Final Exam Review

- o Date: 5/2nd Tuesday
- Time: 6:30 9:00 PM (Online)
- Exam Time Required: 2.5 hours
 - The exam will be ready in Canvas @ 6:30 PM and close @ 9:10 PM.
 - Students must submit by 9 PM.
 - Late submission penalty (5 pts for every 5 minutes a maximum of 10 points lost).
 - Any exams not submitted to Canvas or submitted after 9:10 PM will not be graded.

1870

Format and Rules:

1. Rules

- It must be an individual work. Any evidence of copy or cheating is subject to be reported.
- Closed notes and books.
- If asked, all work must be shown.

2. Question Types:

- Multiple choice, T/F, and multi-selection
- Short conceptual open-ended questions.
- Theoretical application open-ended questions.

Topics:

- Algorithm Analysis
 - Function growth
 - Time complexities (recursion case)
 - Loop Invariants
- Sorting Algorithms
 - Insertion, Merge, Heap, Quick, Counting, Radix, and Bucket
- Trees
 - Binary Search Tree, Red-Black Tree

Topics:

- Data Structure
 - Dynamic Programming, Greedy Algorithm
- Graph Algorithms
 - Elementary Graph Algorithms: Breath First Search, Depth First Search, Topological sort, Strongly Connected Component
 - Minimum Spanning Tree
 - Shortest Paths

1870

Conceptual Question:

Suppose an array A has elements that are short integers, as shown [1,1,2,3,2,1,4,2,1,5,2,1]. While the user wants to sort the elements, the user also wants to print out the monotonically increasing index order. Demonstrate the algorithm that you would suggest and explain.

1870

Conceptual Question:

Suppose an array A has elements that are short integers, as shown [1,1,2,3,2,1,4,2,1,5,2,1]. While the user wants to sort the elements, the user also wants to print out the monotonically increasing index order. Demonstrate the algorithm that you would suggest and explain.

- 1. The stable sorting algorithm, e.g., insertion, merge, or counting.
- 2. Insertion sort may not be the best considering the worst case.
- 3. Counting sort vs. merge sort.
 - 1. Counting sort wins: running time
 - 2. Easy to track the index of A.

Conceptual Question:

If
$$T(n) = 2T(\frac{n}{2}) + n^3$$
, show that $T(n) = \Theta(n^3)$ using the Master's theorem. Justify your answer.

Conceptual Question

If
$$T(n) = 2T\left(\frac{n}{2}\right) + n^3$$
, show that $T(n) = \Theta(n^3)$ using the Master's theorem.

Master's Theorem:

$$n^{1+\epsilon} = ? n^3$$

$$2\left(\frac{n}{2}\right)^3 < ? cn^3$$

Justification:

- Constant conditions are justified.
- Suppose T(n) characterizes a divide-conquer algorithm. The recursion requires half split to have two subproblems. The dividing and combining times dominate the running time.

Application Question

Suppose you have an array with random integers. You are asked to implement an algorithm that finds the maximum sum of four sequences. How would you modify the following divide-conquer algorithm? What would be the running time?

```
Find-Max-Crossing-Subarray(A,low,mid,high)
    leftsum = -\infty
    sum = 0
    For i = mid downto low
                                                      if high == low
          sum = sum + A[i]
                                                           return (low, high, A[low]) //base case: only one element
                                                      else mid = |(low + high)/2|
          If sum > leftsum
                                                            (leftlow, lefthigh, leftsum) = FIND-MAXIMUM-SUBARRAY(A,low,mid)
                leftsum = sum
                                                            (rightlow, righthigh, rightsum) = FIND-MAXIMUM-SUBARRAY(A, mid+1, high)
                                                            (crosslow, crosshigh, crosssum) = FIND-MAX-CROSSING-SUBARRAY(A,low,mid,high)
               maxleft = i
                                                            if leftsum \ge rightsum \& leftsum \ge crosssum
    rightsum = -\infty
                                                                 return(leftlow, lefthgh, leftsum)
                                                            elseif rightsum \ge leftsum \& rightsum \ge crosssum
    sum = 0
                                                                 return(rightlow, righthigh, rightsum)
    For j = mid + 1 to high
                                                            else return(crosslow, crosshigh, crosssum)
11
          sum = sum + A[j]
          If sum > rightsum
12
13
               rightsum = sum
                maxright = j
14
    return \ maxleft, maxright, leftsum + rightsum
```