CHEM / BCMB 4190/6190/8189 Introductory NMR

Lecture 4

Chemical Shift:

In a diamagnetic molecule, the effective magnetic field (B_{eff}) is always less than the applied magnetic field (B_0) .

$$B_{eff} = B_0 (1 - \sigma)$$

 σ – the shielding constant is independent of magnetic field strength.

New Resonance Condition:

$$v_1 = \gamma (1 - \sigma) B_o / 2\pi$$

the reduction in B₀ is determined mainly by the distribution of electron density.

Chemical shifts are greatly affected by substituents which specifically influence this distribution.

How does it happen?

- 1. Through bonds.
- 2. Through Space.

Reference Compounds and the δ scale:

Internal Standard (example TMS):

$$\delta = v_{\text{sample}} - v_{\text{reference}} \quad X \ 10^6$$

 $V_{reference}$

 $\delta = \Delta v / \text{ observing frequency x } 10^6$

$$\delta$$
 (TMS) = 0

 δ is independent of the magnetic field strength.

Influence of Charge density on Shielding:

B₀ induces an electron current in the electron shell and this causes an opposing field at the position of the nucleus.

For Hydrogen atom (1 electron):

$$B_{eff} = B_0 - 4\pi e^2 B_0 / 3M_e c^2 \int r \rho(r) dr$$

 $\rho(r)$ describes the electron density as a function of the distance r from the nucleus

Electron currents in a magnetic field.

$$\sigma = \frac{4\pi Z e^2}{3M_e c^2} \int_0^\infty r \rho(r) \ dr$$

Z = Atomic number

Reality:

- electron distribution about a nuclei in a molecule do not display spherical symmetry.
- Larmor precession of the electron system about the field direction is now impeded by presence of other nuclei.
- Need a second term to describe effect of nonspherical charge distribution.

Since this will not adequately define σ it is referred to as σ_{dia} for the diamagnetic shielding term.

 σ_{para} is a second term introduced to take into account non-spherical charge distribution.

It is a magnetic moment opposing that of the diamagnetic component

 σ_{para} turns out to be very complicated and only have exact calculations for model compounds. But......

$$\sigma_{\rm para} \propto 1/\Delta E$$

 ΔE is the average electronic excitation energy.

For Hydrogen ΔE is large so σ_{para} is small.

For heavier atoms ΔE is smaller so σ_{para} is larger

But $\sigma_{\mbox{\tiny para}}$ is always less than $\sigma_{\mbox{\tiny dia}}.$

Chemical Shift Anisotropy:

 σ is dependent on its orientation relative to the magnetic field B_0 .

The principal values of the carbon-13 screening tensor, σ_{11} , σ_{22} , and σ_{33} , represented along three mutually perpendicular axes in a laboratory frame for a molecule containing a ¹³C-X bond. One of these axes, corresponding to σ_{33} , is shown as coinciding with the ¹³C-X bond, although in general it is not necessary that any of the axes coincide with chemical bonds.

In solution this is averaged out as the result of rapid tumbling so

$$\sigma = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3$$

What effects Shielding at a particular nucleus?

- A. Local diamagnetic currents about the nucleus (σ_{dia})
- B. Local paramagnetic currents about the nucleus (σ_{para})
- C. Current flowing in distant groups (σ_{others})

¹H NMR: the B-component is small but C-component can be significant.

¹³C NMR: the B-component is also significant because of low lying excited states.

Inductive Effects in ¹H NMR:

- A. Electronegative groups cause deshielding of nuclei near them.
- B. This effect falls off as the number of intervening bonds increases.
- C. The correlation is by no means exact!!!!

For methyl groups (CH₃R) it is simple:

 $CH_3I = 2.16 \text{ ppm}$ $CH_3Br = 2.68 \text{ ppm}$ $CH_3Cl = 3.05 \text{ ppm}$ $CH_3F = 4.26 \text{ ppm}$

↑ EN of R you \downarrow shielding.

For ethyl groups (CH₃CH₂R) it is more complicated: In general with CH₃CH₂R:

At CH_2 position as \uparrow EN of R you \downarrow shielding but not as rapidly as with corresponding methyl groups.

At CH₃ position at \uparrow EN of R you \downarrow shielding but to a lesser degree.

Fine but if R=X:

The shielding of the CH₃ protons increases with increasing EN of the halide.

Shielding by Magnetically Anisotropic Groups:

1. General:

Chemical bonds are usually magnetically anisotropic so they have different susceptibilities along three directions.

In the case of axially symmetric charge distribution this can be easily explained with two susceptibilities:

The shielding region about an electron grouping g, which has cylindrical but not spherical symmetry. Protons $H_{(a)}$ and $H_{(b)}$ are in the shielding and deshielding zones, respectively, the nodal surface of zero shielding being the double cone.

$$\overline{\sigma}_{\rm n} = (\chi_{\parallel} - \chi_{\perp}) (1 - 3\cos\Theta)/3r^3 4\pi$$

 \overline{o}_n – depends on geometry and susceptibilities, not the nuclide being observed.

$$\overline{\sigma}_n = 0$$
 when $\Theta = 54.7^{\circ}$

Acteylenes:

Classic example: by usual criteria of bond hybridization and acidity, there should be a progressive deshielding of protons from ethane, ethylene and acetylene.

Ethane = 1.96 ppm Ethylene = 5.84 ppm Acetylene = 2.88 ppm

The shielding zone about an acetylenic bond.

Other Examples:

The shielding region about an olefinic double bond (a) and a carbonyl double bond (b).

Shielding of the aldehydic proton.

Ring Current Effects:

Protons on aromatic rings resonate at unexpectedly low fields.

Due to circulation of π -electrons in the plane of the ring giving enhanced diamagnetic susceptibility in a direction perpendicular to the ring:

Mesomeric effects of aromatic substituents:

- stronger at ortho and para positions

If there is an increase electron density in ring +M and if there is a decrease electron density there is a -M.

Electric Field effects(σ_e):

There are intramolecular electric fields associated with groups like carbonyls and nitros.

Protonation can also produce an electric field effect.

Hydrogen Bonding and solvents (σ_i) :

Protons that are hydrogen bonded have particularly low shielding values.

They are effected dramatically by:

- concentration
- temperature

$$\begin{matrix} \delta + & \delta - \\ X - H \cdots Y \end{matrix}$$

The hydrogen bond tends to draw H towards Y and repel the X-H bonding electrons towards X resulting in reduced electron density around Y.

Chemical Shift:

$$B_{eff} = B_0 (1-\sigma)$$

$$\sigma = \sigma_{dia} + \sigma_{para} + \sigma_N + \sigma_R + \sigma_e + \sigma_i$$

- N- magnetic anisotropy of neighboring groups.
- R- ring current effects in arenes.
- e- electric field effect.
- i- effects of intermolecular interactions.

¹³C Chemical Shifts:

- covers 200 ppm range
- TMS is used as internal standard as with ${}^{1}H$ chemical shifts to establish δ scale.
- Greater variability is attributed to the fact that there is greater electron density about the nuclei.
- σ_{para} has a more significant role due to existence of low-lying excited states.
- There is not a lot of other information in ¹³C spectrum.
- More spread out then the ¹H spectrum so sometime trickier to figure out.

Inductive Effects:

- Should propagate down the chain with alternating effect, decreasing as the third power of the distance.
- This prediction is not borne out!

Schematic carbon-13 spectra illustrating the transmission of inductive effects in straight-chain aliphatic comporteds. All spectra are represented as proton-decoupled so that carbon resonances appear as singlets.

- C₁ shows the expected effect for halogens but something strange going on with Iodine.
- Effect with Iodine explained as "heavy atom effect" associated with large number of electrons which will greatly alter σ_{dia} .
- C₂ shielding is independent of EN but always deshielding.
- C₃ effect is always shielding relative to H substitution?!

¹³C Shielding in hydrocarbons:

- ¹³C chemical shifts are very sensitive to molecular structure and geometry as well as from sustituent effects.

¹H in hydrocarbons – 2 ppm range ¹³C in hydrocarbons – 50 ppm range

α, β , and γ effects:

- i) α effect
- deshielding effect of $\sim 9 \pm 1$ ppm

α-Effect in ¹³ C Shielding			
structure	ppm from TMS	a - effect	
°CH, — H	- 2.1	_	
°Сн, — Сн	3 5.9	8.0	
°СН, <	16.1	10.2	
°сн € ° сн	25.2	9.1	
°с СН,	27.9	2.7	
	°CH, H °CH, CH °CH, CH °CH, CH °CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,	structure ppm from TMS °CH,	

- crowding becomes a problem with neopentane.

ii) β-effect

- similar to that produced by α carbons.
- Effect is reduced if carbon of interest is branched.

β-Effect in ¹³C Shielding

	structure	ppm from TMS	β-effec ppm
a)	°CH ₃ — CH ₃	5.9	-
9)	°СН ₃ — °СН ₂ — РСН,	15.6	9.7
)	°СН, СН (°СН, вСН,	24.3	8.7
)	°CH ₃	31.5	7.2
)	°СН, —— °СН ₂ — СН,	16.1	-
)	°СН, —— °СН ₂ — Ген,	25.0	8.9
)	°СН, — °СН ₂	31.8	6.8
)	°CH, \longrightarrow °CH ₂ $\stackrel{\circ}{\longrightarrow}$ °C $\stackrel{\circ}{\longleftarrow}$ °CH, $\stackrel{\circ}{\longrightarrow}$ °CH, $\stackrel{\circ}{\longrightarrow}$ °CH,	36.7	4.9
	°СН, _ °СН _ °СН,	25.2	-
	°СН,	29.9	4.7
	°СН,	34.1	4.2
	°СН, °СН, °СН СН СН, °СН, °СН, °СН,	38.1	4.0

iii) γ-effect

this is shielding rather than deshielding!

		structure	ppm from TMS	y-effect ppm
a)	°сн, <u> </u>	− °CH₂−− ^β CH,	15.6	-
))	•сн, —	$ ^{\alpha}$ CH $_{2}$ $ ^{\beta}$ CH $_{2}$ $ ^{\gamma}$ CH $_{3}$	13.2	- 2.4
)	° сн,	- °CH ₂ $-$ °CH ₂ $-$ °CH ₃ $+$ °	11.3	- 1.9
1)	°СН,	$-^{\circ}$ CH ₂ $-^{\circ}$ CH ₃ $-^{\circ}$ CH ₂ $-^{\circ}$ CH ₃ $-^{\circ}$ CH ₃ $-^{\circ}$ CH ₂ $-^{\circ}$ CH $-^{\circ}$ CH $-^{\circ}$ CH ₃ $-^{\circ}$ CH ₂ $-^{\circ}$ CH ₃ $-^{\circ}$ CH ₃	8.8	- 2.5
) "CH ₃	°CH ₂ - 1	-°CH₂ — βCH₃	25.0	
) ° CH,	° CH ₂	- °CH ₂ °CH ₃	22.6	- 2.4
)	°CH ₂	$-$ °CH, $ ^{\beta}$ CH $<$ $^{\prime}$ CH, $^{\prime}$ CH,	20.7	- 1.9
) ^o CH ₃	° CH, -	$- {}^{\circ}CH_{2} - {}^{\beta}CH_{3}$ $- {}^{\circ}CH_{2} - {}^{\beta}CH_{2} - {}^{\gamma}CH_{3}$ $- {}^{\circ}CH_{2} - {}^{\beta}CH < {}^{\gamma}CH_{3}$ $- {}^{\circ}CH_{2} - {}^{\beta}C < {}^{\gamma}CH_{3}$ $- {}^{\circ}CH_{2} - {}^{\beta}C < {}^{\gamma}CH_{3}$	18.8	- 1.9

Possible explanations for deshielding:

- 1) non-bonded steric interactions.
- 2.) mediated via attached protons.3.) Correlation with electronegativity.

Scheme 1

Butane:

2-Methylbutane:

iv) δ-effects

- very small $\sim 0.3 0.5$
- v) ε-effects
- still detectable but ~ 0.1

Grant and Paul incremental system for alkanes:

$$\delta_i = -2.3 + 9.1 n_\alpha + 9.4 n_\beta - 2.5 n_\gamma + 0.3 n_\delta + 0.1 n_\epsilon + \sum S_{ij}$$
 (6-4) where:
$$\delta_i = \text{chemical shift of the carbon nucleus of interest}$$
 $n = \text{numbers of carbon atoms in the } \alpha$ -, β -, γ -, δ - and ϵ -positions relative to this nucleus

 S_{ii} = steric correction terms taking account of branching.

CH₂

29.9 31.6

Example: 2-methylbutane (6)

C-1:
$$n_a = 1$$
, $n_\beta = 2$, $n_\gamma = 1$
Steric corrections: primary with adjacent tertiary $\rightarrow -1.1$
 $\delta(C-1) = -2.3 + (9.1 \times 1) + (9.4 \times 2) - (2.5 \times 1) - 1.1 = 22.0$
C-2: $n_a = 3$. $n_\beta = 1$
Steric corrections: 1. tertiary with adjacent primary $\rightarrow 0$
2. tertiary with adjacent secondary $\rightarrow -3.7$
 $\delta(C-2) = -2.3 + (9.1 \times 3) + (9.4 \times 1) - 3.7 = 30.7$
C-3: $n_a = 2$. $n_\beta = 2$
Steric corrections: 1. secondary with adjacent tertiary $\rightarrow -2.5$
2. secondary with adjacent tertiary $\rightarrow -2.5$
2. secondary with adjacent tertiary $\rightarrow -2.5$
 $\delta(C-3) = -2.3 + (9.1 \times 2) + (9.4 \times 2) - 2.5 = 32.2$
C-4: $n_a = 1$, $n_\beta = 1$, $n_\gamma = 3$
Steric corrections: primary with adjacent secondary $\rightarrow 0$

 $\delta(\text{C-4}) = -2.3 + (9.1 \times 1) + (9.4 \times 1) - (2.5 \times 2) =$

Table 6-4. Steric correction factors $S_{ij}^{(1)}$ for estimating ¹³C chemical shifts in branched alkanes by the method of Ref. [5].

Λ

i	primary	secondary	tertiary	quaternary
primary	0	0	- 1.1	- 3.4
secondary	0	0	- 2.5	- 7.5
tertiary	0	-3.7	- 9.5	-15.0
quaternary	- 1.5	- 8.4	- 15.0	- 25.0

i = observed nucleus; j = neighbor nucleus

Alkenes:

 $\delta \approx 100\text{-}150 \text{ ppm}$ ethene = 123.5 ppm

- substituents reduce C¹ shielding (except Br, I and CN) and increase C² shielding.
- C1 is a combination of inductive effects but also mesomeric effect.
- Some large β -effects can be accounted by mesomeric effects.

$$CH_3$$
-O- CH = CH_2 \Leftrightarrow H_3C -O= CH - CH_2

Table 2-9. ¹³C chemical shifts of monosubstituted ethylenes.

х´ `н		
x	δC¹)	δ(C ²)
н	123.5	123.5
CH ₃	133.4	115.9
$CH = CH_2$	137.2	116.6
C_6H_5	137.0	113.2
F	148.2	89.0
Cl	125.9	117.2
Br	115.6	122.1
1	85.2	130.3
OCH,	153.2	84.1
$OCOCH_3$	141.7	96.4
NO_2	145.6	122.4
CN	108.2	137.5

Arenes:

Benzene $\delta = 128.5$

Substituted $\delta = 100-150 \text{ ppm}$

Effects:

 $C_1 > C_{\text{ortho}}^{2,6} > C_{\text{para}}^4 > C_{\text{meta}}^{3,5}$

C¹ is responsive to inductive effects Mesomeric structures yield ⁺M and ⁻M effects.

Chemical shifts of C1, ortho, meta, and para ring carbons in monosubstituted benzenes. The vertical line at 128.5 ppm corresponds to the chemical shift of benzene.

¹H Signal Intensities:

- area under the curve is proportional to the number of protons (Integration)

Figure 1-28.
90 MHz ¹H NMR spectrum of benzyl acetate (12) with integrated curve.

13C Signal Intensities:

- areas are distorted due to low natural abundance and sensitivity.
- if decoupled signals are proportional to the number of directly bonded hydrogen atoms.

Relationship Between the Spectrum and Molecular Structure:

1) Equivalent nuclei have the same resonance frequency.

2) Coupling between equivalent nuclei is not seen in first order spectra.

60 MHz proton spectra in CCl₄ solution of (a) odinitrobenzene; (b) m-dinitrobenzene; (c) p-dinitrobenzene.

Chiral Molecules:

Enantiomers: give identical NMR spectra Diastereomers: give different NMR spectra

The case of CH₂:

Homotopic: two fold axis of symmetry (C_2) , protons are equivalent

 c_1

Enantiotopic: two protons appear equivalent in the NMR but they are not (prochiral).

Diastereotopic: two protons are not equivalent in NMR.

 $\begin{array}{lll} \text{for } H^A\colon \\ \text{OH,CH}_3/\text{H,H}(\delta_1) & \text{OH,OH/H,CH}_3(\delta_2) & \text{OH,H/H,OH}(\delta_3) \\ \text{for } H^B\colon \\ \text{H,H/OH,OH}(\delta_4) & \text{H,CH}_3/\text{OH,H}(\delta_5) & \text{H,OH/OH,CH}_3(\delta_6) \end{array}$

$$\frac{\overline{\delta}_{A}}{\overline{\delta}_{B}} = x_{1} \, \delta_{1} + x_{11} \, \delta_{2} + x_{111} \, \delta_{3}
\overline{\delta}_{B} = x_{1} \, \delta_{4} + x_{11} \, \delta_{5} + x_{111} \, \delta_{6}$$

$$\begin{array}{c|cccc} CH_3 & CO_2^- \\ & & \\ & & \\ H-C & & C-H \\ & & \\ CH_3 & NH_2 \end{array}$$

Proton spectrum of L-valine (15% solution in D_2O , 2M in NaOD, 60 MHz); separate doublets for each methyl group appear at 0.90 and 0.83 ppm.