

Gyires-Tóth Bálint

Deep Learning a gyakorlatban Python és LUA alapon Backpropagation

Jogi nyilatkozat

Jelen előadás diái a "*Deep Learning a gyakorlatban Python és LUA alapon*" című tantárgyhoz készültek és letölthetők a http://smartlab.tmit.bme.hu honlapról.

A diák nem helyettesítik az előadáson való részvételt, csupán emlékeztetőül szolgálnak.

Az előadás diái a szerzői jog védelme alatt állnak. Az előadás diáinak vagy bármilyen részének újra felhasználása, terjesztése, megjelenítése csak a szerző írásbeli beleegyezése esetén megengedett. Ez alól kivétel, mely diákon külső forrás külön fel van tüntetve.

Deep Learning Híradó

Hírek az elmúlt 168 órából

Deep Learning Híradó

Google Dataset Search

https://toolbox.google.com/datasetsearch

Motion Retargeting Video Subjects

https://www.youtube.com/watch?v=PCBTZh41Ris

Tanítási feladat, adatok

- Bemenet: [láz (°C), gyógyszer (mg)] = X
- Kimenet
 - Regresszió: [láz 2 óra múlva] = 😽
 - Osztályozás: [láz/hőemelkedés/normális 2 óra múlva]

Tanító és teszt adatok

• Példa

$$X = \begin{cases} 38.6 & 25 \\ 37.8 & 25 \\ 37.3 & 50 \\ 38.2 & 50 \end{cases}$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X) / std X$$

$$X = (x - mean X)$$

Min max scaler

Kimenetek átskálázása

Elemi neuron

Előrecsatolt mély neurális hálózat

Mátrixalgebra

- Mátrix szorzás
- Transzponálás
- Parciális derivált

Forward lépés I.

Forward lépés II.

2
$$a^{(2)} = \{(\Delta^{(2)}) = \text{Sigmoid} \{\Delta^{(2)}\}\$$
 $(\text{tanh/lelu/Plelu...})$

Sigmoid = $\text{Sigmoid} \{\Delta^{(2)}\}\$ $\text{Sigmoid} \{\Delta^{(2)}\}\$

Forward lépés III.: Cost function

Magyarul: költségfüggvény

Négyzetes hiba (regresszió) vagy (5) logsoftmax (osztályozás)

Kezdetben súlyok értéke véletlenszám

Súlyok finomhangolása

• Brute force 1 súly \rightarrow [-100,100] 0.1-es felbontással 2000 eset 2 súly \rightarrow 2000² = 4 * 10⁶

9 súly
$$\rightarrow$$
 2000 $^9 = 4 * 10^6 = 512 * 10^{27}$

közepes méretű háló, 6 rejtett réteg, 1000 neuron rétegenként: $6*1000^2$ súly

• Numerikus gradiens keresé

Névnek a NEPTUN kódodat add meg!

https://kahoot.it/

Gradient descent

Backprop: kimeneti – rejtett réteg

$$\frac{\partial C}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \otimes \frac{1}{2} (y - \hat{y})^{2} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{\partial w^{(2)}} \right]}{\partial w^{(2)}} = \frac{\partial \sum_{i=1}^{n} \left[(y - \hat{y})^{2} \cdot - \frac{\partial \hat{y}}{$$

Backprop: Batch gradient descent

$$\frac{\partial C}{\partial W^{(2)}} = \sum_{i=1}^{\infty} \frac{\partial_{i}^{1} (y_{i} - y_{i}^{2})^{2}}{\partial W^{(2)}} = (\alpha^{(2)})^{T} \delta^{(3)} =$$

$$= \begin{bmatrix} \delta_{1}^{(2)} & \delta_{1}^{(2)} &$$

Backprop: Batch gradient descent

Az összes tanítómintára kiszámoljuk a gradienst és ezeket összegezzük.

Backprop: rejtett – bemeneti réteg

$$\frac{\partial C}{\partial w^{(1)}} = \frac{\partial \frac{1}{2} (y - \hat{y})^{2}}{\partial w^{(1)}} = -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w^{(1)}} = -(y - \hat{y}) \frac{\partial \hat{y}}{\partial y^{(1)}} = -(y - \hat{y}) \frac{\partial \hat{y}}{\partial y^{(1)}} = -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w^{(1)}} = -(y - \hat{y}) \frac{\partial \hat{y}}{\partial w^{(1)}} = \frac{\partial \hat{y}}{\partial w$$

 $W^{(2)} = W^{(2)} - \mu \frac{\partial C}{\partial U^{(2)}}$

Előrecsatolt mély neurális hálózat

Gradient descent

- Stochastic Gradient Descent (SGD)
- Batch GD
- Mini-Batch GD

Gradient descent

Lokális vs. Globális minimum Vanilla SGD, Batch learning, Mini-batch

Tanítás

- Deep learning: több rétegen keresztül ugyanez
- http://playground.tensorflow.org/

Acknowledgement

The pictures of Slide 3 and 22 were designed by Freepik.com.

Köszönöm a figyelmet!

toth.b@tmit.bme.hu

