第十一次作业

- 1. 评分标准
- 第一题20分,基本回路、割集每个2分,基本回路4分
- 第二题10分,
- 第三题20分,避圈法过程占10分
- · 第四题30分,二叉树10分,波兰式,逆波 兰式各5分,计算过程各5分
- · 第五题20分,霍夫曼树10分,最佳二元前 缀码5分,其余5分

• 问题主要集中在第三题,第四题。其他题目大多

数同学都没有问题。

① 第三题: Kruskal算法的 终止条件是k=n-1 的成化和多多的地

的加美上方和为8颗型

@ 加入权为10到20 不构成国路, 保留

的成百路, 新去

图加入在侧本的 12至9边

① 加入权为15的进 构成回路, 新一去

的加入权为 20的边

经所得 最小生成和为

3/10

② 第四题:

a. 波兰式求值过程混乱,看不清过程

b. 二叉树求错

c. 波兰式求值没有任何过程

范例

```
对方于弦C的基本国路: Ccanbc
     ···· e ··· : Ces abde,
 对应于树枝a的基础集; Sa= aceh
         ... d ... : Sd = deht
                Sq = gent
   Cid, c, h, g = Cc D (h = ia, b, C + D a, b, h, d, g + = id, c, h, g +
   5 /+, de, h = Sd= } +, d, e, h }
  这有n个压点,X片极时
   由这义在2村中的m=n-1,根据是面影有 N=2+入→ m=X+1
   而根据报事室理 2m=3+5+X 为 2CX+1)=3+3+X
   可该树中顶点数为8,边数为了
有Prim与Kruskal 顕法,选择Kruskal 顕法
例7.8 (a) 中边换权值由小别大部部分 73,4,7,8,8,10,12,12,15,20
Step1: 选择最小边3,
step2:继续选择和全最小边上,不构成归民人
sted 3:
        ·····8,构成回路,抛弃,×
Step 4:
steps: ..... 8, 和成回路, 抛弃; ×
       --- 10,不构成回路,价有顶点已经在生成构中,完成。
Step b:
1Step 7: -----12, 抛弃,
                  最小生成村子3,4,7,10
step 8: .... 12, */04
Step 9: -... 5, 树梅
```


10

第十二次作业

- 1. 评分标准
- 第一题15分,分析过程10分,结果5分
- 第二题15分,分析过程10分,结果5分
- 第三题10分,分析过程5分,结果5分
- 第四题15分, 求解递推方程10分
- 第五题15分, 算法过程5分, 递推方程求 解过程10分
- 第六题15分, 递推方程求解过程10分
- 第七题15分, 递推方程求解过程10分

2. 情况汇总

- ① 四到七题有抄袭现象
- ② 第一题:没有写出任何分析过程

③ 第三题:思路正确,结果求错

④ 8.31递归树构造不完全

范例

```
1. 已知从一到的分十并制正整数的总数字个数数(不包括是数)
 第十二次作业
  2 1890 fin.
 解: 1到9, 数字数为1,共9个
    10到99 数字数为工、共90个
    100到999 数字数为3 共 $ 900个
      9x1+90x2=189 < 1890 < 9x1+90x2+900x3 = 2889
    故1890为总数空个数的的为三倍数 1005月~999
      (1890-189) -3=567 故共有567个3任数
    $2 n $ 567+100-1 = 666
2. 三、自己的战子和两次有色的技子丰星江在5以5、战盘上京
走每行每时以放置一个拱子,则共有多个少年中景江马注
  . 建城方法
          N= P= P= |200
有6个演唱节目、4个舞蹈节目、宝编节目单、要就任适西什么
3台节目之间至少定批一个海昭节目,见其可编写光彩。个
解。是国要形即为舞蹈节目不相邻、武可定批的海影
  节且西镇入舞路节息舞场专员可为可知来心经事节日,到
  节日单数.
        N= P6 P4
         = 604800
```

代数系统简介

第9章代数系统简介

- 9.1 二元运算及其性质
- 9.2 代数系统
- 9.3 几个典型的代数系统

9.1 二元运算及其性质

- ■二元运算及一元运算的定义
- ■二元运算的性质
 - □交换律、结合律、幂等律、消去律
 - □分配律、吸收律
- 二元运算的特异元素
 - □単位元
 - □零元
 - □可逆元素及其逆元

二元运算的定义及其实例

定义 设 S 为集合,函数 $f: S \times S \rightarrow S$ 称为 S 上的二元运算,简称为二元运算.也称 S 对 f 封闭.

例1

- (1) N 上的二元运算:加法、乘法.
- (2) Z 上的二元运算:加法、减法、乘法.
- (3) 非零实数集 R*上的二元运算: 乘法、除法.
- (4) 设 $S = \{a_1, a_2, \dots, a_n\}, a_i \circ a_j = a_{i,j} \circ 为 S 上二元运算.$

二元运算的实例(续)

(5) 设 *M_n*(**R**) 表示所有 *n* 阶 (*n*≥2) 实矩阵的集合,即

$$M_{n}(\mathbf{R}) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in \mathbf{R}, i, j = 1, 2, ..., n \right\}$$

矩阵加法和乘法都是 $M_n(\mathbf{R})$ 上的二元运算.

- (6) 幂集 P(S) 上的二元运算: \cup , \cap ,-, \oplus .
- (7) S^S 为 S 上的所有函数的集合: 合成运算。.

$f: S \times S \times ... \times S \to S$

n元运算

定义 设S为集合,n为正整数,函数

$$f: \underbrace{S \times S \times ... \times S}_{n \uparrow} \rightarrow S$$

称为S上的n元运算,简称为n元运算.

例2 (1) Z, Q 和 R 上的一元运算: 求相反数

- (2) 非零有理数集 Q*和实数集 R*的一元运算: 倒数
- (3) 复数集合 C 上的一元运算: 求共轭复数
- (4) 幂集 P(S) 上, 全集为 S: 求绝对补运算~
- (5) A 为 S 上所有双射函数的集合, $A \subseteq S^S$: 求反函数
- (6) 在 M_n(R) (n≥2)上,求转置矩阵

运算的表示

算符: ∘, *, ·, ⊕, ⊗ 等符号

表示n元运算

 $\circ (a_1, a_2, ..., a_n) = b.$

对二元运算 o,如果 x 与 y 运算得到 z,记做 x o y = z;

对一元运算 o, x 的运算结果记作 ox

注意: 在同一问题中不同的运算使用不同的算符

.

二元与一元运算的表示

公式表示

例3 设 R 为实数集合,如下定义 R 上的二元运算*:

$$\forall x, y \in \mathbb{R}, \ x * y = x.$$

那么
$$3*4=3$$

$$0.5 * (-3) = 0.5$$

运算表(表示有穷集上的一元和二元运算)

0	a_1	a_2	•••	a_n
a_1	$a_1 \circ a_1$	a_1 o a_2		$a_1 \circ a_n$
a_2	a_2 o a_1	a_2 o a_2		$a_2 \circ a_n$
•		• • •		
•		• • •		
•		• • •		
a_n	$a_n \circ a_1$	$a_n \circ a_2$	•••	$a_n \circ a_n$

a_i	$\circ a_i$
a_1	•a ₁
a_2	$\circ a_2$
•	•
•	•
•	•
a_n	$\circ a_n$

运算表的实例

例4 $A = P(\{a,b\})$, Θ , ~分别为对称差和绝对补运算 ($\{a,b\}$ 为全集)

⊕ 的运算表

	AA	二一一一
~	出	冱 昇 衣

⊕	Ø	<i>{a}</i>	{ b }	$\{a,b\}$
Ø	Ø	<i>{a}</i>	{ b }	$\{a,b\}$
{a}	<i>{a}</i>	Ø	$\{a.b\}$	{ b }
{ b }	{ b }	$\{a,b\}$	Ø	<i>{a}</i>
$\{a,b\}$	$\{a,b\}$	{ b }	<i>{a}</i>	Ø

X	~X
Ø	$\{a,b\}$
<i>{a}</i>	<i>{a}</i>
{ b }	{ b }
$\{a,b\}$	Ø

运算表的实例(续)

例5 $Z_5 = \{0, 1, 2, 3, 4\}$, Θ , Θ 分别为模 5 加法与乘法

⊕ 的运算表

水	运	曾耒
Н,		开化

\oplus	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

8	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

二元运算的性质

定义 设。为S上的二元运算,

(1) 如果对于任意的 $x, y \in S$ 有 $x \circ y = y \circ x$,

则称运算在S上满足交换律。

- (2) 如果对于任意的 $x,y,z \in S$ 有 $(x \circ y) \circ z = x \circ (y \circ z)$, 则称运算在 S 上满足结合律.
- (3) 如果对于任意的 $x \in S$ 有 $x \circ x = x$, 则称运算在 S 上满足幂等律.

实例分析

Z, Q, R分别为整数、有理数、实数集; $M_n(\mathbf{R})$ 为 n 阶实矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为 $A \perp A$, $|A| \ge 2$.

集合	运算	交换律	结合律	幂等律
Z, Q, R	普通加法+	有	有	无
	普通乘法×	有	有	无
$M_n(\mathbf{R})$	矩阵加法+	有	有	无
	矩阵乘法×	无	有	无
P(B)	并し	有	有	有
	交∩	有	有	有
	相对补-	无	无	无
	对称差⊕	有	有	无
A^A	函数复合o	无	有	无

w

二元运算的性质(续)

定义 设。和*为S上两个不同的二元运算,

(1) 如果 $\forall x, y, z \in S$ 有

$$(x * y) \circ z = (x \circ z) * (y \circ z)$$

$$z \circ (x * y) = (z \circ x) * (z \circ y)$$

则称。运算对*运算满足分配律.

(2) 如果。和 * 都满足交换率,并且 $\forall x,y \in S$ 有

$$x \circ (x * y) = x$$

$$x * (x \circ y) = x$$

则称。和*运算满足吸收律.

.

实例分析

Z, Q, R分别为整数、有理数、实数集; $M_n(R)$ 为 n 阶实矩阵集合, $n \ge 2$; P(B)为幂集; A^A 为 $A \perp A$, $|A| \ge 2$.

集合	运算	分配律	吸收律
Z,Q,R	普通加法 + 与乘法 ×	×对+可分配	无
		+ 对×不分配	
$M_n(\mathbf{R})$	矩阵加法 + 与乘法 ×	×对+可分配	无
		+ 对×不分配	
P(B)	并∪与交∩	∪对○可分配	有
		○对∪可分配	
	交∩与对称差⊕	○对⊕可分配	无
		⊕对○不分配	26

26

M

二元运算的特异元素

单位元(幺元)

定义 设o为S上的二元运算,如果存在 e_l (或 e_r) ϵS ,使得对任意 $x \in S$ 都有

$$e_l \circ x = x \ (\overrightarrow{\mathfrak{R}} x \circ e_r = x),$$

则称 e_l (或 e_r)是 S 中关于 。运算的 左 (或右)单位元.

若 $e \in S$ 关于 。运算<u>既是左单位元又是右单位</u>元,则称 e 为 S 上关于 。运算的 单位元. 单位元也叫做 幺元.

二元运算的特异元素 (续)

零元

设。为S上的二元运算,如果存在 θ_l (或 θ_r)

 $\in S$,使得对任意 $x \in S$ 都有

$$\theta_l \circ x = \theta_l \ (\ \mathfrak{R} \ x \circ \theta_r = \theta_r),$$

则称 $\theta_l($ 或 $\theta_r)$ 是S中关于。运算的左(或右)零元.

 $若\theta$ ∈S关于•运算既是左零元又是右零元,则称 θ 为S上关于运算。的零元.

.

二元运算的特异元素 (续)

可逆元素及其逆元

令 e 为 S 中关于运算•的单位元. 对于 $x \in S$,如果存在 y_t (或 y_r) $\in S$ 使得

则称 $y_l($ 或 $y_r)$ 是 x 的 左逆元(或右逆元).

关于 o运算,若 $y \in S$ 既是 x 的左逆元又是 x 的右逆元,则称 y 为 x 的逆元.

如果 x 的逆元存在, 就称 x 是可逆的.

实例分析

集合	运算	单位元	零元	逆元
Z,	普通加法+	0	无	x 的逆元 -x
Q, R	普通乘法×	1	0	x 的逆元 x ⁻¹ (x ⁻¹ 属于给定集合)
$M_n(\mathbf{R})$	矩阵加法+	n阶全0矩阵	无	<i>X</i> 逆元– <i>X</i>
	矩阵乘法×	n阶单位 矩阵	n阶全0 矩阵	X的逆元 X ⁻¹ (X是可逆矩阵)
P(B)	并し	Ø	В	Ø的逆元为Ø
	交∩	В	Ø	B的逆元为B
	对称差⊕	Ø	无	X 的逆元为 X

唯一性定理

定理(单位元) 设 •为S上的二元运算, e_l 和 e_r 分别为 S中关于运算的左和右单位元,则 $e_l = e_r$ = e_r 且 e_r 为 S 上关于。运算的惟一的单位元.

$$i \mathbb{E} \qquad e_l = e_l \circ e_r = e_r$$

所以 $e_l = e_r$, 将这个单位元记作 e. 假设 e' 也是 S 中的单位元,则有

$$e'=e \circ e'=e.$$

惟一性得证.

类似地可以证明关于零元的惟一性定理.

注意: 当 $|S| \ge 2$,单位元与零元是不同的; 当 |S| = 1 时,这个元素既是单位元也是零元.

惟一性定理(续)

定理(逆元) 设。为 S 上可结合的二元运算,e 为该运算的单位元,对于 $x \in S$ 如果存在左逆元 y_l 和右逆元 y_r ,则有 $y_l = y_r = y$,且 y 是 x 的惟一的逆元. 证 由 y_l 0 x = e 和 x0 $y_r = e$ 得

 $y_l = y_l \circ e = y_l \circ (x \circ y_r) = (y_l \circ x) \circ y_r = e \circ y_r = y_r$ 令 $y_l = y_r = y$,则 y 是 x 的逆元. 假若 $y' \in S$ 也是 x 的逆元,则

 $y'=y'\circ e=y'\circ (x\circ y)=(y'\circ x)\circ y=e\circ y=y$ 所以 y 是 x 惟一的逆元.

说明:对于<u>可结合</u>的二元运算,可逆元素 x 只有惟一的逆元,记作 x^{-1} .

消去律

定义 设。为V上二元运算,如果 $\forall x, y, z \in V$,若 $x \circ y = x \circ z$,且x不是零元,则y = z 若 $y \circ x = z \circ x$,且x 不是零元,则y = z 那么称。运算满足 消去律.

实例: Z, Q, R 关于普通加法和乘法满足消去律.

 $M_n(\mathbf{R})$ 关于矩阵加法满足消去律,但是关于矩阵乘法不满足消去律。

 Z_n 关于模n 加法满足消去律,当n 为素数时关于模n 乘法满足消去律. 当n 为合数时关于模n 乘法不满足消去律.

例题分析

例6 设。运算为Q上的二元运算,

$$\forall x, y \in \mathbf{Q}, \quad x \circ y = x + y + 2xy,$$

- (1) 。运算是否满足交换和结合律? 说明理由.
- (2) 求。运算的单位元、零元和所有可逆元.
- 解 (1)。运算可交换,可结合. 任取 $x,y \in \mathbb{Q}$, $x \circ y = x+y+2xy = y+x+2yx = y \circ x$, 任取 $x,y,z \in \mathbb{Q}$,

$$(x \circ y) \circ z = (x+y+2xy) + z + 2(x+y+2xy) z$$

= $x+y+z+2xy+2xz+2yz+4xyz$
 $x \circ (y \circ z) = x + (y+z+2yz) + 2x(y+z+2yz)$
= $x+y+z+2xy+2xz+2yz+4xyz$

10

例题分析 (续)

(2) 设。运算的单位元和零元分别为 e 和 θ ,则对于任意 x 有 xoe = x 成立,即 x+e+2xe = x \Rightarrow e = 0 由于。运算可交换,所以 0 是幺元.

对于任意
$$x$$
有 $x \circ \theta = \theta$ 成立,即
 $x+\theta+2x\theta=\theta \Rightarrow x+2x\theta=0 \Rightarrow \theta=-1/2$

给定 x,设 x 的逆元为 y,则有 $x \circ y = 0$ 成立,即 $x+y+2xy=0 \Rightarrow y=-\frac{x}{1+2x} \quad (x \neq =-1/2)$ 因此当 $x \neq -1/2$ 时, $y=-\frac{x}{1+2x}$ 是 x 的逆元.

例题分析 (续)

例7 (1) 说明那些运算是交换的、可结合的、幂等的.

(2) 求出运算的单位元、零元、所有可逆元素的逆元.

*	a	b	C
a	C	a	b
b	a	\boldsymbol{b}	C
C	\boldsymbol{b}	C	a

0	a	b	C
a b		a b	
C	C	C	C

	a	b	C
a		b	_
\boldsymbol{b}	b	C	C
C	C	C	C

解(1)*满足交换、结合律;。满足结合、幂等律;

- •满足交换、结合律.
- (2) * 的单位元为 b, 没零元, $a^{-1}=c$, $b^{-1}=b$, $c^{-1}=a$
 - 的单位元和零元都不存在,没有可逆元素.
 - 的单位元为 a,零元为c, $a^{-1}=a$. b, c不可逆.

例题分析 (续)

例8 设 $A = \{a,b,c\}$,构造A上的二元运算*使得a*b=c,c*b=b,且*运算是幂等的、可交换的,给出关于*运算的一个运算表,说明它是否可结合,为什么?

*	a	b	C
a	a	C	
b	C	b	b
c		b	C

根据幂等律和已知条件a*b=c, c*b=b 得到运算表 根据交换律得到新的运算表 方框 \Box 可以填入a, b, c中任 一选定的符号, 完成运算表

不结合,因为 (a*b)*b = c*b = b, a*(b*b) = a*b = c

100

由运算表判别算律的一般方法

- 交换律: 运算表关于主对角线对称
- 幂等律: 主对角线元素排列与表头顺序一致
- 消去律: 所在的行与列中没有重复元素
- 单位元: 所在的行与列的元素排列都与表头一致
- 零元: 元素的行与列都由该元素自身构成
- A 的可逆元: a 所在的第i行中某列 (比如第j 列) 元素为 e,且第j 行 i 列的元素也是 e,那么 a 与第j 个元素互逆
- 结合律:除了单位元、零元之外,要对所有3个元素的组合验证表示结合律的等式是否成立

9.2 代数系统

- ■代数系统定义
- ■同类型与同种的代数系统
- ■子代数
- ■积代数

.

代数系统定义与实例

定义

非空集合 S 和 S 上 k 个一元或二元运算 f_1 , f_2 , ..., f_k 组成的系统称为一个代数系统, 简称代数,记做 $V=\langle S, f_1, f_2, ..., f_k \rangle$.

S 称为代数系统的载体, S 和运算叫做代数系统的成分. 有的代数系统定义指定了S中的特殊元素, 称为代数常数, 例如二元运算的单位元. 有时也将代数常数作为系统的成分.

实例

- <N,+>, <Z,+, >, <R,+, >是代数系统, + 和·分别表示普通加法和乘法. < $M_n(\mathbf{R})$,+, >是代数系统,
 - +和·分别表示n 阶 (n≥2) 实矩阵的加法和乘法.
- $\langle \mathbf{Z}_n, \oplus, \otimes \rangle$ 是代数系统, $\mathbf{Z}_n = \{0, 1, \dots, n-1\}$,
 - ⊕ 和 \otimes 分别表示模 n 的加法和乘法, $\forall x,y \in \mathbb{Z}_n$,

 $x \oplus y = (x + y) \mod n$, $x \otimes y = (xy) \mod n$

 $< P(S), \cup, \cap, \sim$ 也是代数系统,

U和∩为并和交,~为绝对补

×

同类型与同种代数系统

定义(1)如果两个代数系统中运算的个数相同,对应运算的元数相同,且代数常数的个数也相同,则称它们是同类型的代数系统.

(2) 如果两个同类型的代数系统规定的运算性质也相同,则称为同种的代数系统。

例1
$$V_1 = \langle \mathbf{R}, +, ; 0, 1 \rangle$$
, $V_2 = \langle M_n(\mathbf{R}), +, ; \theta, E \rangle$, $\theta 为 n 阶全 0 矩阵, E 为 n 阶单位矩阵 $V_3 = \langle P(B), \cup, \cap, \varnothing, B \rangle$$

同类型与同种代数系统(续)

V_1	$oldsymbol{V_2}$	V_3
+可交换,可结合 ·可交换,可结合 +可交换,可结合 +满足消去律 ·满足消去律 ·对+可分配 +为可分配 +为可分配 +为可分配	+ 可交換, 可结合 ・可交换, 可结合 + 两足消去律 ・満足消去律 ・オ+可分配 + オ・不可分配 + 与・没有吸收律	U可交换,可结合 ○可交换,可结合 ○可交换,可结合 ○不满足消去律 ○不满足消去律 ○对○可分配 ○对○可分配 ○对○可分配 ○与○满足吸收律

 V_1 , V_2 , V_3 是同类型的代数系统 V_1 , V_2 是同种的代数系统 V_1 , V_2 与 V_3 不是同种的代数系统

.

子代数

定义 设 $V = \langle S, f_1, f_2, ..., f_k \rangle$ 是代数系统, $B \in S$ 的非空子集,如果 B 对 $f_1, f_2, ..., f_k$ 都是封闭的,且 B 和 S 含有相同的代数常数,则称 $\langle B, f_1, f_2, ..., f_k \rangle$ 是 V 的子代数系统,简称 子代数. 有时将子代数系统简记为 B.

实例 N是<Z,+> 和<Z,+,0>的子代数. N-{0}是 <Z,+>的子代数,但不是<Z,+,0>的子代数 说明:

子代数和原代数是同种的代数系统 对于任何代数系统 V,其子代数一定存在.

M

关于子代数的术语

- 最大的子代数 就是V本身.
- 如果V 中所有代数常数构成集合 B,且 B 对V 中所有运算封闭,则 B 就构成了V 的最小的子代数.
- 最大和最小子代数称为V的平凡的子代数.
- 若 $B \in S$ 的真子集,则 B 构成的子代数称为V 的 真子代数.

例2 设 $V=\langle Z,+,0\rangle$,令 $nZ=\{nz\mid z\in Z\}$,n 为自然数,则 nZ 是 V 的子代数,当 n=1 和 0 时,nZ 是 V 的平凡的子代数,其他的都是 V 的非平凡的真子代数.

积代数

定义 设 $V_1 = \langle S_1, o \rangle$ 和 $V_2 = \langle S_2, * \rangle$ 是代数系统,其中 o 和 * 是二元运算. V_1 与 V_2 的 积代数 是 $V=\langle S_1 \times S_2, \cdot \rangle$, $\forall \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in S_1 \times S_2$ $\langle x_1, y_1 \rangle \cdot \langle x_2, y_2 \rangle = \langle x_1 \circ x_2, y_1 * y_2 \rangle$ 例3 $V_1 = \langle Z, + \rangle$, $V_2 = \langle M_2(R), \cdot \rangle$, 积代数 $\langle Z \times M_2(R), o \rangle$ $\forall \langle z_1, M_1 \rangle, \langle z_2, M_2 \rangle \in \mathbb{Z} \times M_2(\mathbb{R})$, $\langle z_1, M_1 \rangle$ o $\langle z_2, M_2 \rangle = \langle z_1 + z_2, M_1 \cdot M_2 \rangle$ $<5, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}> \circ <-2, \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix}> = <3, \begin{pmatrix} 2 & -1 \\ 2 & 0 \end{pmatrix}>$

м

积代数的性质

设 $V_1 = \langle S_1, \mathbf{o} \rangle$ 和 $V_2 = \langle S_2, * \rangle$ 是代数系统,其中 o 和 *是二元运算. V_1 与 V_2 的积代数是 $V = \langle S_1 \times S_2, * \rangle$

- (1) 若 o 和 * 运算是可交换的,那么·运算也是可交换的
- (2) 若 o 和 * 运算是可结合的,那么·运算也是可结合的
- (3) 若 o 和 * 运算是幂等的,那么·运算也是幂等的
- (4) 若 o 和 * 运算分别具有单位元 e_1 和 e_2 ,那么·运算也具有单位元< e_1 , e_2 >
- (5) 若 o 和 * 运算分别具有零元 θ_1 和 θ_2 ,那么·运算也具有零元< θ_1 , θ_2 >
- (6) 若 x 关于 o 的逆元为 x^{-1} , y 关于 * 的逆元为 y^{-1} , 那 么< x, y>关于·运算也具有逆元 $< x^{-1}, y^{-1}>$

同态映射的定义

定义 设 $V_1 = \langle S_1, \circ \rangle$ 和 $V_2 = \langle S_2, * \rangle$ 是代数系统,其中 \circ 和 *是二元运算. $f: S_1 \rightarrow S_2$, 且 $\forall x, y \in S_1, f(x \circ y) = f(x) * f(y)$,则称 $f 为 V_1$ 到 V_2 的同态映射,简称同态.

10

更广泛的同态映射定义

定义 设 $V_1 = \langle S_1, \circ, \cdot \rangle$ 和 $V_2 = \langle S_2, *, \diamond \rangle$ 是代数系统,其中 o和 *是二元运算. $f: S_1 \rightarrow S_2$, 且 $\forall x, y \in S_1$ $f(x \circ y) = f(x) * f(y)$, $f(x \cdot y) = f(x) \diamond f(y)$ 则称 $f \rightarrow V_1$ 到 V_2 的同态映射,简称同态.

设 $V_1 = \langle S_1, \circ, \cdot, \Delta \rangle$ 和 $V_2 = \langle S_2, *, \diamond, \nabla \rangle$ 是代数系统,其中。和 * 是二元运算. Δ 和 ∇ 是一元运算, f: $S_1 \rightarrow S_2$,且 $\forall x, y \in S_1$ $f(x \circ y) = f(x) * f(y)$, $f(x \cdot y) = f(x) \diamond f(y)$, $f(\Delta x) = \nabla f(x)$ 则称 $f(X) \in \mathcal{F}(Y)$ 的同态映射,简称同态.

例题

例1 $V=\langle \mathbf{R}^*,\cdot \rangle$, 判断下面的哪些函数是V 的自同态?

(1)
$$f(x)=|x|$$
 (2)

(1)
$$f(x)=|x|$$
 (2) $f(x)=2x$ (3) $f(x)=x^2$

$$(4) f(x) = 1/x$$

(4)
$$f(x)=1/x$$
 (5) $f(x)=-x$ (6) $f(x)=x+1$

解 (2),(5),(6) 不是自同态.

(1) 是同态,
$$f(x\cdot y) = |x \cdot y| = |x| \cdot |y| = f(x) \cdot f(y)$$

(3) 是同态,
$$f(xy) = (xy)^2 = x^2 \cdot y^2 = f(x) \cdot f(y)$$

(4) 是同态,
$$f(x\cdot y) = 1/(x\cdot y) = 1/x \cdot 1/y = f(x) \cdot f(y)$$

100

特殊同态映射的分类

同态映射如果是单射,则称为单同态: 如果是满射,则称为满同态,这时称 V_2 是 V_1 的同态像,记作 $V_1 \sim V_2$; 如果是双射,则称为 同构,也称代数系统 V_1 同构于 V_2 ,记作 $V_1 \cong V_2$. 对于代数系统 V,它到自身的同态称为自同态. 类似地可以定义单自同态、满自同态和自同构.

同态映射的实例

例2 设 $V=<\mathbb{Z},+>$, $\forall a\in\mathbb{Z}$,令

$$f_a: \mathbb{Z} \to \mathbb{Z}, f_a(x) = ax$$

那么 f_a 是V的自同态.

因为 $\forall x,y \in \mathbb{Z}$,有

$$f_a(x+y) = a(x+y) = ax+ay = f_a(x)+f_a(y)$$

当 a = 0 时称 f_0 为零同态;

当 $a=\pm 1$ 时,称 f_a 为自同构;

除此之外其他的 f_a 都是单自同态.

同态映射的实例(续)

例3 设
$$V_1$$
=< Q ,+>, V_2 =< Q *,->,其中 Q *= Q -{ 0 },令 $f: Q \rightarrow Q$ *, $f(x)=e^x$

那么 $f \in V_1$ 到 V_2 的同态映射,因为 $\forall x, y \in Q$ 有

$$f(x+y) = e^{x+y} = e^x \cdot e^y = f(x) \cdot f(y).$$

不难看出f是单同态.

同态映射的实例 (续)

例4
$$V_1 = \langle Z, + \rangle$$
, $V_2 = \langle Z_n, \oplus \rangle$, $Z_n = \{0,1, \dots, n-1\}$, \oplus 是模 n 加. 令
$$f \colon Z \to Z_n, \ f(x) = (x) \bmod n$$
则 $f \not\in V_1$ 到 V_2 的满同态. $\forall x, y \in Z$ 有
$$f(x+y) = (x+y) \bmod n$$

$$= (x) \bmod n \oplus (y) \bmod n$$

$$= f(x) \oplus f(y)$$

同态映射的实例 (续)

例5 设 $V=\langle Z_n, \Theta \rangle$,可以证明恰有 n 个G 的自同态, $f_n: \mathbf{Z}_n \rightarrow \mathbf{Z}_n$ $f_n(x) = (px) \mod n, p = 0,1,...,n-1$ 例如 n=6, 那么 f。为零同态; f_1 与 f_5 为同构; f_3 与 f_4 的同态像是{ 0, 2, 4 }; f, 的同态像是{ 0, 3 }.

同态映射保持运算的算律

设 V_1 , V_2 是代数系统. o,*是 V_1 上的二元运算,o',*'是 V_2 上对应的二元运算,如果 $f: V_1 \rightarrow V_2$ 是满同态,那么

- (1)若o运算是可交换的(可结合、幂等的),则o'运 算也是可交换的(可结合、幂等的).
- (2) 若o运算对*运算是可分配的,则o'运算对*'运算也是可分配的;若o和*运算是可吸收的,则 o'和*'运算也是可吸收的。

同态映射保持运算的特异元素

- (3) 若e为o 运算的单位元,则 f(e)为o2运算的单位元.
- (4) 若 θ 为o 运算的零元,则 $f(\theta)$ 为o'运算的零元.
- (5) 设 $u \in V_1$,若 u^{-1} 是 u 关于o运算的逆元,则 $f(u^{-1})$ 是 f(u)关于o'运算的逆元。

同态映射的性质

说明:

上述性质仅在满同态时成立,如果不是满同态,那么相关性质在同态像中成立.

同态映射不一定能保持消去律成立.

例如 $f: \mathbb{Z} \to \mathbb{Z}_n$ 是 $V_1 = \langle \mathbb{Z}, \cdot \rangle$ 到 $V_2 = \langle \mathbb{Z}_n, \otimes \rangle$ 的同态, $f(x) = (x) \mod n$, V_1 中满足消去律,但是当 n为合数时, V_2 中不满足消去律.

10

例题

例6 设 V_1 =<Q,+>, V_2 =<Q*,>,其中 Q 为有理数集合,Q*=Q-{0},+和·分别表示普通加法和乘法.

证明不存在 V_2 到 V_1 的同构.

证 假设 f 是 V_2 到 V_1 的同构,那么有f: $V_2 \rightarrow V_1$, f(1)=0. 于是有

$$f(-1)+f(-1) = f((-1)(-1))=f(1)=0$$

从而f(-1)=0,又有f(1)=0,这与f的单射性矛盾.