Syntax and Semantics: Exercise Session 13

Exercise 1.

Consider the following grammar for arithmetic expressions A:

$$n ::= 0 \mid s(n)$$
 $a ::= n \mid a + a \mid a * a$

Intuitively, s(n) is the successor of n, e.g., s(0) and s(s(0)) encodes 1 and 2, respectively.

1) Let the set of states be \mathbb{A} , the set of final states be $\{0, s(0), s(s(0)), s(s(s(0))), \ldots\}$ and consider the following *small step* transition rules for addition:

$$[r_1] \ s(n_1) + n_2 \Rightarrow n_1 + s(n_2)$$
 $[r_2] \ 0 + a \Rightarrow a$ $[r_3] \ a_1 + a_2 \Rightarrow a_2 + a_1$ $[r_4] \ \frac{a_1 \Rightarrow a'_1}{a_1 + a_2 \Rightarrow a'_1 + a_2}$

Prove $s(s(s(0))) + s(s(0)) \Rightarrow^* s(s(s(s(s(0)))))$ using $[r_1], \ldots, [r_4]$. All intermediate computations have to be proven. (Intuitively, this corresponds to deducing 3+2=5.)

- 2) Complete the *small step* semantics from 1) by providing the rules for multiplication. Note: The complete semantics of A is intended to be the same as for arithmetic expressions in the language **Bims** from Hans Hüttel's book but with the modified representation of numbers as explained above.
- 3) Using the transition rules from 1) and 2), prove $s(s(0)) * s(s(0)) \Rightarrow^* s(s(s(s(0))))$. All intermediate computations have to be proven.

Exercise 2.

Consider the arithmetic and boolean expressions from Chapter 4 in Hans Hüttel's book that have been extended by the existential (\exists) and the universal (\forall) quantifier:

$$a ::= n \mid x \mid a_1 + a_2 \mid a_1 * a_2 \mid a_1 - a_2 \mid (a_1)$$

$$b ::= a_1 = a_2 \mid a_1 < a_2 \mid \neg b_1 \mid b_1 \land b_2 \mid b_1 \to b_2 \mid (b_1) \mid \exists x.(b_1) \mid \forall x.(b_1)$$

1. Consider the following big step transition rules for the existential quantifier:

$$[\exists_{1}] \frac{s[x \mapsto v] \vdash b_{1} \to_{b} \mathbf{tt}}{s \vdash \exists x.(b_{1}) \to_{b} \mathbf{tt}} \text{ for some } v \in \mathbb{Z}$$
$$[\exists_{2}] \frac{s[x \mapsto v] \vdash b_{1} \to_{b} \mathbf{ff}}{s \vdash \exists x.(b_{1}) \to_{b} \mathbf{ff}} \text{ for all } v \in \mathbb{Z}$$

By combining the above rules with those from the book of Hans Hüttel, evaluate the expression $\exists x.(x*x=\underline{4})$ in the state $s=[x\mapsto 0]$ to its truth value.

2. Provide the big step transition rules for the universal quantifier.

Exercise 3.

Consider the language $L'' = \{w \in \Sigma^* \mid w = a^n \text{ with } n \geq 1\}$ over the singleton alphabet $\Sigma = \{a\}$. With this, consider the big step transitions $\to \subseteq L'' \times \mathbb{N}$ given by

$$[r_1]$$
 $\frac{w \to k}{aw \to k'}$ $k' = k \cdot |aw|,$

where |aw| denotes the length of the word aw.

- 1. Using the big step semantics, prove $aa \rightarrow 2$ and $aaa \rightarrow 6$.
- 2. Using the big step semantics and induction, prove that $a^n \to v$ with $v = 1 \cdot 2 \cdot \ldots \cdot n$ for all $n \ge 1$. Note that a^n is the word consisting of n symbols a.

Exercise 4.

Consider the language $L'' = \{\underline{0}, \underline{1}\}^+$ of binary strings. With this, we consider the big step semantics $\to \subseteq L'' \times \mathbb{N}$ given by

$$[r_0] \ \underline{0 \to 0}, \qquad [r_1] \ \underline{1 \to 1}, \qquad [r_2] \ \underline{\frac{w \to k'}{0w \to k}} \ k = k', \qquad [r_3] \ \underline{\frac{w \to k'}{1w \to k}} \ k = 2^{|w|} + k'$$

As usual, |w| denotes the length of w, while σw stands for a concatenation of $\sigma \in \{\underline{0},\underline{1}\}$ and $w \in L''$. Essentially, \to assigns each binary string its decimal value (i.e., the value represented by the string with 2 as the base of the numeral system).

- 1) Using the big step semantics, prove $\underline{10} \rightarrow 2$ and $\underline{110} \rightarrow 6$.
- 2) Consider the language of ternary strings $L''' = \{\underline{0}, \underline{1}, \underline{2}\}^+$. Provide the big step semantics $\to_3 \subseteq L''' \times \mathbb{N}$ that maps each ternary string to its decimal value (i.e., the value represented by the string with 3 as the base of the numeral system).