Dance Machine

DSR project (batch 27) Oct.2021

Mohammad Farahani, and Mohammad Saleh

Outline:

- About dance learning
- Challenges
- Approach
 - Dataset
 - Modelling
 - Results
- Conclusion

Why?

- General movement generation
 - Game industry
 - Animation industry
 - Customized choreography

How humans learn dancing?

Can machine learn dancing as well?

Real dances

Machine learning

Generated dances

Generative methods

Text generation:

e.g. GPT-2

So you think you can dance?

History Word being predicted

Image generation:

e.g. GANS

What about movements?

Challenges

- 1. Human body movement detection.
- 2. Training a model with detected data.
- 3. Generate new movements.

The approach

Gathering data

Gathering solo dancing about 10 hours.

Pose detection

Breaking down videos into poses and frames per second.

Loading data

Loading X,Y,Z points for every joint in every frame into Tabular data.

Training Model

Choosing model and training it on the gathered data

Future moves generation

Generation of future coordinates in a specified period of time.

Dance visualisation

Loading these coordinates into a moving animation to evaluate.

Gathering data

Collection about 10 hours of hip hop dance.

Pose detection: Mediapipe

0. nose 17. left_pinky 1. left_eve_inner 18. right_pinky 2. left_eye 19. left index 3. left_eye_outer 20. right_index 4. right_eye_inner 21. left_thumb 5. right_eye 22. right_thumb 6. right_eye_outer 23. left_hip 7. left ear 24. right_hip 8. right_ear 25. left knee 9. mouth left 26. right_knee 10. mouth_right 27. left_ankle 11. left_shoulder 28. right_ankle 12. right_shoulder 29. left_heel 13. left_elbow 30. right_heel 14. right_elbow 31. left_foot_index 15. left_wrist 32. right_foot_index 16. right_wrist

- Detect human pose landmarks
- 33 points, each point has X, Y, Z coordinates

Raw data

	х0	уЮ	zØ	x1	у1	z1	x2	y2	z 2
0	0.421101	0.550777	-0.022540	0.410861	0.550942	-0.018178	0.411158	0.549630	-0.018285
1	0.420971	0.549533	-0.039764	0.410825	0.549494	-0.032597	0.411138	0.546786	-0.032689
2	0.427683	0.534817	-0.023420	0.419265	0.540632	-0.016715	0.419211	0.539021	-0.016817
3	0.426893	0.536704	-0.023477	0.418657	0.540746	-0.016965	0.418610	0.539225	-0.017064
4	0.426000	0.408420	-0.025411	0.419903	0 505658	-0.018127	0.419611	0 506281	-0.018222

Input data

Modeling

Multivariate Time Series Using LSTM

Results

initial Generation

Modeling

4 0.426909 0.498420 -0.025411 0.418803 0.505658 -0.018127 0.418611 0.506281 -0.018222

standard deviation

y0

mean

x0

Results

Modeling

Results

Conclusion and Outlook

- The multipart model seems promising.
 - Use different type of layers for each part
- Different dance styles data
- Define key frames
- Use other model e.g. TCN

Acknowledgement

- Dr. Tristan Behrens (our mentor)
- DSR Teachers
- DSR Batch 27

Thank you for your attention!

