Kérdések és válaszok lineáris algebrából ELTE - IK 2015

rev. 1.0

Ez a dokumentum az ELTE IK lineáris algebra tárgy vizsgakérdéseit tartalmazza 2012-től 2014/2015 őszi félévének végéig IATEX-ben összegyűjtve, rendszerezve, megválaszolva. A bizonyításoknál legnagyobb részben az órai jegyzetre, illetve Freud Róbert: Lineáris Algebra című könyvére támaszkodtam. Felhasználtam még Csörgő István: Fejezetek a lineáris algebrából c. tankönyvét. Ezt a dokumentumot abban a reményben adom közre, hogy sokan hasznosnak találják, de a benne foglaltak helyességére semmilyen garanciát nem tudok vállalni. Bár igyekeztem pontos lenni, előfordulhatnak hibák, ha ilyet találsz, kérlek, jelezd a kadlecsik@outlook.com címen.

Utolsó módosítás: 2015.06.06. - Kadlecsik Csaba

Ez az alkotás a Creative Commons Nevezd meg! - Ne add el! - Ne változtasd! 4.0 Nemzetközi licenc alá tartozik. A licenc megtekintéséhez látogass el a http://creativecommons.org/licenses/by-nc-nd/4.0/ oldalra.

Definíciók és tételkimondások

Mit jelent az, hogy egy $\mathbf{a}_1, \dots, \mathbf{a}_k \in \mathbb{R}^n$ vektorrendszer lineárisan független?

 $\mathbf{a}_1,\ldots,\mathbf{a}_k\in\mathbb{R}^n$ vektorrendszer lineárisan független, ha csak a triviális lineáris kombinációja $\mathbf{0}$.

Mit jelent az, hogy egy $\mathbf{a}_1, \dots, \mathbf{a}_k \in \mathbb{R}^n$ vektorrendszer lineárisan összefüggő?

 $\mathbf{a}_1, \dots, \mathbf{a}_k \in \mathbb{R}^n$ vektorrendszer lineárisan összefüggő, ha léteznek olyan nem mind nulla $\lambda_1, \dots \lambda_k \in \mathbb{R}$ együtthatók, hogy $\lambda_1 \mathbf{a}_1 + \dots + \lambda_k \mathbf{a}_k = \mathbf{0}$.

Legyen $0 \neq A \subseteq \mathbb{R}^n$ és $\mathbf{v} \in \mathbb{R}^n$. Mikor mondhatjuk, hogy \mathbf{v} lineárisan függ A-tól?

Ha \mathbf{v} előáll véges sok A-beli vektor lineáris kombinációjaként.

Hogyan definiáljuk \mathbb{R}^n bázisait?

 $\mathbf{b}_1, \dots \mathbf{b}_k$ vektorrendszer bázis, ha lineárisan függetlenek és \mathbb{R}^n minden vektora előáll a valós együtthatós lineáris kombinációjaként.

Definiáljuk egy $V \leq \mathbb{R}^n$ altér bázisának fogalmát.

A $\mathbf{v}_1, \dots, \mathbf{v}_k$ a V altér bázisa, ha lineárisan független és V minden eleme előáll a valós együtthatós lineáris kombinációjaként.

Definiálja egy \mathbb{R}^n -beli altér dimenzióját.

 $V \leq \mathbb{R}^n$ dimenziója 0, ha $V = \{0\}$, egyébként V egy tetszőleges bázisának elemszáma.

Mikor nevezzük a $\mathbf{v}_1, \dots, \mathbf{v}_n$ vektorrendszert egy $V \leq \mathbb{R}^n$ altér generátorrendszerének?

 $\mathbf{v}_1, \dots, \mathbf{v}_n$ generátorrendszer V-ben, ha $\{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq V$, és V minden eleme előáll $\mathbf{v}_1, \dots, \mathbf{v}_n$ lineáris kombinációjaként.

 $\emptyset \neq A,\subseteq$ " \mathbb{R}^n esetén hogy definiáltuk Span(A)-t?

 $\operatorname{Span}(A) \mathbb{R}^n$ összes A-t tartalmazó alterének a metszete.

Definiáljuk egy $\mathbf{v}_1, \dots, \mathbf{v}_n$ vektorrendszer rangját.

A $\mathbf{v}_1, \dots, \mathbf{v}_n$ vektorrendszer rangja az általa generált altér dimenziója.

Adott k elemű vektorrendszerre vonatkozóan milyen műveleteket nevetünk rangtartó átalakításoknak?

Rangtartó átalakítások:

- Sorrendcsere
- Egyik vektort lecseréljük a λ -szorosára, $\lambda \neq 0$

 \bullet Egy vektorhoz hozzáadjuk egy másik vektor λ -szorosát

Írja fel az elemi bázistranszformációra vonatkozó tételt.

 $V \leq \mathbb{R}^n$, $\mathbf{b}_1, \dots, \mathbf{b}_n$ bázis V-ben. $\mathbf{a} = \alpha_1 \mathbf{b}_1 + \dots + \alpha_k \mathbf{b}_k$, $1 \leq i \leq k$, rögzített. $\mathbf{b}_1, \dots, \mathbf{b}_{i-1}, \mathbf{a}, \mathbf{b}_{i+1}, \dots \mathbf{b}_n$ bázis V-ben $\Leftrightarrow \alpha_i \neq 0$.

Definiáljuk az \mathbf{a} és \mathbf{b} geometriai vektorok vektoriális szorzatát, $\mathbf{a} \times \mathbf{b}$ -t.

 $\mathbf{a} \times \mathbf{b} = \mathbf{c}$, ahol

- 1. $|\mathbf{c}| = |\mathbf{a}| |\mathbf{b}| \sin(\gamma)$, ahol γ az \mathbf{a} és \mathbf{b} vektorok által bezárt szög.
- 2. c merőleges a-ra és b-re.
- 3. $\mathbf{a}, \mathbf{b}, \mathbf{c}$ jobbrendszert alkotnak, ha $\mathbf{a} \times \mathbf{b} \neq \mathbf{0}$

Definiáljuk három geometriai vektor vegyes szorzatát.

Az $\mathbf{a}, \mathbf{b}, \mathbf{c}$ vektorok vegyes szorzata $\mathbf{abc} = (\mathbf{a} \times \mathbf{b})\mathbf{c}$.

Mondjuk ki a geometriai vektorokra vonatkozó felcserélési tételt.

Az $\mathbf{a}, \mathbf{b}, \mathbf{c}$ geometriai vektorokra $(\mathbf{a} \times \mathbf{b})\mathbf{c} = \mathbf{a}(\mathbf{b} \times \mathbf{c})$.

Mondjuk ki a geometriai vektorok vektoriális szorzatára vonatkozó kifejtési tételt.

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{ac})\mathbf{b} - (\mathbf{bc})\mathbf{a}$$

Definiáljuk egy $A \in \mathbb{R}^{m \times n}$ mátrix transzponáltját.

 $A \in \mathbb{R}^{m \times n}$ mátrix transzponáltja $A^T \in \mathbb{R}^{n \times m}, \ _i \big[A^T\big]_j = \ _j [A]_i.$

Írjuk fel az $A \in \mathbb{R}^{m \times k}$ és $A \in \mathbb{R}^{k \times n}$ mátrixok AB szorzatában az i. sor j. elemének képletét.

$$_{i}[AB]_{j} = \sum_{l=1}^{k} {}_{i}[A]_{l} {}_{l}[B]_{j}$$

Definiáljuk egy $A \in \mathbb{C}^{m \times n}$ mátrix adjungáltját és mondjuk ki, mi a kapcsolat az adjungált és a mátrixszorzás között.

- $\bullet \ A^* \in \mathbb{C}^{n \times m}, \ _i[A^*]_j = \overline{\ _j[A]_i}$
- $(AB)^* = B^*A^*$, ha az AB szorzat létezik.

Definiáljuk egy \mathbb{R} feletti mátrix sorrangjának fogalmát.

Az $A \in \mathbb{R}^{n \times m}$ mátrix sorrangja az $A^T \in \mathbb{R}^{m \times n}$ mátrix oszloprangja, vagyis A^T oszlopaiból álló vektorrendszer rangja \mathbb{R}^m -ben.

Legyenek C és D ebben a sorrendben összeszorozható mátrixok. Milyen összefüggés áll fenn CD és C oszloprangja között?

 $\rho_o(CD) \leq \rho_o(C)$

Definiáljuk egy $A \in \mathbb{R}^{m \times n}$ mátrix jobb oldali inverzének fogalmát.

 $A^{(j)}$ az A mátrix jobbinverze, ha $A^{(j)} \in \mathbb{R}^{n \times m}$, és $AA^{(j)} = I_m$.

A rang fogalmának segítségével mondjuk ki annak szükséges és elégséges feltételét, hogy az $A \in \mathbb{R}^{m \times n}$ mátrixnak létezzen bal oldali inverze.

Az $A \in \mathbb{R}^{m \times n}$ mátrixnak létezik bal oldali inverze \Leftrightarrow az A mátrix rangja n.

Mondjunk ki két lényegesen különböző feltételt, melyek azzal ekvivalensek, hogy $A \in \mathbb{R}^{n \times n}$ mátrixnak létezik inverze.

- $det(A) \neq 0$
- $\rho(A) = n$

Írja fel az $A \in \mathbb{R}^{n \times n}$ mátrix determinánsának definícióját.

$$\det(A) = \sum_{\substack{i_1, \dots, i_n \\ (1, \dots, n)}} (-1)^{I(i_1, \dots, i_n)} a_{1i_1} \dots a_{ni_n}$$

 $A \sum az 1, \ldots, n$ számok összes permutációján végigfut, $I(i_1, \ldots, i_n)$ az adott permutáció inverziószáma.

Írjuk fel az $A \in \mathbb{R}^{n \times n}$ felső háromszögmátrix determinánsának képletét.

 $|A| = a_{11}a_{22}\dots a_{nn}$

Definiáljuk egy $A \in \mathbb{R}^{n \times n}$ mátrix *i*-edik sorának *j*-edik eleméhez tartozó előjeles aldeterminánst.

 B_{ij} az a mátrix, amit az eredeti A mátrix i. sorának és j. oszlopának elhagyásával kapunk. Az előjeles aldetermináns: $(-1)^{i+j}\det(B_{ij})$.

Írja fel egy $A \in \mathbb{R}^{n \times n}$ mátrix determinánsára vonatkozó kifejtési tételt.

Legyen $A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ & \dots & \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$ és jelölje A_{ij} az i. sorhoz és j. oszlophoz tartozó előjeles aldeterminánst.

- $1 \le i \le n$: $|A| = \sum_{i=1}^{n} a_{ij} A_{ij}$
- $1 \le j \le n$: $|A| = \sum_{i=1}^{n} a_{ij} A_{ij}$

Mondjuk ki a determinánsok szorzástételét.

Ha $A, B \in \mathbb{R}^{n \times n}$ azonos méretű négyzetes mátrixok, akkor |AB| = |A||B|.

A determináns fogalmának segítségével mondjuk ki annak szükséges és elégséges feltételét, hogy egy negyenletből álló n ismeretlenes homogén lineáris egyenletnek legyen nem triviális megoldása.

 $A \in \mathbb{R}^{n \times n}$. Az $A\mathbf{x} = \mathbf{0}$ egyenletnek pontosan akkor van nem triviális megoldása, ha |A| = 0.

Mondjuk ki a lineáris egyenletrendszerekre vonatkozó Cramer-szabályt.

Ha $A = [\mathbf{a}_1 \mathbf{a}_2 \dots \mathbf{a}_n] \in \mathbb{R}^{n \times n}, |A| \neq 0$, akkor tetszőleges $\mathbf{b} \in \mathbb{R}^n$ -re létezik egyetlen olyan $\mathbf{x} \in \mathbb{R}^n$, melyre $A\mathbf{x} = \mathbf{b}$ és $x_j = \frac{\det([\mathbf{a}_1 \dots \mathbf{b}_m \mathbf{a}_n])}{\det([\mathbf{a}_1 \dots \mathbf{a}_j \dots \mathbf{a}_n])}$.

Mit jelent az, hogy két $\mathbb{R}^{n\times n}$ -beli mátrix, A és B hasonló egymáshoz \mathbb{R} felett?

 $A, B \in \mathbb{R}^{n \times n}$ pontosan akkor hasonlóak egymáshoz \mathbb{R} felett, ha létezik olyan $D \in \mathbb{R}^{n \times n}$ invertálható mátrix, hogy $B = D^{-1}AD$.

Definiáljuk egy $A \in \mathbb{R}^n$ négyzetes mátrixhoz tartozó jobb oldali sajátvektor és sajátérték fogalmát.

- $\mathbf{v} \neq \mathbf{0} \in \mathbb{R}^n$ jobb oldali sajátvektora A-nak. ha $A\mathbf{v} = \lambda \mathbf{v}$ valamely $\lambda \in \mathbb{R}$ számra.
- $\lambda \in \mathbb{R}$ jobb oldali sajátértéke A-nak, ha létezik olyan $\mathbf{v} \neq \mathbf{0} \in \mathbb{R}^n$ vektor, melyre $A\mathbf{v} = \lambda \mathbf{v}$.

Definiáljuk egy $A \in \mathbb{R}^n$ mátrix $k_A(\lambda)$ karakterisztikus polinomját.

$$k_A(\lambda) = \det(A - I_n \lambda)$$

Mondjuk ki egy valós elemű mátrix (jobb oldali) sajátértékének és karakterisztikus polinomjának kapcsolatáról szóló tételt

Egy A valós mátrix (jobb oldali) sajátértékei megegyeznek karakterisztikus polinomjának valós gyökeivel.

Egy alkalmas determináns segítségével mondjuk ki annak szükséges és elégséges feltételét, hogy a λ_0 valós szám sajátértéke legyen az $A \in \mathbb{R}^{n \times n}$ mátrixnak.

 λ_0 pontosan akkor sajátértéke A-nak, ha $|A - \lambda_0 I_n| = 0$, ahol I_n az $n \times n$ -es egységmátrix.

Definiáljuk, mit jelent az, hogy egy valós elemű négyzetes mátrix diagonalizálható R felett.

 $A \in \mathbb{R}^n$ pontosan akkor diagonalizálható \mathbb{R} felett, ha létezik olyan $D \in \mathbb{R}^n$ invertálható mátrix, melyre $D^{-1}AD$ diagonális mátrix.

A sajátvektor fogalma segítségével mondjuk ki annak szükséges és elégséges feltételét, hogy az $A \in \mathbb{R}^{n \times n}$ mátrix diagonalizálható legyen \mathbb{R} felett.

A pontosan akkor diagonalizálható $\mathbb R$ felett, ha létezik $\mathbb R^n$ -ben az A sajátvektoraiból álló bázis.

Definiálja egy $\mathbf{x} \in V$ vektor euklideszi normáját.

$$||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

Mondjuk ki a V euklideszi tér \mathbf{x}, \mathbf{y} vektoraira érvényes háromszög-egyenlőtlenséget.

 $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$, ahol $||\mathbf{x}||$ az $\mathbf{x} \in V$ vektor euklideszi normája.

Mondjuk ki a valós euklideszi terekre vonatkozó Cauchy-egyenlőtlenséget, nem megfeledkezve az egyenlőség esetéről sem.

V valós euklideszi tér, $\mathbf{a}, \mathbf{b} \in V$. $|\langle \mathbf{a}, \mathbf{b} \rangle| \leq ||\mathbf{a}|| \cdot ||\mathbf{b}||$, egyenlőség akkor áll fenn, ha \mathbf{a}, \mathbf{b} lineárisan összefüggők.

Írjuk fel, mit jelent az, hogy egy $Q: \mathbb{R}^n \to \mathbb{R}$ kvadratikus alak ...

	$0 eq \mathbf{x} \in \mathbb{R}^n$	elnevezés
$\forall \lambda_k > 0$	$Q(\mathbf{x}) > 0$	pozitív definit
$\forall \lambda_k < 0$	$Q(\mathbf{x}) < 0$	negatív definit
$\forall \lambda_k \ge 0$	$Q(\mathbf{x}) \ge 0$	pozitív szemidefinit
$\forall \lambda_k \le 0$	$Q(\mathbf{x}) \leq 0$	negatív szemidefinit
$\exists \lambda_i > 0 \text{ és } \exists \lambda_j < 0$	$Q(\mathbf{x}_i) > 0 \text{ és } Q(\mathbf{x}_j) < 0$	indefinit

Mondjuk ki a valós szimmetrikus mátrixok spektráltételét.

 $A \in \mathbb{R}^{n \times n}$ mátrixnak pontosan akkor létezik sajátvektorokból álló bázisa, ha szimmetrikus.

Definiáljuk az $A \in \mathbb{R}^n$ szimmetrikus mátrix karakterisztikus szorzatát.

$$\Delta_0 = 1, \quad \Delta_1 = a_{11}, \quad \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \dots, \quad \Delta_n = |A|$$

Hogyan definiáltuk azt, hogy egy $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ függvény mikor vektortérhomomorfizmus?

- $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ esetén $\varphi(\mathbf{u} + \mathbf{v}) = \varphi(\mathbf{u}) + \varphi(\mathbf{v})$
- $\lambda \in \mathbb{R}, \mathbf{u} \in \mathbb{R}^n$ esetén $\varphi(\lambda \mathbf{u}) = \lambda \varphi(\mathbf{u})$

Mondjuk ki a lineáris leképezések egyértelmű kiterjesztési tételét.

 $\mathbf{e}_1, \dots \mathbf{e}_n$ bázisok \mathbb{R}^n -ben, $\mathbf{b}_1, \dots \mathbf{b}_n$ tetszőleges vektorok \mathbb{R}^m -ben. Ekkor pontosan egy olyan $\varphi : \mathbb{R}^n \Rightarrow \mathbb{R}^m$ lineáris leképezés létezik, melyre $\varphi(\mathbf{e}_i) = \mathbf{b}_i$ $1 \le i \le n$.

Definiáljuk egy $\varphi:V_1\to V_2$ lineáris leképezés magterét.

$$Ker(\varphi) = \{ \mathbf{x} \in V_1 | \varphi(\mathbf{x}) = \mathbf{0} \in V_2 \}$$

Mondjuk ki a lineáris leképezésekre vonatkozó dimenzióösszefüggést.

 V_1 véges dimenziós vektortér, $\varphi \in \mathcal{H}om(V_1, V_2)$. Ekkor $\dim(V_1) = \dim(\mathcal{K}er(\varphi)) + \dim(\mathcal{I}m(\varphi))$

Definiáljuk egy $\varphi \in \mathcal{H}om(\mathbb{R}^n, \mathbb{R}^n)$ lineáris transzformáció sajátvektorának fogalmát.

 $\mathbf{u} \in \mathbb{R}^n$ sajátvektora φ -nek, ha nem nullvektor és $\varphi(\mathbf{u}) = \lambda \mathbf{u}$ valamely λ skalárra.

A dimenzió fogalmának segítségével mondjuk ki annak szükséges és elégséges feltételét, hogy két $\mathbb R$ feletti véges dimenziós vektortér izomorf legyen.

U, V véges dimenziós vektorterek \mathbb{R} felett pontosan akkor izomorfak, ha $\dim(U) = \dim(V)$.

Mikor nevezünk egy V komplex vektortéren értelmezett bilineáris alakot Hermite-félének?

Egy $A: V \times V \to \mathbb{C}$ bilineáris alak Hermite-féle, ha $A(\mathbf{x}, \mathbf{y}) = \overline{A(\mathbf{x}, \mathbf{y})}$ minden $\mathbf{x}, \mathbf{y} \in V$ -re.

Bizonyítások

Igazoljuk, hogy ha egy lineárisan független vektorrendszerhez hozzáveszünk egy új vektort, és az így kapott rendszer lineárisan összefüggő, akkor az új vektor lineárisan függ a többi vektortól.

 $\mathbf{a}_1,\dots,\mathbf{a}_n$ lineárisan független, $\mathbf{a}_1,\dots,\mathbf{a}_n,\mathbf{b}$ lineárisan összefüggő. Ez azt jelenti, hogy léteznek olyan $\alpha_1,\dots\alpha_n,\alpha_{n+1}\in\mathbb{R}$ skalárok, hogy $\alpha_1\mathbf{a}_1+\dots+\alpha_n\mathbf{a}_n+\alpha_{n+1}\mathbf{b}=\mathbf{0}$ $\alpha_1\mathbf{a}_1+\dots+\alpha_n\mathbf{a}_n+=(-1)\alpha_{n+1}\mathbf{b}$ $\frac{\alpha_1}{(-1)\alpha_{n+1}}\mathbf{a}_1+\dots+\frac{\alpha_n}{(-1)\alpha_{n+1}}\mathbf{a}_n+=\mathbf{b}$ Ezek a törtek mindig léteznek, mert ha $\alpha_{n+1}=0$ lenne, $\mathbf{a}_1,\dots,\mathbf{a}_n$ összefüggő lenne. Tehát megkaptuk $\mathbf{a}_1,\dots,\mathbf{a}_n$ egy lineáris kombinációjaként \mathbf{b} -t.

Igazoljuk a következő tételt: Legyen $V \leq \mathbb{R}^n$, melynek van véges generátorrendszere, és $V \neq \{\mathbf{0}\}$. Ekkor V bármely véges generátorrendszeréből kiválasztható bázis.

- Ha V generátorrendszere egyelemű, az generálja V-t mert $V \neq \{0\}$.
- Ha V generátorrendszere nem egyelemű és összefüggő, hagyjunk el egy olyan vektort, ami függ a többitől. Ismételjük ezt a lépést addig, amíg független vagy egyelemű generátorrendszer nem kapunk.

Mondjuk ki és bizonyítsuk be a kicserélési tételt.

 $V \leq \mathbb{R}^n$, $\mathbf{a}_1, \dots, \mathbf{a}_k$ lineáris független rendszer, $\mathbf{b}_1, \dots, \mathbf{b}_m$ generátorrendszer V-ben.

- $\exists j \in \{1, \ldots, m\}$, hogy $\mathbf{b}_j, \mathbf{a}_2, \ldots, \mathbf{a}_k$ független.
- *k* < *m*

Bizonvítás:

- k = 1: triviális
- $k \ge 2$: Indirekt bizonyítás:
 - 1. Tegyük fel, hogy $(\forall j \in \{1, \dots m\}) : \mathbf{b}_j, \mathbf{a}_2, \dots, \mathbf{a}_k$ összefüggő.
 - 2. Mivel $\mathbf{a}_2, \dots, \mathbf{a}_k$ független, \mathbf{b}_j függ $\mathbf{a}_2, \dots, \mathbf{a}_k$ -tól $\forall j$ -re.
 - 3. $\mathbf{b}_1, \dots, \mathbf{b}_m$ generátorrendszer \Rightarrow generálja \mathbf{a}_1 -et.
 - 4. $\mathbf{b}_1, \ldots, \mathbf{b}_m$ függ $\mathbf{a}_2, \ldots, \mathbf{a}_k$ -tól $\Rightarrow \mathbf{a}_1$ is. \nleq
- \mathbf{b}_{j_1} bevihető \mathbf{a}_1 helyére, \mathbf{b}_{j_2} bevihető \mathbf{a}_2 helyére, ... Mivel a rendszer minden lépésben független marad, $\mathbf{b}_{j_1}, \ldots, \mathbf{b}_{j_k}$ mind függetlenek $\Rightarrow k \leq m$.

Legyen $\mathbf{a}_1, \dots \mathbf{a}_k \in \mathbb{R}^n$ Mondjuk ki az $\mathbf{a}_1, \dots \mathbf{a}_k$ vektorrendszerre vonatkozóan három rangtartó átalakítást és az egyikről bizonyítsuk be, hogy valóban rangtartó.

 $\mathbf{a}_1, \dots, \mathbf{a}_k \in \mathbb{R}^n, \lambda \in \mathbb{R}, \lambda \neq 0, k \geq 2$

• $r(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k) = r(\mathbf{a}_2, \mathbf{a}_1, \dots, \mathbf{a}_k)$

Biz.: $\operatorname{Span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k) = \operatorname{Span}(\mathbf{a}_2, \mathbf{a}_1, \dots, \mathbf{a}_k) \Rightarrow \text{a dimenziójuk is megegyezik.}$

- $r(\lambda \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k) = r(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k)$
- $r(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k) = r(\mathbf{a}_1 + \lambda \mathbf{a}_2, \mathbf{a}_2, \dots, \mathbf{a}_k)$

Legyen W_1 és W_2 altér \mathbb{R}^n -ben. Igazoljuk, hogy $W_1 \cap W_2$ is altér \mathbb{R}^n -ben.

- $\mathbf{0} \in W_1, \, \mathbf{0} \in W_2 \Rightarrow \mathbf{0} \in W_1 \cap W_2$
- $\mathbf{a}, \mathbf{b} \in W_1 \Rightarrow \mathbf{a} + \mathbf{b} \in W_1$ $\mathbf{a}, \mathbf{b} \in W_2 \Rightarrow \mathbf{a} + \mathbf{b} \in W_2$. Tehát $\mathbf{a}, \mathbf{b} \in W_1 \cap W_2 \Rightarrow \mathbf{a} + \mathbf{b} \in W_1 \cap W_2$.
- $\lambda \in \mathbb{R}, \mathbf{a} \in W_1 \Rightarrow \lambda \mathbf{a} \in W_1$ $\mathbf{a} \in W_2 \Rightarrow \lambda \mathbf{a} \in W_2$ Tehát $\mathbf{a} \in W_1 \cap W_2 \Rightarrow \lambda \mathbf{a} \in W_1 \cap W_2$.

 $\emptyset \neq A,\subseteq \mathbb{R}^n$ esetén hogy definiáltuk W(A)-t? Igazoljuk, hogy W(A) altér.

A nem üres vektorrendszer \mathbb{R}^n -ben. $W(A) = \{\mathbf{v} | \mathbf{v} \in \mathbb{R}^n, \mathbf{v} \text{ lineárisan függ } A\text{-tól}\}.$

$$W(A) \leq \mathbb{R}^n$$

Biz.:
$$A = \mathbf{a}_1, \dots \mathbf{a}_n$$

$$\mathbf{a} = \alpha_1 \mathbf{a}_1 + \dots + \alpha_n \mathbf{a}_n, \mathbf{b} = \beta_1 \mathbf{a}_1 + \dots + \beta_n \mathbf{a}_n \Rightarrow \mathbf{a} + \mathbf{b} = (\alpha_1 + \beta_1) \mathbf{a}_1 + \dots + (\alpha_n + \beta_n) \mathbf{a}_n$$

$$\lambda \mathbf{a} = \lambda(\alpha_1 \mathbf{a}_1 + \dots + \alpha_n \mathbf{a}_n) = (\lambda \alpha_1) \mathbf{a}_1 + \dots + (\lambda \alpha_n) \mathbf{a}_n$$

Legyen A nem üres részhalmaza \mathbb{R}^n -nek. Definiáljuk az A által generált altér, $\operatorname{Span}(A)$ fogalmát, majd igazoljuk, hogy $\operatorname{Span}(A) = W(A)$, ahol W(A) az A elemeitől lineárisan függő vektorok altere \mathbb{R}^n -ben.

 $\operatorname{Span}(A) \mathbb{R}^n$ összes A-t tartalmazó alterének a metszete.

- $\mathbf{a} \in A \Rightarrow \mathbf{a} \in W(A)$, tehát W(A) is egy A-t tartalmazó altér $\Rightarrow \operatorname{Span}(A) \subseteq W(A)$
- Legyen $W' \leq \mathbb{R}^n$ tetszőleges A-t tartalmazó altér \mathbb{R}^n -ben. $\mathbf{v} \in W(A) \Rightarrow \mathbf{v} = \alpha_1 \mathbf{a}_1 + \dots + \alpha_n \mathbf{a}_n \Rightarrow \mathbf{v} \in W' \Rightarrow W(A) \subseteq W'$ Ez a gondolatmenet tetszőleges W'-re igaz, tehát $W(A) \subseteq \cap W' = \operatorname{Span}(A)$.

Mondjuk ki és igazoljuk a geometriai vektorok $\mathbf{i}, \mathbf{j}, \mathbf{k}$ -beli koordinátákból való kiszámítására vonatkozó képletet.

Ha i, j, k egymásra merőleges egységvektorok ebben a sorrendben jobbrendszert alkotnak,

- $\mathbf{i} \times \mathbf{j} = \mathbf{k}, \mathbf{j} \times \mathbf{i} = -\mathbf{k}$, a többi szorzat hasonlóan számítható.
- $\mathbf{i} \times \mathbf{i} = \mathbf{0}$, a többi szorzat hasonlóan számítható.

$$[\mathbf{a}]_{\mathbf{i},\mathbf{j},\mathbf{k}} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}, \text{ vagyis } \mathbf{a} = \alpha_1 \mathbf{i} + \alpha_2 \mathbf{j} + \alpha_3 \mathbf{k}$$

Bizonyítás: $\mathbf{i}, \mathbf{j}, \mathbf{k}$ vektornak megfelelő lesz az $\mathbf{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Skalárszorzással ellenőrizhető, hogy merőlegesek.

$$\alpha_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \alpha_2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

Mondjuk ki és igazoljuk a mátrixszorzás asszociativitására vonatkozó tételt.

 $A\in\mathbb{R}^{k\times l},B\in\mathbb{R}^{l\times m},C\in\mathbb{R}^{m\times n},$ ekkor $\exists (AB)C$ és $\exists A(BC)$ és (AB)C=A(BC)Bizonyítás:

$$_{i}[(AB)C]_{j} = \sum_{p=1}^{k} \ _{i}[(AB)]_{p} \ _{p}[C]_{j} = \sum_{p=1}^{k} \left(\sum_{q=1}^{n} \ _{i}[A]_{q} \ _{q}[B]_{p} \right) \ _{p}[C]_{j} = \sum_{q=1}^{n} \sum_{p=1}^{k} \ _{i}[A]_{q} \ _{q}[B]_{p} \ _{p}[C]_{j} = \sum_{p=1}^{n} \sum_{p=1}^{k} \ _{p}[A]_{q} \ _{p}[A]_{p} \ _{p}[A]_{p} = \sum_{p=1}^{n} \sum_{p=1}^{k} \ _{p}[A]_{q} \ _{p}[A]_{p} = \sum_{p=1}^{n} \sum_{p=1}^{k} \ _{p}[A]_{q} = \sum_{p=1}^{n} \sum_{p=1}^{n} \ _{p}[A]_{q} = \sum_{p=1}^{n} \ _{p}[A]$$

Mivel a valós számok szorzása asszociatív, ez egyenlő a következővel:

$$\sum_{q=1}^{n} \ _{i}[A]_{q} \left(\sum_{p=1}^{k} \ _{q}[B]_{p} \ _{p}[C]_{j} \right) = \sum_{q=1}^{n} \ _{i}[A]_{q} \ _{q}[BC]_{j} = \ _{i}[A(BC)]_{j}$$

Mondjuk ki a mátrixok transzponálása és az egyéb mátrixműveletek közötti kapcsolatot és igazolja a szorzat transzponáltjára vonatkozó összefüggést.

- $(A+B)^T = A^T + B^T$
- $(\lambda A)^T = \lambda (A^T)$
- $\bullet \ (AB)^T = B^T A^T$

$$_{i}\big[(AB)^{T}\big]_{j} = _{j}[(AB)]_{i} = \sum_{l=1}^{n} _{j}[(A)]_{l} \ _{l}[(B)]_{i} = \sum_{l=1}^{n} _{l}\big[(A^{T})\big]_{j} \ _{i}\big[(B^{T})\big]_{l} = \sum_{l=1}^{n} _{i}\big[(B^{T})\big]_{l} \ _{l}[(A^{T})]_{j} = \sum_{l=1}^{n} _{i}\big[(A^{T})\big]_{l} = \sum_{l=1}^{n}\big[(A^{T})\big]_{l} = \sum_{l=1}^{n}\big[(A^{T})\big$$

Igazoljuk, hogy ha egy $\mathbb{R}^{n\times n}$ mátrixnak van két azonos sora, a determinánsa 0, mutassunk példát arra, amikor az állítás megfordítása nem teljesül.

- Két azonos sor cseréjétől nem változik a mátrix, így a determinánsa sem. Ha két sort felcserélünk a mátrixban a determinánsa (-1)-gyel szorzódik.
- Az azonos sorok cseréjétől egyrészt nem változik, másrészt előjelet vált a determináns, tehát $|A| = -|A| \Rightarrow |A| + |A| = 0 \Rightarrow |A| = 0$
- \bullet Az $\left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right]$ mátrix determinánsa nulla, de nincs két egyező sora.

Igazoljuk, hogy ha egy $A \in \mathbb{R}^{n \times n}$ mátrix valamelyik sorához hozzáadjuk egy másik sor λ -szorosát, akkor a determináns értéke nem változik. (A felhasznált segédállításokat nem kell bizonyítani, de pontosan ki kell mondani.)

Segédállítás: Ha egy sor minden eleme kéttagú összeg, a determináns két determináns összegére bontható, ahol az egyikben az adott sorban a kéttagú összeg egyik tagja, a másikban a másik tagja szerepel, a többi elem a két determinánsba ugyanaz, mint az előzőben volt.

$$\begin{vmatrix} \alpha_{11} + \beta_{11} & \dots & \alpha_{1n} + \beta_{1n} \\ \alpha_{21} & \dots & \alpha_{2n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{vmatrix} = \begin{vmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \alpha_{21} & \dots & \alpha_{2n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{vmatrix} + \begin{vmatrix} \beta_{11} & \dots & \beta_{1n} \\ \alpha_{21} & \dots & \alpha_{2n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{vmatrix}$$

Segédállítás: Egy determináns egy sorát egy $\lambda \in \mathbb{R}$ számmal szorozva a determináns értéke is λ -szorosára változik.

Segédállítás: Ha egy $\mathbb{R}^{n\times n}$ mátrixnak van két azonos sora, a determinánsa 0.

Bizonyítás: Legyen $_k[A]$ az A mátrix k. sora. Az általánosság megsértése nélkül feltehető, hogy k < l. Ekkor

$$\begin{vmatrix} 1[A] \\ \vdots \\ k[A] + \lambda_{l}[A] \\ \vdots \\ l[A] \\ \vdots \\ n[A] \end{vmatrix} = \begin{vmatrix} 1[A] \\ \vdots \\ k[A] \\ \vdots \\ l[A] \\ \vdots \\ n[A] \end{vmatrix} + \begin{vmatrix} 1[A] \\ \vdots \\ k[A] \\ \vdots \\ l[A] \\ \vdots \\ n[A] \end{vmatrix} = |A| + \lambda \begin{vmatrix} 1[A] \\ \vdots \\ l[A] \\ \vdots \\ n[A] \end{vmatrix} = |A| + \lambda 0 = |A|$$

Mondjuk ki és bizonyítsuk be azt a tételt, ami egy valós mátrix rangját összekapcsolja bizonyos részmátrixainak determinánsával.

 $A \in \mathbb{R}^{m \times n}$ és $\rho(A) = r \ge 1$ esetén A-nak van olyan $r \times r$ -es részmátrixa, menynek determinánsa nem 0, de minden $(r+1) \times (r+1)$ -es részmátrix determinánsa 0. Bizonyítás:

- A rang r, így van r darab lineárisan független oszlop.
- Ezeket az oszlopokat kiválasztva, mivel sorrang = oszloprang, r db lineárisan független sor is kiválasztható. Ez egy $r \times r$ méretű mátrix, aminek a rangja r, tehát a determinánsa nem 0.
- $(r+1) \times (r+1)$ -es részmátrixot választva, mivel a rang r, az r+1 oszlop biztosan összefüggő, tehát a determináns 0.

Definiáljuk a Vandermonde-determináns fogalmát, majd bizonyítsuk be az értékére adható explicit képletet.

$$n \ge 2, a_1, \dots, a_n \in \mathbb{R} \text{ eset\'en } V_n(a_1, \dots, a_n) = \begin{vmatrix} a_1^0 & a_1^1 & a_1^2 & \dots & a_1^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ a_n^0 & a_n^1 & a_n^2 & \dots & a_n^{n-1} \end{vmatrix} = \prod_{n \ge i > j \ge 1} (a_i - a_j).$$

Bizonyítás: Teljes indukció n szerint.

• n = 2-re nyilvánvaló.

- $n \ge 3$ esetén:
 - Vonjuk ki jobbról bal fele haladva minden oszlopból az őt megelőző oszlop a_1 -szeresét:

Voligita ki jobbioi bar lele haradva minden oszloj.
$$\begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & a_2 - a_1 & a_2^2 - a_1 a_2 & \dots & a_2^{n-1} - a_1 a_2^{n-2} \\ 1 & a_3 - a_1 & a_3^2 - a_1 a_3 & \dots & a_3^{n-1} - a_1 a_3^{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_n - a_1 & a_n^2 - a_1 a_n & \dots & a_n^{n-1} - a_1 a_n^{n-2} \end{vmatrix}$$

- Vonjuk ki minden sorból az első sort, az oszlopokból pedig kiemelhetünk a_2-a_1 -et, a_3-a_1 -et...
- A mátrix: $(a_2 a_1) \dots (a_n a_1)$ $\begin{vmatrix} 1 & 0 & 0 & \dots \\ 0 & 1 & a_2 & \dots & a_2^{n-2} \\ 0 & 1 & a_3 & \dots & a_3^{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & a_n & \dots & a_n^{n-2} \end{vmatrix}$
- Ami pedig egyenlő $(a_2 a_1) \dots (a_n a_1) V_{n-1}(a_2 a_2) \dots (a_n a_n) v_{n-1}(a_n a_n) v_{n-1}($

Mondja ki és bizonyítsa a determinánsok szorzástételét.

 $A,B \in \mathbb{R}^{n \times n} \Rightarrow |AB| = |A||B|.$ Bizonyítás:

- $\bullet \text{ Legyen } C \in \mathbb{R}^{i \times i}, D \in \mathbb{R}^{j \times j}, \text{ ekkor} \begin{vmatrix} C & \vdots & \ddots & \vdots \\ & \bullet_{u1} & \dots & \bullet_{uu} \\ \hline 0 & \dots & 0 \\ \vdots & \ddots & \vdots & D \end{vmatrix} \text{ blokkmátrix determinánsa} = |C||D|.$

 - \bullet_{11} ... \bullet_{1u} A \vdots ... \vdots blokk elemei nem számítanak az eredmény szempontjából.
- Az előzőek alapján $|A||B|=\det\left(\begin{array}{c|cccc}A&\vdots&\ddots&\vdots\\0&\dots&0\\\hline -1&\dots&0\\\vdots&\ddots&\vdots&B\end{array}\right)$, ahol a $\vdots&\ddots&\vdots$ blokk =
 - $-I_n$, az egységmátrix (-1)-szerese.

• Az előző pontban felírt $\begin{vmatrix} A & 0 \\ -I_n & B \end{vmatrix}$ determináns determinánstartó átalakításokkal $\begin{vmatrix} A & AB \\ -I_n & 0 \end{vmatrix}$ alakra hozható, amiből sorcserékkel a $(-1)^n \begin{vmatrix} -I_n & 0 \\ A & AB \end{vmatrix}$ determinánsérték következik, ami egyenlő |AB|-vel.

SÉ/I.: Mondjuk ki és igazoljuk egy $A \in \mathbb{R}^{n \times n}$ mátrix karakterisztikus polinomja és jobb oldali sajátértékei közötti összefüggést (nem feledkezve meg a megfelelő definíciók kimondásáról sem).

Definíciók:

- 1. $\lambda \in \mathbb{R}$ jobb oldali sajátértéke A-nak, ha létezik olyan $\mathbf{v} \neq \mathbf{0} \in \mathbb{R}^n$ vektor, melyre $A\mathbf{v} = \lambda \mathbf{v}$.
- 2. $A \in \mathbb{R}^n$ mátrix $k_A(\lambda)$ karakterisztikus polinomja: $k_A(\lambda) = \det(A I_n \lambda)$
- 3. Egy A valós mátrix jobb oldali sajátértékei megegyeznek karakterisztikus polinomjának valós gyökeivel.

Bizonyítás:

- Egy λ valós szám pontosan akkor sajátérték, ha $\exists \mathbf{v} \neq \mathbf{0} \in \mathbb{R}^n$, amelyre $A\mathbf{v} = \lambda \mathbf{v}$.
- $A\mathbf{v} = \lambda \mathbf{v} \Leftrightarrow A\mathbf{v} \lambda \mathbf{v} = \mathbf{0} \Leftrightarrow A\mathbf{v} \lambda I_n \mathbf{v} = \mathbf{0} \Leftrightarrow (A \lambda I_n) \mathbf{v} = \mathbf{0}$
- $(A \lambda I_n)\mathbf{v} = \mathbf{0}$ egy homogén lineáris egyenletrendszer $\Rightarrow [(A \lambda I_n)][\mathbf{v}] = [\mathbf{0}]$. Ennek az egyenletrendszernek a valós megoldásait keressük.

Megjegyzés: Homogén lineáris egyenletrendszer olyan egyenletrendszer, melyben a szabad tagok nullával egyenlők.

SÉ/II.: Legyen $A \in \mathbb{R}^{n \times n}$, igazoljuk, hogy λ_0 pontosan akkor sajátértéke A-nak, ha gyöke a karakterisztikus polinomjának.

Bizonyítva SÉ/I. tételnél.

SÉ/III.: Igazolja, hogy egy $A \in \mathbb{R}^{n \times n}$ mátrix jobb oldali sajátértékei megegyeznek a karakterisztikus polinom valós gyökeivel.

Bizonyítva SÉ/I. tételnél.

SÉ/IV.: Definiáljuk egy $\mathbb{R}^{n \times n}$ -es valós elemű mátrix karakterisztikus polinomjának, illetve jobb oldali sajátértékének a fogalmát, majd igazoljuk, hogy $\lambda_0 \in \mathbb{R}$ pontosan akkor jobb oldali sajátértéke az A mátrixnak, ha λ_0 gyöke az A karakterisztikus polinomjának.

Bizonyítva SÉ/I. tételnél.

Igazoljuk, hogy a különböző sajátértékekhez tartozó sajátvektorok lineárisan függetlenek.

Bizonyítás teljes indukcióval.

Az A mátrix sajátértékei $\lambda_1, \ldots,$ sajátvektorai \mathbf{v}_1, \ldots

- k = 1-re $\mathbf{v}_1 \neq \mathbf{0}$, az állítás nyilvánvaló.
- Tegyük fel, hogy $\lambda_1, \ldots, \lambda_{k+1}$ különböző sajátértékek, $\mathbf{v}_1, \ldots, \mathbf{v}_{k+1}$ összefüggő.

- Az indukciós feltevés alapján $\mathbf{v}_1, \dots, \mathbf{v}_k$ független, tehát \mathbf{v}_{k+1} függ $\mathbf{v}_1, \dots, \mathbf{v}_k$ -tól.
- Ez azt jelenti, hogy alkalmas skalárokkal $\mathbf{v}_{k+1} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k$.
- A fenti egyenletet A-val illetve λ_{k+1} -gyel szorozva:

$$- A\mathbf{v}_{k+1} = A\alpha_1\mathbf{v}_1 + \dots + A\alpha_k\mathbf{v}_k$$
$$- \lambda_{k+1}\mathbf{v}_{k+1} = \lambda_{k+1}\alpha_1\mathbf{v}_1 + \dots + \lambda_{k+1}\alpha_k\mathbf{v}_k$$

- Ezt a két egyenletet egymásból kivonva: $(A \lambda_{k+1})\mathbf{v}_{k+1} = \alpha_1(A \lambda_{k+1})\mathbf{v}_1 + \dots + \alpha_k(A \lambda_{k+1})\mathbf{v}_k$
- $A\mathbf{v}_i = \lambda_i \mathbf{v}_i \ \forall i$ -re, tehát a fenti egyenletbe A helyére λ_i írható.
- $(\lambda_{k+1} \lambda_{k+1})\mathbf{v}_{k+1} = \alpha_1(\lambda_1 \lambda_{k+1})\mathbf{v}_1 + \dots + \alpha_k(\lambda_k \lambda_{k+1})\mathbf{v}_k$
- $0\mathbf{v}_{k+1} = \alpha_1(\lambda_1 \lambda_{k+1})\mathbf{v}_1 + \dots + \alpha_k(\lambda_k \lambda_{k+1})\mathbf{v}_k$
- $\mathbf{0} = \alpha_1(\lambda_1 \lambda_{k+1})\mathbf{v}_1 + \dots + \alpha_k(\lambda_k \lambda_{k+1})\mathbf{v}_k$
- Mivel $\mathbf{v}_1, \dots, \mathbf{v}_k$ független, csak a triviális lineáris kombinációja $\mathbf{0} \Rightarrow \alpha_i(\lambda_i \lambda_{i+1}) = 0$
- Mivel λ_i és λ_{i+1} különböző sajátértékek, minden $\alpha_i = 0$.
- $\alpha_i = 0$ visszahelyettesítve az eredeti egyenletbe: $\mathbf{v}_{k+1} = 0\mathbf{v}_1 + \cdots + 0\mathbf{v}_k = \mathbf{0}$ $\mbox{\em 4}$

Mondjuk ki és bizonyítsuk a hasonló mátrixok karakterisztikus polinomjairól szóló állítást.

Hasonló mátrixok karakterisztikus polinomja megegyezik.

Bizonyítás: $A, B \in \mathbb{R}^{n \times n}, A \sim B$

$$|B - \lambda I_n| = |D^{-1}AD - \lambda I_n| = |D^{-1}(A - \lambda I_n)D| = |D^{-1}||(A - \lambda I_n)||D| = |(A - \lambda I_n)||D|||D^{-1}| = |(A - \lambda I_n)||D||$$

Igazoljuk, hogy n > 0 esetén tetszőleges n-dimenziós euklideszi térben létezik ortonormált bázis.

Elég ortogonális bázist keresni, ebből normával osztva könnyen lehet ortonormált bázist csinálni. Ortonormált bázis keresése Graham-Schmidt-féle ortogonalizációs eljárással:

- Legyen $\mathbf{b}_1 \dots \mathbf{b}_n$ bázis.
- Legyen $\mathbf{e}_1 = \mathbf{b}_1$, tegyük fel, hogy $\mathbf{e}_1 \dots \mathbf{e}_i$ már páronként ortogonálisak és $\mathrm{Span}(\mathbf{e}_1 \dots \mathbf{e}_i) = \mathrm{Span}(\mathbf{b}_1 \dots \mathbf{b}_i)$
- Legyen $\mathbf{e}_{i+1} = \mathbf{b}_i + \lambda_1 \mathbf{e}_1 + \dots \lambda_i \mathbf{e}_i$
- Úgy kell \mathbf{e}_{i+1} -et meghatározni, hogy $\mathrm{Span}(\mathbf{e}_1 \dots \mathbf{e}_{i+1}) = \mathrm{Span}(\mathbf{b}_1 \dots \mathbf{b}_{i+1})$ legyen.
- Legyen $1 \le j \le i$, ekkor $\langle \mathbf{e}_{i+1}, \mathbf{e}_j \rangle = \langle \mathbf{b}_i + \lambda_1 \mathbf{e}_1 + \dots \lambda_i \mathbf{e}_i, \mathbf{e}_j \rangle = \langle \mathbf{b}_i, \mathbf{e}_j \rangle + \lambda_1 \langle \mathbf{e}_1, \mathbf{e}_j \rangle + \dots + \lambda_j \langle \mathbf{e}_j, \mathbf{e}_j \rangle = \langle \mathbf{b}_{i+1}, \mathbf{e}_j \rangle + \lambda_j \langle \mathbf{e}_j, \mathbf{e}_j \rangle$
- Mivel $\operatorname{Span}(\mathbf{e}_1 \dots \mathbf{e}_i) = \operatorname{Span}(\mathbf{b}_1 \dots \mathbf{b}_i)$, így $\operatorname{Span}(\mathbf{e}_1 \dots \mathbf{e}_i)$ dimenziója i, így $\mathbf{e}_i \neq \mathbf{0}$
- Innen $\lambda_j = -\frac{\langle \mathbf{b}_{i+1}, \mathbf{e}_j \rangle}{\langle \mathbf{e}_j, \mathbf{e}_j \rangle}$

Mondjuk ki és bizonyítsuk be a valós euklideszi terekre érvényes Cauchy-egyenlőtlenséget

V valós euklideszi tér, $\mathbf{x}, \mathbf{y} \in V$. $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \cdot ||\mathbf{y}||$, egyenlőség akkor áll fenn, ha \mathbf{x}, \mathbf{y} lineárisan összefüggők. Bizonyítás

- 1. \mathbf{x}, \mathbf{y} összefüggők $\Rightarrow \mathbf{x} = \lambda \mathbf{y}$
 - $|\langle \lambda \mathbf{y}, \mathbf{y} \rangle| = |\lambda \langle \mathbf{y}, \mathbf{y} \rangle| = |\lambda| \cdot ||\mathbf{y}||^2 = |\lambda| \cdot ||\mathbf{y}|| \cdot ||\mathbf{y}|| = ||\mathbf{x}|| \cdot ||\mathbf{y}||$
- 2. \mathbf{x}, \mathbf{y} lineárisan függetlenek, tehát $\mathbf{x} \neq \mathbf{0}, \mathbf{y} \neq \mathbf{0}, \lambda \in \mathbb{K}$ esetén $\lambda \mathbf{x} + \mathbf{y} \neq \mathbf{0}$.
 - $\lambda \mathbf{x} + \mathbf{y} \neq \mathbf{0} \Rightarrow 0 < \langle \lambda \mathbf{x} + \mathbf{y}, \lambda \mathbf{x} + \mathbf{y} \rangle$
 - $\langle \lambda \mathbf{x} + \mathbf{y}, \lambda \mathbf{x} + \mathbf{y} \rangle = \langle \lambda \mathbf{x}, \lambda \mathbf{x} \rangle + \langle \lambda \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \lambda \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$
 - $\langle \lambda \mathbf{x}, \lambda \mathbf{x} \rangle + \langle \lambda \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \lambda \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = ||\lambda \mathbf{x}||^2 + 2 \operatorname{Re}(\langle \lambda \mathbf{x}, \mathbf{y} \rangle) + ||\mathbf{x}||^2 = |\lambda|^2 ||\mathbf{x}||^2 + 2 \operatorname{Re}(\langle \lambda \mathbf{x}, \mathbf{y} \rangle) + ||\mathbf{x}||^2$
 - $\lambda = \alpha \langle \overline{\mathbf{x}, \mathbf{y}} \rangle$, $\alpha \in \mathbb{R}$ paraméterválasztással biztosítható, hogy a szorzat valós legyen.
 - $|\lambda|^2 ||\mathbf{x}||^2 + 2 \operatorname{Re}(\langle \lambda \mathbf{x}, \mathbf{y} \rangle) + ||\mathbf{x}||^2 = |\alpha \overline{\langle \mathbf{x}, \mathbf{y} \rangle}|^2 ||\mathbf{x}||^2 + 2 \operatorname{Re}(\alpha \overline{\langle \mathbf{x}, \mathbf{y} \rangle} \langle \mathbf{x}, \mathbf{y} \rangle) + ||\mathbf{x}||^2 = \alpha^2 |\langle \mathbf{x}, \mathbf{y} \rangle|^2 ||\mathbf{x}||^2 + 2 \operatorname{Re}(\alpha \overline{\langle \mathbf{x}, \mathbf{y} \rangle} ||\mathbf{x}||^2 + 2 \operatorname{R$
 - Az eredeti feltétel értelmében $0 < \alpha^2 |\langle \mathbf{x}, \mathbf{y} \rangle|^2 ||\mathbf{x}||^2 + 2\alpha |\langle \mathbf{x}, \mathbf{y} \rangle|^2 + ||\mathbf{y}||^2$
 - Ezt megszorozva $||\mathbf{x}||^2 > 0$ -val: $0 < |\langle \mathbf{x}, \mathbf{y} \rangle|^2 (\alpha^2 ||\mathbf{x}||^4 + 2\alpha ||\mathbf{x}||^2) + ||\mathbf{x}||^2 ||\mathbf{y}||^2$
 - Tehát $|\langle \mathbf{x}, \mathbf{y} \rangle|^2 < |\langle \mathbf{x}, \mathbf{y} \rangle|^2 ((\alpha ||\mathbf{x}||^2 + 1)^2) + ||\mathbf{x}||^2 ||\mathbf{y}||^2$
 - Innen $\alpha = -\frac{1}{||\mathbf{x}||^2}$ választással kapjuk a kívánt egyenlőtlenséget.

Mondjuk ki és igazoljuk az euklideszi terek vektoraira vonatkozó háromszög-egyenlőtlenséget

 $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$

Bizonyítás:

$$\begin{aligned} &||\mathbf{x} + \mathbf{y}||^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = ||\mathbf{x}||^2 + \langle \mathbf{x}, \mathbf{y} \rangle + \overline{\langle \mathbf{x}, \mathbf{y} \rangle} + ||\mathbf{y}||^2 = ||\mathbf{x}||^2 + 2||\mathbf{x}||^2 + 2||\mathbf{x}||^2$$

Mondjuk ki és bizonyítsuk be a lineáris leképezések egyértelmű kiterjesztési tételét.

 $\mathbf{e}_1, \dots \mathbf{e}_n$ bázisok \mathbb{R}^n -ben, $\mathbf{b}_1, \dots \mathbf{b}_n$ tetszőleges vektorok \mathbb{R}^m -ben. Ekkor pontosan egy olyan $\varphi : \mathbb{R}^n \Rightarrow \mathbb{R}^m$ lineáris leképezés létezik, melyre $\varphi(\mathbf{e}_i) = \mathbf{b}_i$ $1 \le i \le n$. Bizonyítás:

Legyen $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} = x_1 \mathbf{e}_1 + \dots x_n \mathbf{e}_n$

- $\varphi(\mathbf{x}) = \varphi(x_1\mathbf{e}_1 + \dots x_n\mathbf{e}_n) = \varphi((x_1\mathbf{e}_1) + x_2\mathbf{e}_2 + \dots x_n\mathbf{e}_n) = \varphi(x_1\mathbf{e}_1) + \varphi(x_2\mathbf{e}_2 + \dots x_n\mathbf{e}_n)$
- $\varphi(x_1\mathbf{e}_1) + \varphi(x_2\mathbf{e}_2 + \dots x_n\mathbf{e}_n) = \varphi(x_1\mathbf{e}_1) + \varphi(x_2\mathbf{e}_2) + \dots + \varphi(x_n\mathbf{e}_n)$
- A fenti egyenlet $x_1\varphi(\mathbf{e}_1) + x_2\varphi(\mathbf{e}_2) + x_n \cdots + \varphi(\mathbf{e}_n)$ formára hozható. (Egyértelműség)
- Ha $\mathbf{x} = x_1 \mathbf{e}_1 + \dots x_n \mathbf{e}_n$, $\varphi(\mathbf{x}) = x_1 \mathbf{b}_1 + \dots x_n \mathbf{b}_n$ megfelelő leképezés. (Létezés)

Mondjuk ki és bizonyítsuk be a lineáris leképezésekre vonatkozó dimenzióösszefüggést

 V_1 véges dimenziós vektortér, $\varphi \in \mathcal{H}om(V_1, V_2)$. Ekkor $\dim(V_1) = \dim(\mathcal{K}er(\varphi)) + \dim(\mathcal{I}m(\varphi))$ Bizonyítás:

- Tegyük fel, hogy a következő pontban 0 < s < n
- Legyen $\dim(V_1) = n, \dim(\mathcal{K}er(\varphi)) = s$. Legyen $\mathcal{K}er(\varphi)$ egy bázisa: $\mathbf{b}_1, \dots, \mathbf{b}_s$
- $\mathbf{b}_1, \dots, \mathbf{b}_s$ a $\mathbf{b}_{s+1}, \dots, \mathbf{b}_n$ vektorokkal kiegészíthető V_1 egy bázisává.

- Állítás: $\varphi(\mathbf{b}_{s+1}), \dots \varphi(\mathbf{b}_n)$ bázis $\mathcal{I}m(\varphi)$ -ben.
 - Legyen $\varphi(\mathbf{u}) \mathcal{I}m(\varphi)$ egy tetszőleges eleme.
 - $-\mathbf{u} = \lambda_1 \mathbf{b}_1 + \dots + \lambda_n \mathbf{b}_n$, tehát $\varphi(u) = \varphi(\lambda_1 \mathbf{b}_1 + \dots + \lambda_n \mathbf{b}_n)$
 - $-\varphi(\lambda_1\mathbf{b}_1+\ldots\lambda_n\mathbf{b}_n)=\lambda_1\varphi(\mathbf{b}_1)+\cdots+\lambda_n\varphi(\mathbf{b}_n)$
 - Mivel $\mathbf{b}_1 \dots \mathbf{b}_s$ bázis $\mathcal{K}er(\varphi)$ -ben, a képük 0.
 - $-\lambda_1\varphi(\mathbf{b}_1) + \dots + \lambda_n\varphi(\mathbf{b}_n) = \lambda_{s+1}\varphi(\mathbf{b}_{s+1}) + \dots + \lambda_n\varphi(\mathbf{b}_n)$
 - Tehát $\varphi(\mathbf{b}_{s+1}), \dots \varphi(\mathbf{b}_n)$ generátorrendszer $\mathcal{I}m(\varphi)$ -ben.
 - Tegyük fel, hogy $\varphi(\gamma_{s+1}\mathbf{b}_{s+1}) + \dots + \gamma_n\varphi(\mathbf{b}_n) = \mathbf{0}$ (*)
 - Mivel φ lineáris, az egyenlet bal oldala: $\varphi(\gamma_{s+1}\mathbf{b}_{s+1}+\cdots+\gamma_n\mathbf{b}_n)$
 - Legyen $\mathbf{x} = \gamma_{s+1} \mathbf{b}_{s+1} + \dots + \gamma_n \mathbf{b}_n$
 - A (*) egyenletbe visszahelyettesítve: $\varphi(\mathbf{x}) = \mathbf{0} \Rightarrow \mathbf{x} \in \mathcal{K}er(\varphi)$
 - Mivel $\mathbf{x} \in \mathcal{K}er(\varphi)$, \mathbf{x} előáll a $\mathbf{b}_1, \dots, \mathbf{b}_s$, $\mathcal{K}er(\varphi)$ bázisvektorai lineáris kombinációjaként is.
 - $-\mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots, \alpha_s \mathbf{b}_s = \gamma_{s+1} \mathbf{b}_{s+1} + \dots + \gamma_n \mathbf{b}_n$
 - $-\mathbf{0} = \mathbf{x} \mathbf{x} = \alpha_1 \mathbf{b}_1 + \dots, \alpha_s \mathbf{b}_s \gamma_{s+1} \mathbf{b}_{s+1} \dots \gamma_n \mathbf{b}_n$
 - Ez pedig a $\mathbf{b}_1, \dots, \mathbf{b}_n$ bázisvektorok lineáris kombinációja, ami csak úgy lehet $\mathbf{0}$, ha minden α_i és γ_i is 0.
- Tehát $\varphi(\mathbf{b}_{s+1}), \dots \varphi(\mathbf{b}_n)$ bázis $\mathcal{I}m(\varphi)$ -ben, innen adódik a dimenzióösszefüggés.
- Ha dim $(\mathcal{K}er(\varphi)) = 0$, V_1 tetszőleges bázisával dolgozhatunk. Ha $\mathcal{K}er(\varphi) = V_1$, akkor $\mathcal{I}m(\varphi) = \{\mathbf{0}\}$.

Legyen V_1 és V_2 véges dimenziós vektortér $\mathbb R$ felett. Igazolja a következő tételt: $V_1\cong V_2\Leftrightarrow \dim(V_1)=\dim(V_2)$

- Az állítás 0 dimenziós vektorterekre triviális. Tegyük fel, hogy dim $(V_1) = n \neq 0$
- \Rightarrow irány:
 - $-V_1\cong V_2,$ tehát létezik közöttük bijektív homogén lineáris leképezés : φ
 - $-\mathbf{e}_1, \dots, \mathbf{e}_n$ bázis V_1 -ben. Állítás: $\varphi(\mathbf{e}_1), \dots \varphi(\mathbf{e}_n)$ bázis V_2 -ben.
 - * Legyen $\mathbf{v} \in V_2$. Mivel φ szürjektív, $\exists \mathbf{u} \in V_1 : \mathbf{v} = \varphi(\mathbf{u})$
 - * $\mathbf{u} = u_1 \mathbf{e}_1 + \dots + u_n \mathbf{e}_n$
 - * $\mathbf{v} = \varphi(\mathbf{u}) = \varphi(u_1\mathbf{e}_1 + \dots + u_n\mathbf{e}_n) = u_1\varphi(\mathbf{e}_1) + \dots + u_n\varphi(\mathbf{e}_n)$, tehát $\varphi(\mathbf{e}_i)$ generátorrendszer.
 - * Tegyük fel, hogy $\alpha_1 \varphi(\mathbf{e}_1) + \cdots + \alpha_n \varphi(\mathbf{e}_n) = \mathbf{0}$
 - * Ekkor $\varphi(\alpha_1 \mathbf{e}_1 + \dots + \alpha_n \mathbf{e}_n) = \mathbf{0}$
 - * $\mathbf{0} = \varphi(\mathbf{0})$, így ez csak akkor lehetséges, ha $\alpha_i = 0$
- \(\sin \text{irány:}
 - Legyen $\mathbf{e}_1 \dots \mathbf{e}_n$ bázis V_1 -ben, $\mathbf{f}_1, \dots \mathbf{f}_n$ bázis V_2 -ben. Az egyértelmű kiterjesztési tétel alapján egyértelműen létezik olyan vektortérhomomorfizmus, melyre $\varphi(\mathbf{e}_1) = \mathbf{f}_i$.
 - Állítás: φ bijektív
 - * Legyen $\mathbf{v} \in V_2$. $\mathbf{v} = \beta_1 \mathbf{f}_1 + \dots + \beta_n \mathbf{f}_n = \beta_1 \varphi(\mathbf{e}_1) + \dots + \beta_n \varphi(\mathbf{e}_n)$
 - * A fenti egyenletből $\mathbf{v} = \varphi(\beta_1 \mathbf{e}_1 + \dots + \beta_n \mathbf{e}_n)$, tehát φ szürjektív.
 - * φ injektív $\Leftrightarrow \mathcal{K}er(\varphi) = \{\mathbf{0}\}\$
 - * Legyen $\mathbf{x} \in \mathcal{K}er(\varphi)$, tehát $\varphi(\mathbf{x}) = \mathbf{0}$

- $* \mathbf{x} = x_1 \mathbf{e}_1 + \dots x_n \mathbf{e}_n$
- * $\mathbf{0} = \varphi(x_1\mathbf{e}_1 + \dots x_n\mathbf{e}_n) = x_1\varphi(\mathbf{e}_1) + \dots x_n\varphi(\mathbf{e}_n) = x_1\mathbf{f}_1 + \dots x_n\mathbf{f}_n$ Tehát minden $x_i = 0, \varphi$ valóban injektív.

 $\mathbb{K} = \mathbb{R}$ esetén hogyan változik egy bilineáris alak mátrixa új bázisra való áttérésnél? Mondjuk ki és bizonyítsuk be az erre vonatkozó tételt.

???