PLANNING

LECTURE 2

Outline

- ♦ Planning in the plan space
- ♦ Partial-Order Planning

Skipped

- ♦ GraphPlan (forward planning + Heuristics)
- ♦ Planning as constraint satisfaction
- Planning as propositional satisfiability

New approach to planning

Principle of least committment:

- \diamondsuit partial ordering (instead of total)
- \Diamond not fully instantiated plan (in the first-order case)

Change of problem representation:

- \Diamond state space: node = state in the world
- \Diamond plan space: node = partial plan

Dressing up

Goal: {}

GOAL: $\{RightShoeOn, LeftShoeOn\}$

ACTION: RightSock, Effect: RightSockOn)

ACTION: LeftSock, Effect: LeftSockOn

ACTION: RightShoe, PRECONDITION: RightSockOn,

Effect: RightShoeOn

ACTION: LeftShoe, Precondition: LeftSockOn,

Effect: LeftShoeOn

Example

Partially ordered plans

Partially ordered collection of actions with

- \diamondsuit Start action has the initial state description as its effect
- $\Diamond Finish$ action has the goal description as its precondition
- temporal ordering between pairs of actions

Two *additional elements* are needed to characterize the planning process:

- \Diamond Open precondition = precondition of an action not yet causally linked
- ♦ Causal links from outcome of one action to precondition of another

Plan Representation

- ♦ set of actions
 ♦ set of ordering
- \diamondsuit set of ordering constraints $A \prec B$
- \diamondsuit set of causal links $A \xrightarrow{p} B$ A achieves p for B
- ♦ set of open preconditions

Initial State:

```
Plan(Actions: \{Start, Finish\},\ Orderings: \{Start \prec Finish\},\ Links: \{\},\ Open Preconditions: \{RightShoeOn, LeftShoeOn\})
```

Solutions in the plan space

A plan is complete iff every precondition is achieved

A precondition is achieved iff: it is the effect of an earlier action and no possibly intervening action undoes it

Plan Representation: solution

```
Plan(Actions: \{RightSock, RightShoe, LeftSock, LeftShoe, LeftSock, LeftSoc
                                                                       Start, Finish\},
                                    ORDERINGS: \{Start \prec Finish, Start \prec RightSock, \}
                                                                       RightSock \prec RightShoe, RightShoe \prec Finish,
                                                                       Start \prec LeftSock, LeftSock \prec LeftShoe,
                                                                       LeftShoe \prec Finish\},
                                  LINKS: \{RightSock \xrightarrow{RightSockOn} RightShoe,
                                                                      RightShoe \xrightarrow{RightShoeOn} Finish,
                                                                      LeftSock \xrightarrow{LeftSockOn} LeftShoe,
                                                                      LeftShoe \xrightarrow{LeftShoeOn} Finish\},
                                    OPEN PRECONDITIONS: {})
```

Planning process as plan refinement

Refinements of partial plans:

add a link from an existing action to an open condition add a action to fulfill an open condition order one action wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or if a conflict is unresolvable

The Search Procedure

- 1. The initial plan includes the constraints for Start and Finish, with ordering $Start \prec Finish$;
- 2. The successor function
 - (a) pick one open precondition p on action B
 - (b) pick one action A that achieves p
 - (c) add the causal link $A \xrightarrow{p} B$ and the ordering constraint $A \prec B$; if A is new add also $Start \prec A$ and $B \prec Finish$
 - (d) resolve conflicts, if possible, otherwise backtrack
- 3. The goal test succeeds when there are no more open preconditions

Example

Start

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

Actions for the example

ACTION: Buy(x)

PRECONDITION: At(p), Sells(p, x)

Effect: Have(x)

ACTION: Go(x)

PRECONDITION: At(y)

Effect: $At(x) \land \neg At(y)$

Objects: $Milk, Bananas, Drill, \dots$

Places: $Home, SM, HWS, \dots$

Clobbering and conflicts

A clobberer is a potentially intervening action that destroys the condition achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

More specifically, a **conflict** between the causal link $A \xrightarrow{p} B$ and the action C holds when C has effect $\neg p$.

A conflict can be solved by adding:

- $\Diamond C \prec A$ (demotion) or
- $\Diamond B \prec C$ (promotion)

Promotion/demotion

Demotion:

put

before

Go(Supermarket)

Promotion: put after Buy(Milk)

POP algorithm sketch

```
function POP(initial, goal, operators) returns plan
   plan \leftarrow Make-Minimal-Plan(initial, goal)
   loop do
       if Solution? (plan) then return plan
       S_{need}, c \leftarrow \text{Select-OpenPrecondition}(plan)
       Choose-Operators (plan, operators, S_{need}, c)
       RESOLVE-THREATS (plan)
   end
function Select-OpenPrecondition( plan) returns S_{need}, c
   pick a plan step S_{need} from ACTIONS( plan)
       with a precondition c that has not been achieved
   return S_{need}, c
```

POP algorithm contd.

```
procedure Choose-Operators (plan, operators, S_{need}, c)

choose a step S_{add} from operators or Actions(plan) that has c as an effect if there is no such step then fail add the causal link S_{add} \stackrel{c}{\longrightarrow} S_{need} to Links(plan) add the ordering constraint S_{add} \prec S_{need} to Orderings(plan) if S_{add} is a newly added step from operators then add S_{add} to Actions(plan) add S_{add} \prec S_{add} \prec S_{add} \prec S_{add} \prec S_{add}
```

Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:

- choice of action (S_{add}) to achieve open precondition (S_{need})
- choice of demotion or promotion for clobberer

Selection of open precondition (S_{need}) is irrevocable: the existence of a plan does not depend on the choice of the open preconditions.

POP is sound, and complete,

Termination? The plan space is infinite . . .

Flat tire

ACTION: Remove(Spare, Trunk)

PRECONDITION: At(Spare, Trunk)

Effect: $\neg At(Spare, Trunk) \land At(Spare, Ground)$

ACTION: Remove(Flat, Axle)

PRECONDITION: At(Flat, Axle)

Effect: $\neg At(Flat, Axle) \land At(Flat, Ground)$

ACTION: PutOn(Spare, Axle)

PRECONDITION: $At(Spare, Ground) \land \neg At(Flat, Axle)$

Effect: $\neg At(Spare, Ground) \land At(Spare, Axle)$

ACTION: LeaveOvernight Precondition:

Effect: $\neg At(Spare, Ground) \land \neg At(Spare, Axle) \land$

 $\neg At(Spare, Trunk) \land At(Flat, Ground) \land \neg At(Flat, Axle)$

Flat tire

Init: $At(Flat, Axle) \wedge At(Spare, Trunk)$

Goal: At(Spare, Axle)

Start At(Spare, Trunk)
At(Flat, Axle)

At(Spare, Axle) Finish

POP: Flat Tire

POP: Flat Tire

POP: Flat Tire

Extensions of POP

Handling variables: again principle of least commitment

ACTION: Buy(x)

PRECONDITION: At(p), Sells(p, x)

Effect: Have(x)

Achieving Have(milk) leaves as open precondition: At(p), Sells(p, milk), which can be satisfied by any p

Equality and inequality constraints needed to handle variables

♦ POP admits also extensions for disjunction, universals, negation, conditionals

Example: Blocks world

Actions in the blocks' world

Op(PutOn(b, y),

PRECOND: $On(b, z) \wedge Clear(b) \wedge Clear(y)$,

Effect: $On(b, y) \wedge Clear(z) \wedge \neg On(b, z) \wedge \neg Clear(y)$

Op(PutOnTable(b),

PRECOND: $On(b, z) \wedge Clear(b)$,

Effect: $On(b, Table) \land Clear(z) \land \neg On(b, z))$

Heuristics for POP

General:

- number of open preconditions
- most constrained variable
 open precond that are satisfied in fewest ways
- ♦ a special data structure: the planning graph

Problem Specific:

Good heuristics can be derived from problem description (by the human operator)

POP is particularly effective on problems with many loosely related subgoals

Summary

Advantages

- least commitment allows for flexible execution
- POP (sound and complete)
- very good for domains that require loose sequential constraints

Disadvantages

- infinite search space
- no representation of states
- planning is complex and difficult to devise heuristics