## Calc III Sections

Fall 2025

Hui Sun

September 19, 2025

## Calc III-Week 4 (9/15-9/19)

Topics: (1) Partial derivatives. (2) Definition of total derivatives.

**Problem 1.** Compute  $\frac{\partial f}{\partial x}$ ,  $\frac{\partial f}{\partial y}$  for the following functions:

1.

$$x^3y^4 - xy^2$$

2.

$$x^2\sin(2y) + 3$$

3.

$$\ln\left(\frac{y}{x}\right) + \ln\left(\frac{1}{x+y}\right) - \ln\left(\frac{x}{2}\right)$$

You may use the following identities to simply the equation first:

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b, \quad \ln\left(\frac{1}{a}\right) = -\ln a$$

**Definition 1** (tangent plane). Let  $f : \mathbb{R}^2 \to \mathbb{R}$  be differentiable at  $(x_0, y_0)$ , then the **tangent plane** to the graph f in  $\mathbb{R}^3$  is the given by

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x} \Big|_{(x_0, y_0)} (x - x_0) + \frac{\partial f}{\partial y} \Big|_{(x_0, y_0)} (y - y_0)$$

**Problem 2.** Compute the plane tangent to the graph of  $f(x,y) = x^2y + 2xy - y^2$  at (1,2).

**Definition 2** (derivative for two variables). Let  $f: \mathbb{R}^2 \to \mathbb{R}$ , then f is said to be **differentiable** at  $(x_0, y_0)$  if  $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$  exist at  $(x_0, y_0)$  and if

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - \mathcal{P}(x,y)}{\|(x,y) - (x_0,y_0)\|} = 0$$

where  $\mathcal{P}(x,y) = f(x_0,y_0) + \frac{\partial f}{\partial x} \bigg|_{(x_0,y_0)} (x-x_0) + \frac{\partial f}{\partial y} \bigg|_{(x_0,y_0)} (y-y_0)$  is the tangent plane to f at  $(x_0,y_0)$ .

**Definition 3** (derivative for n variables). Let  $f : \mathbb{R}^n \to \mathbb{R}$ , then the **gradient** of f, denoted as  $\nabla f$  is given by

$$\nabla f = \left[ \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \right]$$

is a  $1 \times n$  matrix. And f is said to be **differentiable** at  $x_0 \in \mathbb{R}^n$  if

$$\lim_{x \to x_0} \frac{|f(x) - f(x_0) - \nabla f(x_0)(x - x_0)|}{\|x - x_0\|} = 0$$

and the derivative of f is exactly the gradient  $\nabla f$  at  $x_0$ .

**Definition 4** (derivative for m outputs). Let  $f: \mathbb{R} \to \mathbb{R}^m$ , where  $f(x) = (f_1(x), \dots, f_m(x))$ , then let T denote the  $n \times 1$  matrix

$$T = \begin{bmatrix} \frac{df_1}{dx}(x_0) \\ \frac{df_2}{dx}(x_0) \\ \vdots \\ \frac{df_m}{dx}(x_0) \end{bmatrix}$$

Then f is said to be **differentiable** at  $x_0$  if

$$\lim_{x \to x_0} \frac{|f(x) - f(x_0) - T(x - x_0)|}{|x - x_0|} = 0$$

and the matrix T is the derivative at  $x_0$ .

**Example 1.** Let  $f(x) = (x^2, 2x, -x)$ , then

$$T = Df(1) = \begin{bmatrix} 2x \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$

**Definition 5** (derivative for general functions). Let  $f : \mathbb{R}^n \to \mathbb{R}^m$ , let T be the  $m \times n$  matrix with entries  $\partial f_i/\partial x_j$  evaluated at  $x_0 \in \mathbb{R}^n$ . Then f is said to be **differentiable** at  $x_0$  if

$$\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - T(x - x_0)\|}{\|x - x_0\|} = 0$$

then f is differentiable at  $x_0$ , and the matrix T is the derivative at  $x_0$ . Note that T loosk like

$$T = Df(x_0), \quad Df = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

**Example 2.** Let  $f(x, y, z) = (ze^x, -ye^z)$ , then

$$Df(x,y,z) = \begin{bmatrix} ze^x & 0 & e^x \\ 0 & -e^z & -ye^z \end{bmatrix}$$

**Problem 3.** Let  $f: \mathbb{R}^3 \to \mathbb{R}$  be defined by

$$f(x, y, z) = x^2y + y\sin(z) + ze^x.$$

Compute the gradient of f at (1, 2, 0).