Midterm Solutions

Question 1.

- a. False. We don't always desire our DB to be in BCNF
- b. False. Weak entities do not have a key. They depend on other entities.
- c. True
- d. False. In any table, each attribute functionally depends on the key.
- e. True
- f. True
- g. True
- h. False. TRC and DRC are stronger that RA

Question 2

a.

- i) The ISA relationship must be **disjoint**. B and C must have the same attributes.
- ii) The ISA relationship must be **total**.
- **b.** The set of the common attributes of R1 and R2 (A, D) is a key for R2. Proof:
 - 1. $A \rightarrow C$ given
 - 2. A, D \rightarrow C, D 1, augmentation
 - 3. A, D \rightarrow E 2, C, D \rightarrow E, transitivity

c.

- i) The company should be an attribute of the customer, assuming each customer works for a single company. We don't need to keep any information for each company.
- ii) The loan should be a separate entity set associated with a customer through a relationship . Reasons:
 - A customer may have more than one loans.
 - A loan has additional information on its own.

Question 3

- **a.** 1. phn
 - 2. pname, address

b

```
Patient (phn, pname, address, illness, ward)
```

Test (testname, labtype, dname, specialization)

Test includes the Authorizes relationship set.

```
Doctor ( <u>dname</u>, <u>specialization</u> )
```

Had (phn, testname, date, result)

c.

- The only table that is not in BCNF is the Patient table.
- FD illness → ward violates BCNF.
- We split the table into

```
Patient (phn, pname, address, illness)
```

IllnessWard (illness, ward)

Question 4

a.

$$\pi_{sId} (\sigma_{hCity} = \text{``Vancouver''} (Hotel)) - \pi_{hId} (\sigma_{year} = 2005 (Booking))$$

NOTE: The following is WRONG:

Any hotel which has a booking for a year other than 2005 will be included in the result even if the same hotel HAS another booking for 2005!

b.

$$\pi_{\,gId,\,hId}\,(\sigma_{type\,=\,\text{``suite''}}\,(Booking\,\,\bowtie\,\,Room\,))\,/\,\,\pi_{hId}\,(\sigma_{hCity\,=\,\text{``Vancouver''}}\,(Hotel\,)\,)$$

NOTE: Again, the following is WRONG:

$$\pi_{\text{gId}}$$
 ($\sigma_{\text{type} = \text{"suite"}} \land_{\text{hCitv} = \text{"Vancouver"}}$ (Booking \bowtie Room \bowtie Hotel))

This returns any guest who has booked a suite in some hotel in Vancouver.

c.

```
 \{ \ t \mid \ \exists \ h \in \ Hotel \ ( \ t.hId = h.hId \ \land \ t.hName = h.hName \ \land   \forall \ g \in \ Guest \ \exists \ b \in \ Booking \ ( \ h.hId = b.hId \ \land \ g.gId = b.gId \ \land \ b.year = 2004 \ ) \ ) \ \}
```