Section 2 Binary Operations, p25 1,3,5,27,28,36

Exercises 1 through 4 concern the binary operation * defined on $S = \{a, b, c, d, e\}$ by means of Table 2.26 (not shown).

1. Compute b*d, c*c, and [(a*c)*e]*a

Here are the computations:

$$b*d=e$$

$$c*c=b$$

$$[(a*c)*e]*a=[c*e]*a=a*a=a$$

3. Compute (b*d)*c and b*(d*c). Can you say on the basis of these computations whether * is associative?

Examples can only tell us if * is not associative.

$$(b*d)*c = e*c = a$$

 $b*(d*c) = b*b = c$

Since $a \neq c$, we know that * is not associative.

5. Complete Table 2.27 so as to define a commutative binary operation * on $S = \{a, b, c, d\}$.

2.28 Table

In Exercise 27 and 28, either prove the statement or give a counterexample.

27. Every binary operation on a set consisting of a single element (is) commutative and associative.

There is only one unique set consisting of a single element.

Proof. Consider $S = \{s\}$ where s * s = s.

- (a) Commutative: s * s = s = s * s. Thus S is commutative under *.
- (b) Associative: s * (s * s) = s * s = s = s * s = (s * s) * s. Thus S is associative under *.

Thus any binary operation on a set consisting of a single element is commutative and associative. \Box

28. Every commutative binary operation on a set having just two elements is associative.

We shall conduct a proof through counterexample.

 $\textit{Proof. Consider } S = \{a,b\} \text{ with * such that } \begin{array}{c|c} * & a & b \\ \hline a & b & a \\ \hline b & a & a \end{array}.$

$$a * (a * b) = a * a = b$$

 $(a * a) * b = b * b = a$

Since we assert that $b \neq a$, thus $a*(a*b) \neq (a*a)*b$, so S is a binary operation, which is commutative, but not associative.

36 Suppose that * is an associative binary operation on a set S. Let $H = \{a \in S : a*x = x*a \text{ for all } x \in S\}$. Show that H is closed under *. (We think of H as consisting of all elements of S that commute with every element in S.)