Programa:

- Morfologia matemática
- Representação e descrição
- Reconhecimento de padrões

Descritores podem ser valores numéricos

Pode-se reconhecer objetos comparando-se simplesmente os descritores de objetos em uma imagem com os descritores de objetos conhecidos.

Classes de descritores:

- descritores de forma ou contorno: chain codes, descritores de Fourier, etc
- <u>descritores de regiões</u>: área, perímetro, compacidade, momentos, etc.

(Analógico) Contínuo	(Digital) Discreto	
$\int_{x} \int_{y} I(x, y) dy dx$	$\sum_{x}\sum_{y}I(x,y)$	
$\int_{t} \sqrt{x^{2}(t) + y^{2}(t)} dt$	$\sum_{i} \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}$	
	Perímetro com conectividade 4	
	Perímetro com conectividade 8	
	$\int_{x} \int_{y} I(x, y) dy dx$	

- Compacidade (c):
$$c = \frac{P^2}{4 \pi A}$$

Sendo P: perímetro A: área

compara a área do objeto com a área de um círculo com o mesmo perímetro.

- Razão de circularidade (Rc): Rc = 1 / c
$$R_c = \frac{A}{P^2/4\pi}$$

$$R_c = \frac{A}{P^2 / 4\pi}$$

- Corda mais longa

$$l_c = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Obs.: l_P Corda perpendicular à corda mais longa

Direção da corda mais longa:
$$\tan \alpha = \frac{\dot{y}_2 - y_1}{x_2 - x_1}$$

- Excentricidade: É a razão lc / lp

Área do retângulo envolvente (Am): Am = lb . sb

Retangularidade: A/Am

Descreve o quão retangular é a forma do objeto.

Alongamento: 16/sb

É a razão entre o comprimento e a largura do retângulo envolvente

Exercício 1

Imagem: frutas_8bits.tif

Calcular para cada objeto:

- Área
- Perímetro
- Compacidade
- Razão de circularidade

Que tipo de descritor é apropriado para a aplicação em questão?

Imagem

Objetos	Circulos de diferentes dimensões	Circulos and elipses	Elipses com diferentes orientações	Círculos e quadrados	Círculos e octágonos
Aplicação	Separar círculos grandes e pequenos	Separar círculos e elipses	Encontrar elipses com mesma orientação	Extrair os quadrados	Separar objetos com diferentes formas e tamanhos
Medida mais adequada	Área				

Propriedades dos descritores:

- devem definir um conjunto completo, isto é, dois objetos devem ter os mesmos descritores se e somente se tiverem a mesma forma.
- devem ser congruentes, isto é, dois objetos serão similares quanto tiverem descritores similares.
- devem possuir propriedades invariantes tais como, por exemplo, à rotação, à escala e à translação.
- devem ser um conjunto compacto, isto $\acute{\text{e}}$, um descritor deve representar a essência de um objeto de modo eficiente.

- Os descritores área e perímetro são invariantes a
 - Translação?
 - Rotação?
 - Escala?

Exercício 2:

O descritor "compacidade" é invariante a

- -Translação e rotação ?
- Variação de Escala?

