Capstone Design Project

"Mail Al": Al-based Mail Assistant

The 3rd Bi-weekly Meeting

Team E: Yosep Kim, Soomin Lim, Dohyun Bu, Miseo Jeong

Agenda

Chapter

Introduction

- Timeline
- Teamwork

Chapter

Midterm Review

- Email Generation
- User Authentications
 - Login
 - Signup

Chapter

03

New Features

- Keyword Extration
 - o each email
 - o all email
- Email Summary
- CI/CD

Chapter

Conclusion

- Further Plans
- Q&A

Chapter O 1

Introdction

- Timeline
- Team Role and Cooperations

Timeline: We are in 3rd Scrum!

Teamwork: Cooperation with GitHub and Git!

Team Member	Role & Responsibilities
Yosep Kim	Project Manager, Backend Development
Sumin Lim	Frontend Development (Next.js, UX/UI)
Dohyeon Boo	Backend Development (FastAPI, GPT, DB)
Miseo Jeong	Frontend Development (Next.js, UX/UI)

Commits Branches

Merges

9312

32

Chapter

Midterm Review

Email Generation

- User Authentications
 - Login
 - Signup

Email Generation: Frontend & Demo

Email Generation: Frontend & Demo

User Authenticaiton: Login & Signup

Chapter Control Contro

New Features

- Keyword Extration
 - each email
 - o all email
- Email Translation
- CI/CD

Keyword Extraction: Each & All

Keyword Extraction: Architecture

Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. It infers a function from labeled training data consisting of a set of training examples. In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples. An optimal scenario will allow for the algorithm to correctly determine the class labels for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a 'reasonable' way (see inductive bias).


```
# KeyBERT를 사용하여 키워드 추출
       keywords = keybert_model.extract_keywords(
           email_text, keyphrase_ngram_range=(1, 1), top_n = 5, stop_words="engl
       total_list = []
       for i in range(len(keywords)):
           total_list.append(keywords[i][0])
       temp_user_msg.keyword = str(total_list)
       db.add(temp_user_msg)
       db.commit()
   # 추출된 키워드를 JSON 형식으로 반환
   return JSONResponse({'message': '연결 성공', "data":total_list})
except Exception as e:
   # 오류가 발생한 경우 500 Internal Server Error 반환
   raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
```

Email Translation: Google Translator API


```
@app.post("/translate")
async def translate_text(request: Request, db: Session=Depends(ge
   try:
      data = await request.json()
      pre_text = data.get('contents')
      translator = Translator()
      result = translator.translate(pre_text, dest='ko').text
      return JSONResponse({'message': '연결 성공', 'data':result
   except Exception as e:
      return JSONResponse({'message': '연결 fail', 'data':str(e)
```



```
FROM rockylinux/rockylinux:9.2
RUN dnf -y update && \
    dnf -y install gcc make python3 python3-pip python3-deve
    dnf clean all
WORKDIR /app
COPY requirements.txt .
RUN pip3 install --no-cache-dir -r requirements.txt
COPY . .
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8
```

```
FROM ubuntu:jammy-20231004
RUN apt-get update \
       && apt-get upgrade -y \
       && apt-get install -y ca-certificates curl gnupg \
       && mkdir -p /etc/apt/keyrings \
       && curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key \
               | gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg
ENV NODE_MAJOR=20
RUN echo "deb [signed-by=/etc/apt/keyrings/nodesource.gpg] https://deb.nodesource.com/node_$NODE_MAJOR.x nodistr
       | tee /etc/apt/sources.list.d/nodesource.list \
       && apt-get update \
       && apt-get install nodejs -y
WORKDIR /app
COPY package.json .
RUN npm install
COPY
RUN npm run build
EXPOSE 3000
CMD ["npm", "start"]
```


CI/CD Docker Compose

Chapter 4

Conclusion

- Further Plans
- Q & A

Further Plan

Capstone Design Project

THANK YOU FOR WATCHING!

