第四章介质访问控制子层(二)

袁华 <u>hyuan@scut.edu.cn</u>

华南理工大学计算机科学与工程学院 广东省计算机网络重点实验室

本节主要内容(4.3节)

- □了解IEEE802系列标准
- 口掌握以太网/IEEE802.3工作原理
- 口理解以太网/IEEE802.3帧格式
- □了解各种以太网的技术特点

IEEE802.3/以太网和OSI参考模型

OSI Layers

LAN Specification

以太网的发展史

- □ Robert Metcalfe及其同事设计了以太网雏形(施 乐公司)
- □ 1980年,DIX发布最早的以太网标准,开放标准
- □ 1985年, IEEE802.3对以太网作了小的修改,基本一致,兼容
- □ 1995年, IEEE宣布了100Mbps以太网标准
- □ 1998年和1999年,吉比特以太网标准(1000M)
- □ 2002年,IEEE通过了10Gbps以太网标准

Ethernet Standard	Date	Description
Experimental Ethernet	1973[1]	2.94 Mbit/s (367 kB/s) over coaxial cable (coax) bus
Ethernet II (DIX v2.0)	1982	10 Mbit/s (1.25 MB/s) over thick coax. Frames have a Type field. This frame format is us protocol suite.
IEEE 802.3 standard	1983	10BASE5 10 Mbit/s (1.25 MB/s) over thick coax. Same as Ethernet II (above) except Type follows the 802.3 header. Based on the CSMA/CD Process.
802.3a	1985	10BASE2 10 Mbit/s (1.25 MB/s) over thin Coax (a.k.a. thinnet or cheapernet)
802.3Ъ	1985	10BROAD36
802.3c	1985	10 Mbit/s (1.25 MB/s) repeater specs
802.3d	1987	Fiber-optic inter-repeater link
802.3e	1987	1BASE5 or StarLAN
802.3i	1990	10BASE-T 10 Mbit/s (1.25 MB/s) over twisted pair
802.3j	1993	10BASE-F 10 Mbit/s (1.25 MB/s) over Fiber-Optic

802.3j	1993	10BASE-F 10 Mbit/s (1.25 MB/s) over Fiber-Optic
802.3u	1995	100BASE-TX, 100BASE-T4, 100BASE-FX Fast Ethernet at 100 Mbit/s (12.5 MB/s) w/au
802.3x	1997	Full Duplex and flow control; also incorporates DIX framing, so there's no long
802.3 _v	1998	100BASE-T2 100 Mbit/s (12.5 MB/s) over low quality twisted pair
802.3z	1998	1000BASE-X Gbit/s Ethernet over Fiber-Optic at 1 Gbit/s (125 MB/s)
802.3-1998	1998	A revision of base standard incorporating the above amendments and errata
802.3ab	1999	1000BASE-T Gbit/s Ethernet over twisted pair at 1 Gbit/s (125 MB/s)
802.3ac	1998	Max frame size extended to 1522 bytes (to allow "Q-tag") The Q-tag includes 802
802.3ad	2000	Link aggregation for parallel links, since moved to IEEE 802.1AX
802.3-2002	2002	A revision of base standard incorporating the three prior amendments and errata
802.3ae	2002	10 Gigabit Ethernet over fiber: 10GBASE-SR, 10GBASE-LR, 10GBASE-ER, 10GBASE-SW,
ļ		

Ū.		
802.3bw		100BASE-T1 - 100 Mbit/s Ethernet over a single twisted pair for automotive applications
802.3-2015	2015	802.3bx - a new consolidated revision of the 802.3 standard including amendments 802.2bk/bj/bm
802.3by	~Sep 2016	25 Gbit/s Ethernet ^[3]
802.3bz	~Aug 2017 ^[4]	2.5 Gigabit and 5 Gigabit Ethernet over Cat-5/Cat-6 twisted pair - 2.5GBASE-T and 5GBASE-T

Robert Metcalfe梅特卡夫

- □ 1969,MIT本科毕业,双学位
- □ 1970年,哈佛大学硕士学位
- □ 1973年, PhD, 哈佛大学
 - 第二次通过答辩,以ALOHA为基础
- □ 1973年起,<u>Xerox</u> 工作
- □ May 22, 1973 ,以太网诞生日
 - November 11, 1973 (David Boggs)
- □ 1979年,离开施乐,创建3COM
- □ 1990年,被迫离开3COM
- □ 专栏作家、投资家。。。。。

2 种以太网P216

- □ 经典以太网
 - 3M~10Mbps
 - 不再使用

- 10M,100M,1G
- 广泛使用

Interface cable

Ether

IEEE以太网命名规则

- **□ 10Base2** (**IEEE 802.3a**)
 - -**10**: 传输带宽(单位Mbps)
 - -Base: 基带传输
 - **-2**(或**5**): 支持的分段长度(**100**米为单位,四舍五入)
- 10Base-TX (IEEE 802.3X)
 - -T: 铜制非屏蔽双绞线
 - -F: 表示光缆

以太网线缆

名称	电缆	最大区间 长度	节点数/段	优点	接口
10Base5	粗缆	500m	100	用于主干	AUI
10Base2	细缆	200m(185)	30	廉价	BNC
10Base-T	双绞线	100m	1024	易于维护	RJ-45
10Base-F	光纤	2km	1024	用于楼间	ST

以太网连接方式的比较图示

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

10Base-T的拓扑结构

- □ 物理连接是星型/扩展星型结构
- □ 逻辑上是总线结构(站点争用总线)

10BaseT的特点

- □ 与同轴电缆相比的优点
 - 安装成本大大降低
 - 即插即用,组网灵活
 - 星型结构,故障隔离
 - 适于大批量制造
 - 具有开放式标准的互操作能力
- □问题
 - 多用户共享一条10M速率信道

以太网编码

- □ 以太网采用曼彻斯特编码
 - 1: 高电压到低电压
 - 0: 低电压到高电压
 - 电压值
 - +0.85 volt: high signal
 - □ -0.85 volt: low signal
 - □ 0 volt: DC value
- □ 差分曼彻斯特编码
 - 802.5采用

曼彻斯特编码

IEEE 802 标准

Number	Topic	
802.1	Overview and architecture of LANs	
802.2 ↓	Logical link control	_
802.3 *	Ethernet	
802.4 ↓	Token bus (was briefly used in manufacturing plants)	
802.5	Token ring (IBM's entry into the LAN world)	
802.6 ↓	Dual queue dual bus (early metropolitan area network)	
802.7 ↓	Technical advisory group on broadband technologies	
802.8 †	Technical advisory group on fiber optic technologies	
802.9 ↓	Isochronous LANs (for real-time applications)	
802.10↓	Virtual LANs and security	
802.11 *	Wireless LANs	
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)	
802.13	Unlucky number. Nobody wanted it	
802.14↓	Cable modems (defunct: an industry consortium got there first)	
802.15 *	Personal area networks (Bluetooth)	
802.16 *	Broadband wireless	
802.17	Resilient packet ring	

以太网所处的层次

OSI Layers

LAN Specification

IEEE 802.3/以太网MAC子层协议

- □ IEEE802.3协议描述了运行在各种介质上 1 Mb/s~10 Mb/s的1-持续CSMA/CD 协议的局域网标准。
- □ 很多人对以太网和IEEE802.3不加区分, 但二者确有差别(如帧格式)。

IEEE 802.3和以太网帧的比较P218

• 以太网的帧结构

7	1	2/6	2/6	2	0~1500	0~46	4
先导字段		目的地址	当ませ		数 据	填充字符	松岭和
10101010	•	그 마기가만지다.	你吧址	4	3X 1/n	承 儿子们	仅不多还不由

类型:表示上属使用的协议如IP协议为2048

7	1	2/6	2/6	2	0~1500	0~46	4
先导字段		ET 다시 HA HA	治まれ		数据	植太ウ佐	松砂和
10101010	Å	目的地址	你地址	\ \	双 加	填充字符	仪独和

帧开始字符10101011

IEEE802.3帧格式

帧结构的各个字段含义(1/3)

- 口 前导码与帧起始字段
 - 前导码: 7个字节,10101010...101010比特序列。
 - 帧起始符: 1字节, 10101011。
- □ 目的地址和源地址字段
 - 地址字段长度: 2个字节或6个字节。
 - 目的地址类型:
 - □ 単一结点地址(unicast address);
 - □ 组播地址(multicast address);
 - □ 广播地址(broadcast address)。

帧结构的各个字段含义(2/3)

- □ 6字节的MAC地址(48位)
 - P218组播标志位:第40位
 - IP组播地址: 01; 00: 5E: XX: XX: XX

位	47	46	4541	40	3924	230
	制造厂商标识	全局/局部地址标志	制造厂商标识	组播标 志 位	制造厂商标识	系列号

■ 组播地址只能做目的地址

物理地址(MAC地址)

- □ 地址数约7 X 10¹³,7万亿个。
- □ Ethernet地址 = Manufacture ID + NIC ID=24bit (OUI)+ 24bit
- □ 前24位例子:

公司: Cisco 00-00-0c

Novell 00-00-1B

3Com 00-20-AF

IBM 08-00-5A

□ 典型的Ethernet地址:

00-60-8C-01-28-12

注意1

- □ P218
- □ 工作站的源地址有个有趣的特性,那就是它的全球唯一性(globally unique),由 IEEE分配,保证世界上没有两个工作站具有的MAC地址是相同的
- □ 当一台计算机启动时,MAC地址从ROM拷 贝到RAM

注意 2

使用句点 0060.2F3A.07BC

注意3

□ MAC地址的3种表示

- □ IEEE 要求厂商遵守两条简单的规定:
 - · 必须使用该供应商分配的OUI作为前3个字节
 - OUI相同的所有MAC地址的最后3个字节必须分配唯
 - 一的值

帧结构的各个字段含义(3/3)

□ <u>长度字段</u> P219

帧的最小长度为**64**字节,最大长度为**1518**字节,不包括前导码。

□ 数据字段

LLC数据字段是帧的数据字段,长度最小为46个字节,如果少于46个字节,需要填充。

□ 帧校验字段

采用32位的CRC校验

校验范围:目的/源地址、长度、LLC数据等字段。

类型/长度字段 P219

- □ 在DIX以太帧中, type 字段指明上层网络协议的了 类型
 - DIX以太帧是事实上的使用标准,通常抓取到的报文都 是以太帧,该字段是类型字段。
- □ 在IEEE 802.3帧中,length 字段指明了携带的数 据的长度。
- □ 怎么区分到底代表 类型 还是 长度 呢?
 - 检查这个字段的数值:如果小于等于 1536(0x600), 则是长度(802.3)字段,如果大于1536,则表示类

开1 / 11 十十十二 ■ Frame 8 (74 bytes on wire, 74 bytes captured)

■ Ethernet II, Src: Cisco_67:8c:00 (00:12:44:67:8c:00), Dst: LqElectr_0f:34:6b (00:e0:91:0f:34:6b) Destination: LqElectr_Of:34:6b (00:e0:91:0f:34:6b) Source: Cisco_67:8c:00 (00:12:44:67:8c:00)

Type: IP (0x0800)

- ⊞ Internet Protocol, Src: 202.38.192.101 (202.38.192.101), Dst: 202.112.18.89 (202.112.18.89)
- ⊞ Transmission Control Protocol, Src Port: 44868 (44868), Dst Port: 3000 (3000), Seq: 0, Ack: 0, Len: 0

为什么有效帧长度≥ 64 Byte? P219

- □ CSMA/CD的要求
 - 最短帧的发送时间 ≥ 争用时隙2τ
- □ 以太网(802.3) 规定, 在10Mbps局域网 中
 - 时隙: 2τ = 51.2 微秒
 - 最短帧长度: 10Mbps× 2τ/8 = 64 Byte
 - □ 或者: (51200/100ns)/8=64Byte

華南程工大3學

以太网介质访问控制技术(CSMA/CD)

- 1. Host wants to transmit
- 2. Is carrier sensed?
- 3. Assemble frame
- 4. Start transmitting
- 5. Is a collision detected?
- 6. Keep transmitting
- 7. Is the transmission done?
- 8. Transmission completed
- Broadcast jam signal
- 10. attempts = attempts + 1
- 11. attempts > too many?
- Too many collisions; abort transmission
- 13. Algorithm calculates backoff
- 14. Wait for t seconds

二进制指数后退算法P220

- □ 发送方在检测到冲突后,双方(或多方)都将延时 一段时间,那么这段时间到底是多长?
- □ 冲突检测到后,时间被分成离散的时隙
- □ 时隙的长度等于信号在介质上来回传输时间 (**51.2µs**)
- □ 一般地, i 次冲突后, 等待的时隙数将从(0~2ⁱ-1)×51.2µs中随机选择。

随机等待的时间P221

Retry	Random Time Range	Retry	Random Time Range
1	$2^{1}-1 = 01 \times 51.2_{\mu sec}$	9	2^9 -1 = 0511 x 51.2 _{µsec}
2	$2^{2}-1 = 03 \times 51.2$ _{µsec}	10	$2^{10}-1 = 01023 \times 51.2_{\mu sec}$
3	$2^{3}-1 = 07 \times 51.2$ _{µsec}	11	2^{11} -1 = 01023 x 51.2 _{µsec}
4	2^{4} -1 = 015 x 51.2 _{µsec}	12	2^{12} -1 = 01023 x 51.2 _{µsec}
5	2^{5} -1 = 031 x 51.2 _{µsec}	13	2^{13} -1 = 01023 x 51.2 _{µsec}
6	2^{6} -1 = 063 x 51.2 _{µsec}	14	2^{14} -1 = 01023 x 51.2 _{µsec}
7	$2^7 - 1 = 0127 \times 51.2_{\mu sec}$	15	2^{15} -1 = 01023 x 51.2 _{µsec}
8	28 -1 = 0255 x 51.2	16	$2^{16}-1 = 01023 \times 51.2_{usec}$

注意

- □ 【次冲突后时间片为:
 - 0 < i ≤10 时,取(0~2ⁱ-1) ×2⊤
 - 10 < i < 16 时,取(0~1023) ×2T
 - i > 16 时,放弃发送

二进制指数后退算法的优化P221

- □ 以上讨论的都是发送方怎样避免冲突,或冲 突后怎样再次成功地发送。
- □ 但是,一旦成功发送后,接收方如需发确认 帧,其中又有争用信道的问题。如把一次成 功发送后的第一个时隙留给接收方,则可及 时收到确认帧。

35

以太网性能(信道利用率)P222

经典以太网

- □ 10base2
- 10base5
- □ 10base-T
- □ 提高负载的方法P223
 - 提速到100M
 - 全双工
 - 交换式网络,hub—swicth

Line

Port

Switch

Port.

Line

Hub

交换式以太网 P222

100Mbps以太网——802.3u p224

- 改进10Mbps以太网 P224
 - 要求:兼容性、成本、标准化
 - 基本思想:保留原有的帧格式、接口和过程规则,将位时间降为 10ns (原100ns), 电缆最大长度降到10分之一(原2500米)。
- 改变编码方式、提高传输速率
 - 100Base-T4
 - □ 25MHz
 - 100Base-TX
 - 125MHz

名称	传输介质	最大距离	
100Base-T4	3 类双绞线	100 米	
100Base-TX	5 类双绞线	100 米	
100Base-FX	光纤	2000 米	

100Base-T4

- 3对线携带信息呈27种组合形式,至少传送4 bit信息
- 信道的传输速率: 4bit×25MHZ = 100Mbps
- 半双工数据传输方式

100Base-TX

信号的变化频率

125MHZ

4B/5B编码方案(源自 FDDI技术)

- 每5个时钟周期为一组,发送4 bit信息
- 信道的传输速率: (4bit/5) ×125MHZ = 100Mbps
- 全双工数据传输方式

4B/5B encoding P310

- □ 既没有使用 NRZ ,也没有使用 Manchester
- □ 4 bits数据被编码成 5 bits信号

4B/5B编码表

十进制数	4位二进制数	4B/5B 码	十进制数	4位二进制数	4B/5B 码
0	0000	11110	8	1000	10010
i	0001	01001	9	1001	10011
2	0010	10100	10	1010	10110
3	0011	10101	11	1011	10111
4	0100	01010	12	1100	11010
5	0101	01011	13	1101	11011
6	0110 Etail duy aliel	01110	14	1110	11100
7	0111	01111	15	1111	11101

4B/5B Encoding

E	1110	11100	hex data E
F	1111	11101	hex data F
Q	-NONE-	00000	Quiet (signal lost)
I	-NONE-	11111	Idle
J	-NONE-	11000	Start #1
K	-NONE-	10001	Start #2
Т	-NONE-	01101	End
R	-NONE-	00111	Reset
S	-NONE-	11001	Set
H	-NONE-	00100	Halt

FDDI—无可奈何花落去

- □ 1986年,高速LAN技术,100M
- □ 优点: 可靠、抗干扰
- □ 缺点:
 - 太复杂,很难到桌面
 - 部署复杂,成本高昂,<u>交换机端口少</u>
 - 受快速以太网的冲击
 - **80**年代后,**90**年代初身 见踪影
- □ 未普遍使用

千兆位以太网(吉比特以太网,GE)

—802.3z

□ 园区网的技术发展

FDDI 100M

ATM 155M/622M/2.4G

■ GE 1000M(1G)

- □ 与现有10M/100M以太网技术的兼容性P241
 - FDDI和ATM不兼容,需要改变帧格式
 - 千兆位以太网兼容
- □ 速率提高带来的冲突检测问题以及解决办法
 - 只在半双工的模式下才会遇到

速率提高带来的冲突检测问题

- □ 10M以太网的要求
 - 时隙宽度: $2\tau = 最短帧长度 / 信道传输速率(10M)$
 - 最短帧长度: 64Byte (512bit)
 - 最大传输距离: 2500米(802.3规范)
- □ 1000M以太网面临的问题(半双工才有P227)
 - 若保持最短帧长64字节,则意味最大传输距离缩短

解决办法 P227

- □ 载荷扩充(carrier extension)
 - 方法
 - □ 在发送方硬件加入/接收方硬件删除,将帧长扩展到 512Byte(8倍)
 - ■目的
 - □ 保证网络半径为合理长度(200米=25*8)
 - □ 保证兼容10M/100M的最短帧64字节特性
 - 缺点:线路利用率低下
- □ 帧串(frame bursting)
 - 方法
 - □ 连续发送多个帧,只有当帧串小于512Byte时填充
 - 目的:提高信道利用率

IEEE802.2标准:逻辑链路控制

p244~245

以太网回顾P230

- □ 强大的生命力
 - 简单性和灵活性
 - 易于维护
 - 支持TCP/IP, 互联容易
- □ KISS: Keep It Simple, Stupid (大智若愚)
 - 乔布斯: stay hungry, stay foolish

本节小结

- □了解IEEE802系列标准
- 口掌握以太网/IEEE802.3工作原理
- □理解以太网/IEEE802.3帧格式
- □了解各种以太网的技术特点

测试题1

- □ 在一个有5 ms传输延迟的4Mbps链路上发送500字节的消息,此消息传输到目的地的延迟(时间)有多少? (延迟=发送时间+传输延迟)
 - A. 5ms
 - B. 1ms
 - C. 9ms
 - D. 6ms

参考答案:

L = M/R + D。我们

有 $M = 500 \times 8 = 4000 \text{ bits}$

R = 4 Mbps 和 D = 5 ms。所

以 L = 1 ms + 5 = 6 ms

测试题2

- □ 在一个有4ms 延迟的 5 Mbps 互联网访问 链路上,传输数据最大数量是什么?
 - A. 20bytes
 - B. 25KB
 - C. 200000bits
 - D. 2500bytes

解释:

这就是著名的带宽延迟积:

BD = R x D, R = 5 Mbps 和 D = 4ms BD = 20 x 1000000 × 0.001 = 20000 位= 2500 字节

谢谢!

