Double Tracking Antennas for UAS Communication Control and Automation

June 21, 2016

Group CA832 16gr832@student.aau.dk

Department of Electronics and IT
Aalborg University
Denmark

Group CA

Introduction

Overvie

Farmer

Telecommunica

Method

Modellin

Controller

Simulatio

nesuit

Conclusion

The project is about UAS:

- ► What?
- ► Why?
- ► How?
- ► State each part and whom will present.

Group GAG

Introduction

Overvie

Form

Telecommunic:

Method

Methods

Modelli

001111011

Ollifulatio

Conclusion

Introduction

Overview

Hardware

Frames

Telecommunication

Methods

Modelling

Controller

Simulation

Results

Conclusion

Introductio

.....

Hardware

Frames

Telecommunica

Method

.....

Cimulatia

Regult

Conclusio

Unmanned Aicraft System (UAS)

- 1. Unmanned Aircraft (UA)
- 2. Ground Station (GS)
- 3. Antennas
- 4. DC Servomotor

ntroductio

IIIIIOddoti

0.....

Frames

Telecommunic

Metho

Modell

Cimulatie

Resul

Conclusion

Geodetic Coordinate System

Earth-Centered Earth-Fixed (ECEF)

North-East-Down (NED)

Body Coordinate System

Introduction

Introductio

Hardwa

Frame

Telecommunication

N. A. a. Alba a. alba

Modellin

Control

Simulatio

Hesui

Conclusio

Line-Of-Sight (LOS) Propagation

Link Budget

Fresnel Zones

MAVLink Protocol

Modelling

Moving Angle System (MAS)

Optimal Angle

Antenna

IIIIIOddciid

Overvie

Form

Telecommunica

Method

Controller

Simulation

nesuit

Conclusion

PID

Tunning

Comparion

Simulation

LOS Coverage Map

2D UAS

3D UAS

Introduct

Overvie

Hardwa

T-1-----

Madaaa

Method

Modelli

Cimulati

Results

Conclusion

Four different scenarios:

- ► Angle Range
- ► Curvature of the Earth
- ► Above the GS
- ▶ Mountain

Variables that will be analysed:

- ► Azimuth angle (optimal and simulated)
- ► Elevation Angle (optimal and simulated)
- ► Signal Power

Group CA832

Results

Goal

Describing the movement of the antennas when the UA is flying far away from the GS.

(a) A gull

(b) A tiger

14

Introduct

Overvie

Hardwa

Tolooommunic

. . . .

Method

Control

Simulatio

Results

Conclusion

Four different scenarios:

- ► Angle Range
- ► Curvature of the Earth
- ► Above the GS
- ▶ Mountain

Variables that will be analysed:

- ► Azimuth angle (optimal and simulated)
- ► Elevation Angle (optimal and simulated)
- ► Signal Power

14

Introduct

Overvie

Hardwa

Tologommunic

Methor

WICHIOC

MODEIII

0011110111

Results

i icsuii

Conclusion

Four different scenarios:

- ► Angle Range
- ► Curvature of the Earth
- ► Above the GS
- ▶ Mountain

Variables that will be analysed:

- ► Azimuth angle (optimal and simulated)
- ► Elevation Angle (optimal and simulated)
- ► Signal Power

Introduct

Overvie

Hardwa

T-1-----

Mothor

Method

Control

Simulatio

Results

i icsuii

Conclusion

Four different scenarios:

- ► Angle Range
- ► Curvature of the Earth
- ► Above the GS
- ▶ Mountain

Variables that will be analysed:

- ► Azimuth angle (optimal and simulated)
- ► Elevation Angle (optimal and simulated)
- ► Signal Power

.

IIIIIoductio

Overview

Hardwa

Tologommunicat

. . . .

Method

MODEIIII

Regulto

Conclusion

We did this: ...

We can see that: ...

We conclude that: ...

Further work that can be built on the current project:

Thank you for flying with us!

