13

통계적추론

가설검정 2

한국방송통신대학교 통계 데이터괴학과 이 긍 희 교수

학습내용

- 가능도비 검정을 이해한다.
- 🕖 유의확률을 이용한 검정을 이해한다.
- ❸ 적합도 검정을 이해한다.
- 4 독립성 검정을 이해한다.

01

가능도비 검정

최강력 검정

- 최강력 검정
 - 단순가설 $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ 에 대한 최강력 검정
 - 두 결합확률밀도함수의 비에 의하여 결정
 - 복합가설 : 최강력검정을 사용 제약

- 가능도비 검정(Likelihood Ratio Test)
 - 가설 $H_0: \theta \in \Omega_0$ vs $H_1: \theta \in \Omega_1$

• 최대가능도비 :
$$\lambda(X) = \frac{\sup\limits_{\theta \in \Omega_1} L(\theta|X)}{\sup\limits_{\theta \in \Omega_0} L(\theta|X)} = \frac{L(\widehat{\theta}_1)}{L(\widehat{\theta}_0)}$$
• 거저번 $S \cdot \lambda(Y) \setminus C \rightarrow H$ 기가

• 검정법 $\delta: \lambda(X) > C \Rightarrow H_0$ 기각

- 가능도비 검정(Likelihood Ratio Test)
 - 가설 $H_0: \theta \in \Omega_0$ vs $H_1: \theta \in \Omega_1$

• 최대가능도비 :
$$\lambda^*(X) = \frac{\sup\limits_{\theta \in \Omega} L(\theta|X)}{\sup\limits_{\theta \in \Omega_0} L(\theta|X)}$$

• 검정법 $\delta: \lambda^*(X) > C' \Rightarrow H_0$ 기각

예) $X_1, \dots, X_n \sim N(\theta, 1)$ 확률표본. 가능도비 검정은?

예) $X_1, \dots, X_n \sim N(\theta, 1)$ 확률표본. 가능도비 검정은?

예) $X_1, \dots, X_n \sim N(\theta, 1)$ 확률표본. 가능도비 검정은?

예) $X_1, \dots, X_n \sim N(\theta, 1)$ 확률표본. 가능도비 검정은?

$$H_0: \theta = \theta_0 \quad vs \quad H_1: \theta \neq \theta_0$$

$$H_0: \theta = \theta_0 \quad vs \quad H_1: \theta \neq \theta_0$$

$$H_0: \theta = \theta_0 \quad vs \quad H_1: \theta \neq \theta_0$$

$$H_0: \theta = \theta_0 \quad vs \quad H_1: \theta \neq \theta_0$$

가능도비 검정통계량

- 검정통계량
 - 가능도비 검정통계량은 충분통계량에 의존

· 가능도비 검정통계량

- 검정통계량
 - 유의수준 α 가능도비 검정의 정확한 기각역
 - 귀무가설이 참일 때 가능도비 $\frac{f(X|\widehat{ heta}_0)}{f(X|\widehat{ heta})}$ 의 확률분포를 알아야함

· 가능도비 검정통계량

- 검정통계량
 - 귀무가설이 참일 때 로그변환 가능도비 근사적으로 카이제곱 (χ^2) 분포 따름

$$-2\log\frac{f(X|\hat{\theta}_0)}{f(X|\hat{\theta})} \sim \chi^2(df)$$

02

유의성 검정

네이만-피어슨의 검정

- 네이만-피어슨의 검정
 - 귀무가설, 대립가설에 대하여 제1종 오류를 범할 확률과
 제2종 오류를 범할 확률에 기초한 방법
 - 주어진 제1종 오류를 범할 확률 α 에 대하여 대립가설을 고려하여 최적의 기각역을 구하여 검정

네이만-피어슨의 검정

● 정규분포 모평균의 가설검정

- 유의성 검정
 - ullet 주어진 귀무가설에 대한 p-값에 바탕으로 한 검정
 - ▶ p –값 : 귀무가설 하에서 주어진 관측값보다 더 극단적인 값을 얻을 확률 → 귀무가설에 대한 반대 증거

유의성 검정

● 정규분포 모평균의 가설검정

2 유의성 검정

예 $X_1, \dots, X_n \sim N(\theta, 25)$, 전년 통계학 점수 평균 70점을 하 9명 조사 결과, 평균 75점. 올해 평균이 전년보다을 갖는지 유의수준 5%에서 검정.

2 유의성 검정

예 $X_1, \dots, X_n \sim N(\theta, 25)$, 전년 통계학 점수 평균 70점을 하 9명 조사 결과, 평균 75점. 올해 평균이 전년보다을 갖는지 유의수준 5%에서 검정.

03

카이제곱 검정

- 분할표
 - m개 범주 빈도수 : $N_1, N_2, ..., N_m$

	범주1	범주2	 범주m	합계
X	N_1	N_2	 N_m	n
확률	p_1	p_2	 p_m	1

■ 빈도수의 분포 : 다항분포

$$f(n_1, \dots, n_m | p_1, \dots, p_m) = \frac{n!}{n_1! \dots n_m!} p_1^{n_1} \dots p_m^{n_m}$$

- 귀무가설과 대립가설
 - $\bullet \ H_0: (p_1, \cdots, p_m) \in \Omega_0 \ vs \ H_1: (p_1, \cdots, p_m) \in \Omega_1$
 - $H_0: p_i = p_{i0} \ vs \ H_1: not H_0$
 - 모수 전체 영역 : p_i 의 최대가능도추정량 $\hat{p}_i = \frac{N_i}{n}$

최대가능도비

• 최대가능도비 :
$$\frac{f(n_1,\cdots,n_m|\hat{p}_{10},\cdots,\hat{p}_{m0})}{f(n_1,\cdots,n_m|\hat{p}_1,\cdots,\hat{p}_m)} = \left(\frac{\hat{p}_{10}}{\hat{p}_1}\right)^{n_1}\cdots\left(\frac{\hat{p}_{m0}}{\hat{p}_m}\right)^{n_m}$$

•
$$-2\log(\Delta \Pi \Gamma) = 2\sum_{i=1}^{m} n_i \log\left(\frac{n_i}{n\hat{p}_{i0}}\right)$$

- 분포와 기각역
 - 유의수준 α 가능도비검정의 기각역 :

$$2\sum_{i=1}^{m} N_i \log \left(\frac{N_i}{n\hat{p}_{i0}}\right) > \chi_{\alpha}^2(d.f.)$$

- 테일러 급수를 이용한 근사
 - 테일러 급수를 이용한 근사 : $\sum_{i=1}^{m} \frac{(N_i n\hat{p}_{io})^2}{n\hat{p}_{io}} > \chi_{\alpha}^2(d.f.)$
 - *N_i*: *i* 범주 빈도수
 - $-n\hat{p}_{i0}:$ 귀무가설이 참일 때 기대빈도수

- 테일러 급수를 이용한 근사
 - 테일러 급수를 이용한 근사 : $\sum_{i=1}^{m} \frac{(N_i n\hat{p}_{io})^2}{n\hat{p}_{io}} > \chi_{\alpha}^2(d.f.)$
 - *N_i*: *i* 범주 빈도수
 - $-n\hat{p}_{i0}:$ 귀무가설이 참일 때 기대빈도수

- 피어슨의 적합도 검정
 - H_0 : $p_i = p_{i0} \ vs \ H_1$: not H_0
 - $-N_i: i$ 범주 빈도수, $np_{i0}:$ 기대빈도수
 - 검정통계량 $\chi^2 = \sum_{i=1}^m \frac{(N_i np_{i0})^2}{np_{i0}} \sim \chi^2(m-1)$,
 - $np_{i0} \ge 5$ 인 경우 사용 가능
 - 검정법 : $\chi^2 > C$ 면 H_0 기각, $P(\chi^2 > C|H_0) = \alpha$

예 A 상품을 100개를 추출하여 조사한 결과 불량품이 17개.불량률이 10%인지 여부를 5% 유의수준에서 검정하시오.

예 A 상품을 100개를 추출하여 조사한 결과 불량품이 17개.불량률이 10%인지 여부를 5% 유의수준에서 검정하시오.

독립성 검정

● 분할표

			합계			
		범주 1	범주 2	•••	범주 c	답게
X	범주 1	N_{11}	N_{12}	•••	N_{1c}	N_{1+}
	범주 2	N ₂₁	N_{22}	•••	N_{2c}	N_{2+}
	•	•	•	•	•	•
	범주 r	N_{r1}	N_{r2}	•••	N_{rc}	N_{r+}
합계		$N_{\pm 1}$	N_{+2}	•••	N_{+c}	n

독립성 검정

- 분할표
 - $r \times c$ 분할표, 각 셀의 확률 p_{ij}

-
$$p_{i+} = \sum_{j} p_{ij}$$
 , $p_{+j} = \sum_{i} p_{ij}$,

-
$$N_{i+} = \sum_{j} N_{ij}$$
 , $N_{+j} = \sum_{i} N_{ij}$, $n = \sum_{i} \sum_{j} N_{ij}$

독립성 검정

- 독립성 검정
 - 귀무가설 : 행변수와 열변수가 서로 독립

$$\Leftrightarrow H_0: p_{ij} = p_{i+} \cdot p_{+j}, H_1: \sim H_0$$

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{\left(N_{ij} - \hat{B}_{ij}\right)^2}{\hat{B}_{ij}} \sim \chi^2 \left((r-1)(c-1)\right),$$

$$\hat{B}_{ij} = n \cdot \hat{p}_{i+} \cdot \hat{p}_{+j} = \frac{N_{i+} \cdot N_{+j}}{n}$$

•
$$\chi^2 > \chi_{\alpha}^2 ((r-1)(c-1))$$
이면 H_0 기각

정리하기

- □ 가능도비 검정은 최대가능도 추정량을 이용한 검정법이다.
 - 가설 $H_0: \theta \in \Omega_0$ vs $H_1: \theta \in \Omega_1$

$$-$$
최대가능도비 : $\lambda(X) = \frac{\sup\limits_{\theta \in \Omega} L(\theta|X)}{\sup\limits_{\theta \in \Omega_0} L(\theta|X)}$

- 검정법 $\delta: \lambda(X) > C \Rightarrow H_0$ 기각
- □ 유의성 검정은 유의확률로 주어진 관측값이 이 귀무가설에 얼마나 부합하는지 알아보는 검정이다.

정리하기

- 적합성 검정은 다음과 같다.
 - $H_0: p_i = p_{i0} \ vs \ H_1: not H_0$
 - 검정통계량 $\chi^2 = \sum_{i=1}^m \frac{(N_i np_{i0})^2}{np_{i0}} \sim \chi^2(m-1)$

 $p_i:i$ 번째 유형확률, $N_i:i$ 범주 빈도수, $np_{i0} \ge 5$

- 검정법 : $\chi^2 > \chi^2_{\alpha}(m-1)$ 이면 H_0 기각

절리하기

□독립성 검정은 다음과 같다.

$$-H_0: p_{ij} = p_{i+} \cdot p_{+j} \quad vs \quad H_1: not H_0$$
$$p_{i+} = \sum_{i=1}^{c} p_{ij}, \quad p_{+j} = \sum_{i=1}^{r} p_{ij}$$

$$i \leftarrow 2j = 1 i i j + i + j = 2i = 1 i i j$$

$$-\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(N_{ij} - \dot{E}_{ij})^2}{\dot{E}_{ij}} \sim \chi^2 ((r-1)(c-1))$$

$$\dot{E}_{ij} = n \cdot \hat{p}_{i+} \cdot \hat{p}_{+j} = \frac{N_{i+} \cdot N_{+j}}{N}$$
, $N_{ij} : (i,j)$ 범주 빈도수

- 검정법 :
$$\chi^2 > \chi^2_{\alpha} ((r-1)(c-1))$$
이면 H_0 기각

