

Exploring HI Density up to ~1 Mpc **Around Lyman Alpha Emitters** in HETDEX

400

350

INTRODUCTION ———

- Studying neutral Hydrogen (HI) gas distribution & kinematics near key sources like Lyman Alpha Emitters (LAEs) helps us with the evolution of large scale structures and the galaxies in them.
- HETDEX is an un-targeted integral field spectroscopic survey designed to measure the expansion rate of the universe at z~ 1.9-3.5 by mapping out 3D positions of ~1 million Lyman Alpha Emitters (LAEs).^{1,2}
- Using data from HETDEX, we have selected LAEs to investigate HI column density around & between them through the Lyman Alpha Absorption Line.

METHODS

- We stack ~2 million spectra from ~55000 LAEs to boost the signal-to-noise ratio using the ELiXer software.³
- We stack LAEs in two ways: (1) Annulus around the LAE, (2) Regions in between LAE pairs.
- A machine learning pipeline (t-SNE) customized for HETDEX source catalog was designed for the analysis, ensuring a robust selection of LAEs, minimizing false positives.

Mahan Mirza Khanlari ¹★, Karl Gebhardt ¹, Laurel H. Wiess ¹, Dustin Davis ¹, Erin Mentuch Cooper ¹, The HETDEX collaboration

We provide an empirical density profile of HI around an average LAE at z ~ 2.6

Rest Wavelength (Å)

1275

1300

1200

1175

DISCUSSION -

- We detect HI in absorption out to ~ 300 pKpc, as measured in annular regions surrounding the stacked LAE sample.
- We provide an empirical density profile of HI around an average LAE.
- We show that close pairs exhibit the strongest absorption by far, showcasing HI dense regions.
- This study deepens our understanding of the large scale structure and its gas constituents in the distant universe, bridging the gap between observational data and simulation models.
- With the interplay between LAEs and surrounding HI gas holding potential implications for the broader cosmological landscape, this work paves the way for indepth research into their symbiotic evolution.

FUTURE WORK -

- Binning based on redshift to understand the evolution of HI around LAEs.
- Finer binning of rings around LAEs to figure out the accurate size of HI around LAEs.
- See if we can find a way to get continuum values to give absolute column densities.
- Create a density profile for LAE pairs.

REFERENCES

- 1. Karl Gebhardt *et al* 2021 *ApJ* **923** 217
- 2. Erin Mentuch Cooper et al 2023 ApJ 943 177
- 3. Dustin Davis et al 2023 ApJ 946 86

We acknowledge the support of University of Texas at Austin and the Hobby Eberly Telescope Dark Energy Experiment (HETDEX) collaboration.