Lista 1

Zadanie 1. Pokaż, że \mathbb{Z}_p istnieje element odwrotny, tj. dla każdego $a \in \mathbb{Z}_p$ różnego od 0 istnieje a^{-1} takie że $a \cdot a^{-1} = 1$. Możesz to zrobić według następującego schematu:

- dla ustalonego $a \neq 0$ rozważ $a, 2a, 3a, \dots, (p-1)a;$
- pokaż, że elementy w tym ciągu są niezerowe i różne;
- wywnioskuj z tego, że a ma element odwrotny w \mathbb{Z}_p .

Zadanie 2. Rozważmy zbiór wszystkich (nieskończonych) ciągów o elementach w \mathbb{R} . Definiujemy dodawanie takich ciągów po współrzędnych, tak samo mnożenie przez skalar, tj.:

$$(a_1, a_2, \ldots) + (b_1, b_2, \ldots) = (a_1 + b_1, a_2 + b_2, \ldots), \quad \alpha(a_1, a_2, \ldots) = (\alpha a_1, \alpha a_2, \ldots)$$

Jest to przestrzeń liniowa, gdzie $\vec{0}$ to ciąg złożony z samych 0. Dla podanych poniżej podzbiorów tej przestrzeni liniowej określ, które z nich są podprzestrzeniami liniowymi, a które nie. Odpowiedzi uzasadnij.

- (a) Zbiór ciągów $(a_1, a_2, ...)$ takich, że dla każdego $n \ge 3$ mamy $a_n = n \cdot a_{n-1} + n^2 \cdot a_{n-2}$.
- (b) Zbiór ciągów $(b_1, b_2, ...)$ takich, że dla każdego $n \ge 2$ mamy $b_n = 3 \cdot b_{n-1} + 2^n 1$.
- (c) Zbiór ciągów $(c_1, c_2, ...)$ takich, że dla każdego $n \geq 3$ mamy $c_n = c_{n-1} \cdot c_{n-2}$.
- (d) Zbiór ciągów $(d_1, d_2, ...)$ takich, że skończenie wiele liczb spośród $d_1, d_2, ...$ jest dodatnia.

Zadanie 3. Niech \mathbb{V} — przestrzeń liniowa nad \mathbb{F} oraz \mathbb{W} , $\mathbb{W}' \leq \mathbb{V}$ będą jej podprzestrzeniami.

Pokaż, że $\mathbb{W} \cap \mathbb{W}'$ oraz $\mathbb{W} + \mathbb{W}'$ są odpowiednio: największą przestrzenią liniową zawartą w \mathbb{W} i \mathbb{W}' oraz najmniejszą zawierającą \mathbb{W} i \mathbb{W} .

Pokaż też, że dla przestrzeni liniowych \mathbb{V}, \mathbb{V}' nad tym samym ciałem \mathbb{F} , iloczyn kartezjański $\mathbb{V} \times \mathbb{V}'$ z dodawaniem i mnożeniem po współrzędnych, jest przestrzenią liniową nad \mathbb{F} .

Zadanie 4. Sprawdź, czy następujące podzbiory \mathbb{R}^n są podprzestrzeniami liniowymi:

- 1. $\{(a, b, c) \in \mathbb{R}^3 : 5a + 2b = 0\}$
- 2. $\{(a, b, c) \in \mathbb{R}^3 : 2a c = 0\}$
- 3. $\{(a,b,c) \in \mathbb{R}^3 : 5a + 2b = 2a c = 0\}$
- 4. $\{(a,b) \in \mathbb{R}^2 : |2a| + |b| = 0\}$
- 5. $\{(a,b) \in \mathbb{R}^2 : |2a| + |b| = 0\}$
- 6. $\{(a,b) \in \mathbb{R}^2 : |2a| + |b| = 1\}$
- 7. $\{(a,b) \in \mathbb{R}^2 : |2a| |b| = 0\}$
- 8. $\{(a,b) \in \mathbb{R}^2 : |2a| |b| = 1\}$
- 9. $\{(a,b) \in \mathbb{R}^2 : |ab| = 1\}$
- 10. $\{(a,b) \in \mathbb{R}^2 : ab = a\}$

Zadanie 5. Pokaż, że następujące zbiory funkcji

$$\{f \in \mathbb{R}^{\mathbb{R}} : \text{zbiór } \{r : f(r) \neq 0\} \text{ jest przeliczalny} \}$$

 $\{f \in \mathbb{R}^{\mathbb{R}} : f \text{ ma skończenie wiele wartości} \}$

są podprzestrzeniami liniowymi $\mathbb{R}^{\mathbb{R}}$.

Zadanie 6. Pokaż wprost z definicji, że: U jest zbiorem liniowo zależnym wtedy i tylko wtedy, gdy istnieje w nim wektor $u \in U$, taki że

$$LIN(U) = LIN(U \setminus \{u\}).$$

Pokaż też, że jeśli U nie zawiera wektora zerowego $\vec{0}$, to są przynajmniej dwa takie wektory u. Zaneguj obustronnie tę równoważność, aby uzyskać charakteryzację zbioru liniowo zależnego.

Zadanie 7. Niech \mathbb{V} , przestrzeń liniowa nad ciałem \mathbb{F} , $U=(v_1,v_2\ldots,v_k)$ będzie układem wektorów z \mathbb{V} , zaś $\alpha_1,\ldots,\alpha_k\in\mathbb{F}$ ciąg skalarów, takich że $\alpha_1\neq 0$. Pokaż, że

$$\operatorname{LIN}\left(\left\{\sum_{i=1}^{k} \alpha_{i} v_{i}, v_{2} \dots, v_{k}\right\}\right) = \operatorname{LIN}\left(\left\{v_{1}, v_{2} \dots, v_{k}\right\}\right).$$

Zadanie 8. Przedstaw wektor w jako kombinację podanych wektorów v_1, v_2, \ldots, v_k (lub uzasadnij, że to niemożliwe), nad ciałem \mathbb{R} :

- 1. $w = (1, 5), v_1 = (1, 1), v_2 = (2, 0).$
- 2. $w = (5, 10, 11), v_1 = (1, 2, 3), v_2 = (0, 3, 2), v_3 = (1, 1, 1).$
- 3. $w = (5, 10, 11), v_1 = (1, 2, 3), v_2 = (0, 3, 2), v_3 = (1, 8, 7).$
- 4. $w = (4, 17, 18), v_1 = (1, 2, 3), v_2 = (0, 3, 2), v_3 = (3, 9, 11).$

Zadanie 9. Rozważmy przestrzeń \mathbb{Z}_3^3 (zbiór trzyelementowych ciągów elementów z \mathbb{Z}_3 , nad ciałem \mathbb{Z}_3). Ile wektorów należy do LIN((1,2,1),(2,1,1))? A ile do LIN((1,2,1),(2,1,2))?

Zadanie 10. Pokaż równoważność następujących warunków (dla $B = \{v_1, v_2, \dots, v_k\}$):

- \bullet Zbiór B jest liniowo niezależny.
- ullet Wektor $ar{0}$ ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.
- ullet Pewien wektor z LIN(B) ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.
- \bullet Każdy wektor z LIN(B) ma najwyżej jedno przedstawienie w postaci kombinacji liniowej wektorów z B

Zaneguj powyższe warunki, aby uzyskać charakteryzację zbiorów liniowo zależnych.

Zadanie 11 (* Nie liczy się do podstawy). Niech M będzie zbiorem skończonym. Na zbiorze jego podzbiorów 2^M określamy operacje:

$$U + U' := U \triangle U', \quad 1 \cdot U = U, \quad 0 \cdot U = \emptyset,$$

gdzie \triangle oznacza różnicę symetryczną, tj. $U\triangle U'=(U\setminus U')\cup (U'\setminus U)$. Pokaż, że tak określony zbiór jest przestrzenią liniową nad \mathbb{Z}_2 .

Niech $U_1, U_2, \ldots, U_k \subseteq M$ są takie, że dla każdego i zbiór U_i nie jest podzbiorem sumy pozostałych zbiorów, tj. $U_i \not\subseteq \bigcup_{j \neq i} U_j$. Pokaż, że U_1, U_2, \ldots, U_k są liniowo niezależne.