Recitation: Classification & Representation Learning

Evan Hernandez-Ekin Akyürek

MIT 6.864/806 - Spring 2021

Agenda

1. Classification Problem

- Definition
- Loss Functions
- Learners

2. Representation Learning

- What should be x?
- Unsupervised Representation Learning
 - Latent Semantic Analysis
 - GloVE
- 3. Demo: Text Classification with GloVe Embeddings

Classification Problem

Let there be **Data**:

$$(x,y) \sim P_{\mathcal{D}}(X,Y)$$

(unknown)

$$y \in \{0,1\}$$

 $y \in \{0,1,...,k\}$

Deterministic Labeling Function

$$y = f_{gold}(x)$$

(assumption)

Training data

$$S_{train} = \{(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)\} \sim P_{\mathcal{D}}^{n}(x, y)$$
 (i.i.d)

Learner

$$Learner(S_{train}) = f_{learned}$$
 predictor

NN + SGD, SVMs

Classification Problem

Loss Function

$$L(\hat{y}, y) = |y - \hat{y}|^2$$
 (choice)

logistic loss, crossentropy, max-margin

True Error

$$e(f_{learned}) = \mathbb{E}_{(x,y) \sim P_{\mathcal{D}}} \left[L\left(f_{learned}(x), y\right) \right]$$

population risk

Training Error

$$\hat{e}(f_{learned}) = \frac{1}{n} \sum_{i=1}^{n} L\left(f_{learned}(x), y\right)$$

what learner knows

Empirical Risk Minimization

Learner(
$$S_{train}$$
) = arg min $\hat{e}(f_{learned})$
 $f_{learned} \in F$

F: parameters of NN

$$f_{learned} = f_{w \in \mathcal{W}}$$

Loss Functions-I: Binary

0-1 Loss

$$L(\hat{y}, y) = 1_{y \neq \hat{y}}$$

Square Loss

$$L(\hat{\mathbf{y}}, \mathbf{y}) = |\mathbf{y} - \hat{\mathbf{y}}|^2$$

 $\hat{y} \in [0,1]$

Absolute Loss

$$L(\hat{y}, y) = |y - \hat{y}|$$

Logistic Loss / Binary Cross Entropy Loss

$$L(\hat{y}, y) = y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})$$

Loss Functions-II: Multi-Class

$$f'_{learned}(x) = s \in \mathbb{R}^K$$

$$K = 5 \qquad \begin{bmatrix} 1.3 \\ 5.1 \\ 2.2 \\ 0.7 \\ 1.1 \end{bmatrix} \longrightarrow \text{softmax}(s) = \frac{\exp(s_y)}{\sum_i \exp(s_i)} \longrightarrow \begin{bmatrix} 0.02 \\ 0.90 \\ 0.05 \\ 0.01 \\ 0.02 \end{bmatrix} \longrightarrow \hat{p}(y = 1 \mid x)$$

$$\downarrow \text{arg max}$$

$$f_{learned}(x) = \hat{y} = 1$$

Loss Functions-II: Multi-Class

$$f'_{learned}(x) = s \in \mathbb{R}^K$$

Cross Entropy Loss / Negative Log Likelihood

$$L(y, s) = -\log\left(\frac{\exp(s_y)}{\sum_{i} \exp(s_i)}\right) = \log \operatorname{softmax}(s)_y$$

Max-Margin Loss

$$L(y, s) = \max(0, \max(s_{-y}) - s_y + c)$$

Zero-One

$$L(y, s) = 1_{y \neq \arg\max_i s}$$

Learners

Parametric Today's demo

Neural Networks + SGD

used in HW1

SVM

Random forests

Non-Parametric

K-NN

Gaussian Process Classifiers

Representation Learning

input = "this is a sturdy coffee machine, but..."

think about making learner's job easy!

- is it easy for classifier to exploit relationships btw. the words in this representation?
- is there a way to learn better input representations?

Unsupervised Representation Learning

If we have access to <u>unlabeled collection</u> of inputs, can we learn better representations?

There might be a smaller dense vector space that explain data better than sparse representations?

Term-Document Matrix

is this a good representation?

SVD

$$W_{td} = U \Sigma V^T$$

Compact SVD

$$U \in \mathbb{R}^{|w| \times |w|}, \Sigma \in \mathbb{R}^{|w| \times |w|}, V \in \mathbb{R}^{|d|x|w|}$$
 assuming $|w| < |d|$

Note that
$$i < j \implies \sigma_i \ge \sigma_j$$

$$= \sum_{i=1}^{|w|} \sigma_i u_i v_i^T$$

$$\sigma_i u_i v_i^T pprox \sum_{i=1}^t \sigma_i u_i v_i^T$$
 (Truncated SVD)

Truncated SVD

Term-Document Matrix

TF-IDF

$$TF.IDF = \#(w,d) \times \frac{\#(documents)}{\#(documents has w)}$$

GloVe (Global Vectors)

Word2Vec encodes local statistics through neighborhood word prediction

LSA uses global information about word occurence statistics through T-D

GloVe (Global Vectors) captures global information through word co-occurance matrix

Remember word co-occurance matrix

$$W_{tt} = \begin{bmatrix} cat & dog & the \ cat & 10 & 8 & 103 \ & 8 & 20 & 97 \ & the & 103 & 97 & 995 \end{bmatrix}$$

GloVe (Global Vectors)

Normalize the rows of the word co-occurance matrix

Probability and Ratio

$$k = solid$$
 $k = gas$
 $k = water$
 $k = fashion$
 $P(k|ice)$
 1.9×10^{-4}
 6.6×10^{-5}
 3.0×10^{-3}
 1.7×10^{-5}
 $P(k|steam)$
 2.2×10^{-5}
 7.8×10^{-4}
 2.2×10^{-3}
 1.8×10^{-5}
 $P(k|ice)/P(k|steam)$
 8.9
 8.5×10^{-2}
 1.36
 0.96

We should be able to read of this quantity out of word vectors

$$F\left(w_{i}, w_{j}, \tilde{w}_{k}\right) = \frac{P_{k|i}}{P_{k|j}}$$

GloVe

 $F\left(w_i,w_j,\tilde{w}_k\right)$ should be a simple function so that we can read from the surface

the information present in $\frac{P_{k|i}}{P_{k|j}}$ is related with semantic difference between word i, and j

if i=jit should 1, if i <=> jit should be 1/F
$$\longrightarrow F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F\left(w_i^T \tilde{w}_k\right)}{F\left(w_j^T \tilde{w}_k\right)} = \frac{P_{k|i}}{P_{k|j}}$$

$$\implies F(w_i, \tilde{w}_k) = P_{k|i} = \frac{X_{ik}}{X_i}$$
 and $F = \exp$ is a solution

GloVe

if i=jit should 1, if i <=> jit should be 1/F
$$\longrightarrow F\left((w_i - w_j)^T \tilde{w}_k\right) = \frac{F\left(w_i^T \tilde{w}_k\right)}{F\left(w_j^T \tilde{w}_k\right)} = \frac{P_{k|i}}{P_{k|j}}$$

$$\implies F(w_i, \tilde{w}_k) = P_{k|i} = \frac{X_{ik}}{X_i}$$
 and $F = \exp$ is a solution

$$\implies w_i^T \tilde{w}_k = \log(P_{k|i}) = \log(X_{ik}) - \log(X_i)$$

$$\implies w_i^T \tilde{w}_k + \log(X_i) = \log(X_{ik})$$

$$\to w_i^T \tilde{w}_k + b_i + \tilde{b}_k = \log(X_{ik})$$

GloVe (Global Vectors)

$$\to w_i^T \tilde{w}_k + b_i + \tilde{b}_k = \log(X_{ik})$$

We will globally satisfy this objective!

$$L? = \sum_{i,j=1}^{V} \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2$$

$$L = \sum_{i=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$
 (final objective)

Demo!