ECON42720 Causal Inference and Policy Evaluation 5 Instrumental Variables

Ben Elsner (UCD)

Resources

Most textbooks have a chapter on IV

- ▶ In the applied world, Cunningham's Mixtape (Ch. 7) and Huntington-Klein's The Effect (Ch. 19) are good resources
- ► Angrist and Pischke's Mostly Harmless Econometrics (Ch. 4) is slightly more technical

IV: Starting Point

$$y_i = \alpha + \beta D_i + u_i$$

CIA $cov(D_i, u_i) = 0$ often doesn't hold \Rightarrow OLS estimates of β are biased

- Unobserved heterogeneity: we may not observe all confounding variables
- $ightharpoonup D_i$ may be **measured with error**
- ► Simultaneity or reverse causality

In theory, instrumental variables offer a way to

- ▶ break the correlation $cov(D_i, u_i)$
- ▶ and obtain a consistent causal estimate of the treatment on *y_i*

Idea behind an instrumental variable (Z):

1) The IV must not be correlated with unobservable characteristics (conditional independence)

2) An IV affects Y only through its effect on D

One way to think about an IV:

- people/firms make optimal choices that affect their treatment status
- ▶ Z is a **shock that changes the behavior** of at least some people/firms
- ► Z has to be unrelated to people's characteristics
- i.e. it should be assigned as good as randomly

And another:

- ightharpoonup The instrument Z is a treatment/incentive that is offered to units/people
- ▶ D measures if the unit actually takes up the treatment
- ► The instrument Z should be as good as randomly assigned
- Example: randomly assigned school vouchers

And another:

- OLS uses all the variation in D to explain y
- ► IV uses only the variation in D that is related to Z
- ▶ So this means less variation is used, but at least Z is unrelated to u

Instrumental Variables Lingo

IV requires three ingredients:

- ▶ First stage: $cov(Z, D) \neq 0$
- ▶ (Conditional) independence: cov(Z, u) = 0
- **Exclusion restriction:** affects *Y* only through *D* and no other channel

First Stage and Exclusion Restriction

The first-stage relationship is testable

- we can run a regression of D on Z
- ▶ it is also possible to include covariates

The exclusion restriction is not testable

- it is an identification assumption
- we need to make a convincing argument in favor of it
- this is difficult and the reason for heated debates in seminars

Some say: friends tell their friends not to use IV...

IV Equations: Two-Stage Least Quares (2SLS)

Relationship of interest

$$y_i = \alpha + \beta D_i + X_i' \gamma + u_i$$

First stage

$$D_i = \delta_0 + \delta_1 Z_i + X_i' \rho + e_i$$

Second stage ($\widehat{D_i}$ from first stage)

$$y_i = \tilde{\alpha} + \tilde{\beta}\widehat{D}_i + X_i'\kappa + \varepsilon_i$$

Reduced form

$$y_i = \lambda_0 + \lambda_1 Z_i + X_i' \sigma + \eta_i$$

IV in Theory

It can be shown that

$$\widehat{\beta^{IV}} = \frac{cov(Y, Z)}{cov(D, Z)} = \frac{\widehat{\lambda_1}}{\widehat{\delta_1}}$$

is a consistent estimator of β under the exclusion restriction cov(Z, u) = 0

This estimator is nothing but the **reduced-form coefficient** $\widehat{\lambda_1} = \frac{cov(y,Z)}{\widehat{var(Z)}}$

divided by the first stage
$$\widehat{\delta_1} = \frac{\widehat{cov(D,Z)}}{\widehat{var(Z)}}$$

Later we will see that this interpretation is useful

IV Illustration

First stage: we predict the treatment X based on the instrument Z

Credit: Huntington-Klein, The Effect, Ch. 19

IV Illustration

Relate the outcome Y to the predicted X from the first stage, and calculate the difference in outcomes for different levels of Z

Credit: Huntington-Klein, The Effect, Ch. 19

IV Illustration

Putting it all together: a change in the predicted *X* leads to a different *Y*

Credit: Huntington-Klein, The Effect, Ch. 19

Classic IV Example: Moving to Opportunity

Research question: does moving to a better neighborhood affect adults and children?

The Moving to Opportunity Program (MTO)

- ▶ Large-scale experiment with people in public housing in several US cities in 1996
- ► Treatment group 1: voucher for private rental housing in low-poverty neighborhood
- ► Treatment group 2: voucher for private rental housing (no strings attached)
- Control group: no voucher

This experiment has been evaluated by Kling et al. (2007).

Classic IV Example: Moving to Opportunity

50% of voucher recipients actually moved; most to better neighborhoods

	Experimental	Section 8	Contro
	(i)	(ii)	(iii)
Average census tract poverty rate	.33	.35	.45
Average census tract poverty rate above 30%	.52	.62	.87
Respondent saw illicit drugs being sold or used in neighborhood during past 30 days	.33	.34	.46
Streets are safe or very safe at night	.70	.65	.56
Member of household victimized by crime during past 6 months	.17	.16	.21
Average census tract share on public assistance	.16	.17	.23
Average census tract share of adults employed	.83	.83	.78
Average census tract share workers in professional and managerial occupations	.26	.23	.21
Average census tract share minority	.82	.87	.90

Moving to Opportunity: Empirical Challenge

MTO was a randomized experiment

- $ightharpoonup Z \in \{0,1\}$ is the instrument, $D \in \{0,1\}$ is the treatment
- but not everyone who received a voucher actually moved

We can estimate an Intention-to-Treat (ITT) effect by using the reduced form

$$y_i = \gamma_0 + \gamma_1 Z_i + \varepsilon_i$$

ITT is useful for policy evaluation

But it does not tell us much about the causal effect of moving

Moving to Opportunity

Suppose we are interested in the treatment effect on the treated, in this case the causal effect of moving

but we cannot force voucher recipients to move. . .

IV allows us to estimate this treatment effect under three conditions

- 1. Z is as good as randomly assigned
- 2. Z has **no direct effect** on the outcome
- 3. Z has a **sufficiently strong effect** on D

Moving to Opportunity: The Wald Estimator

We can estimate three causal effects

- 1. First stage: the causal effect of Z on D: P(D=1|Z=1) P(D=1|Z=0)
- 2. Reduced form (ITT): the causal effect of Z on Y: E(Y|Z=1) E(Y|Z=0)
- 3. **Treatment effect of interest:** the causal effect of D on Y: Y(1) Y(0) = E(Y|D = 1) E(Y|D = 0)

The Wald Estimator relates all three effects

$$E(Y|D=1) - E(Y|D=0) = \frac{E(Y|Z=1) - E(Y|Z=0)}{P(D=1|Z=1) - P(D=1|Z=0)}$$
(1)

Moving to Opportunity: The Wald Estimator

$$\widehat{\beta}^{IV} = E(Y|D=1) - E(Y|D=0) = \frac{E(Y|Z=1) - E(Y|Z=0)}{P(D=1|Z=1) - P(D=1|Z=0)}$$

- difference in outcomes by groups intended and not intended for treatment
- divided by difference in the actual treatment

Interpretation of the Wald Estimator

What we want to know: the impact of moving: $\Delta D = P(D=1) - P(D=0) = 1$

What we do know:

the impact of the instrument on moving:

$$\Delta D(Z) = P(D=1|Z=1) - P(D=1|Z=0) = 0.5$$

- ▶ suppose the difference in outcomes E(Y|Z=1) E(Y|Z=0) is 10
- ▶ so the fact that 50% moved gives us an average difference in outcomes of 10

If 0.5 movers gives us 10 then what would 1 mover give us?

► The answer is $\widehat{\beta}^{IV} = \frac{10}{0.5} = 20$

Moving to Opportunity

	E/S	СМ	ITT	тот	CCM
	(i)	(ii)	(iii)	(iv)	(v)
A. Adult outcomes					
Obese, BMI ≥ 30	E-C	0.468	-0.048	-0.103	0.502
	_		(0.022)	(0.047)	
Calm and peaceful	E-C	0.466	0.061	0.131	0.443
		0.050	(0.022)	(0.047)	0.450
Psychological distress, K6 z-score	E-C	0.050	-0.092	-0.196	0.150
			(0.046)	(0.099)	
 B. Youth (female and male) outcomes 					
Ever had generalized anxiety symptoms	E-C	0.089	-0.044	-0.099	0.164
			(0.019)	(0.042)	
	S-C	0.089	-0.063	-0.114	0.147
			(0.019)	(0.035)	
Ever had depression symptoms	S-C	0.121	-0.039	-0.069	0.134
			(0.019)	(0.035)	
C. Female youth outcomes					
Psychological distress, K6 scale z-score	E-C	0.268	-0.289	-0.586	0.634
1 Syeniological distress, 110 seale 2 secre		0.200	(0.094)	(0.197)	01001
Ever had generalized anxiety symptoms	E-C	0.121	-0.069	-0.138	0.207
			(0.027)	(0.055)	
	S-C	0.121	-0.075	-0.131	0.168
			(0.029)	(0.051)	
Used marijuana in the past 30 days	E-C	0.131	-0.065	-0.130	0.202
,,			(0.029)	(0.059)	
	S-C	0.131	-0.072	-0.124	0.209
			(0.032)	(0.056)	
Used alcohol in past 30 days	S-C	0.206	-0.091	-0.155	0.306
			(0.038)	(0.056)	

Wald estimator: TOT; denominator: CM

Angrist & Evans (1998) study the effect of children on female labor supply

Their most basic regression is

$$hours_i = \alpha + \beta kids_i + u_i$$

The **number of children** is almost certainly **endogenous**:

- fertility is a choice, and so is labor supply
- richer families can afford more children and lower labor supply
- couples differ in their preferences over fertility and labor supply

Ideal experiment: randomly assign children to families

IV in Angrist & Evans (1998): sex of the first two children

- the sex of a child is as good as random
- couples tend to have a preferences for mixed-sex offspring
- couples with two boys or two girls are more likely to have a third child

Analysis is purely based on families with two or more children

The components of the IV estimator

First stage: effect of same-sex children on the likelihood of having a third child

$$kids_i = \delta_0 + \delta_1 samesex_i + e_i$$

Reduced form:

$$hours_i = \lambda_0 + \lambda_1 samesex_i + \eta_i$$

Exclusion restriction: same-sex children unrelated with personal characteristics $\Rightarrow cov(samesex_i, u_i) = 0$

The following analysis is based on a small sub-sample of Angrist & Evans (1998)

. sum hours kids samesex

Variable	.1	Obs	Mean	Std. Dev.	Min	Max
hours	† 	31857	21.22011	19.49892	0	99
kids	1	31857	2.752237	.9771916	2	12
samesex	1	31857	.502778	.5000001	0	1

Descriptive statistics indicate that in 50% of all families the first two children had the same sex

This is what we would expect. Any different result would be a red flag

Now let's look at the simple OLS regression

```
. reg hours kids, robust
```

```
Linear regression
                                                         Number of obs =
                                                                           31857
                                                         Prob > F
                                                                          0.0000
                                                                          0.0178
                                                         R-squared
                                                         Root MSE
                              Robust
                                                            [95% Conf. Interval]
       hours |
                    Coef.
                            Std. Err.
                                                 P>ItI
                                                 0.000
                                                           -2.880171
        kids I
                -2.664309
                             .1101318
                                        -24.19
                 28.55292
                             .3200455
                                         89.22
                                                 0.000
                                                            27.92562
```

Each additional child (above two) decreases weekly work hours on average by 2.66

The first stage: is the instrument relevant to explain the number of kids?

```
. reg kids samesex, robust
Linear regression
                                                 Number of obs =
                                                                 31857
                                                 F(1, 31855) =
                                                                 40.90
                                                 Prob > F
                                                              = 0.0000
                                                 R-squared
                                                                 0.0013
                         Robust
      kids I
                        Std. Err. t P>|t| [95% Conf. Interval]
                 Coef.
                                                   .0485429
              .0699933 .0109439 6.40
                                          0.000
    samesex
              2.717045
                         .007806
                                  348.07
                                           0.000
                                                    2.701745
```

Important things to discuss in an IV paper

- ▶ Does the first-stage coefficient make sense (sign, magnitude)?
- ▶ Is the first-stage correlation strong enough (is the F-Statistic of the instrument >10)

```
. reg kids samesex, robust
Linear regression
                                                       Number of obs =
                                                                         31857
                                                                         40.90
                                                       Prob > F
                                                                     = 0.0000
                                                       R-squared
                                                                        0.0013
                                                                        .97658
                                                       Root MSE
                             Robust
       kids |
                   Coef.
                           Std. Err.
                                                P>|t|
                                                          [95% Conf. Interval]
                                                0.000
                                                          .0485429
                .0699933
                            .0109439
                                         6.40
     samesex |
                2.717045
                             .007806
                                      348.07
                                                0.000
                                                          2.701745
```

In this case...

- ▶ families with same-sex children have more children
- ▶ the coefficient is small: out of 14 families with same-sex children, one has an additional child
- \blacktriangleright the t-statistic of the instrument is strong enough (implied F-Statistic: F=40.96)

Classic IV Example: Angrist & Evans (1998) 2SLS estimate

. ivreg hours (kids = samesex), robust

```
Instrumental variables (2SLS) regression
                                                 Number of obs =
                                                                 31857
                                                 F(1, 31855) =
                                                                  3.19
                                                 Prob > F
                                                               0.0743
                                                 R-squared
                                                 Root MSE
                         Robust
     hours |
                Coef. Std. Err. t P>|t| [95% Conf. Interval]
                                                   -11.71117
      kids I
              -5.58186 3.127136
                                   -1.78 0.074
              36.58271
                        8.606509
                                  4.25 0.000
                                                   19.71362
```

Instrumented: kids Instruments: samesex

This table reports the second-stage estimates

- ▶ the regressor is the number of children predicted by the same-sex instrument
- ▶ the effect is stronger than the OLS estimate (-2.66)
- ▶ it is statistically significant at the 10%-level

To develop a better intuition of how IV works, it is useful to look at the reduced form and first stage

The IV estimator is the reduced-form divided by the first stage

$$\widehat{\beta^{IV}} = \frac{\widehat{\lambda_1}}{\widehat{\delta_1}}$$

. reg h	nours same	esex						
8	Source	ss	df	MS	Numbe	er of ob	s =	31,857
					F(1,	31855)	=	3.20
	Model	1215.63289	1	1215.63289	Prob	> F	=	0.0738
Res	sidual	12110681	31,855	380.181477	R-squ	ıared	=	0.0001
	+				· Adj I	R-square	d =	0.0001
	Total	12111896.6	31,856	380.207703	Root	MSE	=	19.498
	hours	Coef.						Interval]
	mesex	3906929	.2184891		0.074	8189		.0375541
	_cons	21.41654	.1549237	138.24	0.000	21.11	288	21.7202

Intuition behind the IV

What we want to know: the impact of having one more child

Consider the **first stage** and **reduced form**:

- having same-sex children increases the number of children by 0.07
- having same-sex children decreases weekly work hours by 0.39

So, 0.07 additional children lead to 0.39 fewer work hours

What reduction in work hours would we expect from one additional child?

▶ answer:
$$\frac{\widehat{\lambda_1}}{\widehat{\delta_1}} = \frac{0.39}{0.07} = 5.57$$
 hours

So we have that $\widehat{\beta^{IV}} < \widehat{\beta^{OLS}}$. Does this make sense?

Explanation 1: OLS estimator is upward biased (i.e. closer to zero)

- ▶ there could be an omitted variable (for example family wealth)
- ▶ both the correlation with kids and the direct effect on hours need to have the same sign
- ightharpoonup e.g. cov(wealth, kids) > 0 and cov(wealth, hours|kids) > 0 or both negative

Explanation 2: IV effect measures the effect for a specific population

- only 1 in 14 families "respond" to the instrument
- ▶ families who respond may not be the average family...

Local Average Treatment Effects (LATE)

So far, we implicitly assumed that the **potential outcomes are constant across units**. But what if potential outcomes are heterogeneous?

Consider a case with a binary instrument $Z_i \in \{0,1\}$ the the treatment statuses

- \triangleright $D_{1i} = i$'s treatment status when $Z_i = 1$
- \triangleright $D_{0i} = i$'s treatment status when $Z_i = 0$

The observed treatment status is

$$D_i = D_{0i} + (D_{1i} - D_{0i})Z_i = \delta_0 + \delta_{1i}Z_i + \eta_i$$

Note that the effect of the IV on treatment may differ between individuals

Local Average Treatment Effects (LATE)

We divide the population into four groups depending on their reaction to the instrument

- 1. Compliers: people who react to the instrument as expected, $D_{1i} = 1$ and $D_{0i} = 0$
- 2. Always-takers: people who always take the treatment regardles of Z, $D_{1i} = D_{0i} = 1$
- 3. Never-takers: people who never take the treatment regardless of Z, $D_{1i} = D_{0i} = 0$
- 4. **Defiers**: people who react to the instrument in the wrong direction, $D_{1i}=0$ and $D_{0i}=1$

From any dataset, it is impossible to see who belongs to what group

The Angrist-Imbens-Rubin Causal Model

Angrist et al. (1996) define the minimum set of assumptions for the identification of a causal effect for the relevant subgroup of the population

As an example, consider Angrist (1990): the impact of **being a Vietnam veteran on earnings**

The Vietnam Draft Lottery (Angrist, 1990)

Context:

- In the 1960s and 70s young men in the US were at **risk of being drafted for military service** in Vietnam.
- ► Fairness concerns led to the institution of a **draft lottery** in 1970 that was used to determine **priority for conscription**

In each year from 1970 to 1972, random sequence numbers were randomly assigned to each birth date in cohorts of 19-year-olds.

- Men with lottery numbers below a cutoff were eligible for the draft.
- ▶ Men with lottery numbers above the cutoff were not.

But compliance was not perfect

- ▶ Many eligible men were exempted from service for health or other reasons.
- Others, who were not eligible, nevertheless volunteered for service.

The Vietnam Draft Lottery (Angrist, 1990)

Idea: use lottery outcome as an instrument for veteran status

Is there a first stage? the lottery did not completely determine veteran status, but it certainly mattered

What about the exclusion restriction?

- the lottery was random
- it seems reasonable to assume that its only effect was on veteran status

The Vietnam Draft Lottery (Angrist, 1990)

The instrument is thus defined as follows:

- $ightharpoonup Z_i = 1$ if lottery implied individual i would be draft eligible,
- $ightharpoonup Z_i = 0$ if lottery implied individual *i* would not be draft eligible.

The instrument affects **treatment**, which in this application amounts to **entering military service**.

The econometrician observes **treatment status** as follows:

- $ightharpoonup D_i = 1$ if individual i served in the Vietnam war (veteran),
- \triangleright $D_i = 0$ if individual i did not serve in the Vietnam war (not veteran).

The Angrist-Imbens-Rubin Causal Model

In Angrist (1990), the **main research question** is whether veteran status has a causal effect on earnings

The causal effect of veteran status, conditional on draft eligibility status, is defined as

$$Y_i(1,Z_i)-Y_i(0,Z_i)$$

We are unable to identify individual treatment effects, because we do not observe all potential outcomes

Assumption 1: Random Assignment (ignorability)

All units have the same probability of assignment to treatment%

$$Pr(Z_i=1)=Pr(Z_j=1).$$

Given random assignment we can **identify and estimate the two intention to treat** causal effects:

$$E(D_i|Z_i=1)-E(D_i|Z_i=0)=\frac{cov(D_i,Z_i)}{var(Z_i)}$$

%

$$E(Y_i|Z_i=1)-E(Y_i|Z_i=0)=\frac{cov(Y_i,Z_i)}{var(Z_i)}.$$

Assumption 2: Non-zero average causal effect of Z on D

The probability of treatment must be different in the two assignment groups:%

$$Pr(D_{i1}=1) \neq Pr(D_{i0}=1)$$

This is the equivalent of the first stage in the conventional IV approach.

Assumption 3: Exclusion Restriction

The instrument affects the outcome only through the treatment

$$Y_i(D_i,0) = Y_i(D_i,1) = Y_i(D_i)$$

Given treatment, assignment does not affect the outcome. So we can define the causal effect of D_i on Y_i as%

$$Y_{i1}-Y_{i0}$$
.

This difference is not observed in the data. We **need to assume that assumption 3 holds** and bring good arguments in favour of it.

Assumption 4: Monotonicity

- ► The instrument affects the treatment status of all units in the same direction
- ▶ Binary case: **no one does the opposite** of his/her assignment
- ► I.e. there are no defiers

$$D_{i1} \geq D_{i0} \ \forall i$$

Assumptions 2 and 4 together give Strong Monotonicity and ensure that:

- ▶ there is no defier and
- there exists at least one complier

Compliance types

		D_{i0}				
		0 1				
	0	never-taker	defier			
D_{i1}	1	complier	always-taker			

Compliance types by treatment status and instrument

		Z_i				
		0	1			
	0	complier OR never-taker	never-taker OR defier			
D_i	1	always-taker or defier	complier OR always-taker			

Compliance types

Compliance types by treatment status and instrument given monotonicity

			Z_i			
		0	1			
	0	complier OR never-taker	never-taker			
D_i	1	always-taker	complier OR always-taker			

Back to the example (Angrist, 1990)

A1: instrument is as good as randomly assigned

draft eligibility was assigned by a lottery...

A2: can have no direct effect on the outcome variable (earnings)

this is debatable. Angrist argues that it holds

A3: instrument affects the treatment

this can be checked

A4: **monotonicity**: a man who serves if not draft eligible, would also serve if draft eligible

this seems plausible

Local Average Treatment Effect (Angrist, 1990)

Under the assumptions A1-A4, the IV approach in Angrist (1990) identifies a **local** average treatment effect (LATE)

The effect is "local" because

- it identifies the effect on the compliers
- ▶ ... the **causal effect of the draft on earnings** for men whose treatment status is changed by the instrument
- ▶ i.e. on men who are drafted if eligible but who wouldn't volunteer if not eligible

The LATE is different from the ATE because it excludes men who

- would be exempt from the draft regardless of their eligibility (never-takers)
- would volunteer regardless of their eligibility (always-takers)

The LATE theorem

Given assumptions 1-4,

$$\frac{E(Y_i|Z_i=1) - E(Y_i|Z_i=0)}{E(D_i|Z_i=1) - E(D_i|Z_i=0)} = E(Y_{i1} - Y_{i0}|D_{i1} > D_{i0})$$

$$= E(Y_{i1} - Y_{i0}|\text{complier}).$$

It shows that the Wald estimator equals the average treatment effect for compliers

LATE: Summary

The IV approach identifies a local average treatment effect (LATE)

- ▶ the IV needs to be as good as randomly assigned and satisfy the exclusion restriction
- the LATE is the average treatment effect on the compliers

Is LATE an interesting parameter?

- It depends on the question and who the compliers are
- Problem: we cannot easily pinpoint the compliers
- Newer methods allow us to extrapolate from LATE to other populations, e.g. Mogstad & Torgovitsky (2018)

Weak Instruments

Identification of the LATE requires the existence of a first stage

Otherwise, the **numerator of the Wald estimator is zero**, and the estimator not defined

$$\frac{E(Y_i|Z_i=1) - E(Y_i|Z_i=0)}{E(D_i|Z_i=1) - E(D_i|Z_i=0)}$$

Problem: existence of a first stage is not enough. It needs to be sufficiently strong

Weak IV Example: Angrist & Krueger (1991)

Research question: what is the effect of compulsory schooling on earnings?

It is difficult to randomise

- whether someone is affected compulsory schooling laws
- or how long someone stays in school

Trick of Angrist & Krueger (1991): when in the year you are born affects when you have to leave school

Compulsory Schooling and School Leaving Age

Quirk in the U.S. education system: **assignment to a cohort** is determined by **birth date**

- ► Children born up until December 31 were assigned to first grade
- ► Children born from January 1 were assigned to kindergarten

Compulsory Schooling and School Leaving Age

- ► Schooling was compulsory until age 16
- Children born in December had (exogenously) more education than children born in January

First Stage: Quarter of Birth and Years of Education

Reduced Form: Quarter of Birth and Earnings

IV Relevance

Visual inspection suggests that a first stage exists

- ▶ Children born in Q4 have more schooling than children born in Q1
- ▶ This is on top of a general trend in more schooling

A reduced form appears to exist as well

- ► Children born in Q4 seemingly have slightly higher earnings than children born in Q1
- Again, this is on top of an overall trend in earnings

IV validity

Conditional independence: is quarter of birth as good as randomly assigned?

- Yes, because children can't pick their birth date
- But: recent evidence suggest that parents characteristics differ by season of conception/birth (Buckles & Hungerman, 2013; Rietveld & Webbink, 2016; Fan et al., 2017).

Exclusion restriction: does quarter of birth affect earnings only through education?

- presumably yes
- but it is possible that people enter the labour market in different seasons. . .

First Stage: Quarter of Birth and Years of Education

	Birth		Quarte	F -test $^{\mathrm{b}}$		
Outcome variable	cohort	Mean	I	II	III	[P-value]
Total years of	1930–1939	12.79	-0.124	-0.086	-0.015	24.9
education			(0.017)	(0.017)	(0.016)	[0.0001]
	1940-1949	13.56	-0.085	-0.035	-0.017	18.6
			(0.012)	(0.012)	(0.011)	[0.0001]
High school graduate	1930-1939	0.77	-0.019	-0.020	-0.004	46.4
			(0.002)	(0.002)	(0.002)	[0.0001]
	1940–1949	0.86	-0.015	-0.012	-0.002	54.4
			(0.001)	(0.001)	(0.001)	[0.0001]
Years of educ. for high	1930-1939	13.99	-0.004	0.051	0.012	5.9
school graduates			(0.014)	(0.014)	(0.014)	[0.0006]
	1940-1949	14.28	0.005	0.043	-0.003	7.8
			(0.011)	(0.011)	(0.010)	[0.0017]
College graduate	1930-1939	0.24	-0.005	0.003	0.002	5.0
			(0.002)	(0.002)	(0.002)	[0.0021]
	1940-1949	0.30	-0.003	0.004	0.000	5.0
			(0.002)	(0.002)	(0.002)	[0.0018]
Completed master's	1930-1939	0.09	-0.001	0.002	-0.001	1.7
degree			(0.001)	(0.001)	(0.001)	[0.1599]
	1940-1949	0.11	0.000	0.004	0.001	3.9
			(0.001)	(0.001)	(0.001)	[0.0091]

First Stage: Quarter of Birth and Years of Education

Previous slide: first stage regression results

$$S_i = X\pi_{10} + Z_1\pi_{11} + Z_2\pi_{12} + Z_3\pi_{13} + \eta_1$$

 Z_1, Z_2, Z_3 are quarter of birth dummies

There appears to be a first stage:

- children born in Q4 have more schooling than children born in Q1
- ▶ the IV does not affect college graduation (which it shouldn't)

Angrist & Krueger (1991): 2SLS Results

PANEL A: WALD ESTIMATES FOR 1970 CENSUS-MEN BORN 1920-1929a

	(1) Born in 1st quarter of year	(2) Born in 2nd, 3rd, or 4th quarter of year	(3) Difference (std. error) (1) – (2)
ln (wkly. wage)	5.1484	5.1574	-0.00898 (0.00301)
Education Wald est. of return to education OLS return to education ^b	11.3996	11.5252	-0.1256 (0.0155) 0.0715 (0.0219) 0.0801 (0.0004)

$$\widehat{\beta^{\textit{OLS}}} > \widehat{\beta^{\textit{2SLS}}}$$
 as one would expect (?)

Note the much larger standard error of $\widehat{\beta^{2SLS}}$

Angrist & Krueger (1991): Many Many IVs

In their analysis, Angrist & Krueger (1991) use specifications with

- ▶ 30 (quarter-of-birth × year) dummies to account for cohort effects
- ▶ 150 (quarter-of-birth × state) dummies to account for differences across states

This means that they use up to 150 instruments for education

- By controlling for state differences, they reduce bias
- But they also reduce the amount of variation in education that is used for identification

Low degree of identifying variation ⇒ weak IV problem

Bound et al. (1995): The Weak Instrument Problem

Causal model: $y = \beta s + \varepsilon$

First stage: $s = \pi z + \eta$

Suppose ε and η are correlated. Estimating β using OLS will be biased:

$$E[\widehat{\beta}_{OLS} - \beta] = \frac{C(\varepsilon, s)}{V(s)}$$

Bound et al. (1995): The Weak Instrument Problem

Bound et al. (1995) show that weak instruments bias the 2SLS estimator towards the **OLS** estimator

One way of expressing the weak instrument bias is

$$E[\widehat{\beta}_{2SLS} - \beta] \approx \frac{\sigma_{\varepsilon\eta}}{\sigma_{\eta}^2} \frac{1}{F+1}$$

where F is the first stage F-statistic of the instruments in the first stage

- ► Strong instruments: $F \to \infty$, bias $\to 0$ ► Weak instruments: $F \to 0$, bias $\to \frac{\sigma_{\varepsilon\eta}}{\sigma_n^2}$

Weak IVs in Angrist & Krueger (1991)

	(1) OLS	(2) IV	(3) OLS	(4) IV	(5) OLS	(6) IV
Coefficient	.063 (.000)	.142 (.033)	.063 (.000)	.081 (.016)	.063 (.000)	.060 (.029)
F (excluded instruments) Partial R ² (excluded instruments, ×100) F (overidentification)		13.486 .012 .932		4.747 .043 .775		1.613 .014 .725
	Age Co	ntrol Variables				
Age, Age ² 9 Year of birth dummies	x	x	x	x	x x	x x
	Exclude	d Instruments				
Quarter of birth Quarter of birth × year of birth Number of excluded instruments		<i>x</i> 3		<i>x</i> <i>x</i> 30		x x 28

With more IVs added the first stage of the IV gets weaker

Weak IVs in Angrist & Krueger (1991)

	(1) OLS	(2) IV	(3) OLS	(4) IV
Coefficient	.063 (.000)	.083 (.009)	.063 (.000)	.081 (.011)
F (excluded instruments) Partial R^2 (excluded instruments, $\times 100$) F (overidentification)		2.428 .133 .919		1.869 .101 .917
Age Control Var	iables			
Age, Age ² 9 Year of birth dummies	x	x	x x	x x
Excluded Instru	ments			
Quarter of birth		X		X
Quarter of birth \times year of birth		X		X
Quarter of birth × state of birth Number of excluded instruments		<i>x</i> 180		<i>x</i> 178

When 180 IVs are included, the first stage is very weak; the IV bias gets close to the OLS his

Variance of the 2SLS estimator

It can be shown that the asymptotic variance of the 2SLS estimator is

$$\widehat{Avar}\left(\hat{\beta}^{2SLS}\right) = \hat{\sigma}^2 \frac{1}{N\rho_{xz}^2 \sigma_x^2},$$

where $\rho_{xz} = \operatorname{cov}(z_i, x_i) / (\sigma_z \sigma_x)$.

This equation offers several important insights:

- An increase in the sample size decreases the standard errors
- ► The standard error is higher the higher the variance of the residuals $\hat{\sigma}^2$ and the lower the variation in x_i
- ▶ The standard error decreases with the strength of the first stage
- lacktriangle Also: $\widehat{Avar}\left(\hat{eta}^{2SLS}\right) > \widehat{Avar}\left(\hat{eta}^{OLS}\right)$ because $ho_{xx}=1$

Note: we assumed here homoskedasticity of the error terms

Simulation: Strong vs. Weak IVs

We can illustrate the issues with weak IVs in a simulation

$$y = x + \varepsilon$$
$$x = \gamma_1 z + \nu$$
$$\rho_{x,\varepsilon} = 0.4$$

- ▶ Strong IVs: $\rho_{x,z} = 0.5$
- Weak IVs: $\rho_{x,z} = 0.15$

Simulation: different sample sizes; 10,000 replications

Simulation of Strong IV

Simulation of Weak IV

Simulation Results

2SLS generally has a wider sampling distribution than OLS

If we want to distinguish $\widehat{\beta}_{2SLS}$ from $\widehat{\beta}_{OLS}$, we need

- large samples
- ► and a strong first stage

Otherwise we cannot really distinguish between both estimates; (biased) OLS estimator may be preferable

Weak Instruments - What to Do?

Show the F-Statistic of the first stage

- ► Stock *et al.* (2002) suggest that an F-Statistic > 10 indicates that the instruments are sufficiently strong
- ▶ But this is a rule of thumb, nothing more; nowadays, people say 10 is too small

Best solution: find a better instrument

Alternatives:

- use LIML (Limited Information Maximum Likelihood) instead of 2SLS
- report Anderson-Rubin confidence intervals that account for weak IVs

Where Do Good IVs Come from?

Theory combined with clever datas collection. Examples

- Distance from job training centers
- College openings

Variation in policies. This requires a deep institutional knowledge. Examples

- assignment to judges with different severity
- differences in budgets across job training centers
- **.**..

Nature. Examples

- different levels of pollution in different places
- sex of the first two children
- **.**..

IV: Cookbook

1) Explain your identification strategy very clearly

- start with the ideal experiment; why is your setting different? Why is your regressor endogenous?
- Explain theoretically why there should be a first stage and what coefficient we should expect
- Explain why the instrument is as good as randomly assigned
- Explain theoretically why the exclusion restriction holds in your setting

2) Show and discuss the first stage

- Best to start with a raw correlation
- Do the sign and magnitude make sense?
- ► Assess the **strength of the instrument** using state-of-the-art techniques

IV: Cookbook

3) Bring supportive evidence for instrument validity

- Show that the instrument does not predict pre-treatment characteristics
- Can you provide evidence in support of the exclusion restriction?
- ▶ Use auxiliary tests, for example Kitagawa (2015) and Huber & Mellace (2015)
- Consider using the plausibly exogenous bounding procedure by Conley et al. (2012)

4) Discuss the results in detail

- ► Show the **OLS and 2SLS results**, both with **varying sets of controls**
- ► Comment on the differences between both (bias, LATE, etc)
- Show the reduced form
- ▶ If the reduced form isn't there, the effect isn't there (MHE)

Instrumental Variables: Conclusion

IV is a powerful approach to deal with endogeneity

The bar for finding a credible instrument is high

- Exclusion restriction cannot be tested
- ▶ Defending an IV requires deep knowledge of institutions and context

For canonical IV designs, see the Mixtape, Section 7.8.

APPENDIX

Classic example: Card (1995)'s study on returns to higher education

- ▶ Uses distance |birthplace nearest college | as an IV
- ▶ This is obviously questionable, but serves as a good example

There are two main packages for IV in R

- ▶ AER (Applied Econometrics with R) and the ivreg command
- ▶ fixest and the feols command; this is very useful for IV estimation with FE

Loading in packages and data; haven is for reading datasets in non-R format

```
library(AER)
library(haven)
library(tidvverse)
library(modelsummary)
read data <- function(df)</pre>
  full_path <- paste("https://github.com/scunning1975/mixtape/raw/master/"</pre>
                       df. sep = "")
  df <- read_dta(full_path)</pre>
  return(df)
card <- read data("card.dta")</pre>
```

Prep data and run OLS

```
attach(card)
Y1 <- lwage
Y2 <- educ
X1 <- cbind(exper, black, south, married, smsa)
X2 <- nearc4
#OLS
ols_reg <- lm(Y1 ~ Y2 + X1)</pre>
```

	(1)	
(Intercept)	5.063	
	(0.064)	
Y2	0.071	
	(0.003)	
X1exper	0.034	
	(0.002)	
X1black	-0.166	
	(0.018)	
X1south	-0.132	
	(0.015)	
X1married	-0.036	
	(0.003)	
X1smsa	0.176	
	(0.015)	
Num.Obs.	3003	
R2	2 0.305	
R2 Adj.	0.304	
AIC .	2562.7	

OLS would yield a return to education of 7%. Let's see what IV gives us

```
#2SLS
# Notice how we need to include all exogenous variables behind the "/"
iv_reg <- ivreg(Y1 ~ Y2 + X1 | X1 + X2)</pre>
```

How to do IV using R: First Stage

```
#2SLS
# Check the first stage
firststage <- lm(Y2 ~ X1 + X2)
models <- list(ols_reg, firststage, iv_reg)
names(models) <- c("OLS", "First", "2SLS")</pre>
```

How to do IV using R: 2SLS estimates

	OLS	First	2SLS
(Intercept)	5.063***	16.831***	4.162***
	(0.064)	(0.131)	(0.850)
Y2	0.071***		0.124*
	(0.003)		(0.050)
X1exper	0.034***	-0.404***	0.056**
	(0.002)	(0.009)	(0.020)
X1black	-0.166***	-0.948***	-0.116*
	(0.018)	(0.091)	(0.051)
X1south	-0.132***	-0.297***	-0.113***
	(0.015)	(0.079)	(0.023)
X1married	-0.036***	-0.073***	-0.032***
	(0.003)	(0.018)	(0.005)
X1smsa	0.176***	0.421***	0.148***
	(0.015)	(0.085)	(0.031)
X2		0.327***	
		(0.082)	
Num.Obs.	3003	3003	3003
R2	0.305	0.477	0.251

References

- Angrist, Joshua, & Evans, William. 1998. Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size. American Economic Review, 88(3), 450–77.
- Angrist, Joshua D. 1990. Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records. *American Economic Review*, **80**(3), 313–336.
- Angrist, Joshua D., & Krueger, Alan B. 1991. Does Compulsory School Attendance Affect Schooling and Earnings? The Quarterly Journal of Economics, 106(4), 979–1014.
- Angrist, Joshua D., Imbens, Guido W., & Rublin, Donald B. 1996. Identification of Causal Effects Using Instrumental Variables. *Journal of the American Statistical Association*, **91**(434), 444–455.
- Bound, John, Jaeger, David A., & Baker, Regina M. 1995. Problems with Instrumental Variables Estimation When the Correlation Between the Instruments and the Endogeneous Explanatory Variable is Weak. *Journal of the American Statistical Association*, **90**(430), 443–450.
- Buckles, Kasey S., & Hungerman, Daniel M. 2013. SEASON OF BIRTH AND LATER OUTCOMES: OLD QUESTIONS, NEW ANSWERS. The Review of Economics and Statistics, 95(3), 711–724.
- Card, David E. 1995. Using geographic variation in college proximity to estimate the return to schooling. *In:* Christofides, L., Grant, E. Kenneth, & Swindinsky, Robert (eds), *Aspects of Labour Economics: Essays in Honour of John Vanderkamp.* Toronto, Canada: University of Toronto Press. Conley, Timothy G., Hansen, Christian B., & Rossi, Peter E. 2012. Plausibly Exogenous. **94**(1), 260–272.
- Fan, Elliott, Liu, Jin-Tan, & Chen, Yen-Chien. 2017. Is the Quarter of Birth Endogenous? New Evidence from Taiwan, the US, and Indonesia. Oxford Bulletin of Economics and Statistics, 79(6), 1087–1124.
- Huber, Martin, & Mellace, Giovanni. 2015. Testing Instrument Validity for LATE Identification Based on Inequality Moment Constraints. The Review of Economics and Statistics, 97(2), 398–411.
- Kitagawa, Toru. 2015. A Test for Instrument Validity. Econometrica, 83(5), 2043–2063.
- Kling, Jeffrey R., Liebman, Jeffrey B., & Katz, Lawrence F. 2007. Experimental Analysis of Neighborhood Effects. Econometrica, 75(1), 83–119.
- Mogstad, Magne, & Torgovitsky, Alexander. 2018. Identification and Extrapolation of Causal Effects with Instrumental Variables. *Annual Review of Economics*, 10(1), 577–613.
- Rietveld, Cornelius A., & Webbink, Dinand. 2016. On the genetic bias of the quarter of birth instrument. Economics & Human Biology, 21, 137-146. Stock, James H., Wright, Jonathan H., & Yogo, Motohiro, 2002. A Survey of Weak Instruments and Weak Identification in Generalized Method of
- Moments. Journal of Business & Economic Statistics. 20(4), 518–529.

benjamin.elsner@ucd.ie

www.benjaminelsner.com

Sign up for office hours

YouTube Channel

@ben_elsner

LinkedIn

Contact

Prof. Benjamin Elsner

University College Dublin School of Economics Newman Building, Office G206 benjamin.elsner@ucd.ie

Office hours by appointment. Please email me.