Curriculum Vitae Matthias Moulin

Personalia

City: Humbeek (Belgium) Nationality: Belgian

Birthdate: 15 January 1992 Birthplace: Vilvoorde (Belgium)

Mobile: Email: matthias[dot]moulin[at]gmail[dot]com

Driving license: Class B Hobbies: Running, saxophone, guitar, programming, gaming

in LinkedIn https://be.linkedin.com/in/matthias-moulin

Github https://github.com/matt77hias - https://github.com/matt77hias - https://github.com/matt77hias - https://matt77hias.github.io

Experience (in reverse chronological order)

Jun 2020 -	Frostbite, EA Digital Illusions CE AB, Stockholm (Sweden)
	Software Engineer in Rendering II
Feb 2019 - Jun 2020	Frostbite, EA Digital Illusions CE AB, Stockholm (Sweden)
	Software Engineer in Rendering I
	• Technology: Flux, GI Live Preview, GPU Probes, PBR Materials
Oct 2016 - Feb 2019	Department of Computer Science, KU Leuven, Leuven (Belgium)
	PhD Researcher funded by the Research Foundation - Flanders (FWO)
Oct 2015 - Sep 2016	Department of Computer Science, KU Leuven, Leuven (Belgium)
	PhD Researcher funded by the Computer Graphics Research Group (KU Leuven)

Education (in reverse chronological order)

2015 - 2020	KU Leuven, Leuven (Belgium	١
2013 - 2020	NO Leuven, Leuven (Beigium	,

Doctor of Philosophy in Engineering (Computer Science) — Not finished

Research topics: Acceleration data structures and heuristics for ray tracing queries
 (Global illumination) light transport and (real-time) rendering algorithms

Supervisor: prof. dr. ir. Philip Dutré

• Funding: Research Foundation - Flanders (FWO) Oct 2016 - Sep 2020

Computer Graphics Research Group (KU Leuven) Oct 2015 - Sep 2016

2015 - 2016 <u>Gemeentelijke Academie Wemmel, Wemmel (Belgium)</u>

Part-Time Arts Education - Music

• Major: Electrical Guitar (Pop/Jazz)

2013 - 2015 KU Leuven, Leuven (Belgium)

Master of Science in Engineering (Computer Science) — Magna cum laude (84.46%)

• Major: Human Computer Interaction (Computer Graphics)

• Thesis: Hybrid Kd-trees for Photon Mapping and Accelerating Ray Tracing (18.5/20)

Supervisor: prof. dr. ir. Philip Dutré

2010 - 2013 KU Leuven, Leuven (Belgium)

Bachelor of Science in Engineering — Magna cum laude (76.83%)

• Major: Computer Science

• Minors: Electrical Engineering and Business Management

2004 - 2010 <u>Sint-Theresiacollege</u>, Kapelle-op-den-Bos (Belgium)

Algemeen Secundair Onderwijs (ASO) — Magna cum laude (84.1%)

• Major: Science-Mathematics

2000 - 2010 <u>Gemeentelijke Academie Grimbergen</u>, Grimbergen (Belgium)

Part-Time Arts Education - Music — Magna cum laude (81.6%)

• Major: Alto Saxophone (Classical Music)

Publications (in reverse chronological order)

MOULIN M., DUTRÉ P.: On the use of Local Ray Termination for Efficiently Constructing Qualitative BSPs, BIHs and (S)BVHs, *The Visual Computer*, Volume 35, Issue 12, pp. 1809–1826, December 2019 (First online: July 2018).

MOULIN M.: <u>Hybrid Kd-trees for Photon Mapping and Accelerating Ray Tracing</u>, *Master's thesis*, Department of Computer Science, KU Leuven, Belgium, June 2015.

MOULIN M., BILLEN N., DUTRÉ P.: <u>Efficient Visibility Heuristics for Kd-Trees Using the RTSAH</u>, In *Eurographics Symposium on Rendering - Experimental Ideas & Implementations* (June 2015), Lehtinen J., Nowrouzezahrai D., (Eds.), The Eurographics Association, pp. 31–39.

Game credits and contributions (in reverse chronological order)

Motive: Star Wars: Squadrons, Electronic Arts, October 2020.

EA Vancouver, EA Romania: FIFA 21, Electronic Arts, September 2020.

EA Tiburon: Madden NFL 21, Electronic Arts, August 2020.

Ghost Games: Need for Speed Heat, Electronic Arts, November 2019.

PopCap Games: Plants vs. Zombies: Battle for Neighborville, Electronic Arts, October 2019.

EA Vancouver, EA Romania: FIFA 20, Electronic Arts, September 2019.

EA Tiburon: Madden NFL 20, Electronic Arts, August 2019.

EA DICE: Battlefield V, Electronic Arts, November 2018. (post-release)

EA DICE: Star Wars Battlefront II, Electronic Arts, November 2017. (post-release)

Skills

Frameworks D3D11, D3D12, OpenCV, OpenMP

Game engines Frostbite, Unity3D

Markup languages HTML/CSS, Markdeep, Markdown, TeX/LaTeX

Modelling languages OCL, UML

Programming languages C (89/90, 99, 11/18), C++ (98/03, 11/14, 17, 20), C#, CUDA C/C++, Elm, Erlang, Haskell,

J#, Java, JavaScript/TypeScript, Maple, Matlab/Octave, MIPS, Prolog, Python 2/3, Racket

Shading languages GLSL, HLSL

Version control Git, Mercurial, Perforce, SVN

Languages

Dutch Mother tongue

English Fluent speaker and writer
French Moderate speaker and writer
Swedish Basic speaker and writer

Past projects (selected)

MAGE v0 Game and rendering engine featuring both forward and deferred PBR pipelines with

optional Voxel Cone Tracing indirect illumination (C++17, D3D11, HLSL)

MAGE v1 (WIP) Improved and extended remake built from the ground up (C++20, D3D12, HLSL)

Teaching assistantship

2016 - 2018	Computer Graphics: Project	[B-KUL-H07Z5A]
2016 - 2017	Capita Selecta Computer Science: Man Machine Interface	[B-KUL-H05N2A]
2016 - 2017	Problem Solving and Engineering Design, Part 3	[B-KUL-H01D4B]
2015 - 2016	Problem Solving and Engineering Design: Computer Science	[B-KUL-H01Q3C]

Thesis mentorship

2018 - 2019	Jesse Hoobergs	Using the Distribution of the Geometric Normals for Constructing BSPs
2017 - 2018	Mathijs Delabie	Genetic Operators for Metropolis Light Transport
2016 - 2017	Menno Keustermans	Estimating Ray Distributions from a Markov Transfer Process
2016 - 2017	Maarten Tegelaers	Forward & Deferred Hashed Shading for Real-time Rendering of Many Lights
2015 - 2016	Jeroen Sanders	Accelerating Ray Tracing using Cone/Cylinder Shafts