MATH-F307 - Mathématiques Discrètes Laurent LA FUENTE Notes de cours

André Madeira Cortes Nikita Marchant TABLE DES MATIÈRES 2

Table des matières

1	Thé	eorie des Graphes	3
	1.1	Définitions	3
	1.2	Chemins dans les graphes	4
	1.3	Arbres	5
		1.3.1 Définitions	5
		1.3.2 Arbres couvrants et arbres à poids	6
	1.4	Isomorphisme	6
	1.5	Graphes hamiltoniens	7
	1.6	Graphes Eulériens	10
	1.7	Application : le problème du voyageur de commerce (TSP)	11
		1.7.1 Énoncé du problème	11
		1.7.2 Arbres couvrant minimum	12
	1.8	Ordres partiels	13
2	Ari	thmétique Modulaire	17
	2.1	Les entiers et la division euclidienne	17
	2.2	Groupes, anneaux et entiers modulo n \hdots	18
		2.2.1 Relation de congruence	18
	2.3	Cryptologie : Le système RSA	18
		2.3.1 Fonctionnement des clés de chiffrement RSA	19
3	Suit	te	20

1 Théorie des Graphes

1.1 Définitions

Définition 1

Un graphe Γ est un triplet (V, E, γ) où V est un ensemble fini dont les éléments sont appelés sommets, E est un ensemble fini dont les éléments sont appelés arêtes, γ est une fonction $\gamma: E \to Paires(V)$. On notera le plus souvent $\Gamma = (V, E)$ en omettant la fonction γ .

Soit $\gamma(e) = \{x, y\}$ pour $e \in E, x, y \in V$:

- 1. On dit que x et y sont adjacents.
- 2. On dit que e est incidente à x et y.

Définition 2

Soit $\Gamma = (V, E, \gamma)$ un graphe.

- 1. $\gamma(e) = \{x, x\}$ pour $e \in E, x \in V$ est appelé un lacet.
- 2. Si au moins 2 arêtes sont incidentes à 2 mêmes sommets, on les appelle arêtes multiples.
- 3. Un graphe est simple s'il n'a ni lacet, ni arêtes multiples. Dans ce cas, on omet la fonction γ , on note $\Gamma = (V, E)$ et E est identifié un sous-ensemble de Paires(V).

Définition 3

Soit $\Gamma = (V, E)$ un graphe. Le degré d'un sommet $v \in V$ est le nombre d'arêtes incidentes à v, les lacets comptant pour 2 arêtes. On note le degré de v par deg(V).

Exemple

Dans la figure suivante, nous avons 2 sommets de degré 4 et 6 sommets de degré 1.

FIGURE 1 – Exemple degrés des sommets dans la molécule C_2H_6 .

Théorème 1

Soit $\Gamma = (V, E)$, alors

$$\sum_{i=1}^{\#V} deg(v_i) = 2\#E$$

Démonstration

Chaque arête contribue 2 fois dans la somme des degrés.

Corollaire

La somme des degrés des sommets d'un graphe est paire.

Le graphe complet K_n est le graphe simple à n sommets pour lequel chaque paire de sommets est une arête.

Exemple

Définition 5

Un graphe $\Gamma' = (U, F)$ est un sous-graphe de $\Gamma = (V, E)$ si $U \subseteq V$ et $F \subseteq E$. On notera $\Gamma' \leq \Gamma$.

Exemple

 $K_m \leq K_n \text{ si } m \leq n.$

Exercice

Montrer que K_m possède $q = \frac{1}{2}n(n-1)$ arêtes.

1.2 Chemins dans les graphes

Définition 6

Soit $\Gamma = (V, E)$ et $v, w \in V$. Un chemin de v à w de longueur n est une séquence alternée de (n+1) sommets v_0, v_1, \ldots, v_n et de n arêtes e_1, e_2, \ldots, e_n de la forme

$$(v_0, e_1, v_1, e_2, \dots, e_n, v_n)$$

dans laquelle chaque e_i est incident à v_{i-1} et v_i pour $1 \le i \le n$ et $e_i \ne e_j, \forall i \ne j \in 1, \ldots, n$

Un chemin est simple si aucun sommet ne se répète sauf peut-être v_0 et v_n .

Dans un graphe simple on notera juste la suite des sommets lorsque l'on décrit un chemin.

Définition 7

Un graphe $\Gamma = (V, E)$ est connexe si $\forall x, y \in V : \exists$ un chemin de x à y.

La composante connexe de Γ contenant x est le sous-graphe Γ' de Γ dont les sommets et les arêtes sont contenus dans un chemin de Γ démarrant en x.

Définition 8

Soit $\Gamma = (V, E)$ et $v \in V$.

Un cycle est un chemin de v à v.

Un cycle simple est un cycle de v à v dans lequel aucun sommet n'est répété (mis à part le départ et l'arrivée).

1.3 Arbres

1.3.1 Définitions

Définition 9

Un arbre est un graphe simple connexe qui ne contient aucun cycle.

Définition 10

Dans un arbre, les sommets de degré 1 sont appellés les feuilles.

Exemple

Proposition 1

Si T est un arbre avec $p \geq 2$ sommets, alors T contient au moins 2 feuilles.

Démonstration

T a p sommets. Tous les chemins sont de longueur inférieure ou égale à p. Considérons un chemin v_0, v_1, \ldots, v_r pour $v_i \in V$, $i = 0, \ldots, r$ de longueur maximale. Alors, v_0 et v_r sont de degré 1.

Théorème 2 (ATTENTION! Ce théorème et sa démonstration font partie de ceux à connaitre par coeur à l'examen! (pour l'année 2015-2016))

Soit T un graphe simple à p sommets. Alors les 3 assertions suivantes sont équivalentes :

- $i\ T\ est\ un\ arbre.$
- $ii \ T \ a \ (p-1) \ ar {\hat e} tes \ et \ aucun \ cycle.$
- iii T a (p-1) arêtes et est connexe.

Démonstration

 ${
m (i)}\Rightarrow{
m (ii)}$: Montrer qu'un arbre à p sommets a (p-1) arêtes.

 $Par\ r\'ecurrence:$

- 1. p = 1 OK
- 2. Supposons que ce soit vrai pour tout arbre à $k \ge 1$ sommets et montrons le pour un arbre à (k+1) sommets. Soit T un tel arbre, il a au moins 2 feuilles (par Proposition 1). Enlevons une de ces feuilles ainsi que l'arête incidente. On obtient un arbre T' à k sommets. Par l'hypothèse de récurrence : T' a (k-1) arêtes, donc T a k arêtes.
- $(ii) \Rightarrow (iii) : Supposons (ii) et T ne soit pas connexe.$

Notons T_1, T_2, \ldots, T_t les composantes connexes de T avec $t \geq 2$. Chaque T_i est un arbre, pour $1 \leq i \leq t$ (car pas de cycle). Soit p_i le nombre de sommets de T_i , alors chaque T_i a $(p_i - 1)$ arêtes.

$$\sum_{i=1}^t p_i = p$$

$$et \qquad \qquad donc \Rightarrow t = 1$$

$$p-1 = \sum_{i=1}^t (p_i-1) = p-t$$

$(iii) \Rightarrow (i) : Supposons que T ne soit pas un arbre.$

Alors, T contient un cycle C. Enlevons une arête de C. On obtient le sous-graphe T' de T qui est toujours connexe. Si T' contient un cycle, alors on itère le processus. Sinon, T' est un arbre à p sommets qui a strictement moins que (p-1) arêtes.

1.3.2 Arbres couvrants et arbres à poids

Définition 11

Un arbre couvrant dans un graphe Γ est un arbre qui est un sous-graphe de Γ et qui contient tous les sommets de Γ .

Dans certains problèmes, certaines arêtes sont plus importantes que d'autres. En théorie des graphes, on modélise cela en assignant une valeur à chaque arête.

Définition 12

Un arbre à poids est un couple (Γ, w) où Γ est un arbre w est une fonction $w: E \to \mathbb{R}^+$. Le nombre w(e) est appelé le poids de l'arête e.

Exemple

1.4 Isomorphisme

Définition 13

Deux graphes $\Gamma_1 = (V_1, E_1, \gamma_1)$ et $\Gamma_2 = (V_2, E_2, \gamma_2)$ sont isomorphes s'il existe une bijection $f: V_1 \to V_2$ et une bijection $g: E_1 \to E_2$ telles que $\forall e \in E_1: e$ est incident à $v, w \in V_1$ ssi g(e) est incident à $f(v), f(w) \in V_2$. Le couple (f,g) est appelé un isomorphisme de graphe et on note $\Gamma_1 \cong \Gamma_2$.

Deux graphes isomorphes ont les mêmes propriétés.

FIGURE 2 – Deux graphes isomorphes

1.5 Graphes hamiltoniens

Hamilton propose le problème suivant : Considérons le graphe du dodécaèdre. Est-il possible, en partant d'un des vingts sommets et en suivant les arêtes du graphe, de visiter tous les sommets une et une seule fois et de revenir au sommet de départ ?

L'exemple suivant montre un chemin qui réponds à ce problème.

Exemple

Figure 3 – Graphe hamiltonien et cycle hamiltonien

Définition 14

Un cycle hamiltonien dans un graphe Γ est un cycle simple contenant tous les sommets de Γ .

Pour donner un exemple de graphe non-hamiltonien on introduit la notion de graphe biparti.

Définition 15

Un graphe $\Gamma = (V, E)$ est biparti si on peu écrire $V = B \cup W$ avec $B \cap W = \emptyset$ et toute arête de Γ joint un sommet dans B à un sommet dans W.

Exemple

FIGURE 4 – B en rouge, W en bleu

Lemme

Si Γ est biparti, alors Γ ne contient pas de cycle simple de longueur impaire.

Théorème 3

 ${\it Un graphe biparti avec un nombre impaire de sommets n'est pas hamiltonien}.$

Démonstration

Pour être hamiltonien, il doit admettre un cycle simple passant par tous ses sommets, donc de longueur impaire. Ce n'est pas possible à cause du Lemme précédent.

Figure 5 – Graphe biparti mais non hamiltonien.

Théorème 4 (Dirac 1950)

Soit $\Gamma = (V, E)$ un graphe simple avec $p \geq 3$ sommets. Si $\forall v \in V : deg(v) \geq \frac{1}{2}p$, alors Γ est Hamiltonien.

Démonstration

 Γ est connexe. Soit $C = (v_0, v_1, \dots, v_k)$ un plus long chemin simple dans Γ avec $v_0 \neq v_k, k < p$.

 $deg(v_0) \geq \frac{p}{2}$, tous les sommets adjacents à v_0 sont dans $\{v_1, \ldots, v_k\}$

 $deg(v_k) \geq \frac{p}{2}$, tous les sommets adjacents à v_k sont dans $\{v_0, \ldots, v_{k-1}\}$

Comme k < q, il doit exister $i \in \{0, \dots, k-1\}$ tel que $\{v_i, v_k\} \in E$ et $\{v_0, v_{i+1}\} \in E$.

On obtient un cycle $\widetilde{C} = (v_0, v_1, \dots, v_i, v_k, v_{k-1}, \dots, v_{i+1}, v_0)$

FIGURE 6 – Les 2 chemins, C en rouge, \widetilde{C} en vert.

On note que \widetilde{C} est un cycle Hamiltonien.

Supposons:

 $\exists y \in \widetilde{C} \Rightarrow On \ peut \ supposer \ que \ \{v_j, y\} \in E \ pour \ j = \{0, \dots, k\}.$

 \Rightarrow On construit un chemin $\overline{C}=(y,v_j,v_{j-1},\ldots v_0,v_{i+1},\ldots,v_k,v_i,v_{i-1},\ldots,v_{j-1}).$ \overline{C} est un chemin plus long que C.

Figure 7 – Chemin \overline{C}

Illustration: Code de Gray

Un code de Gray d'ordre n est un arrangement cyclique de 2^n mots binaires de longueur n tels que 2 mots adjacents ne diffèrent qu'en une seule position.

Exemple

Le code de Grey ci-dessous provient d'un cycle hamiltonien sur le graphe du cube :

Un code de Gray d'ordre (n+1) se construit à partir d'un code de Gray d'ordre n comme suit :

- 1. On écrit le code de Gray donné d'ordre n en ajoutant à la fin de chaque mot un zéro.
- 2. On le fait suivre par le même code de Gray parcouru dans l'autre sens et en ajoutant à la fin de chaque mot un 1.

1.6 Graphes Eulériens

Définition 16

Un cycle Eulérien dans un graphe Γ est un cycle qui contient toutes les arêtes de Γ . Un graphe est Eulérien s'il contient un cycle Eulérien.

Proposition 2

Si un graphe est Eulérien, alors tous ses sommets sont de degré pair.

Lemme

Soit Γ un graphe dans lequel chaque sommet est de degré pair, alors l'ensemble E se partitionne en une union de cycles (arête-)disjointe.

Démonstration

Par récurrence, sur le nombre d'arêtes

- 1. Le lemme est vrai pour q = 2.
- 2. Supposons qu'il soit vrai pour tout graphe à $q \le k$ arêtes et montrons-le pour un graphe à (k+1) arêtes.
- 3. Soit v_0 un sommet de Γ . On démarre un chemin en v_0 et on le suit jusqu'à ce qu'un sommet soit répété 2 fois. On le note v_i et C le cycle de v_i à v_i .
- 4. Soit Γ' le sous-graphe de Γ , obtenu par V = V' et $E' = E \setminus C$. Γ' a $\#E' \leq k$ arêtes. Par hypothèse de récurrence, les arêtes de Γ' se partitionnent en une union arête-disjointe de cycles $C_1 \cup C_2 \cup \ldots \cup C_n$.
- 5. Donc, $C_1 \cup C_2 \cup \ldots \cup C_n$ est une partition arête-disjointe des arêtes de Γ .

Théorème 5 (ATTENTION! Ce théorème et sa démonstration ainsi que le lemme et la proposition utilisés dans la démonstration font partie de ceux à connaître par coeur à l'examen! (pour l'année 2015-2016)) Soit Γ un graphe connexe. Alors, Γ est eulérien si et seulement si chaque sommet a un degré pair.

Démonstration

- \Rightarrow OK par proposition précédente.
- \Leftarrow Par le Lemme : E se partitionne en une union (arête-)disjointe de cycles $C_1 \cup C_2 \cup \ldots \cup C_n$.
 - 1. Si n=1, c'est bon.
 - 2. Si n > 1, comme Γ est connexe, \exists une arête incidente à un $v \in C_1$ et un $w \notin C_1$. Cette arête est dans C_j pour un $j = 2, \ldots, n$ (car on a une partition de E). On attache ce cycle en v. S'il reste des cycles dans la partition, on itère ce procédé jusqu'à avoir utilisé tous les cycles.

1.7 Application : le problème du voyageur de commerce (TSP)

1.7.1 Énoncé du problème

Énoncé : Un vendeur de livres démarre de chez lui et doit visiter un certain nombre de librairies avant de rentrer chez lui. Comment doit-il choisir sa route pour minimiser la distance parcourue?

Objet mathématique : Un graphe valué (à chaque arête est associé un nombre appelé poids) où les sommets représentent les librairies et les arêtes représentent les routes.

Objectif: Trouver un cycle hamiltonien de poids minimal.

Remarque : Un graphe complet K_n à n sommets possède $\frac{1}{2}(n-1)!$ cycles hamiltoniens différents. Par exemple, pour $n=10 \Rightarrow 181440$ cycles. On ne connait pas encore d'algorithme efficace qui donne une solution au problème.

1.7.2 Arbres couvrant minimum

Définition 17

Un arbre couvrant dans un graphe Γ est un arbre qui est un sous-graphe de Γ et qui contient tous les sommets de Γ .

Il existe un algorithme qui donne des arbres couvrants de poids minimum dans un graphe valué.

Algorithme de Kurskal:

- i Choisir une arêtes de plus petit poids.
- ii Choisir parmi les arêtes restantes une arête de plus petit poids dont l'inclusion ne crée pas un cycle.
- iii Continuer jusqu'à obtenir un arbre couvrant.

Exemple

Remarque : Si C est un cycles hamiltonien dans un graphe Γ , alors $\forall e \in E$ arête de C : $C \setminus \{e\}$ est un arbre couvrant.

 \Rightarrow (Solution de TSP) \geq (longueur minimum d'un arbre couvrant)

Mieux : Soit v un sommet de Γ . Tout cycle hamiltonien contient 2 arêtes incidentes à v. Le reste du chemin est un arbre couvrant de $\Gamma \setminus \{v\}$.

 \Rightarrow (Solution de TSP) \geq (\sum des longueurs des 2 plus courtes arêtes incidentes à v) + (longueur minimum d'un arbre couvrant de $\Gamma \setminus \{v\}$)

Remarque : Il existe une borne supérieure à TSP en utilisant des cycles eulériens.

1.8 Ordres partiels

[Ce dernier sous-chapitre est en désordre total, un truc plus structuré arrive bientôt.]

Définition 18

Soit P un ensemble. Un ordre partiel sur P est une relation sur P, c'est à dire un ensemble de couples $(p_1, p_2) \in P \times P$, noté $p1 \le p2$ tel que :

- 1. $p \le p$ (réflexive)
- 2. $(p \le q \ et \ q \le p) \Rightarrow p = q \ (anti-symétrique)$
- 3. $(p \le q \ et \ q \le r) \Rightarrow p \le r \ (transitive)$

On note (P, \leq) un ensemble partiellement ordonné.

Remarque : Soit (P, \leq) un ensemble partiellement ordonné, alors on définit un ordre partiel \geq par :

$$x \ge y \Leftrightarrow y \le x$$

Définition 19

Soit P un ensemble.

- 1. (P, \leq) est dit totalement ordonné si $\forall p_1, p_2 \in P, p_1 \leq p_2$ ou $p_2 \leq p_1$
- 2. Soit (P, \leq) un ordre partiel : une chaîne C est un sous-ensemble de P qui est totalement ordonné.

Exemple

 (\mathbb{N}, \leq)

 $(\mathbb{N}, |)$ où a | b si $\exists c \in \mathbb{Z}$ tel que $a \cdot c = b$ $(a, b \in \mathbb{Z})$

Lien avec la théorie des graphes :

Une relation d'ordre partiel peut se représenter à l'aide d'un graphe dirigé, mais il est très compliqué. On le simplifie en laissant tomber toutes les relations qui s'obtiennent par transitivité et les lacets.

Par transitivité et anti-symétrie : on sait qu'il n'y a pas de cycles, on peut se passer des flèches et on note de bas en haut.

Ex:
$$(\{1,2,3,4,5,6,10,12,15,20,30,60\}, |)$$

FIGURE 8 - Diagramme de Hasse

Soit (P, \leq) un ensemble partiellement ordonné. Une anti-chaîne est un sous-ensemble A de P tel que $\forall a_1, a_2 \in A : a_1 \nleq a_2$ et $a_2 \nleq a_1$

Exemple

 $(\{1,2,3,6,8\},/), A = \{2,3\}$ est une anti-chaîne.

Théorème 6 (Dilworth)

Soit (P, \leq) un ensemble fini partiellement ordonné. Alors il existe une anti-chaîne A et une partition Q de P par des chaînes telle que #Q = #A.

Lien avec les graphes bipartis:

Théorème 7

Soit $\Gamma = (V, E)$ un graphe simple.

- 1. Un couplage M de Γ est un sous-ensemble d'arêtes de Γ , 2 à 2 non adjacentes. Les sommets incidents aux arêtes de M sont dits couplés.
- 2. Un transversal de Γ est un sous-ensemble T de V tel que toute arêtes Γ est incidente à au moins un sommet de T.

Théorème 8 (König)

Soit $\Gamma = (B \perp\!\!\!\perp W, E)$ un graphe biparti. La cardinalité maximale d'un couplage de Γ est égale à la cardinalité minimum d'un transversal de Γ .

Figure 9 – Couplage : 4 arêtes. Transversal : 4 sommets.

Soit $\Gamma = (B \perp\!\!\!\perp W, E)$ un graphe biparti et M un couplage. Un chemin alterné est un chemin qui démarre en un sommet non-couplé de B et alterne une arrête de E/M puis une arrête dans M et ainsi de suite.

Exemple

FIGURE 10 - Couplage max: (b1, w1, b2, w2, b3, w3, b4, w4, b5)

Démonstration

Soit M un couplage de cardinalité maximale. \forall arête de M, choisissons un de ses sommets incidents comme suit :

- 1. Le sommet dans W s'il existe un chemin alternant arrivant à ce sommet.
- 2. Le sommet dans B sinon.

Notons U cet ensemble de sommets. Il faut montrer que cet ensemble U de #M sommets est un transversal de Γ .

Soit $e = \{b, w\} \in E$, il faut montrer que soit $b \in U$, soit $w \in U$. On peut supposer que $e \notin M$.

 $M \ est \ maximal \Rightarrow \exists e' \in M \ tel \ que \ b' = b \ ou \ w' = w$

On peut supposer b' = b (car si b n'est pas couplé et $w' = w \Rightarrow \{b, w\} = \{b, w'\}$ est donc un chemin alterné et $w' \in U$ par construction).

Donc, il existe un chemin alterné P terminant en w'.

Donc, il existe un chemin alterné P' terminant en w :

- 1. Soit $P' = P \setminus \{\{w, b\}, \{b, w'\}\}\} \Rightarrow w \in U$ car P' est un chemin alterné arrivant en W.
- 2. Soit on définit un nouveau chemin en rajoutant 2 arêtes $P' = P \cup \{w', b\} \cup \{b, w\}$.
 - (a) Si w est couplé $\Rightarrow w \in U$
 - (b) Si w pas couplé, on construit un matching + grand en gardant les arêtes de M qui ne sont pas dans P' et en ajoutant les arêtes de P' qui ne sont pas dans M (impossible?).

Démonstration

On va montrer $K\ddot{o}nig \Rightarrow Dilworth$.

Soit (P, \leq) un ordre partiel. On construit un graphe biparti $\Gamma = (B \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \setminus E)$ où $B = \{(p,1)|p \in P\}$ et $W = \{(p,2)|p \in P\}$ et $\{(p,1),(q,2)\} \in E \Leftrightarrow p \leq q$ et $p \neq q$.

Soit M un couplage de cardinalité maximale de Γ et T un transversal de cardinalité minimale de Γ . Par $K\ddot{o}nig, \#M = \#T$.

On définit $A \subseteq P$ par $A = \{p \in P | (p,1) \in T \text{ et } (p,2) \nsubseteq T\}$ et $\#A \ge \#P - \#T$.

On construit des chaînes comme suit : $Q = \{C_1, \ldots, C_n\}$ où

$$\begin{cases} Soit \ C_i = \{p_0, \dots, p_e\}, \ l \geq 1 \ si \ \{(p_k, 1), (p_{k+1}, 2)\} \in M \ et \ (p_e, 1) \ n'est \ pas \ incident \ \grave{a} \ M, \ (p_0, 2) \ n'est \ pas \ incident \ \grave{a} \ M. \\ Soit \ C_i = \{p\} \ si \ (p, 1) \ et \ (p, 2) \ ne \ sont \ pas \ incidents \ \grave{a} \ M. \end{cases}$$

Alors, Q est une partition de P (car, par construction, $P = \bigcup_{i=1}^{n} C_i$ et $C_i \cap C_j = \emptyset, \forall i \neq j$)

Et
$$\#P = \sum_{i=1}^{n} \#C_i = \#M + \#Q$$

$$\Rightarrow \#Q = \#P - \#M$$

$$\xrightarrow{(Konig)} \#Q = \#P - \#T \le \#A$$

$$\Rightarrow \#Q = \#A$$

2 Arithmétique Modulaire

2.1 Les entiers et la division euclidienne

L'ensemble des entiers est noté \mathbb{Z} , il contient les entiers naturels (\mathbb{N}) et leur opposé. Il est naturellement muni de 2 opérations qui satisfont les propriétés suivantes :

- 1. L'addition $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}: (a,b) \to a+b$ Propriétés :
 - 1 Topfictes.
 - (a) Associativité $(a+b)+c=a+(b+c),\, \forall a,b,c\in\mathbb{Z}$
 - (b) Élément neutre $0 \in \mathbb{Z}$: a + 0 = a = 0 + a, $\forall a \in \mathbb{Z}$
 - (c) Opposé $\forall a \in \mathbb{Z} : \exists -a \in \mathbb{Z} \text{ tel que } a + (-a) = 0 = (-a) + a$
 - (d) Commutativité $\forall a, b \in \mathbb{Z} : a + b = b + a$

On dit que $(\mathbb{Z}, +)$ est un groupe (a,b,c) commutatif (d).

2. La multiplication $\cdot: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}: (a,b) \to a \cdot b$

Propriétés :

- (a) Associativité $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- (b) Distributivité par rapport à l'addition

$$a \cdot (b+c) = ab + ac$$

$$\forall a, b, c \in \mathbb{Z}$$

$$(a+b) \cdot c = ac + bc$$

- (c) Commutativité $a \cdot b = b \cdot a, \forall a, b \in \mathbb{Z}$
- (d) Élément neutre $1 \in \mathbb{Z} : 1 \cdot a = a = a \cdot 1, \forall a \in \mathbb{Z}$
- (e) $\forall a, b, c \in \mathbb{Z} : a \cdot c = a \cdot b \Rightarrow c = b$

On dit que $(\mathbb{Z}, +, \cdot)$ est un anneau $((\mathbb{Z}, +)$ est un groupe commutatif et \cdot satisfait a et b) unital (d), commutatif (c) et intègre (e).

On a aussi sur \mathbb{Z} une relation d'ordre \leq telle que :

- 1. < est un ordre total
- 2. $\forall a, b, c \in \mathbb{Z}, a \leq b \Rightarrow a + c \leq b + c$
- 3. $\forall a, b, c \in \mathbb{Z}, a \leq b, c \geq 0 \Rightarrow ac \leq bc$

La valeur absolue est une application

$$| \ | \ | : \mathbb{Z} \to \mathbb{N} : a \to \begin{cases} a & \text{si } a \ge 0 \\ -a & \text{si } a \le 0 \end{cases}$$

telle que :

- 1. $\forall a \in \mathbb{Z} : |a| = 0 \text{ ssi } a = 0$
- 2. $\forall a, b \in \mathbb{Z} : |a \cdot b| = |a| \cdot |b|$

Remarque : L'équation $ax = b, a, b \in \mathbb{Z}$ n'a pas toujours de solution dans \mathbb{Z} .

Soit $a, b \in \mathbb{Z}$, on dit que a divise b, et on note a|b, si $\exists c \in \mathbb{Z}$ tel que ac = b. On dit aussi que b est un multiple de a.

Proposition 3

/ est une relation :

- 1. **Réflexive** $\forall a \in \mathbb{Z} : a | a$
- 2. **Transitive** $\forall a, b, c \in \mathbb{Z} : a|b \text{ et } b|c \Rightarrow a|c$
- 3. Anti-symétrique $\forall a, b \in \mathbb{Z} : a|b \ et \ b|a \Rightarrow a = \pm b$

Théorème 9 (Division Euclidienne)

 $\forall a, b \in \mathbb{Z}, b \neq 0, \exists des entiers uniques q et r tels que <math>a = bq + r \ et \ 0 \leq r < |b|$

<PAGES 3 À 6>

2.2 Groupes, anneaux et entiers modulo n

<PAGES 7 À 18>

2.2.1 Relation de congruence

Définition 23

Soient $a, b, k \in \mathbb{Z}, k \neq 0, 1, -1$. On dit que a est congru à b modulo k et on note $a \equiv b \pmod{k}$ si $a - b \in k\mathbb{Z}$ (ou encore $si \ \overline{a} = \overline{b} \ dans \ \mathbb{Z}/k\mathbb{Z}$).

Propriétés:

- 1. La congruence modulo k est une relation d'équivalence.
 - Réflexivité $\forall a \in \mathbb{Z} : a \equiv a \pmod{k}$
 - Symétrie $\forall a, b \in \mathbb{Z} : a \equiv b \pmod{k} \Leftrightarrow b \equiv a \pmod{k}$

- **Transitivité**
$$\forall a, b, c \in \mathbb{Z} : \begin{cases} a \equiv b \pmod{k} \\ b \equiv c \pmod{k} \end{cases} \Rightarrow a \equiv c \pmod{k}$$

2. $\forall a_1, b_1, a_2, b_2, k \in \mathbb{Z}, k \neq 0, 1, -1.$
Si $a_1 \equiv a_2 \pmod{k}$ et $b_1 \equiv b_2 \pmod{k}$, alors
$$\begin{cases} a_1 + b_1 \equiv a_2 + b_2 \pmod{k} \\ a_1 b_1 \equiv a_2 b_2 \pmod{k} \end{cases}$$
En conséquence : $\forall c \in \mathbb{Z} : a_1 c \equiv a_2 c \pmod{k}$

Exemple

 $6 \equiv 2 \pmod{4}$

 $7 \equiv 0 \pmod{7}$

Cryptologie : Le système RSA

Pour comprendre le système de cryptage RSA, on aura besoin d'un résultat technique.

Lemme

 $\forall z \in \mathbb{N} : (z+1)^p \equiv n^p + 1 \pmod{p}$ si p est un nombre premier.

Théorème 10 (Le petit théorème de Fermat) Soit $p \in \mathbb{N}$ un nombre premier. Soit $a \in \mathbb{N}$ un nombre tel que $p \not\mid a$ (p ne divise pas a). Alors, $a^{p-1} \equiv 1 \pmod{p}$

Démonstration

Nous allons procéder par plusieurs étapes.

- Montrons par récurrence que ∀a ∈ N : a^p ≡ a(mod p).
 a = 1 : 1^p = 1(mod p)
 Supposons vrai pour a ∈ N et montrons pour a + 1.
 Par le lemme, on sait que (a + 1)^p ≡ a^p + 1(mod p). Alors, par hypothèse de récurrence : (a + 1)^p ≡ a + 1(mod p).
- 2. On va maintenant utiliser $p \not\setminus a$. On $a: \forall a \in \mathbb{N}: a^p \equiv a \pmod{p}$. $\Rightarrow Dans \mathbb{Z}/p\mathbb{Z}: \overline{a^p} = \overline{a} \text{ et comme } p \not\setminus a: \exists \overline{b} \in \mathbb{Z}/p\mathbb{Z} \text{ un inverse de } \overline{a}$. $\Rightarrow \overline{b}\overline{a^p} = \overline{b}\overline{a}$ $\Rightarrow \overline{b}\overline{a}^p = \overline{1}$ $\Rightarrow \overline{a}^{p-1} = \overline{1} \Leftrightarrow a^{p-1} \equiv 1 \pmod{p}$

Démonstration (du Lemme) < WHOLE DEMO>

2.3.1 Fonctionnement des clés de chiffrement RSA

2 personnes (A et B) veulent communiquer de manière sûre entre elles.

A choisit 2 nombres premiers p et $q \in \mathbb{N}$ appelés clé privée. A calcule :

- 1. N = pq
- 2. O(N) = (p-1)(q-1)
- 3. $e \in \mathbb{Z}$ tel que pgcd(e, O(N)) = 1

appelé l'exposant de chiffrement.

O(N) et e sont premiers entre eux $\Rightarrow \exists 0 < s < O(N) : es \equiv 1 \pmod{O(N)}$, c'est à dire que \overline{s} est l'inverse de \overline{e} dans $\mathbb{Z}/O(N)\mathbb{Z}$. s est gardé secret.

A publie les nombres (N,e) appelés la clé publique.

B souhaite envoyer un message à A. Dans le système RSA, la taille du message est 0 < M < N.

B utilise la clé publique et envoie le message chiffré : $\tilde{M} = M^e \pmod{N}$

Pour déchiffrer le message, A utilise s et obtient : $\tilde{M}^s = M^{es}(mod\ N) = M(mod\ N)$ (par le théorème suivant)

3 SUITE 20

3 Suite

Pour la suite, voir le syllabus de l'année passée. Un schéma des chapitres à étudier arrive (peut-être) bientôt