AD-A035 642

RCA LABS PRINCETON N J
X-BAND POWER FET DEVELOPMENT US
DAAH01-76-C-0357
NL

IOFI
AD-35642

BEND
DATE
FILMED
DATE
FILMED
3 - 77

ADA 035642

(2) V

### X-BAND POWER FET DEVELOPMENT

H. C. Huang and J. J. Napoleon RCA Laboratories Princeton, New Jersey 08540

**DECEMBER 1976** 

FINAL REPORT
For Period from 1 December 1975 to 31 December 1976



Prepared for U. S. Army Missile Command Redstone Arsenal, Alabama 35809

DESTRIBUTION STATEMENT A
Approved for public releases
Destribution Unlimited

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) TON PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM
2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER REPORT DOCUMENTATION PAGE REPORT NUMBER TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Final Report X-BAND POWER FET DEVELOPMENT (12-1-75 to 12-31-76) 6. PERFORMING ORG. REPORT NUMBER PRRL-76-CR-61 AUTHORE 8. CONTRACT OR GRANT NUMBER(s) H. C. Huang J. J. Napoleon DAAH61-76-C-6357 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS RCA Laboratories Princeton, New Jersey 08540 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE U.S. Army Missile Command 12/31/76 Redstone Arsenal, Alabama 35809 13. NUMBER OF PAGES 15. SECURITY CLASS. (of this report) MONITORING AGENCY NAME & ADDRESS (If different from Controlles Office) Unclassified tinal rept. 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A 1 Dec 75-31 Dec 76, 6. DISTRIBUTION STATEMENT (of this B DESTRIBUTION STATEMENT A Approved for public releases Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Multicell FETs (field effect transistors) X-Band frequencies Power combining on the chip Intercell connection 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Techniques for cellular combining at X-band frequencies to increase the output power have been developed. Multicell FETs have been fabricated and evaluated. Several multicell FETs with an output power of 800 to 900 mW, a small signal gain of 5 to 6 dB, and a power-added efficiency of 7 to 20% at the 9- to 10-GHz band have been delivered to the contracting agency. The performance of these devices meets the goals of this program. ~ DD FORM 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

299000 LB

### UNCLASSIFIED

|  | 2003043 |            |  |
|--|---------|------------|--|
|  |         |            |  |
|  |         | wednest of |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |
|  |         |            |  |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

#### PREFACE

This Final Report describes research performed under contract No. DAAHO1-76-C-0357 at RCA Laboratories in the Microwave Technology Center, F. Sterzer, Director. It describes work done from 1 December 1975 to 31 December 1976. The Project Supervisor is S. Y. Narayan; the Principal Investigators are H. C. Huang and J. J. Napoleon. The technical support personnel include W. F. Reichert, R. J. Matarese, P. F. Pelka, and A. San Paolo.



### TABLE OF CONTENTS

| Secti  |        |       |      |     |    |     |   |     |     |     |    |     |    |   |   |   |   |   |   |   |   |   |   |  |   | Page |
|--------|--------|-------|------|-----|----|-----|---|-----|-----|-----|----|-----|----|---|---|---|---|---|---|---|---|---|---|--|---|------|
| ı.     | INTROD | UCTIO | N.   |     | •  |     |   |     | •   |     |    |     |    |   |   |   |   |   | • |   |   |   | : |  |   | ĩ    |
| II.    | 4-GATE | , MUL | TICE | LL  | FE | т.  |   | •   |     |     | •  | •   | •  |   |   |   |   | • | • | • |   |   |   |  |   | 2    |
| III.   | 16-GAT | E FET |      | •   | •  |     |   | •   |     | •   |    |     | •  |   | • | • |   |   |   |   |   |   |   |  | • | 4    |
| IV.    | CONCLU | SION  |      | •   | •  |     |   |     | •   | •   |    |     | •  | • | • |   |   | • |   |   |   |   |   |  | • | 6    |
| APPENI | DIX A. | DATA  | PAC  | KAG | E  | FOR | M | UL: | ri( | CEI | L  | PI  | Ts |   |   |   | • |   |   | • |   | • |   |  |   | 7    |
| APPENI | DIX B. | DATA  | PAC  | KAG | E  | FOR | 1 | 6-0 | GA: | TE  | FI | ETE | 1  | • | • |   | • |   |   |   | • |   |   |  |   | 29   |

### LIST OF ILLUSTRATIONS

| Figu | ire                                                                                                                                                     | Page |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.   | Photograph of power MESFET                                                                                                                              | 3    |
| 2.   | 16-Gate FET designed for 1-W output in X-band. Gold posts are plated in the source, gate and drain areas. The pellet size is 25 x 30 (mil) <sup>2</sup> | 4    |

#### SECTION I

#### INTRODUCTION

The purpose of this program is to develop techniques for combining more than one cell of FET at the chip level to increase the output power of GaAs field effect transistors at X-band frequencies. The goals are to achieve device performance of 750 mW at 2-dB gain compression, with a linear gain of 5 dB and a power-added efficiency of 10% in the 9- to 10-GHz frequency band. During the course of this program, we have processed a number of GaAs wafers with five cells on a pellet. We have also developed a technique of combining these cells by gold ribbons. Devices having three, four, or five cells combined were fabricated and tested. Four of these devices with an output power of 800 to 900 mW, a small signal gain of 5 to 6 dB, and a power-added efficiency of 7 to 20% at the 9- to 10-GHz band have been delivered to the contracting agency. The performance of these devices meets the program goals.

During the final period of this program, RCA Laboratories, under the sponsorship of Air Force Avionics Laboratory, undertook the development of a new device pattern. This new FET pattern, designated as 16G, has 16 gates in one cell. The total gate width is 2400 µm per cell. The 16G device is equivalent to the combined 4-cell devices delivered in this program. The design goal of the 16G FET is 1-W output power at X-band. Although the 16G FETs are still under development, the first few wafers processed showed promising results. Three of the experimental 16G FETs were also delivered to the contracting agency for evaluation. These experimental devices showed a small signal gain of 6 to 6.9 dB, with an output power of 500 to 600 mW at 8 GHz.

#### SECTION II

### 4-GATE, MULTICELL GET

The 4-gate FET has four gate stripes per cell. The unit gate stripe width is 150 µm. The total gate width is 600 µm per cell. Figure 1 is a scanning electron micrograph of the 4-gate pattern. There are five cells on a pellet. These cells can be paralleled to increase the output power. During the course of this program, various techniques for intercell connection were investigated. To parallel the cells at the chip level, the gate pads and also the drain pads of the cells are connected together by gold wires or ribbons. Several techniques, such as pulsed thermal-compression bond, cw thermal-compression bond, ultrasonic bond, welding and soldering were investigated. We concluded that either the pulsed thermal-compression bond (Hughes model HPB-360 pulse bonding system) or ultrasonic bond (Kulicke and Soffa model 422 ultrasonic bonding system or equivalent) would be preferable. Furthermore, we prefer gold ribbons to gold wires for intercell connection to minimize the parasitic inductance. In X-band frequencies, the parasitic inductance will degrade both the bandwidth and the gain of the amplifier.

Table 1 summarizes the four FETs delivered to the contracting agency. Detailed P<sub>out</sub>-P<sub>in</sub> characteristics at 9, 9.5, and 10 GHz and S-parameter data are included in Appendix 1.

TABLE 1. PERFORMANCE OF MULTICELL FETS AT 10 GHz

| Device No. | Small Signal Gain (dB) | cw Output<br>Power (mW) | Power Gain (dB) | Power-added<br>Efficiency (%) | No. of<br>Cells |
|------------|------------------------|-------------------------|-----------------|-------------------------------|-----------------|
| B336b-4    | 5.2                    | 844.6                   | 3.5             | 19.7                          | 3-cell          |
| B336b-7    | 4.9                    | 798                     | 3.2             | 10.6                          | 4-cell          |
| B336b-45   | 4.7                    | 784.7                   | 3.1             | 7.0                           | 5-cell          |
| B336b-82   | 5.7                    | 837.9                   | 4.4             | 12.9                          | 4-cell          |



Figure 1. Photograph of power MESFET.

#### SECTION III

#### 16-GATE FET

Toward the end of this program RCA Laboratories started the development of a new FET pattern. \* This new pattern is designated as 16G and is shown in Fig. 2. There are 16 gates paralleled in one cell. The unit gate width is 150 µm, as in the 4-gate structure. The total gate width is 2400 µm, equivalent to four cells in parallel. The 16-gate FET is designed to provide 1-W output power at X-band. Since all the gates and drains are parallel in the batch device fabrication process, no individual intercell paralleling is needed.



Figure 2. 16-Gate FET designed for 1-W output in X-band. Gold posts are plated in the source, gate and drain areas. The pellet size is 25 x 30 (mil)<sup>2</sup>.

**GATE POST** 

The source and the drain areas of the 16-gate FET are about one-half of the areas of the 4-gate FET. This reduction in the source and drain length not only minimizes the rf phase shift in the cell, but also makes more effective use of the GaAs real estate. This new design will eventually lead to high

<sup>\*</sup>This work is sponsored by the Air Force Avionics Laboratory, Contract No. F33615-76-C1144.

performance and low cost. The pellet size of the 16-gate FET is  $0.025 \times 0.030$  (in.)<sup>2</sup>. This is a better form factor than that of the 4-gate FET with a size of  $0.020 \times 0.047$  (in.)<sup>2</sup>.

At the time this final report was prepared, the 16-gate FET was still under development. However, several GaAs wafers were processed, and the initial results are encouraging. Three experimental 16-gate FETs with associated Pout-Pin data at 8 GHz were delivered to the contracting agency for evaluation. The performance of these 16-gate FETs is summarized in Table 2. Detailed Pout-Pin data are included in Appendix 2.

TABLE 2. PERFORMANCE OF 16-GATE FET AT 8 GHz

| Device No. | Small Signal (ss) Gain (dB) | cw Output<br>Power (mW) | Power Gain (dB) | Power-added<br>Efficiency (%) | Remark                                     |
|------------|-----------------------------|-------------------------|-----------------|-------------------------------|--------------------------------------------|
| 2973-24    | 6.9                         | 273.7                   | 5.7             | 13.6                          | When tuned                                 |
| 2973-34    | 4.7                         | 511                     | 4.4             | 10.5                          | for best gain, an                          |
| 2975-75    | 6.0                         | 618.8                   | 4.5             | 16.3                          | ss gain<br>of 8.6 dB<br>was ob-<br>served. |

#### SECTION IV

#### CONCLUSION

Techniques for combining multicell GaAs FETs to increase the output power at X-band have been developed. Several multicell FETs with an output power of 800 to 900 mW, a small signal gain of 5 to 6 dB, and a power-added efficiency of 7 to 20% were delivered to contracting agency. The performance of these devices meets the goals of this program. In addition, three experimental 16-gate FETs were also delivered for evaluation purposes.

APPENDICES

#### APPENDIX A

### DATA PACKAGE FOR MULTICELL FETS

RCA Corporation
David Sarnoff Research Center
Princeton, New Jersey

FIELD EFFECT TRANSISTOR



| v <sub>D</sub> = 7.5 | v, f = 9.0 | GHz    |                     |              |                     |
|----------------------|------------|--------|---------------------|--------------|---------------------|
| P <sub>in</sub> (mW) | Pout (mW)  | G (dB) | I <sub>D</sub> (mA) | Pout-Pin(mW) | η <sub>PA</sub> (2) |
| 80                   | 254.0      | 5.0    | 385                 |              |                     |
| 160                  | 520.7      | 5.1    | 404                 |              |                     |
| 240                  | 673.1      | 4.5    | 393                 |              |                     |
| 320                  | 787.4      | 3.9    | 351                 |              |                     |
| 400                  | 889.0      | 3.5    | 317                 | 489.0        | 20.6                |

| V <sub>D</sub> - 7.5 V | , I <sub>DSSO</sub> | = 600 mA, | $V_G = -2 V$ , $f = 9.5 GHz$ |              |                     |  |  |  |  |
|------------------------|---------------------|-----------|------------------------------|--------------|---------------------|--|--|--|--|
| P <sub>in</sub> (mW)   | Pout (mW)           | G(dB)     | I <sub>D</sub> (mA)          | Pout-Pin(mW) | η <sub>PA</sub> (%) |  |  |  |  |
| 76                     | 266.70              | 5.5       | 381                          |              |                     |  |  |  |  |
| 152                    | 546.1               | 5.6       | 399                          |              |                     |  |  |  |  |
| 228                    | 679.5               | 4.7       | 376                          |              |                     |  |  |  |  |
| 304                    | 774.7               | 4.1       | 338                          |              |                     |  |  |  |  |
| 380                    | 850.9               | 3.5       | 308                          | 470.9        | 20.4                |  |  |  |  |

| $v_{D} = 7.5 v_{A}$  | IDSSO     | - 600 mA, | $V_G = \underline{-2} V$ , $f = \underline{10} GHz$ |              |                     |  |  |  |
|----------------------|-----------|-----------|-----------------------------------------------------|--------------|---------------------|--|--|--|
| P <sub>in</sub> (mW) | Pout (mW) | G(dB)     | I <sub>D</sub> (mA)                                 | Pout-Pin(mW) | n <sub>PA</sub> (%) |  |  |  |
| 76                   | 231.4     | 4.8       | 374                                                 |              |                     |  |  |  |
| 152                  | 505.4     | 5.2       | 401                                                 |              |                     |  |  |  |
| 228                  | 651.7     | 4.6       | 385                                                 |              |                     |  |  |  |
| 304                  | 758.1     | 4.0       | 345                                                 |              |                     |  |  |  |
| 380                  | 844.55    | 3.5       | 315                                                 | 464.55       | 19.66               |  |  |  |

# COPY AVAILABLE TO DIC DOES WOT

|             |         | 1 - 1 | 607                               |            | ABIL IU  |                             | NOTTON |          |
|-------------|---------|-------|-----------------------------------|------------|----------|-----------------------------|--------|----------|
| NEW MEAST Y |         | V     | V <sub>GS</sub> , I <sub>DS</sub> | MII FUL    | LY_LEGIZ | LL INU                      | JULIN  |          |
| CONN DEVICE | B336B-4 |       | -1,400                            | 3CELLS     |          | 8/18/76                     | J.II   | N        |
|             |         |       |                                   |            |          |                             |        |          |
| S MAGN AND  | ANGLES: |       |                                   |            |          |                             |        |          |
| FRE0        | 11      |       | 2.                                | 1          | 12       |                             | 55     |          |
| 8000.0      | .928    | 149   | .656                              | -24        | .054     | - 53                        | .604   | 172      |
| 8500.0      | 940     | 144   | .550                              | -34        | .047     | -61                         | .723   | 167      |
| 9000.0      | .915    | 143   | .446                              | 40         | .041     | -64                         | .756   | 166      |
| 9500.0      | .906    | 153   | .419                              | -41        | .041     | -63                         | .799   | 168      |
| 10000.0     | .834    | 156   | .398                              | -45        | .040     | -64                         | .740   | 168      |
| 10500.0     | .815    | 150   | .461                              | -48        | .046     | -65                         | .693   | 157      |
| 11000.0     | .824    | 131   | .515                              | -63        | .052     | -75                         | .739   | 138      |
| 11500.0     | .859    | 110   | .457                              | -89        | .048     | -98                         | .792   | 114      |
| 12000.0     | .889    | 100   | .351                              | -108       | .036     | -121                        | .803   | 98       |
| TASK? PARAM | ? LIST? | 2     |                                   |            |          |                             |        |          |
| NEW MEAS? N |         |       |                                   |            |          |                             |        |          |
| FREQ        | H21     | S21   | 01                                | 62         | GMAX     | U                           | κ      |          |
|             |         |       |                                   |            |          |                             |        |          |
| 8000.0      | 4.6     | -3.7  | 8.5                               | 2.0        | 6.9      | .23                         | .80    |          |
| 8500.0      | 5.2     | -5.2  | 9.3                               | 3.2        | 7.3      | .32                         | .65    |          |
| 9000.0      | 3.7     | -7.0  | 7.9                               | 3.7        | 4.6      | .13                         | 1.57   |          |
| 9500.0      | 4.7     | -7.5  | 7.5                               | 4.4        | 4.3      | .19                         | 1.63   |          |
| 10000.0     | 3.1     | -8.0  | 5.2                               | 3.4        | .6       | .07                         | 4.26   |          |
| 10500.0     | 1.6     | -6.7  | 4.7                               | 2.8        | . 9      | .07                         | 3.85   |          |
| 11000.0     | 3       | -5.8  | 4.9                               | 3.4        | . 2.6    | .11                         | 2.32   |          |
| 11500.0     | -4.1    | -6.6  | 5.8                               | 4.3        | 3.5      | -16                         | 1.78   |          |
| 12000.0     | -7.8    | -9.1  | 6.8                               | 4.5        | 2.2      | .12                         | 2.74   |          |
| TASK? PARAM | ? LIST? | 1 - 4 |                                   |            |          |                             |        |          |
| NEW MEAS? N |         |       |                                   |            |          |                             |        |          |
| ZMAGN AND   | ANGLES: |       |                                   |            |          |                             |        |          |
| FREQ        | 11      |       | 2:                                | 1          | 12       |                             | 22     |          |
|             |         |       |                                   |            |          |                             |        |          |
|             | 13.277  | 79    | 22.136                            | -8         | 1.879    | THE COUNTY OF STREET STREET | 13.010 | 10       |
|             | 15.842  | 82    | 17.393                            | -13        | 1.500    | -40                         | 9.535  | 29       |
| 9000.0      | 13.852  | 79    | 13.855                            | -19        | 1.268    | -43                         | 9.030  | 38       |
| 9500.0      | 11.611  | 76    | 12.606                            | -24        | 1.223    | -46                         | 7.342  | 39       |
| 10000.0     | 10.976  | 64    | 12.807                            | -29        | 1.272    | -49                         | 8.984  | 32       |
|             | 13.695  | 66    | 15.817                            | -26        | 1.581    |                             | 13.227 | 44       |
|             | 22.723  | 74    | 18.991                            | -25        | 1.919    |                             | 19.602 | 64<br>75 |
| 11500.0     | 34.082  | 80    | 20.106                            | -29<br>-36 | 2.079    |                             | 42.691 | 77       |
| 12000.0     | 41.156  | 83    | 17.466                            | -30        | 1.//3    |                             | 12.071 | 77, -    |

| NEW MEAS?   |            | 1,1   |                                       |            |       |            |          |     |
|-------------|------------|-------|---------------------------------------|------------|-------|------------|----------|-----|
| CONN DEVICE |            |       | DS, V <sub>GS</sub> , I <sub>DS</sub> |            | S     | 8/18/76    | NLL d    |     |
| 6MAGN AN    | ID ANOLEGA |       |                                       |            |       |            |          | /   |
| SMHGN HN    | W HNGEEST  |       |                                       |            |       |            | /        |     |
| FREQ        | 1.1        |       | 21                                    |            | 12    | 2          | /22      |     |
| 8000.0      | .919       | 154   | 77 C) C:                              |            | 0.45  |            | 1.606    |     |
| 8500.0      | .935       | 148   | .725<br>.599                          | -21<br>-30 | .055  | -53<br>-63 | .698     | 175 |
| 9000.0      | .917       | 152   | .490                                  | -35        | .048  | -66        | .743     | 168 |
| 9500.0      | .900       | 157   | .459                                  | -37        | .047  | -54        | .776     | 17  |
| 10000.0     | 831        | 160   | .442                                  | -40        | .046  | -65        | .712     | 17: |
| 10500.0     | .808       | 155   | .510                                  | -42        | .055  | F-65       | . 456    | 16  |
| 11000.0     | .807       | 136   | .583                                  | -58        | .052  | -76        | .691     | 14  |
| 11500.0     | .848       | 115   | .545                                  | -83        | .060  | 99         | .747     | 120 |
| 12000.0     | .879       | 104   |                                       | -104       | .043  | -121       | .770     | 102 |
| TASK? PARA  | M? LIST? : | 2     |                                       |            |       |            |          |     |
| NEW MEAST   | N          |       |                                       |            |       |            |          |     |
| FREQ        | H21        | 321   | <b>G1</b> (3)                         | 62         | GMAX  | U          | 839×K    |     |
| 8000.0      | 5.6        | -2.8  | 8.1                                   | 2.0        | 7.3   | .27        | .69      |     |
| 8500.0      | 5.8        | -4.5  | 9.0                                   | 2.9        | 7.4   | .33        | .61      |     |
| 9000.0      | 4.9        | -6.2  | 8.0                                   | 3.5        | 5.3   | . 23       | 1.23     |     |
| 9500.0      | 5.6        | -6.8  | 7.2                                   | 4.0        | 4.5   | .20        | 1.54     |     |
| 10000.0     | 4.1        | -7.1  | 5.1                                   | 3.1        | 1.1   | .08        | 3.66     |     |
| 10500.0     | 3.1        | -5.9  | 4.6                                   | 2.4        | 1.2   | .08        | 3.34     |     |
| 11000.0     | 1.8        | -4.7  | 4.6                                   | 2.8        | 2.7   | .11        | 2.22     |     |
| 11500.0     | -2.0       | -5.3  | 5.5                                   | 3.5        | 3.8   | .17        | 1.59     |     |
| 12000.0     | -5.9       | -7.6  | 6.4                                   | 3.9        | 2.8   | .14        | 2.18     |     |
| TASK? PARA  | M? LIST?   | L • 4 |                                       |            |       |            |          |     |
| NEW MEAS?   | N          |       |                                       |            |       |            |          |     |
| MAGN AN     | D ANGLES:  |       |                                       |            |       | esaje Paul | Mes.     |     |
| FREQ        | 11         |       | 21                                    |            | 12    |            | 22       |     |
| 8000.0      | 10.967     | 75    | 24.321                                | -8         | 2.173 | 43         | 12.780   |     |
| 8500.0      | 13.787     | 31    | 19.036                                | -12        | 1.771 | -44        | 9.805    | 2   |
| 9000.0      | 12.136     | 78    | 15.204                                | -18        | 1.492 | -48        | 8.681    | 3   |
| 9500.0      | 9.940      | 73    | 13.958                                | -23        | 1.421 | -50        | 7.281    | 2   |
| 10000.0     | 9.445      | 59    | 14.358                                | -28        | 1.494 | -53        | 8.906    | 1   |
| 10500.0     | 11.731     | 61    | 17.561                                | -26        | 1.892 | -48        | 12.281   | 2   |
| 11000.0     | 19.989     | 71    | 21.383                                | -26        | 2.295 | -43        | 17.343   | 5   |
| 11500.0     | 30.798     | 79    | 22.716                                | -29        | 2.496 | -45        | 28.769   | 7   |
| 12000.0     | 38.301     | 82    | 20.072                                | -36        | 2.216 | -54        | 39.757   | 7   |
|             |            |       | *                                     |            |       |            |          |     |
|             | MT LISTT   |       | 12                                    |            |       |            | AA SABAY |     |

| $v_D = \frac{7.5}{} v$ , | IDSSO     | - <u>900</u> mA, | $V_G = -2 V$ , $f = 9.0 GHz$ |              |                     |  |  |  |  |
|--------------------------|-----------|------------------|------------------------------|--------------|---------------------|--|--|--|--|
| P <sub>in</sub> (mW)     | Pout (mW) | G(dB)            | I <sub>D</sub> (mA)          | Pout-Pin(mW) | n <sub>PA</sub> (%) |  |  |  |  |
| 80                       | 217.8     | 4.3              | 600                          | 8            |                     |  |  |  |  |
| 160                      | 471.9     | 4.7              | 637                          |              |                     |  |  |  |  |
| 240                      | 659.5     | 4.4              | 609                          |              |                     |  |  |  |  |
| 320                      | 786.5     | 3.9              | 571                          |              |                     |  |  |  |  |
| 400                      | 889.4     | 3.5              | 542                          | 489.4        | 12.0                |  |  |  |  |

| $v_D = 7.5$          | , I <sub>DSSO</sub> | 900 mA, | v <sub>G</sub> =    | $V_{G} = \frac{-2}{} V, \qquad f = \frac{9.5}{} GHz$ |                     |  |  |  |  |  |
|----------------------|---------------------|---------|---------------------|------------------------------------------------------|---------------------|--|--|--|--|--|
| P <sub>in</sub> (mW) | Pout (mW)           | G(dB)   | I <sub>D</sub> (mA) | Pout-Pin(mW)                                         | η <sub>PA</sub> (%) |  |  |  |  |  |
| 76                   | 215.90              | 4.5     | 596                 |                                                      |                     |  |  |  |  |  |
| 152                  | 469.9               | 4.9     | 635                 |                                                      |                     |  |  |  |  |  |
| 228                  | 622.3               | 4.4     | 602                 |                                                      |                     |  |  |  |  |  |
| 304                  | 704.8               | 3.7     | 565                 |                                                      |                     |  |  |  |  |  |
| 380                  | 793.8               | 3.2     | 537                 | 413.8                                                | 10.3                |  |  |  |  |  |

| $v_{D} = \frac{7.5}{} v,$ | I <sub>DSSO</sub> ' | 900 mA, | $V_G = \frac{-2}{} V, \qquad f = \frac{10}{} GHz$ |               |                     |  |
|---------------------------|---------------------|---------|---------------------------------------------------|---------------|---------------------|--|
| P <sub>in</sub> (mW)      | Pout (mW)           | G(dB)   | I <sub>D</sub> (mA)                               | Pout-Pin (mW) | η <sub>PA</sub> (%) |  |
| 76                        | 226.1               | 4.7     | 596                                               |               |                     |  |
| 152                       | 465.5               | 4.9     | 634                                               |               |                     |  |
| 228                       | 611.8               | 4.3     | 599                                               |               |                     |  |
| 304                       | 711.55              | 3.7     | 558                                               |               |                     |  |
| 380                       | 798                 | 3.2     | 526                                               | 418.0         | 10.6                |  |

|                  |                  | TAT      |           |              |        |             |                 |          |
|------------------|------------------|----------|-----------|--------------|--------|-------------|-----------------|----------|
| NEW MEAST        | Y                |          | v T       |              |        |             |                 |          |
| CONN DEVI        | DE <u>B3361</u>  |          | DS, GS, I | DS 4         | CELLS  | 8/18/76     | NLL             |          |
| S MAGN AI        | ND ANGLES        |          |           |              |        |             |                 |          |
| FREQ             | 1:               | 1        | 2         | 1            | -1:    | ?           | 22              |          |
|                  |                  |          |           |              |        |             |                 |          |
| 8000.0           | .967             | 134      | •599      | -33          | +070   | -88         | .708            | 124      |
| 8500.0           | •986             | 103      | .517      | -72          | .062   | -120        | . 762           | 97       |
| 9000.0           | .956             | 82       | .413      | -101         | .053   | -147        | .752            | 70       |
| 9500.0           | .946             | 68       | •377      | -123         | .051   | -166<br>164 | .746            | 52       |
| 10500.0          | .963             | 44<br>17 | .380      | -153<br>-178 | .054   | 139         | •724<br>•677    | 25<br>-8 |
| 11000.0          | .843             | -22      | .452      | 144          | .065   | 106         | .754            | -45      |
| 11500.0          | .877             | -67      | .440      | 101          | .064   | 63          | .793            | -85      |
| 12000.0          | .929             | -105     | .353      | 57           | .054   | 19          | .751            | -121     |
|                  |                  |          |           |              |        |             |                 |          |
| TASK? PAR        | AM? LIST?        | 2        |           |              |        |             |                 |          |
| NEW MEAST        | N 44884          |          | 0.00      |              | 1      |             |                 |          |
| FREQ             | H31              | 521      | 61        | 62           | GMAX   | U           | К               |          |
| 8000.0           | -1.8             | -4.5     | 11.9      | 3.0          | 10.5   | .89         | 21              |          |
| 8500.0           | -4.9             | -5.7     | 15.5      | 3.8          | 13.6   | 2,05        | 43              |          |
| 9000.0           | -7.0             | -7.7     | 10.6      | 3.6          | 6.6    | .42         | •33             |          |
| 9500.0           | -7.1             | -8.5     | 9.8       | 3.5          | 4.8    | .29         | .78             |          |
| 10000.0          | -4.4             | -8.4     | 11.4      | 3.2          | 6.2    | .41         | .51             |          |
| 10500.0          | 3.7              | -7.7     | 7.2       | 2.7          | 2.1    | .14         | 1.72            |          |
| 11000.0          | 3.4              | -6.9     | 5.4       | 3.6          | 2.1    | .15         | 1.64            |          |
| 11500.0          | -3.7             | -7.1     | 6.4       | 4.3          | 3,5    | .23         | 1.02            |          |
| 12000.0          | -5.7             | -9.0     | 8.6       | 3.6          | 3.2    | .22         | 1.19            |          |
| TASK? PAR        | AM? LIST?        | 1,4      |           |              |        |             |                 |          |
| NEW MEAST        | N                |          |           |              |        |             |                 |          |
| ZMAGN AN         | ND ANGLES        |          |           |              |        |             |                 |          |
| FREQ             | 11               |          | 2         | 1            | 13     |             | 22              |          |
| 9000 0           | 20 075           | <b>.</b> | <b></b>   |              | 0 577  |             | V 050           | 15       |
| 8000.0<br>8500.0 | 20.235<br>38.569 | 84<br>88 | 21.733    | 5            | 2.537  |             | 26.850<br>3.325 | 65<br>73 |
| 9000.0           | 55.666           | 87       | 30.406    | -11          | 3.898  |             | 7.889           | 73       |
| 9500.0           | 72.563           | 87       | 42.089    | -22          | 5.709  |             | 5.742           | 70       |
| 10000.0          | 121.004          | 90       | 106.901   | -43          | 15.097 |             | 7.991           | 56       |
| 10500.0          | 399.332          | 70       | 494.723   | -132         | 71.600 |             | 4.687           | -18      |
| 11000.0          | 207.787          | -63      | 148.444   | 43           | 21.488 |             | 9.941           | -66      |
| 11500.0          | 74.309           | -80      | 34.341    | 11           | 5.005  |             | 2.857           | -75      |
| 12000.0          | 38.029           | -84      | 15.114    | -2           | 2.301  | -40         | 9.145           | -70      |
|                  |                  |          |           |              |        |             |                 |          |

| $v_{D} = 7.5 v,$     | I <sub>DSSO</sub> | = 1100 mA, | $V_G = \underline{-2} V$ , $f = \underline{9.0} GHz$ |              |                     |  |  |
|----------------------|-------------------|------------|------------------------------------------------------|--------------|---------------------|--|--|
| P <sub>in</sub> (mW) | Pout (mW)         | G(dB)      | I <sub>D</sub> (mA)                                  | Pout-Pin(mW) | n <sub>PA</sub> (%) |  |  |
| 80                   | 296.45            | 5.7        | 786                                                  |              |                     |  |  |
| 160                  | 508.20            | 5.0        | 803                                                  |              |                     |  |  |
| 240                  | 635.25            | 4.2        | 799                                                  |              |                     |  |  |
| 320                  | 738.10            | 3.6        | 773                                                  |              |                     |  |  |
| 400                  | 834.9             | 3.2        | 724                                                  | 434.9        | 8.0                 |  |  |

| $v_{\rm D} = \frac{7.5}{1}$ | v, I <sub>DSSO</sub> | = 1100 mA, | V <sub>G</sub> = _  | $\frac{-2}{2}$ V, f = 9.5 | GHz ·               |
|-----------------------------|----------------------|------------|---------------------|---------------------------|---------------------|
| P <sub>in</sub> (mW)        | Pout (mW)            | G(dB)      | I <sub>D</sub> (mA) | Pout-Pin(mW)              | n <sub>PA</sub> (%) |
| 76                          | 222.25               | 4.7        | 760                 |                           |                     |
| 152                         | 457.20               | 4.8        | 807                 |                           |                     |
| 228                         | 622.30               | 4.4        | 805                 |                           |                     |
| 304                         | 698.5                | 3.6        | 803                 |                           |                     |
| 380                         | 793.75               | 3.2        | 777                 | 413.75                    | 7.1                 |
| 456                         | 882.65               | 2.9        | 735                 |                           |                     |
|                             |                      |            |                     |                           |                     |

| $v_{D} = 7.5 v,$     | I <sub>DSSO</sub> | = <u>1100</u> mA, | $V_G = \underline{-2} V$ , $f = \underline{10} GHz$ |              |                                |  |
|----------------------|-------------------|-------------------|-----------------------------------------------------|--------------|--------------------------------|--|
| P <sub>in</sub> (mW) | Pout (mW)         | G(dB)             | I <sub>D</sub> (mA)                                 | Pout-Pin(mW) | <sup>n</sup> PA <sup>(%)</sup> |  |
| 76                   | 226               | 4.7               | 762                                                 |              |                                |  |
| 152                  | 445.55            | 4.7               | 805                                                 |              |                                |  |
| 228                  | 585.20            | 4.1               | 800                                                 |              |                                |  |
| 304                  | 678.30            | 3.5               | 793                                                 |              |                                |  |
| 380                  | 784.70            | 3.1               | 774                                                 | 404.7        | 6.97                           |  |
| 456                  | 871.15            | 2.8               | 730                                                 |              |                                |  |

| CONN DEUICE 83768-45    CONN DEUICE 83768-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NEW MEAS?   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V.            | os, V <sub>GS</sub> , I <sub>DS</sub> |          |                        |         |        |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|----------|------------------------|---------|--------|-----|
| ### RECO ### 11 21 12 22  ### 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CONN DEVICE | B3368-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                       |          | <u> 1.1.5</u> <u>8</u> | /19/76  | J.IN   |     |
| 8000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S MAGN ANI  | 0 ANGLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                       |          |                        |         |        |     |
| 8500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FREG        | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 21                                    |          | 13                     |         | 22     |     |
| 8500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8000.0      | .879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.63          | .516                                  | <b>1</b> | .070                   | -52     | .629   | 177 |
| 9000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 9500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | The state of the s | 781 1811 1811 |                                       |          |                        |         |        |     |
| 10000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 10500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100           |                                       |          |                        |         |        |     |
| 11000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 11500.0 .782 135 .409 -48 .009 -89 .657 115 12000.0 .858 119 .331 -69 .058 -112 .694 102  TASK? PARAM? LIST? 2  NEW MEAS? N  FRER H21 S21 G1 G2 GMAX U K  8000.0 -1.7 -5.8 5.3 2.2 1.7 .11 1.96 8500.0 -3.4 -7.3 6.2 2.3 1.2 .10 2.20 900.0 -4.0 -8.6 7.0 2.1 .5 .09 2.48 9500.0 -3.7 -9.1 6.5 1.7 -9 .05 3.53 10000.0 -3.0 -8.3 4.9 1.4 -2.0 .04 4.63 10500.0 -2.9 -7.6 3.3 1.5 -2.9 .03 5.51 11000.0 -3.9 -7.5 2.6 1.7 -3.1 .03 5.77 11500.0 -5.3 -7.8 4.1 2.5 -1.2 .07 3.47 12000.0 -8.3 -9.6 5.8 2.9 -1.0 .08 3.17  TASK? PARAM? LIST? 1.4  NEW MEAS? N  ZMAGN AND ANGLES: FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 64 15.396 17 2.155 -31 22.763 54 900.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.962 36 10000.0 7.959 46 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.959 46 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.959 46 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.959 46 12.981 10 1.934 -37 20.659 48 9500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11.000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        | -   |
| TASK? PARAM? LIST? 2  NEW MEAS? N  FRER H21 S21 G1 G2 GMAX U K  8000.0 -1.7 -5.8 5.3 2.2 1.7 .11 1.96 8500.0 -3.4 -7.3 6.2 2.3 1.2 .10 2.20 9000.0 -4.0 -8.6 7.0 2.1 .5 .09 2.48 9500.0 -3.7 -9.1 6.5 1.79 .06 3.53 10000.0 -3.0 -8.3 4.9 1.4 -2.0 .04 4.63 10500.0 -2.9 -7.6 3.3 1.5 -2.9 .03 5.51 11000.0 -3.9 -7.5 2.6 3.7 -3.1 .03 5.77 11500.0 -5.3 -7.8 4.1 2.5 -1.2 .07 3.47 12000.0 -8.3 -9.6 5.8 2.9 -1.0 .08 3.17  TASK? PARAM? LIST? 1.4  NEW MEAS? N  ZMAGN AND ANGLES: FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 900.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 44 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| TASK? PARAM? LIST? 2  NEW MEAS? N  FREQ H21 S21 G1 G2 GMAX U K  8000.0 -1.7 -5.8 5.3 2.2 1.7 .11 1.96 8500.0 -3.4 -7.3 6.2 2.3 1.2 .10 2.20 9000.0 -4.0 -8.6 7.0 2.1 .5 .09 2.48 9500.0 -3.7 -9.1 6.5 1.7 -9 .05 3.53 10000.0 -3.0 -8.3 4.9 1.4 -2.0 .04 4.63 10500.0 -2.9 -7.6 3.3 1.5 -2.9 .03 5.51 11000.0 -3.9 -7.5 2.6 1.7 -5.1 .03 5.77 11500.0 -5.3 -7.8 4.1 2.5 -1.2 .07 3.47 12000.0 -8.3 -9.6 5.8 2.9 -1.0 .08 3.17  TASK? PARAM? LIST? 1.4  NEW MEAS? N  ZMAGN AND ANGLES: FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 900.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 44 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| REQ H21 S21 G1 G2 GMAX U K  8000.0 -1.7 -5.8 5.3 2.2 1.7 .11 1.96 8500.0 -3.4 -7.3 6.2 2.3 1.2 .10 2.20 9000.0 -4.0 -8.6 7.0 2.1 .5 .09 2.48 9500.0 -3.7 -9.1 6.5 1.79 .06 3.53 10000.0 -3.0 -8.3 4.9 1.4 -2.0 .04 4.63 10500.0 -2.9 -7.6 3.3 1.5 -2.9 .03 5.51 11000.0 -3.9 -7.5 2.6 1.7 -5.1 .03 5.77 11500.0 -5.3 -7.8 4.1 2.5 -1.2 .07 3.47 12000.0 -8.3 -9.6 5.8 2.9 -1.0 .08 3.17  TASK? PARAM? LIST? 1.4  NEW MEAS? N  ZMAGN AND ANGLES: FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                    | 12000.0     | •858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119           | .331                                  | -69      | .058                   | -112    | .694   | 102 |
| ## FREQ ## H21 S21 G1 G2 GMAX U K  ## B000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TASK? PARA  | MP LISTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2             |                                       |          |                        |         |        |     |
| ## FREQ ## H21 S21 G1 G2 GMAX U K  ## B000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NEW MEAST N | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                       |          |                        |         |        |     |
| 8000.0 -1.7 -5.8 5.3 2.2 1.7 .11 1.96 8500.0 -3.4 -7.3 6.2 2.3 1.2 .10 2.20 9000.0 -4.0 -8.6 7.0 2.1 .5 .09 2.48 9500.0 -3.7 -9.1 6.5 1.79 .05 3.53 10000.0 -3.0 -8.3 4.9 1.4 -2.0 .04 4.63 10500.0 -2.9 -7.6 3.3 1.5 -2.9 .03 5.51 11000.0 -3.9 -7.5 2.6 1.7 -3.1 .03 5.77 11500.0 -5.3 -7.8 4.1 2.5 -1.2 .07 3.47 12000.0 -8.3 -9.6 5.8 2.9 -1.0 .08 3.17  TASK? PARAM? LIST? 1.4  NEW MEAS? N  ZMAGN AND ANGLES: FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE A       | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 4.45                                  |          |                        |         |        |     |
| 8500.0 -3.4 -7.3 6.2 2.3 1.2 .10 2.20 900.0 -4.0 -8.6 7.0 2.1 .5 .09 2.48 9500.0 -3.7 -9.1 6.5 1.79 .03 3.53 10000.0 -3.0 -8.3 4.9 1.4 -2.0 .04 4.63 10500.0 -2.9 -7.6 3.3 1.5 -2.9 .03 5.51 11000.0 -3.9 -7.5 2.6 1.7 -3.1 .03 5.77 11500.0 -5.3 -7.8 4.1 2.5 -1.2 .07 3.47 12000.0 -8.3 -9.6 5.8 2.9 -1.0 .08 3.17  TASK? PARAM? LIST? 1.4  NEW MEAS? N  ZMAGN AND ANGLES:  FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FREQ        | H21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S21           | / G1                                  | 62       | GMAX                   | Z ( S U | К      |     |
| 8500.0 -3.4 -7.3 6.2 2.3 1.2 .10 2.20 900.0 -4.0 -8.6 7.0 2.1 .5 .09 2.48 9500.0 -3.7 -9.1 6.5 1.79 .03 3.53 10000.0 -3.0 -8.3 4.9 1.4 -2.0 .04 4.63 10500.0 -2.9 -7.6 3.3 1.5 -2.9 .03 5.51 11000.0 -3.9 -7.5 2.6 1.7 -3.1 .03 5.77 11500.0 -5.3 -7.8 4.1 2.5 -1.2 .07 3.47 12000.0 -8.3 -9.6 5.8 2.9 -1.0 .08 3.17  TASK? PARAM? LIST? 1.4  NEW MEAS? N  ZMAGN AND ANGLES:  FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9000 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E 0           | e 7                                   | 0.0      |                        |         | 1.04   |     |
| 9000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 9500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 10000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 10500.0 -2.9 -7.6 3.3 1.5 -2.9 .03 5.51 11000.0 -3.9 -7.5 2.6 3.7 -3.1 .03 5.77 11500.0 -5.3 -7.8 4.1 2.5 -1.2 .07 3.47 12000.0 -8.3 -9.6 5.8 2.9 -1.0 .08 3.17  TASK? PARAM? LIST? 1.4  NEW MEAS? N  ZMAGN AND ANGLES:  FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 900.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 11000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 11500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10500.0     | -2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 3.3                                   | 1.5      |                        |         |        |     |
| 12000.0 -8.3 -9.6 5.8 2.9 -1.0 .08 3.17  TASK? PARAM? LIST? 1.4  NEW MEAST N  ZMAGN AND ANGLES:  FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11000.0     | -3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -7.5          | 2.6                                   | 1.7      | -3.1                   | .03     |        |     |
| TASK? PARAM? LIST? 1.4  NEW MEAST N  ZMAGN AND ANGLES:  FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11500.0     | -5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -7.8          | 4.1                                   | 2.5      | -1.2                   | .07     | 3.47   |     |
| NEW MEAST N  ZMAGN AND ANGLES:  FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12000.0     | -8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -9.6          | 5.8                                   | 2.9      | -1.0                   | .08     | 3.17   |     |
| ZMAGN AND ANGLES:  FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TASK? PARAN | 17 LIST?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.4           |                                       |          |                        |         |        |     |
| ZMAGN AND ANGLES:  FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NEW MEAST N | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                       |          |                        |         |        |     |
| FREQ 11 21 12 22  8000.0 8.650 53 18.811 22 2.566 -29 22.920 52  8500.0 10.005 66 15.396 17 2.155 -31 22.763 54  9000.0 7.959 66 12.981 10 1.934 -37 20.659 48  9500.0 6.612 58 12.392 5 1.933 -39 18.963 36  10000.0 7.543 46 14.382 1 2.301 -42 20.227 31  10500.0 10.714 37 16.813 0 2.781 -43 23.382 42  11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53  11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 8000.0 8.650 53 18.811 22 2.566 -29 22.920 52<br>8500.0 10.005 66 15.396 17 2.155 -31 22.763 54<br>9000.0 7.959 66 12.981 10 1.934 -37 20.659 48<br>9500.0 6.612 58 12.392 5 1.933 -39 18.963 36<br>10000.0 7.543 46 14.382 1 2.301 -42 20.227 31<br>10500.0 10.714 37 16.813 0 2.781 -43 23.382 42<br>11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53<br>11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z MAGN ANI  | ANGLES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                       |          |                        |         |        |     |
| 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FREQ        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 21                                    |          | 12                     |         | 22     |     |
| 8500.0 10.005 66 15.396 17 2.155 -31 22.763 54 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8000.0      | 8.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6, 7          | 18.811                                | 22       | 2.544                  | -29     | 22,920 | 52  |
| 9000.0 7.959 66 12.981 10 1.934 -37 20.659 48 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 9500.0 6.612 58 12.392 5 1.933 -39 18.963 36<br>10000.0 7.543 46 14.382 1 2.301 -42 20.227 31<br>10500.0 10.714 37 16.813 0 2.781 -43 23.382 42<br>11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53<br>11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 10000.0 7.543 46 14.382 1 2.301 -42 20.227 31 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 10500.0 10.714 37 16.813 0 2.781 -43 23.382 42 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 11000.0 17.041 50 18.643 -4 3.138 -44 29.194 53 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
| 11500.0 20.802 69 17.509 -5 2.950 -45 32.144 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                       |          |                        |         |        |     |

TASKT PARAMT LIST?

| $v_{\rm D} = \frac{7.5}{1000}  v_{\rm DSSO} = \frac{900}{1000}  m_{\rm DSSO}$ |           |       | $v_{G} = -2  v, \qquad f = 9.0 \text{ GHz}$ |              |                     |  |  |
|-------------------------------------------------------------------------------|-----------|-------|---------------------------------------------|--------------|---------------------|--|--|
| P <sub>in</sub> (mW)                                                          | Pout (mW) | G(dB) | I <sub>D</sub> (mA)                         | Pout-Pin(mW) | n <sub>PA</sub> (%) |  |  |
| 80                                                                            | 344.9     | 6.3   | 583                                         |              |                     |  |  |
| 160                                                                           | 653.4     | 6.1   | 620                                         |              |                     |  |  |
| 240                                                                           | 840.95    | 5.4   | 575                                         |              |                     |  |  |
| 320                                                                           | 980.1     | 4.9   | 530                                         | 660.1        | 16.6                |  |  |

DEVICE: <u>B336b-82</u>

| $V_{D} = 7.5 V, I_{DSSO} = 900 mA,$ |           |       | $V_G = _{-2} V$ , $f = _{9.5} GHz$ |              |                     |  |  |
|-------------------------------------|-----------|-------|------------------------------------|--------------|---------------------|--|--|
| P <sub>in</sub> (mW)                | Pout (mW) | G(dB) | I <sub>D</sub> (mA)                | Pout-Pin(mW) | n <sub>PA</sub> (2) |  |  |
| 76                                  | 342.9     | 6.5   | 586                                |              |                     |  |  |
| 152                                 | 584.2     | 5.8   | 611                                |              |                     |  |  |
| 228                                 | 736.6     | 5.1   | 581                                |              |                     |  |  |
| 304                                 | 850.9     | 4.5   | 530                                | 546.9        | 13.8                |  |  |

DEVICE: B336b-82

| $v_{D} = \frac{7.5}{1000} v_{DSSO} = \frac{90}{10000}$ |           | = 900 mA, | v <sub>G</sub>      | 2 v, f = 10  | GHz                 |
|--------------------------------------------------------|-----------|-----------|---------------------|--------------|---------------------|
| P <sub>in</sub> (mW)                                   | Pout (mW) | G(dB)     | I <sub>D</sub> (mA) | Pout-Pin(mW) | n <sub>PA</sub> (2) |
| 76                                                     | 279.3     | 5.7       | 581                 |              |                     |
| 152                                                    | 545.3     | 5.5       | 623                 |              |                     |
| 228                                                    | 704.9     | 4.9       | 604                 |              |                     |
| 304                                                    | 837.9     | 4.4       | 553                 | 533.9        | 12.9                |

TRUE STREET WHITE

|   |             |             | 1 - 1 |          |                   |         |       |        |     |
|---|-------------|-------------|-------|----------|-------------------|---------|-------|--------|-----|
|   | NEW MEAST Y |             |       |          |                   |         |       |        |     |
|   |             |             |       | VDS, VGS | , I <sub>DS</sub> |         |       |        |     |
|   | CONN DEVICE | P336        | -B-92 | 1.4.4.   | 150               | 4 CELLS | 3 70/ | Z6 JUN |     |
|   | S MAGU AND  | A 1161 From |       |          |                   |         |       |        |     |
|   | SMAGN AND   | ARGE, E.S   |       |          |                   |         |       |        |     |
|   | FREQ        | 1           | 1     | 2:1      |                   | 1;.     |       | 22     |     |
|   | 8000.0      | .868        | -173  | ,634     | 10                | .075    | -A.4  | .630   | 135 |
|   | 8500.0      | .854        | -177  | .5.29    | 2                 |         |       | .682   | 134 |
|   | 9000.0      | .893        | -176  | .474     | Ü                 |         | -51   | .718   | 139 |
|   | 9500.0      | ,905        | -1/5  | .4.7     | ž                 |         | -53   | .709   | 145 |
|   | 10000.0     | . 853       | -174  | , 412    | !5                |         | -54   | .638   | 148 |
|   | 10500.0     | .823        | -173  | .473     | -10               |         | 56    | .652   | 140 |
|   | 11000.0     | . 783       | 178   | .400     | -22               |         | -66   | .674   | 116 |
|   | 11500.0     | .793        | 169   | .473     | -35               |         | -76   | .731   | 97  |
| 0 | 12000.0     | .857        | 158   | .380     | -49               | .062    | -89   | .766   | 85  |
|   | TASK? PARAM |             |       |          |                   |         |       |        |     |
|   | THOR. PHINH | List        | *     |          |                   |         |       |        |     |
|   | NEW MEAST N |             |       |          |                   |         |       |        |     |
|   | -           |             |       |          |                   |         |       |        |     |
|   | FREQ        | H21         | S21   | G1       | 62                | GMAX    | U     | K      |     |
|   | 8000.0      | · A         | -4.0  | 6.1      | 2.3               | 4.3     | .17   | 1.05   |     |
|   | 8500.0      | -1.9        | -5.5  | 5,7      | 2.7               | 2.9     | .14   | 1.49   |     |
|   | 9000.0      | -2.2        | -6.5  | 6.9      | 3.1               | 3.6     | .19   | 1.07   |     |
|   | 9500.0      | -1.9        | -7.2  | 7.0      | 3.0               | 3.3     | .19   | 1.17   |     |
|   | 10000.0     | -1.1        | -7.1  | 5.7      | 2.8               | 1.3     | .11   | 2.10   |     |
|   | 10500.0     | -1.9        | -6.5  | 4.9      | 2.4               | .8      | .09   | 2.40   |     |
|   | 11000.0     | -4.4        | -6.2  | 4.1      | 2.6               | .6      | .09   | 2.44   |     |
|   | 11500.0     | -6.7        | -6.3  | 4.3      | 3.3               | 1.1     | .12   | 1.95   |     |
|   | 12000.0     | -9.7        | -8.3  | 5.8      | 3.8               | 1.3     | .14   | 1.71   |     |
|   |             |             |       |          |                   |         |       |        |     |

TASKT PARAM? LIST? 1,4

NEW HEAST N

### Z -- MAGH AND ANGLES:

| FREQ    | 1     | 1   | 21     |    | 1     | 5   | 22     |    |
|---------|-------|-----|--------|----|-------|-----|--------|----|
| 8000.0  | 5.443 | -36 | 22,763 | 24 | 2.684 | -29 | 23.775 | 53 |
| 8500.0  | 4.682 | -16 | 18.432 | 19 | 2.329 | -33 | 22.970 | 59 |
| 9000.0  | 3.649 | 27  | 15.623 | 14 | 2.047 | -36 | 20.176 | 60 |
| 9500.0  | 3.498 | -36 | 14.143 | 9  | 1.927 | 41  | 17.590 | 56 |
| 10000-0 | 5.195 | -34 | 14.734 | 4  | 2.101 | -45 | 16.833 | 51 |
| 10500.0 | 6.109 | -31 | 16.791 | 1  | 2.462 | 44  | 20.788 | 53 |
| 11000.0 | 6.438 | 0   | 19.302 | 2  | 2.916 | -41 | 32.019 | 63 |
| 11500.0 | 7.214 | 32  | 20.226 | 1  | 3.149 | -39 | 43.737 | 70 |
| 12000.0 | 9.707 | 65  | 17.380 | -1 | 2.794 | -41 | 52.987 | 74 |
|         |       |     | 24     |    |       |     |        |    |

TASKY PARAMY LISTY

| $v_D = 7.5 v$        | IDSSO     | - 750 mA, | $V_G = -2 V$ , $f = 9.0 GHz$ |              |                     |  |
|----------------------|-----------|-----------|------------------------------|--------------|---------------------|--|
| P <sub>in</sub> (mW) | Pout (mW) | G(dB)     | I <sub>D</sub> (mA)          | Pout-Pin(mW) | η <sub>PA</sub> (%) |  |
| 80                   | 326.7     | 6.1       | 533                          |              |                     |  |
| 160                  | 605.0     | 5.8       | 521                          |              |                     |  |
| 240                  | 756.3     | 5.0       | 480                          |              |                     |  |
| 320                  | 840.95    | 4.2       | 464                          | 520.95       | 14.97               |  |

| $v_D = 7.5 v$        | IDSSO     | = 750 mA, | $V_G = -2 V$ , $f = 9.5 GHz$ |              |                     |  |  |  |
|----------------------|-----------|-----------|------------------------------|--------------|---------------------|--|--|--|
| P <sub>in</sub> (mW) | Pout (mW) | G(dB)     | I <sub>D</sub> (mA)          | Pout-Pin(mW) | n <sub>PA</sub> (%) |  |  |  |
| 76                   | 304.8     | 6.0       | 527                          |              |                     |  |  |  |
| 152                  | 565.15    | 5.7       | 517                          |              |                     |  |  |  |
| 228                  | 730.25    | 5.1       | 475                          |              |                     |  |  |  |
| 304                  | 749.3     | 3.9       | 453                          | 23.049       |                     |  |  |  |
| 380                  | 787.4     | 3.2       | 444                          | 407.4        | 12.2                |  |  |  |

| v <sub>D</sub> - 7.5 v, | IDSSO     | - 750 mA, | $V_G = \underline{-2} V$ , $f = \underline{10} GHz$ |              |                     |  |  |  |  |  |
|-------------------------|-----------|-----------|-----------------------------------------------------|--------------|---------------------|--|--|--|--|--|
| P <sub>in</sub> (mW)    | Pout (mW) | G(dB)     | I <sub>D</sub> (mA)                                 | Pout-Pin(mW) | η <sub>PA</sub> (2) |  |  |  |  |  |
| 76                      | 260.7     | 5.4       | 515                                                 |              |                     |  |  |  |  |  |
| 152                     | 518.7     | 5.3       | 529                                                 |              |                     |  |  |  |  |  |
| 228                     | 658.4     | 4.6       | 498                                                 |              |                     |  |  |  |  |  |
| 304                     | 751.5     | 3.9       | 473                                                 |              |                     |  |  |  |  |  |
| 380                     | 811.3     | 3.3       | 456                                                 | 431.3        | 12.6                |  |  |  |  |  |

| NEW MEAS? Y                                                           |                                                                                  | B-103                                                                 | V <sub>DS</sub> , V <sub>GS</sub> , 5,-3,45                                            | The state of the s | CELLS                                                                         | 8/2.                                                        | <u>3/76</u> J.                                                                         | ЛИ                                                 |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|
| SMAGN ANI                                                             | ANGLES                                                                           | •                                                                     |                                                                                        | ME 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                                             |                                                                                        |                                                    |
| FREQ                                                                  | 1                                                                                | 1                                                                     | 21                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                            | 23 L-64                                                     | 22                                                                                     |                                                    |
| 8000.0<br>8500.0<br>9000.0<br>9500.0<br>10000.0                       | .805<br>.851<br>.849<br>.869<br>.847                                             | 168<br>165<br>167<br>171<br>176<br>177                                | .654<br>.524<br>.426<br>.408<br>.419<br>.459                                           | -14<br>-14<br>-16<br>-18<br>-18<br>-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .077<br>.062<br>.054<br>.053<br>.055                                          | -67<br>-74<br>-74<br>-73<br>-72<br>-73                      | .712<br>.753<br>.751<br>.774<br>.739<br>.683                                           | 152<br>150<br>152<br>156<br>159<br>152             |
| 11000.0<br>11500.0<br>12000.0                                         | .730<br>.781<br>.734                                                             | 160<br>137<br>133                                                     | .548<br>.546<br>.245                                                                   | -37<br>-62<br>-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .074<br>.078<br>.033                                                          | -85<br>-111<br>-144                                         | .760<br>.802<br>.773                                                                   | 130<br>111<br>97                                   |
| TASK? PARAM                                                           | ? LIST?                                                                          | 2                                                                     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                             |                                                                                        |                                                    |
| NEW MEAS? N                                                           |                                                                                  |                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                             | . 19                                                                                   |                                                    |
|                                                                       |                                                                                  |                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                             | 1.00                                                                                   |                                                    |
| FREQ                                                                  | H21                                                                              | S21                                                                   | G1                                                                                     | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GMAX                                                                          | U                                                           | К                                                                                      |                                                    |
| 8000.0<br>8500.0<br>9000.0<br>9500.0<br>10000.0<br>11500.0<br>12000.0 | 3.6<br>1.2<br>3<br>.4<br>1.2<br>.3<br>-1.3<br>-3.7<br>-11.7                      | -3.7<br>-5.6<br>-7.4<br>-7.8<br>-7.6<br>-6.8<br>-5.2<br>-5.3<br>-12.2 | 4.5<br>5.6<br>5.5<br>6.1<br>5.5<br>4.2<br>3.3<br>4.1<br>3.4                            | 3.1<br>3.6<br>3.6<br>4.0<br>3.4<br>2.7<br>3.7<br>4.5<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.9<br>3.6<br>1.7<br>2.3<br>1.4<br>.1<br>1.8<br>3.3<br>-4.9                   | .17<br>.17<br>.12<br>.18<br>.11<br>.08<br>.12<br>.19        | 1.39<br>2.27<br>1.96<br>2.55<br>3.33<br>2.06<br>1.38                                   |                                                    |
| TASK? PARAM                                                           |                                                                                  | 1,4                                                                   |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                             |                                                                                        |                                                    |
| NEW MEAS? N                                                           |                                                                                  |                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                             |                                                                                        |                                                    |
| ZMAGN AND                                                             | ANGLES                                                                           | • /-                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                             |                                                                                        |                                                    |
| FREQ                                                                  | 1                                                                                | 1                                                                     | 21                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                            |                                                             | 22                                                                                     |                                                    |
| 11500.0                                                               | 7.338<br>7.328<br>6.600<br>4.953<br>4.439<br>6.095<br>10.686<br>19.168<br>22.509 | 34<br>53<br>49<br>43<br>17<br>4<br>42<br>69<br>66                     | 22.061<br>15.870<br>13.642<br>12.620<br>13.267<br>15.731<br>20.050<br>21.789<br>11.391 | 9<br>4<br>0<br>-4<br>-7<br>-8<br>-14<br>-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.608<br>1.984<br>1.718<br>1.639<br>1.730<br>2.140<br>2.775<br>3.109<br>1.553 | -51<br>-55<br>-57<br>-59<br>-62<br>-62<br>-57<br>-64<br>-89 | 14.584<br>14.629<br>14.054<br>12.096<br>11.586<br>15.225<br>23.311<br>33.455<br>43.828 | 48<br>57<br>56<br>55<br>46<br>48<br>68<br>76<br>75 |

28

TASKT PARAMT LIST?

APPENDIX B

### DATA PACKAGE FOR 16-GATE FETS

### RCA MESFET Pin-Pout CHARACTERISTICS

DEVICE: 2973-24 (16 gate)

$$v_D = _{0.0} v$$
,  $I_{DSSO} = _{0.0} v_G =$ 

| P <sub>in</sub> (mW) | Pout (mW) | G(dB) | I <sub>D</sub> (mA) | Pout-Pin (mW) | η <sub>PA</sub> (%) |
|----------------------|-----------|-------|---------------------|---------------|---------------------|
| 14.8                 | 72.59     | 6.9   | 220                 |               |                     |
| 29.6                 | 133.28    | 6.5   | 214                 |               |                     |
| 44.4                 | 190.4     | 6.3   | 211                 |               |                     |
| 59.2                 | 235.6     | 6.0   | 210                 |               |                     |
| 74                   | 273.7     | 5.7   | 210                 | 199.7         | 13.6                |

DEVICE: 2973-34 (16 gate)

| V <sub>D</sub> | - | <br>IDSSO | - | 640 r | nA, | V <sub>G</sub> | - | v, | £ | - | 8G | Hz |
|----------------|---|-----------|---|-------|-----|----------------|---|----|---|---|----|----|
| -              |   | 2220      |   |       |     | G              |   |    |   |   |    |    |

| P <sub>in</sub> (mi/) | Pout (mW) | G(dB) | I <sub>D</sub> (mA) | Pout-Pin(mW) | n <sub>PA</sub> (%) |
|-----------------------|-----------|-------|---------------------|--------------|---------------------|
| 37                    | 170.17    | 6.6   | 443                 |              |                     |
| 74                    | 304.6     | 6.1   | 442                 |              |                     |
| 111                   | 404.6     | 5.6   | 443                 |              |                     |
| 148                   | 476       | 5.1   | 445                 |              |                     |
| 185                   | 511       | 4.4   | 443                 | 326          | 10.5                |
| 222                   | 535.5     | 3.8   | 441                 |              |                     |

DEVICE: 2975-75 (16 gate)

| VD | - | <u>8.0</u> v, | IDSSO - | 560 | _mA, | V <sub>G</sub> |  | -2.0 | _v, | f | - | 8.0 | GHz |  |
|----|---|---------------|---------|-----|------|----------------|--|------|-----|---|---|-----|-----|--|
|----|---|---------------|---------|-----|------|----------------|--|------|-----|---|---|-----|-----|--|

| P <sub>in</sub> (mW) | Pout (mW) | G(dB)  | I <sub>D</sub> (mA) | Pout-Pin (mW) | η <sub>PA</sub> (%) |
|----------------------|-----------|--------|---------------------|---------------|---------------------|
| 37                   | 148.75    | 6.0    | 285                 |               |                     |
| 74                   | 297.5     | 6.0    | 291                 |               |                     |
| 111                  | 422.45    | 5.8    | 299                 |               |                     |
| 148                  | 523.6     | 176.12 | 304                 |               |                     |
| 185                  | 583.1     | 5.0    | 305                 | 398.1         | 16.4                |
| 222                  | 618.8     | 4.5    | 304                 | 396.8         | 16.3                |