

SECTION-I

2. Write short answers to any EIGHT (8) questions: (16)

(i) Prove that $\frac{a}{b} = \frac{ka}{kb}$, $k \neq 0$

Ans
$$\frac{a}{b} = \frac{a}{b} \cdot 1$$

$$= \frac{a}{b} \cdot \frac{k}{k} = \frac{ak}{bk}$$

$$\frac{a}{b} = \frac{ka}{kb} \text{ Proved.}$$

(ii) Simplify $(5, -4) + (-3, -8)$ and write the answer as a complex number.

Ans
$$(5, -4) + (-3, -8) = (5 - 4i) + (-3 - 8i)$$

$$= \frac{(5 - 4i)}{(-3 - 8i)} \times \frac{(-3 + 8i)}{(-3 + 8i)} = \frac{(5 - 4i)(-3 + 8i)}{(-3)^2 - (8i)^2}$$

$$= \frac{5(-3 + 8i) - 4i(-3 + 8i)}{9 - 64i^2}$$

$$= \frac{-15 + 40i + 12i - 32i^2}{9 - 64(-1)}$$

$$= \frac{-15 + 52i - 32(-1)}{9 + 24}$$

$$= \frac{-15 + 52i + 32}{73} = \frac{17 + 52i}{73}$$

$$= \frac{17}{73} + \frac{52}{73}i$$

(iii) Find the real and imaginary parts of $(\sqrt{3} + i)^3$.

Ans Let $r \cos \theta = \sqrt{3}$ and $r \sin \theta = 1$ where

$$r^2 = (\sqrt{3})^2 + 1^2 \text{ or } r = \sqrt{3+1} = 2 \text{ and } \theta = \tan^{-1} \frac{1}{\sqrt{3}} = 30^\circ$$

$$\text{So, } (\sqrt{3} + i)^3 = (r \cos \theta + i r \sin \theta)^3$$

$$\begin{aligned}
 &= r^3 (\cos 30^\circ + i \sin 30^\circ) \text{ (By De Moivre's Theorem)} \\
 &= 2^3 (\cos 90^\circ + i \sin 90^\circ) \\
 &= 8(0 + i \cdot 1) = 8i
 \end{aligned}$$

Thus, 0 and 8 are respectively real and imaginary parts of $(\sqrt{3} + i)^3$.

- (iv) If $B = \{1, 2, 3\}$, then find the power set of B , i.e., $P(B)$.

Ans If $B = \{1, 2, 3\}$, then

$$P(B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

Construct the truth table for the statement:

$$\sim(p \rightarrow q) \leftrightarrow (p \wedge \sim q)$$

p	q	$\sim q$	$p \rightarrow q$	$\sim(p \rightarrow q)$	$p \wedge \sim q$	$\sim(p \rightarrow q) \rightarrow (p \wedge \sim q)$	$(p \wedge \sim q) \rightarrow \sim(p \rightarrow q)$
T	T	F	T	F	F	T	T
T	F	T	F	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	F	F	T	T

- (vi) For the set $A = \{1, 2, 3, 4\}$, find a relation in A which satisfy $\{(x, y) | y + x = 5\}$.

Ans Relation in A :

$$\begin{aligned}
 r &= \{(x, y) | y + x = 5\} \\
 &= \{(1, 4), (2, 3), (3, 2), (4, 1)\}
 \end{aligned}$$

- (vii) Find the matrix X , if $2X - 3A = B$ and

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 4 & 5 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$$

$$2X - 3A = B$$

$$2X = B + 3A$$

$$2X = \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & -1 \end{bmatrix} + 3 \begin{bmatrix} 1 & -1 & 2 \\ -2 & 4 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 3 & -3 & 6 \\ -6 & 12 & 15 \end{bmatrix}$$

$$= \begin{bmatrix} 3+3 & -1-3 & 0+6 \\ 4-6 & 2+12 & 1+15 \end{bmatrix}$$

$$X = \frac{1}{2} \begin{bmatrix} 6 & -4 & 6 \\ -2 & 14 & 16 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & -4 & 6 \\ 2 & 2 & 2 \\ -2 & 14 & 16 \\ 2 & 2 & 2 \end{bmatrix}$$

$$X = \begin{bmatrix} 3 & -2 & 3 \\ -1 & 7 & 8 \end{bmatrix}$$

(viii) Find A^{-1} if $A = \begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix}$.

Ans $|A| = \begin{vmatrix} 5 & 3 \\ 1 & 1 \end{vmatrix} = 5 - 3 = 2$

Since $|A| \neq 0$, we can find A^{-1} .

$$A^{-1} = \frac{1}{|A|} \text{adj } A$$

$$\Rightarrow A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -3 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{5}{2} \end{bmatrix}$$

(ix) Without expansion, show that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$.

Ans L.H.S = $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix}$

By $(c_1 + c_2)$,

$$= \begin{vmatrix} \alpha + \beta + \gamma & \beta + \gamma & 1 \\ \alpha + \beta + \gamma & \gamma + \alpha & 1 \\ \alpha + \beta + \gamma & \alpha + \beta & 1 \end{vmatrix}$$

Taking common $(\alpha + \beta + \gamma)$ from c_1 ,

$$= (\alpha + \beta + \gamma) \begin{vmatrix} 1 & \beta + \gamma & 1 \\ 1 & \gamma + \alpha & 1 \\ 1 & \alpha + \beta & 1 \end{vmatrix}$$

$$= (\alpha + \beta + \gamma)(0) = 0 = \text{R.H.S.}$$

(x) Prove that sum of cube roots of unity is zero i.e., $1 + \omega + \omega^2 = 0$.

Ans We know that cube roots of unity are:

$$1, \frac{-1 + \sqrt{3}i}{2} \text{ and } \frac{-1 - \sqrt{3}i}{2}$$

If $\omega = \frac{-1 + \sqrt{3}i}{2}$,

then $\omega^2 = \frac{-1 - \sqrt{3}i}{2}$

Sum of all the three cube roots,

$$\begin{aligned}1 + \omega + \omega^2 &= 1 + \frac{-1 + \sqrt{3}i}{2} + \frac{-1 - \sqrt{3}i}{2} \\&= \frac{2 - 1 + \sqrt{3}i - 1 - \sqrt{3}i}{2} \\&= \frac{0}{2} = 0\end{aligned}$$

Hence sum of cube roots of unity

$$1 + \omega + \omega^2 = 0$$

- (xi) Find the numerical value of k , when the polynomial $x^3 + kx^2 - 7x + 6$ has a remainder of -4 when divided by $x + 2$.

Ans Let $f(x) = x^3 + kx^2 - 7x + 6$

and $x - a = x + 2$, we have

$$a = -2$$

(By Remainder Theorem)

$$\text{Remainder} = f(-2)$$

$$\begin{aligned}&= (-2)^3 + k(-2)^2 - 7(-2) + 6 \\&= -8 + 4k + 14 + 6 \\&= 4k + 12\end{aligned}$$

Given that remainder $= -4$

$$\therefore 4k + 12 = -4$$

$$4k = -4 - 12$$

$$4k = -16$$

$$k = -4$$

- (xii) Show that the roots of equation $x^2 + (mx + c)^2 = a^2$ will be equal if $c^2 = a^2(1 + m^2)$.

Ans $x^2 + (mx + c)^2 = a^2$

$$\Rightarrow x^2 + m^2x^2 + 2mcx + c^2 = a^2$$

$$(1 + m^2)x^2 + (2mc)x + (c^2 - a^2) = 0$$

Here, $a = 1 + m^2$, $b = 2mc$, $c = c^2 - a^2$

Now,

$$D = \text{Discriminant} = b^2 - 4ac$$

$$= 4m^2c^2 - 4(1 + m^2)(c^2 - a^2)$$

$$\begin{aligned}
 &= 4[m^2c^2 - (m^2c^2 - m^2a^2 + c^2 - a^2)] \\
 &= 4[m^2c^2 - m^2c^2 + m^2a^2 - c^2 + a^2] \\
 &= 4[m^2a^2 - c^2 + a^2] \\
 D &= 4[a^2(1 + m^2) - c^2]
 \end{aligned}$$

Now roots are equal if $D = 0$

$$\text{So, } 4[a^2(1 + m^2) - c^2] = 0$$

$$\Rightarrow a^2(1 + m^2) - c^2 = 0$$

$$a^2(1 + m^2) = c^2$$

$$\Rightarrow c^2 = a^2(1 + m^2) \quad \text{Proved.}$$

3. Write short answers to any EIGHT (8) questions: (16)

(i) Resolve $\frac{4x^2}{(x^2 + 1)^2(x - 1)}$ into partial fractions.

Ans Let $\frac{4x^2}{(x^2 + 1)^2(x - 1)} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2} + \frac{E}{x - 1}$

$$\Rightarrow 4x^2 = (Ax + B)(x^2 + 1)(x - 1) + (Cx + D)(x - 1) + E(x^2 + 1)^2 \quad (\text{i})$$

$$\begin{aligned}
 \Rightarrow 4x^2 &= (A + E)x^4 + (-A + B)x^3 + (A - B + C + 2E)x^2 \\
 &\quad + (-A + B - C + D)x + (-B - D + E) \quad (\text{ii})
 \end{aligned}$$

Putting $x - 1 = 0 \Rightarrow x = 1$ in (i), we get

$$4 = E(1 + 1)^2 \Rightarrow E = 1$$

Equating the coefficients of x^4, x^3, x^2, x , in (ii), we get

$$0 = A + E \Rightarrow A = -E \Rightarrow A = -1$$

$$0 = -A + B \Rightarrow B = A \Rightarrow B = -1$$

$$4 = A - B + C + 2E$$

$$\Rightarrow C = 4 - A + B - 2E = 4 + 1 - 1 - 2 \Rightarrow C = 2$$

$$0 = -A + B - C + D$$

$$\Rightarrow D = A - B + C = -1 + 1 + 2 = 2 \Rightarrow D = 2$$

Hence, partial fractions are: $\frac{-x - 1}{x^2 + 1} + \frac{2x + 2}{(x^2 + 1)^2} + \frac{1}{x - 1}$

(ii) Resolve $\frac{7x + 25}{(x + 3)(x + 4)}$ into partial fractions.

Ans Suppose $\frac{7x + 25}{(x + 3)(x + 4)} = \frac{A}{x + 3} + \frac{B}{x + 4}$

$$\Rightarrow 7x + 25 = A(x + 4) + B(x + 3)$$

As two sides of the identity are equal for all values of x , let us put $x = -3$, and $x = -4$ in it.

Putting $x = -3$, we get $-21 + 25 = A(-3 + 4)$

$$\Rightarrow \boxed{A = 4}$$

Putting $x = -4$, we get $-28 + 25 = B(-4 + 3)$

$$\Rightarrow \boxed{B = 3}$$

Hence, the partial fractions are: $\frac{4}{x+3} + \frac{3}{x+4}$.

(iii) Write the first four terms of the sequence, $a_n = (-1)^n n^2$.

Ans Given: $a_n = (-1)^n n^2$

By putting $n = 1, 2, 3, 4$ in the above sequence, we have

$$a_1 = (-1)^1 (1)^2 \Rightarrow (-1)(1) = -1$$

$$a_2 = (-1)^2 (2)^2 \Rightarrow 1(4) = 4$$

$$a_3 = (-1)^3 (3)^2 \Rightarrow (-1)(9) = -9$$

$$a_4 = (-1)^4 (4)^2 \Rightarrow (1)(16) = 16$$

So, the first four terms of the sequence are $-1, 4, -9, -16$.

(iv) If $a_{n-3} = 2n - 5$, find nth term of the sequence.

Ans Here, $a_{n-3} = 2n - 5$

By putting, $n = 4, 5, 6$, and 7 .

For $n = 4$,

$$a_{4-3} = 2(4) - 5$$

$$a_1 = 8 - 5$$

$$\boxed{a_1 = 3}$$

For $n = 5$,

$$a_{5-3} = 2(5) - 5$$

$$a_2 = 10 - 5$$

$$a_2 = 5$$

For $n = 6$,

$$a_{6-3} = 2(6) - 5 = 12 - 5$$

$$a_3 = 7$$

For $n = 7$,

$$a_{7-3} = 2(7) - 5 = 14 - 5$$

$$a_4 = 9$$

Thus $a_1 = 3$, $a_2 = 5$, $a_3 = 7$, $a_4 = 9$ is an average progression (A.P.).

The common difference

$$\begin{aligned}d &= a_2 - a_1 = a_3 - a_2 = 2 \\a_n &= a + (n - 1)d \\&= 3 + (n - 1)(2) = 3 + 2n - 2 \\a_n &= 2n + 1\end{aligned}$$

(v) Insert two G.M's between 2 and 16.

Ans Let G_1, G_2 be the two G.Ms between 2 and 16.

Then 2, $G_1, G_2, 16$ are in G.P.

Here, $a = 2$, $n = 4$, $a_4 = 16$

We know $a_n = a r^{n-1}$

For $n = 4$, $a_4 = a r^{4-1}$

$$\Rightarrow 16 = 2(r)^3$$

$$\Rightarrow r^3 = \frac{16}{2} = 8$$

$$\Rightarrow r^3 = (2)^3$$

$$\Rightarrow r = 2$$

$$\text{Thus } G_1 = ar = 2(2) = 4$$

$$G_2 = ar^2 = 2(2)^2 = 8$$

Thus the two G.M's between 2 and 16 are 4, 8.

(vi) Sum the infinite geometric series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$

Ans Here $a = \frac{1}{2}$, $a_1 = \frac{1}{4}$

$$r = \frac{a_1}{a} = \frac{\left(\frac{1}{4}\right)}{\left(\frac{1}{2}\right)} = \frac{1}{4} \cdot 2 = \frac{1}{2}$$

$$\text{Sum of infinite geometric series} = s_{\infty} = \frac{a}{1 - r}$$

$$= \frac{\left(\frac{1}{2}\right)}{1 - \frac{1}{2}}$$

$$= \frac{\frac{1}{2}}{\frac{2-1}{2}} = \frac{1}{2} \cdot \frac{2}{1}$$

$$S_{\infty} = 1$$

(vii) Find the value of n, when ${}^{11}P_n = 11 \cdot 10 \cdot 9$.

Ans

$$\begin{aligned} {}^{11}P_n &= \frac{11!}{(11-n)!} = 11 \times 10 \times 9 \\ \Rightarrow \frac{11!}{(11-n)!} &= 990 \\ \frac{(11-n)!}{11!} &= \frac{1}{990} \\ (11-n)! &= \frac{11!}{990} \end{aligned}$$

$$(11-n)! = \frac{11 \times 10 \times 9 \times 8!}{11 \times 10 \times 9}$$

$$(11-n)! = 8!$$

$$11-n = 8$$

$$\begin{aligned} \Rightarrow n &= 11 - 8 \\ n &= 3 \end{aligned}$$

(viii) Evaluate ${}^{12}C_3$.

Ans

$${}^nC_r = \frac{n!}{(n-r)! r!} \quad (i)$$

By putting n = 12, r = 3 in (i), we have

$$\begin{aligned} {}^{12}C_3 &= \frac{12!}{(12-3)! 3!} \\ &= \frac{12!}{9! 3!} \\ &= \frac{12 \times 11 \times 10 \times 9!}{9! 3 \times 2 \times 1} = 4 \times 11 \times 5 \\ &= 220 \end{aligned}$$

(ix) A die is rolled. What is the probability that the dots on the top are greater than 4?

Ans

$$S = \{1, 2, 3, 4, 5, 6\}$$

$$\Rightarrow n(S) = 6$$

The event E that the dots on the top are greater than 4 = {5, 6}

$$\Rightarrow n(E) = 2$$

$$P(E) = \frac{n(E)}{n(S)} = \frac{2}{6} = \frac{1}{3}$$

- (x) Check the truth of the statement $1 + 5 + 9 + \dots + (4n - 3) = n(2n - 1)$ for $n = 1, 2$.

Ans Let $S(n)$ be the given statement, i.e.,

$$S(n) : 1 + 5 + 9 + \dots + (4n - 3) = n(2n - 1) \dots (i)$$

If $n = 1$, then $S(n) = S(1)$ becomes

$$1(2(1) - 1) \Rightarrow 1(2 - 1) = 1$$

which is true.

Thus, the condition (1) is satisfied as $S(1)$ is true.

Let's assume $S(n)$ is true for $n = k \in N$, i.e.,

$$1 + 5 + 9 + \dots + (4k - 3) = k(2k - 1) \dots (ii)$$

By adding $(4k + 1)$ in both sides, we have

$$\begin{aligned} 1 + 5 + 9 + \dots + (4k - 3) + (4k + 1) &= k(2k - 1) + (4k + 1) \\ &= 2k^2 + 3k + 1 \\ &= 2k^2 + 2k + k + 1 \\ &= 2(k + 1) + 1(k + 1) \\ &= (k + 1)(2k + 1) \end{aligned}$$

$$\text{or } 1 + 5 + 9 + \dots + (4k + 4 - 3) = (k + 1)(2k + 2 - 1)$$

$$1 + 5 + 9 + \dots + [4(k + 1) - 3] = (k + 1)[2(k + 1) - 1] \dots (iii)$$

The equation (iii) is of same form as the equation (ii) except that k is replaced by $k + 1$.

Thus from $S(k)$, we have obtained $S(k + 1)$, so the condition (2) is satisfied. Since both the conditions are satisfied, so the statement $1 + 5 + 9 + \dots + (4n - 3) = n(2n - 1)$ is true for $n = 1, 2$.

- (xi) Calculate by means of binomial theorem (2.02)⁴.

Ans $(2.02)^4 = (2 + 0.02)^4$

$$\begin{aligned} &= 2^4 + \binom{4}{1} 2^3 (0.02) + \binom{4}{2} 2^2 (0.02) + \binom{4}{3} 2 (0.02)^3 \\ &\quad + \binom{4}{4} (0.02)^4 \end{aligned}$$

$$= 16 + (4)(8)(0.02) + \left(\frac{4 \times 3}{2 \times 1}\right)(4)(0.004) + (4)(2)$$

$$(0.000008) + 1(0.00000016)$$

$$= 16 + 0.64 + 0.0096 + 0.000064 + 0.00000016$$

$$= 16.64966416$$

(xii) If x is so small that its square and higher powers can be neglected, then show that $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3}{2}x$.

Ans L.H.S $= \frac{\sqrt{1+2x}}{\sqrt{1-x}} = (1+2x)^{1/2} (1-x)^{-1/2}$ (i)

$$\text{Take } (1+2x)^{1/2} = \left\{ 1 + \frac{1}{2}(2x) + \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!} (2x)^2 + \dots \right\}$$

$$= \{1+x\} \text{ neglecting } x^2 \text{ and higher powers of } x.$$

$$\text{Now, } (1-x)^{-1/2} = \left\{ 1 + \left(-\frac{1}{2}\right)(-x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)}{2!} (-x)^2 + \dots \right\}$$

$$= \left\{ 1 + \frac{x}{2} \right\} \text{ neglecting } x^2 \text{ and higher powers of } x.$$

Putting in eq. (i), we get

$$\begin{aligned} \text{L.H.S} &= (1+x) \left\{ 1 + \frac{x}{2} \right\} \\ &= 1 + \frac{x}{2} + x + \frac{x^2}{2} = 1 + \frac{x+2x}{2} \quad \text{neglecting } x^2 \\ &= 1 + \frac{3x}{2} \approx \text{R.H.S.} \end{aligned}$$

4. Write short answers to any NINE (9) questions: (18)

(i) Convert $54^\circ 45'$ into radians.

Ans $54^\circ 45' = \left[54 + \frac{45}{60} \right]^\circ = \left[54 + \frac{3}{4} \right]^\circ = \frac{219}{4}^\circ$

$\approx \frac{219}{4} (0.0175) \text{ radians}$

$\approx 0.058 \text{ radians.}$

(ii) If $\cot \theta = \frac{15}{8}$ and the terminal arm of the angle is not in quadrant I, find the value of cosec θ .

Ans Given that the terminal arm of the angle is not in quadrant I. We know that $\cot \theta$ is positive in the quadrant I and

it is also positive in the quadrant III. Therefore, the terminal arm of the angle is in the quadrant III.

$$\begin{aligned}\operatorname{cosec}^2 \theta &= 1 + \cot^2 \theta \\ &= 1 + \left(\frac{15}{8}\right)^2 \\ &= 1 + \frac{225}{64} = \frac{289}{64}\end{aligned}$$

$$\operatorname{cosec} \theta = \pm \frac{17}{8}$$

Since the terminal arm of the angle is in the III quadrant where $\operatorname{cosec} \theta$ is negative.

$$\therefore \operatorname{cosec} \theta = -\frac{17}{8}$$

$$\sin \theta = \frac{1}{\operatorname{cosec} \theta} = \frac{-8}{17}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cos \theta = \cot \theta \sin \theta$$

$$= \frac{15}{8} \times \frac{-8}{17} = \frac{-15}{17}$$

(iii) Verify $2 \sin 45^\circ + \frac{1}{2} \operatorname{cosec} 45^\circ = \frac{3}{\sqrt{2}}$

Ans \Rightarrow L.H.S = $2 \sin 45^\circ + \frac{1}{2} \operatorname{cosec} 45^\circ$

$$\begin{aligned}&= 2 \left(\frac{1}{\sqrt{2}} \right) + \frac{1}{2} (\sqrt{2}) \\ &= (\sqrt{2}) (\sqrt{2}) \left(\frac{1}{\sqrt{2}} \right) + \frac{1}{(\sqrt{2}) (\sqrt{2})} (\sqrt{2}) \\ &= \sqrt{2} + \frac{1}{\sqrt{2}} \\ &= \frac{2+1}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \text{R.H.S}\end{aligned}$$

(iv) Prove that $\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta}$

Ans \Rightarrow L.H.S = $\cot(\alpha + \beta) = \frac{1}{\tan(\alpha + \beta)}$

$$\begin{aligned}
 &= \frac{1}{\tan \alpha + \tan \beta} \\
 &= \frac{1 - \tan \alpha \tan \beta}{\tan \alpha + \tan \beta} \\
 &= \frac{1 - \frac{1}{\cot \alpha \cot \beta}}{\frac{1}{\cot \alpha} + \frac{1}{\cot \beta}} \\
 &= \frac{\cot \alpha \cot \beta - 1}{\cot \beta + \cot \alpha} \\
 &= \frac{\cot \alpha \cot \beta - 1}{\cot \alpha \cot \beta} \\
 &= \frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta} \\
 &= \text{R.H.S Proved.}
 \end{aligned}$$

(v) Prove that $\tan(180^\circ + \theta) = \tan \theta$.

Ans L.H.S = $\tan(180^\circ + \theta)$

$$\begin{aligned}
 &= \frac{\tan 180^\circ + \tan \theta}{1 - \tan 180^\circ \tan \theta} \\
 &= \frac{0 + \tan \theta}{1 - 0 (\tan \theta)} = \tan \theta = \text{R.H.S.}
 \end{aligned}$$

(vi) Express $2 \sin 7\theta \sin 2\theta$ as sums or differences.

$$\begin{aligned}
 \text{Ans} \quad 2 \sin 7\theta \sin 2\theta &= \cos(7\theta - 2\theta) - \cos(7\theta + 2\theta) \\
 &= \cos 5\theta - \cos 9\theta
 \end{aligned}$$

(vii) Find the period of $\tan \frac{x}{7}$.

$$\begin{aligned}
 \text{Ans} \quad \tan \frac{x}{7} &= \tan \frac{1}{7}[x + 7(\pi)] \\
 &= \tan(x + \pi) \\
 &= \tan x
 \end{aligned}$$

So, the period of $\tan \frac{x}{7}$ is 7π .

(viii) A vertical pole is 8 m high and the length of its shadow is 6 m. What is the angle of elevation of the Sun at that moment?

Ans

$$\tan \alpha = \frac{8}{6}$$

$$= \frac{4}{3}$$

$$\alpha = \tan^{-1} \left(\frac{4}{3} \right)$$

$$\alpha = 53^\circ 7'$$

- (ix) Find area of the triangle ABC if $a = 200$, $b = 120$, $\gamma = 150^\circ$.

Ans

$$\text{Area of triangle } \Delta = \frac{1}{2} ab \sin \gamma$$

$$= \frac{1}{2} (200)(120) \sin 150^\circ$$

$$= \frac{1}{2} (200)(120)(0.5)$$

$$\Delta = 6000 \text{ sq units}$$

- (x) Prove that $r r_1 r_2 r_3 = \Delta^2$.

Ans

$$\begin{aligned} rr_1 r_2 r_3 &= \frac{\Delta}{s} \times \frac{\Delta}{s-a} \times \frac{\Delta}{s-b} \times \frac{\Delta}{s-c} \\ &= \frac{\Delta^4}{s(s-a)(s-b)(s-c)} \\ &= \frac{\Delta^4}{\Delta^2} \\ &= \Delta^2 \quad \text{Proved.} \end{aligned}$$

- (xi) Find the value of $\sec \left(\sin^{-1} \left(-\frac{1}{2} \right) \right)$

Ans

We first find the value of y , whose sine is $-\frac{1}{2}$.

$$\sin y = -\frac{1}{2}, \quad -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$$

$$\Rightarrow y = -\frac{\pi}{6}$$

$$\Rightarrow \sin^{-1} \left(-\frac{1}{2} \right) = -\frac{\pi}{6}$$

$$\therefore \sec \left[\sin^{-1} \left(-\frac{1}{2} \right) \right] = \frac{2}{\sqrt{3}}$$

(xii) Show that $r = (s - a) \tan \left(\frac{\alpha}{2} \right)$.

Ans To prove $r = (s - a) \tan \frac{\alpha}{2}$

$$\text{We know that: } \tan \frac{\alpha}{2} = \sqrt{\frac{(s - b)(s - c)}{s(s - a)}}$$

$$\text{R.H.S.} = (s - a) \tan \frac{\alpha}{2} = (s - a) \sqrt{\frac{(s - b)(s - c)}{s(s - a)}}$$

$$= \sqrt{\frac{(s - a)(s - b)(s - c)}{s}}$$

$$= \sqrt{\frac{s(s - a)(s - b)(s - c)}{s^2}} = \frac{\Delta}{s} = r$$

$$\therefore (s - a) \tan \frac{\alpha}{2} = r$$

(xiii) Find the solution of $\operatorname{cosec} \theta = 2$ which lies in the interval $[0, 2\pi]$.

Ans $\operatorname{cosec} \theta = 2$

$$\text{or } \frac{1}{\operatorname{cosec} \theta} = \frac{1}{2}$$

$$\Rightarrow \sin \theta = \frac{1}{2}$$

$\therefore \sin \theta$ is positive in first and second quadrants with the angle $\theta = \frac{\pi}{6}$.

$$\theta = \frac{\pi}{6}$$

$$\text{and } \theta = \pi - \frac{\pi}{6}$$

$$\theta = \frac{5\pi}{6}$$

$$\frac{\pi}{6}, \frac{5\pi}{6}$$

SECTION-II

NOTE: Attempt any Three (3) questions.

Q.5.(a) Solve by Cramer's rule $2x_1 - x_2 + x_3 = 8$, $x_1 + 2x_2 + 2x_3 = 6$, $x_1 - 2x_2 - x_3 = 1$ (5)

Ans From the above system of linear equations:

$$\begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & 2 \\ 1 & -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \\ 1 \end{bmatrix}$$

$A \quad X = B$

$$|A| = \begin{vmatrix} 2 & -1 & 1 \\ 1 & 2 & 2 \\ 1 & -2 & -1 \end{vmatrix}$$

$$= 2(-2+4) - (-1)(-1-2) + 1(-2-2)$$

$$= 2(2) + (-3) + (-4) = 4 - 3 - 4 = -3$$

$$|A_1| = \begin{vmatrix} 8 & -1 & 1 \\ 6 & 2 & 2 \\ 1 & -2 & -1 \end{vmatrix}$$

$$= 8(-2+4) - (-1)(-6-2) + 1(-12-2)$$

$$= 8(2) + (-8) + (-14) = 16 - 8 - 14 = -6$$

$$|A_2| = \begin{vmatrix} 2 & 8 & 1 \\ 1 & 6 & 2 \\ 1 & 1 & -1 \end{vmatrix}$$

$$= 2(-6-2) - 8(-1-2) + 1(1-6)$$

$$= 2(-8) - 8(-3) + (-5)$$

$$= -16 + 24 - 5 = 3$$

$$|A_3| = \begin{vmatrix} 2 & -1 & 8 \\ 1 & 2 & 6 \\ 1 & -2 & 1 \end{vmatrix}$$

$$= 2(2+12) - (-1)(1-6) + 8(-2-2)$$

$$= 2(14) + (-5) + 8(-4)$$

$$= 28 - 5 - 32 = -9$$

$$x_1 = \frac{|A_1|}{|A|} \Rightarrow \frac{-6}{-3} = 2$$

$$x_2 = \frac{|A_2|}{|A|} \Rightarrow \frac{3}{-3} = -1$$

$$\begin{aligned}
 &= \frac{c}{a} + \left(\frac{b^2 - 2ac}{a^2} \right) \left(\frac{a}{c} \right) + \frac{a}{c} \\
 &= \frac{c}{a} + \frac{b^2 - 2ac}{ac} + \frac{a}{c} \\
 &= \frac{c^2 + b^2 - 2ac + a^2}{ac} = \frac{a^2 + b^2 + c^2 - 2ac}{ac}
 \end{aligned}$$

So, the required equation can be:

$$x^2 - Sx + P = 0$$

$$x^2 - \left[-\frac{b(c+a)}{ac} \right] x + \left(\frac{a^2 + b^2 + c^2 - 2ac}{ac} \right) = 0$$

By simplifying, we get

$$acx^2 + b(c+a)x + (a^2 + b^2 + c^2 - 2ac) = 0$$

Q.6.(a) Resolve $\frac{3x - 11}{(x^2 + 1)(x + 3)}$ into partial fraction. (5)

Ans Suppose $\frac{3x - 11}{(x^2 + 1)(x + 3)} = \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 3}$

$$\Rightarrow 3x - 11 = (Ax + B)(x + 3) + C(x^2 + 1) \quad (\text{i})$$

$$\Rightarrow 3x - 11 = (A + C)x^2 + (3A + B)x + (3B + C) \quad (\text{ii})$$

Putting $x + 3 = 0 \Rightarrow x = -3$ in (i), we get

$$-9 - 11 = C(9 + 1) \Rightarrow C = -2$$

Equating the coefficients of x^2 and x in (ii), we get

$$0 = A + C \Rightarrow A = -C \Rightarrow A = 2$$

$$\text{and } 3 = 3A + B \Rightarrow B = 3 - 3A \Rightarrow B = 3 - 6$$

$$\Rightarrow B = -3$$

Hence, the partial fraction are: $\frac{2x - 3}{x^2 + 1} - \frac{2}{x + 3}$

(b) If $S_n = n(2n - 1)$, then find the series. (5)

Ans Given that $S_n = n(2n - 1)$... (i)

Putting $n = 1, 2, 3, 4$ in (i), we get

$$S_1 = 1(2 \times 1 - 1) = 2 - 1 = 1;$$

$$S_2 = 2(2 \times 2 - 1) = 2 \times 3 = 6;$$

$$S_3 = 3(2 \times 3 - 1) = 3 \times 5 = 15;$$

$$S_4 = 4(2 \times 4 - 1) = 4 \times 7 = 28$$

Now $a_1 = S_1 = 1, a_2 = S_2 - S_1 = 6 - 1 = 5$

$$a_3 = S_3 - S_2 = 15 - 6 = 9$$

$$\text{and } a_4 = S_4 - S_3 = 28 - 15 = 13$$

Thus the required series is $1 + 5 + 9 + 13 + \dots$

Q.7.(a) Prove that ${}^{n-1}C_r + {}^{n-1}C_{r-1} = {}^nC_r$. (5)

Ans For Answer See Paper 2019 (Group-II), Q.6.(b).

(b) Use mathematical induction to prove (5)

$$\binom{3}{3} + \binom{4}{3} + \binom{5}{3} + \dots + \binom{n+2}{3} = \binom{n+3}{4}$$

for every positive integers n.

Let $S(n)$ be the given statement, i.e.,

$$S(n) : 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(4n^2-1)}{3} \quad \dots \text{(i)}$$

If we put $n = 1$, then (i) becomes

$$1^2 = \frac{1[4(1)^2-1]}{3}$$

$$= \frac{4-1}{3} = \frac{3}{3} = 1 \text{ True}$$

Thus, the condition (I) is satisfied as $S(1)$ is true.

If we assume that $S(n)$ is true for $n = k \in \mathbb{N}$, i.e.,

$$1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 = \frac{k(4k^2-1)}{3} \quad \dots \text{(ii)}$$

By adding $(2k+1)^2$ on both sides, we get

$$\begin{aligned} 1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 + (2k+1)^2 &= \frac{k(4k^2-1)}{3} + (2k+1)^2 \\ &= \frac{k(2k-1)(2k+1) + 3(2k+1)^2}{3} \\ &= \frac{2k+1}{3} [k(2k-1) + 3(2k+1)] \\ &= \frac{2k+1}{3} [2k^2 + 5k + 3] \\ &= \frac{2k+1}{3} (k+1)(2k+3) \\ &= \frac{k+1}{3} [(2k+1)(2k+3)] \\ &= \frac{k+1}{3} [4k^2 + 8k + 3] \end{aligned}$$

$$= \frac{k+1}{3} [4(k^2 + 2k + 1) - 11]$$

$$1^2 + 3^2 + 5^2 + \dots + (2(k+1)-1)^2 = \frac{(k+1)[4(k+1)^2 - 1]}{3} \quad (\text{iii})$$

Equation (iii) is true as condition (2) is satisfied. Since both the conditions are satisfied, so the given statement (1) is true for every positive integer n.

Q.8.(a) Two cities A and B lies on the equator, such that their longitudes are 45° E and 25° W, respectively. Find the distance between the two cities, taking the radius of the Earth as 6,400 kms. (5)

Ans

$$r = 6400 \text{ km}$$

$$\theta = 45^\circ + 25^\circ \\ = 70^\circ$$

$$= 70 \times \frac{\pi}{180} \\ = \frac{7}{18} \pi \text{ radians}$$

Let ℓ be the arc AB, therefore

$$\ell = r\theta \\ = 6400 \left(\frac{7}{18} \pi \right) \\ \approx 6400 (0.3889 \times 3.14159) \\ \approx 6400 (1.22176) \\ = 7819.264$$

Thus, the distance between two cities is

$$\ell = 7819 \text{ k (approximately).}$$

(b) Prove that $\frac{\sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$. (5)

Ans

For Answer see Paper 2017 (Group-II), Q.8.(b).

Q.9.(a) Solve the triangle ABC, if $a = 53$, $\beta = 88^\circ 36'$, $\gamma = 31^\circ 54'$. (5)

Ans

$$\alpha + \beta + \gamma = 180^\circ$$

$$\alpha = 180^\circ - \beta - \gamma$$

$$\alpha = 180^\circ - 88^\circ 36' - 31^\circ 54'$$

$$\alpha = 59^\circ 30'$$

By using law of sine, we have

$$\begin{aligned} \frac{c}{\sin \gamma} &= \frac{a}{\sin \alpha} \\ \Rightarrow c &= \frac{a \sin \gamma}{\sin \alpha} \\ &= \frac{53 \sin 31^\circ 54'}{\sin 59^\circ 30'} \\ c &= \frac{53 (0.5284)}{0.8616} = \frac{28.0052}{0.8616} \end{aligned}$$

$$c = 32.5$$

$$\text{And } \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$\begin{aligned} \Rightarrow b &= \frac{c \sin \beta}{\sin \gamma} \\ &= \frac{32.5 \sin 88^\circ 36'}{\sin 31^\circ 54'} = \frac{(32.5)(0.9997)}{0.5284} = \frac{32.4903}{0.5284} \end{aligned}$$

$$b = 61.5$$

So, the triangle ABC have

$$a = 53, b = 61.5, c = 32.5$$

$$\alpha = 59^\circ 30', \beta = 88^\circ 36', \gamma = 31^\circ 54'$$

(b) Prove that $\tan^{-1} \frac{1}{11} + \tan^{-1} \frac{5}{6} = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2}$. (5)

Ans By using $\tan^{-1} a + \tan^{-1} b = \tan^{-1} \frac{a+b}{1-ab}$

$$\text{L.H.S} = \tan^{-1} \frac{1}{11} + \tan^{-1} \frac{5}{6} = \tan^{-1} \left(\frac{\frac{1}{11} + \frac{5}{6}}{1 - \frac{1}{11} \times \frac{5}{6}} \right)$$

$$= \tan^{-1} \left(\frac{\frac{6+55}{66}}{\frac{66-5}{66}} \right)$$

$$= \tan^{-1} \left(\frac{61}{61} \right)$$

$$= \tan^{-1} (1) = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \frac{1}{11} + \tan^{-1} \frac{5}{6} = \frac{\pi}{4} \quad \dots (i)$$

Next consider the right hand side

$$R.H.S = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2}$$

$$= \tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{2}}{1 - \frac{1}{3} \times \frac{1}{2}} \right)$$

$$= \tan^{-1} \left(\frac{5}{5} \right)$$

$$= \tan^{-1} (1) = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2} = \frac{\pi}{4} \quad \dots (ii)$$

Equating (i) and (ii), we have

$$\tan^{-1} \frac{1}{11} + \tan^{-1} \frac{5}{6} = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2}$$

$$\Rightarrow \tan^{-1} \frac{1}{11} + \tan^{-1} \frac{5}{6} = \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{2}$$