Variable Compleja Curso 2023-2024

Relación 6

Ejercicio 1. Probar que la serie funcional

$$\sum_{n=1}^{\infty} \frac{1}{n^z}$$

define una función holomorfa en el semiplano $\{z \in \mathbb{C} : \text{Re}(z) > 1\}$.

Solución. Consideremos la sucesión de funciones $\{f_n\}_{n\in\mathbb{N}}$, donde

$$f_n(z) = \frac{1}{n^z} = e^{-z \log(n)}$$

El objetivo es demostrar que la serie del enunciado es normalmente convergente para poder aplicar el teorema de convergencia de Weierstrass.

Sea $K \subset D$ un compacto. Entonces existe a > 1 tal que $K \subset \{z \in \mathbb{C} : \text{Re}(z) \ge a\}$. Por tanto, si $z = x + iy \in K$,

$$|e^{-z\log(n)}| = |e^{-x\log(n)}e^{-iy\log(n)}| = e^{-x\log(n)} \le e^{-a\log(n)} = \frac{1}{n^a}$$

Como la serie numérica $\sum_{n=1}^{\infty} \frac{1}{n^a}$ es convergente (pues a>1), el criterio de la mayorante de Weierstrass permite afirmar que la serie $\sum_{n=1}^{\infty} f_n$ es uniformemente convergente en K. Tenemos entonces que la sucesión $\left\{\sum_{n=0}^{k} \frac{1}{n^z}\right\}_{k=0}^{\infty}$ converge normalmente en D a la serie funcional $\sum_{n=1}^{\infty} \frac{1}{n^z}$. Como las funciones $\sum_{n=0}^{k} \frac{1}{n^z}$ son holomorfas en D (son sumas de funciones holomorfas), por el teorema de convergencia de Weierstrass, la serie funcional $\sum_{n=1}^{\infty} \frac{1}{n^z}$ es también holomorfa.

Ejercicio 2. Supongamos que $0 < R \le \infty$ y que f es holomorfa en $\Delta(0,R)$, con desarrollo de Taylor en 0 de la forma $\sum_{n=0}^{\infty} a_n z^n$. Probar lo siguiente:

- (a) Si f es una función par, entonces $a_{2n-1} = 0$ para todo $n \in \mathbb{N}$.
- (b) Si f es una función impar, entonces $a_{2n} = 0$ para todo $n \in \mathbb{N} \cup \{0\}$.

Solución.

- (a) Supongamos que f es par, esto es, que f(z)=f(-z) para todo $z\in\Delta(0,R)$. Se prueba fácilmente por inducción que $f^{(n)}(z)=(-1)^nf^{(n)}(-z)$ para todo $n\in\mathbb{N}$ y todo $z\in\Delta(0,R)$ y, en particular, se tiene $f^{(n)}(0)=(-1)^nf^{(n)}(0)$. En consecuencia, si n es impar, entonces $f^{(n)}(0)=-f^{(n)}(0)$ y tiene que ser $f^{(n)}(0)=0$, de donde $a_n=\frac{f^{(n)}(0)}{n!}=0$. Decir que $a_n=0$ para todo $n\in\mathbb{N}$ impar es lo mismo que decir que $a_{2n-1}=0$ para todo $n\in\mathbb{N}$.
- (b) Supongamos que f es par, esto es, que f(z) = -f(-z) para todo $z \in \Delta(0,R)$. Se prueba fácilmente por inducción que $f^{(n)}(z) = (-1)^{n+1} f^{(n)}(-z)$ para todo $n \in \mathbb{N} \cup \{0\}$ y todo $z \in \Delta(0,R)$ y, en particular, se tiene $f^{(n)}(0) = (-1)^{n+1} f^{(n)}(0)$. En consecuencia, si n es par, entonces $f^{(n)}(0) = -f^{(n)}(0)$ y tiene que ser $f^{(n)}(0) = 0$, de donde $a_n = \frac{f^{(n)}(0)}{n!} = 0$. Decir que $a_n = 0$ para todo $n \in \mathbb{N} \cup \{0\}$ par es lo mismo que decir que $a_{2n} = 0$ para todo $n \in \mathbb{N} \cup \{0\}$.

Ejercicio 3. Para la función $f(z) = z^2 - 1$, determinar si es posible o no definir una rama del $\log(f)$ y/o una rama de la \sqrt{f} en cada uno de los siguientes dominios:

- (a) $D_1 = \mathbb{C} \setminus \{x \in \mathbb{R} : |x| \ge 1\}.$
- (*b*) $D_2 = \mathbb{C} \setminus [-1, 1]$.
- (c) $D_3 = \mathbb{C} \setminus ([-1,0] \cup \{x \in \mathbb{R} : x \ge 1\}).$

Solución. La función $f(z) = z^2 - 1 = (z+1)(z-1)$ es holomorfa y nunca nula en los tres dominios dados, y su derivada logarítmitca es

$$\frac{f'(z)}{f(z)} = \frac{1}{z+1} + \frac{1}{z-1}$$

Si γ es un camino cerrado en el dominio D_i , con i=1,2,3, entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z+1} dz + \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-1} dz = n(\gamma, -1) + n(\gamma, 1)$$

(a) En cualquier camino cerrado γ en el dominio D_1 se verifica $n(\gamma, -1) = 0$ y $n(\gamma, 1) = 0$, luego, por lo anterior,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$$

Por tanto, existe una rama del $\log(f)$ en D_1 , así que también existe una rama de la \sqrt{f} en D_1 .

(b) Si consideramos el camino $\gamma \equiv |z| = 2$, cuyo soporte está en el dominio D_2 , tenemos $n(\gamma, -1) = 1$ y $n(\gamma, 1) = 1$, luego

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = 2 \neq 0,$$

deduciéndose que no existen ramas del $\log(f)$ en D_2 . Sin embargo, con esto no se puede decir nada acerca de la existencia de ramas de la \sqrt{f} en D_2 . Se observa que $f(z) = (z-1)^2 \frac{z+1}{z-1}$, así que cabe preguntarse si existe una rama de la \sqrt{g} , donde $g(z) = \frac{z+1}{z-1}$ es holomorfa en D_2 . Se tiene que

$$\frac{g'(z)}{g(z)} = \frac{1}{z+1} - \frac{1}{z-1},$$

y, razonando como antes, si γ es un camino cerrado en D_2 , entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz = n(\gamma, -1) - n(\gamma, 1)$$

Pero 1 y -1 están en la misma componente conexa de $\mathbb{C} \setminus \text{sop}(\gamma)$ para cualquier camino cerrado γ en D_2 , luego $n(\gamma, -1) = n(\gamma, 1)$ y por tanto

$$\frac{1}{2\pi i} \int_{\mathcal{X}} \frac{g'(z)}{g(z)} dz = 0,$$

En consecuencia, existe una rama del $\log(g)$ en D_2 , y llamando ψ a esta rama, tenemos que $\varphi(z) = (z-1)e^{\frac{\psi(z)}{2}}$ es una rama de la \sqrt{f} en D_2 .

(c) Consideremos el camino cerrado γ que resulta de recorrer la circunferencia de centro $-\frac{1}{2}$ y radio 1 de forma simple en sentido positivo. Entonces γ es un camino cerrado en D_3 con $n(\gamma, -1) = 1$ y $n(\gamma, 1) = 0$, luego

$$\frac{1}{2\pi i} \int_{\mathcal{X}} \frac{f'(z)}{f(z)} dz = 1,$$

que no es ni cero ni múltiplo entero de 2, concluyéndose que en D_3 no hay ramas ni del $\log(f)$ ni de la \sqrt{f} .

Ejercicio 4. Sea D un dominio en \mathbb{C} y sea f una función holomorfa y nunca cero en D. Probar que existe una rama del $\log(f)$ en D si y solo si para cada $n \in \mathbb{N}$ con $n \ge 2$ existe una rama de la $\sqrt[n]{f}$ en D.

Solución. Si $g: D \to \mathbb{C}$ es una rama del $\log(f)$ en D, entonces la función $h: D \to \mathbb{C}$ dada por $h(z) = e^{\frac{g(z)}{n}}$ es una rama de la $\sqrt[n]{f}$ en D, pues es continua en D (por serlo g) y $h(z)^n = e^{g(z)} = f(z)$ para todo $z \in \mathbb{C}$. Recíprocamente, si para todo $n \in \mathbb{N}$ con $n \ge 2$ existe una rama de la $\sqrt[n]{f}$ en D, entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)}$$

es múltiplo entero de n, esto es, existe $k_n \in \mathbb{Z}$ tal que para todo camino cerrado γ en D se tiene

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} = nk_n,$$

es decir,

$$k_n = \frac{1}{2\pi ni} \int_{\gamma} \frac{f'(z)}{f(z)}$$

Como

$$\lim_{n \to \infty} \frac{1}{2\pi ni} \int_{\gamma} \frac{f'(z)}{f(z)} = \lim_{n \to \infty} k_n = 0$$

y $k_n \in \mathbb{Z}$ para todo $n \in \mathbb{N}$ con $n \ge 2$, entonces existe $n_0 \in \mathbb{N}$ tal que $k_n = 0$ para todo $n \ge n_0$. En particular, $k_{n_0} = 0$, de donde se deduce que

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} = n_0 k_{n_0} = 0$$

П

para todo camino cerrado γ en D. En consecuencia, existe una rama del $\log(f)$ en D.

Ejercicio 5. Sea f una función entera no idénticamente nula que tiene un cero de orden 3 en 0. Calcular el orden de 0 en los siguientes casos:

- (a) Como cero de $f \circ f$.
- (b) Como cero de $f^3 \cdot f'$.

Solución. Por hipótesis, existe una función entera g con $g(0) \neq 0$ y tal que

$$f(z) = z^3 g(z)$$

para todo $z \in \mathbb{C}$.

(a) Si $z \in \mathbb{C}$,

$$f \circ f(z) = f(z)^3 g(f(z)) = z^9 g(z)^3 g(f(z)) = z^9 h(z),$$

donde $h(z) = g(z)^3 g(f(z))$ define una función entera y con $h(0) \neq 0$ (por ser f(0) = 0 y $g(0) \neq 0$), luego 0 es un cero de $f \circ f$ de orden 9.

(b) Si $z \in \mathbb{C}$,

$$f^3 \cdot f'(z) = f^3(z) \cdot f'(z) = z^9 g(z)^3 \left(3z^2 g(z) + z^3 g'(z)\right) = z^{11} \left(3g(z)^4 + zg'(z)g(z)^3\right) = z^{11} h(z),$$

donde $h(z) = 3g(z)^4 + zg'(z)g(z)^3$ define una función entera y con $h(0) = 3g(0)^4 \neq 0$ (pues $g(0) \neq 0$). Por tanto, 0 es un cero de $f^3 \cdot f'$ de orden 11.

Ejercicio 6. Sea f una función entera y supongamos que para cada $z \in \mathbb{C}$ existe un natural n (que depende de z) tal que $f^{(n)}(z) = 0$. Probar que f es un polinomio.

Solución. Vamos a probar que existe $n_0 \in \mathbb{N}$ tal que $f^{(n_0)} \equiv 0$ en \mathbb{C} . Supongamos, por reducción al absurdo, que para todo $n \in \mathbb{N}$ la función $f^{(n)}$ no es idénticamente nula. Como $f^{(n)}$ es holomorfa y no idénticamente nula en \mathbb{C} , entonces $\mathcal{Z}(f^{(n)})$ es, a lo sumo, numerable. Pero, por hipótesis, podemos escribir

$$\mathbb{C} = \bigcup_{n \in \mathbb{N}} \mathcal{Z}(f^{(n)})$$

Como \mathbb{C} es unión numerable de conjuntos numerables, entonces es numerable, lo cual es evidentemente falso. No queda otra que admitir que existe $n_0 \in \mathbb{N}$ tal que $f^{(n_0)}$ es idénticamente nula en \mathbb{C} , y por tanto f es un polinomio de grado menor que n_0 .

Ejercicio 7. Sea f una función holomorfa en el disco unidad \mathbb{D} tal que $|f(\frac{1}{n})| \leq 3^{-n}$ para todo $n \in \mathbb{N}$ con $n \geq 2$. $\partial_{i}Qu$ é se puede decir de f?

Solución. Veamos que $f \equiv 0$ en \mathbb{D} . Por reducción al absurdo, supongamos que f no es idénticamente nula en D. Entonces no es idénticamente nula en un entorno de 0 (si lo fuese, entonces $\mathcal{Z}(f)$ tendría puntos de acumulación y el principio de identidad de Weierstrass nos diría que $f \equiv 0$ en \mathbb{D}). Por hipótesis y por la continuidad de f en 0, se tiene

$$f(0) = \lim_{n \to \infty} f\left(\frac{1}{n}\right) = 0$$

Si $n_0 \in \mathbb{N}$ es el orden de 0 como cero de f, existe una función g holomorfa en \mathbb{D} con $g(0) \neq 0$ y tal que

$$f(z) = z^{n_0} g(z)$$

Por tanto, si $n \in \mathbb{N}$, $n \ge 2$,

$$\left| f\left(\frac{1}{n}\right) \right| = \frac{1}{n^{n_0}} \left| g\left(\frac{1}{n}\right) \right| \le \frac{1}{3^n}$$

De aguí se deduce que

$$\left| g\left(\frac{1}{n}\right) \right| \le \frac{n^{n_0}}{3^n}$$

Se prueba fácilmente por el criterio del cociente que

$$\lim_{n\to\infty}\frac{n^{n_0}}{3^n}=0,$$

luego

$$\lim_{n\to\infty} g\left(\frac{1}{n}\right) = 0,$$

pero, por la continuidad de g en 0,

$$g(0) = \lim_{n \to \infty} g\left(\frac{1}{n}\right) = 0,$$

que es una contradicción. Concluimos que $f \equiv 0$ en \mathbb{D} .

Ejercicio 8. Decidir si existen o no funciones f, g, h holomorfas en el disco unidad \mathbb{D} y satisfaciendo, $para n \in \mathbb{N} con n \geq 2$,

(a)
$$f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^2}$$
,

(b)
$$g(\frac{1}{2n}) = g(-\frac{1}{2n+1}) = \frac{1}{n}$$
, (c) $h(\frac{1}{n}) = h(-\frac{1}{n}) = -\frac{1}{n^3}$.

(c)
$$h(\frac{1}{n}) = h(-\frac{1}{n}) = -\frac{1}{n^3}$$
.

Solución.

- (a) Basta tomar $f(z)=z^2$, que es holomorfa en $\mathbb D$ y verifica $f(\frac{1}{n})=f(-\frac{1}{n})=\frac{1}{n^2}$.
- (b) Supongamos que existe una función g holomorfa en \mathbb{D} y con $g(\frac{1}{2n}) = g(-\frac{1}{2n+1}) = \frac{1}{n}$. Entonces, por ser g continua,

$$g(0) = \lim_{n \to \infty} g\left(\frac{1}{2n}\right) = 0,$$

y como g es holomorfa y no idénticamente nula en ningún entorno de 0, entonces 0 es un cero aislado de g. Sea $n_0 \in \mathbb{N}$ su orden. Entonces $g(z) = z^{n_0} \varphi(z)$ para todo $z \in \mathbb{D}$, donde φ es holomorfa en \mathbb{D} y tal que $\varphi(0) \neq 0$. Se tiene que $g\left(\frac{1}{2n}\right) = \frac{1}{2^{n_0}n^{n_0}} \varphi\left(\frac{1}{2n}\right) = \frac{1}{n}$, luego $\varphi\left(\frac{1}{2n}\right) = 2^{n_0} \frac{n^{n_0}}{n}$. Si fuese $n_0 > 2$, entonces, por la continuidad de φ en 0,

$$\varphi(0) = \lim_{n \to \infty} \varphi\left(\frac{1}{2n}\right) = \lim_{n \to \infty} 2^{n_0} \frac{n^{n_0}}{n} = \infty,$$

que es imposible. Por tanto, $n_0=1$, así que $\varphi\left(\frac{1}{2n}\right)=2$. Al tomar límite obtenemos $\varphi(0)=2$, pero, por otra parte, $g\left(-\frac{1}{2n+1}\right)=\frac{1}{n}\varphi\left(\frac{1}{n}\right)=\frac{1}{n}$, de donde $\varphi(\frac{1}{n})=1$ y al tomar límite obtenemos $\varphi(0)=1$. Esto es una contradicción, así que no puede existir una función g con las propiedades del enunciado.

Otra forma. Consideremos la sucesión $\{z_n\}_{n\in\mathbb{N}}$, con $z_n=\frac{1}{2n}$. Entonces $g(z_n)=\frac{1}{n}=2z_n=\varphi(z_n)$, siendo $\varphi(z)=2z$ holomorfa en \mathbb{D} . Como además $\lim_{n\to\infty}z_n=0$ y $z_n\neq 0$ para todo $n\in\mathbb{N}$, tenemos que 0 es punto de acumulación del conjunto $\{z \in \mathbb{D} : g(z) = \varphi(z)\}$, luego, por el principio de unicidad de Weierstrass, ha de ser $g = \varphi$, es decir, g(z) = 2z para todo $z \in \mathbb{D}$. Pero entonces $g(-\frac{1}{2n+1}) \neq \frac{1}{n}$, concluyéndose que no existe una función g en las condiciones del enunciado.

(c) Consideremos la sucesión $\{z_n\}_{n\in\mathbb{N}}$, con $z_n=\frac{1}{n}$. Entonces $h(z_n)=-z_n^3=\psi(z_n)$, siendo $\psi(z)=-z^3$ holomorfa en \mathbb{D} . Como además $\lim_{n\to\infty}z_n=0$ y $z_n\neq 0$ para todo $n\in\mathbb{N}$, tenemos que 0 es punto de acumulación del conjunto $\{z\in\mathbb{D}:h(z)=\psi(z)\}$, luego, por el principio de unicidad de Weierstrass, ha de ser $h=\psi$, es decir, $h(z)=-z^3$ para todo $z\in\mathbb{D}$. Pero entonces $h(-\frac{1}{n})=\frac{1}{n^3}\neq -\frac{1}{n^3}$, concluyéndose que no existe una función h con las condiciones del enunciado.

Ejercicio 9. Sea $D = \{z \in \mathbb{C} : |\text{Im}(z)| < \frac{\pi}{2}\}$ y sea $f(z) = e^{e^z}$, $z \in D$. Hallar, para cada $\xi \in \partial D$,

$$\limsup_{z \to \xi, z \in D} |f(z)|$$

¿Hay algo de relevante en este hallazgo en relación con el principio del módulo máximo?

Solución. Sea $z = x + iy \in D$. Entonces

$$\left| e^{e^z} \right| = \left| e^{e^x (\cos y + i \sin y)} \right| = \left| e^{e^x \cos(y)} e^{i(e^x \sin(y))} \right| = e^{e^x \cos(y)}$$

Como $\partial D = \{x + iy \in \mathbb{C} : y = \frac{\pi}{2} \text{ o } y = -\frac{\pi}{2}\} \text{ y } \cos(\frac{\pi}{2}) = \cos(-\frac{\pi}{2}) = 0, \text{ entonces}$

$$\limsup_{z \to \xi, z \in D} |f(z)| = \limsup_{z \to \xi, z \in D} e^{e^x \cos(y)} = e^0 = 1$$

Sin embargo, no podemos aplicar el principio del módulo máximo, pues

$$\limsup_{z \to \infty} |f(z)| = \infty,$$

y para probar esto basta considerar la sucesión $\{z_n\}_{n\in\mathbb{N}}$ con $z_n=n$, que tiene límite ∞ y verifica

$$\lim_{n\to\infty} |f(z_n)| = \lim_{n\to\infty} e^{e^n} = \infty$$

Todo esto nos dice que la hipótesis $\xi \in \partial_{\infty}D$ del principio del módulo máximo no se puede sustituir por $\xi \in \partial D$.

Ejercicio 10. Sea f una función entera tal que f(z) = f(z+1) = f(z+i) para todo $z \in \mathbb{C}$. ∂Q ué se puede decir de f?

Solución. El objetivo es probar que f es constante en \mathbb{C} . Se verifica lo siguiente:

- (a) Para todo $z \in \mathbb{C}$ y todo $n \in \mathbb{Z}$ se tiene f(z) = f(z+n) (se prueba fácilmente por inducción).
- (b) Para todo $z \in \mathbb{C}$ y todo $n \in \mathbb{Z}$ se tiene f(z) = f(z + in) (se prueba fácilmente por inducción).
- (c) f toma todos sus valores distintos en el cuadrado

$$Q = \{z \in \mathbb{C} : 0 \le \text{Re}(z) \le 1, 0 \le \text{Im}(z) \le 1\},\$$

es decir, para todo $z \in \mathbb{C}$ existe $w \in Q$ tal que f(z) = f(w). En efecto, si $z = x + iy \in \mathbb{C}$, entonces $x - E(x) \in [0, 1]$ e $y - E(y) \in [0, 1]$, luego $w = x - E(x) + i(y - E(y)) \in Q$. Además,

$$f(z) \stackrel{(a)}{=} f(z - E(x)) \stackrel{(b)}{=} f(z - E(x) - iE(y)) = f(x - E(x) + i(y - E(y))) = f(w)$$

(d) |f| es continua en el compacto Q, así que alcanza el máximo: existe $w \in Q$ tal que $|f(z)| \le |f(w)|$ para todo $z \in Q$, luego, por lo probado en (c), se tiene $|f(z)| \le |f(w)|$ para todo $z \in \mathbb{C}$.

El principio del módulo máximo (o el teorema de Liouville) permite concluir que f es constante en \mathbb{C} . \square

Ejercicio 11. Sea f una función holomorfa en el disco unidad \mathbb{D} tal que $f(\mathbb{D}) \subset \mathbb{D}$ y f(0) = 0. Probar que la serie funcional $\sum_{n=1}^{\infty} f(z^n)$ define una función holomorfa g en \mathbb{D} . Calcular g'(0).

Solución. Veamos en primer lugar que la función $g(z) = \sum_{n=1}^{\infty} f(z^n)$ está bien definida. Dado $z \in \mathbb{D}$, se tiene que $z^n \in \mathbb{D}$ y, por el lema de Schwarz, $|f(z^n)| \le |z^n|$. Como la serie $\sum_{n=1}^{\infty} |z^n|$ es convergente (pues |z| < 1), entonces la serie $\sum_{n=1}^{\infty} |f(z^n)|$ es convergente, luego $\sum_{n=1}^{\infty} f(z^n)$ también.

Veamos ahora que g es holomorfa. Sea $K \subset \mathbb{D}$ un compacto. Entonces existe a < 1 tal que $K \subset \overline{\Delta(0,a)}$. Así, si $z \in \mathbb{D}$, de nuevo por el lema de Schwarz, $|f(z^n)| \leq |z^n| \leq |a^n|$. Como la serie numérica $\sum_{n=1}^{\infty} |a^n|$ es convergente (ya que a < 1), entonces, por el criterio de la mayorante de Weierstrass, $\sum_{n=1}^{\infty} f(z^n)$ converge absoluta y uniformemente en K. Tenemos entonces que la sucesión de funciones holomorfas $\{\sum_{n=1}^k f(z^n)\}_{k \in \mathbb{N}}$ converge normalmente en \mathbb{D} a la función g. El teorema de convergencia de Weierstrass permite afirmar que g es holomorfa en \mathbb{D} , y también que la sucesión $\{\sum_{n=1}^k nz^{n-1}f'(z^n)\}_{k \in \mathbb{N}}$ converge normalmente a g' en \mathbb{D} . En particular, converge puntualmente a g' en 0, luego

$$g'(0) = \lim_{k \to \infty} \sum_{n=1}^{k} n \cdot 0^{n-1} f'(0^n) = f'(0)$$

Ejercicio 12. Sea f una función entera no constante tal que $f(\partial \mathbb{D}) \subset \partial \mathbb{D}$. Probar que existe $z_0 \in \mathbb{D}$ con $f(z_0) = 0$.

Solución. Supongamos, por reducción al absurdo, que $f(z) \neq 0$ para todo $z \in \mathbb{D}$. Como f es continua en el compacto \overline{D} , existen $z_0, z_1 \in \overline{\mathbb{D}}$ tales que $|f(z_0)| \leq |f(z)| \leq |f(z_1)|$ para todo $z \in \overline{D}$. Veamos que $z_0, z_1 \in \partial \mathbb{D}$:

- Si fuese $z_1 \in \mathbb{D}$, el principio del módulo máximo diría que f es constante en \mathbb{D} , y, por el principio de unicidad de Weierstrass, f sería constante en \mathbb{C} , que es falso por hipótesis.
- Si fuese $z_0 \in \mathbb{D}$, el principio de módulo mínimo (puede aplicarse porque se ha supuesto que f es nunca nula en \mathbb{D}) diría que f es constante en \mathbb{D} , y, por el principio de unicidad de Weierstrass, f sería constante en \mathbb{C} , que es falso por hipótesis.

Una vez probado que $z_0, z_1 \in \partial \mathbb{D}$, como $f(\partial \mathbb{D}) \subset \partial \mathbb{D}$, entonces $|f(z_0)| = |f(z_1)| = 1$, luego $1 \le |f(z)| \le 1$ para todo $z \in \overline{D}$. Obtenemos entonces que f es constante en \mathbb{D} , así que es constante en \mathbb{C} como consecuencia del principio de unicidad de Weierstrass, y, de nuevo, esto es imposible.

La conclusión es que existe $f(z_0) \in \mathbb{D}$ tal que $f(z_0) = 0$.

Ejercicio 13. Sea f holomorfa en \mathbb{D} con $f(\mathbb{D}) \subset \mathbb{D}$ y $f(\frac{1}{2}) = f(\frac{1}{3}) = 0$. Probar que $|f(0)| \leq \frac{1}{6}$. ightarrow Es posible la igualdad?

Solución. Consideremos las funciones

$$\varphi_{\frac{1}{2}}(z) = \frac{\frac{1}{2} - z}{1 - \frac{1}{2}z}, \qquad \qquad \varphi_{\frac{1}{3}}(z) = \frac{\frac{1}{3} - z}{1 - \frac{1}{3}z},$$

que son holomorfas y verifican $\varphi_{\frac{1}{2}}(0) = \frac{1}{2}$ y $\varphi_{\frac{1}{3}}(0) = \frac{1}{3}$. Veamos que

$$|f(0)| \le \varphi_{\frac{1}{2}}(0)\varphi_{\frac{1}{3}}(0),$$

o lo que es lo mismo,

$$\left| \frac{f(0)}{\varphi_{\frac{1}{2}}(0)\varphi_{\frac{1}{3}}(0)} \right| \le 1$$

Consideremos la función $g: \mathbb{D} \setminus \{\frac{1}{2}, \frac{1}{3}\} \to \mathbb{C}$ dada por

$$g(z) = \frac{f(z)}{\varphi_{\frac{1}{2}}(z)\varphi_{\frac{1}{3}}(z)} = \frac{(1 - \frac{1}{2}z)(1 - \frac{1}{3}z)f(z)}{(\frac{1}{2} - z)(\frac{1}{3} - z)}$$

Nótese que, por ser f holomorfa y por tenerse $f(\frac{1}{2})$, puede aplicarse la regla de L'Hôpital para obtener

$$\lim_{z \to \frac{1}{2}} \frac{f(z)}{\frac{1}{2} - z} = \lim_{z \to \frac{1}{2}} -f'(z) = -f'\left(\frac{1}{2}\right),$$

luego g puede extenderse de manera continua a $\mathbb{D}\setminus\{\frac{1}{3}\}$ y, razonando análogamente, también se puede extender de manera continua a \mathbb{D} . Si volvemos a llamar g a dicha extensión, tenemos que g es continua en \mathbb{D} y holomorfa en $\mathbb{D}\setminus\{\frac{1}{2},\frac{1}{3}\}$, luego, por un resultado sobre singularidad evitable, g es holomorfa en \mathbb{D} . Además, como $\varphi_{\frac{1}{3}}(\partial\mathbb{D}) = \partial\mathbb{D}$, $\varphi_{\frac{1}{3}}(\partial\mathbb{D}) = \partial\mathbb{D}$ y |f(z)| < 1 para todo $z \in \mathbb{D}$, entonces, dado $\xi \in \partial\mathbb{D}$,

$$\left| \limsup_{z \to \xi, z \in \mathbb{D}} |g(z)| = \lim \sup_{z \to \xi, z \in \mathbb{D}} \left| \frac{f(z)}{\varphi_{\frac{1}{2}}(z)\varphi_{\frac{1}{3}}(z)} \right| \le 1$$

Por el principio del módulo máximo, $|g(z)| \le 1$ para todo $z \in \mathbb{D}$. En particular, $|g(0)| \le 1$, es decir,

$$|f(0)| \le |\varphi_{\frac{1}{2}}(0)||\varphi_{\frac{1}{3}}(0)| = \frac{1}{6}$$

Por último, si se diese la igualdad, entonces g sería constante en \mathbb{D} , que es claramente falso.

Ejercicio 14. Sea $\gamma = [1,2] + \alpha + [2i,i] - \beta$, donde, para $t \in [0,\frac{5\pi}{2}]$, $\alpha(t) = 2e^{it}$ y $\beta(t) = e^{it}$. Decidir si γ es o no homólogo a cero módulo D, siendo

(a)
$$D = \mathbb{C} \setminus [0, \frac{1}{2}],$$

(b) $D = \mathbb{C} \setminus [3, \infty)$,

(c)
$$D = \{z \in \mathbb{C} : e^{-1} < |z| < e\},$$

(d)
$$D = \mathbb{C} \setminus \{\frac{3}{2}e^{it}: \frac{3\pi}{4} \le t \le \frac{5\pi}{4}\}.$$

Solución.

- (a) Si $z \in [0, \frac{1}{2}]$, entonces $n(\gamma, z) = 1 1 = 0$, pues α da una vuelta alrededor de z en sentido antihorario y β da otra en sentido horario. Por tanto, $\gamma \sim 0$ (mód D).
- (b) Si $z \in [3,\infty)$, entonces $n(\gamma,z) = 0$, pues z está en la componente conexa no acotada de $\mathbb{C} \setminus \text{sop}(\gamma)$. Por tanto, $\gamma \sim 0$ (mód D).
- (c) Si $z \in \mathbb{C} \setminus D$, hay dos posibilidades:
 - z está en el exterior del disco de centro 0 y radio e. Entonces z está en la componente conexa no acotada de $\mathbb{C} \setminus \text{sop}(\gamma)$, luego $\text{n}(\gamma, z) = 0$.
 - z está en el disco de centro 0 y radio e^{-1} , que está contenido en el disco de centro 0 y radio 1. Como α da una vuelta alrededor de z en sentido antihorario y β da otra en sentido horario, entonces $n(\gamma, z) = 1 1 = 0$.

En cualquier caso se llega a $n(\gamma, z) = 0$, luego $\gamma \sim 0$ (mód D).

(d) Si $z \in \{\frac{3}{2}e^{it}: \frac{3\pi}{4} \le t \le \frac{5\pi}{4}\}$, tenemos que z está en el arco de circunferencia de centro 0 y radio $\frac{3}{2}$ comprendido entre los ángulos $\frac{3\pi}{4}$ y $\frac{5\pi}{4}$. Entonces α da una vuelta en sentido antihorario alrededor de z y β no da ninguna, luego n(γ , z) = 1 y por tanto $\gamma \ne 0$ (mód D).

Ejercicio 15. Dar un ejemplo, si es posible, de un dominio en \mathbb{C} que sea simplemente conexo y tal que $\mathbb{C} \setminus D$ tenga infinitas componentes conexas.

Solución. Sea

$$D=\mathbb{C}\setminus\bigcup_{n\in\mathbb{N}}\{z\in\mathbb{C}\colon \mathrm{Re}(z)=n,\,\mathrm{Im}(z)>0\}$$

Tenemos que D es un dominio en $\mathbb C$ verificando

$$\mathbb{C}^* \setminus D = \left(\bigcup_{n \in \mathbb{N}} \{ z \in \mathbb{C} : \operatorname{Re}(z) = n, \operatorname{Im}(z) > 0 \} \right) \cup \{ \infty \},$$

que es conexo, pero

$$\mathbb{C} \setminus D = \bigcup_{n \in \mathbb{N}} \{ z \in \mathbb{C} : \operatorname{Re}(z) = n, \operatorname{Im}(z) > 0 \},$$

que posee una cantidad infinita numerable de componentes conexas.

Ejercicio 16. Sean D_1 y D_2 dos dominios en $\mathbb C$ simplemente conexos tales que $D_1 \cap D_2$ es no vacío y conexo. Probar que $D_1 \cap D_2$ y $D_1 \cup D_2$ son también dominios en $\mathbb C$ simplemente conexos.

Solución. En primer lugar, se observa que $D_1 \cap D_2$ es abierto por ser intersección finita de abiertos, y es conexo por hipótesis, luego es un dominio en \mathbb{C} . Se tiene que

$$\mathbb{C}^* \setminus (D_1 \cap D_2) = \mathbb{C}^* \cap (D_1 \cap D_2)^c = \mathbb{C}^* \cap (D_1^c \cup D_2^c) = (\mathbb{C}^* \cap D_1^c) \cup (\mathbb{C}^* \cap D_2^c) = (\mathbb{C}^* \setminus D_1) \cup (\mathbb{C}^* \setminus D_2)$$

Como $\mathbb{C}^* \setminus D_1$ y $\mathbb{C}^* \setminus D_2$ son conexos (pues D_1 y D_2 son simplemente conexos) y su intersección es no vacía (pues $\infty \in (\mathbb{C}^* \setminus D_1) \cap (\mathbb{C}^* \setminus D_2)$), entonces $(\mathbb{C}^* \setminus D_1) \cup (\mathbb{C}^* \setminus D_2)$ es conexo y, en consecuencia, $D_1 \cap D_2$ es simplemente conexo.

Por otra parte, $D_1 \cup D_2$ es un dominio en $\mathbb C$: es abierto por ser unión de abiertos y es conexo por ser unión de conexos con intersección no vacía. Veamos que $D_1 \cup D_2$ es simplemente conexo o, equivalentemente, que para toda función f holomorfa en $D_1 \cup D_2$ y sin ceros, existe una rama del $\log(f)$ en $D_1 \cup D_2$. Sea f una función holomorfa en $D_1 \cup D_2$ y sin ceros. Como f es holomorfa y sin ceros en D_1 , que es simplemente conexo, existe una rama del $\log(f)$ en D_1 , $g_1:D_1 \to \mathbb C$. Y como f es holomorfa y sin ceros en D_2 , que es simplemente conexo, existe una rama del $\log(f)$ en D_2 , $g_2:D_2 \to \mathbb C$. Observamos que g_1 y g_2 son ramas del $\log(f)$ en $D_1 \cap D_2$, que es conexo, luego existe $k \in \mathbb Z$ tal que $g_1(z) = g_2(z) + 2\pi ki$ para todo $z \in D_1 \cap D_2$. En ese caso, tomamos la rama \widetilde{g}_1 del $\log(f)$ en D_1 dada por $\widetilde{g}_1(z) = g_1(z) - 2\pi ki$ y, de esta manera, se tiene que $\widetilde{g}_1 = g_2$ en $D_1 \cap D_2$. Sea $g:D_1 \cup D_2 \to \mathbb C$ la función dada por

$$g(z) = \begin{cases} \widetilde{g}_1(z) & \text{si } z \in D_1 \\ g_2(z) & \text{si } z \in D_2 \end{cases}$$

Por ser $\widetilde{g}_1 = g_2$ en $D_1 \cap D_2$ tenemos que g está bien definida, y por ser \widetilde{g}_1 continua en D_1 , g_2 continua en D_2 y $\widetilde{g}_1 = g_2$ en $D_1 \cap D_2$, tenemos que g es continua en $D_1 \cup D_2$. Es evidente que $e^{g(z)} = f(z)$ para todo $z \in D_1 \cup D_2$, concluyéndose que g es una rama del $\log(f)$ en $D_1 \cup D_2$ y, para terminar, que $D_1 \cup D_2$ es simplemente conexo.