> Summary:

- Quite small standby power
- Large current driving capability
- Almost linear VTC
- Very low distortion at the output
- $A_v \sim 1$
- No phase shift between input and output
- Very low output resistance
 Thus, this stage is a superb one and is highly popular!

• MOS Implementation:

- ➤ Biased using dual symmetric power supplies V_{DD}/V_{SS}
- $> M_1-M_2$ in push-pull configuration
 - M_1 supplying current to load (R_L) during the positive half cycle
 - M₂ pulling current away from load during the negative half cycle

Circuit Schematic

- \succ M₁-M₂ prebiased by the series combination of M₃-M₄ (both diode-connected) biased with I_Q
- ► Develops V_{BIAS} across the gates of M_3 - M_4 , which is same as that between the gates of M_1 - M_2
- $\succ V_{BIAS}$ chosen to be slightly less than $(V_{TN} + |V_{TP}|)$
- > Crossover Distortion eliminated completely, at the cost of introducing standby power into the system
- Rest of the operation of the circuit exactly similar to that of a BJT Class AB Push-Pull Output Stage

- > All transistors suffer from body effect problem
 - ⇒ More distortion at the output
- > The linearity of the VTC is not that good
- > Low current drive capability
- \triangleright Biasing itself becomes tricky, due to the body effect of M_3 - M_4
- The output resistance not that low, since MOSFETs have lower g_m than BJTs
- > Overall, the stage *suffers from quite a few problems* and is *not used much*
- > We will explore this through an assignment

• Overload Protection:

- > Protects the output
 stage from accidental
 short-circuits
- > Needs 4 more components:
 - **2 BJTs** (Q_5, Q_6)
 - 2 Resistors (R_1,R_2) $R_1,R_2 \sim 25-50 \Omega$

Circuit Schematic

During *normal operation*, these *extra circuits* play absolutely *no role*, and come *into picture* only under *accidental short-circuit* of the *output terminal to ground*

> Numerical Example:

- Assume V_i at its *positive peak*, the *maximum drive current* to the base of $Q_1 = 1$ mA, and $\beta_1 = 100$
- Now output gets accidentally shorted to ground $(V_o = 0)$ $\Rightarrow I_{c1} = 100 \text{ mA} \text{ and } V_{ce1} = 5 V$ $\Rightarrow P_1 = 500 \text{ mW}$
- This may be way above the maximum power rating of the transistor ($\sim 100-150 \text{ mW}$) and the transistor would burn out \Rightarrow potentially dangerous situation!

- > Principle of Operation of the Protection Circuit:
 - Assume *positive* V_i with Q_1 *supplying current to load*
 - Q_2 is off during this time
 - As $R_L \checkmark$, $I_{c1} \uparrow$ (since $I_{c1} = V_o / R_L$) $\Rightarrow V_{be5} (= I_{c1} R_1) \text{ also } \uparrow$
 - As $V_{be5} \rightarrow V_{\gamma}$ of Q_5 , it starts to *turn on*
 - \Rightarrow A part of base drive current of Q_1 starts to get shunted away by Q_5 , and appears at the output almost without any gain $(1/\alpha_5)$
 - This acts as a *limit of the rate* at which the *output current can increase*, and thus, *protects the circuit*

- Thus, the *current can't increase indefinitely*
- Assume $R_1 = 30 \Omega$ and $V_{\gamma} = 0.6 V$
 - \Rightarrow As soon as I_{c1} reaches about 20 mA, Q_5 cuts in, shunts current away from the base of Q_1 , and protects the circuit
- Due to the *exponential dependence* of this *shunted current* on V_{be5}, the *maximum output current* will *saturate near around 20 mA itself*
- Thus, under this case, if the output is accidentally shorted to ground, then $P_1(max)$ will be around 100 mW, which is well within limit, and protection will be achieved