Relatório 2º projecto ASA 2023/2024

Grupo: AL014

Aluno(s): João Bernardo Mota Martins (106819) e Rafael Alexandre Proença Pronto (105672)

Descrição do Problema e da Solução

O problema é resolvido através de uma adaptação da aplicação do algoritmo de Kosaraju-Sharir. Implementamos um vetor de estruturas do tipo vértice para representar o grafo como uma lista de adjacências. Cada posição do vetor representa um vértice e cada vértice, para além das outras informações básicas, tem associado o maior número de saltos que se pode dar até chegar a esse vértice (maxJ).

Depois de construir o grafo, fazemos uma DFS do grafo de forma a obter os tempos de fim. Calculamos o grafo transposto e armazenamos num vetor os vértices por ordem topológica inversa, isto é, por ordem inversa de tempo de fim. Utilizamos esse vetor para determinar a ordem da segunda DFS que é feita sobre o grafo transposto. Neste caso, cada DFS realizada identifica uma SCC diferente. Percorremos o grafo novamente por ordem topológica inversa e vamos identificado em cada vértice o número de saltos necessários para chegar até ao primeiro vértice da ordem topológica inversa, comunicando entre vértices da mesma SCC que devem constituir o mesmo valor de maxJ. Por fim retornamos o maior valor de maxJ do grafo, que representa o caminho mais longo percorrido no grafo das SCCs.

De seguida um breve exemplo da aplicação da nossa solução:

	maxJ	sccFlag
4	0	1
6	1	2
3	0	3
2	0	4
5	2	5
7	2	5
8	2	5
1	3	6

Análise Teórica

- Inicialização de um grafo com n vértices (n = número de indívudos), dependendo de n. O(n)
- Leitura do input das relações entre indivíduos, dependendo de m (número de relações entre indivíduos). O(m)
- Inicialização de um vetor ascendingOrder, com um ciclo a depender linearmente de n. O(n)
- Aplicação do algoritmo da DFS, dependendo do número de indivíduos e de relações entre indivíduos. O(n + m)
- Transposição do grafo, com ciclos a depender do número de indivíduos e de relações entre indivíduos. O(n + m)
- Cálculo do resultado, com um ciclo dependendo de n [O(n)], e um ciclo dependendo do número de indivíduos e de relações entre indivíduos. O(n + m)
- Apresentação dos dados. O(1)

Complexidade global: O(n + m)

Relatório 2º projecto ASA 2023/2024

Grupo: AL014

Aluno(s): João Bernardo Mota Martins (106819) e Rafael Alexandre Proença Pronto (105672)

Avaliação Experimental dos Resultados

Sendo testado o tempo de execução da solução, verificando instâncias incrementais em m e n, verifica-se que o tempo de execução é linear em relação a n + m.

n	m	n+m	tempo
250000	250000	500000	0,231
500000	500000	1000000	1,2886
1000000	1000000	2000000	1,5336
1500000	1500000	3000000	3,205
2000000	2000000	4000000	4,4526
2500000	2500000	5000000	5,4478
3000000	3000000	6000000	6,35
3500000	3500000	7000000	8,0174
4000000	4000000	8000000	9,8432
4500000	4500000	9000000	11,3226
5000000	5000000	10000000	12,5168
6000000	6000000	12000000	14,8412
6000000	6000000	12000000	14,8412

Uma vez que n+m é linear com o tempo de execução, verifica-se a conclusão da análise teórica. Logo, a complexidade da solução é O(n+m).