2010年12月10日 統計セミナー 第8回

「数理モデル」

山内研M1 伊藤 公一

今日のお話

・ 数理モデルってどんなものか?

どんな風に使えるか?

- ・実証研究のモデル化
 - 高巣さん 微生物ループへのウイルスの効果
 - 橋本くん 蝶の幼虫の個体群動態

数理モデルとは

ある現象について

関わるメカニズムを仮定し 現象を再現することで その本質を理解しようとする

手法。

ただし、「数理」だけに数式を使って・・・

数理モデルとは

メカニズム

気温などの環境条件

メカニズム

捕食圧の強さ

メカニズム

餌資源の量と質

メカニズム

他種との競争の効果

統計

捕食者と相関はある? 主要な要因は?

現象

蝶の幼虫の個体密度

モデル

データ

幼虫の個体数 捕食者の密度 餌植物のバイオマス 競争種の個体数

きつと捕食圧は捕食者数に比例生存率は資源の量に反比例かも

モデルで何が分かる?

 仮説を理論的に裏付けられる 「根拠はないけど、こういう事って起こるかも!」 というレベルの仮説に、信憑性を与えうる

新たな予測、仮説の具体的提案が可能 「資源量と捕食者の数は、直線的関係になるはず」 「越冬のコストによって、最適成長量は変わるかも」

モデルの利点

- 実験不可能な現象も考えることができる
 - 生態系規模、進化などスケールの大きいもの
 - 土の中など、直接の観測が難しい場所
- 現象の本質を理解できる
 - 何が主要な要因なのか?
 - データだけ見ていても難しい現象の理解
- 見たいものの効果だけ見られる
 - 「捕食者が存在することによる効果は?」など

モデルの欠点

- ・ 複雑すぎる系は、再現が苦手
 - パラメータの数が増えると、信憑性に劣る

- あくまで「前提が正しければ」の世界
 - 間接的な証明しか出来ない
 - 常に「本当に?」という批判はある

対策はいくつかある

- •実証データへのフィードバック
- •Robustな結果を大事に

モデルの種類

物質循環

共存のメカニズム

絶滅確率

感染症の動態

個体群動態

食物網構造

リター分解速度

パッチ上のハビタット

交配戦略の進化

メタ個体群モデル

ゲーム理論

投資のスケジュール

空間構造

進化

縞枯れのパターン

被食防衛の進化

共生・寄生の進化

モザイク構造の出現

最適採餌戦略

モデルを立てる

1. 何の値の変化を考えるか、決める

2. その値を変化させるメカニズムを記述する

3. 式変形やシミュレーションで、解析する

正直、言葉では説明し辛いです・・・

百聞は一見にしかず

実証の研究を題材に、モデルを立ててみる。

・バクテリア個体群動態への、ウイルスの影響 高巣さん(中野研 D1)

•植物再成長と、蝶の幼虫の個体群動態 橋本くん(大串研 M1)

by 高巣

- 1. 何の値の変化を考えるか、決める
 - 進化なら、適応度
 - 個体数変動なら、個体数、密度
 - 物質循環なら、物質の濃度や量
 - 空間構造なら、どこにいる/あるか

今回の場合、以下の個体数を置いてみる

- ·*資源(DOM)*
- ウイルス感染バクテリア
- ウイルス非感染バクテリア
- ·捕食者(HNF)

- 2. その値を変化させるメカニズムを記述する
 - 具体的にどういう関係式が成り立つか、まで

餌が増えると、子どもも増えるだろう

餌に比例して増えるの?どこかで飽和?

- たくさん入れると解析が難しくなるので、とりあえず必要最小限を。
- この部分が論理的でないと、出てきた結果の解釈は難しい・・・

資源
$$\frac{dN}{dt} = N_0$$

非感染
$$\frac{dS}{dt}$$
 =

感染
$$\frac{dI}{dt}$$
 =

捕食者
$$\frac{dP}{dt}$$
 =

資源
$$\frac{dN}{dt} = N_0 - a_S SN$$
非感染 $\frac{dS}{dt} = a_S NS - a_P PS$
感染 $\frac{dI}{dt} = -a_P PI$
捕食者 $\frac{dP}{dt} = a_P (S+I)P$

資源
$$\frac{dN}{dt} = N_0 - a_S SN$$

非感染
$$\frac{dS}{dt} = a_S NS - a_P PS - \beta IS$$

感染
$$\frac{dI}{dt} = \beta SI - a_P PI$$

捕食者
$$\frac{dP}{dt} = a_P(S+I)P$$

資源
$$\frac{dN}{dt} = N_0 - a_S SN$$

非感染
$$\frac{dS}{dt} = a_S NS - a_P PS - \beta IS - m_S S$$

感染
$$\frac{dI}{dt} = \beta SI - a_P PI - m_I I$$

捕食者
$$\frac{dP}{dt} = a_P(S+I)P - m_P P$$

- 3. 式変形やシミュレーションで、解析する
 - 解析的手法
 - ・式をえっちらおっちら計算して、分かる形にする。
 - 厳密に挙動を調べることができるが、解けないことも。
 - 数值的手法
 - ・いわゆるシミュレーション。
 - パラメータを具体的に与えてみて、パソコンさんに、計算を代わりにやってもらう。
 - 時間がかかる&網羅的でない場合もある。

今回の場合、解析的に解いてみる。

• 安定なところ=これ以上変化しない状態を探す。

$$\frac{dN}{dt} = N_0 - a_S SN = 0$$

$$\frac{dS}{dt} = \frac{1 + 2 \pi I f}{dt}, dN/dt = 0 f$$

$$\hat{N} = \frac{N_0}{a_S \hat{S}}$$

$$\frac{dP}{dt} = a_P (S+I)P - m_P P = 0$$

資源
$$\frac{dN}{dt} = N_0 - a_S SN$$

非感染
$$\frac{dS}{dt} = a_S NS - a_P PS - \beta IS - m_S S$$

感染
$$\frac{dI}{dt} = \beta SI - a_P PI - m_I I$$

捕食者
$$\frac{dP}{dt} = a_P(S+I)P - m_P P$$

- ウイルスは、供給資源量が多すぎても少なすぎても出現しない。
- ウイルスの影響力と捕食者の影響力のバランスによっては、ウイルスが出現しない系も存在する。
- ・バクテリアの全体量は、供給資源量が一定 以上ではほとんど増加しない。

データだけからは得にくい現象の理解

仮定だらけで使えない?

- 「あの効果が入っていない!」「実際に摂食速度が線形とは限らん!」
 - 多少モデルの前提を変えても、Robustな結果が得られる場合も多い(たぶん)。

Rhodes&Martin (2010 Journal of Theoretical Biology)

仮定だらけで使えない?

- 「現実はもっと複雑だし意味ないんじゃ・・・」「そんな簡単な前提では使いようがない」
 - 主要な要因さえ説明できれば、その現象の理解 の一助になるかも。
 - 必要ならば、さらに拡張して他の効果を検証することもできる。
 - 現実と一致しなくても、どういった要因が実際に は大事なのか推定することはできる。

モデルの妥当性の検証は?

- モデルから示唆される仮説の検証
 - 実際にウイルスは供給資源量が多いと消える?

- パラメータ推定値の当てはめ
 - 感染率や摂食速度を入れて、もっともな数値が出るのか?

結果をどう使う?

- モデルの拡張による、現象のより深い理解
 - 微生物ループ自体のインパクトの大きさは?

- ・現象の予測
 - 植物プランクトンの増加は何を招くのか?

同じモデル、違う現象

• 多くの場合、他の現象にも適応できる。

同じモデル、違う現象

• 多くの場合、他の現象にも適応できる。

by 橋本

新葉量
$$\frac{dR}{dt} = g(1 - \frac{R}{K}) - ae^{kt}N$$

幼虫数
$$\frac{dN}{dt} = ?$$

$$p - qR_1$$

$$\frac{p}{q+R_{T}}$$

$$R_I = \frac{R}{ae^{kt}N}$$

$$\frac{P}{q+r^{R_I}}$$

解析的に解けない(たぶん)ので、シミュレーションに頼ってみる。

パラメータの値の決定

- ▶ 再成長速度は、2週間である程度飽和する速度に。
- ▶ 幼虫の摂食量は体重に比例するとして、最終的に 150倍となるように。

- ・ シミュレーション(変化速度からの計算)
 - 1. 現在の値から、現在の変化速度を計算。
 - 2. 現在の変化速度から、少し先の値を予測。
 - 3. 少し先の値を現在の値とみなして、1に戻る。

・孵化時の新葉量より、時間経過による幼虫の 成長の影響の方が大きい。

・孵化時の新葉量より、時間経過による幼虫の 成長の影響の方が大きい。

要求資源量が指数的に増える以上、死亡率の式の形に関係なく、初期資源量より成長の効果の方が大きくなる。

- ・ 幼虫の成長段階に応じて、資源量が違う?
 - 移動能力の差から、その可能性はあるらしい。

モデルを使うには

- メカニズムが明確な仮説を立てる
 - 変化量の式さえ立てれれば、後はただの数学
- モデル論文をとりあえず読んでみる
 - 扱っている物が違っても、仮定が一緒なら使えるかも
- 数理モデルをやってる人に聞いてみる
 - 一番手っ取り早いと思う
 - − データや仮説がなくても、やっていることを教えてくれれば面白い提案ができる・・・といいな

参考文献

- 数理生物学入門 嚴佐 庸
 - パラパラめくって結果を見るだけでも、面白い

- 行動生態学入門 粕谷 英一
 - モデルの考え方がかなり丁寧に書いてある

- 動物生態学 伊藤嘉昭•山村則男•嶋田正和
 - 実証例が豊富で、読んでいて面白い