Nome, cognome, matricola

Calcolatori Elettronici (12AGA) – esame del 20.7.2022

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Tempo: 15 minuti.

		Tempo. 13 minui.	
1	Si consideri un circuito sequenziale sincrono con 35 ingressi, 60 uscite e 240 stati. Qual è il numero minimo di flip flop necessari per la sua implementazione?		
2	Dove è memorizzata la Interrupt Vector Table in un	Nella memoria virtuale	A
_	sistema general purpose?	All'interno della memoria RAM o ROM	В
	general purposes	All'interno della memoria RAM	C
		All'interno della memoria ROM	D
		711 Interno dena memoria Row	Ь
3	Si consideri una cache con le seguenti caratteristiche	8 bit	A
3		4 bit	B
	• 256 linee da 16 byte		С
	Meccanismo direct mapping.	20 bit	+-+
	Assumendo che gli indirizzi emessi dal processore	24 bit	D
	siano su 32 bit, qual è la dimensione del campo tag		
	associato a ogni linea?		
4	Si consideri un sistema a processore che adotta		A
	l'architettura Isolated I/O; se il processore ha uno	2^{18} byte – 1 Kbyte	В
	spazio di indirizzamento di 2 ¹⁸ byte e il sistema	1 Kbyte	C
	prevede uno spazio di indirizzamento per le	2 ¹⁸ byte	D
	periferiche pari a 1 Kbyte, quale sarà la dimensione		
	massima della memoria indirizzabile dal sistema?		
5	Si consideri un sistema che utilizza il meccanismo	Quando la pagina richiesta dal processore non si trova in memoria	A
	della memoria virtuale: quando si verifica il Page	secondaria	
	Fault?	Quando la pagina richiesta dal processore non si trova in memoria	В
		principale	
		Quando la pagina richiesta dal processore si trova in memoria	С
		principale	
		Quando la pagina richiesta dal processore non si trova in cache	D
6	Quale caratteristica è propria del ripple carry adder?	il ritardo e l'area sono linearmente proporzionali al parallelismo	A
		è più lento del sommatore seriale	В
		è poco modulare	C
		è composto da moduli che generano un segnale di "generazione"	D
		ed uno di "propagazione"	
			
5	Quale vantaggio introduce l'utilizzo di una Unità di	Maggiore velocità	A
	Controllo Microprogrammata rispetto ad una Cablata?	Minor costo dell'hardware	В
		Maggiore affidabilità	С
		Maggiore facilità di progettazione	D

6	Quali vantaggi presenta il meccanismo del DMA?	Permette di ridurre i tempi di esecuzione delle operazioni di	A	
		trasferimento da I/O verso memoria e viceversa		
		Riduce la complessità HW del sottosistema di I/O	В	
		Rende più semplici le operazioni di gestione dell'interrupt	С	
		Permette di semplificare il software di gestione dei trasferimenti da	D	
		I/O verso memoria e viceversa		
9	Di che tipo è l'istruzione lw \$t2, (\$t1) ?	Tipo R	A	
	I'' 702) (701).	Tipo I	В	
		Tipo J	С	
		Tipo A	D	
10	Si divida il contenuto del registro \$t0 per 4, utilizzando un'istruzione di shift.			

Risposte corrette

1	2	3	4	5	6	7	8	9	10
8	С	С	D	В	A	D	A	В	

Domanda 10

sra \$t0, \$t0, 2

Nome, cognome, matricola

Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti.

Funzione svolta	ALU Control _{2:0}
100000 (add)	010 (Add)
100010 (sub)	110 (Sub)
100100 (and)	000 (And)
100101 (or)	001 (Or)
101010(slt)	111 (SLT)

	PCWrite	Branch	PCSrc	ALUControl	ALUSrcB	ALUSrcA	RegWrite	MemtoReg	RegDst	IRWrite	MemWrite	IorD
1												
2												
3												
4												
5												
6												
7												
8												
9												

12	Progettare un circuito per il controllo di un motore elettrico. Il circuito riceve in ingresso i segnali relativi ai controlli di accensione (A=1) e spegnimento (S=1). In caso di pressione simultanea, S prevale su A.
	Se il motore è acceso (spento) e arriva un altro segnale di accensione (spegnimento), il circuito deve ignorare il segnale.
	Il circuito ha una uscita O con il seguente comportamento: O=0 (motore spento), O=1 (motore acceso).
	Scrivere la tabella della verità e trovare le funzioni minime.

Con riferimento ad un'architettura a pipeline ideale			
	se ne descriva l'architettura e il funzionamento		
	si elenchino le principali cause che ne limitano il comportamento ideale.		

14	Con rife	erimento al meccanismo del DMA Si descrivano le funzionalità offerte dal DMA Controller
	•	Si evidenzino i vantaggi offerti dal DMA rispetto ad altri meccanismi di trasferimento dati da/verso periferiche, quali
		l'I/O programmato o l'interrupt
	•	Si descrivano le connessioni tra il DMA controller e il resto del sistema Si illustrino i passaggi attraverso i quali avviene un trasferimento in DMA, partendo dalla fase di programmazione da
	•	parte della CPU.

Nome, Cognome, Matricola:

Esercizio di programmazione

sino a 12 punti – è possibile consultare solamente il foglio consegnato con l'instruction set MIPS - tempo: 60 minuti

Si scriva una procedura clima in linguaggio Assembly MIPS che fa parte del sistema di controllo di un climatizzatore, a partire dalla temperatura ambientale e dalla temperatura desiderata, e che regola l'intensità del flusso d'aria fredda in modo non lineare.

Se la temperatura ambientale è minore di quella desiderata, la procedura deve restituire il valore Y = -1. Altrimenti, il valore restituito è il seguente:

$$Y = K \cdot i$$

dove K è una costante e i è un indice intero calcolato nel modo riportato nel seguito.

Dato un vettore di interi intervalli, che contiene una serie di temperature T_0 , T_1 , ..., T_{n-1} , che rappresentano differenze tra la temperatura ambientale e quella desiderata, l'indice i è quello del primo elemento di tale vettore che ha valore maggiore o uguale alla differenza tra la temperatura ambientale attuale e quella desiderata. Il vettore intervalli ha DIM elementi; se la differenza di temperatura è maggiore dell'ultimo elemento del vettore allora i = DIM.

Esempio:

```
intervalli: .byte 0 2 4 7 10

Temperatura ambientale: 31

Temperatura desiderata: 25
K = 12
```

Differenza di temperatura = 6, i = 3 (il primo elemento del vettore di valore > 6 è il valore 7, avente indice 3)

$$Y = 12 * 3 = 36$$

I parametri vengono passati alla procedura attraverso i registri:

- \$a0 contiene la temperatura ambientale
- \$a1 contiene la temperatura desiderata
- \$a2 contiene l'indirizzo del vettore intervalli
- \$a3 contiene l'indirizzo di una variabile di tipo *word* costante, inizializzata al valore di *K*.

Si lavori nell'ipotesi di non avere overflow durante i calcoli.

Di seguito un esempio di programma chiamante:

```
DIM=5
.data
            .word 12
costante:
intervalli: .byte 0 2 4 7 10
.text
.globl main
.ent main
main: subu $sp, $sp, 4
      sw $ra, ($sp)
     li $a0, 31
      li $a1, 25
      la $a2, intervalli
      la $a3, costante
      jal clima
     lw $ra, ($sp)
     addiu $sp, $sp, 4
      jr $ra
.end main
```