# ASL(American Sign Language) Detection Using Convolutional Neural Networks

Presented By: Deep Dand Assisted By: Shruti Kulkarni Under Guidance of: Dr.Pablo Rivas

#### Concept:

- American sign language is method of communicating among the speech and hearing impaired community.
- The project goal is to create American sign language detection model using Convolutional neural network.

## What is American Sign Language(ASL)?



- The sign language has same signs for "V" and "2", "W" and "6", "O" and "0".
- Also "j" and "z" need hand gestures.
- Because of these reasons we are not including 5 classes and have 31 classes instead of 36 classes.

# **Existing Systems:**

| Author                                           | Algorithm | Process                                                                              | Result                                                                           |
|--------------------------------------------------|-----------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Nachanau. M                                      | SIFT      | Preprocessing the<br>Color images -<br>16x16 size                                    | 100% accuracy in test data                                                       |
| Brandon Garcia and<br>Sigberto Alarcon<br>Viesca | SVM       | Utilized pretrained<br>GoogLeNet<br>architecture and<br>resized images to<br>256x256 | Letters a-y = 72% accuracy Letters a-k = 74% accuracy Letters a-e = 97% accuracy |

#### About the Data:

- We use a dataset of segmented images captured with a depth-sensor camera for different subjects [1].
- We have data of five different subjects(From S01-S05).
- Each subject has 6,200 images.
- Images are divided into 31 different classes (From C01-C31).
- Currently, images of subject S01, S02, S03 are used for training and subject S04 and S05 are used for testing.

#### CNN Architecture:



#### **CNN Architecture:**

- Number of Layers 2
- Layer 1
  - o 32 filters
  - Relu activation
  - Maxpool filter size- 1
- Layer 2
  - o 64 Filters
  - Relu activation
    - Maxpool filter size- 2
- Fully Connected Layer
  - o 512-1024 units.
  - Softmax activation

- Dropout layer configured to drop results less than 0.8
- Number of Classes 31
- IMG\_SIZE = 256x256
- Learning rate 1e3

### Results:

| Filter |    | Maxpool<br>filter |    | Units in Fully<br>Connected | Epochs | Test     | Val      |
|--------|----|-------------------|----|-----------------------------|--------|----------|----------|
| L1     | L2 | L1                | L2 | layer                       |        | Accuracy | Accuracy |
| 3      | 3  | 1                 | 2  | 512                         | 5      | 0.04     | 0.03     |
| 5      | 5  | 1                 | 1  | 512                         | 3      | NA       | NA       |
| 5      | 5  | 1                 | 1  | 756                         | 3      | NA       | NA       |
| 5      | 5  | 1                 | 2  | 512                         | 3      | 0.03     | 0.03     |
| 5      | 5  | 1                 | 2  | 512                         | 5      | 0.03     | 0.03     |
| 3      | 3  | 3                 | 3  | 1024                        | 5      | 0.03     | 0.03     |
| 3      | 5  | 3                 | 5  | 1024                        | 5      | 0.037    | 0.032    |
| 5      | 3  | 5                 | 3  | 1024                        | 5      | 0.098    | 0.095    |
| 5      | 5  | 5                 | 5  | 1024                        | 5      | 0.9      | 0.9      |

Next experiments

#### Future Enhancements:

- Since the images we are dealing with are 256x256, adding more convnet layers will improve feature extraction and result in the better accuracy of the model.
- Also, once the experiments complete with existing config, the next config will have more epochs with architecture that gives best result with 5 epochs.

### Acknowledgments

 I would like to thank Dr Pablo for the guidance in this project and Shruti for assisting in the research for CNN architecture.

#### References

[1] Byeongkeun Kang, Subarna Tripathi, and Truong Q Nguyen. Real-time sign language fingerspelling recognition using convolutional neural networks from depth map. In Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on, pages 136–140. IEEE, 2015.

# Questions?

# Thank You!