超伝導量子コンピュータの挑戦

東京大学先端科学技術研究センター 田渕 豊

(2017~) ERATO中村巨視的量子機械P 研究総括補佐 (2018~) 光・量子飛躍フラッグシッププログラム 中村フラッグシップP 分担研究者

東大先端研

Research Center for Advanced Science and Technology The University of Tokyo

田渕豊

●津山工業高等専門学校情報工学科(2001-2006) (情報/電子)

● 大阪大学・大阪大学大学院 (2006-2012)

(電気電子)

●東京大学 先端科学技術研究センター (2012-)

(物理)

- 超伝導単一磁束量子論理ゲートの高機能化
- 電子スピンの制御に関する研究
- 磁性体を用いた量子中継器
- 集積化超伝導量子ビットによる誤り訂正符号の検証

概要

- ●超伝導量子ビットの情報表現
- ●超伝導量子ビットゲートの実装状況
- ●ディジタル量子コンピュータ
- ●超伝導量子コンピュータの挑戦

超伝導量子ビットの情報表現

From logic to quantum logic 論理回路から量子論理回路へ

論理{0,1}NOTゲート

入力	出力
0	1
1	0

真理值表

アナログNOTゲート

入力	出力		
0.0	1.0		
1.0	0.0		

真理值表

入力	出力		
0.1	0.9		
0.2	0.8		
0.3	0.7		

電荷の粒の箱 (超伝導電極)

電荷の粒の箱 (超伝導電極)

アナログNOTゲート

真理值表

アナログ半分NOTゲート

真理值表

アナログ半分NOTゲート

入力	出力	入力	出力
X	0.5	0.5	0.5

真理值表

2回重ねても アナログNOTに ならない

アナログ半分NOTゲート

入出力が ベクトル値

入力	出力
0.0	1.0

1.0 0.0

入力が

スカラー値

真理値表

関係が 1対1の表 入出力関係は 行列表現

アナログ半分NOTゲート

NOTゲートの行列表現

$$\begin{bmatrix} 0 \\ H \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ F \\ 0 \end{bmatrix}$$

アナログ半分NOTゲート

2回かけるとNOTゲート

アナログ半分NOTゲート

2回かけるとNOTゲート

1	1
1	-1

アナログ半分NOTゲート

2回かけるとNOTゲート

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{5} \\ 0 \end{bmatrix}$$

集団電荷と、単一の電荷

単一電荷とマクロな電荷

量子半分NOTゲート

2回かけるとNOTゲート

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

並行世界が 同時に存在

量子ゲートの実装の現状

"ソフトウェア定義"量子ゲート

●量子ゲートを探せ

- ●量子ビットはアナログ受動回路
- ●能動回路・順序回路は全て 外部制御

量子ゲートの実装と実装誤差

誤り率 1%~4%

量子ゲートの実装と実装誤差

量子ゲートの実装と実装誤差

論理ゲートと量子"アナログ"ゲート

時間

量子論理回路 (論理回路との対比)

• "ソフトウェア定義" 量子論理ゲートに「しきい値」なし

- 入出力はアナログ $|\psi\rangle_{out} = U |\psi\rangle_{in}$
- ゲートもアナログ電圧制御による実装

量子計算(近未来)

N: # of 量子ビット数

D: ゲート印加回数

P: 単一ゲートの成功確率

P = 99%, N = 50,

 $P^{N*D} \rightarrow 8.105 \% (D = 5)$ $P^{N*D} \rightarrow 0.066 \% (D = 10)$

超伝導量子コンピュータ近況

• 各グループ特性表

	IBM	Google	中国 USTC	Rigetti	Intel +TU Delft
動作ビット数	20	22	10	19	7
ゲート速度	0.1-0.2 us	0.04 us	0.14 us	0.1-0.26 us	0.02 us
ゲート誤り率*	2 %	1%	N/A	2 %	1%
観測誤り率	5-10 %	1 %	4 %	1 %	N/A
コヒーレンス時間	70/70 us	28/2 us	23/3 us	52/20 us	N/A

集積化に向けた課題

フリップチップボンディングによる集積化

Google 22Q foxtail

[http://www.teratec.eu/library/pdf/forum/2018/Presentations/Forum_Teratec_2 018_A3_06_Kevin_Kissel_Google.pdf]

理研/東大 "量子コンピュータ"

量子ビットのパッケージング

ディジタル量子コンピュータ

観測、符号化と誤り訂正

電荷の粒を観測する

- ●電流電荷計とマイクロ波電荷計
- ●波束の収縮とディジタル化

電荷の粒を観測する

- ●電流電荷計とマイクロ波電荷計
- ●波束の収縮とディジタル化 (あいまい除去)

量子誤り訂正符号

- ●部分的な観測=波束の収縮=空間への収縮
 - ■誤り→ディジタル化、顕在化
 - ■計算用→アナログ値保持

量子誤り訂正符号

・誤り訂正符号の導入

量子ドット数

部分的な観測(非線形)

計算ステップ = ゲート印加回数

エラーは積み重なるが、観測により 検出され適切に訂正される

動作可能エラー域 0~0.1% 程度

- -60 dB の量子ビット間漏話を許容
- 60 dB のダイナミックレンジ、雑音を許容

超伝導量子コンピュータの挑戦

- 内因的な量子ゲート誤り率< 0.1 %
 - ■量子ビット結合する不明な電磁雑音(MHz~THz)の除去 ⇒量子物理、固体物理
- (拡張性を維持した上で)外因的な量子ゲート誤り率 < 0.1 %
 - 量子ビット—制御線の漏話 -60 dB以下 @ < 2mm ピッチ
 - 量子ビット間の漏話 -60 dB 以下 @ < 2mm ピッチ ⇒ マイクロ波アナログ回路設計技術
 - ■量子ビットの制御波形の改善、低雑音化
 - ⇒ 重畳雑音 -150 dBm/Hz, SFDR > 70 dB
- 量子ビット数に依存しない配線資源の効率利用化

