

45316

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of :
Kyung-jin Kim et al. :
Serial No.: 10/606,806 : Group Art Unit: N/A
Filed: June 27, 2003 :
For: METHOD OF CONTROLLING OPERATION :
MODE OF HYBRID ACCESS TERMINAL :
SUPPORTING VOICE SERVICE AND :
PACKET DATA SERVICE :
:

TRANSMITTAL OF PRIORITY DOCUMENTS

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

In order to perfect the claim for priority under 35 U.S.C. §119(a), the Applicants herewith submit one certified copy of Korean Patent Application No. 10-2002-0037478, as filed on June 29, 2002. Should anything further be required, the Office is asked to contact the undersigned attorney at the local telephone number listed below.

Respectfully submitted,

Mark W. Hrozenchik
Attorney of Record
Reg. No.: 45,316

Roylance, Abrams, Berdo & Goodman, L.L.P.
1300 19th Street, N.W., Suite 600
Washington, D.C. 20036-2680
(202) 659-9076

Dated: November 20, 2003

대한민국 특허청

KOREAN INTELLECTUAL
PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto
is a true copy from the records of the Korean Intellectual
Property Office.

출원번호 : 10-2002-0037478
Application Number

출원년월일 : 2002년 06월 29일
Date of Application JUN 29, 2002

출원인 : 삼성전자주식회사
Applicant(s) SAMSUNG ELECTRONICS CO., LTD.

2003년 06월 05일

특허청
COMMISSIONER

【서지사항】

【서류명】	특허출원서
【권리구분】	특허
【수신처】	특허청장
【참조번호】	0001
【제출일자】	2002.06.29
【국제특허분류】	H04L
【발명의 명칭】	음성 서비스와 패킷 데이터 서비스를 지원하는 복합 이동 단말의 동작모드 제어방법
【발명의 영문명칭】	METHOD FOR CONTROLLING OPERATION MODE OF HYBRID MOBILE TERMINAL SUPPORTING VOICE SERVICE AND PACKET DATA SERVICE
【출원인】	
【명칭】	삼성전자 주식회사
【출원인코드】	1-1998-104271-3
【대리인】	
【성명】	이건주
【대리인코드】	9-1998-000339-8
【포괄위임등록번호】	1999-006038-0
【발명자】	
【성명의 국문표기】	김태원
【성명의 영문표기】	KIM, Tae Won
【주민등록번호】	630908-1000114
【우편번호】	431-070
【주소】	경기도 안양시 동안구 평촌동 인덕원 대우아파트 116동 1002호
【국적】	KR
【발명자】	
【성명의 국문표기】	김경진
【성명의 영문표기】	KIM, Kyung Jin
【주민등록번호】	750327-2119812
【우편번호】	156-802
【주소】	서울특별시 동작구 노량진1동 215-148
【국적】	KR

【취지】

특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대
리인 이건
주 (인)

【수수료】

【기본출원료】	20	면	29,000	원
【가산출원료】	28	면	28,000	원
【우선권주장료】	0	건	0	원
【심사청구료】	0	항	0	원
【합계】			57,000	원

【요약서】**【요약】**

본 발명은 음성 서비스와 고속의 패킷 데이터 서비스를 모두 지원하는 복합 이동 단말의 동작모드를 제어하는 방법에 관한 것이다. 음성 서비스와 저속의 데이터 서비스를 지원하는 제1 통신 시스템 및 고속의 패킷 데이터 서비스를 지원하는 제2 통신 시스템과 통신이 가능한 복합 이동 단말은 복합 동작모드에서 상기 제1 통신 시스템과 상기 제2 통신 시스템을 모두 감시한다. 상기 제2 통신 시스템에서 상기 복합 이동 단말로 동작모드 변경을 지시하는 메시지를 송신하면, 상기 복합 이동 단말은 상기 복합 동작모드에서 데이터 전용 동작모드로 전이하여 상기 제1 통신 시스템의 감시를 중단하고 상기 제2 통신 시스템만을 감시한다. 상기 데이터 전용 동작모드에서 상기 복합 이동 단말은 상기 제2 통신 시스템의 시그널링 메시지 포맷으로 래핑된 상기 제1 통신 시스템의 시그널링 메시지를 송신하고 수신한다. 이로써 본 발명은 복합 이동 단말의 데이터 처리율을 향상시키고 전력 소모를 감소시킨다.

【대표도】

도 3

【색인어】

CDMA 2000 1x, IS-2000, CMDA 2000 1xEV-DO, IS-856

【명세서】**【발명의 명칭】**

음성 서비스와 패킷 데이터 서비스를 지원하는 복합 이동 단말의 동작모드 제어방법

{METHOD FOR CONTROLLING OPERATION MODE OF HYBRID MOBILE TERMINAL SUPPORTING VOICE SERVICE AND PACKET DATA SERVICE}

【도면의 간단한 설명】

도 1은 종래의 제3세대 무선통신시스템에서 복합 액세스 단말의 동작모드들을 나타낸 도면.

도 2는 CDMA 2000 1x 시스템 및 CDMA 2000 1xEV-DO 시스템과 이들을 액세스하는 복합 액세스 단말을 보인 도면.

도 3은 본 발명에 따른 복합 액세스 단말의 동작모드들을 나타낸 도면.

도 4는 "Mode Change Request" 메시지의 포맷을 나타낸 도면.

도 5는 상기 도 4에서 "Mode Indication" 필드의 의미를 나타낸 테이블.

도 6은 "Mode Change Complete" 메시지의 포맷을 나타낸 도면.

도 7은 "Quick Config" 메시지의 포맷을 나타낸 도면.

도 8은 "Route Update" 메시지의 포맷을 나타낸 도면.

도 9는 "Wrapped Data" 메시지의 포맷을 나타낸 도면.

도 10은 상기 도 9에서 "Data Type" 필드의 의미를 나타낸 테이블.

도 11은 상기 도 9에서 "Data Channel Type" 필드의 의미를 나타낸 테이블.

도 12는 데이터 전용 동작모드에서 복합 액세스 단말이 CMDA 2000 1x 시그널링 메시지를 처리하는 동작을 나타낸 구성도.

도 13은 본 발명의 일 실시예에 따라 1xEV-D0 시스템에서 복합 액세스 단말의 동작모드를 제어하는 동작을 나타낸 메시지 흐름도.

도 14는 본 발명의 일 실시예에 따라 복합 액세스 단말이 자체적으로 동작모드를 변경하는 동작을 나타낸 메시지 흐름도.

도 15는 본 발명의 일 실시예에 따라 데이터 전용 동작모드에 있는 복합 액세스 단말이 1x 시스템에 위치 등록하는 동작을 나타낸 메시지 흐름도.

도 16은 본 발명의 일 실시예에 따라 데이터 전용 동작모드에 있는 복합 액세스 단말이 음성 호를 착신하는 동작을 나타낸 메시지 흐름도.

도 17은 본 발명의 일 실시예에 따라 데이터 전용 동작모드에 있는 복합 액세스 단말이 단문 메시지를 수신하는 동작을 나타낸 메시지 흐름도.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<18> 본 발명은 이동 단말에 관한 것으로서, 특히 음성 서비스와 고속의 패킷 데이터 서비스를 모두 지원하는 복합 이동 단말의 동작모드를 제어하는 방법에 관한 것이다.

<19> 일반적으로 CDMA(Code Division Multiple Access) 2000 1x, WCDMA/UMTS(Wideband Code Division Multiple Access/Universal Mobile Telecommunications System), GPRS(General Packet Radio System) 및 CDMA 2000 1xEV-DO(Evolution Data Only)와 같은 무선통신시스템은 제3세대(3rd Generation) 무선통신을 수행하는 시스템이다. 이러한 제3세대 무선통신시스템은 음성 서비스와 저속의 데이터 서비스만을 지원하던 전형적인 제2세대 무선통신시스템과는 달리 동영상 등의 고속 패킷 데이터 서비스(high speed packet data service)를 지원한다.

<20> 일반적으로 이동통신시스템은 가입자 장치인 이동 단말기(Mobile Station: MS)와 무선채널을 통해 상기 이동 단말기와 통신하는 기지국(Base Station: BS)을 포함한다. 이동 단말기와 기지국은 해당하는 시스템의 무선통신 규격을 만족하도록 설계되어야 한다. 특히 복합 액세스 단말(Hybrid Access Terminal: HAT 단말 또는 복합 이동 단말)이란 음성 서비스와 저속의 데이터 서비스를 지원하는 CDMA 2000 1x 규격인 IS-2000과 고속의 패킷 데이터 서비스를 지원하는 CDMA 2000 1xEV-DO 규격인 IS-856 모두를 만족하는 단말을 의미한다.

<21> 도 1은 종래의 제3세대 무선통신시스템에서 복합 액세스 단말의 동작모드들을 나타낸 것이다.

<22> 상기 도 1을 참조하면, 복합 액세스 단말은 CDMA 2000 1x 시스템의 제어 채널인 페이징 채널(Paging Channel)에서 오버헤드 메시지를 수신하여 초기화 획득(Initial Acquisition)을 수행한 후, IS-2000 전용 슬롯 동작모드(IS-2000 Only Slotted Operation Mode)(10)로 진입하여 페이징 채널의 할당된 슬롯을 감시하는 슬롯 동작을 수행한다. 이후 1xEV-DO 시스템을 획득하면 복합 액세스 단말은 CDMA 2000 1x 시스템과

CDMA 2000 1xEV-D0 시스템 모두에 대해 슬롯 동작을 수행하게 되며 이때 복합 액세스 단말은 복합(Hybrid) 동작모드에 있다고 칭한다. 즉 복합 모드는 IS-856 및 IS-2000 슬롯 동작모드(13)를 나타낸다. 복합 동작모드(13)에서 복합 액세스 단말의 동작은 하기와 같다.

- <23>
 - CDMA 시스템에 대해서만 초기화 획득을 수행한다.
- <24>
 - CDMA 시스템에서 슬롯 모드로 진입한 이후에만 함께 배치된(collocated) EV-D0 시스템을 획득한다.
- <25>
 - CDMA 시스템을 획득하는데 실패하면 15분간 딥 슬립(deep sleep)한 후 3분마다 CDMA 시스템을 스캔한다.
- <26>
 - CDMA 시스템을 획득하는데 실패하고 딥 슬립하게 되면 EV-D0 시스템에서의 동작을 중지한다.
- <27>
 - 두 시스템들을 획득한 이후 EV-D0 시스템을 유실하면 CDMA 페이징 채널을 유지하면서 EV-D0 딥 슬립 모드로 진입한다.
- <28>
 - EV-D0 시스템을 획득하였으나 세션을 여는데 실패하면, 20분 동안 EV-D0 시스템으로의 획득을 시도할 수 없다.
- <29>
 - 다시 상기 도 1을 참조하면, 복합 동작모드(13)에서 음성 호를 착신 또는 발신해야 하는 경우 복합 액세스 단말은 IS-2000 호를 설정하고 IS-2000 접속 모드(11)로 천이하게 되며(c), 만약 패킷 호를 착신 또는 발신해야 하는 경우 IS-856 패킷 호를 설정하고 IS-856 접속 모드(12)로 천이하게 된다(e). IS-856 패킷 호가 유지되는 동안에도 복합 액세스 단말은 CDMA 2000 1x 시스템에 대한 슬롯 동작을 계속해서 수행한다.

<30> 만약 복합 액세스 단말이 IS-2000 전용 슬롯 동작모드에서 1xEV-D0 시스템의 획득에 실패한 경우, 복합 액세스 단말은 IS-2000 전용 슬롯 동작모드(10)에 머무르면서 주기적으로 IS-856 시스템의 획득을 시도한다. 이러한 상황에서 음성 호를 착신 또는 발신해야 하는 경우 복합 액세스 단말은 IS-2000 호를 설정하고 IS-2000 접속 모드(11)로 천이한다(a). 만약 패킷 호를 착신 또는 발신해야 하는 경우라면 복합 액세스 단말은 IS-2000 패킷 호 또는 IS-856 패킷 호를 설정하고 IS-2000 접속 모드(11) 또는 IS-856 접속 모드(12)로 천이한다(a,d).

<31> IS-2000 접속 모드(11)에서 음성 또는 패킷 호가 해제되면 복합 액세스 단말은 IS-2000 전용 슬롯 동작모드(10)로 천이하며(b), IS-856 접속 모드(12)에서 패킷 호가 해제되면 복합 액세스 단말은 복합 동작모드(13) 또는 IS-2000 전용 슬롯 동작모드(10)로 천이한다(f).

<32> 이상에서 설명한 바와 같이 종래 기술에서 복합 액세스 단말은 패킷 호를 목적으로 하든 음성 호를 목적으로 하든 복합 동작모드로 동작하게 되어 CDMA 2000 1x 시스템의 페이징 채널 및 CDMA 2000 1xEV-D0 시스템의 제어채널을 모두 주기적으로 감시해야 했다. 따라서 복합 액세스 단말이 패킷 호만을 목적으로 하는 경우에도 CDMA 2000 1x 시스템의 페이징 채널을 불필요하게 감시하여야 했다는 문제점이 있었다.

【발명이 이루고자 하는 기술적 과제】

<33> 따라서 상기한 바와 같이 동작되는 종래 기술의 문제점을 해결하기 위하여 창안된 본 발명의 목적은, CMA2000 1x 시스템과 1xEV-D0 시스템을 모두 지원하는 복합 액세스 단말에서 데이터 전용 동작모드로 동작하는 방법을 제공하는 것이다.

<34> 본 발명의 다른 목적은, 복합 액세스 단말에서 CDMA 2000 1x 시스템을 액세스하지 않고 데이터 전용 동작모드로 직접 천이하는 방법을 제공하는 것이다.

<35> 본 발명의 또 다른 목적은, 복합 액세스 단말에서 데이터 전용 동작모드로 동작하면서 1x 시스템의 음성 호를 착신하고 단문 메시지 서비스를 제공받는 방법을 제공하는 것이다.

<36> 상기한 바와 같은 목적을 달성하기 위하여 창안된 본 발명의 실시예는, 음성 서비스와 저속의 데이터 서비스를 지원하는 제1 통신 시스템과 고속의 패킷 데이터 서비스를 지원하는 제2 통신 시스템과 통신이 가능한 복합 이동 단말의 동작모드를 제어하는 방법에 있어서,

<37> 복합 이동 단말이 복합 동작모드에서 상기 제1 통신 시스템과 상기 제2 통신 시스템을 모두 감시하는 과정과,

<38> 상기 제2 통신 시스템에서 상기 복합 이동 단말로 동작모드 변경을 지시하는 메시지를 송신하는 과정과,

<39> 상기 동작모드 변경을 지시하는 메시지를 수신한 상기 복합 이동 단말이 상기 복합 동작모드에서 데이터 전용 동작모드로 천이하여 상기 제1 통신 시스템의 감시를 중단하고 상기 제2 통신 시스템만을 감시하는 과정을 포함한다.

<40> 본 발명의 다른 실시예는, 음성 서비스와 저속의 데이터 서비스를 지원하는 제1 통신 시스템과 고속의 패킷 데이터 서비스를 지원하는 제2 통신 시스템과 통신이 가능한 복합 이동 단말의 동작모드를 제어하는 방법에 있어서,

<41> 복합 이동 단말이 복합 동작모드에서 상기 제1 통신 시스템과 상기 제2 통신 시스템을 모두 감시하는 과정과,

<42> 상기 복합 이동 단말이 상기 복합 동작모드에서 데이터 전용 동작모드로 전이하여 상기 제1 통신 시스템의 감시를 중단하고 상기 제2 통신 시스템을 감시하는 과정과,

<43> 상기 복합 이동 단말이 상기 데이터 전용 동작모드로 전이하였음을 상기 제2 통신 시스템으로 보고하는 과정을 포함한다.

<44> 본 발명의 다른 실시예는, 음성 서비스와 저속의 데이터 서비스를 지원하는 제1 통신 시스템과 고속의 패킷 데이터 서비스를 지원하는 제2 통신 시스템과 통신이 가능한 복합 이동 단말의 통신 방법에 있어서,

<45> 상기 복합 액세스 단말을 위한 시그널링 메시지가 발생하면, 상기 제1 통신 시스템에서 상기 복합 액세스 단말이 상기 제1 통신 시스템을 감시하는 제1 동작모드에 있는지 또는 상기 제2 통신 시스템을 감시하는 제2 동작모드에 있는지를 판단하는 과정과,

<46> 상기 복합 액세스 단말이 상기 제2 동작모드에 있으면, 상기 제1 통신 시스템에서 상기 제2 통신 시스템으로 상기 시그널링 메시지를 전달하는 과정과,

<47> 상기 제2 통신 시스템에서 상기 시그널링 메시지를 상기 제2 통신 시스템의 시그널링 메시지 포맷으로 래핑하여 상기 복합 액세스 단말로 전송하는 과정을 포함한다.

<48> 본 발명의 또 다른 실시예는, 음성 서비스와 저속의 데이터 서비스를 지원하는 제1통신 시스템과 고속의 패킷 데이터 서비스를 지원하는 제2통신 시스템과 통신이 가능한 복합 이동 단말이 상기 제2통신 시스템만을 감시하는 도중 상기 제1통신 시스템의 시그널링 메시지를 수신하는 방법에 있어서,

<49> 상기 제2통신 시스템으로부터 상기 제2통신 시스템의 시그널링 메시지 포맷으로 래핑된 상기 제1통신 시스템의 시그널링 메시지를 수신하는 과정과,

<50> 상기 제1통신 시스템의 시그널링 메시지를 처리하는 과정을 포함한다.

【발명의 구성 및 작용】

<51> 이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대한 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.

<52> 후술되는 본 발명은 이동 단말의 동작모드를 제어하기 위하여 기지국에서 이동 단말에게 동작모드를 변경할 것을 지시하는 것이다. 특히 본 발명은 음성 서비스와 저속의 데이터 서비스를 지원하는 통신 시스템 및 고속의 패킷 데이터 서비스를 지원하는 통신 시스템과 통신이 가능한 복합 이동 단말이 데이터 전용 동작모드(Data Only Operation Mode)로 동작하면서 음성 서비스를 위한 호출에 응답할 수 있도록 한다.

<53> 이하 본 명세서에서는 음성 서비스와 저속의 데이터 서비스를 위하여 IS-2000 표준을 지원하는 CDMA 2000 1x 시스템과, 고속의 패킷 데이터 서비스를 위하여 IS-856 표준을 지원하는 CDMA 1xEV-DO 시스템을 모두 액세스할 수 있는 복합 액세스 단말(Hybrid Access Terminal: HAT)을 예를 들어 본 발명의 상세한 동작원리를 설명할 것이다.

<54> 도 2는 CDMA 2000 1x 시스템 및 CDMA 2000 1xEV-DO 시스템과 이들을 액세스하는 복합 액세스 단말을 보인 것이다. 도시된 바와 같이 CDMA 2000 1x 시스템(4)은 IS-2000 기지국(Base Station System: BSS)(2)과 이동 교환국(Mobile Switching Center: MSC)(3)으로 구성되며 공중교환전화네트워크(Publish Switched Telephone Network: PSTN)(5)에 연결된다. 또한 CDMA 2000 1xEV-DO 시스템(8)은 IS-856 기지국(6)과 패킷 데이터 서비스 노드(Packet Data Serving Node: PDSN)(7)로 구성되며 인터넷 등의 공중교환데이터네트워크(Publish Switched Data Network: PDSN)(9)에 연결된다.

<55> 상기 IS-2000 기지국(2)과 상기 IS-856 기지국(6)은 각자 자신의 서비스영역내의 이동 단말과 무선채널을 연결하고 통신을 수행한다. 복합 액세스 단말(1)은 상기 IS-2000 기지국(2)의 서비스영역 내에 있을 때에는 상기 IS-2000 기지국(2)과 통신하며 상기 IS-856 기지국(6)의 서비스영역 내에 있을 때에는 상기 IS-856 기지국(6)과 통신한다. 상기 IS-2000 기지국(2) 및 상기 IS-856 기지국(6)이 함께 배치된(collocated) 경우 복합 액세스 단말(1)은 두 기지국들 모두와 통신할 수 있다.

<56> 도 3은 본 발명에 따른 복합 액세스 단말의 동작모드들을 나타낸 것이다. 이를 도 1과 비교하면, 복합 액세스 단말은 추가적으로 데이터 전용 모드인 IS-856 전용 슬롯 모드(24)를 가진다.

<57> 상기 도 3을 참조하면, 초기 모드(Initialization mode)의 복합 액세스 단말은 CDMA 2000 1x 시스템의 제어채널인 페이징 채널(Paging Channel)에서 오버헤드 메시지를 수신하여 초기화 획득(Initial Acquisition)을 수행한 후, IS-2000 전용 슬롯 동작모드 (IS-2000 Only Slotted Operation Mode)(20)로 진입하여 페이징 채널의 할당된 슬롯을 감시하는 슬롯 동작을 수행한다. 이후 CDMA 2000 1x 시스템의 영역을 벗어나거나 함께 배치된(collocated) 1xEV-D0 시스템을 획득하면 복합 액세스 단말은 시스템의 제어하에 복합 동작모드(23) 또는 데이터 전용 동작모드(24)로 진입할 수 있다.

<58> 복합 동작모드(23)에서 복합 액세스 단말은 CDMA 2000 1x 시스템과 CDMA 2000 1xEV-D0 시스템 모두에 대해 슬롯 동작을 수행하게 된다. 즉, 복합 액세스 단말은 CDMA 2000 1x 시스템의 페이징 채널의 할당된 슬롯을 감시하며 또한 CDMA 2000 1xEV-D0 시스템의 제어 채널의 할당된 슬롯을 감시한다. 이러한 복합 동작모드(23)에서 음성 호를 착신 또는 발신해야 하는 경우 복합 액세스 단말은 IS-2000 호를 설정하고 IS-2000 접속 모드(21)로 천이하게 되며(c), 만약 패킷 호를 착신 또는 발신해야 하는 경우 IS-856 패킷 호를 설정하고 IS-856 접속 모드(22)로 천이하게 된다(e). IS-856 패킷 호가 유지되는 동안에도 복합 액세스 단말은 CDMA 2000 1x 시스템에 대한 슬롯 동작을 계속해서 수행한다.

<59> 만약 복합 액세스 단말이 IS-2000 전용 슬롯 동작모드에서 1xEV-D0 시스템의 획득에 실패한 경우, 복합 액세스 단말은 IS-2000 전용 슬롯 동작모드(20)에 머무르면서 주기적으로 IS-856 시스템의 획득을 시도한다. 이러한 상황에서 음성 호를 착신 또는 발신해야 하는 경우 복합 액세스 단말은 IS-2000 호를 설정하고 IS-2000 접속 모드(21)로 천이한다(a). 만약 패킷 호를 착신 또는 발신해야 하는 경우라면 복합 액세스 단말은

IS-2000 패킷 호 또는 IS-856 패킷 호를 설정하고 IS-2000 접속 모드(21) 또는 IS-856 접속 모드(22)로 천이한다(a,d).

<60> 복합 액세스 단말은 음성 호 또는 패킷 호가 해제되었을 때 이전 동작모드로 천이한다. 그러므로 IS-2000 전용 동작모드(20)에 있던 복합 액세스 단말이 음성 호 또는 IS-2000 패킷 호를 설정하여 IS-2000 접속 모드(21)로 진입한 이후 상기 음성 호 또는 패킷 호가 해제되면 IS-2000 전용 동작모드(20)로 복귀한다.(b) 또한 복합 동작모드(23)에 있던 복합 액세스 단말이 패킷 호를 설정하여 IS-856 접속모드(22)로 진입한 이후 상기 패킷 호가 해제되면 복합 동작모드(23)로 복귀한다.(f)

<61> 본 발명에 따른 데이터 전용 동작모드(24)에서 복합 액세스 단말은 CDMA 2000 1xEV-D0 시스템에 대해서만 슬롯 동작을 수행한다. 즉 데이터 전용 동작모드(24)에서 복합 액세스 단말은 CDMA 2000 1x 시스템의 페이징 채널을 감시하지 않기 때문에 CDMA 2000 1x 시스템으로부터의 호출에 응답할 수 없다. 이는 복합 액세스 단말이 음성 호를 발신/착신하거나 또는 IS-2000에 따른 단문 메시지를 송신/수신할 수 없게 됨을 의미한다. 이러한 문제점을 방지하기 위하여 본 발명에 따른 CDMA 2000 1xEV-D0 시스템에서는 제어 채널(Control Channel: CC) 또는 순방향 트래픽 채널(Forward Traffic Channel: FTC)을 통해 CDMA 2000 1x 시스템의 호출 메시지를 전달한다. 따라서 복합 액세스 단말은 필요한 경우 CDMA 2000 1x 시스템에 빠르게 동조할 수 있다.

<62> 데이터 전용 동작모드(24)에서 음성 호를 착신 또는 발신해야 하는 경우 복합 액세스 단말은 IS-2000 호를 설정하고 IS-2000 접속모드(21)로 천이하게 되며,(o) 만약 패킷 호를 착신 또는 발신해야 하는 경우 IS-856 패킷 호를 설정하고 IS-856 접속 모드(22)

로 천이하게 된다.(r) 이때 복합 액세스 단말은 IS-856 접속모드(22)에서도 1xEVDO 시스템에 대해서 슬롯 동작을 수행한다.

<63> IS-2000 접속 모드(21)에서 음성 또는 패킷 호가 해제되면 복합 액세스 단말은 이전 동작 모드인 IS-2000 전용 슬롯 동작모드(20) 또는 데이터 전용 동작모드(24)로 천이하며(b,p), IS-856 접속 모드(22)에서 패킷 호가 해제되면 복합 액세스 단말은 이전 동작 모드인 복합 동작모드(23) 또는 데이터 전용 동작모드(24)로 천이한다(f,q).

<64> 먼저 본 발명에 따라 복합 액세스 단말의 동작모드를 제어하는데 사용되는 메시지들에 대하여 설명하면 하기와 같다.

<65> "Mode Change Request" 메시지는 복합 액세스 단말의 동작모드를 지시하기 위해 사용되는 것으로서 CDMA 2000 1xEV-D0 시스템의 제어채널 또는 순방향 트래픽 채널을 통해 전달된다. "Mode Change Request" 메시지의 포맷은 도 4에 나타내었다.

<66> 상기 도 4를 참조하면, "Mode Change Request" 메시지는 8비트의 "Message ID" 필드와 8비트의 "Message Sequence" 필드와 2비트의 "Mode Indication" 필드와 바이트 정렬(byte align)을 위한 6비트의 예비된 필드로 구성된다. 상기 "Message ID" 필드는 메시지의 종류를 식별하기 위한 것이며 상기 "Message Sequence" 필드는 전송 오류를 보상하기 위하여 동일한 메시지를 반복적으로 전송하는 경우 이들을 식별하기 위한 것으로서 마지막으로 전송된 동일한 메시지의 필드 값보다 1만큼 증가되도록 설정된다.

<67> 상기 "Mode Indication" 필드는 복합 액세스 단말의 동작모드를 지시하기 위한 값으로서 그 의미는 도 5에 나타내었다. 상기 도 5에 도시한 바와 같이, 상기 "Mode Indication" 필드의 값이 '00'이면 IS-2000 전용 동작모드를 지시하며 '01'이면 IS-856

전용 동작모드 즉 데이터 전용 동작모드를 지시하며 '10'이면 복합 동작모드를 지시한다.

<68> "Mode Change Complete" 메시지는 복합 액세스 단말에서 상기 "Mode Change Request" 메시지에 응답하여 동작모드를 변경한 후 그 결과를 보고하기 위해 사용되는 것으로서 CDMA 2000 1xEV-DO 시스템의 액세스 채널(Access Channel: AC) 또는 역방향 트래픽 채널(Reverse Traffic Channel: RTC)을 통해 전달된다. "Mode Change Complete" 메시지의 포맷은 도 6에 나타내었다.

<69> 상기 도 6을 참조하면, "Mode Change Complete" 메시지는 "Mode Change Request" 메시지와 동일하게 8비트의 "Message ID" 필드와 8비트의 "Message Sequence" 필드와 2비트의 "Mode Indication" 필드와 바이트 정렬을 위한 6비트의 예비된 필드로 구성된다. 상기 "Mode Indication" 필드는 복합 액세스 단말의 현재 동작모드를 나타내는 값으로서 그 의미는 상기 도 5에 나타낸 바와 동일하다.

<70> "Quick Config" 메시지는 1xEV-DO 기지국에서 해당하는 서비스영역 내의 모든 복합 액세스 단말에게 동작모드 변경을 지시하기 위하여 사용되는 CDMA 1xEV-DO 시스템의 오버헤드 메시지이다. "Quick Config" 메시지는 또한 복합 액세스 단말들의 슬립 모드 동작을 제어할 수 있다. 이러한 "Quick Config" 메시지의 포맷은 도 7에 나타내었다.

<71> 상기 도 7을 참조하면, "Quick Config" 메시지는 8비트의 "Message ID" 필드와 8비트의 "Color Code" 필드와 24비트의 "Sector ID" 필드와 16비트의 "Sector Signature" 필드와 16비트의 "Access Signature" 필드와 1비트의 "Redirect" 필드와 6비트의 "RPC count" 필드로 구성된다. 복합 액세스 단말들의 동작모드를 변경하기 위한 2비트의 "

"Mode Indication" 필드와 슬립 모드 동작을 제어하기 위한 1비트의 "Sleep Period

Included" 필드는 상기 "RPC count" 필드가 존재하는 경우에 선택적으로 포함된다.

<72> 상기 "Mode Indication" 필드는 복합 액세스 단말들의 동작모드를 지시하기 위한
값으로서 그 의미는 상기 도 5에 나타낸 바와 동일하다.

<73> 상기 "Sleep Period Included"의 값이 '0'인 경우 슬롯 감시 주기는 기존 1xEV-D0
표준에 따라 5.12초이며 복합 액세스 단말들이 제어채널의 할당된 슬롯을 감시하는 주기
를 결정하는 "Sleep Period Value" 필드는 생략된다. 상기 "Sleep Period Included"의 값
이 '1'인 경우 슬롯 감시 주기는 8비트인 "Sleep Period Value" 필드의 값에 따라 " $1.28 \times 2^{SleepPeriodValue}$ " 초가 된다.

<74> "Route Update" 메시지는 복합 액세스 단말에서 사용자의 조작에 의해 자체적으로
동작모드를 변경한 경우 이를 보고하기 위하여 사용되는 CDMA 2000 1xEV-D0 시스템의 위
치등록 메시지이다. "Route Update" 메시지의 포맷은 도 8에 나타내었다.

<75> 상기 도 8을 참조하면, "Route Update" 메시지는 8비트의 "Message ID" 필드와 8비
트의 "Message Sequence" 필드와 9비트의 "Reference Pilot PN" 필드와 6비트의
"Reference Pilot Strength" 필드와 1비트의 "Reference Keep" 필드와 4비트의 "Number
Pilots" 필드로 구성된다. 15비트의 "Pilot PN Phase" 필드와 1비트의 "Channel
Included" 필드와 선택적으로 포함되는 24비트의 "Channel" 필드와 6비트의 "Pilot
Strength" 필드와 1비트의 "Keep" 필드는 상기 "Number Pilots" 필드가 존재하는 경우에
선택적으로 포함된다. 또한 "Route Update" 메시지는 복합 액세스 단말의 현재 동작모드

를 나타내는 "Mode Indication" 필드를 포함하며 그 의미는 상기 도 5에 나타낸 바와 동일하다.

<76> "Wrapped Data" 메시지는 데이터 전용 동작모드에 있는 복합 액세스 단말이 CDMA 2000 1xEV-DO 시스템을 통해 CDMA 2000 1x 시스템과 통신하기 위하여 사용되는 것으로서 CDMA 2000 1xEV-DO 시스템의 제어 채널 또는 트래픽 채널을 통해 전달된다. 즉 CDMA 2000 1x 시스템의 시그널링 메시지는 CDMA 2000 1xEV-DO 오버헤드로 래핑(wrapping)되어 "Wrapped Data" 메시지가 된다. 복합 액세스 단말은 "Wrapped Data" 메시지를 이용하여 1x 시그널링에 따른 시스템 파라미터를 포함하는 1x 오버헤드 메시지를 수신하고 필요한 경우 1x 시스템에 신속하게 동조할 수 있다. "Wrapped Data" 메시지의 포맷은 도 9에 나타내었다.

<77> 상기 도 9를 참조하면, "Wrapped Data" 메시지는 8비트의 "Message ID" 필드와 8비트의 "Message Sequence" 필드와 2비트의 "Data Type" 필드와 2비트의 "Data Channel Type" 필드와 16비트의 "Data Length" 필드와 8×Data Length 비트의 "Data" 필드로 구성된다. 상기 "Data Type" 필드는 래핑되는 메시지의 종류를 나타내는 것으로 그 의미는 도 10에 나타낸 바와 같다. 즉 상기 "Data Type" 필드의 값이 '00'이면 CDMA 2000 1x 시그널링 메시지를 의미한다. 상기 "Data Channel Type" 필드는 래핑되는 메시지가 어떤 채널을 통해 전송되어야 하는 것인지를 나타내는 것으로 그 의미는 도 11에 나타낸 바와 같다. 즉, 상기 "Data Type" 필드의 값이 '00'일 때 상기 "Data Channel Type" 필드의 값이 '00'이면 페이징 채널을 의미한다.

<78> 한편 상기 "Data Length" 필드는 상기 "Data" 필드의 길이를 바이트 단위로 나타낸 것이며 상기 "Data" 필드는 1x 시그널링 메시지 전체 또는 본문(body)을 수납한다. 상

기 본문은 IS-2000에 따른 제2계층(Layer2)의 SAR(Segmentation And Reassembly) 부계층(Sub-layer) 중 분할(Segmentation) 처리부분을 제외한 제2계층 포맷의 메시지 본문을 의미하며, 패킷 데이터그램 유닛(Packet Datagram Unit: 이하 "PDU"라 한다.)이라 고도 한다. 상기 본문의 길이에 따라 상기 "Data" 필드는 하나 또는 복수의 1x 시그널링 메시지를 포함할 수 있다.

<79> 도 12는 데이터 전용 동작모드에서 복합 액세스 단말이 CDMA 2000 1x 시그널링 메시지를 처리하는 동작을 나타낸 것이다. 여기서 실선은 순방향 메시지의 흐름을 나타내고 점선은 역방향 메시지의 흐름을 나타낸다.

<80> 상기 도 12를 참조하면, CDMA 2000 1xEV-D0 기지국(BSS)(6)은 1x 메시지를 처리하는 1x 프로세서(6-1)와 1xEV-D0 메시지를 처리하는 1xEV-D0 프로세서(6-3)를 가지며, 복합 액세스 단말(1) 또한 1x 메시지를 처리하는 1x 프로세서(1-1)와 1xEV-D0 메시지를 처리하는 1xEV-D0 프로세서(1-3)를 가진다.

<81> CDMA 2000 1x 이동 교환국(MSC)(3)에서 순방향 시그널링 명령을 CDMA 2000 1x 기지국(BSS)(2)으로 전송하면 상기 CDMA 2000 1x 기지국(2)은 이에 대응하는 순방향 시그널링 메시지를 생성하여 CDMA 2000 1xEV-D0 기지국(6)의 1x 프로세서(6-1)로 전달하고, 상기 1x 프로세서(6-1)는 이를 1xEV-D0 프로세서(6-3)로 전달한다. 상기 1xEV-D0 프로세서(6-3)는 상기 순방향 시그널링 메시지를 1xEV-D0 시그널링 포맷에 따라 래핑하여 "Wrapped Data" 메시지를 생성하고 이를 무선채널을 통해 데이터 전용 동작모드에 있는 복합 액세스 단말(1)에게 전송한다. 상기 복합 액세스 단말(1)의 1xEV-D0 프로세서(1-3)는 상기 "Wrapped Data" 메시지의 오버헤드를 제거한 "Data" 필드를 1x 프로세서(1-1)로 전달하여 이를 처리하도록 한다.

<82> 상기 "Wrapped Data" 메시지는 모든 종류의 1x 시그널링 메시지를 포함할 수 있으며 예를 들어 음성 호의 착신을 위한 호출(Page) 메시지와 단문메시지 서비스(Short Message Service: SMS)를 위한 데이터 버스트(Data burst) 메시지와 시스템 파라미터를 전달하는 오버헤드 메시지 등이 있다.

<83> 이하 본 발명에 따른 이동 단말의 동작을 상세히 설명하기로 한다.

<84> 도 13은 본 발명의 일 실시예에 따라 복합 액세스 단말의 동작모드를 제어하는 동작을 나타낸 메시지 흐름도이다.

<85> 상기 도 13을 참조하면, 복합 액세스 단말은 CDMA 2000 1x 시스템의 서비스영역을 벗어나거나 또는 함께 배치된 CDMA 2000 1xEV-DO 시스템을 획득하여 복합 동작모드로 진입한다.(100) 복합 동작모드에서 복합 액세스 단말은 1x 기지국의 페이징 채널과 1xEV-DO 기지국의 제어채널을 모두 감시하고 있다.

<86> 특정 복합 액세스 단말을 복합 동작모드로부터 데이터 전용 동작모드로 변경하고자 할 때, 1xEV-DO 기지국은 복합 액세스 단말에게 데이터 전용 동작모드로 전이할 것을 지시하기 위한 "Mode Change Request" 메시지를 제어채널 또는 순방향 트래픽 채널을 통해 전송한다.(110) 상기 "Mode Change Request" 메시지의 포맷은 도 4에 나타내었으며, 도 5를 참조하면 상기 "Mode Change Request" 메시지의 "Mode Indication" 필드는 데이터 전용 동작모드를 나타내는 '01'로 설정된다.

<87> 도시하지 않았지만 상기 과정(110)에서 1xEV-DO 기지국은 해당하는 서비스영역내의 모든 복합 액세스 단말에게 데이터 전용 동작모드를 전이할 것을 지시하기 위하여 "

"Quick Config" 메시지를 전송할 수도 있다. 상기 "Quick Config" 메시지의 포맷은 도 7에 나타내었으며, 마찬가지로 상기 "Quick Config" 메시지의 "Mode Indication" 필드는 '01'로 설정된다.

<88> 복합 액세스 단말은 상기 "Mode Change Request" 메시지를 수신하면 데이터 전용 동작모드로 천이하고 정상적으로 모드 변경하였음을 1xEV-D0 기지국에게 알리기 위한 "Mode Change Complete" 메시지를 액세스 채널 또는 역방향 트래픽 채널을 통해 전송한다.

.(120) 상기 "Mode Change Complete" 메시지의 "Mode Indication" 필드는 데이터 전용 동작모드를 나타내는 '01'로 설정된다. 데이터 전용 동작모드에서 복합 액세스 단말은 1x 페이징 채널의 감시를 중단하고 1xEV-D0 시스템에 대해서만 슬롯 동작을 수행한다.(130)

<89> 한편, 복합 액세스 단말이 데이터 전용 동작모드로 천이할 것을 지시하는 1xEV-D0 기지국의 오버헤드 메시지인 "Quick Config" 메시지를 수신하면 데이터 전용모드로 천이하고 1xEV-D0 시스템에 대해서만 슬롯 동작을 수행한다.(130) 여기서 "Quick Config" 메시지에 의해 모드 천이한 경우 이에 대한 응답 메시지는 보내지 않는다.

<90> IS-2000 전용 슬롯 동작 모드나 복합 동작모드 상태에 있는 복합 액세스 단말이 데이터 전용 동작모드로 천이할 것을 지시하는 "Mode Change Request" 메시지 또는 "Quick Config" 메시지를 수신한 경우에는 1x 기지국에 대한 슬롯 동작을 중단하고, 데이터 전용 동작 모드상태로 천이하여 1xEV-D0 기지국에 대한 슬롯 동작만을 수행한다.

<91> 이때 도 3에는 도시하지 않았지만, 만약 IS-856 접속 모드에 있는 복합 액세스 단말이 데이터 전용 동작모드로 천이할 것을 지시하는 "Mode Change Request" 메시지 혹은 "Quick Config" 메시지를 수신한 경우, IS-856 접속 모드 상태에 있으면서 1x 기지국에 대한 슬롯 동작만을 중단한다. (IS-856 Connection without IS-2000 Slotted Operation)

<92> 특정 복합 액세스 단말을 데이터 전용 동작모드로부터 복합 동작모드로 변경하고자 할 때, 1xEV-DO 기지국은 복합 액세스 단말에게 복합 동작모드로 천이할 것을 지시하기 위한 "Mode Change Request" 메시지를 제어채널 또는 순방향 트래픽 채널을 통해 전송한다. (140) 도 5를 참조하면 상기 "Mode Change Request" 메시지의 "Mode Indication" 필드는 복합 동작모드를 나타내는 '10'으로 설정된다.

<93> 복합 액세스 단말은 상기 "Mode Change Request" 메시지(또는 "Mode Indication" 필드가 '10'으로 설정된 "Quick Config" 메시지)를 수신하면 복합 동작모드로 천이한다. 상기 복합 액세스 단말이 상기 "Mode Change Request" 메시지를 받고 정상적으로 복합 동작모드로 변경한 경우, 모드 변경하였음을 1xEV-DO 기지국에게 알리기 위한 "Mode Change Complete" 메시지를 액세스 채널 또는 역방향 트래픽 채널을 통해 전송한다. (150) 상기 "Mode Change Complete" 메시지의 "Mode Indication" 필드는 복합 동작모드를 나타내는 '10'으로 설정된다. 복합 동작모드에서 복합 액세스 단말은 다시 1x 시스템의 페이징 채널과 1xEV-DO 시스템의 제어채널을 모두 감시한다. (160)

<94> 도 14는 본 발명의 일 실시예에 따라 복합 액세스 단말이 자체적으로 동작모드를 변경하는 동작을 나타낸 메시지 흐름도이다.

<95> 상기 도 14를 참조하면, 복합 동작모드에서 복합 액세스 단말은 1x 기지국의 페이징 채널과 1xEV-DO 기지국의 제어채널을 모두 감시하고 있다. (200) 상기 복합 액세스 단말이 사용자의 조작에 의해 데이터 전용 동작모드로 진입하게 되는 경우 (210) 상기 복합 액세스 단말은 1xEV-DO 기지국으로 위치등록을 위한 "Route Update" 메시지를 전송한다. (220) 상기 "Route Update" 메시지의 포맷은 도 8에 나타내었으며 도 5를 참조하면 상기 "Route Update" 메시지는 '01'로 설정된 "Mode Indication" 필드를 가진다.

<96> 한편, 복합 액세스 단말이 모드 변경에 따른 위치등록을 수행할 때마다 1xEV-D0 시스템은 그 정보를 1x 시스템으로 전달하여야 한다. 이는 복합 액세스 단말이 데이터 전용 동작모드에 있을 때에라도 1x 시스템에서 상기 복합 액세스 단말의 위치를 관리할 수 있도록 하기 위함이다. 따라서 상기 "Route Update" 메시지에 응답하여 상기 1xEV-D0 기지국은 상기 복합 액세스 단말의 위치를 1x 기지국으로 통보하며 상기 1x 기지국은 1x 이동 교환국으로 1x 인터페이스에 따라 위치등록을 요구하기 위한 "Registration" 메시지를 전송한다.(225)

<97> 상기 1x 이동 교환국은 도시하지 않은 흠 위치등록 시스템(Home Location Registrar: HLR)과 통신하여 상기 복합 액세스 단말의 위치를 등록한 후 그 결과(수락 또는 거절)를 상기 1x 기지국으로 통보하며, 상기 1x 기지국은 상기 결과를 상기 1xEV-D0 기지국으로 알린다.(230) 이때 상기 1xEV-D0 기지국은 위치등록을 목적으로 올리는 "Route Update" 메시지에 대해 복합 액세스 단말에게 응답하지 않는다.

<98> 데이터 전용 동작모드의 복합 액세스 단말이 사용자의 조작에 의해 복합 동작모드로 진입하게 되는 경우(240) 상기 복합 액세스 단말은 1xEV-D0 기지국으로 위치등록을 위한 "Route Update" 메시지를 전송한다.(250) 도 5를 참조하면 상기 "Route Update" 메시지는 '10'으로 설정된 "Mode Indication" 필드를 가진다.

<99> 상기 "Route Update" 메시지에 응답하여 상기 1xEV-D0 기지국은 상기 복합 액세스 단말의 위치를 1x 기지국으로 통보하며 상기 1x 기지국은 1x 이동 교환국으로 1x 인터페이스에 따라 위치등록을 요구하기 위한 "Registration" 메시지를 전송한다.(255) 상기 1x 이동 교환국은 흠 위치등록 시스템(HLR)과 통신하여 상기 복합 액세스 단말의 위치를

등록한 후 그 결과를 상기 1x 기지국으로 통보하며, 상기 1x 기지국은 상기 결과를 상기 1xEV-DO 기지국으로 알린다.(260) 이때 상기 1xEV-DO 기지국은 위치등록을 목적으로 올리는 "Route Update" 메시지에 대해 복합 액세스 단말에게 응답하지 않는다.

<100> 도 15는 본 발명의 일 실시예에 따라 데이터 전용 동작모드에 있는 복합 액세스 단말이 1x 시스템에 위치 등록하는 동작을 나타낸 메시지 흐름도이다.

<101> 상기 도 15를 참조하면, 데이터 전용 동작모드의 복합 액세스 단말은 1xEV-DO 시스템의 제어채널만을 감시하고 있다.(300) 1x 시스템으로의 위치등록이 필요하게 된 경우, 상기 복합 액세스 단말은 1x 시그널링 메시지인 위치등록 메시지의 본문을 1xEV-DO 시그널링 포맷으로 래핑한 "Wrapped Data" 메시지를 액세스 채널을 통해 1xEV-DO 기지국으로 전송한다.(310) 이때 상기 복합 액세스 단말은 "Wrapped Data" 메시지를 이용하여 기수신한 1x 시그널링 오버헤드 메시지의 시스템 파라미터를 이용하여 상기 위치등록 메시지의 본문을 생성한다. 상기 1xEV-DO 기지국은 상기 "Wrapped Data" 메시지에 포함된 상기 위치등록 메시지의 본문을 이용하여 1x 시그널링 메시지인 "Registration" 메시지를 생성한 뒤 이를 1x 기지국을 통해 1x 이동 교환국으로 전송한다.(320)

<102> 상기 1x 이동 교환국은 도시하지 않은 흠 위치등록 시스템(HLR)과 통신하여 상기 복합 액세스 단말의 위치를 등록한 후 그 결과(수락 또는 거절)를 상기 1x 기지국을 통해 상기 1xEV-DO 기지국에게 "Registration" 메시지를 전송한다.(330) 상기 1xEV-DO 기지국은 상기 "Registration" 메시지를 래핑한 "Wrapped Data" 메시지를 상기 복합 액세스 단말에게 전송한다.(340)

<103> 도 16은 본 발명의 일 실시예에 따라 데이터 전용 동작모드에 있는 복합 액세스 단말이 음성 호를 착신하는 동작을 나타낸 메시지 흐름도이다.

<104> 상기 도 16을 참조하면, 데이터 전용 동작모드의 복합 액세스 단말은 1xEV-D0 시스템의 제어채널만을 감시하고 있다.(400) 상기 복합 액세스 단말로 음성 호의 착신이 요구되면 1x 이동 교환국은 상기 복합 액세스 단말에 대해 최종 위치 등록된 1x 기지국에게 상기 복합 액세스 단말을 호출하기 위한 "Paging Request" 메시지를 전송하는데,(410) 이때 상기 복합 액세스 단말이 데이터 전용 동작모드에 있다는 정보도 함께 전달한다. 상기 1x 기지국은 이에 응답하여 상기 복합 액세스 단말이 동조되어 있는 1xEV-D0 기지국에게 "General Page" 메시지를 전송한다.(420) 상기 1xEV-D0 기지국은 상기 "General Page" 메시지의 본문을 래핑한 "Wrapped Data" 메시지를 상기 복합 액세스 단말에게 전송한다.(430) 이때 상기 1x 기지국은 착신 호출 절차의 편의성 등의 필요에 의해 상기 1xEV-D0 기지국과는 별도로 상기 복합 액세스 단말에게 상기 "General Page" 메시지를 직접 전송할 수 있다.(435) 여기서 상기 과정(435)은 선택적으로 생략 가능하다.

<105> 상기 복합 액세스 단말은 상기 "Wrapped Data" 메시지에 포함된 상기 "General Page" 메시지에 응답하여 기 수신된 1x 시스템 파라미터들에 따라 1x 시스템에 동조한 후 상기 1x 기지국으로 "Page Response" 메시지를 전송한다.(440) 상기 1x 기지국은 상기 "Page Response" 메시지를 상기 1x 이동 교환국으로 전송한 후(450) 상기 복합 액세스 단말과 무선 채널을 연결하여 음성 호를 설정하고(460) 상기 음성 호가 정상적으로 설정되었음을 보고하기 위하여 상기 1x 이동 교환국으로 "Assignment Complete" 메시지

를 전송한다.(470) 이후 상기 복합 액세스 단말은 IS-2000 접속모드에서 상기 음성 호를 통한 통화를 수행한다.(480)

<106> 상기 음성 호가 종료되면 상기 복합 액세스 단말은 상기 IS-2000 접속모드로 진입하기 이전의 동작모드로 복귀한다. 상기 도 16의 경우 상기 복합 액세스 단말은 상기 IS-2000 접속모드에서 데이터 전용 동작모드로 복귀한다. 만일 상기 음성 호가 종료되었을 때 1xEV-D0 시스템이 유효하지 않다면 IS-2000 전용 동작모드로 복귀한다.

<107> 도 17은 본 발명의 일 실시예에 따라 데이터 전용 동작모드에 있는 복합 액세스 단말이 단문 메시지를 수신하는 동작을 나타낸 메시지 흐름도이다. 여기서 상기 단문 메시지는 1x 시스템의 페이징 채널을 통해 수신되는 것으로 한다. 만일 상기 단문 메시지가 1x 시스템의 트래픽 채널을 통해 수신된다면 상기 도 16에 도시한 절차에 따른다. 또한 여기서 1x 이동 교환국은 단문 메시지 서비스를 제공하는 메시지 센터를 포함하는 것으로 한다.

<108> 상기 도 17을 참조하면, 데이터 전용 동작모드의 복합 액세스 단말은 1xEV-D0 시스템의 제어채널만을 감시하고 있다.(500) 상기 복합 액세스 단말로 단문 메시지를 전송하고자 하는 경우 1x 이동 교환국은 상기 복합 액세스 단말에 대해 최종 위치 등록된 1x 기지국에게 상기 단문 메시지를 전송하며(510) 상기 1x 기지국은 이에 응답하여 상기 단문 메시지를 포함하는 "Data Burst" 메시지를 1xEV-D0 기지국에게 전송한다.(520) 상기 1xEV-D0 기지국은 상기 "Data Burst" 메시지의 본문을 래핑한 "Wrapped Data" 메시지를 상기 복합 액세스 단말에게 전송한다.(530) 상기 복합 액세스 단말은 상기 "Wrapped Data" 메시지에 포함된 상기 "Data burst" 메시지의 본문을 1x 시그널링에 따라 처리하고 그 내용을 화면에 디스플레이한다.

<109> 데이터 전용 동작모드에 있는 상기 복합 액세스 단말이 단문 메시지를 전송하고자 하는 경우 상기 복합 액세스 단말은 상기 단문 메시지를 포함하는 "Data Burst" 메시지를 1xEV-D0 시그널링 포맷으로 래핑한 "Wrapped Data" 메시지를 상기 1xEV-D0 기지국으로 전송한다. (540) 상기 1xEV-D0 기지국은 상기 "Wrapped Data" 메시지에 포함된 상기 단문 메시지를 이용하여 "Data Burst" 메시지를 생성한 후 이를 1x 기지국으로 전송한다. (550) 상기 1x 기지국은 상기 "Data Burst" 메시지를 1x 이동 교환국으로 전달하며 상기 1x 이동 교환국은 상기 "Data Burst" 메시지에 포함된 상기 단문 메시지를 해당하는 수신자에게 전달한다.

<110> 한편 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 예를 들어 본 명세서에서는 음성 호의 착신과 단문 메시지의 수신에 대해서만 개시하였으나 데이터 전용 동작모드에 있는 복합 액세스 단말이 개시된 "Wrapped Data" 메시지를 이용하여 1x 시그널링에 따른 다른 메시지들을 1x 시스템과 송수신할 수 있음을 물론이다. 이러한 경우 상기 "Wrapped Data" 메시지는 허용되는 한 복수개의 1x 시그널링 메시지들을 포함할 수 있다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되지 않으며, 후술되는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

【발명의 효과】

<111> 이상에서 상세히 설명한 바와 같이 동작하는 본 발명에 있어서, 개시되는 발명중 대표적인 것에 의하여 얻어지는 효과를 간단히 설명하면 다음과 같다.

<112> 본 발명은 복합 액세스 단말이 데이터 전용 동작모드에서 동작함에 따라 CDMA 2000 1x 시스템을 감시하지 않아도 되어 전력을 절약할 수 있으며 데이터 처리율(Data Service Throughput)을 향상시킬 수 있다. 또한 데이터 전용 동작모드에 있는 복합 액세스 단말이 음성 호를 착신하거나 단문 메시지를 착신할 수 있다는 효과가 있다.

【특허청구범위】**【청구항 1】**

음성 서비스와 저속의 데이터 서비스를 지원하는 제1 통신 시스템과 고속의 패킷 데이터 서비스를 지원하는 제2 통신 시스템과 통신이 가능한 복합 이동 단말의 동작모드를 제어하는 방법에 있어서,

복합 이동 단말이 복합 동작모드에서 상기 제1 통신 시스템과 상기 제2 통신 시스템을 모두 감시하는 과정과,

상기 제2 통신 시스템으로부터 동작모드 변경을 지시하는 메시지가 수신되면, 상기 동작모드 변경을 지시하는 메시지를 수신한 상기 복합 이동 단말이 상기 복합 동작모드에서 데이터 전용 동작모드로 전이하여 상기 제1 통신 시스템의 감시를 중단하고 상기 제2 통신 시스템만을 감시하는 과정을 포함하는 것을 특징으로 하는 상기 방법.

【청구항 2】

제 1 항에 있어서, 상기 제2 통신 시스템에서 상기 제1 통신 시스템의 시그널링 메시지를 상기 제2 통신 시스템의 시그널링 메시지 포맷으로 래핑하여 상기 데이터 전용 동작모드의 상기 복합 이동 단말에게 전송하는 과정과,

상기 복합 이동 단말에서 상기 제2 통신 시스템의 시그널링 메시지 포맷으로 래핑된 상기 제1 통신 시스템의 시그널링 메시지를 수신하여 처리하는 과정을 더 포함하는 것을 특징으로 하는 상기 방법.

【청구항 3】

제 2 항에 있어서, 상기 제1 통신 시스템의 시그널링 메시지는 상기 제1 통신 시스템의 시스템 파라미터를 포함하는 오버헤드 메시지인 것을 특징으로 하는 상기 방법.

【청구항 4】

제 1 항에 있어서, 상기 제2 통신 시스템에서 음성 호의 착신을 위한 상기 제1 통신 시스템의 호출 메시지를 상기 제2 통신 시스템의 시그널링 메시지 포맷으로 래핑하여 상기 데이터 전용 동작모드의 상기 복합 이동 단말로 송신하는 과정과,
상기 호출 메시지에 응답하여, 상기 복합 이동 단말이 상기 제1 통신 시스템의 시스템 파라미터에 따라 상기 제1 통신 시스템에 동조하고 음성 호 접속모드로 천이하여 음성 호를 설정하는 과정과,

상기 음성 호가 해제되면 상기 복합 이동 단말이 상기 음성 호 접속모드에서 상기 데이터 전용 동작모드로 천이하는 과정을 더 포함하는 것을 특징으로 하는 상기 방법.

【청구항 5】

제 1 항에 있어서, 상기 제2 통신 시스템에서 단문 메시지의 전달을 위한 상기 제1 통신 시스템의 데이터 버스트 메시지를 상기 제2 통신 시스템의 시그널링 메시지 포맷으로 래핑하여 상기 데이터 전용 동작모드의 상기 복합 이동 단말로 송신하는 과정과,

상기 복합 이동 단말이 상기 데이터 버스트 메시지에 포함된 단문 메시지를 추출하여 표시하는 과정을 더 포함하는 것을 특징으로 하는 상기 방법.

【청구항 6】

제 1 항에 있어서, 상기 복합 이동 단말이 상기 데이터 전용 동작모드에서 상기 제1 통신 시스템으로 전송하고자 하는 시그널링 메시지를 상기 제2 통신 시스템의 시그널링 메시지 포맷으로 래핑하여 상기 제2 통신 시스템으로 송신하는 과정을 더 포함하는 것을 특징으로 하는 상기 방법.

【청구항 7】

제 1 항에 있어서, 상기 제1 통신 시스템으로 상기 복합 액세스 단말의 위치를 등록하기 위한 위치등록 메시지를 상기 제2 통신 시스템의 시그널링 메시지 포맷으로 래핑하여 상기 제2 통신 시스템으로 송신하는 과정을 더 포함하는 것을 특징으로 하는 상기 방법.

【청구항 8】

제 1 항에 있어서, 상기 복합 액세스 단말에서 전송하고자 하는 단문 메시지를 상기 제2 통신 시스템의 시그널링 메시지 포맷으로 래핑하여 상기 제2 통신 시스템으로 송신하는 과정을 더 포함하는 것을 특징으로 하는 상기 방법.

【청구항 9】

음성 서비스와 저속의 데이터 서비스를 지원하는 제1 통신 시스템과 고속의 패킷 데이터 서비스를 지원하는 제2 통신 시스템과 통신이 가능한 복합 이동 단말의 동작모드를 제어하는 방법에 있어서,

복합 이동 단말이 복합 동작모드에서 상기 제1 통신 시스템과 상기 제2 통신 시스템을 모두 감시하는 과정과,

상기 복합 이동 단말이 상기 복합 동작모드에서 데이터 전용 동작모드로 천이하여 상기 제1 통신 시스템의 감시를 중단하고 상기 제2 통신 시스템을 감시하는 과정과, 상기 복합 이동 단말이 상기 데이터 전용 동작모드로 천이하였음을 상기 제2 통신 시스템으로 보고하는 과정을 포함하는 것을 특징으로 하는 상기 방법.

【청구항 10】

음성 서비스와 저속의 데이터 서비스를 지원하는 제1 통신 시스템과 고속의 패킷 데이터 서비스를 지원하는 제2 통신 시스템과 통신이 가능한 복합 이동 단말의 통신 방법에 있어서,

상기 복합 액세스 단말을 위한 시그널링 메시지가 발생하면, 상기 제1 통신 시스템에서 상기 복합 액세스 단말이 상기 제1 통신 시스템을 감시하는 제1 동작모드에 있는지 또는 상기 제2 통신 시스템을 감시하는 제2 동작모드에 있는지를 판단하는 과정과,

상기 복합 액세스 단말이 상기 제2 동작모드에 있으면, 상기 제1 통신 시스템에서 상기 제2 통신 시스템으로 상기 시그널링 메시지를 전달하는 과정과,

상기 제2 통신 시스템에서 상기 시그널링 메시지를 상기 제2 통신 시스템의 시그널링 메시지 포맷으로 래핑하여 상기 복합 액세스 단말로 전송하는 과정을 포함하는 것을 특징으로 하는 상기 방법.

【청구항 11】

제 10 항에 있어서, 상기 복합 액세스 단말이 상기 제1 동작모드에 있으면 상기 제1 통신 시스템에서 상기 시그널링 메시지를 상기 복합 액세스 단말로 전송하는 과정을 더 포함하는 것을 특징으로 하는 상기 방법.

【청구항 12】

제 10 항에 있어서, 상기 시그널링 메시지는,
음성 호의 착신을 위한 상기 제1 통신 시스템의 호출 메시지 또는 단문 메시지의 전달을 위한 상기 제1 통신 시스템의 데이터 버스트 메시지인 것을 특징으로 하는 상기 방법.

【청구항 13】

음성 서비스와 저속의 데이터 서비스를 지원하는 제1 통신 시스템과 고속의 패킷 데이터 서비스를 지원하는 제2 통신 시스템과 통신이 가능한 복합 이동 단말이 상기 제2 통신 시스템만을 감시하는 도중 상기 제1 통신 시스템의 시그널링 메시지를 수신하는 방법에 있어서,

상기 제2 통신 시스템으로부터 상기 제2 통신 시스템의 시그널링 메시지 메시지 포맷으로 래핑된 상기 제1 통신 시스템의 시그널링 메시지를 수신하는 과정과, 상기 제1 통신 시스템의 시그널링 메시지를 처리하는 과정을 포함하는 것을 특징으로 하는 상기 방법.

【청구항 14】

제 12 항에 있어서, 상기 시그널링 메시지가 음성 호의 촉진을 위한 상기 제1 통신 시스템의 호출 메시지이면, 상기 호출 메시지에 응답하여 상기 제1 통신 시스템 파라미터에 따라 상기 제1 통신 시스템에 동조하여 음성 호를 설정하는 과정을 더 포함하는 것을 특징으로 하는 상기 방법.

【청구항 15】

제 12 항에 있어서, 상기 시그널링 메시지가 단문 메시지의 전달을 위한 상기 제1 통신 시스템의 데이터 버스트 메시지이면, 상기 데이터 버스트 메시지에 포함된 단문 메시지를 추출하여 표시하는 과정을 더 포함하는 것을 특징으로 하는 상기 방법.

【도 1】

【도 1】

【도 2】

【3】

21

22

【도 4】

FIELD	LENGTH (BITS)
MESSAGE ID	8
MESSAGE SEQUENCE	8
MODE INDICATION	2
RESERVED	6

【도 5】

FIELD VALUE(BINARY)	TYPE
'00'	IS-2000 ONLY MODE
'01'	DATA ONLY MODE (IS-856)
'10'	HYBRID MODE (IS-2000 & IS-856)
'11'	RESERVED

【도 6】

FIELD	LENGTH (BITS)
MESSAGE ID	8
MESSAGE SEQUENCE	8
MODE INDICATION	2
RESERVED	6

【도 7】

FIELD	LENGTH (BITS)
MESSAGE ID	8
COLOR CODE	8
SECTOR ID 24	24
SECTOR SIGNATURE	16
ACCESS SIGNATURE	16
REDIRECT	1
RPC COUNT	6

• RPC COUNT OCCURENCES OF THE FOLLOWING FIELD

DRC LOCK	1
----------	---

• RPC COUNT OCCURENCES OF THE FOLLOWING FIELD

FORWARD TRAFFIC VALID	1
-----------------------	---

MODE INDICATION	2
SLEEP PERIOD INCLUDED	1

• ACCESS NETWORK SHALL OMIT SLEEP PERIOD VALUE

IF SLEEP PERIOD INCLUDE IS SET TO 0

SLEEP PERIOD VALUE	0 OR 8
--------------------	--------

RESERVED	VARIABLE
----------	----------

【도 8】

FIELD	LENGTH (BITS)
MESSAGE ID	8
MESSAGE SEQUENCE	8
REFERENCE PILOT PN	9
REFERENCE PILOT STRENGTH	6
REFERENCE KEEP	1
NUMPILOTS	4

• NUM PILOTS OCCURRENCES OF THE FOLLOWING THREE FIELDS :

PILOT PN PHASE	15
CHANNEL INCLUDED	1
CHANNEL	0 OR 24
PILOT STRENGTH	6
KEEP	1

MODE INDICATION	2
RESERVED	VARIABLE

【도 9】

FIELD	LENGTH (BITS)
MESSAGE ID	8
MESSAGE SEQUENCE	8
DATA TYPE	2
DATA CHANNEL TYPE	2
DATA LENGTH	16
DATA	8 x DATA LENGTH

【도 10】

FIELD VALUE(BINARY)	TYPE
'00'	1 x MESSAGE
'01'	RESERVED
'10'	RESERVED
'11'	RESERVED

【도 11】

FIELD VALUE(BINARY)	TYPE
'00'	PAGING CHANNEL
'01'	RESERVED
'10'	RESERVED
'11'	RESERVED

【도 12】

【도 13】

【도 14】

【도 15】

【도 16】

【도 17】

