Projekt układu CD4075B

Triple 3-input OR gate project

PLAN PREZENTACJI:

- 1) Wymagania projektowe
- 2) Schemat układu CD4075B
- 3) Netlista połączeniowa układu
- 4) Topografia całego układu potrójnej bramki OR
- 5) Przebiegi czasowe dokonane po ekstrakcji układu z programu MAGIC
- 6) Wyniki teoretyczne oraz po ekstrakcji
- 7) Literatura

Wymagania Projektowe:

Wymaga się, aby zaprojektowany układ spełniał następujące parametry:

- 1) Technologia: dowolna CMOS (preferowana CMOS AMIS ami-C5
- 2) Temperatura pracy: od –80°C do +125°C
- 4) Wydajność (stało)prądowa buforów wyjściowych: 20 mA DC
- 5) Częstotliwość na wyprowadzeniach zewnętrznych: przynajmniej 20 MHz przy obciążeniu 20pF
- 6) Ze względu na brak szczegółowych danych technolgii należy dodatkowo przyjąć:
- maksymalny prąd warstw metalicznych 1 mA/μm (zabezpieczenie przed elektromigracją),
- maksymalne odległości pomiędzy sąsiednimi kontaktami do podłoża 50μm i wyspy 150μm (zabezpieczenie przed zatrzaskiwaniem się układu),
- PAD z warstwy M3 o wymiarach 100 μm × 100 μm,
- wejścia powinny mieć zabezpieczenie przed ESD w postaci diod lub tranzystorów p-n-p

Schemat układu CD4075B z dokumentacji

Schematic diagram for CD4075B (1 of 3 identical gates).

NETLISTA POŁĄCZENIOWA UKŁADU


```
.subckt OPAMP inp1 inp2 inp3 out Vdd GND
M1 D12 inpl Vdd Vdd pfet W=1.8u L=0.6u
M2 GND inp1 D12 GND nfet W=1.8u L=0.6u
M3 D34 inp2 Vdd Vdd pfet W=1.8u L=0.6u
M4 GND inp2 D34 GND nfet W=1.8u L=0.6u
M5 D56 inp3 Vdd Vdd pfet W=1.8u L=0.6u
M6 GND inp3 D56 GND nfet W=1.8u L=0.6u
M7 D78 D11 Vdd Vdd pfet W=1.8u L=0.6u
M8 GND D11 D78 GND nfet W=1.8u L=0.6u
M9 out D78 Vdd Vdd pfet W=1.8u L=0.6u
M10 GND D78 out GND nfet W=1.8u L=0.6u
M11 D11 D12 Vdd Vdd pfet W=1.8u L=0.6u
M12 D11 D34 Vdd Vdd pfet W=1.8u L=0.6u
M13 D11 D56 Vdd Vdd pfet W=1.8u L=0.6u
M14 D15 D12 D11 GND nfet W=1.8u L=0.6u
M15 D16 D34 D15 GND nfet W=1.8u L=0.6u
M16 GND D56 D16 GND nfet W=1.8u L=0.6u
.ends
****** WywoAanie podobwodu wzmacniacza *****
```

X1 inp1 inp2 inp3 out Vdd GND OPAMP

TOPOGRAFIA CAŁEGO układu CD4075B

Chip dimensions and pad layout for CD4075B.

TOPOGRAFIA

UKŁAD LOGICZNY

BUFOR

ESD oraz Pady

PRZEBIEGI CZASOWE DOKONANE PODCZAS PIERWSZEJ SYMULACJI UKŁADU

PRZEBIEGI CZASOWE DOKONANE po wykonaniu ekstrakcji

OBLICZENIA TEORETYCZNE

Zostały wykonane pomiary dla napięcia zasilania 3.3V+-10%

Zostały pomierzone parametry takie jak:

- a) Wymagane napięcie wejściowe
- b) Czas narastania
- c) Czas opadania
- d) Obciążenie prądowe
- e) Działanie na zmian temperatury

Napięcie przełączania

Teoretyczne VDD=3.3V+-10% Napięcie do którego układ ma stan niski = 1.2V Napięcie od którego układ ma stan wysoki = 1.5V

Po ekstrakcji VDD=3.3V+-10% Napięcie do którego układ ma stan niski = 1.2V Napięcie od którego układ ma stan wysoki = 1.5V

Czas narastania oraz czas opadania

Teoretyczne VDD=3.3V Czas narastania 24.627615ns Czas opadania 8.625ns

VDD=3.3V-10%=2.97V Czas narastania 26.666667ns Czas opadania 9.4142259ns

VDD=3.3V+10%=3.63V Czas narastania 22.208333ns Czas opadania 8.1694561ns

Po ekstrakcji VDD=3.3V Czas narastania 2.2337165ns Czas opadania 2.0723195ns

VDD=3.3V-10%=2.97V Czas narastania 2.4910714ns Czas opadania 2.2924107ns

VDD=3.3V+10%=3.63V Czas narastania 2.1416164ns Czas opadania 1.921351ns

WYNIKI OBCIĄŻENIA PRĄDOWEGO BADANEGO UKŁADU TEORETYCZNEGO Zostało przyjęte że na wyjście układu zostaną dodane 4 inwertery

N=4

Alfa=5

Rozmiary tranzystorów pierwszego inwertera

Wp=9u

Wn=9u

L=0.6u

WYNIKI OBCIĄŻENIA PRĄDOWEGO 32 BADANEGO 14 UKŁADU PO 12 EKSTAKCJI 12

Teoretyczny prąd wsteczny przy pobudzeniu stanem wysokim dla Vdd=3.3V

Teoretyczny prąd wsteczny przy pobudzeniu stanem wysokim dla Vdd=2.97V

Teoretyczny prąd obciążenia przy podzudzeniu stanem niskim przy Vdd=3.3V

Teoretyczny prąd obciążenia przy podzudzeniu stanem niskim przy Vdd=3.63V

Teoretyczny prąd wsteczny po ekstrakcji przy pobudzeniu stanem wysokim dla Vdd=3.3V

Teoretyczny prąd wsteczny po ekstrakcji przy pobudzeniu stanem wysokim dla Vdd=2.97V

Teoretyczny prąd wsteczny po ekstrakcji przy pobudzeniu stanem niskim dla Vdd=3.3V

Teoretyczny prąd wsteczny po ekstrakcji przy pobudzeniu stanem niskim dla Vdd=3.63V

Napięcie przełączania teoretyczne

Napięcie przełączania po ekstrakcji

ZALEŻNOŚĆ
DZIAŁANIA
UKŁADU NA
ZMIANE
TEMPERATURY
UKŁADU
TEORETYCZNEGO

ZALEŻNOŚĆ DZIAŁANIA UKŁADU NA ZMIANE TEMPERATURY UKŁADU PO EKSTRAKCJI

Literatura:

https://www.ti.com/lit/ds/symlink/cd4075b.pdf?ts=1702929353437&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FCD4075B%253Futm_source%253Dgoogle%2526utm_medium%253Dcpc%2526utm_campaign%253Dasc-int-null-44700045336317929_prodfolderdynamic-cpc-pf-google-wwe_int%2526utm_content%253Dprodfolddynamic%2526ds_k%253DDYNAMIC%2BSEARCH%2BADS%2526DC_M%253Dyes%2526gad_source%253D1%2526gclid%253DCjwKCAiA-P-rBhBEEiwAQEXhH42jH7tifXT1Onrd-h5-lqJmrr3fCwnnL9CQtRTd2b0KnMYL7VbHSBoCbu4QAvD_BwE%2526gclsrc%253Daw.ds