Bank Marketing Predictive Model

- Data Collection: Gather customer data.
- Data Preprocessing: Clean and prepare data.
- Feature Engineering: Select relevant attributes.
- Model Selection: Build a classification model.
- Evaluation: Assess model performance.
- Business Impact: Improve marketing campaign effectiveness and customer engagement.
- Benefits: Targeted marketing, cost reduction, increased subscription rates.

Importing Libraries:

```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   import warnings
   warnings.filterwarnings('ignore')
```

Loading Dataset:

Out[2]

```
In [2]: df=pd.read_csv(r"C:\Users\jhonn\Downloads\sinsagar program\bank-additional-full.csv",sep
    df
```

]:		age job marital		education	default	housing	loan	contact	month	day_of_week	•••	
	0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mon	
	1	57	services	married	high.school	unknown	no	no	telephone	may	mon	
	2	37	services	services married		no	yes	no	telephone	may	mon	
	3	40	admin.	married	basic.6y	no	no	no	telephone	may	mon	
	4	56	services	married	high.school	no	no	yes	telephone	may	mon	
	•••											
	41183	73	retired	married	professional.course	no	yes	no	cellular	nov	fri	
	41184	46	blue-collar	married	professional.course	no	no	no	cellular	nov	fri	
	41185	56	retired	married	university.degree	no	yes	no	cellular	nov	fri	
	41186			professional.course	no	no	no	cellular	nov	fri		
	41187	74	retired	married	professional.course	no	yes	no	cellular	nov	fri	

41188 rows × 21 columns

In [3]:	[3]: df.head()												
Out[3]:	age		job	marital	education	default	housing	loan	contact	month	day_of_week	•••	campaign

1	57	services	married	high.school	unknown	no	no	telephone	may	mon	 1
2	37	services	married	high.school	no	yes	no	telephone	may	mon	 1
3	40	admin.	married	basic.6y	no	no	no	telephone	may	mon	 1
4	56	services	married	high.school	no	no	yes	telephone	may	mon	 1

5 rows × 21 columns

In [4]: df.tail()

Out[4]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	•••	cai
41183	73	retired	married	professional.course	no	yes	no	cellular	nov	fri		
41184	46	blue- collar	married	professional.course	no	no	no	cellular	nov	fri		
41185	56	retired	married	university.degree	no	yes	no	cellular	nov	fri		
41186	44	technician	married	professional.course	no	no	no	cellular	nov	fri		
41187	74	retired	married	professional.course	no	yes	no	cellular	nov	fri		

5 rows × 21 columns

In [5]: df.describe()

Out[5]:

	age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.co
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.0
mean	40.02406	258.285010	2.567593	962.475454	0.172963	0.081886	93.575664	-40.5
std	10.42125	259.279249	2.770014	186.910907	0.494901	1.570960	0.578840	4.6
min	17.00000	0.000000	1.000000	0.000000	0.000000	-3.400000	92.201000	-50.8
25%	32.00000	102.000000	1.000000	999.000000	0.000000	-1.800000	93.075000	-42.70
50%	38.00000	180.000000	2.000000	999.000000	0.000000	1.100000	93.749000	-41.8
75%	47.00000	319.000000	3.000000	999.000000	0.000000	1.400000	93.994000	-36.4
max	98.00000	4918.000000	56.000000	999.000000	7.000000	1.400000	94.767000	-26.9

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 21 columns):

#	Column	Non-Nu	ıll Count	Dtype
0	age	41188	non-null	int64
1	job	41188	non-null	object
2	marital	41188	non-null	object
3	education	41188	non-null	object
4	default	41188	non-null	object
5	housing	41188	non-null	object
6	loan	41188	non-null	object
7	contact	41188	non-null	object
8	month	41188	non-null	object
9	day_of_week	41188	non-null	object
10	duration	41188	non-null	int64

```
11 campaign
             41188 non-null int64
 12 pdays
                   41188 non-null int64
13 previous
                  41188 non-null int64
14 poutcome 41188 non-null object
15 emp.var.rate 41188 non-null float64
16 cons.price.idx 41188 non-null float64
17 cons.conf.idx 41188 non-null float64
18 euribor3m 41188 non-null float64
19 nr.employed
                  41188 non-null float64
20 y
                   41188 non-null object
dtypes: float64(5), int64(5), object(11)
memory usage: 6.6+ MB
```

Data Preprocessing:

```
df.duplicated().sum()
 In [7]:
         12
Out[7]:
         df=df.drop duplicates()
In [8]:
         df=df.dropna()
In [9]:
         df.shape
In [10]:
         (41176, 21)
Out[10]:
In [11]:
         df.isna().sum()
                           0
         age
Out[11]:
                           0
         job
        marital
                           0
         education
        default
        housing
                          0
        loan
                           0
         contact
                          0
        month
                          0
        day of week
                           0
        duration
                           0
        campaign
        pdays
        previous
        poutcome
        emp.var.rate
        cons.price.idx
                          0
        cons.conf.idx
                           0
                           0
        euribor3m
                           0
        nr.employed
        dtype: int64
In [12]: object_columns = df.select_dtypes(include=['object']).columns.tolist()
         for i in object columns:
             sorted order = df[i].value counts().index
             plt.figure(figsize=(10, 6))
             ax = sns.countplot(data=df, x=i, palette='hls', order=sorted order)
             plt.xticks(rotation=90)
             plt.xlabel(i)
             plt.ylabel('Count')
             plt.title(f'Bar Chart for {i}')
             for p in ax.patches:
```

ax.annotate(f'{int(p.get_height())}', (p.get_x() + p.get_width() / 2., p.get_hei
plt.show()

Bar Chart for housing

Bar Chart for month

Bar Chart for poutcome


```
In [13]: object_columns = df.select_dtypes(include=['object']).columns.tolist()
    for i in object_columns:
        sorted_order = df[i].value_counts().index

    plt.figure(figsize=(10, 6))
    ax = sns.countplot(data=df, x=i, hue='y', palette='Set1', order=sorted_order)
```

```
plt.xticks(rotation=90)
plt.xlabel(i)
plt.ylabel('Count')
plt.title(f'Bar Chart for {i} with Hue')
for p in ax.patches:
    ax.annotate(f'{int(p.get_height())}', (p.get_x() + p.get_width() / 2., p.get_hei

plt.legend(title='Hue', loc='upper right') # Add legend
plt.show()
```

Bar Chart for job with Hue

Bar Chart for marital with Hue

Bar Chart for default with Hue

Bar Chart for contact with Hue

Bar Chart for month with Hue

Bar Chart for poutcome with Hue


```
In [14]: sns.kdeplot(x=df['age'],fill=True)
    mean_age = df['age'].mean()
    plt.axvline(mean_age, color='red', linestyle='--', label=f'Mean Age: {mean_age:.2f}')
    plt.xlabel('Age',fontsize=15)
    plt.ylabel('Count',fontsize=15)
    plt.xticks(fontsize=12)
```

```
plt.yticks(fontsize=12)
plt.legend(fontsize=14, loc='upper right')
```

Out[14]: <matplotlib.legend.Legend at 0x2cb16ead350>


```
In [15]: num_list = ['duration', 'campaign', 'pdays', 'previous', 'emp.var.rate', 'cons.price.idx
    for i in num_list:
        plt.figure(figsize=(6, 3))
        df[i].hist(bins=30)
        plt.title(f'{i}')
```


In [16]: sns.pairplot(df)

Out[16]: <seaborn.axisgrid.PairGrid at 0x2cb14e2d950>

In [18]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 41176 entries, 0 to 41187
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	age	41176 non-null	int64
1	job	41176 non-null	int32
2	marital	41176 non-null	int32
3	education	41176 non-null	int32
4	default	41176 non-null	int32
5	housing	41176 non-null	int32
6	loan	41176 non-null	int32

```
7 contact 41176 non-null int32
8 month 41176 non-null int32
9 duration 41176 non-null int64
10 campaign 41176 non-null int64
11 pdays 41176 non-null int64
12 previous 41176 non-null int64
13 poutcome 41176 non-null int32
14 emp.var.rate 41176 non-null float64
 15 cons.price.idx 41176 non-null float64
 16 cons.conf.idx 41176 non-null float64
 17 euribor3m 41176 non-null float64
18 nr.employed 41176 non-null float64
 19 y
                                41176 non-null int32
dtypes: float64(5), int32(10), int64(5)
```

memory usage: 5.0 MB

```
In [19]: plt.figure(figsize=(20,20))
        sns.heatmap(df.corr(),annot=True,cmap='mako',linecolor='black',linewidth=1,fmt=".0%")
         plt.show()
```



```
In [20]: plt.figure(figsize=(10,5))
    label_count = df['y'].value_counts().values
    label = df['y'].value_counts().index

plt.subplot(1, 2, 1)
    explode=(0,0.2)
    colors = ['green', 'yellow']
    labels = ['No', 'Yes']
    plt.pie(x=label_count, labels=labels, autopct='%1.1f%%', shadow=True, radius=1, colors=c

plt.subplot(1, 2, 2)
    colors = [ 'green', 'yellow']
    sns.countplot(x=df['y'],palette=colors)
    plt.xticks([0, 1], ['No', 'Yes'])
    plt.subplots_adjust(wspace=0.5)
    plt.show()
```


Out[21]:		age	job	marital	education	default	housing	loan	contact	month	duration	campaign	pdays	previ
	0	56	3	1	0	0	0	0	1	6	261	1	999	
	1	57	7	1	3	1	0	0	1	6	149	1	999	
	2	37	7	1	3	0	2	0	1	6	226	1	999	
	3	40	0	1	1	0	0	0	1	6	151	1	999	
	4	56	7	1	3	0	0	2	1	6	307	1	999	
	•••													
	41183	73	5	1	5	0	2	0	0	7	334	1	999	
	41184	46	1	1	5	0	0	0	0	7	383	1	999	
	41185	56	5	1	6	0	2	0	0	7	189	2	999	
	41186	44	9	1	5	0	0	0	0	7	442	1	999	
	41187	74	5	1	5	0	2	0	0	7	239	3	999	

41176 rows × 19 columns

sns.countplot(x=y resample,palette=colors)

```
In [22]: y=df.iloc[:,-1].values
    y

Out[22]: array([0, 0, 0, ..., 0, 1, 0])

In [23]: from imblearn.over_sampling import SMOTE
    x_resample, y_resample = SMOTE().fit_resample(x, y)

In [24]: colors = ['green', 'yellow']
```

```
plt.xticks([0, 1],['No','Yes'])
plt.show()
```


In [25]: from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x_resample,y_resample,test_size=0.30,random_s

In [26]: xtrain

Out[26]:

	age	job	marital	education	default	housing	loan	contact	month	duration	campaign	pdays	previ
33908	30	1	2	2	0	2	0	0	6	14	6	999	
65192	47	0	1	0	0	2	0	1	6	940	3	999	
42384	20	7	2	0	0	1	1	0	0	239	1	999	
28136	42	9	1	2	0	0	2	0	0	437	2	999	
63285	51	0	0	0	0	2	0	1	6	941	2	999	
•••													
37194	44	0	1	6	0	2	0	0	1	254	2	999	
6265	34	1	1	2	0	0	2	1	6	100	2	999	
54886	30	4	1	5	0	1	1	0	6	1220	2	999	
860	40	4	1	6	0	2	0	1	6	295	2	999	
15795	19	8	2	2	1	2	0	0	3	87	4	999	

51151 rows × 19 columns

In [27]: xtest

Out[27]:		age	job	marital	education	default	housing	loan	contact	month	duration	campaign	pdays	prev
	4293	53	1	1	0	1	0	0	1	6	182	2	999	
	4293	53	- 1	1	U	1	U	U	ı	6	182	2	999	

28313	35	0	1	3	0	2	0	0	0	1190	1	999
42943	32	5	1	4	0	0	0	1	4	983	2	999
71581	40	1	0	4	0	1	1	0	3	430	1	999
67128	59	0	1	4	0	2	0	0	4	765	1	4
•••				•••		•••						
8370	35	9	1	5	0	2	0	1	4	589	6	999
3219	45	0	1	1	1	2	0	1	6	124	1	999
66571	36	1	0	3	0	2	0	0	3	812	2	999
69957	67	5	1	0	0	2	0	0	1	265	1	999
4029	32	0	1	3	0	0	0	1	6	70	1	999

21923 rows × 19 columns

```
ytrain
In [28]:
        array([0, 1, 1, ..., 1, 0, 0])
Out[28]:
        ytest
In [29]:
        array([1, 1, 1, ..., 1, 1, 0])
Out[29]:
        from sklearn.preprocessing import StandardScaler
In [30]:
         scaler = StandardScaler()
        xtrain = scaler.fit transform(xtrain)
         xtest = scaler.transform(xtest)
In [31]: xtrain
        array([[-0.87309781, -0.7714112 , 1.48649342, ..., -1.14807156,
Out[31]:
                -0.89746396, -0.42677908],
                [0.60266604, -1.06689382, -0.16839765, ..., 0.72769868,
                 0.99704464, 0.63266387],
               [-1.74119419, 1.00148455, 1.48649342, ..., 1.06873402,
                -1.23523523, -1.46892972],
               [-0.87309781, 0.11503668, -0.16839765, ..., 0.14827271,
                 0.75719869, 0.66257685],
               [-0.00500143, 0.11503668, -0.16839765, ..., 0.72769868,
                 0.99574982, 0.63266387],
               [-1.82800383, 1.29696717, 1.48649342, ..., -0.47815362,
                 1.05082513, 1.06036065]])
        xtest
In [32]:
        array([[ 1.12352387, -0.7714112 , -0.16839765, ..., 0.72769868,
Out[32]:
                 0.99574982, 0.63266387],
                [-0.43904962, -1.06689382, -0.16839765, ..., -1.32033617,
                -0.81061443, -0.42677908],
                [-0.69947853, 0.4105193, -0.16839765, ..., -0.305889,
                 1.00062839, 1.06036065],
                [-0.35223998, -0.7714112, -1.82328872, ..., -0.47815362,
                 1.05489041, 1.06036065],
                [2.3388588, 0.4105193, -0.16839765, ..., 1.40503395,
                -1.09150919, -0.69077521],
```

```
from sklearn.tree import DecisionTreeClassifier
In [35]:
        decision tree = DecisionTreeClassifier()
        decision tree.fit(xtrain, ytrain)
        ypred=decision tree.predict(xtest)
        ypred
        array([0, 0, 1, ..., 1, 1, 0])
Out[35]:
In [36]:
        from sklearn.metrics import accuracy score, classification report
        accuracy = accuracy score(ytest, ypred)
        print("Decision Tree:", accuracy)
        print(classification report(ytest,ypred))
        Decision Tree: 0.92345938055923
                   precision recall f1-score
                                                 support
                                                 11029
                         0.93 0.92
                                          0.92
                  1
                        0.92
                                 0.93
                                                   10894
                                          0.92
                                                   21923
           accuracy
                                           0.92
          macro avg
                       0.92 0.92
                                          0.92
                                                   21923
                                  0.92
        weighted avg
                       0.92
                                           0.92
                                                   21923
```

[-0.69947853, -1.06689382, -0.16839765, ..., 0.72769868,

0.99680896, 0.63266387]])