CONTROLE N°1: 24 SEPTEMBRE 2015

Documents et appareils électroniques non autorisés. Durée : 45 minutes.

Exercice 1. (6pts)

Soit a > 0, et soit f une fonction définie, continue et positive sur l'intervalle $[a, +\infty[$.

- 1.1
- 1.2
- Pourquoi peut-on dire que f est localement intégrable sur $[a,+\infty[$? Pourquoi dit-on que $\int_a^{+\infty} f(x)\,dx$ est une intégrale impropre ou généralisée ? Montrer que : s'il existe un réel $\alpha \leq 1$ tel que $x^{\alpha}f(x)$ tende vers une limite l non nulle 1.3 quand x tend vers $+\infty$ alors f n'est pas intégrable sur $[a, +\infty[$.
- 1.4 **Application:** Etudier la nature de l'intégrale généralisée $I_1=\int_1^{+\infty} \frac{e^{\pi x}(2+\sin x)}{\sqrt{x}} \ dx.$

Exercice 2. (8 pts)

Etudier la nature de l'intégrale : $I_2 = \int_0^{+\infty} \frac{t^3}{1+t^4} \sin t \ dt$.

Exercice 3. (6 pts)

Soit I = [0,1] et $E = \mathcal{C}(I, \mathbb{K})$, l'espace vectoriel des fonctions continues sur I et à valeurs dans \mathbb{K} (\mathbb{K} $= \mathbb{R} \text{ ou } \mathbb{C}$).

Soit \mathcal{N} l'application définie sur E par : $\mathcal{N}(f) = \sup_{t \in I} |f(t)|$.

Montrer que \mathcal{N} est une norme sur E.