Version 1.1: 12.03.13

Структура файла данных: записи

Структуры данных описаны в файле epecur.h.

Файл данных состоит из записей следующего формата:

Имя	Длина	Структура	Описание
len	int*4		Полная длина записи в байтах
type	int*4	Struct	Тип записи
lintime	int*4		Время записи в формате Linux
number	int*4		Последовательный номер записи данного типа или номер цикла ускорителя
flag	int*4		Битовые флаги
Record data	len-sizeof(Record HeaderStruct)		Собственно данные записи (тело записи)

Записи бывают следующих типов

Тип	Значение	Описание
REC_CYCLE	0x100	Запись включает все собранные события за один цикл ускорителя
REC_SLOW	0x1000	Записи от различных источников медленных данных, асинхронных к циклам ускорителя, напрмер параметры жидководородной мишени или записи ЯМР спектров.
REC_RAW	0x10000	Сырые данные, считанные с камер по мере их поступления и не собранные в события. В файлах присутствуют, но в данном документе не описываются.

Записи циклов REC_CYCLE

Запись данных одного цикла ускорителя состоит из отдельных событий, имеющих следующую структуру:

Имя	Длина	Структура	Описание
len	int*4	EventHeaderS	Полная длина события в байтах
number	int*4	truct	Номер события от начала цикла
flag	int*4		Битовые флаги: 0x80000000— событие конца цикла, а не обычный триггер, это последнее событие в цикле

Event data	len-sizeof(Event	Собственно данные события (тело события)
	HeaderStruct)	

Тело события, в свою очередь, состоит из байтовых потоков данных, считанных с отдельных частей различных детекторов (устройств). Эти потоки не имеют структуры записи (с указанием ее длины). Вместо этого применяется следующее соглашение: только первый байт от данного устройства имеет единичный старший бит 0х80, остальные байты потока имеют только 7 значащих бит и нулевой старший бит. К сожалению, по историческим соображениям, этот принцип в некоторых случаях нарушается, о чем будет упомянуто особо.

Первые два байта каждого потока имеют фиксированный смысл, таким образом потоки от всех устройств имеют вид:

№ байта	Старший бит	Биты 6-4	Биты 3-0	
0	1	Тип устройства	Старшие биты логичесого номера устройства	
1	0	Младшие биты логичесого номера устройства		
•••	0	Данные, специфичные для данного типа устройства		

Логический номер устройства вместе с его типом определяет назаначение устройства и специфику байтового потока, а среди устройств данного типа логический номер определяет геометрическое местоположение устройства и способ пересчета координат. В настоящее время используются следующме определния типов устройств:

Имя	Значение	Диапазон логических номеров	Описание устройства
DTYPE_PROP	0	1-100	100-канальная плата усилителей, дискриминаторов и кодировщика для пропорциональных камер
DTYPE_DRIFT	1	101-200	24-канальная плата усилителей, дискриминаторов и временных преобразователей для дрейфовых камер
DTYPE_HODO	2	500	Устройство логики сцинтилляционного годоскопа
DTYPE_TRIG	3	600	Основной триггерный модуль
DTYPE_CAMAC	4	700	Крейт КАМАК с модулями АЦП/ВЦП

Поток пропорциональных камер DTYPE_PROP

№ байта	Старший бит	Биты 6-4	Биты 3-0	
0	1	000	Старшие биты логичесого номера устройства	
1	0	Младшие биты логичесого номера устройства		
2	0	Номер сработавшей проволочки		
•••	0	Остальные номера сработавших проволочек		

Если сработавших проволочек в данной плате нет, весь поток от данной пропорциональной платы не будет записан в файл.

Потоки такого типа отсутствуют в событииях конца цикла с флагом 0х80000000.

Поток дрейфовых камер DTYPE_DRIFT

№ байта	Бит 7	Бит 6	Бит 5	Бит 4	Биты 3-0		
0	1	001			Старшие биты логичесого номера устройства		
1	0		Младшие биты логичесого номера устройства				
2	0	1	0	0 Номер сработавшей проволочки			
3	0	0		Время прихода сигнала на эту проволочку, младшие биты			
4	0	0		Время прихода сигнала на эту проволочку, старшие биты			
3n+2	0	1	0	0 Номер следующей сработавшей проволочки			
3n+3	0	0	Время прихода сигнала на эту проволочку, младшие биты				
3n+4	0	0		Время прихода сигнала на эту проволочку, старшие биты			

Если сработавших проволочек в данной плате нет, весь поток от данной дрейфовой платы не будет записан в файл.

Потоки такого типа отсутствуют в событииях конца цикла с флагом 0х80000000.

Поток сцинтилляционного годоскопа DTYPE_HODO в обычных событиях

№ байта	Старший бит	Биты 6-4	Биты 3-0	
0	1	010	Старшие биты логичесого номера устройства	
1	0	Младшие биты логичесого номера устройства		
2	0	Macı	ка сработавших каналов 6-0 левого плеча	
3	0	Маска сработавших каналов 13-7 левого плеча		
4	0	Маска сработавших каналов 20-14 левого плеча		
5	0	Маска сработавших каналов 6-0 правого плеча		
6	0	Маска сработавших каналов 13-7 правого плеча		
7	0	Маска сработавших каналов 20-14 правого плеча		

Поток сцинтилляционного годоскопа DTYPE_HODO в событиях конца цикла с флагом 0x80000000

№ байта	Бит 7	Бит 6	Биты 5-4	Биты 3-0
0	1	010		Старшие биты логичесого номера устройства
1	0	Младшие биты логичесого номера устройства		
2-10			Be	fore jun10: 9 bytes here starting with 0xFF
2	1	0	Младшие бит	ы номера цикла (исключение, единичный старший бит), (High bits before jun10)

3	0	0	Старшие биты номера цикла (Low bits before jun10)			
	0	0	Extra byte here before jun10			
4	0	1	Первый идентификатор счетчика ID1			
5	0	1	Второй идентификатор счетчика ID2			
6	0	0	Самые младшие биты этого счетчика (в воротах цикла)			
7	0	0	Младшие биты этого счетчика (в воротах цикла)			
8	0	0	Старшие биты этого счетчика (в воротах цикла)			
9	0	0	Самые старшие биты этого счетчика (в воротах цикла)			
4+6n	0	1	Первый идентификатор следующего счетчика ID1			
5+6n	0	1	Второй идентификатор этого счетчика ID2			
6+6n	0	0	Самые младшие биты этого счетчика (в воротах цикла)			
7+6n	0	0	Младшие биты этого счетчика (в воротах цикла)			
8+6n	0	0	Старшие биты этого счетчика (в воротах цикла)			
9+6n	0	0	Самые старшие биты этого счетчика (в воротах цикла)			
4+6m	0	1	0x3E			
5+6m	0	1	0x3F			
6+6m	0	0	Самые младшие биты таймера 100 кГц (в воротах цикла)			
7+6m	0	0	Младшие биты таймера 100 кГц (в воротах цикла)			
8+6m	0	0	Старшие биты таймера 100 кГц (в воротах цикла)			
9+6m	0	0	0 Самые старшие биты таймера 100 кГц (в воротах цикла)			
Γ	Товторени	ие структу	уры байтов 4-9+6m, но счета между циклами, то есть шум			

Идентификаторы счетчиков имеют следующий смысл:

ID1	ID2	Описание
0x3F	0-29	Индивидуальные счета ФЭУ левого плеча годоскопа
0x3F	32-61	Индивидуальные счета ФЭУ правого плеча годоскопа
0-29	32-61	Счета совпадений ФЭУ ID1 левого плеча с ID2 правого плеча
0x3E	0x3B	Счет основного триггера годоскопа
0x3E	0x3C	Счет упрощенного триггера годоскопа (OR Left) AND (OR Right)
0x3E	0x3D	Счет по условию "хотя бы один слева" (OR Left)
0x3E	0x3E	Счет по условию "хотя бы один справа" (OR Right)
0x3E	0x3F	Счет таймера 100 кГц

Поток триггерного модуля DTYPE_TRIG в обычных событиях

№ байта Бит 7 Бит 6 Биты 5-4	Биты 3-0
------------------------------	----------

0	1		011 Старшие биты логичесого номера устройства				
1	0		Младшие биты логичесого номера устройства				
2	0	0	Маска устройств, запускаемых данным триггером: 0x01 – пропорциональные камеры 0x02 – дрейфовые камеры 0x04 – система ТОГ в КАМАК Остальные биты пока не используются				
3	0	0	Маска физических триггеров, вызвавших данное событие, младшие биты: 0x01 — основной триггер события 0x02 — триггер для определения импульсного распределения в первом фокусе и нормировок 0x04 — триггер для определения положения пучка во втором фокусе 0x08 — триггер для ТОГ на пи-мезоны 0x10 — триггер для ТОГ на (анти)протоны 0x20 — пока не используется				
4	0	0	Маска физических триггеров, вызвавших данное событие, старшие биты, пока не используется				
5	0	0	Время триггера от начала ворот цикла в периодах 100 кГц, младшие биты				
6	0	0	Время триггера от начала ворот цикла в периодах 100 кГц, средние биты				
7	0	0	Время триггера от начала ворот цикла в периодах 100 кГц, старшие биты				

Поток триггерного модуля DTYPE_TRIG в событиях конца цикла с флагом 0x80000000

№ байта	Бит 7	Бит 6	Биты 5-4	Биты 3-0		
0	1		011	Старшие биты логичесого номера устройства		
1	0		Младшие	е биты логичесого номера устройства		
2	1	0	Младшие бит	ы номера цикла (исключение, единичный старший бит) (High bits before jun10)		
3	0	0	Старши	ие биты номера цикла (Low bits before jun10)		
	0	0		Extra byte here before jun10		
4	0	0	Точное количество триггеров в цикле, младшие биты			
5	0	0	Точное количество триггеров в цикле, средние биты			
6	0	0	Точное количество триггеров в цикле, старшие биты			
7	0	1		Первый идентификатор счетчика ID1		

8	0	1	Второй идентификатор счетчика ID2	
9	0	0	Самые младшие биты этого счетчика (в воротах цикла)	
10	0	0	Младшие биты этого счетчика (в воротах цикла)	
11	0	0	Старшие биты этого счетчика (в воротах цикла)	
12	0	0	Самые старшие биты этого счетчика (в воротах цикла)	
7+6n	0	1	Первый идентификатор следующего счетчика ID1	
8+6n	0	1	Второй идентификатор этого счетчика ID2	
9+6n	0	0	Самые младшие биты этого счетчика (в воротах цикла)	
10+6n	0	0	Младшие биты этого счетчика (в воротах цикла)	
11+6n	0	0	Старшие биты этого счетчика (в воротах цикла)	
12+6n	0	0	Самые старшие биты этого счетчика (в воротах цикла)	
7+6m	0	1	0x0F	
8+6m	0	1	0x3F	
9+6m	0	0	Самые младшие биты таймера 100 кГц (в воротах цикла)	
10+6m	0	0	Младшие биты таймера 100 кГц (в воротах цикла)	
11+6m	0	0	Старшие биты таймера 100 кГц (в воротах цикла)	
12+6m	0	0	Самые старшие биты таймера 100 кГц (в воротах цикла)	
	0	1	0 1 первое значение 2-х милисекундного счетчика, младшие биты	
	0	0	первое значение 2-х милисекундного счетчика, средние биты	
	0	0	первое значение 2-х милисекундного счетчика, старшие биты	
	0	1	1 0 промежуточные значения 2-х милисекундного счетчика, младшие биты	
	0	0	промежуточные значения 2-х милисекундного счетчика, средние биты	
	0	0	промежуточные значения 2-х милисекундного счетчика, старшие биты	
	0	1	1 1 последнее значение 2-х милисекундного счетчика, младшие биты	
	0	0	последнее значение 2-х милисекундного счетчика, средние биты	
	0	0	последнее значение 2-х милисекундного счетчика, старшие биты	

Идентификаторы счетчиков имеют следующий смысл:

ID1	ID2	Описание
0x00	0	Счет триггерного строба – счетчика в первом фокусе
0x00	1	Счет пучка на мишени (физ. триггер 1), блокированного тем же условием, что и основной триггер (физ. триггер 0)

0x01	0-5	Физические триггера 6 типов со всеми блокировками и предделителями					
0x02	0-5	Физические триггера 6 типов без блокировок и предделителей					
0x03	0-7	Счета индивидуальных входов триггерных условий 0 – счетчик ПЗ 1 – антисчетчик, настроенный на пи-мезоны 2 – антисчетчик, настроенный на протоны 3 – пропорциональные камеры первого фокуса 4 – пропорциональные камеры второго фокуса					
0x04	0-7	Счета входов дополнительных счетчиков					
0x0E	0	Счет частоты ускорителя в данном цикле в воротах частоты					
0x0E	1	Длительность ворот частоты ускорителя в мс					
0x0F	0x3F	Счет таймера 100 кГц в воротах цикла					
0x1*		Первый отсчет 2-х милисекундного счетчика					
0x2*		Промежуточные отсчеты 2-х милисекундного счетчика					
0x3*		Последний отсчет 2-х милисекундного счетчика					

Записи асинхронных источников REC_SLOW

Тело записей асинхронных источников имеет следующий формат:

Имя	Длина	Описание			
length	int*4	Д лина данных в байтах			
type	int*4	Тип асинхронного источника			
data	length-8	Данные от асинхронного источника, определяемые типом источника и его текущим состоянием			

На настоящий момент используются записи REC_SLOW от следующих источников (ожидается расширение этого списка в ближайшем будущем)

Тип	Значение	Описание
EP_SRCID_TGT	1001	Параметры жидководородной мишени
EP_SRCID_NMR	1002	Спектры ЯМР и результаты расчета магнитного поля
EP_SRCID_TRGB	1003	Настройки триггерной системы (окна, триггерные условия, времена блокировок и т.п.)
EP_SRCID_CAMERA	1004	Изображение с видеокамеры мишени в формате jpeg

Параметры жидководородной мишени

Структ.	Имя	Длина	Имя	Длина	Описание
---------	-----	-------	-----	-------	----------

Slow_Tgt	length	int*4			Полная длина в байтах 200
	type	int*4			Тип источника EP_SRCID_TGT
	tgt	lcData*192	R[8]	double*8	Значения сопротивлений термометрических резисторов мишени, кОм?
			V[7]	double*8	Показания датчиков давления V[0-3], Торр, и датчиков вакуума V[4-7], Торр
			H[8]	double*8	Значения сопротивлений резисторов измерителя уровня гелия, кОм?
			Sel	int*4	Номер термометрического резистора, выбранного для ручного измерения, т.е. R[Sel] недостоверно
			t	time_t*4	Время измерения в формате Linux

Спектры ЯМР и магнитное поле

Структ.	Имя	Длина	Имя	Длина	Описание
Slow_NMR	length	int*4			Полная длина в байтах 40+npoints*4
	type	int*4			Тип источника EP_SRCID_NMR
	good	int*4			1 - в спектре ЯМР выделены пики и по их положению определено точное значение поля 0 – обработка спектра ЯМР не удалась, записан как есть
	freq	float*4			Измеренная частота генератора
	freq0	float*4			Частота, скорректированная на сдвиг пиков спектра от середины
	balance	float*4			Относительный сдвиг пиков от среднего положения
	sweepampl	float*4			Амплитуда модулирующего поля
	corrcoef	float*4			Коэффициент коррекции частоты на сдвиг пиков (зависит от прибора и способа оцифровки модулирующего поля)
	fieldcoef	float*4			Коэффициент пересчета частоты в поле (зависит от вещества датчика)
	npoints	int*4			Количество точек в спектре, истиный размер scope
	scope[]	buft*4	sig	short*2	Значение на выходе детектора в данной точке спектра
			SW	short*2	Значение модулирующего тока в данной точке спектра

Настройки триггерного модуля

Структ.	Имя	Длина	Описание					
Slow_TBox	length	int*4	Полная длина в байтах 192					
	type	int*4	Тип источника EP_SRCID_TRGB					
	regs[46]	int*4*46	Значения 8 модуль	Значения 8-битных регистров, записанные в триггерный модуль				
			reg[0]	0x01 – включить эмулятор циклов, длительность reg[4-5], период reg[2-3]+reg[4-5] 0x80 – заблокировать все триггера				
			reg[1]	Статусные сбросовые биты, сохраненное значение не имеет смысла				
			reg[2-3]	Задержка ворот относительно Т0, мс, (Low,High)				
			reg[4-5]	Длительность ворот, мс, (Low,High)				
			reg[6]	Не используется				
			reg[7]	Данные пересчеток, сохраненное значение не имеет смысла				
			reg[8]	0x0F – длительность сигнала триггера на выходе 0, в периодах 196 МГц 0xF0 – младшие биты длительности внутренней блокировки выходного триггера 0, в периодах 196 МГц				
			reg[9]	старшие биты длительности внутренней блокировки выходного триггера 0, в периодах 196 МГц				
			reg[10-11]	То же для выходного триггера 1				
			reg[12-13]	То же для выходного триггера 2				
			reg[14-15]	Зарезервировано для тех же параметров выходного триггера 3				
			reg[16]	Маска совпадений для физического триггера 0				
			reg[17]	Маска антисовпадений для физ. триггера 0				
			reg[18]	Маска выходных сигналов для физ. триггера 0				
			reg[19-20]	Предделитель для физ. триггера 0, (Low,High)				
			reg[21-25]	То же для физического триггера 1				
			reg[26-30]	То же для физического триггера 2				
			reg[31-35]	То же для физического триггера 3				
			reg[36-40]	То же для физического триггера 4				
			reg[41-45]	То же для физического триггера 5				
			reg[46-55]	Зарезервировано для тех же параметров				

		физических триггеров 6 и 7
		физических тригтеров о и /
		, .

Изображение мишени

Структ.	Имя	Длина	Описание	
Slow_Camera	length	int*4	Полная длина в байтах sizeof(jpeg)+8	
	type	int*4	Тип источника EP_SRCID_CAMERA	
	jpeg[]	char*1	Јред изображение	