Проводится алкилирование изобутана изобутиленом в 2,2,4-триметилпентан при молярном соотношении парафин:олефин 10:1, давлении 4 МПа, температуре 600 К и 400 К.

Рассчитать:

- 1. Тепловой эффект реакции по табличным значениям энтальпий и рассчитанных с помощью эмпирических методов
- 2. Равновесный состав реакционной смеси при заданной температуре и давлении
- 3. Равновесный состав в адиабатических условиях и температуру в конце реакции при заданных исходных параметрах

Считать реакционную систему идеальной, термодинамические параметры не зависящими от давления.

1. Расчет теплового эффекта реакции

Тепловой эффект химической реакции рассчитывается по формуле:

$$\Delta_r H = \sum v_{Ri} \Delta_f H_{Ri,T} - \sum v_{Ai} \Delta_f H_{Ai,T}, \tag{1}$$

где v_{Bi} , v_{Ai} – стехиометрические коэффициенты продуктов и исходных веществ;

 $\Delta_f H_{Bi,T}$, $\Delta_f H_{Ai,T}$ - энтальпии образования продуктов и исходных веществ, кДж/моль.

Энтальпии образования веществ, участвующих в реакции алкилирования, при температурах в интервале 300К-900К представлены в таблице 1. Подставляя их в формулу 1 с учетом стехиометрических коэффициентов веществ, получим тепловой эффект реакции.

Таблица 1. Энтальпии образования углеводородов, Дж [1] и тепловой эффект реакции алкилирования

	Энтальпия образования, кДж/моль						
углеводород	2001/	4001/	F001/	6001/	7001/	9001/	0001/
	300K	400K	500K	600K	700K	800K	900K
изобутан	-134.7	-142.2	-148.5	-153.4	-157.3	-160.3	-162.3
изобутилен	-17.03	-22.72	-27.61	-31.71	-35.02	-37.66	-39.62
2,2,4-	-224.4	-237.3	-247.9	-256.3	-262.7	-267.4	-270.5
триметилпентан	224.4	237.3	247.5	250.5	202.7	207.4	270.5
Тепловой							
эффект,							
кДж/(моль	-72.67	-72.38	-71.79	-71.19	-70.38	-69.44	-68.58
ключевого							
компонента)							

Рассчитаем энтальпии образования компонентов смеси при температуре 298 К и давлении 0.1 МПа по эмпирическому методу Бенсона. В таблице 2 представлены энтальпии образования для составляющих связей, а также расчет энтальпии образования каждого вещества реакционной смеси.

Таблица 2. Расчет энтальпии образования веществ по методу Бенсона при 298 К и 0.1 МПа

Carac	ΔHf,	изобутан			изобутилен		2,2,4- триметилпентан		
Связь	кДж/моль	n	ΔHf*n, кДж/моль	n	ΔHf*n, кДж/моль	n	ΔHf*n, кДж/моль		
c-h	-16.02	10	-160.2	6	-96.12	20	-320.4		
с-с	11.42	3	34.26	0	0	7	79.94		
cd-c	28.03	0	0	2	56.06	0	0		
cd-h	13.39	0	0	2	26.78	0	0		
ΔHf суммарно по связям, кДж/моль			-125.94		-12.98		-240.46		

Тепловой эффект реакции по энтальпиям образования веществ, найденным по методу Бенсона:

$$\begin{split} \Delta_r H^{\mathrm{E}} &= \sum v_{Bi} \Delta_f H_{Bi,T} - \sum v_{Ai} \Delta_f H_{Ai,T} \\ &= 1 \cdot (-240.46) - 1 \cdot (-125.94) - 1 \cdot (-12.98) = -101.54 \text{ кДж/моль} \end{split}$$

Таблица 3. Расчет энтальпии образования веществ по методу Андерсона, Байера и Ватсона

		ΔHf <i>,</i>		Изобутан	Из	зобутилен	три	2,2,4- метилпентан
		кДж/моль	Дж/моль n ДНf, кДж/моль		n	ΔHf, кДж/моль	n	ΔHf, кДж/моль
			Осно	овное вещество	0			
С	CH4	-74.9	1	-74.9	1	-74.9	1	-74.9
	Попр	авки на заме	щени	е атомов водо	рода	группами -С	Н3	
		ſ	Терв и	ічное замещен	ие			
Осн. гру	⁄ппа - CH4	-10.47	1	-10.47	1	-10.47	1	
Α	В			Вторично	ое зал	мещение		
1	1	-19.89	1	-19.89	1	-19.89	1	-19.89
1	2	-20.6	0	0	0	0	2	-41.2
1	3	-18.51	0	0	0	0	0	0
1	4	-20.93	0	0	0	0	0	0
2	1	-26.42	1	-26.42	1	-26.42	0	0
2	2	-26.5	0	0	0	0	2	-53
2	3	-21.98	0	0	0	0	0	0
2	4	-16.04	0	0	0	0	0	0
3	1	-34.42	0	0	0	0	0	0
3	2	-29.31	0	0	0	0	2	-58.62
3	3	-21.73	0	0	0	0	0	0
3	4	-20.68	0	0	0	0	0	0
Поправки на зам			лещен	ние одинарных	связ	ей кратными	1	
A=B								
1	.=3	118.19	0	0	1	118.19	0	0
ΔHf суммарная, кДж/моль		-131.68			-13.49		-247.61	

Проведем расчет энтальпий образования веществ по методу Андерсона, Байера и Ватсона. В качестве основного вещества для каждого компонента, участвующего в нашей реакции, выберем метан. Определение энтальпии образования ведется с учетом поправок на заместители и кратные связи. Данные по энтальпии образования основного вещества и поправках, а также расчет энтальпий образования веществ приведены в таблице 3.

Тепловой эффект реакции по энтальпиям образования веществ, найденным по методу Андерсона, Байера и Ватсона при 298 К и 0.1 МПа таким образом:

$$\Delta_r H^{\mathrm{ABB}} = \sum v_{Bi} \Delta_f H_{Bi,T} - \sum v_{Ai} \Delta_f H_{Ai,T} =$$

$$= 1 \cdot (-247.61) - 1 \cdot (-131.19) - 1 \cdot (-13.49) = 102.44 \; кДж/моль$$

2. Расчет равновесного состава реакционной смеси при температурах 600К и 400К, давлении 4 МПа

Для нахождения равновесного состава реакционной смеси необходимо получить уравнения для константы равновесия, для чего, в свою очередь, необходимо найти свободную энергию Гиббса.

Энергия Гиббса реакции алкилирования наодится по уравнению (2).

$$\Delta_r G = \Delta_r H - T \Delta_r S,\tag{2}$$

где T – температура, K;

 $\Delta_r S$ - изменение энтропии в ходе реакции (рассчитывается аналогично тепловому эффекту), Дж/(моль*К).

Термодинамические параметры компонентов и энергия Гиббса для реакции приведены в таблице 4.

Таблица 4. Термодинамические параметры компонентов реакции алкилирования и энергия Гиббса

Попомото	Температура							
Параметр	300 K	400 K	500 K	600 K	700 K	800 K	900 K	
		И	зобутан					
Н, Дж/моль	-134700	-142200	-148500	-153400	-157300	-160300	-162300	
S, Дж/(моль*K)	295.26	327.06	357.52	386.6	414.17	440.24	464.93	
		из	обутилен					
Н, Дж/моль	-17030	-22720	-27610	-31710	-35020	-37660	-39620	
S, Дж/(моль*K)	294.18	322.92	349.87	375.26	399.15	421.66	442.96	
2,2,4-триметилпентан								
Н, Дж/моль	-224400	-237300	-247900	-256300	-262700	-267400	-270500	
S, Дж/(моль*K)	424.38	485.97	544.59	600.24	652.91	702.66	749.73	
G, Дж/(моль ключевого компонента)	-23152	-6776	9610	25782	41907	57952	73764	

Константа равновесия:

$$Kn = \exp\left(\frac{-\Delta_r G}{RT}\right) \cdot \left(\frac{P}{P^\circ}\right)^{-\Delta v},$$
 (3)

где Δv — сумма стехиометрических показателей уравнения химической реакции (для продуктов с положительным знаком, для исходных веществ — с отрицательным знаком)

Составив уравнение:

$$\frac{\prod_{i} \left(\delta_{i} - \frac{v_{i}}{v_{2}} \cdot x \right)^{v_{i}}}{\left(\sum \delta - \frac{\Delta v}{v_{2}} \cdot x \right)^{\Delta v}} = Kn$$
(4)

где δ – матрица исходных количеств компонентов;

 v_2 – стехиометрический коэффициент при ключевом компоненте (изобутилене).

Рассчитаем конверсию х изобутилена при 400 К и 600 К:

$$x(600K)=0.171$$

Состав равновесной смеси при температуре 400 К и 600 К и давлении 4 МПа приведен в таблице 5.

Таблица 5. Состав равновесной смеси

	мольная доля						
t, K	изобутан	2,2,4-триметилпентан					
400	0.9000	0.0004	0.0996				
600	0.9077	0.0766	0.0158				

Проведем также расчет конверсии и состава смеси для реальных газов:

Таблица 6. Расчет коэффициентов фугитивности газов [2]

	изобутан		изо	бутен	2,2,4-триметилпентан		
	Ткр, К	Ркр, Мпа	Ткр, К	Ркр, Мпа	Ткр, К	Ркр, Мпа	
	408	3.6	417.8	3.95	543.6	2.53	
	τ	π	τ	π	τ	π	
400 К, 4 МПа	0.98	1.111	0.957	1.013	0.736	1.581	
	γ=0.61		γ =0.60		γ =0.28		
	τ	π	τ	π	τ	π	
600 K, 4МПа	1.471	1.111	1.436	1.013	1.104	1.581	
	γ =0.90		γ :	=0.92	γ =0.60		

Составив уравнение:

$$\frac{\prod_{i} \left(\delta_{i} - \frac{v_{i}}{v_{2}} \cdot x \right)^{v_{i}}}{\left(\sum \delta - \frac{\Delta v}{v_{2}} \cdot x \right)^{\Delta v}} = \frac{Kn}{K\gamma}$$
(5)

где $K\gamma = \prod_i (\gamma_i)^{\nu_i}$; $K\gamma_{400\ K} = 0.765$, $K\gamma_{600\ K} = 0.725$.

Рассчитаем конверсию х изобутилена при 400 К и 600 К:

Состав равновесной при температуре 400 К и 600 К и давлении 4 МПа для реальных газов приведен в таблице 7.

Таблица 7. Состав равновесной смеси для реальных газов

	мольная доля						
t, K	изобутан	изобутилен	2,2,4-триметилпентан				
400	0.9000	0.0003	0.0997				
600	0.9072	0.0722	0.0205				

3. Расчет равновесного состава в адиабатических условиях и температуры в конце реакции при заданных исходных параметрах

Тепловой баланс для реактора идеального смешения для 1 моля ключевого компонента можно записать в следующем виде:

$$Q^{\rm BX} + Q^{\rm Xp} = Q^{\rm BbIX} \tag{6}$$

или

$$\overline{Cp^{\text{BX}}} \cdot T^{\text{BX}} - \Delta_r H(T^{\text{BX}}) \cdot \chi_{\text{KJIDY,KOMIL}}(T^{\text{BMX}}) = \overline{Cp^{\text{BMX}}} \cdot T^{\text{BMX}}, \tag{7}$$

где $\overline{Cp^{\text{вх}}}$, $\overline{Cp^{\text{вых}}}$ - средние теплоемкости начальной и конечной смесей при начальной и конечной температурах, Дж/(моль*К);

 $\Delta_r H(T^{\rm BX})$ – тепловой эффект реакции при начальной температуре, Дж/моль;

 $x_{\text{ключ-комп.}}(T^{\text{вых}})$ – степень превращения ключевого компонента при конечной температуре.

Результаты расчета конечной температуры и в адиабатическом режиме и состава равновесной смеси представлены в таблице 8.

Таблица 8. Конечная температура и состав равновесной смеси при проведении алкилирования в адиабатических условиях

I	T ny V	T DU IV V	ΛΤ <i>V</i>		мольна	я доля
	Т вх, К	Т вых, К	ΔТ, К	изобутан	изобутилен	2,2,4-триметилпентан
	400	428.22	28.22	0.9002	0.0015	0.0983
I	600	603.43	3.43	0.9078	0.0775	0.0147

Использованная литература

- 1. Потехин, В.М. Основы теории химических процессов технологии органических веществ и нефтепереработки: Учебник для вузов / В.М. Потехин, В.В. Потехин, СПб: ХИМИЗДАТ, $2005.-912\ c.$
- 2. Краткий справочник физико-химических величин / Под ред. А. А. Равделя, А. М. Пономаревой, Сост. Н. М. Барон и др. 9-е изд. СПб. : Спец. Лит., 1999. 231 с.