Package 'semTools'

January 20, 2013

	, , , , , , , , , , , , , , , , , , ,
Type Pac	kage
Title Use	ful tools for structural equation modeling.
Version (0.2-13
Date 201	3-01-20
mai Vill mai	Sunthud Pornprasertmanit [aut, cre], Patrick Miller [aut], Alex Schoenn [aut], Yves Rosseel [aut], Corbin Quick [ctb], Mauricio Garnierarreal [ctb], James Selig [ctb], Aaron Boulton [ctb], Kristopher Preacher [ctb], Donna Coffn [ctb], Mijke Rhemtulla [ctb], Alexander Robitzsch [ctb], Craig Enders [ctb], Ruber Ara [ctb]
Maintain	er Sunthud Pornprasertmanit <psunthud@ku.edu></psunthud@ku.edu>
Depends	R(>= 2.15), MASS, lavaan, methods
Suggests	parallel, Amelia, mice, foreign
Descripti	on This package provide useful tools for structural equation modeling analysis.
-	GPL (>= 2)
LazyLoa	d yes
LazyData	
•	os://github.com/simsem/semTools/wiki
R topi	cs documented:
	auxiliary 2 clipboard_saveFile 4 dat2way 6 dat3way 6 exLong 6 findRMSEApower 6 findRMSEApowernested 6 findRMSEAsamplesize 10 findRMSEAsamplesizenested 1 impliedFactorStat 1

2 auxiliary

Index		63
Indov		62
	tukeySEM	60
	splitSample	59
	skew	58
		57
	runMI	55
	·	54
	·	52
	reliability	50
	<u>.</u>	47
	probe3WayMC	
	probe2WayRC	
	1	39
	plotRMSEApowernested	
	plotRMSEApower	
	plotRMSEAdist	
	plotProbe	
	parcelAllocation	
	nullRMSEA	
	moreFitIndices	
	monteCarloMed	
	measurementInvariance	22
	mardiaSkew	
	mardiaKurtosis	
	longInvariance	
	loadingFromAlpha	
	lavaanStar-class	
	kurtosis	15

auxiliary

Analyzing data with full-information maximum likelihood with auxiliary variables

Description

Analyzing data with full-information maximum likelihood with auxiliary variables. The techniques used to account for auxiliary variables are both extra-dependent-variables and saturated-correlates approaches (Enders, 2008). The extra-dependent-variables approach is used for all single variables in the model (such as covariates or single-indicator dependent variable) For variables that are belong to a multiple-indicator factor, the saturated-correlates approach is used. Note that all covariates are treated as endogenous variables in this model (fixed.x = FALSE) so multivariate normality is assumed for the covariates.

```
auxiliary(model, aux, fun, ...)
cfa.auxiliary(model, aux, ...)
sem.auxiliary(model, aux, ...)
growth.auxiliary(model, aux, ...)
lavaan.auxiliary(model, aux, ...)
```

auxiliary 3

Arguments

model	The lavaan object, the parameter table, or lavaan script.
aux	The list of auxiliary variable
fun	The character of the function name used in running lavaan model ("cfa", "sem", "growth", "lavaan").
	The additional arguments in the lavaan function.

Value

The lavaanStar object which contains the original lavaan object and the additional values of the null model, which need to be adjusted to account for auxiliary variables.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

Enders, C. K. (2008). A note of the use of missing auxiliary variables in full information maximum likelihood-based structural equation models. *Structural Equation Modeling*, 15, 434-448.

See Also

lavaanStar

```
# Example of confirmatory factor analysis
HS.model \leftarrow 'visual = x1 + x2 + x3
            textual =^{\sim} x4 + x5 + x6
            speed =~ x7 + x8 + x9'
dat <- data.frame(HolzingerSwineford1939, z=rnorm(nrow(HolzingerSwineford1939), 0, 1))</pre>
fit <- cfa(HS.model, data=dat)</pre>
# Example of multiple groups confirmatory factor analysis
fitgroup <- cfa(HS.model, data=dat, group="school")</pre>
fitgroupaux <- cfa.auxiliary(fitgroup, aux="z", data=dat, group="school")</pre>
# Example of path analysis
mod <- ' x5 \sim x4
x4 ~ x3
x3 \sim x1 + x2'
fitpath <- sem(mod, data=dat, fixed.x=FALSE) # fixed.x must be FALSE</pre>
fitpathaux <- sem.auxiliary(fitpath, aux="z", data=dat)</pre>
# Example of full structural equation modeling
```

4 clipboard_saveFile

```
dat2 <- data.frame(PoliticalDemocracy, z=rnorm(nrow(PoliticalDemocracy), 0, 1))</pre>
model <- '</pre>
     ind60 = x1 + x2 + x3
     dem60 =~ y1 + a*y2 + b*y3 + c*y4
     dem65 = y5 + a*y6 + b*y7 + c*y8
    dem60 ~ ind60
    dem65 \sim ind60 + dem60
    y1 ~~ y5
    y2 ~~ y4 + y6
    y3 ~~ y7
    y4 ~~ y8
    y6 ~~ y8
fitsem <- sem(model, data=dat2, meanstructure=TRUE)</pre>
fitsemaux <- sem.auxiliary(fitsem, aux="z", data=dat2, meanstructure=TRUE)</pre>
# Example of covariate at the factor level
HS.model.cov \leftarrow 'visual = x1 + x2 + x3
              textual =^{\sim} x4 + x5 + x6
              speed = ^{\sim} x7 + x8 + x9
  visual ~ sex
  textual ~ sex
  speed ~ sex'
fitcov <- cfa(HS.model.cov, data=dat, fixed.x=FALSE)</pre>
fitcovaux <- cfa.auxiliary(fitcov, aux="z", data=dat)</pre>
# Example of Endogenous variable with single indicator
HS.model.cov2 <- 'visual =~ x1 + x2 + x3
               textual =^{\sim} x4 + x5 + x6
               x7 ~ visual + textual'
fitcov2 <- sem(HS.model.cov2, data=dat, fixed.x=FALSE)</pre>
fitcov2aux <- sem.auxiliary(fitcov2, aux="z", data=dat)</pre>
# Multiple auxiliary variables
HS.model2 \leftarrow 'visual = x1 + x2 + x3
               speed = ^{\sim} x7 + x8 + x9'
fit <- cfa(HS.model2, data=HolzingerSwineford1939)</pre>
fitaux <- cfa.auxiliary(HS.model2, data=HolzingerSwineford1939, aux=c("x4", "x5"))</pre>
```

clipboard_saveFile Copy or save the result of lavaan object into a clipboard or a file

Description

Copy or save the result of lavaan object into a clipboard or a file. From the clipboard, users may paste the result into the Microsoft Excel or spreadsheet application to create a table of the output.

clipboard_saveFile 5

Usage

```
clipboard(object, what="summary", ...)
saveFile(object, file, what="summary", tableFormat=FALSE, ...)
```

Arguments

object The lavaan object

what The attributes of the lavaan object to be copied in the clipboard. "summary"

is to copy the screen provided from the summary function. "mifit" is to copy the result from the miPowerFit function. Other attributes listed in the inspect method in the lavaan-class could also be used, such as "coef", "se", "fit",

"samp", and so on.

file A file name used for saving the result

tableFormat If TRUE, save the result in the table format using tabs for seperation. Otherwise,

save the result as the output screen printed in the R console.

... Additional argument listed in the miPowerFit function.

Value

The resulting output will be saved into a clipboard or a file. If using the clipboard function, users may paste it in the other applications.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

```
## Not run:
library(lavaan)
HW.model <- ' visual = x1 + c1 \times x2 + x3
              textual =~ x4 + c1*x5 + x6
               speed =~ x7 + x8 + x9'
fit <- cfa(HW.model, data=HolzingerSwineford1939, group="school", meanstructure=TRUE)</pre>
# Copy the summary of the lavaan object
clipboard(fit)
# Copy the modification indices and the model fit from the miPowerFit function
clipboard(fit, "mifit")
# Copy the parameter estimates
clipboard(fit, "coef")
# Copy the standard errors
clipboard(fit, "se")
# Copy the sample statistics
clipboard(fit, "samp")
# Copy the fit measures
clipboard(fit, "fit")
```

6 dat2way

```
# Save the summary of the lavaan object
saveFile(fit, "out.txt")

# Save the modification indices and the model fit from the miPowerFit function
saveFile(fit, "out.txt", "mifit")

# Save the parameter estimates
saveFile(fit, "out.txt", "coef")

# Save the standard errors
saveFile(fit, "out.txt", "se")

# Save the sample statistics
saveFile(fit, "out.txt", "samp")

# Save the fit measures
saveFile(fit, "out.txt", "fit")

## End(Not run)
```

dat2way

Simulated Dataset to Demonstrate Two-way Latent Interaction

Description

A simulated data set with 2 independent factors and 1 dependent factor where each factor has three indicators

Usage

```
data(dat2way)
```

Format

A data frame with 500 observations of 9 variables.

- x1 The first indicator of the first independent factor
- x2 The second indicator of the first independent factor
- x3 The third indicator of the first independent factor
- x4 The first indicator of the second independent factor
- x5 The second indicator of the second independent factor
- x6 The third indicator of the second independent factor
- x7 The first indicator of the dependent factor
- x8 The second indicator of the dependent factor
- x9 The third indicator of the dependent factor

Source

Data was generated by the mvrnorm function in the MASS package.

```
head(dat2way)
```

dat3way 7

dat3way

Simulated Dataset to Demonstrate Three-way Latent Interaction

Description

A simulated data set with 3 independent factors and 1 dependent factor where each factor has three indicators

Usage

```
data(dat3way)
```

Format

A data frame with 500 observations of 12 variables.

- x1 The first indicator of the first independent factor
- x2 The second indicator of the first independent factor
- x3 The third indicator of the first independent factor
- **x4** The first indicator of the second independent factor
- x5 The second indicator of the second independent factor
- x6 The third indicator of the second independent factor
- x7 The first indicator of the third independent factor
- x8 The second indicator of the third independent factor
- x9 The third indicator of the third independent factor
- x10 The first indicator of the dependent factor
- x11 The second indicator of the dependent factor
- x12 The third indicator of the dependent factor

Source

Data was generated by the mvrnorm function in the MASS package.

```
head(dat3way)
```

8 findRMSEApower

exLong	Simulated Data set to Demonstrate Longitudinal Measurement Invari-
	ance

Description

A simulated data set with 1 factors with 3 indicators in three timepoints

Usage

```
data(exLong)
```

Format

A data frame with 200 observations of 10 variables.

```
sex Sex of respondents
y1t1 Indicator 1 in Time 1
y2t1 Indicator 2 in Time 1
y3t1 Indicator 3 in Time 1
y1t2 Indicator 1 in Time 2
y2t2 Indicator 2 in Time 2
y3t2 Indicator 3 in Time 2
y1t3 Indicator 1 in Time 3
```

y2t3 Indicator 2 in Time 3y3t3 Indicator 3 in Time 3

Source

Data was generated using the simsem package.

Examples

head(exLong)

findRMSEApower

Find the statistical power based on population RMSEA

Description

Find the proportion of the samples from the sampling distribution of RMSEA in the alternative hypothesis rejected by the cutoff dervied from the sampling distribution of RMSEA in the null hypothesis. This function can be applied for both test of close fit and test of not-close fit (MacCallum, Browne, & Suguwara, 1996)

```
findRMSEApower(rmsea0, rmseaA, df, n, alpha=.05, group=1)
```

Arguments

rmsea0	Null RMSEA
rmseaA	Alternative RMSEA
df	Model degrees of freedom
n	Sample size of a dataset
alpha	Alpha level used in power calculations
group	The number of group that is used to calculate RMSEA.

Details

This function find the proportion of sampling distribution derived from the alternative RMSEA that is in the critical region derived from the sampling distribution of the null RMSEA. If rmseaA is greater than rmsea0, the test of close fit is used and the critical region is in the right hand side of the null sampling distribution. On the other hand, if rmseaA is less than rmsea0, the test of not-close fit is used and the critical region is in the left hand side of the null sampling distribution (MacCallum, Browne, & Suguwara, 1996).

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. *Psychological Methods*, *1*, 130-149.

See Also

- plotRMSEApower to plot the statistical power based on population RMSEA given the sample size
- plotRMSEAdist to visualize the RMSEA distributions
- findRMSEAsamplesize to find the minium sample size for a given statistical power based on population RMSEA

Examples

```
findRMSEApower(rmsea0=.05, rmseaA=.08, df=20, n=200)
```

findRMSEApowernested Find power given a sample size in nested model comparison

Description

Find the sample size that the power in rejection the samples from the alternative pair of RMSEA is just over the specified power.

```
findRMSEApowernested(rmsea0A = NULL, rmsea0B = NULL,
rmsea1A, rmsea1B = NULL, dfA, dfB, n, alpha=.05,
group=1)
```

Arguments

rmsea0A	The H0 baseline RMSEA.
rmsea0B	The H0 alternative RMSEA (trivial misfit).
rmsea1A	The H1 baseline RMSEA.
rmsea1B	The H1 alternative RMSEA (target misfit to be rejected).
dfA	degree of freedom of the more-restricted model.
dfB	degree of freedom of the less-restricted model.
n	Sample size.
alpha	The alpha level.
group	The number of group in calculating RMSEA.

Author(s)

Bell Clinton (University of Kansas; <clintonbell@ku.edu>); Pavel Panko (University of Kansas; <pavel@ku.edu>); Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covariance structure models: Power analysis and null hypotheses. *Psychological Methods, 11*, 19-35.

See Also

- plotRMSEApowernested to plot the statistical power for nested model comparison based on population RMSEA given the sample size
- findRMSEAsamplesizenested to find the minium sample size for a given statistical power in nested model comparison based on population RMSEA

Examples

```
findRMSEApowernested(rmsea0A = 0.06, rmsea0B = 0.05, rmsea1A = 0.08, rmsea1B = 0.05, dfA = 22, dfB = 20, n = 200, alpha = 0.05, group = 1)
```

findRMSEAsamplesize Find the minimum sample size for a given statistical power based on population RMSEA

Description

Find the minimum sample size for a specified statistical power based on population RMSEA. This function can be applied for both test of close fit and test of not-close fit (MacCallum, Browne, & Suguwara, 1996)

```
findRMSEAsamplesize(rmsea0, rmseaA, df, power=0.80, alpha=.05, group=1)
```

Arguments

rmsea0	Null RMSEA
rmseaA	Alternative RMSEA
df	Model degrees of freedom
power	Desired statistical power to reject misspecified model (test of close fit) or retain good model (test of not-close fit)
alpha	Alpha level used in power calculations
group	The number of group that is used to calculate RMSEA.

Details

This function find the minimum sample size for a specified power based on an iterative routine. The sample size keep increasing until the calculated power from findRMSEApower function is just over the specified power. If group is greater than 1, the resulting sample size is the sample size per group.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. *Psychological Methods*, *1*, 130-149.

See Also

- plotRMSEApower to plot the statistical power based on population RMSEA given the sample size
- plotRMSEAdist to visualize the RMSEA distributions
- findRMSEApower to find the statistical power based on population RMSEA given a sample size

Examples

```
findRMSEAsamplesize(rmsea0=.05, rmseaA=.08, df=20, power=0.80)
```

 ${\tt find RMSEA sample size nested}$

Find sample size given a power in nested model comparison

Description

Find the sample size that the power in rejection the samples from the alternative pair of RMSEA is just over the specified power.

```
findRMSEAsamplesizenested(rmsea0A = NULL, rmsea0B = NULL, rmsea1A,
rmsea1B = NULL, dfA, dfB, power=0.80, alpha=.05, group=1)
```

12 impliedFactorStat

Arguments

rmsea0A	The H0 baseline RMSEA.
rmsea0B	The H0 alternative RMSEA (trivial misfit).
rmsea1A	The H1 baseline RMSEA.
rmsea1B	The H1 alternative RMSEA (target misfit to be rejected).
dfA	degree of freedom of the more-restricted model.
dfB	degree of freedom of the less-restricted model.
power	The desired statistical power.
alpha	The alpha level.
group	The number of group in calculating RMSEA.

Author(s)

Bell Clinton (University of Kansas; <clintonbell@ku.edu>); Pavel Panko (University of Kansas; <pavel@ku.edu>); Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covariance structure models: Power analysis and null hypotheses. *Psychological Methods*, *11*, 19-35.

See Also

- plotRMSEApowernested to plot the statistical power for nested model comparison based on population RMSEA given the sample size
- findRMSEApowernested to find the power for a given sample size in nested model comparison based on population RMSEA

Examples

```
findRMSEAsamplesizenested(rmsea0A = 0, rmsea0B = 0, rmsea1A = 0.06,
rmsea1B = 0.05, dfA = 22, dfB = 20, power=0.80, alpha=.05, group=1)
```

impliedFactorStat

Calculate the model-implied factor means and covariance matrix.

Description

Calculate reliability values of factors by coefficient omega

Usage

```
impliedFactorStat(object)
impliedFactorMean(object)
impliedFactorCov(object)
```

Arguments

object

The lavaan model object provided after running the cfa, sem, growth, or lavaan functions.

indProd 13

Details

The impliedFactorMean function is used to calculated model-implied factor means:

$$\mu = (\boldsymbol{I} - \boldsymbol{B})^{-1} \alpha,$$

where μ is the model-implied factor mean, I is an identity matrix, B is an regression coefficient matrix, and α is a vector of factor intercepts.

The impliedFactorCov function is used to calculated model-implied covariance matrix:

$$\Phi = (\boldsymbol{I} - \boldsymbol{B})^{-1} \Psi (\boldsymbol{I} - \boldsymbol{B})^{-1\prime},$$

where Φ is the model-implied factor covariance matrix, Ψ is the residual factor covariance matrix.

The impliedFactorStat function is used to provide both model-implied means (if the mean structure is estimated) and covariance matrix.

Value

Model-implied factor means or model-implied factor covariance matrix, or both

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

Examples

indProd

Make products of indicators using no centering, mean centering, double-mean centering, or residual centering

Description

The indProd function will make products of indicators using no centering, mean centering, double-mean centering, or residual centering. The orthogonalize function is the shortcut of the indProd function to make the residual-centered indicators products.

```
indProd(data, var1, var2, var3=NULL, match = TRUE, meanC = TRUE,
residualC = FALSE, doubleMC = TRUE, namesProd = NULL)
orthogonalize(data, var1, var2, var3=NULL, match=TRUE, namesProd=NULL)
```

14 indProd

Arguments

data	The desired data to be transformed.
var1	Names or indices of the variables loaded on the first factor
var2	Names or indices of the variables loaded on the second factor
var3	Names or indices of the variables loaded on the third factor (for three-way interaction)
match	Specify TRUE to use match-paired approach (Marsh, Wen, & Hau, 2004). If FALSE, the resulting products are all possible products.
meanC	Specify TRUE for mean centering the main effect indicator before making the products
residualC	Specify TRUE for residual centering the products by the main effect indicators (Little, Bovaird, & Widaman, 2006).
doubleMC	Specify TRUE for centering the resulting products (Lin et. al., 2010)
namesProd	The names of resulting products

Value

The original data attached with the products.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>) Alex Schoemann (University of Kansas; <schoemann@ku.edu>)

References

Marsh, H. W., Wen, Z. & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. *Psychological Methods*, *9*, 275-300.

Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). Structural equation models of latent interactions: Clarification of orthogonalizing and double-mean-centering strategies. *Structural Equation Modeling*, 17, 374-391.

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. *Structural Equation Modeling*, *13*, 497-519.

See Also

- probe2WayMC For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- probe3WayMC For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- probe2WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- probe3WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- plotProbe Plot the simple intercepts and slopes of the latent interaction.

kurtosis 15

Examples

```
dat <- indProd(attitude[,-1], var1=1:3, var2=4:6)</pre>
# Residual centering / two-way interaction / match-paired
dat2 <- indProd(attitude[,-1], var1=1:3, var2=4:6, match=FALSE, meanC=FALSE, residualC=TRUE, doubleMC=FALSI
# Double-mean centering / two-way interaction / match-paired
dat3 <- indProd(attitude[,-1], var1=1:3, var2=4:6, match=FALSE, meanC=TRUE, residualC=FALSE, doubleMC=TRUE
# Mean centering / three-way interaction / match-paired
dat4 <- indProd(attitude[,-1], var1=1:2, var2=3:4, var3=5:6)</pre>
# Residual centering / three-way interaction / match-paired
```

Double-mean centering / three-way interaction / match-paired

Mean centering / two-way interaction / match-paired

dat6 <- indProd(attitude[,-1], var1=1:2, var2=3:4, var3=5:6, match=FALSE, meanC=TRUE, residualC=TRUE, doub.</pre>

dat5 <- indProd(attitude[,-1], var1=1:2, var2=3:4, var3=5:6, match=FALSE, meanC=FALSE, residualC=TRUE, doubted to the contract of the contract

kurtosis

Finding excessive kurtosis

Description

Finding excessive kurtosis (g2) of an object

Usage

kurtosis(object, population=FALSE)

Arguments

object A vector used to find a excessive kurtosis

TRUE to compute the parameter formula. FALSE to compute the sample statistic population

formula.

Details

The excessive kurtosis computed is g2. The parameter excessive kurtosis γ_2 formula is

$$\gamma_2 = \frac{\mu_4}{\mu_2^2} - 3,$$

where μ_i denotes the *i* order central moment.

The excessive kurtosis formula for sample statistic g_2 is

$$g_2 = \frac{k_4}{k_2^2},$$

where k_i are the *i* order *k*-statistic.

The standard error of the excessive kurtosis is

$$Var(\hat{g}_2) = \frac{24}{N}$$

where N is the sample size.

16 lavaanStar-class

Value

A value of an excessive kurtosis with a test statistic if the population is specified as FALSE

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

Weisstein, Eric W. (n.d.). *Kurtosis*. Retrived from MathWorld–A Wolfram Web Resource http://mathworld.wolfram.com/Kurtosis.html

See Also

- skew Find the univariate skewness of a variable
- mardiaSkew Find the Mardia's multivariate skewness of a set of variables
- mardiaKurtosis Find the Mardia's multivariate kurtosis of a set of variables

Examples

kurtosis(1:5)

lavaanStar-class

Class For Representing A (Fitted) Latent Variable Model with Additional Elements

Description

This is the lavaan class that contains additional information about the fit values from the null model. Some functions are adjusted according to the change.

Objects from the Class

Objects can be created via the auxiliary function or runMI.

Slots

call: The function call as returned by match.called().

timing: The elapsed time (user+system) for various parts of the program as a list, including the total time.

Options: Named list of options that were provided by the user, or filled-in automatically.

ParTable: Named list describing the model parameters. Can be coerced to a data.frame. In the documentation, this is called the 'parameter table'.

 ${\tt Data:}\ \ Object\ of\ internal\ class\ "{\tt Data":}\ information\ about\ the\ data.$

SampleStats: Object of internal class "SampleStats": sample statistics

Model: Object of internal class "Model": the internal (matrix) representation of the model

Fit: Object of internal class "Fit": the results of fitting the model

nullfit: The fit-indices information from the null model

loadingFromAlpha 17

imputed: The list of information from running multiple imputation. The first element is the convergence rate of the target and null models. The second element is the fraction missing information. The first estimate of FMI (FMI.1) is asymptotic FMI and the second estimate of FMI (FMI.2) is corrected for small numbers of imputation. The third element is the fit values of the target model by the specified chi-squared methods. The fourth element is the fit values of the null model by the specified chi-square methods.

References

```
see linkS4class{lavaan}
```

See Also

```
auxiliary; runMI
```

Examples

loadingFromAlpha

Find standardized factor loading from coefficient alpha

Description

Find standardized factor loading from coefficient alpha assuming that all items have equal loadings.

Usage

```
loadingFromAlpha(alpha, ni)
```

Arguments

alpha A desired coefficient alpha value.

ni A desired number of items.

Value

result The standardized factor loadings that make desired coefficient alpha with speci-

fied number of items.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

```
loadingFromAlpha(0.8, 4)
```

18 longInvariance

long	Invari	2000
Tou6	[nvari	ance

Measurement Invariance Tests Within Person

Description

Testing measurement invariance across timepoints (longitudinal) or any context involving the use of the same scale in one case (e.g., a dyad case with husband and wife answering the same scale). The measurement invariance uses a typical sequence of model comparison tests. This function currently works with only one scale.

Usage

```
longInvariance(model, varList, auto = "all", constrainAuto = FALSE,
fixed.x = TRUE, std.lv = FALSE, group=NULL, group.equal="",
group.partial="", warn=TRUE, debug=FALSE, strict = FALSE, quiet = FALSE,
...)
```

Arguments

model lavaan syntax or parameter table

varList A list containing indicator names of factors used in the invariance testing, such

as the list that the first element is the vector of indicator names in the first timepoint and the second element is the vector of indicator names in the second timepoint. The order of indicator names should be the same (but measured in

different times or different units).

auto The order of autocorrelation on the measurement errors on the similar items

across factor (e.g., Item 1 in Time 1 and Time 2). If 0 is specified, the autocorrelation will be not imposed. If 1 is specified, the autocorrelation will imposed for the adjacent factor listed in varList. The maximum number can be specified is the number of factors specified minus 1. If "all" is specified, the maximum

number of order will be used.

constrainAuto If TRUE, the function will equate the auto-covariance to be equal within the same

item across factors. For example, the covariance of item 1 in time 1 and time 2 is again to the covariance of item 1 in time 2 and time 2

is equal to the covariance of item 1 in time 2 and time 3.

fixed.x See lavaan.
std.lv See lavaan.
group See lavaan.
group.equal See lavaan.
group.partial See lavaan.
warn See lavaan.
debug See lavaan.

strict If TRUE, the sequence requires 'strict' invariance. See details for more informa-

tion.

quiet If TRUE, a summary is printed out containing an overview of the different models

that are fitted, together with some model comparison tests.

... Additional arguments in the lavaan function.

longInvariance 19

Details

If strict = FALSE, the following four models are tested in order:

- 1. Model 1: configural invariance. The same factor structure is imposed on all units.
- 2. Model 2: weak invariance. The factor loadings are constrained to be equal across units.
- 3. Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across units.
- 4. Model 4: The factor loadings, intercepts and means are constrained to be equal across units.

Each time a more restricted model is fitted, a chi-square difference test is reported, comparing the current model with the previous one, and comparing the current model to the baseline model (Model 1). In addition, the difference in cfi is also reported (delta.cfi).

If strict = TRUE, the following five models are tested in order:

- 1. Model 1: configural invariance. The same factor structure is imposed on all units.
- 2. Model 2: weak invariance. The factor loadings are constrained to be equal across units.
- 3. Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across units.
- 4. Model 4: strict invariance. The factor loadings, intercepts and residual variances are constrained to be equal across units.
- 5. Model 5: The factor loadings, intercepts, residual variances and means are constrained to be equal across units.

Note that if the chi-square test statistic is scaled (eg. a Satorra-Bentler or Yuan-Bentler test statistic), a special version of the chi-square difference test is used as described in http://www.statmodel.com/chidiff.shtml

Value

Invisibly, all model fits in the sequence are returned as a list.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>); Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

References

Vandenberg, R. J., and Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. *Organizational Research Methods*, *3*, 4-70.

See Also

measurement invariance For the measurement invariance test between groups

20 mardiaKurtosis

Examples

mardiaKurtosis

Finding Mardia's multivariate kurtosis

Description

Finding Mardia's multivariate kurtosis of multiple variables

Usage

mardiaKurtosis(dat)

Arguments

dat

The target matrix or data frame with multiple variables

Details

The Mardia's multivariate kurtosis formula (Mardia, 1970) is

$$b_{2,d} = \frac{1}{n} \sum_{i=1}^{n} \left[\left(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}} \right)' \boldsymbol{S}^{-1} \left(\boldsymbol{X}_{i} - \bar{\boldsymbol{X}} \right) \right]^{2},$$

where d is the number of variables, X is the target dataset with multiple variables, n is the sample size, S is the sample covariance matrix of the target dataset, and \bar{X} is the mean vectors of the target dataset binded in n rows. When the population multivariate kurtosis is normal, the $b_{2,d}$ is asymptotically distributed as normal distribution with the mean of d(d+2) and variance of 8d(d+2)/n.

Value

A value of a Mardia's multivariate kurtosis with a test statistic

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

mardiaSkew 21

References

Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. *Biometrika*, 57, 519-530.

See Also

- skew Find the univariate skewness of a variable
- kurtosis Find the univariate excessive kurtosis of a variable
- mardiaSkew Find the Mardia's multivariate skewness of a set of variables

Examples

```
library(lavaan)
mardiaKurtosis(HolzingerSwineford1939[,paste("x", 1:9, sep="")])
```

mardiaSkew

Finding Mardia's multivariate skewness

Description

Finding Mardia's multivariate skewness of multiple variables

Usage

mardiaSkew(dat)

Arguments

dat

The target matrix or data frame with multiple variables

Details

The Mardia's multivariate skewness formula (Mardia, 1970) is

$$b_{1,d} = rac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left[\left(X_i - \bar{X} \right)' S^{-1} \left(X_j - \bar{X} \right) \right]^3,$$

where d is the number of variables, X is the target dataset with multiple variables, n is the sample size, S is the sample covariance matrix of the target dataset, and \bar{X} is the mean vectors of the target dataset binded in n rows. When the population multivariate skewness is normal, the $\frac{n}{6}b_{1,d}$ is asymptotically distributed as chi-square distribution with d(d+1)(d+2)/6 degrees of freedom.

Value

A value of a Mardia's multivariate skewness with a test statistic

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

22 measurementInvariance

References

Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. *Biometrika*, 57, 519-530.

See Also

- skew Find the univariate skewness of a variable
- kurtosis Find the univariate excessive kurtosis of a variable
- mardiaKurtosis Find the Mardia's multivariate kurtosis of a set of variables

Examples

```
library(lavaan)
mardiaSkew(HolzingerSwineford1939[,paste("x", 1:9, sep="")])
```

measurementInvariance Measurement Invariance Tests

Description

Testing measurement invariance across groups using a typical sequence of model comparison tests.

Usage

```
measurementInvariance(..., strict = FALSE, quiet = FALSE)
```

Arguments

The same arguments as for any lavaan model. See cfa for more information.

If TRUE, the sequence requires 'strict' invariance. See details for more information.

quiet If TRUE, a summary is printed out containing an overview of the different models that are fitted, together with some model comparison tests.

Details

If strict = FALSE, the following four models are tested in order:

- 1. Model 1: configural invariance. The same factor structure is imposed on all groups.
- 2. Model 2: weak invariance. The factor loadings are constrained to be equal across groups.
- 3. Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across groups.
- 4. Model 4: The factor loadings, intercepts and means are constrained to be equal across groups.

Each time a more restricted model is fitted, a chi-square difference test is reported, comparing the current model with the previous one, and comparing the current model to the baseline model (Model 1). In addition, the difference in cfi is also reported (delta.cfi).

If strict = TRUE, the following five models are tested in order:

1. Model 1: configural invariance. The same factor structure is imposed on all groups.

miPowerFit 23

- 2. Model 2: weak invariance. The factor loadings are constrained to be equal across groups.
- 3. Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across groups.
- 4. Model 4: strict invariance. The factor loadings, intercepts and residual variances are constrained to be equal across groups.
- 5. Model 5: The factor loadings, intercepts, residual variances and means are constrained to be equal across groups.

Note that if the chi-square test statistic is scaled (eg. a Satorra-Bentler or Yuan-Bentler test statistic), a special version of the chi-square difference test is used as described in http://www.statmodel.com/chidiff.shtml

Value

Invisibly, all model fits in the sequence are returned as a list.

Author(s)

Yves Rosseel «Yves.Rosseel@UGent.be»

References

Vandenberg, R. J., and Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. *Organizational Research Methods*, *3*, 4-70.

See Also

longInvariance For the measurement invariance test within person

Examples

```
HW.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6

speed =~ x7 + x8 + x9 '
```

measurementInvariance(HW.model, data=HolzingerSwineford1939, group="school")

miPowerFit

Modification indices and their power approach for model fit evaluation

Description

The model fit evaluation approach using modification indices and their power proposed by Saris, Satorra, and van der Veld (2009, pp. 570-573).

```
miPowerFit(lavaanObj, stdLoad=0.4, cor=0.1, stdBeta=0.1, intcept=0.2, stdDelta=NULL, delta=NULL)
```

24 miPowerFit

Arguments

lavaan0bj The lavaan model object used to evaluate model fit

stdLoad The amount of standardized factor loading that one would like to be detected

(rejected). The default value is 0.4, which is suggested by Saris and colleagues

(2009, p. 571).

cor The amount of factor or error correlations that one would like to be detected

(rejected). The default value is 0.1, which is suggested by Saris and colleagues

(2009, p. 571).

detected (rejected). The default value is 0.1, which is suggested by Saris and

colleagues (2009, p. 571).

intcept The amount of standardized intercept (similar to Cohen's d that one would like

to be detected (rejected). The default value is 0.2, which is equivalent to a low

effect size proposed by Cohen (1988, 1992).

stdDelta The vector of the standardized parameters that one would like to be detected

(rejected). If this argument is specified, the value here will overwrite the other arguments above. The order of the vector must be the same as the row order from modification indices from the lavaan object. If a single value is specified,

the value will be applied to all parameters.

delta The vector of the unstandardized parameters that one would like to be detected

(rejected). If this argument is specified, the value here will overwrite the other arguments above. The order of the vector must be the same as the row order from modification indices from the lavaan object. If a single value is specified,

the value will be applied to all parameters.

Details

In the lavaan object, one can inspect the modification indices and expected parameter changes. Those values can be used to evaluate model fit by the method proposed by Saris and colleagues (2009). First, one should evaluate whether the modification index of each parameter is significant. Second, one should evaluate whether the power to detect a target expected parameter change is high enough. If the modification index is not significant and the power is high, there is no misspecification. If the modification index is significant and the power is low, the fixed parameter is misspecified. If the modification index is significant and the power is high, the expected parameter change is investigated. If the expected parameter change is large (greater than the the target expected parameter change), the parameter is misspecified. If the expected parameter change is low (lower than the target expected parameter change), the parameter is not misspecificied. If the modification index is not significant and the power is low, the decision is inconclusive.

Value

A data frame with these variables:

- 1. lhs The left-hand side variable (with respect to the lavaan operator)
- 2. op The lavaan syntax operator: "~~" represents covariance, "=~" represents factor loading, "~" represents regression, and "~1" represents intercept.
- 3. rhs The right-hand side variable (with respect to the lavaan operator)
- 4. group The group of the parameter
- 5. mi The modification index of the fixed parameter

miPowerFit 25

- 6. epc The expected parameter change if the parameter is freely estimated
- 7. target.epc The target expected parameter change that represents the minimum size of misspecification that one would like to be detected by the test with a high power
- 8. std.epc The standardized expected parameter change if the parameter is freely estimated
- 9. std.target.epc The standardized target expected parameter change
- 10. significant.mi Represents whether the modification index value is significant
- 11. high.power Represents whether the power is enough to detect the target expected parameter change
- 12. decision The decision whether the parameter is misspecified or not: "M" represents the parameter is misspecified, "NM" represents the parameter is not misspecified, "EPC:M" represents the parameter is misspecified decided by checking the expected parameter change value, "EPC:NM" represents the parameter is not misspecified decided by checking the expected parameter change value, and "I" represents the decision is inconclusive.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159.

Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models or detection of misspecifications? *Structural Equation Modeling*, *16*, 561-582.

See Also

moreFitIndices For the additional fit indices information

```
library(lavaan)
HS.model \leftarrow 'visual = x1 + x2 + x3
               textual =^{\sim} x4 + x5 + x6
               speed = ^{\sim} x7 + x8 + x9 '
fit <- cfa(HS.model, data=HolzingerSwineford1939, group="sex", meanstructure=TRUE)</pre>
miPowerFit(fit)
model <- '</pre>
  # latent variable definitions
     ind60 = x1 + x2 + x3
     dem60 = y1 + a*y2 + b*y3 + c*y4
     dem65 = y5 + a*y6 + b*y7 + c*y8
  # regressions
    dem60 \sim ind60
    dem65 \sim ind60 + dem60
  # residual correlations
    y1 ~~ y5
```

26 monteCarloMed

```
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
,
fit2 <- sem(model, data=PoliticalDemocracy, meanstructure=TRUE)
miPowerFit(fit2, stdLoad=0.3, cor=0.2, stdBeta=0.2, intcept=0.5)</pre>
```

monteCarloMed

Monte Carlo Confidence Intervals to Test Complex Indirect Effects

Description

This function takes an expression for an indirect effect, the parameters and standard errors associated with the expression and returns a confidence interval based on a Monte Carlo test of mediation (MacKinnon, Lockwood, & Williams, 2004).

Usage

monteCarloMed(expression, ..., ACM=NULL, rep=20000, CI=95, plot=FALSE, outputValues=FALSE)

Arguments

expression	A character scalar representing the computation of an indirect effect. Different parameters in the expression should have different alphanumeric values. Expressions can use either addition (+) or multiplication (*) operators.
	Parameter estimates for all parameters named in expression. The order of parameters should follow from expression (the first parameter named in expression should be the first parameter listed in). Alternatively can be a vector of parameter estimates.
ACM	A matrix representing the asymptotic covariance matrix of the parameters described in expression. This matrix should be a symetric matrix with dimensions equal to the number of parameters names in expression. Information on finding the ACOV is popular SEM software is described below.)
rep	The number of replications to compute. Many thousand are reccomended.
CI	Width of the confidence interval computed.
plot	Should the function output a plot of simulated values of the indirect effect?
outputValues	Should the function output all simulated values of the indirect effect?

Details

This function implements the Monte Carlo test of mediation first described in MacKinnon, Lockwood, & Williams (2004) and extends it to complex cases where the indirect effect is more than a function of two parameters. The function takes an expression for the indirect effect, randomly simulated values of the indirect effect based on the values of the parameters (and the associated standard errors) comprising the indirect effect, and outputs a confidence interval of the indirect effect based on the simulated values. For further information on the Monte Carlo test of mediation see MacKinnon, Lockwood, & Williams (2004), Preacher & Selig (in press), and Selig & Preacher (2008). For a Monte Carlo test of mediation with a random effects model see Selig & Preacher (2010).

The asymptotic covariance matrix can be easily found in many popular SEM software applications.

monteCarloMed 27

• LISRELIncluding the EC option on the OU line will print the ACM to a seperate file. The file contains the lower triangular elements of the ACM in free format and scientific notation

- MplusInclude the command TECH3; in the OUTPUT section. The ACM will be printed in the output.
- lavaan Use the command vcov on the fitted lavaan object to print the ACM to the screen

Value

A list with two elements. The first element is the point estimate for the indirect effect. The second element is a matrix with values for the upper and lower limits of the confidence interval generated from the Monte Carlo test of mediation. If outputValues=TRUE, output will be a list with a list with the point estimate and values for the upper and lower limits of the confidence interval as the first element and a vector of simulated values of the indirect effect as the second element.

Author(s)

Corbin Quick (University of Kansas; <corbinq@ku.edu>) Alexander M. Schoemann (University of Kansas; <schoemann@ku.edu>) James P. Selig (University of New Mexico; <selig@unm.edu>)

References

Preacher, K. J., & Selig, J. P. (2010, July). Monte Carlo method for assessing multilevel mediation: An interactive tool for creating confidence intervals for indirect effects in 1-1-1 multilevel models [Computer software]. Available from http://quantpsy.org/.

Preacher, K. J., & Selig, J. P. (in press). Advantages of Monte Carlo confidence intervals for indirect effects. *Communication Methods and Measures*.

Selig, J. P., & Preacher, K. J. (2008, June). Monte Carlo method for assessing mediation: An interactive tool for creating confidence intervals for indirect effects [Computer software]. Available from http://quantpsy.org/.

```
#Simple two path mediation
#Write expression of indirect effect
med <- 'a*b'
#Paramter values from analyses
aparam <- 1
bparam<-2
#Asymptotic covariance matrix from analyses
AC <- matrix(c(.01,.00002,
               .00002,.02), nrow=2, byrow=TRUE)
#Compute CI, include a plot
monteCarloMed(med, coef1=aparam, coef2=bparam, outputValues=FALSE, plot=TRUE, ACM=AC)
#Use a matrix of parameter estimates as input
aparam<-c(1,2)
monteCarloMed(med, coef1=aparam, outputValues=FALSE, plot=TRUE, ACM=AC)
#complex mediation with two paths for the indirect effect
#Write expression of indirect effect
med <- 'a1*b1 + a1*b2'
#Paramter values and standard errors from analyses
```

28 moreFitIndices

```
aparam <- 1
b1param<-2
b2param<-1
#Asymptotic covariance matrix from analyses
AC <- matrix(c(1,.00002, .00003, .00002,1, .00002,1, .00002,
.00003, .00002, 1), nrow=3, byrow=TRUE)
#Compute CI do not include a plot
monteCarloMed(med, coef1=aparam, coef2=b1param, coef3=b2param, ACM=AC)</pre>
```

moreFitIndices

Calculate more fit indices

Description

Calculate more fit indices that are not already provided in lavaan.

Usage

```
moreFitIndices(object, nPrior = 1)
```

Arguments

object The lavaan model object provided after running the cfa, sem, growth, or lavaan

functions.

nPrior The sample size on which prior is based. This argument is used to compute

BIC*.

Details

Gamma Hat (gammaHat; West, Taylor, & Wu, 2012) is a global fit index which can be computed by

$$gammaHat = \frac{p}{p + 2 \times \frac{\chi_k^2 - df_k}{N - 1}},$$

where p is the number of variables in the model, χ_k^2 is the chi-square test statistic value of the target model, df_k is the degree of freedom when fitting the target model, and N is the sample size. This formula assumes equal number of indicators across groups.

Adjusted Gamma Hat (adjGammaHat; West, Taylor, & Wu, 2012) is a global fit index which can be computed by

$$adjGammaHat = \left(1 - \frac{K \times p \times (p+1)}{2 \times df_k}\right) \times \left(1 - gammaHat\right),$$

where K is the number of groups (please refer to Dudgeon, 2004 for the multiple-group adjustment for agfi*).

Corrected Akaike Information Criterion (aic.smallN; Burnham & Anderson, 2003) is the corrected version of aic for small sample size:

moreFitIndices 29

$$aic.small N = f + \frac{2k(k+1)}{N-k-1},$$

where f is the minimized discrepancy function, which is the product of the log likelihood and -2, and k is the number of parameters in the target model.

Corrected Bayesian Information Criterion (bic.priorN; Kuha, 2004) is similar to bic but explicitly specifying the sample size on which the prior is based (N_{prior}) .

$$bic.priorN = f + k \log (1 + N/N_{prior}),$$

Stochastic information criterion (sic; Preacher, 2006) is similar to aic or bic. This index will account for model complexity in the model's function form, in addition to the number of free parameters. This index will be provided only when the chi-squared value is not scaled. sic can be computed by

$$sic = \frac{1}{2} \left(f - \log \det I(\hat{\theta}) \right),$$

where $I(\hat{\theta})$ is the information matrix of the parameters.

Hannan-Quinn Information Criterion (hqc; Hannan & Quinn, 1979) is used for model selection similar to aic or bic.

$$hqc = f + 2k \log(\log N),$$

Note that if Satorra-Bentler or Yuan-Bentler's method is used, the fit indices using the scaled chisquare values are also provided.

See nullRMSEA for the further details of the computation of RMSEA of the null model.

Value

- 1. gammaHat Gamma Hat
- 2. adjGammaHat Adjusted Gamma Hat
- 3. baseline.rmsea RMSEA of the Baseline (Null) Model
- 4. aic.smallN Corrected (for small sample size) Akaike Information Criterion
- 5. bic.priorN Bayesian Information Criterion with specifying the prior sample size
- 6. sic Stochastic Information Criterion
- 7. hqc Hannan-Quinn Information Criterion
- 8. gammaHat.scaled Gamma Hat using Scaled Chi-square
- 9. adjGammaHat.scaled Adjusted Gamma Hat using Scaled Chi-square
- 10. baseline.rmsea.scaled RMSEA of the Baseline (Null) Model using Scaled Chi-square

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>) Aaron Boulton (University of Kansas; <aboulton@ku.edu>) Ruben Arslan (Humboldt-University of Berlin, <rubenarslan@gmail.com>) Terrence Jorgensen (University of Kansas; <tdj@ku.edu>)

30 nullRMSEA

References

Burnham, K., & Anderson, D. (2003). *Model selection and multimodel inference: A practical-theoretic approach*. New York, NY: Springer-Verlag.

Dudgeon, P. (2004). A note on extending Steiger's (1998) multiple sample RMSEA adjustment to other noncentrality parameter-based statistic. *Structural Equation Modeling*, 11, 305-319.

Kuha, J. (2004). AIC and BIC: Comparisons of assumptions and performance. *Sociological Methods Research*, *33*, 188-229.

Preacher, K. J. (2006). Quantifying parsimony in structural equation modeling. *Multivariate Behavioral Research*, 43, 227-259.

West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. In R. H. Hoyle (Ed.), *Handbook of Structural Equation Modeling*. New York: Guilford.

See Also

- miPowerFit For the modification indices and their power approach for model fit evaluation
- nullRMSEA For RMSEA of the null model

Examples

nullRMSEA

Calculate the RMSEA of the null model

Description

Calculate the RMSEA of the null (baseline) model

Usage

```
nullRMSEA(object, scaled = FALSE, silent=FALSE)
```

Arguments

object	The lavaan model object provided after running the cfa, sem, growth, or lavaan functions.
scaled	If TRUE, calculate the null model from the scaled test.
silent	If TRUE, do not print anything on the screen.

nullRMSEA 31

Details

RMSEA of the null model is calculated similar to the formula provided in the lavaan package. The standard formula of RMSEA is

$$RMSEA = \sqrt{\frac{\chi^2}{N \times df} - \frac{1}{N}} \times \sqrt{G}$$

where χ^2 is the chi-square test statistic value of the target model, N is the total sample size, df is the degree of freedom of the hypothesized model, G is the number of groups. Kenny proposed in his website that

"A reasonable rule of thumb is to examine the RMSEA for the null model and make sure that is no smaller than 0.158. An RMSEA for the model of 0.05 and a TLI of .90, implies that the RMSEA of the null model is 0.158. If the RMSEA for the null model is less than 0.158, an incremental measure of fit may not be that informative."

See http://davidakenny.net/cm/fit.htm.

Value

A value of RMSEA of the null model. This value is hidden. Users may be assigned the output of this function to any object for further usage.

Author(s)

Ruben Arslan (Humboldt-University of Berlin, <rubenarslan@gmail.com>)

References

Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2011). *The performance of RMSEA in models with small degrees of freedom.* Unpublished paper, University of Connecticut.

See Also

- miPowerFit For the modification indices and their power approach for model fit evaluation
- moreFitIndices For other fit indices

32 parcelAllocation

Description

This function generates a given number of randomly generated item-to-parcel allocations, fits a model to each allocation, and provides averaged results over all allocations.

Usage

```
parcelAllocation(nPerPar, facPlc, nAlloc=100, syntax, dataset, names='default', leaveout=0, ...)
```

Arguments

nPerPar	A list in which each element is a vector corresponding to each factor indicating sizes of parcels. If variables are left out of parceling, they should not be accounted for here (there should NOT be parcels of size "1").
facPlc	A list of vectors, each corresponding to a factor, specifying the variables in that factor (whether included in parceling or not). Either variable names or column numbers. Variables not listed will not be modeled or included in output datasets.
nAlloc	The number of random allocations of items to parcels to generate.
syntax	lavaan syntax. If substituted with a file name, parcelAllocation will print output data sets to a specified folder rather than analyzing using lavaan (note for Windows users: file path must be specified using forward slashes).
dataset	Data set. Can be file path or R object (matrix or dataframe). If the data has missing values multiple imputation before parceling is recommended.
names	(Optional) A character vector containing the names of parceled variables.
leaveout	A vector of variables to be left out of randomized parceling. Either variable names or column numbers are allowed.
	Additional arguments to be passed to lavaan

Details

This function implements the random item to parcel allocation procedure described in Sterba (2011) and Sterba and MccCallum (2010). The function takes a single data set with item level data, randomly assigns items to parcels, fits a structural equation model to the parceled data (using lavaan), and repeats this process for a user specified number of random allocations. Results from all fitted models are summarized and output. For further details on the benefits of the random allocation of itesm to parcels see Sterba (2011) and Sterba and MccCallum (2010).

Value

Estimates

A data frame containing results related to parameter estimates with columns corresponding to parameter names, average parameter estimates across allocations, the standard deviation of parameter estimates across allocations, the minimum parameter estimate across allocations, the maximum parameter estimate across allocations, the range of parameter estimates across allocations, and the proportions of allocations in which the parameter estimate is significant.

plotProbe 33

SE A data frame containing results related to standard errors with columns corresponding to parameter names, average standard errors across allocations, the standard deviation of standard errors across allocations, the minimum standard

error across allocations, the maximum standard error across allocations, and the

range of standard errors across allocations.

Fit A data frame containing results related to model fit with columns corresponding to fit index names, the average of each index across allocations, the standard

deviation of each fit index across allocations, the minimum of each fit index across allocations, the maximum of each fit index across allocations, and the

range of each fit index across allocations.

Author(s)

Corbin Quick (University of Kansas; <corbinq@ku.edu>) Alexander M. Schoemann (University of Kansas; <schoemann@ku.edu>)

References

Sterba, S.K. (2011). Implications of parcel-allocation variability for comparing fit of item-solutions and parcel-solutions. *Structural Equation Modeling*, 18, 554-577.

Sterba, S.K. & MacCallum, R.C. (2010). Variability in parameter estimates and model fit across random allocations of items to parcels. *Multivariate Behavioral Research*, 45, 322-358.

Examples

plotProbe

Plot the graphs for probing latent interaction

Description

This function will plot the line graphs representing the simple effect of the independent variable given the values of the moderator.

```
plotProbe(object, xlim, xlab="Indepedent Variable", ylab="Dependent Variable", ...)
```

34 plotProbe

Arguments

object	The result of probing latent interaction obtained from probe2WayMC, probe2WayRC, probe3WayMC, or probe3WayRC function.
xlim	The vector of two numbers: the minimum and maximum values of the independent variable
xlab	The label of the x-axis
ylab	The label of the y-axis
	Any addition argument for the plot function

Value

None. This function will plot the simple main effect only.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

See Also

- indProd For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- probe2WayMC For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- probe3WayMC For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- probe2WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- probe3WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.

```
library(lavaan)
dat2wayMC <- indProd(dat2way, 1:3, 4:6)</pre>
model1 <- "
f1 = x1 + x2 + x3
f2 = x4 + x5 + x6
f12 = x1.x4 + x2.x5 + x3.x6
f3 = x7 + x8 + x9
f3 \sim f1 + f2 + f12
f12 ~~0*f1
f12 ~~ 0*f2
x1 ~ 0*1
x4 ~ 0*1
x1.x4 ~ 0*1
x7 \sim 0*1
f1 ~ NA*1
f2 ~ NA*1
f12 ~ NA*1
f3 ~ NA*1
```

plotRMSEAdist 35

```
fitMC2way <- sem(model1, data=dat2wayMC, meanstructure=TRUE, std.lv=FALSE)</pre>
result2wayMC <- probe2WayMC(fitMC2way, c("f1", "f2", "f12"), "f3", "f2", c(-1, 0, 1))
plotProbe(result2wayMC, xlim=c(-2, 2))
dat3wayMC <- indProd(dat3way, 1:3, 4:6, 7:9)</pre>
model3 <- "
f1 = x1 + x2 + x3
f2 = x4 + x5 + x6
f3 = x7 + x8 + x9
f12 = x1.x4 + x2.x5 + x3.x6
f13 = x1.x7 + x2.x8 + x3.x9
f23 = x4.x7 + x5.x8 + x6.x9
f123 = x1.x4.x7 + x2.x5.x8 + x3.x6.x9
f4 = x10 + x11 + x12
f4 ~ f1 + f2 + f3 + f12 + f13 + f23 + f123
f1 ~~ 0*f12
f1 ~~ 0*f13
f1 ~~ 0*f123
f2 ~~ 0*f12
f2 ~~ 0*f23
f2 ~~ 0*f123
f3 ~~ 0*f13
f3 ~~ 0*f23
f3 ~~ 0*f123
f12 ~~ 0*f123
f13 ~~ 0*f123
f23 ~~ 0*f123
x1 ~ 0*1
x4 ~ 0*1
x7 \sim 0*1
x10 ~ 0*1
x1.x4 \sim 0*1
x1.x7 \sim 0*1
x4.x7 \sim 0*1
x1.x4.x7 \sim 0*1
f1 ~ NA*1
f2 ~ NA*1
f3 ~ NA*1
f12 ~ NA*1
f13 ~ NA*1
f23 ~ NA*1
f123 ~ NA*1
f4 ~ NA*1
fitMC3way <- sem(model3, data=dat3wayMC, meanstructure=TRUE, std.lv=FALSE)</pre>
result3wayMC <- probe3WayMC(fitMC3way, c("f1", "f2", "f3", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f12", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f13", "f123", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f13", "f123", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f13", "f123", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f13", "f123", "f123"), "f123", "f123"
```

plotProbe(result3wayMC, xlim=c(-2, 2))

36 plotRMSEAdist

Description

Plots the sampling distributions of RMSEA based on the noncentral chi-square distributions

Usage

plotRMSEAdist(rmsea, n, df, ptile=NULL, caption=NULL, rmseaScale = TRUE, group=1)

Arguments

rmsea	The vector of RMSEA values to be plotted
n	Sample size of a dataset
df	Model degrees of freedom
ptile	The percentile rank of the distribution of the first RMSEA that users wish to plot a vertical line in the resulting graph
caption	The name vector of each element of rmsea
rmseaScale	If TRUE, the RMSEA scale is used in the x-axis. If FALSE, the chi-square scale is used in the x-axis.
group	The number of group that is used to calculate RMSEA.

Details

This function creates overlappling plots of the sampling distribution of RMSEA based on non-central chi-square distribution (MacCallum, Browne, & Suguwara, 1996). First, the noncentrality parameter (λ) is calculated from RMSEA (Steiger, 1998; Dudgeon, 2004) by

$$\lambda = (N-1)d\varepsilon^2/K,$$

where N is sample size, d is the model degree of freedom, K is the number of groupand ε is the population RMSEA. Next, the noncentral chi-square distribution with a specified degree of freedom and noncentrality parameter is plotted. Thus, the x-axis represent the sample chi-square value. The sample chi-square value can be transformed to the sample RMSEA scale $(\hat{\varepsilon})$ by

$$\hat{\varepsilon} = \sqrt{K} \sqrt{\frac{\chi^2 - d}{(N - 1)d}},$$

where χ^2 is the chi-square value obtained from the noncentral chi-square distribution.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

Dudgeon, P. (2004). A note on extending Steiger's (1998) multiple sample RMSEA adjustment to other noncentrality parameter-based statistic. *Structural Equation Modeling*, 11, 305-319.

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. *Psychological Methods, 1,* 130-149.

Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit index. *Structural Equation Modeling*, *5*, 411-419.

plotRMSEApower 37

See Also

• plotRMSEApower to plot the statistical power based on population RMSEA given the sample size

- findRMSEApower to find the statistical power based on population RMSEA given a sample size
- findRMSEAsamplesize to find the minium sample size for a given statistical power based on population RMSEA

Examples

```
plotRMSEAdist(rmsea=c(.05, .08), n=200, df=20, ptile=0.95, rmseaScale = TRUE)
plotRMSEAdist(rmsea=c(.05, .01), n=200, df=20, ptile=0.05, rmseaScale = FALSE)
```

plotRMSEApower

Plot power curves for RMSEA

Description

Plots power of RMSEA over a range of sample sizes

Usage

```
plotRMSEApower(rmsea0, rmseaA, df, nlow, nhigh, steps=1, alpha=.05, group=1, ...)
```

Arguments

rmsea0	Null RMSEA
rmseaA	Alternative RMSEA
df	Model degrees of freedom
nlow	Lower sample size
nhigh	Upper sample size
steps	Increase in sample size for each iteration. Smaller values of steps will lead to more precise plots. However, smaller step sizes means a longer run time.
alpha	Alpha level used in power calculations
group	The number of group that is used to calculate RMSEA.
	The additional arguments for the plot function.

Details

This function creates plot of power for RMSEA against a range of sample sizes. The plot places sample size on the horizontal axis and power on the vertical axis. The user should indicate the lower and upper values for sample size and the sample size between each estimate ("step size") We strongly urge the user to read the sources below (see References) before proceeding. A web version of this function is available at: http://quantpsy.org/rmsea/rmseaplot.htm.

Value

1. plot Plot of power for RMSEA against a range of sample sizes

Author(s)

Alexander M. Schoemann (University of Kansas; <schoemann@ku.edu>) Kristopher J. Preacher (Vanderbilt University; <kris.preacher@vanderbilt.edu>) Donna L. Coffman (Pennsylvania State University; <dlc30@psu.edu.>)

References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covariance structure models: Power analysis and null hypotheses. *Psychological Methods*, *11*, 19-35.

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. *Psychological Methods*, 1, 130-149.

MacCallum, R. C., Lee, T., & Browne, M. W. (2010). The issue of isopower in power analysis for tests of structural equation models. *Structural Equation Modeling*, 17, 23-41.

Preacher, K. J., Cai, L., & MacCallum, R. C. (2007). Alternatives to traditional model comparison strategies for covariance structure models. In T. D. Little, J. A. Bovaird, & N. A. Card (Eds.), *Modeling contextual effects in longitudinal studies* (pp. 33-62). Mahwah, NJ: Lawrence Erlbaum Associates.

Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit index. *Structural Equation Modeling*, *5*, 411-419.

Steiger, J. H., & Lind, J. C. (1980, June). *Statistically based tests for the number of factors*. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.

See Also

- plotRMSEAdist to visualize the RMSEA distributions
- findRMSEApower to find the statistical power based on population RMSEA given a sample size
- findRMSEAsamplesize to find the minium sample size for a given statistical power based on population RMSEA

Examples

```
plotRMSEApower(.025, .075, 23, 100, 500, 10)
```

 ${\tt plotRMSEA powernested} \quad \textit{Plot power of nested model RMSEA}$

Description

Plot power of nested model RMSEA over a range of possible sample sizes.

Usage

```
plotRMSEApowernested(rmsea0A = NULL, rmsea0B = NULL, rmsea1A, rmsea1B = NULL,
dfA, dfB, nlow, nhigh, steps=1, alpha=.05, group=1, ...)
```

probe2WayMC 39

Arguments

rmsea0A	The H0 baseline RMSEA.
rmsea0B	The H0 alternative RMSEA (trivial misfit).
rmsea1A	The H1 baseline RMSEA.
rmsea1B	The H1 alternative RMSEA (target misfit to be rejected).
dfA	degree of freedom of the more-restricted model.
dfB	degree of freedom of the less-restricted model.
nlow	Lower bound of sample size.
nhigh	Upper bound of sample size.
steps	Step size.
alpha	The alpha level.
group	The number of group in calculating RMSEA.
	The additional arguments for the plot function.

Author(s)

Bell Clinton (University of Kansas; <clintonbell@ku.edu>); Pavel Panko (University of Kansas; <pavel@ku.edu>); Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covariance structure models: Power analysis and null hypotheses. *Psychological Methods*, *11*, 19-35.

See Also

- findRMSEApowernested to find the power for a given sample size in nested model comparison based on population RMSEA
- findRMSEAsamplesizenested to find the minium sample size for a given statistical power in nested model comparison based on population RMSEA

Examples

```
\label{eq:plotRMSEApowernested} $$ plotRMSEApowernested(rmsea0A = 0, rmsea0B = 0, rmsea1A = 0.06, rmsea1B = 0.05, dfA=22, dfB=20, nlow=50, nhigh=500, steps=1, alpha=.05, group=1)
```

probe2WayMC	Probing two-way interaction on the residual-centered latent interaction

Description

Probing interaction for simple intercept and simple slope for the no-centered or mean-centered latent two-way interaction

Usage

```
probe2WayMC(fit, nameX, nameY, modVar, valProbe)
```

40 probe2WayMC

Arguments

fit	The lavaan model object used to evaluate model fit
nameX	The vector of the factor names used as the predictors. The first-order factor will be listed first. The last name must be the name representing the interaction term.
nameY	The name of factor that is used as the dependent variable.
modVar	The name of factor that is used as a moderator. The effect of the other independent factor on each moderator variable value will be probed.
valProbe	The values of the moderator that will be used to probe the effect of the other independent factor.

Details

Before using this function, researchers need to make the products of the indicators between the first-order factors using mean centering (Marsh, Wen, & Hau, 2004). Note that the double-mean centering may not be appropriate for probing interaction if researchers are interested in simple intercepts. The mean or double-mean centering can be done by the indProd function. The indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction.

Let that the latent interaction model regressing the dependent variable (Y) on the independent variable (X) and the moderator (Z) be

$$Y = b_0 + b_1 X + b_2 Z + b_3 X Z + r,$$

where b_0 is the estimated intercept or the expected value of Y when both X and Z are 0, b_1 is the effect of X when Z is 0, b_2 is the effect of Z when X is 0, b_3 is the interaction effect between X and Z, and T is the residual term.

For probing two-way interaction, the simple intercept of the independent variable at each value of the moderator (Aiken & West, 1991; Cohen, Cohen, West, & Aiken, 2003; Preacher, Curran, & Bauer, 2006) can be obtained by

$$b_{0|X=0,Z} = b_0 + b_2 Z.$$

The simple slope of the independent variable at each value of the moderator can be obtained by

$$b_{X|Z} = b_1 + b_3 Z$$
.

The variance of the simple intercept formula is

$$Var(b_{0|X=0,Z}) = Var(b_0) + 2ZCov(b_0, b_2) + Z^2Var(b_2)$$

where Var denotes the variance of a parameter estimate and Cov denotes the covariance of two parameter estimates.

The variance of the simple slope formula is

$$Var\left(b_{X|Z}\right) = Var\left(b_{1}\right) + 2ZCov\left(b_{1},b_{3}\right) + Z^{2}Var\left(b_{3}\right)$$

Wald statistic is used for test statistic.

probe2WayMC 41

Value

A list with two elements:

1. SimpleIntercept The intercepts given each value of the moderator. This element will be shown only if the factor intercept is estimated (e.g., not fixed as 0).

2. SimpleSlope The slopes given each value of the moderator.

In each element, the first column represents the values of the moderators specified in the valProbe argument. The second column is the simple intercept or simple slope. The third column is the standard error of the simple intercept or simple slope. The fourth column is the Wald (z) statistic. The fifth column is the p-value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). New York: Routledge.

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. *Psychological Methods*, *9*, 275-300.

Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. *Journal of Educational and Behavioral Statistics*, *31*, 437-448.

See Also

- indProd For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- probe3WayMC For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- probe2WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- probe3WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- plotProbe Plot the simple intercepts and slopes of the latent interaction.

```
library(lavaan)

dat2wayMC <- indProd(dat2way, 1:3, 4:6)

model1 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f12 =~ x1.x4 + x2.x5 + x3.x6
f3 =~ x7 + x8 + x9</pre>
```

42 probe2WayRC

```
f3 ~ f1 + f2 + f12
f12 ~~0*f1
f12 ~~0*f2
x1 ~ 0*1
x4 ~ 0*1
x1.x4 ~ 0*1
x7 ~ 0*1
f1 ~ NA*1
f2 ~ NA*1
f12 ~ NA*1
f13 ~ NA*1
"

fitMC2way <- sem(model1, data=dat2wayMC, meanstructure=TRUE, std.lv=FALSE)
summary(fitMC2way)

result2wayMC <- probe2WayMC(fitMC2way, c("f1", "f2", "f12"), "f3", "f2", c(-1, 0, 1))
result2wayMC</pre>
```

probe2WayRC

Probing two-way interaction on the residual-centered latent interaction

Description

Probing interaction for simple intercept and simple slope for the residual-centered latent two-way interaction (Pornprasertmanit, Schoemann, Geldhof, & Little, submitted)

Usage

```
probe2WayRC(fit, nameX, nameY, modVar, valProbe)
```

Arguments

fit	The lavaan model object used to evaluate model fit	
nameX	The vector of the factor names used as the predictors. The first-order factor will be listed first. The last name must be the name representing the interaction term.	
nameY	The name of factor that is used as the dependent variable.	
modVar	The name of factor that is used as a moderator. The effect of the other independent factor on each moderator variable value will be probed.	
valProbe	The values of the moderator that will be used to probe the effect of the other independent factor.	

Details

Before using this function, researchers need to make the products of the indicators between the first-order factors and residualize the products by the original indicators (Lance, 1988; Little, Bovaird, & Widaman, 2006). The process can be automated by the indProd function. Note that the indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction.

probe2WayRC 43

The probing process on residual-centered latent interaction is based on transforming the residual-centered result into the no-centered result. See Pornprasertmanit, Schoemann, Geldhof, and Little (submitted) for further details. Note that this approach based on a strong assumption that the first-order latent variables are normally distributed. The probing process is applied after the no-centered result (parameter estimates and their covariance matrix among parameter estimates) has been computed. See the probe2WayMC for further details.

Value

A list with two elements:

- 1. SimpleIntercept The intercepts given each value of the moderator. This element will be shown only if the factor intercept is estimated (e.g., not fixed as 0).
- 2. SimpleSlope The slopes given each value of the moderator.

In each element, the first column represents the values of the moderators specified in the valProbe argument. The second column is the simple intercept or simple slope. The third column is the standard error of the simple intercept or simple slope. The fourth column is the Wald (z) statistic. The fifth column is the p-value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

Lance, C. E. (1988). Residual centering, exploratory and confirmatory moderator analysis, and decomposition of effects in path models containing interactions. *Applied Psychological Measurement*, 12, 163-175.

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions. *Structural Equation Modeling*, *13*, 497-519.

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. *Psychological Methods*, *9*, 275-300.

Pornprasertmanit, S., Schoemann, A. M., Geldhof, G. J., & Little, T. D. (submitted). *Probing latent interaction estimated with a residual centering approach*.

See Also

- indProd For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- probe2WayMC For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- probe3WayMC For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- probe3WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- plotProbe Plot the simple intercepts and slopes of the latent interaction.

44 probe3WayMC

Examples

```
library(lavaan)
dat2wayRC <- orthogonalize(dat2way, 1:3, 4:6)</pre>
model1 <- "
f1 = x1 + x2 + x3
f2 = x4 + x5 + x6
f12 = x1.x4 + x2.x5 + x3.x6
f3 = x7 + x8 + x9
f3 ~ f1 + f2 + f12
f12 ~~0*f1
f12 ~~ 0*f2
x1 ~ 0*1
x4 ~ 0*1
x1.x4 ~ 0*1
x7 \sim 0*1
f1 ~ NA*1
f2 ~ NA*1
f12 ~ NA*1
f3 ~ NA*1
fitRC2way <- sem(model1, data=dat2wayRC, meanstructure=TRUE, std.lv=FALSE)</pre>
summary(fitRC2way)
result2wayRC <- probe2WayRC(fitRC2way, c("f1", "f2", "f12"), "f3", "f2", c(-1, 0, 1))
result2wayRC
```

probe3WayMC

Probing two-way interaction on the residual-centered latent interaction

Description

Probing interaction for simple intercept and simple slope for the no-centered or mean-centered latent two-way interaction

Usage

```
probe3WayMC(fit, nameX, nameY, modVar, valProbe1, valProbe2)
```

Arguments

fit

The lavaan model object used to evaluate model fit

nameX

The vector of the factor names used as the predictors. The three first-order factors will be listed first. Then the second-order factors will be listeed. The last element of the name will represent the three-way interaction. Note that the fourth element must be the interaction between the first and the second variables. The fifth element must be the interaction between the first and the third variables. The sixth element must be the interaction between the second and the third variables.

probe3WayMC 45

nameY The name of factor that is used as the dependent variable.

The name of two factors that are used as the moderators. The effect of the independent factor on each combination of the moderator variable values will be probed.

ValProbe1 The values of the first moderator that will be used to probe the effect of the independent factor.

ValProbe2 The values of the second moderator that will be used to probe the effect of the

independent factor.

Details

Before using this function, researchers need to make the products of the indicators between the first-order factors using mean centering (Marsh, Wen, & Hau, 2004). Note that the double-mean centering may not be appropriate for probing interaction if researchers are interested in simple intercepts. The mean or double-mean centering can be done by the indProd function. The indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction.

Let that the latent interaction model regressing the dependent variable (Y) on the independent variable (X) and two moderators (Z and W) be

$$Y = b_0 + b_1 X + b_2 Z + b_3 W + b_4 X Z + b_5 X W + b_6 Z W + b_7 X Z W + r,$$

where b_0 is the estimated intercept or the expected value of Y when X, Z, and W are 0, b_1 is the effect of X when Z and W are 0, b_2 is the effect of Z when X and W is 0, b_3 is the effect of W when X and Z are 0, b_4 is the interaction effect between X and Z when W is 0, b_5 is the interaction effect between X and Y when Y is Y when Y is Y is the three-way interaction effect between Y, Y, and Y, and Y is the residual term.

For probing three-way interaction, the simple intercept of the independent variable at the specific values of the moderators (Aiken & West, 1991) can be obtained by

$$b_{0|X=0,Z,W} = b_0 + b_2 Z + b_3 W + b_6 Z W.$$

The simple slope of the independent variable at the specific values of the moderators can be obtained by

$$b_{X|Z,W} = b_1 + b_3 Z + b_4 W + b_7 Z W.$$

The variance of the simple intercept formula is

$$Var\left(b_{0|X=0,Z,W}\right) = Var\left(b_{0}\right) + Z^{2}Var\left(b_{2}\right) + W^{2}Var\left(b_{3}\right) + Z^{2}W^{2}Var\left(b_{6}\right) + 2ZCov\left(b_{0},b_{2}\right) + 2WCov\left(b_{0},b_{3}\right) + 2ZVar\left(b_{1},b_{2}\right) + 2ZVar\left(b_{2},b_{3}\right) + 2ZVar\left(b_{3}\right) + 2ZVar\left(b_{3}\right$$

where Var denotes the variance of a parameter estimate and Cov denotes the covariance of two parameter estimates.

The variance of the simple slope formula is

$$Var\left(b_{X\mid Z,W}\right)=Var\left(b_{1}\right)+Z^{2}Var\left(b_{4}\right)+W^{2}Var\left(b_{5}\right)+Z^{2}W^{2}Var\left(b_{7}\right)+2ZCov\left(b_{1},b_{4}\right)+2WCov\left(b_{1},b_{5}\right)+2ZWCov\left(b_{1},b_{5}\right$$

Wald statistic is used for test statistic.

46 probe3WayMC

Value

A list with two elements:

1. SimpleIntercept The intercepts given each value of the moderator. This element will be shown only if the factor intercept is estimated (e.g., not fixed as 0).

2. SimpleSlope The slopes given each value of the moderator.

In each element, the first column represents the values of the first moderator specified in the valProbe1 argument. The second column represents the values of the second moderator specified in the valProbe2 argument. The third column is the simple intercept or simple slope. The fourth column is the standard error of the simple intercept or simple slope. The fifth column is the Wald (z) statistic. The sixth column is the p-value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. *Psychological Methods*, *9*, 275-300.

See Also

- indProd For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- probe2WayMC For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- probe2WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- probe3WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- plotProbe Plot the simple intercepts and slopes of the latent interaction.

```
library(lavaan)

dat3wayMC <- indProd(dat3way, 1:3, 4:6, 7:9)

model3 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f3 =~ x7 + x8 + x9
f12 =~ x1.x4 + x2.x5 + x3.x6
f13 =~ x1.x7 + x2.x8 + x3.x9
f23 =~ x4.x7 + x5.x8 + x6.x9
f123 =~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
f4 =~ x10 + x11 + x12
```

probe3WayRC 47

```
f4 ~ f1 + f2 + f3 + f12 + f13 + f23 + f123
f1 ~~ 0*f12
f1 ~~ 0*f13
f1 ~~ 0*f123
f2 ~~ 0*f12
f2 ~~ 0*f23
f2 ~~ 0*f123
f3 ~~ 0*f13
f3 ~~ 0*f23
f3 ~~ 0*f123
f12 ~~ 0*f123
f13 ~~ 0*f123
f23 ~~ 0*f123
x1 ~ 0*1
x4 ~ 0*1
x7 ~ 0*1
x10 ~ 0*1
x1.x4 ~ 0*1
x1.x7 \sim 0*1
x4.x7 \sim 0*1
x1.x4.x7 \sim 0*1
f1 ~ NA*1
f2 ~ NA*1
f3 ~ NA*1
f12 ~ NA*1
f13 ~ NA*1
f23 ~ NA*1
f123 ~ NA*1
f4 ~ NA*1
fitMC3way <- sem(model3, data=dat3wayMC, meanstructure=TRUE, std.lv=FALSE)</pre>
 summary(fitMC3way)
 result3wayMC <- probe3WayMC(fitMC3way, c("f1", "f2", "f3", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f12", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f3", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f3", "f12", "f3", "f123", "f123"), "f4", c("f1", "f2", "f3", "f3", "f12", "f3", "f12", "f3", "f123", "f123"), "f4", c("f1", "f2", "f3", "f3
 result3wayMC
```

probe3WayRC

Probing three-way interaction on the residual-centered latent interaction

Description

Probing interaction for simple intercept and simple slope for the residual-centered latent three-way interaction (Pornprasertmanit, Schoemann, Geldhof, & Little, submitted)

Usage

```
probe3WayRC(fit, nameX, nameY, modVar, valProbe1, valProbe2)
```

Arguments

fit

The lavaan model object used to evaluate model fit

48 probe3WayRC

nameX The vector of the factor names used as the predictors. The three first-order factors will be listed first. Then the second-order factors will be listeed. The last element of the name will represent the three-way interaction. Note that the fourth element must be the interaction between the first and the second variables. The fifth element must be the interaction between the first and the third variables. The sixth element must be the interaction between the second and the third variables. nameY The name of factor that is used as the dependent variable. modVar The name of two factors that are used as the moderators. The effect of the independent factor on each combination of the moderator variable values will be probed. valProbe1 The values of the first moderator that will be used to probe the effect of the independent factor. The values of the second moderator that will be used to probe the effect of the valProbe2

Details

Before using this function, researchers need to make the products of the indicators between the first-order factors and residualize the products by the original indicators (Lance, 1988; Little, Bovaird, & Widaman, 2006). The process can be automated by the indProd function. Note that the indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms (Geldhof, Pornprasertmanit, Schoemann, & Little, in press). See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction.

The probing process on residual-centered latent interaction is based on transforming the residual-centered result into the no-centered result. See Pornprasertmanit, Schoemann, Geldhof, and Little (submitted) for further details. Note that this approach based on a strong assumption that the first-order latent variables are normally distributed. The probing process is applied after the no-centered result (parameter estimates and their covariance matrix among parameter estimates) has been computed See the probe3WayMC for further details.

Value

A list with two elements:

- 1. SimpleIntercept The intercepts given each value of the moderator. This element will be shown only if the factor intercept is estimated (e.g., not fixed as 0).
- 2. SimpleSlope The slopes given each value of the moderator.

independent factor.

In each element, the first column represents the values of the first moderator specified in the valProbe1 argument. The second column represents the values of the second moderator specified in the valProbe2 argument. The third column is the simple intercept or simple slope. The fourth column is the standard error of the simple intercept or simple slope. The fifth column is the Wald (z) statistic. The sixth column is the p-value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

probe3WayRC 49

References

Geldhof, G. J., Pornprasertmanit, S., Schoemann, A., & Little, T. D. (in press). Orthogonalizing through residual centering: Applications and caveats. *Educational and Psychological Measurement*.

Lance, C. E. (1988). Residual centering, exploratory and confirmatory moderator analysis, and decomposition of effects in path models containing interactions. *Applied Psychological Measurement*, 12, 163-175.

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions. *Structural Equation Modeling*, *13*, 497-519.

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions: Evaluation of alternative estimation strategies and indicator construction. *Psychological Methods*, *9*, 275-300.

Pornprasertmanit, S., Schoemann, A. M., Geldhof, G. J., & Little, T. D. (submitted). *Probing latent interaction estimated with a residual centering approach*.

See Also

- indProd For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- probe2WayMC For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- probe3WayMC For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- probe2WayRC For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- plotProbe Plot the simple intercepts and slopes of the latent interaction.

```
library(lavaan)
dat3wayRC <- orthogonalize(dat3way, 1:3, 4:6, 7:9)</pre>
model3 <- "
f1 = x1 + x2 + x3
f2 = x4 + x5 + x6
f3 = x7 + x8 + x9
f12 = x1.x4 + x2.x5 + x3.x6
f13 = x1.x7 + x2.x8 + x3.x9
f23 = x4.x7 + x5.x8 + x6.x9
f123 = x1.x4.x7 + x2.x5.x8 + x3.x6.x9
f4 = x10 + x11 + x12
f4 \sim f1 + f2 + f3 + f12 + f13 + f23 + f123
f1 ~~ 0*f12
f1 ~~ 0*f13
f1 ~~ 0*f123
f2 ~~ 0*f12
f2 ~~ 0*f23
f2 ~~ 0*f123
f3 ~~ 0*f13
f3 ~~ 0*f23
```

50 reliability

```
f12 ~~ 0*f123
f13 ~~ 0*f123
f23 ~~ 0*f123
x1 ~ 0*1
x4 ~ 0*1
x7 ~ 0*1
x10 ~ 0*1
x1.x4 ~ 0*1
x1.x7 ~ 0*1
x4.x7 \sim 0*1
x1.x4.x7 \sim 0*1
f1 ~ NA*1
f2 ~ NA*1
f3 ~ NA*1
f12 ~ NA*1
f13 ~ NA*1
f23 ~ NA*1
f123 ~ NA*1
f4 ~ NA*1
fitRC3way <- sem(model3, data=dat3wayRC, meanstructure=TRUE, std.lv=FALSE)</pre>
summary(fitRC3way)
result3wayRC <- probe3WayRC(fitRC3way, c("f1", "f2", "f3", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f12", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f13", "f23", "f123"), "f4", c("f1", "f2", "f2", "f3", "f12", "f13", "f12", "
result3wayRC
```

reliability

f3 ~~ 0*f123

Calculate reliability values of factors

Description

Calculate reliability values of factors by coefficient omega

Usage

reliability(object)

Arguments

object

The lavaan model object provided after running the cfa, sem, growth, or lavaan functions.

Details

The coefficient alpha (Cronbach, 1951) can be calculated by

$$\alpha = \frac{k}{k-1} \left[1 - \frac{\sum_{i=1}^{k} \sigma_{ii}}{\sum_{i=1}^{k} \sigma_{ii} + 2\sum_{i < j} \sigma_{ij}} \right],$$

where k is the number of items in a factor, σ_{ii} is the item i observed variances, σ_{ij} is the observed covariance of items i and j.

reliability 51

The coefficient omega (Raykov, 2001) can be calculated by

$$\omega = \frac{\left(\sum_{i=1}^{k} \lambda_{i}\right)^{2} Var\left(\psi\right)}{\left(\sum_{i=1}^{k} \lambda_{i}\right)^{2} Var\left(\psi\right) + \sum_{i=1}^{k} \theta_{ii} + 2\sum_{i < j} \theta_{ij}},$$

where λ_i is the factor loading of item i, ψ is the factor variance, θ_{ii} is the variance of measurement errors of item i, and θ_{ij} is the covariance of measurement errors from item i and j.

The second coefficient omega (Bentler, 1972, 2009) can be calculated by

$$\omega_2 = 1 - \frac{\mathbf{1}'\Theta\mathbf{1}}{\mathbf{1}'\hat{\Sigma}\mathbf{1}},$$

where Θ is the measurement error covariance matrix, $\hat{\Sigma}$ is the model-implied covariance matrix, and 1 is the k-dimensional vector of 1. The first and the second coefficients omega will have different values if there are dual loadings (or the existence of method factors). The first coefficient omega can be viewed as the reliability controlling for the other factors. The second coefficient omega can be viewed as the unconditional reliability.

The third coefficient omega (McDonald, 1999) can be calculated by

$$\omega_3 = 1 - \frac{\mathbf{1}'\Theta\mathbf{1}}{\mathbf{1}'\Sigma\mathbf{1}},$$

where Σ is the observed covariance matrix. If the model fits the data well, the third coefficient omega will be similar to the other two. Note that if there is a directional effect in the model, all coefficients omega will use the total factor variances, which is calculated by the impliedFactorCov function.

If measurement errors are not correlated, the last term in the denominator of the middle expression is dropped. For the categorical items, the reliability indices are calculated from the latent variable underlying the categorical items (i.e., using polychoric/polyserial correlations). Therefore, the coefficient alpha from this function may be not the same as the standard alpha calculation for categorical items. Researchers may check the alpha function in the psych package for the standard coefficient alpha calculation.

Value

Reliability values (coefficient alpha, coefficients omega) of each factor in each group

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>); Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

References

Bentler, P. M. (1972). A lower-bound method for the dimension-free measurement of internal consistency. *Social Science Research*, 1, 343-357.

Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency reliability. *Psychometrika*, 74, 137-143.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. *Psychometrika*, 16, 297-334.

52 reliabilityL2

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Erlbaum.

Raykov, T. (2001). Estimation of congeneric scale reliability using covariance structure analysis with nonlinear constraints *British Journal of Mathematical and Statistical Psychology*, 54, 315-323.

See Also

reliabilityL2 for reliability value of a desired second-order factor

Examples

reliabilityL2

Calculate the reliability values of a second-order factor

Description

Calculate the reliability values (coefficient omega) of a second-order factor

Usage

```
reliabilityL2(object, secondFactor)
```

Arguments

object The lavaan model object provided after running the cfa, sem, growth, or lavaan

functions that has a second-order factor

secondFactor The name of the second-order factor

Details

The first formula of the coefficient omega (in the reliability) will be mainly used in the calculation. The model-implied covariance matrix of a second-order factor model can be separated into three sources: the second-order factor, the uniqueness of the first-order factor, and the measurement error of indicators:

$$\hat{\Sigma} = \Lambda \mathbf{B} \Phi_2 \mathbf{B}' \Lambda' + \Lambda \Psi_u \Lambda' + \Theta,$$

where $\hat{\Sigma}$ is the model-implied covariance matrix, Λ is the first-order factor loading, \boldsymbol{B} is the second-order factor loading, Φ_2 is the covariance matrix of the second-order factors, Ψ_u is the covariance matrix of the unique scores from first-order factors, and Θ is the covariance matrix of the measurement errors from indicators. Thus, the proportion of the second-order factor explaining the total score, or the coefficient omega at Level 1, can be calculated:

$$\omega_{L1} = \frac{\mathbf{1}' \Lambda \boldsymbol{B} \Phi_2 \boldsymbol{B}' \Lambda' \mathbf{1}}{\mathbf{1}' \Lambda \boldsymbol{B} \Phi_2 \boldsymbol{B}' \Lambda' \mathbf{1} + \mathbf{1}' \Lambda \Psi_u \Lambda' \mathbf{1} + \mathbf{1}' \Theta \mathbf{1}},$$

reliabilityL2 53

where 1 is the k-dimensional vector of 1 and k is the number of observed variables. When model-implied covariance matrix among first-order factors (Φ_1) can be calculated:

$$\Phi_1 = \mathbf{B}\Phi_2\mathbf{B}' + \Psi_u,$$

Thus, the proportion of the second-order factor explaining the varaince at first-order factor level, or the coefficient omega at Level 2, can be calculated:

$$\omega_{L2} = \frac{\mathbf{1}_F' B \Phi_2 B' \mathbf{1}_F}{\mathbf{1}_F' B \Phi_2 B' \mathbf{1}_F + \mathbf{1}_F' \Psi_u \mathbf{1}_F},$$

where $\mathbf{1}_F$ is the F-dimensional vector of 1 and F is the number of first-order factors.

The partial coefficient omega at Level 1, or the proportion of observed variance explained by the second-order factor after partialling the uniqueness from the first-order factor, can be calculated:

$$\omega_{L1} = \frac{\mathbf{1}' \Lambda \boldsymbol{B} \boldsymbol{\Phi}_2 \boldsymbol{B}' \Lambda' \mathbf{1}}{\mathbf{1}' \Lambda \boldsymbol{B} \boldsymbol{\Phi}_2 \boldsymbol{B}' \Lambda' \mathbf{1} + \mathbf{1}' \boldsymbol{\Theta} \mathbf{1}},$$

Note that if the second-order factor has a direct factor loading on some observed variables, the observed variables will be counted as first-order factors.

Value

Reliability values at Levels 1 and 2 of the second-order factor, as well as the partial reliability value at Level 1

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

See Also

reliability for the reliability of the first-order factors.

54 residualCovariate

residualCovariate	Residual centered all target indicators by covariates
i coidadicoval iacc	Residual centered all target materiors by covariates

Description

This function will regress target variables on the covariate and replace the target variables by the residual of the regression analysis. This procedure is useful to control the covariate from the analysis model (Geldhof, Pornprasertmanit, Schoemann, & Little, in press).

Usage

```
residualCovariate(data, targetVar, covVar)
```

Arguments

data The desired data to be transformed.

targetVar Varible names or the position of indicators that users wish to be residual centered

(as dependent variables)

covVar Covariate names or the position of the covariates using for residual centering (as

independent variables) onto target variables

Value

The data that the target variables replaced by the residuals

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

Geldhof, G. J., Pornprasertmanit, S., Schoemann, A. M., & Little, T. D. (in press). Orthogonalizing through residual centering: Applications and caveats. *Educational and Psychological Measurement*.

See Also

indProd For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.

```
dat <- residualCovariate(attitude, 2:7, 1)</pre>
```

runMI 55

runMI	Multiply impute and analyze data using lavaan
Tariff	munipty implie and analyze and using lavaan

Description

This function takes data with missing observations, multiple imputes the data, runs a SEM using lavaan and combines the results using Rubin's rules. Note that parmeter estimates and standard errors are pooled by the Rubin's (1987) rule. The chi-square statistics and the related fit indices are pooled by the method described in "chi" argument. SRMR is calculated based on the average model-implied means and covariance matrices across imputations.

Usage

```
runMI(model, data, m, miArgs=list(), chi="all", miPackage="Amelia",
seed=12345, fun, ...)
cfa.mi(model, data, m, miArgs=list(), miPackage="Amelia", chi="all",
seed=12345, ...)
sem.mi(model, data, m, miArgs=list(), miPackage="Amelia", chi="all",
seed=12345, ...)
growth.mi(model, data, m, miArgs=list(), miPackage="Amelia", chi="all",
seed=12345, ...)
lavaan.mi(model, data, m, miArgs=list(), miPackage="Amelia", chi="all",
seed=12345, ...)
```

Arguments

model	lavaan syntax for the the model to be analyzed.	
data	Data frame with missing observations or a list of data frames where each data frame is one imputed data set (for imputed data generated outside of the function). If a list of data frames is supplied, then other options can be left at the default.	
m	Number of imputations wanted.	
miArgs	Addition arguments for the multiple-imputation function. The arguments should be put in a list (see example below).	
miPackage	Package to be used for imputation. Currently these functions only support "Amelia" or "mice" for imputation.	
chi	The method to combine the chi-square. Can be one of the following: "MR" for the method proposed for Meng & Rubin (1992), "Mplus" for the method used in Mplus (Asparouhov & Muthen, 2010), "LMRR" for the method proposed by Li, Meng, Raghunathan, & Rubin (1991), and "all" to show the three methods in the output. The default is "all".	
seed	Random number seed to be used in imputations.	
fun	The character of the function name used in running lavaan model ("cfa", "sem", "growth", "lavaan").	
•••	Other arguments to be passed to the specified lavaan function ("cfa", "sem", "growth", "lavaan").	

56 runMI

Value

The lavaanStar object which contains the original lavaan object (where the appropriate parameter estimates, appropriate standard errors, and chi-squares are filled), the additional fit-index values of the null model, which need to be adjusted to multiple datasets, and the information from pooling multiple results.

Author(s)

Alexander M. Schoemann (University of Kansas; <schoemann@ku.edu>) Patrick Miller (University of Kansas; <patr1ckm@ku.edu>) Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>) Mijke Rhemtulla (University of Kansas; <mijke@ku.edu>) Alexander Robitzsch (Federal Institute for Education Research, Innovation, and Development of the Austrian School System, Salzburg, Austria; <a.robitzsch@bifie.at>) Craig Enders (Arizona State University; <Craig.Enders@asu.edu>) Mauricio Garnier Villarreal (University of Kansas; <mgv@ku.edu>) Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

References

Asparouhov T. & Muthen B. (2010). *Chi-Square Statistics with Multiple Imputation*. Technical Report. www.statmodel.com.

Li, K.H., Meng, X.-L., Raghunathan, T.E. and Rubin, D.B. (1991). Significance Levels From Repeated p-values with Multiply-Imputed Data. *Statistica Sinica*, *1*, 65-92.

Meng, X.L. & Rubin, D.B. (1992). Performing likelihood ratio tests with multiply-imputed data sets. *Biometrika*, 79, 103 - 111.

Rubin, D.B. (1987) Multiple Imputation for Nonresponse in Surveys. J. Wiley & Sons, New York.

```
library(lavaan)
HS.model \leftarrow 'visual = x1 + x2 + x3
               textual =^{\sim} x4 + x5 + x6
               speed = ^{\sim} x7 + x8 + x9 '
HSMiss <- HolzingerSwineford1939[,paste("x", 1:9, sep="")]</pre>
randomMiss <- rbinom(prod(dim(HSMiss)), 1, 0.1)</pre>
randomMiss <- matrix(as.logical(randomMiss), nrow=nrow(HSMiss))</pre>
HSMiss[randomMiss] <- NA</pre>
out <- cfa.mi(HS.model, data=HSMiss, m = 3, chi="all")</pre>
summary(out)
inspect(out, "fit")
inspect(out, "impute")
## Not run:
##Multiple group example
HSMiss2 <- cbind(HSMiss, school = HolzingerSwineford1939[,"school"])</pre>
out2 <- cfa.mi(HS.model, data=HSMiss2, m = 3, miArgs=list(noms="school"), chi="MR", group="school")</pre>
summary(out2)
inspect(out2, "fit")
inspect(out2, "impute")
##Example using previously imputed data with runMI
library(Amelia)
```

simParcel 57

```
modsim <- '</pre>
f1 = 0.7*y1+0.7*y2+0.7*y3
f2 = 0.7*y4+0.7*y5+0.7*y6
f3 = 0.7*y7+0.7*y8+0.7*y9
mod <- '
f1 = y1+y2+y3
f2 = y4+y5+y6
f3 = ~y7 + y8 + y9'
datsim <- simulateData(modsim, model.type="cfa", meanstructure=TRUE,</pre>
std.lv=TRUE, sample.nobs=c(200,200))
randomMiss2 <- rbinom(prod(dim(datsim)), 1, 0.1)</pre>
randomMiss2 <- matrix(as.logical(randomMiss2), nrow=nrow(datsim))</pre>
datsim[randomMiss2] <- NA</pre>
datsimMI <- amelia(datsim,m=3, noms="group")</pre>
out3 <- runMI(mod, data=datsimMI$imputations, chi="LMRR", group="group", fun="cfa")</pre>
summary(out3)
inspect(out3, "fit")
inspect(out3, "impute")
## End(Not run)
```

simParcel

Simulated Data set to Demonstrate Random Allocations of Parcels

Description

A simulated data set with 2 factors with 9 indicators for each factor

Usage

```
data(simParcel)
```

Format

A data frame with 800 observations of 18 variables.

```
f1item1 Item 1 loading on factor 1
f1item2 Item 2 loading on factor 1
f1item3 Item 3 loading on factor 1
f1item4 Item 4 loading on factor 1
f1item5 Item 5 loading on factor 1
f1item6 Item 6 loading on factor 1
f1item7 Item 7 loading on factor 1
f1item8 Item 8 loading on factor 1
f1item9 Item 9 loading on factor 1
```

f2item1 Item 1 loading on factor 2

58 skew

f2item2 Item 2 loading on factor 2

f2item3 Item 3 loading on factor 2

f2item4 Item 4 loading on factor 2

f2item5 Item 5 loading on factor 2

f2item6 Item 6 loading on factor 2

f2item7 Item 7 loading on factor 2

f2item8 Item 8 loading on factor 2

f2item9 Item 9 loading on factor 2

Source

Data was generated using the simsem package.

Examples

head(simParcel)

skew

Finding skewness

Description

Finding skewness (g1) of an object

Usage

skew(object, population=FALSE)

Arguments

object A vector used to find a skewness

population TRUE to compute the parameter formula. FALSE to compute the sample statistic

formula.

Details

The skewness computed is g1. The parameter skewness γ_2 formula is

$$\gamma_2 = \frac{\mu_3}{\mu_2^{3/2}},$$

where μ_i denotes the i order central moment.

The excessive kurtosis formula for sample statistic g_2 is

$$g_2 = \frac{k_3}{k_2^2},$$

where k_i are the i order k-statistic.

The standard error of the skewness is

$$Var(\hat{g}_2) = \frac{6}{N}$$

where N is the sample size.

splitSample 59

Value

A value of a skewness with a test statistic if the population is specified as FALSE

Author(s)

Sunthud Pornprasertmanit (University of Kansas; <psunthud@ku.edu>)

References

Weisstein, Eric W. (n.d.). *Skewness*. Retrived from MathWorld–A Wolfram Web Resource http://mathworld.wolfram.com/Skewness.html

See Also

- kurtosis Find the univariate excessive kurtosis of a variable
- mardiaSkew Find the Mardia's multivariate skewness of a set of variables
- mardiaKurtosis Find the Mardia's multivariate kurtosis of a set of variables

Examples

skew(1:5)

splitSample

Randomly Split a Data Set into Halves

Description

This function randomly splits a data set into two halves, and saves the resulting data sets to the same folder as the original.

Usage

```
splitSample(dataset,path="default", div=2, type="default", name="splitSample")
```

Arguments

Argun	ients	
da	taset	The original data set to be divided. Can be a file path to a .csv or .dat file (headers will automatically be detected) or an R object (matrix or dataframe). (Windows users: file path must be specified using FORWARD SLASHES ONLY.)
ра	th	File path to folder for output data sets. NOT REQUIRED if dataset is a filename. Specify ONLY if dataset is an R object, or desired output folder is not that of original data set. If path is specified as "object", output data sets will be returned as a list, and not saved to hard drive.
di	V	Number of output data sets. NOT REQUIRED if default, 2 halves.
ty	pe	Output file format ("dat" or "csv"). NOT REQUIRED unless desired output formatting differs from that of input, or dataset is an R object and csv formatting is desired.
na	me	Output file name. NOT REQUIRED unless desired output name differs from that of input, or input dataset is an R object. (If input is an R object and name is not specified, name will be "splitSample".)

60 tukeySEM

Details

This function randomly orders the rows of a data set, divides the data set into two halves, and saves the halves to the same folder as the original data set, preserving the original formatting. Data set type (.csv or .dat) and formatting (headers) are automatically detected, and output data sets will preserve input type and formatting unless specified otherwise. Input can be in the form of a file path (.dat or .csv), or an R object (matrix or dataframe). If input is an R object and path is default, output data sets will be returned as a list object.

Value

dataL

List of output data sets. ONLY IF dataset is an R object and path is default. Otherwise, output will saved to hard drive with the same formatting as input.

Author(s)

Corbin Quick (University of Kansas; <corbinq@ku.edu>)

Examples

```
#### Input is .dat file
#splitSample("C:/Users/Default/Desktop/MYDATA.dat")
#### Output saved to "C:/Users/Default/Desktop/" in .dat format
#### Names are "MYDATA_s1.dat" and "MYDATA_s2.dat"
#### Input is R object
##Split CO2 dataset from the datasets package
library(datasets)
splitMyData <- splitSample(CO2, path="object")</pre>
summary(splitMyData[[1]])
summary(splitMyData[[2]])
#### Output object splitMyData becomes list of output data sets
#### Input is .dat file in "C:/" folder
#splitSample("C:/testdata.dat", path = "C:/Users/Default/Desktop/", type = "csv")
#### Output saved to "C:/Users/Default/Desktop/" in .csv format
#### Names are "testdata_s1.csv" and "testdata_s2.csv"
#### Input is R object
#splitSample(myData, path = "C:/Users/Default/Desktop/", name = "splitdata")
#### Output saved to "C:/Users/Default/Desktop/" in .dat format
#### Names are "splitdata_s1.dat" and "splitdata_s2.dat"
```

tukeySEM

Tukey's WSD post-hoc test of means for unequal variance and sample size

Description

This function computes Tukey's WSD post-hoc test of means when variances and sample sizes are not equal across groups. It can be used as a post-hoc test when comparing latent means in multiple group SEM.

tukeySEM 61

Usage

```
tukeySEM(m1, m2, var1, var2, n1, n2, ng)
```

Arguments

m1	Mean of group 1.
m2	Mean of group 2.
var1	Variance of group 1.
var2	Variance of group 2.
n1	Sample size of group 1.
n2	Sample size of group 2.
ng	Total number of groups to be compared (i.e., the number of groups compared in the omnibus test).

Details

After conducting an omnibus test of means across three of more groups, researchers often wish to know which sets of means differ at a particular Type I error rate. Tukey's WSD test holds the error rate stable across multiple comparisons of means. This function implements an adaptation of Tukey's WSD test from Maxwell & Delaney (2004), that allows variances and sample sizes to differ across groups.

Value

A vector with three elements:

- 1. q The q statistic
- 2. df The degrees of freedom for the q statistic
- 3. p A p value based on the q statistic, degrees of freedom and the total number of groups to be compared

Author(s)

Alexander M. Schoemann (University of Kansas; <schoemann@ku.edu>)

References

Maxwell, S. E., & Delaney, H. D. (2004). *Designing experiments and analyzing data: A model comparison perspective* (2nd ed.). Mahwah, NJ.: Lawrence Erlbaum Associates.

```
##For a case where three groups have been compared:
##Group 1: mean = 3.91, var = 0.46, n = 246
##Group 2: mean = 3.96, var = 0.62, n = 465
##Group 3: mean = 2.94, var = 1.07, n = 64

#compare group 1 and group 2
tukeySEM(3.91, 3.96, 0.46, 0.62, 246, 425, 3)

#compare group 1 and group 3
tukeySEM(3.91, 2.94, 0.46, 1.07, 246, 64, 3)
```

62 tukeySEM

#compare group 2 and group 3 tukeySEM(3.96, 2.94, 0.62, 1.07, 465, 64, 3)

Index

auxiliary, 2, <i>16</i> , <i>17</i>	measurementinvariance
afa 22	(measurementInvariance), 22
cfa, 22	miPowerFit, 5, 23, 30, 31
cfa.auxiliary (auxiliary), 2	monteCarloMed, 26
cfa.mi(runMI), 55	moreFitIndices, 25, 28, 31
<pre>clipboard(clipboard_saveFile), 4</pre>	mvrnorm, 6, 7
<pre>clipboard_saveFile, 4</pre>	
	nullRMSEA, 29, 30, 30
dat2way, 6	
dat3way, 7	orthogonalize (indProd), 13
exLong, 8	parcelAllocation, 32
	plot, <i>34</i>
findRMSEApower, 8, 11, 37, 38	plotProbe, 14, 33, 41, 43, 46, 49
findRMSEApowernested, 9, 12, 39	plotRMSEAdist, <i>9</i> , <i>11</i> , 35, <i>38</i>
findRMSEAsamplesize, 9, 10, 37, 38	plotRMSEApower, 9, 11, 37, 37
findRMSEAsamplesizenested, 10, 11, 39	plotRMSEApowernested, 10, 12, 38
	probe2WayMC, 14, 34, 39, 43, 46, 49
growth.auxiliary (auxiliary), 2	probe2WayRC, 14, 34, 41, 42, 46, 49
growth.mi (runMI), 55	probe3WayMC, 14, 34, 41, 43, 44, 48, 49
	probe3WayRC, 14, 34, 41, 43, 46, 47
<pre>impliedFactorCov, 51</pre>	
<pre>impliedFactorCov(impliedFactorStat), 12</pre>	reliability, 50, 52, 53
<pre>impliedFactorMean (impliedFactorStat),</pre>	reliabilityL2, 52, 52
12	residualCovariate, 54
<pre>impliedFactorStat, 12</pre>	runMI, <i>16</i> , <i>17</i> , <i>55</i>
indProd, 13, 34, 40-43, 45, 46, 48, 49, 54	
inspect,lavaanStar-method	<pre>saveFile (clipboard_saveFile), 4</pre>
(lavaanStar-class), 16	sem.auxiliary(auxiliary),2
,	sem.mi (runMI), 55
kurtosis, 15, 21, 22, 59	simParcel, 57
	skew, 16, 21, 22, 58
lavaan, <i>3</i> , <i>18</i> , <i>32</i>	splitSample, 59
lavaan-class, 5	summary,lavaanStar-method
lavaan.auxiliary(auxiliary),2	(lavaanStar-class), 16
lavaan.mi (runMI), 55	(
lavaanStar, 3, 56	tukeySEM, 60
lavaanStar-class, 16	
loadingFromAlpha, 17	
longInvariance, 18, 23	
- , ,	
mardiaKurtosis, <i>16</i> , 20, <i>22</i> , <i>59</i>	
mardiaSkew, 16, 21, 21, 59	
measurementInvariance, 22	
measurementinvariance, 19	