COM 5120 Communication Theory

Homework #2 Due: 11/02/2020

1. (20%) Consider the set of three(M=3) finite-energy signaling waveforms in

$$0 \le t \le 1$$
:

$$s_1(t) = 1 \qquad 0 \le t \le 1$$

$$s_2(t) = \cos(8\pi t) \qquad 0 \le t \le 1$$

$$s_3(t) = 2\cos^2(4\pi t) \ 0 \le t \le 1$$

The channel is AWGN with PSD $\,N_0/2=10^{-1} \mathrm{W/Hz}.$

- (a) Find a set of orthonormal basis function to represent the set of signal. (10%)
- (b) Draw the corresponding signal constellation. (10%)

2. (20%) Consider the BFSK signals,

$$s_1(t) = A\cos 2\pi f_1 t$$
, $s_2(t) = A\cos (2\pi f_2 t + \theta)$,

where f_1 and f_2 are frequency, θ is phase difference. The period of signal is 10ms.

- (a) If these two signals should be coherent orthogonal(if θ =0), then determine the minimum f_2-f_1 to demodulate without distortion. (10%)
- (b) If these two signals should be non-coherent orthogonal(if $\theta \neq 0$), then determine the minimum $f_2 f_1$ to demodulate without distortion. (10%)
- 3. (20%) The power density spectrum of the cyclostationary process

$$v(t) = \sum_{n=-\infty}^{\infty} I_n g(t - nT)$$

can be derived by averaging the autocorrelation function $R_v(t+\tau,\ t)$ over the period T of the process and then evaluating the Fourier transform of the average autocorrelation function. An alternative approach is to change the cyclostatwnary process into a stationary process $v_{\Delta}(t)$ by adding a random variable Δ , uniformly distributed over $0 \le \Delta < T$, so that

$$v_{\Delta}(t) = \sum_{n=-\infty}^{\infty} I_n g(t - nT - \Delta)$$

And defining the spectral density of v(t) as the Fourier transform of the autocorrelation function of the stationary process $v_{\Delta}(t)$. Derive the following equation by evaluating the autocorrelation function of $v_{\Delta}(t)$ and its Fourier transform.

$$S_{\nu_{\Delta}\nu_{\Delta}}(f) = \frac{1}{T} |G(f)|^2 S_{ii}(f)$$

- 4. (20%) Consider the PAM signal $S(t)=\sum_n b_n h(t-nT)$. Suppose that h(t)=1, $0 \le t \le T$ and h(t)=0 otherwise, and $b_n=a_n-a_{n-2}$, where $\{a_n=\pm 1\}$ is a sequence of uncorrelated random variables with $P_r[a_n=1]=P_r[a_n=-1]=\frac{1}{2}$.
 - (a) Determine the autocorrelation function of the sequence $\{b_n\}$. (10%)
 - (b) Determine the power spectral density of S(t). (10%)
- 5. (20%) Given the M-ary PAM signal of

$$d(t) = \sum_{n} I_n g(t - nT), \quad \text{nT} \le t \le (n+1)T$$

where the binary sequence b_n is mapped into $I_n \in \{\pm 1, \pm 3, \dots, \pm (M-1)\}$. Let

$$g(t) = \begin{cases} \frac{1}{2T}, & 0 \le t \le T \\ 0, & otherwise \end{cases} and q(t) = \int_0^t g(\tau) d\tau$$

To construct a M-ary CPFSK from the M-ary PAM signal, each M-PAM signal I_n is mapped into frequency $I_n \in \{\pm 1, \pm 3, ..., \pm (M-1)\}$, and the CPFSK signal is constructed as

$$S(t) = \sqrt{\frac{2E}{T}} \cos[2\pi f_c t + \theta(t, I_n)]$$

where $\theta(t, I_n) = 4\pi f_d T \int_{-\infty}^t d(\tau) d\tau$. Let $\theta(nT) = 2\pi f_d T \sum_{k=-\infty}^{n-1} I_k$.

- (a) Please identify the expression of $\,\theta({\bf t},I_n)\,$ in terms of $\,\theta({\bf nT}),\,\,I_n\,$ and $\,q(t).$ (10%)
- (b) Define $h=2f_dT$. Please determine the number of terminal phase states in the state trellis diagram for h = 3/5 and M = 4.(5%)
- (c) Following from (b), please sketch the phase trellis of the signal s(t) for t=0, T, 2T, 3T, 4T.(5%)