Homework 7

Yutong Huang (yxh589)

Problem 1

Obviously, if K(x) is computable, then incompressible(n: integer) will output every incompressible string in $\{0,1\}^n$. To create a short description for an incompressible string using incompressible(n: integer), we can create the following procedure:

```
function description(S: string){
    string[] incompressibleList <- incompressible(|S|);
    if (S in incompressibleList):
        return S;
}</pre>
```

Proof. Assume S is an arbitrary incompressible string, then S is an incompressible string of length |S|. Therefore S in incompressibleList is true, and the procedure returns S;

 $\forall s \in \{incompressible\ strings\},\ function\ description(S:\ string)\ is\ a\ short\ description\ of\ s.$

Problem 2

Let languages L_1, L_2 be arbitrary languages such that $L_1, L_2 \in P$. Then there must exist Turing machines M_1, M_2 that decide L_1 and L_2 in polynomial time respectively. Assume runtimes for M_1, M_2 are t_1, t_2 respectively.

Union: Consider language $L_1 \cup L_2$ and the following Turing machine:

Then M_3 decides $L_1 \cup L_2$ in polynomial time.

```
Proof. Case 1: w \in L_1 \cup L_2
Case 1.1: w \in L_1 \implies M_1 \ accepts \implies M_3 accepts and halt; runtime is t_1 + c, c is constant.
Case 1.2: w \notin L_1 \implies M_1 \ rejects \implies M_2 \ accepts \implies M_3 accepts and halt; runtime is t_1 + t_2 + c, c is constant.
Case 2: w \notin L_1 \cup L_2 \implies M_1 \ rejects \wedge M_2 \ rejects \implies M_3 \ rejects; runtime is t_1 + t_2 + c, c.
\therefore M_3 correctly decides L_1 \cup L_2 in polynomial time.
```

 $\therefore L_1 \cup L_2 \in P.$

Concatenation: Consider language $L_3 = \{\langle ab \rangle | a \in L_1 \land b \in L_2\}$ and the following Turing machine:

Algorithm 2: $M_4(w)$

Initialize M_1 with w on tape and head at the start

while M_1 is not in an accept state do

Step through M_1 and copy its head movement to M_4

Reject if current symbol is null

Initialize M_2 with w on tape and the head position of M_4

while M_2 is not in an accept state do

Step through M_2 and copy its head movement to M_4

Reject if current symbol is null

Accept

This machine correctly decides L_3 in polynomial time.

Proof. Case 1: $w \in L_3 \implies$ both loops would run without rejecting when M_1, M_2 find their corresponding substring and M_4 would accept; runtime is $t_1 + t_2 + c$, c is constance;

Case 2: $w \notin L_3$

Case 2.1: w does not contain any substring belonging to $L_1 \implies M_4$ rejects while simulating M_1 ; runtime is $t_1 + c$;

Case 2.2: w contains a substring that belongs to L_1 but no substring belonging to $L_2 \implies M_4$ rejects whilw simulating M_2 ; runtime is $t_1 + t_2 + c$;

 $\therefore M_4$ correctly decides L_3 in polynomial time.

 $L_3 \in P$.

Complement: Consider the language $\overline{L_1}$ and the following Turing machine: This Turing machine correctly decides $\overline{L_1}$ in

Algorithm 3: $M_5(w)$

Run M_1 on w

if M_1 accepts then

Reject and halt

else

Accept and halt

polynomial time.

Proof. Case 1: $w \in \overline{L_1} \implies w \notin L_1 \implies M_1$ rejects $\implies M_5$ accepts; runtime is t1 + c;

Case 2: $w \notin \overline{L_1} \implies w \in L_1 \implies M_1$ accepts $\implies M_5$ rejects; runtime is t1 + c;

 $\therefore M_5$ correctly decides $\overline{L_1}$ in polynomial time.

 $\therefore \overline{L_1} \in P.$

Problem 3

Assume the size of t is $n, n \ge 1$; then t can be expressed in the form:

$$t = b_0 2^0 + b_1 2^1 + b_2 2^2 + \dots + b_{n-1} 2^{n-1}$$

where $b_i \in 0, 1$. Then $q^t = q^{b_0 2^0 + b_1 2^1 + b_2 2^2 + \dots + b_{n-1} 2^{n-1}}$.

Therefore, to compute q^t , we just need to compute each q^{2^i} .

To compute q^{2^i} , we first compute q^2 by applying q on q, which takes O(1) time.

Then, each q^{2^i} can be computed in O(1) time by applying $q^{2^{i-1}}$ on itself. Therefore it takes O(n) times to compute q^t . Therefore $PERM - POWER \in P$