Resource Adequacy in a Net Zero Environment

Raj Addepalli, Ph.D., CFA
Former Managing Director of Rates and Services
New York Public Service Commission
March 13, 2024

New York Clean Energy Mandate: 2019: Climate Leadership and Community Protection Act (CLCPA):

(https://climate.ny.gov)

The CLCPA targets include:

- 185 trillion BTU reduction (energy efficiency) by 2025
- 6,000 MW of distributed solar PV by 2025
- 10,000 MW distributed solar by 2030
- 3,000 MW of energy storage by 2030
- 70% renewable energy by 2030
- 9,000 MW of offshore wind by 2035
- 100% zero-emissions electricity by 2040
- 85% reduction in Greenhouse Gas Emissions by 2050

Future Resource Mix with Clean Energy (NYISO Modeling)

https://www.nyiso.com/documents/20142/43295775/07 03012024 ESPWG 2023-2042 System&Resource Outlook REposting.pdf/7f6932d6-96e0-832b-2268-070b6bcb6e6a

Capacity (Summer MW)									
		2021	2021 2025 2030			2040	2042		
Nuclear		4,378	3,342	3,342	3,342	3,342	3,342		
Fossil		26,345	23,007	22,867	22,461	_	_		
DEFR - HcLo		-	_	_	_	4,114	4,331		
DEFR - McMo		-	_	_	_	_	-		
DEFR - LcHo		-	_	_	_	22,239	24,792		
Hydro		4,868	6,381	7,665	7,665	7,665	7,665		
LBW		2,227	3,291	3,881	4,570	11,095	11,095		
osw		_	136	6,990	9,000	9,000	9,000		
UPV		32	3,135	8,422	10,381	12,499	12,572		
BTM-PV		2,116	7,097	10,153	12,644	14,444	14,988		
Storage		1,405	2,905	4,405	4,405	6,892	6,892		
Total		41,686	49,490	67,805	74,548	91,290	94,677		

Generation (GWh)										
2021 2025 2030 2035 2040 20										
Nuclear		31,609	29,276	28,831	27,940	26,552	26,438			
Fossil		59,154	50,788	24,400	37,089	_	-			
DEFR - HcLo		_	_	_	_	29,034	35,114			
DEFR - McMo		_	_	_	_	_	-			
DEFR - LcHo		_	_	_	_	3,117	5,012			
Hydro		27,379	33,281	43,688	43,687	43,455	43,686			
LBW		4,024	8,841	10,700	12,738	31,162	31,048			
osw		-	549	32,708	37,607	37,758	37,601			
UPV		51	6,528	15,991	19,843	23,942	24,016			
BTM-PV		2,761	7,718	12,024	15,232	17,582	18,311			
Storage		355	1,009	2,722	2,963	7,782	10,317			
Total Generation		127,930	139,712	171,669	197,750	220,383	231,543			
RE Generation		34,215	56,917	115,110	129,107	153,898	154,662			
ZE Generation		65,824	86,192	143,941	157,047	212,602	221,226			
Load		151,979	157,528	163,222	184,439	212,121	220,946			
Load+Charge		152,334	158,684	166,426	188,001	221,339	232,956			
% RE [RE/Load]		23%	36%	71%	70%	73%	70%			
% ZE [ZE/(Load+Charge)]		43%	55%	88%	85%	100%	100%			

Emissions (million tons)									
	2021 2025 2030 2035 2040								
CO ₂ Emissions	22.24	21.47	10.21	15.72	_	_			

- * Storage includes Pumped Storage Hydro and Batteries
- * Utility solar (UPV) includes existing and new UPV
- * Hydro includes hydro imports from Hydro Quebec
- * Land-Based Wind (LBW), Offshore Wind (OSW), Renewable (RE), Zero Emissions (ZE)
- * Dispachable Emission Free Resource (DEFR), High Capital Low Operating (HcLo), Medium Capital Medium Operating (McMo), Low Capital High Operating (LcHo)

Marginal Capacity Value of Solar and Wind:

Brattle Study 2020:

https://www.nyiso.com/documents/20142/13245925/Brattle%20New%20York%20Electric%20Grid%20Evolution%20Study%20-%20June%202020.pdf/69397029-ffed-6fa9-cff8-c49240eb6f9d

Marginal Capacity Value of Solar and Wind

Attributes for Reliability

https://dps.ny.gov/system/files/documents/2023/12/zero-by-2040-tech-conference-presentations-day-1.pdf

- I. Dependable Fuel Sources that are carbon free and allow these resources to be brought online when required
- 2. Non-Energy Limited and capable of providing energy for multiple hours and days regardless of weather, storage, or fuel constraints
- 3. Dispatchable to follow instructions to increase or decrease output on a minute-to-minute basis.
- 4. Quick-Start to come online within 15 minutes
- 5. Flexibility to be dispatched through a wide operating range with a low minimum output
- 6. Fast Ramping to inject or reduce the energy based on changes to net load which may be driven by changes to load or intermittent generation output
- 7. Multiple starts so resources can be brought online or switched off multiple times through the day as required based on changes to the generation profile and load
- 8. Inertial Response and frequency control to maintain power system stability and arrest frequency decline post-fault
- 9. Dynamic Reactive Control to support grid voltage
- 10. High Short Circuit Current contribution to ensure appropriate fault detection and clearance.

Attributes of Sample Technologies

https://dps.ny.gov/system/files/documents/2023/12/zero-by-2040-tech-conference-presentations-day-1.pdf

		2023	Energy Attributes						Other Reliability Attributes			
		NYCA Summer Capacity (MW)	Carbon Free	Dependable Fuel Source	Non-Energy Limited	Dispatchable	Quick Start	Flexible	Multi Start	Inertial Response	Dynamic Reactive Control	High Short Circuit Current
	Fossil	25,667	No	Yes.	Yes	Yes	Yes.	Yes	Yes	Yes	Yes	Yes
	Hydro	4,265	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Pumped Storage	1,407	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Hydrogen Fuel Cell	0	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No
Sample Technology	Hydrogen Combustion	0	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
echn	Nuclear	3,305	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
ole T	Modular Nuclear	0	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes
Samj	Battery	0	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	No
	Solar	154	Yes	No	No	No.	Yes	Yes	Yes	No	Yes	No
	Wind	2,051	Yes	No	No	No	Yes	Yes	Yes	No	Yes	No
	Demand Response	1,234	Yes	Yes	No	No	No	Yes	No	No	No	No
	Synchronous Condenser	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Yes	Yes	Yes	Yes

Illustration of Reliability Metrics

https://www.nysrc.org/wp-content/uploads/2023/03/RAWG-Report-No.-3-Draft-2-26-224075.pdf

Illustration of Using a Risk Profile to Get a Good Picture of Recent Loss of Load Events

LOL Event Characteristic	Metric	California Aug 2020	Texas Feb 2021	
Number of Events	LOLE	2 events	1 event	
Number of Days	LOLE	2 days	3 days	
Number of Hours	LOLH	6 hours	71 hours	
Unserved Energy	EUE	2,700 MWh	990,000 MWh	
Max Shortfall	-	1,072 MW	20,000+ MW	