Uczenie sieci jednowarstwowej - Metoda Perceptronowa

17:13 By Te Wu

Zbiór uczący - zbór wzorców uczących

Wzorzec uczący - dane które trzeba podać na wejścia i wartości jakie powinny dla tych danych pojawić się na wyjściu

Korekta wag

(metoda perceptronowa - Dla sieci jednowarstwowych!!):

$$\Delta W_{ij} = \eta * (\boldsymbol{d_i} - \boldsymbol{y_i}) * \boldsymbol{x_j}$$

$$nowe W_{ij} = stare W_{ij} + \Delta W_{ij}$$

 η - wpółczynnik uczenia skaluje, jak duży krok we właściwą stronę zrobić. Przyjmuje wartości z zakresu (**0,1 - 1**).

W każdym kroku uczenia możę być inny, i zazwyczej zmniejsza swoją wartość w kolejnych krokach uczenia. Powoduje to że najpierw wykonywane są duże kroki by 'dotrzeć w okolice celu', a potem coraz mniejsze by 'trafić' jak najdokładniej w cel.

Błąd sieci

Dla sieci z jednym wyj ściem:

Dla sieci z wieloma wyjściami: $E = \frac{1}{2} \sum_{i=1}^{K} (d_i - y_i)^2 \left| \right| \qquad E = \frac{1}{2} \sum_{i=1}^{K} \sum_{j=1}^{K} (d_i^j - y_i^j)^2$ P - liczba wzorców uczacych K - liczba wyjść sieci

Krok uczenia - Modyfikacja wag dla jednego wzorca uczącego

Epoka - Modyfikacja wag dla wszystkich wzorców w zborze uczącym

Algorytm uczenia polega na wykonywaniu modyfikacji wag dla wszystkich wzorów w zbiorze uczącym, albo do momentu w którym błąd sieci będzie się wystarczająco mały, albo do momentu w którym zostanie osiągnięta maxymalna liczba epok

Kodowanie wyjścia

Kodowanie 1-1

Tylko jeden neuron ma wartość **1**, to który, oznacza do której klasy zakwalifikowane zostało wejście.

Jeżeli dwa naurony będą miały wartość **1** to odpowiedź sieci brzmi "nie mam pojęcia" :)

Kodowanie 1-1 jest znacznie mniej efektywne niż kodowanie binarne, ale ma swoje zastosowania.

klasy	neuron 1 (d ₁)	neuron 2 (d ₂)	neuron 3 (d ₃)	neuron 4 (d ₄)	neuron 5 (d ₅)
klasa 1	1	0	0	0	0
klasa 2	0	1	0	0	0
klasa 3	0	0	1	0	0
klasa 4	0	0	0	1	0
klasa 5	0	0	0	0	1

Kodowanie "Binarne"

Z0nK, Nima!i!

TODO