Lecture 2: Sobreajuste & Validación Cruzada Aprendizaje y Minería de Datos para los Negocios

Ignacio Sarmiento-Barbieri

Universidad de los Andes

October 16, 2021

Agenda

- 1 Recap
- 2 Overfit
 - Overfit y Predicción fuera de Muestra
- 3 Métodos de Remuestreo
 - Enfoque de conjunto de validación
 - LOOCV
 - Validación cruzada en K-partes
- 4 Further Readings
- 5 Break

Predicción y Error Predictivo

- ► El objetivo es predecir *Y* dadas otras variables *X*. Ej: precio vivienda dadas las caracteristicas
- ► Asumimos que el link entre *Y* and *X* esta dado por el modelo:

$$Y = f(X) + u \tag{1}$$

- ightharpoonup donde f(X) es cualquier funcion,
- *u* una variable aleatoria no observable E(u) = 0 and $V(u) = \sigma^2$

Predicción y Error Predictivo

- ightharpoonup En la práctica no conocemos f(X)
- Es necesario estimarla $\hat{Y} = \hat{f}(X)$

Entonces

$$Err(Y) = MSE(\hat{f}) + \sigma^2$$
 (2)

$$= Bias^{2}(\hat{f}) + V(\hat{f}) + Irreducible Error$$
(3)

Dos partes

- ightharpoonup el error de estimar f con \hat{f} . (reducible)
- lacktriangleright el error de no observar *u*. (*irreducible*)

Este resultado es muy importante,

- ▶ predecir *Y* implica predecir bien *f*.
- existe un dilema entre sesgo y varianza

- ► En efecto si el modelo verdadero es y = f(x) + u
- \blacktriangleright donde f es un polinomio de grado p^* , with E(u) = 0 and $V(u) = \sigma^2$
- con *p** finito pero desconocido
- \triangleright podemos ajustar polinomios de grados crecientes p=1,2,...

$$Err(Y) = MSE(\hat{f}) + \sigma^2 \tag{4}$$

$$= Bias^{2}(\hat{f}) + V(\hat{f}) + Irreducible Error$$
 (5)

► Bias?

$$\hat{f}(x) = X'\hat{\beta} = \sum_{s=0}^{p} x^s \hat{\beta}_s = x'\hat{\beta}$$
(6)

donde
$$X' = (1, x, x^2, ..., x^p)$$

6/22

► Varianza:

$$V(\hat{f}(x)) = V(X'\hat{\beta}) = \sigma^2 \frac{p}{n}$$
(7)

Después de p^* aumentar la complejidad no reduce el sesgo, pero la varianza aumenta monotónicamente para σ^2 y n dados

Overfit y Predicción fuera de Muestra

- ML nos interesa la predicción fuera de muestra
- Overfit: modelos complejos predicen muy bien dentro de muestra, pero tienden a hacer un trabajo fuera de muestra
- ► Hay que elegir el nivel adecuado de complejidad
- Como medimos el error de predicción fuera de muestra?
- $ightharpoonup R^2$ no funciona: mide predicción dentro de muestra, es no decreciente en complejidad

Overfit y Predicción fuera de Muestra

- Dos conceptos importantes
 - ► Test Error: es el error de predicción en la muestra de prueba (test)

$$Err_{Test} = MSE[(Y, \hat{Y}) | Test]$$
 (8)

Training error:es el error de predicción en la muestra de entrenamiento (training)

$$Err_{Train} = MSE[(Y, \hat{Y}) | Train]$$
 (9)

► Como elegimos *Test*?

Qué son los Métodos de Remuestreo?

- ► Herramientas que implican extraer repetidamente muestras de un conjunto de entrenamiento y reajustar el modelo de interés en cada muestra para obtener más información sobre el modelo.
- Evaluación del modelo: estimar el error de predicción en la muestra de prueba
- ► Selección de modelo: seleccione el nivel apropiado de flexibilidad del modelo
- ▶ ¡Son computacionalmente costosos! Pero en estos días tenemos computadoras poderosas

Enfoque de conjunto de validación

- ► Suponga que nos gustaría encontrar un conjunto de variables que den el menor error de predicción en la muestra de prueba (no de entrenamiento)
- ➤ Si tenemos muchos datos, podemos lograr este objetivo dividiendo aleatoriamente los datos en partes de entrenamiento y validación (prueba)
- Luego usaríamos la parte de entrenamiento para construir cada modelo posible (es decir, las diferentes combinaciones de variables) y elegimos el modelo que dio lel menor error de predicción en la muestra de prueba

Enfoque de conjunto de validación

- Modelo y = f(x) + u donde f es un polinomio de grado p^* .
- ▶ Izquierda: error de predicción en la muestra de prueba para una sola partición
- Derecha: error de predicción en la muestra de prueba para varias particiones
- ► Hay un monton de variabilidad. (Necesitamos algo mas estable)

Enfoque de conjunto de validación

- Ventajas:
 - Simple
 - Fácil de implementar
- Desventajas:
 - El MSE de validación (prueba) puede ser altamente variable
 - ▶ Solo se utiliza un subconjunto de observaciones para ajustar el modelo (datos de entrenamiento). Los métodos estadísticos tienden a funcionar peor cuando se entrenan con pocas observaciones

Leave-One-Out Cross Validation (LOOCV)

► Este método es similar al enfoque de validación, pero trata de abordar las desventajas de este último.

Validación cruzada en K-partes

► LOOCV es computacionalmente intensivo, por lo que podemos ejecutar k-fold Cross Validation

Validación cruzada en K-partes

- ▶ Dividir los datos en K partes $(N = \sum_{j=1}^{K} n_j)$
- ▶ Ajustar el modelo dejando afuera una de las partes (folds) \rightarrow $f_{-k}(x)$
- ► Calcular el error de predicción en la parte (fold) que dejamos afuera

$$e\bar{r}r_j = MSE_j = \frac{1}{n_j} \sum L(y_j^k, \hat{y}_{-j})$$
(10)

Promediar

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} e\bar{r}r_j = \frac{1}{k} \sum_{i=1}^{k} MSE_j$$
 (11)

Validación cruzada en K-partes

► Izquierda: LOOCV error

Derecha: 10-fold CV

► LOOCV es caso especial de k-fold, donde k = n

► Ambos son estables, pero LOOCV (generalmente) es mas intensivo computacionalmente!

Validación cruzada en K-partes para selección de modelos

- ightharpoonup Supongamos que α parametriza la complejidad del modelo (en nuestro ejemplo el grado del polinomio)
- ightharpoonup Primero calculamos el CV error para un grupo de modelos (α), y elegimos el minimo

$$\min_{\alpha} CV_{(k)}(\alpha) \tag{12}$$

Trade-off Sesgo-Varianza para validación cruzada en K-partes

- Sesgo:
 - ► El enfoque del conjunto de validación tiende a sobreestimar el error de predicción en la muestra de prueba (menos datos, peor ajuste)
 - ► LOOCV, agrega más datos → menos sesgo
 - K-fold un estado intermedio
- ► Varianza:
 - ► LOOCV promediamos los resultados de n modelos ajustados, cada uno está entrenado en un conjunto casi idéntico de observaciones → altamente correlacionado
 - ▶ K partes esta correlación es menor, estamos promediando la salida de k modelo ajustado que están algo menos correlacionados
- ► Por lo tanto, existe un trade-off
 - ► Tendemos a usar k-fold CV con (K = 5 y K = 10)
 - ▶ Se ha demostrado empíricamente que producen estimaciones del error de prediccion que no sufren ni de un sesgo excesivamente alto ni de una varianza muy alta Kohavi (1995)

Review & Next Steps

- ► Today:
 - Overfit and out of Sample Prediction
 - Metodos de Resampleo
 - Enfoque de Validación
 - ► LOOCV
 - K-fold Cross-Validation (Validación Cruzada)

Further Readings

- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.
- ▶ James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
- ▶ Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).
- ► Lovelace, R., Nowosad, J., & Muenchow, J. (2019). Geocomputation with R. CRC Press. (Chapters 2 & 6)

Volvemos en 5 min con Python