4.1 a. Refer to control signals in Figure 4.2 in the text.
REGWRITE = 1,
MEMREAD = 0,
MEMWRITE = 0,
ALU Input Mux: selects register file data (0 –defined in Figure 4.15)
ALU Operation: AND (control format not defined)
Branch = 0
Register Input Mux: selects ALU (1 –defined in Figure 4.15)
b. The registers that perform a useful function are:
Program Counter (PC);
Instruction Memory;
Register File: both read ports, write port;
ALU;
PC + 4 Adder
c. The Branch Adder and Data Memory produce outputs that are not used. Al
resources produce outputs.
4.2 a. LWI leads the contents of a memory allocation that is the sum of two
registry values. REGISTER, Mux, ALU, MEM.

- b. nothing. (other reasonable answers are also okay)
- c. nothing. (other reasonable answers are also okay)

4.5 lw+sw=25%+10%=35%

- 4.8 a. pipelined: 350 ps; non-pipelined: 250+350+150+300+200 = 1250 ps.
 - b. pipelined: $350 \times 5 = 1750 \text{ ps}$; non-pipelined: 1250 ps.
 - c. ID; 300 ps. c. ID; 300 ps.
 - d. 30% (LD) + 20%(SW) = 50%
 - e. 40% (ALU) + 30%(LD) = 70%

f. cycle time:

single-cycle: 1250 ps.

multi-cycle: 350 ps.

pipelined: 350 ps.

execution time ratio:

single-cycle / pipelined =
$$1250 / 350 = 3.57$$

multi-cycle / pipelined =
$$(20\% \times 5 + 80\% \times 4) = 4.2$$

execution time:

pipelined: 350 ps

single-cycle: 1250 ps

multi-cycle: $350 \times 4.2 = 1470 \text{ ps } (1400 \text{ is also okay})$

NOTICE: ALU has no MEM stage, SW has no WB stage, BEQ has no WB (or MEM+WB) stage.