Lineáris Algebra II

Erdélyi Áron 2018.06.17.

Tartalomjegyzék

1	Vek	ctorrendszer és mátrix rangja, egyenletrendszer megoldhatósága	2
2	Báz	cis Transzormáció	3
	2.1	Áttérés más bázisokra	3
	2.2	Lineáris leképezések mátrixa bázisváltás esetén	3
	2.3	Diagonalizálás, hasonló mátrixok	3
	2.4	Kvadratikus alakok diagonalizálása	5
		2.4.1 Kvadratikus alakok	5
		2.4.2 Kvadratikus alak diagonalizálása, főtengely tétel	6
3	Kor	mplex számok	7
	3.1	Komplex szám fogalma, műveletek	7
	3.2	A komplex számok algebrai alakja	7
		3.2.1 A komplex számok trigonometrikus alakja	7
		3.2.2 Műveletek trigonometrikus alakban	7
		3.2.3 Gyökvonás komplex számokból	8
	3.3	Egységgyökök, primitív egységgyökök	8
	3.4	Komplex számok exponenciális alakja	9
	3.5	Az algebra alaptétele	10
4	Euk	klideszi terek	11
		4.0.1 Metrikus tér	11
		4.0.2 Normált tér	11
		4.0.3 Cauchy-Bunyakovszkij-Schwarz egyenlőtlenség	12
	4.1		12
		4.1.1 Szög fogalmának általánosítása, ortogonális vektorok	12
			12
	4.2	Valós euklideszi terek transzformációi	13
			13
			13
	4.3		14^{-1}
		•	14
			14

1 Vektorrendszer és mátrix rangja, egyenletrendszer megoldhatósága

Definíció: A vektorrendszer rangján a vektorok által generált altér dimenzióját értjük. Mátrix sorrangján a sorvektorok rajngját, oszloprangján az oszlopvektorok rangját, determinánsrangján a belőle kiválasztható legnagyobb méretű nem nulla determináns méretét értjük.

Tétel: Mátrix sor-, oszlop-, és determinánsrangja megegyezik. E tétel miatt elegendő egyszerűen a mátrix rangjáról beszélni, jelölése: rang(A).

Következmény: Az $n \times m$ -es mátrixok rangja legfeljebb min(n, m) lehet.

Tétel: Ha $A n \times n$ típusú mátrix, akkor

- A akkor és csak akkor reguláris, ha rangja n.
- $rang(A) = n \Leftrightarrow A$ is reguláris $\Leftrightarrow \det(A) \neq 0 \Leftrightarrow Ax = b$ -nek egyetlen megoldása van.
- $rang(A) < n \Leftrightarrow Ax = 0$ -nak van nem triviális megoldása.

Tétel: Ha $A m \times n$ -es mátrix, akkor az Ax = b egyenletnek akkor és csak akkor van megoldása, ha rang(A) = rang(A|b), vagyis az együttható mátrix rangja megegyezik a kibővített mátrix rangjával.

Bizonyítás: Az egyenletrendszert a következő alakban írjuk: $x_1a_1 + x_2a_2 + ... + x_ka_k = b$.

Ha a rangok egyenlők, az egyenletrendszer megoldható:

Ha rang(A) = rang(A|b) = r, akkor bármely r+1 darab oszlopvektor összefüggő. Legyenek A független vektorai $a_1, a_2, ..., a_r$. Ezekhez b-t hozzátéve összefüggő rendszert kapunk. Mivel b "rontotta" el a függetlenséget, ezért b kifejezhető az a_i -k lineáris kombinációjával, amelyben a skalár együttható x_i -k az egyenletrendszer megoldásai, vagyis:

$$b = x_1 a_1 + x_2 a_2 + \dots + x_n a_n$$
.

Az állítás másik része: ha az egyenletrendszer megoldható, akkor a rangok egyenlők.

Legyen egy meoldás: $b = x_1a_1 + x_2a_2 + ... + x_na_n$, és rang(A) = r.

Azt kell bizonyítani, hogy rang(A|b) = r, vagyis hogy bármely r + 1 oszlopvektora lineárisan összefügg, és van r lineárisan független oszlopa. Ezen utóbbi A rangja miatt teljesül.

Ha az r+1 vektor csak a-kból áll, akkor A rangja miatt ezek összefüggők.

Ha az r+1 vektor egyike a b vektor, akkor két eset van:

- 1. Az r darab a_i vektor összefüggő, ekkor b-t hozzátéve is összefüggő marad, ezért a rang nem változik.
- 2. Az r darab a_i vektor lineárisan független. Ekkor bármely más a_j -t hozzátéve összefüggő lesz, külömben A rangja r+1 lenne. A hozzávett a_j -k azonban az ismert tétel szerint kifejezhetők az eredeti a_i -kkel. Ezeket a b előállításába helyettesítve azt kapjuk, hogy b kifejezhető az r darab a_i lineárisan független vektorral, tehát az r darab a_i vektor és b lineárisan összefüggő, ezért a rang nem változik.

Következmény: Ha n az ismeretlenek száma, r a rang, akkor n-r a rendszer úgy nevezett szabadsági foka, ennyi ismeretlent szabadon választhatunk, a Gauss eliminációnál tanultak alkalmazásával.

Tétel: Ha az A mátrix rangja, és a kibővített mátrix rangja egyenlő az ismeretlenek számávalm akkor pontosan egy megoldás van, amint a fenti bizonyítás e feltétel melletti megismétlésével könyen látható.

Következmény: Homogén lineáris egyenletrendszernek akkor és csak akkor van a triviálistól külömböző megoldása, ha az együttható mátrix rangja az ismeretlenek számánál kisebb.

2 Bázis Transzormáció

2.1 Áttérés más bázisokra

Tétel: Legyen $V \neq \{0\}$ vektortér, [e] és [u] két bázis V-ben. Ha V vektortér x vektorának koordináta

mátrixa
$$x_{[e]} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{[e]}$$
 az $[e]$ bázisra vonatkozik, akkor ugyanazon x vektor $[u]$ bázisban felírt koordináta

mátrixa az alábbi képletből számolható:

$$x_{[u]} = U_{[e]}^{-1} x_{[e]},$$

ahol az U mátrix oszlopai az [u] bázis vektorainak az [e] bázisra vonatkozó koordinátamátrixai. Az U mátrixot áttérési mátrixnak hívjuk.

Bizonyítás: Az x vektor [e] szerinti eredeti koordináta mátrixa:

$$x_{[e]} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{[e]} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{[e]} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}_{[e]} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}_{[e]} = E_{[e]} x_{[e]}.$$

Ha felírjuk ugyan ezt a vektort az [u] bázis szerint:

$$x_{[u]} = x_1' \begin{bmatrix} u_{11} \\ u_{21} \\ \vdots \\ u_{n1} \end{bmatrix}_{[e]} + x_2' \begin{bmatrix} u_{12} \\ u_{22} \\ \vdots \\ u_{n2} \end{bmatrix}_{[e]} + \dots + x_n' \begin{bmatrix} u_{1n} \\ u_{2n} \\ \vdots \\ u_{nn} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ u_{21} & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ u_{n1} & u_{n2} & \cdots & u_{nn} \end{bmatrix}_{[e]} \begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{bmatrix}_{[u]} = U_{[e]} x_{[u]}.$$

Mivel a két koordináta mátrix egyenlő, ezért: $Ex_{[e]} = U_{[e]}x_{[u]}$. A baloldalakat megszorozva U^{-1} -el kapjuk: $U_{[e]}^{-1}x_{[e]} = x_{[u]}$.

2.2 Lineáris leképezések mátrixa bázisváltás esetén

Tétel: Ha az $L: V^n \to W^k$ lineáris leképezés mátrixa rögzített $[a] \in V^n$ és $[b] \in W^k$ bázisokra $A_{[a][b]}$, akkor ugyanezen leképezés $A_{[a'][b']}$ mátrixa az $[a'] \in V^n$ és a $[b] \in W^k$ bázisokra a következő képpen számolható:

$$A_{[a'][b']} = T^{-1}A_{[a][b]}S,$$

Ahol T a képtér, és S a kiindulási tér áttérési mátrixa.

Bizonyítás: Az $A_{[a][b]}x_{[a]} = y_{[b]}$ képletből kiindulva, alkalmazzuk a bázistranszformáció képletét:

$$A_{[a][b]}(Sx_{[a']}) = Ty_{[b']} \longrightarrow T^{-1}A_{[a][b]}(Sx_{[a']}) = y_{[b']}.$$

Tétel: Ha az $L:V^n\to V^n$ lineáris transzformáció mátrixa rögzített $[a]\in V^n$ bázisra vonatkoztatva $A_{[a]}$, akkor ugyanezen transzformáció $A_{[a']}$ mátrixa az $[a']\in V^n$ bázisra következő képlettel számolható:

$$A_{[a']} = S^{-1} A_{[a]} S,$$

ahol S a kiindulási tér áttérési mátrixa.

Bizonyítás: Az előző tételbe helyettesítsük az T-t S-sel.

2.3 Diagonalizálás, hasonló mátrixok

Tétel: Ha a transzformáció sajátvektorai bázist alkotnak, akkor áttérve e bázisra, a bázistranszformáció eredménye az a diagonális mátrix, ahol a főátlóban a sajátértékek állnak.

$$A_{[a']} = S^{-1}AS = diag(\lambda_1, \lambda_2, ..., \lambda_n).$$

Bizonyítás:

$$S = [s_1|s_2|...|s_n] \rightarrow AS = [As_1|As_2|...|As_n], \quad D = diag(\lambda_1, \lambda_2, ..., \lambda_n) \rightarrow SD = [\lambda_1 s_1|\lambda_2 s_2|...|\lambda_n s_n].$$
 Mivel $SD = AS$, ezért $D = S^{-1}AS$.

Definíció: Az A mátrix hasonló a B mátrixhoz, ha létezik egy olyan S mátrix, amellyel fennáll, hogy $A = S^{-1}BS$.

Definíció: Az A mátrix diagonalizálható, ha hasonló egy diagonális mátrixhoz.

Tétel: A hasonlóság az $n \times n$ -es mátrixok körében ekvivalencia reláció.

Bizonyítás:

- Reflexív: $A = E^{-1}AE$.
- Szimetrikus: Ha $A \cong B$, akkor $B \cong A$:

$$A = C^{-1}BC \to [C^{-1}]^{-1}AC^{-1} = B.$$

• Tranzitív: Ha $A\cong B$ és $B\cong C$, akkor $A\cong C$:

$$A = U^{-1}BC, B = V^{-1}CV \rightarrow A = U^{-1}(V^{-1}CV)U = (VU)^{1}C(VU).$$

Tétel: Hasonló mátrixok sajátértékei páronként egyenlők. Továbbá, ha A hasonló B-hez, és A sajátvektora s, akkor B ugyanazon sajátértékéhez tartozó sajátvektora Ts.

Bizonvítás: $As = T^{-1}BTs = \lambda s \rightarrow BTs = \lambda(Ts).$

Tétel: Diagonalizálhatóság elégséges feltétele: Ha valamely kvadratikus $(n \times n)$ mátrix sajátértékei mind külömbözők, kakor a mátrix diagonalizálható.

Bizonyítás: Külömböző sajátértékek esetén a sajátvektorok lineárisan függetlenek, ezért bázist alkotnak.

Tétel: Az A mátrix akkor és csak akkor diagonalizálható, ha van sajátvektorokból álló bázisa.

Bizonyítás:

- Ha a sajátvektorok bázist alkotnak, akkor áttérve erre a bázisra már bizonyítottuk.
- Ha az A mátrix diagonalizálható, vagyis hasonló egy diagonális mátrixhoz, akkor azt fogjuk bizonyítani, hogy a diagonális mátrix elemei A sajátértékei, és S elemei az A sajátvetorai. Az, hogy a sajátvektorok bázist alkoznak onnan tudhatjuk, hogy S invertálható, tehát $det(S) \neq 0$, ezért a sajátvektorok függetlenek. Mivel bármely független vektorrendszer bázis, ha elemszáma egyenlő a dimenzióval, csak azt kell bizonyítani, hogy S oszlopai valóban sajátvektorok.

Legyen $D = diag(\lambda_1, \lambda_2, ..., \lambda_n), S = [s_1|s_2|...|s_n]$. Akkor a hasonlósági képletből kiindulva:

$$D = S^{-1}AS \to SD = AS$$

A két mátrix egyenlőségéből $As_i = \lambda s_i$, tehát a diagonális elemek valóban a sajátértékek, és az áttérési mátrix elemei valóban a sajátvektorok.

Tétel: Ha valamely A $(n \times n)$ típusú mátrix sajátaltereinek dimenzióinak összege éppen n, akkor a mátrix diagonalizálható.

(Geometriai multiplicitás = algebrai multiplicitás).

2.4 Kvadratikus alakok diagonalizálása

2.4.1 Kvadratikus alakok

Definíció: Legyen a V vektortér a valós test felett. Az $L: V \times V \to \mathbb{R}$ leképezést bilineáris függvénynek nevezzük, ha mindkét változójában lineáris. L minden (v_1, v_2) vektorpárjához egyértelműen hozzárendel egy valós számot, amit $L(v_1, v_2)$ -vel jelölünk.

- 1. (a) $L(v_1 + v_2, v_3) = L(v_1, v_3) + L(v_2, v_3)$.
 - (b) $L(v_1, v_2 + v_3) = L(v_1, v_2) + L(v_1, v_3)$.
- 2. (a) $L(\lambda v_1, v_2) = \lambda L(v_1, v_2)$.
 - (b) $L(v_1, \lambda v_2) = \lambda L(v_1, v_2)$.

Ahol $\lambda \in \mathbb{R}$ és $v_1, v_2, v_3 \in V$ vektorok.

Definíció: Az L bilineáris függvénynek a $[b] = b_1, b_2, ..., b_n$ bázis szerinti L mátrixán azt az $n \times n$ -es mátrixot értjük, melyben az i-dik sor j-dik eleme $l_{ij} = L(b_i, b_j)$.

Tétel: Ha $L: V \times V \to \mathbb{R}$ bilineáris függvény, akkor $L(x,y) = x^T A y$, ahol $x,y \in V$ és A a bilineáris függvény mátixa.

Bizonyítás:

$$x = x_1b_1 + x_2b_2 + \dots + x_nb_n$$
, $y = y_1b_1 + y_2b_2 + \dots + y_nb_n$.

Ezeket behelyettesítve és alkalmazva a bilineáris függvények tulajdonságait:

$$L(x,y) = L(x_1b_1 + x_2b_2 + \dots + x_nb_n, y_1b_1 + y_2b_2 + \dots + y_nb_n) =$$

$$x_1y_1L(b_1, b_1) + x_1y_2L(b_1, b_2) + \dots + x_1y_n(b_1, b_n) +$$

$$x_2y_1L(b_2, b_1) + x_2y_2L(b_2, b_2) + \dots + x_2y_n(b_2, b_n) +$$

$$\vdots$$

$$x_ny_1L(b_n, b_1) + x_ny_2L(b_n, b_2) + \dots + x_ny_n(b_n, b_n) =$$

$$\begin{bmatrix} L(b_1, b_1) & L(b_1, b_2) & \cdots & L(b_1, b_n) \\ L(b_2, b_1) & L(b_2, b_2) & \cdots & L(b_2, b_n) \\ \vdots & \vdots & \ddots & \vdots \\ L(b_n, b_1) & L(b_n, b_2) & \cdots & L(b_n, b_n) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = X^T Ay$$

Definíció: Az L bilineáris függvény szimetrikus, ha $L(v_1, v_2) = L(v_2, v_1)$.

Tétel: Az L bilineáris függvény akkor és csak akkor szimetrikus, ha a mátrixa szimetrikus.

Bizonyítás: A definícióból következik.

Definíció: Az $L: V \times V \to \mathbb{R}$ bilineáris függvényhez tartozó $Q(x) = L(x,x): V \to \mathbb{R}$ függvényt az L kvadratikus alakjának nevezzük.

Tétel: Szimetrikus mátrix külömböző sajátértékeihez tartozó sajátvektorai merőlegesek

Bizonyítás: A tételt most csak 3 dimenzióra bizonyítjuk.

Mivel $\lambda_1 - \lambda_2 \neq 0$, ezért $s_1 s_2 = 0$, tehát a sajátvektorok merőlegesek egymásra.

Definíció: Az A mátrix ortogonálisan diagonalizálható, ha $D = S^{-1}AS$, ahol S ortogonális, D diagonális mátrix.

2.4.2 Kvadratikus alak diagonalizálása, főtengely tétel

Tétel: (Főtengely tétel): A $Q = x^T Q x$ kvdratikus alakhoz tekintsük az S ortogonális transzformációt, amelynek S mátrixában az oszlopok a Q szimetrikus mátrix ortonormált sajátvektorai. Áttérve ezen ortonormált sajátvektorok bázisára, vagyis alkalmazva az x = Su koordináta transzformációt, a Q kvadratikus alak a következőképpen írható: $Q = x^T Q x = u^T D u = \sum_i \lambda_i u_i^2$, ahol λ_i -k az A mátrix sajátértékei. Ezt a transzformációt főtengely transzformációnak nevezzük.

Definíció: A $Q = x^T A x$ kvadratikus alak $A \in T^{n \times n}$ szimetrikus mátrixának n külömböző sajátaltereit a Q kvadratikus alak főtengelyeinek nevezzük. Két dimenzióban a megfelelő kúpszelet szimetria tengelyei a főtengelyek.

Definíció: A Q kvadratikus alak

- pozitív definit, ha minden $x \neq 0$ helyettesítésre Q > 0.
- pozitív szemidefinit, ha minden x-re $Q \ge 0$.
- indefinit, ha mind pozitív, mind negatív értékeket is felvesz.

Tétel: Az $n \times n$ -es Q mátrix akkor és csak akkor

- pozitív definit, ha minden sajátértéke pozitív.
- pozitív szemidefinit, ha minden sajátértéke pozitív, vagy nulla.

Bizonyítás: A $Q=x^TQx=u^TDu=\sum_i\lambda_iu_i^2$ összefüggésből az állítás következik.

Tétel: Q akkor és csak akkor pozitív definit, ha a bal felső négyzetes mátrixok aldeterminánsai mind pozitívak.

Tétel: (Spektrál tétel): Valamely négyzetes mátrix akkor és csak akkor diagonalizálható ortogonálisan, ha szimetrikus.

Bizonyítás: Mivel A mátrix szimetrikus, ezért a külömböző sajátértékekhez tartozó sajátvektorok merőlegesek, de legalább is ortogonálisak.

 $A=A^T,$ mert szimetrikus, D diagonális mátrix, S pedig ortogonális, azaz $S^{-1}=S^T.$ A diagonalizálást A^T -re felírva:

$$A^{T} = (S^{-1}DS)^{T} = (S^{-1})^{T}DS^{T} = SDS^{-1}.$$

3 Komplex számok

3.1 Komplex szám fogalma, műveletek

Definíció: Legyen $\mathbb C$ a valós számpárok halmaza: $\mathbb C = \{(a,b)|a,b\in\mathbb R\}$. A $\mathbb C$ -n két műveletet értelmezünk: egy összeadás, és egy szorzás nevűt. A szokásos módon + és \cdot jelekkel jelöljük ezeket. A $\mathbb C$ halmaz elemei a műveletekkel együtt alkotják a komplex számokat.

Definíció: Két komplex szám akkor és csak akkor egyenlő, ha első és második elemeik egymással páronként egyenlők: $(a_1, b_1) = (a_2, b_2) \Leftrightarrow a_1 = a_2, b_1 = b_2$.

Következmény: $(a, b) \neq (b, a)$, kivéve, ha a = b.

Definíció: Összeadás: $(a,b),(c,d)\in\mathbb{C}$ esetén $(a,b)+(c,d)=(a+c,b+d)\in\mathbb{C}$.

Definíció: Szorzás: $(a,b), (c,d) \in \mathbb{C}$ esetén $(a,b) \cdot (c,d) = (ac-bd, ad+bc) \in \mathbb{C}$.

Tétel: A $\mathbb{C} = \{(a,b)|a,b \in \mathbb{R}\}$ alakú számok testet alkotnak az előző műveletekre nézve.

3.2 A komplex számok algebrai alakja

Tétel: Az (a,0) komplex számok és a valós számok között egy-egy értelmű, művelettartó leképezés létesíthető. Másképpen fogalmazva, az (a,0) komplex számok izomorfak a valós számokkal.

Bizonyítás: Konstruktív módon megadjuk az izomorfiát biztosító egy-egyértelmű leképezést. A hozzárendelés módja: $(a,0) \in \mathbb{C} \leftrightarrow a \in \mathbb{R}$.

Tétel: Minden komplex szám felírható olyan kéttagú összegként, ahol az első tag mindkét tényezőjének van izomorf képe a valós számok között, a másodiknak pedig egyik tényezője rendelkezik e tulajdonsággal: (a,b)=(a,0)(1,0)+(b,0)(0,1)

Bizonyítás: A kijelölt műveleteket elvégezve adódik az állítás.

Definíció: A z = (a, b) komplex szám algebrai alakja z = (a, b) = a + bi, ahol $i^2 = -1$.

Definíció: A z = a + bi komplex szám abszolút értéke $|z| = \sqrt{a^2 + b^2}$.

Számolás algebrai alakban:

- Összeadás: (a + bi) + (c + di) = (a + c) + (b + d)i.
- Szorzás: $(a+bi)(c+di) = ac + adi + bci + bdi^2 = (ac bd) + (ad + bc)i$.
- Osztás:

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \frac{c-di}{c-di} = \frac{(ac-bd)}{c^2+d^2} + \frac{(ad+bc)}{c^2+d^2}i.$$

Definíció: A z = a + bi komplex szám konjugáltja a $\overline{z} = a - bi$ komplex szám.

3.2.1 A komplex számok trigonometrikus alakja

Definíció: A z komplex szám trigonometrikus alakja $z = r(\cos \varphi + i \sin \varphi)$.

$$r = \sqrt{a^2 + b^2}, \quad \varphi = \arctan \frac{b}{a}.$$

 $a = r \cos \varphi, \quad b = r \sin \varphi.$

3.2.2 Műveletek trigonometrikus alakban

Tétel: Szorzás: $z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$.

Bizonyítás:

$$z_1 z_2 = r_1(\cos \varphi_1 + i \sin \varphi_1) r_2(\cos \varphi_2 + i \sin \varphi_2) =$$

$$= r_1 r_1 \{ (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_i \sin \varphi_2) + i (\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2) \} =$$

$$= r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)).$$

Következmény: Moivre formula: $z^k = r^k(\cos(k\varphi) + i\sin(k\varphi))$.

Tétel: Osztás: $\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)).$

Bizonyítás: A szorzáshoz hasonlóan bizonyítjuk.

3.2.3 Gyökvonás komplex számokból

Definíció: A z komplex számot a $z*\neq 0$ komplek szám n-edik gyökének nevezzük, ha $z^n=z*$:

$$\sqrt[n]{z*} = z \Leftrightarrow z^n = z*$$
.

Definíció: $w(z) = x + iy = \sqrt{a + ib}$ komplek számokon értelmezett omplex értékű x függvény értéke az a komplex szám, aminek négyzete a + bi, továbbá vagy x > 0, vagy $y \ge 0$.

3.3 Egységgyökök, primitív egységgyökök

Definíció: n-edik (komplex) egységgyöknek nevezzük a z komplex számot, ha $z^n=1$. Másképpen: az $x^n-1=0$ úgynevezett binom egyenlet komplex számok körében vett megoldásait n-edik egységgyöknek nevezzük. A valós megoldások: 1, ha n páratlan, és ± 1 , ha n páros. Jelölés: $\epsilon_k^n=\cos\frac{2k\pi}{n}+i\sin\frac{2k\pi}{n},\quad (k=0,1,2,...,n-1).$

Tétel: Az összes *n*-edik egységgyök előáll az első; $\epsilon_1 = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ egységgyök hatványaiként.

Bizonyítás: A moivre formulából azonnal következik.

Tétel: Az n-edik egységgyökök csoportot alkotnak a komplex számok szokásos szorzására nézve.

Bizonyítás:

1. Zártság:

$$(\epsilon_k \epsilon_l)^n = (\cos \frac{(k+l)2\pi}{n} + i \sin \frac{(k+l)2\pi}{n})^n = \cos \frac{(k+l)n2\pi}{n} + i \sin \frac{(k+l)n2\pi}{n} = \cos((k+l)2\pi) + i \sin((k+l)2\pi) = 1.$$

- 2. Egység: Az $1 = 1(\cos \frac{0}{n} + i \sin \frac{0}{n})$.
- 3. Inverz: $\epsilon_k \epsilon_j = 1(\cos \frac{0}{n} + i \sin \frac{0}{n})$ alapján: $\frac{k2\pi}{n} + \frac{j2\pi}{n} = \frac{n2\pi}{n}$, ahonnan j = n k. Tehát $\epsilon_k^{-1} = \epsilon_{n-k}$.

Definíció 1: Azt az ϵ_k n-edik egységgyököt, amelynek hatványai az összes többi egységgyököt előállítják, primitív egységgyöknek nevezzük.

Definíció 2: Az az egységgyök, amelynek n-dik hatványa 1, és semelyik ennél kisebb hatványa nem 1, primitív egységgyök.

Tétel: Definíció $1 \rightarrow$ Definíció 2.

Bizonyítás: Indirekt módon tegyük fel, hogy vannak egyenlők is az ϵ_k hatványai között, pl: $\epsilon_k^j = \epsilon_k^l$, azaz

$$\frac{\epsilon_k^j}{\epsilon_k^l} = \epsilon_k^{j-l} = 1.$$

Mivel j-l < n, ezért ez azt jelentené, hogy ϵ_k -hoz nem az n lenne a legkisebb olyan szám, amire n-edik egységgyök. Ez ellentmondás, tehát az eredeti feltevésünk igaz.

Tétel: Ha ϵ_k n-edik primitív egységgyök, akkor k és n nem relatív prímek (nincs közös osztójuk).

Bizonyítás: A primitív egységgyökök hatványaival minden egységgyök előállítható, így az első is:

$$\epsilon_k^j = \epsilon_1$$

$$\cos \frac{jk2\pi}{n} + i \sin \frac{jk2\pi}{n} = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$$

$$\frac{jk2\pi}{n} = \frac{2\pi}{n} + l2\pi$$

$$\frac{jk\frac{2\pi}{n} - \frac{2\pi}{n}}{u} = 2\pi$$

$$\frac{jk - 1}{u} = n$$

$$jk - 1 = nu$$

$$ik - nu = 1.$$

Tehát ha lenne k-nak és n-nek közös osztója, akkor az osztója lenne 1-nek is, ami lehetetlen.

Tétel: Ha n és k relatív prímek, akkor ϵ_k n-edik egységgyök.

Bizonyítás: A 2. definíció teljesülését bizonyítjuk: ha k relatív prím n-hez, akkor n az a legkisebb szám, amire ϵ_k n-edik egységgyök. Indirekt módszerrel bizonyítunk. Tegyük fel, hogy ϵ_k -t j < n hatványra emeljük, és 1-et kapunk. A moivre-tétel szerint ez azt jelenti, hogy

$$\epsilon_k^j = \cos\frac{jk2\pi}{n} + i\sin\frac{jk2\pi}{n} \neq \cos 0 + i\sin 0.$$

A 0 úgy jöhetne ki, hogy a $\frac{jk2\pi}{n}$ szög a 2π egész számú többszöröse lenne. Mivel k relatív prím n-hez, ez csak úgy lehetne, ha n oztója lenne j-nek, de ez lehetetlen, hiszen n>j.

Definíció 3: Ha ϵ_k n-edik egységgyök, továbbá n, k relatív prímek, akkor ϵ_k primitív n-edik egységgyök.

Tétel: Definíció $2 \to \text{Definíció } 1 \to \text{Definíció } 3 \to \text{Definíció } 2$. Mivel a bizonyításban körbeértünk, beláttuk a 3 definíció egyenértékűségét.

3.4 Komplex számok exponenciális alakja

Definíció: A $z=re^{i\varphi}$ alakot, ahol r a z komplex szám abszolút értéke, és φ az argumentuma, a komplex szám exponenciális alakjának nevezzük.

Számolás exponenciális alakban:

•
$$z_1 z_2 = r_1 e^{i\varphi_1} r_2^{i\varphi_2} = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$$
.

•
$$z^n = (re^{i\varphi})^n = r^n e^{ni\varphi}$$
.

•
$$\sqrt[n]{z} = \sqrt[n]{re^{i\varphi}} = \sqrt[n]{r}e^{i\frac{\varphi+k2\pi}{n}}, \quad (k = 0, 1, 2, ..., n-1).$$

•
$$\frac{z_1}{z_2} = \frac{r_1 e^{i\varphi_1}}{r_2 e^{i\varphi_2}} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$$

3.5 Az algebra alaptétele

 ${\bf T\acute{e}tel:}\;\;({\rm Az\;algebra\;alapt\acute{e}tele:})\;\;{\rm Az\;}n\text{-ed}$ fokú komplex együtthatós polinomnak pontosan n darab komplex gyöke van.

 ${\bf T\acute{e}tel:}\;\;{\bf Ha}$ a zkompley szám gyoke egy polinomnak, akkor konjugáltja is gyöke.

4 Euklideszi terek

Definíció: Az $< x, y >: V \times V \to \mathbb{R}$ függvényt, melynek függvényértékét s(x, y) = < x, y >-nal jelöljük, skalárszorzatnak nevezzük, ha a következő tulajdonságok teljesülnek:

- 1. Pozitív definit: $\forall x \in V$ esetén $\langle x, x \rangle \geq 0$, és $\langle x, x \rangle = 0$ pontosan akkor, ha x = 0.
- 2. Szimetrikus: $\forall x, y \in V$ -re < x, y > = < y, x >.
- 3. Homogén: $\forall x,y \in V$ és $\forall \lambda \in \mathbb{R}$ esetén $<\lambda x,y>=\lambda < x,y>$.
- 4. Lineáris: $\forall x, y, z \in V$ -re $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.

Definíció: A skalárszorzattal ellátott tereket Euklideszi tereknek nevezzük.

Tétel: Minden véges dimenziós vektortérben megadható skalárszorzat.

Bizonyítás: Konstruktív, megadunk egy skalárszorzatot.

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{i=1}^n x_i y_i.$$

1. Pozitív definit:

$$\langle x, x \rangle = x_1 x_1 + x_2 x_2 + \dots + x_n x_n = \sum_{i=1}^{n} x_i^2 \ge 0.$$

2. Szimetrikus:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} y_i x_i = \langle y, x \rangle.$$

3. Homogén:

$$\langle \lambda x, y \rangle = \sum_{i=1}^{n} \lambda x_i y_i = \lambda \sum_{i=1}^{n} x_i y_i = \lambda \langle x, y \rangle.$$

4. Lineáris:

$$\langle x + y, z \rangle = \sum_{i=1}^{n} (x_i + y_i) z_i = \sum_{i=1}^{n} x_i z_i + \sum_{i=1}^{n} y_i z_i = \langle x, z \rangle + \langle y, z \rangle.$$

4.0.1 Metrikus tér

Definíció: A H halmazt metrikus térnek nevezzük, ha van olyan metrikának nevezett $d: H \times H \to \mathbb{R}^+ \cup \{0\}$ függvény, amelyre a következők teljesülnek:

- 1. Pozitív definit: $\forall x, y \in H, \quad d(x, y) = 0 \Leftrightarrow x = y.$
- 2. Szimetrikus: $\forall x, y \in H, d(x, y) = d(y, x)$.
- 3. Háromszög egyenlőtlenség: $\forall x,y,z\in H,\quad d(x,y)\leq d(x,z)+d(z,y).$

Definíció: Diszkrét metrikának nevezik a következő függvényt:

$$d(x,y) = \begin{cases} 1, & \text{ha } x \neq y \\ 0, & \text{ha } x = y \end{cases}$$

4.0.2 Normált tér

Definíció: A V vektorteret normált-nak nevezzük, ha van olyan $||x||:V\to\mathbb{R}$ függvény, az úgynevezett norma, amelyre a következők teljsülnek:

- 1. Pozitív definit: $\forall x \in V$ -re $||x|| \ge 0$, és ||x|| = 0 pontosan akkor teljesül, ha x = 0.
- 2. Homogén: $\forall x \in V, \alpha \in \mathbb{R}$ -re $||\alpha x|| = |\alpha| \cdot ||x||$.
- 3. Háromszög egyenlőtlenség: $\forall x,y \in V$ esetén $||x+y|| \leq ||x|| + ||y||$.

Tétel: Minden normált tér metrikus tér.

Tétel: Konstruktív, megadunk egy metrikát: d(x,y) := ||x-y||. Erről kell belátni, hogy rendelkezik-e a metrika tulajdonságaival.

- 1. Pozitív definit: $||x-y|| = 0 \Leftrightarrow x = y$.
- 2. Szimetria: $||x-y|| = ||y-x||, \forall x, y \in V$, hiszen mindegy, hogy a vektor melyik irányba mutat, a nagysága ugyan az lesz.
- 3. Háromszög egyenlőtlenség: $||x-y|| \le ||x-z|| + ||z-y||$. Ez teljesül $\forall x, y, z \in V$ -re.

Tétel: Minden skalárszorzaos tér normált tér.

Bizonyítás: Konstruktív, megadunk egy normát $||x|| := \sqrt{\langle x, x \rangle}$. Ez rendelkezik a norma tulajdonságaival.

4.0.3 Cauchy-Bunyakovszkij-Schwarz egyenlőtlenség

Tétel: (Cauchy-Bunyakovszkij-Schwarz egyenlőtlenség): $|\langle a, b \rangle| \le ||a|| \cdot ||b||$.

Bizonyítás: Tekintük az $< a + \lambda b, a + \lambda b >$ skalárszorzatot. $0 \le < a + \lambda b, a + \lambda b >$ a pozitív definitség miatt.

$$0 \le \langle a + \lambda b, a + \lambda b \rangle = \langle a, a \rangle + \langle a, \lambda b \rangle + \langle \lambda b, a \rangle + \langle \lambda b, \lambda b \rangle =$$

= $\langle a, a \rangle + 2 \langle a, \lambda b \rangle + \langle \lambda b, \lambda b \rangle = \lambda^2 \langle b, b \rangle + 2\lambda \langle a, b \rangle + \langle a, a \rangle$.

Ez λ -ra nézve egy kétismeretlenes másodfokú egyenlőtlenség. Mivel ennek a függvénynek legfeljebb 1 gyöke lehet, a diszkrimináns nem pozitív, azaz

$$4(\langle a, b \rangle)^2 - 4 \langle b, b \rangle \langle a, a \rangle \le 0 \Rightarrow \langle a, b \rangle^2 \le \langle a, a \rangle \langle b, b \rangle$$

Amiből

$$| < a, b > | \le ||a|| \cdot ||b||.$$

Tétel: Minden Euklideszi tér metrikus tér.

Bionyítás: Konstruktív, megadunk egy metrikát: $d(x,y) = \sqrt{\langle x-y, x-y \rangle}$. Teljesünek az előírt tulajdonságok.

4.1 Ortonormált bázis

4.1.1 Szög fogalmának általánosítása, ortogonális vektorok

Definíció: Euklideszi térben két vektor, az a és a b által beárt α szöget a következőképpen lehet értelmezni. Legyen < a, b > egy skalárszorzat V-ben, ls valamely x vektor normája $||x|| := \sqrt{< x, x >}$. Ekkor

$$\cos \alpha = \frac{\langle a, b \rangle}{||a|| \cdot ||b||}.$$

Definíció: Azt mondjuk, hogy az a vektor ortogonális a b vektorra, ha $\langle a, b \rangle = 0$.

4.1.2 Ortogonális bázis létezése

Tétel: Ortogonális, nem nulla vektorok lineárisan függetlenek.

Bizonyítás: A függetlenség definíciójából indulunk ki:

 $\sum_{i=1}^{n} \lambda_i x_i = 0$ csak akor, ha $\forall \lambda_i = 0$. Vegyük rendre az $x_1, x_2, ..., x_n$ vektorokkal való skalárszorzatot.

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = 0$$
 $/ \cdot x_j \quad (j = 1, 2, \dots, n).$

Ezzel azt kapjuk, hogy $\lambda_i < x_i, x_i >= 0$. A skalárszorzat pozitív definit tuljdonsága miatt ez csak akkor teljesül, ha $\lambda_i = 0$.

Tétel: Minden euklideszi térben van ortogonális bázis.

Mivel minden tér saját magának az altere, az általánosság megszorítása nélkül a bizonyítást elegendő alterekre bemutatni.

Tétel: Minden altérben van ortogonális bázis.

Bizonyítás: Konstruktív, azt bizonyítjuk, hogy minden független rendszerből kiindulva, így bázisból is, tudunk ugyanolyan elemszámú ortogonális rendszert konstruálni. Gram-Schmidt ortogonalizáció: Legyen $b_1, b_2, ..., b_n$ egy független rendszer. Ebből képezzük $c_1, c_2, ..., c_n$ ortogonális rendszert a következőképpen:

$$c_1 := b_1, \quad c_n := b_n - \sum_{i=1}^{n-1} \frac{\langle b_n, c_i \rangle}{\langle c_i, c_i \rangle c_i}.$$

A konstrukció miatt a kapott rendszer ortogonális.

Definíció: Ortonormált a vektorrendszer, ha páronként ortogonális, és minden elemének normája 1.

Következmény: Minden euklideszi térnek van ortonormált bázisa.

Bizonyítás: Konstruktívan, normáljuk a Gram-Schmidt ortogonalizációból kapott bázist.

Tétel: Az euklideszi tér valamely bázisa ortonormált ⇔ Eg vektor koordinátáját a következő képpen kapjuk meg:

$$a = \sum_{i=1}^{n} \lambda_i e_i, \quad \lambda_i = \langle a, e_i \rangle$$

4.2 Valós euklideszi terek transzformációi

4.2.1 Szimetrikus transzformáció:

Definíció: Egy transzformációt szimetrikusnak nevezünk, ha van olyan bázis, amelyre nézve a transzformáció mátrixa szimetrikus.

Lemma: Ha a leképezés A mátrixa szimetrikus, és $\langle x, y \rangle := y^T x$, akkor $\langle x, Ay \rangle = \langle Ax, y \rangle$

Bizonyítás:

$$< x, Ay > = (Ay)^T x = y^T (A^T x) = y^T (AX) = < aX, Y >$$

Tétel: Szimetrikus mátrix külömböző sajátértékeihez tartozó sajátvektorok ortogonálisak.

Bizonyítás: $As_1 = \lambda_1 s_1$ -ből $< As_1, s_2 > = \lambda_1 < s_1, s_2 >$

$$As_1 = \lambda_1 s_1$$
-ből $< As_2, s_1 > = \lambda_2 < s_2, s_1 >$

Ezért $0 = (\lambda_1 - \lambda_2) < s_1, s_2 >$, és mivel $\lambda_1 \neq \lambda_2$, ezért $< s_1, s_2 >$ = 0, vagyis asajátvektorok valóban ortogonálisak.

4.2.2 Ortogonális transzformáció

Definíció: Egy transzformáció ortogonális, ha van olyan bázis, melyben mátrixa ortogonális. (A G mátrix ortogonális, ha $GG^T = E$).

Tétel: Az ortogonális transzformáció megőrzi az $\langle x, y \rangle := y^T x$ skalárszorzatot.

Bizonyítás:

$$\langle x, y \rangle = (Ab)^T (Aa) = b^T (A^T A) a = b^T E a = \langle a, b \rangle.$$

Tétel: Az ortogonális transzformáció távolságtartó, normatartó, szögtartó, ha e függvényeket a skalárszorzatból származtatjuk.

Bizonyítás: Mivel az ortogonális transzformáció skalárszorzattartó, ezért ha a táolságot, normát és a szöget a skalárszorzatból vezetjuk le, akkor a transzformáció nyílván megtartja ezeket is.

Tétel: (Determinánok szorzás tétele): $\det(AB) = \det(A) \cdot \det(B)$, ha A és B egyaránt $n \times n$ típusú mátrixok.

Tétel: Ortogonális mátrix determinánsának abszolút értéke 1.

Bizonyítás: $1 = \det(E) = \det(A^{-1}A) = \det(A^{T}A) = \det(A) \cdot \det(A^{T}) = \det(A)^{2}$.

Tétel: Ortogonális transzformáció sajátértékeinek abszolútértéke 1.

Bizonyítás: Ha $Ax = \lambda x$, akkor $(Ax)^T = (\lambda x)^T$. A két egyenletet összeszorozva:

$$(Ax)^{T} A x = (\lambda x)^{T} \lambda x$$
$$x^{T} A^{T} A x = (\lambda^{2} x^{T}) x$$
$$x^{T} x = \lambda^{2} x^{T} x.$$

amiből valóban $\lambda^2 = 1$.

4.3 Komplex euklideszi tér

4.3.1 Komplex skalárszorzat

Definíció: A $V \times V \to \mathbb{C}$ függvényt skalárszorzatnak nevezzük, ha a következő tulajdonságok teljesülnek:

- 1. $\forall z \in V$ -re $\langle z, z \rangle > 0, \langle z, z \rangle = 0 \Leftrightarrow z = 0.$
- 2. $\forall z_1, z_2 \in V \text{-re} < z_1, z_2 > = < \overline{z_2, z_1} > .$
- 3. (a) $\forall z_1, z_2 \in V \text{-re} < \lambda z_1, z_2 > = \overline{\lambda} < z_1, z_2 > .$
 - (b) $\forall z_1, z_2 \in V \text{-re } \lambda < z_1, z_2 > .$
- 4. (a) $\forall z_1, z_2, z_3 \in V$ -re $\langle z_1, z_2 + z_3 \rangle = \langle z_1, z_2 \rangle + \langle z_1, z_3 \rangle$.
 - (b) $\forall z_1, z_2, z_3 \in V$ -re $\langle z_1 + z_2, z_3 \rangle = \langle z_1, z_3 \rangle + \langle z_2 + z_3 \rangle$.

4.3.2 A komplex euklideszi terej speciális transzformációi

Valós speciális mátrixok: Komplex speciális mátrixok: Szimetrikus: $A=A^T$ Hermitikus: $A=\overline{A}^T$ Atiszimetrikus: $A=-A^T$ Ferdén hermitikus: $A=-\overline{A}^T$ Ortogonális: $A^T=A^{-1}$ Unitér: $A^{-1}=\overline{A}^T$

Tétel: Hermitikus mátrixok sajátértékei valósak.

Bizonyítás: $Ax = \lambda x$ balról megszorozva \overline{x}^T -tal:

$$\overline{x}^T A x = \overline{x}^T \lambda x = \lambda \overline{x}^T x = \lambda \sum_{k=1}^n |x_k|^2.$$

A jobboldal valós szám, ezért: $\lambda = \frac{\overline{x}^T A x}{\overline{x}^T x}$. Azt kell csak belátni, hogy nem csak a nevező, de a számáló is valós. Ezt úgy fogjuk bizonyítani, hogy tudjuk, hogy a komplex szám akkor és csak akkor egyenlő a konjugáltjával, ha csak valós része van. Azt tudjuk, hogy a számláló is egyetlen komplex szám, hiszen a skalárszorzatnak ez volt a definíciója, így a szám megegyezik a "transzponáltjával".

$$\overline{x}^T(Ax) = (\overline{x}^T(Ax))^T = (Ax)^T \overline{x} = x^T A^T \overline{x} = x^T \overline{Ax} = \overline{\overline{x}^T(Ax)}.$$

Következés képpen a sajátérték, λ is valós.

Tétel: A ferdén szimetrikus, vagy ferdén hermitikus mátrix sajátértékei vagy nullék, vagy (tisztán) képzetesek.

Bizonyítás: Az előzőhöz hasonlóan, a bizonyitás lényege, hogy a komplex szám akkor és csak akkor képzetes, ha egyenlő a konjugáltja (-1) szeresével.

$$\lambda = \frac{\overline{x}^T x}{\overline{x}^T x}$$
$$\overline{x}^T (Ax) = (\overline{x}^T (Ax))^T = (Ax)^T \overline{x} = x^T A^T \overline{x} = x^T (-\overline{A}) \overline{x} = -\overline{x}^T (Ax).$$

Eszerint valóban a 0, illetve képzetes szám lehet sajátérték.

Tétel: Unitér (ortogonális) mátrix sajátértékeinek abszolút értéke 1.

Bizonyítás: A bizonyítás analóg a valós esetben tanult szimetrikus mátrixra vonatkozó hasonló állítás bizonyításával:

$$\begin{split} \frac{Ax &= \lambda x}{(Ax)^T} &= \overline{\lambda x}^T \Big\} \text{a k\'et egyenlet \"osszeszorozva:} \\ & \overline{(Ax)}^T (Ax) = \overline{\lambda x}^T \lambda x \\ & \overline{x}^T \overline{A}^T (Ax) = \lambda \overline{\lambda} \overline{x}^T x \\ & \overline{x}^T (\overline{A}^T A) x = \overline{x}^T x = \lambda^2 \overline{x}^T x, \end{split}$$

amiből $\lambda^2 = 1$.