

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

Bachelor of Science Honours in Microbiology

Fourth Year - Semester I Examination – July/ August 2023

MIB4207 - MICROBIAL GENETICS

Index No Time: Two (02			
Answer ALL questions.			
1. Select the most appropriate response for the each of following parts (a to r) and underline it. (100 marks)			
,	the correct combination. Lederburg and Tatum: One gene, One enzyme Beadle and Tatum: Cistron Benzer: Conjugation in <i>E. coli</i> Hershey and Chase: DNA is the heritable material		
b) Select cell.	the incorrect statement on DNA packaging in to the cells or nucleus of the		
	Nucleosomes consist of two each of four different proteins with DNA looped around those. Linker DNA joins the nucleosomes.		
iii. iv.	Both prokaryotic and eukaryotic DNA are organized into nucleosomes. Prokaryotic DNA is compacted by supercoiled DNA domains joined by core proteins.		
c) The up	otake of DNA from a bacterial cell's environment is calledand it is a sof gene transfer. transformation, vertical		
ii. iii. iv.	transduction, vertical transformation, horizontal		
	lementation of mutated characters in bacteria depends on the following ples, except		
i.	The wild type can grow on a minimal medium.		
ii.	Growth of auxotrophic mutants requires corresponding growth factors in the medium.		
iii.	When two different auxotrophic mutants of a bacterium are mixed together, some cells gain the ability to grow on minimal media.		
iv.	Complementation is possible only through conjugation.		

- e) The recipient cell in a conjugating pair of bacteria changes to a donor cell when the donor is
 - i. a F+ cell.
 - ii. either F+ or F' cell.
 - iii. an HFr cell.
 - iv. either HFr or F'
- f) Bacteriophage DNA and plasmids share many common features, except
 - i. both can replicate independent of the chromosomal DNA.
 - ii. both can be transferred to other host cells.
 - iii. both facilitate genetic transfer from a host cell to another cell.
 - iv. both exist only as dsDNA.
- g) Replica plating
 - i. is a negative screening technique which can be used to screen tet^s mutants.
 - ii. is a negative screening technique which is used to screen the tet^r wild type.
 - iii. a positive selection method which can be used to select auxotophic mutants.
 - iv. a positive selection method which can be used to select defective bacteriophages.
- h) Transposable elements are mobile genetic elements
 - i. that can move from one location in a the genome of a cell to a location in the genome of another cell.
 - ii. that are uniquely found in prokaryotic organisms.
 - iii. that can detach from its position or make a copy before they transpose.
 - iv. that integrate in to a different position of the genome using homologous recombination.
- i) Select the incorrect response.

The "One gene – one enzyme" hypothesis changed to "one gene – protein" and then to "one cistron – one polypeptide" for several reasons, including

- i. proteins having other functions than catalytic function.
- ii. proteins having more than one polypeptide.
- iii. cistrons having more than one gene in them.
- iv. a cistron is synomymous with a gene.
- k) A silent mutation can only be detected by
 - i. replica plating.

ii. DNA sequencing.

iii. complementation.

iv. positive selection.

- 1) Select the **incorrect** statement on integrons from the following.
 - i. Integrons are genetic elements that carry multiple gene clusters called gene cassettes.
 - ii. Integrons are responsible for transfer of gene clusters of antibiotic resistance.
 - iii. Each gene cassette has its own promoter.
 - iv. Inserted genes are expressed by an integron-encoded promoter.

- m) An inducer is a small effector molecule
 - i. which binds to a repressor to increase the affinity of the repressor to DNA binding.
 - ii. that induces the activity of a corepressor.
 - iii. which regulates expression of a gene by negative control by binding to an activator.
 - iv. which binds to an activator protein increasing its biding to an inducible promoter.
- n) Select the correct response regarding the lac operon and the trp operon.
 - i. In the presence of lactose, the repressor is activated and binds to the operator of the lac operone.
 - ii. In the presence of tryptophan, the repressor is activated and binds to the operator of the trp operon.
 - iii. The lac operon is also induced by cAMP by binding to an activator protein in the presence of glucose.
 - iv. The lac operon is expressed either when glucose is absent or when lactose is present.
- o) Common features shared by fission yeast and budding yeast include
 - i. having haploid and diploid vegetative stages.
 - ii. being able to switch between mating types.
 - iii. having four-celled asci.
 - iv. being able to carry out fermentation as well as aerobic growth.
- p) Pattern Ab AB ab aB in an ordered tetrad resulted after a cross α Ab X a aB, where the two genes reside on the same chromosome in *Schizosaccharomyces pombe*. This pattern may due to
 - i. double crossover and segregation in meiosis I.
 - ii. single crossover or double crossover and segregation during meiosis I.
 - iii. single crossover and segregation during meiosis II.
 - iv. single crossover or double crossover and segregation during meiosis II.
- q) If α m 1 X a m2 cross in S. pombe resulted in a $\frac{\alpha \text{ m1M2}}{\text{a M1m2}}$ diploid with wild type phenotype, this is an example for having the mutations in
 - i. the same gene and complementation.
 - ii. different genes and complementation.
 - iii. the same complementation group.
 - iv. the same cistron.
- r) In the genetic control of heterocyst differentiation,
 - i. reduction of cellular concentration of 2-oxoglutarate provides a key signal.
 - ii. the ntcA gene is repressed due to nitrogen deprivation.
 - iii. ntcA mutants are not sensitive to elevated levels of 2-oxoglutarate.
 - iv. once initiated cannot be reversed.

2.	Answer \underline{ALL} parts $(a - g)$ in the space provided.	(100 marks)	
a) Genetic transfer in prokaryotes is unidirectional, resulting in a merozygote.			
	Elaborate this statement emphasizing the highlighted words.	(09 marks)	
	•		
b)	What would be the fate of an exogenote when it i. has a complementary sequence with the host DNA?	(15 marks)	
. • • •			
	ii. has no complementarity with host DNA and has an Ori?		
•••			
•••			
	iii. has neither complementarity nor Ori?		
		e in a in a r	
c)	Illustrate the process of formation of an F' plasmid loaded with <i>le</i> diagrams only.	(28 marks)	
	d) Deduce the genetic map of the markers leu+ ile, gly, tet, using information.	g the following	
	The genotype leu+, ile-, gly+, tet ^s , of F- cells population has b		
	follows after allowing conjugation with an HFr having leu-, il indicated time in an interrupted mating experiment.	(16 marks)	
	leu+, ile-, gly+, tet ^s 10 mins	(10 marks)	
	leu+, ile+, gly+, tet ^s 17 mins		
	leu-, ile+, gly+, tet ^r 32 mins		
	leu-, ile+, gly-, tet ^r , 56 mins		

e) List <u>four (04)</u> natural functions of bacterial plasmids.	(16 marks)
f) State the function of each of the following.	(08 marks)
i. OriV:	
ii. OriT:	
	•
g) State <u>two (02)</u> contrasting features of specialized transduction are transduction.	nd generalized (08 marks)
Specialized transduction	
i	•••••
ii	
Generalized transduction	harwar Janes
i	
ii.	
3. a) Relate the structure of IS elements to the mechanism of transpositi sequences are not expected).	on (exact (60 marks)
b) Give a comparative account of the structure of composite and none transposons.	composite (40 marks)
4. a) Discuss the process of Rolling Circle Replication in F plasmid in b conjugation.	pacterial
	(55 marks)
b) Describe how the Ames test is performed and its application.	(45 marks)