Network (Entities) Profiling

for classification and anomaly detection

Data Inputs

- Raw data inputs are possible, however its increases the complexity of the machine learning algorithm.
 - Worse results, longer calculation/response times.
- Input data should be the result of raw data processing (complexity reduction).
 - Observation features.
 - Statistical metrics, statistical functions, PCA, scale analysis metrics/descriptors, ...
- Inputs should be normalized.
 - Usually

Variable Reduction

- An event/entity is many times described by multiple descriptors/metrics.
 - e.g., mean, variance, maximum, skewness, percentile x%, etc...
 - a.k.a. features.

$$e_i = [y_1, y_2, \dots, y_m]$$

- The reduction of variables is mandatory to simplify classification.
- Principal Components Analysis (PCA)
 - Uses a transformation to convert a set of possibly correlated features into a set of values of uncorrelated variables called principal components.
 - The principal components of an event will be a linear combination of the that event features.

$$t_i = e_i W, W = [w_{ij}]_{i,j=1,...,m}$$

- The number of principal components is less than or equal to the number of original features.
 - → Defined in such a way that the first principal component has the largest possible variance, and the m^{th} (last) component has the smallest variation.
 - \rightarrow The first *n* components can be chosen to describe the event.
 - \rightarrow W is a $(m \times n)$ matrix.

Data Normalization/Scaling

Methods:

- By maximum absolute value,
- By min/max, scaling each feature to a given range,
- Standard, removes the mean and scales to unit variance.
- *****
- Mandatory when variables/features have different orders of magnitude.
- Removes data bias from quantity, allow to focus on variable and time correlations on data.
 - e.g., YouTube traffic pattern correlation with video definition must be removed.

Classification vs. Anomaly Detection

Classification

- Requires knowledge (historic data) on all patterns/classes.
- Does not cope with pattern evolution and appearance of new patterns/classes.

Anomaly Detection

- Requires only knowledge (historic data) known of normal patterns/classes.
- Does not require knowledge (historic data) anomalous patterns/classes.
- Identify all significantly different patterns as anomalous.
- Allows to identify never seen anomalies (zero-day detection).
- May identify as anomalous licit patters that are evolving

Profile as a N-Dimensional Euclidean Universe

- Each set of N features (reduced or not) in each observation can be seen as a point a N-dimensional Euclidean universe.
- Each point can be:
 - Pre-classified to identify know behaviors/activities.
 - Classified as an belong to a specific group
 - Short Euclidean distance from the known group points.
 - Short Euclidean distance from group points previously "grouped" (cluster).
 - Classified as an anomaly.
 - Large Euclidean distance from the other points.

Decision by Statistical Patterns

for differentiation, classification, and anomaly detection

Distances to Central Point(s)

- Group dataset points
 - Use a single group (to detect anomalies),
 - By known classification,
 - By clustering algorithms.
- Find central point of each group.
- For each new dataset point:
 - Calculate Euclidean distances to each group central point,
 - Use distances to classify:
 - Shortest distance to group,
 - Probabilistic result based on the relative distances,
 - Ex: d1=10, d2=20, d3=30 → Group1 prob.=10/(10+20+30)=16.6%
 - Define as anomaly if distance(s) above predefined threshold.

X - Group Central Point ... - Anomaly Boundary

N-Dimensional Distributions

- Infer the multivariate PDF of each group of dataset points.
- For a new point, calculate the probability (using respective the PDF) of that point belong to a specific group.
- An anomaly may be defined as a point that has lower probabilities in all groups.

Decision by Machine Learning

for differentiation, classification, and anomaly detection

Categories

- Supervised learning
 - Inputs and outputs are given.
 - Outputs may be classification labels or system quantifiers.
 - Creates a general mapping rule between input and output.
- Unsupervised learning
 - Only inputs are given.
 - Algorithm must by structure in input data.
 - Post-classification based on known inputs and found data structure may be done to create a classifier.
- Reinforcement learning
 - Inputs are given, and "quality" of outputs is defined in terms of reward and penalization (cost functions) relative to the problem goal.

Approaches

- Clustering
- Support vector machines
- Artificial neural networks
 - Composed of one input and one output layer, and at most one hidden layer in between.
- Deep learning
 - ANN with more than three layers (including input and output).
 - More than one hidden layer.
- Other
 - Bayesian networks
 - Decision tree learning
 - Genetic algorithms
 - *****

Classification / Clustering

 Clustering is the process of grouping (classifying) a set of objects in such a way that objects in the same group (cluster) are more "similar" to each other than to those in other clusters.

• Algorithms:

- K-Means
 - Requires the a priori knowledge of the number of clusters.
 - Uses the distances between points as metric.

DBSCAN

- Requires the a priori definition of the neighborhood size.
- Uses the distances between nearest points as metric.
- Others...

Support Vector Machines (SVM)

- Classification defined by a separating hyper-plane-
- Optimal hyper-plane for linearly separable patterns.
- Kernel functions allow the separation of patterns that are not linearly separable by transformations of original data.
- Solutions found using a minimization problem.

One-Class SVM vs. N-Class SVM

- N-Class SVM
 - Infers boundaries between each class.

- One-Class SVM
 - Infers "a boundary" that contains all known normal/licit traffic.

Decision Trees

- Data partitions by branching decisions based on features values.
- Decision based on:
 - Location of an observation on the decision tree;
 - Location of an observation on multiple decision trees (forest);
 - Number of partitions/branches required to isolate an observation.
- Variants:
 - Tree Regressor
 - Classification based on data partitions (over branches).
 - Isolation Forests
 - Detects anomalies based on the low number of branches (data partitions) required to isolate an observation.
 - Random Forests
 - Uses multiple tree classifiers on various random sub-samples of the dataset.
 - Averages the results.

Artificial Neural Networks

- Composed by input and output layers, and an optimal hidden layers
 - More than one hidden layer, becomes a deep learning NN.
- Hidden and output layers, perform a weighted sum of the values outputted by the nodes of the previous layer and applies an activation function.
 - Activation functions: linear, tanh, arctan, etc...
 - Weights define the NN, and must be inferred by a training algorithm.
 - Each node-node connection have a different weight.
- Training algorithms adjust connection weights to minimize the error between inputs and training outputs.
 - Back propagation of error.
 - Levenberg-Marquardt algorithm, Newton and quasi-Newton methods, Gradient descent, and Conjugate gradient.
- Some nodes/layers may have bias inputs to activate/deactivate and/or offset node outputs.

Overview

Deep Learning

- Supervised learning algorithms
 - Logistic Regression.
 - Multilayer perceptron.
 - Deep Convolutional Network.
- Unsupervised and semi-supervised learning algorithms
 - Auto Encoders
 - Denoising Autoencoders
 - Stacked Denoising Auto-Encoders
 - Restricted Boltzmann Machines
 - Deep Belief Networks

Ensemble (1)

 Ensemble methods use multiple learning methodologies to obtain better that the individual methods.

Methods:

- Bayes optimal classifier
 - Final decision based on the probabilities given by each methodology
- Bagging
 - Final decision based on the results given by each methodology with equal weight.
 - Input data may differ between methodologies
 - Aims to decrease final result variance.
- Boosting
 - Final decision based on different methodologies applied in sequence (to correct wrong classifications by the previous methodology).
 - Previous results may be used to filter input data given to next level classification methodologies.

Ensemble (2)

Performance Evaluation

Evaluation Process

Metrics

- True Positive (TP) Correctly predicted positive
 - True Negative (TN) Correctly predicted negative
- False Positive (FP) Wrongly predicted as positive
 - False Negative (FN) Wrongly predicted as negative
- Metrics
 - Accuracy=(TP+TN)/(TP+TN+FP+FN)
 - Precision=TP/(TP+FP)
 - Recall=TP/(TP+FN)

F1-Score== 2*(Recall * Precision) / (Recall + Precision)

		Predicted class	_
Actual Class		Class = Yes	Class = No
	Class = Yes	True Positive	False Negative
	Class = No	False Positive	True Negative

Confusion Matrix

