Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №8 Экспериментальное построение областей устойчивости линейной системы на плоскости двух параметров Вариант - 9

Выполнила	Сорокина Т. В.	(фамилия, и.о.)	(подпись)		
Проверил		(фамилия, и.о.)	(подпись)		
""	20г.	Санкт-Петербург,	20г.		
Работа выполнена	с оценкой				
Дата защиты "	_" 20				

Цель работы: ознакомление с экпериментальными методами посторения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

В задании требуется применить методы построения областей устойчивости линейных динамических систем и проанализировать как при изменении параметров системы будет меняться ее устойчивость.

Исходные данные

Структурная схема линейной системы третьего порядка представлена на рисунке 1. Исходя из условия задания параметр постоянной времени $T_1=2.5$ с. По условию параметр постоянной времени T_2 должен меняться в диапазоне от 0.1 с до 5 с. Так же задано нулевое входное воздействие g(t)=0 и ненулевое начальное значение выходной переменной y(0)=1. Требуется изменять коэффициент передачи K для изменения вида устойчивости.

Рисунок 1 – Структурная схема линейной системы третьего порядка

1 Виды устойчивости системы

На рисунке 2 представлена схема моделируемой системы.

Рисунок 2 – Схема моделируемой системы

Система находится на границе устойчивости при K=10.4 и $T_2=0.1$.

На рисунке 3 показан график переходного процесса для системы, находящейся на границе устойчивости колебательного типа.

Рисунок 3 – График переходного процесса для системы, находящейся на границе устойчивости колебательного типа

Система устойчива при K=5 и $T_2 = 0.1$.

На рисунке 4 представлен график переходного процесса для устойчивой системы.

Рисунок 4 – График переходного процесса для устойчивой системы

Система неустойчива при K=12 и $T_2=0.1$. На рисунке 5 представлен график переходного процесса для неустойчивой системы.

Рисунок 5 – График переходного процесса для неустойчивой системы

Система находится на границе устойчивости нейтрального типа при K=0 и $T_2=0.1$. На рисунке 6 показан график переходного процесса для системы, находящейся на границе устойчивости нейтрального типа.

Рисунок 6 — График переходного процесса для системы, находящейся на границе устойчивости нейтрального типа

Изменили значение постоянной времени T_2 и получили следующую точку границы устойчивости. При $T_2=0.49$ и K=2.4 система находится на границе устойчивости колебательного типа. На рисунке 7 представлен график переходного процесса для системы, находящейся на границе устойчивости колебательного типа.

Рисунок 7 — График переходного процесса для системы, находящейся на границе устойчивости колебательного типа

Таким образом, методом математического моделирования было найдено 10 точек, для построения границы устойчивости. В таблице 1 представлены значения K, полученные методом математического моделирования системы.

Таблица 1 — Значения K,
полученные методом математического моделирования системы и соответствующие им значения
 $T_{\rm 2}$

K	2.4	1.5	1.1	0.9	0.8	0.74	0.69	0.65	0.62	0.6
T_2	0.49	0.9	1.4	2	2.4	2.9	3.5	4	4.5	5

2 Теоретический расчет границы устойчивости

Требуется произвести расчет границы устойчивости с использованием критерия Гурвица. Передаточная функция:

$$W(s) = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K}$$
(1)

Матрица Гурвица:

$$G = \begin{bmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & 1 \end{bmatrix}$$
 (2)

$$K = \frac{T_1 + T_2}{T_1 * T_2} \tag{3}$$

Рассчитаем теоретические значения K по формуле (3). В таблице 2 представлены значения K, полученные как расчетным методом, так и методом математического моделирования.

Таблица 2 – Расчетные значения Kp, и значения K, найденные методом математического моделирования

T_2	0.49	0.9	1.4	2	2.4	2.9	3.5	4	4.5	5
K	2.4	1.5	1.1	0.9	0.8	0.74	0.69	0.65	0.62	0.6
Kp	2.44	1.51	1.11	0.9	0.82	0.74	0.68	0.65	0.62	0.6

На рисунках 8 и 9 представлены графики зависимостей $T_2(\mathrm{Kp})$ и $T_2(\mathrm{K})$.

Рисунок 8 – Графическое изображение расчетной границы устойчивости

Рисунок 9 — Графическое изображение границы устойчивости, найденной методом математического моделирования

Вывод

В ходе проведения данной лабораторной работы, была получена экспериментальная граница устойчивости и теоретическая граница устойчивости на плоскости. Система находилась на границе устойчивости нейтрального типа при K=0, при остальных видах устойчивости системы коэффициент К был положительным. С помощью критерия Гурвица был произведен теоретический расчет границы устойчивости. Графическое изображение теоретической границы устойчивости почти совпадает с графическим изображением экспериментальной границей устойчивости. Из этого можно сделать вывод, что расчет был произведен верно. Более точную оценку дают рассчитанные значения, по сравнению со значениями, полученными с помощью метода математического моделирования.