

Biological Sciences faculty Biophysics Department

Introduction to Applied Machine Learning

Presented By Alireza Doustmohammadi

Graduate Student in Bioinformatics

January 2021

Contents

Introduction

Why do we need to prediction?

Central Dogma of Prediction

Reference

ML - 2021

Outline Supervised Learning Unsupervised Learning Ensemble Learning

5 of 36

Welcome To de Era of Big Data

7 of 36

GenBank and WGS Statistics

[https://www.ncbi.nlm.nih.gov/genbank/statistics/]

PDB Data Distribution by Experimental Method and Molecular Type:

Molecular Type	X-ray	NMR	EM	Multiple methods	Neutron	Other	Total
Protein (only)	135896	<u>36576</u>	<u>4544</u>	<u>165</u>	<u>67</u>	<u>36</u>	<u>152280</u>
Protein/NA	<u>7177</u>	<u>269</u>	<u>1603</u>	<u>3</u>	<u>0</u>	<u>0</u>	9052
Nucleic acid (only)	<u>2158</u>	<u>1360</u>	<u>53</u>	<u>7</u>	<u>2</u>	<u>1</u>	<u>3561</u>
Other	<u>149</u>	<u>31</u>	<u>3</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>183</u>
Total	<u>153600</u>	<u>13653</u>	<u>6814</u>	<u>181</u>	<u>69</u>	<u>37</u>	173754

[https://www.rcsb.org/stats/summary]

Basic Concepts & Nomenclatures

Central Dogma of Prediction

Central Dogma of Prediction

- Defining the Questions
- Data Collection
- Feature Extraction
- Preprocessing & Feature Selection
- Algorithm (Classifier)
- Evaluation
- Redesign the Algorithm (Parameter Tuning)

Features

- ✓ Good representation of data
- ✓ Data Compression
- ✓ Need to expert's knowledge

Data Matrix

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$$

$$x_i = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix} \quad \mathbf{x}_j = \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_p \end{pmatrix}$$

No.	1: outlook 2 Nominal	: temperature Numeric	3: humidity Numeric	4: windy Nominal	5: play Nominal
1	sunny	85.0	85.0	FALSE	no
2	sunny	80.0	90.0	TRUE	no
3	overcast	83.0	86.0	FALSE	yes
4	rainy	70.0	96.0	FALSE	yes
5	rainy	68.0	80.0	FALSE	yes
6	rainy	65.0	70.0	TRUE	no
7	overcast	64.0	65.0	TRUE	yes
8	sunny	72.0	95.0	FALSE	no
9	sunny	69.0	70.0	FAL	/ \
	rainy	75.0	80.0	FAL	y_1
	sunny	75.0	70.0	TRU	y_2
	overcast	72.0	90.0	TRU y =	=
	overcast	81.0	75.0	FAL	
	rainy	71.0	91.0	TRU	$\setminus y_n$

X, Y Relation

We assume there is a **relationship between Y and** $X = (X_1, X_2, X_3,, X_p)$, witch can be written in the very general form:

$$Y = f(X) + \varepsilon$$

Here f is some **fixed but unknown** function of X_1, X_2, \dots, X_p , and ε is a random error term, witch is **independent of** X and has mean zero.

X, Y Relation

X, Y Relation

$$Y = f(X) + \varepsilon$$

Reducible and irreducible error

$$Y = f(X) + \varepsilon$$

$$E(Y - \widehat{Y})^{2} = E[f(X) + \varepsilon - \widehat{f}(X)]^{2}$$

$$= [f(X) - \widehat{f}(X)]^{2} + Var(\varepsilon)$$
Reducible Irreducible

Goal: Minimizing the reducible error

*	MMT00000044	MMT00000046	MMT00000051	MMT00000076	MMT00000080	MMT00000102	MMT00000149
F2_2	-0.01810000	-0.077300000	-0.02260000	-0.00924000	-0.04870000	0.17600000	0.07680000
F2_3	0,06420000	-0.029700000	0.06170000	-0.14500000	0.05820000	-0.18900000	0.18600000
F2_14	0.00006440	0.112000000	-0.12900000	0.02870000	-0.04830000	-0.06500000	0.21400000
F2_15	-0.05800000	-0.058900000	0.08710000	-0.04390000	-0.03710000	-0.00846000	0.12000000
F2_19	0.04830000	0.044300000	-0.11500000	0.00425000	0.02510000	-0.00574000	0.02100000
F2_20	-0.15197410	-0.093800000	-0.06502607	-0.23610000	0.08504274	-0.01807182	0.06222751
F2_23	-0.00129000	0.093400000	0.00249000	-0.06900000	0.04450000	-0.12500000	0.22600000
F2_24	-0.23600000	0.026900000	-0.10200000	0.01440000	0.00167000	-0.06820000	0.31100000
F2_26	-0.03070000	-0.133000000	0.14200000	0.03630000	-0.06800000	0.12500000	-0.20700000
F2_37	-0.02610000	0.075700000	-0.10200000	-0.01820000	0.00567000	0.00998000	0.12100000
F2_42	0.07370589	-0.009193803	0.06428929	0.47787460	-0.07534868	-0.03736660	0.18534580
F2_43	-0.04660000	-0.007500000	0.01690000	0.14400000	-0.06730000	-0.04020000	-0.13800000

22 of 36

Data Challenges:

- Miss Value
- Low-frequency variant Features
- Outliers

Blessing and Curse of Dimensionality

Algorithms

Most Common Algorithms KNN Regression MLP Decision ANN **SVM** Tree Random Bayesian Net Forest

27 of 36

"All models are wrong, but some are useful." George Box, British Statistician 1919-213

Increasing the size of the data set may reduce the over-fitting

Increase Flexibility:

- Bias tends to initially decrease faster than variance increases
- At some point has little impact on the bias but starts to significantly increase the variance.

Bias – variance Trade off

The Bias-Variance Trade-off

Expected error can always be **decomposed** into the sum of three fundamental quantities:

$$E\left(y_0 - \hat{f}(x_0)\right)^2 = Var\left(\hat{f}(x_0)\right) + \left[Bias\left(\hat{f}(x_0)\right)\right]^2 + Var(\varepsilon)$$

Use more flexible mothods $\rightarrow \uparrow$ variance, bias \downarrow

In Sample Error Vs on Sample error

In sample error

- Train data
- Bias

Out sample error

- Test data
- Variance

Usually Out sample error > In sample error

care about out sample error

"Machine learning is the next internet"

-Anthony Tether

Director, DARPA (Defense Advanced Research Projects Agency, USA).