Segurança em Redes

Comunicações por Computador

Mestrado Integrado em Engenharia Informática 3º ano/2º semestre 2017/2018

Capítulo 8: Security in Computer Networks

Actores: os amigos e os inimigos

- Personagens bem conhecidas do mundo da segurança [©]
- Alice e o Bob estão apaixonados e querem comunicar de forma segura;
- Que pode *Trudy* (a intrusa) fazer?

Que podem fazer os "maus"?

- espionagem: intercepção indevida de mensagens
- inserção de mensagens numa conexão (comunicação)
- disfarce: pode fingir (spoot) endereços de origem nos pacotes (ou qualquer outro campo dos pacotes)
- desviar sessões (*hijacking*): "tomar contar" de conexões que estão a decorrer, remover o emissor ou o receptor, colocandose no lugar destes
- negação de serviço: impedir premeditadamente que um serviço seja usado por outros (ex: sobrecarregando-o de algum modo)

Propriedades de uma comunicação segura

- Confidencialidade: só o emissor e o receptor indicado devem "perceber" o conteúdo das mensagens
- Autenticação: emissor e receptor pretendem confirmar a identidade um do outro
- Integridade da mensagem: emissor e receptor querem garantir que a mensagem não foi alterada (no percurso pela rede, antes do envio ou depois da recepção) sem que tal possa ser imediatamente detectado
- Não Repúdio: evidências que impeçam intervenientes de negar comunicação
- Acesso e Disponibilidade: serviços devem estar acessíveis e com disponibilidade para os seus utilizadores

A "linguagem" da criptografia

criptografia de chave simétrica: emissor e receptor usam a <u>mesma</u> chave

criptografia de chave pública: uma chave para cifrar (publica) outra para decifrar (privada)

Criptografia de chave simétrica

Cifra de substituição: substituir uma coisa por outra

cifra monoalfabética: substitui uma letra por outra

Text plano: abcdefghijklmnopqrstuvwxyz

Texto cifrado: mnbvcxzasdfghjklpoiuytrewq

Ex.: Texto Plano: Alice, Amo-te. Bob.

Texto Cifrado: Mgsbc, Mhk-nc. Nkn.

Q: Será fácil ou difícil quebrar esta cifra?

- Pela força bruta (difícil?)
- Outro método?

Criptografia de chave simétrica

Chave simétrica: Alice e Bob conhecem a mesma chave (simétrica) K_{A-B}

- Ex: conhecem o padrão de substituição do alfabeto! (ou a máquina de escrever, como a famosa *Enigma* da 2ª guerra mundial)
- Pergunta: Como podem eles combinar a chave?

Algoritmos mais usados

DES – Data Encryption Standard

- Chaves de 56 bits que processam blocos de 64 bits de cada vez
- Quebra-se por força bruta em menos de 1 dia!

• 3-DES (3 x DES)

- Usa 3 chaves DES sequencialmente: ciphertext = $E_{K3}(D_{K2}(E_{K1}(plaintext)))$
- Prevê-se que possa ser usado até ao ano 2030...

AES – Advanced Encryption Standard

- Veio em 2001 para substituir o velho DES
- Processa blocos de 128 bits de cada vez
- Chaves de 128, 192 ou 256 bits de tamanho
- Pela força bruta, o que demora um segundo a quebrar no DES demorará 149 triliões de anos no AES!!!

<u>Criptografia de chave</u> <u>simétrica</u>

- exige que emissor e receptor conheçam a mesma chave secreta
- Pergunta: como podem combinar uma, se, por exemplo, não se conhecem ou nunca estiveram juntos?

Criptografia de Chave Pública

- abordagem radicalmente diferente [Diffie-Hellman76, RSA78]
- emissor e receptor não partilham nenhum segredo!
- ☐ Usa um par de chaves
- ☐ Chave pública conhecida por todos
- ☐ Chave Privada apenas conhecida pelo recetor

Confidencialidade, e também integridade

Só o Bob, na posse da sua chave privada, poderá decifrar a mensagem Mais ninguém pode fazê-lo – total confidencialidade! Se não decifrar é porque não mantém a integridade

Autenticação do originador (assinatura digital), não repúdio do originador e também integridade

esquema-muito simples para assinar a mensagem-m:

- Não usado (por questões de desempenho)
- Bob "assina" m cifrando-a com a sua chave privada, criando assim uma mensagem assinada K_B (m)

algoritmo

chave

Chave privada do Bob

Mensagem do Bob, m

Querida Alice

Chave privada do Bob

K m

Sinto tanto a tua falta! Estou sempre a pensar em ti!... patatii, patata...

Bob

Mensagem do
Bob, m, assinada
(cifrada) com a
sua chave privada

Requisitos:

1 necessário um par de chaves tais que

$$K_{\mathcal{B}}^{-}(K_{\mathcal{B}}^{+}(m)) = m$$

deverá ser impossível obter a chave privada a partir da chave pública!

RSA: Algoritmo Rivest, Shamir, Adleman

A seguinte propriedade é muito útil:

$$K_{\mathcal{B}}(K_{\mathcal{B}}^{\dagger}(m)) = m = K_{\mathcal{B}}^{\dagger}(K_{\mathcal{B}}(m))$$

e depois a privada

Usar a chave pública Usar a chave privada e depois a pública

O resultado é o mesmo!

Integridade e Autenticação da Origem

Bob recebe uma mensagem da Alice, e quer garantir que:

- a mensagem veio originalmente da Alice
- a mensagem não foi alterada (mantém-se íntegra) desde que foi enviada pela Alice até ser lida

Função de sumariação (Hash):

- dada uma mensagem de entrada m, produz um sumário de tamanho fixo, H(m)
 - Ex: checksum (soma de verificação)
- é computacionalmente improvável encontrar duas mensagens diferentes x, y tais que H(x) = H(y)
 - de igual modo: dado um m = H(x), (com x desconhecido), não se consegue determinar o x a partir do m.
 - Nota: isto não é verdade para o cheksum!

Algoritmos mais usados

- MD5 Message Digest
 - Calcula sumários de 128 bits em 4 passos
 - ataques ao MD5 em 2005 mostram que talvez não seja adequado
- SHA-1 Secure Hash Algorithm
 - Calcula sumários de 160 bits

Integridade e Autenticação da Origem

MAC - Message Authentication Code

Envia o sumário da mensagem e do segredo juntos (m+s)

Assinatura digital

Integridade, autenticação de origem e não repúdio do originador

Uma técnica criptográfica muito semelhante à assinatura manual.

- o emissor (Bob) assina digitalmente o documento provando que é o dono/criador do mesmo (não pode negar mais tarde!)
- verificável, não forjável: o receptor (Alice) consegue provar a qualquer um que foi o Bob – e não poderia ter sido mais ninguém, nem mesmo a própria Alice – que assinou o documento ou mensagem

Assinatura Digital

Garantias

- Só o Bob pode ter assinado m, pois só ele conhece a sua chave privada
- Mais ninguém poderia ter assinado m
- A mensagem que foi assinada foi m e não um m' qualquer
- Qualquer um pode verificar isso: basta pegar na chave pública de Bob e decifrar a assinatura
- Garante ainda o não repúdio mesmo em tribunal! pois Bob não poderá negar ter usado a sua chave privada

Assinatura Digital (2)

Bob envia mensagem assinada:

Alice verifica a assinatura:

Questões

- Usa criptografia de chave pública, que propriedades tem a seguinte comunicação:
 - Mensagem cifrada com a chave pública do originador
 - Mensagem cifrada com a chave pública do destinatário
 - Mensagem cifrada com a chave privada do originador
 - Mensagem cifrada com a chave privada do destinatário
- Comente a seguinte afirmação: "A assinatura digital associa o assinante ao documento assinado, garantindo integridade e não repúdio."

Envelope Digital

Alice envia mensagem confidencial para Bob ("envelope digital" selado)

Alice:

- Gera uma chave simétrica secreta, K_S
- Cifra mensagem com K_S (por questões de eficiência)
- Cifra também a chave simétrica secreta K_S com a chave pública de Bob
- Envia ambos: $K_S(m)$ e $K_B(K_S)$ para Bob

Infra-estrutura de chaves públicas (PKI)

Problema Chaves Simétricas:

 Como é que duas entidades estabelecem um segredo (a chave secreta) usando apenas a rede?

Solução:

 Centro de distribuição de chaves que seja de confiança e actua como intermediário entre as entidades

Problema Chaves Públicas

 Quando se obtém a chave pública da Alice ou do Bob na rede (e-mail, web, etc) como sabemos que são mesmo deles e não do intruso?

Solução:

 Autoridade de Certificação (CA) de confiança (trusted certification authority)

Autoridades de Certificação

- Autoridade de Certificação (CA): associa a chave pública a uma determinada entidade, E
- E (pessoa, máquina,..) regista a sua chave pública na CA
 - E tem de fornecer uma provada de identidade a CA
 - CA cria um certificado digital associando E à sua chave pública
 - certificado contém a chave pública de E assinada digitalmente pela CA que assim assegura que "esta é a chave pública de E"

Autoridades de Certificação

- Quando a Alice quer obter a chave pública do Bob:
 - obtem o certificado do Bob (dele mesmo ou doutros sítios).
 - aplica a chave pública da CA ao certificado para verificar a validade do certificado e extrair de lá a chave pública do Bob

Autoridades de Certificação

- Problema: como confiar no CA?
 - A mesma coisa?... mas?... problema!
 - Certificados de raíz (root certificates) instalados com as máquinas (Windows, Linux, ou seja lá o que for)
 - Esse é o momento decisivo para a criptografia de chave pública

Exemplo de um Certificado

Exemplo de uso - E-Mail

S/MIME (Ex: OpenSSL)

→ Faz uso de PKI

PGP (Ex: OpenPGP) Pretty Good Privacy

→ Não faz uso de PKI

Fazer demo com E-mail

- 1. Adicionar um certificado válido ao cliente E-mail
- 2. Consultar certificados de terceiros...
- 3. Assinar e/ou "cifrar" uma mensagem...
- 4. Verificar a assinatura

• Em que nível? Na Aplicação?

Nível 3, nível 4 ou nível 5?

TLS/SSL

TCP

Apps

ICP

P

Camadas Inferiores

TCP

IP Sec

IP

Camadas Inferiores Sistema Operativo

IP

TCP

Camadas Inferiores

- A nível 4 (SSL/TLS) as aplicações fazem interface com SSL e não com o TCP:
 - Como o TCP não participa em nada, não consegue discernir pacotes inseridos maliciosamente na stream, desde que estejam correctos (checksum) e passa-os ao SSL...
- A nível 3, as aplicações continuam a interagir com o TCP:
 - As aplicações não precisam ser modificadas
 - Mas o nível IP só sabe com que IP está a trocar dados e não com que utilizador...
- Também é possível a nível 5 (aplicação), mantendo compatibilidade com aplicações existentes:
 - Exemplo: PGP ou S/MIME (compativel MAIL) sobre SMTP
 - Soluções especificas para uma dada aplicação...

Nível 4: Secure Sockets Layer (SSL)

- Segurança ao nível de transporte para qualquer aplicação TCP
- Usado, por exemplo, no acesso a servidores HTTP, IMAP, SMTP
- Serviços de segurança:
 - Autenticação do servidor e, opcionalmente, do cliente
 - Confidencialidade dos dados

Autenticação do servidor:

- Cliente SSL conhece chaves públicas de autoridades de certificação de sua confiança (CA)
- Obtem certificado do servidor emitido por uma CA sua conhecida
- Extrai chave pública do certificado depois de verificada validade

- Nível 4: Secure Sockets Layer (SSL)
 - Confidencialidade (cifragem dos dados da sessão)
 - Cliente SSL gera chave de sessão, cifra-a com a chave pública do servidor e envia-a ao servidor
 - Servidor decifra a chave de sessão usando a sua chave privada
 - Ambos cliente e servidor na posse da chave de sessão, podem cifrar todos os dados trocados...
 - Autenticação do cliente pode ser feita com base em certificados do cliente
- SSL serviu de base ao TLS (Transport Layer Security) do IETF
 - As diferenças não são significativas, mas suficientes para impedir a interoperabilidade

Exemplo SSL: 3 fases

1. Handshake inicial:

- Bob estabelece conexão TCP com Alice
- Autentica Alice usando o certificado assinado por uma CA
- Cria chave mestra, encripta-a (usando a chave pública da Alice), e envia-a à Alice
 - Incompleto: a troca de um "nonce" não está ilustrada aqui!!

Exemplo SSL: 3 fases

2. Cálculo das chaves:

- Alice e Bob usam a chave mestra (MS) para gerar 4 chaves:
 - **E_B: Bob->Alice** chave de cifragem de dados
 - E_A: Alice->Bob chave de cifragem de dados
 - M_B: Bob->Alice chave MAC (Message Authentication Code)
 - M_A: Alice->Bob chave MAC (Message Authentication Code)
- Os algoritmos (cifragem e MAC) são negociados entre a Alice e o Bob
- Porquê 4 chaves?

Exemplo SSL: 3 fases

E-Mail seguro (assinado e cifrado)

Para dar todas as garantias: confidencialidade, integridade, autenticação e não repúdio do originador

Alice usa três chaves: a sua chave privada, a chave pública do Bob, uma chave simétrica secreta gerada no momento

Segurança IP (IPSec)

Segurança no nível 3: IPsec

- <u>Confidencialidade</u>: host que origina o pacote IP cifra os dados nele contidos (inclui segmentos TCP, datagramas UDP, ICMP, etc..)
- Autenticação de origem e integridade: host de destino consegue validar autenticidade do IP de origem

Dois protocolos:

- Authentication Header (AH) autenticação de origem e integridade
- Encapsulation Security Payload (ESP) ou só confidencialidade ou confidencialidade + autenticação de origem
- Obrigatórios nas implementações IPv6
- Opcionais nas implementações IPV4

IPSec: usando as opções do IPv6

Extensões ao cabeçalho (a ordem é importante):

- 0 hop-by-hop Option Header
- 43 Routing Header
- 44 Fragmentation Header
- 51 Authentication Header
- 50 Encapsulation Security Payload Header
- 59 No Next Header
- 60 Destination Options Header
- 135 Mobility Header
- Camadas superiores: 6 TCP, 17 UDP, 58 ICMPv6

Extensões ao cabeçalho IPv6

Extensões ao cabeçalho IPv6

IPv6 Header Next = TCP	TCP Header	Application Data			
IPv6 Header	AH Auth.Head	ler TCP Header	Application Data		
Next = AH	Next = TCP				
IPv6 Header	AH Auth.Head	er ESP Encryption			
Next = AH	Next = TCP	Next = TCP (invisible inside)			

IPSec – Autenticação

Authentication Header (AH - Opções IPv6)

Next Header	Payload Len	Reserved			
Security Parameter Index (SPI)					
Sequence Number					
Authentication Data (variable Length)					

11/05/18 Universidade do Minho 40

IPSec – Autenticação

Authentication Header (AH)

- O número de sequência (crescente) evita ataques por repetição
- Exemplo baseado no Message Digest 5:
 - Primeiro coloca-se a chave secreta com no mínimo 128 bits (identificável a partir do campo SPI)
 - De seguida coloca-se o datagrama IP completo...
 - ... Execpto, claro, o campo de autenticação propriamente dito e todos os campos do cabeçalho que podem ser modificados em trânsito ao longo do percurso (ex: Hop)
 - Após o datagrama IP acrescenta-se de novo a chave secreta
 - A mensagem assim construída é então sumariada com o algoritmo MD5;
 - Os 128 bits resultantes são colocados no campo "Authentication data" do cabeçalho de autenticação

IPSec – Confidencialidade

Encryption Security Payload Header (ESP)

IPSec – Confidencialidade

- Encryption Security Payload Header (ESP Opções IPv6)
 - O conteúdo cifrado não é observável nem modificável: garantia de integridade e também de confidencialidade
 - Os campos SPI, sequence number e authentication data têm o mesmo significado que no cabeçalho de autenticação, mas aqui a autenticação é opcional;
 - Só são cifrados (usando um determinado algoritmo) os dados deste cabeçalho em diante...
 - O cabeçalho básico IPv6 não é coberto nem poderia! Cifrar endereços de origem e de destino? Como encaminhar então?

Conexões entre hosts podem ser feitas em qualquer dos modos (tunel ou transporte):

One or More SAs

Entre routers, apenas em modo túnel:

Opções do IPv6 – Confidencialidade

• Modo transporte:

Fonte: The TCP/IP Guide http://www.tcpipguide.com/, (Adaptado)

Opções do IPv6 – Confidencialidade

• Modo túnel:

Fonte: The TCP/IP Guide http://www.tcpipguide.com/, (Adaptado)

Connectionless integrity

Rejection of replayed

Data origin

packets

authentication

Confidentiality

confidentiality

Limited traffic flow

Garantias de segurança do IPsec

 ÅH	ESP (encryption only)	ESP (encryption plus authentication)
V		✓
✓		~
✓	✓	✓
	✓	✓
	✓	✓

 Duas formas de integridade: Connectionless e anti-replay (pacote a pacote ou com noção de sequência de pacotes)

IPsec, em termos muito simples

- Dois sistemas A e B pretendem comunicar de forma segura entre si
- Primeiro estabelecem uma <u>associação de segurança</u> (SA Security Association) entre si, que pode ser visto com um canal lógico:
 - SA: define conjunto de parâmetros, algoritmos e conjuntos de chaves, negociados entre A e B e armazenados por ambas as partes numa base de dados de associações (SAD)
 - Cada SA é <u>unidireccional</u> e identificada por
 - SPI Security Parameter Index (indice na BDA)
 - Endereço IP de origem (só unicast)
 - Protocolo (AH ou ESP)
 - Uma ligação com AH e ESP, bidireccional, implica 4 SAs!!
 - Funcionamento (exclusivo) em <u>modo túnel</u> ou <u>modo transporte</u>
- Depois de estabelecida a associação todo o tráfego trocado nessa direcção é sujeito à protecção definida (AH e/ou ESP)

Processamento do tráfego de saída:

Processamento do tráfego de entrada:

