Tessema Mengistu

mengistu@vt.edu

Outline

- Networking Basics
- The TCP/IP Protocol Stack

- Computer networking is one of the enabling technologies in Cloud Computing
- Clouds use networking to connect:
 - Two resources within the cloud
 - Resources across clouds
 - On-premise to cloud
 - Etc.
- A computer network is an interconnected collection of autonomous computers

- Computer networking models
 - OSI : Open system
 Interconnection model
 - Composed of seven layers, each specifying particular network functions
 - Never fully implemented

• TCP/IP Reference model

- Developed by Department of Defense (DoD) with the goal of multiple networks communicate in a seamless way
- The network be able to survive loss of subnet hardware
- Handle applications with divergent requirements

- The Process/Application
 - Protocols for node-to-node application communication and also controls user-interface specifications
- The Host-to-Host
 - Defines protocols for setting up the level of transmission service for applications
- The Internet layer
 - Corresponds to the OSI's Network layer, designating the protocols relating to the logical transmission of packets over the entire network
- Network Access layer
 - The equivalent of the Data Link and Physical layers of the OSI model
 - Oversees hardware addressing and defines protocols for the physical transmission of data

- Host-to-Host Layer
 - Transmission Control Protocol (TCP)
 - Takes large blocks of information from an application and breaks them into segments
 - It numbers and sequences each segment
 - Uses three-way handshaking
 - User Datagram Protocol (UDP)
 - Unreliable transfer of segments
 - TCP for reliability and UDP for faster transfers
 - TCP and UDP must use port numbers to communicate with the upper layers

- Port Numbers:
 - Identify the source and destination application or process in the TCP/UDP segment
 - There are 2¹⁶ = 65536 ports available
 - Well-known ports 0 to 1023.
 - Registered ports 1024 to 49151
 - For applications that need to have consistent port assignments
 - Dynamic or private ports 49152 to 65535.
 - Can be used for any service or application.
 - Firewalls by default block all ports
 - You should know the port numbers of different protocols

- Internet Layer
 - Internet Protocol (IP)
 - The main protocol on the Internet layer
 - Important for IP addressing and routing
 - Divide the data into packets

11

- Basic operation
 - Data transmitted in small packets
 - Longer messages split into series of packets
 - Each packet contains a portion of user data plus some control info
 - Control info includes:
 - Routing (addressing) info
 - Packets are received, stored briefly (buffered) and past on to the next node
 - Store and forward
 - Per-packet routing

- IP Address
 - logical address on the Internet layer
 - Consisting of NETWORK portion, and HOST portion
 - A hierarchical 'numbering scheme' for reliable routing
 - May be assigned to a host pc, or router port, etc.
 - A way to identify machines on a network
 - Unique and universal for global communication
 - No 2 hosts have the same address, but a host can have 2 IP addresses

- IP Address usage
 - IP addresses are assigned by a central authority (Internet Corporation for Assigned Names and Numbers -- ICANN)
 - IPv4 32 bits
 - IPv6 128 bits
 - IPv4
 - There are 2³² (4,294,267,296) hosts
 - Currently not sufficient due to a number of reasons (mainly wastage)
 - Can be
 - Static IP address
 - Manually input by network administrator
 - Dynamic IP address
 - Assigned by server when host boots

- IP address structure
 - Consist of four sections called octets
 - Each octets is 8 bits long
 - To make the IP address easier to use, the address is usually written as four decimal numbers separated by periods.
 - For example, 128.35.0.72
 - Each section can range from 0 to 255
 - An IP address is a 32-bit sequence of 1s and 0s

- IP Address Structure
 - The four octets represent the machine itself (hosted) and the network(netid) it
 is on
 - The network portion is assigned
 - The host section is determined by the network administrator
 - 5 Classes of IP address
 - Class A reserved for large organizations, governments
 - Class B reserved for medium companies
 - Class C reserved for small companies
 - Class D are reserved for multicasting
 - Class F are reserved for future use

Address Class	High-Order Bits	First Octet Address Range	Number of Bits in the Network Address	Number of Networks	Number of Hosts per Network
Class A	0	0-127	8	126	16,777,216
Class B	10	128-191	16	16,384	65,536
Class C	110	192-223	24	2,097,152	254
Class D	1110	224-239	28	N/A	N/A

- Reserved IP Addresses
 - Addresses beginning 127 are reserved for loopback and internal testing
 - All hostId bits off reserved for network address
 - For Example: 11.0.0.0
 - All hostId bits on reserved for broadcast
 - For Example 11.255.255.255
 - an IP address with all 0s (hostid and/or netid) means this network or this host
 - an IP address with all 1s (netid and/or hostid) means all the hosts on the indicated network for broadcasting

Private IP addresses

- Addresses that are not routed on the Internet backbone
- Used only for internal networks
- Connecting a network using private addresses to the Internet requires the usage of Network Address Translation (NAT)

Class	RFC 1918 Internal Address Range	CIDR Prefix
Α	10.0.0.0 - 10.255.255.255	10.0.0.0/8
В	172.16.0.0 - 172.31.255.255	172.16.0.0/12
С	192.168.0.0 - 192.168.255.255	192.168.0.0/16

- Routing is the act of moving information across a network from a source to a destination.
 - Occurs at layer 3 the network layer
 - The router is the device that performs routing, and it connects different LAN segments so that larger networks can be created.
 - routing requires a host or a router to have a routing table
 which is constructed by the routing algorithm

Routing table for host A

Destination	Route	
Host B	R1, R2, Host B	

Routing table for R1

Destination	Route	
Host B	R2, Host B	

Routing table for R2

Destination	Route	
Host B	Host B	

- Classless Interdomain Routing (CIDR)
 - Proposed
 - To slow the growth of routing tables on routers on the Internet
 - To help slow the rapid depletion of IPv4
 - Uses CIDR notation
 - An IP address is followed by a suffix indicating the number of bits of the network id
 - For example: 22.5.0.5/18

References

 Andrew S. Tanenbaum, David J. Wetherall Computer Networks. 5th ed.