EC4219: Software Engineering

Lecture 16 — Abstract Interpretation (1)

Sunbeom So 2024 Spring

Overview

- Deductive verifiers require annotations (e.g., loop invariants) from users.
- Fortunately, there are useful techniques that can automatically infer annotations (e.g., Houdini algorithm).
- **Abstract Interpretation** is a popular approach for this purpose.
- Many useful static analyzers are based on abstract interpretation.
 - ▶ Infer (Meta): a tool for detecting memory leaks in Android applications.
 - Astrée (Airbus) a static analyzer for aircraft software.

Key Idea: Over-Approximation

- In general, we cannot reason about exact program behaviors due to undecidability.
- However, we can still prove correctness by obtaining a conservative approximation.

 Abstract interpretation is a framework for automatically computing over-approximations of program states.

Abstract Interpretation Recipe

To use abstract interpretation, follow the steps below.

- Abstract Domain: define the abstract values that each variable can have (i.e., fixes "shape" of the invariants).
 - $c_1 \leq x \leq c_2$ (interval), $\pm x \pm y \leq c$ (octagon)
- Abstract Semantics (abstract transformers): define how to execute each statement in the chosen abstract domain.
- Fixed Point Computation: Iteratively apply abstract transformers until you reach a fixed point.
 - ▶ The fixed point is an over-approximation of program states.
 - Sometimes done in abstract transformers.

Step 1: Abstract Domain

- Suppose we aim to infer invariants of the form $x \prec 0$ where $\prec \in \{>, \geq, <, \leq, =, \neq\}$.
- The abstract domain is defined as a pair (**Sign**, \sqsubseteq):

$$\textbf{Sign} = \{\top, \bot, \mathsf{Pos}, \mathsf{Neg}, \mathsf{Zero}, \mathsf{Non}\text{-}\mathsf{Pos}, \mathsf{Non}\text{-}\mathsf{Neg}, \mathsf{Non}\text{-}\mathsf{Zero}\}$$

where \top =ANY, \bot =NONE, and the partial order (\sqsubseteq) is defined as:

Intuitively, $a \sqsubseteq b$ indicates b contains more information.

• A partially ordered set (poset) (D, \sqsubseteq) is **complete lattice**, iff every subset $Y \subseteq D$ has $| | Y \in D$.

- The meaning of abstract domain (lattice) is defined by abstraction and concretization functions that relate concrete and abstract values.
- Concretization function (γ) maps each abstract value to sets of concrete elements.
 - ho $\gamma(\mathsf{Pos}) = \{x | x \in \mathbb{Z} \land x > 0\}$
- Abstraction function (α) maps sets of concrete elements to values in the abstract domain.
 - $\alpha(\{0, 2, 10\}) = \text{Non-Neg}$
 - $\alpha(\{3,114\}) = Pos$
 - ho $\alpha(\{-3,2\}) = \text{Non-Zero}$

Formally, the abstraction of integers is defined as follows.

$$egin{array}{lll} lpha_{\operatorname{Sign}} &:& \mathcal{P}(\mathbb{Z})
ightarrow {f Sign} \ lpha_{\operatorname{Sign}}(Z) &=& \sqcup_{z \in Z} lpha'(z) \ && ext{where } lpha'(z) = \left\{ egin{array}{lll} \operatorname{Neg} & \cdots & z < 0 \ \operatorname{Zero} & \cdots & z = 0 \ \operatorname{Pos} & \cdots & z > 0 \end{array}
ight. \end{array}$$

where join (\sqcup) is the least upper bound between two elements:

$$a \sqcup b = \left\{ \begin{array}{ll} a & \cdots \text{ if } b \sqsubseteq a \\ b & \cdots \text{ if } a \sqsubseteq b \\ \text{Non-Zero} & \cdots \text{ if } (a,b) = (\text{Neg, Pos) or } (b,a) = (\text{Neg, Pos)} \\ \text{Non-Pos} & \cdots \text{ if } (a,b) = (\text{Neg, Zero}) \text{ or } (b,a) = (\text{Neg, Zero}) \\ \text{Non-Neg} & \cdots \text{ if } (a,b) = (\text{Zero, Pos) or } (b,a) = (\text{Zero, Pos}) \\ \top & \cdots \text{ otherwise} \end{array} \right.$$

• Important Requirement: concrete domain D and abstract domain \hat{D} must be related through Galois connection:

$$\forall x \in D, \forall \hat{x} \in \hat{D}. \ \alpha(x) \sqsubseteq_A \hat{x} \iff x \sqsubseteq_C \gamma(\hat{x})$$

- ullet lpha and γ respect the orderings in D and \hat{D} .
- The abstract value \hat{x} should capture all possibilities of the corresponding x.
 - ▶ Does $\alpha(\{2,3\}) = \top$ and $\gamma(\top) = \mathbb{Z}$ satisfy Galois connection?

We can extend the lattice of abstract integers into that of abstract states.

• The complete lattice of abstract states ($\widehat{\mathbf{State}}, \sqsubseteq$):

$$\widehat{\mathsf{State}} = \mathit{Var} o \mathsf{Sign}$$

with the pointwise ordering:

$$\hat{s}_1 \sqsubseteq \hat{s}_2 \iff \forall x \in Var. \ \hat{s}_1(x) \sqsubseteq \hat{s}_2(x).$$

ullet The least upper bound of $Y\subseteq\widehat{\mathsf{State}}$,

$$\bigsqcup Y = \lambda x. \bigsqcup_{\hat{s} \in Y} \hat{s}(x).$$

i.e.,
$$\hat{s_1} \sqcup \hat{s_2} = \lambda x$$
. $s_1(x) \sqcup s_2(x)$.

Step 1: Abstract Domain (Cont'd) - Abstract Booleans

The truth values $\mathbf{T} = \{true, false\}$ are abstracted by the complete lattice $(\widehat{\mathbf{T}}, \sqsubseteq)$:

$$\widehat{\mathbf{T}} = \{\top, \bot, \widehat{\mathit{true}}, \widehat{\mathit{false}}\}$$

where $\top =$ ANY, $\bot =$ NONE, $\widehat{true} =$ TT, and $\widehat{false} =$ FF.

$$\widehat{b_1} \sqsubseteq \widehat{b_2} \iff \widehat{b_1} = \widehat{b_2} \ \lor \ \widehat{b_1} = \bot \ \lor \ \widehat{b_2} = \top$$

Exercise) Define the abstraction function for the boolean lattice:

$$lpha_{\widehat{\mathsf{T}}}: \mathcal{P}(\mathrm{T}) o \widehat{\mathsf{T}}$$

Step 2: Abstract Semantics

- Given the abstract domain, we should define abstract transformers for each statement.
- A counter-part of concrete semantics.
 - ▶ In concrete execution, each statement changes concrete memory states.
 - ▶ In abstract execution, each statement changes abstract memory states.

We will consider the following language to define abstract semantics for our sign analysis.

$$egin{array}{lll} a &
ightarrow & n \mid x \mid a_1 + a_2 \mid a_1 \star a_2 \mid a_1 - a_2 \ b &
ightarrow & {
m true} \mid {
m false} \mid a_1 = a_2 \mid a_1 \leq a_2 \mid \lnot b \mid b_1 \land b_2 \ c &
ightarrow & x := a \mid {
m skip} \mid c_1; c_2 \mid {
m if} \; b \; c_1 \; c_2 \mid {
m while} \; b \; c \end{array}$$

$$\begin{split} \widehat{\mathcal{A}} \llbracket \ a \ \rrbracket & : \quad \widehat{\mathsf{State}} \to \mathsf{Sign} \\ \widehat{\mathcal{A}} \llbracket \ n \ \rrbracket (\hat{s}) & = \quad \alpha_{\mathsf{Sign}}(\{n\}) \\ \widehat{\mathcal{A}} \llbracket \ x \ \rrbracket (\hat{s}) & = \quad \hat{s}(x) \\ \widehat{\mathcal{A}} \llbracket \ a_1 + a_2 \ \rrbracket (\hat{s}) & = \quad \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) +_{\mathsf{Sign}} \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{A}} \llbracket \ a_1 \star a_2 \ \rrbracket (\hat{s}) & = \quad \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) \star_{\mathsf{Sign}} \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{A}} \llbracket \ a_1 - a_2 \ \rrbracket (\hat{s}) & = \quad \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) -_{\mathsf{Sign}} \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \end{split}$$

$+_S$	NONE	NEG	ZERO	POS	NON- POS	NON- ZERO	NON- NEG	ANY
NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE
NEG	NONE	NEG	NEG	ANY	NEG	ANY	ANY	ANY
ZERO	NONE	NEG	ZERO	POS	NON- POS	NON- ZERO	NON- NEG	ANY
POS	NONE	ANY	POS	POS	ANY	ANY	POS	ANY
NON- POS	NONE	NEG	NON- POS	ANY	NON- POS	ANY	ANY	ANY
NON- ZERO	NONE	ANY	NON- ZERO	ANY	ANY	ANY	ANY	ANY
NON- NEG	NONE	ANY	NON- NEG	POS	ANY	ANY	NON- NEG	ANY
ANY	NONE	ANY	ANY	ANY	ANY	ANY	ANY	ANY

\star_S	NEG	ZERO	POS
NEG	POS	ZERO	NEG
ZERO	ZERO	ZERO	ZERO
POS	NEG	ZERO	POS

S	NEG	ZERO	POS
NEG	ANY	NEG	NEG
ZERO	POS	ZERO	NEG
POS	POS	POS	ANY

$$\begin{split} \widehat{\mathcal{B}} \llbracket \ b \ \rrbracket \ : \ \widehat{\mathbf{State}} \to \widehat{\mathbf{T}} \\ \widehat{\mathcal{B}} \llbracket \ \mathsf{true} \ \rrbracket (\hat{s}) \ &= \ \widehat{\mathit{true}} \\ \widehat{\mathcal{B}} \llbracket \ \mathsf{false} \ \rrbracket (\hat{s}) \ &= \ \widehat{\mathit{false}} \\ \widehat{\mathcal{B}} \llbracket \ a_1 = a_2 \ \rrbracket (\hat{s}) \ &= \ \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) =_{\mathsf{Sign}} \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}} \llbracket \ a_1 \le a_2 \ \rrbracket (\hat{s}) \ &= \ \widehat{\mathcal{A}} \llbracket \ a_1 \ \rrbracket (\hat{s}) \le_{\mathsf{Sign}} \widehat{\mathcal{A}} \llbracket \ a_2 \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}} \llbracket \ \neg b \ \rrbracket (\hat{s}) \ &= \ \neg_{\widehat{\mathsf{T}}} \widehat{\mathcal{B}} \llbracket \ b \ \rrbracket (\hat{s}) \\ \widehat{\mathcal{B}} \llbracket \ b_1 \wedge b_2 \ \rrbracket (\hat{s}) \ &= \ \widehat{\mathcal{B}} \llbracket \ b_1 \ \rrbracket (\hat{s}) \wedge_{\widehat{\mathsf{T}}} \widehat{\mathcal{B}} \llbracket \ b_2 \ \rrbracket (\hat{s}) \end{split}$$

$=_S$	NEG	ZERO	POS
NEG	ANY	FF	$\mathbf{F}\mathbf{F}$
ZERO	FF	TT	$\mathbf{F}\mathbf{F}$
POS	FF	FF	ANY

\leq_S	NEG	ZERO	POS
NEG	ANY	TT	TT
ZERO	$\mathbf{F}\mathbf{F}$	TT	TT
POS	FF	$\mathbf{F}\mathbf{F}$	ANY

\neg_T	
NONE	NONE
TT	FF
FF	TT
ANY	ANY

\wedge_T	NONE	TT	$\mathbf{F}\mathbf{F}$	ANY
NONE	NONE	NONE	NONE	NONE
TT	NONE	TT	FF	ANY
FF	NONE	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
ANY	NONE	ANY	$_{ m FF}$	ANY

$$\begin{split} \widehat{\mathcal{C}} \llbracket \ c \ \rrbracket \ : \ \widehat{\mathsf{State}} \to \widehat{\mathsf{State}} \\ \widehat{\mathcal{C}} \llbracket \ x := a \ \rrbracket \ = \ \lambda \widehat{s}.\widehat{s}[x \mapsto \widehat{\mathcal{A}} \llbracket \ a \ \rrbracket(\widehat{s})] \\ \widehat{\mathcal{C}} \llbracket \ \mathsf{skip} \ \rrbracket \ = \ \mathsf{id} \\ \widehat{\mathcal{C}} \llbracket \ c_1; c_2 \ \rrbracket \ = \ \widehat{\mathcal{C}} \llbracket \ c_2 \ \rrbracket \circ \widehat{\mathcal{C}} \llbracket \ c_1 \ \rrbracket \\ \widehat{\mathcal{C}} \llbracket \ \mathsf{if} \ b \ c_1 \ c_2 \ \rrbracket \ = \ \widehat{\mathsf{cond}}(\widehat{\mathcal{B}} \llbracket \ b \ \rrbracket, \widehat{\mathcal{C}} \llbracket \ c_1 \ \rrbracket, \widehat{\mathcal{C}} \llbracket \ c_2 \ \rrbracket) \\ \widehat{\mathcal{C}} \llbracket \ \mathsf{while} \ b \ c \ \rrbracket \ = \ \lambda \widehat{s}.\mathsf{filter}(\neg b)(\mathit{fix}(\lambda \widehat{x}.\widehat{s} \sqcup \widehat{\mathcal{C}} \llbracket \ c \ \rrbracket(\mathsf{filter}(b)(\widehat{x})))) \end{split}$$

$$\widehat{\mathrm{cond}}(f,g,h)(\hat{s}) = \left\{ \begin{array}{ll} \bot & \cdots f(\hat{s}) = \bot \\ g(\hat{s}) & \cdots f(\hat{s}) = \widehat{true} \\ h(\hat{s}) & \cdots f(\hat{s}) = \widehat{false} \\ g(\hat{s}) \sqcup h(\hat{s}) & \cdots f(\hat{s}) = \top \end{array} \right.$$

Exercise: Abstract Semantics

- Q1. Compute the final abstract state at the exit of the loop.
- Q2. Is x always non-negative inside the loop?

Exercise: Abstract Semantics

- Q1. Compute the final abstract state at the exit of the loop.
- Q2. Is x always non-negative inside the loop?

	0	1	2
\boldsymbol{x}	Zero	Non-Neg	Non-Neg
\boldsymbol{y}	Zero	Non-Neg	Non-Neg
\boldsymbol{n}	Т	Т	Т
z	Т	Т	Т

Important Requirement of Abstract Semantics

- To prove correctness, abstract semantics must be sound with respect to the concrete semantics (i.e., faithfully model the concrete semantics).
- ullet Technically, the soundness of the abstract transformer \hat{F} means:

$$\forall x \in D, \forall x \in \hat{D}. \ \alpha(x) \sqsubseteq \hat{x} \implies \alpha(F(x)) \sqsubseteq \hat{F}(\hat{x})$$

- If \hat{x} is an overapproximation of x, then $\hat{F}(\hat{x})$ is an over-approximation of F(x).
 - ► The analysis result must be conservative with respect to actual program behaviors.

Summary

Abstract interpretation is a framework for automatically computing over-approximations of program states.

- Abstract Domain: define the abstract values that each variable can have (i.e., fixes "shape" of the invariants).
 - $c_1 \le x \le c_2$ (interval), $\pm x \pm y \le c$ (octagon)
- **Abstract Semantics** (abstract transformers): define how to execute each statement in the chosen abstract domain.
- Fixed Point Computation: Iteratively apply abstract transformers until you reach a fixed point.
 - ▶ The fixed point is an over-approximation of program states.
 - Sometimes done in abstract transformers.
- Q. Does the fixed point computation always terminate?