

Vision-language models for zero-shot multi-label fine-grained classification of chest X-ray images

MICCAI 2024 Challenge: CXR-LT Task3

Yuyan Ge University of Pennsylvania yyge@seas.upenn.edu Oct 10, 2024

Problem

- Multi-label zero-shot classification
 - Given chest X-ray images labeled with 40 diseases, learn classifier for 5 unseen diseases
- Multi-label: predict presence or absence of multiple diseases in each X-ray
- Zero-shot: predict 5 new diseases not seen during training

Example of one study

Multi-view X-ray images

Seen classes:

- Adenopathy
- 2. Atelectasis
- 3. Azygos Lobe
- 4. Calcification of the Aorta

Target classes:

- 1. Bulla
- 2. Cardiomyopathy
- 3. Hilum
- 4. Osteopenia
- 5. Scoliosis

39. Tortuous Aorta

40. Tuberculosis

Challenges

- Zero-shot classification: new classes are unseen and may be difficult to identify
- Fine-grained classification: class differences are nuanced, hence generalist models not trained on domain-specific data may fail
- Long-tailed distribution: percent of positive examples varies across classes (0.05% - 33%)

Failed example

Model: GroundingDINO [1]

Input text: 'heart.'

Prediction: ['heart', 'heart', 'heart']

High Positive Classes:

Support Devices
Lung Opacity
Cardiomegaly
Pleural Effusion
Atelectasis

Low Positive Classes:

Lobar Atelectasis
Clavicle Fracture
Round(ed) Atelectasis
Azygos Lobe
Pneumoperitoneum

Method: Ensemble of two Models

Vision-Language Model (VLM)

Pre-trained: domain specific data **Fine-tuned**: 40-class dataset augmented with LLM-retrieved fine-grained class descriptions

Multi-view Vision Model (MVM)

Text augmentation with LLM

Pre-trained: 40-class dataset **Fine-tuned**: support set mined from historical data

Method 1: vision-language model

 Key idea: train a foundation vision-language model (VLM) to answer binary questions about the image content

Method 1: vision-language model

 Multi-stage approach to improve feature representations in CXR:

Stage 1: pretrain on multiple domain-specific, partially-labeled datasets

Stage 2: finetune on classification task with fine-grained description of labels

Stage 3: zero-shot inference for new classes (with descriptions)

Table. Stage 1 datasets

Name	Converted from	Number of text
MIMIC-CXR [1]	Radiology reports	583,202
CXR-Concepts	Question answering	4,145
Chest ImaGenome [2]	Scene graph	93
CXR-LT [3]	Classification	40
Total		587,480

Figure. Stage 1 pretraining

^[1] MIMIC-CXR. 2019. https://www.nature.com/articles/s41597-019-0322-0

^[2] Chest ImaGenome. 2021. https://arxiv.org/pdf/2108.00316

^[3] CXR-LT. 2024. https://codalab.lisn.upsaclay.fr/competitions/18604

Stage 2: finetune with class descriptions

 Use LLM knowledge retrieval to obtain fine-grained descriptions for each class

Prompt to ChatGPT-4o: "You are an expert in radiology. I will give you a list of diseases related to chest x-ray. For each disease, please provide the visual description and visual facts of the disease. Please make sure the description is concise, and the visual facts are helpful to classify. Disease: {class name}."

Response from ChatGPT-4o:

Adenopathy:

- **Description:** Enlarged lymph nodes in the chest.
- Key Features: Visible as masses or enlarged areas near the mediastinum, often seen in the hilum region.

 Use class names + class descriptions to finetune VLM

Class name: Adenopathy

Input text to VLM:

"Is Adenopathy present in the image?
Adenopathy's description: Enlarged lymph nodes in the chest. Visible as masses or enlarged areas near the mediastinum, often seen in the hilum region."

Figure. Stage 2 finetuning

Method 2: multi-view vision model

 Key idea: convert zero-shot problem to few-shot problem by constructing support set for new classes

Stage 2: construct support set

Mine positive samples from historical datasets

Results

Results

Conclusion

VLM

- Train on a unified domain-specific dataset
 - Incorporate generalization ability of LLMs
- Use external knowledge
 - Incorporate domain knowledge from LLM

MVM

- Multi-view feature fusion
 - Aggregate multi-view images of one study
- Support set
 - Mine positive samples for new classes from historical free-text datasets, converting zero-shot problem to few-shot problem

Acknowledgement

René Vidal University of Pennsylvania

Pablo Messina Pontificia Universidad Católica de Chile

Ryan Chan University of Pennsylvania

Code

Code is available at https://github.com/Glourier/MICCAI2024-ZeroShotCXR

For discussion, please feel free to reach out to Yuyan Ge at yyge@seas.upenn.edu

