# **Getting Help with R**

## After this workshop

**O** steffilazerte

@ @steffilazerte@fosstodon.org

**y** @steffilazerte

steffilazerte.ca





# First things first

- Save previous script
- Consider taking notes during this section

I KNOW\_ LOTS!

HOW I KNOW ABOUT R

NOTHING



TIME

@allison\_horst

# **Troubleshooting**



## Line by line

- R is sequential
- If you skip lines, you're not running that part (and R has no idea)

```
1 #a <- 1
2 b <- 2
3 a + b

Error in eval(expr, envir, enclos): object 'a' not found</pre>
```

• Error? Start at the beginning and go line by line

```
1 a <- 1
2 b <- 2
3 a + b
```

## Line by line

```
1 library(tidyverse)
 3 # Load Data
 4 size <- read csv("./data/grain size2.csv")
 6 # First modification
7 size <- mutate(size,</pre>
                  total sand = coarse sand + medium sand + fine sand,
                  total silt = coarse silt + medium_silt + fine_silt)
   # Second modification
12 size <- size |>
     group by (plot) |>
   summarize (n = n(),
               total sand = sum(total sand),
               mean sand = mean(total sand),
17
              sd sand = sd(total sand),
               se sand = sd sand / sqrt(n))
```

Especially important if loading and modifying data

Can't run 1st modification after 2nd modification

## **Section by section**

```
1 library(tidyverse)
         3 size <- read csv("./data/grain size2.csv") |>
              mutate(total sand = coarse sand + medium sand + fine sand,
                    total silt = coarse silt + medium silt + fine silt) |>
              group by(plot) |>
         7 summarize (n = n(),
                      total sand = sum(total sand),
              mean sand = mean(totall sand),
              sd sand = sd(total sand),
         10
               se sand = sd sand / sqrt(n))
Error in `summarize() `:
i In argument: `mean sand = mean(totall sand)`.
i In group 1: `plot = "CSP01"`.
Caused by error:
! object 'totall sand' not found
```

## **Section by section**

```
1 library(tidyverse)
2
3 size <- read_csv("./data/grain_size2.csv")</pre>
```

### No error

```
1 size <- read_csv("./data/grain_size2.csv") |>
2 mutate(total_sand = coarse_sand + medium_sand + fine_sand,
3 total_silt = coarse_silt + medium_silt + fine_silt)
```

### No error

#### No error

## **Section by section**

Ah ha!

## Applies to error messages too

- First, don't panic!
- Look at the error bit by bit

```
Error: Problem with `summarise()` column `mean_sand`.
i `mean_sand = mean(totall_sand)`.

x object 'totall_sand' not found
i The error occurred in group 1: plot = "CSP01".
```

## Applies to error messages too

```
Error: Problem with 'summarise()' column 'mean sand'`
```

Okay, we know the problem is in the summarize() part and then mean\_sand part of that

```
i 'mean_sand = mean(totall_sand)'
x object 'totall sand' not found
```

Looks like this is the line with the problem.

And the problem is object 'totall\_sand' not found.

### Ooops! Typo!

```
i The error occurred in group 1: plot = "CSP01".
```

Lastly, it's telling us that the problem was when working with this group of data.

(This can be useful when troubleshooting, because you can filter() your data and take a look)

# debugging





2. Huh. Really thought that was it.





3. (...) Fine. Restarting.

OH WTF.











6.. Zombie meltdown



9. [insert awesome] theme song



# R is never wrong

Just sometimes unhelpful!

# **Getting Help**

# **Cheat Sheets**

## **RStudio Menu**

- Help
  - Cheatsheets

Take a look yourself

## Data Visualization with ggplot2:: CHEAT SHEET





ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms-visual marks that represent data points.



To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations.



Complete the template below to build a graph.



**ggplot**(data = mpg, **aes**(x = cty, y = hwy)) Begins a plot that you finish by adding layers to. Add one geom function per layer.



Creates a complete plot with given data, geom, and mappings. Supplies many useful defaults.

last plot() Returns the last plot

ggsave("plot.png", width = 5, height = 5) Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Geoms Use a geom function to represent data points, use the geom's aesthetic properties to represent variables Each function returns a layer.

#### **GRAPHICAL PRIMITIVES**

a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat))

#### a + geom\_blank() (Useful for expanding limits)





a + geom\_polygon(aes(group = group))
x, y, alpha, color, fill, group, linetype, size





a + geom\_ribbon(aes(ymin=unemploy - 900, ymax=unemploy + 900)) - x, ymax, ymin, alpha, color, fill, group, linetype, size

#### LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size



b + geom\_abline(aes(intercept=0, slope=1)) b + geom\_hline(aes(yintercept = lat))

b + geom\_vline(aes(xintercept = long))

**b + geom\_segment(**aes(yend=lat+1, xend=long+1)**)** b + geom spoke(aes(angle = 1:1155, radius = 1))

#### ONE VARIABLE continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)



c + geom area(stat = "bin") x, y, alpha, color, fill, linetype, size



c + geom\_density (kernel = "gaussian") x, y, alpha, color, fill, group, linetype, size, weight



c + geom dotplot() x, y, alpha, color, fill





c + geom\_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight



c2 + geom\_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight

#### discrete

d <- ggplot(mpg, aes(fl))



x, alpha, color, fill, linetype, size, weight

#### TWO VARIABLES

#### continuous x, continuous y

e <- ggplot(mpg, aes(cty, hwy))



e + geom\_label(aes(label = cty), nudge\_x = 1, nudge\_y = 1, check\_overlap = TRUE) x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust



e + geom\_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size



e + geom\_quantile(), x, y, alpha, color, group,



e + geom\_rug(sides = "bl"), x, y, alpha, color,



e + geom\_smooth(method = lm), x, y, alpha, color, fill, group, linetype, size, weigh



e + geom\_text(aes(label = cty), nudge\_x = 1 nudge\_y = 1, check\_overlap = TRUE), x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, viust

#### discrete x, continuous y f <- ggplot(mpg, aes(class, hwy))



f + geom\_col(), x, y, alpha, color, fill, group, linetype, size



f + geom\_boxplot(), x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight



**f + geom\_dotplot(**binaxis = "y", stackdir = "center"), x, y, alpha, color, fill, group



f + geom\_violin(scale = "area"), x, y, alpha, color, fill, group, linetype, size, weight

#### discrete x, discrete y

g <- ggplot(diamonds, aes(cut, color))



g + geom\_count(), x, y, alpha, color, fill, shape, size, stroke

#### continuous bivariate distribution

h <- ggplot(diamonds, aes(carat, price))



h + geom\_bin2d(binwidth = c(0.25, 500)) x, y, alpha, color, fill, linetype, size, weight



h + geom\_density2d() x, y, alpha, colour, group, linetype, size



h + geom\_hex() x, y, alpha, colour, fill, size

#### continuous function

i <- ggplot(economics, aes(date, unemploy))



i + geom area() x, y, alpha, color, fill, linetype, size



x, y, alpha, color, group, linetype, size

i + geom\_step(direction = "hv") x, y, alpha, color, group, linetype, size

#### visualizing error

 $df \leftarrow data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)$ i <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))



j + geom\_crossbar(fatten = 2) x, y, ymax, ymin, alpha, color, fill, group, linetype,



j + geom\_errorbar(), x, ymax, ymin, alpha, color, group, linetype, size, width (also geom\_errorbarh())



x, ymin, ymax, alpha, color, group, linetype, size



j + geom\_pointrange() x, y, ymin, ymax, alpha, color, fill, group, linetype, shape, size

#### maps

data <- data.frame(murder = USArrests\$Murder, state = tolower(rownames(USArrests)))
map <- map data("state") k <- ggplot(data, aes(fill = murder))



**k + geom\_map(**aes(map\_id = state), map = map) **+ expand\_limits(**x = map\$long, y = map\$lat), map\_id, alpha, color, fill, linetype, size

#### THREE VARIABLES

seals\$z <- with(seals, sqrt(delta\_long^2 + delta\_lat^2)); l <- ggplot(seals, aes(long, lat))



l+geom contour(aes(z=z)) x, y, z, alpha, colour, group, linetype, size, weight



l + geom raster(aes(fill = z), hiust=0.5, viust=0.5, interpolate=FALSE) x, y, alpha, fill



l + geom\_tile(aes(fill = z)), x, y, alpha, color, fill,



RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at http://ggplot2.tidyverse.org • ggplot2 3.1.0 • Updated: 2018-12

# Vignettes

Many packages come with vignettes (tutorials)

## **List Vignettes**

## **Load Vignettes**

```
1 vignette("ggplot2-specs", package = "ggplot2")
```

Try it!

## **Tutorials**

## Vignettes are also online

- e.g., ggplot2
- e.g., tidyverse

## **Organizations/Websites**

- Software Carpentry
- STHDA



Reference

Articles -

ws ▼ Extensions



#### Overview

ggplot2 is a system for declaratively creating graphics, based on The Grammar of Graphics. You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.

### Installation

```
# The easiest way to get ggplot2 is to install the whole tidyverse:
install.packages("tidyverse")

# Alternatively, install just ggplot2:
install.packages("ggplot2")

# Or the the development version from GitHub:
# install.packages("devtools")
devtools::install_github("tidyverse/ggplot2")
```

#### Links

Download from CRAN at <a href="https://cloud.r-project.org/package=ggplot2">https://cloud.r-project.org/package=ggplot2</a>

Browse source code at https://github.com/tidyverse/ ggplot2

Report a bug at

https://github.com/tidyverse/ ggplot2/issues

Learn more at http://r4ds.had.co.nz/datavisualisation.html

Extensions at http://www.ggplot2-exts.org/gallery/

License

GPL-2 | file LICENSE

## **Books!**

### **Free Online**

- R for Data Science (read it!)
- R Graphics Cookbook (how to do X)
- ggplot2 (next level)
- Data Visualization: A practical introduction
- Geocomputation with R (spatial, GIS, maps)
- Statistical Inference via Data Science: A ModernDive into R and the tidyverse (stats)

## **Communities!**

- rOpenSci
- #RStats Twitter
- #RStats Mastodon
   (e.g., Fosstodon.org or Hachyderm.io)
- R4DS Online learning community on Slack (ask any question, they're really nice!)

## **Specific Groups**

- rLadies
- MiR
- AfricaR
- AsiaR











# Specific help

# **Examples**

## In R

1 ?geom\_boxplot

Copy and paste the examples into your console

# **Examples**

### On the web

- Nice to see expected output
- Helps figure out if it's your system or your code



## Web searches

- Always include "R" in the search
- Include the package name!
- Use keywords
- Some errors are very general

## Web searches

- Always include "R" in the search
- Include the package name!
  - Try "R boxplots" vs. "R boxplots ggplot2"
- Use keywords
  - Try "R boxplots ggplot2 notch"
- Some errors are very general
  - Try "R Error: object 'm' not found"

## Stackoverflow etc.

"R how to remove duplicate rows"

## Stackoverflow etc.

## Things to consider

- Date (i.e., R version, Package Version)
- Packages used (tidyverse? R base? A mix?)
- What are the example data?
  - mtcars and iris are commonly used data sets built into R base
  - msleep and diamonds are commonly used data sets built into ggplot2
- What are the example columns?
- What is actually required to answer *your* question?

# **Asking for Help**

### Not useful

- "I got an error"
- "It didn't work"

### Better!

- "I got *this* error"
- "It didn't give me this"

### Best!!

- "I did this and I got this error"
- "I expected it to do this, but in fact the output was this"

### **Best of the Best!!!**

• "I did this [small reproducible code, including data set] and I got this [exact error/output]"

- Minimal code and data required to reproduce the error
- Often preparing this actually helps you solve the error!
- Includes
  - packages(library())
  - data
  - runnable code

## How do I change the order of vore?

### Not reproducible

- No indication of packages
- No indication of what m is

## How do I change the order of vore?

## Reproducible, but not minimal



## How do I change the order of vore?

## Reproducible AND Minimal

```
1 library(ggplot2)
2
3 ggplot(msleep, aes(x = vore, y = awake)) +
4 geom_boxplot()
```



# **Paying it forward**

# **Citing Software**

### **In-line Text**

- Software name
- Version
- Programmers/authors OR Journal article releasing the software (if available)

## **Bibliography**

- Journal article releasing the program **OR**
- Programmers/authors
- Year of release
- Program Name
- URL

# Citing R

### Inline

"All statistical analyses were performed with R statistical software (v4.3.2, R Core Team 2023)."

## **Bibliography**

R Core Team (2023). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

# Citing R

### **Version information**

```
1 R.Version()$version.string
[1] "R version 4.3.2 (2023-10-31)"
```

### **Citation information**

```
1 citation()

To cite R in publications use:

R Core Team (2023). _R: A Language and Environment for Statistical
Computing_. R Foundation for Statistical Computing, Vienna, Austria.
<a href="https://www.R-project.org/"><a href="https://www.R-project.org/">><a href="https://www.R-project.org/"><a href="https://www.R-project.org/">><a href
```

# **Citing R Packages**

### Inline

"All statistical analyses were performed with R statistical software (v4.0.3, R Core Team 2020). We performed Type III ANOVAs using the 'car' package for R (v3.0.10, Fox and Weisberg 2019)."

## **Bibliography**

John Fox and Sanford Weisberg (2019). An R Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage.

# **Citing R Packages**

### **Version information**

```
packageVersion("car")
[1] '3.1.2'
```

### **Citation information**

```
1 citation("car")

To cite the car package in publications use:

Fox J, Weisberg S (2019). _An R Companion to Applied Regression_,
Third edition. Sage, Thousand Oaks CA.
<a href="https://socialsciences.mcmaster.ca/jfox/Books/Companion/">https://socialsciences.mcmaster.ca/jfox/Books/Companion/</a>>.
```

See more about citing packages in my rOpenSci blog post: How to Cite R and R packages





## You made it!

## Thank you!

(Feedback!)