Konečné automaty

Jan Havlín

Fakulta informačních technologií Vysoké učení technické v Brně

4. května 2018

Formální definice

Konečný automat je definován jako uspořádaná pětice $(S, \Sigma, \sigma, s, A)$, kde:

- *S* je konečná neprázdná množina *stavů*.
- Σ je konečná neprázdná množina vstupních symbolů, nazývaná abeceda.
- σ je tzv. *přechodová funkce* (též *přechodová tabulka*), popisující pravidla přechodů mezi stavy. Může mít buď podobu $S \times \Sigma \to S$ (deterministický automat), nebo $S \times \{\Sigma \cup \epsilon \to P(S) \text{ (nedeterministický automat), viz níže.}$
- s je počáteční stav, $s \in S$.
- A je množina *přijímajících stavů*, $A \subseteq S$.

Popis činnosti automatu

- Na počátku se automat nachází v počátečním stavu.
- V každém kroku přečte jeden symbol ze vstupu.
- Přejde do stavu, který je dán hodnotou v přechodové tabulce.
- Opakuje se čtení symbolu a přechod stavu.
- Podle toho, zda automat skončí ve stavu patřícím do množiny přijímajících stavů platí, že automat buď vstup přijal, nebo nepřijal.

Příklad konečného automatu

Jako příklad si uvedeme následující konečný automat:

$$S = (S_0, S_1, S_2)$$

$$\Sigma = (0,1)$$

 \bullet viz tabulka:

stav	0	1
S_0	<i>S</i> ₀	S_1
S_1	S_2	S_0
S_2	S_1	S_2

$$s = S_0$$

$$A = \{S_0\}$$

Grafické znázornění

Pro popis konečného automatu se obvykle používá grafické znázornění.

Zpracování vstupu

Při vstupu 1011 bude předchozí automat postupovat takto:

- Automat je ve stavu S_0 .
- Na vstup přijde 1, automat přejde do stavu S_1 .
- Na vstup přijde 0, automat přejde do stavu S_2 .
- Na vstup přijde 1, zůstane ve stavu S_2 .
- Na vstup přijde 1, zůstane ve stavu S_2 .

Stav S_2 nepatří do množiny A, tudíž automat vstup 1011 nepřijal.

Zpracování vstupu

Při vstupu 1011 bude předchozí automat postupovat takto:

- Automat je ve stavu S_0 .
- Na vstup přijde 1, automat přejde do stavu S_1 .
- Na vstup přijde 0, automat přejde do stavu S_2 .
- Na vstup přijde 1, zůstane ve stavu S_2 .
- Na vstup přijde 1, zůstane ve stavu S_2 .

Stav S_2 nepatří do množiny A, tudíž automat vstup 1011 nepřijal.

Tento konečný automat přijímá regulární jazyk řetězců, které vyjadřují binární číslo dělitelné třemi.

Použité zdroje

Konečný automat https: //cs.wikipedia.org/wiki/Kone%C4%8Dn%C3%BD_automat