

AD-A033 131 TEXAS UNIV AT AUSTIN DEFENSE RESEARCH LAB
SHANNON'S THEOREM, (U)
MAY 67 G S INNIS
UNCLASSIFIED DRL-A-284

F/0 12/1

NOBSR-95181

NL

| OF |
AD
A033131

END

DATE
FILMED
2-77

ADA033131

DEFENSE RESEARCH LABORATORY

THE UNIVERSITY OF TEXAS

AUSTIN, TEXAS 78712

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

(1)

(11) 24 May 1967

(12) 87 p.

Copy No. 1

Resulting from Research Done Under
Naval Ship Systems Command Contract NObsr-95181

(15)

DEFENSE RESEARCH LABORATORY
THE UNIVERSITY OF TEXAS AT AUSTIN
AUSTIN, TEXAS 78712

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

107 500 bpg

DDC
REF ID: A
NOV 26 1976
RUGBY

TABLE OF CONTENTS

	<u>Page</u>
I. INTRODUCTION	1
II. EXPLANATION OF SHANNON'S THEOREM	3
III. EXPLANATION OF PARAMETERS READ IN FROM DATA CARD	5
IV. EXPLANATION OF PARAMETERS CALCULATED IN PROGRAM RANDOM	8
V. LISTING OF PROGRAM RANDOM	12
VI. FILTER WEIGHTS FOR BPF1 (3 kHz-7 kHz)	19
VII. FILTER WEIGHTS FOR BPF2 (4 kHz-6 kHz)	21
VIII. GRAPHS	23
A. Explanation of Graphs	24
B. Effect of Shannon's Theorem Used with Analog Filtered Data, Illustrated by Graphs	26
1. Using Every Third Point (LP = 3)	27
2. Using Every Fifth Point (LP = 5)	35
C. Effect of Shannon's Theorem with Data Filtered By BPF1 (3 kHz-7 kHz), Illustrated by Graphs	43
1. Using Every Third Point (LP = 3)	44
2. Using Every Fifth Point (LP = 5)	52
D. Effect of Shannon's Theorem with Data Filtered By BPF2 (4 kHz-6 kHz), Illustrated by Graphs	60
1. Using Every Third Point (LP = 3)	61
2. Using Every Fifth Point (LP = 5)	69
IX. COMPARISON OF RELATIVE ERRORS INVOLVING COMBINATIONS OF VARIOUS TYPES OF FILTERS, THE NUMBER OF POINTS USED FROM EACH SIDE FOR CALCULATION, AND THE DIFFERENT VALUES OF LP, ILLUSTRATED BY GRAPHS AND TABLES	77
X. CONCLUSION	82
BIBLIOGRAPHY	84

I.

INTRODUCTION

I. INTRODUCTION

This report is concerned with some of the practical aspects of Shannon's Theorem, i.e., that a band-limited time series is completely determined by its value at equally spaced time intervals, Δt , if $1/2\Delta t$ is greater than the bandwidth. Thus,

$$f(t) = \sum_n f(n\Delta t) h(t - n\Delta t),$$

where $1/2\Delta t >$ bandwidth of f .

Sum over n of ()

Δt

In practice, f is only approximately band limited and the series contains

only a finite number of terms. In this report, the effects of bandwidth and truncation of the series are studied.

The programming and other assistance of Miss Cheryl A. Burr are hereby gratefully acknowledged.

II.

EXPLANATION OF SHANNON'S THEOREM

II. EXPLANATION OF SHANNON'S THEOREM

Shannon's Theorem states that if $x(t)$ is a time series with center frequency ω_0 and bandwidth B, then

$$x(t) = \sum x(n\tau) h(t - n\tau) ,$$

where

$$h(t) = \cos \frac{\pi t}{2\tau} (2m - 1) \frac{\sin \frac{\pi t}{2\tau}}{\frac{\pi t}{2\tau}} ,$$

with

$$\tau \leq \frac{1}{2B} ,$$

$$\omega_0 = (2m - 1) \frac{B}{2} .$$

The parameters of PROGRAM RANDOM that occur above are as follows:

$$T = t$$

$$N = n$$

$$TAU = \tau$$

$$PI = \pi$$

$$M = m .$$

It is evident from the form of the function f that the heaviest contributors to the sum will be those for which $n\tau$ is near t. This observation is employed in this study in that the series is always evaluated only for those n such that $t - n\tau$ is small. Thus, the values of $f(n\tau)$ used are those with $n\tau$ in an approximately symmetric interval about t.

III.

EXPLANATION OF PARAMETERS READ IN FROM DATA CARD

III. EXPLANATION OF PARAMETERS READ IN FROM DATA CARD

- A. NN - used to indicate which plotting routines are to be used. If NN = 1, only the calculated graph will be plotted. If NN = 0, both the original graph and the calculated graph will be plotted.
- B. NOY - the "number of Y's", or number of data points used. In PROGRAM RANDOM using Magnetic Tape 138, NOY = 3000.
- C. LP - the division factor used to calculate or reconstruct the data curve. When LP = 3, every third point of the data is used to reconstruct the curve. When LP = 5, every fifth point is used.
- D. ITT - the size of the data block used to reconstruct the data points. ITT/2 is the number of points taken on each side of the reconstructed point used for calculation. ITT has been equal to 10, 20, 30, 40, 100, and 200.
- E. LSUM - the number of data points to be reconstructed. LSUM may be any integer less than or equal to NOY. It is usually set at 40.
- F. M - an integer for which the band-limited signal is between $(M - 1) \cdot W$ and $M \cdot W$ Hz. When LP = 3, M = 2. When LP = 5, M = 3.
- G. DELTA - the number of seconds between each data point. DELTA = 0.00005.
- H. NNA - the first point of the data block to be reconstructed. Here NNA = 1330. When the data are unfiltered (analog filtered) the parameter NA is set equal to NNA. When the data are filtered, NA is set equal to $NNA - (FPL - 1)/2$ since the filtered data are moved over to the left by the number of the filter weights divided by 2.

I. NNZ - the last point of the data block to be reconstructed. NNZ = 1370 when LP = 5. NNZ = 1372 when LP = 3 for purposes of division. When the data are unfiltered (analog filtered), the parameter NZ is set equal to NNZ. When the data are filtered, NZ is set equal to NNZ - $(FPL - 1)/2$ since the filtered data are moved over to the left by the number of the filter weights divided by 2.

J. FPL - the number of filter weights used. In these programs, BPFL (Band-pass Filter 1, 3 kHz-7 kHz) and BPF2 (Band-pass, Filter 2, 4 kHz-6 kHz) both have 201 filter weights.

IV.

EXPLANATION OF PARAMETERS CALCULATED IN PROGRAM RANDOM

IV. EXPLANATION OF PARAMETERS CALCULATED IN PROGRAM RANDOM

The following parameters are in the order in which they are calculated in PROGRAM RANDOM.

- A. ND - number of data points used from tape.
- B. TAU - self-explanatory; with varying data the parameter TAU equals the division factor (LP) multiplied by DELTA.
- C. NA - (see Chap. III, H.).
- D. NZ - (see Chap. III, I.).
- E. S Array - Y is an integer array and must be converted to real and stored in the array S for use in SUBROUTINE FILTER.
- F. XT Array - for saving storage space.
- G. N - the number of weights put in as data. These must have a mirror image made in order to get the total array of weights.
- H. NP1 - Since there are N weights read in, their subscripts will range from 1 to NP1 (or N + 1).
- I. NPMPl - the total number in the array of weights after having been mirror-imaged.
- J. W Array - the weights.
- K. NOX - the number of points in the array to be used for calculation which equals the total number of points divided by the division factor LP.

- L. Z Array - the array consisting of every third point ($LP = 3$) or every fifth point ($LP = 5$) of the original data. The Z array is used for calculating the complete array.
- M. T - the time (equals $I * \text{DELTA}$).
- N. R - parameter that gives the subscript of the element in the Z array making that element equivalent to the corresponding element in the Y array.
- O. LSTART - the subscript of the initial element used in the Z array in scanning ITT number of points for calculating one point. In this scanning the subscripts range from LSTART to LSTOP.
- P. LSTOP - (see O.).
- Q. ZMEAN - the mean that is to be subtracted from every point in the Z array.
- R. TAR - taken directly from the formula (see Chap. II.).
- S. A - taken directly from the formula (see Chap. II.).
- T. B - taken directly from the formula (see Chap. II.).
- U. C - taken directly from the formula (see Chap. II.).
- V. S Array - the newly calculated array.
- W. N1 - the sup error, i.e., the greatest deviation between any two corresponding points in the original array and the calculated array.

- X. RMS - the rms error, i.e., the average deviation over all the points from the original data to the calculated data.
- Y. O Array - the original array to be used for plotting.
- Z. C Array - the calculated array to be used for plotting.

AA. X Array - the value of the subscripts I, I = 1 through ND, to be used for plotting both against the O array and the C array.

V.

LISTING OF PROGRAM RANDOM

```

3200 FORTRAN (2.1) 27/09/66

PROGRAM RANDOM
DIMENSION Y(3000)
COMMON XT(3000),YT(200),XX(400)
COMMON X(43),S(3000),K(41),O(43),M1(41),MABS(4),Z(1000)
1),Z2(1000),C(43),IC(52),SUPN(11),PRMSN(11),TP(28)

INTEGER Y
INTEGER FPL,TPL
EQUIVALENCE (Y,X1)
ND=3000

NDX=0
DO 4 I=1,13
  BUFFER IN (3,1)(Y(1)),Y(2))
4 CONTINUE
51 HUFFER IN (3,1)(Y(1))•Y(ND))
10 60 TO (10,123,13,13)UNIT$IF(3)
13 BACKSPACE 3
NDX= NDX + 1
IF (NDX .EQ. 5)14,51
14 PRINT 15
15 FORMAT(22H PARITY ERROR ON LUN 3)
13 GO TO 62
123 READ 3,NN,NOY,LP,ITI,LSUM,M,DELTA,NNA,NNZ,FPL
  3 FORMAT (12,2X15.4(3X15), 3XF11.7, 3(X15))
  PRINT 3,NN,NOY,LP,ITI,LSUM,M,DELTA,NNA,NNZ,FPL
  PRINT 22222,LP,NNB,NNZ
22222 FORMAT (26H RANDOM CURVE USING EVERY •12,23H POINTS BETWEEN POINTS
1,15.5H AND,15.47H FOR CALCULATION, FILTERED WITH BPF1, 3KC - 7KC)
  TAU=LP*DELT
  NAA=NNA-(FPL-1)/2
  NZ=NNZ-(FPL-1)/2
  DO 5555 I=1,ND
    5555 S(I)=Y(I)
    DO 5556 I=1,ND
      5556 XT(I)=S(I)
      N=100
      NP1=N+1
      NP1=NP1+N
      READ RRRA, (W(I), I=1, NP1)
      RRRA FORMAT (H(10,5))
      CALL FILTER (ND, NP1, MN)
      PRNT 59

```

```

59 FORMAT(15H ORIGINAL Y(I))
DO 6666 S(I)=X(I)
DO 6667 I=1,ND
6667 Y(I)=X(I)
DO 57 I=1,ND
IF(I.GE.NA.AND.I.LE.NZ) 61,57
61 PRINT 58,Y(I)
58 FORMAT(3X,I1)
57 CONTINUE
DO 64 I=NA,NZ
I=I-NA+1
K(I)=Y(I)
64 CONTINUE
NSTART = NOY/?  

NOX = NOY/LP  

NFF = NSTART + LP*NOX/?  

IFF = 2*NSTART - NFF  

DO 2 I=1,NOX
JFF = IFF + LP*I
Z(I) = Y(JFF)
2 CONTINUE
DO 150 I = 1,ND
Y(I) = "
150 CONTINUE
PI = 3.141592654
DO 20 I=NA,NZ
I = I + DELTA
S(I) = "
20 R=T/LP
LSTART=R-ITT/2+.001
LSTOP=R+ITT/2+.001
SM=0.0
DO 99 L=START,LSTOP
99 SM=SM+Z(L)
ZMEAN=SM/(LSTOP-LSTART+1)
IF (LSTOP.GT.NOX) 85,84
85 LSTOP = NOX
84 DO 19 N=LSTART,LSTOP
ZZ(N)=Z(N)-ZMEAN
TAR = T - (N * TAU)
IF (TAR .EQ. 0) 47,48
47 A = 1

```

```

H = 1
GO TO 52
4H A = (P * TAU) / (P1 * TAU)
H = SIN(P1 * TAU) / (P1 * TAU) / (P * TAU)
52 C = COS(P1 * ((2 * M) - 1) * TAU * ((2 * TAU)))
S11=S((1)*72(N)*A*R*C
19 CONTINUE
Y11=S11
PRINT 6, T, Y(1)
6 FORMAT(20X4H X(.F10.7,6H) = .110)
20 CONTINUE
MSUM = 0
N1 = 0
DO 62 I=NA,NZ
II=I-NA+
MI((I))=IAHS(Y(I)-K((I)))
MSUM = MSUM + (MI((I))**2)
IF (MI((I)) .GT. N1) N1 74,62
74 N1 = MI((I))
62 CONTINUE
65 FORMAT(//20X,13H SUPNORM = .110)
SUM = MSUM
RMS = SQRT( SUM/(NZ-NA+1))
PRINT 66, RMS
66 FORMAT(20X,13H RMSNORM = .F10.4)
M=L/P/2
MM=M+1
DO 222 L=1,MM
SUPN(L)="
222 PRMSN(L)="
L=IAHS((L*J-1)+1
II=I-NA+
J=(I+M)/LP
P=I*BS(Y(I)-K(I))
IF (P.GT.SUPN(L)) 110,111
110 SUPN(L)=P
11 PRMSN(L)=PRMSN(L) + P**2
DO 421 L=1,MM
NP = ((NZ-NA)/LP)**2
IF (L.EQ.MM.AND.P > (L-1).GT.((LP-1).OR.L.F0.1)) 589,420
589 NP=(NZ-NA)/LP

```

```

420 RMSN(L) = SORTF (PRMSN(L)/NP)
DO 669 L=1,MM
68 FORMAT (//20X,B-H-SUPNORM ,11.3H = •F10.4•lnx•BHRMSNORM ,11.3H = •
1F15.12)
669 PWNIT &R,L,SUPN(L),L,RMSN(L)
DO 49 I=NA,NZ
I=I-NA+1
O(I) = K(I)
C(I) = Y(I)
X(I)=I
49 CONTINUE
CALL PLOT(5.0,-12.0,-3)
CALL PLOT(0.0,1.5,-3)
IX = 4H
I
I0 = 4HO(I)
IF (NN.GT.0) 355,356
356 CONTINUE
X(42) = NA
X(43) = 5.0
O(42)=240.0
O(43)=60.0
16 CALL AXIS(0.0, 0.0, 10.4, 8.0, 0.90, 0.0, 0(42), 0(43), 0.1, 0.1, 0.1)
CALL AXIS(0.0,0.4,0.0,1X,-4,8.0,0.0,0, X(42), X(43), 0.1, 0.1, 0.1)
CALL LINE(X,0.4,1.1,1.4,0.08,1,0.0)
CALL PLOT(12.0,0.0,-3)
355 CONTINUE
X(42) = NA
X(43) = 5.0
C(42)=-240.0
C(43)=60.0
ICT=4HC(I)
CALL AXIS(0.0, 0.0, ICT, 4.0, 8.0, 0.90, 0.0, C(42), C(43), 0.1, 0.1, 0.1)
CALL AXIS(0.0,0.4,0.0,1X,-4,8.0,0.0,0, X(42), X(43), 0.1, 0.1, 0.1)
CALL LINE(X,C,4,1,1,1.4,0.08,1,0.0)
CALL LINE(X,C,4,1,1,-LP,1,0,0.08,1,0.0)
IC(1)=4HNO*
IC(2)=4HOFP
IC(3)=4HOINT
IC(4)=4HSFR
IC(5)=4HOMF
IC(6)=4HACH
IC(7)=4HSIDE
IC(H)=4H USE

```

```

IC(9)=4H  F0
IC(10)=4HR CA
IC(11)=4HLCIL
IC(12)=4HAT10
IC(13)=4HN -
CALL SYMBOL (.5, 0.0, 14, IC(1), 0, 0, 52)
FPN=IT/?
CALL NUMBER (7.0, 0.0, 14, FPN, 0.0, -1)
TP(1)=4HFIL7
TP(2)=4HFREN
TP(3)=4H BY
TP(4)=4HBPF
TP(5)=4H (3K
TP(6)=AH C -
TP(7)=H7KC)
CALL SYMBOL (2.5, 0.0, 50, 14, TP(1), 0, 0, 2R)
NDX= 1
36 BUFFER OUT (4,1)(Y(1),Y(ND))
31 GO TO (31,32,34,34)UNIT$TF(4)
34 BACKSPACE 4
      NDX= NDX + 1
      IF (NDX .EQ. 5) 26,36
17   32 NDX= 0
      33 BUFFER OUT (4,1)(Z(1),Z(NDX))
      41 GO TO (41,42,44,44)UNIT$TF(4)
      44 BACKSPACE 4
      NDX= NDX + 1
      IF (NDX .EQ. 5) 26,33
26 PRINT 27
27 FORMAT(22H PARITY ERROR ON LUN 4)
42 CONTINUE
ENI,

```

3200 FORTRAN DIAGNOSTIC RESULTS - FOR RANDOM

NO ERRORS

3200 FORTRAN (2.1) 27/09/66

SUBROUTINE FILTFQ (N,MX,MN)

COMMON YT(3000),H(200),XX(400)

MN = 2*MX - 1

JAX = 0 \$NOX = MX \$XX(MX) = H(1) \$NOP = 1

MNX=MX+1

1 I=MNX,MN

\$OP = NOP + 1

XX(1) = -(NOP)

NOX = NOX - 1

NCHEK = N - 2*(MX - 1)

K = MN - 1 \$KP = 0

K = K + 1

IF (N.GT.K - 1) 405

4 JAX = JAX + 1

NOR = 0 \$ SUM=0

KP = KP + 1

DO 3 KX=KP,MN

NOR = NOR + 1

3 SUM=SUM+YT(KX)*XX(NOR)

YT(JAX)=SUM

60 TO 6

5 CONTINUE

FND

18

VI.

FILTER WEIGHTS FOR BPF1 (3 kHz-7 kHz)

FILTER WEIGHTS FOR BAND-PASS FILTER 1 (3KC-7KC)

.31001	0	-0.25331	0	.14161	0	-0.02815
-0.04540	0	.04053	0	-0.01573	0	-0.00517
.00585	0	-9.00313	0	0	0	-0.00209
.00393	0	-0.00150	0	-0.00289	0	.00450
-0.00221	0	-0.00088	0	.00175	0	-0.00070
.	0	-0.00057	0	.00117	0	-0.00048
-0.00094	0	.00162	0	-0.00044	0	-0.00035
.00072	0	-0.00030	0	0	0	-0.00026
.00055	0	-0.00023	0	-0.00049	0	.00083
-0.00044	0	-0.00019	0	.00039	0	-0.00017
.	0	-0.00015	0	.00032	0	-0.00014
-0.00024	0	.00050	0	-0.00027	0	-0.00011
.00025	0	-0.00011	0	0	0	0

VII.

FILTER WEIGHTS FOR BPF2 (4 kHz-6 kHz)

FILTER WEIGHTS FOR BAND-PASS FILTER 2 (4KC-6KC)

•1 4944	0	-0.18597	0	•14779	0	-0.04561	0
•042461	0	0	0	-0.02495	0	•03174	0
-0.02504	0	•01216	0	0	0	-0.00719	0
•00859	0	-0.00606	0	•00244	0	0	0
-0.00049	0	-0.00035	0	•00123	0	-0.00117	0
0	0	0	0	-0.00280	0	•00282	0
-0.00159	0	•00164	0	•00144	0	-0.00205	0
•00174	0	-0.00046	0	0	0	•00044	0
-0.00039	0	•00009	0	•00011	0	0	0
-0.00037	0	•00075	0	-0.00086	0	•00057	0
0	0	-0.00059	0	•00091	0	-0.00084	0
•00046	0	0	0	-0.00032	0	•00039	0
-0.00024	0	•00004	0	0	0		

VIII.

GRAPHS

VIII.

A. Explanation of Graphs

VIII. A. EXPLANATION OF GRAPHS

The graphs bound within the text of this report are reproduced data calculated using Shannon's Theorem. In an envelope at the back of the report are three transparencies. The first of these shows the original data, which has been analog band-pass filtered (4-6 kHz) and digitized at 20 kHz. The graphs of Chapter VIII, B. are attempts at reproducing these data. As is easily seen from overlaying the graphs and from the peak and rms errors, these reproductions are not very accurate. The second and third transparencies and the graphs of Chapter VIII, C. and VIII, D. are the results of digitally filtering the data on the first transparency, using band-pass filters BPF1 and BPF2 respectively, and then applying Shannon's Theorem.

Data from outside the displayed interval were used in the calculations when necessary.

VIII.

B. Effect of Shannon's Theorem Used with
Analog Filtered Data, Illustrated by Graphs

VIII.

B. 1. Using Every Third Point (LP = 3)

RELATIVE SUP ERROR = 0.165
RELATIVE rms ERROR = 0.078

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 5
ANALOG FILTERED

31

DRL - UT
DWG AS-67-647
GSI - EJW
6 - 20 - 67

RELATIVE SUP ERROR = 0.148
RELATIVE rms ERROR = 0.067

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 15
ANALOG FILTERED

DRL - UT
DWG AS-67-648
GSI - EJW
6 - 20 - 67

VIII.

B. 2. Using Every Fifth Point ($LP = 5$)

DRL - UT
 DWG AS-67-651
 GSI - EJW
 6 - 20 - 67

REPRODUCED WAVEFORM WITH No. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 10
ANALOG FILTERED

RELATIVE SUP ERROR = 0.148
RELATIVE rms ERROR = 0.069

DRL - UT
DWG AS-67-653
GSI - EJW
6 - 20 - 67

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 15
ANALOG FILTERED

DRL - UT
DWG AS-67-655
GSI - EJW
6 - 20 - 67

RELATIVE SUP ERROR = 0.148
 RELATIVE rms ERROR = 0.074

REPRODUCED WAVEFORM WITH No. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 100
 ANALOG FILTERED

RELATIVE SUP ERROR = 0.140
RELATIVE rms ERROR = 0.073

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 200
ANALOG FILTERED

DRL - UT
DWG AS-67-657
GSI - EJW
6 - 20 - 67

VIII.

C. Effect of Shannon's Theorem with Data Filtered
By BPF1 (3 kHz-7 kHz), Illustrated by Graphs

VIII.

C. 1. Using Every Third Point (LP = 3)

RELATIVE SUP ERROR = 0.088
RELATIVE rms ERROR = 0.054

REPRODUCED WAVEFORM WITH No. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 3
FILTERED BY BPF1 (3 kHz - 7 kHz)

DRL - UT
DWG AS-67-658
GSI - EJW
6 - 20 - 67

RELATIVE SUP ERROR = 0.059
RELATIVE rms ERROR = 0.034

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 5
FILTERED BY BPF1 (3 kHz - 7 kHz)

DRL - UT
DWG AS-67-659
GSI - EJW
6 - 20 - 67

RELATIVE SUP ERROR = 0.034
RELATIVE rms ERROR = 0.020

REPRODUCED WAVEFORM WITH No. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 10
FILTERED BY BPF1 (3 kHz - 7 kHz)

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 15
FILTERED BY BPF1 (3 kHz - 7 kHz)

DRL - UT
DWG AS-67-661
GSI - EJW
6 - 20 - 67

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 200
FILTERED BY BPFI (3 kHz - 7 kHz)

DRL - UT
DWG AS-67-664
GSI - EJW
6 - 20 - 67

VIII.

C. 2. Using Every Fifth Point (LP = 5)

REPRODUCED WAVEFORM WITH No. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 3
FILTERED BY BPF1 (3 kHz - 7 kHz)

DRL - UT
DWG AS-67-665
GSI - EJW
6 - 20 - 67

RELATIVE SUP ERROR = 0.092
RELATIVE rms ERROR = 0.062

RELATIVE SUP ERROR = 0.063
RELATIVE rms ERROR = 0.040

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 5
FILTERED BY BPF1 (3 kHz - 7 kHz)

DRL UT
DWG AS-67-666
GSI - EJW
6 - 20 - 67

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 10
FILTERED BY BPF1 (3 kHz - 7 kHz)

DRL - UT
DWG AS-67-667
GSI - EJW
6 - 20 - 67

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 15
 FILTERED BY BPFI (3 kHz - 7 kHz)

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 20
FILTERED BY BPF1 (3 kHz - 7 kHz)

DRL - UT
DWG AS-67-669
GSI - EJW
6 - 20 - 67

DRL - UT
 DWG AS-67-671
 GSI - EJW
 A - 20 - 47

VIII.

D. Effect of Shannon's Theorem with Data Filtered
By BPF2 (4 kHz-6 kHz), Illustrated by Graphs

VIII.

D. 1. Using Every Third Point (LP = 3)

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 5
FILTERED BY BPF2 (4 kHz - 6 kHz)

RELATIVE SUP ERROR = 0.053
RELATIVE rms ERROR = 0.033

DRL - UT
 DWG AS-67-674
 GSI - EJW
 5 - 20 - 67

REPRODUCED WAVEFORM WITH No. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 15
FILTERED BY BPF2 (4 kHz - 6 kHz)

DRL - UT
DWG AS-67-675
GSI - EJW
6 - 20 - 67

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 100
FILTERED BY BPF2 (4 kHz - 6 kHz)

DRL - UT
DWG AS-67-677
GSI - EJW
6 - 20 - 67

RELATIVE SUP ERROR = 0.004
RELATIVE rms ERROR = 0.003

DRL - UT
DWG AS-67-678
GSI - EJW
6 - 20 - 67

VIII.

D. 2. Using Every Fifth Point (LP = 5)

DRL - UT
DWG AS-67-679
GSI - EJW
6 - 20 - 67

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 3
FILTERED BY BPF2 (4 kHz - 6 kHz)

71

RELATIVE SUP ERROR = 0.053
RELATIVE rms ERROR = 0.039

REPRODUCED WAVEFORM WITH No. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 5
FILTERED BY BPF2 (4 kHz - 6 kHz)

DRL UT
DWG AS-67-680
GSI - EJW
6 - 20 - 67

RELATIVE SUP ERROR = 0.029
RELATIVE rms ERROR = 0.015

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 10
FILTERED BY BPF2 (4 kHz - 6 kHz)

RELATIVE SUP ERROR = 0.025
RELATIVE rms ERROR = 0.011

REPRODUCED WAVEFORM WITH No. OF POINTS FROM EACH SIDE USED FOR CALCULATION(CN - 20)
FILTERED BY BPF2 (4 kHz - 6 kHz)

DRL - UT
DWG AS-67-683
GSI - EJW
5 - 20 - 67

DRL - UJ
 DWG AS-67-684
 GSI - EJW
 6 - 20 - 67

RELATIVE SUP ERROR = 0.008
RELATIVE rms ERROR = 0.004

REPRODUCED WAVEFORM WITH NO. OF POINTS FROM EACH SIDE USED FOR CALCULATION - 200
FILTERED BY BPF2 (4 kHz - 6 kHz)

IX.

COMPARISON OF RELATIVE ERRORS INVOLVING COMBINATIONS
OF VARIOUS TYPES OF FILTERS, THE NUMBER OF POINTS
USED FROM EACH SIDE FOR CALCULATION, AND THE DIFFERENT
VALUES OF LP, ILLUSTRATED BY GRAPHS AND TABLES

RELATIVE ERROR WHEN LP EQUALS 3

RELATIVE ERROR WHEN LP EQUALS 5

DRL - UT
DWG AS-67-687
CAB - BJB
6 - 3 - 67

TABLE I

RELATIVE ERRORS

when LP = 3

FILTER NO. OF PTS. FROM EACH SIDE USED	ANALOG FILTERED	BPF1 (3 kHz-7 kHz)	BPF2 (4 kHz-6 kHz)
3	max = 0.182 rms = 0.082	max = 0.088 rms = 0.054	max = 0.086 rms = 0.052
5	max = 0.165 rms = 0.078	max = 0.059 rms = 0.034	max = 0.053 rms = 0.033
10	max = 0.178 rms = 0.071	max = 0.034 rms = 0.020	max = 0.033 rms = 0.019
15	max = 0.148 rms = 0.067	max = 0.025 rms = 0.011	max = 0.020 rms = 0.011
20	max = 0.144 rms = 0.068	max = 0.021 rms = 0.013	max = 0.020 rms = 0.014
100	max = 0.182 rms = 0.077	max = 0.013 rms = 0.005	max = 0.008 rms = 0.005
200	max = 0.182 rms = 0.077	max = 0.004 rms = 0.003	max = 0.004 rms = 0.003

max is the maximum relative error.

rms is the relative rms error.

TABLE II

RELATIVE ERRORS

when LP = 5

FILTER NO. OF PTS. FROM EACH SIDE USED	ANALOG FILTERED	BPF1 (3 kHz-7 kHz)	BPF2 (4 kHz-6 kHz)
3	max = 0.182 rms = 0.092	max = 0.092 rms = 0.062	max = 0.090 rms = 0.060
5	max = 0.186 rms = 0.077	max = 0.063 rms = 0.040	max = 0.053 rms = 0.039
10	max = 0.148 rms = 0.069	max = 0.034 rms = 0.017	max = 0.029 rms = 0.015
15	max = 0.153 rms = 0.070	max = 0.029 rms = 0.019	max = 0.025 rms = 0.016
20	max = 0.148 rms = 0.070	max = 0.038 rms = 0.014	max = 0.025 rms = 0.011
100	max = 0.148 rms = 0.074	max = 0.025 rms = 0.009	max = 0.012 rms = 0.005
200	max = 0.140 rms = 0.073	max = 0.021 rms = 0.009	max = 0.008 rms = 0.004

max is the maximum relative error.

rms is the relative rms error.

X.

CONCLUSION

X. CONCLUSION

The results of this study are relatively consistent with the anticipated results. If the data are assumed to be in the 4-6 kHz band, LP = 5, the results are not as accurate as if the data are assumed to be in the 3.3-6.7 kHz band, LP = 3. Accordingly, as more data points are used to compute the value of the time series at a given point, the error tends to decrease.

The analog filtered data appear to have contained a dc bias and possibly some other noise outside the desired frequency band. This could have occurred after filtering, before digitization, or during digitization. The improvement produced by digitally filtering the data is marked, and to some extent, expected because of the low error level in digital operations. The close correspondence of the results using BPFL and BPF2 indicates that most of the noise which entered the digitized data was outside the 3-7 kHz band.

In summation, there is a notable correlation between the original and the calculated data when only a few data points are used in the calculation of the time series. Moreover, there is a remarkable accuracy in locating the zeroes of the functions when straight line approximations for both the raw data and the reproduced function are used.

BIBLIOGRAPHY

Harman, Willis W., Principles of the Statistical Theory of Communication.
McGraw-Hill, 1963.

Shannon, C. E., "Communication in the Presence of Noise," Proc. IRE, 37,
10-21 (1949).

24 May 1967

DISTRIBUTION LIST FOR DRL-A-284
SHANNON'S THEOREM
BY G. S. INNIS UNDER CONTRACT NObsr-95181

Copy No.

1 - 4 Commander, Naval Ship Systems Command (Ships 1622C,
Department of the Navy
Washington, D. C. 20360
Attn: Mr. C. D. Smith

5 Commanding Officer
U. S. Navy Mine Defense Laboratory
Panama City, Florida 32402
Attn: Mr. Carl M. Bennett

6 Commanding Officer
U. S. Naval Oceanographic Office
Suitland, Maryland 20390
Attn: Mr. R. C. Guthrie (Code 7240)
Oceanographic Analysis Division
Marine Sciences Department

7 Commanding Officer
U. S. Navy Electronics Laboratory
San Diego, California 92152
Attn: Code 3180

8 Office of Naval Research
Resident Representative
The University of Texas at Austin
2507 Main Building
Austin, Texas 78712

9 Acoustics Division, DRL/UT

10 Signal Physics Branch, DRL/UT

11 C. A. Burr, DRL/UT

12 G. E. Ellis, DRL/UT

13 G. S. Innis, DRL/UT

14 S. P. Pitt, DRL/UT

15 Library, DRL/UT

ORIGINAL DATA ANALOG FILTERED

DRL - UT
DWG AS-67-688
OSI - EJM
6 - 20 - 67

ORIGINAL DATA FILTERED BY BPF1 (3 kHz - 7 kHz)

ORIGINAL DATA FILTERED BY BPF2 (4 kHz = 6 kHz)

DRL - UT
DWG AS-67-690
GSI - EJW
6 - 20 - 67