3. LINE BALANCING

STATION TIME: The Time Assigned at different workstation is called as station time.

CYCLE TIME: The time required to produce a finished product is called as cycle time. (Product formation time/

Max. Station Time/ Bottleneck Time)

$Line/Balance\ Efficiency(L.\ E.) = \frac{\sum St}{Cycl}$	Where, $n = No.$ of Workstation. Cycle Time \geq Max. Of Station time									
$Balance\ Delay = 1 - Line/Balance\ Eff$	$y = 1 - Line/Balance\ Efficiency = 1 - \frac{\sum Station\ time}{Cycle\ Time*n} = \frac{\sum Ideal\ time}{Cycle\ Time*n}$									
Smoothness Index (S.I.) = $\sqrt{\sum_{i=1}^{n} (Cycle)}$	•	If SI = 0, Line is called perfectly balanced. Effort should be made to have S.I. as low as possible.								
$m{n_{min}} = \Big(\sum Station\ Time\Big)/Cycle\ Time$	n_{min} = Minimum No of station for 100% L.E.	n_{min} is higher round up Integer								

BOTTLENECK: Critical/ Trouble Making Operation. (W.R.T. Time and W.R.T. Production (in Unit))

LARGEST CANDIDATE RULE:

- 1. List all the elements in the decreasing order of their task time.
- 2. To assign an element in a workstation start from the beginning of the list moving downward searching for feasible element which can be placed in a workstation.
- 3. Feasible element is the one that satisfies precedence requirement and when that element is placed in a workstation.
- 4. Strike off the element which is assigned so that it won't be consider again.
- 5. Continue in the similar manner until all the elements are assigned to different workstations.

Table-I:				Table-II:				
Element	Work Time	Precedence	Check	Work	Element	Work Time	Cycle Time	Ideal
(Given	(Given	(Given	Box	Station	(Given	(Ti) (Given	(Tsi) < (Given	Time
Data)	Data)	Data)	(Done)	No.	Data)	Data)	Time)	(Tsi- Ti)

From the above tables we can find n, $\sum Station\ Time$, $\sum Ideal\ time$.