$$P(n,r) = \frac{n!}{(n-r)!}$$

What is the probability that Vi+ +Vi, (which is Vi+ & hi.

Probability Analysis

Backward analysis

- Question: When given a solution after i halfplanes, what is the probability that the last half-plane affected the solution?
- Answer: Exactly 2/i, because a change can occur only if the last halfplane inserted is one of the two halfplanes thru v, (note that v, depends on the i halfplanes, but not on their order)

Expected works cut the 2'9 step.

$$P(work) = \frac{\dot{i}-2}{\dot{i}} \cdot work + \frac{2}{\dot{i}} \cdot i work$$

$$= \left(\frac{\dot{i}-2}{\dot{i}} + 2\right)$$
 works

74.

At1...n3 > set of keys B CI... NJ Contains same keys (diff order)

repeat

i = rands * n

Swap CATIJ, ACNJ)

linear Time

3-dimensions

> ax+bezo

>3x+2y

LP in 3D

□ Now the input is a collection of **half-spaces** $\{h_{1...}, h_{n}\}$. Now l_i is the plane bounding h_i . (notations are analogous to the 2D case). We will define v_3 as the intersection of the **planes** l_1 , l_2 and l_3 . We insert the other halfspaces $\{h_4 \dots h_n\}$ at a random order, and update v_i according to the following Theorem:

☐ Theorem:

1. if $v_{i-1} \in h_i$, then $v_i = v_{i-1}$. // O(1) check, nothing to do

2. if $v_{i-1} \notin h_i$, then the solution (if exists) is on l_i .

run $v_i = 2DLP(h_1 \cap l_i, h_2 \cap l_i, h_3 \cap l_i, \dots, h_{i-1} \cap l_i).$

Terminates if there is no solution (that is, $C_i = \emptyset$)

3 special planes

height,

* * * * * *

weight

minimize linear mis-chassify

vector machine

fitting a line into a set of points.

Input P&P....Pn?
error term 0.1 tolerance

Oudput a line that is vertically at most 0.1 away from each pi

Pi =
$$(xi, yi)$$
 given

Assume $L = \alpha x + b$
 $yi = \alpha xi + b$ -- go through

 $yi \leq \alpha xi + b + 0.1$
 $yi \approx \alpha xi + b + 0.1$

ILP min cordinality Uertex Cover

find a subset of vertices

UCV that "stab"

every edge of E

That is every edge (71,1) eE

has at least one of its endpoint
of U

U = { b, e, f, g } U' = { b, e, g } optimal

For every subset UEV, check if U hics every edge

京华

Exaustivity

$$U = \{v_0, v_1, \dots, v_n\}$$

let $x_{i=1}$, if $v_i \in U$

o else

$$\Rightarrow (x_0, x_1, x_2 \dots x_n)$$

combination of binary bits

2"

Phrase the problem as an ILP

- 10 Phrase as HP
- @ Constrain that each var is un integer.

Answer $x_1, x_2, ..., x_n (x_{i>0}, \forall_i)$

if $x_i == 0$ then $y_i \notin U$

if Xi == 1 then Vie U

for every edge (Vi.Vj) & U

