Control Design Approaches for LaRC Experiments

Steve Yurkovich Ümit Özgüner

The Ohio State University
Columbus, OH

The 1th Annual SCOLE Workshop

Direct Fixed-Order Compensator Design

Given ...

$$\dot{x} = Ax + Bu + w_1$$

$$y = Cx + w_2 ,$$

... design an n_c^{th} order robust, zero set-point compensator

$$\dot{x_c} = A_c x + F y$$

$$u = -K x_c$$

to minimize

$$J = \lim_{ au o \infty} rac{1}{ au} \int_0^ au (x^T(t) R_1 x(t) + u^T(t) R_2 u(t)) dt \quad ,$$

LQG Solution

$$K = R_2^{-1}B^TP$$
 ,
$$F = QC^TV_2^{-1}$$
 ,
$$A_c = A - BK - FC$$
 ,

 ${\cal P}$ and ${\cal Q}$ positive definite solutions to

$$PA + A^{T}P + R_{1} - PBR_{2}^{-1}B^{T}P = 0$$
 ,
$$QA^{T} + AQ + V_{1} - QC^{T}V_{2}^{-1}CQ = 0$$
 .

$$0 = PA_{s} + A_{s}^{T}P + \sum_{i=1}^{\mu} A_{i}^{T}PA_{i} - P_{s}^{T}R_{2s}^{-1}P_{s} + R_{1}$$

$$+ \sum_{i=1}^{\mu} (A_{i} - Q_{s}V_{2s}^{-1}C_{i})^{T}\hat{P}(A_{i} - Q_{s}V_{2s}^{-1}C_{i}) + \tau_{\perp}^{T}PBR_{2}^{-1}B^{T}P\tau_{\perp}$$

$$0 = A_{s}Q + QA_{s}^{T} + \sum_{i=1}^{\mu} A_{i}QA_{i}^{T} - Q_{s}V_{2s}^{-1}Q_{s}^{T} + V_{1}$$

$$+ \sum_{i=1}^{\mu} (A_{i} - B_{i}R_{2s}^{-1}P_{s})\hat{Q}(A_{i} - B_{i}R_{2s}^{-1}P_{s})^{T} + \tau_{\perp}QC^{T}V_{2}^{-1}CQ\tau_{\perp}^{T}$$

$$0 = \hat{P}A_{QS} + A_{QS}^{T}\hat{P} + P_{s}^{T}R_{2s}^{-1}P_{s} - \tau_{\perp}^{T}PBR_{2}^{-1}B^{T}P\tau_{\perp}$$

$$0 = A_{PS}\hat{Q} + \hat{Q}A_{PS}^{T} + Q_{s}V_{2s}^{-1}Q_{s}^{T} - \tau_{\perp}QC^{T}V_{2}^{-1}CQ\tau_{\perp}^{T}$$

Application to SCOLE

- Reflector Panel
- Objective: Vibration Damping
- 3 inputs (reaction wheels at hub)
- 5 outputs (gyros at hub, accelerometers at reflector center)
- \bullet 10 modes

MEOP procedure

- Robustification with respect to modal frequencies
- ullet Robustness measure: ϵ
- Results:

Order	$ \epsilon $	$\frac{d\omega}{\omega}$ (%)	Cost
20	0.0138	-20 to +4	0.229
12	0.0141	-30 to +20	0.231
10	0.0153	-45 to +30	0.231
8	0.0140	-9 to +30	0.235

Optimal Projection Design

Order	$ \epsilon $	$\frac{d\omega}{\omega}$ (%)	Cost
20	0.0148	-25 to +40	0.407
12	0.0156	-50 to +50	0.311
10	0.0154	-50 to +50	0.319
8	0.0154	-40 to +40	0.322

MEOP Designs

Open loop outputs.

Closed loop outputs.

Vibrational energy profile (full order designs)

Vibrational energy profile (reduced-order designs)

Torque input on x-axis at the hub.

Torque input on y-axis at the hub.

Model Reference Adaptive Control (MRAC)

Procedure:

Find largest possible family of adaptation laws assuring stability, select specific adaptation law for particular application.

Methods:

Hyperstability and Positivity Concepts

Control Approach

PI Adaptive Model Following Feedback

Control Objectives

- Control designed for first five modes
- \bullet 2–10% damping required

mode	Frequency	Desired
number	\mathbf{Hertz}	Damping
1	.964	10%
2	.964	10%
3	7.17	2%
4	7.51	2%
5	9.6	2%

• Effects of actuator dynamics not included

Application to MiniMast

3.5: 3.5			
Mini Mast Modal Frequencies			
nıode	Frequency	Mode	
number	Hertz	Type	
1	.964	х - у	
2	.964	y - z	
3	7.17	plate	
4	7.51	torsion	
5	9.6	y - z	
6	9.8	x - z	
7	10.2	y - z	
8	12.1	mix	
9	16.08	mix	
10	16.8	mix	

Mini Mast Model Actuators						
number	FEM	Actuator	Cordinate Frame			Force
	Point	Type	X	Y	Z	Limitations
1	334	Linear Actuator	1	0	0	30 newtons
2	336	Linear Actuator	1	0	0	30 newtons
3	335	Linear Actuator	0	1	0	30 newtons
4	337	Linear Actuator	0	1	0	30 newtons
5	338	Reaction Wheel	0	0	1 Rot	50 Ft 1b.

Outlook

- Effects of Actuator Dynamics
- Refinement of STAC
- ullet System Identification
- ullet Experimentation