

АНСАМБЛИРОВАНИЕ И РЕГУПЯРИЗАЦИЯ

ППАН ВЕБИНАРА

- Повторим, что такое ансамбли и какие они бывают
- Поделаем упражнения на понимание терминов
- Узнаем, как получать от дерева информацию о том, какой признак наиболее важен
- Разберемся, как избежать переобучения в линейных моделях
- Разберем частые проблемы, возникающие, при выполнении задачи
- Разберем вопросы по теме

БЕГГИНГ

АНСАМБЛИ НАД РЕШАЮЩИМИ ДЕРЕВЬЯМИ

- Бутстрап. Формирование из исходных данных подвыборок путем копирования.
- Бэггинг. Однородные модели обучают на разных наборах данных, а прогноз получают, усредняя ответы моделей / путем голосования.
- Случайный лес. Вариант бэггинга, у которого слабые ученики деревья решений.
- Бустинг. Деревья обучаются последовательно, исправляя ошибки предыдущих. Прогноз получается как линейная комбинация прогнозов построенных деревьев.
- Градиентный бустинг. Вместо ошибок уже обученных деревьев пытается предсказать антиградиент функции потерь для них.

АНСАМБЛИ | УПРАЖНЕНИЕ 1 11/11/2

- 1. Каким видом ансамбля является случайный лес?
 - А. Стекинг
 - В. Беггинг
 - С. Бустинг

АНСАМБЛИ | УПРАЖНЕНИЕ 1 11/11/2

- 1. Каким видом ансамбля является случайный лес?
 - А. Стекинг
 - В. Беггинг
 - С. Бустинг

АНСАМБЛИ ЈПРАЖНЕНИЕ 2111

- 1. Что предсказывает очередное дерево в градиентном бустинге?
 - А. Исходные значения целевой переменной
 - В. Суммарную ошибку всех предыдущих деревьев
 - С. Антиградиент общей ошибки предыдущих деревьев

АНСАМБЛИ УПРАЖНЕНИЕ 2111

- 1. Что предсказывает очередное дерево в градиентном бустинге?
 - А. Исходные значения целевой переменной
 - В. Суммарную ошибку всех предыдущих деревьев
 - С. Антиградиент общей ошибки предыдущих деревьев

АНСАМБЛИ | УПРАЖНЕНИЕ З'"

- 1. Какую задачу решает очередное дерево в градиентном бустинге?
 - А. Регрессии
 - В. Классификации
 - С. Оптимизации

АНСАМБЛИ | УПРАЖНЕНИЕ З'"

- 1. Какую задачу решает очередное дерево в градиентном бустинге?
 - А. Регрессии
 - В. Классификации
 - С. Оптимизации

РЕГУПЯРИЗАЦИЯ ПИНЕЙНЫХ_И МОДЕЛЕЙ

- Позволяет избежать построения слишком сложной модели
- Получается модель с более сильными обобщающими способностями
- L1-регуляризация (Lasso) -

$$J_{Lasso}(heta) = MSE + lpha \cdot || heta||_1$$

• L2-регуляризация (Ridge) -

$$J_{Ridge}(heta) = MSE + lpha \cdot || heta||_2^2$$

• Elastic-Net -

$$J_{ElasticNet}(heta) = MSE + lpha_1 \cdot || heta||_1 + lpha_2 \cdot || heta||_2^2$$

• Все реализовано в sklearn.linear_model: Ridge, Lasso, ElasticNet

ЧАСТЫЕ ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ ВЫПОЛНЕНИИ ЗАДАЧИ

- Необходимо самостоятельно сгенерировать новый целевой признак
- Функция balanced_accuracy_score реализовывается перегружено. Можно забирать значения из матрицы ошибок, например: так.
- Функция balanced_accuracy_score реализована, но не проверена
- Решается задача не классификации, а регрессии
- Градиентный бустинг обучается со слишком большим шагом

