Область значений функции

Как вы знаете, у всякой функции y = f(x) имеется область определения и область значений. Область определения D(f) — это множество допустимых значений независимой переменной x. Область значений E(f) — это множество, которое пробегает зависимая переменная y, когда переменная x пробегает область определения D(f).

Например, область значений функции $y = x^2$ есть луч $[0; +\infty)$; область значений функции $y = \sin x$ есть отрезок [-1; 1].

Число a принадлежит области значений функции f(x) тогда и только тогда, когда найдётся такой x, что f(x) = a. Таким образом, нахождение области значений есть задача с параметром: область значений функции $f(x) - \mathfrak{p}$ то множество всех значений параметра a, при которых уравнение f(x) = a имеет решение.

Задача 1. Найти область значений функции $f(x) = x + \frac{1}{x}$.

Peшение. Искомая область значений есть множество всех a, при которых уравнение

$$x + \frac{1}{x} = a$$

имеет решение. Преобразуем:

$$\frac{x^2 - ax + 1}{x} = 0 \quad \Leftrightarrow \quad x^2 - ax + 1 = 0.$$

Полученное квадратное уравнение имеет корни при неотрицательном дискриминанте:

$$D = a^2 - 4 \geqslant 0,$$

откуда $a \leqslant -2$ или $a \geqslant 2$.

Omsem: $E(f) = (-\infty; -2] \cup [2; +\infty).$

Запомните этот факт: сумма двух взаимно обратных чисел по модулю не меньше 2. Он может вам пригодиться впоследствии.

К нахождению области значений естественным образом сводятся некоторые задачи на вычисление наибольших и наименьших значений функций.

Задача 2. Найти наибольшее и наименьшее значение функции $f(x) = \frac{x}{x^2 - x + 1}$.

Peшение. Давайте просто найдём область значений данной функции. Ищем все значения a, при которых уравнение

$$\frac{x}{x^2 - x + 1} = a$$

имеет решения. Умножаем обе части на выражение $x^2 - x + 1$, которое не обращается в нуль ни при каком x, и после преобразований получаем:

$$ax^2 - (a+1)x + a = 0. (1)$$

Если a = 0, то уравнение (1) имеет корень x = 0, так что a = 0 годится.

Если $a \neq 0$, то уравнение (1) является квадратным. Чтобы оно имело корни, его дискриминант должен быть неотрицателен:

$$D = -3a^2 + 2a + 1 \geqslant 0,$$

откуда $-\frac{1}{3} \leqslant a \leqslant 1$. Этот отрезок содержит значение a=0, полученное ранее.

Итак, мы нашли область значений: $E(f) = \left[-\frac{1}{3}; 1\right]$. Теперь ясно, что наибольшее значение функции f равно 1, а наименьшее значение равно $-\frac{1}{3}$.

Ответ: 1 и $-\frac{1}{3}$.

Задача 3. $(M\Gamma Y, \ \ \)$ жономич. ϕ -m, 1998) Найти все действительные значения c, для которых все числа из области значений функции

$$f(x) = \frac{x^2 + cx - 1}{2x^2 - 3x + 2}$$

принадлежат интервалу (-1; 2).

Peшение. Область значений E(f) состоит из всех таких чисел t, для которых уравнение

$$\frac{x^2 + cx - 1}{2x^2 - 3x + 2} = t$$

имеет решения. После равносильных преобразований $(2x^2 - 3x + 2 \neq 0$ при любом x) данное уравнение приводится к виду

$$(2t-1)x^2 - (3t+c)x + 2t + 1 = 0. (2)$$

Значение $t=\frac{1}{2}$ можно не рассматривать, поскольку оно принадлежит интервалу (-1;2), и тем самым нам не важно, принадлежит оно множеству E(f) или нет.

Если $t \neq \frac{1}{2}$, то уравнение (2) является квадратным и имеет корни в том и только в том случае, когда его дискриминант неотрицателен:

$$D = (3t+c)^2 - 4(2t-1)(2t+1) = -7t^2 + 6ct + c^2 + 4 \ge 0.$$

Таким образом, мы ищем все значения c, при которых все решения неравенства

$$7t^2 - 6ct - c^2 - 4 \le 0 (3)$$

расположены на интервале (-1; 2). Пусть

$$g(t) = 7t^2 - 6ct - c^2 - 4.$$

Квадратный трёхчлен g(t) имеет два различных корня t_1 и t_2 при любом c (поскольку его дискриминант $64c^2+112$ всегда положителен), и множеством решений неравенства (3) является отрезок $[t_1;t_2]$. Нам нужно, чтобы этот отрезок находился внутри интервала (1;2), то есть чтобы были выполнены условия $t_1>-1$ и $t_2<2$.

Мы получили стандартную ситуацию расположения корней квадратного трёхчлена внутри заданного промежутка (см. статью «Квадратные уравнения и неравенства с параметрами. 2»). Именно, корни квадратного трёхчлена g(t) принадлежат интервалу (-1;2) тогда и только тогда, когда выполнена система неравенств $(t_0$ — абсцисса вершины параболы y = g(t)):

$$\begin{cases} g(-1) > 0, \\ g(2) > 0, \\ -1 < t_0 < 2 \end{cases} \Leftrightarrow \begin{cases} c^2 - 6c - 3 < 0, \\ c^2 + 12c - 24 < 0, \\ -\frac{7}{3} < c < \frac{14}{3}. \end{cases}$$

Оставшиеся вычисления вы легко выполните сами.

Omsem: $c \in (3 - 2\sqrt{3}; 2\sqrt{15} - 6)$.

Задача 4. При каких a уравнение

$$(a+1)\left(\frac{x^2}{x^2+1}\right)^2 - \frac{3ax^2}{x^2+1} + 4a = 0$$

имеет корни?

Решение. Разумеется, мы делаем замену

$$t = \frac{x^2}{x^2 + 1} \,, (4)$$

но ещё предстоит выяснить, в каком диапазоне меняется t, когда x пробегает всё множество \mathbb{R} . Иными словами, нам нужно найти область значений функции t(x).

Определим, при каких t уравнение (4) имеет решения. Оно равносильно уравнению

$$(1-t)x^2 = t.$$

Если t=1, то решений нет. Если $t\neq 1$, то

$$x^2 = \frac{t}{1 - t},$$

и условием наличия решений служит неравенство

$$\frac{t}{1-t} \geqslant 0 \quad \Leftrightarrow \quad 0 \leqslant t < 1.$$

Итак, E(t) = [0; 1). Замена (4) приводит исходное уравнение к квадратному:

$$(a+1)t^2 - 3at + 4a = 0. (5)$$

Следовательно, исходное уравнение имеет корни тогда и только тогда, когда уравнение (5) имеет хотя бы один корень на промежутке [0; 1).

Дискриминант уравнения (5) должен быть неотрицателен:

$$D = -7a^2 - 16a = -a(7a + 16) \ge 0.$$

Рассмотрим сначала случай D=0, то есть a=0 или $a=-\frac{16}{7}$. Уравнение (5) имеет единственный корень $t_0=\frac{3a}{2(a+1)}$. Если a=0, то $t_0=0\in[0;1)$; поэтому $\boxed{a=0}$ годится. Если же $a=-\frac{16}{7}$, то $t_0=-\frac{24}{23}\notin[0;1)$; поэтому $a=-\frac{16}{7}$ не годится.

Пусть теперь D > 0, то есть

$$-\frac{16}{7} < a < 0. ag{6}$$

Уравнение (5) имеет два различных корня. Интересующая нас ситуация, когда хотя бы один из них расположен на промежутке [0;1), логически исчерпывается следующими четырьмя вариантами.

1. Один из корней равен нулю.

Подставляя t = 0 в уравнение (5), получим a = 0. Значит, только при a = 0 уравнение (5) может иметь нулевой корень, и потому данный вариант не реализуется.

2. Один корень лежит внутри интервала (0;1), а второй — вне отрезка [0;1]. Данный вариант реализуется тогда и только тогда, когда функция

$$f(t) = (a+1)t^2 - 3at + 4a$$

принимает в точках 0 и 1 ненулевые значения разных знаков:

$$f(0) \cdot f(1) < 0 \quad \Leftrightarrow \quad 4a(2a+1) < 0 \quad \Leftrightarrow \quad \boxed{-\frac{1}{2} < a < 0.}$$

Все значения в рамочке подходят, так как удовлетворяют неравенству (6).

3. Один корень лежит внутри интервала (0;1), а второй равен 1.

Подставляя t=1 в уравнение (5), получим 2a+1=0, то есть $a=-\frac{1}{2}$. При этом a уравнение (5) примет вид:

$$\frac{1}{2} \cdot t^2 + \frac{3}{2} \cdot t - 2 = 0 \quad \Leftrightarrow \quad t^2 + 3t - 4 = 0.$$

Второй корень полученного уравнения равен $-4 \notin (0;1)$, так что $a=-\frac{1}{2}$ не годится. Стало быть, данный вариант не реализуется.

4. Оба корня лежат внутри интервала (0;1).

Необходимым и достаточным условием такого расположения корней (в рамках текущего случая D>0) служит система (где t_0 — абсцисса вершины параболы y=f(t)):

$$\begin{cases} (a+1)f(0) > 0, \\ (a+1)f(1) > 0, \\ 0 < t_0 < 1 \end{cases} \Leftrightarrow \begin{cases} (a+1)a > 0, \\ (a+1)(2a+1) > 0, \\ 0 < \frac{3a}{a+1} < 1. \end{cases}$$

Полученная система решений не имеет (убедитесь в этом самостоятельно), поэтому данный вариант не реализуется.

Остаётся собрать «рамочки» по всем рассмотренным случаям и записать ответ. $Omeem: a \in \left(-\frac{1}{2}; 0\right].$