

a) Closure Property:- $0 \oplus 1 = 1 \in F$ $0 \cdot 1 = 0 \in F$

.. Set F satisfies the Closure property with the operations XOR and AND.

b) Commutative Property:
(i) OP 1 = 1P 0 = 1

(ii) O.1 = 1.0 = 0

: Set F satisfies this property with XOR and AND operations.

c) Associative Broperty:
(i) $0 \oplus (1 \oplus 0) = (0 \oplus 1) \oplus 0 = 1$ Scan try this for other for other combinations)

: Set F also follows this property with $\times OR$ and $\times OR$ and $\times OR$ operations.

d) Identity Element:

(i) For AND operation:

0.1 = 0 = 1.0

1.1 = 1 = 1.1

So, home (1) is the Identity element.

(ii) For XOR operation:

0 + 1 = 1 = 1 + 0

1 + 0 = 0 = 0 + 0

So have (1) is the Identity element.

e) Inverse Element. (i) For AND operation:

Identity Element = 1 80, 0.1 = 1 = 1.0 1.0=1=0.1 :. Invoise of O is 1) and Inverse of 1 is 1) (i) For XOR operation: Identity element = 0 So, O⊕ O = O = O⊕O 1⊕1=0=1⊕1 :. Inverse of O is 10 and Inverse of 1 is 1 f) Distributive Property: Can do this of the or other combinations $(1) 0.(1 \oplus 0) = (0.1) \oplus (0.0) = 0$ (i) $(0 \oplus 1).0 = (0.0) \oplus (1.0) = 0$ So, this proporty is also extrepted .. Since all the above properties are satisfied, so we can say that: 1 Set F is a <u>Field</u> with <u>XOR</u> and <u>AND</u> operations

小田田 上海中地下

2). (a) V= IR and F= IN:
Firstly checking if IN is a field or not.

(i) a + \$ b \in IN \tau a, b \in IN

a.b \in IN \tau a, b \in IN

80, Closure Property is satisfied.

(ii) a+b=b+a +a,bell a.b=b.a +a,bell So, it is commutative also.

(ii) $a + (b+c) = (a+b)+c \quad \forall a,b,c \in \mathbb{N}$ $a \cdot (b \cdot c) = (a \cdot b) \cdot c \quad \forall a,b,c \in \mathbb{N}$ So, it is Associative too.

(iv) a+0=a=0+a but 0 ≠ IN So, the set of notional numbers IN does NOT have an Additive Identity.

IN is NOT a field.

So, this will NOT form a valid Vector Space

(b) V=Q and F=IR:

Checking if set IR is a field or not.

(i) a+b \in IR \cdot \tau_b \in IR

a.b \in IR \cdot \tau_b \in IR

(ii) a+b=b+a} + a,b & R

(iii) a+(b+c) = (a+b)+c } +a,b,c∈IR a.(b,c) = (a.b),c (iv) a+0=a=0+a where, $0,a\in\mathbb{R}$ 0 is the Additive Identity. Also, $a\cdot 1=a=1.a$ where $1,a\in\mathbb{R}$ 1 is the Multiplicative Identity.

(V) $a + (-a) = 0 = (-a) + a + -a, a \in \mathbb{R}$ -a is the Additive Inverse of a. Also, $a(\frac{1}{a}) = 1 = (\frac{1}{a}) \cdot a + a, \frac{1}{a} \in \mathbb{R}$ $\frac{1}{a}$ is the Multiplicative Inverse of a.

(vi) a.(b+c) = a.b+a.c + a,b,c∈ |R Since all the proporties one satisfied, so we can say that: Set |R is a field

Now, checking if a forms a vector space over 1R or not.

Let us look at the following property: We know that $\overline{a} = \mathbb{R}$: For $\overline{a} \in \mathbb{Q}$,

12 x €Q as it is Irrational.

So, ecalor multiplication property is NOT satisfied. This will NOT form a valid Vector Space

(c) V=IR and F=Q:

Checking if Q is a field or not.

(P. 7.0.)

i) a+b ∈ Q j + a,b ∈ Q

(ii) a+b=b+a y + a,b e Q

(iii) a+(b+c) = (a+b)+c } +c } ∀a,b,c ∈ Q

(iv) a+0=a=0+a where, $0,a\in Q$.: Q is the Additive Identity.

Also, a1 = a = 1, a where I, a eQ 1 is the Multiplicative Identity

(V) a + (-a) = 0 = (-a) + a $\forall -a, a \in \mathbb{Q}$ -a is the Additive Inverse of aAlso, $a \cdot (\frac{1}{a}) = 1 = (\frac{1}{a}) \cdot a \quad \forall \quad \frac{1}{a}, a \in \mathbb{Q}$ $\frac{1}{a}$ is the Multiplicative Inverse of a.

(vi) $(a+b) \cdot c = a \cdot c + b \cdot c + a, b, c \in \mathbb{R}$ Q Since all the proporties are satisfied, hence Q is a field.

Now checking if IR forms a Vector Space over a on not.

Ü α+ & εIR ∀ α, B εIR

(ii) 2+1 = 1 + 2 + 2, 8 = 1R

(ii) a+(B+1) = (a+B)+1 + a,B, rel

(v) $\overline{\alpha} + 0 = \overline{\alpha} = 0 + \overline{\alpha}$ where $0, \overline{\alpha} \in \mathbb{R}$ Q is the Additive Identity. (V) $\overline{\alpha} + (-\overline{\alpha}) = 0 = (-\overline{\alpha}) + \overline{\alpha} \quad \forall \ \overline{\alpha}, \neg \overline{\alpha} \in \mathbb{R}$ $\overline{\alpha}$ is the Additive Involve of $\overline{\alpha}$.

(vi) $a(\overline{a}+\overline{B}) = a.\overline{a} + a.\overline{B} + a \in Q \text{ and } \overline{a}, \overline{B} \in \mathbb{R}$

(ii) a. Z & IR + a & Q and Z & IR

(Viii) (a+b) = a. Z+b. Z + a, b & Q and Z & IR

(ix) (ab). $\overline{\alpha} = a.(b.\overline{a}) + a, b \in 0$ and $\overline{\alpha} \in \mathbb{R}$

(X) $1.\overline{\alpha} = \overline{\alpha}$ where unit scalar $1 \in \mathbb{Q}$ and $\overline{\alpha} \in \mathbb{R}$. Since all the proporties are satisfied,

: V=IR and F=Q FORMS a Vector Space

(d) V=IR and F=C;

Let us just assume that the set of Complex Numbers C is a field for a moment.

Now, let's look at the following property:let's $(a+ib) \in C$ and $\overline{\alpha} \in \mathbb{R}$

So, $(a+ib).\overline{x} = a\overline{a} + i(b.\overline{a}) \notin IR$ since it is also a Complex Number.

Hence, the scalar multiplication property is NOT satisfied.

V=IR and F=C will NOT form a Vector Space.

3 a) To prove: - Field F is a vector space over of a field over Fie. :- proporties a+beF ta,beF o.beF ta,beF

- $\begin{array}{c}
 \text{(1)} \quad a+b=b+a \quad \downarrow \quad \forall \quad a,b \in F \\
 a \quad b=b.a
 \end{array}$
- (ii) a+(b+e) = (a+b)+e } + q,b,c ef
- (V) a+0=a=0+a where 0,a EF O is the Additive Identity. a.1 = a = 1.a where $1, a \in F$ 1 is the Multiplicative Identity
- (V) a + (-a) = 0 = (-a) + a where $a, -a \in F$ -a is the Additive Inverse of a $a.\left(\frac{1}{a}\right) = 1 = \left(\frac{1}{a}\right)$, a where $a, \frac{1}{a} \in F$ 1 is the Multiplicative Inverse of a.

(i) a. (b+c) = a.b+a.c + a,b, c∈F. Now, let's have a look at the poroporties of a Vector Space which are remaining: (i) daEF +d,aEF

(1) a. (x+8) = a.d + a.B + a,d, BEF

(ii) (a+b) a = aa+b.a + a,b,a ∈ F

(N) (a.b), x = a. (b.x) + a,b,x eF

(V) 1.d = & where unit scalar 1 & F and

Since all the properties are satisfied, we can bay that :-F is a vedos space over itself ,

b) To prove - The direct sums of a field F will form a vector space V over F.

The direct sums of a field F (of we have proved):

F (F) F (F) F (F) - = Fn as per the definition of direct sun of modelles. bet We For

Proporties: (i) Let $(a_1, -a_n), (b_1, -a_n) \in F^n$, $(a_1, --, a_n) + (b_1, --, b_n)$ $=(a_1+b_1,\ldots,a_n+b_n)\in F^n$

(ii) Let (a,,--,an), (b,--,bn), (c,,--,cn) ∈ F" : $(a_1, --, a_n) + ((b_1, --, b_n) + (c_n --, c_n))$ = (a,,--,an) + (b,+c,, ---, bn+Cn) = $(a_1 + b_1 + c_1, ---, a_n + b_n + c_n)$ = $((a_n + b_1) + c_1, ---, (a_n + b_n) + c_n)$ $= (a_1 + b_1, ---, a_n + b_n) + (c_1, ---, c_n)$ $=((a_1,-a_n)+(b_1,-a_n))+(c_1,-a_n)$

(ii) Let (a1, --, an), (b1, --, bn) ∈ Fn $(a_1, --, a_n) + (b_1, --, b_n)$ $= (a_1 + b_1, - - , a_n + b_n)$ = (b,+a,, --, bn+an) $= (b_1, -, b_n) + (a_1, -, a_n)$

(N) Let n-times 0 i.e. $(0,0,-,0) \in F^n$ and let $(\alpha_1,\alpha_2,--,\alpha_n) \in F^n$.

 $(0,0,-,0) + (a_1,a_1 + ...,a_n)$ $= (0+a_1,0+a_1,-...,0+a_n)$ $= (a_1,a_1,-...,a_n)$

: (0,0,-,0) is the Identity element

(V) Let $(a_1,a_1,-...,a_n)$, $(-a_1,-a_2,-...,-a_n) \in F^n$. $(a_1,a_2,-...,a_n) + (-a_1,-a_2,-...,-a_n) = (a_1-a_1, a_2-a_2,-...,a_n-a_n) = (0,0,-...,0) \quad \text{in-times oy}$ So, $(-a_1,-a_2,-...,-a_n)$ is the Involve of $(a_1,a_2,-...,a_n)$.

(vi) Let $c \in F$ and $(a_1, --, a_n), (b_1, --, b_n) \in F^n$ $\therefore c((a_1, --, a_n) + (b_1, --, b_n))$ $= c(a_1 + b_1, --, a_n + b_n)$ $= (ca_1 + cb_1, --, ca_n + cb_n)$ $= (ca_1, --, ca_n) + (cb_1, --, cb_n)$ $= c(a_1, --, a_n) + c(b_1, --, b_n)$

(vii) Let ceF and $(a_1, \dots, a_n) eF^n$ $: c(a_1, \dots, a_n)$ $= (ca_1, \dots, ca_n) eF^n$

(viii) Let $c_1d \in F$ and $(a_1, ..., a_n)$, $(b_1, ..., b_n) \in F^n$: $(c+d) \cdot (a_1, ..., a_n)$ = $(ca_1 + da_1, ..., ca_n + da_n)$ = $(ca_1, ..., ca_n) + (da_1, ..., da_n)$ = $c(a_1, ..., a_n) + d(a_1, ..., a_n)$ (ix) Let $c,d \in F$ and $(a_1, --, a_n) \in F^n$. : $c.(d.(a_1, --, a_n))$ = $c.(da_1, --, da_n)$ = $((cd)a_1, ---, (cd)a_n)$ = $(cd)(a_1, ---, a_n)$

(x) Let $(a_1, a_2, ---, a_n) \in F^r$ and 1 is the Unit scalar. : $(a_1, a_2, ---, a_n)$ = $(1a_1, 1a_2, ---, 1a_n)$ = $(a_1, a_2, ---, a_n)$

Since all the propordies are satisfied, so we can say that:

The direct sums of a field Fie. Fn is a vector space over F.

> Given operations: $(x,y) + (x_1,y_1) = (x+x_1,0)$ c(x,y) = (cx,0)

Properties: (a) Let $\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2), \vec{c} = (x_3, y_3)$

where $(x_i, y_i) \in \mathbf{B} V$ for $i \gg 1$

(i) $\vec{a} + \vec{b} = (x_1, y_1) + (x_2, y_2)$ = $(x_1 + x_2, 0) \in V$ This property holds TRUE.

(ii) Commutative Property:- $\vec{\alpha} + \vec{b} = (x_1, y_1) + (x_2, y_2)$ $= (x_1 + x_2, 0)$ $= (x_2 + x_1, 0)$ $= \vec{b} + \vec{a}$ This also holds TRUE.

(III) Associative Property:- $\overrightarrow{\alpha} + (\overrightarrow{b} + \overrightarrow{c}) = (x_1, y_1) + ((x_2, y_1) + (x_2, y_2))$ $= (x_1, y_1) + (x_2 + x_3, 0)$ $= (x_1 + (x_1 + x_3), 0)$ $= ((x_1 + x_2) + x_3, 0)$ $= (x_1 + x_2, 0) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_2) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2, y_3)$ $= (x_1 + x_2, 0) + (x_3, y_3)$ $= (x_1 + x_2, 0) + (x_2 + x_3, 0)$ $= (x_1 + x_2, 0) + (x_3 + x_3, 0)$ $= (x_1 + x_2, 0) + (x_2 + x_3, 0)$ $= (x_1 + x_2, 0) + (x_2 + x_3, 0)$ $= (x_1 + x_2, 0) + (x_2 + x_3, 0)$ $= (x_1 + x_2, 0) + (x_2 + x_3, 0)$ $= (x_1 + x_2, 0) + (x_2 + x_3, 0)$ $= (x_1 + x_2, 0) + (x_2 + x_3, 0)$ $= (x_1 + x_2, 0) + (x_2 + x_3, 0)$ $= (x_1 + x_2, 0) + (x_2 + x_3, 0)$ $= (x_1 + x_2, 0) + (x_2 + x_3, 0)$ $= (x_1 + x_2,$

(iv) Additive Identity:
Let $\vec{e} = (0,0) \in V$ for $0 \in IR$ $\vec{a} + \vec{e} = (x, y, 1) + (0, 0)$ = (x, +0, 0) = (x, 0) $\neq \vec{a}$ So, the Identity Element does not exist for ... We can say that, V is NOT a Vector Space.

__X-

Now, $a_1 + b_1 + 3(a_1 + b_1)$ = $(a_1 + 3a_2) + (b_1 + 3b_2)$ = $a_3 + b_3$ $\therefore \alpha + \beta \in X$ --- (i)

Also, $ca_1 + 8ca_2$ = $c(a_1 + 3a_2)$ = ca_3 where $c \in \mathbb{R}$: $cd \in X$ ----(ii)

Since, it follows both the subspace proporties of addition and scalar multiplication.

This set IS a subspace of IRn

(c) all α such that $a_1 = a_1^2$:

Coiver $a_2 = a_2^2$ Let $a_4 = 1$.

Let $\alpha = (a_1, a_1, a_2, \dots, a_n) \in X$ {as $a_4 = 1$ }

Now, $2\alpha = (2a_1, 2, 2a_2, \dots, 2a_n) \notin X$

So, the scalar peroperty of multiplication is NOT satisfied here.

This set is NOT a subspace of IR"

- (d) all α such that $a_1a_2 = 0$:

 Let $\alpha = (0, \alpha_1, \alpha_2, \dots, \alpha_n)$ where $\alpha_1 = 0$ and, $\beta = (b_1, 0, b_2, \dots, b_n)$ where $b_2 = 0$ where: $a_2, a_3, \dots, a_n, b_1, b_3, \dots, b_n \in \mathbb{R}$ and; $\alpha, \beta \in X$.

 Now, $\alpha + \beta = (b_1, a_2, a_3 + b_3, \dots, a_n + b_n) \notin X$ So, it does NOT satisfy the addition property.

 This set is NOT a subspace of \mathbb{R}^n ,
- (e) all α such that as is rational:

 Let $\alpha = (a_1, 1, a_2, ..., a_n) \in X$ whose; $a_2 = 1$ and $a_1, a_3, ..., a_n \in \mathbb{R}$ Now, $\sqrt{2}\alpha = (\sqrt{2}a_1, \sqrt{2}, \sqrt{2}a_3, ..., \sqrt{2}a_n) \notin X$ So, it does NOT satisfy the scalar multiplication property.

 This set is NOT a subspace of \mathbb{R}^n .