

Mining Massive Datasets Mining Data Stream

Yi Sun

•Copyright Anand Rajaraman, Jure Leskovec, and Jeffrey D. Ullman, Stanford University

Outline

- 1.1 Intro of Data Stream?
- 1.2 Sampling from a Data Stream
- 1.3 Queries over a Sliding Window

Data Stream

- where dose it come from?
 - sensor data: hospital, ocean, war
 - image data: satellites, surveillance cameras
 - web site: Google, twitter

Application

■ Mining click streams

Google wants to know what queries are more frequent today than yesterday

■ Mining query streams

Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour

■ Mining social network news feeds
look for trending topics on Twitter, Facebook

General Stream Processing Model

Data Streams

- feature: infinite (non-stop), non-stationary (the distribution changes over time)
- before: database—all data is available when and if we want
- now: data arrives so rapidly that we can't store it all if it's not processed immediately or stored, then it's lost forever

summarization

Data Streams cont'd

- summarization
 - sample
 - fixed-length window

Outline

1.1 Intro of Data Stream?

1.2 Sampling from a Data Stream

1.3 Queries over a Sliding Window

Sampling from a Data Stream

- Two different problems:
- (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
- (2) Maintain a random sample of fixed size over a potentially infinite stream

Sampling a Fixed Proportion

- Scenario: Search engine query stream
 - Stream of tuples: (user, query, time)
 - questions: How often did a user run the same query in a single days

■ Naïve solution:

- Generate a random integer in [0..9] for each query
- Store the query if the integer is 0, otherwise discard
- fixed proportion: 1/10

Problem with Naïve Approach

- question: What fraction of queries by an average search engine user are duplicates?
- suppose: each user issues x queries once and d queries twice (total of x+2d queries), no search queries more than twice
- Correct answer: $\frac{d}{x+d}$
- sample-based answer: $\frac{d}{10x+19d}$

Problem with Naïve Approach cont'd

- of the x queries issued once
 - \blacksquare x/10 of the search queries appear once
- of the d queries issued twice
 - d/100 appear twice $\leftarrow C_2^2 \frac{1}{10} \times \frac{1}{10} \times d$
 - 18d/100 appear once $\leftarrow C_2^1 \frac{1}{10} \times \frac{9}{10} \times d$

$$\frac{d/100}{(d/100) + (x/10) + (18d/100)} = \frac{d}{10x + 19d}$$

$$\neq \frac{d}{x+d}$$

Maintaining a fixed-size sample

- we need to maintain a random sample S of size exactly s (e.g., main memory size constraint)
- suppose at time t we have seen n items, Each item is in the sample S with equal prob. s/n
- for example: s=2, stream: $a \times c y z k c d e g...$
- At t= 5, each of the fist 5 tuples is included in the sample S with equal prob = 2/5
- At t=7, each of the first 7 tuples is included in the sample S with equal prob = 2/7

Maintaining a fixed-size sample cont'd

- problem?
- Don't know length of stream in advance,
- \blacksquare so need to store all the *n* tuples seen so far and out of them pick s at random
 - ■Ensure each item is in the sample S with equal prob. s/n

Solution: Fixed Size Sample

■ Algorithm:

- Store all the first s elements of the stream to S
- Suppose we have seen n-1 elements, and now the nth element arrives (n > s)
 - With probability s/n, keep the nth element, else discard it
 - If we picked the nth element, then it replaces one of the s elements in the sample S, picked uniformly at random
- Claim: This algorithm maintains a sample S with the desired property

Proof: By Induction

■ Property: after n elements, the sample contains each element seen so far with probability s/n

■ Base case:

■ After we see n=s elements, Each out of n=s elements is in the sample with probability s/s = 1

■ Inductive hypothesis:

■After n elements, the sample S contains each element seen so far with prob. s/n

■ Now element n+1 arrives

Proof: By Induction cont'd

■ Inductive step: For elements already in S, probability of remaining in S is: $(1-\frac{s}{n+1})+(\frac{s}{n+1})(\frac{s-1}{s})=\frac{n}{n+1}$

- Time n to n+1, tuple stayed in S with prob. n/(n+1)
- so prob. Tuple is in s at time n+1 = $\frac{s}{n} \times \frac{n}{n+1} = \frac{s}{n+1}$

Outline

- 1.1 Intro of Data Stream?
- 1.2 Sampling from a Data Stream
- 1.3 Queries over a Sliding Window

Sliding Window

■ Model: queries are about a window of length N the N most recent elements received

■ Interesting case:

N is so large it cannot be stored in memory or even on disk Or, there are so many streams that windows for all cannot be stored

Sliding Window: 1 Stream

■ Sliding window on a single stream: N=6

Counting Bits(1)

■ Problem:

Given a stream of 0s and 1s

Be prepared to answer queries of the form How many 1s are in the last k bits? where $k \le N$

■ Obvious solution:

Store the most recent N bits

When new bit comes in, discard the N+1st bit

Suppose N=6

Counting Bits(2)

- You can not get an exact answer without storing the entire window
- Real Problem:

What if we cannot afford to store N bits?

E.g., we're processing 1 billion streams and

N = 1 billion 010011011101010110

Past

Future

■ But we are happy with an approximate answer

An attempt: Simple solution

- How many 1s are in the last N bits?
- Simple solution that does not really solve our

problem: Uniformity assumption

■ Maintain 2 counters:

5: number of 1s from the beginning of the stream

Z: number of Os from the beginning of the stream

■ How many 1s are in the last N bits $\frac{N}{S+2}$

But, what if stream is non-uniform?
What if distribution changes over time?

DGIM Method

- DGIM solution that does <u>not</u> assume uniformity
- We store $O(log^2N)$ bits per stream
- Solution gives approximate answer
 Error factor can be reduced to any fraction > 0,
 with more complicated algorithm and
 proportionally more stored bits

DGIM: Timestamps

- Each bit in the stream has a timestamp, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(log_2N)$ bits

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
- 1. The timestamp of its end [O(log N) bits]
- 2. The number of 1s between its beginning and end [O(log log N) bits]
- Constraint on buckets:Number of 1s must be a power of 2
- That explains the $O(\log \log N)$ in 2.

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is > N time units in the past

Example: Bucketized Stream

Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size

Updating Buckets (1)

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time
- 2 cases: Current bit is 0 or 1
- If the current bit is 0: no other changes are needed

Updating Buckets (2)

- If the current bit is 1:
- (1) Create a new bucket of size 1, for just this bit End timestamp = current time
- (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
- (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
- (4) And so on ...

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

<u>010110001011</u>0<mark>101010101010110101010101111</mark>01010101110101000<mark>101100</mark>10<mark>11</mark>0

How to Query

- To estimate the number of 1s in the most recent N bits:
- 1. Sum the sizes of all buckets but the last (note "size" means the number of 1s in the bucket)
- 2. Add half the size of the last bucket

■ Remember: We do not know how many 1s of the last bucket are still within the wanted window

Example: Bucketized Stream

Error Bound: Proof

- Why is error 50%? Let's prove it!
- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its 1s are still within the window, we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than 2^r , the true sum is at least $1 + 2 + 4 + ... + 2^{r-1} = 2^r - 1$
- Thus, error at most 50%

At least 16 1s

Extensions

■ Can we use the same trick to answer queries

How many 1's in the last k? where k < N?

■ A: Find earliest bucket B that at overlaps with k. Number of 1s is the sum of sizes of more recent buckets + $\frac{1}{2}$ size of B

■ Can we handle the case where the stream is not bits, but integers, and we want the sum of the last k elements?

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either r-1 or r for r > 2
 - Except for the largest size buckets; we can have any number between 1 and r of those
- \blacksquare Error is at most 1/(r)
- By picking r appropriately, we can tradeoff between number of bits we store and the error

More Algorithms on Data Streams

Types of queries one wants on answer on a data stream:

Filtering a data stream: Bloom Filters

Select elements with property x from the stream

Counting distinct elements: Flajolet-Martin

Number of distinct elements in the last k elements of the stream

Estimating moments: AMS method

Estimate avg./std. dev. of last k elements

Finding frequent elements

Description

- Each element of data stream is a tuple
- Given a list of good keys S
- Determine which tuples of stream are in S

- Obvious solution: Hash table
 - ■But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream

Application

■ Email spam filtering

- We know 1 billion "good" email addresses
- If an email comes from one of these, it is **NOT** spam
- About 80% emails are spam

■ Publish-subscribe systems

- You are collecting lots of messages (news articles)
- People express interest in certain sets of keywords
- Determine whether each message matches user's interest

First Cut Solution

- \blacksquare Given a set of keys S that we want to filter
- Create a bit array B of n bits, initially all Os
- Choose a hash function h with range [0,n)
- Hash each member of $s \in S$ to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element a of the stream and output only those that hash to bit that was set to 1, i.e., output a if B[h(a)] == 1

First Cut Solution cont'd

- Creates false positives but no false negatives
- If the item is in S we surely output it, if not we may still output it

Prob. of False Negatives

■ |S| = 1 billion email addresses|B|= 1GB = 8 billion bits

- Approximately 1/8 of the bits are set to 1
- About 1/8 of the addresses not in S get through to the output (false positives)
- Actually, less than 1/8th, because more than one address might hash to the same bit

Throwing Darts

- Consider: Throw m darts into n targets equally, what is the probability that a target gets at least one dart?
- In our case:
 - Targets = bits/buckets
 - Darts = hash values of items
- Prob. a given dart will not hit a given target: (n-1)/n
- Prob. None of the m darts will hit a given target:

$$\left(\frac{n-1}{n}\right)^m - > \left(1 - \frac{1}{n}\right)^{n(\frac{m}{n})} \approx e^{-m/n}$$

Throwing Darts cont'd

- Fraction of 1s in the array B == probability of false positive == $1 e^{-m/n}$
- |S| = 1 billion email addresses |B|= 1GB = 8 billion bits

$$1 - e^{-\frac{m}{n}} = 1 - e^{-\frac{1}{8}} = 0.1175 \approx 0.125$$

Bloom Filter

- \blacksquare Consider: |S| = m, |B| = n
- Use k independent hash functions h1,..., hk
- Initialization:
 - Set B to all Os
 - Hash each element $s \in S$ using each hash function hi ,set B[hi(s)] = 1 (for each i = 1,..., k)

■Run-time:

- When a stream element with key x arrives Hash
- If B[hi(x)] = 1 for all i = 1,..., k then x is in S
- Otherwise discard the element

Bloom Filter cont'd

- What fraction of the bit vector B are 1s?
 - Throwing k·m darts at n targets
 - So fraction of 1s is (1 e^{-km/n})
- But we have k independent hash functions
- So, false positive probability = $(1 e^{-km/n})^k$

Bloom Filter cont'd

- \blacksquare m = 1 billion, n = 8 billion
 - $= k = 1: (1 e^{-1/8}) = 0.1175$
 - $= k = 2: (1 e^{-1/4})^2 = 0.0493$
- What happens as we keep increasing k?

- "Optimal" value of k: (n/m) ln(2)
 - In our case: Optimal $k = 8 \ln(2) = 5.54 \approx 6$

Chapter 4: Mining Data Stream 2

Outline

- 1.1 Filtering a data stream?
- 1.2 Counting distinct elements
- 1.3 Estimating moments
- 1.4 Counting frequent items

Description

- Data stream consists of a universe of elements chosen from a set
- Maintain a count of the number of distinct elements seen so far
- Obvious solution:
 maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far
 - What if we do not have space to maintain the set of elements seen so far?
 - estimate the count in unbiased way
 - Accept that the count may have a little error but limit the probability that the error is large
 1-4

Flajolet-Martin Algorithm

- Pick a hash function h that maps each of the N elements to at least log₂N bits
- For each stream element a, let r(a) be the number of trailing 0s in h(a)
 - say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- \blacksquare Record R = the maximum r(a) seen
- Estimated number of distinct elements = 2^R

Why it works: Intuition

- h(a) hashes a with equal prob. to any of N values
- Then h(a) is a sequence of log_2N bits, where 2^{-r} fraction of all a have a tail of r zeros
 - About 50% of as hash to ***0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of r=2 (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
- \blacksquare So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why it works: Formally

- Now we show why M-F works
- Formally, we will show that probability of NOT finding a tail of r zeros:
 - Goes to 1 if $m \gg 2^r$
 - Goes to 0 if $m \ll 2^r$
 - where m is the number of distinct elements seen so far in the stream

Why it works: Formally cont'd

- h(a) hashes elements uniformly at random
- \blacksquare Prob. that a random number ends in at least r zeros is 2^{-r}
- The, the probability of NOT seeing a tail of length r among m elements:

Why it works: Formally cont'd

- Note: $(1-2^{-r})^m = (1-2^{-r})^{2^{r(m2^{-r})}} \approx e^{-m2^{-r}}$
- If m $<< 2^r$, $(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$
 - So, the probability of finding a tail of length r tends to 0
- If m >> 2^r, $(1-2^{-r})^m \approx e^{-m2^{-r}} = 0$
 - So, the probability of finding a tail of length r tends to 1

■ Thus, 2^R will almost always be around m

Combining Estimates

- \blacksquare Consider, using many hash functions hi and getting many samples of R_i
- \blacksquare How are samples R_i combined?
 - Average? What if one very large value 2^{Ri}?
 - Median? All estimates are a power of 2

■ Solution:

- Partition your samples into small groups
- Take the average of groups
- Then take the median of the averages

Chapter 4: Mining Data Stream 2

Outline

- 1.1 Filtering a data stream?
- 1.2 Counting distinct elements
- 1.3 Estimating moments
- 1.4 Counting frequent items

Generalization

- What is moment?
- Suppose a stream has elements chosen from a set of N ordered values
- Let m; be the number of times value i occurs in the stream
- The kth-order moment is

$$\sum_{i} (m_i)^k$$

Special case

- 0th moment = number of distinct elements
 - The problem just considered
- 1st moment = count of the numbers of elements = length of the stream
 - Easy to compute
- 2nd moment = surprise number S = a measure of how uneven the distribution is

Surprise Number

- Stream of length 100
- 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9Surprise 5 = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1Surprise S = 8,110

Alon-Matias-Szegedy Algorithm

- We will begin with the 2nd moment S
- We keep track of many variables X
- For each variable X we store X.el and X.val
 - X.el corresponds to the item i
 - X.val corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute:

$$S = \sum_{i} m_{i}^{2}$$

Alon-Matias-Szegedy Algorithm

- How to set X.val and X.el?
 - Assume stream has length n (we relax this later)
 - Pick some random time t (t<n) to start, so that any time is equally likely
 - Let at time t the stream have item i. We set X.el = i
 - Then we maintain count c (X.val = c) of the number of is in the stream starting from the chosen time t
- Then the estimate of the 2nd moment is:

$$S = f(x) = n(2c-1)$$

■ Note, we keep track of multiple Xs, $(X_1, X_2, ..., X_k)$, and our final estimate will be

$$S = \frac{1}{k} \sum_{j} f(X_{j})$$

Expectation Analysis

 $c_t \dots$ number of times record at time t appears from that time on $(c_1=m_a, c_2=m_a-1, c_3=m_b)$

$$E[f(x)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1)$$

$$= \frac{1}{n} \sum_{a} n(1 + 3 + 5 + \dots + 2m_a - 1)$$

$$= \sum_{a} (m_a)^2$$

$$\sum_{a=1}^{m_a} (2i-1) = 2 \frac{m_a (m_a + 1)}{2} - m_a = (m_a)^2$$

Example

- \blacksquare Stream: a,b,c,b,d,a,c,d,a,b,d,c,a,a,b
- length of the stream n = 15
- \blacksquare a: 5, b: 4, c: 3, d: 3, surprise num: $5^2 + 4^2 + 3^2 + 3^2 = 59$
- Three variables X1, X2, X3
- Random pick 3rd, 8th, 13th position to define X1,X2,X3
 - \blacksquare X1.el = c, X1.val = 3
 - X2.el = d, X2.val = 2
 - X3.el = a, X3.val = 2
 - an estimate for any variable X: n*(2*X.val 1)
 - **■** 75,45,45→55

Higher Order Moment

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n(2 \cdot c 1)$
 - For k=3 we use: $n(3 \cdot c^2 3c + 1)$
- Why?
 - For k=2: Remember we had $1+3+5+\cdots+2m_i-1$ and we showed terms 2c-1 (for c=1,...,m) sum to m^2

■ So:
$$\sum_{c=1}^{m} 2c - 1 = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c-1)^2 = m^2$$

- For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate = $n(c^k (c-1)^k)$

Combining Samples

■ In practice:

- For k=2 we used $n(2\cdot c 1)$
- In practice, Compute f(X) = n(2c-1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages
- Problem: Streams never end
 - •We assumed there was a number n, the number of positions in the stream
 - But real streams go on forever, so n is a variable the number of inputs seen so far

Stream never ends

- ■The variables X have n as a factor keep n separately; just hold the count in X
- Suppose we can only store k counts. We must throw some Xs out as time goes on:
- Objective: Each starting time t is selected with probability k/n
- Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the nth element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability

We are producing more data than we are able to store!

[The economist, 2010]

How do you want that data?

Tell me and I forget.

Show me and I remember.

Involve me and I understand.

 \bullet \bullet \bullet \bullet \bullet \bullet \bullet

Thank you! Q&A

