Homework4.md 2025-10-27

Homework4

姓名 学号

Q1(1)

Assume we have following address binding table and value of registers :

Address	Value	Register	Value
0x100	0x10	%eax	0x10
0x110	0x11	%ebx	0x100
0x120	0x12		
0x190	0x19		
0x200	0x20		

Answer1(1)

Please fill in the table below

Operand	Value
%ebx	
\$0x150	
0x170	
(%ebx)	
(%ebx,%eax)	
0x30(%ebx)	
80(%ebx,%eax,2)	

Q1(2)

Suppose registers and bound values will be reset as above after each instruction. Please fill in the table below: (Write all if there are more than one destinations and None if there is no destination)

Answer1(2)

Instruction	Destination	Value
addl %eax,%ebx		_

Homework4.md 2025-10-27

Instruction	Destination	Value
subl %eax,(%ebx)		
leal 0x50(%eax), %edx		
movzbl %al, %ebx		
movsbl %bh, %ecx		

Q1(3)

Assume the initial value of the flags is 0. Fill the table below

Answer1(3)

Instruction	OF	SF	ZF	CF
leal(%eax),%ebx				
subl %ebx, %eax				
xorl %eax, %eax				
test %eax, %ebx				

Q2

- Translate the following assembly into C codes.
- You can name local variables represented by -12(%ebp), -8(%ebp)...or a,b,c... freely as you like.
- The beginning of C codes is given.

Homework4.md 2025-10-27

```
push %ebp
   movl %esp,%ebp
   subl $0x10, %esp
   movl $0x3,-0xc(%ebp)
   movl $0x2,-0x8(%ebp)
         $0x1,-0x4(%ebp)
   movl
   jmp
         .L1
.L2
   movl -0x4(\%ebp), \%eax
   movl %eax,-0x10(%ebp)
        -0x8(%ebp),%eax
   movl
   movl %eax,-0x4(%ebp)
        -0x10(%ebp),%eax
   movl
   addl %eax,-0x8(%ebp)
   addl $0x1,-0xc(%ebp)
.L1
   cmpl
         $0x5,-0xc(%ebp)
   jle
         .L2
   movl
         -0x8(%ebp), %eax
   leave
   ret
```

Answer2