

Announcement

We will start **checking in** with each team tentatively next week before break!

If having issues communicating with your project partners, let us know and we will coordinate or reassign groups

Dec 2 presentation will take attendance (each group 5-10 min)

Final Project! Finish before DECEMBER 2

Each group will present 5-10 min on DEC 2 normal meeting time

Skeleton:

https://colab.research.google.com/drive/1vFZVxKKk8gSJdfmtVf5z6RdkjmPcACfD?usp=sharing

As always, if there are any questions or concerns about this week's lab or the project, please don't hesitate to let us know!

Final Project Presentation Examples

Education, Linguistic Isolation, and Poverty:
 https://docs.google.com/presentation/d/1QCzJjHykbj0NORZGNg6kHprJor2
 E2wiTiaA947XCCKI/edit?usp=sharing

ADIHP Healthcare Fraud Detection Project:
 https://docs.google.com/presentation/d/1YGrR9sfcc76xVeWWqFRI w fR5cr
 Bvh1WHSMqijDZDk/edit?usp=sharing

SVM (Support Vector Machines)

What is SVM?

A linear model for classification and regression problems.

- Can solve linear and non-linear problems.
- Basic algorithm: creates a line or a hyperplane which separates the data into classes.

A classification example:

A classification example:

How SVM select better line?

How it works?

Goal: to maximize the margin, so that:

the separation between the two classes(that street) is as wide as possible

- **Support vectors:** we find the points **closest to the line** from both the classes. These points are called
- Margin: compute the distance between the line and the support vectors

More complex example (higher dimension):

More complex example (higher dimension):

How it works?

$$z = x^2+y^2$$

Let $z = k$
then $x^2+y^2 = k$

And then we can project the

separation back to original dimension using this transformation:

We use kernel functions to do the classification

1. Linear Function

$$k(x_i, x_j) = x_i * x_j$$

2. Polynomial Function

$$k(x_i, x_j) = (1 + x_i * x_j)^d$$

We use kernel functions to do the classification

3. Radial Basis Function (RBF)

$$k(x_i, x_j) = exp(-\gamma ||x_i - x_j||^2)$$

4. Sigmoid Function

$$k(x_i, x_j) = \tanh(\alpha x^T y + c)$$

i.e. we want to see how diamond depth and carat impacts color:

	carat	cut	color	clarity	depth	table	price	x	¥	z
0	0.23	ldeal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75

We might probably have a bunch of classes like this:

Each color represents a class of diamond

One-to-one approach

separate between every two classes

i.e. red-blue line tries to maximize the separation only between blue and red points

One-to-rest approach

separation takes all points into account, dividing them into **two groups**

one group for **the class points**; one group for **all other points**

Where to use SVM?

- Xx-coordinate
 Use **sepal length** and **petal length** to determine the **flower's** classes possible species
- Classification of news articles into "business" and "Movies"
- Classification of web pages into personal home pages and others
- Classification of genes, patients on the basis of their genes

Tips of real-life usage

- The x y data should be numerical
- Probably need to scale your data to be the ranges of [0, 1] or [-1, 1].
- Real dataset example: <u>link</u>
 - Feel free to use it as sample code for final project

How do you implement SVM?

Colab demo!!!

https://colab.research.google.com/drive/1U5QxXT Ni1NtZyBd-yjLa7zNGtN I8DS6?usp=sharing

As always, if there are any questions or concerns about this week's lab or the project, please don't hesitate to let us know!