(1) a) Lecture Notos/Scripts/online resources

b) Check
$$S = 101$$

 $000 \oplus 101 = 101 \longrightarrow f(000) = f(101) /$
 $001 \oplus 101 = 100 \longrightarrow f(001) = f(100) /$
 $010 \oplus 101 = 111 \longrightarrow f(010) = f(110) /$
 $011 \oplus 101 = 110 \longrightarrow f(011) = f(110) /$
fits all given function

$$(0)^{\otimes 3}$$
 $(0)^{\otimes 3}$ $(0)^$

After first Hadamard 1: $|Y_1>=1+++>=\frac{1}{T_{2^3}}(1000)+1000+1000)+1000>$ +(011)+(110)+(110)+1000)

Second Hadamards: just the term w/ 1017 1/23HOHOUH (10007 + 1101)

$$=\frac{1}{\sqrt{2}^{3}}\frac{1}{\sqrt{2}^{3}}\left[\frac{1000)+10100+10000+10000+101000}{+(1000)+101000+10100} + \frac{1}{(100)+1000}+\frac{1}{(100)+1000} + \frac{1}{(100)+1000} +$$

10007-10107-1011>

$$=\frac{1}{26}\left[20007 + 210407 + 214047 + 21447\right]$$

$$=\frac{1}{2^3}\left[10007 + 10107 + 11017 + 11117\right]$$

After 2nd Hadamords:

1V7-1 1 [() ~ ~ ~ ~ ~ ~ ~

> Oracle measurement: get 01 $\rightarrow 147 = \frac{1}{2} (1000) + (101) + (010) + (1111)$

ett)

Then, measuring f_r bleads to a single state 1×2 . Applying Haderbook \Rightarrow for each f_x , get a superposition of 10002, 10012,

probability would be equally distributed, getting each bitisting x w/ prob 1/16.

If f is not one way, some results appear us prob O.

Case: Grade measurement gives 01. How to infer s from the results?

$$\int -101 = 0 = S_1 + S_2$$

$$\Rightarrow$$
 $S_2 = 0$

$$= 2 S_1 + S_2 = 0 = 2 S_1 = S_2 = 1$$