PRÁCTICA 10 -ECUACIONES DIFERENCIALES LINEALES DE 1ER ORDEN-

- 1. En cada caso, verificar que la expresión de la derecha corresponde a una solución par- $\mathbf{ticular}\ y$ de la ecuación diferencial correspondiente:
 - (a) xy' 3y = 0, $y = cx^3$
- (d) yy' x = 0, $x^2 y^2 = c$
- (b) xy' 3y = 3, $y = cx^3 1$ (e) $3y \frac{3y'}{\cos x} = 0$, $3y ce^{\sin x} = 0$ (c) yy' = -x, $x^2 + y^2 = c$ (f) $\sin(x)y = y' \sin x$, $y = ke^{-\cos x} 1$
- (c) yy' = -x, $x^2 + y^2 = c$
- 2. Determinar la correspondencia de cada ecuación diferencial con una familia de soluciones. Sugerencia: derivar cada una de las familias dadas por y en (i)-(vi) para asociarla con una de las ecuaciones dadas en (a)-(f).
 - (a) $y' = e^x$

(d) $y' = 2 * x + e^x$

(b) $y' = e^{-x}$

(e) $y' = \cos(x)$

(c) $y' = e^x + 10 * \cos(x)$

- (f) $y' = \cos(x) \cdot *e^x$
- (i) $y = e^x \frac{\cos(x) + \sin(x)}{2} + c$ (iii) $y = e^x + 10\sin(x) + c$

- (ii) $y = e^x + x^2 + c$
- (iv) $y = -e^{-x} + c$
- (vi) $y = \operatorname{sen}(x) + c$

- 3. Encontrar la solución general de las siguientes ecuaciones diferenciales:
 - (a) y' = ky

(e) $(1 - \cos(x)) dy = y \sin(x) dx$

(b) $y' = y^2$

(f) $y' = (1+x)(1+y^2)$

(c) y' - 2y + a = 0

(g) $y' + e^{2x}y^2 = 0$

(d) (x+2)y' = yx

(h) $x \log(x) dy = y dx$ (x > 1)

4. Dada la ecuación y' = ky hallar el valor de k y la condición inicial del PVI que tiene la solución $y = Ce^{kt}$ que pasa por los puntos correspondientes a cada caso

(ii)
$$(0,4), (5,1/2)$$

(iii)
$$(1,1), (5,5)$$

Ecuaciones diferenciales lineales de 1er orden

5. Encontrar las soluciones generales de las siguientes ecuaciones lineales:

(a)
$$y' - y = 3$$

(b)
$$y' + 2xy = 0$$

(c)
$$y' + 2xy = x$$

(d)
$$y' + 2y = 6e^x$$

(e)
$$xy' = y + (x+1)^2$$
, $x > 0$

(f)
$$xy' + y = x + x^3$$
, $x > 0$

$$(g) y' + ky = e^{-kx}$$

(h)
$$y' + y = \operatorname{sen}(x)$$

(i)
$$y' tg(x) = y - 1$$

(j)
$$(1-x^2)y' + xy = x$$
, $0 < x < 1$

(k)
$$y' + y = 2xe^{-x} + x^2$$

(l)
$$y' + y = \frac{1}{1 + e^{2x}}$$

(m)
$$(2y - x^3) dx = x dy$$
, $x > 0$

6. Resolver las siguientes ecuaciones diferenciales con condición inicial:

(a)
$$\begin{cases} y' - \sin(x)y = \sin x \\ y(\frac{\pi}{2}) = 8 \end{cases}$$
 (c) $\begin{cases} y' = y \operatorname{tg}(2x)y \\ y(0) = 2 \end{cases}$ (e) $\begin{cases} xy' - 3y = x^4 \\ y(1) = -1 \end{cases}$ (b) $\begin{cases} (x+1)y' = 2y \\ y(0) = 1 \end{cases}$ (d) $\begin{cases} y' - 2y = \cos(x) \\ y(0) = 2 \end{cases}$ (f) $\begin{cases} 2xy' = 3y \\ y(1) = 4 \end{cases}$

(c)
$$\begin{cases} y' = y \operatorname{tg}(2x)y \\ y(0) = 2 \end{cases}$$

(e)
$$\begin{cases} xy' - 3y = x^4 \\ y(1) = -1 \end{cases}$$

(b)
$$\begin{cases} (x+1)y' = 2y \\ y(0) = 1 \end{cases}$$

(d)
$$\begin{cases} y' - 2y = \cos\left(x\right) \\ y(0) = 2 \end{cases}$$

(f)
$$\begin{cases} 2xy' = 3y \\ y(1) = 4 \end{cases}$$

- 7. (a) Hallar p(x) para que la función $y = \cos(x)$ sea solución de $y' + p(x) \cdot y = 0$ ¿Cuál es la solución general de esta ecuación?
 - (b) Hallar la solución general de $y'+p(x)\cdot y=e^x\cos^2(x)$ donde p(x) es la función calculada en (a).
- 8. Considerar la ecuación diferencial $y' \cot(x) \cdot y = f(x)$. Hallar f(x) de manera que $y(x) = \operatorname{sen}(x) \cdot [(x-1) \cdot e^x + 1]$ sea solución de la ecuación dada. Para la f hallada, buscar todas las soluciones de la ecuación diferencial original.
- 9. Hallar una solución de la ecuación diferencial y'=2y de manera que la recta tangente a su gráfico en el punto (0, y(0)) sea paralela a la recta y = 3x. ¿Es única?

2

Método de Euler

Dada la ecuación diferencial y' = F(x, y) con $y(x_0) = y_0$ y una discretización uniforme con paso $h, x_0 < x_1 < ... < x_k < x_{k+1} < ... < x_N < ...$ de la variable independiente $x \in \mathbb{R}$, se pueden obtener valores aproximados y_{k+1} de $y(x_{k+1})$ de la siguiente manera:

$$x_{k+1} = x_k + h,$$
 $y_{k+1} = y_k + hF(x_k, y_k)$ $k \ge 1, h \in (0, 1)$ chico

- 10. Usar el método de Euler para obtener una solución aproximada de los siguientes problemas de valor inicial. Hacer una tabla de valores comparando con los de la solución exacta.
 - (a) y' = 1 y, y(0) = 2, n = 5, para h = 0.2 y para h = 0.1.
 - (b) y' = y y(0) = 3, n = 5, para h = 0.2 y para h = 0.1.

Aplicación: Modelos matemáticos

- 11. (Población salvaje) La velocidad de cambio del número de coyotes N(t) en una población es directamente proporcional a 650 N(t), donde t es el tiempo en años. Cuando t = 0, la población es 300, y cuando t = 2, la población se incrementó a 500. Encontrar N(3).
- 12. Una comisión estatal libera 40 alces en una zona de refugio. Después de 5 años, la población de alces es de 104. La comisión cree que la zona no puede soportar más de 4000 alces. La tasa de crecimiento de la población de alces p = p(t) verifica

$$\frac{dp}{dt} = kp\left(1 - \frac{p}{4000}\right), \qquad 40 \le p \le 4000$$

donde t es el número de años.

- (a) Hallar una fórmula para p(t).
- (b) Estimar la población de alces después de 15 años.
- (c) Encontrar $\lim_{t\to +\infty} p(t)$.
- 13. Resolver la ecuación diferencial logística $y' = ky \left(1 \frac{y}{L}\right)$ para $k, L \in \mathbb{R}$.
- 14. Hallar para cada caso el valor de los parámetros k, L de la ecuación logística y' = ky(1 p/L).

- 15. En el tiempo t=0, un cultivo bacteriano pesa 1 gramo. Dos horas después, el cultivo pesa 2 gramos. El peso máximo del cultivo es de 10 gramos.
 - (a) Escribir la ecuación logística que modele la razón de crecimiento del peso del cultivo.
 - (b) Encontrar el peso del cultivo después de 5 horas.
 - (c) Aproximar el peso después de 5 horas usando el método de Euler con un tamaño de paso de h=1. Comparar la aproximación con el resultado exacto.
 - (d) ¿Cuándo el peso del cultivo será de 8 gramos?
 - (e) ¿En qué tiempo se incrementará el peso más rápidamente? Explicar.

Adicionales

16. Resolver las siguientes ecuaciones diferenciales:

- 17. Sea y(t) una solución del PVI $y' + 3by = e^{2t}$, y(0) = 1, que satisface que la recta tangente a la curva solución en $(x_0, y_0) = (0, 1)$ es horizontal. Hallar el valor de b y la solución.
- 18. Considerar la ecuación diferencial $y' + \frac{1}{x \ln x} y = f(x)$.
 - (a) Hallar la solución general de la ecuación homogénea asociada.
 - (b) Hallar f de manera tal que $y(x) = \frac{x^3}{\ln x}$ sea solución de la ecuación original.
 - (c) Para la f hallada en el item anterior, hallar la solución general de la ecuación diferencial y la solución particular que satisface y(2) = 1.
- 19. Considerar la ecuación diferencial para circuitos eléctricos dada por $L\frac{dI}{dt} + RI = E(t)$, donde L denota la inductancia, I la corriente eléctrica, R la resistencia y E el votaje producido por la potencia.
 - (a) Resolver la ecuación diferencial dado un voltaje constante E_0 .
 - (b) Usar el resultado obtenido en (a) para encontrar la ecuación para la corriente si I(0) = 0, $E_0 = 120$ volts, R = 600 ohms y L = 4 henrys. ¿Cuándo alcanzará la corriente el 90% de su valor limitante?
- 20. Sea f una función derivable tal que para todo x real se satisface

$$e^{2x}f(x) = (x+1)^2 + 4\int_0^x e^{2t}f(t)dt.$$

Calcular f(0) y encontrar f(x).

21. El decrecimiento radiactivo se mide en términos de la semivida o vida media, que es el número de años requeridos para reducir la muestra radiactiva a la mitad. La vida media del Plutonio (Pu-239) es 24100 años. Se sabe además que la tasa de desintegración es proporcional a la cantidad, es decir $\frac{dy}{dt} = ky$. Si 10 gramos del isótopo Pu-239 se liberaron en el accidente nuclear de Crenobyl. ¿Cuánto tiempo tomará a los 10 gramos disminuir 1 gramo?

4