Color by Like Term

Have you ever painted a *paint by number* picture? Each space has a number, and you use the matching color to fill it in. Slowly, a secret picture appears! Today we are doing the same thing, but with math. Instead of numbers, each space has a **monomial**. On the side, you'll find a legend that shows which color matches each type of term. Your job is to color the picture by **like term**. When you finish, the hidden picture will be revealed!

- 1. Look at the grid. Each space has a monomial inside (for example: 3x, 5y, 2x).
- 2. On the right side, there is a legend. The legend shows which color matches each type of term. Example: $-x^2$ Red, $9 \rightarrow$ White, $5xy \rightarrow$ Brown.
- 3. Find spaces that have the same type of term (like terms).
- 4. Color each space using the color from the legend.
- 5. When you finish, the picture will be complete! Tip: Like terms have the same variable part. Example: 3x and 2x are like terms, but 3x and 3y are not.

3	9	$3\frac{2}{3}$	$2x^2$	$5x^2$	$7x^2$	$-x^2$	$\frac{1}{2}x^2$	3.5	43	$\frac{9}{7}$	11
-93	<u>7</u> 5	$-9x^{2}$	$\frac{x^2}{3}$	$6x^2$	11 <i>x</i> ²	$-4x^{2}$	$9x^2$	2.1x ²	$13x^2$	6.1	-3
4.2	0.1	2xy	-xy	13 <i>xy</i>	9 <i>x</i>	0.9x	2.1xy	11 <i>x</i>	90	23	22
5	$-\frac{xy}{7}$	$2\frac{2}{5}x$	$\frac{2}{5}xy$	$\frac{x}{5}$	-2 <i>x</i>	3 <i>x</i>	9 <i>xy</i>	$\frac{8x}{5}$	-2 <i>x</i>	-4 <i>x</i>	$1\frac{2}{3}$
16	0.1xy	6 <i>x</i>	11 <i>xy</i>	0.3 <i>xy</i>	9.5 <i>x</i>	-3x	19 <i>x</i>	$\frac{2}{3}xy$	5 <i>x</i>	$\frac{x}{2}$	-x
-1	xy	19 <i>xy</i>	0.5 <i>x</i>	$-\frac{1}{3}x$	x	0.1 <i>x</i>	0.2xy	22 <i>xy</i>	-9 <i>xy</i>	12 <i>xy</i>	9.1
$\frac{1}{3}$	31	3	0.3 <i>x</i>	6 <i>x</i>	3 <i>x</i>	2.1 <i>x</i>	2x	11 <i>x</i>	3 <i>x</i>	73	$3\frac{1}{2}$
27	0.9	$2.1xy^2$	$0.2xy^2$	$0.6x^2$	$11xy^2$	$\frac{xy^2}{3}$	$\frac{15}{31}xy^2$	0.3	-9	18	-2.3
8	$2xy^2$	$\frac{3}{5}xy^2$	9. 1 <i>xy</i> ²	$-x^2$	95 <i>xy</i> ²	$2xy^2$	$\frac{5}{2}x^2$	$7xy^2$	$2.3xy^2$	$\frac{xy^2}{5}$	3 5
$13xy^2$	$-xy^2$	42 <i>xy</i> ²	xy^2	$\frac{3x^2}{5}$	$35x^2$	$72x^{2}$	$-3x^2$	1. 1xy ²	$-2xy^2$	$1.2xy^2$	$5xy^2$
0.2 <i>x</i>	6 <i>x</i>	$7xy^2$	98 <i>x</i> ²	$2x^2y^2$	$-5x^2$	10 <i>x</i> ²	$-x^2y^2$	$\frac{2}{3}x^2$	$\frac{7}{9}xy^2$	0.4x	-x
9. 1 <i>x</i>	11 <i>x</i>	-3x	80 <i>x</i> ²	$-2x^{2}$	$\frac{x^2}{12}$	$5x^2$	$\frac{x^2}{4}$	$0.5x^2$	$-\frac{x}{2}$	-3x	42 <i>x</i>
-4 <i>x</i>	x	$11x^2$	45 <i>x</i> ²	$2x^2$	9	32	x^2	4 <i>x</i> ²	$1.3x^{2}$	8 <i>x</i>	$3\frac{x}{2}$
$11\frac{5}{7}$	4.3	$\frac{7}{2}x^2$	$2.7x^{2}$	$-3x^2$	62	6.4	8 <i>x</i> ²	$\frac{3}{4}x^2$	$0.7x^2$	-4	4.5
311	15 <i>xy</i>	1.1xy	2 <i>xy</i>	-3	65 97	-0.3	11	13 <i>xy</i>	82 <i>xy</i>	$\frac{1}{3}xy$	9
92 <i>xy</i>	$\frac{52}{3}xy$	$\frac{2xy}{5}$	ху	23	0.5	85	6	-9 <i>xy</i>	9. 1 <i>xy</i>	6 <i>xy</i>	18 <i>xy</i>

9

 $-x^2$

4*x*

5*xy*

 $2xy^2$

