Microprocessor and Microcontrollers Based Design

EC-310

Why Study Microcontrollers and Microprocessors

- Microprocessor is the brain of modern computing and communication machines such as PC, Laptop, Notepad, Phones, Servers etc
- Microcontroller is the brain of the modern embedded systems
- IoT is an emerging network with embedded systems being the core of the systems

Definition of Embedded Systems

•An **embedded system** is a computer system with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints.

A Microcontroller and Sensors in a Refrigerator

Refrigerator as a larger electrical system

A Microcontroller and Actuator in a Car Door

Navigation System in an Autonomous Guided Vehicle

What is IoT?

• The **Internet of Things (IoT)** is the network of physical objects—devices, vehicles, buildings and other items embedded with electronics, software, sensors, and network connectivity—that enables these objects to collect and exchange data.

Dr. Aimal Khan, CEME, NUST

IoT: An Example

Wearable Tech

Healthcare

Computer Essentials

Microprocessor Unit

- Clock driven registered based IC
- Accepts binary data as input
- Process it according to the instruction
- Provide the respective results as output

Microprocessor Unit (MPU)

- MPU (CPU)
 - ALU,
 - Control Unit,
 - Registers

Ch-1

(GPP)

- A CPU with Very High Speeds from few Megahertz to 4 Gegahertz
- Computationaly expensive tasks
- Running the PCs
- Costly
- Example Include: Pentium Series, Itium Series

Microcontrollers

- Microcontroller (MCU)
 - Integrated electronic computing device that includes three major components on a single chip
 - Microprocessor (MPU)
 - Memory
 - I/O (Input/Output) ports
 - Low to moderate clock speeds few kilohertz to few Megahertz

Microcontrollers

- Support Devices
 - Timers
 - A/D converter
 - Serial I/O
- Common communication lines
 - System Bus

If GPP Exists Why Microcontroller?

- Cost effective
- Already added additional circutry
- Easy to program
- Easy to communicate
- Less time to implement
- Easily available
- For simple tasks

Block Diagram of a Microcontroller

Dr. Aimal Khan, CEME, NUST

Popular Microcontrollers Manufacturers

- STMicroelectronics (STM microcontrollers)
 - Mostly use ARM Cortex Processor IP Core
- Renesas Electronics (RX microcontrollers)
 - Mostly use RXv1/RXv2 from Renesas
- Micro Chip (PIC)
 - Mostly use MIPS and also ARM Cortex IP core

Some Popular Microprocessor Manufacturers

- Intel → Pentium, Celeron, Itanium, Quark, etc
- AMD→ athlon, Am29000
- NXP → Coldfire

 Arm Holdings and Qualcom are the largest processor Cores Architecture, giving IP cores through licenses, e.g. Arm Cortex-M core

Word Size of a Processor

- The number of bits a processor can process at a single time
- E.g. An 8 bit processor can only process 8 bits at one time. Similarly a 16 bit or 32 bit processor can process 16 or 32 bits at one time.
- E.g. An 8 bit processor cannot add two numbers greater than 2^8-1 in one go
- It must split into small parts and add them in Series

DATA SIZE

Nibble	4 bit	Nibble = 4 bit (n= 0-3) Range: 0 -15
Byte	8 bit	Byte = 8 bit (n = 0-7) Range: 0 -255 Sign bit 7 Upper 4 3 Lower Nibble Nibble
Word	16 bit	Word = 16 bit (n= 0-15) Range: 0-65,535 Sign bit 15 Upper byte 8 7 Lower byte 0
Long word	32 bit	Sign bit 31 Upper word 16 15 Lower word 0 MSB (Most significant Bit) Long Word = 32 bit (n = 0-31) Range: 0 -4,294,967,295 (Least significant Bit)

Microcontroller Packaging and Appearance

From left to right: PIC 12F508, PIC 16F84A, PIC 16C72, Motorola 68HC05B16, PIC 16F877, Motorola 68000

Packaging of a Microprocessor or Microcontroller

- The body/box of the IC containing the electronic circuitry is called the packaging
- Two microcontrollers from the same company with the same functionalities may have different packaging

Pg-Out Packaging Basic Classes based On Connection with the Board

1. Through Holes Mounting (THM)

- Holes drilled and plated with copper
- Soldering
 - Chips placed inside holes
 - Bottom of board passed through a molten solder

2. Surface Mount Technology (SMT)

- More wiring room inside PC board
- Reduced space between package leads
- Chips on both sides of board
- Soldering
 - Solder paste applied
 - Heat supplied by intense infrared light, heated air,...

SMT and THM

Package Types Based on Structure

Package Types Based on Structure

ICs Pin Numbering

- Dot and Notch
- Pin number starts from the pin with the dot in the anti-clockwise direction

PIC Microcontrollers

- Peripheral Interface Controller (PIC) was originally designed by General Instruments
- In the late 1970s, GI introduced PIC® 1650 and 1655 RISC with 30 instructions.
- PIC was sold to Microchip
- Features: low-cost, self-contained, 8-bit, Harvard structure, pipelined, RISC, single accumulator, with fixed reset and interrupt vectors.

PIC 12F508/509 pin connection diagram

Common Powers (2 of 2)

• Base 2

Power	Preface	Symbol	Value
2^{10}	kilo	k	1024
2^{20}	mega	M	1048576
2^{30}	Giga	G	1073741824

- What is the value of "k", "M", and "G"?
- In computing, particularly w.r.t. memory, the base-2 interpretation generally applies

Endianess

- Little endian little end (least significant byte) stored first (at lowest address), e.g. Intel microprocessors (Pentium etc)
- Big endian big end stored first at low address, e.g.
 SPARC, Motorola microprocessors

Criteria for choosing a microcontroller

- Speed
 - Unit?
- Packaging
 - Types (DIP, QFP)?
- Power consumption
- Amount of RAM and ROM on the chip
- Number of I/O pins
- Peripherals (Timers, Comm Ports, ADCs)
- Cost per unit

Criteria for choosing a microcontroller

- Ease of development
 - Language
 - SDK tools
- Availability in future

Architecture types

- Von Neumann/ Harvard
- Little endian / Big endian
- Fixed/ Floating (FPU)
- RISC/ CISC

Pg-Out

Evaluation and development boards

Dr. Aimal Khan, CEME, NUST

PIC18 Architecture & Assembly Language Programming

Pg-Out

Before Architecture: Main Components of the PIC18

What is an Instruction Set?

- The complete collection of instructions that are understood by a CPU
- Machine language: binary representation of operations and (addresses of) arguments
- Assembly language: mnemonic representation for humans, e.g., OP A,B,C (meaning A <- OP(B,C))

Opcode	Operand Reference	Operand Reference
▼	16 bits	———

Elements of an Instruction in the form of Mnemonics (Assembly Language)

- Operation code (opcode)
 - Do this: ADD, SUB, MPY, DIV, LOAD, STOR
- Source operand reference
 - To this: (address of) argument of op, e.g. register, memory location
- Result operand reference
 - Put the result here (as above)

Machine and Assembly Code

Assembly Code mov.w #0x0600,r1 mov.w #0x5a1e,&0x0120 Assembler mov.w #0,r14 add.b #1,r14 and.b #0x0f,r14 Disassembler push #0x000e sub.w #1,0(r1) ine

Levels of Abstraction

Compiler and Assembler

 Use the compiler installed on your PC to write a program in one of the high-level programming languages and select the appropriate option to compile it into a hex code.

Inside a computer

Figure 0-10. Internal Organization of a Computer

Figure 1-2. Simplified View of a PIC Microcontroller

List of Selected Microcontroller Families from Microchip

_		_
	_	
	n	_
		-/

Part No.	Program OTP/Flash	EE PROM	RAM	Total Pins	LO Pins	ADC Ai	nalog Comp.	Digital Timers/ WDT	Serial I/O	CCP/ ECCP	Max Speed MHz	Instruc- tion Size	Total Instruc- tions
10F200	256x12 Flash		16	8	4			1-8 bit, 1-WDT			4	12-bit	33
10F220	256x12 Flash		16	8	34	2x8-bit	125	1-8 bit, 1-WDT			8	12-bit	33
12F510	1536x12 Flash		38	8	6	3x8-bit	1	1-8 bit 1-WDT			8	12-bit	33
16F506	1536x12 Flash		67	14	12	3x8-bit	2	1-8 bit 1-WDT			20	12-bit	33
16C55A	768x12 OTP		24	28	20			1-8 bit 1-WDT			40	12-bit	33
16CR58B	3072x12 ROM		73	18	12			1-8 bit 1-WDT			20	12-bit	33
12F683	2048x14 Flash	256	128	8	6	4x10-bit	1	1-16 bit, 2-8 bit, 1-WDT			20	14-bit	35
16F687	2048x14 Flash	256	128	20	18	12x10- bit	2	1-16 bit, 1-8 bit, 1-WDT	EU/I ² C/ SPI		20	14-bit	35
18F1230	2048x16 Enh Flash	128	256	18-28	16	4x10-bit	3	2-16 bit I-WDT	EU		40	16-bit	77
18F4520	16384x16 Enh Flash	256	1536	40-44	36	13x10- bit	2	1-8 bit, 3-16 bit, 1-WDT	EU/ MI ² C SPI	1/1	40	16-bit	77
18F6527	24576x16 Enh Flash	1024	3936	64	54	12x10- bit	2	2-8 bit, 3-16 bit, 1-WDT	2EU/ 2 - MI ² C/SPI	2/3	40	16-bit	77
18F8622	32768x16 Enh Flash	1024	3936	80	70	16x10- bit	2	2-8 bit, 3-16 bit, 1-WDT	2EU/ 2 - MI ² C /SPI	2/3	40	16-bit	77
18F96J60	32768x16 Flash		2048	100	72	16x10- bit	2	2-8 bit, 3-16 bit, 1-WDT	2EU/ 2 - MI ² C/SPI	2/3	42	16-bit	77
24FJ128GA- 010	65536x16 Flash		8192	100- 128	86	16x10- bit	2	5-16 bit, 1-WDT	2 -UART 2-I ² C/ SPI	5	32	16-bit	77

Abbreviations: 1) ADC: Analog-Digital Converter, 2) AUSART: Addressable USART, 3) CCP: Capture/Compare/PWM, 4) ECCP: Enhanced CCP,

5) EU: Enhanced USART, 6))Enh Flash: Enhanced Flash, 7) I²C: Inter-integrated Circuit Bus, 8) MI²C/SPI: Master I²C /SPI, 9) OTP: One-Time Programmable,

 SPI: Serial Peripheral Interface, 11) USART: Universal Synchronous Asynchronous Receiver Transmitter, 11) WDT: Watchdog Timer Dr. Aimal Khan, CEME, NUST

PIC18F – MPU and Memory

PIC18F Microcontrollers

- Microcontroller Unit (MCU)
 - Microprocessor unit (MPU)
 - Harvard Architecture
 - Program memory for instructions
 - Data memory for data
 - I/O ports
 - Support devices such as timers

PIC18F Instructions

- 77 assembly language instructions
 - Earlier PIC families have 33 or 35 instructions
- PIC18F instruction set
 - Most instructions are 16-bit word length

Microprocessor Unit

- Includes Arithmetic Logic Unit (ALU), Registers, and Control Unit
 - Arithmetic Logic Unit (ALU)
 - Instruction Decoder
 - -16 bit instruction
 - Status register that stores flags
 - 5-bits
 - WREG Working Register
 8- bit accumulator

Microprocessor Unit

- Registers
 - Program Counter (PC)
 - 21-bit register that holds the Program Memory address
 - Bank Select Register (BSR)
 - 4-bit register used to select a bank in the memory
 - File Select Registers (FSRs)
 - 12-bit registers used as memory pointers in indirect addressing Data Memory
- Control unit
 - Provides timing and control signals
 - Read and Write operations

PIC18F - Address Buses

- Address bus
 - 21-bit address bus for Program Memory
 - Addressing capacity: 2 MB
 - 12-bit address bus for Data Memory
 - Addressing capacity: 4 KB

Data Bus and Control Signals

- Data bus
 - 16-bit instruction/data bus for Program Memory
 - 8-bit data bus for Data Memory
- Control signals
 - Read and Write

PIC18F452/4520 Memory

- Program Memory: 32 K
 - Address range: 000000 to 007FFF_H
- Data Memory: 4 K
 - Address range: 000 to FFF_H

PIC registers

WREG (working register)

- Aka as accumulator in microprocessors
- Used for all arithmetic and logic instructions
- Only one in PIC18 family

WREG instructions

- MOVLW
 - moves 8-bit data into the WREG register
- ADDLW
 - add the literal value K to register WREG and put the result back in the WREG register
- Example

```
MOVLW 25H ;load 25H into WREG
ADDLW 34H ;add value 34 to W(W = W + 34H)
```

File register

- Divided in 2 sections
- Data RAM
 - used for data storage and scratch pad
- SFRs (Special function registers)
 - dedicated to specific functions such as ALU status, timers, serial communication, I/O ports, ADC

Table 2-1: File Register Size for PIC Chips									
Fi		SFR		Available space for GPR					
	(Bytes)	=	(Bytes)	+	(Bytes)				
PIC12F508	32		7		25				
PIC16F84	80		12		68				
PIC18F1220	512		256		256				
PIC18F452	1792		256		1536				
PIC18F2220	768		256		512				
PIC18F458	1792		256		1536				
PIC18F8722	4096		158		3938				

Simple Instruction Format in Machine Language (using two addresses)

PIC18F452 Programming Model

F80h	PORTA	FA0h	PIE2	FC0h	•	FE0h	BSR	
F81h	PORTB	FA1h	PIR2	FC1h	ADCON1	FE1h	FSR1L	l
F82h	PORTC	FA2h	IPR2	FC2h	ADCON0	FE2h	FSR1H	
F83h	PORTD	FA3h		FC3h	ADRESL	FE3h	PLUSW1	٠
F84h	PORTE	FA4h		FC4h	ADRESH	FE4h	PREINC1	٠
F85h		FA5h		FC5h	SSPCON2	FE5h	POSTDEC1	•
F86h		FA6h		FC6h	SSPCON1	FE6h	POSTINC1	٠
F87h		FA7h		FC7h	SSPSTAT	FE7h	INDF1	*
F88h		FA8h		FC8h	SSPADD	FE8h	WREG	
F89h	LATA	FA9h		FC9h	SSPBUF	FE9h	FSR0L	
F8Ah	LATB	FAAh		FCAh	T2CON	FEAh	FSR0H	
F8Bh	LATC	FABh	RCSTA	FCBh	PR2	FEBh	PLUSW0	٠
F8Ch	LATD	FACh	TXSTA	FCCh	TMR2	FECh	PREINC0	٠
F8Dh	LATE	FADh	TXREG	FCDh	T1CON	FEDh	POSTDEC0	٠
F8Eh	****	FAEh	RCREG	FCEh	TMR1L	FEEh	POSTINC0	٠
F8Fh		FAFh	SPBRG	FCFh	TMR1H	FEFh	INDF0	٠
F90h		FB0h		FD0h	RCON	FF0h	INTCON3	
F91h		FB1h	T3CON	FD1h	WDTCON	FF1h	INTCON2	
F92h	TRISA	FB2h	TMR3L	FD2h	LVDCON	FF2h	INTCON	
F93h	TRISB	FB3h	TMR3H	FD3h	OSCCON	FF3h	PRODL	
F94h	TRISC	FB4h		FD4h		FF4h	PRODH	
F95h	TRISD	FB5h		FD5h	TOCON	FF5h	TABLAT	
F96h	TRISE	FB6h		FD6h	TMR0L	FF6h	TBLPTRL	
F97h		FB7h		FD7h	TMR0H	FF7h	TBLPTRH	
F98h		FB8h		FD8h	STATUS	FF8h	TBLPTRU	
F99h		FB9h		FD9h	FSR2L	FF9h	PCL	
F9Ah		FBAh	CCP2CON	FDAh	FSR2H	FFAh	PCLATH	
F9Bh		FBBh	CCPR2L	FDBh	PLUSW2	 FFBh 	PCLATU	
F9Ch		FBCh	CCPR2H	FDCh	PREINC2	 FFCh 	STKPTR	
F9Dh	PIE1	FBDh	CCP1CON	FDDh	POSTDEC2	 FFDh 	TOSL	
F9Eh	PIR1	FBEh	CCPR1L		POSTINC2	• FFEh	TOSH	
F9Fh	IPR1	FBFh	CCPR1H	Aimal Khan GEME	NINDF2	 FFFh 	TOSU	
								ě.

Operation Procedure

ADDWF instruction

- adds together the contents of WREG and a file register location
- Used both working and file registers
- Format

ADDWF fileReg, D, a

- Where D is the destination ('w' or 'f')
- a is 1 for no access bank and 0 for access bank
- If a is not specified then A =0 is considered

Default Access Bank Instructions

MOVWF instruction

- tells the CPU to copy the source register WREG to a destination in the file register (F)
- literal (immediate) values cannot be moved directly into the general-purpose RAM locations

Example- MOVWF

MOVLW	99H	;load	WREG	with	value	99H
MOVWF	12H					
MOVLW		;load	WREG	with	value	85H
MOVWF		2 2		4 . 3		2 011
MOVLW		;load	WREG	with	value	3 FH
MOVWF		heal	WREG	with	value	634
MOVWF		, road	MALO	wich	varue	0311
MOVLW	12H	;load	WREG	with	value	12H
MOVWF	16H					

Address	Data
012	99
013	85
014	3F
015	63
016	12

```
MOVLW 0 ;move 0 WREG to clear it (WREG = 0)

MOVWF 12H ;move WREG to location 12 to clear it

MOVLW 22H ;load WREG with value 22H

ADDWF 12H, F ;add WREG to loc 12H, loc 12 = sum

ADDWF 12H, F ;add WREG to loc 12H, loc 12 = sum

ADDWF 12H, F ;add WREG to loc 12H, loc 12 = sum

ADDWF 12H, F ;add WREG to loc 12H, loc 12 = sum

ADDWF 12H, F ;add WREG to loc 12H, loc 12 = sum
```

Memory contents

Address	Data	Address	Data	Address	Data	Address	Data
011		011		011		011	
012	22	012	44	012	66	012	88
013		013		013		013	