Coppelia Scene: Omnidirectional MultiRotor UAV

By,

Akshay Dhonthi Ramesh Babu - 1887502 Fabian Humberto Fonseca Aponte - 1886565 David Esteban Imbajoa Ruiz - 1922212

Academic Year 2019 - 2020

Introduction

- Continuous search for improvement in terms of autonomy and flexibility for air vehicles. The trend continued in unmanned vehicles.
- The history of this line of research has branched out into many fields, from which terms like Fully Actuated Drones - FAD and Over Actuated Drones -OAD take an important part of this project.
- Each branch has its own difficulties in terms of *location*, *mapping* and *control* theory with respect to its **parameters** and characteristics.
- There is great interest in **simulation environments** that test the performance of solutions without putting investment capital at risk.

Problem Statement

Build a virtual scene in CoppeliaSim for the design, implementation and evaluation of position and attitude control alternatives over an omnidirectional UAV

Objective

The presentation will cover the following section of the project:

- **Problem Statement:** The purpose of the project.
- Methodology: Methods and algorithms for the control proposed.
- Implementation: UAV Model design and integration to CoppeliaSim.
- Experiments and results: Proposed experiments and associated results.
- **Conclusion:** Milestones achieved at the end of the project.

Basic Knowledge - Concepts

Atomic actuation units (AAU) characterization

- Aerodynamic coefficients
 - Related to propellers.
- (Uni/bi)-directional thrust
 - The motors rotates in both directions or only one.
- Fixed/actuated propulsion shafts
 - Rigid body or actuated joints wrt propellers frame.
- Propellers positions
 - Spatial location.

Properties

- Hover Ability
 - Keeps a constant configuration (position and orientation).
- Trajectory tracking Ability
 - Tracks position and orientation in the reference space.
- Physical Interaction Ability
 - Interacts with environment through changing forces.

Basic Knowledge-Model

All the designs are Over-actuated **OA**, but the control model can be modified to be Fully-actuated **FA**

Basic Knowledge - Assumptions and Properties

- Constant center of mass **CoM**, not affected by any physical components.
- Constant aerodynamic coefficients.
- Mirroring the orientation of opposing propellers.
- Unidirectional thrust.
- Constant propellers position.
- Actuated propellers, 2 DoF (CAD Design) and 1 DoF (Control Design).

Basic Knowledge-Kinematic Model

- One coordinate axes for the base of the drone.
- One coordinate axes assigned for each propellant repeated in its counterparts.
- One coordinate axes for the environment.

Considerations:

- Arr Control simplification by setting θ1 = θ3 and θ2 = θ4.
- Total of 6 control inputs:
 4 angular velocities.
 2 angular positions.

Kinematic model for an UAV with radial tilting

Basic Knowledge-Kinematic and Dynamic Model

$$R_{B/E} = \begin{bmatrix} \cos \psi \cos \theta & \cos \psi \sin \theta \sin \phi - \sin \psi \cos \phi & \cos \psi \sin \theta \cos \phi + \sin \psi \sin \phi \\ \sin \psi \cos \theta & \sin \psi \sin \theta \sin \phi + \cos \psi \cos \phi & \sin \psi \sin \theta \cos \phi - \cos \psi \sin \phi \\ -\sin \theta & \cos \theta \sin \psi & \cos \theta \cos \psi \end{bmatrix}$$

Rotation matrix to modify the direction of the final generated impulse.

$$\begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} = \frac{R_{B/E}}{m} \begin{bmatrix} F_2 \sin \theta_2 + F_4 \sin \theta_4 \\ -F_1 \sin \theta_1 - F_3 \sin \theta_3 \\ F_1 \cos \theta_1 + F_2 \cos \theta_2 + F_3 \cos \theta_3 + F_4 \cos \theta_4 \end{bmatrix} - \begin{bmatrix} C_1 \dot{x} \\ C_2 \dot{y} \\ C_3 \dot{z} + g \end{bmatrix}$$
 Acceleration wrt global reference frame, where, $\textbf{\textit{C}}$ is the drag coefficient and $\textbf{\textit{F}}$ is the propellers force.

Global rate of change of orientation wrt

$$r_{des}^{...} = k_{pi}e_i + k_{di}\dot{e_i} = \begin{bmatrix} k_{px}e_x \\ k_{py}e_y \\ k_{pz}e_z \end{bmatrix} + \begin{bmatrix} k_{dx}\dot{e_x} \\ k_{dy}\dot{e_y} \\ k_{dz}\dot{e_z} \end{bmatrix}; \forall i \in \{x,y,z\}$$
 The desired acceleration is given by proportional (\emph{Kp}) and derivative (\emph{Kd}) gains, given the error calculations of the desired references.

The desired acceleration is

$$\phi^{des} = \frac{\ddot{r_x}^{des} \sin \psi^{des} - \ddot{r_y}^{des} \cos \psi^{des}}{g}$$
 The desired orientation, in Euler angles, for a given acceleration and a given ψ desired.
$$\theta^{des} = \frac{\ddot{r_x}^{des} \cos \psi^{des} - \ddot{r_y}^{des} \sin \psi^{des}}{g}$$

in Euler angles, for a

$$w_h = \sqrt{\frac{mg}{2k_f(\cos\theta_1 + \cos\theta_2)}}$$
 The angular velocity and its rate of change required for hovering (per propeller) is given by ωh and
$$\Delta w_f = \frac{m\ddot{r_z}^{des}}{4k_f w_h(\cos\theta_1 + \cos\theta_2)}$$
 $\Delta \omega f$ where, $k f$ is a constant from the motor forces.

$$F_i = k_f w_i^2$$

 $F_i = k_f w_i^2$ Associated forces produced by each propeller given a constant **kf**.

$$\Delta w_{\phi} = k_{p,\phi}(\phi^{des} - \phi) + k_{d,\phi}(p^{des} - p)$$

$$\Delta w_{\theta} = k_{p,\theta}(\theta^{des} - \theta) + k_{d,\theta}(q^{des} - q)$$

$$\Delta w_{\psi} = k_{p,\psi}(\psi^{des} - \psi) + k_{d,\psi}(r^{des} - r)$$

$$\Delta \theta_{T_{\phi}} = k_{p,\phi_{T}}(\phi^{des} - \phi) + k_{d,\phi_{T}}(p^{des} - p)$$

$$\Delta \theta_{T_{\theta}} = k_{p,\theta_{T}}(\theta^{des} - \theta) + k_{d,\theta_{T}}(q^{des} - q)$$

$$\Delta \theta_{T_{x}} = k_{p,x_{T}}e_{x} + k_{d,x_{T}}\dot{e_{x}}$$

$$\Delta \theta_{T_{y}} = k_{p,y_{T}}e_{y} + k_{d,y_{T}}\dot{e_{y}}$$

- Δω represents the change of angular velocity needed for the rotors to achieve the desired orientation of the UAV.
- $\Delta\theta$ represents the change in tilt needed for the rotors to achieve the pose (position and orientation).

$\left\lceil w_1^{des} \right\rceil$		Γ 1	0	-1	-1	0	0	0	$\begin{bmatrix} 0 \end{bmatrix}$
w_2^{des}		1	1	0	1	0	0	0	0
w_3^{des}		1	0	1	-1	0	0	0	0
w_4^{des}		1	-1	0	1	0	0	0	0
θ_1		0	0	0	0	1	0	1	0
$ heta_2$		0	0	0	0	0	1	0	1
θ_3		0	0	0	0	1	0	1	0
$\left[\begin{array}{c} \theta_4 \end{array}\right]$		0	0	0	0	0	1	0	1

$$w_h + \Delta w_f$$
 Δw_{ϕ}
 Δw_{θ}
 Δw_{ψ}
 $\Delta \theta_{T_y}$
 $\Delta \theta_{T_x}$
 $\Delta \theta_{T_{\phi}}$
 $\Delta \theta_{T_{\theta}}$

Final representation for the control inputs as linear combination of angular velocities (ω) and tilt angles (θ).

Linearly dep.

The desired **PD** controller synchronizes the actions taken on the angular velocities and the inclination of the rotors.

Implementation

CAD Model Development

- Quadrotor design with 3 dofs in each propeller.
- Radial and tangential movements for each propeller.

Integrating model into CoppeliaSim

- Grouping and materials.
- Shapes development.
- Joints and parent-child structure.
- Lua Script development.

Tuning gains and Iterative Experimentation

- Experimentation route.
- Fine tuning for PD gains.

Implementation - CAD Model Development

- The quadrotor with propellers tilting in s² (radial and tangential).
- Over-actuated system.
- The tilt angles controlled by servo motors.
- Servo motors fast enough to ignore the control loop.

Implementation - CAD Model Development

- Designed parts in "SLDPRT" format and assembled.
- Propellers axis facing upward to obtain the proper coordinate frame.
- Body's Z-axis faces upward to maintain CoppeliaSim standards.

Grouping of multiple non-pure shapes on CoppeliaSim

- STL files generated by SolidWorks is exported to CoppeliaSim and grouped with their respective fixed parts.
- Finally obtain a total of 13 multishape non pure objects
 (1 body, 4 propellers, 4 radial rings and 4 tangential rings).

Triangle edit mode available in Coppelia Sim

Final hidden layer with all pure shapes

- Model is converted to pure shapes.
- Done using triangle edit mode.
- Reduces total number of meshes.
- Results in smoother dynamic simulation.
- Guaranties immediate and smooth response as the shapes are stable.

- Joint objects generated to assign the type of motion (revolute, prismatic or spherical).
- The exact position of each joint obtained by extracting pure triangles shapes from physical joint shafts.

- The structure has pure shape then non pure shape and then the joint respectively for all DoFs.
- Revolute joints are added to their respective tangential tilt rings as shown in hierarchy structure.

Lua script development

- The force and torque are calculated and sent to the skeleton of the UAV.
- The propellers are rotated with fixed speed, just for visualisation.
- The correct tilt angles can be visualised.
- All the functions are programed on non-thread child script.

Tuning gains-Iterative experimentation

- There are around 20 gains which are tuned to perform smooth attitude control.
- Each control input gain is tuned individually by setting the others to zeros.
- Forces applied on Z-axis are set by moving the reference frame on the robot by transforming the ground and the robot frame.

Experimentation - Expected Results

Model DOF

Importing to CoppeliaSim

Simple Quad Attitude control

Attitude control with radial tilt angles

Conclusion

- A scene was successfully developed in CoppeliaSim with an omnidirectional UAV with 2 additional DoF in each of its propeller.
- The integration of a LUA script with the mechanics of the drone was achieved to control its movement in the simulated environment.
- A fully actuated control was implemented on the system by enabling only the radial tilt in the propellers and simplifying the model to a 6 inputs control scheme.
- The tuning of the gains was achieved presenting an acceptable behavior.
- The scene, the model and the code will serve as the basis for future projects and developments compatible with the taxonomy of this work.