

SIMULTAN

$$H_0$$
: $\beta_1 = \beta_1 = \cdots = \beta_k = 0$

 $H_1: \beta_i \neq 0$ for at least one j

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Regression Residual Total	$egin{array}{c} SS_{ m R} \ SS_{ m Res} \ SS_{ m T} \end{array}$	k $n - k - 1$ $n - 1$	$MS_{ m R} \ MS_{ m Res}$	$MS_{ m R}/MS_{ m Res}$

$$SS_{R} = \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}$$

 $SS_{\rm T} = SS_{\rm R} + SS_{\rm Res}$

$$\hat{\sigma}^2 = MS_{\text{Pos}}$$

$$SS_{R} = \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}$$

$$SS_{Res} = \mathbf{y}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} - \left|\hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}\right|$$

$$SS_{T} = \sum_{i=1}^{n} y_{i}^{2} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} = \mathbf{y}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}$$

Therefore, to test the hypothesis
$$H_0$$
: $\beta_1 = \beta_2 = \ldots = \beta_k = 0$, compute the test statistic F_0 and reject H_0 if $F_0 > F_{\alpha,k,n-k-1}$

PARTIAL

The hypotheses for testing the significance of any individual regression coefficient, such as β_i , are

$$H_0: \beta_j = 0, \quad H_1: \beta_j \neq 0$$
 (3.28)

If H_0 : $\beta_i = 0$ is not rejected, then this indicates that the regressor x_i can be deleted from the model. The **test statistic** for this hypothesis is

$$t_0 = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 C_{jj}}} = \frac{\hat{\beta}_j}{\operatorname{se}(\hat{\beta}_j)}$$
(3.29)

where C_{ii} is the diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$ corresponding to $\hat{\boldsymbol{\beta}}_i$. The null hypothesis H_0 : $\beta_i = 0$ is rejected if $|t_0| > t_{\alpha/2, n-k-1}$. Note that this is really a **partial** or **marginal test** because the regression coefficient β_i depends on all of the other regressor variables $x_i (i \neq j)$ that are in the model. Thus, this is a test of the **contribution** of x_j given the other regressors in the model.