Procena performansi kontrolnog protokola za pouzdan prenos UDP datagrama korišćenjem više paralelnih tokova

Osnovi računarskih mreža 2

Mentor: Miloš Pilipović

Studenti: Aleksandar Zagorac RA160/2016

Marina Repac RA141/2016

Zadatak

- na osnovu implementirane klijent-server programske arhitekture (UDP klijent/server), koristeći libpcap/WinPcap biblioteke, eksperimentalno odrediti ključne performanse kontrolnog protokola za pouzdan prenos podataka zasnovanog na osnovnom UDP protokolu korištenjem više paralelnih tokova:
 - **■** Eternet
 - WiFi USB adapter
- obezbedi prenos UDP datagrama bez greške
- obezbedi da UDP datagrami stignu u redosledu u kom su i poslati
- obezbedi kontrolu toka podataka (proces upravljanja brzinom slanja UDP datagrama između dva komunikaciona čvora)

Realizacija

- za potrebe ovog projekta realizovane su strukture koje predstavljaju:
 - ethernet zaglavlje
 - ip zaglavlje
 - udp zaglavlje
 - u deo podataka UDP zaglavlja dodato je custom zaglavlje koji sadrži sekvencijski broj paketa koji se šalje
 - sam paket sačinjen od svih ovih zaglavlja

Eternet zaglavlje

- informacije o izvorišnoj i odredišnoj MAC adresi
- informacije o tipu zaglavlja sledećeg sloja
- vrednost 0x0800 odgovara tipu mrežnog sloja IPv4, koji koristimo u zadatku

IP zaglavlje

- informacije o dužini zaglavlja
- verzija IP protokola
- tip servisa
- ukupna dužina paketa (sa zaglavljem)
- TTI (Time To Live)
- protokol zaglavlja sledećeg sloja
- polje kontrolne sume (checksum)
- izvorišna i odredišna IPv4 adresa

IP zaglavlje

- vrednost 0x11 odgovara tipu transportnog sloja UDP, koji koristimo u zadatku
- računanje checksum polja je realizovano sabiranjem svih vrednosti podataka iz paketa, osim samog polja checksum

UDP zaglavlje

- informacije o izvorišnom i odredišnom broju porta
- dužina UDP datagrama (uključujući i zaglavlje)
- polje kontrolne sume (checksum)

Custom zaglavlje

sadrži samo jedno polje, broj sekvence, kojim pratimo redosled slanja paketa i na osnovu toga ispravno rekonstruiše podatke na prijemnoj strani

Komunikacija

- za slanje su korišćena dva paralelna toka (Eternet i Wi-Fi)
- na samom početku pošiljalac (sender.c) na oba toka šalje veličinu fajla
- ukoliko primalac (receiver.c) na oba toka ne primi istu vrdnost, proglašava se greška i komunikacija se prekida
- nakon toga informacije nastavljaju da se šalju paralelno na oba toka
- za svaki tok zadužena posebna nit
- nit preuzima sledeći paket koji je na redu za slanje
- nakon toga šalje paket sa datim rednim brojem

Komunikacija

- ukoliko dobije ACK poruku od primaoca prelazi na sledeći paket
- ukoliko ne dobije ACK poruku, proces se ponavlja sve dok ga ne dobije ili dok se tok ne proglasi mrtvim

Rezultat

prosečan broj bajtova koji se šalje po sekundi je 120 kbps

Dodatni zahtevi

- višeplatformska podrška (Windows / Linux)
- programski jezik C
- višenitno programiranje