11.614 Das Runge-Kutta-Verfahren

Ist die Differentialgleichung

$$y' = f(x, y)$$

mit der Anfangsbedingung P_0 (x_0 , y_0) zu integrieren, so berechnet man der Reihe nach die Werte

Das Verfahren läuft zweckmäßig in folgender Tabelle ab:

x_{λ}	y_{λ}	k_{λ}
x_0	y_0	$k_I = h \cdot f(x_0, y_0)$
$x_0 + \frac{h}{2}$	$y_0 + \frac{1}{2} k_I$	k_{II}
$x_0 + \frac{h}{2}$	$y_0 + \frac{1}{2} k_{II}$	k_{III}
$x_0 + h$	$y_0 + k_{III}$	k_{IV}
$x_1 = x_0 + h$	$y_1 = y_0 + k$	

Der Fehler des Runge-Kutta-Verfahrens ist von der Größenordnung h^b , nimmt also mit Verkleinerung der Schrittweite h stark ab. Eine genaue, einfach zu handhabende Fehlerabschätzung ist nicht angebbar.

Eine ständige Kontrolle der erreichten Genauigkeit, und damit eine Überprüfung der notwendigen Schrittweite h erreicht man, wenn neben der sog. Feinrechnung mit der Schrittweite h noch eine Grobrechnung mit der Schrittweite 2h geführt wird. Hierbei darf aber 2h nicht zu groß werden ($\leq 0.3 \div 0.5$). Dann gilt näherungsweise für die Abweichung δy der erhaltenen y-Weite

$$\delta y \approx \frac{1}{15} [y_{(h)} - y_{(2h)}]$$

Diese Abschätzung kann auch verwendet werden zur Ermittlung des voraussichtlichen Fehlers, der sich bei Anwendung der Schrittweite $\frac{h}{2}$ ergeben würde. Sie hat somit den Charakter eines Korrekturgliedes.