Atividade de Classificação: Análise Comparativa de k-NN, Naive Bayes e Árvore de Decisão

Aluno: Ivan Pedro Varella Albuquerque

Disciplina: PPGEP9002 - INTELIGÊNCIA COMPUTACIONAL PARA EN-

GENHARIA DE PRODUÇÃO

Professor: José Alfredo Ferreira Costa

 \mathbf{Data} : 20 de setembro de 2025

Repositório do Projeto

Este relatório é parte de um projeto completo disponível no GitHub, contendo todos os códigos, dados, resultados e visualizações utilizados nesta análise.

Acesso aos Arquivos

Acessar Repositório no GitHub

O repositório contém:

- Notebook Jupyter com toda a implementação e análise
- Dados brutos dos experimentos (CSV)
- Gráficos e visualizações gerados
- Relatórios em formato Markdown
- Configurações e dependências do projeto
- Documentação completa com instruções de execução

Como Utilizar

Para reproduzir os resultados apresentados neste relatório:

- 1. Clone o repositório
- 2. Instale as dependências (requirements.txt)
- 3. Execute o notebook main.ipynb
- 4. Consulte o README.md para instruções detalhadas

1. Introdução

Este relatório apresenta uma análise comparativa detalhada de três algoritmos clássicos de aprendizado de máquina supervisionado para classificação: k-Nearest Neighbors (k-NN), Gaussian Naive Bayes e Decision Tree (Árvore de Decisão). O estudo foi conduzido utilizando dois datasets canônicos da literatura de machine learning: Iris e Wine, ambos obtidos do repositório UCI Machine Learning Repository.

1.1 Objetivos

O objetivo principal desta análise é avaliar e comparar o desempenho dos três algoritmos mencionados, explorando como diferentes fatores influenciam a performance de cada modelo:

- Variação de hiperparâmetros: número de vizinhos (k) para k-NN e profundidade máxima (max_depth) para Árvore de Decisão
- Proporção de dados para treinamento: 60%, 70% e 80%
- Impacto da normalização: aplicação de Z-score standardization
- Robustez estatística: execução de 10 repetições para cada configuração

1.2 Algoritmos Estudados

k-Nearest Neighbors (k-NN) Algoritmo não-paramétrico baseado em instâncias que classifica novos pontos com base na classe majoritária de seus k vizinhos mais próximos no espaço de features. É considerado um "lazy learner" pois não constrói um modelo interno durante o treinamento.

Gaussian Naive Bayes Classificador probabilístico baseado no Teorema de Bayes com a suposição "ingênua" de independência condicional entre as features. Assume que as features contínuas seguem uma distribuição Gaussiana.

Árvore de Decisão Modelo que cria um fluxograma de regras hierárquicas do tipo "se-então" para classificar os dados, particionando recursivamente o espaço de features. Oferece alta interpretabilidade através de suas regras de decisão.

2. Metodologia

2.1 Datasets Utilizados

Dataset Iris

- Características: 150 instâncias, 4 features numéricas, 3 classes balanceadas
- Classes: Iris-setosa, Iris-versicolor, Iris-virginica (50 instâncias cada)
- Features: comprimento e largura de sépalas e pétalas
- Origem: Fisher, R. A. (1936)

Dataset Wine

- Características: 178 instâncias, 13 features numéricas, 3 classes
- Classes: Classe 1 (59 instâncias), Classe 2 (71 instâncias), Classe 3 (48 instâncias)
- Features: características químicas do vinho (álcool, acidez málica, cinzas, etc.)
- Origem: UCI Machine Learning Repository

2.2 Pré-processamento

Para todos os experimentos, foi aplicada normalização Z-score (StandardScaler) nas features, essencial especialmente para o k-NN que é sensível à escala das variáveis. A normalização foi aplicada apenas nos dados de treino para evitar vazamento de informação (data leakage).

2.3 Configurações Experimentais

k-NN

- Valores de k testados: {1, 3, 5, 7, 9}
- Métrica de distância: Euclidiana (padrão)
- Critério de desempate: uniforme (uniform weights)

Naive Bayes

- Implementação: GaussianNB
- Parâmetros: configuração padrão (sem hiperparâmetros para ajuste)

Árvore de Decisão

- Profundidades testadas: {3, 5, None}
- Critério de divisão: Gini (padrão)
- Random state: 42 (para reprodutibilidade)

2.4 Protocolo de Avaliação

Para garantir robustez estatística, cada configuração experimental foi executada 10 vezes com diferentes partições de dados (random_state variando de 0 a 9). As métricas reportadas representam a média \pm desvio padrão das 10 execuções.

Métricas Utilizadas

- Acurácia: proporção de predições corretas
- Precisão (macro): média das precisões por classe
- Revocação (macro): média das revocações por classe
- F1-Score (macro): média harmônica entre precisão e revocação por classe

3. Resultados e Discussão

3.1 Análise do k-NN

Resultados Principais

	Train			Precisão	Revocação	F1
Dataset	Size	k	Acurácia	(macro)	(macro)	(macro)
Iris	60%	5	$0.953~\pm$	$0.954~\pm$	0.953 ± 0.022	$0.953 \pm$
			0.022	0.022		0.022
Iris	70%	9	$0.946~\pm$	$0.948~\pm$	0.946 ± 0.023	$0.945~\pm$
			0.023	0.023		0.024
Iris	80%	3	$0.957~\pm$	$0.959 \pm$	0.957 ± 0.035	$0.957~\pm$
			0.035	0.034		0.035
Wine	60%	7	$0.949~\pm$	$0.949~\pm$	0.957 ± 0.008	$0.950 \pm$
			0.009	0.009		0.009
Wine	70%	1	$0.957~\pm$	$0.958 \pm$	0.963 ± 0.021	$0.959~\pm$
			0.025	0.023		0.024
Wine	80%	3	$0.969 \pm$	$0.969 \pm$	0.974 ± 0.024	$0.970 \pm$
			0.028	0.027		0.027

Análise do Dilema Viés-Variância Os resultados confirmam a teoria do trade-off entre viés e variância na escolha de k:

- **k=1:** Mostrou-se competitivo, especialmente no dataset Wine (70% treino), mas com maior variabilidade nos resultados
- k intermediário (3,5,7): Apresentou o melhor equilíbrio, com performance estável e alta acurácia
- **k=9:** Manteve boa performance no Iris, mas mostrou ligeira degradação em algumas configurações do Wine

Análise Crítica do k-NN (Síntese dos Principais Achados) A análise empírica confirmou o dilema fundamental viés-variância na escolha de k: valores baixos (k=1) demonstraram alta variância com sensibilidade excessiva a outliers, enquanto valores altos (k=9) apresentaram maior viés com tendência ao oversmoothening. O ponto ótimo situou-se consistentemente em k= $\{3,5,7\}$ para ambos os datasets. O efeito da normalização Z-score foi crucial, confirmando a sensibilidade do k-NN à escala das features - sem normalização, features com maior magnitude dominariam o cálculo de distâncias. Os erros típicos concentraram-se sistematicamente entre classes adjacentes: Iris-versicolor/Iris-virginica no dataset Iris e classes 1/2 no Wine, indicando regiões de sobreposição natural no espaço de features onde diferentes algoritmos convergem para os mesmos padrões de confusão.

Análise dos Padrões de Erro do k-NN Como interpretar: As matrizes de confusão são apresentadas em formato de heatmap, onde as linhas representam as classes verdadeiras e as colunas as classes preditas. Os valores na diagonal principal indicam classificações corretas, enquanto valores fora da diagonal representam erros. Cores mais intensas indicam maior frequência de classificações.

Análise dos padrões observados:

Figure 1: Matriz de Confusão para a Melhor Configuração k-NN por Dataset

- Dataset Iris (k=5, treino=60%): Matriz quase perfeita com valores altos na diagonal principal. Eventuais erros concentram-se entre as classes Iris-versicolor e Iris-virginica, que são biologicamente mais similares.
- Dataset Wine (k=7, treino=60%): Padrão de erro mais complexo, com maior confusão entre as classes 1 e 2, indicando maior similaridade química entre esses tipos de vinho. A classe 3 mostra-se mais distintiva.

Figure 2: Gráfico de linha - Impacto do Valor de k na Acurácia do Modelo k-NN

Visualização do Impacto do Hiperparâmetro k Como interpretar: O gráfico de linhas apresenta dois painéis (um para cada dataset) mostrando a acurácia média no eixo Y versus os valores de k no eixo X. Cada linha colorida representa uma proporção de treino diferente (60%, 70%, 80%). As barras de erro verticais indicam o desvio padrão, revelando a estabilidade do modelo.

Análise dos padrões observados:

• Dataset Iris: As linhas mostram comportamento relativamente estável entre k=3 e k=7, com ligeira queda em k=1 (indicando sensibilidade a

- ruído) e k=9 (possível oversmoothening). A proporção de treino de 80% apresenta maior variabilidade, evidenciada pelas barras de erro maiores.
- Dataset Wine: Padrão mais irregular, com k=1 mostrando performance surpreendentemente alta em algumas configurações, mas k=7 oferecendo maior consistência. As barras de erro menores indicam maior estabilidade estatística neste dataset.

3.2 Análise do Naive Bayes

Resultados Principais

	Train		Precisão	Revocação	
Dataset	Size	Acurácia	(macro)	(macro)	F1 (macro)
Iris	60%	$0.963 \pm$	0.964 ± 0.025	0.963 ± 0.025	$0.963 \pm$
		0.025			0.025
Iris	70%	$0.954~\pm$	0.956 ± 0.030	0.954 ± 0.032	$0.954~\pm$
		0.032			0.032
Iris	80%	$0.960 \pm$	0.963 ± 0.036	0.960 ± 0.038	$0.960 \pm$
		0.038			0.038
Wine	60%	$0.974~\pm$	0.975 ± 0.010	0.976 ± 0.007	$0.974~\pm$
		0.008			0.008
Wine	70%	$0.974~\pm$	0.975 ± 0.009	0.976 ± 0.010	$0.975~\pm$
		0.010			0.009
Wine	80%	$0.975 \pm$	0.978 ± 0.022	0.976 ± 0.023	$0.976~\pm$
		0.024			0.023

Análise de Performance O Naive Bayes demonstrou performance surpreendentemente consistente e competitiva:

- Estabilidade: Baixo desvio padrão em todas as configurações, indicando alta robustez
- Eficiência: Treinamento extremamente rápido devido à ausência de hiperparâmetros para otimização
- Dataset Wine: Performance superior, sugerindo que a suposição de independência das features não foi prejudicial neste problema específico

Análise dos Padrões de Erro do Naive Bayes Como interpretar: Similar às matrizes anteriores, estas matrizes mostram o padrão de classificação do Naive Bayes com 80% dos dados para treinamento, representando um caso com boa quantidade de dados de treino.

Análise dos padrões observados:

• Dataset Iris: Performance quase perfeita com erros mínimos, demonstrando que a suposição de independência das features não prejudica significativamente este problema linearmente separável.

Figure 3: Matriz de Confusão para Naive Bayes (Treino=80%)

• Dataset Wine: Padrão de erro similar ao k-NN, com confusão principal entre classes 1 e 2. Notavelmente, o modelo mantém alta precisão apesar da suposição simplificadora de independência entre as características químicas do vinho.

3.3 Análise da Árvore de Decisão

Resultados Principais

Train Dataset Size		max_deptAcurácia		Precisão (macro)	Revocação (macro)	F1 (macro)
Iris	60%	5	0.950 ± 0.027	0.952 ± 0.026	0.950 ± 0.027	0.950 ± 0.027
Iris	70%	5	0.943 ± 0.031	0.948 ± 0.029	0.943 ± 0.031	0.943 ± 0.031
Iris	80%	5	$0.940 \pm$	$0.942 \pm$	$0.940 \pm$	$0.940 \pm$
Wine	60%	None	0.031 $0.892 \pm$	0.031 $0.899 \pm$	$0.031 \\ 0.895 \pm$	$0.031 \\ 0.893 \pm$
Wine	70%	5	0.041 $0.920 \pm$	$0.042 \\ 0.927 \pm$	$0.043 \\ 0.923 \pm$	0.041 $0.922 \pm$
Wine	80%	3	0.032 0.911 ±	0.028 0.927 ±	$0.033 \\ 0.913 \pm$	0.032 $0.912 \pm$
****	0070	0	0.050	0.035	0.052	0.050

Análise do Impacto da Profundidade

- max_depth=3: Modelo mais simples, com risco de underfitting especialmente no Wine
- max_depth=5: Equilibrio ideal para a maioria das configurações
- max_depth=None: Mostrou-se superior apenas em casos específicos, com risco de overfitting evidenciado pelo maior desvio padrão

Figure 4: Gráfico de Pontos - Impacto do max_depth na Acurácia da Árvore de Decisão

Visualização do Impacto do max_depth Como interpretar: O gráfico de pontos (pointplot) apresenta dois painéis mostrando a relação entre max_depth (eixo X categórico: '3', '5', 'None') e acurácia média (eixo Y). Cada linha colorida conecta os pontos para uma proporção de treino específica. As barras de erro verticais representam o desvio padrão, indicando a variabilidade do modelo.

Análise dos padrões observados:

- Dataset Iris: Curva relativamente plana entre max_depth=3 e max_depth=None, sugerindo que o problema não requer alta complexidade. As pequenas diferenças entre configurações indicam que o dataset é relativamente simples para árvores de decisão.
- Dataset Wine: Padrão mais interessante mostrando melhoria de max_depth=3 para max_depth=5, mas possível degradação ou estagnação com max_depth=None. Barras de erro maiores em max_depth=None sugerem instabilidade devido ao overfitting.

Figure 5: Matriz de Confusão para a Melhor Configuração de Árvore de Decisão

Análise dos Padrões de Erro da Árvore de Decisão Como interpretar: As matrizes mostram o desempenho das melhores configurações de árvore para cada dataset, permitindo identificar quais classes são mais facilmente distinguíveis pelas regras hierárquicas aprendidas.

Análise dos padrões observados:

- Dataset Iris (max_depth=5, treino=60%): Excelente separação das classes com erros mínimos, demonstrando que regras simples baseadas em características das flores são suficientes para classificação precisa.
- Dataset Wine (max_depth=5, treino=70%): Matriz mais complexa com maior confusão entre classes adjacentes, refletindo a natureza mais sutil das diferenças químicas entre os tipos de vinho. A árvore consegue criar regras interpretáveis, mas com menor precisão que os outros algoritmos.

3.4 Análise das Matrizes de Confusão

Dataset Iris As matrizes de confusão revelaram que todos os modelos tiveram excelente performance no Iris, com poucos erros de classificação. A classe Irissetosa foi perfeitamente separada por todos os algoritmos, enquanto alguma confusão ocasional ocorreu entre Iris-versicolor e Iris-virginica.

Dataset Wine No dataset Wine, observou-se maior dificuldade na distinção entre as classes 1 e 2, padrão consistente entre todos os modelos. A classe 3 mostrou-se mais distintiva e foi classificada com maior precisão.

4. Análise Comparativa Final

4.1 Ranking de Performance por Dataset

Dataset Iris

- 1. Naive Bayes: $0.963 \pm 0.025 \ (60\% \ treino)$
- 2. **k-NN:** 0.957 ± 0.035 (k=3, 80% treino)
- 3. Árvore de Decisão: 0.950 ± 0.027 (max depth=5, 60% treino)

Dataset Wine

- 1. Naive Bayes: 0.975 ± 0.024 (80% treino)
- 2. **k-NN:** 0.969 ± 0.028 (k=3, 80% treino)
- 3. Árvore de Decisão: 0.920 ± 0.032 (max depth=5, 70% treino)

Visualização Comparativa Consolidada Como interpretar: O gráfico de barras agrupadas apresenta dois painéis (um para cada dataset) com a acurácia média no eixo Y e os modelos no eixo X. Cada grupo de barras representa um modelo, com barras coloridas indicando diferentes proporções de treino. As

Figure 6: Gráfico de Barras - Comparativo de Desempenho dos Melhores Modelos

barras de erro pretas mostram o desvio padrão, evidenciando a estabilidade de cada configuração.

Análise dos padrões comparativos:

- Dataset Iris: Diferenças relativamente pequenas entre os três algoritmos, com todos atingindo performance superior a 94%. Naive Bayes mostra ligeira vantagem com menor variabilidade (barras de erro menores).
- Dataset Wine: Separação mais clara entre os algoritmos. Naive Bayes demonstra superioridade consistente com baixa variabilidade. k-NN mantém-se competitivo, especialmente com 80% de treino. Árvore de Decisão apresenta performance inferior com maior variabilidade, indicando maior sensibilidade às partições dos dados.
- Padrão geral: Maior proporção de treino (80%) tende a beneficiar k-NN
 e Naive Bayes, enquanto a Árvore de Decisão mostra comportamento mais
 irregular, possivelmente devido ao trade-off entre underfitting e overfitting.

4.2 Trade-offs Identificados

Performance vs. Interpretabilidade

- Árvore de Decisão: Vencedora absoluta em interpretabilidade, permitindo visualização clara das regras de decisão
- k-NN e Naive Bayes: Modelos "caixa-preta" com interpretabilidade limitada

Performance vs. Eficiência Computacional

- Naive Bayes: Treinamento mais rápido, ideal para datasets grandes
- k-NN: Predição lenta devido ao cálculo de distâncias para todos os pontos de treino
- Árvore de Decisão: Equilíbrio razoável entre treino e predição

Robustez a Hiperparâmetros

- Naive Bayes: Sem necessidade de ajuste de hiperparâmetros
- k-NN: Sensível à escolha de k, requer validação cruzada
- Árvore de Decisão: Sensível a max_depth, risco de overfitting se não controlado

5. Conclusões

5.1 Principais Descobertas

- Não existe um modelo universalmente superior: A escolha ideal depende das prioridades específicas do projeto (acurácia, interpretabilidade, eficiência)
- 2. **Importância da normalização:** Confirmada especialmente para k-NN, mas benéfica para todos os modelos
- 3. Robustez estatística: As 10 repetições foram essenciais para identificar a variabilidade real dos modelos e evitar conclusões baseadas em resultados fortuitos
- 4. **Complexidade dos dados:** O dataset Wine, sendo mais complexo, mostrou maior diferenciação entre os algoritmos

5.2 Recomendações Práticas

Para Máxima Acurácia

- Primeira escolha: k-NN com k={3,5,7} e normalização Z-score obrigatória
- Alternativa: Naive Bayes como baseline forte e computacionalmente eficiente

Para Máxima Interpretabilidade

- Única escolha: Árvore de Decisão com max depth controlado (3-5)
- Vantagem: Regras explícitas podem ser facilmente comunicadas a stakeholders

Para Máxima Eficiência

- **Primeira escolha:** Naive Bayes (treinamento instantâneo, predição rápida)
- Evitar: k-NN em datasets grandes (predição O(n) por instância)

Reprodutibilidade e Validação Conforme solicitado pelo professor, a reprodutibilidade foi garantida através de random_state fixo (42 para modelos, 0-9 para splits) e execução de 10 repetições por configuração. Para futuros experimentos, recomenda-se manter este protocolo estatístico robusto, especialmente importante dado que alguns modelos (como Árvores de Decisão) apresentaram maior variabilidade nos resultados, evidenciando a necessidade de múltiplas execuções para conclusões confiáveis.

5.3 Limitações e Trabalhos Futuros

- Datasets: Análise limitada a dois datasets clássicos; expansão para problemas mais diversos seria valiosa
- 2. **Hiperparâmetros:** Exploração mais ampla do espaço de hiperparâmetros poderia revelar configurações superiores
- 3. **Métricas:** Inclusão de métricas adicionais como tempo de execução e uso de memória
- 4. **Ensemble Methods:** Investigação de métodos de ensemble combinando os três algoritmos

5.4 Considerações Finais

Este estudo validou empiricamente conceitos fundamentais de machine learning, particularmente o trade-off entre viés e variância, a importância do préprocessamento de dados e a necessidade de avaliação estatisticamente robusta. A análise demonstrou que a seleção de algoritmos de machine learning é uma decisão multifatorial que deve considerar não apenas a performance preditiva, mas também fatores práticos como interpretabilidade, eficiência computacional e robustez a hiperparâmetros.

Os resultados obtidos servem como base sólida para a compreensão prática dos algoritmos estudados e fornecem diretrizes claras para sua aplicação em problemas reais de classificação.

6. Referências

Costa, J. A. F. (2025). UFRN ELE 606 – 2025.2 - Inteligência Artificial: Guia de Estudos sobre Classificação e o Algoritmo k-NN. Universidade Federal do Rio Grande do Norte.

Dua, D., & Graff, C. (2019). *UCI Machine Learning Repository*. University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188.

Pedregosa, F., et al. (2011). Scikit-learn: Machine Learning in Python. Journal of $Machine\ Learning\ Research,\ 12,\ 2825-2830.$

Tan, P.-N., Steinbach, M., & Kumar, V. (2019). Introduction to Data Mining (2nd ed.). Pearson.