Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 7

Consigna

Sea (a_n) una sucesión tal que sus subsucesiones a_{2n} , a_{2n+1} y a_{3n} convergen. Probar que (a_n) es convergente.

Resolución

Por hipótesis tenemos que:

- $a_{2n} \rightarrow L_1$
- $a_{2n+1} \rightarrow L_2$
- $a_{3n} \rightarrow L_3$

Intentaremos afirmar que las tres subsucesiones convergen al mismo punto para poder afirmar que a_n es convergente.

Primero, observemos que a_{6n} es a la vez una subsucesión de a_{2n} y de a_{3n} , por lo que:

- $a_{6n} \rightarrow L_1$
- $a_{6n} \rightarrow L_3$

Y por lo tanto $L_1 = L_3$.

En segundo lugar, observemos que a_{6n+3} es a la vez una subsucesión de a_{3n} y de a_{2n+1} , por lo que:

- $a_{6n+3} \rightarrow L_3$
- $a_{6n+3} \rightarrow L_2$

Y por lo tanto $L_2 = L_3$.

Esto nos deja con que:

- $L_1 = L_2 = L_3$, y por lo tanto:
- $a_{2n} \to L$
- $a_{2n+1} \to L$

Podemos establecer la definición de límite para las dos subsucesiones:

- $\forall \varepsilon > 0, \exists k_0 \text{ tal que } \forall k > k_0 : |a_{2k} L| < \varepsilon$
- $\forall \varepsilon > 0, \exists k_1 \text{ tal que } \forall k > k_1 : |a_{2k+1} L| < \varepsilon$

Por lo tanto, tomamos $n_0:=\max\{k_0,k_1\},$ para cualquier $n\in\mathbb{N},$ tenemos que:

- $n = 2k \text{ con } k \in \mathbb{N}$, o
- $n = 2k + 1 \operatorname{con} k \in \mathbb{N}$

Entonces en particular $\forall \varepsilon>0, \forall n>n_0: |a_n-L|<\varepsilon$

Finalizando, esto significa que:

$$\bullet \quad a_n \to L$$