Bizonyítás és programozás

Kaposi Ambrus

Eötvös Loránd Tudományegyetem Informatikai Kar

Pannonhalmi Bencés Gimnázium 2017. november 24.

A tökéletes operációs rendszer (i)

BeOS Plan9

A tökéletes operációs rendszer (ii)

Villa Savoye

Centre Pompidou

Logisták

a program helyesen működjön modularitás, absztrakció új rendszer nyelvész forma

Alexander Grothendieck

Kombinatoristák

a program gyors legyen teljesítmény régi karbantartása hacker tartalom

Andrew Wiles

Formális nyelv

```
név ::= Mari | Jenő | Áron | Juli
```

alany ::= $n\acute{e}v \mid bicikli$

tárgy ::= alanyt

minőségjelző ::= Kis | Nagy | Szép

mennyiségjelző ::= három | egy | mennyiségjelző meg mennyiségjelző

állítmány ::= visz | kedvel

mondat ::= minőségjelző alany mennyiségjelző tárgy állítmány.

Mondat -e?

- 1. Szép Juli három biciklit kedvel.
- 2. Szép Juli három Áront kedvel.
- 3. Szép Juli három meg három Áront kedvel.
- 4. Szép Juli kedvel három biciklit.
- 5. Három Juli szép biciklit kedvel.

Továbbá: Szép Juli három meg (három meg három) Áront kedvel.

 \neq Szép Juli (három meg három) meg három Áront kedvel.

Lambda kalkulus (i)

Mi az, hogy program?

Alonzo Church

Kurt Gödel

Alan Turing

 $v\'{a}ltoz\'{o} ::= x | y | z | v\'{a}ltoz\'{o}'$

 $program ::= v\'altoz\'o \mid \lambda v\'altoz\'o.program \mid program program$

Lambda kalkulus (ii)

Szintaxis rövidebben:

$$t ::= x \mid \lambda x.t \mid t t'$$

Példák:

$$\lambda x.x + x$$

$$(\lambda x.x + x)$$
3

Program végrehajtása:

$$(\lambda x.x + x)$$
 3 \rightsquigarrow 3 + 3

Program több bemenettel:

$$\lambda x.(\lambda y.(2*x+y))$$

Végrehajtás:

$$((\lambda x.(\lambda y.2 * x + y)) 3) 4 \rightsquigarrow 2 * 3 + 4$$

Programok végrehajtása

Szintaxis:

$$t ::= x \mid \lambda x.t \mid t t'$$

Végrehajtás általános esetben, bármely x, t, t'-re:

$$(\lambda x.t) t' \rightsquigarrow t[x \mapsto t']$$

Példák:

$$(\lambda x.x + x) 3 \leadsto (x + x)[x \mapsto 3] = 3 + 3$$

$$((\lambda x.(\lambda y.2 * x + y)) 3) 4$$

$$\leadsto ((\lambda y.2 * x + y)[x \mapsto 3]) 4$$

$$= (\lambda y.2 * 3 + y) 4$$

$$\leadsto (2 * 3 + y)[y \mapsto 4]$$

$$= 2 * 3 + 4$$

Számok (i)

$$t ::= x \mid \lambda x.t \mid t \ t' \qquad (\lambda x.t) \ t' \leadsto t[x \mapsto t']$$

$$0 := \lambda x.(\lambda y.x)$$

$$1 := \lambda x.(\lambda y.(y \times x))$$

$$2 := \lambda x.(\lambda y.(y \times x))$$

$$3 := \lambda x.(\lambda y.(y \times x))$$

$$pluszegy := \lambda z.(\lambda x.(\lambda y.y \times x))$$

Számok (ii)

```
t ::= x \mid \lambda x.t \mid t \ t' \qquad (\lambda x.t) \ t' \leadsto t[x \mapsto t']2 = \lambda x.(\lambda y.(y (y x)))pluszegy = \lambda z.(\lambda x.(\lambda y.y ((z x) y)))
```

Például:

```
pluszegy 2
= (\lambda z.(\lambda x.(\lambda y.y((zx)y))))(\lambda x.(\lambda y.(y(yx))))
\rightsquigarrow (\lambda x.(\lambda y.y((zx)y)))[z \mapsto (\lambda x.(\lambda y.(y(yx))))]
= \lambda x.(\lambda y.y(((\lambda x.(\lambda y.(y(yx))))x)y))
\rightsquigarrow \lambda x.(\lambda y.y((\lambda y.(y(yx)))[x \mapsto x]y))
= \lambda x.(\lambda y.y((\lambda y.(y(yx)))y))
\rightsquigarrow \lambda x.(\lambda y.y((y(yx))[y \mapsto y]))
= \lambda x.(\lambda y.y(y(yx)))
= 3
                                                         Házi feladat: összeadás, szorzás.
```

10 / 22

Típusok

Számokkal mindent lehet reprezentálni, például szövegeket, képeket, videókat stb.

Tfh. van egy nagy programunk, $\lambda x.convert$ alakú, bemenet: PNG, kimenet: JPG.

Van egy rajz programunk, ami egy PNG kép.

Ekkor ($\lambda x.convert$) rajz egy JPG típusú kép lesz.

Tfh. van egy konyv programunk, ami egy könyvnek a szövege. Mi lesz, ha végrehajtjuk a $(\lambda x.convert)$ konyv programot?

Típusok: PNG, JPG, Szöveg, Szám, Szám \Rightarrow Szám, PNG \Rightarrow JPG stb.

Típusrendszer (i)

$$\frac{\mathsf{Ha}\; x: A, \; \mathsf{akkor}\; t: B}{\lambda x. t: A \Rightarrow B} \qquad \frac{t: A \Rightarrow B \qquad t': A}{t\; t': B}$$

$$\frac{t:A\Rightarrow B}{t\;t':B} \quad \frac{t':A}{}$$

$$\frac{\textit{pluszegy}: \mathsf{Sz\acute{a}m} \Rightarrow \mathsf{Sz\acute{a}m}}{\textit{pluszegy} \ 2: \mathsf{Sz\acute{a}m}}$$

 $\lambda x.convert : PNG \Rightarrow JPG$

konyv: Szöveg

Típusrendszer (ii)

$$\frac{\textit{pluszegy} : \mathsf{Szám} \Rightarrow \mathsf{Szám}}{\textit{pluszegy} \ 2 : \mathsf{Szám}} \\ 2 : \mathsf{Szám}$$

Honnan tudjuk, hogy 2 : Szám?

Kiegészítjük a típusrendszer szabályait:

A szabályok használatával:

Matematika nyelve

$$(x+1\equiv 3) \Rightarrow (x\equiv 2)$$

$$(x \equiv 3 \land x \equiv 2) \Rightarrow \bot$$

Logikai szabályok (egy része):
$$\frac{\bot}{\top} \quad \frac{\bot}{A} \quad \frac{A \quad B}{A \land B} \quad \frac{A \land B}{A} \quad \frac{A \land B}{B}$$

$$\frac{A}{A} \frac{B}{B}$$

$$a \equiv a$$
 $a \equiv b$ $b \equiv c$ $a \equiv b$ $b \equiv a$ $a = b + 1$ $a \equiv b$ $a \equiv b$

$$\frac{a \equiv b}{b = a}$$
 $\frac{a+1}{a}$

$$\frac{1}{\bot} \qquad \frac{a+1 \equiv a}{\bot}$$

 $\overline{A \Rightarrow B}$

 $A \Rightarrow B \quad A \\ B$

$$\frac{x \equiv 3 \land x \equiv 2}{x \equiv 3} \qquad \frac{x \equiv 3 \land x \equiv 2}{x \equiv 2}$$

$$\frac{x + 1 \equiv 3}{x \equiv 2}$$

$$(x + 1 \equiv 3) \Rightarrow (x \equiv 2)$$

$$\frac{3 \equiv 2}{(x \equiv 3 \land x \equiv 2) \Rightarrow \bot}$$

Kitérő: fel lehet -e írni az összes szabályt?

AUTHOR KATHARINE GATES RECENTLY ATTEMPTED TO MAKE A CHART OF ALL SEXUAL FETISHES.

LITTLE DID SHE KNOW THAT RUSSELL AND WHITEHEAD HAD ALREADY FAILED AT THIS SAME TASK.

Típuselmélet (type theory) vs. halmazelmélet

Per Martin-Löf filozófus, ornitológus.

A matematikai objektumok elválaszthatatlanok a típusuktól.

A bizonyítások konstruktívak.

A bizonyítások számítógéppel ellenőrizhetők.

Típusok

- N: természetes számok
- ▶ $\Pi(x : A).B$: függvény, logikai következtetés, "minden" kvantor, általános szorzat
- $ightharpoonup \Sigma(x:A).B$: rendezett pár, logikai és, "létezik" kvantor, általános összeg
- $ightharpoonup a \equiv_A b$: egyenlőség

Például:

$$\lambda x. \lambda y. ap \ pred \ y : \Pi(x : \mathbb{N}).\Pi(y : x + 1 \equiv_{\mathbb{N}} 3). x \equiv_{\mathbb{N}} 2$$

matematika = programozás állítás = típus bizonyítás = program

Típuselméletre épülő progamozási nyelvek/tételbizonyító rendszerek: Agda, Coq (négy szín), Idris, Lean stb.

Egyenlőség típus

Kérdés: ha $t: a \equiv_A b$ és $t': a \equiv_A b$, akkor vajon van -e olyan p, hogy $p: t \equiv_{a \equiv_A b} t'$?

Martin-Löf egységes sémát adott meg minden típusra, hogy milyen programokat lehet írni.

Például $\Pi(x : A).B$ -re:

- típus formálás: ha A egy típus, és ha B típus, feltéve, hogy x : A, akkor Π(x : A).B típus
- ▶ konstrukció: ha t: B, feltéve, hogy x: A, akkor $\lambda x.t: \Pi(x: A).B$
- ▶ elimináció: ha $t : \Pi(x : A).B$ és u : A, akkor $t u : B[x \mapsto u]$
- ▶ komputáció: $(\lambda x.t) u = t[x \mapsto u]$
- egyediség: $\lambda x.(t x) = t$

A hasonló, egyenlőségre vonatkozó sémából nem következik a fenti kérdésre igen válasz.

Kategóriaelmélet

Saunders Mac Lane matematikus

Homotópia-elmélet

Vladimir Voevodsky matematikus

Mikor egyenlő két típus?

Ha van egy $f: A \Rightarrow B$ és egy $g: B \Rightarrow A$, melyekre $f \circ g = id_B$ és $g \circ f = id_A$.

Bool: kételemű típus, két konstruktorral: true : Bool, false: Bool

 $id : Bool \Rightarrow Bool$

id true = true

id false = false

 $not : Bool \Rightarrow Bool$

nottrue = false

notfalse = true

Saját kutatás

Típuselmélet leírása a típuselméletben

Homotópia-típuselméletnek szép szintaxist készítünk

Matematikusokat meggyőzni, hogy formalizáljanak

Programozókat meggyőzni, hogy bizonyítottan helyes progamokat írjanak