The Design and Analysis of Algorithms

Lecture 9 Divide and Conquer II

Zhenbo Wang

Department of Mathematical Sciences, Tsinghua University

Content

Closest Pair of Points

Master Theorem

Integer Multiplication

Closest Pair of Points: Second Attempt

- Divide: draw vertical line L so that roughly n/2 points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.

Find Closest Pair with One Point in Each Side

• Find closest pair with one point in each side, assuming that distance $< \delta$.

Observation: only need to consider points within δ of line L.

Sort points in 2δ -strip by their *y* coordinate.

Only check distances of those within 11 positions in sorted list!

Find Closest Pair with One Point in Each Side

Def. Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \ge 12$, then the distance between s_i and s_j is at least δ .

Pf. No two points lie in same $\frac{\delta}{2}$ -by- $\frac{\delta}{2}$ box.

Two points at least 2 rows apart have distance $\geq 2\frac{\delta}{2}$.

Fact. Still true if we replace 12 with 7.

Closest Pair: Divide-and-conquer Algorithm

$CLOSEST - PAIR(p_1, p_2, \cdots, p_n)$

- 1: Compute separation line L such that half the points are on each side of the line. $O(n \log n)$
- 2: $\delta_1 \leftarrow \text{CLOSEST-PAIR}$ (points in left half).
- 3: $\delta_2 \leftarrow \text{CLOSEST-PAIR}$ (points in right half). 2T(n/2)
- 4: $\delta \leftarrow \min\{\delta_1, \delta_2\}$.
- 5: Delete all points further than δ from line L. O(n)
- 6: Sort remaining points by *y*-coordinate. $O(n \log n)$
- 7: Scan points in *y*-order and compare distance between each point and next 11 neighbors. If any of these distances is less than δ , update δ . O(n)
- 8: **return** δ .

Closest Pair of Points: Analysis

Running time.

$$T(n) \le 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n).$$

- Q. Can we achieve $O(n \log n)$?
- A. Yes. Don't sort points in strip from scratch each time.

Each recursive returns two lists: all points sorted by *y* coordinate, and all points sorted by *x* coordinate.

Sort by merging two pre-sorted lists.

$$T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n).$$

Master Method

Goal. Recipe for solving common divide-and-conquer recurrences:

$$T(n) = aT(\frac{n}{b}) + f(n).$$

Terms. $a \ge 1$ is the number of subproblems.

b > 0 is the factor by which the subproblem size decreases.

f(n) = work to divide/merge subproblems.

Recursion tree.

 $k = \log_b n$ levels.

 a^{i} = number of subproblems at level i.

 n/b^i = size of subproblem at level i.

Master Theorem

Theorem 1 (Master Theorem)

Suppose that T(n) is a function on the nonnegative integers that satisfies the recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

where $\frac{n}{b}$ means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Let $k = log_b a$,

- Case 1. If $f(n) = O(n^{k-\epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^k)$.
- Case 2. If $f(n) = \Theta(n^k \log^p n)$, then $T(n) = \Theta(n^k \log^{p+1} n)$.
- Case 3. If $f(n) = \Omega(n^{k+\epsilon})$ for some constant $\epsilon > 0$ and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Integer Arithmetic

- Addition. Given two *n*-bit integers a and b, compute a + b.
- Subtraction. Given two *n*-bit integers a and b, compute a b.
- Multiplication. Given two n-bit integers a and b, compute a × b.
- *Grade-school algorithm*: $\Theta(n)$ bit operations for addition.
- Remark. Grade-school addition and subtraction algorithms are asymptotically optimal.

	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0

Integer Multiplication

• Grade-school algorithm for multiplication: $\Theta(n^2)$ bit operations.

Conjecture 1 (Kolmogorov 1952)

Grade-school algorithm is optimal.

Theorem 2 (Karatsuba 1960)

Conjecture is wrong.

Divide-and-Conquer Multiplication

• To multiply two *n*-bit integers *x* and *y*:

Divide x and y into low- and high-order bits.

Multiply four n/2-bit integers, recursively.

Add and shift to obtain result.

$$m = \lceil n/2 \rceil$$

 $a = \lfloor x/2^m \rfloor$, $b = x \pmod{2^m}$
 $c = \lfloor y/2^m \rfloor$, $d = y \pmod{2^m}$

$$(2^m a + b)(2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd$$

Ex.
$$x = 10001101, y = 11100001$$
:
 $a = 1000, b = 1101, c = 1110, d = 0001$.

Divide-and-Conquer Multiplication

MULTIPLY(x, y, n)

```
1. if n=1 then
       return x \times y.
 3: else
 4: m \leftarrow \lceil n/2 \rceil.
 5: a \leftarrow |x/2^m|; b \leftarrow x \pmod{2^m}.
 6: c \leftarrow |y/2^m|; d \leftarrow y \pmod{2^m}.
 7: e \leftarrow MULTIPLY(a, c, m).
 8: f \leftarrow MULTIPLY(b, d, m).
 9: g \leftarrow MULTIPLY(b, c, m).
10: h \leftarrow MULTIPLY(a, d, m).
11: return 2^{2m}e + 2^m(g+h) + f.
12: end if
```


Divide-and-Conquer Multiplication: Analysis

• *Proposition*. The divide-and-conquer multiplication algorithm requires $\Theta(n^2)$ bit operations to multiply two *n*-bit integers.

Pf. Apply case 1 of the master theorem to the recurrence:

$$T(n) = 4T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n^2).$$

Karatsuba trick:

To compute middle term bc + ad, use identity bc + ad = ac + bd - (a - b)(c - d).

$$(2^m a + b)(2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd$$

= $2^{2m} ac + 2^m (ac + bd - (a - b)(c - d)) + bd$.

Only three multiplication of n/2-bit integers, say ac, bd and (a-b)(c-d).

Karatsuba Multiplication

KARATSUBA - MULTIPLY(x, y, n)

```
1: if n = 1 then
       return x \times y.
 3: else
 4: m \leftarrow \lceil n/2 \rceil.
 5: a \leftarrow |x/2^m|; b \leftarrow x \pmod{2^m}.
 6: c \leftarrow \lfloor y/2^m \rfloor; d \leftarrow y \pmod{2^m}.
 7: e \leftarrow KARATSUBA - MULTIPLY(a, c, m).
 8: f \leftarrow KARATSUBA - MULTIPLY(b, d, m).
 9: g \leftarrow KARATSUBA - MULTIPLY(a - b, c - d, m).
       return 2^{2m}e + 2^m(e + f - g) + f.
10:
11: end if
```


Karatsuba Multiplication: Analysis

- *Proposition*. Karatsuba's algorithm requires $O(n^{1.585})$ bit operations to multiply two n-bit integers.
- Pf. Apply case 1 of the master theorem to the recurrence:

$$T(n) = 3T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n^{\log 3}) = O(n^{1.585}).$$

History of Asymptotic Complexity of Integer Multiplication

year	algorithm	order of growth		
?	brute force	$\Theta(n^2)$		
1962	Karatsuba-Ofman	$\Theta(n^{1.585})$		
1963	Toom-3, Toom-4	$\Theta(n^{1.465}), \Theta(n^{1.404})$		
1966	Toom-Cook	$\Theta(n^{1+\epsilon})$		
1971	Schönhage-Strassen	$\Theta(n \log n \log \log n)$		
2007	Fürer	$n \log n2^{O(\log^* n)}$		
2019	Harvey-van der Hoeven	$O(n \log n)$		
?	?	Θ(<i>n</i>)		

Homework

- Read Chapter 5 of the textbook.
- Prove the Master Theorem.

