Ex: Calcolore mappe di Gauss, operatore forma, curvature ecc. della stora 5 di centres l'origine e raggio 7. L'equatione contesiona di tale stera è x2+42+=2=22 e una sua parametrizzazione è deta de $P: [u, v] \in \Omega \rightarrow (\tau sen(u) cos(v), \tau sen(u) sen(v), \tau cos(u))$ Pu = (r cos(u) cos(v), r cos(u) sen(v), -r sen(u)) $P_{v} = (-r \operatorname{sen}(u) \operatorname{sen}(v), r \operatorname{sen}(u) \operatorname{cos}(v), o)$

Mappa di Gauss

E' un conto un po' lungo. Avremo che $N^{P} = \frac{P_{0} \times P_{0}}{|P_{0} \times P_{0}||} = \dots = \left(\text{sen(u) cos(v)}, \text{sen(u) sen(v)}, \text{cos(u)}\right)$

Potéte verificare che N° è ortogonale a Span {Po, Pr} e di norma 1.

=> gs = 2 du2 + 2 sen2/u) dv2

Abbiamo che

$$P_{uu} = \left(-r \operatorname{sen}(u) \operatorname{cos}(v), -r \operatorname{sen}(u) \operatorname{sen}(v), -r \operatorname{cos}(u)\right)$$

$$P_{uv} = \left(-\pi \cos(u) \operatorname{sen}(v), \pi \cos(u) \cos(v), o\right)$$

$$P_{vv} = \left(-7 \operatorname{sen}(u) \cos(v), -7 \operatorname{sen}(u) \operatorname{sen}(v), 0\right)$$

Da cui
$$\left(\frac{1}{1} + \frac{1$$

$$\Rightarrow b_S = -7 du^2 - 7 sen^2(u) dv^2$$

Operatore forma

Abbiamo che

$$\begin{pmatrix} g^{-1} \\ gs \end{pmatrix} = \begin{pmatrix} hz \\ o \\ hz \\ o \\ hz sen^{2}(u) \end{pmatrix}$$
 $\begin{pmatrix} bs \end{pmatrix} = \begin{pmatrix} -7 & o \\ o & -7 sen^{2}(u) \end{pmatrix}$

e poiché la matrice reppresentative dell'operatore forma e $gs \cdot bs$, abbiemo che

 $\begin{pmatrix} -N_{*} \end{pmatrix} = \begin{pmatrix} -\frac{1}{7} & o \\ o & -\frac{1}{7} \end{pmatrix}$

Curvatura Gaussiana e media

Da (•) abbiamo che $K = \frac{1}{72}$ e $H = -\frac{1}{72}$

Ossensationi Le curvature principali coincidono le sono ugueli a - 1 che, a meno del segno, è la curvatura di ogni equatore (cerchio messimo) delle stere. Tale cerchio massimo è l'intersezione delle stera con il pieno personte per il punto considerato p e contenente Np, versore normale alle stere in p. Tutte le direzioni sono principeli: l'autosperio dell' operatore forma relatis all'autovalore - 1 è tutto lo Sperio tengente alle stera in p.

Ossenderione

Come ulteriore riprora del fatto che nel caso delle sfera tutte le diversioni sono principali, verifichiamo che

(A) -N* (a Pu + b Pv) = - \frac{1}{7} (a Pu + b Pv) \ \tau a, b \in \mathbb{R}

Infatti

$$N_{\star}(P_{u}) = N_{u}^{P} = (\cos(u)\cos(v), \cos(u) \operatorname{sen}(v), -\operatorname{sen}(u))$$

$$= \frac{1}{7} P_{u}$$

l

$$N_*(R) = N_V^P = (-sen(u) sen(v), sen(u) cos(v), o)$$

$$= \frac{1}{2} R_V$$

da cui segue (*)

Ex: Calcolore mappe di Gauss, operatore forma, curvative, linee di curvatura del paraboloide $Z = \chi^2 + y^2$. Notiamo che tale superficie è il profico della funzione f(u,v) = u2+v2, quindi una parametrizzazione è

 $P:(u,v)\in\mathbb{R}^{2}\to P(u,v)=(u,v,u^{2}+v^{2})\in\mathbb{R}^{3}$

Possiamo applicare i ragionamenti fatti per le superfici che sono il grafico di una funtione (vedi Letione 22). In ogni modo facciamo i conti.

Mappa di gauss Abbiamo che $\Rightarrow N^{P}(u,v) = \frac{P_{u} \times P_{v}}{\|P_{u} \times P_{v}\|} = \frac{(-2u,-2v,1)}{\sqrt{1+4u^{2}+4v^{2}}}$ Pu = (1,0,2u) $P_{v} = (0, 1, 2v)$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u} \quad f_{u} \cdot f_{v}}{f_{u} \cdot f_{v} \quad f_{v} \cdot f_{v}} = \frac{1 + 4u^{2}}{4uv} \quad 4uv$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u} \quad f_{u} \cdot f_{v}}{f_{u} \cdot f_{v}} = \frac{1 + 4u^{2}}{4uv} \quad 4uv$$

$$\frac{2^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u} \cdot f_{v}} \quad f_{u} \cdot f_{u} \cdot f_{u}$$

$$\frac{2^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u} \cdot f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u} \cdot f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1^{\circ}}{9^{\circ}} = \frac{f_{u} \cdot f_{u}}{f_{u}} \quad f_{u} \cdot f_{u}$$

$$\frac{1$$

Operatoro forma

La matrice che rapprasente (nelle bose (Pu, Pr)) l'operatore

forma è

$$(-N_{\star}) = (95) \cdot (b_5) = \frac{1}{1+4u^2+4v^2} \begin{pmatrix} 1+4v^2 & -4uv \\ -4uv & 1+4u^2 \end{pmatrix} \cdot \frac{z}{\sqrt{1+4u^2+4v^2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$=\frac{2}{(1+4u^2+4v^2)^{\frac{3}{2}}}\left(\frac{1+4v^2}{-4uv}-4uv\right)$$

Curvatura Media e uguele a
$$\frac{1}{2}$$
 traccia $\left(-N_{\pm}\right) = \frac{2\left(1+2u^2+2v^2\right)}{\left(1+4u^2+4v^2\right)^3 2}$

Ossenvarione Abbiamo visto che la cunvatura Gaussiana è 4 (1+4u²+4v²)². Questo significa che la cunvetura Gaussiene nel punto $(u, V, P(u, v)) = (u, V, u^2 + v^2)$ del paraboloide è ugusle a {\(\text{1+4u^2+4v^2} \)^2. Stessa cosa per la curvatura media, curvatura primcipali. Possiemo per esempio definire la funzione K(u,V) che ed ogni (u,v) associa la curveture Gaussiane nel punto (u, v, P(u,v1) di 5.

Punti ombelicali

Per definizione sono quei punti P & S (in questo caso il paraboloide) tali che K1(P) = K2(P) con K1, K2 curvature principali in p.

Possiamo procedere in questo modo.

Voglio travare i punti p e 5 / Kz(P) = Kz(P) =: K(P).

Poiché traccia (-Nx) = K1 + K2 = ZX = 4 (1+Zu2+Zv2) $(1+4u^2+4v^2)$ =

(Vedi pag. 9), avremo che

 $\mathcal{K}(u,v) = 2(1+2u^2+2v^2)$ (1+412+4V2)=

D'altre porte seppierno che K2(u,v) coincide con le curveture Gaussiene (prodotto degli autorolori).

Quindi, andando a vedere le curvetura Gaussiana che abbiamo calcolato a pag. 9, abbiemo che

$$\mathcal{K}^{2}(u,v) = \left(\frac{2(1+2u^{2}+2v^{2})}{(1+4u^{2}+4v^{2})^{3}}\right)^{2} = \frac{4}{(1+4u^{2}+4v^{2})^{2}}$$

$$\Rightarrow \frac{4\left(1+2u^2+2v^2\right)^2}{\left(1+4u^2+4v^2\right)^3} - \frac{4}{\left(1+4u^2+4v^2\right)^2}$$

$$\Rightarrow (1+2u^2+2v^2)^2 = (1+4u^2+4v^2) \Rightarrow 4(u^2+v^2)^2$$

$$=0 \iff u=V=0$$
.

Quindi l'unico punto ombelicale \(\varepsilon\), \(\omega\), \(\om

Linee di curvatura e curvature principali Calcolismo le curvature principali. Ricordiemo che l operatore forma (vedi pag. 9) è $(-N_*) = \frac{z}{(1+4u^2+4v^2)^{\frac{3}{2}}} \left(\frac{1+4v^2}{-4uv} - \frac{4uv}{1+4u^2} \right)$ Quindi per calcolore gli autovelori di (-Nx) bestera calcolore gli autorolori delle matrice $\begin{pmatrix} 1+4v^2 & -4uv \\ -4uv & 1+4u^2 \end{pmatrix}$ e poi moltiplicarle per (1+4u²+4v²) 3. Gli autovolori delle metrice (.) sono 1+442+4VZ (• •)

Quindi gli autovalori delle metrice (N_x) sono $K_1 = \frac{2}{(1+4u^2+4v^2)^{\frac{3}{2}}}$ $\stackrel{k}{=} \frac{K_2 = \frac{2}{(1+4u^2+4v^2)}}$ $\stackrel{k}{=} \frac{(A)}{(1+4u^2+4v^2)}$ Notare che i sebri (A) o equisalentemente (o.) di

Notare che i vetri (A) o equivolentemente (...) di pag. 13 sono uguali se e solo se u=V=0, ritrovando così il risultato sui punti ombelicali delle pagine precedenti.

L'autospario delle metrice (-N*) relativo all'autovalore K1 è generato dal vettore (u, v), quindi l'autosperio dell'operatore forme -N* relativo ell'autovalore K1 è generato de uPu + VPv

Analogamente, l'autosposio delle metrice (-Nx) relativo all'autovalore Kz è generato dal vettore (V, -u), quindi l'autosperio dell'operatore forma - Nx relativo a Kz e generato de VPu-uP Calcoliamo le linee di curvature relativo all'autosposio generato de ulu+VP.. Una curva 8(t) la cui trajettoria giace sul paraboloide V(t) = (u(t), V(t), u(t) + v(t))La condizione effinché V(t) sia una linea di curvature di u $\mathcal{U}_{u} + v \mathcal{V}_{v} \in \mathcal{S}'(t) = u(t) \mathcal{V}_{u}(u(t), v(t)) + v(t) \mathcal{V}_{v}(u(t), v(t))$

Riseriso l'ultimo passaggio 8'(t) = u(t) Pu (u(t), v(t)) + v(t) Pr (u(t), v(t)) che in virtu di (0) di pag. 15 e delle espressioni di Pu e Pr divente (u'(t), v'(t), zu(t)u'(t) + zv(t)v'(t)) = u(t)(1,0, zu(t))+V(t) (0,1,2V(t))andando ad uguagliore componente per componente abbiens (*) (u'(t) = u(t) (uguaghiere le terre componenti ci de v'(t) = v(t) una relorione superflue). andando ad integrere u(t) = uoet, v(t) = 16 et de cur Y(t) = (uoet, voet, voet+voet)

Analogamente le linee di curveture 8(t) = (u(t), v(t), u'(t) + v'(t)). relative all'eltre diresione principale VIV-UI è tele che (u'(t), v'(t), zu(t)u'(t) + zv(t)v'(t)) = v(t)(1,0, zu(t))- u(t) (0, 1, 2V(t)) = (v(t), -u(t), o) $\begin{cases} u'(t) = v(t) \\ v'(t) = -u(t) \end{cases}$ (uguaghiere le terre componenti ai dà una relatione superflue) andendo ad integrare v(t) = Vo cos(t) - uo sen(t) u(t) = Vo sen(t) + No cos(t). $\mathcal{E}(t) = \left(u_0 \cos(t) + V_0 \sin(t), V_0 \cos(t) - u_0 \sin(t), u_0^2 + V_0^2\right)$

Ex: Sia a: $\mathbb{R} \to \mathbb{R}^3$ una curve biregolere periodetirerete con ascissa cunvilinea 5, con curveture costante $K^{\dagger}e$ tousione T strettamente positiva. Indichienno con (T, N, B) il riferimento di Frenet di a e consideriamo l'applicazione $P: (5, V) \in \mathbb{R} \times \mathbb{R}^{\dagger} \longrightarrow 2(5) + \frac{1}{K} N(5) + V B(5)$

- 1) Verificare che P è une superficie parametrizzata. Calcolore la mappe di Gauss, 1º e 2º forme fondamentale, operatore forme, curvature
- (2) Determinare $f: \mathbb{R} \to \mathbb{R}$ in mode che $Y: S \longrightarrow P(S, f(S))$ Sia una linea di curvature delle superficie

DOMANDA 1

$$P_{S} = \frac{d^{2}(s)}{ds} + \frac{1}{K} \frac{d^{2}(s)}{ds} + V \frac{d^{2}(s)}{ds} = per \text{ le formule di Frenet}$$

$$= T(s) + \frac{1}{K} \left(- KT(s) - Y(s) B(s) \right) + V Y(s) N(s)$$

$$= -Y(s) B(s) + V Y(s) N(s)$$

$$P_V = B(s)$$

Abbiamo quindi

$$P_{S} \times P_{V} = \det \begin{pmatrix} T(s) & N(s) & B(s) \\ 0 & V \Upsilon(s) & -\Upsilon(s) \\ 0 & 0 \end{pmatrix} = V \Upsilon(s) T(s) \qquad (\bullet)$$

de au Si ricara che $P_{S}(s,v) \times P_{V}(s,v) \neq 0$
 $\forall (s,v) \in \mathbb{R} \times \mathbb{R}^{+}$ in quanto $V \in \mathbb{R}^{+} \in \mathbb{R}^{+}$
 $\Upsilon(s) > 0$ in quanto stiamo supponendo la torsione

r(s) >0 in quanto stiamo supponendo la torsione strettamente positiva

Mappa di Gauss In virtu di (0) la mappe di gauss è $N^{P}(s_1v) = \frac{P_s \times P_v}{s} = T(s)$ 1 Ps x PV 1

1º forma fondamentale I coefficienti della 1º forma fondamentale sono $\begin{pmatrix} 9s \end{pmatrix} = \begin{pmatrix} P_s \cdot P_s & P_s \cdot P_s \\ P_s \cdot P_s & P_s \cdot P_s \end{pmatrix} = \begin{pmatrix} V^2 + \frac{1}{K^2} \end{pmatrix} \Upsilon^2(s) - \frac{\Upsilon(s)}{K} \\ -\frac{\Upsilon(s)}{K} \end{pmatrix}$ (Ricordorsi che (T(s), N(s), B(s)) è una base ortonormale di IR3 Y 5)

2º forma fondamentale I coefficienti delle 2º forme fondamentale sono $(b_s) = \begin{pmatrix} N^P \cdot P_{ss} & N^P \cdot P_{sv} \\ N^P \cdot P_{sv} & N^P \cdot P_{sv} \end{pmatrix} = -\begin{pmatrix} N^P \cdot P_{sv} & N^P \cdot P_{sv} \\ N^P \cdot P_{sv} & N^P \cdot P_{sv} \end{pmatrix}$ (questo derisa dal fatto che Nº. B = 0, Nº. Pv = 0) (Notianno inoltre che Ns. P. = Nv. B in quanto l'endomorfismo N* è simmetrico, quindi Ns. P. = N*(Ps). P. = M*(Ps). P. = Ps. N*(Ps) = Ps · Nr) Un calcolo diretto basato sul fetto che NS = T'(S) = KN(S) a de (Struttendo le metrice destra di (O)) $(bs) = \begin{pmatrix} -KVT(s) & 0 \\ 0 & 0 \end{pmatrix}$ (Ricordane sempre che (T(s), N(s), B(s)) è una bese ortonomiale)

Operatore forme

La matrice che reffresente l'operatore forme $-N_{\star}$ e $(-N_{\star}) = (95) \cdot (bs) =$

$$= -\frac{1}{\gamma^{2}(s)} V^{2} \begin{pmatrix} 1 & \gamma(s) \\ \gamma(s) & \gamma(s) \\ \kappa & \gamma(s) \end{pmatrix} \begin{pmatrix} \kappa & \gamma & \gamma(s) \\ \gamma(s) & \gamma(s) \end{pmatrix} \begin{pmatrix} \kappa & \gamma & \gamma(s) \\ \gamma(s) & \gamma(s) \end{pmatrix} \begin{pmatrix} \kappa & \gamma & \gamma(s) \\ \gamma(s) & \gamma(s) \end{pmatrix}$$

$$=\begin{pmatrix} -\frac{k}{V} \gamma \gamma(s) & 0 \\ -\frac{1}{V} & 0 \end{pmatrix}$$

Di consequenta la curveture gaussiena della superficie è nulle mentre la curveture media $\frac{1}{2} \frac{K}{VT(5)}$

DOMANDA 2

8(5) è una linea di curvatura per le superficie Se e solo se 8'(5) è un autorettore dell'operatore forma, Cioè Span {8'(5)} deve essere una direzione principale 45

Abbiamo che

Quindi

winds
$$-N_{*}(8'(5)) = -N_{*}(P_{5} + f'P_{5}) = -N_{*}(P_{5}) + f'(P_{4})(P_{5})$$

$$= -N_{5}^{P} - f'N_{5}^{P} = -KN(5)$$

in quanto $N^{P}(S,V)=T(S)$ (Vedi pag. ZO) $N_{S}^{P}=T'(S)=KN(S)$ $N_{V}^{P}=0$

Riscrivo quello che ho ottenuto a prog. 24:

$$-N_{\star}\left(8'(s)\right) = -KN(s)$$
Quindi $8'(s)$ è un autorettore di $-N_{\star}$ se e solo se $\exists \lambda(s)$

$$-N_{\star}\left(8'(s)\right) \stackrel{?}{=} -KN(s) = \lambda(s) 8'(s) = \lambda(s) \left(\frac{R}{s} + f'(s) \frac{R}{s}\right)$$

$$\text{priù precisamente} = \lambda(s) \left(\frac{R}{s} + f'(s) + f'(s) \frac{R}{s}\right)$$

$$\text{vedi pag. 13} \lambda(s) \left(-\tau(s) \frac{R}{s}\right) + \int_{-K}^{\infty} \left(\frac{R}{s}\right) + \int_{-K}^{\infty} \left(\frac{R}{$$

componenti di B(s))