0.0.1. In calculus.

- 1. Extreme Value Theorem: Every continuous function $f:[a,b]\to \mathbb{R}$ admit both max and min value \Rightarrow Compact set
- 2. Intermediate value Theorem: Given continous function $f:[a,b]\to R$ for all $f(a)\leq 1$ $\lambda \leq f(b) \exists c \in [a, b] \ni f(c) = \lambda \Rightarrow \text{connected set}$

How to prove a statement: HP, then $Q, P \Rightarrow Q$

$$\begin{cases} \begin{cases} \text{Direct Proof} \\ \text{Indirect Proof} \end{cases} \begin{cases} \text{contrapositive} \sim Q \Rightarrow \sim P \\ \text{by contradiction} \end{cases}$$

1. Some preliminary

1.1. Set Theory. We will assume that you are familiar with some basic set theory e.g. union, intersection, difference

1.2. The Number System.

 $\mathbb{N} = \{1, 2, 3, \dots\}$ the set of all positive integers n natural numbers

 $\mathbb{Z} = \{\cdots, -2, -1, 0, -1, -2, \cdots\} \text{ the set of all integers called the ring of intepus}$ $\mathbb{Q} = \left\{\frac{m}{n} : n, m \in \mathbb{Z}, n \neq 0\right\} \text{ the set of all rational numbers}$

 \mathbb{R} the set all of real numbers on the real number field on real line

 $\mathbb{C} = \{ z = a + ib \mid a, b \in \mathbb{R} \}$ the set of all complex numbers or the complex number filed on complex plane, where $i = \sqrt{-1}$

Remark.

1.
$$x + 2 = 0$$
 no root in \mathbb{N}
 $3x - 5 = 0$ no root in \mathbb{Z}
 $x^2 + 1 = 0$ no root in \mathbb{R}

- 2. One can construct \mathbb{Q} from \mathbb{Z} in algebraic way, called the fraction field of \mathbb{Z}
- 3. One can construct \mathbb{R} from \mathbb{Q} in two ways:
 - · Using Dedekind cut which is given in the appendix of Rudin p17-21
 - · Using completion of matrix space
- 4. One can construct \mathbb{C} from in complex analysis

Example.

1. Between any two rational numbers, there is another one

Proof. Let
$$r, s \in \mathbb{Q}$$
 with $r < s$, then $\frac{r+s}{2} \in \mathbb{Q}$ and $r < \frac{r+s}{2} < s$

$$r = \frac{m_1}{n_1}, s = \frac{m_2}{n_2}, \frac{r+s}{2} = \frac{\frac{m_1}{n_1} + \frac{m_2}{n_2}}{2} = \frac{m_1 n_2 + n_1 m_2}{2n_1 m_1} \in Q$$

$$s = \frac{s+s}{2} > \frac{r+s}{2} > \frac{r+r}{2} = r$$

- 2. $x^2 = \frac{4}{9}$ has exactly two rational solutions, namely, $\pm \frac{2}{3}$
- 3. $x^2 = 2$ has exactly two real root, namely, $\pm \sqrt{2}$
- 4. Is there any rational roots of $x^2 = 2$? i.e., is $\sqrt{2}$ rational?

Suppose
$$r = \frac{m}{n} \in \mathbb{Q}$$
, is a root of $x^2 = 2$, where $(m, n) = 1$
Then $\frac{m^2}{n^2} = 2 \implies m^2 = 2n^2 \implies 2 \mid m^2 \implies 2 \mid m \implies 4 \mid m^2 \implies 4 \mid 2n^2$
 $\implies 2 \mid n^2 \implies 2 \mid n \implies (n, m) \neq 1$

5. Let
$$A = \{ r \in \mathbb{Q} \mid r > 0 \& r^2 < 2 \}, B = \{ r \in \mathbb{Q} \mid r > 0 \& r^2 > 2 \}$$

Then A contains no largest numbers, i.e. max element & B contains no smallest numbers, i.e. min element

Proof. A contains no largest numbers
$$\Leftrightarrow$$
 given $r \in A$, $\exists s \in A \ni s > r$
Now, given $r \in A$, Let $s = r - \frac{r^2 - 2}{r + 2} = \frac{2r + 2}{r + 2}$ (\star_1)
 $\implies s^2 - 2 = \frac{2(r^2 - 2)}{(r + 2)^2}$ (\star_2)
Now, $r \in A, r^2 < 2 \implies r^2 - 2 < 0$.:
 $(\star_1) \& (\star_2) \implies s > r \& s^2 < 2 \implies s \in A$

6. As you know, in calculus, the sequence $\{1, 1.4, 1.41, 1.414, 1.4142, \cdots\}$ does not converge in Q, but it converges to $\sqrt{2}$ in R

1.3. Order Sets.

<u>Definition</u> (Relation).

Let X be a nonempty set A, relation on X is a subset R of $X \times X = \{(x,y) \mid x,y \in X\}$ Let R be a relation on X, if $(x,y) \in R$, then we say that x is retaliated to y, and is written as $xRy(x \sim y)$

<u>Definition</u> (Order Set). An ordered set on S, is a relation denoted by " <" on S, satisfy:

- (i) The low of trichonomy

 Given $x, y \in S$, one and only one of the following holds: x < y, x = y, y < x
- (ii) Transitivity: if x < y & y < z, than x < z

Notation

- (1) x < y means "x is less than y" or "x is smaller than y"
- (2) y > x means x < y
- (3) $x \le y$ means x < y or x = y, i.e. the negative of x > y

<u>Definition</u> (bdd). Let S is an ordered set & $E \subseteq S(E \neq \emptyset)$

- E is bounded above if $\exists \alpha \in S \implies x \leq \alpha \ \forall \ x \in E$ such α is called an upper bound of E
- E is bounded below if $\exists \ \beta \in S \ni \beta \leq x, \forall \ x \in E, \ such \ \beta \ is \ called \ a \ lower \ bdd$ of E
- E is bdd is E is both bdd above and below.

<u>Definition</u> (least upper bound). Let S be an ordered set and $E \subseteq S(E \neq \emptyset)$ bdd above. An element $\alpha \in S$ is called the last upper bound or supremum of E if

- (i) α is an upper bound of E
- (ii) α is the smallest such one.

Equivalently,

- (i') $x \le \alpha, \forall x \in E$
- (ii') if $\beta < \alpha$, then β is not an upper bdd of E, i.e. $\exists x \in E \ni x > \beta$

Such α (if exists) is denoted by

$$\alpha = sup(E)$$

similarly, one can defined the greatest lower bdd of infimum of E

Remark. if $\sup(E)$ exists then it is unique suppose $\alpha \neq \alpha'$ both lub of E \therefore by trichotomy $\alpha > \alpha'$ or $\alpha = \alpha'$ or $\alpha < \alpha'(\rightarrow \leftarrow)$

<u>Definition</u> (least upper bdd property). A ordered set S is said to have the least upper bdd property if $E \subseteq S$, $E \neq \emptyset$ and E is bdd above, then $\sup(E)$ exists in S

Example.

1. In Q with the normal ordining

$$A = \{ r \in Q \mid r > 0, \ r^2 < 2 \} \& B = \{ r \in Q \mid r > 0, \ r^2 > 2 \}$$

Then A is bdd above, in fact, bdd by every element in B, but $\sup(A)$ does not exist in $Q(::by\ Ex1.5)$

- 2. B is bdd below by every element of A and inf B does not exists
- 3. Note that $\sup(E) \& \inf(E)$ may not in E even if exist

Remark.

- 1. By the Example above, Q with the usual ordering has no l.u.b property
- 2. In 1.5 we will explain that R with usual ordering has the l.u.b. property. However, we usually adopt the follwing

The Axiom of Completence or Least upper bdd property:

Every nonempty subset E of R which is bdd above has l.u.b

Theorem (l.u.b.p. \rightarrow g.l.b.p.). Let S is an ordered set if S has the l.u.b. property, then S has the g.l.b. property, i.e. if $\emptyset \neq B \subseteq S$ is bdd below, then $\inf(B)$ exists in S

Proof. (\star)

Given $B(\neq \emptyset) \subseteq S$ which is bdd below Let $L = \{ a \in S \mid a \text{ is a lower bdd of } B \}$

- $L \neq \emptyset(:: B \text{ is bdd below})$
- L is bdd above (in fact, every element in B is on upper bound of L) $\implies \forall a \in L \implies a \leq x, \ \forall x \in B \implies x \text{ is an upper bound of } L$
- $\sup(L) = \alpha$ exists by assumption

Claim $\alpha = \inf B$

(i) α is a lower bdd of B, i.e. $\alpha \leq x, \ \forall x \in B$

By $\alpha = \sup L$, if $r < \alpha$, them r is not an upper bdd of $L(\because \alpha)$ is the smallest one). Hence, $r \notin B(\because \text{ every element of } B \text{ is an upper bdd of } L)$, so $\alpha \leq x, \forall x \in B$ We have proved $(r < \alpha) \implies r \notin B \implies r \geq \alpha$

(ii) α is the greated one

if $\alpha < \beta$ and β is a lower bdd of B, then $\beta \notin L$, i.e. β is not a lower bdd of B, so α is the greatest one. Therefore, $\alpha = \inf(B)$

Remark. Let $E(\neq \emptyset) \subseteq \mathbb{R}$ be bdd below, then $\inf(E)$ exists and $\inf(E) = -\sup(-E)$, where $-E = \{-x \mid x \in E\}$

1.4. Field.

Recall the addition & multiplication in R

$$+: R \times R \to R((a, b) \mapsto a + b)$$

 $\times: R \times R \to R((a, b) \mapsto a \cdot b = ab)$

<u>Definition.</u> Let X is a nonempty set A, binary operation on X is a function, $o: X \times X \to X$

<u>Definition.</u> Let F be a nonempty set, we say that F is a field $((F, +, \cdot))$ is a field) if there are two binary operator called addition "+" and multiplication " \cdot " on F property

$Axioms\ for\ "+"$

- (A1) Commutative: $\forall x, y \in F, x + y = y + x$
- (A2) Associative: $\forall x, y, z \in F, (x + y) + z = x + (y + z)$
- (A3) Additive identity or zero element: $\exists \ 0 \in F \implies x + 0 = 0 + x = x, \ \forall x \in F$
- (A4) Additive inverse on negative: For each $x \in X$, $\exists -x \in F \implies x + (-x) = (-x) + x = 0$

i.e. (F, +) is an abelian group **Axioms for multiplication**

- (M1) Commutative: $\forall x, y \in F, xy = yx$
- (M2) Associative: $\forall x, y, z \in F$, (xy)z = x(yz)
- (M3) Muti identity: $\exists 1 \neq 0 \text{ in } F \ni x1 = 1x = x$
- (M4) Multiplicative inverse: For each $x \neq 0, \exists x^{-1} \in F \implies xx^{-1} = x^{-1}x = 1$
- i.e. $(F = F \cdot \{0\}, \cdot)$ is an abelian group

Distributive Law

(D1)
$$\forall x, y, z \in F$$
, $(x, y)z = xz + yz \& x(y + z) = xy + xz$

Induction from Axioms

let $(F, +, \cdot)$ be a field, we list a series of basic identity as you learn in high school in the real number system

- (a) Cancellation law for "+": $x + y = x + z \implies y = z$ $\therefore x + y = x + z \implies (-x) + (x + y) = (-x) + (x + z) \implies ((-x) + x) + y = ((-x) + x) + z$ $\implies 0 + y = 0 + z \implies y = z$
- (b) 0 is "1" $\text{suppose } 0' \in \mathcal{F} \text{ is another element satisfy } A_3, \text{ then } 0 = 0 + 0' = 0'$
- (c) $x + y = x \implies y = 0$ by (a) $\therefore x + y = x + 0 \implies y = 0$
- (d) negative -x of x is "1" if $x' \in F$, is another negative of x, them x + x' = x' + x = 0 From $x + x' = 0 \implies (-x) + (x + x') = -x + 0 = -x$

(e)
$$x + y = 0 \implies y = -x$$

 $x + y = 0 \implies (-x) + (x + y) = (-x) + 0 \implies ((-x) + x) + y = -x$
 $\implies 0 + y = -x \implies y = -x$

(f)
$$-(-x) = x$$

 $-(-x) + (-x) = 0$, By (d) $x = -(x)$

- (a') cancellation law if $x \neq 0$, then $xy = xz \implies y = z$, $\therefore (x^{-1})(xy) = (x^{-1})(xz)$ $\implies (x^{-1})(xy) = (x^{-1}x)z \implies 1y = 1z \implies y = z$
- (b') 1 is "1" if 1' is another identity, then 1 = 11' = 1'
- (c') $x \neq 0 \& xy = x \implies y = 1$ $xy = x1 \implies y = 1$
- (d') For $x \neq 0$ in F, x^{-1} is "1" if x is another one, i.e. $x'x = xx' = 1 \implies (x^{-1})(xx') = (x^{-1})1 = x^{-1}$
- (f') $x \neq 0 \implies (x^{-1})^{-1} = x$ $(x^{-1})^{-1}(x^{-1}) = 1 \implies x = (x^{-1})^{-1}$
- (g') 0x = x0 = 0 $(0+0)x = 0x + 0x \implies 0x = 0$
- (h') $x \neq 0 \& y \neq 0 \implies xy \neq 0$, equivalently $xy = 0 \implies x = 0$ or y = 0 $\therefore xy = 0$ then $(x^{-1})(xy) = ((x^{-1})x)y = 1y = y(\rightarrow \leftarrow)$
- (i') (-x)y = -(xy) = x(-y) $\therefore [(-x) + x]y = 0y = 0 = (-x)y = -(xy) \implies (-x)y = -(xy)$
- (j') (-x)(-y) = xy (-x)(-y) = -(x(-y)) by (i) = -(-(xy)) = xy
- (k) -x = (-1)x $\therefore (1-1)x = 0x = 0 = 1x + (-1)x = x + (-1)x \implies (-1)x = -x$

<u>Definition</u> (Order Field). Let F is a field, we say that F is an order field if there is an ordering " < " satisfying

(1) if
$$x < y$$
, then $x + z < y + z$, $\forall z \in F$

(2) if
$$x > y$$
 and $y > 0$, then $xy > 0$

Example. Q and R are order field under the usual ordering Some basic properties of ordered field, let F be an ordered field with ordering " < "

(a)
$$x > 0 \implies -x < 0$$

$$\therefore x > 0 \implies x + (-x) > 0 + (-x) \implies 0 > -x$$

(b)
$$x > y \Leftrightarrow x - y > 0$$

$$\therefore x > y \implies x + (-y) > y = (-y) \implies x - y > 0$$

$$x - y > 0 \implies x - y + y > y \implies x + 0 > y \implies x > y$$

(c)
$$x > 0$$
 and $y < z \implies xy < xz$

$$\therefore x > 0 \text{ and } y < z \implies x > 0 \text{ and } z - y < 0 \implies x(z - y) > 0 \implies xz + x(-y) > 0$$

$$\implies xz - xy > 0 \implies xz > xy$$

(d)
$$x < 0$$
 and $y < z \implies xy > xz$

$$\therefore x < 0 \text{ and } y < z \implies -x > 0 \text{ and } z - y > 0 \implies (-x)(z - y) > 0 \implies -xz + xy > 0$$

$$\implies xy > xz$$

(e)
$$\forall x \neq 0 \text{ in } F, x^2 > 0$$

 $\therefore x > 0 \implies x \cdot x > x0 \text{ by } (c) \text{ or}$
 $x < 0 \implies -x > 0 \text{ by } (a) \implies -x > 0 \text{ by } (a) \implies (-x)^2 > 0 \implies x^2 > 0$

(f)
$$1 > 0$$
, $-1 < 0$
 $\therefore 1 \neq 0 \implies 1^2 > 0 \ by \ (e) \implies 1 > 0$

$$(g) \ 0 < x < y \implies 0 < \frac{1}{y} < \frac{1}{x}$$

$$\therefore \ Note \ that \ \forall u \in \mathcal{F}, \ u > 0 \implies \frac{1}{u} = u^{-1} > 0$$

$$\therefore \ if \ \frac{1}{u} < 0, \ then \ u \cdot \frac{1}{u} < 0 \ by \ (e) \implies 1 < 0(\rightarrow \leftarrow) \ \therefore \ \frac{1}{u} > 0$$

$$Now, \ \frac{1}{x}, \frac{1}{u} > 0 \ from \ x < y \ we \ get \ (\frac{1}{x} \cdot \frac{1}{u})x < (\frac{1}{x} \cdot \frac{1}{u})y \implies 0 < \frac{1}{u} < \frac{1}{x}$$

Remark. By (e)(f), we conclude that C is not an ordered field

- \therefore C were an ordered field, then by (e), $i^2 > 0 \implies -1 > 0 (\rightarrow \leftarrow)$
- ∴ C is not an order field

1.5. The Real Number Field R.

Theorem. There exists an ordered field R containing Q which has the l.u.b. property. Moreover, such R is unique up to order-isomorphism i.e. if " < " and " <' " are two orders on R, them $\exists f_i(R, <) \to (R, <') \Longrightarrow$

- (i) f is a field isomorphism, i.e. $\forall a, b \in \mathbb{R}, \ f(a+b) = f(a) + f(b), \ f(ab) = f(a)f(b), \ f(1) = 1$
- (ii) f preserves ordering, $a < b \implies f(a) < f(b)$

Such R is called the real number field or real number system or real line

Theorem.

- (a) The Archimedean property of R: Given $x, y \in R$ with $x > 0, \exists n \in N \implies nx > y$
- (b) Q is dense in $R : \forall x, y \in R$ with $x \le y$, $\exists r \in Q \implies x < r < y$

Proof.

- (a) Let $A = \{ nx \mid n \in \mathbb{N} \} \subseteq \mathbb{R}$ if (a) were false, them A is bdd above by y, since \mathbb{R} has the l.u.b property $\alpha = \sup A \text{ exists in } \mathbb{R}, \text{ since } x > 0, \ \alpha - x < \alpha \implies \alpha - x \text{ is not an upper bdd of } A$ $\implies \exists m \in \mathbb{N} \ni mx > \alpha - x \implies (m+1)x > \alpha(\rightarrow \leftarrow)$
- (b) Since x < y, y x > 0, by (a), $\exists n \in \mathbb{N} \implies n(y x) > 1$ By (a) again, $\exists m_1, m_2 \in \mathbb{N} \implies m_1 = m_1 1 > n_x \& m_2 = m_2 \cdot 1 > -nx$ we have $-m_2 < nx < m_1$, choose $m \in \mathbb{Z} \implies -m_2 \le m \le m_1 \& m - 1 \le nx < m$ (in fact, m = [nx] + 1, where [z] in the greatest integer of z) we have $nx < m < 1 + nx < ny(\because n(y - x) > 1) \implies x < \frac{m}{n} < y$ Let $r = \frac{m}{n} \in \mathbb{Q}$, then x < r < y

An application of the density property of Q in R:

Given $x \in \mathbf{R} - \mathbf{Q}$ i.e. x is an irrational numbers, i.e. $\forall \epsilon > 0, \exists r \in \mathbf{Q} \implies |x - r| < \epsilon$ equivalently, \exists a sequence $\{r_n\}$ in $\mathbf{Q} \implies r_n \to x$

In fact, one may choose $\{r_n\}$ to \uparrow or \downarrow

 $\therefore \forall n \geq 1, \ \exists \ r_n \in \mathbb{Q} \implies x < r_n < \frac{1}{n} + x \text{ by Thm.1.3(b) By squeezing lemma, } r_n \to x \text{ on } n \to \infty$

Theorem (existence of nth root). Given $x \in T$, x > 0 & $n \in N$, \exists "1" $y > 0 \implies y^n = x$ Such y is called the nth root of x & denoted by $y = \sqrt[n]{x} = x^{\frac{1}{n}}$

Proof. not important

"1". Suppose $y_1, y_2 > 0 \implies y_1^n = x \& y_2^n = x$ Bt trichotomy, we have

(i)
$$0 < y_1 < y_2 \implies y_1^n < y_2^n (\to \leftarrow)$$

(ii)
$$0 < y_2 < y_1 \implies y_2^n < y_1^n (\to \leftarrow)$$

(iii)
$$y_1 = y_2$$

"∃". Let
$$E = \{ t \in \mathbb{R} \mid t^n < x \}$$

Claim:

•
$$E \neq \emptyset$$
, Let $t = \frac{x}{1+x}$, then $0 < t < 1$, hence $t^n < t < x$, $\therefore t \in E \& E \neq \emptyset$

• E is bdd above, in fact E is bdd above by 1 + x if t > 1 + x > 1, then $t^n > t > x$, so E is bdd above by 1 + 1

Therefore $y = \sup E$ exists & is finite

• Claim y > 0 & $y^n = x$, clearly, y > 0 (: $\frac{x}{1+x} \in E$ & $\frac{x}{1+x} > 0$) by trichotomy, we have $y^n < x$, $y^n > x$, $y^n = x$

Now, to show that (i) & (ii) are impossible, do (iii) holds $y^n = x$ By the identity, $b^n - a^n = (b-a)(b^{n-1} + b^{n-2}a + \cdots + a^{n-1})$ (i) $y^n < x$ choose $0 < h < 1 = \alpha$ & $0 < \frac{x-y^n}{n(y+1)^{n-1}}$, $0 < h < \min\{\alpha,\beta\}$ put $a = y, \ b = y + h$ in (\star) , we obtain

$$(y+h)^n - y^n < hn(y-h)^{n-1} < hn(y+1)^{n-1} < x - y^n$$

$$\implies (y+h)^n < x \implies y+h \in E \& y+h > y(\rightarrow \leftarrow) \therefore \text{ (i) fails}$$

(ii)
$$y^n > x$$
, Let $k = \frac{y^n - x}{ny^{n-1}}$, Then $0 < k < y$, $k = \frac{y^n - x}{ny^{n-1}} < \frac{y^n}{ny^{n-1}} = \frac{y}{n} < y$ if $t > y - k > 0$, then $y^n - t^n \le y^n - (y - k)^n < kny^{n-1}$ by $(\star) = y^n - x$ $\implies t^n > x \implies t \in E \implies E$ is bdd above by $y - k \implies \sup E \le y - k(\rightarrow \leftarrow)$ \therefore (ii) fails

Corollary. Let
$$a, b \in \mathbb{R}$$
 with $a, b > 0$, $n \in \mathbb{N}$ Then $(ab)^{\frac{1}{n}} = a^{\frac{1}{n}}b^{\frac{1}{n}}$
 $\therefore a^{\frac{1}{n}}, b^{\frac{1}{n}} > 0$ & $(a^{\frac{1}{n}} \cdot b^{\frac{1}{n}}) = ab$, By (1) in Thm 1.4 $(a, b)^{\frac{1}{n}} = a^{\frac{1}{n}}b^{\frac{1}{n}}$

infinite in \mathbb{R}

After discuss the real number \mathbb{R} , sometimes, we have to work with the extended real number system $\mathbb{R}^* = [-\infty, \infty] = \mathbb{R} \cup \{+\infty, -\infty\}$ with observe, $x \in \mathbb{R}$

$$\lim_{n \to \infty} (-n) = -\infty, \quad \lim_{n \to \infty} n = \infty, \quad \lim_{n \to \infty} (\frac{1}{n} + n) = \infty, \quad \lim_{n \to \infty} (n^2 - n) = \infty$$
$$x \pm \infty = \pm \infty, \quad 0 \cdot (\pm \infty) = 0, \quad \infty - \infty \text{ is not define}$$

Element in $\mathbb{R} \subseteq \mathbb{R}^*$ are called finite. Now, given any nonempty subset $E \subseteq \mathbb{R}$,

$$\sup E = \begin{cases} +\infty \text{ if } E \text{ is not bdd above} \\ \text{finite if } E \text{ is bdd above} \end{cases} \& \inf E = \begin{cases} -\infty \text{ if } E \text{ is not bdd below} \\ \text{finite if } E \text{ is bdd below} \end{cases}$$

Note that if $A \subseteq B$, then $\sup A \le \sup \& \inf A \ge \inf B$ $\therefore \emptyset \subseteq B$, $\forall B \subseteq \mathbb{R}$, One may define $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$

1.6. The Complex Number Field \mathbb{C} .

Consider the contention product $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{ (a, b) \mid a, b \in \mathbb{R} \}$

Note that $(a,b) = (c,d) \Leftrightarrow a = c \& b = d$, From now, we can write $\mathbb{C} = \mathbb{R}^2$

Operation on \mathbb{C} Given $(a,b),(c,d)\in\mathbb{C}$

1.
$$(a,b) + (c,d) = (a+c,b+d)$$

2.
$$(a,b)(c,d) = (ac - bd, ad + bc)$$

It is easy to see that, with these operations, $\mathbb C$ is a field.

Note that

- the zero element is (0,0)
- the negative of (a, b) is -(a, b) = (-a, -b)
- the identity is (1,0)
- · if $(a,b) \neq (0,0)$, then $(a,b)^{-1} = \left(\frac{1}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$

R is a subset of C (not vary important) consider that map

$$f: \mathbb{R} \to \mathbb{C}$$
 define by $f(a) = (a, 0), \ a \in \mathbb{R}$

we have (1) f is injective (2) $f(1) = (1,0) :: \forall a, b \in \mathbb{R}$

$$f(a+b) = (a+b,0) = (a,0) + (b,0) = f(a) + f(b), \ f(a \cdot b) = (ab,0) = (a,0) \cdot (b,0)$$

f is a field homomorphism

 $f: \mathbb{R} \to \mathbb{C}$ is an injective and isomorphism

Therefore, we identify $\mathbb R$ with $f(\mathbb R)$ through the injective f

i.e. $a \in \mathbb{R}$ is identified with f(a,0) in \mathbb{C}

 $ab = (a,0) \cdot (b,0), \ a+b = (a,0) + (b,0) \ \forall \ a,b \in \mathbb{R}$

Change (a,b) to a+bi

Now, we can transform an element $(a, b) \in \mathbb{C}$ into the normal form:

$$(a,b) = (a,0) + (0,b) = (a,0)(1,0) + (b,0)(0,1) = a1 + bi = a + ib$$
, where $i = (0,1)$

Therefore, from new on, we write $\mathbb{C} = \{ a + ib \mid a, b \in \mathbb{C} \}$

An element $z = a + ib \in \mathbb{C}$ is called a complex number

Hence, under this notification, z = a + ib, $w = c + id \in \mathbb{C}$

1.
$$z + w = (a + c) + i(b + d)$$

$$2. zw = (ac - bd) + i(ad + bc)$$

and the a is called the real part of z, a = Re(z), b is called imaginary part of z, b = Imz

Some basic properties of complex numbers whose proofs are easy

 $\forall z, w \in \mathbb{C}$

$$\cdot \quad \overline{z+w} = \overline{z} + \overline{w}$$

$$\cdot \quad \overline{zw} = \overline{z} \cdot \overline{w}$$

$$\cdot \quad \operatorname{Re} z = \frac{z + \overline{z}}{2}$$

$$\cdot \quad \text{Im} z = \frac{z - \overline{z}}{2i}$$

$$\cdot |z| = 0 \Leftrightarrow z = 0$$

· Triangle inequality
$$|z+w| \le |z| + |w|$$

$$\cdot \quad ||z| - |w|| \le |z - w|$$

$$|z| - |w| \le |z - w|$$
 \mathbb{C} is not an ordered field $|z|^2 = z\overline{z}$

$$\cdot |\overline{z}| = |z|$$

$$\cdot |\operatorname{Re} z| \le |z|, |\operatorname{Im} z| \le |z| \cdot |zw| = |z||w|$$

$$|zw| = |z||w|$$

Proof. $|z + w| \le |z| + |w|$

$$|z+w|^2 = (z+w)(\overline{z+w}) = (z+w)(\overline{z}+\overline{w}) = z\overline{z} + z\overline{w} + w\overline{z} + w\overline{w}$$

$$= |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2 \le |z|^2 + 2|z\overline{w}| + |w|^2 = |z|^2 + 2|z||w| + |w|^2 = (|z| + |w|)^2$$

$$\therefore |z+w| \le |z| + |w|$$

Theorem (basic algebraic theorem).

(a)
$$x^2 + 1$$
 has no root in \mathbb{R}

(b)
$$x^2 + 1$$
 has two distinct roots in \mathbb{C}

Proof.

(a)
$$1 > 0$$
, $x^2 > 0$, $\forall x \in \mathbb{R} - \{0\} \implies x^2 + 1 > 0 \ \forall x \neq 0$
 $0^2 + 1 = 1 > 0$, $\therefore x^2 + 1 > 0$, $\forall x \in \mathbb{R}$. Hence, $x^2 + 1 = 0$ has no root in \mathbb{R}

(b)
$$i^2 = (0,1)(0,1) = (0-1,0) = (-1,0) = -1$$

 $(-i)^2 = (-(0,1))^2 = (0,-1)^2 = (0,-1)(0,-1) = -1, : \pm i \text{ are root of } \mathbb{C}$

Conclusion: Every non const polynomial $f(x) \in \mathbb{R}[x]$ has n roots where $n = \deg f(x)$ The complex root is even

no important proof

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{R}[x], \ a_n \neq 0, \ n \geq 1$

if $\alpha = a + ib \in \mathbb{C}$ is a root of f(x),then

$$0 = f(\alpha) = a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0$$

$$0 = f(\overline{\alpha}) = a_n \overline{\alpha}^n + a_{n-1} \overline{\alpha}^{n-1} + \dots + a_1 \overline{\alpha} + a_0$$

$$0 = f(\overline{\alpha}) = a_n \overline{\alpha}^n + a_{n-1} \overline{\alpha}^{n-1} + \dots + a_1 \overline{\alpha} + a_0$$

$$\therefore (x - \alpha)|f(x), (x - \overline{\alpha})|f(x) \implies (x - \alpha)(x - \overline{\alpha})|f(x) \implies (x^2 - (\alpha - \overline{\alpha})x + |\overline{\alpha}|^2) |f(x)|$$

$$\implies (x^2 - 2ax + (a^2 + b^2)) |f(x)|$$

 \therefore quadratic function must have two roots in \mathbb{C}

The fundamental Theorem of Algebra

Every non zero polynomial $f(x) \in \mathbb{C}[x]$ has at least one root in \mathbb{C} Therefore, if deg f(x) = n, then f(x) has n roots in $\mathbb{C}(C, M)$

$$f(x) = (x - \lambda_1)^{e_1} \cdots (x - \lambda_t)^{e_t} (a_1 x^2 + b_1 + c_1)^{l_1} \cdots (a_s x^2 + b_s x + c_s)^{l_s}, \text{ where } \lambda_1, \cdots, \lambda_t \in \mathbb{R}$$

 \mathbb{R} , $a_i, b_i, c_i \in \mathbb{R} \& e_1 + \cdots + e_t + 2l_1 + \cdots + 2l_s = \deg f(x)$ which shows that all roots of f(x) are in \mathbb{C}

In fact, we have the famous theorem: The fundamental theorem of algebra

Every non zero polynomial $f(x) \in \mathbb{C}[x]$ has at least one root in \mathbb{C}

 \therefore if deg f(x) = n, then f(x) has n roots in $\mathbb{C}(C, M)$

Theorem (Cauchy-Scheming Inequal). Given $z_1 \cdots, z_n, w_1, \cdots, w_n \in \mathbb{C}$, we have

$$\left| \sum_{j=1}^{n} z_j \overline{w}_j \right| \le \left(\sum_{j=1}^{n} |z_j|^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} |w_j|^2 \right)^{\frac{1}{2}}$$

and " = " holds $\Leftrightarrow \exists \lambda \in \mathbb{C} \ni w_j = \lambda z_j, \ 1 \leq j \leq n,$ In patricial, if $x_1, \dots, x_n, y_1, \dots, y_n \in \mathbb{R}$, then

$$\left| \sum_{j=1}^{n} x_j y_j \right| \le \left(\sum_{j=1}^{n} x_j^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} y_j^2 \right)^{\frac{1}{2}}$$

and " = " holds $\Leftrightarrow \exists t \in \mathbb{R} \ni y_j = tx_j, \ 1 \le j \le n$

The proof is too long, I am lazy

1.7. Euclidean Spaces \mathbb{R}^n .

<u>Definition.</u> the n-dimensional Euclidean space \mathbb{R}^n

$$= \{ x = (x_1, \dots, x_n) \mid x_i \in \mathbb{R}, 1 \le i \le n \} = \mathbb{R} \times \dots \times \mathbb{R}$$

Note that

$$(x_1, \cdots, x_n) = (y_1, \cdots, y_n) \Leftrightarrow x_i = y_i \ \forall \ 1 \le i \le n$$

We are going to introduce the structure of \mathbb{R}^n

 \cdot vector space \cdot inner product space

· normed linear space · matrix space

Definition. Two operation on \mathbb{R}^n as follows:

· $Addition + : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, (x, y) \mapsto x + y = (x_1 + y_1, \dots, x_n + y + n)$

· Scalar multiplication ·: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, $(a, x) \mapsto ax = (ax_1, \dots, ax_n)$

we skip space example here.

1.8. Countability of Sets.

Given two nonempty set A, B and a function $f: A \to B, f(A) = \{f(a) \mid a \in A\}$ is called the image of A under f

Some basic things

$$E \subseteq A$$
, $f(E) = \{ f(a) \mid a \in E \}$ the image of E under f f is infective(one-to-one) $x_1 \neq x_2 \implies f(x_1) \neq f(x_2) \Leftrightarrow f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$ f is surjective(onto) if $f(A) = B$, f is bijective if f is one-to-one and onto

Given $F \subseteq B$, $f^{-1}(F) = \{ x \in X \mid f(x) \in F \}$ called the inverse image of f under F **Example**

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2, \ x \in \mathbb{R}$$

 $f^{-1}([0,1]) = \{ x \in \mathbb{R} \mid f(x) \in [0,1] \} = \{ x \in \mathbb{R} \mid x^2 \in [0,1] \} = [-1,1]$
 $f^{-1}([-1,1]) = [-1,1]$

Properties of inverse image

- $F_1 \subseteq F_2 \subseteq B \implies f^{-1}(F_1) \subseteq f^{-1}(F_2)$
- Inverse image presences set operation

$$\forall F_{\alpha} \subseteq B, \ \alpha \in I, \ F \subseteq B$$

(i)
$$f^{-1}(\bigcup_{\alpha \in I} F_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(F_{\alpha})$$

(ii)
$$f^{-1}(\cap_{\alpha \in I} F_{\alpha}) = \cap_{\alpha \in I} f^{-1}(F_{\alpha})$$

(iii)
$$f^{-1}(B-F) = f^{-1}(B) - f^{-1}(F)$$

- Given $S \subseteq A$, $f'(f'(S)) \supseteq S$," = " \Leftrightarrow one-to-one, **example:** $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$, S = [0, 1], f(S) = [0, 1], $f^{-1}(f(S)) = f^{-1}([0, 1]) = [-1, 1]$
- Given $F \subseteq B$, $f(f^{-1}(F)) \subseteq F$," = " \Leftrightarrow "onto", **example** $f(x) = x^2$, $x \in \mathbb{R}$, F = [-1, 1], $f(f^{-1}([-1, 1])) = f([-1, 1]) = [0, 1]$
- For $y \in B$, $f^{-1}(\{y\}) = f^{-1}(y) = \{x \in A \mid f(x) = y\}$ the inverse image of y, **example** $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$, $f^{-1}(1) = \{1, -1\}$, $f^{-1}(2) = \emptyset$

<u>Definition</u> (cardinality). Let A, B are two set ew say that A and B have the same cardinality if \exists a bijective map $f: A \to B$, which is denoted by $A \sim B$ From now on, we write |A| as the cardinality of A

Claim " \sim " is an \equiv relation among all sets

- (i) Reflexion: \forall set A, $A \sim^{1A} A$, which 1_A is identity mapping
- (ii) Symmetry: $A \sim^f B \implies B \sim^{f^{-1}} A$
- (iii) Transitive: $A \sim^f B \& B \sim^g C \implies A \sim^{gof} C$

So we gave some property:

- Any two " \equiv " are either disjoint or identical
- \overline{X} is a disjoint union of " \equiv " classes $[A] = \{ B \in \overline{X} \mid B \sim A \} \text{ the "} \equiv \text{" class set by } A$

Ant two element in an " \equiv " class have the same cardinality Notation For $n \in \mathbb{N}$, $\mathbb{N}_m = \{1, 2, \dots, n\}$

<u>Definition</u>. Let A be a set

- (a) A is a finite set if $A = \emptyset$ or $A \sim \mathbb{N}_n$ for some $n \in \mathbb{N}$
- (b) A is a infinite set if A is not a finite set
- (c) A is countable if $A \sim \mathbb{N}$
- (d) A is uncountable if A is not countable.
- (e) A is at most countable if A is finite or countable

Remark.

- 1. when A, B are finite sets, $A \sim B \Leftrightarrow |A| = |B|$, i.e. A, B have same number.
- 2. where A, B are infinite and $A \sim B$, i.e. |A| = |B|, the concept is abstract.
- 3. $\{a,b,c\} \cup \mathbb{N} \sim \mathbb{N}, \ f: \mathbb{N} \to \{a,b,c\} \cup \mathbb{N}, \ f(1) = a, \ f(2) = b, \ f(3) = c, \cdots$
- 4. Any finite set can not equivalent to a proper subset, i.e. A is finite, $B \subseteq A$ Then $A \sim B$, In fact |B| < |A|, but infinite different
- 5. Any finite set A can be listed an $A = \{a_1, \dots, a_n\}$ where n = |A|

Now, we consider the case of countable set

Recall, in calculus, a real sequence $\{a_n\}$, e.g.

$$a_n = \frac{1}{n} \left\{ \frac{1}{n} \right\}, \ a_n = 1 - \frac{1}{n} \left\{ 1 - \frac{1}{n} \right\}, \ a_n = \begin{cases} 0 \text{ if } n \text{ is odd} \\ 1 \text{ if } n \text{ is even} \end{cases}$$

<u>Definition.</u> Let X be a nonempty set, a sequence in X is a function $a : \mathbb{N} \to X$ Given a sequence = a in X, a is "1" determine by a(n), $\in \mathbb{N}$ We write

$$a = \{a(1), a(2), \dots, a(n), \dots\} = \{a_1, a_2, \dots, a_n, \dots\} = \{a_n\} = \{a_n\}_{n=1}^{\infty}$$

Remark.

- For a sequence { a_n } in X, a_n may not be distinct.
 If all a_n are distinct, then we say that { a_n } is a distinct sequence in X.
- 2. We usually use $\{a_n\}, \{b_n\}$ to denote sequence
- 3. A sequence $\{a_n\}$ in X in fact is a function from $\mathbb{N} \to X$, So $\{a_n \mid n \in \mathbb{N}\}$ is the image of the sequence.
- 4. $\{a_n\}$ is a sequence, a_n is called the n^{th} term of the sequence.
- 5. A sequence in X may begin at 0, i.e. $\{a_n\}_{n=0}$ By a changing index, we can make it from $\{b_n\}_{n=1}^{\infty}$, $b_n = a_{n+1}$, $n = 1, 2, \cdots$

<u>Definition</u> (increasing).

A function $a : \mathbb{N} \to \mathbb{N}$ is increasing, a is \uparrow , if $a(n) \le a(n+1) \ \forall \ n \ge 1$ a is strictly increasing, a is st. \uparrow , if $a(n) < a(n+1) \ \forall \ n \ge 1$

Now, given a st. \uparrow function $n : \mathbb{N} \to \mathbb{N}$, i.e. n(k) < n(k+1), $k \ge 1$ i.e. $n_k < n_{k+1}$, $k \ge 1$, i.e. $n_1 < n_2 < \cdots < n_k < \cdots$, i.e. $\{n_k\}_{k=1}^{\infty}$ is a st. sequence in \mathbb{N} **Definition.** Let $\{a_n\}$ be a sequence in X and $\{n_k\}$ be a st. \uparrow sequence in \mathbb{N} , then the sequence $\{a_{n_k}\}$ is called a subsequence of $\{a_n\}$

$$\mathbb{N} \to_{st.}^n \mathbb{N} \to_{seq}^a X \Rightarrow a \circ n : \mathbb{N} \to X \text{ is a function,}$$

hence, it also a sequence in X

$$a \circ n = \{ a \circ n(k) \} = \{ a(n(k)) \} = \{ a_{n(k)} \} = \{ a_{n_k} \}$$

Remark. if $\{a_{n_k}\}$ is st. \uparrow in \mathbb{N} , then $k \leq n_k \ \forall \ k \geq 1$ \therefore By mathematical Induction

- $\cdot 1 \leq n_1$
- · Assume it's true for $k \geq 2$, i.e. $k \leq n_k$
- · Consider k + 1, $k + 1 < n_k + 1 < n_{k+1}$

Example

Let $\{a_n\}$ be a sequence in X, then $\{a_{2k}\}$ and $\{a_{2k-1}\}$ are subsequence of $\{a_n\}$

Finally, we will assume that you are familiar with the following property of the countability of sets:

- 1. Every subset of a countable set is at most countable. The proof needs the well ordering of \mathbb{N} : Every nonempty subset of \mathbb{N} has the smallest element
- 2. Countable union of countable sets is countable
- 3. If A_1, A_2, \dots, A_n are countable, then so is $A_1 \times \dots \times A_n$
- 4. If A is countable, then so is $A^n \equiv A \times \cdots \times A \ \forall n \geq 1$
- 5. $\mathbb{N}, \ \mathbb{Z}, \ \mathbb{Q}, \ \mathbb{Q}^n, \ \forall n \geq 1 \text{ are countable}$
- 6. The set $\{a_n \mid a_n = 0 \text{ or } 1\}$ is uncountable

This can be proved by Canton diagonal process

 \therefore if it is countable, then we can list it, $a_0A = \left\{a_1^{(1)}, a_2^{(2)}, \cdots\right\}$ where

$$a^{(1)} = \{a_n^{(1)}\} = a_1^{(1)}, a_2^{(1)}, \cdots; a^{(2)} = \{a_n^{(2)}\} = a_1^{(2)}, a_2^{(2)}, \cdots$$

Now, construct a sequence $\{a_n\}$ in $A \ni \{a_n\} \neq a^{(k)} \ \forall \ k \geq 1 (\rightarrow \leftarrow)$

Recall, intervals in \mathbb{R} , $-\infty < a \le b < \infty$, following are finite bdd interval

$$(a,b) = \{ x \in \mathbb{R} \mid a < x < b \}$$
 open interval $[a,b] = \{ x \in \mathbb{R} \mid a \le x \le b \}$ closed interval $(a,b] = \{ x \in \mathbb{R} \mid a < x \le b \}$ open-closed $[a,b) = \{ x \in \mathbb{R} \mid a \le x < b \}$ closed-open

An interval I in \mathbb{R} is said to be non-degenerate if the endpoint of I are distinct i.e. length > 0. Otherwise, it is degenerate.

Note.

$$(0,1)$$
 is uncountable, $\because (0,1) = \left\{ \sum_{n=1}^{\infty} \frac{a_n}{2^n} \mid a_n = 0 \text{ or } 1, n \in \mathbb{N} \right\}$
 $x \in (0,1)$ has a unique binary representation, so $(0,1) \sim A$, where A is $\{\{a_n\} \mid a_n = 0 \text{ or } 1\}$ which is uncountable

All non-degenerate intervals in \mathbb{R} are uncountable.

∴ It sufficient to consider bdd non-degenerate interval in \mathbb{R} , given $\infty < a < b < \infty$ (a,b) is uncountable(∴ $(0,1) \sim (a,b)$) Note that $(0,1) \sim \mathbb{R}(∴ (0,1) \to (\frac{\pi}{-2},\frac{\pi}{2}) \to \mathbb{R})$