Nanocomposite Thermoelectric Design

Callum Vincent

MPhys - University of Exeter

Supervisor: GP Srivastava

Quantum Systems & Nanomaterials

Presentation Overview

- What is a Thermoelectric?
- What is a Nanocomposite?
- History of Thermoelectrics
- Applications & The Future
- Thermoelectric Theory
- Assumptions & Core Theory
- Project Aims

What is a Thermoelectric?

Heat → Electricity (Seebeck effect)

Electricity → Cooling (Peltier)

- Carnot engine limits
 - Charge carriers like steam
- 2 Heat carriers
 - Electrons, phonons
- 5 Transport mechanisms

Thermoelectric Generator

What is a Nanocomposite?

- Identical concept to traditional composites
 - Aeroplanes, cars, bones

Inside Bone - Biological Composite

Superlattice - 2D Nanocomposite

Artificial 3D crystal (nano-sandwich)

History of Thermoelectrics

1821 Seebeck discovers thermoelectricity

Thomas Seebeck

Seebecks Original Experiment

Left image credit: Hans Wahl, Anton Kippenberg: Goethe und seine Welt, Insel-Verlag, Leipzig 1932 S.204
Right image adapted from: etc.usf.edu/clipart/35600/35659/seebeck 35659 lg.gif

History of Thermoelectrics

- 1960's bulk materials Bi₂Te₃, PbTe, SiGe
 - Maximum practical efficiency of 4% [1]
 - Use in aerospace deep space probes
 - Reliable, low weight
- 1990's nanocomposites research
 - Efficiencies of 20-30% possible [2]

Voyager Space Probe

[1]: Vorobiev et al. Solar Energy 80 (2006) 170–176 [2]: Chen et al. International Materials Reviews 48 (2003) 45-66 Image adapted from: voyager.jpl.nasa.gov/image/images/spacecraft/Voyager.jpg

Graph adapted from: Minnich et al. Energy Environ. Sci. (2009) 466-479

Applications & The Future

- ZT > 3 = "we're in business"
 - Opens up novel applications
 - Heat recovery systems, solar thermal generators
 - Laptops recycling waste heat
- ZT > 10 = "we're getting rich"
 - Thermoelectrics replace steam turbines
 - Greater reliability,
- ZT → ∞ = "woah lots of power!"
 - Reach carnot limit
 - Thermal gradients exploitable for maximum electric output

Thermoelectric Theory - ZT

$$ZT = \frac{S^2 \sigma \overline{T}}{\kappa_{electron} + \kappa_{phonon}}$$

- Relationships between S, σ, kelectron
 - Necessary compromise between variables
- kphonon independent
 - Key variable in our project
 - Can be minimised, 3-fold reduction [1]

Graph adapted from: Minnich et al. Energy Environ. Sci. (2009) 466-479

Assumptions & Core Theory

- Kinetic theory of gases
 - Assuming non-interacting, free gas of particles
- Nearly free electron model
 - Electrons perturbed by atomic lattice
 - Electrons and holes are free and non-interacting
- Phonon model
 - Collective excitations of the atomic lattice
 - Phonons are free and non-interacting
- Boltzmann transport equation
 - Describes kinetic change of macroscopic quantity
 - Thermal & electrical gradients

PGEC - Phonon Glass Electron Crystal

- Core concept for our research
 - Proposed thermoelectric method [1]
 - Properties of phonon scattering glasses and electron transmissive crystals
- Small perturbations to lattice?
 - Strong scattering effect on phonons
 - Electrons unaffected
 - Limited effectiveness?
- Multiple boundary defects?
 - Low dimensional systems
 - Many defects, may affect electrons
 - Phonons large range of mean free path

Project Aims

- 1. Understand phonon thermal conductivity
- 2. Develop theoretical methods to attain PGEC
- 3. Propose nanocomposite structures for PGEC
- 4. Computationally model proposed nanocomposite structures

Core references: