

Workshop on COVID-19 Ontologies (2020)

Candidate Covid-19 drugs prediction

Fatima Zohra Smaili¹, Liuwei Wang¹, Yongqun He², Xin Gao¹, Robert Hoehndorf¹

¹King Abdullah University of Science and Technology ²University of Michigan Medical School

Introduction

- An efficient drug treatment for Covid-19 can dramatically reduce the severity of the disease and the death rate.
- Developing a new drug is both expensive and time consuming.
- Identify existing drugs that may be efficient in treating Covid-19.

Daily new confirmed COVID-19 cases

Daily new confirmed COVID-19 deaths

Source: European CDC - Situation Update Worldwide - Last updated 18 October, 10:05 (London time)

Limited testing and challenges in the attribution of the cause of death means that the number of confirmed death

Source: European CDC - Situation Update Worldwide - Last updated 18 October, 10:05 (London time)

Apr 30

CC BY

CIDO ontology

The Coronavirus Infectious Disease Ontology (CIDO): a community-based ontology that supports coronavirus disease knowledge.

He, Y., Yu, H., Ong, E. et al. CIDO, a community-based ontology for coronavirus disease knowledge and data integration, sharing, and analysis. Sci Data **7,** 181 (2020). https://doi.org/10.1038/s41597-020-0523-6

OPA2Vec: Ontology-based embeddings

- A method that produces ontology-based representations of biological entities (proteins, diseases, drugs, etc) using:
 - Logical axioms
 - Annotation axioms
- Uses transfer learning to encode for the biomedical literature as background knowledge.

SARS-Cov-2 drugs visualization

- Visualization of drugs that inhibit the invasion of SARS-Cov-2.
- Vector representations of drugs are generated by applying OPA2Vec on CIDO ontology.

Protein targets visualization

- T-SNE based visualization of protein targets of drugs used to treat SARS-Cov-2.
- Protein vectors generated based on their Gene Ontology annotations using OPA2Vec.

Identifying new candidate drugs

 Objective: Identify new candidate drugs for Covid-19 based on protein targets similarity.

 Method: Use OPA2Vec in combination with cosine similarity to identify similar protein targets and extract the corresponding drugs.

Workflow

New candidate

Covid-19 drugs

- Step 1: Generating vector embeddings of proteins using ML-based OPA2Vec.
- D Step 2: Calculating similarity between known protein targets of Covid-19 drugs and all other proteins to identify candidate protein targets.
- Step 3: Identifying candidate drugs based on association with the predicted protein targets using the Drug Bank.

Drug Bank

Candidate drugs

Drug	CHEBI ID	Confidence score	Clinical trials
camostat	CHEBI_135632	0.89	11
gemcitabine	CHEBI_175901	0.79	0
tamoxifen	CHEBI_41774	0.77	2
imatinib	CHEBI_45783	0.77	5
dasatinib	CHEBI_49375	0.74	0
chlorpromazine	CHEBI_3647	0.74	3
indinavir	CHEBI_44032	0.71	0
azithromycin	CHEBI_2955	0.69	114
sirolimus	CHEBI_9168	0.68	6

Conclusion

 Summary: Identification of new candidate drugs for Covid-19 based on protein target similarity.

Future work

- Explore the structural and sequential features of the identified drugs for further validation of their efficiency.
- Explore drugs with different mechanisms of action their clinical use.

