

FAKULTÄT FÜR PHYSIK

WiSe 2017/18

T4: THERMODYNAMIK UND STATISTISCHE PHYSIK

DOZENT: ULRICH SCHOLLWÖCK

ÜBUNGEN: M. BUSER, L. STENZEL, A. SWOBODA

www.physik.uni-muenchen.de/lehre/vorlesungen/wise_17_18/T4_stat_mech/index.html

Blatt 06: Wärmemaschinen, Stabilität, Kühlen

Ausgabe: Freitag, 01.12.17; Abgabe: Montag, 11.12.17, 13:00 Uhr

Aufgabe 1 Joulescher Kreisprozess

(7 Punkte) Betrachten Sie ein ideales Gas (insbesondere sind also C_P und C_V konstant), das an folgendem Prozess teilnimmt: Von A bei (V_A, P_A) nach B bei (V_B, P_B) auf einer Adiabate, von B auf der Isobare nach C bei $(V_C, P_C \equiv P_B)$, von hier auf der Adiabate nach D bei $(V_D, P_D \equiv P_A)$, und von hier auf einer Isobare zurück zu A (siehe Skizze). Bestimmen Sie den Wirkungsgrad dieses Prozesses als Funktion der Drücke und des Adiabatenkoeffizienten $\gamma := \frac{C_P}{C_V}!$

Aufgabe 2 Kritischer Punkt

(6 Punkte) Wir betrachten ein Phasendiagramm, in dem die flüssige von der gasförmigen Phase durch eine Kurve getrennt wird. Diese Kurve endet im kritischen Punkt (T_c, V_c) , in dem beide Phasen koexistieren. Weiterhin verschwinde die Ableitung $\frac{\partial P}{\partial V}\big|_T$ im kritischen Punkt. Bestimmen Sie die den Wert der zweiten Ableitung $\frac{\partial^2 P}{\partial V^2}\big|_T$ im kritischen Punkt!

Hinweis: Betrachten Sie ein geeignetes thermodynamisches Potential. Sie dürfen ohne Begründung von ausreichender Regularität ausgehen.

Aufgabe 3 Paramagnet

Wir betrachten einen paramagnetischen Festkörper in einem homogenen äußeren Magnetfeld B. Die Innere Energie ist $E=\alpha\,N\,T^4$, wobei α konstant ist. Die Gesamtmagnetisierung M ist nach

dem Curieschen Gesetz $M=\frac{N\,a\,B}{T}$, mit der Curie-Konstante a. Sie können Volumenänderungen vernachlässigen.

- a) (3 Punkt) Bestimmen Sie die Magnetisierungswärme bei konstanter Temperatur T_1 , wenn das Magnetfeld von 0 auf B_1 zunimmt.
- b) (4 Punkte) Bestimmen Sie die Änderung der Temperatur, wenn anschließend das Magnetfeld wieder isentrop von B_1 auf 0 gesenkt wird!