Solution devoir Méthode d'analyse fonctionnelle.

Exo-1 : Etablire les inégalités de H'older et Minkowski pour les suites.

Solution:

i/Inégalité de H'older : soit x_k et $y_k \in \mathbb{C}^n$, pour toute p, $q \in \mathbb{R}_+^*$ tq : $\frac{1}{n} + \frac{1}{q} = 1$

$$\begin{split} & \text{Alors} : \! \sum_{k=1}^{n} |x_k y_k| \leq \! (\sum_{k=1}^{n} |x_k|^p)^{\frac{1}{p}} \! \left(\sum_{k=1}^{n} |y_k|^q \right)^{\frac{1}{q}}. \\ & \text{ii/Inégalité de Minkowski} : \text{soit } x_k \text{ et } y_k \in \ell^p, \text{pour } p \geq 1 \\ & \text{Alors} : \left(\sum_{k=1}^{n} |x_k + y_k|^p \right)^{\frac{1}{p}} \leq \! \left(\sum_{k=1}^{n} |x_k|^p \right)^{\frac{1}{p}} + \! \left(\sum_{k=1}^{n} |y_k|^p \right)^{\frac{1}{p}}. \end{split}$$

Démonstration:

(i) :On a $\frac{1}{p}x^p + \frac{1}{q}y^q \ge xy$ pour tout $(x,y) \in \mathbb{R}_+$, pour tout $(p,q) \in \mathbb{R}^*$

Alors : $xy \le \frac{x^p}{p} + \frac{y^q}{q}$ on sait que ln est une fonction concave

Donc: $\ln\left(\frac{1}{P}x + \frac{1}{q}y\right) \ge \frac{1}{P}\ln(x) + \frac{1}{q}\ln(y) \Rightarrow \ln\left(\frac{1}{P}x^p + \frac{1}{q}y^q\right) \ge \frac{1}{p}\ln(x^p) + \frac{1}{p}\ln(x^p)$ $\frac{1}{2}\ln(y^q) = \ln(x) + \ln(y) = \ln(xy)$

 $\Rightarrow \ln\left(\frac{1}{P}x + \frac{1}{q}y\right) \ge \ln(xy) \Rightarrow \frac{1}{P}x + \frac{1}{q}y \ge xy \cdots (1)$

On suppose que : $\sum_{k=1}^{n} |x_k|^p = 1$ et $\sum_{k=1}^{n} |y_k|^q = 1 \cdots (*)$ (1) $\Leftrightarrow |x_k y_k| \le \left| \frac{1}{p} x^p + \frac{1}{q} y^q \right| \le \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x_k y_k| \le \sum_{k=1}^{n} \frac{|x|^p}{p} + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}^{n} |x|^q + \frac{|y|^q}{q} \Rightarrow \sum_{k=1}$ $\sum_{k=1}^{n} \frac{|y|^{q}}{q} \Rightarrow \frac{1}{p} \sum_{k=1}^{n} |x|^{p} + \frac{1}{q} \sum_{k=1}^{n} |y|^{q}$ D'aprés (*) on $a : \sum_{k=1}^{n} |x_{k}y_{k}| \leq \frac{1}{p} + \frac{1}{q} = 1$ (par hypothése)

comme $\sum_{k=1}^{n} |x_k|^p = 1$ et $\sum_{k=1}^{n} |y_k|^q = 1$ $\Rightarrow (\sum_{k=1}^{n} |x_k|^p)^{\frac{1}{p}} = 1$ et $(\sum_{k=1}^{n} |y|^q)^{\frac{1}{q}} = 1$ Donc $: (\sum_{k=1}^{n} |x_k|^p)^{\frac{1}{p}} (\sum_{k=1}^{n} |y|^q)^{\frac{1}{q}} = 1$

Finalement: $\sum_{k=1}^{n} |x_k y_k| \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |y_k|^q\right)^{\frac{1}{q}}.$ (ii) soit x_k et $y_k \in \ell^p$ pour $p=1: \sum_{k=1}^{n} |x_k + y_k| \le \sum_{k=1}^{n} |x_k| + \sum_{k=1}^{n} |y_k|$ vérifiée puisque $|x_k + y_k| \le |x_k| + |y_k|$ pour tout $k \text{de } \mathbb{N} \Rightarrow \sum_{k=1}^{n} |x_k + y_k| \le \sum_{k=1}^{n} |x_k| + \sum_{k=1}^{n} |y_k|$ pour $p>1: \sum_{k=1}^{n} |x_k + y_k|^p = \sum_{k=1}^{n} |x_k + y_k|^{p-1} |x_k + y_k| \le \sum_{k=1}^{n} |x_k + y_k|$ $y_k|^{p-1} (|x_k| + |y_k|)$

 $\leq \sum_{k=1}^{n} |x_k| |x_k + y_k|^{p-1} + \sum_{k=1}^{n} |y_k| |x_k + y_k|^{p-1}$ $\leq \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} \left[\sum_{k=1}^{n} (|x_k + y_k|^{p-1})^q\right]^{\frac{1}{q}} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{\frac{1}{p}} \left[\sum_{k=1}^{n} (|x_k + y_k|^{p-1})^q\right]^{\frac{1}{q}}$ $(p-1)q = p \text{ ,puisque : } \left[\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow \frac{p+q}{pq} = 1 \Rightarrow p = pq - q \Rightarrow p = q(p-1)\right]$

 $\Rightarrow \sum |x_k + y_k|^p \le \left(\sum |x_k + y_k|^p\right)^{\frac{1}{q}} \left[\sum (|x_k|^p)^{\frac{1}{p}} + \sum (|x_k|^p)^{\frac{1}{p}}\right]$

 $\Rightarrow \left[\sum |x_k + y_k|^p\right]^{1 - \frac{1}{q}} \le \sum \left(|x_k|^p\right)^{\frac{1}{p}} + \sum \left(|x_k|^p\right)^{\frac{1}{p}}$ $1 - \frac{1}{a} = \frac{1}{a}$

 $\Rightarrow \left[\sum |x_k + y_k|^p\right]^{\frac{1}{p}} \le \sum \left(|x_k|^p\right)^{\frac{1}{p}} + \sum \left(|x_k|^p\right)^{\frac{1}{p}} .$

Exo-2 : énoncer et montrer le théorème de Baire.

Solution:

Soit Xun espace métrique complet

Soit $(x_n)_{n>1}$ une suite des fermés de X, Si $\operatorname{Int}(\bigcup_{n=1}^{\infty} x_n) \neq \phi \operatorname{Alors}$, il existe au moins un fermé n_0 , $\operatorname{Int}(x_{n_0} \neq \phi)$.

Démonstration :

On pose : $O_n = x_n^c$ telle que O_n est un ouvert dense. Il s'agit de montrer que $G = \bigcap_{n=1}^{\infty} O_n$ est dense dans X.

Soit W un ouvert non vide de X; on va prouver que $W \cap G \neq \phi$.

On note $B(x,r) = \{y \in X; d(y,x) < r\}$ on choisit $x_0 \in W$ et $r_0 > 0$ arbitraires tel que $\bar{B}(x_0,r_0) \subset W$.

On choisit ensuite $x_1 \in B(x_0,r_0) \cap O_1$ et $r_1>0$ tel que $\bar{B}(x_1,r_1)\subset B(x_0,r_0)\cap O_1$ et $0< r_1<\frac{r_0}{2}$

cice est possible puisque O_1 est ouvert et dense . Ainsi de suite,on construit par récurrence deux suites (x_n) et (r_n) tel que $\bar{B}(x_{n+1},r_{n+1}) \subset B(x_n,r_n) \cap O_{n+1} \forall n \geq 0$ et $0 < r_{n+1} < \frac{r_n}{2}$

En résulte que la suite (x_n) est de cauchy; soit $x_n \to l$ comme $x_{n+p} \in B(x_n, r_n)$ pour tout $n \ge 0$ et tout $p \ge 0$, on obtient à la limite (quand $p \to \infty$): $l \in \overline{B}(x_n, r_n) \forall n \ge 0$

En particulier $l \in W \cap G$.

Exo-3 : Soient X un Y deux espaces vectoriels normés et $T \in \mathcal{L}(X,Y).$ Montrer que

$$||T||=\sup\nolimits_{x\neq 0}\frac{||Tx||}{||x||}=\sup\nolimits_{||x||\leqslant 1,x\neq 0}||Tx||=\sup\nolimits_{||x||=1}||Tx||.$$

Solution:

Soit X, Y 2.e.v.n et $T \in (X, Y)$

On prende : $X = (E_1, ||.||_1)$ et $Y = (E_2, ||.||_2)$

Soit $T: E_1 \to E_2$, $T \in \mathcal{L}(X,Y)$

Alors: $||T|| = \sup_{\|x\|_{1} < 1} ||T(x)||_{2} = \sup_{\|x\|_{1} \le 1} ||T(x)||_{2} = \sup_{\|x\|_{1} \le 1} ||T(x)||_{2} = \sup_{\|x\|_{1} = 1} ||T(x)||_{2} = \sup_{\|x\|_{1} \le 1$

Démonstration : 1. Puisque T est continute, alors l'ensemble

$$B = \{C > 0; ||T(x)||_2 \le C ||x||_1 \text{ pour } x \in E_1\}$$

est non vide, donc $||T|| = \inf\{C; C \in B\}$ existe dans R_+ . Soit $C \in B$, Alors pour tout $x \in E_1$,

on a $||T(x)||_2 \leq \mathcal{C} \, ||x||_1,$ donc $\sup ||T(x)||_2 \leq \mathcal{C}$.

Par conséquent, on a $\sup ||T(x)||_2 \le \inf \{C, C \in B\} = ||T||$. Pour tout $x \ne 0$,

 $\text{on } \underset{\| \, T(x) \, \|_2}{\overset{\text{a}}{\| \, T(x) \, \|_2}} \leq \sup\nolimits_{x \neq 0} \frac{\| \, T(x) \, \|_2}{\| \, x \, \|_1}, \\ \text{donc pour tout } x \in E_1, \\ \text{on } \\ \text{a} \, \| \, T(x) \, \|_2 \leq \left(\sup\nolimits_{x \neq 0} \frac{\| \, T(x) \, \|_2}{\| \, x \, \|_1} \right) \| \, x \, \|_1$

d'ou $||T|| \le \sup_{x \ne 0} \frac{||T(x)||_2}{||x||_1}$. Soit $x \in E_1$ tel que $x \ne 0$, alors on a :

 $\frac{\|T(x)\|_{2}}{\|x\|_{1}} = \|\frac{1}{\|x\|_{1}}T(x)\|_{2} = \|T\left(\frac{x}{\|x\|_{1}}\right)\|_{2} \le \sup_{\|x\|_{1}=1} \|T(x)\|_{2} \le \sup_{\|x\|_{1}\leqslant 1} \|T(x)\|_{2} \le \sup_{\|x\|_$

Donc on a $\sup_{x\neq 0} \frac{||T(x)||_2}{||x||_1} \leq \sup_{||x||_1=1} ||T(x)||_2 \leq \sup_{||x||_1\leqslant 1} ||T(x)||_2 \leq ||T||$. Par conséquent,

on a $||T|| = \sup_{\|x\|_1 \le 1} ||T||_2 = \sup_{\|x\|_1 \le 1} ||T||_2 = \sup_{\|x\|_1 = 1} \frac{||T(x)||_2}{||x||_1}$. On a $\sup_{\|x\|_1 \le 1} ||T||_2 \le \sup_{\|x\|_1 \le 1} ||T||_2 = ||T||$.

Il reste à montrer l'inégalité invers. Soit $x \in E$ tel que $||x||_1 \le 1$, alors pour tout $n \ge 1$ on a

 $\| \begin{pmatrix} - \\ 1 - \frac{1}{n} \end{pmatrix} x \|_1 = \left(1 - \frac{1}{n} \right) \| x \|_1 < 1 \text{ , d'ou } \left(1 - \frac{1}{n} \right) \| T(x) \|_2 = \| T \left(\left(1 - \frac{1}{n} \right) x \right) \|_2 \leq \sup_{\| x \|_1 < 1} \| T(x) \|_2.$

quand n tendre vers $+\infty$, on obtient $||T||_2 \le \sup_{||x||_1 \le 1} ||T||_2$.

Par conséquent, on a $||T|| \le \sup_{\|x\|_{1} \le 1} ||T||_{2}$.

Exo-4 : Montrer que les opérateurs linéaires bornés coincident avec les opérateurs linéaires continus.

Solution : soit $(E_1,||||_1)$, $(E_2,|||||_2)$ 2 espaces normés et $T:E_1\to E_2$ une application linéaire

(i) T bornée \Rightarrow T continue

démo :soit T bornée i.e : il existe une constante M>0telle que pour tout $x\in E_1,$ on ait $||T(x)||_2\leq M.$

soit $x \in E_1$, avec $x \neq 0$, \mathbf{f} on pose : $\eta = \|\frac{\eta x}{\|x\|_1}\|_1$

d'ou : $||T\left(\frac{\eta x}{||x||_1}\right)||_2 = ||\frac{\eta}{||x||_1}T(x)||_2 = \frac{\eta}{||x||_1}||T(x)||_2$, d'ou : $||T(x)||_2 \le \frac{\varepsilon}{\eta}||x||_1$. il suffit maintenant de prendre $M = \frac{\varepsilon}{\eta} \Leftrightarrow ||T(x)||_2 \le M||x||_1$ qui est vérifiée que T continue···(1)

(ii)Tcontinue \Rightarrow T bornée

démo :soit T est continue i.e :
il existe une constante M>0telle que pour tout $x\in E_1,$ on ait

 $||T(x)||_2 \le M ||x||_1$, si on pose $||x||_1 = 1 \Rightarrow ||T(x)||_2 \le M$ ce qui donne T est borné.

Exo-5 : Soient X un espace vectoriel normé et M un sous-espace de X. On définit sur Xla relation binaire

$$x\mathcal{R}y$$
 si seulement si $x-y\in M$.

Montrer que \mathcal{R} est une relation d'équivalence. On note X/Ml'ensemble des classes d'équivalence pour la relation précédente. En notant la classe de xpar [x]. Vérifier que pour les opérations

$$[x] + [y] = [x + y]$$
 et $\alpha[x] = [\alpha x]$.

L'espace X/M est une espace vectoriel. Si M est fermé, montrer que $||[x]|| = \inf ||y||$ est une norme sur X/M.

Montrer que si M est fermé dans un espace de Banach X, alors X/M est un espace de Banach.

Soit $T \in \mathcal{L}(X,Y)$ et M un sous-espace fermé de $\ker(T)$. On définit $\hat{T}: X/M \to Y$ par $\hat{T}([x]) = Tx$, montrer alors que \hat{T} est un opérateur linéaire borné.

Supposons que X, Y, et Z sont des espaces de Banach, $U \in \mathcal{L}(X, Y)$ est surjectif et $l \in \mathcal{L}(X, Y)$. Si $\ker(U) \subset \ker(l)$,montrer qu'il existe un opérateur $T \in \mathcal{L}(Y, Z)$ tel que l = TU.(Théorème de Sard).

Solution:

-montrons que \mathcal{R} est une relation d'équivalence

d'ou : \mathcal{R} est une relation d'équivalence :

Rest dit relation d'équivalence si elle est reflexive, symétrique et transitive.

 $i-\forall x \in M, x\mathcal{R}x \Leftrightarrow x-x=0 \in M$ alors : \mathcal{R} reflexive.

ii- $\forall x,y \in M, x\mathcal{R}y \Leftrightarrow x-y \in M \Rightarrow -(y-x) \in M \Rightarrow y\mathcal{R}x \quad \text{alors}: \mathcal{R} \text{sym\'etrique}.$

iii- $\forall x, y, z \in M, \{x\mathcal{R}y \Leftrightarrow x - y \in M \cdots (1) \text{ et } y\mathcal{R}z \Leftrightarrow y - z \in M \cdots (2)\}$

 \Rightarrow (1) + (2) : $x - y + y - z = x - z \in M \Rightarrow x\mathcal{R}z$. alors : \mathcal{R} transitive.

Finalement, \mathcal{R} est une relation d'équivalence.

-montrons que l'espace X/M est une espace vectoriel :

Soit l'application $\pi: X \to X/M$, et soit $x_1, x_2, y_1, y_2 \in X$ et $\lambda \in \mathbb{K}$ tel que : $x_1 \mathcal{R} y_1$ et $x_2 \mathcal{R} y_2$

Alors : $(x_1 + x_2) - (y_1 + y_2) = (x_1 - y_1) + (x_2 - y_2) \in X$, et $\lambda x_1 - \lambda y_1 = \lambda (x_1 - y_1) \in X$.

Autrement dit, si $\pi(x_1) = \pi(y_1)$ et $\pi(x_2) = \pi(y_2)$, alors on a $\pi(x_1 + x_2) = \pi(y_1 + y_2)$ et $\pi(\lambda x_1) = \pi(\lambda y_1)$

Donc, par conséquent l'espace X/M est une espace vectoriel

-montrons que $||[x]|| = \inf_{y \in [x]} ||y||$ est une norme sur X/M

 $\text{i-}||[x]|| = 0 \Rightarrow \inf_{y \in [x]} ||y|| = 0 \Rightarrow ||y|| = 0 \Rightarrow y = 0.$

ii- $||\alpha[x]|| = ||[\alpha x]|| = \inf_{y \in [x]} ||\alpha y|| = \inf_{y \in [x]} (|\alpha| ||y||) = |\alpha| \inf_{y \in [x]} ||y|| = |\alpha| ||[x]||.$

iii-soit $y_1 \in [x_1], y_2 \in [x_2]$

 $||[x_1+x_2]|| = \inf ||y_1+y_2|| \le \inf (||y_1|| + ||y_2||) \le \inf_{y_1 \in [x_1]} ||y_1|| + \inf_{y_2 \in [x_2]} ||y_2|| = ||[x_1]|| + ||[x_2]||.$

Finalement : $||[x]|| = \inf_{y \in [x]} ||y||$ est une norme sur X/M.

-Montrer que si M est fermé dans un espace de Banach X, alors X/M est un espace de Banach.

puisque M est un fermé dans $X{\rm qui}$ est un espace de Banach, Alors $M{\rm est}$ de Banach

Soit $(z_n)_{n\geq 0}$ une suite de cauchy dans X/M, Alors : il existe une sous-suite $(z_{Q(n)})_{n\geq 0}$ de $(z_n)_{n\geq 0}$ telle que pour tout $n\geq 0$, on ait $||z_{Q(n+1)}-z_{Q(n)}||'< 2^{-n}$.

De plus, la suite $(z_n)_{n\geq 0}$ est convergente si est seulement si la sous-suite $(z_{Q(n)})_{n\geq 0}$ est covergente. On montre facilement par récurrence qu'il existe une suite $(x_n)_{n\geq 0}$ dans X telle que, por tout $n\geq 0$ on ait $\pi(x_n)=z_{Q(n)}$ et $||x_{n+1}-x_n||<2^{-n}$.

Alors: la suite $(x_n)_{n\geq 0}$ est de cauchy dans X.donc, elle converge vers $\pi(x)$.

Par conséquent, la suite $(z_n)_{n>0}$ coverge vers $\pi(x)$ donc : X/M est de Banach.

Soit $T \in \mathcal{L}(X,Y)$ et M un sous-espace fermé de $\ker(T)$. On définit $\hat{T}: X/M \to Y$ par $\hat{T}([x]) = Tx$, montrer alors que \hat{T} est un opérateur linéaire borné.

soit $[x], [y] \in X/M$: $\hat{T}([x+y]) = T(x+y) = Tx + Ty = \hat{T}([x]) + \hat{T}([y])$ soit $[x] \in X/M$ et $\alpha \in \mathbb{K}, \hat{T}([\alpha x]) = T(\alpha x) = \alpha T(x) = \alpha \hat{T}([x])$, Alors: \hat{T} est linéaire.

Alors : \hat{T} est linéaire .

et comme $||\hat{T}([x])||=||Tx||\leq \mathcal{C}\,||x||\text{alors}:||\hat{T}([x])||\leq \mathcal{C}\,||[x]||$. Alors, \hat{T} est bornée

D'ou : $\hat{T} \in \mathcal{L}(X,Y)$.

Exo-7 :soient X,Y deux espaces vectoriels normés.considérons l'opérateur (A, \mathcal{D}_A) de X dans Yà domaine \mathcal{D}_A dense dans X. (A^*, \mathcal{D}_{A^*}) étant le dual de (A, \mathcal{D}_A) . Montrer que $\mathcal{D}_{A^*} = Y'$ si seulement si A est borné sur \mathcal{D}_A et que dans ce cas $A^* \in \mathcal{L}(Y', X')$ et $||A|| = ||A^*||$.

Solution:

 \Rightarrow) soit $\mathcal{D}_{A^*}=Y'$ ceci revient : pour toute $f\in Y', \langle Ax,f\rangle$ définit une foncionnelle bornée dans X'

```
autrement dit :M = A\{\mathcal{D}_A \cup B\}est faiblement bornée , Avec :M est l'image par A de l'union de \mathcal{D}(A)avex la Boule unité . tel ensemble est donc borné, i.e. il existeune constante \mathcal{C} telle que ||Ax|| \leq \mathcal{C}pour tout X \in \mathcal{D}(A) \cup B
```

Alors : Aest borné sur $\mathcal{D}(A)\cdots(1)$

 \Leftarrow)soit A borné sur $\mathcal{D}(A)$ Alors : $\langle Ax, f \rangle$ est borné en $x \in \mathcal{D}(A)$ sur chaque ensemble borné et pour tout $f \in Y'$ D'ou : par conséquent $\mathcal{D}(A^*) = Y \cdots (2)$

D'aprés (1) et (2) : $\mathcal{D}_{A^*} = Y' \Leftrightarrow \mathcal{D}(A^*) = Y$

Comme A^* duale de $A \Rightarrow \langle Ax, f \rangle = \langle x, Af^* \rangle$ Alors :

 $|\langle x,A^*f\rangle|=|\langle Ax,f\rangle|\leqslant ||Ax||||f||\leq ||A||||f|||x||$ ||ce qui entraine que :|| $A^*f||\leq ||A||||f||$

i.e. : $||A^*|| \le ||A|| \cdots (*)$

d'autre par on a : pour tout $\varepsilon>0$, il existe x_ε tel que $||x_\varepsilon||=1$ et $||Ax_\varepsilon||>||A||-\varepsilon$

par ailleurs, il existe $f_{\varepsilon} \in Y'$ tel que : $||f_{\varepsilon}|| = 1$ et $\langle Ax_{\varepsilon}, f_{\varepsilon} \rangle = ||Ax_{\varepsilon}||$ On a donc : $||A^*|| \ge ||A^*f_{\varepsilon}|| \ge |\langle x_{\varepsilon}, A^*f_{\varepsilon} \rangle| = |\langle Ax_{\varepsilon}, f_{\varepsilon} \rangle| = ||Ax_{\varepsilon}|| > ||A|| - \varepsilon$

 $||A^*|| > ||A|| - \varepsilon \Rightarrow ||A^*|| \ge ||A|| \cdots (**)$ D'aprés (*)et (**)donc : $||A^*|| = ||A||$.