Burkhard Höfling

CRISP Version 1.4.3

Computing with Radicals, Injectors
Schunck classes and Projectors
of finite soluble groups

Contents

	Copyright	3	5.5	Low level functions for normal subgroups
1	Introduction	4	_	related to radicals
2	Set theoretical classes	5	6	Examples of group classes
2.1	Creating set theoretical classes	5	6.1	Pre-defined group classes
2.2	Properties of classes	6	6.2	Pre-defined projector functions
2.3	Lattice operations for classes	6	6.3	Pre-defined sets of primes
3	Generic group classes	7	7	Lists of normal subgroups
3.1	Creating group classes	7	7.1	Functions for normal and characteristic subgroups
3.2	Properties of group classes	8	7.2	Functions for the socle of finite groups
3.3	Additional properties of group classes .	9		Bibliography
3.4	Attributes of group classes	10		Index
4	Schunck classes and formations	11		
4.1	Creating Schunck classes	11		
4.2	Attributes and operations for Schunck classes	11		
4.3	Additional attributes for primitive soluble groups	12		
4.4	Creating formations	13		
4.5	Attributes and operations for formations	15		
4.6	Low level functions for normal subgroups related to residuals	15		
5	Fitting classes and Fitting sets	18		
5.1	Creating Fitting classes	18		
5.2	Creating Fitting formations	19		
5.3	Creating Fitting sets	19		
5.4	Attributes and operations for Fitting classes and Fitting sets	21		

Copyright

CRISP is Copyright (C) 2000 — 2015 Burkhard Höfling (burkhard@hoefling.name)

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- (1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer
- (2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1

Introduction

The GAP package CRISP provides algorithms for computing subgroups of finite soluble groups related to a group class \mathscr{C} . In particular, it allows to compute \mathscr{C} -radicals and \mathscr{C} -injectors for Fitting classes (and Fitting sets) \mathscr{C} , \mathscr{C} -residuals for formations \mathscr{C} , and \mathscr{C} -projectors for Schunck classes \mathscr{C} . In order to carry out these computations, the group class \mathscr{C} must be represented by an algorithm which can decide membership in the group class. Moreover, additional information about the class can be supplied to speed up computations, sometimes considerably. This information may consist of other classes (such as the characteristic of the class), or of additional algorithms, for instance for the computation of residuals and local residuals, radicals, or for testing membership in related classes (such as the basis or boundary of a Schunck class).

Moreover, the present package contains algorithms for the computation of normal subgroups belonging to a given group class, including an improved method to compute the set of all normal subgroups of a finite soluble group, and methods to compute the socle and *p*-socles of a finite soluble group, as well as the abelian socle of any finite group. CRISP also provides basic support for classes (in the set theoretical sense). The algorithms used are described in [Höf01].

 \mathscr{C} -projectors and \mathscr{C} -injectors of finite soluble groups arise as generalisations of Sylow and Hall subgroups, and have attracted considerable interest. They were first studied by Gaschütz [Gas63], Schunck [Sch67], and Fischer, Gaschütz and Hartley [FGH67]. In particular, \mathscr{C} -injectors only exist in any finite soluble group if the group class \mathscr{C} is a Fitting class. Similarly, \mathscr{C} -projectors exist in any finite group G if and only if \mathscr{C} is a Schunck class. An extensive account of the subject can be found in [DH92].

In the case when the class $\mathscr C$ in question is a local formation (which is a special kind of Schunck class), algorithms for dealing with $\mathscr C$ -projectors and related subgroups of finite soluble groups are available also in the GAP package FORMAT by Eick and Wright; see also [EW02]. In order to use their methods, $\mathscr C$ has to be described in terms of algorithms for the computation of residuals with respect to an integrated local function for $\mathscr C$.

The author would like to thank J. Neubüser and the Lehrstuhl D für Mathematik, RWTH Aachen, for an invitation, which made it possible to develop a first version of the algorithm for the computation of projectors. He is indebted to the GAP team, particularly Bettina Eick and Alexander Hulpke, for its advice, and to the anonymous referee, J. Neubüser, and C. R. B. Wright for their detailed comments on previous versions of CRISP.

2 Set theoretical classes

In CRISP, a class (in the set-theoretical sense) is usually represented by an algorithm which decides membership in that class. Wherever this makes sense, sets (see GAP Reference Manual, 30.3.7) may also be used as classes.

2.1 Creating set theoretical classes

1► IsClass(C)

returns true if C is a class object. The category of class objects is a subcategory of the category IsListOrCollection.

returns a class C. In the first form, rec must be a record having a component \in and an optional component name. The values of these components, if present, are bound to the attributes MemberFunction and Name (see GAP Reference Manual, 12.8.2) of the class created. The value bound to \in must be a function func which returns true if a GAP object belongs to C, and false otherwise; cf. 2.2.2 below. The second form is equivalent to Class(rec(\in := func)). It is the user's responsibility to ensure that func returns the same result for different GAP objects representing the same mathematical object (or element, in the GAP sense; see GAP Reference Manual, 12 in the GAP reference manual).

```
gap> FermatPrimes := Class(p -> IsPrime(p) and p = 2^LogInt(p, 2) + 1); Class(in:=function(p) ... end)
```

3 ► View(class)

If the class does not have a name, this produces a brief description of the information defining *class* which has been supplied by the user. If the class has a name, only its name will be printed.

```
gap> View(FermatPrimes);
Class(in:=function( p ) ... end)
```

4 ▶ Print(class)

Print behaves very similarly to View, except that the defining information is being printed in a more explicit way if possible.

```
gap> Print(FermatPrimes);
Class(rec( in = function( p )
    return IsPrime( p ) and p = 2 ^ LogInt( p, 2 ) + 1;
end))
```

5 ▶ Display(class)

For classes, Display works exactly as Print.

6 ► obj in class

returns true or false, depending upon whether *obj* belongs to *class* or not. If *obj* can store attributes, the outcome of the membership test is stored in an attribute ComputedIsMembers of *obj*.

F

 $7 \triangleright C1 = C2$

Since it is not possible to compare classes given by membership algorithms, two classes are equal in GAP if and only if they are the same GAP object (see GAP Reference Manual, 12.5.1 in the GAP reference manual).

8 ► C1 < C2

The operation < for classes has no mathematical meaning; it only exists so that one can form sorted lists of classes.

2.2 Properties of classes

 $1 \triangleright \text{IsEmpty}(C)$

This property may be set to true or false if the class C is empty resp. not empty.

2► MemberFunction(C) A

This attribute, if bound, stores a function with one argument, obj, which decides if obj belongs to C or not, and returns true and false accordingly. If present, this function is called by the default method for $\$ in. MemberFunction is part of the definition of C and should not be called directly by the user.

2.3 Lattice operations for classes

1 ► Complement(C)

returns the unary complement of the class C, that is, the class consisting of all objects not in C. C may also be a set.

```
gap> cmpl := Complement([1,2]);
Complement([ 1, 2 ])
gap> Complement(cmpl);
[ 1, 2 ]
```

- 2► Intersection(*list*)
 - returns the intersection of the groups in *list*, resp. of the classes *C1*, *C2*, If one of the classes is a list with fewer than INTERSECTION LIMIT elements, then the result will be a sublict of that list. By default, INTERSECTION LIMIT.

than INTERSECTION_LIMIT elements, then the result will be a sublist of that list. By default, INTERSECTION_LIMIT is 1000.

```
gap> Intersection(Class(IsPrimeInt), [1..10]);
[ 2, 3, 5, 7 ]
gap> Intersection(Class(IsPrimeInt), Class(n -> n = 2^LogInt(n+1, 2) - 1));
Intersection([ Class(in:=function( N ) ... end),
    Class(in:=function( n ) ... end) ])
```

 $3 \triangleright \text{Union}(C, D)$

returns the union of C and D.

▶ Intersection(C1, C2, ...)

```
gap> Union(Class(n -> n mod 2 = 0), Class(n -> n mod 3 = 0));
Union([ Class(in:=function( n ) ... end), Class(in:=function( n ) ... end)
])
```

 $4 \triangleright Difference(C, D)$

returns the difference of C and D. If C is a list, then the result will be a sublist of C.

```
gap> Difference(Class(IsPrimePowerInt), Class(IsPrimeInt));
Intersection([ Class(in:=function( n ) ... end),
   Complement(Class(in:=function( N ) ... end)) ])
gap> Difference([1..10], Class(IsPrimeInt));
[ 1, 4, 6, 8, 9, 10 ]
```

3 Generic group classes

In this chapter, we describe how group classes can be defined by assigning basic attributes and properties, in particular closure properties.

A class (see 2) is a **group class** if it consists of groups, and if it is closed under isomorphisms of groups. Thus if G and H are isomorphic groups, then G is in the group class grpclass if and only if H is. Groups belonging to the same group class may be regarded as sharing a group theoretical property (a property shared by isomorphic groups), and groups sharing a group theoretical property form a class of groups. It not empty, group classes are genuinely infinite objects, so GAP sets can never form group classes. Some authors require every group class to contain the trivial groups. Here we do not make this assumption; in particular every empty class is a group class.

The following sections describe how to create group classes and declare some of their basic properties.

Note that, for common types of group classes, there are additional functions available to accomplish this task; see the following Chapters 4 and 5. There are also a number of pre-defined group classes; see Chapter 6.

3.1 Creating group classes

Group classes can either be defined by a function deciding membership, or alternatively by a (finite) list of groups containing at least one representative of each isomorphism type of groups contained in the class.

1 ▶	GroupClass(rec)	O
•	GroupClass(func)	O
•	GroupClass(group-list)	O
•	GroupClass(group-list_iso-func)	\mathbf{O}

The function GroupClass returns a new group class class, specified by its argument(s).

In the first form, rec must be a record which has a component \in, and may have further components name, and char. \in must be a function having one argument. When called with a group G as its argument, it must return true or false, depending upon whether G is in class or not. It is the user's responsibility to ensure that the function supplied returns the same value when called with isomorphic groups. If rec has components name or char, their values are stored in the attributes Name (see GAP Reference Manual, 12.8.2) and Characteristic (see 3.4.1) of class.

GroupClass(func) is a shorthand for GroupClass(rec(in := func)).

In the other cases, GroupClass returns the group class consisting of the isomorphism classes of the groups in the list *group-list*. If *iso-func* is given, *iso-func* is used to check whether a given group *G* is isomorphic with one of the groups in the defining list. *iso-func* must have two arguments, and must return true if two groups, one of which is in *group-list*, passed as arguments are isomorphic, and false otherwise. If *iso-func* is not given, the GAP function IsomorphismGroups is used for the isomorphism test. Note that even for relatively small groups, IsomorphismGroups tends to be very slow.

```
gap> GroupClass(IsNilpotent);
      GroupClass(in:=<Operation "IsNilpotent">)
      gap> GroupClass([CyclicGroup(2), CyclicGroup(3)]);
      GroupClass([ <pc group of size 2 with 1 generators>,
        <pc group of size 3 with 1 generators> ])
      gap> AbelianIsomorphismTest := function(A,B)
            if IsAbelian(A) then
      >
                if IsAbelian(B) then
      >
                     return AbelianInvariants(A) = AbelianInvariants(B);
      >
                else
      >
                     return false;
                fi:
            elif IsAbelian(B) then
      >
                return false;
      >
            else # this will not happen if called from GroupClass
                Error("At least one of the groups <A> and <B> must be abelian");
      >
            fi;
      > end;
      function(A, B) ... end
      gap> cl := GroupClass([AbelianGroup([2,2]), AbelianGroup([3,5])],
      > AbelianIsomorphismTest);
      GroupClass([ <pc group of size 4 with 2 generators>,
        <pc group of size 15 with 2 generators> ], function( A, B ) ... end)
      gap> Group((1,2),(3,4)) in cl;
      true
2 ► Intersection(list)
                                                                                               F
                                                                                               F
 ▶ Intersection(C_{-1}, C_{-2}, ..., C_{-n})
```

The intersection of a list *list* of group classes resp. of the group classes C_{-1} , C_{-2} , ..., C_{-n} is again a group class. The intersection automatically has those closure properties (see 3.2) which all of the intersected classes have.

3.2 Properties of group classes

Since nonempty group classes are infinite, CRISP cannot, in general, decide whether a group class has a certain property. Therefore the user is required to set the appropriate properties and attributes. See Sections GAP Reference Manual, 13.5 and GAP Reference Manual, 13.7. To facilitate this task, there are special functions available to create common types of group classes such as formations (see 4.4), Fitting classes (see 5.1), and Schunck classes (see 4.1).

However, CRISP knows about the implications between the closure properties listed below; for instance it knows that a group class which has IsResiduallyClosed also has IsDirectProductClosed, and that a class having IsS-chunckClass also has IsDirectProductClosed and IsSaturated. Moreover, the intersection of group classes all having one of the closure properties in common also has that closure property.

The following basic properties are defined for group classes.

```
1 ► IsGroupClass(grpclass)
```

P

A generic class (see Chapter 2) is considered a group class if it has the property IsGroupClass. There is no way for CRISP to **know** that a given class defined by a membership function is a group class, i. e., consists of groups and is closed under group isomorphisms.

```
\texttt{2} \blacktriangleright \texttt{ContainsTrivialGroup}(\textit{grpclass})
```

P

This property, if bound, indicates whether *grpclass* contains the trivial group or not.

3 ► IsSubgroupClosed(grpclass)

P

if true, then for every G in grpclass, the subgroups of G likewise belong to grpclass.

4 ► IsNormalSubgroupClosed(grpclass)

P

if true, then for every G in grpclass, the (sub)normal subgroups of G likewise belong to grpclass.

5► IsQuotientClosed(grpclass)

Р

if true, then for every G in grpclass, the factor groups of G likewise belong to grpclass.

6 ► IsResiduallyClosed(grpclass)

Р

if true and G is a group such that G/N_1 and G/N_2 belong to grpclass for two normal subgroups N_1 and N_2 of G which intersect trivially, then G belongs to grpclass.

7 ► IsNormalProductClosed(grpclass)

P

if true and G is a group which is generated by subnormal subgroups in grpclass, then G belongs to grpclass.

8 ► IsDirectProductClosed(grpclass)

P

if true and the group G is the direct product of N_1 and N_2 belonging to grpclass, then G likewise belongs to grpclass.

9► IsSchunckClass(grpclass)

Р

if true, then *G* belongs to *grpclass* if and only if its primitive factor groups lie in *grpclass*. A (finite) group is primitive if it has a faithful primitive permutation representation, or equivalently, if it has a maximal subgroup with trivial core. A Schunck class contains every trivial group.

10 ► IsSaturated(grpclass)

Р

if true, G belongs to X whenever G/FrattiniSubgroup(G) belongs to X.

3.3 Additional properties of group classes

Note that the following "properties" are not properties but only filters in the GAP sense (cf. GAP Reference Manual, 13.7 and GAP Reference Manual, 13.2 in the GAP reference manual).

1 ► HasIsFittingClass(obj)

F

is true if *obj* **knows** if it is a Fitting class, that is, if it lies in the filters HasIsGroupClass, HasContainsTrivial-Group, HasIsNormalSubgroupClosed and HasIsNormalProductClosed.

2 ► IsFittingClass(obj)

F

is true if obj is a Fitting class, that is, if it has the properties IsGroupClass, ContainsTrivialGroup, IsNormalSubgroupClosed and IsNormalProductClosed.

3 ► SetIsFittingClass(group class, bool)

F

If *bool* is true, this fake setter function sets the properties IsNormalSubgroupClosed and IsNormalProduct-Closed of *group class* to *true*. It is the user's responsibility to ensure that *group class* is indeed a Fitting class.

```
gap> nilp := GroupClass(IsNilpotent);
GroupClass(in:=<Operation "IsNilpotent">)
gap> SetIsFittingClass(nilp, true);
gap> nilp;
FittingClass(in:=<Operation "IsNilpotent">)
```

4 ► HasIsOrdinaryFormation(obj)

F

is true if *obj* **knows** if it is a formation, that is, if it lies in the filters HasIsGroupClass, HasContainsTrivialGroup, HasIsQuotientClosed and HasIsResiduallyClosed.

5 ► IsOrdinaryFormation(obj)

F

is true if obj is a formation, that is, if it has the properties IsGroupClass, ContainsTrivialGroup, IsQuotient-Closed and IsResiduallyClosed.

6► SetIsOrdinaryFormation(class, bool)

F

If *bool* is true, this sets the attributes IsQuotientClosed, ContainsTrivialGroup, and IsResiduallyClosed of *class*, making it a formation.

7 ► HasIsSaturatedFormation(obj)

F

returns true if *obj* **knows** if it is a saturated formation, that is, if it lies in the filters HasIsOrdinaryFormation and HasIsSaturated.

8 ► IsSaturatedFormation(obj)

F

returns true if obj is a saturated formation, that is, if it has the properties IsOrdinaryFormation and IsSaturated

9 ► SetIsSaturatedFormation(class, bool)

F

If *bool* is true, this sets the attributes IsQuotientClosed, ContainsTrivialGroup, and IsResiduallyClosed and IsSaturated of *class*, making it a saturated formation.

10 ► HasIsFittingFormation(obj)

F

returns true if *obj* **knows** whether it is a Fitting formation, that is, if it lies in the filters HasIsOrdinaryFormation and HasIsFittingClass (see 3.3.4 and 3.3.1).

11 ► IsFittingFormation(*obj*)

F

returns true if *obj* is both a formation and a Fitting class.

12 ► SetIsFittingFormation(class, bool)

F

If bool is true, this function sets the attributes of class to indicate that it is a Fitting formation.

13 ► HasIsSaturatedFittingFormation(obj)

F

returns true if *obj* **knows** whether it is a saturated Fitting formation, that is, if it lies in the filters HasIsSaturated-Formation and HasIsFittingClass (see 3.3.7 and 3.3.1).

14 ► IsSaturatedFittingFormation(obj)

F

returns true if *obj* is both a saturated formation and a Fitting class, that is, if it lies in the filters IsSaturatedFormation and IsFittingClass (see 3.3.8 and 3.3.2).

15 ► SetIsSaturatedFittingFormation(class, bool)

F

If bool is true, this sets the attributes of class to indicate that it is a saturated Fitting formation.

3.4 Attributes of group classes

In addition to the attribute MemberFunction which has the same meaning as for generic classes, a group class may have the following attribute.

1 ► Characteristic(grpclass)

Α

This attribute, if present, stores a class containing all primes p such that grpclass contains a cyclic group of order p. There is a pre-defined class AllPrimes which should be assigned to Characteristic if grpclass contains a cyclic group of order p for every prime p.

4

Schunck classes and formations

In principle, any group class can be created as generic (group) class, followed by setting the required properties and attributes described in the preceding chapters. For certain standard kinds of group classes, there are additional functions available to accomplish this task, which are described in this and the following chapter.

4.1 Creating Schunck classes

A class \mathscr{C} of finite groups is a **Schunck class** if a finite group G belongs to \mathscr{C} if and only if all its primitive factor groups belong to \mathscr{C} . In particular, a Schunck class is nonempty and closed with respect to factor groups. By definition, a Schunck class \mathscr{C} is determined by the primitive groups which it contains (the basis of \mathscr{C}), or by the primitive groups not in \mathscr{C} but all of whose proper factor groups belong to \mathscr{C} (the boundary of \mathscr{C}).

1► SchunckClass(rec) O

returns a Schunck class defined by the information stored in the record *rec*. Note that it is the user's responsibility to ensure that *rec* really defines a Schunck class. *rec* may have the following components: \in, proj, bound, char, and name. The values bound to these entries, if present, are stored, respectively, in the attributes MemberFunction, ProjectorFunction, BoundaryFunction, Characteristic, and Name, see 2.2.2, 4.2.6, 4.2.5m, 3.4.1, and GAP Reference Manual, 12.8.2 for the meaning of these attributes.

At least one of the attributes MemberFunction, ProjectorFunction, or BoundaryFunction must be present in order to be able to compute with a Schunck class.

4.2 Attributes and operations for Schunck classes

In addition to the attributes and operations for generic group classes, for Schunck classes also the following are available:

1 ► Boundary (class)

computes the boundary of *class*, i. e., the class of all primitive groups which do not belong to *class* but whose proper factor groups do. The result is a group class.

2► Basis(class)

The basis of *class* consists of the primitive soluble groups in *class*. The result is a group class.

3 ► Projector(grp, class)

0

This function returns a *class*-projector of *grp*. Note that, at present, methods are only available for finite soluble groups *grp*, or when *class* has an attribute ProjectorFunction.

A subgroup H of the group G is a *class*-projector of G if HN/N is *class*-maximal in G/N for all normal subgroups N of G. A subgroup H of G is *class*-maximal in G if H belongs to *class*, and there is no subgroup H of G which contains H and lies in *class*. Note that if *class* consists of finite soluble groups, then *class*-projectors exist in every finite soluble group if and only if *class* is a Schunck class, and in this case all *class*-projectors of G are conjugate. See [DH92], [II], [

```
gap> H := SchunckClass(rec(bound := G -> Size(G) = 6));
SchunckClass(bound:=function( G ) ... end)
gap> Size(Projector(GL(2,3), H));
16
gap> # H-projectors coincide with Sylow subgroups
gap> U := SchunckClass(rec( # class of all supersoluble groups
> bound := G -> not IsPrimeInt( Size(Socle(G)))
> ));
SchunckClass(bound:=function( G ) ... end)
gap> Size(Projector(SymmetricGroup(4), U));
6
gap> # the projectors are the point stabilizers
```

4 ► CoveringSubgroup(grp, class)

O

A subgroup H of G is a *class*-covering subgroup of G if H is a *class*-projector of L for every subgroup L with $H \le L \le G$. Note that projectors and covering subgroups coincide for Schunck classes of finite soluble groups. At present, methods are only available for finite soluble groups grp.

5 ▶ BoundaryFunction(grpclass)

A

If bound, this attribute stores a function func which has been set by the user to define grpclass. func must be a function taking one argument. If the argument is a finite primitive soluble group G, func must return true if G is in the boundary of grpclass, and false if G belongs to grpclass. The behaviour for arguments which are not primitive soluble groups, or which belong neither to grpclass nor to the boundary of grpclass need not be defined. Note that BoundaryFunction should **not** be used to test whether a given group belongs to the boundary of grpclass. Boundary and/or Basis (see 4.2.1 and 4.2.2), which are defined independently of the way grpclass is defined and will work for all finite soluble groups.

6 ► ProjectorFunction(grpclass)

Α

If bound, ProjectorFunction stores a function func supplied by the user as part of the definition of grpclass. func must be a function taking a group G as the only argument, and returns a grpclass-projector of G. Note that Projector (see 4.2.3), rather than ProjectorFunction, should be used by the user to compute grpclass-projectors.

4.3 Additional attributes for primitive soluble groups

returns true if grp is primitive and soluble, and false otherwise. An abstract finite group G is **primitive** if it has a faithful primitive permutation representation, or equivalently, if it has a maximal subgroup M with trivial core. If G is soluble, M complements the unique minimal normal subgroup N of G. Therefore N is the socle as well as the Fitting

subgroup of G. A permutation group may be primitive as an abstract group while it is not primitive as a permutation group (cf. GAP Reference Manual, 41.10.7).

2 ► SocleComplement(grp)

Α

If present, this attribute stores a complement of the socle of *grp*. Currently, there is only a method available for SocleComplement if *grp* has the property IsPrimitiveSoluble.

4.4 Creating formations

A nonempty group class is a formation if it is closed with respect to factor groups and residually closed. A saturated formation is, of course, a formation which is saturated. Note that by the Gaschütz-Lubeseder-Schmid theorem (see e. g. [DH92], IV, 4.6), every saturated formation is a local formation. Moreover, every saturated formation is a Schunck class. Therefore a saturated formation admits the operations Boundary, Basis, and Projector.

1 ▶ OrdinaryFormation(rec)

O

creates a formation from the record *rec*. Note that it is the user's responsibility to ensure that *rec* really defines a formation. *rec* may have components \in, res, char, and name, whose values are stored in the attributes Member-Function, ResidualFunction, Characteristic, and Name, respectively, of the new formation. See 2.2.2, 4.5.2, 3.4.1, and GAP Reference Manual, 12.8.2, respectively, for the meaning of these attributes.

The following example shows how to construct the formations of all groups of derived length at most 3 and of all groups of exponent dividing 6.

```
gap> der3 := OrdinaryFormation(rec(
>    res := G -> DerivedSubgroup(DerivedSubgroup(DerivedSubgroup(G)))
> ));
OrdinaryFormation(res:=function( G ) ... end)
gap> SymmetricGroup(4) in der3;
true
gap> GL(2,3) in der3;
false
gap> exp6 := OrdinaryFormation(rec(
>    \in := G -> 6 mod Exponent(G) = 0,
>    char := [2,3]));
OrdinaryFormation(in:=function( G ) ... end)
```

2 ► SaturatedFormation(rec)

O

creates a saturated formation from the record *rec*. Note that it is the user's responsibility to ensure that *rec* really defines a saturated formation. *rec* may have any components admissible for formations (see 4.4.1) or Schunck classes (see 4.1.1), that is, \in, res, char, proj, bound, locdef, and name, whose values, if bound, are stored in the attributes MemberFunction, ResidualFunction, Characteristic, ProjectorFunction, BoundaryFunction, LocalDefinitionFunction, and Name, respectively. Please refer to 2.2.2, 4.5.2, 3.4.1, 4.2.6, 4.2.5, 4.5.3, and GAP Reference Manual, 12.8.2 for the meaning of these attributes.

There are also functions FittingFormation and SaturatedFittingFormation to create Fitting formations and saturated Fitting formations; see 5.2.1 and 5.2.2 below for details.

The following example shows how to construct the saturated formations of all finite nilpotent groups and of all nilpotent-by-abelian groups whose order is not divisible by a prime congruent 3 mod 4, and whose 2-chief factors are central. In the first case, we choose f(p)=(1) for all primes p, so that the f(p)-residual of G is generated by a generating set of G (see 4.5.3 below). In the second example, we let f(2)=1, if $p\equiv 3\pmod 4$, we define $f(p)=\mathscr{A}$, the class of all finite abelian groups, and set $f(p)=\emptyset$ otherwise.

```
gap> nilp := SaturatedFormation(rec(
       locdef := function(G, p)
>
>
           return GeneratorsOfGroup(G);
>
SaturatedFormation(locdef:=function( G, p ) ... end)
gap> form := SaturatedFormation(rec(
     locdef := function(G, p)
>
         if p = 2 then
>
            return GeneratorsOfGroup(G);
>
         elif p \mod 4 = 3 then
            return GeneratorsOfGroup(DerivedSubgroup(G));
>
            return fail;
>
         fi;
      end));
SaturatedFormation(locdef:=function( G, p ) ... end)
gap> Projector(GL(2,3), form);
Group([ [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ],
  [ [Z(3)^0, Z(3)], [0*Z(3), Z(3)^0]],
  [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ])
```

3 ► FormationProduct(form1, form2)

O

The formation product prod of two formations form1 and form2 consists of the groups G such that the form2-residual of G belongs to form1. The product prod is again a formation. If form1 and form2 are saturated formations, the result is a saturated formation. The same is true if the characteristic of form2 is contained in that of form1. This is automatically recognised if the characteristic of form1 is AllPrimes (see 6.3.1). In all other cases, you will have to set the attribute IsSaturated manually, if applicable. Note that in general it is not possible for CRISP to determine if two classes are contained in each other.

```
gap> nilp := SaturatedFormation(rec(\in := IsNilpotent, name := "nilp"));
nilp
gap> FormationProduct(nilp, der3); # no characteristic known
FormationProduct(nilp, OrdinaryFormation(res:=function(G)...end))
gap> HasIsSaturated(last); HasCharacteristic(nilp);
false
false
gap> SetCharacteristic(nilp, AllPrimes);
gap> FormationProduct(nilp, der3); # try with characteristic
FormationProduct(nilp, OrdinaryFormation(res:=function(G)...end))
gap> IsSaturated(last);
true
```

4 ► FittingFormationProduct(fitform1, fitform2)

O

If fitform1 and fitform2 are Fitting formations, the formation product equals the Fitting product (see 5.1.2) of fitform1 and fitform2, which, in turn, equals the class product of fitform1 and fitform2. The latter consists of all groups G having a normal subgroup N in fitform1 such that G/N belongs to fitform2.

Note that if fitform1 and fitform2 are Fitting formations, then FormationProduct(fitform1, fitform2), Fitting-Product (fitform1, fitform2) and FittingFormationProduct (fitform1, fitform2) all return the same mathematical object (but distinct GAP objects), which is, again, a Fitting formation.

```
gap> nilp := FittingFormation(rec(\in := IsNilpotent, name := "nilp"));;
gap> FormationProduct(nilp, nilp);
FittingFormationProduct(nilp, nilp)
gap> FittingProduct(nilp, nilp);
FittingFormationProduct(nilp, nilp)
gap> FittingFormationProduct(nilp, nilp);
FittingFormationProduct(nilp, nilp);
```

4.5 Attributes and operations for formations

In addition to those available for generic group classes, formations also admit the following attributes and operations. See also 4.2 for additional operations for saturated formations.

return the *form*-residual (also called *form*-residuum) of the group grp. This is the smallest normal subgroup res of grp such that grp/res belongs to form. Note that, unless form has an attribute ResidualFunction, there are presently only methods available for finite soluble groups.

2 ► ResidualFunction(form)

Α

This attribute is part of the definition of *form* supplied by the user. If present, it must contain a function which computes the *form*-residual of a given group. In general, such a residual only exists if *form* is residually closed; cf. 3.2.6. Note that ResidualFunction, if present, is called by Residual (see 4.5.1). Therefore Residual, which also works for formations without ResidualFunction, should be used by the user to compute *form*-residuals.

3 ► LocalDefinitionFunction(form)

Α

Let form be a saturated formation with local function f. This attribute, if present, stores a function func supplied by the user as part of the definition of form. func must be a function taking two parameters, a group G and a prime G. If G is in the characteristic of G, such that the smallest normal subgroup of G containing G containing G is the G-residual of G. If G is not in the characteristic of G is then G-residual of G. If G is not in the characteristic of G is not in the characteristic of G in G in G is pure G. LocalDefinitionFunction is part of the definition of G and should not be called by the user.

4.6 Low level functions for normal subgroups related to residuals

1 ► OneInvariantSubgroupMinWrtQProperty(act, grp, pretest, test, data)

O

Let act be a list or group whose elements act on grp via the caret operator, such that every subgroup of grp invariant under act is normal in grp. Assume that $\mathscr X$ is a set of act-invariant subgroups of grp containing grp, and such that whenever M and N are act-invariant subgroups with $M \in \mathscr X$ and M contained in N, then also $N \in \mathscr X$. Then OneInvariantSubgroupMinWrtQProperty computes an act-invariant subgroup $M \in \mathscr X$ such that no act-invariant subgroup of grp contained in M belongs to $\mathscr X$. At present, there exist only methods for finite soluble groups grp.

The class \mathcal{X} is described by two functions, *pretest* and *test*.

pretest is a function taking four arguments, U, V, R, and data, where data is just the argument passed to OneInvariantSubgroupMinWrtQProperty (see below for examples). U/V is a chief factor of grp, and R is an act-invariant subgroup of grp containing U which is known to belong to \mathscr{X} .

pretest may return the values true, false, or fail. If it returns true, every act-invariant subgroup N of grp such that V is contained in N and R/N is G-isomorphic with U/V must belong to \mathscr{X} . If it returns false, no such act-invariant subgroup N may belong to \mathscr{X} .

test is a function taking three arguments, S, R, and data, where data has been described above. R is a act-invariant subgroup of grp belonging to \mathscr{X} , and R/S is a chief factor of grp. The function must return true if S belongs to \mathscr{X} , and false otherwise.

Note that whenever test(S, R, data) is called, pretest(U, V, R, data) has been called before, and has returned fail, where U/V is a chief factor which is G-isomorphic with R/S. Thus test need not repeat tests which have been performed by pretest. In particular, if pretest always returns true or false, test will never be called.

data is never used or changed by OneInvariantSubgroupMinWrtQProperty, but exists only as a means for passing additional information to or between the functions pretest and test.

For example, if $\mathscr C$ is a group class which is closed with respect to factor groups and $\mathscr X$ is the set of all act-invariant subgroups N of grp with $grp/N \in \mathscr C$, then $\mathscr X$ satisfies the above properties. In particular, if $\mathscr C$ is a formation, then OneInvariantSubgroupMinWrtQProperty will return the $\mathscr C$ -residual of grp.

The following example shows how to use OneInvariantSubgroupMinWrtQProperty to compute the derived subgroup of a group *G*. (Note that in practice, this is not a particularly efficient way of computing the derived subgroup.)

```
gap> G := DirectProduct(SL(2,3), CyclicGroup(2));;
gap> data := rec(gens := GeneratorsOfGroup(G),
     comms := List(Combinations(GeneratorsOfGroup(G), 2),
        x \rightarrow Comm(x[1],x[2]));;
gap> OneInvariantSubgroupMinWrtQProperty(
>
     function(U, V, R, data) # test if U/V is central in G
         if ForAny(ModuloPcgs(U, V), y ->
>
>
            For Any (data.gens, x \rightarrow not Comm(x, y) in V)) then
>
            return false;
>
         else
>
            return fail;
>
         fi;
>
      end.
>
      function(S, R, data)
>
         return ForAll(data.comms, x -> x in S);
>
>
      data) = DerivedSubgroup(G); # compare results
true
```

2► AllInvariantSubgroupsWithQProperty(act, grp, pretest, test, data)

AllInvariantSubgroupsWithQProperty returns a list consisting of all act-invariant subgroups in \mathscr{X} , where \mathscr{X} is the class defined by pretest, test, and data, as described for OneInvariantSubgroupMinWrtQProperty (see 4.6.1). At present, there exist only methods for finite soluble groups grp.

O

```
[ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ],
[ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ]),
Group([ [ [ Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0 ] ],
        [ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ],
        [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ]) ]
```

3 ► OneNormalSubgroupMinWrtQProperty(grp, pretest, test, data)

O

OneNormalSubgroupMinWrtQProperty is a special case of OneInvariantSubgroupMinWrtQProperty (see 4.6.1) where act = grp.

4► AllNormalSubgroupsWithQProperty(grp, pretest, test, data)

Ο

AllNormalSubgroupsWithQProperty is a special case of AllInvariantSubgroupsWithQProperty (see 4.6.2) where act = grp.

5

Fitting classes and Fitting sets

In this chapter, you will find information on how to create Fitting classes and Fitting sets (see 5.1 and 5.3 below), and how to compute injectors and radicals with respect to these; see 5.4.

5.1 Creating Fitting classes

Recall that a Fitting class is a nonempty group class which is closed with respect to normal subgroups and joins of subnormal subgroups.

1► FittingClass(rec) O

returns the Fitting class *fitclass* defined by the entries of the record *rec*. Note that it is the user's responsibility to ensure that *rec* really defines a Fitting class. *rec* may have components \in, inj, rad, char, and name. The functions assigned to the components are stored in the attributes MemberFunction, InjectorFunction, RadicalFunction, Characteristic, and Name, of *fitclass*. Please refer to 2.2.2, 5.4.4, 5.4.3, 3.4.1, and GAP Reference Manual, 12.8.2 for the meaning of these attributes.

The third example below shows how to construct the Fitting class $L_2(\mathcal{N})$ (see [DH92], IX, 1.14 and 1.15), where \mathcal{N} is the class of all finite nilpotent groups.

```
gap> myNilpotentGroups := FittingClass(rec(\in := IsNilpotentGroup,
     rad := FittingSubgroup));
FittingClass(in:=<Property "IsNilpotentGroup">, rad:=<Attribute "FittingSubgr\
gap> myTwoGroups := FittingClass(rec(
     \in := G -> IsSubset([2], Set(Factors(Size(G)))),
     rad := G \rightarrow PCore(G,2),
     inj := G -> SylowSubgroup(G,2)));
FittingClass(in:=function( G ) ... end, rad:=function( G ) ... end, inj:=func\
tion(G) ... end)
gap> myL2_Nilp := FittingClass(rec(\in :=
      G -> IsSolvableGroup(G)
>
           and Index(G, Injector(G, myNilpotentGroups)) mod 2 <> 0));
FittingClass(in:=function( G ) ... end)
gap> SymmetricGroup(3) in myL2_Nilp;
false
gap> SymmetricGroup(4) in myL2_Nilp;
true
```

2 ► FittingProduct(fit1, fit2)

returns the Fitting product prod of the Fitting classes fit1 and fit2, i. e., the class of all groups G such that G/R is a fit2-group, where R is the fit1-radical of G. prod is again a Fitting class. Note that if fit1 and fit2 are also formations, then prod equals the formation product of fit1 and fit2; see 4.4.3 and 4.4.4.

O

```
gap> FittingProduct(myNilpotentGroups, myTwoGroups);
FittingProduct(FittingClass(in:=<Property "IsNilpotentGroup">, rad:=<Attribu\
te "FittingSubgroup">), FittingClass(in:=function( G ) ... end, rad:=function\
( G ) ... end, inj:=function( G ) ... end))
gap> FittingProduct(myNilpotentGroups, myL2_Nilp);
FittingProduct(FittingClass(in:=<Property "IsNilpotentGroup">, rad:=<Attribu\
te "FittingSubgroup">), FittingClass(in:=function( G ) ... end))
```

5.2 Creating Fitting formations

Fitting formations are Fitting classes which are also formations.

1 ► FittingFormation(rec)

O

creates a Fitting formation from the record *rec*. Note that it is the user's responsibility to ensure that *rec* really defines a Fitting formation. *rec* may have any components admissible for saturated formations (see 4.4.2) or Fitting classes (see 5.1.1), that is, \in, res, rad, inj, char, and name, whose values are stored in the attributes MemberFunction, ResidualFunction, RadicalFunction, InjectorFunction, Characteristic, and Name, respectively. Please refer to 2.2.2, 4.5.2, 5.4.3, 5.4.4, 3.4.1, and GAP Reference Manual, 12.8.2, respectively, for the meaning of these attributes.

2 ► SaturatedFittingFormation(rec)

O

creates a saturated Fitting formation from the record *rec*. Note that it is the user's responsibility to ensure that *rec* really defines a saturated Fitting formation. *rec* may have any components admissible for saturated formations (see 4.4.2) or Fitting classes (see 5.1.1), that is, \in, res, proj, bound, locdef, rad, inj, char, and Name, whose values are stored in the attributes MemberFunction (see 2.2.2), ResidualFunction (see 4.5.2), ProjectorFunction (see 4.2.6), BoundaryFunction (see 4.2.5), LocalDefinitionFunction (see 4.5.3), RadicalFunction (see 5.4.3), InjectorFunction (see 5.4.4), Characteristic (see 3.4.1), and Name (see GAP Reference Manual, 12.8.2), respectively.

5.3 Creating Fitting sets

A nonempty set \mathscr{F} of subgroups of a group G is a **Fitting set of** G if it satisfies the following properties:

- (1) if H belongs to \mathscr{F} and K is normal in H, then K belongs to \mathscr{F} ;
- (2) if *H* and *K* belong to \mathscr{F} , and *H* and *K* are normal in $\langle H, K \rangle$, then $\langle H, K \rangle = HK$ belongs to \mathscr{F} ;
- (3) if *H* is in \mathscr{F} and $g \in G$, then H^g also belongs to \mathscr{F} .

Note that a Fitting set *fitset* of the group G is a subset of the set of all subgroups of G. Therefore it is not closed under group isomorphisms, hence is **not** a group class. If H is a subgroup of G, then the subgroups of G in *fitset* which are contained in H form a Fitting set of H. We will not distinguish between *fitset* and the arising Fitting set of H. Moreover, if *fit* is a Fitting class and grp is a group, then the set of all subgroups of grp which belong to fit is a Fitting set of grp.

```
1 ► IsFittingSet(G, fitset)
```

O

tests whether *fitset* (or, more precisely, the set of all subgroups of G which are contained in *fitset*) is a Fitting set of the group G. Thus if *fitset* is a Fitting class, or if G is a subgroup of the group H and *fitset* is a Fitting set of H, then IsFittingSet(G, *fitset*) will return true.

```
2 ▶ FittingSet(G, rec)
```

O

returns the Fitting set *fitset* of the group G, defined by the entries of the record *rec*. Note that, although it would be possible to test whether *rec* defines a Fitting set, such a test is not performed, since it would be extremely expensive, even for relatively small groups.

rec may have components \in, inj, rad, and name. The functions assigned to the components are stored in the attributes MemberFunction, InjectorFunction, RadicalFunction, and Name, of *fitset*. Please see 2.2.2, 5.4.4 and 5.4.3 for the meaning of these arguments.

Note that at present, every Fitting set has to be a class (see 2). The second example below shows how to define a Fitting set from a list of subgroups.

3 ► ImageFittingSet(alpha, fitset)

O

returns the image $F_{-}I$ of the Fitting set *fitset* under the group homomorphism alpha, i.e. the Fitting set $F_{-}I$ of Image (alpha) which consists of all subgroups alpha(S) of Image (alpha) such that S is a *fitset*-injector of PreImage (alpha), S. *fitset* must be a Fitting set of PreImage (alpha) or a Fitting class. Note that the image of a Fitting class is a Fitting set but not a Fitting class.

```
gap> alpha := GroupHomomorphismByImages(SymmetricGroup(4), SymmetricGroup(3),
> [(1,2),(1,3),(1,4)], [(1,2),(1,3),(2,3)]);;
gap> im := ImageFittingSet(alpha, fitset);
FittingSet(Group( [(1,2),(1,3),(2,3)
   ] ), rec(inj:=function( G ) ... end))
gap> Radical(Image(alpha), im);
Group([ (), (), (1,2,3), (1,3,2) ])
```

4 ► PreImageFittingSet(alpha, fitset)

O

returns the preimage $fitset_0$ of the Fitting set fitset of Image (alpha) under the group homomorphism alpha. It consists of all subgroups S of PreImage (alpha) which are subnormal in PreImage (alpha, T) for some T in fitset. fitset must be a Fitting set of Image (alpha) or a Fitting class.

Note that the preimage of a Fitting class is just a Fitting set but not a Fitting class.

Moreover, ImageFittingSet(PreImageFittingSet(fitset, alpha), alpha) equals fitset but in general, fitset is not contained in PreImageFittingSet(ImageFittingSet(fitset, alpha), alpha); see e.g. Example VIII, 2.16 of [DH92].

```
gap> pre := PreImageFittingSet(alpha, NilpotentGroups);
FittingSet(SymmetricGroup( [ 1 .. 4 ] ), rec(inj:=function( G ) ... end))
gap> Injector(Source(alpha), pre);
Group([ (1,2,3), (1,2)(3,4) ])
```

5 ► Intersection(fitset1, fitset2)

Let *fitset1* and *fitset2* be Fitting sets of the groups *G1* and *G2*. Then the intersection of *fitset1* and *fitset2* will be a Fitting set of the intersection of *G1* and *G2*. You will run into an error if GAP cannot compute the intersection of *G1* and *G2*.

```
gap> F1 := FittingSet(SymmetricGroup(3),
> rec(\in := IsNilpotentGroup, rad := FittingSubgroup));
FittingSet(SymmetricGroup(
  [ 1 .. 3 ] ), rec(in:=<Property "IsNilpotentGroup">, rad:=<Attribute "Fitting\Subgroup">))
gap> F2 := FittingSet(AlternatingGroup(4),
> rec(\in := ReturnTrue, rad := H -> H));
FittingSet(AlternatingGroup(
  [ 1 .. 4 ] ), rec(in:=function( arg ) ... end, rad:=function( H ) ... end))
gap> F := Intersection(F1, F2);
FittingSet(Group(
  [ (1,2,3) ] ), rec(in:=function( x ) ... end, rad:=function( G ) ... end))
gap> Intersection(F1, PiGroups([2,5]));
FittingSet(SymmetricGroup(
  [ 1 .. 3 ] ), rec(in:=function( x ) ... end, rad:=function( G ) ... end))
```

5.4 Attributes and operations for Fitting classes and Fitting sets

In addition to operations applicable to classes, both Fitting sets and Fitting classes admit the following attributes and operations. Of course, Fitting classes, being group classes, also admit all properties and attributes for group classes.

```
1 \triangleright \text{Radical}(G, \text{fitset})
```

returns the *grpclass*-radical of the group G, where *fitset* is a Fitting set of G (see 5.3.1), or a Fitting class. The *fitset*-radical of G is the unique largest normal subgroup of G belonging to *fitset*. Note that Radical(G) returns the soluble radical of a group G (see GAP Reference Manual, 39.12.9 in the GAP reference manual). The class myL2_Nilp in the example below has been defined in 5.1.1.

```
gap> Radical(SymmetricGroup(4), FittingClass(rec(\in := IsNilpotentGroup)));
Group([(1,4)(2,3),(1,3)(2,4) ])
gap> Radical(SymmetricGroup(4), myL2_Nilp);
Sym( [ 1 .. 4 ] )
gap> Radical(SymmetricGroup(3), myL2_Nilp);
Group([ (1,2,3) ])
```

2 ► Injector (G, fitset)
o returns a fitset-injector of the group G, where fitset is a Fitting set of G (or a group containing G), or a Fitting class.
A subgroup H of G is a fitset injector of G if S ○ H is fitset maying line S for group subgroup S of G. Note

A subgroup H of G is a *fitset*-injector of G if $S \cap H$ is *fitset*-maximal in S for every subnormal subgroup S of G. Note that by [DH92], VIII, 2.9, all *fitset*-injectors of G are conjugate in G, and it is not hard to see that every subgroup of G has *fitset*-injectors if and only if *fitset* is a Fitting set of G. In particular, if *fitset* is a group class, then every finite soluble group has *fitset*-injectors if and only if *fitset* is a Fitting class; see [DH92], IX, 1.4.

```
gap> Injector(SymmetricGroup(4), FittingClass(rec(\in := IsNilpotentGroup)));
Group([ (1,4)(2,3), (1,3)(2,4), (3,4) ])
```

3 ► RadicalFunction(class)

Α

This attribute, if present, forms part of the definition of *class* supplied by the user. It must contain a function which takes one argument, a group G, and returns the *class*-radical of G. This function will be used during subsequent calls to Radical. Therefore Radical (see 5.4.1), which is guaranteed to work for arbitrary Fitting sets *class*, should always be called by the user to compute *class*-radicals.

4► InjectorFunction(class)

A

This attribute constitutes part of the definition of *class* supplied by the user. If present, it must contain a function taking a group G as the only argument and returning a *class*-injector of G. This function will then be used by Injector (see

O

O

0

5.4.2). Since Injector will work for arbitrary Fitting sets, it should always be called by the user to compute *class*-injectors.

5.5 Low level functions for normal subgroups related to radicals

1 ► OneInvariantSubgroupMaxWrtNProperty(act, grp, pretest, test, data)

Let act be a list or group whose elements act on grp via the caret operator, such that every subgroup of grp invariant under act is normal in grp. Assume $\mathscr X$ is a set of subgroups of grp such that $\mathscr X$ contains the trivial group, and if M and N are act-invariant subgroups with $M \in \mathscr X$ and M containing N, then also $N \in \mathscr X$. Then OneInvariantSubgroupMaxWrtNProperty computes an act-invariant subgroup $M \in \mathscr X$ such that no act-invariant subgroup of grp properly containing M belongs to $\mathscr X$.

For example, every Fitting set \mathscr{X} satisfies the above properties, where act = G. In this case, OneInvariantSubgroupMaxWrtNProperty will return the \mathscr{X} -radical of grp.

The class \mathcal{X} is described by two functions, *pretest* and *test*.

pretest is a function taking four arguments, U, V, R, and data, where data is just the argument passed to OneInvariantSubgroupMaxWrtNProperty. U/V is an act-composition factor of grp, and R is an act-invariant subgroup of grp contained in V which is known to belong to \mathscr{X} .

pretest may return the values true, false, or fail. If it returns true, every act-invariant subgroup N of grp contained in U such that N/R is G-isomorphic with U/V must belong to \mathscr{X} . If it returns false, no such N may belong to \mathscr{X} .

test is a function taking three arguments, S, R, and data, where data has been described above. R is an act-invariant subgroup of grp belonging to \mathscr{X} , and S/R is an act-composition factor of grp. The function must return true if S belongs to \mathscr{X} , and false otherwise.

Note that test(S, R, data) is only called if pretest(U, V, R, data) has returned fail for a chief factor U/V which is G-isomorphic with S/R. Therefore test need not repeat tests already performed by pretest. In particular, if pretest always returns true or false, test will not be called at all.

data is never used or changed by OneInvariantSubgroupMaxWrtNProperty, but exists only as a means for passing additional information to or between the functions *pretest* and *test*.

```
2 ► AllInvariantSubgroupsWithNProperty(act, grp, pretest, test, data)
```

returns a list consisting of all *act*-invariant subgroups of *grp* belonging to the class \mathscr{X} described by *pretest*, *test*, and *data*. See the documentation of OneInvariantSubgroupMaxWrtNProperty (see 5.5.1) for details.

- 3 ▶ OneNormalSubgroupWithNProperty(grp, pretest, test, data)
 - ► AllNormalSubgroupsWithNProperty(grp, pretest, test, data)

are the same as OneInvariantSubgroupMaxWrtNProperty (see 5.5.1) and AllInvariantSubgroupsWithN-Property (see 5.5.2), where act = grp, and thus the act-invariant subgroups of grp are just the normal subgroups of grp.

6

Examples of group classes

This chapter describes some pre-defined group classes, namely the classes of all abelian, nilpotent, and supersoluble groups. Moreover, there are some functions constructing the classes of all p-groups, π -groups, and abelian groups whose exponent divides a given positive integer.

The definitions of these group classes can also serve as further examples of how group classes can be defined using the methods described in the preceding chapters.

6.1 Pre-defined group classes

1 ► TrivialGroups
V
The global variable TrivialGroups contains the class of all trivial groups. It is a subgroup closed saturated Fitting formation.

2 ► NilpotentGroups V

This global variable contains the class of all finite nilpotent groups. It is a subgroup closed saturated Fitting formation.

- 3► SupersolubleGroups
 - ► SupersolvableGroups V

This global variable contains the class of all finite supersoluble groups. It is a subgroup closed saturated formation.

4► AbelianGroups V

is the class of all abelian groups. It is a subgroup closed formation.

5 ► AbelianGroupsOfExponent(n)

returns the class of all abelian groups of exponent dividing n, where n is a positive integer. It is always a subgroup-closed formation.

6► PiGroups(pi)

constructs the class of all *pi*-groups. *pi* may be a non-empty class or a set of primes. The result is a subgroup-closed saturated Fitting formation.

 $7 \triangleright \text{PGroups}(p)$

returns the class of all p-groups, where p is a prime. The result is a subgroup-closed saturated Fitting formation.

6.2 Pre-defined projector functions

1 ► NilpotentProjector(grp)

Α

F

This function returns a projector for the class of all finite nilpotent groups. For a definition, see 4.2.3. Note that the nilpotent projectors of a finite soluble group equal its a Carter subgroups, that is, its self-normalizing nilpotent subgroups.

2 ► SupersolubleProjector(grp)

A A

► SupersolvableProjector(grp)

These functions return a projector for the class of all finite supersoluble groups. For a definition, see 4.2.3.

6.3 Pre-defined sets of primes

1► AllPrimes V

is the set of all (integral) primes. This should be installed as value for Characteristic (grpclass) if the group class grpclass contains cyclic groups of prime order p for arbitrary primes p.

7

Lists of normal subgroups

The algorithms in CRISP can also be used to compute certain normal subgroups of a finite soluble group efficiently. In particular, CRISP provides fast methods for computing all normal subgroups, all minimal normal subgroups, and the socle of a finite soluble group.

7.1 Functions for normal and characteristic subgroups

1 ► NormalSubgroups(grp)

Α

For finite soluble groups *grp*, CRISP provides an efficient method to compute NormalSubgroups (see GAP Reference Manual, 39.19.8).

2 ► CharacteristicSubgroups(grp)

Α

returns a list containing all characteristic subgroups of the finite soluble group grp. CharacteristicSubgroups calls AllInvSgrsWithQPropUnderAction.

3 ► MinimalNormalSubgroups(grp)

A

CRISP provides an efficient method to compute a list of all minimal normal subgroups of *grp* (see GAP Reference Manual, 39.19.10).

4► MinimalNormalPSubgroups(grp, p)

Α

For a prime p, this function computes a list of all p-subgroups which are minimal among the nontrivial normal subgroups of grp.

5 ► AbelianMinimalNormalSubgroups(grp)

A

This computes a list of all minimal normal subgroups of grp which are abelian. If grp is soluble, this list coincides with the list of all minimal normal subgroups of grp.

7.2 Functions for the socle of finite groups

1► Socle(grp)

Α

CRISP provides a method for Socle (see GAP Reference Manual, 39.12.10) for which works for all finite soluble groups *grp*. The socle of a group *grp* is the subgroup generated by all minimal normal subgroups of *grp*. See also 7.2.2 and 7.2.5 below.

gap> Size(Socle(DirectProduct(DihedralGroup(8), CyclicGroup(12))));
12

 $2 \triangleright AbelianSocle(grp)$

Α

► SolubleSocle(grp)

Α

► SolvableSocle(grp)

Α

This function computes the soluble socle of grp. The soluble socle of a group grp is the subgroup generated by all minimal normal soluble subgroups of grp.

3 ► SocleComponents(grp)

A

This function returns a list of minimal normal subgroups of *grp* such that the socle of *grp* (see 7.2.1) is the direct product of these minimal normal subgroups. Note that, in general, this decomposition is not unique. Currently, this function is only implemented for finite soluble groups. See also 7.2.4 and 7.2.6.

4 ► AbelianSocleComponents(grp)

Α

▶ SolubleSocleComponents(grp)▶ SolvableSocleComponents(grp)

A A

This function returns a list of soluble minimal normal subgroups of grp such that the socle of grp (see 7.2.1) is the direct product of these minimal normal subgroups. Note that, in general, this decomposition is not unique.

 $5 \triangleright PSocle(grp, p)$

A

If p is a prime, the p-socle of a group grp is the subgroup generated by all minimal normal p-subgroups of grp.

6 ► PSocleComponents(grp, p)

Α

For a prime p, this function returns a list of minimal normal p-subgroups of grp such that the p-socle of grp (see 7.2.5) is the direct product of these minimal normal subgroups. Note that, in general, this decomposition is not unique.

7 ▶ PSocleSeries(grp, p)

A

For a prime p, this function returns an ascending grp-composition series of the p-socle of grp.

Bibliography

- [DH92] K. Doerk and T. O. Hawkes. Finite soluble groups. Walter de Gruyter, 1992.
- [EW02] B. Eick and C. R. B. Wright. Computing subgroups by exhibition in finite solvable groups. To appear in *J. Symbolic Comp* 33:129–143, 2002.
- [FGH67] B. Fischer, W. Gaschütz, W., B. Hartley. Injektoren endlicher auflösbarer Gruppen. *Math. Z.*, 102:337–339, 1967.
- [Gas63] W. Gaschütz. Zur Theorie der endlichen auflösbaren Gruppen. Math. Z., 80:300 305, 1963.
- [Höf01] B. Höflling. Computing projectors, injectors, residuals and radicals of finite soluble groups. *J. Symbolic Comp.* 32:499–511, 2001.
- [Sch67] H. Schunck. *H*-Untergruppen in endlichen auflösbaren Gruppen. *Math. Z.*, 97:326–330, 1967.

Index

This index covers only this manual. A page number in *italics* refers to a whole section which is devoted to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., "PermutationCharacter" comes before "permutation group".

A	closure properties, of group classes, 8
abelian groups, class of, 23	comparison, for classes, 6
abelian groups of bounded exponent, class of, 23	Complement, 6
AbelianGroups, 23	ContainsTrivialGroup, 8
AbelianGroupsOfExponent, 23	CoveringSubgroup, 12
AbelianMinimalNormalSubgroups, 25 AbelianSocle, 25	D
AbelianSocleComponents, 26	Difference, 6
AllInvariantSubgroupsWithNProperty, 22	Display, for classes, 5
AllInvariantSubgroupsWithQProperty, 16	E
AllNormalSubgroupsWithNProperty, 22	element test, for classes, 5
AllNormalSubgroupsWithQProperty, 17	equality, for classes, 6
AllPrimes, 24	
attributes, of Fitting classes, 21	F
of Fitting sets, 21	Fitting classes, attributes of, 21
of formation, 15	creating, 18
of group classes, 10	creating Fitting formations, 19
of primitive soluble group, 12	operations for, 21
of Schunck class, 11	Fitting formations, creating, 19
В	Fitting sets, attributes of, 21 creating, 19
Basis, 11	_
Boundary, 11	operations for, 21 FittingClass, 18
BoundaryFunction, 12	FittingClass, 16 FittingFormation, 19
_	FittingFormation, 19 FittingFormationProduct, 14, 18
C	FittingProduct, 18
Carter subgroup, 23	FittingSet, 19
Characteristic, 10	FORMAT package, 4
CharacteristicSubgroups, 25	FormationProduct, 14
Class, 5	formations, attributes for, 15
class, of all π -groups, 23	creating, 13
of all <i>p</i> -groups, 23	creating Fitting formations, 19
of all abelian groups, 23	operations for, 15
of all abelian groups of bounded exponent, 23	
of all nilpotent groups, 23	G
of all supersoluble groups, 23	group classes, attributes for, 10
of all trivial groups, 23	closure properties of, 8
classes, creation of, 5	creation of, 7
properties of, 6	properties of, 9

Index 29

GroupClass, 7	M
Н	MemberFunction, 6
HasIsFittingClass, 9	membership test, for classes, 5
HasIsFittingFormation, 10	minimal normal p-subgroups, 25
HasIsFormation, 10	minimal normal subgroups, 25
HasIsOrdinaryFormation, 10	MinimalNormalPSubgroups, 25
	MinimalNormalSubgroups, 25
HasIsSaturatedFittingFormation, 10	N
HasIsSaturatedFormation, 10	
	nilpotent groups, class of, 23 NilpotentGroups, 23
ImageFittingSet, 20	
in, for classes, 5	NilpotentProjector, 23
Injector, 21	normal subgroups, with properties inherited by factor
InjectorFunction, 21	groups, 15
Intersection, of classes, 6	with properties inherited by normal subgroups, 22
of Fitting sets, 20	with properties inherited by normal subgroups above
of group classes, 8	15
INTERSECTION_LIMIT, 6	with properties inherited by quotients, 15
invariant normal subgroups, with properties inherited by	NormalSubgroups, 25
normal subgroups, 22	0
with properties inherited by normal subgroups above,	OneInvariantSubgroupMaxWrtNProperty, 22
15	OneInvariantSubgroupMinWrtQProperty, 15
IsClass, 5	OneNormalSubgroupMinWrtQProperty, 17
<pre>IsDirectProductClosed, 9</pre>	OneNormalSubgroupWithNProperty, 22
IsEmpty, for classes, 6	operations, for Fitting classes, 21
IsFittingClass, 9	for Fitting sets, 21
IsFittingFormation, 10	for formation, 15
IsFittingSet, 19	for Schunck class, 11
IsFormation, 10	OrdinaryFormation, 13
IsGroupClass, 8	P
IsNormalProductClosed, 9	
IsNormalSubgroupClosed, 9	PGroups, 23
IsOrdinaryFormation, 10	PiGroups, 23
IsPrimitiveSoluble, 12	PreImageFittingSet, 20
IsPrimitiveSolubleGroup, 12	primes, set of all, 24
IsPrimitiveSolvable, 12	primitive soluble group, attributes of, 12
IsPrimitiveSolvableGroup, 12	Print, for classes, 5
IsQuotientClosed, 9	Projector, 12
IsResiduallyClosed, 9	ProjectorFunction, 12
IsSaturated, 9	properties, of classes, 6
IsSaturatedFittingFormation, 10	of group classes, 9
IsSaturatedFormation, 10	PSocle, 26
IsSchunckClass, 9	PSocleComponents, 26
IsSubgroupClosed, 9	PSocleSeries, 26
L	R
-	Radical, 21
lattice operations, for classes, 6	RadicalFunction, 21
LocalDefinitionFunction, 15	Residual, 15

30 Index

ResidualFunction, 15 ${\tt SocleComponents}, 26$ ${\tt Residuum}, 15$ SolubleSocle, 25 ${\tt Soluble Socle Components}, 26$ S SolvableSocle, 25 SaturatedFittingFormation, 19 SolvableSocleComponents, 26 SaturatedFormation, 13 supersoluble groups, class of, 23 Schunck class, attributes of, 11 SupersolubleGroups, 23 creating, 11 SupersolubleProjector, 23 operations for, 11 SupersolvableGroups, 23 SchunckClass, 11 SupersolvableProjector, 23 set, of all primes, 24 ${\tt SetIsFittingClass}, 9$ SetIsFittingFormation, 10 trivial groups, class of, 23 SetIsFormation, 10 ${\tt TrivialGroups}, 23$ ${\tt SetIsOrdinaryFormation}, 10$ U ${\tt SetIsSaturatedFittingFormation}, 10$ Union, 6 ${\tt SetIsSaturatedFormation}, 10$ ٧ Socle, 25 SocleComplement, 13 View, for classes, 5