数学Ⅲ(微積) 課題33

令和 4 年 12 月 16 日

TE科3年 番 氏名

- **1** 微分方程式 $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} = 0$ について各問に答えよ.
- (1) C_1 , C_2 を任意定数として関数 $x = C_1 e^{-2t} + C_2$ は一般解であることを示せ.
- (2) 初期条件 t = 0 のとき x = 1, $\frac{dx}{dt} = 2$ を満たす特殊解を求めよ.
- (3) 境界条件 t = 0 のとき x = 0, t = 1 のとき x = 1 を満たす特殊解を求めよ.
- 2 関数が線形独立であることを示せ.
- (1) $\log t$, $t \log t$

 $(2) e^{\alpha t}, e^{\beta t} (\alpha \neq \beta$ は定数)

 $(3) e^{\alpha t}, te^{\alpha t} (\alpha は定数)$

- (4) $e^{\alpha t}\cos\beta t$, $e^{\alpha t}\sin\beta t$ (α , β は定数, $\beta \neq 0$)
- **3** $L(x) = \frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x$, $R(t) = t^2 + 5t + 3$ とする. 各問に答えよ.
- (1) $x = e^{-t}$, $x = te^{-t}$ は斉次微分方程式 L(x) = 0 の解であることを示せ.
- (2) 斉次微分方程式 L(x) = 0 の一般解を求めよ.
- (3) $x = t^2 + t 1$ は微分方程式 L(x) = R(t) の解であることを示せ.
- (4) 微分方程式 L(x) = R(t) の一般解を求めよ.

(1)
$$\times 0 \text{ sit } ty$$
 $\frac{1}{12} = 4 \cdot C_1 e^{2t}$
 $\frac{1}{12} = 4 \cdot C_2 e^{2t}$
 $\frac{1}{12} = 4 \cdot C_1 e^{2t}$
 $\frac{1}{12} = 4 \cdot C_2 e^{2t}$
 $\frac{1}{12} = 4 \cdot C_2 e^{2t}$
 $\frac{1}{12} = 4 \cdot C_1 e^{2t}$
 $\frac{1}{12} = 4 \cdot C_2 e^{2t}$
 $\frac{1}{12} = 2 \cdot C_1 e^{2t}$

(2) $S = C_1 + C_2$
 $S = C_1 + C_2$