

01

CONDOR Observatory

Technology, materials, detection, etc.

03Machine Learning

Angular reconstruction and particles classification.

02

CORSIKA

Extensive air showers simulations and particles spatio-temporal distributions.

04

Current advances

On-site testing, data acquisition boards, simulations, predictions.

01

CONDOR: The world's highestaltitude observatory for cosmic and gamma rays.

CONDOR (compact Network of Detectors with Orbital Range)

Cosmic and Gamma Rays

This rays interact with the atmosphere producing particles showers.

How do we detect Cosmic Rays?

CONDOR Objectives

Energy (eV/particle)

CONDOR will be a bridge between ground-based measurements and those made with satellites and balloons, opening a new window to study the universe and our sun.

The scientific program of CONDOR includes:

- Gamma rays in the GeV-TeV scale, covering transient phenomena such as gamma-ray bursts.
- Solar astronomy with multiple probes.
- · Beyond the Standard Model.

O2 CORSIKA: A software for particles showers simulations

Extensive Air Showers (EAS) simulations

Detailed EAS simulations, with information on energy, spatial and temporal distribution of particles, etc. https://www.iap.kit.edu/corsika.

Gamma Ray (50 GeV Photon)

Cosmic Ray (100 GeV Proton)

CORSIKA Reference System

Some CORSIKA Particles Interactions

Bremmstrahlung

Pair Production

Magnetic Deflection

Compton Scattering

EAS Data

O° Zenith Angle 1E3 GeV Primary PhotonParticles Spatial Distributions

Limited at CONDOR's detector array (113 x 122 squared meters area)

Particle spatial density Particle "hits" per squared meter, time integrated

10⁵ [GeV] Proton CR Spatio-Temporal Distributions

Angular Reconstruction – Angle Fit

True angles vs Reconstructed angles for E = 300 GeV, Photon as CR

$$\theta = \arccos\left(\frac{\{\vec{n}\cdot\hat{z}\}}{|\vec{n}||\hat{z}|}\right)$$

Energy (GeV)	Cosmic Ray Particle	1 error (°)
20	Photon	6.39
30	Photon	5.73
50	Photon	3.56
80	Photon	3.29
150	Photon	3.15
200	Photon	2.39
300	Photon	2.38
500	Photon	2.10
800	Photon	1.04

Particle Classification

High-statistics MonteCarlo algorithm tagger for classifying unknown showers at an energy of **300 GeV**.

Gamma Ray

Cosmic Ray

Weights

Machine Learning Angular Reconstruction.

Large amount of Particle Data

Complex data due to volume, complex characteristics

Complex algorithms are needed

Machine Learning

Long Short-Term Memory (LSTM) Model

- Type of recurrent neural network (RNN) specifically designed to handle **sequential data** and learn **temporal** or **spatial** *patterns* within those sequences.
- Each sequence represents the behavior of particle showers over a specific **time window**.

Hyperparameter	Description	Values	input_1	Dense
time_steps	Number of time steps in each sequence	100		kernel (32×16)
$batch_size$	Batch size used during training	32		bias 〈16〉
epochs	Number of training epochs	100	LSTM kernel (3×256)	Activation
$LSTM_units$	Number of units in the LSTM layers	[64, 32]	recurrent_kernel (64×256) bias (256)	
Dense_units	Number of neurons in dense layers	[16]	Activation	Dense
Activation	Activation functions used in the layers	ReLU, Linear	LSTM	kernel (16×1) bias (1)
Loss	Loss function	Mean Squared Error	kernel (64×128) recurrent kernel (32×128)	Dias (1)
Optimizer	Optimizer used for training	Adam	bias (128) Activation	dense_1

Angular Reconstruction – ML (Photon – Gamma Ray)

20 [GeV]

30 [GeV]

50 [GeV]

Angular Reconstruction – ML (Proton – Cosmic Ray)

130 [GeV]

150 [GeV]

200 [GeV]

Particle Density by angle per energy

Gamma Ray – Primary Photon

Energy range: 10 - 800 [GeV]

Density range: $0.001 - 0.14 \left[\frac{\text{particles}}{\text{m}^2} \right]$

Cosmic Ray - Primary Proton

Energy range: 10 - 800 [GeV]

Density range: $0.0005 - 0.025 \left[\frac{\text{particles}}{\text{m}^2} \right]$

Where are we now?

- Producing data acquisition board
- Synchronization studies
- More models, more predictions.

Where are we now?

- On-site testing (Cerro Toco, Atacama).
- Building module prototypes

Thanks! Questions?

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

All the authors acknowledge the financial support from ANID PIA/APOYO AFB230003 and Proyectos Internos de Investigación Multidisciplinarios USM 2024 PI_M_24_02.