Boolean Algebra

- Boolean Algebra is named after George Boole, Professor of Mathematics in UCC in 19th Century
- ► Two value system true and false
- Set of basic axioms can be used to derive more complicated functions
- We can build digital circuits using these rules to implement binary logic in a processor

Boolean Axioms and One Variable Theorems

	Axiom		Dual		
A1	$B=0$ if $B\neq 1$		A1'	$B=1$ if $B\neq 0$	
A2	$\overline{0} = 1$		A2'	$\overline{1} = 0$	
А3	$0 \wedge 0 = 0$		A3'	$0 \lor 0 = 0$	
A4	$1 \land 1 = 1$		A4'	$1 \lor 1 = 1$	
A5	$0 \wedge 1 = 1 \wedge 0 = 0$		A5'	$1 \lor 0 = 0 \lor 1 = 1$	
	Theorem		Du	al	Name
T1	$B \wedge 1 = B$	T1'	$B \lor 0$	= B	Identity
T2	$B \wedge 0 = 0$	T2'	<i>B</i> ∨ 1	= 1	Null Element
Т3	$B \wedge B = B$	T3'	$B \vee B$	= B	Idempotency
T4	$B \wedge \overline{B} = 0$	T4'	$B \vee \overline{B}$	= 1	Complements
T5	$\overline{\overline{B}} = B$				Involution

Boolean Several Variable Theorems

	Theorem	Name
T6	$B \wedge C = C \wedge B$	Commutative
T6'	$\textit{B} \lor \textit{C} = \textit{C} \lor \textit{B}$	Commutative
T7	$(B \wedge C) \wedge D = B \wedge (C \wedge D)$	Associative
T7'	$(B \lor C) \lor D = B \lor (C \lor D)$	Associative
T8	$(B \wedge C) \vee (B \wedge D) = B \wedge (C \vee D)$	Distributive
T8'	$(B \lor C) \land (B \lor D) = B \lor (C \land D)$	Distributive
Т9	$B \wedge (B \vee C) = B$	Covering
T9'	${\sf B} ee ({\sf B} \wedge {\sf C}) = {\sf B}$	Covering
T10	$(B \wedge C) \vee (B \wedge \overline{C}) = B$	Combining
T10'	$(B \lor C) \land (B \lor \overline{C}) = B$	Combining
T11	$\overline{B \wedge C} = \overline{B} \vee \overline{C}$	De Morgan's Law
T11'	$\overline{B ee C} = \overline{B} \wedge \overline{C}$	De Morgan's Law

Simplifying Statements

Can use the theorems and axioms to simplify equations

$$\overline{ABC} + A\overline{BC} + A\overline{BC} = \overline{BC}(\overline{A} + \overline{A}) + A\overline{BC}$$

$$= \overline{BC}(1) + A\overline{BC}$$

$$= \overline{BC} + A\overline{BC}$$

Better simplification

$$\overline{ABC} + A\overline{BC} + A\overline{BC} = \overline{ABC} + A\overline{BC} + A\overline{BC} + A\overline{BC} + A\overline{BC}$$

$$= \overline{BC}(\overline{A} + A) + A\overline{B}(C + \overline{C})$$

$$= \overline{BC}(1) + A\overline{B}(1)$$

$$= \overline{BC} + A\overline{B}$$

Basic Logic Circuits

Taking the statement from before $\overline{BC} + A\overline{B}$ we can make a basic circuit

Karnaugh Maps

- Instead of using algebraic expansion we can use
 Karnaugh Maps to simplify statements from truth tables
- Each square in the map represents a minterm

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

NOR/NAND gates

- NOR is an inverted OR gate
- NAND is an inverted AND gate
- Turns out every other logic gate can be implemented using entirely NOR or NAND gates
- Makes for interesting if uninspiring circuits
- Useful for implementing the sum of minterms from K-map
- See also https://pragprog.com/magazines/2012-03/the-nor-machine

Adding circuits

- 1-bit addition half adder
- Two inputs, A and B are added together and a sum and carry are generated
- Can be built using an AND and XOR gate

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Adding circuits

- 1-bit addition and carry in full adder
- Three inputs, A, B and carry in are added together and a sum and carry out are generated
- Can be built using an AND and XOR gate

Α	В	Carry in	Sum	Carry Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Scaling up adders

- Modern computers are 32 or 64 bit processors
- Each integer represented by that many bits
- ▶ To add 64 bits, we need 64 full adders chained together
- Called a ripple-carry adder
- Introduces long delays as carry for bit 63 depends on bit 62 which depends on bit 61 etc

Faster adders

- Carry-lookahead adder
- Break the 64 adders into groups (say 16 4-bit blocks)
- Add circuitry to quickly determine if the block will generate a carry
- Then insert the carry into the next block
- Prefix Adder further complicates the carry generation circuit
- Reduces latency of transmission of carry to most significant bit
- As always a trade off between speed and power/complexity