1 Topology

2 Metric spaces convergence

Definition 2.1. (Convergence in metric spaces)

Let (X,d) be a metric space. Let $\{x_n\}_{n\in\mathbb{N}}\subset X$. We say that $\{x_n\}$ converges to a point $x\in X$, and we write $x_n\to x$, if

$$(\forall \epsilon > 0)(\exists N \in \mathbb{N})(\forall n \ge N)(d(x_n, x) < \epsilon)$$

Definition 2.2. (Topological Convergence)

Let (X, τ) be topological space. Let $\{x_n\}_{n\in\mathbb{N}}\subset X$. We say that x_n τ -converges to a point $x\in X$, and we write $x_n\to x$ if

$$(\forall U_x)(\exists N \in \mathbb{N})(\forall n \geq N)(x_n \in U_x)$$

Theorem 1. (Metric Topological Convergence)

Let (X, d) be a metric space. Let $\{x_n\} \subset X$. $\{x_n\}$ τ -converges to a point $x \in X$ if and only if x_n converges to $x \in X$ wrt metric d.

Proof.
$$(\Leftarrow)$$
 Let $U_x \in \tau$. \Longrightarrow $(\exists \epsilon > 0) \pitchfork (B(x; \epsilon) \subset U_x)$
 $\Longrightarrow (\exists N \in \mathbb{N})(\forall n \geq N)(x_n \in B(x; \epsilon) \subset U_x)$
 $\Longrightarrow (\forall n \geq N)(x_n \in U_x)$

 $\therefore x_n \to x$ in the topological sense.

 $Proof. \ (\Longrightarrow)$

Proposition 2.1. (Metric Closed Characterization)

Let (X,d) be a metric space and let $A \subset X$. Then A is closed iff each convergent sequence in A has a limit in A

Proof. Notice that \overline{A} is the collection of points for which there exists a sequence in A that converges to it.

2.1 Continuity in Metric Spaces

2.1.1 Definition/Equivalence

Theorem 2. (Metric Continuity Facts)

Let (X, d) and (Y, ρ) be metric spaces. Let $f: X \to Y$. Pick $x_0 \in X$. Then the following are equivalent.

4.) f is continuous at x_0

2.)
$$(\forall \epsilon > 0)(\exists \delta > 0) \pitchfork (f(B(x_0; \delta) \subset B(f(x_0); \epsilon))$$

3.)
$$(\forall \{x_n\}_{n\in\mathbb{N}})(x_n\to x_0 \implies f(x_n)\to f(x_0))$$

Proof. $(1 \implies 2)$

Pick $\epsilon > 0$. Then $\exists \delta > 0$ such that $d(x, x_0) < \delta \implies p(f(x), f(x_0)) < \epsilon$

$$\iff x \in B(x_0, \delta) \implies f(x) \in B(f(x_0), \epsilon)$$

$$\iff f(B(x_0; \delta)) \subset B(f(x_0); \epsilon)$$

Proof. $(2 \implies 3)$ Ask yourself, what do we need to show? and the next question would be, how do I proceed to prove this claim?

Proof. $(3 \implies 1)$ exercise

Proof. $(2 \implies 1)$

Let $\epsilon > 0$. For each $B(f(x_0); \epsilon) \in \tau_Y$, $\exists U(x_0) \in \tau_X \pitchfork f(U) \subset B(f(x_0); \epsilon)$. Since $U(x_0)$ is open, $\exists \delta > 0 \pitchfork B(x_0; \delta) \subset U$. Thus $f(B(x_0; \delta)) \subset f(U) \subset B(f(x_0); \epsilon)$, and this is equivalent to

$$d(x, x_0) < \delta \implies p(f(x), f(x_0)) < \epsilon.$$

2.2 Uniform Continuity

Definition 2.3. (Uniform Continuity)

Let $f:(X,d)\to (X,\rho)$. We say f is uniformly continuous if

$$(\forall \epsilon > 0)(\exists \delta > 0)(\forall x, y \in X)(d(x, y) < \delta \implies \rho(f(x), f(y)) < \epsilon)$$

Examples 1. Let $a < b \in \mathbb{R}$. Then $T : [a,b] \to \mathbb{R}$ defined by T(x) = x + a is uniformly continuous

Definition 2.4. (Distance from a set)

Let
$$(X,d)$$
 be a metric space. Let $A, B \subset X$. Then $d(x,A) = \inf\{d(x,y) : y \in A\}$

Theorem 3. Let (X,d) be a metric space. Let $\phi \neq A \subset X$. Define $f: X \to \mathbb{R}$ by f(x) = d(x,A). Then f is uniformly continuous on X.