Nom:

Question de cours :

• Donner une primitive pour chacune des fonctions suivante : a) $x \mapsto x^2 - 2x + 3$ b) $x \mapsto xe^{x^2}$

• Rappeler ce qu'est la positivité de l'intégrale.

Exercice:

Calculer les intégrales suivantes :

a)
$$\int_0^2 (x^2+2)dx$$

b)
$$\int_{1}^{5} (2x - \frac{2}{x})dx$$
 c) $\int_{1}^{2} \frac{1}{x} \ln(x)dx$

c)
$$\int_{1}^{2} \frac{1}{x} \ln(x) dx$$

Exercice:

a) Pour tout x>0, on pose $F(x)=x\ln(x)-x$. Vérifier que F est une primitive de $\ln x$

On se propose maintenant de retrouver F en cherchant une primitive de \ln :

b) On note F l'unique primitive de \ln telle que F(e)=0. Donner une expression pour tout x>0 de F(x).

c) En utilisant une intégration par partie, retrouver l'expression de F donnée en question a).

Exercice:

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{x^n}{1+x} dx$.

a) Montrer que pour tout $n \in \mathbb{N}$, on a $I_n \leq \frac{1}{n+1}$.

b) En déduire que $\lim_{n\to\infty}I_n=0$.

Commentaire:

Nom:

Question de cours :

- Donner une primitive pour chacune des fonctions suivante : a) $x \mapsto \frac{2}{x}$ b) $x \mapsto \frac{1}{x} \ln(x)$
- Rappeler le théorème d'intégration par parties.

Exercice:

Calculer les intégrales suivantes :

a)
$$\int_0^2 (6x^3 + 2)dx$$

b)
$$\int_{-1}^{1} (2x+1)e^{x^2+x} dx$$
 c) $\int_{3}^{5} \frac{1}{x \ln(x)} dx$

$$c) \int_3^5 \frac{1}{x \ln(x)} dx$$

Exercice:

Utiliser l'intégration par parties pour calculer les intégrales suivantes :

a)
$$\int_{1}^{e} x^{2} \ln(x) dx$$

b)
$$\int_{1}^{e} \ln(x) dx$$
 $\int_{1}^{2} x e^{x} dx$

$$\int_{1}^{2} xe^{x} dx$$

Exercice:

Pour $n\in\mathbb{N}$, on pose $I_n=\int_0^1\ln(1+x^n).$ a) Montrer que pour tout $n\in\mathbb{N}$, on a : $0\leq I_n\leq\ln(2).$

- b) Montrer que (I_n) est décroissante.
- c) En déduire que (I_n) est convergente.

Commentaire:

Nom:

Question de cours :

- Donner une primitive pour chacune des fonctions suivante : a) $x \mapsto e^{-2x}$ b) $x \mapsto \frac{1}{x \ln(x)}$
- Rappeler la relation de Chasles pour les intégrale.

Exercice:

Calculer les intégrales suivantes :

a)
$$\int_0^3 (3x^2 + 4x) dx$$

b)
$$\int_{3}^{4} (\frac{x-1}{x^2-2x}) dx$$

b)
$$\int_{3}^{4} (\frac{x-1}{x^2-2x}) dx$$
 c) $\int_{0}^{2} (x+2xe^{x^2}) dx$

Exercice:

En utilisant l'intégration par parties, calculer les intégrales suivantes : a) $\int_1^e x \ln(x) dx$ b) $\int_1^e \ln(x) dx$ $\int_1^e (\ln(x))^2 dx$

a)
$$\int_{1}^{c} x \ln(x) dx$$

b)
$$\int_{1}^{e} \ln(x) dx$$

$$\int_{1}^{e} (\ln(x))^{2} dx$$

Exercice:

Soit f définie pour tout $x \in [-1,1]$ par $f(x) = \sqrt{1-x^2}$.

- a) Tracer le graphe de f. (Indication : écrire y=f(x) et calculer y^2)
- b) Donner la valeur de $\int_{-1}^{1} f(x)dx$ par une interprétation graphique.

Commentaire: