Exploratory studies: Extracting Features from waveforms

Ken 12th March 2017 NAP

A brief recap:-

a set of Waveforms

Why transformed 20 waveforms? cause of the double/piled up waveforms

because of the double/piled up waveforms
I could better identify these piled up events than using the 1D waveform inputs to CNN.
Using 1D waveform only, I get more "contamination". With the 2D waveform, I get "cleaner" results. (By plotting 20 "classified" samples randomly)

from 10/20~ to 19/20~ correctly identified.

(factors such as the NN structure also affect it but the combination can be endless)

As for other kind of waveforms,

The filters in the Convolution layer of CNN

A general consensus is that the convolution layer of a CNN is an excellent tool at extracting features from 2D images.

The filters in the Convolution layer of CNN

*Examples of filters learned in the convolution layer.

Rather "hand design" the filters, aka.curve fitting, this way we might be able to extract features of the waveform itself?

*each filters applies to a small portion of the waveform, each filters has a weight to it.

There are some problems still, such as symmetry, input has to be normalised, etc.