Chapter 6

Developing Data Models for Business Databases

OUTLINE

- Guidelines for analyzing business information needs
- Transformations for generating alternative designs
- Finalizing an Entity Relationship Diagram
- Schema Conversion

BUSINESS DATA MODELING PROBLEMS

- Poorly defined requirements
 - Conflicting statements
 - Wide scope
 - Missing details
 - Many stakeholders
 - Requirements in many formats
- Add structure
 - Eliminate irrelevant details
 - Add missing details
 - Narrow scope

In collecting the requirements, you will need to

- conduct interviews,
- review documents and system documentation,
- and examine existing data.

For each division, collect

- Organization chart
- Human resources
- Business processes
 - Activities
 - Data used, data sources, frequency
 - Information produced, frequency
 - Dissemination
 - Time used
- Problems: people, process, technology, data

Example of Data Flow Diagram

How the Project Leader

understood it

How the Business Consultant described it

What the customer really needed

need

STEPS OF NARRATIVE PROBLEM ANALYSIS

- Identify entity types and attributes
- Determine primary keys
- Add relationships
 - Determine connections
 - Determine relationship cardinalities
 - Simplify relationships

DETERMINE ENTITY TYPES AND ATTRIBUTES

- For entity types, find nouns that represent
 - groups of people,
 - places,
 - things, and
 - events
- For attributes, look for properties that provide
 - details about the entity types
- Simplicity principal: consider as an attribute unless other details

DETERMINE **PRIMARY KEYS**

- Stable: never change after assigned
- Single purpose: no other purpose
- Good choices: automatically generated values(Integer)
- Compromise choice for industry practices
- Identify other unique attributes

ENTITY IDENTIFICATION EXAMPLE

Electricity Bill

-meter number

ENTITY IDENTIFICATION EXAMPLE

Customer

CustNo
CustName
CustAddr
CustType

Meter

MeterNo
MtrAddr
MtrSize
MtrModel

Reading

ReadNo
ReadTime
ReadLevel
EmpNo

(commercial or residential)

Bill BillNo BillDate consumption BillStartDate BillEndDate BillDueDate

Rate

RateNo
RateDesc
RateFixedAmt
RateThresh
RateVarAmt

IDENTIFY RELATIONSHIPS

- Identify relationships connecting entity types
 - associations among nouns representing entity types
 - Sentences that involve an entity type having
 - another entity type as a property
 - a collection of another entity type

RELATIONSHIP IDENTIFICATION EXAMPLE

DIAGRAM REFINEMENTS

- Construct initial ERD
- Revise many times
- Generate feasible alternatives and evaluate according to requirements
- Gather additional requirements if needed
- Use transformations to suggest feasible alternatives

ATTRIBUTE TO ENTITY TYPE TRANSFORMATION

ReadNo

ReadTime ReadLevel

EmpNo

Reading

ReadNo

ReadTime

ReadLevel

Performs

Employee

EmpNo

EmpName

EmpTitle

COMPOUND ATTRIBUTE TRANSFORMATION

Customer

CustNo

CustName

CustAddr

CustType

Customer

CustNo

CustName

CustStreet

CustCity

CustState

CustPostal

CustType

ENTITY TYPE EXPANSION TRANSFORMATION

Rate

RateNo

RateDesc

RateFixedAmt

• \$ per cubic Rate Var Amt

Min leve RateThresh

for fixed rate

RateSet

RateSetNo

RSApprDate

RSEffDate

RSDesc

Contains

Rate

MinUsage

MaxUsage

FixedAmt

VarAmt

WEAK TO STRONG ENTITY TRANSFORMATION

ATTRIBUTE HISTORY TRANSFORMATION

1-M RELATIONSHIP TRANSFORMATION

If a meter can be reused by customers

M-N RELATIONSHIP TRANSFORMATION

LIMITED HISTORY TRANSFORMATION

EmpNo EmpName EmpCurrTitle EmpCurrTitleBegEffDate EmpCurrTitleEndEffDate EmpPrevTitle EmpPrevTitleBegEffDate EmpPrevTitleBegEffDate EmpPrevTitleBegEffDate

Current Title

Previous Title

GENERALIZATION HIERARCHY TRANSFORMATION

EXAMPLE ENTITY TYPE CLUSTER

SUMMARY OF DATA MODELING GUIDELINES

- Use notation precisely
- Strive for simplicity
- ERD connections
 - Avoid over connecting the ERD
 - Identify hub(s) of the ERD
- Use specialized patterns carefully
- Justify important design decisions

SUMMARY OF BASIC CONVERSION RULES

- Entity type → a table.
- 1-M relationship → add a foreign key in the table corresponding to the entity type near the crow's foot symbol.
- M-N relationship

 an associative table with a combined primary key.
- Identifying relationship

 adds a column to a primary key.

APPLICATION OF BASIC RULES (I)

CREATE TABLE Course (

CourseNo Integer,

CrsDesc String

CrsUnit Integer, PRIMARY KEY (CourseNo))

APPLICATION OF BASIC RULES (I)

CREATE TABLE Offering (...

PRIMARY KEY OfferNo,

FOREIGN KEY (CourseNo) REFERENCES Course)

Add CourseNo

APPLICATION OF BASIC RULES (II)

CREATE TABLE Enrollment (StdSSN Integer,

OfferNo Integer, EnrGrade Number (4,2),

PRIMARY KEY (StdSSN, OfferNo),

FOREIGN KEY (StdSSN) REFERENCES Student,

FOREIGN KEY (OfferNo) REFERENCES Offering)

APPLICATION OF BASIC RULES (III)

- Same conversion result as the previous slide
- Different application of rules

GENERALIZATION HIERARCHY RULE

- Mimic generalization hierarchy as much as possible
 - Each subtype table contains specific columns plus the primary key of its parent table.
 - Foreign key constraints for subtype tables
 - CASCADE DELETE option for referenced rows
- Reduce need for null values
- Need joins and outer joins to combine tables

GENERALIZATION HIERARCHY EXAMPLE

set CASCADE DELETE option for Foreign Keys to avoid deleting an employee data of SalaryEmp and HourlyEmp.

OPTIONAL 1-M RULE

- Separate table for each optional 1-M relationship
- Avoids null values
- Requires an extra table and join operation
- Controversial: in most cases 1-M rule is preferred

OPTIONAL 1-M EXAMPLE

CREATE TABLE **Teaches** (... PRIMARY KEY (OfferNo), FOREIGN KEY(OfferNo) REFERENCES Offering, FOREIGN KEY(FacSSN) REFERENCES Faculty)

Avoids null values

1-1 RELATIONSHIPS

Office must have an employee

CREATE TABLE Office (...

PRIMARY KEY (OfficeNo),

FOREIGN KEY(EmpNo) REFERENCES Employee,

UNIQUE (EmpNo))

SUMMARY

- Data modeling is an important skill
- Use notation precisely
- Preference for simpler designs
- Consider alternative designs
- Review design for common errors
- Work many problems