WALTER RUDIN'S STONE-WEIERSTRAUSS THEORY EXTENDED TO MULTICOMPLEX-VALUED FUNCTION SPACES

DANA D. CLAHANE AND K. OSKAR NEGRON

ABSTRACT. In this project we give an introduction to Multicomplex spaces. Furthermore, we extend Stone-Weierstrauss Theorem to Multicomplex spaces.

1. Terminology

Definition 1.1. Let $n \in \mathbb{N}$, $\mathbb{C}_0 \equiv \mathbb{R}$, $\mathbb{C}_1 \equiv \mathbb{C}$ and for $n \geq 2$,

$$\mathbb{C}_n \equiv \{z_n : z_n = z_{n-1,1} + j_n z_{n-1,2} : z_{n-1,1}, z_{n-1,2} \in \mathbb{C}_{n-1}\}\$$

where

$$j_n^2 = 1$$

for all $n \geq 2$ and

$$j_n \neq j_{n-1}, j_{n-2}, j_{n-2}, ..., j_2, j_1$$

where

$$j_1 = i$$

the i denotes the usual imaginary unit.

Lemma 1.2. Let $z \in \mathbb{C}_n$. Let j_n be the hyperbolic imaginary unit introduced first in \mathbb{C}_n , and let $i_n = ij_n$. Then there are unique z_1, z_2, w_1 , and w_2 in \mathbb{C}_{n-1} such that $z = z_1 + j_n z_2 = w_1 + w_2 i_n$.

Definition 1.3. The spaces \mathbb{C}_n for $n \in \mathbb{N}$ are linear spaces. In \mathbb{C}_{n-1} , the norm in \mathbb{C}_{n-1} and the operations of addition and multiplication have been defined as:

Norm:

$$||z_n||_n^2 = ||z_{n-1,1}||_{n-1}^2 + ||z_{n-1,2}||_{n-1}^2$$

Addition:

$$z_n^1 + z_n^2 = (z_{n-1,1}^1 + j_n z_{n-1,2}^1) + (z_{n-1,1}^2 + j_n z_{n-1,2}^2)$$

= $(z_{n-1,1}^1 + z_{n-1,1}^2) + j_n (z_{n-1,2}^1 + z_{n-1,2}^2)$

Key words and phrases. multicomplex, Stone-Weierstrauss, algebras.

Multiplication:

$$\begin{split} z_n^1 * z_n^2 &= (z_{n-1,1}^1 + j_n z_{n-1,2}^1) * (z_{n-1,1}^2 + j_n z_{n-1,2}^2) \\ &= z_{n-1,1}^1 * z_{n-1,1}^2 + z_{n-1,1}^1 * j_n z_{n-1,2}^2 + j_n z_{n-1,2}^1 * z_{n-1,1}^2 + j_n^2 z_{n-1,2}^1 * z_{n-1,2}^2 * z_{n-1,2}^2 \\ &= z_{n-1,1}^1 * z_{n-1,1}^2 + z_{n-1,1}^1 * j_n z_{n-1,2}^2 + j_n z_{n-1,2}^1 * z_{n-1,1}^2 * z_{n-1,1}^1 + z_{n-1,2}^1 * z_{n-1,2}^2 \\ &= (z_{n-1,1}^1 * z_{n-1,1}^2 + z_{n-1,2}^1 * z_{n-1,2}^2) + j_n (z_{n-1,1}^1 * z_{n-1,2}^2 + z_{n-1,2}^1 * z_{n-1,1}^2) \end{split}$$

2. Principal Results

Theorem 2.1. If $f:[a,b]\to\mathbb{C}_k$ is continuous, then there is a sequence of \mathbb{C}_k -valued polynomial functions, $(P_{m,k})_{m\in\mathbb{N}}$, on [a,b] such that $P_{m,k}$ converges uniformly to f as $m\to\infty$, i.e. $\lim_{m\to\infty}P_{m,k}=f$. We will denote uniform convergence by the symbol \to^{uc} . In the case that k=0, there is a real polynomials functions $P_{m,0}:[a,b]\to\mathbb{C}_0$ such that $P_{n,0}\to^{uc}f$ as $m\to\infty$.

Proof. The case when k=0 is well known and for k=1 it can be found in Walter Rudin's Principles of Mathematical Analysis 3rd Edition on page 159. Consider the case when k=2. We will do induction.

If $f:[a,b]\to\mathbb{C}_2$ is continuous, then there exist functions $f_1,f_2:[a,b]\to\mathbb{C}$ such that f_1,f_2 are continuous and $f=f_1+jf_2$. By the result of k=1 on Pg. 159 of W. Rudin, there is a sequence of polynomial functions (complex), Q_m and R_m , for $m\in\mathbb{N}$ on [a,b] where $Q_m\to^{uc}f_1$ and $R_m\to^{uc}f_2$ as $m\to\infty$.

Let $\varepsilon > 0$ be given, then there exist $N_1 \in \mathbb{N}$ such that for $m \geq N_1$ and for all $t \in [a, b]$, $|Q_m(t) - f_1(t)| < \frac{\varepsilon}{2}$. Similarly, there is $N_2 \in \mathbb{N}$ such that for $m \geq N_2$ and for all $t \in [a, b]$, $|R_m(t) - f_2(t)| < \frac{\varepsilon}{2}$.

Let $N = \max\{\tilde{N}_1, N_2\}$ for all $m \in \mathbb{N}$ such that for $m \geq N$ and for all $f \in [a, b]$,

$$\begin{aligned} |(Q_m(t) + jR_m(t)) - f(t)| &= |Q_m(t) + jR_m(t) - [f_1(t) + jf_2(t)]| \\ &= |Q_m(t) + jR_m(t) - f_1(t) - jf_2(t)| \\ &= |Q_m(t) - f_1(t) + jR_m(t) - jf_2(t)| \\ &= |(Q_m - f_1)(t) + j(R_m - f_2)(t)| \\ &\leq |(Q_m - f_1)(t)| + |j(R_m - f_2)(t)| \\ &= \sqrt{[(Q_m - f_1)(t)]^2} + \sqrt{[(R_m - f_2)(t)]^2} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{aligned}$$

Hence, $Q_m + jR_m$ which is a \mathbb{C}_2 -valued polynomial function on [a, b], converges uniformly to f as $n \to \infty$. Therefore, theorem 1.2 holds in the case k = 2. Now assume it holds for $k = \xi$ for $\xi \geq 2$

Let $f:[a,b]\to\mathbb{C}_{\xi+1}$ be continuous and define $f=f_1+j_{\xi+1}f_2$ where $f_1,f_2:[a,b]\to\mathbb{C}_{\xi}$. By the induction hypothesis there exist two sequences, $(Q_m)_{m\in\mathbb{N}}$ and $(R_m)_{m\in\mathbb{N}}$ of \mathbb{C}_k -valued polynomial functions on [a,b], such that $Q_m\to^{uc}f_1$ and $R_m\to^{uc}f_2$ as $m\to\infty$. For all $m\geq$ $M := \{M_1, M_2\}$, and define $P_m := Q_m + j_{\xi+1}R_m$. Let $\varepsilon > 0$ be given, then there is a $M_1, M_2 \in \mathbb{N}$ such that for all $m \geq M$ and $t \in [a, b]$,

$$|Q_m(t) - f_1(t)| < \frac{\varepsilon}{2},$$

and

$$|R_m(t) - f_2(t)| < \frac{\varepsilon}{2}.$$

Hence, for all $m \geq M$ and for all $t \in [a, b]$, we have that

$$|P_{m}(t) - f(t)| = |Q_{m}(t) + j_{\xi+1}R_{m}(t) - [f_{1}(t) + j_{\xi+1}f_{2}(t)]|$$

$$= |Q_{m}(t) + j_{\xi+1}R_{m}(t) - f_{1}(t) - j_{\xi+1}f_{2}(t)|$$

$$= |Q_{m}(t) - f_{1}(t) + j_{\xi+1}R_{m}(t) - j_{\xi+1}f_{2}(t)|$$

$$= |(Q_{m} - f_{1})(t) + j_{\xi+1}(R_{m} - f_{2})(t)]|$$

$$\leq |(Q_{m} - f_{1})(t)| + |j_{\xi+1}(R_{m} - f_{2})(t)]|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Therefore, theorem 2.1 is true for $k = \xi + 1$ thus it holds by induction for all k.

Definition 2.2. Let \mathcal{P} be any algebra and let $\|.\|$ be a norm on \mathcal{P} , a normed space. A family Ω of \mathcal{P} -valued function on a set E is called an $(\mathcal{P}, E) - algebra$ if the following are true for all functions $\phi, \sigma \in \Omega$ and scalars $\alpha \in \mathcal{P}$

- $\phi + \sigma \in \Omega$
- $\phi \sigma \in \Omega$
- $\alpha \phi \in \Omega$

We say (\mathcal{P}, E) – algebra is uniformly closed when a sequence $(\phi_n)_{n \in \mathbb{N}}$ in Ω with $\phi_n \to^{uc} \phi$: $E \to \mathcal{P}$, where $\phi \in \Omega$. Define $\overline{\Omega}^u := \{\phi : E \to \mathcal{P} \text{ such that there is a sequence } (\phi)_{n \in \mathbb{N}} \in \Omega$ so that $\phi_n \to^{uc} \phi\}$ to be the uniform closure of Ω .

Theorem 2.3. Let Ω be a (\mathcal{P}, E) – algebra, where \mathcal{P} is a normed algebra. Suppose that Ω is uniformed bounded, there is a $\Gamma > 0$ such that for all $x \in \mathcal{P}$ and $\phi \in \Omega$

$$\|\phi(x)\| \leq \Gamma.$$

Then $\overline{\Omega}^u$ is also $(\mathcal{P}, E) - algebra$.

Proof. Let $\phi, \sigma \in \overline{\Omega}^u$. By definition of $\overline{\Omega}^u$, there is two sequences, (ϕ_k) and (σ_k) for $k \in \mathbb{N}$, in $\overline{\Omega}^u$ such that $\phi_k \to^{uc} \phi$ and $\sigma_k \to^{uc} \sigma$ as $k \to \infty$. It can easily be shown that it follows the properties from definition 2.2. Therefore $\overline{\Omega}^u$ is also an algebra, $(\mathcal{P}, \psi) - algebra$.

Corollary 2.4. (Multicomplex Theorem 2.3) Let Ω be a (\mathbb{C}_n, E) – algebra, where \mathcal{P} is a normed algebra. Suppose that Ω is uniformed bounded. Then $\overline{\Omega}^u$ is also (\mathbb{C}_n, ψ) – algebra.

Proof. By Theorem 2.3, it is the simple case when \mathcal{P} equals \mathbb{C}_n . Thus by Lemmas 3.1 to 3.6, it holds for $\mathcal{P} = \mathbb{C}_n$.

3. Proof of Theorem 2.3

The following are result that we will need to prove Theorem 2.3:

Lemma 3.1. $\phi_k + \sigma_k \rightarrow^{uc} \phi + \sigma$.

Proof. If $\overline{\Omega}^u$ is a (\mathcal{P}, E) – algebra, then $\phi_k + \sigma_k \in \overline{\Omega}^u$ for all k. Let $\varepsilon > 0$ be given. There exist a $K_1 \in \mathbb{N}$ such that for all $k \geq K_1$, and for all $x \in \mathcal{P}$, then

$$\|\phi_k(x) - \phi(x)\| < \frac{\varepsilon}{2}.$$

Similarly, there exist $K_2 \in \mathbb{N}$ such that for all $k \geq K_2$, and for all $x \in \mathcal{P}$, we have

$$\|\sigma_k(x) - \sigma(x)\| < \frac{\varepsilon}{2}.$$

Let $K = \max\{K_1, K_2\}$. Hence, for all $k \in \mathbb{N}$ such that $k \geq K$ and for all $x \in \mathcal{P}$,

$$\|(\phi_k + \sigma_k)(x) - (\sigma + \sigma)(x)\| \le \|(\phi_k - \sigma)(x)\| + \|(\sigma_K - \sigma)(x)\|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Therefore, $\phi_k + \sigma_k \rightarrow^{uc} \phi + \sigma$, thus $\phi + \sigma \in \overline{\Omega}^u$

Lemma 3.2. $\phi_n \cdot \sigma_n \rightarrow^{uc} \phi \cdot \sigma$.

Proof. By definition of $\overline{\Omega}^u$ being a $(\mathcal{P}, \psi) - algebra$, we have that $\phi_k \cdot \sigma_k \in \overline{\Omega}^u$ for all k. Observe that boundedness is only property required to prove this result. Recall that in a normed algebra, $||x \cdot y|| \le ||x|| \cdot ||y||$ holds for all $x, y \in \mathcal{P}$.

The case when either σ or ϕ are zero, is trivial true. Hence, assume that σ and ϕ are both non-zero. Let $A \in \mathbb{R}$ such that $\|\phi_n\| \leq A$ for all n and $x \in \mathcal{P}$. Since $\overline{\Omega}^u$ is uniformly bounded, it implies that ϕ_n also uniformly bounded. If A = 0, then $\|\phi_n\| = 0$ for all natural number n and $x \in \mathcal{P}$. Furthermore, we have that $\phi_n = 0$ for all n, by properties of the norm. Since $\phi_n \to^{uc} \phi$, then $\phi = 0$. Hence,

$$\|(\phi_n \cdot \sigma_n)(x) - (\phi \cdot \sigma)(x)\| = \|(0 \cdot \sigma_n)(x) - (0 \cdot \sigma)(x)\|$$

$$= 0$$

$$< \varepsilon.$$

Assume that A > 0 and let $\varepsilon > 0$. Let $\Gamma \ge A$ such that $\|\sigma(x)\| \le \Gamma$. There exist a natural number N_1 such that for all $n \ge N_1$ and for all $x \in \mathcal{P}$,

$$\|\phi_n(x) - \phi(x)\| < \frac{\varepsilon}{2\Gamma}.$$

Similarly, there is a $N_2 \in \mathbb{N}$ such that for all $n \geq N_2$ and for all $x \in \mathcal{P}$,

$$\|\sigma_n(x) - \sigma(x)\| < \frac{\varepsilon}{2\Gamma}.$$

Let $N = \max\{N_1, N_2\}$. Thus, for all $n \geq N$ and $x \in \mathcal{P}$ we have

$$\|\phi_{n}(x) \cdot \sigma_{n}(x) - \phi(x) \cdot \sigma(x)\| = \|\phi_{n}(x) \cdot \sigma_{n}(x) - \phi_{n}(x) \cdot \sigma(x) + \phi_{n}(x) \cdot \sigma(x) - \phi(x) \cdot \sigma(x)\|$$

$$\leq \|\phi_{n}(x) \cdot \sigma_{n}(x) - \phi_{n}(x) \cdot \sigma(x)\| + \|\phi_{n}(x) \cdot \sigma(x) - \phi(x) \cdot \sigma(x)\|$$

$$= \|\phi_{n}(x) \cdot [\sigma_{n}(x) - \sigma(x)]\| + \|[\phi_{n}(x) - \phi(x)] \cdot \sigma(x)\|$$

$$\leq \|\phi_{n}(x)\| \cdot \|[\sigma_{n}(x) - \sigma(x)]\| + \|[\phi_{n}(x) - \phi(x)]\| \cdot \|\sigma(x)\|$$

$$< A \cdot \frac{\varepsilon}{2\Gamma} + \frac{\varepsilon}{2\Gamma} \cdot \Gamma$$

$$\leq \Gamma \cdot \frac{\varepsilon}{2\Gamma} + \frac{\varepsilon}{2\Gamma} \cdot \Gamma$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Hence, $\phi \cdot \sigma \in \overline{\Omega}^u$.

Lemma 3.3. $\alpha \phi_n \rightarrow^{uc} \alpha \phi$.

Proof. If $\alpha = 0$, there is nothing to show. Hence, assume that $\alpha \neq 0$, imply that $|\alpha| > 0$. Let $\varepsilon > 0$ be given. Since $\phi_n \to u^c \phi$, by assumption, there is a natural number N such that for all $n \geq N$ and for all $x \in \mathcal{P}$,

$$\|\phi_n(x) - \phi(x)\| < \frac{\varepsilon}{|\alpha|}.$$

For $|\alpha| > 0$. For all such n we have,

$$\|(\alpha\phi_n)(x) - (\alpha\phi)(x)\| = \|\alpha\phi_n(x) - \alpha\phi(x)\|$$

$$= \|\alpha[\phi_n(x) - \phi(x)]\|$$

$$\leq |\alpha| \|[\phi_n(x) - \phi(x)]\|$$

$$= |\alpha| \frac{\varepsilon}{|\alpha|}$$

Our three Lemmas have showed that $\overline{\Omega}^u$ is an algebra. Now all that remains to show is that $\overline{\Omega}^u$ is uniformly closed. That is, we need to show that if $(\phi_n)_{n\in\mathbb{N}}$ is a sequence in $\overline{\Omega}^u$ and $\phi_n \to u^c \phi$ where $\phi : E \to \mathcal{P}$ then $\phi \in \overline{\Omega}^u$.

Lemma 3.4. . $\overline{\Omega}^u$ is uniformly bounded by M.

Proof. We want to show that for all $\phi \in \overline{\Omega}^u$ and $x \in E$, there exist an M such that

$$\|\phi_n(x)\| \le M.$$

Let $\phi \in \overline{\Omega}^u$. It will suffices to show that for all $\varepsilon > 0$ and $x \in E$,

$$\|\phi(x)\| \le M + \varepsilon.$$

By definition of $\overline{\Omega}^u$, there is a sequence $(\phi_n)_{n\in\mathbb{N}}\in\Omega$ such that the $\phi_n\to^{uc}\phi$ and there is a natural number such that for all $n\geq N$ and $x\in\psi$, and so

$$\|\phi_n(x) - \phi(x)\| < \varepsilon.$$

If $x \in E$ then

$$\|\phi(x)\| = \|\phi(x) + \phi_n(x) - \phi_n(x)\|$$

$$= \|\phi(x) - \phi_n(x) + \phi_n(x)\|$$

$$\leq \|(\phi - \phi_n)(x)\| + \|\phi_n(x)\|$$

$$\leq \|(\phi - \phi_n)(x)\| + M$$

$$= \|-1 \cdot [(\phi_n - \phi)(x)]\| + M$$

$$\leq |-1| \cdot \|(\phi_n - \phi)(x)\| + M$$

$$= \|(\phi_n - \phi)(x)\| + M$$

$$< \varepsilon + M$$

Lemma 3.5. The closure of Ω with respect to d, $\overline{\Omega}^d$, is contained in $\overline{\Omega}^u$.

Proof. Let $d: \overline{\Omega}^u \times \overline{\Omega}^u \to [0, \infty)$ be defined as

$$d(\phi, \sigma) := \sup_{x \in \mathcal{P}} \|\phi(x) - \sigma(x)\|.$$

Note that d is well defined by Lemma 3.4. Observe that $\Omega \subset \overline{\Omega}^u$, since if $\phi \in \Omega$ and if we let $\phi_n = \phi$ then for all $x \in E$ and $n \in \mathbb{N}$,

$$\|\phi_n(x) - \phi(x)\| = \|\phi(x) - \phi(x)\|$$

$$= 0$$

$$< \varepsilon$$

for all $\varepsilon > 0$. This implies that (ϕ_n) is a set in Ω that converges uniformly ϕ .

If $\phi \in \overline{\Omega}^d$, then $(\phi_n)_{n \in \mathbb{N}}$ is a sequence in Ω such that $d(\phi_n, \phi) = 0$. Hence,

$$\lim_{n\to\infty} d(\phi_n,\phi) = 0$$

and so,

$$\lim_{n \to \infty, x \in \mathcal{P}} \|\phi_n(x) - \phi(x)\| = 0.$$

For all $\varepsilon > 0$, there is a natural number N such that for all $n \geq N$,

$$\sup_{x \in \mathcal{P}} \|\phi_n(x) - \phi(x)\| < \varepsilon.$$

In particular, for all $\varepsilon > 0$, there is a $N \in \mathbb{N}$ such that for all $x \in \mathcal{P}$,

$$\|\phi_n(x) - \phi(x)\| < \varepsilon.$$

Therefor, we have that for $\phi \in \overline{\Omega}^u$ there is some $\phi_n \to uc \phi$.

Since $(\overline{\Omega}^u, d)$ is a metric space and $\Omega \subset \overline{\Omega}^d$ then $\overline{\Omega}^d$ is closed in $(\overline{\Omega}^u, d)$ by Theorem 2.27(a) in Walter Rudin's Principles of Mathematical Analysis page 35.

Lemma 3.6. $\phi \in \overline{\Omega}^u$

Proof. Let $(\phi_n)_{n\in\mathbb{N}}$ be a sequence in $\overline{\Omega}^u$ and let $\phi: E \to \mathcal{P}$. Consider that case when $\mathcal{P} = \overline{\Omega}^u$ and $E = \Omega$. Suppose that $\phi_n \to^{uc} \phi$. Observe that if Ω is a $(\mathcal{P}, E) - algebra$, then it is uniformly closed iff whenever ϕ_n is a sequence in Ω and $\phi: E \to \mathcal{P}$ such that $\phi_n \to^{uc} \phi$, then $\phi \in \Omega$. Let $\overline{\Omega}^u$ be the collection of all $\phi: E \to \mathcal{P}$, there is a sequence, h_n , in Ω such that $\phi_n \to^{uc} \phi$. Then for all $\varepsilon > 0$, there exist a natural number N such that for all $n \geq N$ and for all $x \in E$,

$$\|\phi_n(x) - \phi(x)\| < \frac{\varepsilon}{2}.$$

By Lemma 3.5 it is enough to show that $\phi \in \overline{\Omega}^d$. To show $\phi \in \overline{\Omega}^d$, we only need to find a sequence $(g_k)_{k \in \mathbb{N}} \in \Omega$ such that $d(g_k, \phi) \to 0$ as $k \to \infty$. Hence, it is sufficient to show that the sequence $(g_k)_{k \in \mathbb{N}}$ that satisfies

$$\limsup_{k \to \infty} \|g_k(x) - \phi(x)\| = 0$$

for $x \in \mathcal{P}$. That is we need to show that for all $\varepsilon > 0$ there is a $K \in \mathbb{N}$ such that for all $k \geq K$,

$$\sup_{x \in \mathcal{P}} \|g_k(x) - \phi(x)\| < \varepsilon.$$

For each $\phi_n \in \overline{\Omega}^u$ there is a sequence $(\phi_{n,k})_{n \in \mathbb{N}} \in \Omega$, such that $\phi_{n,k} \to^{uc} \phi_n$. In particular, there exist a $K \in \mathbb{N}$ such that for all $k \geq K$ and for all $x \in E$,

$$\|\phi_{n,k}(x) - \phi_n(x)\| < \frac{\varepsilon}{2}$$

Let $g_k := \phi_{k,k}$ and let $\Theta = \max\{K, N\}$. Then for all $k \in \mathbb{N}$ such that $k \geq \Theta$ and for all $x \in \mathcal{P}$,

$$\begin{split} \|g_k(x) - \phi(x)\| &= \|\phi_{k,k}(x) - \phi(x)\| \\ &= \|\phi_{k,k}(x) - \phi_k(x) + \phi_k(x) - \phi(x)\| \\ &\leq \|\phi_{k,k}(x) - \phi_k(x)\| + \|\phi_k(x) - \phi(x)\| \\ &\leq \frac{2}{\varepsilon} + \frac{2}{\varepsilon} \\ &= \varepsilon \end{split}$$

4. Background Results

Lemma 4.1.

- (1) In Lemma 3.5 is d a metric?
- (2) If all of the functions in an algebra whose values are in a \mathbb{C}_n -algebra, where the functions are defined on any set E are assumed to be bounded. Then the function $||\cdot||_{\infty}: \mathcal{A} \to \mathbb{C}_0$ given by

$$\lim_{\mathcal{X} \to \infty} \|f\|_{\mathcal{X}} = \|f\|_{\infty} := \sup_{x \in E} ||f(x)||$$

is a norm on A.

(3) In any normed vector space, a convergent sequence is always bounded.

Proof.

(1) From definition $d(\phi, \sigma)$ is the supremum of a set of a set of non-negative real numbers, thus $d(\phi, \sigma) \geq 0$ for all $\phi, \sigma \in \overline{\Omega}^u$. Hence,

$$d(\phi, \sigma) = 0 \text{ iff } \{|\phi(x) - \sigma(x)|\}_{x \in \mathcal{P}} = \{0\},\$$

thus $\phi(x) = \sigma(x)$ for all $x \in \mathcal{P}$. Next, $d(\phi, \sigma) = d(\sigma, \phi)$ follows directly by definition for all $\phi, \sigma \in \overline{\Omega}^u$. Lastly, let ϕ, σ, h be any three elements of $\overline{\Omega}^u$, for each element x_1 of \mathcal{P} we have

$$|\phi(x_1) - \sigma(x_1)| \le |\phi(x_1) - h(x_1)| + |h(x_1) - \sigma(x_1)|$$

$$\le \sup_{x \in \mathcal{P}} |\phi(x_1) - h(x_1)| + \sup_{x \in \mathcal{P}} |h(x_1) - \sigma(x_1)|.$$

Ergo, $d(\phi, \sigma) \leq d(\phi, h) + d(h, \sigma)$ and so d is a metric on $\overline{\Omega}^u$.

- (2) We need to show that $\|\cdot\|_{\infty}$, the sup-norm, is indeed a norm in \mathcal{A} . For this to be true we need to verify the following:
 - (a) $||f||_{\infty} \geq 0$ for all $f \in E$
 - (b) $||f||_{\infty} = 0$ iff f = 0
 - (c) $\|\lambda f\|_{\infty} = |\lambda| \|f\|_{\infty}$ for some scalar λ
 - (d) $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.

Property (a): By definition, the supremum of a set is the least upper bound of a set, a number, say M, such that no element of the set exceeds can exceed it. For any positive ε , there is a element of the set which exceeds $M - \varepsilon$. The sup-norm is the largest value of a set of absolute values, thus it is obvious that it must be greater than or equal to zero.

Property (b): If $||f||_{\infty} = 0$, then

$$\sup_{x \in E} ||f(x)|| = 0.$$

Hence, ||f(x)|| = 0 for all $x \in E$. If f(x) = 0, then

$$\sup_{x \in E} ||f(x)|| = 0.$$

Property (c): Observe, $\|\lambda f\|_{\infty} = \sup_{x \in E} \|\lambda f(x)\|$. Let α be the supremum of $\|f(x)\|$, then $\alpha \geq x$ for all $x \in E$. Therefor, for any $\varepsilon > 0$ there is $x^* \in E$ such that $x^* > \alpha - \varepsilon$.

Now multiplying $|\lambda|$ to ||f(x)|| we get, $x \leq |\lambda|\alpha$ for all $x \in |\lambda|E$ and for any $\varepsilon > 0$ there is $x^* > |\lambda|\alpha - \varepsilon$. Hence, $|\lambda|\alpha = \sup_{x \in E} (|\lambda|||f(x)||)$; thus we can conclude that

$$\|\lambda f\|_{\infty} = |\lambda| \sup_{x \in E} \|f(x)\|$$
$$= |\lambda| \|f\|_{\infty}.$$

Property (d): Note,

$$||f + g||_{\infty} = \sup_{x \in E} ||f(x) + g(x)||.$$

By triangle inequality,

$$\sup_{x \in E} \|f(x) + g(x)\| \le \sup_{x \in E} \|f(x)\| + \sup_{x \in E} \|g(x)\|.$$

Thus we conclude that $\|\cdot\|_{\infty}$ is a norm on \mathcal{A} .

(3) If a sequence a_n converges to a in a norm, then observe that the sequence is bounded in norm by ||a|| + 1. This can be proven as follows: there exist $N \in \mathbb{N}$ such that for all $n \geq N$,

$$||a_n - a|| < 1.$$

Therefore,

$$||a_n|| = ||a_n - a + a||$$

 $< ||a_n - a|| + ||a|| < ||a|| + 1$

whenever $n \in \mathbb{N}$ satisfies $n \geq N$. Let

$$M = \max\{\|a_1 - a\|, \|a_2 - a\|, ..., \|a_{n-1} - a\|, 1\}.$$

Hence, it follows that $||a_n|| \leq M$ for all $n \in \mathbb{N}$. Therefore, $(a_n)_{n \in \mathbb{N}}$ is bounded.

Lemma 4.2. Let $f:[a,b] \to \mathbb{C}_2$ be continuous then if $f(t) = f_1(t) + jf_2(t) \ \forall \ t \in [a,b] \ \exists f_1, f_2:[a,b] \to \mathbb{C}$ are uniformly continuous.

Proof. For uniform continuity the following criteria must be met: given $\varepsilon > 0$ there exist $\delta > 0$ such that for all $x, y \in \mathbb{C}_2$ with $0 < |x - y| < \delta$ we have $|f(x) - f(y)| < \varepsilon$. We have that f_1 and f_2 are uniformly continuous iff there exist a δ_1, δ_2 such that for all $x, y \in \mathbb{C}$ with $|x - y| < \delta_1$ we have $|f_1(x) - f_1(y)| < \frac{\varepsilon}{2}$ and for $|x - y| < \delta_2$, $|f_2(x) - f_2(y)| < \frac{\varepsilon}{2}$. Let $\delta = \frac{\min\{\delta_1, \delta_2\}}{2}$. Thus,

$$|f(x) - f(y)| = |(f_1(x) + j \cdot f_2(x)) - (f_1(y) + j \cdot f_2(y))|$$

$$= |(f_1(x) - f_1(y)) + j \cdot (f_2(x) - f_2(y))|$$

$$\leq |(f_1(x) - f_1(y))| + |j| \cdot |(f_2(x) - f_2(y))|$$

$$= |(f_1(x) - f_1(y))| + |(f_2(x) - f_2(y))|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Theorem 4.3. If $f:[a,b] \to \mathbb{C}_n$ be continuous, then there exists a sequence of polynomials functions, P_n , that converges uniformly on [a,b]. In other words $\lim_{n\to\infty} P_n = f(x)$ such that $P_n:[a,b]\to\mathbb{C}_n$. Furthermore if $Rng(f)\subset\mathbb{R}$ then there exist a sequence of $P_n:[a,b]\to\mathbb{R}$ such that $\lim_{n\to\infty} P_n = f(x)$ holds.

Proof. Without loss of generality consider the interval [0,1]. Let g be the linear function such that g(0) = f(0) and g(1) = f(1). Since g is a polynomial, it suffices to prove the theorem for the function f - g instead of f, but f - g vanishes at the endpoints of [0,1], thus we are left proving the theorem when f(0) = f(1) = 0. Define $g : \mathbb{R}_n \to \mathbb{C}_n$ such that

$$g(x) = \begin{cases} f(x), & x \in [0, 1] \\ 0, & \text{otherwise.} \end{cases}$$

Suppose that f is uniformly continuous, since [a, b] is compact, then suppose that g is uniformly continuous. Consider the Landau sequence

$$Q_n(x) = \begin{cases} \frac{1}{b_n} (1 - x^2)^n, & x \in [-1, 1] \text{ and } b_n \neq 0\\ 0, & \text{abs}(x) \ge 1. \end{cases}$$

Let $R_n(x) = (1 - x^2)^n$ for all $n \in \mathbb{N}$ where we claim that there exist b_n , a sequence in \mathbb{C} , such that $\int_{-1}^1 R_n(x) dx = 1$ for all $n \in \mathbb{N}$. Note well, R_n is Riemann integrable since they are polynomial functions and are continuous. Choose b_n such that $\int_{-1}^1 Q_n(x) dx = 1$ is satisfied. In other words $\frac{1}{b_n} \int_{-1}^1 R_n(x) dx = 1$ iff $b_n = \int_{-1}^1 R_n(x) dx$. Hence,

$$\frac{1}{\int_{-1}^{1} R_n(x) dx} \int_{-1}^{1} R_n(x) dx = 1.$$

Let $c_n = \frac{1}{b_n}$ for all $n \in \mathbb{N}$. Then we can rewrite the Landau sequence as

$$Q_n(x) = \begin{cases} c_n(1-x^2)^n, & x \in [-1,1] \\ 0, & \text{abs}(x) \ge 1. \end{cases}$$

Observe that R_n is even. Hence, $\int_{-1}^1 R_n(x) dx = 2 \int_0^1 R_n(x) dx$. Recall that $(1 - x^2)^n \ge 1 - nx^2$. Therefore,

$$2\int_0^1 R_n(x)dx \ge 2\int_0^{\frac{1}{\sqrt{n}}} R_n(x)dx$$

$$\ge 2\int_0^{\frac{1}{\sqrt{n}}} (1 - nx^2)dx$$

$$= 2(x - \frac{nx^3}{3})|_0^{\frac{1}{\sqrt{n}}}$$

$$= 2(\frac{1}{\sqrt{n}} - \frac{n(\frac{1}{n\sqrt{n}})}{3})$$

$$= \frac{4}{3\sqrt{n}}$$

$$> \frac{1}{\sqrt{n}}.$$

Observe, $\int_{-1}^{1} c_n (1-x^2)^n dx = 1$ for $n \in \mathbb{N}$. Hence, if $\int_{-1}^{1} (1-x^2)^n dx > \frac{1}{\sqrt{n}}$, then $c_n (\int_{-1}^{1} (1-x^2)^n dx) > (\frac{1}{\sqrt{n}}) c_n$, and thus $\int_{-1}^{1} c_n (1-x^2)^n dx > \frac{c_n}{\sqrt{n}}$. Therefore, $1 > \frac{c_n}{\sqrt{n}}$ and thus $\sqrt{n} > c_n$. If $0 < \delta \le |x| \le 1$, then $1 - x^2 \le 1 - \delta^2 \Rightarrow Q_n(x) = c_n R_n < \sqrt{n} (1 - \delta^2)^n \Rightarrow 0 \le Q_n(x)$. Let $P_n(x) := \int_{-1}^{1} f(x+t)Q_n(t)dt$ for $x \in [0,1]$. We can partition $P_n(x)$ as follows,

$$\int_{-1}^{-x} f(x+t)Q_n(t)dt + \int_{-x}^{1-x} f(x+t)Q_n(t)dt + \int_{1-x}^{1} f(x+t)Q_n(t)dt$$

Notice that f(x+t) = 0 iff $t \in [-1, -x] \cup [1-x, 1]$. We have that both $\int_{-1}^{-x} f(x+t)Q_n(t)dt$ and $\int_{1-x}^{1} f(x+t)Q_n(t)dt$ are zero. Therefore, we have that $P_n(x) = \int_{-x}^{1-x} f(x+t)Q_n(t)dt$. Utilizing the technique of change of variables, with u = t + x and thus du = dt. Hence,

$$\int_{t \in [-x, 1-x]} f(x+t)Q_n(t)dt = \int_{t+x=0}^{t+x=1} f(x+t)Q_n(t)dt$$
$$= \int_{u=0}^{u=1} f(u)Q_n(u-x)du$$
$$= \int_{u \in [0,1]} f(u)Q_n(u-x)du.$$

Given $\varepsilon > 0$ and for all $\delta > 0$ such that $|x - y| < \delta$, then $|f(x) - f(y)| < \frac{\varepsilon}{2}$. Note that f is uniformly continuous. Let $M = \sup f(x)$, we since $Q_n(x) \ge 0$ for $x \in [0, 1]$,

$$P_n(x) - f(x) = \int_{-1}^{1} [f(x+t)]Q_n(t)dt - f(x)$$

$$= \int_{-1}^{1} [f(x+t)]Q_n(t)dt - f(x) \cdot 1$$

$$= \int_{-1}^{1} [f(x+t)]Q_n(t)dt - f(x) \int_{-1}^{1} Q_n(t)dt$$

$$= \int_{-1}^{1} [f(x+t) - f(x)]Q_n(t)dt.$$

Therefore,

$$|P_{n}(x) - f(x)| = |\int_{-1}^{1} (f(x+t) - f(x))Q_{n}(t)dt|$$

$$\leq \int_{-1}^{1} |f(x+t) - f(x)|Q_{n}(t)|dt$$

$$\leq \int_{-1}^{1} |f(x+t) - f(x)| \cdot |Q_{n}(t)|dt$$

$$= \int_{-1}^{1} |f(x+t) - f(x)| \cdot Q_{n}(t)dt,$$

$$= \int_{-1}^{-\alpha} [f(x+t) - f(x)]Q_{n}(t)dt + \int_{-\alpha}^{\alpha} [f(x+t) - f(x)]Q_{n}(t)dt$$

$$+ \int_{0}^{1} [f(x+t) - f(x)]Q_{n}(t)dt.$$

since $Q_n(t) \geq 0$ for all t.

Consider the first region of the integral domain $[-1, -\alpha]$. We have that,

$$\int_{-1}^{-\alpha} [f(x+t) - f(x)]Q_n(t)dt \le \int_{-1}^{-\alpha} (|f(x+t)| + |-f(x)|)Q_n(t)dt$$
$$= \int_{-1}^{-\alpha} (|f(x+t)| + |f(x)|)Q_n(t)dt.$$

Observe, if M is the least upper bound of f(x), then M is the least upper bound of f(x+t) for all t. Therefore,

$$\int_{-1}^{-\alpha} (|f(x+t)| + |f(x)|)Q_n(t)dt \le \int_{-1}^{-\alpha} (M+M)Q_n(t)dt$$

$$= \int_{-1}^{-\alpha} (2M)Q_n(t)dt$$

$$= 2M \int_{-1}^{-\alpha} Q_n(t)dt.$$

If $t \in [-1, -\alpha]$, then it is equivalent to saying that $\alpha \le |t| \le 1$. Hence, $Q_n(t) \le \sqrt{n}(1-\alpha^2)^n$. Therefore,

$$2M \int_{-1}^{-\alpha} Q_n(t)dt \le 2M \int_{-1}^{-\alpha} \sqrt{n} (1 - \alpha^2)^n dt$$
$$= 2M \sqrt{n} (1 - \alpha^2)^n \int_{-1}^{-\alpha} dt$$
$$= 2M \sqrt{n} (1 - \alpha^2)^n (1 - \alpha)$$
$$\le 2M \sqrt{n} (1 - \alpha^2)^n,$$

for sufficiently small α . If $\alpha > 1$, we can use $\alpha^* = \min\{\alpha, 1\}$ and for all large enough n. Consider the second region of the integral domain $[-\alpha, \alpha]$. For $t \in [-\alpha, \alpha]$, we have $|t| = |t + x - x| = |(x + t) - x| \le \alpha$. Then for $|f(x + t) - f(x)| < \frac{\varepsilon}{2}$, we have

$$\int_{-\delta}^{\delta} |f(x+t) - f(x)| Q_n(t) dt \le \int_{-\delta}^{\delta} \frac{\varepsilon}{2} Q_n(t) dt.$$

Recall that if an interval E is a subset of the interval F, then for a positively defined function g(x) for all $x \in F$ the following holds: $\int_E g(x)dx \leq \int_F g(x)dx$. Thus,

$$\int_{-\delta}^{\delta} \frac{\varepsilon}{2} Q_n(t) dt \le \frac{\varepsilon}{2} \int_{-1}^{1} Q_n(t) dt \le \frac{\varepsilon}{2} (1) = \frac{\varepsilon}{2}.$$

Consider the third and final region of the integral domain, $[\delta, 1]$. For $t \in [\delta, 1]$, we have

$$\int_{\delta}^{1} [f(x+t) - f(x)]Q_n(t)dt \le \int_{\delta}^{1} (|f(x+t)| + |f(x)|)Q_n(t)dt$$

$$\le \int_{\delta}^{1} (M+M)Q_n(t)dt$$

$$= 2M \int_{\delta}^{1} Q_n(t)dt.$$

However, for $t \in [\delta, 1]$ we have $Q_n(t) \leq \sqrt{n}(1 - \delta^2)^n$, which implies that

$$2M \int_{\delta}^{1} Q_n(t)dt \le 2M \int_{\delta}^{1} \sqrt{n} (1 - \delta^2)^n dt$$
$$= 2M \sqrt{n} (1 - \delta^2)^n \int_{\delta}^{1} dt$$
$$= 2M \sqrt{n} (1 - \delta^2)^n (1 - \delta)$$
$$\le 2M \sqrt{n} (1 - \delta^2)^n$$

for sufficiently small δ .

When considering the entire integral domain, [-1,1], we have that

$$|P_n(x) - f(x)| \le 2M\sqrt{n}(1 - \delta^2)^n + 2M\sqrt{n}(1 - \delta^2)^n + \frac{\varepsilon}{2}$$
$$= 4M\sqrt{n}(1 - \delta^2)^n + \frac{\varepsilon}{2}.$$

Recall that $\lim_{n\to\infty}\sqrt{n}r^n=0$ if $r\in[0,1)$. Now if we let $r=(1-\delta^2)$ we have that $0=\lim_{n\to\infty}\sqrt{n}(1-\delta^2)^n$. Therefore, we can conclude that $\lim_{n\to\infty}4M\sqrt{n}(1-\delta^2)^n=4M\lim_{n\to\infty}\sqrt{n}(1-\delta^2)^n=4M(0)=0$ which implies that there exist an $\varepsilon>0$ there exist an $N\in\mathbb{N}$ such that for every $n\geq N$, we have that

$$|4M\sqrt{n}(1-\delta^2)^n - 0| = |4M\sqrt{n}(1-\delta^2)^n|$$

$$< \frac{\varepsilon}{2}.$$

Let $\varepsilon > 0$ be given for all n and x, hence,

$$|P_n(x) - f(x)| \le 4M\sqrt{n}(1 - \delta^2)^n + \frac{\varepsilon}{2}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

We have shown that if $f:[0,1] \to \mathbb{R}$ $(resp.\mathbb{C})$ and f is continuous, then there exist a sequence of real (complex) polynomial functions P_n so that f(0) = f(1) for f continuous.

Let $P_n \to f$ uniformly as $n \to \infty$, and $g:[a,b] \to \mathbb{R}$ where g(a)=g(b) is continuous. Let $f:[0,1] \to \mathbb{R}$ be given, where f(t) = g[(1-t)a+tb]. Observe that f(0) = g(a) and f(1) = g(b), and since g(a) = g(b) then f(0) = f(1). So by the reduced case we proved, there is a P_n such that $P_n(x) \to f(x)$ uniformly as $n \to \infty$. We want to show that there is a sequence of polynomials Q_n such that $Q_n(x) \to g(x)$ uniformly as $n \to \infty$. Observe, if

y=(1-x)a+xb, then $x=\frac{y-a}{b-a}$. Hence, $g(x)=g(\frac{y-a}{b-a})$. Therefore,

$$\lim_{n \to \infty} Q_n(x) = \lim_{n \to \infty} P_n(\frac{x-a}{b-a})$$

$$= f(\frac{x-a}{b-a})$$

$$= g((1 - (\frac{x-a}{b-a}))a + (\frac{x-a}{b-a})b)$$

$$= g(\frac{x(b-a)}{b-a})$$

$$= g(x).$$

 $Q_n(x)$ is a polynomial since $P_n(\frac{x-1}{b-a})$ is a first degree polynomial and because the composition of two polynomials is a polynomial.

If $f:[a,b]\to\mathbb{R}$ is continuous with f(a)=f(b)=0 there is a sequence of real (complex) polynomials, P_n , if f is real (complex) such that $P_n\to^{uc}f$. Let $g:[a,b]\to\mathbb{R}$ be continuous and let $f:[a,b]\to\mathbb{R}$ given by

$$f(x) = g(x) - g(a) - [g(b) - g(a)] \frac{x - a}{b - a}$$

Notice that if f(a) = 0, then

$$f(b) = g(b) - g(a) - \frac{b-a}{b-a}(g(b) - g(a))$$

= 0.

So by the reduce case there is a P_n such that $P_n \to {}^{uc} f$. Observe,

$$\lim_{n \to \infty} P_n(x) = f(x)$$

$$= g(x) - g(a) - [g(b) - g(a)] \frac{x - a}{b - a}.$$

Let

$$Q_n(x) = P_n(x) + g(x) - g(a) - [g(b) - g(a)] \frac{x - a}{b - a}$$

and

$$T(x) = g(x) - g(a) - [g(b) - g(a)] \frac{x - a}{b - a}.$$

So now $Q_n(x)$ is reduced to $P_n(x) + T(x)$. Additionally, $Q_n(x)$ converges to g(x) and thus, $P_n \to {}^{uc} f$ implies that $P_n + T \to {}^{uc} f + T = g$.

Corollary 4.4. For every interval [-a, a] there is a sequence of real polynomials P_n such that $P_n(x) = 0$ and such that $P_n(x) \to |x|$ as $n \to \infty$.

Proof. By theorem 4.3 there exist a sequence of real polynomials P_n which converges to |x| uniformly on [-a,a]. In particular, $P_n^*(0) \to 0$ as $n \to \infty$. Then the polynomials $P_n(x) = P_n^*(x) - P_n^*(0)$ for $x \in \mathbb{N} \setminus \{0\}$ have the desired properties.

Lemma 4.5. If f is uniformly continuous, since [a,b] is compact, then g is uniformly continuous.

Proof. Let $\varepsilon > 0$ be given, then there exist $\delta > 0$ such that for $x, y \in \mathbb{R}$ and $|x - y| \in (0, \delta)$ we have $|g(x) - g(y)| < \varepsilon$. Since f is uniformly continuous, there exist $b_1 \in [0, 1]$ and $0 < |x - y| < \delta$ such that $|f(x) - f(y)| < \varepsilon$ and $|g(x) - g(y)| < \varepsilon$ for all x, y not in [0, 1]. So now, $|g(x) - g(y)| = |0 - 0| = 0 < \varepsilon$.

Suppose that x is not in [0,1] and $y \in [0,1]$. Assume that $0 < |x-y| < \delta$ and without loss of generality, suppose that x < 0. Since f is uniformly continuous there exist a $\delta_n > 0$ such that $0 < |0-y| < \delta_n$, then $|f(0)-f(y)| = |g(0)-g(y)| < \frac{\varepsilon}{2}$. The difference between 0 and y is less than $\frac{\varepsilon}{2}$. Therefore if $|g(x)-g(y)| < \varepsilon$, then

$$|g(x) - g(0) + g(0) - g(y)| \le |g(x) - g(0)| + |g(0) - g(y)|$$

$$= 0 + |g(0) - g(y)|$$

$$< \varepsilon.$$

If $x \in [0,1]$ and y > 1, then $|x - y| \in (0,\delta)$. Hence, $|x - 1| < \delta$ and $|1 - x| = 1 - x < y - x < \delta$.

The case when x=1 is trivial, $|g(x)-g(y)|=|f(x)-f(y)|=|0-0|=0<\varepsilon$. So consider the case when x<1. We have, $0<|x-1|<\delta$ and thus, $|f(x)-f(1)|<\varepsilon$. Hence if $|x-y|\in(0,\delta)$, then

$$|g(x) - g(y)| = |g(x) - g(1) + g(1) - g(y)|$$

$$= |g(x) - g(1)| + |g(1) - g(y)|$$

$$= 0 + |g(0) - g(y)|$$

$$< \varepsilon$$

and,

$$|g(x) - g(1)| + |g(1) - g(y)| = |f(x) + f(1)| + 0$$
$$= |f(x) + f(1)|$$
$$< \varepsilon.$$

Thus our claim that the continuous function q is uniformly continuous, holds.

Lemma 4.6. $(1-x^2)^n \ge 1 - nx^2$

Proof. If $a \in [0,1]$ then,

$$1 - a^n = v^n \Big|_a^1 = \int_a^1 nv^{n-1} dv$$

$$\leq \int_a^1 n dv$$

$$= n(1 - a)$$

Hence, $a^n \leq n(1-a)$ and so,

$$v^{n} = 1 + \int_{1}^{v} nt^{n-1}dt \ge 1 + \int_{1}^{v} ndt$$

$$\ge 1 + n(v - 1).$$

Therefore, $(1-x^2)^n \ge 1 + ((1-x^2) - 1)n = 1 - nx^2$.

Lemma 4.7. $Q_n \rightarrow^{uc} 0$ in $[\delta, 1]$.

Proof. Q_n is uniformly convergent to 0 s.t. $[-1,1] \to \mathbb{R}$ iff for all $\varepsilon > 0$ there exist $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $n \ge \mathbb{N}$, $x \in [-1,1]$, and $|x| \in [\delta,1]$, then $|Q_n(x) - 0| < \varepsilon$. For all $\varepsilon > 0$, there is a $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $b \ge N$ and for all $x \in [\delta,1]$, then $|Q_n(x)| < \varepsilon$ and so, $Q_n(x) < \varepsilon$.

Lemma 4.8. Suppose that $Q_n \to^{uc} 0$ in $[\delta, 1]$ then $|Q_n(x)| < \varepsilon$ we know $Q_n(x) \le \sqrt{n}(1 - \delta^2)^n$ for $|x| \in [\delta, 1]$. Is $Q_n \ge 0$?

Proof. Let $c_n = \frac{1}{b_n}$ where $b_n = \int_{-1}^1 R_n(x) dx = 1 = \int_{-1}^1 (1 - x^2)^n dx \ge 0$. Hence, $Q_n(x) = c_n(1 - x^2)^n \ge 0$. Therefore, $0 \le Q_n(x) \le \sqrt{n}(1 - \delta^2)^n$ for $|x| \in [\delta, 1]$.

Lemma 4.9. $\lim_{n\to\infty} \sqrt{n}r^n = 0 \text{ if } r \in [0,1).$

Proof. Note, $\sqrt{n} < n + 1$. Consider now,

$$0 \le \sum_{n=0}^{\infty} \sqrt{n} r^n$$
$$< \sum_{n=0}^{\infty} (n+1) r^n$$
$$= \frac{d}{dr} \sum_{n=1}^{\infty} r^n$$

which by comparison test, $\sum_{n=0}^{\infty} \sqrt{n} r^n$ converges and so $\lim_{n\to\infty} \sqrt{n} r^n = 0$ for $r \in [0,1)$.

Lemma 4.10. f(x+t) = 0 iff $t \in [-1, -x] \cup [1-x, 1]$

Proof. Assume that f(0) = f(1) = 0 for $x \in [0,1]$, for $1-x \le t$ or $1 \le x+t$, we have f(x+t) = 0 for $t \in [-1,-x]$ if $t \le -x \Rightarrow x+t \le 0 \Rightarrow f(x+t) = 0$.

Lemma 4.11. *M* is the least upper bound of say g(x) then *M* is the upper bound for g(x+t).

Proof. By definition we say that M is the least upper bound, or supremum, of g(x) iff for every x in a given field, say $\mathbf{F}, x \leq M$, i.e. let $g: \mathbf{F} \to \mathbb{R}$, then M is the supremum of g iff for every element in \mathbf{F} is bounded by M. Every element implies that say x+1 is in \mathbf{F} , thus we can call x+1=y where $y \in \mathbf{F}$ due to the field axioms. Therefore since M is the supremum of g(x) and g(y) then by construction, $x < y \leq M$ as expected. Therefore for any $t \in \mathbf{F}$ we can conclude that $x+t \in \mathbf{F}$ thus if we let z=x+t then we gave that g(x+t)=g(z), but $z \in \mathbf{F}$ thus $z \leq M$.

Lemma 4.12. Let g be a regulated real valued function on [a,b] and assume a < b. Let $a \le c \le b$ and assuming that g is continuous at c and that g(c) > 0 and also that $g(t) \ge 0$ for all $t \in [a,b]$ then $\int_a^b f > 0$.

Proof. Given g(c), there exist some δ such that $g(t) > \frac{f(c)}{2}$ if $|t - c| < \delta$ and $t \in [a, b]$. If c is not equal to a, then with out loss of generality, let $0 < \kappa < \delta$ such that $[c - \kappa, c]$ is contained in [a, b]. Then,

$$\int_{a}^{b} g = \int_{a}^{c-\kappa} g + \int_{c-\kappa}^{c} g + \int_{c}^{b} g$$

$$\geq \int_{c-\kappa}^{c} g$$

$$\geq \frac{\kappa * g(c)}{2}$$

In the case that c = a, we take a small interval $[a, a + \kappa]$ with $0 < \kappa < \delta$ such that $[a, a + \kappa] \subset [a, b]$. Then,

$$\int_{a}^{b} g = \int_{a}^{a+\kappa} g + \int_{a+\kappa}^{b} g$$

$$\geq \int_{a}^{a+\kappa} g$$

$$\geq \frac{\kappa * g(c)}{2}$$

$$> 0$$

One could argue similarly in the case when c = b just consider the case where we take the small interval $[b - \kappa, b]$. Note this was proven when c was not equal to a.

Lemma 4.13. If the interval say E is a subset of the interval F, then for a positively defined function g i.e. $g(x) \ge 0 \ \forall \ x \in F$ the following holds $\int_E g(x) dx \le \int_F g(x) dx$.

Proof. Let F be the interval [a, b] where a < b and E be the interval [c, d] with c < d such that $[c, d] \subset [a, b]$ where $a \le c < d \le b$. In the case that a = c and b = d, E is equivalent to F, then

$$\int_{F} g(x)dx = \int_{E} g(x)dx.$$

. Thus assume that either a is not equal to c or b is not equal to d or a, b is not equal to c, d respectively, in other words at least one of the end point if F and E are not equal. If that is the case, then

$$\int_{F} g(x)dx = \int_{a}^{b} g(x)dx$$
$$= \int_{a}^{c} g(x)dx + \int_{c}^{d} g(x)dx + \int_{d}^{b} g(x)dx.$$

From Lemma 4.15 we found that if $g(x) \ge 0$ for $x \in F$ we have $\int_b^a g(x)dx > 0$ and similarly for $x \in E$ we can conclude that $\int_E g(x)dx > 0$. Thus,

$$\int_{F} g(x)dx = \int_{a}^{b} g(x)dx$$

$$= \int_{a}^{c} g(x)dx + \int_{c}^{d} g(x)dx + \int_{d}^{b} g(x)dx$$

$$\geq 0 + \int_{c}^{d} g(x)dx + 0$$

$$= \int_{c}^{d} g(x)dx = \int_{F} g(x)dx$$

since g(x) is positively defined on the each integral domain. Thus we can conclude that that

$$\int_{F} g(x)dx \ge \int_{E} g(x)dx.$$

Lemma 4.14. The sequence of functions f_n , defined on E, converges uniformly on E iff for every $\varepsilon > 0$ there is an integer N such that $m, n \geq N$, $x \in E$ implies that $|f_n(x) - f_m(x)| \leq \varepsilon$.

Proof. Suppose f_n converges uniformly on E, and let f be the limit function. Then there is an integer N such that $n \geq N$, $x \in E$ implies that $|f_n(x) - f(x)| \leq \frac{\varepsilon}{2}$, so that

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)|$$

$$\le \varepsilon,$$

if $n, m > N, x \in E$.

Conversely, suppose that the Cauchy condition hold. By Theorem 3.11, page 62 in [Ru1], there is a sequence $f_n(x)$ converges, for every x, to a limit we may call f(x). Thus the sequence f_n converges on E, to f. We have to prove the convergence is uniform. Let $\varepsilon > 0$ be given, and choose N s.t. $|f_n(x) - f_m(x)| \le \varepsilon$ holds. Fix n, and let $m \to \infty$, this gives $f_m(x) \to f(x)$ thus $|f_n(x) - f(x)| \le \varepsilon$ for every $n \ge N$ and every $x \in E$, which completes the proof.

Lemma 4.15. Let ϕ , ϕ : $[a,b] \to \mathbb{R}$, be uniform continuous and if $f_n \to^{uc} f$ then the composition $f_n \circ \phi \to^{uc} f \circ \phi$.

Proof. Let $\varepsilon > 0$ then there exist a $N \in \mathbb{N}$ such that for all $n \geq N$ and $x \in [a, b]$ we have

$$|(f_n \circ \phi)(x) - (f_m \circ \phi)(x)| \le \varepsilon.$$

Suppose $(f_n \circ \phi)$ converges uniformly on [a, b], and let $(f \circ \phi)$ be the limit function. Then there is an integer N s.t. $n \geq N$, $x \in [a, b]$ implies that

$$|(f_n \circ \phi)(x) - (f \circ \phi)(x)| \le \frac{\varepsilon}{2},$$

so that

$$|(f_n \circ \phi)(x) - (f_m \circ \phi)(x)| \le |(f_n \circ \phi)(x) - (f \circ \phi)(x)| + |(f \circ \phi)(x) - (f_m \circ \phi)(x)|$$

$$\le \varepsilon,$$

if $n, m \geq N, x \in [a, b]$.

Conversely, suppose that the Cauchy condition hold. By Theorem 3.11, page 62 in [Ru1], there is a sequence $(f_n \circ \phi)$ converges, for every $x \in [a, b]$, to a limit we may call $(f \circ \phi)$. Thus the sequence $(f_n \circ \phi)$ converges on [a, b], to $(f \circ \phi)$. We have to prove the convergence is uniform. Let $\varepsilon > 0$ be given, and choose N s.t. $|(f_n \circ \phi)(x) - (f_m \circ \phi)(x)| \le \varepsilon$ holds. Fix n, and let $m \to \infty$, this gives $(f_m \circ \phi) \to (f \circ \phi)$ thus $|(f_n \circ \phi)(x) - (f \circ \phi)(x)| \le \varepsilon$ for every $n \ge N$ and every $x \in [a, b]$.

Proof. If $f_n \to^{uc} f$ on \mathbb{R} and $\phi : \mathbb{R} \to \mathbb{R}$ then $f_n \circ \phi \to^{uc} f \circ \phi$ if given $\varepsilon > 0$ there is an integer N s.t. for all $n \geq N$ and all $y \in \mathbb{R}$ we have $|f_n(y) - f(y)| < \varepsilon$. In particular if $y = \phi(x)$ then for all such n and all x, $|f_n(\phi(x)) - f(\phi(x))| < \varepsilon \Rightarrow f_n \circ \phi \to^{uc} f \circ \phi$.

Lemma 4.16. If $f_n \to^{uc} f$ on E then $f_n + T \to^{uc} f + T$ on E for the sequences of functions $\{f_n\}$ and $\{T\}$.

Proof. We need to show that for all ε there is an integer N such that for $n \geq N$ implies that

$$|(f_n+T)(x)-(f+T)(x)|\leq \varepsilon.$$

Since $f_n \to^{uc} f$ we have that given $\varepsilon > 0$ there is an integer N such that for $n \geq N$ for all $x \in E$ we have that $|f_n(x) - f(x)| < \varepsilon$. Now,

$$|(f_n + T)(x) - (f + T)(x)| = |f_n(x) + T(x) - (f(x) + T(x))|$$

$$= |f_n(x) + T(x) - f(x) - T(x)|$$

$$= |f_n(x) - f(x)|$$

$$< \varepsilon,$$

as needed.

5. More Open Questions

Can Theorem 2.1 be extended to Quaternions, Octonions, Sedenions? In other words using the $Cayley - Dickson\ construction$, can we construct a generalized form?

REFERENCES

[Mun] J. R. Munkres. Topology 2nd Edition, Prentice Hall, Upper Saddle River, 2000.

[Prc] G. B. Prince. An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, New York, 1991.

[Ru2] W. Rudin. Functional Analysis. McGraw-Hill, New York, 1973.

[Ru1] W. Rudin. Principles of Mathematical Analysis, McGraw-Hill, New York, 1953.

E-mail address: koskar@csu.fullerton.edu