p	q	pΛq	pVq	p⊕q	p→q	p↔q	
Т	Т	Т	Т	F	Т	Т	
Т	F	F	Т	Т	F	F	
F	Т	F	Т	Т	Т	F	
F	F	F	F	F	Т	Т	

TABLE 1 Set Identities.				
Identity	Name			
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws			
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws			
$A \cup A = A$ $A \cap A = A$	Idempotent laws			
$\overline{(\overline{A})} = A$	Complementation law			
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws			
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws			
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws			
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws			
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws			
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws			

To prove A=B:

- Definition of Set Minus
 - $A B = A \cap \bar{B}$
- 1. Prove that A ⊆ B
 - a. assume an arbitrary element x in A
 - b. show that this element must also be in B
- 2. Prove that B ⊆ A
 - a. assume an arbitrary element x in B
 - b. show that this element must also be in A

TABLE 7 Logical Equivalences Involving Conditional Statements.

 $p \to q \equiv \neg p \lor q$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$ $p \lor q \equiv \neg p \to q$

 $p \land q \equiv \neg(p \rightarrow \neg q)$

Mod

 $\neg (p \rightarrow q) \equiv p \land \neg q$ $(p \to q) \land (p \to r) \equiv p \to (q \land r)$

 $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$

 $(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$

 $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

Recall: $a \equiv b \pmod{m}$ means a = b + km for so

integer k (and assuming m is a positive integer) Suppose $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$ and $\mathbf{c} \equiv \mathbf{d} \pmod{\mathbf{m}}$. Claim: $a+c \equiv b+d \pmod{m}$ (Addition works!) Claim: $a-c \equiv b-d \pmod{m}$ (Subtraction works!) Claim: $ac \equiv bd \pmod{m}$ (Multiplication works!) Some proofs. Let a = b + km and c = d + jm. So $a+c = b+km+d+jm = (b+d) + (k+j)m = b+d \pmod{m}$ So ac = $(b+km)(d+jm) = bd + (bj+dk+kjm)m \equiv bd \pmod{m}$

Diagonalization

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

 $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$

 $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$

 $p \lor (p \land q) \equiv p$

 $p \wedge (p \vee q) \equiv p$

General format for diagonalization proofs:

Distributive laws

De Morgan's laws

Absorption laws

- · Look at the elements along the main diagonal
- · Manipulate each diagonal element and put them together to create a new row that is guaranteed not to be in the table
 - Is the new row the same as row i of the table?
 No: its ith bit is different from the string in row i.

	Bed				
1.	0	[2]	[2]	[2]	[?]
2.	[?]	1	[?]	[2]	?
3.	[?]	[2]	1	[2]	$\overline{2}$
4.	[?]	[?]	[?]	0	[?]
5.	$\boxed{?}$	[?]	$\boxed{?}$	$\overline{?}$	1

Z C Z	J (Z)∈ [U, 1]		of f(z)	of f(z)	of f(z)	of f(z)	
1	0	0.	0	0	0	0	
2	π/10	0.	3	1	4	1	
3	0.149	0.	1	4	9	0	
4	e/10	0.	2	7	1	8	
i	ŧ						

If p is prime, then for any positive int a<p, there exists a unique positive a⁻¹aa^{-1} \equiv 1 \pmod{p}

Inverse of a can only be calculated if p and a are relatively prime!

(2) Seweak Induction as

- 註解 strong Inda

白之子然

Guide for Induction Proofs

- · Restate the claim you are trying to prove
- Base case: Prove the claim holds for the "first" value of n
 - Prove P(n₀) is true

Remember that the inductive step is like "climbing up the ladder", so it needs to cover the first rung we get on (the base case) as well!

should be *included* at the beginning of the domain of the inductive step

 Inductive Step: Prove that P(k) → P(k + 1) for an arbitrary integer k in the desired range. Important note: Your base case

- Let k be an arbitrary integer with $k \ge n_0$
- Assume P(k)
- Show that P(k + 1) holds

Equivalently: Show $P(k-1) \rightarrow P(k)$

· Conclusion: explain that you've proven the desired claim.

Bosic Step VKEZT[PCH)→PUCH)] VKEZT[PCHA... APCK)→PCH)] Inductive Step YNEZT PLA) Same YNEZT PLA) Condusion

