Mutation Models

Learning to Generate Levels by Imitating Evolution

Ahmed Khalifa, Michael C. Green, Julian Togelius

Train a Neural Network to imitate the evolutionary process in generating levels

Train ML Model on Extracted Trajectories

Trajectories

Mutation

Mutation

Trajectories

Why?

 Evolution takes long time to generate levels due to fitness function

 Defining fitness function for levels is easier than a fitness function for generators

New games usually don't have much levels

Train ML Model on Extracted Trajectories

Train ML Model on Extracted Trajectories

Train ML Model on Extracted Trajectories

Train ML Model on Extracted Trajectories

Train ML Model on Extracted Trajectories

Train ML Model on Extracted Trajectories

Train ML Model on Extracted Trajectories

Train ML Model on Extracted Trajectories

Experiments

Evolution

• $\mu + \lambda$ evolution strategy (50 + 50)

- Fitness:
 - Connect all the level
 - Increase the shortest Path Length in the Map

Evolution Fitness

Networks are trained on top 10 levels

Network trained for 2 epochs

- Update the whole level until:
 - Fully connected (Success)
 - Each tile get visited 196 times (Failure)

	Success	Diversity	Average # visits
Assisted	99.67% ± 0.49%	86.83% ± 3.8%	18.21 ± 18.57
Normal	30.17% ± 32.7%	28.5% ± 30.62%	61.7 ± 47.22

	Success	Diversity	Average # visits
Assisted	99.67% ± 0.49%	86.83% ± 3.8%	18.21 ± 18.57
Normal	30.17% ± 32.7%	28.5% ± 30.62%	61.7 ± 47.22

Assisted

Normal

	Success	Diversity	Average # visits
Assisted	99.67% ± 0.49%	86.83% ± 3.8%	18.21 ± 18.57
Normal	30.17% ± 32.7%	28.5% ± 30.62%	61.7 ± 47.22

Assisted

Normal

Comparing Evolution to Trained Network

Compare Evolution to Trained Networks

- Generate 100 levels by evolution
- Generate 100 levels by each trained network

- Stop evolution/updating levels:
 - Fully connected (Success)
 - Each tile get visited 196 times (Failure)

Compare Evolution to Trained Networks

	Success	Diversity	Wall Time (sec)
Assisted	99.67% ± 0.49%	86.83% ± 3.8%	0.6612 ± 2.3874
Evolution	100%	96%	12.6957 ± 2.2571

Future Work

 What about Evolving Diverse Levels using Quality Diversity?

Different Games? Applications?

What about indirect encoding?

Different ways to create trajectories?

Thanks

