Giochi per Reti Profonde

David Vencato

Settembre 2023

Sommario

In questa relazione vogliamo collegare la teoria dei giochi con il concetto di apprendimento supervisionato. In particolare, per problemi convessi a un livello, dimostriamo un'equivalenza tra i punti di minimo globali del problema di allenamento e gli equilibri di Nash in un gioco costruito ad hoc. In seguito, generalizziamo il gioco per una rete neurale aciclica. Sotto opportune ipotesi, anche in questo caso, riusciamo a trovare una bigezione tra gli equilibri di Nash del gioco e i punti KKT del problema di apprendimento.

1 Gioco di apprendimento a un livello

Definizione 1.1. Un gioco simultaneo a una mossa è un gioco nel quale ci sono:

- 1. un insieme di N giocatori;
- 2. un insieme Σ_i (finito o infinito) di azioni per ogni giocatore i=1,...,N. Si definisce inoltre l'insieme delle azioni congiunte $\Sigma = \prod_{i \in \mathbb{N}} \Sigma_i$;
- 3. una funzione di utilità per ogni giocatore $u_i: \Sigma \longrightarrow \mathbb{R}$.

In un gioco simultaneo a una mossa, quindi, ogni giocatore deve fare la propria scelta senza conoscere quella degli altri giocatori.

Definizione 1.2. Il "supervised learning" o apprendimento supervisionato è una classe di problemi dove si ha un insieme di dati $\{(x_t, y_t)\}_{t=1}^T \in \mathcal{X} \times \mathcal{Y}$ e si vuole "imparare" una funzione predittrice $h: \mathcal{X} \longrightarrow \mathcal{Y}$ (chiamato anche predittore).

Nel corso della trattazione si assumerà $\mathcal{X} = \mathbb{R}^m$ e $\mathcal{Y} = \mathbb{R}^n$. Nel modello lineare standard dell'apprendimento supervisionato il predittore è del tipo $h(x) = \phi(\theta x)$ dove θ è una matrice $n \times m$ che rappresenta i parametri "allenabili" del modello e $\phi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ la funzione output.

Definizione 1.3. Il problema di apprendimento a un livello (OLP) si basa su una funzione perdita $l: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ che è convessa e differenziabile nel primo argomento; definiamo $l_t(z) = l(z, y_t)$ e $L_t(\theta) = l_t(\theta x_t)$. Per allenare il modello si deve minimizzare la funzione $L(\theta) = T^{-1} \sum_{t=1}^{T} L_t(\theta)$.

Si costruisce quindi un gioco simultaneo a una mossa basato su OLP come segue:

Definizione 1.4. Il gioco di apprendimento a un livello (OLG) è un gioco simultaneo a una mossa con le seguenti caratteristiche:

- 1. ci sono due giocatori: un protagonista p e un antagonista a;
- 2. il protagonista sceglie la matrice $\theta \in \mathbb{R}^m \times \mathbb{R}^n$ mentre l'antagonista sceglie un insieme di T vettori e T scalari $\{a_t, b_t\}_{t=1}^T$ con $a_t \in \mathbb{R}^n$ e $b_n \in \mathbb{R}$ tali che $a_t^T z + b_t \le l_t(z) \ \forall z \in \mathbb{R}^n$. Essendo un gioco simultaneo, la scelta di un giocatore viene fatta senza sapere quella dell'altro;
- 3. data un'azione congiunta $(\theta, \{a_t, b_t\}_{t=1}^T)$, la funzione di utilità dell'antagonista è $U^a = T^{-1} \sum_{t=1}^T a_t^T \theta x_t + b_t$ mentre quella del protagonista è $U_p = -U_a$.

Si nota subito che il gioco descritto è a somma zero e con azioni continue. Inoltre, ricordiamo che si ha un equilibrio di Nash quando l'azione congiunta dei giocatori è tale che per nessuno dei due è conveniente cambiare la propria posizione. Formalmente, se $\tilde{\sigma}^p = \theta$ denota l'azione del protagonista e $\tilde{\sigma}^a = \{a_t, b_t\}_{t=1}^T$ quella dell'antagonista, allora l'azione congiunta $(\tilde{\sigma}^p, \tilde{\sigma}^a)$ è un equilibrio di Nash se $U_p(\tilde{\sigma}^p, \tilde{\sigma}^a) \geq U_p(\sigma^p, \tilde{\sigma}^a) \ \forall \sigma^p$ e $U_a(\tilde{\sigma}^p, \tilde{\sigma}^a) \geq U_p(\tilde{\sigma}^p, \sigma^a) \ \forall \sigma^a$.

Il passo successivo della trattazione è dimostrare che c'è effettivamente una bigezione tra gli equilibri di Nash di OLG e i punti di minimo globale di OLP. Per fare questo abbiamo bisogno di un lemma preliminare:

Lemma 1.5. L'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash per OLG se e soltanto se $l_t(\theta x_t) = a_t^T \theta x_t + b_t$, $a_t = \nabla l_t(g)|_{g=\theta x_t}$ (miglior risposta dell'antagonista) e $T^{-1} \sum_{t=1}^T a_t x_t^T = 0$ (miglior risposta del protagonista).

Dimostrazione. Basta provare che un equilibrio di Nash deve soddisfare le condizioni del lemma, il viceversa è analogo. Per ipotesi $a_t^T z + b_t \leq l_t(z) \ \forall z \in \mathbb{R}^n$ dunque $l_t(\theta x_t) = a_t^T \theta x_t + b_t$ rappresenta l'utilità massima per l'antagonista. Inoltre, dato che l_t è convessa e differenziabile, esiste un'unica funzione affine che è uguale a l_t in un punto e minore o uguale altrove. Questa funzione è proprio $h(g) = \nabla l_t(\theta x_t)(g - \theta x_t) + l_t(\theta x_t)$. Allora, $a_t = \nabla l_t(g)|_{q=\theta x_t}$.

Scriviamo esplicitamente la funzione di utilità del protagonista $U^p = -T^{-1} \sum_{t=1}^{T} a_t^T \theta x_t + b_t$. Facendo il gradiente rispetto a θ e ponendo uguale a zero otteniamo il massimo di U^p e dunque p sta giocando la sua risposta migliore.

Teorema 1.6. Se $(\theta^*, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash di OLG, allora θ^* è un punto di minimo globale di OLP. Viceversa, se θ^* è un punto di minimo globale di OLP, allora esiste una strategia dell'antagonista $\{a_t, b_t\}_{t=1}^T$ tale che $(\theta^*, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash di OLG.

Dimostrazione. \Longrightarrow : Per quanto visto nel Lemma 1.5, si deve avere $L(\theta^*) = T^{-1} \sum_{t=1}^T a_t^T \theta^* x_t + b_t$, $a_t = \nabla l_t(g)|_{g=\theta^*x_t}$ e $T^{-1} \sum_{t=1}^T a_t x_t^T = 0$. In particolare, mettendo insieme le ultime due equazioni si ha:

Ш

$$T^{-1} \sum_{t=1}^{T} \nabla l_t(g)|_{g=\theta^* x_t} x_t^T = 0.$$

Notiamo che il membro di sinistra dell'equazione è proprio $\nabla L(\theta^*)$ e dunque $\nabla L(\theta^*)$ = 0. Per definizione di $L(\theta)$ (convessa e differenziabile perché lo é l_t), allora θ^* deve essere un punto di minimo globale ($\nabla L(\theta^*)$ = 0 condizione necessaria e sufficiente perché θ^* sia minimo globale).

 \Leftarrow : L'antagonista per fare la risposta migliore a θ^* deve scegliere $a_t := \nabla l_t(g)|_{g=\theta^*x_t}$ e $b_t := l_t(\theta^*x_t) - a_t^T\theta^*x_t$. Allora, sfruttando che θ^* è minimo globale si ha:

$$0 = \nabla L(\theta^*) = T^{-1} \sum_{t=1}^{T} \nabla L_t(\theta^*) = T^{-1} \sum_{t=1}^{T} (\nabla l_t(g)|_{g=\theta^*x_t}) x_t^T = T^{-1} \sum_{t=1}^{T} a_t x_t^T.$$

Dunque, sempre il Lemma 1.5, anche θ^* è la risposta migliore e dunque si ha un equilibrio di Nash.

Fino ad ora abbiamo ignorato la complessità del modello, che, però, è un aspetto importante del problema, al pari di cercare di minimizzare la funzione perdita. Per questo introduciamo un vincolo $\theta \in \Theta$ per un qualche insieme convesso Θ . Possiamo, dunque, introdurre le rispettive definizioni con questa nuova ipotesi.

Definizione 1.7. Si definisce il problema di apprendimento a un livello vincolato (OCP) un OLP al quale si aggiunge un vincolo di ottimizzazione $\theta \in \Theta$.

Definizione 1.8. Si definisce il gioco di apprendimento a un livello vincolato (OCG) un OLG al quale si aggiunge un vincolo di ottimizzazione $\theta \in \Theta$.

In maniera del tutto analoga al caso non vincolato, vediamo che otteniamo la stessa bigezione adattata a questo contesto. Supponiamo che Θ sia un politopo cioè un'intersezione finita di semispazi. Allora, Θ è esprimibile con un insieme finito J di funzioni affini, tale per cui $\theta \in \Theta$ se e soltanto se $j(\theta) \leq 0 \ \forall j \in J$.

Lemma 1.9. Dato che l_t nella definizione di L è convessa e differenziabile, allora L è convessa e differenziabile, dunque condizioni necessari e sufficienti (chiamate condizioni KKT) affinché $\theta^* \in argmin_{\theta \in \Theta}L(\theta)$ è che esista $\{\mu_j\}_{j \in J}$ tale che $\forall j \in J$:

$$\begin{cases} \mu_j \ge 0 \\ \mu_j j(\theta^*) = 0 \\ j(\theta^*) \le 0 \\ \sum_{j \in J} \mu_j \nabla j(\theta^*) = -\nabla L(\theta^*) \end{cases}$$

Lemma 1.10. L'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash per OLG se e soltanto se $l_t(\theta x_t) = a_t^T \theta x_t + b_t$, $a_t = \nabla l_t(g)|_{g=\theta x_t}$ (miglior risposta dell'antagonista), e esiste $\{\mu_j\}_{j\in J}$ tale che $\forall j \in J$:

$$\begin{cases} \mu_{j} \geq 0 \\ \mu_{j}j(\theta) = 0 \\ j(\theta) \leq 0 \\ \sum_{j \in J} \mu_{j} \nabla j(\theta) = -T^{-1} \sum_{t=1}^{T} a_{t} x_{t}^{T} \quad (miglior \ risposta \ protagonista) \end{cases}$$
azione. Per quanto riguarda l'antagonista, la dimostrazione è la stess

Dimostrazione. Per quanto riguarda l'antagonista, la dimostrazione è la stessa del Lemma 1.5 dato che non c'è nessuna nuova restrizione sulle scelte di a. Ora, dato che la funzione di utilità del protagonista è una funzione affine rispetto a θ , un punto che soddisfa le condizioni KKT è un punto di massimo globale e viceversa. Dunque applicando il Lemma 1.9 al gradiente rispetto a θ di U^p si ottiene la tesi.

Teorema 1.11. Se $(\theta^*, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash di OCG, allora θ^* è un punto di minimo globale con restrizione di OCP. Viceversa, se θ^* è un punto di minimo globale con restrizione di OCP, allora esiste una strategia dell'antagonista $\{a_t, b_t\}_{t=1}^T$ tale che $(\theta^*, \{a_t, b_t\}_{t=1}^T)$ è un equilibrio di Nash di OCG.

 $\begin{array}{l} \textit{Dimostrazione.} \Longrightarrow \text{Usando i risultati per l'antagonista del Lemma 1.10, otteniamo che} \\ \nabla L(\theta^*) = T^{-1} \sum_{t=1}^T \nabla L_t(\theta^*) = T^{-1} \sum_{t=1}^T (\nabla l_t(g)|_{g=\theta^*x_t}) x_t^T = T^{-1} \sum_{t=1}^T a_t x_t^T = -\nabla U^p. \\ \text{Allo stesso tempo, devono essere verificate le condizioni } KKT \text{ nel Lemma 1.10 e dunque,} \\ \text{usando in particolare l'ultima equazione del sistema, si ha: } \sum_{j \in J} \mu_j \nabla j(\theta) = -\nabla L(\theta^*). \\ \text{Questa è proprio la condizione del Lemma 1.9 il quale ci assicura che } \theta^* \text{ è un punto di minimo globale con restrizione di } OCP. \\ \end{array}$

 \Leftarrow Costruiamo la risposta dell'antagonista come nel Teorema 1.6. Questo implica sempre $\nabla L(\theta^*) = -\nabla U^p$ e concludiamo come nel punto precedente usando i Lemmi 1.9 e 1.10 i quali garantiscono che anche θ^* è la risposta ottimale del protagonista.

2 Gioco di apprendimento per reti neurali

Definizione 2.1. Un grafo G è una coppia (V, E) dove V è l'insieme dei vertici ed $E \subset V \times V$ quello degli archi. Se, inoltre, gli archi sono orientati allora si parla di grafo diretto.

Notiamo che in un grafo diretto ha senso parlare, fissato un arco, di vertice iniziale e vertice finale.

Definizione 2.2. Sia G un grafo diretto. Allora un percorso in G è una sequenza di archi $(e_1,...,e_k)$ tale che il vertice finale di e_i è anche il vertice iniziale di e_{i+1} $\forall i=1,...,k-1$. Se vale, inoltre, che il vertice finale di e_k coincide col vertice iniziale di e_1 allora si parla di e_i coincide. Un grafo diretto senza cicli è detto aciclico.

Definizione 2.3. Una rete neurale feed-forward è una quintupla N = (V, E, I, O, F) dove (V, E) è un grafo diretto aciclico, $I = \{i_1, ..., i_m\} \subset V$ è l'insieme dei vertici di input, $O = \{o_1, ..., o_n\} \subset V$ è l'insieme dei vertici di output e $F = \{f_v : \mathbb{R} \longrightarrow \mathbb{R} \mid v \in V\}$ è

l'insieme delle funzioni di attivazione. I parametri allenabili sono dati da $\theta: E \longrightarrow \mathbb{R}$. Supponiamo inoltre che i vertici di input non siano vertici finali di nessun arco (i.e. non ci sono archi entranti nei vertici di input) e analogamente che i vertici di output non siano vertici iniziali di nessun arco (i.e. non ci sono archi uscenti dai vertici di output).

Notiamo che un grafo diretto aciclico induce un ordine parziale \leq sui vertici: $u \leq v$ se e soltanto se esiste un percorso da u a v. Dunque, v=u se e soltanto se esiste un percorso da v in u e viceversa. Definiamo, quindi, $\forall v \in V$ l'insieme $E_v = \{(u, u') \in E : u' = v\}$. La rete neurale è "collegata" al set dei dati di allenamento assumendo che |I| = m (il numero dei vertici di input corrisponde al numero di caratteristiche degli input dell'apprendimento supervisionato) e |O| = n (il numero di vertici di output è uguale alla dimensione degli output del supervised learning).

Sia $x_t \in \mathbb{R}^m$ un valore input di allenamento. La rete neurale feed-forward lavora creando funzioni c_t che assegnano valori a ogni vertice nel seguente modo:

$$c_t(i_k, \theta) = f_{i_k}((x_t)_k), \quad i_k \in I$$
$$c_t(v, \theta) = f_v(\sum_{u:(u,v)\in E} c_t(u, \theta)\theta(u, v)), \quad v \in V - I.$$

Denotiamo con $c_t(o, \theta)$ il vettore dei valori dei vertici di output (i.e. $(c_t(o, \theta))_k := c_t(o_k, \theta)$ con $o_k \in O$). Si noti che data la differenziabilità di f_v , lo è anche $c_t(o, \theta)$ rispetto a θ .

Per imporre vincoli a θ lo facciamo in questo modo: $\forall v \in V - I$ i parametri θ ristretti a E_v devono stare in un insieme $\Theta_v \subset \mathbb{R}^{E_v}$, ponendo $\Theta := \prod_{v \in V - I} \Theta_v$. Se $\Theta = \mathbb{R}^E$, consideriamo la rete neurale senza restrizioni. Analogamente, se Θ è limitata , allora diremo che la rete neurale è limitata.

Definizione 2.4. Data una funzione di perdita l(z, y) che è convessa nel primo argomento e soddisfa $0 \le l(z, y) \le \infty \ \forall z \in \mathbb{R}^n$, si definisce $l_t(z) = l(z, y_t)$ e $L_t(\theta) = l_t(c_t(o, \theta))$. Il "problema di allenamento" è trovare $\theta \in \Theta$ che minimizza $L(\theta) = T^{-1} \sum_{t=1}^{T} L_t(\theta)$ (si parla di "Deep Learning Problem").

Definizione 2.5. Vogliamo definire un gioco simultaneo a una mossa che richiami il DLP. Chiamiamo questo gioco "Deep learning game" (DLG). Per fare questo dobbiamo specificare chi sono i giocatori, l'insieme delle azioni e le funzioni di utilità:

- 1. Giocatori: per ogni vertice $v \in V I$ c'è un protagonista p; per ogni vertice $v \in V$ c'è uno "zanni egoista" s_v (un agente che opera per il proprio interesse); un antagonista a.
- 2. Azioni: il protagonista nel vertice v sceglie una funzione parametro $\theta_v \in \Theta_v$. L'antagonista sceglie un insieme di T vettori e T scalari $\{a_t, b_t\}_{t=1}^T$ con $a_t \in \mathbb{R}^n$ e $b_t \in \mathbb{R}$ tali che $a_t^T z + b_t \leq l_t(z) \ \forall z \in \mathbb{R}^n$. Allo stesso modo, ogni zanni s_v sceglie un insieme di 2T scalari $\{q_{vt}, d_{vt}\}_{t=1}^T$ con $q_{vt} \in \mathbb{R}$ e $d_{vt} \in \mathbb{R}$ tali che $q_{vt}z + d_{vt} \leq f_v(z)$ $\forall z \in \mathbb{R}$. Essendo un gioco simultaneo, tutti i giocatori fanno le proprie scelte senza sapere quelle degli altri.

3. Funzioni di utilità: consideriamo un'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$. Le funzioni degli zanni sono definite ricorsivamente, in particolare la funzione utilità per lo zanni s_i o s_v sul t-esimo elemento del training set è:

$$U_{it}^{s}(\sigma) = d_{it} + q_{it}x_{it}, \quad i \in I$$

$$U_{vt}^{s}(\sigma) = d_{vt} + q_{vt} \sum_{u:(u,v)\in E} U_{tu}^{s}(\sigma)\theta(u,v), \quad v \in V - I.$$

Dunque, fissato $v \in V$, la funzione utilità totale per lo zanni s_v è data da $U_v^s(\sigma) = \sum_{t=1}^T U_{vt}^s(\sigma)$. La funzione utilità dell'antagonista è, invece, definita come $U^a = T^{-1} \sum_{t=1}^T U_t^a$ dove $U_t^a(\sigma) = b_t + \sum_{k=1}^n a_{kt} U_{o_k t}^s(\sigma)$. In maniera analoga ai casi precedenti, le funzioni utilità dei protagonisti sono tutte uguali ponendo $U^p(\sigma) = -U^a(\sigma)$.

A questo punto, cerchiamo di capire come gli zanni e l'antagonista devono comportarsi in risposta a una fissata scelta dei protagonisti e vediamo, anche in questo caso, come si legano gli equilibri di Nash del DLG e i punti KKT del DLP (Sezione 3). Per ora enunceremo solo i risultati, usando le prossime due sezioni per dimostrare passo per passo le seguenti proposizioni.

Lemma 2.6. Data un'azione dei protagonisti θ , esiste un'unica azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ nella quale gli zanni e l'antagonista giocano le loro migliori risposte a θ . Non solo, $U^p(\sigma) = -L(\theta)$, $\nabla_{\theta}U^p(\sigma) = -\nabla L(\theta)$, e dato un protagonista in $v \in V - I$, se teniamo le scelte di ogni altro agente fisse, $U^p(\sigma)$ è una funzione affine rispetto alla strategia del protagonista in v. Chiamiamo σ la scelta congiunta espansa per θ .

Teorema 2.7. L'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ è un equilibrio di Nash di DLG se e soltanto se è un'espansione per θ (nel senso del Lemma 2.6) e θ è un punto KKT di DLP.

Corollario 2.8. Se la rete neurale è illimitata, l'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ è un equilibrio di Nash di DLG se e soltanto se è un'espansione per θ e θ è un punto critico di DLP.

3 Problema parziale e punti KKT

In questa sezione daremo una serie di risultati legati alle condizioni KKT e alle reti neurali, la maggior parte dei quali senza dimostrazione essendo risultati standard di teoria dell'ottimizzazione e funzioni affini. Riprendendo, dunque, il concetto di rete neurale, consideriamo una partizione P di V-I, dove per ogni $\rho \in P$ definiamo $E_{\rho} = \bigcup_{v \in \rho} E_v$ (ricordiamo che $E_v = \{(u, u') \in E : u' = v\}$). Sia, inoltre, $\Theta_{\rho} \subset \mathbb{R}^{E_{\rho}}$ e $\Theta = \prod_{\rho \in P} \Theta_{\rho}$. Un'importante restrizione è che $\forall \rho \in P, \forall u, v \in \rho$ se $u \leq v$ allora $v \leq u$. Lasciamo invariati lo spazio delle azioni degli zanni e dell'antagonista, ma ora ogni protagonista controlla una parte del nodo ρ . Notiamo che è una generalizzazione

di quanto detto fino ad ora dato che possiamo prendere come partizione quella data da tutti i singoletti.

Definizione 3.1. Sia $u: \mathbb{R}^{E_{\rho}} \to \mathbb{R}$ una funzione affine. Trovare l'insieme $argmax_{\theta_{\rho} \in \Theta_{\rho}} u(\theta_{\rho})$ è chiamato problema parziale in $\rho \in P$.

Per ogni $\rho \in P$, siano $H_{\rho} \subset \mathbb{R}^{\mathbb{R}^{E_{\rho}}}$ e $J_{\rho} \subset \mathbb{R}^{\mathbb{R}^{E_{\rho}}}$ insiemi finiti di funzioni differenziabili continue. Allora, possiamo porre che Θ_{ρ} sia l'insieme di tutti $\theta_{\rho} \in \mathbb{R}^{E_{\rho}}$ tale che per ogni $h \in H_{\rho}$, $h(\theta_{\rho}) = 0$, e per ogni $j \in J_{\rho}$, $j(\theta_{\rho}) \leq 0$.

Ci sono due particolare restrizioni, spesso utilizzate, che sono:

Definizione 3.2. Se per ogni $\rho \in P$, gli elementi di H_{ρ} e J_{ρ} sono affini allora si parla di *restrizione parziale affine*. Se, invece, per ogni $\rho \in P$, gli elementi di H_{ρ} sono affini e quelli di J_{ρ} sono convessi allora si parla di *restrizione parziale di Slater*.

Definizione 3.3. Diciamo che θ_{ρ} è un punto KKT per il problema parziale in $\rho \in P$ se $\theta_{\rho} \in \Theta_{\rho}$ e esistono moltiplicatori $\mu_{j} \geq 0$ e $\lambda_{h} \in \mathbb{R}$ tali che:

$$\nabla u(\theta_{\rho}) = \sum_{j \in J_{\rho}} \mu_{j} \nabla j(\theta_{\rho}) + \sum_{h \in H_{\rho}} \lambda_{h} \nabla h(\theta_{\rho})$$
$$\mu_{j} j(\theta_{\rho}) = 0 \text{ per ogni } j \in J_{\rho}$$

Teorema 3.4. Mettiamoci nelle ipotesi della restrizione parziale affine o di Slater. Allora un punto è di minimo globale se e soltanto se è un punto KKT.

Osservazione 3.5. Per il problema parziale stiamo assumendo di avere una funzione di utilità affine (altrimenti un punto KKT non è necessariamente un punto di minimo globale). Non faremo la stessa assunzione per il problema globale.

Nel problema di deep learning, vogliamo trovare $\theta^* \in \Theta$ tale che per ogni $\theta \in \Theta, L(\theta^*) \leq L(\theta)$. Questo minimo globale non deve necessariamente esistere, e nemmeno essere unico. Prendiamo come distanza tra funzioni su \mathbb{R}^E , dove per ogni $\theta, \bar{\theta} \in \Theta, d(\theta, \bar{\theta}) = \left(\sum_{e \in E} (\theta(e) - \bar{\theta}(e))^2\right)^{1/2}$. Definiamo un intorno di θ $N \subseteq \Theta$ se esiste un r > 0 tale che per ogni $\bar{\theta} \in \Theta, d(\theta, \bar{\theta}) < r$. Dunque, θ è un minimo locale se esiste un intorno N di θ tale che per ogni $\bar{\theta} \in N, L(\theta) \leq L(\bar{\theta})$. Evidentemente, essere minimo globale implica essere minimo locale.

Definizione 3.6. Diciamo che $\theta \in \mathbb{R}^E$ è un punto KKT se $\theta \in \Theta$ e esistono moltiplicatori $\mu_j \geq 0$ e $\lambda_h \in \mathbb{R}$ tali che:

$$-\nabla L(\theta) = \sum_{j \in J} \mu_j \nabla j(\theta) + \sum_{h \in H} \lambda_h \nabla h(\theta)$$
$$\mu_j j(\theta) = 0 \text{ per ogni } j \in J.$$

4 Approfondimento teorico per DLG

Restiamo sempre nel contesto del deep learning e introduciamo nuovi concetti che ci permetteranno di dimostrare i risultati della Sezione 2.

Definizione 4.1. Sia $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ un'azione congiunta e $v \in V$. Se f_v è convessa e differenziabile, si dice che lo zanni di v è ragionevole per σ se $\forall t \in \{1, ..., T\}$, vale che:

$$\begin{cases} q_{vt} = f'_v(\sum_{u:(u,v)\in E} c_t(u,\theta)\theta(u,v)) \\ f_v(\sum_{u:(u,v)\in E} c_t(u,\theta)\theta(u,v)) = d_{vt} + q_{vt}(\sum_{u:(u,v)\in E} c_t(u,\theta)\theta(u,v)). \end{cases}$$

In altre parole, stiamo richiedendo che i valori e le derivate delle funzioni f_v e $d_{vt}+q_{vt}x$ coincidano per le energie di attivazione presenti nel grafo. In maniera analoga, se la funzione perdita l è convessa e differenziabile nel primo termine, allora l'antagonista è ragionevole se $\forall t \in \{1, ..., T\}$:

$$\begin{cases} a_t = \nabla l_t(z)|_{z=c_t(o,\theta)} \\ a_t^T c_t(o,\theta) + b_t = l_t(c_t(o,\theta)). \end{cases}$$

Proposizione 4.2. Siano dati un insieme finito S, un ordinamento parziale \leq su S e $X \subset S$. Se $\forall s \in S$ si ha che $\{s' \in S : s' < s\} \subset X \Longrightarrow s \in X$, allora X = S. Questa, in teoria degli insiemi, è chiamata induzione forte su un insieme parzialmente ordinato.

Lemma 4.3. Assumiamo che $\forall v \in V$, f_v sia convessa e differenziabile. Sia \leq l'ordinamento parziale generato dal grafo diretto aciclico della rete neurale. Fissiamo $v \in V$. Data un'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ dove $\forall u \leq v$, lo zanni di u è ragionevole per σ , allora $U_{tv}^s(\sigma) = c_t(v, \theta)$.

Dimostrazione. Sia $v \in V$. Usando l'induzione forte bisogna provare che se $\forall u < v$ $U^s_{tu}(\sigma) = c_t(u, \theta)$ allora $U^s_{tv}(\sigma) = c_t(v, \theta)$. Dunque:

- Passo base: sia $v \in I$ allora per definizione $U_{tv}^s(\sigma) = d_{vt} + q_{vt}x_{vt}$ ma lo zanni è ragionevole per ipotesi allora $d_{vt} + q_{vt}x_{vt} = f_v(x_{tv}) = c_t(v, \theta)$.
- Passo induttivo: sia $v \in V-I$. Per definizione $U^s_{vt}(\sigma) = d_{vt} + q_{vt} \sum_{u:(u,v) \in E} U^s_{tu}(\sigma)\theta(u,v)$; ma se $(u,v) \in E$ allora u < v dunque, per ipotesi induttiva, $U^s_{tu}(\sigma) = c_t(u,\theta)$. Allora, si ha $U^s_{vt}(\sigma) = d_{vt} + q_{vt} \sum_{u:(u,v) \in E} c_t(u,\theta)\theta(u,v)$. D'altra parte, $v \leq v$ e dunque lo zanni in v è ragionevole cioè $d_{vt} + q_{vt} \sum_{u:(u,v) \in E} c_t(u,\theta)\theta(u,v) = f_v(\sum_{u:(u,v) \in E} c_t(u,\theta)\theta(u,v)) = c_t(v,\theta)$.

Lemma 4.4. Assumiamo che $\forall v \in V$, f_v sia convessa e differenziabile e la funzione perdita l sia convessa e differenziabile nel primo termine. Data un'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ dove tutti gli zanni e l'antagonista sono ragionevoli, allora $U_t^a(\sigma) = l_t(c_t(o, \theta))$, per ogni dato di allenamento x_t .

Dimostrazione. La dimostrazione è analoga al Lemma 4.3.

Lemma 4.5. Assumiamo che $\forall v \in V$, f_v sia convessa e differenziabile. Sia \leq l'ordinamento parziale generato dal grafo diretto aciclico della rete neurale. Fissiamo $v \in V$. Data un'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ dove $\forall u \leq v$ (tranne al più v), lo zanni di u è ragionevole per σ , allora l'unica migliore risposta per lo zanni in v è di essere ragionevole.

Dimostrazione. Fissiamo uno specifico dato di allenamento x_t (dato che lo zanni può cambiare parametri $\forall t$ non è restrittivo farlo). Poniamo $z=x_{tv}$ se $v\in I$ oppure $z=\sum_{u:(u,v)\in E}U^s_{tu}(\sigma)\theta(u,v)$. Per definizione, l'utilità dello zanni in v è $d_{vt}+q_{vt}z$. Vediamo chi è la migliore risposta per lo zanni. Poniamo $q_{tv}=f'_v(z)$ e $d_{tv}=f_v(z)-f'_v(z)z$. La scelta è legale in quanto f_v è convessa e differenziabile dunque $f_v(x)\geq f'_v(z)(x-z)+f_v(z)$ e quindi $f_v(x)\geq d_{vt}+q_{vt}x$. È anche risposta che massimizza l'utilità $(f_v(z)=d_{vt}+q_{vt}z)$ (**) e è unica sempre per ipotesi di convessità e differenziabilità di f_v . Infine, se $v\in I$, $z=x_{tv}$ e la risposta è ragionevole per definizione; se $v\in V-I$ per il Lemma 4.3 si ha $\forall u:(u,v)\in E$ che $U^s_{tu}(\sigma)=c_t(u,\theta)$ e dunque $z=\sum_{u:(u,v)\in E}c_t(u,\theta)\theta(u,v)$. Sostituendo in (**) si ottiene che lo zanni agisce in maniera ragionevole.

In queste ipotesi, quindi, gli zanni agiscono in maniera ragionevole se e soltanto se giocano la loro migliore risposta. Vediamo l'analogo per l'antagonista.

Lemma 4.6. Assumiamo che $\forall v \in V$, f_v sia convessa e differenziabile e la funzione perdita l sia convessa e differenziabile nel primo termine. Data un'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ dove tutti gli zanni sono ragionevoli, allora l'unica migliore risposta per l'antagonista è di essere ragionevole.

Dimostrazione. La dimostrazione è analoga al Lemma 4.5.

Dunque, le scelte ragionevoli degli zanni e dell'antagonista sono semplici da determinare, analizziamo ora la ragionevolezza dei protagonisti.

Lemma 4.7. Assumiamo che $\forall v \in V$, f_v sia convessa e differenziabile e la funzione perdita l sia convessa e differenziabile nel primo termine. Data un'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ dove tutti gli zanni e l'antagonista sono ragionevoli, allora se U^p è l'utilità del protagonista, vale:

$$\nabla_{\theta} U^p(\sigma) = -\nabla_{\theta} L(\theta).$$

Dimostrazione. Per prima cosa spezziamo U^p nella sua componente relativa a x_t :

$$U_t^p(\sigma) = -U_t^a(\sigma) = -b_t - \sum_{k=1}^n a_{kt}(U_t^s(o_k)).$$

Per linearità, la tesi diventa dimostrare che $\nabla_{\theta} U_t^p(\sigma) = -\nabla_{\theta} l_t(c_t(o, \theta))$. Dunque, considerando l'uguaglianza iniziale:

$$\frac{\partial U_t^p(\sigma)}{\partial U_t^s(o_k)} = -a_{kt}. (1)$$

Usando semplicemente la definizione di ragionevolezza dell'antagonista, si ha che $a_{kt}=\frac{\partial l_t(c_t(o,\theta))}{\partial c_t(o_k,\theta)}$. Dunque la (1) diventa:

$$\frac{\partial U_t^p(\sigma)}{\partial U_t^s(o_k)} = -\frac{\partial l_t(c_t(o,\theta))}{\partial c_t(o_k,\theta)}.$$
 (2)

Definiamo $X\subset V$ l'insieme di tutti i $v\in V$ tali che $\frac{\partial U_t^p(\sigma)}{\partial U_{tv}^s(\sigma)}=-\frac{\partial l_t(c_t(\sigma,\theta))}{\partial c_t(v,\theta)}$. Abbiamo dimostrato che $O\subset X$. Dunque vorremmo applicare l'induzione forte sull'ordine parziale \leq indotto dal grafico diretto aciclico della rete neurale. Notiamo, però, che adesso siamo partiti dagli output e non dagli input, dunque occorre considerare l'ordine parziale opposto \sqsubseteq . Sia $v\in V-O$, vogliamo mostrare che $v\in X$, assumendo che $\forall u\in V$ con $u \sqsubset v$ allora $u\in X$. Dunque, ricordiamo che $U_{vt}^s(\sigma)=d_{vt}+q_{vt}\sum_{u:(u,v)\in E}U_{tu}^s(\sigma)\theta(u,v)$. Dovendo però muoverci dagli output verso gli input, se $u \sqsubset v$ l'equazione utile diventa $U_{ut}^s(\sigma)=d_{ut}+q_{ut}\sum_{w:(w,u)\in E}U_{tw}^s(\sigma)\theta(w,u)=d_{ut}+q_{ut}\sum_{w\neq v:(w,u)\in E}(U_{tw}^s(\sigma)\theta(w,u))+q_{ut}U_{tv}^s(\sigma)\theta(v,u)$. Allora $\frac{\partial U_{ut}^s(\sigma)}{\partial U_{tv}^s(\sigma)}=q_{ut}\theta(v,u)$. Si ottiene che:

$$\frac{\partial U_t^p(\sigma)}{\partial U_{tv}^s(\sigma)} = \sum_{u:(v,u)\in E} q_{ut}\theta(v,u) \frac{\partial U_t^p(\sigma)}{\partial U_{tu}^s(\sigma)}$$
(3)

Allora, per ipotesi induttiva:

$$\frac{\partial U_t^p(\sigma)}{\partial U_{tv}^s(\sigma)} = -\sum_{u:(v,u)\in E} q_{ut}\theta(v,u) \frac{\partial l_t(c_t(o,\theta))}{\partial c_t(u,\theta)} \tag{4}$$

Dato che gli zanni sono ragionevoli $\forall u \in V$ si ha $q_{ut} = f'_v(\sum_{u':(u',u)\in E} c_t(u',\theta)\theta(u',u))$. Quindi:

$$\frac{\partial U_t^p(\sigma)}{\partial U_{tv}^s(\sigma)} = -\sum_{u:(v,u)\in E} f_v'\Big(\sum_{u':(u',u)\in E} c_t(u',\theta)\theta(u',u)\theta(v,u)\Big) \frac{\partial l_t(c_t(o,\theta))}{\partial c_t(u,\theta)}$$
(5)

$$\frac{\partial U_t^p(\sigma)}{\partial U_{t_t}^s(\sigma)} = -\frac{\partial l_t(c_t(o,\theta))}{\partial c_t(v,\theta)}.$$
 (6)

Siamo quindi giunti a provare il claim iniziale, cioè X=V. Ora, consideriamo $(u,v)\in E$, allora:

$$\frac{\partial U_t^p(\sigma)}{\partial \theta(u,v)} = \frac{\partial U_t^p(\sigma)}{\partial U_{tv}^s(\sigma)} q_{tv} U_{tu}^s(\sigma) = -\frac{\partial l_t(c_t(o,\theta))}{\partial c_t(v,\theta)} q_{tv} U_{tu}^s(\sigma), \tag{7}$$

dove il primo uguale segue dalla definizione e il secondo per quanto dimostrato prima. Usando sempre che gli zanni sono ragionevoli, si ha $q_{vt} = f'_v(\sum_{u':(u',v)\in E} c_t(u',\theta)\theta(u',v))$ e $U^s_{tu}(\sigma) = c_t(u,\theta)$, sostituendo in (7):

$$\frac{\partial U_t^p(\sigma)}{\partial \theta(u,v)} = -\frac{\partial l_t(c_t(o,\theta))}{\partial c_t(v,\theta)} f_v' \Big(\sum_{u':(u',v)\in E} c_t(u',\theta)\theta(u',v) \Big) c_t(u,\theta). \tag{8}$$

Dalla definizione di $c_t(v,\theta)$ si ottiene che $\frac{\partial c_t(v,\theta)}{\partial \theta(u,v)} = f'_v(\sum_{u':(u',v)\in E} c_t(u',\theta)\theta(u',v))c_t(u,\theta)$. E quindi sostituendo in (8):

$$\frac{\partial U_t^p(\sigma)}{\partial \theta(u,v)} = -\frac{\partial l_t(c_t(o,\theta))}{\partial c_t(v,\theta)} \frac{\partial c_t(v,\theta)}{\partial \theta(u,v)} = -\frac{\partial l_t(c_t(o,\theta))}{\partial \theta(u,v)}.$$
 (9)

Fissiamo ora un po' di notazione. Per una rete neurale, definiamo P(u,v) l'insieme di tutti i percorsi da u in v, e per ogni percorso p sia |p| il numero di nodi del percorso. In particolare, si ha che se $p \in P(u,v)$ allora $p_1 = u$ e $p_{|p|} = v$.

Lemma 4.8.

$$\frac{\partial U^{p}(\sigma)}{\partial \theta(u, v)} = -\frac{1}{T} \sum_{t=1}^{T} \sum_{k=1}^{n} \sum_{p \in P(v, o_{k})} U_{tu}^{s}(\sigma) q_{t, p_{|p|}} a_{kt} \prod_{j=1}^{|p|-1} \theta(p_{j}, p_{j+1}) q_{t, p_{j}}$$

Dimostrazione. Diamo solo un'idea della dimostrazione. Dalla definizione di $U_p(\sigma)$ segue che:

$$\frac{\partial U^p(\sigma)}{\partial \theta(u,v)} = \sum_{t=1}^T U^s_{tu}(\sigma) q_{t,v} \frac{\partial U^p(\sigma)}{\partial U^s_{tv}(\sigma)}$$

Dunque, il problema si riduce a dimostrare ricorsivamente, partendo da O:

$$\frac{\partial U^{p}(\sigma)}{\partial U_{tv}^{s}(\sigma)} = -\frac{1}{T} \sum_{k=1}^{n} a_{kt} \sum_{p \in P(v, o_{k})} \prod_{j=1}^{|p|-1} \theta(p_{j}, p_{j+1}) q_{t, p_{j+1}}$$

Questo lemma tecnico ci permette di dimostrare qualcosa molto interessante. Sia $\rho \in P$, definiamo $U^p_{\rho,\sigma}: \mathbb{R}^{E_\rho} \to \mathbb{R}$ tale che $U^p_{\rho,\sigma}(\theta_\rho)$ è l'utilità del protagonista su ρ se decide unilateralmente di giocare θ_ρ invece che σ .

Lemma 4.9. $U_{\rho,\sigma}^p$ è una funzione affine.

Dimostrazione. Fissiamo $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{v,t}, d_{v,t}\})$. Definiamo $\sigma|_{\rho} : \Theta_{\rho} \to \Sigma$ tale che per ogni $\tilde{\theta} \in \Theta_{\rho}, \sigma|_{\rho}(\tilde{\theta})$ è lo stesso di σ eccetto l'azione del protagonista su ρ è rimpiazzata da $\tilde{\theta}$. Vale quindi:

$$U_{\rho,\mathbf{a}}^{p}(\tilde{\boldsymbol{\theta}})=U^{p}\left(\left.\boldsymbol{\sigma}\right|_{\rho}(\tilde{\boldsymbol{\theta}})\right)$$

Segue dunque dalla definizione che per ogni $(u, v) \in E_{\rho}$:

$$\frac{\partial U_{\rho,\mathbf{a}}^{p}(\tilde{\theta})}{\partial \tilde{\theta}_{(u,v)}} = \frac{\partial U^{p}\left(\sigma|_{\rho}(\tilde{\theta})\right)}{\partial \tilde{\theta}_{(u,v)}}$$

Usando il Lemma 4.8:

$$\frac{\partial U^{p}\left(\sigma|_{\rho}\left(\tilde{\theta}\right)\right)}{\partial\tilde{\theta}(u,v)} = -\frac{1}{T}\sum_{t=1}^{T}\sum_{k=1}^{n}\sum_{p\in P\left(v,o_{k}\right)}U_{tu}^{s}\left(\sigma|_{\rho}\left(\tilde{\theta}\right)\right)q_{t,p_{|p|}}a_{kt}\prod_{j=1}^{|p|-1}\theta\left(p_{j},p_{j+1}\right)q_{t,p_{j}}$$

Quindi, la funzione $U^p_{\rho,\sigma}$ è differenziabile dovunque. Non solo, consideriamo $U^s_{tu}\left(\sigma|_{\rho}(\tilde{\theta})\right)$. Preso $v \in \rho$, U^s_{tu} è l'output del nodo u. Quindi, dato che per ogni u' tali che $u' \in \rho \setminus \{v\}$ si ha $u' \not\leq v$, allora né u né un nodo "antenato" è in ρ . Dunque, U^s_{tu} non cambia al variare di θ_ρ . Formalmente, $U^s_{tu}\left(\sigma|_{\rho}(\tilde{\theta})\right) = U^s_{tu}(\sigma)$. Allora:

$$\frac{\partial U^p\left(\sigma|_{\rho}(\tilde{\theta})\right)}{\partial \tilde{\theta}(u,v)} = -\frac{1}{T} \sum_{t=1}^T \sum_{k=1}^n \sum_{p \in P(p,o_k)} U^s_{tu}(\sigma) q_{t,p|p|} a_{kt} \prod_{j=1}^{|p|-1} \theta\left(p_j, p_{j+1}\right) q_{t,p_j}$$

Abbiamo mostrato che la derivata parziale è una funzione solo di σ , e non di $\tilde{\theta}$. Ma una funzione con derivata parziale costante lungo ogni coordinata è affine.

Ora, mostriamo un lemma più forte del Lemma 2.6.

Lemma 4.10. Data un'azione dei protagonisti θ , esiste un'unica azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$ (la scelta congiunta espansa) nella quale gli zanni e l'antagonista giocano le loro migliori risposte a θ . Non solo, $U_p(\sigma) = -L(\theta)$, $\nabla_{\theta}U^p(\sigma) = -\nabla L(\theta)$, e dato un protagonista in $\rho \in P$, se teniamo le scelte di ogni altro agente fisse, $U^p(\sigma)$ è una funzione affine rispetto alla strategia del protagonista in ρ .

Dimostrazione. Per quanto visto nel corso della sezione, tutti gli agenti stanno giocando ragionevolmente. Dobbiamo dunque costruire l'azione congiunta mostrando che esiste ed è unica. Fissiamo $\theta \in \Theta$ e un'arbitraria azione congiunta $\sigma_0 = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$. Per prima cosa, dato l'ordinamento parziale \leq su V, consideriamo \sqsubseteq un'estensione lineare di \leq . Questo ci permette di ordinare tutti i vertici $v_1, ..., v_{|V|}$ tali che $v_k \sqsubseteq v_{k+1}$. Definiamo ricorsivamente σ_k così: è uguale a σ_{k-1} , tranne per lo zanni in v_k che gioca la risposta migliore a σ_{k-1} . Ora, usando il Lemma 4.5, per ricorsione, sappiamo che per ogni zanni al passo k esiste la risposta ragionevole ed è unica. Di conseguenza al passo |V| abbiamo un'azione congiunta dove tutti gli zanni sono ragionevoli. Allora, per 4.6 esiste ed è unica la risposta ottima per l'antagonista ed è quella nella quale gioca in maniera ragionevole. Dunque, esiste ed è unica l'azione congiunta σ^* nella quale tutti gli zanni e l'antagonista giocano la loro migliore risposta a θ .

Mostriamo le altre proprietà enunciate nel lemma. Dato che gli zanni e l'antagonista sono ragionevoli per il Lemma 4.4 si ha $U^a_t(\sigma) = l_t(c_t(o,\theta))$ e dunque facendone la media su t e ricordando che $U^p = -U^a$ si ha l'uguaglianza cercata. Poi, dal Lemma 4.7 abbiamo subito che $\nabla_\theta U^p(\sigma) = -\nabla L(\theta)$ e dal Lemma 4.9 da ogni protagonista abbiamo una funzione affine se decide (solo lui) di cambiare scelta.

Evidentemente, questo lemma implica il Lemma 2.6 poiché basta considerare come partizione P quella data dai singoli nodi.

Lemma 4.11. Assumiamo che per ogni $v \in V$, f_v è convessa e differenziabile, la funzione perdita l'è convessa e differenziabile nella prima componente, e, data un'azione congiunta $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$, tutti gli zanni e l'antagonista sono ragionevoli. Se θ è un punto KKT, allora le azioni dei protagonisti sono le migliori risposte a σ , e σ è un equilibrio di Nash.

Dimostrazione. Per provare che è un equilibrio di Nash, dobbiamo mostrare che per ogni $\rho \in P$, il protagonista in ρ sta giocando la sua risposta migliore (tutti gli zanni e l'antagonista sono ragionevoli, dunque sappiamo già che stanno giocando la loro migliore risposta). Formalmente, se vediamo $U^p(\sigma)$ come una funzione dei valori di θ su $(u,v) \in E_{\rho}$, allora il θ scelto in σ è un massimo globale. Faremo questo in due step:

- 1. Trasportiamo le condizioni KKT del problema completo nelle condizioni KKT per il problema parziale $U_{\rho,\sigma}$ (la funzione di utilità per il protagonista in v deviata).
- 2. Dato che $U_{\rho,\sigma}$ è affine, le condizioni KKT per un massimo implicano che il massimo sia globale.

Ora, le condizioni KKT sulla perdita L implicano che esistono i moltiplicatori KKT $\mu_{j,\rho}$ e $\lambda_{h,\rho}$ tali che:

$$-\nabla L(\theta) = \sum_{\rho \in P} \sum_{j \in J_{\rho}} \mu_{j,\rho} \nabla j(\theta) + \sum_{\rho \in P} \sum_{h \in H_{\rho}} \lambda_{h,\rho} \nabla h(\theta)$$
$$\mu_{j,\rho} j(\theta) = 0 \ \forall \rho \in P, j \in J_{\rho}$$

Ricordando che per il Teorema 4.10 $\nabla_{\theta}U^{p}(\sigma) = -\nabla L(\theta)$, allora:

$$\nabla_{\theta} U^{p}(\sigma) = \sum_{\rho \in P} \sum_{j \in J_{\rho}} \mu_{j,\rho} \nabla_{j}(\theta) + \sum_{\rho \in P} \sum_{h \in H_{\rho}} \lambda_{h,\rho} \nabla_{h}(\theta)$$
$$\mu_{j,\rho} j(\theta) = 0 \ \forall \rho \in P, j \in J_{\rho}$$

Queste sono le condizioni KKT necessarie perchè θ sia un massimo locale, ma non sono sufficienti. Fissiamo $\rho \in P$. Sia $\theta_{\rho} \in \Theta_{\rho}$ l'azione del protagonista su ρ in θ . Adesso, se ci restringiamo su E_{ρ} , solo le restrizioni in J_{ρ} e H_{ρ} varieranno, ottenendo:

$$\nabla_{\theta_{\rho}} U^{p}(\sigma) = \sum_{j \in J_{\rho}} \mu_{j,\rho} \nabla_{j}(\theta) + \sum_{h \in H_{\rho}} \lambda_{h,\rho} \nabla_{h}(\theta)$$
$$\mu_{j,\rho} j(\theta) = 0 \ \forall j \in J_{\rho}$$

E dunque ha senso sostituire $U^p(\sigma)$ con $U^p_{\rho,\sigma}$. Per la strategia θ_ρ che è parte di θ , si ha:

$$\nabla_{\theta_{\rho}} U_{\rho,\sigma}^{p} \left(\theta_{\rho}\right) = \sum_{j \in J_{\rho}} \mu_{j,\rho} \nabla_{j} \left(\theta_{\rho}\right) + \sum_{h \in H_{\rho}} \lambda_{h,\rho} \nabla_{h} \left(\theta_{\rho}\right)$$
$$\mu_{j,\rho} j \left(\theta_{\rho}\right) = 0 \ \forall j \in J_{\rho}$$

Queste sono le condizioni KKT per θ_p per essere un massimo locale di $U_{\rho,\sigma}$ in Θ_{ρ} . E dunque, il protagonista su ρ non può guadagnare cambiando. Ora, per quanto visto, sappiamo che $U^p_{\rho,\sigma}$ è affine, allora se le condizioni KKT sono soddisfatte per un massimo locale, questo punto è un massimo globale. Questo ci dice che ciascun protagonista non può unilateralmente migliorare su σ , e dunque è un equilibrio di Nash.

Teorema 4.12. Assumiamo che per ogni $v \in V$, f_v è convessa e differenziabile e la perdita l è convessa e differenziabile rispetto alla prima componente. Per ogni punto KKT $\theta \in \Theta$, c'è un equilibrio di Nash dove l'azione congiunta dei protagonisti è θ . Viceversa, per ogni equilibrio di Nash dove l'azione congiunta dei protagonisti è θ , allora θ è un punto KKT.

Dimostrazione. \Longrightarrow Segue immediatamente dal Lemma 4.11. Sia $\sigma = (\theta, \{a_t, b_t\}_{t=1}^T, \{q_{vt}, d_{vt}\})$, vogliamo mostrare che θ è un punto KKT. Per prima cosa osserviamo che in ogni equilibrio di Nash, gli zanni e l'antagonista giocano ragionevolmente (perché stanno giocando la loro miglior risposta). Quindi, σ è l'azione congiunta estesa di θ e dunque $\nabla_{\theta}U^p(\sigma) = -\nabla L(\theta)$. Poiché l'equilibrio è un valore ottimale per la funzione affine

que $\nabla_{\theta}U^{p}(\sigma) = -\nabla L(\theta)$. Poiché l'equilibrio è un valore ottimale per la funzione affine $U^{p}_{v,\sigma}$, le condizioni KKT devono valere per ogni protagonista. Combinando le condizioni KKT per ogni protagonista, otteniamo le condizioni KKT per massimizzare U^{p} su Θ . Dato che $\nabla_{\theta}U^{p}(\sigma) = -\nabla L(\theta)$ queste condizioni sono quelle per minimizzare $L(\theta)$.

Questo dimostra anche il Teorema 2.7.

5 Bibliografia

- [1] Dale Schuurmans e Martin Zinkevich. Deep Learning Games, 2016.
- [2] S.Boyd e L. Vandenberghe. Convex Optimization. Cambridge U. Press, 2004.
- [3] N. Cesa-Bianchi e G. Lugosi. *Prediction, learning, and games*. Cambridge University Press, 2006.
- [4] W. Karush. Minima of functions of several variables with inequalities as side constraints. Master's thesis, Univ. of Chicago, Chicago, Illinois, 1939.
- [5] H. Kuhn e A. Tucker. Nonlinear programming. In Proceedings of 2nd Berkeley Symposium, pages 481–492. University of California Press, 1951.