7. ALGORITMI

TEORIJA: Pogledati 1. i 2. poglavlje u knjizi S. Obradovića "Veština dobrog programiranja"

1. Napraviti algoritam za sabiranje dva broja.

Rešenje:

2. Napraviti algoritam koji učitava brojeve X i Y i vrši zamenu njihovih vrednosti.

3. Napraviti algoritam koji određuje apsolutnu vrednost broja X.

4. Napraviti algoritam koji izračunava izraz |t-3|, a zatim štampa uneti podatak t i apsolutnu vrednost izraza.

5. Napraviti algoritam koji štampa sve parne trocifrene brojeve.

Rešenje:

6. Napraviti algoritam za unošenje dva prirodna broja (x,y) i izračunavanje izraza z = x/y. Štampati vrednost izraza, z.

7. Napraviti algoritam koji izračunava i štampa kvadratni koren brojeva od 5 do 21.

Rešenje:

8. Napraviti algoritam koji učitava vrednost x, izračunava i štampa vrednost polinoma y. $Y = \frac{(X+3)(X-5)}{(X-2)(X-3)}$

$$Y = \frac{(X+3)(X-5)}{(X-2)(X-3)}$$

9. Napraviti algoritam za izračunavanje i štampanje reda $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8}$... sa tačnošću ε .

$$X_1=1$$
 $X_2=X_1-1/2^1$
 $X_3=X_2+1/2^2$
 $X_4=X_3-1/2^3$
 $X_n=X_n-1+((1)^{n+1}\cdot 1/2^{n1})$

10. Napraviti algoritam za izračunavanje i štampanje reda sa tačnošću ε:

$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{7}{6} \dots$$

Rešenje:

Opšti član je:

$$Xn = \frac{n}{n+1} \cdot (-1)^n$$

11. Napraviti algoritam koji štampa sve neparne prirodne brojeve koji su ≤n.

Rešenje:

12. Napraviti algoritam koji učitava stranice trougla a, b, c i izračunava površinu trougla po Heronovom obrascu i štampa vrednost površine trougla i stranice tog trougla.

Rešenje:

Heronov obrazac: $P = \sqrt{S(S-a)(S-b)(S-c)}$ Poluobim: $S = \frac{a+b+c}{2}$

13. Napraviti algoritam koji izračunava i štampa vrednost broja π primenom izraza:

$$\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}...$$
 . Uslov izračunavanja je da je n-ti član reda $|a_n|<\epsilon$.

- 14. Zadata su dva prirodna broja k i m (k<m). Sastaviti algoritam koji određuje broj kombinacija kte klase od m elemenata.
- **<u>Rešenje:</u>** Broj kombinacija k-te klase od m elemenata: $C = \frac{k!}{m!(k-m)!}$

15. Napraviti algoritam koji izračunava prosečnu srednju ocenu na ispitu iz ORT-a.

16. U datoteci se nalazi 30 brojeva koji predstavljaju temperaturu od 1–30 juna 2004. godine (T₁-T₃₀). Sastaviti algoritam koji izračunava prosečnu temperaturu u mesecu junu, štampa datum dana u kojima je temperatura bila manja od prosečne i broj dana kada je temperatura bila manja od prosečne.

17. Napraviti algoritam koji učitava niz a_i , pronalazi i štampa najmanji elemenat niza.

18. Napraviti algoritam koji dati niz dimenzije n, uređuje u rastućem redosledu.

19. Napraviti algoritam koji određuje rešenja kvadratne jednačine $ax^2+bx+c=0$.

Rešenje:

a≠0, uslov da je jednačina kvadratna;

Diskriminanta: D=b²-4ac

Realna i različita rešenja: $x_1 = \frac{-b - \sqrt{D}}{2a}$ i $x_2 = \frac{-b + \sqrt{D}}{2a}$ (a,b,c \neq 0)

Realna i jednaka rešenja: $x = \frac{-b}{2a}$ (a,b,c \neq 0 i b²=4ac).

Rešenja su konjugovano kompleksna (b^2 -4ac < 0).

20. Sastaviti algoritamsku šemu za rešavanje i štampanje rešenja sistema linearnih jednačina ax + by = p i mx + ny = q

21. Napraviti algoritam koji učitava datum u obliku d,m,g ; što znači dan, mesec, godina, a zatim izračunava i štampa koji je to dan u godini.

22. Napraviti algoritam koji učitava elemente matrice kolonu po kolonu, a štampa matricu vrstu po

vrstu.

23. Napraviti algoritam koji učitava elemente kvadratne matrice (m=n) vrstu po vrstu, nalazi i štampa najveći element na glavnoj dijagonali.

Rešenje: POÓSTAK Unos dimenzija matrice rin, m (m- kolona, n-vrsta) MC med i ne d Provera da li su dimenzije realne. j=1Postavljanje brojača kolona j=1Postavijanje projeća vrsta Unos elemenata matrice po vistama 24 j-j+1Inkrementiranje brojača vrsta. Provera ustova za talazak iz petije. DA. Inkrementiranje brojača kolona j=j+1NE Provena ustova za izlazak iz petije. DA . Provera dimenzija matrice I uslova da je one kvadretna Pealn Pretpostavka o vrednosti največeg elementa j=1j=1Daloy da je element n glavnoj dijagonali. DA. Blok za ėij. nataženje: P=all NO najvećegi. elementa jeje 1 ${\rm MS}$ $j \ge a$ DA. Stampona, penulo do medica nije kwadatna j=j+1Protuble NC. $j \ge n$ DA. Stampanje najvećeg elementa MEMA

24. Nacrtati algoritam za program koji učitava n parova brojeva $(1 \le n \le 50)$ x_i i y_i (i = 1, 2,...,n) i izračunava sumu proizvoda $S = \sum (x_i y_i)$ i proizvod sume $P = \prod (x_i + y_i)$.

Rešenje:

Izračunavanje S i P obavlja se u petlji. Broj prolazaka kroz petlju određen je brojem n članova nizova x i y. Broj parova n unosi se na početku programa. Ukoliko se uneta vrednost ne nalazi u zadatom opsegu, program generiše izveštaj i skače na kraj. Kad se broj n nalazi u zadatom opsegu, novi parovi brojeva (x_i y_{i)} se učitavaju u petlji pre formiranja sume proizvoda (S), odnosno proizvoda suma (P).

25. Nacrtati algoritam za program koji od dva niza A i B koji imaju po $1 \le n \le 15$ brojeva formira niz C sa elementima:

$$C_i = A_i, A_i \le B_i - 2, i = 1, 2, ...,n$$

$$C_i = B_i, A_i > B_i - 2, i = 1, 2,...,n$$

i daje izveštaj u kome se prikazuju članovi niza $A_{i},\,B_{i}\,i\,C_{i}.$

Rešenje:

Na početku programa unosi se vrednost za n i to predstavlja broj članova nizova A, B i C. Ukoliko se uneta vrednost za n ne nalazi u zadatom opsegu, program generiše izveštaj i skače na kraj. Algoritam treba da sadrži dve petlje. U prvoj petlji učitavaju se vrednosti nizova A i B, na osnovu čega se formira niz C, dok se u drugoj petlji omogućava formiranje izveštaja u kome se prikazuju svi elementi nizova A, B i C.

26. Nacrtati algoritam programa za izračunavanje i prikazivanje funkcije y(x), gde je x zadata celobrojna ulazna promenljiva:

$$y(x) = \begin{cases} 2x - 3 & x \ge 10 \\ x^2 & 4 < x < 10 \\ x + 5 & x \le 4 \end{cases}$$

Rešenie:

U ovom primeru se primenjuje struktura sa višestrukim odlučivanjem koja određuje putanju izvršavanja programa u zavisnosti od vrednosti ulazne promenljive x.

27. Nacrtati algoritam programa koji izračunava i prikazuje vrednosti polinoma f(x):

$$f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n \quad 0 \le n \le 20$$

$$x = x_0 + k \Delta x \qquad k = 0,1,..., m$$
 Poznate su ulazne vrednosti: $n, a_0, a_1, ... a_n, x_0$ i Δx i m .

Rešenje:

Za organizovanje programskog ciklusa za izračunavanje polinoma f(x), pogodno je da se polinom zapiše u obliku:

$$f(x) = a_0 + x(a_1 + x(a_2 + ...x(a_{n-1} + xa_n)))$$

Zbog toga algoritam treba da sadrži dva koncentrična ciklusa izračunavanja, odnosno dve petlje. U unutrašnjoj petlji vrši izračunavanje vrednosti polinoma za $x = x_0$, počev od xa_n .

Unutrašnji ciklus se izvršava za i = n, n-1,...,0 sa korakom -1.

petlja u kojoj se izračunava vrednost

za m

vrednosti

U spoljašnjem ciklusu se vrši postavljanje f = 0, izdavanje izračunate vrednosti polinoma i uvećanje vrednosti x za naredno izračunavanje. Spoljašnji ciklus se izvršava za k = 0, 1, ..., m sa korakom +1, odnosno onoliko puta koliko puta treba izračunati vrednost polinoma.

28. Definisati dijagram toka programa koji za zadatu vrednost promenljive x izračunava vrednost funkcije: $v(x) = 2x + \sqrt{x^2 + 3x - 4}$

i prikazuje vrednosti za x i y(x) pod uslovom da je zadovoljeno $x^2 + 3x - 4 > 0$. Ukoliko navedeni uslov nije zadovoljen, izlazi se iz programa i štampa se izveštaj da je stanje nedefinisano.

Rešenje:

Polinom koji se nalazi ispod korena funkcije y(x) može da se proglasi za funkciju f(x), čija se vrednost izračunava na početku programa za unetu vrednost promenljive x, a zatim se ispituje da li je zadovoljen uslov da je vrednost polinoma veća od 0. Ukoliko je uslov ispunjen nastavlja se sa izračunavanjem vrednosti funkcije y(x) i izdaje se izveštaj u kome se nalazi vrednost promenljive x i funkcije y(x).

29. Definisati dijagram toka koji za zadate celobrojne vrednosti x_i i y_i , i = 1, 2 izračunava i prikazuje vrednost funkcije Z:

ako je
$$Z = \frac{F(x_1, y_1)}{F(x_2, y_2)}$$
$$F(x, y) = 2x^2 + 8y + e^{2x^2 + 8y}$$

Rešenje:

Izraz koji se ponavlja u funkciji F može da se definiše kao posebna funkcija Q(x, y):

$$Q(x, y) = 2x^2 + 8y$$

tako da funkcija F(x, y) može da se zapiše u obliku:

$$F(x, y) = Q(x, y) + e^{Q(x, y)}$$

Vrednost izraza Z može da se izračuna u petlji u kojoj se učitavaju vrednosti za parove promenljivih x i y (x_i , y_i , i = 1, 2), pri čemu se u prvom prolasku kroz petlju izrazu Z dodeljuje vrednost funkcije $F(x_1, y_1)$, dok se u drugom prolasku tako dobijena vrednost za Z deli sa vrednošću funkcije $F(x_2, y_2)$.

30. U pravougaonom koordinatnom sistemu zadat je pravougaonik sa temenima A, B, C i D Ako su poznate koordinate temena, nacrtati dijagram toka kojim se određuje da li je tačka M (x_0, y_0) unutar ili izvan pravougaonika.

Rešenje:

Ako su zadate veličine a i b, tada su poznate koordinate svih temena praovougaonika prikazanog na slici: A(a, b), B(-a, b), C(-a, -b) i D(a, -b). Tačka M(x_0 , y_0) nalazi se unutar pravougaonika ako je $|x_0| \le a$ i $|y_0| \le b$.

31. Za ulazne podatke *k* i *x* izračunati vrednost trigonometrijske funkcije:

$$y(x) = \begin{cases} \sin 3x & k = 1\\ \sin (\frac{\pi}{4} - x)\cos x & k = 2\\ \cos(\pi + x) & k = 3\\ 0 & k \notin \{1, 2, 3\} \end{cases}$$

Rešenje:

Algoritam može da se realizuje kao:

- a) klasična struktura sa višestrukim odlučivanjem
- b) kao struktura sa CASE odlučivanjem.

I u jednom i u drugom slučaju na početku se učitavaju vrednosti parametra x i kontrolne promenljive k od čije vrednosti zavisi način izračunavanja vrednosti funkcije y(x).

32. Nacrtati dijagram toka za program koji niz brojeva $a_1, a_2, ..., a_n, 1 \le n \le 10$ uređuje u opadajući niz.

Rešenje:

Niz brojeva može da se uredi upoređivanjem svaka dva susedna broja u nizu:

$$a_i \ge a_{i+1}, \quad i = 1, 2, ..., n$$

Mogu da nastanu dva slučaja:

- a) Brojevi a_i i a_{i+1} zadovoljavaju zahtevanu relaciju, pa takve članove niza ne treba premeštati
- b) Brojevi a_i i a_{i+1} ne zadovoljavaju zahtevanu relaciju, pa takvim brojevima treba promeniti mesta u nizu. Razmena mesta članova u nizu može da se uradi na sledeći način:

$$p \Leftarrow a_i$$

$$a_i \Leftarrow a_{i+1}$$

$$a_{i+1} \Leftarrow p$$

Algoritam treba da se sastoji iz dve koncentrične petlje:

- U unutrašnjoj petlji se vrši uzajamno poređenje dva susedna člana niza.
- U spoljašnjoj petlji se odlučuje da li je završeno uređivanje članova i u tu svrhu može da se koristi neka pomoćna promenljiva K koja predstavlja indikaciju da li je došlo do promene mesta među članovima niza. Pre prolaska kroz niz postavi se vrednost promenljive K = 0, a zatim ako dođe do promene mesta članova niza postavi se K = 1. Ako je po izlasku iz

unutrašnjeg ciklusa K = 1, nastavlja se uređenje niza, a ako je K = 0 niz je uređen i izlazi se iz programa, odnosno prikazuje se ceo uređeni niz.

33. Izračunati vrednost funkcije $f(x) = e^{-4x} \cos 4x$ u zadatom intervalu nezavisne promenljive x [x_0, x_n] i sa zadatim priraštajem Δx ($\Delta x \ge 0$). Nakon svakog izračunavanja prikazati u izveštaju vrednost promenljive x i odgovarajuću vrednost funkcije f(x).

Rešenje:

Vrednost funkcije f(x) određuje se u petlji, počev od vrednosti x_0 . Petlja se izvršava sve dok promenljiva x ne dostigne vrednost x_n , s tim što se pri svakom prolasku kroz petlju vrednost promenljive x uvećava za Δx .

Na početku programa treba uneti vrednosti za x_0 , x_n i Δx , pri čemu je uslov za izvršavanje petlje $x_0 \le x_n$. Pošto je vrednost priraštaja $\Delta x \ge 0$, broj ciklusa izvšavanja petlje je prirodan broj koji direktno zavisi od vrednosti priraštaja Δx .

U slučaju da je $\Delta x = 0$, petlja se izvršava samo jednom, odnosno dobija se samo jedna vrednost funkcije f(x), jer je tada $x = x_0$.

Ako je $\Delta x > 0$, broj prolazaka kroz petlju određuje se kao količnik razlike maksimalne (x_n) i minimalne (x_0) vrednosti promenljive x i priraštaja Δx :

$$\frac{x_n - x_0}{\Delta x}$$

Broj različitih vrednosti funkcije f(x) u zavisnosti od promenljive x odgovara broju prolazaka kroz petlju. Program se završava kada je $x = x_n$

Predviđeno je da se vrednost funkcije f(x)i odgovarajuća vrednost promenljive x prikazuju pri svakom prolasku kroz petlju.

34. Nacrtati dijagram toka programa koji za zadatu vrednost promenljive $N \ge 1$ računa sumu:

$$S = \sum_{k=1}^{N} \frac{1}{k}$$

Rešenje:

Pošto je N poznata vrednost koja se učitava na početku programa, tražena suma može da se izračuna jedino ako je N u dozvoljenom opsegu, što se ispituje na početku programa. Ako je N van opsega, formira se poruka i izlazi se iz programa.

Ako je N u dozvoljenom opsegu, vrednost sume S računa se u petlji u kojoj se inkrementira vrednost promenljive k sve dok je $k \le N$.

Po izlasku iz petlje prikazuje se zadata vrednost N i suma S.

35. Nacrtati dijagram toka programa koji računa m vrednosti funkcije y(x):

$$y(x) = x^2 + 12\sin 3x$$

ako se promenljiva x menja počev od vrednosti x_0 sa priraštajem Δx , a zatim nalazi minimalnu vrednost funkcije y(x) i vrednost promenljive x.

Rešenje:

Dijagram toka sadrži dve nezavisne petlje. U prvoj se obavlja izračunavanje vrednosti funkcije y, i tada se dobija m parova (x_1, y_1) , (x_2, y_2) ,..., (x_m, y_m) . U drugoj petlji se određuje par (x, y) koji se sastoji od minimalne vrednosti funkcije y i odgovarajuću vrednosti promenljive x, pri čemu se polazi od pretpostavke da je prva izračunata vrednost funkcije y_1 dobijena za $x = x_1$ najmanja vrednost funkcije. Ukoliko se utvrdi da je neka vrednost funkcije y_i manja, onda se ova vrednost uzima kao nova najmanja, kojoj odgovara promenljiva x_i . Na kraju ispitivanja par (x, y) predstavlja traženu najmanju vrednost funkcije y i odgovarajuću vrednost promenljive x.

36. Neka su zadata tri niza brojeva, od kojih svaki sadrži po 10 brojeva. Nacrtati dijagram toka za program koji izračunava i prikazuje srednju vrednost svakog niza.

Rešenje:

Dijagram toka treba da sadrži dve koncentrične petlje. U unutrašnjoj petlji se učitava 10 članova niza i računa njihov zbir, dok se u spoljašnjoj petlji računa srednja vrednost niza i prikazuje u izveštaju. Spoljašnja petlja se izvršava tri puta, nakon čega se program završava.

37. Definisati algoritam koji za zadato x izračunava \sqrt{x} po Njutnovoj iterativnoj formuli:

$$x_{i+1} = \frac{1}{2}(x_i + \frac{x}{x_i})$$
 $i = 0,1,2,...$

gde je $x_0 = x+1$. Proces izračunavanja se prekida kada se dostigne zadata tačnost ε , tako da je $x_i - x_{i+1} < \varepsilon$.

Rešenje:

Ulazne veličine su x i ε , dok je izlazna veličina izračunat kvadratni koren iz x. Prema primenjenoj metodi to će biti x_{i+1} koji se izračunava u poslednjoj iteraciji. Za iterativno računanje mogu da se koriste samo dve promenljive x_0 (prehodna vrednost) i x_1 (naredna vrednost).

Ovde se koristi iterativni ciklus, što znači da je broj ponavljanja ciklusa nepoznat pre izvršenja programa. On zavisi od brzine konvergencije iterativnog postupka i zadate tačnosti (ε).

38. Nacrtati dijagram toka programa koji određuje rešenja sistema jednačina za *N* zadatih vrednosti promenljivih *x* i *y*:

$$a_1x_i + b_1y_i = c_1$$
$$a_2x_i + b_2y_i = c_2$$

39. Nacrtati dijagram toka programa koji računa vrednost funkcije: $z = \sin(x+5) + \cos 2x$ ako se vrednosti promenljive x nalaze u opsegu $[x_0, x_m]$, pri čemu se x menja sa korakom Δx . Program se završava kada je izračunato K vrednosti funkcije ili ako je promenljiva x dostigla svoju maksimalnu vrednost x_m .

- 40. Realizovati dijagram toka programa koji u zavisnosti od vrednosti kontrolne promenljive C i poznatog poluprečnika kružnice r određuje obim kruga O (C=1), površinu kružne površi P_K (C=2) ili površinu kvadrata oko koga je opisana data kružnica S (C=3). Program testira u petlji vrednost kontrolne promenljive C koja se učitava sa tastature i završava se izveštajem o brojnoj vrednosti tražene izračunate veličine kada promenljiva C dobije jednu od definisanih vrednosti.
- 41. Odrediti vrednosti funkcije Z_i (i = 1,...,8):

$$Z_i(x) = \sqrt{\ln(x_i)\sin^2 x_i}$$

Pri promeni indeksa i u intervalu $1 \le i \le 4$ argument x se povećava od vrednosti $x_1 = 1.2$ za $\Delta x = 0.3$, dok se u intervalu $5 \le i \le 8$ povećava za $\Delta x = 0.2$.

42. Na osnovu zadate formule

$$y_{i+1} = -y_{i-1} + y_i(2 - a^2 \Delta x^2)$$

odrediti vrednost parametra y_i ako su zadati početni uslovi:

$$y_0 = 1 \text{ i } y_1 = 1$$
$$0 \le x \le 1$$

za učitane podatke a = 0.8 i $\Delta x = 0.05$.

- 43. Neka je $A_3A_2A_1A_0$ četvorocifren dekadni broj. Napisati dijagram toka koji izračunava koliko postoji četvorocifrenih brojeva kod kojih je zbir prve dve cifre jednak zbiru sledeće dve cifre, tj. $A_3 + A_2 = A_1 + A_0$.
- 44. Napravi algoritam kojim se učitava ceo broj n i realni broj a, a zatim se izračunava a^n . Algoritam mora da radi $\forall a \in \mathbb{R}$ i $\forall n \in \mathbb{Z}$.
- 45. Naprraviti algoritam koji određuje maksimum za tri uneta broja.
- 46. Napravi algoritam koji učitava cele brojeve a i b i za njih izračunava NZS i NZD.
- 47. Napravi algoritam kojim se najpre učitava broj n, koji predstavlja broj članova niza, određuje se indeks najvećeg i najmanjeg člana niza, a zatim se štampaju ti indeksi i ti članovi niza.
- 48. Napraviti algoritam kojim se učitava broj x i realna greška ε , a zatim na bazi razvoja u Maklorenov red funkcije $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \dots$ izračunati vrednost $\sin x$ sa greškom manjom od zadatog ε .
- 49. Napraviti algoritam kojim se učitava broj x i realna greška ε , a zatim na bazi razvoja u Maklorenov red funkcije $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots$ izračunati vrednost sin x sa greškom manjom od zadatog ε .

- 50. Napraviti algoritam kojim se učitava prirodan broj n, a zatim se proverava da li je taj broj prost, i štampa odgovarajuća poruka.
- 51. Napraviti algoritam koji učitava današnji datum u obliku d,m,g (dan, mesec, godina), a zatim određuje i štampa sutrašnji datum.
- 52. Napraviti algoritam koji određuje koliko od unetih 10 brojeva je veće od 100.
- 53. Napraviti algoritam koji učitava elemente kvadratne matrice (m=n) vrstu po vrstu, nalazi i štampa najmanji element ispod glavne dijagonale.
- 54. Napraviti algoritam kojim se ušitavaju brojevi m i n koji predstavljaju dimenzije matrice A, a zatim se učitavaju elementi matrice a_{mn} i određuje:
 - a) Suma elementa na glavnoj dijagonali;
 - b) Vrednost najvećeg elementa iznad glavne dijagonale;
 - c) Po apsolutnoj vrednosti najveći element u sporednoj dijagonali.