$S = \iiint (\frac{1}{6} (2t_{1} \mathcal{A}^{\alpha_{i}}_{\alpha} \mathcal{A}^{\theta}_{i} + 6 \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta} \tau (\Delta + \mathcal{K})_{\alpha\beta} - 4t_{1} \mathcal{A}^{\theta}_{\alpha} \partial_{i}f^{\alpha_{i}} + 4t_{1} \mathcal{A}^{\theta}_{i} \partial_{i}f^{\alpha}_{\alpha} - 2t_{1} \partial_{i}f^{\theta}_{\theta} \partial_{i}f^{\alpha}_{\alpha} - 2t_{1} \partial_{i}f^{\alpha_{i}} \partial_{\theta}f^{\alpha}_{\alpha} + 4t_{1} \partial_{i}\mathcal{A}_{\alpha\beta\beta} \partial_{i}\mathcal{A}^{\alpha\beta} + 4t_{1} \partial_{\beta}\mathcal{A}_{\alpha\theta} \partial_{\beta}\mathcal{A}^{\alpha\beta} - 4t_{1} \partial_{\beta}\mathcal{A}_{\alpha\theta} \partial_{\beta}\mathcal{A}^{\alpha\beta} + 4t_{1} \partial_{\theta}\mathcal{A}_{\alpha\beta\beta} \partial_{\beta}\mathcal{A}^{\alpha\beta} + 4t_{1} \partial_{\theta}\mathcal{A}_{\alpha\beta} \partial_{\beta}\mathcal{A}^{\alpha\beta} + 4t_{1} \partial_{\theta}\mathcal{A}_{\alpha\beta} \partial_{\beta}\mathcal{A}^{\alpha\beta} + 4t_{1} \partial_{\theta}\mathcal{A}_{\alpha\beta} \partial_{\beta}\mathcal{A}^{\alpha\beta} + 4t_{1} \partial_{\beta}\mathcal{A}_{\alpha\beta} \partial_{\beta}\mathcal{A}^{\alpha\beta} + 4t_{1} \partial_{\beta}\mathcal{A}_{\alpha\beta} \partial_{\beta}\mathcal{A}$

Wave operator

Saturated propagator

	$0.^+\sigma^{\parallel}$	$0^+_{\cdot} \tau^{\parallel}$	$0.^+\tau^{\perp}$	$0^{-}\sigma^{\parallel}$										
0. ⁺ σ †	0	0	0	0										
o. ⁺ τ †		0	0	0										
0. ⁺ τ ⁺ †	0	0	0	0										
⁰⁻ σ †	0	0	0	$-\frac{1}{t_{i}}$	$1.^+\sigma^{\parallel}_{\alpha\beta}$	$\overset{1,^{+}}{\cdot}\sigma^{^{\perp}}{}_{\alpha\beta}$	$1^+_{\cdot}\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{\alpha} \sigma^{\parallel}_{\alpha}$	$1.\sigma_{\alpha}$	$1^{-}\tau^{\parallel}_{\alpha}$	$\frac{1}{2}\tau_{\alpha}$			
				$\dot{\Gamma}^+ \sigma^{\parallel} \uparrow^{\alpha\beta}$		$-\frac{\sqrt{2}}{t_1^2+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ † $^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_1 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0			
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i \sqrt{2} k}{t_1 + k^2 t_1}$	$\frac{i\left(2k^{3}\left(2r_{1}+r_{5}\right)-kt_{1}\right)}{\left(1+k^{2}\right)^{2}t_{1}^{2}}$	$\frac{-2 k^4 (2 r_1 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} \uparrow^{\alpha}$	0	0	0	$\frac{1}{k^2 (r_1 + r_2)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (r_1 + r_2)}$	0	$-\frac{i}{k(1+2k^2)(r_1+r_2)}$			
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2+2 k^4) (r_1+r_2)}$	$\frac{6 k^2 (r_1 + r_2) + t_1}{2 (k+2 k^3)^2 (r_1 + r_2) t_1}$	0	$\frac{i (6 k^{2} (r.+r.)+t.)}{\sqrt{2} k (1+2 k^{2})^{2} (r.+r.)t.}$			
				$1 \tau^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$1^{-}\tau^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(r_1+r_5)}$	$-\frac{i(6k^2(r_1+r_2)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$	0	$\frac{6 k^2 (r_1 + r_5) + t_1}{(1 + 2 k^2)^2 (r_1 + r_5) t_1}$	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i \sqrt{2} k}{(1+2k^2)^2 t}$	0
											$2^+_{\cdot} \tau^{\parallel} \dagger^{\alpha\beta}$	$\frac{2i \sqrt{2} k}{(1+2k^2)^2 t}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	0
											$2^{-}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$
Source constraints														

Source constraints

Spin-parity form	Covariant form	Multiplicities	
$0^+ \sigma^{\parallel} == 0$	$\partial_{\beta}\sigma_{\alpha}^{\alpha}{}^{\beta} = 0$	1	
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1	
$0^{+}_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1	
$\frac{1}{2ik} \frac{1}{r} \sigma^{\perp \alpha} + \frac{1}{r} \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
$1 r^{\parallel \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3	
$\overline{i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0}$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3	
$-2 i k 2^{+}_{.} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{.} \tau^{\parallel^{\alpha\beta}} = 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\lambda}\partial_{\chi}\partial^{\lambda}\tau$	5	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta}^{\epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi} - 4 i \eta^{\alpha \beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon}) = 0$		
Total expected gauge generators:			

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{i}} > 0$
Square mass:	$-\frac{t_1}{2r_1} > 0$
Spin:	2
Parity:	Ddd

Massless spectrum

Massless particle

Pole residue:	$-\frac{7}{{r_1^{ + r_{ \cdot}}}_1^{ + }} + \frac{{}^{-2t_{ \cdot}}p^2 - 4(r_{ \cdot} + r_{ \cdot})p^4}}{{}^{t_{ \cdot}}{}^2} > 0$
Polarisations:	2

Unitarity conditions

 $r_1 < 0 \&\& r_1 < -r_1 \&\& t_1 > 0$