Kode Soal : Kode_Mata_Kuliah.._Kelas.._SMT

			Verifikasi Ketua Program Studi	
STT TERPADU NURUL FIKRI		NASKAH SOAL UJIAN Tahun Akademik 2017/2018	KaProdi	
□Ujian Tengah Semester		☑ Ujian Akhir Semester	□ Ujian Susulan	
Nama Mhs.	:		Tandatangan Mahasiswa	
NIM	:		Peserta Ujian:	
Kode MK	: Kode_Mata_Kuliah			
Mata Kuliah	: Sistem Operasi			
Hari/tanggal	: Hari Senin, 2 Juli 2018			
Waktu	: Jam. 10:00- 12:00WIB			
Prodi	: Teknik Informatika			
Ruang	: Ruang B101			

LEMBAR SOAL

Petunjuk:

- 1. Untuk Essay dan/atau kasus, jawablah dengan jelas pada lembar jawaban yang sudah disediakan
- 2. Jawaban hanya bisa ditulis pada form atau lembar jawaban yang telah disediakan. Bila kurang, bisa memintanya pada Pengawas Ujian.
- 3. Sifat ujian untuk mata kuliah ini:

□ Open Book	∠ Open Note	□ Closed Bo	ok On L	ine Calc	ulator
	!	□ Open All	□ Closed All		

1. Hitunglah Waiting time, rata-rata Waiting time, Turn Around time dan rata-rata turn around time pada tabel berikut menggunakan **algoritma Priority** berdasarkan **Non-Preemptive** (bobot 20%)

Proses	Burst time	Waktu Kedatangan	Priority
P1	9	0	3
P2	6	1	2
Р3	3	2	1
P4	4	2	1

- 2. Terdapat beberapa tantangan dalam mengimplementasikan Concurency pada sistem yang menjalankan multiprogramming dan multithreding, sebutkan tantangan tersebut dan jelaskan! (bobot 10%)
- 3. Jelaskan apa yang kamu ketahui tentang Race Condition dan bagaimana cara pencegahannya! (bobot 10%)
- 4. Salah satu cara untuk menangani Critical Section adalah dengan menggunakan perangkat lunak yaitu algoritma program. Sebutkan algoritma tersebut, lalu jelaskan cara kerjanya serta sebutkan masalah yang muncul pada setiap algoritma tersebut! (bobot 15%)
- 5. Isilah angka-angka **page replacement** di RAM pada gambar di bawah ini dengan menggunakan **algoritma Optimal** (bobot 15%)

Beri tanda pada kotak apabila terjadi page foult dengan *, lalu hitung berapa kali terjadi page foult!

6. Berikut adalah gambar bagaimana manajemen memori berfungsi untuk memproteksi perangkat keras (interference by other process). Jelaskan cara kerjanya! (bobot 15%)

Gambar 1.3. Gambar Proteksi Perangkat Keras dengan base dan limit register

7. Diketahui waktu pengaksesan memori (ma) sebesar 200ns, waktu page foult sebesar 10ms dan diketahui dalam 10000 memory access terdapat 10 page foult, maka Hitunglah **efective access time** pada kinerja Demand Paging tersebut. (bobot 15%)