KANTHAL® HANDBOOK

Resistance Heating Alloys and Systems for Industrial Furnaces

Copyright Kanthal AB.
Printed in Sweden by PRIMAtryck, 2001
Catalogue 1-A-5B-3 09.2001 5000

*KANTHAL, NIKROTHAL, TUBOTHAL,
HOT ROD, CRUSILTIE, FIBROTHAL are
registred trademarks of Kanthal AB, Sweden.
TM MEANDERTHAL.

This information, which may be subject to change, is offered solely for your consideration and should not be taken as a warranty or representation for which we assume legal responsibility. It is not to be understood as permission or recommendation to practice a patented invention without a licence and the user should determine whether relevant patents exist.

KANTHAL HANDBOOK

Resistance Heating Alloys and Systems for Industrial Furnaces

Contents	Page
Metallic Heating Elements from Kanthal	2
KANTHAL or NIKROTHAL?	3
KANTHAL APM Heating elements	4
Physical and Mechanical Properties	5
Furnace Wall Loading	6
Element Surface Load	7
Operating Life and Maximum Permissible Temperature	8
Key Data for Kanthal Elements	10
Tubothal Heating Elements	12
KANTHAL APM Extruded Tubes	15
KANTHAL APM standard product range	17
Tables – KANTHAL A-1 and APM	19
– KANTHAL AF	20
– KANTHAL D	21
– NIKROTHAL 80	22
– NIKROTHAL 70	23
– Terminals	24

1

Metallic heating elements from Kanthal

This booklet contains technical data for our resistance heating alloys KANTHAL and NIKROTHAL.

We also include some instructions for the calculation and design of heating elements for industrial furnaces as well as examples of support systems and insulation. The APM tubes are described shortly. For more information, ask for the special Tube Handbook.

The latest product- and application information is found on www.kanthal.com.

We can assist you:

- in choosing suitable element material, element type, support system and insulation,
- by supplying complete heating elements ready for installation,
- to upgrade electric furnaces to latest heating technology for maximum output and economy
- to replace radiant tubes with Kanthal APM tubes in both gas- and electrically heated furnaces and to supply complete recuperative systems (SER).

Our modern workshops have developed considerable experience in manufacturing heating elements and can manufacture to any specifications.

Our delivery times are short and our service objectives are high.

KANTHAL or NIKROTHAL?

There are two main types of electric resistance alloys. Nickel-chromium (e.g. 80 Ni, 20 Cr) was developed around the turn of the century and was soon used as heating element material in industrial furnaces as well as in electric household appliances.

In the thirties Kanthal introduced a new resistance heating alloy based on iron-chromium-aluminium with a longer life and a higher maximum operating temperature than nickel-chromium.

The two main types of alloys have their own specific properties, with advantages and disadvantages, and are supplied in many different grades and forms. Kanthal manufactures both types of alloys under the names NIKROTHAL (nickel-chromium) and KANTHAL (iron-chromium-aluminium).

In general KANTHAL is superior to NIKROTHAL in respect of performance and life and is therefore nowadays a standard material choice when it comes to metallic heating elements for industrial furnaces. The most important advantages are:

- Higher maximum element temperature of 1425°C 2600°F compared to 1250°C 2280°F
- Longer life (2–4 times)
- Higher surface load
- · Higher resistivity
- · Lower density
- No spalling oxide, which may contaminate the goods and the furnace and also cause short circuit or failure of elements and gas burners.

For the furnace user, using KANTHAL results in less material at a lower price and also – a longer life. Table 1 shows an example of weight saving – and lower cost – obtained by using KANTHAL instead of nickel-chromium alloys. This lower element weight will also result in considerable cost savings in the support system, because fewer suspension hooks are necessary.

The NIKROTHAL alloy may have special advantages if you need a heating element having very good mechanical properties in the hot state. KANTHAL APM has, however, creep strength at elevated temperatures in the same level as NiCr 80/20.

Table 1. A 120 kW furnace equipped with R.O.B. elements. 3 elements of 40 kW each, 380 V.

Element Data	NiCr 80	0/20		AL AF	
Furnace temperature, °C °F	1000	1830		1000	1830
Element temperature, °C °F	1068	1955		1106	2025
Hot resistance, R _w	3.61			3.61	
Temperature factor, C _t	1.05			1.06	
Cold resistance, R ₂₀	3.44			3.41	
Wire diameter, mm in	5.5	0.217		5.5	0.217
Surface load, W/cm² W/in²	3.09	19.9		3.98	25.7
Wire length, m, ft 3 elements	224.9	738		174.6	573
Wire weight, kg, <i>lb</i> 3 elements	44.4	98		29.6	65

Weight saving: $\frac{44.4 - 29.6}{44.4} = 33\%$ $\frac{98 - 65}{98} = 33\%$

Kanthal APM heating material

Kanthal APM is a resistance material which can be used to improve the performance at high temperatures, where conventional metallic elements can cause problems (e.g. bunching, creeping, oxide spalling) and to open up new applications where metallic elements are not used today.

The great advantages of Kanthal APM are:

Improved hot strength, giving:

- much better form stability of the heating element
- · less need for element support
- low resistance change (ageing)
- longer element life

Excellent oxide, giving:

- good protection in most atmospheres, especially corrosive atmospheres
- · no scaling and impurities
- · a longer element life

Creep rupture strength

	Temperature						
Time (h)	1000°C	1832°F					
	MPa	psi					
100	5.6	812					
1000	3.4	478					
10000	2.2	320					

	Temperature						
Time (h)	1200°C	2192°F					
	MPa	psi					
100	3.3	478					
1000	1.6	232					
10000	0.7	100					

	Temperature							
Time (h)	1400°C	2552°F						
	MPa	psi						
100	1.3	189						
1000	0.5	72						
10000	0.2	30						

Comparison between Kanthal APM (top) and conventional FeCrAl after 1250 h at max 1225°C, 2240°F element temperature.

Fig. 2 Sagging test dia. 9.5 mm, 1300°C, *2370°F* and 1400°C, *2550°F*, 300 mm between supports.

Physical and Mechanical Properties

KANTHAL and NIKROTHAL alloys are generally available in wire or strip form. Physical and mechanical properties of the alloys are listed in Table 2.

Table 2. KANTHAL and NIKROTHAL, Wire and Strip.

	KANTHAL	KANTHAL	KANTHAL	KANTHAL	NIKROTHAL	NIKROTHAL	NIKROTHAL	NIKROTHAL
	APM	A-1	AF	D	80	70	60	40
Max continuous operating temp., °C °F Nominal composition, % Cr Al Fe Ni Resistivity at 20°C, Ω mm 2 m 1 at 68 °F, Ω /cmf	1425 2600 22 5.8 Rest - 1.45 872	1400 2550 22 5.8 Rest - 1.45 872	1300 2370 22 5.3 Rest - 1.39 836	1300 2370 22 4.8 Rest - 1.35 812	1200 2190 20 - 80 1.09 655	1250 2280 30 - 70 1.18 704	1150 2100 15 - 60 1.11 668	1100 2010 20 - 35 1.04 626
Density, g/cm³ Ib/in³ Coefficient of thermal expansion, K⁻¹	7.10	7.10	7.15	7.25	8.3	8.1	8.2	7.9
	0.256	0.256	0.259	0.262	0.300	0.296	0.296	0.285
20-750°C, 68–1380°F 20-1000°C, 68–1838°F Thermal conductivity at 20°C W m ⁻¹ K ⁻¹	14.10 ⁶ 15.10 ⁶	14.10 ⁶ 15.10 ⁶	14.10 ⁶ 15.10 ⁶	14.10 ⁶ 15.10 ⁶	17.10 ⁶ 18.10 ⁶	16.10 ⁶ 17.10 ⁶	16.10 ⁻⁶ 17.10 ⁻⁶	18.10 ⁶ 19.10 ⁶
68°F, Btu in ft² h⁻¹ °F⁻¹ Specific heat capacity KJ kg¹ K¹, 20°C Btu lb⁻¹ °F⁻¹, 68°F	90 0.46 0.110	90 0.46 0.110	90 0.46 0.110	90 0.46 0.110	104 0.46 0.110	90 0.46 0.110	90 0.46 0.110	90 0.50 0.119
Melting point, °C °F Mechanical properties (approx.)* Tensile strength, N mm²	1500	1500	1500	1500	1400	1380	1390	1390
	2730	2730	2730	2730	2550	2515	2535	2535
	680	680	680	680	750	875	750	750
psi Yield point, N mm² psi Hardness, Hv Elongation at rupture, % Tensile strength at 900°C, Nmm² 1650°F, psi	99000	99000	99000	99000	109000	127000	109000	109000
	445	445	445	445	450	450	450	450
	65000	65000	65000	65000	65000	65000	65000	65000
	230	230	230	230	180	185	180	180
	19	19	19	19	30	30	30	30
	40	34	37	34	100	120	100	120
	5800	5000	5400	5000	14500	17400	14500	17400
Creep strength at 800°C, N mm² 1000°C, N mm² 1470°F, psi 1830°F, psi Magnetic properties Emissivity, fully oxidized condition	14 1.8 2000 260	6 1 870 145	8 1.5 1160 215	5000 6 1 870 145 C 1100°F 0.70	15 4 2160 580	17400 15 4 2160 580 Non 0.88	15 4 2160 580 Slightly 0.88	20 4 2160 580 Non 0.88

^{*)} The values given apply for sizes of 4 mm, 0.16 in diameter for the KANTHAL alloys and of 1 mm, 0.04 in for the NIKROTHAL alloys.

Furnace wall loading

Figure 3 shows the maximum recommended wall loading for four different element types. Please note that the furnace wall loading depends on both element type and element surface load. The lower the surface load, the longer the element life will be. (For description of the element types, see page 7).

When elements are placed on the base of a furnace, special attention must be paid to avoid overheating of the elements. For example, with a hearth plate having a thermal conductivity of (λ)=1.0 Wm⁻¹ K⁻¹ 6.39 Btu in ft⁻² h⁻¹ °F⁻¹ and thickness of 15 mm, 0,63 in, at a power concentration on the bottom surface of 15 kW/m², 1.4 kW/ft², a temperature drop of 225°C, 435°F is obtained through the plate. The total temperature difference between the

base elements and the furnace temperature would thus be about 375°C, 700°F. This imposes a furnace operating temperature of 1000°C, 1830°F even when using the high-temperature KANTHAL A-1 alloy, since the element temperature will be about 1375°C, 2500°F.

The example illustrates the significance of choosing a hearth plate of a material having good thermal conductivity, for example silicon carbide or heat-resistant steel. Beside measuring the temperature in the furnace chamber, it may also be advisable to measure the temperature of the base elements by means of a separate thermocouple.

Fig. 3 Maximum recommended wall loading as a function of furnace temperature for different element types.

- a) Wire and strip elements in grooves
- b) Wire elements on ceramic tubes
- vertically hanging, corrugated wire elements

Element surface load

Since KANTHAL alloys can be operated at higher temperatures than NIKROTHAL alloys, a higher surface loading can be achieved without jeopardizing the life. Element design is also of great importance. The more freely radiating the element form, the higher the maximum surface load. Therefore the R.O.B. (Rod Over Bend) type element (corrugated heavy wire, mounted on the surface), can be loaded the highest, followed by the corrugated strip element.

Spiral elements on ceramic tubes can be loaded higher than spiral elements in grooves.

The values in Fig. 4 are given for the following design conditions:

Element a

temperature

Wire and strip element in grooves. Wire diameter min. 3 mm, 0.12 in, strip thickness min. 2 mm, 0.08 in.

Element b

Wire element on ceramic tube Wire diameter min. 3 mm 0.12 in.

Element types c (strip) and d (heavy wire)

Strip thickness min. 2.5 mm, 0.1 in. Wire diameter min. 5 mm, 0.2 in. Pitch min. 50 mm, 2.0 in at maximum loop length and maximum surface load.

Maximum recommended loop length:

<900°C <1650°F300 mm 11.8 in 1000°C 1820°F 250 mm 9.8 in

1100°C 2010°F 200 mm 7.9 in

1200°C 2190°F 150 mm 5.9 in

1300°C 2370°F 100 mm 3.9 in

For finer wire diameters and smaller strip thicknesses lower surface loads and shorter loop lengths must be chosen to avoid element deformation and subsequent shorter element life.

800

900 1000 1100°C

1470 1650 1830 2010°F

800 900 1000 1100 1200 1300°C

1470 1650 1830 2010 2190 2370°F

Operating life and maximum permissible temperature

When heated, resistance heating alloys form an oxide layer on their surface, which prevents further oxidation of the material. To accomplish this function the oxide layer must be dense and resist the diffusion of gases. It must also be thin and adhere to the metal under temperature fluctuations.

In these respects the oxide formed on KANTHAL alloys is superior to that formed on NIKROTHAL alloys, which contributes to the much longer operating life of KANTHAL heating elements. Figure 5 shows the comparative element life.

Below you will find some general advice on how to obtain as long an element life as possible.

Use KANTHAL Alloys

Heating elements made of KANTHAL alloys have 2–4 times longer life than heating elements made of nickel-chromium material. The higher the temperature, the greater the difference.

Avoid temperature fluctuations

The operating life of the heating elements will be reduced by rapid temperature fluctuations. It is therefore advisable to choose an electric control equipment, which gives as even a temperature as possible, e.g. thyristors.

Choose thick element material

The material thickness has a direct relationship to the element life, in that, as the wire diameter is increased, more alloying element is available per surface unit to form a new oxide. Thus, at given temperature, thicker wires will give a longer life than thinner wires. Accordingly, for strip elements, increased thickness gives a longer life.

Adjust the element temperature to the furnace atmosphere

Table 3 shows some common furnace atmospheres and their influence on the maximum operating temperature of the heating elements. NIKROTHAL should not be used in furnaces having a CO-containing protective gas atmosphere due to the risk of "green rot" at 800–950°C 1470–1740°F.

In such cases a KANTHAL alloy is recommended, provided the heating elements are preoxidized in air at 1050°C 1920°F for 7–10 hours. Reoxidation of the heating elements should be carried out at regular intervals.

Avoid corrosion from solid substances, fluids and gases

Impurities in the furnace atmosphere, for instance oil, dust, volatiles or carbon deposits can damage the heating elements.

Sulphur is harmful to all nickel alloys. Chlorine in different forms will attack both KANTHAL and NIKROTHAL alloys. Splashes of molten metal or salt may also damage the heating elements.

Fig. 5. Comparative life (KANTHAL A-1 at 1200°C. 2190°F = 100%

- a) KANTHAL APM
- e) NIKROTHAL 80
- b) KANTHAL A-1 c) KANTHAL AF
- f) NIKROTHAL 60
- d) KANTHAL D
- g) NIKROTHAL 40

Table 3. Maximum Permissible element Temperatures in various Atmospheres.

	KANTHAL A-1 and APM °C °F	KANTHAL AF °C °F	KANTHAL D °C °F	NIKROTHAL 80 and 70 °C °F	NIKROTHAL 60 °C °F	NIKROTHAL 40 °C °F	
Oxidizing: Air, dry Air, moist	1400* 2550 1200 2190	1300 2370 1200 2190	1300 2370 1200 2190	1200****2 <i>190</i> 1150 <i>2100</i>	1150 <i>2100</i> 1100 <i>2010</i>	1100 2010 1050 1920	
Neutral: N ₂ , Nitrogen** Ar, Argon Exothermic: 10 CO, 15 H ₂ 5 CO ₂ , 70 N ₂	1200 2190 1400* 2550 1150 2100	1200 <i>2190</i> 1300 <i>2370</i> 1150 <i>2100</i>	1150 <i>2100</i> 1300 <i>2370</i> 1100 <i>2010</i>	1250 2280 1250 2280 1100*** 2010	1200 <i>2190</i> 1200 <i>2190</i> 1100 <i>2010</i>	1150 <i>2100</i> 1150 <i>2100</i> 1100 <i>2010</i>	
Reducing: Endothermic: 20 CO, 40 H ₂ 40 N ₂ H ₂ , Hydrogen Cracked ammonia: 75 H ₂ , 25 N ₂	1050 1920 1400* 2550	1050 <i>1920</i> 1300 <i>2370</i>	1000 <i>1830</i> 1300 <i>2370</i>	1100*** 2010 1250 2280 1250 2280	1100 2010 1200 2190 1200 2190	1100 2010 1150 2100 1150 2100	
Vacuum: 10 ⁻³ torr	1150 2100	1200 2190	1100 2010	1000 1830	900 1650	900 1650	

^{*)} Max 1425°C, 2600°F, for APM.

**) The values apply for pre-oxidized material.

***) Please note risk of "green rot" formation in carburizing atmospheres. Use KANTHAL AF or NIKROTHAL 70.

****) 1250°C, 2280°F, for NIKROTHAL 70.

Key Data for Kanthal Elements

Table 4.

	Wire E	lements		
Element systems	Spiral	Spiral	Porcupine	Rod over Bend
Supports	Ceramic tubes	Grooves	Ceramic tubes	Metallic rods
			- 	70
Material	Sillimanite	Chamotte or Grade 28	Sillimanite	Kanthal APM
Max. furnance temperature, °C °F	1300 2370	1250 2280	800 1470	1300 2370
Max. wall loading at 1000°C 1830°F furnace temperature, kW/m² kW/ft²	40 3.7	35 3.3	-	50 4.6
Max. surface load at 1000°C 1830°F furnace temperature W/cm² W/in²	3–4 19–26	3–4 19–26	_	5–6 32–39
Wire diameter (d), mm in	2.0–6,5 0.08–0.26	2.0-5.0 0.08-0.2	1.0–6.5 <i>0.04–0.26</i>	>5.0 >0.2
Strip thickness (t), mm in	- -	- -	_ _	_
Strip widht (w), mm	-	-	-	_
Outer coil diameter (D), mm	(12–14) d	(5–6) d	-	-
Max. loop length at 1000°C 1830°F furnace temperature, mm in	Ξ	Ξ	Ξ.	250 9.8
Min. pitch at max. loop length, mm in	3d	2d	3d	40 1.6

		Strip Ele	ements		
Corrugated	Looped	Deep- Corrugated	Deep- Corrugated	Deep- Corrugated	Corrugated
Metallic staples	Ceramic tubes	Ceramic cup locks	Ceramic bushes	Ceramic tubes	Grooves
M	WO				
U-shaped KANTHAL- nails	Sillimanite	Cordierite Mullite	Cordierite or Mullite	Sillimanite	Chamotte or Grade 28
1300 2370	1300 2370	1300 2370	1300 2370	1300 2370	1300 2370
50 <i>4.6</i>	60 5.6	60 5.6	60 5.6	60 5.6	20–40 1.9–3.7
3–6 19–39	5–6 32–39	5–6 32–39	5–6 32–39	5–6 32–39	3–4 32–39
2,0-5,0 0.08-0.2	≽5,0 ≽0.2	-		_ _	_
- -		2.0–3.0 0.08–0.12	2,0–3,0 0.08–0.12	2,0–3,0 0.08–0.12	1,5–3,0 0.06–0.12
-	-	(8–12) t	(8–12) t	(8–12) t	(8–12) t
-	-	-	-	-	-
100 3.9	250 9.8	250 9.8	250 9.8	250 9.8	(2-3) w
40 1.6	40 1.6	50 2.0	50 2.0	50 2.0	1.5 w

Tubothal® heating element

TUBOTHAL electrical elements when used in radiant tubes have been designed to give a long life whilst operating at maximum power. This has been made possible due to the application of APM wire in combination with an improved element design, developed and tested by Kanthal, with a power rating up to 40 kW per metre (12.2 kW per ft.) length. Furthermore the element assembly is low weight, which means that long elements and tubes can be mounted horizontally without any extra support.

Long life

The use of APM wire is the reason for the high performance of TUBOTHAL elements. The life at 1000°C 1830°F furnance temperature is more than double that of NiCr wire.

Another major advantage of the Tubothal system is the possibility to adjust the element to existing power supply. Typically no transformer is needed.

TUBOTHAL is manufactured in lengths up to 6 meters or 20ft.

Extensive range of sizes

The size and rating of the element can be designed to suite all situations. Incorporating the six standard sizes of 68, 80, 110, 124, 154 and 170 mm (2.7, 3.2, 4.9, 6.1 and 6.7 in) diameter in lengths up to 6 m, 20 ft.

The complete package

TUBOTHAL elements are suitable for mounting in all types of radiant tubes. But for the most effective operation the use in Kanthal APM tubes is recommended.

The APM tubes have a superior life and can be used up to 1250°C 2280°F. They can stand a very high loading up to 7.5 W/cm² 48 W/in² at 1000°C 1830°F. The tubes are delivered completely readymade with flange and suitable TUBOTHAL elements.

TUBOTHAL and APM tubes - the complete heating package.

Kanthal AB, Head office and main production unit at Hallstahammar, Sweden.

Kanthal APM Extruded Tubes

Kanthal APM is a powder-metallurgical alloy able to withstand a maximum temperature of 1425°C, limited to 1250°C in tubes. Kanthal APM tubes are seamless and extruded.

The APM is the outstanding choice for high-temperature, corrosive applications. The formation of a cohesive aluminum-oxide film on the inner as well as on the outer surface of the radiant tube, will keep it free from contamination. This in turn means there is no need for cleaning or turning of the tube. The adherent aluminum film formed on the tube is also an extremely efficient barrier against high-carbon activity. It makes the tube highly resistant to carburisation also in those cases where free carbon is allowed to accumulate on its surface. In addition, it makes Kanthal APM highly resistant to sulphurus atmospheres.

Kanthal APM tubes are suitable in both gas- and electrically heated furnaces.

Higher Temperature and Longer Life

- * Made of well-proven powder FeCrAl Kanthal alloy.
- Excellent form stability at high temperature.
- Protective surface oxide provides high tolerance to corrosive environments such as sulphurus atmospheres.
- No carburisation. The aluminium oxide protects the alloy from carburisation in high carbon-potential environments.
- * The oxide is non-spalling. No scaling and no impurities inside the tube to contaminate the heating element or gas burner, and no scaling on the outside to contaminate the goods in the furnace.

- * High loading potential. At a furnace temperature of 1000°C (1830°F) the loading can be more than double that of a NiCr tube.
- APM tubes are extruded so there are no welded seams thus eliminating a source of potential failure.
- * APM tubes weight less than equivalent NiCr tubes of the same dimension.
- * Ready to install. Supplied flanged, with or without inner tube and gas burner or suitable electric heating element.
- * Can operate at a maximum tube temperature of 1250°C (2280°F).

Comparison between NiCr and Kanthal APM tubes after 1000 hours at 1150°C 2100°F.

The NiCr tubes are severely contaminated with oxide flakes while the Kanthal APM tubes are completely clean.

Gas fired systems

The product range includes straight or U-formed tubes or complete systems (SER) with inner and outer tubes and gas burner designed into a single ended recuperative unit.

The system will be delivered in sizes from 89 to 154 mm, 3.5 - 6 in outer tube diameter, to suit most furnaces on the market.

Electrically heated furnaces

Kanthal APM tubes is the ideal choice also for electrically heated furnaces. Our manufacturing program comprises a complete range of electric elements and tubes for most applications. The elements we recommend are Silicon Carbide, Kanthal Super, Tubothal and Kanthal AF. They are all delivered as complete ready to install heaters with elements, support- and insulation material and tubes.

Kanthal APM tubes in a gas fired sealed quench furnace.

Gas fired

U-type, straight through or SER systems with inner- and outer tubes and gas burner

Electrically heated

Kanthal Silicon Carbide elements

Kanthal Super elements

Kanthal AF

Tubothal

Kanthal APM-tubes standard product range

Nominal Size	OD mm	Wall thickness mm	Weight kg/m	OD in	Wall thickness in	Weight ib/ft	Remarks
3/4" Sch 40S	26.67	2.87	1.52	1.05	0.11	1.02	
o, . • • • • • • • • • • • • • • • • • •	33.7	6.0	3.71	1.33	0.24	2.49	
1" Sch 40S	33.4	3.38	2.26	1.31	0.13	1.52	
	40	3.0	2.48	1.57	0.12	1.67	**
	50.8	6.35	6.35	2.00	0.25	4.27	**
2" Sch 40S	60.33	3.91	4.92	2.38	0.15	3.31	**
	64	4.0	5.35	2.52	0.16	3.60	**
2 1/2"	73	4.5	6.88	2.87	0.18	4.62	**
	75	4.5	7.08	2.95	0.18	4.76	**
	83	5.0	8.70	3.27	0.20	5.85	***
	87	5.0	9.15	3.43	0.20	6.15	6 ***
3" Sch 40S	88.9	5.49	10.2	3.50	0.22	6.88	***
	100	5.0	10.6	3.94	0.20	7.12	5 ◊ ***
	109	5.0	11.6	4.29	0.20	7.79	***
4"	115	5.5	13.4	4.53	0.22	9.02	***
5"	128	5.5	15.0	5.04	0.22	10.1	4 ***
	146	6.0	18.7	5.75	0.24	12.6	3 ◊ *
6"	154	6.0	19.8	6.06	0.24	13.3	*
	164	6.0	21.2	6.46	0.24	14.2	*
	178	8.0	30.3	7.01	0.31	20.4	2 *
	198	9.0	37.9	7.80	0.35	25.5	1 ◊ *
	220	8.5	40.1	8.66	0.33	26.9	*
	260	12.0	55.8	10.2	0.47	37.5	*

Tubothal elements

- 1. Suits Tubothal element Ø 170
- 2. Suits Tubothal element Ø 154
- 3. Suits Tubothal element Ø 124
- 4. Suits Tubothal element Ø 110
- 5. Suits Tubothal element ∅ 80
- 6. Suits Tubothal element ∅ 68

Kanthal Super elements

♦ Suits Kanthal Super

Kanthal silicon carbide

All tubes suit depending on element type and power.

SER Gas fired systems

- * Outer tube
- ** Inner tube
- *** Inner or outer tube

KANTHAL A-1 and APM

Wire and strip. Standard stock items.

Resistivity 1.45 Ω mm² m⁻¹. Density 7.1 g cm⁻³. To obtain resistivity at working temperature, multiply by factor C_t in following table.

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400
Ct	1.00	1.00	1.00	1.00	1.00	1.01	1.02	1.02	1.03	1.03	1.04	1.04	1.04	1.04	1.05

$\begin{array}{cccc} \mbox{Wire} & \mbox{Resistance} & \mbox{Weight} & \mbox{cm$^2\!/$\Omega} \\ \mbox{dia mm} & \Omega\mbox{/m} \ 20\mbox{°C} & \mbox{g/m} & \mbox{20\mbox{°C}} \end{array}$	Strip*) Resistance Weight cm 2 / Ω WxT mm Ω /m 20°C g/m 20°C
dia mm Ω/m 20°C g/m 20°C 1,0	WxT mm Ω/m 20°C g/m 20°C 5.0x1.0 .0.290 .35.5 .414 10.0x1.0 .0.145 .49.7 .1520 15.0x1.0 .0.0967 .107 .3310 20.0x1.0 .0.725 .142 .5790 12.0x1.2 .0.101 .102 .2620 15.0x1.2 .0.101 .128 .4020 10.0x1.5 .0.097 .107 .2380 12.0x1.5 .0.0806 .128 .3350 15.0x1.5 .0.0644 .160 .5120 20.0x1.5 .0.0483 .213 .8900 25.0x1.5 .0.0387 .266 .13700 30.0x1.5 .0.0320 .320 .19600
2.4*) 0.321 32.1 235 2.5 0.295 34.9 266 2.6 0.273 37.7 299 2.8 0.235 43.7 374 2.9 0.219 47.0 416 3.0 0.205 50.2 460 3.25 0.175 58.9 584 3.5 0.151 68.3 730 3.75 0.131 78.4 897 4.0 0.115 89.2 1090 4.25 0.102 101 1306 4.5 0.0912 113 1550 4.75 0.0818 126 1824 5.0 0.0738 139 2127 5.5 0.0610 169 2831	15.0x2.0 .0.0483 213 7040 20.0x2.0 .0.0363 284 12100 25.0x2.0 .0.0290 355 18600 30.0x2.0 .0.0242 426 26500 20.0x2.5 .0.0290 355 15500 25.0x2.5 .0.0232 444 23700 30.0x2.5 .0.0193 533 33600 20.0x3.0 .0.0242 426 19008 25.0x3.0 .0.0193 533 26200 30.0x3.0 .0.0161 639 41000
6.0 0.0513 201 3676 6.5 0.0437 236 4673 7.0 0.0377 273 5840 7.35 0.0340 300 5840 8.0 0.0288 357 8690 8.25 0.0271 380 9560 9.5 0.0205 503 14600 10.0 0.0185 558 17000	

^{*)} only A-1

KANTHAL AF

Wire and strip. Standard stock items.

Resistivity 1.39 Ω mm² m⁻¹. Density 7.15 g cm⁻³. To obtain resistivity at working temperature, multiply by factor C_t in following table.

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400
Ct	1.00	1.00	1.01	1.01	1.02	1.03	1.04	1.04	1.05	1.05	1.06	1.06	1.06	1.06	1.07

1.0. 1.77 5.62 17.8 10.0x1.0 0.139 71.5 1582 1.1. 1.46 6.79 23.6 15.0x1.0 0.0927 107 3453 1.2. 1.23 8.09 30.7 20.0x1.0 0.0695 143 6043 1.3. 1.05 9.49 39.0 10.0x1.2 0.1158 86 1934 1.4. 0.903 11.0 48.7 12.0x1.2 0.0965 103 2735 1.5. 0.787 12.6 59.9 15.0x1.2 0.0772 129 4196 1.6. 0.691 14.4 72.7 15.0x1.5 0.0618 161 5342 1.7. 0.612 16.2 87.2 20.0x1.5 0.0463 215 9281 1.8. 0.546 18.2 104 25.0x1.5 0.0463 215 939 2.0 0.442 22.5 142 25.0x1.5 0.00463 215 7339 2.2 0.366 27.2 189 20.0x2.0 0.0348 286 1264	Wire Resis dia mm Ω/m	tance Weight 20°C g/m	cm²/Ω 20°C	Strip*) WxT mm	Resistance Ω/m 20°C	Weight g/m	cm²/Ω 20°C
	1.0 1.77 1.1 1.46 1.2 1.23 1.3 1.05 1.4 0.90 1.5 0.78 1.6 0.69 1.7 0.61 1.8 0.52 2.0 0.44 2.2 0.36 2.3 0.33 2.4 0.30 2.5 0.26 2.8 0.22 2.9 0.21 3.0 0.19 3.5 0.14 3.75 0.12 4.0 0.11 4.25 0.08 4.75 0.06 6.0 0.04 6.5 0.04 7.0 0.03 7.5 0.03 7.5 0.03 7.5 0.03 7.5 0.03 1.2 1.2 1.3 1.2 1.4 1.2 1.5 1.2 1.6 1.2 1.7 1.2 <td>7</td> <td> 17.8 23.6 30.7 39.0 48.7 59.9 72.7 87.2 104 142 189 216 245 277 312 390 433 479 609 761 936 1363 1618 1902 2219 2953 3834 4875 6089 7048 7489</td> <td>10.0x1.0 15.0x1.0 20.0x1.0 10.0x1.2 12.0x1.2 15.0x1.5 20.0x1.5 25.0x1.5 25.0x2.0 25.0x2.0 25.0x2.0 30.0x2.0 15.0x2.5 20.0x2.5 20.0x2.5 25.0x3.0</td> <td>0.139 0.0927 0.0695 0.1158 0.0965 0.0618 0.0463 0.0463 0.0463 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0222 0.0185 0.0232 0.0185</td> <td> 71.5</td> <td> 1582 3453 6043 1934 2735 4196 5342 9281 14302 7339 12664 19424 27623 27623 16190 24733 35071 19828 27331</td>	7	17.8 23.6 30.7 39.0 48.7 59.9 72.7 87.2 104 142 189 216 245 277 312 390 433 479 609 761 936 1363 1618 1902 2219 2953 3834 4875 6089 7048 7489	10.0x1.0 15.0x1.0 20.0x1.0 10.0x1.2 12.0x1.2 15.0x1.5 20.0x1.5 25.0x1.5 25.0x2.0 25.0x2.0 25.0x2.0 30.0x2.0 15.0x2.5 20.0x2.5 20.0x2.5 25.0x3.0	0.139 0.0927 0.0695 0.1158 0.0965 0.0618 0.0463 0.0463 0.0463 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0222 0.0185 0.0232 0.0185	71.5	1582 3453 6043 1934 2735 4196 5342 9281 14302 7339 12664 19424 27623 27623 16190 24733 35071 19828 27331
8.0	8.250.02	260382	9968				

KANTHAL D

Wire and strip. Standard stock items.

Resistivity 1.35 Ω mm² m⁻¹. Density 7.25 g cm⁻³. To obtain resistivity at working temperature, multiply by factor C_t in following table.

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	
Ct	1.00	1.00	1.01	1.01	1.02	1.03	1.04	1.05	1.06	1.06	1.07	1.07	1.08	1.08	

Wire dia mm	Resistance Ω/m 20°C	Weight g/m	cm²/Ω 20°C	Strip*) WxT mm	Resistance Ω/m 20°C	Weight g/m	cm²/Ω 20°C
-	1.72	-			2.70		
	1.42				1.35		
	1.19	-			0.900		
	1.02				0.657		
	0.877	·····			0.113		
	0.764				0.0938		
	0.671				0.0750		
1.7	0.595	16.5	89.8	15.0x1.5	0.0600	163	5500
1.8	0.531	18.4	107	20.0x1.5	0.0450	218	9560
	0.430				0.0450		
	0.275			20.0x2.0	0.0338	290	13000
2.8	0.219	44.6	401	25.0x2.0	0.0270	363	20000
3.0	0.191	51.2	493	20.0x2.5	0.0270	363	16700
3.25	0.163	60.1	627				
3.5	0.140	69.8	784				
3.75	0.122	80.1	964				
4.0	0.107	91.1	1170				
4.25	0.0952	103	1403				
4.5	0.0849	115	1666				
4.75	0.0762	128	1959				
5.0	0.0688	142	2285				
5.5	0.0568	172	3041				
6.0	0.0477	205	3948				
6.5	0.0407	241	5019				
	0.0318						
	0.0269						

 $\text{cm}^2\!/\Omega$ 20°C

NIKROTHAL 80

Wire and Strip. Standard stock items.

Resistivity 1.09 Ω mm² m⁻¹. Density 8.30 g cm⁻³. To obtain resistivity at working temperature, multiply by factor C_t in following table.

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200
Ct	1.00	1.01	1.02	1.03	1.04	1.05	1.04	1.04	1.04	1.04	1.05	1.06	1.07

1.0 1.39 6.52 22.6 15.0x1.0 0.0727 .125 .4404 1.2 0.964 9.39 39.1 20.0x1.0 0.0545 .166 .7706 1.3 0.821 11.0 49.7 25.0x1.0 0.0436 .208 .11930 1.4 0.708 12.8 62.1 12.0x1.2 0.0757 .120 .3488 1.5 0.617 14.7 .76.4 15.0x1.5 .0.0484 .187 .6812 1.6 0.542 16.7 92.7 20.0x1.5 .0.0363 .249 .11840 1.8 0.428 221.1 132 25.0x1.5 .0.0291 .311 .18230 2.0 0.347 26.1 181 15.0x2.0 .0.0363 .249 .9358 2.3 0.262 34.5 275 20.0x2.0 .0.0273 .332 .16150 2.5 0.222 40.7 .354 25.0x2.0 .0.0218 .415 .24770 2.6 0.205 44.1 .398 30.0x2.0 .0.0182 .498 <td< th=""><th>Wire Resistance Weight dia mm Ω/m 20°C g/m</th><th>cm²/Ω 20°C</th><th>Strip*) WxT mm</th><th>Resistance Ω/m 20°C</th><th>Weight g/m</th><th>cm²/Ω 20°C</th></td<>	Wire Resistance Weight dia mm Ω/m 20°C g/m	cm²/Ω 20°C	Strip*) WxT mm	Resistance Ω/m 20°C	Weight g/m	cm²/Ω 20°C
5.5 0.0439 197 3760 6.0 0.0386 235 4890 6.5 0.0328 275 6217 7.0 0.0283 319 7764 7.5 0.0247 367 9550 8.0 0.0217 417 11590	1.2 0.964 9.39 1.3 0.821 11.0 1.4 0.708 12.8 1.5 0.617 14.7 1.6 0.542 16.7 1.8 0.428 21.1 2.0 0.347 26.1 2.3 0.262 34.5 2.5 0.222 40.7 2.6 0.205 44.1 2.8 0.177 51.1 3.0 0.154 58.7 3.25 0.131 68.9 3.5 0.113 79.9 3.75 0.0987 91.7 4.0 0.0867 104 4.25 0.0768 118 4.5 0.0685 132 4.75 0.0615 147 5.0 0.0459 197 6.0 0.0386 235 6.5 0.0328 275 7.0 0.0283 319 7.5 0.0247 367	39.1 49.7 62.1 76.4 92.7 132 181 275 354 398 497 611 777 971 1194 1449 1738 2063 2426 2830 3766 4890 6217 7764 9550	20.0x1.0 25.0x1.0 12.0x1.2 15.0x1.5 20.0x1.5 25.0x1.5 15.0x2.0 20.0x2.0 20.0x2.0 25.0x2.0 25.0x2.0 25.0x2.0 25.0x2.0		166	7706 11930 3488 6812 11840 18230 9358 16150 24770 35230 20640 31540

NIKROTHAL 70

Wire. No standard stock items – on special order only.

Resistivity 1.18 Ω mm² m⁻¹. Density 8.10 g cm⁻³. To obtain resistivity at working temperature, multiply by factor C_t in following table.

°C	20	100	200	300	400	500	600	700	800	900	1000	1100	1200
C,	1.00	1.01	1.02	1.03	1.04	1.05	1.05	1.04	1.04	1.04	1.05	1.05	1.06

Wire dia mm	Resistance Ω/m 20°C	Weight g/m	cm²/Ω 20°C
1.0	1.50	6.36	20.9
1.1	1.24		
1.2	1.04	9.16	36.1
1.3	0.889	10.8	45.9
1.4	0.767	12.5	57.4
1.5	0.668	14.3	70.6
1.6	0.587	16.3	85.6
1.7	0.520	18.4	103
1.8	0.464	20.6	122
	0.416		143
2.0	0.376	25.4	167
2.2	0.310	30.8	223
2.5	0.240	39.8	327
2.6	0.222	43.0	368
2.8	0.192	49.9	459
3.0	0.167	57.3	565
3.25	0.142	67.2	718
3.5	0.123	77.9	897
3.75	0.107	89.5	1103
4.0	0.0939	102	1338
4.25	0.0832	115	1605
4.5	0.0742	129	1905
4.75	0.0666	144	2241
5.0	0.0601	159	2614
5.5	0.0497	192	3479
6.0	0.0417	229	4517
6.5	0.0356	269	5742
7.0	0.0307	312	7172
7.35	0.0278	344	8303
7.5	0.0267	358	8822
8.0	0.0235	407	10706
8.25	0.0221	433	11741
9.0	0.0185	515	15244

Terminals

Resistance and Weight Data

Material	Resistivity Ω mm ² m ⁻¹	Density g/cm³
KANTHAL APMKANTHAL DKANTHAL A-1NIKROTHAL 80NIKROTHAL 40	1.35 1.45 1.09	7.25 7.10 8.30
Material	Resistance Ω/m	Weight g/m
KANTHAL D		
8	0.0269	364
10	0.0172	569
12	0.0119	820
16	0.0067	1460
20	0.0043	2280
KANTHAL A-1 and APM		
8	0.0288	357
10	0.0185	558
12		
16		
20 (APM only)		
30 (A-1 only)		
40 (APM only)		
40 (APM Only)	0.0012	8922
NIKROTHAL 80		
8		
10		
12		
16	0.0067	1670
20	0.0043	2610
NIKROTHAL 40		
8	0.0207	397
10	0.0132	620
12	0.0092	893
20		
30		
24		

Systems and Services

Our broad range of resistance materials, finished elements, radiant tubes, construction material and other components cover almost any application up to 2000°C. You can get all your requirements from one supplier, as well as qualified technical advice

We can also supply complete heating systems e.g. radiant tubes with integrated heating elements or inner tubes for gas heating, Fibrothal and Superthal heating units, Porcupine air heaters, Fibrothal complete systems for renovation of furnaces etc. A complete system saves time and resources.

We can assist you

- · in choosing suitable element material, element type, support systems and insulation
- · with the design and calculation of the elements and heating system
- · by supplying complete heating elements or heating systems ready for installation
- · with the upgrading of old furnaces to latest heating technology.

Kanthal Super, Superthal®

Complete element assemblies and heating modules for max. ele-

Extruded Tubes

Kanthal extruded radiant tubes for gas or electriceally heating furnaces.

Wire and Strip

KANTHAL and NIKROTHAL® highest quality material for max. element temp. 1425°C, 2590°F.

Metallic Elements

Ready-made metallic elements manufactured by Kanthal workshops.

Tubothal®

Long-life elements for all types of radiant tubes, ideally KANTHAL APM, up to 1300°C, 2370°F, free radiating temperature.

Heating elements

Elements and systems for diffusion furnaces in the semiconductor industry.

FIBROTHAL®

A complete modular building system for heating and insulation.

Silicon Carbide

Hot Rod, Crusilite, Globar, Silit and multileg silicon carbide heating elements for furnace temp between 700 and 1650°C, 1290 and 3000°F.

KANTHAL

SE-734 27 Hallstahammar, Sweden

Phone: +46 220 210 00 Telefax: +46 220 163 50 E-mail: info@kanthal.com www.kanthal.com