Kelaxação Sagrangiana V: min et x s.a. An=b, Dx Le, x eL. Situação de interesse: problemas em que, retirando Ax = b, são fáceis de resolver (apesar de mantermos $x \in Z_+^n$). Que Pazer? La penalizan An=b ma F.O.

(2 P(u): min ctx+ut(Ax-b) S.a. $Dx \leq e$, $x \in \mathbb{Z}_{+}^{m}$. • $L(x,u) = c^{\dagger}x + u^{\dagger}(Ax - b)$ é chamada funçois lagrangians. ou é o votes de multiplicadores de Jagrange Cretatives à Ax-b=0. Damos supor que P(u) seja facil de resolver, para cada el fixado, em relação a P.

Objetion: "revoluer" Patranes de Plu) 13 Sejam $f^* = \min_{\chi} \{e^{\chi}; A_{\chi=1}, D_{\chi} \leq e, \chi \in \mathcal{I}_{+}^{m} \{e^{\chi}\}\}$ $L^*(u) = \min_{x} \{ cx + ut(Ax - b) \} \mathcal{D}x \leq e_{x} x \in \mathcal{E}_{+}^{m}(Ax - b)$ es valores êtimes de P e P(u), respect. Leolema: L*(u) < f*, +u. Propa: L*(u) < ctx+ ut(Ax*-b) = f*, ande x* é stime de P.

· Ou sija, P(u) formece limitaintes (4) inferiores para f*. Chamamos P(u) de relaxação lagrangiana de P(de fato é uma). Lo ideal é en contras u tal que L*(u) = f*. Mesmo não sendo possibil, queremos mad L*(u). Lo o Suntante L*(u) & f* poole ser usado em um branch-and-bound.

Em determinados problemas, um problema 5 do tipo P(u) forme ce limitantes melhores que a relaxaçõe linear usual (a olitida trocando xEZ, por x>0). Vale notar que un branch-and-bound com P(u) nos nos só será eficiente se P(u) for facel. Vodemos usan Plu) em alguns mós e a relaxação linear em ontros.

Exemplo 1: GAP - Generalized assignment Prolé $P: \min_{\chi} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} C_{ij} \chi_{ij}$ $S.a. \sum_{i=1}^{\infty} \chi_{ij} = 1, j=1,..., m$ $\sum_{j=1}^{n} a_{ij} \chi_{ij} \leq b_i$, i=1,...,mxij ∈ 30,18, +ij.

Penalizando (ou "dualizando") \(\sum \tiy-1=0: \(\frac{7}{i} \) $P_1(u)$: $\min_{\chi} \sum_{i=1}^{m} \sum_{j=1}^{m} C_{ij} \chi_{ij} + \sum_{j=1}^{m} u_{j} \left(\sum_{i=1}^{m} \gamma_{ij} - 1 \right)$ $\beta.a. \sum_{j=1}^{n} a_{ij} \chi_{ij} \leq b_i$, $i=1,\dots,m$ $xy \in 30,14$, 4i,j. a F.O. pode ser escrita como ZZ (cij + Mj) xij
- ZMj.

Este moblema tem una estrutura separainl/8 i é equivalente à resolver m problemas $\min_{\mathbf{x}} \sum_{i} (c_{ij} + u_{i}) \chi_{ij}$ 8-a. Zaijxij & Di, Xij E20,19, Hj,

Capora, podemos penalizar Zaijxij & Di 29 ao invis das restrições de igualdade. Meste caso, o parâmetro de penalização se e >0: Y2(vo): min \(\sum_{\chi} \sum_{\chi} \text{Cij\chi_j} + \sum_{\chi} \left(\sum_{\chi} \aight) \) S.a. Zixij = 1, tj, xij = 30, 14, tij. Este problema tem solução trivial: basta fazer Xij=1 quando Cij + Viaij= minicij + Viaij 4 e

Kij = 0 caso contrario. Uma observação: parque 10 % para restrições de designal dade? Jenvlore-le da Flimatidade (dualidade /KKT); $L(\chi,\mu,\wp) = c^{\dagger}\chi + u^{\dagger}(A\chi - b) + v^{\dagger}(D\chi - e)$ DL(x, u, v) = c + Au + Dto = 0 /10>0 Com iso, mantemos L*(u,v) < f* (verifique!) Verginta: como L*(u) & f* para qualquer(11) u, como escolher um lom u? Lo o ide al ce aquele que maximiza L*, isto é, devenos revolver o problema D: mar L* Cu). fembre-se que $L^*(u) = \min \left\{ \frac{e}{c} \times + u^t (Ax - b) \right\} \mathcal{D} \times \leq C,$ $\chi \in \mathcal{U}_+^n \{.$

assum, D: max minicx+ut(Ax-b); Dx < e, x < Z Este le révatamente o problema dual de P ao dualizarmos as restrições Ax-b=0. (veja dualidade em PNL-"Otimização II") La mesma forma, max min $3e^{t}x+v^{t}(Dx-e)$; Ax=b, $x\in\mathbb{Z}_{+}^{m}$

De fato, tudo o que vimos pode ser obtido non dualidade. Note que L*(u) < f*
é o teorema de dualidade fraca... Neste sentido, poderia-se pergintar: vale dualidade forte (max L*(u) = f*) ? Lo Mem sempre, pois as réstrições de integralidade n'EUM tomam P mão convolo. Ces vezes man L*(u) so alcomça o valor ôtimo da relaxação Imeas de P.