Problem 1

1.1 Inference on T2

Combining rule (1), with fact (11) and fact(19) with substitution {ha \rightarrow H3, hb \rightarrow H2, hc \rightarrow H1, tx \rightarrow T1, ty \rightarrow T2} infer (21) P(H1, T2).

Combining rule (2), with fact (11) and fact(19) with substitution {ha \rightarrow H3, hb \rightarrow H2, hc \rightarrow H1, tx \rightarrow T1, ty \rightarrow T2} infer (22) E(H3, T2).

Combining rule (3), with fact (11) and fact(19) with substitution {ha \rightarrow H3, hb \rightarrow H2, hc \rightarrow H1, tx \rightarrow T1, ty \rightarrow T2} infer (23) E(H2, T2).

Combining rule (6), with fact (15) with substitution $\{ha \rightarrow H1, hb \rightarrow H3\}$ infer (24) U(H4, H1).

Combining rule (6), with fact (17) with substitution $\{ha \rightarrow H1, hb \rightarrow H3\}$ infer (25) U(H4, H2).

Combining rule (6), with fact (18) with substitution $\{ha \rightarrow H1, hb \rightarrow H3\}$ infer (26) U(H4, H3).

Combining rule (4), with fact (11), fact(24), fact(25), fact(26), fact(10), and fact(19) with

substitution {ha \rightarrow H3, hb \rightarrow H2, hc \rightarrow H1, tx \rightarrow T1, ty \rightarrow T2, hd \rightarrow H4} infer (27) P(H4, T2).

1.2 Inference on T3

Combining rule (1), with fact (12) and fact(20) with substitution {ha \rightarrow H4, hb \rightarrow H1, hc \rightarrow H2, tx \rightarrow T2, ty \rightarrow T3, } infer (28) P(H2, T3).

Combining rule (2), with fact (12) and fact(20) with substitution {ha \rightarrow H4, hb \rightarrow H1, hc \rightarrow H2, tx \rightarrow T2, ty \rightarrow T3, } infer (29) E(H4, T3).

Combining rule (3), with fact (12) and fact(20) with substitution {ha \rightarrow H4, hb \rightarrow H1, hc \rightarrow H2, tx \rightarrow T2, ty \rightarrow T3, } infer (30) E(H1, T3).

Combining rule (6), with fact (14) with substitution $\{ha \rightarrow H1, hb \rightarrow H3\}$ infer (31) U(H3, H1).

Combining rule (6), with fact (16) with substitution $\{ha \rightarrow H2, hb \rightarrow H3\}$ infer (32) U(H3, H2).

Combining rule (5), with fact (12), fact(18), fact(31), fact(32), fact(22), and fact(20) with

substitution {ha \rightarrow H4, hb \rightarrow H1, hc \rightarrow H2, tx \rightarrow T2, ty \rightarrow T3, hd \rightarrow H3} infer (33) E(H3, T3).

Problem 2

Let Ω be the set of holes and points in time. Let L be a Datalog language with the following predicates:

P(h,p,t). Hole h has peg p in it at time t.

E(h,t). Hole h is empty at time t.

J(ha,hb,hc,t,p). At time t the peg p in ha is jumped to hc over hb.

U(ha, hb). Holes ha and hb are unequal.

S(tx, ty). Time instant tx and ty occur in sequence.

UP(pa,pb). Pegs pa and pb are unequal.

Causal axioms

- 1. $J(ha,hb,hc,tx,p) \land S(tx,ty) \Rightarrow P(hc,p,ty)$.
- 2. $J(ha,hb,hc,tx,p) \land S(tx,ty) \Rightarrow E(ha,ty)$.
- 3. $J(ha,hb,hc,tx,p) \land S(tx,ty) \Rightarrow E(hb,ty)$.

Frame axioms

- 4. $J(ha,hb,hc,tx,pa) \land U(hd,ha) \land U(hd,hb) \land U(hd,hc) \land P(hd,pb,tx) \land S(tx,ty) \Rightarrow P(hd,pb,ty).$
- 5. $J(ha,hb,hc,tx,pa) \land U(hd,ha) \land U(hd,hb) \land U(hd,hc) \land E(hd,tx) \land S(tx,ty) \Rightarrow E(hd,ty)$.

Inequality is symmetric

 $6.U(ha,hb) \Rightarrow U(hb,ha).$

21. $UP(pa,pb) \Rightarrow UP(pb,pa)$

Starting state

- 7. E(H1,T1).
- 8. P(H2,PR,T1).
- 9. P(H3,PW,T1).
- 10. P(H4,PB,T1).

Jumps executed

- 11. J(H3,H2,H1,T1,PW).
- 12. J(H4,H1,H2,T2,PB).

Unique names

- 13. U(H1,H2).
- 14. U(H1,H3).
- 15. U(H1,H4).
- 16. U(H2,H3).
- 17. U(H2,H4).
- 18. U(H3,H4).
- 22. UP(PR, PW).
- 23. UP(PR, PB).
- 24. UP(PW, PB).

Time Sequence

- 19. S(T1.T2).
- 20. S(T2.T3).

Problem 3

A. Denote "pick a coin out of the box at random and flip it, resulting in heads up" as A $P(A) = \frac{1}{2}(1*0.1+2*0.3+2*0.8) = 0.46$

- B. Denote "pick a coin out of the box and flip it twice, resulting in two heads" as B $P(B) = \frac{1}{2}(1*0.1^2+2*0.3^2+2*0.8^2) = 0.294$
- C. Denote "Pick two coins out of the box together (at the same time) and flip each of them once, resulting in two heads" as C

 $P(C) = (C(1,1)*C(2,1)*0.1*0.3+C(1,1)*C(2,1)*0.1*0.8+C(2,1)*C(2,1)*0.3*0.8+C(2,2)*0.3^2+C(2,2)*0.8^2$ $P(C) = (C(1,1)*C(2,1)*0.1*0.3+C(1,1)*C(2,1)*0.1*0.8+C(2,1)*C(2,1)*0.3*0.8+C(2,2)*0.3^2+C(2,2)*0.8^2$

D. Denote "Pick a coin of the box at random, flip it, put it back, again pick a coin at random, and flip it, resulting in two heads" as D

Given "Two flips of two different coins are conditionally independent given the categories of the two coins."

 $P(D) = (P(A))^2 = 0.2116$

E. Denote, "the coin is in the category 1" as E1, and "the coin is in the category 2" as E2, knowing "pick a coin out of the box at random and flip it. It comes up heads." as A P(E1|A) = P(E1, A)/P(A) = P(A, E1)*P(E1)/P(A) = (0.1*1/5) / 0.46 = 1/23 P(E2|A) = P(E2, A)/P(A) = P(A, E2)*P(E2)/P(A) = (0.3*2/5) / 0.46 = 6/23

F. Denote "the coin is in the category 3" as E3 and knowing the denotations above P(E1|-A) = P(E1, -A)/P(-A) = P(-A, E1)*P(E1)/P(-A) = (0.9*1/5) / 0.54 = 1/3 P(E2|-A) = P(E2, -A)/P(-A) = P(-A, E2)*P(E2)/P(-A) = (0.7*2/5) / 0.54 = 14/27 P(E3|-A) = P(E3, -A)/P(-A) = P(-A, E3)*P(E3)/P(-A) = (0.2*2/5) / 0.54 = 4/27

G. Denote "second flip is a head" as G and knowing the above denotations Given that "Two flips of a coin of unknown category are not absolutely independent." P(G|A) = P(G,A)/P(A) = P(B)/P(A) = 0.294/0.46 = 0.639

H. With the above denotations

P(E1|B) = P(E1,B)/P(B) = P(B|E1)*P(E1)/P(B) = 1/147

P(E2|B) = P(E2,B)/P(B) = P(B|E2)*P(E2)/P(B) = 6/49

P(E3|B) = P(E3,B)/P(B) = P(B|E3)*P(E3)/P(B) = 128/147