

Agenda

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis

Local Stability Analysis

Knowledge:

- ► Derive dynamical state-space models of robots as control systems
- Analyze the stability of low dimensional linear and nonlinear systems
- ► Analyze the observability and controllability of linear control systems
- Use a variety of controllers for underactuated robots

Skills:

- Implement simulations of control systems in software
- Create concise technical reports presenting solutions to proposed problems

Competencies:

- ► Choose appropriate modern control techniques to solve control problems in robotics
- Apply modern control techniques to control simulated underactuated robots

Introduction Course Plan

- ► Lesson 1: Newton-Euler Modelling
- ► Lesson 2: Euler-Lagrange Modelling
- ► Lesson 3: Simulation of Robot Dynamics
- ► Lesson 4: Stability Analysis
- ► Lesson 5: Optimal Control
- ► Lesson 6: Energy Shaping Control
- ► Lesson 7: Feedback Linearisation
- ► Lesson 8: Sliding Mode Control
- ► Lesson 9: Simulation and Implementation of Control Systems
- ► Lesson 10: Optimization-Based Control
- ► Lesson 11:
- ► Lesson 12:

Inverted Pendulum

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis

Local Stability Analysis

Inverted Pendulum

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis
Local Stability Analysis

If q is a trajectory of a mechanical system that is affected by a generalized force ${\cal Q}$ then

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial \mathcal{L}}{\partial q} = Q$$

where ${\it Q}$ is an ${\it n}$ -dimensional vector of generalized forces.

The *potential energy* of the inverted pendulum is

$$E_{pot} = mgl(1 + \cos(\theta))$$
 [J]

where m is the mass of the pendulum [kg], l is the length from the pivot point to the center of mass [m], and g is the gravitational acceleration [m/s²].

The *potential energy* of the inverted pendulum is

$$E_{pot} = mgl(1 + \cos(\theta))$$
 [J]

where m is the mass of the pendulum [kg], l is the length from the pivot point to the center of mass [m], and g is the gravitational acceleration [m/s²].

The *kinetic energy* is

$$E_{\rm kin} = \frac{1}{2} m v^T v + \frac{1}{2} \omega^T I \omega$$

where v is the velocity of the center of mass [m/s], ω is the angular velocity of the center of mass [rad/s], and I is the moment of inertia of the pendulum with respect to the center of mass (given in Base frame) [kgm²].

The *potential energy* of the inverted pendulum is

$$E_{pot} = mgl(1 + \cos(\theta))$$
 [J]

where m is the mass of the pendulum [kg], l is the length from the pivot point to the center of mass [m], and g is the gravitational acceleration [m/s²].

The *kinetic energy* is

$$E_{\rm kin} = \frac{1}{2} m v^T v + \frac{1}{2} \omega^T I \omega$$

where v is the velocity of the center of mass [m/s], ω is the angular velocity of the center of mass [rad/s], and I is the moment of inertia of the pendulum with respect to the center of mass (given in Base frame) [kgm²]. We assume that the pendulum is a point mass then $(I=0, v=l\omega)$

$$E_{\rm kin} = \frac{1}{2}ml^2\omega^2$$

By application of Lagrange-D'Alembert's Principle

$$ml^2\dot{\omega} - mgl\sin\theta = -b\omega + \tau$$

which leads to the following equation of motion

$$\dot{\omega} = \frac{g}{l}\sin\theta - \frac{b}{ml^2}\omega + \frac{1}{ml^2}\tau$$

We rewrite the equation of motion (with generalized coordinate $q = \theta$)

$$\dot{\omega} = \frac{g}{l}\sin\theta - \frac{b}{ml^2}\omega + \frac{1}{ml^2}\tau$$

on state space form

$$\dot{x} = f(x, u)$$

by defining the state and input

$$x = \begin{bmatrix} \theta \\ \omega \end{bmatrix}, \qquad u = \tau$$

Modelling

Equation of Motion on State Space Form

We rewrite the equation of motion (with generalized coordinate $q = \theta$)

$$\dot{\omega} = \frac{g}{l}\sin\theta - \frac{b}{ml^2}\omega + \frac{1}{ml^2}\tau$$

on state space form

$$\dot{x} = f(x, u)$$

by defining the state and input

$$x = \begin{bmatrix} \theta \\ \omega \end{bmatrix}, \qquad u = \tau$$

This implies that

$$\dot{x} = \begin{bmatrix} \dot{\theta} \\ \dot{\omega} \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{g}{l} \sin \theta - \frac{b}{ml^2} \omega + \frac{1}{ml^2} \tau \end{bmatrix}}_{=f(x,u)}$$


```
1 % Simulation of Pendulum
_{2} t0 = 0: % [s] Start time for simulation
_3 tEnd = 50: % [s] End time for simulation
4 \text{ tu} = (t0:0.05:tEnd)';
u = \cos(tu); % Specification of input
x0 = [1; -1]; % Specification of initial state
7 % Simulate the system
[t,x] = ode45(@invertedPendulum.[t0 tEnd].x0.[].[tu u])
% Function used for simulation via ode45
  function dx = invertedPendulum(t,x,u)
      u = interp1(u(:,1),u(:,2),t); % determine u by linear interpolation
11
      theta = x(1); omega = x(2); tau = u;
12
      dx = [omega:
13
            g/I*sin(theta) - b/(I^2*m)*omega+1/(I^2*m)*tau]:
14
15 end
```


Inverted Pendulum

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis Local Stability Analysis

The system of 1st order differential equations

$$\dot{x} = f(x, u)$$

is approximated at $x=\bar{x}$ using first-order Taylor approximation by

$$\dot{x} \approx f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}|_{x=\bar{x}, u=\bar{u}} \hat{x} + \frac{\partial f}{\partial u}|_{x=\bar{x}, u=\bar{u}} \hat{u}$$

where $\hat{x}=x-\bar{x}$ and all partial derivatives are evaluated at the operating point $p=(\bar{x},\bar{u}).$

Linearization

First Order Taylor Approximation

The system of 1st order differential equations

$$\dot{x} = f(x, u)$$

is approximated at $x = \bar{x}$ using first-order Taylor approximation by

$$\dot{x} \approx f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}|_{x=\bar{x}, u=\bar{u}} \hat{x} + \frac{\partial f}{\partial u}|_{x=\bar{x}, u=\bar{u}} \hat{u}$$

where $\hat{x} = x - \bar{x}$ and all partial derivatives are evaluated at the operating point $p = (\bar{x}, \bar{u})$.

We linearize systems at equilibrium points, i.e., where $\dot{x}=0$. This implies that

$$\dot{\hat{x}} \approx \underbrace{\frac{\partial f}{\partial x}|_{x=\bar{x},u=\bar{u}}}_{=A} \hat{x} + \underbrace{\frac{\partial f}{\partial u}|_{x=\bar{x},u=\bar{u}}}_{B} \hat{u}$$

Linearization Partial Derivatives

The dynamics of the inverted pendulum is given by

$$\begin{bmatrix} \dot{\theta} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} \omega \\ \frac{g}{l} \sin \theta - \frac{b}{ml^2} \omega + \frac{1}{ml^2} \tau \end{bmatrix}$$

This implies that

$$\frac{\partial f}{\partial(\theta,\omega)} = A = \begin{bmatrix} \frac{\partial f_1}{\partial \theta} & \frac{\partial f_1}{\partial \omega} \\ \frac{\partial f_2}{\partial \theta} & \frac{\partial f_2}{\partial \omega} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l}\cos\theta & -\frac{b}{ml^2} \end{bmatrix}$$

and

$$\frac{\partial f}{\partial \tau} = B = \begin{bmatrix} \frac{\partial f_1}{\partial \tau} \\ \frac{\partial f_2}{\partial \tau} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{ml^2} \end{bmatrix}$$

Linearization Partial Derivatives

The dynamics of the inverted pendulum is given by

$$\begin{bmatrix} \dot{\theta} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} \omega \\ \frac{g}{l} \sin \theta - \frac{b}{ml^2} \omega + \frac{1}{ml^2} \tau \end{bmatrix}$$

This implies that

$$\frac{\partial f}{\partial (\theta, \omega)} = A = \begin{bmatrix} \frac{\partial f_1}{\partial \theta} & \frac{\partial f_1}{\partial \omega} \\ \frac{\partial f_2}{\partial \theta} & \frac{\partial f_2}{\partial \omega} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} \cos \theta & -\frac{b}{ml^2} \end{bmatrix}$$

and

$$\frac{\partial f}{\partial \tau} = B = \begin{bmatrix} \frac{\partial f_1}{\partial T} \\ \frac{\partial f_2}{\partial \tau} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{ml^2} \end{bmatrix}$$

At an equilibrium point $\dot{x} = f(\bar{x}, \bar{u}) = 0$, which means that

$$\bar{\omega} = 0, \qquad \bar{\tau} = mlg\sin(\bar{\theta})$$

Linearization

State Space Model

The linearized model of the inverted pendulum at equilibrium point $(\bar{x}, \bar{u}) = (\bar{\theta}, \bar{\omega}, \bar{\tau}) = (\bar{\theta}, 0, mlq \sin(\bar{\theta})$ is given by

$$\dot{\hat{x}} = \begin{bmatrix} \dot{\hat{\theta}} \\ \dot{\hat{\omega}} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} \cos \bar{\theta} & -\frac{b}{ml^2} \end{bmatrix} \underbrace{\begin{bmatrix} \hat{\theta} \\ \hat{\omega} \end{bmatrix}}_{\hat{x}} + \begin{bmatrix} 0 \\ \frac{1}{ml^2} \end{bmatrix} \hat{u}$$

where $\hat{x} = (x - \bar{x})$ and $\hat{u} = (u - \bar{u})$.

Linearization

MATLAB Code for Simulation

```
17
```

```
1 %% Simulation of Linearized Pendulum

2 pendul_lin = ss(A,B,C,D); % Definition of system model

3 t0 = 0; % [s] Start time for simulation

4 tEnd = 50; % [s] End time for simulation

5 t = (t0:0.05:tEnd)';

6 u = cos(t); % Specification of input

7 x0 = [1;-1]; % Specification of initial state

8 % Simulate the system

9 [y,t,x] = lsim(pendul lin,u,t,x0);
```

Linearization Simulation of Linear System

Inverted Pendulum

Stability Analysis

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis
Local Stability Analysis

A linear continuous-time system described by the state equation

$$\dot{x} = Ax$$

is asymptotically stable if and only if all eigenvalues have negative real part.

The eigenvalues of the system matrix (matrix A) of the linearized pendulum system are the values of λ that solves the equation (eigenvalues of A)

$$\det(\lambda I - A) = 0$$

Stability Analysis Stability of Linearized Pendulum

The eigenvalues of the system matrix (matrix A) of the linearized pendulum system are the values of λ that solves the equation (eigenvalues of A)

$$\det(\lambda I - A) = 0$$

The eigenvalues are given by

$$\det\left(\begin{bmatrix} \lambda & -1 \\ -\frac{g}{l}\cos\bar{\theta} & \lambda + \frac{b}{ml^2} \end{bmatrix}\right) = \lambda\left(\lambda + \frac{b}{ml^2}\right) - \frac{g}{l}\cos\bar{\theta} = 0$$

The eigenvalues are therefore

$$\lambda = \frac{-\frac{b}{ml^2} \pm \sqrt{(\frac{b}{ml^2})^2 + 4\frac{g}{l}\cos\bar{\theta}}}{2}$$

The eigenvalues of the system matrix (matrix A) of the linearized pendulum system are the values of λ that solves the equation (eigenvalues of A)

$$\det(\lambda I - A) = 0$$

The eigenvalues are given by

$$\det\left(\begin{bmatrix} \lambda & -1 \\ -\frac{g}{l}\cos\bar{\theta} & \lambda + \frac{b}{ml^2} \end{bmatrix}\right) = \lambda\left(\lambda + \frac{b}{ml^2}\right) - \frac{g}{l}\cos\bar{\theta} = 0$$

The eigenvalues are therefore

$$\lambda = \frac{-\frac{b}{ml^2} \pm \sqrt{(\frac{b}{ml^2})^2 + 4\frac{g}{l}\cos\bar{\theta}}}{2}$$

In conclusion, one pole will be in the left half-plane, when $\cos(\bar{\theta}) > 0$; when $\cos(\bar{\theta}) < 0$ then the linearized system is stable.

Stability Analysis

Relation between Stability of Linearized Pendulum and Nonlinear Pendulum

By Hartman-Grobman Theorem, if the poles of a linearized system are not on the imaginary axis, then the nonlinear and linearized models behave similarly in a small neighborhood about the equilibrium point.

Stability Analysis

Relation between Stability of Linearized Pendulum and Nonlinear Pendulum

By Hartman-Grobman Theorem, if the poles of a linearized system are not on the imaginary axis, then the nonlinear and linearized models behave similarly in a small neighborhood about the equilibrium point.

For us: Design a stabilizing controller for the linearized system model, then the controller also stabilizes the nonlinear system around the equilibrium point.

Inverted Pendulum

Controllability Analysis

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis
Local Stability Analysis

A continuous time system

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = 0$$

is said to be *controllable* iff for any $\xi \in \mathbb{R}^n$ there exists u(t) such that for some T>0, $x(T)=\xi$.

A system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, is controllable if and only if

$$\mathsf{rank} \begin{bmatrix} B & AB & \dots & A^{n-1}B \end{bmatrix} = n$$

Controllability State Feedback

For a state space model

$$\dot{x} = Ax + Bu$$

a state feedback is a feedback of the form

$$u = Fx$$

Combining these two equations, we obtain:

$$\dot{x} = Ax + BFx = (A + BF)x$$

Thus, the result of a state feedback is a system with a modified system matrix, and thus with modified poles.

Controllability State Feedback

For a state space model

$$\dot{x} = Ax + Bu$$

a state feedback is a feedback of the form

$$u = Fx$$

Combining these two equations, we obtain:

$$\dot{x} = Ax + BFx = (A + BF)x$$

Thus, the result of a state feedback is a system with a modified system matrix, and thus with modified poles.

The poles of $A_{cl} = A + BF$ can be placed anywhere in the complex plane if the system is controllable.

The controllability matrix of the linearized pendulum is

$$\mathcal{C} = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{ml^2} \\ \frac{1}{ml^2} & -\frac{b}{m^2l^4} \end{bmatrix}$$

It is seen that the system is controllable, as $\ensuremath{\mathcal{C}}$ has full rank.

Inverted Pendulum Stabilization using State Feedback

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis Local Stability Analysis

Stabilization using State Feedback State Feedback of Linearized System

To stabilize the pendulum in upright, a feedback controller needs to be designed; it is possible since the linearized system is controllable. Poles must be placed in the open left-half plane, and the system will respond faster when the poles are more negative.

Stabilization using State Feedback

State Feedback of Linearized System

To stabilize the pendulum in upright, a feedback controller needs to be designed; it is possible since the linearized system is controllable. Poles must be placed in the open left-half plane, and the system will respond faster when the poles are more negative.

A controller for the pendulum with poles s=-1 and s=-2 is

$$u = Fx$$

where

$$F = \begin{bmatrix} -11.82 & -2 \end{bmatrix}$$

Stabilization using State Feedback MATLAB Code for Pole Placement

- 1 %% Pole Placement for Linearized Pendulum
- ${\tt pendul_lin = ss(A,B,C,D); \% Definition of system model}\\$
- P = [-1 -2];
- ${\tt 4} \quad F = -place \, (\, pendul_lin \, . \, A, \, pendul_lin \, . \, B, P) \, \, ;$

Stabilization using State Feedback Phase Plot (Initial Condition Close to (0,0))

Stabilization using State Feedback Phase Plot (Initial Condition Far from (0,0))

Acrobot

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis

Local Stability Analysis

Acrobot Modelling

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis

If q is a trajectory of a mechanical system that is affected by a generalized force ${\cal Q}$ then

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} - \frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} = \boldsymbol{Q}$$

where ${\it Q}$ is an ${\it n}$ -dimensional vector of generalized forces.

The *potential energy* of the inverted pendulum is

$$E_{pot} = g(m_1(-l_{c1}\cos\theta_1) + m_2(-l_1\cos\theta_1 - l_{c2}\cos(\theta_1 + \theta_2)))$$
 [J

where m is the mass of the pendulum [kg], l_{ci} is the length from the ith joint to the ith center of mass [m], and g is the gravitational acceleration [m/s²].

The *potential energy* of the inverted pendulum is

$$E_{pot} = g(m_1(-l_{c1}\cos\theta_1) + m_2(-l_1\cos\theta_1 - l_{c2}\cos(\theta_1 + \theta_2)))$$
 [J]

where m is the mass of the pendulum [kg], l_{ci} is the length from the ith joint to the ith center of mass [m], and g is the gravitational acceleration [m/s²].

The *kinetic energy* is

$$E_{\rm kin} = \frac{1}{2} \begin{bmatrix} \dot{\theta}_1 & \dot{\theta}_2 \end{bmatrix} \begin{bmatrix} I_1 + I_2 + m_2 l_1^2 + 2 m_2 l_1 l_{c2} \cos \theta_2 & I_2 + m_2 l_1 l_{c2} \cos \theta_2 \\ I_2 + m_2 l_1 l_{c2} \cos \theta_2 & I_2 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

where v is the velocity of the center of mass [m/s], ω is the angular velocity of the center of mass [rad/s], and I is the moment of inertia of the pendulum with respect to the center of mass (given in Base frame) [kgm²].

By application of Lagrange–D'Alembert's Principle ($q=(\theta_1,\theta_2)$)

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = B\tau$$

where

$$M(q) = \begin{bmatrix} I_1 + I_2 + m_2 l_1^2 + 2m_2 l_1 l_{c2} \cos \theta_2 & I_2 + m_2 l_1 l_{c2} \cos \theta_2 \\ I_2 + m_2 l_1 l_{c2} \cos \theta_2 & I_2 \end{bmatrix}$$

$$C(q, \dot{q}) = \begin{bmatrix} -2m_2 l_1 l_{c2} \sin \theta_2 \dot{q}_2 & -m_2 l_1 l_{c2} \sin \theta_2 \dot{q}_2 \\ m_2 l_1 l_{c2} \sin \theta_2 \dot{q}_1 & 0 \end{bmatrix}$$

$$g(q) = \begin{bmatrix} g(m_1 (l_{c1} \sin \theta_1) + m_2 (l_1 \sin \theta_1 + l_{c2} \sin(\theta_1 + \theta_2))) \\ gm_2 l_{c2} \sin(\theta_1 + \theta_2) \end{bmatrix}$$

$$B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Modelling

Equation of Motion on State Space Form

We rewrite the equation of motion (with generalized coordinate $q = \theta$)

$$\ddot{q} = \begin{bmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \end{bmatrix} = M^{-1}(q) \left(B\tau - C(q, \dot{q})\dot{q} - g(q) \right)$$

on state space form

$$\dot{x} = f(x, u)$$

by defining the state and input

$$x = \begin{bmatrix} \theta_1 & \theta_2 & \omega_1 & \omega_2 \end{bmatrix}^T, \qquad u = \tau$$

We rewrite the equation of motion (with generalized coordinate $q = \theta$)

$$\ddot{q} = \begin{bmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \end{bmatrix} = M^{-1}(q) \left(B\tau - C(q, \dot{q})\dot{q} - g(q) \right)$$

on state space form

$$\dot{x} = f(x, u)$$

by defining the state and input

$$x = \begin{bmatrix} \theta_1 & \theta_2 & \omega_1 & \omega_2 \end{bmatrix}^T, \qquad u = \tau$$

This implies that

$$\dot{x} = \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dot{\omega}_1 \\ \dot{\omega}_2 \end{bmatrix} = \underbrace{\begin{bmatrix} \omega_1 \\ \omega_2 \\ M^{-1}(q) \left(B\tau - C(q, \dot{q})\dot{q} - g(q) \right) \end{bmatrix}}_{=f(x,u)}$$

Acrobot Linearization

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis
Local Stability Analysis

Linearization

First Order Taylor Approximation

The system of 1st order differential equations

$$\dot{x} = f(x, u)$$

is approximated at $x=\bar{x}$ using first-order Taylor approximation by

$$\dot{x} \approx f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}|_{x=\bar{x}, u=\bar{u}} \hat{x} + \frac{\partial f}{\partial u}|_{x=\bar{x}, u=\bar{u}} \hat{u}$$

where $\hat{x}=x-\bar{x}$ and all partial derivatives are evaluated at the operating point $p=(\bar{x},\bar{u}).$

Linearization First Order Taylor Approximation

The system of 1st order differential equations

$$\dot{x} = f(x, u)$$

is approximated at $x=\bar{x}$ using first-order Taylor approximation by

$$\dot{x} \approx f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}|_{x=\bar{x}, u=\bar{u}} \hat{x} + \frac{\partial f}{\partial u}|_{x=\bar{x}, u=\bar{u}} \hat{u}$$

where $\hat{x} = x - \bar{x}$ and all partial derivatives are evaluated at the operating point $p = (\bar{x}, \bar{u})$.

We linearize systems at equilibrium points, i.e., where $\dot{x} = 0$. This implies that

$$\dot{\hat{x}} \approx \underbrace{\frac{\partial f}{\partial x}|_{x=\bar{x},u=\bar{u}}}_{=A} \hat{x} + \underbrace{\frac{\partial f}{\partial u}|_{x=\bar{x},u=\bar{u}}}_{B} \hat{u}$$

Linearization Operating Point

The Acrobot is linearized at an equilibrium point $\dot{x}=f(\bar{x},\bar{u})=0$; in particular, at its upright position which means that

$$\bar{\theta}_1 = \pi, \bar{\theta}_2 = 0, \bar{\omega}_1 = \bar{\omega}_2 = 0, \qquad \bar{\tau} = 0$$

Linearization Operating Point

The Acrobot is linearized at an equilibrium point $\dot{x}=f(\bar{x},\bar{u})=0$; in particular, at its upright position which means that

$$\bar{\theta}_1 = \pi, \bar{\theta}_2 = 0, \bar{\omega}_1 = \bar{\omega}_2 = 0, \qquad \bar{\tau} = 0$$

The linearized system has poles: s = -4.6882, s = -2.2014, s = 2.2628, s = 1.7697.

Linearization MATLAB Code for Linearization

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Fe

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis
Local Stability Analysis

Controllability
Controllability and State Feedback

The controllability of the Acrobot is determined by computing the controllability matrix (n = 4)

$$\mathcal{C} = \begin{bmatrix} B & AB & A^2B & A^3B \end{bmatrix}$$

Controllability

Controllability and State Feedback

The controllability of the Acrobot is determined by computing the controllability matrix (n = 4)

$$\mathcal{C} = \begin{bmatrix} B & AB & A^2B & A^3B \end{bmatrix}$$

The linearized system is controllable; thus, we can design a state feedback controller by pole placement.

Acrobot

Stabilization using State Feedback

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis
Local Stability Analysis

Stabilization using State Feedback State Feedback of Linearized System

To stabilize the acrobot in upright, a feedback controller needs to be designed; it is possible since the linearized system is controllable. Poles must be placed in the open left-half plane, and the system will respond faster when the poles are more negative.

Stabilization using State Feedback

State Feedback of Linearized System

To stabilize the acrobot in upright, a feedback controller needs to be designed; it is possible since the linearized system is controllable. Poles must be placed in the open left-half plane, and the system will respond faster when the poles are more negative.

A controller for the pendulum with poles $s=-1,\, s=-2,\, s=-3,\, s=-4$ is

$$u = Fx$$

where

$$F = \begin{bmatrix} 220.34 & 53.54 & 92.45 & 31.54 \end{bmatrix}$$

Global Stability Analysis

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis

Local Stability Analysis

Global Stability Analysis Definition: Stability

The equilibrium x = 0 of a dynamical system

$$\dot{x} = f(x)$$

is

ightharpoonup stable if, for each $\epsilon > 0$, there is δ such that

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge 0.$$

Global Stability Analysis Definition: Stability

The equilibrium x = 0 of a dynamical system

$$\dot{x} = f(x)$$

is

• *stable* if, for each $\epsilon > 0$, there is δ such that

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge 0.$$

► *unstable* if it is not stable.

Global Stability Analysis Definition: Stability

The equilibrium x = 0 of a dynamical system

$$\dot{x} = f(x)$$

is

ightharpoonup stable if, for each $\epsilon > 0$, there is δ such that

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge 0.$$

- unstable if it is not stable.
- asymptotically stable if it is stable and δ can be chosen such that

$$||x(0)|| < \delta \Rightarrow \lim_{t \to \infty} x(t) = 0.$$

Global Stability Analysis Lyapunov Stability

Let x=0 be an equilibrium point of $\dot{x}=f(x)$, and let $V:\mathbb{R}^n\to\mathbb{R}$ be a differentiable. The equilibrium point x=0 is

► *stable* if *V* satisfies

$$V(0) = 0 (1a)$$

$$V(x) > 0 \quad \forall x \in \mathbb{R}^n \backslash \{0\}$$
 (1b)

$$\frac{\partial V}{\partial x}(x)f(x) \le 0 \quad \forall x \in \mathbb{R}^n.$$
 (1c)

Global Stability Analysis Lyapunov Stability

Let x=0 be an equilibrium point of $\dot{x}=f(x)$, and let $V:\mathbb{R}^n\to\mathbb{R}$ be a differentiable. The equilibrium point x=0 is

► *stable* if *V* satisfies

$$V(0) = 0 (1a)$$

$$V(x) > 0 \quad \forall x \in \mathbb{R}^n \backslash \{0\}$$
 (1b)

$$\frac{\partial V}{\partial x}(x)f(x) \le 0 \quad \forall x \in \mathbb{R}^n.$$
 (1c)

► asymptotically stable if V satisfies (1) and

$$\frac{\partial V}{\partial x}(x)f(x) < 0 \qquad \forall x \in \mathbb{R}^n \setminus \{0\}$$

Global Stability Analysis

Let x=0 be an equilibrium point of $\dot{x}=f(x)$, and let $V:\mathbb{R}^n\to\mathbb{R}$ be a differentiable. The equilibrium point x=0 is

► *stable* if *V* satisfies

$$V(0) = 0 (1a)$$

$$V(x) > 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}$$
 (1b)

$$\frac{\partial V}{\partial x}(x)f(x) \le 0 \quad \forall x \in \mathbb{R}^n.$$
 (1c)

► asymptotically stable if V satisfies (1) and

$$\frac{\partial V}{\partial x}(x)f(x) < 0 \qquad \forall x \in \mathbb{R}^n \setminus \{0\}$$

If the function V satisfies the above conditions then it is called a *Lyapunov function*.

Global Stability Analysis Lyapunov Stability - Example

Consider the one-dimensional system

$$\dot{x} = -x^3$$

Determine if the system is globally asymptotically stable.

Global Stability Analysis Lyapunov Stability - Example

50

Consider the one-dimensional system

$$\dot{x} = -x^3$$

Determine if the system is globally asymptotically stable.

Let $V(x) = \frac{1}{2}x^2$ be a candidate Lyapunov function.

Global Stability Analysis Lyapunov Stability - Example

Consider the one-dimensional system

$$\dot{x} = -x^3$$

Determine if the system is globally asymptotically stable.

Let $V(x) = \frac{1}{2}x^2$ be a candidate Lyapunov function.

It is seen that V(0) = 0 and V(x) is positive for $x \neq 0$.

Global Stability Analysis Lyapunov Stability - Example

Consider the one-dimensional system

$$\dot{x} = -x^3$$

Determine if the system is globally asymptotically stable.

Let $V(x) = \frac{1}{2}x^2$ be a candidate Lyapunov function.

It is seen that V(0) = 0 and V(x) is positive for $x \neq 0$. The final condition is negativity of the Lie derivative, which is

$$\frac{\partial V}{\partial x}(x)f(x) = x \cdot (-x^3) = -x^4 < 0 \qquad \forall x \in \mathbb{R}^n \setminus \{0\}$$

Global Stability Analysis

Consider the one-dimensional system

$$\dot{x} = -x^3$$

Determine if the system is globally asymptotically stable.

Let $V(x) = \frac{1}{2}x^2$ be a candidate Lyapunov function.

It is seen that V(0) = 0 and V(x) is positive for $x \neq 0$. The final condition is negativity of the Lie derivative, which is

$$\frac{\partial V}{\partial x}(x)f(x) = x \cdot (-x^3) = -x^4 < 0 \qquad \forall x \in \mathbb{R}^n \setminus \{0\}$$

This implies that V is a Lyapunov function and the system is globally asymptotically stable.

Local Stability Analysis

Introduction

Inverted Pendulum

Modelling

Linearization

Stability Analysis

Controllability Analysis

Stabilization using State Feedback

Acrobot

Modelling

Linearization

Controllability Analysis

Stabilization using State Feedback

Stability Analysis

Global Stability Analysis

Local Stability Analysis

Local Stability Analysis Local Lyapunov Stability

Let $D \subset \mathbb{R}^n$, let $x = 0 \in D$ be an equilibrium point of $\dot{x} = f(x)$, and let $V : D \to \mathbb{R}$ be a differentiable. The equilibrium point x = 0 is *locally*

► stable if V satisfies

$$V(0) = 0 (2a)$$

$$V(x) > 0 \quad \forall x \in D \setminus \{0\}$$
 (2b)

$$\frac{\partial V}{\partial x}(x)f(x) \le 0 \quad \forall x \in D.$$
 (2c)

Local Stability Analysis Local Lyapunov Stability

Let $D \subset \mathbb{R}^n$, let $x = 0 \in D$ be an equilibrium point of $\dot{x} = f(x)$, and let $V : D \to \mathbb{R}$ be a differentiable. The equilibrium point x = 0 is *locally*

► *stable* if *V* satisfies

$$V(0) = 0 (2a)$$

$$V(x) > 0 \quad \forall x \in D \setminus \{0\}$$
 (2b)

$$\frac{\partial V}{\partial x}(x)f(x) \le 0 \quad \forall x \in D.$$
 (2c)

► asymptotically stable if V satisfies (2) and

$$\frac{\partial V}{\partial x}(x)f(x) < 0 \quad \forall x \in D \setminus \{0\}$$

Local Stability Analysis Local Lyapunov Stability

Let $D \subset \mathbb{R}^n$, let $x = 0 \in D$ be an equilibrium point of $\dot{x} = f(x)$, and let $V : D \to \mathbb{R}$ be a differentiable. The equilibrium point x = 0 is *locally*

► *stable* if *V* satisfies

$$V(0) = 0 (2a)$$

$$V(x) > 0 \quad \forall x \in D \setminus \{0\}$$
 (2b)

$$\frac{\partial V}{\partial x}(x)f(x) \le 0 \quad \forall x \in D.$$
 (2c)

▶ asymptotically stable if V satisfies (2) and

$$\frac{\partial V}{\partial x}(x)f(x) < 0 \quad \forall x \in D \setminus \{0\}$$

Local Stability Analysis Invariant Set

A set $\Omega \subset \mathbb{R}^n$ is said to be an *invariant set* with respect to

$$\dot{x} = f(x)$$

if

$$x(0) \in \Omega \Rightarrow x(t) \in \Omega, \quad \forall t \in \mathbb{R}.$$

Local Stability Analysis

A set $\Omega \subset \mathbb{R}^n$ is said to be an *invariant set* with respect to

$$\dot{x} = f(x)$$

if

$$x(0) \in \Omega \Rightarrow x(t) \in \Omega, \quad \forall t \in \mathbb{R}.$$

A set $\Omega \subset \mathbb{R}^n$ is said to be an *positively invariant set* with respect to

$$\dot{x} = f(x)$$

if

$$x(0) \in \Omega \Rightarrow x(t) \in \Omega, \quad \forall t \ge 0.$$

Local Stability Analysis Invariant Set

