微分方程模型-----Logistic 模型

1. 马尔萨斯人口模型

设时刻t时人口为x(t),单位时间内人口增长率为r,则 Δt 时间内增长的人口为:

$$x(t + \Delta t) - x(t) = x(t)r \cdot \Delta t \tag{1}$$

当 Δt → 0,得到微分方程:

$$\frac{dx}{dt} = r.x, x(0) = x_0 \tag{2}$$

则: $x(t) = x_0.e^{r.t}$, 待求参数 x_0, r 。

为便于求解,两边取对数有:

y = a + r.t, 其中 $y = \ln x$, $a = \ln x_0$, 该模型化为线性求解。

2、阻滞型人口模型

当 $x = \frac{x_m}{2}$ 时,x增长最快,即 $\frac{dx}{dt}$ 最大。 设时刻t时人口为x(t),环境允许的最大人口数量为 x_m ,

人口净增长率随人口数量的增加而线性减少,即

$$r(t) = r.(1 - \frac{x}{x_m})$$

建立阻滞型人口微分方程:

$$\frac{dx}{dt} = r(1 - \frac{x}{x_m}).x, x(0) = x_0$$
 (3)

則:
$$x(t) = \frac{x_m}{1 + \left(\frac{x_m}{x_0} - 1\right) \cdot e^{-r \cdot t}}$$

待求参数 x_0, x_m, r 。此即为 Logistic 函数.

图 $1 \frac{dx}{dt} \sim x$ 图 图 $2 \cdot x \sim t$ 图

实例1、美国人口数据处理

表 1 美国人口数据表(单位: 百万)

年	1790	1800	1810	1820	1830	1840	1850	1860
实际 人口	3.9	5.3	7.2	9.6	12.9	17.1	23.2	31. 4
年	1870	1880	1890	1900	1910	1920	1930	1940
实际 人口	38.6	50.2	62.9	76.0	92.0	106.5	123.2	131.7
年	1950	1960	1970	1980	1990	2000	2010	97
实际 人口	150.7	179.3	204.0	226.5	251.4	281.4	309.35	

(1) 由指数增长模型得到模型为

$$y = 3.1836e^{0.2743.t}$$
 (1790~1900 年数据)

均方误差根为RMSE = 3.0215 结果图见图 3 (效果好)

图3 指数模型(1790~1900)

$$y = 4.9384e^{0.2022.t}$$
 (1790~2010 年数据)

均方误差根为RMSE = 39.8245 结果图见图 4(效果不好)

图4 指数模型(1790~2010)

```
指数模型求解Matlab程序population_america1.m:
x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,...]
 106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4,309.35]';
n=12;
xx=x(1:n);%1790年到1900年数据
t=[ones(n,1),(1:n)'];
y=log(xx(1:n));
[b,bint,r,rint,stats]=regress(y,t);
RR=stats(1);%复相关系数
F=stats(2);%F统计量值
prob=stats(3);%概率
x0=exp(b(1)); %参数x0;
r=b(2); %参数r
py=x0*exp(r*t(:,2));%预测数据
err=xx-py;
rmse=sqrt(sum(err.^2)/n); %均方误差根
plot(1:n,xx,'*',1:n,py);%作对比图
```

(2) 阻滞型模型

拟合 1790 年到 2010 年数据,结果为:

$$x_0 = 6.6541, x_m = 486.9046, r = 0.2084$$

$$y = \frac{486.9046}{1 + 72.1733e^{-0.2084t}}$$

均方误差根 *RMSE* = 4.7141 预测 2020 年美国人口 327.7204 百万. 结果图见图 5 (效果好)

图5 美国人口阻滞型模型(1790~2010)

```
Matlab程序population america2.m
%美国人口模型,阻滞型增长模型
x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,...]
 106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4,309.35]';
n=length(x);
y=x(1:n);%1790年到2010年数据
t=(1:n)';
beta0=[5.3,0.22,400,]; %[x0,r,xm]
[beta,R,J]=nlinfit(t,y,'logisfun',beta0);
%R为残差,beta为待求参数
py=beta(3)./(1+(beta(3)/beta(1)-1)*exp(-beta(2)*t));%预测各年人口
p24=beta(3)./(1+(beta(3)/beta(1)-1)*exp(-beta(2)*24));%预测2020年人口
rmse=sqrt(sum(R.^2)/n); %均方误差根
plot(1:n,y,'*',1:n,py);%作对比图
```

```
%拟合函数
logisfun.m
function yhat=logisfun(beta,x)
yhat=beta(3)./(1+(beta(3)./beta(1)-1).*exp(-beta(2)*x));
```

实例2根据山东省职工历年平均工资统计表,预测未来40年工资

表2 山东省工资表(单位:元)

年份	平均工资	年份	平均工资	年份	平均工资
1978	566	1989	1920	2000	8772
1979	632	1990	2150	2001	10007
1980	745	1991	2292	2002	11374
1981	755	1992	2601	2003	12567
1982	769	1993	3149	2004	14332
1983	789	1994	4338	2005	16614
1984	985	1995	5145	2006	19228
1985	1110	1996	5809	2007	22844
1986	1313	1997	6241	2008	26404
1987	1428	1998	6854	2009	29688
1988	1782	1999	7656	2010	32074

图6三次函数拟合结果

采用阻滞型
$$x(t) = \frac{x_m}{1 + \left(\frac{x_m}{x_0} - 1\right) \cdot e^{-r \cdot t}}$$

图7 Logistic拟合结果

计算得
$$x_0 = 550, x_m = 1200000, r = 0.13$$

实例3 2011-ICMC电动汽车问题

在论文中,将汽车的类型分为传统的燃油型(CV)、电动型(EV)和混合型(HEV)三种类型,对比分析了未来50年在环境、社会、经济和健康方面的影响。选定的代表性国家有三个:法国,美国和中国。

对汽车总量及CV、EV和HEV未来变化的预测

在该部分中,首先预测未来50年汽车总量,然后估计未来50年CV、EV和HEV的变化。

(1) 汽车总量预测

论文首先预测了未来 50 年三个国家汽车的增长。采用了阻滞型的 Logistic 模型。建立的微分方程为:

$$\begin{cases} \frac{dx}{dt} = r.x.(1 - \frac{x}{M}) \\ x(0) = x_0 \end{cases}$$

由该方程得到的解为:

$$x(t) = \frac{M}{1 + (\frac{M}{x_0} - 1).e^{-rt}}$$

其中r为增长率,M为饱和量,也就是汽车最大容量, x_0 为初始值

论文根据2005年到2010年三个国家的历史数据进行估计。

表 3 2005-2010 年法国、美国和中国的汽车拥有量

国家	2005	2006	2007	2008	2009	2010
法国(10 ⁷)	3	3. 17	3. 34	3. 51	3. 68	3.8
美国(10 ⁸)	2. 4	2. 5	2. 9	3. 0	3. 1	3. 2
中国(10 ⁸)	1	1. 11	1. 24	1. 37	1.52	1.68

图8 法国、美国和中国未来50年汽车拥有量的预测

谢 谢!