Name (SURNAME, First Names):	Section:
A . Relations	
1. Let R be a relation on \mathbb{Z}^+ , where $R=\{(x,y)\mid xy\geq 1\}$ Determine antisymmetric, and transitive. Give one counterexample for each proper	
reflexive:	
symmetric:	
antisymmetric:	
transitive:	
2. Let R be a relation on \mathbb{Z} , where $R=\{(x,y)\mid x=y+1\vee x=y-\text{symmetric}, \text{ antisymmetric}, and transitive. Give one counterexample for$	1) Determine if R is reflexive,
reflexive:	
symmetric:	
antisymmetric:	
transitive:	
B . Functions	
1. Let $f: \mathbb{R} \to \mathbb{R}$, and $f(x) = x^2 - 6x$. Determine if the function is inj Provide a counterexample, if not.	ective, surjective, and bijective.
injective:	
surjective:	
bijective:	
2. Let $f: \mathbb{R} \to \mathbb{R}$, and $f(x) = 4x - 1$. Determine if the function is injective a counterexample, if not.	
injective:	
surjective:	
bijective:	

Date: Mar 16, 2020

CCDSTRU HW # $_3$

C . Sequences

1. Determine the formula for a_n , where n > 0

a.) $8, 20, 32, 44, \ldots$ $a_n =$ ______

b.) $7, \frac{14}{3}, \frac{28}{9}, \frac{56}{27}, \dots$ $a_n =$ ______

2. Answer the following.

a.) Given an arithmetic sequence, where $a_1=100,$ and d=-5 $a_{10}=$

b.) Given a geometric sequence, where $a_1=3$, and $a_3=\frac{4}{3}$. $a_5=$

D . **Sums.** Show the first few steps (as indicated below) and the final answer in evaluating the given summation. Final answers must be in its simplest whole or rational number, or expression.

= 2^{nd} step

= 3^{rd} step

=
final answer

 $\sum_{r=0}^{n+1} \sum_{s=0}^{2n} \sum_{t=0}^{n} rst = \underbrace{ first \ step}_{ }$ $= \underbrace{ 2^{nd} \ step}_{ }$

= 3^{rd} step

 $= 4^{th} step$

: :

final answer

E . Use Mathematical Induction to prove the following.

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

2 . Prove that for positive integer n>1,

$$1^2 + 3^2 + 5^2 + \dots + (2n - 1)^2 = \frac{4n^3 - n}{3}$$