Computational Vision

Radiometry and Reflectance

Szeliski: 2.2

Horn: Chapter 2: 22-24, Chapter 10: 202-215

From 2D to 3D

- DEPTH from TWO or MORE IMAGES
 - Stereo
 - Optical Flow -> Factorization Method.
- SHAPE from SINGLE IMAGE CUES
 - SHAPE from SHADING
 - SHAPE from TEXTURE
 - ...

Shading Encodes Shape

From Robot Vision (Horn)

Figure 10-2. The appearance of an object depends greatly on its attitude in space relative to the viewer. Not only does the outline vary, but the brightness pattern within the silhouette changes.

Radiometry and Reflectance

Image Intensity I = f (surface orientation, surface reflectance, illumination, imaging system)

Surface Element

Note: Image Intensity Understanding is an under-constrained problem!

Angles in 2D & 3D

Angle definition on the plane

 $d\theta = dl / r (radian)$

 $d\theta = dl$ in unit circle (r = 1)

π day: 3/14

Archimedes (287-211BCE) computation of π

https://www.nytimes.com/article/pi-day-math-geometry-infinity.html?unlocked_article_code=1.ck0.WDnQ.5rBU-rR2oQHR&smid=url-shar

$$3 + \frac{10}{71} < \pi < 3 + \frac{10}{70}$$

Solid Angle

 $\delta\omega = (\delta A \cos \theta)/R^2 \text{ (steradian)}$

Solid Angle

$$\delta\omega = (\delta A \cos \theta)/R^2$$
 (steradian)

Foreshortened Area

 $\delta\omega = \delta A'/R^2$ (steradian)

Solid Angle

Solid Angle Sustained by a hemisphere = 2π

Unit

$$\delta\omega = (\delta A \cos\theta)/R^2$$
 (steradian)

Foreshortened Area

$$\delta \omega = \delta A'/R^2$$
 (steradian)

Radiant Intensity of Source: Light flux (power) emitted per unit solid angle: $J=d\Phi/d\omega$ (watts/steradian)

Surface Irradiance: Flux incident per unit surface area:

 $E = d\Phi/dA \text{ (watts/m}^2)$

Does not depend on where the light is coming from!

One or more light sources.

Surface Irradiance: Flux incident per unit surface area: $E=d\Phi/dA$ (watts/m²)

Surface Irradiance as a function of J (one source):

$$E = d\Phi/dA = E = (J d\omega) / dA = E = (J cos\theta) / R^2$$

E inversely proportional to R E proportional to $\cos\theta$ (when is E maximized?)

Surface Radiance(Brightness):

Flux emitted per unit foreshortened area, per unit solid angle:

L= $d\Phi/(dA \cos\theta_r)d\omega$ (watts/m² steradian)

Surface Radiance(Brightness):

Flux emitted per unit foreshortened area, per unit solid angle:

L= $d\Phi/(dA \cos\theta_r)d\omega$ (watts/m² steradian)

L depends on direction θ r Surface can radiate into whole hemisphere Depends on reflectance properties of surface

Foreshortening

As the surface tilts away from the light source the same light energy is spread over a larger area, making the surface darker

What is the relationship between L & E?

f: effective focal length

f: effective focal length

f: effective focal length

f: effective focal length p is perspective projection of scene point P dAi and dAs are very small surfaces

Here

δl is dAi

δO is dAs

2

L= $\delta\Phi$ / ($\delta\Theta$ * cosθ * $\Delta\Omega$), L scene radiance at **P**

 $E=\delta\Phi / \delta I$, image irradiance at p

 $E=\delta\Phi/\delta I$, image irradiance at p.

L= $\delta\Phi$ / (δ O * cosθ * $\Delta\Omega$), L scene radiance at **P**.

Fundamental Equation of Radiometric Image Formation

$$E = L * \Delta \Omega * \cos \theta * \delta O / \delta I$$

Solid angles:

$$\Delta\Omega = \delta A * \cos\alpha/R^2 = (\pi d^2/4) * \cos\alpha / (Z/\cos\alpha)^2$$

$$= (\pi/4) d^2 \cos^3\alpha / Z^2$$

$$\delta\Omega_o = \delta O * \cos\theta / (Z/\cos\alpha)^2$$

$$\delta\Omega_I = \delta I * \cos\alpha / (f/\cos\alpha)^2$$

$$\delta\Omega_{\rm o} = \delta\Omega_{\rm I} = > \delta O / \delta I = (\cos\alpha / \cos\theta) * (Z / f)^2$$

Fundamental Equation of Radiometric Image Formation

 $E = L * (\pi/4) d^2 (\cos^3 \alpha / Z^2) * \cos \theta * (\cos \alpha / \cos \theta) * (Z / f)^2$

Finally:

$$E = L * (\pi / 4) * (d / f)^{2} * cos^{4}\alpha$$

Image irradiance

Image irradiance is proportional to scene radiance

$$E \propto L$$

Image irradiance

- Image irradiance is proportional to scene radiance
 - the $E \propto L$
- Image irradiance falls off as a function of contact.
- Small field of view => small $\cos^4(a)$

Image irradiance

DOES Image Irradiance VARY WITH SCENE DEPTH?

Image Irradiance Does Not Vary with Scene Depth

Varying Scene Depth

- Larger Scene Depth,Larger light accumulation
- Larger Scene Depth,
 Smaller Solid Angle
 subtended by each point

$$E = L\frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4(\alpha)$$

Shree Nayar

Surface Radiance & Image Irradiance L: Scene

Image irradiance

$$E = L\frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4(\alpha)$$

DOES Image Irradiance VARY WITH SCENE DEPTH? NO

Surface Appearance

Measuring appearance

From "Fraunhober IOSB"

Bi-Directional Reflectance Distribution Function

 $E(\theta_i, \phi_i)$: Irradiance due to source in direction (θ_i, ϕ_i)

 $L(\theta_r, \phi_r)$: Radiance of surface in direction (θ_r, ϕ_r)

$$E(\theta_i, \phi_i)$$
: Irradiance due to source in direction (θ_i, ϕ_i)

$$L(\theta_r, \phi_r)$$
 : Radiance of surface in direction (θ_r, ϕ_r)

BRDF:
$$f(\theta_i, \phi_i, \theta_r, \phi_r) = \frac{L(\theta_r, \phi_r)}{E(\theta_i, \phi_i)}$$
 4-D function

Unit: 1 / steradian

BRDF:

$$f(\theta_i, \phi_i, \theta_r, \phi_r) = \frac{L(\theta_r, \phi_r)}{E(\theta_i, \phi_i)}$$

4-D function
Unit: 1 / steradian

PROPERTIES:

- 1. BRDF f is always > 0
- 2. Helmholtz Reciprocity:

$$f\left(q_{i},j_{i},q_{r},j_{r}\right)=f\left(q_{r},j_{r},q_{i},j_{i}\right)$$

BRDF:
$$f(\theta_i, \phi_i, \theta_r, \phi_r) = \frac{L(\theta_r, \phi_r)}{E(\theta_i, \phi_i)}$$

4-D functionUnit: 1 / steradian

For Rotationally Symmetric Reflectance Properties:

BDRF:
$$f(\theta_i, \theta_r, (\phi_r - \phi_i))$$
 (ISOTROPIC SURFACES: 3-D)

Isotropic vs. Anisotropic BRDF

Isotropic BRDF

Anisotropic BRDF

Anisotropic BRDF in nature

Surface Reflection: *Specular Reflection

- *Glossy Appearance
- *Highlights.
- *Smooth surfaces (ex. metal mirror, glass)

Body Reflection: *Diffuse Reflection

*Matte Appearance

*Non-Homogeneous Medium (ex. clay, paper)

Body Reflection: *Diffuse Reflection

*Matte Appearance

*Non-Homogeneous Medium (ex. clay, paper)

Surface Reflection: *Specular Reflection

*Glossy Appearance

*Highlights.

*Smooth surfaces (ex. metal mirror, glass)

Object appearance: Diffuse Reflection + Specular Reflection

Materials - Three Forms

Diffuse vs Specular Reflection

Mostly diffuse (no highlights)

Mostly specular (highlights)

Body Reflection:

Surface Reflection:

Hybrid Reflection (Body + Surface):

[Nayar 1991]

Lambertian Reflectance Model (Body Reflection)

A Lambertian (i.e. diffuse) surface scatters light equally in all directions!

Lambert (1760)

Very widely used in Vision & Graphics

A Lambertian (diffuse) surface scatters light equally in all directions

Constant **BRDF** f:

$$f = \frac{r}{\rho}$$
 Albedo ρ: intrinsic brightness of surface

$$0 \le \rho \le 1$$

0: black surface

1: fully reflective

Surface appears equally bright from all viewing directions

A Lambertian (diffuse) surface scatters light equally in all directions

$$f(q_{i}, j_{i}, q_{r}, j_{r}) = \frac{r}{\rho} = >$$

$$L(q_{r}, j_{r}) = \frac{r}{\rho} E(q_{i}, j_{i})$$

$$L = \frac{r}{\rho} E$$

Albedo p: intrinsic brightness of surface

$$0 \le \rho \le 1$$

Surface appears equally bright from all viewing directions

Unit Vectors

v: viewing direction

n: surface normal

s: light source direction

r: distance of light source from surface

A Lambertian sphere

Unit Vectors

v: viewing direction

n: surface normal

s: light source direction

r: distance of light source from surface

A Lambertian sphere

$$L = \frac{r}{\rho}E$$

$$E = (J\cos q_i / r^2) = \frac{J}{r^2} (\mathbf{n} \times \mathbf{s}) = >$$

$$L = \frac{r}{\rho} \frac{J}{r^2} (\mathbf{n} \times \mathbf{s})$$

or

$$L = rk(\mathbf{n} \times \mathbf{s}), k = \frac{J}{Dr^2}$$

Dot product between unit vectors = cos

Surface normal n

Direction of illumination s

A Lambertian sphere

Commonly used in Computer Vision and Graphics

$$L = \frac{\rho_d}{\pi} \frac{J}{r^2} (\bar{\mathbf{n}} \cdot \bar{\mathbf{s}})$$

What Information Does Shading Encode

In regions of constant albedo, changes of intensity correspond to changes in the surface normal of the scene

$$I \mu L = \Gamma'(\mathbf{n} \times \mathbf{s})$$

Ideal Specular Model (Mirrors)

*Very SMOOTH surface

*All incident energy reflected in a single direction

Perfect reflector

$$f(q_i, j_i, q_e, j_e) = \frac{d(q_i - q_e)d((j_i + p) - j_e)}{\cos q_i \sin q_i}$$

Viewer received light only when v = r

Glossy Surfaces

- Delta function δ() too harsh a BRDF model
 (valid only for highly polished mirrors and metals).
- Many glossy surfaces show broader highlights in addition to mirror reflection.

- Surfaces are not perfectly smooth they show micro-surface geometry (roughness).
- Example Models : Phong model

Torrance Sparrow model

Phong Reflectance Model

θi

b=0.3, c=0.7, n=2

v: viewing

direction

b=0.7, c=0.3, n=0.5

Torrance-Sparrow Model

Specular Reflection from Rough Surfaces.

<u>Surface Micro-Structure Model – Each facet perfect mirror</u>

Micro-facet Orientation Model: (example)

$$p(a) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{a^2}{\sigma^2}}$$
 (Gaussian Model) Isotropic

σ: roughness parameter

Micro-facet Orientation

Torrance-Sparrow Model

Masking and Shadowing Effects

Dichromatic Model

Color of body (diffuse) component = color of object x color of illumination Color of surface (specular) component = color of illumination

We measure the sum of the diffuse and specular components.

Removing Specularities

Klinker, Shafer, Kanade, 1990, International Journal of Computer Vision

Illumination: Office scene Illumination: Kendall Food Court Illumination: Adelson Lab Illumination: NE20 4th floor lobby Illumination: Street scene Illumination: By a window Illumination: Under a desklamp

Dror,

Wilsky

Adelson,