Probabilités conditionnelles

Tle STMG

Table des matières

1	Not	Notion de probabilités conditionnelles			
	1.1	Exemple : Sondage téléphonique dans la classe			
	1.2	Définition : Probabilité conditionnelle			
	1.3	Exemple : Gagné ou perdu			
	1.4	Propriétés			
2	Arb	re pondéré 4			
	2.1	Exemple : Gagné ou perdu			
		Règle 1 : Branches issues d'un même noeud			
		Règle 2 : Probabilité d'une "feuille"			
		Règle 3 : Probabilités totales			
3		babilités et indépendance 7			
	3.1	Définition : Indépendance			
	3.2	Propriété : $P(A \cap B)$			
	3.3	Méthode: Utiliser l'indépendance de deux événements			

1 Notion de probabilités conditionnelles

1.1 Exemple : Sondage téléphonique dans la classe

Voici les résultats d'un sondage au sein de la classe de TSTMG

	Fille	Garçon	Total
Apple	10	7	17
Pas Apple	6	5	11
Total	16	12	28

On choisit au hasard un élève dans la classe.

- Soit F L'événement : "l'élève est une fille"
- Soit A L'événement : "l'élève possède un téléphone Apple"

On a $A\cap F$: "l'élève est une fille avec un téléphone Apple"

$$P(A) = \frac{17}{28} \quad , \quad P(F) = \frac{16}{28} \quad \text{et } P(A \cap F) = \frac{10}{28}$$

A l'aide du tableau :

	F	\overline{F}	Total
\overline{A}	$\left(\frac{10}{28}\right) \approx 0.357$	$\left(\frac{7}{28}\right) = 0.25$	$\left(\frac{17}{28}\right) \approx 0.607$
\overline{A}	$\left(\frac{6}{28}\right) \approx 0.214$	$\left(\frac{5}{28}\right) \approx 0.178$	$\left(\frac{11}{28}\right) \approx 0.392$
Total	$\left(\frac{16}{28}\right) \approx 0.571$	$\left\langle \frac{12}{28} \right\rangle \approx 0.428$	$\left(\frac{28}{28}\right) = 1$

1.2 Définition : Probabilité conditionnelle

Définition : Soit A et B, deux événements avec $P(A) \neq 0$. On appelle **probabilité conditionnelle** de B sachant A, la probabilité que l'événement B se réalise **sachant que** l'événement A est réalisé.

Elle est notée $P_A(B)$ et est définie par :

$$P_A(B) = \frac{P(A\cap B)}{P(A)}$$
 Proba de "B sachant A" =
$$\frac{\text{Proba de "A et B"}}{\text{Proba de "A"}}$$

Exemple

Dans l'exemple précédent, $P_F(A)$, c'est la probabilité que l'élève choisi possède un Apple sachant que c'est une fille

Ou "parmi les filles, quelle est la probabilité que l'élève possède un Apple?"

$$P_F(A) = \frac{P(A \cap F)}{P(F)} = \frac{\frac{10}{28}}{\frac{16}{28}}$$
$$= \frac{10}{16} = \frac{5}{8}$$
$$= 0.625$$

On peut retrouver intuitivement ce résultat : sachant que l'élève est une fille, on a 10 chances sur 16 qu'elle possède une téléphone Apple.

	Fille	Garçon	Total
Apple	10	7	17
Pas Apple	6	5	11
Total	<i>16</i>	12	28

1.3 Exemple : Gagné ou perdu

Un sac contient 50 boules, dont 20 boules rouges et 30 boules noires, où il est marqué soit "Gagné" ou soit "Perdu".

- Sur 15 boules rouges, il est marqué "Gagné".
- Sur 9 boules noires, il est marqué "Gagné".

	Rouge	Noires	Total
Gagné	15	9	24
Perdu	5	21	26
Total	20	30	50

On tire au hasard une boule dans le sac.

- Soit R l'événement : "On tire une boule rouge"
- Soit G l'événement : "On tire une boule marquée Gagné"

Donc $R \cap G$ est l'événement : "On tire une boule rouge marquée Gagné"

On a
$$P(R) = \frac{20}{50} = 0.4$$
 et $P(R \cap G) = \frac{15}{50} = 0.3$

Donc la probabilité qu'on tire une boule marquée "Gagné" sachant qu'elle est rouge est :

$$P_R(G) = \frac{P(R \cap G)}{P(R)}$$
$$= \frac{0.3}{0.4} = 0.75$$

On peut retrouver intuitivement ce résultat : Sachant que le résultat est une boule rouge, on a 15 chances sur 20 qu'il soit marqué Gagné.

	Rouge	Noires	Total
Gagné	15	9	24
Perdu	5	21	26
Total	20	30	50

1.4 Propriétés

- $0 \le P_A(B) \le 1$ (Une probabilité est un nombre entre 0 et 1)
- $P_A(\overline{B}) = 1 P_A(B)$ (Probabilité de l'événement contraire) $P(A \cap B) = P_A(B) \times P(A)$

2 Arbre pondéré

2.1 Exemple : Gagné ou perdu

50 boules : 20 rouges et 30 noires.

- Sur 15 rouges, il est marqué "Gagné"
- Sur 9 noires, il est marqué "Gagné"

R: On tire une boule rouge G: On tire un " gagné "

L'expérience aléatoire peut être schématisée par un arbre pondéré (ou arbre de probabilité).

2.2 Règle 1 : Branches issues d'un même noeud

La somme des probabilités des branches issues d'un même noeud est égale à 1.

$$P(A) + P(\overline{A}) = 1$$

$$P(A)$$

$$P(\overline{A})$$

$$\overline{A}$$

Exemples

2.3 Règle 2 : Probabilité d'une "feuille"

La probabilité d'une "feuille" (extrémité d'un chemin) est égale au **produit** des probabilités du chemin aboutissant à cette feuille.

Exemple

2.4 Règle 3 : Probabilités totales

La probabilité d'un événement associé à plusieurs "feuilles" est égale à **la somme** des probabilités de chacune de ces "feuilles".

 $= 0.7 \times 0.85 + 0.3 \times 0.63$ = 0.595 + 0.169 = 0.784

2.4.1 Exemple : Gagné ou perdu

- $P(R \cap G) = 0.4 \times 0.75$ "Rouge et Gagné" — $P(\overline{R} \cap G) = 0.6 \times 0.3$ "Noire et Gagné"

$$P(G) = P(R \cap G) + P(\overline{R} \cap G)$$
$$= 0.4 \times 0.75 + 0.6 \times 0.3$$
$$= 0.3 + 0.18 = 0.48$$

3 Probabilités et indépendance

3.1 Définition : Indépendance

On dit que deux évènements A et B de probabilité non nulle sont **indépendants** lorsque :

$$P_A(B) = P(B)/\text{qquad ou/qquad } P_B(A) = P(A)$$

3.2 Propriété : $P(A \cap B)$

Soient A et B, deux événements **indépendants** alors

$$P(A \cap B) = P(A) \times P(B)$$

Preuve

Par définition,
$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$
 donc $P(A \cap B) = P(A) \times P_A(B)$

Si A et B sont **indépendants** alors $P_A(B) = P(B)$

Donc
$$P(A \cap B) = P(A) \times P(B)$$

Exemple

On tire une carte au hasard dans un jeu de 32 cartes.

- Soit R l'événement "On tire un roi".
- Soit T l'événement "On tire un trèfle".

On a :
$$P(R) = \frac{4}{32} = \frac{1}{8}$$
 et $P(T) = \frac{8}{32}$

Par ailleurs, $P_T(R)$ est la probabilité de tirer un roi parmi les trèfles.

On a alors : $P_T(R) = \frac{1}{8}$ (un roi parmi les 8 trèfles)

Ainsi,
$$P_T(R) = P(R)$$

Les événements R et T sont indépendants.

Exemple

On tire une carte au hasard dans un jeu de 32 cartes + 2 jokers.

On a :
$$P(R) = \frac{4}{34} = \frac{2}{17}$$
 et $P_T(R) = \frac{1}{8}$

Ainsi,
$$P_T(R) \neq P(R)$$

Les événements R et T ne sont pas indépendants.

3.3 Méthode : Utiliser l'indépendance de deux événements

Dans une population, un individu est atteint par la maladie a avec une probabilité égale à 0,005 et par la maladie b avec une probabilité égale à 0,001.

On choisit au hasard un individu de cette population.

- Soit A l'événement "L'individu a la maladie a".
- Soit B l'événement "L'individu a la maladie b".

On suppose que les événements A et B sont indépendants.

 \bigcirc Calculer de $P(A \cap B)$ et interpréter le résultat.

Par définition,
$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$
 donc $P(A \cap B) = P_A(B) \times P(A)$

Or, A et B sont indépendants donc $P_A(B) = P(B)$

Donc

$$P(A \cap B) = P(B) \times P(A)$$

$$= 0,001 \times 0,005$$

$$= 1 \times 10^{-3} \times 5 \times 10^{-3}$$

$$= 5 \times 10^{-6} = 0,000005$$

La probabilité qu'un individu soit atteint par les deux maladies est égale à 0,000005

 \bigcirc Calculer de $P(A \cup B)$ et interpréter le résultat.

Par définition,
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Donc

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 0,001 + 0,005 - 0,000005$$

$$= 1 \times 10^{-3} + 5 \times 10^{-3} - 5 \times 10^{-6}$$

$$= 0,006 - 0,000005 = 0,005995$$

La probabilité qu'un individu choisi au hasard ait au moins une des deux maladies est égale à 0,005 995.