Probability Theory

Labix

May 11, 2025

Abstract

Notes for the basics of Probability Theory.

Contents

1		ndations of Probability Theory	
	1.1	Definition of Probability	
	1.2	Multiplication Principle	
	1.3	Conditional Probability	
	1.4	Independence of Events	
2	Prol	bability Distributions	
	2.1	Random Variables and its Distribution	
	2.2	Cumulative Density Functions	
	2.3	Multivariate Random Variables	
	2.4	Algebra of Random Variables	
3	Expectation and Variance		
	3.1	Expectations	
	3.2	Variance and Covariance	
	3.3	Moments	
	3.4	Conditional Expectations	
4	Convergence of Random Variables		
	4.1	Different Notions of Convergences	
	4.2	Law of Large Numbers	
	4.3	Central Limit Theorem	

1 Foundations of Probability Theory

1.1 Definition of Probability

Definition 1.1.1: Probability Space

A probability space is a measure space (Ω, \mathcal{F}, P) where the measure P lands in [0, 1].

Explicitly, a probability space is a triple (Ω, \mathcal{F}, P) consisting of the following data:

- $\Omega \neq \emptyset$ is a set called the sample space.
- $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is a σ -algebra called events.
- $P: \mathcal{F} \to [0,1]$ is a set function.

such that the following are true:

- $P(\Omega) = 1$.
- If $\{A_n \mid n \in \mathbb{N}\} \subseteq \mathcal{F}$ are pairwise disjoint, then

$$P\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} P(A_k)$$

Proposition 1.1.2

Let (Ω, \mathcal{F}, P) be a probability space. Let $A, B \in \mathcal{F}$ be events. Then the following are true.

- $P(\Omega \setminus A) = 1 P(A)$
- $A \subset B \implies P(A) \leq P(B)$

Proof. Let $A \subset B \subset \Omega$ be events in Ω .

- A and $\Omega \setminus A$ are disjoint and $P(\Omega) = P(A) + P(\Omega \setminus A)$ and $P(\Omega \setminus A) = 1 P(A)$
- We have that A and $B \setminus A$ are disjoint. Thus $P(B) = P(A) + P(B \setminus A)$. Since $P(B \setminus A) \ge 0$, we have $P(A) \le P(B)$.

Definition 1.1.3: Uniform Probability Measure

Let Ω be a sample space. A probability measure P is uniform if to all $a, b \in \Omega$,

$$P(\{a\}) = P(\{b\})$$

Theorem 1.1.4

Let Ω be a sample space and P a uniform probability measure of Ω . Then for all $A \subset \Omega$,

$$P(A) = \frac{|A|}{|\Omega|}$$

Proof. Suppose that A consists of |A| distinct elements and the event space $|\Omega|$ contains $|\Omega|$ distinct elements. Since every singleton set is pairwise disjoint, we have $P(A) = |A|P(\{a\})$ for any $a \in A$. Similarly, we have $P(\Omega) = |\Omega|P(\{a\})$. Thus we have that $P(A) = \frac{|A|P(\Omega)}{|\Omega|}$ and $P(A) = \frac{|A|}{|\Omega|}$

Theorem 1.1.5: Principle of Inclusion Exclusion

Let $A, B \subset \Omega$ be a sample space and P the probability measure.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Proof. Note that

$$A \cup (B \setminus A) = A \cup (B \cap A^c)$$
$$= (A \cup B) \cap (A \cup A^c)$$
$$= A \cup B$$

Note also that $A \cap (B \setminus A) = \emptyset$. Thus $P(A \cup B) = P(A) + P(B \setminus A) = P(A) + P(B) - P(A \cap B)$

Theorem 1.1.6: Extended Principle of Inclusion Exclusion

Let $A_k \subset \Omega$ be a sample space and P the probability measure for all $k \leq n \in \mathbb{N}$. Then

$$P\left(\bigcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_{1} \leq \dots \leq n} P(A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}})$$

1.2 Multiplication Principle

Theorem 1.2.1: The Multiplication Principle

Suppose that Experiment A has a outcomes and Experiment B has b outcomes. Then the performing both A and B results in ab possible outcomes.

Theorem 1.2.2: Sampling with replacement - Ordered

In the case of sampling k balls with replacement from an urn containing n balls, there are $|\Omega|=n^k$ possible outcomes when the order of the objects matters, where $\Omega=\{(s_1,\ldots,s_k):s_i\in\{1,\ldots,n\}\forall i\in\{1,\ldots,k\}\}.$

Theorem 1.2.3: Sampling without replacement - Ordered

In the case of sampling k balls without replacement from an urn containing n balls, there are $|\Omega| = \frac{n!}{(n-k)!}$ possible outcomes when the order of the objects matters, where $\Omega = \{(s_1,\ldots,s_k): s_i \in \{1,\ldots,n\} \forall i \in \{1,\ldots,k\}, i \neq j \implies s_i \neq s_j\}.$

Theorem 1.2.4: Sampling without replacement - Unordered

In the case of sampling k balls without replacement from an urn containing n balls, there are $|\Omega|=\binom{n}{k}$ possible outcomes when the order of the objects does not matter, where $\Omega=\{\omega\subset\{1,\ldots,n\}:|\omega|=k\}$.

Theorem 1.2.5: Sampling with replacement - Unordered

In the case of sampling k balls with replacement from an urn containing n balls, there are $|\Omega| = \binom{n+k-1}{k}$ possible outcomes when the order of the objects does not matter, where $\Omega = \{\omega \subset \{1,\ldots,n\} : \omega \text{ is a } k \text{ element multiset with elements from } \{1,\ldots,n\}\}.$

1.3 Conditional Probability

Definition 1.3.1: Conditional Probability

Consider a probability space (Ω, P) . Let $A, B \subset \Omega$ with P(B) > 0. Then the conditional probability of A given B, denoted by P(A|B) is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Theorem 1.3.2: Multiplication Rule

Let $n \in \mathbb{N}$. Then for any events A_1, \ldots, A_n such that $P(A_2 \cap \cdots \cap A_n) > 0$, we have

$$P(A_1 \cap \dots \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)\dots P(A_n|A_1 \cap \dots \cap A_{n-1})$$

Proof. From the right hand side, we have

$$P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \dots P(A_n|A_1 \cap \dots \cap A_{n-1})$$

$$= P(A_1)\frac{P(A_2 \cap A_1)}{P(A_1)}\frac{P(A_3 \cap A_2 \cap A_1)}{P(A_2 \cap A_1)} \dots \frac{P(A_n \cap \dots \cap A_1)}{P(A_1 \cap \dots \cap A_{n-1})}$$

$$= P(A_1 \cap \dots \cap A_n)$$

Theorem 1.3.3: Bayes' Rule

Let (Ω, P) be a probability measure. Let $A, B \subset \Omega$ with P(A), P(B) > 0. Then

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Proof. We have that $P(A \cap B) = P(A|B)P(B)$ and $P(A \cap B) = P(B|A)P(A)$.

Theorem 1.3.4: Law of Total Probability

Let (Ω, P) be a probability measure. Let A_1, \ldots, A_n be a partition of Ω with $P(A_i) > 0$ for all $i = 1, \ldots, n$. Then for any $B \subset \Omega$,

$$P(B) = \sum_{k=1}^{n} P(A_k)P(B|A_k)$$

Proof. Note that since A_1, \ldots, A_n is a partition, $B \cap A_1, \ldots, B \cap A_n$ is also a parition.

$$\sum_{k=1}^{n} P(A_k)P(B|A_k) = \sum_{k=1}^{n} P(B \cap A_k)$$
$$= P\left(\bigcup_{k=1}^{n} B \cap A_k\right)$$
$$= P(B \cap \Omega)$$
$$= P(B)$$

Theorem 1.3.5: General Bayes' Rule

Let (Ω, P) be a probability measure. Let A_1, \ldots, A_n be a partition of Ω with $P(A_i) > 0$ for all $i = 1, \ldots, n$. Then for any $B \subset \Omega$ with P(B) > 0,

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{k=1}^{n} P(B|A_i)P(A_i)}$$

Proof. Apply Bayes' rule and apply the mulitplication rule.

1.4 Independence of Events

Definition 1.4.1: Independent Events

Two events A, B are said to be independent if

$$P(A \cap B) = P(A)P(B)$$

Proposition 1.4.2

If A, B are independent, then A^c, B, A, B^c and A^c, B^c are independent.

Proof. We only proof the first and third item.

• Without loss of generality we prove the first and reader mirrors the second.

$$P(A^{c} \cap B) = P(B) - P(A \cap B)$$
$$= P(B)(1 - P(A))$$
$$= P(B)P(A^{c})$$

• Note that $P(A \cap B) = P(A)P(B)$

$$P(A^{c} \cap B^{c}) = 1 - P(A \cap B)$$

$$= 1 - P(A) - P(B) + P(A \cap B)$$

$$= 1 - P(A) - P(B) + P(A)P(B)$$

$$= (1 - P(A))(1 - P(B))$$

$$= P(A^{c})P(B^{c})$$

2 Probability Distributions

2.1 Random Variables and its Distribution

Definition 2.1.1: Random Variable

Let (Ω, \mathcal{F}, P) be a probability space. Let (E, \mathcal{E}) be a measurable space. An (E, \mathcal{E}) valued random variable is an \mathcal{F} -measurable function $X : \Omega \to E$.

Definition 2.1.2: Independent Random Variables

Let (Ω, \mathcal{F}, P) be a probability space. Let (E, \mathcal{E}) be a measurable space. Let $X, Y : \Omega \to E$ be random variables. We say that X and Y are independent if for any $A, B \in \mathcal{E}$, we have that $X^{-1}(A)$ and $Y^{-1}(B)$ are independent events in \mathcal{F} .

Definition 2.1.3: Discrete and Continuous Random Variables

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable.

- We say that X is discrete if im(X) is a countable subset of \mathbb{R} .
- We say that *X* is continuous otherwise.

Recall that X is an \mathcal{F} -measurable function if $X^{-1}(B) \in \mathcal{F}$ for $B \in \mathcal{E}$.

Definition 2.1.4: Probability Distribution

Let (Ω, E, \mathbb{P}) be a probability space. Let (E, \mathcal{E}) be a measurable space. Let $X: \Omega \to E$ be a measurable function. Define the probability distribution of X to be the pushforward measure $P \circ X^{-1} = P_X : \mathcal{E} \to [0,1]$ defined by

$$P_X(A) = P(X^{-1}(A))$$

for $A \in \mathcal{E}$.

Definition 2.1.5: Probability Density Function

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. Define the probability density function of X to be the Radon–Nikodym derivative

$$f_X = \frac{dX_*P}{d\mu}$$

where μ is the Lebesgue measure.

Recall that this means that f_X satisfies the property that

$$P_X(A) = \int_A f_X d\mu$$

for any measurable set $A \subseteq \mathbb{R}$. In particular, if $A = \{a\} \subseteq \mathcal{F}$, then we have

$$P_X(a) = f_X(a)$$

The probability distribution function has its input as every measurable subset of \mathbb{R} , while the probability density function takes input as individual points of \mathbb{R} . They are really the same thing because having its probability be determined on singletons is sufficient to determine the probability of every measurable subset.

Proposition 2.1.6

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a discrete random variable. Let $g : \mathbb{R} \to \mathbb{R}$ be a function. Then the probability density function of $Y = g \circ X$ is given by

$$f_Y(y) = \sum_{x \in g^{-1}(y)} f_X(x)$$

Proposition 2.1.7

Suppose that X is a continuous random variable with density f_X and $g: \mathbb{R} \to \mathbb{R}$ is strictly monotone and differentiable with inverse function denoted g^{-1} , then Y = g(X) has density

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} (g^{-1}(y)) \right|$$

for all $y \in \mathbb{R}$

Example 2.1.8: Bernoulli Distribution

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. We say that X has a Bernoulli distribution if the probability density function of X is given by

$$f_X(x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}$$

for some $p \in [0, 1]$.

Example 2.1.9: Binomial Distribution

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. We say that X has a binomial distribution if the probability density function of X is given by

$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

for some $p \in [0, 1]$.

Definition 2.1.10: Poisson Distribution

A discrete random variable X is said to have Poisson Distribution with parameter $\lambda>0$ if $\mathrm{im}(X)=\mathbb{N}_0$ and

$$p_X(x) = \frac{\lambda^x}{r!} e^{-x}$$

Definition 2.1.11: Geometric Distribution

A discrete random variable X is said to have Geometric Distribution with parameter $p \in (0,1)$ if $\operatorname{im}(X) = \mathbb{N}_0$ and

$$p_X(x) = p(1-p)^{x-1}$$

Let $I \subseteq \mathbb{R}$ be an interval. Recall that $\mathcal{B}(I)$ refers to the borel measurable subsets of I. Denote λ the Lebesgue measure on \mathbb{R}^n .

Example 2.1.12: Uniform Distribution

Let $[a,b] \subseteq \mathbb{R}$ be an interval. Let X be a random variable on the probability space $([a,b],\mathcal{B}([a,b]),P)$. We say that X has a uniform distribution if its probability density function is given by

$$f_X(A) = \frac{\lambda(A)}{b-a}$$

for $A \subseteq [a, b]$.

In particular, when $A = \{c\} \subseteq [a, b]$ is the one-point set, we have $P_X(c) = \frac{1}{b-a}$ so that the probability of any one point set is uniform.

Example 2.1.13

Let X be a uniform distribution on [a,b]. Then the probability density function of X is given by

$$F_X(x) = \frac{1}{b-a}$$

Example 2.1.14: Normal Distribution

Let X be a random variable on the probability space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P)$. We say that X has a normal distribution if its probability density function is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

for some $\mu \in \mathbb{R}$ and $\sigma > 0$.

Definition 2.1.15: Exponential Distribution

A conitnuous random variable X is said to have Exponential Distribution with parameter $\lambda > 0$ if its density function is given by

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

and its cumulative function given by

$$F_X(x) = \begin{cases} 0 & \text{if } x \le 0\\ 1 - e^{-\lambda x} & \text{if } x > 0 \end{cases}$$

Definition 2.1.16: Gamma Distribution

A conitnuous random variable X is said to have Gamma Distribution with shape parameter $\alpha>0$ and rate parameter $\beta>0$ if its density function is given by

$$f_X(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Cumulative Density Functions

Definition 2.2.1: Cummulative Distribution Function

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. Define the cummulative distribution function $F_X : \mathbb{R} \to \mathbb{R}$ of X to be

$$F_X(x) = P_X(X \le x)$$

Proposition 2.2.2

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. Then the following are true.

- $f_X = \frac{dF_X}{dx}$. $F_X(x) = \int_{-\infty}^x f_X(t) dt$

Proposition 2.2.3

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. Then the following are true regarding the cumulative distribution function F_X .

- F_X is monotonically increasing: $x \le y \implies F_X(x) \le F_X(y)$
- F_x is right continuous: If (x_n) is a sequence such that $x_1 \ge \cdots \ge x_n \ge x_{n+1} \ge \cdots \ge x$ and $(x_n) \to x$, then $F_X(x_n) \to F_X(x)$
- $F_X(-\infty) = 0$ and $F_X(\infty) = 1$

Proposition 2.2.4

Suppose that X is a random variable on a probability space (Ω, E, \mathbb{P}) with cumulative distribution function F_X . If a < b, then $\mathbb{P}(a < X \le b) = F_X(b) - F_X(a)$

Multivariate Random Variables

Let (Ω, E, \mathbb{P}) be a probability space. The definition of random variables and probability distribution is well-adapted to the case when the random variable X lands in \mathbb{R}^n . In this case, we may find the relationship between the probability density function of X and the probability density function of its individual components.

Definition 2.3.1: Joint Probability Mass Function

Let X, Y be discrete random variables. The joint probability mass function of X and Y is the function

$$p_{X,Y}(x,y) = P(\{\omega \in \Omega : X(\omega) = x, Y(\omega) = y\}) = P((X,Y) = (x,y))$$

for all $(x, y) \in \mathbb{R}^2$

Let $p_{X,Y}$ be the joint probability mass function of two random variables X,Y.

- $p_X(x) = \sum_y p_{X,Y}(x,y)$ $p_Y(y) = \sum_x p_{X,Y}(x,y)$

Definition 2.3.3: Joint Cumulative Distribution Function

Let X, Y be random variables. The joint cumulative distribution function of X and Y is the function

$$F_{X,Y}(x,y) = P(\{\omega \in \Omega : X(\omega) \le x, Y(\omega) \le y\}) = P(X \le x, Y \le y)$$

for all $(x,y) \in \mathbb{R}^2$

Theorem 2.3.4

Let $F_{X,Y}$ be the joint cumulative distribution function of two random variables X,Y.

- $\lim_{x,y\to-\infty} F_{X,Y}(x,y) = 0$
- $\lim_{x,y\to\infty} F_{X,Y}(x,y) = 1$
- $x \le x'$ and $y \le y'$ implies $F_{X,Y}(x,y) \le F_{X,Y}(x',y')$
- $F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y)$
- $F_Y(x) = \lim_{x \to \infty} F_{X,Y}(x,y)$

Definition 2.3.5: Jointly Continuous

Let X, Y be random variables. X and Y are jointly continuous if

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) dv du$$

for a function $f_{X,Y}:\mathbb{R}^2 o \mathbb{R}^2$ satisfying

• $f_{X,Y}(u,v) \ge 0$ • $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(u,v) \, dv \, du = 1$ We call $f_{X,Y}$ the joint density function of (X,Y).

Let $F_{X,Y}$ be the joint cumulative distribution function of two random variables X,Y.

- $f_{X,Y}(x,y) = \begin{cases} \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y) & \text{if the derivative exists at } (x,y) \\ 0 & \text{otherwise} \end{cases}$ $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$ $f_Y(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$

Proposition 2.3.7: L

 $t(\Omega, E, \mathbb{P})$ be a probability space. Let (E, \mathcal{E}) be a measurable space. Let $X, Y: \Omega \to \mathbb{R}$ be a random variables. Then the following are equivalent.

- *X* and *Y* are independent.
- $\bullet \ f_{(X,Y)} = f_X f_Y.$
- $\bullet \ \overrightarrow{F}_{(X,Y)} = F_X F_Y$

Algebra of Random Variables

Proposition 2.4.1

Let (Ω, E, \mathbb{P}) be a probability space. Let $X, Y : \Omega \to \mathbb{R}$ be a random variables. Then we have

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_{(X,Y)}(t, z - t) dt$$

Proposition 2.4.2

Let $X \approx \text{Poi}(\lambda)$ and $Y \approx \text{Poi}(\mu)$ be independent. $X + Y \approx \text{Poi}(\lambda + \mu)$.

Proof.

$$p_{X+Y}(m) = \sum_{k \in \mathbb{Z}} \frac{\lambda^k}{k!} e^{-k} \frac{\mu^{m-k}}{(m-k)!} e^{k-m}$$

$$= \frac{1}{m!} e^{-m} \sum_{k=0}^m m! \frac{\lambda^k}{k!} \frac{\mu^{m-k}}{(m-k)!}$$

$$= \frac{1}{m!} e^{-m} \sum_{k=0}^m \binom{m}{k} \lambda^k \mu^{m-k}$$

$$= \frac{(\lambda + \mu)^m}{m!} e^{-m}$$

Proposition 2.4.3

Let $X_1, \ldots, X_n \approx \text{Bern}(p)$ be independent. $X_1 + \cdots + X_n \approx \text{Bin}(n, p)$.

Proof. We prove by induction. When n = 2,

$$\begin{split} p_{X_1+X_2}(0) &= p_{X_1}(0)p_{X_2}(0) \\ &= 1 - 2p + p^2 \\ p_{X_1+X_2}(1) &= p_{X_1}(0)p_{X_2}(1) + p_{X_1}(1)p_{X_2}(0) \\ &= (1-p)(p) + p(1-p) \\ &= 2p(1-p) \\ p_{X_1+X_2}(2) &= p_{X_1}(0)p_{X_2}(2) + p_{X_1}(1)p_{X_2}(1) + p_{X_1}(2)p_{X_2}(0) \\ &= p^2 \\ p_{\mathrm{Bin}(2,p)}(x) &= \binom{2}{x} p^x (1-p)^{n-x} \end{split}$$

For $x \in \{0, 1, 2\}$, the two probability density functions match thus for the case n = 2, it is true. Now suppose that $X_1 + \cdots + X_{n-1} \approx \text{Bin}(n-1, p)$. Let $Y = \text{Bin}(n-1, p) + X_n$. For $m \in \{0, \dots, n\}$,

$$\begin{split} p_Y(m) &= \sum_{k \in \mathbb{Z}} p_{\text{Bin}(n-1,p)}(k) p_{X_n}(m-k) \\ &= \sum_{k=0}^m p_{\text{Bin}(n-1,p)}(k) p_{X_n}(m-k) \\ &= \sum_{k=0}^m \binom{n-1}{k} p^k (1-p)^{n-1-k} p_{X_n}(m-k) \\ &= \sum_{k=m-1}^m \binom{n-1}{k} p^k (1-p)^{n-1-k} p_{X_n}(m-k) \\ &= \binom{n-1}{m-1} p^{m-1} (1-p)^{n-m} p_{X_n}(1) + \binom{n-1}{m} p^m (1-p)^{n-1-m} p_{X_n}(0) \\ &= \binom{n-1}{m-1} p^m (1-p)^{n-m} + \binom{n-1}{m} p^m (1-p)^{n-m} \\ &= \binom{n}{m} p^m (1-p)^{n-m} \end{split}$$

Thus for the case $X_1 + \cdots + X_n$ it is true.

Proposition 2.4.4

Let $X \approx \text{Bin}(m, p)$ and $Y \approx \text{Bin}(n, p)$ be independent. $X + Y \approx \text{Bin}(m + n, p)$.

Proof.

$$p_{X+Y}(t) = \sum_{k \in \mathbb{Z}} p_X(k) p_Y(t-k)$$

$$= \sum_{k=0}^t \binom{m}{k} p^k (1-p)^{m-k} \binom{n}{t-k} p^{t-k} (1-p)^{n-t+k}$$

$$= \sum_{k=0}^t \binom{m}{k} \binom{n}{t-k} p^t (1-p)^{m+n-t}$$

$$= p^t (1-p)^{m+n-t} \sum_{k=0}^t \frac{m!}{k!(m-k)!} \frac{n!}{(t-k)!(n-t+k)!}$$

Proposition 2.4.5

Let $\lambda>0$. Let $n\in\mathbb{N}$. Let T_1,\ldots,T_n be independent random variables with exponential distribution parameter λ . Then

$$Z = \sum_{k=1}^{n} T_k \approx \operatorname{Gamma}(n, \lambda)$$

Proof. We prove by induction. When n = 2,

$$f_Z(z) = \int_{-\infty}^{\infty} f_{T_1}(x) f_{T_2}(z - x) dx$$
$$= \int_0^z \lambda e^{-\lambda x} \lambda e^{-\lambda (z - x)} dx$$
$$= \lambda^2 e^{-\lambda z} \int_0^z dx$$
$$= \lambda^2 z e^{-\lambda z}$$

Thus the case n=2 is true. Suppose that it is true for n=k-1. Let $X \approx \operatorname{Gamma}(n-1,\lambda)$.

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_{T_n}(z - x) dx$$

$$= \int_0^z \frac{\lambda^{n-1}}{\Gamma(n-1)} x^{n-2} e^{-\lambda x} \lambda e^{-\lambda(z-x)} dx$$

$$= \frac{\lambda^n}{\Gamma(n-1)} e^{-\lambda z} \int_0^z x^{n-2} dx$$

$$= \frac{\lambda^n}{\Gamma(n-1)} e^{-\lambda z} \frac{1}{n-1} z^{n-1}$$

$$= \frac{\lambda^n}{\Gamma(n)} z^{n-1} e^{-\lambda z}$$

Thus we are done \Box

Proposition 2.4.6

Let $m, n \in \mathbb{N}$ and $\lambda > 0$. Let $X \approx \operatorname{Gamma}(m, \lambda)$ and $Y \approx \operatorname{Gamma}(n, \lambda)$ be independent. $X + Y \approx \operatorname{Gamma}(m + n, \lambda)$.

Proof.

$$\begin{split} f_Z(z) &= \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx \\ &= \int_0^z \frac{\lambda^m}{\Gamma(m)} x^{m-1} e^{-\lambda x} \frac{\lambda^n}{\Gamma(n)} (z-x)^{n-1} e^{-\lambda (z-x)} \, dx \\ &= \frac{\lambda^{m+n}}{\Gamma(m)\Gamma(n)} e^{-\lambda z} \int_0^z x^{m-1} (z-x)^{n-1} \, dx \\ &= \frac{\lambda^{m+n}}{\Gamma(m)\Gamma(n)} e^{-\lambda z} \int_0^z x^{m-1} \sum_{k=0}^{n-1} \binom{n-1}{k} z^{n-1-k} (-x)^k \, dx \\ &= \frac{\lambda^{m+n}}{\Gamma(m)\Gamma(n)} e^{-\lambda z} \sum_{k=0}^{n-1} \binom{n-1}{k} z^{n-1-k} (-1)^k \int_0^z x^{m-1+k} \, dx \\ &= \frac{\lambda^{m+n}}{\Gamma(m)\Gamma(n)} z^{m+n-1} e^{-\lambda z} \sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^k \frac{1}{m+k} \end{split}$$

Theorem 2.4.7

Suppose that T_1, T_2, \ldots are independent random variables with exponential distribution parameter λ . Define for $t \geq 0$,

$$N_t = \begin{cases} 0 & \text{if } T_1 > t \\ 1 & \text{if } T_1 \le t < T_1 + T_2 \\ 2 & \text{if } T_1 + T_2 \le t < T_1 + T_2 + T_3 \\ \dots \end{cases}$$

Then, for any $t \geq 0$, we have that $N_t \approx \text{Poi}(\lambda t)$.

Definition 2.4.8: Poisson Process

The family of random variables $\{N_t : t \ge 0\}$ is said to be Poisson process of intensity λ if

- $N_0 = 0$
- for any t_0, \dots, t_n with $0 = t_0 < t_1 < t_2 < \dots < t_n$, the random variables N_{t_1} , $N_{t_2} N_{t_1}$, $N_{t_3} N_{t_2}$, ..., $N_{t_n} N_{t_{n-1}}$ are independent, and $N_{t_i} N_{t_{i-1}} \approx \operatorname{Poi}(\lambda(t_i t_{i-1}))$

3 Expectation and Variance

3.1 Expectations

Definition 3.1.1: Expectations

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. Define the expectation of X to be

 $E[X] = \int_{\Omega} XdP$

Lemma 3.1.2

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. Then we have

$$E[X] = \int_{\mathbb{R}} x f_X(x) \ dx$$

Proposition 3.1.3: Law of the Unconscious Staticians

Let (Ω, \mathcal{F}, P) be a probability space. Let $X_1, \dots, X_n : \Omega \to \mathbb{R}$ be random variables. Let $g : \mathbb{R} \to \mathbb{R}$ be a function. Then we have

$$E[g \circ (X_1, \dots, X_n)] = \int_{\mathbb{R}^n} g(x_1, \dots, x_n) f_{(X_1, \dots, X_n)}(x_1, \dots, x_n) dx_1 \cdots dx_n$$

Proposition 3.1.4

Let (Ω, \mathcal{F}, P) be a probability space. Let $X, Y : \Omega \to \mathbb{R}$ be random variables. Then the following are true.

• If X, Y are random variables and $a, b \in \mathbb{R}$, then

$$E[aX + bY] = aE[X] + bE[Y]$$

• If $P(X \ge Y) = 1$, then

$$E[X] \ge E[Y]$$

Proposition 3.1.5

Let (Ω, \mathcal{F}, P) be a probability space. Let $X, Y : \Omega \to \mathbb{R}$ be random variables. Then X, Y are independent if and only if

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

for any two functions $g, h : \mathbb{R} \to \mathbb{R}$.

3.2 Variance and Covariance

Definition 3.2.1: Variance

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. Define the variance of X to be

$$Var(X) = E[(X - E[X])^2]$$

Lemma 3.2.2

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. Then the following are true.

- $Var(X) \geq 0$.
- Var(X) = 0 if and only if $P_X(E[X]) = 1$.
- $Var(X) = E[X^2] E[X]^2$
- $Var(aX + b) = a^2Var(X)$ for any $a, b \in \mathbb{R}$.

Proposition 3.2.3

Suppose that X_1, \ldots, X_n are independent variables with finite variance. Then

$$\operatorname{Var}\left(\sum_{k=1}^{n} X_{k}\right) = \sum_{k=1}^{n} \operatorname{Var}(X_{k})$$

Definition 3.2.4: Covariance

Let X, Y be two random variables. The covariance of X, Y is defined as

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

Proposition 3.2.5

Suppose that X, Y are random variables.

- Cov(X, Y) = Cov(Y, X)
- Cov(X, X) = Var(X)
- Cov(X, Y) = E(XY) E(X)E(Y)
- If X, Y are independent, Cov(X, Y) = 0
- Cov(aX + bY, Z) = a Cov(X, Z) + b Cov(Y, Z)

Proposition 3.2.6: Variance of Sums

For random variables X_1, \ldots, X_n , we have

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$$

Theorem 3.2.7

Given two random variables X and Y, we have

$$|Cov(X, Y)| \le \sqrt{Var(X) Var(Y)}$$

Theorem 3.2.8: Correlation Coefficient

The correlation coefficient between two random variables X and Y is given by

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

Proposition 3.2.9

Let *X* and *Y* be random variables. We have

$$-1 \le \rho(X,Y) \le 1$$

Moreover, for any $a, b, c, d \in \mathbb{R}$ with a, c > 0, we have

$$\rho(aX + b, cY + d) = \rho(X, Y)$$

Proposition 3.2.10

Let X, Y be random variables.

- $\rho(X, X) = 1$
- $\rho(X, -X) = -1$
- X, Y are uncorrelated if $\rho(X, Y) = 0$

3.3 Moments

Definition 3.3.1: *k*th **Moment**

Let X be a random variable. For $k \in \mathbb{N}$ we define the kth moment of X as $E[X^k]$ whenever the expectation exists.

Definition 3.3.2: Moment Generating Function

The moment-generating function of a random variable X is the function M_X defined as

$$M_X(t) = E[e^{tX}]$$

for all $t \in \mathbb{R}$ for which the expectation is well defined.

Theorem 3.3.3

Assume that M_X exists in a neighbourhood of 0, that is, there exists $\epsilon>0$ such that for all $t\in(-\epsilon,\epsilon)$ we have $M_X(t)<\infty$. Then for all $k\in\mathbb{N}$ the kth moment of X exists, and

$$E[X^k] = \frac{d^k}{dt^k} M_X(t) \bigg|_{t=0}$$

Proof. We have that $E[X^k] = \int_{-\infty}^{\infty} x^k f_X(x) \, dx$ for any continuous cumulative probability. On the other hand,

$$\begin{aligned} \frac{d^k}{dt^k} M_X(t) \bigg|_{t=0} &= \frac{d^k}{dt^k} \int_{-\infty}^{\infty} e^{tx} f_X(x) \, dx \bigg|_{t=0} \\ &= \int_{-\infty}^{\infty} \frac{\partial^k}{\partial t^k} e^{tx} f_X(x) \, dx \bigg|_{t=0} \\ &= \int_{-\infty}^{\infty} x^k e^{tx} f_X(x) \, dx \bigg|_{t=0} \\ &= \int_{-\infty}^{\infty} x^k f_X(x) \, dx \end{aligned}$$

Proposition 3.3.4

Assume that all expectations in the statement are well defined.

- For any $a, b \in \mathbb{R}$, $M_{aX+b}(t) = e^{tb}M_X(at)$
- If X, Y are independent, then $M_{X+Y}(t) = M_X(t)M_Y(t)$

Theorem 3.3.5

Let X, Y be two random variables. Assume that the moment generating functions of X, Y exists and are finite on an interval of the form $(-\epsilon, \epsilon)$. Assume further that $M_X(t) = M_Y(t)$ for all $t \in (-\epsilon, \epsilon)$. Then X, Y have the same distribution.

Theorem 3.3.6

Let X be a non-negative random variable whose expectation is well defined. We then have

$$P(X \ge x) \le \frac{E(X)}{x}$$

Theorem 3.3.7

Let *X* be a random variable whose variance is well defined. Then

$$P(|X - E(X)| \ge x) \le \frac{\operatorname{Var}(X)}{x^2}$$

for all x > 0

3.4 Conditional Expectations

Definition 3.4.1: Conditional Expectations on Subalgebras

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. Let \mathcal{H} be a σ -subalgebra of \mathcal{F} . Define $E[X \mid \mathcal{H}] : \Omega \to \mathbb{R}$ to be a random variable such that the following are true.

- $E[X \mid \mathcal{H}]$ is \mathcal{H} -measurable.
- For any $A \in \mathcal{H}$, we have $E[X \cdot 1_A] = E[E[X \mid \mathcal{H}] \cdot 1_A]$

Lemma 3.4.2

Let (Ω, \mathcal{F}, P) be a probability space. Let $X: \Omega \to \mathbb{R}$ be a random variable. Let \mathcal{H} be a σ -subalgebra of \mathcal{F} . Then the random variable $E[X \mid \mathcal{H}]$ exists and is unique up to almost surely equality.

Lemma 3.4.3

Let (Ω, \mathcal{F}, P) be a probability space. Let $X, Y : \Omega \to \mathbb{R}$ be random variables. Let \mathcal{H} be a σ -subalgebra of \mathcal{F} . Then the following are true.

- Stability: If X is \mathcal{H} -measurable, then $E[XY \mid \mathcal{H}] = XE[Y \mid \mathcal{H}]$.
- Independence: If $\sigma(X)$ and \mathcal{H} are independent, then $E[X \mid \mathcal{H}] = E[X]$.

Definition 3.4.4: Conditional Expectation on Random Variables

Let (Ω, \mathcal{F}, P) be a probability space. Let $X, Y : \Omega \to \mathbb{R}$ be random variables. Define the conditional expectation of X on Y to be

$$E[X \mid Y] = E[X \mid \sigma(Y)]$$

Definition 3.4.5: Conditional Density

Let (Ω, \mathcal{F}, P) be a probability space. Let $X, Y: \Omega \to \mathbb{R}$ be random variables. Define the conditional density of X on the event $\{\omega \in \Omega \mid Y(\omega) = y\}$ by

$$f_{X \mid Y}(x,y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Lemma 3.4.6

Let (Ω, \mathcal{F}, P) be a probability space. Let $X, Y : \Omega \to \mathbb{R}$ be random variables. Then we have

$$E[X\mid Y](\omega) = E[X\mid Y = Y(\omega)] = \int_{-\infty}^{\infty} x f_{X\mid Y}(x, Y(\omega)) \ dx$$

4 Convergence of Random Variables

4.1 Different Notions of Convergences

Definition 4.1.1: Convergence in Mean Square

We say that a sequence of random variables X_1, X_2, \ldots converges in mean square to a random variable X if

$$\lim_{n \to \infty} E[(X_n - X)^2] = 0$$

Definition 4.1.2: Convergence in Probability

We say that a sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X if for every $\epsilon > 0$, we have

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$

Definition 4.1.3: Convergence in Distribution

We say that a sequence of random variables X_1, X_2, \ldots converges in distribution to a random variable X if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

for every x in the set $C = \{x \in \mathbb{R} : F_X \text{ is continuous at } x\}$.

Proposition 4.1.4

Let (Ω, \mathcal{F}, P) be a probability space. Let $X_n : \Omega \to \mathbb{R}$ be a sequence of random variables for $n \in \mathbb{N} \setminus \{0\}$. Let $X : \Omega \to \mathbb{R}$ also be a random variable. Then the following are true.

- If X_n converges in mean square to X, then X_n converges in probability to X.
- If X_n converges in probability to X_n , then X_n converges in distribution to X_n .

4.2 Law of Large Numbers

Theorem 4.2.1: Markov Inequality

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. If $E[X] < \infty$, then we have

$$P(|X| \ge a) \le \frac{E[X]}{a}$$

for any a > 0.

Theorem 4.2.2: Chebyshev Inequality

Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to \mathbb{R}$ be a random variable. If $E[X^2] < \infty$, then we have

$$P(|X| \ge a) \le \frac{E[X^2]}{a}$$

for any a > 0.

Theorem 4.2.3: Weak law of large numbers

Let (Ω, \mathcal{F}, P) be a probability space. Let $X_n: \Omega \to \mathbb{R}$ for $n \in \mathbb{N} \setminus \{0\}$ be a sequence of independently identically distributed random variables with mean μ . Let $S_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then we have

$$\lim_{n \to \infty} P(|S_n - \mu| > \varepsilon) = 0$$

for all $\varepsilon > 0$. In other words, $(S_n)_{n \in \mathbb{N} \setminus \{0\}}$ converges in probability to μ .

Theorem 4.2.4: Law of large numbers in mean square

Let X_1, X_2, \ldots be a sequence of independent random variable, each with mean μ and variance σ^2 . Then

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} \to \mu$$

in mean square.

4.3 Central Limit Theorem

Theorem 4.3.1: Central Limit Theorem

Let (Ω, \mathcal{F}, P) be a probability space. Let $X_n: \Omega \to \mathbb{R}$ be a sequence of independent and identically distributed random variables for $n \in \mathbb{N} \setminus \{0\}$, each with mean μ and variance $\sigma^2 \neq 0$. Let $S_n = X_1 + \dots + X_n$. Then the standardized version of S_n ,

$$Z_n = \frac{S_n - E(S_n)}{\sqrt{\operatorname{Var}(S_n)}} = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

converges in distribution as $n \to \infty$ to a Gaussian random variable with mean 0 and variance 1. That is,

$$\lim_{n \to \infty} P(Z_n \le x) = \lim_{n \to \infty} F_{Z_n}(x) = F_Y(y) = \int_{-\infty}^x -\frac{1}{\sqrt{2\pi}} e^{-y^2/2}$$