Class 14: RNA Seq Mini-Project

Lilith Sadil

Table of contents

Setup for DESeq	4
Running DESeq	5
Add gene annotation data (gene names etc.)	7
Results Visualization	9
Save our Results	12
Pathway Analysis (KEGG, GO, Reactome)	12
Here, we'll run through a complete RNASeq analysis.	
#Data Import	
First, we'll library our necessary packages and import relevant data files:	
library(DESeq2)	
Loading required package: S4Vectors	
Loading required package: stats4	
Loading required package: BiocGenerics	
Attaching package: 'BiocGenerics'	

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

```
Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.
```

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':
rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
metaFile <- "data/GSE37704_metadata.csv"
countFile <- "data/GSE37704_featurecounts.csv"</pre>
```

To take a quick look at the data we imported:

```
colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
               hoxa1 kd
SRR493369
SRR493370
               hoxa1_kd
SRR493371
               hoxa1_kd
  countData = read.csv(countFile, row.names=1)
  head(countData)
                length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
ENSG00000186092
                   918
                                0
                                          0
                                                     0
                                                               0
                                                                          0
                   718
                                0
                                                    0
                                                                          0
ENSG00000279928
                                          0
                                                               0
                 1982
                               23
                                                    29
                                                              29
ENSG00000279457
                                         28
                                                                        28
ENSG00000278566
                   939
                                0
                                          0
                                                     0
                                                               0
                                                                          0
ENSG00000273547
                   939
                                0
                                          0
                                                     0
                                                               0
                                                                          0
ENSG00000187634
                  3214
                              124
                                        123
                                                   205
                                                             207
                                                                        212
                SRR493371
ENSG00000186092
                         0
                         0
ENSG00000279928
ENSG00000279457
                        46
ENSG00000278566
                         0
ENSG00000273547
                         0
ENSG00000187634
                       258
```

Setup for DESeq

We need to remove the odd first \$length col

```
countData = as.matrix(countData[,2:7])
head(countData)
```

```
SRR493366 SRR493367 SRR493368 SRR493369 SRR493370 SRR493371 ENSG00000186092 0 0 0 0 0 0 0 0
```

ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Filter count data where you have 0 read count across all samples.

```
#Finds where there are "0" values in columns 1-6 in the countData dataset
#zero.vals = which(countData[,1:6]==0, arr.ind=TRUE)
#Finds unique instances
#to.rm = unique(zero.vals[,1])
#removes the set of values with 0 from countData
#countData = countData[-to.rm, ]
#View the results
#head(countData)

to.keep.inds = rowSums(countData)>0
countData = countData[to.keep.inds,]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Running DESeq

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  head(dds)
class: DESeqDataSet
dim: 6 6
metadata(1): version
assays(4): counts mu H cooks
rownames(6): ENSG00000279457 ENSG00000187634 ... ENSG00000187583
  ENSG00000187642
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
  res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
  head(res)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange
                                                                   pvalue
                                             lfcSE
                                                         stat
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
ENSG00000279457
                  29.9136
                              0.1792571 0.3248216 0.551863 5.81042e-01
                              0.4264571 0.1402658
ENSG00000187634 183.2296
                                                    3.040350 2.36304e-03
                            -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000188976 1651.1881
```

```
ENSG00000187961 209.6379
                               0.7297556 0.1318599
                                                     5.534326 3.12428e-08
ENSG00000187583 47.2551
                               0.0405765 0.2718928 0.149237 8.81366e-01
                               0.5428105 0.5215598 1.040744 2.97994e-01
ENSG00000187642
                  11.9798
                       padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
  summary(res)
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                   : 4349, 27%
LFC < 0 (down)
                   : 4396, 28%
outliers [1]
                   : 0, 0%
low counts [2]
                   : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
```

4349 genes are upregulated and 4396 genes are downregulated with a p-value cutoff of 0.1.

Add gene annotation data (gene names etc.)

```
library("AnnotationDbi")
library("org.Hs.eg.db")

columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                    "ALIAS"
                                   "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
                    "GO"
                                                   "IPI"
[11] "GENETYPE"
                                   "GOALL"
                                                                  "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                   "ONTOLOGYALL"
                                                  "PATH"
                                                                  "PFAM"
[21] "PMID"
                                   "REFSEO"
                                                   "SYMBOL"
                                                                  "UCSCKG"
                    "PROSITE"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="SYMBOL",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="ENTREZID",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                       column="GENENAME",
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                   baseMean log2FoldChange
                                               lfcSE
                                                            stat
                                                                      pvalue
```

```
<numeric>
                                  <numeric> <numeric>
                                                       <numeric>
                                                                    <numeric>
ENSG00000279457
                  29.913579
                                  0.1792571 0.3248216
                                                        0.551863 5.81042e-01
ENSG00000187634
                 183.229650
                                  0.4264571 0.1402658
                                                        3.040350 2.36304e-03
ENSG00000188976 1651.188076
                                 -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961
                 209.637938
                                  0.7297556 0.1318599
                                                        5.534326 3.12428e-08
                  47.255123
                                  0.0405765 0.2718928
                                                        0.149237 8.81366e-01
ENSG00000187583
ENSG00000187642
                  11.979750
                                  0.5428105 0.5215598
                                                        1.040744 2.97994e-01
ENSG00000188290
                 108.922128
                                  2.0570638 0.1969053
                                                       10.446970 1.51282e-25
                                  0.2573837 0.1027266
                                                        2.505522 1.22271e-02
ENSG00000187608
                 350.716868
ENSG00000188157 9128.439422
                                  0.3899088 0.0467163
                                                        8.346304 7.04321e-17
                                  0.7859552 4.0804729
                                                        0.192614 8.47261e-01
ENSG00000237330
                   0.158192
                       padj
                                  symbol
                                              entrez
                                                                        name
                  <numeric> <character> <character>
                                                                 <character>
ENSG00000279457 6.86555e-01
                                      NΑ
                                                                          NA
ENSG00000187634 5.15718e-03
                                  SAMD11
                                              148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                   NOC2L
                                               26155 NOC2 like nucleolar ...
ENSG00000187961 1.13413e-07
                                  KLHL17
                                              339451 kelch like family me..
ENSG00000187583 9.19031e-01
                                               84069 pleckstrin homology ...
                                 PLEKHN1
ENSG00000187642 4.03379e-01
                                               84808 PPARGC1 and ESRR ind..
                                   PERM1
ENSG00000188290 1.30538e-24
                                    HES4
                                               57801 hes family bHLH tran..
ENSG00000187608 2.37452e-02
                                                9636 ISG15 ubiquitin like..
                                   ISG15
ENSG00000188157 4.21963e-16
                                    AGRN
                                              375790
                                                                       agrin
ENSG00000237330
                         NA
                                  RNF223
                                              401934 ring finger protein ...
```

Results Visualization

```
plot( res$log2FoldChange, -log(res$padj) )
```



```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] = "blue"

# Color blue those with adjusted p-value less than 0.01 and absolute fold change more than inds = ((res$padj > 0.01) & (abs(res$log2FoldChange) > 2))
mycols[ inds ] = "red"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(
```


library(EnhancedVolcano)

Loading required package: ggplot2

Loading required package: ggrepel

```
x <- as.data.frame(res)

EnhancedVolcano(x,
    lab = x$symbol,
    x = 'log2FoldChange',
    y = 'pvalue')</pre>
```

Warning: One or more p-values is 0. Converting to 10^{-1} * current lowest non-zero p-value...

Volcano plot

Enhanced Volcano

total = 15975 variables

Save our Results

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Pathway Analysis (KEGG, GO, Reactome)

#Library the necessary packages
library(pathview)

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  #Helps us focus in on metabolic pathways
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  #Look at the first 3 pathways:
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
           "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                        "10720"
                                 "10941"
                                          "151531" "1548"
                                                              "1549"
                                                                       "1551"
 [9] "1553"
              "1576"
                        "1577"
                                 "1806"
                                           "1807"
                                                    "1890"
                                                              "221223" "2990"
                                           "51733"
[17] "3251"
              "3614"
                        "3615"
                                 "3704"
                                                    "54490"
                                                             "54575"
                                                                       "54576"
[25] "54577"
              "54578"
                        "54579"
                                 "54600"
                                          "54657"
                                                    "54658"
                                                              "54659"
                                                                       "54963"
[33] "574537" "64816"
                        "7083"
                                 "7084"
                                           "7172"
                                                    "7363"
                                                              "7364"
                                                                       "7365"
[41] "7366"
                                           "7378"
                                                    "7498"
              "7367"
                        "7371"
                                 "7372"
                                                              "79799"
                                                                       "83549"
[49] "8824"
              "8833"
                        "9"
                                 "978"
$`hsa00230 Purine metabolism`
                         "10606"
  [1] "100"
               "10201"
                                            "10622"
                                                     "10623"
                                                              "107"
                                                                        "10714"
                                  "10621"
  [9] "108"
               "10846"
                         "109"
                                  "111"
                                            "11128"
                                                     "11164"
                                                               "112"
                                                                        "113"
 [17] "114"
               "115"
                         "122481" "122622" "124583" "132"
                                                               "158"
                                                                        "159"
 [25] "1633"
               "171568" "1716"
                                  "196883" "203"
                                                     "204"
                                                               "205"
                                                                        "221823"
               "22978"
                                                                        "270"
 [33] "2272"
                         "23649"
                                  "246721" "25885"
                                                     "2618"
                                                               "26289"
 [41] "271"
               "27115"
                         "272"
                                  "2766"
                                            "2977"
                                                     "2982"
                                                               "2983"
                                                                        "2984"
 [49] "2986"
               "2987"
                         "29922"
                                  "3000"
                                            "30833"
                                                     "30834"
                                                               "318"
                                                                        "3251"
 [57] "353"
               "3614"
                         "3615"
                                  "3704"
                                            "377841" "471"
                                                               "4830"
                                                                        "4831"
                                                                        "50940"
                         "4860"
                                  "4881"
                                            "4882"
                                                     "4907"
 [65] "4832"
               "4833"
                                                               "50484"
```

```
"5138"
 [73] "51082"
               "51251"
                         "51292"
                                  "5136"
                                           "5137"
                                                              "5139"
                                                                       "5140"
 [81] "5141"
               "5142"
                         "5143"
                                  "5144"
                                           "5145"
                                                     "5146"
                                                              "5147"
                                                                       "5148"
 [89] "5149"
               "5150"
                         "5151"
                                  "5152"
                                           "5153"
                                                     "5158"
                                                              "5167"
                                                                       "5169"
 [97] "51728"
               "5198"
                         "5236"
                                  "5313"
                                           "5315"
                                                     "53343"
                                                              "54107"
                                                                       "5422"
[105] "5424"
               "5425"
                         "5426"
                                  "5427"
                                           "5430"
                                                     "5431"
                                                              "5432"
                                                                       "5433"
[113] "5434"
               "5435"
                         "5436"
                                  "5437"
                                           "5438"
                                                     "5439"
                                                              "5440"
                                                                       "5441"
[121] "5471"
               "548644" "55276"
                                  "5557"
                                           "5558"
                                                     "55703"
                                                              "55811"
                                                                       "55821"
[129] "5631"
               "5634"
                         "56655"
                                  "56953"
                                           "56985"
                                                     "57804"
                                                              "58497"
                                                                       "6240"
[137] "6241"
               "64425"
                         "646625" "654364"
                                           "661"
                                                     "7498"
                                                              "8382"
                                                                       "84172"
                                  "8622"
                                                     "87178"
                                                              "8833"
                                                                       "9060"
[145] "84265"
               "84284"
                         "84618"
                                           "8654"
[153] "9061"
               "93034"
                         "953"
                                  "9533"
                                           "954"
                                                     "955"
                                                              "956"
                                                                       "957"
[161] "9583"
               "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
              54855
                          1465
                                   51232
                                              2034
                                                         2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
Now we run the gage analysis
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
  attributes(keggres)
$names
[1] "greater" "less"
                         "stats"
  head(keggres$less)
                                          p.geomean stat.mean
hsa04110 Cell cycle
                                       8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                       9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                       1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                       3.066756e-03 -2.852899 3.066756e-03
                                       3.784520e-03 -2.698128 3.784520e-03
hsa04114 Oocyte meiosis
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                             q.val set.size
                                                                     exp1
```

0.001448312

121 8.995727e-06

hsa04110 Cell cycle

```
hsa03030 DNA replication 0.007586381 36 9.424076e-05 hsa03013 RNA transport 0.073840037 144 1.375901e-03 hsa03440 Homologous recombination 0.121861535 28 3.066756e-03 hsa04114 Oocyte meiosis 0.121861535 102 3.784520e-03 hsa00010 Glycolysis / Gluconeogenesis 0.212222694 53 8.961413e-03
```

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14

Info: Writing image file hsa04110.pathview.png

```
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

```
[,1] [,2]
[1,] "9" "300"
[2,] "9" "306"
```

Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14

Info: Writing image file hsa04110.pathview.pdf


```
keggrespathways <- rownames(keggres$greater)[1:5]
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

```
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14

Info: Writing image file hsa04640.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14

Info: Writing image file hsa04630.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14

Info: Writing image file hsa00140.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14

Info: Writing image file hsa04142.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14

Info: Writing image file hsa04330.pathview.png

pathview(gene.data=foldchanges, pathway.id="hsa04740")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14

Info: Writing image file hsa04740.pathview.png

Here are the downregulated pathway diagrams:

```
keggrespathways2 <- rownames(keggres$less)[1:5]</pre>
  keggresids2 = substr(keggrespathways2, start=1, stop=8)
  keggresids2
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data=foldchanges, pathway.id=keggresids2, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/lilith.sadil/Desktop/RStudio Projects/Class14
```

Info: Writing image file hsa04114.pathview.png


```
data(go.sets.hs)
data(go.subs.hs)

gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean p.val G0:0007156 homophilic cell adhesion 8.519724e-05 3.824205 8.519724e-05 G0:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04 G0:0048729 tissue morphogenesis 1.432451e-04 3.643242 1.432451e-04 G0:0007610 behavior 1.925222e-04 3.565432 1.925222e-04 G0:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
```

```
GO:0035295 tube development
                                         5.953254e-04 3.253665 5.953254e-04
                                             q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                          0.1952430
                                                        113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1952430
                                                        339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1952430
                                                        424 1.432451e-04
GO:0007610 behavior
                                                        426 1.925222e-04
                                          0.1968058
GO:0060562 epithelial tube morphogenesis 0.3566193
                                                        257 5.932837e-04
GO:0035295 tube development
                                          0.3566193
                                                        391 5.953254e-04
$less
                                            p.geomean stat.mean
                                                                      p.val
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
GO:0048285 organelle fission
                                        5.843127e-12
                                                          376 1.536227e-15
GO:0000280 nuclear division
                                        5.843127e-12
                                                          352 4.286961e-15
GO:0007067 mitosis
                                        5.843127e-12
                                                          352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195965e-11
                                                          362 1.169934e-14
GO:0007059 chromosome segregation
                                       1.659009e-08
                                                          142 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.178690e-07
                                                           84 1.729553e-10
$stats
                                          stat.mean
                                                        exp1
GO:0007156 homophilic cell adhesion
                                          3.824205 3.824205
GO:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                          3.643242 3.643242
GO:0007610 behavior
                                          3.565432 3.565432
GO:0060562 epithelial tube morphogenesis
                                          3.261376 3.261376
GO:0035295 tube development
                                          3.253665 3.253665
  sig_genes = res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]</pre>
  print(paste("Total number of significant genes:", length(sig_genes)))
[1] "Total number of significant genes: 8147"
  write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

This code block above created a table txt file which can be uploaded to the reactome website in order to visualize the pathway analysis in an online browser.

This shows that the "cell cycle" pathway has the most significant "entities P-value" at a value of 2.43E-4. This aligns with the KEGG results since the first diagram we obtained through the KEGG analysis was a cell cycle diagram (hsa04110). Different amounts of information existing in each database may cause these results to vary slightly.

