주파수 분석함수 벤치마킹을 통한 폐렴과 코로나 구별 성능 향상

한성필 윤재영

목차

- 1. Use Case
 - 정의, 사용된 Dataset
- 2. 기존 Solution
 - Raw image classification
- 3. 제시하는 Solution
 - Preprocessed Data in Frequency Domain

- 4. Preprocessed Data 분석
 - Dimensionality Reduction
- 5. Performance Test
 - Al Model의 accuracy를 비교한 성능 평가 지표
- 6. Conclusion

Usecase 정의

- 1. 코로나 또는 폐렴 의심 환자의 X-ray 사진을 받고,
- 2. X-ray 사진 분석을 통해, 코로나 또는 폐렴 환자인지 구별
 - 코로나 또는 폐렴, 두 class만 존재, 둘 다 아닌 경우는 없음
 - 코로나 환자의 X-ray 사진

• 폐렴 환자 X-ray 사진

Usecase Dataset

X-ray

• KAGGLE COVID-19 Radiography Database [2] Raw Data 추출

1,345 COVID-19 (코로나)

1,345 Viral Pneumonia (폐렴)

• 코로나 환자의 X-ray 사진

• 폐렴 환자 X-ray 사진

Raw Image Classification

[3] Pneumonia Classification Using Deep Learning from Chest X-ray Images During COVID-19

[4] A comparative study of multiple neural network for detection of COVID-19 on chest X-ray

출처 [3]: https://asp-eurasipjournals.springeropen.com/articles/10.1186/s13634-021-00755-1/figures/2

출처 [4]: https://link.springer.com/article/10.1007/s12559-020-09787-5

Preprocessed Data in Frequency Domain

Image Processing 분석함수 (Raw image 변형 전처리 용도)

- FFT(Fast Fourier Transform)
- PSD(Power Spectral Density)
- DCT(Discrete Cosine Transform)
- DWT(Discrete Wavelet Transform)

FFT (Fast Fourier Transform)

PSD (Power Spectral Density)

$$\begin{split} X(k) &= \sum_{n=0}^{N-1} \chi(n) W_N^{kn} \,, \qquad k = 0, 1, \dots, N-1 \\ &= \sum_{n \text{ even}} \chi(n) W_N^{kn} + \sum_{n \text{ odd}} \chi(n) W_N^{kn} \\ &= \sum_{m=0}^{(N/2)-1} \chi(2m) W_N^{2mk} + \sum_{m=0}^{(N/2)-1} \chi(2m+1) W_N^{k(2m+1)} \end{split}$$

6.5.3 The power spectrum

The **power spectral density** (PSD) or **power spectrum** provides a way of representing the distribution of signal frequency components which is easier to interpret visually than the complex DFT. As the term suggests, it represents the proportion of the total signal power contributed by each frequency component of a voltage signal ($P = V^2$ IR). It is computed from the DFT as the mean squared amplitude of each frequency component, averaged over the n samples in the digitised record. However, since only n/2 frequency components are unique, the two halves of the DFT are combined (doubling the power of each component) and plotted as the lower $k = 1 \dots n/2+1$ components,

$$PSD(k) = \frac{2 \, di}{n^2} \left((Y_{\text{real}}(k))^2 + (Y_{\text{imag}}(k))^2 \right)$$
 [6.32]

[6]

[5]

출처 [5]: https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm

출처 [6]: https://www.sciencedirect.com/topics/computer-science/power-spectral-density

DCT (Discrete Cosine Transform)

Discrete Cosine Transform

[7]

The discrete cosine transform (DCT) is closely related to the discrete Fourier transform. It is a separable linear transformation; that is, the two-dimensional transform is equivalent to a one-dimensional DCT performed along a single dimension followed by a one-dimensional DCT in the other dimension. The definition of the two-dimensional DCT for an input image A and output image B is

$$B_{pq} = \alpha_p \alpha_q \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} A_{mn} \cos \frac{\pi (2m+1)p}{2M} \cos \frac{\pi (2n+1)q}{2N}, \quad 0 \le p \le M-1$$

where

$$\alpha_p = \begin{cases} \frac{1}{\sqrt{M}}, & p = 0\\ \sqrt{\frac{2}{M}}, & 1 \le p \le M - 1 \end{cases}$$

and

$$\alpha_q = \begin{cases} \frac{1}{\sqrt{N}}, & q = 0 \\ \sqrt{\frac{2}{N}}, & 1 \le q \le N-1 \end{cases}$$

M and N are the row and column size of A, respectively.

DWT

Approximation Coefficients

DWT (Discrete Wavelet Transform)

Daubechies wavelet functions with p vanishing moments p=1, D1, or Haar wavelet

Approximation Coefficients

Vertical Detail Coefficients

Horizontal Detail Coefficients

Diagonal Detail Coefficients

Approximation Coefficients

Vertical Detail Coefficients

Horizontal Detail Coefficients

Diagonal Detail Coefficients

IDWT (Inverse Discrete Wavelet Transform)

Daubechies wavelet functions with p vanishing moments p=4, D4 wavelet

Dimensionality Reduction

차원 축소 함수 (전처리 데이터 분석용)

- T-SNE (t-distributed Stochastic Neighbor Embedding)
- UMAP (Uniform Manifold Approximation and Projection)
- Wasserstein Distance

차원 축소 함수 (전처리 데이터 분석용) TSNE

차원 축소 함수 (전처리 데이터 분석용) UMAP

차원 축소 함수 (전처리 데이터 분석용) Wasserstein Distance

RAW Image

FFT

Wasserstein Distance for Each Data Point Wasserstein Distance: 205837.6664

PSD

DWT

Performance Test

Al Model의 accuracy를 비교한 성능 평가 지표

Classification Accuracy

Classification Accuracy is what we usually mean, when we use the term accuracy. It is the ratio of number of correct predictions to the total number of input samples.

 $Accuracy = \frac{Number\ of\ Correct\ predictions}{Total\ number\ of\ predictions\ made}$

Google Colaboratory

[10]

[9]

출처 [9]: https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234

출처 [10]: https://www.hwlibre.com/en/google-collaboratory/

출처 [11]: https://arxiv.org/abs/1602.07261v2

Performance Test - Inception ResNet v2

기존 Solution

Inception Resnet v2 에 쓰인 Hyperparameter

Train data 1000개 Test data 345개 Batch size 32 Epoch 10 Loss 0.01이하

Conclusion

1. 기존 solution (RAW image classification)에 대비하여, 최종으로 제시된 solution (<u>DWT</u> image classification - Preprocessed image)은 약 1.16%의 accuracy가 증가

2. 차원 축소 함수 (전처리 데이터 분석용)를 통해 예측한 Solution별 성능 기대값 또한 만족

감사합니다

QnA