Name:	Section:
Signature:	FFF 313 Fall 2013

Bilkent University Department of Electrical and Electronics Engineering EEE 313 Electronic Circuit Design

Midterm 1

1 November 2013, 18:00 (4 questions, 120 minutes)

- This is a **closed book**, closed notes exam. No cheat sheet allowed.
- All cell-phones should be completely **turned off**.
- Use a calculator for numerical computations. Carry at least 4 significant digits during calculations. Your final answer should be at least 3 significant digits.
- Be sure to write the **units** of all numerical results.
- Show all work clearly.
- Please put your **final answer** for each part inside a box for easy identification. Do not give multiple answers, they will not be graded.
- Do not remove the **staple** from the exam sheets or separate pages of the exam. All extra pages must be stamped to your exam.
- You may leave the exam room when you are done. However, please do not leave during the **last five minutes** of the exam.
- At the end of the exam, please stay seated unit all exam papers are collected.

FET equations:

n-channel MOSFET

$$i_D = K_n (v_{GS} - V_{Tn})^2$$
 SAT
 $i_D = K_n \left[2(v_{GS} - V_{Tn})v_{DS} - v_{DS}^2 \right]$ NON-SAT

p-channel MOSFET

$$\begin{split} i_D &= K_p (v_{SG} + V_{Tp})^2 & \text{SAT} \\ i_D &= K_p \left[2 (v_{SG} + V_{Tp}) v_{SD} - v_{SD}^2 \right] & \text{NON-SAT} \end{split}$$

n-channel JFET

$$\begin{split} i_D &= \frac{I_{DSS}}{V_p^2} (v_{GS} - V_P)^2 & \text{SAT} \\ i_D &= \frac{I_{DSS}}{V_p^2} \left[2(v_{GS} - V_P) v_{DS} - v_{DS}^2 \right] & \text{NON-SAT} \end{split}$$

Please do not write below this line

1. 25 pts.	
2. 30 pts.	
3. 25 pts.	
4. 20 pts.	
Total 100 pts.	

- 1) (25 points) Design the common source circuit below using an n-channel MOSFET. The quiescent values are to be I_{DQ} = 25 mA and V_{GSQ} = 7 V. The transconductance is g_m = 10 mA/V. Let R_L = 1 k Ω , R_I = 1 k Ω $A_v = v_{out}/v_{in} = -5$, and R_{in} = 56 k Ω . Find:
 - a) (6 points) R_1 and R_2
 - b) $(6 \text{ points})R_D$
 - c) $(7 \text{ points})K_n$
 - d) (6 points) V_{tn}

- 2. (30 points) The transistor in the common-source amplifier has parameters threshold voltage, $V_{TN} = 1V$, conductance parameter, $K_n = 0.5 mA/V^2$ and Early voltage, V_A =100V. Be careful about the polarities of voltage sources. a. (20 points) Determine I_{DQ} to achieve the maximum undistorted peak-to-peak
 - output swing in the output voltage.
 - b. (10 points) Find the small-signal voltage gain.

- **3.** (25 points) At the circuit given above, the diode $V\gamma$ =0.6Volts. The value of the resistor R_2 is 15Ω . V_1 =10Volts, R_1 =2k Ω and C_2 is very large. V_2 (t) is equal to 0.02cos(1000t) Volts. The diode is at room temperature and the ideality factor n=1. Answer the following:
 - a) (6points) Find the DC current, I_{DQ}, through the diode,
 - b) (6 points) Draw the AC equivalent circuit,
 - c) (7 points) Calculate and plot $v_o(t)$ including the right timing of the waveform.
 - d) (6 points) Do we expect to see an undistorted or distorted sinusoidal wave over the diode? Please state the reason behind your answer.

- **4.** (20 points) At the depletion-mode p-channel MOSFET circuit given above, V_{TP} =3 Volts and K_P =5x10⁻³A/V². R_d =6k Ω and R_S =3k Ω a) (15 points) Find the bias of the transistor, b) (5 points) Verify the solution.