

ANÁLISIS DE CIRCUITOS

Ingeniería de Telecomunicación Examen septiembre 2008

Duración: 2 horas 30 minutos Responda a cada pregunta en hojas separadas Lea detenidamente los enunciados antes de contestar

Nombre	DN	· 1	2riina	
MOHIDLE	D.IN	.l. \	JIUDU	

1. Para el circuito de la figura adjunta determinar el valor de la corriente en la resistencia de $9(\Omega)$. (1.5 puntos)

- 2. En el circuito de la figura, el interruptor A se cierra en t=0s. y el interruptor B permanece abierto, no circulando inicialmente corriente por la bobina. En t=3s. el interruptor A se abre y el B se cierra.(4 puntos)
 - a) Calcular la corriente i(t) en los instantes t = 1s. t = 2s. $y t = 3^- s$.(1.5 puntos)
 - b) Calcular la corriente i(t) en el instante $t = 3^+$ s. (0.5 puntos)
 - c) Obtener la ecuación diferencial en función de i(t) para t>3s.(0.5 puntos)
 - d) Obtener la expresión de i(t) para t>3s.(1punto)
 - e) Representar cuantitativamente i(t) a partir del instante t=0s.(0.5 puntos)

Datos: R1=1(Ω) R2 = 2(Ω) L = 1(H)

3. Para el circuito de la figura siguiente:

- a) Obtenga la función de transferencia $V_0(s)/V_i(s)$. (1 punto)
- b) Represente el diagrama de Bode en amplitud y fase para dicha función de transferencia.

(1 punto)

c) Calcule $v_0(t)$ si $v_i(t) = 5\cos(5\cdot10^3t) + 5\cos(12\cdot10^5t) + 5\cos(3\cdot10^6t)$ V. **(1 punto)**

4. Cierta red de dos puertos tiene los siguientes parámetros Z

$$[Z] = \begin{bmatrix} 1+2/s & 2/s \\ 2/s & 2s+2/s \end{bmatrix}$$

Determine los polos y los ceros de la función de transferencia en voltaje $H_v(s)$ cuando en el puerto de salida se conecta una impedancia $Z_L = 1 \Omega$ (1.5 puntos)