A.SRAVANTHI 192325071

Chapter 11-1: Ensuring Quality Query Results

\sim	T T T	1 TO	T 7	4	
<i>(</i>)	ш	$\mathbf{C}\mathbf{R}$	V	•	
V	$\mathbf{U}\mathbf{L}$		1	1.	

Problem:

-Create a list of all tables whose first two characters in the name of the table is JO -The tables must be owned by the current Oracle User

SQL Query:

SELECT table name

FROM user tables

WHERE table name LIKE 'JO%'

ORDER BY table name;

QUERY 2:

Problem:

- Create a list that includes the first initial of every employee's first name, a space, and the last name of the employee

SQL Query:

SELECT SUBSTR(first_name, 1, 1) || ' ' || last_name AS "Employee_Name"

FROM employees;

QUERY 3:

Problem:

- Create a list of every employee's first name concatenated to a space and the employee's last name, and the email of all employees where the email address contains the string 'IN'

SQL Query:

SELECT first_name || ' ' || last_name AS "Employee_Name", email AS "Email"

FROM employees

WHERE email LIKE '%IN%';

QUERY 4:

Problem:

- Create a list of 'smallest' last name and the 'highest' last name from the employees table

SQL Query:

SELECT

MIN(last name) AS smallest last name,

MAX(last_name) AS highest_last_name

FROM Employees;

QUERY 5:

Problem:

- Create a list of weekly salaries from the employees table where the weekly salary is between 700 and 3000
- The salaries should be formatted to include a \$- sign and have two decimal points like: \$9999.99

SQL Query:

SELECT '\$' || ROUND((salary*12)/52, 2) AS "Weekly Salary"

FROM employees

WHERE (salary*12) /52 BETWEEN 700 AND 3000;

QUERY 6:

Problem:

Create a list of every employee and his related job title sorted by job_title

SQL Query:

SELECT first name | ' ' | last name AS employee name, job title

FROM employees

ORDER BY job title;

QUERY 7:

Problem:

- -Create a list of every employee's job, the salary ranges within the job, and the employee's salary
- -List the lowest and highest salary range within each job with a dash to separate the salaries like this: 100-200

SQL Query:

SELECT SUBSTR(first_name,1,1)||' '||last_name AS "Employee Name", job title AS "Job",min_salary||'-'||max_salary AS "salary range",salary AS "Employees salary

FROM employees e, jobs j

WHERE e.job id = j.job id

ORDER BY j.job title, e.salary;

QUERY 8:

Problem:

- Using an ANSII join method, create a list of every employee's first initial and last name, and department name
- Make sure the tables are joined on all of the foreign keys declared between the two tables

SQL Query:

SELECT SUBSTR(e.first_name, 1, 1) || ' ' || e.last_name AS employee name, d.department name

FROM employees e

JOIN departments d ON e.department id = d.department id

ORDER BY employee name;

QUERY 9:

Problem:

Change the previous listing to join only on the department_id
 column

SQL Query:

SELECT SUBSTR(e.first_name, 1, 1) || ' ' || e.last_name AS employee_name, d.department_name

FROM employees e

JOIN departments d ON e.department id = d.department id

ORDER BY employee name;

QUERY 10:

Problem:

- Create a list of every employee's last name, and the word nobody or somebody depending on whether or not the employee has a manager
- Use the Oracle DECODE function to create the list

SQL Query:

SELECT DECODE(manager_id, NULL, 'Nobody', 'Somebody') AS "Works for", last_name AS "Last Name"

FROM employees;

QUERY 11:

Problem:

- Create a list of every employee's first initial and last name, salary,
 and a yes or no to show whether or not an employee makes a
 commission
- Fix this query to produce the result

SQL Query:

SELECT

SUBSTRING(first_name, 1, 1) AS first_initial,

last name,

salary,

CASE

WHEN commission IS NOT NULL AND commission > 0

THEN 'yes'

ELSE 'no'

END AS makes_commission

FROM employees;

QUERY 12:

Problem:

- Create a list of every employee's last name, department name, city, and state province
- Include departments without employees
- An outer join is required

SQL Query:

SELECT e.last_name, d.department_name, d.city, d.state_province

FROM departments d

LEFT JOIN employees ON d.department id = e.department id;

QUERY 13:

Problem:

- -Create a list of every employee's first and last names, and the first occurrence of: commission_pct, manager_id, or -1
- -If an employee gets commission, display the commission_pct column; if no commission, then display his manager_id; if he has neither commission nor manager, then the number -1

SQL Query:

SELECT

first_name,

last name,

COALESCE(CAST(commission_pct AS VARCHAR), CAST(manager_id AS VARCHAR), '-1') AS first_occurrence

FROM employees;

QUERY 14:

Problem:

- Create a list of every employee's last name, salary, and job_grade for all employees working in departments with a department_id greater than 50

SQL Query:

SELECT last name, salary, job grade

FROM employees

WHERE department_id > 50;

QUERY 15:

Problem:

- Produce a list of every employee's last name and department name
- Include both employees without departments, and departments without employees

SQL Query:

SELECT e.last name, d.department name

FROM employees e

FULL OUTER JOIN departments ON e.department_id = d.department_id;

QUERY 16:

Problem:

- -Create a treewalking list of every employee's last name, his manager's last name, and his position in the company
- -The top level manager has position 1, this manager's subordinates position 2, their subordinates position 3, and so on
- -Start the listing with employee number 100

SQL Query:

WITH RECURSIVE EmployeeHierarchy AS (

SELECT e.employee_id, e.last_name AS employee_last_name, m.last_name AS manager_last_name, 1 AS position

FROM employees e

LEFT JOIN employees m ON e.manager id = m.employee id

WHERE e.employee id = 100

UNION ALL

SELECT e.employee_id, e.last_name AS employee_last_name, m.last_name AS manager_last_name, eh.position + 1 AS position

FROM employees e

JOIN EmployeeHierarchy eh ON e.manager_id = eh.employee_id

LEFT JOIN employees m ON e.manager_id = m.employee_id

)

SELECT employee last name, manager last name, position

FROM EmployeeHierarchy

ORDER BY position, employee_last_name;

QUERY 17:

Problem:

- Produce a list of the earliest hire date, the latest hire date, and the number of employees from the employees table

SQL Query:

SELECT MIN(hire_date) AS earliest_hire_date, MAX(hire_date) AS latest_hire_date, COUNT(*) AS number_of_employees

FROM employees;

QUERY 18:

Problem:

- Create a list of department names and the departmental costs (salaries added up)
- Include only departments whose salary costs are between 15000 and 31000, and sort the listing by the cost

SQL Query:

SELECT d.department_name, SUM(e.salary) AS departmental_cost

FROM departments d

JOIN employees e ON d.department_id = e.department_id

GROUP BY d.department name

HAVING SUM(e.salary) BETWEEN 15000 AND 31000

ORDER BY departmental cost;

QUERY 19:

Problem:

- Create a list of department names, the manager id, manager name (employee last name) of that department, and the average salary in each department

SQL Query:

SELECT d.department_name, d.manager_id, m.last_name AS manager_name, AVG(e.salary) AS average_salary

FROM departments d

JOIN employees e ON d.department id = e.department id

JOIN employees m ON d.manager id = m.employee id

GROUP BY d.department name, d.manager id, m.last name;

QUERY 20:

Problem:

- Show the highest average salary for the departments in the employees table
- Round the result to the nearest whole number

SQL Query:

SELECT ROUND(MAX(avg_salary)) AS highest avg_salary

FROM (SELECT department_id, AVG(salary) AS avg_salary

FROM employees GROUP BY department_id) AS department_avg_salaries;

QUERY 21:

Problem:

- Create a list of department names and their monthly costs (salaries added up)

SQL Query:

SELECT d.department_name, SUM(e.salary) AS monthly_cost

FROM departments d

JOIN employees e ON d.department_id = e.department_id

GROUP BY d.department name;

QUERY 22:

Problem:

- Create a list of department names, and job ids
- Calculate the monthly salary cost for each job_id within a department, for each department, and for all departments added together

SQL Query:

```
WITH JobCosts AS (
```

```
SELECT d.department_name, e.job_id, SUM(e.salary) AS monthly_cost
```

FROM departments d

JOIN employees e ON d.department_id = e.department_id

GROUP BY d.department name, e.job id

),

DepartmentCosts AS (

```
SELECT department_name, SUM(monthly_cost) AS department_cost
```

FROM JobCosts

GROUP BY department_name

),

TotalCost AS (

```
SELECT SUM(monthly_cost) AS total_cost
```

FROM JobCosts

)

SELECT jc.department name, jc.job id,

jc.monthly_cost AS job_cost_within_department, dc.department_cost, tc.total_cost

FROM JobCosts jc

JOIN DepartmentCosts dc ON jc.department_name = dc.department_name

CROSS JOIN TotalCost to

ORDER BY jc.department_name, jc.job_id;

QUERY 23:

Problem:

- -Create a list of department names, and job_ids
- -Calculate the monthly salary cost for each job_id within a department, for each department, for each group of job_ids irrespective of the department, and for all departments added together (Hint: Cube)

SQL Query:

SELECT department_name, job_id, SUM(salary) AS monthly_cost

FROM departments d

JOIN employees e ON d.department_id = e.department_id

GROUP BY CUBE (department name, job id);

QUERY 24:

Problem:

Expand the previous list to also show if the department_id or job_id was used to create the subtotals shown in the output (Hint: Cube, Grouping)

SQL Query:

SELECT department name, job id, SUM(salary) AS monthly cost,

CASE WHEN GROUPING(department_name) = 1 THEN 'Subtotal or Total'

ELSE 'Detail'

END AS department summary,

CASE WHEN GROUPING(job_id) = 1 THEN 'Subtotal or Total'

ELSE 'Detail'

END AS job_summary

FROM departments d

JOIN employees e ON d.department id = e.department id

GROUP BY CUBE (department_name, job id);

QUERY 25:

Problem:

- Create a list that includes the monthly salary costs for each job title within a department
- In the same list, display the monthly salary cost per city. (Hint: Grouping Sets)

SQL Query:

SELECT d.department_name, e.job_id, d.city, SUM(e.salary) AS monthly_cost

FROM departments d

JOIN employees e ON d.department id = e.department id

GROUP BY GROUPING SETS ((d.department_name, e.job_id), (d.city));

QUERY 26:

Problem:

- -Create a list of employee names as shown and department ids
- -In the same report, list the department ids and department names. And finally, list the cities
- -The rows should not be joined, just listed in the same report. (Hint: Union)

SQL Query:

SELECT CONCAT(e.first_name, ' ', e.last_name) AS employee name, e.department id AS department id

FROM employees e

UNION ALL

SELECT CAST(d.department_id AS VARCHAR) AS department_id, d.department_name AS department_name

FROM departments d

UNION ALL

SELECT NULL AS employee_name, NULL AS department_id, d.city AS city

FROM departments d;

QUERY 27:

Problem:

- Create a list of each employee's first initial and last name, salary, and department name for each employee earning more than the average for his department

SQL Query:

```
SELECT SUBSTRING(e.first_name, 1, 1) AS first_initial,
e.last_name, e.salary, d.department_name

FROM employees e

JOIN departments d ON e.department_id = d.department_id

WHERE e.salary > (

SELECT AVG(e2.salary)

FROM employees e2

WHERE e2.department_id = e.department_id

);
```