Университет ИТМО Кафедра вычислительной техники

Методы цифровой обработки сигналов

Лабораторная работа N21

Студент: *Куклина Мария, Р3401*

1. Цели работы

Определение возможностей метода когерентного накопления для случаев стационарного и квазистационарного сигнала.

2. Задание

Вид сигнала: гармонический.

Соотношение сигнал/шум: 0.1.

Число циклов накопления: до 500.

Пределы изменения соотношения сиигнал/шум: 0.1 - 2.

3. Для стационарного сигнала

3.1. Зависимость SNR от числа накоплений

\mathbf{M}	SNR
10	1.6712
25	2.5395
50	3.778
75	4.3326
100	5.3123
125	6.2477
150	6.8667
200	7.0458
250	7.7367
300	9.3786
350	9.6183
400	10.5112
450	11.64
500	13.2283

Таблица 1: Отношение сигнал/шум в выходной смеси от длительности накопления

Рис. 1: Зависимость SNR от числа циклов накоплений.

3.2. Зависимость SNR_{out} от SNR_{in}

SNR_{in}	SNR _{out}	SNR_{in}	SNR_{out}	$\overline{ m SNR_{in}}$	SNR _{out}
0.1	0.9298	0.1	1.2707	0.1	1.9678
0.2	1.7689	0.2	2.5998	0.2	3.737
0.3	2.3864	0.3	4.3951	0.3	5.959
0.4	3.0902	0.4	5.5769	0.4	8.4162
0.5	3.6152	0.5	6.8013	0.5	9.9779
0.6	5.6947	0.6	7.8619	0.6	12.0321
0.7	5.8467	0.7	8.9443	0.7	14.0263
0.8	6.6303	0.8	10.7575	0.8	15.6813
0.9	7.8079	0.9	12.8911	0.9	17.1535
1	8.7068	1	13.1404	1	17.435
1.1	9.6044	1.1	14.0451	1.1	21.8457
1.2	9.7766	1.2	16.08	1.2	21.9823
1.3	11.3096	1.3	18.1254	1.3	24.8981
1.4	12.0391	1.4	18.5445	1.4	24.5258
1.5	12.8742	1.5	21.1901	1.5	26.4063
1.6	13.6251	1.6	21.5	1.6	28.4651
1.7	14.7871	1.7	22.4446	1.7	30.8562
1.8	15.1528	1.8	24.0947	1.8	32.0492
1.9	15.8292	1.9	25.0542	1.9	32.2567
2	16.2992	2	25.6024	2	33.5303

Таблица 2: Отношение сигнал/шум выхода от сигнал/шум на входе для фиксированного числа выборок ($M=10,\,25,\,50$ соответственно)

Рис. 2: Зависимость SNR от числа циклов накоплений.

4. Для квазистационарного сигнала

4.1. Зависимость SNR от числа накоплений

M	SNR
1	0.7797
2	1.1275
3	1.3821
4	1.5945
5	1.6124
6	1.7063
7	1.5947
8	1.7035
9	1.6614
10	1.6728
15	1.3546
20	1.1629
25	0.9798
50	1.0088
100	0.9968
150	1.0063
200	1.002
250	0.998
300	1.0092
350	1.0017
400	0.9916
450	1.0034
500	0.9981

Таблица 3: Отношение сигнал/шум в выходной смеси от длительности накопления

Рис. 3: Зависимость SNR от числа циклов накоплений.

4.2. Зависимость SNR_{out} от SNR_{in}

$\overline{ m SNR_{in}}$	SNR _{out}	$\overline{ m SNR_{in}}$	SNR _{out}	SNR_{in}	SNR _{out}
0.1i	1.1005	0.1	0.9702	0.1	1.0202
0.2i	1.6626	0.2	0.9777	0.2	0.9996
0.3i	1.718	0.3	1.0252	0.3	0.9823
0.4i	1.9245	0.4	1.0131	0.4	0.9947
0.5i	2.0495	0.5	1.0344	0.5	0.9909
0.6i	2.2551	0.6	1.0203	0.6	1.0005
0.7i	2.2947	0.7	1.0157	0.7	0.9948
0.8i	2.3052	0.8	1.0262	0.8	1.0087
0.9i	2.3028	0.9	1.0324	0.9	1.0024
1 i	2.3481	1	1.0228	1	1.0007
1.1i	2.4099	1.1	1.018	1.1	1.0022
1.2i	2.341	1.2	1.0181	1.2	1.0017
1.3i	2.4444	1.3	1.0198	1.3	1.0015
1.4i	2.4108	1.4	1.0186	1.4	0.9969
1.5i	2.4986	1.5	1.0169	1.5	0.9993
1.6i	2.4083	1.6	1.0254	1.6	1.002
1.7i	2.4752	1.7	1.0206	1.7	0.9993
1.8i	2.4575	1.8	1.0181	1.8	1.0026
1.9i	2.5077	1.9	1.0208	1.9	0.9979
2 i	2.495	2	1.0202	2	1.0005

Таблица 4: Отношение сигнал/шум выхода от сигнал/шум на входе для фиксированного числа выборок ($M=10,\,25,\,50$ соответственно)

Рис. 4: Зависимость SNR от числа циклов накоплений.

Функциональная схема устройства

Вывод