- 5. Exprese el subconjunto de los números reales que satisface cada una de las siguientes condiciones como un intervalo o como unión de intervalos y dibújelo en la recta real.
 - a) $x \ge 0$ y $x \le 5$

c) $x < 2 \text{ y } x \ge -3$

 $b) \ x \neq -1$

d) $x^2 \ge 3$

- 8. Resuelva las siguientes inecuaciones. Para cada una de ellas, exprese el conjunto solución como un intervalo o unión de intervalos y dibújelos sobre la recta real.
 - a) 3(2-x) < 2(3+x)

 $c) \ \frac{3}{x-1} < \frac{2}{x+1}$

 $b) \ \frac{1}{2-x} < 3$

 $d) \ \frac{x}{2} \ge 1 + \frac{4}{x}$

$$3(2-x) < 2(3+x)$$

$$6-3x < 6+2x$$

$$6-6 < +3x + 2x$$

$$6-6 < +3x + 2x$$

$$-3x-2x < 6-6$$

$$0 < 5x$$

$$-8x < 0 Al multiplicate of the contraction of the con$$

$$\frac{3}{x-1} \quad \angle \quad \frac{2}{x+1}$$

$$(x+1)(x-1)\frac{3}{(x-1)}$$
 $\leq \frac{2}{(x+1)}(x+1)$

Caro 1: (x+1) (x-1) >0

$$(x+1)(x-1)\frac{3}{(x+1)}$$
 $(x-1)\frac{3}{(x+1)}$ $(x-1)\frac{3}{(x+1)}$ $(x+1)\frac{3}{3}$ $(x-1)\frac{3}{3}$ $(x$

Caro 2: (x+1) (x-1) < 0

$$(x+1)(x+1) \xrightarrow{3} > \underbrace{2}_{(x+1)} \cdot (x-1)$$
 $(x+1) \xrightarrow{3} > \underbrace{2}_{(x+1)} \cdot (x-1)$
 $(x+1) \xrightarrow{3} > 2 \cdot (x-1)$
 $3x+3 > 2x-2$
 $3x-2x > -2-3$
 $x > -5$

7. Determine todos los intervalos de números reales x que satisfacen cada una de las siguientes desigualdades:

a)
$$(x+1)(x-2) < 0$$

b) $x^2(x-1) \ge 0$
d) $(x-5)^2(x+10) \le 0$

c)
$$(x-1)(x+1) > 0$$
 e) $(2x+1)^6(x-1) \ge 0$

Debido a que el caso azul es el único en el que es posible representarlo como un único intervalo, somos capaces de afirmar que la desigualdad se cumple para todo x en (-1, 2).

b) $x^2(x-1) \ge 0$

$$x^{2}(x-1) = 0$$
 $\sqrt{x^{2}(x-1)} > 0$
 $x - 1 = 0$ $\sqrt{x - 1} > 0$
 $x - 1 + 1 = 0 + 1$ $\sqrt{x - 1 + 1} > 0 + 1$
 $x = 7$ $\sqrt{x > 1}$

$$\times = 1 \vee \times > 1 \Rightarrow \times \geq 1$$

La designaldad se comple para todo $x \in [1,\infty)$

c)
$$(x-1)(x+1) > 0$$

Para que se compla ambos miembros de la multiplicación deben de tener el mismo signo.

$$(x-1)>0$$
 Λ $(x+1)>0$ \forall $(x-1)<0$ Λ $(x+1) \geq 0$ \forall $\chi>1$ Λ $\chi>-1$ \forall $\chi \geq 1$ Λ $\chi \leq -1$

La deriguabled se comple pera todo $x \in (\infty, -1) \cup (1, \infty)$

6. ¿Para cuáles valores de x se satisface la desigualdad $x^2 + 5x + 4 \ge 0$?

$$x^2 + 5x + 4 \ge 0$$

 $(x+4) \cdot (x+1) \ge 0$
Ambos miembros
deben tener mismo signo
 $(x+4) \ge 0 \land (x+1) \ge 0 \lor (x+4) \le 0 \land (x+1) \le 0$
 $x \ge -4 \land x \ge -1 \lor x \le -4 \land x \le -1$
 $(-\infty, -4] \lor [-1, \infty)$

.. La designable de cumple para todo x € (-∞,-4] u [-1,00)