Tài liệu tham khảo: Bài giảng SMA 5503 Introduction to Algorithms. 2001-5 Erik D. Demaine and Charles E. Leiserson. http://ocw.mit.edu

Bài 13: Các thuật toán sắp xếp

Giảng viên: Hoàng Thị Điệp Khoa Công nghệ Thông tin – Đại học Công Nghệ

cuu duong than cong. com

Cấu trúc dữ liệu và giải thuật

HKI, 2013-2014

Nội dung chính

- Bài toán sắp xếp
- 2. Sắp xếp xen vào
- 3. Sắp xếp trộn
- 4. Sắp xếp nhanh ong than cong. com
- 5. Sắp xếp sử dụng cây thứ tự bộ phận
- 6. Sắp xếp đếm
- 7. Sắp xếp cơ số

Bài toán sắp xếp

- Lí do:
 - Một trong những bài toán được nghiên cứu lâu đời nhất trong CNTT
 - Chứa nhiều kĩ thuật về thuật toán
- Input: dãy số <a₁, a₂, ..., a_n>
- Output: 1 hoán vị của input <a₁', a₂', ..., a_n'> thỏa mãn a₁'<= a₂'<= ... <= a_n'
- Ý nghĩa?
 - Bài toán tìm kiếm
 - Bài toán phát hiện phần tử lặp

Ví dụ bài toán tìm kiếm

- X = 5
- A = (3, 1, 4, 15, 9, 26, 53, 58, 97, 93, 23, 8, 46, 26, 4, 33, 8, 3, 2)
- B = (1, 2, 3, 3, 4, 4, 8, 8, 9, 15, 23, 26, 26, 33, 46, 53, 58, 93, 97)
- □x có trong A? duong than cong. com
- □x có trong B?

Ví dụ bài toán phát hiện phần tử lặp

- A = (3, 1, 4, 15, 9, 26, 53, 58, 97, 93, 23, 8, 46, 26, 4, 33, 8, 3, 2)
- B = (1, 2, 3, 3, 4, 4, 8, 8, 9, 15, 23, 26, 26, 33, 46, 53, 58, 93, 97)
- □ Các giá trị xuất hiện hơn 1 lần trong A?
- ☐ Các giá trị xuất hiện hơn 1 lần trong B?

Tổng quan

INT2203/w13

Tổng quan

INT2203/w13

Với mỗi thuật toán sắp xếp

- Lịch sử ra đời
- Ý tưởng
- Giả mã
- Ví dụ
- Phân tích độ phức tạp thời gian
- Vận dụng thế nào?

- Cài đặt bằng ngôn ngữ
 C++
 - có trong STL không?
- Tính ổn định (stability)
- Liên hệ với các thuật toán sắp xếp khác

Insertion Sort

cuu duong than cong. com

Thuật toán sắp xếp xen vào

"pseudocode"

```
INSERTION-SORT (A, n) \triangleright A[1 ... n] for j \leftarrow 2 to n do key \leftarrow A[j] i \leftarrow j - 1 while i > 0 and A[i] > key do A[i+1] \leftarrow A[i] i \leftarrow i - 1 A[i+1] = key
```

Thuật toán sắp xếp xen vào

"pseudocode"

```
INSERTION-SORT (A, n) \triangleright A[1 ... n] for j \leftarrow 2 to n do key \leftarrow A[j] i \leftarrow j-1 uong than while i > 0 and A[i] > key do A[i+1] \leftarrow A[i] i \leftarrow i-1 A[i+1] = key
```


8 2 4 9 3 6

cuu duong than cong. com

cuu duong than cong, com

cuu duong than cong. com

diepht@vnu

Phân tích độ phức tạp

- Thời gian chạy phụ thuộc bản thân input
 - Nếu đã sắp
 - đúng thứ tự?
 - ngược thứ tự?
 - Kích thước dữ liệu vào
- Thời gian chạy xấu nhất?

Merge Sort

cuu duong than cong. com

Thuật toán sắp xếp trộn

Merge-Sort A[1 ... n]

- 1. If n = 1, done.
- 2. Recursively sort A[1..[n/2]] and A[[n/2]+1..n].
- 3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

cuu duong th

John von Neumann

```
20 12
```

13 11

7 9

2 1

cuu duong than cong. com

```
20 12
13 11
7 9 cuu duong than cong. com
2 1
```

```
20 12 | 20 12

13 11 | 13 11

7 9 | 7 9 | 10 | 2

2 1 2
```

```
20 12 | 20 12

13 11 | 13 11

7 9 | 7 9 u duong than cong. com

2 1 2
```


diepht@vnu

Trộn 2 mảng tăng

Trộn 2 mảng tăng

cuu duong than cong, com

Thời gian trộn là tuyến tính

Phân tích độ phức tạp

```
T(n)
```

 $\Theta(1)$

2T(n/2)

 $\Theta(n)$

MERGE-SORT A[1 ... n]

- 1. If n = 1, done.
- 2. Recursively sort A[1..[n/2]] and A[[n/2]+1..n].
 - 3. "Merge" the 2 sorted lists

Cây đệ quy

Giải
$$T(n) = 2T(n/2) + cn$$
, với hằng $c > 0$

40

diepht@vnu

Quicksort

cuu duong than cong. com

Thuật toán sắp xếp nhanh

- Chia để trị
- "in place"
- Hiệu quả trên dữ liệu thực
 - tuning cuu duong than cong
- Ý tưởng ...

Tony Hoare

Mô tả

Sắp xếp nhanh mảng n phần tử

- Chia: Phân hoạch (chia) mảng cần sắp thành 2 mảng con ở 2 phía của chốt x; sao cho các phần tử ở mảng con bên trái <= x, còn các phần tử ở mảng con bên phải >= x
- Trị: Sắp xếp đệ quy các mảng con
- 3. Kết hợp: không làm gì.

cuu duong than cong. com

Điểm then chốt: thủ tục phân hoạch chạy trong thời gian tuyến tính.

Giả mã thủ tục phân hoạch

```
Partition(A, p, q) \triangleright A[p ... q]
    x \leftarrow A[p] \qquad \triangleright \text{pivot} = A[p]
                                                              Thời gian chạy
                                                              là O(n)
     i \leftarrow p
    for j \leftarrow p + 1 to q do
              if A[j] \leq xng than cong. com
                   then i \leftarrow i + 1
                            exchange A[i] \leftrightarrow A[j]
     exchange A[p] \leftrightarrow A[i]
     return i
Duy trì:
                    \mathcal{X}
                         \leq x
                                               \geq x
```

44

diepht@vnu

cuu duong than cong. com

cuu duong than cong, com

cuu duong than cong. com

2 5 3 6 8 13 10 11

i

cuu duong than cong. com

Giả mã thuật toán sắp xếp nhanh

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, p, q-1)
```

Lời gọi ban đầu: Quicksort(A, 1, n)

Cây đệ quy trường hợp xấu nhất

$$T(n) = T(0) + T(n-1) + cn$$

Trường hợp tốt nhất?

PARTITION chia mảng thành 2 nửa bằng nhau

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \lg n)$

Heapsort

cuu duong than cong. com

Sắp xếp sử dụng cây thứ tự bộ phận

- Ý tưởng
 - Nếu cần sắp tăng dần, dùng max heap
 - Nếu cần sắp giảm dần, dùng min heap
 - 1: Bố trí lại dữ liệu trong mảng để nó thỏa mãn tính chất của heap.
 - 2: Lặp lại:
 - Đảo chỗ gốc và đỉnh cuối của heap
 - Giảm cỡ của heap đi 1 rồi khôi phục tính chất của heap

Giả mã

```
Algorithm heapSort(A, n)

buildHeap(A, n) // tao 1 max-heap tu A

for end <- n-1 to 1 do

swap(A[o], A[end])

downheap(A, end)
```

Thuật toán sắp xếp có thể nhanh tới cỡ nào?

cuu duong than cong. com

Cận dưới của sắp xếp

- Các thuật toán sắp xếp dựa trên so sánh các cặp phần tử
 - comparison sorting, comparison model
 - có thời gian xấu nhất không thể tốt hơn O(nlogn)
- Chứng minh bằng mô hình cây quyết định.
- Tham khảo: Lecture 5

Sắp xếp trong thời gian tuyến tính

- Thuật toán sắp xếp đếm
 - counting sort
 - không so sánh các cặp phần tử
- Giả sử dãy số nguyên nằm trong một khoảng nào đó

Counting sort

- Input: A[1...n], trong $dot A[j] \in \{1, 2, ..., k\}$.
- Output: B[1...n] được sắp.
- Mảng nhớ phụ trợ: C[1...k].

cuu duong than cong, com

Counting sort: giả mã

```
for i \leftarrow 1 to k
    do C[i] \leftarrow 0
for j \leftarrow 1 to n
    do C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{\text{key} = i\}|
for i \leftarrow 2 to k
    do C[i] \leftarrow C[i] + C[i-1] \qquad \triangleright C[i] = |\{\text{key } \leq i\}|
for j \leftarrow n downto 1
    \mathbf{do}\,B[C[A[j]]] \leftarrow A[j]
          C[A[j]] \leftarrow C[A[j]] - 1
```

diepht@vnu

Minh hoa counting sort

Vòng for thứ nhất

for $i \leftarrow 1$ to k duong than cong. com

do
$$C[i] \leftarrow 0$$

Vòng for thứ 2

1 2 3 4 5 : 4 1 3 4 3 cuu duong than cong. com

B:

$$\begin{array}{l} \textbf{for } j \leftarrow 1 \textbf{ to } n^{\text{uu duong than cong. com}} \\ \textbf{do } C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}| \end{array}$$

Vòng for thứ 2

: 4 1 3 4 3

1 2 3 4 C: 1 0 0 1

$$\begin{array}{l} \mathbf{for}\, j \leftarrow 1 \,\,\mathbf{to}\,\, n^{\mathsf{uu}} \,\, \mathsf{duong} \,\, \mathsf{than} \,\, \mathsf{cong.} \,\, \mathsf{com} \\ \mathbf{do}\,\, C[A[\,j]] \leftarrow C[A[\,j]] + 1 \quad \triangleright \, C[\,i] = |\{\mathrm{key} = i\}| \end{array}$$

B:

Vòng for thứ 2

1 2 3 4 5 4 1 3 4 3

B:

$$\begin{array}{l} \mathbf{for}\, j \leftarrow 1 \,\,\mathbf{to}\,\, n \mathbf{uu} \,\, \mathbf{duong} \,\, \mathbf{than} \,\, \mathbf{cong.} \,\, \mathbf{com} \\ \mathbf{do}\,\, C[A[\,j]] \leftarrow C[A[\,j]] + 1 \quad \triangleright C[\,i] = |\{\mathrm{key} = i\}| \end{array}$$

 $A: \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 4 & 3 \end{bmatrix}$

1 2 3 4 C: 1 0 1 2

cuu duong than cong. com

$$\begin{array}{l} \textbf{for } j \leftarrow 1 \textbf{ to } n^{\text{uu duong than cong. com}} \\ \textbf{do } C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}| \end{array}$$

1 2 3 4 5 1: 4 1 3 4 3

 $C: \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 2 & 2 \end{bmatrix}$

B:

$$\begin{array}{l} \mathbf{for}\, j \leftarrow 1 \,\,\mathbf{to}\,\, n \text{uu duong than cong. com} \\ \mathbf{do}\,\, C[A[\,j]] \leftarrow C[A[\,j]] + 1 \quad \triangleright \, C[\,i] = |\{ \text{key} = i \}| \end{array}$$

3

for $i \leftarrow 2$ to k uu duong than cong. com

do
$$C[i] \leftarrow C[i] + C[i-1]$$
 $\triangleright C[i] = |\{\text{key} \le i\}|$

$$C[i] = |\{ \text{key} \le i \}|$$

 4:
 4
 1
 3
 4
 3

for
$$i \leftarrow 2$$
 to k uu duong than cong. com do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key} \le i\}|$

 1
 2
 3
 4
 5

 4
 1
 3
 4
 3

C: 1 0 2 2

for
$$i \leftarrow 2$$
 to k uu duong than cong. com do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key} \le i\}|$

1 2 3 4

B: 3

C': 1 1 2 5

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

1 2 3 4

C: 1 1 2 5

B: 3 4

C': 1 1 2 4

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

$$C'$$
: 0 1 1 3

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Phân tích độ phức tạp

```
\Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 1 \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow 0 \end{cases}
       \Theta(n) \begin{cases} \mathbf{for} \ j \leftarrow 1 \mathbf{ to} \ n \\ \mathbf{do} \ C[A[j]] \leftarrow C[A[j]] + 1 \end{cases}
       \Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 2 \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow C[i] + C[i-1] \end{cases}
      \Theta(n) \begin{cases} \mathbf{for} \ j \leftarrow n \ \mathbf{downto} \ 1 \\ \mathbf{do} \ \mathbf{do} \ B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases}
\Theta(n+k)
```

Tính ổn định của thuật toán sắp xếp

 Thuật toán sắp xếp đếm có tính ổn định: nó bảo toàn được thứ tự giữa các phần tử có giá trị bằng nhau.

Thuật toán sắp xếp cơ số (radix sort)

- Sắp xếp theo từng "chữ số"
 - bằng 1 thuật toán sắp xếp ổn định. VD: counting sort
- Xuất phát từ chữ số ít quan trọng hơn

cuu duong than cong. com

cuu duong than cong. con

Minh hoa radix sort

Chuẩn bị tuần tới

- Lý thuyết: Bài tập
 - SV rà soát các chương học sau thi giữa kì
- Thực hành: Các chiến lược thiết kế thuật toán

cuu duong than cong. com

cuu duong than cong. com