1. Given $V_g=10 \text{mV}$, find V_o . Find the Thevenin equivalent between terminals a-b.

|.
$$\frac{1}{100} = -20i_{2}(50)|50| = -20i_{2}(25)$$

| $\frac{1}{100} = \frac{1}{200}$
| $\frac{1}{100} = \frac{1}{200}$
| $\frac{1}{100} = \frac{1}{200}$
| $\frac{1}{100} = \frac{1}{100}$
| $\frac{1}{100} = \frac{1}{100}$

(cont.) Vh (Rh) ca

V_{th} = V_o (open-circuit voltage between a &b) {Note that this is true since no current flows through R_{Th} when a to b is left open }

Rin can be found by shorting a to b and leaving $V_m \Rightarrow \frac{R_m}{V_m} = \frac{V_m}{isc}$

isc => 2012 3502] lisc = -2012

V_{Th} (in terms of $\frac{1}{6}$) = $\frac{1}{6}$ = $\frac{1}{20i}$ (50|150) $\frac{1}{6}$ = $\frac{1}{20i}$ (25) = $\frac{1}{25}$ = $\frac{1}{25}$