CSSE 332 – Operating Systems: Virtual Memory Exercise

Name:	Grade:			
Н	w to convert a logical address to a physical address in a paging system			
In a <i>paging</i>	system, the process' space is divided into consecutive <i>pages</i> of fixed length:			
Pag	e 0, Page 1, Page 2, etc.			

As such, a *logical address* (also called a *virtual address*) consists of:

• A page number

Virtual address

• An offset within that page

D "	0.66
Page #	Offset

In a paging system, main memory is divided into consecutive *frames* of fixed length (same length as the pages):

Frame 0, Frame 1, Frame 2, etc.

Some of the logical pages are placed in the physical frames. For example, pages 3, 8 and 10 might be placed in frames 104, 87 and 378, respectively, with the other pages of the process in virtual memory, *i.e.*, on disk (or other form of secondary memory).

The goal of this exercise is to help you understand 4 approaches to converting a logical address (page number + offset) to a physical address (frame number + offset, or a *page fault* if the page is not in main memory):

- Simple indexing
- Multi-level indexing
- Hashing into an inverted page table
- Associative lookup in a cache called the translation lookaside buffer (TLB)

Real operating systems will often use a combination of these 4 approaches. In addition, there is an interaction with the main memory cache (see Figure 8.10 in your text).

Throughout this exercise, logical addresses and physical addresses are written as pairs of numbers (page number offset for logical addresses, frame number/offset for physical addresses). These are physically manifested as the high and low bits of a binary number.

1. (7 points) <u>Paging with simple indexing</u>: Connect the pieces of hardware below to show how each logical address is translated to a physical address or a page fault is detected.

		Mai	n memory		
Virtual address	Address	Present bit	Frame number		
Page # Offset	0		104		
	1		334		
	2		45		
	3		891		
	4		115		
	256	0	333		
	257	0	228		
(+)	258	0	610		
	259	0	200		
	260	1	324		
	261	1	900		
	262	1	1005	Physica	l address
	263	0	820	Frame #	Offset
Register	264	1	20		
Page table pointer	265	0	5		
	266	0	1005		
	267	0	220		
	268	1	4		
	269	1	303		
	270	1	689	Reg	gister
	271	0	446	Interrup	t indicator
	272	1	848		
	273	0	666		
	274	1	111		
	275	1	229		

Assumptions: Assume the value in the register for the page table pointer is 256.

An	swe	er the	ronowing questions b	based on the above (completed) diagram.
Logical	2	105	causes a page fault? Y	Yes or No (circle one). If no, converts to physical:
Logical	5	640	causes a page fault? Y	Yes or No (circle one). If no, converts to physical:
Logical	12	320	causes a page fault?	Yes or No (circle one). If no, converts to physical:
Consider a 32-bit addressing scheme with 18 bits for the page number and 14 for the offset. How many entries in the page table? What is the size of each page?				

2. (7 points) <u>Multi-level indexing</u>: Connect the pieces of hardware below to show how each logical address is translated to a physical address or a page fault is detected.

	Main memory		in memory	
Virtual address	Address	Present bit	Pointer to page table block	
Page # Offset	0	1	104	
	1	1	334	
	2	0	45	
	3	1	1	
	4 1 115			
	5	1	713	
	6	1	2	(+)
	7	0	228	·
(+)	•••			
		Present bit	Frame #	
	256	1	900	
	257	1	1005	Physical address
	258	0	820	
Register	259	1	20	Frame # Offset
	260	0	5	
Root page table ptr	261	0	1005	
	262	0	220	
	•••			
	512	1	303	
	513	1	689	Register
Assumptions: Assume the value in	514	0	446	
the register for the root page table	515	1	848	Interrupt indicator
pointer is 0. Suppose that the page # is divided into 4 bits + 8 bits for	516	0	666	
a two-level page table. The page number	517	1	111	
for this exercise is written in binary.	518	1	229	
Also, assume that each page (or page table block) has 256 bytes.				

Answer the following questions based on the above (completed) diagram.

_	0010 00000010 105 neither, converts to phys		First lookup or Second lookup or Neither (circle
_	0110 00000010 240 neither, converts to phys	1 0	First lookup or Second lookup or Neither (circle
_	0011 00000011 120 neither, converts to phys		First lookup or Second lookup or Neither (circle

Consider a 32-bit addressing scheme with 6 + 12 bits for the page number and 14 for the offset. Assume			
a page table entry is 4 bytes. Assume byte-addressing:			
# of entries in the root page table?Total entries in the page table? Page size in bytes?			
What is the primary advantage of using layers in an indexing scheme? Primary disadvantage?			

3. (7 points) <u>Hashing into an inverted page table</u>: Connect the pieces of hardware below to show how each logical address is translated to a physical address or a page fault is detected. In this example, the hash function generates the **index to the frame table i.e. the frame number.**

		Address	Main memory			
Virtu	al address		Page #/Frame #	Present	Relative	
Page #	Offset			bit	Pointer	
ruge "	Office	0		T		
		•••	•••			
		256	33 / 0	0	0	
		257	81 / 1	1	0	
	Physical add	ress 258	807 / 2	1	0	
Fr	ame # Off	250	19 / 3	1	0	
11		260	41 / 4	1	-3	
	Register	261	26 / 5	0	0	
Inverte	d page table pointer	262	803 / 6	1	-3	
		263	404 / 7	0	0	Register
		264				Interrupt indicator
	ash etion Hash table o	entry				

<u>Assumptions</u>: Assume the hashing function is h(x) = 3 + (x % 8) and the inverted page table pointer value is 256.

Answer the following questions based on the above (completed) diagram.

Logical	81	105	causes a page fault? Yes or No (circle one). If no, converts to physical:1, 105_
Logical	41	640	causes a page fault? Yes or No (circle one). If no, converts to physical:
Logical	25	320	causes a page fault? Yes or No (circle one). If no, converts to physical:
Logical	28	204	causes a page fault? Yes or No (circle one). If no, converts to physical:
Logical	19	880	causes a page fault? Yes or No (circle one). If no, converts to physical:
In the ab	ove	table	e, what is the longest chain? Shortest chain?

4. (7 points) Associative lookup in a cache called the translation lookaside buffer(TLB):

Connect the pieces of hardware below to show how each logical address is translated to a physical address or a page fault is detected.

	Address	Main memory	
Virtual address		Present bit	Frame #
Page # Offset	0	1	104
Tuge II Oliset	1	1	334
	2	0	45
	3	1	891
	4	1	115
	256	0	333
(+)	257	0	228
	258	0	610
	259	0	200
	260	1	324
	261	1	900
	262	1	1005
Register	263	0	820
Page table pointer	264	1	20
	265	0	5
	266	0	1005
	267	0	220
	268	1	4
	269	1	303
Assumptions: Assume the	270	1	689
value in the register for the page	271	0	446
table pointer is 256.	272	1	848
Answer the following questions	273	0	666
based on the above (completed)	274	1	111
diagram.	275	1	229

Translation lookaside buffer (TLB)				
16	848			
53	100			
4	324			
80	226			
5	900			

Physical address

Frame #	Offset
---------	--------

Register

Interrupt indicator

Logical **4 105** is in TLB? Yes or No? Causes a page fault? Yes or No (circle one). If no, converts to physical: ______

Logical **18 640** is in TLB? Yes or No? Causes a page fault? Yes or No (circle one). If no, converts to physical: ______

Logical **16 105** is in TLB? Yes or No? Causes a page fault? Yes or No (circle one). If no, converts to physical: ______

If there are n items in the TLB, is the TLB lookup time O(n) or O(1)? How much silicon is needed? What is the primary advantage of this scheme?

5. (8 points) Summary (after doing the exercises on the following pages):

	Advantages	Disadvantages
Indexing		
Indexing with layers		
Hashing into an inverted page table		
Associative lookup in a cache called the translation lookaside buffer (TLB)		