Medical Image Processing for Interventional Applications

Random Walker – Algorithm

Online Course – Unit 41 Andreas Maier, Stefan Steidl, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Random Walks for Image Segmentation

Algorithm

Dirichlet Integral

Decomposition

Solution

Summary

Take Home Messages

Further Readings

K-way image segmentation

- User-defined seeds
- Indicating regions of the image belonging to K objects

Random walk

- Labeling an **unseeded** pixel by resolving the question: What is the probability of a random walker starting at this pixel that it first reaches seed point *k*?
- Selecting the label of the most probable seed destination for each pixel
- Biasing the random walker to avoid crossing sharp intensity gradients

Image as discrete object

- Graph with a fixed number of vertices and edges
- Each node represents one pixel in the image.
- Edges connect neighboring pixels: e.g., 4-connectivity (2-D), 6-connectivity (3-D), 8-connectivity (2-D).
- A real-valued weight is assigned to each edge representing the likelihood that a random walker will cross this edge.
 - → Weight of zero: the random walker may not move along that edge.
- Purely combinatorial operators:
 - No discretization
 - No discretization errors or ambiguities

Edge weights for adjacent pixels *i* and *j*

Gaussian weighting function:

$$w_{ij} = \exp\left(-\beta(g_i - g_j)^2\right)$$

where

- g_i : image intensity at pixel i
- β : only free parameter!
- Useful operation: prior normalization of the square gradients:

$$\forall e_{ij} \in E : (g_i - g_j)^2 \in [0, 1]$$

• Modification to handle color or general vector-valued data: $(g_i - g_j)^2 \longrightarrow ||\boldsymbol{g}_i - \boldsymbol{g}_j||^2$

Four mathematically equivalent ways (Grady, 2006)

1. "If a random walker leaving the pixel is most likely to first reach a seed bearing label s, assign the pixel to label s."

Four mathematically equivalent ways (Grady, 2006)

- 1. "If a random walker leaving the pixel is most likely to first reach a seed bearing label s, assign the pixel to label s."
- 2. "If the seeds are alternately replaced by grounds/unit voltage sources, assign the pixel to the label for which its seeds being 'on' produces the greatest electrical potential."

Four mathematically equivalent ways (Grady, 2006)

- 1. "If a random walker leaving the pixel is most likely to first reach a seed bearing label s, assign the pixel to label s."
- 2. "If the seeds are alternately replaced by grounds/unit voltage sources, assign the pixel to the label for which its seeds being 'on' produces the greatest electrical potential."
- 3. "Assign the pixel to the label for which its seeds have the largest effective conductance (i. e., smallest effective resistance) with the pixel."

Four mathematically equivalent ways (Grady, 2006)

- 1. "If a random walker leaving the pixel is most likely to first reach a seed bearing label s, assign the pixel to label s."
- 2. "If the seeds are alternately replaced by grounds/unit voltage sources, assign the pixel to the label for which its seeds being 'on' produces the greatest electrical potential."
- 3. "Assign the pixel to the label for which its seeds have the largest effective conductance (i. e., smallest effective resistance) with the pixel."
- 4. "If a 2-tree is drawn randomly from the graph (with probability given by the product of weights in the 2-tree), assign the pixel to the label for which the pixel is most likely to remain connected to."

Topics

Random Walks for Image Segmentation

Algorithm

Dirichlet Integral

Decomposition

Solution

Summary

Take Home Messages Further Readings

Combinatorial Laplacian matrix L

$$L_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -w_{ij} & \text{if } v_i \text{ and } v_j \text{ are adjacent nodes,} \\ 0 & \text{otherwise,} \end{cases}$$

where

- L_{ii} is indexed by vertices v_i and v_i ,
- $d_i = \sum w(e_{ij})$ for all edges e_{ij} incident on node v_i .

Example: Pixels of a 4×4 *image*

Example: Pixels of a 4×4 *image* and the according *combinatorial Laplacian matrix L*

Combinatorial formulation of the Dirichlet integral

$$D(x) = \frac{1}{2}x^{T}Lx = \frac{1}{2}\sum_{e_{ij}\in E}w_{ij}(x_{i}-x_{j})^{2}$$

Partitioning the vertices into two sets:

- marked/seed nodes V_M ,
- unseeded nodes V_U ,

such that $V_M \cup V_U = V$ and $V_M \cap V_U = \emptyset$.

Without loss of generality: The nodes in L and x are ordered, i. e., seed nodes are first, unseeded nodes are second.

Decomposition

$$D[\mathbf{x}_U] = \frac{1}{2} (\mathbf{x}_M^\mathsf{T} \ \mathbf{x}_U^\mathsf{T}) \begin{bmatrix} \mathbf{L}_M \ \mathbf{B} \end{bmatrix} (\mathbf{x}_M) \\ \mathbf{B}^\mathsf{T} \ \mathbf{L}_U \end{bmatrix} (\mathbf{x}_M) = \frac{1}{2} (\mathbf{x}_M^\mathsf{T} \mathbf{L}_M \mathbf{x}_M + 2\mathbf{x}_U^\mathsf{T} \mathbf{B}^\mathsf{T} \mathbf{x}_M + \mathbf{x}_U^\mathsf{T} \mathbf{L}_U \mathbf{x}_U)$$

L is positive semi-definite, i. e., the only critical points of D[x] will be minima.

Differentiating w. r. t. x_U and finding the critical points:

$$\boldsymbol{L}_{U}\boldsymbol{x}_{U}=-\boldsymbol{B}^{\mathsf{T}}\boldsymbol{x}_{M}$$

- System of linear equations with $|V_U|$ unknowns
- Equation will be non-singular
 - if the graph is connected, or
 - if every connected component contains a seed.

Solution to the combinatorial Dirichlet problem for label s

- x_i^s : probability (potential) assumed at node v_i for label s
- Set of labels: $\forall v_j \in V_M$: $Q(v_j) = s, s \in \mathbb{Z}, 0 < s \le K$
- $V_M \times 1$ vector m^s :

$$m_j^s = \begin{cases} 1 & \text{if } Q(v_j) = s, \\ 0 & \text{if } Q(v_j) \neq s \end{cases}$$

Solution to the combinatorial Dirichlet problem for label s

- x_i^s : probability (potential) assumed at node v_i for label s
- Set of labels: $\forall v_i \in V_M$: $Q(v_i) = s, s \in \mathbb{Z}, 0 < s \le K$
- $V_M \times 1$ vector m^s :

$$m_j^s = \begin{cases} 1 & \text{if } Q(v_j) = s, \\ 0 & \text{if } Q(v_j) \neq s \end{cases}$$

Solution for one label:

$$\boldsymbol{L}_{U}\boldsymbol{x}^{\mathcal{S}} = -\boldsymbol{B}^{\mathsf{T}}\boldsymbol{m}^{\mathcal{S}}$$

Solution to the combinatorial Dirichlet problem for label s

- x_i^s : probability (potential) assumed at node v_i for label s
- Set of labels: $\forall v_i \in V_M$: $Q(v_i) = s, s \in \mathbb{Z}, 0 < s \le K$
- $V_M \times 1$ vector m^s :

$$m_j^s = \begin{cases} 1 & \text{if } Q(v_j) = s, \\ 0 & \text{if } Q(v_j) \neq s \end{cases}$$

Solution for one label:

$$\boldsymbol{L}_{U}\boldsymbol{x}^{\mathcal{S}} = -\boldsymbol{B}^{\mathsf{T}}\boldsymbol{m}^{\mathcal{S}}$$

Solution for all labels:

$$\boldsymbol{L}_{U}\boldsymbol{X} = -\boldsymbol{B}^{\mathsf{T}}\boldsymbol{M}$$

where X, M are matrices with K columns taken by each x^s and m^s , respectively.

Note:

• At any node the probabilities x_i^s will sum to unity:

$$\forall v_i \in V : \sum_{s} x_i^s = 1.$$

• Hence, only K-1 sparse linear systems must be solved.

Topics

Random Walks for Image Segmentation

Algorithm

Dirichlet Integral

Decomposition

Solution

Summary

Take Home Messages Further Readings

Take Home Messages

- For the segmentation using a random walker, we describe pixel transitions from one pixel to a neighboring pixel in form of graph edges.
- In the algorithm the combinatorial Dirichlet problem has to be solved to find a segmentation result.

Further Readings

These slides are based on the following publication:

L. Grady. "Random Walks for Image Segmentation". In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28.11 (Nov. 2006), pp. 1768–1783. DOI: 10.1109/TPAMI.2006.233

His implementations in Matlab can be downloaded here:

- Graph Analysis Toolbox
- Random Walker