Analízis III

Simon László előadása alapján

ELTE, 2009. December

Előadó e-mail címe: simonl a ludens.elte.hu-nál

Ez a jegyzet **nem** szakirodalom s nem garantált, hogy az órai anyagot teljesen lefedi, az előadásokra bejárni ajánlott.

Ha a jegyzetben helyesírási, tartalmi vagy formai hibát találsz, kérlek jelezd az előadónak vagy a tuzesdaniel@gmail.com e-mail címen!

Differenciálegyenletek

09.07

(Simon Péter hely ettesít) Mi a differenciálegy enlet?

P1

- 1. $\ddot{x}(t) = -\omega^2 x(t)$
- 2. $\ddot{x}(t) = F(t)/m$
- 3. $\partial_t u = \Delta u$
- 4. $\dot{x}(t) = x(t-1)$

Ezeket lehet rendszerezni: ODE (ordenary differential equation, azaz közönséges differenciál-egyenlet, 1-es és 2-es), PDE (partial differential equation, 3-as), FDE (functional differential equation, 4-es).

Most az ODE-val foglalkozunk. Mi a közönséges differenciál-egyenlet?

<u>Definíció</u>: legy en $F: \mathbb{R}^{n+2} \to \mathbb{R}$, *n*-edrendű közönséges differenciálegy enlet: $\forall t$ -re $0 = F(t, x(t), \dot{x}(t), \ddot{x}(t), ..., x^{(n)}(t))$

Megjegyzés: egy ily en *n*-edrendű egy enlet átírató elsőrendű rendszerré. Pl: $\ddot{x}(t) = -\omega^2 x(t)$ egy enletet átírjuk: $y_1(t) = x(t)$, $y_2(t) = \dot{x}(t)$. Ekkor *y*-ra az alábbi elsőrendű, kétismeretlenes rendszer áll fenn: $\dot{y}_1(t) = y_2(t)$

$$\dot{y}_2(t) = -\omega^2 \cdot y_1(t)$$

n-edrendűnél: $y_1 = x$, $y_2 = \dot{x}$, ..., $y_n = x^{(n-1)}$. Ekkor $(y_1,...,y_n)$ -re elsőrendű rendszert kapunk.

<u>**Definíció**</u>: legy en $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $\dot{x}(t) = f(t, x(t))$ elsőrendű (explicit) közönséges differenciálegy enlet-rendszer.

Ismeretlen az $x: \mathbb{R} \to \mathbb{R}^n$ függvény. Koordinátánként kiírva:

$$\dot{x}_1(t) = f_1(t, x_1(t), x_2(t), ..., x_n(t))$$

$$\dot{x}_2(t) = f_2(t, x_1(t), x_2(t), ..., x_n(t))$$

:

$$\dot{x}_n(t) = f_n(t, x_1(t), x_2(t), ..., x_n(t))$$

Mivel foglalkozik a közönséges differenciálelmélet?

- 1. Mi a megoldás? Azaz számítsuk ki a megoldást. (Ezt már tanultuk.) Vannak:
 - a. kép lettel megoldhatók
 - b. kép lettel nem megoldhatók (de numerikusan közelíthetők)
- 2. M egoldás létezésének, egyértelműségének keresése, függése a paraméterektől
- 3. Milyen a megoldás? Pl periodikus-e, korlátos-e... A megoldást szeretnénk jellemezni annak kiszámítása nélkül. Pl $\dot{x} = x$ és x(0) > 0. Ekkor egyből látjuk, hogy x szigmon nő, akkor is, amikor még nem tudtuk, hogy konkrétan mi a megoldás.

Közönséges differenciálegyenlet megoldásának létezése és egyértelműsége

Pl: $\dot{x}(t) = x(t)$, ennek egy jó megoldása $x(t) = c \cdot e^t$, $c \in \mathbb{R}$, azaz végtelen sok megoldás van. Legyen kezdeti feltétel: $x(0) = a \in \mathbb{R}$ adott. Ekkor már csak 1 megoldás van az ilyen fajtákból: $c \cdot e^0 = a \Rightarrow c = a$, vagyis a megoldás

 $x(t) = a \cdot e^t$. De más fajtából lehetne még megoldás? Nem, ugyanis:

$$\dot{x}(t) = x(t)$$

$$\dot{x}(t) \cdot e^{-t} - x(t)e^{-t} = 0$$

$$(x(t)\cdot e^{-t})^{'}=0\Rightarrow x(t)\cdot e^{-t}=c$$

Az implikáció csak akkor igaz, ha D(x) (azaz a differenciáloperátor) egy intervallumon van értelmezve. Tehát $\exists k \in \mathbb{R}: x(t)e^{-t} = k \Leftrightarrow x(t) = k \cdot e^t$. A megoldás egyértelmű, mert bármilyen kezdőfeltételt adok meg, lesz pontosan 1 megoldás.

Másik példa: $\dot{x}(t) = \sqrt{|x(t)|}$. Mi a megoldás x > 0 -ra? $\frac{\dot{x}(t)}{\sqrt{x(t)}} = 1 \Rightarrow 2\sqrt{x(t)} = t + c \Rightarrow x(t) = \left(\frac{t+c}{2}\right)^2$. Hamis gyökök a parabolák "bal oldalai". x < 0 esetén a megoldás "lefelé fordított parabolák bal oldalai", hamis megoldás a parabolák "jobb oldalai". x = 0 esetén mindkét fajta megoldás jó. Így adott kezdeti feltétel mellett végtelen sok megoldás létezik. Ha $x(t_0) = a$ a kezdeti feltétel, akkor a > 0 esetén a megoldás csak lokálisan egyértelmű, de globálisan nem.

Mitől lesz a megoldás egyértelmű?

<u>Tétel</u>: ha $\dot{x}(t) = f(t, x(t))$ közönséges diffegyenletben az f függvény az x változóban teljesíti a lokális Lipschitz feltételt, akkor a megoldás egyértelmű. Vagy is ha minden pont egy alkalmas környezetéhez $\exists L \in \mathbb{R}^+ : |f(t, p) - f(t, q)| \le L \cdot |p - q|, \text{ akkor a megoldás egyértelmű.}$

Pl: g(x) = 5x, vagy $g(x) = x^2$ teljesítik a lokális Lipschitz feltételt, de a $g(x) = \sqrt{|x|}$ már nem. Ez utóbbi 0-ban nem lok. Lip, csak 1-ben pl.

Észrevétel: ha a derivált létezik, és korlátos minden pont környezetében, akkor lok. Lip.

A tétel bizonyítása az alábbi lemmán alapszik: Gronwall lemma (egyszerű eset): legyen $u:[a,b] \to \mathbb{R}$ diffható, melyhez $\exists k \in \mathbb{R}^+ : \dot{u}(t) \le k \cdot u(t) \ \forall t \in [a,b]$. Ekkor $u(t) \le u(a) \cdot e^{k(t-a)} \ \forall t \in [a,b]$.

Bizonyítás: beszorzunk e^{-kt} -vel:

$$\dot{u}(t) \cdot e^{-kt} - k \cdot u(t) \cdot e^{-kt} \le 0$$

$$\left(u(t)e^{-kt}\right)^{'} \leq 0$$

$$u(t)e^{-kt} \le u(a)e^{-ka}$$

$$u(t) < u(a)e^{k(t-a)}$$

Tétel bizonyítása: legy en x és y két megoldás, amely ekhez $\exists \tau \in \mathbb{R} : x(\tau) = y(\tau)$. Belátjuk, hogy $x(t) = y(t) \ \forall t$.

Bizonyítás n = 1 esetre: $u(t) = (x(t) - y(t))^2$,

$$\dot{u}(t) = 2(x(t) - y(t)) \cdot (\dot{x}(t) - \dot{y}(t)) = 2(x(t) - y(t))(f(t, x(t)) - f(t, y(t))).$$

$$\dot{u}(t) \leq |\dot{u}(t)| = 2|x(t) - y(t)| \cdot |f(t, x(t)) - f(t, y(t))| \leq 2|x(t) - y(t)| \cdot L \cdot |x(t) - y(t)| = 2L \cdot u(t) \text{ Gronwall alkalmazása:}$$

$$u(t) \le u(a) \cdot e^{2L(t-a)}$$
, $u(\tau) = 0 \Rightarrow u(t) = (x(t) - y(t))^2 \le 0 \Rightarrow x(t) = y(t) \ \forall t \ge \tau$. Hasonlóan igaz a $t \le \tau$ -ra is.

A Hilbert tér geometriája, Fourier sorfejtés

09.14

Kiegésztés: fogalmaink használatához be kell vezetni a komplex Euklideszi tér fogalmát.

Komplex vektortér: a definíció analóg a valós vektortér definíciójával, kivéve: komplex számmal való szorzás is értelmezve van, a műveleti tulajdonságok ugyanazok.

Komplex Euklideszi tér: komplex vektortér (az alaptest a komplex számok halmaza, \mathbb{C}), plusz 2 elem skalárszorzata is értelmezve van, értéke komplex szám. A műveleti tulajdonságok analógok, eltérés: $\langle x,y\rangle=\overline{\langle y,x\rangle}$ (a felülhúzás a komplex konjugálás), ekkor amúgy $\langle \lambda x,y\rangle=\lambda\langle x,y\rangle$ és $\langle x,\lambda y\rangle=\overline{\lambda}\langle x,y\rangle$. (Vegyük észre, hogy a

komplex vektortereken értelmezett skaláris szorzás kétféleképp definiálható. Itt - és a matematikában általában - a skaláris szorzás az első változójában lineáris és a másodikban konjugált lineáris. Fizikában fordítva, azaz az első változójában lineáris, a másodikban konjugált lineáris: $\langle \lambda x, y \rangle = \overline{\lambda} \langle x, y \rangle$, illetve $\langle x, \lambda y \rangle = \lambda \langle x, y \rangle$.)

Megjegyzés, példák komplex euklideszi térre:

- \mathbb{C}^n esetén $x = (x_1, x_2, ..., x_n), x_j \in \mathbb{C}$, akkor $\lambda x = (\lambda x_1, \lambda x_2, ..., \lambda x_n), \langle x, y \rangle = \sum_{j=1}^n x_j \overline{y_j}$
- $L^2(M)$ tér (komplex esetben), ha $M \subset \mathbb{R}^n$ mérhető halmaz: legy en $f:M \to \mathbb{C}, f=f_1+i\cdot f_2$. Legy en továbbá f_1, f_2 valós függvény ek. f mérhetősége azt jelenti, hogy f_1, f_2 mérhető $\Rightarrow \int_M f:=\int_M f_1+i\int_M f_2$. $f:M \to \mathbb{C}$ integrálható $\Leftrightarrow |f|$ integrálható, $|f|:M \to \mathbb{R}$ mérhető. **Definíció**: jelölje $L^2(M)$ az oly an $f:M \to \mathbb{C}$ mérhető függvény ek összességét, amely ekre $|f|^2$ integrálható. Könny en belátható, hogy $L^2(M)$ komplex vektortér. Vezessük be ebben a következő skalárszorzatot: $\langle f,g \rangle :=\int_{\mathbb{C}} f\overline{g}$. Így egy Euklideszi teret kapunk. Sőt, a tér teljes, vagy is $L^2(M)$ Hilbert tér.
- Komplex l^2 tér, x: = $(x_1, x_2, ..., x_j, ...)$, $x_j \in \mathbb{C}$, l^2 komplex euklideszi tér, ebben a skaláris szorzás $\langle x, y \rangle = \sum_{i=1}^{\infty} x_j \overline{y_j}$. Bizonyítható, hogy teljes is.

Ortogonális kiegészítő altér

<u>Definíció</u>: legy en X Hilbert tér (vagy akár Banach is). Egy $Y \subset X$ halmazt altérnek nevezzük, ha az összeadás és számmal való szorzás nem vezet ki belőle és zárt részhalmaz (a konvergencia nem vezet ki).

<u>Definíció</u>: legy en X Hilbert tér, s két eleme x és y. Ezek merőlegesek, vagy is $x \perp y$, ha $\langle x, y \rangle = 0$.

<u>Definíció</u>: legy en *X* Hilbert tér, $Y \subset X$ altér. Azt mondjuk, hogy az $x \in X$ elem *Y* ortogonális, ha $\forall y \in Y$ -ra $\langle x, y \rangle = 0$.

<u>Definíció</u>: legy en X Hilbert tér, $Y \subset X$ altér. Az Y altér ortogonális kiegészítő altérét, Y^{\perp} -t így értelmezzük: $Y^{\perp} := \{x \in X : x \perp Y\}.$

Állítás: $Y^{\perp} \subset X$ is altér.

Bizonyítás: az összeadás és számmal való szorzás nem vezet ki belőle, ugyanis tfh $y_1, y_2 \in Y^{\perp}, x \in Y$ tetszőleges. Ekkor $\langle \lambda_1 y_1 + \lambda_2 y_2, x \rangle = \lambda_1 \langle y_1, x \rangle + \lambda_2 \langle y_2, x \rangle = 0$. Y^{\perp} zárt halmaz, ugyanis legyen $y_j \in Y^{\perp}$,

 $\lim(y_j) = y \in X$. Tudjuk, hogy $\langle y_j, x \rangle = 0 \ \forall x \in Y$. $y_j \to y \Rightarrow \langle y_j, x \rangle \to \langle y, x \rangle$ minden rögzített x-re, ugyanis a skalárszorzat a tényezőktől folytonosan függ, tehát $\langle y, x \rangle = 0$, $\forall x \in X$ -re, vagyis $y \in Y^{\perp}$.

Megjegyzés: komplex Cauchy-Schwarz egyenlőtlenség, azaz $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ bizonyítása:

$$0 \leq \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle + \lambda \overline{\lambda} \langle y, y \rangle$$

$$0 \leq \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} [\langle x, y \rangle + \lambda \langle y, y \rangle]$$

A $\lambda \in \mathbb{C}$ számot válasszuk meg úgy, hogy $\overline{\lambda}$ együtthatója 0 legyen. Ez teljesül, ha $\lambda = -\frac{\langle x,y \rangle}{\langle y,y \rangle}$ (y = 0 triviális eset, így feltesszük, hogy $y \neq 0$), behelyettesítve: $0 \leq \langle x,x \rangle - \frac{\langle x,y \rangle}{\langle y,y \rangle} \langle y,x \rangle = \langle x,x \rangle - \frac{|\langle x,y \rangle|^2}{\langle y,y \rangle} \Rightarrow |\langle x,y \rangle|^2 \leq \langle x,x \rangle \langle y,y \rangle$.

Riesz-féle felbontási tétel: legy en X Hilbert tér, Y egy altere, Y^{\perp} az Y-nak ortogonális kiegészítő altere! Ekkor $\forall x \in X$ elemre x = y + z, ahol $y \in Y$, $z \in Y^{\perp}$ és a felbontás egyértelmű.

<u>Lemma (paralelogramma egy enlőség)</u>: legy en X egy Hilbert tér. Ekkor $\forall a, b \in X$ esetén $||a+b||^2 + ||a-b||^2 = 2||a||^2 + 2||b||^2$.

Bizonyítás (lemmáé):
$$||a+b||^2 + ||a-b||^2 = \langle a+b, a+b \rangle + \langle a-b, a-b \rangle =$$

= $||a||^2 + ||b||^2 + \langle a, b \rangle + \langle b, a \rangle + ||a||^2 + ||b||^2 - \langle a, b \rangle - \langle b, a \rangle = 2||a||^2 + 2||b||^2$.

Bizonyítás (tételé): legy en d: = inf{ $\|x - y\|$: $y \in Y$ } ≥ 0 (d véges). Belátjuk, hogy $\exists y_0 \in Y$: $\|x - y_0\| = d$. Az infinimum definíciója miatt $\exists y_j \in Y$: $d^2 \leq \|x - y_j\|^2 < d^2 + 1/j \quad j \in \mathbb{N}$. Tekintsük az (y_j) sorozatot! Állítás: (y_j) Cauchy sorozat. Ehhez felhasználjuk a paralelogramma egy enlőséget: a: $a = x - y_j$, b: $a = x - y_k$. $\|(x - y_j) + (x - y_k)\|^2 + \|(x - y_j) - (x - y_k)\|^2 = 2\|x - y_j\|^2 + 2\|x - y_k\|^2$, $\|y_k - y_j\|^2 = 2\|x - y_j\|^2 + 2\|x - y_k\|^2 = 2\|x - y_j\|^2 + 2\|x - y_j\|^2 = 2\|x - y_j\|^2 + 2\|x - y_k\|^2 = 2\|x - y_j\|^2 + 2\|x - y_j\|^2 = 2\|x - y_j\|^2 + 2\|x - y_j\|^2 = 2\|x - y_j\|^2 + 2\|x - y_j\|^2 + 2\|x - y_j\|^2 = 2\|x - y_j\|^2 + 2\|x - y_j\|^2$

ha $j, k \geq j_0$.

 $\text{Mivel X t\'er teljes } \Rightarrow \exists y_0 \in X \text{:} \lim_{j \to \infty} \left\| y_j - y_0 \right\| = 0. \text{ Mivel Y alt\'er z\'ar halmaz } \Rightarrow y_0 = \lim \left(y_j \right) \in Y.$

M ásrészt $d = \inf\{\|x - y\| : y \in Y\}, d^2 \le \|x - y_j\|^2 < d^2 + \frac{1}{j}$ és $\lim(y_j) = y_0 \Rightarrow \|x - y_0\|^2 = d^2$, mivel $\|x - y_0\| = \lim \|x - y_j\|$. Legy en $z_0 = x - y_0$. Be kellene még látni, hogy $z_0 \perp Y$, vagy is $x = y_0 + z_0$, ahol $y_0 \in Y, z_0 \in Y^{\perp}$.

Legy en $y \in Y$! Mivel d a fenti infinimum, ezért tetszőleges $\lambda \in \mathbb{K}$ esetén $d^2 = \|x - y_0\|^2 \le \|x - y_0 - \lambda y\|^2 = \|z_0 - \lambda y\|^2 = \|z$

 $d^2 \leq d^2 - \lambda \langle y, z_0 \rangle = d^2 - \frac{\langle z_0, y \rangle}{\|y\|^2} \langle y, z_0 \rangle = d^2 - \frac{|\langle z_0, y \rangle|^2}{\|y\|^2}, \ 0. \ \text{Tehát } z_0, \ \text{vagy is valóban lehetséges ilyen felbontás}.$ Indirekt bizonyítjuk, hogy a felbontás egyértelmű. Tfh két alakban is felírható x: $x = y_0 + z_0 = y_1 + z_1$, ahol $y_1, y_2 \in Y$ és $z_1, z_2 \in Y^\perp$. $Y \ni (y_0 - y_1)$: $= a = (z_1 - z_0) \in Y^\perp$.

$$\langle y_0 - y_1, z_1 - z_0 \rangle = ||a||^2 = 0 \Rightarrow y_0 - y_1 = z_0 - z_1 = 0 \Rightarrow y_0 = y_1, z_0 = z_1$$

Ortogonális rendszerek

09.21

<u>Definíció</u>: egy X vektortérben az M halmaz elemei lineárisan függetlenek, ha bármely véges sok lineárisan független.

Definíció: legy en X normált tér! X dimenziója az oly an lineárisan független elemek maximális száma, amely ek véges lineárkombinációi mindenütt sűrűn vannak X-ben (egy $A \subset X$ sűrű X-ben, ha $\overline{A} = X$, ahol a halmaz felülvonása a lezárást jelenti, ez amúgy ekvivalens azzal, hogy $\forall x \in X$ -nek minden körny ezetében van A-beli elem). Máskép p fogalmazva: jelöljük $\mathcal{L}(x_1, x_2, ...)$ -val azt a lineáris teret, amely az $x_1, x_2, ...$ elemek véges lineárkombinációjaként előáll. (Az előálló lineáris tér egy értelmű, de egy teret több ily en vektorrendszer is előállíthat.) Ekkor X tér dimenziója az oly an lineárisan független elemek maximális száma, mely ekre $\overline{\mathcal{L}(x_1, x_2, ...)} = X$. A D dimenziószám egy értelmű, $0 \le D \le \infty$.

Definíció: egy X normált teret szeparábilisnak nevezünk, ha benne megadható megszámlálhatóan sok (azaz véges vagy megszámlálhatóan végtelen sok) lineárisan független elem, amelyek véges lineárkombinációi sűrűn vannak X-ben.

<u>Definíció</u>: legy en X Hilbert-tér! Azt mondjuk, hogy az $x_1, x_2, ..., x_k, ...$ elemek ortogonális rendszert alkotnak, ha $\forall x_j, x_k \neq 0$ esetén $\langle x_j, x_k \rangle = \begin{cases} 0 & j \neq k \\ & \text{. A rendszer ortonormált, ha } \forall x \in X \text{ esetén } ||x|| = 1 \text{ .} \\ \text{nem0} & j = k \end{cases}$

Kérdés: ha az X Hilbert-térben $y_1, y_2, ..., y_k, ...$ lineárisan függetlenek, akkor lehet-e ezekből ortonormált rendszert konstruálni, és ha igen, hogyan? Válasz: lehet, az ún. Schmidt-féle ortogonalizációs eljárással.

<u>Tétel</u>: az $y_1, y_2, ..., y_k, ...$ lineárisan független elemekhez megkonstruálhatók az $x_1, x_2, ..., x_k, ...$ elemek úgy, hogy az utóbbiak ortonormált rendszert alkossanak, mégpedig úgy, hogy $\forall k$ -ra $\mathcal{L}(x_1, x_2, ..., x_k) = \mathcal{L}(y_1, y_2, ..., y_k)$.

Bizonyítás:

1. legy en $x_1 = \frac{y_1}{\|y_1\|}$, ekkor $\|x_1\| = 1$. $y_1 \neq 0$, mert $y_1, y_2,...$ lineárisan függetlenek.

2. z_2 : = $y_2 - \lambda_1 x_1$, ahol $\lambda_1 \in \mathbb{R}$. Ezt hogy válasszuk meg, hogy $z_2 \perp x_1$ teljesüljön? $0 = \langle z_2, x_1 \rangle = \langle y_2 - \lambda_1 x_1, x_1 \rangle = \langle y_2, x_1 \rangle - \lambda_1 \underbrace{\langle x_1, x_1 \rangle}_{=1} \Rightarrow \lambda_1 = \langle y_2, x_1 \rangle$. Ekkor $z_2 \neq 0$, mert y_1, y_2 lineárisan függetlenek. x_2 : = $\frac{z_2}{\|z_2\|}$, ekkor $\|x_2\| = 1$ és $\langle x_1, x_2 \rangle = 0$.

3.
$$z_3$$
: = $y_3 - \mu_1 x_1 - \mu_2 x_2$, ahol $\mu_1, \mu_2 \in \mathbb{R}$. Ezeket hogy válasszuk meg, hogy $z_3 \perp x_1, x_2$ teljesüljenek? $0 = \langle y_3 - \mu_1 x_1 - \mu_2 x_2, x_1 \rangle = \langle y_3, x_1 \rangle - \mu_1 - 0 \Leftrightarrow \mu_1 = \langle y_3, x_1 \rangle$ $0 = \langle y_3 - \mu_1 x_1 - \mu_2 x_2, x_2 \rangle = \langle y_3, x_2 \rangle - 0 - \mu_2 \Leftrightarrow \mu_2 = \langle y_3, x_2 \rangle. \ z_3 \neq 0 \ y_1, y_2, y_3$ lineáris függetlensége miatt, ezért x_3 : = $\frac{z_3}{\|z_3\|}$ jó választás, így $\|x_3\| = 1$ és $x_3 \perp x_1, x_2$.

Nem nehéz belátni, hogy az eljárás folytatható $\forall k$ -ra és $\mathcal{L}(y_1, y_2, ..., y_k) = \mathcal{L}(x_1, x_2, ..., x_k)$.

Ortogonális sorok, Fourier-sorok

A továbbiakban legy en X szeparábilis Hilbert-tér, véges vagy végtelen dimenziós! Tudjuk, hogy ekkor X-ben megadható $x_1, x_2, ..., x_k, ...$ ortonormált rendszer. Egy $\sum_k c_k x_k$ alakú sort (összeget) – ahol $c_k \in \mathbb{K}$ – ortogonális sornak nevezünk.

Tételek:

1. egy
$$\sum_{k} c_k x_k$$
 sor konvergens $\Leftrightarrow \sum_{k} |c_k|^2 < \infty$

2. ha
$$x = \sum_{k} c_k x_k$$
, akkor $c_l = \langle x, x_l \rangle$

3.
$$||x||^2 = \sum_{k} |c_k|^2$$
 (végtelen dimenziós Pitagorasz tétel).

Bizonyítás:

1. Véges dimenzióban triviális, így tegyük fel, hogy végtelen sok elemű az ortonormált rendszer! Legyen s_j : = $\sum_{k=1}^{j} c_k x_k$! A sor konvergenciája azt jelenti, hogy (s_j) sorozat konvergens $\Leftrightarrow (s_j)$ Cauchy sorozat.

$$||s_j - s_l||^2 = \langle s_j - s_l, s_j - s_l \rangle = \langle \sum_{k=l+1}^j c_k x_k, \sum_{k=l+1}^j c_k x_k \rangle = \sum_{k=l+1}^j c_k \overline{c_k} \langle x_k, x_k \rangle = \sum_{k=l+1}^j |c_k|^2$$
. Ez a $\sum_{k=l+1}^\infty |c_k|^2$

sor egy "szelete". Tehát (s_j) X-beli sorozatra teljesül a Cauchy-kritérium $\Leftrightarrow \sum_{k=1}^{\infty} |c_k|^2$ sorra teljesül a

Cauchy-kritérium \Leftrightarrow (s_j) X-beli sorozat konvergens \Leftrightarrow $\sum_{k=1}^{\infty} |c_k|^2$ sor konvergens.

2. tfh $x = \sum_{k} c_k x_k$, x_l -lel szorozzuk skalárisan (jobbról) az egyenlőséget (ezt megtehetjük, hisz nem nehéz

belátni, hogy egy konvergens sor tagonként szorozható skalárisan),
$$\langle x, x_l \rangle = \langle \sum_k c_k x_k, x_l \rangle = \sum_k c_k \langle x_k, x_l \rangle = c_l$$

3.
$$||x||^2 = \langle x, x \rangle = \langle \sum_k c_k x_k, x \rangle = \sum_k c_k \underbrace{\langle x_k, x \rangle}_{\overline{c_i}} = \sum_k |c_k|^2$$

<u>Definíció</u>: legy en $x_1, x_2,...,x_k$ ortonormált rendszer, $x \in X$ adott elem! Értelmezzük az x elem k-adik Fourieregy ütthatóját: c_k : = $\langle x, x_k \rangle$. Az így adódó $\sum_k c_k x_k$ "sort" az x elem Fourier-sorának nevezzük.

Kérdés: egy x elem Fourier-sora konvergens-e? Ha igen, mi az összege?

<u>Tétel</u>: egy $x \in X$ elem Fourier sora mindig konvergens, ugyanis teljesül az ún. Bessel-egyenlőtlenség: $\sum_{k} |c_{k}|^{2} \leq ||x||^{2}$. A sor összege pontosan akkor x, ha teljesül az ún Parseval egyenlőség, azaz $\sum_{k} |c_{k}|^{2} = ||x||^{2}$.

Bizony ítás:
$$s_j$$
: = $\sum_{k=1}^{j} c_k x_k$, ekkor $0 \le ||x - s_j||^2 = \langle x - s_j, x - s_j \rangle = ||x||^2 - \langle s_j, x \rangle - \langle x, s_j \rangle + ||s_j||^2 =$

$$= ||x||^2 - \langle \sum_{k=1}^{j} c_k x_k, x \rangle - \langle x, \sum_{k=1}^{j} c_k x_k \rangle + \langle \sum_{k=1}^{j} c_k x_k, \sum_{k=1}^{j} c_k x_k \rangle =$$

$$= \|x\|^2 - \sum_{k=1}^{j} c_k \overline{c}_k - \sum_{k=1}^{j} \overline{c}_k c_k + \sum_{k=1}^{j} c_k \overline{c}_k = \|x\|^2 - \sum_{k=1}^{j} |c_k|^2 \Rightarrow \sum_{k=1}^{j} |c_k|^2 \leq \|x\|^2 \Rightarrow \sum_{k=1}^{\infty} |c_k|^2 \leq \|x\|^2, \text{ másrészt a}$$

fentiek szerint $||x - s_j||^2 = ||x||^2 - \sum_{k=1}^j |c_k|^2$. Ebből láthatjuk, hogy $s_j \to x \Leftrightarrow ||x||^2 - \sum_k |c_k|^2 = 0$, vagy is a sor

összege pontosan akkor x, ha $||x||^2 - \sum_{k} |c_k|^2 = 0$.

<u>Tétel</u>: legy en $x_1, x_2, ..., x_k, ...$ ortonormált rendszer. Ekkor egy $x \in X$ elem Fourier-sorának összege az x elemnek az $X_0 := \overline{\mathcal{L}(x_1, x_2, ..., x_k, ...)} \subset X$ alterén vett merőleges vetülete.

Bizonyítás: jelölje x^* : = $\sum_k c_k x_k$, ahol c_k : = $\langle x, x_k \rangle$. Azt kellene belátni, hogy $x^* \in X_0$ és $(x - x^*) \perp X_0$.

$$x^* \in X_0$$
, ugyanis $\sum_{k=1}^j c_k x_k \in \mathcal{L}\big(x_1, x_2, ..., x_{\mathbf{j}}\big)$, így $\sum_k c_k x_k \in X_0$. $(x-x^*) \perp X_0$ ugyanis először legyen

 $y \in \mathcal{L}(x_1, x_2,...,x_l)$ tetszőleges! Belátjuk, hogy $\langle x - x^*, y \rangle = 0$. $y = \sum_{j=1}^l d_j x_j$,

$$\langle x - x^*, y \rangle = \langle x, y \rangle - \langle x^*, y \rangle = \langle x, \sum_{j=1}^l d_j x_j \rangle - \langle \sum_k c_k x_k, \sum_{j=1}^l d_j x_j \rangle = \sum_{j=1}^l \overline{d}_j \underbrace{\langle x, x_j \rangle}_{c_j} - \sum_{j=1}^l \overline{d}_j \underbrace{\langle \sum_k c_k x_k, x_j \rangle}_{c_j} = 0.$$

M ost legy en $y \in X_0 = \overline{\mathscr{L}(x_1, x_2, \ldots)}$, szeretnénk, ha ekkor $\langle x - x^*, y \rangle = 0$ is igaz lenne. Ehhez vegyünk egy (y_ν) , $\mathscr{L}(x_1, x_2, \ldots)$ -beli konvergens sorozatot, melyre $y_\nu \to y$. Ekkor $\langle x - x^*, y_\nu \rangle = 0$. Így, mivel $y_\nu \to y$, $\langle x - x^*, y \rangle = 0$, ugy anis $|\langle x - x^*, y \rangle| = |\langle x - x^*, y \rangle - \langle x - x^*, y_\nu \rangle| = |\langle x - x^*, y - y_\nu \rangle| \le ||x - x^*|| \cdot ||y - y_\nu|| \to 0$.

<u>Definíció</u>: az $x_1, x_2,...$ ortonormált rendszert zártnak nevezzük, ha $\overline{\mathcal{L}(x_1, x_2,...)} = X$.

Következmény: ha az $x_1, x_2,...$ ortonormált rendszer zárt, akkor $\forall x \in X$ elem Fourier-sorának összege x.

<u>Definíció</u>: egy $x_1, x_2,...$ ortonormált rendszert teljesnek nevezzük, ha $x \perp x_k \ \forall k \Rightarrow x = 0$.

<u>**Tétel**</u> (bizonyítás nélkül): egy $x_1, x_2,...$ ortonormált rendszer teljes \Leftrightarrow zárt.

Példák zárt (teljes) ortonormált rendszerekre

09.28

Észrevétel: ha $y_1, y_2, ..., y_k, ...$ lineárisan független olyan rendszer, hogy $\overline{\mathcal{L}(y_1, y_2, ...)} = X$ (X Hilbert-tér, a lineárisan független rendszer zárt), akkor ebből a Schmidt ortogonalizálási eljárással zárt (teljes) ortonormált rendszert kapunk.

1. Konkrét pl: $X := L^2(a,b)$, ahol (a,b) véges intervallum.

<u>Tétel</u>: ebben az $t\mapsto 1, t\mapsto t^2, ..., t\mapsto t^k, ...$ lineárisan független függvények zárt rendszert alkotnak.

Bizonyítás (vázlat): egyrészt a függvényrendszer lineárisan független: $\sum_{j=0}^{k} a_j t^j = 0 \Leftrightarrow a_j = 0$. (Egy valós k-ad fokú

polinomnak legfeljebb k db gyöke lehet $k \geq 1$.) Az, hogy a rendszer zárt, következik a Weierstrass approximációs tételéből. Eszerint tetszőleges $f:[a,b] \to \mathbb{R}$ folytonos függvényhez $\exists P_k$ polinom sorozat, amely egyenletesen tart f-hez. Legyen $g:(a,b) \to \mathbb{R}$, $g \in L^2(a,b)$. A Lebesgue integrál felépítéséből kiolvasható, hogy $g:[a,b] \to \mathbb{R}$ folytonos függvények sűrűn vannak $L^2(a,b)$ -n. A g folytonos függvényt Weierstrass approximációs tétele szerint tetszőleges előírt pontossággal meg lehet közelíteni polinomokkal, a szuprémum normában \Rightarrow ezek közelítik g-t L^2 normában is.

2. Komplex trigonometrikus rendszer $X := L^2(0,2\pi), \phi_k(t) := e^{ikt}, t \in (0,2\pi), k \in \mathbb{Z}$.

<u>Tétel</u>: a fenti függvények egy zárt ortogonális rendszert alkotnak (biz. nélkül). Belátjuk, hogy $(\phi_k)_{k \in \mathbb{Z}}$

ortogonális.
$$\int_{0}^{2\pi} \phi_{k}(t) \overline{\phi_{l}(t)} dt = \int_{0}^{2\pi} e^{ikt} e^{-ilt} dt = \int_{0}^{2\pi} e^{i(k-l)t} = \left[\frac{e^{i(k-l)t}}{i(k-l)} \right]_{t=0}^{2\pi} = 0 \text{ ha } k \neq l. \ \psi_{k} : = \frac{1}{\sqrt{2\pi}} \phi_{k} \text{ már}$$

ortonormált rendszer.

3. valós trigonometrikus rendszerek.

Legy en az X alaphalmaz a valós $L^2(0,2\pi)$. $e^{ikt} = \cos(kt) + i\sin(kt)$, $\cos(kt) = \frac{e^{ikt} + e^{-ikt}}{2}$, $\sin(kt) = \frac{e^{ikt} - e^{-ikt}}{2i}$. Egy szerű számolással adódik, hogy $1,\cos t$, $\sin t$, $\cos(2t)$, $\sin(2t)$,..., $\cos(kt)$, $\sin(kt)$,... függvény ek páronként merőlegesek. Tehát ezek ortogonális rendszert alkotnak a valós $L^2(0,2\pi)$ -ben. Abból, hogy a komplex trigonometrikus rendszer zárt \Rightarrow a fenti rendszer valós ortogonális zárt rendszer.

A fentiekből következik, hogy egy tetszőleges $f \in L^2(0,2\pi)$ függvénynek akár a komplex, akár a valós trigonometrikus rendszer szerint Fourier sora előállítja a függvényt L^2 normában.

4. Az $1,\cos t,\cos(2t),...,\cos(kt),...$ függvényrendszer zárt és ortogonális a $L^2(0,\pi)$ -ben. A szinuszos ugyanígy.

Lineáris és korlátos operátorok

Állítás: legy en X, Y normált terek! Korábban bizonyítottuk, hogy $A:X \to Y$ lineráis operátor folytonos $\Leftrightarrow A$ korlátos.

<u>Definíció</u>: egy $A: X \to Y$ lineáris operátort korlátosnak nevezzük, ha $\exists c \ge 0: ||Ax||_Y \le c||x||_X \ \forall x \in X$.

<u>Tétel</u>: legyen X normált tér, Y teljes normált tér (Banach tér), $A:M\to Y$ korlátos lineáris operátor, ahol $M\subset X$ lineáris altér, de nem kell zártnak lennie. Ekkor az A-nak egyértelműen létezik korlátos lineáris kiterjesztése az \overline{M} -ra (M lezárására). Más szóval: \exists ! $\widetilde{A}:\overline{M}\to Y$ korlátos lineáris operátor, amelyre $\widetilde{A}x=Ax$, $\forall x\in M$. Spec eset, mikor $\overline{M}=X$.

Bizony ítás (vázlatos): legyen $x \in \overline{M}$. Ehhez $\exists x_k \in M$: $\lim(x_k) = x$. Tekintsük az $(Ax_k)_{k \in \mathbb{N}}$ sorozatot Y-ban! Belátjuk, hogy ez Cauchy sorozat. $\|Ax_k - Ax_l\|_Y = \|A(x_k - x_l)\|_Y \le c \cdot \|x_k - x_l\|_X$. Legyen $\varepsilon > 0$, $\exists k_0 : \forall k, l > k_0$ esetén $\|x_k - x_l\| < \varepsilon \Rightarrow \|Ax_k - Ax_l\| \le c \cdot \varepsilon$. Y teljes $\Rightarrow \exists y \in Y$: $\lim(Ax_k) = y$. y csak x-től függ, nem függ (x_k) -tól és egyértelmű. $\widetilde{A}(x) := y$, \widetilde{A} lineáris, korlátos (és folytonos).

<u>Hahn-Banach tétel</u>: legy en X Banach tér, $X_0 \subset X$ valódi (zárt lineáris) altér, $f: X_0 \to \mathbb{K}$ korlátos lineáris funkcionál (azaz számértékű operátor). Ekkor $\exists \widetilde{f}: X \to \mathbb{K}$ korlátos lineáris kiterjesztés, és $\|\widetilde{f}\| = \|f\|$.

Korlátos lineáris funkcionálok, duális tér (Hilbert tér esetén)

Észrevétel: legy en X Hilbert tér, $y \in X$ tetszőleges rögzített elem. Értelmezzük az $f: X \to \mathbb{K}$, $f(x) := \langle x, y \rangle$ funkcionált.

Állítás: ekkor f korlátos lineáris funkcionál. f linearitása triviális, és korlátos is, ugyanis $|f(x)| = |\langle x, y \rangle| \le ||x|| \cdot ||y||$.

<u>Tétel</u> (Riesz): legy en X Hilbert tér (valós vagy komplex), f egy korlátos lineáris funkcionál X-en. Ekkor létezik egy etlen $y \in X$, hogy $f(x) = \langle x, y \rangle \ \forall x \in X$.

Bizonyítás: jelölje X_0 : = $\{x \in X : f(x) = 0\}$ -vel f magterét. X_0 altér X-ben, azaz az algebrai műveletek nem vezetnek ki X_0 -ból, és zárt részhalmaz X-ben. Utóbbi azért igaz, mivel f folytonos, azaz ha $x_k \in X_0$, $(x_k) \to x \Rightarrow x \in X_0$. $f(x_k) \to f(x) \Rightarrow f(x) = 0$, mivel jelen esetben $f(x_k) = 0$.

- 1. Ha $X_0 = X$, $f(x) = 0 \ \forall x \in X$, triviális eset. Ekkor legy en y = 0.
- 2. X_0 valódi altér \Rightarrow (Riesz-féle felbontási tétel) $\exists x_1 \neq 0 : x_1 \in X_0^{\perp}$. Legy en $x \in X$ tetszőleges, tekintsük az $X \ni y_1 := f(x)x_1 f(x_1)x$ elemet. Ekkor $f(y_1) = f(x)f(x_1) f(x_1)f(x) = 0 \Rightarrow y_1 \in X_0 \Rightarrow \langle y_1, x_1 \rangle = 0$. Más szóval $0 = \langle y_1, x_1 \rangle = \langle f(x)x_1 f(x_1)x, x_1 \rangle = f(x)||x_1||^2 f(x_1)\langle x, x_1 \rangle \Rightarrow f(x) = \frac{f(x_1)\langle x, x_1 \rangle}{||x_1||^2} = \langle x, \frac{\overline{f(x_1)}x_1}{||x_1||^2} \rangle \Rightarrow \exists y$, nevezetesen $y = \frac{\overline{f(x_1)}}{||x_1||^2} x_1$.
- 3. y egy értelmű. Tfh $\langle x, y \rangle = \langle x, y^* \rangle \ \forall x \in X \Rightarrow \langle x, y y^* \rangle = 0 \ \forall x \in X \Rightarrow y y^* = 0 \Rightarrow y = y^*$.

Korlátos lineáris funkcionálok

10.05

Legy en X Hilbert tér $y \in X$ egy rögzített eleme, $f(x) := \langle x, y \rangle$. Ekkor a CS-ből következik: $||f|| \le ||y||$.

Megjegyzés: ||f|| = ||y||, ugy anis egy részt $|f(x)| = |\langle x, y \rangle| \le ||x|| \cdot ||y|| \Rightarrow ||f|| \le ||y||$. Másrészt $||f|| = \sup\{|f(x)|: ||x|| = 1\}$. Válasszuk $x: = \frac{y}{||y||}$ ($y \ne 0$, máskülönben triviális), ekkor ||x|| = 1, $||f(x)|| = ||\langle \frac{y}{||y||}, y \rangle|| = ||y|||$. Tehát ||f|| = ||y||.

Spec eset: $X:=L^2(M), M\subset \mathbb{R}^n$ mérhető halmaz. Ekkor egy tetszőleges f korlátos lineáris funkcionál ilyen alakú: $f(\phi):=\langle \phi,\psi\rangle=\int_M \phi\overline{\psi}, \text{ ahol } \psi\in L^2(M) \text{ rögzített. } \psi_0:=\overline{\psi}\in L^2(M) \text{ jelöléssel } f(\phi)=\int_M \phi\psi_0, \, \forall\,\phi\in L^2(M)$.

Korlátos lineáris funkcionálok $L^p(M)$ -en, ahol $1 (azaz <math>L^{\infty}(M)$ teret nem tárgyaljuk)

Legy en $\psi \in L^q(M)$ tetszőleges rögzített, $\frac{1}{p} + \frac{1}{q} = 1!$ Értelmezzük az f funkcionált: $f(\phi) := \int_M \phi \psi$, ahol $\phi \in L^p(M)$.

Állítás: f korlátos lineáris funkcionál $L^p(M)$ -en.

Bizony ítás: tudjuk, hogy $\phi \in L^p(M), \psi \in L^q(M) \Rightarrow \phi \psi \in L^1(M)$, tehát a funkcionál értelmezve van az egész $L^p(M)$ -n, ny ilván lineáris. A Hölder egy enlőtlenség szerint $\left| \int_M \phi \psi \right| \leq \|\phi\|_{L^p(M)} \cdot \|\psi\|_{L^q(M)} \Rightarrow \|f\| \leq \|\psi\|_{L^q(M)}$ vagy is korlátos is és normája $\leq \|\psi\|_{L^q(M)}$

 $\underline{\mathbf{T\acute{e}tel}}: \|f\| = \|\psi\|_{L^q(M)}.$

<u>Tétel</u>: legy en $1 . Ekkor tetszőleges <math>f:L^p(M) \to \mathbb{K}$ korlátos lineáris funkcionálhoz $\exists ! \psi \in L^q(M) : f(\phi) = \int_M \psi \phi$.

Duális (konjugált) tér

<u>Definíció</u>: legy en *X* normált tér! Az *X*-en értelmezett korlátos lineáris funkcionálok terét *X* duálisának nevezzük és *X'*-vel jelöljük (van, ahol *-gal jelölik).

Megjegyzés: $X' = L(X, \mathbb{K})$. Tudjuk, hogy $X' = L(X, \mathbb{K})$ normált tér (norma az operátor normája), X' tér teljes, mivel \mathbb{K} alaptest teljes, így X' Banach tér.

Értelmezzük az előbbieket ezen fogalom rögzítésével!

X Hilbert tér. Tudjuk, hogy $\forall f \in X' \exists y \in X : f(x) = \langle x, y \rangle$, ||f|| = ||y||. Fordítva, $y \in X$ esetén $f(x) := \langle x, y \rangle, x \in X!$ Tehát ha X Hilbert tér, bijekció létesíthető X' és X között. Jelöljük: $\Phi(y) := f$, $f(x) := \langle x, y \rangle$. $\Phi: X \to X'$ bijekció. Ennek tulajdonságai:

- $\Phi(y_1 + y_2) = \Phi(y_1) + \Phi(y_2)$. $f_1(x) = \langle x, y_1 \rangle$, $f_2(x) = \langle x, y_2 \rangle$. $(f_1 + f_2)(x) = f_1(x) + f_2(x) = \langle x, y_1 \rangle + \langle x, y_2 \rangle = \langle x, y_1 + y_2 \rangle$, vagy is $f_1 + f_2 \leftrightarrow y_1 + y_2$.
- $\lambda \in \mathbb{K}$ esetén $\Phi(\lambda y) = \overline{\lambda}\Phi(y)$. $f(x) = \langle x, y \rangle \Rightarrow \langle x, \lambda y \rangle = \overline{\lambda}\langle x, y \rangle = \overline{\lambda}f(x) = (\overline{\lambda}f)x$, vagy is $\lambda y \leftrightarrow \overline{\lambda}f$, tehát Φ konjugált lineáris.

 $X = L^p(M)$ esete, mikor $1 \le p \le \infty$ és $\frac{1}{p} + \frac{1}{q} = 1$.

Tudjuk, hogy tetszőleges $\psi \in L^q(M)$ esetén $f(\phi) := \int_M \phi \psi, \, \phi \in X$ mellett $f \in (L^p(M))', \, \|f\| = \|\psi\|$. Továbbá

 $(L^p(M))'$ minden eleme ilyen alakú $p < \infty$ esetén.

 $L^q(M) \ni \psi \leftrightarrow f \in (L^p(M))'$. Könnyen belátható, hogy az eddigiek alapján Φ bijekció, sőt, Φ lineáris. $L^p(M)$ izomorf és izometrikus (normatartó) $L^q(M)$ -vel, ha $p < \infty$.

X" tér, más szóval biduális, reflexív tér

Definíció: legy en X normált tér. Ekkor definíció szerint X'': = (X')'.

Állítás: ha X Hilbert tér, akkor X" izomorf, izometrikus az X térrel.

Definíció: legy en X Banach tér! Ha X" izomorf és izometrikus X-szel, akkor X"-t reflexívnek nevezzük.

Állítás: legyen $X = L^p(M)$, ahol $1 ! Ekkor <math>L^p(M)$ reflexív.

Vizsgáljuk X''-t általános esetben, mikor X Banach tér! Tekintsük egy tetszőleges, rögzített $x \in X$ elemet, ehhez rendeljük hozzá a következő, $F_x \in X''$ elemet! $F_x(f) := f(x), \ \forall f \in X'$. Ekkor F_X jól definiált funkcionál X'-n, ny ilván lineáris, korlátos is. $|F_x(f)| = |f(x)| \le ||f|| \cdot ||x||_X, \ \forall f \in X'. \implies ||F_x|| \le ||x||$.

 $\underline{\text{Allitás}}: ||F_x|| = ||x||.$

Bizony ítás: (definíció szerint $||F_x|| = \sup_{f \in X'} \{|F_x(f)| = |f(x)| : ||f|| = 1\}$) azt kellene belátni, hogy $\exists f \in X' : ||f|| = 1$, melyre igaz, hogy $|F_x(f)| = ||x||$ bármely rögzített x esetén. Tekintsük a következő f_0 funkcionált X következő, 1 dimenziós alterén: $X_0 := \{\lambda x : \lambda \in \mathbb{K}\}$, ahol $x \in X$ rögzített. Legyen $f_0(\lambda x) := \lambda ||x||$. f_0 korlátos is, $|f_0(\lambda x)| = |\lambda|||x|| = ||\lambda x|| \cdot 1 \Rightarrow ||f_0|| = 1$. A Hahn-Banach tétel szerint az X_0 altéren definiált f_0 korlátos lineáris funkcionál kiterjeszthető a korlátosság és linearitás megtartásával az egész X térre úgy, hogy $||f|| = ||f_0||$ (ezt persze nem bizonyítottuk). Jelölje ezt f! $f \in X'$, $||f|| = ||f_0|| = 1$. Erre $|F_x(f)| = |f(x)| = |f(x)| = |f(x)| = |f(x)| = |f(x)| = |f(x)| = |x||$.

Általános esetben X" egy részhalmaza izomorf és izometrikus X-szel. X"-nek lehetnek más elemei is (ha nem reflexív).

Gyenge konvergencia

<u>Definíció</u>: legyenek X, Y normált terek, és tfh $A_j \in L(X,Y)$, $j \in \mathbb{N}$ (A_j korlátos lineáris operátor X-n). Azt mondjuk, hogy ez az A_j sorozat gyengén konvergál az A operátorhoz, ha $\forall x \in X$ elemre $(A_j x)_{j \in \mathbb{N}} \to Ax$ (pontonkénti konvergencia). (Y-beli norma szerinti konvergencia).

<u>Állítás</u>: ha lim $||A_j - A|| = 0$, azaz (A_j) → A az L(X, Y) norma szerint, akkor (A_j) → A gy engén, de fordítva nem mindig igaz.

Bizony ítás: tfh lim
$$||A_j - A|| = 0$$
. Ekkor $||A_j x - Ax||_Y = ||(A_j - A)x|| \le ||A_j - A|| \cdot ||x|| \to 0$.

 $\text{Speciális eset: } Y = \mathbb{K}, \ L(X,Y) = X'. \ \left(f_j\right) \to f \text{ gy eng\'en } X' \text{ -ben, ha bármely r\"ogz\'itett } x \in X \text{ eset\'en } \left(f_j(x)\right) \to f(x) \ .$

Példa X'-beli gyengén konvergens sorozatra, amely norma szerint nem konvergens. Legy en X szeparábilis, végtelen dimenziós Hilbert tér! Legy en ebben egy $y_1, y_2, ..., y_j, ...$ ortonormált, teljes rendszer! $f_j(x) := \langle x, y_j \rangle$. Ekkor $\langle x, y_j \rangle$ az $x \in X$ elem j-edik Fourier-egy eütthatója y_j ortonormált rendszer szerint, $c_j := \langle x, y_j \rangle$. Tudjuk, hogy

$$\sum_{j=1}^{\infty} |c_j|^2 < \infty \Rightarrow \lim(c_j) = 0, \text{ azaz } \lim_{j \to \infty} f_j(x) = 0, \ \forall x \in X. \text{ M\'as sz\'oval } \left(f_j\right) X\text{-beli sorozat gyeng\'en tart } f = 0$$

funkcionálhoz. Másrészt $||f_j|| = ||y_j||_X = 1$, így (f_j) nem tart a norma szerint az f = 0 funkcionálhoz. (Bebizonyítható, hogy véges dimenzióban a gyenge konvergencia egybeesik a norma szerinti konvergencia fogalmával.)

<u>Tétel</u>: tfh $A_j \in L(X, Y)$, ahol X, Y Banach terek, $(A_j) \to A$ gy engén. Ekkor $(\|A_j\|)_{j \in \mathbb{N}}$ korlátos. Ez a tétel következik az alábbi tételből.

Egyenletes korlátosság tétele (Banach-Steinhaus tétel, bizonyítás nélkül): legyenek X, YBanach terek, $A_j \in L(X,Y)$. Ha az A_j operátor sorozat pontonként korlátos, azaz ha $\forall x \in X$ esetén $\sup_{j \in \mathbb{N}} \{ \|A_j x\| \} < \infty \Rightarrow (\|A_j\|) \text{ korlátos.}$

Megjegyzés (gyenge kompaktsági kritérium): tekintsük a $X' = L(X, \mathbb{K})$ speciális esetet az egyszerűség kedvéért. Ha $f_j \in X'$ korlátos sorozatot alkot (X most Banach tér), akkor $\left(f_j\right)$ -ból kiválasztható egy gyengén konvergens részsorozat.

Gyenge konvergencia X-ben

10.12

<u>Definíció</u>: legy en X normált tér! Azt mondjuk, hogy egy $(x_j)_{j \in \mathbb{N}} X$ -beli sorozat gy engén konvergál egy $x \in X$ ponthoz, ha $\forall f \in X'$ funkcionálra $(f(x_j))_{j \in \mathbb{N}} \to f(x)$.

Megjegyzés: ha X reflexív Banach-tér, akkor minden korlátos X-beli sorozatnak létezik gyengén konvergens részsorozata. Ugyanis ekkor X = X'' = (X')'.

Inverz operátor

Emlékeztető: egy függvénynek létezik inverze, ha injektív. Tudjuk továbbá, hogy egy $A: X \to Y$ lineáris operátornak létezik inverze (azaz injektív) \Leftrightarrow a magtér csak a 0-ból áll, azaz $Ax = 0_Y \Leftrightarrow x = 0_X$. Továbbá, ha A^{-1} létezik, akkor A^{-1} lineáris operátor. Egy A operátor folytonos x_0 -ban, ha $\forall \varepsilon > 0 \exists \rho > 0 : \|x - x_0\|_X < \rho \Rightarrow \|Ax - Ax_0\|_Y < \varepsilon$.

Kérdés: ha X, Y normált terek, $A: X \to Y$ lineáris és injektív $\stackrel{?}{\Rightarrow} A^{-1}$ korlátos is? Általában nem, akkor sem, ha A korlátos.

Nyílt leképezések tétele (bizonyítás nélkül): legyenek X, YBanach terek, $A:X \to Y$ korlátos lineáris operátor és $R_A = Y$, vagy is ráképezés. Ekkor A operátor X minden nyílt halmazát Y nyílt halmazába képezi. Ebből következik:

<u>Tétel</u> (Banach): legy enek X, Y Banach terek, $A:X \to Y$ korlátos és lineáris, $R_A = Y$ és A injektív! Ekkor A^{-1} korlátos (azaz folytonos).

Bizonyítás: legyen tetszőleges $y_0 \in Y = R_A = D_{A^{-1}}$. $x_0 := A^{-1}y_0$. Belátjuk, hogy az A^{-1} folytonos y_0 -ban. Tekintsük $x_0 = A^{-1}y_0$ egy tetszőleges $B_r(x_0)$ nyílt környezetét! Ennek képe is nyílt az Y-ban az előbbi tétel szerint. Mivel $y_0 \in A(B_r(x_0))$, ami nyílt, ezért y_0 -nak van olyan környezete, melyre $B_\rho(y_0) \subset A(B_r(x_0))$. Ez azt jelenti, hogy ha $y \in B_\rho(y_0) \Rightarrow A^{-1}y \in B_r(x_0)$. Eszerint A^{-1} folytonos y_0 -ban.

Zárt gráf (grafikon) tétel

<u>Definíció</u>: legy enek X, Y normált terek, $A:M \to Y$ lineáris operátor, $M \subset X$. Ekkor A operátor gráfja, grafikonja az alábbi halmaz: G_A : = $\{(x, Ax): x \in M = D_A\}$.

<u>Definíció</u>: egy $A:M \to Y$ lineáris operátort zártnak nevezünk, ha a $G_A \subset X \times Y$ zárt halmaz $X \times Y$ -ban. $X \times Y = \{(x,y): x \in X, y \in Y\}.$

Megjegyzés: a szorzattéren értelmezett műveletek:

- $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
- $\lambda(x, y) = (\lambda x, \lambda y)$
- $||(x, y)||_{X \times Y}$: = $\sqrt{||x||^2 + ||y||^2}$, $X \times Y$ normált tér tehát.

Legy enek X, Y normált terek, $A:M\to Y$ lineáris operátor, $D_A=M\subset X$. A zárt \Leftrightarrow ha minden $(x_j)_{j\in\mathbb{N}}$ M-beli

sorozatra, melyre $\lim(x_j) = x \in X$ és $\exists \lim(Ax_j) = y \in Y$, akkor $x \in M$ és y = Ax. Ezért ha A folytonos, akkor zárt is.

Példa zárt, lineáris, de nem folytonos (nem korlátos) operátorra: $X := C[0,1], M = D_A = C^1[0,1], A\phi := \phi'$, vagy is a differenciáloperátor. $(\phi_j) \to \phi$ egyenletesen (C[0,1]-beli konvergencia) és $(\phi'_j) \to \psi$ egyenletesen $(\phi_j) \to \psi$ egyen

<u>Zárt gráf tétel</u>: legy enek X, Y Banach terek, $A: X \to Y$ zárt, lineáris operátor (tehát $D_A = X$). Ekkor A folytonos (korlátos).

Bizonyítás: G_A : = {(x, Ax): $x \in D_A = X$ } $\subset X \times Y$ (utóbbi Banach-tér), ugyanis G_A zárt halmaz $X \times Y$ -ban, az $X \times Y$ vektortenérnek altere: $(x_1, Ax_1) + (x_2, Ax_2) = (x_1 + x_2, A(x_1 + x_2)) \in G_A$, $\lambda(x, Ax) = (\lambda x, A(\lambda x)) \in G_A$. G_A az $X \times Y$ Banach tér zárt lineáris altere $\Rightarrow G_A$ Banach-tér. Tekintsük a következő két operátort: U(x, Ax): = x, V(x, Ax): = x, ahol $(x, Ax) \in G_A$. Ekkor $U: G_A \to X$, $R_U = X$, $V: G_A \to Y$. Most U-ra alkalmazható a Banach tétel (az inverz operátor korlátosságáról): $D_U = G_A$, $R_U = X$, U korlátos és injektív $\Rightarrow U^{-1}: X \to G_A$ korlátos (folytonos), $A = VU^{-1}$, mert $U^{-1}x = (x, Ax)$, $V(U^{-1}(x)) = V(x, Ax) = Ax$. $V: G_A \to Y$ korlátos $\Rightarrow A = VU^{-1}$ is korlátos.

Sajátérték, reguláris érték, spektrum

Legy enek X, Y normált terek, $A:M\to Y$ lineáris operátor, $M\subset X$, $b\in Y$ adott elem.

- 1. Elsőfajú egyenlet: melyik az a $x \in M = D_A$: Ax = b?
- 2. Másodfajú egy enlet: legy en Y = X. Mely ik az a $x \in X$, mely re $(\lambda I A)x = b$, ahol $\lambda \in \mathbb{K}$, I az identitás. Ha $(\lambda I A)$ nem injektív, azaz nem létezik az inverzre, akkor λ -t az A operátor sajátértékének nevezzük. Ez azt jelenti, hogy $\exists x_0 \neq 0$: $(\lambda I A)x_0 = 0 \Leftrightarrow Ax_0 = \lambda x_0$.

<u>Definíció</u>: ha $\exists (\lambda I - A)^{-1}$, ez korlátos és $R_{\lambda I - A}$ értelmezési tartománya sűrű halmaz *X*-ben, akkor λ -t reguláris értéknek nevezzük.

<u>Állítás</u>: ha A zárt operátor, akkor reguláris érték esetén $D_{(\lambda I - A)^{-1}} = X$, azaz $R_{\lambda I - A} = X$.

Megjegyzés: ekkor reguláris értéke esetén $(\lambda I - A)x = b$ egyenletnek $\forall b \in X$ -hez $\exists !x$ megoldás, és x folytonosan függ b-től, azaz $x = \underbrace{(\lambda I - A)^{-1}b}_{\text{folytonos}}$

<u>Definíció</u>: az A operátor spektruma a reguláris értékek halmazának a komplementere az alaptestben. A

sajátértékek halmaza része a spektrumnak.

Korlátos lineáris operátorok reguláris értékei

<u>Tétel</u>: legy en X Banach tér! Legy en $A: X \to X$ korlátos lineáris operátor. Ekkor $r_{\sigma}(A) := \lim_{k \to \infty} ||A^k||^{1/k}$, ez létezik és véges. Ha $\lambda \in \mathbb{K}$ számra teljesül, hogy $|\lambda| > r_{\sigma}(A)$, akkor λ reguláris érték (A-ra nézve).

Definíció: $r_{\sigma}(A)$ számot az A korlátos lineáris operátor spektrálsugarának nevezzük.

Megjegyzések:

- $A, B \in L(X, X)$ esetén $||AB|| \le ||A|| ||B||$, ugyanis $||(AB)x|| = ||A(Bx)|| \le ||A|| \cdot ||Bx|| \le ||A|| \cdot ||B|| \cdot ||x||$ minden x-re, $\Rightarrow ||AB|| \le ||A|| ||B||$
- $||A^k|| \le ||A||^k$. $||A^k||^{1/k} \le (||A||^k)^{1/k} = ||A|| \Rightarrow r_{\sigma}(A) \le ||A||$. Következmény: ha $|\lambda| > ||A|| \Rightarrow \lambda$ reguláris érték.

<u>Lemma 1</u>: legy en Z Banach-tér, $z_k \in Z$. Ha $\sum_{k=1}^{\infty} \|z_k\| < \infty \Rightarrow \sum_{k=1}^{\infty} z_k$ konvergens Z Banach-téren.

Bizonyítás: legyen
$$s_j$$
: = $\sum_{k=1}^{j} z_k$ részlet összeg! $||s_j - s_l|| = \left\| \sum_{k=l+1}^{j} z_k \right\| \le \sum_{k=l+1}^{j} ||z_k|| < \varepsilon$, ha $l, j > j_0$, tehát teljesül

a Cauchy kritérium. M ivel Z Banach-tér, azaz teljes normált tér, ezért minden Cauchy-sorozatnak van határértéke Z-ben.

$$\underline{\text{Lemma 2}} \text{: tfh } B_k \in L(X,X), \ \sum_{k=1}^\infty B_k \text{ konvergens } L(X,X) \text{ -en. Ekkor } \forall C \in L(X,X) \text{ operatorra } C \sum_{k=1}^\infty B_k = \sum_{k=1}^\infty CB_k.$$

A bizonyítás egyszerű a részletösszegek segítségével.

<u>Tétel</u>: legy en X Banach-tér, $A: X \to X$ korlátos, lineáris operátor. Ekkor létezik és véges: $r_{\sigma}(A) := \lim_{k \to \infty} \|A^k\|^{1/k} . \text{ Továbbá } |\lambda| > r_{\sigma}(A) \Rightarrow \lambda \text{ reguláris érték},$

$$(\lambda I - A)^{-1} = \frac{1}{\lambda} \left(I - \frac{1}{\lambda} A \right)^{-1} = \frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{1}{\lambda^k} A^k = \sum_{k=0}^{\infty} \lambda^{-k-1} A^k$$
. Ez a sor – a Neumann-sor – $L(X, X)$ normában

konvergens.

Bizonyítás:

- 1. jelöljük: $r:=\inf\left\{\|A^k\|^{1/k}:k\in\mathbb{N}\right\}\geq 0$, ez véges. Belátjuk, hogy $r_\sigma(A)=\lim_{k\to\infty}\|A^k\|^{1/k}=r=\inf\left\{\|A^k\|^{1/k}:k\in\mathbb{N}\right\}\geq 0$. Legyen $\varepsilon>0$ tetszőleges, ekkor az alsó határ definíciójából következik, hogy $\exists m\in\mathbb{N}:r\leq\|A^m\|^{1/m}< r+\varepsilon$. Ezen m mellett válasszunk egy k>m számot, mely re k=pm+q, ahol $p\in\mathbb{N}$ és $0\leq q< m$ (ez k-nak m-vel vett maradékos osztása, q a maradéktag). Ekkor $A^k=A^{pm+q}=(A^p)^m\cdot A^q$, így $\|A^k\|\leq \|A^m\|^p\cdot \|A\|^q\Rightarrow \|A^k\|^{1/k}\leq \|A^m\|^{p/k}\cdot \|A\|^{q/k}\leq (r+\varepsilon)^{mp/k}\|A\|^{q/k}$. Vegyük észre, hogy $\lim_{k\to\infty}\frac{mp}{k}=1$, mert $\lim_{k\to\infty}\frac{q}{k}=0$, így a fenti egyenlőtlenség jobb oldala $\to r+\varepsilon$. Ebből következik, hogy $\exists k_0:k>k_0\Rightarrow r\leq \|A^k\|^{1/k}\leq r+2\varepsilon\Rightarrow \lim_{k\to\infty}\|A^k\|^{1/k}=r$.
- 2. Belátjuk, hogy a Neumann-sor L(X,X) -ben konvergens. Az 1. lemma szerint ehhez elég bizonyítani, hogy a sor tagjainak normáiból alkotott sor konvergens, azaz $\sum_{k=0}^{\infty} \|\lambda^{-k-1}A^k\| < \infty$. Válasszunk egy olyan r_1 számot, melyre $|\lambda| > r_1 > r_{\sigma}(A)$! Mivel $r_{\sigma}(A) = \lim_{k \to \infty} \|A^k\|^{1/k}$ és $r_1 > r_{\sigma}(A)$, ezért $\exists k_1 \in \mathbb{N}: k > k_1 \Rightarrow r_1 > \|A^k\|^{1/k}$, így $\|\lambda^{-k-1}A^k\| = \frac{1}{|\lambda|^{k+1}} \|A^k\| < \frac{1}{|\lambda|^{k+1}} r_1^k = \frac{1}{|\lambda|} \left(\frac{r_1}{|\lambda|}\right)^k$. Ezeket összegezve k szerint egy mértani sort kapunk, melynek kvóciense $0 < \frac{r_1}{|\lambda|} < 1$, így a sor konvergens, azaz

$$\sum_{k=1}^{\infty} \frac{1}{|\lambda|} \left(\frac{r_k}{|\lambda|} \right)^k < \infty.$$

3. jelöljük $B:=\sum_{k=0}^{\infty}\lambda^{-k-1}A^k\in L(X,X)$. Előbb láttuk, hogy ez konvergens. Ebből következni fog, hogy

 $(\lambda I - A)^{-1}$ létezik és egyenlő *B*-vel. A 2. lemmát felhasználva:

$$(\lambda I - A)B = \lambda B - AB = \lambda \sum_{k=0}^{\infty} \lambda^{-k-1} A^k - A \sum_{k=0}^{\infty} \lambda^{-k-1} A^k = \sum_{k=0}^{\infty} \lambda^{-k} A^k - \sum_{k=0}^{\infty} \lambda^{-k-1} A^{k+1} = I.$$

Hasonlóképpen, $B(\lambda I - A) = I$. Következtetésképpen $(\lambda I - A)^{-1}$ létezik és egyenlő B-vel.

Következmény: $|\lambda| > r_{\sigma}(A)$ esetén a $(\lambda I - A)x = b$ másodfajú egyenletnek létezik egyetlen x megoldása, mégpedig

$$x = (\lambda I - A)^{-1}b = \left(\sum_{k=0}^{\infty} \lambda^{-k-1}A^k\right)b = \sum_{k=0}^{\infty} \left(\lambda^{-k-1}A^k\right)b = \sum_{k=0}^{\infty} \lambda^{-k-1}\left(A^kb\right), \text{ ez a sor pedig } X \text{ normában}$$

konvergens. A sor összege így is írható: $\frac{1}{\lambda}b + \sum_{k=1}^{\infty} \lambda^{-k-1}A^kb$. A fentiek még inkább érvényesek, ha $|\lambda| > ||A||$.

Bizonyítható (de nem tesszük) tétel: $r_{\sigma}(A) = \sup\{|\lambda|: \lambda \in A_{spektrum}\}$.

Alkalmazás, példák.

1. példa: négyzetesen integrálható magú integráloperátorok.

Legy en $M \subset \mathbb{R}^n$ egy Lebesgue szerint mérhető halmaz, $X := L^2(M)$, ez ugy e Hilbert tér. Legy en $\mathcal{K} \in L^2(M \times M)$ az úgy nevezett magfüggvény, s $\phi \in L^2(M)$. Definiáljuk: $\psi(x) := \int_M \mathcal{K}(x,y)\phi(y)dy$.

<u>Állítás</u>: $ψ ∈ L^2(M)$, továbbá a K(φ): = ψ képlettel értelmezett $K:L^2(M) → L^2(M)$ operátor lineáris, korlátos. A K operátort négyzetesen integrálató magú integráloperátornak nevezzük.

Bizonyítás: a Cauchy-Schwarz egyenlőtlenség szerint majdnem minden x-re

$$|\psi(x)| \leq \int_{M} |\mathcal{K}(x,y)| \cdot |\phi(y)| dy \leq \left\{ \int_{M} |\mathcal{K}(x,y)|^{2} dy \right\}^{1/2} \cdot \left\{ \int_{M} |\phi(y)|^{2} dy \right\}^{1/2} \cdot M \text{ ivel}$$

$$\mathcal{K} \in L^{2}(M \times M) \Rightarrow \int_{M \times M} |\mathcal{K}(x,y)|^{2} dx dy < \infty. \text{ Fubini tételt használva} \int_{M} \int_{M} |\mathcal{K}(x,y)|^{2} dy dx < \infty, \text{ fgy}$$

$$|\psi(x)|^{2} \leq \int_{M} |\mathcal{K}(x,y)|^{2} dy \cdot \left[\int_{M} |\phi(y)|^{2} dy \right] < \infty. \text{ Integrálva:}$$

$$\int_{M} |\psi(x)|^{2} dx \leq \left[\int_{M} \int_{M} |\mathcal{K}(x,y)|^{2} dy dx \right] \cdot \left[\int_{M} |\phi(y)|^{2} dy \right] < \infty \Rightarrow \psi \in L^{2}(M). K \text{ linearitása triviális. } K \text{ korlátos,}$$

$$\text{ugy anis } ||K\phi||^{2}_{L^{2}(M)} = ||\psi||^{2}_{L^{2}(M)} \leq \left\{ \int_{M \times M} |\mathcal{K}(x,y)|^{2} dx dy \right\} \cdot ||\phi||^{2} \Rightarrow K \text{ korlátos, sőt:}$$

$$||K|| \leq \left\{ \int_{M \times M} |\mathcal{K}(x,y)|^{2} dx dy \right\}^{1/2} = ||\mathcal{K}||_{L^{2}(M \times M)}.$$

Következmény: $|\lambda| > \|\mathcal{K}\|_{L^2(M \times M)}$ esetén λ reguláris érték. Tudjuk, hogy $|\lambda| > r_{\sigma}(K)$ esetén λ reguláris érték és $(\lambda I - K)^{-1} = \sum_{k=0}^{\infty} \lambda^{-1-k} K^k$.

Kérdés: *K* integrál operátor hatvány ai hogy an számolhatók?

Bizony ítás:
$$\phi \in L^2(M)$$
 esetén $(P\phi)(x) = [K(L\phi)](x) = \int_M \mathcal{X}(x,t) \left[\int_M \mathcal{L}(t,y)\phi(y)dy \right] dt =$

$$= \int_M \underbrace{\left[\int_M \mathcal{X}(x,t)\mathcal{L}(t,y)dt \right]}_{\mathcal{P}(x,y)} \phi(y)dy, \text{ ahol Fubini-tételt ismét alkalmaztuk. } \mathcal{P} \in L^2(M \times M), \text{ merthogy}$$

$$|\mathcal{P}(x,y)| \leq \left\{ \int_M |\mathcal{X}(x,t)|^2 dt \right\}^{1/2} \left\{ \int_M |\mathcal{L}(t,y)|^2 dy \right\}^{1/2}, \text{ fgy integrálva:}$$

$$\int_{M\times M} \left| \mathcal{P}(x,y) \right|^2 dx dy \leq \underbrace{\int_M \left[\int_M \left| \mathcal{K}(x,t) \right|^2 dt \right] dx}_{\leq \infty} \cdot \underbrace{\int_M \left[\int_M \left| \mathcal{L}(t,y) \right|^2 dt \right] dy}_{\leq \infty} < \infty.$$

Következmény: $(K^j\phi)(x) = \int_M \mathcal{X}_j(x,y)\phi(y)dy$, j = 1,2,..., ahol $\mathcal{X}_1 := \mathcal{X}$, $\mathcal{X}_2(x,y) = \int_M \mathcal{X}(x,t)\mathcal{X}_1(t,y)dt$.

$$\mathcal{K}_{j}(x,y) = \int_{M} \mathcal{K}(x,t) \mathcal{K}_{j-1}(t,y) dt. \text{ Ebből következik, hogy } (\lambda I - K)^{-1} b = \sum_{j=0}^{\infty} \lambda^{-j-1} K^{j} b.$$

$$\left[(\lambda I - K)^{-1} b \right](x) = \left[\sum_{j=0}^{\infty} \lambda^{-j-1} K^{j} b \right](x) = \sum_{j=0}^{\infty} \lambda^{-j-1} \left(K^{j} b \right)(x) = \frac{b(x)}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) b(y) dy \stackrel{?}{=} \frac{b(x)}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) b(y) dy \stackrel{?}{=} \frac{b(x)}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) b(y) dy \stackrel{?}{=} \frac{b(x)}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) b(y) dy \stackrel{?}{=} \frac{b(x)}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) b(y) dy \stackrel{?}{=} \frac{b(x)}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) b(y) dy \stackrel{?}{=} \frac{b(x)}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) dy \frac{\partial x}{\partial x} dx + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) dy \frac{\partial x}{\partial x} dx + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) dy \frac{\partial x}{\partial x} dx + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) dy \frac{\partial x}{\partial x} dx + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) dy \frac{\partial x}{\partial x} dx + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) dy \frac{\partial x}{\partial x} dx + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) dx$$

$$= \frac{b(x)}{\lambda} + \int_{M} \left[\sum_{j=1}^{\infty} \lambda^{-j-1} \mathcal{K}_{j}(x,y) \right] b(y) dy. \text{ A sor } L^{2}(M) \text{ normában konvergál. Az egyenlőséget a következő órán}$$

$$\in L^{2}(M \times M)$$

látjuk be.

A korábbiak szerint $(\lambda I - A)x = b$ egy enletnek van egy értelmű megoldása x-re és $x = \sum_{k=0}^{\infty} \lambda^{-k-1} \left(A^k b \right)$, ha λ

reguláris érték, ugyanis ekkor a jobb oldal konvergens $X \ni x$ -ben.

Az előző példában $X \colon = L^2(M)$ volt, (ahol $M \subset \mathbb{R}^n$ mérhető halmaz), $\mathcal{K} \in L^2(M \times M)$,

$$\psi(x)$$
: = $(K\phi)(x) = \int_M \mathcal{K}(x, y)\phi(y)dy$ ahol $K:L^2(M) \to L^2(M)$ korlátos lineáris operátor és

$$r_{\sigma}(K) \le ||K|| \le ||\mathcal{K}||_{L^{2}(M \times M)}.$$

 $(\lambda I - K)\phi = b, b \in L^2(M)$ adott esetén mi a megoldás $\phi \in L^2(M)$ -re? Az egyenlet ekvivalens:

$$\lambda \phi(x) - \int_M \mathcal{K}(x, y) \phi(y) dy = b(x)$$
 majdnem minden $x \in M$ -re. Ha

$$|\lambda| > r_{\sigma}(K) \Rightarrow \phi = \sum_{j=0}^{\infty} \lambda^{-j-1} K^{j} b = \frac{b}{\lambda} + \sum_{j=1}^{\infty} \lambda^{-j-1} K^{j} b. \left(K^{j} b \right)(x) = \int_{M} \mathcal{K}_{j}(x, y) b(y) dy,$$

$$\mathcal{K}_{j}(x,y) = \int_{M} \mathcal{K}_{j-1}(x,t) \mathcal{K}(t,y) dt$$
 és $\mathcal{K}_{1} = \mathcal{K}$. Így

$$\phi(x) = \frac{b(x)}{x} + \sum_{j=1}^{\infty} \lambda^{-j-1} \int_{M} \mathcal{X}_{j}(x, y) b(y) dy = \frac{b(x)}{\lambda} + \int_{M} \left[\sum_{j=1}^{\infty} \lambda^{-j-1} \mathcal{X}_{j}(x, y) \right] b(y) dy. \text{ A sor } L^{2}(M \times M)$$

 $R_{\lambda}(x,y) \in L^2(M \times M)$ rezolv. op magfgve

-ben konvergens, ha $|\lambda| > r_{\sigma}(\mathcal{K})$.

A bizonyítás alapja: $\mathcal{K}_j(x,y) = \int_M \mathcal{K}_{j-1}(x,t) \mathcal{K}(t,y) dt \Rightarrow K^{j-1}$ operátor alkalmazva $t \mapsto \mathcal{K}(t,y)$ függvényre (y rögzített):

$$\left\{ \int_{M} \left| \mathcal{X}_{j}(x,y) \right|^{2} dx \right\}^{1/2} \leq \left\| \mathcal{K}^{j-1} \right\| \left\{ \int_{M} \left| \mathcal{X}(t,y) \right|^{2} dt \right\}^{1/2} \Rightarrow \int_{M} \left| \mathcal{X}_{j}(x,y) \right|^{2} dx \leq \left\| K^{j-1} \right\|^{2} \int_{M} \left| \mathcal{K}(t,y) \right|^{2} dt.$$
Integrálva y szerint:
$$\int_{M \times M} \left| \mathcal{X}_{j}(x,y) \right|^{2} dx dy \leq \left\| K^{j-1} \right\|^{2} \int_{M \times M} \left| \mathcal{K}(t,y) \right|^{2} dt dy.$$

$$\int_{M\times M} \frac{1}{|\lambda|^{2(j+1)}} \left| \mathcal{K}_{j}(x,y) \right|^{2} dx dy \leq \underbrace{\frac{1}{|\lambda|^{2(j+1)}}}_{\sum_{j=1}^{\infty} \operatorname{sorkonv.ha} |\lambda| > r_{\sigma}(K)}^{1} \cdot \left\| \mathcal{K} \right\|_{L^{2}(M\times M)}^{2}, \text{ fgy a bal oldalb\'ol k\'epzett számsor (ami$$

 ≥ 0) is konvergens.

2. példa: folytonos magú integráloperátorok.

Legy en $\Omega\subset\mathbb{R}^n$ korlátos tartomány (azaz nyílt és összefüggő), $X:=C\left(\overline{\Omega}\right),\overline{\Omega}\to\mathbb{K}$ folytonos függvények (a felülvonás a lezárást jelenti), tehát $C\left(\overline{\Omega}\right)$ az Ω korlátos tartomány lezárásán értelmezett folytonos függvények tere a $\|\phi\|=\sup_{\Omega}|\phi|$ normával. Legy en $\mathcal{K}\in C\left(\overline{\Omega}\times\overline{\Omega}\right)$, $\psi(x):=(K\phi)(x):=\int_{\overline{\Omega}}\mathcal{K}(x,y)\phi(y)dy$.

<u>Állítás</u>: $K:C(\overline{\Omega}) \to C(\overline{\Omega})$ korlátos, lineáris operátor.

Bizony ítás:
$$|\psi(x)| = \left| \int_{\overline{\Omega}} \mathcal{K}(x, y) \phi(y) dy \right| \le \int_{\overline{\Omega}} |\mathcal{K}(x, y)| \cdot |\phi(y)| dy \le \|\phi\| \int_{\overline{\Omega}} |\mathcal{K}(x, y)| dy \le \|\phi\| \sup_{x \in \overline{\Omega}} \int_{\overline{\Omega}} |\mathcal{K}(x, y)| dy.$$
 Itt is igaz: $(K^j \phi)(x) = \int_{\overline{\Omega}} \mathcal{K}_j(x, y) \phi(y) dy.$ $\mathcal{K}_j(x, y) = \int_{\overline{\Omega}} \mathcal{K}_{j-1}(x, t) \mathcal{K}(t, y) dt,$ K_j folytonos.

3. példa

Az előbbi spec esete: $\overline{\Omega} = [a,b] \subset \mathbb{R}$, ekkor $\mathcal{K} \in C([a,b] \times [a,b])$, továbbá $\mathcal{K}(x,y) = 0$, ha y > x.

$$(K\phi)(x) := \int_{a}^{b} \mathcal{K}(x, y)\phi(y)dy = \int_{a}^{x} \mathcal{K}(x, y)\phi(y)dy \text{ Voltera típusú operátor. Erre is igaz, hogy } \mathcal{K}: C[a, b] \to C[a, b]$$

folytonos lineáris operátor.

<u>Állítás</u>: $r_{\sigma}(K) = 0$, így $\lambda \neq 0$ esetén λ reguláris érték, azaz létezik egyértelmű megoldása a

$$\lambda \phi(x) - \int_{a}^{x} \mathcal{K}(x, y) \phi(y) dy = b(x)$$
 másodfajú egyenletlnek bármely folytonos $b(x)$ esetén.

Bizonyítás:
$$\mathcal{K}_{j}(x,y) = \int_{a}^{b} \mathcal{K}_{j-1}(x,t)\mathcal{K}(t,y)dt$$
, speciálisan $\mathcal{K}_{2}(x,y) = \int_{a}^{b} \underbrace{\mathcal{K}(x,t)\mathcal{K}(t,y)dt}_{0 \text{ ha } t > x0 \text{ ha } y > t} = \int_{v}^{x} \mathcal{K}(x,t)\mathcal{K}(t,y)dt$,

mert csak $y \le t \le x$ esetén nem 0 az integrandus. Így $\mathcal{K}_2(x,y) = 0$, ha y > x. $\mathcal{K}_3(x,y) = \int\limits_y^x \mathcal{K}_2(x,t)\mathcal{K}(t,y)dt = 0$

ha y > x. Ekkor $||K|| \le \sup_{x \in [a,b]} \int_{a}^{b} |\mathcal{K}(x,y)| dy \le \alpha(b-a)$, ugy anis $\mathcal{K} \in C([a,b] \times [a,b]) \Rightarrow \mathcal{K}$ korlátos és így

 $|\mathcal{K}(x, y)| \le \alpha, \quad \forall x, y \in [a, b]$.

$$||K^2|| \le \sup_{x \in [a,b]} \int_a^b |\mathcal{K}_2(x,y)| dy = \sup_{x \in [a,b]} \int_a^x |\mathcal{K}_2(x,y)| dy$$
. Az integrandusra

$$|\mathcal{K}_2(x,y)| = \left| \int_{y}^{x} \mathcal{K}(x,t)\mathcal{K}(t,y)dt \right| \le \int_{y}^{x} \underbrace{|\mathcal{K}(x,t)|}_{<\alpha} \underbrace{|\mathcal{K}(t,y)|}_{<\alpha} dt \le \alpha^2(x-y) \text{ ha } x > y. \text{ Így}$$

$$||K^2|| \le \sup_{x \in [a,b]} \int_a^x |\mathcal{K}_2(x,y)| dy \le \sup_{x \in [a,b]} \int_a^x \alpha^2(x-y) dy =$$

$$= \alpha^2 \sup_{x \in [a,b]} \left[-\frac{(x-y)^2}{2} \right]_{y=a}^x = \alpha^2 \sup_{x \in [a,b]} \frac{(x-a)^2}{2} = \alpha^2 \frac{(b-a)^2}{2}.$$

$$\|K^3\| \text{ -re hasonló módon járunk el. Ekkor } |\mathcal{K}_3(x,y)| = \left|\int\limits_y^x \mathcal{K}(x,t)\mathcal{K}_2(t,y)dt\right| \leq \int\limits_y^x \underbrace{|\mathcal{K}(x,t)||\mathcal{K}_2(t,y)|dt}_{\leq \alpha} \leq \alpha^2 \frac{(x-y)^2}{2}.$$

Így
$$||K^3|| \le \sup_{x \in [a,b]} \int_a^x |\mathcal{X}_3(x,y)| dy \le \sup_{x \in [a,b]} \int_a^x \alpha^3 \frac{(x-y)^2}{2} dy = \alpha^3 \sup_{x \in [a,b]} \frac{(x-a)^3}{3!} \le \alpha^3 \frac{(b-a)^3}{3!}$$
. Teljes indukcióval

bizonyítható, hogy $||K^j|| \le \alpha^j \frac{(b-a)^j}{j!} \Rightarrow ||K^j||^{1/j} = \alpha \frac{b-a}{(j!)^{1/j}} \to 0$, ha $j \to \infty$.

Hilbert tér operátorai

Az adjungált operátor

Legy en X Hilbert tér, $A:D_A \to X$ lineáris operátor, ahol D_A az A-nak az értelmezési tartománya, $D_A \subset X$, $y \in X$ elem.

Kérdés: létezik-e illetve hány $y^* \in X$ létezik, melyre $\langle Ax, y \rangle = \langle x, y^* \rangle$, $\forall x \in D_A$ esetén? Mi az egyértelműség feltétele?

<u>Állítás</u>: legfeljebb egy y^* létezik $\Leftrightarrow \overline{D_A} = X$, vagy is ha az értelmezési tartomány sűrű X-ben.

Bizonyítás: legfeljebb egy y^* létezik \Leftrightarrow hogy ha $\langle x, y^* \rangle = \langle x, \widetilde{y} \rangle$, $\forall x \in D_A$ -ból következik, hogy $y^* = \widetilde{y}$. $\langle x, y^* \rangle = \langle x, \widetilde{y} \rangle$, $\forall x \in D_A$ pontosan azt jelenti, hogy $\langle x, y^* - \widetilde{y} \rangle = 0$, $\forall x \in D_A$. Ebből következik: $y^* = \widetilde{y} \Leftrightarrow \overline{D_A} = X$. (Felhasználjuk, hogy a skalárszorzat folytonosan függ a tényezőktől.)

<u>Definíció</u>: legy en X Hilbert tér, $A:D_A \to X$ lineáris operátor, $\overline{D_A} = X$. Ekkor A operátor adjungáltját, A^* operátor így értelmezzük: $D_{A^*} := \{y \in X : \exists y^* \in X : \langle Ax, y \rangle = \langle x, y^* \rangle \ \forall x \in D_A \}$ és $A^*(y) := y^*$.

Megjegyzés: $0 \in D_{A^*}$, ugyanis $\langle Ax, 0 \rangle = \langle x, 0 \rangle = 0$, $\forall x \in D_A$.

Állítás: A* lineáris operátor.

Bizony ítás: legy en $y_1, y_2 \in D_{A^*}$! Ekkor $\langle Ax, y_1 \rangle = \langle x, A^*(y_1) \rangle$, $\forall x \in D_A$ és $\langle Ax, y_2 \rangle = \langle x, A^*(y_2) \rangle$, $\forall x \in D_A$. Így $\langle Ax, y_1 \rangle + \langle Ax, y_2 \rangle = \langle x, A^*(y_1) \rangle + \langle x, A^*(y_2) \rangle$. $\langle Ax, y_1 + y_2 \rangle = \langle x, A^*(y_1) + A^*(y_2) \rangle$, $\forall x \in D_A$. Ebből következik, hogy $A^*(y_1 + y_2) = A^*(y_1) + A^*(y_2)$. Hasonlóan igazolható $A^*(\lambda g) = \lambda A^*(g)$.

<u>Tétel</u>: legy en $A: X \to X$ korlátos lineáris operátor. Ekkor $A^*: X \to X$ korlátos lineáris operátor és $||A^*|| = ||A||$.

Bizony ítás: tekintsünk tetszőleges, rögzített $y \in X$ elemet! Ekkor $f(x) := \langle Ax, y \rangle$, f lineáris funkcionál korlátos is: $|f(x)| = |\langle Ax, y \rangle| \le ||Ax|| \cdot ||y|| \le ||A|| \cdot ||x|| \cdot ||y|| = (||A||||y||) \cdot ||x||$, így $||f|| \le ||A|| \cdot ||y||$. A Riesz-tételből most következik, hogy $\exists ! y^* \in X : f(x) = \langle x, y^* \rangle$, azaz $\langle Ax, y \rangle = \langle x, y^* \rangle$, $\forall x \in X$ -re. Így $D_{A^*} = X$, $A^*y = y^*$. Továbbá $||A^*y|| = ||y^*|| = ||f|| \le ||A|| \cdot ||y||$, ezért A^* korlátos és $||A^*|| \le ||A||$. Az egy enlőség abból fog következni, hogy $(A^*)^* = A \Rightarrow ||A|| = ||(A^*)^*|| \le ||A^*||$.

Legy en $A: X \to X$ korlátos lineáris operátor! Láttuk már, hogy $A^*: X \to X$ operátor korlátos és lineáris, és $\|A^*\| \le \|A\|$.

<u>Tétel</u>: legy enek $A, B: X \rightarrow X$ korlátos lineáris operátor! Ekkor

- 1. $(A + B)^* = A^* + B^*$
- 2. $(\lambda A)^* = \overline{\lambda} A^*$
- 3. $(A^*)^* = A$
- 4. $I = I^*, 0^* = 0$

5. $(AB)^* = B^*A^*$.

Bizonyítás: legyenek $x, y \in X$!

- 1. $\langle (A+B)x, y \rangle = \langle Ax + Bx, y \rangle = \langle Ax, y \rangle + \langle Bx, y \rangle = \langle x, A^*y \rangle + \langle x, B^*y \rangle =$ = $\langle x, A^*y + B^*y \rangle = \langle x, (A^* + B^*)y \rangle$
- 3. $\langle Ax, y \rangle = \langle x, A^*y \rangle = \overline{\langle A^*y, x \rangle} = \overline{\langle y, (A^*)^*x \rangle} = \langle (A^*)^*x, y \rangle$, tehát $Ax = (A^*)^*x$, $\forall x \in X \Rightarrow A = (A^*)^*$, így $\|A^*\| \le \|(A^*)^*\| = \|A\|$, így az előző tétellel együtt: $\|A\| = \|A^*\|$.
- 5. $\langle x, (AB)^* y \rangle = \langle ABx, y \rangle = \langle Bx, A^* y \rangle = \langle x, B^* A^* y \rangle$

Megjegyzés: mi a helyezet a lineáris operátorok esetén (ha nem korlátos)? $D_A, D_B \subset X$, $\overline{D_A} = \overline{D_B} = X$.

Jelölés: ha $A^*x = Ax$, $\forall x \in D_A$, $D_A \subset D_{A^*}$, akkor A^* kiterjesztése A-nak s ezt így jelöljük: $A \subset A^*$. Ezzel a jelöléssel: $(A+B)^* \supset A^* + B^*$ és $D_{A^*+B^*} = D_{A^*} \cap D_{B^*}$. Ugyanis $\forall y \in (D_{A^*} \cap D_{B^*})$ esetén $\langle (A+B)x, y \rangle = \langle x, (A^*+B^*)y \rangle$, $\forall x \in (D_A \cap D_B)$.

Továbbá $(\lambda A)^* = \overline{\lambda} A^*, (AB)^* \supset B^*A^*, (A^*)^* \supset A$ és 1 $A \subset B \Rightarrow A^* \supset B^*$.

Példák:

 $X:=\mathbb{K}^n$. Tudjuk, hogy ekkor minden lineáris operátor korlátos. $A:\mathbb{K}^n \to \mathbb{K}^n$ lineáris korlátos operátor. Tudjuk, hogy A reprezentálható egy \mathscr{A} (valós vagy komplex elemekből alkotott), $n \times n$ -es mátrixszal úgy, hogy $\mathscr{A}x=Ax$. Ekkor $A^*:\mathbb{K}^n \to \mathbb{K}^n$ korlátos lineáris operátor. Kérdés: mi a lesz ennek a mátrixa?

$$\mathcal{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, a_{jk} \in \mathbb{K}. \text{ Ekkor } x, y \in \mathbb{K}^n \text{ eset\'en}$$

$$\langle \mathcal{A}x, y \rangle = \sum_{j=1}^{n} \left[\sum_{k=1}^{n} a_{jk} x_{k} \right] \overline{y_{j}} = \sum_{k=1}^{n} x_{k} \left[\sum_{j=1}^{n} a_{jk} \overline{y_{j}} \right] = \sum_{k=1}^{n} x_{k} \left[\sum_{j=1}^{n} \overline{a_{jk}} y_{j} \right] = \sum_{k=1}^{n} x_{k} \left[\sum_{j=1}^{n} a_{kj}^{*} y_{j} \right] = \langle x, \mathcal{A}^{*} y \rangle, \text{ vagy is}$$

$$a_{kj}^* = \overline{a_{jk}}$$
, vagy is $\mathscr{A}^* = \begin{pmatrix} a_{11}^* & \cdots & a_{1n}^* \\ \vdots & \ddots & \vdots \\ a_{n1}^* & \cdots & a_{nn}^* \end{pmatrix} = \begin{pmatrix} \overline{a_{11}} & \cdots & \overline{a_{n1}} \\ \vdots & \ddots & \vdots \\ \overline{a_{1n}} & \cdots & \overline{a_{nn}} \end{pmatrix}$.

Négyzetesen integrálható magú integrál operátorok valós vagy komplex függvényeken

Legy en X: = $L^2(M)$, $M \subset \mathbb{R}^n$ mérhető halmaz, $\mathcal{K} \in L^2(M \times M)$, $(K\phi)(x)$: = $\int_M \mathcal{K}(x, y)\phi(y)dy$. Tudjuk, hogy K: $L^2(M) \to L^2(M)$ lineáris operátor, node mi K^* ? Legy en $\phi, \psi \in L^2(M)$, ekkor

$$\langle K\phi, \psi \rangle = \int_{M} (K\phi)(x)\overline{\psi(x)}dx = \int_{M} \left[\int_{M} \mathcal{K}(x, y)\phi(y)dy \right] \overline{\psi(x)}dx, \text{ ami a Fubini-tétel alkalmazásával}$$

$$= \int_{M} \phi(y) \left[\int_{M} \mathcal{K}(x, y)\overline{\psi(x)}dx \right] dy = \int_{M} \phi(y) \left[\int_{M} \overline{\mathcal{K}(x, y)}\psi(x)dx \right] dy = \text{ (felcserélve } x\text{-t és } y\text{-t)}$$

$$= \int_{M} \phi(x) \left[\overline{\int_{M} \overline{\mathcal{K}(y, x)} \psi(y)dy} \right] dx = \int_{M} \phi(x) \left[\overline{\int_{M} \mathcal{K}^{*}(x, y)\psi(y)dx} \right] dy. \text{ A bevezetett jelöléssel konzekvensen}$$

$$(K^{*}\psi)(x) := \int_{M} \mathcal{K}^{*}(x, y)\psi(y)dy, \text{ így az korábbiakkal együtt: } \langle K\phi, \psi \rangle = \int_{M} \phi(x) \overline{(K^{*}\psi)(x)}dx = \langle \phi, K^{*}\psi \rangle.$$

<u>Állítás</u>: tetszőleges A lineáris operátor esetén (melyre $D_A \subset X$, $\overline{D_A} = X$) A^* zárt operátor.

Bizony ítás: azt kellene belátni, hogy ha $y_j \in D_{A^*}$, $\left(y_j\right)_{j \in \mathbb{N}} \to y$ X-ben, továbbá $\left(A^*y_j\right) \to z$ X-ben $\Rightarrow y \in D_{A^*}$ és $A^*y = z$. Tudtuk, hogy $\langle Ax, y_j \rangle = \langle x, A^*y_j \rangle$, $\forall x \in D_A$, $\forall j$, így $j \to \infty$ esetén $\langle Ax, y \rangle = \langle x, z \rangle$, $\forall x \in D_A$. Ez azt jelenti, hogy $y \in D_{A^*}$ és $z = A^*y$.

<u>Tétel</u>: legy en X Hilbert tér, $A: X \to X$ korlátos lineáris operátor és $\lambda \in \mathbb{K}$. Ekkor $\overline{R_{(\lambda I - A)}}^{\perp} = S_{\overline{\lambda}}(A^*) := \{x \in X : (\overline{\lambda}I - A^*)x = 0\}$, ahol R az értékkészletet jelöli.

Bizonyítás: világos, hogy $R_{(\lambda I-A)}$ lineáris altér, ezért $\overline{R_{(\lambda I-A)}}$ zárt altér. Másrészt $S_{\bar{\lambda}}(A^*)$ is zárt altér. Az $S_{\bar{\lambda}}(A^*)$ halmaz azért zárt, mert A^* folytonos lineáris operátor.

- Először tfh $y \in \overline{R_{\lambda I A}}^{\perp}$, ekkor $0 = \langle \underbrace{(\lambda I A)x}_{\in R_{\lambda I A}}, y \rangle = \langle x, (\lambda I A)^* y \rangle$, ez igaz $\forall x \in X \Rightarrow \underbrace{(\lambda I A)^*}_{= \overline{\lambda} I A^*} y = 0$, vagy is $y \in S_{\overline{\lambda}}(A^*)$.
- tfh $y \in S_{\overline{\lambda}}(A^*)$,azaz $(\overline{\lambda}I A^*)y = 0$, $\forall x \in X$,így $\langle (\lambda I A)x, y \rangle = \langle x, (\lambda I A)^*y \rangle = 0$, vagy is $y \perp R_{\lambda I A}$ minden elemére $\Rightarrow y \perp \overline{R_{\lambda I A}}$ minden elemére.

Megjegyzés: spec eset, mikor $R_{\lambda I-A}$ zárt halmaz, azaz $R_{\lambda I-A} = \overline{R_{\lambda I-A}}$. Ekkor a fenti tételből következik: $(\lambda I-A)x = b$ másodfajú egyenletnek létezik $x \in X$ megoldása pontosan akkor, ha $b \in R_{\lambda I-A} = S_{\overline{\lambda}}(A^*)^{\perp}$, azaz $\langle b,y \rangle = 0$ a $(\lambda I-A)^*y = 0$ egyenlet $\forall y \in X$ megoldására. Később látni fogjuk, hogy ha A ún. kompakt lineáris operátor, akkor $\lambda \neq 0$ esetén az $R_{\lambda I-A}$ zárt halmaz.

Szimmetrikus és önadjungált operátorok

<u>**Definíció**</u>: legy en X Hilbert tér, $D_A \subset X$ és $\overline{D_A} = X$ és $A:D_A \to X$ lineáris operátor. Ekkor A-t önadjungáltnak nevezzük, ha $A^* = A$ (ekkor ugyanott vannak értelmezve, $D_{A^*} = D_A$).

<u>Definíció</u>: legy en X Hilbert tér, $D_A \subset X$ és $\overline{D_A} = X$ és $A:D_A \to X$ lineáris operátor. Ekkor A-t szimmetrikusnak

nevezzük, ha $A \subset A^*$. Tehát minden önadjungált operátor egyúttal szimmetrikus is.

Megjegyzés: ekvivalens definíció: A szimmetrikus, ha $\langle Ax, y \rangle = \langle x, Ay \rangle$, $\forall x, y \in D_A$.

Példa: ha $X = \mathbb{K}^n$, akkor $A : \mathbb{K}^n \to \mathbb{K}^n$ -nak megfelel egy \mathscr{A} mátrix. Tudjuk, hogy A^* mátrixa \mathscr{A}^* , melynek elemei $a_{jk}^* = \overline{a_{kj}}$. Ekkor A önadjungált $\Leftrightarrow a_{jk}^* = a_{jk}$, azaz $a_{jk} = \overline{a_{kj}}$.

Példa: legy en $X := L^2(M)$, $M \subset \mathbb{R}^n$ mérhető halmaz, $(K\phi)(x) := \int_M \mathcal{K}(x,y)\phi(y)dy$ korlátos operátor, ahol $\mathcal{K} \in L^2(M \times M)$. Ekkor $(K^*\phi)(x) = \int_M \mathcal{K}^*(x,y)\phi(y)dy$, vagy is $\mathcal{K}^*(x,y) = \overline{\mathcal{K}(y,x)}$. K önadjugnált pontosan akkor, ha $\mathcal{K}(x,y) = \overline{\mathcal{K}(y,x)}$ majdnem minden $x,y \in M$.

Példa: legy en X: = $L^2(0,1)$, $(A\phi)(t)$: = $\phi''(t)$, midőn $t \in [0,1]$, vagy is legy en A a második derivált operátor (ami lineáris)! D_A : = $\{\phi \in C^2[0,1]: \phi(0) = 0, \phi(1) = 0\}$, erre belátható, hogy $\overline{D_A} = L^2(0,1)$.

Állítás: A szimmetrikus operátor (de nem önadjungált). Ennek igazolásához tekintsünk $\phi, \psi \in D_A$ tetszőleges függvényeket, ekkor parciális integrálással:

$$\langle A\phi, \psi \rangle = \int_{0}^{1} (A\phi(t))\psi(t)dt = \int_{0}^{1} \phi^{''}(t)\psi(t)dt = \left[\phi^{'}(t)\psi(t)\right]_{0}^{1} - \int_{0}^{1} \phi^{'}(t)\psi^{'}(t)dt = \int_{0}^{1} \phi^{''}(t)\psi(t)dt = \left[\phi^{'}(t)\psi(t)\right]_{0}^{1} - \int_{0}^{1} \phi^{''}(t)\psi(t)dt = \left[\phi^{'}(t)\psi(t)\right]_{0}^{1} - \int_{0}^{1} \phi^{''}(t)\psi(t)dt = \left[\phi^{''}(t)\psi(t)\right]_{0}^{1} - \left[\phi^{''}(t)\psi(t)\right]_{0}^{1} - \left[\phi^{''}(t)\psi(t)\right]_{0}^{1} - \left[\phi^{''}(t)\psi(t)\right]_{0}^{1} + \left[\phi^{''}(t)\psi(t)\right]_{0}^{1} + \left[\phi^{''}(t)\psi(t)\right]_{0}^{1} - \left[\phi^{''}(t)\psi(t)\right]_{0}^{1} + \left[\phi^{''}(t)\psi(t)\right]_$$

$$= -\left[\phi(y)\psi'(t)\right]_0^1 + \int_0^1 \phi(t)\psi''(t)dt = \langle \phi, A\psi \rangle$$

<u>Állítás</u>: legy en X komp lex Hilbert tér! Ha $D_A \subset X$, $A:D_A \to X$ szimmetrikus operátor, akkor $\langle Ax, x \rangle$ értéke valós $\forall x \in \mathbb{D}_A$ esetén.

Bizonyítás: mivel A szimmetrikus, ezért $\langle Ax, x \rangle = \langle x, Ax \rangle$, $\forall x \in D_A$, másrészt a skaláris szorzat tulajdonságából következően: $\langle Ax, x \rangle = \overline{\langle x, Ax \rangle} \Rightarrow \langle x, Ax \rangle = \overline{\langle x, Ax \rangle} \Rightarrow \langle x, Ax \rangle$ valós, így $\langle Ax, x \rangle$ is valós.

Megjegyzés: bebizonyítható, hogy ha X komplex Hilbert tér és $\langle Ax, x \rangle$ valós $\forall x \in D_A \Rightarrow A$ szimmetrikus.

<u>Tétel</u>: legy en X Hilbert tér (lehet valós is). Ha $D_A \subset X$, $A:D_A \to X$ szimmetrikus operátor, akkor A minden sajátértéke valós és a különböző sajátértékekhez tartozó sajátelemek ortogonálisak.

Bizonyítás:

- tfh $Ax = \lambda x$ valamely $0 \neq x \in D_A$ elemre, $\lambda \in \mathbb{K}$. Ekkor $\Rightarrow \underbrace{\langle Ax, x \rangle}_{\text{valós}} = \langle \lambda x, x \rangle = \lambda ||x||^2$. A norma értéke valós, így a sajátérték is az, mert szorzatuk valós.
- tfh $Ax_1 = \lambda_1 x_1$, $Ax_2 = \lambda_2 x_2$ és $\lambda_1 \neq \lambda_2$ valós sajátértékek. Szorozzuk skalárisan jobbról előbbit x_2 -vel! $\langle Ax_1, x_2 \rangle = \langle \lambda_1 x_1, x_2 \rangle = \lambda_1 \langle x_1, x_2 \rangle$, illetve $\langle Ax_1, x_2 \rangle = \langle x_1, Ax_2 \rangle = \langle x_1, \lambda_2 x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle$, vagy is $\lambda_1 \langle x_1, x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle \Leftrightarrow (\lambda_1 \lambda_2) \langle x_1, x_2 \rangle = 0$, így mivel $\lambda_2 \neq \lambda_1 \Rightarrow \langle x_1, x_2 \rangle = 0$.

<u>Tétel</u>: legy en X Hilbert tér, $A: X \to X$ korlátos önadjungált operátor. Ekkor $||A|| = \sup\{|\langle Ax, x \rangle| : x \in X, ||x|| = 1\}$.

Bizonyítás: az operátor norma definíciója szerint $||A|| = \sup\{||Ax|| : x \in X, ||x|| = 1\}$. Ezért egyrészt a Cauchy-Schwarz egyenlőtlenségből $|\langle Ax, x \rangle| \le ||Ax|| \cdot ||x|| \le ||A|| \cdot ||x||^2 = ||A||$, ha ||x|| = 1. Jelöljük:

 α : = sup{ $|\langle Ax, x \rangle|$: $x \in X$, ||x|| = 1}. Az előbbiek szerint $\alpha \le ||A||$. Belátjuk a fordított egyenlőtlenséget.

Tetszőleges $x, y \in X$ elemekre

$$\langle A(x+y), x+y \rangle = \langle Ax + Ay, x+y \rangle = \langle Ax, x \rangle + \underbrace{\langle Ay, x \rangle}_{=\langle y, Ax \rangle = \overline{\langle Ax, y \rangle}} + \langle Ax, y \rangle + \langle Ay, y \rangle =$$

$$= \langle Ax, x \rangle + \langle Ay, y \rangle + 2\Re \langle Ax, y \rangle$$

Hasonlóképpen: $\langle A(x-y), x-y \rangle = \langle Ax, x \rangle + \langle Ay, y \rangle - 2\Re \langle Ax, y \rangle$. A kapott 1. egyenlőségből a 2-at kivonva:

$$4\Re\langle Ax,y\rangle = \langle A(x+y),x+y\rangle - \langle A(x-y),x-y\rangle \leq |\langle A(x+y),x+y\rangle| + |\langle A(x-y),x-y\rangle| \leq$$

$$\leq \alpha \|x + y\|^2 + \alpha \|x - y\|^2 = \alpha \left(\|x\|^2 + 2\langle x, y \rangle^2 + \|y\|^2 + \|x\|^2 - 2\langle x, y \rangle^2 + \|y\|^2 \right) \Rightarrow$$

$$\Rightarrow \Re\langle Ax, y \rangle \le \frac{\alpha}{2} \left(\|x\|^2 + \|y\|^2 \right).$$

Tetszőleges $\lambda > 0$ számra: $\underbrace{\|Ax\|^2}_{\in \mathbb{R}_0^+} = \langle Ax, Ax \rangle = \langle A(\lambda x), \underbrace{Ax/\lambda}_{:=f} \rangle = \underbrace{\langle Af, g \rangle}_{\geq 0} = \Re \langle Af, g \rangle \leq \frac{\alpha}{2} \left[\|f\|^2 + \|g\|^2 \right] = \Re \langle Af, g \rangle$

$$= \frac{\alpha}{2} \left[\|\lambda x\|^2 + \left\| \frac{Ax}{\lambda} \right\|^2 \right] = \frac{\alpha}{2} \left[\lambda^2 \|x\|^2 + \frac{\|Ax\|^2}{\lambda^2} \right]. \text{ V\'alasszuk: } \lambda^2 := \frac{\|Ax\|}{\|x\|}, \text{ ekkor } \lambda > 0 \text{ teljes\"ul (felt\'eve, hogy } Ax \neq 0 \text{)},$$

 $\text{és } \|Ax\|^2 \leq \frac{\alpha}{2} \left[\frac{\|Ax\|}{\|x\|} \|x\|^2 + \frac{\|x\|}{\|Ax\|} \|Ax\|^2 \right] = \frac{\alpha}{2} \left[\|Ax\| \cdot \|x\| + \|x\| \cdot \|Ax\| \right] = \alpha \|Ax\| \cdot \|x\|. \ \|Ax\| = 0 \text{ triviális esetet}$

kivéve osztva ||Ax|| > 0-val: $||Ax|| \le \alpha \cdot ||x||$. Ez igaz ||Ax|| = 0 esetén is persze. Tehát $||A|| \le \alpha$. Előbb azt kaptuk, hogy $\alpha \le ||A||$, így a mostanival együtt: $||A|| = \alpha$.

<u>Tétel</u> (bizonyítás nélkül): vezessük be M: = $\sup\{\langle Ax, x \rangle : x \in X, ||x|| = 1\}$ és m: = $\inf\{\langle Ax, x \rangle : x \in X, ||x|| = 1\}$. (Ekkor a fentiek miatt $[m, M] \subset [-||A||, ||A||]$, és $\max\{|m|, M\} = ||A||$). Az A önadjungált korlátos operátor spektruma $\subset [m, M]$, más szóval, ha $\lambda \in \mathbb{K}$ -ra $\lambda \notin [m, M] \Rightarrow \lambda$ reguláris érték A-ra.

Megjegyzés: azt eddig is tudtuk, hogy $|\lambda| > ||A||$ esetén λ reguláris érték (ha A korlátos). Azt is tudtuk, hogy ha A szimmetrikus és $\Im \lambda \neq 0 \Rightarrow \lambda$ nem lehet sajátérték.

<u>Definíció</u>: legy en $A:D_A \to X$ lineáris operátor, $D_A \subset X$, $\overline{\mathbb{D}_A} = X$. Ha $\langle Ax, x \rangle \geq 0$, $\forall x \in D_A$, akkor A-t pozitív

operátornak nevezzük (konzekvensen pozitív szemidefinitnek kéne nevezni).

<u>Állítás</u>: ha A pozitív, akkor A minden sajátértéke ≥ 0 .

Bizony ítás: $Ax = \lambda x \Rightarrow 0 \le \langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda ||x||^2 \Rightarrow \lambda \ge 0$, ha $||x||^2 \ne 0$.

Izometrikus és unitér operátorok

<u>Definíció</u>: legy en X Hilbert tér! Az $A: X \to X$ operátort izometrikusnak nevezzük, ha ||Ax|| = ||x||, $\forall x \in X$. Ekkor látható, hogy A korlátos és ||A|| = 1.

Állítás: ha A izometrikus, akkor távolság és skalárszorzattartó (szögtartó).

Bizonyítás:

- $\bullet ||Ax Ay|| = ||A(x y)|| = ||x y||.$
- Belátjuk a skalárszorzattartást valós *X* Hilbert tér esetén. $||x+y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$, $||x-y||^2 = ||x||^2 2\langle x, y \rangle + ||y||^2$. Ezeket egy másból kivonva: $||x+y||^2 ||x-y||^2 = 4\langle x, y \rangle \Rightarrow \langle x, y \rangle = \frac{||x+y||^2 ||x-y||^2}{4}$. Így $\langle Ax, Ay \rangle = \frac{1}{4} \left(||Ax + Ay||^2 ||Ax Ay||^2 \right) = \frac{1}{4} \left(||A(x+y)||^2 ||A(x-y)||^2 \right) = \frac{1}{4} \left(||x+y||^2 ||x-y||^2 \right) \Rightarrow \langle x, y \rangle = \langle Ax, Ay \rangle$.
- Komplex esetben $\langle x, y \rangle = \frac{1}{4} \left[\|x + y\|^2 \|x y\|^2 + i\|x + iy\|^2 i\|x iy\|^2 \right]$, így kicsit hosszabb a bizonyítás.

Következemény: ha $A: X \to X$ izometrikus operátor és $(x_1, x_2,...)$ ortonormált rendszer, akkor $(Ax_1, Ax_2,...)$ is ortonormált rendszer.

Kérdés: ha $(x_1, x_2,...)$ teljes ortonormált rendszer, akkor következik-e, hogy $(Ax_1, Ax_2,...)$ is teljes ortonormált rendszer? Általában sajnos nem.

Példa: legy en X végtelen dimenziós, szep arábilis Hilbert tér és $(x_1, x_2,...,x_k,...)$ teljes ortonormált rendszer.

Értelmezzük A-t! Egy
$$x \in X$$
 elemet fejtsük Fourier-sorba! $x = \sum_{k=1}^{\infty} c_k x_k = c_1 x_1 + c_2 x_2 + ...,$

$$Ax$$
: = $\sum_{k=1}^{\infty} c_k x_{k+1} = c_1 x_2 + c_2 x_3 + \dots$ Ez egy jól definiált lineáris operátor. Tudjuk, hogy

 $||Ax||^2 = \sum_{k=1}^{\infty} |c_k|^2 = ||x||^2$, tehát A izometrikus. Láthatjuk, hogy így $(Ax_1 = x_2, Ax_2 = x_3,...)$ nem teljes. Az is

kiolvasható A definíciójából, hogy $R_A = \overline{\mathcal{L}(x_2, x_3,...)}$ az X-nek valódi altere, így $R_A \neq X$.

<u>Definíció</u>: $A: X \to X$ izometrikus operátort unitérnek nevezzük, ha $R_A = X$.

<u>**Tétel**</u>: egy $A: X \to X$ korlátos operátor unitér $\Leftrightarrow \exists A^{-1} = A^*$.

Bizonyítás:

- \Rightarrow irány ba: tfh A unitér. Ekkor A korlátossága lévén A^* értelmezve van X-n, továbbá ||Ax|| = ||x||, $\forall x \in X \Rightarrow A$ injektív $\Rightarrow A^{-1}$ is létezik. Belátjuk, hogy $A^* = A^{-1}$. Egyrészt $D_{A^{-1}} = R_A = X$, mivel A unitér. Ekkor $\forall x, y \in X$ elemre $\langle x, y \rangle = \langle Ax, Ay \rangle = \langle x, A^*Ay \rangle \Rightarrow y = A^*Ay$, $\forall y \in X \Rightarrow A^*A = I \Rightarrow A^*AA^{-1} = A^{-1} \Rightarrow A^* = A^{-1}$
- \Leftarrow irány ba: tfh $A^* = A^{-1}$. Ekkor mivel $D_{A^*} = X \Rightarrow R_A = D_{A^{-1}} = X$, továbbá $\|Ax\|^2 = \langle Ax, Ax \rangle = \langle x, A^*Ax \rangle = \langle x, Ix \rangle = \|x\|^2$, tehát A izometrikus is.

Állítás: ha A unitér, akkor teljes ortonormált rendszer képe szintén teljes ortonormált rendszer.

11.23

Példák unitér operátorokra:

- 1. Triviális példa az identitás
- 2. $X: = \mathbb{K}^n$. Tudjuk, hogy egy $A: \mathbb{K}^n \to \mathbb{K}^n$ lineáris korlátos operátor megadható egy \mathscr{A} négyzetes mátrixszal,

$$\mathcal{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_n \end{pmatrix}, \mathcal{A}^* = (\overline{\mathbf{a}}_1^T, \overline{\mathbf{a}}_2^T, ..., \overline{\mathbf{a}}_n^T).$$

A leképzés unitér $\Leftrightarrow A^* = A^{-1} \Leftrightarrow AA^* = I = A^*A \Leftrightarrow \mathcal{AA}^* = \mathcal{F} = \mathcal{A}^*\mathcal{A}. \mathcal{AA}^*$ elemei:

$$\mathbf{a}_{j}\overline{\mathbf{a}}_{k}^{T} = \langle a_{j}, a_{k} \rangle_{\mathbb{K}^{n}} = \delta_{jk} = \begin{cases} 1 \text{ ha } j = k \\ 0 \text{ ha } j \neq k \end{cases}$$

A sorvektorok tehát ortonormáltak, belátható az $\mathcal{A}^* \mathcal{A} = \mathcal{F}$ egyenletből, hogy az oszlopvektorok is. Az ilyen – unitér operátorokat megadó – mátrixokat ortogonális mátrixoknak is nevezzük.

3. Fourier-operátor (Fourier-transzformáció): $X := L^2(\mathbb{R})$ Hilbert tér! Az \mathscr{F} fourier operátort így értelmezzük

az
$$\phi \in L^2(\mathbb{R}) \cap L^1(\mathbb{R}) \subset L^2(\mathbb{R})$$
 függvényeken: $[\mathcal{F}(\phi)](x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ixy} \phi(y) dy$. Látható, hogy ennek

csak akkor van értelme, ha $\phi(y)$ integrálható. Tudjuk, hogy $|e^{-ixy}\phi(y)| = |\phi(y)|$, mert $|e^{-ixy}| = 1$. $\phi \in L^2(\mathbb{R})$

esetén
$$[\mathcal{F}(\phi)](x) = \lim_{N \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-N}^{N} e^{-ixy} \phi(y) dy$$
 az $L^2(\mathbb{R})$ normával.

<u>Tétel</u>: az $\mathcal{F}:L^2(\mathbb{R})\to L^2(\mathbb{R})$ operátor unitér, $\mathcal{F}^{-1}=\mathcal{F}^*$ a következő képlettel adható meg:

$$\left[\mathcal{F}^{-1}(\psi)\right](y) = \lim_{N \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-N}^{N} e^{ixy} \psi(x) dx, \text{ ahol a limesz } L^{2}(\mathbb{R}) \text{ norma szerinti.}$$

Bizonyítás (vázlatos):

1. először értelmezzük ${\mathcal F}$ -et a következő spec. alakú lépcsős függvényeken:

$$\phi_{\alpha}(x) := \begin{cases} 1 & \text{ha } x \text{ 0 \'es } \alpha \text{ k\"oz\"ott van} \\ 0 & \text{egy\'ebk\'ent} \end{cases}.$$

Egy szerű számolással $(\mathcal{F}\phi_{\alpha})(x)=\frac{1}{\sqrt{2\pi}}\frac{1-e^{-i\alpha x}}{ix}$. Bevezetjük a \mathcal{G} operátort $\phi\in L^2(\mathbb{R})\cap L(\mathbb{R})$ függvényekre:

$$(\mathcal{G}\phi)(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ixy} \phi(y) dy. \text{ Hasonlóan adódik: } (\mathcal{G}\phi_{\alpha})(x) = \frac{1}{\sqrt{2\pi}} \frac{e^{i\alpha x} - 1}{x}. \text{ Állítás: tetszőleges } \phi_{\alpha}, \phi_{\beta}$$

esetén
$$\langle \mathcal{F}\phi_{\alpha}, \mathcal{F}\phi_{\beta} \rangle = \langle \phi_{\alpha}, \phi_{\beta} \rangle$$
, $\langle \mathcal{G}\phi_{\alpha}, \mathcal{G}\phi_{\beta} \rangle = \langle \phi_{\alpha}, \phi_{\beta} \rangle$ és $\langle \mathcal{F}\phi_{\alpha}, \phi_{\beta} \rangle = \langle \phi_{\alpha}, \mathcal{G}\phi_{\beta} \rangle$ is igaz.

- 2. Kiterjesztjük az állítást lépcsős függvényekre, amik láthatóan ilyen függvények lineárkombinációi.
- 3. A lépcsős függvények sűrűn vannak $L^2(\mathbb{R})$ -ben. Hasonló állítást kapok ezen lépcsős függvényekre. \mathscr{F} és \mathscr{G} -t a linearitás és korlátosság megtartásával egyértelműen kiterjeszthetjük $L^2(\mathbb{R})$ -re.
- 4. \mathscr{F} és \mathscr{G} képlete $L^2(\mathbb{R})$ -en megadandó.

Megjegyzés: \mathscr{F} operátor \mathbb{R}^n -ben: $(\mathscr{F}\phi)(x) = \frac{1}{(\sqrt{2\pi})^n} \int_{\mathbb{R}^n} e^{-i\langle x,y\rangle} \phi(y) dy$, ha $\phi \in L^2(\mathbb{R}^n) \cap L^1(\mathbb{R})$, ekkor \mathscr{F} unitér.

Véges rendű operátorok

<u>Definíció</u>: legy en X Hilbert tér! Egy $A:X \to X$ korlátos operátort véges rendűnek nevezünk, ha R_A véges dimenziós.

Példa: legy enek $\phi_1,...,\phi_m$ lineárisan függetlenek, akárcsak $\psi_1,\psi_2,...,\psi_m$, mind X-beli elemek! Az A operátort így értelmezzük: $A:X\to X$, $A(f):=\sum_{j=1}^m \langle f,\psi_j\rangle\phi_j$. Látható, hogy ez véges rendű. Világos, hogy A operátor lineáris,

$$R_A = \mathcal{L}(\phi_1, \phi_2, ..., \phi_m)$$
 véges dimenziós. A korlátos is: $||Af||_X \le \sum_{j=1}^m ||\langle f, \psi_j \rangle \phi_j|| = \sum_{j=1}^m |\langle f, \psi_j \rangle| \cdot ||\phi_j||$, melyre a

Cauchy-Schwarz szerint
$$\leq \sum_{j=1}^{m} \|f\|_{X} \cdot \|\psi_{j}\|_{X} \cdot \|\phi_{j}\|_{X} = \|f\| \cdot \sum_{j=1}^{m} \|\psi_{j}\|_{X} \cdot \|\phi_{j}\|_{X}$$

Állítás: legy en X Hilbert tér, $A: X \to X$ véges rendű operátor. Ekkor $\exists \phi_1, \phi_2, ..., \phi_m \in X$ lineárisan függetlenek és $\exists \psi_1, \psi_2, ..., \psi_m \in X$ lineárisan függetlenek a fentiek szerint, és A a fenti alakú.

Bizony ítás: R_A véges, m dimenziós lineáris altér. Legy enek $\phi_1, \phi_2, ..., \phi_m$ lineárisan független elemek, $\mathcal{L}(\phi_1, \phi_2, ..., \phi_m) = R_A$. Ezek választhatók úgy, hogy ortonormáltak legy enek (a Schmidt eljárással). Ekkor, ha $f \in X$, $Af = \sum_{i=1}^m c_i(f)\phi_i$. Ebben a c_i egy ütthatók egy értelműek, $c_i(f) = \langle Af, \phi_i \rangle$. Látjuk, hogy c_i lineáris

funkcionál, továbbá korlátos is, és $|c_j(f)| = |\langle Af, \phi_j \rangle| \le ||Af|| \cdot ||\phi_j|| \le ||A|| \cdot ||f||$. Riesz-tétel segítségével

$$\exists \ ! \psi_j \in X : c_j(f) = \langle f, \psi_j \rangle \Rightarrow Af = \sum_{j=1}^m c_j(f)\phi_j = \sum_{j=1}^m \langle f, \psi_j \rangle \phi_j. \text{ Nem neh\'ez belátni, hogy } \psi_1, \psi_2, ..., \psi_m \text{ is line\'arisan}$$

függetlenek.

A másodfajú egyenlet véges rendű operátorokra

Legy en X Hilbert tér (véges vagy végtelen dimenziós), $A:X\to X$ véges rendű operátor. Tekintsük az A operátornak a másodfajú egy enletét: $(\lambda I-A)f=b$, ahol $b\in X$ adott és $f\in X$ keresett. Ezt az előbbiek szerint így írhatjuk:

$$\lambda f - \sum_{j=1}^{m} \langle f, \psi_j \rangle \phi_j = b$$
. Belátjuk, hogy $\lambda \neq 0$ esetén ez az egyenlet ekvivalens egy lineáris algebrai

egy enletrendszerrel.

Az előző egyenletet jobbról ψ_k -val skalárisan szorozva: $\lambda \langle f, \psi_k \rangle - \sum_{j=1}^m \langle f, \psi_j \rangle \langle \phi_j, \psi_k \rangle = \langle b, \psi_k \rangle, k \in \{1, 2, ..., m\}.$

Keressük
$$\xi_j$$
: = $\langle f, \psi_j \rangle$ -t, adottak a_{kj} : = $\langle \phi_j, \psi_k \rangle$, β_k : = $\langle b, \psi_k \rangle$. Ezzel a jelöléssel: $\lambda \xi_k - \sum_{j=1}^m a_{kj} \xi_j = \beta_k$,

$$k \in \{1,2,...,m\}$$
. Ez egy lineáris egy enletrendszer ξ_k egy ütthatókra. $\xi := \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_m \end{pmatrix}, \beta := \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}, \mathscr{A} := \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix}$

így $(\lambda \mathcal{F} - \mathcal{A})\xi = \beta$. Ha f kielégíti a másodfajú egy enletet $\Rightarrow \xi$ kielégíti a kapott lineáris algebrai egy enletrendszert $\lambda = 0$ esetén is!

Állítás: legy en $\lambda \neq 0$ és tfh ξ kielégíti a lineáris algebrai egy enletrendszert! Ekkor f: = $\frac{1}{\lambda}b + \frac{1}{\lambda}\sum_{j=1}^{m}\xi_{j}\phi_{j}$ kielégíti a

véges rendű operátorra vonatkozó másodafajú egyenletet.

Bizonyítás: behelyettesítünk a másodfajú egyenletbe, s kihasználjuk, hogy ξ kielégíti a lineáris algebrai egyenletrendszert.

Tétel: egy $f \in X$ elem kielégíti a véges rendű opertárra vonatkozó másodfajú egyenletet $\lambda \neq 0$ esetén $\Leftrightarrow \xi_j = \langle f, \psi_j \rangle$ képlettel értelmezett koordinátákból álló ξ kielégíti a fenti lineáris algebrai egyenletrendszert. Ennek alapján a véges rendű operátorokra vonatkozó másodfajú egyenlet megoldhatóságának elmélete következik a lineáris algebrai egyenletrendszerek megoldhatóságának elméletéből. Két eset lehetséges:

- 1. ha $\lambda \neq 0$ szám az \mathscr{A} mátrixnak nem sajátértéke $\Leftrightarrow \det |\lambda \mathscr{F} \mathscr{A}| \neq 0$, ekkor $(\lambda \mathscr{F} \mathscr{A})\xi = \beta$ egy enletben $\forall \beta \in \mathbb{K}^n \exists ! \xi$ megoldás $\Rightarrow \exists ! f$ megoldás a $(\lambda I A)f = b$ egy enletre. Nem nehéz belátni, hogy f folytonosan függ b-től. Ekkor $\lambda \neq 0$ reguláris érték A-ra.
- 2. ha $\lambda \neq 0$ az \mathscr{A} mátrixnak sajátértéke $\Rightarrow \lambda$ az A sajátértéke, s a kétféle rang egyenlő. $\lambda = 0$ végtelen rangú sajátértéke A-nak (ha X végtelen dimenziós).

Állítás: ha X végtelen dimenziós vektortér, akkor $\lambda = 0$ végtelen rangú sajátértéke az operátornak.

 $A\phi$: = $\sum_{j=1}^{m} \langle \phi, \psi_j \rangle \phi_j$. $\lambda = 0$ sajátérték azt jelenti, hogy $A\phi = 0\phi = 0$ biztosan teljesül. Mivel ϕ_j -k lineárisan

függetlenek, $\langle \phi, \psi_j \rangle = 0$, $\forall j \in \{1,2,...,m\} \Leftrightarrow \phi \perp \mathcal{L}(\psi_1, \psi_2,...,\psi_m)$.

Összefoglalva: legy en X végtelen dimenziós szeparábilis Hilbert tér! Ekkor egy A véges rendű operátor spektruma csak sajátértékekből áll, mégpedig a 0-tól különböző (véges sok) sajátérték véges rangú (ezek megegyeznek az \mathcal{A} mátrix sajátértékeivel, s ranguk is megegyezik), a 0 pedig végtelen rangú sajátérték. M inden más λ reguláris érték.

Példa véges rangú operátorokra (elfajult magú integrálegyenletek)

$$X := L^2(M)$$
, ahol M mérhető halmaz. $\mathcal{K}(x,y) = \sum_{j=1}^m \phi_j(x) \psi_j(y)$, ahol $\phi_j, \psi_j \in L^2(M) \Rightarrow \mathcal{K} \in L^2(M \times M)$.

$$(K\phi)(x) = \int_{M} \mathcal{K}(x, y)\phi(y)dy = \int_{M} \left[\sum_{j=1}^{m} \phi_{j}(x)\psi_{j}(y) \right] \phi(y)dy = \sum_{j=1}^{m} \phi_{j}(x) \int_{M} \psi_{j}(y)\phi(y)dy.$$
 Röviden:

$$K\phi = \sum_{j=1}^{m} \phi_j \langle \phi, \psi_j \rangle.$$

Az előbbiek alapján egy elfajult magú (elsőfajú) integrálegyenlet megoldása kiszámolható egy lineáirs algebrai egyenletrendszer megoldásával.

Kompakt (teljesen folytonos) operátorok

<u>Definíció</u>: egy $M \subset Y$ halmazt feltételesen (vagy relatíve) sorozatkompaktnak nevezünk, ha lezárása sorozatkompakt.

Megjegyzés: M feltételesen sorozatkompakt, ha tetszőleges M-beli sorozatból kiválasztható konvergens részsorozat. \mathbb{R}^n -ben a feltételesen sorozatkompakt halmazok a korlátos halmazok.

<u>Definíció</u>: legy enek X, Y Banach terek! Egy $A: X \to Y$ lineáris operátort teljesen folytonosnak, avagy kompaktnak nevezünk, ha X tetszőleges korlátos halmazát feltételesen (avagy relatíve) sorozatkompakt halmazba képezi.

Megjegyzés: Ekkor A korlátos is, továbbá két kompakt operátor összege és számszorosa is kompakt.

<u>Állítás</u>: egy $A: X \to Y$ operátor kompakt $\Leftrightarrow \forall (x_k)_{k \in \mathbb{N}}, x_k \in X$ korlátos sorozatra $(Ax_k)_{k \in \mathbb{N}}$ -ból kiválasztható konvergens részsorozat.

<u>Állítás</u>: legy en X Hilbert tér, $A:X \to X$ véges rendű operátor. Ekkor A kompakt.

<u>Tétel</u>: legy enek X, Y Banach terek, $A_j \in L(X,Y)$ operátorok kompaktak, és $\exists A \in L(X,Y)$: $\lim_{j \to \infty} A_j = A \Rightarrow A$ is kompakt operátor.

Bizonyítás: legyen $(x_k)_{k \in \mathbb{N}}$ egy X-beli korlátos sorozat. Bizonyítani akarjuk, hogy $(Ax_k)_{k \in \mathbb{N}}$ -nek van konvergens részsorozata Y-ban. Tudjuk, hogy $A \in L(X,Y)$. Mivel A_1 kompakt, ezért az $(A_1x_k)_{k \in \mathbb{N}}$ sorozatból kiválasztható Y-ban konvergens részsorozat, legyen ez $(A_1x_{k1})_{k \in \mathbb{N}}$! $(A_2x_{k1})_{k \in \mathbb{N}}$ -ből kiválasztható konvergens részsorozat, legyen ez $(A_2x_{k2})_{k \in \mathbb{N}}$. $(A_3x_{k2})_{k \in \mathbb{N}}$ -ből megint kiválasztható...

 x_1 x_2 \cdots x_k \cdots

 A_1 x_{11} x_{21} \cdots x_{k1} \cdots részsorozatra $(A_1x_{k1})_{k\in\mathbb{N}}$ konvergens

 A_2 x_{12} x_{22} \cdots x_{k2} \cdots részsorozatra $(A_2x_{k2})_{k\in\mathbb{N}}$ konvergens

 A_j x_{1j} x_{2j} \cdots x_{kj} \cdots részsorozatra $(A_j x_{kj})_{k \in \mathbb{N}}$ konvergens

Tekintsük az $(x_{kk})_{k \in \mathbb{N}}$ átlós sorozatot. Belátjuk, hogy $(Ax_{kk})_{k \in \mathbb{N}}$ konvergens *Y*-ban. $(x_{kk})_{k \in \mathbb{N}}$ az eredeti $(x_k)_{k \in \mathbb{N}}$ sorozatnak olyan részsorozata, amely bármelyik sorban levő részsorozatnak a részsorozata, bizonyos indextől kezdve.

$$||Ax_{kk} - Ax_{mm}||_{Y} = ||[Ax_{kk} - A_{j}x_{kk}] + [A_{j}x_{kk} - A_{j}x_{mm}] + [A_{j}x_{mm} - Ax_{mm}]||_{Y} \le$$

$$\le ||(A - A_{j})x_{kk}||_{Y} + ||A_{j}x_{kk} - A_{j}x_{mm}||_{Y} + ||(A_{j} - A)x_{mm}||_{Y} \le$$

$$\le ||A - A_{j}||_{L(X,Y)}||x_{kk}||_{X} + ||A_{j}x_{kk} - A_{j}x_{mm}||_{Y} + ||A_{j} - A||_{L(X,Y)}||x_{mm}||_{X}.$$

 $(x_{kk})_{k \in \mathbb{N}}$ korlátos sorozat, ehhez $\exists c > 0 : ||x_{kk}|| \le c$. Legy en $\varepsilon > 0$ tetszőleges. Mivel $\lim_{j \to \infty} ||A_j - A|| = 0$, ezért

 $\exists \, j_0 : j \geq j_0 \, \Rightarrow \, \|A_j - A\| \leq \varepsilon. \, \text{V\'alasszuk pl:} \, j = j_0 \, . \, \text{M\'ivel} \, \left(A_{j_0} x_{kk}\right)_{k \, \in \, \mathbb{N}} \, \text{konvergens, ez\'ert}$

 $\exists k_0 : k, l \ge k_0 \Rightarrow \|A_{j_0} x_{kk} - A_{j_0} x_{ll}\| \le \varepsilon. \text{ Tehát } k, l \ge k_0 \text{ esetén } \|A x_{kk} - A x_{ll}\|_Y \le c\varepsilon + \varepsilon + c\varepsilon = (2c+1)\varepsilon \Rightarrow (A x_{kk})$ Cauchy sorozat.

Következmény: kompakt operátorok alteret képeznek L(X, Y) -ban.

<u>Tétel</u>: (bizony ítás nélkül) legy en X szeparábilis Hilbert tér. Ha $A:X\to X$ kompakt operátor, akkor $\exists A_j:X\to X$ véges rendű operátorok, hogy $\lim_{j\to\infty}\|A_j-A\|_{L(X,X)}=0$.

Összefoglalva: ha X szeparábilis Hilbert tér, akkor az $A:X\to X$ korlátos operátor kompakt \Leftrightarrow előáll véges rendű operátorok sorozatának norma szerinti limeszeként.

Példa: legy en $X = L^2(M)$ Hilbert tér, $K:L^2(M) \to L^2(M)$ négy zetesen integrálható magú integráloperátor, $(K\phi)(x):=\int_M \mathcal{K}(x,y)\phi(y)dy$. Ez a K operátor kompakt. Ennek igazolásának alapgondolata: tudjuk, hogy $L^2(M)$

szeparábilis Hilbert tér (végtelen dimenziós). Legyenek ebben teljes ortonormált rendszerek $\psi_1, \psi_2, ...$ illetve

$$\phi_1,\phi_2,\dots \text{ Ekkor } \mathcal{K}(x,y) = \sum_{m=1}^{\infty} \left(\sum_{j,k\leq m} c_{jk}\phi_j(x)\psi_k(y)\right), \, \mathcal{K}_N(x,y) = \sum_{m=1}^N \sum_{j,k\leq m} c_{jk}\phi_j(x)\psi_k(y),$$

 $\lim_{N\to\infty}\|\mathcal{K}_N-\mathcal{K}\|_{L^2(M\times M)}=0.\ \mathcal{K}_N \text{ -nek véges rendű operátorok felelnek meg. } \|K_N-K\|_{L\left(L^2(M),L^2(M)\right)}\to 0, \text{ has the sum of the property o$

 $N \to \infty$.

Más odfajú egyenlet kompakt operátorokra

Legy en X szeparábilis Hilbert tér, $A: X \to X$ kompakt operátor. Tekintsük a $(\lambda I - A)f = b$ másodfajú egy enletet, mely ben $\lambda \neq 0$ rögzített. Tudjuk, hogy A kompakt operátor tetszőleges előírt pontossággal megközelíthatő egy B véges rendű operátorral. $\exists A_0: X \to X$ véges rendű operátor, hogy $||A - A_0|| < |\lambda|$. $B_0: = A - A_0 \Leftrightarrow A = A_0 + B_0$, ahol A_0 véges rendű, és $||B_0|| < |\lambda|$. Tehát a másodfajú egy enlet így írható:

$$[\lambda I - (A_0 + B_0)]f = b \Leftrightarrow (\lambda I - B_0)f = b + A_0 f.$$

 $|\lambda| > ||B_0|| \Rightarrow |\lambda| > B_0$ korlátos operátor spektrálsugara $\Rightarrow \lambda$ reguláris érték B_0 operátorra nézve \Rightarrow a legutóbbi egy enlet ekvivalens: $f = (\lambda I - B_0)^{-1}(b + A_0 f) = \underbrace{(\lambda I - B_0)^{-1}b}_{\text{adott}} + (\lambda I - B_0)^{-1}A_0 f$. λ -val beszorozva, átrendezve:

$$\lambda f - \underbrace{\lambda (\lambda I - B_0)^{-1} A_0}_{:=B:=B_\lambda} f = \underbrace{\lambda (\lambda I - B_0)^{-1} b}_{:=g}$$
. A bevezetett jelöléssel $(\lambda I - B_\lambda) f = g$. Észrevétel: B_λ véges rendű

operátor, mert A_0 véges rendű operátor. Legyen $\delta > 0$ rögtített szám, és válasszuk A_0 -t úgy, hogy $\|A - A_0\| < \delta$ legyen. Ekkor az előbbi gondolatmenet érvényes $\forall \lambda$ -ra, A_0 nem függ λ -tól, ha $\lambda \geq \delta$ (de δ -tól igen). A_0 véges rendű operátor $\lambda \geq \delta$ esetén, és $A_0 f = \sum_{j=1}^m \langle f, \psi_j \rangle \phi_j$ alakban írható.

$$Bf = B_{\lambda}f = \lambda(\lambda I - B_0)^{-1} \sum_{j=1}^{m} \langle f, \psi_j \rangle \phi_j = \sum_{j=1}^{m} \lambda \langle f, \psi_j \rangle (\lambda I - B_0)^{-1} \phi_j$$
. A másodfajú egyenlet:

$$\lambda f - \sum_{j=1}^{m} \lambda \langle f, \psi_j \rangle (\lambda I - B_0)^{-1} \phi_j = g = g_{\lambda}.$$

Tehát kaptuk, hogy
$$\lambda f - \sum_{j=1}^m \lambda \langle f, \psi_j \rangle (\lambda I - B_0)^{-1} \phi_j = g = g_\lambda$$
. Ez megfelel egy lineáris algebrai

egy enletrendszernek: $\lambda \mathcal{I}\xi - \mathcal{B}_{\lambda}\xi = \beta_{\lambda}$. Ekkor $\det(\lambda \mathcal{I} - \mathcal{B}_{\lambda}) = 0$ egy enlet gyökei a sajátértékek. A mátrix (\mathcal{B}_{λ}) és az operátor (B_{λ}) sajátértékei azonosak az eredeti operátor (A) sajátértékeivel, és rangjuk is azonos. Belátható, hogy a mátrix elemei a λ változónak holomorf függvény ei! Így a determináns is holomorf függvény e λ -nak. Tudjuk, hogy egy holomorf függvény gyökei nem torlódhatnak egy véges pontban, hacsak nem az azonosan 0 függvény. Mivel $\lambda < \|A\|$, ezért csak véges sok gyök van. Tehát tetszőleges rögzített δ esetén A operátornak véges sok δ -nál nagy obb abszolút értékű sajátértéke van, s ezek véges rangúak.

<u>Tétel</u>: ha A kompakt operátor, akkor A-nak legfeljebb megszámlálhatóan végtelen sok sajátértéke van, a 0-tól különböző sajátértékek véges rangúak, s a sajátértékek csak a 0-ban torlódhatnak. (Gondoljunk csak a δ : = 1/k, $k \in \mathbb{N}$ esetre!)

Tétel (biz. nélkül): minden $\lambda \neq 0$, ami nem sajátérték, az reguláris érték A (kompakt operátorra) nézve.

Következmény: ha $\lambda \neq 0$ nem sajátérték, $(\lambda I - A)f = b$ másodfajú egyenletnek $\forall b$ -re létezik egyetlen f megoldás, és ez folytonosan függ b-től.

Mi a helyzet, ha λ sajátérték?

Emlékeztető: tetszőleges korlátos lineáris operátor esetén $\overline{R_{\lambda I-A}}^{\perp} = S_{\overline{\lambda}}(A^*) \Leftrightarrow \overline{R_{\lambda I-A}} = S_{\overline{\lambda}}(A^*)^{\perp}$. Ha $R_{\lambda I-A}$ zárt altér, akkor $R_{\lambda I-A} = \overline{R_{\lambda I-A}} = S_{\overline{\lambda}}(A^*)^{\perp}$.

<u>**Tétel**</u>: ha *A* kompakt operátor, akkor $\lambda \neq 0$ esetén $R_{\lambda I-A}$ zárt altér.

Bizony ítás: látható, hogy $R_{\lambda I-A}$ lineáris altér. Azt kell bizony ítani, hogy $R_{\lambda I-A}$ zárt halmaz. Legyen tetszőleges $\psi_j \in R_{\lambda I-A}$ és $\exists \lim \psi_j = \psi$, ekkor $\psi \in R_{\lambda I-A}$? Mivel $\psi_j \in R_{\lambda I-A} \Rightarrow \exists \phi_j \in X: (\lambda I-A)\phi_j = \psi_j$. Jelöljük: $S_{\lambda}(A):=\{\phi \in X: (\lambda I-A)=0\}$. Ekkor $S_{\lambda}(A)$ zárt lineáris altér (A folytonos). A Riesz tétel következtében $X:=S_{\lambda}(A) \oplus S_{\lambda}(A)^{\perp} \Leftrightarrow \forall x \in X \exists ! x_1, x_2 : x_1 \in S_{\lambda}(A), x_2 \in S_{\lambda}(A)^{\perp}, x = x_1 + x_2$. Ennek megfelelően $X\ni \phi_j = f_j + g_j$, ahol $f_j \in S_{\lambda}(A)$. $g_j \in S_{\lambda}(A)^{\perp}, \psi_j = (\lambda I-A)\phi_j = (\lambda I-A)f_j + (\lambda I-A)g_j \Rightarrow (\lambda I-A)g_j = \psi_j$. Kis

állítás: $(g_j)_{j \in \mathbb{N}}$ korlátos sorozat *X*-ben.

Bizonyítás (a tétel bizonyításán belül): indirekt feltesszük, hogy $\exists \left(g_{j_k}\right)_{k\in\mathbb{N}}$ részsorozat, hogy $\lim_{k\to\infty} \|g_{j_k}\|_X = \infty. \text{ Legy en } h_{j_k} = \frac{g_{j_k}}{\|g_{j_k}\|_X}, \text{ ekkor } \|h_{j_k}\|_X = 1. \ (\lambda I - A)g_{j_k} = \psi_{j_k} \text{ egy enletet osztva } \|g_{j_k}\| \text{ -val:}$ $(\lambda I - A)h_{j_k} = \frac{\psi_{j_k}}{\|g_{j_k}\|_X} \to 0_X, \text{ ugy anis } \psi_j \text{ konvergens } \Rightarrow \text{ korlátos. } \lim_{k\to\infty} \left(\lambda h_{j_k} - Ah_{j_k}\right) = 0_X. \ \left(h_{j_k}\right) \text{ korlátos}$ sorozat (mert $\|h_{j_k}\| = 1$), A kompakt operátor, ezért $\exists \left(\widetilde{h}_{j_k}\right)$ részsorozat, amelyre $\left(A\widetilde{h}_{j_k}\right)$ konvergens $\Leftrightarrow \left(\lambda \widetilde{h}_{j_k}\right)_{k\in\mathbb{N}}$ is konvergens. $\lambda \neq 0 \Rightarrow \left(\widetilde{h}_{j_k}\right)$ konvergens, $\left(\widetilde{h}_{j_k}\right)_{k\in\mathbb{N}} \to h_0 \Rightarrow (\lambda I - A)\widetilde{h}_{j_k} \to 0 \Rightarrow (\lambda I - A)h_0 = 0.$ Ebből következik, hogy $h_0 \in S_\lambda(A)$. Másrészt $h_{j_k} = \frac{g_{j_k}}{\|g_{j_k}\|}, g_{j_k} \in S_\lambda(A)^\perp \Rightarrow h_{j_k} \in S_\lambda(A)^\perp \Rightarrow \lim_{t\to\infty} \lim_{t\to\infty} h_0 \in S_\lambda(A)^\perp.$ Másrészt $h_0 \in S_\lambda(A)$, így $h_0 = 0$, de ez meg nem lehet, mert $\|\widetilde{h}_{j_k}\| = 1 \Rightarrow \|h_0\| = 1$ kéne lennie.

Tehát $(\lambda I - A)g_j = \psi_j$, $\lim (\psi_j) = \psi$, $\|g_j\|_X$ korlátos. M ivel A kompakt és g_j korlátos $\Rightarrow \exists \widetilde{g}_{j_k}$ részsorozat, hogy $A\widetilde{g}_{j_k}$ konvergens. ψ_{j_k} is konvergens $\Rightarrow \lambda g_{j_k}$ is konvergens, $\lambda \neq 0 \Rightarrow (g_{j_k})$ konvergens. $g_{j_k} \to g_0$ X-ben, $g_0 \in X$. $(\lambda I - A)g_0 = \psi \Rightarrow \psi \in R_{\lambda I - A}$.

<u>Tétel</u> (bizonyítás nélkül): legyen $A: X \to X$ kompakt operátor. Ekkor A^* is kompakt. Továbbá $\lambda \neq 0$ az A-nak sajátértéke $\Leftrightarrow \overline{\lambda}$ sajátértéke A^* -nak, és ekkor a rangok egyenlők.

Összefoglalás (Fredholm alternatíva): legyen $A: X \to X$ kompakt operátor, $\lambda \neq 0$ tetszőleges szám s $(\lambda I - A)f = b$ másodfajú egyenlet. Ekkor két eset lehetséges:

- ha λ ≠ 0 az A-nak nem sajátértéke (legfeljebb megszámlálhatóan végtelen sok, véges rangú, 0-ban torlódó sajátértékek), akkor a másodfajú egyenletnek ∀b ∈ X esetén ∃!f megoldása és ez folytonosan függ b-től ((λI − A)⁻¹ folytonos)
- ha λ ≠ 0 sajátérték, akkor a másodfajú egyenletnek a megoldása nem egyértelmű, a homogén egyenletnek véges sok lineárisan független megoldása van. A megoldás pontosan létezik, ha b ⊥ S_{λ̄}(A*) minden elemére. Ez annyi db ortogonalitási feltétel, amennyi a λ sajátérték rangja.

Önadjungált kompakt operátorok

<u>Tétel</u>: legy en X szep arábilis Hilbert tér, $A: X \to X$ kompakt és önadjungált operátor, $A \neq 0$. Ekkor $\exists \lambda_1$ sajátérték: $|\lambda_1| = ||A|| = \sup\{|\langle Ax, x \rangle|: ||x||_X = 1\}.$

Megjegyzés: ha λ_1 az A operátor oly an sajátértéke, amely re $|\lambda_1| = ||A||$ és x_1 oly an sajátelem, hogy $||x_1|| = 1$, azaz $Ax_1 = \lambda_1 x_1$, $||x_1|| = 1$, akkor $|\langle Ax_1, x_1 \rangle| = |\langle \lambda_1 x_1, x_1 \rangle| = |\lambda_1 \langle x_1, x_1 \rangle| = |\lambda_1| = ||A|| = \sup\{|\langle Ax, x \rangle: ||x||_X = 1|\}$. Más szóval, az $x \mapsto |\langle Ax, x \rangle|$, ahol ||x|| = 1, ez a függvény felveszi a suprémumot az $x = x_1$ sajátelemen, a maximum (ami most a suprémum is) értéke $= |\lambda_1|$. Fordítva: ha x^* oly an, hogy $||x^*|| = 1$, és arra $|\langle Ax, x \rangle|$ maximális, akkor ez sajátelem és a maximum egyenlő a sajátérték abszolút értékével. Ugyanis $|\langle Ax^*, x^* \rangle| \leq ||Ax^*|| \cdot ||x^*|| \leq ||A|| \cdot ||x^*||^2 = ||A||$, a Cauchy-Schwarz egyenlőtlenségben egyenlőség pontosan

További sajátértékek, sajátelemek keresése.

Legy en X_1 : = $\{x \in X : x \perp x_1\}$, ahol A_1 : = $A|_{X_1}$, a leszűkítés, és $Ax_1 = \lambda_1 x_1$.

<u>Állítás</u>: X_1 invariáns altér, azaz $x \in X_1 \Rightarrow Ax \in X_1$.

akkor áll fenn, amikor $Ax^* \parallel x^*$, azaz $Ax^* = const \cdot x^*$.

Bizonyítás: tfh $x \in X_1! \langle Ax, x_1 \rangle = \langle x, Ax_1 \rangle = \langle x, \lambda_1 x_1 \rangle = \lambda_1 \langle x, x_1 \rangle = 0$, tehát $Ax \in X_1$. Az előbbi tételt

alkalmazhatjuk az A_1 operátorra X_1 Hilbert térben. Ekkor $\exists \lambda_2$ sajátérték, hogy $|\lambda_2| = ||A_1|| = \sup\{\langle A_1 x, x \rangle : ||x||_X = 1, x \in X_1\}. \text{ A maximum hely } ex_2 \text{ sajátelem hely \'en van, } \lambda_2 x_2 = Ax_2, x_2 \perp x_1.$

Így egy más után megkap hatjuk az A op erátor sajátértékeit és sajátelemeit, $|\lambda_1| \ge |\lambda_2| \ge \dots$ Ha A véges rendű, akkor

az eljárás véges sok lépés után befejeződik.

alkotnak.

<u>Tétel</u>: legy enek az A önadjungált operátor sajátértékei λ_1 , λ_2 ,... és sajátelemei x_1 , x_2 ,... A sajátelemekről feltehető, hogy ortonormált rendszert alkotnak. Ekkor $\forall x \in X$ elemre $Ax = \sum_k \lambda_k \langle x, x_k \rangle x_k$. Az (x_k) ortonormált rendszert kibővítve a $\lambda = 0$ -hoz tartozó sajátelemek ortonormált rendszerével, akkor ezek egy teljes ortonormált rendszert