

5.6 - Application of Le Chatelier's Principle

The Common Ion Effect

The **common ion effect** is an example of Le Chatelier's Principle.

It states that the *solubility of an ionic compound is decreased* (less is dissolved) by the addition of another ionic compound to the solution that contains one of the ions already in the solution.

For example, if $\text{BaSO}_{\!\scriptscriptstyle 4(\!s\!)}$ was in equilibrium in a solution, then we would have the following system:

$$BaSO_{4(s)} \longrightarrow Ba^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$

Note - it is dissociated because it is soluble.

If we added barium chloride, another soluble substance to this system, what would happen to the concentration of Ba²⁺?

Le Chatelier's Principle more BaSO, is being produced. If there is more solution, then the solution, then the solution of BaSO, has been decreased.

Note - only the addition of substances with common ions can affect the equilibrium of a soluble substance.

We also need to consider if adding a substance will create an additional precipitate.

This will cause ions from the original system to drop out, increasing the solubility of the solid...

- Ex) Determine what would happen to the solubility of sodium sulfate if we added the following to a sodium sulfate solution in equilibrium:
- a) NaCl
- b) sulfuric acid
- c) $Ca(OH)_2$

The Haber-Bosch Process

$$N_{2(g)} + H_{2(g)} = 2NH_{3(g)} + 46.1KJ$$

- diatomic nitrogen makes up about 79% of the Earth's atmosphere; only a few bacteria species can "fix" ammonia from atmospheric nitrogen
- ammonia can then be changed into nitrates and nitrites
- plants can use nitrates and nitrites (few can use ammonia) to meet their nitrogen needs
- In 1909, Fritz Haber first demonstrated how to synthesize ammonia from nitrogen and hydrogen gas to be used in fertilizer
 - > incorporated several operations that increased the yield of ammonia
 - cooled the reaction
 - pressurized reactant chambers
 - the use of a catalyst
 - the removal of ammonia gas (by liquefication)
- The above system was improved by Carl Bosch in 1913
- Using Le Chatelier's Principle, why did the Haber-Bosch process increase the yield of ammonia?
 - > increased pressure:
 - > lower temperatures:
 - > use of catalyst:
 - > removal of product:

5.6 - Application of Le Chatelier's Principle

5.6 Application of le Chatelier's Principle Assignment

1.	Consider	the followi	ng equili	brium system:
----	----------	-------------	-----------	---------------

$$PbCl_{2(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2Cl_{(aq)}$$

Describe what happens to the solubility of $PbCl_2$ when the following substances are added to the solution. Why?

a) Pb(NO₃)₂

d) AgNO₃

b) NaCl

e) NaBr

c) H₂O

2. Consider the following equilibrium system:

$$AgBr_{(s)} \iff Ag^+_{(aq)} + Br^-_{(aq)}$$

Describe what happens to the solubility of $AgBr_{(s)}$ when the following substances are added to the solution. Why?

a) Pb(NO₃)₂

c) NaCl

b) AgNO₃

d) NaBr

5.6 - Application of Le Chatelier's Principle

3. Explain why more $Zn(OH)_2$ dissolves when 3 M HCl is added to a saturated solution of $Zn(OH)_2$. Start by writing the correct equilibrium equation.
4. Explain three ways in which the Haber-Bosch process utilizes Le Chatelier's principle to increase the yield of ammonia in industrial fertilizer production.