Міністерство освіти і науки України Національний авіаційний університет Факультет кібербезпеки, комп'ютерної та програмної інженерії Кафедра комп'ютеризованих систем управління

Лабораторна робота № 3.6 з дисципліни «Технології проектування комп'ютерних систем» на тему «Аналіз мереж масового обслуговування» Варіант № 3

> Виконав: студент ФККПІ групи СП-425 Клокун В. Д. Перевірила: Голего Н. М.

Київ 2020

1. МЕТА РОБОТИ

Отримати практичні навички розрахунку системних характеристик експоненціальних мереж масового обслуговування.

2. ХІД РОБОТИ

За варіантом завдання дана експоненціальна МеМО. Відповідно до завдання варіанта (табл. 1), побудуємо її модифіковану схему (рис. 1).

Табл. 1: Завдання варіанта

	Номера СМО					
Номер варіанту	1	2	3	4	5	6
3	_	_	+	+	_	+

Рис. 1: Модифікована схема, яка відповідає завданню варіанта

Враховуючи зміни, внесені до схеми, наведемо параметри заданої системи масового обслуговування:

- 1. Число систем масового обслуговування N = 3.
- 2. Число каналів K в системі масового обслуговування: $K_3 = 2, K_4 = 1, K_6 = 1$.
- 3. Ймовірності переходів p_{ij} : $p_{34}=1$; $p_{40}=0.8$, так як зі схеми була видалена система № 5; $p_{46}=0.2$; $p_{61}=1$. Тоді матриця переходів виглядає так:

$$P = \begin{bmatrix} 0 & 3 & 4 & 6 \\ 0 & 0 & 1 & 0 \\ 0.8 & 0 & 0 & 0.2 \\ 6 & 0 & 0 & 1 & 0 \end{bmatrix}$$

4. Інтенсивності вхідних потоків заявок $I_1=0,\,I_2=0,\,I_3=1/50.$

5. Середні часи обслуговування: $T_3 = 90$, $T_4 = 7$, $T_6 = 40$.

2.1. Баланс інтенсивностей

За наявними завданнями складаємо рівняння балансу інтенсивностей, перетворюємо та спрощуємо їх, щоб знайти інтенсивності λ_n :

$$\begin{cases} \lambda_3 = I_3 \\ \lambda_4 = \lambda_3 + \lambda_6 \\ \lambda_6 = p_{46}\lambda_4 \end{cases} \implies \begin{cases} \lambda_3 = \frac{1}{50} = 0,02 \\ \lambda_4 = 0,02 + p_{46}\lambda_4 \\ \lambda_6 = p_{46}\lambda_4 = 0,2\lambda_4 \end{cases} \implies \begin{cases} \lambda_3 = 0,02 \\ \lambda_4 = 0,02 + 0,2\lambda_4 \\ \lambda_6 = 0,2\lambda_4 \end{cases}$$
$$\implies \begin{cases} \lambda_3 = 0,02 \\ 0,8\lambda_4 = 0,02 \\ \lambda_6 = 0,2\lambda_4 \end{cases} \implies \begin{cases} \lambda_3 = 0,02 \\ \lambda_4 = 0,02 : 0,8 = 0,025 \\ \lambda_6 = 0,2 \cdot 0,025 = 0,005 \end{cases}$$

Отже, отримали: $\lambda_3 = 0.02$, $\lambda_4 = 0.025$, $\lambda_6 = 0.005$.

2.2. Середній час перебування заявки в МеМО

Щоб знайти середній час перебування заявки в МеМО, необхідно обчислити значення середнього числа заявок в каналі ρ_i для кожної системи масового обслуговування:

$$\begin{split} & \rho_3 = \lambda_3 \cdot \overline{T}_{\text{обс}\pi_3}/2 = 0.02 \cdot 90/2 = 0.9, \\ & \rho_4 = \lambda_4 \cdot \overline{T}_{\text{обс}\pi_4} = 0.025 \cdot 7 = 0.175, \\ & \rho_6 = \lambda_6 \cdot \overline{T}_{\text{обс}\pi_6} = 0.05 \cdot 40 = 0.2. \end{split}$$

Обчисливши значення сердніх чисел заявок в каналах, можемо обчислити середній час перебування заявки в кожному каналі $\overline{T}_{\text{пер}_i}$ за формулою:

$$\overline{T}_{\text{пер}_i} = \frac{\overline{T}_{\text{обс}\pi_i} \rho_i}{1 - \rho_i}.$$

Обчислюємо за отриманими даними:

$$\overline{T}_{\text{пер}_3} = \frac{\overline{T}_{06\text{с}\pi_3} \cdot \rho_3}{1 - \rho_3} = \frac{90 \cdot 0.9}{1 - 0.9} = 810, \quad \overline{T}_{\text{пер}_4} = \frac{\overline{T}_{06\text{с}\pi_4} \cdot \rho_4}{1 - \rho_4} = \frac{7 \cdot 0.175}{1 - 0.175} = 1.48,$$

$$\overline{T}_{\text{пер}_6} = \frac{\overline{T}_{06\text{c}\pi_6} \cdot \rho_6}{1 - \rho_6} = \frac{40 \cdot 0.2}{1 - 0.2} = 10.$$

За середніми значення для кожного каналу, можна обчислити середнє значення для мережі за формулою:

$$\overline{T}_{\text{nep}} = \frac{1}{I} \sum_{j=1}^{N} \lambda_j \overline{T}_{\text{nep}_j}.$$

Обчислюємо середнє значення для заданої мережі.

$$\overline{T}_{\text{nep}} = \frac{1}{I} \sum_{j=1}^{N} \lambda_j \overline{T}_{\text{nep}_j} = \frac{1}{0,02} \left(\lambda_3 \overline{T}_{\text{nep}_3} + \lambda_4 \overline{T}_{\text{nep}_4} + \lambda_6 \overline{T}_{\text{nep}_6} \right)$$

$$= 50 \cdot (0,02 + 810 + 0,025 \cdot 1,48 + 0,005 \cdot 10) = 814,35.$$

Отже, середній час перебування заявки у мережі складає $\overline{T}_{\rm nep} = 814,35.$

2.3. Передаточні коефіцієнти

Щоб визначити передаточні коефіцієнти α_{ij} , необхідно скласти рівняння балансу, враховуючи всі вхідні потоки I_i :

$$\begin{cases} \lambda_3 = I_3 \\ \lambda_4 = \lambda_3 + \lambda_6 + I_4 \implies \begin{cases} \lambda_3 = I_3 \\ \lambda_4 = I_3 + (0,2\lambda_4 + I_6) + I_4 \implies \begin{cases} \lambda_3 = I_3 \\ 0,8\lambda_4 = I_3 + I_4 + I_6 \\ \lambda_6 = 0,2\lambda_4 + I_6 \end{cases} \end{cases} \implies \begin{cases} \lambda_3 = I_3 \\ \lambda_6 = 0,2\lambda_4 + I_6 \end{cases} \implies \begin{cases} \lambda_3 = I_3 \\ \lambda_6 = 0,2\lambda_4 + I_6 \end{cases} \implies \begin{cases} \lambda_3 = I_3 \\ \lambda_4 = \frac{I_3 + I_4 + I_6}{0,8} \\ \lambda_6 = \frac{0,2(I_3 + I_4 + I_6)}{0,8} + I_6 \end{cases} \implies \begin{cases} \lambda_3 = I_3 \\ \lambda_4 = 1,25(I_3 + I_4 + I_6) \\ \lambda_6 = \frac{I_3 + I_4 + I_6}{4} + I_6 \end{cases}$$

Щоб знайти передаточні коефіцієнти, підставляємо кортежі значень інтенсивностей потоків (I_3,I_4,I_6) , де $I_i=1,I_{j\in\{N\setminus j\}}=0$ і отримаємо:

$$I = (1,0,0): \lambda_i = (1;1,25;0,25),$$

$$I = (0,1,0): \lambda_i = (0;1,25;0,25),$$

$$I = (0,0,1): \lambda_i = (0;1,25;1,25).$$

Отже, матриця передаточних коефіцієнтів A:

$$\mathbf{A} = \begin{bmatrix} 1 & 1,25 & 0,25 \\ 0 & 1,25 & 0,25 \\ 0 & 1,25 & 1,25 \end{bmatrix}$$

2.4. Розрахунок вхідних середніх проміжків часу перебування в мережі F_1, \dots, F_N

Щоб обчислити вхідні середні проміжки часу перебування в мережі F_1, \dots, F_N , достатньо помножити передаточні коефіцієнти на середній час перебування заявок. Тоді отримаємо:

$$\mathbf{A} \cdot \begin{bmatrix} \overline{T}_{\text{пер}_3} & \overline{T}_{\text{пер}_4} & \overline{T}_{\text{пер}_6} \end{bmatrix}^T = \mathbf{A} \cdot \begin{bmatrix} 810 & 1,48 & 10 \end{bmatrix}^T = \begin{bmatrix} 814,35 & 4,35 & 14,35 \end{bmatrix}^T.$$

Щоб перевірити дані, наприклад, для першого вхідного потоку, необхідно скласти формулу для заданої схеми:

$$\begin{cases} F_3 = \overline{T}_{\text{пер}_3} + F_4 \\ F_4 = \overline{T}_{\text{пер}_4} + 0.2F_6 \\ F_6 = \overline{T}_{\text{пер}_6} + F_4. \end{cases} \Rightarrow \begin{cases} F_3 = 810 + F_4 \\ F_4 = 1.48 + 0.2F_6 \\ F_6 = 10 + F_4. \end{cases} \Rightarrow \begin{cases} F_3 = 814.35 \\ F_4 = 4.35 \\ F_6 = 14.35. \end{cases}$$

Дані збігаються, отже розрахунки виконані вірно: $F_3 = 814,35$, $F_4 = 4,35$, $F_6 = 14,35$.

2.5. Розрахунок часу перебування в МеМО \overline{T}_{nep} та для кожної смо $\overline{T}_{nep,}$

Розрахунки наведені в підрозділі 2.2.

3. Висновок

Виконуючи дану лабораторну роботу, ми отримали практичні навички розрахунку системних характеристик експоненціальних мереж масового обслуговування.