Dynamic Model Order Reduction by Machine Learning

Artificial Intelligence (AI)

Marovec's paradox

•

Machine Learning

«Fields of study that gives computers the ability to learn without being explicitly programmed» (Arthur Samuel, 1959)

It is a possible (and promising) approach to Al

Problem:

find the *best* function $\mathbf{y} = \mathbf{f}(\mathbf{x})$ where $\mathbf{f}: X \to Y$

Problem rewritten:

- 1. Select a class of functions $\mathbf{y} = \mathbf{f}(\mathbf{x}; \boldsymbol{\mu})$ where $\mathbf{f}: X \times \mathcal{M} \to Y$
- 2. Find («learn») the best $oldsymbol{\mu} \in \mathcal{M}$

Learning machines

- Decision trees / forests
- Support Vector Machines (SVM)
- Artificial Neural Networks (ANN)
 - Deep learning
- Gaussian Processes (Kriging)

•

Learning approaches

- Supervised learning (e.g. classification, regression)
- Unsupervised learning (e.g. clustering)
- Reinforcement learning

Biological

VS

Artificial

Neuron

Neural Network

$$y = f(x; \mu)$$

Deep Learning

Universal Approximation Theorems

«A MLP with one hidden layer can approximate any continuous function»

Cybenko, G. (1989) "Approximations by superpositions of sigmoidal functions", Mathematics of Control, Signals, and Systems, 2(4), 303-314.

Definition. We say that σ is discriminatory if for a measure $\mu \in M(I_n)$

$$\int_{I_{-}} \sigma(y^{\mathsf{T}}x + \theta) \, d\mu(x) = 0$$

for all $y \in \mathbb{R}^n$ and $\theta \in \mathbb{R}$ implies that $\mu = 0$.

Definition. We say that σ is sigmoidal if

$$\sigma(t) \to \begin{cases} 1 & \text{as } t \to +\infty, \\ 0 & \text{as } t \to -\infty. \end{cases}$$

Theorem 1. Let σ be any continuous discriminatory function. Then finite sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^{\mathrm{T}} x + \theta_j)$$
 (2)

are dense in $C(I_n)$. In other words, given any $f \in C(I_n)$ and $\varepsilon > 0$, there is a sum, G(x), of the above form, for which

$$|G(x) - f(x)| < \varepsilon$$
 for all $x \in I_n$.

Lemma 1. Any bounded, measurable sigmoidal function, σ , is discriminatory. In particular, any continuous sigmoidal function is discriminatory.

«A MLP with two hidden layer can approximate any function»

Cybenko, G. (1988). "Continuous valued neural networks with two hidden layers are sufficient". Technical Report, Department of Computer Science, Tufts University

Machine Learning pipeline (supervised learning)

$$\hat{\mathbf{x}}_i \quad \hat{\mathbf{y}}_i \quad \text{for } i = 1, ..., N$$

$$\mathbf{y} = \mathbf{f}(\mathbf{x}; \boldsymbol{\mu})$$

$$\min_{m{\mu} \in \mathcal{M}} rac{1}{2} \sum_{i=1}^{\mathcal{N}} \|\hat{m{y}}_i - m{f}(\hat{m{x}}_i; m{\mu})\|^2 + ext{regularization}$$

https://playground.tensorflow.org

William of Ockham

theologician, philosopher and franciscan friar 1285 – 1347

« Frustra fit per plura quod fieri potest per pauciora »

Ockham's Razor in action

A / Reducing complexity in dynamical models through ANNs

Model Order Reduction (MOR) of Dynamical Systems

High-Fidelity Model $(\mathbf{X} \in \mathbb{R}^N)$ Reduced Order Model $(\mathbf{x} \in \mathbb{R}^n)$ $\begin{cases} \dot{\mathbf{X}}(t) &= \mathbf{F}(\mathbf{X}(t), \mathbf{u}(t)), & t \in (0, T] \\ \mathbf{X}(0) &= \mathbf{X}_0 \\ \mathbf{y}(t) &= \mathbf{G}(\mathbf{X}(t)), & t \in (0, T], \end{cases}$ MOR \mathbf{MOR} \mathbf{MOR} $\mathbf{x}(0) &= \mathbf{x}_0 \\ \mathbf{y}(t) &= \mathbf{g}(\mathbf{x}(t)), & t \in (0, T], \end{cases}$

Model-based MOR

- Projection-based MOR (Moment-matching, Padè approximation, Balanced Truncation, POD, PCA, Karhunen-Loeve expansion, Reduced Basis, ...)
- Hierarchical surrogates (simplified geometries, coarser grids, simplified physical assumptions, Geometric Multiscale, ...)

Data-driven MOR

- Linear case: Loewner framework, Orthonormal Vector Fitting
- Nonlinear case: Dynamic Mapping Kriging (DMK), Sparse Identication of Nonlinear Dynamics (SINDy)

Data-driven approach to dynamic MOR

Observations:

$$\hat{\mathbf{u}}_j(t), \hat{\mathbf{y}}_j(t) \quad j = 1, \dots, k$$

$$\begin{cases} \min_{\mathbf{f},\mathbf{g}} & \frac{1}{2} \sum_{j=1}^{k} \int_{0}^{T} \|\hat{\mathbf{y}}_{j} - \mathbf{g}(\mathbf{x}_{j})\|^{2} dt \\ \text{s.t.} & \dot{\mathbf{x}}_{j} = \mathbf{f}(\mathbf{x}_{j}, \hat{\mathbf{u}}_{j}) \\ & \mathbf{x}_{j}(0) = \mathbf{0} \end{cases}$$

Discretize ${\bf f}$ and ${\bf g}$ through a finite set of parameters ${\boldsymbol \mu}$ and ${\boldsymbol \nu}$, by means of Artificial Neural Networks

First-Order Optimality Conditions (Lagrange multipliers method)

$$\begin{cases} \dot{\mathbf{x}}_{j} &= \mathbf{f}(\mathbf{x}_{j}, \hat{\mathbf{u}}) & \textit{Primal (forward)} \\ \mathbf{x}_{j}(0) &= \mathbf{0} & \textit{system} \end{cases}$$

$$\begin{cases} -\dot{\mathbf{z}}_{j} &= \nabla_{\mathbf{x}}^{T} \mathbf{g} \left(\hat{\mathbf{y}}_{j} - \mathbf{g}(\mathbf{x}_{j}) \right) + \nabla_{\mathbf{x}}^{T} \mathbf{f} \, \mathbf{z}_{j} & \textit{Dual (backward)} \\ \mathbf{z}_{j}(T) &= \mathbf{0} & \textit{system} \end{cases}$$

$$\begin{cases} \sum_{j=1}^{k} \int_{0}^{T} \nabla_{\mu}^{T} \mathbf{f} \, \mathbf{z}_{j} dt &= \mathbf{0} & \textit{Vanishing gradient} \\ \sum_{j=1}^{k} \int_{0}^{T} \nabla_{\nu}^{T} \mathbf{g} \left(\hat{\mathbf{y}}_{j} - \mathbf{g}(\mathbf{x}_{j}) \right) dt &= \mathbf{0} \end{cases}$$

$$Vanishing gradient condition$$

Numerical resolution (Levenberg-Marquardt)

An example: sarcomere RU model

1. Train (~1 day)

- 103 samples
- 1 s duration each
- Fundamentals functions: (constants, steps, sinusoidals)

 L^2 error: $1.8 \cdot 10^{-2}$

2. Test

- Train-test correlation while learning: 99,8%
- Reliable also over long-term horizons

 L^2 error: $3.0 \cdot 10^{-2}$

Neural Network Model in action

