On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated

小池 貴之 (東京大学)*

Xを射影的で滑らかな複素代数多様体, LをX上の (擬有効) 正則直線束とする. $h_{\min,L}$ をLの最小特異計量 (曲率カレントが半正なる特異エルミート計量の内最も発散が緩やかなもの [DPS]) とすると, Lがネフかつ巨大である時にルロン数のレヴェルでは $h_{\min,L}$ の発散は検出されないことがBoucksomによって知られている.

定理 1. $([B,\,3.2])$ Lがネフかつ巨大ならば、各 $x\in X$ について $\nu(\varphi_{\min,L},x)=0$ である. \square

ここで ν はルロン数を表し、 $\varphi_{\min,L}$ をx まわりでの $h_{\min,L}$ の局所 weight ($h_{\min,L} = e^{-\varphi_{\min,L}}$ なるもの) である多重劣調和函数としている.

一方で [BEGZ, 5.4] ではネフかつ巨大でありながら $\{\varphi_{\min,L} = -\infty\} \neq \emptyset$ なる (X,L) が $\dim X = 3$ で構成されている. つまり L のネフかつ巨大という仮定は、少なくとも 3 次元以上では有界な最小特異計量の存在を含意はしない. では Zariski による次の例ではどうであろうか?

例 2. (Zariski の例, [L, 2.3.A]) C を \mathbb{P}^2 の滑らかな 3次曲線とする. C 中一般の位置にある 12 点 p_1, p_2, \cdots, p_{12} を中心とする \mathbb{P}^2 の爆発 π : $X \to \mathbb{P}^2$ を考える. C の π による強変換を D, \mathbb{P}^2 の直線の π による引き戻しを H とする. このとき直線束 $L = \mathcal{O}(D+H)$ は次を満たす. つまり, 任意の $m \geq 1$ に対して線形系 $|L^{\otimes m}|$ はD を含み, かつ $|L^{\otimes m}\otimes\mathcal{O}(-D)|$ は大域切断で生成される. \square

このZariskiの例ではLはネフかつ巨大であるが、半豊富ではない。また切断環R(X,L)は明らかに非有限生成であるため、最小特異計量の発散はR(X,L)の情報だけからは決定できない([BEGZ, 6.5])、今回の主結果は次である。

定理 3. Zariski の例 (X, L) に於いて, L の最小特異計量は連続にとれる. つまり, L には連続エルミート計量で半正な曲率を持つものが存在する. \square

より一般に、次が言える.

定理 4.~X を滑らかな射影複素多様体,D をその余次元 1 の滑らかな部分多様体,L を X 上の擬有効直線束とする.ここで D が X の中で複素管状近傍を持つことと,直線束 $L\otimes \mathcal{O}(-D)$ が滑らかなエルミート計量で曲率が半正なるものを持つことを仮定する.このとき L の最小特異計量 $h_{\min,L}$ は, $L|_D$ が擬有効であるときとそのときに限り $h_{\min,L}|_D$ $\not\equiv \infty$ であり,このとき $h_{\min,L}|_D$ は $L|_D$ の最小特異計量である. \square

ただしここで「D が X の中で複素管状近傍を持つ」とは, X 中での D のある近傍 U と $N_{D/X}$ 中での 0-切断のある近傍 U' が存在して, U と U' が双正則となることを意味している. 定理 4 から定理 3 が従うことは, 次の定理から分かる.

本研究は科研費 (課題番号:25-2869) 及び博士課程教育リーディングプログラムの助成を受けたものである。

²⁰¹⁰ Mathematics Subject Classification: $32\mathrm{J}25;\,14\mathrm{C}20.$

キーワード: minimal singular metrics, tubular neighborhoods, Zariski example.

^{*〒153-8914} 東京都目黒区駒場 3-8-1 東京大学 大学院数理科学研究科 e-mail: tkoike@ms.u-tokyo.ac.jp

定理 5. ([G, Satz 7]) X を滑らかな複素曲面, D を X に埋め込まれた滑らかで種数 が g なる閉リーマン面とする. D の自己交点数 (D^2) が $\min\{0,4-4g\}$ より小さければ D は X の中で複素管状近傍を持つ. \square

定理4は次のようにして示される. $L|_D$ が擬有効でないときには明らかに $h_{\min,L}|_D \equiv \infty$ なので、以下では $L|_D$ が擬有効とする. 始めに D 上のみで消える $H^0(X,\mathcal{O}(D))$ の元 f_D と、 $A = L \otimes \mathcal{O}(-D)$ の滑らかなエルミート計量で曲率が半正なるもの $h_A = e^{-\varphi_A}$ をとる. このとき $\log |f_D|^2 + \varphi_A$ を局所 weight とする L の半正曲率を持つ計量が定まるが、これは D で発散してしまっている. そこでこの計量を D の周りで次のように加工する. まず、X 中での D のある近傍 U と $N_{D/X}$ 中での 0-切断のある近傍 U' として、U と U' が双正則となるものをとる. 次にこの U' を複素多様体 $X' := \mathbb{P}(L|_D \oplus A|_D)$ 中での部分多様体 $D' := \mathbb{P}(L|_D)$ の近傍とみなす (X' は $N_{D/X}$ のコンパクト化であり、D' は $N_{D/X}$ の 0-切断に対応することに注意する). このとき X' 上の相対超平面束 $L' = \mathcal{O}_{X'/D'}(1)$ の U' への制限 $L'|_{U'}$ は、双正則射 $i:U\to U'$ を介して $L|_U$ と C^∞ 同形である.以下簡単のため $A|_D$ が豊富であるとして証明を進める (-般には $A|_D$ は半豊富までしか言えないが、定理の証明にはこれで十分である). この時は L' の最小特異計量が次のように D 上の配直線束の equilibrium 計量を用いて具体的に構成できる.

定理 6. Dの局所座標x, $L^{-1}|_D$ の局所自明化 s_L^* , $A^{-1}|_D$ の局所自明化 s_A^* を用いてX'の局所座標(z,x)を $(z,x)=[zs_A^*(x)+s_L^*(x)]\in X'$ で定める. 滑らかな $L|_D$ のエルミート計量 $h'=e^{-\varphi'}$ に対して $\varphi_{L'}(z,x)=\log\max_{t\in[0,1]}|z|^{2t}e^{(t\varphi_A|_D+(1-t)\varphi')_e(x)}$ を局所 weight とするL'の計量は最小特異計量である. \square

ここで $(\psi)_e = \psi + \sup\{\chi\colon D\to [-\infty,0]; \psi-\text{psh}\}$ は $e^{-\psi}$ に対応する equilibrium 計量 の局所 weight である. $\varphi_{L'}(0,x)=(\varphi')_e(x)$ は $L|_D$ の最小特異計量の局所 weight であることに注意する. 定理の $\varphi_{L'}$ と双正則射 $i\colon U\to U'$ を用いて, $U\perp L|_U$ の計量で局所 weight が $i^*\varphi_{L'}+($ 得らかな調和関数) と書けるものが構成できる. これを $\psi_{L'}$ と書く. このとき U の外での局所 weight が $\log|f_D|^2+\varphi_A$ であり, D の周りでの局所 weight が $\max\{\psi_{L'}-C,\log|f_D|^2+\varphi_A\}$ である L の計量は最小特異計量であることが分かる (ただし C は十分大なる正の定数). つまり $L|_D$ の最小特異計量が L の最小特異計量に拡張できたので主張が示されたことになる.

尚以上の議論により、定理4の状況 (でさらに $A|_D$ が豊富なとき) では、L の最小特異計量の発散の様子が D 上の \mathbb{R} -直線束の equilibrium 計量を用いて (定理6のように) 具体的に記述できていることが分かる.

参考文献

- [B] S. BOUCKSOM, Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. (4) **37**(1) (2004), 45–76.
- [BEGZ] S. BOUCKSOM, P. EYSSIDIEUX, V. GUEDJ, A. ZERIAHI, Monge-Ampère equations in big cohomology classes. Acta Math. **205** (2010), 199–262.
- [DPS] J.-P. DEMAILLY, T. PETERNELL, M. SCHNEIDER, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12(6) (2001), 689–741.
- [G] H. GRAUERT, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. **146**(4) (1962), 331-368.
- [L] R. LAZARSFELD, Positivity in algebraic geometry. I, Springer-Verlag, Berlin, 2004.