Presentation 2

Fynn Lohren, Carsten Schubert, Leon Suchy

November 14, 2018

Structure

- Organisation
- Data Structures
- Lower Bounds
- Data Reduction

Organisation

- Issues on Gitlab to track open tasks
- Meeting with milestone goals
- Sick member
 - \rightarrow Less time than we wanted to have

Data Structures

- Heaps
- Bipartite Graph
- Controller

Bipartite Graph

Index	Vertex ID	ID left	ID right
0	0	0	
1	uint_max - 1		0
2	1	1	
3	uint_max - 2		1
4	2	2	
5	NULL		-

Controller

- Too much complexity synchronising all data structures
- Model/View/Controller pattern

```
1: procedure CLIQUE COVER(G(V, E))
       clique\_set \leftarrow \{\}
2:
3: V \leftarrow sort\_by\_degree(V)
                                                         for all v \in V do
4:
           clique \leftarrow largest\_clique(v) \triangleright Largest clique v fits in
5:
6:
           clique_set ← clique_set \ clique
           clique \leftarrow clique \cup \{v\}
7:
           clique\_set \leftarrow clique\_set \cup clique
8:
9:
       return clique_set
```

Sorting can be computed in $\mathcal{O}(n \log n)$ time

```
1: procedure CLIQUE COVER(G(V, E))
       clique\_set \leftarrow \{\}
2:
3: V \leftarrow sort\_by\_degree(V)
                                                         for all v \in V do
4:
           clique \leftarrow largest\_clique(v) \triangleright Largest clique v fits in
5:
6:
           clique_set ← clique_set \ clique
           clique \leftarrow clique \cup \{v\}
7:
           clique\_set \leftarrow clique\_set \cup clique
8:
9:
       return clique_set
```

Sorting can be computed in $\mathcal{O}(n \log n)$ time Finding the largest clique for each v can be done in $\mathcal{O}(deg(v))$ time

```
1: procedure CLIQUE COVER(G(V, E))
       clique\_set \leftarrow \{\}
2:
3: V \leftarrow sort\_by\_degree(V)
                                                         for all v \in V do
4:
           clique \leftarrow largest\_clique(v) \triangleright Largest clique v fits in
5:
6:
           clique_set ← clique_set \ clique
           clique \leftarrow clique \cup \{v\}
7:
           clique\_set \leftarrow clique\_set \cup clique
8:
9:
       return clique_set
```

Sorting can be computed in $\mathcal{O}(n\log n)$ time Finding the largest clique for each v can be done in $\mathcal{O}(deg(v))$ time More realistic in $\mathcal{O}(\log n)$ time

```
1: procedure CLIQUE COVER(G(V, E))
       clique\_set \leftarrow \{\}
2:
3: V \leftarrow sort\_by\_degree(V)
                                                         for all v \in V do
4:
           clique \leftarrow largest\_clique(v) \triangleright Largest clique v fits in
5:
6:
           clique_set ← clique_set \ clique
           clique \leftarrow clique \cup \{v\}
7:
           clique\_set \leftarrow clique\_set \cup clique
8:
9:
       return clique_set
```

Sorting can be computed in $\mathcal{O}(n \log n)$ time Finding the largest clique for each v can be done in $\mathcal{O}(deg(v))$ time More realistic in $\mathcal{O}(\log n)$ time Total running time: $\mathcal{O}(n \log n)$

Clique Cover LB

Linear Programming LB Algorithm

Hopcroft-Karp: Finds maximum matching in a bipartite graph

Linear Programming LB Algorithm

Hopcroft-Karp: Finds maximum matching in a bipartite graph Achieved complexity: $\mathcal{O}(m*\sqrt{n})$

Linear Programming LB Algorithm

Hopcroft-Karp: Finds maximum matching in a bipartite graph

Achieved complexity: $\mathcal{O}(m * \sqrt{n})$

König theorem:

Constructs minimum vertex cover from maximum matching in bipartite graph

Theoretical complexity: $\mathcal{O}(m * \sqrt{n})$

$$VC = (L \setminus Z) \cup (R \cap Z)$$

Linear Programming LB

Lower Bound Comparison

Combining Lower Bounds

Data Reduction

Degree 0 Rule

If there is an isolated vertex, remove it

Degree 1 Rule

If there is a degree-1 vertex, remove it and take its neighbour into the cover

High Degree Rule

If there is a vertex with degree greater than k, take it into the cover

Reduction Algorithm

```
1: procedure EXHAUSTIVE REDUCTION(G, k)
        applied \leftarrow false
 2:
 3:
        repeat
 4:
             apply\_deg\_0(G, k)
             applied \leftarrow apply\_deg\_1(G, k)
 5:
             applied \leftarrow apply\_high\_deg(G, k)
 6:
        until not applied
 7:
        return G', k'
 8:
Runs in \mathcal{O}(k \cdot n)
```

Data Reduction

Properties of the reduced graph G'(V', E')?

- $\forall v \in V'.deg(v) \leq k'$
- ∀v ∈ V'.deg(v) ≥ 2

Data Reduction

Properties of the reduced graph G'(V', E')?

- $\forall v \in V'.deg(v) ≤ k' \leftarrow upper bound$
- $\forall v \in V'.deg(v) \ge 2$

Limit size of our instance G' to k'!

Claim:

If $\Delta(G') \leq k'$ and $|E'| > k^2$ there is no VC of size k or smaller

Claim:

If $\Delta(G') \le k'$ and $|E'| > k^2$ there is no VC of size k or smaller <u>Proof:</u>

Let S be a vertex cover of G'.

Every $v \in S$ can cover at most k' edges. Furthermore $|S| \le k$.

Then S can cover at most k^2 edges.

Claim:

If $|E'| \le k'^2$, then $|V'| \le k'^2$

Claim:

If $|E'| \le k'^2$, then $|V'| \le k'^2$

Proof:

By Degree-0 and Degree-1, G' has minimum degree at least 2.

By Handshake-Lemma $\sum_{v \in V'} deg(v) = 2|E'| \le 2k'^2$

This implies $|V'| \le k'^2$

Claim:

If
$$|E'| \le k'^2$$
, then $|V'| \le k'^2$

Proof:

By Degree-0 and Degree-1, G' has minimum degree at least 2.

By Handshake-Lemma $\sum_{v \in V'} deg(v) = 2|E'| \le 2k'^2$ This implies $|V'| < k'^2$

 \rightarrow reduced instance of G is bounded by k

To be specific: $|V'| + |E'| \subseteq \mathcal{O}(k'^2)$

 \Rightarrow Lower bounds become parameterised in k

Outlook on Future Improvements

- Updating matching in bipartite graph instead of recomputing
- Finish implementing existing reduction rules
- Developing more sophisticated reduction rules
 - ightarrow to tighten the bound on the graph size
- Better branching rules
- Improve project modularity

Thanks for your attention

Questions?