Labs

Optimization for Machine LearningSpring 2024

EPFL

School of Computer and Communication Sciences

Martin Jaggi & Nicolas Flammarion

github.com/epfml/OptML_course

Problem Set 3 — Solutions (Projected Gradient Descent)

Projected Gradient Descent

Exercise 1. 23 Consider the projected gradient descent algorithm as in (3.1) and (3.2), with a convex differentiable function f. Suppose that for some iteration t, $\mathbf{x}_{t+1} = \mathbf{x}_t$. Prove that in this case, \mathbf{x}_t is a minimizer of f over the closed and convex set X!

Solution: By Fact 3.1 (i) with $y = y_{t+1}$, and using $x_{t+1} = x_t$, we have

$$(\mathbf{x} - \mathbf{x}_t)^{\top} (\mathbf{y}_{t+1} - \mathbf{x}_t) \le 0$$

for all $x \in X$. On the other hand, by definition of projected gradient descent,

$$\mathbf{y}_{t+1} - \mathbf{x}_t = -\gamma \nabla f(\mathbf{x}_t), \quad \gamma > 0.$$

Substituting this equation into the former inequality yields

$$-\gamma(\mathbf{x} - \mathbf{x}_t)^{\top} \nabla f(\mathbf{x}_t) \le 0, \quad \mathbf{x} \in X.$$

Multiplying by -1 and dividing by γ gives

$$(\mathbf{x} - \mathbf{x}_t)^{\top} \nabla f(\mathbf{x}_t) = \nabla f(\mathbf{x}_t)^{\top} (\mathbf{x} - \mathbf{x}_t) \ge 0, \quad \mathbf{x} \in X.$$

By Lemma 1.28, this precisely says that \mathbf{x}_t minimizes f over X.

Exercise 2. 24 Prove that in Theorem 3.4 (i),

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t).$$

Solution: By definition of projected gradient descent we have

$$\|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\| \le \|\mathbf{y}_{t+1} - \mathbf{x}_t\| = \gamma \|\nabla f(\mathbf{x}_t)\|.$$

The inequality holds because of (3.1) (by definition, \mathbf{x}_{t+1} is the point closest to \mathbf{y}_{t+1} in X). The equality holds because of (3.2) (by definition, $\mathbf{y}_{t+1} = \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t)$). Combining the above inequality with the step size $\gamma = 1/L$ and squaring yields

$$\|\nabla f(\mathbf{x}_t)\|^2 \ge L^2 \|\mathbf{y}_{t+1} - \mathbf{x}_{t+1}\|^2.$$

The desired inequality now easily follows from Lemma 3.3.

Exercise 3. 26 Prove Lemma 3.12!

Hint: It is useful to prove that with $x^*(p)$ as in (3.12) and satisfying (3.13),

$$\mathbf{x}^{\star}(p) = \operatorname{argmin}\{\|\mathbf{x} - \mathbf{v}\| : \sum_{i=1}^{d} x_i = 1, x_{p+1} = \dots = x_d = 0\}.$$

Solution: We claim that

$$\mathbf{x}^{\star}(p) = \operatorname{argmin}\{\|\mathbf{x} - \mathbf{v}\| : \sum_{i=1}^{d} x_i = 1, x_{p+1} = \dots = x_d = 0\}.$$

Assume for the moment that this claim is true. By Lemmas 3.10 and 3.11 we know that there exists $1 \le p \le d$ such that $\Pi_X(\mathbf{v}) = \mathbf{x}^\star(p)$. Which means that $\mathbf{x}^\star(p) = \operatorname{argmin}_{\mathbf{x} \in X} \|\mathbf{x} - \mathbf{v}\|^2$. Now suppose Lemma 3.12 is wrong, which means that we can find p' > p, $(p' \ge p + 1)$ with $\mathbf{x}^\star(p')$ as in (3.12) and satisfying (3.13), which means that we also get

$$\mathbf{x}^{\star}(p') = \operatorname{argmin}\{\|\mathbf{x} - \mathbf{v}\| : \sum_{i=1}^{d} x_i = 1, x_{p'+1} = \dots = x_d = 0\}.$$

Here we are minimizing $\|\mathbf{x} - \mathbf{v}\|$ with less constraint than in the previous case with $\mathbf{x}^{\star}(p)$ (components p+1 to p' do not have to be equal to 0), which implies that $\|\mathbf{x}^{\star}(p') - \mathbf{v}\| \leq \|\mathbf{x}^{\star}(p) - \mathbf{v}\|$. Combining this with the previous assumption of $\mathbf{x}^{\star}(p) = \Pi_X(\mathbf{v})$ we get $\|\mathbf{x}^{\star}(p') - \mathbf{v}\| = \|\mathbf{x}^{\star}(p) - \mathbf{v}\|$. And since we are projecting on a convex set we know that the projection is unique, and thus $\mathbf{x}^{\star}(p') = \mathbf{x}^{\star}(p)$. However, from the way $\mathbf{x}^{\star}(p)$ and $\mathbf{x}^{\star}(p')$ are defined using (3.12), we know that the p+1 component of $\mathbf{x}^{\star}(p)$ is equal to 0, and that of $\mathbf{x}^{\star}(p')$ is strictly positive which leads to a contradiction.

It remains only to prove our claim. That is, to show that for a given $1 \le p \le d$ indeed

$$\mathbf{x}^{\star}(p) = \operatorname{argmin}\{\|\mathbf{x} - \mathbf{v}\| : \sum_{i=1}^{d} x_i = 1, x_{p+1} = \dots = x_d = 0\},\$$

provided that $\mathbf{x}^{\star}(p)$ satisfies conditions (3.12) and (3.13).

Let $Y = \{\mathbf{x} \in \mathbb{R}^d : \sum_{i=1}^d x_i = 1, x_{p+1} = \dots = x_d = 0\}$, and let $f : \mathbb{R}^d \to \mathbb{R}$ defined as $f(x) = \|\mathbf{v} - \mathbf{x}\|^2$. To prove our claim, it suffices to show that $\mathbf{x}^\star(p) \in Y$ is a minimizer of f over Y. By the optimality condition of Lemma 1.28, it suffices to show that $\nabla f(\mathbf{x}^\star(p))^\top (\mathbf{x} - \mathbf{x}^\star(p)) \geq 0$ for all $\mathbf{x} \in Y$. Because $\nabla f(\mathbf{x}) = 2(\mathbf{v} - \mathbf{x})$, we want to show that

$$-2(\mathbf{v} - \mathbf{x}^{\star}(p))^{\top}(\mathbf{x} - \mathbf{x}^{\star}(p)) \ge 0. \tag{1}$$

Notice that the first p coordinates of $(\mathbf{v} - \mathbf{x}^*(p))$ are all equal to Θ_p . Moreover, the last (d-p) coordinates of both $\mathbf{x} \in Y$ and $\mathbf{x}^*(p)$ are all equal to 0. Therefore, we get that $(\mathbf{v} - \mathbf{x}^*(p))^{\top}(\mathbf{x} - \mathbf{x}^*(p))$ equals

$$(\Theta_p, \dots, \Theta_p, v_{p+1}, \dots, v_d)^{\top} (x_1 - v_1 + \Theta_p, \dots, x_p - v_p + \Theta_p, 0, \dots, 0)$$

Expanding this product, we get

$$(\mathbf{v} - \mathbf{x}^{\star}(p))^{\top}(\mathbf{x} - \mathbf{x}^{\star}(p)) = \Theta_p \sum_{i=1}^p (x_i - v_i + \Theta_p) = \Theta_p \left(\sum_{i=1}^p x_i - \sum_{i=1}^p v_i + p\Theta_p \right).$$

Because $\mathbf{x} \in Y$, we know that $\sum_{i=1}^p x_i = 1$, and since $\Theta_p = \frac{1}{p}(\sum_{i=1}^p v_i - 1)$, we get that

$$(\mathbf{v} - \mathbf{x}^{\star}(p))^{\top}(\mathbf{x} - \mathbf{x}^{\star}(p)) = \Theta_p \left(1 - \sum_{i=1}^p v_i + p \frac{1}{p} \left(\sum_{i=1}^p v_i - 1 \right) \right) = 0.$$

That is, equation (1) holds, and by Lemma 1.28 we conclude that $\mathbf{x}^{\star}(p)$ is a minimizer of f over Y proving our claim.

Computing Fixed Points

Gradient descent turns up in a surprising number of situations which apriori have nothing to do with optimization. In this exercise we will see how computing the fixed point of functions can be seen as a form of gradient descent. Suppose that we have a 1-Lipschitz continuous function $g: \mathbb{R} \to \mathbb{R}$ such that we want to solve for

$$g(x) = x$$
.

A simple strategy for finding such a fixed point is to run the following algorithm: starting from an arbitary x_0 , we iteratively set

$$x_{t+1} = g(x_t). (2)$$

Practical exercise. We will try solve for x starting from $x_0 = 1$ in the following two equations:

$$x = \log(1+x), \text{ and} \tag{3}$$

$$x = \log(2+x). \tag{4}$$

Follow the Python notebook provided here:

github.com/epfml/OptML_course/tree/master/labs/ex03/

What difference do you observe in the rate of convergence between the two problems? Let's understand why this occurs.

Theoretical questions.

1. We want to re-write the update (2) as a step of gradient descent. To do this, we need to find a function f such that the gradient descent update is identical to (2):

$$x_{t+1} = x_t - \gamma f'(x_t) = g(x_t).$$

Derive such a function f.

Solution: We need $\gamma f'(x) = x - g(x)$. Thus upto additional linear terms, f is

$$f = \frac{1}{2\gamma}x^2 - \frac{1}{\gamma} \int g(x)dx.$$

2. Give sufficient conditions on g to ensure convergence of procedure (2). What γ would you need to pick? Hint: We know that gradient descent on f with fixed step-size converges if f is convex and smooth. What does this mean in terms of g?

Solution: If f is convex and $1/\gamma$ -smooth, Theorem 2.1 guarantees convergence of (2). For this we need to show that $f'' \geq 0$ and $f'' \leq \frac{1}{\gamma}$.

Firstly, we assume that g is differentiable in order for f'' to exist.

We will use the relation derived in the previous question

$$(f'(x))' = \frac{1}{\gamma}(x - g(x))'$$

= $\frac{1}{\gamma}(1 - g'(x)).$

For $f'' \in [0, \frac{1}{\gamma}]$, we need

$$q'(x) \in [0,1]$$
.

The condition $g'(x) \le 1$ is already satisfied for any $\gamma > 0$ if g(x) is 1-Lipschitz continuous. Hence, we only additionally require $g'(x) \ge 0$, i.e. g is non-decreasing.

3. What condition does g need to satisfy to ensure *linear* convergence? Are these satisfied for problems (3) and (4) in the exercise?

Solution: To get linear convergence, we need that there exists a constant $\mu > 0$ such that $f''(x) \ge \mu$. In terms of g, this translates to the existence of $\mu > 0$ such that

$$f''(x) = \frac{1}{\gamma}(1 - g'(x)) \ge \mu \Rightarrow g'(x) \le (1 - \gamma\mu) < 1.$$

Thus we only need that g'(x) < 1.

For $g(x) = \log(1+x)$, $g'(x) = \frac{1}{1+x}$. Over the domain [0,2] which we consider, $g'(x) \in [0,1]$ and so our procedure converges. However for x=0, g'(0)=1 and so we will not get linear convergence. This explains why (2) was slow.

For $g(x) = \log(2+x)$, $g'(x) = \frac{1}{2+x}$. Over the domain [0,2] which we consider, $g'(x) \in [0,0.5]$. This shows that not only does (2) converge, but it converges at a linear rate!