Классификация отображений. Обратное отображение. График функции.

Определение:

Говорят, что задана функция f из множества X в множество Y если указано правило, по которому для любого x ∈ X поставлен в соответствие некоторый один элемент из множества Y.

$$(f: X \to Y) \Leftrightarrow (\forall x \in X \exists ! y \equiv f(x) \in Y)$$

Классификация отображений:

Функция f: X -> Y называется

1) сюръективной (=сюръекцией), если

$$\forall y \in Y \exists x \in X : y = f(x)$$

2) инъективной (=инъекцией), если

$$\forall x_1, x_2 \in X, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$
 или $(f(x_1) = f(x_2)) \Rightarrow (x_1 = x_2)$

3) биективной (=биекцией), если f сюръективна и инъективна одновременно (взаимно-однозначное соответствие)

Обратное отображение:

Пусть f: X -> Y - биекция

Обратная функция f^{-1} : Y -> X определяется правилом:

если (
$$y \in Y$$
) \land ($y = f(x)$) для $x \in X$, то $f^{-1}(y) = x$

График функции:

Графиком функции $f: X \to Y$ называют подмножество G прямого произведения $X \times Y$, элементы которых имеют вид (x, f(x))

$$G = \{(x, y) \in (X \times Y) \colon y = f(x)\}$$

Композиция отображений:

Если f: X -> Y и g: Y -> Z, то функция $(g \circ f)(x) = g(f(x))$ для любого $x \in X$ называется X -> Z композицией отображений

Задачи для самостоятельного выполнения:

- 1) Функция f из множества целых чисел в множество целых чисел сопоставляет числу х наименьшее простое число, которое больше x^2 . Какова область определения f? Принадлежит ли число 19 множеству значений f?
- 2) Верно ли для любых f, X, Y равенство $f(X \cup Y) = f(X) \cup f(Y)$?
- 3) Верно ли для любых f, X, Y что из равенства f(X) = f(Y) следует X ∩ Y ≠ Ø?
- 4) Верно ли для любых f, X, Y равенство $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$?
- 5) Верно ли для любых f, X, Y что из равенства $f^{-1}(X) = f^{-1}(Y)$ следует X = Y?