## Σχεσιακός Λογισμός Πλειάδων (Tuple Relational Calculus)

- Έχει την ίδια εκφραστική δύναμη με το Σχεσιακό Λογισμό Πεδίων
  - Οι προτάσεις του TRC και πάλι δηλώνουν σχέσεις (πιθανά μηπεπερασμένες).
  - Κάθε πρόταση χρησιμοποιεί ένα σύνολο μεταβλητών, οι οποίες διακρίνονται σε ελεύθερες (free) και δεσμευμένες (bound). Η ίδια μεταβλητή μπορεί να εμφανίζεται ως ελεύθερη και δεσμευμένη στην ίδια πρόταση.
- Σε αντίθεση με τον DRC, οι μεταβλητές αντιστοιχούν σε ολόκληρες πλειάδες μιας σχέσης και όχι σε μεμονωμένα γνωρίσματα.
  - ■Το σχεσιακό σχήμα για μια πρόταση είναι ένα σύνολο γνωρισμάτων τα οποία αντιστοιχούν στην ελεύθερη μεταβλητή της πρότασης.

#### Καλά-Δομημένες Προτάσεις TRC (Well-Formed TRC Formulae)

- Ακολουθούν τον παρακάτω αναδρομικό ορισμό:
- Οι ατομικές προτάσεις είναι καλά-δομημένες προτάσεις
  - 1. Για κάθε σύμβολο κατηγορήματος p και μεταβλητή  $\mu$ , η  $p(\mu)$  είναι ατομική πρόταση.
  - 2. Αν X, Y είναι μεμονωμένα γνωρίσματα πλειάδων ή σταθερές και  $\theta \in \{<,>,=,\leq,\geq,\neq\}$ , τότε η  $X \theta Y$  είναι ατομική πρόταση.

Σημείωση: ένα σύμβολο κατηγορήματος p δηλώνει μια σχέση, με την ερμηνεία ότι  $p(\mu)$  είναι αληθές αν μ ανήκει στη σχέση που αντιστοιχεί στο p Σημείωση: για να δηλώσουμε ένα μεμονωμένο γνώρισμα μεταβλητής πλειάδας μ, χρησιμοποιούμε το συμβολισμό μ[i], όπου i ο αριθμός θέσης του γνωρίσματος στην πλειάδα.

- Aν οι  $F_1$ ,  $F_2$  είναι καλά-δομημένες προτάσεις, τότε και οι  $F_1 \land F_2$ ,  $F_1 \lor F_2$  και  $\neg F_1$  είναι καλά-δομημένες προτάσεις.
- Αν η μεταβλητή μ είναι ελεύθερη στην πρόταση F, τότε οι (∃μ)F
   (∀μ)F είναι καλά-δομημένες προτάσεις.

## Σχεσιακός Λογισμός Πλειάδων (Tuple Relational Calculus)

- Κάθε πρόταση του TRC με μία ή περισσότερες ελεύθερες μεταβλητές ορίζει μια σχέση της οποίας οι πλειάδες αντιστοιχούν στις ελεύθερες μεταβλητές.
- Μια επερώτηση έχει τη μορφή {μ|F(μ)}, όπου η F είναι μια καλάδομημένη πρόταση του TRC με ελεύθερη μεταβλητή μ.
- Η έκφραση {μ|F(μ)} αναπαριστά το σύνολο των πλειάδων οι οποίες κάνουν αληθή την F, αν αντικατασταθούν από τη μεταβλητή μ.
- Αν ο βαθμός (arity) μιας μεταβλητής πλειάδας δεν προκύπτει ξεκάθαρα, επισημαίνεται με κατάλληλο εκθέτη στη μεταβλητή: {μ<sup>(i)</sup> | F(μ)}, για πλειάδα με βαθμό i.
- Ένα υποσύνολο των προτάσεων του TRC, οι ασφαλείς προτάσεις, ορίζουν πεπερασμένες σχέσεις.

#### Παραδείγματα Σχεσιακού Λογισμού Πλειάδων



Βρείτε τα ids των πελατών που ζουν στη Νέα Υόρκη.

$$\{\mu^{(1)}|(\exists \rho^{(4)}) \ customers(\rho) \land (\rho[3] = 'New \ York') \land (\mu[1] = \rho[1])\}$$

Βρείτε τα ονόματα και τις τιμές των προϊόντων που παραγγέλνει ο

πελάτης c002 μέσω του πράκτορα a01. 
$$\begin{cases} \mu^{(2)} & \text{ ($\tau[3] = 'c002')$ } \land \text{ ($\tau[4] = 'a01')$ } \land \\ (\tau[5] = \rho[1]) \land (\mu[1] = \rho[2]) \land (\mu[2] = \rho[5]) \end{cases}$$

## Παραδείγματα Σχεσιακού Λογισμού Πλειάδων



Βρείτε ζεύγη πρακτόρων που ζουν στην ίδια πόλη.

$$\begin{cases} \mu^{(2)} \middle| (\exists \rho^{(4)}) (\exists \tau^{(4)}) \ agents(\rho) \land agents(\tau) \land (\rho[1] \neq \tau[1]) \land \\ (\mu[1] = \rho[1]) \land (\mu[2] = \rho[2]) \land (\rho[3] = \tau[3]) \end{cases}$$

Βρείτε τα ονόματα όλων των πρακτόρων που κάνουν παραγγελίες για όλα τα προϊόντα που παραγγέλνει ο πελάτης c002. 
$$\left\{ \mu^{(1)} \middle| \begin{array}{c} (\exists \rho^{(4)}) \ agents(\rho) \land (\mu[1] = \rho[2]) \land \\ (\forall \tau^{(7)}) \ (orders(\tau) \land (\tau[3] = 'c002')) \Rightarrow \\ (\exists \sigma^{(7)}) \ orders(\sigma) \land (\sigma[4] = \rho[1]) \land (\sigma[5] = \tau[5]) \end{array} \right\}$$

#### Ασφαλείς Προτάσεις TRC (Safe TRC Formulae)

- Ασφαλείς προτάσεις ορίζουν πεπερασμένες σχέσεις.
- <u>Ορισμός:</u> Μια πρόταση F του TRC είναι ασφαλής αν ικανοποιούνται οι παρακάτω ιδιότητες:
  - Δε χρησιμοποιείται ο καθολικός ποσοδείκτης (∀).
  - 2. Αν  $F = F_1 \vee F_2$  τότε οι  $F_1$  και  $F_2$  έχουν την ίδια ελεύθερη μεταβλητή

## Ασφαλείς Προτάσεις TRC (Safe TRC Formulae)

- <u>Ορισμός:</u> Μια πρόταση F του TRC είναι ασφαλής αν ικανοποιούνται οι παρακάτω ιδιότητες:
  - 3. Για οποιαδήποτε μέγιστη υποπρόταση  $F_1 \wedge \cdots \wedge F_m$  της F όλες οι ελεύθερες μεταβλητές των  $F_i$  πρέπει να είναι περιορισμένες με την εξής έννοια:
    - α) Μια μεταβλητή είναι περιορισμένη αν είναι ελεύθερη σε μια υποπρόταση  $F_i$ , όπου η  $F_i$  δεν είναι αριθμητική σύγκριση και δεν προηγείται  $\neg$ .
    - b) Αν  $F_i$  είναι  $\mu[j] = a$  όπου a είναι σταθερά, τότε η  $\mu[j]$  είναι περιορισμένη.
    - c) Αν  $F_i$  είναι  $\mu[j] = \rho[k]$  και η  $\rho[k]$  είναι περιορισμένη, τότε η  $\mu[j]$  είναι περιορισμένη.
    - Σημείωση: Η  $\mu^{(i)}$  είναι περιορισμένη όταν για κάθε  $j=1\dots i$  η  $\mu[j]$  είναι περιορισμένη.
  - 4. Αν η F είναι της μορφής  $H_1 \wedge \cdots \wedge H_j \wedge \neg G \wedge I_1 \wedge \cdots \wedge I_j$  και οι συζεύξεις ικανοποιούν τον παραπάνω κανόνα, τότε είναι ασφαλής αν τουλάχιστον ένα από τα H ή I δεν έχει άρνηση.

- <u>Θεώρημα 1:</u> Κάθε έκφραση της Σχεσιακής Άλγεβρας μπορεί να εκφραστεί ως ασφαλής πρόταση του Σχεσιακού Λογισμού Πλειάδων.
- Απόδειξη: Θα δείξουμε, με επαγωγή στον αριθμό των τελεστών της αλγεβρικής έκφρασης, ότι για κάθε έκφραση Ε της Σ.Α. η οποία ορίζει μια σχέση βαθμού k, υπάρχει μια ασφαλής πρόταση F(μ) του TRC η οποία ορίζει την ίδια σχέση.

<u>Βάση επαγωγής</u>: E = R, για κάποια σχέση R. Η αντίστοιχη πρόταση του TRC είναι  $r(\mu)$ .

Υπόθεση επαγωγής: έστω ότι για τις εκφράσεις  $E_1$ ,  $E_2$  της  $\Sigma$ .Α., οι οποίες ορίζουν σχέσεις βαθμού k, υπάρχουν προτάσεις  $F_1$ ,  $F_2$  του TRC οι οποίες ορίζουν τις ίδιες σχέσεις.

Επαγωγικό βήμα: Θα δείξουμε ότι υπάρχουν προτάσεις του TRC οι οποίες ορίζουν τις ίδιες σχέσεις με τις εκφράσεις  $E_1 \cup E_2$ ,  $E_1 - E_2$ ,  $\pi_X(E_1)$ ,  $E_1 \times E_2$  και  $\sigma_F(E_1)$ .

- 1.  $E = E_1 \cup E_2$  και έστω k ο βαθμός των σχέσεων των  $E, E_1, E_2$ . Από την επαγωγική υπόθεση έχουμε ότι υπάρχουν προτάσεις  $F_1, F_2$  οι οποίες ορίζουν τις ίδιες σχέσεις με τις  $E_1, E_2$ . Υποθέτουμε επίσης ότι οι  $F_1, F_2$  έχουν την ίδια ελεύθερη μεταβλητή  $\mu$  (αν όχι, μπορούμε να μετονομάσουμε τις μεταβλητές). Τότε, η πρόταση που αντιστοιχεί στην έκφραση E είναι η πρόταση E E1 ν E2.
- 2.  $E = E_1 E_2$  και έστω ότι οι προτάσεις  $F_1(\mu)$  και  $F_2(\mu)$  αντιστοιχούν στις εκφράσεις  $E_1$  και  $E_2$  αντίστοιχα. Τότε, η πρόταση που αντιστοιχεί στην έκφραση E είναι η  $F_1$  Λ  $\neg F_2$ .

- 3.  $E = \pi_{A_{i_1},...,A_{i_n}}(E_1)$ . Έστω  $\{A_1,...,A_k\}$  τα γνωρίσματα της σχέσης της  $E_1$ . Αν  $F_1(\rho)$  είναι η πρόταση που αντιστοιχεί στην έκφραση  $E_1$ , τότε η πρόταση για την έκφραση E είναι  $F(\mu^{(n)}) = \left(\exists \rho^{(k)}\right) F_1(\rho) \wedge (\mu[1] = \rho[i_1]) \wedge \cdots \wedge (\mu[n] = \rho[i_n])$ .
- 4.  $E = E_1 \times E_2$  και έστω ότι οι προτάσεις  $F_1(\rho^{(n)})$  και  $F_2(\sigma^{(m)})$  αντιστοιχούν στις εκφράσεις  $E_1$  και  $E_2$  αντίστοιχα. Τότε, η πρόταση που αντιστοιχεί στην έκφραση E είναι η  $F(\mu^{(m+n)}) = (\exists \rho^{(n)}) (\exists \sigma^{(m)}) F_1(\rho) \wedge F_2(\sigma) \wedge (\mu[1] = \rho[1]) \wedge \cdots \wedge (\mu[n] = \rho[n]) \wedge (\mu[n+1] = \sigma[1]) \wedge \cdots \wedge (\mu[n+m] = \sigma[m]).$
- 5.  $E = \sigma_{A_i \theta A_j}(E_1)$  και έστω ότι η πρόταση  $F_1(\rho)$  αντιστοιχεί στην  $E_1$ . Τότε, η πρόταση που αντιστοιχεί στην έκφραση E είναι η  $F(\mu) = F_1(\mu) \wedge (\mu[i] \theta \mu[j])$ .

• Παράδειγμα:

$$E = \pi_Y \big( R(X, Y) \big)$$

Η πρόταση του Σχεσιακού Λογισμού Πλειάδων για την Ε είναι:

$$\left\{\lambda^{(1)} \middle| \left(\exists \tau^{(2)}\right) \left(r(\tau) \land (\lambda[1] = \tau[2])\right)\right\}$$

Παράδειγμα:

$$E = S(X) \times \pi_Y (R(X, Y))$$

Η πρόταση του Σχεσιακού Λογισμού Πλειάδων για την Ε είναι:

$$\left\{ \lambda^{(2)} \middle| (\exists \mu^{(1)}) (\exists \rho^{(1)}) \left( (\exists \tau^{(2)}) (r(\tau) \land (\rho[1] = \tau[2])) \land \right) \right\}$$

$$\left( \lambda[1] = \mu[1] ) \land (\lambda[2] = \rho[1])$$

Παράδειγμα:

$$E = R(X,Y) - (S(X) \times \pi_Y(R(X,Y)))$$

Η πρόταση του Σχεσιακού Λογισμού Πλειάδων για την Ε είναι:

$$\left\{ \lambda^{(2)} \middle| r(\lambda) \land \neg \left( (\exists \mu^{(1)}) (\exists \rho^{(1)}) \left( (\exists \tau^{(2)}) (r(\tau) \land (\rho[1] = \tau[2])) \land (\lambda[1] = \mu[1]) \land (\lambda[2] = \rho[1]) \right) \right\}$$

#### Από το Σ.Λ. Πλειάδων (TRC) στο Σ.Λ. Πεδίων (DRC)

- <u>Θεώρημα 2:</u> Για κάθε ασφαλή πρόταση του TRC υπάρχει μια ασφαλής πρόταση του DRC που ορίζει την ίδια σχέση.
- Απόδειξη: Η ιδέα είναι να αντικαταστήσουμε κάθε μεταβλητή πλειάδας  $\mu^{(k)}$  με μεταβλητές πεδίου  $X_1, \dots, X_k$ , χρησιμοποιώντας τη  $X_j$  στη θέση της  $\mu[j]$  παντού στην πρόταση.
- <u>Θεώρημα 3:</u> Η Σχεσιακή Άλγεβρα, ο ασφαλής Σχεσιακός Λογισμός Πεδίων και ο ασφαλής Σχεσιακός Λογισμός Πλειάδων έχουν την ίδια εκφραστική δύναμη.



LOCATED-IN

| ompany-name | city |
|-------------|------|
|-------------|------|

#### **WORKS**

salary person-name company-name

#### **MANAGES**

person-name manager-name

Βρείτε τα ονόματα των ατόμων που εργάζονται στη "First Bank".  $\pi_{person-name}(\sigma_{company-name="First Bank"}(WORKS))$ 

$$\{N | (\exists C)(\exists S) \ works(N, C, S) \land (C = "First Bank")\}$$

$$\left\{\mu^{(1)} \middle| \left(\exists \rho^{(3)}\right) works(\rho) \wedge \left(\rho[1] = \mu[1]\right) \wedge \left(\rho[2] = "First \ Bank"\right)\right\}$$



2. Βρείτε τα ονόματα και τις πόλεις των ατόμων που εργάζονται στη "First Bank".

$$\pi_{person-name,city} \big( \sigma_{company-name="First Bank"}(LIVES \bowtie WORKS) \big)$$

 $\{N,C|(\exists T)(\exists S) \ lives(N,T,C) \land works(N,"First Bank",S)\}$ 

$$\begin{cases}
\mu^{(2)} \middle| (\exists \rho^{(3)}) (\exists \tau^{(3)}) \ lives(\rho) \land works(\tau) \land \\
(\mu[1] = \rho[1]) \land (\mu[2] = \rho[3]) \\
\land (\rho[1] = \tau[1]) \land (\tau[2] = "First Bank")
\end{cases}$$



company-name city

#### **WORKS**

person-name company-name salary

#### **MANAGES**

person-name manager-name

3. Βρείτε τα ονόματα των ατόμων που **δεν** εργάζονται στη "First Bank".  $\pi_{person-name} \big( \sigma_{company-name \neq "First Bank"} (WORKS) \big)$ 

$$\{N | (\exists C)(\exists S) \ works(N, C, S) \land (C \neq "First Bank")\}$$

$$\left\{\mu^{(1)} \middle| \left(\exists \rho^{(3)}\right) works(\rho) \land (\rho[1] = \mu[1]) \land (\rho[2] \neq "First Bank")\right\}$$



4. Βρείτε τα ονόματα των ατόμων που  $\overline{\delta \epsilon v}$  εργάζονται στη "First Bank" (συμπεριλαμβανομένων και των ατόμων που δεν εργάζονται πουθενά)  $\pi_{person-name}(\text{LIVES}) - \pi_{person-name}(\sigma_{company-name="First Bank"}(WORKS))$ 

$$\left\{ N \middle| \left( (\exists T)(\exists C) \left( lives(N,T,C) \land \neg \left( (\exists C)(\exists S) works(N,C,S) \right) \right) \land \right) \right\}$$

$$\left( C = "First Bank" \right)$$

$$\left\{ \mu^{(1)} \middle| \begin{pmatrix} (\exists \rho^{(3)}) lives(\rho) \land (\rho[1] = \mu[1]) \land \\ \neg(\exists \tau) \big(works(\tau) \land (\tau[1] = \rho[1])\big) \land (\tau[2] = "First Bank") \end{pmatrix} \right\}$$

## SQL – Structured Query Language

- Η γλώσσα που χρησιμοποιείται συχνότερα από εμπορικά Συστήματα Διαχείρισης Βάσεων Δεδομένων.
- Παρέχει μια Γλώσσα Ορισμού Δεδομένων (Data Definition Language DDL) και μια Γλώσσα Χειρισμού Δεδομένων (Data Manipulation Language DML).
- Βασίζεται στο Σχεσιακό Λογισμό και έχει την ίδια εκφραστική δύναμη με τη Σχεσιακή Άλγεβρα και τον ασφαλή Σχεσιακό Λογισμό.
- Επιτρέπει στους χρήστες να θέτουν ad hoc διαδραστικές επερωτήσεις
- Εντολές SQL μπορούν να εκτελεστούν ενσωματωμένες σε μια γλώσσα προγραμματισμού (C, Pascal, Java, 4GL)
- Εκδόσεις της SQL έχουν γίνει διεθνή πρότυπα: το πρότυπο SQL:2011 είναι η πιο πρόσφατη έκδοση (Δεκέμβριος 2011), με την προηγούμενη έκδοση SQL:2008 (Ιούλιος 2008) να είναι η πιο πρόσφατη έκδοση υλοποιημένη σε εμπορικά συστήματα

#### SQL – Data Definition Language

- Εντολή create table:
  - create table tablename (attrname datatype [not
    null]{, attrname datatype [not null]};
- Δημιουργεί μια σχέση με όνομα tablename και γνωρίσματα attrname των καθορισμένων τύπων datatype. Το προαιρετικό not null υποδηλώνει ότι δεν επιτρέπονται κενές τιμές στο συγκεκριμένο γνώρισμα.
- Παραδείγματα:
  - create table customers (cid char(4) not null, cname varchar(13), city varchar(20), discnt real
  - Create table products (pid char(3) not null, pname varchar(15), city varchar(20), quantity int, price real);

#### SQL – Data Definition Language

- Εντολή drop table:
   drop table tablename;
- Διαγράφει τη σχέση με όνομα tablename.
- Εντολή alter table:
   alter table tablename action;
- Αλλάζει τη σχέση tablename εκτελώντας την ενέργεια action που μπορεί να είναι για παράδειγμα:
  - ■add attrname datatype (προσθήκη γνωρίσματος)
  - drop attrname (διαγραφή γνωρίσματος)

- Η εντολή select χρησιμοποιείται για να εκφράσουμε επερωτήσεις: select [all|distinct] expression { ,expression } from tablename [var] { , tablename [var] } [where search-condition]
   [group-by attrname { , attrname } ]
   [having search-condition];
- Παραδείγματα:
- 1. Βρείτε τα ids και τα ονόματα των πρακτόρων που έχουν ως έδρα τη Νέα Υόρκη.

$$\pi_{aid,name}(\sigma_{city="New York"}(AGENTS))$$

select aid, aname from agents
where city="New York";

- Παραδείγματα:
- 2. Δώστε το περιεχόμενο της σχέσης customers.
  - select \* from customers;
- 3. Βρείτε τα ids των προϊόντων για τα οποία υπάρχει παραγγελία. **select** pid **from** orders;
  - Το αποτέλεσμα θα περιέχει διπλότυπα (αφού είναι πολύ πιθανό να έχουν παραγγελθεί τα ίδια προϊόντα σε διαφορετικές παραγγελίες). Για να επιστραφούν μόνο διακριτές πλειάδες χρησιμοποιούμε τη λέξη-κλειδί distinct:

select distinct pid from orders;

Η λέξη-κλειδί all επιτυγχάνει το αντίθετο αποτέλεσμα: επιστρέφονται όλες οι πλειάδες του αποτελέσματος. Είναι η προεπιλεγμένη λειτουργία για την εντολή select.

- Παραδείγματα:
- 4. Βρείτε όλα τα ζεύγη ονομάτων πελατών-πρακτόρων όπου ο πελάτης κάνει παραγγελία μέσω του πράκτορα.

```
\pi_{cname,aname}\left(\left(\pi_{cid,cname}(CUSTOMERS)\bowtie ORDERS\right)\bowtie AGENTS\right)\acute{\eta}
\pi_{cname,aname}\left( \begin{matrix} \sigma_{(CUSTOMERS.cid=ORDERS.cid)\land (ORDERS.aid=AGENTS.cid)} \\ (CUSTOMERS\times ORDERS)\times AGENTS \end{matrix} \right)
```

(∃cid, city, dis, aid, acity, perc, ord, mon, pid, qty, dl) customers(cid, cname, city, dis) ∧ agents(aid, aname, acity, perc) ∧ orders(ord, mon, cid, aid, pid, qty, dl)

select distinct customers.cname, agents.aname
from customers, orders, agents
where customers.cid = orders.cid and
orders.aid = agents.aid;

- Παραδείγματα:
- 4. Βρείτε όλα τα ζεύγη ονομάτων πελατών-πρακτόρων όπου ο πελάτης κάνει παραγγελία μέσω του πράκτορα.

Σημείωση: η σύζευξη όπως βλέπουμε υλοποιείται παίρνοντας το καρτεσιανό γινόμενο των σχέσεων στην πρόταση **from**, ακολουθούμενο από μια επιλογή σύμφωνα με τις συνθήκες στην πρόταση **where**.

select distinct customers.cname, agents.aname
from customers, orders, agents
where customers.cid = orders.cid and
orders.aid = agents.aid;

- Παραδείγματα:
- 5. Υποθέστε ότι το κέρδος από ένα προϊόν υπολογίζεται πολλαπλασιάζοντας την ποσότητα επί την τιμή και στη συνέχεια αφαιρώντας το 60% για κόστος χονδρικής, την έκπτωση (σε %) του πελάτη και την προμήθεια (σε %) του πράκτορα. Βρείτε το κέρδος για κάθε παραγγελία.

```
select ordno, x.cid, x.aid, x.pid,
.40*(x.qty*p.price)-
.01*(c.discnt+a.percent)*(x.qty*p.price)
from orders x, customers c, agents a, products p
where c.cid=x.cid and a.aid=x.aid and p.pid=x.pid;
```

Σημείωση: τα x, c, a, p είναι ψευδώνυμα (aliases) για τις σχέσεις και ισχύουν μόνο στο πλαίσιο της εντολής που δηλώνονται.

- Στην προηγούμενη εντολή η SQL εκτελεί μετατροπή τύπου στην πρόσθεση ακεραίου με αριθμό κινητής υποδιαστολής, με το αποτέλεσμα να είναι αριθμός κινητής υποδιαστολής.
- Επιπλέον δε δίνεται όνομα για το γνώρισμα που σχετίζεται με την αριθμητική έκφραση. Τα περισσότερα συστήματα δίνουν ένα όνομα (π.χ. COL5) σε τέτοιες περιπτώσεις ή επιτρέπουν στο χρήστη να δηλώσει όνομα:

```
select ordno, x.cid, x.aid, x.pid,
.40*(x.qty*p.price)-
.01*(c.discnt+a.percent)*(x.qty*p.price)as profit
from orders x, customers c, agents a, products p
where c.cid=x.cid and a.aid=x.aid and p.pid=x.pid;
```

- Παραδείγματα:
- 6. Βρείτε όλα τα ζεύγη πελατών που μένουν στην ίδια πόλη.  $C1 \coloneqq CUSTOMERS, C2 \coloneqq CUSTOMERS$   $\pi_{C1.cid,C2.cid} \left(\sigma_{C1.cid < C2.cid} \left(C1 \bowtie_{C1.city = C2.city} C2\right)\right)$

```
select c1.cid, c2.cid
from customers c1, customers c2
where c1.city=c2.city and c1.cid<c2.cid;</pre>
```

Σημείωση: χωρίς τη χρήση ψευδωνύμων η παραπάνω επερώτηση δε μπορεί να απαντηθεί στην SQL.

- Παραδείγματα:
- 7. Βρείτε τα ids των προϊόντων που έχουν παραγγελθεί από τουλάχιστον δυο πελάτες.

```
select distinct x1.pid
from orders x1, orders x2
where x1.pid=x2.pid and x1.cid<x2.cid;</pre>
```

Σημείωση: τα ψευδώνυμα x1, x2 μπορούν να θεωρηθούν ως μεταβλητές περιοχής, με κάθε μία να εκτείνεται στο σύνολο των πλειάδων της σχέσης ORDERS.

- Παραδείγματα:
- 8. Βρείτε τα ids των πελατών που παραγγέλνουν προϊόντα για τα οποία έχει γίνει παραγγελία μέσω του πράκτορα a06.

```
 \left\{ cid \middle| \begin{array}{c} (\exists ord1, mon1, aid1, pid, qty1, dl1) \\ cid \middle| \begin{array}{c} (orders(ord1, mon1, cid, aid1, pid, qty1, dl1) \land \\ (\exists ord2, mon2, cid2, qty2, dl2) \\ orders(ord2, mon2, cid2, a06, pid, qty2, dl2) \end{array} \right\}
```

```
select distinct x.cid
from orders x, orders y
where x.pid=y.pid and x.aid='a06';
```

| ordno | month | cid               | aid | pid        | qty  | dollars |
|-------|-------|-------------------|-----|------------|------|---------|
| 1011  | jan   | $\overline{c001}$ | a01 | p01        | 1000 | 450.00  |
| 1012  | jan   | $\overline{c001}$ | a01 | p01        | 1000 | 450.00  |
| 1019  | feb   | c001              | a02 | p02        | 400  | 180.00  |
| 1017  | feb   | $\overline{c001}$ | a06 | p03        | 600  | 540.00  |
| 1018  | feb   | c001              | a03 | p04        | 600  | 540.00  |
| 1023  | mar   | c001              | a04 | p05        | 500  | 450.00  |
| 1022  | mar   | c001              | a05 | p06        | 400  | 720.00  |
| 1025  | apr   | c001              | a05 | p07        | 800  | 720.00  |
| 1013  | jan   | $\overline{c002}$ | a03 | p03        | 1000 | 880.00  |
| 1026  | may   | $\overline{c002}$ | a05 | p03        | 800  | 704.00  |
| 1015  | jan   | c003              | a03 | p05        | 1200 | 1104.00 |
| 1014  | jan   | c003              | a03 | p05        | 1200 | 1104.00 |
| 1021  | feb   | $\overline{c004}$ | a06 | p01        | 1000 | 460.00  |
| 1016  | jan   | $\overline{c006}$ | a01 | p01        | 1000 | 500.00  |
| 1020  | feb   | c006              | a03 | p07        | 600  | 600.00  |
| 1024  | mar   | c006              | a06 | <u>p01</u> | 800  | 400.00  |

- Εμφωλευμένες επερωτήσεις (Nested Queries)
  - Μια εντολή **select** μπορεί να περιέχει μια άλλη εντολή select αλλά όχι αυθαίρετα.
  - Απαίτηση: μια σχέση στην πρόταση from δε μπορεί να είναι το αποτέλεσμα μιας εντολής select, πρέπει να είναι μια υπάρχουσα σχέση.
  - Μια εντολή select που εμφανίζεται μέσα σε μια άλλη εντολή select ονομάζεται subselect.
  - Ένα subselect μπορεί να εμφανίζεται στην πρόταση **where** με διάφορους τρόπους
  - Λογικά κατηγορήματα χρησιμοποιούνται για να γίνονται έλεγχοι στα subselects

- Το κατηγόρημα ΙΝ
  - Χρησιμοποιείται για να ελέγξει αν πλειάδες ανήκουν σε μια σχέση
- Παραδείγματα:
- 1. Βρείτε τα ids των πελατών που κάνουν παραγγελίες μέσω πρακτόρων με έδρα το Duluth ή το Dallas.

Η παρακάτω εντολή επιστρέφει όλα τα ids των πρακτόρων με έδρα το Duluth ή το Dallas:

```
select aid from agents
where city='Duluth' or city='Dallas';
```

- Το κατηγόρημα ΙΝ
  - Χρησιμοποιείται για να ελέγξει αν πλειάδες ανήκουν σε μια σχέση
- Παραδείγματα:
- 1. Βρείτε τα ids των πελατών που κάνουν παραγγελίες μέσω πρακτόρων με έδρα το Duluth ή το Dallas.

Η παρακάτω εντολή επιστρέφει όλα τα ids των πελατών από εκείνες τις πλειάδες των οποίων η τιμή aid ανήκει στα αποτελέσματα της προηγούμενης εντολής η οποία έχει τοποθετηθεί ως subselect:

```
select cid from orders
where aid in (select aid from agents
where city='Duluth' or city='Dallas');
```

- Παραδείγματα:
- 2. Βρείτε όλη την πληροφορία για πράκτορες με έδρα το Duluth ή το Dallas. Εδώ το **in** χρησιμοποιείται με ρητά απαριθμημένο σύνολο:

```
select * from agents
where city in ('Duluth', 'Dallas');
```

3. Βρείτε τα ονόματα και τις εκπτώσεις των πελατών που κάνουν παραγγελίες μέσω πρακτόρων με έδρα το Duluth ή το Dallas.

```
select cname, discnt from customers
where cid in (select cid from orders
where aid in (select aid from agents
where city in ('Duluth', 'Dallas'));
```

Σημείωση: τα ονόματα γνωρισμάτων τα οποία δεν είναι συσχετισμένα με όνομα σχέσης συσχετίζονται αυτόματα με τη σχέση της κοντινότερης εντολής select.

- Παραδείγματα:
- 4. Βρείτε τα ονόματα των πελατών που παραγγέλνουν το προϊόν p05.

```
select distinct cname from customers, orders
where customers.cid=orders.cid and pid='p05';
```

ή

```
select cname from customers
where `p05'in (select pid from orders
where cid=customers.cid);
```

- Παραδείγματα:
- 5. Βρείτε τα ονόματα των πελατών που παραγγέλνουν το προϊόν p07 μέσω του πράκτορα a03.

```
select cname from customers where
orders.aid='a03' and 'p07' in (select pid
from orders where cid=customers.cid);
```

Η παραπάνω εντολή δεν είναι σωστή διότι έχουμε αναφορά στο orders.aid σε σημείο εκτός του πεδίου της orders του subselect. Το σωστό είναι το εξής:

```
select cname from customers, orders where
orders.aid='a03' and 'p07' in (select pid
from orders where cid=customers.cid);
```

• Παραδείγματα:

and aid in

Βρείτε τους αριθμούς παραγγελιών για όλες τις παραγγελίες που κάνουν πελάτες στο Duluth μέσω πρακτόρων στη Νέα Υόρκη. **select** ordno **from** orders where cid, aid in (select cid, aid from customers c, agents a where c.city='Duluth' and a.city='New York'); Η παραπάνω εντολή επιτρέπεται από την έκδοση SQL-92 και μετά. Στις προηγούμενες εκδόσεις δεν επιτρέπεται να ελέγχουμε ζεύγη με το κατηγόρημα in και η παραπάνω επερώτηση αντικαθίσταται με: select ordno from orders where cid in (select cid from customers where city='Duluth')

HY 360 - Lecture 7 30/10/2012 <sup>38</sup>

(select aid from agents where city='New York');

- Το κατηγόρημα **ΝΟΤ ΙΝ**
- 7. Βρείτε τα ids των πρακτόρων που κάνουν παραγγελίες για πελάτες που δε μένουν στη Νέα Υόρκη.

```
select aid from agents
where aid in
(select aid from orders
where cid not in
(select cid from customers
where city='New York'));
```