Convolutional neural networks

Lecture 7

Changho Suh

January 24, 2024

Convolutional neural networks (CNNs) and history

Recap: Data organization & evaluation

m is a deciding factor for the **data split ratio**:

4 regimes: Small, middle, large and ultra-large

val set dist. ~ test set dist. ~ target dist.

Cross validation for evaluation:

Choose a hyperparameter that minimizes the average validation loss:

$$val loss = \frac{val_1 + val_2 + val_3 + val_4}{4}$$

Recap: Techniques for DNNs

Weight initialization: He's

Training stability: Adam optimizer learning rate decaying, BN

Hyperparameter search:

L of layers, # $n^{[\ell]}$ of hidden neurons, activation

Recap: DNNs

Model complexity is very high.

This often incurs the overfitting problem.

This motivates the use of generalization techniques:

Regularization; data augmentation;

early stopping; drop out

Recap: Coding

Train-val-test data split:

```
from sklearn.model_selection import train_test_split

X_,X_test,y_,y_test = train_test_split(X,y,test_size=1/10,stratify=y)

X_train,X_val,y_train,y_val = train_test_split(X_,y_,test_size=1/9,stratify=y_)
```

Generalization techniques:

```
from tensorflow.keras.regularizers import 12
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.layers import Dropout
```

Recap: Coding

Weight initialization:

from tensorflow.keras.initializers import HeNormal

Batch normalization:

from tensorflow.keras.layers import BatchNormalization

Learning rate decaying:

from tensorflow.keras.callbacks import LearningRateScheduler

Cross validation:

from sklearn.model_selection import KFold

What is next?

One important question:

Can DNNs be specialized?

CNNs: Image data

RNNs: Text/audio data (language) and any sequential data

Outline of today's lectures

Focus on CNNs.

Specifically we will:

- 1. Investigate how CNNs were developed;
- 2. Study the two key building blocks:

Conv layer Pooling layer

3. Discuss two popular CNN architectures.

Focus of Lecture 7

Focus on CNNs.

Specifically we will:

- 1. Investigate how CNNs were developed;
- 2. Study the two key building blocks;

Conv layer

Pooling layer

3. Discuss two popular CNN architectures.

Visual cortex (시각피질)

Hubel & Wiesel '58/'59 made two observations:

- 1. React only to a limited region (receptive field)
- 2. Exhibit hierarchy: V1→V2→V3→V4→ ...

^{*}Won them the **Nobel Prize** in Physiology or Medicine in '81.

Led to the birth of CNNs

Developed the first CNN in 1980: **Neocognitron**

Kunihiko Fukushima **1980**

Developed another CNN in 1988: **LeNet-5**

Commercialization: Handwritten check numbers recognition

Yann LeCun 1988

Two building blocks of CNNs

1. Convolutional layer (Conv layer)

Role: Mimick neurons' behaviors: Reacting only to receptive fields.

2. Pooling layer

Role: Downsample to reduce complexity (# parameters & memory size).

Conv layer

^{*}Convolution operation is very similar to cross correlation.

Abstraction via grids

What about for next right neuron?

What about for next below neuron?

In general ...

What if a receptive field is out of range?

What if a receptive field is out of range?

Feature map

Role: Detect a certain pattern (feature).

Note: Filter depends on a target pattern that we wish to detect.

To detect one target pattern, use one filter.

Called: feature map

This is why we use the same filter for a feature map.

filter

Look ahead

- 1. Will study further on "feature map".
- 2. Will study 2nd building block: **Pooling** layer