

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Issues..

- How many neighbors should we consider?
- How do we measure distance?
- How do we combine the information form more than one observation?
- Should all points be weighted equally?

Definition of Nearest Neighbor

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest Neighbor Classification

- How is similarity defined between an unclassified record and its neighbors?
 - A distance metric is a real-valued function d used to measure the similarity between coordinates x, y, and z with properties:
 - 1. $d(x, y) \ge 0$, and d(x, y) = 0 if and only if x = y
 - 2. d(x, y) = d(y, x)
 - 3. $d(x,z) \le d(x,y) + d(y,z)$

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(x, y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

- Normalization
 - Continuous data values should be normalized using Min-Max Normalization or Z-Score Standardization

$$\mbox{Min-Max Normalization} = \frac{X - \min(X)}{\max(X) - \min(X)} \qquad \mbox{Z-Score Standardization} = \frac{X - \max(X)}{\mathrm{standard deviation}(X)}$$

Nearest Neighbor Classification

- Which patient is more similar to a 50-year-old male: a 20-year-old male or a 50-year-old female?
 - For categorical attributes, the Euclidean Distance function is not appropriate
 - Instead we define a function called "different" $different(x_i, y_i) = \begin{cases} 0 & \text{if } x_i = y_i \\ 1 & \text{otherwise} \end{cases}$

Nearest Neighbor Classification

- Let Patient A = 50-year-old male, Patient B = 20year-old male, and Patient C = 50-year-old female
- Suppose that the Age variable has a range = 50, minimum = 10, mean = 45, and standard deviation = 15

Nearest Neighbor Classification

- Different normalization techniques
 - resulted in Patient A being nearest to different patients in the training set
- The importance of understanding which technique is being used
 - Note that the distance(x,y) and Min-Max
 Normalization functions produce values in the range
 [0, 1]
- The distance between records containing both numeric and categorical attributes
 - Min-Max Normalization is preferred

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

How should the most similar (k) records combine to provide a classification?

Unweighted Voting

- This is the most simple combination function
- Decide on the value for k to determine the number of similar records that "vote"
- Compare each unclassified record to its k nearest (most similar) neighbors according to the Euclidean Distance function
- · Each of the k similar records vote

Example

• 3-nearest neighbors classification

Instance	x1	x2	Class
1	5	7	1
2	4	3	2
3	7	8	2
4	8	6	2
5	3	6	1
6	2	5	1
7	9	6	2

Weighted Voting

- take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, $w = 1/d^2$

$$record(3\&4) = \frac{1}{(2.236)^2} + \frac{1}{(3.162)^2} \cong 0.067$$

$$record(5) = \frac{1}{(2.236)^2} \cong 0.2$$

Estimation and Prediction

• The estimated target value is calculated as

$$\hat{y}_{new} = \frac{\sum_{i} w_{i} y_{i}}{\sum_{i} w_{i}}$$

Choosing k

- Smaller k
 - Choosing a small value for k may lead the algorithm to overfit the data
 - Noise or outliers may unduly affect classification
- Larger k
 - Larger values will tend to smooth out idiosyncratic or obscure data values in the training set
 - It the values become too large, locally interesting values will be overlooked
- Choosing the appropriate value for k requires balancing these considerations

Exercise

• FileName: InClass02_LastName

Household	Income (\$000s)	House Size	Ownership of Car
1	60	1840	Own
2	85.5	1680	Own
3	4.8	2160	Own
4	61.5	2080	Own

13	75	1960	lease
14	52.8	2080	lease
15	64.8	1720	lease
16	43.2	2040	lease

Source: Shmueli et al. (2016)