Denormalization in Databases

References

Further study required

- Denormalization Effects on Performance of RDBMS, Lawrence Sanders & Seungkyoon Shin, Proceedings of the 34th Hawai Inernational Conference on System Science
- Oracle Performance Tuning (chapter 5), M. Gurry & P. Corrigan, O'Reilly

Normalization: remember

NORMALIZATION goals

- Store relevant data
- Eliminate redundant data
- Avoid NULL keys
- Minimize the impact of data insertion/update/removal

Denormalisation

The <u>voluntary action</u> of creating tables while disregarding normalization goals

DEnormalization: when?

When we need to reduce the response time of database queries.

DEnormalization: how?

Reduce the number of tables involved in the low-performance queries

AND/OR

Add redundancy to the database

Life lesson: "There's no such thing as free meals"

DEnormalization secondary effects

Redundancy has to be controlled <u>at all times</u> (data integrity has to be ensured)

The database must be programmed to control the redundancy, meaning:

- Someone (a Software Engineer) has to do it 88
- The DB has to execute extra operations to ensure data integrity ⊗⊗⊗⊗

Note: check out the next chapter about integrity rules

Ways of doing it

Standard ways

- Add redundancy
 - Store calculated attributes into tables
 - Add redundant columns
- Merge tables
 - Beware: NULLs will appear
- Create materialized Views

Example

A possible denormalization scenario

Conclusions

Do you REALLY need to denormalize the database?

Prior to answering this question, analyze if:

- The DB well designed;
- You are using other performance improvement techniques? (like indexation);
- The performance boost will compensate the continuous effort of enforcing data consistency.