R2. Model fitting and evaluation 2020 - 2021 Skagit River steelhead forecast.

Contents

[1] TRUE

Requirements	2
User inputs	4
Loading the fish data	5
Loading the covariates	6
Specifying models in JAGS	6
Beverton-Holt with covars	6
Beverton-Holt with covars	10
Beverton-Holt with covars	13
Fitting the models and generating the one year ahead forecasts	16
Model with all covariates	17
Model diagnostics	18
Model diagnostics	19
Model diagnostics AR1 recruitment residuals	21
Model selection	22
Model Selection Via Approximate leave-future-out cross validation	23
This is version 0.20.12.15.	

Requirements

All analyses require the R software (v3.4.3) for data retrieval, data processing, and summarizing model results, and the JAGS software (v4.2.0) for Markov chain Monte Carlo (MCMC) simulation. Please note that some of the R code below may not work with older versions of JAGS due to some changes in the ways that arrays are handled.

We also need a few packages that are not included with the base installation of R, so we begin by installing them (if necessary) and then loading them.

```
if(!require("here")) {
  install.packages("here")
  library("here")
if(!require("readr")) {
  install.packages("readr")
  library("readr")
if(!require("rjags")) {
  install.packages("rjags")
  library("rjags")
if(!require("loo")) {
  install.packages("loo")
  library("loo")
if(!require("ggplot2")) {
  install.packages("ggplot2")
  library("ggplot2")
if(!require("coda")) {
  install.packages("coda")
  library("coda")
if(!require("shinystan")) {
  install.packages("shinystan")
  library("shinystan")
if(!require("R2jags")) {
  install.packages("R2jags")
  library("R2jags")
if(!require("dclone")) {
  install.packages("dclone")
  library("dclone")
}
if(!require("snow")) {
  install.packages("snow")
  library("snow")
}
## set directory locations
datadir <- here("data")</pre>
jagsdir <- here("jags")</pre>
analdir <- here("analysis")</pre>
```

```
savedir <- here("analysis/cache")</pre>
```

We also need a couple of helper functions.

```
## better round
Re2prec <- function(x, map = "round", prec = 1) {</pre>
  ## 'map' can be "round", "floor", or "ceiling"
  ## 'prec' is nearest value (eq, 0.1 means to nearest tenth; 1 gives normal behavior)
 if(prec<=0) { stop("\"prec\" cannot be less than or equal to 0") }</pre>
 do.call(map,list(x/prec))*prec
## wrapper function to fit JAGS models & rearrange output
fit_jags <- function(model, data, params, inits, ctrl, dir = jagsdir) {</pre>
  jm <- jags.model(file.path(jagsdir, model),</pre>
                    data,
                    inits,
                    ctrl$chains,
                    ctrl$burn,
                    quiet = TRUE)
 return(coda.samples(jm, params, ctrl$length, ctrl$thin))
}
#alternative wrapper to fit model in parallel; one chain per core
fit_jags2<-function(model,data,params,inits,ctrl,dir=jagsdir){</pre>
  \# jm < -jags.parallel(data = data,
                       inits=inits,
  #
                       parameters.to.save=params,
  #
                       model.file = file.path(jagsdir, model),
                       n.chains = ctrl\$chains,
                       n.iter = ctrl \$ length,
  #
                       n.burnin = ctrl\$burn,
                       n.thin = ctrl\$thin,
                       DIC = TRUE,
  # )
  # write.csv(jm$BUGSoutput$summary, file.path(savedir, paste(model, ".csv", sep="")))
  # jm<-jaqs.parfit(data=data,</pre>
                       inits=inits.
  #
                       parameters.to.save=params,
  #
                       model.file = file.path(jagsdir, model),
  #
                       n.chains = ctrl$chains,
                       n.iter = ctrl$length,
  #
                       n.burnin = ctrl\$burn,
                       n.thin = ctrl\$thin,
  #
  #
                       DIC = TRUE,
  # )
  # return(as.mcmc.list(as.mcmc(jm)))
  cl <- makeCluster(3, type = "SOCK")</pre>
  inits2 <- jags.fit(data=data,</pre>
                      params=params,
                      model=file.path(jagsdir, model),
                      inits=inits,
                      n.chains=ctrl$chains,
```

User inputs

We begin by supplying values for the following parameters, which we need for model fitting and evaluation.

```
## first & last years of fish data
yr_frst <- 1978
yr_last <- 2020

## min & max adult age classes
age_min <- 3
age_max <- 8
## years (if any) of age-comp to skip; see below
age_skip <- 0

## number of years ahead for run forecasts
n_fore <- 1

## number of recent year forecasts
n_forecasts <- 5

## upper threshold for Gelman & Rubin's potential scale reduction factor (Rhat).
Rhat_thresh <- 1.1</pre>
```

Next we specify the names of three necessary data files containing the following information:

- 1. observed total number of adult spawners (escapement) by year;
- 2. observed age composition of adult spawners by year;
- 3. observed total harvest by year;

```
## 1. file with escapement data
## [n_yrs x 2] matrix of obs counts; 1st col is calendar yr
fn_esc <- "skagit_sthd_esc.csv"</pre>
```

```
## 2. file with age comp data
## [n_yrs x (1+A)]; 1st col is calendar yr
fn_age <- "skagit_sthd_age.csv"

## 3. file with harvest data
## [n_yrs x 2] matrix of obs catch; 1st col is calendar yr
fn_harv <- "skagit_sthd_catch.csv"</pre>
```

Loading the fish data

Here we load in the first three data files and do some simple calculations and manipulations. First the spawner data:

```
## escapement
dat_esc <- read_csv(file.path(datadir, fn_esc))
## years of data
dat_yrs <- dat_esc$year

## number of years of data
n_yrs <- length(dat_yrs)

## log of escapement
ln_dat_esc <- c(log(dat_esc$escapement),rep(NA,n_fore))</pre>
```

Next the age composition data:

```
## age comp data
dat_age <- read_csv(file.path(datadir, fn_age))</pre>
## num of age classes
A <- age_max - age_min + 1
## drop year col & first age_min+age_skip rows
dat_age <- dat_age[-(1:(age_min+age_skip)),-1]</pre>
## add row(s) of NA's for forecast years
if(n fore > 0) {
  dat_age <- rbind(dat_age,</pre>
                    matrix(0, n_fore, A,
                            dimnames =list(n_yrs+seq(n_fore),
                                            colnames(dat_age))))
}
## total num of age obs by cal yr
dat_age[,"sum"] <- apply(dat_age, 1, sum)</pre>
## row indices for any years with no obs age comp
idx_NA_yrs <- which(dat_age$sum<A, TRUE)</pre>
## replace 0's in yrs w/o any obs with NA's
dat_age[idx_NA_yrs,(1:A)] <- NA</pre>
## change total in yrs w/o any obs from 0 to A to help dmulti()
dat_age[idx_NA_yrs,"sum"] <- A</pre>
## convert class
dat_age <- as.matrix(dat_age)</pre>
```

And then the harvest data:

```
## harvest
dat_harv <- read_csv(file.path(datadir, fn_harv))
## drop year col & first age_max rows
dat_harv <- c(dat_harv$catch,rep(NA,n_fore))</pre>
```

Loading the covariates

Our analysis investigates 5 covariates as possible drivers of the population's instrinic growth rate:

- 1. Maximum river discharge in winter;
- 2. Minimum river discharge in summer;
- 3. North Pacific Gyre Oscillation;

All of the covariates are contained in the file /data/skagit_sthd_covars.csv. We will load and then standardize them to have zero-mean and unit-variance.

```
dat_cvrs <- read_csv(file.path(datadir, "skagit_sthd_covars.csv"))
## drop year col
dat_cvrs <- dat_cvrs[,-1]
## transform the covariates to z-scores
scl_cvrs <- as.matrix(scale(dat_cvrs))
## total number of covariates
n_cov <- dim(dat_cvrs)[2]</pre>
```

Specifying models in JAGS

Now we can specify the model in JAGS. We fit a total one model, which we outline below, based on a beverton holt process model with covariates.

Beverton-Holt with covars

```
cat("
    model {

    ##------
## PRIORS
##-----
## alpha = intrinsic productivity
alpha ~ dnorm(0,0.001) T(0,);
mu_BH_a <- log(alpha);
E_BH_a <- mu_BH_a + sigma_r/(2 - 2*phi^2);

## strength of dens depend
beta_inv ~ dnorm(0, 1e-9) T(0,);
beta <- 1/beta_inv;

## covariate effects</pre>
```

```
for(i in 1:n_cov) { gamma[i] ~ dnorm(0,0.01) }
## AR(1) coef for proc errors
#phi ~ dunif(-0.999,0.999);
#phi <- 0;</pre>
phi_prior ~ dbeta(2,2);
phi <- phi_prior*2-1;</pre>
#phi ~ dunif(0,0.999);
## innovation in first year
innov_1 ~ dnorm(0,tau_r*(1-phi*phi));
## process variance for recruits model
sigma_r ~ dnorm(0, 2e-2) T(0,);
tau_r <- 1/sigma_r;</pre>
## obs variance for spawners
tau_s <- 1/sigma_s;</pre>
sigma_s ~ dnorm(0, 0.001) T(0,);
## unprojectable early recruits;
## hyper mean across all popns
Rec_mu ~ dnorm(0,0.001);
## hyper SD across all popns
Rec_sig ~ dunif(0,100);
## precision across all popns
Rec_tau <- pow(Rec_sig,-2);</pre>
## multipliers for unobservable total runs
ttl_run_mu ~ dunif(1,5);
ttl_run_tau ~ dunif(1,20);
## get total cal yr returns for first age_min yrs
for(i in 1:(age_min+age_skip)) {
ln_tot_Run[i] ~ dnorm(ttl_run_mu*Rec_mu,Rec_tau/ttl_run_tau);
tot_Run[i] <- exp(ln_tot_Run[i]);</pre>
}
## maturity schedule
## unif vec for Dirch prior
theta <-c(1,10,10,5,1,1)
## hyper-mean for maturity
pi_eta ~ ddirch(theta);
## hyper-prec for maturity
pi_tau ~ dnorm(0, 0.01) T(0,);
for(t in 1:(n_yrs-age_min+n_fore)) { pi_vec[t,1:A] ~ ddirch(pi_eta*pi_tau) }
## estimated harvest rate
for(t in 1:(n_yrs+n_fore)) { h_rate[t] ~ dunif(0,1) }
##-----
## LIKELIHOOD
##-----
## predicted recruits in BY t
covar[1] <- inprod(gamma,mod_cvrs[1,]);</pre>
```

```
ln_BH_a[1] <- mu_BH_a + covar[1];</pre>
E_{\ln_{c}} = \ln_{c} + \ln_{c} + \ln_{c} = \log(1 + \text{beta*Sp[1]}) + \text{phi*innov_1};
tot_ln_Rec[1] ~ dnorm(E_ln_Rec[1],tau_r);
res_ln_Rec[1] <- tot_ln_Rec[1] - E_ln_Rec[1];</pre>
w[1] <- phi * innov_1 + res_ln_Rec[1];</pre>
## median of total recruits
tot_Rec[1] <- exp(tot_ln_Rec[1]);</pre>
## R/S
ln_RS[1] <- tot_ln_Rec[1] - ln_Sp[1];</pre>
## brood-yr recruits by age
for(a in 1:A) {
Rec[1,a] <- tot_Rec[1] * pi_vec[1,a];</pre>
}
## brood years 2:(n_yrs-age_min)
for(t in 2:(n_yrs-age_min+n_fore)) {
## predicted recruits in BY t
covar[t] <- inprod(gamma, mod_cvrs[t,]);</pre>
ln_BH_a[t] <- mu_BH_a + covar[t];</pre>
E_{\ln Rec[t]} \leftarrow \ln_BH_a[t] + \ln_Sp[t] - \log(1 + beta*Sp[t]) + phi*res_ln_Rec[t-1];
tot_ln_Rec[t] ~ dnorm(E_ln_Rec[t],tau_r);
res_ln_Rec[t] <- tot_ln_Rec[t] - E_ln_Rec[t];</pre>
w[t] <- phi * res ln Rec[t-1] + res ln Rec[t];</pre>
## median of total recruits
tot_Rec[t] <- exp(tot_ln_Rec[t]);</pre>
## R/S
ln_RS[t] <- tot_ln_Rec[t] - ln_Sp[t];</pre>
## brood-yr recruits by age
for(a in 1:A) {
Rec[t,a] <- tot_Rec[t] * pi_vec[t,a];</pre>
} ## end t loop over year
## get predicted calendar year returns by age
## matrix Run has dim [(n yrs-age min) x A]
## step 1: incomplete early broods
## first cal yr of this grp is first brood yr + age_min + age_skip
for(i in 1:(age_max-age_min-age_skip)) {
## projected recruits
for(a in 1:(i+age_skip)) {
Run[i,a] <- Rec[(age_skip+i)-a+1,a];</pre>
## imputed recruits
for(a in (i+1+age_skip):A) {
lnRec[i,a] ~ dnorm(Rec_mu,Rec_tau);
Run[i,a] <- exp(lnRec[i,a]);</pre>
```

```
## total run size
 tot_Run[i+age_min+age_skip] <- sum(Run[i,1:A]);</pre>
 ## predicted age-prop vec for multinom
 for(a in 1:A) {
 age_v[i,a] <- Run[i,a] / tot_Run[i+age_min];</pre>
 ## multinomial for age comp
 dat_age[i,1:A] ~ dmulti(age_v[i,1:A],dat_age[i,A+1]);
  lp_age[i] <- logdensity.multi(dat_age[i,1:A],age_v[i,1:A],dat_age[i,A+1]);</pre>
 }
 ## step 2: info from complete broods
 ## first cal yr of this grp is first brood yr + age_max
 for(i in (A-age_skip):(n_yrs-age_min-age_skip+n_fore)) {
 for(a in 1:A) {
 Run[i,a] <- Rec[(age_skip+i)-a+1,a];</pre>
 }
 ## total run size
 tot_Run[i+age_min+age_skip] <- sum(Run[i,1:A]);</pre>
 ## predicted age-prop vec for multinom
 for(a in 1:A) {
  age_v[i,a] <- Run[i,a] / tot_Run[i+age_min];</pre>
 ## multinomial for age comp
 dat_age[i,1:A] ~ dmulti(age_v[i,1:A],dat_age[i,A+1]);
 lp_age[i] <- ifelse(i < n_yrs-age_min-age_skip+n_fore, logdensity.multi(dat_age[i,1:A],age_v[i,1:A]</pre>
 ## get predicted calendar year spawners
 ## first cal yr is first brood yr
 for(t in 1:(n_yrs+n_fore)) {
 ## obs model for spawners
 #Sp[t] <- max(10,tot_Run[t] - dat_harv[t]);
 est_harv[t] = ifelse(t > n_yrs,1,h_rate[t] * tot_Run[t]);
 dat_harv[t] ~ dlnorm(log(est_harv[t]), 20);
 Sp[t] = tot_Run[t] - est_harv[t];
 ln_Sp[t] <- log(Sp[t]);</pre>
 ln_dat_esc[t] ~ dnorm(ln_Sp[t], tau_s);
 lp_esc[t] <- ifelse(t < n_yrs + 1,logdensity.norm(ln_dat_esc[t],ln_Sp[t], tau_s),0);</pre>
 }
} ## end model description
", file=file.path(jagsdir, "IPM_BH_cov_AR.txt"))
```

Beverton-Holt with covars

```
cat("
model {
 ##----
 ## PRIORS
  ##-----
  ## alpha = intrinsic productivity
  alpha ~ dnorm(0,0.001) T(0,);
  mu_BH_a <- log(alpha);</pre>
  E_BH_a \leftarrow mu_BH_a + sigma_r/(2 - 2*phi^2);
  ## strength of dens depend
 beta_inv ~ dnorm(0, 1e-9) T(0,);
  beta <- 1/beta_inv;</pre>
  ## covariate effects
  for(i in 1:n_cov) { gamma[i] ~ dnorm(0,0.01) }
  ## AR(1) coef for recruitment residual
  #phi ~ dunif(-0.999,0.999);
  #phi <- 0;
  phi_prior ~ dbeta(2,2);
  phi <- phi_prior*2-1;</pre>
  #phi ~ dunif(0,0.999);
  ## MA(1) coef recruitment residual
  theta res prior ~ dbeta(2,2);
 theta_res <- theta_res_prior*2-1;</pre>
  #theta_res ~ dunif(0,0.999);
  ## innovation in first year
  #innov_1 ~ dnorm(0,tau_r*(1-phi*phi));#AR1
  innov_1 \sim dnorm(0,(1-phi^2)/((1+2*phi*theta_res+theta_res^2)*sigma_r^2));#AR1MA1
  ## process variance for recruits model
  sigma_r ~ dnorm(0, 2e-2) T(0,);
  tau_r <- 1/sigma_r;</pre>
  ## obs variance for spawners
  tau_s <- 1/sigma_s;</pre>
  sigma_s ~ dnorm(0, 0.001) T(0,);
  ## unprojectable early recruits;
  ## hyper mean across all popns
 Rec_mu ~ dnorm(0,0.001);
  ## hyper SD across all popns
 Rec_sig ~ dunif(0,100);
  ## precision across all popns
 Rec tau <- pow(Rec sig,-2);</pre>
 ## multipliers for unobservable total runs
 ttl_run_mu ~ dunif(1,5);
```

```
ttl_run_tau ~ dunif(1,20);
## get total cal yr returns for first age_min yrs
for(i in 1:(age_min+age_skip)) {
     ln_tot_Run[i] ~ dnorm(ttl_run_mu*Rec_mu,Rec_tau/ttl_run_tau);
     tot_Run[i] <- exp(ln_tot_Run[i]);</pre>
}
## maturity schedule
## unif vec for Dirch prior
theta \leftarrow c(1,10,10,5,1,1)
## hyper-mean for maturity
pi_eta ~ ddirch(theta);
## hyper-prec for maturity
pi_tau ~ dnorm(0, 0.01) T(0,);
for(t in 1:(n_yrs-age_min+n_fore)) { pi_vec[t,1:A] ~ ddirch(pi_eta*pi_tau) }
## estimated harvest rate
for(t in 1:(n_yrs+n_fore)) { h_rate[t] ~ dunif(0,1) }
##-----
## LIKELIHOOD
##-----
## predicted recruits in BY t
covar[1] <- inprod(gamma,mod_cvrs[1,]);</pre>
ln_BH_a[1] <- mu_BH_a + covar[1];</pre>
E_{n_{ec}[1]} \leftarrow n_{BH_a[1]} + n_{Sp[1]} - \log(1 + beta*Sp[1]) + phi * innov_1 + theta_res * 0;
tot_ln_Rec[1] ~ dnorm(E_ln_Rec[1], tau_r);
res_ln_Rec[1] <- tot_ln_Rec[1] - E_ln_Rec[1];</pre>
w[1] <- phi * innov_1 + theta_res * 0 + res_ln_Rec[1]
## median of total recruits
tot_Rec[1] <- exp(tot_ln_Rec[1]);</pre>
## R/S
ln_RS[1] <- tot_ln_Rec[1] - ln_Sp[1];</pre>
## brood-yr recruits by age
for(a in 1:A) {
 Rec[1,a] <- tot_Rec[1] * pi_vec[1,a];</pre>
## brood years 2:(n_yrs-age_min)
for(t in 2:(n_yrs-age_min+n_fore)) {
 ## predicted recruits in BY t
 covar[t] <- inprod(gamma, mod_cvrs[t,]);</pre>
 ln_BH_a[t] <- mu_BH_a + covar[t];</pre>
 #version 4; more similar to AR1 original model
 tot_ln_Rec[t] ~ dnorm(E_ln_Rec[t], tau_r);
```

```
res_ln_Rec[t] <- tot_ln_Rec[t] - E_ln_Rec[t];</pre>
  w[t] \leftarrow phi * w[t-1] + theta_res * res_ln_Rec[t-1] + res_ln_Rec[t];
 ## median of total recruits
 tot_Rec[t] <- exp(tot_ln_Rec[t]);</pre>
 ## R/S
 ln RS[t] <- tot ln Rec[t] - ln Sp[t];</pre>
 ## brood-yr recruits by age
 for(a in 1:A) {
   Rec[t,a] <- tot_Rec[t] * pi_vec[t,a];</pre>
} ## end t loop over year
## get predicted calendar year returns by age
## matrix Run has dim [(n_yrs-age_min) x A]
## step 1: incomplete early broods
## first cal yr of this grp is first brood yr + age_min + age_skip
for(i in 1:(age_max-age_min-age_skip)) {
  ## projected recruits
 for(a in 1:(i+age_skip)) {
    Run[i,a] <- Rec[(age_skip+i)-a+1,a];</pre>
 }
 ## imputed recruits
 for(a in (i+1+age skip):A) {
    lnRec[i,a] ~ dnorm(Rec_mu,Rec_tau);
    Run[i,a] <- exp(lnRec[i,a]);</pre>
 }
 ## total run size
 tot_Run[i+age_min+age_skip] <- sum(Run[i,1:A]);</pre>
 ## predicted age-prop vec for multinom
 for(a in 1:A) {
    age_v[i,a] <- Run[i,a] / tot_Run[i+age_min];</pre>
 }
 ## multinomial for age comp
 dat_age[i,1:A] ~ dmulti(age_v[i,1:A],dat_age[i,A+1]);
 lp_age[i] <- logdensity.multi(dat_age[i,1:A],age_v[i,1:A],dat_age[i,A+1]);</pre>
}
## step 2: info from complete broods
## first cal yr of this grp is first brood yr + age_max
for(i in (A-age_skip):(n_yrs-age_min-age_skip+n_fore)) {
 for(a in 1:A) {
    Run[i,a] <- Rec[(age_skip+i)-a+1,a];</pre>
 }
 ## total run size
 tot_Run[i+age_min+age_skip] <- sum(Run[i,1:A]);</pre>
 ## predicted age-prop vec for multinom
 for(a in 1:A) {
    age_v[i,a] <- Run[i,a] / tot_Run[i+age_min];</pre>
 ## multinomial for age comp
 dat_age[i,1:A] ~ dmulti(age_v[i,1:A],dat_age[i,A+1]);
```

```
#lp_age[i] <- logdensity.multi(dat_age[i,1:A],age_v[i,1:A],dat_age[i,A+1]);</pre>
    lp_age[i] <- ifelse(i < n_yrs-age_min-age_skip+n_fore,</pre>
    logdensity.multi(dat_age[i,1:A],age_v[i,1:A],dat_age[i,A+1]),0)
  ## get predicted calendar year spawners
  ## first cal yr is first brood yr
  for(t in 1:(n yrs+n fore)) {
    ## obs model for spawners
    # Sp[t] <- max(10,tot_Run[t] - dat_harv[t]);
    est_harv[t] = h_rate[t] * tot_Run[t];
    dat_harv[t] ~ dlnorm(log(est_harv[t]), 20);
    Sp[t] = tot_Run[t] - est_harv[t];
    ln_Sp[t] <- log(Sp[t]);</pre>
    ln_dat_esc[t] ~ dnorm(ln_Sp[t], tau_s);
    lp_esc[t] <- ifelse(t < n_yrs + 1,logdensity.norm(ln_dat_esc[t],ln_Sp[t], tau_s),0);</pre>
} ## end model description
  ", file=file.path(jagsdir, "IPM_BH_cov_MA1_AR1.txt"))
```

Beverton-Holt with covars

```
cat("
model {
  ##-----
  ## PRIORS
  ##-----
  ## alpha = intrinsic productivity
  alpha ~ dnorm(0,0.001) T(0,);
  mu_BH_a <- log(alpha);</pre>
  E_BH_a \leftarrow mu_BH_a + sigma_r/(2 - 2*phi^2);
  ## strength of dens depend
  beta inv ~ dnorm(0, 1e-9) T(0,);
  beta <- 1/beta_inv;</pre>
  ## covariate effects
  for(i in 1:n_cov) { gamma[i] ~ dnorm(0,0.01) }
  ## AR(1) coef for recruitment residual
  #phi ~ dunif(-0.999,0.999);
  #phi <- 0;</pre>
  phi_prior ~ dbeta(2,2);
  phi <- phi_prior*2-1;</pre>
  #phi ~ dunif(0,0.999);
  ## innovation in first year
  innov_1 ~ dnorm(0,tau_r*(1-phi*phi));#AR1
```

```
## process variance for recruits model
sigma_r ~ dnorm(0, 2e-2) T(0,);
tau_r <- 1/sigma_r;</pre>
## obs variance for spawners
tau_s <- 1/sigma_s;</pre>
sigma_s ~ dnorm(0, 0.001) T(0,);
## unprojectable early recruits;
## hyper mean across all popns
Rec_mu ~ dnorm(0,0.001);
## hyper SD across all popns
Rec_sig ~ dunif(0,100);
## precision across all popns
Rec_tau <- pow(Rec_sig,-2);</pre>
## multipliers for unobservable total runs
 ttl_run_mu ~ dunif(1,5);
 ttl_run_tau ~ dunif(1,20);
## get total cal yr returns for first age_min yrs
for(i in 1:(age min+age skip)) {
      ln_tot_Run[i] ~ dnorm(ttl_run_mu*Rec_mu,Rec_tau/ttl_run_tau);
      tot_Run[i] <- exp(ln_tot_Run[i]);</pre>
}
## maturity schedule
## unif vec for Dirch prior
theta \leftarrow c(1,10,10,5,1,1)
## hyper-mean for maturity
pi_eta ~ ddirch(theta);
## hyper-prec for maturity
pi_tau ~ dnorm(0, 0.01) T(0,);
for(t in 1:(n_yrs-age_min+n_fore)) { pi_vec[t,1:A] ~ ddirch(pi_eta*pi_tau) }
## estimated harvest rate
for(t in 1:(n_yrs+n_fore)) { h_rate[t] ~ dunif(0,1) }
##-----
## LIKELIHOOD
##-----
## predicted recruits in BY t
covar[1] <- inprod(gamma,mod_cvrs[1,]);</pre>
ln_BH_a[1] <- mu_BH_a + covar[1];</pre>
E_{\ln_{c}} = \ln_{c} + \ln_{c} + \ln_{c} = \log(1 + \text{beta*Sp[1]}) + \text{phi * innov_1};
tot_ln_Rec[1] ~ dnorm(E_ln_Rec[1], tau_r);
res_ln_Rec[1] <- tot_ln_Rec[1] - E_ln_Rec[1];</pre>
w[1] <- phi * innov_1 + res_ln_Rec[1];</pre>
## median of total recruits
tot_Rec[1] <- exp(tot_ln_Rec[1]);</pre>
## R/S
ln_RS[1] <- tot_ln_Rec[1] - ln_Sp[1];</pre>
```

```
## brood-yr recruits by age
for(a in 1:A) {
  Rec[1,a] <- tot_Rec[1] * pi_vec[1,a];</pre>
## brood years 2:(n yrs-age min)
for(t in 2:(n_yrs-age_min+n_fore)) {
  ## predicted recruits in BY t
  covar[t] <- inprod(gamma, mod_cvrs[t,]);</pre>
  ln_BH_a[t] <- mu_BH_a + covar[t];</pre>
  E_{\ln Rec[t]} \leftarrow \ln_BH_a[t] + \ln_Sp[t] - \log(1 + beta*Sp[t]) + phi * w[t-1];
  tot_ln_Rec[t] ~ dnorm(E_ln_Rec[t], tau_r);
  res_ln_Rec[t] <- tot_ln_Rec[t] - E_ln_Rec[t];</pre>
  w[t] <- phi * w[t-1] + res_ln_Rec[t];</pre>
  ## median of total recruits
  tot_Rec[t] <- exp(tot_ln_Rec[t]);</pre>
  ## R/S
  ln_RS[t] <- tot_ln_Rec[t] - ln_Sp[t];</pre>
  ## brood-yr recruits by age
  for(a in 1:A) {
    Rec[t,a] <- tot_Rec[t] * pi_vec[t,a];</pre>
} ## end t loop over year
## get predicted calendar year returns by age
## matrix Run has dim [(n_yrs-age_min) x A]
## step 1: incomplete early broods
## first cal yr of this grp is first brood yr + age_min + age_skip
for(i in 1:(age_max-age_min-age_skip)) {
  ## projected recruits
  for(a in 1:(i+age_skip)) {
    Run[i,a] \leftarrow Rec[(age_skip+i)-a+1,a];
  }
  ## imputed recruits
  for(a in (i+1+age_skip):A) {
    lnRec[i,a] ~ dnorm(Rec_mu,Rec_tau);
    Run[i,a] <- exp(lnRec[i,a]);</pre>
  ## total run size
  tot_Run[i+age_min+age_skip] <- sum(Run[i,1:A]);</pre>
  ## predicted age-prop vec for multinom
  for(a in 1:A) {
    age_v[i,a] <- Run[i,a] / tot_Run[i+age_min];</pre>
  }
  ## multinomial for age comp
  dat_age[i,1:A] ~ dmulti(age_v[i,1:A],dat_age[i,A+1]);
  lp_age[i] <- logdensity.multi(dat_age[i,1:A],age_v[i,1:A],dat_age[i,A+1]);</pre>
## step 2: info from complete broods
## first cal yr of this grp is first brood yr + age_max
for(i in (A-age_skip):(n_yrs-age_min-age_skip+n_fore)) {
```

```
for(a in 1:A) {
      Run[i,a] <- Rec[(age_skip+i)-a+1,a];</pre>
    ## total run size
    tot_Run[i+age_min+age_skip] <- sum(Run[i,1:A]);</pre>
    ## predicted age-prop vec for multinom
    for(a in 1:A) {
      age v[i,a] <- Run[i,a] / tot Run[i+age min];</pre>
    }
    ## multinomial for age comp
    dat_age[i,1:A] ~ dmulti(age_v[i,1:A],dat_age[i,A+1]);
    #lp_age[i] <- logdensity.multi(dat_age[i,1:A],age_v[i,1:A],dat_age[i,A+1]);</pre>
    lp_age[i] <- ifelse(i < n_yrs-age_min-age_skip+n_fore,</pre>
    logdensity.multi(dat_age[i,1:A],age_v[i,1:A],dat_age[i,A+1]),0)
  ## get predicted calendar year spawners
  ## first cal yr is first brood yr
  for(t in 1:(n_yrs+n_fore)) {
    ## obs model for spawners
    # Sp[t] <- max(10,tot_Run[t] - dat_harv[t]);</pre>
    est_harv[t] = h_rate[t] * tot_Run[t];
    dat_harv[t] ~ dlnorm(log(est_harv[t]), 20);
    Sp[t] = tot_Run[t] - est_harv[t];
    ln_Sp[t] \leftarrow log(Sp[t]);
    ln_dat_esc[t] ~ dnorm(ln_Sp[t], tau_s);
    lp_esc[t] <- ifelse(t < n_yrs + 1,logdensity.norm(ln_dat_esc[t],ln_Sp[t], tau_s),0);</pre>
  }
} ## end model description
 ", file=file.path(jagsdir, "IPM_BH_cov_AR_resid.txt"))
```

Fitting the models and generating the one year ahead forecasts

Before fitting the model in JAGS, we need to specify the MCMC control parameters.

Model with all covariates

Please note that the following code takes $\sim\!20$ min to run on a quad-core machine with 3.5 GHz Intel processors.

```
## set of multi-covariate models
cset <- colnames(scl_cvrs)
dat_jags$n_cov <- length(cset)
dat_jags$mod_cvrs <- scl_cvrs[, cset]</pre>
```

First, we will fit a beverton holt model assuming MA1 and AR1 recruitment residuals

```
## function for inits
init_vals_cov <- function() {</pre>
 list(alpha = 5,
       beta_inv = exp(mean(ln_dat_esc, na.rm = TRUE)),
       gamma = rep(0, 3),
       pi_tau = 10,
       pi_eta = rep(1,A),
       pi_vec = matrix(c(0.01, 0.35, 0.47, 0.15, 0.01, 0.01),
                        n_yrs-age_min+n_fore, A,
                        byrow = TRUE),
       Rec_mu = log(1000),
       Rec_sig = 0.1,
       \#tot_ln_Rec = rep(log(1000), n_yrs - age_min + n_fore),
       phi_prior = 0.75,theta_res_prior = 0.75,
       innov_1 = 0
}
## params/states to return
par_jags <- c("alpha", "E_BH_a", "ln_BH_a",</pre>
               "beta",
               "gamma"
               "Sp", "Rec", "tot_ln_Rec", "ln_RS",
               "pi_eta", "pi_tau",
               "sigma_r", "sigma_s", "res_ln_Rec", "w", "theta_res", "phi",
               "lp_age","lp_esc"
              )
```

Model diagnostics

Here is a table of the Gelman & Rubin statistics (R_{hat}) for the estimated parameters. Recall that we set an upper threshold of 1.1, so values larger than that deserve some additional inspection.

```
## params of interest
par_conv <- c("alpha", "beta", paste0("gamma[", seq(3), "]"),</pre>
              "sigma_r", "sigma_s", "pi_tau", "theta_res", paste0("pi_eta[", seq(A-1), "]"))
## Gelman-Rubin
gelman.diag(mod_fits[[1]][,par_conv])
## Potential scale reduction factors:
##
##
             Point est. Upper C.I.
## alpha
                   1.03
                               1.08
## beta
                   1.03
                               1.07
## gamma[1]
                   1.00
                               1.00
## gamma[2]
                   1.00
                               1.00
## gamma[3]
                   1.00
                               1.01
## sigma_r
                   1.00
                               1.01
## sigma_s
                   1.07
                               1.14
## pi_tau
                   1.07
                               1.19
## theta_res
                   1.00
                               1.00
## pi_eta[1]
                   1.05
                               1.15
## pi_eta[2]
                   1.00
                               1.00
## pi_eta[3]
                   1.00
                               1.01
## pi_eta[4]
                   1.01
                               1.02
## pi_eta[5]
                   1.02
                               1.05
## Multivariate psrf
##
## 1.94
## Autocorrelation
# t(round(autocorr.diag(mod_fits[[1]][,par_conv],
#
                         lags = seq(mcmc_ctrl$thin, 4*mcmc_ctrl$thin, mcmc_ctrl$thin),
                         relative=FALSE), 2))
## Use ShinyStan to look at effective draws, Gelman-Rubin, Autocorrelation
fit_bh_cov_MA1_AR1 <- readRDS(file.path(savedir,"fit_bh_cov_MA1_AR1.rds"))</pre>
```

```
my_sso2 <- launch_shinystan(as.shinystan(fit_bh_cov_MA1_AR1))
summary_stats2<-data.frame(lapply(c("rhat","neff","mean","sd","quantiles"),function(x) retrieve(my_sso2
colnames(summary_stats2)[1:4]<-c("rhat","neff","mean","sd")
write.csv(summary_stats2,file.path(savedir,"Summary_stats_AR1_MA1.csv"))</pre>
```

next we will fit a beverton holt model assuming AR1 process errors only

```
## function for inits
init_vals_cov <- function() {</pre>
      list(alpha = 5,
                       beta_inv = exp(mean(ln_dat_esc, na.rm = TRUE)),
                        gamma = rep(0, 3),
                       pi_tau = 10,
                       pi_eta = rep(1,A),
                       pi_vec = matrix(c(0.01, 0.35, 0.47, 0.15, 0.01, 0.01),
                                                                               n_yrs-age_min+n_fore, A,
                                                                               byrow = TRUE),
                       Rec_mu = log(1000),
                       Rec_sig = 0.1,
                        tot_ln_Rec = rep(log(1000), n_yrs - age_min + n_fore),
                        phi_prior = 0.5,
                        innov_1 = 0
}
## params/states to return
par_jags <- c("alpha", "E_BH_a", "ln_BH_a",</pre>
                                                "beta",
                                                "gamma",
                                                "Sp", "Rec", "tot_ln_Rec", "ln_RS",
                                                "pi eta", "pi tau",
                                                "sigma_r", "sigma_s", "res_ln_Rec",
                                                "lp_age", "lp_esc", "phi"
                                                )
cat("Count =", 2, "; Time =", round(((proc.time()-timer_start)/60)["elapsed"], 1), "\n",
                                  file="cnt_time.txt", append=TRUE)
## fit model & save it
\# mod\_fits[[2]] \leftarrow fit\_jags("IPM\_BH\_cov\_AR.txt", dat\_jags, par\_jags, fit\_pags, par\_jags, fit\_pags, par\_jags, fit\_pags, par\_jags, fit\_pags, par\_jags, fit\_pags, fit\_pa
                                                                                                init_vals_cov, mcmc_ctrl)
mod_fits[[2]] <- fit_jags2(model="IPM_BH_cov_AR.txt",</pre>
                                                                                             data=dat_jags,
                                                                                             params=par_jags,
                                                                                             inits=init_vals_cov,
                                                                                             ctrl=mcmc_ctrl
```

Model diagnostics

Here is a table of the Gelman & Rubin statistics (R_{hat}) for the estimated parameters. Recall that we set an upper threshold of 1.1, so values larger than that deserve some additional inspection.

```
## params of interest
par_conv <- c("alpha","beta",paste0("gamma[",seq(3),"]"),</pre>
               "sigma_r", "sigma_s", "pi_tau", "phi", paste0("pi_eta[", seq(A-1), "]"))
## Gelman-Rubin
gelman.diag(mod_fits[[2]][,par_conv])
## Potential scale reduction factors:
##
##
             Point est. Upper C.I.
## alpha
                   1.04
                               1.09
                    1.03
                               1.09
## beta
## gamma[1]
                   1.00
                               1.00
## gamma[2]
                   1.00
                               1.01
## gamma[3]
                   1.00
                               1.01
## sigma_r
                   1.00
                               1.01
## sigma_s
                   1.01
                               1.03
## pi_tau
                   1.00
                               1.01
                   1.00
## phi
                               1.02
## pi_eta[1]
                   1.04
                               1.11
                   1.00
                               1.00
## pi_eta[2]
## pi_eta[3]
                   1.00
                               1.00
## pi_eta[4]
                   1.01
                               1.03
## pi_eta[5]
                   1.02
                               1.06
##
## Multivariate psrf
##
## 1.16
## Autocorrelation
# t(round(autocorr.diag(mod_fits[[2]][,par_conv],
#
                         lags = seq(mcmc_ctrl$thin, 4*mcmc_ctrl$thin, mcmc_ctrl$thin),
                         relative=FALSE), 2))
## Use ShinyStan to look at effective draws, Gelman-Rubin, Autocorrelation
fit_bh_cov_AR <- readRDS(file.path(savedir, "fit_bh_cov_AR.rds"))</pre>
my_sso <- launch_shinystan(as.shinystan(fit_bh_cov_AR))</pre>
summary_stats1<-data.frame(lapply(c("rhat", "neff", "mean", "sd", "quantiles"), function(x) retrieve(my_sso,</pre>
colnames(summary_stats1)[1:4]<-c("rhat", "neff", "mean", "sd")</pre>
write.csv(summary_stats1,file.path(savedir, "Summary_stats_AR.csv"))
```

next we will fit a beverton holt model assuming AR1 recruitment residuals only

```
tot_ln_Rec = rep(log(1000), n_yrs - age_min + n_fore),
      phi_prior = 0.5,
      innov_1 = 0)
}
## params/states to return
par_jags <- c("alpha", "E_BH_a", "ln_BH_a",</pre>
             "beta",
             "gamma",
             "Sp", "Rec", "tot_ln_Rec", "ln_RS",
             "pi_eta", "pi_tau",
             "sigma_r", "sigma_s", "res_ln_Rec",
             "lp_age", "lp_esc", "phi"
cat("Count =", 3, "; Time =", round(((proc.time()-timer_start)/60)["elapsed"], 1), "\n",
         file="cnt_time.txt", append=TRUE)
## fit model & save it
init_vals_cov, mcmc_ctrl)
mod_fits[[3]] <- fit_jags2(model="IPM_BH_cov_AR_resid.txt",</pre>
                         data=dat_jags,
                         params=par_jags,
                         inits=init_vals_cov,
                         ctrl=mcmc_ctrl
```

Model diagnostics AR1 recruitment residuals

Here is a table of the Gelman & Rubin statistics (R_{hat}) for the estimated parameters. Recall that we set an upper threshold of 1.1, so values larger than that deserve some additional inspection.

```
## params of interest
par_conv <- c("alpha", "beta", paste0("gamma[", seq(3), "]"),</pre>
               "sigma_r", "sigma_s", "pi_tau", "phi", paste0("pi_eta[", seq(A-1), "]"))
## Gelman-Rubin
gelman.diag(mod_fits[[3]][,par_conv])
## Potential scale reduction factors:
##
##
             Point est. Upper C.I.
## alpha
                    1.02
                               1.05
                    1.02
## beta
                               1.05
## gamma[1]
                    1.00
                               1.00
## gamma[2]
                    1.00
                               1.00
## gamma[3]
                    1.00
                               1.00
## sigma_r
                    1.00
                               1.00
## sigma_s
                    1.04
                               1.07
## pi_tau
                   1.01
                               1.01
## phi
                               1.00
                    1.00
## pi_eta[1]
                   1.03
                               1.09
```

```
## pi_eta[2]
                   1.00
                               1.01
                    1.00
                               1.02
## pi_eta[3]
## pi_eta[4]
                    1.00
                               1.01
## pi_eta[5]
                    1.01
                               1.01
## Multivariate psrf
## 1.49
## Autocorrelation
# t(round(autocorr.diag(mod_fits[[3]][,par_conv],
                         lags = seq(mcmc_ctrl$thin, 4*mcmc_ctrl$thin, mcmc_ctrl$thin),
#
                         relative=FALSE), 2))
## Use ShinyStan to look at effective draws, Gelman-Rubin, Autocorrelation
fit_bh_cov_AR_resid <- readRDS(file.path(savedir,"fit_bh_cov_AR_resid.rds"))</pre>
my_sso <- launch_shinystan(as.shinystan(fit_bh_cov_AR_resid))</pre>
summary_stats3<-data.frame(lapply(c("rhat", "neff", "mean", "sd", "quantiles"), function(x) retrieve(my_sso,
colnames(summary_stats3)[1:4]<-c("rhat", "neff", "mean", "sd")</pre>
write.csv(summary_stats3,file.path(savedir, "Summary_stats_AR_resid.csv"))
```

Model selection

Via loo() and compare() with full table of results. Note that elpd_diff will be negative (positive) if the expected predictive accuracy for the first (second) model is higher.

```
LOOIC <- vector("list", n mods)
## extract log densities from JAGS objects
for(i in 1:n_mods) {
  ## convert mcmc.list to matrix
  tmp_lp <- as.matrix(mod_fits[[i]])</pre>
  ## extract pointwise likelihoods
  tmp_lp <- tmp_lp[,grepl("lp_", colnames(tmp_lp))]</pre>
  ## if numerical underflows, convert -Inf to 5% less than min(likelihood)
  if(any(is.infinite(tmp_lp))) {
    tmp_lp[is.infinite(tmp_lp)] <- NA</pre>
    tmp_min <- min(tmp_lp, na.rm = TRUE)</pre>
    tmp_lp[is.na(tmp_lp)] <- tmp_min * 1.05</pre>
  }
  ## calculate LOOIC
  LOOIC[[i]] <- loo(tmp_lp)</pre>
}
## compute pseudo weights
model_weights <- loo_model_weights(LOOIC, method = "pseudobma",optim_method = "BFGS", optim_control = 1
## LOOIC for all data
tbl_LOOIC <- round(loo_compare(x = LOOIC), 2)
rownames(tbl_L00IC) <- sub("model", "", rownames(tbl_L00IC))</pre>
tbl LOOIC <- tbl LOOIC[order(as.numeric(rownames(tbl LOOIC))), ]
tbl_LOOIC <- cbind(model = c("B-H","B-H","B-H"),</pre>
                    error = c("MA1_AR1","AR1","AR1_resid"),
```

```
as.data.frame(tbl_L00IC),pseudo_bma_weight = as.matrix(model_weights))
tbl_LOOIC[order(tbl_LOOIC[,"looic"]), ]
##
    model
              error elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic se_looic
## 3
      B-H AR1 resid
                       0.00 0.00 -400.09 49.15 138.28 10.73 800.19
      B-H
                       -0.48 3.00 -400.57
                                                   49.56 150.72
                                                                  10.29 801.15
                                                                                  99.13
               AR1
                      -17.62 14.63 -417.72
                                                   52.24 160.35
          MA1 AR1
                                                                  18.55 835.43
                                                                                 104.48
## 1
      B-H
    pseudo_bma_weight
## 3
           0.53897938
## 2
           0.44299643
## 1
           0.01802419
## best model
best_i <- which(tbl_LOOIC[,"looic"] == min(tbl_LOOIC[,"looic"]))</pre>
best_fit <- mod_fits[[best_i]]</pre>
```

These results show that the NA model with NA error has the lowest LOOIC value. All results will be derived from model averaging based on pseudo bayesian model average weights.

Model Selection Via Approximate leave-future-out cross validation

Description here

```
m=1
N <- 43
L <- 20
k_thres <- 0.7
approx_elpds_1sap <- rep(NA, N)
# more stable than log(sum(exp(x)))
log_sum_exp <- function(x) {</pre>
  max x \leftarrow max(x)
  \max_{x} + \log(\sup(\exp(x - \max_{x})))
}
# more stable than log(mean(exp(x)))
log_mean_exp <- function(x) {</pre>
  log_sum_exp(x) - log(length(x))
}
# compute log of raw importance ratios
# sums over observations *not* over posterior samples
sum_log_ratios <- function(loglik, ids = NULL) {</pre>
  if (!is.null(ids)) loglik <- loglik[, ids, drop = FALSE]</pre>
  rowSums(loglik)
}
# for printing comparisons later
rbind print <- function(...) {</pre>
  round(rbind(...), digits = 2)
}
```

```
#extract pontwise log likelihoods
tmp_lp <- as.matrix(mod_fits[[m]])</pre>
## extract pointwise likelihoods
tmp_lp <- tmp_lp[,grepl("lp_", colnames(tmp_lp))]</pre>
## if numerical underflows, convert -Inf to 5% less than min(likelihood)
if(any(is.infinite(tmp_lp))) {
  tmp_lp[is.infinite(tmp_lp)] <- NA</pre>
  tmp_min <- min(tmp_lp, na.rm = TRUE)</pre>
  tmp_lp[is.na(tmp_lp)] \leftarrow tmp_min * 1.05
tmp_lp<-tmp_lp[,grepl("esc", colnames(tmp_lp))]</pre>
#qet yrs assoc
names_loglik<-data.frame(strsplit(colnames(tmp_lp),"\\[|\\]"))</pre>
yrnames<-as.numeric(names_loglik[2,])</pre>
loglik <- matrix(NA,ncol=N,nrow=dim(tmp_lp)[1])</pre>
for(i in 1:N){
  if(!is.null(ncol(tmp_lp[,yrnames==i]))){
    loglik[,i] = apply(tmp_lp[,yrnames==i],1,sum)
  }else(loglik[,i] = tmp_lp[,yrnames==i])
# initialize the process for i = L
past <- 1:L
oos <- L + 1
\# df_past \leftarrow df[past, , drop = FALSE]
\# df_{oos} \leftarrow df[c(past, oos), , drop = FALSE]
# fit_past <- update(fit, newdata = df_past, recompile = FALSE)</pre>
#loglik <- log_lik(fit_past, newdata = df_oos, oos = oos)</pre>
approx_elpds_1sap[L + 1] <- log_mean_exp(loglik[, oos])</pre>
# iterate over i > L
i_refit <- L
refits <- L
ks <- NULL
for (i in (L + 1):(N - 1)) {
  past <- 1:i
  oos <- i + 1
  \# df_past \leftarrow df[past, , drop = FALSE]
  \# df_{oos} \leftarrow df[c(past, oos), , drop = FALSE]
  # loglik <- log_lik(fit_past, newdata = df_oos, oos = oos)</pre>
  logratio <- sum_log_ratios(loglik, (i_refit + 1):i)</pre>
  psis_obj <- suppressWarnings(psis(logratio))</pre>
  k <- pareto_k_values(psis_obj)</pre>
  ks \leftarrow c(ks, k)
  # if (k > k_thres) {
  # # refit the model based on the first i observations
  \# i_refit <- i
  # refits <- c(refits, i)</pre>
  \# fit_past <- update(fit_past, newdata = df_past, recompile = FALSE)
  # loglik <- log_lik(fit_past, newdata = df_oos, oos = oos)</pre>
```

```
# approx_elpds_1sap[i + 1] <- log_mean_exp(loglik[, oos])
# } else {
    lw <- weights(psis_obj, normalize = TRUE)[, 1]
    approx_elpds_1sap[i + 1] <- log_sum_exp(lw + loglik[, oos])
#}
}
approx_elpd_1sap <- sum(approx_elpds_1sap, na.rm = TRUE)
print(paste("approx LFO =" ,approx_elpd_1sap))

## [1] "approx LFO = 77.221301249359"

print(ks)</pre>
```

```
## [1] 0.2225287 0.6844039 1.1439322 1.4818013 1.9622572 2.4035951 2.6394694 2.9718243 3.3715142 
## [10] 3.9873917 4.2806391 4.5275445 4.8664134 5.0694001 5.1099814 5.4552366 5.6402169 5.8326765 
## [19] 6.1433402 6.3573866 6.5306029 6.9927278
```