

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MATA42 - Matemática Discreta I Técnicas de Demonstração

Professora: Isamara

Terminologias

DEFINICÃO

Enumeração das propriedades que um determinado objeto deve obrigatoriamente ter (ou deixar de ter) para pertencer a uma determinada classe de objetos.

Enunciado que não precisa ser demonstrado.

Exemplos:

- DEFINIÇÃO: Um inteiro n é par se e somente se n é da forma 2k para algum inteiro k. $\forall n \in \mathbb{Z}$, $(n \in par \leftrightarrow \exists k \in \mathbb{Z}; n = 2k)$
- ② DEFINICÃO: O inteiro k **divide** o inteiro n se e somente se existe $a \in \mathbb{Z}$ tal que ka = n. Escrevemos(notação): k|n.
 - $\forall n \in \mathbb{Z}, \forall k \in \mathbb{Z}, (k|n \leftrightarrow \exists g \in \mathbb{Z}; n = kg)$

Terminologias

AXIOMA ou POSTULADO

Afirmação básica assumida como verdadeira, aceita por todos acerca de um algo. Axiomas são normalmente informações óbvias, baseadas no senso comum.

Afirmação que não precisa ser demonstrada.

EXEMPLOS:

- **1** AXIOMA: Todo número inteiro tem um único sucessor. $\forall x \in \mathbb{Z}, \exists! y \in \mathbb{Z}, (y = x + 1)$
- ② AXIOMA: (TRICOTOMIA) $\forall a, b \in \mathbb{Z}$ vale só um de a < b ou a = b ou b < a.

Note que AXIOMAS são distintos de DEFINIÇÕES:

- Os AXIOMAS podem tratar de uma propriedade qualquer de um objeto,
- As DEFINIÇÕES devem necessariamente descrever todas as propriedades que um objeto deve possuir (ou deixar de possuir) para fazer parte de uma classe de objetos.

Terminologias

Demonstração

Uma DEMONSTRAÇÃO é uma **argumentação** matemática da certeza a respeito de uma afirmação:

- Encerra um argumento VÁLIDO(correto),
- Estabelece a veracidade de uma sentença matemática usando axiomas e teoremas previamente comprovados, juntamente com as regras de inferência, alguns passos são omitidos e axiomas e regras de inferência utilizados não são explicitamente mencionadas.
- O objetivo é convencer um público da verdade de uma sentença, entretanto, deve-se cuidar para que a demonstração seja, além de correta, também simples, clara e objetiva.

Terminologias

RESULTADO

Afirmação que se pode demonstrar ser verdadeira.

Lema, Proposição, Teorema, Corolário.

CONJECTURA (ou Conjetura)

Afirmação em potencial cuja veracidade ou não ainda está indeterminada.

Ou seja, afirmação que ainda não foi provada e nem refutada.

Se for demonstrada, torna-se um RESULTADO.

Resultados

LEMA

RESULTADO provado para auxiliar na demonstração de um resultado mais complexo.

EXEMPLO:

• Lema (Lema de Gauss) Sejam x, y, z inteiros não nulos. Se MDC(x, y) = 1 e x|yz então x|z.

Proposição

RESULTADO provado e considerado de menor interesse.

PROPOSIÇÃO
 O MMC de dois números inteiros é único.

Resultados

TEOREMA

Resultado considerado interessante em si mesmo.

Resultado mais importante provado utilizando definições, axiomas, lemas, e outros teoremas já demonstrados.

EXEMPLOS:

- **1** TEOREMA(Teorema da Divisão Euclidiana) Para todo inteiro x e todo inteiro y; y ≠ 0 existe um único inteiro q e existe um único inteiro r, chamados respectivamente de quociente e resto da divisão, tais que x = qy + r; com ; 0 ≤ r < |y|.
- ② TEOREMA (Teorema Fundamental da Aritmética)
 Todo número inteiro $x \notin \{-1,0,1\}$ é primo ou pode ser expresso como um produto finito de números primos. Além disso, a expressão de x como produto de números primos é única a menos de troca de sinal e de permutação entre os fatores do produto.

Resultados

Corolário

RESULTADO derivável (consequência imediata) de outro resultado já demonstrado. Por isso, a demonstração é mais simples.

EXEMPLO:

- COROLÁRIO (Teorema da Divisão)
 Para todo inteiro n, n é par ou n é ímpar.
- Teorema

Sejam x, y, q, r inteiros tais que x = qy + r. Se x e y não são simultaneamente nulos então MDC(x, y) = MDC(y, r).

Corolário

Sejam x, y, q, r inteiros, com $y \neq 0$. Se r é o resto da divisão euclidiana de x por y, então MDC(x, y) = MDC(y, r).

Conjectura - Exemplos

CONJECTURA (Conjetura)

EXEMPLO:

- (1) Conjectura(Pierre de Fermat (1637)): Para qualquer valor de n inteiro e maior que 2, não existem três inteiros positivos $x, y \in z$ tais que $x^n + y^n = z^n$.
 - Fermat provou que a afirmação é verdadeira para n = 3.
 - Apenas em 1995, o inglês Andrew Wiles prova para valores arbitrários de n.
 - Apesar de ser conhecida como o Último Teorema de Fermat, apenas após a demonstração foi reconhecida como teorema.

CONJECTURA(Conjetura)

EXEMPLO:

- (2) Conjectura(Euler (1769)): $a^4 + b^4 + c^4 = d^4$ não tem solução no conjunto dos inteiros positivos.
 - Por mais de dois séculos, não encontrou-se valores de *a*, *b*, *c*, *d* que satisfizessem a equação.
 - O insucesso de todos os matemáticos era evidência que a conjectura poderia ser verdadeira.
 - Apenas em 1987, após 218 anos, o matemático americano Noam Elkies proveu um contra-exemplo invalidando a afirmação:
 95800⁴ + 217519⁴ + 414560⁴ = 422481⁴.

35000 | 211013 | 111000 | 122101

Conjectura - Exemplos

CONJECTURA(Conjetura)

EXEMPLO:

(3) CONJECTURA(Christian Goldbach (1742)): Todo inteiro par maior que 2 pode ser escrito como a soma de dois números primos.

Testes com computadores mostram que é verdadeira para todos os inteiros pares entre 4 e 410^{18} ; mas, ainda não foi demonstrada e nem foi apresentado um contra-exemplo; ou seja, está **aberta**.

CONDICIONAL

Seja o TEOREMA: $P \Rightarrow Q$ onde; a HIPÓTESE é P e a TESE é Q.

Antes de apresentar as TÉCNICAS DE DEMONSTRAÇÃO para PROVAR um resultado, vamos lembrar algumas equivalências envolvendo uma condicional:

- Contra-Positiva: $P \Rightarrow Q \Leftrightarrow \neg Q \Rightarrow \neg P$
- Redução ao Absurdo: $P \Rightarrow Q \Leftrightarrow P \land \neg Q \Rightarrow F$
- $P \Rightarrow Q \land R \Leftrightarrow (P \Rightarrow Q) \land (P \Rightarrow R)$
- $P_1 \lor P_2 \lor \cdots \lor P_n \Rightarrow Q \Leftrightarrow (P_1 \Rightarrow Q) \land (P_2 \Rightarrow Q) \land \cdots \land (P_n \Rightarrow Q)$
- BICONDICIONAL: $P \Leftrightarrow Q \Leftrightarrow (P \Rightarrow Q) \land (Q \Rightarrow P)$

Estudaremos as seguintes TÉCNICAS DE DEMONSTRAÇÃO:

- Prova Direta.
- Prova por Contraposição,
- Prova por Contradição (ou Redução ao Absurdo).
- Prova por Vacuidade.
- Prova Trivial.
- Prova Construtiva.
- Prova por Contra-Exemplo

Prova Direta

TEOREMA: $P \Rightarrow Q$

DEMONSTRAÇÃO DIRETA: Assume-se a HIPÓTESE P como verdadeira e deduz-se a TESE Q; utilizando definições, resultados anteriores conhecidos e as regras de inferência lógica.

EXEMPLO.1:

"Se um inteiro é divisível por 6, então é divisível por 3."

AFIRMAÇÃO: $(\forall x)(x \text{ \'e divisível por } 6 \Rightarrow x \text{ \'e divisível por } 3)$; com o domínio de interpretação sendo os inteiros, temos x um inteiro arbitrário; ou seja, $\forall x \in \mathbb{Z}$.

PROVAR: x é divisível por $6 \Rightarrow x$ é divisível por 3.

- HIPÓTESE: x é inteiro e é divisível por 6.
- TESE: *x* é divisível por 3.

PROVAR: x é divisível por $6 \Rightarrow x$ é divisível por 3

- Por HIPÓTESE x é divisível por 6; utilizando a definição de DIVISIBILIDADE temos que existe um inteiro k tal que x = k.6:
- Agora, utilizamos o RESULTADO NUMÉRICO que o inteiro 6 é múltiplo de 3, isto é, 6 = 2.3:
- 3 Substituindo (2) em (1) ficamos com x = k.(2.3):
- Aplicando a PROPRIEDADE ASSOCIATIVA do conjunto dos números inteiros em (3): x = (k.2).3:
- **5** Em (4), pela PROPRIEDADE DO PRODUTO entre números inteiros, temos que (k.2)resulta num número inteiro:
- **6** Pelo resultado (5) podemos definir o inteiro a := (k.2) e, aplicando a DEFINIÇÃO DE DIVISIBILIDADE obtemos x = a.3.
- ONCLUSÃO: x é divisível por 3.

EXEMPLO.2:

"O produto de dois inteiros pares é par."

AFIRMAÇÃO: $(\forall x, y)(x \text{ e } y \text{ pares } \Rightarrow x.y \text{ é par })$; com o domínio de interpretação sendo o conjunto dos inteiros: $\forall x, y \in \mathbb{Z}$. PROVAR: x, y são números inteiros pares $\Rightarrow x.y$ é par.

- HIPÓTESE: x, y são números inteiros e são números pares.
- TESE: x.y é um inteiro par.

PROVAR: x, y são números inteiros pares $\Rightarrow x, y$ é par

- 1 Por HIPÓTESE x e y são inteiros pares.
- Aplicando a definição de NÚMEROS PARES em (1), temos que; x e y são divisíveis por 2.
- **3** Em (2), utilizando a definição de DIVISIBILIDADE por 2 obtemos as igualdades: x = 2.m e y = 2.n, para algum inteiro $m \in n$.
- Efetuando o produto dos inteiros $x \in y$; e substituindo o resultado obtido em (3): x.v = (2.m)(2.n)
- **3** Aplicando a PROPRIEDADE ASSOCIATIVA do conjunto dos inteiros em (4), temos; x.y = 2.(2mn)
- Pela PROPRIEDADE DO PRODUTO dos números inteiros, deduzimos em (5) que (2mn) é um inteiro.
- Portanto, de (6) existe um inteiro k := 2mn tal que o produto $x \cdot y = 2 \cdot k$.
- Desta forma, em (7) por DEFINIÇÃO DE DIVISIBILIDADE: 2 divide x.y.
- De (8), por DEFINIÇÃO DE NÚMEROS PARES, concluimos que x.y é também um inteiro par.

PROVAR: x, y são números inteiros pares $\Rightarrow x, y$ é par

- \bigcirc x é inteiro par. (PREMISSA)
- 2 y é inteiro par. (PREMISSA)
- Se x é par então $x = 2k_1$ para algum inteiro k_1 . (DEF. NÚMERO PAR)
- (MODUS PONENS em (1) e (3) e INSTANCIAÇÃO EXISTENCIAL)
- **5** Se y é par então $y = 2k_2$ para algum inteiro k_2 . (DEF. NÚMERO PAR)
- **6** $v = 2k_2$ (MODUS PONENS em (2) e (5) e INSTANCIAÇÃO EXISTENCIAL)
- $x = 2k_1 \text{ e } v = 2k_2 \text{ (CONJUNÇÃO em (4) e (6))}$
- 3 Se $x = 2k_1$ e $y = 2k_2$ então $x.y = 2.(k_1.2k_2)$ (DEF. PRODUTO E PROP. ASSOCIATIVA)
- y $x.y = 2.(k_1.2k_2)$ (MODUS PONENS em (7) e (8))
- **1** Se $x.y = 2.(k_1.2k_2)$ então $\exists a \in \mathbb{Z}; x.y = 2a$ (GENERALIZAÇÃO EXISTENCIAL)
- Se $\exists a \in \mathbb{Z}$; x.y = 2a então x.y é inteiro e par. (DEF. NÚMERO PAR.)

Demonstração por contraposição:

" $P \Rightarrow Q$ é um teorema então a contrapositiva $\neg Q \Rightarrow \neg P$ também o é."

Assim, vamos assumir a HIPÓTESE: $\neg Q$ como verdadeira e deduzir a TESE: $\neg P$.

EXEMPLO.3:

"Se um inteiro é divisível por 6, então é divisível por 3."

CONTRAPOSITIVA: "Se um inteiro não é divisível por 3, então não é divisível por 6."

- HIPÓTESE: "x não é divisível por 3".
- TESE: "x não é divisível por 6"

- HIPÓTESE: "x não é divisível por 3".
- TESE: "x não é divisível por 6"
- O Por HIPÓTESE x não é divisível por 3; utilizando a definição de DIVISIBILIDADE temos que para qualquer inteiro k; $x \neq k.3$.
- Pelo resultado em (1), iremos definir k := 2.a, para a um inteiro qualquer, ficamos com $x \neq (2a).3$
- Aplicando a PROPRIEDADE ASSOCIATIVA e COMUTATIVA do conjunto dos números inteiros em (2), obtemos $x \neq (2.3).a$;
- Agora, utilizando em (3) o RESULTADO NUMÉRICO que o inteiro 6 = 2.3; temos $x \neq 6.a$
- \odot Aplicando em (4) a DEFINIÇÃO DE DIVISIBILIDADE, deduzimos que 6 não divide x.
- 6 CONCLUSÃO: x não é divisível por 6.

DEFINIÇÃO (mdc)

Dados $x, y \in \mathbb{Z}$, não simultaneamente nulos, o MAIOR DIVISOR COMUM(mdc) de x e y é o maior inteiro positivo que divide simultaneamente x e y.

Assim,

$$\mathrm{mdc}(x,y) := egin{cases} 0, & \text{se } x = y = 0, \\ \max \big\{ d \in \mathbb{N} \colon d | x \in d | y \big\}, & \text{caso contrário.} \end{cases}$$

DEFINIÇÃO (coprimo)

x e y inteiros positivos são **coprimos**(PRIMOS ENTRE SI) se e somente se $\mathrm{mdc}(x,y)=1$.

EXERCÍCIO: Mostre o seguinte teorema

TEOREMA

Se x e y são inteiros **coprimos** então não são ambos pares.

 $(\forall x, \forall y)(x \in y \text{ inteiros coprimos} \Rightarrow \text{não são ambos pares});$

Técnicas de Demonstração - "CONTRAPOSIÇÃO"

EXERCÍCIO: Mostre o seguinte teorema

TEOREMA

Se x e v são inteiros **coprimos** então não são ambos pares.

AFIRMAÇÃO: $(\forall x, \forall y)(x \text{ e } y \text{ são inteiros coprimos} \Rightarrow \text{não são ambos pares})$

- HIPÓTESE: x e y são ambos pares.
- TESE: x, y não são coprimos.

DEMONSTRAÇÃO:

Seiam x e v números inteiros quaisquer.

Supondo que x é par e que y é par. Então, 2 divide x e divide y, logo o mdc(x, y) é pelo menos 2, i.é., mdc(x, y) > 2.

Portanto, se x e y são inteiros pares então $mdc(x, y) \neq 1$.

Assim, conclui-se por definição que x e y não são coprimos. \square

PROVAR: x, y são números inteiros pares $\Rightarrow x$ e y não são coprimos

- HIPÓTESE: x e y são ambos inteiros pares.
- TESE: x e y não são coprimos.
- \bigcirc $\forall x \in \forall y \text{ inteiros pares (PREMISSA)}$
- 2 a e b são inteiros pares. (INSTANCIAÇÃO UNIVERSAL em (1))
- Se $a \in b$ são inteiros pares então $2|a \in 2|b$. (DEF. NÚMERO PAR)
- 4 Se $2|a \in 2|b \text{ então } \operatorname{mdc}(a,b) \geq 2$ (DEF DE mdc)
- **5** Se $\operatorname{mdc}(a, b) \ge 2$ então $\operatorname{mdc}(a, b) \ne 1$. (POIS $1 \ge 2$)
- **©** Se a e b são inteiros pares então $mdc(a,b) \neq 1$ (SILOGISMO HIPOTÉTICO em (3), (4) e (5))
- \bigcirc mdc $(a,b) \neq 1$ (MODUS PONENS em (2) e (6))

EXEMPLO.4:

"O produto xy é ímpar se, e somente se, x e y são inteiros ímpares."

PROVAR:

- (⇒) Se o produto xy é ímpar então x e y são inteiros ímpares.
- (⇐) Se x e y são inteiros ímpares então o produto xy é ímpar.

PROVA DIRETA: (⇐)Se x e y são inteiros ímpares então o produto xy é ímpar

- Por $\frac{\text{HIPÓTESE}}{\text{TESE}} x$ e y são inteiros ímpares.
- ② Aplicando a definição de NÚMEROS ÍMPARES em (1), temos que existe um inteiro m e um inteiro n; tais que x = 2n + 1 e y = 2m + 1.
- 3 Substituindo o resultado obtido em (2) no produto dos inteiros x e y: x.y = (2n+1)(2m+1)
- Utilizando a PROPRIEDADE DISTRIBUTIVA dos números inteiros em (3), obtemos; x.y = (2n+1)(2m+1) = 4mn + 2n + 2m + 1
- **5** De (4) vamos definir o inteiro k := 4mn + 2n + 2m.
- **1** Em (5), podemos reescrever o inteiro k, colocando o número 2 em evidência; visto que todas as parcelas do inteiro k são divisíveis por 2: k := 2(2mn + n + m)
- **1** Em (6) definimos um inteiro a := 2mn + n + m o que resulta em k = 2a.
- Substituindo (7) em (4) chegamos ao resultado que o produto $x \cdot y = 2a + 1$.
- Oe (8), pela definição de números ímpares, temos que o produto x.y é ímpar.

PROVA POR CONTRAPOSIÇÃO:(⇒)

Se x não é ímpar ou y não é ímpar então o produto xy não é ímpar

- HIPÓTESE: x não é ímpar ou y não é ímpar.
- TESE: o produto xy não é ímpar.

Observação.1: Por definição dos números inteiros, se um inteiro não é ímpar, ele é par. Portanto, neste caso, podemos reescrever a HIPÓTESE como segue: "x é par ou y é par" e a TESE: "O produto xy é par".

Observação.2: Considerando que na HIPÓTESE temos o conectivo lógico OU, devemos considerar na "prova" os três casos possíveis:

Caso.1: "x é par e y é par";

Caso.2: "x é par e y é ímpar"; e

Caso.3: " $x \in \text{impar e } v \in \text{par}$ ".

CASO.1: HIPÓTESE: "x é par e y é par"

- 1 Por hipótese x e y são inteiros pares.
- 2 Aplicando a definição de NÚMEROS PARES em (1), temos que; x e y são divisíveis por 2.
- **3** Em (2), utilizando a definição de DIVISIBILIDADE por 2 obtemos as igualdades: x = 2.m e y = 2.n, para algum m e n inteiros.
- **1** Efetuando o produto dos inteiros x e y; e substituindo o resultado obtido em (3): $x \cdot y = (2 \cdot m)(2 \cdot n)$
- **3** Aplicando a PROPRIEDADE ASSOCIATIVA do conjunto dos inteiros em (4), temos; x.y = 2.(2mn)
- Por PROPRIEDADE DO PRODUTO dos números inteiros, deduzimos em (5) que (2mn) é um inteiro.
- O Portanto, de (6) existe um inteiro k = 2mn tal que o produto x.y = 2.k.
- **1** Desta forma, em (7) por DEFINIÇÃO DE DIVISIBILIDADE: 2 divide x.y.
- 1 De (8), por DEFINIÇÃO DE NÚMEROS PARES, concluimos que x.y é também um inteiro par.

Caso.2: HIPÓTESE: "x é par e y é ímpar"

- 1 Por hipótese x é um inteiro par e y é um inteiro ímpar.
- 2 Aplicando a definição de NÚMEROS PARES E ÍMPARES em (1), temos que; x = 2.m e y = 2.n + 1, para algum $m \in n$ inteiros.
- Efetuando o produto dos inteiros $x \in v$; e substituindo o resultado obtido em (2): x.y = (2m)(2n+1)
- Aplicando a PROPRIEDADE DISTRIBUTIVA do conjunto dos inteiros em (3), temos; x.v = 4mn + 2m
- No resultado do produto x.y em (4) podemos colocar o número 2 em evidência visto que as parcelas da soma são ambas múltiplos deste número: x.y = 2(2mn + m).
- Definindo em (5) o inteiro k := 2mn + m e substituindo na expressão do produto: $x \cdot y = 2k$.
- Aplicando a definição de divisibilidade por 2 no conjunto dos inteiros, chegamos à conclusão de (6) que o produto x.y é divisível por 2.
- De acordo com o resultado obtido em (7) podemos aplicar a definição de números pares, deduzindo que x.y é também um inteiro par.

Caso.3: HIPÓTESE: "x é ímpar e y é par"

- 1 Por hipótese x é um inteiro ímpar e y é um inteiro par.
- 2 Aplicando a definição de NÚMEROS PARES E ÍMPARES em (1), temos que; x = 2.m + 1 e y = 2.n, para algum $m \in n$ inteiros.
- Efetuando o produto dos inteiros $x \in v$; e substituindo o resultado obtido em (2): x.y = (2m+1)(2n)
- Aplicando a PROPRIEDADE DISTRIBUTIVA do conjunto dos inteiros em (3), temos; x.v = 4mn + 2n
- No resultado do produto x.y em (4) podemos colocar o número 2 em evidência visto que as parcelas da soma são ambas múltiplos deste número: x.y = 2(2mn + n).
- Definindo em (5) o inteiro k := 2mn + n e substituindo na expressão do produto: $x \cdot y = 2k$.
- Aplicando a definição de divisibilidade por 2 no conjunto dos inteiros, chegamos conclusão por (6) que o produto x.y é divisível por 2.
- De acordo com o resultado obtido em (7) podemos aplicar a definição de números pares, deduzindo que x.y é também um inteiro par.

Técnicas de Demonstração - "CONTRADIÇÃO (ou INDIRETA ou REDUÇÃO AO ABSURDO)"

Considerando a seguinte equivalência:

$$P \rightarrow Q \Leftrightarrow P \land (\neg Q) \rightarrow F$$

- Se $P \Rightarrow Q$ é um teorema, é suficiente mostrar $P \land (\neg Q) \Rightarrow F$.
- Então, assumimos que tanto a HIPÓTESE P quanto à negação da TESE $\neg Q$ são "verdadeiras"; e chegamos a algumas CONTRADIÇÕES.

EXEMPLO.5:

"Se um inteiro é divisível por 6, então é divisível por 3."

Afirmação por Absurdo:

"Um inteiro é divisível por 6, e não é divisível por 3."

HIPÓTESE: x é divisível por 6 e x não é divisível por 3.

TESE: F

Técnicas de Demonstração - "Contradição (ou **Absurdo**)"

Considerando a HIPÓTESE: x é divisível por 6 E x não é divisível por 3.

- 1 Por hipótese x não é divisível por 3; utilizando a definição de DIVISIBILIDADE temos que para gualguer inteiro k: $x \neq k.3$.
- Pelo resultado em (1), iremos definir k := 2.a, para a um inteiro qualquer, ficamos com $x \neq (2a).3$
- Aplicando a PROPRIEDADE ASSOCIATIVA do conjunto dos números inteiros em (2), obtemos $x \neq (2.3).a;$
- **1** Agora, utilizando em (3) o RESULTADO NUMÉRICO que o inteiro 6 = 2.3; temos $x \neq 6.a$
- Aplicando em (4) a DEFINICÃO DE DIVISIBILIDADE, deduzimos que 6 não divide x.
- O Por hipótese temos que 6 divide x.
- Por (5) e (6) temos que "6 não divide x" E "6 divide x" o que resulta numa FALSIDADE, isto é, chegamos numa CONTRADIÇÃO.
- **1** CONCLUSÃO: x é divisível por 6 e por 3.

Técnicas de Demonstração - "CONTRADIÇÃO (ou INDIRETA ou REDUÇÃO AO ABSURDO)"

OBSERVAÇÃO:

Seja o Teorema : $P \Rightarrow Q$

tem-se a HIPÓTESE: P e a TESE: Q.

Por Contraposição tem-se, de forma equivalente o Teorema: $\neg Q \Rightarrow \neg P$

HIPÓTESE: $\neg Q$ e TESE: $\neg P$.

Portanto, ao considerar na CONTRADIÇÃO a HIPÓTESE: $P \land \neg Q$ que faz a conjunção dos antecedentes dos teoremas equivalentes acima, tem-se:

- (i) Supondo, inicialmente, $\neg Q$ conclui-se $\neg P$. Porém, tem-se uma conjunção na hipótese que não pode ser desprezada. Assim, $P \land \neg P$ é uma **contradição**(\digamma).
- (ii) Supondo, inicialmente, P conclui-se Q. Contudo, pela conjunção na hipótese, $\neg Q \land Q$ é uma **contradição**(F).

Sendo assim, (i) ou (ii) infere uma **contradição**(F) a fim de provar o teorema.

Exercício.1

Vamos considerar a seguinte afirmação da Teoria dos Números :

"Seja a um número inteiro. Se a² é par então a é par."

Mostre este resultado utilizando as seguintes técnicas de demonstração:

- Prova por Contraposição; e
- Prova por Contradição (Absurdo)

Exercício.1

Seja a um número inteiro. Se a^2 é par então a é par.

$$P \Rightarrow Q$$

onde, *P* : *a*² é par; *Q* : *a* é par.

- Prova por Contraposição:
 "Seja a um número inteiro. SE a não é par ENTÃO a² não é par."
- Prova por Contradição (Absurdo):
 Seja a um número inteiro. a² é par E a não é par.

Técnicas de Demonstração - "EXERCÍCIO

Prova por Contraposição

Considerando a HIPÓTESE: Seja a um número inteiro. Se a não é par então a^2 não é par.

- 1 Por hipótese a é um inteiro ímpar.
- ② Aplicando a definição de NÚMEROS ÍMPARES em (1), temos que; a = 2.x + 1; para x inteiro qualquer.
- **3** Efetuando a potência "a elevado a 2" e substituindo no resultado obtido em (2), obtemos; $a^2 = (2x+1)^2 = (2x+1).(2x+1)$
- ② Aplicando a PROPRIEDADE DISTRIBUTIVA do conjunto dos inteiros em (3), temos; $a^2 = (2x+1).(2x+1) = 4x^2 + 4x + 1$
- **5** Do resultado da potenciação em (4), vamos definir o inteiro $k := 4x^2 + 4x = 2(2x^2 + 2x)$ e, em seguida, o inteiro $y := 2x^2 + 2x$. Substituindo em k; temos k = 2y.
- **6** Substituindo o inteiro k em (4), encontramos $a^2 = 2y + 1$.
- Aplicando a definição de número inteiro ímpar em (6), deduzimos que a² também é um inteiro ímpar, ou seja, a² não é par.

Técnicas de Demonstração - "EXERCÍCIO

Prova por Contradição (Absurdo)

- **1** Por hipótese: Dado a um número inteiro. a^2 é par E a não é par.
- 2 Pela hipótese (1), a é um inteiro ímpar.
- 3 Aplicando a definição de NÚMEROS ÍMPARES em (2), temos que; a=2.x+1; para x inteiro qualquer.
- ① Efetuando a potência "a elevado a 2" e substituindo no resultado obtido em (3): $a^2 = (2x + 1)^2 = (2x + 1).(2x + 1)$
- **3** Aplicando a PROPRIEDADE DISTRIBUTIVA do conjunto dos inteiros em (4), temos; $a^2 = (2x+1).(2x+1) = 4x^2 + 4x + 1$
- **6** Do resultado da potenciação em (5), vamos definir o inteiro $k := 4x^2 + 4x = 2(2x^2 + 2x)$ e, em seguida, o inteiro $y := 2x^2 + 2x$. Substituindo em k; temos k = 2y.
- Substituindo o inteiro k em (5), encontramos $a^2 = 2y + 1$.
- Aplicando a definição de número inteiro ímpar em (7), deduzimos que a² também é um inteiro ímpar, ou seja, a² não é par.
- Pela hipótese em (1) "a² é par" e pela afirmação (8) "a² não é par". Chegamos numa CONTRADIÇÃO. Logo, "Se a² é par então a é par, para qualquer a inteiro."

Técnicas de Demonstração - Prova DIRETA

Exercício.1:

Seja a um número inteiro. Se a^2 é par então a é par.

 $P \Rightarrow Q$

onde,

 $P: a^2 \in par$:

 $Q: a \in par.$

Técnicas de Demonstração - PROVA DIRETA

 $P \Rightarrow Q$

- **1** Por hipótese a^2 é um inteiro par.
- ② Por definição da operação potência "a elevado a 2" em (1) obtemos; $a^2 = a.a$
- **3** Aplicando a definição de NÚMEROS PARES em (1), temos que; $a^2 = 2.x$; para x inteiro qualquer.
- Igualando (2) e (3) , temos; a.a = 2.x; para x inteiro qualquer.
- **5** Em (4) temos dois casos a analisar: (i) $a \in \text{um}$ inteiro par: a = 2k; $\exists k \in \mathbb{Z}$; ou, (ii) $a \in \text{um}$ inteiro impar: a = 2k + 1; $\exists k \in \mathbb{Z}$.
- **3** Analisando os dois casos em (5): (i) se a = 2k; $\exists k \in \mathbb{Z} \Rightarrow a.a = 4k^2 = 2x \Rightarrow 2m = 2x$; $m = (2k^2) \in \mathbb{Z} \Rightarrow V$ (ii) se a = 2k + 1; $\exists k \in \mathbb{Z} \Rightarrow a.a = (2k + 1)^2 = 2x \Rightarrow 4k^2 + 4k + 1 = 2x$ $\Rightarrow 2(2k^2 + 2k) + 1 = 2x \Rightarrow 2m + 1 = 2x$; $m = 2(k^2 + k) \in \mathbb{Z} \Rightarrow F$.
- De (6) concluímos que a é par.

Técnicas de Demonstração - "PROVA CONSTRUTIVA"

Tipos especiais de teoremas cujo enunciado afirma que EXISTE um objeto com determinadas características, apresentar um tal objeto (UM EXEMPLO) é suficiente para provar o teorema.

TEOREMA

Existem três inteiros positivos x, y e z tais que $x^2 + y^2 = z^2$.

AFIRMAÇÃO: $\exists x, \exists y, \exists z (x, y, z \in \mathbb{Z}_+^* \land x^2 + y^2 = z^2)$

Prova:

Os números x = 3, y = 4 e z = 5 são inteiros que satisfazem à restrição; pois, $3^2 + 4^2 = 5^2$.

Este exemplo não é único, mas "se tivermos pelo menos um exemplo mostrando que a afirmação é satisfeita", então "a afirmação está demonstrada".

outros exemplos: (5, 12, 13), (11, 60, 61), (48, 55, 73), etc.

Técnicas de Demonstração - "PROVA POR CONTRAEXEMPLO"

Em matemática queremos ter a certeza *matemática* de que alguma afirmação *P* vale. Para tal, é necessário elaborarmos uma DEMONSTRAÇÃO (ou PROVA) matemática utilizando uma ou mais das técnicas de demonstração: "Prova direta", "Prova por Contraposição", "Prova por Absurdo".

Todavia, em alguns casos, não temos a certeza que a afirmação P vale e também, não conseguimos demonstrá-la.

Nestes casos, podemos procurar um *exemplo* mostrando que a afirmação não é válida, isto é, procuramos um Contra-exemplo.

O papel do contra-exemplo é sempre "refutar" a afirmação; ou seja, "se tivermos pelo menos um exemplo mostrando que a afirmação não é satisfeita", então "a afirmação não pode mais ser demonstrada".

Técnicas de Demonstração - "PROVA POR CONTRAEXEMPLO"

EXEMPLO:

- CONJECTURA: Todo múltiplo de um número inteiro ímpar é par. CONTRA-EXEMPLO: O número inteiro 3 é ímpar: 3 = 2(1) + 1. Verificando os múltiplos de 3, tomamos: 3² = 9 mas, 9 = 2(4) + 1 é ímpar. Portanto, 9 não é par e é múltiplo do inteiro ímpar 3. Concluimos que "o múltiplo de um número inteiro ímpar pode não ser par"; Ou seja, REFUTAMOS a afirmação com o CONTRA-EXEMPLO apresentado.
- CONJECTURA: Nenhum número primo é par. CONTRAPROVA: O número 2 é primo e é par. Logo, a conjectura está incorreta.

Técnicas de Demonstração - "Prova Por Vacuidade"

TEOREMA: $P \Rightarrow Q$

Prova por Vacuidade: Prova-se que a hipótese P é falsa e não precisa analisar a TESE Q pois, pela definição da condicional, $P \rightarrow Q$ será logicamente VERDADEIRA. Neste caso, diz-se que a hipótese é VÁCUA(ou VAZIA).

EXEMPLO:

Se x é um inteiro, com $10 \le x \le 15$, tal que x é um quadrado perfeito então x é também um cubo perfeito.

AFIRMAÇÃO: $(\forall x \in \mathbb{Z})(\exists k \in \mathbb{Z})(\exists n \in \mathbb{Z})(10 \le x \le 15 \text{ e } x = k^2 \Rightarrow x = n^3).$ DEMONSTRAÇÃO:

- HIPÓTESE: x é um inteiro, com $10 \le x \le 15$, tal que x é um quadrado perfeito.
- TESE: x é um cubo perfeito.

Analisando a HIPÓTESE tem-se $3^2=9<10$ e $4^2=16>15$. Ou seja, a HIPÓTESE é FALSA porque não existe um quadrado perfeito $10\leq x\leq 15$.

Portanto, pode-se concluir que a afirmação é verdadeira por VACUIDADE.

Técnicas de Demonstração - "Prova Por Vacuidade"

EXEMPLO:

"Para todo $x \in \mathbb{R}$. se $x^2 + 1 < 0$ então $x^5 > 4$."

AFIRMAÇÃO: $(\forall x \in \mathbb{R})(x^2 + 1 < 0 \Rightarrow x^5 > 4)$.

- HIPÓTESE: $x \in \mathbb{R}$ tal que $x^2 + 1 < 0$.
- TESE: $x^5 > 4$.

DEMONSTRAÇÃO:

Seja x um real arbitrário.

Sabemos que $x^2 > 0$, logo $x^2 + 1 > 0$.

Portanto, por vacuidade, se $x^2 + 1 < 0$ então $x^5 > 4$.

Note que se a hipótese não fosse falsa, seria possível provar ou refutar a afirmação.

Por exemplo, HIPÓTESE: $x \in \mathbb{R}$ tal que $x^2 + 1 > 0$; e TESE: $x^5 > 4$.

Apresentando um CONTRA-EXEMPLO:

Para $x = 1 \Rightarrow 1^2 + 1 > 0 \text{ mas } 1^5 \not > 4$.

Técnicas de Demonstração - "Prova Por Vacuidade"

EXEMPLO:

"Para qualquer conjunto $A, \emptyset \subseteq A$."

Afirmação: $\forall x (x \in \emptyset \rightarrow x \in A)$

- HIPÓTESE: $x \in \emptyset$.
- TESE: $x \in A$.

DEMONSTRAÇÃO:

Como $x \in \emptyset$ é falso, para qualquer x, a condicional $x \in \emptyset \to x \in A$ é verdadeira.

Portanto, $\forall x (x \in \emptyset \rightarrow x \in A).\Box$

Técnicas de Demonstração - "Prova Trivial"

TEOREMA: $P \Rightarrow Q$

Prova Trivial: Prova-se que a Tese Q é sempre Verdadeira e conclui-se que a condicional, $P \rightarrow Q$ também é Verdadeira sem a necessidade de analisar a HIPÓTESE P.

Por definição, a condicional será sempre VERDADEIRA quando o consequente for VERDADEIRO.

EXEMPLO:

"Para todo $x \in \mathbb{R}$, se $x^5 < 4$ então $x^2 + 1 \ge 0$."

AFIRMAÇÃO: $(\forall x \in \mathbb{R})(x^5 < 4 \Rightarrow x^2 + 1 \ge 0)$.

- HIPÓTESE: $x \in \mathbb{R}$ tal que $x^5 < 4$.
- TESE: $x^2 + 1 \ge 0$.

DEMONSTRAÇÃO:

Para x um real arbitrário, $x^2 + 1 > 0$.

Portanto, pelo fato de a CONCLUS $ilde{A}O$ ser sempre verdadeira, concluimos **trivialmente** que a afirmac $ilde{a}O$ também é verdadeira. \Box

Técnicas de Demonstração - "Prova Trivial"

EXEMPLO:

 $\forall x$, se $x \notin A$ então $x \notin \emptyset$.

- HIPÓTESE: $x \notin A$.
- TESE: $x \notin \emptyset$.

Demonstração:

Dado o conjunto A, $x \notin A \rightarrow x \notin \emptyset$ cujo consequente, $x \notin \emptyset$ é verdadeiro.

Portanto, a condicional é verdadeira qualquer que seja o x.

 $\forall x$, se $x \notin A$ então $x \notin \emptyset$, que vale trivialmente. \square

Técnicas de Demonstração - "Prova Trivial"

EXEMPLO:

Se 2.310 não tem fatores primos repetidos, então (2.310)² é um número racional. .

- HIPÓTESE: 2310 não tem fatores primos repetidos.
- TESE: (2.310)² é um número racional.

Demonstração:

Note que a conclusão da condicional é verdadeira:

$$(2.310)^2 = 5.336.100 = \frac{5.336.100}{1} = \frac{p}{q}; p \in Z, q \in Z^*. \Rightarrow 5.336.100$$
 é um número racional.

Assim, a condicional é verdadeira demonstrada trivialmente.

Técnicas de Demonstração

Exercício

Seja a afirmação:

A soma de dois inteiros pares é par.

Mostre este resultado utilizando as seguintes técnicas de demonstração:

- Prova por Contraposição; e
- Prova por Contradição (Absurdo)

Técnicas de Demonstração

Exercício.2

Vamos converter a afirmação:

"Se x e y são inteiros pares então x + y é par". utilizando as seguintes técnicas de demonstração:

- Prova por Contraposição:
 - "Dados os inteiros x e y, Se x+y não é par então não é verdade que x e y sejam pares."
 - é equivalente afirmar:
 - "Dados os inteiros x e y, Se x + y não é par então x ou y não são pares."
- Prova por Contradição (Absurdo):
 - "x e y são inteiros pares e x + y não é par."