Introducción a la programación con MatLAB Módulo 04 Gráficos en matlab

Fernando E. Pose

Marzo 2019

Primeros Conceptos

Ej. Ejecute el siguiente código. Obtener conclusiones.

```
x = [0:2:18];

y = [0,0.33,4.13,6.29,6.85,11.19,13.19,13.96,13.33,18.17]

plot(x,y)
```

Comando

Ver comando : plot(x,y)

Primeros Conceptos

Sección Argentina

Comando

Ver comando : title('Inserte título')

Comando

Ver comando : xlabel('Inserte etiqueta eje x')

Comando

Ver comando : ylabel('Inserte etiqueta eje y')

Comando

Ver comando: grid on / grid off

Ej. Ejecute el siguiente código. Obtener conclusiones.

```
x = [0:2:18];

y = [0,0.33,4.13,6.29,6.85,11.19,13.19,13.96,13.33,18.17]

plot(x,y); title('Primera grafica');

xlabel('Tiempo[s]'); ylabel('Magnitud[u]'); grid on
```


Tener en cuenta

Se debe crear una gráfica antes de agregarle título y etiquetas. Si primero se especifica el título y las etiquetas, se borrarán cuando se ejecute el comando plot.

Ej. Ejecute el siguiente código. Obtener conclusiones.

```
 \begin{array}{lll} x &=& [0:2:18]; \\ y &=& [0,0.33,4.13,6.29,6.85,11.19,13.19,13.96,13.33,18.17] \\ \textbf{plot}(x,y); \\ x &=& [0:2:18]; \\ y &=& [0,0.33,4.13,6.29,6.85,11.19,13.19,13.96,13.33,18.17] \\ \textbf{plot}(y,x); \end{array}
```


Ej. Ejecute el siguiente código. Obtener conclusiones.

```
x = [0:2:18];

y = [0,0.33,4.13,6.29,6.85,11.19,13.19,13.96,13.33,18.17]

plot(x,y);

x = [0:2:18];

y = [0,0.33,4.13,6.29,6.85,11.19,13.19,13.96,13.33,18.17]

plot(y,x);
```

Comando

Ver comandos:

figure(numero)

figure('name','figura de ejemplo')

Ej. Ejecute el siguiente código. Obtener conclusiones.

```
 \begin{array}{lll} x &=& [0:2:18]; \\ y &=& [0,0.33,4.13,6.29,6.85,11.19,13.19,13.96,13.33,18.17] \\ \text{plot}(x,y); \\ \text{hold on} \\ x &=& [0:2:18]; \\ y &=& [0,0.33,4.13,6.29,6.85,11.19,13.19,13.96,13.33,18.17] \\ \text{plot}(y,x); \\ \text{hold off} \end{array}
```

Comando

Ver comando: hold on / hold off

Estílos de líneas

Matlab permite aplicar distintos estílos a las gráficas, entre las cuales se tienen :

- Estílos de línea : sólido, rayado, punteado y raya-puto
- Tipos de punto: estrellas, círculos, marcas con x, entre otros
- Opciones de color : azul, verde, rojo, entre otros

Estílos de líneas

Línea	Indicador	Punto	Indicador	Color	Indicador
sólida	-	punto		azul	b
punteada	:	círculo	0	verde	g
raya-punto		marca x	х	rojo	r
rayada	_	más	+	cian	С
		estrella	*	magenta	m
		cuadrado	s	amarrillo	у
		diamante	d	negro	k
		entre otros		entre otros	

Comando

Ver comando : plot(x,y,'características')

Estílos de líneas

Escalamiento:

Comando

Ver comando : axis([xmin xmax ymin ymax zmin zmax])

Comando

Ver comando : axis()

Escalamiento:

Comando

Ver comando : axis([xmin xmax ymin ymax zmin zmax])

Comando

Ver comando : axis()

Tener en cuenta

Matlab selecciona automáticamente escalamientos adecuados en los ejes x y y de no ser especificados.

16/38

Marzo 2019

Leyendas:

Comando

Ver comando: legend('etiqueta1','etiqueta2')

17/38

Texto:

Comando

Ver comando : text(coordenada X, coordenada Y, 'texto')

Sección Argentina

Ejercicio práctico 9

- Grafique x contra y para y = sen(x). Sea x que varía desde 0 hasta 2pi en incrementos de 0.1pi
- 2 Agregue un título y etiqueta a su gráfica
- Grafique x contra y₁ y y₂ para y₁ = sen(x) y y₂ = cos(x). Sea x que varía desde 0 hasta 2pi en incrementos de 0.1pi. Agregue un título y etiqueta a su gráfica.
- Vuelva a crear la gráfica de la parte 3, pero haga la línea sen(x) rayada y roja. Haga la línea cos(x) verde y punteada.
- 5 Agregue una leyenda a la gráfica de la parte 4.
- Ajuste los ejes de modo que el eje x vaya de -1 a 2pi+1 y el eje y de -1.5 a + 1.5.

Sugerencia

Para limpiar una figura, use el comando clf. Para cerrar una ventana de figura, use el comando close.

IEEE Sección Argentina

La subdivisión de una ventana (figura) se realiza con el comando subplot

Comando

Ver comando: subplot(Mfilas, Ncolumnas, posición)

22 / 38

Marzo 2019

Ej. Ejecutar las siguiente líneas. Obtener conclusiones.

```
x = 0:pi/20:2*pi;
subplot(2,1,1); plot(x,sin(x));
subplot(2,1,2); plot(x,cos(x));
```


Ej. Ejecutar las siguiente líneas. Obtener conclusiones.

```
x = 0:pi/20:2*pi;
subplot(2,2,1); plot(x,sin(x));
subplot(2,2,2); plot(x,cos(x));
subplot(2,2,[3,4]); plot(x,sin(2*x));
```


Procesamiento de una señal de ECG

Ejercicio práctico 10

- Subdivida una ventana de figura en dos filas y una columna.
- **2** En la ventana superior, grafique y = tan(x) para -1.5 <= x, <= +1.5. Use un incremento de 0.1.
- 3 Agregue un título y etiqueta de eje a su gráfica.
- In It is the second of the se
- Agregue un título y etiquetas a su gráfica.
- Intente de nuevo los ejercicios anteriores, pero divida la ventana de figura verticalmente en lugar de horizontalmente.

Matlab permite hacer otros tipos de gráficos 2D, por ejemplo :

- Gráficos polares
- Gráficos Logarítmicos
- Gráficos de barra
- Gráficos de pastel
- Histogramas
- Gráficos de error

Gráficos polares

Comando

Ver comando : polar(theta,r)

```
x = 0:pi/100:pi;
y = sin(x);
polar(x,y);
```


IEEE Sección Argentina

Gráficos logarítmicos

Comando

Ver comando : semilogx(x, y)Ver comando : semilogy(x, y)Ver comando : loglog(x, y)

```
x = 0:0.5:50;
y = 5*x.^2;
loglog(x,y)
grid on;
```


Gráficos de barra

Comando

Ver comando : bar(x)Ver comando : bar3(x)

```
x=[1,2,5,4,8];
subplot(1,2,1); bar(x);
subplot(1,2,2); bar3(x);
```


IEEE Sección Argentina

Asistencia a cines en Colombia

Gráficos de pastel

Comando

Ver comando : pie(x)Ver comando : pie3(x)

```
x = [1,2,5,4,8];
subplot(1,2,1); pie(x);
subplot(1,2,2); pie3(x);
```


IEEE Sección Argentina

Histogramas

Comando

Ver comando : hist(x)

$$x = [1, 2, 1, 5, 5, 4, 5, 8];$$

hist(x)

IEEE Sección Argentina

Ecualización de Histograma

Graficos de error

Comando

Ver comando : errorbar(x,y,e)

```
x=0:pi/100:pi;
y = sin(x);
e = rand(size(x))/10;
errorbar(x,y,e)
```


