

Data-Driven Modelling

	Intelligent Control System KOM 5101
1	Introduction to Intelligent Control Systems (knowledge-based vs data-driven systems)
2	Computational Thinking Tools
3	Dynamical Systems Modelling (Control System Toolbox could be used to transfer functions, state space models)
4	Model Predictive Control MPC (MPC Toolbox can be used)
5	Intro to Machine Learning (Stats & Machine Learning Toolbox could be used)
6	Data-driven Modeling -with machine learning (Stats & Machine Learning Toolbox could be used)
7	Data-driven Modeling -with system Identification (SysID toolbox could be used)
8	Midterm Exam
9	Data-driven Control Techniques -Extremum seeking (Simulink Control Design could be used)
10	Data-driven Control Techniques -Model reference adaptive control (Simulink Control Design could be used)
11	Intro to Deep Learning (Deep Learning Toolbox could be used)
12	Reinforcement Learning (RL Toolbox could be used)
13	Student's Projects
14	Student's Projects
15	Final Exam

Dr. Julia Hoerner Dr. Marco Rossi Dr. Melda Ulusoy

Intelligent Control Systems KOM5101	Preparation + Homework	Matlab Drive
Introduction to intelligent control systems (knowledge-based vs data-1driven systems)	Select the project from https://github.com/mathworks/MathWorks-Excellence-in-Innovation#mathworks-excellence-in-innovation-projects	https://drive.matlab.com/sha ring/c1f9073b-a0b0-4966- 95b0-c107691878da
	Work with the Virtual Hardware and Labs for Control. Solve the	
2Computational thinking tools	following Labs Lab4_PositionAnalysis.mlx Lab3_PositionControl.mlx Lab2_VehicleModel.mlx Lab1_CruiseControl.mlx	https://drive.matlab.com/sha ring/77e65af2-6ffd-4709- a0bd-c36e0fbe50df
3Dynamical systems modelling	 Study and Obtain the state space model of a crane system. Study and Obtain the state space model of the Lateral Vehicle Dynamics bicycle model with two degrees of freedom, lateral position and yaw angle. 	https://drive.matlab.com/sha ring/31e0ba39-b3f8-402c- a428-6a5b9d620081
4Model Predictive Control MPC	Study and work with the MPC models explained. Use the MPC Toolbox of Matlab and the apmonitor server. Learn how to work with the drivingScenarioDesigner. Program the MPC algorithms using Simulink and Live scripts. Modify Models and MPC parameter and settings.	https://drive.matlab.com/sha ring/398fa9fa-4650-4316- ab2b-0d228b24f48c
	Machine Learning Onramp 6 modules 2 hours Languages Learn the basics of practical machine learning me	ethods for classification problems.

Asst. Prof. Claudia F. YAŞAR YYL Control and Automation

Engineering Department-2023

5Machine Learning

Intelligent Control Systems KOM5101	Preparation + Homework	Matlab Drive
	Use the FOPDT example and do your own model estimation. Work with FOPDT live scripts	https://drive.matlab.com/
		sharing/71cc50d0-e79e-
	Use the 2nd_order_linear model and obtain the regression parameters	47e3-b91e-9ba1aa1cf78b

Homework Assignments

- Week 2 (start) Week 8 (deadline)
 - Control Design Onramp with Simulink (20min Chapter 1,2,3)
- Week 4 (start) Week 8 (deadline)
 - Control Design Onramp with Simulink (30min Chapter 4,5,6,7)
- Week 5 (start) Week 8 (deadline)
 - Machine Learning Onramp (2h)
- Week 8 (start) Week 11 (deadline)
 - **Deep Learning Onramp (2h)**
- Week 9 (start) Week 11 (deadline)
 - Reinforcement Learning Onramp (3h)

Quantity	
Initial temperature (T_0)	
Ambient temperature (T_∞)	
Heater output (Q)	
Heater factor $(lpha)$	
Heat capacity (C_p)	
Surface Area (A)	
Mass (m)	
Overall Heat Transfer Coefficient (U)	
Emissivity (ε)	

$$m\,c_prac{dT}{dt}=\sum \dot{h}_{in}-\sum \dot{h}_{out}+Q$$

Q is the rate of heat transfer

Stefan Boltzmann Constant (σ)

$$m c_p \frac{dT}{dt} = U A (T_\infty - T) + \epsilon \sigma A (T_\infty^4 - T^4) + \alpha Q$$

Convection

Radiation

Heater

https://apmonitor.co m/do/index.php/Mai n/AdvancedTempera tureControl

REAL TIME EXPERIMENTS - TC Lab – Dynamic model of a single heater

m = 0.001; % kg (1 gm)

% heat transfer coefficient

U = 200; % W/m^2-K

% surface area

 $A = 2 / 100^2$; % m²

% heat capacity

Cp = 4900.0; % J/kg-K

REAL TIME EXPERIMENTS - TC Lab – Dynamic model of a single heater

REAL TIME EXPERIMENTS - TC Lab – Dynamic model of a single heater

m = 0.001; % kg (1 gm) % heat transfer coefficient U = 200; % W/m^2-K % surface area A = 2 / 100^2; % m^2 % heat capacity Cp = 4900.0; % J/kg-K

Temperature File Tools View Simulation Help

Asst. Prof. Claudia F. YAŞAR YTU Control and Automation Engineering Department-2023

Graphical Method: FOPDT to Step Test

A first-order linear system with time delay is a common empirical description of many stable dynamic processes. The equation

$$au_p rac{dy(t)}{dt} = -y(t) + K_p u \left(t - \theta_p
ight)$$

has variables y(t) and u(t) and three unknown parameters.

$$K_p = \text{Process gain}$$

 τ_p = Process time constant

$$\theta_{p}$$
 = Process dead time

Real-Time Pacer Speedup = 1

%%%%%% Plot temperature Exp_2 measurement obtain FOPDT parameters to

%%%%%% a step input

Graphical Method: FOPDT to Step Test

Step test data are convenient for identifying an FOPDT model through a graphical fitting method. Follow the following steps when fitting the parameters K_p, τ_p, θ_p to a step response.

- 1. Find Δy from step response
- 2. Find Δu from step response
- 3. Calculate $K_p = rac{\Delta y}{\Delta u}$
- 4. Find $heta_p$, apparent dead time, from step response
- 5. Find $0.632\Delta y$ from step response
- 6. Find $t_{0.632}$ for $y(t_{0.632})=0.632\Delta y$ from step response
- 7. Calculate $au_p=t_{0.632}- heta_p$. This assumes that the step starts at t=0. If the step happens later, subtract the step time as well.

Semi-Empirical Model Estimation: Regression

System identification using empirical data. The predictions are aligned to the measured values through an optimizer that adjusts the empirical parameters to minimize a sum of squared error or sum of absolute values objective.

The objective is to fit **empirical and physics-based predictions** to the data for a two heater model of the temperature control lab. Parameters are adjusted to minimize the sum of squared errors (SSE) or the integral absolute error (IAE) between the model predicted values and the measured values.

$$IAE_{model} = \sum_{i=0}^{n} |T_{1,meas,i} - T_{1,pred,i}| + |T_{2,meas,i} - T_{2,pred,i}|$$

An optimizer is used to adjust the parameters and achieve alignment between the model and the measured values.

Regression 2nd order MIMO System

Transient model between the two heater power outputs and the two temperature sensors. An energy balance describes the transient temperature response of heaters with temperature sensor.

This model represents the energy balance equation with convective heat transfer, radiative heat transfer, and the heater energy inputs. The additional blue terms are heat transfer

convective

radiative

heater energy inputs

$$mC_p \frac{dT_1}{dt} = UA \left(T_{\infty} - T_1 \right) + \epsilon \sigma A \left(T_{\infty}^4 - T_1^4 \right) + UA_s \left(T_2 - T_1 \right) + \epsilon \sigma A_s \left(T_2^4 - T_1^4 \right) + Q_1$$

$$mC_p \frac{dT_2}{dt} = UA \left(T_{\infty} - T_2 \right) + \epsilon \sigma A \left(T_{\infty}^4 - T_2^4 \right) + UA_s \left(T_1 - T_2 \right) + \epsilon \sigma A_s \left(T_1^4 - T_2^4 \right) + Q_2$$

Regression 2nd order MIMO System

The heater and temperature sensor are assumed to be at the same temperature.

Sensor Model

$$\tau_c \frac{dT_{C1}}{dt} = T_1 - T_{C1}$$

$$\tau_c \frac{dT_{C2}}{dt} = T_2 - T_{C2}$$

You can assume that conduction is negligible and that the only heat transferred is through radiation to the surroundings or convection or radiation to the surrounding air or from the heater nearby. The heaters are initially off and the heaters and sensors are initially at ambient temperature.

Constants Ta = 23! degC Parameters K1 = 0.607 > 0.1< 1.0 K2 = 0.293 > 0.1< 1.0 K3 = 0.24> 0.0001 < 1.0 tau12 = 192 > 50.0< 250.0 ! sec tau3 = 15> 10.0 < 20.0 ! sec Parameters Q1 = 002 = 00.69686 K1: K2: 0.42528 Variables K3: 0.41633 TH1 = Tatau12: 188.891 TH2 = Ta15 tau3: TC1 = TaTC2 = TaIntermediates DT = TH2 - TH1Equations tau12 * \$TH1 + (TH1-Ta) = K1*Q1 + K3*DTtau12 * \$TH2 + (TH2-Ta) = K2*Q2 - K3*DTtau3 * \$TC1 = -TC1 + TH1tau3 * \$TC2 = -TC2 + TH2

Asst. Prof. Claudia F. YAŞAR YTU Control and Automation Engineering Department-2023

Asst. Prof. Claudia F. YAŞAR YTU Control and Automation Engineering Department-2023

K1: 0.69686

K2: 0.42528

K3: 0.41633

tau12: 188.891

tau3: 15