1 Groups and Fields

Definition 1. Group (G, *) is a set G with a operation * having the following properties

- 1. $G \neq \emptyset$: non-empty
- 2. $*: G \times G \to G$ is a function. We write *((a,b)) as a*b for $a,b \in G$.
- 3. $\forall a, b, c \in G; a * (b * c) = (a * b) * c$: associative
- 4. $\exists e \in G, \forall a \in G; e * a = a * e = a$: identity exists
- 5. $\forall a \in G, \exists \overline{a} \in G; a * \overline{a} = \overline{a} * a = e$: inverse exists

Definition 2. Abelian Group (G, *)

- 1-5. (G,*) is a group
- 6. $\forall a, b \in G; a * b = b * a$: commutative

Example 1. Check which of the following are groups

- 1. $(\mathbb{R},+)$
- 2. $(\mathbb{R} \{1\}, +)$
- $3. (\mathbb{R}, \cdot)$
- 4. $(\mathbb{R} \{0\}, \cdot)$
- 5. $GL_2(\mathbb{R})$ =General Linear group= all invertible 2×2 matrices with real entries, under matrix multiplication.
- 6. $\mathbb{B} = \{0,1\}$ with boolean addition +
- 7. $\mathbb{B} = \{0, 1\}$ with boolean multiplication \cdot
- 8. $D_3 = \{R_0, R_1, R_2, R_3, L_1, L_2, L_3\} = Dihedral \ group = set \ of \ symmetries \ of \ an \ equilateral \ triangle, \ under \ composition.$
- 9. Elliptic Curve with point at infinity: $\mathbb{E} = \{(x,y)|y^2 = x^3 + Ax + B, 4A^3 + 27B^2 \neq 0\} \cup \mathcal{O}$ under elliptic curve addition +: If P, Q, R on a straight line in \mathbb{E} then $P + Q + R = \mathcal{O}$.

Theorem 1. If (G, *) is a group and $a \in G$. Then

- 1. e is unique
- 2. \overline{a} is unique
- 3. $\overline{\overline{a}} = a$

Definition 3. Field $(F, +, \cdot)$ is a set with two binary operations + and \cdot having the following properties

- 1. (F, +) is an abelian group. We write e = 0 and $\overline{a} = -a$
- 2. $(F \{0\}, \cdot)$ is an abelian group. We write e = 1 and $\overline{a} = a^{-1}$
- 3. $\forall a, b \in F; a \cdot b \in F$
- 4. $\forall a, b, c \in F; a \cdot (b+c) = (a \cdot b) + (a \cdot c)$: distributive

Example 2. Check which of the following are groups

- 1. $(\mathbb{R},+,\cdot)$
- 2. $(\mathbb{R},\cdot,+)$
- β . $(\mathbb{Q},+,\cdot)$
- 4. $(\mathbb{Z}, +, \cdot)$
- 5. $\mathbb{B} = \{0, 1\}$ with boolean addition and multiplication

- 6. $\mathbb{B} = \{0,1\}$ with mod 2 addition and multiplication
- 7. $\{0, 1, 2, 3\}$ with mod 4 addition and multiplication
- 8. $(GL_2(\mathbb{R}),+,\cdot)$

Theorem 2. Finite Fields

- 1. If p is a prime, the set $\mathbb{F}_p = \{0, 1, 2, 3, \dots, p-1\}$ under mod p addition and multiplication is a field.
- 2. If F is a finite field with n number of elements, then $n = p^k$ for some prime p and integer k.

Theorem 3. If $(F, +, \cdot)$ is a field and $a \in F$

- 1. $a \cdot 0 = 0$
- 2. $1 \neq 0$
- 3. There must be at least two elements in a field.

Definition 4. Vector space $(V, *, \circ)$ over the field $(F, +, \cdot)$

- 1. (V.*) is an abelian group
- 2. $(F, +, \cdot)$ is a field
- $3. \circ : F \times V \to F$ is a function. We write $\circ ((a, x))$ as $a \circ x$ for $a \in F$ and $x \in V$.
- 4. $\forall a \in F, \forall x, y \in V; a \circ (x * y) = (a \circ x) * (a \circ y)$
- 5. $\forall a, b \in F, \forall x \in V; (a+b) \circ x = (a \circ x) * (b \circ x)$
- 6. $\forall a, b \in F, \forall x \in V; (a \cdot b) \circ x = a \circ (b \circ x)$
- 7. $\forall x \in V; 1 \circ x = x$

Note 1. Vector Space operations

- $+: F \times F \to F$
- $\cdot: F \times F \to F$
- $*: V \times V \to V$
- $\circ: F \times V \to V$

Example 3. Check which of the following are vector spaces

- 1. $(\mathbb{R}^3, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$
- 2. $(\mathbb{R}^3, +, \cdot)$ over $(\mathbb{C}, +, \cdot)$
- 3. $(\mathbb{C}^3, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$
- 4. $(\mathbb{C}^3, +, \cdot)$ over $(\mathbb{C}, +, \cdot)$
- 5. $(\mathbb{Q}_n[x], +, \cdot)$ over $(\mathbb{Q}, +, \cdot)$ where $\mathbb{Q}_n[x]$ is the set of polynomials of degree n or less in x with coefficients in \mathbb{Q} .
- 6. $(\mathbb{R}^{m \times n}, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$ where $\mathbb{R}^{m \times n}$ is the set of $m \times n$ degree matrices with coefficients in \mathbb{R} .
- 7. $(\mathbb{R}^+, *, \circ)$ over $(\mathbb{R}, +, \cdot)$ where * and \circ operations are defined as x * y = xy and $a \circ x = x^a$ for $x, y \in \mathbb{R}^+$ and $a \in \mathbb{R}$

Theorem 4. $(V, *, \circ)$ over $(F, +, \cdot)$ is a vector space

- 1. $\forall x \in V; 0 \circ x = e$
- 2. $\forall a \in F; a \circ e = e$
- 3. $\forall a \in F, \forall x \in V; a \circ x = e \Rightarrow a = 0 \text{ or } x = e$
- $4. \ \forall x \in V; (-1) \circ x = \overline{x}$

Note 2. When there is no confusion, we will use the following notation and names

- 1. x * y = x + y: vector addition
- 2. $a \circ x = a \cdot x = ax$: scalar multiplication
- 3. e = 0
- 4. $\overline{x} = -x$
- 5. $(V, *, \circ)$ over $(F, +, \cdot)$ will be written as
- $(V,+,\cdot)$ over $(F,+,\cdot)$ or V over F or just V when F is implied

Note 3. We will rewrite everything in the above notation for the vector space V over F

- $1.1 V \neq \emptyset$
- $1.2 + : V \times V \rightarrow V$ is a function, i.e. + is a binary operation on V
- 1.3 $\forall x, y, z \in V; x + (y + z) = (x + y) + z$
- 1.4 $\exists 0 \in V, \forall x \in V; x + 0 = 0 + x = x$
- $1.5 \ \forall x \in V; \exists -x \in V; x + (-x) = (-x) + x = \underline{0}$
- $1.6 \ \forall x, y \in V; x + y = y + x$
- 2. $(F, +, \cdot)$ is a field
- $3. \cdot : F \times V \to V \text{ is a function}$
- 4. $\forall a \in F, \forall x, y \in V; a \cdot (x + y) = (a \cdot x) + (a \cdot y)$
- 5. $\forall a, b \in F, \forall x \in V; (a+b) \cdot x = (a \cdot x) + (b \cdot x)$
- 6. $\forall a, b \in F, \forall x \in V; (a \cdot b) \cdot x = a \cdot (b \cdot x)$
- 7. $\forall x \in V; 1 \cdot x = x$

Definition 5. Subspace

S is a subspace of the vector space V over F iff S is a non-empty subset of V and S is a vector space over F.

Example 4. Which of the following are subspaces of the given vector space

- 1. $(\mathbb{R}^3, +, \cdot)$ of $(\mathbb{C}^3, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$
- 2. $(\mathbb{R}_3[x], +, \cdot)$ of $(\mathbb{R}[x], +, \cdot)$ over $(\mathbb{R}, +, \cdot)$
- 3. $(GL_2(\mathbb{R}), +, \cdot)$ of $(\mathbb{R}^{2\times 2}, +, \cdot)$ over $(\mathbb{R}, +, \cdot)$
- 4. Set of solutions to the ODE y'' y 6y = 0 of Continuous functions C over \mathbb{R} .

Theorem 5. Let S be a non empty subset of the vector space V over F. If S is closed under vector addition and scalar multiplication, then S is a subspace of V over F.

Definition 6. Linear Combination

Let $B = \{x_1, x_2, \dots, x_n\}$ be a non empty finite subset of a vector space V over F. Then an element of the form $\sum_{k=1}^{n} a_k x_k = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$ with $a_k \in F$ is called a Linear Combination of B.

Definition 7. Span

Let $B = \{x_1, x_2, \dots, x_n\}$ be a non empty finite subset of the vector space V over F. Then the collection of all possible linear combinations is called the Span of B.

i.e. $SpanB = \{\sum_{k=1}^{n} a_k x_k | x_k \in B, a_k \in F\}$

If SpanB = W, we say that B spans W.