

Eletrônica Digital

Simplificação de expressões lógicas Álgebra de Boole_II

REGRAS GERAIS DE CONDUTA EM AULAS REMOTAS

A sala de aula virtual é uma extensão da sala de aula presencial e, portanto, o Regulamento da Organização Didática (ROD) é o documento que rege a sua dinâmica. Ao acessar a sala de aula virtual, você estará ciente de que a violação dessas regras é passível de medidas disciplinares, tanto no âmbito do IFCE como no âmbito civil e criminal. Para que possamos manter o ambiente harmônico, respeitoso e seguro entre todos, é necessário observar algumas regras de conduta, a saber:

Não compartilhe a gravação das aulas

Você não deve copiar, distribuir, modificar, reproduzir, republicar, transmitir ou comercializar qualquer informação, texto e/ou documentos contidos nas aulas em qualquer meio eletrônico, nem criar qualquer trabalho utilizando imagens, textos ou documentos dessas aulas sem ter por escrito o prévio consentimento dos envolvidos na exposição.

Tenha tolerância e paciência com possíveis falhas tecnológicas e eventuais limitações pessoais

Falhas técnicas poderão acontecer, seja com o professor, com colegas ou com você mesmo. Tenha paciência, procure manter a calma e contornar o problema com discrição e gentileza.

Prepare-se para a aula virtual

Vista-se adequadamente e escolha na sua casa o local mais apropriado (se possível, separado de outras pessoas e das atividades que estiverem sendo realizadas por elas), para que haja o máximo de atenção na aula.

Desative o microfone

Ao acionar seu aparelho, desative o microfone. Essa ação impedirá que, num momento de distração, você compartilhe uma fala ou ruídos indesejados. Seu celular deve ficar no silencioso. Evite também interromper a fala dos demais participantes e, pelo *chat*, peça a palavra ao professor quando quiser fazer algum comentário ou esclarecer alguma dúvida.

Identidades				
Complementação	Adição	Multiplicação		
$ar{A}$ = A	A+0=A	A.0=0		
	A+1=1	A.1=A		
	A+A=A	A.A=A		
	A+Ā=1	A. <i>Ā</i> =0		

Identidades				
Complementação	Adição	Multiplicação		
$ar{ar{A}}$ = $ar{A}$	A+0=A	A.0=0		
	A+1=1	A.1=A		
	A+A=A	A.A=A		
	A+ <i>Ā</i> =1	A. <i>Ā</i> =0		

Identidades				
Complementação	Adição	Multiplicação		
	A+0=A	A.0=0		
$ar{ar{A}}$ =A	A+1=1	A.1=A		
A=A	A+A=A	A.A=A		
	A+ <i>Ā</i> =1	A. <i>Ā</i> =0		

Identidades				
Complementação	Adição	Multiplicação		
$ar{A}$ = A	A+0=A	A.0=0		
	A+1=1	A.1=A		
	A+A=A	A.A=A		
	A+ <i>Ā</i> =1	A. <i>Ā</i> =0		

Propriedades

Comutativa: A+B=B+A A.B=B.A Associativa: A+(B+C)=(A+B)+C=A+B+C A.(B.C)=(A.B).C=A.B.C Distributiva: A(B+C)= AB + AC

Teoremas de De Morgan $\frac{\overline{A}.\overline{B} = \overline{A} + \overline{B}}{\overline{A} + \overline{B} = \overline{A}.\overline{B}}$

Identidades auxiliares A+AB=A $A+\overline{A}B=A+B$ $\overline{A}+AB=\overline{A}+B$ (A+B).(A+C)=A+BC

DEMONSTRAÇÃO:

$$A+\overline{A}B = A + B$$

 $A+\overline{A}B = A(B+\overline{B})+\overline{A}B$
 $A+\overline{A}B = AB+A\overline{B}+\overline{A}B$
 $A+\overline{A}B = AB+AB+A\overline{B}+\overline{A}B$
 $A+\overline{A}B = A(B+\overline{B})+B(A+\overline{A})$
 $A+\overline{A}B = A+B$

DEMONSTRAÇÃO:

$$(A+B).(A+C)=A+BC$$
 $(A+B).(A+C)=AA+AC+AB+BC$
 $(A+B).(A+C)=A+AC+AB+BC$
 $(A+B).(A+C)=A(1+C+B)+BC$
 $(A+B).(A+C)=A(1)+BC$
 $(A+B).(A+C)=A(1)+BC$

INSTITUTO FEDERAL Ceará

2. Tabela Verdade

ENTR	RADAS SAÍDAS				
Sp	S ₅	R_p	G _p	Rs	G _S
0	0				
0	1				
1	0				
1	1				

INSTITUTO FEDERAL

Ceará

$$G_P = \overline{S}_P \, \overline{S}_S + S_P \, \overline{S}_S + S_P \, S_S$$

$$G_P = S_S(S_P + S_P) + S_P S_S$$

$$G_P = \overline{S}_{S'} + S_{S'} S_P$$

$$G_P = S_S + S_P$$

$$G_P = S_P S_S$$

$$G_P = \overline{S}_P S_S$$

$$G_P = \overline{S}_P + \overline{S}_S$$

$$G_P = \overline{S}_S + S_P$$

$F = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} C + A B \overline{C}$

$$F = \overline{AB}(\overline{C} + C) + A\overline{B}C + AB\overline{C}$$

$$F = \overline{AB} + ABC + ABC$$

$$F = B(\overline{A} + A\overline{C}) + A\overline{B}C$$

$$F = B(\overline{A} + \overline{C}) + A\overline{B}C$$

$$F = \overline{A}B + B\overline{C} + A\overline{B}C$$

INSTITUTO FEDERAL Ceará

$$S = A + \overline{A} \overline{B} + A \overline{B} C + A \overline{B}$$

$$S = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C}$$

$$S = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

TAREFA

1) Projete o circuito de controle abaixo (prioridade para a rua principal e, quando não houver carro na via, acende verde para a principal e vermelho para secundária).

Simplifique por álgebra de Boole (manuscrito) e realize a simulação no software Proteus. Envie, se possível, o arquivo .pdf contendo o desenvolvimento do projeto e um vídeo evidenciando o aluno, a máquina e a simulação do funcionamento Proteus.

ENTRADAS		SAÍDAS			
Sp	S ₅	R_p	Gp	Rs	G _S
0	0				
0	1				
1	0				
1	1				

TAREFA

2) Projete o circuito de controle abaixo, simplifique por álgebra de Boole (manuscrito) e realize a simulação no software Proteus. Envie, se possível, o arquivo .pdf contendo o desenvolvimento do projeto e um vídeo evidenciando o aluno, a máquina e a simulação do funcionamento no Proteus.

A figura ao lado mostra de forma esquemática a conexão de 4 computadores de uma determinada empresa a uma única impressora. Esta conexão é feita através de um circuito de controle.

Devem ser obedecidas às seguintes prioridades:

- Computador do setor administrativo (ADM) 1º prioridade
- Computador do setor pessoal (PES) 2º prioridade
- Computador do setor de engenharia (ENG) 3º prioridade
- Computador do setor de vendas (VEN) 4º prioridade

TAREFA

3) Projete um comparador de dois números binários de dois bits cada(A,B) que acenda um LED quando A>B. Simplifique por álgebra de Boole (manuscrito) e realize a simulação no software Proteus. Envie, se possível, o arquivo .pdf contendo o desenvolvimento do projeto e um vídeo evidenciando o aluno, a máquina e a simulação do funcionamento no Proteus.