Определение 1. Метрическим пространством (M,d) называется пара, состоящая из множества Mи функции «расстояния» (метрики) $d \colon M \times M \to \mathbb{R}$, удовлетворяющей следующим аксиомам:

- (M1) d(x,y) = 0 тогда и только тогда, когда x = y;
- (M2) d(x,y) = d(y,x) (симметричность);
- (M3) $d(x,z) \leq d(x,y) + d(y,z)$ (неравенство треугольника).

Подмножество N метрического пространства M, рассматриваемое как метрическое пространство (с той же метрикой), называется nodnpocmpahcmsom пространства M.

Задача 1. Пусть (M,d) — метрическое пространство. Докажите, что $d(x,y) \ge 0$ для любых $x,y \in M$.

Задача 2. Поездка на московском метрополитене от станции A до станции B требует времени, которое зависит от выбранного маршрута, времени ожидания поездов и т. п. Выберем из всех возможных случаев тот, при котором затраченное время окажется наименьшим, и назовём это время расстоянием от станции А до станции В. Является ли такое расстояние метрикой на множестве станций московского метро? Если нет, предложите дополнительные условия, при которых введённое расстояние будет метрикой.

Определение 2. Множество последовательностей $x = (x_1, x_2, \dots, x_n)$ длины n, состоящих из действительных чисел, называется n-мерным арифметическим пространством \mathbb{R}^n . (Обычные прямая, плоскость и пространство — это \mathbb{R}^1 , \mathbb{R}^2 и \mathbb{R}^3 соответственно).

Задача 3. Является ли метрическим пространством \mathbb{R}^n с метрикой

a)
$$d_1(x,y) = \sum_{k=1}^n |y_k - x_k|;$$

6)
$$(e \ s \ k \ n \ do s \ mem \ m \ do s \ do \ do \ (x,y) = \sqrt{\sum_{k=1}^{n} (y_k - x_k)^2};$$
B) $d_{\infty}(x,y) = \max_{1 \leqslant k \leqslant n} |y_k - x_k|?$

B)
$$d_{\infty}(x,y) = \max_{1 \le k \le n} |y_k - x_k|$$
?

Задача 4. (Дискретная метрика) Пусть M — любое множество. Положим d(x,y) = 0, если x = yи d(x,y) = 1, если $x \neq y$. Докажите, что таким образом получается метрика (называемая дискретной). Метрическое пространство (M, d) также называется дискретным.

Задача 5. (Mетрика Хэмминга) Пусть M- множество слов некоторого алфавита, состоящих из какогото фиксированного числа букв. Расстоянием d(x,y) между словами x и y назовём количество букв, в которых эти слова отличаются, если написать их одно под другим. Например, d(нос, сон) = 2. Докажите, что d является метрикой.

Задача 6. (p-адическая метрика) Пусть p — простое число. Для $x,y \in \mathbb{N}$ положим $d_p(x,y) = 0$, если x = y, и $d_p(x,y) = p^{-n}$, если $x \neq y$ и n — наибольший показатель степени числа p, при котором разность x-y делится на p. Проверьте, что (\mathbb{N}, d_p) — метрическое пространство.

Задача 7. (Равномерная метрика) Пусть M — множество ограниченных функций $f:[a,b] \to \mathbb{R}$. Положим $d(f,g) = \sup |f(x) - g(x)|$. Проверьте, что это метрика.

1	2	3 a	3	3 B	4	5	6	7

Определение 3. Пусть M — метрическое пространство, $x_0 \in M$ — произвольная точка, $\varepsilon > 0$ — вещественное число. Множество $U_{\varepsilon}(x_0) = \{x \in M \mid d(x,x_0) < \varepsilon\}$ называется ε -окрестностью точки x_0 (или открытым шаром с центром x_0 и радиусом ε). Множество $B_{\varepsilon}(x_0) = \{x \in M \mid d(x,x_0) \leqslant \varepsilon\}$ называется замкнутым шаром с центром x_0 и радиусом ε .

Задача 8. Как выглядят шары в пространствах \mathbb{R}^2 и \mathbb{R}^3 относительно метрик из задачи 3?

Задача 9. ($Xaycdop\phiosocmь метрического пространства) Пусть <math>x_1, x_2$ — различные точки метрического пространства M. Докажите, что существует такое $\varepsilon > 0$, что $U_{\varepsilon}(x_1) \cap U_{\varepsilon}(x_2) = \varnothing$.

Задача 10. Докажите, что если два открытых шара метрического пространства имеют общую точку, то существует шар, лежащий в их пересечении.

Задача 11. Докажите, что если $U_{\varepsilon}(x) \cap U_{\varepsilon}(y) \neq \emptyset$, то $d(x,y) < 2\varepsilon$. Верно ли обратное (в произвольном метрическом пространстве)?

Задача 12. Докажите, что если $d(x,y) < \varepsilon$, то $U_{\varepsilon}(x) \subset U_{2\varepsilon}(y)$.

Задача 13. Шары с радиусами r_1 и $r_2 = 57r_1$ пересекаются. Радиусы шаров увеличили вдвое, не меняя их центров. Докажите, что один из полученных шаров содержится в другом.

Задача 14. Могут ли в метрическом пространстве существовать два шара разных радиусов, таких что шар большего радиуса содержится в шаре меньшего радиуса и не совпадает с ним?

Задача 15.

- а) Сколько элементов содержит замкнутый шар радиуса 1 на множестве слов длины n с метрикой Хэмминга для алфавита $\{0,1\}$? А если в алфавите m букв?
- **б)** Написано несколько последовательностей из нулей и единиц длины n, причём любые две из них отличаются по крайней мере в трех местах. Докажите, что их число не превосходит $\frac{2^n}{n+1}$.

Определение 4. Два метрических пространства (M_1, d_1) и (M_2, d_2) называются *изометричными*, если существует взаимно однозначное отображение $f: M_1 \to M_2$, такое что для любых точек $x_1, x_2 \in M_1$ выполняется равенство $d_1(x_1, x_2) = d_2(f(x_1), f(x_2))$. Отображение f в этом случае называется *изометрией*.

Задача 16. Придумайте такую метрику на прямой \mathbb{R} , чтобы прямая относительно этой метрики и интервал (0;1) относительно стандартной метрики были изометричны.

Задача 17. Изометричны ли (\mathbb{R}^n, d_2) и (\mathbb{R}^n, d_∞) ?

Определение 5. Говорят, что метрическое пространство N *вкладывается* в метрическое пространство M, если N изометрично некоторому подпространству в M.

Задача 18. Докажите, что (\mathbb{R}^n, d_2) вкладывается в (\mathbb{R}^N, d_2) при $n \leqslant N$.

Задача 19. Докажите, что (\mathbb{R}^n, d_∞) вкладывается в метрическое пространство из задачи 7.

Задача 20. Верно ли, что любое конечное метрическое пространство M вкладывается в (\mathbb{R}^n, d_2) при $n \gg 0$? Если да, то как можно оценить n, зная |M|?

8	9	10	11	12	13	14	15 a	15 б	16	17	18	19	20

Определение 1. Говорят, что последовательность (x_n) точек метрического пространства (M,d) $cxo\partial um$ -cx x a \in M, если для любого ε > 0 найдётся номер N \in \mathbb{N} такой, что если n > N, то $d(x_n,a)$ < ε .

Задача 1. Докажите, что последовательность в метрическом пространстве не может иметь двух различных пределов.

Задача 2. Известно, что $\lim_{n\to\infty}x_n=a,\ \lim_{n\to\infty}y_n=b.$ Верно ли, что $\lim_{n\to\infty}d(x_n,y_n)=d(a,b)$?

Задача 3. Докажите, что если последовательность сходится и предел её лежит внутри некоторого открытого шара, то почти все её члены лежат внутри этого шара.

Задача 4. ($\mathit{Сходимость}\ s\ \mathbb{R}^m$) Рассмотрим арифметическое m-мерное пространство \mathbb{R}^m с евклидовой метрикой. Докажите, что $\lim_{n\to\infty} x_n = a$ если и только если $\forall\, 1\leqslant i\leqslant m\colon \lim_{n\to\infty} x_n^{(i)} = a^{(i)}$ (под $\alpha^{(i)}$ подразумевается i-ая координата точки α).

Задача 5. Какие последовательности являются сходящимися в

а) дискретной метрике; б) *p*-адической метрике?

Задача 6. Рассмотрим пространство M ограниченных на отрезке [a,b] функций с равномерной метрикой. **a)** Докажите, что если $\lim_{n\to\infty} f_n = g$, то для всех $x\in [a,b]$ имеем $\lim_{n\to\infty} f_n(x) = g(x)$. **б)** Верно ли обратное?

Определение 2. Последовательность (x_n) точек метрического пространства (M,d) называется $\phi y n \partial a$ -ментальной, если для любого $\varepsilon > 0$ найдётся номер $N \in \mathbb{N}$ такой, что если m, n > N, то $d(x_m, x_n) < \varepsilon$.

Задача 7. а) Докажите, что любая сходящаяся последовательность является фундаментальной.

б) Верно ли обратное?

Определение 3. Метрическое пространство (M,d) называется *полным*, если любая фундаментальная последовательность в нём сходится.

Задача 8. Докажите, что вещественная прямая с естественной метрикой полна.

Задача 9. Докажите, что пространство C([a,b]) с равномерной метрикой является полным.

Определение 4. Отображение $f: M \to M$ из метрического пространства M в себя называется *сэсимающим*, если найдётся такая константа $0 < \theta < 1$, что для любых $x, y \in M$: $d(f(x), f(y)) < \theta d(x, y)$.

Задача 10. При каких условиях гомотетия на плоскости является сжимающим отображением?

Задача 11. а) Докажите, что сжимающее отображение f полного метрического пространства M имеет неподвижную точку, то есть $\exists x \in M \colon f(x) = x$. б) Верно ли это без условия полноты M? (Подсказка к пункту $\mathbf{a} \colon$ выньятымысть функцинествующей от это без условия полноты M?

Задача 12. Докажите, что композиция гомотетии с коэффициентом, не равным ± 1 и любого движения имеет неподвижную точку.

Задача 13. (*Метод Ньютона*) Пусть функция $\alpha(x)$ дважды непрерывно дифференцируема (то есть вторая производная непрерывна) на отрезке [a,b], имеет на нём корень \widetilde{x} , причём $\alpha'(x) \neq 0$ всюду на [a,b]. Рассмотрим функцию $f(x) = x - \frac{\alpha(x)}{\alpha'(x)}$.

- а) Докажите, что $\alpha(\widetilde{x}) = 0$ тогда и только тогда, когда $f(\widetilde{x}) = \widetilde{x}$;
- $\mathbf{6}$) Докажите, что f и f' непрерывны;
- в) Докажите, что найдётся такое $\delta > 0$, что f на $U_{\delta}(\widetilde{x})$ осуществляет сжимающее отображение.
- **г)** Что всё это значит и как это применять?
- д) Найдите $\sqrt{2}$ с точностью до трёх знаков после запятой.

1	2	3	4	5 a	5 6	6 a	6 6	7 a	7 б	8	9	10	11 a	11 б	12	13 a	13 б	13 B	13 г	13 д

Всюду в этом листке, где упоминается пространство \mathbb{R}^n , имеется в виду, что оно снабжено евклидовой метрикой d_2 .

Под словом «функция» подразумевается отображение в \mathbb{R} .

Определение 1. Точка a метрического пространства M называется $npedenьной точкой множества <math>X \subset M$, если в любой ε -окрестности точки a найдётся точка из X.

Определение 2. Подмножество U метрического пространства M называется *открытым*, если вместе с каждой своей точкой оно содержит какую-нибудь её ε -окрестность.

Определение 3. Подмножество B метрического пространства M называется $\mathit{замкнутым}$, если оно содержит все свои предельные точки.

Задача 1°. Докажите, что $U \subset M$ открыто тогда и только тогда, когда $M \setminus U$ замкнуто.

Задача 2. Пусть M снабжено дискретной метрикой. Опишите все его открытые подмножества.

Задача 3. Множество X на плоскости обладает таким свойством, что его пересечение с любой прямой есть открытое подмножество этой прямой. Обязательно ли X открытое? Тот же вопрос, если все слова «открытое» заменить на «замкнутое».

Определение 4. Отображение $f: M \to N$ непрерывно в точке $m \in M$, если для любой последовательности (x_i) , сходящейся к m, последовательность $(f(x_i))$ сходится к f(m). Если f непрерывно во всех точках множества M, то говорят, что f непрерывно на M.

Определение 5. Отображение $f: M \to N$ непрерывно на M (или просто непрерывно), если прообраз любого открытого множества открыт.

Задача 4°. Докажите эквивалентность определений 4 и 5.

Задача 5. Рассмотрим на \mathbb{R}^2 функции вычисления суммы, разности, произведения и частного координат. Докажите, что они непрерывны на своей области определения.

Задача 6°. Докажите, что композиция непрерывных отображений непрерывна.

Задача 7. Докажите, что сумма и произведение непрерывных функций непрерывны.

Задача 8. Докажите, что отображение непрерывно тогда и только тогда, когда прообраз любого замкнутого множества замкнут.

Задача 9. Верно ли, что при непрерывном отображении открытые множества переходят в открытые? А замкнутые в замкнутые?

Задача 10. Пусть пространство M таково, что для любого метрического пространства N любое отображение $f \colon M \to N$ непрерывно. Что можно сказать об M?

Задача 11. Пусть пространство N таково, что для любого метрического пространства M любое отображение $f \colon M \to N$ непрерывно. Что можно сказать об N?

1	2	3	4	5	6	7	8	9	10	11

Листок №MS-3 Страница 2

Определение 6. Множество X называется cessins M, если из того, что X принадлежит объединению двух открытых непересекающихся множеств, следует, что оно принадлежит одному из этих множеств.

Определение 7. Множество X называется линейно-связным, если для любых двух его точек x_0 и x_1 существует путь из x_0 в x_1 (то есть непрерывное отображение $f \colon [0,1] \to X$ такое, что $f(0) = x_0$ и $f(1) = x_1$).

Задача 12°. Докажите, что образ связного множества при непрерывном отображении связен.

Задача 13°. Докажите, что образ линейно-связного множества при непрерывном отображении линейно-связен.

Задача 14. Верно ли, что прообраз связного множества при непрерывном отображении связен?

Задача 15. Докажите, что если множество линейно-связно, то оно связно.

Задача 16. Пусть $U \subset \mathbb{R}^n$ открыто и связно. Докажите, что оно линейно-связно.

Задача 17. (задача-wymка) Множество X делит плоскость на две части (то есть его дополнение является несвязным объединением двух связных множеств). Обязательно ли X связно?

Задача 18*. Приведите пример связного, но не линейно-связного подмножества в \mathbb{R}^n для какогонибудь n.

Задача 19. Пусть $f: M \to N$ непрерывное взаимно-однозначное отображение. Верно ли, что f^{-1} тоже непрерывно?

Определение 8. Непрерывное взаимно-однозначное отображение $f: M \to N$ называется гомеоморфизмом, если отображение f^{-1} непрерывно. В этом случае говорят, что M гомеоморфно N (обозначение: $M \cong N$).

Задача 20. Какие из следующих пар множеств гомеоморфны между собой:

- а) прямая и парабола; б) прямая и гипербола; в) прямая и интервал;
- г) открытый круг и плоскость; д) сфера с выколотой точкой и плоскость;
- е) интервал и отрезок; ж) прямая и окружность; з) прямая и плоскость?

Задача 21*. Пусть множества M и N таковы, что существуют непрерывное взаимно-однозначное отображение $f \colon M \to N$ и непрерывное взаимно-однозначное отображение $g \colon N \to M$. Верно ли, что $M \cong N$?

Определение 9. Множество называется *компактным* (или просто *компактом*), если из любого его покрытия открытыми множествами можно выделить конечное подпокрытие.

Задача 22°. Докажите, что компактное множество замкнуто и ограничено. Верно ли обратное?

Задача 23°. Докажите, что образ компакта при непрерывном отображении — компакт.

Задача 24. Докажите, что непрерывная функция достигает на компакте своего максимума и минимума.

Задача 25. Выполняется ли принцип вложенных компактов для произвольного метрического пространства?

Задача 26. Известно, что $f:[0,1]\to M$ непрерывно и взаимно-однозначно. Докажите, что f гомеоморфизм.

12	13	14	15	16	17	18	19	20 a	20 6	20 B	20 Г	20 Д	20 e	20 ж	20 3	21	22	23	24	25	26

Задача 1. (*Onucatue открытых подмножеств* \mathbb{R})

- a) Докажите, что любое открытое множество в \mathbb{R} можно представить как объединение интервалов.
- **б**) Докажите, что любое открытое множество в \mathbb{R} является объединением непересекающихся интервалов и лучей.

Задача 2. (Принцип вложенных шаров)

- **а)** Докажите, что метрическое пространство полно тогда и только тогда, когда любая последовательность вложенных замкнутых шаров, радиусы которых стремятся к нулю, имеет общую точку.
- **б)*** Докажите, что стремление радиусов к нулю существенно, то есть существует полное пространство и последовательность вложенных шаров, имеющих пустое пересечение.

(Можно построить соответствующую метрику метрику на счётном множестве :вяєвнэдо $\Pi)$

Задача 3. Докажите, что подмножество компакта компактно тогда и только тогда, когда оно замкнуто.

Задача 4. (*Onucahue компактов в* \mathbb{R}^n)

- а) Докажите, что единичный куб в \mathbb{R}^n является компактом.
- **б**) Докажите, что подмножество \mathbb{R}^n является компактным тогда и только тогда, когда оно замкнуто и ограничено.

Задача 5*. Приведите пример замкнутого ограниченного множества в C[0,1], не являющегося компактом

Определение 1. Рассмотрим семейство множеств $\{K_i \mid i \in \mathbb{N}\}$, каждое из которых является объединением непересекающихся отрезков:

- $K_1 = [a, b]$.
- Если $K_i = \bigcup_j [a_{ij}, b_{ij}]$, то $K_{i+1} = \bigcup_j ([a_{ij}, \frac{2}{3}a_{ij} + \frac{1}{3}b_{ij}] \cup [\frac{1}{3}a_{ij} + \frac{2}{3}b_{ij}, b_{ij}]).$

Положим $K[a,b] = \bigcap_{i \in \mathbb{N}} K_i$. Полученное множество называется множеством Кантора (на отрезке [a,b]).

Задача 6.

- а) Докажите, что множество Кантора замкнуто.
- б) Докажите, что множество Кантора континуально.
- **в)** Найдите рациональное число, принадлежащее K[0,1], знаменатель которого не является степенью тройки.

Задача 7. (*Кривая Пеано*) Положим I = [0, 1]. Рассмотрим последовательность отображений $f_n \colon I \to I^2$.

Первая функция строится как диагональ квадрата: $f_1(t) = (t,t)$.

Для построения второй функции необходимо разделить квадрат на девять маленьких квадратиков и обойти их диагонали в указанном порядке.

Для построения f_3 возьмём f_2 и проход по каждой диагонали заменим на проход по такой же «букве Φ » (соответствующим образом уменьшенной и повёрнутой).

И так далее.

Движение по всем ломаным происходит с постоянной скоростью.

- а) Докажите, что последовательность (f_n) имеет предел в пространстве непрерывных отображений из I в I^2 . Обозначим этот предел через f. (Подсказка: эонлоп овтранстропространстрон)
- **б)** Докажите, что для любого $x \in I^2$ и для любого $\varepsilon > 0$ пересечение $U_{\varepsilon}(x) \cap f_n(I)$ не пусто при $n \gg 0$.
- в) Докажите, что для любой точки $x \in I^2$ и для любого $\varepsilon > 0$ пересечение $U_{\varepsilon}(x) \cap f(I)$ не пусто.
- **г)** Докажите, что $f(I) = I^2$. **д)** Вычислите $f(\frac{1}{4})$.

1 a	<u>1</u> б	2 a	2 6	3	4 a	4 6	5	6 a	6 б	6 в	7 a	7 б	7 В	7 г	7 д

