Bios 661: 1-5; Bios 673: 2-6.

- 1. C&B 8.12
- 2. C&B 8.7(a)
- 3. C&B 8.15
- 4. [From 2011 master exam] Let X_1, \ldots, X_n be i.i.d. random variables from the pdf

$$f(x|\theta) = (1 - \theta) + \frac{\theta}{2\sqrt{x}}, \quad 0 < x < 1, \quad 0 \le \theta \le 1.$$

That is, we have a random sample of size n from the population f. The parameter θ is unknown.

- (a) Derive the uniformly most powerful level α test $(0 < \alpha < 1)$ for $H_0: \theta = 0$ against $H_1: \theta = 1$. Specify the critical region as concisely and as explicitly as possible. Justify your answers. Do not use any approximations.
- (b) For the special case of n=5 and $\alpha=0.01$, find the critical region (exactly). Also, find the (exact) power of the test.
- (c) An investigator wants to design a study in which the test derived above will be applied. The investigator desires a Type I Error probability of 0.01 and a Type II Error probability of 0.01. Find the minimum required sample size n (exact, or approximate, whichever is easier).
- (d) This part pertains to the special case of n=1 (sample size = 1). Find $\hat{\theta}$, the maximum likelihood estimator (MLE) of θ . Show that the MLE is biased. Then find constants a and b such that $T(X_1) = a + b\hat{\theta}$ is unbiased for θ . Do you see any potential problems with $T(X_1)$ as an estimator of θ ?
- 5. An epidemiologist gathers data (x_i, Y_i) on each of n randomly chosen noncontiguous and demographically similar cities in the United States, where x_i , i = 1, ..., n, is the known population size (in millions of people) in city i, and where Y_i is the random variable denoting the number of people in city i with colon cancer. It is reasonable to assume that Y_i , i = 1, ..., n, has a Poisson distribution with mean $E(Y_i) = \theta x_i$, where $\theta > 0$ is an unknown parameter, and that $Y_1, Y_2, ..., Y_n$ are mutually independent random variables.
 - (a) Use the available data (x_i, Y_i) , i = 1, ..., n, construct a uniformly most powerful (UMP) level α test for $H_0: \theta = 1$ versus $H_1: \theta > 1$.
 - (b) Use the available data (x_i, Y_i) , i = 1, ..., n, construct a uniformly most powerful (UMP) level α test for $H_0: \theta \leq 1$ versus $H_1: \theta > 1$. Is this critical region the same as the one used in (a)?

(c) One can show that $S = \sum_{i=1}^{n} Y_i$ follows $Poisson(\theta \sum_{i=1}^{n} x_i)$. If one observes $\sum_{i=1}^{n} x_i = 0.8$, find c^* in the critical region $\mathcal{R} = \{S : S \geq c^*\}$ which is a level $\alpha = 0.05$ test.

(If $X \sim \text{Poisson}(0.8)$, then P(X = 0) = 0.449, $P(X \le 1) = 0.808$, $P(X \le 2) = 0.952$, $P(X \le 3) = 0.990$, $P(X \le 4) = 0.999$).

(d) What is the power when $\theta = 5$, using the critical region in (c) and $\sum_{i=1}^{n} x_i = 0.8$?

(If $X \sim \text{Poisson}(4)$, then P(X = 0) = 0.018, $P(X \le 1) = 0.092$, $P(X \le 2) = 0.238$, $P(X \le 3) = 0.433$, $P(X \le 4) = 0.628$).

6. Suppose that $Y_1, \ldots, Y_n, n > 1$, is a random sample from the pdf

$$f_Y(y|\theta) = \frac{4}{\sqrt{\pi}}\theta^{-3}y^2 \exp\left(-\frac{y^2}{\theta^2}\right), \quad 0 < y < \infty, \quad 0 < \theta < \infty.$$

- (a) Show that Y_i^2 , i = 1, ..., n, follows a Gamma distribution $\Gamma(3/2, \theta^2)$.
- (b) Derive the uniformly most powerful size α test, $0 < \alpha < 1$, of $H_0: \theta = 1$ against $H_1: \theta > 1$. Specify the rejection region as $R = \{ \boldsymbol{y} : \sum_{i=1}^n y_i^2 \ge c^* \}$ with some constant c^* .
- (c) Derive the likelihood ratio test statistic $\lambda(\boldsymbol{y})$ for $H_0: \theta = 1$ against $H_1: \theta \neq 1$, and show that the rejection region $R = \{\boldsymbol{y}: \lambda(\boldsymbol{y}) \leq c\}$ is equivalent to $R = \{\boldsymbol{y}: \sum_{i=1}^n y_i^2 \leq c_1^* \text{ or } \sum_{i=1}^n y_i^2 \geq c_2^*\}$. Find the cutoff c_1^* and c_2^* explicitly given size $\alpha = 0.05$.
- (d) Determine whether one rejects the null hypothesis if n=25 and $\hat{\theta}=1.2$ (observed value of θ) at the 0.05 level.
- 7. [Bios 673/740 class discussion] Let X_1, \ldots, X_n be a random sample from the discrete uniform distribution on points $1, \ldots, \theta$, where $\theta = 1, 2, \ldots$
 - (a) Consider $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$, where $\theta_0 > 0$ is known. Show that

$$\delta^*(X) = \begin{cases} 1 & X_{(n)} > \theta_0 \\ \alpha & X_{(n)} \le \theta_0 \end{cases}$$

is a UMP size α test.

(b) Consider $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Show that

$$\delta^*(X) = \begin{cases} 1 & X_{(n)} > \theta_0 \text{ or } X_{(n)} \le \theta_0 \alpha^{1/n} \\ \alpha & \text{otherwise} \end{cases}$$

is a UMP size α test.