Math	62.	Real	Ana	lveic
Math	0.0:	Keai	Ana	IVSIS

Winter 2024

PSET 2 — 01/14/2024

Prof. Erchenko Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

- (a) The Code Book by Simon Singh.
- (b) Cryptography by Simon Rubinsen-Salzedo

Problem 1.

Let A be a finite set. Show that A cannot be an ordered field.

Suppose A is an ordered field, with 0 as the additive identity element, and 1 as the multiplicative identity element such that 0 < 1.

First, note that for any $a \in A$, $a + 1 \in A$, and $a \le a + 1$ since 0 < 1.

Let $a \in A$ be arbitrary. Since A is an ordered field, $a + 1 \in A$. Since A is an ordered field, a + 1 > a.

Problem 2.

Let $F = \{0, 1, 2\}$. Prove that there is exactly one way to define addition and multiplication so that F is a field if 0 is the additive identity and 1 is the multiplicative identity.

Problem 3.

If S_1 and S_2 are nonempty subsets of $\mathbb R$ that are bounded above, prove that

$$\sup\big\{x+y\mid x\in S_1,y\in S_2\big\}=\sup S1+\sup S_2.$$

Problem 4.

Let $S \coloneqq \{a_k \mid k \in \mathbb{N}\} \cup \{b_k \mid k \in \mathbb{N}\}$, ordered such that $a_k < b_j$ for all k and $j, a_k < a_m$ whenever k < m, and $b_k < b_m$ whenever k < m.

- (a) Show that S is an ordered set.
- (b) Show that every subset of \boldsymbol{S} is bounded above and below.
- (c) Find a bounded subset of ${\cal S}$ that has no least upper bound.

Problem 5.

Let $n \in \mathbb{N}.$ Sshow that (\mathbb{R}^n, d_1) is a metric space where

$$d_1(p,q)\coloneqq \sum_1^n |p_i-q_i|$$

for all $p = (p_1, \dots, p_n)$ and $q = (q_1, \dots, q_n)$ in \mathbb{R}^n .

Problem 6.

Show that the subset of (\mathbb{R}^2, d_E) given by

$$S \coloneqq \left\{ (x_1, x_2) \in \mathbb{R}^2 \mid x_1 > x_2 \right\}$$

is open.

Problem 7.

Let (X, d) be a metric space. Let $A \subset X$. Show that A is open if and only if it is equal to the union of a collection of open balls.