<u>Trigonometrijske nejednačine</u>

To su nejednačine kod kojih se nepoznata javlja kao argument trigonometrijske funkcije. Rešiti trigonometrijsku nejednačinu znači naći sve uglove koji je zadovoljavaju. Prilikom traženja rešenja ove nejednačine, najpre ćemo rešiti odgovarajuću jednačinu, a zatim naći intervale koji se u nejednačini traže.

1. Nejednačine sinx>a i sinx<a

 $\sin x > a$

a < -1 -svaki broj je rešenje

 $-1 \le a \le 1$ - rešavamo

 $a \ge 1$ -nema rešenja

 $\sin x < a$

 $a \le -1$ -nema rešenja

 $-1 \le a \le 1$ -rešavamo

a > 1 -svaki broj je rešenje

<u>Primer 1.</u> Reši nejednačine:

- a) $\sin x > -2$
- b) $\sin x > \frac{1}{2}$
- $\forall) \sin x > 3$

Rešenja:

a) $\sin x > -2$ pošto je $-1 \le \sin x \le 1$ to je svaki $x \in R$ rešenje.

b)
$$\sin x > \frac{1}{2}$$

Najpre rešimo odgovarajuću jednačinu:

$$\sin x = \frac{1}{2}$$

Dakle, rešenja jednačine su:

$$x = \frac{\pi}{6} + 2k\pi$$
$$x = \frac{5\pi}{6} + 2k\pi$$

Sada razmišljamo! Pošto nam treba da je $\sin x > \frac{1}{2}$ uzimamo "gornji deo".

Dakle:

$$\frac{\pi}{6} < x < \frac{5\pi}{6}$$

Još dodamo periodičnost:

$$\frac{\pi}{6} + 2k\pi < x < \frac{5\pi}{6} + 2k\pi , \quad k \in \mathbb{Z}$$

v) $\sin x > 3$

Ovo je nemoguće, pa ova nejednačina nema rešenja.

Primer 2. Reši nejednačine:

a)
$$\sin x < -2$$

b)
$$\sin x \le -\frac{\sqrt{2}}{2}$$

$$v) \sin x < 5$$

Rešenja:

a) $\sin x < -2 \implies$ Kako je $-1 \le \sin x \le 1$, dakle nikad ne može biti manji od -2, data nejednačina nema rešenja

b)
$$\sin x \le -\frac{\sqrt{2}}{2}$$

Najpre rešimo jednačinu $\sin x = -\frac{\sqrt{2}}{2}$

Rešenja su:

$$x = \frac{5\pi}{4} + 2k\pi$$

$$x = \frac{7\pi}{4} + 2k\pi$$

Za nejednačinu $\sin x \le -\frac{\sqrt{2}}{2}$ nama treba "donji" deo !

Dakle:

$$\frac{5\pi}{4} \le x \le \frac{7\pi}{4}$$

$$\frac{5\pi}{4} + 2k\pi \le x \le \frac{7\pi}{4} + 2k\pi$$

 $k \in Z$

v) $\sin x < 5$

Kako je $-1 \le \sin x \le 1$, ova nejednačina je uvek zadovoljena,tj. $\forall x \in R$ je rešenje.

2. Nejednačine cosx>b i cosx<b

$$\cos x > b$$

b < -1 - svaki broj je rešenje

 $-1 \le b \le 1$ - rešavamo

 $b \ge 1$ - nema rešenja

$\cos x < b$

b < -1 - nema rešenja

 $-1 \le b \le 1$ - rešavamo

b > 1 - svaki broj je rešenje

Primer 1.

Reši nejednačine:

a)
$$\cos x > -2$$

b)
$$\cos x > \frac{1}{2}$$

$$\forall) \cos x > \frac{3}{2}$$

Rešenja:

a) $\cos x > -2$ ovde je svaki $x \in R$

b)
$$\cos x > \frac{1}{2}$$

Najpre rešimo
$$\cos x = \frac{1}{2}$$

$$x = \frac{\pi}{3} + 2k\pi$$
$$x = -\frac{\pi}{3} + 2k\pi$$

Za rešenja nejednačine su nam potrebni uglovi čiji je kosinus veći od $\frac{1}{2}$,znači "**desno**".

Konačno rešenje je $-\frac{\pi}{3} + 2k\pi < x < \frac{\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$

$$\forall \cos x > \frac{3}{2}$$

Ova nejednačina nema rešenja jer najveća vrednost za "kosinus", kao što znamo, može biti 1.

Primer 2.

Reši nejednačine:

- a) $\cos x < -2$
- b) $\cos x \le -\frac{1}{2}$
- \vee) $\cos x < 2$

Rešenja:

a) $\cos x < -2$ - nema rešenja

b) $\cos x \le -\frac{1}{2}$ -rešićemo prvo $\cos x = -\frac{1}{2}$

Rešenja jednačine su:

$$x = \frac{2\pi}{3} + 2k\pi$$

$$x = \frac{4\pi}{3} + 2k\pi$$

Za rešenje nejednačine $\cos x \le -\frac{1}{2}$ nam treba "**levi**" deo:

Dakle, rešenje je $\frac{2\pi}{3} + 2k\pi \le x \le \frac{4\pi}{3} + 2k\pi$

 \vee) $\cos x < 2$

Ovde je naravno rešenje $\forall x \in R$

3. Nejednačine sa tax i ctax:

Ove nejednačine za razliku od onih sa sinx i cosx **uvek imaju rešenja** s obzirom da tgx i ctgx uzimaju vrednosti iz celog skupa R.

I ovde ćemo najpre rešiti odgovarajuću jednačinu i na osnovu nje odrediti interval rešenja date nejednačine.

Primer 1.

a)
$$tgx > \sqrt{3}$$

Najpre rešimo jednačinu $tgx = \sqrt{3}$. Rešenje je: $x = 60^{\circ} + k\pi$.

Razmišljamo gde su tgx veći od $\sqrt{3}$?

Prvo su to uglovi od 60° do 90° . A onda i drugi interval od

 240° do 270° . Znači ovde imamo dva intervala sa rešenjima!

Rešenje će dakle biti:

$$60^{\circ} < x < 90^{\circ}$$
 i $240^{\circ} < x < 270^{\circ}$

Dodamo period $k\pi$ koja važi za tgx.

$$\frac{\pi}{3} + k\pi < x < \frac{\pi}{2} + k\pi$$

$$k \in \mathbb{Z}$$

$$i$$

$$k \in \mathbb{Z}$$

$$i$$

$$k \in \mathbb{Z}$$

Ili možemo zapisati:

$$x \in \left(\frac{\pi}{3} + k\pi, \frac{\pi}{2} + k\pi\right)$$

$$k \in \mathbb{Z}$$

$$i \qquad x \in \left(\frac{4\pi}{3} + k\pi, \frac{3\pi}{2} + k\pi\right)$$

b)
$$tgx < 1$$

Prvo rešimo tgx = 1, znamo da je to ugao od 45° i 225° .

Nama treba da su tangensi manji od 1.(podebljana poluprava)

Opet imamo dva rešenja!

$$-\frac{\pi}{2} < x < \frac{\pi}{4}$$
 i $\frac{\pi}{2} < x < \frac{5\pi}{4}$

Odnosno:

$$x \in \left(-\frac{\pi}{2} + k\pi, \frac{\pi}{4} + k\pi\right) \cup \left(\frac{\pi}{2} + k\pi, \frac{5\pi}{4} + k\pi\right)$$
$$k \in \mathbb{Z}$$

Primer 2.

Reši nejednačine:

a)
$$ctgx > \frac{\sqrt{3}}{3}$$

b)
$$ctgx < 0$$

Rešenja:

a) Rešimo prvo
$$ctgx = \frac{\sqrt{3}}{3} \Rightarrow x = 60^{\circ} \text{ i } x = 240^{\circ}$$

Opet dva intervala:

$$0 < x < \frac{\pi}{3}$$
 i $\pi < x < \frac{4\pi}{3}$

Rešenje je:

$$x \in (0 + k\pi, \frac{\pi}{3} + k\pi) \cup (\pi + k\pi, \frac{4\pi}{3} + k\pi)$$
 , $k \in \mathbb{Z}$

b)
$$ctgx = 0$$

Traženi uglovi su iz II i IV kvadranta.

$$\frac{\pi}{2} < x < \pi \text{ i } \frac{3\pi}{2} < x < 2\pi$$

Rešenje je:

$$x \in (\frac{\pi}{2} + k\pi, \pi + k\pi) \cup (\frac{3\pi}{2} + k\pi, 2\pi + k\pi)$$
$$k \in Z$$

Zadaci:

1) Reši nejednačinu: $\sin 3x - \frac{\sqrt{3}}{2} \ge 0$

Najpre rešimo

$$\sin 3x - \frac{\sqrt{3}}{2} = 0$$

$$\sin 3x = \frac{\sqrt{3}}{2}$$

Rešenja jednačine su na slici 1.

$$x = \frac{\pi}{3} + 2k\pi$$

$$x = \frac{2\pi}{3} + 2k\pi$$

Sad rešavamo nejednačinu. Očigledno nam treba **gornji** deo:

$$\frac{\pi}{3} + 2k\pi \le 3x \le \frac{2\pi}{3} + 2k\pi$$
 (slika 2.)

Sve podelimo sa 3

$$\frac{\pi}{9} + \frac{2k\pi}{3} \le x \le \frac{2\pi}{9} + \frac{2k\pi}{3}$$

$$k \in \mathbb{Z}$$

2) Reši nejednačinu: $\sin x + \cos x < \sqrt{2}$

Najpre rešimo jednačinu:

$$\sin x + \cos x = \sqrt{2}$$

Ovo je tip "uvodjenje pomoćnog argumenta"

a=1

b=1

$$c = \sqrt{2}$$

$$tg\varphi = \frac{b}{a} \Rightarrow tg\varphi = \frac{1}{1} \Rightarrow tg\varphi = 1$$

$$\varphi = 45^{\circ} = \frac{\pi}{4}$$

$$\frac{c}{\sqrt{a^2 + b^2}} = \frac{\sqrt{2}}{\sqrt{1+1}} = \frac{\sqrt{2}}{\sqrt{2}} = 1$$

Pa je:
$$\sin(x+\varphi) = \frac{c}{\sqrt{a^2+b^2}} \Rightarrow \sin(x+\frac{\pi}{4}) = 1$$

11

Sad imamo nejednačinu:

$$\sin(x+\frac{\pi}{4})<1$$

Ovde nam ne odgovara samo ako je $\sin(x + \frac{\pi}{4}) = 1$

Da rešimo ovu jednačinu:

$$x + \frac{\pi}{4} = \frac{\pi}{4} + 2k\pi$$

$$x = \frac{\pi}{2} - \frac{\pi}{4} + 2k\pi$$
 Ovo nam ne odgovara!

$$x = \frac{\pi}{4} + 2k\pi$$

Dakle, rešenje je $\forall x$ sem $\frac{\pi}{4} + 2k\pi$ odnosno $x \neq \frac{\pi}{4} + 2k\pi, k \in \mathbb{Z}$

3) Reši nejednačinu: $2\sin^2 x + 5\sin x + 2 > 0$

 $2\sin^2 x + 5\sin x + 2 > 0 \rightarrow \text{smena sinx=t}$

 $2t^2 + 5t + 2 > 0 \rightarrow \text{pogledaj kvadratne nejednačine!}$

$$t_{1,2} = \frac{-5 \pm 3}{4}$$

$$t_1 = -\frac{1}{2}$$

$$t_2 = -2$$

$$t \in (-\infty, -2) \cup (-\frac{1}{2}, \infty)tj$$
,

$$\sin x \in (-\infty, -2) \cup (-\frac{1}{2}, \infty)$$

Pošto je $-1 \le \sin x \le 1$ moramo izvršiti korekciju intervala!

$$\sin x \in \left(-\frac{1}{2}, 1\right]$$
 odnosno $\sin x > -\frac{1}{2}$

$$-\frac{\pi}{6} + 2k\pi < x < \frac{7\pi}{6} + 2k\pi$$
$$k \in \mathbb{Z}$$

Je konačno rešenje!

4) Pokazati da važi je za svako
$$\alpha$$
:
$$\frac{1}{\sin^4 \alpha} + \frac{1}{\cos^4 \alpha} \ge 8$$

Transformišemo izraz na levoj strani!

$$\frac{1}{\sin^4 \alpha} + \frac{1}{\cos^4 \alpha} = \frac{\cos^4 \alpha + \sin^4 \alpha}{\sin^4 \alpha \cdot \cos^4 \alpha} = \text{razmislimo malo...}$$

Transformišemo izraz $\sin^4 \alpha + \cos^4 \alpha$.

Podjimo od:

$$\sin^{2}\alpha + \cos^{2}\alpha = 1/()^{2} kvadriramo$$

$$(\sin^{2}\alpha + \cos^{2}\alpha)^{2} = 1$$

$$\sin^{4}\alpha + 2\sin^{2}\alpha\cos^{2}\alpha + \cos^{4}\alpha = 1$$

$$\sin^{4}\alpha + 2\sin^{2}\alpha\cos^{2}\alpha + \cos^{4}\alpha = 1$$

$$\sin^{4}\alpha + \cos^{4}\alpha = 1 - 2\sin^{2}\alpha\cos^{2}\alpha$$

$$\sin^{4}\alpha + \cos^{4}\alpha = 1 - \frac{2 \cdot 2\sin^{2}\alpha\cos^{2}\alpha}{2}$$

$$\sin^{4}\alpha + \cos^{4}\alpha = 1 - \frac{\sin^{2}2\alpha}{2}$$

$$\sin^{4}\alpha + \cos^{4}\alpha = \frac{1 - \sin^{2}2\alpha}{2}$$

$$\sin^{4}\alpha + \cos^{4}\alpha = \frac{2 - \sin^{2}2\alpha}{2} = \frac{1 + 1 - \sin^{2}2\alpha}{2}$$
opet trik da je $1 - \sin^{2}2\alpha = \cos^{2}2\alpha$

$$= \frac{1 + \cos^{2}2\alpha}{2}$$

Vratimo se u zadatak:

$$\frac{\cos^4 \alpha + \sin^4 \alpha}{\sin^4 \alpha \cdot \cos^4 \alpha} = \frac{\frac{1 + \cos^2 2\alpha}{2}}{\sin^4 \alpha \cdot \cos^4 \alpha} = \frac{1 + \cos^2 2\alpha}{2\sin^4 \alpha \cdot \cos^4 \alpha} = dodamo(\frac{8}{8})$$

$$\frac{8(1 + \cos^2 2\alpha)}{16\sin^4 \alpha \cos^4 \alpha} = \frac{8(1 + \cos^2 2\alpha)}{\sin^4 2\alpha} = \frac{8}{\sin^4 2\alpha} \ge 8$$

A ovo sigurno važi!

5) Ako su α, β, γ uglovi trougla i ako je γ tup, tada je. $tg\alpha \cdot tg\beta < 1$

Dokaz

Ako je ugao tup i $\alpha + \beta + \gamma = 180^{\circ}$ onda zbir $\alpha + \beta$ mora biti manji od 90° to jest ugao $(\alpha + \beta)$ je u **I kvadrantu**!

A pošto znamo da su tangensi uglova u prvom kvadrantu pozitivni, mora biti

$$tg(\alpha + \beta) > 0$$

Za $tg(\alpha + \beta)$ imamo formulu:

$$\frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta} > 0$$

Pazi:
$$\frac{A}{B} > 0 \Leftrightarrow (A > 0, B > 0) \lor (A < 0, B < 0)$$
 Pošto je $tg\alpha + tg\beta > 0$ mora biti:

$$1 - tg\alpha tg\beta > 0$$
 odnosno $tg\alpha tg\beta < 1$

Što smo I trebali dokazati!