EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Neural Acceleration Lab Hwigeon Oh

Introduction

- Scaling up ConvNets is widely used to achieve better accuracy
- Ways to scale up: Depth (#layers) / Width (#channels) / Image resolution
- In previous work, it is common to scale only one of three
- This paper provides a principled method to scale up with *compound scaling*

- A ConvNet Layer i can be defined as: $Y_i = \mathcal{F}_i(X_i)$
- A ConvNet $\mathcal N$ can be represented as: $\mathcal N=\mathcal F_k\odot\cdots\odot\mathcal F_2\odot\mathcal F_1(X_1)=\odot_{j=1\dots k}\mathcal F_j(X_1)$
- By factorization with blocks: $\mathcal{N} = \bigcirc_{i=1...s} \mathcal{F}_i^{L_i}(X_{\langle H_i,W_i,C_i \rangle})$

- A ConvNet Layer i can be defined as: $Y_i = \mathcal{F}_i(X_i)$
- A ConvNet $\mathcal N$ can be represented as: $\mathcal N=\mathcal F_k\odot\cdots\odot\mathcal F_2\odot\mathcal F_1(X_1)=\odot_{j=1...k}\mathcal F_j(X_1)$
- By factorization with blocks: $\mathcal{N} = \bigcirc_{i=1...s} \mathcal{F}_i^{L_i}(X_{\langle H_i,W_i,C_i \rangle})$

- A ConvNet Layer i can be defined as: $Y_i = \mathcal{F}_i(X_i)$
- A ConvNet $\mathcal N$ can be represented as: $\mathcal N=\mathcal F_k\odot\cdots\odot\mathcal F_2\odot\mathcal F_1(X_1)=\odot_{j=1...k}\mathcal F_j(X_1)$
- By factorization with blocks: $\mathcal{N} = \bigcirc_{i=1...s} \mathcal{F}_i^{L_i}(X_{\langle H_i,W_i,C_i \rangle})$

- A ConvNet Layer i can be defined as: $Y_i = \mathcal{F}_i(X_i)$
- A ConvNet $\mathcal N$ can be represented as: $\mathcal N=\mathcal F_k\odot\cdots\odot\mathcal F_2\odot\mathcal F_1(X_1)=\odot_{j=1...k}\mathcal F_j(X_1)$
- By factorization with blocks: $\mathcal{N} = \bigcirc_{i=1...s} \mathcal{F}_i^{L_i}(X_{\langle H_i,W_i,C_i \rangle})$

- Model scaling tries to expand the length(L_i), width(C_i), resolution(H_i, W_i)
- Without changing layer architecture(\mathcal{F}_i)
- To reduce the design space, all layers are scaled uniformly with constant ratio

$$\begin{aligned} \max_{d,w,r} & Accuracy \big(\mathcal{N}(d,w,r) \big) \\ s.t. & \mathcal{N}(d,w,r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_i^{d\cdot \hat{L}_i} \big(X_{\langle r\cdot \hat{H}_i,r\cdot \hat{W}_i,w\cdot \hat{C}_i \rangle} \big) \\ & \operatorname{Memory}(\mathcal{N}) \leq \operatorname{target_memory} \\ & \operatorname{FLOPS}(\mathcal{N}) \leq \operatorname{target_flops} \end{aligned}$$

Scaling Dimensions: depth

- $\max_{d,w,r} \quad Accuracy(\mathcal{N}(\underline{d}, w, r))$ $s.t. \quad \mathcal{N}(d, w, r) = \bigcirc \hat{\mathcal{F}}_{i}^{\underline{d} \cdot \hat{L}_{i}}(X_{\langle r \cdot \hat{H}_{i}, r \cdot \hat{W}_{i}, w \cdot \hat{C}_{i} \rangle})$
 - i=1...sMemory(\mathcal{N}) \leq target_memory
 - $FLOPS(\mathcal{N}) \leq target_flops$

- Deeper network can capture **richer** and **more complex** features
- Ex. ResNet-50 < ResNet-152

Scaling Dimensions: width

- $\max_{d,w,r} \quad Accuracy(\mathcal{N}(d, \mathbf{w}, r))$ s.t. $\mathcal{N}(d, w, r) = \bigcirc \hat{\mathcal{F}}_{i}^{d \cdot \hat{L}_{i}}(X_{\langle r \cdot \hat{H}_{i}, r \cdot \hat{W}_{i}, \mathbf{w} \cdot \hat{C}_{i} \rangle})$
 - i=1...s i=1...s
 - $Memory(\mathcal{N}) \leq target_memory$
 - $FLOPS(\mathcal{N}) \leq target_flops$

- Wider network can capture more fine-grained features
- Ex. wide residual network

 $Accuracy(\mathcal{N}(d, w, r))$

 $\mathcal{N}(d,w,r) = \ \bigodot \ \hat{\mathcal{F}}_i^{d\cdot\hat{L}_i} \big(X_{\langle \pmb{r}\cdot\hat{H}_i,\pmb{r}\cdot\hat{W}_i,w\cdot\hat{C}_i\rangle} \big)$

 $Memory(\mathcal{N}) \leq target_memory$ $FLOPS(\mathcal{N}) \leq target_flops$

Scaling Dimensions: resolution

- With higher resolution input, can capture more fine-grained patterns
- Ex. GPipe

Scaling Dimensions

 $\begin{array}{ll} \underset{w,r}{\operatorname{ax}} & Accuracy \big(\mathcal{N}(d,w,r) \big) \\ \text{t.} & \mathcal{N}(d,w,r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_i^{d\cdot\hat{L}_i} \big(X_{\langle r\cdot\hat{H}_i,r\cdot\hat{W}_i,w\cdot\hat{C}_i \rangle} \big) \\ & \operatorname{Memory}(\mathcal{N}) \leq \operatorname{target_memory} \end{array}$

 $FLOPS(\mathcal{N}) \leq target_flops$

- Scaling up any dimension improves accuracy
- The accuracy gain diminishes for bigger models

- Scaling dimensions are not independent (empirical observation)
- Increase depth to make larger receptive field for higher resolution images
- Increase width to capture more fine-grained patterns with more pixels

- Scaling dimensions are not independent (empirical observation)
- Increase depth to make larger receptive field for higher resolution images
- Increase width to capture more fine-grained patterns with more pixels

- Each dot in a line denotes a model with different width
- Accuracy saturates quickly if only scale width

- Scaling dimensions are not independent (empirical observation)
- Increase depth to make larger receptive field for higher resolution images
- Increase width to capture more fine-grained patterns with more pixels

- Each dot in a line denotes a model with different width
- Accuracy saturates quickly if only scale width
- Scaling width with depth or resolution makes better

- Scaling dimensions are not independent (empirical observation)
- Increase depth to make larger receptive field for higher resolution images
- Increase width to capture more fine-grained patterns with more pixels

- Each dot in a line denotes a model with different width
- Accuracy saturates quickly if only scale width
- Scaling width with depth or resolution makes better
- It is critical to balance all three dimensions

Compound Scaling Method

- Depth: $d = \alpha^{\phi}$, Width: $w = \beta^{\phi}$, Resolution: $r = \gamma^{\phi}$
- Use a compound coefficient ϕ to uniformly scales
- The FLOPS of a convolution op is proportional to d, w^2 , r^2
- With constraint $\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$, the total FLOPS will increase by 2^{ϕ}
- ϕ controls how many more resources are available
- α , β , γ specify how to assign extra resources

MnasNet (Tan et al., 2019)

- Multi-objective neural architecture search that optimized both accuracy and latency
- Use weighted product method to approximate Pareto optimal solutions
- Use empirical observation: x2 the latency brings about 5% relative accuracy gain
 - With this condition, β in the below equation is ≈ -0.07

MnasNet (Tan et al., 2019)

- Use Factorized Hierarchical Search Space
- Network layers are grouped into a number of blocks
- Each block contains a variable number of repeated identical layers
- For each block, search for the operations for a single layer and the number of layers

- Convolutional ops ConvOp: regular conv (conv), depthwise conv (dconv), and mobile inverted bottleneck conv [29].
- Convolutional kernel size KernelSize: 3x3, 5x5.
- Squeeze-and-excitation [13] ratio SERatio: 0, 0.25.
- Skip ops SkipOp: pooling, identity residual, or no skip.
- Output filter size F_i.
- Number of layers per block N_i.

EfficientNet Architecture

- Since model scaling does not change layer, having a good baseline is critical
- Use $ACC(m) \times \left[\frac{FLOPS(m)}{T}\right]^{w}$ as the optimization goal where w = -0.07

Table 1. EfficientNet-B0 baseline network – Each row describes a stage i with \hat{L}_i layers, with input resolution $\langle \hat{H}_i, \hat{W}_i \rangle$ and output channels \hat{C}_i . Notations are adopted from equation 2.

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

EfficientNet Architecture

- Starting from the baseline EfficientNet-B0, apply compound scaling method:
 - STEP1: Fix $\phi = 1$, assuming x2 resources. Do a grid search to find α , β , γ
 - STEP2: Fix α , β , γ as constants and scale up baseline network with different ϕ
- Resultant $\alpha = 1.2$, $\beta = 1.1$, $\gamma = 1.15$

$$\begin{array}{ll} \max_{d,w,r} & Accuracy \left(\mathcal{N}(d,w,r) \right) & \text{depth: } d = \alpha^{\phi} \\ s.t. & \mathcal{N}(d,w,r) = \bigodot \hat{\mathcal{F}}_i^{d\cdot\hat{L}_i} \left(X_{\langle r\cdot\hat{H}_i,r\cdot\hat{W}_i,w\cdot\hat{C}_i \rangle} \right) & \text{width: } w = \beta^{\phi} \\ & \text{memory}(\mathcal{N}) \leq \text{target_memory} & \text{s.t. } \alpha \cdot \beta^2 \cdot \gamma^2 \approx 2 \\ & \text{FLOPS}(\mathcal{N}) \leq \text{target_flops} & \alpha \geq 1, \beta \geq 1, \gamma \geq 1 \\ \end{array}$$

Results on ImageNet

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPS	Ratio-to-EfficientNet
EfficientNet-B0	77.3%	93.5%	5.3M	1x	0.39B	1x
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x
EfficientNet-B1	79.2%	94.5%	7.8M	1x	0.70B	1x
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x
EfficientNet-B2	80.3%	95.0%	9.2M	1x	1.0B	1x
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x
EfficientNet-B3	81.7%	95.6%	12M	1x	1.8B	1x
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x
EfficientNet-B4	83.0%	96.3%	19M	1x	4.2B	1x
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x
EfficientNet-B5	83.7%	96.7%	30M	1x	9.9B	1x
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x
EfficientNet-B6	84.2%	96.8%	43M	1x	19B	1x
EfficientNet-B7	84.4%	97.1%	66M	1x	37B	1x
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	-

We omit ensemble and multi-crop models (Hu et al., 2018), or models pretrained on 3.5B Instagram images (Mahajan et al., 2018).

Results on Transfer Learning

Comparisons with different scaling methods

• The model with compound scaling tends to focus more relevant regions

