

Introduzione al corso

Annalisa Franco Università di Bologna

II corso

- Docente:
 - Annalisa Franco (annalisa.franco@unibo.it)
- □ Tutor:
 - □ Giacomo Cavalieri (giacomo.cavalieri3@unibo.it)
 - Nicolò Di Domenico (nicolo.didomenico@unibo.it)
- □ Pagina web del corso:
 - https://virtuale.unibo.it/course/view.php?id=49254
- □ Orario di ricevimento:
 - □ Annalisa Franco: giovedì 14:30 16:30

Sistemi informativi e Basi di Dati

- Sistema Informativo: complesso sistema di procedure, informatizzate e non, che permettono di gestire le informazioni utili ai processi aziendali. La definizione e la gestione di un Sistema Informativo richiede quindi la perfetta conoscenza dei:
 - Processi aziendali
 - Informazioni necessarie ai processi
 - Struttura aziendale
- Progettare un Sistema Informativo richiede non solo competenze informatiche, ma anche in ambito di organizzazione aziendale, economia, psicologia, ecc.
- La base di dati è una componente del Sistema Informativo atta alla memorizzazione strutturata delle informazioni.
 - La sua funzione è quella di fornire un supporto informatico per la memorizzazione dei dati;
 - essendo questi il nucleo di tutti i sistemi informativi le basi di dati rivestono un ruolo centrale.

Database e DBMS

- Un database in termini generali rappresenta una collezione di dati d'interesse per una o più applicazioni; nel contesto del corso è intesa come una collezione di dati gestita tramite un DBMS. I dati sono strutturati e collegati tra loro, a livello logico, nel rispetto del modello di rappresentazione (es. relazionale) adottato dal DBMS e, a livello fisico, risiedono su dispositivi di memoria organizzati in particolari strutture. Gli utenti si interfacciano con la base di dati attraverso un opportuno linguaggio (es. SQL).
- Un **DBMS** (Data Base Management System) è sistema software in grado di gestire efficientemente le informazioni necessarie a un SI, rappresentandone i dati in forma integrata, secondo un modello logico, e garantendone la persistenza, la condivisione, l'affidabilità e la riservatezza.

Applicazioni (1)

- Applicazioni "tradizionali"
 - gran parte dell'informazione memorizzata è testuale o numerica
 - OLTP (On-Line Transactional Processing)
 - OLAP (On-Line Analytical Processing)

California		
OLTP	OLAP	UCTS To the TV T
Dati operazionali recenti	Dati storici	S D D G B S S S S S S S S S S S S S S S S S S
Quantità di dati "ridotte"	Grandi quantità di dati	
Obiettivo: svolgimento delle operazioni ordinarie per un determinato contesto	Obiettivo: supporto alle decisioni strategiche aziendali	
Necessità di elevata velocità di esecuzione	Operazioni tipicamente eseguite offline	
Operazioni di tipo lettura/scrittura	Prevalentemente operazioni di lettura	
DBMS relazionali Oggetto di questo corso	Datawarehouse	

Applicazioni (2)

- Applicazioni legate alla gestione di big data o sistemi NOSQL
 - Necessità di archiviare e gestire grandi quantità di dati eterogenei (testuali, immagini, video).
 - Principali caratteristiche:
 - Scalabilità: dati memorizzati in sistemi distribuiti, aggiunta di ulteriori nodi all'aumentare del volume di dati;
 - Disponibilità, replicazione: possibilità di accedere ai dati in modo continuativo, anche a fronte di guasti di singoli nodi;
 - Sharding di file: distribuzione del carico di lavoro su più nodi;
 - Accesso ai dati ad alte prestazioni: utilizzo di tecniche di hashing o partizionamento per migliorare l'efficienza;
 - Rispetto ai sistemi relazionali:
 - Memorizzazione di dati semi-strutturati che si autodescrivono (JSON o XML);
 - Linguaggi di interrogazione meno potenti.
 - Versioning per la storicizzazione dei dati.

Gli attori principali

- Data Base Administrator (DBA): installa, configura e gestisce il DMBS:
 - crea gli oggetti logici necessari (es. tabelle, viste, indici, ecc.) per le applicazioni;
 - crea gli utenti e concede loro i dovuti privilegi;
 - garantisce la sicurezza e l'integrità dei DB;
 - effettua controllo e monitoraggio degli accessi ai DB;
 - monitora e ottimizza le performance dei DB e delle applicazioni che li utilizzano;
 - pianifica strategie di backup e recovery.
- Data Base Designer: cura la progettazione di un modello dettagliato del DB da implementare; il modello esplicita tutte le scelte progettuali a livello concettuale, logico e fisico e può essere usato per l'implementazione del database.
- Software Engineer: analisti di sistema e programmatori di applicazioni; i primi determinano le esigenze degli utenti finali e dettano specifiche per le transazioni che saranno realizzate a cura dei programmatori.
- End User: sono persone che interagiscono, a vari livelli, con una o più basi di dati per lo svolgimento delle proprie attività lavorative o per esigenze di altra natura.

End users

Gli utenti finali (end users), che possono beneficiare dell'uso di un DB, in sintesi sono inquadrabili in due classi.

■ Naïve End User

- accede al DB tramite query preconfezionate all'interno di un'applicazione (es. prenotazione di un viaggio, prelievo di denaro con bancomat, inserimento di movimenti contabili, ...);
- non ha di norma nessuna conoscenza né del DBMS né della struttura della base dati.

■ Sophisticated End User

- ha un certo grado di conoscenza della struttura del DB e delle potenzialità del DBMS;
- è in grado di interagire direttamente con la base dati, attraverso l'uso di un linguaggio d'interrogazione, o indirettamente attraverso l'uso d'interfacce e/o di strumenti avanzati di reportistica e di analisi dei dati.

Obiettivi del corso

- Illustrare gli aspetti fondamentali delle tecnologie delle basi di dati relazionali.
- Fornire linee guida, metodi e strumenti per:
 - progettare e realizzare basi di dati relazionali
 - interagire con basi di dati relazionali
 - progettare e realizzare applicazioni database (e più in generale moduli di un sistema informativo).
- Inquadrare il trend di sviluppo del settore delle basi di dati e delle relative tecnologie

Competenze acquisite al termine del corso

Contenuti del corso (1)

- Introduzione a sistemi informativi, basi di dati e DBMS
- Introduzione alla progettazione di DB
- Progettazione concettuale
 - Analisi dei requisiti
 - Modello concettuale Entity-Relationship
- Modelli logici dei dati, il modello relazionale
 - Proprietà, schemi e istanze, vincoli
 - □ Forme normali e normalizzazione di schemi
- **Progettazione logica**
 - Ristrutturazione dello schema concettuale
 - Traduzione di entità e associazioni

Contenuti del corso (2)

Algebra relazionaleIl linguaggio SQL

- Data Definition Language (creazione tabelle e vincoli), Data Manipulation Language (inserimento, aggiornamento, interrogazione e cancellazione di dati), Data Control Language
- Funzionalità e architetture dei DBMS
- La gestione delle transazioni
 - Proprietà ACID
 - Gestione della concorrenza, protocolli
- Organizzazioni dei dati e relativi metodi di gestione
 - Organizzazioni sequenziale e ad accesso diretto
 - Indici primari e secondari
 - B-tree, B*- tree e B+-tree

Contenuti del corso (3)

Sviluppo di applicazioni database

- □ Panoramica delle diverse modalità di accesso ai dati, ORM
- Java: JDBC e Java Persistence API
- C#: .NET e ORM, linguaggio LINQ
- Descrizione sintetica delle principali architetture clientserver.
- Cenni su DDBMS, Cloud database e sull'evoluzione delle architetture.
- Trend di evoluzione delle tecnologie delle basi di dati.
 - □ Cenni sui sistemi NoSQL

Organizzazione del corso

Aula

- 7 ore di lezione a settimana
- Lezioni di teoriaalternate adesercitazioni pratiche

Laboratorio

- 2 ore di esercitazione a settimana (2 turni):
 - □ giovedì 09:00 11:00
 - □ giovedì 11:00 13:00
- Esercitazioni sugli argomenti principali
- □ Tool utilizzati:
 - DBMain
 - MySQL, SQLServer
 - Visual Studio e Java

Modalità d'esame: elaborato (1)

INFO SU VIRTUALE

Progettazione e realizzazione di un'applicazione database

- Elaborato singolo o di gruppo (massimo 3 persone)
- Punteggio da 0 a 4 punti che vengono sommati al voto della prova scritta se quest'ultimo è ≥16
- Validità illimitata (una volta consegnato non ha scadenza)
- Realizzare l'elaborato significa:
 - progettare il database e documentare tutte le fasi della progettazione in una relazione;
 - creare il database utilizzando un DBMS relazionale;
 - realizzare un'applicazione che si interfacci con il database per lo svolgimento delle operazioni previste dal sistema.

Modalità d'esame: elaborato (2)

INFO SU VIRTUALE

- Tecnologie utilizzabili:
 - Qualsiasi DBMS purché relazionale
 - Qualsiasi linguaggio di programmazione o ACCESS (dbms + interfaccia)

Progettazione e realizzazione di un'applicazione database

STEP:

- 1. Proposta tramite la pagina di registrazione gruppi (silenzio assenso).
- 2. Gruppo su Virtuale.
- 3. Consegna dell'elaborato su Virtuale entro la data di scadenza comunicata per ciascun appello.
- 4. Discussione dell'elaborato (progettazione e implementazione) in occasione della prova indicata come Consegna Elaborati su AlmaEsami.

Modalità d'esame: prova scritta

INFO SU VIRTUALE

- Esercizi e domande sugli argomenti trattati nel corso
- L'ammissione alla prova scritta è subordinata alla consegna di un elaborato giudicato idoneo.
- Sono concessi al massimo 2 rifiuti
- Ad ogni appello sarà comunicata la data termine per esprimere il proprio rifiuto del voto (dopo tale data si procederà con la registrazione).

Materiale didattico

- Dispense disponibili sul sito web del corso (sufficienti per la preparazione dell'esame)
- Libro di esercizi:
 - D. Maio, S. Rizzi, A. Franco. Esercizi di Progettazione di basi di dati, Esculapio.
- Risorse aggiuntive
 - P. Atzeni, S. Ceri, P. Fraternali, S. Paraboschi, R. Torlone. Basi di dati, McGraw-Hill Italia, IV edizione.
 - R. A. Elmasri, S.B. Navathe. SISTEMI DI BASI DI DATI, Pearson, VII edizione.

Domande?

