Solution of 2-D Euler Equations: Channel with Circular Bump

Spatial discretization schemes:

 $\bullet\,$ Central scheme with scalar artificial dissipation:

$$\sigma = 7.5$$
, $\varepsilon = 0.8$, $k^{(2)} = 0.5$, $k^{(4)} = 1/128$

• Roe's upwind scheme:

$$\sigma=5.0$$
, $\varepsilon=1.0$, $K=0.5$

Boundary conditions:

$$p_{t,inl} = 1.0 \cdot 10^5 \, \mathrm{Pa}$$
, $T_{t,inl} = 300.0 \, \mathrm{K}$, $p_{out} = 7.0 \cdot 10^4 \, \mathrm{Pa}$.

Convergence history.

Detail of pressure distribution inside the channel (Roe scheme).

Mach number over channel length.

Detail of Mach number distribution over channel wall.