Počítačové a komunikačné siete Smerovanie

Prednáška 10

Obsah

» Opakovanie

- » Čo je smerovač?
- » Smerovanie
- » Smerovacie algoritmy
- » Smerovacie protokoly

» Aké prístupové metódy k médiu poznáte?

- » Aké prístupové metódy k médiu poznáte?
 - súperiace vs. nesúperiace
 - deterministické vs. nedeterministické

» Akú prístupovú metódu používa Ethernet?

- » Akú prístupovú metódu používa Ethernet?
 - CSMA/CD Carrier Sense Multiple
 Access with Collision Detection

» Čo je kolízna doména? Aké zariadenie ju ohraničuje?

- » Čo je kolízna doména? Aké zariadenie ju ohraničuje?
 - segment siete, v ktorom môže nastať kolízia, keď sa 2 zariadenia pokúsia vysielať naraz
 - prepínač (switch)

» Aké poznáte typy duplex a multiplex?

- » Aké poznáte typy duplex a multiplex?
 - (simplex) = jednosmerná komunikácia
 - half-duplex = obojsmerná, ale nie naraz
 - full-duplex = obojsmerná komunikácia
 - FDM frekvenčný
 - TDM, STDM časový
 - WDM vlnový
 - CDM kódový

Smerovač

- » Zariadenia na prepájanie sietí
 - Rozbočovač (hub) L1
 - Prepínač (switch) L2
 - Smerovač (router) L3

Smerovač

- » Smerovacia tabul'ka (Routing Table)
 - Priamo pripojené siete
 - Statické cesty
 - Dynamické cesty


```
IPv4 Route Table
Active Routes:
Network Destination
                                                           Interface Metric
                           Netmask
                                             Gateway
          0.0.0.0
                           0.0.0.0
                                       147.175.152.1
                                                      147.175.153.134
                                                                           40
        127.0.0.0
                         255.0.0.0
                                            On-link
                                                             127.0.0.1
                                                                          331
                                            on-link
       127.0.0.1 255.255.255.255
                                                             127.0.0.1
                                                                          331
 127.255.255.255
                   255.255.255.255
                                            on-link
                                                             127.0.0.1
                                                                          331
                                            On-link
                                                                          296
    147.175.152.0
                     255.255.254.0
                                                      147.175.153.134
 147.175.153.134
                   255.255.255.255
                                            on-link
                                                      147.175.153.134
                                                                          296
 147.175.153.255
                   255.255.255.255
                                            on-link
                                                      147.175.153.134
                                                                          296
                                            on-link
      192.168.6.0
                     255.255.255.0
                                                          192.168.6.12
                                                                          281
                                            on-link
    192.168.6.12
                  255.255.255.255
                                                         192.168.6.12
                                                                          281
   192.168.6.255
                  255.255.255.255
                                            on-link
                                                         192.168.6.12
                                                                          281
                                                            127.0.0.1
                                            on-link
                                                                          331
        224.0.0.0
                         240.0.0.0
                                            on-link
                                                                          281
        224.0.0.0
                         240.0.0.0
                                                         192.168.6.12
        224.0.0.0
                         240.0.0.0
                                            on-link
                                                      147.175.153.134
                                                                          296
 255.255.255.255
                  255.255.255.255
                                            on-link
                                                             127.0.0.1
                                                                          331
                                                          192.168.6.12
 255.255.255.255
                  255.255.255.255
                                            on-link
                                                                          281
                                            on-link
                                                      147.175.153.134
                                                                          296
Persistent Routes:
 None
IPv6 Route Table
Active Routes:
If Metric Network Destination
                                     Gateway
                                     on-link
       331 ::1/128
       281 fe80::/64
                                     on-link
10
       296 fe80::/64
                                     on-link
       296 fe80::5d96:1ec5:3eee:46b5/128
                                     on-link
       281 fe80::dce9:eaec:ca65:1ad3/128
10
                                     on-link
      331 ff00::/8
                                     on-link
      281 ff00::/8
10
                                     on-link
       296 ff00::/8
                                     on-link
Persistent Routes:
```

None FIIT

R2#show ip route

```
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
```

Gateway of last resort is not set

```
10.0.0.0/24 is subnetted, 2 subnets
         10.1.1.0 [110/2] via 192.0.2.2, 00:00:35, GigabitEthernet0/1
0
         10.2.2.0 [110/2] via 192.0.2.2, 00:00:35, GigabitEthernet0/1
      192.0.2.0/24 is variably subnetted, 2 subnets, 2 masks
         192.0.2.0/24 is directly connected, GigabitEthernet0/1
C
         192.0.2.1/32 is directly connected, GigabitEthernet0/1
\mathbf{L}
      192.168.1.0/24 [90/3072] via 203.0.113.2, 00:00:22, GigabitEthernet0/2
D
      192.168.2.0/24 [90/3072] via 203.0.113.2, 00:00:22, GigabitEthernet0/2
D
      203.0.113.0/24 is variably subnetted, 2 subnets, 2 masks
         203.0.113.0/24 is directly connected, GigabitEthernet0/2
C
         203.0.113.1/32 is directly connected, GigabitEthernet0/2
L
R2#
```


- » Proces nájdenia cesty (route) zo zdrojového do cieľového uzla.
- » Z pohľadu uzla ako spracovať / kam preposlať paket na 3. vrstve OSI modelu.

- » Výhody statického smerovania
 - Jednoduchá implementácia
 - Bezpečnosť neprenášajú sa žiadne informácie o topológii siete
 - Stabilne rovnaká cesta
 - Žiadny výpočet algoritmu => nízke požiadavky na CPU a RAM

- » Nevýhody statického smerovania
 - Vhodné iba pre jednoduché topológie
 - Prudký nárast komplexnosti so zväčšovaním siete
 - Potreba manuálne vytvoriť / meniť konfiguráciu

- » Statické smerovanie
- » Dynamické smerovanie
 - Automatické vytváranie smerovacej tabuľky pri zmenách v sieti
 - Smerovače komunikujú smerovacím protokolom

Dve úrovne smerovania

- » interné, vnútorné (intranetwork, interior) smerovanie smerovanie v rámci autonómnych sytémov (AS) alebo administratívnych domén (AD)
- » **externé, vonkajšie** (internetwork, exterior) smerovanie smerovanie medzi autonómnymi sytémami alebo administratívnymi doménami (interdomain routing)

AS = autonomous system

- » IRP (IGP) interné smerovacie protokoly (Interior Router/Gateway Protocols)
 - skupina interných smerovacích protokolov pre smerovanie vo vnútri autonómnych systémov alebo administratívnych domén (AS, AD)
 - otvorené (napr. RIP, OSPF, IS-IS)
 - proprietárne (napr. IGRP, EIGRP)
- » ERP (EGP) externé smerovacie protokoly (Exterior Router/Gateway Protocols)
 - skupina externých smerovacích protokolov pre smerovanie medzi
 AS resp. AD
 - otvorené (napr. EGP, BGP)

- » smerovanie práve jednému (unicast routing)
- » smerovanie viacerým (multicast routing)
- » smerovanie všetkým (broadcast routing)
- » hierarchické smerovanie (hierachical routing)

» hierarchické

hierachical

Úplná smerovacia tabuľka pre smerovač 1.1

cie	eľ'	nasled.uzol
	1.1	
1	.2	1.2
1	.3	1.3
1	.4	1.2
2	2.1	1.2
2	2.2	1.2
2	2.3	1.2
2	2.4	1.2
3	3.1	1.3
3	3.2	1.3
3	3.3	1.3
3	3.4	1.3
		l

» hierarchické

hierachical

Úplná smerovacia tabuľka pre smerovač 1.1

nasled.uzol
1.2
1.3
1.2
1.2
1.2
1.2
1.2
1.3
1.3
1.3
1.3

Hierarchická smerovacia tabuľka pre smerovač 1.1

cieľ'	nasled.uzol
1.1	
1.2	1.2
1.3	1.3
1.4	1.2
O2	1.2
О3	1.3
,	•

Klasifikácia smerovania

- » neadaptívne <=> adaptívne (statické <=> dynamické)
 - nonadaptive vs. adaptive (static vs. dynamic) routing
- » jednoduché <=> viacnásobné
 - single vs. multiple path routing
- » na báze zdroja <=> "hop-by-hop"
 - source-based or loose source routing vs. hop-by-hop
- » centralizované <=> distribuované <=> izolované
 - centralized vs. distributed vs. isolated routing

Smerovanie - stratégie a algoritmy

- metrika (rôzne kritéria)
 - počet "hops"
 - oneskorenie
 - priepustnosť
 - cena
- kedy sa vykonáva smerovanie
 - pakety, datagramy
 - virtuálne kanály

Smerovanie - stratégie a algoritmy

- kde sa získavajú smerovacie informácie
 - každý uzol
 - centrálny uzol
 - zdroj
- na základe akých poznatkov sa získavajú smerovacie informácie
 - žiadne
 - lokálne
 - susedné
 - všetky uzly

Smerovanie - stratégie a algoritmy

- kedy sa obnovuje smerovacia informácia
 - periodicky
 - po zmene záťaže
 - po zmene topológie

- » Požiadavky na smerovacie algoritmy
 - jednoduchosť (simplicity)
 - vnesenie čo najmenšej réžie
 - korektnosť (correctness)
 - poskytnutie správnych a použiteľných výsledkov
 - robustnosť (robustness)
 - zotavenie z rôznych porúch a neštandardných situácií
 - optimálnosť (optimality)
 - nájdenie optimálnych prepojení z hľadiska niektorých sieťových parametrov, napr. "hops", oneskorenie, priepustnosť…..

- » Požiadavky na smerovacie algoritmy
 - stabilita (stability)
 - konvergovanie do stabilného stavu pri obnove smerovacích tabuliek
 - "férovost" (fairness)
 - každý smerovač musí mať možnosť smerovať dátovú jednotku

- » Výsledok smerovacieho algoritmu
 - cesta (cesty) zo zdrojového uzla do cieľového uzla, ktorá je zaznamenaná do smerovacej tabuľky
 - smerovacia tabul'ka obsahuje aspoň dva stĺpce
 - adresa cieľového uzla (cieľovej siete)
 - adresa smerovača, ktorý reprezentuje "next hop"na optimálnej ceste do cieľového uzla (príp. adresa výstupu)

- » "Shortest path routing" algoritmus
 - statický algoritmus
 - reprezentácia siete grafom
 - nájdenie najkratšej cesty medzi uzlami grafu (medzi smerovačmi)
 - ohodnotenie hrán grafu (korešpondencia so sieťovými parametrami - vzdialenosť, cena, oneskorenie
 - Dijkstra-ov alg., Floyd-ov alg.,

- » "Flooding" algoritmus (záplava)
 - jednoduchý statický algoritmus
 - znásobovanie dátových jednotiek
 smerovač vysiela vstupné dáta na každý port okrem portu, z ktorého dáta prijal
 - podporný algoritmus

- » "Distance vector routing" algoritmus (DVA) a "Link state routing" algoritmus (LSA)
 - najznámejšie dynamické distribuované algoritmy
 - predpokladá sa, že smerovač pozná
 - identitu každého suseda
 - vzdialenosť k susedovi (rôzna metrika)
 - algoritmus umožní smerovaču
 - nájsť globálnu smerovaciu informáciu ("next hop" pre každý cieľ) výmenou smerovacích informácii len s jeho susedmi

• zostaviť správu so smerovacou informáciou

Distance vector routing algorithm (Bellman-Ford, Ford-Fulkerson):

```
správa je "dištančný" vektor, ktorý udáva vzdialenosť ku každému inému uzlu v sieti:
```

```
{< destination 1, distance 1 >,..., < destination n, distance n >}
```

Link state routing algorithm (Dijkstra)

```
správa je "stavový" vektor, ktorý udáva "stav" linky ku každému susedovi:
```

```
\{< neighbor 1, link state 1>,...,< neighbor k, link state k>\}
```


poslať správu

Distance vector routing algorithm:

k jeho priamym susedom

Link state routing algorithm:

k všetkým smerovačom

- » Distance Vector (DVA)
 - Posielajú sa informácie o všetkých naučených sieťach
 - Update iba priamym susedom
 - Každý smerovač vidí iba cesty dostupné cez priamych susedov
 - Bellman-Ford

Smerovacie algoritmy

- » Link-State (LSA)
 - Posielajú sa iba informácie o stave pripojených liniek
 - Update každému smerovaču
 - Každý smerovač si vytvorí databázu s celou topológiou
 - Dijkstra

Porovnanie DVA a LSA

	DVA	LSA
správa	vektor vzdialeností ku každému smerovaču	vektor stavov priamo pripojených liniek
správa sa posiela	susedným smerovačom	všetkým merovačom
algoritmus nájdenia cesty	Bellman-Ford	Dijkstra
obnova smerovacej informácie	periodicky (aj aktualizácia po zmene topológie)	po zmene
škálovateľnosť	malá	dobrá
konvergencia	veľmi pomalá	rýchla
problémy	slučky	synchronizácia správ
robustnosť	malá	vyššia

DVA algoritmus

A

 $\left(\begin{array}{c} B \end{array}\right)$

 \widehat{C}

D

do uzla	metrika	do uzla	metrika
A	0	A	1
В	1	В	0
C	4	C	1
D	$ \propto$	D	1

do uzla	metrika
A	4
В	1
C	0
D	2

do	uzla	metrik
	A	∞
	В	1
	C	2
	D	0

DVA algoritmus

metrika

0

 ∞

do uzla_l

A

nasl. uzol

A

do uzla

A

C

metrika

D

2

do	uzla	metrika
	A	∞
	В	1
	C	2
	D	0

do	uzla	metrika	nasl. uzol
·	A	0	A
	В	1	В
	C	4	С
	D	∞	-

do uzla	metrika
A	1
В	0
C	1
D	1

do uzla	metrika
A	4
В	1
C	0
D	2

do	uzla	metrika
	A	∞
	В	1
	С	2
	D	0

do	uzla	metrika	nasl. uzol
•	A	0	A
	В	1	В
	C	2	В
	D	2	В

do uz	zla	metrika	do uzla	metrika
	\ \	1	A	4
F	3	0	В	1
		1	C	0
Г	`	1	D	2
L	,	1		

do uzla	metrika
A	∞
В	1
C	2
D	0

do	uzla	metrika	nasl. uzol
	A	0	Α
	В	1	В
	C	2	В
	D	2	В

do uzla	met	. n.u.	do uzla	me	t. n.u.	do uzla	m	etn.u
A	1	A	A	2	В	A	2	В
В		ı	В	1	В	В	1	В
C		\mathbf{C}	C	0	C	C	2	C
D	1	\mathbf{D}	D	2	D	D	0	D

- » Problémy pri DVA slučky (count-to-infinity problem)
- » Možné riešenia:
 - zápis cesty
 - limit pre dĺžku cesty
 - rozložený horizont (split horizont)
 - nekorektné spätné informácie (poison reverse)
 - časové pozdržanie (hold-down timer)
 - atd'.

Príklad LSA

LSA algoritmus

Príklad LSA

LSA algoritmus

LSP:

A	В	С	D	Е	F
SEQ	SEQ	SEQ	SEQ	SEQ	SEQ
B 4 E 5	A 4 C 2 F 6	B 2 D 3 E 1	C 3 F 7	A 5 C 1 F 8	B 6 D 7 E 8

Príklad LSA

LSA algoritmus

A			В		
SEQ			SEQ		
AGE			A	GE	
В	4		A	4	
E	5		С	2	
			F	6	

LSP:

	С	D		
Sl	EQ	SE		
A	GE	AC		
В	2	С		
D	3	F		
E	1			

D		E		F		
SEQ		SEQ		SEQ		
AGE		AGE		AGE		
C	3	A	5	В	6	
F	7	С	1	D	7	
		F	8	Е	8	

- » implementujú smerovacie stratégie a smerovacie algoritmy
- » prenášajú sieťové parametre ku každému smerovaču
- » obnovujú smerovacie tabuľky (databázy) v každom smerovači

- » Požiadavky na smerovacie protokoly
 - minimalizovať smerovacie tabuľky -> menšia pamäť a réžia
 - minimalizovať riadiace správy -> menšia réžia

Protokol	Тур	Vnorenie
RIP	IGP / DVA	RIP -> UDP -> IP
OSPF	IGP / LSA	OSPF -> IP
BGP	EGP / DVA	BGP -> TCP -> IP
IGRP	IGP / DVA	IGRP -> IP
Integrated IS-IS	IGP / LSA	do spojovej vrstvy

Smerovací algoritmus

Skupina DVA LSA

IRP (IGP)	RIP	OSPF
	IGRP	Integrated IS-IS
ERP (EGP)	BGP*	(IDRP)

*BGP používa Path Vector Algoritmus

Príklady smerovacích protokolov v Internete

» RIP – Routing Information Protocol

RIPv1 - IP adresy A,B,C

RIPv2 - podpora CIDR

Príklady smerovacích protokolov v Internete

» OSPF – Open Shortest Path First

CIDR

Príklady smerovacích protokolov v Internete

» BGP – Border Gateway Protocol

BGPv4 - podpora CIDR

