Using matrices to represent (finite) graphs:

	\vee_i	Vz	V ₃	V ₄	
√ ,	0	i	3	0	
٧٧	ì	0	2	0	
V3	3	2	0	l	
V ₄	0	٥	1	j	
			{	}	

if vertices are using labeled 1,2,..., n}

then Aij = # of edges with ends i & j

Adjacency Matrix AG

Observe that A is a symmetric matrix.

Using adjacency matrices to represent (finite) algraphs:

D:=(V,A)

0

 $A = A^T$

if vertices are labeled using {1,2,...,n} then Ajj := # of arcs with tail i & head j

Need NOT be a symmetric matrix

Aij = Aji

for all pairs

bj

Walks, Trails & Paths in Graphs:

Trail & Path are defined similarly but with additional restrictions:

			1	
Additional restrictions:	Walk	Trail	Path	Remarks: (think why)
Repetition of vertices allowed?	YES	YES	No	DIn any graph Gr, sequence of edges can be used to get the entire
Repetition of edges allowed?	YES	No	No	Sequence. (D) In a simple graph; sequence of vertices can be used to get
, /	carefully fol	low the red lin	e from sto	the entire sequence.

start walk (but NoT trail/path)

CS1200 Module-1: Discrete Stautures

DIY: Write down definitions of trails & paths (using the previous discussion).

In particular, any walk/trail/path is a sequence v, e, v, v, w, ek, vk (which satisfies some properties/rules). Istart end vertex vertex

If start vertex is same as end vertex, we call it a closed walk or closed trail.

NOT possible in path

Cycle: same definition as path but $v_1 = v_k$.

(9s same as)

Example:

3 cycles shown >> in red color

which graphs can be
drawn without lifting the
chalk? (Rules: Deach
vertex can be thought of as
a point. (2) No edge should be
drawn twice or more,)

Recall Euler's Postlem:

A trait is called an Eulerian trail if each edge appears once (and exactly once -by definition of trail).

Euler's Problem: which graphs have an Eulerian trail?