

Um olhar de PLN sobre as métricas de rastreamento ocular

Sidney E. Leal

sidleal@gmail.com

Orientadora:

Profa. Dra. Sandra M. Aluísio

12/06/2019

Roteiro

- O que são métricas de rastreamento ocular
- Linha do tempo
- Os movimentos dos olhos
- As principais métricas
- Dispositivos de rastreamento ocular
- Dispositivo Fove
- Córpus com métricas de rastreamento ocular
- Rastros Córpus para o português brasileiro (em construção)
- Exemplos de uso
- Referências

O que são métricas de rastreamento ocular

Ward Technical Consulting (2018), SR Research (2018), Imotions (2017), FOVE (2018)

Medidas extraídas a partir do monitoramento dos movimentos dos olhos durante a execução de uma tarefa (por ex: leitura).

Os movimentos dos olhos podem ser interpretados como uma janela para o processamento do cérebro, refletindo os tempos cognitivos envolvidos em determinada tarefa. (BARRETT; AGIC; SØGAARD, 2015)

Linha do tempo

- Observações iniciais do papel do movimento dos olhos durante a leitura.
- Descoberta fatos básicos (supressão sacádica, região efetiva da visão).
- Coincide com movimento behaviorista na psicologia experimental, com os trabalhos com focos mais práticos e menos concentrados na utilização dos movimentos para inferir o processamento cognitivo.
- Melhorias nos sistemas de rastreamento permitiram medidas mais acuradas e simples de obter.
 Juntamente com os avanços das teorias de processamento da linguagem, os movimentos dos olhos começaram a ser utilizados para exame crítico dos processos

cognitivos durante a leitura.

(RAYNER, 1998)

Os movimentos dos olhos

Sacadas: Os contínuos movimentos oculares, reposicionamento do olhar (durante uma sacada nenhuma informação é percebida).

Fixações: Os tempos de fixação do olhar em um ponto de atenção entre as sacadas.

(RAYNER, 1998)

As principais métricas

(**ZELENINA**, 2015)

As principais métricas

First fixation duration: Tempo da primeira fixação na palavra.

First pass fixation duration: Quando uma palavra é longa, pode ser necessário um segundo ponto de fixação dentro da própria palavra. Essa métrica é a soma dos tempos das fixações na primeira passada pela palavra.

Total fixation duration: Soma de todos os tempos de fixação na palavra.

Average fixation duration: Tempo médio de fixação, quando se tem mais de um ponto por palavra ou média por sentença.

Regression: Regressões no texto podem indicar necessidade de rever alguma informação para entendimento do ponto atual, por exemplo, para resolver uma correferência. É uma métrica muito importante para medir complexidade textual e sentencial.

As principais métricas

Regression path duration: Mede a extensão da regressão; quanto maior a regressão, maior o esforço despendido para a leitura, como resultado de um texto mais complexo.

Interest area: Pontos de interesse, onde o leitor passou mais tempo fixando no texto, calculado com a soma de todas as fixações.

Skipping rate: Algumas palavras são naturalmente saltadas durante a leitura, como artigos e preposições. Não saltar essas palavras pode indicar um leitor com menor proficiência na leitura.

Number of fixations: Quantidade de fixações na palavra; palavras simples exigem uma única fixação.

Second pass fixation duration: Tempo de fixação na segunda vez que o leitor retorna à palavra.

Spillover from previous word: Nem sempre o processamento de uma palavra é completado antes que o olhar se mova para a próxima, nesses casos ocorre o efeito de "transbordamento" do tempo para a palavra seguinte.

Dispositivos de rastreamento ocular

Device	Sampling rate	Spatial resolution	Accuracy	Estimated cost (USD)	
Eyelink 1000 Plus	1,000 hz	0.01^o	< 1°	100,000	
Tobii Pro X2-60	60 hz	0.32^{o}	0.4°	30,000	
FOVE 0	120 hz	-	< 1°	600	
The Eye Tribe	60 hz	0.10	0.5°	100	

FOVE comparison with known models.

Sources: SR Research (2018), Tobii (2018), The Eye Tribe (2018), FOVE (2018)

Fove

Criado por uma startup nipo-americana em 2015, após uma campanha no Kickstarter que captou USD 480k.

Foi projetado para o mercado de jogos, mas recentemente os desenvolvedores adicionaram algumas funções para ajudar em pesquisa (e uma biblioteca em Python).

Fove

Prós:

- 1. Custo acessível;
- 2. Não precisa manter a cabeça fixa;
- 3. Melhor imersão na tarefa;
- 4. Possibilidade de gravar as imagens de ambos os olhos

Contras:

- Baixa precisão e acurácia (exigindo fontes e espaços maiores);
- Baixo "sampling rate", pode perder fixações muito rápidas (< 8ms);
- Não possui ainda nenhum software de alto nível para facilitar o desenvolvimento dos experimentos.

Córpus com métricas de rastreamento ocular

WORD	TEXT	LINE	OLEN	WLEN	XPOS	WNUM	FDUR	OBLP	WDLP	FXN0	TXFR
Are	1	1	3	3	1	1	216	1	1	1	351
tourists	1	1	8	8	6	2	156	2	2	2	3
enticed	1	1	7	7	17	3	227	4	4	3	1
enticed	1	1	7	7	19	3	174	6	6	14	1
by	-99	0	0	0	0	4	0	0	0	0	0
these	1	1	5	5	25	5	187	1	1	4	73
these	1	1	5	5	29	5	168	5	5	15	73
these	1	1	5	5	28	5	170	4	4	16	73
attractions	1	1	11	11	33	6	182	3	3	5	2
attractions	1	1	11	11	36	6	271	6	6	17	2
attractions	1	1	11	11	34	6	88	4	4	18	2
threatening	1	1	11	11	44	7	96	2	2	6	3
threatening	1	1	11	11	52	7	232	10	10	8	3
threatening	1	1	11	11	46	7	232	4	4	19	3
their	1	1	5	5	57	8	168	3	3	10	225
very	1	1	4	4	62	9	335	2	2	9	56
very	1	1	4	4	61	9	202	1	1	20	56
existence?	1	1	10	9	65	10	173	0	0	11	4
existence?	1	1	10	9	71	10	188	6	6	12	4
existence?	1	1	10	9	72	10	88	7	7	13	4
existence?	1	1	10	9	72	10	222	7	7	21	4
existence?	1	1	10	9	74	10	157	9	9	22	4
The	-99	0	0	0	0	11	0	0	0	0	0
two	1	2	3	3	5	12	314	1	1	23	43
young	-99	0	0	0	0	13	0	0	0	0	0
sea-lions	1	2	9	9	15	14	265	1	1	24	1
took	1	2	4	4	24	15	186	0	0	25	17
not	1	2	3	3	31	16	176	2	2	26	277
not	1	2	3	3	31	16	327	2	2	29	277

(ZELENINA, 2015)

Dundee Eye-Tracking (inglês/francês) (KENNEDY; HILL; PYNTE, 2003)

PSC - Potsdam Sentence Corpus (alemão) (KLIEGL et al.,2004)

GECO Ghent Eye-Tracking Corpus (inglês/holandês) (COP et al., 2016)

Provo Corpus (inglês) (LUKE; CHRISTIANSON, 2017)

ZuCo - Zurich Cognitive Language Processing Corpus (inglês) (HOLLENSTEIN et al., 2018)

Córpus RastrOS

Projeto Multicêntrico

Instituto de Ciências Matemáticas e de Computação/Universidade de São Paulo (ICMC/USP)

Universidade Federal do Ceará (UFC)

Pontifícia Universidade Católica-Rio (PUC-Rio)

Universidade Tecnológica Federal do Paraná, campus Toledo (UTFPR)

Universidade Federal do ABC (AFABC)

Universidade Estadual do Rio de Janeiro (UERJ)

RASTROS: Um grande corpus com medidas de RASTReamento Ocular e normas de previsibilidade durante a leitura de estudantes do ensino Superior no Brasil

Profa. Sandra Maria Aluísio (NILC/ICMC/USP) (Professor Principal)

Pesquisadores Associados

Profa. Elisângela Nogueira Teixeira (UFC)
Profa. Erica dos Santos Rodrigues (PUC/RJ)
Prof. Gustavo Henrique Paetzold (UTFPR, campus Toledo)
Profa. Katerina Lukasova (UFABC, Centro de Matemática, Computação e Cognição)
Profa. Maria da Graça Campos Pimentel (Intermidia/ICMC/USP)
Maria Teresa Carthery-Goulart (UFABC, Centro de Matemática, Computação e Cognição)
Prof. Renê Alberto Moritz da Silva e Forster (UERJ)

Exemplos

Inteligibilidade:

- Learning to predict readability using eye-movement data from natives and learners.
 (GONZALEZ-GARDUÑO; SØGAARD, 2018)
- Quantifying sentence complexity based on eye-tracking measures. (SINGH et al.,2016)

Análise de Sentimentos:

- Leveraging cognitive features for sentiment analysis. (MISHRA et al., 2016)

Simplificação / Sumarização / Tradução Automática:

 Improving sentence compression by learning to predict gaze. (KLERKE;GOLDBERG;SøGAARD, 2016)

Exemplos

PoS Tagging:

- Weakly supervised part-of-speech tagging using eye-tracking data. (BARRET et al., 2016)

Avaliação de word embeddings:

- Evaluating word embeddings with fMRI and eye-tracking. (SøGAARD, 2016)

Em português:

- Efeito stroop e rastreamento ocular no processamento de palavras. (MAIA;LEMLE;FRANÇA, 2007)
- Penalidade do nome repetido e rastreamento ocular em português brasileiro. (LEITÃO;RIBEIRO;MAIA, 2012)
- Resolução do pronome nulo em português brasileiro: Evidência de movimentação ocular. (TEIXEIRA;FONSECA;SOARES, 2014)

Referências

BARRET, M., BINGEL, J., KELLER, F.;SøGAARD, A. Weakly supervised part-of-speech tagging using eye-tracking data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics 2, 579–584, 2016.

BARRETT, M. J.; AGIC, Z.; SøGAARD, A. The dundee treebank. Proceedings of the Fourteenth International Workshop on Treebanks and Linguistic Theories: TLT14, p. 242–248, 2015.

COP, U.; DIRIX, N.; DRIEGHE, D.; DUYCK, W. Presenting geco: An eyetracking corpus of monolingual and bilingual sentence reading. Behavior Research Methods, v. 49, p. 602–615, 05 2016.

FOVE. "Fove Eye Tracker". 2018. Available at:https://getfove.com.2.

GONZALEZ-GARDUÑO, A. V.; SØGAARD, A. "Learning to predict readability using eye-movement data from natives and learners". Proceedings of the The Thirty-Second AAAI Conference on Artificial Intelligence, 2018.3.

GONZALEZ-GARDUñO, A. V.; SøGAARD, A. Learning to predict readability using eye-movement data from natives and learners. Proceedings of the The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), p. 5118–5124, 2018.

GONZALEZ-GARDUÑO, A. V.; SøGAARD, A. Using gaze to predict text readability. Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, p. 438–443, 2017.

HOLLENSTEIN, N.; ROTSZTEJ, J.; TROENDLE, M.; PEDRONI, A.; ZHANG, C.; LANGER, N. ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading. Scientific Data (nature.com), 2018

Referências

IMOTIONS. "Eye Tracking - The Complete Pocket Guide". 2017. Available at:http://www.imotions.com.4.

KENNEDY, A.; HILL, R.; PYNTE, J. The dundee corpus. Proceedings of the 12th European conference on eye movement, 2003.

KLERKE S.; GOLDBERG, Y.; SøGAARD, A. Improving sentence compression by learning to predict gaze. Proceedings of NAACL-HLT 2016, pages 1528–1533, 2016.

KLIEGL, R.; GRABNER, E.; ROLFS, M.; ENGBERT, R. Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology, 16, p. 262–284, 2004.

LEITÃO, M. M.; RIBEIRO, A. J. C.; MAIA, M. Penalidade do nome repetido e rastreamento ocular em português brasileiro. Revista LinguíStica, v8 n2, 2012.

LUKE, S. G.; CHRISTIANSON, K. The provo corpus: A large eye-tracking corpus with predictability norms. Behavior Research Methods, 2017.

MAIA, M.; LEMLE, M.; FRANÇA, A. I. Efeito stroop e rastreamento ocular no processamento de palavras. Ciências e Cognição 2007, v. 12, p. 02–17, 2007.

MISHRA, A., KANOJIA, D., NAGAR, S., DEY, K.; BHATTACHARYYA, P. Leveraging cognitive features for sentiment analysis. In Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, 2016.

RAYNER, K. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin - APA, vol. 124 n. 3, p. 372–422, 1998.

SINGH, A. D.; MEHTA, P.; HUSAIN, S.; RAJKUMAR, R. "Quantifying sentence complexity based on eye-tracking measures". Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity, 2016.5.

Referências

SøGAARD, A. Evaluating word embeddings with fMRI and eye-tracking. In Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for NLP 116–121, 2016.

SR Research. "Products". 2018. Available athttps://www.sr-research.com/products.6.

TEIXEIRA, E. N.; FONSECA, M. C. M.; SOARES, M. E. Resolução do pronome nulo em português brasileiro: Evidência de movimentação ocular. VEREDAS: Sintaxe das Línguas Brasileiras, v. 18, 2014.

THE EYE TRIBE. "The Eye Tribe Tracker". 2018. Available at:http://theeyetribe.com7.

TOBII. "Products". 2018. Available in:https://www.tobii.com.8.

WARD TECHNICAL CONSULTING. "About". 2018. Available athttp://w63309.wixsite.com/eyetracker/about9.

ZELENINA, M. "Eye Tracking for NLP". 2015. Available at:https://www.slideshare.net/mariezelenina/presentation-2-47610828.