Section A

Progressive waves Transverse and longitudinal waves

- *1 June 02 P1 Q27 B
- **2 Nov 02 P1 Q26 D
- **3 Nov 02 P1 Q27 D Intensity \propto (amplitude)². I = kA². For wave 1: 3.0 = ka².....(1). For wave 2: $I_2 = k(2a)^2$(2). Solve the 2 equations
- **4 Nov 03 P1 Q23 A
- *5 Nov 03 P1 Q25 D All progressive waves transfer energy and all transverse waves can be polarized
- *6 June 04 P1 Q24 B Only transverse wave can be polarized.
- **7 June 04 P1 Q25 A Sketch the new wave profile a short instant later to deduce the answer
- ***8 June 04 P1 Q26 B Intensity $I = kA^2$. Also intensity I = E / (St) = (E/t)/S = E/SHence $kA^2 = E/S$, and $E = kA^2S$. $E_2 = k(2A)^2$. $\frac{1}{2}S = 2kA^2S$
- *9 Nov 04 P1 Q24 D
- **10 Nov 04 P1 Q26 C Intensity \propto (amplitude)². $I = kA^2$. For wave X: $I_X = k20^2$ (1). For wave Y: $I_Y = k 5^2$ (2)
- **11 June 05 P1 Q25 B Intensity \propto (amplitude)². For first position I = kA²(1) For second position, $2I = kA_2^2$ (2)
- **12 Nov 05 P1 O23 B
- ***13 Nov 05 P1 Q24 Given, intensity $I = k A^2 f^2$. For wave P: $I_p = k x_0^2$. f_0 For wave Q: $I_Q = k (2x_0)^2$. $\frac{1}{2} f_0$. Solve the 2 equations
- **14 Nov 05 P1 Q25 C Apply $v = f \lambda$. For refraction, frequency remains constant
- **15 June 06 P1 Q24 B Period T = $\frac{1}{f}$. When f is halved, T doubled.
- **16 June 06 P1 Q25 B Use $v = f\lambda$ to find λ . For distance λ , phase difference = 2π rad. Hence taking ratio, for x = 0.17 m, what is ϕ ?
- *17 Nov 06 P1 Q24 B
- **18 Nov 06 Q25 C For distance λ , phase difference = 2π rad. Use ratio, for distance 1.5 λ , what is the phase difference?

- **19 June 07 P1 Q22 A Intensity ∞ (amplitude)²
- ***20 June 07 P1 Q23 D At the extreme ends of an oscillation, , the object stops momentarily and accelerates in the opposite direction. Its acceleration is maximum.
- **21 Nov 07 P1 Q21 B Intensity \propto (amplitude)²
- ***22 Nov 07 P1 Q23 B frequency = 8.0 / 50 = 0.16 Hz. Max v = $(2\pi \times 2 \times 0.16)$. Max k.e. = $\frac{1}{2}$ x (2.0×10^{-3}) x $(2\pi \times 2 \times 0.16)^2$
- **23 June 08 P1 O25 B
- ***24 June 08 P1 Q26 D At P, intensity = I. At Q, intensity = $\frac{1}{4}I$.

At P, I = k x 8.0². At Q,
$$\frac{1}{4}I = k A_Q^2$$

- **25 Nov 08 P1 Q24 D Intensity ∞ (amplitude)². Frequency f = 1/T
- **26 Nov 08 P1 Q26 A Intensity ∞(amplitude) ²

Polarisation

Determination of frequency, wavelength and velocity

- *1 June 03 P1 Q23 B
- *2 Nov 05 P1 Q22 D
- *3 June 06 P1 O23 A
- *4 June 07 P1 Q21 C
- **5 June 02 P1 Q26 B f = N/t. N = 2.5 cycles. $t = 10 \times 2.0 \text{ ms} = 20 \times 10^{-3} \text{ s}$
- **6 June 03 P1 Q26 B f = N/t. N = 2.0 cycles. $t = 8 \times 2.5 \text{ ms} = 20 \times 10^{-3} \text{ s}$

Electromagnetic Waves

- **1 June 02 P1 Q25 C velocity of all e.m. waves = velocity of light in vacuum
- **2 Nov 02 P1 Q25 A Wavelength of microwave = 1 mm to 1 m
- **3 June 03 P1 Q25 C Velocity of all e.m. waves in vacuum = c. $c = f\lambda$. $\lambda \propto \frac{1}{f}$. When f is

halved, λ is doubled

- **4 June 04 P1Q27 C wavelength of infra-red = 8×10^{-7} m to 1 mm
- * 5 June 05 P1 O23 A
- ***6 June 05 P1 Q24 B

8 Nov 07 P1 Q22 B *9 Nov 08 P1 Q25 B **10 June 09 P1 Q 23 D Section B 1 Nov 03 P2 Q25 (a)(i) 1. 0.4 mm 2. $\lambda = 15/2 = 7.5$ cm 3. $f = N/t = 2 / (0.4 \times 10^{-3}) =$ 4. Speed $v = f\lambda =$ (ii) f = 1/T. when frequency is halved, period is doubled. 2 June 04 P2 Q2 $\lambda = 0.6 \text{ m}$ В1 2 (a) (i) frequency (= v/λ) = 330/0.60 C1 (ii) = 550 Hz Α1 [3] (use of $c = 3 \times 10^8 \text{ ms}^{-1} \text{ scores no marks}$) amplitude shown as greater than a but less than 2a and constant (b) correct phase **B1 [2] (wave to be at least three half-periods, otherwise -1 overall) Total [5] 3 Nov 04 P2 Q2 2 (a) all same speed in a vacuum (allow medium)/all travel in a vacuum (1) transverse/can be polarised (1) undergo diffraction/interference/superposition (1) can be reflected/refracted (1)show properties of particles (1) oscillating electric and magnetic fields (1) transfer energy/progressive (1) not affected by electric and magnetic fields (1) (allow any three, 1 each) B3 [3]

**7 June 07 P1 Q24 D

- (b) 495 nm = 495 x 10⁻⁹ m

 number = 1/(495 x 10⁻⁹) = 2.02 x 10⁶

 (allow 2 or more significant figures)
- (c) (i) allow $10^{-7} \rightarrow 10^{-11}$ m B1 (ii) allow $10^{-3} \rightarrow 10^{-6}$ m B1 [2]