# Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference

# **Bayesian Sparse Classifiers**

Logistic regression model:

$$p(y_j|\boldsymbol{\beta}) = \sigma(\boldsymbol{x}_j^T\boldsymbol{\beta})^{y_j}(1 - \sigma(\boldsymbol{x}_j^T\boldsymbol{\beta}))^{1-y_j},$$
  
$$\sigma(x) = 1/(1 + e^{-x}).$$

Existing Bayesian sparse classifiers:

► Relevance Vector Machine [Tipping, 2001]



- Learning: ML or MAP estimate for  $\gamma$  and Laplace approximation
- Sparse Representation Prior [Serra et al., 2016]



Learning: Majorize minimization and variational inference

## Proposed Model

Hierarchical prior

$$\beta_i \sim \mathcal{N}(\beta_i|0,\tau_i), \ \tau_i \sim \mathcal{G}I\mathcal{G}(\tau_i|a_i,b_i,\rho)$$
  
 $(a_i,b_i) \sim \text{Conjugate prior for } p(\tau_i|a_i,b_i,\rho)$ 

GIG is a generalized inverse Gaussian, which is exponential when  $b_i = \rho = 0$  and inverse gamma when  $a_i = 0, \rho < 0.$ 

Exponential mixing:



The marginal distribution  $p(\beta_i)$  is a **Laplace** distribution.

Inverse gamma mixing:

The marginal distribution  $p(\beta_i)$  is a **Student's t** distribution.

# Learning Algorithm

- Variational inference with Mean-field approximation + Majorize Minimization
  - Extension of [Jaakkola and Jordan, 1997]

 $h(\beta, \xi)$ : a lower bound of  $p(y|\beta)$  and a quadratic function of  $\beta$ 

#### **Algorithm**

- 1.  $q^*(\beta) \propto \exp\left(\mathbb{E}_{q(\tau)}\left[\ln h(\beta, \xi)p(\beta|\tau)\right]\right)$ 2.  $q^*(\tau) \propto \exp\left(\mathbb{E}_{q(\beta)q(a,b)}\left[\ln p(\beta|\tau)p(\tau|a,b)\right]\right)$
- 3.  $q^*(a,b) \propto \exp\left(\mathbb{E}_{q(\tau)}\left[\ln p(\tau|a,b)p(a,b)\right]\right)$
- 4.  $\boldsymbol{\xi}^* = \operatorname{argmax}_{\boldsymbol{\xi}} \mathbb{E}_{q(\boldsymbol{\beta})} [\ln h(\boldsymbol{\beta}, \boldsymbol{\xi})]$

## **Experiments on synthetic data**

- ► True parameter  $\beta^* = (\mathbf{0}_{90}, \mathbf{2}_{10})$
- Parameter setting for the proposed algorithm:
  - Exponential mixing  $(b_i = \rho = 0)$
  - $k_a = \theta_a = 10^{-6}$  (very flat prior)
- ightharpoonup Compare with  $L_1$  regularized logistic regression and  $L_2$  regularized logistic regression

Table: MSE and prediction accuracy for synthetic data.

|          | MSE                 | Accuracy            |  |
|----------|---------------------|---------------------|--|
| Proposed | $0.1589 \pm 0.1133$ | $0.8195 \pm 0.0477$ |  |
| $L_1$    | $0.3974 \pm 0.2939$ | $0.7750 \pm 0.0456$ |  |
| $L_2$    | $0.4391 \pm 0.2597$ | $0.7112 \pm 0.0242$ |  |



Figure: Estimation results on synthetic data.

# Experiments on real world data

Parameter setting is the same with the case of synthetic data

Table: Prediction accuracy for real world data.

|          | a1a    | w1a    | covtype |
|----------|--------|--------|---------|
| Proposed | 0.8400 | 0.9757 | 0.7436  |
|          |        |        | 0.7412  |
| $L_2$    | 0.8386 | 0.9779 | 0.7398  |



Figure: Estimation results on 'a1a' data.

#### References

M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of machine learning research, pp. 211-244, 2001.

J. G. Serra, P. Ruiz, R. Molina, and A. K. Katsaggelos. Bayesian logistic regression with sparse general representation prior for multispectral image classification. In Image Processing (ICIP), 2016 IEEE International Conference on, pp. 1893-1897, 2016.

T. Jaakkola and M. Jordan. A variational approach to bayesian logistic regression models and their extensions. In Sixth International Workshop on Artificial Intelligence and Statistics, Vol. 82, page 4, 1997.