Введение в матричные игры

Предметом исследований в теории игр являются модели и методы принятия решений в ситуациях, где участвуют несколько сторон (игроков). Цели игроков различны, часто противоположны. Мы будем рассматривать только игры двух лиц с противоположными интересами.

Игра состоит из последовательности *ходов*. Ходы бывают личные и случайные. (В шахматах все ходы личные. Рулетка содержит случайный ход). Результаты ходов оцениваются функцией выигрыша для каждого игрока. Если сумма выигрышей равна 0, то игра называется игрой с нулевой суммой (преферанс). Будем рассматривать только такие игры.

Стратегией называется набор правил, определяющих поведение игрока, т.е. выбор хода.

Оптимальной стратегией называют такую стратегию, при которой достигается максимальный ожидаемый средний выигрыш при многократном повторении игры.

Матричные игры — это игры, где два игрока играют в игру с нулевой суммой, имея конечное число «чистых» стратегий: $\{1,...,m\}$ и $\{1,...,n\}$ и \forall (ij) задан платеж a_{ij} второго игрока первому. Матрица (a_{ij}) задает выигрыш первого игрока и проигрыш второго, $a_{ij} \geq 0$!

Игра в орлянку.

Игроки выбирают ход∈ {*open, peшка*}. Если ходы совпали, то выиграл первый, иначе второй.

II игрок I игрок	орел	решка
орел	1	-1
решка	- 1	1

Прорыв обороны. Первый игрок выбирает систему зенитного вооружения. Второй игрок выбирает самолет. Элементы a_{ij} задают вероятность поражения самолета j системой i. Цель второго игрока — прорвать оборону.

В первом примере все ходы одинаково плохи или хороши. Во втором примере ход (2, 2) в некотором смысле лучший для обеих сторон: если взять самолет 2, то зенитка 2 — лучшая для первого игрока; если взять зенитку 2, то самолет 2 лучший для второго. В матрице есть седловая точка!

Определение. *Седловой точкой* матрицы (a_{ij}) называют пару (i_0j_0) такую, что $a_{ij_0} \le a_{i_0j_0} \le a_{i_0j}, \quad \forall ij$.

Принцип минимакса (осторожности).

Предположим, что противник всеведущ и угадывает все ходы! Первый игрок предполагает, что второй все знает и для хода i первого игрока выберет j(i): $a_{ij(i)} \le a_{ij}, \forall j = 1,..., n$. Обозначим $\alpha_i = a_{ij(i)} = \min_{1 \le j \le n} a_{ij}, i = 1,..., m$. Тогда лучшей

стратегией для первого игрока является выбор i_0 такой, что

$$\alpha = \max_{i} \alpha_{i} = \max_{1 \leq i \leq m} \min_{1 \leq j \leq n} a_{ij} = \alpha_{i_0}.$$

Величину α назовем *нижней ценой* игры в чистых стратегиях.

Второй игрок из соображений осторожности считает, что первый $\forall j$ выберет i(j) так, что $a_{i(j)j} \ge a_{ij}$, $\forall i$, т.е. $\beta_j = \max_{1 \le i \le m} a_{ij}$ и выбирает j с минимальным β_j , т.е.

$$\beta = \min_{1 \le j \le n} \max_{1 \le i \le m} a_{ij} = \beta_{j_0}.$$

Величину β назовем *верхней ценой* игры в чистых стратегиях.

Пример 1.
$$\alpha = -1$$
, $\beta = +1$, $\alpha \le \beta$
Пример 2. $\alpha = \max_{i} \{0.5, 0.7, 0.5\} = 0.7$, $\beta = \min_{j} \{0.9, 0.7, 0.8\} = 0.7$.

Лемма. Для любой функции f(x,y), $x \in X$, $y \in Y$, справедливо неравенство

$$\max_{x \in X} \min_{y \in Y} f(x, y) \le \min_{y \in Y} \max_{x \in X} f(x, y)$$

в предположении, что эти величины существуют.

Доказательство. Введем обозначения:

$$f(x, y(x)) = \min_{y \in Y} f(x, y),$$
$$f(x^*, y(x^*)) = \max_{x \in X} f(x, y(x)).$$

Тогда

$$\max_{x \in X} \min_{y \in Y} f(x, y) = f(x^*, y(x^*)) = \min_{y \in Y} f(x^*, y) \le \min_{y \in Y} \max_{x \in X} f(x, y). \quad \blacksquare$$

Теорема. Необходимым и достаточным условием равенства верхней и нижней цен игры в чистых стратегиях является существование седловой точки в матрице (a_{ij}) .

Доказательство. *Необходимость*. Пусть $\alpha = \beta$. По определению

$$\begin{cases} \alpha = \max \min_{1 \le i \le m} a_{ij} = \min_{1 \le j \le n} a_{i_0 j} \le a_{i_0 j_0} \\ \beta = \min \max_{1 \le j \le n} \max_{1 \le i \le m} a_{ij} = \max_{1 \le i \le m} a_{ij_0} \ge a_{i_0 j_0} \end{cases}$$

т.е. $\alpha \le a_{i_0j_0} \le \beta$. Так как $\alpha = \beta$, то $a_{ij_0} \le a_{i_0j_0} \le a_{i_0j}$, $\forall ij$, т.е. является седловой точкой.

Достаточность. Пусть седловая точка (i_0j_0) существует, т.е.

$$a_{ij_0} \le a_{i_0j_0} \le a_{i_0j}, \quad \forall i = 1,...,m, \ j = 1,...,n.$$

Тогда $\min \max_j a_{ij} \le \max_i a_{ij_0} \le a_{i_0j_0} \le \min_j a_{i_0j} \le \max_i \min_j a_{ij}$, но по лемме верно

обратное, т.е. $\min_{j} \max_{i} a_{ij} = \max_{i} \min_{j} a_{ij}$. Следовательно $\alpha = \beta$.

Смешанные стратегии и основная теорема матричных игр

Определение. Под *смешанной стратегией* будем понимать вероятностное распределение на множестве чистых стратегий.

Смешанная стратегия первого игрока: $p = (p_1, ..., p_m)$,

$$p \in P_m = \{(p_1, ..., p_m) | \sum_{i=1}^m p_i = 1, p_i \ge 0, i = 1, ..., m\}.$$

Смешанная стратегия второго игрока $q = (q_1, ..., q_n)$,

$$q \in Q_n = \{(q_1, ..., q_n) \mid \sum_{j=1}^n q_j = 1, \ q_j \ge 0, \ j = 1, ..., n\}.$$

При многократном повторении игры игрок выбирает чистые стратегии случайным образом с соответствующими вероятностями.

Платежная функция для смешанных стратегий p и q:

$$E(p,q) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} p_i q_j$$

задает математическое ожидание выигрыша первого игрока при p,q.

Замечание. Добавлением большой положительной константы можно добиться того, что E(p,q) > 0, $\forall p,q$ без изменения стратегий.

Из принципа осторожности:

Первый игрок ищет максимум $\alpha(p) = \min_{q \in Q_n} E(p,q)$ и получает нижнюю цену

игры
$$\alpha = \max_{p \in P_m} \alpha(p)$$
.

Второй игрок ищет минимум $\beta(q) = \max_{p \in P_m} E(p,q)$ и получает верхнюю цену

игры
$$\beta = \min_{q \in Q_n} \beta(q)$$
.

Теорема Фон-Неймана

В матричной игре существует пара (p^*, q^*) смешанных стратегий, таких что

1.
$$E(p,q^*) \le E(p^*,q^*) \le E(p^*q), \forall p \in P_m, q \in Q_n$$
.

2.
$$\alpha = \beta = E(p^*, q^*)$$
.

Доказательство. Сначала покажем, как представить задачу о выборе наилучших стратегий в виде ЛП, а затем докажем теорему.

Первый игрок: $\alpha(p) \to \max$

$$\alpha(p) = \min_{q \in Q_n} E(p,q) \le \sum_{i=1}^m a_{ij} p_i, \quad \forall j = 1, ..., n.$$

Пусть $u_i = p_i / \alpha(p)$, i = 1,..., m, в предположении $\alpha(p) > 0$.

Тогда
$$u_i \geq 0, \ i=1,...,m,$$
 и $\sum_{i=1}^m a_{ij}u_i \geq 1, \quad \forall j=1,...,n.$ Заметим, что $\sum_{i=1}^m u_i = \frac{1}{\alpha(p)}$

и задача $\alpha(p) \to \max$ может быть записана следующим образом:

$$\min \sum_{i=1}^{m} u_i$$

$$\sum_{i=1}^{m} a_{ij} u_i \ge 1, j = 1, ..., n,$$

$$u_i \ge 0, i = 1, ..., m.$$

Аналогичным образом получаем задачу второго игрока:

$$\max \sum_{j=1}^{n} v_{j}$$

$$\sum_{j=1}^{n} a_{ij} v_{j} \le 1, \quad i = 1, ..., m,$$

$$v_{j} \ge 0, j = 1, ..., n,$$

где $v_j = q_j / \beta(q), j = 1,..., n$. Полученные задачи являются взаимодвойственными. Пусть u_i^*, v_j^* — оптимальные решения этих задач.

Положим $p_i^* = u_i^* / \sum_{i=1}^m u_i^*$, $q_j^* = v_j^* / \sum_{j=1}^n v_j^*$. Из второй теоремы двойственности

следует, что

$$v_j^* (\sum_{i=1}^m a_{ij} u_i^* - 1) = 0, \quad j = 1, ..., n, \qquad u_i^* (\sum_{j=1}^n a_{ij} v_j^* - 1) = 0, \quad i = 1, ..., m.$$

Просуммировав, получим

$$\sum_{j=1}^{n} v_{j}^{*} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} u_{i}^{*} v_{j}^{*} = \sum_{i=1}^{m} u_{i}^{*}.$$

Поделим на $(\sum v_i^*)(\sum u_i^*)$:

$$E(p^*, q^*) = \frac{1}{\sum v_j^*} = \frac{1}{\sum u_i^*}.$$

Теперь докажем первое утверждение теоремы:

$$E(p,q^*) = \sum_{i=1}^m p_i \sum_{j=1}^n a_{ij} q_j^* = \sum_{i=1}^m p_i \sum_{j=1}^n a_{ij} \frac{v_j^*}{\sum v_j^*} \le \frac{1}{\sum v_j^*} \sum p_i = \frac{1}{\sum v_j^*}.$$

Аналогично

$$E(p^*,q) = \sum_{j=1}^n q_j \sum_{i=1}^m a_{ij} p_i^* = \sum_{j=1}^n q_j \sum_{i=1}^m a_{ij} \frac{u_i^*}{\sum u_i^*} \ge \frac{1}{\sum u_i^*} \sum q_j = \frac{1}{\sum u_i^*}.$$

T.e.
$$E(p, q^*) \le E(p^*, q^*) \le E(p^*, q), \forall p \in P_m, q \in Q_n.$$

Докажем второе утверждение теоремы.

Из предыдущего неравенства имеем:

$$\max_{p} E(p, q^{*}) \leq E(p^{*}, q^{*}) \leq \min_{q} E(p^{*}, q),$$

$$\text{T.e. } \beta = \min_{p} \max_{ij} \sum_{ij} a_{ij} p_{i} q_{j} \leq \max_{p} \min_{q} \sum_{ij} a_{ij} p_{i} q_{j} = \alpha.$$

Но по лемме $\alpha \le \beta \Rightarrow \alpha = \beta = E(p^*, q^*)$. ■

Вопросы

- Игра *«камень-ножницы-бумага»* является игрой с постоянной суммой (Да или Hem?)
- Задача поиска седловой точки принадлежит классу NP (Да или Нет?)
- Найти седловую точку или убедиться в ее отсутствии можно за полиномиальное время (Да или Нет?)
- Чистых стратегий всегда меньше, чем смешанных стратегий (Да или Нет?)
- Оптимальные смешанные стратегии игроков можно найти за полиномиальное время (Да или Нет?)

Дилемма заключенных

Два преступника пойманы за совершение преступления. У следствия не хватает доказательств их виновности и преступникам предлагают сделку:

Если сознаешься и подтвердишь участие товарища в преступлении, то выйдешь на свободу, а товарищ получит 7 лет лишения свободы.

Преступники сидят в разных камерах и не могут общаться, но они знают, что каждому сделано такое предложение.

Если оба преступника сознаются, то каждый получит 5 лет.

Если оба не сознаются, то каждый получит по 1 году.

Биматричная игра

2-й сознался 2-й не сознался

1-й сознался

5:5

0:7

1-й не сознался

7:0

Седловая точка — оба сознаются — существует и дает 5 лет каждому,

но решение — не сознаваться — дает только 1 год каждому. Оно не является седловой точкой!

Что будет, если дать преступникам возможность совещаться?

Бескоалиционные игры

Бескоалиционной игрой для р игроков называется система

$$\Gamma = \{I, \{X_i\}_{i \in I}, \{F_i\}_{i \in I}\},\$$

где $I = \{1, ..., p\}$ — множество игроков, X_i — множество стратегий i-го игрока, $x \in X = \prod_{i \in I} X_i$ — игровые ситуации, $F_i(x)$ — выигрыш i-го игрока в ситуации x.

Предполагаем, что все игроки стремятся максимизировать свои выигрыши.

Произвольное подмножество множества I называют *коалицией*.

В бескоалиционных играх коалициям не приписывается каких-либо стратегических возможностей или интересов, за исключением тех, что вытекают из возможностей и интересов отдельных игроков.

Пример. I — множество политических партий.

 X_i — множество программ i-ой партии.

 $F_i(x)$ — число голосов на выборах, поданных за i-ю партию.

Бескоалиционная игра Γ называется *игрой с постоянной суммой*, если существует такое число c, что

$$\sum_{i \in I} F_i(x) = c$$
для любого $x \in X$.

Если c=0, то бескоалиционную игру называют *игрой с нулевой суммой* (антагонистические игры).

Примеры. 1) Игра «Червы», «Преферанс»;

- 2) дилемма заключенных;
- 3) размещения в условиях конкуренции.

Равновесие в бескоалиционных играх

Обозначим через $x \parallel \widetilde{x}^i$ ситуацию, отличающуюся от x тем, что вместо стратегии x^i игрока i используется стратегия $\widetilde{x}^i \in X_i$:

$$x \parallel \widetilde{x}^{i} = (x^{1},...,x^{i-1},\widetilde{x}^{i},x^{i+1},...,x^{n})$$

Ситуация x^0 называется *приемлемой* для игрока *i*, если изменяя свою стратегию, он не может увеличить свой выигрыш:

$$F_i(x^0 \| x^i) \le F_i(x^0)$$
 для любого $x^i \in X_i$

Ситуация x^0 , приемлемая для всех игроков, называется *равновесием по Нэшу*.

Размещение предприятий на сети

Дано: G = (V, E) — взвешенный неориентированный граф, в каждой вершине находятся клиенты.

 w_{j} — доход от обслуживания клиентов в вершине j.

 d_e — длина ребра e.

Игра: p игроков выбирают по вершине (открывают в ней свое предприятие); для каждого клиента (вершины) отыскивается ближайшее предприятие на сети (может оказаться несколько таковых) и вычисляются доходы игроков.

Доход:
$$\sum_{j \in V} P_{ij}$$
 — доход игрока i , где

$$P_{ij} = egin{cases} 0, & ext{если i - не ближайшее} \ & & & \\ \hline \frac{w_j}{ ext{число ближайших}}, & ext{если i - ближайшее} \end{cases}$$

Найти: равновесие по Нэшу, т.е. такое решение для игроков, когда ни один из них не может увеличить свой доход, меняя решение в одиночку.

Пример: $w_j = 1, p=3$

Вопрос: Правда ли, что равновесное решение всегда существует?

Контрпример: $w_j = 1$, n = 9, p=2.

Теорема. Для данного графа G = (V, E) и множества из p игроков задача распознавания «есть ли равновесное решение» является NP-полной.

Вопросы

- Задача поиска равновесия по Нэшу при размещении предприятий на сети принадлежит классу NP (Да или Нет?)
- Задача поиска равновесия по Нэшу при размещении предприятий на сети решается за полиномиальное время при p=2 (Да или Нете?)
- Если в игре двух лиц есть равновесие по Нэшу, то это наилучшая стратегия для игроков (Да или Нет?)