# SUPPLEMENTARY

An Introduction to Edge Detection

#### **Outline**

- Spatial mask
- Introduction
- Edge detection
  - The Laplacian operator
  - Sobel operators
- Pre-Processing
  - Histogram equalization
  - Noise reduction
- Project assignment

# SPATIAL MASK

An Introduction to Edge Detection

#### Gray Scale Image

```
66
                                                    68
                         62
                              63
                                               67
y =
41
                        198
                                 156
                                                57
                                                    55
                                                                     50
               192 201
                                                         77
              211 193
                        202 207 208
                                                             49
                                                    55
                                                                 58
45
                   194
                        196 197
                                               60
                    199
                                 204
                                      173
                                                60
                                                    59
                                                             62
                                                                 56
      209
                        194
                             193
      204 212 213 208
                        191
                             190
                                                             51
                                                                     55
                                                    55
                                                             56
      214 215 215
                        208
                             180 172
      209 205 214
                                                    66
                                                         87
                                                                 60
                                                    63
                                                             55
                                                                 45
                                                                     56
                                                             52
                                                                     56
                                                             58
                    236
                                                                     66
                        199
                                  196
                                      181 173
                                               186
                                                    105
```

- Spatial domain process will be denoted by
  - g(x,y) = T[f(x,y)]
  - where f(x,y) is the input image,
     g(x,y) is the processed image
     T is an operator on f, defined over some neighborhood of (x,y)



Convolution

$$f(t)\otimes g(t) = \int_{-\infty}^{\infty} f(\tau)h(t-\tau)d\tau$$

Spatial Mask

$$f(x,y) \otimes g(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n)$$

for 
$$x=0,1,2,...,M-1$$
,  $y=0,1,2,...,N-1$ 

Linear filtering of an image f of size
 M\*N with a filter mask of size m\*n
 is given by the expression:

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$
where  $a = \lfloor m/2 \rfloor$ ,  $b = \lfloor n/2 \rfloor$ 

 It is often referred to as "convolving a mask with an image"



# EDGE DETECTION

An Introduction to Edge Detection

## Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
  - Intuitively, most semantic and shape information from the image can be encoded in the edges
  - More compact than pixels
- Ideal: artist's line drawing (but artist is also using objectlevel knowledge)



## Why do we care about edges?

Extract information, recognize objects

Recover geometry and viewpoint



**Vanishing** 

**Vanishing** 

point

## Origin of Edges



Edges are caused by a variety of factors

Source: Steve Seitz













## Characterizing edges

 An edge is a place of rapid change in the image intensity function



# Intensity profile





### With a little Gaussian noise





#### Effects of noise

- Consider a single row or column of the image
  - Plotting intensity as a function of position gives a signal



Where is the edge?

#### Effects of noise

- Difference filters respond strongly to noise
  - Image noise results in pixels that look very different from their neighbors
  - Generally, the larger the noise the stronger the response
- What can we do about it?

#### Solution: smooth first



• To find edges, look for peaks in  $\frac{a}{dx}(f)$ 

Source: S. Seitz

#### Derivative theorem of convolution

• Differentiation is convolution, and convolution is associative: d

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

This saves us one operation:



Source: S. Seitz

### Derivative of Gaussian filter



#### Tradeoff between smoothing and localization



 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

## Designing an edge detector

- Criteria for a good edge detector:
  - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
  - Good localization
    - the edges detected must be as close as possible to the true edges
    - the detector must return one point only for each true edge point
- Cues of edge detection
  - Differences in color, intensity, or texture across the boundary
  - Continuity and closure
  - High-level knowledge

## Example



original image (Lena)

### Derivative of Gaussian filter



## Compute Gradients (DoG)



X-Derivative of Gaussian



Y-Derivative of Gaussian



**Gradient Magnitude** 

## Learning to detect boundaries

image



gradient magnitude













Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

## Representing Texture



Source: Forsyth

### **Texture and Material**









#### **Texture and Orientation**







http://www-cvr.ai.uiuc.edu/ponce\_grp/data/texture\_database/samples/

### Texture and Scale







### Edge detection

- The Laplacian operator
- The Laplacian of an image highlights regions of rapid intensity change
- The Laplacian operator searches for zero crossings in the second derivative of the image to find edges
  - When the first derivative is at an extreme, the second derivative is zero

### Edge detection

- The Laplacian operator
- Horizontal intensity profile through the center of the image



- The Laplacian operator
- For one-dimensional function f(x) (an image)

$$\frac{\partial f(x)}{\partial x} = f'(x) \cong f(x+1) - f(x)$$

$$\frac{\partial^2 f(x)}{\partial x^2} = \frac{f'(x)}{\partial x} \cong f'(x+1) - f'(x)$$

$$= (f(x+2) - f(x+1)) - (f(x+1) - f(x))$$

$$= f(x+2) + f(x) - 2f(x+1)$$

- The Laplacian operator
- For two-dimensional function f(x) (an image)

$$\nabla^2 f(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$
$$\frac{\partial^2 f(x,y)}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$
$$\frac{\partial^2 f(x,y)}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y+1) - 4f(x,y)$$

### - The Laplacian operator

The Laplacian operator

| 0 | 1  | 0 |  |
|---|----|---|--|
| 1 | -4 | 1 |  |
| 0 | 1  | 0 |  |

| 0  | -1 | 0  |  |
|----|----|----|--|
| -1 | 4  | -1 |  |
| 0  | -1 | 0  |  |

| 1 | 1  | 1 |
|---|----|---|
| 1 | -8 | 1 |
| 1 | 1  | 1 |

| -1 | -1 | -1 |
|----|----|----|
| -1 | 8  | -1 |
| -1 | -1 | -1 |

a b

c d

#### FIGURE 3.37

(a) Filter mask used to implement Eq. (3.6-6). (b) Mask used to implement an extension of this equation that includes the diagonal terms.

diagonal terms.
(c) and (d) Two
other implementations of the
Laplacian found
frequently in
practice.

### - The Laplacian operator

- Advantage
  - Detection of edges and their orientations
  - Having fixed characteristics in al directions

#### Drawback

- Responding to some of the existing edges
- Very sensitivity to noise

### - Sobel operator

$$\nabla f(x,y) = \left| \frac{\partial f(x,y)}{\partial x} \right| + \left| \frac{\partial f(x,y)}{\partial y} \right|$$

$$\frac{\partial f(x,y)}{\partial x} = \sum_{s=-1}^{1} \sum_{t=-1}^{1} g_x(s,t) f(x+s,y+t)$$

$$\frac{\partial f(x,y)}{\partial y} = \sum_{s=-1}^{1} \sum_{t=-1}^{1} g_y(s,t) f(x+s,y+t)$$

 $g_x$ : horizontal edge

| -1 | -2 | -1 |
|----|----|----|
| 0  | 0  | 0  |
| 1  | 2  | 1  |

 $g_{v}$ : vertical edge

| -1 | 0 | 1 |
|----|---|---|
| -2 | 0 | 2 |
| -1 | 0 | 1 |

Optional: diagonal edge

| 0  | 1  | 2 | -2 | -1 | 0 |
|----|----|---|----|----|---|
| -1 | 0  | 1 | -1 | 0  | 1 |
| -2 | -1 | 0 | 0  | 1  | 2 |

- Sobel operator









a b c d

#### FIGURE 10.16

(a) Original image of size  $834 \times 1114$  pixels, with intensity values scaled to the range [0, 1]. (b)  $|g_x|$ , the component of the gradient in the x-direction, obtained using the Sobel mask in Fig. 10.14(f) to filter the image. (c)  $|g_y|$ , obtained using the mask in Fig. 10.14(g). (d) The gradient image,  $|g_x| + |g_y|$ .

### - Sobel operator

#### Advantage

- Easy to be implemented in hardware and software
  - Only eight image points around a point are needed to compute the corresponding result
  - Only integer arithmetic is needed to compute the opposite of the gradient vector approximation

#### Drawback

- Sensitivity to noise
- Inaccurate since the range is limited in 3x3

# PRE-PROCESSING

An Introduction to Edge Detection

- Histogram equalization
  - The discontinuities between pixels may be continuous if the contrast of the image is low
- Noise Reduction
  - The false edges are detected since the operators are sensitive to noise
- Morphology
  - A technique for analysis and processing of geometrical structures

# - Histogram equalization



Figure 1. 1.1- original image, 1.2- Resulting image after histogram equalization



- Histogram equalization
- Histogram equalization is a technique where the histogram of resultant image is as flat as possible
- For an image that its gray level is in [0,L],
   Histogram is defined as:
  - $h(r_k) = n_k$
  - where  $r_k$  is k-th gray level,  $n_k$  is the number of pixels that have  $r_k$  gray level.
- A normalized histogram is defined as:

• 
$$p(r_k) = n_k / MN$$



**FIGURE 3.16** Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms.

- Histogram equalization
  - For any r satisfying the aforementioned conditions, we focus attention on transformations of the form

$$s = T(r) \quad 0 \le r \le L - 1$$

- The transformation function T(r) satisfies the following conditions:
  - (a) T(r) is single-valued and monotonically increasing in the interval  $0 \le r \le L-1$
  - (b)  $0 \le T(r) \le L 1$  for  $0 \le r \le L 1$



- Histogram equalization

• 
$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

• 
$$\frac{ds}{dr} = \frac{dT(r)}{dr} = (L-1)\frac{d}{dr} \{ \int_0^r p_r(w)dw \} = (L-1)p_r(r)$$

• 
$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right| = p_r(r) \left| \frac{1}{(L-1)p_r(r)} \right| = \frac{1}{L-1}$$

• The form of ps(s) is a uniform probability density function

• Since  $p(r_k) = n_k / MN$ ,

• 
$$s = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j) = \frac{L-1}{MN}\sum_{j=0}^k n_j$$
 ,  $k = 0,1,...,L-1$ 

- Histogram equalization
- ■Suppose that a 3-bit image (L=8) of size 64x64 pixels (MN=4096) has the intensity distribution shown in Table

3.1

TABLE 3.1
Intensity
distribution and
histogram values
for a 3-bit,
64 × 64 digital
image.

| r <sub>k</sub> | $n_k$ | $p_r(r_k) = n_k/MN$ |
|----------------|-------|---------------------|
| $r_0 = 0$      | 790   | 0.19                |
| $r_1 = 1$      | 1023  | 0.25                |
| $r_2 = 2$      | 850   | 0.21                |
| $r_3 = 3$      | 656   | 0.16                |
| $r_4 = 4$      | 329   | 0.08                |
| $r_5 = 5$      | 245   | 0.06                |
| $r_6 = 6$      | 122   | 0.03                |
| $r_7 = 7$      | 81    | 0.02                |

Histogram equalization

• 
$$S_0 = T(r_0) = 7\sum_{j=0}^{0} p_r(r_j) = 7p_r(r_0) = 1$$

• 
$$S_1 = T(r_1) = 7\sum_{j=0}^{1} p_r(r_j) = 7p_r(r_1) = 3.08 \approx 3$$

• 
$$S_2 \cong 5$$
,  $S_3 \cong 6$ ,  $S_4 \cong 6$ ,  $S_5 \cong 7$ ,  $S_6 \cong 7$ ,  $S_7 \cong 7$ .



a b c

**FIGURE 3.19** Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

# **PROJECT ASSIGNMENT**

An Introduction to Edge Detection

## Project – Edge detection

- Write a program using the language (Matlab, C++,...) you are familiar with to detect the edges from an image
- The image can be downloaded from the website
- Basic issue
  - Histogram equalization
  - Sobel operator
  - Add your comments in source code
    - The goal of the function, the main concept of the code section, the meaning of each variable, ...
- Bonus
  - Other ideas for improving the detection result
- Submission due: Two weeks after the project is assigned

## Project – Edge detection



Image\_0314



Image\_0008



Image\_0323



Image\_0023

## Project – Edge detection





image\_0021.jpg



image\_0069.jpg



image\_0034.jpg





image\_0002.jpg