Analysis 2 - Hausaufgabe 8

Tom Nick342225Tom Lehmann340621Maximilian Bachl341455

Aufgabe 1

(a) Zu zeigen:

$$\vec{v} = \text{rot} (\vec{u} + \text{grad}f)$$

= $\text{rot}(\vec{u}) + \text{rot}(\text{grad}f)$
= $\vec{v} + \text{rot}(\text{grad}f)$

Deshalb muss gelten:

$$0 = \operatorname{rot}(\operatorname{grad} f) = \operatorname{rot} \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial y} \frac{\partial f}{\partial z} - \frac{\partial}{\partial z} \frac{\partial f}{\partial y} \\ -\frac{\partial}{\partial x} \frac{\partial f}{\partial z} + \frac{\partial}{\partial z} \frac{\partial f}{\partial x} \\ \frac{\partial}{\partial x} \frac{\partial}{\partial y} - \frac{\partial}{\partial y} \frac{\partial f}{\partial x} \end{pmatrix} = 0$$

(b) (i) Da \vec{v} stetig differenzierbar und D konvex sowie offen ist, muss nur noch geprüft werden ob gilt:

$$\operatorname{div}(\vec{v}) = 0$$

$$= \cos(x) + \frac{2}{3}(x+y)^{-\frac{1}{3}} - \cos(x) - \frac{2}{3}(x+y)^{-\frac{1}{3}} = 0$$

Damit ist gezeigt, dass ein Vektorpotential für \vec{v} existiert.

(ii) Da \vec{v} stetig differenzierbar ist und D konvex sowie offen ist, muss nur noch geprüft werden ob gilt:

$$\operatorname{rot} \vec{v} = \vec{0} \\
= \begin{pmatrix} \left(-\cos(x)z - \frac{2}{3}(x+y)^{-\frac{1}{3}}z \right) \frac{\partial}{\partial y} - (x+y)^{\frac{2}{3}} \frac{\partial}{\partial z} \\
\left(z^{2} + \sin(x) \right) \frac{\partial}{\partial z} - \left(-\cos(x)z - \frac{2}{3}(x+y)^{-\frac{1}{3}}z \right) \frac{\partial}{\partial x} \\
\left(x+y \right)^{\frac{2}{3}} \frac{\partial}{\partial x} - \left(z^{2} + \sin(x) \right) \frac{\partial}{\partial y} \\
= \begin{pmatrix} -\frac{2}{9}(x+y)^{-\frac{4}{3}}z - 0 \\ \dots \\ \dots \end{pmatrix} \neq \vec{0}$$

 \vec{v} besitzt somit kein Potential, da die hinreichende Bedingung nicht erfüllt ist.

Aufgabe 3

Bei ϑ konstant entstehen jeweil zwei Kegel die an der z-Achse ausgerichtet sind und jeweils in die andere Richtung gucken. Der gewählte Winkel entscheidet den Winkel der Kegel. Interesassante Spezialfälle sind 0 und $\frac{\pi}{2}$. Bei 0 ist die resultierende Fläche im Grunde nicht vorhanden bzw. ist die z-Achso, bei $\frac{\pi}{2}$ ist eine Fläche entlang der x bzw y Achse.

Listing 1: Mathematica Code für den Graph von f

```
ParametricPlot3D[{r*Sin[2] Cos[z], r*Sin
       [2] Sin[z], r*Cos[2]},
{z, 0, 2 \[Pi]}, {r, -10, 10}, PlotStyle
       -> None,
BoundaryStyle -> Black]
```

Bei φ konstant entsteht eine Fläche die auf der z-Achse steht und je nach gewähltem φ sich auf der z-Achse dreht.

Listing 2: Mathematica Code für den Graph von f

```
ParametricPlot3D[{r*Sin[y] Cos[0], r*Sin[
    y] Sin[0], r*Cos[y]},
{y, 0, \[Pi]}, {r, -2, 2}, PlotStyle ->
    None,
PlotRange -> {{-1, 1}, {-1, 1}, {-1,
    1}}]
```

Bei φ konstant entsteht eine Fläche die auf der z-Achse steht und je nach gewähltem φ sich auf der z-Achse dreht.

Listing 3: Mathematica Code für den Graph von f

```
ParametricPlot3D[{Sin[y] Cos[z], Sin[y]
        Sin[z], Cos[y]},
{z, 0, 2 \[Pi]}, {y, 0, \[Pi]}, PlotStyle
        -> None]
```


Aufgabe 4

- (i) $\{(\rho\cos\varphi,\rho\sin\varphi)\in\mathbb{R}^2\mid\varphi=\frac{\pi}{3}\}$
- (ii) $\{(\rho\cos\varphi,\rho\sin\varphi,z)\in\mathbb{R}^3\mid 0\leq z\leq 2, 0\leq\varphi\leq\frac{\pi}{2},\rho\leq z+3\}$
- (iii) $\{(r\sin\theta\cos\varphi,r\sin\theta\cos\varphi,r\cos\theta)\in\mathbb{R}^3\mid \tfrac{3\pi}{2}\leq\varphi\leq 2\pi, 0\leq\theta\leq\tfrac{\pi}{2}, r=1\}$