基礎マクロ練習問題:企業投資

日野将志*

1 生産技術

1.1 一次同次

以下の生産関数が一次同次かどうか答えよ. なお,一次同次ならば一次同次であることを示し,そうでないならば、そうでないことも示すこと.

何も言及しなければ、パラメータは正とする.

- $F(K) = \alpha K$
- $F(K,H) = \alpha K + \beta H$. なお, $\alpha + \beta \neq 1$ かつとする
- $F(K,H) = K^{\alpha}H^{1-\alpha}$. x; $\alpha \in (0,1)$ ξ
- $F(K,H) = K^{\alpha}H^{\beta}$. なお, $\alpha + \beta \neq 1$ かつとする
- $F(K,H) = [\alpha K^{\epsilon} + (1-\alpha)H^{\epsilon}]^{1/\epsilon}$. $\alpha \in (0,1)$
- $F(K,H) = [\alpha K^{\epsilon} + \beta H^{\epsilon}]^{1/\epsilon}$. なお, $\alpha + \beta \neq 1$ かつとする
- $F(K,H) = \min\{\alpha K, (1-\alpha)H\}$. なお, $\alpha \in (0,1)$ とする
- $F(K,H) = \min\{\alpha K, \beta H\}$. $\alpha + \beta \neq 1 \text{ mode } \beta \neq 1$

2 静学的な企業の選択

2.1 生産要素1つの場合

授業では、資本と労働の二つが生産に必要なケースとして導入した.一方、ここでは労働だけが生産要素として必要なケースを考えてみよう.例えば、

$$F(K, H) = F(H) = H^{\alpha}$$

を考えてみる. $\alpha \in (0,1)$ とする.

この労働には、賃金支払い wH を行う必要があるとする. このとき、

- 最大化問題を書いてみよ.
- 最大化問題の一階の条件を求めよ.

^{*} タイポや間違いに気付いたら教えてください。

最適な H を求めよ.

2.2 生産要素2つの場合

2.2.1 曲率のある和

$$F(K,H) = F(H) = K^{\alpha} + H^{\alpha}$$

を考えてみる. $\alpha \in (0,1)$ とする.

この労働には、賃金支払い wH と利子支払い rK を行う必要があるとする.一方、資本減耗率 δ はゼロとする.

このとき,

- 最大化問題を書いてみよ.
- 最大化問題の一階の条件を求めよ.
- 最適な (K, H) を求めよ.

2.2.2 コブ・ダグラス

$$F(K,H) = K^{\alpha}H^{\beta}$$

を考えてみる. $\alpha + \beta \neq 1$ とする.

この労働には、賃金支払い wH と利子支払い rK を行う必要があるとする.一方、資本減耗率 δ はゼロとする.

このとき,

- 最大化問題を書いてみよ.
- 最大化問題の一階の条件を求めよ.
- 最適な (K, H) を求めよ.
- Y = F(K, H) と生産量 Y を定義する. このとき, rK/Y および wH/Y を求めよ.
- K/H の比について議論せよ. 例えば r=w のときどうなるだろう.
- 仮に, $\beta = 1 \alpha$ のときにどうなるか, 1, 2 行で議論せよ.

2.2.3 CES 関数

$$F(K,H) = [\alpha K^{\epsilon} + \beta H^{\epsilon}]^{1/\epsilon}$$

を考えてみる. $(\alpha, \beta) \in (0,1)$ かつ $\epsilon > 0$ とする.

この労働には、賃金支払い wH と利子支払い rK を行う必要があるとする.一方、資本減耗率 δ はゼロとする.

このとき,

- 最大化問題を書いてみよ.
- 最大化問題の一階の条件を求めよ.
- この生産関数は CES(constant elasticity substitution) 関数と呼ばれる関数形である. この特徴は、 代替の弾力性 (elasticity of substitution) が一定 (constant) であることである. 次の代替の弾力性

$$\hat{\epsilon} \equiv \frac{\frac{d(K/H)}{(K/H)}}{\frac{d(F_H(K,H)/F_K(K,H))}{F_H(K/H)/F_K(K/H)}} = \frac{\frac{d(K/H)}{d(F_H(K,H)/F_K(K,H))}}{\frac{K/H}{F_H(K/H)/F_K(K/H)}}$$

を計算してみよ.

- 限界代替率 = 価格比の式を求め、次のケースを比較せよ.
 - CES 関数かつ $\epsilon \searrow 0$ のときの限界代替率と、コブ・ダグラスのときを比較せよ *1
 - CES 関数かつ $\epsilon \to 1$ のときの限界代替率と,線形 (F(K,H)=K+H) のときを比較せよ

3 2期間問題

3.1 生産要素1つの場合

授業では、資本と労働の二つが生産に必要なケースとして導入した。一方、ここでは資本だけが生産要素として必要なケースを考えてみよう。例えば、生産関数が

$$F(K_t) = K_t^{\alpha}$$

という場合を考えてみる. $\alpha \in (0,1)$ とする. また $K_1 > 0$ は企業にとって所与とする. このとき,

- 最大化問題を書いてみよ.
- 最大化問題の一階の条件を求めよ.
- 最適な K₂ を求めよ.

3.2 生産要素が1つの場合:調整費用

前の問題 (つまり $F(K_t)=K_t^{\alpha}$) に加えて、次のような調整費用 $\Phi(K_1,K_2)$ がある場合を考えてみよう.

$$\Phi(K_1, K_2) = \frac{\phi}{2} \left(\frac{K_2 - (1 - \delta)K_1}{K_1} \right)^2 K_1 = \frac{\phi}{2} \left(\frac{I}{K_1} \right)^2 K_1$$

ここで $\phi>0$ とする.この調整費用の意味は, $I\neq 0$ という (負を含む) 投資をするには企業は費用 $\Phi(\cdot)$ を支払う必要があることを意味している.また,前問と同様に $K_1>0$ は企業にとって所与とする.

- \bullet この調整費用関数が K_1 と K_2 に対して一次同次であることを確認せよ.
- I > 0 のとき、この調整費用関数が $\Phi_2(\cdot) > 0$ かつ $\Phi_{22}(\cdot) > 0$ であることを示せ.
- この調整費用関数があるときの最大化問題を書いてみよ
 - ヒント:スライドの補足を参考にすると良い

 $^{^{*1}}$ ϵ \searrow 0 は「正の値 (つまり直観的には上) から 0 に近づく」という意味である. これは ϵ > 0 だからこうしている.

- 最大化問題の一階条件を書いてみよ.
- この一階条件を調整費用がない場合 ($\phi = 0$ の場合) と比べて、どのように解が異なるか比べてみよ.

4 曲率のある線形和

$$F(K,H) = F(H) = K^{\alpha} + H^{\alpha}$$

を考えてみる. $\alpha \in (0,1)$ とする. 調整費用はないとする. また $\delta = 0$ とする. このとき,

- 最大化問題を書いてみよ.
- 最大化問題の一階の条件を求めよ.
- 最適な (K₂, H₁, H₂) を求めよ.
- 最適な解を 2.2.1 の問題と比較せよ

4.1 3期間問題

4.2 生産要素1つの場合

次に3期間あるとする.ここでは資本だけが生産要素として必要なケースを考えてみよう.例えば,生 産関数が

$$F(K_t) = K_t^{\alpha}$$

という場合を考えてみる. $\alpha \in (0,1)$ とする. また $K_1>0$ は企業にとって所与とする. また $\delta=0$ としよう.

このとき,

- 最大化問題を書いてみよ.
- 最大化問題の一階の条件を求めよ.
- 最適な K₂ を求めよ.