Applicant: 10/618,227 **Application No.:** Pan et al.

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

Claims 1 and 2 (Canceled).

3. (Currently amended) A method of performing channel estimation, the method comprising:

receiving a time domain signal sequence \underline{r} and a midamble sequence \underline{m} ;

multiplying, element-to-element, the sequences \underline{m} and \underline{r} by a chirp waveform, the chirp waveform being based on the length of a fast Fourier transform (FFT) and denoting the resulting sequences as \underline{m}_{w} and \underline{r}_{w} respectively, where \underline{m} is a midamble sequence; and

creating a chirp sequence \underline{v} based on the chirp waveform,

wherein the chirp waveform is $W^{\frac{n^2}{2}}$ for n=0,1,2,...,P-1 where P = 456 for burst types 1/3 or P = 192 for burst type 2, and $W = e^{-j\frac{2\pi}{P}}$ and wherein the chirp sequence $v = W^{-\frac{(n-P+1)^2}{2}}$ for n=0,1,2,...,2P-2.

Claims 4 - 7 (Canceled).

8. (Currently amended) A receiver for performing channel estimation, the receiver configured to:

Applicant: 10/618,227 **Application No.:** Pan et al.

receive a time domain signal \underline{r} and \underline{a} midamble sequence \underline{m} , multiply, element-to-element, the sequences \underline{m} and \underline{r} by a chirp waveform, the chirp waveform being based on the length of a fast Fourier transform (FFT) and denoteing the resulting sequences as \underline{m}_{w} and \underline{r}_{w} respectively, where \underline{m} is a midamble sequence; and

create a chirp sequence \underline{v} based on the chirp waveform,

wherein the chirp waveform is $W^{n^2/2}$ for n=0,1,2,...,P-1 where P = 456 for burst types 1/3 or P = 192 for burst type 2, and $W = e^{-j\frac{2\pi}{P}}$ and wherein the chirp sequence $v = W^{-(n-P+1)^2/2}$ for n=0,1,2,...,2P-2.

Claims 9 -12 (Canceled).

13. (Currently amended) A wireless transmit/receive unit (WTRU) for performing channel estimation, the WTRU configured to:

receive a time domain signal \underline{r} and \underline{a} midamble sequence \underline{m} , multiply, element-to-element, the sequences \underline{m} and \underline{r} by a chirp waveform, the chirp waveform being based on the length of a fast Fourier transform (FFT) and denote the resulting sequences as \underline{m}_{w} and \underline{r}_{w} respectively, where \underline{m} is a midamble sequence; and

create a chirp sequence \underline{v} based on the chirp waveform,

wherein the chirp waveform is $\underline{W^{n^2/2}}$ for n=0,1,2,...,P-1 where P = 456 for burst types 1/3 or P = 192 for burst type 2, and $\underline{W} = e^{-j\frac{2\pi}{P}}$ and wherein the chirp sequence $\underline{v} = \underline{W^{-(n-P+1)^2/2}}$ for n=0,1,2,...,2P-2.

Applicant: 10/618,227 **Application No.:** Pan et al.

Claims 14-17 (Canceled).

18. (Currently amended) A base station (BS) for performing channel estimation, the BS configured to:

receive a time domain signal \underline{r} and \underline{a} midamble sequence \underline{m} , multiply, element-to-element, the sequences \underline{m} and \underline{r} by a chirp waveform, the chirp waveform being based on the length of a fast Fourier transform (FFT) and denote the resulting sequences as \underline{m}_{w} and \underline{r}_{w} respectively, where \underline{m} is a midamble sequence; and

create a chirp sequence ν based on the chirp waveform,

wherein the chirp waveform is $W^{n^2/2}$ for n = 0, 1, 2, ..., P-1 where P = 456 for burst types 1/3 or P = 192 for burst type 2, and $W = e^{-j\frac{2\pi}{P}}$ and wherein the chirp sequence $\underline{v} = W^{-(n-P+1)^2/2}$ for n = 0, 1, 2, ..., 2P-2.

Claims 19-33 (Canceled).