Derivatives Cheat Sheet

Niray Bhattad

Fundamentals

By Definition, the derivative of function f(x) at x = a is given by : $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ if it exists and is finite.

Alternatively, we can also define $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ provided the limit exists and is finite.

- Right Hand Derivative (**RHD**) of f' at x = a denoted by $f'(a^+)$ is defined by : $f'(a^+) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$ provided the limit exists and is finite.
- Left Hand Derivative (**LHD**) of f' at x = a denoted by $f'(a^-)$ is defined by : $f'(a^-) = \lim_{h \to 0} \frac{f(a) f(a h)}{h}$ provided the limit exists and is finite.
- If f'(a) exists, then f(x) is derivable at $x = a \implies f(x)$ is continuous at x = a.
- If f(x) is derivable at x = a, then f(x) is continuous at x = a. But the converse is not true. If f(x) is continuous at x = a, then it need not be derivable at x = a.
- Derivability over an Interval → f(x) is said to be derivable over an interval if it is derivable at each and every point of the interval.
- If 2 functions f(x) and g(x) are derivable at x=a, then sum, product, difference, composition* of the 2 functions will also be derivable at x=a and if $g(a) \neq 0$, then the function $\frac{f(x)}{g(x)}$ will also be derivable at x=a.

Theorems of Derivatives

If u and v are derivable functions of x, then

•
$$\frac{\mathrm{d}(u \pm v)}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} \pm \frac{\mathrm{d}v}{\mathrm{d}x}$$

$$\bullet \ \frac{\mathrm{d}}{\mathrm{d}x}(Ku) = K\frac{\mathrm{d}u}{\mathrm{d}x}$$

• Product Rule
$$\rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(u \cdot v) = u \frac{\mathrm{d}v}{\mathrm{d}x} + v \frac{\mathrm{d}u}{\mathrm{d}x}$$

• Quotient Rule
$$\rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u}{v}\right) = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$$

• Chain Rule If y = f(u) and u = g(x) then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$$

Derivatives of Standard Functions

•
$$\frac{\mathrm{d}(x^n)}{\mathrm{d}x} = nx^{n-1} \to x \in \mathbb{R}^+, n \in \mathbb{R}$$

•
$$\frac{\mathrm{d}(a^x)}{\mathrm{d}x} = a^x \cdot \ln(a) \longrightarrow \frac{\mathrm{d}(e^x)}{\mathrm{d}x} = e^x$$

$$\bullet \ \frac{\mathrm{d}(\ln(x))}{\mathrm{d}x} = \frac{1}{x}$$

$$\bullet \frac{\mathrm{d}(\log_a(x))}{\mathrm{d}x} = \frac{1}{x \ln(a)}$$

$$\bullet \ \frac{\mathrm{d}(\sin x)}{\mathrm{d}x} = \cos x$$

$$\bullet \ \frac{\mathrm{d}(\cos x)}{\mathrm{d}x} = -\sin x$$

$$\bullet \ \frac{\mathrm{d}(\sec x)}{\mathrm{d}x} = \sec x \cdot \tan x$$

$$\bullet \ \frac{\mathrm{d}(\csc x)}{\mathrm{d}x} = -\csc x \cdot \cot x$$

$$\bullet \ \frac{\mathrm{d}(\mathrm{Constant})}{\mathrm{d}x} = 0$$

$$\bullet \ \frac{\mathrm{d}(\sin^{-1}x)}{\mathrm{d}x} = \frac{1}{\sqrt{1-x^2}} \to |x| < 1$$

•
$$\frac{\mathrm{d}(\cos^{-1}x)}{\mathrm{d}x} = \frac{-1}{\sqrt{1-x^2}} \to |x| < 1$$

•
$$\frac{\mathrm{d}(\tan^{-1}x)}{\mathrm{d}x} = \frac{1}{1+x^2} \to x \in \mathbb{R}$$

•
$$\frac{d(\sec^{-1}x)}{dx} = \frac{1}{|x|\sqrt{x^2 - 1}} \to |x| > 1$$

$$\bullet \frac{\mathrm{d}(\csc^{-1}x)}{\mathrm{d}x} = \frac{-1}{|x|\sqrt{x^2 - 1}} \to |x| > 1$$

•
$$\frac{\mathrm{d}(\cot^{-1}x)}{\mathrm{d}x} = \frac{-1}{1+x^2} \to x \in \mathbb{R}$$

• For 2 functions
$$f(x)$$
 and $g(x)$,
$$[f(x)^{g(x)}]' = f(x)^{g(x)} \left[f'(x) \frac{g(x)}{f(x)} + g'(x) \cdot \ln f(x) \right]$$
 If $f(x) = \text{Constant}$, then
$$[f(x)^{g(x)}]' = f(x)^{g(x)}[g'(x) \cdot \ln f(x)]$$

Some Chad Differentiation Tricks

• Differentiation of Implicit Functions : To find the derivative of f(x,y)=0, we may use the following formula :

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\text{Partial Derivative of } f(x, y) \text{ w.r.t } x}{\text{Partial Derivative of } f(x, y) \text{ w.r.t } y}$$

• Differentiation of Functions in Parametric Form : If x = f(t) and y = q(t),

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}x}}$$

• Differentiation using Logarithms :

$$- y = [f_1(x)]^{f_2(x)}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = (f_2'(x)) \ln f_1(x) + f_2(x) \frac{f_1'(x)}{f_1(x)}$$

$$- y = \frac{\prod f_i(x)}{\prod g_i(x)}$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \left[\sum \frac{f_i'(x)}{f_i(x)}\right] - \left[\sum \frac{g_i'(x)}{g_i(x)}\right]$$

• Inverse Functions : If y = f(x) and x = g(y) are inverse functions, then

$$g'(y) = \frac{1}{f'(x)}$$
$$g''(y) = -\frac{f''(x)}{(f'(x))^3}$$

- Even and Odd Functions: If f(x) is an even function, then f'(x) will be an odd function, and conversely, if f(x) is an odd function, then f'(x) will be an even function.
- Leibnitz Theorem (Derivative for product of 2 functions): For 2 functions u and v, nth derivative of the product function u · v is given by

$$y_n = \sum_{r=0}^n \binom{n}{r} u_{n-r} v_r$$

Types of Discontinuities

- Removable Type of Discontinuities :
 - Missing Point Discontinuities
 - Isolated Point Discontinuities
- Non-Removable Type of Discontinuities
 - Finite Type
 - Infinite Type
 - Oscillatory Type

(Dis)continuity of Composite Functions

If g(x) is defined as g(x) = f(f(x)), then discontinuities of g(x) will be the union of the set of the discontinuities of f(x) and f(f(x)).

Similarly if h(x) = f(f(f(x))), the discontinuities of h(x) will be union of the set of discontinuities of g(x) and f(f(f(x))).

Intermediate Value Theorem (IMVT)

The Intermediate Value Theorem states that, if f(x) is continuous om [a,b], then it takes on any given value between f(a) and f(b) at some point inside the interval.

Corollary: For a continuous function f(x), if there exist $a, b \in \mathbb{R}$ such that $f(a) \cdot f(b) \leq 0$, i.e., they have opposite signs, then it is assured by IMVT that there exists a root in the interval [a, b].

Tangents and Normals on the curve

The curve is given by f(x,y) = 0. We define $\frac{dy}{dx}$ as an expression we get after differentiating the equation of the curve w.r.t x.

- For a point on the curve
 - Equation of Tangent:

$$(y - y_1) = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1, y_1)} \cdot (x - x_1)$$

- Equation of Normal:

$$(y - y_1) = -\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)_{(x_1, y_1)} \cdot (x - x_1)$$

- For a point (a, b) not on the curve
 - Equation of Tangent :

Solve the following 2 equations simultaneously -

$$\frac{(y_1 - b)}{(x_1 - a)} = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1, y_1)}$$

$$f(x_1, y_1) = 0$$

- Equation of Normal:

Solve the following 2 equations simultaneously -

$$\frac{(y_1 - b)}{(x_1 - a)} = -\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)_{(x_1, y_1)}$$

$$f(x_1, y_1) = 0$$

Conditions for a line to be Tangent to a given Curve at a point

Slope of Line = Slope of tangent to the curve at the point of contact $\begin{tabular}{c} \begin{tabular}{c} \begin{tabular}{c$

$$-\frac{a}{b} = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{(x_1, y_1)}$$

Angle Between Curves

$$m_1 = \left(\frac{\mathrm{d}f_1(x)}{\mathrm{d}x}\right)_{(x_1,y_1)}$$
 and $m_2 = \left(\frac{\mathrm{d}f_2(x)}{\mathrm{d}x}\right)_{(x_1,y_1)}$
Acute angle between them is given by

$$\theta = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

Lengths in terms of derivatives

- Length of Tangent : $|y| \cdot \sqrt{1 + \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2}$
- Length of Normal : $|y| \cdot \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}y}\right)^2}$
- Length of Sub-Tangent : $y \cdot \frac{\mathrm{d}x}{\mathrm{d}y}$
- Length of Sub-Normal : $y \cdot \frac{\mathrm{d}y}{\mathrm{d}x}$

Monotonicity

A function which in a given interval is increasing or decreasing is called 'Monotonic' in that interval.

If $f'(x) \geq 0$ at a point x = a, then the function at this point is increasing (or precisely non-decreasing). If $f'(x) \leq 0$, the function f(x) at this point is decreasing (or precisely non-increasing). Even if f'(a) is not defined, f(x) can still be increasing or decreasing.

Rolle's Theorem

Let f(x) be a function subject to the following conditions:

- 1. f(x) is a continuous function of x in the closed interval of [a,b].
- 2. f(x) is differentiable for every point in the interval (a,b).
- 3. f(a) = f(b)

Then there exists at least one point x=c such that a < c < b where f'(c) = 0

Mean Value Theorems

Lagrange's Mean Value Theorem

If a function f(x) is

- 1. continuous in the interval [a, b].
- 2. differentiable in the interval (a, b).

Then there exists at least one point x=c in the interval (a,b) such that $f'(c)=\frac{f(b)-f(a)}{b-a}$

Cauchy's Mean Value Theorem

If functions f(x) and g(x) are both continuous in the interval [a,b], differentiable in the interval (a,b), and g'(x) is not zero in the interval (a,b), then there exists some point x=c in

$$(a,b)$$
 such that $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$

Taylor's Theorem

Let $f:[a,x]\to\mathbb{R}$. If

- 1. $f^{(n-1)}$ exists and is continuous on [a, x].
- 2. $f^{(n)}$ exists on (a, x).

Then there exists $c \in (a, x)$ such that

$$f(x) = f(a) + \frac{f^{1}(a)}{1!}(x-a)^{1} + \dots + \frac{f^{n-1}(a)}{(n-1)!}(x-a)^{n-1} + \frac{f^{n}(c)}{n!}(x-a)^{(n)}$$

Maxima - Minima

Types

- Absolute Maxima
- Relative/Local Maxima
- Absolute Minima
- Relative/Local Minima

Necessary Condition

If f(x) is a maximum or minimum at x = c and if f'(c) exists, then f'(c) = 0.

Using Second Order Derivative

- f(c) is a minimum value of the function f(x) if f'(c) = 0 (If it exists) and f''(c) > 0 (Only if it exists).
- f(c) is a maximum value of the function f(x) if f'(c) = 0 (If it exists) and f''(c) < 0 (Only if it exists).

Point(s) of Inflection

The sign of the second order derivative determines the concavity of the curve.

- $\frac{d^2y}{dx^2} > 0 \implies ConcaveUpwards$
- •
- $\frac{d^2y}{dx^2} < 0 \implies ConcaveDownwards$

At the point of Inflection, we find that $\frac{d^2y}{dx^2} = 0$ and $\frac{d^2y}{dx^2}$ flips sign.

Inflection Points can also occur if $\frac{d^2y}{dx^2}$ fails to exist.

Newton-Raphson's Method for Approximations

1. Devise a 'good' function f(x)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Do this till $n \to \infty$ (For practical purposes, take approximate value and do it a few times to improve accuracy)

2.
$$f(x + \Delta x) = f(x) + \frac{\mathrm{d}y}{\mathrm{d}x}(\Delta x)$$

Nirav Bhattad, M Prakash Institute, Personal Website