一产品特性

系列 ID 卡读卡模块

REV1.17 Date: 2012/03/13

DataSheet

概述

TX125 系列非接触 IC 卡射频读卡模块 ◆ 体积小巧、简单、易用、性价比高; 采用 125K 射频基站。当有卡靠近模块时, 号,用户仅需简单的读取即可,在串口方式 下,可工作在主动与被动的模式。该读卡模 块完全支持 EM、TEMIC、TK 及其兼容卡 片的操作,非常适合于门禁、考勤等系统的 应用。

- 支持 EM 及其兼容卡;
- 模块会以韦根或 UART 方式输出 ID 卡卡 ◆ 可选低功耗模式,功耗低至 15uA(是普通 模块的 1/2000), 而仍然保持自动寻卡功 能,特别适合于电池供电场合;
 - ◆ 非低功耗模式,可通过 IO 口设置模块为空 闲模式,工作电流为 2uA;
 - ◆ 读写卡距离远(根据应用可达 30-100mm);
 - ◆ 根据需要,可选择 UAR 或 Wiegand 接口 与任何 MCU 进行连接:
 - ◆ 使用 UART 接口时,可以选择波特率 9600 或 19200:
 - ◆ 模块内部具有看门狗, 永不死机;
 - ◆ 自动寻卡,检测到卡片就可主动发送;
 - ◆ 接受批量客户定制。

-产品应用

- 1. 电子感应门锁
- 2. 门禁系统、办公/家庭安防、身份识别、 出入管理、公司考勤
- 3. 防伪系统、身份识别
- 4. 票证以及其他相关应用

系列 ID 卡读卡模块

目 录

1.	简介	3
2.	硬件描述	4
	2.1 结构尺寸	5
3.	数据通讯协议	6
	3.1 韦根接口协议	6
	3.2 串口 (UART) 协议	7
4.	电气参数	8
	4.1 极限参数	8
	4.2 直流特性	8
5.	接口方式及典型应用	9
	5.1 串行接口	9
	5.1.1 主动串口模式	9
	5.1.2 被动串口模式	9
	5.2 韦根接口	9
	5.2.1 正向韦根 34 接口	10
	5.2.2 反相韦根 26 接口	10
6.	程序流程图	11
	6.1.1 串口查询流程图	11
	6.1.2 串口中断流程图	12
7.	免责声明	13
8.	修订历史	14
9	绀生信息	15

系列读写模块

1. 简介

TX125 系列非接触 IC 卡射频读卡模块采用 125K 射频基站。当有卡靠近模块时,模块会以韦根或 UART 方式输出 ID 卡卡号,用户仅需简单的读取即可,在串口方式下,可工作在主动与被动的模式。该读卡模块完全支持 EM 及其兼容卡片的操作,非常适合于门禁、考勤等系统的应用。

TX125 系列读卡模块的特点如下:

- ◆ 体积小巧、简单、易用、性价比高;
- ◆ 支持 EM 及其兼容卡;
- ▼ 可选低功耗模式,功耗低至15uA(是普通模块的1/2000),而仍然保持自动寻卡功能,特别适合于电池供电场合;
- ◆ 非低功耗模式,可通过 IO 口设置模块为空闲模式,工作电流为 2uA;
- ◆ 提供 3.3V 电压输出,可以供外部使用,可以节省 LDO:
- ◆ 读写卡距离远(根据应用可达 30-100mm);
- ◆ 根据需要,可选择 UAR 或 Wiegand 接口与任何 MCU 进行连接;
- ◆ 使用 UART 接口时,可以选择波特率 9600 或 19200;
- ◆ 模块内部具有看门狗,永不死机;
- ◆ 自动寻卡,检测到卡片就可主动发送;
- ◆ 在串口模式下,模块可设置成为主动或被动工作方式,主动方式下,当卡片进入 到天线区后,TXD口直接输出卡片序列号,被动模式下,当只有CLK出现下降 沿时,TXD口才会输出卡号。
- ◇ 工作温度范围宽,低温可到-40 摄氏度。

2. 硬件描述

读卡模块使用了标准的 DIP24 封装(当然有些脚空出了),模块可以直接安装在线路板上,也可以安装在 DIP24 的 IC 座上进行测试。

管	<i>/s/</i> s: □	功能						
脚	符号	串口模式	韦根模式					
1	VCC_IN	DC5V 电源输入,内部与 20 脚连通,请外接 100	DuF 以上电解电容					
2	GND	电源地						
3	TXD/WG0	TXD用于数据发送	WG0 用于发送 bit 0					
4	MODE4/WG1	悬空: 主动模式; 0: 被动模式	WG1 用于发送 bit 1					
8	TX1	天线接口1,连接到线圈的一端						
9	TX2	天线接口 2,连接到线圈的另一端						
10	MODE5/CLK	MODE4 为 0,若天线区有卡,则 CLK 出现下降 沿后,模块发送卡号; 若 MODE4 和 MODE3 为 1,该管脚为 0 时,天 线区域有卡模块每间隔约 350ms 输出一次卡号	韦根极性选择: 悬空:正向输出; 接地:反向输出					
11	STATUS_OUT	有无卡状态指示(1: 无卡; 0: 有卡); 每次刷卡,该管脚先变为低电平,约 5ms 后再输出卡号数据。						
12	VDD_OUT	DC3.3V 输出,提供不大于 100mA 的电流输出,如果给外部供电,必须接 100uF以上电解电容						
13	MODE1	波特率选择: 悬空: 9600 接地: 19200	韦根位数选择: 悬空: 韦根 34; 接地: 韦根 26					
14	MODE2	悬空或高电平:模块处于工作状态 接地:模块进入空闲模式,工作电流 2uA,从空闲模式进入工作状态时间 5ms						
15	NC	保留,请悬空						
16	GND	电源地						
17	VDD_OUT	DC3.3V 输出,内部与 12 脚相连						
19	MODE3	通信协议选择: 悬空 - 串口(UART)输出; 0-3	韦根(wiegand)输出					
20	VCC_IN	DC5V 电源输入,内部与 20 脚连通						

系列读写模块 www.TXRFID.com

注:

- 1. 1 脚或者 20 脚,请外接 100uF 以上电解电容,以使模块稳定工作;
- 2. 12 脚或 17 脚可以为外部提供 3.3V 电压输出,最大供电能力 100mA,如果使用该管脚必须外接 100uF 以上电解电容;
- 3. 如果 MODE1~MODE4 全部悬空,则默认的模式为: 串口输出、主动模式、波 特率 9600;
- 5. UART 模式时,MODE4 悬空或者接高电平(主动 UART 模式),MODE5 悬空或接高电平时,一次刷卡只输出一次卡号,卡片在天线区域时不连续输出卡号,但 STATUS_OUT 持续为低以指示卡片在天线区域。如果 MODE5 接地,卡片在天线区域时,每间隔约 350ms 连续输出卡号,每次输出卡号前 10ms,STATUS_OUT 都会变高,持续 5ms,然后变低,5ms 后再输出卡号。
- 6. 韦根模式一次刷卡只输出一次卡号,不能设置为连续输出卡号。

2.1 结构尺寸

- 外形尺寸: 32×18mm;
- 管脚间距: 2.54mm;
- 两排管脚间距: 15.24mm;

3. 数据通讯协议

所谓通讯协议,就是读卡模块以何种格式把读取到的卡号发送出来。TX125 支持韦根接口和串口两种协议。

3.1 韦根接口协议

韦根接口在门禁行业广泛使用,是一个事实上的行业标准,它通过两条数据线 DATA0 (D0) 和 DATA1 (D1) 发送。目前用的最多的是韦根 34 和韦根 26 接口,二者数据格式相同,只是发送的位数的不同。

标准韦根 26 格式如下图所示,由 24 位卡号和 1 位偶校验位、1 位奇校验位组成。卡号中的高 12 位进行偶校验,低 12 位进行奇校验。发送顺序从高位(每字节的 bit7)开始,如箭头所示。发送规则为: DATA0 和 DATA1 在无信号时同时保持高电平,若下一位数据为 0,则 DATA0 数据线上出现一个 100us(可定义)的低电平,DATA1 数据线上信号保持不变。若下一位数据为 1,则 DATA1 数据线上出现一个 100us(可定义)的低电平,DATA0 数据线上信号保持不变。在 100us 低电平之外,DATA0 和 DATA1 始终保持高电平。每一位数据的发送周期为 1ms(可定义)。

韦根 26 的帧结构如下图所示。

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Р	Ε	Ε	E	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	0	0	0	0	0	0	0	0	0	0	0	0	Р
	Even parity(E)偶同位校验										0dd	l par	ity	(0)	奇同	可位核	验								

下面为波形图:

韦根26波形图(Card ID = 3A9771H)

列读写模块 www.TXRFID.com

符号	参数	最小值	典型值	最大值	单位
TCS	Hold and Start read transponder time	40	100	120	ms
TDS	Data read delay time	0.5	0. 55	2	ms
TDW	Pulse width time	20	50	100	us
TPW	Pulse interval time	0. 2	2	4	ms
TSCAN	Data send delay time	5	80	ı	ms
TA1	Read and send time	80	_	200	ms
TA2	Total scan time	100	_	_	ms

注:

- 韦根 34 与韦根 26 的结构相同,只是多发送一个字节卡号;
- 可选择韦根极性;反相输出格式用三极管反相后即为所得波形数据,同时起到保护作用。

3.2 串口(UART) 协议

UART 接口一帧的数据格式为: 1 个起始位、8 个数据位、无奇偶校验位、1 个停止位。 波特率可选择: 9600bps 或者 19200bps。

数据格式: 6 字节数据,高位在前,格式为 5 字节数据+1 字节校验和(异或和)。例如: 卡号数据为 0B00D5F0C7,则输出为 0x0B 0x00 0xD5 0xF0 0xC7 0xE9(校验和计算: 0x0B^0x00^0xD5^0xF0^0xC7 = 0xE9)。 第一个字节 0x0B 一般是厂家码。中间 4 个字节 0x00 0xD5 0xF0 0xC7 是卡片的序列号。

一般卡片上印刷的都是 10 进制码。例如: 001402807 213,61639。上面的数据可以通过转换得到。转换方式如下: 将中间 4 个字节卡号 0x00D5F0C7 转换为 10 进制,即得 001402807;将卡号的第二字节 0xD5 转换为 10 进制,即得 213,将卡号的最后两字节 0xF0C7 转换为 10 进制,即得 61639。

主动模式: 当有卡进入该射频区域内时, 主动发出以上格式的卡号数据。

被动模式: CLK 的下降沿触发卡号的输出,格式为以上数据格式。操作方法为: 在准备读取卡号之前,打开串口中断和并启动超时定时器(80ms),将一直保持高电平的 CLK 置低电平,产生下降沿并一直保持低电平,等待卡号数据接收,若接收到卡号后存储待用,若在等待过程中无数据接收,且超时定时器已经溢出,则表示本次读取卡号失败;无论成功与失败最后都将 CLK 重新置高电平,进入待机以便下一次读取卡号。

4. 电气参数

4.1 极限参数

工作温度	-40°C∼+85°C
贮存温度	5°C∼+125°C
每个管脚的对地电压	··-0.5∼+5.5V
Vcc 对地的电压(5V)······	···-0.3~+6.0V
每个管脚的最大 I _{OL} ····································	··20mA
湿度(相对湿度)	···5%~95%

超出"绝对最大额定值"列出的值的条件下工作会造成器件的永久损坏。以上未涉及器件在这些条件或超出这些条件下的功能操作。器件不能长时间工作在绝对最大额定值条件下,否则会影响其可靠性。

4.2 直流特性

5V 系列: VCC=+5.0V,器件都工作在建议的温度范围条件下,除非特别说明。

符号	参数	测试条件	最小值	典型值(1)	最大值	单位
VCC	工作电压		+3.3	+5.0	+5.5	V
I _{CC1} (5V)	电流消耗	正常模式	20	30	50	mA
I _{CC2} (5V)	电流消耗	低功耗模式	10	20	50	uA
$V_{\rm IL}$	输入低电平		-0.5		0.8	V
V_{IH}	输入高电平		2.0		5.5	V
V _{OL}	输出低电平	I _{OL} =1.6mA		0.2	0.4	V
V_{OH}	输出高电平	I _{OH} =-30uA	2.0	3.0	3.3	V
T _{OP}	工作温度		<mark>-40</mark>		+85	$^{\circ}$
T _{STR}	存储温度		-55		+125	$^{\circ}$
T _{OK}	上电后稳定工作时间		5			ms

- (1) 典型值是难以保证的,这个值是在常温条件下测试得到。
- (2) 模块上电后,必须等待 5ms 以上时间才能稳定工作。

系列读写模块

www.TXRFID.com

5. 接口方式及典型应用

5.1 串行接口

TX125 可以与任何具有串口的 MCU 连接,或者通过 RS232 电平转换与 PC 机连接。本模块支持主动串口和被动串口两种模式。

5.1.1 主动串口模式

下图是主动串口模式的接线图,图中未连接的管脚悬空即可。按下图连接,则模式为: 串口(9600,N,1)、主动模式。

5.1.2 被动串口模式

下图是被动串口模式接线图,当有卡时,主控单片机在 CLK 发起下降沿,则读卡模块输出卡号。下图连接的模式为:串口(9600, N,1)、被动模式。

5.2 韦根接口

当主控 MCU 没有串口或者串口不够时,可以选择韦根接口。韦根接口也是门禁控制

TX125

www.TXRFID.com

系列 ID 卡读卡模块

器最常用的读头连接方式。韦根接口可以输出韦根 26 或者韦根 34, 并可选输出反相脉冲。

5.2.1 正向韦根 34 接口

下图是正向韦根 34 接口的接线图。按照下图连接,则模式为: 韦根 34、正向输出。

5.2.2 反相韦根 26 接口

下图是反相韦根 26 接口的接线图。按照下图连接,则模式为: 韦根 26、反相输出。

<u>TX125</u>

6. 程序流程图

6.1.1 串口查询流程图

6.1.2 串口中断流程图

系列读写模块

www.TXRFID.com

7. 免责声明

● 开发预备知识

TX125®系列产品将提供尽可能全面的开发模板、驱动程序及其应用说明文档以方便用户使用,但TX125 也需要用户熟悉自己设计产品所采用的硬件平台及相关C语言的知识。

● EMI 与 EMC

TX125®系列模块机械结构决定了其 EMI 性能必然与一体化电路设计有所差异。 TX125®系列模块的 EMI 能满足绝大部分应用场合,用户如有特殊要求,必须事先与我们协商。

TX125®系列模块的 EMC 性能与用户底板的设计密切相关,尤其是电源电路、I/O 隔离、复位电路,用户在设计底板时必须充分考虑以上因素。我们将努力完善 TX125®系列模块的电磁兼容特性,但不对用户最终应用产品 EMC 性能提供任何保证。

● 修改文档的权利

东莞同欣智能保留任何时候在不事先声明的情况下对 TX125®系列产品相关文档的修改权力。

● ESD 静电放电保护

TX125®系列产品部分元器件内置 ESD 保护电路,但在使用环境恶劣的场合,依然建议用户在设计底板时提供 ESD 保护措施,特别是电源与 I/O 设计,以保证产品的稳定运行。安装 TX125®系

列产品,为确保安全请先将积累在身体上的静电释放,例如佩戴可靠接地的静电环,触摸 接入大地的自来水管等。

8. 修订历史

版本	日期	原因
V1.00	2005/05/10	创建文档
V1.10	2008/01/25	修改排版
V1.11	2009/01/25	去掉 mode2 管脚
V1.12	2009/06/12	1. 修改 uart 发送卡号说明,改为 6 个字节
V 1.12	2009/06/12	2. 增加了上电稳定工作时间说明
V1.13	2010/08/15	1. 修改 uart 发送卡号说明的校验计算错误
V1.14	2010/11/2	1. 修改工作温度范围为-40℃~+85℃
V1.15	2010/11/16	1. 增加卡号进制转换说明
V1 16	2011/02/07	1. 增加了 UART 接口时 MODE4 的连续输出控制
V1.16	2011/03/07	2. 增加了通过 MODE2 对模块进行空闲模式设置
V1.17	2012/03/13	1. 增加了程序流程图

系列读写模块

www.TXRFID.com

9. 销售信息

东莞市同欣智能科技有限公司

地 址:广东省东莞市石碣镇沙腰管理区林屋洲

邮 编: 523292

销售电话: 0769-86019851-168; 13652608930

技术支持: 0769-86019851-138; 0769-86019853; 18666865339 QQ: 14754020

传 真: 0769-86019852

网 址: http://www.TXRFID.com

E-mail: sales@TXRFID.com support@TXRFID.com