

Segundo Trabalho

Cena Simples Interativa com Câmara Móvel e Colisões

Objectivos

Os objectivos do segundo trabalho de laboratório são: (1) explorar o conceito de câmara virtual, perceber as diferenças entre (2) câmara fixa e câmara móvel, e entre (3) projecção ortogonal e projecção perspectiva; deseja-se ainda (4) a compreensão das técnicas básicas de animação bem como a detecção de colisões.

A avaliação do segundo trabalho será realizada na semana de **26 a 30 de Outubro** e corresponde a **5 valores** da nota do laboratório. A realização deste trabalho tem um esforço estimado de **10 horas** por elemento do grupo, distribuído por duas semanas.

Não esquecer de comunicar ao docente do laboratório as horas despendidas pelo grupo (média do grupo) na realização deste trabalho.

Tarefas

As tarefas do segundo trabalho são as seguintes:

- 1. Criar uma mesa de bilhar como a Figura 1 ilustra. Devem ter-se em conta as seguintes características na construção da mesa de bilhar:
 - a) A altura H das paredes da mesa deve ser tal que não permita que as bolas caiam para fora da mesa (por ex. H > 2*R, onde R é o raio da bola ver exemplo que se ilustra na Figura 2). Os alunos devem especificar as dimensões da mesa de bilhar bem como as dimensões das esferas;
 - b) As bolas brancas são disparadas por vários tacos e sobre o plano da mesa. As bolas são automaticamente colocadas à ponta do taco (isto é, há uma bola branca acessivel em cada um dos 6 tacos). Na Figura 1, ilustram-se 6 tacos que disparam as bolas, devendo estas deslocar-se sempre sobre o plano da mesa. Não são permitidos quaisquer saltos no movimento da bolas. As bolas devem rodar sobre si mesmas na direção do seu deslocamento;
 - c) A direção de disparo da tacada deverá ser programada, ou seja, o ângulo da tacada deve ser selecionado. Poderá haver um ângulo máximo pré-definido, por exemplo 60 graus, e com as teclas "<-" e "->" ajustar o ângulo da tacada.

Por exemplo, o ângulo da tacada poderá estar contido no intervalo [-60,60] graus. (A escolha deste ângulo pode ser um parâmetro a ajustar); De notar ainda que, no processo de seleção do angulo, o taco deve de rodar.

- d) Os tacos podem ser modelados recorrendo, por exemplo, a cilindros;
- e) As teclas "1" a "6", quando ativadas, devem acionar um dos 6 tacos que dispara uma bola. (damos a liberdade de poder haver disparos em simultâneo);
- f) O taco selecionado deve ter uma cor diferente dos restantes; não é mandatório modelar o movimento do taco no processo da tacada (i.e., aproximação do taco à bola);
- g) O disparo do taco deve ser efetuado usando a tecla "space";
- h) Dá-se a oportunidade de selecionar mais do que um taco para o disparo das bolas;
- i) Deve ainda ser criado um número $N \ge 15$ (arbitrário) de bolas. Estas bolas deverão ser inicialmente colocadas em posições aleatórias no interior da mesa de bilhar (ver Figura 1) em movimento e com velocidades diferentes;
- j) Quando a bola atingir um dos buracos da mesa, esta deve desaparecer no interior da mesa e ter uma queda no infinito. Será desejável a visualização da queda.

Nota: Admite-se sempre que a bola que está à saída do taco (a bola à qual vai ser dada a tacada) não colide com as outras. Só se faz o estudo da colisão após a tacada.

 Definir uma câmara fixa com uma vista de topo sobre a mesa de bilhar utilizando uma projeção ortogonal que mostre toda a cena (semelhante ao que é mostrado na Figura 1). Esta visualização deverá ser conseguida usando a tecla "1". [1,5 valores]

Definir ainda duas câmaras adicionais tendo o cuidado de manter a câmara definida anteriormente. Deve ser possível alternar entre as três câmaras utilizando as teclas "1", "2" e "3". A câmara 2 deve ser fixa e permitir visualizar toda a cena através de uma projeção perspetiva. A câmara 3 deve também utilizar uma projeção perspetiva mas é móvel. Esta deve estar colocada atrás da bola disparada e acompanhar o seu movimento (essa bola deve ser visível). [1,5 valores]

Realizar o movimento das bolas. O movimento deve ser retilíneo uniformemente retardado. Ou seja, após algum tempo decorrido sobre uma colisão ou um disparo, as bolas devem perder progressivamente a velocidade. Deve-se detetar e tratar a colisão das bolas. As colisões podem ser (i) bola-bola ou (ii) bola-parede. Na

primeira (colisão bola-bola), esta deve ser tratada usando esferas envolventes. Na segunda (bola-parede), esta deve ser tratada usando bounding boxes alinhadas, ou usando limites. Nota: caso uma bola colida com uma parede, a bola deve ricochetear nesta, ficando a parede imóvel. No caso de colisão bola-bola, esta deve ser uma colisão elástica.

Figura 1 – Imagem ilustrativa da mesa de bilhar. Ilustram-se os seis tacos que permitem o disparo das bolas que são colocadas na mesa numa posição à ponta do taco (vista de topo).

Figura 2 – Imagem ilustrativa do disparo da bola pelo taco. Assume-se que a bola efetua um deslocamento sobre o plano da mesa. Mostra-se ainda as dimensões da bola (2R) e da altura da mesa de bilhar (H), onde se verifica a relação H > 2R, não permitindo que a bola saia do espaço delimitado pela mesa de bilhar. Não poderá haver salto da bola após a colisão com a parede da mesa.

Notas Importantes

Nota 1 : Antes de escrever qualquer linha de código, é necessário esboçar o que se pretende modelar em 3D pois tal actividade ajuda muito a perceber que primitivas e transformações devem ser aplicadas

Nota 2: Não devem utilizar bibliotecas externas nem funções do three.js para detectar colisões ou implementar a física inerente ao movimento. Esperamos ver o vosso código e não chamadas a funções de bibliotecas.

Nota 3: Existem dois tipos de colisão. Colisão **bola-bola**, colisão **bola-parede**. Esta última colisão pode ser realizada usando limites ou usando bounding boxes alinhadas.

Sugestões

- 1. Para além de dos acontecimentos de update e display existem mais um conjunto de acontecimentos, tais como teclas pressionadas ou soltas, temporizadores e redimensionamento da janela. Sugerimos vivamente que tais acontecimentos sejam tratados pelas respectivas funções de callback de forma independente. Tenha em atenção que nos próximos Trabalhos iremos requerer a implementação devida dos acontecimentos de redimensionamento da janela!
- 2. Por fim, os alunos devem adoptar uma programação orientada a objectos, seguindo sempre boas práticas de programação que permitam a reutilização do código em entregas posteriores e facilitem a escalabilidade.
- 3. A posição, direção e velocidade inicial das bolas podem ser obtidas recorrendo a *Math.randFloat(low, high)*.
- 4. Para criar o eixo das bolas pode-se usar o objecto AxesHelper(size).
- 5. Para decrementar a velocidade das bolas com o tempo é recomendado o uso de um temporizador com algumas dezenas de segundos. Ao disparar o temporizador, a velocidade das bolas diminui ligeiramente.
- 6. Para mais informação relativa a colisões e conservação de momento, consultar:

https://pt.wikipedia.org/wiki/Conserva%C3%A7%C3%A3o do momento linear