Cours Automatique linéaire

Chapitre 1

Représentation des systèmes dynamiques continus LTI

GE 2

Introduction

Qu'est-ce qu'un système?

Système : ensemble d'objets interagissant entre eux pour réaliser une fonction. Il est connecté au monde extérieur à travers :

- ses entrées
 - signaux d'excitation : actions envoyées au système
 - perturbations qui sont en général imprévisibles
- ses sorties : réponses du système aux signaux d'entrée

Classification des systèmes

Système statique

La réponse du système à une excitation est instantanée

Equation

$$y(t) = i(t) = \frac{1}{R}u(t)$$

Système dynamique

La réponse est fonction de l'excitation et des réponses passées

Equation

$$RC y'(t) + y(t) = u(t)$$

avec $y(t) = V_c(t)$

- Systèmes monovariable et multivariable
 - Monovariable : système à une entrée et une sortie
 - Multivariable: nombre d'entrées + nombre de sorties > 2

Classification des systèmes

- Systèmes continu et discret
 - ◆ Continu : l'information circule à tout instant de façon continue RC y'(t) + y(t) = u(t)
 - ◆ Discret : l'information circule à des instants discrets RCy(k+1) + (1-RC)y(k) = u(k)
- Systèmes linéaires et non linéaires
 - ◆ Le système est linéaire s'il satisfait au principe de superposition
 - Si $y_i(t)$ est la réponse du système à l'entrée $u_i(t)$ alors la réponse du système à $u(t) = \sum_i \alpha_i u_i(t)$ est $y(t) = \sum_i \alpha_i y_i(t)$
- Le système est non-linéaire dans le cas contraire

Rappels sur la transformée de Laplace

Définition de la Transformée de Laplace (TL)

- x(t): signal réel tel que $x(t) = 0 \ \forall t < 0$
- ◆ Transformée de Laplace de x(t): $X(s) = \mathcal{L}(x(t)) = \int_0^{+\infty} x(t)e^{-st}dt$
- X(s): fonction de la variable complexe $s = \sigma + j\omega$, $\sigma \ge 0$

Exemple

Soit le signal
$$x(t) = e^{-at}$$
 pour $t \ge 0$ et $a > 0$ $X(s) = \int_0^{+\infty} e^{-at} e^{-st} dt = \int_0^{+\infty} e^{-(a+s)t} dt$ $X(s) = \frac{1}{s+a}$

Transformée de Laplace inverse

$$x(t) = \mathcal{L}^{-1}(X(s)) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} X(s)e^{ts}ds$$

Rappels sur la TL

Propriétés de la TL

x(t) et y(t): signaux réels tels que x(t) = 0, y(t) = 0 $\forall t < 0$

Linéarité

$$\mathcal{L}(\alpha x(t) + \beta y(t)) = \alpha X(s) + \beta Y(s) \quad \forall \alpha, \beta \in \mathbb{R}^*$$

Dérivation

$$\mathcal{L}(x^{\cdot}(t)) = sX(s) - x(0^{+})$$
 $x(0^{+})$: condition initiale $\mathcal{L}(x^{(k)}(t)) = s^{k}X(s) - s^{k-1}x(0^{+}) - s^{k-2}x^{(1)}(0^{+}) - \cdots - x^{(k-1)}(0^{+})$ $x(0^{+}), x^{(1)}(0^{+}), \cdots, x^{(k-1)}(0^{+})$: conditions initiales

Cas particulier: conditions initiales nulles $\mathcal{L}(x^{(k)}(t)) = s^k X(s)$

Intégration

$$y(t) = \int_0^t x(\tau) d\tau \implies \mathcal{L}(y(t)) = \frac{X(s)}{s} + \frac{y(0^+)}{s}$$

Condition initiale nulle : $\mathcal{L}(y(t)) = \frac{X(s)}{s}$

Rappels sur la TL

Rappels sur la TL

Retard temporel

$$\mathcal{L}(x(t-T)) = e^{-sT}X(s)$$

Théorème de la valeur initiale

$$x(0^+) = \lim_{t \to 0^+} x(t) = \lim_{s \to +\infty} sX(s)$$

Théorème de la valeur finale

$$x_{\infty} = \lim_{t \to +\infty} x(t) = \lim_{s \to 0} sX(s)$$

Produit de convolution

z(t): convolution des signaux réels x(t) et y(t)

$$z(t) = x(t) * y(t) = \int_{0}^{\infty} x(\tau) y(t - \tau) d\tau \implies Z(s) = X(s).Y(s)$$
Automatique

TL de quelques signaux usuels

□ Impulsion de Dirac $\delta(t)$

 \Box Echelon unité $\Gamma(t)$

Rampe ou échelon de vitesse

Signal sinusoïdal

$$x(t) = \sin(\omega t + \varphi) \ t \ge 0$$

$$\mathcal{L}(x(t)) = \frac{s\sin\varphi + \omega\cos\varphi}{s^2 + \omega^2}$$

Réponse temporelle d'un système LTI

Un système linéaire est assimilable à un filtre linéaire \mathcal{F}

 \square Réponse du système à une impulsion de Dirac $\delta(t)$

 $h(t) = \mathcal{F}(\delta(t))$ h(t) est la réponse impulsionnelle du système

- Réponse à une entrée quelconque u(t), $u(t) = 0 \forall t < 0$
 - Rappel : $u(t) = u(t) * \delta(t) = \int_{0}^{+\infty} u(\tau) \delta(t \tau) d\tau$
 - $y(t) = \mathcal{F}(u(t)) = \mathcal{F}(\tau) \delta(t-\tau) d\tau$

Système linéaire $\Rightarrow y(t) = \int_0^{+\infty} u(\tau) \mathcal{F}(\delta(t-\tau)) d\tau$

Système invariant $\Rightarrow h(t-\tau) = \mathcal{F}(\delta(t-\tau))$

$$y(t) = \int_0^{+\infty} u(\tau) h(t - \tau) d\tau = u(t) * h(t)$$

 $y(t) = \mathcal{F}(u(t))$ produit de convolution de u(t) et de h(t)

Fonction de transfert d'un système LTI (1)

Fonction de transfert

$$y(t) = u(t) * h(t) \implies Y(s) = \mathcal{L}(y(t)) = U(s) H(s) \implies H(s) = \frac{Y(s)}{U(s)}$$

H(s) est la fonction de transfert du système

Système continu régi par une équation différentielle

$$a_n y^{(n)}(t) + \dots + a_1 y^{(1)}(t) + a_0 y(t) = b_m u^{(m)}(t) + \dots + b_1 u^{(1)}(t) + b_0 u(t)$$

avec $m \le n$

On suppose les conditions initiales nulles c'est-à-dire

$$y^{(n-1)}(0) = \dots = y^{(1)}(0) = y(0) = 0$$
$$u^{(m-1)}(0) = \dots = u^{(1)}(0) = u(0) = 0$$

Fonction de transfert d'un système LTI

Système régi par une équation différentielle (suite)

En utilisant la TL, on a :

$$a_n s^n Y(s) + \dots + a_1 s Y(s) + a_0 Y(s) = b_m s^m U(s) + \dots + b_1 s U(s) + b_0 U(s)$$

 $(a_n s^n + \dots + a_1 s + a_0) Y(s) = (b_m s^m + \dots + b_1 s + b_0) U(s)$

$$H(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0}$$

La fonction de transfert a la forme d'une fraction rationnelle :

$$H(s) = \frac{N(s)}{D(s)}$$
 $N(s)$ et $D(s)$: polynômes en s de degrés respectifs m et n

Le système est dit d'ordre *n*

Fonction de transfert d'un système LTI

Exemple : circuit RLC

Lois de l'électricité

$$Ri(t) + L\frac{di(t)}{dt} + V_c(t) = u(t)$$

$$V_c(t) = \frac{1}{C} \int_0^t i(\tau) d\tau \quad \Rightarrow \quad i(t) = C\dot{V_c}(t)$$

On en déduit : $LCV_c(t) + RCV_c(t) + V_c(t) = u(t)$

Fonction de transfert

$$(LC s2 + RC s + 1)V_c(s) = U(s)$$

$$H(s) = \frac{V_c(s)}{U(s)} = \frac{1}{LC s^2 + RC s + 1}$$

Réponse d'un système LTI par la TL

Exemple : circuit RC

Donner l'expression de la réponse du système pour une entrée échelon d'amplitude u_0 =2V. La tension initiale aux bords de la capacité est $V_c(0)$ =0.5V

Réponse d'un système LTI par la TL

Exemple : circuit RC

$$u(t) = \frac{i(t) R}{C + v(t)}$$

$$RC y'(t) + y(t) = u(t)$$

$$RC y(t) + y(t) = v(t)$$

$$RC y(t) + y(t) = v(t)$$

Application de la TL

$$RC(sY(s) - V_c(0)) + Y(s) = U(s) \implies Y(s) = \frac{U(s)}{RC s + 1} + \frac{RC}{RC s + 1} V_c(0)$$

$$u(t) = u_0 \Gamma(t) \implies U(s) = \frac{u_0}{s}$$

$$\Rightarrow Y(s) = \frac{u_o}{s(RC s + 1)} + \frac{RC}{RC s + 1} V_c(0)$$

Réponse d'un système LTI par la TL

Exemple : circuit RC (suite)

$$Y(s) = \frac{u_o}{s(RC s + 1)} + \frac{RC}{RC s + 1} V_c(0)$$

En utilisant les tables de transformée, on a :

$$y(t) = \underbrace{u_0 \left(1 - e^{-\frac{t}{RC}}\right)}_{y_F(t)} + \underbrace{V_c(0) e^{-\frac{t}{RC}}}_{y_L(t)}$$

Régimes transitoire et permanent

Réponse du circuit RC

Régime permanent

Soumis à un entrée échelon, rampe, ... un système linéaire stable aura un comportement asymptotique similaire à l'entrée : on dit qu'il a atteint le régime permanent.

Régime transitoire

C'est la partie de la réponse qui précède le régime permanent. Le régime transitoire est lié à la dynamique du système

Eléments caractéristiques de la FT

$$H(s) = \frac{N(s)}{D(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0}$$

- Pôles (modes) et zéros du système
 - ◆Les pôles sont les racines $\lambda_i \in \mathbb{C}$ du polynôme D(s). Les pôles sont soit réels, soit des paires de pôles complexes conjugués
 - Un système d'ordre n admet n pôles distincts ou non
 - Les zéros sont les racines $z_i \in \mathbb{C}$ du polynôme N(s)
- Gain du système

$$H(s) = \frac{K}{s^{\alpha}} \frac{b_m b_0 s^m + \dots + b_1 b_0 s + 1}{a_n / a_{\alpha} s^n + \dots + a_1 / a_{\alpha} s + 1}$$

$$K = \frac{b_0}{a_{co}}$$

 $K = \frac{b_0}{a_0}$: gain du système

Stabilité des systèmes LTI

□ Théorème

Un système LTI est stable si et seulement si tous ses pôles λ_i ont une partie réelle $Re(\lambda_i)$ négative

Le domaine de stabilité est le demi-plan gauche du plan complexe

Association de fonctions de transfert

Association en série ou cascade

$$u \longrightarrow H_1(s) \xrightarrow{y_1} H_2(s) \longrightarrow y \qquad H(s) = H_1(s) \times H_2(s)$$

Association en parallèle

Fonction de transfert en réaction

