www.vishay.com

Vishay Semiconductors

Optocoupler, Phototransistor Output (Dual, Quad Channel)

LINKS TO ADDITIONAL RESOURCES

FEATURES

- High collector emitter voltage, BV_{CEO} = 70 V
- Dual and quad packages feature:
 - Lower pin and parts count
 - Detter channel to channel CTD meets
 - Better channel to channel CTR match
 - Improved common mode rejection
- Isolation rated voltage 4420 V_{RMS}
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

AGENCY APPROVALS

- <u>UL</u>
- cUL
- DIN EN 60747-5-5 (VDE 0884-5), available with option 1
- CQC GB4943.1
- CQC GB8898
- FIMKO

DESCRIPTION

The ILD621, ILQ621, ILD621GB, ILQ621GB are multi-channel phototransistor optocouplers that use GaAs IRED emitters and high gain NPN silicon phototransistors. These devices are constructed using double molded insulation technology.

The ILD621, ILQ621GB is well suited for CMOS interfacing given the CTR_{CEsat} of 30 % minimum at I_F of 1.0 mA. High gain linear operation is guaranteed by a minimum CTR_{CE} of 100 % at 5.0 mA. The ILD621, ILQ621 has a guaranteed CTR_{CE} 50 % minimum at 5.0 mA. The transparent ion shield insures stable DC gain in applications such as power supply feedback circuits, where constant DC V_{IO} voltages are present.

Note

• For additional information on the available options refer to option information

ILD621, ILD621GB, ILQ621, ILQ621GB

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT			
INPUT								
Reverse voltage			V_{R}	6.0	V			
Forward current			l _F	60	mA			
Surge current			I _{FSM}	1.5	Α			
Power dissipation			P _{diss}	100	mW			
Derate from 25 °C				1.33	mW/°C			
OUTPUT								
Collector emitter reverse voltage			V_{CEO}	70	V			
Collector current			I _C	50	mA			
Collector current	t < 1.0 ms		I _C	100	mA			
Power dissipation			P _{diss}	150	mW			
Derate from 25 °C				-2.0	mW/°C			
COUPLER								
Package dissipation		ILD621		400	mW			
Fackage dissipation		ILD621GB		400	mW			
Derate from 25 °C				5.33	mW/°C			
Package dissipation		ILQ621		500	mW			
rackage dissipation		ILQ621GB		500	mW			
Derate from 25 °C				6.67	mW/°C			
Storage temperature			T _{stg}	-55 to +150	°C			
Operating temperature			T _{amb}	-55 to +100	°C			
Junction temperature			Tj	100	°C			
Soldering temperature (1)	2.0 mm from case bottom		T _{sld}	260	°C			

Notes

Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP).

PARAMETER	TEST CONDITION PART SYMBOL MIN. TYP. MAX				MAX.	UNIT		
INPUT								
Forward voltage	I _E = 10 mA		V _F	1.0	1.15	1.3	V	
Reverse current	V _R = 6.0 V		I _R	-	0.01	10	μΑ	
Capacitance	V _R = 0 V, f = 1.0 MHz		Co	-	40	-	pF	
Thermal resistance, junction to lead			R _{THJL}	ı	750	-	K/W	
OUTPUT						•	•	
Collector emitter capacitance	$V_{CE} = 5.0 \text{ V}, f = 1.0 \text{ MHz}$		C _{CE}	-	6.8	-	pF	
Collector emitter leakage current	V 04.V		I _{CEO}	-	10	100	nA	
	V _{CE} = 24 V		I _{CEO}	-	20	50	μΑ	
Thermal resistance, junction to lead			R _{THJL}	-	500	-	K/W	
COUPLER								
Capacitance (input to output)	$V_{IO} = 0 \text{ V, f} = 1.0 \text{ MHz}$		C _{IO}	0.8	-	-	pF	
Insulation resistance	V _{IO} = 500 V			10 ¹²	-	-	Ω	
Channel to channel insulation	hannel to channel insulation			500	-	-	VAC	
	I _F = 8.0 mA, I _{CE} = 2.4 mA	ILD621 ILQ621	V _{CEsat}	-	-	0.4	V	
Collector emitter saturation voltage	I _F = 1.0 mA, I _{CE} = 0.2 mA	ILD621GB ILQ621GB	V _{CEsat}	-	-	0.4	V	

Note

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.

ILD621, ILD621GB, ILQ621, ILQ621GB

Vishay Semiconductors

CURRENT TRANSFER RATIO							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Channel/channel CTR match	$I_F = 5.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$		CTRX/CTRY	1 to 1	-	3 to 1	%
Current transfer ratio (collector emitter saturated)	I _F = 1.0 mA, V _{CE} = 0.4 V	ILD621	CTR _{CEsat}	I	60	-	%
		ILQ621	CTR _{CEsat}	ı	60	-	%
		ILD621GB	CTR _{CEsat}	30	-	-	%
		ILQ621GB	CTR _{CEsat}	30	-	-	%
Current transfer ratio (collector emitter)		ILD621	CTR _{CE}	50	80	600	%
	I_ = 5.0 mA V_ = = 5.0 V	ILQ621	CTR _{CE}	50	80	600	%
	$I_F = 5.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$	ILD621GB	BB CTR _{CE} 100 200 6	600	%		
		ILQ621GB	CTR _{CE}	100	200	600	%

SWITCHING CHARACTERISTICS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
NON-SATURATED	NON-SATURATED						
On time	I_F = 10 mA, V_{CC} = 5.0 V, R_L = 75 Ω , 50 % of V_{PP}	t _{on}	-	3.0	-	μs	
Rise time	I_F = 10 mA, V_{CC} = 5.0 V, R_L = 75 Ω , 50 % of V_{PP}	t _r	-	2.0	-	μs	
Off time	I_F = 10 mA, V_{CC} = 5.0 V, R_L = 75 Ω , 50 % of V_{PP}	t _{off}	-	2.3	-	μs	
Fall time	I_F = 10 mA, V_{CC} = 5.0 V, R_L = 75 Ω , 50 % of V_{PP}	t _f	-	2.0		μs	
Propagation H to L	I_F = 10 mA, V_{CC} = 5.0 V, R_L = 75 Ω , 50 % of V_{PP}	t _{PHL}	-	1.1		μs	
Propagation L to H	I_F = 10 mA, V_{CC} = 5.0 V, R_L = 75 Ω , 50 % of V_{PP}	t _{PLH}	=	2.5	=.	μs	
SATURATED							
On time	$I_F = 10 \text{ mA}, V_{CC} = 5.0 \text{ V}, R_L = 1 \text{ k}\Omega, V_{TH} = 1.5 \text{ V}$	t _{on}	=	4.3	=.	μs	
Rise time	$I_F = 10$ mA, $V_{CC} = 5.0$ V, $R_L = 1$ k Ω , $V_{TH} = 1.5$ V	t _r	-	2.8	-	μs	
Off time	$I_F = 10$ mA, $V_{CC} = 5.0$ V, $R_L = 1$ k Ω , $V_{TH} = 1.5$ V	t _{off}	-	2.5	-	μs	
Fall time	$I_F = 10$ mA, $V_{CC} = 5.0$ V, $R_L = 1$ k Ω , $V_{TH} = 1.5$ V	t _f	-	11	-	μs	
Propagation H to L	$I_F = 10$ mA, $V_{CC} = 5.0$ V, $R_L = 1$ k Ω , $V_{TH} = 1.5$ V	t _{PHL}	-	2.6	-	μs	
Propagation L to H	$I_F = 10 \text{ mA}, V_{CC} = 5.0 \text{ V}, R_L = 1 \text{ k}\Omega, V_{TH} = 1.5 \text{ V}$	t _{PLH}	-	7.2	-	μs	

COMMON MODE TRANSIENT IMMUNITY							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Common mode rejection, output high	$V_{CM} = 50 V_{P-P}, R_L = 1.0 k\Omega, I_F = 0 mA$	CM _H	-	5000	-	V/µs	
Common mode rejection, output low	$V_{CM} = 50 V_{P-P}, R_L = 1.0 k\Omega, I_F = 10 mA$	CML	-	5000	-	V/µs	

SAFETY AND INSULATION RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Climatic classification	According to IEC 68 part 1		55 / 100 / 21				
Comparative tracking index		CTI	175				
Maximum rated withstanding isolation voltage	t = 1 min	V _{ISO}	4420	V _{RMS}			
Isolation test voltage	t = 1.0 s	V _{ISO}	5300	V _{RMS}			
Maximum transient isolation voltage		V _{IOTM}	10 000	V _{peak}			
Maximum repetitive peak isolation voltage		V _{IORM}	890	V _{peak}			
Isolation resistance	$V_{IO} = 500 \text{ V}, T_{amb} = 25 ^{\circ}\text{C}$	R _{IO}	≥ 10 ¹²	Ω			
Isolation resistance	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	≥ 10 ¹¹	Ω			
Output safety power		P _{SO}	400	mW			
Input safety current		I _{SI}	275	mA			
Safety temperature		T _S	175	°C			
Creepage distance			≥ 7	mm			
Clearance distance			≥ 7	mm			
Insulation thickness		DTI	≥ 0.4	mm			

Note

As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of protective circuits.

Vishay Semiconductors

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 1 - Non-Saturated Switching Timing

Fig. 2 - Non-Saturated Switching Timing

Fig. 3 - Saturated Switching Timing

Fig. 4 - Saturated Switching Timing

Fig. 5 - Maximum LED Current vs. Ambient Temperature

Fig. 6 - Maximum LED Power Dissipation

Vishay Semiconductors

Fig. 7 - Forward Voltage vs. Forward Current

Fig. 8 - Collector Emitter Current vs. Temperature and LED Current

Fig. 9 - Collector Emitter Leakage vs. Temperature

Fig. 10 - Propagation Delay vs. Collector Load Resistor

Fig. 11 - Maximum Detector Power Dissipation

Fig. 12 - Maximum Collector Current vs. Collector Voltage

Vishay Semiconductors

Fig. 13 - Normalization Factor for Non-Saturated and Saturated CTR vs. $\rm I_{\rm F}$

Fig. 14 - Normalization Factor for Non-Saturated and Saturated CTR vs. $I_{\rm F}$

Fig. 15 - Normalization Factor for Non-Saturated and Saturated CTR vs. $\rm I_F$

www.vishay.com

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

ILD621, ILD621GB, ILQ621, ILQ621GB

Vishay Semiconductors

PACKAGE MARKING

Note

• XXXX = LMC (lot marking code)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.