Home > Aluminum Alloy > AA 4000 Series (Aluminum-Silicon Wrought Alloy)

4032 (4032-T6, AlSi12.5MgCuNi) Aluminum

4032 aluminum is a 4000-series aluminum alloy. The main alloying addition is silicon. It is typically furnished in the T6 temper. To achieve this temper, the metal is solution heat-treated and artificially aged until it meets standard mechanical property requirements. 4032 is the Aluminum Association (AA) designation for this material. In European standards, it will typically be given as EN AW-4032. Additionally, the EN chemical designation is AlSi12,5MgCuNi. The British Standard (BS) designation is DTD324B. The AFNOR designation is A-S12UGN. And the UNS number is A94032.

It originally received its standard designation in 1954.

It has the highest tensile strength relative to other 4000-series alloys in the database.

The graph bars on the material properties cards below compare 4032 aluminum to: 4000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom).

Mechanical Properties

Brinell Hardness	
120	
Elastic (Young's, Tensile) Modulus	
73 GPa	11 x 10 ⁶ psi
Elongation at Break	
6.7 %	
Fatigue Strength	
110 MPa	16 x 10 ³ psi
Doisconts Datio	

900 J/kg-K	0.21 BTU/lb-°F
The condition of the	
Thermal Conductivity	
140 W/m-K	80 BTU/h-ft-°F
Thermal Expansion	
19 μm/m-K	
Flantsiaal Duamastiaa	
Electrical Properties	
Electrical Conductivity: Equal Volume	
34 % IACS	
Electrical Conductivity: Equal Weight (Specific)	
120 % IACS	
Otherwise Unclassified Properties	
Base Metal Price	
10 % relative	
Density	
2.6 g/cm ³	160 lb/ft ³
Fush a diad Caubau	
Embodied Carbon	

7.8 kg CO ₂ /kg material
Embodied Energy
140 MJ/kg 61 x 10 ³ BTU/lb
Embodied Water
1030 L/kg 120 gal/lb
Common Calculations
Resilience: Ultimate (Unit Rupture Work)
25 MJ/m ³
Resilience: Unit (Modulus of Resilience)
700 kJ/m ³
Stiffness to Weight: Axial
15 points
Stiffness to Weight: Bending
53 points
Strength to Weight: Axial
41 points
Strength to Weight: Bending

Alloy Composition

Among wrought aluminum alloys, the composition of 4032 aluminum is notable for containing a comparatively high amount of silicon (Si) and including nickel (Ni). Silicon is used to increase strength at the expense of ductility. It also lowers the melting temperature and raises the fluidity of the alloy. Nickel is used to increase mechanical strength at elevated temperatures, and to reduce thermal expansion. However, it can increase susceptibility to pitting corrosion in certain alloys.

Followup Questions