McGill Artificial Intelligence Society

Lecture 6: Convolutional Nets

Slides based off of Machine Learning at Berkeley https://github.com/mlberkeley/Machine-Learning-Decal-Fall-2018

Announcements

Assignment 4 should have been handed it in by now

Assignment 5 will be out over the weekend (you'll have 2 weeks again)

Work on your project over the break! Leave time for webapp integration or poster creation.

Who's down for forum (bowling, pool, food, etc)?

Today's Lesson Plan

- 1. Convolution Operation
- 2. Motivation for using Convolutions
- 3. Pooling
- 4. Probabilistic Interpretation from a Bayesian Perspective
- 5. Fast algorithms
- 6. Neuroscientific Basis
- 7. Applications

Sensor Problem

Say we have a noisy sensor, but want to attain accurate data

Solutions:

- 1. Could calculate variance of data, and model a distribution
 - a. Assumes equal weights of all data in past t timesteps
- 2. Could average past t' data points
 - a. Same problem as above
- 3. Weighted average of data, giving more weight to recent data
 - a. How?

Convolution Operation

This is where the convolution operation comes in

Definition:

$$s(t) = \int x(a)w(t-a)da$$

or

$$s(t) = (x * w)(t)$$

Convolution Operation

X - Input

W - Kernel (we'll talk more about this in a moment)

As continuous time measurements isn't realistic, we also have a discrete version (replace integral with sum)

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{a = \infty} x(a)w(t - a)$$

Convolution Operation in Images

Images are 2D, thankfully, it is a trivial extension

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)(K(i-m,j-n))$$

Flip it, and we get

$$S(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)(K(m,n))$$

Which is easier to implement, and is correct due to commutativity

What's wrong with FeedForward?

Assume you have a 256x256 image, that's 65536 parameters

Take a hidden layer with 1000 neurons -> over 65 million parameters

Two hidden layers with 15000 neurons -> over 1 billion parameters

Call this the curse of dimensionality

Solution?

Convolutions

Physical Example of Convolution Operation

Convolution Operation

Three Advantages:

- Sparse Interactions
 - Not every weight has to interact with every other weight, hence reducing computational load
- Parameter Sharing
 - The kernel is shared across pixels, once again, reducing computational load
- Equivariant representation
 - Due to the property of the convolution, it doesn't matter where the features the filter seeks are.

Sparse Interactions

Advantages:

- In Feedforward nets, where you have m inputs and n outputs, the standard matrix multiplication will have a O(m*n) computation time
- Now, take a much smaller kernel with dimension k*k, then the matrix multiplication runtime will be O(k*n)

Parameter Sharing

Advantages:

 In a standard feedforward neural net, the kernel is passed through the entire image, so instead of having each feature (read: weight) be associated with a trainable weight, the parameters in the kernel are passed through the entire image

Equivariance

Advantages:

- Direct result of parameter sharing in convolution operation
- Define function f to be equivariant to function g if f(g(x)) = g(f(x))
- Theorem: Let g be a function that translates (shifts) input, then convolution function is equivariant to g
- Example
 - Let I: image brightness -> Z^2 (integer coordinates)
 - Let g: { I -> I' | I'(x,y) = I(x-1, y) }
 - \circ Then conv(g(I)) = conv(I)
- Not equivariant to changes in scale of image or rotations in the image, so we do those via data augmentation.

Big Picture

Let's step back for a second

Convolutional Neural Nets (CNNs) have 3 stages

- 1. Network performs several convolutions in parallel in order to produce a set of linear activations
- 2. Each linear activation is run through a non-linear activation (e.g. ReLU)
- 3. Pooling

Pooling

- Pooling essentially takes an area of the net and outputs a summary statistic of that area
- Examples of pools

 Max Pooling (most popular): Takes the maximum value of a rectangular area

- Average Pooling
- o L2 Norm
- Weighted average based on distance from center

Advantages of Pooling

- Approximate Local Invariance to Translation
 - But I thought you said the convolution operator already made us invariant to translation?
 - Yes, but local invariance to translation means that things of relative distance, such as distance between eyes of a face, would affect the net less

Advantages of Pooling

- Pooling over spatial regions can involve invariance to translation
- Yet we pool over sequentially outputted convolutions, why?
 - Doing so allows our model to select which transformations to be invariant to

A Probabilistic Perspective

- Convolution and Pooling can be seen as infinitely strong priors
 - I.e. certain parts of the probability density are completely abandoned
- We can say that CNNs and FFNNs are the same, except CNNs have an infinitely strong prior over its weights
 - Prior dictates that weight for one hidden unit must be identical to weight of its neighbor but shifted in space
 - Prior also dictates that the weight must be 0 except for the small spatial area dictated by its receptive field.
- Of course, it'd be manically insane to implement an FFNN with infinitely strong priors due to the computational constraint, but this gives us some insight

Key Insights

- This prior can cause underfitting. Priors are only useful if the assumptions they make are accurate.
 - a. For example, if a task requires preserving the spatial information, then using pooling on all features can increase training error
 - i. There are networks that exist that use pooling on some channels and not others, in order to get both translation invariance AND translation variance when that assumption is incorrect
 - ii. https://arxiv.org/pdf/1409.4842.pdf
- 2. Another key insight is that we should compare only conv nets with other conv nets since they share the same priors

Fast Algorithms

- 1. Fast Fourier Transforms
 - a. https://arxiv.org/abs/1412.7580
 - b. Theoretically awesome, but only applies to large filters (kernels)
- 2. Winograd
 - a. Newer algorithm and is the state of the art, works great for small kernels (specifically designed for 3x3 kernels)
 - b. https://arxiv.org/abs/1509.09308

Neuroscientific Basis

- Despite the name, neural networks share very little similarities with the human brain
- However, convolutional neural nets are actually one of the closest algorithms to which our algorithms compare to humans
- Essentially, the filters in the eye do an operation quite similar to the convolution operation.

Further Reading

- Alexnet: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolut ional-neural-networks.pdf
- VGG: https://arxiv.org/pdf/1409.1556.pdf
- Resnet: https://arxiv.org/pdf/1512.03385.pdf
- Inception-Resnet v4: https://arxiv.org/pdf/1602.07261.pdf
- MobileNet: https://arxiv.org/pdf/1704.04861.pdf
- YOLOv3: https://pjreddie.com/media/files/papers/YOLOv3.pdf
- Original Style Transfer: https://arxiv.org/pdf/1508.06576.pdf