LEVEL-I

(B) $ay^2 + 2hxy + bx^2n = 0$ (D) $bx^2 - 2hxy + ay^2 = 0$

(B) (1, -1) (C) (1, -2) (D) (-1, -1), (1, 1)

1.

2.

3.

points.

(A) (-1, 1)

equation. (A) $ax^2 - 2hxy + by^2 = 0$ (C) $bx^2 + 2hxy + ay^2$

 y_1), (x_2, y_2) and (x_3, y_3) .

If $a^2 + b^2 - c^2 + 2ab = 0$, then family of straight lines ax + by + c = 0 is concurrent at the

The pair of straight lines perpendicular to the pair of lines $ax^2 + 2hxy + by^2 = 0$ has the

If x_1 , x_2 , x_3 as well as y_1 , y_2 , y_3 are in G.P with same common ratio (\neq 1) then the points (x_1 ,

	y ₁), (x ₂ , y ₂) and (x ₃ , y ₃). (A) lie on a straight line (C) lie on a circle	(B) lie on an e (D) are the ve	ellipse rtices of a triangle	
4.	If a, c, b are in A.P the family	of line ax + by	+ c = 0 passes through	gh the point.
	(A) $\left(\frac{1}{2}, \frac{1}{2}\right)$ (B) $(1, -2)$	(C) (1, 2)	$(D)\left(\frac{-1}{2},\frac{-1}{2}\right)$	
5.	The image of the point $(3, -8)$ $(A) (-8, 3)$ $(B) (-3)$	3) in the line x+ 3, 8) (C) (8,		, 8)
6.	The nearest point on the line			
	(A) $(3, -1/3)$ (B) $\left(\frac{10}{13}, \frac{15}{13}\right)$	(C) (0, 5/3)	(D) (1, 1)	
7.	A straight line through A(2, 2) equation is.	1) is such that i	ts intercept between t	the axis is bisected at A. its
	(A) $2x + y - 4 = 0$ (B) $x + 4 = 0$	-2y - 4 = 0	(C) $x + 2y - 4 = 0$	(D) $x + 2y - 2 = 0$
8.	The incentre of the triangle v	vith vertices (1,	$\sqrt{3}$), (0, 0) and (2, 0)	is.
	(A) $\left(1, \frac{\sqrt{3}}{2}\right)$ (B) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$	$(C)\left(\frac{2}{3},\frac{\sqrt{3}}{2}\right)$	(D) $\left(1, \frac{1}{\sqrt{3}}\right)$	
9.	It is desired to construct a rig are parallel to coordinates 3x+1 and y = mx +2 respect is /are,	axis and the	medians through A a	and B lie on the lines y =
	(A) 12	(B) 3/4	(C) 4/3	(D) 1/12
10.	The equation of the line bise	ecting the obtu	ıse angle between y -	-x = 2 and $\sqrt{3}$ y +x = 5 is
	(A) $\frac{y-x-2}{\sqrt{2}} = \frac{\sqrt{3}y+x-5}{2}$		(B) $\frac{y+x-2}{\sqrt{2}} = \frac{\sqrt{3}y+2}{2}$	$\frac{x-5}{2}$
	(C) $\frac{-y+x+2}{\sqrt{2}} = \frac{\sqrt{3}y-x-5}{2}$		(D) none of these	
11.	If the intercept made on the range of m is	line y = mx by	the lines $x = 2$ and x	=5 is less then 5, then the

	(A) (-4/3,4/3)	(B) $(-\infty, -4/3) \cup (-\infty)$	4/3 , ∞)	(C) [-4/3, 4/3)	(D) none of these.
12.	The equations of three coordinates of the circu(A) (6, 3)		angle are	5, y - 2 = 0 ar (6, -3)	x + y = 9. The
	(C) (-6, 3)		(D) none of these.	
13.	The equation of a straig equal length on the axes (A) $2x + y + 1 = 0$ (C) $x - y + 5 = 0$		ough the p (B) x -y = (D) none o	5	making intercepts of
14.	If the intercept made on	the line $y = mx$ by	,		less than 5 then the
	range of values of m is (A) $\left(-\infty, -\frac{4}{3}\right) \cup \left(\frac{4}{3}, \infty\right)$		(B) $\left(-\frac{4}{3},\right.$		
	$(C)\left(-\frac{3}{4},\frac{3}{4}\right)$		(D) none	of these	
15.	If a, c, b are in G.P then (A) has a fixed direction (B) always passes throug (C) forms a triangle with (D) none of these	gh a fixed point			
16.	If a ray travelling along the line along which the the (A) y = 0 (C) x = 0			1	1, then the equation
17.	The equations of the land $2x - 3y = 7$. The line (A) incentre (C) circumcentre			hrough the id	3x - 4y = 0, $x+y = 0$
18.	If the lines $x = a + m$, $y = (A) 0$ (C) $2\sqrt{2}$	-2 and y = mx are	(B) √2	, the least value of) None of these	f a is
19.	Equation of a line passi perpendicular to the line (A) $x - 2y = 0$ (C) $y - x = 0$		ersection of (B) x+ 2y (D) y+x	=0	3 and $x + y = 1$ and
20.	If the sum of the reciproof then the line always pass (A) (5, -5) (C) (-5, -5)	-	s made by (B) (-5, 5) (D) (5, 5)		dinate axes is 1/5,
21.	If $4a^2 + 9b^2 - c^2 + 12ab$	-0 a b a c D+ ++	,,,,,,,	nily of straight line	6 3 X T P/Y C = 0 ic
۷۱.	concurrent at (A) (2, 3) (C) 2, -3)	= ∪, a, υ, c ∈ ĸ , lſ	(B) (-2, - (D) (-3, 2	- 3)	5 ax + by + C = 0 IS

35.	The image of the point (1, 3) in the line x + (A) (3, 5) (B) (5, 3)	y - 6 = 0 is (C) $(1, -3)$	(D) (-1, 3)		
36.	The lines joining the origin to the points $3x + y = 1$ given by		-		
	(A) $x^2 - y^2 - 5xy = 0$ (B) $x^2 - y^2 + 5xy = 0$	(C) $x^2 + y^2 - 5xy = 0$	(D) $x^2 + y^2 + 5xy = 0$		
37.	The distance between the lines $3x + 4y = 9$: (A) 3 /10 (C) 33 /5	and 6x + 8y +15 =0 (B) 33 /10 (D) None of these			
38.	The equations of the three sides of a transcoordinates of the circumcentre of the trians (A) $(4,0)$ (C) $(0,4)$		+1=0 and x +2y =4. The		
39.	If the lines $y - x = 5$, $3x + 4y = 1$ and $y = mx + (A) 19/5$ (C) $5/19$	3 are concurrent then t (B) 1 (D) None of these	the value of m is		
40.		A line passing through the origin and making an angle $\pi/4$ with the line y – 3x =5 has the			
	equation (A) $x + 2y = 0$ (C) $x = 2y$	(B) 2x =y (D) y - 2x =0			
41.	The points $(-1, 1)$ and $(1, -1)$ are symmetry	trical about the line			
	(A) $y + x = 0$ (C) $x + y = 1$	(B) y =x (D) None of these			
42.	The member of the family of lines (p +q)x + (2p +q)y = p + 2q, where $p \neq 0$, $q \neq 0$, pass				
	through the point (A) (3, -1) (C) (1, 1)	(B) - 3 ,1) (D) None of these			
43.	The equation of straight line which passes t	through the point (1, 2)	and makes an angle		
	$\cos^{-1}\left(-\frac{1}{3}\right)$ with the x- axis is	G , (, ,	g		
	(A) $2\sqrt{2} x + y - 2(\sqrt{2} + 1) = 0$	(B) $2x + \sqrt{2}y - \sqrt{2} =$	= 0		
	(C) $x + 2\sqrt{2}y - 2\sqrt{2}(\sqrt{2} - 1) = 0$	(D) none of these			
44.	The quation of the line joining the points (-				
	(A) $x + y - 1 = 0$ (C) $x + y + 2 = 0$	(B) $x + y + 1 = 0$ (D) $x + y - 2 = 0$			
45.	The equation of the line through (3, 4) and p		x +5 is		
	(A) $3x - y - 5 = 0$ (C) $3x + y + 5 = 0$	(B) $3x + y - 5 = 0$ (D) $3x - y + 5 = 0$			
46.	Locus of the point of intersection of lines				
	$x \cos \alpha + y \sin \alpha = a \text{ and } x \sin \alpha - y \cos \alpha = a$ (A) $x^2 + y^2 = a^2$ (C) $x^2 + y^2 + 2x + 2y = a^2$	a $(\alpha \in R)$ is (B) $x^2 + y^2 = 2a^2$ (D) none of these			

(C) 0

(D) none of these

(A) -2

(B) 2

47.	The quadratic equation whose roots are to $(1, 1)$ and making a triangle of area A with a $(A) x^2 + Ax + 2A = 0$ $(C) x^2 - Ax + 2A = 0$	the x and y intercepts of the line passing through axes is (B) $x^2 - 2Ax + 2A = 0$ (D) None of these
48.	The area of the quadrilateral formed by $y = (A) 1$ (C) $3/2$	1 - x, $y = 2 - x$ and the coordinate axes is (B) 2 (D) None of these
49.	The incentre of the triangle formed by the line (A) $(0, 2 - \sqrt{2})$ (C) $(2 + \sqrt{2}, 0)$	nes y = x and y = 1 is (B) $(2 - \sqrt{2}, 0)$ (D) $(0, 2 + \sqrt{2})$
50.	If one vertex of an equilateral triangle is at length of each side is $ \text{(A)} \sqrt{\frac{3}{2}} \qquad \qquad \text{(B)} \sqrt{\frac{2}{3}} $	t (1, -2) and the base is $x + y + 2 = 0$, then the (C) $\frac{2}{3}$
51.	Points on the line $x + y = 4$ that lie at a unit (A) (3, 1) and (-7, 11) (B) (-3, 7) and (-7, 11)	distance from the line 4x+ 3y-10=0 are 3, 7) and (2, 2) (D) none of these
52.	The locus of the mid-point of the portion $x \cos \alpha + y \sin \alpha = p$, where p is a constant (A) $x^2 + y^2 = 4p^2$ (C) $x^2 + y^2 = \frac{4}{p^2}$	on intercepted between the axes by the line is $ (B) \ \frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2} $ $ (D) \ \frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2} $
53.	The straight lines of the family x(a+b) + y (a (A) not concurrent (C) Concurrent at (1, 1)	-b) = 2a (a and b being parameters) are (B) Concurrent at (1, -1) (D) None of these
54.	If the sum of the distances of a point from its locus is (A) square (C) straight line	two perpendicular lines in a plane is 1, then (B) a circle (D) two intersecting lines
55.	If the line $y = mx$ meets the lines $x + 2y - 1$ m is equal to (A) 1 (C) 2	= 0 and $2x - y + 3 = 0$ at the same point, then (B) -1 (D) -2
56.	The area inclosed by $3 x + 4 y \le 12$ is (A) 6 squar units (C) 24 square units	(B) 12 sq. units (D) 36 square units
57.	If a, b, c are in A.P. then line 2ax + 3by + (A) (2, -2) (C) (3/2, -2)	3c = 0 always passes through fixed point (B) (3/2, 2) (D) none of these

58.	Equation $(3a - 2b)x^2 + (c - 2a)y^2 + 2c$ perpendicular to each other then $(a - 2a)x^2 + 2c$ (A) b + c (C) c - b		of straight lines which are
59.	ax + by + c = 0 represents a line para (A) $a = 0$, $b = 0$ (C) $a \neq 0$, $b = 0$	allel to x-axis if (B) $a = 0$, $b \ne 0$ (D) $c = 0$	
60.	If the angle between the two straight li	nes represented by 2x ² + 5x	$xy + 3y^2 + 7y + 4 = 0$ is $tan^{-1}m$
	then m equals to (A) 1/5 (C) 7/5	(B) 1 (D) 7	
61.	The diagonals of a parallelogram F 4bx – 2ay =100. Then PQRS must be		ht lines $ax + 2by = 50$ and
	(A) rhombus (C) square	(B) rectangle (D) none of these	
62.	The area enclosed by $ x + y = 1$ is (A) 1	(B) 2	
	(C) 3	(D) 4	
63.	If the line $6x - y + 2 + k(2x + 3y + 13) =$	0 is parallel to x-axis, then	the value of k is
	(A) $-\frac{1}{3}$ (B) $\frac{1}{3}$	(C) –3	(D) 3
64.	The straight line passing through the		straight lines $x - 3y + 1 = 0$
	and $2x + 5y - 9 = 0$ and having infinite (A) $x = 2$ (B) $3x + y - 1 = 0$		(D) none of these
65.	The equations of the lines through (-1	, -1) and making angle 45	° with the line $x + y = 0$ are
	given by (A) $x^2 - xy + x - y = 0$ (E) (C) $xy + x + y = 0$	B) $xy - y^2 + x - y = 0$ (D) $xy + x + y + 1 = 0$	
66.	If a line is perpendicular to the line 5x	c - y = 0 and forms a triang	gle with coordinate axes of
	area 5 sq. units, then its equation is (A) $x + 5y \pm 5\sqrt{2} = 0$ (B)	3) $x - 5y \pm 5 \sqrt{2} = 0$	
		O) $5x - y \pm 5\sqrt{2} = 0$	
67.	The co-ordinates of foot of the perpend		
	(A) $\left(\frac{1}{2}, \frac{3}{2}\right)$ (B) $\left(-\frac{1}{2}, \frac{3}{2}\right)$	(C) $\left(\frac{4}{3}, \frac{1}{2}\right)$	(D) $\left(\frac{3}{4}, -\frac{1}{2}\right)$
68.	The distance of the line $2x - 3y = 4$ from		ection of the line $x + y = 1$ is
69.	If the point (2, a) lies between the lir) = 5, then a lies between
70	If mn = 1, then the lines my $\pm v = 1$ and	d v – nv – 2 will ha	

- 71. If the point $(2a 3, a^2 1)$ is on the same side of the line x + y 4 = 0 as that of the origin, then the set of values of a is
- 72. The set of lines ax + by + c = 0 where 3a + 2b + 4c = 0 is concurrent at the point
- 73. If the image of the point (-2, 1) by a line mirror be (2, -1) then the equation of the line mirror is
- 74. If the point (-2, 0), (-1, $1/\sqrt{3}$) and (cos θ , sin θ) are collinear then the cumber of values of $\theta \in [0, 2\pi]$.
 - (A) 0

(B) 1

(C) 2

- (D) infinite
- 75. If 'a' and 'b' are real numbers between 0 and 1 such that the points (a, 1), (1, b) and (0, 0) from an equilateral triangle then the values of 'a' and 'b' respectively
 - (A) $2 \sqrt{3}$, $2 \sqrt{3}$

(B) $-2 + \sqrt{3}$, $-2 + \sqrt{3}$

(C) $2 \pm \sqrt{3}$, $2 \pm \sqrt{3}$

- (D) none of these
- 76. If $f(x) = \begin{cases} \frac{\log(1+ax) \log(1-bx)}{x}, & x \neq 0 \\ -c, & x = 0 \end{cases}$
 - is continuous at x = 0, then the line ax + by + c = 0 passes through the point
 - (A) (1, -1)

(B) (-1, 1)

(C) (1, 1)

(D) (0, 0)

LEVEL-II

1.		circumcentre \equiv (-2, 1) , 7) (C) (7, 4)	then co- ordinate of orthoo (D) (5/2, 5/2)	centre is.
2.	It the co- ordinates o		are (0, 5), (1, 4) and (2, 5)	then the co- ordinate
	(A) (1, 5) (B) $\left(\frac{3}{2}\right)$	(C) (1, 4)	(D) none of these	
3.	The equation of the in (A) $ y = x + 2$ (C) $y = x - 2 $	nage of pair of rays y =	= $ x $ by the line $x = 1$ is (B) $ y + 2 = x$ (D) none of these	
4.	If the line segment on the origin, then (A) a, n, I are in G.P (C) I, m, n ² are in G.P	Ix + my = n ² intercept	ted by the curve $y^2 = ax sulting$ (B) I, m, n are in G.P (D) I, n^2 , m are in G.P	btends a right angle at
5.	OA.OB.OC.OD (whe	re O is the origin) is		
	(A) a – 2b +c	(B) 2c ² d	(C) 96	(D) 6
6.	refraction it enters the		+ y = 1 is inclined on the x-axis by turning 15° away action ray travels is (B) $\sqrt{3}$ y + x +1 = 0 (D) none of these.	
7.	The coordinates of the lines $ x = y $, is/are	e point(s) on the lin	e $x + y = 5$, which is/ar	e equidistant from the
	(A) (5, 0)		(B) (1, 4)	
	(C) (-5, 0)		(D) (0, -5)	
8.	If the point (a, a) falls (A) $ a = 2$ (C) $ a < 1$	between the lines x +	y = 2, then (B) a =1 (D) a < 1/2	
9.			pordinate axes. If keeping a same line has intercepts p (B) $p = b$, $q = a$ (D) $p = b$, $q = -a$	
10.	equal to 2 sq. units,		rely in first quadrant or fou 3 x . Then possible coordin	
	being the origin) (A) $\left(1+\sqrt{3}, 1+\sqrt{3}\right)$ (C) $\left(\sqrt{3}-1, \sqrt{3}-1\right)$		(B) $\left(-1 - \sqrt{3}, -1 - \sqrt{3}\right)$ (D) none of these	

13.	Equation of the bisec equation of side BC is (A) $2x + y - 3 = 0$		riangle ABC is $y = x$. (B) $x - 5y + 4 = 0$	If A is (2, 6) and B is (1, 1);
	(C) $x - 6y + 5 = 0$		(D) none of these	
14.	Vertex opposite to the	e side $x + y - 2 = 0$ of	the equilateral triangle	e, with centroid at the origin;
	(A) (-1, 1) (C) (-2, -2)		(B) (2, 2) (D) none of these	
15.	` '	`	are two variable po	ints where t is a parameter,
	the locus of the middl (A) a straight line (C) circle	e point of AB is	(B) a pair of straight (D) none of these	line
16.	The ends of a diagor	nal of a square are (2	? ,- 3) and (- 1 ,1). A	nother vertex of the square
	(A) (- 3/2, - 5/2) (C) (1/2, 5/2)		(B) (- 5/2, 3/2) (D) None of these	
17.	If the equations of the then the orthocentre $(A) 13x + 13y = 1$ (C) $169x + y = 0$			3x-2y +6 = 0 and $x + y =1$,
18.	4x + 5y - 3 = 0 lies at (A) (3/5, 11/5)	-	he lines $2x^2 + 3xy - 2$ (B) (6/5, 11/5)	
	(B) (5/6, 11/5)		(D) None of these	
19.	The number of lines t 6) is equal to 6, is	hat can be drawn fron	n the point (2, 3), so the	nat its distance from (-1,
	(A) 1 (C) 0		(B) 2 (D) infinite	
20.	If ∆OAB is an equilate of the triangle will be	eral triangle (O is the o	origin and A is a point	on the x-axis), then centroid
	(A) always rational(C) rational if A is rational		(B) rational if B is rat (D) never rational oth x and y are ration	
21.	Equation of a straigh $3x = 4y + 7$ and $5y =$		the point (4, 5) and	equally inclined to the lines
	(A) $9x - 7y = 1$ (C) $7x - 9y = 73$	12.4 + 0 15	(B) $9x + 7y = 71$ (D) $7x - 9y + 17 = 0$	
22.	Two vertices of a trial then the third vertex is		2, 3). If the orthocentre	e of the triangle is the origin,
	(A) (-4, 7)	(B) (-4, -7)	(C) (4, -7)	(D) (4, 7)
23.			pendicular lines formin	g an isosceles triangle with

LEVEL-III

1.

If the straight lines ax + by + p = 0 and $x \cos \alpha + y \sin \alpha = p$ are inclined at an angle $\pi/4$ and concurrent with the straight line $x \sin \alpha - y \cos \alpha = 0$, then the value of $a^2 + b^2$ is (A) 0 (B) 1 (C) 2 (D) none of these .

2.	If one vertex of an equilateral triangle of the line $x = \sqrt{3}y$, then the third vertex can	side 2 is the origin and another vertex lies on be
	(A) (0, 2)	(B) $(-\sqrt{3}, -1)$
	(C) (-2, -2)	(D) $(\sqrt{3}, 1)$
3.	The locus of a point which divides a line se $y = x$ and B lies on the $y = 2x$ is	gment AB = 4cm in 1 : 2, where A lies on the line
	(A) $234x^2 + 153y^2 - 378xy - 32 = 0$ (C) $234x^2 + 153y^2 + 378xy + 32 = 0$	(B) $234x^2 + 153y^2 - 378xy + 32 = 0$ (D) None of these
4.	All points lying inside the triangle formed by (A) $3x + 2y \ge 0$	the points (1, 3), (5, 0) and (-1, 2) satisfy (B) $2x + y -13 \ge 0$
	(C) $2x - 3y - 12 \ge 0$	(D) $-2x + y \ge 0$
5.	A family of lines is given by $(1 + 2\lambda)x + (7 + 2\lambda)x $	$(1 - \lambda)y + \lambda = 0$, λ being the parameter. The line tance from the point (1, 4) is (B) $12x + 33y = 7$
	(C) $13x + 12y + 9 = 0$	(D) none of these
6.	If $A = (0, 1)$ and $B(2, 0)$ be two points and 'P ordinates of the point 'P' such that $ PA - PE $	
	$(A)\left(\frac{3}{20},-\frac{14}{5}\right)$	$(B)\left(-\frac{3}{20},\frac{14}{5}\right)$
	$(C)\left(\frac{3}{20},-\frac{12}{5}\right)$	(D) $\left(-\frac{24}{5}, \frac{17}{5}\right)$
7.	Consider the points A (0, 1) and B (2, 0). 'P' be the point 'P' such that $ PA - PB $ is maximum, i	a point on the line $4 \times + 3 \times + 9 = 0$ Co-ordinates of s
	$(A)\left(\frac{-12}{5},\frac{17}{5}\right)$	$(B)\left(\frac{24}{5},\frac{-17}{5}\right)$
	$(C)\left(\frac{-24}{5},\frac{17}{5}\right)$	(D) $\left(\frac{12}{5}, \frac{-17}{5}\right)$
8.	A straight line passing through P (3, 1) meet the distance of this straight line from the origin 'O' is	
	(A) $\frac{50}{3}$ sq. units	(B) $\frac{100}{3}$ sq. units
	(C) $\frac{25}{3}$ sq. units	(D) 1 sq. units
9.	Consider the points A (0, 1) and B (2, 0) P be a such that PA+ PB is minimum, is	point on the line $y = x$. Co-ordinates of the point 'P'
	(A) (2/3, 2/3)	(B) (3/2, 3/2)
	(C) (1, ½)	(D) (-2, 2)

10.	Consider the points A (3, 4) a minimum, then 'P' is	nd B (4, 13). If 'P' be a point on the line y = x such that PA + PB is
	(A) $\left(\frac{-31}{7}, \frac{-31}{7}\right)$	$(B)\left(\frac{31}{7},\frac{31}{7}\right)$
	$(C)\left(\frac{13}{7},\frac{13}{7}\right)$	(D) $\left(\frac{23}{7}, \frac{23}{7}\right)$

11. Equation $ax^2 + 2bxy + by^2 = 0$ represents a pair of lines. Combined equation of lines that can be obtained by reflecting these lines about the x – axis is

(A) $bx^2 - 2bxy + ay^2 = 0$ (B) $ax^2 + 2bxy + by^2 = 0$ (C) $bx^2 + 2bxy + ay^2 = 0$ (D) $ax^2 - 2bxy + by^2 = 0$

12. If the point P (a, a^2) lies completely inside the triangle formed by the lines x = 0, y = 0 and x + y = 2, then exhaustive range of 'a' is

(A) $a \in (0, 2)$ (B) $a \in (0, 1)$ (C) $a \in (1, \sqrt{2})$ (D) $a \in (-\sqrt{2}, 1)$

13. Equation of the straight line belonging to the family of lines $(x + y) + \lambda (2x - y + 1) = 0$, that is farthest from (1, -3) is

(A) 13 y - 6 x = 7 (B) 13 y + 6 x = 0 (C) 15 y + 6 x = 7 (D) 15 y - 6 x = 7

14. If a < b < c < d and 'k' is the number of real roots of the equation (x - a) (x - c) + 2 (x - b) (x - d) = 0, then equation of the line parallel to y-axis and cutting an intercept 'k' on x-axis is,

(A) x = 0 (B) x = 1 (C) x = 2 (D) None of these

15. If a, b, c are in A. P., then the straight lines a x + 2y + 1 = 0, b x + 3y + 1 = 0 and c x + 4y + 1 = 0 (A are concurrent (B) form a triangle

(C) are parallel (D) Can't say

16. If a, b, c are in A. P. then the image of the point of intersection of the family of lines ax + by + c = 0 in the line y = 0 lies on the line

(A) x + 2y - 5 = 0 (B) 2x = y = 0 (C) 3x + 4y + 5 = 0 (D) 3x + 4y - 11 = 0

17. If $f(x) = \frac{\log(1+ax) - \log(1-bx)}{x}$, $x \ne 0$ and is continuous at x = 0,

then the line a x + b y + c = 0 passes through the point

(A) (1, -1) (B) (-1, 1) (C) (-1, -1) (D) (1,1)

18. If $m = \left(\frac{i + \sqrt{3}}{2}\right)^{200} + \left(\frac{i - \sqrt{3}}{2}\right)^{200}$, then equation of the image of the line having slope 'm' and passing

through (0, 0) in the x-axis is

(A) x - y = 0(B) x + y = 0(C) 2x - 3y = 0(D) 2x + 3y = 0

19. If 3a + 4b + 2c = 0, then the point of concurrent of the family of lines ax + by + c = 0 and (1, 2) are

(A) on the same sides of the line 4x - y + 1 = 0

(B) on the opposite side of the line 4x - y + 1 = 0

(C) are at equal distances from the origin.

(D) None of these

20. If a, b, c are three consecutive integers, then the family of lines a x + b y + c = 0 are concurrent at the point,

(A) (1, 2) (C) (1, -2)

(B) (-2, 1) (D) None of these

ANSWERS

3.

Α

LEVEL -I

∟ −ı		
1.	D	
5.	С	
9.	В	
13.	С	
17.	D	
21.	В	
23.	В	
25.	С	
27.	Α	
29.	Α	
33.	С	

В

В

Α

Α

B C

37.

41.

45.

49.

52.

56.

60.

Α

Α

В

В

C

Α

D

38.

42.

46.

50.

53.

57.

61.

65.

4.

D

64. A
68.
$$\sqrt{2}$$

72. $\left(\frac{3}{2}, \frac{1}{2}\right)$

LEVEL -II

23.
$$\frac{a^2}{5}$$
25. D

В

24.
$$\left(2-\sqrt{2}, \sqrt{2}-1\right)$$

Α

29.

30.

31.

Α

D