Vectors and Linear Combinations

Rohit Budhiraja, IITK

Applied Linear Algebra for Wireless Communications

Agenda for today's class

- Introduce vector, addition and subtraction
- Discuss vectors in different dimensions and their visual interpretation
- Reference for today's class Chap 1.1 of the book

Introduction to vectors (1)

ullet A two dimensional vector $oldsymbol{v}$ is a pair of number with components v_1 and v_2

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

- We write v and w as column vectors
- Vector addition: we don't add v_1 to v_2 while adding vectors
- ullet First component of ullet and ullet stay separate from their second component:

$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$$

Introduction to vectors (2)

• Scalar multiplication - multiply each component of \mathbf{v} by a scalar c

$$c\mathbf{v} = \begin{bmatrix} cv_1 \\ cv_2 \end{bmatrix}$$

- Notice that the sum of $-\mathbf{v}$ and \mathbf{v} is the zero vector $\mathbf{0}$.
 - Not same as the number zero
 - \bullet **0** has components 0 and 0

Linear combinations of vectors

- \bullet Combine addition with scalar multiplication to produce a "linear combination" of v and w
 - Multiply \mathbf{v} by c and multiply \mathbf{w} by b and then add them $c\mathbf{v} + d\mathbf{w}$
- Four special combinations are sum, difference, zero, and a scalar multiple c

$$1\mathbf{v} + 1\mathbf{w}$$

 $1\mathbf{v} - 1\mathbf{w}$
 $0\mathbf{v} + 0\mathbf{w}$
 $c\mathbf{v} + 0\mathbf{w}$

 Zero vector is possible combination - every time we see a space of vectors, zero vector will always be included

Visualization of vector addition

- We visualize $\mathbf{v} + \mathbf{w}$ using arrows
- A vector with two components corresponds to a point in the xy plane

- Components of **v** are coordinates of point $x = v_1$ and $y = v_2$
- Arrow ends at this point (v_1, v_2) , when it starts from (0,0)

Visualization of vector subtraction

• We visualize $\mathbf{v} - \mathbf{w}$ using arrows

Vectors in Three Dimensions (1)

- Now we allow vectors to have three components (v_1, v_2, v_3)
- xy plane is replaced by three-dimensional xyz space
- Here is a typical example

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \longrightarrow \mathbf{v} = (1, 2, 2)$$

- From now on, vector \mathbf{v} is also written as $\mathbf{v} = (1, 2, 2)$ to save spave
- Still column vector but with three components and temporarily lying down
- Row vector $\mathbf{v} = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$ is different and "Transpose" of column vector

Vectors in Three Dimensions (2)

Linear combination of 3 vectors

$$\mathbf{u} + 4\mathbf{v} - 2\mathbf{w} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + 4 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 9 \end{bmatrix}$$

• Vector **v** corresponds to an arrow in 3D space

- \bullet Arrow starts at the "origin", where xyz axes meet and coordinates are (0,0,0)
- Arrow ends at the point with coordinates v_1, v_2, v_3

Important aspects of linear combination

- For one vector **u**, only linear combinations are the multiples c**u**
- For two vectors, linear combinations are $c\mathbf{u} + d\mathbf{v}$
- For three vectors, linear combinations are $c\mathbf{u} + d\mathbf{v} + e\mathbf{w}$
 - every c and d and e are allowed
- ullet Suppose vectors $oldsymbol{u}, oldsymbol{v}, oldsymbol{w}$ are in three dimensional space
 - cu fills a line through (0,0,0)
 - $c\mathbf{u} + d\mathbf{v}$ fills a plane through (0,0,0)
 - $c\mathbf{u} + d\mathbf{v} + e\mathbf{w}$ fills 3D space
- Zero vector (0,0,0) is on the line because c can be zero
- Zero vector (0,0,0) is on the plane because c and d could both be zero

Linear combination in 3D space

- Line of vectors cu is infinitely long (forward and backward)
- Adding all $c\mathbf{u}$ on one line to all $d\mathbf{v}$ on the other line fills in the plane
- When we include a third vector **w**, the multiples e**w** give a third line
- ullet Suppose that third line is not in the plane of ullet and ullet
 - ullet Combining all $e{f w}$ with all $c{f u}+d{f v}$ fills up whole three-dimensional space

Review of important ideas

- A vector \mathbf{v} in two-dimensional space has two components v_1 and v_2
- $\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2)$ is calculated a component at a time
- $c\mathbf{v} = (cv_1, cv_2)$ is calculated a component at a time
- Linear combination of three vectors \mathbf{u} and \mathbf{v} and \mathbf{w} is $c\mathbf{u} + d\mathbf{v} + e\mathbf{w}$
- Take all linear combinations of uv, or \mathbf{u} and \mathbf{v} , or \mathbf{u} , \mathbf{v} , \mathbf{w}
- ullet In three dimensions, those combinations typically fill a line, then a plane, then the whole space ${f R}^3$
- End of Section 1.1 lots of problems at the end please solve them

