Solving ODEs in the wild: Scalable pharmacometrics with Stan

Sebastian Weber, Eero Siivola

Statistical Methodology Group, Novartis Pharma AG

StanCon Helsinki, 29-31 Aug 2018

Pharmacometric modeling

Case study: Speeding up the Stan model of Warfarin
Pharmacometric model for Warfarin
Speeding up Stan through reducing the autodiff tree
Taking use of embarrassingly parallel problem formulation

Pharmacometric modeling

Case study: Speeding up the Stan model of Warfarin
Pharmacometric model for Warfarin
Speeding up Stan through reducing the autodiff tree
Taking use of embarrassingly parallel problem formulation

Pharmacometric data

- Drug therapy aims to treat a disease
 - Drug is administered someway in order to reach some location where it is active.
 - Drug concentration in blood is often taken as a surrogate for exposure at the target tissue.
- Drug research data contains observations of drug doses and concentration measurements for multiple patients over a period of time.

Pharmacometric models

- Pharmacometrics aims to model:
 - Pharmacokinetics (PK): Relation of drug admission and drug concentration. "PK is what the body does to the drug".
 - Pharmacodynamics (PD): Relation of drug concentration and drug effect. "PD is what the drug does to the body".
- ▶ These processes are stated as ordinary differential equations (ODEs) where there is a link process between PK and PD and each of N patients has different ODE parameters.

Learning pharmacometric models

- Learning the joint fit of both ODEs at once is expensive and the modeling requires lots of time and effort.
- ▶ Often learning PK parameters first, fixing them and using it as a forcing function for the PD model is used.
- In this work we concentrate on speeding up PD models as they give a great example of forcing functions and cannot be solved analytically.

Pharmacometric modeling

Case study: Speeding up the Stan model of Warfarin

Pharmacometric model for Warfarin Speeding up Stan through reducing the autodiff tree Taking use of embarrassingly parallel problem formulation

Case study: Speeding up the Stan model of Warfarin Pharmacometric model for Warfarin

Taking use of embarrassingly parallel problem formulation

Pharmacokinetics of blood thinner Warfarin

► The pharmacokinetics of Warfarin can be described by a first order process that can be solved analytically:

Pharmacodynamic model for Warfarin

- Quantitative measure of Warfarin is change in the prothrombin complex levels.
- Concentration over time has fixed parameters learned from the PK model.
- ▶ The pharmacodynamics is described by a semi-mechanistic process:

$$\frac{dR_i(t)}{dt} = k_{in,i} \left(1 - \mathsf{logit}^{-1}\left(\mathsf{log}\left(\mathit{C}_i(t)\right) - \mathsf{log}\left(\mathit{EC50}_i\right)\right)\right) - k_{out,i}R_i(t)$$

- $ightharpoonup R_i(t)$ is the response
- \triangleright $k_{in,i}$ and $k_{out,i}$ are influx and outflux constants
- ▶ *EC*50; is concentration when response is 50% of maximum.
- This turn-over model cannot be solved analytically.

Pharmacometric modeling

Case study: Speeding up the Stan model of Warfarin

Pharmacometric model for Warfarin

Speeding up Stan through reducing the autodiff tree

Taking use of embarrassingly parallel problem formulation

Conclusior

ODE function in Stan for the turn-over function

► The Stan code for the turn-over function could look something like:

▶ Stan run with 250 warmup and sampling for 32 patients:

	warmup	sample	sum
chain:1	12.67	2.12	14.80
chain:2	13.16	2.07	15.23
chain:3	13.14	2.09	15.23
chain:4	15.4	2.04	17.45

- ► This is bad!
 - ► Variable definitions (Idose/Ilag/...) inside a function are considered as parameters.
 - Autodiff stack grows a lot mostly by the call to pk_1cmt_oral_tlag and this makes Stan slow.

New ODE in Stan

Better way of defining the function:

```
real[] turnover.kin.inhib.2(real t, real[] R, real[] theta, real[] x_r, int[] x_i) {
    //real ldose = x_r[1];
    //real llag = x_r[2];
    //real lka = x_r[3];
    //real lCl = x_r[4];
    //real lV = x_r[5];
    real lconc = pk_lcmt_oral_tlag_t(t, x_r[1], x_r[2], x_r[3], x_r[4], x_r[5]);
    real lkout = -theta[2];
    real lkin = theta[1] + lkout;
    real lEC50 = theta[3];
    real lS = log_inv_logit(lconc - IEC50);
    // dRdt = kin * (1 - C/(C + EC50)) - R * kout
    return { exp(lkin + log1m_exp(IS)) - R[1] * exp(lkout) };
}
```

▶ Stan run with 250 warmup and sampling for 32 patients:

	warmup	sample	sum
chain:1	6.10	0.96	7.06
chain:2	6.22	0.94	7.16
chain:3	6.17	0.94	7.11
chain:4	6.13	0.96	7.09

Better!

Pharmacometric modeling

Case study: Speeding up the Stan model of Warfarin

Speeding up Stan through reducing the autodiff tree

Taking use of embarrassingly parallel problem formulation

Problem formulation is embarrassingly parallel

- ▶ Pharmacometric models are by default hierarchical so that all patients are exchangeable.
 - ► The likelihood of a given patient can be evaluated in independence of all other patients.
- This hierarchical structure can be taken advantage of using the new map_rect function of Stan.
 - ► This function applies a user-defined function to a set of parameters which are in rectangular data storage format.
 - Evaluations can be performed in parallel using either threading or the message passing interface (MPI).

Computation time as a function of CPU cores

Pharmacometric modeling

Case study: Speeding up the Stan model of Warfarin
Pharmacometric model for Warfarin
Speeding up Stan through reducing the autodiff tree
Taking use of embarrassingly parallel problem formulation

- We can go from 15 minutes to 45 seconds!
- Stan has all required components for realistic pharmacometric problems.
- ▶ Stan 3 will allow the user to declare which function parameters are data and which are not. This will allow the code to be more readable in the future.
- ► *map_rect*-function gives huge performance gains for large problems.