EM plus 电力智能监控仪表

操作手册

目 录

1. 简述 "		1
1. 1. 1. 2.	EM PLUS 的功能 ······EM PLUS 的特点 ······	
2. 安装、	接线与配置	3
2. 1. 2. 2.	尺寸与安装····································	
3. 操作指	音导	····· 8
3. 1. 3. 2. 3. 3. 3. 4. 3. 5. 3. 6.	屏幕显示及按键操作 数据读取(非 SOE) 参数设置 本地操作 SOE 及统计量查询 其他查询	····· 11 ···· 26 ···· 36 ···· 39 ···· 44
4. 通讯··		····· 45
4. 1. 4. 2.	MODBUS 协议概述 EM PLUS 通讯协议地址表及说明	
5. 运输与	ラ贮藏 ·······	····· 74
附 录…		······ 75
B. 技才	数出厂默认值····································	77
C. 订货	÷说明······	····· 78

1. 简述

1.1. EM plus 的功能

EM plus 电力智能监控仪表是一款用于中低压系统 (6~35kV 和 0.4kV)的智能化装置,它集数据采集和控制及统计功能于一身,具有基本单回路交流电参量的测量、计算与统计、电能累计、脉冲输入量累计、故障记录、2~31 次谐波监测的功能、4 路开关量输入监测、2 路继电器输出、2 路脉冲输出、越限告警等功能。EM plus 提供通讯接口,支持 RS485 接口 MODBUS 通讯协议,与计算机监控系统连接。装置外形如图 1.1.1 所示。

图 1.1.1 装置外形图

1.2. EM plus 的特点

1.2.1. EM p/us 具有强大的数据采集、处理、统计与控制功能

- 支持三相三线制和三相四线制可选功能,具有三相电压、三相电流、零序电流、总有功功率、总无功功率、总视在功率各相的有功、无功功率、视在功率、总功率因数、各相的功率因数、系统频率、总有功电度、总无功电度、各相的有功电度和无功电度的测量与计算功能。
- 电压和电流的谐波畸变率(包括总畸变率 THD、奇次畸变率、偶次畸变率)、 电压的 2~31 次谐波分量占有率、电流的 2~31 次谐波分量占有率、电流的 K 因数、电压的基波有效值、电流的基波有效值等的测量与计算功能。
- 具有2路继电器控制输出。
- 具有最大共4路开关量输入功能;同时3、4点硬结点可设定为脉冲计数输入功能;最多可记录32个开关量SOE事件。

- 具有2路电能脉冲输出,可任意关联各种电度量。
- 正反向总有功电能、四象限无功电能累计;分时电能(4费率,48时段)的 正反向总有功电能、四象限无功电能累计。
- 正反向总有功最大需量、正反向总无功最大需量及发生时间。
- 各相、线电压、电流、频率、总/三相功率因数、总/三相有功功率、无功功率、视在功率的最大/最小值及发生时间。
- 三相电压、电流不平衡度。
- 电参量与继电器关联起来并进行越限告警控制,支持过流、零流、接地、低压、过压、低频、过频、低功率因数越限告警。
- 可当地查看一条回路及开关的各种电参量、运行状态等;可查看或设定运行 参数,进行合、分闸等操作。

1.2.2. 安全性高,可靠性好

EM plus 在设计过程中采用了多种抗干扰措施,能够在电力系统环境中稳定运行。静电放电抗扰符合 3 级;电快速瞬变脉冲群抗扰符合 3 级;浪涌抗干扰符合 3 级;面板防护等级符合 IP54,壳体防护等级符合 IP20。

1.2.3. 体积小,安装方便

EM plus 外形尺寸符合 DIN96×96 标准, 壳体深度为 60mm, 采用自锁面板式 安装机构, 无需螺丝固定即可安装。小巧的外形和简洁的安装方式使 EM plus 的拆装非常方便。

1.2.4. 系统接线方便灵活

系 统 接 线 方 式 有 三 相 四 线 制 3CT(3P4W/3PT+3CT) 、 三 相 四 线 制 1CT(3P4W/3PT+1CT) 、 三 相 三 线 制 3CT(3P3W/3PT+3CT) 、 三 相 三 线 制 2CT(3P3W/3PT+2CT)、三相三线制 1CT(3P3W/3PT+1CT)。

1.2.5. 显示直观、操作简便

大尺寸专用液晶模块可以实时显示多项信息,配合明亮的背光,使操作者在光 线差的情况下也能准确阅读数据。操作方式人性化,操作者能在短时间内掌握,阅 读数据和参数设置等操作将变得简单易行。

1. 2. 6. EM plus 的应用领域

中、低压变配电自动化 智能型开关柜 负控系统 工业自动化 楼宇自动化 能源管理系统

2. 安装、接线与配置

本章详述 EM plus 的安装方法、接线和配置,在安装前请仔细阅读。

2.1. 尺寸与安装

2.1.1. 装置的机械尺寸

图 2.1.1.1 机械尺寸图 (单位: mm)

2.1.2. 安装方式

EM plus 采用面板式安装,固定在开关柜面板上。

● 面板的开孔尺寸见图 2.1.2.1:

图 2.1.2.1 面板开孔尺寸(单位: mm)

- 考虑到接线长度,面板后要有 100mm 的深度用于容纳 EM *plus*。实际安装中,一般需要后部有一定的空间(至少为 130×130×100mm),以便于安装和接线。
- 安装时,应先将 EM plus 两边的安装卡松开取下,将 EM plus 于面板前方 推放入安装孔内,然后从后方沿装置的沟槽将安装卡安上并使之挤紧面 板,此时装置将牢固地固定在面板上。见图 2.1.2.2。

图 2.1.2.2 用卡子固定 EM plus 于面板上

2.1.3. 安装注意事项

- 本产品内部无用户可调元器件,安装时请勿拆开。
- 不要带电作业。
- 运行时应满足环境温度在-25℃~+70℃,湿度在 0~95%,大气压在 70kPa~106kPa 之间。避免将装置置于强干扰源、辐射源、热源附近及粉尘多的地方。

2.2. 接线与配置

2.2.1. 端子定义

EM plus 的背面共有四组接线端子,端子示意图如图 2.2.1.1 所示:

图 2.2.1.1 接线端子示意图 (后视)

端子的定义如下表:

电	U1	1		RS+	17
压	U2	2	通	RS-	18
输	U3	3	讯	NC	19
入	Un	4		SHLD	20
	NC	5	继	RL11	21
电	L/+	6	电器	RL12	22
源	N/-	7	输	RL21	23
	PE	8	出	RL22	24
	I11	9	脉	PO1	25
	I12	10	沖输	PO2	26
电	I21	11	出	POCOM	27
流	I22	12	开	DI1	28
输	I31	13	关	DI2	29
入	I32	14	量输	DI3	30
	I41	15	入	DI4	31
	I42	16		DICOM	32

表 2.2.1.1

注意: 当使用交流电源模块时 6、7号端子接 L、N 或直流电源;。在三相四线制中,Un 接入的是电压公共端,在三相三线制中,Un 接入的是 B 相电压。DI 为数字量输入 Digital Input 的简写,RL 为继电器输出 Relay Output 的简写,PO为脉冲输出 Pulse Output 的简写。

2.2.2. 电气接线

当电气接线方式为三相四线制,相电压不大于 264VAC 时,可直接入设备(不带 PT);

当电气接线方式为三相三线制,线电压不大于 264VAC 时,可直接入设备(不带 PT)。

三相四线制 3CT

图 2.2.2.1 3P4W/3PT+3CT 接线图

三相四线制 1CT

图 2.2.2.2 3P4W/3PT+1CT 接线图

三相三线制 3CT

① 相电压接入方式:

图 2.2.2.3 3P3W/3PT+3CT 相电压接入方式接线图

② 线电压接入方式:

图 2.2.2.4 3P3W/3PT+3CT 线电压接入方式接线图

三相三线制 2CT

① 相电压接入方式:

图 2.2.2.5 3P3W/3PT+2CT 相电压接入方式接线图

② 线电压接入方式:

图 2.2.2.6 3P3W/3PT+2CT 线电压接入方式接线图

三相三线制 1CT

相电压接入方式:

图 2.2.2.7 3P3W/3PT+1CT 相电压接入方式接线图

2. 2. 3. 通讯连接(以 RS485 接口为例)

线形连接方式

图 2.2.3.1 RS485 线形连接方式接线图

注意: EM plus 在线形连接方式下应考虑阻抗匹配,匹配电阻的阻值大约在 $100\sim120\,\Omega$ 。 环形连接方式

图 2.2.3.2 RS485 环形连接方式接线图

2.2.4. 接线注意事项

- 接入装置的导线截面面积应满足: 电流线截面积不小于 2.5 平方毫米, 电压 线截面积不小于 1.5 平方毫米。
- 通讯线必须采用屏蔽双绞线,通讯线的 RS485+, RS485-不能接反。
- 电压及工作电源接入线应串联 2A 的保险熔丝。
- 为了减少启动时的冲击电流,建议每条电源线不超过40台装置。
- 当通讯连接采用线形连接方式时,应在位于通讯电缆起点和终点处的 RS485+ 与 RS485-端子之间分别接入 100~120 欧姆的线路匹配电阻。
- 波特率为 9600 时, 电缆长度<1200 米。

3. 操作指导

本章详细介绍 EM plus 的人机界面,包括如何进行数据阅读,设置相关参数以及本地操作等。

3.1. 屏幕显示及按键操作

EM plus 的面板由一块液晶屏和四个按键组成,显示直观,操作简捷。下面是液晶屏所有字段被点亮时的画面和相关解释列表。

图 3.1.1 液晶屏全部点亮

序号	显示内容	解释
1	测量数据显示区四排出字	主要显示测量数据,包括:电流、电压、 功率、功率因数、频率、谐波分量、畸 变率(THD)等内容。其次显示参数、 SOE、统计量,需量、本地操作等内容。
2		a、b、c 分别代表 a 相 b 相 c 相, ∑代表 总和, Avg 代表平均值, "—"为负号, n 代表零序。
3	左上角3个小四字	由英文语义缩写字母组成,用于表示当前显示界面意义:如电压'U',电流'I',功率为'P'或 Pa/Pb/Pc,功率因数'PF',谐波 H-U/I(谐波电压/电流),事件顺序记录'SOE',读参数'PAR',设置参数'SET',等。
4	负荷大小指示 ************************************	实际负荷电流相对于额定负荷电流的 百分比。
5	开关量指示: 开-/- 合-/L 脉冲计数指示: _ 「L	开关量标识表示相应开关量输入的状态(分或合)。 脉冲计数标识表示相应开关量输入端口为脉冲计数模式。
6	-7880- 负载性质标识 →1-	电感(上方)标识显示为感性负载 电容(下方)标识显示为容性负载
7	通讯状态标识 🚨	显示此标识表示通讯正常工作中,不显示此标识表示通讯未工作。
8	告警状态标识	显示此标识表明设备检测到越限告警并且没有复归。

9	SOE 标识	显示此标识表明内存中有 SOE 记录,不显示表明内存中无 SOE 记录。
10	累积量显示区 10 个小 号 字	显示各种电度量数据、电能脉冲个数、 时间等。
	单位 KVA MKW	表示测量数据的单位: 电流 A、kA; 电
	% MKVar	压 V、kV;有功功率 W、kW、MW; 无功功率 Var、kvar、Mvar;视在功率
11	MKVA Hz	NA、kVA、MVA; 频率 Hz; 百分比%;
	KWh KVarh	有功电度 kWh、无功电度 kvarh。

表 3.1.2 液晶屏显示说明

图 3.1.3 按键示意图

(从左至右分别为 A 键、H 键、P 键、E 键)

EM plus 的操作分为单键模式和组合键模式两种。

单键模式仅对四个按键中的某一个进行操作,用于完成装置所有监测数据的显示:

- 单A键一测量数据显示:显示电压、电流、功率因数、功率、频率测量数据。
- 单 H 键一谐波数据显示:显示谐波畸变率、各次谐波占有率、电压电流不平 衡度、电压电流的基波值信息。
- 单 P 键一工作参数显示:显示系统的全部工作参数信息。
- 单 E 键一累计量显示:显示各种电度量、脉冲计数信息。

组合键操作:

- E与A键的组合:用于本地操作输出和其它专用功能。
- E与H键的组合:用于修改本地参数。
- E与P键的组合:用于查询设备内存中的SOE记录、统计量、需量。
- A与H键的组合:用于查询设备的时间及设备的内部温度。

组合模式的进入与退出介绍:

在单键显示模式下,只需同时按下组合功能键然后松开,即可进入相应的组合键功

能,再次应用该组合键即可退出到单键显示画面。

3.2. 数据读取(非 SOE)

3.2.1. 显示运行测量数据

在任一单键显示方式下按 \mathbf{A} 键,测量数据显示区将显示测量到的数据。时间显示区域(最下排小 \mathbf{B})内容不变。

在 A 键显示测量数据模式下,长按 A 键直至屏幕的左上方显示'UP'字样后,再按 A 键即可向上翻屏;长按 A 键直至屏幕的左上方显示'DWN'字样后,再按 A 键即可向下翻屏。

第一屏:显示相电压 Ua, Ub, Uc 和相电压平均值 UAvg。

如图 3.2.1.1: Ua=221.1V; Ub=221.1V;

Uc=221.0V; UAvg=221.1V;

虚线包围部分为系统信息,在所有单键显示页都有显示。如右图,其意义为:实际负荷电流为额定负荷电流的40%-60%; DII 为"分"状态、DI2 为"合"状态,DI3、DI4 为脉冲计数输入功能;通讯收发正常;存在越限告警;内存有事件顺序记录;负载为感性。

图 3.2.1.1 三相相电压显示

注: 只有接线方式为三相四线制时才显示本页, 否则本页不显示。

第二屏:显示三相电流 Ia, Ib, Ic 和三相电流平均值 IAvg。 如图 3.2.1.2: Ia=3.286A; Ib=3.375A; Ic=3.066A; IAvg=3.243A。

图 3.2.1.2 三相相电流显示

第三屏:显示线电压 Uab, Ubc, Uca, 线电压平均值 UAvg。 如图 3.2.1.3: Uab=382.8V; Ubc=382.9V; Uca=383.0V; UAvg=382.9V。

图 3.2.1.3 三相线电压显示

第四屏:显示三相电流 Ia, Ib, Ic,零序电流 In。

如图 3.2.1.4: Ia=3.286A; Ib=3.375A;

Ic=3.066A; In=0.211A.

图 3.2.1.4 三相线电流显示

第五屏: 当接线方式为三相四线制时,显示各相功率因数 PFa、PFb、PFc 和总功率因数 PF。

如图 3.2.1.5: PFa=0.987; PFb=0.988; PFc=0.989; PF=0.988。

当接线方式为三相三线制时,只显示总功率因数,如 图 3.2.1.5:

PF = 0.988.

PF 功率因数的符号遵循 IEC 符号规约。

第六屏: 显示总有功功率 P_{Σ} 、总无功功率 Q_{Σ} 、总视在功率 S_{Σ} 、频率 F。

如图 3.2.1.6: $P\Sigma$ =0.717kW; $Q\Sigma$ =0.114kvar; $S\Sigma$ =0.726kVA; F=50.03Hz。

第七屏:显示 A 相有功功率 Pa、A 相无功功率 Qa、A 相 视在功率 Sa、频率 Fa。

如图 3.2.1.7: Pa=0.239kW; Qa=0.038kvar; Sa=0.242kVA; Fa=50.03Hz。

注: 只有当接线方式为三相四线制时才显示本页,否则本页不显示。

第八屏:显示 B 相有功功率 Pb、B 相无功功率 Qb、B 相 视在功率 Sb、频率 Fb。

如图 3.2.1.8: Pb=0.239kW; Qb=0.038kvar; Sb=0.242kVA; F=50.03Hz。

图 3.2.1.5 功率因数显示

图 3.2.1.6 总功率参数及频率

图 3.2.1.7 A 相功率参数及频率

图 3.2.1.8 B 相功率参数及频率

注: 只有当接线方式为三相四线制时才显示本页, 否则本页不显示。

第九屏:显示 C 相有功功率 Pc、C 相无功功率 Qc、C 相 视在功率 Sc、频率 Fc。

如图 3.2.1.9: Pc=0.239kW; Qc=0.038kvar; Sc=0.242kVA; F=50.03Hz。

注: 只有当接线方式为三相四线制时才显示本页,否则本页不显示。

图 3.2.1.9 C 相功率参数及频率

3.2.2. 显示谐波畸变率和谐波分量

在任一单键显示方式下按 H 键,显示区显示谐波畸变率、谐波分量、基波有效值、电压电流不平衡度、电流的 K 因数等数据。

在 H 键显示谐波量模式下,长按 H 键直至屏幕的左上方显示'UP'字样后,再按 H 键即可向上翻屏;长按 H 键直至屏幕的左上方显示'DWN'字样后,再按 H 键即可向下翻屏。

第一屏:显示三相电压总谐波畸变率。屏幕左上角显示 H -U 即 THD-U。

当接线方式设定为三相四线制时,三相相电压 Ua、Ub、Uc 的 THD,如图 3.2.2.1:

THD_Ua=0.6%; THD_Ub=0.6%; THD Uc=0.6%;

当接线方式设定为三相三线制时,三相线电压 Uab、Ubc、Uca 的 THD,如图 3.2.2.2:

THD_Uab=0.6%; THD_Ubc=0.6%; THD_Uca=0.6%;

第二屏:显示三相电流、零序电流总谐波畸变率。屏幕左上角显示 H-I 即 THD-I。

三相电流 Ia, Ib, Ic 和零序电流 In 的 THD, 如图 3.2.2.3: $THD_Ia=0.6\%$; $THD_Ib=0.6\%$;

图 3.2.2.1 三相相电压 THD

图 3.2.2.2 三相线电压 THD

图 3.2.2.3 三相电流 THD

第三屏:显示三相电压奇次谐波畸变率。屏幕左上角显示 HUO 即 THD-U-O。

当接线方式设定为三相四线制时,三相相电压 Ua、 Ub、Uc的奇次 THD,如图 3.2.2.4:

THD O Ua=0.6%; THD O Ub=0.6%; THD_O_Uc=0.6%;

当接线方式设定为三相三线制时,三相线电压 Uab、 Ubc、Uca 的奇次 THD, 如图 3.2.2.5:

THD O Uab=0.6%; THD O Ubc=0.6%; THD O Uca=0.6%;

第四屏:显示三相电流奇次谐波畸变率。屏幕左上角显 示 HIO 即 THD-I-O。

> 三相电流 Ia、Ib、Ic 的奇次 THD, 如图 3.2.2.6: THD O Ia=0.5%; THD O Ib=0.5%; $THD_O_Ic=0.5\%$; $THD_O_In=0.5\%$;

HUO.

HUO.

0.6

06,

图 3.2.2.4 三相相电压奇次 THD

08.

0.6

图 3.2.2.6 三相电流奇次 THD

图 3.2.2.5 三相线电压奇次 THD

第五屏:显示三相电压偶次谐波畸变率。屏幕左上角显示 HUE 即 THD-U-E。屏幕显示同第三屏相似。

第六屏:显示三相电流偶次谐波畸变率。屏幕左上角显示 HIE 即 THD-I-E。屏幕显 x-n-550′ 1, 示同第四屏相似。

第七屏:显示三相相电压的基波有效值。屏幕左上角显示 H-U 即谐波电压; 屏幕下方显示谐波次数'01', 即基波。

当接线方式设定为三相四线制时,三相相电压 Ua、 Ub、Uc 的基波有效值,如图 3.2.2.7:

Ua 1=220.1V; Ub_1=220.0V;

Uc 1=220.1V;

当接线方式设定为三相三线制时,三相线电压 Uab、 Ubc、Uca 的基波有效值,如图 3.2.2.8:

Uab 1=220.1V; Ubc 1=220.0V;

图 3.2.2.7 相电压基波有效值 X-U-220 1

01

图 3.2.2.8 线电压基波有效值

Uca 1=220.1V;

第八屏至第三十七屏:依次显示三相电压的 2~31 次谐波 占有率(相对于基波的百分含量,Harmonic Percent)。屏幕左 上角显示 H-U 即谐波电压;屏幕下方显示谐波次数。

当接线方式设定为三相四线制时,三相相电压 Ua、

Ub、Uc 的 2 次谐波占有率,如图 3.2.2.9

HP 2 Ua=0.4%; HP 2 Ub=0.4%;

 $HP_2Uc=0.4\%$;

当接线方式设定为三相三线制时,三相线电压 Uab、

Ubc、Uca的 2次谐波占有率,如图 3.2.2.10:

HP 2 Uab=0.4%; HP 2 Ubc=0.4%;

HP 2 Uca=0.4%;

三相电流 Ia、Ib、Ic、In 的基波有效值,如图 3.2.2.11:

Ia 1=5000A; Ib 1=4999A;

Ic 1=5001A; In 1=102A;

第三十九屏至第六十八屏:依次显示三相电流的 2~31 次 谐波占有率(相对于基波的百分含量,Harmonic Percent)。屏幕左上角显示 H—I 即谐波电流:屏幕下方显示谐波次数。

三相电流 $Ia \ Ib \ Ic$ 和零序电流 In 的 2 次谐波占有率,如图 3.2.2.12:

HP_2_Ia=0.5%; HP_2_Ib=0.5%; HP 2 Ic=0.5%; HP 2 In=0.5%;

第六十九屏:显示电压电流的不平衡度。屏幕左上角显示 UNB 即不平衡度;如图 3.2.2.13;

电流不平衡度为: 10.8%; 电压不平衡度为: 9.6%;

图 3.2.2.9 三相相电压的 2次 谐波占有率

图 3.2.2.10 三相线电压 2 次 谐波占有率

图 3.2.2.11 电流的基波有效值

图 3.2.2.12 三相电流 2 次 谐波占有率

图 3.2.2.13 电压电流不平衡度

第七十屏:显示三相电流及零序电流的 K 因数。屏幕左上角显示 KF 即 K 因数;如图 3.2.2.14:

KF Ia=3.0;

KF Ib=2.6;

KF Ic=2.8;

KF_In=2.9;

图 3.2.2.14 电流的 K 因数

3.2.3. 显示工作参数

在任一单键显示方式下按 P 键, 屏幕上显示工作参数等。

在 P 键显示工作参数模式下,长按 P 键直至屏幕的左上方显示'UP'字样后,再按 P 键即可向上翻屏;长按 P 键直至屏幕的左上方显示'DWN'字样后,再按 P 键即可向下翻屏。

第一屏:通讯参数

屏幕左上角显示"PAR"字样表示参数(parameter), 屏幕上方显示"COMM"字样表示通讯。如图 3.2.3.1: 通 讯地址号为 16,波特率为 9.6k,传输格式代码为 1。

传输格式代码解释:

图 3.2.3.1 通讯参数

传输格式代码	解释
0	1 位起始位,8 位数据位,无奇偶校验,2 位停止位
1	1位起始位,8位数据位,偶校验,1位停止位
2	1位起始位,8位数据位,奇校验,1位停止位
3	1位起始位,8位数据位,无奇偶校验,1位停止位

注意: 出厂默认值,通讯地址为254,波特率为9.6k,传输格式代码为0。

第二屏:系统接线方式

屏幕上方显示"SYS"字样表示系统接线方式, 如图 3.2.3.2: 系统接线方式为三相四线制, 3PT, 3CT。

注: 出厂默认值为 3P4L, 3PT, 3CT。

图 3.2.3.2 系统接线方式

第三屏: PT 变比

屏幕上方显示"PT"字样表示 PT 变比。

如图 3.2.3.3: PT 二次侧额定值为 220V, PT 一次侧额定值为 1000V。

注: 出厂默认值,PT 一次侧额定值为 220V,PT 二 次侧额定值为 220V。

第四屏: CT 变比

屏幕上方显示"CT"字样表示 CT 变比。如图 3.2.3.4: CT 二次侧额定值为 5A, CT 一次侧额定值为 100A。

注: 出厂默认值, CT 一次侧额定值为 5000A, CT 二次侧额定值为 5A。

第五屏: CT0 (零序 CT) 变比

屏幕上方显示"CT0"字样表示CT0变比。如图 3.2.3.5: CT0 二次侧额定值为 5A, CT0 一次侧额定值为 100A。

注: 出厂默认值, CT0 一次侧额定值为 5000A, CT0 二次侧额定值为 5A。

第六屏:输入模式

屏幕上方显示"I——M"字样表示输入模式。如图 3.2.3.6: 输入模式为 2。

输入模式 1: 1~4 路为开关量输入。

输入模式 2: 1、2 路为开关量输入, 3、4 路为脉冲 计数输入。

注: 出厂默认值,输入模式为1。

第七屏:输出模式

屏幕上方显示"O——M"字样表示输出模式。

如图 3.2.3.7: 输出模式为 1。

输出模式 1: 继电器输出方式为脉冲输出。即接到继电器合闸指令后,结点闭合,延时一定时间(继电器输出脉冲宽度,见参数设置第八屏)后断开。

输出模式 2: 继电器输出方式为自保持。即接到合闸 指令后,输出结点闭合;接到分闸指令后,输出结点断开。

图 3.2.3.3 PT 变比

图 3.2.3.4 CT 变比

图 3.2.3.5 CT0 变比

图 3.2.3.6 输入模式

图 3.2.3.7 输出模式

注: 出厂默认值,输出模式为1。

第八屏:继电器输出脉冲宽度

屏幕上方显示"RL—T"字样表示继电器输出脉冲宽度,单位为秒。

如图 3.2.3.8: 继电器输出脉冲宽度为 2 秒。

注:出厂默认值,继电器输出脉冲宽度为2秒。只有 当输出模式选择为模式1,即继电器输出为脉冲型,才能 进入本页。

PRR PL - T

图 3.2.3.8 继电器输出脉冲宽度

第九屏: 背光点亮时间

屏幕上方显示"Ld—T"字样表示背光灯点亮时间。

如图 3.2.3.9: 背光点亮时间为 30 分钟,即在连续 30 分钟内未按键,背光自动熄灭; 当为 0 时,表示背光常亮。

注: 背光点亮默认值时间为5分钟。

第十屏: 电参量最大最小值统计区间

屏幕上方显示"S--T"字样表示电参量最大最小值统 计区间。

如图 3.2.3.10: 电参量最大最小值统计区间为 1440 分钟。

注: 电参量最大最小值统计区间默认值时间为 10 分钟。

第十一屏: 电能脉冲 1 输出参数

屏幕上方显示"PO-1"字样表示脉冲 1 输出参数。

当电能脉冲 1 输出未关联任何电度量时, 屏幕显示如 右图: 'OFF'表示电能脉冲 1 输出未关联任何电度量。

当电能脉冲 1 输出关联某电度量时,屏幕显示如图 3.2.3.11:

'1'表示脉冲 1 输出关联 1 象限总无功电度量。详细脉冲关联电度类型见 3.3.2 章节参数设置第八屏。

'100'表示脉冲宽度为 100ms。

'10'表示电能常数为 0.01 个脉冲/kWh。

图 3.2.3.9 背光灯点亮时间

图 3.2.3.10 电参量最大最小 值统计区间

图 3.2.3.11 电能脉冲 1 输出参数

PAR W-DE

注: 电能脉冲 1 输出关联电度量默认值为不关联; 电能脉冲宽度默认值为 100ms; 电能脉冲常数默认值为 1000 (1 个脉冲/kWh)。

第十二屏: 电能脉冲 2 输出参数。

屏幕上方显示"PO-2"字样。屏幕显示同第十一屏相似。

第十三屏: 过电流越限告警参数

屏幕上方显示"W-OC"字样表示过电流越限告警参数。

当过电流越限告警未允许时,屏幕显示如图 3.2.3.12: 'OFF'表示过电流越限告警未允许。

当过电流越限告警允许时,屏幕显示如图 3.2.3.12:

- '0'表示过电流越限告警未关联继电器('1'表示关联继电器1; '2'表示关联继电器2;)。
 - '6.000A'表示过电流越限告警的一次侧越限值。
 - '5.400A'表示过电流越限告警的一次侧返回值。
 - '600'表示过电流越限告警延时时间为 600ms。

注:过电流越限告警允许默认值为不允许;关联继 图 3.2.3.12 过电流越限告警参数电器默认值为不关联;越限值默认值为 6000A;返回值默认值为 5000A;延时时间默认值为 60000ms。

 DFF

第十四屏:零流(低电流)越限告警参数

屏幕上方显示"W-LC"字样表示零流越限告警参数。 当零流限告警未允许时,屏幕显示如图 3.2.3.13: 'OFF'表示过零流越限告警未允许。

当零流越限告警允许时,屏幕显示如右图:

- '1'表示过零流越限告警关联继电器 1。
- '1.000A'表示零流越限告警的一次侧越限值。
- '1.100A'表示零流越限告警的一次侧返回值。
- '600'表示零流越限告警延时时间为 600ms。

注: 零流越限告警允许默认值为不允许; 关联继电器 默认值为不关联; 越限值默认值为 0A; 返回值默认值为 200A; 延时时间默认值为 60000ms 。

图 3.2.3.13 零流越限告警参数

第十五屏: 接地越限告警参数

屏幕上方显示"W-ET"字样表示接地越限告警参数。 当接地越限告警未允许时,屏幕显示如图 3.2.3.14: 'OFF'表示接地越限告警告警未允许。

当接地越限告警允许时,屏幕显示如图 3.2.3.14:

- '1'表示接地越限告警关联继电器 1。
- '6.000A'表示接地越限告警的一次侧越限值。
- '5.400A'表示接地越限告警的一次侧返回值。
- '600'表示接地越限告警延时时间为 600ms。

注:接地越限告警允许默认值为不允许;关联继电器 默认值为不关联;越限值默认值为6000A;返回值默认值 为5000A;延时时间默认值为60000ms。

第十六屏: 低电压越限告警参数

屏幕上方显示"W-LV"字样表示低电压越限告警参数。

当低电压越限告警未允许时,屏幕显示如图 3.2.3.15: 'OFF'表示低电压越限告警未允许。

当低电压越限告警允许时,屏幕显示如图 3.2.3.15:

- '1'表示低电压越限告警关联继电器 1。
- '190.0V'表示低电压越限告警的一次侧越限值。
- '200.0V'表示低电压越限告警的一次侧返回值。
- '60.0'表示低电压越限告警延时时间为 60s。

注: 低电压越限告警允许默认值为不允许; 关联继电器默认值为不关联; 越限值默认值为 0V;。返回值默认值为 50V; 延时时间默认值为 1800s。

第十七屏:过电压越限告警参数

屏幕上方显示"W-OV"字样表示过电压越限告警参数。

当过电压越限告警未允许时,屏幕显示如图 3.2.3.16: 'OFF'表示过电压越限告警未允许。

当过电压越限告警允许时,屏幕显示如图 3.2.3.16: '1'表示过电压越限告警关联继电器 1。

图 3.2.3.14 接地越限告警参数

图 3.2.3.15 低电压越限告警参数

图 3.2.3.16 过电压越限告警参数

- '200.0V'表示过电压越限告警的一次侧越限值。
- '190.0V'表示过电压越限告警的一次侧返回值。
- '60.0'表示过电压越限告警延时时间为 60s。

注: 过电压越限告警允许默认值为不允许;关联继电器默认值为不关联;越限值默认值为 260V;。返回值默认值为 220V;延时时间默认值为 1800s。

第十八屏: 低频率越限告警参数

屏幕上方显示"W-LF"字样表示低频率越限告警参数。

当低频率越限告警未允许时,屏幕显示如图 3.2.3.17: 'OFF'表示低频率越限告警未允许。

当低频率越限告警允许时, 屏幕显示如图 3.2.3.17:

- '1'表示低频率越限告警关联继电器 1。
- '47.0Hz'表示低频率越限告警的一次侧越限值。
- '49.5Hz'表示低频率限告警的一次侧返回值。
- '60.0'表示低频率越限告警延时时间为 60s。

注: 低频率越限告警允许默认值为不允许;关联继电器默认值为不关联; 越限值默认值为 45.0Hz;。返回值默认值为 46.0Hz; 延时时间默认值为 1800s。

图 3.2.3.17 低频率越限告警参数

第十九屏: 过频率越限告警参数

屏幕上方显示"W-OF"字样表示过频率越限告警参数。

当过频率越限告警未允许时,屏幕显示如图 3.2.3.18: 'OFF'表示过频率越限告警未允许。

当过频率越限告警允许时,屏幕显示如图 3.2.3.18:

- '1'表示过频率越限告警关联继电器 1。 '54.00Hz'表示过频率越限告警的一次侧越限值。
- '51.50Hz'表示过频率越限告警的一次侧返回值。
- With the Miles of the Miles of

'60.0'表示过频率越限告警延时时间为 60s。

注: 过频率越限告警允许默认值为不允许; 关联继电 图 3.2.3.18 过频率越限告警参数 器默认值为不关联; 越限值默认值为 55.0Hz;。返回值默认值为 54.0Hz; 延时时间 默认值为 1800s。

第二十屏: 低功率因数越限告警参数

屏幕上方显示"W-PF"字样表示低电压越限告警参数。

当低功率因数越限告警未允许时,屏幕显示如图 3.2.3.19:

'OFF'表示低功率因数越限告警未允许。

当低功率因数越限告警允许时,屏幕显示如图 3.2.3.19:

- '0'表示低功率因数越限告警未关联继电器。
- '0.900'表示低功率因数越限告警的一次侧越限值。
- '0.950'表示低功率因数越限告警的一次侧返回值。
- '60.0'表示低功率因数越限告警延时时间为 60s。

图 3.2.3.19 低功率因数越限 告警参数

注: 低功率因数越限告警允许默认值为不允许;关联继电器默认值为不关联;越限值默认值为 0.5;返回值默认值为 0.6;延时时间默认值为 1800s。

第二十一屏: 软、硬件版本号

屏幕左上方显示"VER"字样表示版本号。 如右图:"H 2.0"表示硬件版本号为 2.0 版; "S 2.0"表示软件版本号为 2.0 版。

图 3.2.3.20 软、硬件版本号

3.2.4. 电度量和脉冲计数显示

在任一单键显示方式下按 E 键,将显示各种电度量。

长按 E 键直至屏幕的左上方显示'UP'字样后,再按 E 键即可向上翻屏;长按 E 键直至屏幕的左上方显示'DWN'字样后,再按 E 键即可向下翻屏。

第一屏:显示总有功电度量

屏幕上方显示"EP"字样,累计量显示区前显示'∑'。 如图 3.2.4.1,Ep=5037.6 kWh。

第二屏:显示总无功电度量

屏幕上方显示"Eq"字样,累计量显示区前显示' Σ '。 如图 3.2.4.2,Eq=37.1kvarh。

图 3.2.4.1 总有功电度量

图 3.2.4.2 总无功电度量

第三、四、五屏: A/B/C 相有功绝对值电度量

屏幕上方显示"EP"字样,累计量显示区前分别显示'a'、'b'、'c'。屏幕显示同第一屏相似。

注: 只有接线方式为三相四线制时才显示本页, 否则本页不显示。

第六、七、八屏: A/B/C 相无功绝对值电度量

屏幕上方显示"Eq"字样, 累计量显示区前显示'a'、'b'、'c'。屏幕显示同第二 屏相似。

注: 只有接线方式为三相四线制时才显示本页,否则本页不显示。

第九屏: 总正向有功绝对值电度量

屏幕上方显示"+EP"字样,累计量显示区前显示' Σ '。 如图 3.2.4.3,+Ep=691.4 kWh。

第十屏: 总尖费率正向有功绝对值电度量

屏幕上方显示"+EP"字样,累计量显示区前显示 ' Σ '。如图 3.2.4.4:

'1'表示尖费率。

'201.0 kWh'表示总尖费率正向有功绝对值电度量。 费率类型如下表:

图 3.2.4.3 正向总无功电度量

图 3.2.4.4 总尖费率正向无功电度量

费率类型代码	解释
1	尖费率
2	峰费率
3	平费率
4	谷费率

第十一至十三屏: 总峰/平/谷费率正向有功绝对值电度量

屏幕上方显示"+EP"字样,费率类型分别为 2、3、4, 屏幕显示同第十屏相似。

第十四屏: 总反向有功绝对值电度量

屏幕上方显示"-EP"字样,屏幕显示同第九屏相似。

第十五至十八屏: 总尖/峰/平/谷费率反向有功绝对值电度量

屏幕上方显示"-EP"字样、费率类型分别为 1、2、3、4, 屏幕显示同第十屏相似。

第十九屏: 总正向无功绝对值电度量

屏幕上方显示"+Eq"字样,累计量显示区前显示 ' Σ '。

如图 3.2.4.5, +Eq=571.0 kvarh。

图 3.2.4.5 总正向无功电度量

第二十屏: 总尖费率正向无功绝对值电度量

屏幕上方显示"+Eq"字样,累计量显示区前显示 ' Σ '。如图 3.2.4.6:

'1'表示尖费率

度量

'11.1 kvarh'表示总尖费率正向有功绝对值电度量累 计值。

电度量 第二十一至二十三屏: 总峰/平/谷费率正向无功绝对值电

屏幕上方显示"+Eq"字样、费率类型分别为 2、3、4, 屏幕显示同第二十屏相似。

第二十四屏: 总反向无功绝对值电度量

屏幕上方显示"-Eq"字样,屏幕显示同第十九屏相似。

第二十五至二十八屏: 总尖/峰/平/谷费率反向无功绝对值电度量

屏幕上方显示"-Eq"字样, 费率类型分别为 1、2、3、4, 屏幕显示同第二十屏相似。

第二十九屏: 1 象限总无功绝对值电度量

屏幕上方显示"Eq-1"字样,屏幕显示同第十九屏相似。

第三十至三十三屏: 1象限总尖/峰/平/谷费率无功绝对值电度量

屏幕上方显示"Eq-1"字样, 费率类型分别为 1、2、3、4, 屏幕显示同第二十屏相似。

第三十四屏: 4 象限总无功绝对值电度量

屏幕上方显示"Eq-4"字样,屏幕显示同第十九屏相似。

第三十五至三十八屏: 4 象限总尖/峰/平/谷费率无功绝对值电度量

屏幕上方显示"Eq-4"字样, 费率类型分别为 1、2、3、4, 屏幕显示同第二十屏 相似。

第三十九屏: 2 象限总无功绝对值电度量

屏幕上方显示"Eq-2"字样,屏幕显示同第十九屏相似。

第四十至四十三屏: 2 象限总尖/峰/平/谷费率无功绝对值电度量

屏幕上方显示"Eq-2"字样,费率类型分别为1、2、3、4,屏幕显示同第二十屏 相似。

第四十四屏: 3 象限总无功绝对值电度量

屏幕上方显示"Eq-3"字样,屏幕显示同第十九屏相似。

第四十五至四十八屏: 3 象限总尖/峰/平/谷费率无功绝对值电度量

屏幕上方显示"Eq-3"字样、费率类型分别为 1、2、3、4, 屏幕显示同第二十屏 相似。

第四十九屏:第一路脉冲计数

屏幕左部的"┛ ̄┛"标识闪动,表示为第一路脉 冲。如图 3.2.4.7 所示,屏幕底部显示 78063 表示 78063 个脉冲。

注: 只有当输入模式选择为模式 2, 即 1、2 路为开 图 3.2.4.7 第一路脉冲累计 关量输入,3、4路为脉冲计数输入时才显示本页,否则本页不显示。

第五十屏:第二路脉冲计数

屏幕左部的"一一一4"标识闪动,表示为第二路脉 冲。如图 3.2.4.8 所示, 屏幕底部显示 78063 表示 78063 个脉冲。

注: 只有当输入模式选择为模式 2, 即 1、2 路为 开关量输入,3、4路为脉冲计数输入时才显示本页,否图3.2.4.8第二路脉冲累计 则本页不显示。

3.3. 参数设置

在单键显示方式下,同时按下 E 键和 H 键,将进入参数设置模式,屏幕左上角显 示"SET"字样。

3.3.1. 参数设定模式下各键功能简介

- A 键用于激活当前设置页,同时光标所在位会闪动显示,每按一次 A 键光 标右移一位。激活后按 H 键或 P 键可对光标所在位进行加减操作。
- H键为加 1 键,每按一次光标所在位的数字进行加 1 操作。
- P键为减1键,每按一次光标所在位的数字进行减1操作。
- E 键为参数确认键, 当一屏参数设定完成后, 按 E 键进行参数确认, 这时屏 幕上方显示"Y--N"字样,按A键进行Y或N的选择。选定Y时按E键,当 前设定的参数被存储(参数存储到数据 RAM,断电不保存);选定 N 时按 E 键, 当前设定的参数不被存储。

3.3.2. 参数设置

参数设置模式的起始界面为密码确认。每次进入参 数设置模式都先提示输入密码,密码显示为"———"。. 如图 3.3.2.1 所示。密码共 4 位,范围为 0000~9999,出 厂的默认值为 0000。按 A 键可在 4 个密码位之间循环切 换选择,按 H 或 P 键对选定位进行加减操作,范围 $0\sim$ 图 3.3.2.1 保护密码询问页

当进入参数设置屏后,如当前页参数设置完成,按 E 键屏幕上方会提示是否存储当前设定参数,如图 3.3.2.2 所示。"Y"代表 YES, 即存储设定的参数(参数存

SET 4-- [] 图 3.3.2.2 是否存储提示

储到数据 RAM,断电不保存), "N"代表 NO,即不存储参数。按 A 键可进行"Y"或"N" 的选择,按E键确认。

9,输入完成后按 E 键确认。只有确认密码后才能进行参数设置,否则停留在本页。

选择"Y"并按 E 键确认后,如设置的参数合法,则 存储当前参数(参数存储到数据 RAM,断电不保存);如不 合法, 屏幕上方显示"ERR"字样提示, 如图 3.3.2.3 所示, 参数不被存储。此时可按 A 键重新设置参数,也可按 E

注意: 无论在哪一屏参数设置页,同时按下 E 键和 H 键将退出参数设置模式,进入参数总保存界面,如图 3.3.2.4 所示, 按 A 键可进行"Y"(参数存储到 E²PROM, 断电保存)或"N" (参数存储到数据 RAM,断电不保存)的 图 3.3.2.4 参数保存提示

图 3.3.2.3 参数错误提示

选择,按 E 键确认,退出参数总保存界面,返回单键显示方式。在参数设置页,如果没有按 A 键激活当前设置页,或激活当前页而没按 H 键或 P 键进行参数修改,这时按 E 键将直接翻屏,当前页中的参数不被存储。如果在 10 分钟内没有按键,屏幕将自动返回到单键显示模式。

参数设置第一屏:通讯参数设置页

本界面用来设置 EM plus 的通讯地址、波特率、传输格式。屏幕最上方显示"COMM"字样,表示当前页为通讯参数设置页。

如图 3.3.2.5 所示,通讯地址的范围为 1~254; 波特率共有 0.6k、1.2k、2.4k、4.8k、9.6k、19.2k、38.4kbps 七种可供选择; 传输格式代码共有 0, 1, 2, 3 四种可供选择(具体含义见 3.2.3 显示工作参数,第一屏)。

图 3.3.2.5 通讯参数设置页

参数设置第二屏:系统接线方式设置

本页用来设置系统的接线方式。屏幕最上方显示 "SYS"字样,表示当前页为系统接线方式设置页,如图 3.3.2.6 所示。

共有5种方式可供选择:

方式 1: 3P4L 3PT 3CT

方式 2: 3P4L 3PT 1CT

方式 3: 3P3L 3PT 3CT

方式 4: 3P3L 3PT 2CT

方式 5: 3P3L 3PT 1CT

图 3.3.2.6 系统接线方式设置页

参数设置第三屏: PT 设置

本页用来设置 PT 的一次侧额定电压值和二次侧额定电压值。屏幕最上方显示"PT"字样,表示当前页为 PT 设置页,如图 3.3.2.7 所示。

PT 二次侧额定值的范围为 **100V~220V**, PT 一次侧额定值的范围为 **100V~35000V**。

图 3.3.2.7 PT 设置页

参数设置第四屏: CT 设置

本页用来设置 CT 的一次侧额定电流值和二次侧额 定电流值。屏幕最上方显示"CT"字样,表示当前页为 CT

图 3.3.2.8 CT 设置页

设置页,如图 3.3.2.8 所示。

CT 的二次侧额定电流共有 1A 和 5A 两种可供选择,CT 的一次侧额定电流的范围为 $1A\sim5000A$ 。

注: 1.当产品额定电流值是 1A 时, CT 二次侧应设置为 1; 当产品额定电流值是 5A 时, CT 二次侧应设置为 5。

2.一次侧额定电流值不能小于二次侧额定电流值。

参数设置第五屏: CT0 (零序 CT) 设置

本页用来设置 CT0 的一次侧额定电流值和二次侧额 定电流值。屏幕上方显示"CT0"字样,表示当前页为 CT0 设置页,如图 3.3.2.9 所示。

CT0二次侧额定值共有1A和5A两种可供选择,CT0一次侧额定值的范围为1A~5000A。

注: 1.当产品额定电流值是 1A 时, CT 二次侧应设置为 1; 当产品额定电流值是 5A 时, CT 二次侧应设置为 5。

2.一次侧额定电流值不能小于二次侧额定电流值。

参数设置第六屏:输入模式设置

本页用来设置 4 路硬结点开关量输入模式。屏幕上方显示"I——M"字样,表示当前页为输入模式设置页,如图 3.3.2.10 所示。

共有1和2两种输入模式可供选择。

模式1:1~4路为开关量输入。

模式 2: 1、2 路为开关量输入,3、4 路为脉冲计数输入。

图 3.3.2.10 输入模式设置页

参数设置第七屏:输出模式设置

本页用来设置继电器输出模式。屏幕上方显示 "O——M"字样,表示当前页为输出模式设置页,如图 3.3.2.11 所示。

共有1和2两种输出模式可供选择。

模式1:继电器输出方式为脉冲输出。

模式 2: 继电器输出方式为自保持。

图 3.3.2.11 输出模式设置页

参数设置第八屏:继电器输出脉冲宽度设置

当继电器设置为脉冲输出方式时,本页用来设置输出脉冲宽度。屏幕上方显示"RL-T"字样以做提示,如图 3.3.2.12 所示。

脉冲宽度的范围为1~200秒。

注: 只有当输出模式选择为模式 1,即继电器输出 为脉冲型,才能进入本页,否则本页不显示。

参数设置第九屏: 电能脉冲输出参数

本界面用来设置两路电能脉冲的关联电度量类型、脉冲宽度、电能常数。屏幕最上方显示"PO"字样,表示当前页为电能脉冲输出参数设置页,如图 3.3.2.13 所示。

图 3.3.2.12 继电器脉冲 宽度设置页

图 3.3.2.13 电能脉冲输出 参数设置页

关联电度量类型如下表:

关联电度量类型代码	解释
0	不关联电度量
1	总正向有功绝对值电度量累计值
2	I象限总无功绝对值电度量累计值
3	II象限总无功绝对值电度量累计值
4	总反向有功绝对值电度量累计值
5	III象限总无功绝对值电度量累计值
6	IV象限总无功绝对值电度量累计值

脉冲宽度(T)的范围为 100~10000 ms;

电能常数(K)的范围为 1~3600000,代表每 kWh 电能输出 0.001~3600 个脉冲。电能常数的设定值与系统的一次侧最大功率(Pmax)及脉冲宽度 (T) 有关,设定值不能大于 $1.8*10^9/(Pmax*T)$ 。

注: Pmax 的单位为 kWh, T 的单位为 ms。

参数设置第十屏: 背光时间设置

本页用来设置背光的点亮时间。屏幕上方显示"Ld -T"字样,表示当前页为背光时间设置页,如图 3.3.2.14 所示。

图 3.3.2.14 背光时间设置页

背光时间的范围为0分钟~30分钟,当设置为0时,表示背光常亮。

参数设置第十一屏: 电参量最大最小值统计区间设置

本页用来设置电参量最大最小值统计区间。屏幕上方显示"S-T"字样,表示当前页为电参量最大最小值统计区间设置页,如图 3.3.2.15 所示。

电参量最大最小值统计区间的范围为 1~1440 分钟。

图 3.3.2.15 电参量最大最小值 统计区间设置页

参数设置第十二屏:过电流越限告警参数

本页用来设置过电流越限告警参数。屏幕上方显示"W-OC"字样,表示当前页为过电流越限告警参数设置页,如图 3.3.2.16 所示。

告警允许的范围为 $0\sim1$, 0 代表告警不允许, 1 代表告警允许。

越限值、返回值的范围为 0~6000A; 延时时间的范围为 1~60000ms; 注: 越限值必须大于返回值。

图 3.3.2.16 过电流越限告警 参数设置页

参数设置第十三屏:零流(低电流)越限告警参数

屏幕上方显示"W-LC"字样,屏幕显示与设置同第十二屏相似。 注: 越限值必须小于返回值。

参数设置第十四屏: 接地越限告警参数

屏幕上方显示"W-ET"字样,屏幕显示与设置同第十二屏相似。

注: 越限值必须大于返回值。

参数设置第十五屏: 低电压越限告警参数

本页用来设置低电压越限告警参数。屏幕上方显示 "W-LV"字样,表示当前页为低电压越限告警参数设置 页,如图 3.3.2.17 所示。

告警允许的范围为 $0\sim1$, 0 代表告警不允许, 1 代表告警允许。

图 3.3.2.17 低电压越限告警 参数设置页

越限值、返回值的范围为 $0\sim42kV$; 延时时间的范围为 $0.1\sim1800.0s$;

注: 越限值必须小于返回值。

参数设置第十六屏:过电压越限告警参数

屏幕上方显示"W-OV"字样,屏幕显示与设置同第十五屏相似。

注: 越限值必须大于返回值。

参数设置第十七屏:低频率越限告警参数

本页用来设置低频率越限告警参数。屏幕上方显示 "W-LF"字样,表示当前页为低频率越限告警参数设置页, 如图 3.3.2.18 所示。

告警允许的范围为 $0\sim1$, 0 代表告警不允许, 1 代表告警允许。

越限值、返回值的范围为 $0\sim99.99$ Hz; 延时时间的范围为 $0.1\sim1800.0$ s;

参数设置第十八屏: 过频率越限告警参数

注:越限值必须小于返回值。

屏幕上方显示"W-OF"字样,屏幕显示与设置同第十七屏相似。

注:越限值必须大于返回值。

参数设置第十九屏: 低功率因数越限告警参数

本页用来设置低功率因数越限告警参数。屏幕上方显示"W-PF"字样,表示当前页为低功率因数越限告警参数设置页,如图 3.3.2.19 所示。

告警允许的范围为 $0\sim1$, 0 代表告警不允许, 1 代表告警允许。

越限值、返回值的范围为 0~0.999; 延时时间的范围为 0.1~1800.0s; 注: 越限值必须小于返回值。

参数设置第二十屏: 越限告警关联继电器设置

本页用来设置越限告警关联继电器。屏幕上方显示 "RL-R"字样,表示当前页为越限告警关联继电器设置页, 如图 3.3.2.20 所示。

图 3.3.2.18 低频率越限告警 参数设置页

图 3.3.2.19 低功率因数越限 告警参数设置页

图 3.3.2.20 越限告警关联 继电器设置页

如图 3.3.2.20: 最下排 8 位数代表 8 种告警关联继电器,如下表:

告警关联类型代码	解释
1)	低功率因数告警关联继电器
2	过频率告警关联继电器
3	低频率告警关联继电器

4	过电压告警关联继电器
5	低电压告警关联继电器
6	接地告警关联继电器
7	零流告警关联继电器
8	过电流告警关联继电器

告警关联继电器的范围为 0~2, 0 代表告警不关联继电器; 1 代表告警关联继电器 1; 2 代表告警关联继电器 2。

注:一个继电器不能同时关联多种告警。继电器关联告警后,不再受本地和远方控制。

参数设置第二十一屏:系统时间设置

本页用来设置系统时间。屏幕上方显示"TIME"字样,表示当前页为系统时间设置页,如图 3.3.2.21 所示。如图,表示 04 年 12 月 10 日 16 时 19 分。

参数设置第二十二屏:保护密码设置

本页用来设置系统保护密码。屏幕最上方显示 "KEY"字样,表示当前页为保护密码设置页,如图 3.3.2.22 所示。

已设定密码会显示在屏幕上,密码范围 0000~9999。 注:参数设置和本地操作都用此密码。

参数设置第二十三屏: 第一路遥脉底数设置

本页用来设置第一路遥脉底数。屏幕最上方显示 "PULS" (PULSE) 字样,表示为遥脉底数设置,如图 3.3.2.23 所示,屏幕左部显示"一厂—³",表示为第一路 遥脉。当前的底数会显示在最下一排,范围:0~4294967295。

图 3.3.2.21 系统时间设置页

图 3.3.2.22 保护密码设置页

注: 只有当输入模式选择为模式 2,即 1、2 路 图 3.3.2.23 第一路遥脉底数设置页为开关量输入,3、4 路为脉冲计数输入时才能进入本页,否则本页不显示。

参数设置第二十四屏:第二路遥脉底数设置

本页用来设置第二路遥脉底数。屏幕左部显示"**一**【**-**⁴",表示为第二路遥脉。操作方法和显示与第二十三屏类似。

参数设置第二十五屏: 费率时段设置 1

EM plus 电力智能监控仪

本页用来设置 00:00~06:00 的时段费率。屏幕最上方显示"ET-1"字样,表示当前页为费率时段设置 1,如图 3.3.2.24 所示。

每一位数代表一个步进时段(0.5 小时),激活后显示该时段的时间,每个数的取值范围为1-4,代表费率如下表:

图 3.3.2.24 费率时段设置页

费率类型代码	解释
1	尖费率
2	峰费率
3	平费率
4	谷费率

参数设置第二十六屏: 费率时段设置 2

本页用来设置 06:00~12:00 的时段费率。屏幕最上方显示"ET-2"字样,操作方法和显示与第二十五屏类似。

参数设置第二十七屏: 费率时段设置 3

本页用来设置 12:00~18:00 的时段费率。屏幕最上方显示"ET-3"字样,操作方 法和显示与第二十五屏类似。

参数设置第二十八屏: 费率时段设置 4

本页用来设置 18:00~24:00 的时段率费。屏幕最上方显示"ET-4"字样,操作方 法和显示与第二十五屏类似。

参数设置第二十九屏: A 相有功电量底数设置

当接线方式为三相四线制时,本页用来设置 A 相有功电量底数,如图 3.3.2.25 所示,屏幕最上方显示"EP",表示为有功电量设置,屏幕右下方显示"kWh","a"表示为 A 相。当前的底数会显示在最下一排。范围 0~99999999.9。

图 3.3.2.25 A 相有功 电量底数设置页

参数设置第三十、三十一屏: B/C 相有功电量底数设置

当接线方式为三相四线制时,分别用来设置 B、C 相有功电量底数。"b"表示为 B 相, "c"表示为 C 相。操作方法和显示与第二十九屏类似。

参数设置第三十二至三十四屏: A/B/C 相无功电量底数设置

当接线方式为三相四线制时,分别用来设置 A、B、C 相无功电量底数。屏幕最上方显示"Eq",屏幕右下方显示"kvarh"表示为无功电量,"a"表示为 A 相,"b"表示为 B 相,"c"表示为 C 相。操作方法和显示与第二十九屏类似。

参数设置第三十五屏: 总正向有功绝对值电度量底数设置

本页用来设置总正向有功绝对值电度量底数。如图 3.3.2.26: 屏幕最上方显示"+EP",屏幕右下方显示"kWh","∑"表示为总。当前的底数会显示在最下一排。 范围 0~99999999.9。

参数设置第三十六屏: 总尖费率正向有功电度量底数设置

本页用来设置总尖费率正向有功电度量底数。如图 3.3.2.27: 屏幕最上方显示"+EP","1"表示为尖费率、"∑" 表示为总, 屏幕右下方显示"kWh",当前的底数会显示在最下一排。范围 0~99999999.9。

图 3.3.2.26 总正向有功 电量底数设置页

图 3.3.2.27 总尖费率正向有功电量底数设置页

费率类型代码	解释
1	尖费率
2	峰费率
3	平费率
4	谷费率

参数设置第三十七至三十九屏:总峰/平/谷费率正向有功电度量底数设置

分别用来设置总峰、平、谷费费率正向有功电度量底数。屏幕最上方显示"+EP"费率类型分别为 2、3、4,操作和显示法与第三十六屏类似。

参数设置第四十屏: 总反向有功绝对值电度量底数设置

本页用来设置总反向有功绝对值电度量底数。屏幕最上方显示"-EP",操作和显示法与第三十五屏类似。

参数设置第四十一至四十四屏: 总尖/峰/平/谷费率反向有功电度量底数设置

分别用来设置总尖、峰、平、谷费费率反向有功电度量底数。屏幕最上方显示 "一EP"费率类型分别为 1、2、3、4,操作和显示法与第三十六屏类似。

参数设置第四十五屏: 1 象限总无功绝对值电度量底数设置

本页用来设置 1 象限总无功绝对值电度量底数。屏幕最上方显示"Eq-1",屏幕右下方显示"kvarh"表示为无功电量,操作和显示法与第三十五屏类似。

参数设置第四十六至四十九屏: 1 象限总尖/峰/平/谷费率无功电度量底数设置

分别用来设置 1 象限总尖、峰、平、谷费费率反向有功电度量底数。屏幕最上方显示"Eq-1"费率类型分别为 1、2、3、4,屏幕右下方显示"kvarh"表示为无功电量,操作和显示法与第三十六屏类似。

参数设置第五十屏: 4 象限总无功绝对值电度量底数设置

本页用来设置 4 象限总无功绝对值电度量底数。屏幕最上方显示"Eq-4",屏幕右下方显示"kvarh"表示为无功电量,操作和显示法与第三十五屏类似。

参数设置第五十一至五十四屏: 4 象限总尖/峰/平/谷费率无功电度量底数设置

分别用来设置 4 象限总尖、峰、平、谷费费率反向有功电度量底数。屏幕最上方显示"Eq-4"费率类型分别为 1、2、3、4, 屏幕右下方显示"kvarh"表示为无功电量,操作和显示法与第三十六屏类似。

参数设置第五十五屏: 2 象限总无功绝对值电度量底数设置

本页用来设置 2 象限总无功绝对值电度量底数。屏幕最上方显示"Eq-2",屏幕 右下方显示"kvarh"表示为无功电量,操作和显示法与第三十五屏类似。

参数设置第五十六至五十九屏: 2 象限总尖/峰/平/谷费率无功电度量底数设置

分别用来设置 2 象限总尖、峰、平、谷费费率反向有功电度量底数。屏幕最上方显示"Eq-2"费率类型分别为 1、2、3、4,屏幕右下方显示"kvarh"表示为无功电量,操作和显示法与第三十六屏类似。

参数设置第六十屏: 3 象限总无功绝对值电度量底数设置

本页用来设置 3 象限总无功绝对值电度量底数。屏幕最上方显示"Eq-3",屏幕右下方显示"kvarh"表示为无功电量,操作和显示法与第三十五屏类似。

参数设置第六十一至六十四屏: 3 象限总尖/峰/平/谷费率无功电度量底数设置

分别用来设置 3 象限总尖、峰、平、谷费费率反向有功电度量底数。屏幕最上方显示"Eq-3"费率类型分别为 1、2、3、4,屏幕右下方显示"kvarh"表示为无功电量,操作和显示法与第三十六屏类似。

完成全部的参数设置后,按E键将返回到第一屏。

3.4. 本地操作

在单键显示模式下,同时按下 E 键和 A 键,将进入本地操作模式,屏幕左上角显示 OPR (OPERATE)。

注意: 无论在哪一屏本地操作界面,同时按下 E 键和 A 键将退出本地操作模式返回单键显示模式,当前页中的操作不被执行; 如果没有按 A 键激活当前操作页,这时按 E 键将直接翻屏。如果在 10 分钟内没有按键,将自动返回到单键显示模式。

3.4.1. 本地操作功能简介

在本地操作模式中,可以进行:

- 控制继电器的分、合操作;
- 清除 SOE,清除电量底数,清除遥脉底数操作,清除最大需量;
- 电参量的最大值、最小值复位;
- 告警复归;
- 系统复位操作。

3.4.2. 各屏本地操作介绍

本地操作模式的起始界面为密码确认,每次进入本地操作模式都先提示输入密码,密码显示为"———",如图 3.4.2.1 所示。密码共 4 位,范围为 0000~9999,出厂的默认值为"0000"。为增强保密性,只有正在设定的密码位显示数字,其它位都显示为"—"。输入完成后按 E 键确认,如果输入密码正确则进入本地操作第一屏,否则停留在本页。

本地操作第一屏:第一路继电器输出操作

本页用来设置第一路继电器分合状态。如图 3.4.2.2 所示屏幕最上方显示"OUT"字样,表示为继电器输出操作,屏幕中部显示"1",表示第一路。

按A键后继电器状态"OP"闪烁,按H键或P键可进行 "OP"或"CL"的选择。"OP"即"OPEN"表示继电器分操作, "CL"即"CLOSE"表示继电器合操作。

注意: 当继电器输出方式设置为脉冲输出时,不能选择"OP",只能选择为"CL"。

图 3.4.2.1 保护密码询问页

图 3.4.2.2 第一路继电器操作

图 3.4.2.3 确认本地操作

选择好继电器状态后,按 E 键会出现是否确认当前操 作的提示,如图 3.4.2.3。"Y"代表 YES,即确认本地操作, "N"代表 NO,即不进行本地操作。按 A 键可进行"Y"或"N" 的选择,按E键确认。

选择"N"按 E 键确认后,不操作继电器。选择 Y 按 E 键,并不马上操作继电器,而是先对当前继电器状态进行 检查: 如当前继电器未动作,那么将对继电器进行操作;

图 3.4.2.4 本地操作继电器失败

如当前继电器正在动作中,将不操作继电器,同时屏幕上方显示"ERR"字样表示操 作失败,如图 3.4.2.4。此时按 E 键将翻到下一屏;按 A 键可重新设置继电器状态。

本地操作第二屏: 第二路继电器输出操作

本页用来设置第二路继电器分合状态。如图 3.4.2.5, 屏幕最上方显示"OUT"字样,表示为继电器输出操作,屏 幕中部显示"2",表示第二路。

第二路继电器的操作方法和第一路完全相同,请参照 图 3.4.2.5 第二路继电器操作 第一路的方法进行操作。

本地操作第三屏:清除开关量 SOE

本页用来清除开关量 SOE 记录。如图 3.4.2.6 屏幕左上 角显示"CLR a", 屏幕最上方显示"SOE"字样,表示清除开关 量 SOE。

如不想清除 SOE, 按 E 键将跳过此屏; 如要清除,请 按 A 键, 此时屏幕变为如图 3.4.2.7 所示。选择"Y"即 YES, 确认清除 SOE,选择"N"即 NO,不清除 SOE。

图 3.4.2.6 清除开关量 SOE

图 3.4.2.7 确认清除屏

本地操作第四屏:清除越限告警 SOE

本页用来清除越限告警 SOE 记录。屏幕左上角显示"CLR b",屏幕最上方显示 "SOE"字样,表示清除越限告警 SOE。操作和显示法与第三屏类似。

本地操作第五屏:清除电量累计值

本页用来清除所有电量累计值。如图 3.4.2.8, 屏幕左 上角显示"CLR"(CLEAR)表示清除,屏幕最上方显示 "ENGY"(ENGERY) 字样表示清除电量底数,

清除电量累计值的操作和清除 SOE 的操作相同。

图 3.4.2.8 清除电量底数

本地操作第六屏:清除脉冲计数累计值

本页用来清除脉冲累计值。如图 3.4.2.9,屏幕左上角显示"CLR"(CLEAR)表示清除,屏幕最上方显示"PULS"(PULSE)字样表示清除脉冲底数。清除脉冲累计值的操作和清除 SOE 底数的操作相同。

CLR PULS

注: 只有当输入模式选择为模式 2, 即 1、2 路为开关 图 3.4.2.9 清除遥脉底数量输入, 3、4 路为脉冲计数输入时才能进入本页, 否则本页不显示。

本地操作第七屏: 最大需量清除

本页用来清除最大需量。如图 3.4.2.10,屏幕左上角显示"CLR"(CLEAR)表示清除,屏幕最上方显示"DMD"字样表示清除最大需量。清除最大需量的操作和清除 SOE 的操作相同。

CLR DMD

图 3.4.2.10 清除最大需量

RST MXMM

本地操作第七屏: 电参量最大值最小值复位

本页用来复位电参量最大值最小值。如图 3.4.2.11, 屏幕左上角显示"RST"(RESET)表示复位,屏幕最上方显示"MXMN"(MAXMIN)字样表示复位最大值最小值。复位电参量最大值最小值的操作和清除 SOE 底数的操作相同。

图 3.4.2.11 电参量最值复位

电参量最大值最小值复位后,各种电参量的最大最小值复位为当前的测量值。

本地操作第九屏: 告警复归

本页用来复归越限告警。如图 3.4.2.12,屏幕左上角显示"RST"(RESET)表示复位,屏幕最上方显示"ALRM"(ALARM)字样表示复归越限告警。复归越限告警的操作和清除 SOE 底数的操作相同。

RST ALAM

图 3.4.2.12 告警复归

本地操作第十屏:系统复位

本页用来使系统复位。如图 3.4.2.13, 屏幕左上角显示 "RST"(RESET)表示复位, 屏幕最上方显示"SYS"(SYSTEM)表示系统。

系统复位操作和清除 SOE 底数的操作相同。

^{RST} 595

图 3.4.2.13 系统复位

3. 5. SOE 及统计量查询

3.5.1. 功能介绍

在单键显示模式下,同时按下 E 键和 P 键,进入事件记录查询模式,屏幕左上角显示 "SOE a"字样,表示开关量事件记录。可按 H (\bigcirc) 键或 P (\bigcirc) 键上下翻页查看相关内容。按 E 键将直接翻屏,依次为越限告警 "SOE b"、电参量的最大值最小值、最大需量 "DMD"。

注意: 如果在 10 分钟内没有按键,将自动返回到单键显示模式。

3.5.2. 查询开关量 SOE 操作介绍

如果内存中无 SOE 记录, 进入查询 SOE 模式后, 屏幕上方显示"NO", 如图 3.5.2.1 所示。如果内存中存有 SOE 记录,则屏幕左下角显示"❶"标志,进入查询 SOE 模式后,如图 3.5.2.2:

- ① 开关量 SOE 事件总数 (最大为 32 个)。如图目前 总共有 16 个被记录事件。
- ② 当前正在查看的事件。如图,目前正在查看的为第3个发生的事件。
- ③ 事件的类型: 如下表。

图 3.5.2.1 无 SOE 记录

图 3.5.2.2 SOE 记录

类型编号	类型说明
1	开关量输入1变位事件
2	开关量输入2变位事件
3	开关量输入3变位事件
4	开关量输入4变位事件

表 3.5.2.1 SOE 事件类型说明

- ④ 事件的状态。0代表单点信息状态由合到分;1代表单点信息状态由分到合。
- ⑤ 表示事件发生的时间。如图 3.5.2.2, 开关量输入 2 由合至分的变位事件发生在 07 年 11 月 27 日 13 时 21 分 59 秒 253 毫秒。

若有多个 SOE 事件,可按 H(A)键或 P(V)键上下翻页查看。

注: 如果通过通讯上传了全部 SOE 事件或通过本地操作清除了内存中的全部 SOE 事件,这时屏幕左下角的"❶"标志消失。

3.5.3. 查询越限告警 SOE 操作介绍

如果内存中无越限告警 SOE 记录,进入查询 SOE 模式后,屏幕上方显示"NO",如图 3.5.3.1 所示。如果内存中存有越限告警 SOE 记录,进入查询越限告警 SOE 模式后,如图 3.5.3.2:

- ① 越限告警 SOE 事件总数 (最大为 16 个)。如图目前共有 8 个被记录事件。
- ② 当前正在查看的事件。如图,目前正在查看的为第3个发生的事件。
- ③ 事件的类型: 如下表。

图 3.5.3.1 无 SOE 记录

图 3.5.3.2 SOE 记录

类型编号	类型说明
OC	过流告警
LC	零流告警
ET	接地告警
OU	过电压告警
LU	低电压告警
OF	过频率告警
LF	低频率告警
PF	低功率因数告警

表 3.5.2.2 越限告警 SOE 事件类型说明

- ④ 告警事件的线路。a代表A相;b代表B相;c代表C相。
- ⑤ 表示事件发生的时间。如图 3.5.3.2, B 相零流事件发生在 07 年 11 月 27 日 13 时 21 分 59 秒 253 毫秒。

若有多个 SOE 事件,可按 H(♠)键或 P(♥)键上下翻页查看。

3.5.4. 查询电参量最大最小值操作介绍

进入电参量最大最小值模式后,可按 H (igotimes) 键或 P (igotimes) 键上下翻页查看;按 A 键查看某电参量的值及发生时间,最大最小值及发生时间秒级闪烁。时间的显示方式为年一月一日和时:分:秒交替显示。当前查看的统计数据均为上一个统计区间的统计值。

第一屏: 相电压最大值

本屏显示三相电压的最大值,如图 3.5.4.1: 屏幕左上角显示"U_max",表示电压最大值,'a'、'b'、'c'分别表示 A 相、B 相、C 相电压,单位为 V 或 kV。最下一排显示最大值发生的时间。

注: 在三相四线制下才显示本页。

第二屏:相电压最小值

本屏显示三相电压的最小值值,如图 3.5.4.2: 屏幕左上角显示"U_min",表示电压最小值,'a'、'b'、'c'分别表示 A 相、B 相、C 相电压,单位为 V 或 kV。最下一排显示最小值发生的时间。

注: 在三相四线制下才显示本页。

图 3.5.4.2 相电压最小值

第三屏:线电压最大值

本屏显示线电压的最大值,屏幕左上角显示"U_max"字样,表示电压最大值, 'ab'、'bc'、'ca'分别表示线电压 AB、BC、CA,显示同第一屏类似。

第四屏:线电压最小值

本屏显示线电压的最小值,屏幕左上角显示"U_min"字样,表示电压最小值, 'ab'、'bc'、'ca'分别表示线电压 AB、BC、CA,显示同第二屏类似。

第五屏: 电流最大值

本屏显示电流的最大值,屏幕左上角显示"I_max"字样,表示电流最大值,'a'、'b'、'c'、'n'分别表示 A 相、B 相、C 相、零序电流,单位为 A。显示同第一屏类似。

第六屏: 电流最小值

本屏显示电流的最小值,屏幕左上角显示"I_min"字样,表示电流最小值, 'a'、'b'、'c'、'n'分别表示 A 相、B 相、C 相、零序电流,单位为 A。显示同第二屏类

第七屏: 功率因数最大值

本屏显示功率因数的最大值,屏幕左上角显示"PF_max"字样,表示功率因数最大值, 'a'、'b'、'c'、''分别表示 A 相、B 相、C 相、总功率因数,显示同第一屏

类似。

注: 在三相三线制下不显示 A 相、B 相、C 相功率因数的最大值,只在第一行显示总功率因数的最大值。

第八屏: 功率因数最小值

本屏显示电流的最小值,屏幕左上角显示"PF_min"字样,表示功率因数最小值, 'a'、'b'、'c'、''分别表示 A 相、B 相、C 相、总功率因数,显示同第二屏类似。

注: 在三相三线制下不显示 A 相、B 相、C 相功率因数的最小值,只在第一行显示总功率因数的最小值。

第九屏: 总功率、频率最大值

本屏显示功率、频率的最大值,如图 3.5.4.3,屏幕左上角显示"P_max"字样,表示功率、频率最大值,'∑'表示总功率,前三行分别为有功功率、无功功率、视在功率,单位分别为 kW, kvar, kVA。第四行为频率,单位为 Hz。最下一排显示最大值发生的时间。

图 3.5.4.3 功率、频率最大值

第十屏: 总功率、频率最小值

本屏显示功率、频率的最小值,屏幕左上角显示"P_ min"字样,表示功率、频率最小值,显示同第九屏类似。

第十一屏: A 相功率最大值

本屏显示 A 相功率最大值,如图 3.5.4.4,屏幕左上角显示"Pa_max"字样,表示 A 相功率最大值,'∑'表示总功率,前三行分别为有功功率、无功功率、视在功率,单位分别为 kW, kvar, kVA。最下一排显示最大值发生的时间。

图 3.5.4.4 A 相功率最大值

第十二屏: A 相功率最小值

本屏显示 A 相功率的最小值,屏幕左上角显示" Pa_min "字样,表示 A 相功率最小值,显同第十一屏类似。

注: 在三相四线制下才显示本页。

注: 在三相四线制下才显示本页。

第十三屏: B 相功率最大值

本屏显示 B 相功率的最法值,屏幕左上角显示"Pb_ max"字样,表示 B 相功率最大值,显示同第十一屏类似。

注: 在三相四线制下才显示本页。

第十四屏: B 相功率最小值

本屏显示 B 相功率的最小值,屏幕左上角显示"Pb_min"字样,表示 B 相功率最 小值,显示同第十一屏类似。

注: 在三相四线制下才显示本页。

第十五屏: C 相功率最大值

本屏显示 C 相功率的最法值,屏幕左上角显示"Pc max"字样,表示 C 相功率 最大值,显示同第十一屏类似。

注: 在三相四线制下才显示本页。

第十六屏: C 相功率最小值

本屏显示 C 相功率的最小值,屏幕左上角显示"Pc min"字样,表示 C 相功率最 小值,显示同第十一屏类似。

注: 在三相四线制下才显示本页。

3.5.5. 查询最大需量操作介绍

进入最大需量模式后,可按 H(♠)键或 P(♥) 键上下翻页查看;此时最大需量发生时间秒级闪烁。时间 的显示方式为年一月一日和时:分:秒交替显示。当前查 看的最大需量均为上一个需量周期(15分钟)的统计值。

第一屏: 正向有功最大需量

本屏显示正向有功最大需量,如图 3.5.5.1: 屏幕左上 角显示"DMD",表示最大需量,屏幕最上方显示"+P"字 样,表示为正向有功最大需量,单位为kW。

表示正向有功最大需量为 1.924kW;

最大时间的发生时间为 07 年 12 月 29 日 09 时 25 分 13 秒;

图 3.5.5.1 正向有功最大需量

第二屏:反向有功最大需量

本屏显示反向有功最大需量,屏幕左上角显示"DMD",表示最大需量,屏幕最 上方显示"-P"字样,表示为反向有功最大需量,单位为kW。显示同第一屏类似。

第三屏: 正向无功最大需量

本屏显示正向无功最大需量,如图 3.5.5.2: 屏幕左上角显示"DMD",表示最大需量,屏幕最上方显示"+q"字样,表示为正向无功最大需量,单位为 kvar。

表示正向无功最大需量为 0.326kvar;

最大时间的发生时间为 07 年 02 月 18 日 09 时 09 分 58 秒。

图 3.5.5.2 正向无最大需量

第四屏: 反向无功最大需量

本屏显示反向无功最大需量,屏幕左上角显示"DMD",表示最大需量,屏幕最上方显示"一q"字样,表示为反向无功最大需量,单位为 kvar。显示同第三屏类似。

3.6. 其他查询

在单A键模式测量数据显示时,同时按下A键和H键,可查看三种格式的时间和设备的当前温度。

第一屏:时间格式1

在本屏的最下排显示系统时间,格式为月一日 时:分,如图 3.6.1:当前系统时间:2月20日19时38分。

第二屏:时间格式2

在本屏的最下排显示系统时间,格式为时:分:秒,如图 3.6.2:当前系统时间:2时41分50秒。

第三屏: 设备温度

在本屏的最下排显示设备温度,如图 3.6.3:当前设备温度: 25.8℃。

第四屏:时间格式3

在本屏的最下排显示系统时间,格式为年一月一日,如图 3.6.4: 当前系统时间: 2008 年 2 月 20 日。

图 3.6.1 时间格式 1

图 3.6.2 时间格式 2

图 3.6.3 设备温度

图 3.6.4 时间格式 3

第五屏: 无显示

在本屏的最下排无显示。

4. 通讯

4.1. MODBUS 协议概述

MODBUS-RTU 通讯协议是比较常用的一种通讯协议,主从应答式连接(半双工)。 主站(如 PC 机等)发出信号寻址某一台终端设备(如 EM *plus*),被寻址的终端设备发 出应答信号传输给主机。

4.2. EM p/us 通讯协议地址表及说明

4. 2. 1. 通讯协议地址表

继电器操作地址表,支持功能码 01 读取与功能码 05 遥控操作

地址	类型	名称	寄存器
00010	RW	RL1	1
00011	RW	RL2	1

数字量地址表,支持功能码02读取

地址	类型	名称	寄存器
10100	RO	DI1	1
10101	RO	DI2	1
10102	RO	DI3	1
10103	RO	DI4	1

系统信息地址表 支持功能码 03、04 读取与功能码 06、10 设置

地址	类型	名称	取值范围	备注	寄存器
40001 ~ 40008	RO	ASCII 码表示模块名 称			8
40010	RO	ASCII 码表示硬件版 本号			1

40011	RO	ASCII 码表示软件版 本号			1
40012	RO	ASCII 码表示年			1
40013 ~ 40015	RO	ASCII 码表示产品顺序号			3
40020	RW	系统时间××年××月		仅支持	1
40021	RW	系统时间××日××时		全写与	1
40022	RW	系统时间××分××秒		广播全	1
40023	RW	系统时间××毫秒		写	1
40030	RW	通讯地址	1~254	默认 值: 254	1
40032	RW	通讯波特率	1~7	默认 值: 5	1
40034	RW	通讯校验方式	0~3	默认 值: 0	1
40050	RO	子站状态			1
40055	WO	子站设置			1
40060	RO	遥脉/电度量冻结解 冻状态			1

系统参数地址表,支持功能码 03、04 读取与功能码 06、10 设置

地址	类型	名称	取值范围	备注	寄存器
40065	RW	电参量最大最小值统 计区间	1~1440min	默认值: 10	1
40070	RW	遥测接线方式	1~5	默认值: 1	1
40072	RW	PT 的一次电压额定值	100~35000V	默认值:	2(连写)
40073	RW	PT 的二次电压额定值	100~220V	220/220	

					9996
40075	RW	bit14-bit0 表示 CT 一 次电流额定值 bit15=0/1 表示次级为 5A/1A	一次电流额定 值: 1~5000A	默认值: 0x1388 (5000: 5)	1
40077	RW	bit14-bit0 表示零序 CT 的一次电流额定值 bit15=0/1 表示次级为 5A/1A	一次电流额定 值: 1~5000A	默认值: 0x1388 (5000: 5)	1
40079	RW	开关量输入功能设置	1~2	1	1
40081	RW	继电器输出功能设置	1~2	默认值: 1	1
40083	RW	电度脉冲输出设置			2
40088	RW	继电器脉冲宽度	1∼200s	默认值: 2	1
40090	RW	背光点亮时间	0~30 分钟	默认值:5	1
40092 ∼ 40097	RW	分时计费设置 (4 费率 48 时段)	步进: 0.5 小时	默认值: 0xaa	6(连写)

基本电参量地址表,支持功能码 03、04 读取

地址	读写属 性	数据定义	寄存器
40100	RO	线电压 Uab	1
40101	RO	线电压 Ubc	1
40102	RO	线电压 Uca	1
40103	RO	线电压平均值 ULLAvg	1
40104	RO	相电压 Uan	1
40105	RO	相电压 Ubn	1
40106	RO	相电压 Ucn	1
40107	RO	相电压平均值 ULNAvg	1
40108	RO	电流 Ia	1
40109	RO	电流 Ib	1

40110	RO	电流 Ic	1
40111	RO	三相电流平均值 IAvg	1
40112	RO	零序电流 In	1
40113	RO	总频率(F)	1
40115	RO	总功率因数(PF)	1
40116	RO	总有功功率(W)	1
40117	RO	总无功功率 (Q)	1
40118	RO	总视在功率(S)	1
40119	RO	A 相功率因数(PFa)	1
40120	RO	B 相功率因数 (PFb)	1
40121	RO	C 相功率因数 (PFc)	1
40122	RO	A 相有功功率(Wa)	1
40123	RO	B 相有功功率(Wb)	1
40124	RO	C 相有功功率(Wc)	1
40125	RO	A 相无功功率(Qa)	1
40126	RO	B 相无功功率(Qb)	1
40127	RO	C 相无功功率(Qc)	1
40128	RO	A 相视在功率(Sa)	1
40129	RO	B 相视在功率 (Sb)	1
40130	RO	C 相视在功率 (Sc)	1

注 1: 三相三线制时地址 40104~40107, 40119~40130 中的数据无效皆为 0。

注 2: 以上数据 (Ai) 与实际值之间的对应关系为:

电压: U=(Ai/100)×(PT1/PT2), Ai 为无符号整数,单位 V。

电流: I=(Ai/1000) ×(CT1/CT2), Ai 为无符号整数,单位 A。

零序电流: In=(Ai/1000) ×(CT01/CT02), Ai 为无符号整数,单位 A。

有功功率: P=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数,单位 W。

无功功率: Q=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数,单位 var。

视在功率: S=Ai×(PT1/PT2)×(CT1/CT2), Ai 为无符号整数,单位 VA。

功率因数: PF=Ai/1000,Ai 为有符号整数, 无单位。

频率: F=Ai/100, Ai 为无符号整数,单位 Hz。

电度量地址表,支持功能码 03、04 读取与功能码 10 设置

七尺里地	MAC, X.	付切能的 U3、U4 读取与功能的 IU 反直	
地址	读写属 性	数据定义	寄存器
40200	RO	总有功绝对值电度量累计值	2
40202	RO	总无功绝对值电度量累计值	2
40204	RW	A相有功绝对值电度量累计值	2
40206	RW	B相有功绝对值电度量累计值	2
40208	RW	C相有功绝对值电度量累计值	2
40210	RW	A 相无功绝对值电度量累计值	2
40212	RW	B相无功绝对值电度量累计值	2
40214	RW	C相无功绝对值电度量累计值	2
40216	RW	总正向有功绝对值电度量累计值	2
40218	RW	总尖费率正向有功绝对值电度量累计值	2
40220	RW	总峰费率正向有功绝对值电度量累计值	2
40222	RW	总平费率正向有功绝对值电度量累计值	2
40224	RW	总谷费率正向有功绝对值电度量累计值	2
40226	RW	总反向有功绝对值电度量累计值	2
40228	RW	总尖费率反向有功绝对值电度量累计值	2
40230	RW	总峰费率反向有功绝对值电度量累计值	2
40232	RW	总平费率反向有功绝对值电度量累计值	2
40234	RW	总谷费率反向有功绝对值电度量累计值	2
40236	RO	总正向无功绝对值电度量累计值	2
40238	RO	总尖费率正向无功绝对值电度量累计值	2
40240	RO	总峰费率正向无功绝对值电度量累计值	2
40242	RO	总平费率正向无功绝对值电度量累计值	2
40244	RO	总谷费率正向无功绝对值电度量累计值	2
40246	RO	总反向无功绝对值电度量累计值	2
40248	RO	总尖费率反向无功绝对值电度量累计值	2
40250	RO	总峰费率反向无功绝对值电度量累计值	2
40252	RO	总平费率反向无功绝对值电度量累计值	2
40254	RO	总谷费率反向无功绝对值电度量累计值	2

40256	RW	I 象限总无功绝对值电度量累计值	2
40258	RW	I 象限总尖费率无功绝对值电度量累计值	2
40260	RW	I 象限总峰费率无功绝对值电度量累计值	2
40262	RW	I 象限总平费率无功绝对值电度量累计值	2
40264	RW	I 象限总谷费率无功绝对值电度量累计值	2
40266	RW	IV 象限总无功绝对值电度量累计值	2
40268	RW	IV 象限总尖费率无功绝对值电度量累计值	2
40270	RW	IV 象限总峰费率无功绝对值电度量累计值	2
40272	RW	IV 象限总平费率无功绝对值电度量累计值	2
40274	RW	IV 象限总谷费率无功绝对值电度量累计值	2
40276	RW	II 象限总无功绝对值电度量累计值	2
40278	RW	II 象限总尖费率无功绝对值电度量累计值	2
40280	RW	II 象限总峰费率无功绝对值电度量累计值	2
40282	RW	II 象限总平费率无功绝对值电度量累计值	2
40284	RW	II 象限总谷费率无功绝对值电度量累计值	2
40286	RW	III 象限总无功绝对值电度量累计值	2
40288	RW	III 象限总尖费率无功绝对值电度量累计值	2
40290	RW	III 象限总峰费率无功绝对值电度量累计值	2
40292	RW	III 象限总平费率无功绝对值电度量累计值	2
40294	RW	III 象限总谷费率无功绝对值电度量累计值	2
		LULII 10001 10015 THEN 1	

注 1: 三相三线制时地址 40204~40215 无效皆为 0。

注 2: 以上数据(Ai)与实际值之间的对应关系为:

有功电度: Ep=Ai/10, Ai 为无符号长整型(0~999, 999, 999), 单位 kWh。 无功电度: Eq=Ai/10, Ai 为无符号长整型(0~999, 999, 999), 单位 kvarh。

注 3: 表底设置时,需要对所有的分电量和总电量进行设置。

谐波统计量(谐波畸变率/2~15 次谐波含有率)地址表,支持功能码 03、04 读取

地址	读写属性	数据定义	寄存器
40300	RO	A 相(Uab 线)电压总谐波畸变率	1
40301	RO	B相(Ubc线)电压总谐波畸变率	1
40302	RO	C相(Uca线)电压总谐波畸变率	1
40303	RO	电流 Ia 总谐波畸变率	1
40304	RO	电流 Ib 总谐波畸变率	1
40305	RO	电流 Ic 总谐波畸变率	1
40306	RO	零序电流 In 总谐波畸变率	1
40308	RO	A相(Uab线)电压奇次谐波畸变率	1
40309	RO	B相(Ubc线)电压奇次谐波畸变率	1
40310	RO	C相(Uca线)电压奇次谐波畸变率	1
40311	RO	电流 Ia 奇次谐波畸变率	1
40312	RO	电流 Ib 奇次谐波畸变率	1
40313	RO	电流 Ic 奇次谐波畸变率	1
40314	RO	零序电流 In 奇次谐波畸变率	1
40315	RO	A相(Uab线)电压偶次谐波畸变率	1
40316	RO	B相(Ubc线)电压偶次谐波畸变率	1
40317	RO	C相(Uca线)电压偶次谐波畸变率	1
40318	RO	电流 Ia 偶次谐波畸变率	1
40319	RO	电流 Ib 偶次谐波畸变率	1
40320	RO	电流 Ic 偶次谐波畸变率	1
40321	RO	零序电流 In 偶次谐波畸变率	1
40329	RO	A 相(Uab 线)电压 2 次谐波占有率	1
40330	RO	A 相(Uab 线)电压 3 次谐波占有率	1
40331	RO	A 相(Uab 线)电压 4 次谐波占有率	1
40332	RO	A相(Uab线)电压5次谐波占有率	1
40333	RO	A 相(Uab 线)电压 6 次谐波占有率	1
40334	RO	A 相(Uab 线)电压 7 次谐波占有率	1
40335	RO	A 相(Uab 线)电压 8 次谐波占有率	1
40336	RO	A 相(Uab 线)电压 9 次谐波占有率	1

40337	RO	A 相(Uab 线)电压 10 次谐波占有率	1
40338	RO	A 相(Uab 线)电压 11 次谐波占有率	1
40339	RO	A 相(Uab 线)电压 12 次谐波占有率	1
40340	RO	A 相(Uab 线)电压 13 次谐波占有率	1
40341	RO	A 相(Uab 线)电压 14 次谐波占有率	1
40342	RO	A 相(Uab 线)电压 15 次谐波占有率	1
40344	RO	B相(Ubc线)电压2次谐波占有率	1
40345	RO	B相(Ubc线)电压 3次谐波占有率	1
40346	RO	B相(Ubc线)电压 4次谐波占有率	1
40347	RO	B相(Ubc线)电压 5次谐波占有率	1
40348	RO	B相(Ubc线)电压6次谐波占有率	1
40349	RO	B相(Ubc线)电压7次谐波占有率	1
40350	RO	B相(Ubc线)电压8次谐波占有率	1
40351	RO	B相(Ubc线)电压 9次谐波占有率	1
40352	RO	B相(Ubc线)电压 10次谐波占有率	1
40353	RO	B相(Ubc线)电压 11 次谐波占有率	1
40354	RO	B相(Ubc线)电压 12次谐波占有率	1
40355	RO	B相(Ubc线)电压13次谐波占有率	1
40356	RO	B相(Ubc线)电压 14次谐波占有率	1
40357	RO	B相(Ubc线)电压 15次谐波占有率	1
40359	RO	C 相(Uca 线)电压 2 次谐波占有率	1
40360	RO	C 相(Uca 线)电压 3 次谐波占有率	1
40361	RO	C 相(Uca 线)电压 4 次谐波占有率	1
40362	RO	C 相(Uca 线)电压 5 次谐波占有率	1
40363	RO	C 相(Uca 线)电压 6 次谐波占有率	1
40364	RO	C相(Uca线)电压7次谐波占有率	1
40365	RO	C相(Uca线)电压8次谐波占有率	1
40366	RO	C相(Uca线)电压9次谐波占有率	1
40367	RO	C相(Uca线)电压10次谐波占有率	1
40368	RO	C相(Uca线)电压11次谐波占有率	1
40369	RO	C相(Uca线)电压 12次谐波占有率	1
40370	RO	C相(Uca线)电压13次谐波占有率	1
40371	RO	C相(Uca线)电压 14次谐波占有率	1
40372	RO	C相(Uca线)电压 15次谐波占有率	1

40374	RO	电流 Ia 的 2 次谐波占有率	1
40375	RO	电流 Ia 的 3 次谐波占有率	1
40376	RO	电流 Ia 的 4 次谐波占有率	1
40377	RO	电流 Ia 的 5 次谐波占有率	1
40378	RO	电流 Ia 的 6 次谐波占有率	1
40379	RO	电流 Ia 的 7 次谐波占有率	1
40380	RO	电流 Ia 的 8 次谐波占有率	1
40381	RO	电流 Ia 的 9 次谐波占有率	1
40382	RO	电流 Ia 的 10 次谐波占有率	1
40383	RO	电流 Ia 的 11 次谐波占有率	1
40384	RO	电流 Ia 的 12 次谐波占有率	1
40385	RO	电流 Ia 的 13 次谐波占有率	1
40386	RO	电流 Ia 的 14 次谐波占有率	1
40387	RO	电流 Ia 的 15 次谐波占有率	1
40389	RO	电流 Ib 的 2 次谐波占有率	1
40390	RO	电流 Ib 的 3 次谐波占有率	1
40391	RO	电流 Ib 的 4 次谐波占有率	1
40392	RO	电流 Ib 的 5 次谐波占有率	1
40393	RO	电流 Ib 的 6 次谐波占有率	1
40394	RO	电流 Ib 的 7 次谐波占有率	1
40395	RO	电流 Ib 的 8 次谐波占有率	1
40396	RO	电流 Ib 的 9 次谐波占有率	1
40397	RO	电流 Ib 的 10 次谐波占有率	1
40398	RO	电流 Ib 的 11 次谐波占有率	1
40399	RO	电流 Ib 的 12 次谐波占有率	1
40400	RO	电流 Ib 的 13 次谐波占有率	1
40401	RO	电流 Ib 的 14 次谐波占有率	1
40402	RO	电流 Ib 的 15 次谐波占有率	1
40404	RO	电流 Ic 的 2 次谐波占有率	1
40405	RO	电流 Ic 的 3 次谐波占有率	1
40406	RO	电流 Ic 的 4 次谐波占有率	1
40407	RO	电流 Ic 的 5 次谐波占有率	1

40408	RO	电流 Ic 的 6 次谐波占有率	1
40409	RO	电流 Ic 的 7 次谐波占有率	1
40410	RO	电流 Ic 的 8 次谐波占有率	1
40411	RO	电流 Ic 的 9 次谐波占有率	1
40412	RO	电流 Ic 的 10 次谐波占有率	1
40413	RO	电流 Ic 的 11 次谐波占有率	1
40414	RO	电流 Ic 的 12 次谐波占有率	1
40415	RO	电流 Ic 的 13 次谐波占有率	1
40416	RO	电流 Ic 的 14 次谐波占有率	1
40417	RO	电流 Ic 的 15 次谐波占有率	1
40419	RO	零序电流 In 的 2 次谐波占有率	1
40420	RO	零序电流 In 的 3 次谐波占有率	1
40421	RO	零序电流 In 的 4 次谐波占有率	1
40422	RO	零序电流 In 的 5 次谐波占有率	1
40423	RO	零序电流 In 的 6 次谐波占有率	1
40424	RO	零序电流 In 的 7 次谐波占有率	1
40425	RO	零序电流 In 的 8 次谐波占有率	1
40426	RO	零序电流 In 的 9 次谐波占有率	1
40427	RO	零序电流 In 的 10 次谐波占有率	1
40428	RO	零序电流 In 的 11 次谐波占有率	1
40429	RO	零序电流 In 的 12 次谐波占有率	1
40430	RO	零序电流 In 的 13 次谐波占有率	1
40431	RO	零序电流 In 的 14 次谐波占有率	1
40432	RO	零序电流 In 的 15 次谐波占有率	1
13. 131 1 38	/. III / . · › L. /	之际传之词的对应关系为	

注:以上数据(Ai)与实际值之间的对应关系为:

谐波畸变率: THD=Ai/10, Ai 为无符号整型,单位%。谐波占有率: HP=Ai/10, Ai 为无符号整型,单位%。

遥信量与越限告警地址表,支持功能码03、04读取

地址	读写属性	数据定义	寄存器
40500	RO	开关量输入遥信	1
40501	RO	电参量越限告警遥信	2

系统参数地址表,支持功能码 03、04 读取与功能码 06、10 设置

小儿多见	CP CO-SE-PC)	×14 ×3 11B 1 4 0 0 1	07 英权与为能问 000	XI	
地址	读写 属性	数据定义	取值范围	默认值	寄存器
40510	RW	电流越限值	0~6000A	6000	2(连写)
40512	RW	电流返回值	0~6000A	5000	2
40514	RW	延时时间	1~60000ms	60000	1
40515	RW	允许	0x0000(禁止); 0xCC33H(允许)	0x0000	1
40516	RW	零流越限值	0~6000A	0	2(连写)
40518	RW	零流返回值	0~6000A	200	2
40520	RW	延时时间	1~60000ms	60000	1
40521	RW	允许	0x0000(禁止); 0xCC33H(允许)	0x0000	1
40522	RW	G越限值	0~6000A	6000	2(连写)
40524	RW	G 返回值	0~6000A	5000	2
40526	RW	G延时时间	1~60000ms	60000	1
40527	RW	G 允许	0x0000(禁止); 0xCC33H(允许)	0x0000	1
40528	RW	低电压越限 值	0~42000V	0	2(连写)
40530	RW	低电压返回 值	0~42000V	50	2
40532	RW	延时时间	0.1~1800s	1800	1
40533	RW	允许	0x0000(禁止); 0xCC33H(允许)	0x0000	1
40534	RW	过电压越限 值	0~42000V	260	2(连写)
40536	RW	过电压返回 值	0~42000V	220	2
40538	RW	延时时间	0.1~1800s	1800	1
40539	RW	允许	0x0000(禁止); 0xCC33H(允许)	0x0000	1

40540	RW	低频率越限 值	0-99.99Hz	45.0	2(连写)
40542	RW	低频率返回 值	0-99.99Hz	46.0	2
40544	RW	延时时间	0.1-1800s	1800	1
40545	RW	允许	0x0000(禁止); 0xCC33H(允许)	0x0000	1
40546	RW	过频率越限 值	0-99.99Hz	55.0	2(连写)
40548	RW	过频率返回 值	0-99.99Hz	54.0	2
40550	RW	延时时间	0.1-1800s	1800	1
40551	RW	允许	0x0000(禁止); 0xCC33H(允许)	0x0000	1
40552	RW	低功率因数 越限值	0-1.0	0.5	2(连写)
40554	RW	低功率因数 返回值	0-1.0	0.6	2
40556	RW	延时时间	0.1-1800s	1800	1
40557	RW	允许	0x0000(禁止); 0xCC33H(允许)	0x0000	1
40566	RW	过电流告警 关联	00 (RL1) /01/ (RL2) /FFFFH (不关联)	FFFFH	1(单写)
40567	RW	零流告警关 联	00 (RL1) /01/ (RL2) /FFFFH (不关联)		1
40568	RW	接地告警关联	00 (RL1) /01/ (RL2) /FFFFH (不关联)	FFFFH	1
40569	RW	低电压告警 关联	00 (RL1) /01/ (RL2) /FFFFH (不关联)	FFFFH	1
40570	RW	过电压告警 关联	00 (RL1) /01/ (RL2) /FFFFH (不关联)	FFFFH	1

40571	RW	低频率告警 关联	00 (RL1) /01/ (RL2) /FFFFH (不关联)	FFFFH	1
40572	RW	过频率告警 关联	00 (RL1) /01/ (RL2) /FFFFH (不关联)	FFFFH	1
40573	RW	低功率因数 告警关联	00 (RL1) /01/ (RL2) /FFFFH (不关联)	FFFFH	1
40575	RW	电能脉冲输 出关联		FFFFH	1

注 1: 越限值与返回值均为一次侧设定值;

注 2: 告警参数数据内容

- 电流越限值、电流返回值和时间,越限值、返回值是 10 倍表示,时间数据 1 倍表示,单位分别为 A, A, 毫秒。
- 电压越限值、电压返回值和时间,越限值、返回值是 10 倍表示,时间数据 10 倍表示,单位分别为 V, V,秒。
- 频率越限值、频率返回值和时间,越限值、返回值是 100 倍表示,时间数据 10 倍表示,单位分别为 Hz, Hz, 秒。
- 功率因数越限值、功率因数返回值数据 1000 倍表示,时间数据 10 倍表示,单位秒。

电度脉冲量地址表,支持功能码 03、04 读取与功能码 06、10 设置

地址	读写属性	数据定义	寄存器
40600	RW	PI1	2
40602	RW	PI2	2

注 1: 以上数据(Ai)与实际值之间的对应关系为:

电度脉冲量: $E=Ai \times k$ 版 $P=Ai \times k$ 体 $P=Ai \times k$ $P=Ai \times k$

谐波量(16~31次谐波含有率)地址表,支持功能码03、04读取

地址	读写属 性	数据定义	寄存器
40610	RO	A 相(Uab 线)电压 16 次谐波占有率	1
40611	RO	A 相(Uab 线)电压 17 次谐波占有率	1
40612	RO	A 相(Uab 线)电压 18 次谐波占有率	1

40613	RO	A 相(Uab 线)电压 19 次谐波占有率	1
40614	RO	A 相(Uab 线)电压 20 次谐波占有率	1
40615	RO	A 相(Uab 线)电压 21 次谐波占有率	1
40616	RO	A 相(Uab 线)电压 22 次谐波占有率	1
40617	RO	A 相(Uab 线)电压 23 次谐波占有率	1
40618	RO	A 相(Uab 线)电压 24 次谐波占有率	1
40619	RO	A 相(Uab 线)电压 25 次谐波占有率	1
40620	RO	A 相(Uab 线)电压 26 次谐波占有率	1
40621	RO	A 相(Uab 线)电压 27 次谐波占有率	1
40622	RO	A 相(Uab 线)电压 28 次谐波占有率	1
40623	RO	A 相(Uab 线)电压 29 次谐波占有率	1
40624	RO	A 相(Uab 线)电压 30 次谐波占有率	1
40625	RO	A 相(Uab 线)电压 31 次谐波占有率	1
40630	RO	B相(Ubc线)电压16次谐波占有率	1
40631	RO	B 相(Ubc 线)电压 17 次谐波占有率	1
40632	RO	B相(Ubc线)电压18次谐波占有率	1
40633	RO	B相(Ubc线)电压19次谐波占有率	1
40634	RO	B相(Ubc线)电压20次谐波占有率	1
40635	RO	B相(Ubc线)电压21次谐波占有率	1
40636	RO	B相(Ubc线)电压22次谐波占有率	1
40637	RO	B相(Ubc线)电压23次谐波占有率	1
40638	RO	B相(Ubc线)电压24次谐波占有率	1
40639	RO	B相(Ubc线)电压25次谐波占有率	1
40640	RO	B相(Ubc线)电压26次谐波占有率	1
40641	RO	B相(Ubc线)电压27次谐波占有率	1
40642	RO	B 相(Ubc 线)电压 28 次谐波占有率	1
40643	RO	B相(Ubc线)电压29次谐波占有率	1
40644	RO	B相(Ubc线)电压30次谐波占有率	1
40645	RO	B相(Ubc线)电压31次谐波占有率	1
40650	RO	C 相(Uca 线)电压 16 次谐波占有率	1
40651	RO	C 相(Uca 线)电压 17 次谐波占有率	1
40652	RO	C 相(Uca 线)电压 18 次谐波占有率	1
40653	RO	C 相(Uca 线)电压 19 次谐波占有率	1
40654	RO	C 相(Uca 线)电压 20 次谐波占有率	1

40655	RO	C 相(Uca 线)电压 21 次谐波占有率	1
40656	RO	C 相(Uca 线)电压 22 次谐波占有率	1
40657	RO	C 相(Uca 线)电压 23 次谐波占有率	1
40658	RO	C 相(Uca 线)电压 24 次谐波占有率	1
40659	RO	C 相(Uca 线)电压 25 次谐波占有率	1
40660	RO	C 相(Uca 线)电压 26 次谐波占有率	1
40661	RO	C 相(Uca 线)电压 27 次谐波占有率	1
40662	RO	C 相(Uca 线)电压 28 次谐波占有率	1
40663	RO	C 相(Uca 线)电压 29 次谐波占有率	1
40664	RO	C 相(Uca 线)电压 30 次谐波占有率	1
40665	RO	C相(Uca线)电压31次谐波占有率	1
40670	RO	电流 Ia 的 16 次谐波占有率	1
40671	RO	电流 Ia 的 17 次谐波占有率	1
40672	RO	电流 Ia 的 18 次谐波占有率	1
40673	RO	电流 Ia 的 19 次谐波占有率	1
40674	RO	电流 Ia 的 20 次谐波占有率	1
40675	RO	电流 Ia 的 21 次谐波占有率	1
40676	RO	电流 Ia 的 22 次谐波占有率	1
40677	RO	电流 Ia 的 23 次谐波占有率	1
40678	RO	电流 Ia 的 24 次谐波占有率	1
40679	RO	电流 Ia 的 25 次谐波占有率	1
40680	RO	电流 Ia 的 26 次谐波占有率	1
40681	RO	电流 Ia 的 27 次谐波占有率	1
40682	RO	电流 Ia 的 28 次谐波占有率	1
40683	RO	电流 Ia 的 29 次谐波占有率	1
40684	RO	电流 Ia 的 30 次谐波占有率	1
40685	RO	电流 Ia 的 31 次谐波占有率	1
40690	RO	电流 Ib 的 16 次谐波占有率	1
40691	RO	电流 Ib 的 17 次谐波占有率	1
40692	RO	电流 Ib 的 18 次谐波占有率	1
40693	RO	电流 Ib 的 19 次谐波占有率	1
40694	RO	电流 Ib 的 20 次谐波占有率	1
40695	RO	电流 Ib 的 21 次谐波占有率	1

40696 RO 电流 Ib 的 22 次谐波占有率 40697 RO 电流 Ib 的 23 次谐波占有率 40698 RO 电流 Ib 的 24 次谐波占有率	1 1
40698 RO 电流 Ib 的 24 次谐波占有率	1
	1
40699 RO 电流 Ib 的 25 次谐波占有率	1
40700 RO 电流 Ib 的 26 次谐波占有率	1
40701 RO 电流 Ib 的 27 次谐波占有率	1
40702 RO 电流 Ib 的 28 次谐波占有率	1
40703 RO 电流 Ib 的 29 次谐波占有率	1
40704 RO 电流 Ib 的 30 次谐波占有率	1
40705 RO 电流 Ib 的 31 次谐波占有率	1
40710 RO 电流 Ic 的 16 次谐波占有率	1
40711 RO 电流 Ic 的 17 次谐波占有率	1
40712 RO 电流 Ic 的 18 次谐波占有率	1
40713 RO 电流 Ic 的 19 次谐波占有率	1
40714 RO 电流 Ic 的 20 次谐波占有率	1
40715 RO 电流 Ic 的 21 次谐波占有率	1
40716 RO 电流 Ic 的 22 次谐波占有率	1
40717 RO 电流 Ic 的 23 次谐波占有率	1
40718 RO 电流 Ic 的 24 次谐波占有率	1
40719 RO 电流 Ic 的 25 次谐波占有率	1
40720 RO 电流 Ic 的 26 次谐波占有率	1
40721 RO 电流 Ic 的 27 次谐波占有率	1
40722 RO 电流 Ic 的 28 次谐波占有率	1
40723 RO 电流 Ic 的 29 次谐波占有率	1
40724 RO 电流 Ic 的 30 次谐波占有率	1
40725 RO 电流 Ic 的 31 次谐波占有率	1
40730 RO 零序电流 In 的 16 次谐波占有率	1
40731 RO 零序电流 In 的 17 次谐波占有率	E 1
40732 RO 零序电流 In 的 18 次谐波占有率	1
40733 RO 零序电流 In 的 19 次谐波占有率	E 1
40734 RO 零序电流 In 的 20 次谐波占有率	× 1
40735 RO 零序电流 In 的 21 次谐波占有率	× 1
40736 RO 零序电流 In 的 22 次谐波占有率	× 1
40737 RO 零序电流 In 的 23 次谐波占有率	× 1

40738	RO	零序电流 In 的 24 次谐波占有率	1
40739	RO	零序电流 In 的 25 次谐波占有率	1
40740	RO	零序电流 In 的 26 次谐波占有率	1
40741	RO	零序电流 In 的 27 次谐波占有率	1
40742	RO	零序电流 In 的 28 次谐波占有率	1
40743	RO	零序电流 In 的 29 次谐波占有率	1
40744	RO	零序电流 In 的 30 次谐波占有率	1
40745	RO	零序电流 In 的 31 次谐波占有率	1

注:以上数据(Ai)与实际值之间的对应关系为:

谐波占有率: HP=Ai/10, Ai 为无符号整型,单位%。

电压质量地址表,支持功能码03、04读取

地址	读写属性	数据定义	寄存器
40760	RO	电压不平衡度	1
40761	RO	电流不平衡度	1

注:以上数据(Ai)与实际值之间的对应关系为:

不平衡度: Ai/10, Ai=无符号整型, 单位%。

需量统计地址表,支持功能码 03、04 读取

地址	类型	名称	寄存器
40770	RO	总正向有功最大需量	2
40772	RO	总反向有功最大需量	2
40774	RO	总正向无功最大需量	2
40776	RO	总反向无功最大需量	2
40800	RO	总正向有功最大需量发生时间	3
40803	RO	总反向有功最大需量发生时间	3
40806	RO	总正向无功最大需量发生时间	3
40809	RO	总反向无功最大需量发生时间	3

注:以上数据(Ai)与实际值之间的对应关系为:

有功最大需量: P=Ai/10, Ai 为无符号整数,单位 W。

无功最大需量: Q=Ai/10, Ai 为无符号整数,单位 var。

电参量统计地址表,支持功能码 03、04 读取

地址	类型	名称	寄存器
41000	RO	线电压 Uab 最大值	1
41001	RO	线电压 Ubc 最大值	1
41002	RO	线电压 Uca 最大值	1
41003	RO	相电压 Uan 最大值	1
41004	RO	相电压 Ubn 最大值	1
41005	RO	相电压 Ucn 最大值	1
41006	RO	电流 Ia 最大值	1
41007	RO	电流 Ib 最大值	1
41008	RO	电流 Ic 最大值	1
41009	RO	电流 In 最大值	1
41010	RO	总频率 (F) 最大值	1
41011	RO	总功率因数(PF)最大值	1
41012	RO	A 相功率因数 (PFa) 最大值	1
41013	RO	B 相功率因数 (PFb) 最大值	1
41014	RO	C 相功率因数 (PFc) 最大值	1
41015	RO	A 相有功功率(Wa)最大值	1
41016	RO	A 相无功功率(Qa)最大值	1
41017	RO	A 相视在功率(Sa)最大值	1
41018	RO	B 相有功功率(Wb)最大值	1
41019	RO	B 相无功功率(Qb)最大值	1
41020	RO	B 相视在功率 (Sb) 最大值	1
41021	RO	C 相有功功率(Wc)最大值	1
41022	RO	C 相无功功率(Qc)最大值	1
41023	RO	C 相视在功率 (Sc) 最大值	1
41024	RO	总有功功率(W)最大值	1
41025	RO	总无功功率(Q)最大值	1
41026	RO	总视在功率(S)最大值	1
41030	RO	线电压 Uab 最小值	1
41031	RO	线电压 Ubc 最小值	1
41032	RO	线电压 Uca 最小值	1
41033	RO	相电压 Uan 最小值	1
41034	RO	相电压 Ubn 最小值	1

41035	RO	相电压 Ucn 最小值	1
41036	RO	电流 Ia 最小值	1
41037	RO	电流 Ib 最小值	1
41038	RO	电流 Ic 最小值	1
41039	RO	电流 In 最小值	1
41040	RO	总频率(F)最小值	1
41041	RO	总功率因数(PF)最小值	1
41042	RO	A 相功率因数(PFa)最小值	1
41043	RO	B 相功率因数 (PFb) 最小值	1
41044	RO	C 相功率因数 (PFc) 最小值	1
41045	RO	A 相有功功率(Wa)最小值	1
41046	RO	A 相无功功率(Qa)最小值	1
41047	RO	A 相视在功率(Sa)最小值	1
41048	RO	B 相有功功率(Wb)最小值	1
41049	RO	B 相无功功率(Qb)最小值	1
41050	RO	B 相视在功率 (Sb) 最小值	1
41051	RO	C 相有功功率(Wc)最小值	1
41052	RO	C 相无功功率(Qc)最小值	1
41053	RO	C 相视在功率(Sc)最小值	1
41054	RO	总有功功率(W)最小值	1
41055	RO	总无功功率(Q)最小值	1
41056	RO	总视在功率(S)最小值	1
41060	RO	线电压 Uab 最大值发生时间	3
41063	RO	线电压 Ubc 最大值	3
41066	RO	线电压 Uca 最大值发生时间	3
41069	RO	相电压 Uan 最大值发生时间	3
41072	RO	相电压 Ubn 最大值发生时间	3
41075	RO	相电压 Ucn 最大值发生时间	3
41078	RO	电流 Ia 最大值发生时间	3
41081	RO	电流 Ib 最大值发生时间	3
41084	RO	电流 Ic 最大值发生时间	3
41087	RO	电流 In 最大值发生时间	3
41090	RO	总频率 (F) 最大值发生时间	3
41093	RO	总功率因数(PF)最大值	3

41096	RO	A 相功率因数 (PFa) 最大值发生时间	3
41099	RO	B 相功率因数 (PFb) 最大值发生时间	3
41102	RO	C 相功率因数 (PFc) 最大值发生时间	3
41105	RO	A 相有功功率(Wa)最大值发生时间	3
41108	RO	A 相无功功率 (Qa) 最大值发生时间	3
41111	RO	A 相视在功率(Sa)最大值发生时间	3
41114	RO	B 相有功功率(Wb)最大值发生时间	3
41117	RO	B 相无功功率(Qb)最大值发生时间	3
41120	RO	B 相视在功率(Sb)最大值发生时间	3
41123	RO	C 相有功功率(Wc)最大值发生时间	3
41126	RO	C 相无功功率(Qc)最大值发生时间	3
41129	RO	C 相视在功率(Sc)最大值发生时间	3
41132	RO	总有功功率(W)最大值发生时间	3
41135	RO	总无功功率(Q)最大值发生时间	3
41138	RO	总视在功率 (S) 最大值发生时间	3
41150	RO	线电压 Uab 最小值发生时间	3
41153	RO	线电压 Ubc 最小值发生时间	3
41156	RO	线电压 Uca 最小值发生时间	3
41159	RO	相电压 Uan 最小值发生时间	3
41162	RO	相电压 Ubn 最小值发生时间	3
41165	RO	相电压 Ucn 最小值发生时间	3
41168	RO	电流 Ia 最小值发生时间	3
41171	RO	电流 Ib 最小值发生时间	3
41174	RO	电流 Ic 最小值发生时间	3
41177	RO	电流 In 最小值发生时间	3
41180	RO	总频率(F)最小值发生时间	3
41183	RO	总功率因数 (PF) 最小值	3
41186	RO	A 相功率因数 (PFa) 最小值发生时间	3
41189	RO	B 相功率因数 (PFb) 最小值发生时间	3
41192	RO	C 相功率因数 (PFc) 最小值发生时间	3
41195	RO	A 相有功功率 (Wa) 最小值发生时间	3
41198	RO	A 相无功功率 (Qa) 最小值发生时间	3
41201	RO	A 相视在功率(Sa)最小值发生时间	3
41204	RO	B 相有功功率 (Wb) 最小值发生时间	3
41207	RO	B 相无功功率 (Qb) 最小值发生时间	3

41210	RO	B 相视在功率 (Sb) 最小值发生时间	3
41213	RO	C 相有功功率(Wc)最小值发生时间	3
41216	RO	C 相无功功率(Qc)最小值发生时间	3
41219	RO	C 相视在功率 (Sc) 最小值发生时间	3
41222	RO	总有功功率(W)最小值发生时间	3
41225	RO	总无功功率(Q)最小值发生时间	3
41228	RO	总视在功率 (S) 最小值发生时间	3

注:以上数据(Ai)与实际值之间的对应关系为:

电压: U=(Ai/10)×(PT1/PT2), Ai 为无符号整数,单位 V。

电流: I=(Ai/1000)×(CT1/CT2), Ai 为无符号整数,单位 A。

零序电流: In=(Ai/1000)×(CT01/CT02), Ai 为无符号整数,单位 A。

有功功率: P=Ai×(PT1/PT2)×(CT1/CT2), Ai 为无符号整数,单位 W。

无功功率: Q=Ai×(PT1/PT2)×(CT1/CT2), Ai 为无符号整数,单位 var。

视在功率: S=Ai×(PT1/PT2)×(CT1/CT2), Ai 为无符号整数,单位 VA。

功率因数: PF=Ai /1000,Ai 为有符号整数, 无单位。

频率: F=Ai/100, Ai 为无符号整数,单位 Hz。

电流 K 因数读取地址表,支持 03、04 功能码读取规则

地址	类型	名称	寄存器
41250	RO	A 相电流 K 因数	1
41251	RO	B 相电流 K 因数	1
41252	RO	C 相电流 K 因数	1
41253	RO	N 相电流 K 因数	1

注:以上数据(Ai)与实际值之间的对应关系为:

K 因数: KF=Ai/10, Ai 为无符号整数, 无单位。

电压电流基波值读取地址表,支持03、04功能码读取规则

地址	类型	名称	寄存器
41300	RO	A 相电压基波有效值	1
41301	RO	B相电压基波有效值	1
41302	RO	C 相电压基波有效值	1
41303	RO	A 相电流基波有效值	1
41304	RO	B相电流基波有效值	1
41305	RO	C 相电流基波有效值	1
41306	RO	N相电流基波有效值	1

注:以上数据(Ai)与实际值之间的对应关系为:

电压: U=(Ai/100)×(PT1/PT2), Ai 为无符号整数,单位 V。

电流: I=(Ai/1000)×(CT1/CT2), Ai 为无符号整数,单位 A。

零序电流: In=(Ai/1000) ×(CT01/CT02), Ai 为无符号整数,单位 A。

重要电参量快速读取地址表,支持 03、04 功能码读取规则(共 25 个寄存器,仅支持连续读取)

地址	读写属性	数据定义	寄存器
42000	RO	遥信 1	1
42001	RO	遥信 2	1
42002	RO	电流 Ia	1
42003	RO	电流 Ib	1
42004	RO	电流 Ic	1
42005	RO	零序电流 In	1
42006	RO	线电压 Uab	1
42007	RO	线电压 Ubc	1
42008	RO	线电压 Uca	1
42009	RO	相电压 Uan(三相四线制时有效)	1
42010	RO	相电压 Ubn(三相四线制时有效)	1
42011	RO	相电压 Ucn(三相四线制时有效)	1
42012	RO	频率(F)	1
42013	RO	总有功功率 (W)	1
42014	RO	总无功功率(Q)	1
42015	RO	总视在功率(S)	1
42016	RO	总功率因数(PF)	1
42017	RO	总有功电量(Ep)	2
42019	RO	总无功电量(Eq)	2
42021	RO	电能脉冲 PI1	2
42023	RO	电能脉冲 PI2	2

注 1: 三相三线制时地址 42009~42011 中的数据无效皆为 0。

注 2: 以上数据 (Ai) 与实际值之间的对应关系为:

电压: U=(Ai/100)×(PT1/PT2), Ai 为无符号整数,单位 V。

电流: I=(Ai/1000) ×(CT1/CT2), Ai 为无符号整数,单位 A。

零序电流: In=(Ai/1000) ×(CT01/CT02), Ai 为无符号整数,单位 A。

有功功率: P=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数,单位 W。

无功功率: Q=Ai×(PT1/PT2)×(CT1/CT2), Ai 为有符号整数,单位 var。

视在功率: S=Ai×(PT1/PT2)×(CT1/CT2), Ai 为无符号整数,单位 VA。

功率因数: PF=Ai/1000,Ai 为有符号整数, 无单位。

频率: F=Ai/100, Ai 为无符号整数,单位 Hz。

有功电度: Ep=Ai/10, Ai 为无符号长整型(0~999, 999, 999), 单位 kWh。

无功电度: Eq=Ai/10, Ai 为无符号长整型(0~999, 999, 999), 单位 kvarh。

电能脉冲量: E=Ai×脉冲常数(kWh/ 每个脉冲),Ai 为无符号长整型(0~4294967295),无单位。

温度地址表: 支持功能码 03、04 读取

地址	类型	名称	寄存器
48000	RO	温度	1

注:以上数据(Ai)与实际值之间的对应关系为:

温度: T=(Ai/10), Ai 为无符号整数,单位℃。

4. 2. 2. 寄存器地址说明

- 硬件版本号寄存器(40010): 存放于程序存储器中。
- 软件件版本号寄存器(40011):存放于程序存储器中。
- 生产年份(40012): 由生产检验后特殊下载 E2p 中。
- 产品生产顺序号(40013~40015): 由生产检验后特殊下载 E2p 中。
- 系统时间——年、月寄存器(40020): 高字节表示年,范围 00~99,代表 2000~2099;低字节表示月,范围 1~12。
- 系统时间——日、时寄存器(40021): 高字节表示日,范围 1~31; 低字 节表示时,范围 00~23。
- 系统时间——分、秒寄存器 (40022): 高字节表示分, 范围 00~59; 低字 节表示秒, 范围 00~59。
- 系统时间——毫秒寄存器 (40023): 范围 0~999。
- 通讯地址(40030): 取值 1~254, 另外的 0,255 根据不同协议留用广播地址: 254 作为出厂默认地址。
- 通讯波特率 (BAUD) (40032): 1~7分别表示波特率,如下表:

通讯波特率代码	解释
1	600 bps
2	1200 bps
3	2400 bps
4	4800 bps

5	9600 bps
6	19200 bps
7	38400 bps

● 通讯波特率 (PARITY) (40034): 范围 0~3,表示校验方式,如下表:

校验方式代码	解释
0	无奇偶校验、2 位停止位
1	偶校验,1位停止位
2	奇校验,1位停止位
3	无奇偶校验,1位停止位

● 子站状态寄存器 (40050):

位址	定义	缺省值	备注
Bit0	遥信变位标志	0 (无)	遥信查询后清零
Bit1	硬 SOE 存在标志	0 (无)	通讯 SOE 全部查询后清零
Bit2	保护动作标志	0 (无)	动作复归或通讯查询后清零
Bit3	请求对时标志	1 (上电未对 时)	远方对时后清零
Bit4	软 SOE 存在标志	0 (无)	通讯 SOE 全部查询后清零
Bit5	保留	0	
Bit6	保留	0	
Bit7	保留	0	
Bit8	保留	0	
Bit9	保留	0	
Bit10	保留	0	
Bit11	保留	0	
Bit12	保留	0	
Bit13	保留	0	
Bit14	保留	0	
Bit15	保留	0	

● 子站设置寄存器 (40055):

位址	定义	缺省值
Bit0	清除硬 SOE	0
Bit1	越限告警复归	0
Bit2	电度量全部清除	0
Bit3	清除软 SOE	0
Bit4	遥脉全部清除	0

Bit5	遥脉全部冻结	0
Bit6	遥脉全部解冻	0
Bit7	保留	0
Bit8	电度量全部冻结	0
Bit9	电度量全部解冻	0
Bit10	保留	0
Bit11	需量清零	0
Bit12	保留	0
Bit13	参数保存	0
Bit14	最大最小值复归	0
Bit15	强制复位	0

注:广播冻结解冻时,不需要返回报文。当上位机发出冻结命令后,读取的所有电度量为冻结时刻的电度量累计值,而装置内部电度量累计继续执行,如果要想刷新上报电度量累计值,上位机必须发出解冻命令,这样方便用户统一抄表。

- 遥脉/电度量冻结解冻状态寄存器(40060): 高位字节为00,低位字节的BIT0表示遥脉的冻结、解冻状态,BIT1表示 电度量的冻结、解冻状态,其它位无效。1表示冻结,0表示解冻。
- 遥测接线方式(40070):1~5分别表示具体接线方式,如下表:

接线方式代码	解释
1	三相四线制 3CT(3P4W/3PT+3CT)
2	三相四线制 1CT(3P4W/3PT+1CT)
3	三相三线制 3CT(3P3W/3PT+3CT)
4	三相三线制 2CT(3P3W/3PT(或 2PT)+2CT)
5	三相三线制 1CT(3P4W/3PT+1CT)

● 输入功能设置(40079): 1~2分别表示开关量输入方式,如下表,

开关量输入方式代码	解释
1	DI1-DI4 为开关量输入
2	DI1-DI2 为开关量输入,DI3-DI4 为脉冲计数输入

● 输出功能设置(40081): 1~2分别表示2个继电器输出方式,如下表,

继电器输出方式代码	解释
1	脉冲输出型
2	常保持型输出型

- 背光点亮时间(40090): 0~30 分钟, 其中的 0 表示常亮。
- 脉冲输出设置(40083、40084): 40083 寄存器高字节用于设置脉冲宽度,

范围为 $1\sim10$,表示 $100\sim1000$ mS。40083 寄存器的低字节(脉冲常数的 $16\sim13$ 位)和 40084 寄存器(脉冲常数的 $0\sim15$ 位)用于设置脉冲常数,范围为 $1\sim3600000$,表示实际每 kWh 输出的脉冲数的 1000 倍。

● 分时计费设置 (40092~40097): 用于设置 4 费率 48 时段; 时段的步进为 0.5 小时。

每两位表示时段(步进)的费率:

Bit1/bit0	00	01	10	11
费率	尖	峰	平	谷

寄存器 40092~40097 代表 48 个步进时段:

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
40092	4 时	段	3 时	段	2 时	2 时段		1 时段		8 时段		7时段		6 时段		5 时段		
40093	12 卧	付段	11 卧	†段	10 时段 9 时段		段	16 时段		15 时段		14 时段		13 时段				
40094	20 卧	付段	19 卧	†段	18 卧	18 时段		17 时段		24 时段		23 时段		22 时段		21 时段		
40095	28 ₺	付段	27 卧	†段	26 时段		26 时段		25 卧	†段	32 卧	†段	31 ₺	†段	30 卧	†段	29 时	†段
40096	36 ₺	 対段	35 卧	 封段	34 时段		33 卧	 才段	40 卧	 才段	39 卧	 才段	38 卧	†段	37 时	†段		
40097	44 卧	付段	43 卧	†段	42 卧	†段	41 卧	†段	48 卧	†段	47 ₺	†段	46 卧	讨段	45 卧	付段		

注: 步进时段为 0.5 小时, 1 时段代表 00: 00~00: 30, 2 时段代表 00: 30~01: 00, 47 时段代表 23: 00~23: 30, 48 时段代表 23: 30~00: 00。

● 4路数字量输入(40500): 读遥信状态, 低字节 0~3 位依次是第 1~4 个遥信输入, 其他位补零。

字节中的位	7	6	5	4	3	2	1	0
高字节(补零)	0	0	0	0	0	0	0	0
低字节	0	0	0	0	DI4	DI3	DI2	DI1

● 保护遥信(40501~40502): 读线路告警状态。数据解释如下:

字节中的位	7	6	5	4	3	2	1	0
40501 高字 节	0	0	0	0	0	0	0	0
40501 低字 节	A 相 低功 率因 数	A 相 低频 率	A 相 过频 率	A 相 /AB线 低电 压	A相 /AB线 过电 压	A 相 电流 越限	A 相 零流 越限	接地越限
40502 高字 节	B 相低 功率 因数	保留	保留	B 相 /BC 线 低电 压	B 相 /BC 线 过电 压	B相电 流越 限	B相零 流越 限	保留

EM plus 电力智能监控化

								OUGO
40502 低字 节	C相低 功率 因数	保留	保留	C相 /CA线 低电 压	C相 /CA线 过电 压	C相电 流越 限	C相零 流越 限	保留

● 电能脉冲关联设置 (40575): 用于配置关联电量。0~7、8~15 位位分别 用于配置脉冲输出 1、脉冲输出 2; 如下表。

脉冲输出关联代码	解释
0	总正向有功绝对值电度量累计值
1	I象限总无功绝对值电度量累计值
2	Ⅱ象限总无功绝对值电度量累计值
3	总反向有功绝对值电度量累计值
4	Ⅲ象限总无功绝对值电度量累计值
5	IV象限总无功绝对值电度量累计值
6~254	备用
255	无关联

- 需量发生时间寄存器——以寄存器 40800、40801、40802
 - 40800 寄存器的高字节表示年,范围从0~99;
 - 40800 寄存器的低字节表示月,范围从1~12;
 - 40801 寄存器的高字节表示日,范围从1~31;
 - 40801 寄存器的低字节表示时,范围从0~23;
 - 40802 寄存器的高字节表示分,范围从 0~59;
 - 40802 寄存器的低字节表示秒,范围从 0~59。
- 电参量的最大最小值发生时间寄存器——以寄存器 41060、41061、41062 为例:
 - 41060 寄存器的高字节表示年,范围从 0~99;
 - 41060 寄存器的低字节表示月,范围从1~12;
 - 41061 寄存器的高字节表示日,范围从1~31;
 - 41061 寄存器的低字节表示时,范围从0~23;
 - 41062 寄存器的高字节表示分,范围从 0~59;
 - 41062 寄存器的低字节表示秒,范围从 0~59。
- 快速遥信查询寄存器——寄存器 42000、寄存器 42001:

字节中 的位	7	6	5	4	3	2	1	0
42000 高 字节	0	0	0	0	DI4	DI3	DI2	DI1

42000 低 字节	A 相低 功率 因数	低 A 相 频率	A 相过 频率	A 相 /AB 线 低电 压	A 相 /AB 线 过电 压	A 相电 流越 限	A 相零 流越 限	接地告警
42001 高 字节	B 相低 功率 因数	保留	保留	B 相 /BC 线 低电 压	B 相 /BC 线 过电 压	B 相电 流越 限	B 相零 流越 限	保留
42001 低 字节	C 相低 功率 因数	保留	保留	C相 /CA线 低电 压	C 相 /CA 线 过电 压	C 相电 流越 限	C相零 流越 限	保留

4. 2. 3. SOE 通讯格式说明

查询开关量 SOE 的功能码为 55H,查询告警 SOE 的功能码为 56H,此为 MODBUS-RTU 规约的扩充部分,其功能是询问指定地址的 SOE 信息,不支持广播命令。通讯格式如下:

● 主站询问:

格式举例:

Field Name	Example(HEX)
Slave Address	2A
Function	55 (56)
CRC16Lo	DE (9E)
CRC16Hi	EF (EE)

● 子站回答:

结构为如下8字节信息:

信息	年	月	日	时	分	毫秒高&秒	毫秒低
----	---	---	---	---	---	-------	-----

● 信息字节:

BIT7、BIT6 位代表该遥信的变化状态,如下表:

BIT7	BIT6	含义
0	0	开关量遥信状态由分到合(0>1)
1	1	开关量遥信状态由合到分(1>0)
1	0	本装置引发的越限告警(0>1)
0	1	无定义

BIT0~BIT5 代表遥信的序号: 单点 0-31

7	6	5	4	3	2	1	0
保留	保留	保留	保留	DI4	DI3	DI2	DI1
15	14	13	12	11	10	9	8
A 相低功 率因数	A 相低频率	A 相过频 率	A相/AB 线低电压	A 相/AB 线过电压	A 相电流 越限	A 相零流 越限	接地告警
23	22	21	20	19	18	17	16
B 相低功 率因数	保留	保留	B相/BC 线低电压	B 相/BC 线 过电压	B 相电流 越限	B 相零流 越限	保留
31	30	29	28	27	26	25	24
C 相低功 率因数	保留	保留	C相/CA 线低电压	C相/CA 线过电压	C 相电流 越限	C 相零流 越限	保留

年字节: 范围 00~99 (2000~2099 年);

月字节: 范围 01~12 (01~12 月);

日字节: 范围 01~31 (01~31 日);

时字节: 范围 00~23 (00~23 时);

分字节: 范围 00~59 (00~59 分);

毫秒高&秒字节: BIT7,BIT6 代表毫秒高,范围: 0~3;

BIT5-BIT0 代表秒, 范围 0~59 (0~59 秒);

毫秒低字节: 范围 0~255; (和毫秒高一起组成毫秒,范围 0~999)。

格式举例:(SOE 数据结构长度为 8, 1 个 SOE, 2002 年 3 月 25 日 10 时 32 分 24 秒 300 毫秒,第三个遥信由合变分)

Field Name	Example(Hex)
Slave Address	2A
Function	55
Byte Count	09
SOE Status	00
SOE0-信息	C2
SOE0-年	02
SOE0-月	03
SOE0-∃	19
SOE0-时	0A
SOE0-分	20

SOE0-毫秒高&秒	58
SOE0-毫秒低	2C
CRC16 Lo	В6
CRC16 Hi	F0

数据长度根据 SOE 个数 M 和 SOE 数据结构长度而定,M 取值范围($0\sim4$),规定当子站 SOE 数目不小于四个时,每次发四个 SOE,当 SOE 数目不足四个时,一次发完。如果子站无 SOE 记录时,Byte Count 字节填零。子站存在 SOE 记录时,Byte Count 字节后的第一个字节为 SOE 的状态字节(SOE Status),其最低位(BIT0)表示子站是否还有 SOE 记录,BIT0 为 0 时,表示子站无 SOE 记录;BIT0 为 1 时,表示子站有 SOE 记录,等待主站进行查询。该字节的其他位(BIT1 \sim BIT7)保留。

5. 运输与贮藏

本产品运输时,需在包装条件下进行,运输和拆封过程中不应受到剧烈振动和冲击。存放装置应在原包装内,保存地点应环境清洁,环境温度不超过-30℃~+80℃,相对湿度不超过95%(不结露),空气中不含腐蚀性气体和霉菌。

附 录

A. 参数出厂默认值

序号	参数名称	默认值	备注
1	通讯参数 COMM	254, 9.6k, 0	通讯地址号为 254; 波特率为 9600bps; 传输格式: 1 位起始位, 8 位数据位, 无奇偶校验, 2 位停止位
2	系统接线方式 SYS	1	三相四线制 3PT3CT
2	一次侧电压额定值 PT1	220	单位: V
3	二次侧电压额定值 PT2	220	单位: V
4	一次侧电流额定值 CT1	5000	单位: A
4	二次侧电流额定值 CT2	5	单位: A
5	一次侧零序电流额定值	5000	单位: A
3	二次侧零序电流额定值	5	单位: A
6	开关量输入模式	1	4 路开关量输入
7	继电器输出模式	1	继电器输出为脉冲型
8	继电器输出脉冲宽度	2	单位: 秒
	脉冲1输出关联	0	表示未关联电度量
9	脉冲 2 输出关联	0	表示未关联电度量
9	脉冲输出宽度	75	单位:毫秒
	电能脉冲输出常数	1000	每 kWh 输出 1 个脉冲
10	背光灯点亮时间	5	单位:分钟
11	电参量统计区间	10	单位:分钟
	过电流告警是否允许	0	表示不允许
	过电流越限值	6.0	单位: kA
12	过电流回归值	5.0	单位: kA
	过电流告警延时时间	60000	单位: ms
	过电流关联继电器	OFF	表示未关联继电器
13	零流告警是否允许	0	表示不允许
	零流越限值	0	单位: A
	零流回归值	200	单位: A

	零流告警延时时间	60000	单位: ms
	零流关联继电器	OFF	表示未关联继电器
	接地告警是否允许	0	表示不允许
	接地越限值	6.0	单位: kA
14	接地回归值	5.0	单位: kA
	接地告警延时时间	60000	单位: ms
	接地关联继电器	OFF	表示未关联继电器
	低压告警是否允许	0	表示不允许
	低压越限值	0	单位: V
15	低压回归值	50	单位: V
	低压告警延时时间	1800	单位: s
	低压关联继电器	OFF	表示未关联
	过压告警是否允许	0	表示不允许
	过压越限值	260	单位: V
16	过压回归值	220	单位: V
	过压告警延时时间	1800	单位: s
	过压关联继电器	OFF	表示未关联继电器
	低频告警是否允许	0	表示不允许
	低频越限值	45	单位: Hz
17	低频回归值	46	单位: Hz
	低频告警延时时间	1800	单位: s
	低频关联继电器	OFF	表示未关联继电器
	过频告警是否允许	0	表示不允许
	过频越限值	55	单位: Hz
18	过频回归值	54	单位: Hz
	过频告警延时时间	1800	单位: s
	过频关联继电器	OFF	表示未关联继电器
19	低功率因数告警是否允许	0	表示不允许
	低功率因数越限值	0.5	
	低功率因数回归值	0.6	
	低功率因数告警延时时间	1800	单位: s
	低功率因数关联继电器	OFF	表示未关联继电器
20	保护密码	0000	
21	时段费率	各时段均为3	表示平费率

B. 技术指标

● 符合标准

GB/T 13729-2002	远动终端设备	
GB/T 17626.2-2006	静电放电抗扰度试验	等级 3
GB/T 17626.4-1998	电快速瞬变脉冲群抗扰度试验	等级 3
GB/T 17626.5-1999	浪涌抗扰度试验	等级 3

● 监测技术指标

电压	精度: 0.2 级; 范围: 0-42000V			
电流	精度: 0.2 级; 范围: 0-6000A			
功率因数	精度: 0.5 级; 范围: 0≤ COSΦ ≤1			
有功功率	精度: 0.5 级; 范围: 0-756000kW			
无功功率	精度: 0.5 级; 范围: 0-756000kvar			
视在功率	精度: 0.5 级; 范围: 0-756000kVA			
———————— 电能	精度: 0.5 级; 范围: 0-99999999.9kWh			
频率	精度: 0.02Hz; 范围: 45-65Hz			
谐波精度	精度: B级			
开关量采集	分辨率: 2ms; 去抖时间: 60ms			
脉冲计数	脉冲宽度: 10ms; 范围 0~65536 ²			
脉冲输出 脉冲宽度: ≥100ms				

● 工作参数

工作电源:	交流或直流电源: 85VAC~265V	
功耗:	<5W	
工作环境:	-25℃ ~ +70℃, 95% 不结露	
存储温度:	-30°C ∼ +80°C	
显示:	分段式液晶,视域 67mm×60mm	
重量:	500 克	
防护等级:	面板 IP54,壳体 IP20	

	电压测量范围: 0~264V		
	电流额定值: 5A; 范围: 0.05~6A		
输入特性:	电流额定值: 1A; 范围: 0.01~1.2A		
	开关量采集: 无源节点光隔离输入(隔离电压		
	2500VAC)		
た へ 11 4土 44	遥控继电器: 250V/5AAC 或 30V/5ADC		
输出特性:	脉冲输出: 光隔离输出(隔离电压 2500VAC)		
	通信接口: RS485		
通信:	通信协议: MODBUS-RTU 通信速率:		
	600/1200/2400/4800/9600/19200/38400(定制)bps		
显示更新速度:	<3 秒;		
其他:	绝缘符合 DL478、振动符合 GB7261-87、抗干扰符合		
央他 :	GB6162;		

C. 订货说明

订货时需要标明的相关标准(对应铭牌内容)

- ◆ 电源标准配置:交流或直流电源 85VAC~265V,5W;
- ◆ CT 额定标准输入: 5A , 连续过载 2 倍;可选输入: 1A , 连续过载 2 倍。

厦门 ABB 低压电器设备有限公司

福建厦门火炬高科技开发区创新三路 12-20 号

电话: (86592) 6038118 传真: (86592) 6038110

客户服务热线: (86592) 5719201

邮政编码: 361006

技术说明,如有变更恕不另行通知。

ABB Xiamen Low Voltage Equipment Co.,Ltd.

No.12-20,3rd,Chuang Xin Road,

Xiamen High Technology Development Zone

Xiamen SEZ,Fujian,P.R.China 361006

Tel:(86592)6038118

Fax:(86592)6038110

Customer Service Hot Line:(86592)5719201

