CSC 373	Tutorial	Exercises	for	Week	6	Winter	2019

1. Consider the network described by the table on the right. [This is tricky to draw in ASCII so I'll	edge s -> a	capacity 10
simply provide all of the information you should	s -> b	-
draw this for yourself, with node 'a' above, node	s -> d	
'd' below, and nodes 'b', 'c' in the middle	b -> a	3
(horizontally in between 's' and 't'; vertically in	b -> c	10
between 'a' and 'd').]	b -> d	3
	a -> c	3
(a) Find a maximum flow in this network. (Hint:	a -> t	5
start with augmenting paths that are as "direct"	d -> c	3
as possible, i.e., using few edges).	d -> t	10
	c -> t	8

- (b) Identify all forward and backward edges across cut $X_0 = (\{s,b,c,d\},\{a,t\})$.
- (c) Compute the capacity of cut X_0 , and the flow across X_0 , based on the maximum flow you found in part (a).
- (d) Find a cut in the network above whose capacity is equal to the value of your maximum flow. Use the algorithm outlined in the proof of the Ford-Fulkerson theorem.
- 2. Explain carefully how to solve the maximum flow problem in a multi-source, multi-sink network -- one where there can be more than one source vertex s_1,...,s_k and more than one sink t_1,...,t_l. Give a detailed answer and justify that your solution is correct.