

Text Book

- ➤ Stuart Russell and Peter Norvig
 - ❖ Artificial Intelligence A Modern Approach, Prentice Hall, 3rd edition, 2011
- ➤ Elaine Rich and Kevin Knight:
 - Artificial Intelligence, Third Edition,
 - Tata McGraw, Hill, 2008

VIT Vellore Institute of Technology Description of Victoria and Artificial (VICTOR)

Suggestion for project

Introduction of AI

- > A machine learning approach in financial markets
- > Background Analysis and Design of an Agent-Based Operating System
- Intelligent Tourist Information System
- Classification of objects in images based on various object representations
- > Visual Semantic Web Ontology based E-learning management system
- Controlling a Robot Hand in Simulation and Reality
- Face Detection by Image Discriminating
- An intelligent mobile robot navigation technique using RFID Technology
- Library Robot Path Guiding Robotic System with AI using Microcontroller
- Wireless AI Based Fire Fighting Robot for Relief Operations
- Expert Systems

- Produced by human art or effort, rather than originating naturally.
- ➤ Intelligence
 - The ability to acquire knowledge and use it
- So AI was defined as:
 - AI is the study of ideas that enable computers to be intelligent.
 - AI is the part of computer science concerned with
 - ✓ Design of computer systems that exhibit human intelligence Dictionary

From the above two definitions, we can see that AI has two major roles:

- Study the intelligent part concerned with humans.
- Represent those actions using computers.

What is Artificial Intelligence?

- Making computers that think?
 - The automation of activities we associate with human thinking, like
 - ❖ Decision making, Learning ... ?
- > The art of creating machines that
 - Perform functions that require intelligence when performed by people?
- > A field of study that seeks to explain and emulate
 - ❖ Intelligent behaviour in terms of computational processes ?

What is Artificial Intelligence ? $\frac{Q \cdot VIT}{Q}$

- A branch of computer science that is concerned With the automation of intelligent behaviour?
- > The study of computations that make it possible To perceive, reason and act ?
- The study of mental faculties through the use of computational models?

State of Art with Al

Autonomous planning and scheduling:

- Hundred million miles from Earth,
- NASA's Remote Agent program became the first on-board autonomous planning program
 - √To control the scheduling of operations for a spacecraft.
- It monitored the operation of the spacecraft as the plans were executed
 - ✓ Detecting, diagnosing, and recovering from problems.

State of Art with Al

▶ Game playing :

- ❖IBM's Deep Blue became the first computer program to defeat the world champion in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 in an exhibition match.
- A "new kind of intelligence" across the board
- "The brain's last stand."

State of Art with Al

> Autonomous control:

- The ALVINN computer vision system was trained to steer a car to keep it following a lane
- NAVLAB computer-controlled minivan navigation across the United States-for 2850 miles
 - √Video cameras that transmit road images to ALVINN
 - ✓ Alvinn computes the best direction to steer, based on experience from previous training runs.
- It was in control of steering the vehicle 98%
 - ✓ A human took over the other 2%, mostly at exit ramps

State of Art with Al

➤ Medical diagnosis programs

- ❖ Based on probabilistic analysis have been able to perform at the level of an expert physician in several areas of medicine.
- A leading expert on lymph-node pathology scoffs at a program's diagnosis of a difficult case
- The machine points out the major factors influencing its decision and
 - ✓ Explains the subtle interaction of several of the symptoms in this case

State of Art with Al

➤ Logistics Planning:

- Persian Gulf crisis of 1991, U.S. forces deployed a Dynamic Analysis and Replanning Tool, DART.
- 50,000 vehicles, cargo, and people at a time,
- Account for starting points, destinations, routes, and conflict resolution among all parameters
- Few hours vs. weeks
- 30-year investment in Al paid off

State of Art with AI

> Robotics :

- HipNav is a system that uses computer vision techniques to create a three-dimensional model of a patient's internal anatomy
- Uses robotic control to guide the insertion of a hip replacement prosthesis.
- Many surgeons now use robot assistants in microsurgery.

State of Art with AI

> Language understanding and problem solving

- ❖PROVERB (Littman et al., 1999) is a computer program
- Solves crossword puzzles better than most humans, using constraints on possible word fillers,
- A large database of past puzzles, dictionaries and ✓Online databases such as a list of movies and the actors that appear in them

Areas of AI and Some VIT Under Including A Technique of T

- 20........
- Thought process
- Thinks as human
- Think rationally Right thing given what it knows
- ?? Do human think irrationally
- Action
 - Act as human
 - Rational way of acting
 - Approaches as human

 Hypothesis and confirmation by experimentation
- Approach as rational
 - Mathematics and engineering

What is Artificial Intelligence? The Property of the Property

HUMAN

RATIONAL

Systems that act like humans Turing

- > You enter a room which has a computer terminal.
 - You have a fixed period of time to type what you want into the terminal.
 - ✓ Study the replies.
 - At the other end of the line is either a human being or a computer system.
- > If it is a computer system
 - At the end of the period you cannot reliably determine whether it is a system or a human
 - ✓ The system is deemed to be intelligent.

Systems that act like humans

- These cognitive tasks include
 - Natural language processing
 - ✓ For communication with human
 - Knowledge representation
 - √To store information effectively & efficiently
 - Automated reasoning
 - √ To retrieve & answer questions using the stored information
 - Machine learning
 - ✓ To adapt to new circumstances

What is Artificial Intelligence ? "VIT"

THOUGHT

Systems that think rationally

Systems that act like humans

Systems that act rationally

HUMAN RATIONAL

Systems that think like humans: VIT cognitive modeling

- > Humans as observed from 'inside'
- > How do we know how humans think?
 - Introspection
 - Psychological experiments
 - Brain imaging
- Cognitive Science

What is Artificial Intelligence ? VIT

THOUGHT	Systems that think like humans	Systems that think rationally
BEHAVIOUR	Systems that act like humans	Systems that act rationally
	HUMAN	RATIONAL

Systems that think 'rationally' VIT "Laws of thought"

- > Humans are not always 'rational'
- > Rational defined in terms of logic?
- Logic can't express everything (e.g. uncertainty)
- Logical approach is often not feasible
 - ❖ In terms of computation time
 - Needs 'guidance'

What is Artificial Intelligence?

THOUGHT	Systems that think like humans	Systems that think rationally
BEHAVIOUR	Systems that act like humans	Systems that act rationally

HUMAN RATIONAL

Systems that act rationally: "Rational agent"

- ➤ Rational behavior?
 - Doing the right thing
- ➤ The right thing?
 - Expected to maximize goal achievement, given the available information
- Giving answers to questions is 'acting'.

Rational agents

- This course is about designing rational agents
- An agent is an entity that
 - Perceives and Acts
- Abstractly, an agent is a function from percept histories to actions

$$[f: P^* \rightarrow A]$$

- For any given class of environments and tasks,
 - We seek the agent with the best performance
 Class of agents
 - Caveat: Computational limitations make perfect rationality unachievable
 → Design best program for given machine resources

VIT' Vellore Institute of Technolous

Goals of Al

- To make computers more useful by letting them take over dangerous or tedious tasks from human
- Understand principles of human intelligence

- Something that acts mechanically
- Acts on well defined rules
- Laws of physics
- Is computer machine SPC?
- Is Human Machine?
- · Freewill, Emotions
- Emotional machine Marvin Minsky
 - Memories labels State
 - Dog Cat Mosquito, bacterias, Viruses,
 - Intuition
 - · Can it be defined by rules

Chinese room and translation

- Is it really intelligence
- Addition, Fourier, Laplace transform
- Neural network
- Language vs. Thought
 - Noam Chomsky Universal Grammar
 - Human are born with UG and learn language as per their environment

Goal of Al

- · Build a machine with mind of its own.
- For an intelligent agent
 - We need it have a mind that can represent world in a way that it can manage representation efficiently.
 - Operate in world
 - Do something useful for itself and achieve its goal.
- · Our thoughts are reflection of what is out there
- · What is out there is reflection of our thought.

CAPTCHA

➤"Completely Automated Public Turing test to tell Computers and Humans Apart,"

Cognitive modeling

- VIT*
 Vellor: Institute of Technology

 State of the Control of the Control of Control of
- Self-examination
- · Behavior analysis
- Brain Imaging

Criteria based AI

VIT Vellere Institute of Technology Standards by Chemics and control of CFOC day 1990

Strong AI

- Uses clustering and association
- Eg: Chess is a strong Al

Weak AI

- Uses keyword or request
- Eg: Coffee machine switches on whenever your voice is enabled

Criteria based Al Weak Al

Strong AI

Human Intelligence Vs Artificial Intelligence Intelligence

AI-100% correct

- ➤ Paperless in invoicing
- ➤ Job applications
- ➤ Automated testing
- ➤ Online marketing & sales
- ➤ Automatic updates
- ➤ Importing and Exporting data

Consequences of AI

- **≻**Efficiency
- ➤ Safer working condition
- ➤ Precision and accuracy

Drawbacks of AI

- · Lack of cognitive function
- · Limits to memory capabilities

VIT Vellore Institute of Technology Sensor in Cornel pair union of Colonia (1906)

VIT Voltage Institute of Technology

AI- Statistics for 2020 Tutor \$ 58% Travel agent \$ 56% Tax \$ 56% Tax \$ 54% Office assistant Health \$ 47% Alsaistant Health \$ 46% Financial adviser \$ 41% House Cleaner \$ 39% Chauffeur \$ 30% Doctor \$ 22%

Tools

VIT Vellore Institute of Technology Vellore Institute of Technology (in the control of the co

AI - Future

- · Cognitive Science
- -Robot can dream, get angry

VIT Vellore Institute of Technolog

Tic-Tac-Toe

7	8	9	9
4	5	(6
1	2	,	3
Corner	Side		Corne
Side	Center		Side
	0.1		_

The Al's algorithm

- ➤ 1 see if there's a move the computer can make that will win the game.
 - If there is, take that move. Otherwise, go to step 2
- > 2 See if there's a move the player can make that will cause the computer to lose the game.
 - If there is, move there to block the player. Otherwise, go to step 3.
- > 3 Check if any of the corner spaces
 - (spaces 1, 3, 7, or 9) are free. If so, move there.
 - If no corner piece is free, then go to step 4.
- > 4 Check if the center is free.
 - If so, move there. If it isn't, then go to step 5.
- 5 Move on any of the side pieces
 - (spaces 2, 4, 6, or 8). There are no more steps, because if the execution reaches step 5 the side spaces are the only spaces left.

Functions

- Nine spaces for each
- * Test it
- Coins as list/array

➤ Playerinput

- Check for X, O as chosen by player
- > Fullboard
- winner

- ➤ Computermove
 - Iterate AI algo for computer win
 - Iterate AI algo for blocking player
 - Occupy one of the corner..
- ➤ Random selection
 - ❖ X, O
 - One in list, corners
- playagain
- winner

Design Principles

- Building successful agents-systems that can reasonably be called intelligent
 - Agents and environment
 - ❖Notion of an agent is meant to be a tool ✓For analyzing systems.
- > How well an agent can behave
 - Depends on the nature of the environment
 - Some environments are more difficult than others.
- > A rational agent
 - One that behaves as well as possible.

Stuart J : Russell and Peter Norvig, Artificial Intelligence: A Modern Approac

VIT'

Agent and Environment

- An agent's choice of action at any given instant can depend on
 - The entire percept sequence observed to date,
 - But not on anything it hasn't perceived.

Stuart J . Russell and Peter Norvig, Artificial Intelligence: A Modern Approach

Agent

- ➤ An agent is anything that can be viewed as
 - Perceiving its environment through sensors
 - ✓ Human Ears, Eyes, Touch, Mouth
 - ✓ Robot Camera, Infrared sensors
 - ✓ Software Agent Key strokes, Files, Network Packets
 - Acting upon that environment through actuators
 - ✓ Human- Hands, Legs, Fingers, Sound
 - √ Robot Motor Movements, Holding, Horn, Music, Display systems, Pneumatic, Hydraulic
 - √ Software Agent Display systems , Files, Network Packets,
- Notion of an agent is meant to be
 - ❖ A tool for analyzing systems.

Strant I Russell and Pater Narvie Artificial Intelligence: & Morleys Annurary

Percept

- The agent's perceptual inputs at any given instant.
- > An PERCEPT SEQUENCE
 - agent's percept sequence is the complete history of everything the agent has ever perceived.
 - In general, an agent's choice of action at any given instant can depend on the entire percept sequence observed to date
 - Specify the agent's choice of action for every possible percept sequence

Agent Behaviour

- ➤ An agent's behavior is AGENT FUNCTION
 - ❖It maps any given percept sequence to an action.
- Describe an agent by
 - ❖Tabulating its function May be a large table
 - Percept sequence -> Action
 - √ The agent function is an abstract mathematical description
 - External characterization
- ➤ Internally Implementation
 - An agent program, algorithm, data, data structure.

- ➤ What is the rightway to fill the table?
- How you describe an agent
 - ❖Good, Bad, Intelligent, Stupid

- All operates at the most interesting end of the spectrum,
 - where the artifacts, agents, have significant computational resources
 - The task environment requires
 - ✓ nontrivial decision making.

Rational agent

- A rational agent is one that does the right thing ?? measure
 - Performance measure
 - √The RA generates a sequence of actions according to the percepts it receives.
 - √ This sequence of actions causes the environment to go through a sequence of states.
 - ✓ If the sequence is desirable, then the agent PERFORMANCE MEASURE has performed well.
 - Emphasis on environment state and not agent state
 - A designer need to devise one appropriate one as PM
 - ✓ For a vacuum cleaner The amount dirt cleaned in a hour
 - ✓ Sour grapes

Rational agent

- It is better to design performance measures according to
 - What one actually wants in the environment, rather than according to how one thinks the agent should behave
 - What is clean floor? Need philosophy
 - ✓ Average cleanliness
 - ✓ Mediocre job all the time
 - ✓ High energy to clean the floor long break
 - ✓ Average rich/poor
 - √ Rich and Poor combination

Rational agent

- > Rational at any given time depends on
 - The performance measure that defines the criterion of success.
 - The agent's prior knowledge of the environment.
 - The actions that the agent can perform.
 - The agent's percept sequence to date.
 - For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Rational agent

- Omniscience agent knows the actual outcome of its actions and can act accordingly.
 - Omniscience is impossible in reality
 Perfection in performance
 - Rationality is not the same as perfection
 - Rationality maximizes expected performance, while perfection maximizes actual performance
- Information gathering is an important part of rationality.
 - Doing actions in order to modify future percepts

Rational agent

- > We haven't inadvertently allowed the agent to
 - Engage in under intelligent activities.
- ➤ Gather information and also Learn
 - The agent's initial configuration could reflect some prior knowledge of the environment,
 - As the agent gains experience this may be modified and augmented.
 - ❖ Beetle, Female Sphex wasp

Rational agent

- Autonomy
 - $\ensuremath{^{\diamond}}$ If an agent relies on the prior knowledge of its designer
 - ✓ Not on its own percepts, we say that the agent lacks autonomy.
 - An AI agent with some initial knowledge and an ability to learn.
 - ✓ After sufficient experience of its environment, the behavior of a rational agent can become effectively independent of its prior knowledge.
 - ❖ VCA When and where additional dirt appears
 - Clock No input (percepts)
 - √ Run only but its own algorithm (prior knowledge)
 - ✓ No learning, no experience, etc.

Rational agent

- Same agent would be irrational under different circumstances.
 - For example, once all the dirt is cleaned up, the agent will oscillate needlessly back and forth;
 - A better agent for this case would do
 - ✓ Do nothing, once it is sure that all the squares are clean.
 - ✓ If clean squares can become dirty again, the agent should occasionally check and re-clean them.
 - ✓ If the geography of the environment is unknown, the agent will need to explore it rather than stick to squares A and B.

The Structure of Intelligent Agents

- ➤ The agent function maps from percept histories to actions:
 - f: P* → A
- Agent's structure can be viewed as
 - ❖Agent = Architecture + Agent Program
 - Architecture = the machinery that an agent executes on.
 - Agent Program = an implementation of an agent function.
 - The agent program runs on the physical architecture to produce f.

Specification of Task environment

- > Task environments are the problems.
 - *Rational agents are solution to the problems
- Task environment is specified by
 - Performance
 - Environment
 - Actuators
 - Sensors
 - ✓ In designing an agent, the first step must always be to specify the task environment as fully as possible.
- > The flavor of the task environment
 - Directly affects the appropriate design for the agent program.

PEAS

- Automated Taxi
 - Performance measure: Be safe, reach destination, maximize profits, fast, Comfortable, obey laws, ...
 - Environment: Urban streets, freeways, other traffic, pedestrians, stray animals, roadworks, police cars, puddles, weather, customers, left drive, right drive ...
 - Actuators: Steering wheel, accelerator, brake, Signal, Display, Communicate to customer, other vehicles, horn
 - Sensors: Camera, Sonar, odometer, keyboard, accelerometers, gauges, engine sensors, GPS, ...

PEAS

- > A medical diagnosis system
 - Performance measure: Healthy patient, minimal costs, no lawsuits, ...
 - Environment: Patient, doctors, nurses, hospital, pharmacy, equipment, ...
 - Actuators: Screen display (questions, tests), diagnoses, treatments, referrals, ...
 - ❖Sensors: Keyboard , File, Network packets ✓ entry of symptoms, findings, patient's answers, ...

PEAS

- ➤ Internet Shopping agent
 - Performance measure: Price, quality, appropriateness, efficiency, ...
 - Environment: Current and future Web sites, vendors, shippers, ...
 - Actuators: Display to user, follow URL, fill in form
 - Sensors: Web pages (text, graphics, scripts ...

PEAS

- ➤ Vacuum Machine
 - Performance one point for each clean square at each time step
 - Environment Known a priori, The Left and Right actions move the agent left and right
 - ✓ Except when this would take the agent outside the environment, → the agent remains where it is
 - ❖ Actions Left, Right, and Suck
 - Sensor Agent correctly perceives its location and whether that location contains dirt

Task environment

- VIT*
 Vellore Institute of Technology
 Semantic to Committee of Technology
- >The environment may be
 - Real or artificial
 - Behavior of the agent
 - √The percept sequence generated by the environment,
 - √The performance measure.
 - √The complexity of the relationship

VIT Vellore Institute of Technology Vellore Institute of Technology Special in Chemistry and material of COS day 1999

Task environment

- A softbot Web site operator
 - Designed to scan Internet news sources and
 - Show the interesting items to its users,
 - While selling advertising space to generate revenue.
 - ✓ Needs NLP,
 - ✓ Learns what each user and advertiser is interested in,
 - √ Change its plans dynamically

VIT Vellore Institute of Technolog Tomorio de Vicano, suis senso et el 10% de 10

Task environment

- ➤ The Internet is an environment
 - Complexity equal to the physical world
 - Inhabitants include many artificial and human agents
- The range of task environments that might arise in AI is vast.
 - Small number of dimensions along which task environments can be categorized.

Properties of Environment

- The environment has multifold properties
 Few of the categorization
- > Fully / Partially Observable /Unobservable-
 - If it is possible to determine the complete state of the environment at each time point from the percepts
 - If the sensors detect all aspects that are relevant to the choice of action
 - ✓ relevance, in turn, depends on the performance measure.
 - ❖Noisy, Inaccurate sensors → partially observable.
 - ✓ Local dirt sensor of the cleaner cannot tell if the squares are clean/dirty?

Vollore Institute of Ye

Properties of Environment

- Single agent / Multiple agents -
 - The environment may contain other agents which may be of the same or different kind as that of the agent.
 - Agent vs Object
 - √ B's behavior is best described as maximizing a performance measure whose value depends on agent A's behavior.
 - Competitive multi agent Chess
 - Cooperative multi agent Automated Taxi Parking space
 - Communication
 - Randomized behavior

Properties of Environment

Deterministic / Non-deterministic (stochastic)

- If the next state of the environment is completely determined by
 - √The current state and
 - the actions of the agent, then the environment is deterministic
- ❖ If the environment is partially observable, then it could *appear* to be stochastic.

Properties of Environment

> Stochastic

- implies that uncertainty about outcomes is quantified in terms of probabilities;
- VAC, Automated taxi may become stochastic
 Some unobservable aspects such as Noise, Unknown.

Nondeterministic

- Actions are characterized by their possible outcomes, but no probabilities are attached to them.
- Nondeterministic environment descriptions are usually associated with performance measures that require the agent to succeed for all possible outcomes of its actions

Properties of Environment

Deterministic / Non-deterministic (stochastic)

- Most real situations are so complex that it is impossible to keep track of all the unobserved aspects
 - ✓ For practical purposes, they must be treated as stochastic.
 - √VC- randomly appearing dirt and an unreliable suction mechanism
 - ✓ Traffic

Properties of Environment

> Episodic / Non-episodic -

- In an episodic environment, each episode consists of the agent perceiving and then acting.
- The quality of its action depends just on the episode itself.
- Subsequent episodes do not depend on the actions in the previous episodes.
- Episodic environments are much simpler because the agent does not need to think ahead.
- In sequential environments, the current decision could affect all future decisions
 - √ Taxi driving, Chess

Properties of Environment

> Static / Dynamic -

- If the environment does not change while an agent is deliberating (acting), then it is static;
- The agent need not keep looking at the world while it is deciding on an action,
 - $\checkmark\,\text{It}\,$ need not worry about the passage of time.
 - ✓ Destination

> Dynamic - Environment

- ❖Always changing Number of people in street
- ❖ continuously asking the agent what it wants to do ✓ If it hasn't decided yet, that counts as deciding to do

➤ Semi dynamic

If the environment itself does not change with the passage of time but the performance score of agent changes.

Discrete / Continuous –

- There are a limited number of distinct, clearly defined, states of the environment
 - √ Chess
- The speed and location of the taxi and of the other vehicles sweep through a range of continuous values and do so smoothly over time.
 - ✓ Driving

Properties of Agent

Known vs. unknown

- A known environment, the outcomes for all actions are given,
- ❖ For stochastic outcome probabilities
- Unknown the agent will have to learn how it works in order to make good decisions
 - *known environment and partially observable
 Solitair
 - ❖ Unknown environment and Fully observable ✓ New Video game

Properties of Environment

- ➤ The hardest case is
 - partially observable,
 - Multi agent,
 - stochastic,
 - sequential,
 - dynamic,
 - continuous, and
 - unknown.

Properties of Environment

> Accessible / Inaccessible -

If the agent's sensory apparatus can have access to the complete state of the environment, then the environment is accessible to that agent.

Crossword puzzle
Observable:
Observable: Observable: Fully
Agents:
Agents: Single

Deterministic: Deterministic: Deterministic

Episodic: Episodic: Sequential

Static: Static: Static

Discrete: Discrete: Discrete

Environment example

Taxi driving

Observable:
Observable: Partially
Agents:
Agents: Multi
Deterministic:
Episodic:
Episodic:
Static:
Discrete:
Dis

Environment example

English tutor:

Observable:
Observable: Partially
Agents:
Agents:
Deterministic:
Episodic:
Static:
Discrete:

English tutor:
Observable: Partially
Agents: Multi (why?)
Deterministic: Stochastic
Episodic: Sequential
Static: Discrete:
Discrete:
Discrete:
Discrete:
Discrete

Environment example

Image analysis:Image analysis:Observable:Observable: FullyAgents:Agents: Single

Deterministic: Deterministic Deterministic

Episodic: Episodic Episodic
Static: Static: Semi
Discrete: Discrete: Continuous

Table driven Agent

- ➤ Designers must construct a table
 - Contains the appropriate action for every possible percept sequence.
 - Number of Percept PLife Time of agent t

Look up table size

√Total number of percepts received

function TABLE-DRIVEN-AGENT(percept) returns an action persistent: percepts, a sequence, initially empty

 ${\bf persistent}: percepts, {\it a sequence, initially empty} \\ table, {\it a table of actions, indexed by percept sequences, initially fully specified}$

append percept to the end of percepts $action \leftarrow LOOKUP(percepts, table)$ **return** action

- ➤ Playing Chess
 - **❖**P = 10
 - **❖**T = 150
 - ❖ Need a table of 10 ¹50 entries

Table driven Agent

- No physical agent in will have the space to store the table,
- > The designer would not have time to create the table
- No agent could ever learn all the right table entries from its experience,
- > Even if the environment is simple enough
 - To yield a feasible table size,
 - √ the designer still has no guidance about how to fill in the table entries.

VIT* Vollare Institute of Technology Specials in Consult with control of Consults and Consults The Consults of Consults and Consults a

Principle of intelligent system

- ➤ Simple reflex agents;
- Model-based reflex agents;
- ➤ Goal-based agents; and
- Utility-based agents.

Simple reflex agents

- > Select actions on the basis of
 - The current percept,
 - Ignoring the rest of the percept history
 - ❖VC agent's Decision is based only on
 - ✓ Whether that location contains dirt and The current location and . 4^T vs. 4

 $\textbf{function} \ \mathsf{REFLEX-VACUUM-AGENT}([\mathit{location}, \mathit{status}]) \ \textbf{returns} \ \mathsf{an} \ \mathsf{action}$

if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left

Simple reflex agents

> Condition-action rule

❖if car-in-front-is-braking then initiate-braking

Simple reflex agents

- VIT*
 Vellore Institute of Yechnology

 Street in Chronic pair coins A of NOC An APIC
- > A general-purpose interpreter for
 - Condition— action rules
 - ❖INTERPRET-INPUT function
 - ✓ Percept → Current state
 - Limited intelligence
 - ✓ Decision only if correct percept

function SIMPLE-REFLEX-AGENT(percept) **returns** an action **persistent**: rules, a set of condition–action rules

 $state \leftarrow \text{Interpret-Input}(percept)$ $rule \leftarrow \text{Rule-Match}(state, rules)$ $action \leftarrow rule. \text{Action}$

Model-based reflex agents

- The most effective way to handle partial observability
 - For the agent to keep track of the part of the world it can't see now.
 - ❖Internal state Model of the world
 - \checkmark Depends on the percept history and
 - ✓ It reflects at least some of the unobserved aspects of the current state.
 - ✓ How the world evolves independently of the agent?
 - ✓ How the agent's own actions affect the world?

VIT Vellere Institute of Technoloss

Model-based reflex agents

Model-based reflex agents

➤ What is the change from Simple reflex agent?

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent's current conception of the world state
model, a description of how the next state depends on current state and action
rules, a set of condition-action rules
action, the most recent action, initially none

 $state \leftarrow \mathsf{UPDATE\text{-}STATE}(state, action, percept, model) \\ rule \leftarrow \mathsf{RULE\text{-}MATCH}(state, rules) \\ action \leftarrow rule. ACTION \\ return action$

- ➤ Knowing something about the current state of the environment
 - ❖is not always enough to decide what to do.
 - ❖At a junction correct decision depends on ✓ Where the taxi is trying to go / get to.
 - Goal describes situations that are desirable from agents perspective
 - Agent need to combine goal with Model
 - Simple vs. Complex action for a goal Search and Planning subfields of Al

Goal based agent

Goal based agent

Decision making

- ❖ Involves consideration of the future— Following Two
 - ✓ What will happen if I do such-and-such?"
 - ✓ Will that make me reach goal / Happy?
 - ✓ Different from rule based as in Simple Reflex agent
 - ✓ Series of actions and not one action
 - ✓ Break vs. Slow down
 - ✓ Appears less efficient, but it is more flexible
 - Knowledge that supports its decisions is represented explicitly and can be modified
 - Application of brake during Rain,
 - One destination vs. Many