

Geometric Brownian Motion

Vejledningsmøde 2: GBM + videre forløb

Laurs R. Leth

Department of Mathematical Sciences University of Copenhagen leth.laurs@gmail.com

7. april 2020

Opsummering fra sidste gang..

• Vi antog, at $S=(S_t)_{t\geq 0}$ var løsning til den stokastiske diffen
rential ligning

$$dS_t = \mu(t, S_t)dt + \sigma(t, S_t)dW_t$$

med $S_0 = s > 0$, og hvor (W_t) var en Brownsk bevægelse.

- Simuler S med Euler's metode, hvor det antages $\mu(t, S_t) = \mu S_t$ og $\sigma(t, S_t) = \sigma S_t$
 - 1. Lad $0 = t_0 < t_1 < t_2 < \dots < t_n = T \text{ med } T = 1 \text{ og } dt := t_i t_{i-1} = T/n$
 - **2.** For i = 0 beregn

$$dS_{t_{i+1}} = \mu S_{t_i} dt + \sigma S_{t_i} \sqrt{dt} Z_i,$$

hvor $Z_i \sim \mathcal{N}(0,1)$

- 3. Opdater/beregn $S_{t_{i+1}} = S_{t_i} + dS_{t_{i+1}}$
- **4.** Gentag trin 2 og 3 for i = 1, ..., n 1

Illustration

Dennge uge: Geometric Brownian Motion

• Antag at $S = (S_t)_{t \ge 0}$ er givet ved

$$S_t = S_0 e^{\left(\mu - \sigma^2/2\right)t + \sigma W_t},$$

hvor $S_0 = s > 0$ er startværdier for processen.

- Bemærk: $t \mapsto S_t(\omega)$ er kontinuert, da $t \mapsto W_t(\omega)$ er kontinuert!
- Vigtigt 'resultat':

$$S_{t_{i+1}} = S_{t_i} \frac{S_{t_{i+1}}}{S_{t_i}} = S_{t_i} e^{(\mu - \sigma^2/2)(t_{i+1} - t_i) + \sigma(W_{t_{i+1}} - W_{t_{i+1}})},$$

hvor
$$(t_{i+1} - t_i) = dt$$
 og $W_{t_{i+1}} - W_{t_{i+1}} \sim \mathcal{N}(0, dt)$.

- Simuler S: For i = 0, ...n 1
 - 1. Simuler: $Z \sim \mathcal{N}(0, 1)$
 - **2.** Beregn: $X = (\mu \sigma^2/2)dt + \sigma\sqrt{dt}Z_i$
 - 3. Opdater: $S_{t_{i+1}} = S_{t_i} e^X$

Sammenlign de to metoder: n = 20

Sammenlign de to metoder: n = 100

Sammenlign de to metoder: n = 1000

Egenskaber ved GBM

• Hvis $X \sim \mathcal{N}(\mu, \sigma^2)$, så er $e^X \sim \log \mathcal{N}(\mu, \sigma^2)$, hvor

$$E\left(e^{X}\right) = e^{\mu + \sigma^{2}/2}$$
 og $V\left(e^{X}\right) = (e^{\sigma^{2}} - 1)e^{2\mu + \sigma^{2}}$

• Speciet er

$$S_t/S_0 \sim \log \mathcal{N}\left((\mu - \sigma^2/2)\right)t, \sigma^2 t$$

- Bemærk $ES_t = e^{ut}$, så middelværdien afhænger af tiden!
- (S_t) er ikke en martingal for $\mu \neq 0$: Lad t > s og indse

$$E(S_t \mid \mathcal{F}_s) = S_s e^{\mu(t-s)} \neq S_s.$$

Afkast og log-afkast

- Investorer er hovedsagligt interesseret i afkast og ikke priser
- \bullet Hvis S_t er prisen til tidspunkt t for et finansielt aktiv, så defineres afkastet mellem t_{i+1} og t_i ved

$$R_{t_{i+1}} = \frac{S_{t_{i+1}} - S_{t_{i+1}}}{S_{t_i}} = \frac{S_{t_{i+1}}}{S_{t_i}} - 1$$

- Hvis (S_t) er GBM, så er $R_{t_{i+1}} + 1 \sim \log \mathcal{N}(..., ...)$
- Log-afkastet mellem t_{i+1} og t_i er defineret ved

$$r_{t_{i+1}} := \log \left(R_{t_{i+1}} + 1 \right) = \log \left(\frac{S_{t_{i+1}}}{S_{t_i}} \right) \sim \mathcal{N}(..., ...)$$

- Bemærk at $\log(1+R) \approx R$ for |R| << 1.
- Compounded afkast:

$$(1+R_1)\times(1+R_2)\times\cdots\times(1+R_n)=\prod_{i=1}(1+R_i)$$

$$\Rightarrow \log \left(\prod_{i=1}^{n} (1 + R_i) \right) = \sum_{i=1}^{n} \log(1 + R_i) = \log(S_n) - \log(S_0)$$

Daily Values for SP500

Daily log-returns for SP500

Histogram of Standardized log-returns

QQ-plot of Standardized log-returns

Observationer

- GBM kan ikke modellere ekstreme værdier (tail events)
- Realiseret log-afkast har tykkere haler end normalfordelingen
- Volatilitet clustering: Høje (absolut) afkast medfører typisk høje afkast i næste periode (og vice verca for lave afkast)
- Volatilitet mean-reversion: Vol vil reverte mod dets gennemsnint
- Løsning: Garch?

MLE af GBM

Husk at

$$\log\left(\frac{S_{t_{i+1}}}{S_{t_i}}\right) \sim \mathcal{N}\left((\mu - \sigma^2/2)dt, \sigma^2 dt\right),\,$$

hvor $dt = t_{i+1} - t_i$, $t_0 = 0$ og $t_n = T$

- Vi observerer n IID variable: $\log(S_{t_1}/S_{t_0}), ..., \log(S_{t_n}/S_{t_{n-1}})$
- Lad $\theta_1 = (\mu \sigma^2/2) \cdot dt$ og $\theta_2 = \sigma^2 dt$. Så er MLE

$$\hat{\theta}_1 = \frac{1}{n} (\log S_T - \log S_0)$$
 og $\hat{\theta}_2 = \frac{1}{n} \sum_{i=0}^{n-1} \left(\log \left(\frac{S_{t_{i+1}}}{S_{t_i}} \right) - \hat{\theta}_1 \right)^2$

• Specielt er MLE for (μ, σ) givet ved

$$\hat{\sigma} = \sqrt{\hat{\theta}_2 \cdot n}$$
 og $\hat{\mu} = (\hat{\theta}_1 + \hat{\theta}_2/2) \cdot n$

 Vi bruger kun startværdien og sidste observation til at estimere middelværdien!

Næste vejledning + videre forløb

- Vi snakker om emne 3: Ito kalkulus (vigtigt!). Læs s. 49-62 i Björk og eventuelt kapitel 6 + starten af kapitel 7 (ikke mange sider).
- Vi snakker om emne 4: Q-dynamik for processen (S_t) (teknisk men nødvendigt)
- Vi (I) skal også overveje retningen på projektet
 - The Fundamental Theoreom of Derivative Trading
 - Stokastisk volatilitet

References