How VIVA Works

M. Triantafyllou

June 1, 2000

HOW EXISTING VIVA WORKS

Vortices cause oscillatory forces L, D

$$L = \frac{1}{2} \rho dU^2 C_L \cos(\omega_v t)$$

$$D = \frac{1}{2} \rho dU^2 \overline{C_D} + \frac{1}{2} \rho dU^2 \widetilde{C}_D \cos(2\omega_v t + \psi)$$

These forces cause the cylinder to oscillate if flexibly attached. Once the cylinder starts moving the <u>forces change</u>. Even the vortical patterns change.

$$y(t) = 0.20d \cos(\omega t)$$

$$y(t) = 0.60d\cos(\omega t)$$

Lift forces L causes Transverse oscillations

$$y(t) = A\cos\omega t$$

$$\frac{dy}{dt}(t) = -A\omega\sin\omega t$$

$$\frac{d^2y}{dt^2}(t) = A\omega^2 \cos \omega t$$

$$L(t) = \frac{1}{2} \rho dU^{2} C_{L} \cos(\omega t + \phi)$$
$$= \frac{1}{2} \rho dU^{2} C_{L\alpha} \cos \omega t - \frac{1}{2} \rho dU^{2} C_{LV} \sin \omega t$$

$$C_{L\alpha} = C_L \cos \phi$$

$$C_{LV} = C_L \sin \phi$$

 $-m\omega^2 A\cos\omega t - bA\omega\sin\omega t + kA\cos\omega t$

$$= \frac{1}{2} \rho ds U^2 C_{L\alpha} \cos \omega t - \frac{1}{2} \rho ds U^2 C_{LV} \sin \omega t$$

$$-(m\omega^2 A + \frac{1}{2}\rho s dU^2 C_{L\alpha}) + kA = 0$$
 (1)

$$\frac{1}{2}\rho ds U^2 C_{LV} = bA\omega \tag{2}$$

Two equations in two unknowns (A,ω)

$$\frac{1}{2}\rho s dU^2 C_{L\alpha} = \frac{\pi}{4}\rho d^2 s A\omega^2 C_m$$

$$\left[m + \left(\frac{\pi}{4}\rho d^2 s\right)C_m\right]\omega^2 = k$$

$$m_a = \left(\frac{\pi}{4} \rho d^2 s\right) C_m$$

$$\omega = \sqrt{\frac{k}{m + m_a}}$$
 (1a)

$$A = \frac{\left(\frac{1}{2}\rho ds U^2\right)C_{LV}}{b\omega}$$
 (2a)

Except that
$$C_{\it m}\Bigl(rac{A}{d},\omega\Bigr)$$
 $C_{\it LV}\Bigl(rac{A}{d},\omega\Bigr)$

SOULUTION IS ITERATIVE AND NEEDS EXPERIMENTAL DATABASE FOR $C_{m},\,C_{LV}$

Change in added mass is dramatic

$$\omega = \sqrt{\frac{k}{m + \left(\frac{\pi}{4}\rho d^2 s\right)C_m}} = \sqrt{\frac{k/\left(\frac{\pi}{4}\rho d^2 s\right)}{m^* + C_m}}$$

$$m^* = \frac{m}{\frac{\pi}{4} \rho d^2 s}$$
 (mass ratio)

if $m^* < 2$, $m^* + C_m$ varies <u>a lot</u>

Frequency of vortex shedding $f_{\mbox{\tiny S}}$

$$f_s = st \frac{U}{d}$$

At A
$$f_{no} > f_s$$
 so $C_m > 1$

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m + m_a}} < f_{no}$$

At B
$$f_{no} < f_s$$
 so $C_m < 1$

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k}{m + m_a}} > f_{no}$$

$$f_V = f$$

NATURAL FREQUENCY OF SYSTEM CHANGES WITH U

DEPENDING ON A, ω VORTICES MAY SHED AT f NOT f_s

FLEXIBLE BEAM

$$m\frac{\partial^{2} y}{\partial t^{2}} + b\frac{\partial y}{\partial t} - \frac{\partial^{2}}{\partial x^{2}} \left\{ EI \frac{\partial^{2} y}{\partial x^{2}} \right\}$$
$$+ \frac{\partial}{\partial x} \left\{ T \frac{\partial y}{\partial x} \right\} = L(x, t)$$

LIFT FORCE VARIES WITH X

Vortex shedding pattern can vary with x

 $\theta_n(x)$ is a natural mode with $C_m = 1$, at frequency ω_n

$$-\left(m+\hat{m}_a\right)\omega_n^2\theta_n - \frac{d^2}{dx^2}\left\{EI\frac{d^2\theta_n}{dx^2}\right\} + \frac{d}{dx}\left\{T\frac{d\theta}{dx}\right\} = 0$$

$$\hat{m}_a$$
 for $C_m = 1$

Set
$$y(x,t) = \theta_n(x)A\cos\omega t$$

Assuming $\omega \cong \omega_n$

$$m\frac{\partial^{2}y}{\partial t^{2}} + b\frac{\partial y}{\partial t} + \left\{-\frac{\partial^{2}}{\partial x^{2}}\left[EI\frac{\partial^{2}y}{\partial x^{2}}\right]\right\} + \frac{\partial}{\partial x}\left[T\frac{\partial y}{\partial x}\right]$$

$$= m\frac{\partial^{2}y}{\partial t^{2}} + b\frac{\partial y}{\partial t} + A\cos\omega t\left\{-\frac{\partial^{2}}{\partial x^{2}}\left[EI\frac{\partial^{2}\theta_{n}}{\partial x^{2}}\right]\right\} + \frac{\partial}{\partial x}\left[T\frac{\partial\theta_{n}}{\partial x}\right]$$

$$= m\frac{\partial^{2}y}{\partial t^{2}} + b\frac{\partial y}{\partial t} + A\cos\omega t\left\{+(m+\hat{m}_{a})\omega_{n}^{2}\theta_{n}\right\}$$

$$= L(t) = -m_{a}\frac{\partial^{2}y}{\partial t^{2}} - \frac{1}{2}\rho dU^{2}C_{LV}\sin\omega t$$

$$\left\{-(m+m_{a})\omega^{2} + (m+\hat{m}_{a})\omega_{n}^{2}\right\} = 0$$

$$b\omega A\theta_{n}(x) = \frac{1}{2}\rho dU^{2}C_{LV}$$
?
$$\int_{0}^{L}\left(b\frac{\partial y}{\partial t}\right)\frac{\partial y}{\partial t}dx = \int_{0}^{L}\left(\frac{1}{2}\rho dU^{2}C_{LV}\right)\frac{\partial y}{\partial t}dx$$

$$A = \frac{\int_{0}^{L}\frac{1}{2}\rho dU^{2}C_{LV}|\theta_{n}(x)|dx}{\int_{0}^{L}b\omega\theta_{n}^{2}(x)dx}$$

This only works if current uniform

STILL THERE ARE MAJOR ISSUES:

- Are C_{LV}, C_m same as for rigid cylinders?
- Are vortices shed coherently or not?

ANSWERS:

- C_{LV} , C_{m} are well approximates by rigid cylinder data
- Vortices are shed coherently but not necessarily over the entire length

CORRELATION LENGTH:

Depends on:

- o geometry
- o shear
- o motion of the riser

"RIB" Vortices

VORTEX "SPLITS"

Forces are affected!

SHEAR CURRENT

LIFT FORCE
$$\sim \frac{1}{2} \rho U^2$$

HIGH-SPEED PART DOMINATES

IMPOSING
$$\omega \sim 2\pi (St) \frac{U}{d}$$

 C_{LV} in I is <u>positive</u> C_{LV} in II is <u>negative</u>

NEED COMPLEX MODES

COMPLEX MODES

Instead of:
$$y(x,t) = A\theta_n(x)\cos\omega_n t$$

Use: $y(x,t) = A\theta_n(x)\cos[\omega_n t + \psi(x)]$
 $= \text{Re}\left\{\theta_n(x)e^{i[\omega_n t + \psi(x)]}\right\}$
 $= \text{Re}\left\{\hat{\theta}_n(x)e^{i\omega_n t}\right\}$
 $\hat{\theta}_n(x) = \theta_n(x)e^{i\psi(x)}$

THERE ARE $\underline{\text{NO}}$ NODES SO ENERGY CAN TRAVEL UP AND DOWN THE RISER.

MULTI-FREQUENCY AND MODE SWITCHING RESPONSE

 $f_{10,}\,f_{20}$ are 'original' frequencies

In reality f_{10} will increase because $C_m \le 1$ and f_{20} will decrease because $C_m \ge 1$.

THEN f_1 , f_2 can get very close -

- MODE SWITCHING
- MULTI-FREQUENCY

- Response can be:
 Beating oscillations
 Mode Switching
 Truly Multi-Frequency