

מערכות ספרתיות ומבנה המחשב (044252) סמסטר אביב תשפ״א

בוחן אמצע - <mark>פתרון</mark> 2021 ביוני 2021

	<u>טור 1</u>							
מספר סטודנט								

משך המבחן: שעה (60 דקות). תכננו את זמנכם היטב.

<u>חומר עזר</u>: אין להשתמש בכל חומר עזר בכתב, מודפס או אלקטרוני, פרט לדפי העזר שיחולקו במהלך הבחינה ולמחשבון. הנחיות והוראות:

- הבחינה כתובה על גבי **5** עמודים כולל עמוד זה והעמוד הקודם (בדקו בתחילת הבחינה שלא חסרים לכם עמודים).
- בתחילת הבחינה תקבלו חוברת בחינה, מחברת טיוטה, דפי עזר וטופס תשובות ממוחשב. בסיום הבחינה, החזירו את חוברת הבחינה וטופס התשובות הממוחשב בלבד.
 - יש לענות על כל השאלות בגוף המבחן ובנוסף להעתיק את תשובותיכם הסופיות אל דפי התשובות.
 - אין **לתלוש או להפריד** דפים מחוברת הבחינה, ממחברות הטיוטה ומדפי העזר.
 - יש לכתוב את התשובות באמצעות עט שחור או כחול בלבד. אין לכתוב או לצייר בעט אדום. 🦠
- רשמו את מספר הסטודנט שלכם על חוברת הבחינה (בראש עמוד זה), על דפי העזר, ועל כל מחברות הטיוטה. ודאו כי על טופס התשובות האמריקאי מודבקת מדבקת הנבחן שלכם.
 - לא מורדות נקודות (אין "קנס") בגין תשובה שגויה. לכן, כדאי לסמן תשובה כלשהי לכל שאלה.
- ציון שאלות רב הברירה ייקבע על סמך סריקה ממוחשבת של טופס התשובות בלבד. לא לשכוח לסמן בטופס התשובות הממוחשב את מספר הטור שלכם (מופיע בראש עמוד זה).
- אסור שימוש בכל חומר חיצוני מלבד מחשבון. אסורה העברת חומר כלשהו בין הנבחנים, ואסורה כל תקשורת עם אנשים אחרים או כל מקור מידע. האיסור חל על כל צורות התקשורת – מילולית, חזותית, כתובה, אלקטרונית, אלחוטית או אחרת. בפרט, אין להחזיק בטלפון סלולארי.

בהצלחה!

מצאו מימוש מינימלי כסכום של מכפלות עבור מעגל בעל 3 כניסות הדרישות הדרישות מצאו מימוש מינימלי הכסכום של מכפלות עבור מעגל בעל 3 כניסות הדרישות הדרישות:

המעגל יוציא '1' עבור הקלטים שמחלקים את המספר $_{10}^{(15)}$ ללא שארית ו-'0' עבור שאר המעגל יוציא '1' עבור הקלטים שמחלקים את למחים, למעט הקלט $_{10}^{(0)}$ שיפורש כ-don't care. שאינו מחלק את המספר $_{10}^{(0)}$ ללא שארית.

$$f(x,y,z)=z'$$
 א. $f(x,y,z)=z$ ב. ב. $f(x,y,z)=zx'+zy'$ ג. $f(x,y,z)=z'x+z'y$ ד. $f(x,y,z)=xy+xz$ ה.

<u>פתרון</u>:

המחלקים של 15 הם 1,3 ו-5. מצורפת מפת הקרנו עבור המתואר בתרגיל:

z\xy	00	01	11	10
0				
1	1	1	dc	1

כיוון שהצלחנו לכסות את כל המופעים של 1 יחד (בעזרת ה-dc) תוך שימוש בגורר ראשוני יחיד, זהו גם הייצוג המינימלי, כלומר:

$$f(x, y, z) = z$$

נתון המספר הבא: X=1100111, בו כל <u>הספרות</u> הינן בינאריות.

נתונות הטענות הבאות:

- 1. אם המספר X הינו בקוד גריי, אז הוא שווה למספר הבינארי 1000101.
- 2. אם המספר X הינו בקוד גריי, אז הוא שווה למספר הבינארי 1010100.
 - 3. אם המספר X הינו בינארי, אז הוא שווה לקוד גריי 1000101.
 - 4. אם המספר X הינו בינארי, אז הוא שווה לקוד גריי 1010100.

סמן את התשובה הנכונה ביותר:

- א. רק טענה 1 נכונה.
- ב. רק טענה 2 נכונה.
- ג. רק טענה 3 נכונה.
- ד. רק טענות 1 ו- 4 נכונות.
- ה. רק טענות 2 ו- 3 נכונות.

<u>פתרון</u>:

המרה מגריי לבינארי:

Gray	1	1	0	0	1	1	1
Binary	1	0	0	0	1	0	1

המרה מבינארי לגריי:

Binary	1	1	0	0	1	1	1
Grav	1	0	1	0	1	0	0

לכן טענות 1 ו- 4 נכונות והתשובה הנכונה היא ד'.

נתונה המשוואה הבאה:

$$(010)_{a+b} \cdot (010)_{a-b} = x_{10}$$

:כמו כן נתון כי a ו-b מספרים חיוביים שמקיימים

$$a - b \ge 2$$

?x מהו ערכו של

$$a^2 + b^2$$
 .א

$$a^2-b^2$$
 .ם

$$.2a + 2a$$
 .T

$$.2a^2$$
 .ה

ו. אף תשובה לא נכונה.

<u>פתרון</u>:

תשובה ב׳.

נעבור לבסיס עשרוני

$$(a + b) * (a - b) = a^2 - b^2$$

נתונות הפונקציות הבאות:

$$f(x, y, z) = \bar{x} + y \cdot z$$

$$g(x, y, z) = x \cdot \overline{(y + z)}$$

$$h(x, y, z) = x \cdot y + z$$

מהו המשפט הנכון מבין המשפטים הבאים?

- א. הפונקציות f ו-g ביחד הן מערכת פעולות שלמה, אך כל אחד לבד **אינו** מהווה מערכת פעולות שלמה.
- ב. הפונקציות f ו-h ביחד הן מערכת פעולות שלמה, אך כל אחד לבד **אינו** מהווה מערכת פעולות שלמה.
- ג. הפונקציות h ו-g ביחד הן מערכת פעולות שלמה, אך כל אחד לבד **אינו** מהווה מערכת פעולות שלמה.
- ד. כל זוג פונקציות יחד **אינו** מהווה מערכת פעולות שלמה, אך שלושת הזוגות יחד מהווים מערכת פעולות שלמה.
 - ה. כל אחת מן הפונקציה (לבדה) היא מערכת פעולות שלמה.

<u>פתרון</u>:

תשובה א׳

נשים לב כי f(a,a,a)=1, וכי g היא מערכת פעולות חצי שלמה שצריכה את הקבוע 1 כדי להיות שלמה. g(a,a,a)=1 לחלופין g(a,a,a)=0 היא מערכת פעולות חצי שלמה שצריכה את הקבוע g(a,a,a)=0

ברשותכם מספר אינסופי של רכיבי Full Adder ו- אינסופי של רכיבי לא ידוע כיצד Half Adder הרכיבים מומשו.

נתונים זמני ההשהיה של הרכיבים:

Full Adder:

Path	T_{pd}
a,b→S	3ns
a,b→Cout	3ns
Cin→S	10 <i>ns</i>
Cin→Cout	4ns

Half Adder:

Path	T_{pd}
a,b→S	4ns
a,b→Cout	1ns

באפשרותכם להשתמש במספר בלתי מוגבל של Full Adder וברכיב Half Adder יחיד או לא להשתמש בו כלל.

מהו זמן ההשהיה המינימלי של סוכם של 2 מספרים ברוחב 5 ביטים הממומש ע"י שרשור היחידות הנתונות?

- 14 א.
- ב. 15
- ג. 20
- 23 .т
- ה. 25

<u>פתרון:</u>

'סעיף ד

על מנת לקבל השהיה מינימלית יש להשתמש ב HA אחד ו FA 4:

$$\begin{split} T_{pd} &= T_{pd}(HA, a, b \rightarrow Cout) + 3 \cdot Tpd(FA, Cin \rightarrow Cout) \\ &+ T_{pd}(\max{(FA, Cin \rightarrow Cout), (FA, Cin \rightarrow S))}) = 1 + 3 \cdot 4 + 10 = 23ns \end{split}$$

<u>שאלה 6</u>

נתון המעגל הבא:

:(ns זמני ההשהיה של הרכיבים מופיעה בטבלה הבאה (נתונים ב

	T_{cd}	$T_{pd}/T_{pC\to Q}$	T_{su}	T_{hold}
FF1	1	7	13	4
FF2	2	14	10	5
NAND	3	5	-	-

 $\mathbf{T} = \mathbf{50} n \mathbf{s}$ זמן המחזור של המעגל הוא

שימו לב: יחידה D מופיעה פעמיים, גם ביציאת FF2 וגם בכניסת השעון של FF1.

היחידה D מורכבת ממספר **זוגי** של מהפכים (שערי NOT). עבור m מהפכים ביחידה D מתקיים:

 $\mathrm{T}_{cd}(D)=2m$

 $T_{pd}(D) = 4m$

מהו המספר **המקסימלי** של מהפכים שניתן להרכיב ביחידה D מבלי לפגוע בפעולתו התקינה של המעגל?

- א. 0
- ב. 2
- ג. 4
- 5 .т
- ה. 6

<u>פתרון:</u>

FF1->FF2:

HOLD:

$$T_{cd}(D) + T_{cd}(FF1) + T_{cd}(NAND) \ge T_{hold}(FF2)$$
$$2m + 1 + 3 \ge 5 => m \ge 0.5$$

SETUP:

$$T_{pd}(D) + T_{pd}(FF1) + T_{pd}(NAND) + T_{su}(FF2) \le T$$

 $4m + 7 + 5 + 10 \le 50 => m \le 7$

FF2->FF2:

HOLD:

$$T_{cd}(FF2) + T_{cd}(D) + T_{cd}(NAND) \ge T_{hold}(FF2)$$
$$2 + 2m + 3 \ge 5 \implies m \ge 0$$

SETUP:

$$T_{pd}(FF2) + T_{pd}(D) + T_{pd}(NAND) + T_{su}(FF2) \le T$$

 $14 + 4m + 5 + 10 \le 50 = m \le 5.25$

כלומר קיבלנו $0.5 \leq m \leq 5.25$ כמו כן אנו יודעים כי נדרשים מספר זוגי של מהפכים בכדי לשמור על פעולה תקינה של המעגל ולכן קיבלנו כי m=4