Table of Contents

- 1. Part 1 EE 274: Tutorials for Discrete Fourier Transform
- 2. Part 2 EE 274 / CoE 197E Lab Exercise: Properties of the DFT

Part 1 - Tutorials for Discrete Fourier Transform

A. Resolving two signals of close frequency

A.1-2

fs = 4000;

```
freq = [100 150];
amp = [1.2 \ 0.8];
ph = [0 \ 0];
t = [0:1/fs:5/min(freq)];
% generate the sinusoid
У
=((amp'*ones(1,length(t))).*sin((2*pi*freq'*t)+ph'*ones(1,length(t))))';
figure(6); plot(sum(y'));
ty_sum = sum(y');
y_sum = ty_sum(1:100);
Nfft = 100;
y fft = fft(y sum, Nfft);
% generate the frequency axis
w = linspace(0,fs,Nfft);
% Plot the magnitude and the phase response
mag = abs(y_fft);
ph1 = angle(y_fft);
figure(7); subplot(2,1,1), stem(w, mag, '^');
axis ([0, 200, 0, 140]);
% use axis to zoom into plot to determine frequencies of sinusoids
title('The magnitude response from 0 to fs');
axis; % turn autoscaling back on
subplot(2,1,2), stem(w,ph1, '^');
title('The phase response from 0 to fs');
```


Question is pre-answered in the tutorial pdf file.

A.3.a-b.

```
fs = 4000;
freq = [400 150];
amp = [1.2 \ 0.8];
ph = [0 \ 0];
t = [0:1/fs:5/min(freq)];
% generate the sinusoid
У
 =((amp'*ones(1,length(t))).*sin((2*pi*freq'*t)+ph'*ones(1,length(t))))';
figure(); plot(sum(y'));
ty_sum = sum(y');
y_sum = ty_sum(1:100);
Nfft = 400;
y_fft = fft(y_sum, Nfft);
% generate the frequency axis
w = linspace(0,fs,Nfft);
% Plot the magnitude and the phase response
mag = abs(y_fft);
ph1 = angle(y_fft);
figure(); subplot(2,1,1), stem(w, mag, '^');
axis ([0, 200, 0, 140]);
% use axis to zoom into plot to determine frequencies of sinusoids
```

```
title('The magnitude response from 0 to fs');
axis; % turn autoscaling back on
subplot(2,1,2), stem(w,ph1, '^');
title('The phase response from 0 to fs');
```


- 1. Can we now correctly determine the frequencies of the sinusoids?
- 2. What is the effect of increasing the number of frequency samples on the accuracy of the DFT?

ANSWER Increasing the number of samples of the given sinusoids will allow us to correctly determine its frequencies with more certainty as it increases the number of phases and magnitudes of the DFT.

A.4.

```
% Plot the magnitude and the phase response
mag = abs(y_fft);
ph1 = angle(y fft);
figure(); subplot(2,1,1), stem(w, mag, '^');
axis ([0, 200, 0, 140]);
% use axis to zoom into plot to determine frequencies of sinusoids
title('The magnitude response from 0 to fs at N=100');
axis; % turn autoscaling back on
subplot(2,1,2), stem(w,ph1, '^');
title('The phase response from 0 to fs at N=100');
fs = 4000;
freq = [100 \ 150];
amp = [1.2 \ 0.8];
ph = [0 \ 0];
t = [0:1/fs:2/min(freq)];
% generate the sinusoid
 =((amp'*ones(1,length(t))).*sin((2*pi*freq'*t)+ph'*ones(1,length(t))))';
figure(); plot(sum(y'));
ty_sum = sum(y');
y sum = ty sum();
Nfft = 400;
y fft = fft(y sum, Nfft);
% generate the frequency axis
w = linspace(0,fs,Nfft);
% Plot the magnitude and the phase response
mag = abs(y_fft);
ph1 = angle(y_fft);
figure(); subplot(2,1,1), stem(w, mag, '^');
axis ([0, 200, 0, 140]);
% use axis to zoom into plot to determine frequencies of sinusoids
title('The magnitude response from 0 to fs at N=400');
axis; % turn autoscaling back on
subplot(2,1,2), stem(w,ph1, '^');
title('The phase response from 0 to fs at N=400');
```


-4

*As shown in the results above, the DFT can resolve the frequencies of the two signals. However with N=100, it cannot accurately resolve the frequencies due to the limited samples of magnitude and phase spectrum as compared to N=400, which contains more samples of phase and magnitude, thereby allowing us to resolve the frequency with better accuracy.

B. Effects of zero padding and signal length on the DFT

B.1.

```
fs = 4000;
freq = 1000;
amp = 1;
ph = 0;
t = [0:1/fs:2/freq];
% generate the sinusoid
y = amp*sin((2*pi*freq*t)+ph)';
y_sum = y;
Nfft = 100;
y_fft = fft(y_sum, Nfft);
% generate the frequency axis
w = linspace(0, fs/2, Nfft/2);
y_{fft} = y_{fft}(1:length(y_{fft})/2);
% Plot the magnitude response,
mag = (y_fft);
figure(); plot(w, mag, '^');
title('The magnitude response from 0 to fs/2');
```

Warning: Imaginary parts of complex X and/or Y arguments ignored.

B.1.a.

*The plot of the frequency response is similar to the sinc function because of the abs function applied to the sinusoid, thereby transporming its negative values into positive. As such, the sum values from 500:1500 samples yields to a wave with a max magnitude of 4 as shown below

```
figure(); plot(w(1:25), y_fft(1:25));
figure(); plot(w(26:50), y_fft(26:50));
figure(); plot(w,abs(y_fft));

Warning: Imaginary parts of complex X and/or Y arguments ignored.
Warning: Imaginary parts of complex X and/or Y arguments ignored.
```


B.1.b.

Increasing the number of frequency samples is equivalent to having a more accurate magnitude response and its plot.

B.1.c.

*The same result as with B.1.b for increasing the number of samples. Increasing the period means increasing the amplitude as show in the generated figure.

```
fs = 4000;
freq = 1000;
amp = 1;
ph = 0;
t = [0:1/fs:5/freq]; % period inc to 5 from 2.
% generate the sinusoid
y = amp*sin((2*pi*freq*t)+ph)';
y_sum = y;
Nfft = 10000; %Increase samples to 10K
y_fft = fft(y_sum, Nfft);
% generate the frequency axis
w = linspace(0, fs/2, Nfft/2);
y_fft = y_fft(1:length(y_fft)/2);
% Plot the magnitude response,
mag = abs(y_fft);
```

```
figure(); plot(w, mag, '^');
title('The magnitude response from 0 to fs/2');
```


B.1.d.

Increasing the signal length means extending the range of lobes in the time domain. Therefore, if we will not modify the time range, the plot will not be seeon in the default range due to the increase in length.

B.2.

```
fs = 4000;
freq = 1000;
amp = 1;
ph = 0;
t = [0:1/fs:2/freq];
% generate the sinusoid
y = amp*sin((2*pi*freq*t)+ph)';
y_sum = y;
y_fft = fft(y_sum);
y_fft = y_fft(1:length(y_fft)/2);
% Plot the magnitude response,
mag = abs(y_fft);
figure(); plot(mag);
title('The magnitude response from 0 to fs/2');
```

Warning: Integer operands are required for colon operator when used as index.

B.2.a.

As per the result of the code in this section and the fft() documatation, without specifying the sample number, function will return the fft as a vector of y_sum . As with the magnitude response, only the linear peak values of magnitude of the original plot.

B.2.b.

```
fs = 4000;
freq = 1000;
amp = 1;
ph = 0;
t = [0:1/fs:2/freq];
% generate the sinusoid
y = amp*sin((2*pi*freq*t)+ph)';
y(length(y)+1:100)=0; % 100 zero-padding
y_fft = fft(y);
y_fft = y_fft(1:length(y_fft)/2);
% Plot the magnitude response,
mag = abs(y_fft);
figure(); plot(mag);
title('The magnitude response from 0 to fs/2');
```


*Based on the results show in the figure, padded zeros in the DFT acts *similar to the frequency sample in the DFT thus, making the signal revert *to the sinc like plot.

B.2.c.

```
fs = 4000;
freq = 1000;
amp = 1;
ph = 0;
t = [0:1/fs:5/freq]; %change period to 5
% generate the sinusoid
y = amp*sin((2*pi*freq*t)+ph)';
% y(length(y)+1:100)=0; % 100 zero-padding
y_fft = fft(y);
y_fft = y_fft(1:length(y_fft)/2);
% Plot the magnitude response,
mag = abs(y_fft);
figure(); plot(mag);
title('The magnitude response from 0 to fs/2');
```

Warning: Integer operands are required for colon operator when used as index.

Increasing the signal period means increasing the magnitude of the peaks of the signal. Furthermore, the increase gradually eliminate the sidelobes in the magnitude spectrum.

C

Write a Matlab code that will generate the presented figures Figure A and Figure B(see EE 274: Tutorials for Discrete Fourier Transform tutorial PDF file).

```
P=2;
W=2;
t=0:0.01:P;
R = rectpuls(t, W);
f=-5:0.01:5;
XR=exp(-j*pi*f).*sinc(f);
figure()
subplot 211
plot(t, R);
title("Time function: square pulse");
grid on;
subplot 212
plot(f,abs(XR));
title("Frequency spectrum: Sinc function");
grid on;
```



```
Sf=8;
D2=1;
N2=8;
tn2=0:1/Sf:(N2-1)*1/Sf;
C2_xn=rectpuls(tn2, W);
ya2=fft(C2_xn, N2);
ya2=fftshift(ya2);
fo2=1/D2;
fa2=-(N2/2)*fo2:fo2:(N2/2-1)*fo2;
D3 = 2;
N3 = 16;
tn3=0:1/Sf:(N3-1)*1/Sf;
xn3=rectpuls(tn3, W);
ya3=fft(xn3, N3);
ya3=fftshift(ya3);
fo3=1/D3;
fa3=-(N3/2)*fo3:fo3:(N3/2-1)*fo3;
figure();
subplot 211;
title('Sf=8Hz, D=1, N=8');
grid on;
hold on;
plot(f, abs(XR));
```

```
stem(fa2,1/Sf*(abs(ya2)));
hold off;

subplot 212;
title('Sf=8Hz, D=2, N=16');
grid on;
hold on;
plot(f, abs(XR));
stem(fa3,1/Sf*(abs(ya3)));
hold off;
```



```
Sf4=8;
D4=4;
N4=32;
tn4=0:1/Sf4:(N4-1)*1/Sf4;
xn4=rectpuls(tn4, W);
ya4=fft(xn4, N4);
ya4=fftshift(ya4);
fo4=1/D4;
fa4=-(N4/2)*fo4:fo4:(N4/2-1)*fo4;

f4=-8:0.01:8;
XR4=exp(-j*pi*f4).*sinc(f4);
Sf5=16;
D5=4;
```

```
N5=64;
tn5=0:1/Sf5:(N5-1)*1/Sf5;
xn5=rectpuls(tn5, W);
ya5=fft(xn5, N5);
ya5=fftshift(ya5);
fo5=1/D5;
fa5=-(N5/2)*fo5:fo5:(N5/2-1)*fo5;
figure();
subplot 211
plot(f, abs(XR));
title('Sf=8Hz, D=4, N=32');
grid on;
hold on;
stem(fa4,1/Sf4*(abs(ya4)));
hold off;
subplot 212
plot(f4, abs(XR4));
title('Sf=16Hz, D=4, N=64');
grid on;
hold on;
stem(fa5,1/Sf5*(abs(ya5)));
hold off;
```


Part 2 - Properties of DFT

A. Computation of DFT

```
clf;
w = -4*pi:8*pi/511:4*pi;
num = [2 1]; den = [1 -0.6];
h = freqz(num, den, w);
x_axis = w/pi
subplot(4,1,1)
plot(x_axis,real(h));grid
title('Real part of H(e^{j\omega})')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,2)
plot(x_axis,imag(h));grid
title('Imaginary part of H(e^{j\omega})')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,3)
plot(x_axis,abs(h));grid
title('Magnitude Spectrum |H(e^{j\omega})|')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,4)
plot(x axis,angle(h));grid
title('Phase Spectrum arg[H(e^{j\omega})]')
xlabel('\omega /\pi');
ylabel('Phase in radians');
x axis =
 Columns 1 through 7
   -4.0000
            -3.9843 -3.9687 -3.9530
                                         -3.9374
                                                   -3.9217
                                                             -3.9061
  Columns 8 through 14
   -3.8904 -3.8748 -3.8591 -3.8434
                                         -3.8278
                                                   -3.8121 -3.7965
  Columns 15 through 21
   -3.7808 -3.7652 -3.7495 -3.7339 -3.7182
                                                   -3.7025 -3.6869
 Columns 22 through 28
   -3.6712 -3.6556 -3.6399 -3.6243 -3.6086 -3.5930 -3.5773
 Columns 29 through 35
```

-3.5616	-3.5460 -3.5303	-3.5147	-3.4990	-3.4834	-3.4677
Columns 36	through 42				
-3.4521	-3.4364 -3.4207	-3.4051	-3.3894	-3.3738	-3.3581
Columns 43	through 49				
-3.3425	-3.3268 -3.3112	-3.2955	-3.2798	-3.2642	-3.2485
Columns 50	through 56				
-3.2329	-3.2172 -3.2016	-3.1859	-3.1703	-3.1546	-3.1389
Columns 57	through 63				
-3.1233	-3.1076 -3.0920	-3.0763	-3.0607	-3.0450	-3.0294
Columns 64	through 70				
-3.0137	-2.9980 -2.9824	-2.9667	-2.9511	-2.9354	-2.9198
Columns 71	through 77				
-2.9041	-2.8885 -2.8728	-2.8571	-2.8415	-2.8258	-2.8102
Columns 78	through 84				
-2.7945	-2.7789 -2.7632	-2.7476	-2.7319	-2.7162	-2.7006
Columns 85	through 91				
-2.6849	-2.6693 -2.6536	-2.6380	-2.6223	-2.6067	-2.5910
Columns 92	through 98				
-2.5753	-2.5597 -2.5440	-2.5284	-2.5127	-2.4971	-2.4814
Columns 99	through 105				
-2.4658	-2.4501 -2.4344	-2.4188	-2.4031	-2.3875	-2.3718
Columns 10	6 through 112				
-2.3562	-2.3405 -2.3249	-2.3092	-2.2935	-2.2779	-2.2622
Columns 11	3 through 119				
-2.2466	-2.2309 -2.2153	-2.1996	-2.1840	-2.1683	-2.1526
Columns 12	0 through 126				
-2.1370	-2.1213 -2.1057	-2.0900	-2.0744	-2.0587	-2.0431

Columns 127	through	133				
-2.0274	-2.0117	-1.9961	-1.9804	-1.9648	-1.9491	-1.9335
Columns 134	through	140				
-1.9178	-1.9022	-1.8865	-1.8708	-1.8552	-1.8395	-1.8239
Columns 141	through	147				
-1.8082	-1.7926	-1.7769	-1.7613	-1.7456	-1.7299	-1.7143
Columns 148	through	154				
-1.6986	-1.6830	-1.6673	-1.6517	-1.6360	-1.6204	-1.6047
Columns 155	through	161				
-1.5890	-1.5734	-1.5577	-1.5421	-1.5264	-1.5108	-1.4951
Columns 162	through	168				
-1.4795	-1.4638	-1.4481	-1.4325	-1.4168	-1.4012	-1.3855
Columns 169	through	175				
-1.3699	-1.3542	-1.3386	-1.3229	-1.3072	-1.2916	-1.2759
Columns 176	through	182				
-1.2603	-1.2446	-1.2290	-1.2133	-1.1977	-1.1820	-1.1663
Columns 183	through	189				
-1.1507	-1.1350	-1.1194	-1.1037	-1.0881	-1.0724	-1.0568
Columns 190	through	196				
-1.0411	-1.0254	-1.0098	-0.9941	-0.9785	-0.9628	-0.9472
Columns 197	through	203				
-0.9315	-0.9159	-0.9002	-0.8845	-0.8689	-0.8532	-0.8376
Columns 204	through	210				
-0.8219	-0.8063	-0.7906	-0.7750	-0.7593	-0.7436	-0.7280
Columns 211	through	217				
-0.7123	-0.6967	-0.6810	-0.6654	-0.6497	-0.6341	-0.6184
Columns 218	through	224				

-0.6027	-0.5871	-0.5714	-0.5558	-0.5401	-0.5245	-0.5088
Columns 225	through	231				
-0.4932	-0.4775	-0.4618	-0.4462	-0.4305	-0.4149	-0.3992
Columns 232	through	238				
-0.3836	-0.3679	-0.3523	-0.3366	-0.3209	-0.3053	-0.2896
Columns 239	through	245				
-0.2740	-0.2583	-0.2427	-0.2270	-0.2114	-0.1957	-0.1800
Columns 246	through	252				
-0.1644	-0.1487	-0.1331	-0.1174	-0.1018	-0.0861	-0.0705
Columns 253	through	259				
-0.0548	-0.0391	-0.0235	-0.0078	0.0078	0.0235	0.0391
Columns 260	through	266				
0.0548	0.0705	0.0861	0.1018	0.1174	0.1331	0.1487
Columns 267	through	273				
0.1644	0.1800	0.1957	0.2114	0.2270	0.2427	0.2583
Columns 274	through	280				
0.2740	0.2896	0.3053	0.3209	0.3366	0.3523	0.3679
Columns 281	through	287				
0.3836	0.3992	0.4149	0.4305	0.4462	0.4618	0.4775
Columns 288	through	294				
0.4932	0.5088	0.5245	0.5401	0.5558	0.5714	0.5871
Columns 295	through	301				
0.6027	0.6184	0.6341	0.6497	0.6654	0.6810	0.6967
Columns 302	through	308				
0.7123	0.7280	0.7436	0.7593	0.7750	0.7906	0.8063
Columns 309	through	315				
0.8219	0.8376	0.8532	0.8689	0.8845	0.9002	0.9159

Columns 316	through	322				
0.9315	0.9472	0.9628	0.9785	0.9941	1.0098	1.0254
Columns 323	through	329				
1.0411	1.0568	1.0724	1.0881	1.1037	1.1194	1.1350
Columns 330	through	336				
1.1507	1.1663	1.1820	1.1977	1.2133	1.2290	1.2446
Columns 337	through	343				
1.2603	1.2759	1.2916	1.3072	1.3229	1.3386	1.3542
Columns 344	through	350				
1.3699	1.3855	1.4012	1.4168	1.4325	1.4481	1.4638
Columns 351	through	357				
1.4795	1.4951	1.5108	1.5264	1.5421	1.5577	1.5734
Columns 358	through	364				
1.5890	1.6047	1.6204	1.6360	1.6517	1.6673	1.6830
Columns 365	through	371				
1.6986	1.7143	1.7299	1.7456	1.7613	1.7769	1.7926
Columns 372	through	378				
1.8082	1.8239	1.8395	1.8552	1.8708	1.8865	1.9022
Columns 379	through	385				
1.9178	1.9335	1.9491	1.9648	1.9804	1.9961	2.0117
Columns 386	through	392				
2.0274	2.0431	2.0587	2.0744	2.0900	2.1057	2.1213
Columns 393	through	399				
2.1370	2.1526	2.1683	2.1840	2.1996	2.2153	2.2309
Columns 400	through	406				
2.2466	2.2622	2.2779	2.2935	2.3092	2.3249	2.3405
Columns 407	through	413				

	2.3562	2.3718	2.3875	2.4031	2.4188	2.4344	2.4501
(Columns 414	through	420				
	2.4658	2.4814	2.4971	2.5127	2.5284	2.5440	2.5597
(Columns 421	through	427				
	2.5753	2.5910	2.6067	2.6223	2.6380	2.6536	2.6693
(Columns 428	through	434				
	2.6849	2.7006	2.7162	2.7319	2.7476	2.7632	2.7789
(Columns 435	through	441				
	2.7945	2.8102	2.8258	2.8415	2.8571	2.8728	2.8885
(Columns 442	through	448				
	2.9041	2.9198	2.9354	2.9511	2.9667	2.9824	2.9980
(Columns 449	through	455				
	3.0137	3.0294	3.0450	3.0607	3.0763	3.0920	3.1076
(Columns 456	through	462				
	3.1233	3.1389	3.1546	3.1703	3.1859	3.2016	3.2172
(Columns 463	through	469				
	3.2329	3.2485	3.2642	3.2798	3.2955	3.3112	3.3268
(Columns 470	through	476				
	3.3425	3.3581	3.3738	3.3894	3.4051	3.4207	3.4364
(Columns 477	through	483				
	3.4521	3.4677	3.4834	3.4990	3.5147	3.5303	3.5460
(Columns 484	through	490				
	3.5616	3.5773	3.5930	3.6086	3.6243	3.6399	3.6556
(Columns 491	through	497				
	3.6712	3.6869	3.7025	3.7182	3.7339	3.7495	3.7652
(Columns 498	through	504				
	3.7808	3.7965	3.8121	3.8278	3.8434	3.8591	3.8748

Columns 505 through 511

3.8904 3.9061 3.9217 3.9374 3.9530 3.9687 3.9843

Column 512

4.0000

A.1. Compare and differentiate above code output and freqz(num,den).

*The output waveform of freqz(num,den) with a w parameter plots every two interval in the x-space. While when we remove the w parameter in the freqz function, it maximize the signa plot on the entire -4:4 w/π space.

A.2. Symmetries in real and imag parts of DFT.

The two graphs are symmetric as they follow the same function, only that the real parts plot every 8*pi/511 in -4:4 w/π space while the latter plots in the entire plane. DFT is a periodic function of omega with a period of 2*pi. All of the plots presented above are in the period of 2*pi, with the real part and magnitude are even symmetric while the imaginary part of phase are odd symmetric.

A.3. Modify the above code and to satisfy the given function below.

```
U(e^{j\omega}) = \frac{0.7 - 0.5e^{j\omega} + 0.3e^{-j2\omega} + e^{-j3\omega}}{1 + 0.3e^{-j\omega} - 0.5^{-j2\omega} + 0.7e^{-j3\omega}}
N_A3 = 512;
q n3 = [0.7 -0.5 0.3 1];
den_A3 = [1 \ 0.3 \ -0.5 \ 0.7];
[h_A_3, w_A3] = freqz(g_n3, den_A3, N_A3);
x_axis = w_A3/pi
figure()
subplot(4,1,1)
plot(x_axis,real(h_A_3));
grid on;
title('Real part of H(e^{j\omega})')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,2)
plot(x_axis,imag(h_A_3));
grid on;
title('Imaginary part of H(e^{j\omega})')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,3)
plot(x_axis,abs(h_A_3));
grid on;
title('Magnitude Spectrum |H(e^{j\omega})|')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,4)
plot(x_axis,angle(h_A_3));
grid on
title('Phase Spectrum arg[H(e^{j\omega})]')
xlabel('\omega /\pi');
ylabel('Phase in radians');
x_axis =
           0
     0.0020
     0.0039
     0.0059
    0.0078
     0.0098
     0.0117
     0.0137
     0.0156
     0.0176
     0.0195
     0.0215
```

			_		
0	.0	2.	3	4	
0	.0	2.	5	4	
0	.0	2	7	3	
0		2.		3	
0		3			
0		3.			
0	.0	3.	5	2	
0	.0	3	7	1	
0	.0	3.	9	1	
0		4			
0		4			
0	.0	4	4	9	
0	.0	4	6	9	
0	.0	4	8	8	
0					
0					
0					
0	.0	5	6	6	
0	.0	5	8	6	
0					
0					
0					
0					
0	.0	6	8	4	
0	.0	7	0	3	
0		7.			
		7			
0					
0		7			
0	.0	7	8	1	
0	.0	8	0	1	
0		8.			
0					
0					
0					
0	.0	8.	9	8	
0	.0	9	1	8	
0		9.			
0		9.			
0		9			
0		9.			
0	. 1	0	1	6	
0	. 1	0.	3	5	
0		0.			
0		0			
0		0.			
0		1			
0	. 1	1	3	3	
0		1.			
0		1			
0		1.			
0		2			
0	. 1	2	3	0	
0	1	2	_	\circ	

0.1250 0.1270

0.1289 0.1309 0.1328 0.1348 0.1367 0.1387 0.1406 0.1426 0.1445 0.1465 0.1484 0.1504 0.1523 0.1543 0.1562 0.1582 0.1602 0.1621 0.1641 0.1660 0.1680 0.1699 0.1719 0.1738 0.1758 0.1777 0.1797 0.1816 0.1836 0.1855 0.1875 0.1895 0.1914 0.1934 0.1953 0.1973 0.1992 0.2012 0.2031 0.2051 0.2070 0.2090 0.2109 0.2129 0.2148 0.2168 0.2188 0.2207 0.2227 0.2246 0.2266

> 0.2285 0.2305 0.2324

0.2344 0.2363 0.2383 0.2402 0.2422 0.2441 0.2461 0.2480 0.2500 0.2520 0.2539 0.2559 0.2578 0.2598 0.2617 0.2637 0.2656 0.2676 0.2695 0.2715 0.2734 0.2754 0.2773 0.2793 0.2812 0.2832 0.2852 0.2871 0.2891 0.2910 0.2930 0.2949 0.2969 0.2988 0.3008 0.3027 0.3047 0.3066 0.3086 0.3105 0.3125 0.3145 0.3164 0.3184 0.3203 0.3223 0.3242 0.3262 0.3281 0.3301 0.3320

> 0.3340 0.3359 0.3379

- 0.3398 0.3418
- 0.3438
- 0.3457
- 0.3477
- 0.3496
- 0.3516
- 0.3535
- 0.3555
- 0.3574
- 0.3594
- 0.3613
- 0.3633
- 0.3652
- 0.3672
- 0.3691
- 0.3711
- 0.3730
- 0.3750
- 0.3730
- 0.3770
- 0.3789
- 0.3809
- 0.3828
- 0.3848
- 0.3867
- 0.3887
- 0.3007
- 0.3906 0.3926
- 0.3945
- 0.3965
- 0.3984
- 0.4004
- 0.4023
- 0.4043
- 0.4062
- 0.4082
- 0.4102
- 0.4121
- 0.4141
- 0.4160
- 0.4180
- 0.4199
- 0.4219
- 0.4238
- 0.4258
- 0.4277
- 0.4297
- 0.4316
- 0.4336
- 0.4355
- 0.4375
- 0.4395
- 0.4414
- 0.4434

- 0.4453
- 0.4473
- 0.4492
- 0.4512
- 0.4531
- 0.4551
- 0.4570
- 0.4590
- 0.4609
- 0.4629
- 0.4648
- 0.4668
- 0.4687 0.4707
- 0.4727
- 0.4746
- 0.4766
- 0.4785
- 0.4805
- 0.4824
- 0.4844
- 0.4863
- 0.4883
- 0.4902
- 0.4922
- 0.4941
- 0.4961
- 0.4980
- 0.5000
- 0.5020
- 0.5039
- 0.5059
- 0.5078
- 0.5098 0.5117
- 0.5137
- 0.5156
- 0.5176
- 0.5195
- 0.5215
- 0.5234
- 0.5254 0.5273
- 0.5293
- 0.5313
- 0.5332
- 0.5352
- 0.5371
- 0.5391
- 0.5410
- 0.5430
- 0.5449
- 0.5469
- 0.5488

0.5508 0.5527 0.5547 0.5566 0.5586 0.5605 0.5625 0.5645 0.5664 0.5684 0.5703 0.5723 0.5742 0.5762 0.5781 0.5801 0.5820 0.5840 0.5859 0.5879 0.5898 0.5918 0.5938 0.5957 0.5977 0.5996 0.6016 0.6035 0.6055 0.6074 0.6094 0.6113 0.6133 0.6152 0.6172 0.6191 0.6211 0.6230 0.6250 0.6270 0.6289 0.6309 0.6328 0.6348 0.6367 0.6387 0.6406 0.6426 0.6445 0.6465 0.6484

> 0.6504 0.6523 0.6543

0.6563
0.6582
0.6602
0.6621
0.6641
0.6660
0.6680
0.6699
0.6738
0.6758
0.6777
0.6797
0.6816
0.6836
0.6855
0.6875
0.6895
0.6914
0.6934
0.6953
0.6973
0.6992
0.7012
0.7031
0.7051
0.7070
0.7090
0.7109
0.7129
0.7148
0.7168
0.7188
0.7207
0.7227
0.7227
0.7305
0.7324
0.7344
0.7363
0.7383
0.7402
0.7422
0.7441
0.7461
0.7480
0.7500
0.7520
0.7539
0.7559
0 7570

0.7578 0.7598

0.7617 0.7637 0.7656 0.7676 0.7695 0.7715 0.7734 0.7754 0.7773 0.7793 0.7813 0.7832 0.7852 0.7871 0.7891 0.7910 0.7930 0.7949 0.7969 0.7988 0.8008 0.8027 0.8047 0.8066 0.8086 0.8105 0.8125 0.8145 0.8164 0.8184 0.8203 0.8223 0.8242 0.8262 0.8281 0.8301 0.8320 0.8340 0.8359 0.8379 0.8398 0.8418 0.8438 0.8457 0.8477 0.8496 0.8516 0.8535 0.8555 0.8574 0.8594

> 0.8613 0.8633 0.8652

0.8672 0.8691 0.8711 0.8730 0.8750 0.8770 0.8789 0.8809 0.8828 0.8848 0.8867 0.8887 0.8906 0.8926 0.8945 0.8965 0.8984 0.9004 0.9023 0.9043 0.9062 0.9082 0.9102 0.9121 0.9141 0.9160 0.9180 0.9199 0.9219 0.9238 0.9258 0.9277 0.9297 0.9316 0.9336 0.9355 0.9375 0.9395 0.9414 0.9434 0.9453 0.9473 0.9492 0.9512 0.9531 0.9551 0.9570 0.9590 0.9609 0.9629 0.9648

> 0.9668 0.9688 0.9707

0.9727 0.9746 0.9766 0.9785 0.9805 0.9824 0.9863 0.9883 0.9902 0.9922 0.9941 0.9961 0.9980

A.4. Modify the code and evaluate the sequence. Use freqz and fft. Compare.

N_A4 = 512
w_A4 = -4*pi:8*pi/511:4*pi;
g_n = [1 3 5 7 9 11 13 15 17]; A4_den = 1;
h_freqz_A4 = freqz(g_n, A4_den, w_A4); % freqz function
hf_fft_A4 = fft(g_n, N_A4); % fft function
x_axis =w_A4/pi

```
%freqz
figure()
subplot(4,1,1)
plot(x_axis,real(h_freqz_A4));grid
title('Real part of H(e^{jomega}) using freqz()')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,2)
plot(x_axis,imag(h_freqz_A4));grid
title('Imaginary part of H(e^{j\omega}) using freqz()')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,3)
plot(x axis,abs(h freqz A4)); grid
title('Magnitude Spectrum |H(e^{j\omega})| using freqz()')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,4)
plot(x_axis,angle(h_freqz_A4));grid
title('Phase Spectrum arg[H(e^{j\omega})] using freqz()')
xlabel('\omega /\pi');
ylabel('Phase in radians');
% fft
figure()
subplot(4,1,1)
plot(x_axis,real(hf_fft_A4));grid
title('Real part of H(e^{j\omega}) using fft()')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,2)
plot(x_axis,imag(hf_fft_A4));grid
title('Imaginary part of H(e^{j\omega}) using fft()')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,3)
plot(x_axis,abs(hf_fft_A4));grid
title('Magnitude Spectrum |H(e^{j\omega})| using fft()')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(4,1,4)
plot(x_axis,angle(hf_fft_A4));grid
title('Phase Spectrum arg[H(e^{j\omega})] using fft()')
xlabel('\omega /\pi');
ylabel('Phase in radians');
N_A4 =
   512
x axis =
```

Columns 1 t	through 7	7				
-4.0000	-3.9843	-3.9687	-3.9530	-3.9374	-3.9217	-3.9061
Columns 8 t	through 1	14				
-3.8904	-3.8748	-3.8591	-3.8434	-3.8278	-3.8121	-3.7965
Columns 15	through	21				
-3.7808	-3.7652	-3.7495	-3.7339	-3.7182	-3.7025	-3.6869
Columns 22	through	28				
-3.6712	-3.6556	-3.6399	-3.6243	-3.6086	-3.5930	-3.5773
Columns 29	through	35				
-3.5616	-3.5460	-3.5303	-3.5147	-3.4990	-3.4834	-3.4677
Columns 36	through	42				
-3.4521	-3.4364	-3.4207	-3.4051	-3.3894	-3.3738	-3.3581
Columns 43	through	49				
-3.3425	-3.3268	-3.3112	-3.2955	-3.2798	-3.2642	-3.2485
Columns 50	through	56				
-3.2329	-3.2172	-3.2016	-3.1859	-3.1703	-3.1546	-3.1389
Columns 57	through	63				
-3.1233	-3.1076	-3.0920	-3.0763	-3.0607	-3.0450	-3.0294
Columns 64	through	70				
-3.0137	-2.9980	-2.9824	-2.9667	-2.9511	-2.9354	-2.9198
Columns 71	through	77				
-2.9041	-2.8885	-2.8728	-2.8571	-2.8415	-2.8258	-2.8102
Columns 78	through	84				
-2.7945	-2.7789	-2.7632	-2.7476	-2.7319	-2.7162	-2.7006
Columns 85	through	91				
-2.6849	-2.6693	-2.6536	-2.6380	-2.6223	-2.6067	-2.5910
Columns 92	through	98				

-2.5753	-2.5597	-2.5440	-2.5284	-2.5127	-2.4971	-2.4814
Columns 99	through 1	105				
-2.4658	-2.4501	-2.4344	-2.4188	-2.4031	-2.3875	-2.3718
Columns 10	6 through	112				
-2.3562	-2.3405	-2.3249	-2.3092	-2.2935	-2.2779	-2.2622
Columns 11	3 through	119				
-2.2466	-2.2309	-2.2153	-2.1996	-2.1840	-2.1683	-2.1526
Columns 12	0 through	126				
-2.1370	-2.1213	-2.1057	-2.0900	-2.0744	-2.0587	-2.0431
Columns 12	7 through	133				
-2.0274	-2.0117	-1.9961	-1.9804	-1.9648	-1.9491	-1.9335
Columns 13	4 through	140				
-1.9178	-1.9022	-1.8865	-1.8708	-1.8552	-1.8395	-1.8239
Columns 14	1 through	147				
-1.8082	-1.7926	-1.7769	-1.7613	-1.7456	-1.7299	-1.7143
Columns 14	8 through	154				
-1.6986	-1.6830	-1.6673	-1.6517	-1.6360	-1.6204	-1.6047
Columns 15	5 through	161				
-1.5890	-1.5734	-1.5577	-1.5421	-1.5264	-1.5108	-1.4951
Columns 16	2 through	168				
-1.4795	-1.4638	-1.4481	-1.4325	-1.4168	-1.4012	-1.3855
Columns 16	9 through	175				
-1.3699	-1.3542	-1.3386	-1.3229	-1.3072	-1.2916	-1.2759
Columns 17	6 through	182				
-1.2603	-1.2446	-1.2290	-1.2133	-1.1977	-1.1820	-1.1663
Columns 18	3 through	189				
-1.1507	-1.1350	-1.1194	-1.1037	-1.0881	-1.0724	-1.0568

Columns 190 through	196				
-1.0411 -1.0254	-1.0098	-0.9941	-0.9785	-0.9628	-0.9472
Columns 197 through	203				
-0.9315 -0.9159	-0.9002	-0.8845	-0.8689	-0.8532	-0.8376
Columns 204 through	210				
-0.8219 -0.8063	-0.7906	-0.7750	-0.7593	-0.7436	-0.7280
Columns 211 through	217				
-0.7123 -0.6967	-0.6810	-0.6654	-0.6497	-0.6341	-0.6184
Columns 218 through	224				
-0.6027 -0.5871	-0.5714	-0.5558	-0.5401	-0.5245	-0.5088
Columns 225 through	231				
-0.4932 -0.4775	-0.4618	-0.4462	-0.4305	-0.4149	-0.3992
Columns 232 through	238				
-0.3836 -0.3679	-0.3523	-0.3366	-0.3209	-0.3053	-0.2896
Columns 239 through	245				
-0.2740 -0.2583	-0.2427	-0.2270	-0.2114	-0.1957	-0.1800
Columns 246 through	252				
-0.1644 -0.1487	-0.1331	-0.1174	-0.1018	-0.0861	-0.0705
Columns 253 through	259				
-0.0548 -0.0391	-0.0235	-0.0078	0.0078	0.0235	0.0391
Columns 260 through	266				
0.0548 0.0705	0.0861	0.1018	0.1174	0.1331	0.1487
Columns 267 through	273				
0.1644 0.1800	0.1957	0.2114	0.2270	0.2427	0.2583
Columns 274 through	280				
0.2740 0.2896	0.3053	0.3209	0.3366	0.3523	0.3679
Columns 281 through	287				

0.3836	0.3992	0.4149	0.4305	0.4462	0.4618	0.4775
Columns 288	through	294				
0.4932	0.5088	0.5245	0.5401	0.5558	0.5714	0.5871
Columns 295	through	301				
0.6027	0.6184	0.6341	0.6497	0.6654	0.6810	0.6967
Columns 302	through	308				
0.7123	0.7280	0.7436	0.7593	0.7750	0.7906	0.8063
Columns 309	through	315				
0.8219	0.8376	0.8532	0.8689	0.8845	0.9002	0.9159
Columns 316	through	322				
0.9315	0.9472	0.9628	0.9785	0.9941	1.0098	1.0254
Columns 323	through	329				
1.0411	1.0568	1.0724	1.0881	1.1037	1.1194	1.1350
Columns 330	through	336				
1.1507	1.1663	1.1820	1.1977	1.2133	1.2290	1.2446
Columns 337	through	343				
1.2603	1.2759	1.2916	1.3072	1.3229	1.3386	1.3542
Columns 344	through	350				
1.3699	1.3855	1.4012	1.4168	1.4325	1.4481	1.4638
Columns 351	through	357				
1.4795	1.4951	1.5108	1.5264	1.5421	1.5577	1.5734
Columns 358	through	364				
1.5890	1.6047	1.6204	1.6360	1.6517	1.6673	1.6830
Columns 365	through	371				
1.6986	1.7143	1.7299	1.7456	1.7613	1.7769	1.7926
Columns 372	through	378				
1.8082	1.8239	1.8395	1.8552	1.8708	1.8865	1.9022

Columns 379	through	385				
1.9178	1.9335	1.9491	1.9648	1.9804	1.9961	2.0117
Columns 386	through	392				
2.0274	2.0431	2.0587	2.0744	2.0900	2.1057	2.1213
Columns 393	through	399				
2.1370	2.1526	2.1683	2.1840	2.1996	2.2153	2.2309
Columns 400	through	406				
2.2466	2.2622	2.2779	2.2935	2.3092	2.3249	2.3405
Columns 407	through	413				
2.3562	2.3718	2.3875	2.4031	2.4188	2.4344	2.4501
Columns 414	through	420				
2.4658	2.4814	2.4971	2.5127	2.5284	2.5440	2.5597
Columns 421	through	427				
2.5753	2.5910	2.6067	2.6223	2.6380	2.6536	2.6693
Columns 428	through	434				
2.6849	2.7006	2.7162	2.7319	2.7476	2.7632	2.7789
Columns 435	through	441				
2.7945	2.8102	2.8258	2.8415	2.8571	2.8728	2.8885
Columns 442	through	448				
2.9041	2.9198	2.9354	2.9511	2.9667	2.9824	2.9980
Columns 449	through	455				
3.0137	3.0294	3.0450	3.0607	3.0763	3.0920	3.1076
Columns 456	through	462				
3.1233	3.1389	3.1546	3.1703	3.1859	3.2016	3.2172
Columns 463	through	469				
3.2329	3.2485	3.2642	3.2798	3.2955	3.3112	3.3268
Columns 470	through	476				

3.3425	3.3581	3.3738	3.3894	3.4051	3.4207	3.4364		
Columns 477	through 4	through 483						
3.4521	3.4677	3.4834	3.4990	3.5147	3.5303	3.5460		
Columns 484	through 4	90						
3.5616	3.5773	3.5930	3.6086	3.6243	3.6399	3.6556		
Columns 491	through 4	97						
3.6712	3.6869	3.7025	3.7182	3.7339	3.7495	3.7652		
Columns 498	through 5	04						
3.7808	3.7965	3.8121	3.8278	3.8434	3.8591	3.8748		
Columns 505	through 5	11						
3.8904	3.9061	3.9217	3.9374	3.9530	3.9687	3.9843		
Column 512								
4.0000								

*freqz() and fft() function performs the same operation for DFT. However, freqz() compute the phase and magnitude periodically while fft() performs the same operation on one period.

B. Time shift property of the DFT

```
clf;
w_B = -pi:2*pi/255:pi;
D_B = -10; %time shift
B_num = [1 2 3 4 5 6 7 8 9];
h1_B = freqz(B_num, 1, w_B);
h2_B = freqz([zeros(1,D_B) B_num], 1, w_B);
subplot(2,2,1)
plot(w_B/pi,abs(h1_B));grid
title('Magnitude of Original Sequence')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(2,2,2)
plot(w_B/pi,abs(h2_B));grid
title('Magnitude of Time-Shifted Sequence')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(2,2,3)
plot(w_B/pi,angle(h1_B));grid
title('Phase of Original Sequence')
xlabel('\omega /\pi');
ylabel('Phase in radians');
subplot(2,2,4)
plot(w_B/pi,angle(h2_B));grid
title('Phase of Time-Shifted Sequence')
xlabel('\omega /\pi');
ylabel('Phase in radians');
```


• As shown on the generated plots, the magnitude spectrum is not affected by the time shift, instead the time shift is applied to the phase spectrum. The variable that handles the time shift is D_B. Increasing the time shift makes the phase angle oscillates faster in the the %w/pi% domain.

C. Frequency-shift property of DFT

```
clf;
w = -pi:2*pi/255:pi;
wo = -0.4*pi; %frequency shifted to the left
num1 = [1 \ 3 \ 5 \ 7 \ 9 \ 11 \ 13 \ 15 \ 17];
L = length(num1);
h1 = freqz(num1, 1, w);
n = 0:L-1;
num2 = exp(wo*i*n).*num1;
h2 = freqz(num2, 1, w);
subplot(2,2,1)
plot(w/pi,abs(h1));grid
title('Magnitude of Original Sequence')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(2,2,2)
plot(w/pi,abs(h2));grid
title('Magnitude of Frequency-Shifted Sequence')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(2,2,3)
```

```
plot(w/pi,angle(h1));grid
title('Phase of Original Sequence')
xlabel('\omega /\pi');
ylabel('Phase in radians');
subplot(2,2,4)
plot(w/pi,angle(h2));grid
title('Phase of Frequency-Shifted Sequence')
xlabel('\omega /\pi');
ylabel('Phase in radians');
```


^{*}The generated plot shows that both the phase and magnitude are shifted according to the magnitude of the parameter wo (negative shifts to the left, while positive shifts to the right).

D. Convolution property of DFT

```
clf;
w = -pi:2*pi/255:pi;
x1 = [1 3 5 7 9 11 13 15 17];
x2 = [1 -2 3 -2 1];
y = conv(x1,x2); %time domain convolution
h3 = freqz(y,1,w);

h1 = freqz(x1, 1, w);
h2 = freqz(x2, 1, w);
hp = h1.*h2; %DFT multiplication
```

```
subplot(2,2,1)
plot(w/pi,abs(hp));grid
title('Product of Magnitude Spectra')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(2,2,2)
plot(w/pi,abs(h3));grid
title('Magnitude Spectrum of Convolved Sequence')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(2,2,3)
plot(w/pi,angle(hp));grid
title('Sum of Phase Spectra')
xlabel('\omega /\pi');
ylabel('Phase in radians');
subplot(2,2,4)
plot(w/pi,angle(h3));grid
title('Phase Spectrum of Convolved Sequence')
xlabel('\omega /\pi');
ylabel('Phase in radians');
```


• As shown in the generated plots, the magnitude and phase from the multiplication of two DFT from the original sequences are the same to those obtained from the time-domain convolution of the said sequence. Hence, the convolution operation in time-domain is the same as the multiplication in DFT as presented in comparing the results obtained in the DFT version of y and the product of DFT multiplication hp.

E. Modulation property

```
clf;
w = -pi:2*pi/255:pi;
x1 = [1 \ 3 \ 5 \ 7 \ 9 \ 11 \ 13 \ 15 \ 17];
x2 = [1 -1 1 -1 1 -1 1 -1 1];
y = x1.*x2;
h1 = freqz(x1, 1, w);
h2 = freqz(x2, 1, w);
h3 = freqz(y,1,w);
subplot(3,1,1)
plot(w/pi,abs(h1));grid
title('Magnitude Spectrum of First Sequence')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(3,1,2)
plot(w/pi,abs(h2));grid
title('Magnitude Spectrum of Second Sequence')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(3,1,3)
plot(w/pi,abs(h3));grid
title('Magnitude Spectrum of Product Sequence')
xlabel('\omega /\pi');
ylabel('Amplitude');
```


Based on the graph presented above, the DFT is modulated when you multiply the two sequence in the time domain as performed on the code above, where y is the product of x1 and x2 in the time domain. Hence, the modulation property of the DFT says that the function is modulated by another function if they are multiplied in the time domain.

F. Time-reversal property

```
clf;
w = -pi:2*pi/255:pi;
num = [1 2 3 4];
L = length(num) - 1;
h1 = freqz(num, 1, w);
h2 = freqz(fliplr(num), 1, w);
h3 = \exp(w*L*i).*h2;
subplot(2,2,1)
plot(w/pi,abs(h1));grid
title('Magnitude Spectrum of Original Sequence')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(2,2,2)
plot(w/pi,abs(h3));grid
title('Magnitude Spectrum of Time-Reversed Sequence')
xlabel('\omega /\pi');
ylabel('Amplitude');
subplot(2,2,3)
plot(w/pi,angle(h1));grid
```

```
title('Phase Spectrum of Original Sequence')
xlabel('\omega /\pi');
ylabel('Phase in radians');
subplot(2,2,4)
plot(w/pi,angle(h3));grid
title('Phase Spectrum of Time-Reversed Sequence')
xlabel('\omega /\pi');
ylabel('Phase in radians');
```


As presented on the generated plot, the direction of phase spectrum is reversed as compared to the original DFT sequence. This time reversal is done by forming a new sequence using the function fliplr which reverse the samples contained on the original ramp sequence. The time reversal operation are as follows. First we call the freqz() function to set the h2 equal to DFT of the new sequence obtained from using fliplr() on the original ramp seuqnce. Then, h3 is set equal to the DFT of the time reversed ramp by multiplying h2 with a linear phase term to implement the shifting in the time domain.

G.1 Circular-shifting property

```
clf;
x = [0 2 4 6 8 10 12 14 16];
N = length(x)-1;
n = 0:N;
y = circshift(x,5); %circshift is defined by the matlab function circshift in matlab2020a.
XF = fft(x);
YF = fft(y);
```

```
subplot(2,2,1);
stem(n,abs(XF));
grid;
title('Magnitude of DFT of Original Sequence');
xlabel('Frequency index k');
ylabel('|X[k]|');
subplot(2,2,2);
stem(n,abs(YF));
grid;
title('Magnitude of DFT of Circularly Shifted Sequence');
xlabel('Frequency index k');
ylabel('|Y[k]|');
subplot(2,2,3);
stem(n,angle(XF));grid;
title('Phase of DFT of Original Sequence');
xlabel('Frequency index k');
ylabel('arg(X[k])');
subplot(2,2,4);
stem(n,angle(YF));grid;
title('Phase of DFT of Circularly Shifted Sequence');
xlabel('Frequency index k');
ylabel('arg(Y[k])');
```


The above code demonstrate the circshift function in matlab for DFT. Circshift function operates as follows: the input sequence \mathbf{x} is circularly shifted by \mathbf{M} position. If $\mathbf{M} > \mathbf{0}$, then circshift remove the leftmost

M elements from the input function x and appends them on the right side of the remaining input sequence to obtain the circularly shifted sequence. In case when M < 0, circshift first complements M by the length of input sequence x.

On the given example, we can see on its generated plots that the length of sequence \mathbf{x} is $\mathbf{n=8}$ and the time shift is shifted to the left by five samples as shown in the phase term expression below. W[N][kn0] = W[N][-k5] = exp(jk10pi/8) = exp(jk5pi/4) which increases the slope of phase.

G.2 Circular-convolution property

```
g1 = [1 2 3 4 5];
q2 = [2 \ 2 \ 0 \ 1 \ 1];
gle = [gl zeros(1, length(g2)-1)];
g2e = [g2 zeros(1, length(g1)-1)];
ylin = cconv(gle,g2e);
disp('Linear convolution via circular convolution = ');
disp(ylin(1:9));
y = conv(g1, g2);
disp('Direct linear convolution = ');
disp(y);
Linear convolution via circular convolution =
  Columns 1 through 7
    2.0000
               6.0000
                        10.0000
                                   15.0000
                                              21.0000
                                                         15.0000
                                                                    7.0000
  Columns 8 through 9
    9.0000
               5.0000
Direct linear convolution =
     2
                       15
                                                         5
           6
                 10
                              21
                                    15
```

The above code demonstrate the circular convolution property of DFT. circonv or cconv is a function that requires two inputs $\mathbf{g1e}$ and $\mathbf{g2e}$ of equal length. Then, we let $\mathbf{g2e}$ be the infinite length periodic extension of $\mathbf{g2e}$. Next, the elements from $\mathbf{1}$ to \mathbf{L} of the output vector \mathbf{ylin} are obtained by taking the inner product between $\mathbf{g1e}$ and a length vector \mathbf{L} which is obtained by circularly shifting to the right the time reversed vector $\mathbf{g2etr}$. The output sample $\mathbf{y[n]}$ with \mathbf{n} greater than or equal to $\mathbf{1}$ and less than or equal to \mathbf{L} , the amounth of circular shift is $\mathbf{n-1}$ position. Based from the generated results, zero padding onto the match length is made possible for the implementation of linear convolution using circular convolution.

Published with MATLAB® R2020a