(12) UK Patent Application (19) GB (11) 2 315 070 (13) A

(43) Date of A Publication 21.01.1998

- (21) Application No 9713764.0
- (22) Date of Filing 01.07.1997
- (30) Priority Data

(31) 168796

(32) 05.07.1996

(33) CH

(71) Applicant(s)

Ciba Specialty Chemicals Holding Inc

(Incorporated in Switzerland)

Klybeckstrasse 141, CH 4057, Basie, Switzerland

- (72) Inventor(s) Jean-Roch Pauquet Christoph Kröhnke
- (74) Agent and/or Address for Service **Thomas Sharman** Ciba Speciality Chemicals (UK) Limited, Patent Dept, Hulley Road, MACCLESFIELD, Cheshire, SK10 2NX, United Kingdom

(51) INT CL6

CO8K 5/00 // (CO8K 5/00 5:15 5:3435 5:524 5:527 5:53 5:5333)

(52) UK CL (Edition P)

C3K KCZ K201 K210 K211 K212 K213 K220 K221 K222 K223 K230 K241 K252 K254 K263 K270 K272 K274 K276 K277 K279 K281 K283 K291 K292 K294 K296 K297 K299 C3M MA M110 M113 M139 M140 C3W W100 W111 W113 W121 W123 W125 W213 W216 W217 W218 U1S S1184 S1364 S1570 S1573 S1574 S1600

(56) Documents Cited

GB 2305180 A GB 2266531 A

- US 4665112 A
- (58) Field of Search

UK CL (Edition O) C3K KCF KCZ , C3M MA INT CL6 C08K 5/00 5/15 5/3435 ONLINE: CHABS, CLAIMS, JAPIO, RAPRA, WPI

(54) Stabilizer mixtures for organic materials

Organic materials which possess outstanding stability to oxidative, thermal or light-induced degradation comprise as stabilizers at least one compound of the benzofuran-2-one type and at least one compound of the sterically hindered amine type.

An organic phosphite or phosphonite may also be included in the stabilizer mixture. The organic material may be a polymer e.g. a polyolefin, for instance phenol-free polyolefin fibre.

Phenol-free stabilization of polyolefin fibres

The present invention relates to compositions comprising an organic material subject to oxidative, thermal or light-induced degradation, especially polyolefins, for example polyolefin fibres, and as stabilizers at least one compound of the benzofuran-2-one type and at least one compound of the sterically hindered amine type, and to the use thereof for stabilizing organic materials against oxidative, thermal or light-induced degradation.

The use of compounds of the benzofuran-2-one type as stabilizers for organic polymers is known, for example, from US 4,325,863; US 4,388,244; US 5,175,312; US 5,252,643; US 5,216,052; US 5,369,159; US 5,488,117; US 5,356,966; US 5,367,008; US 5,428,162; US 5,428,177 or US 5,516,920.

Sterically hindered amines, including in particular compounds containing 2,2,6,6-tetramethylpiperidyl groups, are known as "hindered amine" light stabilizers (HALS).

The known stabilizers do not satisfy in every respect the high requirements which a stabilizer is required to meet, especially with regard to shelf life, water absorption, sensitivity to hydrolysis, in-process stabilization, colour properties, volatility, migration behaviour, compatibility and improvement in protection against light. As a result there continues to be a need for effective stabilizers for organic materials, especially polyolefins, for example polyolefin fibres, that are sensitive to oxidative, thermal and/or light-induced degradation.

Polyolefin fibres have to date been stabilized with sterically hindered phenols in combination with compounds from the group of the organic phosphites or phosphonites and, in some cases, with additional use of light stabilizers. The use of such stabilizer mixtures leads in many cases to yellowing of the polyolefin fibres thus produced, especially under the action of NO_x gas, referred to in the art as gas fading. In many cases discoloration occurs even during processing, especially in the case of melt extrusion. It is also known that compounds from the group of the sterically hindered amines, which may be added as light stabilizers, show an antagonistic effect together with the sterically hindered phenols, which adversely effects the long-term thermal stability.

It has now been found that a stabilizer mixture comprising at least one compound of the benzofuran-2-one type and at least one compound of the sterically hindered amine type is particularly suitable as a stabilizer for organic materials which are sensitive to oxidative, thermal or light-induced degradation. Such phenol-free stabilization systems exhibit, in particular, excellent stabilization of polyolefins in the course of processing to polypropylene fibres, for example. These novel stabilizer systems suppress the discoloration of the organic materials during processing, have an excellent action in respect of resistance to the effect of NO_x (no gas fading) and, moreover, exhibit improved long-term thermal stability relative to stabilization systems which include phenolic antioxidants. The sterically hindered amines, which replace the phenolic long-term thermal stabilizers, additionally provide good protection against photooxidative degradation of the organic material.

The present invention therefore provides compositions comprising

- a) an organic material which is subject to oxidative, thermal or light-induced degradation,
- b) at least one compound of the benzofuran-2-one type, and
- c) at least one compound of the sterically hindered amine group.

The present invention also provides compositions comprising, in addition to components (a), (b) and (c), also d) at least one compound from the group of the organic phosphites or phosphonites.

Compositions which are of interest include those comprising as component (b) a compound of the formula I

$$\begin{bmatrix} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

in which, if n is 1,

R₁ is unsubstituted or C₁-C₄alkyl-, C₁-C₄alkoxy-, C₁-C₄alkylthio-, hydroxyl-, halo-, amino-, C₁-C₄alkylamino-, phenylamino- or di(C₁-C₄alkyl)amino-substituted naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, or R₁ is a radical of the formula II

$$\begin{array}{c} R_9 \\ R_7 \\ R_8 \end{array} \qquad \qquad \text{(II)}$$

and

if n is 2,

 R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or is $-R_{12}$ -X- R_{13} -,

 R_2 , R_3 , R_4 and R_5 independently of one another are hydrogen, chlorine, hydroxyl, C_1 - C_2 salkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_2 salkanoyloxy, C_1 - C_2 salkanoyloxy,

 C_3 - C_{25} alkanoyloxy which is interrupted by oxygen, sulfur or $N-R_{14}$; C_6 - C_9 cycloalkyl-

carbonyloxy, benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; or else the radicals R_2 and R_3 or the radicals R_3 and R_4 or the radicals R_4 and R_5 , together with the carbon atoms to

which they are attached, form a benzo ring, R_4 is additionally - $(CH_2)_p$ - COR_{15} or - $(CH_2)_qOH$ or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of the formula III

$$R_{2}$$

$$R_{16}$$

$$R_{16}$$

$$R_{17}$$

$$R_{17}$$

$$R_{18}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

$$R_{19}$$

in which R_1 is defined as indicated above for n=1, R_6 is hydrogen or a radical of the formula IV

$$R_2$$
 R_3
 R_4
 R_5
 R_5
 R_5

where R_4 is not a radical of the formula III and R_1 is defined as indicated above for n=1, R_7 , R_8 , R_9 , R_{10} and R_{11} independently of one another are hydrogen, halogen, hydroxyl,

C₁-C₂₅alkyl, C₂-C₂₅alkyl interrupted by oxygen, sulfur or N-R₁₄; C₁-C₂₅alkoxy,

 C_2 - C_{25} alkoxy interrupted by oxygen, sulfur or $N-R_{14}$; C_1 - C_{25} alkylthio, C_3 - C_{25} alkenyl,

 $\label{eq:c3-C25} C_3\text{-}C_2\text{-}\text{alkynyl}, \ C_3\text{-}C_2\text{-}\text{alkynyloxy}, \ C_7\text{-}C_9\text{phenylalkyl}, \ C_7\text{-}C_9\text{phenylalkoxy}, \\ \text{unsubstituted or } C_1\text{-}C_4\text{alkyl-substituted phenyl}; \ \text{unsubstituted or } C_1\text{-}C_4\text{alkyl-substituted} \\ \text{phenoxy}; \ \text{unsubstituted or } C_1\text{-}C_4\text{alkyl-substituted } C_5\text{-}C_8\text{cycloalkyl}; \ \text{unsubstituted or } C_1\text{-}C_4\text{alkyl-substituted } C_5\text{-}C_8\text{cycloalkoxy}; \ C_1\text{-}C_4\text{alkylamino}, \ \text{di}(C_1\text{-}C_4\text{alkyl})\text{amino}, \\ \text{di}(C_1\text{-}C_4\text{alkyl})\text{amino}, \\ \text{di}(C_1\text{-}C_4\text{alkyl})\text{amino}, \\$

 C_1 - C_2 salkanoyl, C_3 - C_2 salkanoyl interrupted by oxygen, sulfur or N- R_{14} ;

 C_1 - C_{25} alkanoyloxy, C_3 - C_{25} alkanoyloxy interrupted by oxygen, sulfur or $N-R_{14}$;

C₁-C₂₅alkanoylamino, C₃-C₂₅alkenoyl, C₃-C₂₅alkenoyl interrupted by oxygen, sulfur or

N—R₁₄; C₃-C₂₅alkenoyloxy, C₃-C₂₅alkenoyloxy interrupted by oxygen, sulfur or

N-R₁₄; C₆-C₉cycloalkylcarbonyl, C₆-C₉cycloalkylcarbonyloxy, benzoyl or C₁-C₁₂alkyl-

substituted benzoyl; benzoyloxy or C1-C12alkyl-substituted benzoyloxy;

and R_8 or the radicals R_8 and R_{11} , together with the carbon atoms to which they are attached, form a benzo ring,

 R_{12} and R_{13} independently of one another are unsubstituted or C_1 - C_4 alkyl-substituted phenylene or naphthylene,

R₁₄ is hydrogen or C₁-C₈aikyl,

$$R_{15}$$
 is hydroxyl, $\left[-0^{-\frac{1}{r}M^{r+}}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{25}

R₁₆ and R₁₇ independently of one another are hydrogen, CF₃, C₁-C₁₂alkyl or phenyl, or R₁₆ and R₁₇, together with the C atom to which they are attached, form a C₅-C₈cycloalkylidene ring which is unsubstituted or substituted from 1 to 3 times by C₁-C₄alkyl;

 R_{18} and R_{19} independently of one another are hydrogen, C_1 - C_4 alkyl or phenyl,

R₂₀ is hydrogen or C₁-C₄alkyl,

R₂₁ is hydrogen, unsubstituted or C₁-C₄alkyl-substituted phenyl; C₁-C₂₅alkyl, C₂-C₂₅alkyl

interrupted by oxygen, sulfur or $N-R_{14}$; C_7-C_9 phenylalkyl which is unsubstituted or

substituted on the phenyl radical from 1 to 3 times by C₁-C₄alkyl; C₇-C₂₅phenylalkyl which is unsubstituted or substituted on the phenyl radical from 1 to 3 times by C₁-C₄alkyl and

interrupted by oxygen, sulfur or $N-R_{14}$, or else the radicals R_{20} and R_{21} , together with

the carbon atoms to which they are attached, form a C₅-C₁₂cycloalkylene ring which is unsubstituted or substituted from 1 to 3 times by C₁-C₄alkyl;

R₂₂ is hydrogen or C₁-C₄alkyl,

 R_{23} is hydrogen, C_1 - C_{25} alkanoyl, C_3 - C_{25} alkanoyl, C_3 - C_{25} alkanoyl interrupted by oxygen,

sulfur or $N-R_{14}$; C_2-C_{25} alkanoyl substituted by a di(C_1-C_6 alkyl)phosphonate group;

C₆-C₉cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

 R_{24} and R_{25} independently of one another are hydrogen or C_1 - C_{18} alkyl, R_{26} is hydrogen or C_1 - C_8 alkyl,

R₂₇ is a direct bond, C₁-C₁₈alkylene, C₂-C₁₈alkylene interrupted by oxygen, sulfur or

N-R₁₄; C₂-C₁₈alkenylene, C₂-C₂₀alkylidene, C₇-C₂₀phenylalkylidene,

C₅-C₀cycloalkylene, Cr-C₀bicycloalkylene, unsubstituted or C₁-C₄alkyl-substituted

$$R_{28}$$
 is hydroxyl, $\left[-0^{-\frac{1}{r}M}^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$, R_{24} ,

 R_{29} is oxygen, -NH- or $\begin{array}{c} O\\ II\\ N-C-NH-R_{30} \end{array}$,

R₃₀ is C₁-C₁₈alkyl or phenyl,
R₃₁ is hydrogen or C₁-C₁₈alkyl,
M is an r-valent metal cation,
X is a direct bond, oxygen, sulfur or -NR₃₁-,
n is 1 or 2,
p is 0, 1 or 2,
q is 1, 2, 3, 4, 5 or 6,
r is 1, 2 or 3, and
s is 0, 1 or 2.

Unsubstituted or C₁-C₄alkyl-, C₁-C₄alkoxy-, C₁-C₄alkylthio-, hydroxyl-, halo-, amino-, C₁-C₄alkylamino-, phenylamino- or di(C₁-C₄alkyl)amino-substituted naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl is, for example, 1-naphthyl, 2-naphthyl, 1-phenylamino-4-naphthyl, 1-methylnaphthyl, 2-methylnaphthyl, 1-methoxy-2-naphthyl, 2-methoxy-1-naphthyl, 1-dimethylamino-2-naphthyl, 1,2-dimethyl-4-naphthyl, 1,2-dimethyl-6-naphthyl, 1,2-dimethyl-7-naphthyl, 1,3-dimethyl-6-naphthyl, 1,4-dimethyl-6-naphthyl, 1,5-dimethyl-2-naphthyl, 1,6-dimethyl-2-naphthyl, 1-hydroxy-2-naphthyl, 2-hydroxy-1-naphthyl, 1,4-dihydroxy-2-naphthyl, 7-phenanthryl, 1-anthryl, 2-anthryl, 9-anthryl, 3-benzo[b]thienyl, 5-benzo[b]thienyl, 2-benzo[b]thienyl, 4-dibenzofuryl, 4,7-dibenzofuryl, 4-methyl-7-dibenzofuryl, 2-xanthenyl, 8-methyl-2-xanthenyl, 3-xanthenyl, 2-phenoxathiinyl, 2,7-phenoxathiinyl, 2-pyrrolyl, 3-pyrrolyl, 5-methyl-3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl, 2-methyl-4-imidazolyl, 2-ethyl-4-imidazolyl, 2-ethyl-5-imidazolyl, 3-pyrazolyl, 1-methyl-3-pyrazolyl, 1-propyl-4-pyrazolyl, 2-pyrazinyl, 5,6-dimethyl-2-pyrazinyl, 2-indolizinyl, 2-methyl-3-isoindolyl,

2-methyl-1-isoindolyl, 1-methyl-2-indolyl, 1-methyl-3-indolyl, 1,5-dimethyl-2-indolyl, 1-methyl-3-indazolyl, 2,7-dimethyl-8-purinyl, 2-methoxy-7-methyl-8-purinyl, 2-quinolizinyl, 3-isoquinolyl, 6-isoquinolyl, 7-isoquinolyl, isoquinolyl, 3-methoxy-6-isoquinolyl, 2-quinolyl, 6-quinolyl, 7-quinolyl, 2-methoxy-3-quinolyl, 2-methoxy-6-quinolyl, 6-phthalazinyl, 7-phthalazinyl, 1-methoxy-6-phthalazinyl, 1,4-dimethoxy-6-phthalazinyl, 1,8-naphthyridin-2-yl, 2-quinoxalinyl, 6-quinoxalinyl, 2,3-dimethyl-6-quinoxalinyl, 2,3-dimethoxy-6-quinoxalinyl, 2-quinazolinyl, 7-quinazolinyl, 2-dimethylamino-6-quinazolinyl, 3-cinnolinyl, 6-cinnolinyl, 7-cinnolinyl, 3-methoxy-7-cinnolinyl, 2-pteridinyl, 6-pteridinyl, 7-pteridinyl, 6,7-dimethoxy-2-pteridinyl, 2-carbazolyl, 3-carbazolyl, 9-methyl-2-carbazolyl, 9-methyl-3-carbazolyl, 9-methyl-3-carbazolyl, 8-carbolin-3-yl, 1-methyl-β-carbolin-3-yl, 1-methyl-5-perimidinyl, 5-phenanthrolinyl, 2-acridinyl, 2-perimidinyl, 1-phenazinyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 2-phenothiazinyl, 3-phenothiazinyl, 10-methyl-3-phenothiazinyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 4-methyl-3-furazanyl, 2-phenoxazinyl or 10-methyl-2-phenoxazinyl.

Particular preference is given to unsubstituted or C₁-C₄alkyl-, C₁-C₄alkoxy-, C₁-C₄alkylthio-, hydroxyl-, phenylamino- or di(C₁-C₄alkyl)amino-substituted naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, isoindolyl, indolyl, phenothiazinyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl such as, for example, 1-naphthyl, 2-naphthyl, 1-phenylamino-4-naphthyl, 1-methylnaphthyl, 2-methylnaphthyl, 1-dimethylnaphthyl, 1-dimethyl-4-naphthyl, 2-methoxy-1-naphthyl, 1-dimethyl-7-naphthyl, 1,3-dimethyl-6-naphthyl, 1,2-dimethyl-6-naphthyl, 1,2-dimethyl-7-naphthyl, 1,6-dimethyl-2-naphthyl, 1-hydroxy-2-naphthyl, 2-hydroxy-1-naphthyl, 1,4-dihydroxy-2-naphthyl, 7-phenanthryl, 1-anthryl, 2-anthryl, 9-anthryl, 3-benzo[b]thienyl, 5-benzo[b]thienyl, 2-benzo[b]thienyl, 4-dibenzofuryl, 4,7-dibenzofuryl, 4-methyl-7-dibenzofuryl, 2-xanthenyl, 8-methyl-2-xanthenyl, 3-xanthenyl, 2-pyrrolyl, 3-pyrrolyl, 2-phenothiazinyl, 3-phenothiazinyl, 10-methyl-3-phenothiazinyl.

Halogen (halo) is, for example, chlorine, bromine or iodine. Preference is given to chlorine.

Alkanoyl having up to 25 carbon atoms is a branched or unbranched radical such as, for example, formyl, acetyl, propionyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, octanoyl, nonanoyl, decanoyl, undecanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, pentadecanoyl, hexadecanoyl, heptadecanoyl, octadecanoyl, eicosanoyl or docosanoyl. Preference is given to alkanoyl having 2 to 18, especially 2 to 12, for example 2 to 6 carbon atoms. Particular preference is given to acetyl.

C₂-C₂₅alkanoyl substituted by a di(C₁-C₆alkyl)phosphonate group is, for example, (CH₃CH₂O)₂POCH₂CO-, (CH₃O)₂POCH₂CO-, (CH₃CH₂CH₂CH₂CH₂O)₂POCH₂CO-, (CH₃CH₂CO-, (CH₃CH₂CO-, (CH₃CH₂CO-, (CH₃CH₂CO-, (CH₃CH₂CO)₂PO(CH₂CO-, (CH₃CH₂O)₂PO(CH₂)₃CO-, (CH₃CH₂O)₂PO(CH₂)₄CO-, (CH₃CH₂O)₂PO(CH₂)₄CO-.

Alkanoyloxy having up to 25 carbon atoms is a branched or unbranched radical such as, for example, formyloxy, acetoxy, propionyloxy, butanoyloxy, pentanoyloxy, hexanoyloxy, heptanoyloxy, octanoyloxy, nonanoyloxy, decanoyloxy, undecanoyloxy, dodecanoyloxy, tridecanoyloxy, tetradecanoyloxy, pentadecanoyloxy, hexadecanoyloxy, heptadecanoyloxy, octadecanoyloxy, eicosanoyloxy or docosanoyloxy. Preference is given to alkanoyloxy having 2 to 18, especially 2 to 12, for example 2 to 6 carbon atoms. Particular preference is given to acetoxy.

Alkenoyl having 3 to 25 carbon atoms is a branched or unbranched radical such as, for example, propenoyl, 2-butenoyl, 3-butenoyl, isobutenoyl, n-2,4-pentadienoyl, 3-methyl-2-butenoyl, n-2-octenoyl, n-2-dodecenoyl, iso-dodecenoyl, oleoyl, n-2-octadecenoyl or n-4-octadecenoyl. Preference is given to alkenoyl having 3 to 18, especially 3 to 12, for example 3 to 6, in particular 3 to 4 carbon atoms.

 C_3 - C_{25} alkenoyl interrupted by oxygen, sulfur or $N-R_{14}$ is, for example,

CH₃OCH₂CH₂CH=CHCO- or CH₃OCH₂CH₂OCH=CHCO-.

Alkenoyloxy having 3 to 25 carbon atoms is a branched or unbranched radical such as, for example, propenoyloxy, 2-butenoyloxy, 3-butenoyloxy, isobutenoyloxy, n-2,4-pentadienoyloxy, 3-methyl-2-butenoyloxy, n-2-octenoyloxy, n-2-dodecenoyloxy, iso-dodec noyloxy,

oleoyloxy, n-2-octadecenoyloxy or n-4-octadecenoyloxy. Preference is given to alkenoyloxy having 3 to 18, especially 3 to 12, for example 3 to 6, in particular 3 to 4 carbon atoms.

 C_3 - C_{25} alkenoyloxy interrupted by oxygen, sulfur or $N-R_{14}$ is, for example,

CH₃OCH₂CH₂CH=CHCOO- or CH₃OCH₂CH₂OCH=CHCOO-.

C₃-C₂₅alkanoyl interrupted by oxygen, sulfur or N-R₁₄ is, for example, CH₃-O-CH₂CO-,

CH₃-S-CH₂CO-, CH₃-NH-CH₂CO-, CH₃-N(CH₃)-CH₂CO-, CH₃-O-CH₂CH₂-O-CH₂CO-, CH₃-(O-CH₂CH₂-)₂O-CH₂CO-, CH₃-(O-CH₂CH₂-)₃O-CH₂CO- or CH₃-(O-CH₂CH₂-)₄O-CH₂CO-.

C₃-C₂₅alkanoyloxy interrupted by oxygen, sulfur or N-R₁₄ is, for example,

CH₃-O-CH₂COO-, CH₃-S-CH₂COO-, CH₃-NH-CH₂COO-, CH₃-N(CH₃)-CH₂COO-, CH₃-O-CH₂COO-, CH₃-(O-CH₂COO-, CH₃-(O-CH₂COO-, CH₃-(O-CH₂CH₂-)₃O-CH₂COO- or CH₃-(O-CH₂CH₂-)₄O-CH₂COO-.

C₆-C₉cycloalkylcarbonyl is, for example, cyclopentylcarbonyl, cyclohexylcarbonyl, cyclohexylcarbonyl or cyclooctylcarbonyl. Cyclohexylcarbonyl is preferred.

C₆-C₉cycloalkylcarbonyloxy is, for example, cyclopentylcarbonyloxy, cyclohexylcarbonyloxy, cyclohexylcarbonyloxy or cycloctylcarbonyloxy. Cyclohexylcarbonyloxy is preferred.

C₁-C₁₂alkyl-substituted benzoyl, which preferably carries 1 to 3, especially 1 or 2 alkyl groups, is, for example, o-, m- or p-methylbenzoyl, 2,3-dimethylbenzoyl, 2,4-dimethylbenzoyl, 2,5-dimethylbenzoyl, 2,6-dimethylbenzoyl, 3,4-dimethylbenzoyl, 3,5-dimethylbenzoyl, 2-methyl-6-ethylbenzoyl, 4-tert-butylbenzoyl, 2-ethylbenzoyl, 2,4,6-trimethylbenzoyl, 2,6-dimethyl-4-tert-butylbenzoyl or 3,5-di-tert-butylbenzoyl. Preferred substituents are C₁-C₈alkyl, especially C₁-C₄alkyl.

 C_1 - C_{12} alkyl-substituted benzoyloxy, which preferably carries 1 to 3, especially 1 or 2 alkyl groups, is, for example, o-, m- or p-methylbenzoyloxy, 2,3-dimethylbenzoyloxy,

2,4-dimethylbenzoyloxy, 2,5-dimethylbenzoyloxy, 2,6-dimethylbenzoyloxy, 3,4-dimethylbenzoyloxy, 3,5-dimethylbenzoyloxy, 2-methyl-6-ethylbenzoyloxy, 4-tert-butylbenzoyloxy, 2-ethyl-benzoyloxy, 2,4,6-trimethylbenzoyloxy, 2,6-dimethyl-4-tert-butylbenzoyloxy or 3,5-di-tert-butylbenzoyloxy. Preferred substituents are C₁-C₈alkyl, especially C₁-C₄alkyl.

Alkyl having up to 25 carbon atoms is a branched or unbranched radical such as, for example, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, 2-ethylbutyl, n-pentyl, isopentyl, 1-methylpentyl, 1,3-dimethylbutyl, n-hexyl, 1-methylhexyl, n-heptyl, isoheptyl, 1,1,3,3-tetramethylbutyl, 1-methylheptyl, 3-methylheptyl, n-octyl, 2-ethylhexyl, 1,1,3-trimethylhexyl, 1,1,3,3-tetramethylpentyl, nonyl, decyl, undecyl, 1-methylundecyl, dodecyl, 1,1,3,3,5,5-hexamethylhexyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, eicosyl or docosyl. One of the preferred meanings of R₂ and R₄ is, for example, C₁-C₁₈alkyl. A particularly preferred meaning of R₄ is C₁-C₄alkyl.

Alkenyl having 3 to 25 carbon atoms is a branched or unbranched radical such as, for example, propenyl, 2-butenyl, 3-butenyl, isobutenyl, n-2,4-pentadienyl, 3-methyl-2-butenyl, n-2-octenyl, n-2-dodecenyl, iso-dodecenyl, oleyl, n-2-octadecenyl or n-4-octadecenyl. Preference is given to alkenyl having 3 to 18, especially 3 to 12, for example 3 to 6, in particular 3 to 4 carbon atoms.

Alkenyloxy having 3 to 25 carbon atoms is a branched or unbranched radical such as, for example, propenyloxy, 2-butenyloxy, 3-butenyloxy, isobutenyloxy, n-2,4-pentadienyloxy, 3-methyl-2-butenyloxy, n-2-octenyloxy, n-2-dodecenyloxy, iso-dodecenyloxy, oleyloxy, n-2-octadecenyloxy or n-4-octadecenyloxy. Preference is given to alkenyloxy having 3 to 18, especially 3 to 12, for example 3 to 6, in particular 3 to 4 carbon atoms.

Alkynyl having 3 to 25 carbon atoms is a branched or unbranched radical such as, for example, propynyl (—CH₂-C=CH), 2-butynyl, 3-butynyl, n-2-octynyl, or n-2-dodecynyl.

Preference is given to alkynyl having 3 to 18, especially 3 to 12, for example 3 to 6, in particular 3 to 4 carbon atoms.

Alkynyloxy having 3 to 25 carbon atoms is a branched or unbranched radical such as, for example, propynyloxy (—OCH₂—C —CH), 2-butynyloxy, 3-butynyloxy, n-2-octynyloxy, or n-2-dodecynyloxy. Preference is given to alkynyloxy having 3 to 18, especially 3 to 12, for example 3 to 6, in particular 3 to 4 carbon atoms.

C₂-C₂₅alkyl interrupted by oxygen, sulfur or N---R₁₄ is, for example, CH₃-O-CH₂-, CH₃-S-CH₂-, CH₃-NH-CH₂-, CH₃-N(CH₃)-CH₂-, CH₃-O-CH₂CH₂-O-CH₂-, CH₃-(O-CH₂CH₂-)₂O-CH₂-, CH₃-(O-CH₂CH₂-)₃O-CH₂- or CH₃-(O-CH₂CH₂-)₄O-CH₂-.

 C_7 - C_9 phenylalkyl is, for example, benzyl, α -methylbenzyl, α , α -dimethylbenzyl or 2-phenylethyl. Benzyl and α , α -dimethylbenzyl are preferred.

 C_7 - C_9 phenylalkyl which is unsubstituted or substituted on the phenyl radical from 1 to 3 times by C_1 - C_4 alkyl is, for example, benzyl, α -methylbenzyl, α , α -dimethylbenzyl, 2-phenylethyl, 2-methylbenzyl, 3-methylbenzyl, 4-methylbenzyl, 2,4-dimethylbenzyl, 2,6-dimethylbenzyl or 4-tert-butylbenzyl. Benzyl is preferred.

C_TC₂₅phenylalkyl which is unsubstituted or substituted on the phenyl radical from 1 to 3

times by C₁-C₄alkyl and is interrupted by oxygen, sulfur or N—R₁₄ is a branched or unbranched radical such as, for example, phenoxymethyl, 2-methylphenoxymethyl, 3-methylphenoxymethyl, 4-methylphenoxymethyl, 2,4-dimethylphenoxymethyl, 2,3-dimethylphenoxymethyl, phenoxymethyl, N-methyl-N-phenylmethyl, N-ethyl-N-phenylmethyl, 4-tert-butylphenoxymethyl, 2,4-di-tert-butylphenoxymethyl, 2,4-di-tert-butylphenoxymethyl, phenoxyethoxymethyl, benzyloxymethyl, benzyloxymethyl, benzyloxymethyl, N-benzyl-N-ethylmethyl or N-benzyl-N-isopropylmethyl.

 C_7 - C_9 phenylalkoxy is, for example, benzyloxy, α -methylbenzyloxy, α , α -dimethylbenzyloxy or 2-phenylethoxy. Benzyloxy is preferred.

C₁-C₄alkyl-substituted phenyl, which preferably contains 1 to 3, especially 1 or 2 alkyl groups, is, for example, o-, m- or p-methylphenyl, 2,3-dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4-dimethylphenyl, 3,5-dimethylphenyl, 2-methylphenyl, 4-tert-butylphenyl, 2-ethylphenyl or 2,6-diethylphenyl.

C₁-C₄alkyl-substituted phenoxy, which preferably contains 1 to 3, especially 1 or 2 alkyl groups, is, for example, o-, m- or p-methylphenoxy, 2,3-dimethylphenoxy, 2,4-dimethylphenoxy, 2,5-dimethylphenoxy, 2,6-dimethylphenoxy, 3,4-dimethylphenoxy, 3,5-dimethylphenoxy, 2-methyl-6-ethylphenoxy, 4-tert-butylphenoxy, 2-ethylphenoxy or 2,6-diethylphenoxy.

Unsubstituted or C₁-C₄alkyi-substituted C₅-C₈cycloalkyi is, for example, cyclopentyi, methylcyclopentyi, dimethylcyclopentyi, cyclohexyi, methylcyclohexyi, dimethylcyclohexyi, trimethylcyclohexyi, tert-butylcyclohexyi, cycloheptyl or cycloactyi. Preference is given to cyclohexyi and tert-butylcyclohexyi.

Unsubstituted or C₁-C₄alkyl-substituted C₅-C₀cycloalkoxy is, for example, cyclopentoxy, methylcyclopentoxy, dimethylcyclopentoxy, cyclohexoxy, methylcyclohexoxy, dimethylcyclohexoxy, trimethylcyclohexoxy, tert-butylcyclohexoxy, cycloheptoxy or cyclooctoxy. Preference is given to cyclohexoxy and tert-butylcyclohexoxy.

Alkoxy having up to 25 carbon atoms is a branched or unbranched radical such as, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, pentoxy, isopentoxy, hexoxy, heptoxy, octoxy, decyloxy, tetradecyloxy, hexadecyloxy or octadecyloxy. Preference is given to alkoxy having 1 to 12, especially 1 to 8, for example 1 to 6 carbon atoms.

 C_2 - C_{25} alkoxy interrupted by oxygen, sulfur or $N-R_{14}$ is, for example,

CH₃-O-CH₂CH₂O-, CH₃-S-CH₂CH₂O-, CH₃-NH-CH₂CH₂O-, CH₃-N(CH₃)-CH₂CH₂O-, CH₃-O-CH₂CH₂O-, CH₃-O-CH₂CH₂O-, CH₃-O-CH₂CH₂O-, CH₃-(O-CH₂CH₂O-), CH₃-(O-CH₂CH₂O)-, CH₃-(O-CH₂CH₂O)-.

Alkylthio having up to 25 carbon atoms is a branched or unbranched radical such as, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, pentylthio, isopentylthio, hexylthio, heptylthio, octylthio, decylthio, tetradecylthio, hexadecylthio or octadecylthio. Preference is given to alkylthio having 1 to 12, especially 1 to 8, for example 1 to 6 carbon atoms.

Alkylamino having up to 4 carbon atoms is a branched or unbranched radical such as, for example, methylamino, ethylamino, propylamino, isopropylamino, n-butylamino, isobutylamino or tert-butylamino.

Di(C₁-C₄alkyl)amino also means that the two radicals independently of one another are branched or unbranched, such as, for example, dimethylamino, methylethylamino, diethylamino, methyl-n-propylamino, methylisopropylamino, methyl-n-butylamino, methylisopropylamino, methylisobutylamino, ethylisopropylamino, ethyl-n-butylamino, ethylisobutylamino, ethyl-tert-butylamino, diethylamino, diisopropylamino, isopropyl-n-butylamino, isopropylisobutylamino, di-n-butylamino or diisobutylamino.

Alkanoylamino having up to 25 carbon atoms is a branched or unbranched radical such as, for example, formylamino, acetylamino, propionylamino, butanoylamino, pentanoylamino, hexanoylamino, heptanoylamino, octanoylamino, nonanoylamino, decanoylamino, undecanoylamino, dodecanoylamino, tridecanoylamino, tetradecanoylamino, pentadecanoylamino, hexadecanoylamino, heptadecanoylamino, octadecanoylamino, eicosanoylamino or docosanoylamino. Preference is given to alkanoylamino having 2 to 18, especially 2 to 12, for example 2 to 6 carbon atoms.

C₁-C₁₈alkylene is a branched or unbranched radical such as, for example, methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, hexamethylene, heptamethylene, octamethylene, decamethylene, dodecamethylene or octadecamethylene. Preference is given to C₁-C₁₂alkylene, especially C₁-C₈alkylene.

A C₁-C₄alkyl-substituted C₅-C₁₂cycloalkylene ring, which preferably contains 1 to 3, especially 1 or 2 branched or unbranched alkyl group radicals is, for example, cyclopentylene, methylcyclopentylene, dimethylcyclopentylene, cyclohexylene, methylcyclohexylene, trimethylcyclohexylene, tert-butylcyclohexylene, cycloheptylene,

cyclooctylene or cyclodecylene. Preference is given to cyclohexylene and tert-butylcyclohexylene.

C₂-C₁₈alkylene interrupted by oxygen, sulfur or N-R₁₄ is, for example, -CH₂-O-CH₂-,

-CH₂-S-CH₂-, -CH₂-NH-CH₂-, -CH₂-N(CH₃)-CH₂-, -CH₂-O-CH₂-CH₂-O-CH₂-,

 $-CH_{2}-(O-CH_{2}CH_{2}-)_{2}O-CH_{2}-, -CH_{2}-(O-CH_{2}CH_{2}-)_{3}O-CH_{2}-, -CH_{2}-(O-CH_{2}CH_{2}-)_{4}O-CH_{2}- or \\ -CH_{2}CH_{2}-S-CH_{2}CH_{2}-.$

C₂-C₁₈alkenylene is, for example, vinylene, methylvinylene, octenylethylene or dodecenylethylene. Preference is given to C₂-C₈alkenylene.

Alkylidene having 2 to 20 carbon atoms is, for example, ethylidene, propylidene, butylidene, pentylidene, 4-methylpentylidene, heptylidene, nonylidene, tridecylidene, nonadecylidene, 1-methylethylidene, 1-ethylpropylidene or 1-ethylpentylidene. Preference is given to C₂-C₈alkylidene.

Phenylalkylidene having 7 to 20 carbon atoms is, for example, benzylidene, 2-phenylethylidene or 1-phenyl-2-hexylidene. Preference is given to C₇-C₉-phenylalkylidene.

C₅-C₈cycloalkylene is a saturated hydrocarbon group having two free valencies and at least one ring unit and is, for example, cyclopentylene, cyclohexylene, cycloheptylene or cyclooctylene. Preference is given to cyclohexylene.

C₇-C₈bicycloalkylene is, for example, bicycloheptylene or bicyclooctylene.

Unsubstituted or C₁-C₄alkyl-substituted phenylene or naphthylene is, for example, 1,2-, 1,3-, 1,4-phenylene, 1,2-, 1,3-, 1,6-, 1,7-, 2,6- or 2,7-naphthylene. 1,4-Phenylene is preferred.

A C₁-C₄alkyl-substituted C₅-C₈cycloalkylidene ring, which preferably contains 1 to 3, especially 1 or 2 branched or unbranched alkyl group radicals is, for example, cyclopentylidene, methylcyclopentylidene, dimethylcyclopentylidene, cyclohexylidene,

methylcyclohexylidene, dimethylcyclohexyliden , trimethylcyclohexylidene, tert-butylcyclohexylidene, tert-butylcyclohexylidene and tert-butylcyclohexylidene.

A mono-, di- or trivalent metal cation is preferably an alkali metal, alkaline earth metal or aluminium cation, for example, Na⁺, K⁺, Mg⁺⁺, Ca⁺⁺ or Al⁺⁺⁺.

Preference is given to compositions comprising as component (b) at least one compound of the formula I in which, if n is 2,

R₁ is -R₁₂-X-R₁₃-, R₁₂ and R₁₃ are phenylene, X is oxygen or -NR₃₁-, and R₃₁ is C₁-C₄alkyl.

Preference is also given to compositions comprising as component (b) at least one compound of the formula I in which, if n is 1,

 R_1 is unsubstituted or C_1 - C_4 alkyl-, C_1 - C_4 alkoxy-, C_1 - C_4 alkylthio-, hydroxyl-, halo-, amino-, C_1 - C_4 alkylamino- or di(C_1 - C_4 -alkyl)amino-substituted naphthyl, phenanthryl, thienyl, dibenzofuryl, carbazolyl, fluorenyl or a radical of the formula II

$$\begin{array}{c} R_9 \\ R_7 \\ R_8 \end{array} \qquad \qquad \text{(II),}$$

 R_7 , R_8 , R_9 , R_{10} and R_{11} independently of one another are hydrogen, chlorine, bromine, hydroxyl, C_1 - C_{18} alkyl, C_2 - C_{18} alkyl interrupted by oxygen or sulfur; C_1 - C_{18} alkoxy, C_2 - C_{18} alkoxy interrupted by oxygen or sulfur; C_1 - C_{18} alkylthio, C_3 - C_{12} alkenyloxy, C_3 - C_{12} alkynyloxy, C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkoxy, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; phenoxy, cyclohexyl, C_5 - C_8 cycloalkoxy, C_1 - C_4 alkylamino, di(C_1 - C_4 -alkyl)amino, C_1 - C_{12} alkanoyl, C_3 - C_{12} alkanoyl interrupted by oxygen or sulfur; C_1 - C_1 2alkanoyloxy, C_3 - C_1 2alkanoyloxy interrupted by oxygen or sulfur; C_1 - C_1 2alkanoyloxy, cyclohexylcarbonyl, cyclohexylcarbonyloxy, benzoyl or C_1 - C_4 alkyl-

substituted benzoyl; benzoyloxy or C₁-C₄alkyl-substituted benzoyloxy; —O—C—C—R₁₅ R₁₀

and R11, together with the carbon atoms to which they are attached, form a benzo ring,

$$R_{15}$$
 is hydroxyl, C_1 - C_{12} alkoxy or $-N$, R_{25}

 R_{18} and R_{19} independently of one another are hydrogen or C_1 - C_4 alkyl, R_{20} is hydrogen,

R₂₁ is hydrogen, phenyl, C₁-C₁₈alkyl, C₂-C₁₈alkyl interrupted by oxygen or sulfur;

 C_7 - C_9 phenylalkyl, C_7 - C_{18} -phenylalkyl which is unsubstituted or substituted on the phenyl radical from 1 to 3 times by C_1 - C_4 alkyl and is interrupted by oxygen or sulfur, or else the radicals R_{20} and R_{21} , together with the carbon atoms to which they are attached, form a cyclohexylene ring which is unsubstituted or substituted from 1 to 3 times by C_1 - C_4 alkyl, R_{22} is hydrogen or C_1 - C_4 alkyl,

 R_{23} is hydrogen, C_1 - C_{18} alkanoyl, C_3 - C_{18} alkanoyl, C_3 - C_{12} alkanoyl interrupted by oxygen or sulfur; C_2 - C_{12} alkanoyl substituted by a di(C_1 - C_8 -alkyl)phosphonate group; C_6 - C_9 cycloalkyl-

carbonyl, benzoyl,
$$C = C_1 + C_2 + C_3 + C_3 + C_4 + C_5 +$$

R₂₄ and R₂₅ independently of one another are hydrogen or C₁-C₁₂alkyl,

R₂₆ is hydrogen or C₁-C₄alkyl,

R₂₇ is C₁-C₁₂alkylene, C₂-C₈alkenylene, C₂-C₈alkylidene, C₇-C₁₂phenylalkylidene, C₅-C₈cyclo-alkylene or phenylene,

$$R_{28}$$
 is hydroxyl, C_1 - C_{12} alkoxy or $N_{R_{25}}$,

R₂₉ is oxygen or -NH-,

 R_{30} is C_1 - C_{18} alkyl or phenyl, and s is 1 or 2.

Preference is likewise given to compositions comprising as component (b) at least one compound of the formula I in which, if n is 1,

 R_1 is phenanthryl, thienyl, dibenzofuryl, unsubstituted or C_1 - C_4 alkyl-substituted carbazolyl; or is fluorenyl; or R_1 is a radical of the formula II

$$\begin{array}{c} R_9 \\ R_7 \\ R_8 \end{array} \qquad \qquad \text{(II),}$$

 R_7 , R_8 , R_9 , R_{10} and R_{11} independently of one another are hydrogen, chlorine, hydroxyl, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_3 - C_4 alkenyloxy, C_3 - C_4 alkinyloxy,

$$R_{20}$$
 R_{21} R_{21} R_{22} R_{21} R_{22} R_{23} R_{21} R_{22} R_{23} R_{24} R_{22} R_{24} R_{25} R

R₂₀ is hydrogen,

R₂₁ is hydrogen, phenyl or C₁-C₁₈alkyl, or else the radicals R₂₀ and R₂₁, together with the carbon atoms to which they are attached, form a cyclohexylene ring which is unsubstituted or substituted from 1 to 3 times by C₁-C₄alkyl,

R₂₂ is hydrogen or C₁-C₄alkyl, and

R₂₃ is hydrogen, C₁-C₁₈alkanoyl or benzoyl.

Particular preference is given to compositions comprising as component (b) at least one compound of the formula I in which, if n is 1,

R₇, R₈, R₉, R₁₀ and R₁₁ independently of one another are hydrogen, C₁-C₁₂alkyl,

$$C_1$$
- C_1 -alkoxy, C_1 - C_4 alkylthio, C_2 - C_1 -alkanoyloxy, C_1 - C_2 -alkoxy, C_1 - C_4 -alkylthio, C_2 - C_1 -alkanoyloxy, C_1 - C_2 - C_1 - C_2 - C_1 - C_2 - C_3 - C_4 - C_4 - C_1 - C_2 - C_3 - C_4 - C

 R_{20} , R_{21} and R_{22} are hydrogen, and R_{23} is hydrogen or C_1 - C_{18} alkanoyl.

Of particular interest are compositions comprising as component (b) at least one compound of the formula I in which

 R_2 , R_3 , R_4 and R_5 independently of one another are hydrogen, chlorine, C_1 - C_{18} alkyl, benzyl, phenyl, C_5 - C_8 cycloalkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_{18} alkanoyloxy, C_1 - C_{18} alkenoyloxy or benzoyloxy; or else the radicals R_2 and R_3 or the radicals R_3 and R_4 or the radicals R_4 and R_5 , together with the carbon atoms to which they are attached, form a benzo ring, R_4 is additionally - $(CH_2)_p$ - COR_{15} or - $(CH_2)_qOH$, or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of the formula III,

$$R_{15}$$
 is hydroxyl, C_1 - C_{12} alkoxy or $-N$
 R_{25} ,

 R_{16} and R_{17} are methyl groups or, together with the C atom to which they are attached, form a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted from 1 to 3 times by C_1 - C_4 alkyl,

R₂₄ and R₂₅ independently of one another are hydrogen or C₁-C₁₂alkyl, p is 1 or 2, and

q is 2, 3, 4, 5 or 6.

Also of particular interest are compositions comprising as component (b) at least one compound of the formula I in which at least two of the radicals R_2 , R_3 , R_4 and R_5 are hydrogen.

Of special interest are compositions comprising as component (b) at least one compound of the formula I in which R_3 and R_5 are hydrogen.

Of very special interest are compositions comprising as component (b) at least one compound of the formula I in which

R2 is C1-C4alkyl,

R₃ is hydrogen,

 R_4 is C_1 - C_4 alkyl or, if R_6 is hydrogen, R_4 is additionally a radical of the formula III, R_5 is hydrogen, and

 R_{16} and R_{17} , together with the C atom to which they are attached, form a cyclohexylidene ring which is unsubstituted or substituted by C_1 - C_4 alkyl.

The following compounds are examples of the benzofuran-2-one type which are particularly suitable as component (b) in the novel composition: 3-[4-(2-acetoxyethoxy)phenyl]-5,7-ditert-butyl-benzofuran-2-one; 5,7-di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one; 3,3'-bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)benzofuran-2-one]; 5,7-di-tert-butyl-3-(4-ethoxyphenyl)benzofuran-2-one; 3-(4-acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-one; 5,7-di-tert-butyl-benzofuran-2-one; 5,7-di-tert-butyl-3-phenylbenzofuran-2-one; 5,7-di-tert-butyl-3-(3,4-dimethylphenyl)-benzofuran-2-one; 5,7-di-tert-butyl-3-(2,3-dimethylphenyl)benzofuran-2-one.

Also of special interest are compositions comprising as component (b) at least one compound of the formula V

in which

R₂ is hydrogen or C₁-C6alkyl,

R₃ is hydrogen,

R4 is hydrogen, C1-C6alkyl or a radical of the formula IIIa

$$R_{2}$$
 R_{3}
 R_{16}
 $C-R_{17}$
 R_{8}
 R_{10}
 R_{11}
 R_{11}
 R_{11}

R₅ is hydrogen,

R₇, R₈, R₉, R₁₀ and R₁₁ independently of one another are hydrogen, C₁-C₄alkyl, C₁-C₄alkoxy,

$$C_2$$
- C_6 alkanoyloxy or C_2 - C_6 alkanoyloxy or C_2 - C_6 -

radicals R7, R8, R9, R10 or R11 are hydrogen,

R₁₆ and R₁₇, together with the C atom to which they are attached, form a cyclohexylidene ring which is unsubstituted or substituted by C₁-C₄alkyl;

R₂₀, R₂₁ and R₂₂ are hydrogen, and

R₂₃ is hydrogen or C₁-C₁₈alkanoyl.

Very particular preference is given to compositions comprising as component (b) at least one compound of the formula Va or Vb

or a mixture of the two compounds of the formula Va and Vb.

The compounds of the benzofuran-2-one type as component (b) in the novel composition are known in the literature and their preparation is described, for example, in the following U.S. patents: US 4,325,863; US 4,388,244; US 5,175,312; US 5,252,643; US 5,216,052; US 5,369,159; US 5,488,117; US 5,356,966; US 5,367,008; US 5,428,162; US 5,428,177 or US 5,516,920.

Compositions of interest include those comprising as component (c) at least one radical of the formula XII or XIII

(XIII)
$$G-CH_2$$
 G_2 $G-CH_2$ $G-CH_3$ G_2 $G-CH_2$ $G-CH_3$ $G-CH_3$

in which

G is hydrogen or methyl, and

G₁ and G₂ are hydrogen, methyl or together are oxygen.

Of particular interest are compositions comprising as component (c) at least one compound from the group of the sterically hindered amines of the class of compounds described under (a') to (g'), which comprise at least one radical of the formula XII or XIII.

(a') Compounds of the formula XIIa

$$\begin{bmatrix}
G - CH_2 & G_1 \\
G_{11} & N & O \\
G - CH_2 & CH_3
\end{bmatrix}$$
(XIIa)

in which n is a number from 1 to 4,

G and G₁ independently of one another are hydrogen or methyl,

G₁₁ is hydrogen, O', hydroxyl, NO, -CH₂CN, C₁-C₁₈aikyl, C₃-C₈alkenyl, C₃-C₈alkynyl,

C₇-C₁₂aralkyl, C₁-C₁₈alkoxy, C₅-C₈cycloalkoxy, C₇-C₉phenylalkoxy, C₁-C₈alkanoyl,

C₃-C₅alkenoyl, C₁-C₁₈alkanoyloxy, benzyloxy, glycidyl or a group -CH₂CH(OH)-Z, where G₁₁ is preferably hydrogen, C₁-C₄alkyl, allyl, benzyl, acetyl or acryloyl,

Z is hydrogen, methyl or phenyl, and,

if n is 1.

 G_{12} is hydrogen, C_1 - C_{18} alkyl, which is uninterrupted or interrupted by one or more oxygen atoms, or is cyanoethyl, benzyl, glycidyl, a monovalent radical of an aliphatic, cycloaliphatic, araliphatic, unsaturated or aromatic carboxylic acid, carbamic acid or phosphorus-containing acid or a monovalent silyl radical, preferably a radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, of an α,β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms, it being possible for the carboxylic acid to be substituted in each case in the aliphatic, cycloaliphatic or aromatic moiety from 1 to 3 times by -COOZ₁₂,

 Z_{12} is hydrogen, C_1 - C_{20} alkyl, C_3 - C_{12} alkenyl, C_5 - C_7 cycloalkyl, phenyl or benzyl, and, if n is 2,

G₁₂ is C₂-C₁₂alkylene, C₄-C₁₂alkenylene, xylylene, a divalent radical of an aliphatic, cycloaliphatic, araliphatic or aromatic dicarboxylic acid, dicarbamic acid or phosphorus-containing acid or a divalent silyl radical, preferably a radical of an aliphatic dicarboxylic acid having 2 to 36 carbon atoms, of a cycloaliphatic or aromatic dicarboxylic acid having 8 to

14 carbon atoms or of an aliphatic, cycloaliphatic or aromatic dicarbamic acid having 8 to 14 carbon atoms, it being possible for the dicarboxylic acid to be substituted in each case in the aliphatic, cycloaliphatic or aromatic moiety by 1 or 2 groups of -COOZ₁₂, and, if n is 3,

 G_{12} is a trivalent radical of an aliphatic, cycloaliphatic or aromatic tricarboxylic acid, which can be substituted in the aliphatic, cycloaliphatic or aromatic moiety by -COOZ₁₂, of an aromatic tricarbamic acid or of a phosphorus-containing acid, or is a trivalent silyl radical, and,

if n is 4.

G₁₂ is a tetravalent radical of an aliphatic, cycloaliphatic or aromatic tetracarboxylic acid.

The carboxylic acid radicals indicated include in each case radicals of the formula $(-CO)_nR$, in which the meaning of n is indicated above and the meaning of R is evident from the definition stated.

Any C₁-C₁₂alkyl substituents are, for example, methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl.

As C_1 - C_{18} alkyl G_{11} or G_{12} can be, for example, the groups indicated above and also, for example, n-tridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl.

If G_{11} is C_3 - C_8 alkenyl it can, for example, be 1-propenyl, allyl, methallyl, 2-butenyl, 2-pentenyl, 2-hexenyl, 2-octenyl or 4-tert-butyl-2-butenyl.

G₁₁ as C₃-C₈alkynyl is preferably propargyl.

G₁₁ as C₇-C₁₂aralkyl is especially phenethyl and in particular benzyl.

 G_{11} as C_1 - C_8 alkanoyl is, for example, formyl, propionyl, butyryl, octanoyl, but preferably acetyl and as C_3 - C_5 alkenoyl is especially acryloyl.

G₁₂ as a monovalent radical of a carboxylic acid is, for example, an acetic, caproic, stearic, acrylic, methacrylic, benzoic or β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid radical.

If G_{12} is a monovalent silyl radical then it is, for example, a radical of the formula $-(C_iH_{2i})-Si(Z')_2Z''$ in which j is an integer from the range from 2 to 5 and Z' and Z' independently of one another are C_1-C_4 alkyl or C_1-C_4 alkoxy.

If G₁₂ is a divalent radical of a dicarboxylic acid then it is, for example, a malonic, succinic, glutaric, adipic, suberic, sebacic, maleic, itaconic, phthalic, dibutylmalonic, dibenzylmalonic, butyl(3,5-di-tert-butyl-4-hydroxybenzyl)malonic or bicycloheptenedicarboxylic acid radical or

a radical of the formula

$$Z_{13}$$
 CH=C in which Z_{13} is hydroge

 C_1 - C_{12} alkyl or C_1 - C_{12} alkoxy. A particularly preferred meaning of Z_{13} is hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkoxy, for example p-methoxy.

If G₁₂ is a trivalent radical of a tricarboxylic acid then it is, for example, a trimellitic, citric or nitrilotriacetic acid radical.

If G_{12} is a tetravalent radical of a tetracarboxylic acid then it is, for example, the tetravalent radical of butane-1,2,3,4-tetracarboxylic acid or of pyromellitic acid.

If G_{12} is a divalent radical of a dicarbamic acid then it is, for example, a hexamethylenedicarbamic or a 2,4-tolylenedicarbamic acid radical.

Preference is given to compounds of the formula XIIa in which G is hydrogen, G_{11} is hydrogen or methyl, n is 2 and G_{12} is the diacyl radical of an aliphatic dicarboxylic acid having 4 to 12 carbon atoms.

Examples of polyalkylpiperidine compounds of this class are the following compounds:

- 1) 4-Hydroxy-2,2,6,6-tetramethylpiperidine
- 2) 1-Allyl-4-hydroxy-2,2,6,6-tetramethylpiperidine

- 3) 1-Benzyl-4-hydroxy-2,2,6,6-tetramethylpiperidine
- 4) 1-(4-tert-Butyl-2-butenyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine
- 5) 4-Stearoyloxy-2,2,6,6-tetramethylpiperidine
- 6) 1-Ethyl-4-salicyloyloxy-2,2,6,6-tetramethylpiperidine
- 7) 4-Methacryloyloxy-1,2,2,6,6-pentamethylpiperidine
- 8) 1,2,2,6,6-Pentamethylpiperidin-4-yl ß-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate
- 9) Di(1-benzyl-2,2,6,6-tetramethylpiperidin-4-yl) maleate
- 10) Di(2,2,6,6-tetramethylpiperidin-4-yl) succinate
- 11) Di(2,2,6,6-tetramethylpiperidin-4-yl) glutarate
- 12) Di(2,2,6,6-tetramethylpiperidin-4-yl) adipate
- 13) Di(2,2,6,6-tetramethylpiperidin-4-yl) sebacate
- 14) Di(1,2,2,6,6-pentamethylpiperidin-4-yl) sebacate
- 15) Di(1,2,3,6-tetramethyl-2,6-diethyl-piperidin-4-yl) sebacate
- 16) Di(1-allyl-2,2,6,6-tetramethylpiperidin-4-yl) phthalate
- 17) 1-Hydroxy-4-ß-cyanoethyloxy-2,2,6,6-tetramethylpiperidine
- 18) 1-Acetyl-2,2,6,6-tetramethylpiperidin-4-yl acetate
- 19) Tri(2,2,6,6-tetramethylpiperidin-4-yl) trimellitate
- 20) 1-Acryloyl-4-benzyloxy-2,2,6,6-tetramethylpiperidine
- 21) Di(2,2,6,6-tetramethylpiperidin-4-yl) diethylmalonate
- 22) Di(1,2,2,6,6-pentamethylpiperidin-4-yl) dibutylmalonate
- 23) Di(1,2,2,6,6-pentamethylpiperidin-4-yl) butyl(3,5-di-tert-butyl-4-hydroxybenzyl)malonate
- 24) Di(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate
- 25) Di(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate
- 26) Hexane-1',6'-bis(4-carbamoyloxy-1-n-butyl-2,2,6,6-tetramethylpiperidine)
- 27) Toluene-2',4'-bis(4-carbamoyloxy-1-n-propyl-2,2,6,6-tetramethylpiperidine)
- 28) Dimethylbis(2,2,6,6-tetramethylpiperidin-4-oxy)silane
- 29) Phenyltris(2,2,6,6-tetramethylpiperidin-4-oxy)silane
- 30) Tris(1-propyl-2,2,6,6-tetramethylpiperidin-4-yl) phosphite
- 31) Tris(1-propyl-2,2,6,6-tetramethylpiperidin-4-yl) phosphate
- 32) Phenyl [bis(1,2,2,6,6-pentamethylpiperidin-4-yl)]phosphonate
- 33) 4-Hydroxy-1,2,2,6,6-pentamethylpiperidine
- 34) 4-Hydroxy-N-hydroxyethyl-2,2,6,6-tetramethylpiperidine
- 35) 4-Hydroxy-N-(2-hydroxypropyl)-2,2,6,6-tetramethylpiperidine
- 36) 1-Glycidyl-4-hydroxy-2,2,6,6-tetramethylpiperidine.

A particularly preferred compound of the formula XIIa is the compound of the formula H7.

$$\begin{array}{c} CH_3C \\ CH_3 \\ CH_3C \\ CH_3 \\$$

(b') Compounds of the formula XIIb

in which n is the number 1 or 2,

G, G₁ and G₁₁ are as defined under (a'),

 G_{13} is hydrogen, C_1 - C_{12} alkyl, C_2 - C_5 hydroxyalkyl, C_5 - C_7 cycloalkyl, C_7 - C_8 aralkyl,

C2-C18alkanoyi, C3-C5alkenoyi, benzoyi or a group of the formula

$$G-CH_{2}$$

$$G_{11}$$

$$G-CH_{2}$$

$$CH_{3}$$

$$G-CH_{2}$$

$$CH_{3}$$

and,

if n is 1.

G₁₄ is hydrogen, C₁-C₁₈alkyl, C₃-C₈alkenyl, C₅-C₇cycloalkyl, or C₁-C₄alkyl substituted by a hydroxyl, cyano, alkoxycarbonyl or carbamide group; glycidyl, a group of the formula -CH₂-CH(OH)-Z or of the formula -CONH-Z, in which Z is hydrogen, methyl or phenyl, and if n is 2.

G₁₄ is C₂-C₁₂alkylene, C₆-C₁₂arylene, xylylene, a -CH₂-CH(OH)-CH₂- group or a group -CH₂-CH(OH)-CH₂-O-D-O- in which D is C₂-C₁₀alkylene, C₆-C₁₅arylene, C₆-C₁₂cycloalkylene, or, provided that G₁₃ is not alkanoyl, alkenoyl or benzoyl, G₁₄ can alternatively be 1-oxo-C₂-C₁₂alkylene, a divalent radical of an aliphatic, cycloaliphatic or aromatic dicarboxylic acid or dicarbamic acid or else can be the group -CO-, or, if n is 1,

G₁₃ and G₁₄ together can be the divalent radical of an aliphatic, cycloaliphatic or aromatic 1,2- or 1,3-dicarboxylic acid.

Any C₁-C₁₂- or C₁-C₁₈alkyl substituents are as already defined under (a').

Any C5-C7cycloalkyl substituents are, in particular, cyclohexyl.

G₁₃ as C₇-C₈aralkyl is in particular phenylethyl or especially benzyl. As C₂-C₅hydroxyalkyl G₁₃ is, in particular, 2-hydroxyethyl or 2-hydroxypropyl.

G₁₃ as C₂-C₁₈alkanoyl is, for example, propionyl, butyryl, octanoyl, dodecanoyl, hexadecanoyl, octadecanoyl, but preferably acetyl, and as C₃-C₅alkenoyl is especially acryloyl.

If G₁₄ is C₂-C₈alkenyl it is, for example, allyl, methallyl, 2-butenyl, 2-pentenyl, 2-hexenyl or 2-octenyl.

G₁₄ as C₁-C₄alkyl substituted by a hydroxyl, cyano, alkoxycarbonyl or carbamide group can, for example, be 2-hydroxyethyl, 2-hydroxypropyl, 2-cyanoethyl, methoxycarbonylmethyl, 2-ethoxycarbonylethyl, 2-aminocarbonylpropyl or 2-(dimethylaminocarbonyl)ethyl.

Any C_2 - C_{12} alkylene substituents are, for example, ethylene, propylene, 2,2-dimethylpropylene, tetramethylene, hexamethylene, octamethylene, decamethylene or dodecamethylene.

Any C₆-C₁₅arylene substituents are, for example, o-, m- or p-phenylene, 1,4-naphthylene or 4,4'-diphenylene.

As C₆-C₁₂cycloalkylene particular mention may be made of cyclohexylene.

Preference is given to compounds of the formula XIIb in which n is 1 or 2, G is hydrogen, G₁₁ is hydrogen or methyl, G₁₃ is hydrogen, C₁-C₁₂alkyl or a group of the formula

and G_{14} , if n=1, is hydrogen or C_1 - C_{12} alkyl and, if n=2, is C_2 - C_8 alkylene or 1-oxo- C_2 - C_8 alkylene.

Examples of polyalkylpiperidine compounds of this class are the following compounds:

- 37) N,N'-Bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylene-1,6-diamine
- 38) N,N'-Bis(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylene-1,6-diacetamide
- 39) Bis(2,2,6,6-tetramethylpiperidin-4-yl)amine
- 40) 4-Benzoylamino-2,2,6,6-tetramethylpiperidine
- 41) N,N'-Bis(2,2,6,6-tetramethylpiperidin-4-yl)-N,N'-dibutyladipamide
- 42) N,N'-Bis(2,2,6,6-tetramethylpiperidin-4-yl)-N,N'-dicyclohexyl-2-hydroxypropylene-1,3-diamine
- 43) N,N'-Bis(2,2,6,6-tetramethylpiperidin-4-yl)-p-xylylenediamine
- 44) N,N'-Bis(2,2,6,6-tetramethylpiperidin-4-yl)succinamide

- 45) Di(2,2,6,6-tetramethylpiperidin-4-yl) N-(2,2,6,6-tetramethylpiperidin-4-yl)-ß-amino-dipropionate
- 46) The compound of the formula

- 47) 4-(Bis-2-hydroxyethylamino)-1,2,2,6,6-pentamethylpiperidine
- 48) 4-(3-Methyl-4-hydroxy-5-tert-butylbenzamido)-2,2,6,6-tetramethylpiperidine
- 49) 4-Methacrylamido-1,2,2,6,6-pentamethylpiperidine
- (c') Compounds of the formula XIIc

$$\begin{bmatrix}
G - CH_2 & G_1 \\
G_{11} & N & O
\end{bmatrix}$$

$$G - CH_2 & CH_3 & O$$

$$G - CH_3 &$$

in which n is the number 1 or 2, G, G_1 and G_{11} are as defined under (a'), and if n is 1,

 G_{15} is C_2 - C_8 alkylene or C_2 - C_8 hydroxyalkylene or C_4 - C_{22} acyloxyalkylene, and, if n is 2,

 G_{15} is the group (-CH₂)₂C(CH₂-)₂.

If G_{15} is C_2 - C_8 alkylene or C_2 - C_8 hydroxyalkylene then it is, for example, ethylene, 1-methylethylene, propylene, 2-ethylpropylene or 2-ethyl-2-hydroxymethylpropylene.

G₁₅ as C₄-C₂₂acyloxyalkylene is, for xample, 2-ethyl-2-acetoxymethylpropylene.

Examples of polyalkylpiperidine compounds of this class are the following compounds:

- 50) 9-Aza-8,8,10,10-tetramethyl-1,5-dioxaspiro[5.5]undecane
- 51) 9-Aza-8,8,10,10-tetramethyl-3-ethyl-1,5-dioxaspiro[5.5]undecane
- 52) 8-Aza-2,7,7,8,9,9-hexamethyl-1,4-dioxaspiro[4.5]decane
- 53) 9-Aza-3-hydroxymethyl-3-ethyl-8,8,9,10,10-pentamethyl-1,5-dioxaspiro[5.5]undecane
- 54) 9-Aza-3-ethyl-3-acetoxymethyl-9-acetyl-8,8,10,10-tetramethyl-1,5-dioxaspiro[5.5]-undecane
- 55) 2,2,6,6-Tetramethylpiperidine-4-spiro-2'-(1',3'-dioxane)-5'-spiro-5"-(1",3"-dioxane)-2"-spiro-4"'-(2"',2"',6"',6"',6"'-tetramethylpiperidine).
- (d') Compounds of the formulae XIId, XIIe and XIIf, with compounds of the formula XIIf being preferred

$$\begin{bmatrix}
G - CH_2 & G_1 & G_{16} & O \\
G_{11} - N & O & O & O
\end{bmatrix}$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_3 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_3 & CH_3 & O & O$$

$$G - CH_2 & CH_3 & O & O$$

$$G - CH_3 & CH_3 & O &$$

$$G-CH_{2}$$

$$G_{11}$$

$$G-CH_{2}$$

$$G-CH_{2}$$

$$G-CH_{3}$$

$$G-CH_{3}$$

$$G-CH_{3}$$

$$G-CH_{3}$$

$$G-CH_{4}$$

$$G-CH_{3}$$

$$G-CH_{4}$$

$$G-CH_{3}$$

$$G-CH_{4}$$

$$G-CH_{3}$$

$$G-CH_{4}$$

$$G-CH_{5}$$

$$\begin{bmatrix}
G - CH_2 & G_1 & T_2 \\
G_{11} - N & C & N
\end{bmatrix}$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C & N$$

$$G - CH_2 & CH_3 & C$$

in which n is the number 1 or 2, G, G₁ and G₁₁ are as defined under (a'), G₁₆ is hydrogen, C₁-C₁₂alkyl, allyl, benzyl, glycidyl or C₂-C₆alkoxyalkyl, and if n is 1.

G₁₇ is hydrogen, C₁-C₁₂alkyl, C₃-C₅alkenyl, C₇-C₉aralkyl, C₅-C₇cycloalkyl, C₂-C₄hydroxyalkyl, C₆-C₁₀aryl, glycidyl or a group of the formula

-(CH₂)p-COO-Q or of the formula -(CH₂)p-O-CO-Q in which p is 1 or 2 and Q is C_1 -C₄alkyl or phenyl, and

if n is 2.

 G_{17} is C_2 - C_{12} alkylene, C_4 - C_{12} alkenylene, C_6 - C_{12} arylene, a group -CH₂-CH(OH)-CH₂-O-D-O-CH₂-CH(OH)-CH₂- in which D is C_2 - C_{10} alkylene, C_6 - C_{15} arylene, C_6 - C_{12} cycloalkylene, or a group -CH₂CH(OZ')CH₂-(OCH₂-CH(OZ')CH₂)_Z- in which Z' is hydrogen, C_1 - C_{18} alkyl, allyl, benzyl, C_2 - C_{12} alkanoyl or benzoyl,

 T_1 and T_2 independently of one another are hydrogen, C_1 - C_{18} alkyl or unsubstituted or haloor C_1 - C_4 alkyl-substituted C_8 - C_{10} aryl or C_7 - C_9 aralkyl or T_1 and T_2 , together with the carbon atom to which they are attached, form a C_5 - C_{14} cycloalkane ring.

Any C₁-C₁₂alkyl substituents are, for example, methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl.

Any substituents in the meaning of C₁-C₁₈alkyl can, for example, be the groups listed above and also, for example, n-tridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl.

Any C₂-C₆alkoxyalkyl substituents are, for example, methoxymethyl, ethoxymethyl, propoxymethyl, tert-butoxymethyl, ethoxyethyl, ethoxypropyl, n-butoxyethyl, tert-butoxyethyl, isopropoxyethyl or propoxypropyl.

If G₁₇ is C₃-C₅alkenyl then it is, for example, 1-propenyl, allyl, methallyl, 2-butenyl or 2-pentenyl.

 G_{17} , T_1 and T_2 as C_7 - C_9 aralkyl are, in particular, phenethyl or especially benzyl. If T_1 and T_2 together with the carbon atom form a cycloalkane ring then this can, for example, be a cyclopentane, cyclohexane, cyclooctane or cyclododecane ring.

If G_{17} is C_2 - C_4 hydroxyalkyl then it is, for example, 2-hydroxyethyl, 2-hydroxybryl, 2-hydroxybutyl.

 G_{17} , T_1 and T_2 as C_6 - C_{10} aryl are, in particular, phenyl, α - or β -naphthyl which are unsubstituted or substituted by halogen or C_1 - C_4 alkyl.

If G_{17} is C_2 - C_{12} alkylene then it is, for example, ethylene, propylene, 2,2-dimethylpropylene, tetramethylene, hexamethylene, octamethylene, decamethylene or dodecamethylene.

G₁₇ as C₄-C₁₂alkenylene is, in particular, 2-butenylene, 2-pentenylene or 3-hexenylene.

If G_{17} is C_6 - C_{12} arylene then it is, for example, o-, m- or p-phenylene, 1,4-naphthylene or 4,4'-diphenylene.

If Z' is C_2 - C_{12} alkanoyl then it is, for example, propionyl, butyryl, octanoyl, dodecanoyl, but preferably acetyl.

D as C2-C10alkylene, C6-C15arylene or C6-C12cycloalkylene is as defined under (b').

Examples of polyalkylpiperidine compounds of this class are the following compounds:

- 56) 3-Benzyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]decane-2,4-dione
- 57) 3-n-Octyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]decane-2,4-dione
- 58) 3-Allyl-1,3,8-triaza-1,7,7,9,9-pentamethylspiro[4.5]decane-2,4-dione
- 59) 3-Glycidyl-1,3,8-triaza-7,7,8,9,9-pentamethylspiro[4.5]decane-2,4-dione
- 60) 1,3,7,7,8,9,9-Heptamethyl-1,3,8-triazaspiro[4.5]decane-2,4-dione

- 61) 2-Isopropyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane
- 62) 2,2-Dibutyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4.5]decane
- 63) 2,2,4,4-Tetramethyl-7-oxa-3,20-diaza-21-oxodispiro[5.1.11.2]heneicosane
- 64) 2-Butyl-7,7,9,9-tetramethyl-1-oxa-4,8-diaza-3-oxospiro[4.5]decane and preferably:
- 65) 8-Acetyl-3-dodecyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4.5]decane-2,4-dione

or the compounds of the following formulae:

66)
$$\begin{bmatrix} H_{3}C & H_{3} & H_{3}C & OH_{3} & OH_{3}C & OH_{2} & CH-CH_{2}-O-CH_{2} & CH-OH_{3} & OH_{3}C & OH_{3} & OH_{3}C & OH_{3}C$$

67)
$$\begin{bmatrix} H_{3}C & H_{3} & H_{0} & O \\ H_{3}C & N & CH_{2} & CH_{2} & CH_{2} \end{bmatrix}$$

$$\begin{bmatrix}
H_3C & H & O \\
H-N & N-C \\
H-N & II & O
\end{bmatrix}$$

$$CH_2$$

$$CH_3$$

(e') Compounds of the formula XIIg, which in turn are preferred

in which n is the number 1 or 2 and G₁₈ is a group of one of the formulae

in which G and G₁₁ are as defined under (a'),

G₁ and G₂ are hydrogen, methyl or together are a substituent =O,

E is -O- or -NG₁₃-,

A is C2-C6alkylene or -(CH2)3-O-,

x is the number 0 or 1.

G₁₃ is hydrogen, C₁-C₁₂alkyl, C₂-C₅hydroxyalkyl or C₅-C₇cycloalkyl,

 G_{19} is the same as G_{18} or is one of the group -NG21G22, -OG23, -NHCH2OG23 or

-N(CH2OG23)2,

 G_{20} , if n = 1, is the same as G_{18} or G_{19} and, if n = 2, G_{20} is a group -E-B-E-, in which B is C_2 - C_8 alkylene or C_2 - C_8 alkylen which is interrupted by 1 or 2 groups -N(G_{21})-,

G21 is C1-C12alkyl, cyclohexyl, benzyl or C1-C4hydroxyalkyl or a group of the formula

or a group of the formula

 G_{22} is C_1 - C_{12} alkyl, cyclohexyl, benzyl or C_1 - C_4 hydroxyalkyl, or G_{21} and G_{22} together are C_4 - C_5 alkylene or C_4 - C_5 oxaalkylene such as, for example, - $CH_2CH_2OCH_2CH_2$ - or a group of the formula - $CH_2CH_2N(G_{11})CH_2CH_2$ -, and G_{23} is hydrogen, C_1 - C_{12} alkyl or phenyl.

Any C₁-C₁₂alkyl substituents are, for example, methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, n-noctyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl or n-dodecyl.

Any C₂-C₅hydroxyalkyl substituents are, for example, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxybutyl or 4-hydroxybutyl.

If A is C_2 - C_6 alkylene then it is, for example, ethylene, propylene, 2,2-dimethylpropylene, tetramethylene or hexamethylene.

If G₂₁ and G₂₂ together are C₄-C₅alkylene or oxaalkylene then this is, for example, tetramethylene, pentamethylene or 3-oxapentamethylene.

Examples of polyalkylpiperidine compounds of this class are the compounds of the following formulae:

72)
$$H_3C \longrightarrow O \longrightarrow CH_2$$
 $H_3C \longrightarrow H_3C \longrightarrow$

73)
$$\begin{array}{c} CH_{3} \\ CH_{2} - CH_{2} \\ CH_{3} \\ CH_{4} \\ CH_{5} \\ C$$

$$H_{3}C$$

$$H_{3}C$$

$$H_{3}C$$

$$H_{3}C$$

$$H_{3}C$$

$$H_{4}C$$

$$CH_{3}$$

$$H_{5}C$$

$$H$$

R has the same meaning as in compound 74.

R' has the same meaning as in compound 76.

80)
$$H_{3}C \longrightarrow H_{3}C \longrightarrow H_{3}C$$

(f') Oligomeric or polymeric compounds whose structural repeating unit contains a 2,2,6,6-tetraalkylpiperidine radical, especially polyesters, polyethers, polyamides, polyamines, polyurethanes, polyureas, polyaminotriazines, poly(meth)acrylates, poly(meth)acrylamides and copolymers thereof which include such radicals.

Examples of 2,2,6,6-polyalkylpiperidine compounds of this class are the compounds of the following formulae, in which m is a number from 2 to about 200.

95)
$$\frac{\begin{bmatrix} R & R \\ I & I \\ N - (CH_2)_2 - N - (CH_2)_2 \end{bmatrix}_{m'} }{N - (CH_2)_2 - N - (CH_2)_2 - N$$

in which R is a radical of the formula H = N H_3C CH_3 H_3C H_4 H_4 H_5 H_5 H_5 H_5 H_5 H_6 H_7 H_8 $H_$

is a chain branch $-(CH_2)_2$, m' and m' are each an integer from the range

from 0 to 200, with the proviso that m' + m'' = m.

Further examples of polymeric compounds are reaction products of compounds of the formula

with epichlorohydrin; polyesters of butane-1,2,3,4-tetracarboxylic acid with a bifunctional alcohol of the formula

whose carboxyl side chains originating from the tetracarboxylic acid are esterified with 2,2,6,6-tetramethyl-4-hydroxypiperidine; compounds of the formula

$$\begin{array}{c|c} CH_3 \\ \hline CH_2 - C - CH_2 - CH \\ \hline CO_2CH_3 - CO_2R \\ \end{array} \ \, \text{, in which about a third of the radicals R are -C}_2H_5 \ \text{and} \ \,$$

N-H , and m is a number from the range from 2 to 200; or CH₃

copolymers whose repeating unit is composed of two units

(g') Compounds of the formula XIIIa

$$\begin{bmatrix}
G - CH_2 & CH_3 & O \\
G_{11} - N & N & G_{14}
\end{bmatrix}$$

$$G - CH_2 & CH_3 & O$$

$$G - CH_2 & O$$

$$CH_3 & O$$

$$G - CH_2 & O$$

$$CH_3 & O$$

$$G - CH_2 & O$$

$$CH_3 & O$$

$$O - CH_2 & O$$

$$O - CH_3 & O$$

$$O - C$$

in which n is a number 1 or 2 and in which G and G^{11} are as defined under (a') and G_{14} is as defined under (b'), the meanings -CONH-Z and -CH2-CH(OH)-CH2-O-D-O- being excluded for G₁₄.

Examples of such compounds are:

100)
$$H_{3}C \xrightarrow{CH_{3}} O \xrightarrow{CH_{3}} CH_{2}$$

$$H_{3}C \xrightarrow{CH_{3}} N - CH_{2} - CH_{2} - N \xrightarrow{N-H} CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

101)
$$H_3C \longrightarrow N \longrightarrow N \longrightarrow CH_2 \longrightarrow CH_3$$
 $H_3C \longrightarrow N \longrightarrow N \longrightarrow CH_2 \longrightarrow CH_3$
 $H_3C \longrightarrow N \longrightarrow CH_3 \longrightarrow CH_3$

Of particular interest are compositions comprising as component (c) at least one compound of the formula H1, H2, H3, H4, H5, H6, H7, H8 or H9

$$H_{17}C_8O-N$$
 $H_{17}C_8O-N$
 H_{1

$$(CH_3)_3C$$
 CH_2
 CH_2
 CH_3
 CH

$$H_3C$$
 CH_3
 H_3C-N
 O
 CH_2
 CH_3
 $N-CH_3$
 CH_3
 CH_3

$$CH_3$$
 CH_3 CH_4 CH_5 CH_5

$$CH_3O \longrightarrow CH = C$$

$$CH_3 CH_3$$

$$H_{3}C$$
 CH_{3}
 $H-N$
 CH_{2}
 CH_{3}
 CH_{3}

$$R'$$
 R' $|$ $|$ $|$ $|$ $|$ $R'-NH-(CH2)3-N-(CH2)2-N-(CH3)3-NH-R'$ (H9) Chimassorb*119,

in which
$$R' = H_3C - N - N - C_4H_9$$
 $R' = H_3C - N - C_4H_9$ $R' = H_3C - N - C_4H_9$ $R' = H_3C - N - C_4H_9$ $R' = R' - C_$

m is a number from the range from 2 to 200.

Component (c) of the novel composition, and the compounds of the sterically hindered amine type, are known and some are commercially available.

Tinuvin⁹123, Tinuvin⁹144, Tinuvin⁹292, Tinuvin⁹622, Tinuvin⁹770, Chimassorb⁹944 and Chimassorb⁹119 are protected trade names of Ciba Spezialitätenchemie AG. Sanduvor⁹PR-31 is a protected trade name of Clariant.

Also of particular interest as component (c) in the novel composition is Chimassorb*119 (Ciba Spezialitätenchemie AG). Chimassorb*119 denotes a condensation product prepared from 2-chloro-4,6-di(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane.

As component (c) of the novel composition particular preference is given to the addition of those sterically hindered amines whose molecular weight or average molecular weight M_n is in the range from 500 to 10 000, in particular in the range from 1000 to 10 000. Of these, particular emphasis should again be placed on those sterically hindered amines whose molecular weight or average molecular weight M_n is in the range from 1500 to 10 000, for example in the range from 2000 to 7500.

Particular emphasis should be given to those novel compositions which as component (c) comprise two or more compounds of the sterically hindered amine type.

Of particular interest are compositions comprising as component (d) at least one compound from the group of the organic phosphites or phosphonites of the formulae 1, 2, 3, 4, 5, 6 or 7

(1)
$$R'_1 - Y' - P$$
 $O - R'_2$ $A' - X' - P$ $O - R'_3$ (2)

$$R'_1 - O - P'_0 - O'_0 P - O - R'_1$$
 (5)

in which the indices are integral and

n' is 2, 3 or 4; p' is 1 or 2; q' is 2 or 3; r' is 4 to 12; y' is 1, 2 or 3; and z' is 1 to 6;

A', if n' is 2, is C_2 - C_{18} alkylene; C_2 - C_{12} alkylene interrupted by oxygen, sulfur or -NR'₄-; a

A', if n' is 3, is a radical of the formula - C_rH_{2r-1} -;

A" is as defined for A' if n' is 2;

B' is a direct bond, $-CH_{2^-}$, $-CHR'_{4^-}$, $-CR'_{1}R'_{4^-}$, sulfur, C_5 - C_7 cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C_1 - C_4 alkyl radicals in position 3, 4 and/or 5;

D', if p' is 1, is C₁-C₄alkyl and, if p' is 2, is -CH₂OCH₂-;

D", if p' is 1, is C₁-C₄alkyl;

E', if y' is 1, is C₁-C₁₈alkyl, -OR'₁ or halogen;

E', if y is 2, is -O-A"-O-,

E', if y is 3, is a radical of the formula $R'_4C(CH_2O_-)_3$ or $N(CH_2CH_2O_-)_3$;

Q' is the radical of an at least z'-valent alcohol or phenol, this radical being attached via the oxygen atom to the phosphorus atom;

R'₁, R'₂ and R'₃ independently of one another are C₁-C₁₈alkyl which is unsubstituted or substituted by halogen, -COOR'₄, -CN or -CONR'₄R'₄; C₂-C₁₈alkyl interrupted by oxygen, sulfur or -NR'₄-; C₇-C₉phenylalkyl; C₅-C₁₂cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to

18 carbon atoms or by C₇-C₉phenylalkyl; or a radical of the formula __(CH₂)_{m'} OH

in which m' is an integer from the range 3 to 6;

R'4 is hydrogen, C1-C18alkyl, C5-C12cycloalkyl or C7-C9phenylalkyl,

R's and R's independently of one another are hydrogen, C1-Cealkyl or C5-C6cycloalkyl,

R'7 and R'8, if q' is 2, independently of one another are C1-C4alkyl or together are a

2.3-dehydropentamethylene radical; and

R'₇ and R'₈, if q' is 3, are methyl;

R'14 is hydrogen, C1-C9alkyl or cyclohexyl,

R'₁₅ is hydrogen or methyl and, if two or more radicals R'₁₄ and R'₁₅ are present, these radicals are identical or different,

X' and Y' are each a direct bond or oxygen,

Z' is a direct bond, methylene, -C(R'16)2- or sulfur, and

R'16 is C1-C8alkyl.

Of particular interest are compositions comprising as component (d) a phosphite or phosphonite of the formula 1, 2, 5 or 6, in which

n' is the number 2 and y' is the number 1, 2 or 3;

A' is C2-C18alkylene, p-phenylene or p-biphenylene,

E', if y' is 1, is C₁-C₁₈alkyl, -OR'₁ or fluorine;

E', if y' is 2, is p-biphenylene,

E', if y' is 3, is N(CH₂CH₂O-)₃,

 R'_{1} , R'_{2} and R'_{3} independently of one another are C_{1} - C_{18} alkyl, C_{7} - C_{9} phenylalkyl, cyclohexyl, phenyl, or phenyl substituted by 1 to 3 alkyl radicals having a total of 1 to 18 carbon atoms; R'_{14} is hydrogen or C_{1} - C_{9} alkyl.

R'15 is hydrogen or methyl;

X' is a direct bond.

Y' is oxygen.

Z' is a direct bond or -CH(R'16)-, and

R'16 is C1-C4alkyl.

Likewise of interest are compositions comprising as component (d) a phosphite or phosphonite of the formula 1, 2, 5 or 6, in which

n' is the number 2 and y' is the number 1 or 3;

A' is p-biphenylene,

E', if y' is 1, is C1-C18alkoxy or fluorine,

E', if y' is 3, is N(CH₂CH₂O-)₃,

 R'_1 , R'_2 and R'_3 independently of one another are C_1 - C_{18} alkyl, or phenyl substituted by 2 or 3 alkyl radicals having a total of 2 to 12 carbon atoms;

R'14 is methyl or tert-butyl;

R'15 is hydrogen;

X' is a direct bond;

Y' is oxygen; and

Z' is a direct bond, methylene or -CH(CH₃)-.

Particular preference is given to compositions comprising as component (d) a phosphite or phosphonite of the formula 1, 2 or 6.

Special preference is given to compositions comprising as component (d) at least one compound of the formula VII

$$\begin{bmatrix} R_1 & & \\ R_2 & & \\ R_3 & R_4 & \\ \end{bmatrix}_3$$
 (VII)

in which

 R_1 and R_2 independently of one another are hydrogen, C_1 - C_8 alkyl, cyclohexyl or phenyl, and R_3 and R_4 independently of one another are hydrogen or C_1 - C_4 alkyl.

The following compounds are examples of organic phosphites and phosphonites which are particularly suitable as component (d) in the novel compositions.

Triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl) phosphite, triauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) phosphite (Irgafos* 168, Ciba-Geigy), diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite (formula D), bis(2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite (formula E), bisisodecyloxy-pentaerythritol diphosphite, bis(2,4-di-tert-butyl-6-methylphenyl) pentaerythritol diphosphite, tristearyl sorbitol triphosphite, bis(2,4,6-tri-tert-butylphenyl) pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis(2,4-di-tert-butylphenyl) 4,4'-biphenylene-diphosphonite (Irgafos*P-EPQ, Ciba-Geigy, formula H), 6-isooctyloxy-2,4,8,10-tetra-tert-butyl-12H-dibenzo[d,g]-1,3,2-dioxaphosphocin (formula C), 6-fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenzo[d,g]-1,3,2-dioxaphosphocin (formula A), bis(2,4-di-tert-butyl-6-methylphenyl) methyl phosphite, bis(2,4-di-tert-butyl-6-methylphenyl) ethyl phosphite (formula G).

With particular preference the following phosphites and phosphonites are used:

tris(2,4-di-tert-butylphenyl) phosphite (Irgafos 168, Ciba-Geigy), tris(nonylphenyl) phosphite,

$$(CH_{3})_{3}C \longrightarrow C(CH_{3})_{3}$$

$$(CH_3)_3C$$
 $C(CH_3)_3$ $C(CH_3)_4$ $C(CH_3)_4$ $C(CH_3)_4$ $C(CH_3)_4$ $C(CH_3)_4$ $C(CH_3)_4$ $C(CH_3)_4$ $C(CH_3)_4$ $C(CH$

$$H_3C$$
 $C(CH_3)_3$ $C(CH_3)_3$

$$(F) H_{37}C_{18} O - P O - C_{18}H_{37}$$

$$H_{3}C - C - CH_{3} O - P - OCH_{2}CH_{3} (G)$$

$$H_{3}C - CH_{3} O - CH_{3} O - CH_{2}CH_{3} (G)$$

$$(CH_3)_3C \longrightarrow P \longrightarrow P \longrightarrow C(CH_3)_3$$

$$(CH_3)_3C \longrightarrow P \longrightarrow P \longrightarrow C(CH_3)_3$$

$$(CH_3)_3C \longrightarrow$$

Very particular preference is given to tris(2,4-di-tert-butylphenyl) phosphite [Irgafos*168, Ciba Spezialitätenchemie AG], bis(2,4-di-tert-butyl-6-methylphenyl) ethyl phosphite [Irgafos*38, Ciba Spezialitätenchemie AG, formula (G)], Ultranox*626 [GE Chemicals, formula (D)], tetrakis(2,4-di-tert-butylphenyl) 4,4'-biphenylene-diphosphonite [Irgafos*P-EPQ, Ciba Spezialitätenchemie AG, formula (H)], Ultranox*641 [GE Chemicals, formula (I)], Doverphos*S9228 [Dover Chemicals, formula (K)] or Mark*HP10 [Adeka Argus, formula (L)].

C (CH₃)₃

(CH₃)₃C

These organic phosphites and phosphonites are known compounds; many of them are commercially available.

The mixture of components (b) and (c) or (b), (c) and (d) is suitable for stabilizing organic materials against oxidative, thermal or light-induced degradation.

Examples of such materials are:

1. Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for example of cyclopentene or norbornene; furthermore polyethylene (which optionally can be crosslinked), for example high-density polyethylene (HDPE), high-density and high molecular weight polyethylene (HDPE-HMW), high-density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium-density polyethylene (MDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), (VLDPE) and (ULDPE).

Polyolefins, i.e. polymers of monoolefins exemplified in the preceding paragraph, in particular polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:

- a) radical polymerization (normally under high pressure and high temperature)
- b) catalytic polymerization using a catalyst that normally contains one or more metals of group IVb, Vb, Vlb or VIII. These metals usually have one or more ligands, such as oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either π- or σ-coordinated. These metal complexes may be in the free form or fixed on carriers, for example on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerization medium. The catalysts can be active as such in the polymerization or further activators may be used, for example metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, the metals being elements of groups Ia, IIa and/or IIIa. The activators may be modified, for example, with further ester, ether, amine or silyl ether groups. These catalyst

systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).

- 2. Mixtures of the polymers mentioned under 1), for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE).
- 3. Copolymers of monoolefins and diolefins with each other or with other vinyl monomers, for example ethylene-propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene-but-1-ene copolymers, propylene-isobutylene copolymers, ethylene-but-1-ene copolymers, ethylene-hexene copolymers, ethylene-methylpentene copolymers, ethylene-heptene copolymers, ethylene-octene copolymers, propylene-butadiene copolymers, isobutylene-isoprene copolymers, ethylene-alkyl acrylate copolymers, ethylene-alkyl methacrylate copolymers, ethylene-vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene-acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbomene; and also mixtures of such copolymers with one another and with polymers mentioned under 1), for example polypropylene-ethylene-propylene copolymers, LDPE-ethylene-vinyl acetate copolymers, LDPE-ethylene-acrylic acid copolymers and alternating or random polyalkylene-carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.
- 4. Hydrocarbon resins (for example C₅-C₉) including hydrogenated modifications thereof (e.g. tackifier resins) and mixtures of polyalkylenes and starch.
- 5. Polystyrene, poly(p-methylstyrene), poly(α -methylstyrene).
- 6. Copolymers of styrene or α-methylstyrene with dienes or acrylic derivatives, for example styrene-butadiene, styrene-acrylonitrile, styrene-alkyl methacrylate, styrene-butadiene-alkyl acrylate, styrene-butadiene-alkyl methacrylate, styrene-maleic anhydride, styrene-acrylonitrile-methyl acrylate; mixtures of high impact strength of styrene copolymers and another polymer, for example a polyacrylate, a diene polymer or an ethylene-propylene-

diene terpolymer, and block copolymers of styrene such as styrene-butadiene-styrene, styrene-isoprene-styrene, styrene-ethylene-butylene-styrene or styrene-ethylene-propylene-styrene.

- 7. Graft copolymers of styrene or α-methylstyrene, for example styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acrylonitrile copolymers, styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; styrene, acrylonitrile and methyl methacrylate on polybutadiene; styrene and maleic anhydride on polybutadiene; styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; styrene and maleimide on polybutadiene, styrene and alkyl acrylates or alkyl methacrylates on polybutadiene, styrene and acrylonitrile on ethylene-propylene-diene terpolymers, styrene and acrylonitrile on polyalkyl acrylates or polyalkyl methacrylates, styrene and acrylonitrile on acrylate-butadiene copolymers, as well as mixtures thereof with the copolymers mentioned under 6), for example the copolymer mixtures known as ABS, MBS, ASA or AES polymers.
- 8. Halogen-containing polymers such as polychloroprene, chlorinated rubber, chlorinated and brominated copolymer of isobutylene-isoprene (halobutyl rubber), chlorinated or sulfochlorinated polyethylene, copolymers of ethylene and chlorinated ethylene, epichlorohydrin homo- and copolymers, especially polymers of halogen-containing vinyl compounds, for example polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride; as well as copolymers thereof such as vinyl chloride-vinylidene chloride, vinyl chloride-vinyl acetate or vinylidene chloride-vinyl acetate.
- 9. Polymers derived from α,β -unsaturated acids and derivatives thereof such as polyacrylates and polymethacrylates, polymethyl methacrylates, impact-modified with butyl acrylate, polyacrylamides and polyacrylonitriles.
- 10. Copolymers of the monomers mentioned under 9) with each other or with other unsaturated monomers, for example acrylonitrile-butadiene copolymers, acrylonitrile-alkyl acrylate copolymers, acrylonitrile-alkoxyalkyl acrylate copolymers, acrylonitrile-vinyl halide copolymers or acrylonitrile-alkyl methacrylate-butadiene terpolymers.

- 11. Polymers d rived from unsaturated alcohols and amines or the acyl derivativ's or acetals thereof, such as polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, polyvinyl benzoate, polyvinyl maleate, polyvinyl butyral, polyallyl phthalate or polyallyl melamine; as well as their copolymers with olefins mentioned in section 1.
- 12. Homopolymers and copolymers of cyclic ethers such as polyalkylene glycols, polyethylene oxide, polypropylene oxide or copolymers thereof with bisglycidyl ethers.
- 13. Polyacetals such as polyoxymethylene and those polyoxymethylenes which contain comonomers, for example ethylene oxide; polyacetals modified with thermoplastic polyurethanes, acrylates or MBS.
- 14. Polyphenylene oxides and sulfides, and mixtures thereof with styrene polymers or polyamides.
- 15. Polyurethanes derived from hydroxyl-terminated polyethers, polyesters and polybutadienes on the one hand and aliphatic or aromatic polyisocyanates on the other, as well as precursors thereof.
- 16. Polyamides and copolyamides derived from diamines and dicarboxylic acids and/or from aminocarboxylic acids or the corresponding lactams, such as polyamide 4, 6, 6/6, 6/10, 6/9, 6/12, 4/6, 12/12,11 and 12, aromatic polyamides starting from m-xylene, diamine and adipic acid; polyamides prepared from hexamethylenediamine and isophthalic and/or terephthalic acid and with or without an elastomer as modifier, for example poly-2,4,4-trimethylhexamethylene terephthalamide or poly-m-phenylene isophthalamide. Block copolymers of the aforementioned polyamides with polyolefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers; or with polyethers, e.g. with polyethylene glycol, polypropylene glycol or polytetramethylene glycol. Also, polyamides or copolyamides modified with EPDM or ABS; and polyamides condensed during processing (RIM polyamide systems).
- 17. Polyureas, polyimides, polyamide-imides, polyether imides, polyester imides, polyhydantoins and polybenzimidazoles.

- 18. Polyesters derived from dicarboxylic acids and dialcohols and/or from hydroxycarboxylic acids or the corresponding lactones, such as polyethylene terephthalate, polybutylene terephthalate, poly-1,4-dimethylolcyclohexane terephthalate, polyhydroxybenzoates, as well as block polyether esters derived from hydroxyl-terminated polyethers; and also polyesters modified with polycarbonates or MBS.
- 19. Polycarbonates and polyester carbonates.
- 20. Polysulfones, polyether sulfones and polyether ketones.
- 21. Crosslinked polymers derived from aldehydes on the one hand and phenois, urea or melamine on the other hand, such as phenoi-formaldehyde resins, urea-formaldehyde resins and melamine-formaldehyde resins.
- 22. Drying and nondrying alkyd resins.
- 23. Unsaturated polyester resins derived from copolyesters of saturated and unsaturated dicarboxylic acids with polyhydric alcohols and also vinyl compounds as crosslinking agents, and also halogen-containing modifications thereof of low flammability.
- 24. Crosslinkable acrylic resins derived from substituted acrylates, for example from epoxy acrylates, urethane acrylates or polyester acrylates.
- 25. Alkyd resins, polyester resins and acrylate resins crosslinked with melamine resins, urea resins, isocyanates, isocyanurates, polyisocyanates or epoxy resins.
- 26. Crosslinked epoxy resins derived from aliphatic, cycloaliphatic, heterocyclic or aromatic glycidyl compounds, for example products of bisphenol A diglycidyl ethers, bisphenol F diglycidyl ethers, which are crosslinked by means of customary curing agents such as anhydrides or amines, with or without accelerators.
- 27. Natural polymers such as cellulose, natural rubber, gelatin and derivatives thereof which have been chemically modified in a polymer-homologous manner, for example cellulose

acetates, cellulose propionates and cellulose butyrates, or the cellulose ethers such as methyl cellulose; as well as rosins and derivatives.

28. Blends (polyblends) of the aforementioned polymers, for example PP/EPDM, polyamide/EPDM or ABS, PVC/EVA, PVC/ABS, PVC/MBS, PC/ABS, PBTP/ABS, PC/ASA, PC/PBT, PVC/CPE, PVC/acrylates, POM/thermoplastic PU, PC/thermoplastic PU, POM/acrylate, POM/MBS, PPO/HIPS, PPO/PA 6.6 and copolymers, PA/HDPE, PA/PP, PA/PPO, PBT/PC/ABS or PBT/PET/PC.

- 29. Natural and synthetic organic substances which constitute pure monomeric compounds or mixtures thereof, for example mineral oils, animal or vegetable fats, oils and waxes, or oils, waxes and fats based on synthetic esters (e.g. phthalates, adipates, phosphates or trimellitates), and also blends of synthetic esters with mineral oils in arbitrary weight ratios, as are used, for example, as spinning preparations, and aqueous emulsions thereof.
- 30. Aqueous emulsions of natural or synthetic rubbers, for example natural rubber latex or latices of carboxylated styrene-butadiene copolymers.

The mixture of components (b) and (c) or (b), (c) and (d) is likewise used for polyurethane production, especially for preparing flexible polyurethane foams. In this context the novel compositions and the products produced therefrom are effectively protected against degradation. In particular, scorching during foam production is avoided.

The polyurethanes are obtained, for example, by reacting polyethers, polyesters and polybutadienes which contain terminal hydroxyl groups with aliphatic or aromatic polyisocyanates.

Polyethers having terminal hydroxyl groups are known and are prepared, for example, by polymerizing epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin with themselves, for example in the presence of BF₃, or by addition reaction of these epoxides, alone or as a mixture or in succession, with starting components containing reactive hydrogen atoms, such as water, alcohols, ammonia or amines, for example ethylene glycol, propylene 1,3- and 1,2-glycol, trimethylolpropane, 4,4'-dihydroxydiphenylpropane, aniline, ethanolamine or

ethylenediamine. Sucrose polyethers are also suitable in accordance with the invention. In many cases preference is given to those polyethers which predominantly (up to 90 % by weight, based on all the OH groups present in the polyether) contain primary OH groups. Furthermore, polyethers modified by vinyl polymers, as are formed, for example, by polymerizing styrene and acrylonitrile in the presence of polyethers, are suitable, as are polybutadienes containing OH groups.

These compounds generally have molecular weights of 40 and are polyhydroxy compounds, especially compounds containing from two to eight hydroxyl groups, especially those of molecular weight from 800 to 10 000, preferably from 1000 to 6000, for example polyethers containing at least 2, generally 2 to 8, but preferably 2 to 4, hydroxyl groups, as are known for the preparation of homogeneous polyurethanes and cellular polyurethanes.

It is of course possible to employ mixtures of the above compounds containing at least two isocyanate-reactive hydrogen atoms, in particular with a molecular weight of 400 - 10 000.

Suitable polyisocyanates are aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates, for example ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate, cyclobutane 1,3-diisocyanate, cyclohexane 1,3- and -1,4-diisocyanate and also any desired mixtures of these isomers, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane, 2,4- and 2,6hexahydrotolylene diisocyanate and also any desired mixtures of these isomers, hexahydro-1,3- and/or -1,4-phenylene diisocyanate, perhydro-2,4'- and/or -4,4'-diphenylmethanediisocyanate, 1,3- and 1,4-phenylene diisocyanate, 2,4- and 2,6-tolylene diisocyanate, and also any desired mixtures of these isomers, diphenylmethane 2.4'- and/or -4,4'-diisocyanate, naphthylene 1,5-diisocyanate, triphenylmethane 4,4',4"-triisocyanate, polyphenyl-polymethylene polyisocyanates as are obtained by aniline-formaldehyde condensation followed by phosgenization, m- and p-isocyanatophenylsulfonyl isocyanates, perchlorinated anyl polyisocyanates, polyisocyanates containing carbodiimide groups, polyisocyanates containing allophanate groups, polyisocyanates containing isocyanurate groups, polyisocyanates containing urethane groups, polyisocyanates containing acylated urea groups, polyisocyanates containing biuret groups, polyisocyanates containing ester groups, reaction products of the abovementioned isocyanates with acetals, and polyisocyanates containing polymeric fatty acid radicals.

It is also possible to employ the isocyanate group-containing distillation residues, as they are or dissolved in one or more of the abovementioned polyisocyanates, which are obtained in the course of the industrial preparation of isocyanates. It is additionally possible to use any desired mixtures of the abovementioned polyisocyanates.

Particular preference is given in general to the polyisocyanates which are readily obtainable industrially, for example 2,4- and 2,6-tolylene diisocyanate and any desired mixtures of these isomers ("TDI"), polyphenyl-polymethylene-polyisocyanates as prepared by aniline-formaldehyde condensation followed by phosgenization ("crude MDI"), and polyisocyanates containing carbodiimide, urethane, allophanate, isocyanurate, urea or biuret groups ("modified polyisocyanates").

The organic materials to be protected are preferably natural, semisynthetic or preferably synthetic polymers. Particular preference is given to thermoplastic polymers, especially polyolefins, in particular polyethylene and polypropylene or copolymers thereof with monoand diolefins. Particular preference is given to a polyolefin fibre, especially an essentially phenol-free polyolefin fibre.

The term essentially phenol-free polyolefin fibre denotes that the amount of phenolic antioxidants is less than 0.02 % based on the weight of the polyolefin fibre to be stabilized. These small amounts of phenolic antioxidants are added by the polyolefin manufacturers during preparation in order to provide initial stabilization of the polyolefins.

Particular emphasis is to be placed on the action of the novel components (b) and (c) or (b), (c) and (d) against thermal and oxidative degradation, especially under thermal stress as occurs during the processing of thermoplastics. The novel components (b) and (c) or (b), (c) and (d) are therefore outstandingly suitable for use as in-process stabilizers.

The mixture of components (b) and (c) or (b), (c) and (d) is also suitable for stabilizing polyolefins which are in long-term contact with extracting media.

Component (b) is preferably added to the organic material to be stabilized in an amount of from 0.0005 to 5 %, in particular from 0.001 to 2 %, for example from 0.01 to 2 %, based on the weight of the organic material to be stabilized.

Components (c) and (d) are judiciously added to the organic material to be stabilized in an amount of from 0.01 to 10 %, for example from 0.01 to 5 %, preferably from 0.025 to 3 % and, in particular, from 0.025 to 1 %, based on the weight of the organic material to be stabilized.

In addition to components (a), (b), (c) and (d) the novel compositions may comprise further costabilizers (additives) such as, for example, the following:

1. Antioxidants

- 1.1. Alkylated monophenols, for example 2,6-di-tert-butyl-4-methylphenol, 2-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-(α-methylcyclohexyl)-4,6-dimethylphenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol, linear or sidechain-branched nonylphenols such as 2,6-di-nonyl-4-methylphenol, 2,4-dimethyl-6-(1'-methylundec-1'-yl)-phenol, 2,4-dimethyl-6-(1'-methyl-6-(1'-methyl-tridec-1'-yl)phenol and mixtures thereof.
- 1.2. Alkylthiomethylphenols, for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-didodecylthiomethyl-4-nonylphenol.
- 1.3. Hydroquinones and alkylated hydroquinones, for example 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octadecyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis (3,5-di-tert-butyl-4-hydroxyphenyl) adipate.

- <u>1.4 Tocopherols</u>, for example α -tocopherol, β -tocopherol, γ -tocopherol, δ -tocopherol and mixtures thereof (vitamin E).
- 1.5. Hydroxylated thiodiphenyl ethers, for example 2,2'-thiobis(6-tert-butyl-4-methylphenol), 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl-3-methylphenol), 4,4'-thiobis(6-tert-butyl-2-methylphenol), 4,4'-thiobis(3,6-di-sec-amylphenol), 4,4'-bis(2,6-dimethyl-4-hydroxyphenyl)disulfide.
- 1.6. Alkylidenebisphenols, for example 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 2,2'-methylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis(4-methyl-6-(α-methylcyclohexyl)phenol), 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(6-nonyl-4-methylphenol), 2,2'-methylenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis(6-(α-methylphenol), 2,2'-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2'-methylenebis[6-(α-methylphenol), 2,2'-methylenebis[6-(α-methylphenol), 2,2'-methylenebis[6-(α-methylphenol), 2,2'-methylenebis[6-(α-methylphenol), 4,4'-methylenebis(6-tert-butyl-4-nonylphenol), 4,4'-methylenebis(6-tert-butyl-2-methylphenol), 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenol), 4,4'-methylenebis(6-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-tris(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n-dodecylmercaptobutane, ethylene glycol bis[3,3-bis(3'-tert-butyl-4'-hydroxyphenyl)butyrate], bis(3-tert-butyl-4-hydroxy-5-methylphenyl)-6-tert-butyl-4-methylphenyl) terephthalate, 1,1-bis(3,5-dimethyl-2-hydroxyphenyl)butane, 2,2-bis(3,5-ditert-butyl-4-hydroxyphenyl)propane, 2,2-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-4-n-dodecylmercaptobutane, 1,1,5,5-tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)pentane.
- 1.7. O-, N- and S-benzyl compounds, for example 3,5,3',5'-tetra-tert-butyl-4,4'-dihydroxydibenzyl ether, octadecyl 4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl 4-hydroxy-3,5-di-tert-butyl-benzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)-amine, bis(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) dithioterephthalate, bis(3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, isooctyl 3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetate.
- 1.8. Hydroxybenzylated malonates, for example dioctadecyl 2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)malonate, dioctadecyl 2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)malonate,

didodecyl mercaptoethyl-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, di-[4-(1,1,3,3-tetramethylbutyl)phenyl] 2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate.

- 1.9. Aromatic hydroxybenzyl compounds, for example 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.
- 1.10. Triazine compounds, for example 2,4-bisoctylmercapto-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazine, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenylethyl)-1,3,5-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexahydro-1,3,5-triazine, 1,3,5-tris(3,5-dicyclohexyl-4-hydroxybenzyl) isocyanurate.
- 1.11. Benzylphosphonates, for example dimethyl 2,5-di-tert-butyl-4-hydroxybenzyl-phosphonate, diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl 5-tert-butyl-4-hydroxy-3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.
- 1.12. Acylaminophenols, for example 4-hydroxylauranilide, 4-hydroxystearanilide, octyl N-(3,5-di-tert-butyl-4-hydroxyphenyl)carbamate.
- 1.13. Esters of β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N,N'-bis(hydroxyethyl)oxalamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

- 1.14. Esters of β-(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N,N'-bis(hydroxyethyl)oxalamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
- 1.15. Esters of β-(3.5-dicyclohexyl-4-hydroxyphenyl)propionic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N,N'-bis(hydroxyethyl)-oxalamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
- 1.16. Esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N,N'-bis-(hydroxyethyl)-oxalamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.
- 1.17. Amides of β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid e.g. N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)trimethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenyl-propionyl)hydrazide, N,N'-bis[2-(3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionyloxy)ethyl]-oxamide (Naugard[®] XL-1 from Uniroyal).

1.18. Ascorbic acid (vitamin C)

1.19. Aminic antioxidants, for example N,N'-diisopropyl-p-phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, N,N'-bis(1,4-dimethyl-pentyl)-p-phenylenediamine, N,N'-bis(1-ethyl-3-methyl-pentyl)-p-phenylenediamine, N,N'-bis(1-methyl-heptyl)-p-phenylenediamine,

N,N'-dicyclohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N,N'-di-(naphthyl-2)-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N-(1,3dimethyl-butyl)-N'-phenyl-p-phenylenediamine, N-(1-methyl-heptyl)-N'-phenyl-pphenylenediamine, N-cyclohexyl-N'-phenyl-p-phenylenediamine, 4-(p-toluenesulfonamido)diphenylamine, N,N'-dimethyl-N,N'-di-sec-butyl-p-phenylenediamine, diphenylamine, N-allyldiphenylamine, 4-isopropoxydiphenylamine, N-phenyl-1-naphthylamine, N-(4-tertoctylphenyl)-1-naphthylamine, N-phenyl-2-naphthylamine, octylated diphenylamine, for example p,p'-di-tert-octyldiphenylamine, 4-n-butylaminophenol, 4-butyrylaminophenol, 4-nonanoylaminophenol, 4-dodecanoylaminophenol, 4-octadecanoylaminophenol, di-(4methoxyphenyl)amine, 2,6-di-tert-butyl-4-dimethylaminomethylphenol, 2,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, N,N,N',N'-tetramethyl-4,4'diamino-diphenylmethane, 1,2-di[(2-methyl-phenyl)amino]ethane, 1,2-di(phenylamino)propane, (o-tolyl)biguanide, di-[4-(1',3'-dimethylbutyl)phenyl]amine, tert-octylated N-phenyl-1-naphthylamine, a mixture of mono- and dialkylated tert-butyl/tert-octyldiphenylamines, a mixture of mono- and dialkylated nonyldiphenylamines, a mixture of mono- and dialkylated dodecyldiphenylamines, a mixture of mono- and dialkylated isopropyl/isohexyldiphenylamines, mixtures of mono- and dialkylated tert-butyldiphenylamines, 2,3-dihydro-3,3-dimethyl-4H-1,4-benzothiazine, phenothiazine, a mixture of mono- and dialkylated tertbutyl/tert-octyl-phenothiazines, a mixture of mono- and dialkylated tert-octyl-phenothiazines, N-allylphenothiazine, N,N,N',N'-tetraphenyl-1,4-diaminobut-2-ene, N,N-bis(2,2,6,6tetramethylpiperidin-4-yl)hexamethylenediamine, bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate, 2,2,6,6-tetramethylpiperidin-4-one and 2,2,6,6-tetramethylpiperidin-4-ol.

2. UV-absorbers and light stabilizers

2.1. 2-(2'-Hydroxyphenyl)benzotriazoles, for example 2-(2'-hydroxy-5'-methylphenyl)-benzotriazole, 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(5'-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-5'-(1,1,3,3-tetramethylbutyl)phenyl)-benzotriazole, 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-methylphenyl)-5-chlorobenzotriazole, 2-(3'-sec-butyl-5'-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-4'-octoxyphenyl)benzotriazole, 2-(3',5'-di-tert-amyl-2'-hydroxyphenyl)benzotriazole, 2-(3',5'-bis(α , α -dimethylbenzyl)-2'-hydroxyphenyl)-benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)-5-chlorobenzotriazole, 2-(3'-tert-butyl-5'-[2-(2-ethylhexyloxy)carbonylethyl]-2'-hydroxyphenyl)-

5-chlorobenzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)-5-chlorobenzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)-benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)benzotriazole, 2-(3'-tert-butyl-5'-[2-(2-ethylhexyloxy)carbonylethyl]-2'-hydroxyphenyl)benzotriazole, 2-(3'-dodecyl-2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-(2-isooctyloxycarbonylethyl)phenylbenzotriazole, 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-benzotriazol-2-ylphenol]; the transesterification product of 2-[3'-tert-butyl-5'-(2-methoxy-carbonylethyl)-2'-hydroxyphenyl]benzotriazole with polyethylene glycol

300; $\left[R-CH_2CH_2-COO-CH_2CH_2\right]_2$ where R = 3'-tert-butyl-4'-hydroxy-5'-2H-

benzotriazol-2-ylphenyl; 2-[2'-hydroxy-3'-(α , α -dimethylbenzyl)-5'-(1,1,3,3-tetramethylbutyl)phenyl]benzotriazole; 2-[2'-hydroxy-3'-(1,1,3,3-tetramethylbutyl)-5'-(α , α -dimethylbenzyl)phenyl]benzotriazole.

- 2.2. 2-Hydroxybenzophenones, for example the 4-hydroxy, 4-methoxy, 4-octoxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, 4,2',4'-trihydroxy and 2'-hydroxy-4,4'-dimethoxy derivative.
- 2.3. Esters of substituted or unsubstituted benzoic acids, for example 4-tert-butyl-phenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoylresorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoylresorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate.
- 2.4. Acrylates, for example ethyl α -cyano- β , β -diphenylacrylate or isooctyl α -cyano- β , β -diphenylacrylate, methyl α -carbomethoxycinnamate, methyl α -cyano- β -methyl-p-methoxycinnamate or butyl α -cyano- β -methyl-p-methoxycinnamate, methyl α -carbomethoxy-p-methoxycinnamate and N-(β -carbomethoxy- β -cyanovinyl)-2-methylindoline.
- 2.5. Nickel compounds, for example nickel complexes of 2,2'-thiobis[4-(1,1,3,3-tetramethylbutyl)phenol], such as the 1:1 or 1:2 complex, with or without additional ligands such as n-butylamine, triethanolamine or N-cyclohexyldiethanolamine, nickel dibutyldithiocarbamate, nickel salts of monoalkyl esters, such as of the methyl or ethyl ester,

of 4-hydroxy-3,5-di-tert-butylb nzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphenyl undecyl ketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxypyrazole, with or without additional ligands.

2.6. Sterically hindered amines, for example bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate. bis(2,2,6,6-tetramethylpiperidin-4-yl) succinate, bis(1,2,2,6,6-pentamethylpiperidin-4-yl) sebacate, bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate, bis(1,2,2,6,6pentamethylpiperidyl) n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, the condensate of 1-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, the linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-tertoctylamino-2,6-dichloro-1,3,5-s-triazine, tris(2,2,6,6-tetramethyl-4-piperidyl) nitrilotriacetate, tetrakis(2,2,6,6-tetramethyl-4-piperidyl) 1,2,3,4-butanetetraoate, 1,1'-(1,2ethanediyl)bis(3,3,5,5-tetramethylpiperazinone), 4-benzoyl-2,2,6,6-tetramethylpiperidine, 4stearyloxy-2,2,6,6-tetramethylpiperidine, bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2hydroxy-3,5-di-tert-butylbenzyl) malonate, 3-n-octyl-7,7,9,9-tetramethyl-1,3,8triazaspiro[4.5]decane-2,4-dione, bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl) sebacate, bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl) succinate, the linear or cyclic condensates of N,N'-bis-(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-morpholino-2,6dichloro-1,3,5-triazine, the condensate of 2-chloro-4,6-di(4-n-butylamino-2,2,6,6tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane, the condensate of 2-chloro-4,6-di-(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane, 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8triazaspiro[4.5]decane-2,4-dione, 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione, 3-dodecyl-1-(1,2,2,6,6-pentamethyl-4-piperidyl)pyrrolidine-2,5-dione, a mixture of 4-hexadecyloxy- and 4-stearyloxy-2,2,6,6-tetramethylpiperidine, the condensate of N,N'bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-cyclohexylamino-2,6dichloro-1,3,5-triazine, the condensate of 1,2-bis(3-aminopropylamino)ethane and 2,4,6trichloro-1,3,5-triazine and also 4-butylamino-2,2,6,6-tetramethylpiperidine (CAS Reg. No. [136504-96-6]); N-(2,2,6,6-tetramethyl-4-piperidyl)-n-dodecylsuccinimide, N-(1,2,2,6,6pentamethyl-4-piperidyl)-n-dodecylsuccinimide, 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8diaza-4-oxospiro[4.5]decane, the reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1oxa-3,8-diaza-4-oxospiro[4.5]decane and epichlorohydrin, 1,1-bis(1,2,2,6,6-pentamethyl-4piperidyloxycarbonyl)-2-(4-methoxyphenyl)ethene, N,N'-bisformyl-N,N'-bis(2,2,6,6tetramethyl-4-piperidyl)-hexamethylenediamine, the diester of 4-methoxymethylenemalonic

acid with 1,2,2,6,6-pentamethyl-4-hydroxypiperidine, poly[methylpropyl-3-oxy-4-(2,2,6,6-tetramethyl-4-piperidyl)]siloxane, the reaction product of maleic anhydride-α-olefin copolymer and 2,2,6,6-tetramethyl-4-aminopiperidine or 1,2,2,6,6-pentamethyl-4-aminopiperidine.

2.7. Oxaldiamides, for example 4,4'-dioctyloxyoxanilide, 2,2'-diethoxy-oxanilide, 2,2'-dioctyloxy-5,5'-di-tert-butoxanilide, 2,2'-diodecyloxy-5,5'-di-tert-butyloxanilide, 2-ethoxy-2'-ethyloxanilide, N,N'-bis(3-dimethylaminopropyl)oxalamide, 2-ethoxy-5-tert-butyl-2'-ethyloxanilide and its mixture with 2-ethoxy-2'-ethyl-5,4'-di-tert-butoxanilide and mixtures of o- and p-methoxy and of o- and p-ethoxy-disubstituted oxanilides.

2.8. 2-(2-Hydroxyphenyl)-1,3,5-triazines, for example 2,4,6-tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazine, 2-(2-hydroxy-4-octyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2,4-bis(2-hydroxy-4propyloxyphenyl)-6-(2,4-dimethylphenyl)-1,3,5-triazine, 2-(2-hydroxy-4-octyloxyphenyl)-4,6bis(4-methylphenyl)-1,3,5-triazine, 2-(2-hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4dimethylphenyl)-1,3,5-triazine, 2-(2-hydroxy-4-tridecyloxyphenyl)-4,6-bis(2,4dimethylphenyl)-1,3,5-triazine, 2-[2-hydroxy-4-(2-hydroxy-3-butyloxypropyloxy)phenyl]-4,6bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-[2-hydroxy-4-(2-hydroxy-3-octyloxypropyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-[4-(dodecyloxy/tridecyloxy-2hydroxypropoxy)-2-hydroxyphenyl]-4.6-bis(2.4-dimethylphenyl)-1.3.5-triazine, 2-(2-hydroxy-4-(2-hydroxy-3-dodecyloxy-propoxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-(2hydroxy-4-hexyloxy)phenyl-4,6-diphenyl-1,3,5-triazine, 2-(2-hydroxy-4-methoxyphenyl)-4,6diphenyl-1,3,5-triazine, 2,4,6-tris[2-hydroxy-4-(3-butoxy-2-hydroxy-propoxy)phenyl]-1,3,5triazine, 2-(2-hydroxyphenyl)-4-(4-methoxyphenyl)-6-phenyl-1,3,5-triazine, 2-{2-hydroxy-4-[3-(2-ethylhexyl-1-oxy)-2-hydroxypropyloxy]phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5triazine.

3. Metal deactivators, for example, N,N'-diphenyloxalamide, N-salicylai-N'-salicyloyl hydrazine, N,N'-bis(salicyloyl)hydrazine, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenyl-propionyl)hydrazine, 3-salicyloylamino-1,2,4-triazole, bis(benzylidene)oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenylhydrazide, N,N'-diacetyladipoyl dihydrazide, N,N'-bis(salicyloyl)oxalyl dihydrazide, N,N'-bis(salicyloyl)thiopropionyl dihydrazide.

- 4.Phosphites and phosphonites, for example triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris(2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, bisisodecyloxypentaerythritol diphosphite, bis(2,4-di-tert-butyl-6-methylphenyl)pentaerythritol diphosphite, bis(2,4-6-tri-tert-butylphenyl)pentaerythritol diphosphite, tristearyl sorbitol triphosphite, tetrakis(2,4-di-tert-butylphenyl) 4,4'-biphenylene diphosphonite, 6-isooctyloxy-2,4,8,10-tetratert-butyl-12H-dibenzo[d,g]-1,3,2-dioxaphosphocin, 6-fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenzo[d,g]-1,3,2-dioxaphosphocin, bis(2,4-di-tert-butyl-6-methylphenyl) methyl phosphite, bis(2,4-di-tert-butyl-6-methylphenyl) ethyl phosphite, 2,2',2"-nitrilo[triethyl-tris-(3,3',5,5"tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite], 2-ethylhexyl-(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite.
- 5. Hydroxylamines, for example N,N-dibenzylhydroxylamine, N,N-diethylhydroxylamine, N,N-diethylhydroxylamine, N,N-diethylhydroxylamine, N,N-dietradecylhydroxylamine, N,N-dietradecylhydroxylamine, N,N-dietradecylhydroxylamine, N-hexadecyl-N-octadecylhydroxylamine, N-heptadecyl-N-octadecylhydroxylamine, N,N-dialkylhydroxylamine from hydrogenated tallow fatty amines.
- 6. Nitrones, for example N-benzyl alpha-phenyl nitrone, N-ethyl alpha-methyl nitrone, N-octyl alpha-heptyl nitrone, N-lauryl alpha-undecyl nitrone, N-tetradecyl alpha-tridecyl nitrone, N-hexadecyl alpha-pentadecyl nitrone, N-octadecyl alpha-heptadecyl nitrone, N-hexadecyl alpha-heptadecyl nitrone, N-octadecyl alpha-pentadecyl nitrone, N-heptadecyl alpha-heptadecyl nitrone, N-octadecyl alpha-hexadecyl-nitrone, and nitrones derived from N,N-dialkylhydroxylamines prepared from hydrogenated tallow fatty amines.
- 7. Thiosynergists, for example dilauryl thiodiproprionate or distearyl thiodipropionate.
- 8. Peroxide scavengers, for example esters of β-thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole, the zinc salt of

2-mercaptobenzimidazole, zinc dibutyldithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis(β-dodecylmercapto)propionate.

- 9. Polyamide stabilizers, for example copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganese.
- 10. Basic co-stabilizers, for example melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes, alkali metal salts and alkaline earth metal salts of higher fatty acids, for example calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate, potassium palmitate, antimony pyrocatecholate or zinc pyrocatecholate.
- 11. Nucleating agents, for example inorganic substances, such as talc, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds such as mono- or polycarboxylic acids and their salts, such as 4-tert-butylbenzoic acid, adipic acid, diphenyl acetic acid, sodium succinate or sodium benzoate; and polymeric compounds, for example ionic copolymers (ionomers).
- 12. Fillers and reinforcing agents, for example calcium carbonate, silicates, glass fibres, glass beads, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black, graphite, wood flour and flours or fibres of other natural products, and synthetic fibres.
- 13. Other additives, for example plasticizers, lubricants, emulsifiers, pigments, rheological additives, catalysts, levelling assistants, optical brighteners, flameproofing agents, antistatic agents, blowing agents.

The costabilizers are added, for example, in concentrations of from 0.01 to 10 %, based on the overall weight of the organic material to be stabilized.

The fillers and reinforcing agents (item 12 in the list), for example talc, calcium carbonate, mica or kaolin, are added to the polyolefins in concentrations, for example, of from 0.01 to 40 %, based on the overall weight of the polyolefins to be stabilized.

The fillers and reinforcing agents (item 12 in the list), for example metal hydroxides, especially aluminium hydroxide or magnesium hydroxide, are added to the polyolefins in

concentrations, for example, of from 0.01 to 60 %, based on the overall weight of the polyolefins to be stabilized.

Carbon black as filler is added to the polyolefins in concentrations, judiciously, of from 0.01 to 5 %, based on the overall weight of the polyolefins to be stabilized.

Glass fibers as reinforcing agents are added to the polyolefins in concentrations, judiciously, of from 0.01 to 20 %, based on the overall weight of the polyolefins to be stabilized.

Further preferred compositions comprise in addition to components (a) to (d) further additives as well, especially alkaline earth metal salts of higher fatty acids, for example calcium stearate.

As a conventional stabilizer combination for processing polymeric organic materials, for example polyolefins, to form corresponding mouldings, the combination of a phenolic antioxidant with a secondary antioxidant based on an organic phosphite or phosphonite is recommended. Depending on the particular substrate and process, however, many polyolefin processors are forced to operate processes in the high-temperature region above about 280°C. By virtue of the incorporation of a novel processing stabilizer mixture of components (b) and (c) or (b), (c) and (d), which is specially suitable for high-temperature applications, in particular in the temperature range above 300°C, industrial materials and mouldings, based for instance on high-density polyethylene, for example pipes and their technical variants (fittings), can be produced at a greater rate and with fewer rejects. Another advantage of this stabilizer mixture is that it can be employed in very small amounts. This leads to a reduction in the overall concentration of antioxidant relative to conventional stabilizer mixtures. Thus the use of a low concentration of a stabilizer of the benzofuran-2-one type [component (b)] allows a reduction in the overall concentration of stabilizer by about a third in polyolefins, for example, which simultaneously represent an economic advantage.

The incorporation of components (b) and (c) or (b), (c) and (d), and further additives if desired, into the polymeric, organic material is carried out by known methods, for example prior to or during shaping or else by applying the dissolved or dispersed stabilizer mixture to

₁₁ 24 - 1. *

the polymeric organic material, with or without subsequent evaporation of the solvent. The stabilizer mixture of components (b) and (c) or (b), (c) and (d) with or without further additives, can also be added in the form of a master batch, which contains these components in a concentration, for example, of from 2.5 to 25 % by weight, to the materials that are to be stabilized.

The stabilizer mixture of components (b) and (c) or (b), (c) and (d), with or without further additives, can also be added before or during polymerization or prior to crosslinking.

The stabilizer mixture of components (b) and (c) or (b), (c) and (d), with or without further additives, can be incorporated in pure form or encapsulated in waxes, oils or polymers into the organic material that is to be stabilized.

The stabilizer mixture of components (b) and (c) or (b), (c) and (d), with or without further additives, can also be sprayed onto the polymer that is to be stabilized. It is able to dilute other additives (for example the conventional additives indicated above) or their melts so that they too can be sprayed together with these additives onto the polymer that is to be stabilized. Addition by spraying on during the deactivation of the polymerization catalysts is particularly advantageous, it being possible to carry out spraying using, for example, the steam used for deactivation.

In the case of spherically polymerized polyolefins it may, for example, be advantageous to apply the stabilizer mixture of components (b) and (c) or (b), (c) and (d), with or without other additives, by spraying.

The materials stabilized in this way can be employed in a wide variety of forms, for example as films, fibres, tapes, moulding compositions, as profiles or as binders for coating materials, especially powder coatings, adhesives or putties.

The polyolefins stabilized in this way can likewise be employed in a wide variety of forms, especially as thick-layer polyolefin mouldings which are in long-term contact with extractive media, such as, for example, pipes for liquids or gases, films, fibres, geomembranes, tapes, profiles or tanks.

The preferred thick-layer polyolefin mouldings have a layer thickness of from 1 to 50 mm, in particular from 1 to 30 mm, for example from 2 to 10 mm.

As already mentioned, the organic materials to be protected are preferably organic, especially synthetic, polymers. In this context, thermoplastic materials are protected with particular advantage. Attention should be drawn above all in this context to the outstanding activity of the novel stabilizer mixture of components (b) and (c) or (b), (c) and (d) as inprocess stabilizers (heat stabilizers). For this purpose they are advantageously added to the polymer prior to or during its processing. However, other polymers too (for example elastomers) or lubricants or hydraulic fluids can be stabilized against degradation, for example light-induced or thermooxidative degradation. Elastomers can be taken from the above listing of possible organic materials.

The lubricants and hydraulic fluids in question are based, for example, on mineral oils or synthetic oils or on mixtures thereof. The lubricants are familiar to the skilled worker and are described in the relevant technical literature, for example in Dieter Klamann, "Schmierstoffe und verwandte Produkte" (Verlag Chemie, Weinheim, 1982), in Schewe-Kobek, "Das Schmiermittel-Taschenbuch" (Dr. Alfred Hüthig-Verlag, Heidelberg, 1974) and in "Ullmanns Enzyklopädie der technischen Chemie", Vol.13, pages 85-94 (Verlag Chemie, Weinheim, 1977).

A preferred embodiment of the present invention is therefore the use of components (b) and (c) or (b), (c) and (d) as stabilizers, especially in-process stabilizers (thermal stabilizers), for organic materials, especially thermoplastic polymers, against oxidative, thermal or light-induced degradation.

The present invention also relates to a stabilizer mixture comprising (i) at least one compound of the benzofuran-2-one type and (ii) at least one compound from the group of the sterically hindered amines.

The present invention likewise relates to a stabilizer mixture comprising (i) at least one compound of the benzofuran-2-one type, (ii) at least one compound from the group of the

sterically hindered amines, and (iii) at least one compound from the group of the organic phosphites or phosphonites.

Preference is also given to stabilizer mixtures in which the weight ratio of the components (i): (ii) is from 100: 1 to 0.01: 100, in particular from 5: 1 to 0.01: 10.

Preference is likewise given to stabilizer mixtures in which the weight ratio of the components (i): (ii): (iii) is from 100: 1:0.01 to 0.01: 1:100, in particular from 5:1:0.1 to 0.01: 1:10.

The novel stabilizer mixtures of components (b) and (c) or (b), (c) and (d) feature excellent stability to hydrolysis and advantageous colour behaviour, i.e. little discoloration of the organic materials during processing.

Organic materials which are stabilized with the components of the present invention are particularly well protected against light-induced degradation.

The present invention also relates to a process for stabilizing an organic material against oxidative, thermal or light-induced degradation, which comprises incorporating in or applying to said material at least one each of components (b) and (c) or of components (b), (c) and (d).

Preference is given to a process for stabilizing polyolefins that are in long-term contact with extractive media, where the polyolefins are thick-layer polyolefin mouldings and have a layer thickness of from 1 to 50 mm, in particular from 1 to 30 mm, for example from 2 to 10 mm, which comprises incorporating in or applying to said polyolefins at least one each of components (b) and (c) or of (b), (c) and (d).

Also of particular interest is a process for stabilizing thick-layer polyolefin mouldings that are in long-term contact with extractive media, wherein the thick-layer polyolefin mouldings are pipes or geomembranes, which comprises incorporating in or applying to said mouldings at least one each of components (b) and (c) or of (b), (c) and (d).

The term geomembranes refers to films which are employed, for example, in landfill sites and are required to have a service life of up to 300 years.

Extractive media are, for example, liquid or gaseous inorganic or organic materials.

Examples of gaseous inorganic materials are oxygen; nitrogen; oxides of nitrogen; for example NO, laughing gas or NO₂; oxides of sulfur, for example sulfur dioxide; halogens, for example fluorine or chlorine; Brönstedt acids, for example hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid or hydrocyanic acid; or bases, for example ammonia.

Examples of gaseous organic materials are C₁-C₄alkanes, for example methane, ethane, propane or butane; carbon monoxide; carbon dioxide; or phosgene.

Examples of liquid inorganic materials are water, chlorinated drinking water or aqueous salt solutions, for example sodium chloride solution (brine) or sodium sulfate solution; bromine; acid halides, e.g. titanium tetrachloride, thionyl chloride, nitrosyl chloride or trimethylsilyl chloride; alkalis, for example aqueous sodium hydroxide (NaOH), aqueous potassium hydroxide (KOH), aqueous ammonia solution, aqueous sodium bicarbonate solution or aqueous sodium carbonate solution.

Examples of liquid organic materials are organic solvents or liquid organic reagents.

Examples of organic solvents are aliphatic hydrocarbons, for example pentane, hexane, heptane, octane, petroleum spirit, nonane or decane; alcohols, for example methanol, ethanol, isopropanol, butanol, pentanol, amyl alcohol, cyclohexanol, pentaerythritol, ethylene glycol, ethylene diglycol, methylcellosolve, polyethylene glycol or glycerol; ketones, for example acetone, diethyl ketone, methyl ethyl ketone, diphenyl ketone or cyclohexanone; ethers, for example diethyl ether, dibutyl ether, tetrahydrofuran or dioxane; aromatic hydrocarbons, for example benzene, toluene or xylene; heterocyclic solvents, for example furan, pyridine, 2,6-lutidine or thiophene; dipolar aprotic solvents, for example dimethylformamide, diethylacetamide or acetonitrile; or surfactants.

For the purposes of the present invention, extractive media are also mixtures and solutions, especially aqueous mixtures, emulsions or solutions, of liquid or gaseous inorganic and organic materials as listed above.

Of particular interest are those extractive media which are important in the chemical industry or in landfill sites.

A preferred embodiment of the present invention is therefore also the use of a stabilizer mixture of components (b) and (c) or of (b), (c) and (d), with or without further additives, for improving the stability of polyolefins that are in long-term contact with extractive media.

The preferred components (b) and (c) or (b), (c) and (d) for use as stabilizers, the process for stabilizing and the stabilizer mixture, are the same as those described for the compositions with an organic material.

The examples which follow illustrate the invention in more detail. Parts and percentages are by weight.

Example 1: Stabilizing polypropylene fibres processed at 250°C.

2.0 kg of polypropylene powder (B 10 FB* from Polychim S.A., France), which has a melt index of 12.0 g/dmin measured in accordance with DIN 53735 at 230°C and 2.16 kg, is homogenized with 0.05 % of calcium stearate and with the stabilizers indicated in Tables 1 and 2 for 2 minutes in a high-speed mixer. This mixture is extruded at 60 revolutions per minute in an extruder having a barrel diameter of 20 mm and a length of 400 mm, the three heating zones being set at the following temperatures: 200, 220 and 220°C. The extrudate is passed through a water bath for cooling and then granulated. These granules are processed to give a multifilament fibre. This is done using a single-screw extruder with a melt pump and a 37-hole spinning head. The maximum processing temperature is 250°C.

A portion of the unstretched fibre thus obtained is pressed for 6 minutes at 230°C to form a sheet with a thickness of 2 mm. The melt index (MFI, melt flow index) of this sheet is measured in accordance with DIN 53735 at 230°C and 2.16 kg. A large increase in the melt

index denotes severe chain degradation and thus poor stabilization. The results are compiled in Table 1.

Another portion of the unstretched fibre thus obtained is treated with a lubricant (Limanol®P 25, Schill und Seilacher, Böblingen, Germany) and subjected to preliminary drawing. This preliminary drawing leads to a fibre strand having a linear density of 416 g/90 m. This means that a fibre strand 90 m in length has a weight of 416 g. In a further operation, this fibre strand is again drawn at 120°C by a factor of 3.2 using a drawing apparatus. This leads to a fibre strand having a linear density of 130 g/90 m.

A portion of this fibre strand is used to produce a knitted tube. The yellowness index (YI₁) of this knitted tube is determined in accordance with ASTM D 1925-77. Low YI₁ values denote little discoloration, high YI₁ values severe discoloration of the samples. The results are compiled in Table 1. This knitted tube is exposed in the presence of from 4 to 6 ppm nitrogen dioxide (NO₂) at 40°C and 87 % relative atmospheric humidity for 48 hours in accordance with AATCC 164. The yellowness index (YI₂) of this exposed knitted tube is determined in accordance with ASTM D 1925-77. Low YI₂ values denote little discoloration, high YI₂ values severe discoloration of the samples. The results are compiled in Table 1.

Another portion of the fibre strand is used to carry out an oven ageing test at 100°C. In this test, a measurement is made, in days, of the time taken for the fibre strand to tear under the test conditions. The longer the period before tearing of the fibre strand, the better the stabilization. The results are compiled in Table 2.

Another portion of the unstretched fibre is pressed for 6 minutes at 230°C to form a thin film with a thickness of 0.10 mm. This film is subjected to a Xenon test in accordance with DIN 53387. In this test, the film is exposed in a Xenon 1200 weathering apparatus until a carbonyl index of 0.25 is observed in the wavelength range from 1760 to 1680 cm⁻¹. The larger the number, the better the stabilization. The results are compiled in Table 2.

Table 1:

Example	Stabilizers	YI ₁ after spinning	Yl₂ after NO₂ exposure	MFI after spinning
1a ^{a)}		-0.5	0.8	73.0
1b ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Tinuvin [®] 622 ^{d)}	-0.6	2.7	18.7
1c ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 944 ^{e)}	-0.2	4.2	17.7
1d ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 119 ⁰	-0.7	3.4	19.6
1e ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Tinuvin 622 ^{d)} 0.05 % Irgafos 168 ^{g)}	5 % Chimassorb*119" 5 % Compound (101) ^{c)} 5 % Tinuvin*622 ^{d)} -0.9 1.0		15.9
1 f ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Tinuvin [®] 622 ^{d)} 0.05 % Irgafos [®] 12 ^{h)}	(101) ^{c)} 2 ^{d)} -0.5 1.3		15.6
1g ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Tinuvin 622 ^{d)} 0.05 % Irgafos 38 ⁱ⁾	-0.2	2.0	15.2
1h ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 944 ^{e)} 0.05 % Irgafos [®] 12 ^{h)}	-0.5	2.4	15.5
1 i ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 944 ^{e)} 0.05 % Irgafos [®] 38 ⁱ⁾	-0.6	2.4	15.7
1 j ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 119 ⁹ 0.05 % Irgafos [®] 168 ⁹⁾	-0.2	2.5	16.2
1k ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 119 ^{f)} 0.05 % Irgafos [®] 12 ^{h)}	-0.4	1.8	15.5
11 ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 119 ^{f)} 0.05 % Irgafos [®] 38 ⁱ⁾	-0.4	1.4	16.3

Footnotes a) to i) are given after Table 9 (Example 5).

Table 2:

Table 2:			
Example	Stabilizers	Oven ageing (days)	Xenon test (hours)
1a ^{a)}		1	230
1b ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Tinuvin ⁶ 622 ^{d)}	11	1580
1c ^{b)}	0.05 % Compound (101) ^{o)} 0.05 % Chimassorb ^o 944 ^{o)}	12	1275
1d ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb 119 ⁿ	12	1630
1e ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Tinuvin [®] 622 ^{d)} 0.05 % Irgafos [®] 168 ⁹⁾	10	1460
1f ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Tinuvin ^e 622 ^{d)} 0.05 % Irgafos ^e 12 ^{h)}	10	1090
1g ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Tinuvin [®] 622 ^{d)} 0.05 % Irgafos [®] 38 ⁱ⁾	11	1560
1h ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 944 ^{e)} 0.05 % Irgafos [®] 12 ^{h)}	12	1210
1i ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 944 ^{e)} 0.05 % Irgafos [®] 38 ⁱ⁾	14	1260
1j ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 119 ^{f)} 0.05 % Irgafos [®] 168 ^{g)}	13	1830
1k ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 119 ^{f)} 0.05 % Irgafos [®] 12 ^{h)}	12	1430
11 ^{b)}	0.05 % Compound (101) ^{c)} 0.05 % Chimassorb [®] 119 ^{f)} 0.05 % Irgafos [®] 38 ⁱ⁾	13	1760

Footnotes a) to i) are given after Table 9 (Example 5).

Example 2: Stabilizing polypropylene fibres processed at 300°C.

2.0 kg of polypropylene powder (B 10 FB° from Polychim S.A., France), which has a melt index of 12.0 g/dmin measured in accordance with DIN 53735 at 230°C under 2.16 kg, is homogenized with 0.05 % of calcium stearate and with the stabilizers indicated in Tables 3 and 4 for 2 minutes in a high-speed mixer. This mixture is extruded at 60 revolutions per minute in an extruder having a barrel diameter of 20 mm and a length of 400 mm, the three heating zones being set at the following temperatures: 200, 220 and 220°C. The extrudate is passed through a water bath for cooling and then granulated. These granules are processed to give a multifilament fibre. This is done using a single-screw extruder with a melt pump and a 37-hole spinning head. The maximum processing temperature is 300°C.

A portion of the unstretched fibre thus obtained is pressed for 6 minutes at 230°C to form a sheet with a thickness of 2 mm. The melt index (MFI, melt flow index) of this sheet is measured in accordance with DIN 53735 at 230°C and 2.16 kg. A large increase in the melt index denotes severe chain degradation and thus poor stabilization. The results are compiled in Table 3.

Another portion of the unstretched fibre thus obtained is treated with a lubricant (Limanol®P 25, Schill und Seilacher, Böblingen, Germany) and subjected to preliminary drawing. This preliminary drawing leads to a fibre strand having a linear density of 416 g/90 m. This means that a fibre strand 90 m in length has a weight of 416 g. In a further operation, this fibre strand is again drawn at 120°C by a factor of 3.2 using a drawing apparatus. This leads to a fibre strand having a linear density of 130 g/90 m.

A portion of this fibre strand is used to produce a knitted tube. The yellowness index (YI₁) of this knitted tube is determined in accordance with ASTM D 1925-77. Low YI₁ values denote little discoloration, high YI₁ values severe discoloration of the samples. The results are compiled in Table 3. This knitted tube is exposed in the presence of from 4 to 6 ppm nitrogen dioxide (NO₂) at 40°C and 87 % relative atmospheric humidity for 48 hours in accordance with AATCC 164. The yellowness index (YI₂) of this exposed knitted tube is determined in accordance with ASTM D 1925-77. Low YI₂ values denote little discoloration, high YI₂ values severe discoloration of the samples. The results are compiled in Table 3.

Another portion of the fibre strand is used to carry out an oven ageing test at 100°C. In this test, a measurement is made, in days, of the time taken for the fibre strand to tear under the test conditions. The longer the period before tearing of the fibre strand, the better the stabilization. The results are compiled in Table 4.

Another portion of the unstretched fibre is pressed for 6 minutes at 230°C to form a thin film with a thickness of 0.10 mm. This film is subjected to a Xenon test in accordance with DIN 53387. In this test, the film is exposed in a Xenon 1200 weathering apparatus until a carbonyl index of 0.25 is observed in the wavelength range from 1760 to 1680 cm⁻¹. The larger the number, the better the stabilization. The results are compiled in Table 4.

Table 3:

Example	Stabilizers	YI₁ after spinning	Yl₂ after NO₂ exposure	MFI after spinning
2a ^{a)}		0.2	1.2	112.0
2b ^{b)}	0.100 % Compound (101) ^{c)} 0.050 % Tinuvin [®] 622 ^{d)}	1.2	4.6	34.7
2c ^{b)}	0.100 % Compound (101) ^{c)} 0.050 % Chimassorb [®] 944 ^{e)}	1.6	5.4	31.7
2ď ^{b)}	0.100 % Compound (101) ^{c)} 0.050 % Chimassorb [®] 119 ^{f)}	0.5	4.1	31.9
2e ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Tinuvin [®] 622 ^{d)} 0.075 % Irgafos [®] 168 ^{g)}	0.7	4.7	34.3
2f ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Tinuvin [®] 622 ^{d)} 0.075 % Irgafos [®] 12 ^{h)}	1.1	4.8	32.9
2g ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Tinuvin ⁹ 622 ^{d)} 0.075 % Irgafos ⁹ 38 ⁱ⁾	1.4	4.1	29.6
2h ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Chimassorb [®] 944 ^{e)} 0.075 % Irgafos [®] 168 ⁹⁾	1.5	6.6	38.5
2i ^{b)}	0.075 % Compound (101) ^{e)} 0.050 % Chimassorb [®] 944 ^{e)} 0.075 % Irgafos [®] 12 ^{h)}	1.4	4.9	32.1
2j ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Chimassorb [®] 944 ^{e)} 0.075 % Irgafos [®] 38 ^{l)}	1.7	4.4	31.6
2K ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Chimassorb [•] 119 ^{f)} 0.075 % Irgafos [•] 168 ^{g)}	1.4	4.6	33.9
2l ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Chimassorb [®] 119 ^{f)} 0.075 % Irgafos [®] 12 ^{h)}	1.3	4.8	29.5
2m ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Chimassorb [®] 119 ^{f)} 0.075 % Irgafos [®] 38 ⁱ⁾	0.9	4.9	28.5

Footnotes a) to i) are given after Table 9 (Example 5).

Table 4:

Table 4.			
Example	Stabilizers	Oven ageing (days)	Xenon test (hours)
2a²)		1	190
2c ^{b)}	0.100 % Compound (101) ^{c)} 0.050 % Chimassorb [®] 944 ^{e)}	39	1330
2d ^{b)}	0.100 % Compound (101) ^{c)} 0.050 % Chimassorb 119 ⁿ	37	1590
2h ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Chimassorb [®] 944 ^{e)} 0.075 % Irgafos [®] 168 ^{g)}	39	1300
2j ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Chimassorb ^e 944 ^{e)} 0.075 % Irgafos ^e 38 ⁱ⁾	39	1230
2k ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Chimassorb [®] 119 ^{f)} 0.075 % Irgafos [®] 168 ^{g)}	37	1650
2m ^{b)}	0.075 % Compound (101) ^{c)} 0.050 % Chimassorb ^e 119 ^{f)} 0.075 % Irgafos ^e 38 ⁱ⁾	37	1720

Footnotes a) to i) are given after Table 9 (Example 5).

Example 3: Stabilizing polypropylene fibres processed at 300°C.

2.0 kg of polypropylene powder (Moplen® FL F 20 from Himont, Italy), which has a melt index of 10.4 g/dmin measured in accordance with DIN 53735 at 230°C under 2.16 kg, is homogenized with 0.05 % of calcium stearate, 0.03 % of DHT 4 A® (Kyowa Chemical Industry Co. Ltd., [Mg4.5Al2(OH)13CO3 • 3.5 H2O]) and with the stabilizers indicated in Tables 5 and 6 for 2 minutes in a high-speed mixer. This mixture is extruded at 60 revolutions per minute in an extruder having a barrel diameter of 20 mm and a length of 400 mm, the three heating zones being set at the following temperatures: 200, 220 and 220°C. The extrudate is passed through a water bath for cooling and then granulated. These granules are processed to give a multifilament fibre. This is done using a single-screw extruder with a melt pump and a 37-hole spinning head. The maximum processing temperature is 300°C.

A portion of the unstretched fibre thus obtained is pressed for 6 minutes at 230°C to form a sheet with a thickness of 2 mm. The melt index (MFI, melt flow index) of this sheet is measured in accordance with DIN 53735 at 230°C and 2.16 kg. A large increase in the melt index denotes severe chain degradation and thus poor stabilization. The results are compiled in Tables 5 and 6.

Another portion of the unstretched fibre thus obtained is treated with a lubricant (Limanol*P 25, Schill und Seilacher, Böblingen, Germany) and subjected to preliminary drawing. This preliminary drawing leads to a fibre strand having a linear density of 416 g/90 m. This means that a fibre strand 90 m in length has a weight of 416 g. In a further operation, this fibre strand is again drawn at 120°C by a factor of 3.2 using a drawing apparatus. This leads to a fibre strand having a linear density of 130 g/90 m. This fibre strand is used to produce a knitted tube. The yellowness index (YI₁) of this knitted tube is determined in accordance with ASTM D 1925-77. Low YI₁ values denote little discoloration, high YI₁ values severe discoloration of the samples. The results are compiled in Tables 5 and 6. This knitted tube is exposed in the presence of from 4 to 6 ppm nitrogen dioxide (NO₂) at 40°C and 87 % relative atmospheric humidity for 48 hours in accordance with AATCC 164. The yellowness index (YI₂) of this exposed knitted tube is determined in accordance with ASTM D 1925-77. Low YI₂ values denote little discoloration, high YI₂ values severe discoloration of the samples. The results are compiled in Tables 5 and 6.

Table 5:

10010 0.				
Example	Stabilizers	YI₁ after spinning	YI₂ after NO₂ exposure	MFI after spinning
3a ^{a)}		1.8	3.2	118.0
3b ^{b)}	0.10 % Compound (102) ^{k)} 0.20 % Chimassorb [®] 944 ^{e)}	5.6	12.4	24.9
3c ^{b)}	0.10 % Compound (103) ¹⁾ 0.20 % Chimassorb [®] 944 ^{e)}	11.6	13.3	22.4
3d ^{b)}	0.10 % Compound (104) ^{m)} 0.20 % Chimassorb [®] 944 ^{e)}	6.6	13.2	34.6

Footnotes a) to m) are given after Table 9 (Example 5).

Table 6:

Example	Stabilizers	YI₁ after spinning	Yl₂ after NO₂ exposure	MFI after spinning
3a ^{a)}		1.2	3.0	113.0
3e ^{b)}	0.10 % Compound (102) ^{k)} 0.20 % Chimassorb*119 ⁿ	4.6	9.8	23.9
3f ^{b)}	0.10 % Compound (103) ⁰ 0.20 % Chimassorb ⁹ 119 ⁰	5.1	6.5	22.1
3g ^{b)}	0.10 % Compound (104) ^{m)} 0.20 % Chimassorb [®] 119 ⁿ	4.2	9.1	31.5

Footnotes a) to m) are given after Table 9 (Example 5).

Example 4: Stabilizing polypropylene fibres processed at 290°C.

2.0 kg of polypropylene powder (Moplen® FL F 20 from Himont, Italy), which has a melt index of 10.4 g/dmin measured in accordance with DIN 53735 at 230°C under 2.16 kg, is homogenized with 0.05 % of calcium stearate and with the stabilizers indicated in Tables 7 and 8 for 2 minutes in a high-speed mixer. This mixture is extruded at 60 revolutions per minute in an extruder having a barrel diameter of 20 mm and a length of 400 mm, the three heating zones being set at the following temperatures: 200, 220 and 220°C. The extrudate is passed through a water bath for cooling and then granulated. These granules are processed to give a multifilament fibre. This is done using a single-screw extruder with a melt pump and a 37-hole spinning head. The maximum processing temperature is 290°C.

A portion of the unstretched fibre thus obtained is pressed for 6 minutes at 230°C to form a sheet with a thickness of 2 mm. The melt index (MFI, melt flow index) of this sheet is measured in accordance with DIN 53735 at 230°C and 2.16 kg. A large increase in the melt index denotes severe chain degradation and thus poor stabilization. The results are compiled in Tables 7 and 8.

Another portion of the unstretched fibre thus obtained is treated with a lubricant (Limanol®P 25, Schill und Seilacher, Böblingen, Germany) and subjected to preliminary drawing. This

preliminary drawing leads to a fibre strand having a linear density of 416 g/90 m. This means that a fibre strand 90 m in length has a weight of 416 g. In a further operation, this fibre strand is again drawn at 120°C by a factor of 3.2 using a drawing apparatus. This leads to a fibre strand having a linear density of 130 g/90 m. This fibre strand is used to produce a knitted tube. The yellowness index (YI₁) of this knitted tube is determined in accordance with ASTM D 1925-77. Low YI₁ values denote little discoloration, high YI₁ values severe discoloration of the samples. The results are compiled in Tables 7 and 8. This knitted tube is exposed in the presence of from 4 to 6 ppm nitrogen dioxide (NO₂) at 40°C and 87 % relative atmospheric humidity for 48 hours in accordance with AATCC 164. The yellowness index (YI₂) of this exposed knitted tube is determined in accordance with ASTM D 1925-77. Low YI₂ values denote little discoloration, high YI₂ values severe discoloration of the samples. The results are compiled in Tables 7 and 8.

Table 7:

Table 7:				
Example	Stabilizers	Yl₁ after spinning	Yl₂ after NO₂ exposure	MFI after spinning
4a ^{a)}		1.7	2.8	123.0
4b ^{b)}	0.050 % Compound (105) ⁿ⁾ 0.300 % Chimassorb [®] 944 ^{e)}	6.8	7.3	48.9
4c ^{b)}	0.050 % Compound (106)°) 0.300 % Chimassorb®944®)	4.8	8.9	50. 1
4d ^{b)}	0.015 % Compound (102) ^{k)} 0.300 % Chimassorb 944 ^{e)}	3.7	8.2	51.7
4e ^{b)}	0.050 % Compound (102) ^{k)} 0.300 % Chimassorb 944 ^{e)}	5.2	8.9	44.2
4f ^{b)}	0.100 % Compound (102) ^{k)} 0.300 % Chimassorb 944 ^{e)}	5.9	10.5	38.8
4g ^{b)}	0.050 % Compound (107) ^{p)} 0.300 % Chimassorb 944 ^{e)}	4.9	9.9	45.8
4h ^{b)}	0.015 % Compound (102) ^{k)} 0.300 % Chimassorb [®] 944 ^{e)} 0.085 % Irgafos [®] 168 ^{g)}	4.5	7.2	51.3
4i ^{b)}	0.050 % Compound (102) ^{k)} 0.300 % Chimassorb [®] 944 ^{e)} 0.050 % Irgafos [®] 168 ⁹⁾	5.7	8.7	45.8

Footnotes a) to p) are given after Table 9 (Example 5).

Table 8:

Example	Stabilizers	YI ₁ after spinning	Yl₂ after NO₂ exposure	MFI after spinning
4a ^{a)}		1.8	3.1	119.0
4j ^{b)}	0.050 % Compound (105) ⁿ⁾ 0.300 % Chimassorb 119 ⁿ	3.4	6.3	43.3
4k ^{b)}	0.050 % Compound (106)°) 0.300 % Chimassorb •119°)	3.0	6.6	44.8
41 ^{b)}	0.015 % Compound (102) ^{k)} 0.300 % Chimassorb 119 ⁹	3.5	6.6	53.8
4m ^{b)}	0.050 % Compound (102) ^{k)} 0.300 % Chimassorb •119 ^{f)}	2.9	7.3	47.0
4n ^{b)}	0.100 % Compound (102) ^{k)} 0.300 % Chimassorb 119 ⁹	4.2	8.8	31.6
40 ^{b)}	0.050 % Compound (107) ^{p)} 0.300 % Chimassorb 119 ⁿ⁾	3.0	7.0	42.0
4p ^{b)}	0.015 % Compound (102) ^{k)} 0.300 % Chimassorb [®] 119 ^{f)} 0.085 % Irgafos [®] 168 ^{g)}	2.9	6.8	46.0
4q ^{b)}	0.050 % Compound (102) ^{k)} 0.300 % Chimassorb [®] 119 ^{f)} 0.050 % Irgafos [®] 168 ^{g)}	3.1	7.7	44.9

Footnotes a) to p) are given after Table 9 (Example 5).

Example 5: Stabilizing polypropylene fibres processed at 270°C.

2.0 kg of polypropylene powder (Profax® 6301 from Himont, Canada), which has a melt index of 10.4 g/dmin measured in accordance with DIN 53735 at 230°C under 2.16 kg, is homogenized with 0.05 % of calcium stearate, 0.03 % of DHT 4A® (Kyowa Chemical Industry Co. Ltd., [Mg4,5Al2(OH)13CO3 • 3.5 H2O]) and with the stabilizers indicated in Table 9 for 2 minutes in a high-speed mixer. This mixture is extruded at 60 revolutions per minute in an extruder having a barrel diameter of 20 mm and a length of 400 mm, the three heating zones being set at the following temperatures: 200, 220 and 220°C. The extrudate is passed through a water bath for cooling and then granulated. These granules are processed to give a multifilament fibre. This is done using a single-screw extruder with a melt pump and a 37-hole spinning head. The maximum processing temperature is 270°C.

A portion of the unstretched fibre thus obtained is pressed for 6 minutes at 230°C to form a sheet with a thickness of 2 mm. The melt index (MFI, melt flow index) of this sheet is measured in accordance with DIN 53735 at 230°C and 2.16 kg. A large increase in the melt index denotes severe chain degradation and thus poor stabilization. The results are compiled in Table 9.

Another portion of the unstretched fibre thus obtained is treated with a lubricant (Limanol®P 25, Schill und Seilacher, Böblingen, Germany) and subjected to preliminary drawing. This preliminary drawing leads to a fibre strand having a linear density of 416 g/90 m. This means that a fibre strand 90 m in length has a weight of 416 g. In a further operation, this fibre strand is again drawn at 120°C by a factor of 3.2 using a drawing apparatus. This leads to a fibre strand having a linear density of 130 g/90 m. This fibre strand is used to produce a knitted tube. The yellowness index (YI₁) of this knitted tube is determined in accordance with ASTM D 1925-77. Low YI₁ values denote little discoloration, high YI₁ values severe discoloration of the samples. The results are compiled in Table 9. This knitted tube is exposed in the presence of from 4 to 6 ppm nitrogen dioxide (NO₂) at 40°C and 87 % relative atmospheric humidity for 48 hours in accordance with AATCC 164. The yellowness index (YI₂) of this exposed knitted tube is determined in accordance with ASTM D 1925-77. Low YI₂ values denote little discoloration, high YI₂ values severe discoloration of the samples. The results are compiled in Table 9.

Tabelle 9:

Tabelle 9:				
Example	Example Stabilizers		Yl₂ after NO₂ exposure	MFI after spinning
5a ^{a)}	<u> </u>	1.3	2.9	71.0
5b ^{b)}	0.10 % Compound (105) ⁿ⁾ 0.30 % Chimassorb [®] 944 ^{®)}	2.9	9.6	25.6
5c ^{b)}	0.20 % Compound (105) ⁿ⁾ 0.30 % Chimassorb ^e 944 ^{e)}	4.4	13.0	22.6
5d ^{b)}	0.10 % Compound (108) ⁰ 0.30 % Chimassorb*119 ⁰	4.4	10.7	27.7
5e ^{b)}	0.20 % Compound (108) ⁰ 0.30 % Chimassorb ⁹ 119 ⁰	4.5	12.0	20.6
5f ^{b)}	0.05 % Compound (105) ⁿ⁾ 0.30 % Chimassorb [®] 944 ^{e)} 0.05 % Irgafos [®] 168 ^{g)}	4.4	11.5	33.0
5g ^{b)}	.10 % Compound (105) ⁿ⁾ .30 % Chimassorb [®] 944 ^{®)} .10 % Irgafos [®] 168 ⁹⁾ .10 % Irgafos [®] 168 ⁹⁾		22.1	
5h ^{b)}	0.05 % Compound (105) ⁿ⁾ 0.30 % Chimassorb [®] 944 ^{e)} 0.05 % Irgafos [®] P-EPQ ⁿ	4.3	11.5	31.3
5i ^{b)}	0.10 % Compound (105) ⁿ⁾ 0.30 % Chimassorb [®] 944 ^{e)} 0.10 % Irgafos [®] P-EPQ ⁿ	4.7	14.6	21.2
5j ^{b)}	0.05 % Compound (108) ⁿ⁾ 0.30 % Chimassorb [®] 119 ⁹ 0.05 % Irgafos [®] 168 ⁹⁾	3.3	9.1	37.6

- a) Comparison examples.
- b) Examples according to the invention.
- c) Compound (101) is a mixture of about 85 parts by weight of the compound of the formula Va and about 15 parts by weight of the compound of the formula Vb.

d) Tinuvin 622 (Ciba Spezialitätenchemie AG) is a compound of the formula H4 in which the average molecular weight is about 3000.

e) Chimassorb®944 (Ciba Spezialitätenchemie AG) denotes linear or cyclic condensation products prepared from N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylendiamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine and is a compound of the formula H5 in which the average molecular weight is about 2500.

f) Chimassorb*119 (Ciba Spezialitätenchemie AG) denotes condensation products prepared from 2-chloro-4,6-di(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane and is a compound of the formula H9

in which
$$R' = H_3C - N$$

$$H_3C - N$$

$$H_3C - N$$

$$H_3C - N$$

$$H_3C - N$$

$$N - CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

- g) Irgafos®168 (Ciba Spezialitätenchemie AG) is tris(2,4-di-tert-butylphenyl)phosphite.
- h) Irgafos^e12 (Ciba Spezialitätenchemie AG) is a compound of the formula B.

$$\begin{bmatrix} (CH_3)_3C & C(CH_3)_3 & \\ & & & \\$$

i) Irgafos*38 (Ciba Spezialitätenchemie AG) is a compound of the formula G.

$$\begin{bmatrix} CH_3 \\ H_3C - C - CH_3 \\ CH_3 \end{bmatrix} = P - OCH_2CH_3$$
 (G)

k) Compound (102) is a compound of the formula Vc.

I) Compound (103) is a compound of the formula Vd.

m) Compound (104) is a compound of the formula Ve.

n) Compound (105) is a compound of the formula Vf.

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

o) Compound (106) is a compound of the formula Vg.

p) Compound (107) is a compound of the formula Vh.

$$H_3C$$
 CH_3
 OCH_3
 OCH_3

q) Compound (108) is a compound of the formula Vi.

r) Irgafos®P-EPQ (Ciba Spezialitätenchemie AG) is a compound of the formula H.

$$\begin{bmatrix} C(CH_3)_3 \\ C(CH_3)_3 \end{bmatrix} = \begin{bmatrix} C(CH_3)_3 \\ C(CH_3)_3 \end{bmatrix} =$$

WHAT IS CLAIMED IS:

- 1. A composition comprising
 - a) an organic material subject to oxidative, thermal or light-induced degradation.
 - b) at least one compound of the benzofuran-2-one type, and
 - c) at least one compound from the group of the sterically hindered amines.
- 2. A composition according to claim 1, additionally comprising d) at least one compound from the group of the organic phosphites or phosphonites.
- 3. A composition according to claim 1, comprising as component (b) a compound of the formula I

$$\begin{bmatrix} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

in which, if n is 1,

R₁ is unsubstituted or C₁-C₄alkyl-, C₁-C₄alkoxy-, C₁-C₄alkylthio-, hydroxyl-, halo-, amino-, C₁-C₄alkylamino-, phenylamino- or di(C₁-C₄alkyl)amino-substituted naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, or R₁ is a radical of the formula ||

$$\begin{array}{c}
R_{9} \\
R_{7} \\
R_{8}
\end{array}$$

$$\begin{array}{c}
R_{10} \\
R_{11}
\end{array}$$
(II)

and

if n is 2,

R₁ is unsubstituted or C₁-C₄alkyl- or hydroxy-substituted phenylene or naphthylene; or is -R₁₂-X-R₁₃-,

R₂, R₃, R₄ and R₅ independently of one another are hydrogen, chlorine, hydroxyl, C₁-C₂₅alkyl, C₇-C₉phenylalkyl, unsubstituted or C₁-C₄alkyl-substituted phenyl; unsubstituted or C₁-C₄alkyl-substituted C₅-C₈cycloalkyl; C₁-C₁₈alkoxy, C₁-C₁₈alkylthio, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₂₅alkanoyloxy, C₁-C₂₅alkanoyloxy,

 C_3 - C_{25} alkanoyloxy which is interrupted by oxygen, sulfur or $N-R_{14}$; C_6 - C_9 cycloalkyl-

carbonyloxy, benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; or else the radicals R_2 and R_3 or the radicals R_3 and R_4 or the radicals R_4 and R_5 , together with the carbon atoms to which they are attached, form a benzo ring, R_4 is additionally -(CH_2)_p- COR_{15} or -(CH_2)_qOH or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of the formula III

$$R_{2}$$

$$R_{1\overline{16}}$$

$$C - R_{17}$$
(III)

in which R_1 is defined as indicated above for n = 1,

R₆ is hydrogen or a radical of the formula IV

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

where R_4 is not a radical of the formula III and R_1 is defined as indicated above for n=1, R_7 , R_8 , R_9 , R_{10} and R_{11} independently of one another are hydrogen, halogen, hydroxyl,

 C_1 - C_{25} alkyl, C_2 - C_{25} alkyl interrupted by oxygen, sulfur or $N-R_{14}$; C_1 - C_{25} alkoxy,

 C_2 - C_{25} alkoxy interrupted by oxygen, sulfur or $N-R_{14}$; C_1 - C_{25} alkylthio, C_3 - C_{25} alkenyl,

 C_3 - C_{25} alkenyloxy, C_3 - C_{25} alkynyl, C_3 - C_{25} alkynyloxy, C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkoxy, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino,

 C_1 - C_2 salkanoyl, C_3 - C_2 salkanoyl interrupted by oxygen, sulfur or $N-R_{14}$;

 C_1 - C_{25} alkanoyloxy, C_3 - C_{25} alkanoyloxy interrupted by oxygen, sulfur or N- R_{14} ;

 C_1 - C_{25} alkanoylamino, C_3 - C_{25} alkenoyl, C_3 - C_{25} alkenoyl interrupted by oxygen, sulfur or

N-R₁₄; C₃-C₂₅alkenoyloxy, C₃-C₂₅alkenoyloxy interrupted by oxygen, sulfur or

N-R₁₄; C₆-C₉cycloalkylcarbonyl, C₆-C₉cycloalkylcarbonyloxy, benzoyl or C₁-C₁₂alkyl-

substituted benzoyl; benzoyloxy or C1-C12alkyl-substituted benzoyloxy;

$$R_{18}$$
 R_{18} R_{21} R_{21} R_{19} R_{19} R_{19} R_{21} R_{22} , or else, in formula II, the radicals R_7

and R_8 or the radicals R_8 and R_{11} , together with the carbon atoms to which they are attached, form a benzo ring,

R₁₂ and R₁₃ independently of one another are unsubstituted or C₁-C₄alkyl-substituted phenylene or naphthylene,

R₁₄ is hydrogen or C₁-C₈alkyl,

$$R_{15}$$
 is hydroxyl, $\left[-0^{-\frac{1}{r}M^{r+}}\right]$, C_{1} - C_{18} alkoxy or $-N$
 R_{25}

R₁₆ and R₁₇ independently of one another are hydrogen, CF₃, C₁-C₁₂alkyl or phenyl, or R₁₆ and R₁₇, together with the C atom to which they are attached, form a C₅-C₈cycloalkylidene ring which is unsubstituted or substituted from 1 to 3 times by C₁-C₄alkyl;

 R_{18} and R_{19} independently of one another are hydrogen, C_1 - C_4 alkyl or phenyl, R_{20} is hydrogen or C_1 - C_4 alkyl,

 R_{21} is hydrogen, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_2 salkyl, C_2 - C_2 salkyl

interrupted by oxygen, sulfur or N-R₁₄; C₇-C₉phenylalkyl which is unsubstituted or

substituted on the phenyl radical from 1 to 3 times by C₁-C₄alkyl; C₇-C₂₅phenylalkyl which is unsubstituted or substituted on the phenyl radical from 1 to 3 times by C₁-C₄alkyl and

interrupted by oxygen, sulfur or $N-R_{14}$, or else the radicals R_{20} and R_{21} , together with

the carbon atoms to which they are attached, form a C_5 - C_{12} cycloalkylene ring which is unsubstituted or substituted from 1 to 3 times by C_1 - C_4 alkyl;

R₂₂ is hydrogen or C₁-C₄alkyl,

R₂₃ is hydrogen, C₁-C₂₅alkanoyl, C₃-C₂₅alkanoyl, C₃-C₂₅alkanoyl interrupted by oxygen,

sulfur or $N-R_{14}$; C_2-C_{25} alkanoyl substituted by a di(C_1-C_6 alkyl)phosphonate group;

C₆-C₉cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

 R_{24} and R_{25} independently of one another are hydrogen or $C_1\text{-}C_{18}alkyl,$ R_{26} is hydrogen or $C_1\text{-}C_8alkyl,$

R₂₇ is a direct bond, C₁-C₁₈alkylene, C₂-C₁₈alkylene interrupted by oxygen, sulfur or

C₅-C₀cycloalkylene, C7-C₀bicycloalkylene, unsubstituted or C1-C₄alkyl-substituted

$$R_{28}$$
 is hydroxyl, $\left[-O^{-}\frac{1}{r}M^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{24} ,

$$R_{29}$$
 is oxygen, -NH- or $N-C-NH-R_{30}$,

R₃₀ is C₁-C₁₈alkyl or phenyl,
R₃₁ is hydrogen or C₁-C₁₈alkyl,
M is an r-valent metal cation,
X is a direct bond, oxygen, sulfur or -NR₃₁-,
n is 1 or 2,
p is 0, 1 or 2,

q is 1, 2, 3, 4, 5 or 6, r is 1, 2 or 3, and s is 0, 1 or 2.

4. A composition according to claim 1, comprising as component (b) a compound of the formula V

in which

R₂ is hydrogen or C₁-C₆alkyl,

R₃ is hydrogen,

R₄ is hydrogen, C₁-C6alkyl or a radical of the formula IIIa

$$R_{2}$$

$$R_{3}$$

$$R_{16}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{11}$$

$$R_{8}$$
(IIIa),

Rs is hydrogen,

R₇, R₈, R₉, R₁₀ and R₁₁ independently of one another are hydrogen, C₁-C₄alkyl, C₁-C₄alkoxy,

$$R_{20}$$
 R_{21} R_{20} R_{21} R_{22} . With the proviso that at least two of the H R_{22}

radicals R7, R8, R9, R10 or R11 are hydrogen,

R₁₆ and R₁₇, together with the C atom to which they are attached, form a cyclohexylidene ring which is unsubstituted or substituted by C₁-C₄alkyl;

R₂₀, R₂₁ and R₂₂ are hydrogen, and

R₂₃ is hydrogen or C₁-C₁₈alkanoyl.

5. A composition according to claim 1, in which component (c) comprises at least one radical of the formula XII or XIII

in which

G is hydrogen or methyl, and

G₁ and G₂ are hydrogen, methyl or together are oxygen.

6. A composition according to claim 1, in which component (c) is a compound of the formula H1, H2, H3, H4, H5, H6, H7, H8 or H9

$$H_{17}C_8O-N$$
 $H_{17}C_8O-N$
 H_{1

$$(CH_3)_3C$$

$$HO \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_3$$

$$(CH_3)_3C$$

$$(C$$

$$H_3C$$
 CH_3
 CH_3

$$CH_{3}C$$

$$CH_{3}$$

$$CH_{3}C$$

$$CH_{3}$$

$$CH_{3}C$$

$$CH_{3}$$

$$CH_{4}$$

in which
$$R' = H_3C - N$$

$$H_3C - N$$

$$N - CH_3$$

$$N - CH_3$$

$$CH_3$$

m is a number from the range from 2 to 200.

7. A composition according to claim 2, comprising as component (d) a compound of the formula 1, 2, 3, 4, 5, 6 or 7

(1)
$$R'_1 - Y' - P'_{O-R'_3}$$
 $A' = \begin{bmatrix} O - R'_2 \\ O - R'_3 \end{bmatrix}_{n'}$ (2)

(3)
$$\begin{bmatrix} R'_7 & O \\ R'_8 & O \end{bmatrix} P - O \xrightarrow{Q'} A' \qquad D' \xrightarrow{D''} O \xrightarrow{P} - O \xrightarrow{P'} R'_1 \qquad (4)$$

$$R'_1 - O - P'_{O.} - O'_{O.} - P - O - R'_1$$
 (5)

in which the indices are integral and

n' is 2, 3 or 4; p' is 1 or 2; q' is 2 or 3; r' is 4 to 12; y' is 1, 2 or 3; and z' is 1 to 6;

A', if n' is 2, is C2-C18alkylene; C2-C12alkylene interrupted by oxygen, sulfur or -NR'4-; a

radical of the formula ___

A', if n' is 3, is a radical of the formula - C_rH_{2r-1} -;

A" is as defined for A' if n' is 2;

B' is a direct bond, $-CH_{2^-}$, $-CHR'_{4^-}$, $-CR'_{1}R'_{4^-}$, sulfur, C_5-C_7 cycloalkylidene, or cyclohexylidene which is substituted by from 1 to 4 C_1-C_4 alkyl radicals in position 3, 4 and/or 5;

D', if p' is 1, is C_1 - C_4 alkyl and, if p' is 2, is - CH_2OCH_2 -;

D", if p' is 1, is C₁-C₄alkyl;

E', if y' is 1, is C₁-C₁₈alkyl, -OR', or halogen;

E', if y is 2, is -O-A"-O-,

E', if y is 3, is a radical of the formula R'₄C(CH₂O-)₃ or N(CH₂CH₂O-)₃;

Q' is the radical of an at least z'-valent alcohol or phenol, this radical being attached via the oxygen atom to the phosphorus atom;

R'₁, R'₂ and R'₃ independently of one another are C₁-C₁₈alkyl which is unsubstituted or substituted by halogen, -COOR'₄, -CN or -CONR'₄R'₄; C₂-C₁₈alkyl interrupted by oxygen, sulfur or -NR'₄-; C₇-C₉phenylalkyl; C₅-C₁₂cycloalkyl, phenyl or naphthyl; naphthyl or phenyl substituted by halogen, 1 to 3 alkyl radicals or alkoxy radicals having a total of 1 to

in which m' is an integer from the range 3 to 6;

R'₄ is hydrogen, C₁-C₁₈alkyl, C₅-C₁₂cycloalkyl or C₇-C₉phenylalkyl,

R's and R's independently of one another are hydrogen, C1-C8alkyl or C5-C6cycloalkyl,

 R'_7 and R'_8 , if q' is 2, independently of one another are $C_1\text{-}C_4$ alkyl or together are a

2,3-dehydropentamethylene radical; and

R'₇ and R'₈, if q' is 3, are methyl;

R'14 is hydrogen, C1-C9alkyl or cyclohexyl,

R'₁₅ is hydrogen or methyl and, if two or more radicals R'₁₄ and R'₁₅ are present, these radicals are identical or different,

X' and Y' are each a direct bond or oxygen,

Z' is a direct bond, methylene, -C(R'16)2- or sulfur, and

R'18 is C1-C8alkyl.

8. A composition according to claim 2, in which component (d) is tris(2,4-di-tert-butylphenyl) phosphite, tris(nonylphenyl) phosphite or a compound of the formula A, B, C, D, E, F, G, H, I, K or L

$$(CH_3)_3C$$
 $C(CH_3)_3$
 $C(CH_3)_3$
 $C(CH_3)_3$
 $C(CH_3)_3$
 $C(CH_3)_3$
 $C(CH_3)_3$

$$(CH_{3})_{3}C$$
 $C(CH_{3})_{3}$ $C(CH_{3})_{3$

$$H_3C$$
 $C(CH_3)_3$ $C(CH_3)_3$

(F)
$$H_{37}C_{18} = O - P_{O} = O - C_{18}H_{37}$$

$$H_{3}C = C - CH_{3}$$

$$H_{3}C = C - CH_{3}$$

$$H_{3}C = CH_{3}$$

$$CH_{3} = C - CH_{3}$$

$$CH_{3} = CH_{3}$$

$$CH_{3} = C - CH_{3}$$

$$CH_{3} = CH_{3}$$

$$CH_{$$

$$\begin{bmatrix} C(CH_3)_3 \\ C(CH_3)_3 \end{bmatrix} = \begin{bmatrix} C(CH_3)_3 \\ C(CH_3)_3 \end{bmatrix} =$$

$$C(CH_3)_3$$
 $C \longrightarrow CH_2CH_3$ $C(CH_3)_3$ CH_3 CH_2CH_3 CH_3

$$\begin{array}{c|c}
 & C_{\text{CH}_3} \\
 & C_{\text{CH}_3} \\
 & C_{\text{CH}_3}
\end{array}$$

$$\begin{array}{c|c}
 & C_{\text{CH}_3} \\
 & C_{\text{CH}_3}
\end{array}$$

$$\begin{array}{c|c}
 & C_{\text{CH}_3}
\end{array}$$

$$(CH_3)_3C$$
 $C(CH_3)_3$
 CH_2
 CH_2
 CH_3
 CH_3

- 9. A composition according to claim 1, comprising as component (a) a natural, semisynthetic or synthetic polymer.
- 10. A composition according to claim 1, comprising as component (a) a thermoplastic polymer.
- 11. A composition according to claim 1, comprising as component (a) a polyolefin.
- 12. A composition according to claim 1, comprising as component (a) a polyolefin fibre.
- 13. A composition according to claim 1, comprising as component (a) an essentially phenol-free polyolefin fibre.

- 14. A composition according to claim 1, comprising as component (a) polyethylene or polypropylene or a copolymer thereof with mono- and diolefins.
- 15. A composition according to claim 1, in which component (b) is present in an amount of from 0.0005 to 5 % based on the weight of component (a).
- 16. A composition according to claim 1, in which component (c) is present in an amount of from 0.01 to 10 % based on the weight of component (a).
- 17. A composition according to claim 2, in which component (d) is present in an amount of from 0.01 to 10 % based on the weight of component (a).
- 18. A composition according to claim 1, comprising in addition to components (a), (b) and (c) further additives in addition.
- 19. A stabilizer mixture comprising
 - i) at least one compound of the benzofuran-2-one type, and
 - ii) at least one compound from the group of the sterically hindered amines.
- 20. A stabilizer mixture according to claim 19, additionally comprising iii) at least one compound from the group of the organic phosphites or phosphonites.
- 21. A stabilizer mixture according to claim 19, in which the weight ratio of the components (i): (ii) is from 100: 1 to 0.01: 100.
- 22. A stabilizer mixture according to claim 20, in which the weight ratio of the components (i): (ii): (iii) is from 100: 1:0.01 to 0.01: 1:100.
- 23. A process for stabilizing an organic material against oxidative, thermal or light-induced degradation, which comprises incorporating in or applying to said material at least one each of components (b) and (c) according to claim 1.

- 24. The use of a mixture of components (b) and (c) according to claim 1 as stabilizers for organic materials against oxidative, thermal or light-induced degradation.
- 25. A composition according to claim 1 substantially as hereinbefore described with reference to any one of the foregoing Examples.
- 26. A stabilizer mixture according to claim 19 substantially as hereinbefore described with reference to any one of the foregoing Examples.

Application N: Claims searched:

GB 9713764.0

1 to 26

Examiner:

Miss M. M. Kelman

Date of search:

17 September 1997

Patents Act 1977 Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.O): C3K KCF KCZ, C3M MA

Int Cl (Ed.6): C08K 5/00, 5/15, 5/3435

ONLINE: CHABS, CLAIMS, JAPIO, RAPRA, WPI

Documents considered to be relevant:

Category	Identity of document and relevant passage		Relevant to claims
A,P	GB 2305180 A	CIBA-GEIGY	
A	GB 2266531 A	CIBA-GEIGY	
х	GB 2252325 A	CIBA-GEIGY see claims 1 to 14 and 17 to 33	1 to 4, 9 to 12,14 to 16 and 18 to 24, at least
A	US 4665112 A	GENERAL ELECTRIC	

Member of the same patent family

Document indicating lack of novelty or inventive step Document indicating lack of inventive step if combined with one or more other documents of same category.

Document indicating technological background and/or state of the art. Document published on or after the declared priority date but before the filing date of this invention.

Patent document published on or after, but with priority date earlier than, the filing date of this application.