Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Отчёт по лабораторной работы 4.3.6 Саморепродукция

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Изучение явления саморепродукции и применение его к измерению параметров периодических структур.

В работе используются:

Лазер, кассета с сетками, мира, короткофокусная линза с микрометрическим винтом, экран, линейка.

Теория:

При дифракции на предмете с периодической структурой наблюдается явление саморепродукции: на некотором расстоянии от предмета вдоль направления распространения волны появляется изображение, которое потом периодически повторяется.

Найдём выражение для расстояния между этими плоскостями. Плоской монохроматической волной называется волна вида

$$E(r,t) = a_0 e^{-\gamma(\omega t - kr - \psi_0)}$$

где амплитуда Ω_0 — действительная постоянная, ω - круговая частота, k - волновой вектор ($|k|=2\pi/\lambda$), ψ_0 — начальная фаза. Колебания происходят синфазно во всех точках плоскости:

$$kr = ux + vy + \sqrt{k^2 - u^2 - v^2}, z = \text{const.}$$

Направление распространения плоской монохроматической волны характеризуется волновым вектором k, а u и v есть проекции его на оси координат x и y соответственно. В дальнейшем мы будем опускать зависимость от времени $e^{-i\omega t}$ и использовать для описания монохроматической волны комплексного амплитуду. Для плоской волны (1) комплексную амплитуду можно представить в виде

$$f(x, y, z) = a_0 e^{i\psi_0} e^{i(ux+vy)} e^{i\sqrt{k^2 - u^2 - v^2}, z}$$

= $f(x, y, 0) \cdot e^{i\sqrt{k^2 - u^2 - v^2} \cdot y}$.

Таким образом, для того чтобы получить комплексную амплитуду плоской волны в произвольной плоскости $z={\rm const},$ надо ее значение в плоскости z=0 домножить на фазовый множитель $e^{i\sqrt{k^2-u^2-v^2},z}$

Представим волну за периодическим объектом в виде суммы плоских волн разных направлений. Отдельные слагаемые плоские волны называют пространственными гармониками. Вдоль пути распространения волнового фронта на некотором расстоянии z_0 от предмета существует плоскость, где разность фазовых набегов любых пространственных гармоник (плоских волн идущих под углом θ т к оси распространения), входящих в состав суперпозиции, кратна 2T В этой плоскости фазовые соотношения между всеми плоскими волнами, входящими в состав суперпозиции, такие же, что и в предметной плоскости. Поэтому в результате интерференции этих волн возникает изображение, тождественное исходному периодическому объекту. Все сказанное справедливо для любого расстояния z_n , кратного z_0 . Для решетки с периодом d.

$$z_n = \frac{2d^2}{\lambda}n\tag{1}$$

Суть эксперимента по саморепродукции состоит в том, что дифрагированная на периодическом транспаранте (решетка, сетка) плоская монохроматическая волна лазера (лазерный пучок) воспроизводит изображение транспаранта без каких-либо оптических элементов.

Рис. 1: Принципиальная схема дифракции на сетке. Между сеткой 0 и плоскостью $\Pi 1$ наблюдаются репродуцированные изображения сетки

Рис. 2: Схема установки: ОКГ — гелий-неоновый лазер, 0 — двумерная решетка, РN — плоскости, где наблюдаютс я репродуцированные изображения, Л — короткофокусная линза, Э — экран для наблюдения изображения объекта

Ход работы:

1. Определим период решёток по их пространственному спектру. Для каждой сетки определим расстояние x между соседними дифракционными максимумами на экране: измерим расстояние X между двумя достаточно удалёнными друг от друга максимумами и поделим на число промежутков m между ними ($x = X/m = f(\mathbb{N}^{2})$).

По результатам измерений спектра получим период каждой решётки по формуле $d=L^{\lambda}_{x}, \lambda=532$ нм. Полученные результаты занесем в таблицу 1.

X, cm	m	X, CM	d, мкм	L, см
21,5	6	$3,58\pm0,03$	$20,7\pm0,3$	
14,2	6	$2,36\pm0,03$	$29,9\pm0,4$	
11,8	10	$1,18\pm0,02$	60 ± 1	133±2
9,5	16	$0,59\pm0,01$	120±2	
8,5	19	$0,45\pm0,01$	157±2	

Таблица 1: Полученные значения для расстояний х между дифракционными максимумами и периода d каждой решетки. $\sigma_X = 0, 2$ см

2. Исследуем зависимость интенсивности спекл-картины по пикселям.

3. Определим период решёток по изображению, увеличенному с помощью линзы. Рассчитаем периоды всех сеток $d_{\pi} = Da/b = f()$.

D, mm	$d_{\scriptscriptstyle m J},{ m MKM}$	а, см	ь, см
1 ± 0.5	42 ± 20		
$1,5\pm0.5$	63±20		
2 ± 0.5	84±20	$5,6\pm0,5$	133 ± 2
3 ± 0.5	126 ± 20		
$3,5\pm0.5$	147 ± 20		

Таблица 2: Полученные значения для периода d_{π} каждой решетки.

4. Снимем зависимость $z_N = f(N)$, наблюдая на координате z_N саморепродуцированное изображение сеток. Построим графики $z_N = f(N)$. По наклону прямых с помощью $z_N = 2d^2N/\lambda$ рассчитаем периоды сеток d = f(N).

№ _{изм.}	1	2	3	4	5
z_N^1 , MM	2,0	3,2	4,1	4,9	6,3

z_N^2 , MM	2,1	3,9	5,4	7,0	8,8
z_N^3 , MM	4,1	7,0	10,0	13,8	16,6
z_N^4 , MM	11,7	29.1			
z_N^4 , MM	18,6				

Таблица 3: Полученные значения для расстояний саморепродукции z_N^i для каждой решетки. $\sigma_{z_N}=0,1$ мм.

Рис. 3: График зависимости $z_N(N)$ и расчет периода для каждой сетки

Обсуждение результатов и выводы:

$N_{\bar{0}}$	Саморепродукция, d мкм	Линза, d мкм	Дифракция, d мкм
1	18±1	42±20	$20,7\pm0,3$
2	21±1	63±20	$29,9\pm0,4$
3	18±1	84±20	60±1
4	18±2	126±20	120±2
5	18±2	147±20	157±2

Таблица 4: Сводная таблица полученных результатов для периодов решеток тремя различными способами

В данной работе мы наблюдали эффект саморепродукции, определили с помощью данного

эффекта периоды различных решеток. Сравнили полученные результаты с результатами других опытов для определения периода решетки: методом линзы и дифракции.

По полученным результатам стоит отметить, что более точный результат получился методом дифракции. Метод линзы плохо показал себя на сетках с малым периодом, а метод саморепродукции наоборот на сетках с наибольшим периодом. Эти результаты объясняются большой погрешностью измерения малых расстояний в первом случае и больших расстояний во втором.