

Pearson Edexcel	Cen	itre Number	Other name		te Numb	er Vennooi	i, nordy.
International Advanced Level					į		d. World Tess
Time 1 hour 30 minutes		Paper reference	WC	H1	1/0		
					20.	A1500	1
Chemistry International Advance UNIT 1: Structure, Boo Organic Chemistry		•					

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working in calculations and include units where appropriate.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

P64623A

©2021 Pearson Education Ltd.

1/1/1/1/1/1/1/1/

SECTION A

Answer ALL the questions in this section.

hitp://skitishshidentroom.worthres You should aim to spend no more than 20 minutes on this section.

For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \(\overline{\o

The numbers of subatomic particles present in four species W, X, Y and Z are given in the table.

Species	Number of protons	Number of neutrons	Number of electrons
w	19	20	18
X	19	20	19
Y	20	20	18
Z	20	22	20

Which of these species are isotopic?

- A Wand X
- B W and Y 30
- C X and Z
- e de D Y and Z

(Total for Question 1 = 1 mark)

2 Iodine exists as one isotope with mass number 127.

Chlorine exists as two isotopes with mass numbers 35 and 37.

How many molecular ion (ICl₃) peaks are there in the mass spectrum of ICl₃?

- .72 A 2
- В 3

(Total for Question 2 = 1 mark)

The mass spectrum of a sample of an element has only two peaks.

What is the approximate relative atomic mass of the element in this sample?

- 2 A 191.5
- 192.0
- 5 (192.5
- **D** 193.0

(Total for Question 3 = 1 mark)

Which equation represents the **second** ionisation energy of magnesium?

- **A** $Mg(g) \rightarrow Mg^{2+}(g) + 2e^{-}$
- **B** $Mg^+(g) \rightarrow Mg^{2+}(g) + e^-$ 3. A.
- **C** Mg(s) \rightarrow Mg²⁺(s) + 2e⁻ . 0
- **D** $Mg^+(s) \rightarrow Mg^{2+}(s) + e^-$ 7

(Total for Question 4 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

The graph shows log (ionisation energy) against ionisation number for the successive ionisations of an element.

In this element, how many quantum shells contain electrons, and how many electrons are in the outer quantum shell?

		Number of quantum shells containing electrons	Number of electrons in the outer quantum shell
<u> </u>	A	3	2
汉	В	3	5
X.	C	5	2
X	D	5	5

(Total for Question 5 = 1 mark)

- **6** Which ion has the electronic configuration $1s^2 2s^2 2p^6 3s^2 3p^6$ in its ground state?
 - $\mathbf{A} \quad \mathsf{Al}^{3+}$ X
 - B Cl
 - 5**7**7
 - D Na⁺

(Total for Question 6 = 1 mark)

25.	The state of the s	A
7	What is the relative formula mass of hydrated sodium carbonate, Na_2CO_3 . $10H_2O$?	Atirish _{shidentr}
	$[A_r \text{ values: H} = 1.0 \text{ C} = 12.0 \text{ O} = 16.0 \text{ Na} = 23.0]$	OOM, WORK
	☑ A 106	W _e

- M **A** 106
- 142 В
- 3,0 C 263
- **D** 286

(Total for Question 7 = 1 mark)

- Which of these isoelectronic ions has the largest radius?
 - A Na⁺
 - **B** Mg²⁺
 - <u>~</u> $C O^{2-}$
 - **D** F

(Total for Question 8 = 1 mark)

- Which ion is the most polarisable?
 - $\mathbf{A} \quad \mathsf{Mg}^{2+}$ 1
 - **B** Ca²⁺
 - C Cl
 - 3.4 D I

(Total for Question 9 = 1 mark)

- **10** Which substance has a giant lattice of atoms?
 - 4. A diamond
 - Ž. ice В
 - **C** poly(ethene)
 - 4. **D** sodium chloride

(Total for Question 10 = 1 mark)

	Total State of the		
11 Wh	iich	compound has bonds that are the most p	olar?
3	A	H₂O	OOD, W.
	В	H ₂ S	
57.	C	NH ₃	
N.	D	PH ₃	
			(Total for Question 11 = 1 mark)
12 Wh	ich i	molecule is planar?	
<u>ja</u>		CF ₄	
Ž.		C_2F_4	
	C	PF ₅	
(A)	D	SF ₆	
			(Total for Question 12 = 1 mark)
one	mo	₂₀ H ₄₂ is cracked, each molecule produces of lecule of butane and two molecules of hy the molecular formula of E ?	
	A	C_7H_{13}	
X	В	C ₇ H ₁₄	
2 % d 2 % d	C	C ₁₄ H ₂₆	
	D	$C_{14}H_{28}$	
			(Total for Question 13 = 1 mark)
Use	this	space for any rough working. Anythin	g you write in this space will gain no credit.

14 What is the systematic name of this compound?

- A 1,1,2-trimethylpent-4-ene
- **B** 2,3-dimethylhex-5-ene
- C 4,5-dimethylhex-1-ene
- **D** 4,5,5-trimethylpent-1-ene

(Total for Question 14 = 1 mark)

hith. State of the state of the

15 Cyclohexene may be prepared by the dehydration of cyclohexanol.

cyclohexanol
$$M_r = 100$$
 H_2O

What mass of cyclohexene can be made from 12.5 g of cyclohexanol if the yield is 51.2 %?

- A 5.25 g
- B 6.40 q
- ☑ C 7.80 g
- ☑ D 10.25 g

(Total for Question 15 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

hith: Britishs thate nitroom, worthing **16** Which of these gases occupies 6.0 dm³ at room temperature and pressure (r.t.p.)?

[molar volume of gas at r.t.p. = $24.0 \text{ dm}^3 \text{ mol}^{-1}$

 A_r values: He = 4.0 C = 12.0 N = 14.0 O = 16.0]

- Ţ. 2.0 g of helium
- 5 В 4.0 g of oxygen
- C 11.0 g of carbon dioxide
- ... **D** 14.0 g of nitrogen

(Total for Question 16 = 1 mark)

17 An oxide of lead contains 90.7% by mass of lead.

What is the formula of this oxide?

 $[A_r \text{ values: O} = 16.0 \text{ Pb} = 207.2]$

- A PbO
- Š B PbO₂
- 1 $\mathbf{C} \quad Pb_2O_3$
- 1 **D** Pb₃O₄

(Total for Question 17 = 1 mark)

18 Propane burns completely in oxygen as shown.

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$$

100 cm³ of propane was mixed with 600 cm³ of oxygen and the mixture was ignited.

What is the **total** volume, in cm³, of the gas mixture at the end of the reaction? All gas volumes were measured at room temperature and pressure.

- **A** 300 3.3
- **B** 400 23
- 5 ° **C** 700
- **D** 800

(Total for Question 18 = 1 mark)

- 19 Which aqueous solution contains the greatest number of ions?
 - \blacksquare **A** 200 cm³ of 1.5 mol dm⁻³ MgCl₂

 - ☑ C 500 cm³ of 1.0 mol dm⁻³ NaCl
 - **D** 1000 cm³ of 0.25 mol dm⁻³ Na₂SO₄

(Total for Question 19 = 1 mark)

Hitto: Ritis Is to dentro on North res

20 A sample of seawater with a mass of 1 kg contains 6×10^{-9} g of gold.

How many atoms of gold, to one significant figure, are there in 1 g of this seawater?

 $[A_r \text{ value: Au} = 197]$

Avogadro constant = $6 \times 10^{23} \text{ mol}^{-1}$]

- \triangle **A** 2 × 10¹⁰
- **B** 4×10^{12}
- **C** 2×10^{13}
- \square **D** 4×10^{15}

(Total for Question 20 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions.

Write your answers in the spaces provided.

- **21** Heptane, C_7H_{16} , is an alkane found in crude oil.
 - (a) Heptane can undergo incomplete combustion.
 - (i) Give a reason why incomplete combustion sometimes occurs.

(1)

hith. Aritishshidentoon, wordyng

(ii) Write the equation for the incomplete combustion of heptane, forming carbon monoxide and water as the only products. State symbols are not required.

(1)

- (b) Heptane is reformed into branched-chain and cyclic hydrocarbons that are used in petrol.
 - (i) Draw the skeletal formulae of a branched-chain alkane and a cycloalkane, each containing seven carbon atoms.

(2)

Branched-chain alkane

Cycloalkane

(ii) Write the equation for the reforming of heptane into a cycloalkane. Use molecular formulae.

(1) Control on the control of the co

(iii) Give a reason for adding cycloalkanes to petrol.

(1)

P 6 4 6 2 3 A 0 1 1 2 4

- (c) Heptane, C_7H_{16} , reacts with chlorine in the presence of ultraviolet radiation.
 - (i) State the type and mechanism of this reaction.

hith: Ballishshidentioon, wordshie

(ii) Give the mechanism for the reaction to produce $C_7H_{15}Cl$, $C_{14}H_{30}$ and HCl as the **only** products.

Include the name of each of the steps in your mechanism.

Curly half-arrows are **not** required.

(7)

(Total for Question 21 = 15 marks)

BLANK PAGE

Alth: Antists the dentroom, worth reservoir

- http://balishsindentroom.wordp 22 This question is about the elements in Period 3 of the Periodic Table, and some of their compounds.
 - (a) The atomic radii of six of the elements are given.

Symbol	Na	Mg	Al	Si	Р	S	Cl	Ar
Atomic number	11	12	13	14	15	16	17	18
Atomic radius / nm	0.191	0.160	0.130			0.102	0.099	0.095

(i) Plot a graph of atomic radius against atomic number.

(2)

(ii) Use the graph to estimate the atomic radius of silicon, Si.

(1)

(iii) Suggest an explanation for the decrease in atomic radius as atomic number increases across a period.	(3) AOTHORS	
	(3) **O _T (b) _{Tes}	C.S.COM
		Arguda di mendengan mendengan
(b) The melting temperatures of sodium, sodium chloride and chlorine are given in the table.		Access to the second se
Complete the table to show the type of structure, the type of bond or force broken on melting and the particles involved.		
	(6)	

Substance	Sodium	Sodium chloride	Chlorine
Melting temperature / °C	98	801	-101
Type of structure	giant		simple molecular
Type of bond or force broken on melting			
Particles involved			chlorine molecules

- (c) Solid phosphorus(V) chloride contains PCl₄ ions.
 - (i) Draw a dot-and-cross diagram of a PCl⁺ ion. Show only outer shell electrons.

http://stistististicon.worth.

(ii) Predict the shape of a PCl₄ ion.

Justify your answer.

(3)

Shape

Justification

(Total for Question 22 = 16 marks)

- 23 This question is about alkenes.
 - (a) An alkene has a molar mass of 112 g mol⁻¹.

 Deduce the molecular formula of this alkene.

hith: Britishshidentroom, worthress com

- (b) There are a number of different alkenes with the molecular formula C_4H_8 .
 - (i) Draw the structure of the **branched-chain** alkene with the molecular formula C_4H_8 .

(1)

(ii) Give the structures and names of the two geometric isomers with the molecular formula C_4H_8 .

(2)

S	tructure of geometric isomer 1	Structure of geometric isomer 2
Na	ame of isomer 1	Name of isomer 2

1-methylcyclohexene

(i) Draw the **skeletal** formula of compound **X** formed in Reaction **1**.

(1)

http://philishshidentoon.wordbre

(ii) Give the reagent and condition needed for Reaction 2.

(2)

Reagent

Condition

(d) lodine monochloride, ICl, reacts with alkenes in a similar way to hydrogen bromide.

http://ballishshidentoon.wordbresse Complete the mechanism for the reaction of iodine monochloride with propene to form the **major** product.

Include curly arrows, the relevant lone pair and the structures of the intermediate and product.

(4)

(e) A section of a polymer showing two repeat units is given.

Give the **name** of the monomer that forms this polymer.

(1)

Hitp://Brishstildentroom.worder (f) 0.0100 mol of an alkene reacts completely with exactly 600 cm 3 of hydrogen gas, measured at 298 K and 1.24 \times 10 5 Pa pressure, to form an alkane.

Use the ideal gas equation to deduce the number of double bonds in one molecule of the alkene. You must show your working.

$$[pV = nRT$$
 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}]$

(4)

(Total for Question 23 = 16 marks)

- 24 This question is about iron and some of its compounds.
 - (a) Complete the table to show the numbers of subatomic particles in $^{56}\text{Fe}^{2+}$.

		http://a	
is question is about iron and so Complete the table to show t		orticles in ⁵⁶ Fe ²⁺ . (1)	ioon, Moidhess.
Number of protons	Number of neutrons	Number of electrons	040

(b) A sample of iron contains the following isotopes.

Isotope	Percentage abundance
⁵⁴ Fe	5.84
⁵6Fe	91.68
⁵⁷ Fe	2.17
⁵⁸ Fe	0.31

Calculate the relative atomic mass of this sample of iron. Give your answer to three significant figures.

(2)

(c) Magnesium reacts with aqueous iron(II) sulfate in a displacement reaction. Write the ionic equation for this reaction. Include state symbols.

(2)

(d) $25.00\,\mathrm{g}$ of a compound contains $6.98\,\mathrm{g}$ of iron and $6.03\,\mathrm{g}$ of sulfur.

The remaining mass is oxygen.

Calculate the **empirical** formula of this compound.

[
$$A_r$$
 values: O = 16.0 S = 32.1 Fe = 55.8]

(3)

Alto: Aniishstudentoon, wordhre

(e) When $6.95\,g$ of FeSO₄.**x**H₂O is heated, $2.00\,g$ of iron(III) oxide, $0.80\,g$ of sulfur dioxide and $1.00\,g$ of sulfur trioxide are produced. The only other product is water.

Deduce the overall equation for the reaction using these data. State symbols are not required.

You must show your working.

[A_r values: H = 1.0 O = 16.0 S = 32.1 Fe = 55.8]

(5)

hith. British shidentroom, worthress com

(Total for Question 24 = 13 marks)

TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = 80 MARKS

	_	٦٢									T		5	<u>س</u>				_]		
	0 (8)	4.0	H	2	20.7	N N	10 10	39.6	Ā	argon 18	83.8	호	krypton 36	131.	×	xenon 54	[222]	R	radon 86		rted	
	7			(17)	19.0	L	fluorine 9	35.5	ರ	chlorine 17	79.9	Ŗ	bromine 35	126.9	_	iodine 53	[210]	At	astatine 85		been repo	
	9			(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Тe	tellurium 52	[506]	8	polonium 84		116 have	ıticated
	Ŋ			(15)	14.0	z	nitrogen 7	31.0	Δ.	phosphorus 15	74.9	As	arsenic 33	121.8	S	antimony 51	209.0	Bi	bismuth 83		nbers 112-	but not fully authenticated
in grad america (Additional) in a language	4			(14)	12.0	U	carbon 6	28.1		_	1	ge	germanium 32	118.7	Sn	£ 62	207.2	Pb	lead 82		atomic nur	but not fi
	ю			(13)	10.8	മ	boron 5	27.0	¥	aluminium 13	69.7	g	gallium 31	114.8	Г	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported	
ents										(12)	65.4	Zu	zìnc 30	112.4	ਨ	cadmium 48	200.6	위	mercury 80		Elem	
Elem										(11)	63.5	7	copper 29	107.9	Ag	silver 47	197.0	PΠ	gold 79	[272]	Rg	ventgenium 111
e of										(10)	58.7	Ë	nicket 28	106.4	Pq	palladium 46	195.1	T	platinum 78	[271]	Ds	darmstadtíum r 110
Tabl										(6)	58.9	ර	cobalt 27	102.9	윤	rhodium 45	192.2	1	iridium 77	[368]	Μŧ	meitnenum 109
riodic		1.0	hydrogen	-						(8)	55.8	ā	iron 26	101.1	2	ruthenium 44	190.2	ŏ	osmium 76	[277]		hassium r
The Periodic Table of Elements		<u> </u>								(2)	54.9	W	nanganese 25	[86]		Ε	186.2	Re	rhenium 75	[264]	Bh	bohrium 107
					nass		ımber			(9)	52.0	ъ	chromium manganese 24 25	95.9	Wo	molybdenum technetiu 42 43	183.8		tungsten 74		Sg	seaborgium 106
				Key	relative atomic mass	atomic symbol	atomic (proton) number			(2)	50.9	>	vanadium 23	92.9		niobium 41	180.9	<u>T</u>	tantalum 73	l_		dubnium 1
					relativ	ator	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ŧ	hafnium 72	[261]		
										(3)	45.0		scandium 21	88.9		yttrium 39	138.9	*e	anthanum 57	[227]	¥¢*	actinium nutherfordium 89 104
	7			(2)	9.0	Be E	7 4	24.3	Wg	magnesium 12	40.1	_	calcium 20	97.6	٦	strontium 38	~~		barium 56	[526]	Ra	radium 88
	-			(1)	6.9	ي ت	-			11	39.1	エ	potassium 19	85.5		rubidium 37	132.9	ტ	caesium 55	[223]	Ŀ,	francium 87
				1									_							'		

Ť	4	441	[147]	150	152	157	159	163	165	167	169	173	
P. NG	Ž		Е	ES.	Eu	છુ	P	2	운	Ę	E	₽	
ргазеодутіцт пеодут	neodym	Ë	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	₹
59 60	9		61	62	63	64	65	99	67	68	69	70	
[231] 23	23	∞	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	۔ ا
Pa ∪	-		Ž	P	Αm	Ę	쏬	ზ	Ę	Ē	Wd	2	
protactinium urani	urani	E	neptunium	plutonium	americium	anim	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	Ř
91 – 92	92		93	8	95	96	26	86	66	100	101	102	

* Lanthanide series * Actinide series

hip. Antishsindentoon, words

175 **Lu** lutetium lawrencium 103

24