

School of Computer Science and Applications BCA, BCA (H), IM.Sc – CA & IT

Assignment-1 Module -2: Relations

Submission Date: For Division-A & B (09/09/2024) For Division- C & I.M.Sc. (09/09/2024)

Semester- 3

- 1 If $A = \{2, 4\}$, $B = \{2, 4, 6\}$ then find $A \times B$, $A \times A$, $B \times B$ and $A \times (B \times B)$
- 2 If $A = \{1, 4\}$, $B = \{2, 3\}$ then find $A \times B$, $A \times A$ and $B \times B$
- 3 If $A = \{1, 2\}$, $B = \{3, 4\}$ then find $A \times B$, $A \times A$ and $B \times B$
- 4 Define the following terms with an example for each.
 - (1) Relation (2) Domain of Relation (3) range of Relation
- 5 Discuss types of Relations with an example for each.
- 6 Check whether the following relations are transitive or not. Also Find domain and Range of a relation.

$$R_1 = \{(1,1)\}, R_2 = \{(1,2),(2,2)\}, R_3 = \{(1,2),(1,3),(2,1),(2,3)\}$$

- ⁷ Let $X = \{1, 2, 3, 4\}$ and $R = \{(x, y)/x > y\}$. Draw the graph of R and give its matrix.
- 8 Let $X = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 4), (4, 1), (4, 4), (2, 2), (2, 3), (3, 2), (3, 3)\}$. Write matrix of R and sketch its graph.
- Determine the properties of the relations given by the graphs as given below. Also, write corresponding relation matrices.

Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{(x, y)/x - y \text{ is even}\}$. Show that R is an equivalence relation.

- Let Z be the set of integers and R be the relation called "congruence modulo 3" defined by $R = \{(x, y)/x y \text{ is divisible by 3}\}$. Determine equivalence classes generated by the elements of Z.
- Let $R = \{(1,2),(3,4),(2,2)\}$ and $S = \{(4,2),(2,5),(3,1),(1,3)\}$. Find $R \circ S$, $S \circ R$, $R \circ (S \circ R), (R \circ S) \circ R$, $R \circ R \circ R$.
- Let $A = \{2, 3, 6, 12, 24, 36\}$ and the relation \leq be such that $x \leq y$ if x divides y. Draw the Hasse diagram of (A, \leq) .
- Let \subseteq be a relation on a set P(A), i.e. power set of A. Then, draw Hasse diagram for $(1)A = \{a\}$ $(2)A = \{a,b\}$ and $(3)A = \{a,b,c\}$.
- Draw the Hasse diagram of the following sets under the partial order relation "divides" and indicate those which are totally ordered sets.

 (a){2,6,24},(b){3,5,15},(c){1,2,3,6,12} and (d){3,9,27,54}
- Let $P = \{2,3,6,12,24,36\}$ and the relation \leq be such that $x \leq y$ if x divides y. Then, find least and greatest member in P if exists. Also, find minimal and maximal elements. Find upper bounds, lower bounds, LUB and GLB if exists for sets $(a)\{2,3,6\}, (b)\{2,3\}, (c)\{6,12\}, (d)\{24,36\}$ and $(e)\{3,12,24\}$.
- 17 Define With example: Lattice, Complete Lattice, Bounded lattice, Complement element, and Complemented lattice.
- Let $A = \{a, b, c\}$. Then show that the poset $(P(A), \subseteq)$ is a lattice.
- Let $A = \{1, 2, 3\}$. Check whether the poset $(P(A), \subseteq)$ is a lattice.
- Let $A = \{2, 3, 4, 6, 8, 12, 24, 36\}$. Check whether the poset (A, /) is a lattice.
- Draw Hasse diagram for lattice $(D_6, /)$. Check whether it is bounded or not.
- Define lattice. Determine whether poset $(\{1,2,3,4,5\}, /)$ is a lattice or not.
- Draw Hasse diagram for lattice $(D_{24}, /)$. Check whether it is a complete lattice or not.
- Draw Hasse diagram for lattice $(D_{30}, /)$. Check whether it is a complemented lattice or not.
- Show that $(D_{45}, /)$ is a lattice.