Lógica CC

Univ. do Minho - Lic. em Ciências da Computação

1º teste 31 de outubro de 2024

- 1. Apresente, sem justificar, uma fórmula do Cálculo Proposicional, que represente a seguinte frase: «é necessário que um número termine em 0 ou em 5 para que seja múltiplo de 5». (0,5 valores)
- 2. Defina por recursão estrutural uma função $n: \mathcal{F}^{CP} \to \{0,1\}$ tal que, para cada $\varphi \in \mathcal{F}^{CP}$, $n(\varphi) = 1$ se \bot ocorre em φ e $n(\varphi) = 0$ caso contrário. (1 valor).
- 3. Foi definida numa aula a função $v: \mathcal{F}^{CP} \to \mathbb{N}_0$, tal que para cada $\varphi \in \mathcal{F}^{CP}$, $v(\varphi)$ é o número de ocorrências de variáveis em φ , como a única função tal que:
 - i) v(p) = 1, para todo $p \in \mathcal{V}^{CP}$;
 - ii) $v(\perp) = 0$;
 - iii) $v(\neg \varphi) = v(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
 - iv) $v(\varphi \square \psi) = v(\varphi) + v(\psi)$, para todos $\varphi, \psi \in \mathcal{F}^{CP}, \square \in \{ \lor, \land, \rightarrow, \leftrightarrow \} \}$.

Prove por indução estrutural que, para toda a fórmula φ , $v(\varphi[\bot/p_0]) \le v(\varphi)$.

(2 valores)

- 4. Defina, sem justificar, uma valoração v tal que $v((p_0 \land \neg p_1) \leftrightarrow (p_2 \lor p_1)) = 1$. (0,5 valores)
- 5. Diga, justificando, se $\neg p_0 \lor (p_1 \land \neg p_2) \Leftrightarrow (p_0 \land (\neg p_1 \lor p_2)) \rightarrow \bot$. (1 valor).
- 6. Sejam $\Gamma = \{p_0 \lor p_1, \neg(p_1 \land p_2)\}\$ e $\Delta = \{p_1 \lor \neg p_0, p_2, \neg(p_1 \to \neg p_2)\}\$. Indique, sem justificar, uma fórmula $\varphi \in \Delta$ tal que $\Gamma \cup \{\varphi\}$ é um conjunto não satisfazível. (0,5 valores)
- 7. Apresente, sem justificar, uma forma normal disjuntiva equivalente a

$$\neg ((\neg p_0 \lor p_1) \leftrightarrow (\neg p_1 \to p_2)). \tag{0.5 valores}$$

8. Mostre que sendo $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma, \Delta \subseteq \mathcal{F}^{CP}$, se $\Gamma \models \varphi$ e $\Delta, \varphi \models \psi$, então $\Gamma, \Delta \models \psi$. (2 valores)

9. Apresente derivações em DNP que mostrem que:

a)
$$\vdash (p_0 \land \neg p_1) \to \neg (p_0 \to p_1)$$
. (1 valor)

b)
$$p_0 \lor p_1 \vdash (p_0 \to p_1) \to p_1$$
. (1 valor)