Gradient Decent

Gradient Descent is an optimization algorithm used in deep learning (DL) to minimize the **loss function**, which measures how far off a model's predictions are from the actual values.

Key Idea:

Think of the loss function as a hill or valley in a landscape. Gradient descent helps you find the **lowest point (minimum loss)** by taking steps downhill in the direction that reduces the loss most quickly.

How It Works (Step-by-Step):

- 1. Initialize Weights: Start with random weights in the neural network.
- 2. **Compute Loss**: Calculate how far the current predictions are from the correct outputs using a loss function (e.g., Mean Squared Error or Cross Entropy).
- Compute Gradients: Use backpropagation to compute the gradient (partial derivative) of the loss with respect to each weight — this tells us the slope or direction of steepest ascent.
- 4. **Update Weights**: Move in the **opposite direction** of the gradient (steepest descent) by a small amount (called the **learning rate**):

$$w = w - \eta \cdot \frac{\partial L}{\partial w}$$

Where:

- w: weight
- η : learning rate (e.g., 0.01)
- $\frac{\partial L}{\partial w}$: gradient of the loss function
- 5. Repeat: Iterate this process for many batches/epochs until the loss is minimized.

Types of Gradient Descent:

• Batch Gradient Descent: Uses the entire training dataset for each step.

- **Stochastic Gradient Descent (SGD)**: Uses one training sample at a time (faster but noisier).
- **Mini-Batch Gradient Descent**: Uses a small group of samples a compromise between speed and stability.

✓ Pros of (Pure) Gradient Descent

1. Deterministic Updates

 Since it uses the entire dataset to compute the gradient, each step is consistent and stable.

2. Converges Smoothly (if learning rate is good)

o No noisy updates; follows a smooth path toward the minimum.

3. Mathematically Rigorous

 The update rule is well-founded and aligns with theoretical optimization frameworks.

X Cons of (Pure) Gradient Descent

1. Computationally Expensive

 Evaluating gradients over the **entire dataset** at each step can be slow, especially for large datasets.

2. Memory-Intensive

o Requires loading the full dataset into memory to compute each update.

3. Slow Convergence

 Because it updates weights only after processing the full dataset, progress can be very slow.

4. Inflexible to Online Learning

 Cannot update the model incrementally with new data without reprocessing the whole dataset.

5. Sensitive to Learning Rate

 $_{\circ}$ $\,$ Needs careful tuning; otherwise, it may converge very slowly or even diverge.

6. May Get Stuck in Local Minima or Saddle Points

o Especially problematic in non-convex functions like those in deep learning.