COMP229: Introduction to Data Science Lecture 19: Matrices of linear maps

Olga Anosova, O.Anosova@liverpool.ac.uk Autumn 2023, Computer Science department University of Liverpool, United Kingdom

Lecture plan

- From a linear basis to a linear map
- (Re)inventing well-known operations: matrix-vector & matrix-matrix multiplication
- Scaling of vectors
- From linear maps to affine maps
- Geometry & algebra → Linear algebra

Reminder: Lloyd's k-means clustering

Here are the steps of Lloyd's heuristic algorithm.

- Initialise k centres of clusters in a cloud C.
- For each centre, assign all points of *C* that are closer to this centre than to all others.
- Re-compute the centre of every cluster that was updated above and re-assign all points.
- Stop when centres of clusters don't change or a maximum number of iterations is reached.

The result is a partitioning of the data space into Voronoi cells. Most of the improvements that speed up calculations rely on triangle inequality.

Data patterns need transformations

The standard basis $\vec{e_1}, \ldots, \vec{e_m}$

Two thick vectors above form a better coordinate system for the noisy data than the original axes.

Recall that the symbol \mathbb{R}^m denotes a Euclidean space with a fixed basis of orthonormal vectors $\vec{e_1},\ldots,\vec{e_m}$, where $\vec{e_i}$ has the i-th coordinate 1, all other coordinates 0, e.g. $\vec{e_1}=\begin{pmatrix}1\\0\end{pmatrix}$, $\vec{e_2}=\begin{pmatrix}0\\1\end{pmatrix}$ in \mathbb{R}^2 . Then any $\begin{pmatrix}x\\y\end{pmatrix}=x\begin{pmatrix}1\\0\end{pmatrix}+y\begin{pmatrix}0\\1\end{pmatrix}$.

What is a linear map?

Definition 19.1. A map $f : \mathbb{R}^m \to \mathbb{R}^k$ is **linear** if $f(s\vec{v}) = sf(\vec{v}), s \in \mathbb{R}$, and $f(\vec{u} + \vec{v}) = f(\vec{u}) + f(\vec{v})$.

Claim 19.2. Any linear map f is determined by the images $f(\vec{e_1}), \ldots, f(\vec{e_m})$ of a linear basis $\vec{e_1}, \ldots, \vec{e_m}$.

Problem 19.3. For dimensions m = k = 2, let $f(\vec{e_1}) = \begin{pmatrix} a \\ c \end{pmatrix}$, $f(\vec{e_2}) = \begin{pmatrix} b \\ d \end{pmatrix}$. Express the image of the vector $\begin{pmatrix} x \\ y \end{pmatrix}$ in terms of a, b, c, d, x, y.

The 2-dimensional case

Solution 19.3. Any vector
$$\begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 has the image $f \begin{pmatrix} x \\ y \end{pmatrix} = x \cdot f \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \cdot f \begin{pmatrix} 0 \\ 1 \end{pmatrix} = x \begin{pmatrix} a \\ c \end{pmatrix} + y \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = A\vec{v}$, so $A = (f(\vec{e_1}), f(\vec{e_2}))$.

This is why matrix-vector multiplication is defined this way: to easily represent a linear map.

The matrix of a linear map

Definition 19.4. For a fixed basis $\vec{e_1}, \ldots, \vec{e_m}$ in \mathbb{R}^m , the $k \times m$ matrix of a linear map $f : \mathbb{R}^m \to \mathbb{R}^k$ consists of m columns that are the images $f(\vec{e_1}), \ldots, f(\vec{e_m})$, i.e. vectors of k coordinates in \mathbb{R}^k .

For
$$m=k=2$$
, if $f(\vec{e_1})=\begin{pmatrix} a \\ c \end{pmatrix}$, $f(\vec{e_2})=\begin{pmatrix} b \\ d \end{pmatrix}$, then the 2×2 matrix of f is $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Matrix multiplied by a vector

Claim 19.5. Let $A = (a_{ij})$ be the matrix of $f : \mathbb{R}^m \to \mathbb{R}^k$.

Any $\vec{v} \in \mathbb{R}^m$ with coordinates c_1, \ldots, c_m has the image $f(\vec{v}) = A\vec{v}$ obtained by multiplying the $k \times m$ matrix A by the vector (column) \vec{v} as follows:

the *i*-th coordinate of $A\vec{v}$ is the scalar product of the *i*-th row of A and \vec{v} .

For example, in
$$\mathbb{R}^2$$
: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$.

Examples of linear maps

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is called the **identity** matrix, because the linear map $\vec{v} \mapsto A\vec{v} = \vec{v}$ preserves any vector.

The
$$m \times m$$
 identity matrix is $A = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$.

Problem 19.6. What geometric transformations are represented by $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$?

Solution 19.6. Projections to the axis x, y in \mathbb{R}^2 .

A scaling of vectors

Definition 19.7. The (non-uniform) scaling is the multiplication by a diagonal matrix $f(\vec{v}) = A\vec{v}$ for a fixed

matrix
$$A = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_m \end{pmatrix}$$
, where only non-diagonal

elements don't vanish: $\lambda_i \neq 0$.

Any $\vec{v} = \sum_{j=1}^m c_j \vec{e_j}$ has the image $A\vec{v} = \sum_{j=1}^m (\lambda_j c_j) \vec{e_j}$, i.e. the j-th coordinate of \vec{v} is multiplied by $\lambda_j \in \mathbb{R}$.

Mirror reflections in axes

Problem 19.8. What maps are represented by $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$,

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)?$$

Hence they define the mirror reflections in the axes x, y and their composition, which is the central symmetry with respect to the origin in \mathbb{R}^2 .

What is an affine map?

Definition 19.9. The **translation** by a fixed vector

$$\vec{u} = \begin{pmatrix} s \\ t \end{pmatrix}$$
 is defined for any $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ by

$$f(\vec{v}) = \vec{v} + \vec{u} = \begin{pmatrix} x + s \\ y + t \end{pmatrix}$$
, similarly in \mathbb{R}^m .

 $f: \mathbb{R}^m \to \mathbb{R}^k$ is called **affine** if $f(\vec{v}) = A\vec{v} + \vec{u}$ for a fixed $k \times m$ matrix A and a fixed vector $\vec{u} \in \mathbb{R}^k$.

An affine map is linear if $\vec{u} = \vec{0}$, i.e. the origin is preserved by a linear map.

The matrix multiplication

Claim 19.10. The composition of linear maps

 $\mathbb{R}^m \to \mathbb{R}^k \to \mathbb{R}^n$ given by matrices $A : \mathbb{R}^m \to \mathbb{R}^k$,

 $B: \mathbb{R}^k \to \mathbb{R}^n$ is represented by the matrix product BA

computed as follows: $(BA)_{ij} = \sum_{s=1}^{k} b_{is} a_{sj}$.

Matrices are added and multiplied by a scalar 'entry-wise' similarly to vectors, but are multiplied together 'rows-by-columns': *i*-th row by *j*-th column

$$\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 + b_1c_2 & a_1b_2 + b_1d_2 \\ c_1a_2 + d_1c_2 & c_1b_2 + d_1d_2 \end{pmatrix}.$$

The matrix multiplication in 2D

If
$$n = 2$$
, any affine transformation has the form
$$f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} s \\ t \end{pmatrix} =$$

$$= \begin{pmatrix} ax + by + s \\ cx + dy + t \end{pmatrix} \text{ for any coordinates } x, y \in \mathbb{R}.$$

Historically and only for n=1, we also call the transformation $f(x)=ax+b, x\in\mathbb{R}$, linear, because the fomula coinsides with the equation of a straight line. In general terms of linear algebra, this "linear" transformation is not linear, but affine.

From geometry to algebra

Problem 19.11. Write the algebraic form of this map in \mathbb{R}^2 : scale the first coordinate by 2 and the second by 3, then translate by the vector $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Solution 19.11. Composition:

$$\left(\begin{array}{c} x \\ y \end{array}\right) \mapsto \left(\begin{array}{c} 2x \\ 3y \end{array}\right) \mapsto \left(\begin{array}{c} 2x+2 \\ 3y+1 \end{array}\right),$$

Order of the operations matters: opposite order gives another map,

$$\left(\begin{array}{c} x \\ y \end{array}\right) \mapsto \left(\begin{array}{c} x+2 \\ y+1 \end{array}\right) \mapsto \left(\begin{array}{c} 2(x+2) \\ 3(y+1) \end{array}\right).$$

From algebra to geometry

Problem 19.12. Geometrically describe the map given algebraically $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 3x - 3 \\ 2y + 4 \end{pmatrix}$.

Solution 19.12. The order is important.

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 3x \\ 2y \end{pmatrix} \mapsto \begin{pmatrix} 3x - 3 \\ 2y + 4 \end{pmatrix} = \begin{pmatrix} 3(x - 1) \\ 2(y + 2) \end{pmatrix},$$

In words: we scale by $\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$, then translate by $\begin{pmatrix} -3 \\ 4 \end{pmatrix}$; or we first translate by $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$, scale by $\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$.

Time to revise and ask questions

Let's repeat those cornerstone basics with this video from 3Blue1Brown.

- Any linear map is determined by images of basis vectors and can be represented by the matrix whose columns are these images.
- The matrix multiplication is motivated by the composition of linear maps: $(BA)_{ij} = \sum_{s=1}^{k} b_{is} a_{sj}$.
- Any affine map $\mathbb{R}^m \to \mathbb{R}^k$ is $\vec{v} \mapsto A\vec{v} + \vec{u}$ for a fixed $k \times m$ matrix A, a fixed vector $\vec{u} \in \mathbb{R}^k$.

Problem 19.13. Compute the square (composition with itself) of the map given by $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.