

COMUNICAÇÕES DIGITAIS

Prof. Claudio Coutinho

Aula 03

Autocorrelação

Autocorrelação de sinais de energia

• A função de **autocorrelação** de um sinal de energia real x(t) é:

$$R_{x}(\tau) = \int_{-\infty}^{\infty} x(t)x(t+\tau)dt, \qquad -\infty < \tau < \infty$$

- $R_{\chi}(\tau)$ avalia o quanto um sinal é similar com uma cópia sua deslocada τ unidades.
 - Note que $R_x(\tau)$ é uma função que depende do deslocamento aplicado.

Propriedades da Autocorrelação de sinais de energia

- A função de autocorrelação de sinais de energia tem as seguintes propriedades:
- 1. $R_x(\tau) = R_x(-\tau)$: é uma função par, ou seja, simétrica em relação a τ ;
- 2. $R_{\chi}(\tau) \leq R_{\chi}(0)$ para todo τ , ou seja, o valor máximo de $R_{\chi}(\tau)$ ocorre em $\tau = 0$;
- 3. $R_{\chi}(\tau) \stackrel{\mathcal{F}}{\leftrightarrow} \Psi_{\chi}(f)$: A transformada de Fourier da função de autocorrelação é igual à **ESD** de $\chi(t)$;
- 4. $R_{\chi}(0) = E_{\chi}$: o valor na origem de $R_{\chi}(\tau)$ é igual à energia de $\chi(t)$.

Autocorrelação de sinais de potência

• A função de **autocorrelação** de um sinal de potência real x(t) é:

$$R_{x}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t)x(t+\tau)dt, \qquad -\infty < \tau < \infty$$

• Quando x(t) é periódica, a avaliação pode ser feita apenas em um período. Assim, temos:

$$R_{x}(\tau) = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} x(t)x(t+\tau)dt, \qquad -\infty < \tau < \infty$$

Propriedades da Autocorrelação de sinais de potência

- A função de autocorrelação de sinais de energia tem as seguintes propriedades:
- 1. $R_x(\tau) = R_x(-\tau)$: é uma função par, ou seja, simétrica em relação a τ ;
- 2. $R_{\chi}(\tau) \leq R_{\chi}(0)$ para todo τ , ou seja, o valor máximo de $R_{\chi}(\tau)$ ocorre em $\tau = 0$;
- 3. $R_{\chi}(\tau) \stackrel{\mathcal{F}}{\leftrightarrow} G_{\chi}(f)$: A transformada de Fourier da função de autocorrelação é igual à **PSD** de $\chi(t)$;
- 4. $R_{\chi}(0) = P_{\chi}$: o valor na origem de $R_{\chi}(\tau)$ é igual à potência de $\chi(t)$.

Experimento

• Experimento 4: Uso de autocorrelação para estimar a frequência fundamental, ou pitch, de um áudio.

Aplicação de Autocorrelação em Sistemas de Radar

- Um sistema de radar funciona enviando um sinal piloto, e em seguida começa a calcular a correlação do sinal enviado com os sinais recebidos.
- Quando a autocorrelação alcança um valor de limiar, o tempo decorrido entre o envio esta aquisição é gravado, τ .
- Sabendo-se o tempo que a onda leva para se propagar pelo ar e τ , calcula-se a distância que o objeto se encontra da estação.

Aplicação de Autocorrelação em Sincronismo

- A sincronização dos transceptores é algo crítico em SCDs.
- O processo de sincronismo é realizado no início da fase de treinamento.
- Neste processo um sinal (piloto) conhecido por ambos os transceptores é enviado pela central.
- O receptor avalia o recebimento deste sinal através de um cálculo de autocorrelação.
- A partir daí o receptor identifica a partir de que instante os símbolos úteis estão sendo enviados.

Cálculo de Autocorrelação em Sinais Digitais

- Na definição anterior de autocorrelação, os limites de integração são tomados de $-\infty$ a ∞ .
- É óbvio que esta formulação não se aplica a sinais digitais, que são discretos e finitos.
- Para um sinal digital x[n], com N amostras, a correlação é dada por:

$$R_{x}[i] = \sum_{n=0}^{N-1} x[n+i]x[n], \qquad i = -(N-1), \dots, N-1$$

• Assumimos valores zero quando x[i] rende um valor fora da escala (zero-padding)

Exercícios

• Exercício: Calcule a autocorrelação do seguinte sinal:

$$x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$$

Trabalho em equipe

- Temas: zigbee, LoRa, bluetooth 4.0 e 5G;
- Quatro (4) equipes, que devem entregar um texto no formato de artigo com 3 páginas (template IEEE) referente ao seu tema, e fazer uma apresentação de no máximo 20 min. O artigo deve conter Figuras. A apresentação será feita através de slides.
- Todos os componentes das equipes devem apresentar. A nota será coletiva;
- Cada equipe deve abordar: história da tecnologia, aspectos técnicos (frequência de operação, largura de banda, potência de transmissão, taxa de transmissão, alcance, latência, etc), vantagens e desvantagens, e um estudo de caso;
- Data de entrega e apresentação: 28/04/2022.