## Trabajo Práctico Final Aprendizaje Estadístico

Clasificación de muestras de tejido en 'sanos' o 'con tumor' a partir de expresiones de genes

Facultad de Ingeniería - Universidad de Buenos Aires

Profesora: Jemina García

Alumnos: Federico Elías - Ignacio Brusati

Cuatrimestre: 1C2022

#### Normalización de los datos



Medianas de los datos originales



Medianas luego de la normalización

#### Árbol de Clasificación

- Este método va segmentando el espacio de covariables a partir de ciertas reglas hasta llegar a varias regiones pequeñas (llamadas nodos terminales u 'hojas')
- Cuando llega una nueva observación, se la ubica en una de esas hojas dependiendo de las reglas de decisión que se fueron tomando para dividir el espacio de covariables
- Para dar una predicción a esa nueva observación se utilizan las observaciones del set de entrenamiento que se tenían en la hoja en la que cayó la nueva observación usando la regla de la mayoría

## Árbol de Clasificación



## Error para el modelo de Árbol de Clasificación

La probabilidad a partir de la cual se clasifica como verdadero es 1.0000000



El área bajo la curva ROC es 0.7597403 y el error de clasificación es 0.4176955

#### Bagging

- Este método propone utilizar diferentes muestras y construir un árbol para cada una de ellas
- Para la clasificación de una nueva observación se utiliza la regla de la mayoría usando las clasificaciones de esos árboles
- Las nuevas muestras se consiguen mediante bootstrap
- Se realizó Bagging con 15 árboles

#### Error para el modelo de Bagging

La probabilidad a partir de la cual se clasifica como verdadero es 0.6699144



El área bajo la curva ROC es 0.9220779 y el error de clasificación es 0.139266

#### Random Forest

- Como en Bagging, se construyen árboles bootstrapeando muestras de entrenamiento
- La diferencia con Bagging es que este método propone que cada vez que se realiza una partición se elija al azar *m* de las *p* covariables disponibles
- Se logra independizar a los estimadores buscando una mayor reducción en la varianza del estimador final

#### Búsqueda del parámetro de cantidad de variables separadas



Se probaron todos los valores enteros entre 30 y 60 y el óptimo fue 38

#### Error para el modelo de Random Forest

La probabilidad a partir de la cual se clasifica como verdadero es 0.5920000



El área bajo la curva ROC es 0.9090909 y el error de clasificación es 0.1111111

#### Selección de variables con Random Forest



#### **Boosting**

- Funciona de una forma similar a Bagging pero los árboles se crean de forma secuencial
- Se predice a los residuos, no a las respuestas
- En cada paso se actualiza la estimación final sumando una proporción de la estimación realizada en ese paso

#### Búsqueda del parámetro de cantidad de árboles



Se probaron un rango de valores entre 500 y 5000 con un salto de 500 y el óptimo fue 1000

#### Error para el modelo de Boosting

La probabilidad a partir de la cual se clasifica como verdadero es 0.8514867



El área bajo la curva ROC es 0.909090 y el error de clasificación es 0.1111111

#### **Nearest Shrunken Centroids**

- Calcula un centroide para cada gen para cada clase
- Reduce los centroides en una cantidad llamada threshold
- Descarta los centroides de los genes que den 0 para todas las clases
- Al llegar una nueva observación, se toman los valores de esos genes y se los comparan con cada uno de estos centroides de clase: la clase cuyo centroide está más cerca es la clase predicha para esa nueva observación
- Para los siguientes modelos, se usaron los genes encontrados por este método

### Búsqueda del parámetro de threshold



Se probaron un rango de valores entre 1 y 10 con un salto de 1 y el óptimo fue 2

#### Error para el modelo de Nearest Shrunken Centroids

La probabilidad a partir de la cual se clasifica como verdadero es 0.6044035



El área bajo la curva ROC es 0.974026 y el error de clasificación es 0.1111111

#### K-Nearest Neighbors (KNN)

- Sirve para estimar la distribución de Y dado X y después clasificar una observación en la clase con mayor probabilidad estimada
- A un nuevo punto se le asigna una categoría por voto de la mayoría entre los k vecinos más cercanos
- Se utilizó la distancia euclídea como métrica de distancia, luego se usó cross validation para obtener el k óptimo

#### Búsqueda del parámetro de cantidad de vecinos



Se utilizó un rango de valores de k entre 1 y 25 y el óptimo resultó ser un valor de k=3 vecinos

#### Error para el modelo de KNN

La probabilidad a partir de la cual se clasifica como verdadero es 1.0000000



El área bajo la curva ROC es 0.8116883 y el error de clasificación es 0.1111111

#### Regresión Logística

- Modela la probabilidad de que una nueva observación Y pertenezca a una clase en particular dada una serie de covariables X1, X2, ..., Xp
- Se estima una esperanza condicional usando la función logística
- Se estiman los parámetros β mediante el método de máxima verosimilitud
- El sistema al que se llega con el método de máxima verosimilitud debe ser resuelto mediante métodos numéricos

#### Error para Regresión Logística

La probabilidad a partir de la cual se clasifica como verdadero es casi 0



El área bajo la curva ROC es 0.7857143 y el error de clasificación es 0.3333333

#### Análisis Lineal Discriminante (LDA)

- Sirve para clasificar los genes dentro de dos o más grupos de poblaciones
- Las poblaciones en este caso son "enfermos" y "sanos"
- Este método asume que las clases tienen la misma varianza
- También asume que las clases tienen distribución normal multivariada
- Primero se verifica normalidad para ambos grupos de pacientes

### Normalidad para los enfermos



## Normalidad para los sanos



#### Distribuciones de enfermos y sanos



Las distribuciones tienen diferentes medias pero no tienen la misma varianza

#### Error para el modelo LDA

La probabilidad a partir de la cual se clasifica como verdadero es casi 0



El área bajo la curva ROC es 0.3376623 y el error de clasificación es 0.4444444

#### Análisis Cuadrático Discriminante (QDA)

- Similar al LDA, pero con el supuesto de que las matrices de covarianza son diferentes
- De los 25 genes obtenidos por el NSC, usamos 12

#### Error para el modelo QDA

La probabilidad a partir de la cual se clasifica como verdadero es 1.0000000



El área bajo la curva ROC es 0.6103896 y el error de clasificación es 0.7222222

# ¡Muchas gracias!