

Model Optimization and Tuning Phase Template

Date	24 April 2024
Team ID	739877
Project Title	Crystal Ball Analysis: Projecting Share Prices Of The Leading Gpu Titans
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model Tuned Hyperparameters

Imports necessary libraries and tools for data handling, model training, and evaluation. Defines `param_grid` with hyperparameters for `LinearRegression`: `fit_intercept`, `positive`, `copy_X`. Uses GridSearchCV (`grid_search`) to find the best model configuration based on 5-fold cross-validation. Evaluates the best model (`best_lr`) on test data, computing Mean Squared Error and R-squared metrics.

Hyperparameter Tuning

Linear Regression

```
# Import necessary libraries
      import-pandas-as-pd
      from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.linear_model import LinearRegression # Import LinearRegression from sklearn.metrics import mean_squared_error, r2_score # Import appropriate metrics
      param_grid = {
           'fit_intercept': [True, False],
           'positive': [True, False],
           'copy_X': [True, False]
      } # Adjusted hyperparameters for LinearRegression
      grid_search == GridSearchCV(estimator=lr, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2)
      grid_search.fit(x_train, y_train)
      # Best parameters and best estimator
      best_params = grid_search.best_params_
     best lr = grid search.best estimator
      # Predictions and evaluation
      y_pred = best_lr.predict(x_test)
      # Evaluation metrics for regression
      print("Mean Squared Error:", mean_squared_error(y_test, y_pred))
      print("R-squared:", r2_score(y_test, y_pred))
Fitting 5 folds for each of 8 candidates, totalling 40 fits
Best Parameters: {'copy_X': True, 'fit_intercept': False, 'positive': True}
Mean Squared Error: 2.3123559886068095
      R-squared: 0.9997722332806338
```

The parameters (params) define a grid for hyperparameter tuning of the Decision Tree Classifier (DecisionTreeClassifier), including max_depth, min_samples_leaf, and criterion ('gini' or 'entropy'). GridSearchCV (dt_model) is used with 5-fold cross-validation (cv=5), evaluating model performance based on accuracy (scoring="accuracy")

Final Model Selection Justification (2 Marks):

Decision Tree

Final Model	Reasoning
Linear Regression	Linear regression model is chosen for its robustness in handling complex datasets and its ability to mitigate overfitting while providing high predictive accuracy. Fitting 5 folds for each of 8 candidates, totalling 40 fits Best Parameters: {'copy_X': True, 'fit_intercept': False, 'positive': True} Mean Squared Error: 2.3123559886068095 R-squared: 0.9997722332806338 Above two models Linear regression model have the highest accuracy among the models.