RELATING NEWS ARTICLES SUMMARIES TO STOCK PRICES

MARCELO GROSSI FOR MCM - PRACTICUM

SCHOOL OF COMPUTING, DUBLIN CITY UNIVERSITY

EMAIL: MARCELO.GROSSI2@MAIL.DCU.IE

PRESENTATION SUMMARY

- Part I
 - Problem and definitions,
 - State of the art,
 - A new approach,
 - Experiments,
 - Results and Conclusion
- Part II
 - Implementation details,
 - Technologies used

PART I

INTRODUCTION

- Stock price analyses
 - Can be highly lucrative!
 - Fundamental and Technical analyses
 - Econometrics
 - Chart and indicator analyses
- Increased computational power allows
 - Relating stock price to big external data sources
 - Such as News corpora

RELATING NEWS TO STOCK PRICES

- How to relate textual data to numerical data?
 - Stock prices → numerical time series
 - News articles → unstructured textual data

STATE OF THE ART

- Investor sentiment analysis
- Intuition: 'How will the investor react when confronted with news such as these?'
 - 'Economy exceeds expectations'
 - 'Market rallies after unexpected scenario'
 - 'Investment impacted after huge loss'

INVESTOR SENTIMENT

- Good, neutral and bad news may influence investors into buying/selling stocks
- Techniques to classify investor sentiment
 - Lexicon-based approaches: dictionaries of financially good/bad terminology
 - ML/NLP: Supervised learning classification on annotated corpus
- Can investor sentiment be related to stock price movement?
 - Gidfalvi, 2001 finds that news have predictive power in a 20 minutes window interval before and after publication
 - Tetlock, 2007 shows that negative sentiment predicts downward pressure on prices
 - Barber and Odean, 2008 correlate increase in trading volume with high news sentiment
 - Bloomberg sells document sentiment analysis to investors ('Bloomberg Market Impact')

PROBLEM SOLVED?

- Sentiment is not general (lacks stock context)
 - What is good news to one is not necessarily good to all
- Best results achieved through machine learning techniques
 - Needs big annotated corpus
 - If not applied to each individual stock also lacks context
- Relationship of sentiment and stock price movement is cumbersome
 - Assign probability of document moving prices
 - Create index and using threshold as a significant event for event analysis

OBJECTIVES

- Explore a different approach to relating news and stock price movement
- Does this new approach also impact stock prices?
- Can it be used as a viable trading strategy?

DIFFERENT APPROACH TO RELATING NEWS CORPUS TO STOCK DATA

- More pragmatic and intuitive
- Use textual measure over time to directly transform textual corpus into time series!
- Easier to use just another time series...
- Better for prediction
- What measure?
 - Relative Importance → daily TF-IDF
 - Gives more weight to 'important terms'

THE MEASURE: TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TFIDF)

- Measure associated with a term (or n-gram)
 - Term Frequency (TF) in its simplest forms is the number of times a term appears in a corpus
 - Inverse Document Frequency (IDF) is the logarithmic inverse of the number of documents (from the corpus) a term appears in

• TF = t (simple) or
$$\frac{t}{T}$$
 (scaled form); IDF = $log \frac{D}{d}$

• Where t is the frequency a term appears in a corpus, T is total frequency of all terms in the corpus, d is the number of documents the term appears in and finally D is the number of documents in the corpus

TESTING FOR INFLUENCE

- How to test if term time series has influence over stock prices?
 - 'The effect does not precede its cause in time',
 - 'The cause has unique information about the series being caused that is not available otherwise'
 - Eichler, 2012
- Granger, 1969 and 1980 proposed a model for such a scenario
 - Based on fitting a VAR model with and without the 'causing' series
 - Granger-causality test or Granger-test

GRANGER CAUSALITY TEST

- Fit target y to Vector Auto Regressive model without the causing time series
- $y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \beta_3 y_{t-3} + \dots + \beta_n y_{t-n} + \varepsilon_t$
- Add the causing time series x to the model and verify if it adds explaining power (F-Test)
- $y_t = \beta_0 + \beta_1 y_{t-1} + \dots + \beta_n y_{t-n} + \beta_0 + \alpha_1 x_{t-1} + \dots + \alpha_n x_{t-n} + \varepsilon_t$
- Not uncommon for Granger-causality in both directions $y \subseteq x$
 - Only accept as influencer if $x \to y$ and $y \not\to x$

GRANGER-CAUSING TERMS TO GRANGER-CAUSED STOCKS (FORCE DIRECTED GRAPH)

VALIDATING AND FORECASTING

- Cross validate Granger-causality with another model
- Can the forecasts be used as a viable trading strategy?
- Widely used model for time series analysis
 - Variant of the ARMA model (Auto Regressive Moving Average)
 - The ARIMAX model (with Integration and eXogenous variable) allows for predictor variable to be included in the model
 - Differencing done prior to applying the model on both predictor and predicted variables if non-stationary (via KPSS test)
 - ARMAX (p,q) model
 - $y_t = \beta x_t + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 z_{t-1} + \dots + \theta_n z_{t-q} + z_t$

RESULTS

- Do the new term time series corroborate the Granger-tests results?
 - Root Mean Squared Error
 - Comparison between models with individual predictor (IND), all identified predictors (AGG) and no predictors (NOEX)
 - Two tailed F-Test shows difference between IND, and NOEX, and also AGG and NOEX with 10% significance, confirming the Granger-causality tests

	AGG	NOEX
IND	0.564381	0.067272
AGG		0.08543

RESULTS (CONTD.)

- Can it be used as a viable trading strategy?
 - Directional Correctness Ratio
 - Simple measure that avoids pitfalls of convoluted trading strategies to validate theories
 - If not random (mean significantly different than 50%) means it is viable
 - Results show random behaviour and thus can not be used directly as a viable trading strategy

	MEAN	VARIANCE
IND	0.5004	0.0042
AGG	0.4961	0.0053
NOEX	0.4969	0.0043

CONCLUSION

- Granger-causing terms not always intuitive
 - May be serving as a proxy for unknown variable
 - Can be improved by filtering allowed terms (use only nouns, named entities, etc.)
- ARMA models could fit the data better if more data was available.
 - Re-test with 10+ years news and stock data and compare results
 - Could show improvement in directional correctness ratio (better fit!)

CONCLUSION (CONTD.)

- Does this new approach also impact stock prices?
 - Stock price forecasts made using the related term time series show better results than not using it
 - Using all available term time series that are related to the same stock improve results further
- Can it be used as a viable trading strategy?
 - Directional correctness does not show deviance from random

FUTURE WORK

- Repeat experiment using bigger data set
 - Spanning more years,
 - News corpora from different sources
 - Can compare results between different news providers
- Produce bag-of-words using filtered terms
 - Nouns, named entities, etc.
- Use the related term time series of different stocks and calculate distance
 - Can use cosine similarity and produce graph of related stocks (from their related terms)
 - May uncover non intuitive relationships that could prove useful as trading strategy

PART II

DATA SOURCES

- Daily historical stock data from Yahoo! Finance
 - Python Pandas Data Reader
- New York Times news portal (http://www.nytimes.com/)
 - Python Scrapy
 - Scraping over 148,000 news articles from January 1st 2013 to October 19th 2014
 - Filtered news articles by business related categories ending up with 49,227 articles
 - Transformed from HTML to JSON files (with title, text and date)

TEXT PRE-PROCESSING

- Pre-process news article raw textual content into bag-of-words (n-grams)
- Python scripts
- Sequence of transformations
 - Expand contractions: 'it's' \rightarrow 'it is', 'can't' \rightarrow can not, ...
 - Stopwords removal: 'be', 'but', 'by', 'each', 'for', 'and', 'them', 'we', ...
 - Process sentences independently: So *n*-grams bigger than *unity* can only come from the same sentence.
 - Work tokenization: 'What a great day!' → ['what', 'great', 'day']

TEXT PRE-PROCESSING (CONTD.)

- Sequence of transformations (contd.)
 - Lemmatization and Part-of-Speech Tagging:
 - 'saw' + 'verb' → 'see'
 - 'saw' + 'subject' → 'saw'
 - Word n-gram generation (1 and 2-grams)
- Bag-of-words saved to MongoDB for TF-IDF calculations

```
"source": "source of news article",
   "date": "date in the format YYYY-MM-DD",
   "tags": ["list", "of", "tags"],
   "title": "title of news article",
   "url": "url of article",
   "bag_of_words": [["ngram1", freq1],..]
```

TF-IDF CALCULATIONS

- Use MongoDB Map-Reduce-Finalize to calculate daily summaries
- Easy to get n-gram time series (saved as dictionary, so efficient to query)
- From this collection, it is easy to calculate TF-IDF for any period as needed

```
"date": "date in the format YYYY-MM-DD",
    "total_docs": number of unique news articles,
    "total_terms": number of unique terms,
    "term_counts": {
        "ngram1": [freq1, doc_freq1, tfidf1],
        "ngram2": [freq2, doc_freq2, tfidf2],
        ...
}
```

DATA ANALYSIS

- Python Pandas
- Python Stats Models (http://statsmodels.sourceforge.net/)
 - Initiative to make Python a fully-featured statistical platform
- IPython Notebook for results and interactive data exploration

Relating News Articles Summaries to Stock Prices, Marcelo Grossi for MCM - Practicum

THANK YOU!

Questions?