Домашняя работа №2 Вариант: 177

Выполнил: Ясаков Артем Андреевич

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	4	5		3	3				4	3	
e2	4	0	4	3	3					3	5	5
e3	5	4	0	5	3		2	1	3	3	2	
e4		3	5	0					3	1		1
e5	3	3	3		0		1	1	3		5	2
e6	3					0						
e7			2		1		0		3		1	4
e8			1		1			0		1		1
e9			3	3	3		3		0		2	5
e10	4	3	3	1				1		0		
e11	3	5	2		5		1		2		0	
e12		5		1	2		4	1	5			0

Найти кратчайшие пути от начальной вершины е1 ко всем остальным:

1. Положить $l(e_1) = 0^+$ и считать эту пометку постоянной. Положить $l(e_i) = \infty$, для всех $i \neq 1$ и считать эту пометку временной. Положить $p = e_1$. Результаты итерации запишем в таблицу:

	1
e ₁	0+
e 2	8
ез	8
e 4	8
e 5	8
e ₆	8
е7	8
e 8	8
e 9	8

e ₁₀	8
e 11	8
e 12	∞

2. $\Gamma_P = \{e_2, e_3, e_5, e_6, e_{10}, e_{11}\}$ – все пометки временные, уточним их:

$$\begin{split} &l(e_2) = min[\infty, 0^+ + 4] = 4; \\ &l(e_3) = min[\infty, 0^+ + 5] = 5; \\ &l(e_5) = min[\infty, 0^+ + 3] = 3; \\ &l(e_6) = min[\infty, 0^+ + 3] = 3; \\ &l(e_{10}) = min[\infty, 0^+ + 4] = 4; \\ &l(e_{11}) = min[\infty, 0^+ + 3] = 3; \end{split}$$

3. Среди всех вершин с временными пометками найдем такую, что $l(e_i^+) = min[l(e_i)]$: $l(e_i^+) = min[l(e_i)] = l(e_5) = 3^+;$

	1	2
e 1	0+	
e ₂	8	4
е3	8	5
e 4	8	8
e 5	8	3 ⁺
e 6	8	3
e 7	8	8
e 8	8	8
e 9	8	8
e 10	8	4
e ₁₁	8	3
e 12	8	8

5. Не все вершины имеют постоянную длину, $\Gamma_p = \{e_1, e_2, e_3, e_7, e_8, e_9, e_{11}, e_{12}\}$. Все вершины с временными пометками e_2 , e_3 , e_7 , e_8 , e_9 , e_{11} , e_{12} - уточним их:

$$1(e_2) = \min[4, 3^+ + 3] = 4;$$

^{4.} Положим $p = e_5$

$$l(e_3) = min[5, 3^+ + 3] = 5;$$

 $l(e_7) = min[\infty, 3^+ + 1] = 4;$
 $l(e_8) = min[\infty, 3^+ + 1] = 4;$
 $l(e_9) = min[\infty, 3^+ + 3] = 6;$
 $l(e_{11}) = min[3, 3^+ + 5] = 3;$
 $l(e_{12}) = min[\infty, 3^+ + 2] = 5;$

6. Среди всех вершин с временными пометками найдем такую, что $l(e_i^+) = min[l(e_i)]$: $l(e_i^+) = min[l(e_i)] = l(e_{11}) = 3^+$;

	1	2	3
e ₁	0+		
e ₂	8	4	4
е3	8	5	5
e 4	8	8	8
es	8	3 ⁺	
e ₆	8	3	3+
e 7	8	8	4
es	8	8	4
e 9	8	8	6
e 10	8	4	4
e ₁₁	8	3	3
e 12	∞	∞	5

- 7. Положим $p = e_6$
- 8. $\Gamma_p = \{e_1\}$, временных отметок нет.
- 9. Среди всех вершин с временными пометками найдем такую, что $l(e_i^+) = min[l(e_i)]$: $l(e_i^+) = min[l(e_i)] = l(e_2) = 3^+;$

	1	2	3	4
e ₁	0+			
e ₂	8	4	4	4
ез	8	5	5	5

e ₄	∞	∞	∞	∞
es	8	3 ⁺		
e ₆	8	3	3+	
e 7	8	8	4	4
es	8	8	4	4
e 9	8	8	6	6
e 10	8	4	4	4
e 11	8	3	3	3 ⁺
e ₁₂	8	8	5	5

10. Положим $p = e_{11}$

11. Не все вершины имеют постоянную длину, $\Gamma_p = \{e_1, e_2, e_3, e_5, e_7, e_9\}$. Все вершины с временными пометками e_2, e_3, e_7, e_9 - уточним их:

$$l(e_2) = min[4, 3^+ + 5] = 4;$$

 $l(e_3) = min[5, 3^+ + 2] = 5;$
 $l(e_7) = min[4, 3^+ + 1] = 4;$
 $l(e_9) = min[6, 3^+ + 2] = 5;$

12. Среди всех вершин с временными пометками найдем такую, что $l(e_i^+) = min[l(e_i)]$: $l(e_i^+) = min[l(e_i)] = l(e_2) = 4^+;$

	1	2	3	4	5
e 1	0+				
e ₂	∞	4	4	4	4+
ез	∞	5	5	5	5
e 4	∞	8	8	8	8
e 5	∞	3 ⁺			
e 6	∞	3	3+		
e 7	∞	8	4	4	4
e ₈	∞	8	4	4	4

e ₉	∞	∞	6	6	5
e 10	8	4	4	4	4
e 11	8	3	3	3 ⁺	
e ₁₂	8	8	5	5	5

13. Положим $p = e_2$

14. Не все вершины имеют постоянную длину, $\Gamma_p = \{\mathbf{e_1}, \mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}, \mathbf{e_{10}}, \mathbf{e_{11}}, \mathbf{e_{12}}\}$. Все вершины с временными пометками $\mathbf{e_3}, \mathbf{e_4}, \mathbf{e_{10}}, \mathbf{e_{12}}$ - уточним их:

$$l(e_3) = min[5, 4^+ + 4] = 5;$$

 $l(e_4) = min[\infty, 4^+ + 3] = 7;$
 $l(e_{10}) = min[4, 4^+ + 3] = 4;$
 $l(e_{12}) = min[5, 4^+ + 5] = 5;$

15. Среди всех вершин с временными пометками найдем такую, что $l(e_i^+) = min[l(e_i)]$: $l(e_i^+) = min[l(e_i)] = l(e_7) = 4^+;$

	1	2	3	4	5	6
e ₁	0+					
e ₂	∞	4	4	4	4+	
ез	∞	5	5	5	5	5
e 4	∞	∞	∞	∞	∞	7
es	∞	3 ⁺				
e 6	∞	3	3+			
e ₇	∞	∞	4	4	4	4+
es	∞	∞	4	4	4	4
e 9	∞	∞	6	6	5	5
e ₁₀	∞	4	4	4	4	4
e 11	∞	3	3	3 ⁺		
e 12	∞	∞	5	5	5	5

16. Положим $p = e_7$

17. Не все вершины имеют постоянную длину, $\Gamma_p = \{e_3, e_5, e_9, e_{11}, e_{12}\}$. Все вершины с временными пометками e_3, e_9, e_{12} - уточним их:

$$l(e_3) = min[5, 4^+ + 2] = 5;$$

 $l(e_9) = min[5, 4^+ + 3] = 5;$
 $l(e_{12}) = min[5, 4^+ + 4] = 5;$

18. Среди всех вершин с временными пометками найдем такую, что $l(e_i^+) = min[l(e_i)]$: $l(e_i^+) = min[l(e_i)] = l(e_8) = 4^+$;

	1	2	3	4	5	6	7
e ₁	0+						
e ₂	8	4	4	4	4+		
ез	8	5	5	5	5	5	5
e4	8	8	8	8	8	7	7
e5	8	3+					
e 6	8	3	3+				
e 7	8	8	4	4	4	4+	
es	8	8	4	4	4	4	4+
e 9	8	8	6	6	5	5	5
e ₁₀	8	4	4	4	4	4	4
e ₁₁	8	3	3	3+			
e 12	8	8	5	5	5	5	5

19. Положим $p = e_8$

20. Не все вершины имеют постоянную длину, $\Gamma_p = \{ \mathbf{e_3}, \, \mathbf{e_5}, \, \mathbf{e_{10}}, \, \mathbf{e_{12}} \}$. Все вершины с временными пометками $\mathbf{e_3}, \, \mathbf{e_{10}}, \, \mathbf{e_{12}}$ - уточним их:

$$l(e_3) = min[5, 4^+ + 1] = 5;$$

 $l(e_{10}) = min[4, 4^+ + 3] = 4;$
 $l(e_{12}) = min[5, 4^+ + 1] = 5;$

21. Среди всех вершин с временными пометками найдем такую, что $l(e_i^+) = min[l(e_i)]$:

$$l(e_i^+) = min[l(e_i)] = l(e_{10}) = 4^+;$$

	1	2	3	4	5	6	7	8
e ₁	0+							
e ₂	8	4	4	4	4+			
e ₃	8	5	5	5	5	5	5	5
е4	8	8	8	8	8	7	7	7
e 5	8	3 ⁺						
e ₆	8	3	3+					
е7	8	8	4	4	4	4+		
e 8	8	8	4	4	4	4	4+	
е9	8	8	6	6	5	5	5	5
e 10	8	4	4	4	4	4	4	4+
e 11	8	3	3	3 ⁺				
e ₁₂	∞	∞	5	5	5	5	5	5

22. Положим $p = e_{10}$

23. Не все вершины имеют постоянную длину, $\Gamma_p = \{e_1, e_2, e_3, e_4, e_8\}$. Все вершины с временными пометками e_3, e_4 - уточним их:

$$l(e_3) = min[5, 4^+ + 3] = 5;$$

 $l(e_4) = min[7, 4^+ + 1] = 5;$

24. Среди всех вершин с временными пометками найдем такую, что $l(e_i^+) = min[l(e_i)]$: $l(e_i^+) = min[l(e_i)] = l(e_3) = 5^+;$

	1	2	3	4	5	6	7	8	9
e ₁	0+								
e ₂	∞	4	4	4	4+				
e ₃	∞	5	5	5	5	5	5	5	5 ⁺
e ₄	∞	8	8	8	8	7	7	7	5

e 5	∞	3+							
e 6	8	3	3+						
е7	8	8	4	4	4	4+			
es	8	∞	4	4	4	4	4+		
е9	8	∞	6	6	5	5	5	5	5
e ₁₀	8	4	4	4	4	4	4	4+	
e 11	8	3	3	3 ⁺					
e 12	8	8	5	5	5	5	5	5	5

25. Положим $p = e_3$

26. Не все вершины имеют постоянную длину, $\Gamma_p = \{e_1, e_2, e_4, e_5, e_7, e_8, e_9, e_{10}, e_{11}\}$. Все вершины с временными пометками e_4 , e_9 - уточним их:

$$l(e_4) = min[5, 5^+ + 5] = 5;$$

 $l(e_9) = min[5, 5^+ + 3] = 5;$

27. Среди всех вершин с временными пометками найдем такую, что $l(e_i^+) = min[l(e_i)]$: $l(e_i^+) = min[l(e_i)] = l(e_4) = 5^+;$

	1	2	3	4	5	6	7	8	9	10
e ₁	0+									
e ₂	∞	4	4	4	4+					
e ₃	∞	5	5	5	5	5	5	5	5 ⁺	
e 4	∞	∞	∞	∞	∞	7	7	7	5	5 ⁺
es	∞	3 ⁺								
e ₆	∞	3	3 ⁺							
e ₇	∞	∞	4	4	4	4+				
es	∞	∞	4	4	4	4	4+			
e 9	∞	∞	6	6	5	5	5	5	5	5
e 10	∞	4	4	4	4	4	4	4+		

e ₁₁	∞	3	3	3+						
e 12	8	8	5	5	5	5	5	5	5	5

- 28. Положим $p = e_4$
- 29. Не все вершины имеют постоянную длину, $\Gamma_p = \{\mathbf{e_2}, \mathbf{e_3}, \mathbf{e_9}, \mathbf{e_{10}}, \mathbf{e_{12}}\}$. Все вершины с временными пометками $\mathbf{e_9}, \ \mathbf{e_{12}}$ уточним их:

$$l(e_9) = min[5, 5^+ + 3] = 5;$$

 $l(e_{12}) = min[5, 5^+ + 1] = 5;$

30. Среди всех вершин с временными пометками найдем такую, что $l(e_i^+) = min[l(e_i)]$: $l(e_i^+) = min[l(e_i)] = l(e_9) = 5^+;$

	1	2	3	4	5	6	7	8	9	10	11
e ₁	0+										
e ₂	8	4	4	4	4+						
e3	8	5	5	5	5	5	5	5	5 ⁺		
e4	8	8	8	∞	8	7	7	7	5	5+	
e 5	8	3+									
e 6	8	3	3+								
е7	8	8	4	4	4	4+					
e 8	8	8	4	4	4	4	4+				
е9	8	8	6	6	5	5	5	5	5	5	5 ⁺
e ₁₀	8	4	4	4	4	4	4	4+			
e 11	8	3	3	3 ⁺				_			
e 12	8	8	5	5	5	5	5	5	5	5	5

- 31. Положим $p = e_9$
- 32. Не все вершины имеют постоянную длину, $\Gamma_p = \{\mathbf{e_3}, \mathbf{e_4}, \mathbf{e_5}, \mathbf{e_7}, \mathbf{e_{11}}, \mathbf{e_{12}}\}$. Все вершины с временными пометками $\mathbf{e_{12}}$ уточним их:

$$l(e_{12}) = min[5, 5^+ + 5] = 5;$$

33. Осталась последняя вершина

	1	2	3	4	5	6	7	8	9	10	11	12
e ₁	0+											
e ₂	8	4	4	4	4+							
ез	∞	5	5	5	5	5	5	5	5 ⁺			
е4	∞	8	8	∞	∞	7	7	7	5	5 ⁺		
е5	8	3 ⁺										
e 6	8	3	3 ⁺									
e ₇	8	8	4	4	4	4+						
е8	8	8	4	4	4	4	4+					
е9	8	8	6	6	5	5	5	5	5	5	5 ⁺	
e ₁₀	8	4	4	4	4	4	4	4+				
e 11	8	3	3	3 ⁺								
e 12	∞	∞	5	5	5	5	5	5	5	5	5	5 ⁺