Movie Genre Predictions by Movie Posters

Yuanxing Cheng, Shansi Dong (quit)

Input: a movie poster

Output: its genres

- Adventure
- Animation
- Family

A multi-label classification problem

The Proposed Model

CNN branch

- 1. Similar to Alex net
- 2. Some up sampling
- 3. Then down sampling
- 4. Followed by a batch normalization layer, max pooling layer, and flatten layer.
- 5. Finally add a dense layer and a batch normalization layer.

Yolo branch

- 1. Standard Yolo V3 object detection as base
- 2. The output are concatenated after some upsampling
- 3. Then add a dense layer and a batch normalization layer.

Gram Layer branch

Considering add it in future work

Best Threshold Algorithm

Algorithm 1 Algorithm for obtaining the probability thresholds

Input: model output, the predicted probability vector \hat{y} , the true probability y, obtained from dataset. For example, if movie is of genre 1 and 2, then this true probability vector is $(0.5, 0.5, 0, 0, \dots)$. An predetermined threshold upper bound u and threshold moving stepsize s. All vectors are of length equal to the total number of movie genre, N.

```
Output: vector of best threshold for current output y_s
Initialize y.
for i = 1 to N do
    i = 0
    Initialize empty vector \rho and \theta
    for j < u do
        Zero initialize a binary vector \boldsymbol{b}
        if \hat{y}_i > j then
            b_i = 1
        else
            b_i = 0
        end if
        assign t to be the Matthews correlation coefficient of y and b, obtained using [8]
        append \rho the value t
        append \theta the value j
        j \leftarrow j + s
    end for
    k^* = \arg \max_k \rho
    (\boldsymbol{y}_s)_i = \boldsymbol{\theta}[k^*]
end for
```

About Matthews Correlation

	<i>y</i> = 1	<i>y</i> = 0	total
<i>x</i> = 1	n_{11}	n_{10}	n_{1ullet}
x = 0	n_{01}	n_{00}	n_{0ullet}
total	$n_{ullet 1}$	$n_{ullet 0}$	n

$$\phi = rac{n_{11}n_{00} - n_{10}n_{01}}{\sqrt{n_{1ullet}n_{0ullet}n_{ullet}n_{0ullet}n_{ullet}n_{0}}$$

Conclusion

Model not trained and no conclusion