

Bangladesh University of Engineering and Technology Department of Computer Science and Engineering

Academic Year 2020 - 2021

CSE 206 Digital Logic Design Sessional Offline 3

Group No 2

Submitted by:

1805006 - Tanjeem Azwad Zaman

1805007 - Mehbubul Hasan Al-Quvi

1805008 - Abdur Rafi

1805009 - Md. Zarzees Uddin Shah

1805010 - Anwarul Bashir Shuaib

Date of Submission:

June 12, 2021

PROBLEM 1

1.1 PROBLEM SPECIFICATION

Design and implementation of a $master-slave\ JK$ flip-flop using only NAND gates.

1.2 REQUIRED INSTRUMENTS

1. IC-7400 (Quantity: 4)

2. Input Pins (Quantity: 2)

3. Output Pin (Quantity: 2)

4. Clock signal (Quantity: 1)

5. Wires

6. Software : Logisim

1.3 EXCITATION TABLE

C	J	K	Q_n	Q_{n+1}
0	X	X	0	0
0	X	X	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

1.4 KARNAUGH MAP:

$$Q_{n+1} = K'Q_n + JQ_n'$$

1.5 CIRCUIT DIAGRAM

Figure 1: Circuit diagram for problem 1

1.6 Observations

- 1. Initially, the circuit is stuck in an infinite error loop. This is because, in the beginning, the gates have no output; and since an output of one gate is the input of another, this error propagates in a loop. In such a state, an outside input is provided to give an initial acceptable state to the NAND gates. Then operations resume as intended.
- 2. When the clock signal is set high, the "Master" will act like a normal JK flip-flop, except for when both J and K are set 1. Since there are feedback lines from the "slave", the "Toggle" occurs only once in this case.
- 3. When the clock signal is set low, all further changes in the "Master" are prevented ie. it enters "Hold" state. At the same time, the "Slave" Flip-Flop uses the Q and Q' of the "Master" as its J and K inputs (so, both cannot be 1 at the same time). This allows it to settle on a single output per clock pulse, which was a problem for the general JK Flip-Flop.

PROBLEM 2

2.1 Problem Specification

Design and implementation a 4-bit universal shift register.

2.2 REQUIRED INSTRUMENTS

- 1. IC-7402 (Quantity: 1)
- 2. IC-7404 (Quantity: 1)
- 3. IC-7408 (Quantity: 4)
- 4. IC-7427 (Quantity: 2)
- 5. IC-7474 (Quantity: 2)
- 6. Input Pins (Quantity: 9)
- 7. Output Pin (Quantity: 4)
- 8. Wires
- 9. Software: Logisim

2.3 EXCITATION TABLE

Clear	S_0	S_1	Clock	D_A	D_B	D_C	D_D	Mode
Н	X	X	X	0	0	0	0	Async Clear
L	L	L	X	D_A	D_B	D_C	D_D	Clock Inhibit
L	L	Н	1	D_B	D_C	D_D	L_i	Shift Left
L	Н	L	1	R_i	D_A	D_B	D_C	Shift Right
L	Н	Н	1	A	В	C	D	Parallel Load

$$CK = \overline{Clock + \overline{S_0} \cdot \overline{S_1}}$$

$$D_A = Q_B \overline{S_0} + R_i \overline{S_1} + AS_0 S_1$$

$$D_B = Q_C \overline{S_0} + Q_A \overline{S_1} + BS_0 S_1$$

$$D_C = Q_D \overline{S_0} + Q_B \overline{S_1} + CS_0 S_1$$

$$D_D = L_i \overline{S_0} + Q_C \overline{S_1} + DS_0 S_1$$

2.4 CIRCUIT DIAGRAM

Figure 2: Circuit diagram for problem 2

2.5 Observations

- 1. The D Flip-Flop ICs used (IC-7474) in our circuit are positive edge-triggered.
- 2. We have used active-high signal for our clear bit, i.e, the output bits will be set 0 when Clear=1. This will override all other inputs.
- 3. We had to apply negative clock-pulse to the ICs before manipulating our mode selection bits. Otherwise, the circuit would behave abnormally. This might be a limitation of Logisim.
- 4. Both 2 input NOR (IC-7402) and 3 input NOR (IC-7427) were used to reduce complexity.