TY B. Tech. (Computer Engineering) 2020 Pattern

Prerequisites:

Digital Electronics

Course Objectives:

- 1. To study the fundamentals of networking.
- 2. To understand functionalities of Physical layer.
- 3. To understand the functionalities of Data Link Layer and Network Layer.
- 4. To learn Integrity checks and Authentication algorithms.
- 5. To learn various types of Cryptographic algorithm.

Course Outcomes:

After completion of the course, student will be able to

- 1. Explore network design issues.
- **2.** Recognize the functions of OSI layers & TCP/IP protocol stack.
- **3.** Describe and Demonstrate the functionality of Data Link Layer and Network Layer.
- **4.** Describe the functionality of Transport and Application Layer.
- **5.** Examine the protocols for integrity and authentication.
- **6.** Make use of various Cryptographic algorithm.

UNIT 4- Transport Layer and Application Layer

- Transport Layer: Transport Layer Protocols, Role of transport layer, Responsibilities of Transport layer, Transport layer reliability.
- TCP and UDP: TCP communication Process, Reliability and flow control, UDP Communication, applications of TCP and UDP.
- Application Layer: Application Layer Protocols, Application layer protocols interaction with end-user applications, Presentation and Session layers. Well-Known Application Protocols and Services.

Transport Layer Protocols

Role of the Transport Layer

- Responsible for establishing a temporary communication session between two applications and delivering data between them.
- Link between the application layer and the lower layers that are responsible for network transmission.

Transport Layer Responsibilities

- Tracking the Conversation Tracks each individual
 conversation flowing between a
 source and a destination
 application.
- Segmentation Divides the data into segments that are easier to manage and transport. Header used for reassembly is used for tracking.
- Identifying the Application Ensures that even with multiple applications running on a device, all applications receive the correct data via port numbers.

illiilli cisco

Conversation Multiplexing

 Segmenting the data into smaller chunks enables many different communications to be multiplexed on the same network.

Transport Layer Reliability

- TCP/IP provides two transport layer protocols:
 - Transmission Control Protocol (TCP)
 - Considered reliable which ensures that all of the data arrives at the destination.
 - Additional fields needed in header which increases size and delay.
 - User Datagram Protocol (UDP)
 - Does not provide for reliability.
 - Fewer fields and is faster than TCP.

TCP transport is similar to sending tracked packages. If a shipping order is broken up into several packages, a customer can check online to see the order of the delivery.

cisco

Transportation of Data TCP (Cont.)

Transportation of Data TCP (Cont.)

TCP Three Responsibilities:

- Numbering and tracking data segments
- Acknowledging received data
- Retransmitting any unacknowledged data after a certain period of time

ri|iri|ir CISCO

Use UDP for less overhead and to reduce possible delays.

- Best-effort delivery (unreliable)
- No acknowledgment
- Similar to a non-registered letter

The Right Transport Layer Protocol for the Right Application

- TCP databases, web browsers, and email clients require that all data that is sent arrives at the destination in its original condition.
- UDP if one or two segments of a live video stream fail to arrive, if disruption in the stream, may not be noticeable to the user.

TCP Features

- Establishing a Session
 - Connection-oriented protocol
 - Ensures the application is ready to receive the data
 - Negotiate the amount of traffic that can be forwarded at a given time
- Reliable Delivery
 - Ensuring that each segment that the source sends arrives at the destination
- Same-Order Delivery
 - Numbering & Sequencing the segments guarantees reassembly into the proper order
- Flow Control
 - Regulate the amount of data the source transmits

TCP Header

- Source and Destination Port used to identify application
- Sequence number used for data reassembly
- Acknowledgement number indicates data has been received and ready for next byte from source
- Header length length of TCP segment header
- Control bits purpose and function of TCP segment
- Window size number of bytes that can be accepted at one time
- Checksum Used for error checking of segment header and data

20 Bytes Total

UDP Features

Features of UDP

- . Data is reconstructed in the order that it is received.
- Any segments lost are not resent.
- · No session establishment.
- · Does not inform the sender about resource availability.

TCP and UDP Overview UDP Header

- UDP is a stateless protocol no tracking
- Reliability handled by application

Multiple Separate Communications

 Users expect to simultaneously receive and send email, view websites and make a VoIP phone call

TCP and UDP manage multiple conversations by using unique identifiers called

port numbers

Port Numbers

Source Port

- Originating application port that is dynamically generated by sending device
- Example: Each separate HTTP conversation is tracked based on the source ports.

Destination Port

- Tell the destination what service is being requested
- Example: Port 80 web services are being requested

TCP and UDP Overview Socket Pairs

- Source and destination port placed in segment
- Segments encapsulated in IP packet
- IP and port number = socket
- Example: 192.168.1.7:80
- Sockets enable multiple processes to be distinguished
- Source port acts as a return address

Port Number Groups

Port Number Range	Port Group
0 to 1023	Well-known Ports
1024 to 49151	Registered Ports
49152 to 65535	Private and/or Dynamic Ports

- Well-known Ports (Numbers 0 to 1023) These numbers are reserved for services and applications.
- Registered Ports (Numbers 1024 to 49151) These port numbers are assigned by IANA to a requesting entity to use with specific processes or applications.
- Dynamic or Private Ports (Numbers 49152 to 65535) Usually assigned dynamically by the client's OS and used to identify the client application during communication.

Port Number Groups (Cont.)

Well Known Port Numbers

Dort Number	Drotocol	Application	А околу по
Port Number	Protocol	Application	Acronym
20	TCP	File Transfer Protocol (data)	FTP
21	TCP	File Transfer Protocol (control)	FTP
22	TCP	Secure Shell	SSH
23	TCP	Telnet	-
25	TCP	Simple Mail Transfer Protocol	SMTP
53	UDP, TCP	Domain Name Service	DNS
67	UDP	Dynamic Host Configuration Protocol (server)	DHCP
68	UDP	Dynamic Host Configuration Protocol (client)	DHCP
69	UDP	Trivial File Transfer Protocol	TFTP
80	TCP	Hypertext Transfer Protocol	HTTP
110	TCP	Post Office Protocol version 3	POP3
143	TCP	Internet Message Access Protocol	IMAP
161	UDP	Simple Network Management Protocol	SNMP
443	TCP	Hypertext Transfer Protocol Secure	HTTPS

The netstat Command

- Network utility that can be used to verify connections
- By default, will attempt to resolve IP addresses to domain names and port numbers to wellknown applications
- -n option used to display IPs and ports in numerical form

TCP and UDP

TCP Communication Process TCP Server Process

TCP Server Process (Cont.)

TCP Connection Establishment

session with server.

B sends ACK response and SYN request to A

Step 2 - Server

 Step 2 – Server acknowledges and requests a session with client. Step 3 – Client acknowledges communication session with server.

illiilli cisco

TCP Session Termination

allialia

CISCO

- To close a connection, the Finish (FIN) control flag must be set in the segment header.
- To end each one-way TCP session, a two-way handshake, consisting of a FIN segment and an Acknowledgment (ACK) segment, is used.

TCP Three-way Handshake Analysis

- The three-way handshake:
 - Establishes that the destination device is present on the network.
 - Verifies that the destination device has an active service and is accepting requests on the destination port number that the initiating client intends to use.
 - Informs the destination device that the source client intends to establish a communication session on that port number.
- The six bits in the Control Bits field of the TCP segment header are also known as flags.
 - RST flag is used to reset a connection when an error or timeout occurs

Video Demonstration - TCP 3-Way Handshake

```
Protocol Info
      Time
                 Source
                                     Destination
    10 16.303490 10.1.1.1
                                    192,168,254,254
                                                        TCP
                                                               kiosk > http [SYN] Seg=0 W
    11 16,304896 192,168,254,254
                                    10.1.1.1
                                                               http > kiosk [SYN, ACK] Ser
                                                        TCP.
                                                               kiosk > http [ACK] Seq=1 Ack
                                    192.168.254.254
                                                        TCP
    12 16.304925 10.1.1.1
    13 16.305153 10.1.1.1
                                    192.168.254.254
                                                               GET / HTTP/1.1
                                                        HTTP
                                                               http > kiosk [ACK] Seg=1 Ak
    14 16.307875 192.168.254.254
                                     10.1.1.1
                                                        TEP
Frame 10: 62 bytes on wire (496 bits), 62 bytes captured (496 bits)

    Ethernet II, Src: Vmware_be:62:88 (00:50:56:be:62:88), Dst: Cisco_63:74:a0 (00:0f:24:63)

∃ Internet Protocol Version 4, Src: 10.1.1.1 (10.1.1.1), Dst: 192.168.254.254 (192.168.254)

    Transmission Control Protocol, Src Port: kiosk (1061), Dst Port: http (80), Seq: 0, Len:

    Source port: kiosk (1061)
    Destination port: http (80)
    [Stream index: 0]
    Sequence number: 0
                          (relative sequence number)
    Header length: 28 bytes
  E Flags: 0x02 (SYN)
      000. .... = Reserved: Not set
      ...0 .... = Nonce: Not set
      .... 0... = Congestion Window Reduced (CWR): Not set
      .... . 0.. .... = ECN-Echo: Not set
      .... .. 0. .... = Urgent: Not set
      .... ... 0 .... = Acknowledgement: Not set
      .... .... O... = Push: Not set
      .... .... . 0.. = Reset: Not set
    .... .... 0 = Fin: Not set
```

SYN SYN, ACK ACK

TCP Reliability – Ordered Delivery

- Sequence numbers are assigned in the header of each packet.
- Represents the first data byte of the TCP segment.
- During session setup, an initial sequence number (ISN) is set represents the starting value of the bytes.
- As data is transmitted during the session, the sequence number is incremented by the number of bytes that have been transmitted.
- Missing segments can then be identified.

Reliability and Flow Control Video Demonstration - TCP Reliability – Sequence Numbers and Acknowledgments

Video Demonstration – Data Loss and Retransmission

TCP Flow Control – Window Size and Acknowledgments

- In the figure, the source is transmitting 1,460 bytes of data within each segment.
- Window size agreed on during 3-way handshake.
- Typically, PC B will not wait for 10,000 bytes before sending an acknowledgment.
- PC A can adjust its send window as it receives acknowledgments from PC B.

illiilli cisco

TCP Flow Control – Congestion Avoidance

- Congestion causes retransmission of lost TCP segments
- Retransmission of segments can make the congestion worse
- To avoid and control congestion, TCP employs several congestion handling mechanisms, timers, and algorithms
- Example: Reduce the number of bytes it sends before receiving an acknowledgment

ri|iri|ir

UDP Communication

UDP Low Overhead versus Reliability

- UDP not connectionoriented
- No retransmission, sequencing, and flow control
- Functions not provided by the transport layer implemented elsewhere

UDP Datagram Reassembly

- UDP reassembles data in order received and forwards to application
- Application must identify the proper sequence

UDP Server Processes and Requests

Note: The Remote Authentication Dial-in User Service (RADIUS) server shown in the figure provides authentication, authorization, and accounting services to manage user access.

UDP Client Processes

Clients Sending UDP Requests

UDP Client Processes (Cont.)

Clients Sending UDP Requests

TCP or UDP

Applications that use TCP

TCP frees applications from having to manage reliability

TCP or UDP

Applications that use UDP

Three types of applications best suited for UDP:

- Live video and multimedia
- Simple request and reply
- Handle reliability themselves

Application Layer Protocols

Application, Presentation, and Session

Application Layer

Application Layer:

- Closest to the end user.
- Used to exchange data between programs running on the source and destination hosts.

Application, Presentation, and Session

Presentation and Session Layer

Presentation Layer function:

- Formatting data at the source device into a compatible form for the receiving device.
- Compressing data.
- Encrypting data.
- Session Layer Function
 - Create and maintain dialogs between source and destination applications.

Application, Presentation, and Session

TCP/IP Application Layer Protocols

- Domain Name Server (DNS) TCP,UDP 53 Translates domain names, such as cisco.com, into IP addresses.
- (BOOTP) Bootstrap Protocol BOOTP is being superseded by DHCP.
- Dynamic Host Configuration Protocol (DHCP) UDP client 68, server 67 – Dynamically assigns IP addresses to client stations at start-up.
- Simple Mail Transport Protocol (SMTP) TCP 25 -Enables clients to send email to a mail server.

- Post Office Protocol (POP) TCP 110 -Enables clients to retrieve email from a mail server.
- Internet Message Access Protocol (IMAP)
 TCP 143 Enables clients to retrieve email from a mail server, maintains email on server.
- File Transfer Protocol (FTP) TCP 20 and 21 -Reliable, connection-oriented, and acknowledged file delivery protocol.
- Trivial File Transfer Protocol (TFTP) UDP 69 simple connectionless file transfer protocol.
- Hypertext Transfer Protocol (HTTP) TCP 80, 8080 - Set of rules for exchanging text, graphic images, etc. on the World Wide Web.
- Hypertext Transfer Protocol Secure (HTTPS)
 TCP, UDP 443 Uses encryption and authentication to secure communication.

How Application Protocols Interact with End-User Applications

Client-Server Model

- Client and server processes are considered to be in the application layer.
- Application layer protocols describe the format of the requests and responses between clients and servers.
- Example of a client-server network is using an ISP's email service to send, receive and store email.

How Application Protocols Interact with End-User Applications Peer-to-Peer Networks

- Data is accessed from a peer device without the use of a dedicated server.
- Each device (known as a peer)
 can function as both a server and a client.

How Application Protocols Interact with End-User Applications

Peer-to-Peer Applications

- A P2P application allows a device to act as both a client and a server within the same communication.
- P2P applications require that each end device provide a user interface and run a background service.

How Application Protocols Interact with End-User Applications

Common P2P Applications

- Common P2P networks include:
 - G2
 - Bitcoin
 - BitTorrent
 - eDonkey
- Some P2P applications are based on the Gnutella protocol, where each user shares whole files with other users.
- Many P2P applications allow users to share pieces of many files with each other at the same time –this is BitTorrent technology.

Well-Known Application Layer Protocols and Services

Web and Email Protocols

Hypertext Transfer Protocol and Hypertext Markup Language

When a web address or uniform resource locator (URL) is typed into a web browser, the web browser establishes a connection to the web service running on the server, using the HTTP protocol.

Web and Email Protocols HTTP and HTTPS

- HTTP is a request/response protocol.
- Three common HTTP message types are:
 - GET A client request for data.
 - POST Uploads data files to the web server.
 - PUT Uploads resources or content to the web server.
- HTTP Secure (HTTPS) protocol uses encryption and authentication to secure data.

Web and Email Protocols

Email Protocols

- Email clients communicate with mail servers to send and receive email.
- Mail servers communicate with other mail servers to transport messages from one domain to another.
- Three protocols for email:
 - Simple Mail Transfer Protocol (SMTP) to send email.
 - Post Office Protocol (POP) to retrieve email.
 - Internet Message Access Protocol (IMAP) to retrieve email.

Web and Email Protocols SMTP Operation

SMTP is used to send email.

Web and Email Protocols

POP Operation

- POP is used to retrieve email from a mail server.
- Email is downloaded from the server to the client and then deleted on the server.

Web and Email Protocols

IMAP Operation

- IMAP is used to retrieve mail from a mail server.
- Copies of messages are downloaded from the server to the client and the original messages are stored on the server.

Domain Name Service

- Domain names convert the numeric address into a simple, recognizable name.
- The DNS protocol defines an automated service that matches resource names with the required numeric network address.

DNS Message Format

DNS uses the same message format for:

- all types of client queries and server responses
- · error messages
- · the transfer of resource record information between servers

- When a client makes a query, the server's DNS process first looks at its own records to resolve the name.
- If unable to resolve, it contacts other servers to resolve the name.
- The server temporarily stores the numbered address in the event that the same name is requested again.
- The ipconfig /displaydns command displays all of the cached DNS entries on a Windows PC.

DNS Hierarchy

The nslookup Command

```
C:\WINDOWS\system32\cmd.exe - nslookup
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\Documents and Settings\bradfjoh>cd..
C:\Documents and Settings>nslookup
Default Server: dns-sj.cisco.com
Address: 171.70.168.183
 www.cisco.com
Server: dns-sj.cisco.com
Address: 171.70.168.183
        www.cisco.com
Name:
Address: 198.133.219.25
 cisco.netacad.net
Server: dns-sj.cisco.com
Address: 171.70.168.183
Non-authoritative answer:
        cisco.netacad.net
Address: 128.107.229.50
```

- Nslookup a utility that allows a user to manually query the name servers to resolve a given host.
 - Can also be used to troubleshoot name resolution issues and to verify the current status of the name servers.

Dynamic Host Configuration Protocol

- The Dynamic Host Configuration Protocol (DHCP) for IPv4 automates the assignment of IPv4 addresses, subnet masks, gateways, and other parameters.
- DHCP-distributed addresses are leased for a set period of time, then returned to pool for reuse.
- DHCP is usually employed for end user devices. Static addressing is used for network devices, such as gateways, switches, servers, and printers.
- DHCPv6 (DHCP for IPv6) provides similar services for IPv6 clients.

DHCP Operation

File Sharing Services

File Transfer Protocol

- FTP requires two connections between the client and the server, one for commands and replies, the other for the actual file transfer:
 - The client establishes the first connection to the server for control traffic using TCP port 21.
 - The client establishes the second connection to the server for the actual data transfer using TCP port 20.

File Sharing Services

Server Message Block

- The Server Message Block (SMB) is a client/server file sharing protocol:
 - SMB file-sharing and print services have become the mainstay of Microsoft networking.
 - Clients establish a long-term connection to servers and can access the resources on the server as if the resource is local to the client host.

