

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 885 614 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

23.12.1998 Patentblatt 1998/52

(51) Int. Cl.⁶: A61K 39/395

(21) Anmeldenummer: 98110972.1

(22) Anmelddatum: 16.06.1998

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 17.06.1997 DE 19725586

(71) Anmelder:

GSF-Forschungszentrum für Umwelt und
Gesundheit, GmbH
85764 Oberschleissheim (DE)

(72) Erfinder:

- Lindhofer, Horst, Dr.
82194 Gröbenzell (DE)
- Kolb, Hans-Jochem, Prof. Dr.
80804 München (DE)
- Zeldler, Reinhard, Dr.
81249 München (DE)
- Bornkamm, Georg, Prof. Dr.
81243 München (DE)

(74) Vertreter:

Reinhard - Skuhra - Weise & Partner
Postfach 44 01 51
80750 München (DE)

(54) **Verfahren zur ex vivo-Immunisierung mittels heterologer intakter bispezifischer und/oder trispezifischer Antikörper**

(57) Erfindungsgemäß wird ein Verfahren zur ex vivo-Immunisierung von Mensch und Tier mit den nachfolgenden Schritten beschrieben:

- a) Isolierung autologer Tumorzellen;
- b) Behandeln der Tumorzellen, um ihr Überleben nach Reinfusion zu verhindern;
- c) Inkubation der so behandelten Tumorzellen mit intakten heterologen bispezifischen und/oder trispezifischen Antikörpern, die die nachfolgenden Eigenschaften aufweisen:

- α - Binden an eine T-Zelle;
- β - Binden an zumindest ein Antigen auf einer Tumorzelle;
- γ - Binden durch ihren Fc-Teil (bei bispezifischen Antikörpern) oder durch eine dritte Spezifität (bei trispezifischen Antikörpern) an Fc-Rezeptor positive Zellen.

EP 0 885 614 A2

Beschreibung

Die Erfindung betrifft ein Verfahren zur ex vivo-Immunisierung mittels heterologer, intakter bispezifischer und/oder trispezifischer Antikörper sowie Verwendungen der Produkte dieses Verfahrens zur Prophylaxe und Therapie von Tumorerkrankungen, insbesondere zur Induktion einer Tumorimmunität.

Maligne Erkrankungen des Menschen, beispielsweise Brustkrebs im fortgeschrittenen Stadium, haben trotz der Fortschritte der Chemo- und Radiotherapie in den letzten Jahren noch immer eine äußerst ungünstige Prognose. Eine Heilung dieser Erkrankungen ist in der Regel nicht möglich. Es ist daher notwendig, neue Behandlungsstrategien zu entwickeln. Große Hoffnungen werden dabei auf immuntherapeutische Ansätze gesetzt, mittels derer das Immunsystem des Patienten dazu gebracht werden soll, den Tumor abzustoßen. Es ist bekannt, daß auf Tumorzellen tumorassoziierte Antigene vorkommen und daß das Immunsystem prinzipiell durchaus in der Lage ist, diese zu erkennen und die malignen Zellen anzugreifen. Tumoren haben jedoch verschiedene Strategien entwickelt, die es ihnen erlauben, sich der Immunantwort zu entziehen. Dies gelingt ihnen z.B. durch ungenügende Präsentation von tumorassoziierten Antigenen und/oder durch unzureichende Aktivierung der in der Regel vorhandenen tumorspezifischen T-Zellen.

Bei etwa 43.000 Neuerkrankungen / Jahr steht Brustkrebs an der Spitze der Krebsstatistik für Frauen in Deutschland. Weniger als ein Drittel der Frauen mit Lymphknotenbefall bei Diagnose leben 10 Jahre ohne Rückfall.

Immuntherapeutische Ansätze beim Mamma-Karzinom beschränkten sich bisher auf Methoden zur unspezifischen Stimulation wie die Behandlung mit BCG oder Levamisol, sowie den Einsatz von LAK- und NK-Zellen mit IL-2 (3, 4). Eine Lebensverlängerung konnte mit bisher eingesetzten Formen von Immuntherapie nicht nachgewiesen werden, die Behandlung mit BCG war sogar eher nachteilig (3). Nachdem unspezifische Aktivierungen von Zellen auch bei anderen Tumortypen wenig Erfolg gehabt haben, sollte nun versucht werden, eine spezifische Immunreaktion in Gang zu bringen.

Für die Tumorthерапie wurden beispielsweise T-Zell-redirigierende bispezifische Antikörper verwendet. Diese binden mit einem Bindungsarm an einen T-Zell-Rezeptorkomplex und mit dem zweiten Bindungsarm an ein tumorassoziiertes Antigen auf einer Tumorzelle. Durch die daraus resultierende Aktivierung der T-Zelle und der räumlichen Nähe der Tumorzelle wird letztere durch Apoptose-Induktion bzw. Zytokine wie TNF- α oder Perforin zerstört.

Die im Stand der Technik zur Tumorthерапie verwendeten bispezifischen Antikörper wurden direkt in die Patienten infundiert. Diese Vorgehensweise weist mehrere Nachteile auf:

- Es sind hohe Antikörper-Dosen notwendig;
- es können gravierende Nebenwirkungen auftreten;
- durch den Tumorbindingssarm können die Antikörper bei in vivo-Applikation auch an Normalgewebe binden.

Es ist eine Aufgabe der vorliegenden Erfindung, ein neues Verfahren bereitzustellen, um maligne Erkrankungen des Menschen, insbesondere mit dem Ziel einer Tumorimmunität, zu therapieren.

Diese Aufgabe wird erfindungsgemäß durch das im Anspruch 1 näher gekennzeichnete Verfahren gelöst. Bevorzugte Ausgestaltungen des Verfahrens ergeben sich auch aus den Unteransprüchen.

Weitere Ansprüche betreffen die Verwendung des erfindungsgemäß bereitgestellten Tumorzellpräparats zur Prophylaxe und Therapie von Tumorerkrankungen, insbesondere zur Erreichung einer Tumorimmunität, besonders bevorzugt einer Langzeit-Immunität.

Das Endprodukt des erfindungsgemäßen Verfahrens ist eine pharmazeutische Zubereitung, die Tumorzellen und Antikörper enthält. Diese Tumorzellzubereitung wird erfindungsgemäß zur Prophylaxe und Behandlung von Tumorerkrankungen eingesetzt, um eine Tumorimmunität, bevorzugt eine Langzeit-Tumorimmunität, zu erreichen.

Erfindungsgemäß werden autologe Tumorzellen mit heterologen bispezifischen und/oder trispezifischen Antikörpern behandelt, und die so erhaltene Tumorzellzusammensetzung wird in den Patienten oder in Tiere, aus denen die autologen Tumorzellen isoliert wurden, reinfundiert.

Die erfindungsgemäß durchgeführten Versuche, insbesondere das hier beschriebene Beispiel 2, zeigen, daß eine langanhaltende Tumorimmunität erreichbar ist. Die in Mäusen durchgeführten Untersuchungen und die derart erhaltenen Ergebnisse können auch auf Menschen übertragen werden. Es ist davon auszugehen, daß eine mehrjährige und damit eine langandauernde Tumorimmunität durch das erfindungsgemäße Verfahren erreichbar ist.

Erfindungsgemäß versteht man unter einer Tumorzelle jede Zelle, die durch eine oder mehrere Mutationen ihre normale Funktion verloren oder verändert hat und sich unkontrolliert vermehren kann.

Die erfindungsgemäß erreichbare Tumorimmunität ist dadurch gekennzeichnet, daß in einem Organismus das körpereigene Immunsystem gegen den autologen Tumor derart aktiviert wird, daß es zu einer dauerhaften Zerstörung und/oder Kontrolle des autologen Tumors kommt.

Erfindungsgemäß ist jede Art von Tumoren behandelbar, die unter die oben angegebene Definition fällt. Insbesondere therapierbar sind epitheliale Tumore, Adenokarzinome, Kolonkarzinome, Mammakarzinome, Ovarialkarzinome, Lungenkarzinome und Hals-, Nasen- und/oder Ohrentumore. Weiterhin behandelbar sind nicht-epitheliale Tumoren wie Leukämien und Lym-

phome. Weiterhin therapiert sind virusinduzierte Tumoren, beispielsweise Lebertumore oder Cervixkarzinome.

Mit dem erfindungsgemäßen Verfahren werden Tumorzellpräparate erhalten, die in Form pharmazeutischer Zubereitungen wieder an den Patienten verabreicht werden.

Erfindungsgemäß werden heterologe intakte bispezifische und/oder trispezifische Antikörper verwendet. Diese werden ex vivo mit zuvor aus einem Patienten entnommenen Tumorzellen (autologe Tumorzellen) in Kontakt gebracht. Um ein Überleben der Tumorzellen nach Reinfusion zu verhindern, wurden die Tumorzellen vor dem Inkontaktbringen mit den Antikörpern in an sich bekannter Weise behandelt, beispielsweise durch Bestrahlung. Die Tumorzellen werden nach Bestrahlung mit den intakten heterologen bispezifischen und/oder trispezifischen Antikörpern inkubiert. Erfindungsgemäß sind nicht beliebige Antikörper verwendbar, sondern diese müssen intakt sein, d.h. sie müssen einen funktionalen Fc-Teil besitzen, und sie müssen heterologer Natur sein, d.h. die Antikörper sind dann aus schweren Immunglobulinketten unterschiedlicher Subklassen (-Kombinationen, auch Fragmente) und/oder Herkunft (Spezies) zusammengesetzt.

Diese intakten heterologen bispezifischen und/oder trispezifischen Antikörper werden so ausgewählt, daß sie weiterhin die nachfolgenden Eigenschaften aufweisen:

- α - Binden an eine T-Zelle;
- β - Binden an zumindest ein Antigen auf einer Tumorzeile;
- γ - Binden durch ihren Fc-Teil (bei bispezifischen Antikörpern) oder durch eine dritte Spezifität (bei trispezifischen Antikörpern) an Fc-Rezeptor positive Zellen.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden bispezifische und/oder trispezifische Antikörper eingesetzt, die in der Lage sind, die Fc-Rezeptor-positive Zelle zu aktivieren. Hierdurch wird die Expression von Cytokinen und/oder co-stimulatorischen Antigenen initiiert oder erhöht.

Bei den trispezifischen Antikörpern erfolgt die Bindung an die Fc-Rezeptor positiven Zellen bevorzugt beispielsweise über den Fc-Rezeptor von Fc-Rezeptor positiven Zellen oder auch über andere Antigene auf Fc-Rezeptor positiven Zellen (Antigen-präsentierenden Zellen), wie z.B. den Mannose-Rezeptor.

Nur durch das erfindungsgemäße Verfahren und den Einsatz der hier beschriebenen Antikörper ist gewährleistet, daß nach Reinfusion der Antikörper in den Patienten, aus dem die Tumorzellen zuvor entnommen wurden, eine Tumorimmunität aufgebaut wird. Die Reinfusion erfolgt bevorzugt in einen Patienten nach der Behandlung des Primärtumors, bevorzugt bei Patienten in einer minimal residual disease (MRD)-Situation. Bei

Patienten mit wenig verbliebenen Tumorzellen, bei denen allerdings die Gefahr eines Rezidivs hoch sein kann, wird das erfindungsgemäß bereitgestellte Verfahren besonders erfolgreich anwendbar sein.

5 Durch das erfindungsgemäße Verfahren können die aus dem Stand der Technik bekannten und oben näher beschriebenen Nachteile vermieden werden.

10 Die erfindungsgemäß verwendbaren heterologen bispezifischen und/oder trispezifischen Antikörper sind zum Teil an sich bekannt, zum Teil werden sie aber auch in der vorstehenden Anmeldung zum ersten Mal beschrieben. Ein Beispiel für einen bsAk ist der Antikörper anti-CD3 X anti-epcam, der bei epithelialen Tumoren wie dem Mammacarcinom eingesetzt wird.

15 Erfindungsgemäß werden zwei Verfahrens-Varianten unterschieden:

1. Kurzzeitinkubation, und
2. Langzeitinkubation

20 Bei der Kurzzeitinkubation werden die autologen Tumorzellen mit den intakten heterologen bispezifischen und/oder trispezifischen Antikörpern für einen Zeitraum von 10 Minuten bis 5 Stunden oder 10 Minuten bis 3 Stunden oder weiterhin bevorzugt für einen Zeitraum von ca. 15 Minuten bis 2 Stunden, weiterhin bevorzugt für einen Zeitraum von 15 Minuten bis 1 Stunde, inkubiert. Die dann mit den Antikörpern beladenen Tumorzellen werden dann zur Reinfusion vorbereitet.

25 Bei der Langzeitinkubation werden die autologen Tumorzellen ebenfalls für einen Zeitraum von ca. 10 Minuten bis 5 Stunden, bevorzugt für einen Zeitraum von 15 Minuten bis 2 Stunden und weiterhin bevorzugt für einen Zeitraum von 15 Minuten bis 1 Stunde, inkubiert, so daß die autologen Tumorzellen mit den Antikörpern beladen werden. Anschließend werden hierzu Blutzellen des Patienten, bevorzugt mononukleäre Zellen aus dem peripheren Blut (PBMC = peripheral blood mononucleated cells), zugegeben, und diese Mischung wird dann über einen längeren Zeitraum, beispielsweise 1 bis 14 Tage lang, bevorzugt 3 bis 10 Tage und weiterhin bevorzugt 6 bis 10 Tage, inkubiert. Alternativ hierzu können in einer weiteren Verfahrensführung die autologen Tumorzellen unmittelbar mit den bispezifischen und/oder trispezifischen Antikörpern und mit den Blutzellen des Patienten, bevorzugt den mononukleären Zellen aus dem peripheren Blut, in Kontakt gebracht werden. Hierdurch wird eine Vielzahl von Immunzellen bereits ex vivo gegen den Tumor "geprämt". Anschließend werden diese in den Patienten reinfundiert. Durch die Langzeitinkubation wird auch eine Internalisierung der Antikörper und ihr Abbau erreicht.

30 40 45 50 55 Erste in vitro-Ergebnisse zeigen, daß durch derartig vorbehandelte Immunzellen Tumorzellen ohne weitere Zugabe von bispezifischen und/oder trispezifischen Antikörpern zerstört werden können (vgl. Beispiel 1). Sowohl bei der Kurzzeitinkubation als auch bei der

Langzeitinkubation werden T-Zellen an die Tumorzellen mittels der an den Tumorzellen immobilisierten intakten bispezifischen und/oder trispezifischen Antikörper redirigiert; gleichzeitig findet eine Bindung von Fc-Rezeptor positiven Zellen an den Fc-Teil des bispezifischen und/oder trispezifischen Antikörpers nach Reinfusion statt. Dabei werden die Fc-Rezeptor positiven Zellen durch Bindung an die Fc-Teile von (an der T-Zelle bzw. Tumorzelle)immobilisierten intakten bispezifischen Antikörpern aktiviert.

Zur Verbesserung des Immunisierungserfolges können die entweder nach dem Kurzzeit-Inkubationsverfahren oder nach dem Langzeit-Inkubationsverfahren mit den Antikörpern behandelten Tumorzellen nicht nur einmal an den Patienten appliziert, sondern wahlweise auch mehrfach verabreicht werden.

Auf der Tumorzelle erfolgt eine Hochregulation von MHC 1, sowie eine Aktivierung der intrazellulären Prozessierungsmaschinerie (Proteasom-Komplex) aufgrund der Freisetzung von Zytokinen (wie z.B. INF- γ und TNF- α) in unmittelbarer Nachbarschaft der Tumorzelle. Die Zytokine werden aufgrund bispezifischer Antikörpervermittelter Aktivierung von T-Zellen und akzessorischen Zellen freigesetzt (siehe Abb. 1 und 3). D.h. durch den intakten bsAk werden nicht nur Tumorzellen zerstört oder phagozytiert, sondern indirekt auch deren Tumormmunität erhöht.

Die Aktivierung der Fc-Rezeptor positiven Zelle durch den bsAk ist von der Subklasse bzw. der Subklassenkombination des bsAk abhängig. Wie in in vitro-Versuchen nachgewiesen werden konnte, sind beispielsweise bsAk der Subklassenkombination Maus-IgG2a/-Ratte-IgG2b in der Lage, an Fc-Rezeptor positive Zellen zu binden und diese gleichzeitig zu aktivieren, was zur Hochregulation bzw. Neuausbildung (Expression) von kostimulatorischen Antigenen, wie z.B. CD40, CD80 oder CD86, auf der Zelloberfläche dieser Zellen führt. Dagegen sind bsAk der Subklassenkombination Maus-IgG1/IgG2b zwar in der Lage an Fc-Rezeptor positive Zellen zu binden (1), können diese aber offenbar nicht in vergleichbarem Maße aktivieren (2).

Während der intakte bsAk die T-Zelle mit einem Bindungsarm (z.B. an CD3 oder CD2) bindet und gleichzeitig aktiviert, können kostimulatorische Signale von der, an den Fc-Teil des bsAk gebundenen Fc-Rezeptor positiven Zelle, an die T-Zelle übermittelt werden. D.h. erst die Kombination von Aktivierung der T-Zelle über einen Bindungsarm des bsAk und der gleichzeitigen Übertragung von kostimulatorischen Signalen von der Fc-Rezeptor positiven Zelle auf die T-Zelle, führt zu einer effizienten T-Zellaktivierung (Abb. 1A). Tumorspezifische T-Zellen, die an der Tumorzelle ungenügend aktiviert wurden und anergisch sind, können nach der erfindungsgemäßen ex vivo-Vorbehandlung ebenfalls reaktiviert werden (Abb. 1B).

Ein weiterer wichtiger Aspekt bei der Induktion einer Tumormmunität ist die mögliche Phagozytose,

Prozessierung und Präsentation von Tumorebestandteilen durch die vom bsAk herangeführten und aktivierten akzessorischen Zellen (Monozyten/Makrophagen, dendritische Zellen und NK-"Natural Killer"-Zellen).

- 5 Durch diesen klassischen Mechanismus der Präsentation von Antigenen können sowohl tumorspezifische CD4- wie auch CD8-positive Zellen generiert werden. Tumorspezifische CD4-Zellen spielen darüber hinaus eine wichtige Rolle für die Induktion einer humoralen Immunantwort im Zusammenhang mit der T-B-Zell Kooperation.

Bispezifische und trispezifische Antikörper können mit einem Bindungsarm an den T-Zellrezeptor-Komplex der T-Zelle, mit dem zweiten Bindungsarm an tumorspezifische Antigene auf der Tumorzelle binden. Sie aktivieren dabei T-Zellen, die durch Freisetzung von Zytokinen oder Apoptose-vermittelnde Mechanismen die Tumorzellen zerstören. Darüber hinaus besteht offenbar die Möglichkeit, daß T-Zellen im Rahmen der

- 15 Aktivierung mit bispezifischen Antikörpern tumorspezifische Antigene über ihren Rezeptor erkennen und dadurch eine dauerhafte Immunisierung eingeleitet wird (Abb. 1B). Von besonderer Bedeutung ist dabei der intakte Fc-Teil des bispezifischen oder trispezifischen
- 20 Antikörpers, der die Bindung an akzessorische Zellen wie z.B. Monozyten/Makrophagen und dendritische Zellen vermittelt und diese veranlaßt selbst zytotoxisch zu werden und/oder gleichzeitig wichtige kostimulatorische Signale an die T-Zelle weiterzugeben (Abb. 1). Auf diese Weise kann offensichtlich eine T-Zellantwort u.U. auch gegen bislang unbekannte, tumorspezifische Peptide induziert werden.

Durch Redirektion von u.U. anergisierten, tumorspezifischen T-Zellen an Tumorzellen mittels bispezifischer und/oder trispezifischer Antikörper bei

- 35 gleichzeitiger Kostimulation derartiger T-Zellen durch akzessorische Zellen welche an den Fc-Teil des bispezifischen oder trispezifischen Antikörpers binden, könnte die Anergie von zytotoxischen T-Zellen (CTLs) aufgehoben werden. D.h. eine im Patienten gegen den Tumor existierende T-Zell-Toleranz kann mittels intakter heterologer bispezifischer und/oder trispezifischer Antikörper gebrochen und damit eine dauerhafte Tumormmunität induziert werden.

- 40 45 Für den letzten Punkt gibt es erste in vivo-Daten aus Mausversuchen, die auf eine derartige dauerhafte Tumormmunität nach Behandlung mit einem syngenen Tumor und intakten bsAk hinweisen. In diesen Versuchen überlebten insgesamt 14 von 14 Tieren, die nach einer ersten Tumordinjektion erfolgreich mit bsAk behandelt werden konnten, eine weitere Tumordinjektion 144 Tage nach der ersten Tumordinjektion - ohne eine erneute Gabe von bsAk (siehe Beispiel 2).

- 50 55 Weitere Vorteile bei der ex vivo-Immunisierung mittels bispezifischer und/oder trispezifischer Antikörper sind (i) die Minimierung von möglichen Nebenwirkungen (ii) die kontrollierte Bindung des Tumorbundungsarms an die Tumorzelle außerhalb des Körpers und (iii)

ein möglichst geringer Verbrauch von bispezifischen und trispezifischen Antikörpern. Dabei sind grundsätzlich zwei Vorgehensweisen möglich, die unten im einzelnen erläutert werden. Ein wichtiger Aspekt bei der Langzeitinkubation ist, daß der eingesetzte bispezifische oder trispezifische Antikörper innerhalb der projektierten Inkubationszeit verbraucht und abgebaut wird. Damit würde für eine derartige Immunisierung die langwierige Arzneimittelanmeldung entfallen.

Die Tumorzellen werden mit den Antikörpern beim Kurzzeit- und beim Langzeit-Inkubationsverfahren über einen Zeitraum von 10 Minuten bis 5 Stunden, bevorzugt bis 3 Stunden, weiterhin bevorzugt bis 2 Stunden und noch weiter bevorzugt 15 Minuten bis 1 Stunde lang inkubiert. Die Inkubation erfolgt bevorzugt bei einer Temperatur von 4°C bis 25°C, insbesondere bevorzugt bei 4°C bis 10°C. Die Inkubation wird bevorzugt in steriler Umgebung in gepufferter Kochsalzlösung bei einem neutralen pH-Wert durchgeführt. Bei der Kurzzeit-Inkubation erfolgt anschließend unmittelbar die Reinfusion in den Patienten. Beim Langzeit-Inkubationsverfahren werden nach dieser Vorinkubation die mononukleären Zellen aus dem peripheren Blut zugegeben und zusammen mit den bereits vorinkubierten Tumorzellen/Antikörpern für einen weiteren Zeitraum von 1 bis 14 Tagen, bevorzugter 3 bis 10 Tagen, weiterhin bevorzugt 6 bis 10 Tagen, inkubiert. Diese Inkubation erfolgt bevorzugt bei 37°C unter sterilen Bedingungen und unter GMP-Bedingungen (Good Manufacturing Production = GMP) in einem Brutschrank. Wie weiter oben bereits beschrieben, können bei der Langzeit-Inkubation die Blutzellen auch zusammen mit den Tumorzellen und den Antikörpern unter geeigneten Bedingungen inkubiert werden.

Die obengenannten Inkubationsbedingungen sind nur beispielhaft zu verstehen. In Abhängigkeit von den Tumorzellen und den verwendeten Antikörpern können auch andere Zeiträume, Temperaturbedingungen etc., allgemein andere Inkubationsbedingungen, gewählt werden. Der Fachmann kann durch einfache Versuche diese Bedingungen festlegen.

Bei der Vorinkubation werden die Tumorzellen bevorzugt in einer Menge von 10^7 bis 10^9 Zellen, weiterhin bevorzugt in einer Menge von ca. 10^8 Zellen, verwendet. Die mononukleären Zellen aus dem peripheren Blut werden bevorzugt in einer Menge von ca. 10^8 bis 10^{10} Zellen zugegeben. Selbstverständlich ist es für den Fachmann auch möglich, andere Inkubationsbedingungen zu wählen, die durch Laborversuche ermittelt werden können (bspw. Änderungen in der Zellzahl und Inkubationsdauer).

Die eingesetzten autologen Tumorzellen werden, um nach Reinfusion ein weiteres Überleben der Tumorzellen zu verhindern, bspw. bestrahlt. Beispielsweise werden γ -Strahlen verwendet, die bspw. in einer Dosisstärke von 50 bis 100 Gy eingesetzt werden.

Die erfindungsgemäß eingesetzten Antikörper sind bevorzugt zur Reaktivierung von in Anergie befindlichen, tumorspezifischen T-Zellen befähigt. Weiterhin

sind sie zur Induktion von tumorreaktiven Komplement-bindenden Antikörpern und damit zur Induktion einer humoralen Immunantwort in der Lage.

Die Bindung erfolgt bevorzugt über CD3, CD2, CD4, CD5, CD6, CD8, CD28 und/oder CD44 an die T-Zelle. Die Fc-Rezeptor positiven Zellen weisen zumindest einen Fc γ -Rezeptor I, II oder III auf.

Erfundungsgemäß einsetzbare Antikörper sind zur Bindung an Monozyten, Makrophagen, dendritische Zellen, "Natural Killer"-Zellen (NK-Zellen) und/oder aktivierte neutrophile Zellen als Fc γ -Rezeptor 1 positive Zellen befähigt.

Die erfundungsgemäß einsetzbaren Antikörper bewirken, daß die Expression von CD40, CD80, CD86, ICAM-1 und/oder LFA-3 als kostimulatorische Antigene oder/und die Sekretion von Zytokinen durch die Fc-Rezeptor positive Zelle initiiert oder erhöht wird. Die Zytokine sind bevorzugt IL-1, IL-2, IL-4, IL-6, IL-8, IL-12 und/oder TNF- α .

Die Bindung an die T-Zelle erfolgt bevorzugt über den T-Zell-Rezeptor-Komplex der T-Zelle.

Die erfundungsgemäß einsetzbaren bispezifischen Antikörper sind bevorzugt:

- ein anti-CD3 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD4 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD5 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD6 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD8 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD2 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD28 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD44 X anti-Tumor-assoziiertes Antigen-Antikörper ist.

Die erfundungsgemäß einsetzbaren trispezifischen Antikörper sind bevorzugt:

- ein anti-CD3 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD4 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD5 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD6 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD8 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD2 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD28 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD44 X anti-Tumor-assoziiertes Antigen-Antikörper.

Die erfundungsgemäß einsetzbaren trispezifischen Antikörper weisen zumindest eine T-Zell-Bindungsarm, einen Tumorzell-Bindungsarm und einen an Fc-Rezeptor positive Zellen bindenden Bindungsarm auf. Dieser zuletzt genannte Bindungsarm kann ein anti-Fc-Rezeptor-Bindungsarm oder ein Mannose-Rezeptor-Bindungsarm sein.

Der bispezifische Antikörper ist bevorzugt ein heterologer intakter Ratte/Maus bispezifischer Antikörper.

Mit den erfundungsgemäß einsetzbaren bispezifischen und trispezifischen Antikörpern werden T-Zellen

aktiviert und gegen die Tumorzellen redirigiert. Bevorzugt einsetzbare heterologe intakte bispezifische Antikörper werden aus einer oder mehreren der nachfolgenden Isotyp-Kombinationen ausgewählt:

Ratte-IgG2b/Maus-IgG2a,

Ratte-IgG2b/Maus-IgG2b,

Ratte-IgG2b/Maus-IgG3,

Ratte-IgG2b/Human-IgG1,

Ratte-IgG2b/Human-IgG2,

Ratte-IgG2b/Human-IgG3[orientaler Allotyp G3m(st) = Bindung an Protein A],

Ratte-IgG2b/Human-IgG4,

Ratte-IgG2b/Ratte-IgG2c,

Maus-IgG2a/Human-IgG3[kaukasische Allotypen G3m(b+g) = keine Bindung an Protein A, im folgenden mit * gekennzeichnet]

Maus-IgG2a/Maus-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]

Maus-IgG2a/Ratte-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]

Maus-IgG2a/Human-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]

Maus-[VH-CH1,VL-CL]-Human-IgG1/Ratte-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]

Maus-[VH-CH1,VL-CL]-Human-IgG4/Ratte-[VH-CH1,VL-CL]-Human-IgG4-[Hinge]-Human-IgG4[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2: > AS-Position 251]-Human-IgG3*[CH3]

Ratte-IgG2b/Maus-[VH-CH1,VL-CL]-Human-IgG1-[Hinge-CH2-CH3]

Ratte-IgG2b/Maus-[VH-CH1,VL-CL]-Human-IgG2-[Hinge-CH2-CH3]

Ratte-IgG2b/Maus-[VH-CH1,VL-CL]-Human-IgG3-[Hinge-CH2-CH3, orientaler Allotyp]

Ratte-IgG2b/Maus-[VH-CH1,VL-CL]-Human-IgG4-[Hinge-CH2-CH3]

Human-IgG1/Human-[VH-CH1,VL-CL]-Human-

IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]

Human-IgG1/Ratte-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG4[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2 : > AS-Position 251]-Human-IgG3*[CH3]

Human-IgG1/Maus-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG4[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2 : > AS-Position 251]-Human-IgG3*[CH3]

Human-IgG1/Ratte-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG2[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2 : > AS-Position 251]-Human-IgG3*[CH3]

Human-IgG1/Maus-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG2[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2 : > AS-Position 251]-Human-IgG3*[CH3]

Human-IgG1/Ratte-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]

Human-IgG1/Maus-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]

Human-IgG2/Human-[VH-CH1,VL-CL]-Human-IgG2-[Hinge]-Human-IgG3*- [CH2-CH3]

Human-IgG4/Human-[VH-CH1,VL-CL]-Human-IgG4-[Hinge]-Human-IgG3*- [CH2-CH3]

Human-IgG4/Human-[VH-CH1,VL-CL]-Human-IgG4-[Hinge]-Human-IgG4[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2 : > AS-Position 251]-Human-IgG3*[CH3]

Maus-IgG2b/Ratte-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]

Maus-IgG2b/Human-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]

Maus-IgG2b/Maus-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]

Maus-[VH-CH1,VL-CL]-Human-IgG4/Ratte-[VH-CH1,VL-CL]-Human-IgG4-[Hinge]-Human-IgG4-[CH2]-Human-IgG3*- [CH3]

Human-IgG1/Ratte-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG4-[CH2]-Human-IgG3*[CH3]

Human-IgG1/Maus-[VH-CH1,VL-CL]-Human-IgG1-[Hinge]-Human-IgG4-[CH2]-Human-

IgG3^{*}[CH3]

Human-IgG4/Human[VH-CH1,VL-CL]-Human-IgG4-[Hinge]-Human-IgG4-[CH2]-HumanIgG3^{*}[CH3].

5

Die oben genannten Antikörper sind beispielhaft genannt. Diese und andere erfindungsgemäß einsetzbaren Antikörper können vom Fachmann anhand von speziellen Techniken hergestellt werden. Beispielsweise hierfür sind die Literaturstellen (7) bis (11) genannt.

Insbesondere Greenwood et. al. beschreiben die Möglichkeit, einzelne Immunglobulin-Domänen (z.B. CH2) durch geeignete Klonierungstechniken auszutauschen. Dadurch wird die Technik bereitgestellt, um neue Antikörpertypen herzustellen, wie beispielhaft in Anspruch 9 beschrieben, z.B.: human-(VH-CH1, VL-CL)-human IgG4-(hinge)-human IgG4 (N-terminale Region von CH2)-human IgG3^{*} (C-terminale Region von CH2:> Aminosäureposition 251)-human IgG3^{*} (CH3).

Die Kombination mit einem Antikörper: human IgG4 zur Herstellung des bispezifischen Antikörpers: human IgG4/human-(VH-CH1, VL-CL)-human IgG4-(hinge)-human IgG4 (N-terminale Region von CH2)-human IgG3^{*} (C-terminale Region von CH2:> Aminosäureposition 251)-human IgG3^{*} (CH3) wird durch einfache Zellfusion, wie in Lindhofer et al. (J. Immunol. 155:219, 1995) beschrieben, herbeigeführt.

Bei den erfindungsgemäß verwendbaren Antikörpern handelt es sich vorzugsweise um monoklonale, chimäre, rekombinante, synthetische, halbsynthetische oder chemisch modifizierte intakte Antikörper mit beispielsweise Fv-, Fab-, scFv- oder F(ab)₂-Fragmenten.

Bevorzugt werden Antikörper oder Derivate oder Fragmente vom Menschen verwendet oder solche, die derart verändert sind, daß sie sich für die Anwendung beim Menschen eignen (sogenannte "humanized antibodies") (siehe z.B. Shalaby et al., J. Exp. Med. 175 (1992), 217; Mocikat et al., Transplantation 57 (1994), 405).

Die Herstellung der verschiedenen oben genannten Antikörpertypen und -fragmente ist dem Fachmann geläufig. Die Herstellung monoklonaler Antikörper, die ihren Ursprung vorzugsweise in Säugetieren, z.B. Mensch, Ratte, Maus, Kaninchen oder Ziege, haben, kann mittels herkömmlicher Methoden erfolgen, wie sie z.B. in Köhler und Milstein (Nature 256 (1975), 495), in Harlow und Lane (Antibodies, A Laboratory Manual (1988), Cold Spring Harbor) oder in Galfré (Meth. Enzymol. 73 (1981), 3) beschrieben sind.

Ferner ist es möglich, die beschriebenen Antikörper mittels rekombinanter DNA-Technologie nach dem Fachmann geläufigen Techniken herzustellen (siehe Kurucz et al., J. Immunol. 154 (1995), 4576; Hollinger et al., Proc. Natl. Acad. Sc. USA 90 (1993), 6444).

Die Herstellung von Antikörpern mit zwei verschiedenen Spezifitäten, den sogenannten bispezifischen

Antikörpern, ist zum einen durch Anwendung rekombinanter DNA-Technologie möglich, aber auch durch die sogenannte Hybrid-Hybridoma-Fusionstechnik (siehe z.B. Milstein et al., Nature 305 (1983), 537). Hierbei werden Hybridomazelllinien, die Antikörper mit jeweils einer der gewünschten Spezifitäten produzieren, fusioniert und rekombinante Zelllinien identifiziert und isoliert, die Antikörper mit beiden Spezifitäten produzieren.

Das der Erfindung zugrunde liegende Problem kann sowohl durch bispezifische als auch trispezifische Antikörper gelöst werden, sofern sie die im Anspruch 1 gekennzeichneten Eigenschaften und Wirkungen aufweisen. Nachfolgend wird die Herstellung von Antikörpern mit Zwei- und Dreispezifitäten näher beschrieben.

Die Bereitstellung derartiger bispezifischer und trispezifischer Antikörper gehört zum Stand der Technik, und auf die derartige Herstellungstechniken beschreibende Literatur wird hier voll inhaltlich Bezug genommen.

Die Herstellung von Antikörpern mit drei Spezifitäten, sogenannten trispezifischen Antikörpern, durch die das der Erfindung zugrundeliegende Problem ebenfalls lösbar ist, kann beispielsweise derart erfolgen, daß an eine der schweren Ig-Ketten eines bispezifischen Antikörpers eine dritte Antigenbindungsstelle mit einer weiteren Spezifität, z.B. in Form eines "single chain variable fragments" (scFv), angekoppelt wird. Das scFv kann beispielsweise über einen

-S-S(G₄S)_nD-I-Linker an eine der schweren Ketten gebunden sein (S = Serin, G = Glycin, D = Aspartat, I = Isoleucin).

Analog dazu können trispezifische F(ab)₂-Konstrukte hergestellt werden, indem die CH2-CH3-Regionen der schweren Kette einer Spezifität eines bispezifischen Antikörpers ersetzt werden durch ein scFv mit einer dritten Spezifität, während die CH2-CH3-Regionen der schweren Kette der anderen Spezifität beispielsweise durch Einbau eines Stopcodons (am Ende der "Hinge"-Region) in das codierende Gen, z.B. mittels homologer Rekombination, entfernt werden (siehe Abb.5).

Möglich ist auch die Herstellung trispezifischer scFv-Konstrukte. Hierbei werden drei VH-VL-Regionen, die drei verschiedene Spezifitäten repräsentieren, hintereinander in Reihe angeordnet (Abb.6).

Erfindungsgemäß werden z.B. intakte bispezifische Antikörper verwendet. Intakte bispezifische Antikörper sind aus zwei Antikörper-Halbmolekülen (je eine H- und L-Immunglobulinkette), die jeweils eine Spezifität repräsentieren, zusammengesetzt, und besitzen darüber hinaus, wie normale Antikörper auch, einen Fc-Teil mit den bekannten Effektorfunktionen. Sie werden bevorzugt durch die Quadrom-Technologie hergestellt. Dieses Herstellungsverfahren ist beispielhaft in der DE-A-44 19 399 beschrieben. Auf diese Druckschrift, auch bzgl. einer Definition der bispezifischen Antikörper, wird zur vollständigen Offenbarung vollinhaltlich Bezug genommen. Selbstverständlich sind auch andere Herstellungsverfahren einsetzbar, solange sie zu den

erfindungsgemäß notwendigen intakten bispezifischen Antikörpern der obigen Definition führen.

Beispielsweise können in einem neu entwickelten Herstellungsverfahren (6) intakte bispezifische Antikörper in ausreichender Menge produziert werden. Die Kombination von 2 bispezifischen Antikörpern gegen 2 unterschiedliche tumorassoziierte Antigene (z.B. c-erb-B2, ep-cam, beispielsweise GA-733-2 = C215) auf den Mammakarzinomzellen minimiert die Gefahr, daß Tumorzellen, die nur ein Antigen exprimieren, unerkannt bleiben.

Es wurde auch versucht, durch Behandlung mit bispezifischen F(ab')2-Fragmenten mit den Spezifitäten anti-c-erb-B2 x antiCD64 eine Tumormimmunität zu erreichen. Der Hauptnachteil von bsF(ab')2-Fragmenten liegt darin, daß aufgrund der verwendeten Spezifitäten lediglich Fc_YRI+ Zellen an den Tumor redirigiert werden. T-Zellen werden durch diesen bispezifischen Antikörper nicht an den Tumor redirigiert. Die bsF(ab')2-Fragmente besitzen zwar auch das Potential zur direkten Tumorerstörung, sind aber nicht in der Lage, selber eine Tumormimmunität zu etablieren. Dazu ist nur die T-Zelle mit ihrem spezifischen T-Zellrezeptor befähigt. Die Fc_YRI+ Zellen können zwar indirekt durch Präsentation von tumorspezifischen Peptiden (über MHC I bzw. MHCII) nach z.B. Phagozytose von Tumorzellbestandteilen tumorspezifische T-Zellen aktivieren, die Effizienz der Induktion einer Tumormimmunität ist hier aber nicht ganz so hoch (nur bei 30% der Patienten).

Weitere Vorteile von intakten bsAk mit der Fähigkeit zur Redirektion von T-Zellen gegenüber den o.g. bsF(ab')2 Fragmenten sind im einzelnen:

1. An intakte bsAk können Fc-Rezeptor positive Zellen binden und einerseits über ADCC (antibody-dependent cell-mediated cytotoxicity) direkt zur Tumorerstörung beitragen sowie andererseits wie oben näher ausgeführt zur T-Zellaktivierung.

2. Durch intakte T-Zell-redirigierende bsAk werden auch anergisierte tumorspezifische T-Zellen an die Tumorzelle herangeführt, die erfindungsgemäß direkt am Tumor reaktiviert werden können. Dies kann durch ein bsF(ab')2-Fragment mit den Spezifitäten anti-CD64Xanti-tumorassoziiertes Antigen nicht erreicht werden.

3. Ein bsF(ab')2-Fragment mit den Spezifitäten anti-CD64Xanti-tumorassoziiertes Antigen kann lediglich eine Tumormimmunität in 30% der Patienten erzielen, während erfindungsgemäß in Mausversuchen mit T-Zell-redirigierenden intakten bsAk ein Schutz in 100% der Tiere erzielt werden konnte.

Die Bindung des bsAk an Fc_YRI besitzt zwei wesentliche Vorteile im Hinblick auf eine optimale anti-Tumorwirksamkeit:

5

(1) Fc_YRI positive Zellen besitzen die Fähigkeit mittels ADCC Tumorzellen zu eliminieren (11) und können insofern synergistisch zur anti-Tumorwirkung der durch den bsAk an die Tumorzelle herangeführten cytotoxischen T-Zellen beitragen (13).

10

15

20

25

30

35

40

45

50

55

(2) Fc_YRI positive Zellen (wie z.B. Monozyten/Makrophagen/Dendriten) sind in der Lage, wichtige kostimulatorische Signale, ähnlich wie bei der Antigen-Präsentation, der T-Zelle zu liefern und damit eine Anergisierung der T-Zelle zu verhindern. Wie in Abbildung 1 gezeigt können weiterhin, als erwünschtes Nebenprodukt, aufgrund der durch intakten bsAk vermittelten Interaktion von T-Zelle mit akzessorischer Zelle und Tumorzelle sogar T-Zellen, deren T-Zellrezeptor tumorspezifische Peptide (über MHC Antigene auf der Tumorzelle präsentiert) erkennt, stimuliert werden. Die für eine korrekte Aktivierung der T-Zelle notwendigen Kostimuli würden in dieser Konstellation von der akzessorischen Zelle (z.B. Monocyt) geliefert werden. Insofern sollte der erfindungsgemäß Antikörper neben der direkten T-Zellrezeptor-unabhängigen, durch bsAk vermittelten Tumorerstörung (Abb.1A) ebenfalls tumorspezifische T-Zellen aktivieren und generieren (Abb.1B), die nach Abbau der bsAk weiterhin im Patienten patrouillieren. D.h. mittels intakter bsAk kann ähnlich wie bei gentherapeutischen Ansätzen (z.B. durch Einbau von kostimulatorischen Antigenen wie B-7 in die Tumorzelle) die Tumortoleranz im Patienten durchbrochen werden.

Günstig in diesem Zusammenhang ist weiterhin, daß die Expression von Fc_YRI nach G-CSF -Behandlung auf den entsprechenden Zellen hochreguliert wird.

Die Erfindung wurde vorstehend und wird nachstehend insbesondere anhand von bispezifischen Antikörpern beschrieben. An die Stelle der bispezifischen Antikörper sind selbstverständlich aber auch trispezifische Antikörper einsetzbar, solange sie die gestellten Bedingungen erfüllen.

Die Erfindung wurde und wird anhand der beiliegenden Abbildungen näher beschrieben. Die Abbildungen zeigen:

Abb. 1: Die Rolle akzessorischer Zellen bei der Tumor-Immuntherapie mittels bispezifischer Antikörper

Abb. 2: Zerstörung von Tumorzellen nach Gabe von bispezifischen Antikörpern, nachgewiesen im Durchflußzytometer

Abb. 3: Induktion von Zytokinen durch intakte bispezifische Antikörper nur nicht aber durch parentale Antikörper

Abb. 4: Wirksamkeit des erfindungsgemäßen Verfahrens *in vivo*

Abb. 5: Trispezifische F(ab')₂-Antikörper

Abb. 6: Trispezifischer scFv-Antikörper

IMMUNISIERUNGSPROTOKOLLE

Ex vivo-Immunisierung (Kurzzeitinkubation)

1. Herstellung einer Einzelzellsuspension (10^7 - 10^9 Zellen) aus autologem Tumormaterial (oder allogenem Tumorzellen desselben Tumortyps) mit anschließender γ -Bestrahlung (50-100 Gy)
2. Zugabe von bsAk (5-50 µg) und 45 minütige Inkubation bei 4°C. Anschließend Auswaschen von ungebundenem Antikörper
3. Reinfusion des Zellgemisches (i.v.)

Ex vivo-Immunisierung (Langzeitinkubation)

1. Herstellung einer Einzelzellsuspension (10^7 - 10^9 Zellen) aus autologem Tumormaterial (oder allogenem Tumorzellen desselben Tumortyps) mit anschließender γ -Bestrahlung (50-100 Gy)
2. Zugabe von bsAk (5-50 µg), 45 min inkubieren
3. Zugabe von PBMC (10^8 - 10^{10}). [alternativ: 1 x 10^9 Zellen aus T-Zellapherese]
4. nach 5 bis 7 Tagen Kontrolle der T-Zell-Reaktivität durch Transfer von Aliquots auf z.B. allogene Brustkrebszelllinien (MCF-7, MX-1)
5. Reinfusion (i.v.) der kultivierten PBMC am Tag 4 bis 14 in den Patienten (bei T-Zellapherese Kryokonservierung)

Abkürzungen: PBMC, peripheral blood mononucleated cells = mononukleäre Zellen aus dem peripheren Blut; i.v., intravenös.

Ein ähnlicher aber auf den Zusatz von Zytokinen angewiesener und mit konventionellen bsAk (keine Aktivierung von akzessorischen Zellen durch bsAk der Subklassenkombination Ratte IgG2B X Ratte IgG1) durchgeführter Ansatz zeigte die prinzipielle Wirksamkeit einer derartigen ex vivo-Immunisierung im Tiernodell (5).

Im Gegensatz dazu liegt der Vorteil des hier offen gelegten Verfahrens in der "Selbstversorgung" mit den für die Hochregulation von z.B. MHC 1 auf der Tumorzelle benötigten Zytokinen (wie INF- γ oder TNF- α) durch die gleichzeitige Aktivierung von T-Zellen und akzessorischen Zellen (Monozyten/Makrophagen, Abb.) an der Tumorzelle. Dies wird durch die eingangs erwähnte besondere Subklassenkombination des hier verwendeten intakten bsAk erreicht. Bei der Kurzzeitinkubation finden diese Vorgänge im Patienten statt. Weitere Vorteile bei der Kurzzeitinkubation sind (i) Umgehung der sonst notwendigen Kultivierung der Zellsuspension mit serumhaltigen Medium. (ii) Damit entfällt auch die kostenintensive Kultivierung unter GMP-Richtlinien. (iii) Ein weiterer wichtiger Aspekt ist die Vermeidung bzw. Reduzierung von möglichen Nebenwirkungen durch den bsAk aufgrund der wesentlich geringeren Menge an appliziertem Antikörper.

Vorteil bei der Langzeitinkubation ist, daß der bsAk

sich in vitro nach einiger Zeit selber verbraucht (und somit auch diese Methode nicht als Medikament, sondern als "medical device" etabliert werden kann).

BEISPIEL 1

Bispezifische Antikörper-vermittelt Lyse von Tumorzellen durch allogene T-Zellen

H-Lac78 ist eine Zelllinie, die aus einem Hypopharynxkarzinom etabliert wurde und epcam in hohem Maße exprimiert (eigene FACS-Daten). Unter Verwendung von H-Lac78 und peripheren, mononukleären Zellen (PBMC) aus freiwilligen Spendern konnte man die Generierung allogener zytotoxischer T-Lymphozyten nachweisen. Hierzu wurden konstante Mengen H-Lac78 (2×10^4) mit unterschiedlichen Mengen PBMCs in Gegenwart (10 ng) oder Abwesenheit eines bsAk (anti-epcam X anti-CD3) inkubiert. Nach einem Zeitraum von sieben Tagen wurden die PBMCs abgenommen und im Durchflußzytometer analysiert. Gleichzeitig wurden die Zahl der H-Lac78 Tumorzellen bestimmt. Die Aktivierung der T-Zellen läßt sich mikroskopisch an der Clusterbildung beobachten, die Proliferation kann anhand des Einbaus von radioaktiven Thymidin bestätigt werden. Der Nachweis verbliebener Tumorzellen wird mikroskopisch sowie über den epithelialen Marker epcam geführt, der auf Zellen des peripheren Blutes nicht exprimiert wird. Wie in Abb. 2 gezeigt, wurden die H-Lac78-Zellen bei Anwesenheit des bsAk vollständig lysiert, d.h. im Durchflußzytometer waren nach sieben Tagen keine epcam positiven Zellen mehr nachweisbar. Diese Daten wurden durch den mikroskopischen Eindruck bestätigt. Ohne bsAk war dagegen ein vollständiger Rasen von H-Lac78-Zellen in den Wells zu sehen und im FACS waren epcam positive Zellen nachweisbar.

Nachweis aktiverter allospezifischer CTLs per Transferexperiment

In einem anschließenden Transferexperiment wurden die mit bzw. ohne bsAk inkubierten PBMCs auf neue H-Lac78-Zellen ohne erneute Zugabe von bsAk überführt. Auch hier wurden die Tumorzellen lysiert, und zwar ausschließlich von den zuvor durch den bsAk aktivierte PBMC. Die Lyse von H-Lac78 vollzog sich vollständig binnen 24 Stunden bis zu einem Verhältnis von 2 PBMC zu 1 H-Lac78-Zellen. Dieses Resultat bedeutet die Generierung allospezifischer CTLs ohne die externe Zugabe von Interleukin-2 (IL-2). Da IL-2 für die Aktivierung von T-Lymphozyten essentiell ist, sprechen die hier vorgelegten Daten dafür, daß durch die bsAk vermittelte Aktivierung IL-2 von den T-Zellen selbst produziert wird. Die Induktion der IL-2 mRNA bei Zugabe des bsAk konnte anschließend durch RT-PCR bestätigt werden, wobei der bsAk den parentalen Ausgangsantikörpern deutlich überlegen war (Abb. 3). Diese

Beobachtung ist insofern von Bedeutung, als IL-2 zwar als antitumoral wirksames Zytokin beschrieben wurde, eine systemische Gabe in entsprechender Konzentration wegen seiner Toxizität jedoch nur bedingt möglich ist. Die Gefahr der Toxizität ist hingegen bei der lokalen Produktion von IL-2, wie sie beispielsweise durch intakte bsAk induziert wird, nicht gegeben. Da für die effektive Induktion von IL-2 (und IL-12) eine Stimulation von T-Zellen über den T-Zell-Rezeptor und CD28 notwendig ist, lässt auch dies auf die Bedeutung der Fc-Rezeptor positiven Zellen (welche die Liganden für CD28: CD80 und CD86 bereitstellen) bei der Aktivierung der T-Zellen mittels intakter bsAk schließen.

BEISPIEL 2

Zur Prüfung der Frage, ob bispezifische Antikörper eine langandauernde Tumorimmunität induzieren können, wurden C57BL/6 Mäusen zunächst 5×10^3 syngene B16 Tumorzellen injiziert. Zwei Tage später wurde eine Gruppe von Mäusen (Anzahl 18) mit intaktem, mittels Quadrom-Technologie (6) hergestelltem, bsAk behandelt, welcher eine Zielstruktur (ep-cam/C215 = tumorassoziiertes Antigen) auf der Tumorzelle sowie CD3 auf T-Zellen erkennt. Eine zweite Gruppe (Anzahl 6) erhielt lediglich eine äquimolare Menge von Fab-Fragmenten der beiden im bsAk enthaltenen Spezifitäten. Während alle Tiere der Fab-Kontrollgruppe innerhalb von 56 Tagen verstarben oder eingeschläfert werden mussten, überlebten 14 von 18 mit bsAk behandelten Tiere. 144 Tage nach der ersten Injektion von Tumorzellen wurde den überlebenden 14 Tieren erneut eine Dosis von 750 B16 Tumorzellen, diesmal ohne Gabe von bsAk, injiziert. Zur Kontrolle wurde 5 unbehandelten Tieren dieselbe Tumorzellzahl verabreicht. Während das letzte Tier der unbehandelten Kontrollgruppe 66 Tage nach Tumorentfernung eingeschläfert werden musste, überlebten alle mit bsAk behandelten Tiere (Überwachungszeitraum: 120 Tage nach zweiter Tumorzell-Injektion). Siehe auch Abbildung 4A und B: Überlebenskurven der beiden aufeinanderfolgenden, oben beschriebenen, Experimente.

1. Haagen et al., Interaction of human monocyte Fc γ receptors with rat IgG2b, J. Immunolog., 1995, 154: 1852-1860

2. Gast G.C., Haagen I.-A., van Houten A.A., Klein S., Duits A.J., de Weger R.A., Vroom T.M., Clark M.R., J. Phillips, van Dijk A.J.G., de Lau W.B.M., Bast B.J.E.G. CD8 T-cell activation after intravenous administration of CE3 X CD19 bispecific antibody in patients with non-Hodgkin lymphoma. Cancer Immunol. Immunother. 40: 390, 1995

3. Tenny, C., Jacobs, S., Stoller, R., Earle, M., and Kirkwood, J. Adoptive cellular immunotherapy with high-dose chemotherapy and autologous bone

5

10

15

20

25

30

35

40

45

50

55

marrow rescue (ABMR) for recurrent breast cancer (meeting abstract). Proc. Annu. Meet. Am. Soc. Clin. Oncol; 11: A88, 1992 ISSN: 0736-7589. CO: PMAODO - 7589 CO, 1993.

4. Early Breast Cancer Trialists' Collaborative Group, Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy - 133 randomised trials involving 31 000 recurrences and 24 000 deaths among 75 000 women. Part II Lancet 339: 71-85, 1992

5. Guo et al., Effective tumor vaccines generated by in vitro modification of tumor cells with cytokines and bispecific monoclonal antibodies. Nature Medicine 3: 451, 1997

6. Lindhofer et al., Preferential species-restricted heavy-light chain pairing in rat-mouse quadromas: Implications for a single step purification of bispecific antibodies, J. Immunology 1995, 155:219

7. Brüggemann et al., A MATCHED SET OF RAT/MOUSE CHIMERIC ANTIBODIES: Identification and Biological Properties of Rat H Chain Constant Regions μ , $\gamma 1$, $\gamma 2a$, $\gamma 2b$, ϵ , and α^1 , J. Immunology 1989, 142:3145.

8. Routledge et al., A humanized monovalent CD3 antibody which can activate homologous complement, Eur. J. Immunology 1991, 21:2717

9. Greenwood et al., Structural motifs involved in human IgG antibody effector functions, Eur. J. Immunology 1993, 23:1098

10. Kardinal et al., Genetic stability of gene targeted immunoglobulin loci. I. Heavy chain isotype exchange induced by a universal gene replacement vector, J. Immunology 1996, 89:309

11. Kardinal et al., Integration vectors for antibody chimerization by homologous recombination in hybridoma cells, Eur. J. Immunology 1995, 25:792.

Patentansprüche

1. Verfahren zur ex vivo-Immunisierung von Mensch und Tier mit den nachfolgenden Schritten:

- a) Isolierung autologer Tumorzellen;
- b) Behandeln der Tumorzellen, um ihr Überleben nach Reinfusion zu verhindern;
- c) Inkubation der so behandelten Tumorzellen mit intakten heterologen bispezifischen und/oder trispezifischen Antikörpern, die die nachfolgenden Eigenschaften aufweisen:

α - Binden an eine T-Zelle;
 β - Binden an zumindest ein Antigen auf einer Tumorzelle;
 γ - Binden durch ihren Fc-Teil (bei spezifischen Antikörpern) oder durch eine dritte Spezifität (bei trispezifischen Antikörpern) an Fc-Rezeptor positive Zellen.

2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß die Antikörper so ausgewählt werden, daß sie zur Bindung Fc-Rezeptor positive Zellen befähigt sind, die einen Fcγ-Rezeptor I, II oder III aufweisen.

3. Verfahren nach Anspruch 2,
dadurch gekennzeichnet, daß die Antikörper zur Bindung an Monozyten, Makrophagen, dendritische Zellen, "Natural Killer"-Zellen (NK-Zellen) und/oder aktivierte neutrophile Zellen als Fcγ-Rezeptor I positive Zellen befähigt sind.

4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß die Antikörper zur Induktion von tumorreaktiven Komplement-bindenden Antikörpern und damit zur Induktion einer humoralen Immunantwort befähigt sind.

5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß die Antikörper so ausgewählt werden, daß sie über CD2, CD3, CD4, CD5, CD6, CD8, CD28 und/oder CD44 an die T-Zellen binden.

6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß die Antikörper so ausgewählt werden, daß nach ihrer Bindung an die Fc-Rezeptor positiven Zellen die Expression von CD40, CD80, CD86, ICAM-1 und/oder LFA-3 als kostimulatorische Antigene und/oder die Sekretion von Zytokinen durch die Fc-Rezeptor positive Zelle initiiert oder erhöht wird.

7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet, daß die Antikörper so ausgewählt werden, daß die Sekretion von IL-1, IL-2, IL-4, IL-6, IL-8, IL-12 als Zytokine und/oder von TNF- α erhöht wird.

8. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß der bispezifische Antikörper so ausgewählt wird, daß er ein anti-CD3 X anti-Tumor-assoziiertes Anti-

gen- und/oder anti-CD4 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD5 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD6 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD8 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD2 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD28 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD44 X anti-Tumor-assoziiertes Antigen-Antikörper ist.

9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß der bispezifische Antikörper aus einer oder mehreren der nachfolgenden Isotypkombinationen ausgewählt wird:

Ratte-IgG2b/Maus-IgG2a,
Ratte-IgG2b/Maus-IgG2b,
Ratte-IgG2b/Maus-IgG3,
Ratte-IgG2b/Human-IgG1,
Ratte-IgG2b/Human-IgG2,
Ratte-IgG2b/Human-IgG3[orientalischer Allotyp G3m(st) = Bindung an Protein A],
Ratte-IgG2b/Human-IgG4,
Ratte-IgG2b/Ratte-IgG2c,
Maus-IgG2a/Human-IgG3[kaukasische Allotypen G3m(b+g) = keine Bindung an Protein A, im folgenden mit * gekennzeichnet]
Maus-IgG2a/Maus-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]
Maus-IgG2a/Ratte-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]
Maus-IgG2a/Human-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]
Maus-[VH-CH1, VL-CL]-Human-IgG1/Ratte-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]
Maus-[VH-CH1, VL-CL]-Human-IgG4/Ratte-[VH-CH1, VL-CL]-Human-IgG4-[Hinge]-Human-IgG4[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2: > AS-Position 251]-Human-IgG3*[CH3]
Ratte-IgG2b/Maus-[VH-CH1, VL-CL]-Human-

IgG1-[Hinge-CH2-CH3]		Maus-IgG2b/Ratte-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]
Ratte-IgG2b/Maus-[VH-CH1, VL-CL]-Human-IgG2-[Hinge-CH2-CH3]	5	Maus-IgG2b/Human-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]
Ratte-IgG2b/Maus-[VH-CH1, VL-CL]-Human-IgG3-[Hinge-CH2-CH3, orientaler Allotyp]	10	Maus-IgG2b/Maus-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]
Ratte-IgG2b/Maus-[VH-CH1, VL-CL]-Human-IgG4-[Hinge-CH2-CH3]	15	Maus-[VH-CH1, VL-CL]-Human-IgG4/Ratte-[VH-CH1, VL-CL]-Human-IgG4-[Hinge]-Human-IgG4-[CH2]-Human-IgG3*- [CH3]
Human-IgG1/Human-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]	20	HumanIgG1/Ratte[VH-CH1, VL-CL]-Human-IgG1[Hinge]-Human-IgG4-[CH2]-HumanIgG3*[CH3]
Human-IgG1/Ratte-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG4[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2 : > AS-Position 251]-Human-IgG3*[CH3]	25	HumanIgG1/Maus[VH-CH1, VL-CL]-Human-IgG1[Hinge]-Human-IgG4-[CH2]-Human-IgG3*[CH3]
Human-IgG1/Maus-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG4[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2 : > AS-Position 251]-Human-IgG3*[CH3]	30	Human-IgG4/Human[VH-CH1, VL-CL]-Human-IgG4-[Hinge]-Human-IgG4-[CH2]-HumanIgG3*[CH3]
Human-IgG1/Maus-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG2[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2 : > AS-Position 251]-Human-IgG3*[CH3]	35	10. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der bispezifische Antikörper aus einem heterologen Ratte/Maus bispezifischen Antikörper ausgewählt wird.
Human-IgG1/Ratte-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]	40	11. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der trispezifische Antikörper einen T-Zell-Bindungsarm, einen Tumorzell-Bindungsarm und eine dritte Spezifität zur Bindung an Fc-Rezeptor positive Zellen besitzt.
Human-IgG1/Maus-[VH-CH1, VL-CL]-Human-IgG1-[Hinge]-Human-IgG3*- [CH2-CH3]	45	12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß der trispezifische Antikörper so ausgewählt wird, daß er ein anti-CD3 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD4 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD5 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD6 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD8 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD2 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD28 X anti-Tumor-assoziiertes Antigen- und/oder anti-CD44 X anti-Tumor-assoziiertes Antigen-Antikörper ist.
Human-IgG2/Human-[VH-CH1, VL-CL]-Human-IgG2-[Hinge]-Human-IgG3*- [CH2-CH3]	50	13. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Schritt c) nach Inkubation der Tumorzellen mit
Human-IgG4/Human-[VH-CH1, VL-CL]-Human-IgG4-[Hinge]-Human-IgG4[N-terminale Region von CH2]-Human-IgG3*[C-terminale Region von CH2 : > AS-Position 251]-Human-IgG3*[CH3]	55	

intakten heterologen bispezifischen und/oder trispezifischen Antikörpern die mit den Antikörpern beladenen Tumorzellen zur Reinfusion vorbereitet werden (Kurzzeitinkubation).

14. Verfahren nach einem oder mehreren der Ansprüche 1 bis 12,
dadurch gekennzeichnet, daß
im Schritt c) die Inkubation der Tumorzellen mit den Antikörpern zusammen mit mononukleären Zellen aus dem peripheren Blut (PBMC = peripheral blood mononucleated cells) erfolgt oder nach Inkubation der Tumorzellen mit den Antikörpern die mononukleären Zellen zugegeben werden und die Inkubation fortgesetzt wird (Langzeitinkubation). 5

15. Verfahren nach Anspruch 13 oder 14,
dadurch gekennzeichnet, daß
die Tumorzellen mit den Antikörpern für einen Zeitraum von 10 Minuten bis 5 Stunden inkubiert werden. 10

16. Verfahren nach Anspruch 15,
dadurch gekennzeichnet, daß
die Inkubation der Tumorzellen mit den Antikörpern für einen Zeitraum von 15 bis 120 Minuten, bevorzugt 15 bis 60 Minuten, erfolgt. 15

17. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche 14 bis 16,
dadurch gekennzeichnet, daß die mononukleären Zellen aus dem peripheren Blut zusammen mit den Tumorzellen und den Antikörpern für einen Zeitraum von 1 bis 14 Tagen, bevorzugt 3 bis 10 Tagen und weiterhin bevorzugt 6 bis 10 Tagen inkubiert werden. 20

18. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
die mononukleären Zellen aus dem peripheren Blut in einer Menge von ca. 10^8 bis 10^{10} Zellen zugegeben werden. 25

19. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
die Tumorzellen in einer Menge von 10^7 bis 10^9 Zellen, bevorzugt ca. 10^8 Zellen, zugegeben werden. 30

20. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
die bispezifischen und/oder trispezifischen Antikörper in einer Menge von 2 bis 100 µg, bevorzugter 5 bis 70 µg, insbesondere bevorzugt 5 bis 50 µg zugegeben werden. 35

21. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß
die Behandlung der Tumorzellen im Schritt b durch Bestrahlung, bevorzugt durch γ -Bestrahlung, weiterhin bevorzugt in einer Dosisstärke von 50 bis 100 Gy, oder durch chemische Substanzen, bevorzugt Mitomycin C, erfolgt. 40

22. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die intakten heterologen bispezifischen und/oder trispezifischen Antikörper so ausgewählt werden, daß sie zur Aktivierung Fc-Rezeptorpositiver Zelle befähigt sind, wodurch die Expression von Cytokinen und/oder co-stimulatorischen Antigenen initiiert oder erhöht wird. 45

23. Verwendung der nach einem Verfahren nach einem oder mehreren der vorhergehenden Ansprüche hergestellten Tumorzellpräparate zur Herstellung eines Arzneimittels zur Prophylaxe und Behandlung von Tumorerkrankungen. 50

24. Verwendung nach Anspruch 23 zur Induktion einer Tumormimmunität. 55

25. Verwendung der nach einem Verfahren nach einem oder mehreren der vorhergehenden Ansprüche hergestellten Tumorzellpräparate zur Herstellung eines Arzneimittels zur Reinfusion in den Patienten oder das Tier, aus dem die autologen Tumorzellen entnommen wurden.

26. Pharmazeutische Zubereitung, enthaltend das nach einem Verfahren nach einem oder mehreren der vorhergehenden Ansprüche erhältliche Tumorzellpräparat, wahlweise zusammen mit weiteren, an sich üblichen Hilfs- und/oder Trägerstoffen.

Abb.1:
Die Rolle von akzessorischen Zellen bei der Tumor-Immuntherapie
mittels bispezifischer Antikörper

Abbildung 2

Abbildung 3

Induktion von Zytokinen durch
intakte bsAk, nicht aber durch
parentale AK

Abbildung 4

Wirksamkeit *in vivo*

A Überleben nach Injektion von 5×10^6 B16 Melanomzellen und bispez. Antikörpern

B Erneute Tumorinjektion am Tag 144

ABBILDUNG 5

ABBILDUNG 6

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 885 614 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(88) Veröffentlichungstag A3:
13.01.1999 Patentblatt 1999/02

(51) Int. Cl.⁶: A61K 39/395, A61K 45/05

(43) Veröffentlichungstag A2:
23.12.1998 Patentblatt 1998/52

(21) Anmeldenummer: 98110972.1

(22) Anmeldetag: 16.06.1998

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 17.06.1997 DE 19725586

(71) Anmelder:
GSF-Forschungszentrum für Umwelt und
Gesundheit, GmbH
85764 Oberschleissheim (DE)

(72) Erfinder:

- Lindhofer, Horst, Dr.
82194 Gröbenzell (DE)
- Kolb, Hans-Jochem, Prof. Dr.
80804 München (DE)
- Zeidler, Reinhard, Dr.
81249 München (DE)
- Bornkamm, Georg, Prof. Dr.
81243 München (DE)

(74) Vertreter:

Reinhard - Skuhra - Weise & Partner
Postfach 44 01 51
80750 München (DE)

(54) **Verfahren zur ex vivo-Immunisierung mittels heterologer intakter bispezifischer und/oder trispezifischer Antikörper**

(57) Erfindungsgemäß wird ein Verfahren zur ex vivo-Immunisierung von Mensch und Tier mit den nachfolgenden Schritten beschrieben:

a) Isolierung autologer Tumorzellen;
b) Behandeln der Tumorzellen, um ihr Überleben nach Reinfusion zu verhindern;
c) Inkubation der so behandelten Tumorzellen mit intakten heterologen bispezifischen und/oder trispezifischen Antikörpern, die die nachfolgenden Eigenschaften aufweisen:

- α - Binden an eine T-Zelle;
- β - Binden an zumindest ein Antigen auf einer Tumorzelle;
- γ - Binden durch ihren Fc-Teil (bei bispezifischen Antikörpern) oder durch eine dritte Spezifität (bei trispezifischen Antikörpern) an Fc-Rezeptor positive Zellen.

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 98 11 0972

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betreff Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.6)
Y	LINDHOFER, HORST ET AL: "Bispecific antibodies target operationally tumor-specific antigens in two leukemia relapse models" BLOOD (1996), 88(12), 4651-4658 CODEN: BLOOAW; ISSN: 0006-4971, XP000616201 * das ganze Dokument *	1-26	A61K39/395 A61K45/05
Y	LINDHOFER H ET AL: "Increased tumor-specificity and -elimination by selectively binding bispecific antibodies in vivo." 25TH ANNUAL MEETING OF THE INTERNATIONAL SOCIETY FOR EXPERIMENTAL HEMATOLOGY, NEW YORK, NEW YORK, USA, AUGUST 23-27, 1996. EXPERIMENTAL HEMATOLOGY (CHARLOTTESVILLE) 24 (9). 1996. 1090. ABSTRACT 348. ISSN: 0301-472X, XP002084410 * das ganze Dokument *	1-26	
P,Y	WOLLENBERG B ET AL: "A bispecific antibody induces efficient killing of tumor cells: Phase I-trial in patients with HNSCC." INTERNATIONAL SYMPOSIUM ON METASTASES IN HEAD AND NECK CANCER, KIEL, GERMANY, JANUARY 15-18, 1998. BRITISH JOURNAL OF CANCER 77 (SUPPL. 1). 1998. 46. ABSTRACT 15.16. ISSN: 0007-0920, XP002084411 * das ganze Dokument *	1-26	RECHERCHIERTE SACHGEBIETE (Int.CI.6) A61K
		-/-	
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchenort	Abschlußdatum der Recherche	Prüfer	
MÜNCHEN	16. November 1998	Mennessier, T	
KATEGORIE DER GENANNTEN DOKUMENTE			
X : von besonderer Bedeutung allein betrachtet		T : der Erfindung zugrunde liegende Theorien oder Grundsätze	
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie		E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist	
A : technologischer Hintergrund		D : in der Anmeldung angeführtes Dokument	
O : nichtschriftliche Offenbarung		L : aus anderen Gründen angeführtes Dokument	
P : Zwischenliteratur		& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung
EP 98 11 0972

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betreff Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
P,Y	LINDHOFER H ET AL: "Bispecific antibodies effectively purge cancer cells from peripheral blood stem cell collections without affecting colony forming units." 26TH ANNUAL MEETING OF THE INTERNATIONAL SOCIETY FOR EXPERIMENTAL HEMATOLOGY, CANNES, FRANCE, AUGUST 24-28, 1997. EXPERIMENTAL HEMATOLOGY (CHARLOTTESVILLE) 25 (8). 1997. 879. ABSTRACT 527. ISSN: 0301-472X, XP002048523 * das ganze Dokument * ---	1-26	
P,Y	EP 0 826 695 A (GSF FORSCHUNGSZENTRUM UMWELT) 4. März 1998 * das ganze Dokument * -----	1-26	
RECHERCHIERTE SACHGEBIETE (Int.Cl.6)			
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Rechercheur	Abschlußdatum der Recherche	Prüfer	
MÜNCHEN	16. November 1998	Mennessier, T	
KATEGORIE DER GENANNTEN DOKUMENTE		T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht wurden ist D : in der Anmeldung angeführtes Dokument L : aus anderen Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur			