

Fig.1

Fig.2

Fig.3A

Image to be printed

Fig.3B**Fig.3E**

Monochrome image printing

Fig.3C

Reference one-dimensional LUT 412

Fig.3D

Monochrome image printing—use one-dimensional LUT 413

$$C' = C \times (C_v / C_{max})$$

$$M' = M \times (M_v / M_{max})$$

$$Y' = Y \times (Y_v / Y_{max})$$

Fig.4

Reference one-dimensional LUT 412

Fig.5

6/19

Fig.6

Color component intensity values I_c , I_m , I_y for a point Pt corresponding to an arbitrary point Pcc in ink color circle:

$$I_c = \frac{Q_c}{Q_c + Q_m + Q_y}$$

$$I_m = \frac{Q_m}{Q_c + Q_m + Q_y}$$

$$I_y = \frac{Q_y}{Q_c + Q_m + Q_y}$$

$$Q_c = \overline{PtPc}, Q_m = \overline{PtPm}, Q_y = \overline{PtPy}$$

7/19

Fig.7A

Relationship between color component intensity value I_c and tone adjustment value C_v

Fig.7B

Fig.8

Fig.9A

Linear conversion

Fig.9B

Non-linear conversion

10/19

Fig.10A

Permissible
↓

~~↑~~ Non-permissible

Fig.10B

Color slider display

11/19

Fig.11

Color component intensity values I_c , I_m , I_y for an arbitrary point P_{cc} ($=Pt$) in ink color circle

$$I_c = \frac{Q_c}{2R}$$

$$I_m = \frac{Q_m}{2R}$$

$$I_y = \frac{Q_y}{2R}$$

$$Q_c = \overline{PtPc}, Q_m = \overline{PtPm}, Q_y = \overline{PtPy}$$

12/19

Fig.12A

Fig.12B

Fig.12C

Fig.13

Fig.14A

Reference one-dimensional LUT 412a (eight ink colors)

Fig.14B

Monochrome image printing—use one-dimensional LUT 413a
(eight ink colors)

$$\begin{aligned}
 C' &= C \times (C_v / C_{max}) \\
 LC' &= LC \times (C_v / C_{max}) \\
 M' &= M \times (M_v / M_{max}) \\
 LM' &= LM \times (M_v / M_{max}) \\
 Y' &= Y \times (Y_v / Y_{max})
 \end{aligned}$$

Fig.15A

Reference one-dimensional LUT 412 (six ink colors)

Fig. 15B

Monochrome image printing-use one-dimensional LUT 413A
(eight ink colors)

$$\begin{aligned}
 C' &= \alpha C \times (C_v / C_{max}) \\
 L C' &= k_1 (1 - \alpha) C \times (C_v / C_{max}) \\
 M' &= \beta M \times (M_v / M_{max}) \\
 L M' &= k_2 (1 - \beta) M \times (M_v / M_{max}) \\
 Y' &= Y \times (Y_v / Y_{max})
 \end{aligned}$$

Fig.16

17/19

Fig.17

Fig.18

18/19

Fig.19

Fig.20

19/19

Fig.21

