G + YRINDEX, data=baseball)
round(vif(full),2)
       OBP
                   SLG
                              FXP
                                        PAYR
                                                   MI AVG
                                                              MI ORP
      3.71
                 4.32
                             1.20
                                        1.37
                                                   11.07
                                                              12.69
     MLSLG AVGcumLag1 OBPcumLag1 SLGcumLag1
                                                            YRINDEX
      7.39
                 2.09
                             3.95
                                        3.82
                                                    1.12
                                                               2.18
```

Uh oh. Houston, we have a problem!

Look at the correlations to find the problem

This matrix is hard to read

```
numericpredictors <- baseball[,8:19]
M <- round(cor(numericpredictors),2) # calculate correlations
# print M by just typing M
# This table is confusing!
# There is a much better way to see this using corrplot
# So make the library available
library(corrplot)</pre>
```


Plot the correlations to better see the problem

corrplot(M, method = "circle") #plot matrix

Reduce multicollinearity by dropping variables

- The Major League averages are highly correlated with each other
- Let's keep just MLAVG and drop MLOBP and MLSLG

```
full <- lm(AVG ~ OBP + SLG + EXP + PAYR + MLAVG
+ AVGcumLag1 + OBPcumLag1
+ SLGcumLag1 + G + YRINDEX. data=baseball)
round(vif(full), 2)
       0BP
                  SLG
                             EXP
                                       PAYR
                                                  MLAVG AVGcumLag1
      3.62
                 4.29
                             1.16
                                       1.37
                                                   1.86
                                                              2.09
OBPcumLag1 SLGcumLag1
                                    YRINDEX
                               G
      3.92
                 3.79
                             1.12
                                        1.85
```

Much better!

Run resubsets to get a sense of the best predictors

```
library(leaps)
bestsubsets <- regsubsets(AVG ~ OBP + SLG + EXP + PAYR + MLAVG
+ AVGcumLag1 + OBPcumLag1
+ SLGcumLag1 + G + YRINDEX, data=baseball)</pre>
```

Now let's plot and identify the important predictors

Use Adj R² to compare models

plot(bestsubsets, scale="adjr2") # use adjusted R^2

Use BIC to compare models

```
plot(bestsubsets, scale="bic") # use BIC
```


Generate the best candidate model

```
model <- lm(AVG ~ OBP + SLG + AVGcumLag1 + OBPcumLag1
+ SLGcumLag1. data=baseball)
summary(model)
Call:
lm(formula = AVG ~ OBP + SLG + AVGcumLag1 + OBPcumLag1 + SLGcumLag1,
    data = baseball)
Residuals:
                     Median
     Min
               10
                                  30
                                          Max
-0.056014 -0.007723 0.000263 0.008180 0.040508
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.027871 0.002497 11.16 <2e-16 ***
0BP
           0.498209 0.009089 54.81 <2e-16 ***
SLG
           AVGcumLag1 0.880348 0.011950 73.67 <2e-16 ***
OBPcumLag1 -0.476261 0.012105 -39.34 <2e-16 ***
SLGcumLag1 -0.171831 0.005547 -30.98 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.01213 on 4529 degrees of freedom
Multiple R-squared: 0.821, Adjusted R-squared: 0.8208
F-statistic: 4154 on 5 and 4529 DF. p-value: < 2.2e-16
```

Does the National League's Designated Hitter Rule matter?

```
#Add a the categorical variable LG and find out!
model <- lm(AVG ~ OBP + SLG + AVGcumLag1 + OBPcumLag1
+ SLGcumLag1 + LG, data=baseball)</pre>
```

Does the National League's Designated Hitter Rule Matter?

```
# Find the rows in baseball where LG is not either NL or AL
# and remove them so we can focus on the difference
# between NL and AL
base1 <- baseball[baseball$LG == "NL" | baseball$LG == "AL",]

modelLG <- lm(AVG ~ OBP + SLG + AVGcumLag1 + OBPcumLag1
+ SLGcumLag1 + LG, data=base1)

# Look at the summary, LG is not statistically significant</pre>
```


Check for linear relationships

Depending on your computer, this command may run slowly
#pairs(~ AVG + OBP + SLG + AVGcumLag1 + OBPcumLag1 + SLGcumLag1, data=baseball)

Is this model really useful?

 Automated regression model selection methods cannot make something out of nothing.

Is this model really useful?

- Automated regression model selection methods cannot make something out of nothing.
- If you omit some important variables or fail to use data transformations when they are needed, or if the assumption of linear or linearizable relationships is simply wrong, the model is a bad one, no matter what the R^2 .

Is this model really useful?

- Automated regression model selection methods cannot make something out of nothing.
- If you omit some important variables or fail to use data transformations when they are needed, or if the assumption of linear or linearizable relationships is simply wrong, the model is a bad one, no matter what the R².
- Use your own judgment and intuition about your data to try to fine-tune whatever the computer comes up with.

A challenge

Surprise!

```
# I created this data with a random number generator
# You may have to run it a couple of times to get significance
v < - rnorm(100)
x1 < - rnorm(100)
x2 < - rnorm(100)
x3 < - rnorm(100)
x4 < - rnorm(100)
x5 < - rnorm(100)
x6 < - rnorm(100)
x7 < - rnorm(100)
x8 < - rnorm(100)
x9 < - rnorm(100)
x10 < - rnorm(100)
x11 <- rnorm(100)
x12 <- rnorm(100)
 summary(lm(y \sim x1 + x2 + x3 + x4 + x5 + x6 + x7
+ x8 + x9 + x10 + x11 + x12)
Call:
x10 + x11 + x12
```

Be careful of spurious correlations and overfitting!

• If you have more than 1 predictor for 10-15 y values, you are likely to see spurious correlations.

Be careful of spurious correlations and overfitting!

- If you have more than 1 predictor for 10-15 y values, you are likely to see spurious correlations.
- If you fit models with meaningless variables, you are fitting noise and will end up with an overfitted model that is not predictive going forward.

Be careful of spurious correlations and overfitting!

- If you have more than 1 predictor for 10-15 y values, you are likely to see spurious correlations.
- If you fit models with meaningless variables, you are fitting noise and will end up with an overfitted model that is not predictive going forward.
- You could even end up int he American Statistical Association's Hall of Shame!

www.tylervigen.com/spurious-correlations

- Don't fall for these!
- Have a great spring break!