

Outline

- Basic word prediction task and motivating the attention strategy
- A basic Attention Head network
- Transformers
- Exercise: Working with BERT pretrained transformer model

Dependences of Language

Consider this sequence:

The Law will never be perfect, but it's application should be just - this is what we are missing, in my opinion <End of Sequence>

What does 'it' refer to that can have an 'application'?

Dependences of Language

Consider this sequence:

The Law will never be perfect, but it's application should be just - this is what we are missing, in my opinion <End of Sequence>

What does 'it' refer to that can have an 'application'?

e.g 'it' refers back to 'Law', which is part of 'the Law' noun phrase, which is the entity that will 'never be perfect', and so on ...

many dependencies and interactions

A toy problem to get some intuition

- Let's use the following list of 5 tokens:
 <start>, the, man, chicken, ordered
- Let's use this sequence of 6 tokens as our only data sample:
 <start> the man ordered the chicken
- If we use **token** ids 1 to 5 it is the sequence of 6 numbers [1,2,3,5,2,4]
- Now let's try to predict the next word by 'attention' idea

The toy task: predict next word

The data: 5 tokens (V=5),

1 sequence (length=T=6): <Start> the man ordered the chicken

A basic solution is bigram matrix

eg a sequence of tokens (rows) and current word predictions (cols)

X= Sequence-to-Word is TxV

Pos	Word	<strt></strt>	The	Man	Chikn	Ordrd
0	<start></start>		1.0			
1	The			0.5	0.5	
2	Man					1.0
3	Ordrd		1.0			
4	The			0.5	0.5	
5	Chickn	1.0				

The toy task: predict next word

The data: 5 tokens (V=5),

1 sequence (length=T=6): <Start> the man ordered the chicken

A basic solution is bigram matrix

eg a sequence of tokens (rows) and current word predictions (cols)

X= Sequence-to-Word is TxV

Challenge, can we learn predictions (→) that depend on context of other tokens and/or position

After $\langle Start \rangle$ the \Rightarrow man = 1.0

After 'Ordered' the \rightarrow chicken = 1.0

Pos	Word	<strt></strt>	The	Man	Chikn	Ordrd
0	<start></start>		1.0			
1	The			0.5	0.5	
2	Man					1.0
3	Ordrd		1.0			
4	The			0.5	0.5	
5	Chickn	1.0				

The attention idea

Let's get all tokens to 'pass information' about dependencies

E.G. for X a TxV matrix, we want W a TxT matrix – aka 'attention' weights so that $W^*X=TxV$ has contextual predictive information

W dependencies is TxT X= Sequence-to-Word is TxV

$$\begin{pmatrix} w_{11} & \cdots & w_{1T} \\ \vdots & \vdots & \vdots \\ w_{T1} & \cdots & w_{TT} \end{pmatrix} * \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0 \\ 1.0 & 0 & 0 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

The attention idea

Let's get all tokens to 'pass information' about dependencies

E.G. for $X \ a \ TxV$ matrix, we want $W \ a \ TxT$ matrix – aka 'attention' weights - so that $W^*X=TxV$ has contextual predictive information

W dependencies is TxT X= Sequence-to-Word is TxV

$$\begin{pmatrix} w_{11} & \cdots & w_{1T} \\ \vdots & \vdots & \vdots \\ w_{T1} & \cdots & w_{TT} \end{pmatrix} * \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0 & 5 & 0.5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

W will be learned and should depend on transformations of X

Making predictions causal

(ie only depends on previous tokens)

First build a TxT mask so that sequence position t only uses columns 1:t
$$Mask = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Then, multiply it by *W_dep* matrix

Finally, apply Softmax to each row to make it like probability weights

Now multiply masked dependency elementwise to W_{\bullet}

$$W_{dep} \odot Mask = \begin{pmatrix} w_{11} & 0 & \cdots & \cdots & 0 \\ w_{21} & w_{22} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ w_{T1} & w_{T2} & w_{T3} & \cdots & w_{TT} \end{pmatrix}$$

Let X be given as a 'one-hot vector input' – where **only one** of the 25 input nodes is 1, the rest are 0.

X is 25x1

Let X be given as a 'one-hot vector input' – where **only one** of the 25 input nodes is 1, the rest are 0.

Let W be 10x25 matrix, and let Y = W * X

Let X be given as a 'one-hot vector input' – where **only one** of the 25 input nodes is 1, the rest are 0.

Let W be 10x25 matrix, and let Y = W * X

$$\text{if } \mathsf{X_j} = \mathbf{1} \text{ then: } Y = W * X \\ = \begin{pmatrix} \mid & \mid & \cdot & \mid & \cdot & \cdot \\ w_1 & w_2 & \cdot & w_j & \cdot & \cdot \\ \mid & \mid & \cdot & \mid & \cdot & \cdot \end{pmatrix} * \begin{pmatrix} 0 \\ 0 \\ \cdot \\ 1 \\ \cdot \end{pmatrix} =?$$

X is 25x1

Let X be given as a 'one-hot vector input' — where only one of the 25 input nodes is 1, the rest are 0.

Let W be 10x25 matrix, and let Y = W * X

if
$$X_j = 1$$
 then: $Y = W * X$
$$= \begin{pmatrix} \begin{vmatrix} & & & & & & \\ & & & & & \\ w_1 & w_2 & & w_j & & \\ & & & & & \end{pmatrix} * \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} & & & \\ & w_j \\ & & \\ & & \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \\ \cdot \\ 1 \\ \cdot \end{pmatrix} = \begin{pmatrix} | \\ w_j \\ | \end{pmatrix}$$

Let X be given as a 'one-hot vector input' – where only one of the 25 input nodes is 1, the rest are 0.

Let W be 10x25 matrix, and let Y = W * X

if
$$X_j = 1$$
 then: $Y = W * X$

$$Y = W * X$$

$$= \begin{pmatrix} | & | & \cdot & | & \cdot & \cdot \\ w_1 & w_2 & \cdot & w_j & \cdot & \cdot \\ | & | & \cdot & | & \cdot & \cdot \end{pmatrix} * \begin{pmatrix} 0 \\ 0 \\ \cdot \\ 1 \\ \cdot \end{pmatrix} = \begin{pmatrix} | \\ w_j \\ | \end{pmatrix}$$

So just let X be sequence of token ids (1 to 25) and treat W like a table

X is 25x1

An Attention Head construction

1. Let X = sequence of token ids

For embedding dimension E, map:

For positions 1...T map:

Take as new input:

$$\begin{array}{c} X \\ T \times 1 \end{array} \rightarrow \begin{array}{c} Xemb \\ T \times E \end{array}$$

$$\begin{array}{c} P \\ T \times 1 \end{array} \rightarrow \begin{array}{c} Xpos \\ T \times E \end{array}$$

$$X = Xemb + Xpos$$

2. For dimension H, get Q,K,V matrices:
$$X \to Query X \to Key X \to Value T \times E \to T \times H$$

3. Get Attention Weights and Output:

$$Q_{T\times H} * K'_{H\times T} \to W_{dep}$$

$$Output = softmax(W_{dep} \odot Mask) * V$$

All mappings are linear transformations

An Attention Head code

Hyperparameters:

E is for embedding dimension,

H is for "head size" (dimension) of transformations (we could let E = H)

11 Layers/Functions

```
#Now build model to learn transformation for Q,K,V matrices
              = tf.keras.layers.Input(shape=(T,V)) #the batch size is left unspecified
Xsequence
              = tf.keras.layers.Input(shape=(T)) #just the t=1...T integer
Pos Input
              = tf.keras.layers.Embedding(T,V, input length=T,name='PosEmbed')(Pos Input) #input wi
Pos Embed
Xinputs
              = tf.keras.layers.Add()([Xsequence, Pos Embed])
#now feed to Q,K,V transformations
           = tf.keras.layers.Dense(H,activation='linear',use bias=False,name='Qmat')(Xinputs) #so f
Qmat
           = tf.keras.layers.Dense(H,activation='linear',use bias=False,name='Kmat')(Xinputs)
Kmat
           = tf.keras.layers.Dense(H,activation='linear',use bias=False,name='Vmat')(Xinputs)
Vmat
#now apply QtoK take softmax, scale it, apply to V
            = tf.keras.layers.Dot(axes=(2))([Qmat,Kmat]) #it will treat each Batch item separately
QK
OKscaled
            = tf.keras.layers.Lambda(lambda x: x * scale constant)(QK)
                                                                          #for each x in OK mult by
Attn Wts
             = tf.keras.layers.Softmax(axis=2,name='AttnWts')(QKscaled, mask=Msk)
                                                                                         #apply mas
           = tf.keras.layers.Dot(axes=1,name='Voutput')([Attn Wts,Vmat])
Vout
my attn model
                = tf.keras.Model(inputs = [Xsequence,Pos Input], outputs=Vout)
```

An Attention Head code

Hyperparameters:

E is for embedding dimension,

H is for "head size" (dimension) of transformations (we could let E = H)

11 Layers/Functions

```
Also a scaling by H
```

```
\operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V
```

```
#Now build model to Learn transformation for Q,K,V matrices
              = tf.keras.layers.Input(shape=(T,V)) #the batch size is left unspecified
Xsequence
              = tf.keras.layers.Input(shape=(T)) #just the t=1...T integer
Pos Input
              = tf.keras.layers.Embedding(T,V, input length=T,name='PosEmbed')(Pos Input) #input wi
Pos Embed
Xinputs
              = tf.keras.layers.Add()([Xsequence, Pos Embed])
#now feed to Q,K,V transformations
           = tf.keras.layers.Dense(H,activation='linear',use bias=False,name='Qmat')(Xinputs) #so f
Qmat
           = tf.keras.layers.Dense(H,activation='linear',use bias=False,name='Kmat')(Xinputs)
Kmat
           = tf.keras.layers.Dense(H,activation='linear',use bias=False,name='Vmat')(Xinputs)
Vmat
#now apply OtoK take softmax, scale it, apply to V
            = tf.keras.layers.Dot(axes=(2))([Qmat,Kmat]) #it will treat each Batch item separately
QK
OKscaled
            = tf.keras.layers.Lambda(lambda x: x * scale constant)(QK)
                                                                          #for each x in OK mult by
Attn Wts
             = tf.keras.layers.Softmax(axis=2,name='AttnWts')(QKscaled, mask=Msk)
                                                                                         #apply mas
           = tf.keras.layers.Dot(axes=1,name='Voutput')([Attn Wts,Vmat])
Vout
my attn model
                = tf.keras.Model(inputs = [Xsequence,Pos Input], outputs=Vout)
```

An example of attention head with a toy task: (in the SI2023_toytask_attention notebook)

Output TxV predictions:

Notice that the → [chicken or beef] predictions change b/c of context

```
1/1 [======= ] - 0s 106ms/step
This is the output predictions use Head size 20
         <ST>
                             chkn ordrd woman
                                                beef
                       man
                     0.988
                           0.202
                                  0.193
0 <ST>
                                         0.988
                                               0.077
        0.596
               0.037
        0.062
              0.579
                     0.575 0.243 0.996
                                         0.184
                                               0.802
1 man
2 ordrd 0.092
             0.991 0.122 0.612 0.319
                                         0.050
                                               0 403
        0.225
              0.705
                     0.016 (0.996) 0.008
                                         0.018 0.837
3 the
              0.103 0.365 0.679 0.104
4 chkn
        0.994
This is the output predictions use Head size 20
         <ST>
                             chkn ordrd
                the
                                                 beef
                       man
        0.596
              0.037
                     0.988
                           0.202 0.193
                                               0.077
0 <ST>
                                         0.988
        0.037
              0.578
                     0.189
                           0.061 0.999
                                         0.051
                                               0.940
1 woman
                           0.626 0.153
2 ordrd
       0.129
              0.994
                     0.049
                                         0.034
        0.028
              0.686
                     0.163
                           0.727
                                  0.786
                                        0.034 0.992
3 the
                                  0.099
        0.994
              0.107 0.369
                           0.679
4 beef
```

Output TxV predictions:

Notice that the → [chicken or beef] predictions change b/c of context

```
1/1 [======= ] - 0s 106ms/step
This is the output predictions use Head size 20
         <ST>
                             chkn ordrd
                                                  beef
                                          woman
                        man
                      0.988
                            0.202
                                   0.193
0 <ST>
        0.596
               0.037
                                          0.988
                                                 0.077
        0.062
               0.579
                      0.575
                            0.243
                                   0.996
                                          0.184
                                                 0.802
1 man
       0.092
               0.991
                     0.122 0.612 0.319
2 ordrd
                                          0.050
                                                 0 403
        0.225
               0.705
                      0.016
                           0.996 0.008
                                          0.018 0.837
3 the
4 chkn
        0.994
               0.103
                     0.365
                           0.679 0.104
This is the output predictions use Head size 20
         <ST>
                 the
                             chkn ordrd
                                                  beef
                        man
               0.037
                      0.988
                            0.202
                                   0.193
        0.596
                                          0.988
                                                 0.077
0 <ST>
        0.037
               0.578
                      0.189
                            0.061
                                   0.999
                                          0.051
1 woman
        0.129
               0.994
                      0.049
                            0.626 0.153
                                          0.034
2 ordrd
        0.028
               0.686
                      0.163
                            0.727
                                   0.786
                                          0.034 0.992
3 the
        0.994
               0.107
                     0.369
                            0.679
                                   0.099
4 beef
```

TxT Attn Wts:

Notice that 'the' predictions depend on 'ordered', 'man', and/or 'woman'

```
for i-th input: 0
                    These are the output at layer
                                                   AttnWts
                1 man 2 ordrd 3 the
                                        4 chkn
          1.000
                 0.000
                          0.000
                                 0.000
                                         0.000
0 <ST>
                                 0.000
          0.093
                 0.907
                          0.000
                                         0.000
1 man
2 ordrd
                          0 375
                                 0.000
                                         0.000
          0.064
                 0.561
                0.213
                          0.759
                                 0.025
3 the
          0.003
                                         0.000
                                 0.523
4 chkn
          0.258
                          0.160
                                         0.056
The head size H was:
for i-th input: 1
                   These are the output at layer
         0 (ST> 1 woman 2 ordrd
                                  3 the
                                          4 beef
          1.000
0 <ST>
                   0.000
                            0.000
                                   0.000
                                           0.000
1 woman
                   0.921
                                           0.000
          0.079
                            0.000
                                   0.000
2 ordrd
          0.091
                            0.535
                                   0.000
                                           0.000
                   0.769
                            0.223
                                           0.000
3 the
          0.001
                                   0.007
                   0.001
                                   0.526
4 beef
          0.252
                                           0.059
The head size H was:
```

Include skip-add connections Include Layer Normalization or DropOut layers

Include skip-add connections
Include Layer Normalization or DropOut layers

Multi-Head – for N heads produce Tx(H/N) each

Add & Norm

Feed Forward

Include skip-add connections
Include Layer Normalization or DropOut layers

Multi-Head – for N heads produce Tx(H/N) each

Add MLP layers on top –

output another *TxE* matrix

stackable!

TxE

Add & Norm

Feed Forward

Include skip-add connections
Include Layer Normalization or DropOut layers

Multi-Head – for N heads produce Tx(H/N) each

Add MLP layers on top –

output another *TxE* matrix

or output final probabilities

TxV or num_classes

TxE

2 kinds of training strategies

GPT – predict next word only look back at prior context (which could be a whole document)

Put mask on attention weights so that predictions only depend on previous tokens

BERT – *No attention mask* so all token dependencies can influence all other tokens predictions

Special tokens help create a variety of tasks

BERT (Bidirectional Encoder Representations from Transformers)

Goal: Train a model to develop general token-level AND sentence-level encoding

- 1 Pretrain on:
- fill-in-the-blank
- binary classification if 2 sentences go together

Devlin, etal, 2019

2 Fine tune on variety of tasks

BERT Input: 2 sentences

Devlin, etal, 2019

BERT Input: 2 sentences

BERT -

Train a classification task on this [CLS] token prediction only

BERT -

For classification over paired sentences or any text, train C row vector (in the last layer *TxV* output matrix)

"NSP": classify if next sentence follows first sentence

KerasNLP

- KerasNLP is an extension to Keras
- KerasNLP has several pre-trained LLMs (large language models).
 Each model comes with related modules, for example:
 - GPT2Backbone the model without task specific output layers
 - GPT2CausalLM the model with output predictions
 - GPT2CausalLMPreprocessor the preprocessor that feeds model.fit

KerasNLP

- KerasNLP is an extension to Keras
- KerasNLP has several pre-trained LLMs (large language models).
 Each model comes with related modules, for example:
 - GPT2Backbone the model without task specific output layers
 - GPT2CausalLM the model with output predictions
 - GPT2CausalLMPreprocessor the preprocessor that feeds model.fit

We will use pre-trained BERT and compare different BERT versions

Notebook exercise using KerasNLP

In a terminal window start the notebook session for keras-nlp
 …]\$ cd 5.3b-deep_learning_part2/special_connections
 …]\$ jupyter-compute-keras-nlp

```
[train138@login02 4.6_deep_learning_special_connections]$
[train138@login02 4.6_deep_learning_special_connections]$
[train138@login02 4.6_deep_learning_special_connections]$ jupyter-compute-keras-nlp
```

 Open the URL and look for the SI2023_BERT_FineTune_v3.ipynb notebook

Keras NLP package has several BERT versions

So let's start with 'bert-small' (28M parameters)

For reference:

BERTBASE (L=12, H=768, Attn=12, Total Parameters=110M) BERTLARGE (L=24, H=1024, Attn=16, Total Parameters=340M).

dels/			G 🖻 ☆		
bert_tiny_en_uncased	BERT	4M	2-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus.		
bert_small_en_uncased	BERT	28M	4-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus.		
bert_medium_en_uncased	BERT	41M	8-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus.		
bert_base_en_uncased	BERT	109M	12-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus.		
bert_base_en	BERT	108M	12-layer BERT model where case is maintained Trained on English Wikipedia + BooksCorpus.		
bert_base_zh	BERT	102M	12-layer BERT model. Trained on Chinese Wikipedia.		
bert_base_multi	BERT	177M	12-layer BERT model where case is maintained Trained on trained on Wikipedias of 104 languages		

END