DATE

Presentation for 20 April 2021 Social Choice Theory Berwin Gan

MAIN RESULT

Only Borda count - U,P,ND, MIIA,A,N and PR

PROOF

When |X| = 2, May's theorem = Borda count.

Let
$$X = \{x, y, z\}$$
 for $|X| = 3$
For profile \succ .
 $a_{xy}(\succ) - (x \succ y \succ z)$ or $(z \succ x \succ y)$
 $a_{yx}(\succ) - (z \succ y \succ x)$ or $(y \succ x \succ z)$

For $I_3^F(a_{xy},a_{yx})$ be proportion a_{xzy} If $a_{yzx}(\succ) = 1 - a_{xy} - a_{yx} - I_3^F(a_{xy},a_{yx})$, then $x \sim_F y$, where $\succeq_F = F(\succ)$ I_3^F Social Indifference Curve

3

LOGIC PAUSE

Case 1: if
$$a_{xy}=a_{yx}$$
, then $a_{xzy}=a_{yzx}$ if $x\sim y$

Case 2: if
$$a_{xy} = 1$$
, $I_3^F(a_{xy}, a_{yx}) = 0$

Case 3: if
$$a_{xy}=a_{yx}=0$$
 , then $a_{xzy}=a_{yzx}$

Fractions does not affect the social ranking of x and y

$$a_{xy}(\succ)$$
 – $(x \succ y \succ z)$ or $(z \succ x \succ y)$

Actual division does not matter

 $I_3^F(a_{xy}, a_{yx})$ is unique.

Two values: $a_{\rm xzy}$ and $a'_{\rm xzy}$ with $a_{\rm xzy} < a'_{\rm xzy}$

From $(a_{xy}, a_{yz}, a_{xzy}, 1 - a_{xy} - a_{yz} - a_{xzy})$ to $(a_{xy}, a_{yz}, a'_{xzy}, 1 - a_{xy} - a_{yz} - a'_{xzy})$ means x is rising and y is falling in individual rankings.

 $x \sim_F y$ for both is not possible.

Show that $I_3^F = I_3^B$ in order for F to be the Borda Count rule.

Category 1				Category 2		
X	Z	У	Z	X	У	
У	Χ	Χ	У	Z	Z	
Z	У	Z	Χ	У	X	

Sensitivity between category 1 and 2

For
$$x \sim y$$
, $B(x) = B(y)$

$$0 = (a_{xy} - a_{yx}) + 2(a_{xzy} - a_{yzx}) \text{ (eqn 1)}$$

$$0 = (a_{xy} - a_{yx}) + 2(I_3^B - (1 - a_{xy} - a_{yx} - I_3^B)) \text{ (eqn 2)}$$

$$0 = (a_{xy} - a_{yx}) + 2(2I_3^B - 1 + a_{xy} + a_{yx})$$

$$0 = a_{xy} - a_{yx} + 4I_3^B - 2 + 2a_{xy} + 2a_{yx})$$

$$0 = 4I_3^B - 2 + 3a_{xy} + a_{yx})$$

$$I_3^B = (2 - 3a_{xy} - a_{yx})/4 \text{ (eqn 3)}$$

Clarification: I_3^B shortform for $I_3^B(a_{xy}, a_{yx})$

9

$$I_3^F(a_{xy},a_{yx}) = B_0 + B_{xy}a_{xy} + B_{yx}a_{yx}$$
 for some B_0,B_{xy},B_{yx} . (eqn 4)

When
$$a_{xy} = a_{yx} = a$$
 from case 1

$$I_3^F(a,a) = 1 - 2a - I_3^F(a,a)$$
 (eqn 5)

$$2I_3^F(a,a) = 1 - 2a = 2B_0 + 2(B_{xy} + Byx)a$$
 (eqn 6)

Infer:

$$B_0 = \frac{1}{2}$$

$$B_{xy} + B_{yx} = -1$$

Consider the profile ≻*

$\frac{1}{6} + C$	$\frac{1}{6} + C$	$\frac{1}{6} + C$	$\frac{1}{6} - c$	$\frac{1}{6} - c$	$\frac{1}{6} - c$
Χ	Z	У	Z	У	Χ
У	Χ	Z	У	Χ	Z
Z	У	Χ	Χ	Z	У

Claim: $x \sim y$

Counter-claim: $x \succ_F^* y$

Permutation σ : $\sigma(x) = y, \sigma(y) = z$ and $\sigma(z) = x$

Claim for second profile: $y \succ_F^* z$ Contradiction: $x \succ_F^* y \succ_F^* z \succ_F^* x$

$$a_{xy} = \frac{1}{3} + 2c$$

 $a_{yx} = \frac{1}{3} - 2c$
 $a_{xy} = \frac{1}{6} - c$

$$I_3^F(\frac{1}{3} + 2c, \frac{1}{3} - 2c) = \frac{1}{6} - c \text{ (eqn 7)}$$

$$I_3^F(\frac{1}{3} + 2c, \frac{1}{3} - 2c) = \frac{1}{6} - c \text{ (eqn 7)}$$

$$I_3^F(a_{xy}, a_{yx}) = B_0 + B_{xy}a_{xy} + B_{yx}a_{yx} \text{ for some } B_0, B_{xy}, B_{yx}. \text{ (eqn 4)}$$

$$B_0 = \frac{1}{2}$$

$$B_{xy} + B_{yx} = -1$$

$$\frac{1}{2} + B_{xy}(\frac{1}{3} + 2c) - (1 + B_{xy})(\frac{1}{3} - 2c) = \frac{1}{6} - c \text{ (eqn 8)}$$

$$B_{xy} = -\frac{3}{4}$$

$$B_{yx} = -\frac{1}{4}$$