MATH 239 Notes

Thomas Liu

April 12, 2024

Contents

1	Lect	ure 1	6												
	1.1	Definition: Set, Element	6												
	1.2	Definition: Cartesian Porduct	6												
	1.3	Definition: Subset	6												
	1.4	Theorem	6												
	1.5	Definition: List, Permutations	6												
	1.6	Theorem	6												
	1.7	Definition: Partial List	6												
	1.8	Theorem	6												
	1.9	Theorem	7												
2	Lect	ure 2	7												
	2.1	Theorem	7												
	2.2	Pascal's Triangle	7												
	2.3	Definition: Multiset	7												
	2.4		7												
	2.5	Definition: Function	7												
	2.6		7												
	2.7	· · · · · · · · · · · · · · · · · · ·	7												
	2.8		8												
	2.9		8												
	2.10	Theorem	8												
3	Lecture 3														
	3.1	Definition: Formal Power Series	8												
	3.2	Theorem	8												
	3.3	Definition: Geometric Series	9												
	3.4		9												
	3.5		9												
	3.6		9												
	3.7		9												

4	Lecture 4	9
5	Lecture 5	9
	5.1 Binomial Theorem	9
	5.2 Negative Binomial Theorem	10
6	Lecture 6	10
	6.1 Definition: Union	10
	6.2 Lemma: Sum Lemma	10
	6.3 Definition: Product	10
	6.4 Lemma: Product Lemma	10
7	Lecture 7	10
	7.1 Definition: Strings Over (Alphabet) S	10
	7.2 Lemma: String Lemma	11
	7.3 Definition: Binary Strings	11
	7.4 Definition: Composition	11
8	Lecture 8	11
	8.1 Definition: Concatenation, Concatenation Product	11
	8.2 Definition: *	11
9	Lecture 9	11
	9.1 Definition: Regular Expression	11
	9.2 Definition: Ambiguity	12
	9.3 Translation into Generating Series	12
	9.4 Theorem	12
10	Lecture 10	12
	10.1 Definition: Substring, Block, Empty String	12
	10.2 Block Decomposition	13
	10.3 Set Operations Unambiguous	13
	Today 44	10
	Lecture 11	13
	11.1 Definition: Prefix, Suffix	13
12	Lecture 12	13
	12.1 Prefix Decomposition	13
13	3 Lecture 13	13
	13.1 Theorem	13
14	Lecture 14	13
	14.1 Homogeneous Lineaur Recurrence Relation	19

15	Lecture 15 15.1 Partial Fraction
16	Lecture 16
	16.1 Theorem
17	Lecture 17
	17.1 Graph
18	Lecture 18
	18.1 Isomorphism
	18.2 Degree
	18.3 Theorem
	18.4 Corollary
	18.5 Corollary
	18.6 Complete Graph
19	Lecture 19
	19.1 Bipartie Graph
	19.2 n-cube
20	Lecture 20
20	20.1 Adjacency Matrix
	20.2 Incidence Matrix
ก1	Lecture 21
41	21.1 Subgraph
	21.2 Walk, Length, Closed
	21.3 Path
	21.4 Theorem
	21.5 Corollary
	21.6 Theorem
	21.7 Grith
	21.8 Hamilton Cycle
	21.9 Connected
	21.10 Component
	21.11Theorem
	21.11 Theorem
22	Lecture 22
	22.1 Eulerian Circuit
	22.2 Theorem
	22.3 Bridges
	22.4 Lemma
	22.5 Theorem

	22.6	Corollary			 	•					 •	 •		٠		٠		•	 •	•	 •	٠	•	18
23	Lect	ure 23																						18
	23.1	Tree			 																 			18
	23.2	Forest			 																 			18
	23.3	Lemma .			 																 			18
	23.4	Lemma .			 																 			18
	23.5	Lemma .			 																 			18
	23.6	Corollary			 																 			18
	23.7	Leaf			 																 			18
	23.8	Theorem .			 						 •			•							 			18
24	Lect	ure 2 4																						19
	24.1	Spanning 7	Γree .		 																 			19
		Theorem .																						19
	24.3	Corollary			 																 			19
		$\overline{\text{Theorem}}$.																						19
		Theorem .																						19
0.5	T 4	05																						10
25		ure 25																						19
		Odd Cycle																						19
		Lemma .																						19
	25.5	Theorem .			 	٠	• •		•	• •	 •	 ٠	• •	٠	• •	•	• •	٠	 •	•	 •	•	•	19
26		ure 2 6																						19
	26.1	Planar			 																 			19
	26.2	Faces			 																 			20
	26.3	Boundary			 																 			20
	26.4	Theorem .			 																 			20
	26.5	Corollary			 																 			20
27	Lect	ure 27																						20
	27.1	Euler's For	mula	ì.,	 							 •									 			20
28	Lect	ure 28																						20
		Platonic So	olid .		 														 		 			20
																								$\frac{1}{22}$
																								22
90	T 4	00																						00
2 9		ure 2 9																						22
																								22
	_				 	-		-						-		-				-			-	22
		Theorem .																						22
	29.4	Corollary			 																 			22

	29.5 Corollary	22
	29.6 Theorem	
	29.7 Lemma	
30	Lecture 30	23
	30.1 Edge Subdivision	23
	30.2 Kuratowski's Theorem	
31	Lecutre 31	23
	31.1 Colouring and Planar Graph	23
32	Lecture 32	24
	32.1 Matching	24
33	Lecture 33	24
	33.1 Covers	24
	33.2 Konig's Theorem	25
34	Lecture 34	26
	34.1 Application of Konig's Theorem	26
35	Lecture 35	26
	35.1 Perfect Matchings in Bipartite Graphs	26
36	Lecture 36	26
	36.1 Edge-Colouring	26

1.1 Definition: Set, Element

A set S is a collection of dinstinct objects. These objects are the elements of S. The size or cardinality of S, denoted |S|, is the number of elements in S If S and T are disjoint and finite, then $|S| + |T| = |S \cup T|$

1.2 Definition: Cartesian Porduct

Given two sets S and T, their cartesian product $S \times T$ is the set $\{(s,t): s \in S, t \in T\}$ If S,T are finite, $|S \times T| = |S| \cdot |T|$

1.3 Definition: Subset

Given S and T, we say S is a subset of T, denoted $S \subseteq T$, if every element of S is also an element of T

1.4 Theorem

For every $n \geq 0$, the number of subsets of an n-element set is 2^n

1.5 Definition: List, Permutations

A list of a set S is an ordered list of elements of S exactly once each. When $S = \{1, \dots, n\}$ for some n, then the lists of S are called permutations of n

1.6 Theorem

Let S be a set with |S| = n for some $n \in \mathbb{N}$. Then the number of distinct lists of S is

$$n! = n \cdot (n-1) \cdots 2 \cdot 1$$

1.7 Definition: Partial List

A partial list of length k of a set S is an ordered list of k of the elements of S, exactly once each

1.8 Theorem

For $n, k \geq 0$, the number of partial lists of length k of an n-element set is

$$n \cdot (n-1) \cdots (n-k+2) \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

1.9 Theorem

For $n \geq k \geq 0$, the number of k-element subsets of an n-element set S is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{n}{k} = 0$$
 if $k > n$ or $k < 0$

2 Lecture 2

2.1 Theorem

How many paths from (0,0) to (k,l) use only north & east steps?

$$\binom{k+l}{l} = \binom{k+l}{k}$$

2.2 Pascal's Triangle

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

2.3 Definition: Multiset

A multiset of size n with element of t types is a sequence (m_1, \dots, m_t) of non-negative integers such that $m_1 + \dots + m_t = n$

2.4 Theorem

For $n \geq 0$ and $t \geq 1$, the number of multisets of size n with t types is $\binom{n+t-1}{t-1}$

2.5 Definition: Function

$$f: X \to Y$$

where X is the domain / input, Y is the range / output This is used to prove that f is well-defined

2.6 Definition: Injective

f is injective if for all $x, x' \in X$ with $x \neq x'$, we have $f(x) \neq f(x')$

2.7 Definition: Surjective

f is surjective if for every $y \in Y$ there exists $x \in X$ with f(x) = y

2.8 Definition: Bijective

f is bijective if f is both injective and surjective

2.9 Definition: Bijective, Inverse, Mutually Inverse

If $f: X \to Y$ and $g: Y \to X$ are functions such that

- for all $x \in X$, g(f(x)) = x and
- for all $y \in Y$, f(g(y)) = y

then f is bijective, g is the inverse of f, and f & g are mutually inverse bijections

2.10 Theorem

$$\binom{n}{k} = \binom{n}{n-k}$$

3 Lecture 3

3.1 Definition: Formal Power Series

A formal power series is an object of the form

$$A(x) = \sum_{n \ge 0} a_n x^n$$

where $a_n \in \mathbb{C}$ for all $n \in \mathbb{N}$. For A(x), we write $[x^n]A(x)$ for the coefficient a_n , the square brackets denote coefficient extraction

We denote the ring of formal power series by $\mathbb{C}[[x]]$

3.2 Theorem

Given $A(x) = \sum_{n \geq 0} a_n x^n$ and $B(x) = \sum_{n \geq 0} b_n x^n$ in $\mathbb{C}[[x]]$, we define addition as

$$A(x) + B(x) = \sum_{n \ge 0} (a_n + b_n)x^n$$

and multiplication as

$$A(x) \cdot B(x) = \sum_{n>0} \sum_{k=0}^{n} a_k b_{n-k} x^n$$

3.3 Definition: Geometric Series

The geometric series is

$$G(x) = 1 + x + x^2 + \dots = \sum_{n \ge 0} x^n$$

and

$$G(x) = \frac{1}{1 - x}$$

3.4 Definition: Concatenation

Let $A(x) = \sum_{i \geq 0} a_i x_i$. Then, if the following is a FPS, we define $A(B(x)) = \sum_{i \geq 0} a_i (B(x))^i$ Works if $[x^0]B(x) = 0$ or A has finitely many terms

3.5 Definition: Weight Function, Generating Series

Given a set S, a weight function on S is a function $w:S\to\mathbb{N}$ such that for all $i\in\mathbb{N}$, then set $\{s\in S:w(s)=i\}$ is finite

Associated with set and its weight function is the generating series

$$\Phi_S^w(x) = \sum_{s \in S} x^{w(x)}$$

3.6 Definition: Weight-Preserving Bijection

A weight-preserving bijection from S with weight function w_S to T with weight function w_T is a bijection $f: S \to T$ such that $w_S(x) = w_T(f(s))$ for all $s \in S$

3.7 Theorem

If there is a weight-preserving bijection f between T, w_T and S, w_S , then $\Phi_T^{w_T}(x) = \Phi_S^{w_S}(x)$

4 Lecture 4

5 Lecture 5

5.1 Binomial Theorem

For all $n \in \mathbb{N}$

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

5.2 Negative Binomial Theorem

For all positive integers t

$$\frac{1}{(1-x)^t} = \sum_{n>0} \binom{n+t-1}{t-1} x^n$$

6 Lecture 6

6.1 Definition: Union

The union of S, w and S', w' is defined if $S \cap S' = \emptyset$, and then it is $S \cup S'$ with weight function $w \cup w'$ where $(w \cup w')(s)$ is defined to be w(s) if $s \in S$ and w'(s) if $s \in S'$

6.2 Lemma: Sum Lemma

Given sets with weight function S, w and S', w' with $S \cap S' = \emptyset$, we have

$$\Phi_{S \cup S'}^{w \cup w'}(x) = \Phi_{S}^{w}(x) + \Phi_{S'}^{w'}(x)$$

6.3 Definition: Product

The product of S, w and S', w' is defined as $S \times S'$ with weight function w, w' where $(w \times w')((s, s')) = w(s) + w'(s')$ for $s \in S$ and $s' \in S'$

6.4 Lemma: Product Lemma

Given sets with weight functions S, w and S', w', we have

$$\Phi^{w\times w'}_{S\times S'}(x) = \Phi^w_S(x)\cdot \Phi^{w'}_{S'}(x)$$

7 Lecture 7

7.1 Definition: Strings Over (Alphabet) S

Given $k \in \mathbb{N}$ (including 0), we write S^k, w^k for the set

$$S^k = \{(s_1, \cdots, s_k) : s_1, \cdots, s_k \in S\}$$

with weight function

$$w^{k}((s_{1}, \dots, s_{k})) = w(s_{1}) + \dots + w(s_{k})$$

Suppose now that w(s) > 0 for all $s \in S$. Then there is a well-defined set with weight function S^*, w^* , called strings over (alphabet) S, given

$$S^* = \bigcup_{k \ge 0} S^k$$

and

$$w^* = \bigcup_{k \ge 0} w^k$$

7.2 Lemma: String Lemma

Given a set with weight function S, w with w(s) > 0 for all $s \in S$, we have

$$\Phi_{S^*}^{w^*} = \frac{1}{1 - \Phi_S^w(x)}$$

7.3 Definition: Binary Strings

Binary strings are sequences (b_1, \dots, b_k) (usually written as b_1, \dots, b_k) for $k \in \mathbb{N}$ such that each bit b_i is in $\{0, 1\}$. In other words, defining w(0) = w(1) = 1, the set of all binary strings is $\{0, 1\}^*$ with weight function w^* , where $w^*((b_1 \dots b_k)) = k$ is the length of a binary string

7.4 Definition: Composition

A composition is a finite sequence $\gamma = (c_1, \dots, c_k)$ of positive integers. The c_i are its parts, and its length is the number k of parts. The size of a composition, $|\gamma|$, is defined as $c_1 + \dots + c_k$. The empty composition ϵ with no integers is also allowed as the unique composition with length and size 0

8 Lecture 8

8.1 Definition: Concatenation, Concatenation Product

Let S be a set, and let $R, T \subseteq S^*$. Then we define the concatenation of $r = (r_1 \cdots r_k) \in \mathbb{R}$ and $t = (t_1, \cdots, t_l) \in T$ as $rt = (r_1, \cdots, r_k, t_1, \cdots, t_l)$. We also define the concatenation product $RT = \{rt : (r, t) \in R \times T\}$

8.2 Definition: *

If S is a set of strings, then $S^* = \bigcup_{k \geq 0} s^{(k)}$

9 Lecture 9

9.1 Definition: Regular Expression

A regular expression is defined recursively, as follows:

- All of ϵ , 0, and 1 are regular expressions
- If R and S are regular expressions, then so is $R \smile S$
- If R and S are regular expressions, then so is RSFor any finite $k \in \mathbb{N}$ we also use R^k for the k-fold concatenation of R: that is $R^2 = RR$ and $R^3 = RRR$, and so on
- If R is regular expression, then so is R^*

9.2 Definition: Ambiguity

A regular expression is unambiguous if it doesn't produce the same string in two different ways

- $R \sim T$ is unambiguous if:
 - -R, T are unambiguous
 - R produces \mathfrak{R} , T produces \mathfrak{T} , and \mathfrak{R} is disjoint from \mathfrak{T}
- RT is unambiguous if :
 - -R, T are unambiguous
 - R produces \mathfrak{R} , T produces \mathfrak{T} , and $f: \mathfrak{R} \times \mathfrak{T} \to \mathfrak{RT}$, f((r,t)) = rt is bijection
- R^* is unambiguous if:
 - -R is unambiguous
 - R produces \Re , and for $k \in \mathbb{N}$, $f: \Re^n \to \Re^{\mathfrak{k}}$, $f((r_1, \cdots, r_k)) = r_1 \cdots r_k$ is a bijection and
 - $-\bigcup_{k>0}\mathfrak{R}^{(k)}$ is disjoint union

9.3 Translation into Generating Series

A regular expression leads to a rational function; this is defined recursively, as follows. Assume that R and S are regular expressions that lead to R(x) and S(x), respectively:

- ϵ leads to 1, 0 leads to x, 1 leads to x
- $R \smile T$ leads to R(x) + S(x)
- RS leads to $R(x) \cdot S(x)$
- R^* leads to $\frac{1}{1 R(x)}$

9.4 Theorem

Let R be regular expression producing rational language \mathcal{R} and lead to rational function R(x). If R is unambiguous expression for \mathcal{R} then $R(x) = \Phi_{\mathcal{R}}(x)$, the generating series for \mathcal{R} with respect to length

10 Lecture 10

10.1 Definition: Substring, Block, Empty String

For a string $s = s_1 \cdots s_j$, a substring of s is either ε or a string of the form $s_i \cdots s_{i'}$ for some $i \leq i'$ with $i, i' \in \{1, \dots, j\}$. Let us say that a block of a string $s = s_1 \cdots s_j$ is a non-empty maximal substring $s_i \cdots s_{i'}$ of s such that $s_i = \cdots = s_{i'}$. We write ε for the empty string

10.2 Block Decomposition

break down regular expression into blocks which contains consecutive bits of same elements

10.3 Set Operations Unambiguous

- \bullet A is unambiguous
- AB is unambiguous if $f: A \times B \to AB$, f((a,b)) = ab is a bijection
- $A \cup B$ is unambiguous if $A \cap B = \emptyset$
- A^* is unambiguous if $\bigcup_{k\geq 0} A^{(k)}$ is a disjoint union, and for all $k, f: A^k \to A^{(k)}, f((a_1, \cdots, a_k)) = a_1 \cdots a_k$ is a bijection.

11 Lecture 11

11.1 Definition: Prefix, Suffix

Let us say a substring t' of t is a prefix of t if t = t't'' for some string t'', and t' is a suffix of t if t = t''t' for some string t''

12 Lecture 12

12.1 Prefix Decomposition

break down regular expression into blocks every time you see 1

13 Lecture 13

13.1 Theorem

Let $K \in \{0,1\}^*$ be a nonempty string of length n, $A = A_{\parallel}$ be the set of binary strings that avoid K. Let C be the set of all nonempty suffixes γ of K such that $K\gamma = \eta K$ for some nonempty prefix η of K. Let $C(x) = \sum_{\gamma \in C} x^{l(\gamma)}$

$$A(x) = \frac{1 + C(x)}{(1 - 2x)(1 + C(x)) + x^n}$$

14 Lecture 14

14.1 Homogeneous Lineaur Recurrence Relation

Let $g = (g_0, g_1, g_2, \dots)$ be an infinite sequence of complex numbers. Let a_1, a_2, \dots, a_d be in \mathbb{C} , and let $N \geq d$ be an integer. We say that g satisfies a homogeneous linear recurrence relation provided

that

$$g_n + a_1 g_{n-1} + a_2 g_{n-2} + \cdots + a_d g_{n-d} = 0$$

for all $n \ge N$. The values g_0, g_1, \dots, g_{N-1} are the initial conditions of the recurrence. The relation is linear bc the LHS is a linear combination of the entries of the sequence g; it is homogeneous bc the RHS of the equation is zero

15 Lecture 15

15.1 Partial Fraction

Let G(x) = P(x)/Q(x) be a rational function in which deg(P) < deg(Q) and the constant term of Q(x) is 1. Factor the denominator to obtain its inverse roots

$$Q(x) = (1 - \lambda_1 x)^{d_1} (1 - \lambda_2 x)^{d_2} \cdots (1 - \lambda_s x)^{d_s}$$

in which $\lambda_1, \dots, \lambda_s$ are distinct nonzero complex numbers and $d_1 + \dots + d_s = d = deg(Q)$. Then there are d complex numbers

$$C_1^{(1)}, C_1^{(2)}, \cdots, C_1^{(d_1)}; \cdots; C_s^{(1)}, \cdots, C_s^{(d_s)}$$

such that (uniquely determine)

$$G(x) = \frac{P(x)}{Q(x)} = \sum_{i=1}^{s} \sum_{j=1}^{d_s} \frac{C_i^{(j)}}{(1 - \lambda_i x)^j}$$

16 Lecture 16

16.1 Theorem

Let $g = (g_0, g_1, g_2)$ be a sequence of complex numbers, and let $G(x) = \sum_{n=0}^{\infty} g_n x^n$ be the corresponding generating series. Assume

$$G(x) = R(x) + \frac{P(x)}{Q(x)}$$

for some polynomial P(x), Q(x) and R(x) with $\deg P(x) < \deg Q(x)$ and Q(0) = 1. Factor Q(x) to obtain its inverse roots and their multiplicities, then there are polynomial $p_i(n)$ for $1 \le i \le s$ with $\deg p_i(n) < d_i$, st for all $n > \deg R(x)$,

$$g_n = p_1(n)\lambda_1^n + p_2(n)\lambda_2^n + \dots + p_s(n)\lambda_s^n$$

17 Lecture 17

17.1 Graph

A graph G is a finite nonempty set V(G), of objects, called vertices, together with a set, E(G), of unordered pairs of distinct vertices. The elements of E(G) called edges

18.1 Isomorphism

Two graph G_1 and G_2 are isomorphic if there exists a bijection $f: V(G_1) \to V(G_2)$ such that vertices f(u) and f(v) are adjacent in G_2 iff u and v are adjacent in G_1

18.2 Degree

The number of edges incident with a vertex v is called degree of v, denoted by deg(v)

18.3 Theorem

Any graph G we have

$$\sum_{v \in V(G)} \deg(v) = 2|E(G)|$$

18.4 Corollary

The number of vertices of odd degree in a graph is even

18.5 Corollary

The average degree of a vertex in graph G is

$$\frac{2|E(G)|}{|V(G)|}$$

18.6 Complete Graph

A complete graph is one which all pairs of distinct vertices are adjacent. The complete graph with p vertices is denoted by K_p , $p \ge 1$

19 Lecture 19

19.1 Bipartie Graph

A graph in which all edges join a vertex in A to a vertex in B, is called a bipartite graph, with bipartition (A, B)

19.2 n-cube

For $n \ge 0$, the n-cube is the graph whose vertices are the $\{0,1\}$ -strings of length n, and two strings are adjacent iff they differ in exactly one position

20.1 Adjacency Matrix

The adjacency matrix of a graph G having vertices v_1, v_2, \dots, v_p is the $p \times p$ matrix $A = [a_{ij}]$ where

$$a_{ij} = \begin{cases} 1, & \text{if } v_i \text{ and } v_j \text{ are adjacent} \\ 0, & \text{otherwise} \end{cases}$$

20.2 Incidence Matrix

The incidence matrix of a graph G with vertices $v_1, \dot{:}, v_p$ and edges e_1, \dots, e_q is a $p \times q$ matrix $B = [b_i j]$ where

$$b_{ij} = \begin{cases} 1, & \text{if } v_i \text{ is incident with } e_j \\ 0, & \text{otherwise} \end{cases}$$

21 Lecture 21

21.1 Subgraph

A subgraph of a graph G is a graph whose vertex set is a subset U of V(G) and whose edge set is a subset of those edges of G that have both vertices in U

If V(H) = V(G), say H is spanning subgraph of G

If H is subgraph of G and H is not equal to G, say H is a proper subgraph of G

21.2 Walk, Length, Closed

A walk in a graph G from v_0 to v_n is an alternating sequence of vertices and edges of G

$$v_0e_1v_1e_2\cdots e_nv_n$$

Call it v_0, v_n —walk.

Length of a walk is number of edges in it.

A walk is closed if $v_0 = v_n$

21.3 Path

A path is a walk in chich all vertices are distinct

21.4 Theorem

If there is a walk from vertex x to vertex y in G, then there is a path from x to y in G

21.5 Corollary

Let x, y, z be vertices of G. If there is a path from x to y in G and path from y to z in G, then there is a path from x to z in G

21.6 Theorem

If every vertex in G has degree at least 2, then G contains a cycle

21.7 Grith

The grith of graph G is the length of the shortest cycle in G, and denoted as g(G). If no cycle, then g(G) is infinite

21.8 Hamilton Cycle

A spanning cycle in a graph is known as a Hamilton cycle

21.9 Connected

A graph G is connected if, for every two vertices, there is a path connect the two

21.10 Component

A component of G is subgraph C of G s.t.

- \bullet C is connected
- \bullet no subgraph of G that properly contains C is connected

21.11 Theorem

A graph G is not connected iff there exists a proper nonempty subset X of V(G) s.t. the cut induced by X is empty

22 Lecture 22

22.1 Eulerian Circuit

An Eulerian circuit of graph G is a closed walk that contains every edge of G exactly once

22.2 Theorem

Let G be connected graph. G has an Eulerian circuit iff every vertex has even degree

22.3 Bridges

Edge e of G is a bridge if G - e has more components that G

22.4 Lemma

If $e = \{x, y\}$ is a bridge of connected graph G, then G - e has precisely two components, x and y are in different components

22.5 Theorem

Edge e is bridge of graph G iff it is not contained in any cycle of G

22.6 Corollary

If there are two distinct paths from u to vertex v in G, G contains a cycle

23 Lecture 23

23.1 Tree

A tree is a connected graph with no cycle

23.2 Forest

A forest is graph with no cycles

23.3 Lemma

If u and v are vertices in tree T, then there is a unique u, v- path in T

23.4 Lemma

Every edge of a tree T is a bridge

23.5 Lemma

If T is a tree, then |E(T)| = |V(T)| - 1

23.6 Corollary

If G is a forest with k components, then |E(G)| = |V(G)| - k

23.7 Leaf

A leaf in tree is a vertex of degree 1

23.8 Theorem

A tree with at least two vertices has at least two leaves

24.1 Spanning Tree

A spanning subgraph which is also a tree is called spanning tree

24.2 Theorem

A graph G is connected iff it has a spanning tree

24.3 Corollary

If G is connected, with p vertices and q = p - 1 edges, then G is a tree

24.4 Theorem

If T is spanning tree of G and e is edge not in T, then T+e contains exactly one cycle C. Moreover, if e' is any edge on C, then T+e-e' is also spanning tree of G

24.5 Theorem

If T is spanning tree of G and e is edge in T, then T - e has 2 components. If e' is in the cut induced by one of the components, then T - e + e' is also spanning tree of G

25 Lecture 25

25.1 Odd Cycle

An odd cycle is a cycle on an odd number of vertices

25.2 Lemma

An odd cycle is not bipartite

25.3 Theorem

A graph is bipartite iff it has no odd cycle

26 Lecture 26

26.1 Planar

A graph G is planar if it has a drawing in the plane so that its edges intersect only at their ends, and so that no two vertices coincide.

The actual drawing is called a planar embedding of G, or a planar map

26.2 Faces

A planar embedding partitions the plane into connected regions called faces

26.3 Boundary

The subgraph formed by the vertices and edges in a face is called boundary of the face Two faces are adjacent if they are incident with a common edge

26.4 Theorem

If we have a planar embedding of a connected graph G with faces f_1, \dots, f_s , then

$$\sum_{i=1}^{s} deg(f_i) = 2|E(G)|$$

26.5 Corollary

If the connected graph G has a panar embedding with f faces, the average degree of a face in the embedding is $\frac{2|E(G)|}{f}$

27 Lecture 27

27.1 Euler's Formula

Let G be a connected graph with p vertices and q edges. If G has a planar embedding with f faces, then

$$p - q + f = 2$$

28 Lecture 28

28.1 Platonic Solid

The polyhedra that the faces have the same degree, vertices have the same degree are call platonic solids

There are five platonic solids: tetrahedron, cube, octahedron, dodecahedron, icosahedron We call a graph platonic if it admits a planar embedding in which each vertex have the same degree $d \geq 3$, each face has the same degree $d^* \geq 3$

Figure 7.9: (a) the tetrahedron; (b) the octahedron; (c) the cube; (d) the icosahedron; (e) the dodecahedron $\frac{1}{2}$

28.2 Lemma

Let G be a planar embedding with p vertices, q edges and s faces, in which each vertex has degree $d \ge 3$ and each face has degree $d^* \ge 3$. Then (d, d^*) is one of the five pairs

$$\{(3,3),(3,4),(4,3),(3,5),(3,5)\}$$

28.3 Lemma

If G is a platonic graph with p vertices, q edges and f faces, where each vertex has degree d and each face degree d^* , then

$$q=\frac{2dd^*}{2d+2d^*-dd^*}$$

and p = 2q/d and $f = 2q/d^*$

29 Lecture 29

29.1 Lemma

If G contains a cycle, then in a planar embedding of G, the boundary of each face contains a cycle

29.2 Lemma

Let G be a planar embedding with p vertices and q edges. If each face of G has degree at least d^* , then $(d^* - 2)q \le d^*(p - 2)$

29.3 Theorem

In a planar graph G with $p \geq 3$ vertices and q edges, we have

$$q \le 3p - 6$$

29.4 Corollary

 K_5 is not planar

29.5 Corollary

A planar graph has a vertex of degrees at most five

29.6 Theorem

In a bipartite planar graph G with $p \geq 3$ vertices and q edges, we have

$$q \le 2p - 4$$

29.7 Lemma

 $K_{3,3}$ is not planar

30 Lecture 30

30.1 Edge Subdivision

An edge subdivision of a graph G is obtained by applying the following operations, independently, to each edge of G

- replace the edge by a path of length 1 or more
- if the path has length m > 1, then there are m-1 new vertices and m-1 new edges created
- if the path has length m=1, then the edge is unchanged

30.2 Kuratowski's Theorem

A graph is not planar iff it has a subgraph that is an edge subdivision of K_5 or $K_{3,3}$

31 Lecutre 31

31.1 Colouring and Planar Graph

A k-colouring of graph G is function from V(G) to set of size k. Adjacent vertices always have different colours.

Theorem

A garph is 2-colourable iff it is bipartite

Theorem

 K_n is n-colourable, and not k-colourable for any k < n

Theorem

Every planar graph is 6-colourable

Definition

G be graph and $e = \{x, y\}$ be an edge of G. Graph G/e obtained from G by contracting edge e is graph with vertex set $V(G)\setminus\{x,y\}\cup\{z\}$, where z is new vertex, and edge set $\{\{u,v\}\in E(G):\{u,v\}\cap\{x,y\}=\emptyset\}\cup\{\{u,z\}:u\notin\{x,y\},\{u,w\}\in E(G)\text{ for some }w\in\{x,y\}\}$

Theorem

Every planar graph is 5-colourable

Theorem

Every planar graph is 4-colourable

32 Lecture 32

32.1 Matching

Matching

A matching in a graph G is a set of edges of G st no two dges in M have common end

Saturated

A vertex v of G is saturated by M, if v in incident with an edge in M

Perfect Matching

A special kind of maximum matching is one having size p/2, that is, one that saturates every vertex

Alternating Path

Say a path $v_0v_1\cdots v_n$ is alternating path with respect to M if one of the following holds

- $\{v_i, v_{i+1}\} \in M$ if i is even and $\{v_i, v_{i+1}\} \notin M$ if i is odd
- $\{v_i, v_{i+1}\} \notin M$ if i is even and $\{v_i, v_{i+1}\} \in M$ if i is odd

Augmenting Path

An augmenting path with respect to M is an alterting oath joining two distinct vertices neither of which is satuated by M

Lemma

If M has augmenting path, it is not a max matching

33 Lecture 33

33.1 Covers

Cover

A cover of graph G is a set C of vertices st every edge of G has at least one end in C

Lemma

If M is matching of G, C is cover of G, $|M| \leq |C|$

Lemma

If M is matching and C is cover and |M| = |C|, then M is max matching and C is min cover

33.2 Konig's Theorem

Konig's Theorem

In a bipartite graph the max size of a matching is min size of cover

Lemma

Let M be matching of bipartite graph G with bipartition A, B, and let X and Y defined as

- Z denote set of vertices in G that joined by a vertex in set of vertices in A not saturated by M by an alternating path
- $X = A \cap Z$
- $Y = B \cap Z$

Then

- there is no edge of G from X to $B \setminus Y$
- $C = Y \cup (A \setminus X)$ is cover of G
- no edge of M from Y to $A \setminus X$
- |M| = |C| |U| where U is set of unsaturated vertices in Y
- ullet there is an augmenting path to each vertex in U

Bipartite Matching Algorithm

Step 1: let M be any matching of G

- Step 2: set $\hat{X} = \{v \in A : v \text{ is unsaturated}\}$, set $\hat{Y} = \emptyset$, set pr(v) to be undefined for all $v \in V(G)$
- Step 3: for each vertex $v \in B \setminus \hat{Y}$ such that there is an edge $\{u,v\}$ with $u \in \hat{X}$, add v to \hat{Y} , and set pr(v) = u
- Step 4: if step 2 added no vertex to \hat{Y} , return the max matching M and min cover $C = \hat{Y} \cup (A \setminus \hat{X})$, and stop

- Step 5: if step 2 added unsaturated vertex v to \hat{Y} , us pr values to trace an augmenting path from v to an unsaturated element of \hat{X} , use the path to produce a larger matching M', replace M by M', and back to step 1
- Step 6: for each vertex $v \in A \setminus \hat{X}$ st there is an edge $\{u, v\} \in M$ with $u \in \hat{Y}$, add v to \hat{X} and set pr(v) = u, back to step 2

34.1 Application of Konig's Theorem

Neighbour Set

Let neighbour set N(D) of D be $\{v \in V(G) : \text{there exists } u \in D \text{ with } \{u,v\} \in E(G)\}$

Hall's Theorem

A bipartite graph G with bipartition A, B has matching saturating every vertex in A, iff every subset D of A satisfies $|N(D)| \ge |D|$

35 Lecture 35

35.1 Perfect Matchings in Bipartite Graphs

Corollary

Bipartite graph G with bipartition A, B has perfect matching iff |A| = |B| and subset D of A satisfies

$$|N(D)| \ge |D|$$

Theorem

If G is k-regular bipartite graph with $k \geq 1$, then G has perfect matching

36 Lecture 36

36.1 Edge-Colouring

Edge k-colouring

An edge k-colouring of graph G is function from E(G) to set of size k st no two edges incident with same vertex have same colour

Theorem

Bipartite graph with max degree \triangle has an edge \triangle -colouring

Lemma

G be a bipartite graph having at least one edge. Then G has a matching saturating each vertex of max degree