Problem B. Frog 2

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

There are N stones, numbered $1, 2, \ldots, N$. For each i ($1 \le i \le N$), the height of Stone i is h_i .

There is a frog who is initially on Stone 1. He will repeat the following action some number of times to reach Stone N:

• If the frog is currently on Stone i, jump to one of the following: Stone $i+1, i+2, \ldots, i+K$. Here, a cost of $|h_i-h_j|$ is incurred, where j is the stone to land on.

Find the minimum possible total cost incurred before the frog reaches Stone N.

Constraints

- All values in input are integers.
- $2 \leq N \leq 10^5$
- $1 \le K \le 100$
- $1 \le h_i \le 10^4$

Input

Input is given from Standard Input in the following format:

Output

Print the minimum possible total cost incurred.

Sample 1

Input	Output
5 3 10 30 40 50 20	30

If we follow the path $1 \rightarrow 2 \rightarrow 5$, the total cost incurred would be |10 - 30| + |30 - 20| = 30.

Sample 2

Input	Output
3 1 10 20 10	20

If we follow the path $1 \rightarrow 2 \rightarrow 3$, the total cost incurred would be |10-20|+|20-10|=20.

Sample 3

Input	Output
2 100 10 10	0

If we follow the path 1 \Rightarrow 2, the total cost incurred would be |10-10|=0.

Sample 4

Input	Output
10 4 40 10 20 70 80 10 20 70 80 60	40

If we follow the path $1 \rightarrow 4 \rightarrow 8 \rightarrow 10$, the total cost incurred would be |40-70|+|70-70|+|70-60|=40.