1.4.1 Изучение экспериментальных погрешностей на примере физического маятника

Анна Назарчук Б02-109

1 Аннотация

На примере измерения периода свободных колебаний физического маятника познакомились с систематическими и случайными погрешностями, прямыми и косвенными измерениями; проверили справедливость формулы для периода колебаний физического маятника и определить значение ускорения свободного падения; убедились в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника; оценили погрешность прямых и косвенных измерений и конечного результата

2 Теоретические сведения

Физический маятник - твердое тело, совершающее колебания в поле силы тяжести, является свокупностью жестко связанных точечных масс. (рис. 1)

2.1 Закон вращательного движения и момент инерции

$$F = \frac{dp}{dt} \tag{1}$$

$$Fr = \frac{d}{dt}(mr^2\omega) \rightarrow M = \frac{dL}{dt}$$
 (2)

Рис. 1: Стержень как физический маятник

M - момент силы относительно оси вращения, $L=mr^2\omega=J\omega$ - момент импульса, $J=mr^2$ - момент инерции.

$$J = \sum_{j} m_j r_j^2 \tag{3}$$

Момент инерции тонкого стержня массой m и длиной l, вращающегоя вокруг оси, проходящей через центр масс, равен:

$$J_c = \frac{ml^2}{12} \tag{4}$$

А момент инерции стержня с осью вращения на расстоянии a от центра масс по теореме Гюйгенса-Штейнера:

$$J = \frac{ml^2}{12} + ma^2 \tag{5}$$

3 Стержень как физический маятник

$$M = -mqasin\varphi \approx -mqa\varphi \tag{6}$$

При малых отклонениях движение физического маятника будет иметь характер гармонических колебаний. Получим формулу для периода колебаний, используя аналогию с пружинным маятником, период которого равен $T=2\pi\sqrt{m/k}$. Роль массы играет момент инерции, роль коэффициента жесткости - коэффициент пропорцинальность между моментом силы и величиной отклонения.

$$T = 2\pi \sqrt{\frac{J}{mga}} \tag{7}$$

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{ga}} \tag{8}$$

Введем приведенную длину физического маятника:

$$l_{\rm np} = a + \frac{l^2}{12a} \tag{9}$$

Теорема Гюйгенса: если стержень подвесить за центр качения (точка, отстоящая от точки опоры на $l_{\rm np}$ вдоль стержня), но период колебаний не изменится.

3.1 Гармонические колебания

Получим формулу 7 через дифференциальное уравнение гармонических колебаний. Из 1 и 6:

$$J\ddot{\varphi} + mqa\varphi = 0 \tag{10}$$

Решения уравнения будут вида:

$$\varphi(t) = A\sin(\Omega t + \alpha) \tag{11}$$

где $\Omega=\frac{2\pi}{T}=\sqrt{\frac{mga}{J}}$ - угловая частота колебаний, A - угловая амплитуда, lpha - начальная фаза колебаний

3.2 Затухание колебаний

Если трение не слишком велико, колебания все еще могут быть описаны формулой 11, но амплитуду колебаний следует счиать медленно убывающей функцией времени.

$$\gamma = \frac{|\Delta A|}{A}$$

 γ - декременант затухания (относительная убыль амплитуды за одно затухание), можно считать постоянным, поэтому:

$$A(t) = A_0 e^{(-\gamma t)} \tag{12}$$

Добротность колебательной системы можно найти:

$$Q = \pi \frac{\tau_{\text{3aT}}}{T} = \pi \frac{1/\gamma}{T} \tag{13}$$

3.3 Экспериментальная установка

Тонкий стальной стержень длиной $l \sim 1$ м и массой $m \sim 1$ кг (точные параметры определяются непосредственными измерениями) подвешивается на прикреплённой стене консоли с помощью небольшой призмы. Диаметр стержня много меньше его длины $d \sim 12$ мм $\ll l$. Небольшая призма крепится на стержне винтом и острым основанием опирается на поверхность закреплённой на стене консоли. Острие ребра призмы образует ось качания маятника.

Установка А. Точку крепления можно перемещать вдоль стрежня, период колебания измеряется секундомером.

4 Измерения и обработка результатов

4.1 Оборудование

Линейка

$$\sigma_l = 0.5 \text{ MM} \tag{14}$$

Секундомер

$$\sigma_t = 0.005c \tag{15}$$

Максимальная относительная погрешность измерения периода колебаний маятника

$$\varepsilon_{max} = 0.1\% \tag{16}$$

Длина стержня

$$l = 100 \text{ cm}$$
 (17)

Масса штанги

$$m_c = 870.3 \pm 0.1 \tag{18}$$

Масса призмы

$$m_p = 76.6 \pm 0.1 \tag{19}$$

Центр масс пустого стержня

$$l_{\rm II} = 50.1$$
 (20)

Таблица 1: Измерение времени колебаний

№ опыта	t, c		
1	30.79		
2	30.84		
3	30.88		
4	30.67		
5	30.69		
6	30.75		
7	30.75		
8	30.68		
\bar{t} , c	30.76		
$\sigma_t^{\text{случ}}$, с	0.08		
$\sigma_t^{\text{сист}}, \text{c}$	0.01		
$\sigma_t^{\text{полн}}$, с	0.08		

4.2 Оценка числа колебаний, требуемых для достижения нужной точности измерения

Измерим период п (n=20) колебаний для экспериментального определения случайной погрешности измерения времени с помощью секундомера. Положение призмы относительно центра масс

$$l = 75.3cm \tag{21}$$

Откуда число колебаний, по которому следует измерять период, чтобы относительная погрешность измерений периода соответствовала точности измерений $\varepsilon_{max}=0.1\%$: n=50

4.3 Опыт по измерению периода колебаний маятника по n полным колебаниям

4.4 Обработка результатов

Получим g усредением полученных результатов (в оценке погрешности учитывается как случайная составляющая, так и систематическая:

$$\overline{g_1} = 9.97 \pm 0.16 \; {
m M}/c^2$$
 - с учетом призмы

 $\overline{g_2} = 9.73 \pm 0.16 \; \text{м/c}^2$ - без учета призмы Дальнейшую обработку будем производить без учета призмы, так как относительная погрешность измерений больше 1%, существенного вклада в точность результатов учет призмы не даст. Построим график зависимости T(a). (рис. 2)

Таблица 2: Измерение периода колебаний маятника по n полным колебаниям (установка A) (без учета призмы)

					,
№ опыта	l_k , см	а, см	t_n , c	T, c	g , м $/c^2$
1	75.3	25.2	76.85	1.54	9.74
2	70.1	20	79.26	1.59	9.69
3	63.4	13.3	87.46	1.75	9.80
4	60.5	10.4	96.48	1.93	9.60
5	57.5	7.4	110.78	2.22	9.65
6	54.6	4.5	140.19	2.80	9.53
7	87.3	37.2	77.76	1.56	9.73
8	94.8	44.7	79.91	1.60	9.79
9	72.1	22	77.85	1.56	9.75
10	73.4	23.3	77.21	1.54	9.78
11	73.6	23.5	77.28	1.55	9.74
12	74.5	24.4	77.11	1.54	9.72

Таблица 3: Измерение периода колебаний маятника по n полным колебаниям (установка A) (с учетом призмы)

№ опыта	l_k , см	а, см	x_{u} , cm	t_n , c	T, c	g , m $/c^2$
1	75.30	25.20	23.10	76.85	1.54	9.76
2	70.10	20.00	17.90	79.26	1.59	9.95
3	63.40	13.30	11.20	87.46	1.75	10.70
4	60.50	10.40	8.30	96.48	1.93	11.05
5	57.50	7.40	5.30	110.78	2.22	12.39
6	54.60	4.50	2.40	140.19	2.80	16.42
7	87.30	37.20	35.10	77.76	1.56	9.48
8	94.80	44.70	42.60	79.91	1.60	9.44
9	72.10	22.00	19.90	77.85	1.56	9.91
10	73.40	23.30	21.20	77.21	1.54	9.88
11	73.60	23.50	21.40	77.28	1.55	9.83
12	74.50	24.40	22.30	77.11	1.54	9.77

Рис. 2: Зависимость периода колебаний от расстояния от точки крепления до центра масс

Найдем минимум с помощью графика (рис. 3)

Обработка данных выдает зависимость периода от расстояния от точки крепления до центра масс, которая вместе с экспериментальными точками показана на рис. 4

 $T_{min}=1.53$ с согласно графику, что согласуется с теоретическим расчетом ($T_{min}=1.52$ с). В пределах округления период при измерении графически и аппроксимируя данные под функцию совпадает, но, конечно, измерение при помощи графика имеет существенно большую погрешность.

Построим график в координатах $u=\frac{T^2a}{4\pi^2},\,v=a^2+\frac{l^2}{12}$ (рис. 5) Определим g с помощью графика 5 МНК и оценим погрешность. В

Определим g с помощью графика 5 MHK и оценим погрешность. В итоге получим,

$$g = 9.79 \pm 0.06 \; \mathrm{m}/c^2$$

Данным способом удалось получить меньшую погрешность и улучшить точность измерения.

Для одной из длин экспериментально сравним периоды колебаний физичекого маятника и математического с приведенной длиной нити (согласно формуле 9). $a=25.2~{\rm cm},\ l_{\rm np}=58.3~{\rm cm},\ T_{\rm \Phi}=1.54~{\rm c},\ T_{\rm m}=1.54~{\rm c},$ что согласуется с теорией.

Рис. 3: Зависимость периода колебаний от расстояния от точки крепления до центра масс с минимальным периодом

Проверим справедливость теории Гюйгенса: точка опоры и центр качания маятника взаимно обратимы. $a_1=25.2~{\rm cm},~a_2=58.3~{\rm cm},~T_1=1.54~{\rm c},~T_2=1.54~{\rm c},$ что согласуется с теорией.

4.5 Затухающие колебания, вязкость воздуха

Рассмотрим затухающие колебания. За n=160 колебаний, амплитуда уменьшилась в два раза. Поэтому

$$\gamma = \frac{\ln(2)}{nT}$$

$$Q = \pi \frac{\tau}{T} = \pi \frac{1/\gamma}{T} = \frac{\pi n}{\ln(2)} = 725$$

Будем считать, что скорости маятника малы, амплитуды колебаний малы, сила сопротивления пропорциональна скорости.

$$F_c = -b\dot{x} \tag{22}$$

$$m\dot{v} = -bv - mg\sin(\varphi) \tag{23}$$

Рис. 4: Зависимость периода колебаний от расстояния от точки крепления до центра масс с аппроксимацией

$$\ddot{\varphi} + \frac{b}{m}\dot{\varphi} + \frac{g}{l}\varphi = 0 \tag{24}$$

$$\omega = \frac{g}{l} \gg \frac{b^2}{4m^2} \tag{25}$$

$$\varphi(t) = \varphi_0 e^{\frac{b}{2m}t} \cos(\omega t + \alpha) \tag{26}$$

Рассмотрим амплитуду угла, которая изменяется согласно формуле 12

$$A = \varphi_0 e^{\frac{b}{2m}t} \tag{27}$$

Откуда можно было найти коэффициент пропорциональности в силе сопротивления, если знать массу:

$$\frac{b}{2m} = \gamma \tag{28}$$

Согласно формуле Стокса:

$$b = 6\pi r \mu \tag{29}$$

Рис. 5: График в координатах u(v)

Откуда динамическая вязкость воздуха:

$$\mu = \frac{b}{6\pi r} = \frac{2m\gamma}{6\pi r} \tag{30}$$

Однако отсутствие данных для массы шарика не позволяет оценить вязкость воздуха.

5 Выводы

Проверена справедливость формулы для периода колебаний физического маятника и определено значение ускорения свободного падения; экспериментально подтверждена справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника. Конечные резульаты измерения не отличаются большой точностью из-за наличия множества точек, в которых а небольшое, поэтому относительная погрешность таких измерений высока. Также не совсем точно измерялось время колебаний, уменьшить эту погрешность можно с помощью многократных измерений, однако их количество должно быть невероятно велико для существенных улучшений.