Lecture 17

2.4 The Four Fundamental Subspaces

Course Outcomes: Students will have understanding about four fundamental subspaces of matrices and one sided inverse of rectangular matrices. The four fundamental subspaces of matrices are as follows:

- The column space C(A).
- The null space N(A).
- The row space $C(A^T)$.
- The left null space $N(A^T)$.

The Column Space C(A): The column space of A is denoted by C(A). Its dimension is the rank r.

The Null Space N(A): The nullspace of A is denoted by N(A). Its dimension is n-r.

The Row Space $C(A^T)$: The row space of A is the column space of A^T . It is $C(A^T)$, and it is spanned by the rows of A. Its dimension is also r.

The Left Null Space $N(A^T)$: The left nullspace of A is the nullspace of A^T . It contains all vectors y such that $A^Ty = 0$, and it is written $N(A^T)$. Its dimension is m - r.

Notes

- The nullspace N(A) and row space $C(A^T)$ are subspaces of R^n .
- The left nullspace $N(A^T)$ and column space C(A) are subspaces of R^m .

Existence of Inverses:

let A be a matrix of order $m \times n$ with rank r.

- (1) Full row rank r = m. Ax = b has at least one solution x for every b if and only if the columns span R^m . Then A has a right-inverse C such that $AC = I_m$ (m by m). This is possible only if $m \le n$.
- (2) Full column rank r = n. Ax = b has at most one solution x for every b if and only if the columns are linearly independent. Then A has an n by m left-inverse B such that $BA = I_n$. This is possible only if $m \ge n$.

Notes: One-sided inverses are $B = (A^T A)^{-1} A^T$ and $C = A^T (AA^T)^{-1}$

Example. Find a left-inverse and/or a right-inverse (when they exist) for

$$A = \left[\begin{array}{ccc} 4 & 0 & 0 \\ 0 & 5 & 0 \end{array} \right]$$

Ans.

$$Let A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \end{bmatrix}$$

The matrix A is already in Echelon form with 2 pivots.

So, rank of A=r=2.

Here m=2 and n=3.

So, m=r=2

- \Rightarrow A is a full row rank matrix.
- \Rightarrow right inverse C of A will exist and is given by

$$C = A^{T}(AA^{T})^{-1}$$

$$\Rightarrow C = \begin{bmatrix} \frac{1}{4} & 0\\ 0 & \frac{1}{5}\\ 0 & 0 \end{bmatrix}$$