Exploring Inelastic Confinemen-Induced Resonances of two ultracold atoms in optical lattices.

Tomás Sánchez-Pastor, Fabio Revuelta, and Alejandro Saenz

¹Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro 2-4, 28040 Madrid, Spain.

² AG Moderne Optik, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany.

movidas varias del abstract mo

I. INTRODUCTION

Contar un poco de historia de la observación de este tipo de resonancias, por qué los sistemas ultrafríos están de moda (control) y resonancias de Feshbach (cambiar B es cambiar a). Acoplamiento CM-Rel como causante de los cruces evitados, transiciones no adiabáticas y relacionarlo con el teorema adiabático.

II. TWO-ATOM NUMERICAL SIMULATIONS

A. Hamiltonian

El Hamiltoniano, la solución teórica en forma integral de a(E), términos del potencial del rm, CM y rm-CM.

B. Ab Initio calculations

III. INELASTIC CIR

Introducción contando en profundidad el origen de las ICIR, la aproximación de Simón y lo de la C.

A. quasi 1-D

B. 3-D

IV. ASYMMETRIC SPLITTING OF THE INELASTIC CIR

Contar teoría de perturbaciones y lo que hizo Fabio V. CONCLUSIONS

ANKNOWLEDGEMENTS

REFERENCES

S. Grishkevich, S. Sala, and A. Saenz, Phys. Rev. A 84, 062710 (2011).

^[2] P.-I. Schneider, S. Grishkevich, and A. Saenz, Phys. Rev. A 87, 053413 (2013).

^[3] W. T. Zemke, R. Côté, and W. C. Stwalley, Phys. Rev. A 71, 062706 (2005).

^[4] S. Sala, P.-I. Schneider, and A. Saenz, Phys. Rev. Lett. 109, 073201 (2012).