Коники, то есть Кривые второго порядка

10 июня 2024

Прямая и обратная задачи аналитической геометрии

- І. Составление уравнения данного геометрического образа.
- II. Распознавание геометрического образа по данному уравнению.

Сегодня ограничимся: кривые в \mathbb{R}^2 и поверхности в \mathbb{R}^3 , которые задаются уравнениями вида f(x,y)=0 или F(x,y,z)=0, где функции являются многочленами степени не выше 2. И дадим полный ответ!

Заметим, что случай многочленов степени n=1 уже разобран (любое невырожденное линейное уравнение задает плоскость и любая плоскость задается линейным уравнением).

Итак, презентация выстроена вокруг всего двух классификационных (классифицируются распозанные геометрические образы, соотвествующие данному уравнению) теорем.

Забегая вперед, можно сказать, что в случае кривых второго порядка (в \mathbb{R}^2) может быть всего 7 различных геометрических образов, только 3 из них (эллипс, гипербола, парабола) не изучались нами ранее. Эта теорема будет доказана. Для поверхностей второго порядка есть всего 13 различных геометрических образов, при этом $9=3^2$ (эллипсоид, конус, цилиндры, гиперболоиды, параболоиды) мы пока не изучали и обсудим.

Прямая и обратная задачи аналитической геометрии

Рассмотрим пдск Oxyz и некоторую поверхность S.

Определение. Уравненение F(x,y,z)=0 называют уравнением поверхности S, если этому уравнению удовлеворяют координаты любой точки, лежащей на поверхности, и только они. При этом поверхность S называют reometrpuческим образом уравнения F(x,y,z)=0.

Аналогично:

Определение. Уравненение F(x,y)=0 называют уравнением кривой L, если этому уравнению удовлеворяют координаты любой точки, лежащей на кривой, и только они. При этом кривая называют *геометрическим образом* уравнения F(x,y)=0.

Аполлоний из Перге 262 до н.э. — ≈ 190 до н.э.

Создатель теории конических сечений, автор терминов "эллипс", "гипербола", "парабола".

Сечения конуса

Сечения конуса

Кривые второго порядка

Определение. Кривая на плоскости, которая задана уравнением

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0,$$

где $A^2+B^2+C^2>0$, в некоторой пдск называется кривой второго порядка.

Определение. Выражение

$$Ax^2 + Bxy + Cy^2,$$

где $A^2+B^2+C^2>0$, называется квадратичной формой кривой второго порядка.

Эллипс в прямоугольных координатах

Определение. Эллипсом называют геометрическое место точек, сумма расстояний от которых до двух данных точек, называемых фокусами, постоянна.

Как вывести уравнение эллипса?

Выберем пдск Oxy так, чтобы фокусы F_1 и F_2 лежали на оси Ox симметрично относительно точки O. Пусть $F_1(c,0), F_2(-c,0)$. По определению точка M(x,y) принадлежит эллипсу тогда и только тогда, когда $|F_1M|+|F_2M|=const$. Обозначим ее 2a. Итак,

$$|F_1M| + |F_2M| = 2a \Leftrightarrow \sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a.$$

Как вывести уравнение эллипса?

Теперь нужно два раза возвести в квадрат и потом проверить, что не появилось лишних точек.

Обозначим $a^2 - c^2 = b^2$.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{1}$$

– каноническое уравнение эллипса.

Эллипс на двух гвоздях

$$\rho(X, F_1) + \rho(X, F_2) = 2a$$

Терминология и построение эллипса

- 1. Из уравнения (1) $|x| \leqslant a, \ |y| \leqslant b$ следовательно эллипс расположен внутри прямоугольника $|x| \leqslant a, \ |y| \leqslant b.$
- 2. Переменные x,y входят в (1) в квадратах, значит Ox,Oy оси симметрии эллипса, значит достаточно построить $y=b\sqrt{1-\frac{x^2}{a^2}}$ при $x\geqslant 0$.

Терминология и построение эллипса

Терминология и построение эллипса

Термины: уравнение (1) — каноническое уравнение эллипса, O — центр эллипса, A_1,A_2,B_1,B_2 — вершины эллипса, число

$$arepsilon=rac{c}{a}=rac{\sqrt{a^2-b^2}}{a}=\sqrt{1-rac{b^2}{a^2}}$$
 — эксцентриситет эллипса, a — большая

полуось, b – малая полуось. Директрисы эллипса – прямые $d_1: \; x = rac{a}{arepsilon}$ и

$$d_2: x = -\frac{a}{\varepsilon}.$$

Эксцентриситет эллипса

Замечание. Эксцентриситет эллипса $\varepsilon=\sqrt{1-\frac{b^2}{a^2}}$ лежит на полуинтервале [0,1) и служит мерой «сплюснутости» эллипса. При $\varepsilon=0,\ c=0\Rightarrow F_1=F_2$ эллипс превращается в окружность. При $\varepsilon\to 1,\ c\to 1$ эллипс вырождается в отрезок F_1F_2 . $\dfrac{|F_1M|}{\left|\dfrac{a}{\varepsilon}-x\right|}=\varepsilon$ — эллипс

состоит из тех точек плоскости M(x,y), для которых отношение фокального радиуса F_1M к расстоянию до прямой d_1 есть величина постоянная, равная arepsilon.

Эксцентриситет эллипса

Комета Галлея. $\varepsilon \simeq 0,9671429.$

Эксцентриситет орбиты Земли: 0,01671123

Эллипс

Отрезки F_1M и F_2M – фокальные радиусы, 2c (расстояние между F_1 и F_2) – фокальное расстояние.

Оптическое свойство

Оптическое свойство: все лучи, выходящие из фокуса F_1 , сконцентрируются во втором фокусе F_2 и наоборот.

Большая и малая полуоси

Замечание. Уравнение $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ при a < b задает эллипс вида:

здесь a – малая полуось, b – большая полуось, $c^2=b^2-a^2,\; \varepsilon=\frac{c}{b}$ – эксцентриситет. Фокусы F_1,F_2 расположены на оси

 $Oy:F_1(0,c),F_2(0,-c)$, директрисы: $d_1:y=rac{b}{arepsilon},\ d_2=-rac{b}{arepsilon}$

Гипербола и ее параметры

Определение. Гиперболой называют геометрическое место точек, модуль разности расстояний от которых до двух данных точек, называемых фокусами, постоянен.

Каноническое уравнение гиперболы:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Гипербола и ее параметры

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ (2)$$

- 1. Из канонического уравнения (2) $|x|\geqslant a$, следовательно в полосе |x|< a точек гиперболы нет.
- 2. x,y входят в (2) в квадрате, следовательно гипербола симметрична относительно осей Ox,Oy, значит достаточно построить $y=b\sqrt{\frac{x^2}{a^2}-1}$ при x>0.
- 3. Функция $y=b\sqrt{\frac{x^2}{a^2}-1}$ при $x\to +\infty$ имеет асимптоту $y=\frac{b}{a}x$, следовательно $y=\frac{b}{a}x$ и $y=-\frac{b}{a}x$ асимптоты гиперболы.

Гипербола и ее параметры

Эксцентриситет гиперболы

Замечание. Эксцентриситет гиперболы $\varepsilon=\sqrt{1+\frac{b^2}{a^2}}>1$ (при $\varepsilon\to 1$ гипербола вырождается в два луча) характеризует угол между асимптотами.

Здесь a называют вещественной полуосью, а b — мнимой полуосью.

Сопряженная гипербола

Замечание. Уравнение $-\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ также задает гиперболу. Ее называют сопряженной к гиперболе $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$.

Здесь O — центр, B_1,B_2 — вершины, b — действительная полуось, a — мнимая, $\varepsilon=\sqrt{1+\frac{a^2}{b^2}}$ — эксцентриситет. Директрисы:

$$d_1:y=rac{b}{arepsilon},\;d_2:y=-rac{b}{arepsilon}$$
 (где $c^2=a^2+b^2$). Асимптоты: $y=\pmrac{b}{a}x$.

Директрисы гиперболы

Директрисы: ветвь гиперболы состоит из таких точек, для которых отношение расстояния до фокуса F_1 к расстоянию до прямой d_1 есть величина постоянная, равная ε .

$$\frac{|F_1M|}{\left|x - \frac{a}{\varepsilon}\right|} = \varepsilon \left(\frac{|F_2M|}{\left|x + \frac{a}{\varepsilon}\right|} = \varepsilon\right)$$

Оптическое свойство

Оптическое свойство: лучи, вышедшие из одного фокуса, после отражения от ближайшей ветви гиперболы, распространяются так, будто вышли из другого фокуса.

Вывод уравнения параболы

Определение. Параболой называют геометрическое место точек плоскости, равноудаленных от данной точки (фокуса) и от данной прямой (директрисы).

Вывод уравнения параболы

Выведем уравнение параболы.

Выберем пдск Oxy.

Oy параллельна директрисе d, фокус $F \in Ox$. Пусть расстояние

$$ho(F,d)=p\;(p$$
 – параметр параболы), тогда $d:x=-rac{p}{2},\;F\left(rac{p}{2},0
ight)$. Точка

M(x,y) принадлежит параболе тогда и только тогда, когда

$$\sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} = \left|x + \frac{p}{2}\right| \Rightarrow$$

$$\left(x - \frac{p}{2}\right)^2 + y^2 = \left(x + \frac{p}{2}\right)^2$$

$$y^2 = 2px (3)$$

каноническое уравнение.

Вывод уравнения параболы

«Лишних» решений при возведении в квадрат не возникло, так как обе части равенства были неотрицательны.

Число p (равное расстоянию от фокуса до директрисы) называют параметром параболы.

Построение параболы

Переменная y входит в уравнение (3) в квадрате, значит парабола симметрична относительно оси Ox. Из уравнения (3) следует, что $x\geqslant 0$, значит парабола лежит в полуплоскости $x\geqslant 0$. Точка O – вершина параболы. Уравнение (3) – каноническое уравнение параболы. Можно считать, что $\varepsilon=1$.

Оптическое свойство

Оптическое свойство: если в фокус параболы поместить источник света, то все световые лучи после отражения от параболы будут параллельны оси параболы.

Второй способ определить коники: с помощью точки, прямой и заданного неотрицательного вещественного числа (эксцентриситета)

где F- фокус, d- директриса.

Проведем полное исследование уравнения

$$Ax^{2} + Cy^{2} + Dx + Ey + F = 0, A^{2} + C^{2} > 0.$$

К такому уравнению приводится уравнение кривой второго порядка после приведения квадратичной формы к каноническому виду ортогональным преобразованием.

Рассмотрим три случая:

- I. Эллиптический: AC > 0,
- II. Гиперболический: AC < 0,
- III. Параболический: AC = 0.

I. AC > 0

Выделим полный квадрат по x и по y:

$$\begin{split} A\bigg(x^2+2\frac{D}{2A}x+\frac{D^2}{4A^2}\bigg)+C\bigg(y^2+2\frac{E}{2C}y+\frac{E^2}{4C^2}\bigg)+F-\frac{D^2}{4A}-\frac{E^2}{4C}=0\\ A\bigg(x+\frac{D}{2A}\bigg)^2+C\bigg(y+\frac{E}{2C}\bigg)^2+F'=0, \text{ где } F'=F-\frac{D^2}{4A}-\frac{E^2}{4C}. \end{split}$$

Осуществим параллельный перенос системы координат:

$$x'=x+\frac{D}{2A}, y'=y+\frac{E}{2C}\Rightarrow$$
 $Ax'^2+Cy'^2+F'=0$ или $Ax'^2+Cy'^2=-F'$

1. $F'=0 \Rightarrow Ax'^2+Cy'^2=0 \Leftrightarrow x'=0, \ y'=0$ (так как AC>0) – точка на плоскости.

2.
$$F' \neq 0 \Rightarrow \frac{x'^2}{-F'/A} + \frac{y'^2}{-F'/C} = 1$$

- 1) $signF'=-signA=-signC\Rightarrow \frac{{x'}^2}{a^2}+\frac{{y'}^2}{b^2}=1$, где $a^2=-\frac{F'}{A},b^2=-\frac{F'}{C}$ это эллипс
- 2) $signF' = signA = signC \Rightarrow \emptyset$

II. AC < 0

Аналогичными преобразованиями получим уравнения $Ax'^2 + Cy'^2 = -F'$.

1.
$$F' \neq 0 \Rightarrow \frac{x'^2}{-F'/A} + \frac{y'^2}{-F'/C} = 1$$

- 1) $signF'=-signA=signC\Rightarrow \frac{{x'}^2}{a^2}-\frac{{y'}^2}{b^2}=1$, где $a^2=-\frac{F'}{A},\ b^2=\frac{F'}{C}$ это гипербола
- 2) $signF'=signA=-signC\Rightarrow -\frac{{x'}^2}{a^2}+\frac{{y'}^2}{b^2}=1$, где $a^2=\frac{F'}{A},\ b^2=-\frac{F'}{C}$ это сопряженная гипербола

2.
$$F' = 0 \Rightarrow Ax'^2 + Cy'^2 = 0 \Leftrightarrow (\sqrt{|A|}x' - \sqrt{|C|}y')(\sqrt{|A|}x' + \sqrt{|C|}y') =$$

$$0\Leftrightarrow \sqrt{|A|}x'=\sqrt{|C|}y',\sqrt{|A|}x'=-\sqrt{|C|}y'$$
 – пара прямых на плоскости.

III.
$$AC = 0$$

1.
$$A \neq 0$$
, $C = 0 \Rightarrow Ax^2 + Dx + Ey + F = 0$

Выделим полный квадрат по x:

$$A\left(x + \frac{D}{2A}\right)^2 + Ey + F - \frac{D^2}{4A} = 0.$$

Обозначим
$$F'=F-rac{D^2}{4A}$$
 \Rightarrow $A{\left(x+rac{D}{2A}
ight)}^2=-Ey-F'.$

1)
$$E = 0 \Rightarrow A\left(x + \frac{D}{2A}\right)^2 = -F', \left(x + \frac{D}{2A}\right)^2 = -\frac{F'}{A}$$

а)
$$F'=0\Rightarrow \left(x+rac{D}{2A}
ight)^2=0$$
 — вертикальная прямая $x=-rac{D}{2A}$

6)
$$F' \neq 0$$
, $signF' = -signA \Rightarrow x + \frac{D}{2A} = \pm \sqrt{-\frac{F'}{A}}$,

$$x=-rac{D}{2A}+\sqrt{-rac{F'}{A}},\; x=-rac{D}{2A}-\sqrt{-rac{F'}{A}}$$
 – пара вертикальных прямых

$$\mathrm{B)}\ F'\neq 0,\ signF'=signA\Rightarrow \left(x+\frac{D}{2A}\right)^2=-\frac{F'}{A}<0\Rightarrow\varnothing.$$

2)
$$E \neq 0 \Rightarrow A\left(x + \frac{D}{2A}\right)^2 = -E\left(y + \frac{F'}{E}\right)$$

Осуществим параллельный перенос системы координат.

$$x'=x+rac{D}{2A},\;y'=y+rac{F'}{E}$$
 $\Rightarrow\;x'^2=-rac{E}{A}y'$ — парабола

2.
$$A=0, C \neq 0$$
 — разобрать самостоятельно (аналогичен 1.)

Теорема о классификации кривых второго порядка

Теорема. Для любой кривой второго порядка существует пдск Oxy, в которой уравнение этой кривой имеет один из следующих видов.

Теорема о классификации кривых второго порядка

Таблица: Эллиптический тип

1	2	3
эллипс	пустое множество	точка
$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$, где $a \geqslant b > 0$;	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1;$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0;$

Таблица: Гиперболический тип

4	5	
гипербола	пара пересекающихся прямых	
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, где $a > 0, \ b > 0$;	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0;$	

Теорема о классификации кривых второго порядка

Таблица: Параболический тип

6	7	8	9
парабола	пара прямых	пустое множество	прямая
$y^2 = 2px;$	$y^2 = d$, где $d > 0$;	$y^2 = -d$, где $d > 0$;	$y^2 = 0.$