第十章《重积分》自测题

考试时间: 100 分钟 考试方式: 闭卷

学院	班级		名	学号	
题号		1 1	11	四	总分
得分					
阅卷人					

一、填空题(本题共5小题,每小题4分,满分20分)

1、计算
$$\int_0^1 dx \int_x^1 e^{-y^2} dy =$$

2、设
$$D: x^2 + y^2 \le a^2$$
 $(a > 0)$, 又有 $\iint_D (x^2 + y^2) d\sigma = 8\pi$,则 $a = \underline{\qquad}$

3、交换积分次序:
$$\int_0^1 dx \int_0^{x^2} f(x,y) dy + \int_1^3 dx \int_0^{\frac{1}{2}(3-x)} f(x,y) dy = \underline{\hspace{1cm}}$$

4、
$$\Omega$$
: $x^2 + y^2 + z^2 \le 1$, $\iint_{\Omega} f(x) dv$ 可以用球坐标的累次积分表示为______

5、设
$$\Omega$$
是由曲面 $z=\sqrt{x^2+y^2}$ 和 $z=1$ 所围成的均匀物体(设密度 $\rho=1$),则物体 Ω 的质心为_____

二、 选择题(本题共 5 小题,每小题 4 分,满分 20 分.每小题给出的四个选项中,只有一项符 合题目要求,把所选项前的字母填在题后的括号内)

1、设
$$D:0 \le x \le 1, -x \le y \le 3x$$
,则 $\iint_D dxdy = ($)

(A) 1 (B) -1 (C) 2 (D) -2
2、设
$$D: 0 \le x \le 1, -x \le y \le x$$
 ,则 $\iint_D (4x^2 + y^3 + \cos x \sin y) dx dy = ()$
(A) 1 (B) -1 (C) 2 (D) -2
3、设平面区域 $D: 1 \le x^2 + y^2 \le 4$,则 $\iint_D f(\sqrt{x^2 + y^2}) dx dy = ()$

3、设平面区域
$$D: 1 \le x^2 + y^2 \le 4$$
, 则 $\iint_D f(\sqrt{x^2 + y^2}) dx dy = ($

(A)
$$2\pi \int_{0}^{2} rf(r)dr$$

(B)
$$\pi \int_0^2 f(r) dr$$

(A)
$$2\pi \int_{0}^{2} rf(r)dr$$
 (B) $\pi \int_{0}^{2} f(r)dr$ (C) $2\pi \int_{1}^{2} rf(r)dr$ (D) $\pi \int_{1}^{2} f(r)dr$.

(D)
$$\pi \int_{1}^{2} f(r) dr$$

4、设空间区域 $\Omega_1: x^2+y^2+z^2 \leq R^2$, $z \geq 0$; $\Omega_2: x^2+y^2+z^2 \leq R^2$, $x \geq 0$,y ≥ 0 ,z ≥ 0 ,则有

(A)
$$\iiint_{\Omega_1} x dV = 4 \iiint_{\Omega_2} x dV$$
(C)
$$\iiint_{\Omega_1} z dV = 4 \iiint_{\Omega_2} x dV$$

(B)
$$\iiint_{\Omega_1} y dV = 4 \iiint_{\Omega_2} y dV$$

(C)
$$\iiint_{\Omega} z dV = 4 \iiint_{\Omega} x dV$$

(B)
$$\iiint_{\Omega_{1}} ydV = 4 \iiint_{\Omega_{2}} ydV$$
(D)
$$\iiint_{\Omega_{1}} xyzdV = 4 \iiint_{\Omega_{2}} xyzdV$$

- 5、曲面 $z = x^2 + y^2$ 和平面z = 4所围成的立体体积为()
- (A) 2π
 - (B) 4π
- (C) 6π
- (D) 8π
- 三、解下列各题(本题共6小题,满分52分)
- 1、(本题 8 分) 求半球体 $0 \le z \le \sqrt{a^2 x^2 y^2}$ 在圆柱 $x^2 + y^2 = ax(a > 0)$ 内那部分的体积。

2、(本题 8 分) 求锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 所割下部分的曲面面积。

3、(本题 9 分) 计算二重积分 $\iint_{D} (x^2 + 3x - 4y + 2) dx dy$, 其中 $D: x^2 + y^2 \le 1$

4、(本题 9 分) 计算 $\iint_{\Omega} xy^2z^3dxdydz$, 其中 Ω 是由曲面 z=xy, 平面 y=x, x=1 和 z=0 所围 成的闭区域。

诚信关乎个人一生,公平竞争赢得尊重。

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

5、(本题 9 分) 计算三重积分 $\iint_{\Omega} (x^2 + y^2 + 2x - 3y) dx dy dz$, 其中 Ω 为由曲线 $\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$ 绕 z 轴 旋转一周而成的曲面与两平面 z = 2, z = 8 所围成的空间闭区域。

6、(本题 9 分)设半径为 R 的非均匀球体上任一点的密度与球心到该点的距离成正比,若球体的质量为 M,求该球体对于直径的转动惯量。

四、证明题(本题8分)

设
$$f(x)$$
 在 $[0,1]$ 上连续,证明: $2\int_0^1 f(x)dx \int_x^1 f(y)dy = \left[\int_0^1 f(x)dx\right]^2$