AP : Corrigé des exercices Rédaction / Raisonnement.

Exercice 1

Les phrases suivantes ne sont pas correctes mathématiquement : réécrivez-les de la bonne manière.

- 1°) « La fonction $e^x \sin x$ est dérivable sur \mathbb{R} , de dérivée $e^x \sin x + e^x \cos x$. » La fonction $x \mapsto e^x \sin x$ est dérivable sur \mathbb{R} , de dérivée $x \mapsto e^x \sin x + e^x \cos x$.
- **2°)** « La fonction exp est continue pour tout $x \in \mathbb{R}$. » La fonction exp est continue sur \mathbb{R} .
- 3°) « $(\sin(2x))' = 2\cos(2x)$ » La fonction $f: x \mapsto \sin(2x)$ est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $f'(x) = 2\cos(2x)$.
- 4°) « L'ensemble des primitives sur \mathbb{R} de $x \mapsto x^2$ est $\{f : \mathbb{R} \to \mathbb{R}/f(x) = \frac{1}{3}x^3 + C\}$. » C'est l'ensemble $\{f : \mathbb{R} \to \mathbb{R} \ / \ \exists \ C \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = \frac{1}{3}x^3 + C\}$, qu'on peut aussi écrire : $\left\{ \begin{array}{ccc} f : \mathbb{R} & \to \mathbb{R} & / \ C \in \mathbb{R} \\ x & \mapsto & \frac{1}{3}x^3 + C \end{array} \right\}.$
- **5°)** « $x^2 3x + 2 = 0 \iff x_1 = 1 \text{ ou } x_2 = 2$ » Soit $x \in \mathbb{R}$. $x^2 - 3x + 2 = 0 \iff x = 1 \text{ ou } x = 2$
- 6°) On souhaite résoudre l'équation $(E): x^2+3x-2=0$. $\ll \Delta=b^2-4ac=17>0$ donc $x_1=\frac{-3+\sqrt{17}}{2}$ et $x_2=\frac{-3-\sqrt{17}}{2}$. $\gg 2$ Le discriminant de l'équation (E) est $\Delta=3^2+4\times 2=17$, donc les solutions de (E) sont $\frac{-3+\sqrt{17}}{2}$ et $\frac{-3-\sqrt{17}}{2}$.
- 7°) Dans notre raisonnement on dispose d'un réel x positif, précédemment défini. Puis vient la phrase : « On pose $x=y^2$. »

 "On pose $y=\sqrt{x}$ ", ou "on pose $y=-\sqrt{x}$ ", ou "on pose y un réel tel que $x=y^2$ "
- 8°) On dispose d'une fonction $f: \mathbb{R} \to \mathbb{R}$ dérivable, dont on vient de calculer la dérivée. « f'(x) = 0 donc f(x) = C constante » $\forall x \in \mathbb{R}, \ f'(x) = 0$. Donc, puisque \mathbb{R} est un intervalle, $\exists C \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = C$.

- 9°) On désigne par (*) la relation : $\forall x \in \mathbb{R}, f(x^2) = f(x) + f(2x)$, que l'on suppose vérifiée. « Soit x = 0: (*) \iff $f(0) = 2f(0) \iff$ f(0) = 0 » Prenons x = 0 dans la relation (*), on obtient : f(0) = 2f(0), d'où f(0) = 0.
- 10°) « Soit $\theta \in \mathbb{R}$. $\cos(2\theta) = 2\cos^2\theta 1$ donc $\cos(\theta) = 2\cos^2(\frac{\theta}{2}) 1$. » Soit $\theta \in \mathbb{R}$. On sait que, pour tout $x \in \mathbb{R}$, $\cos(2x) = 2\cos^2(x) - 1$. En particulier, en évaluant cette égalité en $\frac{\theta}{2}$, on obtient $\cos(\theta) = 2\cos^2(\frac{\theta}{2}) - 1$. Bien comprendre le problème dans la phrase initiale : le θ était fixé. Ce n'est parce que, pour un θ fixé, on a une égalité, qu'elle sera forcément vraie en remplaçant θ par une autre valeur...

Exercice 2 : le jeu des 5 erreurs dans la récurrence

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 la suite définie par :
$$\begin{cases} u_0=0\\ \forall\,n\in\mathbb{N},\ u_{n+1}=\frac{u_n+1}{2} \end{cases}.$$

Trouvez les 5 erreurs de raisonnement ou rédaction dans cette récurrence : On pose, pour tout $n \in \mathbb{N}$: $\mathcal{P}(n)$: $u_n = 1 - \frac{1}{2^n}$.

- <u>u₀ = 0 et 1 1/20</u> = 1 1 = 0, donc P(0) est vraie. (ne pas partir de la ccl)
 Supposons P(n) vraie pour <u>un</u> n ∈ N fixé.

$$u_{n+1} = \frac{u_n + 1}{2}$$

$$= \frac{1 - \frac{1}{2^n} + 1}{2} \qquad \text{par } \mathcal{P}_n$$

$$= \frac{2}{2} - \frac{1}{2 \times 2^n}$$

$$= 1 - \frac{1}{2^{n+1}}$$

Donc $\mathcal{P}(n+1)$ est vraie (pas pour tout n, n était fixé)

Conclusion: pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ vraie.

Exercice 3

Les raisonnements ci-dessous sont incorrects : problème de rédaction, justifications mauvaises ou insuffisantes... Complétez-les ou réécrivez-les pour qu'ils deviennent corrects.

1°) Énoncé de l'exercice : Montrer que pour tout $x \in \mathbb{R}, \frac{2x}{1+x^2} \leq 1$. Soit $x \in \mathbb{R}$.

$$\frac{2x}{1+x^2} \le 1 \iff 2x \le 1+x^2 \qquad \underbrace{\operatorname{car} 1 + x^2 > 0}_{\text{trai}}$$

$$\iff x^2 - 2x + 1 \ge 0$$

$$\iff \underbrace{(x-1)^2 \ge 0}_{\text{vrai}}$$

Donc, on montré que, pour tout $x \in \mathbb{R}$, $\frac{2x}{1+x^2} \le 1$.

2°) Énoncé de l'exercice : Montrer que pour tout $x \in \mathbb{R}_+, \frac{2\sqrt{x}}{1+x} \in [0,1]$. Soit $x \in \mathbb{R}_+$.

$$(\sqrt{x} - 1)^2 \ge 0$$

$$\underbrace{\operatorname{donc}}_{x+1 - 2\sqrt{x}} \ge 0$$

$$\operatorname{donc}_{x+1 \ge 2\sqrt{x}}$$

$$\operatorname{donc}_{1 \ge \frac{2\sqrt{x}}{x+1}} \underbrace{\operatorname{car}_{x+1 \ge 0}}$$

D'autre part, pour tout $x \in \mathbb{R}_+$, $\frac{2\sqrt{x}}{x+1} \ge 0$.

Donc, on a montré que, <u>pour tout</u> $x \in \mathbb{R}_+$, $\frac{2\sqrt{x}}{x+1} \in [0,1]$.

3°) Énoncé de l'exercice : Soit f la fonction définie sur \mathbb{R}_+ par $f(x) = \operatorname{Arcsin}\left(\frac{2\sqrt{x}}{x+1}\right)$. Étudier la dérivabilité de f sur $\mathbb{R}_+^* \setminus \{1\}$ (on se servira du résultat précédent).

Problèmes:

- Dire que la fonction racine n'est pas dérivable en 0, ce n'est pas la bonne information. La bonne information, c'est qu'elle est dérivable ailleurs, sur \mathbb{R}_+^* .
- L'élève oublie de dire que $\frac{2\sqrt{x}}{x+1}$ est toujours un réel positif, ce qui explique qu'on ne résout pas la même équation avec -1.
- La conclusion n'est pas la bonne! On conclut seulement que f est dérivable sur son domaine de définition privé de 0 et de 1. Peut-être qu'elle est dérivable en 0 ou en 1 : pour le savoir, il faudrait étudier les limites des taux d'accroissement. Se rappeler qu'on n'a pas de résultat du type "si f n'est pas dérivable en a, alors $g \circ f$ n'est pas dérivable en a" (pas de résultat non plus avec g, ou avec le quotient...)

 $x \mapsto 2\sqrt{x}$ est dérivable sur \mathbb{R}_+^* et $x \mapsto x+1$ est dérivable sur \mathbb{R} donc par quotient $x \mapsto \frac{2\sqrt{x}}{x+1}$ est dérivable sur \mathbb{R}_+^* .

De plus, $x \mapsto \frac{2\sqrt{x}}{x+1}$ est à valeurs dans [0,1].

Arcsin est dérivable sur]-1,1[;

$$\forall x \in \mathbb{R}_{+}^{*}, \ \frac{2\sqrt{x}}{x+1} = 1 \Longleftrightarrow 2\sqrt{x} = x+1$$

$$\iff (\sqrt{x})^{2} + 1 - 2\sqrt{x} = 0$$

$$\iff (\sqrt{x} - 1)^{2} = 0$$

$$\iff x = 1.$$

Donc, par composition, f est au moins dérivable sur $\mathbb{R}_+^* \setminus \{1\}$.

- **4**°) Énoncé de l'exercice : Soit $n \in \mathbb{N}^*$. Déterminer les racines nièmes de i. Problèmes :
 - Ne pas supposer z racine, c'est quelque chose qui ne doit apparaître que dans l'équivalence.

- On doit jusqu'au bout écrire des équivalences et pas des "donc", sinon on pourrait imaginer qu'on perd de l'information.
- Il faut introduire k à chaque lique où il apparaît dans l'équivalence.
- Et la phrase de conclusion n'est pas française.

Soit $z \in \mathbb{C}$.

$$\begin{split} z^n &= i \Longleftrightarrow z^n = e^{i\frac{\pi}{2}} \\ &\iff \left(\frac{z}{e^{i\frac{\pi}{2n}}}\right)^n = 1 \\ &\iff \frac{z}{e^{i\frac{\pi}{2n}}} \text{est une racine } n \text{ième de l'unit\'e (ligne pas indispensable!)} \\ &\iff \exists \, k \in \{0, \dots, n-1\}, \, \frac{z}{e^{i\frac{\pi}{2n}}} = e^{i\frac{2k\pi}{n}} \\ &\iff \exists \, k \in \{0, \dots, n-1\}, \, z = e^{i\frac{\pi}{2n}} e^{i\frac{2k\pi}{n}} \end{split}$$

L'ensemble des racines nièmes de i est donc $\left\{e^{i\frac{(4k+1)\pi}{2n}} \ / \ k \in \{0,\dots,n-1\}\right\}$

5°) Énoncé de l'exercice : Soit $n \in \mathbb{N}^*$. Montrer que $\sum_{k=m+1}^{2n} \frac{1}{k} \geq \frac{1}{2}$.

Problèmes principaux : k n'est pas introduit, et surtout la deuxième équivalence est complètement fausse!

Soit $k \in \{n+1,\ldots,2n\}$. On a $0 < k \le 2n$ donc $\frac{1}{k} \ge \frac{1}{2n}$. Ceci pour tout k entre n+1 et 2n: en sommant ces n inégalités, on obtient :

$$\sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n} = n \frac{1}{2n} = \frac{1}{2}$$

6°) Énoncé de l'exercice : Résoudre le système suivant : (S) : $\begin{cases} x+y+z=1\\ x-y=0\\ -x+3y=2 \end{cases}$

Le problème, c'était de s'arrêter dans l'équivalence sur le système entier, car alors on ne peut pas justifier l'équivalence avec (S) : on peut perdre de l'information.

$$(S) \iff \begin{cases} x+y+z=1\\ x=y\\ -x+3y=2 \end{cases}$$

$$\iff \begin{cases} 2y+z=1\\ x=y\\ 2y=2 \end{cases}$$

$$\iff \begin{cases} z=1-2y\\ x=y\\ y=1 \end{cases}$$

$$\iff \begin{cases} z=-1\\ x=1\\ y=1 \end{cases}$$

L'unique solution est donc (1, 1, -1).