LEARNING TO RANK

A Machine Learning Approach to Rank Assets

- What is Learning to Rank (LTR)?
- How to use Learning to Rank for trading strategies
- Results
- Next Steps

Context

1.000 stocks x daily data x 20 years of history

5.040.000 lines

Roots of Learning to Rank

Documents

Characteristics

- Lyrics
- Nationality
- Number of hits
- ...

Top Dog's

- Website Title
- Location
- Customer reviews

• ...

Learning to Rank in Finance

Trading Strategy Steps

- Collect and clean/check data
- Create input features
- Data transformations
- Data exploration

 Train predictive models to get predictions

- Construct portfolios using the predictions
- Position sizing

Data Description

- Universe: US Equities from 01/01/1995 04/10/2022
- Daily pricing data for 3250 stocks:
 - Open, High, Low, Close, Volume, Market Cap
- Price and volume derived features over several periods
- Over 12.250.000 rows and over 100 columns
- Tradeable: personal criteria

Data Transformation and Preprocessing

- Cross-sectional ranking
- Handling outliers
- Handling missing values

- Features computed on several horizons
- Missing values: cross sectional imputation with the mean
- Normalization: cross-sectional ranking
 - Automatically handles outliers

Data Exploration - Nonlinearities and Interactions

Stocks are ranked in N buckets regarding the past 120D return and plot shows the value of the average 20D forward return (right) for each of them

Stocks are ranked in N buckets regarding the past 20D volume (x-axis) and their past 20D volatility (y-axis) and plot shows (depending on the color) the value of the average 20D forward return for each of them

Time-Series Walk Forward Backtesting

Backtest Parameters

Minimum Training Period: 1 Year

• Test Period: 1 Year

• **Embargo:** horizon of the target

- Ex: Forward *SR* 10 D → Embargo ≥ 10 D

Expanding Version

Portfolios Creation - Idea

Out of sample

Predicted Data for 1 Rebalancing period

Date	Asset ID	Prediction SR 10D	-	Portfolio
D ₁	Asset 1	4/6		2
D ₁	Asset 2	6/6	_	3 (LONG)
D ₁	Asset 3	1/6		1 (SHORT)
D ₁	Asset 4	2/6		1 (SHORT)
D ₁	Asset 5	3/6		2
D ₁	Asset 6	5/6	_	3 (LONG)

 Idea is to backtest every portfolios as a long one, and see that all P&Ls are also continuously well ranked

Backtesting Setup

Models Presented

Benchmark:

- equal weighted of all tradeable stocks in the universe (Russell 1000)
- One-Factor momentum strategy based on the return over 1, 3, 6, 12 months
- Learning to Rank Models (LTR)
 - Multiple Linear Regression (MLR)
 - Regression Trees (Reg Trees)
 - No Hyper parameter tuning

Configurations

- Universe: US Equities
- **Prediction**: relative 10 day forward Sharp Ratio (SR)
- Expanding walk forward:
 - 1996 2022
- Default Number of Portfolio: 10
 - ~ 100 stocks per portfolio
- Rebalancing Period and Allocation process:
 - Russell 1000: bi-monthly and equal weighted
 - One-Factor momentum: monthly and equal weighted
 - LTR models: bi-monthly and rank-vol weighting
 - Max weight per stock 0.025

Traditional vs Supervised Portfolios

Momentum Strategy Portfolios Ranking

Machine Learning Portfolios Ranking

Reminder portfolios construction

LTR Outperforms Benchmarks

Models Performances without Fees

Strategy	BM1	BM 2	MLR	Boosting
Return (%)	10.76	13.96	15.54	19.97
Volatility (%)	20.8	23.22	15.62	16.98
Sharpe Ratio	0.52	0.60	0.99	1.17
Max DD (%)	62.43	57.02	37.96	49.41
Max TUW (Days)	865	1400	404	345

Consistent Performance over Time

Easily Survives Transaction fees

Performance with 5BP's Fees (F)

Strategy (Fees)	BM 1	BM 2	BM 2 (F)	Reg Trees	Reg Trees (F)
Return (%)	10.21	13.47	12.80	19.97	18.39
Volatility (%)	21.11	23.46	23.46	16.98	16.98
Sharpe Ratio	0.48	0.57	0.55	1.17	1.08
Max DD (%)	62.43	57.02	57.79	49.41	50.12
Max TUW (Days)	865	1400	1466	345	365

Model Interpretation – A first impression

Represent the mean of the past 10D volatility (left) and return (right) at time t, of the best (9) and worst (0) portfolio

Feature Volatility 10 Days

Feature Return 10 Days

Key Takeaways

Strong consistent performance after transaction costs

- Signal is consistent over time
- More return
- Lower risk in terms of volatility and drawdown
- Returns: 19,97% p.a. / Sharp Ration: 1,17

Multifunctional and Generalizable

- Applicable on other targets (returns, volatility...)
- Applicable to other universes and asset classes (European, Asian... market)
- Intuitive to incorporate new predictive features or add more assets

Next Steps

- Start paper trading
- Work on a Long-short portfolio strategy
- Test on other universes
 - e.g. create a universe composed of US, EU and Asian market and target a trading universe composed of 3000 to 5000 stocks each rebalancing date
- Addition of other data sources to involve new interactions and non-linearity
 - e.g. add fundamental data
- Combine multiple models
 - e.g. model trained on several periods, model trained on several target
- Model understanding
 - SHAP values and other approaches