Lesson 2. Probability Review

1 Random variables

- A random variable is a variable that takes on its values by chance
 - o One perspective: a random variable represents unknown future results
- Notation convention:
 - \circ Uppercase letters (e.g. X, Y, Z) to denote random variables
 - \circ Lowercase letters (e.g. x, y, z) to denote real numbers
- $\{X \le x\}$ is the event that the random variable X is less than or equal to the real number x
- The probability this event occurs is written as $Pr\{X \le x\}$

2 Discrete random variables

- A random variable is **discrete** if it can take on only a finite or countably infinite number of values
- Let *X* be a discrete random variable that takes on values $a_1, a_2, ...$
- The **probability mass function (pmf)** p_X of X is:

Example 1. From ESPN/AP on July 7, 2016:

The Los Angeles Lakers have swooped in ahead of the Brooklyn Nets to acquire Calderon, according to league sources Wednesday. Calderon and two future second-round picks are headed to Los Angeles in exchange for a player to be named later, the sources said.

Let *X* be a random variable that represents the player to be named later (using integer ID numbers 1, 2, 3, 4 instead of four names). Suppose the pmf for *X* is:

$$p_X(a) = \begin{cases} 0.1 & \text{if } a = 1, \\ 0.3 & \text{if } a = 2, \\ 0.5 & \text{if } a = 3, \\ 0.1 & \text{if } a = 4, \\ 0 & \text{otherwise} \end{cases}$$

Why is X a discrete random variable? What is $Pr\{X = 2\}$? What is $Pr\{1 < X \le 3\}$?

3 Continuous random variables

- A random variable is **continuous** if it can take on a continuum of values
- Let *X* be a continuous random variable
- The **probability density function (pdf)** f_X of X gives us the relative likelihood of the values of X
- We can use the pdf f_X of X to compute the probability that X lies within some interval:

Example 2. Let *Y* be a random variable that represents the time to deliver a pizza, in hours. In particular, suppose *Y* is a **exponentially distributed** random variable with parameter $\lambda = 2$. The pdf of *Y* is

$$f_Y(a) = \begin{cases} 0 & \text{if } a < 0, \\ \lambda e^{-\lambda a} & \text{if } a \ge 0 \end{cases}$$
 where $\lambda = 2$.

Plot the pdf of Y. Why is Y a continuous random variable? Which values are more or less likely? What is $Pr\{1 < Y \le 3\}$? What is $Pr\{Y = 2\}$?

4 The cumulative distribution function

• The **cumulative distribution function (cdf)** F_X of random variable X is:

• We can use the cdf of *X* to find the probability that *X* is between *a* and *b*:

The cdf and pmf of <i>X</i> are related:	The cdf and pdf	of X ar	e rela	ated:		
-	•					
	1.0					
ample 3. What is the cdf of X defined in Example 1? Plot t	he cdf.					
	F_X	(a)				
	0.0	<u> </u>			<u>:</u>	
	0.8	:				
	0.6					
	0.4					
	0.2					
					· · · · · · · · · · · · · · · · · · ·	
		1		2	3	4
		$\vec{F}_Y(a)$				
ample 4. What is the cdf of Y defined in Example 2? Plot t		$\vec{S}_Y(a)$				
		$\vec{G}_Y(a)$				
		$\tilde{G}_{Y}(a)$				
Some properties of a generic cdf $F(a)$:		$\widetilde{F}_{Y}(a)$				
Some properties of a generic $\operatorname{cdf} F(a)$: O Domain:		$\vec{c}_Y(a)$				
Some properties of a generic cdf $F(a)$:		$\vec{r}_Y(a)$				
Some properties of a generic $\operatorname{cdf} F(a)$: O Domain:		F _Y (a)				

5 Expected value and variance

• The **expected value** of a random variable is its weighted average

• X is a discrete random variable taking values a_1, a_2, \ldots with pmf p_X

•	The	expected	value	of X	is

The expected value of A is							

• The expected value of a function g of X is

sine emperior variate of a rainterior g of 11 to						

• X is a continuous random variable with pdf f_X

• The expected value of a function *g* of *X* is

• The **variance** of X is

Example 5. Find the expected value and the variance of X, as defined in Example 1.

• Some useful properties: let *X*, *Y* be random variables, and *a*, *b* be constants

$$\circ E[aX+b] = aE[X] + b$$

$$\circ \ E[X+Y] = E[X] + E[Y]$$

$$\circ \operatorname{Var}(a+bX) = b^2 \operatorname{Var}(X)$$

∘ In general,
$$E[g(X)] \neq g(E[X])$$

6 Exercises

Problem 1. Suppose *X* is a discrete random variable with the following cdf:

$$F_X(a) = \begin{cases} 0 & \text{if } a < 2, \\ 0.4 & \text{if } 2 \le a < 4, \\ 0.9 & \text{if } 4 \le a < 5, \\ 1 & \text{if } a \ge 5. \end{cases}$$

- a. What is the pmf of *X*?
- b. What is the expected value of *X*?
- c. What is the variance of *X*?
- d. Professor I. M. Wright peeks over your shoulder and declares,

"The probability that X = 3 is 0.4, since $F_X(3) = 0.4$."

Is Professor Wright correct? Briefly explain.

Problem 2. Suppose *X* is a random variable with pdf

$$f_X(a) = \begin{cases} 0 & \text{if } a < 1, \\ \frac{1}{4}a - \frac{1}{4} & \text{if } 1 \le a < 3, \\ \frac{1}{2} & \text{if } 3 \le a < 4, \\ 0 & \text{if } a \ge 4. \end{cases}$$

- a. What is the probability that $2 < X \le 3$?
- b. What is the expected value of *X*?
- c. What is the probability that $X \le 6$?
- d. Professor I. M. Wright peeks over your shoulder and declares,

"Since the maximum value of $f_X(a)$ is attained when a = 3, the maximum value that X can take is 3." Is Professor Wright correct? Briefly explain.