A **reduction** R from L_1 to L_2 is one or more Turing machines such that:

If there exists a Turing machine Oracle that decides (or semidecides) L_2 , then the Turing machines in R can be composed with Oracle to build a deciding (or a semideciding) Turing machine for L_1 .

 $L_1 \le L_2$ means that L_1 is **reducible** to L_2 .

Assume:

$$(L_1 \leq L_2) \land (L_2 \text{ is in D}) \rightarrow (L_1 \text{ is in D})$$

If $(L_1 \text{ is in D})$ is false, then at least one of the two antecedents of that implication must be false. So:

If
$$(L_1 \le L_2)$$
 is true,
then $(L_2 \text{ is in D})$ must be false.

- 0. Assume Oracle that decides L_2 exists
- 1. Choose a language L₁:
 - · that is already known not to be in D, and
 - that can be reduced to L₂.
- 2. Define the reduction R.
- 3. Describe the composition *C* of *R* with *Oracle*:

$$C(x) = Oracle(R(x))$$

- 4. Show that C does correctly decide L_1 if *Oracle* exists. We do this by showing:
- R can be implemented by Turing machines,
- · C is correct:
 - If $x \in L_1$, then C(x) accepts, and
 - If $x \notin L_1$, then C(x) rejects.

 L_1 is **mapping reducible** to L_2 ($L_1 \leq_{\mathbf{M}} L_2$) iff there exists some computable function f such that:

$$\forall x \in \Sigma^* \ (x \in L_1 \leftrightarrow f(x) \in L_2).$$

To decide whether x is in L_1 , we transform it, using f, into a new object and ask whether that object is in L_2 .

Note: mapping reduction is a particular case of Turing reduction.

The Steps in a Reduction Proof

- 1. Assume Oracle exists.
- 2. Choose an undecidable language to reduce from.
- 3. Define the reduction R.
- 4. Show that *C* (the composition of *R* with *Oracle*) is correct.