Chapitre 1 : Le second degré

Cours 3 : Signe d'une fonction polynôme de degré 2

R. KHODJAOUI

Lycée J.J. HENNER - Première D

Samedi 14 septembre 2019

Sommaire

1 Définition

2 Propriété

Étudier le signe d'une fonction polynôme du second degré

f est une fonction polynôme de degré 2

Étudier le signe de la fonction f, c'est déterminer les valeurs de x pour lesquelles f(x) est positive, négative ou nulle.

Cela revient graphiquement à étudier la position relative de la parabole représentative de f par rapport à l'axe des abscisses.

Étudier le signe d'une fonction polynôme du second degré

f est une fonction polynôme de degré 2

Étudier le signe de la fonction f, c'est déterminer les valeurs de x pour lesquelles f(x) est positive, négative ou nulle.

Cela revient graphiquement à étudier la position relative de la parabole représentative de f par rapport à l'axe des abscisses.

Illustration des cas possibles : cas a>0

Étudier le signe d'une fonction polynôme du second degré

f est une fonction polynôme de degré 2

Étudier le signe de la fonction f, c'est déterminer les valeurs de x pour lesquelles f(x) est positive, négative ou nulle.

Cela revient graphiquement à étudier la position relative de la parabole représentative de f par rapport à l'axe des abscisses.

Illustration des cas possibles : cas a<0

Le signe du trinôme dépend du signe de Δ et du signe de a

- → Si $\Delta > 0$, alors f(x) s'annule en $x = x_1$ et en $x = x_2$ et si on suppose que $x_1 < x_2$ alors :
 - > f(x) et a sont de signes contraires pour tout $x \in]x_1; x_2[$.
- ightharpoonup f(x) et a sont de même signe pour tout $x \in]-\infty; x_1[\cup]x_2; +\infty[$.
- → Si $\Delta = 0$, alors f(x) s'annule en $x = x_0$ et son signe est celui de a pour toutes les autres valeurs de x.
- ightarrow Si $\Delta < 0$, alors f(x) a le même signe que a pour tout réel x

Le signe du trinôme dépend du signe de Δ et du signe de a

- → Si $\Delta > 0$, alors f(x) s'annule en $x = x_1$ et en $x = x_2$ et si on suppose que $x_1 < x_2$ alors :
 - ightharpoonup f(x) et a sont de signes contraires pour tout $x\in]x_1;x_2[.$
- ightharpoonup f(x) et a sont de même signe pour tout $x \in]-\infty; x_1[\cup]x_2; +\infty[.$
- \Rightarrow Si $\Delta = 0$, alors f(x) s'annule en $x = x_0$ et son signe est celui de a pour toutes les autres valeurs de x.
- ightarrow Si $\Delta < 0$, alors f(x) a le même signe que a pour tout réel x.

Le signe du trinôme dépend du signe de Δ et du signe de a

- → Si $\Delta > 0$, alors f(x) s'annule en $x = x_1$ et en $x = x_2$ et si on suppose que $x_1 < x_2$ alors :
 - ightharpoonup f(x) et a sont de signes contraires pour tout $x\in]x_1;x_2[.$
 - ightharpoonup f(x) et a sont de même signe pour tout $x \in]-\infty; x_1[\cup]x_2; +\infty[.$
- → Si $\Delta = 0$, alors f(x) s'annule en $x = x_0$ et son signe est celui de a pour toutes les autres valeurs de x.
- ightarrow Si $\Delta < 0$, alors f(x) a le même signe que a pour tout réel x

Le signe du trinôme dépend du signe de Δ et du signe de a

- → Si $\Delta > 0$, alors f(x) s'annule en $x = x_1$ et en $x = x_2$ et si on suppose que $x_1 < x_2$ alors :
 - ightharpoonup f(x) et a sont de signes contraires pour tout $x\in]x_1;x_2[.$
- ightharpoonup f(x) et a sont de même signe pour tout $x \in]-\infty; x_1[\cup]x_2; +\infty[.$
- → Si $\Delta = 0$, alors f(x) s'annule en $x = x_0$ et son signe est celui de a pour toutes les autres valeurs de x.
- → Si $\Delta < 0$, alors f(x) a le même signe que a pour tout réel x.

FIN

Revenir au début

