Package 'bspcov'

February 6, 2024

Type Package

Title Bayesian Sparse Estimation of a Covariance Matrix

Version 1.0.0 **Date** 2024-02-04

Author Kwangmin Lee [aut],

Kyeongwon Lee <kwlee1718@gmail.com> [aut, cre],

Kyoungjae Lee [aut], Seongil Jo [aut],

Jaeyong Lee [ctb]

Maintainer Kyeongwon Lee <kwlee1718@gmail.com>

Depends R (>= 3.5)

Description Provides functions which perform Bayesian estimations of a covariance matrix for multivariate normal data. Assumes that the covariance matrix is sparse or band matrix and positive-definite. This software has been developed using funding supported by Basic Science Research Program through the National Research Foundation of Korea ('NRF') funded by the Ministry of Education ('RS-2023-00211979', 'NRF-2022R1A5A7033499', 'NRF-2020R1A4A1018207' and 'NRF-2020R1C1C1A01013338').

Imports GIGrvg, coda, progress, BayesFactor, MASS, mvnfast, matrixcalc, matrixStats, purrr, dplyr, RSpectra, Matrix, plyr, CholWishart, magrittr, future, furrr, ks, ggplot2, ggmcmc, caret, FinCovRegularization, mvtnorm

License GPL-2 LazyLoad yes

URL https://github.com/statjs/bspcov

Encoding UTF-8 **RoxygenNote** 7.3.1 **NeedsCompilation** no

LazyData true
Repository CRAN

Date/Publication 2024-02-06 16:50:08 UTC

2 bandPPP

R topics documented:

Index		19
	tissues	18
	thresPPP	
	summary.bspcov	15
	SP500_idioerr	
	sbmspcov	12
	plot.postmean.bspcov	11
	plot.bspcov	10
	estimate	
	cv.thresPPP	8
	cv.bandPPP	6
	colon	6
	bmspcov	4
	bandPPP	2

bandPPP

Bayesian Estimation of a Banded Covariance Matrix

Description

Provides a post-processed posterior for Bayesian inference of a banded covariance matrix.

Usage

```
bandPPP(X, k, eps, prior = list(), nsample = 2000)
```

Arguments

Χ	a $n \times p$ data matrix with column mean zero.
k	a scalar value (natural number) specifying the bandwidth of covariance matrix.
eps	a small positive number decreasing to 0 with default value $(log(k))^2\ast (k+log(p))/n.$
prior	a list giving the prior information. The list includes the following parameters (with default values in parentheses): A (I) giving the positive definite scale matrix for the inverse-Wishart prior, nu $(p + k)$ giving the degree of freedom of the inverse-Wishar prior.
nsample	a scalar value giving the number of the post-processed posterior samples.

bandPPP 3

Details

Lee, Lee, and Lee (2023+) proposed a two-step procedure generating samples from the post-processed posterior for Bayesian inference of a banded covariance matrix:

• Initial posterior computing step: Generate random samples from the following initial posterior obtained by using the inverse-Wishart prior $IW_p(B_0, \nu_0)$

$$\Sigma \mid X_1, \dots, X_n \sim IW_p(B_0 + nS_n, \nu_0 + n),$$

where $S_n = n^{-1} \sum_{i=1}^{n} X_i X_i^{\top}$.

• Post-processing step: Post-process the samples generated from the initial samples

$$\Sigma_{(i)} := \left\{ \begin{array}{ll} B_k(\Sigma^{(i)}) + \left[\epsilon_n - \lambda_{\min}\{B_k(\Sigma^{(i)})\}\right] I_p, & \text{ if } \lambda_{\min}\{B_k(\Sigma^{(i)})\} < \epsilon_n, \\ B_k(\Sigma^{(i)}), & \text{ otherwise }, \end{array} \right.$$

where $\Sigma^{(1)}, \ldots, \Sigma^{(N)}$ are the initial posterior samples, ϵ_n is a small positive number decreasing to 0 as $n \to \infty$, and $B_k(B)$ denotes the k-band operation given as

$$B_k(B) = \{b_{ij}I(|i-j| \le k)\}\$$
for any $B = (b_{ij}) \in R^{p \times p}$.

For more details, see Lee, Lee and Lee (2023+).

Value

Sigma a nsample \times p(p+1)/2 matrix including lower triangular elements of covariance matrix.

p dimension of covariance matrix.

Author(s)

Kwangmin Lee

References

Lee, K., Lee, K., and Lee, J. (2023+), "Post-processes posteriors for banded covariances", *Bayesian Analysis*, DOI: 10.1214/22-BA1333.

See Also

cv.bandPPP estimate

```
n <- 25
p <- 50
Sigma0 <- diag(1, p)
X <- MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = Sigma0)
res <- bspcov::bandPPP(X,2,0.01,nsample=100)</pre>
```

4 bmspcov

bmspcov

Bayesian Sparse Covariance Estimation

Description

Provides a Bayesian sparse and positive definite estimate of a covariance matrix via the beta-mixture shrinkage prior.

Usage

```
bmspcov(X, Sigma, prior = list(), nsample = list())
```

Arguments

X a $n \times p$ data matrix with column mean zero.

Sigma an initial guess for Sigma.

prior a list giving the prior information. The list includes the following parameters

(with default values in parentheses): a (1/2) and b (1/2) giving the shape parameters for beta distribution, lambda (1) giving the hyperparameter for the diagonal elements, taulsq $(10000/(n*p^4))$ giving the hyperparameter for the

shrinkage prior of covariance.

nsample a list giving the MCMC parameters. The list includes the following integers

(with default values in parentheses): burnin (1000) giving the number of MCMC samples in transition period, nmc (1000) giving the number of MCMC samples

for analysis.

Details

Lee, Jo and Lee (2022) proposed the beta-mixture shrinkage prior for estimating a sparse and positive definite covariance matrix. The beta-mixture shrinkage prior for $\Sigma = (\sigma_{ik})$ is defined as

$$\pi(\Sigma) = \frac{\pi^u(\Sigma)I(\Sigma \in C_p)}{\pi^u(\Sigma \in C_p)}, \ C_p = \{ \ \text{all} \ p \times p \ \text{positive definite matrices} \ \},$$

where $\pi^u(\cdot)$ is the unconstrained prior given by

$$\pi^{u}(\sigma_{jk} \mid \rho_{jk}) = N\left(\sigma_{jk} \mid 0, \frac{\rho_{jk}}{1 - \rho_{jk}} \tau_{1}^{2}\right)$$
$$\pi^{u}(\rho_{jk}) = Beta(\rho_{jk} \mid a, b), \ \rho_{jk} = 1 - 1/(1 + \phi_{jk})$$
$$\pi^{u}(\sigma_{jj}) = Exp(\sigma_{jj} \mid \lambda).$$

For more details, see Lee, Jo and Lee (2022).

bmspcov 5

Value

Sigma a nmc \times p(p+1)/2 matrix including lower triangular elements of covariance matrix.

Phi a nmc \times p(p+1)/2 matrix including shrinkage parameters corresponding to lower triangular elements of covariance matrix.

p dimension of covariance matrix.

Author(s)

Kyoungjae Lee and Seongil Jo

References

Lee, K., Jo, S., and Lee, J. (2022), "The beta-mixture shrinkage prior for sparse covariances with near-minimax posterior convergence rate", *Journal of Multivariate Analysis*, 192, 105067.

See Also

sbmspcov

```
set.seed(1)
n <- 20
p <- 5
# generate a sparse covariance matrix:
True.Sigma <- matrix(0, nrow = p, ncol = p)</pre>
diag(True.Sigma) <- 1</pre>
Values <- -runif(n = p*(p-1)/2, min = 0.2, max = 0.8)
nonzeroIND <- which(rbinom(n=p*(p-1)/2,1,prob=1/p)==1)
zeroIND = (1:(p*(p-1)/2))[-nonzeroIND]
Values[zeroIND] <- 0</pre>
True.Sigma[lower.tri(True.Sigma)] <- Values</pre>
True.Sigma[upper.tri(True.Sigma)] <- t(True.Sigma)[upper.tri(True.Sigma)]</pre>
if(min(eigen(True.Sigma)$values) <= 0){</pre>
  delta <- -min(eigen(True.Sigma)$values) + 1.0e-5</pre>
  True.Sigma <- True.Sigma + delta*diag(p)</pre>
}
# generate a data
X \leftarrow MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = True.Sigma)
# compute sparse, positive covariance estimator:
fout <- bspcov::bmspcov(X = X, Sigma = diag(diag(cov(X))))</pre>
post.est.m <- bspcov::estimate(fout)</pre>
sqrt(mean((post.est.m - True.Sigma)^2))
sqrt(mean((cov(X) - True.Sigma)^2))
```

6 cv.bandPPP

colon colon dataset

Description

The colon cancer dataset, which includes gene expression values from 22 colon tumor tissues and 40 non-tumor tissues.

Format

'data.frame'

Source

http://genomics-pubs.princeton.edu/oncology/affydata/.

Examples

```
data("colon")
head(colon)
```

cv.bandPPP

CV for Bayesian Estimation of a Banded Covariance Matrix

Description

Performs leave-one-out cross-validation (LOOCV) to calculate the predictive log-likelihood for a post-processed posterior of a banded covariance matrix and selects the optimal parameters.

Usage

```
cv.bandPPP(X, kvec, epsvec, prior = list(), nsample = 2000, ncores = 2)
```

Arguments

X a $n \times p$ data mat	rix with column mean zero.
---------------------------	----------------------------

kvec a vector of natural numbers specifying the bandwidth of covariance matrix.

epsvec a vector of small positive numbers decreasing to 0.

prior a list giving the prior information. The list includes the following parameters

(with default values in parentheses): A (I) giving the positive definite scale matrix for the inverse-Wishart prior, nu(p+k) giving the degree of freedom of

the inverse-Wishar prior.

nsample a scalar value giving the number of the post-processed posterior samples.

ncores a scalar value giving the number of CPU cores.

cv.bandPPP 7

Details

The predictive log-likelihood for each k and ϵ_n is estimated as follows:

$$\sum_{i=1}^{n} \log S^{-1} \sum_{s=1}^{S} p(X_i \mid B_k^{(\epsilon_n)}(\Sigma_{i,s})),$$

where X_i is the ith observation, $\Sigma_{i,s}$ is the sth posterior sample based on $(X_1,\ldots,X_{i-1},X_{i+1},\ldots,X_n)$, and $B_k^{(\epsilon_n)}$ represents the banding post-processing function. For more details, see (3) in Lee, Lee and Lee (2023+).

Value

elpd

a M \times 3 dataframe having the expected log predictive density (ELPD) for each k and eps, where M = length(kvec) * length(epsvec).

Author(s)

Kwangmin Lee

References

Lee, K., Lee, K., and Lee, J. (2023+), "Post-processes posteriors for banded covariances", *Bayesian Analysis*, DOI: 10.1214/22-BA1333.

Gelman, A., Hwang, J., and Vehtari, A. (2014). "Understanding predictive information criteria for Bayesian models." *Statistics and computing*, 24(6), 997-1016.

See Also

bandPPP

```
Sigma0 <- diag(1,50)
X <- mvtnorm::rmvnorm(25,sigma = Sigma0)
kvec <- 1:2
epsvec <- c(0.01,0.05)
res <- bspcov::cv.bandPPP(X,kvec,epsvec,nsample=10,ncores=4)
plot(res)</pre>
```

8 cv.thresPPP

cv.thresPPP

CV for Bayesian Estimation of a Sparse Covariance Matrix

Description

Performs cross-validation to estimate spectral norm error for a post-processed posterior of a sparse covariance matrix.

Usage

```
cv.thresPPP(
   X,
   thresvec,
   epsvec,
   prior = NULL,
   thresfun = "hard",
   nsample = 2000,
   ncores = 2
)
```

Arguments

X a $n \times p$ data matrix with column mean zero.

thresvec a vector of real numbers specifying the parameter of the threshold function.

epsvec a vector of small positive numbers decreasing to 0.

prior a list giving the prior information. The list includes the following parameters

(with default values in parentheses): A (I) giving the positive definite scale matrix for the inverse-Wishart prior, nu (p + k) giving the degree of freedom of

the inverse-Wishar prior.

thresfun a string to specify the type of threshold function. fun ('hard') giving the

thresholding function ('hard' or 'soft') for the thresholding PPP procedure.

nsample a scalar value giving the number of the post-processed posterior samples.

ncores a scalar value giving the number of CPU cores.

Details

Given a set of train data and validation data, the spectral norm error for each γ and ϵ_n is estimated as follows:

$$||\hat{\Sigma}(\gamma, \epsilon_n)^{(train)} - S^{(val)}||_2$$

where $\hat{\Sigma}(\gamma, \epsilon_n)^{(train)}$ is the estimate for the covariance based on the train data and $S^{(val)}$ is the sample covariance matrix based on the validation data. The spectral norm error is estimated by the 10-fold cross-validation. For more details, see the first paragraph on page 9 in Lee and Lee (2023).

estimate 9

Value

CVdf

a $M \times 3$ dataframe having the estimated spectral norm error for each thres and eps, where M = length(thresvec) * length(epsvec)

Author(s)

Kwangmin Lee

References

Lee, K. and Lee, J. (2023), "Post-processes posteriors for sparse covariances", *Journal of Econometrics*, 236(3), 105475.

See Also

thresPPP

Examples

```
Sigma0 <- diag(1,50)
X <- mvtnorm::rmvnorm(25,sigma = Sigma0)
thresvec <- c(0.01,0.1)
epsvec <- c(0.01,0.1)
res <- bspcov::cv.thresPPP(X,thresvec,epsvec,nsample=100)
plot(res)</pre>
```

estimate

Point-estimate of posterior distribution

Description

Compute the point estimate (mean) to describe posterior distribution.

Usage

```
estimate(object, ...)
## S3 method for class 'bspcov'
estimate(object, ...)
```

Arguments

```
object an object from bandPPP, bmspcov, sbmspcov, and thresPPP. ... additional arguments for estimate.
```

10 plot.bspcov

Value

Sigma

the point estimate (mean) of covariance matrix.

Author(s)

Seongil Jo

See Also

plot.postmean.bspcov

Examples

```
n <- 25
p <- 50
Sigma0 <- diag(1, p)
X <- MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = Sigma0)
res <- bspcov::bandPPP(X,2,0.01,nsample=100)
est <- bspcov::estimate(res)</pre>
```

plot.bspcov

Plot Diagnostics of Posterior Samples and Cross-Validation

Description

Provides a trace plot of posterior samples and a plot of a learning curve for cross-validation

Usage

```
## S3 method for class 'bspcov'
plot(x, ..., cols, rows)
```

Arguments

x an object from bmspcov, sbmspcov, cv.bandPPP, and cv.thresPPP.

... additional arguments for ggplot2.

cols a scalar or a vector including specific column indices for the trace plot.

rows a scalar or a vector including specific row indices greater than or equal to columns

indices for the trace plot.

Value

plot a plot for diagnostics of posterior samples \mathbf{x} .

plot.postmean.bspcov 11

Author(s)

Seongil Jo

Examples

```
set.seed(1)
n <- 100
p <- 20
# generate a sparse covariance matrix:
True.Sigma <- matrix(0, nrow = p, ncol = p)</pre>
diag(True.Sigma) <- 1</pre>
Values <- -runif(n = p*(p-1)/2, min = 0.2, max = 0.8)
nonzeroIND <- which(rbinom(n=p*(p-1)/2,1,prob=1/p)==1)
zeroIND = (1:(p*(p-1)/2))[-nonzeroIND]
Values[zeroIND] <- 0</pre>
True.Sigma[lower.tri(True.Sigma)] <- Values</pre>
True.Sigma[upper.tri(True.Sigma)] <- t(True.Sigma)[upper.tri(True.Sigma)]</pre>
if(min(eigen(True.Sigma)$values) <= 0){</pre>
  delta <- -min(eigen(True.Sigma)$values) + 1.0e-5</pre>
  True.Sigma <- True.Sigma + delta*diag(p)</pre>
}
# generate a data
X \leftarrow MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = True.Sigma)
# compute sparse, positive covariance estimator:
fout <- bspcov::sbmspcov(X = X, Sigma = diag(diag(cov(X))))</pre>
plot(fout, cols = c(1, 3, 4), rows = c(1, 3, 4))
plot(fout, cols = 1, rows = 1:3)
# Cross-Validation for Banded Structure
Sigma0 <- diag(1,50)
X <- mvtnorm::rmvnorm(25,sigma = Sigma0)</pre>
kvec <- 1:2
epsvec <- c(0.01, 0.05)
res <- bspcov::cv.bandPPP(X,kvec,epsvec,nsample=10,ncores=4)</pre>
plot(res)
```

plot.postmean.bspcov Draw a Heat Map for Point Estimate of Covariance Matrix

Description

Provides a heat map for posterior mean estimate of sparse covariance matrix

12 sbmspcov

Usage

```
## S3 method for class 'postmean.bspcov' plot(x, ...)
```

Arguments

x an object from **estimate**.

... additional arguments for ggplot2.

Value

plot

a heatmap for point estimate of covariance matrix \mathbf{x} .

Author(s)

Seongil Jo

See Also

estimate

Examples

```
n <- 25
p <- 50
Sigma0 <- diag(1, p)
X <- MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = Sigma0)
res <- bspcov::thresPPP(X, eps=0.01, thres=list(value=0.5,fun='hard'), nsample=100)
est <- bspcov::estimate(res)
plot(est)</pre>
```

sbmspcov

Bayesian Sparse Covariance Estimation using Sure Screening

Description

Provides a Bayesian sparse and positive definite estimate of a covariance matrix via screened betamixture prior.

Usage

```
sbmspcov(X, Sigma, cutoff = list(), prior = list(), nsample = list())
```

sbmspcov 13

Arguments

cutoff

X a $n \times p$ data matrix with column mean zero.

Sigma an initial guess for Sigma.

a list giving the information for the threshold. The list includes the following parameters (with default values in parentheses): method ('FNR') giving the method for determining the threshold value (method='FNR' uses the false negative rate (FNR)-based approach, method='corr' chooses the threshold value by sample correlations), rho a lower bound of meaningfully large correlations whose the defaults values are 0.25 and 0.2 for method = 'FNR' and method = 'corr', respectively. Note. If method='corr', rho is used as the threshold value. FNR (0.05) giving the prespecified FNR level when method = 'FNR'. nsimdata

Bayes factors when method = 'FNR'.

prior a list giving the prior information. The list includes the following parameters

(with default values in parentheses): a (1/2) and b (1/2) giving the shape parameters for beta distribution, lambda (1) giving the hyperparameter for the diagonal elements, tau1sq $(\log(p)/(p^2 \times n))$ giving the hyperparameter for

(1000) giving the number of simulated datasets for calculating Jeffreys' default

the shrinkage prior of covariance.

nsample a list giving the MCMC parameters. The list includes the following integers (with default values in parentheses): burnin (1000) giving the number of MCMC samples in transition period, nmc (1000) giving the number of MCMC samples

for analysis.

Details

Lee, Jo, Lee, and Lee (2023+) proposed the screened beta-mixture shrinkage prior for estimating a sparse and positive definite covariance matrix. The screened beta-mixture shrinkage prior for $\Sigma = (\sigma_{jk})$ is defined as

$$\pi(\Sigma) = \frac{\pi^u(\Sigma)I(\Sigma \in C_p)}{\pi^u(\Sigma \in C_p)}, \ C_p = \{ \text{ all } p \times p \text{ positive definite matrices } \},$$

where $\pi^u(\cdot)$ is the unconstrained prior given by

$$\pi^{u}(\sigma_{jk} \mid \psi_{jk}) = N\left(\sigma_{jk} \mid 0, \frac{\psi_{jk}}{1 - \psi_{jk}} \tau_{1}^{2}\right), \ \psi_{jk} = 1 - 1/(1 + \phi_{jk})$$

$$\pi^u(\psi_{jk}) = Beta(\psi_{jk} \mid a, b) \text{ for } (j, k) \in S_r(\hat{R})$$

$$\pi^u(\sigma_{jj}) = Exp(\sigma_{jj} \mid \lambda),$$

where $S_r(\hat{R}) = \{(j,k) : 1 < j < k \le p, |\hat{\rho}_{jk}| > r\}, \, \hat{\rho}_{jk}$ are sample correlations, and r is a threshold given by user.

For more details, see Lee, Jo, Lee and Lee (2022+).

14 sbmspcov

Value

Sigma	a nmc \times p(p+1)/2 matrix including lower triangular elements of covariance matrix.
р	dimension of covariance matrix.
Phi	a nmc \times p(p+1)/2 matrix including shrinkage parameters corresponding to lower triangular elements of covariance matrix.
INDzero	a list including indices of off-diagonal elements screened by sure screening.
cutoff	the cutoff value specified by FNR-approach.

Author(s)

Kyoungjae Lee and Seongil Jo

References

Lee, K., Jo, S., Lee, K., and Lee, J. (2023+), "Scalable and optimal Bayesian inference for sparse covariance matrices via screened beta-mixture prior", arXiv:2206.12773.

See Also

bmspcov

```
set.seed(1)
n <- 20
p <- 5
# generate a sparse covariance matrix:
True.Sigma <- matrix(0, nrow = p, ncol = p)
diag(True.Sigma) <- 1</pre>
Values <- -runif(n = p*(p-1)/2, min = 0.2, max = 0.8)
nonzeroIND <- which(rbinom(n=p*(p-1)/2,1,prob=1/p)==1)
zeroIND = (1:(p*(p-1)/2))[-nonzeroIND]
Values[zeroIND] <- 0</pre>
True.Sigma[lower.tri(True.Sigma)] <- Values</pre>
True.Sigma[upper.tri(True.Sigma)] <- t(True.Sigma)[upper.tri(True.Sigma)]</pre>
if(min(eigen(True.Sigma)$values) <= 0){</pre>
  delta <- -min(eigen(True.Sigma)$values) + 1.0e-5</pre>
  True.Sigma <- True.Sigma + delta*diag(p)</pre>
}
# generate a data
X \leftarrow MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = True.Sigma)
# compute sparse, positive covariance estimator:
fout <- bspcov::sbmspcov(X = X, Sigma = diag(diag(cov(X))))</pre>
post.est.m <- bspcov::estimate(fout)</pre>
sqrt(mean((post.est.m - True.Sigma)^2))
```

SP500_idioerr

```
sqrt(mean((cov(X) - True.Sigma)^2))
```

SP500_idioerr

SP500 dataset

Description

The idiosyncratic error of S&P 500 data

Format

'list'

Source

State Street Global Advisors (2022).

Examples

```
data("SP500_idioerr")
names(SP500_idioerr)
```

summary.bspcov

Summary of Posterior Distribution

Description

Provides the summary statistics for posterior samples of covariance matrix.

Usage

```
## S3 method for class 'bspcov'
summary(object, cols, rows, ...)
```

Arguments

object an object from bandPPP, bmspcov, sbmspcov, and thresPPP.

cols a scalar or a vector including specific column indices.

rows a scalar or a vector including specific row indices greater than or equal to columns

indices.

... additional arguments for the summary function.

16 thresPPP

Value

summary

a table of summary statistics including empirical mean, standard deviation, and quantiles for posterior samples

Note

If both cols and rows are vectors, they must have the same length.

Author(s)

Seongil Jo

Examples

```
set.seed(1)
n <- 20
p <- 5
# generate a sparse covariance matrix:
True.Sigma <- matrix(0, nrow = p, ncol = p)</pre>
diag(True.Sigma) <- 1</pre>
Values <- -runif(n = p*(p-1)/2, min = 0.2, max = 0.8)
nonzeroIND <- which(rbinom(n=p*(p-1)/2,1,prob=1/p)==1)
zeroIND = (1:(p*(p-1)/2))[-nonzeroIND]
Values[zeroIND] <- 0
True.Sigma[lower.tri(True.Sigma)] <- Values</pre>
True.Sigma[upper.tri(True.Sigma)] <- t(True.Sigma)[upper.tri(True.Sigma)]</pre>
if(min(eigen(True.Sigma)$values) <= 0){</pre>
 delta <- -min(eigen(True.Sigma)$values) + 1.0e-5</pre>
 True.Sigma <- True.Sigma + delta*diag(p)</pre>
}
# generate a data
X \leftarrow MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = True.Sigma)
# compute sparse, positive covariance estimator:
fout <- bspcov::sbmspcov(X = X, Sigma = diag(diag(cov(X))))</pre>
summary(fout, cols = c(1, 3, 4), rows = c(1, 3, 4))
summary(fout, cols = 1, rows = 1:p)
```

thresPPP

Bayesian Estimation of a Sparse Covariance Matrix

Description

Provides a post-processed posterior (PPP) for Bayesian inference of a sparse covariance matrix.

thresPPP 17

Usage

thresPPP(X, eps, thres = list(), prior = list(), nsample = 2000)

Arguments

X a $n \times p$ data matrix with column mean zero.

eps a small positive number decreasing to 0.

thres a list giving the information for thresholding PPP procedure. The list includes

the following parameters (with default values in parentheses): value (0.1) giving the positive real number for the thresholding PPP procedure, fun ('hard') giving the thresholding function ('hard' or 'soft') for the thresholding PPP pro-

cedure.

prior a list giving the prior information. The list includes the following parameters

(with default values in parentheses): A (I) giving the positive definite scale matrix for the inverse-Wishart prior, nu (p + 1) giving the degree of freedom of

the inverse-Wishar prior.

nsample a scalar value giving the number of the post-processed posterior samples.

Details

Lee and Lee (2023) proposed a two-step procedure generating samples from the post-processed posterior for Bayesian inference of a sparse covariance matrix:

 Initial posterior computing step: Generate random samples from the following initial posterior obtained by using the inverse-Wishart prior IW_p(B₀, ν₀)

$$\Sigma \mid X_1, \dots, X_n \sim IW_p(B_0 + nS_n, \nu_0 + n),$$

where $S_n = n^{-1} \sum_{i=1}^n X_i X_i^{\top}$.

• Post-processing step: Post-process the samples generated from the initial samples

$$\Sigma_{(i)} := \left\{ \begin{array}{ll} H_{\gamma_n}(\Sigma^{(i)}) + \left[\epsilon_n - \lambda_{\min}\{H_{\gamma_n}(\Sigma^{(i)})\}\right]I_p, & \text{ if } \lambda_{\min}\{H_{\gamma_n}(\Sigma^{(i)})\} < \epsilon_n, \\ H_{\gamma_n}(\Sigma^{(i)}), & \text{ otherwise }, \end{array} \right.$$

where $\Sigma^{(1)},\ldots,\Sigma^{(N)}$ are the initial posterior samples, ϵ_n is a positive real number, and $H_{\gamma_n}(\Sigma)$ denotes the generalized threshodling operator given as

$$(H_{\gamma_n}(\Sigma))_{ij} = \left\{ \begin{array}{ll} \sigma_{ij}, & \text{if } i = j, \\ h_{\gamma_n}(\sigma_{ij}), & \text{if } i \neq j, \end{array} \right.$$

where σ_{ij} is the (i,j) element of Σ and $h_{\gamma_n}(\cdot)$ is a generalized thresholding function.

For more details, see Lee and Lee (2023).

Value

Sigma a nsample \times p(p+1)/2 matrix including lower triangular elements of covariance matrix.

p dimension of covariance matrix.

18 tissues

Author(s)

Kwangmin Lee

References

Lee, K. and Lee, J. (2023), "Post-processes posteriors for sparse covariances", *Journal of Econometrics*.

See Also

cv.thresPPP

Examples

```
n <- 25
p <- 50
Sigma0 <- diag(1, p)
X <- MASS::mvrnorm(n = n, mu = rep(0, p), Sigma = Sigma0)
res <- bspcov::thresPPP(X, eps=0.01, thres=list(value=0.5,fun='hard'), nsample=100)
est <- bspcov::estimate(res)</pre>
```

tissues

tissues dataset

Description

The tissues data of colon cancer dataset, which includes gene expression values from 22 colon tumor tissues and 40 non-tumor tissues.

Format

'numeric'

Source

http://genomics-pubs.princeton.edu/oncology/affydata/.

```
data("tissues")
head(tissues)
```

Index

```
* banded
    bandPPP, 2
    cv.bandPPP, 6
* covariance
    bandPPP, 2
    bmspcov, 4
    cv.bandPPP, 6
    cv.thresPPP, 8
    sbmspcov, 12
    thresPPP, 16
* data
    colon, 6
    SP500_idioerr, 15
    {\tt tissues}, 18
* sparse
    bmspcov, 4
    cv.thresPPP, 8
    sbmspcov, 12
    thresPPP, 16
bandPPP, 2
bmspcov, 4
colon, 6
cv.bandPPP, 6
cv.thresPPP, 8
estimate, 9
plot.bspcov, 10
plot.postmean.bspcov, 11
sbmspcov, 12
SP500_idioerr, 15
summary.bspcov, 15
thresPPP, 16
tissues, 18
```