Algoritmica Grafurilor

Despre ce e vorba?

- Noțiuni fundamentale de teoria grafurilor
- Însuşirea şi familiarizarea cu algoritmii fundamentali din teoria grafurilor
- Însuşirea deprinderii de a modela problemele folosind grafuri
- Aplicaţii

Objective specifice:

- Cunoașterea principalelor noțiuni și rezultate din teoria grafurilor și a utilității acestora
- Modelarea problemelor cu ajutorul grafurilor şi elaborarea de algoritmi de grafuri pentru rezolvarea acestora
- Abilități de justificare a corectitudinii algoritmilor propuși si de a estima eficiența acestora
- Implementarea <u>eficientă</u> a algoritmilor

• Transport, căi de comunicare, etc

Rețele sociale, sociologie

Rețele de calculatoare

Computer Vision

Chimie

- Limbaje Formale, Tehnici de Compilare
- Optimizare
- Bioinformatică
- Baze de date
- Diverse jocuri (ṣah, Catan, StarCraft,...)

Motivație

- Domeniu fundamental
- Bază pentru alte cursuri
- Examen de licență
- Interviuri

- Dragoş-Radu Popescu, Combinatorică şi teoria grafurilor, Editura Societatea de Ştiinţe
 Matematice din România, Bucureşti, 2005.
- Dragoş-Radu Popescu, R. Marinescu-Ghemeci,
 Combinatorică şi teoria grafurilor prin exerciţii
 şi probleme, Editura Matrixrom, 2014

- Jon Kleinberg, Éva Tardos, Algorithm Design, Addison-Wesley 2005
 http://www.cs.princeton.edu/~wayne/kleinberg-tardos/
- T.H. Cormen, C.E. Leiserson, R.R. Rivest –
 Introducere in algoritmi, MIT Press, trad.
 Computer Libris Agora

- Douglas B. West, Introduction to Graph Theory,
 Prentice Hall 1996, 2001
- J.A. Bondy, U.S.R Murty Graph theory with applications, The Macmillan Press 1976 / Springer 2008

- Laborator 30 puncte:
 - Test la sfarsit de semestru
 - Se va lucra in C/C++. Lucrul OOP si cu folosirea elementelor din STL nu este obligatorie dar este încurajată.

- Laborator 30 puncte:
 - Test la sfarsit de semestru
 - Se va lucra in C/C++. Lucrul OOP si cu folosirea elementelor din STL nu este obligatorie dar este încurajată.
- Examen scris 60 puncte:
 - Teorie + Exercitii + Algoritmică

- Laborator 30 puncte:
 - Test la sfarsit de semestru
 - Se va lucra in C/C++. Lucrul OOP si cu folosirea elementelor din STL nu este obligatorie dar este încurajată.
- Examen scris 60 puncte:
 - Teorie + Exercitii + Algoritmică
- Seminar:
 - Înțelegerea mai bună a noțiunilor prezentate la curs;
 Exerciții;
 - BONUSURI!!!

Definiții & Noțiuni de bază

Graf orientat

Graf orientat

Graf orientat - definiții

Graf orientat - definiții

Graf orientat "G" - pereche de mulţimi G = (V, E);

- V mulţimea vârfurilor (de obicei notate cu numere)
- E ⊆ VxV mulţimea arcelor mulţime de perechi
 ordonate (n.e. (2,5)≠(5,2))

v∈V - **vârf**; e=(u,v)∈E; uv - **arc**

u = e - vârf iniţial / origine / extremitate iniţială

v = e⁺ - vârf final / terminus / extremitate finală

Graf orientat - Exemplu

V={1,2,3,4,5,6}

 $E=\{(1,2);(1,3);(1,5);(2,3);(2,4);(3,1);(4,6);(5,6);(6,5)\}$

Graf orientat - Exemplu

V={1,2,3,4,5,6}

 $E=\{(1,2);(1,3);(1,5);(2,3);(2,4);(3,1);(4,6);(5,6);(6,5)\}$

Definiție:

- Fie S o mulţime (finită) nevidă
- Multiset
 - o Intuitiv: "mulţime" în care se pot repeta elementele

Definiție:

- Fie S o mulţime (finită) nevidă
- Formal:
 - Mai exact, un multiset este format dintr-o mulţime
 S căreia i se ataşează un ordin de multiplicitate
 pentru fiecare element al lui S
 - Multitestul M=(S,r), unde r : S→N este funcția de multiplicitate

Definiție:

- Fie S o mulţime (finită) nevidă
- Formal:
 - Mai exact, un multiset este format dintr-o mulţime
 S căreia i se ataşează un ordin de multiplicitate
 pentru fiecare element al lui S
- Multitestul M=(S,r), unde r : S→N este funcţia de multiplicitate
- Notație: R=(x^{r(x)} | x∈S)

Exemplu

- S={2,3,5,7}
- \circ R= {2³,3,5²,7⁴}
- |R|= 10 (suma multiplicităților)

Graf orientat (revenire)

G=(V,E)

- $d_G^-(u)$ gradul interior $d_G^-(u) = |\{e \in E \mid u \text{ extremitate final a pentru } e \}|$
- $d_G^+(u)$ gradul exterior $d_G^+(u) = |\{e \in E \mid u \text{ extremitate initiala pentru } e \}|$
- $d_G(u)$ grad $d_G(u) = d_G^+(u) + d_G^-(u)$

Are loc relația:

$$\sum_{u\in V}d_G^-(u)=$$

Are loc relația:

$$\sum_{u\in V}d_G^-(u)=\sum_{u\in V}d_G^+(u)=$$

Are loc relația:

$$\sum_{u \in V} d_G^-(u) = \sum_{u \in V} d_G^+(u) = |E|$$

Multisetul gradelor interioare:

$$s^{-}(G) = \{d_{G}^{-}(v_{1}),...,d_{G}^{-}(v_{n})\}$$

Multisetul gradelor exterioare:

$$s^+(G) = \{d_G^+(v_1), ..., d_G^+(v_n)\}$$

$$s^{-}(G)=\{1,$$

$$s^{-}(G)=\{1,2\}$$

$$s^{-}(G)=\{1,2,2,1,2,2\}=\{1^2,2^4\};$$

$$s^+(G)=$$

$$s^{+}(G)={3}$$

$$s^+(G)=\{3,2,\dots,m\}$$

$$s^{+}(G)=\{3,2,1,1,1,2\}=0$$

$$s^+(G)={3,2,1,1,1,2}={1^3,2^2,3};$$

Graf neorientat

Graf neorientat - definiții

Graf orientat "G" - pereche de mulțimi G = (V, E);

- **V** mulţimea *nodurilor*
- E ⊆ VxV mulţimea muchiilor- mulţime de perechi neordonate (n.e. (2,5)=(5,2))

 $v \in V$ - nod; $e=(u,v) \in E$; uv - muchie

u, v - capete / extremități

 $d_G(u)=|\{e \in E \mid u \text{ este unul dintre capetele lui } e\}|$

Multigraf orientat/neorientat

Multigraf - definiții

Graf orientat "G" - pereche de mulțimi G = (V, E, r);

- r(e) multiplicitatea muchiei e
 - dacă e=(v,v) buclă
 - dacă r(e)>1 muchie multiplă

 $d_G(u) = |\{e \in E \mid e \text{ nu este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este bucla}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este bucla}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este bucla}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este bucla}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este bucla}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este bucla}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ este bucla}, u \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ extremitate a lui } e \}| + |\{e \in E \mid e \text{ extremitate a lui } e \}| + |\{e \in E \mid e$

Adiacență, incidență

Adiacență, incidență

Graf neorientat - G=(V,E)

- u,v∈V sunt noduri <u>adiacente</u>, dacă (u,v)∈E
- Altfel spus, u este <u>vecin</u> al lui v

Notatie:

 $N_{G}(u)$ - mulţimea vecinilor lui u

Adiacență, incidență

Graf neorientat - G=(V,E)

- O muchie e este <u>incidentă</u> cu un nod u, dacă acesta este o extremitate de a sa
- Două muchii, e şi f sunt <u>adiacente</u> dacă există un nod
 v care este extremitate pentru ambele muchii.

- Drum
- Drum simplu
- Drum elementar
- Circuit + simplu/elementar
- Lungimea unui drum
- Distanță între două vârfuri

Graf orientat- G=(V,E)

- Un <u>drum</u> P este o secvență de vârfuri P=[v₁,v₂,...,v_k]
 unde
 - $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$
 - $(v_i, v_{i+1}) \in E, \forall i \in \{1, ..., k-1\}$

Graf orientat- G=(V,E)

- Un <u>drum</u> P este o secvență de vârfuri P=[v₁,v₂,...,v_k]
 unde
 - $\mathbf{V}_1, \mathbf{V}_2, \dots, \mathbf{V}_k \in V$
 - $(v_i, v_{i+1}) \in E, \forall i \in \{1, ..., k-1\}$
- Un <u>lanţ</u> L este o secvenţă de vârfuri L=[v₁,v₂,...,v_k] unde
 - $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$
 - $(v_i, v_{i+1}) \in E \text{ sau } (v_{i+1}, v_i) \in E, \forall i \in \{1, ..., k-1\}$

Graf orientat- G=(V,E)

- Un <u>drum</u> P este o secvență de vârfuri P=[v₁,v₂,...,v_k]
 unde
 - $\mathbf{V}_1, \mathbf{V}_2, \dots, \mathbf{V}_k \in V$
 - $(v_i, v_{i+1}) \in E, \forall i \in \{1, ..., k-1\}$
- Un <u>lanţ</u> L este o secvenţă de vârfuri L=[v₁,v₂,...,v_k] unde
 - $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$
 - $(v_i, v_{i+1}) \in E$ sau $(v_{i+1}, v_i) \in E$, $\forall i \in \{1, ..., k-1\}$

OBS: In cazul grafuriler neorientate cele două noțiuni sunt echivalente

Graf orientat- **G=(V,E)** și $P=[v_1,v_2,...,v_k]$ un drum în G

- P este <u>drum simplu</u> dacă nu conține un arc de mai multe ori ((v_i,v_{i+1})≠(v_i,v_{i+1}) ∀i≠j)
- P este <u>drum elementar</u> dacă nu conține un vârf de mai multe ori (v_i≠v_j, ∀i≠j)

Lungimea lui *P* este k-1 și este numărul de arce din alcătuirea lanțului

Un lanţ (drum) cu extremităţile v_1 , v_k se numeşte v_1 - v_k lanţ (drum)

Distanța dintre două vârfuri *u* și *v* este definită astfel:

$$d_G(u,v) = \begin{cases} 0, \text{ daca } u = v \\ \infty, \text{ daca nu exista } u - v \text{ drum in } G \\ \min\{l(P) \mid P \text{ este } u - v \text{ drum in } G\}, \text{ altfel} \end{cases}$$

Graf orientat- G=(V,E)

Un circuit este un drum cu capetele identice $C=[v_1,v_2,...,v_k,v_1]$ un drum în G

 Circuit elementar - un ciclu in care nu se repetă vârfurile

Lanțuri, cicluri

Lanțuri, cicluri

Graf neorientat- G=(V,E) - noțiuni similare

 Un lanţ este o secvenţă P de vârfuri cu proprietatea că oricare două vârfuri consecutive sunt adiacente

•
$$P = [v_1, v_2, ..., v_{k-1}, v_k]$$

- lanţ simplu / lanţ elementar / lungime
- ciclu / ciclu elementar
- distanță / lanț minim

Istoric, Aplicații

Orașul Köningsberg, aflat pe râul Pragel

Este posibil ca un om să facă o plimbare în care să treacă pe toate cele 7 poduri o singură dată?

1736 - Leonhard Euler
Solutio problematis ad
geometriam situs pertinentis

Lanț Eulerian / Ciclu Eulerian

Egalitate, Izomorfism

Egalitate

Egalitate?

Izomorfe!

Fie G₁, G₂ două grafuri

- $G_1 = (V_1, E_1),$
- $G_2 = (V_2, E_2)$

Grafurile G_1 și G_2 sunt **izomorfe** $(G_1 \sim G_2) \Leftrightarrow$

există $f: V_1 \rightarrow V_2$ bijectivă cu

$$uv \in E_1 \Leftrightarrow f(u)f(v) \in E_2$$

pentru orice $u,v \in V_1$

(f conservă adiacența și neadiacența)

$$\mathbf{G}_1 \sim \mathbf{G}_2 \Longrightarrow \mathbf{s}(\mathbf{G}_1) = \mathbf{s}(\mathbf{G}_2)$$

$$s(G_1) = s(G_2) \Rightarrow G_1 \sim G_2$$
?

Care dintre aceste grafuri sunt izomorfe?

Istoric, Aplicații

∘1856 – **Hamilton –** "voiaj în jurul lumii" :

Există un traseu închis pe muchiile dodecaedrului care să treacă prin fiecare vârf o singură dată?

- Ciclu hamiltonian trece o singură dată prin toate vârfurile
- Graf hamiltonian

- Poliedru corp mărginit de suprafeţe plane
- Poliedru convex segmentul care uneşte două puncte oarecare din el conţine numai puncte din interior
- Poliedru regulat convex feţele sunt poligoane regulate congruente
- Graf planar se poate reprezenta în plan fără ca muchiile să se intersecteze in interior

Corpuri platonice

Tetraedru

Octaedru

Cub

Corpuri platonice

Icosaedru

Dodecaedru

Se poate colora o hartă cu patru culori astfel încât orice două țări, care au frontieră comună și care nu se reduce la un punct, să aibă culori diferite?

- DeMorgan 1852

Problema celor 4 culori - Appel și Haken răspuns afirmativ în 1976 cu ajutorul calculatorului

Graf parțial, subgraf, conexitate

Graf parțial, subgraf

Fie
$$G = (V, E)$$
 și $G_1 = (V_1, E_1)$ două grafuri

- G₁ este graf parțial al lui G (vom nota G₁ ≤ G) dacă
 V₁ = V, E₁ ⊆ E
- G_1 este **subgraf** al lui G (vom nota $G_1 \prec G$) dacă $V_1 \subseteq V$, $E_1 \subseteq E$
- G_1 este subgraf indus de V_1 în G (vom nota $G_1=G[V_1]$) dacă

$$V_1 \subseteq V$$
,

 $E_1 = \{e \mid e \in E(G), e \text{ are ambele extremități în } V_1 \}$ (toate arcele/muchiile cu extremități în V_1)

Conexitate

Fie G = (V, E) un graf neorientat

- G este graf conex dacă între orice două vârfuri distincte există un lanț
- O componentă conexă a lui G este un subgraf indus conex maximal (care nu este inclus în alt subgraf conex)
- Pentru cazul orientat tare-conexitate

Conexitate

