

Aufgabennummer: B\_274

Technologieeinsatz:

möglich □

erforderlich 🗵

Symmetrische Verbinder in Doppelkeilform dienen zum sicheren und schnellen Verbinden zweier Holzteile.

- a) Zeigen Sie, wie man die Formel  $V = h \cdot l \cdot (b e)$  für die Berechnung des Volumens des Verbinders erhält.
  - Berechnen Sie die Länge der Kante s für die Höhe h=7 mm und den Winkel  $\alpha=140^{\circ}$ .



- b) In der nebenstehenden Abbildung sind die Querschnittsfläche des Verbinders und auftretende Kräfte dargestellt.
  - Stellen Sie eine Formel zur Berechnung des Betrags der Kraft  $\overrightarrow{F}_s$  anhand des Kräfteparallelogramms in der nebenstehenden Abbildung in Abhängigkeit vom Winkel  $\alpha$  und vom Betrag der Kraft  $\overrightarrow{F}$  auf.





- Argumentieren Sie anhand dieser Formel, wie sich eine Verkleinerung des Winkel  $\alpha$  auf  $F_{\rm s}$  auswirkt.
- c) Die Breiten der Verbinder eines bestimmten Herstellers sind normalverteilt mit dem Erwartungswert  $\mu$  = 5,5 mm und der Standardabweichung  $\sigma$  = 0,5 mm. Einer umfangreichen Lieferung solcher Verbinder werden Zufallsstichproben vom Umfang n = 20 entnommen und es werden die Stichprobenwerte ermittelt.
  - Berechnen Sie den zum Erwartungswert symmetrischen Zufallsstreubereich, in dem erwartungsgemäß 95 % aller Stichprobenmittelwerte liegen.

d) In der nachstehenden Abbildung sind der Graph der Dichtefunktion g einer normalverteilten Grundgesamtheit und der Graph der Dichtefunktion  $g_{\overline{\chi}}$  der zugehörigen Verteilung der Stichprobenmittelwerte von Stichproben mit n=20 dargestellt.

- Kreuzen Sie diejenige Grafik an, in der die beiden Funktionsgraphen zueinander passend dargestellt sind. [1 aus 5]



Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

## Möglicher Lösungsweg

a) Die Querschnittsfläche des Verbinders ist ein Rechteck reduziert um zwei Dreiecke.

$$A = b \cdot h - 2 \cdot \frac{h \cdot e}{2}$$

$$V = \left(b \cdot h - 2 \cdot \frac{h \cdot e}{2}\right) \cdot l = b \cdot h \cdot l - h \cdot e \cdot l = h \cdot l \cdot (b - e)$$

Länge der Kante s:

$$s = \frac{h}{2 \cdot \sin\left(\frac{\alpha}{2}\right)} = 3,72...$$

Die Länge der Kante s beträgt rund 3,7 mm.

b) 
$$F_S^2 = F^2 + F_S^2 - 2 \cdot F \cdot F_S \cdot \cos\left(\frac{\alpha}{2}\right)$$

$$2 \cdot F \cdot F_S \cdot \cos\left(\frac{\alpha}{2}\right) = F^2$$

$$F = 2 \cdot F_S \cdot \cos\left(\frac{\alpha}{2}\right)$$

$$\cos\left(\frac{\alpha}{2}\right) = \frac{F}{2 \cdot F_S}$$

$$F_S = \frac{F}{2 \cdot \cos\left(\frac{\alpha}{2}\right)}$$

Bei einem kleineren Winkel  $\alpha$  wird  $F_s$  kleiner, da die Funktionswerte von  $\cos\left(\frac{\alpha}{2}\right)$  größer werden und der Quotient  $\frac{F}{2\cdot\cos\left(\frac{\alpha}{2}\right)}$  kleiner wird.

c) 
$$\mu = 5.5 \text{ mm}$$
 $\sigma_{\bar{\chi}} = \frac{0.5}{\sqrt{20}} \text{ mm}$ 

Zweiseitigen 95-%-Zufallsstreubereich mithilfe der Normalverteilung bestimmen:

$$\mu \pm u_{0,975} \cdot \frac{\sigma}{\sqrt{n}}$$
5,5 \pm 1,959... \cdot \frac{0,5}{\sqrt{20}}
5,2808... \leq \overline{X} \leq 5,7191...

Der Mittelwert einer zufällig ausgewählten Stichprobe liegt mit einer Wahrscheinlichkeit von 95 % im Bereich von 5,28 mm bis 5,72 mm.



# Klassifikation

|                                              |                      | eil A 🗵 Teil B                                                                                                                        |  |  |  |
|----------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Wesentlicher Bereich der Inhaltsdimension:   |                      |                                                                                                                                       |  |  |  |
|                                              | a)<br>b)<br>c)<br>d) | 2 Algebra und Geometrie 2 Algebra und Geometrie 5 Stochastik 5 Stochastik                                                             |  |  |  |
| Nebeninhaltsdimension:                       |                      |                                                                                                                                       |  |  |  |
|                                              | b)                   | -<br>-<br>-<br>-                                                                                                                      |  |  |  |
| Wesentlicher Bereich der Handlungsdimension: |                      |                                                                                                                                       |  |  |  |
|                                              | a)<br>b)<br>c)<br>d) | A Modellieren und Transferieren A Modellieren und Transferieren B Operieren und Technologieeinsatz C Interpretieren und Dokumentieren |  |  |  |
| Nebenhandlungsdimension:                     |                      |                                                                                                                                       |  |  |  |
|                                              | a)<br>b)             | B Operieren und Technologieeinsatz  D Argumentieren und Kommunizieren                                                                 |  |  |  |

### Schwierigkeitsgrad:

d) —

#### Punkteanzahl:

| a) | leicht | a) | 3 |
|----|--------|----|---|
| b) | mittel | b) | 2 |
| C) | mittel | c) | 2 |
| d) | mittel | d) | 1 |

c) A Modellieren und Transferieren

Thema: Sonstiges

Quellen: -