Augmented Inverse Probability Weighting and DML for Treatment Effect Estimation

ML and Econometrics Term Project

Yu-Hsin Ho June 1, 2023

Quick Recap of Motivation

- ullet We want to estimate the average treatment effect (ATE) of a binary treatment D on an outcome Y
- Usually assuming SUTVA, or selection-on-observables: $\{Y(1),Y(0)\}\perp D|X$
- ullet So we want to "control" for confounders X
- Usually this is done by linear regression
 - o reg Y D X, r
- Problems:
 - 1. Relationship between Y and X is non-linear (specification error)
 - 2. We have more confidence on D(X) instead of Y(X) (e.g. experimental study)

Augmented Inverse Probability Weighting (AIPW)

- Proposed by Robins, Rotnitzky, and Zhao (1994, JASA)
- Propensity score: m(X) = P(D = 1|X)
- Response model: $g_d(X) = E[Y|X, D=d], \ d=0,1$
- **Doubly-robustness**: consistent if either m(x) or $g_d(X)$ are correctly specified

$$au_{ ext{AIPW}} = rac{1}{N} \sum_{i=1}^{N} \{g_1(X_i) - g_0(X_i) \ + rac{D_i(Y_i - g_1(X_i))}{m(X_i)} - rac{(1 - D_i)(Y_i - g_0(X_i))}{1 - m(X_i)} \}$$

- 1. Can AIPW really keep its promise?
- 2. The gains from using ML methods for nuisance function estimation?

DGP

$$egin{aligned} Y &= au D + X_1 X_2 + 4 \sin(\pi X_3 X_4) + \exp(X_5) + arepsilon \ \mathbb{P}(D &= 1 | X) = m(X) = \Phi(X_1 + X_3 + X_5 + X_1 X_3) \ D &\sim \mathrm{Bernoulli}(m(x)) \ X_p &\sim N(1,1), \; p = 1, \cdots, 10; \; \; arepsilon \sim N(0,1) \end{aligned}$$

- Treatment effect $\tau=5$
- Confounders are X_1, X_3, X_5 . Including them in the model used for estimation is sufficient to recover ATE

Estimating Nuisance Functions

- 1. LASSO (glmnet)
 - lambda: tuned by CV
- 2. Random Forests (ranger)
 - \circ <code>num.trees</code>: tuned by $\mathsf{CV} \in [2000, 4000]$
 - mtry: tuned by CV
 - o sample.fraction = 0.5
- 3. Boosting (xgboost)
 - \circ <code>nrounds</code>: tuned by $\mathsf{CV} \in [1,6000]$
 - o max_depth = 2,
 - ∘ eta = 0.01
 - o subsample = 0.5

Specifications

Spec		
both	$X_1\cdots X_{10}$	$X_1\cdots X_{10}$
pscore	$X_1\cdots X_{10}$	$X_6\cdots X_{10}$
response	$X_6\cdots X_{10}$	$X_1\cdots X_{10}$

Estimators

1. AIPW:

$$\hat{ au} = rac{1}{N} \sum_{i=1}^{N} [g_1(X_i) - g_0(X_i) + rac{D_i(Y_i - g_1(X_i))}{m(X_i)} - rac{(1 - D_i)(Y_i - g_0(X_i))}{1 - m(X_i)}]$$

2. IPW:
$$\hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{DY}{m(X)} - \frac{(1-D)Y}{1-m(X)} \right]$$

3. OLS:
$$Y = \hat{ au}D + X'\hat{eta} + \hat{arepsilon}$$

4. PLS:
$$(Y - \hat{g}(X)) = \hat{ au}(D - \hat{m}(X)) + \hat{arepsilon}$$

We get $3 \times 3 \times 4 = 36$ ATE estimates per iteration.

Procedures

- 1. Generate 2000 samples from DGP, each with 2000 observations
- 2. Use 1st sample to tune hyperparameters (10-fold CV)
- 3. Get ATE estimates with 2-fold crossfitting

Results: Both specified correctly

True ATE = 5

Results: pscore specified correctly

Results: response specified correctly

estimator	Bias	RMSE	S.D.			
both - LASSO						
OLS	0.022	0.249	0.249			
PLR	0.550	0.635	0.319			
IPW	1.493	5.316	5.104			
AIPW	1.227	21.434	21.405			
both - RandomForest						
OLS	0.022	0.249	0.249			
PLR	0.097	0.205	0.180			
IPW	1.017	1.046	0.242			
AIPW	0.255	0.320	0.194			
both - XGBoost						
OLS	0.022	0.249	0.249			
PLR	0.069	0.191	0.178			
IPW	0.465	11.855	11.849			
AIPW	-0.096	6.047	6.047			

	estimator	Bias	RMSE	S.D.		
	pscore - L	.ASSO				
	OLS	2.357	2.376	0.295		
	PLR	1.605	1.629	0.281		
	IPW	1.493	5.316	5.104		
	AIPW	2.020	21.586	21.497		
	pscore - F	Randoml	Forest			
	OLS	2.357	2.376	0.295		
	PLR	1.197	1.228	0.273		
	IPW	1.017	1.046	0.242		
	AIPW	1.043	1.074	0.258		
pscore - XGBoost						
	OLS	2.357	2.376	0.295		
	PLR	0.695	0.736	0.244		
	IPW	0.695	15.178	15.166		
	AIPW	0.813	7.971	7.931		

estimator	Bias	RMSE	S.D.		
resp - LASSO					
OLS	0.022	0.249	0.249		
PLR	0.309	0.566	0.475		
IPW	2.357	2.375	0.298		
AIPW	1.266	1.300	0.296		
resp - RandomForest					
OLS	0.022	0.249	0.249		
PLR	-1.245	1.254	0.152		
IPW	2.357	2.378	0.315		
AIPW	0.509	0.545	0.194		
resp - XGBoost					
OLS	0.022	0.249	0.249		
PLR	-1.415	1.424	0.156		
IPW	2.358	2.376	0.296		
AIPW	0.166	0.251	0.188		

Empirical Power ($au=5, H_0=0$)

Empirical Size ($au=5, H_0=5$)

Promises AIPW can/cannot keep

- AIPW is indeed doubly robust
- It works well when propensity score is not extreme
 - E.g. the spec. that only response is correctly specified
 - Higher efficiency than OLS
- But the curse is that inverse-weighting based estimators suffer from sensitivity to extreme propensity scores
 - \circ It'll explode the estimate when m(X) is close to 0 or 1
 - High variance, lacks of power

Distribution of Propensity Score

Conclusions

Surprisingly, OLS (containing only 1st-order term) is not bad when relevent variables are included

Still, it does not contain treatment assignment information which we sometimes are more confident with

Conclusions

What we want is doubly-robustness but stable to extreme propensity scores

- Key: Prevent extreme weighting
- Some refinements are done:
 - Normalized AIPW (Rostami, and Saarela 2021)
 - Overlap weighting (Li, Morgan, and Zaslavsky 2018, JASA)
 - off-the-shelf function implemented in grf R library
 - fast, and works quite well