CMPT 383 Comparative Programming Languages

Programming Assignment 1

This assignment is due by 11:59pm PT on Wednesday Feb 16, 2022. Please submit it to Canvas. Requirements:

- This assignment must be your own work. No collaboration is permitted.
- You can only use library functions from the following modules: Prelude, System.IO, System.Environment, Data.Map.Strict. Detailed information of modules can be found on https://hoogle.haskell.org

Late policy:

Suppose you can get n (out of 10) points based on your code and report

- If you submit before the deadline, you can get all n points.
- If you submit between 11:59pm PT Feb 16 and 11:59pm PT Feb 17, you get n-1 points.
- If you submit between 11:59pm PT Feb 17 and 11:59pm PT Feb 18, you get n-2 points.
- If you submit after 11:59pm PT Feb 18, you get 0 points.

(10 points) A formula in propositional logic can be a boolean constant (Const) with value True or False, a boolean variable (Var) such as $x_1, x_2, ...$, or the composition of formulas using logic connectives \neg (Not), \land (And), \lor (Or), \rightarrow (Imply), and \leftrightarrow (Iff).

For a formula ϕ , a variable assignment is a mapping that maps each variable in ϕ to a truth value in $\{\text{True}, \text{False}\}$. Given a formula ϕ and a variable assignment, the formula ϕ evaluates to a truth value based on the following truth tables (where T stands for True and F stands for False).

ϕ_1	$\neg \phi_1$	
Т	F	
F	Т	
(a) Not		

ϕ_1	ϕ_2	$\phi_1 \wedge \phi_2$
Τ	Τ	Т
Τ	\mathbf{F}	F
F	${ m T}$	F
\mathbf{F}	\mathbf{F}	F
(b) And		

ϕ_1	ϕ_2	$\phi_1 \lor \phi_2$	
Τ	Τ	T	
${\rm T}$	\mathbf{F}	T	
F	${\rm T}$	T	
\mathbf{F}	\mathbf{F}	F	
(c) Or			

ϕ_1	ϕ_2	$\phi_1 \to \phi_2$	
Т	Τ	Т	
Τ	\mathbf{F}	F	
\mathbf{F}	${ m T}$	${ m T}$	
\mathbf{F}	\mathbf{F}	${ m T}$	
(d) Imply			

ϕ_1	ϕ_2	$\phi_1 \leftrightarrow \phi_2$
Т	Τ	T
${\rm T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	${\rm T}$	F
\mathbf{F}	\mathbf{F}	Т
(e) Iff		

For example, consider a concrete formula ϕ being $x_1 \wedge \neg x_2$. ϕ evaluates to True if the variable assignment is $x_1 = \text{True}$ and $x_2 = \text{False}$. Also, ϕ evaluates to False if the variable assignment is $x_1 = \text{True}$ and $x_2 = \text{True}$.

A formula ϕ is said to be *satisfiable* if there exists a variable assignment under which ϕ evaluates to True. Otherwise, the formula is said to be *unsatisfiable*. In general, the satisfiability of a formula can be checked

using the truth table method. Specifically, we can list all possible variable assignments of a formula, and then check if any variable assignment can make the formula evaluate to True.

For example, check the satisfiability of $x_1 \wedge \neg x_2$.

$\overline{x_1}$	x_2	$\neg x_2$	$x_1 \wedge \neg x_2$
Т	Τ	F	F
${\rm T}$	F	${ m T}$	$^{\mathrm{T}}$
F	\mathbf{T}	F	F
F	F	${ m T}$	F

Here, $x_1 \wedge \neg x_2$ is satisfiable because there exists a variable assignment $x_1 = T$ and $x_2 = F$ under which the formula evaluates to T.

As another example, check the satisfiability of $\neg(x_1 \to (x_2 \to x_1))$.

$\overline{x_1}$	x_2	$x_2 \rightarrow x_1$	$x_1 \to (x_2 \to x_1)$	$\neg(x_1 \to (x_2 \to x_1))$
Т	Τ	Т	T	F
\mathbf{T}	F	${ m T}$	${ m T}$	F
F	${\rm T}$	\mathbf{F}	${ m T}$	F
\mathbf{F}	\mathbf{F}	Τ	m T	F

Here, $\neg(x_1 \to (x_2 \to x_1))$ is unsatisfiable, because there is no variable assignment that can make the formula evaluate to T.

You need to write a Haskell program to check the satisfiability of formulas in propositional logic. The program must be in a form that GHC can compile (i.e., you need a main). It needs to take one command-line argument that denotes the path to the formula file. You can assume each line of the file contains a formula to check, and the program needs to print to the console telling whether each formula is satisfiable (print SAT) or not (print UNSAT).

Sample Input and Output

Suppose we have a formula file called formulas.txt that contains the following two lines:

```
(And (Var "x1") (Not (Var "x2")))
(Not (Imply (Var "x1") (Imply (Var "x2") (Var "x1"))))
```

After compiling, we can run the executable and get

```
$ ./p1_x_x formulas.txt
SAT
UNSAT
```

Deliverable

A zip file called p1_firstname_lastname.zip that contains at least the followings:

- A file called p1_firstname_lastname.hs that contains the source code of your Haskell program. You can have multiple source files if you want, but this file must contain the main.
- A report called p1_firstname_lastname.pdf that explains the design choices, features, issues (if any), and anything else that you want to explain of your program.