AUSLEGESCHRIFT 1138 290

B 43271 XII/47g

ANMELDETAG: 26. JANUAR 1957

BEKANNTMACHUNG **DER ANMELDUNG** UND AUSGABE DER

AUSLEGESCHRIFT: 18. OKTOBER 1962

1

In Anlagen zur Energieerzeugung und Anlagen der chemischen Technik liegt der Fortschritt häufig in der Anwendung und Beherrschung zunehmend hoher Druckstufen. Die Aufgabe, die Menge eines unter hohem Druck strömenden Mediums zu regeln bzw. ein unter hohem Druck stehendes Medium zu drosseln und regelbar auf niedere Druckstufen zu entspannen, erfordert daher ständig verbesserte Vorkehrungen und Mittel, um die Druckenergie schwingungsund geräuscharm sowie möglichst wirbelfrei herab- 10 zusetzen.

Die hierfür bekannten Drosselventile, Kolbenschieber und mit mehreren parallel angeordneten Düsen versehenen Düsenregelschieber sind für sehr hohe Druckgefälle wenig geeignet, da ihre einstufige meist 15 überkritische Druckreduzierung im allgemeinen starke Wirbel und Freistrahlschwingungen auslöst, die die Dauerfestigkeit des Materials beeinflussen und schließlich auch Geräusche verursachen, die häufig oberhalb der menschlichen Schmerzschwelle liegen. Bei einstu- 20 figen Düsenregelschiebern unterdrückt der fast geradlinige, in viele Einzelwege unterteilte Strömungsdurchgang zwar die Wirbelbildung weitgehend, jedoch nicht in allen Fällen ausreichend. Bei sehr hohen zen z. B. mehrstufige nicht regelbare Drosseleinbauten mit Strahlaufteilung verwendet.

Ferner sind in ähnlichem Zusammenhang zur Verwendung hinter Absperrventilen auch schon Druckmindervorrichtungen vorgeschlagen worden, die aus 30 einer Vielzahl hintereinandergeschalteter, in Entspannungsrichtung des Drucks zunehmend größer werdenden Kammern bestehen. Die Eintrittsleitung in die erste Kammer und die Verbindungsleitungen nachfolgender Kammern, die das zu entspannende Medium 35 schrittweise auf zunehmend niedere Druckstufen bringen, münden dabei jeweils tangential in die nachfolgende Kammer ein. Eine Regelung der nicht geteilten Übergangsquerschnitte zwischen den einzelnen Entspannungskammern ist dabei nicht vorgesehen.

Es ist auch bekannt, durch die Anordnung zusätzlicher Drosseleinbauten vor oder hinter einem in nur einer Stufe geregelten Drosselquerschnitt starken Wirbeln und Schwingungen zu begegnen. Derartige Drosseleinbauten, z. B. Lochzylinder, Strömunggleichrich- 45 ter, Leitkreuze, hintereinandergeschaltete Lochdrosselscheiben, labyrinthartige Verzweigungssysteme eines regelmäßigen geometrischen Aufbaus mit bestimmten Verhältnissen des wirksamen geregelten Querschnitts zu dem kürzesten Abstand des nach- 50 geordneten Verzweigungssystems sowie regellose Kugelaufschüttungen, die gegebenenfalls in einem

Vorrichtung mit mehreren Stufen zur Entspannung hoher Drücke und zur Regelung von unter hohem Druck strömenden Medien

Anmelder:

Badische Anilin- & Soda-Fabrik Aktiengesellschaft, Ludwigshafen/Rhein

Georg Stech und Dr.-Ing. Karl Fees, Ludwigshafen/Rhein, sind als Erfinder genannt worden

2

Druckgefällen werden daher in seinem Austrittsstut- 25 Siebkorb angeordnet sind, können nur für einen bestimmten, meist für einen maximalen Mengendurchsatz ausgelegt werden. Sie verlieren aber bei einem geringeren Durchsatz stark an Wirkung, insbesondere können sie dann die Strömungsgeschwindigkeit im gedrosselten Düsenquerschnitt nicht herabsetzen. Bei gegenüber dem maximalen Durchsatz verringerten Mengen wird daher der wesentliche Umfang der geforderten Entspannung wieder auf den einzigen regelbaren Drosselquerschnitt der Anordnung zurückverlagert. Damit treten erneut die nachteiligen Schwingungen und Geräusche sowie ein erhöhter Verschleiß in der Drosselarmatur auf, wenn auch mit etwas geringerer Energie entsprechend der Teillast. Der Nachteil dieser bekannten und älteren Vorschlägen entsprechenden Drosselarmaturen liegt also darin, daß alle zusätzlichen Drosseleinbauten einen während des Betriebes nicht veränderlichen starren Drosselquerschnitt aufweisen.

Im allgemeinen werden mehrstufige starre Drosseleinbauten bei der Entspannung von Dämpfen, Gasen oder von siedenden Flüssigkeiten, entsprechend der Volumenvergrößerung, mit von Stufe zu Stufe zunehmendem freiem Drosselquerschnitt und größer werdendem Entspannungsraum ausgeführt. So sind insbesondere für die Ableitung von Kondensat aus Dampfanlagen stufenförmig ausgebildete Entspannungsventile mit mehrfacher durch Wärmefühler geregelter

209 677/184

Drosselung und zwischengeschalteten Wirbel- und Entspannungsräumen bekannt. Das zu entspannende Medium passiert derartige temperaturabhängig regelbare Stufendüsenventile jedoch in einem geschlossenen Strom. Andere bekannte nach dem Düsenprinzip arbeitende Entspannungsvorrichtungen zerlegen den Strom des zu entspannenden Mediums in mit versetzten Offnungen aufeinander geschichteten Platten zwar in mehrere Teilströme, sind jedoch weder in liegenden Wirbelräumen verstell- oder regelbar. Als Kondensatableiter sind sie im übrigen nur für die Aufgabe gebaut, Kondensat durchzulassen und den nachströmenden Dampf möglichst vollständig abzusperren.

Von der bekannten Arbeitsweise der mehrfachen Zerlegung des zu entspannenden Mediums in mehrere Teilströme und Wiederzusammenführung in Entspannungsräumen ausgehend, vermeiden Vorrichtungen dadurch, daß in mindestens zwei hintereinandergeschalteten Entspannungsstufen der gesamte Durchlaßquerschnitt für die Teilströme gleichzeitig oder in den einzelnen Stufen unabhängig voneinander verändergenommen oder ein beliebiges Medium zugegeben werden kann.

Solche Vorrichtungen haben in jeder Stufe ein die Drosselöffnungen enthaltendes feststehendes Sitzteil. ein zugehöriges, dessen freie Öffnungsquerschnitte 30 freigebendes oder verschließendes stetig bewegbares Verschlußstück und einen diesen Bauteilen nachgeordneten Entspannungsraum.

Die geringere Strömungsenergie der einzelnen dung mit einer strömungstechnisch günstigen Ausbildung der Drosselöffnungen die Gefahr des Auftretens von Geräuschen und Schwingungen wesentlich. Die gleichzeitige Hintereinanderschaltung mehrerer Drosselstufen setzt ein zu entspannendes Druckgefälle 40 stufenweise herab, im allgemeinen bis ins unterkritische Gebiet, so daß sich durch diese Maßnahme eine erhebliche Verringerung der Wirbelenergie hinter jeder Drosselstufe ergibt. Durch die während des Betriebes mögliche stufenlose Veränderung parallel 45 und hintereinandergeschalteter Drosseldurchflußquerschnitte bleiben diese Vorteile bei der Drosselung von hohen Drücken auch für unterschiedliche Durchsatzmengen und bei der Teilbelastung der Drosselvorrichtung erhalten.

Die stufenweise hintereinandergeschalteten Drosseldurchflußguerschnitte können ie nach dem Verwendungszweck der Vorrichtung und je nach dem geforderten Regelumlauf entweder einzeln oder in Gruppen gemeinsam oder in allen Stufen gleichzeitig ver- 55 ändert werden, indem die Betätigungsglieder entsprechend geschaltet oder angetrieben werden. Eine Drosselvorrichtung nach der Erfindung läßt sich nach der Schieber- oder nach der Ventilbauweise ausführen. Bei einer Schieberausführung kann das die 60 Drosselöffnungen freigebende und abschließende Verschlußstück konstruktiv in bekannter Weise als Plattenschieber, als Drehschieber oder auch als Kolbenschieber gestaltet sein. Ferner können die Drosseldurchflußquerschnitte in sämtlichen Stufen oder nur 65 in der ersten Stufe bzw. nur in einer ersten Stufengruppe dicht abschließbar ausgeführt werden, während die übrigen Stufen der Vorrichtung auch nicht absolut

dicht abschließende veränderliche Drosseldurchflußquerschnitte erhalten können.

Die die Drosseldurchflußquerschnitte der einzelnen Stufen freigebenden und schließenden Verschluß-5 stücke werden, wie bereits erwähnt, entweder stufenweise einzeln oder in Stufengruppen zusammengefaßt gemeinsam oder in sämtlichen Stufen gemeinsam betätigt. Gemeinsam betätigte Verschlußstücke können die Drosseldurchflußquerschnitte in mehreren ihren Düsenquerschnitten noch in den dazwischen- 10 Stufen mit jeweils dem gleichen proportionalen Betrag des gesamten freien Offnungsquerschnittes freigeben oder schließen oder auch in jeder in der Strömungsrichtung des Mediums nachfolgenden Drosselstufe um einen anderen größeren oder kleineren Betrag. Die einzelnen Drosseldurchflußquerschnitte bzw. Strömungswege jeder Stufe, durch die die Teilströme des zu entspannenden Mediums hindurchtreten, kann man in an sich üblicher Weise entweder etwa doppelt konusförmig mit zunächst enger und dann wieder nach der Erfindung die oben aufgezeigten Nachteile 20 weiter werdenden Bohrungen ausführen oder mit im Längsschnitt düsenförmiger Begrenzung der Bohrungen nach an sich bekannten Düsenvorbildern. Ganz allgemein lassen sich Vorrichtungen zur Ausführung des Verfahrens so gestalten, daß z. B. in jeder Stufe bar ist, wobei in jeder Stufe entspanntes Medium ab- as ein fester Sitzteil die einzelnen Drosselöffnungen enthält und daß ein darüber geführtes Verschlußstück diese Öffnungen ganz oder teilweise freigibt.

Weitere Merkmale seien an Hand der Abbildungen näher erläutert:

Abb. 1 a zeigt eine Vorrichtung im Längsschnitt, Abb. 1b die gleiche Vorrichtung im Querschnitt mit einem Antriebsmittel für ein Verschlußstück.

In einem konisch erweiterten Gehäuse a sind für eine stufenweise Entspannung bzw. Drosselung des Strahlen kleinen Querschnitts vermindert in Verbin- 35 nach Abb. 1a in Pfeilrichtung unter hohem Druck eintretenden Mediums Sitzteile b angeordnet und mit dem Gehäuse druckdicht verbunden. Zur Teilung des Stromes des zu entspannenden Mediums weist jedes Sitzteil b, auf zwei gegenüberliegende Quadranten verteilt, eine Anzahl Öffnungen x auf, die in der Abb. 1a mit gleichbleibendem Durchtrittsquerschnitt wiedergegeben, vorzugsweise jedoch düsenförmig ausgeführt sind. Über jedem Sitzteil b ist je ein kreisförmiger Steuerschieber als Verschlußstück c angeordnet, der in zwei gegenüberliegende Quadranten mit sektorförmigen Durchbrechungen entsprechend dem flächenmäßigen Umfang der Drosselöffnungen eines Quadranten jedes Sitzteils b versehen ist. Die Steuerschieber sind in diesem Fall über sämtliche Stufen hinweg mit einer in zentralen Bohrungen der Sitzteile b gelagerten Welle d fest verbunden. Bei einer Drehbewegung der Welle d werden die nicht durchbrochenen Quadranten der Steuerschieber über die die Drosselöffnungen x aufweisenden Quadranten der Sitzteile b geführt und verkleinern oder vergrößern dabei deren gesamten freien Durchtrittsquerschnitt. Steuerschieber der verwendeten Art sind im wesentlichen bekannt. Zur Ausführung der Drehbewegung der Welle ist, zweckmäßig in einer Stufe geringeren Druckes, eine Spindel bzw. ein am Ende mit einem Auge versehener Stößel k von außen her durch eine Stopfbüchse in den Entspannungsraum n dieser Stufe eingeführt. Der Stößel k ist seinerseits über einen in einem Führungsschlitz l des Steuerschiebers dieser Stufe gelagerten Gleitstein mit Führungszapfen e an den mit der Welle d fest verbundenen Steuerschieber angelenkt. Mittels mehrerer Spindeln bzw. Stößel k und einer entsprechend geteilten Welle d können die

Drosseldurchflußquerschnitte der Drosselstufen auch gruppenweise getrennt verändert werden. Durch den in Pfeilrichtung wirkenden Druck des zu drosselnden Mediums wird der Steuerschieber der ersten Stufe gegen den zugehörigen Sitzteil b gepreßt und sorgt für einen dichten Abschluß der abgedeckten Drosselöffnungen x.

Die Verteilung der Drosselöffnungen x auf je zwei gegenüberliegende Quadranten wird so vorgenommen, daß sie in an sich üblicher Weise in benachbarten 10 Drosselstufen jeweils im anderen Quadrantenpaar liegen. Der durch die Öffnungen des einen Quadranten eines Sitzteils b hindurchtretende geteilte Strom des Mediums trifft dabei zunächst auf die nicht durchbrochene Quadrantenfläche des Steuerschiebers der be- 15 nachbarten Stufe, wird dort abgelenkt und findet erst nach einer Richtungsumkehr im zugehörigen Entspannungsraum n den Weg durch die freien Drosselöffnungen dieser Stufe. Dieser Vorgang wiederholt sich von Stufe zu Stufe, wobei in den aufeinander- 20 folgenden Stufen in an sich bekannter Weise sowohl die freien Öffnungsquerschnitte der Drosselöffnungen als auch das Volumen der Entspannungs- oder Wirbelräume n zwischen den einzelnen Stufen zunehmen.

Sofern es notwendig ist, die Drosselung des Stromes 25 eines Mediums in der beschriebenen Vorrichtung mit einer Beeinflussung der Temperatur oder der Zusammensetzung des bereits entspannten oder des zu entspannenden Mediums zu verbinden, kann in einer der Drosselstufen ein zweites wärmeres oder kälteres 30 Medium eingeführt werden. Die Zumischung erfolgt z. B. über eine im Gehäuse a vorgesehene Düse f mit zentraler Bohrung oder über eine Ringdüse. Hat das Gemisch der beiden Medien keine oder nur eine ge-Durchmischung zweckmäßig, das zusätzliche Medium schon in eine Zwischenstufe einzubringen. Zur weiteren Mischung beider Medien kann ferner nach der letzten Stufe ein Mischkorb g angeordnet sein, der aus einem Rohr von etwa der lichten Weite der Vorrich- 40 tung an ihrem Ausgang besteht, in das ein festes Lochsieb h_1 und ein lösbares Lochsieb h_2 eingebaut ist. Zwischen diesen beiden Sieben sind zur Erhöhung der Turbulenz und zur besseren Vermischung zweier Medien Widerstandskörper i schüttelfest eingelegt, die 45 richtungsändernd und zugleich nochmals druckvermindernd wirken, wie es im wesentlichen auch bekannt ist. Zweckmäßig wird der Mischkorb g mit einem Flansch versehen, der sich zwischen dem Anschlußflansch der Vorrichtung und einem gegenüber- 50 liegenden Flansch druckdicht festlegen läßt. Ferner kann jeder Drosselstufe durch den Stutzen m bereits gedrosseltes Medium abgenommen werden. Das Zuführen von zusätzlichem Medium ist an sich bekannt und schon vorgeschlagen worden.

Die Abb. 2 zeigt eine Vorrichtung in der Ventilbauweise. In einem konisch verlaufenden Ventilgehäuse a sind ein mehrgliedriges mit Drosselöffnungen x versehenes Sitzteil b_1 und die mit diesem lösbar oder unlösbar fest verbundenen Sitzteile b_2 , b_3 und b_4 der 60 nachfolgenden Drosselstufen angeordnet. Die in den Sitzteilen b gleitenden kolbenartigen Verschlußstücke c sind an einer gemeinsamen Spindel d befestigt. Das Verschlußstück c, verhindert durch seinen dichten Abschluß im Sitzteil b, den Durchtritt des Mediums 65 durch die Drosselöffnungen x. Beim Anheben der Spindel d gleiten alle Verschlußstücke c gemeinsam und mit gleichem Hub aus dem sie umschließenden

Sitzteil b und geben je nach ihrer Stellung den Durchtritt des Mediums durch die Drosselöffnungen x frei. Die Drosselöffnungen sind in diesem Fall als nutenähnliche Schlitze ausgeführt. Derartige nutenähnliche Schlitze nehmen ebenso wie die Entspannungs- und Wirbelräume n jeder Stufe in ihren räumlichen Abmessungen nach der Niederdruckseite hin zu. Die Dichtungsfläche im Sitzteil b, wird zweckmäßig so angeordnet, daß sie im Strömungsschatten des durchtretenden Mediums liegt. In entsprechender Weise wird auch die Dichtungsfläche des Verschlußstückes c, in den Strömungsschatten verlegt oder wird durch eine vorgezogene Kante gegen ein direktes Auftreffen des Mediums geschützt, wie es zum Schutz des Sitzes bekannt ist. Die Abb. 2 zeigt die als nutenähnliche Schlitze ausgeführten Drosselöffnungen x in den Verschlußstücken c angeordnet. Die Drosselöffnungen x können auch, wie es die rechte Seite der Abb. 2 zeigt, in den die Verschlußstücke umgebenden Sitzteilen b angeordnet sein. Man kann also die Drosselöffnungen grundsätzlich entweder in den bewegten Verschlußstücken c oder in den sie umgebenden festen Sitzteilen anordnen. Bei genügendem Hub der Verschlußstücke gegenüber den festen Sitzteilen können sie sich aber auch teilweise in jeweiligen Verschlußstücken c und teilweise in den sie umgebenden Sitzteilen b befinden. Statt der Ausführung der Drosselöffnungen x als nutenähnliche Schlitze sind auch düsenförmige Bohrungen möglich, die nach Abb. 3 a in die Verschlußstücke c oder nach Abb. 3 b in die Sitzteile b eingebracht werden. Durch eine axiale Führung der Verschlußstücke c läßt sich erreichen, daß gegenüberliegende Drosselöffnungen x beim Öffnen und Schließen auf der gleichen Mantelringe verschleißende Wirkung, so ist es zur besseren 35 fläche bleiben, d. h., die Verschlußstücke müssen bei den in den Abb. 2 und 3 dargestellten Ausführungsformen gegen Drehen gesichert werden. Andernfalls. sind, wie es die Abb. 3 c zeigt, die Drosselöffnungen x_1 auf der jeweiligen Druckseite durch einen Ringkanal o_1 und die Drosselöffnungen x_2 auf der Entspannungsseite durch einen Ringkanal og über den ganzen Umfang der Trennflächen hinweg miteinander zu verbinden. In diesem Fall wirken die gegenüberliegenden Ringkanäle o_1 , o_2 wie kleine Wirbelräume zwischen unabhängigen Drosselöffnungen x_1 und x_2 in den Verschlußstücken c und den zugehörigen Sitz-

> Die Abb. 4 zeigt eine der Abb. 3c wesensähnliche Anordnung der Drosselöffnungen x_1 und x_2 , bei der die zusammenwirkenden Austritts- und Eintrittsöffnungen der Drosselöffnungen in einer radialen Ebene liegen und der gewünschte Drosseldurchflußquerschnitt durch Drehen des Verschlußstückes eingestellt wird. Diese Anordnung kann in Verbindung mit einer drehbaren Welle d der Vorrichtung nach Abb. 1 in einer bestimmten Drosselstufe der Vorrichtung angewandt werden.

> Es ist möglich, die besonderen Merkmale der oben beschriebenen Ausführungsformen miteinander zu kombinieren. Es läßt sich z. B. durch Anordnung von teleskopartig ineinandergreifenden Hohlwellen bzw. Spindeln eine Regelung des Druckes oder der Durchflußmenge in bestimmten Drosselstufen der Vorrichtung in Verbindung mit einem ventilartigen Abschluß einzelner Stufen oder Stufengruppen durchführen.

> Bei allen beschriebenen Ausführungsformen der Vorrichtung können die Drosselöffnungen und die von den einzelnen Strahlen des zu entspannenden

Mediums direkt beaufschlagten Flächen durch Aufbringung von Sonderstählen hinreichend verschleißfest ausgeführt werden.

PATENTANSPRÜCHE:

- 1. Vorrichtung zur Entspannung hoher Drücke und zur Regelung von unter hohem Druck strömenden Medien ohne Rückgewinnung mechanischer Energie, bei der der Strom des zu entspannenden Mediums in mehreren Stufen jeweils in mehrere Teilströme zerlegt und in einem Entspannungsraum wieder vereinigt wird, dadurch gekennzeichnet, daß in mindestens zwei hintereinandergeschalteten Entspannungsstufen der gesamte Durchflußquerschnitt für die Teilströme 15 gleichzeitig oder in den einzelnen Stufen unabhängig voneinander veränderbar ist, wobei in jeder Stufe entspanntes Medium abgenommen oder ein beliebiges Medium zugegeben werden kann.
- 2. Vorrichtung nach Anspruch 1, gekennzeichnet durch mindestens zwei hintereinandergeschaltete Drosselstufen mit je einem die Drosselöffnungen (x) enthaltenden Sitzteil (b), je einem zugehörigen, dessen freie Öffnungsquerschnitte 25 verschließenden bzw. freigebenden stetig bewegbaren Verschlußstück (c) und je einem nachgeordneten Entspannungsraum (n).

3. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Verschlußstücke (c) in 30 an sich bekannter Weise als Kolbenschieber, Plattenschieber oder Drehschieber ausgeführt sind.

4. Vorrichtung nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Verschlußstücke 35 (c) sämtlicher Drosselstufen einzeln oder in Stufengruppen gemeinsam oder in sämtlichen Stufengruppen gemeinsam verstellbar sind.

5. Vorrichtung nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Drosselöffnungen 40 (x) der ersten Stufe oder einer ersten Stufengruppe absolut dicht abschließbar sind, während in den anderen Stufen lediglich der gesamte freie Öffnungsquerschnitt der Drosselöffnungen (x) verkleiner- oder vergrößerbar ist.

6. Vorrichtung nach Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß der gesamte freie Öffnungsquerschnitt der Drosselöffnungen (x) in Richtung des Stromes des zu drosselnden Mediums in an sich bekannter Weise von Stufe zu Stufe zunimmt.

7. Vorrichtung nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß das Volumen jedes einer im Querschnitt geregelten oder ungeregelten Stufe zugehörigen Entspannungsraumes (n) in Richtung des Stromes des zu drosselnden Mediums in an sich bekannter Weise von Stufe zu Stufe zunimmt.

8. Vorrichtung nach Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Drosselöffnungen (x) in an sich bekannter Weise mit zunächst enger und dann wieder weiter werdenden Bohrungen ausgeführt sind.

9. Vorrichtung nach Ansprüchen 1 bis 7, gekennzeichnet durch im Längsschnitt düsenförmige Begrenzungen der die Drosselöffnungen (x) darstellenden Bohrungen.

In Betracht gezogene Druckschriften:
Deutsche Patentschriften Nr. 925 477, 877 079,
736 861, 470 353, 166 914;
deutsches Gebrauchsmuster Nr. 1 711 533;
schweizerische Patentschrift Nr. 261 459;
französische Patentschriften Nr. 785 013, 694 242;
britische Patentschriften Nr. 710 069, 431 420,
423 921;

USA.-Patentschriften Nr. 2 393 280, 1 915 867.

In Betracht gezogene ältere Patente: Deutsche Patente Nr. 1 075 911, 1 063 432.

Hierzu 1 Blatt Zeichnungen

