Introduction to Machine Learning – Generative Models

Dr. Ab Mosca (they/them)

Plan for Today

- Bayes Classifier
- Linear Discriminant Analysis
- Classification Errors

Warm Up: Logistic Regression

	Year <dbl></dbl>	Lag1 <dbl></dbl>	Lag2 <dbl></dbl>	Lag3 <dbl></dbl>	Lag4 <dbl></dbl>	Lag5 <dbl></dbl>	Volume <dbl></dbl>	Today <dbl></dbl>	Direction <fctr></fctr>	
1	1990	0.816	1.572	-3.936	-0.229	-3.484	0.1549760	-0.270	Down	
2	1990	-0.270	0.816	1.572	-3.936	-0.229	0.1485740	-2.576	Down	
3	1990	-2.576	-0.270	0.816	1.572	-3.936	0.1598375	3.514	Up	
4	1990	3.514	-2.576	-0.270	0.816	1.572	0.1616300	0.712	Up	
5	1990	0.712	3.514	-2.576	-0.270	0.816	0.1537280	1.178	Up	
6	1990	1.178	0.712	3.514	-2.576	-0.270	0.1544440	-1.372	Down	

Call:

```
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
Volume, family = binomial, data = Weekly)
```

Deviance Residuals:

```
Min 1Q Median 3Q Max
-1.6949 -1.2565 0.9913 1.0849 1.4579
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.26686
                       0.08593
                                 3.106
                                         0.0019 **
Lag1
            -0.04127
                       0.02641 -1.563
                                         0.1181
            0.05844
                       0.02686
                                 2.175
                                         0.0296 *
Lag2
                       0.02666
                                         0.5469
Lag3
           -0.01606
                                -0.602
           -0.02779
                       0.02646
                                -1.050
                                         0.2937
Lag4
           -0.01447
                       0.02638
                                         0.5833
Lag5
                                -0.549
           -0.02274
                       0.03690 -0.616
Volume
                                         0.5377
```

Which predictors are significant?

--

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

	Year <dbl></dbl>	Lag1 <dbl></dbl>	Lag2 <dbl></dbl>	Lag3 <dbl></dbl>	Lag4 <dbl></dbl>	Lag5 <dbl></dbl>	Volume <dbl></dbl>	Today <dbl></dbl>	Direction <fctr></fctr>
1	1990	0.816	1.572	-3.936	-0.229	-3.484	0.1549760	-0.270	Down
2	1990	-0.270	0.816	1.572	-3.936	-0.229	0.1485740	-2.576	Down
3	1990	-2.576	-0.270	0.816	1.572	-3.936	0.1598375	3.514	Up
4	1990	3.514	-2.576	-0.270	0.816	1.572	0.1616300	0.712	Up
5	1990	0.712	3.514	-2.576	-0.270	0.816	0.1537280	1.178	Up
6	1990	1.178	0.712	3.514	-2.576	-0.270	0.1544440	-1.372	Down

Warm Up: Logistic Regression

Confusion Matrix for our model:

What is the overall error rate for our model's

*More about error later!

predictions?

Generative Models

- Logistic Regression directly models Pr(Y = k | X = x)
 - i.e., we model the conditional distribution of Y given the predictor(s) X
- Alternatively, we can model the distribution of predictors, X, separately for each response class. Then use Bayes Theorem to flip them into estimates for Pr(Y = k | X = x)

Generative Models

Why bother?

- When there is substantial separation between the two classes, Logistic Regression parameter estimates are unstable
- If the distribution of the predictors is approximately normal in each class and the sample size is small Generative Models will tend to outperform Logistic Models
- Generative Models extend to more than two classes much more seamlessly

Generative Models

Bayes Theorem

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

- π_k is the **prior probability** that a randomly chosen observation come from the kth class
- $f_k(X) \equiv \Pr(X|Y=k)$ is the **density function** of X for an observation that comes from the kth class
- $\Pr(Y = k | X = x)$ is the **posterior probability**, i.e. the probability that an observation belongs to the kth class given the predictor value (x) for the observation

Easy to estimate! How?

Generative Models

Bayes Theorem

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

- \star π_k is the *prior probability* that a randomly chosen observation come from the kth class
- $f_k(X) \equiv \Pr(X|Y=k)$ is the **density function** of X for an observation that comes from the kth class
- $\Pr(Y = k | X = x)$ is the **posterior probability**, i.e. the probability that an observation belongs to the kth class given the predictor value (x) for the observation

Bayes Theorem

 $\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$

Easy to estimate! How?

Generative Models

Hard to estimate, many options

- \star π_k is the **prior probability** that a randomly chosen observation come from the kth class
- $f_k(X) \equiv \Pr(X|Y=k)$ is the **density function** of X for an observation that comes from the kth class
- $\Pr(Y = k | X = x)$ is the **posterior probability**, i.e. the probability that an observation belongs to the kth class given the predictor value (x) for the observation

Easy to estimate! How?

Generative Models

Hard to estimate,
many options
If we had the
perfect f,
then we'd have a
Bayes classifier

Bayes Theorem

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^{K} \pi_l f_l(x)}$$

- \star π_k is the **prior probability** that a randomly chosen observation come from the kth class
- $f_k(X) \equiv \Pr(X|Y=k)$ is the **density function** of X for an observation that comes from the kth class
- $\Pr(Y = k | X = x)$ is the **posterior probability**, i.e. the probability that an observation belongs to the kth class given the predictor value (x) for the observation

For generative models, we need to estimate $f_k(x)$ to plug into $\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$

Linear Discriminant Analysis (LDA) with one predictor (p=1) Assumption 1:

• $f_k(x)$ is normal or Gaussian

• Then,
$$f_k(x) = \frac{1}{\sqrt{2\pi_k \sigma_k}} * e^{\left(\frac{-1}{2\sigma_k^2}(x - \mu_k)^2\right)}$$

where μ_k and σ_k^2 are the mean and variance of the kth class

For generative models, we need to estimate $f_k(x)$ to plug into $\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$

Linear Discriminant Analysis (LDA) with one predictor (p=1) Assumption 2:

• classes have equal variance, i.e.

•
$$\sigma_1^2 = ... = \sigma_k^2$$

So we can use one variance term, σ^2

For generative models, we need to estimate $f_k(x)$ to plug into $\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$

Linear Discriminant Analysis (LDA) with one predictor (p=1)

Assumption 2:

• classes have equal variance, i.e.

•
$$\sigma_1^2 = \dots = \sigma_k^2$$

So we can use one variance term, σ^2

For generative models, we need to estimate $f_k(x)$ to plug into $\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$

Linear Discriminant Analysis (LDA) with one predictor (p=1) **Assumption 2**:

• classes have equal variance, i.e.

•
$$\sigma_1^2 = ... = \sigma_k^2$$

So we can use one variance term,

$$\sigma^2$$

Then,

$$p_k(x) = \frac{\Pr(Y = k) * \frac{1}{\sqrt{2\pi_k \sigma_k}} * e^{-\frac{1}{2\sigma_k^2} * (x - \mu_k)^2}}{\sum_{i \in K} \Pr(Y = i) * \frac{1}{\sqrt{2\pi_i \sigma_i}} * e^{-\frac{1}{2\sigma_i^2} * (x - \mu_i)^2}}$$

For generative models, we need to estimate $f_k(x)$ to plug into $\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$

Linear Discriminant Analysis (LDA) with one predictor (p=1) **Assumption 2**:

• classes have equal variance, i.e.

•
$$\sigma_1^2 = ... = \sigma_k^2$$

So we can use one variance term,

$$\sigma^2$$

Then,

$$\Pr(Y = k) * \frac{1}{\sqrt{2\pi_k \sigma_k}} * e^{-\frac{1}{2\sigma_k^2} * (x - \mu_k)^2}$$

$$p_k(x) = \sum_{i \in K} \Pr(Y = i) * \frac{1}{\sqrt{2\pi_i \sigma_i}} * e^{-\frac{1}{2\sigma_i^2} * (x - \mu_i)^2}$$

For our purposes, this is a constant

For generative models, we need to estimate $f_k(x)$ to plug into $\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$

$$p_{k}(x) = \frac{1}{\sqrt{2\pi_{k}\sigma_{k}}} * e^{-\frac{1}{2\sigma_{k}^{2}}*(x-\mu_{k})^{2}}$$

$$\sum_{i \in K} \Pr(Y = i) * \frac{1}{\sqrt{2\pi_{i}\sigma_{i}}} * e^{-\frac{1}{2\sigma_{i}^{2}}*(x-\mu_{i})^{2}}$$

For our purposes, this is a constant

So we really just need to maximize:

$$\Pr(Y = k) * \frac{1}{\sqrt{2\pi_k \sigma_k}} * e^{-\frac{1}{2\sigma_k^2} * (x - \mu_k)^2}$$

So we really just need to maximize:

$$\Pr(Y = k) * \frac{1}{\sqrt{2\pi_k \sigma_k}} * e^{-\frac{1}{2\sigma_k^2} * (x - \mu_k)^2}$$

$$\delta_k(x) = x * \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\Pr(Y = k))$$

This is called a *discriminant function* of x

Bayes' Decision Boundary at x=0

$$\mu_1 = -1.25$$

$$\mu_2 = 1.25$$

$$\mu_2 = 1.25$$

$$\sigma_1^2 = \sigma_2^2 = 1$$

$$\Pr(Y=1) = 0.5$$

$$Pr(Y = 1) = 0.5$$

 $Pr(Y = 2) = 0.5$

LDA Decision Boundary

$$\mu_1 = -1.25$$

$$\mu_2 = 1.25$$

$$\sigma_1^2 = \sigma_2^2 = 1$$

$$\Pr(Y=1) = 0.5$$

$$\Pr(Y=2) = 0.5$$

The decision boundary is where $\delta_1(x) = \delta_2(x)$

x values to the left of the boundary are assigned to green, and to the right are assigned to purple

Estimating parameters

• In practice, we don't know the actual values for the parameters, so we have to estimate them

• The LDA method uses the following estimate:

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k}^{\infty} x_i$$

(the average of all the training examples from class k)

Estimating parameters

 In practice, we don't know the actual values for the parameters, so we have to estimate them

• The LDA method uses the following estimate:

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k}^{\infty} x_i$$

(the average of all the training examples from class k)

Using that mean estimate, we then get:

$$\hat{\sigma} = \frac{1}{n - K} \sum_{K} \sum_{i: y_i = k}^{J} (x_i - \hat{\mu}_k)^2$$

(weighted average of the sample variances of each class)

Estimating parameters

 In practice, we don't know the actual values for the parameters, so we have to estimate them

• The LDA method uses the following estimate:

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k}^{\infty} x_i$$

(the average of all the training examples from class k)

Using that mean estimate, we then get:

$$\hat{\sigma} = \frac{1}{n - K} \sum_{K} \sum_{i: y_i = k}^{J} (x_i - \hat{\mu}_k)^2$$

(weighted average of the sample variances of each class)

• And remember, we estimate $\hat{\pi}_k = \frac{n_k}{n}$

LDA uses all of those estimates to get the discriminant function, and assigns an observation to the class for which the function is largest.

$$\delta_k(x) = x * \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\Pr(Y = k))$$

$$\delta_k(x) = x * \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

The linear in LDA comes form the fact that this function is linear in x

LDA on one predictor makes 2 assumptions:

- Observations within class are normally distributed
- All classes have common variance

What do you think we need to change to work with **multiple** predictors?

LDA on one predictor makes 2 assumptions:

- Observations within class are normally distributed
- All classes have common variance

What do you think we need to change to work with **multiple** predictors?

LDA on *multiple predictors*

• Assume observations within class are *multivariate normally* distributed

LDA on multiple predictors

- Assume observations within class are *multivariate normally* distributed
 - What happens to the mean?

 μ_k : $scalar \rightarrow vector$ (with p components)

• What happens to the variance?

 σ^2 : $scalar \rightarrow \Sigma$: matrix (p x p covariance matrix of X)

LDA on one predictor makes 2 assumptions:

- Observations within class are normally distributed
- All classes have common variance

LDA on *multiple predictors*

• Assume observations within class are *multivariate normally* distributed

What happens to the mean?

 μ_k : $scalar \rightarrow vector$ (with p components)

• What happens to the variance?

 σ^2 : $scalar \rightarrow \Sigma$: matrix (p x p covariance matrix of X)

Assume equal for all classes, K

LDA on multiple predictors

- Assume observations within class are *multivariate normally* distributed
 - What happens to the mean?

$$\mu_k$$
: $scalar \rightarrow vector$ (with p components)

What happens to the variance?

$$\sigma^2$$
: $scalar \rightarrow \Sigma$: $matrix$ (p x p covariance matrix of X)

• Plugging in, we get the matrix version of our previous equation:

$$\delta_k(x) = x^T * \frac{\hat{\mu}_k}{\Sigma} - \frac{\hat{\mu}_k^T \hat{\mu}_k}{2\Sigma} + \log(\hat{\pi}_k)$$

Confusion matrix on training data

Classification Error

		True default status		
		No	Yes	Total
Predicted	No	9644	252	9896
$default\ status$	Yes	23	81	104
	Total	9667	333	10000

What is the overall error rate? Does that seem good or bod?

Hint: Think about the error rate you'd get just from saying no one defaults.

Confusion matrix on training data

Classification Error

		True default status			
		No	Yes	Total	
Predicted	No	9644	252	9896	
$default\ status$	Yes	23	81	104	
1917426619300494947771144	Total	9667	333	10000	

There are two types (or categories) of error here. What are they?

Confusion matrix on training data

False Negative

Classification Error

		True	default	t status
		No	Yes	Total
Predicted	No	9644	252	9896
$default\ status$	Yes	_ 23	81	104
	Total	9667	333	10000

False Positive

Does the model perform equally well within each error type?

Confusion matrix on training data

False Negative

Classification Error

		True	default	t status
		No	Yes	Total
Predicted	No	9644	252	9896
$default\ status$	Yes	_ 23	81	104
	Total	9667	333	10000

False Positive

- *sensitivity* refers to the percent of true positives
- *specificity* refers to the percent of true negatives

What is the sensitivity and specificity of our model?

Confusion matrix on training data

False Negative

Classification Error

a		True	default	t status
		No	Yes	Total
Predicted	No	9644	252	9896
$default\ status$	Yes	23	81	104
	Total	9667	333	10000

False Positive

- *sensitivity* refers to the percent of true positives
- *specificity* refers to the percent of true negatives

How could we make our model more sensitive? Ideas?

Classification Error

Increasing sensitivity of LDA

- Remember this?
 - Pr(Y = k | X = x) is the **posterior probability**, i.e. the probability that an observation belongs to the kth class given the predictor value (x) for the observation
- Bayes Classifiers use a posterior probability of 0.5 (for two classes)
 - In the Default example we assign an observation to default if $\Pr(default = Yes \mid X = x) > 0.5$
- However, we can lower this threshold!
 - Ex. we can assign an observation to default if $Pr(default = Yes \mid X = x) > 0.2$

LDA on Default data with new posterior probability

Confusion matrix on training data

Classification Error

		True	True default status			
		No	Yes	Total		
Predicted	No	9432	138	9570		
default status	Yes	235	195	430		
	Total	9667	333	10000		

Is this better?

Classification Error

Tradeoff when modifying posterior probability

- Black solid line = overall error
- Blue dashed line = False negatives
- Orange dotted line = False positives

ROC Curve

AUC (Area Under the ROC Curve)

- The overall performance of a classifier summarized over all possible thresholds is the AUC
- Maximum is 1, so numbers closer to that are better
- Useful way to compare difference classifiers

		True	class	
		- or Null	+ or Non-null	Total
Predicted	- or Null	True Neg. (TN)	False Neg. (FN)	N*
class	+ or Non-null	False Pos. (FP)	True Pos. (TP)	P^*
	Total	N	P	

Error Terms

		True	class	
		- or Null	+ or Non-null	Total
Predicted	- or Null	True Neg. (TN)	False Neg. (FN)	N*
class	+ or Non-null	False Pos. (FP)	True Pos. (TP)	P^*
	Total	N	P	

Error Terms

Consider our confusion matrix from our logistic model. What is a false positive? What is a false negative? What are the false positive and false negative rates? What are the sensitivity and specificity of the model?

