DSC 190 Machine Learning: Representations

Lecture 13 | Part 1

Convexity in 1-d

Neural Networks

A NN is just a function: $f(\vec{x}; \vec{w})$

Example

Learning

- **Given**: a data set $(\vec{x}^{(i)}, y_i)$
- Find: weights \vec{w} minimizing some cost function (e.g., expected square loss):

$$C(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right)^2$$

Problem: there is no closed-form solution

Gradient Descent

▶ **Idea**: start at arbitrary $\vec{w}^{(0)}$, walk in direction of gradient:

$$\nabla C = \begin{pmatrix} \frac{\partial C}{\partial w_0} \\ \frac{\partial C}{\partial w_1} \\ \vdots \\ \frac{\partial C}{\partial w_k} \end{pmatrix}$$

Question

When is gradient descent guaranteed to work?

Not here...

Convex Functions

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$ does not go below the plot of f .

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$ does not go below the plot of f .

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$

does not go below the plot of f.

► f is convex if for every a, b the line segment between

$$(a, f(a))$$
 and $(b, f(b))$ does not go below the plot of f .

Other Terms

- ▶ If a function is not convex, it is **non-convex**.
- Strictly convex: the line lies strictly above curve.
- **Concave:** the line lines on or below curve.

Convexity: Formal Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for every choice of $a, b \in \mathbb{R}$ and $t \in [0, 1]$:

$$(1-t)f(a) + tf(b) \ge f((1-t)a + tb).$$

Example

Is f(x) = |x| convex?

Another View: Second Derivatives

- ► If $\frac{d^2f}{dx^2}(x) \ge 0$ for all x, then f is convex.
- Example: $f(x) = x^4$ is convex.
- Warning! Only works if f is twice differentiable!

Another View: Second Derivatives

- "Best" straight line at x_0 :
 - $h_1(z) = f'(x_0) \cdot z + b$
- "Best" parabola at x_0 :
 - At x_0 , f looks likes $h_2(z) = \frac{1}{2}f''(x_0) \cdot z^2 + f'(x_0)z + c$
 - Possibilities: upward-facing, downward-facing.

Convexity and Parabolas

- \triangleright Convex if for **every** x_0 , parabola is upward-facing.
 - ► That is, $f''(x_0) \ge 0$.

Convexity and Gradient Descent

- Convex functions are (relatively) easy to optimize.
- Theorem: if R(x) is convex and differentiable¹² then gradient descent converges to a **global optimum** of *R provided* that the step size is small enough³.

¹and its derivative is not too wild

²actually, a modified GD works on non-differentiable functions

³step size related to steepness.

Nonconvexity and Gradient Descent

- Nonconvex functions are (relatively) hard to optimize.
- Gradient descent can still be useful.
- But not guaranteed to converge to a global minimum.

DSC 190 Machine Learning: Representations

Lecture 13 | Part 2

Convexity in Many Dimensions

• $f(\vec{x})$ is **convex** if for **every** \vec{a} , \vec{b} the line segment between

$$(\vec{a}, f(\vec{a}))$$
 and $(\vec{b}, f(\vec{b}))$

does not go below the plot of f.

Convexity: Formal Definition

A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for every choice of $\vec{a}, \vec{b} \in \mathbb{R}^d$ and $t \in [0, 1]$:

$$(1-t)f(\vec{a}) + tf(\vec{b}) \ge f((1-t)\vec{a} + t\vec{b}).$$

The Second Derivative Test

- For 1-d functions, convex if second derivative ≥ 0 .
- ► For 2-d functions, convex if ???

The Hessian Matrix

Create the Hessian matrix of second derivatives:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_2^2} (\vec{x}) \end{pmatrix}$$

In General

▶ If $f : \mathbb{R}^d \to \mathbb{R}$, the **Hessian** at \vec{x} is:

$$H(\vec{x}) = \begin{pmatrix} \frac{\partial f^2}{\partial x_1^2} (\vec{x}) & \frac{\partial f^2}{\partial x_1 x_2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_1 x_d} (\vec{x}) \\ \frac{\partial f^2}{\partial x_2 x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_2^2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_2 x_d} (\vec{x}) \\ \cdots & \cdots & \cdots \\ \frac{\partial f^2}{\partial x_d x_1} (\vec{x}) & \frac{\partial f^2}{\partial x_d^2} (\vec{x}) & \cdots & \frac{\partial f^2}{\partial x_d^2} (\vec{x}) \end{pmatrix}$$

The Second Derivative Test

- A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if for any $\vec{x} \in \mathbb{R}^d$, the Hessian matrix $H(\vec{x})$ is **positive semi-definite**.
- That is, all eigenvalues are ≥ 0

DSC 190 Machine Learning: Representations

Lecture 13 | Part 3

Basic Backpropagation

Learning

- **Given**: a data set $(\vec{x}^{(i)}, y_i)$
- Find: weights \vec{w} minimizing some cost function (e.g., expected square loss):

$$C(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (f(\vec{x}^{(i)}; \vec{w}) - y_i)^2$$

Problem: there is no closed-form solution

Gradient Descent

ldea: start at arbitrary $\vec{w}^{(0)}$, walk in direction of gradient:

$$\nabla C = \begin{pmatrix} \frac{\partial C}{\partial w_0} \\ \frac{\partial C}{\partial w_1} \\ \vdots \\ \frac{\partial C}{\partial w_k} \end{pmatrix}$$

Computing the Gradient

- To train a neural network, we can use gradient descent.
- Involves computing the gradient of the cost function.
- Backpropagation is one method for efficiently computing the gradient.

The Gradient

$$\nabla_{\vec{w}} C(\vec{w}) = \nabla_{\vec{w}} \frac{1}{n} \sum_{i=1}^{n} \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right)^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla_{\vec{w}} \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right)^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} 2 \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right) \nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$$

Interpreting the Gradient

$$\nabla_{\vec{w}} C(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} 2 \left(f(\vec{x}^{(i)}; \vec{w}) - y_i \right) \nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$$

- The gradient has one term for each training example, $(\vec{x}^{(i)}, y_i)$
- If prediction for $\vec{x}^{(i)}$ is good, contribution to gradient is small.
- $\nabla_{\vec{w}} f(\vec{x}^{(i)}; \vec{w})$ captures how sensitive $f(\vec{x}^{(i)})$ is to value of each parameter.

The Chain Rule

- Recall the chain rule from calculus.
- ▶ Let $f,g: \mathbb{R} \to \mathbb{R}$
- ► Then:

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g(x)$$

Alternative notation: $\frac{d}{dx}f(g(x)) = \frac{df}{dg}\frac{dg}{dx}(x)$

Example

$$f(x) = x^2$$
; $g(x) = 2x + 1$

The Chain Rule for NNs

Computation Graphs

Example

General Formulas

- Derivatives are defined recursively
- Easy to compute derivatives for early layers if we have derivatives for later layers.
- ► This is **backpropagation**.

$$\frac{\partial f}{\partial w^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot \frac{\partial a^{(\ell)}}{\partial z^{(\ell)}} \cdot \frac{\partial z^{(\ell)}}{\partial w^{(\ell)}}$$

$$\frac{\partial f}{\partial a^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell+1)}} \cdot \frac{\partial a^{(\ell+1)}}{\partial z^{(\ell+1)}} \cdot \frac{\partial z^{(\ell+1)}}{\partial a^{(\ell)}}$$

Warning

- ► The derivatives depend on the network architecture
 - Number of hidden nodes / layers
- Backprop is done automatically by your NN library

Backpropagation

Compute the derivatives for the last layers first; use them to compute derivatives for earlier layers.

DSC 190 Machine Learning: Representations

Lecture 13 | Part 4

A More Complex Example

Complexity

► The strategy doesn't change much when each layer has more nodes.

Computational Graph

Example

General Formulas

$$\frac{\partial f}{\partial w_{ij}^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell)}} \cdot \frac{\partial a^{(\ell)}}{\partial z^{(\ell)}} \cdot \frac{\partial z^{(\ell)}}{\partial w_{ij}^{(\ell)}}$$

$$\frac{\partial f}{\partial a^{(\ell)}} = \frac{\partial f}{\partial a^{(\ell+1)}} \cdot \frac{\partial a^{(\ell+1)}}{\partial z^{(\ell+1)}} \cdot \frac{\partial z^{(\ell+1)}}{\partial a^{(\ell)}}$$

DSC 190 Machine Learning: Representations

Lecture 13 | Part 5

Intuition Behind Backprop

Intuition

