A Study of Partitioning Policies for Graph Analytics on Large-scale Distributed Platforms

Gurbinder Gill

Roshan Dathathri

Loc Hoang

Keshav Pingali

汇报人: 陶明沺

51205901082

Graph Analytics

Applications: machine learning and network analysis

Datasets: unstructured graphs

Need TBs of memory

Distributed Graph Analytics

- Distributed-memory clusters are used for in-memory processing of very large graphs
 - D-Galois [PLDI'18], Gemini [OSDI'16], PowerGraph [OSDI'12], ...

- Graph is partitioned among machines in the cluster
 - Many heuristics for graph partitioning (partitioning policies)

- Application performance is sensitive to policy
 - There is no clear way to choose policies

Motivation

- No clear to choose policies for the user as well as to support for the systems
- Main objectives of a good partitioning policy:
 - Minimize the communication overhead
 - Balance computation load

Existing Partitioning Studies

- Performed on small graphs and clusters
- Only considered metrics such as edges cut, avg. number of replicas, etc.
- Did not consider work-efficient data-driven algorithms
 - Only topology-driven algorithms evaluated
- Used framework that use similar communication pattern for all partitioning policies
 - Putting some partitioning policies at a disadvantage

Contributions

- Experimental study of partitioning strategies for work-efficient graph analytics applications:
 - Largest publicly available web-crawls, such as wdc12 (~1TB)
 - Large KNL and Skylake clusters with up to 256 machines (~69K threads)
 - Uses the start-of-the-art graph analytics system, D-Galois [PLDI'19]
 - Evaluate various kinds of partitioning policies
- Analyze partitioning policies using an analytical model and micro-benchmarking
- Present decision tree for selecting the best partitioning policy

Original graph

Original graph

Each edge is assigned to a unique host

Original graph

- Each edge is assigned to a unique host
- All edges
 connect proxy
 nodes on the
 same host

Original graph

- Each edge is assigned to a unique host
- All edges
 connect proxy
 nodes on the
 same host
- A node can have multiple proxies: one is master proxy; rest are mirror proxies

Synchronization

- Reduce: Mirror
 proxies send
 updates to master
- Broadcast: Master sends canonical value to mirrors

Matrix View of a Graph

Destinations

Matrix representation

Partitioning Policies & Comm. Pattern

1D Partitioning

Incoming Edge Cut (IEC)

Outgoing Edge Cut (OEC)

Partitioning Policies & Comm. Pattern

2D Partitioning

Cartesian Vertex Cut (CVC)

General Vertex Cut

Hybrid Vertex Cut (HVC)

Implementation

- Partitioning: State-of-the-art graph partitioner, CuSP [IPDSP'19]
- Processing: State-of-the-art distributed graph analytics system, D-Galois [PLDI'18]
 - Bulk synchronous parallel (BSP) execution
 - Uses Gluon [PLDI'19] as communication substrate:
 - Uses partition-specific communication pattern

Experimental Setup

- Stampede2 at TACC: Up to 256 hosts
 - KNL hosts:
 - 68 cores (without hyper threading)
 - Skylake hosts
 - 24 cores
- Application:
 - bc (betweenness centrality)
 - bfs (breadth-first search)
 - cc (connected components)
 - pr (pagerank)
 - sssp (single-source shortest path)

Partitioning Policies:

- XtraPulp (XEC)
- Edge Cut (EC)
- Cartesian Vertex Cut (CVC)
- Hybrid Vertex Cut (HVC)

	kron30	clueweb12	wdc12
V	1073M	978M	3,563M
E	10,791M	42,574M	128,736M
Size on Disk	136GB	325GB	986GB

Inputs and their properties

Partitioning Time (clueweb12)

Partitioning time (sec) on 256 hosts:

Execution Time

Load Balance

		Partitioning time (sec)			Max-by-mean edges			
		bfs sssp	cc	pr	bc bfs sssp	cc	pr	
8	XEC	304	448	312	1.05	1.08	1.06	
	EC	51	76	51	1.01	1.01	1.01	
kron30	HVC	102	130	101	1.02	1.02	1.02	
	BVC	345	379	365	1.02	1.02	1.02	
	JVC	1006	1006	1016	1.00	1.00	1.00	
	CVC	261	288	241	1.00	1.00	1.00	
	XEC	381	647	373	3.18	8.93	14.69	
	EC	27	152	38	1.00	1.11	1.00	
clueweb12	HVC	308	374	308	3.39	1.64	3.39	
	BVC	1179	12907		20.24	20.24	20.24	
	JVC	1904	1924	1960	1.82	1.53	1.01	
	CVC	573	1239	1119	9.16	2.03	3.26	
	XEC	OOM	OOM	OOM	OOM	OOM	OOM	
	EC	109	251	236	1.00	1.03	1.00	
wdc12	HVC	3080	2952	3068	1.18	1.13	1.18	
	BVC	8039	OOM	OOM	15.44	OOM	OOM	
	JVC	5263	6570	8890	1.09	1.05	1.01	
	CVC	2487	4276	3221	1.79	1.17	1.27	

Table 4: Graph partitioning time (includes time to load and construct graph) and static load balance of edges assigned to hosts on 256 KNL hosts.

Compute Time

Communication Volume and Time

Best Partitioning Policy (clueweb12)

Execution time (sec):

	32 hosts			256 hosts				
	XEC	EC	HVC	CVC	XEC	EC	HVC	CVC
bc	136.2	439.1	627.9	539.1	413.7	420	1012.1	266.9
bfs	10.4	8.9	17.4	19.2	36.4	27.1	46.5	14.6
СС	OOM	16.9	7.5	19.6	43.0	84.7	8.4	7.3
pr	272.6	219.6	193.5	217.9	286.7	82.3	97.5	60.8
sssp	16.5	13.1	26.6	31.7	43.0	32.5	54.7	21.8

Decision Tree

		8	256
	bc	21.79%	0%
kron30	bfs	0%	0%
Kronso	cc	0%	0%
	pr	0%	0%
	sssp	0%	0%
	bc	0%	0%
alwarrah12	bfs	0%	0%
clueweb12	cc	12.84%	0%
	pr	0%	0%
	sssp	0%	11.34%

% difference in execution time between policy chosen by decision tree vs. optimal

Key Lessons

- Best performing policy depends on:
 - Application
 - Input
 - Number of hosts (scale)
- EC performs well at small scale but CVC wins at large scale
- Graph analytics systems must support:
 - Various partitioning policies
 - Partition-specific communication pattern

Thank you