□ (651) 500-2546 | ► hmhamilton1126@gmail.com | □ hhamilton33 | □ https://www.linkedin.com/in/hanna-hamilton/

Experience

Replate Remote

DATA SCIENTIST

January 2021 - September 2022

- · Leveraged optimization and cross-functional collaboration to co-develop a matching algorithm which effectively determines food donor/recipient pairs and assigns drivers based on location, availability, and preference data
- · Performed a cost analysis and presented insights to leadership and various departments to inform pricing strategy
- Supported a data science intern with implementing Tableau as Replate's data visualization tool and building dashboards
- Extracted data from various sources and assessed data quality to design and deliver monthly reports and fulfill ad hoc data requests
- · Built the codebase for Replate's data department to automate calculations for KPIs and common data requests

Georgia Institute of Technology

Remote

GRADUATE TEACHING ASSISTANT

August 2020 - August 2021

· Led weekly office hours, created assignments and exams, graded exams, and answered questions on the online discussion board for Regression Analysis, a graduate course in the H. Milton Stewart School of Industrial and Systems Engineering

Remote

ANALYTICS PRACTICUM PROJECT CONSULTANT

August 2020 - November 2020

- · Worked with classmates to improve and automate merchant operations for NCR with machine learning models
- Implemented a similarity-based multi-step model to automatically classify product catalog entries across merchants into a consistent set
- · Implemented the apriori algorithm and a graph convolutional network algorithm to identify meaningful relationships between products

Skills

Programming JavaScript, MATLAB, Python, R, SQL

Techniques Network Analysis, Optimization, Statistical Analysis, Supervised and Unsupervised Learning, Variable Selection

Visualization D3.js, Excel, Matplotlib, MiniTab, Seaborn, Tableau

Education

Georgia Institute of Technology

Atlanta GA

M.S. IN COMPUTATIONAL DATA ANALYTICS

December 2020

. GPA: 3.8

University of Wisconsin-Madison

Madison, WI

B.S. IN INDUSTRIAL ENGINEERING

December 2018

• GPA: 3.4

Academic Projects

Network Analysis for Return to Campus Decisions

Remote

GEORGIA INSTITUTE OF TECHNOLOGY

May 2020 - May 2021

- Worked with ISyE professors and other students to analyze various hybrid instructional mode strategies during the COVID-19 pandemic
- · Compared the strategies from both health and academic perspectives, by their effects on various groups of students, and based on the trade-off between health risk and academic burden

Predicting Airbnb Prices and Quality in New York City

Remote

GEORGIA INSTITUTE OF TECHNOLOGY

March 2020 - April 2020

- · Worked with classmates to build models which predict Airbnb prices and quality in New York City
- Used random forest regression and logistic regression to build the models

Analysis of Small Odd-Set Constraints in Maximum Weight Matching

Remote

GEORGIA INSTITUTE OF TECHNOLOGY

March 2020 - April 2020 • Implemented an optimization model for the maximum weight matching problem

- · Solved the linear relaxation and explored the probability of obtaining an optimal integer solution for various numbers of vertices
- Added small odd-set constraints to increase the probability of obtaining an optimal integer solution
- Explored and compared various approaches for reducing the computation time

Predicting H-1B Visa Application Outcomes

Remote

GEORGIA INSTITUTE OF TECHNOLOGY

Worked with classmates to build an ensemble model which predicts the outcome of an H-1B visa application

Combined logistic regression, support vector machines, and k-nearest neighbors to build the ensemble model

Multi-Period Blend Scheduling Optimization

Madison, WI

UNIVERSITY OF WISCONSIN-MADISON

February 2018 - December 2018

February 2020 - April 2020

- Researched various formulations for the multi-period blend scheduling optimization problem
- · Applied decomposition methods and found smaller optimality gaps than traditional solvers for mixed-integer nonlinear problems