Logistic Regression (Classification) Binary Classifile -> 2 - class peoblems. $0 \leq \hat{y}(n) \leq$ Logistic leg => Not a regression - its a classification (Binary). Hypothesis fr. for Classification Problem We want $0 \leq \hat{y}_B(n) \leq 1$ input features. In linear reg: $y(n) = B \cdot X$ For logistic reg: $\hat{y}_{B}(n) = g(B^{T}.X)$ where $g(z) = (\frac{1}{1 + e^z}) \rightarrow \text{sigmoid fn}$. $y_B(x) = \frac{1}{1 + e^{-B^T \cdot x}}$ — We need to find the parameter B using one tearing data. estimated probability that y=1 on input x.

P(y=1)B, x)=?

Example: if
$$x = \begin{bmatrix} n_0 & x_1 \end{bmatrix}^T = \begin{bmatrix} 1 & \# speam - word - count \end{bmatrix}$$

$$\hat{y}_B(x) = 0.7$$

$$70\% \text{ of chance that the email is a spann.} \Rightarrow y = 1.$$

$$P(y = 0 \mid B, x) = 1 - P(y = 1 \mid B, x)$$
Since $y \to 0$ or 1 .

Exect fm: (Cost fn.)

$$\hat{y}_{g}(x) = g(b_{0} + b_{1}x_{1} + b_{2}x_{2} + \cdots + b_{d}x_{d})$$

$$= g(B \cdot x)$$

$$g(z) = (1 + e^{z})$$
find the values for $B = [b_{0}, b_{1}, \dots b_{d}]$?

The linear reg, Saw fn is,
$$E[B] = \frac{1}{N} = \frac{2(y_{1} - y_{1})^{2}}{2(y_{1} - y_{1})^{2}}$$
Cost $(B, (x_{1}, y_{1}))$

The logistic keg,
$$\hat{y}_{g}(x) = g(z) = (1 + e^{z})$$
The logistic keg.

The logistic seg.

The logistic seg.

Cost-fn. for Logistic Reg: - log (ŷsm:)), if y=1, Cost (Yelni), yi) = predicted actual class value class value (data) $-\log(1-\hat{\mathcal{G}}_{\mathcal{S}}(\mathcal{H}_i))$, if $y_i=0$. Cost = 0 if y=1 and y=(Ni)=1 } if we correctly predict y, then the cost error = 0. $P(y=1|B_1 \times i)$ when $\hat{y}_B(x) \rightarrow \infty$ } if we mispredict the y, -log(1-2) /:-log(1-yphi)) if | yi = 0 Cost = 0 if $y_i = 0$ and $\hat{y}_g(n_i) = 0$ if we correctly predict when $\hat{y}_g(n_i) \to 1$? If the y, then cost is 0 when GB(n) > 1 } if we mispredict they y,

cost > ~) then cost is ~.

$$E(B) = \frac{1}{N} \leq Cost(\hat{y}_{g}(n_{i}), y_{i})$$

for all samples

cost
$$(\hat{y}_B, y_i) = \begin{cases} -\log(\hat{y}_B) & \text{if } y=1 \\ -\log(1-\hat{y}_B) & \text{if } y=0 \end{cases}$$

output variable y = 0 or 1.

$$cost(\hat{y}_{B}, y_{i}) = -y log(\hat{y}_{B}(n)) - (1-y) log(1-\hat{y}_{B}(n))$$

$$E(B) = \frac{-1}{N} \left[\sum_{i=1}^{N} y_i \log \left(\hat{y_B(n_i)} \right) + (1-y_i) \log \left(1 - \hat{y_B(n_i)} \right) \right]$$

To dit parameter B,

To make a prediction, given a new data ox,

Output
$$\hat{y}_{g}(x) = g(B^{T}.x) = \frac{1}{1 + e^{B^{T}.x}}$$

$$GD/SGD$$

$$> 0.5 \Rightarrow \hat{y}_{e}(n)$$

$$P(y=1|B,n) \Rightarrow \geq 0.5 \Rightarrow \hat{y}_{R}(n) = 1$$

$$\langle 0.5 \Rightarrow \hat{y}_{R}(n) = 0.$$

$$E(B) = \frac{-1}{N} \left[\sum_{i=1}^{N} y_i \log \left(\hat{y}_B(x_i) \right) + (1-y_i) \log \left(1 - \hat{y}_B(x_i) \right) \right]$$

Repeat until Conneegence
$$\S$$

bj := bj - $\propto \frac{\partial E(B)}{\partial bj}$ //simultaneous update

[for $j = 0, 1, 2, ..., d$)

$$\frac{\partial E(B)}{\partial bj} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{B}(x_{i}) - \hat{y}_{i}) \chi_{ij}$$

$$\hat{y}_{B}(x_{i}) = g(B^{T} x) = \left(\frac{1}{1 + \bar{e}^{B^{T}}x}\right)$$

Note: $E(B) \rightarrow leave fin. over all training sample (N)$ $Cost <math>(\hat{y}_e(M_i), \hat{y}_i) \rightarrow leave fin. for ith training sample.$