- 65.) So far, the topics I have had the most trouble understanding are limits and continuity. I know the definitions, and can write proofs, but I lack an intuitive understanding of what the definitions are saying. I plan on supplementing with online resources in order to build a better understanding.
- 66.) a.) $x_n = n$
 - b.) DNE; a sequence cannot converge to a value while also having terms arbitrarily far from that value.
- 68.) Let P(n) propose that $1 y_1 y_2 \cdots y_n = (1 x_1)(1 x_2) \cdots (1 x_n)$. For the base case, consider P(1):

$$y_1 = x_1 \implies 1 - y_1 = 1 - x_1$$

Thus P(1) holds. For the induction step, assume P(n) and consider P(n+1):

$$1 - y_1 - y_2 - \dots - y_n = (1 - x_1)(1 - x_2) \cdots (1 - x_n)$$

$$\implies 1 - y_1 - y_2 - \dots - y_n - y_{n+1} = (1 - x_1)(1 - x_2) \cdots (1 - x_n) - y_{n+1}$$

$$= (1 - x_1)(1 - x_2) \cdots (1 - x_n) - x_{n+1}(1 - x_1)(1 - x_2) \cdots (1 - x_n)$$

$$= (1 - x_1)(1 - x_2) \cdots (1 - x_n)(1 - x_{n+1})$$

Thus P(n) holds for all $n \in \mathbb{N}$. Q.E.D.

- 69.) a.) $\{x_n\}_{n\in\mathbb{N}}$ is nondecreasing if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$.
 - b.) $\{x_n\}_{n\in\mathbb{N}}$ is strictly decreasing if $x_n > x_{n+1}$ for all $n \in \mathbb{N}$.
- 70.) Consider x_n and x_{n+1} :

$$x_{n+1} - x_n = 2(n+1) + 6 - (2n+6) = 2n + 2 + 6 - 2n - 6 = 2$$

 $\implies x_{n+1} - x_n = 2 > 0 \implies x_{n+1} > x_n$

Thus $x_{n+1} > x_n$ for all $n \in \mathbb{N}$, thus x_n is strictly increasing. Q.E.D.

71.) Consider x_n and x_{n+1} :

$$x_{n+1} - x_n = 5^{-(n+1)} - 5^{-n} = \frac{1}{5^{n+1}} - \frac{1}{5^n} = \frac{1}{5^{n+1}} - \frac{5}{5^{n+1}} = -\frac{4}{5^{n+1}} < 0$$

$$\implies x_{n+1} - x_n = -\frac{4}{5^{n+1}} < 0 \implies x_{n+1} < x_n$$

Thus $x_{n+1} < x_n$ for all $n \in \mathbb{N}$, thus x_n is strictly decreasing. Q.E.D.

74.)

a_n	X	X	X	X		X
b_n	X	X		X	X	X
c_n	X					
$\overline{d_n}$	X	X				

75.)

e_n	X	X	X	X	X
f_n			X	X	Χ
g_n					
h_n			X		X

76.)

i_n					
j_n		X	X	X	
k_n					
$\overline{l_n}$		X			X

- 85.) a.) True; Let x_n be a bounded sequence, thus $x_n \leq M$ for some $M \in \mathbb{R}$. Let $y_k \leq x_n$, thus for all $k \in \mathbb{N}$, there exists $n \in \mathbb{N}$ where $y_k = x_n$, thus $y_k \leq M$ for all $k \in \mathbb{N}$, thus y_k is bounded.
 - b.) True; Since x_n is monotonic, all terms x_n maintain monotonicity with all x_m where m > n, thus if $y_k \leq x_n$, then y_k is monotonic.
- 91.) a.) $S = \mathbb{N}$ are the friends of x_n .
 - b.) $S = \{2n\}$ are the friends of y_n .
- 92.) $S = \{n \in \mathbb{N} : 1 \le n \le 36\}$ are the friends of z_n .
- 99.) Let $x_n = n (-1)^n n$. x_n is unbounded, but $y_k = x_{2k} = 2k (-1)^{2k} 2k = 2k 2k = 0$, thus $y_k \leq x_n$ and $y_k \to 0$.
- 100.) Every cauchy sequence is convergent according to theorem 23, and no convergent sequence can be unbounded.
- 101.) Every cauchy sequence is convergent according to theorem 23.
- 102.) $x_n = \frac{(-1)^n}{n}$ is not monotonic, but $x_n \to 0$, thus x_n is convergent and thus cauchy.
- 103.) Let $x_n = \frac{1}{n^2}$. Since $x_n \to \frac{\pi^2}{6}$, x_n is convergent and thus cauchy. Q.E.D.
- 104.) Let x_n and y_n be cauchy sequences, thus $x_n \to A$ and $y_n \to B$ for some $A, B \in \mathbb{R}$. Let $z_n = x_n y_n$, thus $z_n \to AB$, thus z_n is convergent and thus cauchy. Q.E.D.

- 105.) Similarly, let $z_n = \frac{x_n}{y_n}$ where $y_n \neq 0$, thus $z_n \to \frac{A}{B}$, thus z_n is convergent and thus cauchy. Q.E.D.
- 114.) Let $S = \{ y \in \mathbb{R} : |x y| < r \},\$

$$y \in S \implies |x - y| < r \implies -r < x - y < r \implies -r - x < -y < r - x$$

$$\implies x - r < y < x + r \implies y \in (x - r, x + r)$$

Thus $S \subseteq (x - r, x + r)$. Next, consider (x - r, x + r):

$$y \in (x - r, x + r) \implies x - r < y < x + r \implies r - x > -y > -r - x$$

$$\implies -r < x - y < r \implies |x - y| < r \implies y \in S$$

Thus $(x-r, x+r) \subseteq S$, thus S = (x-r, x+r). Q.E.D.

126.) Let $\varepsilon > 0$ be given, then there exists $\delta > 0$ where

$$|x-2| < \delta \implies |3x+1-7| < \varepsilon$$

Let
$$\delta = \frac{\varepsilon}{3}$$
.

$$|x-2| < \frac{\varepsilon}{3} \implies |3| |x-2| < \varepsilon \implies |3x-6| < \varepsilon \implies |3x+1-7| < \varepsilon$$

Thus $|x-2| < \delta \implies |3x+1-7| < \varepsilon$, thus $\lim_{x\to 2} 3x+1=7$. Q.E.D.

131.) Let $f: D \subseteq \mathbb{R} \to \mathbb{R}$ and $c \in D$. f is continuous at c if for all $\varepsilon > 0$, there exists $\delta > 0$ where

$$x \in D \land |x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$