Repères et distances 10

Vers la géométrie repérée

Figure 10.1 - Quel chemin est le plus long? (d'abord sans quadrillage, puis avec quadrillage et conclure en rajoutant le repère.)

10.1 Repères et repères orthonormés

 $O,\ I$ et J trois points non alignés. Un repère (O;I,J) (ou $(O;\overrightarrow{OI},\overrightarrow{OJ})),$ du plan est formé de :

- $\ensuremath{\textcircled{1}}$ origine O du repère
- @ (OI) est l'axe gradué des abscisse (des x)

Chaque point M du plan correspond à un unique couple de coordonnées $(x(M); y(M)) \in \mathbb{R} \times \mathbb{R}$. Ces coordonnées se lisent sur les deux axes en tracant leurs parallèles passant par M.

Figure 10.2 – Dans un repère orthonormé (O; I, J), le triangle OIJ est rectangle isocèle (gauche). Le repère (O; I, J) est orthogonal si OIJ est rectangle mais pas isocèle (milieu). Les repères peuvent être obliques (droite).

Par la suite, on travaille avec des **repères orthonormés** : ortho-gonal les axes sont perpendiculaires normé la longueur des segments unitaires sur les deux axes est la mêmes

10.2 Distance dans les repères orthonormés

Figure 10.3 – Le plan est muni d'un repère orthonormé (O,I,J). ABC est rectangle en C.

 $D\'{e}monstration$. Le repère est orthonormé, le triangle ABC rectangle en C. D'après théorème de Pythagore :

$$AC = |x_B - x_A| \qquad BC = |y_B - y_A|$$

$$AB^2 = AC^2 + CB^2$$

$$AB^2 = |x_B - x_A|^2 + |y_B - y_A|^2$$

$$AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2 \qquad |a|^2 = a^2$$

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Théorème 10.1 Dans un repère orthonormé. La distance entre les points $A(x_A; y_A)$ et $B(x_B; y_B)$ est donnée par les formules :

$$AB^{2} = (x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}$$
$$AB = \sqrt{(x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}}$$

LG Jeanne d'Arc, 2nd
Année 2022/2023

10.2.1 Exercices : formule de la distance

Exercice 1 Dans le repère oblique (O; I, J) ci-dessous, préciser les coordonnées des points suivants :

O(I(J(

A(

B(

C(D(

E(

Dans les exercices suivants, le repère (O; I, J) est orthonormé.

Exercice 2 Dans un repère orthonormé, A(1;5) et B(-2;7):

a) Cocher les expressions vraies.

	Vrai	Faux
$1/AB^2 = (1+2)^2 - (5-7)^2 =$		
$2/AB^2 = (1-2)^2 + (5-7)^2 =$		
$3/AB^2 = (1-5)^2 + (-2-7)^2 =$		
$4/AB^2 = (1+2)^2 + (5-7)^2 =$		
$ 5/AB = (1-(-2))^2 + (5-7)^2 =$		
$6/AB^2 = (-2-1)^2 + (7-5)^2 =$		

b) Calculer AB.

Travail en autonomie.

- pour 3 et 4, n'hésiter pas à représenter à main levée la figure puis calculer.
- 5, 6 et 7 tournent autour de la nature d'un triangle.
- 8 et 9 travaillent le cercle.
- 10. La tangente en A au cercle de centre O est LA droite perpendiculaire au rayon [OA]. Faire un
- 11 est un prétexte pour revenir sur les développements d'expressions avec racines carrées.

Exercice 3 Soit les points A(3;4), B(3;-2) et C(-5;-2).

- a) Préciser un segment horizontal, un segment vertical et donner leurs longueurs.
- b) Calculer la longueur du segment restant.
- c) Calculer les angles du triangle au dixième de degré près.

Exercice 4 Soit les points A(1;8), B(4;1) et C(7;1) dans un repère orthonormé (O;I,J).

Calculer le périmètre et l'aire du triangle ABC.

Exercice 5

Soit A(4; -11), B(10; -10) et C(2; 1).

- a) Calculer AB^2 , AC^2 et BC^2
- b) Écrire les longueurs AB, AC et BC sous la forme $a\sqrt{k}$, $a,k\in\mathbb{N}$, k le plus petit possible.
- c) Préciser et justifier la nature du triangle ABC (équilatéral non isocèle, isocèle, rectangle).

Exercice 6 Même questions pour les points A(1;3), B(13;19) et C(17;15).

Exercice 7 Même questions pour les points A(1;20), B(21;35) et C(-14;40).

Exercice 8

Déterminer le rayon du cercle de diamètre [BC] pour B(-6;-1) et C(-2;7).

Déterminer si le point B(-6,5) est intérieur, extérieur ou appartient au cercle \mathscr{C} de centre A(8,-2) de rayon $\frac{7}{3}\sqrt{15}$.

Exercice 10

Soit A(12;6) et M(-12;24). Montrer que la droite (AM) est tangente au cercle de centre A passant par O, et préciser la distance entre A et (OM)

Exercice 11

Calculer PQ dans chacun des cas suivants. Exprimer la longueur sous la forme d'un entier ou $a\sqrt{k}$, avec kun entier le plus petit possible, et a entier.

- a) P(2;1) et Q(1;5)b) P(-2;1) et Q(3;7)
- c) P(-3; -4) et Q(-6; -7)d) P(2; 7) et Q(-1; -2)e) $P(9; 5\sqrt{3})$ et $Q(2; 7\sqrt{3})$ f) $P(7\sqrt{2}; 4\sqrt{2})$ et $Q(3\sqrt{2}; -4\sqrt{2})$

Exercice 12

 $\mathscr{C}(O;7)$ est le cercle de centre O(0;0) et de rayon 7. Justifier soigneusement qu'un point M(x;y) est sur le cercle si et seulement si ses coordonnées vérifient l'équation $x^2 + y^2 = 49$.

Exercice 13

 $\mathscr{C}(A;4)$ est le cercle de centre A(1;2) et de rayon 4. Justifier soigneusement qu'un point M(x;y) est sur le cercle si et seulement si ses coordonnées vérifient l'équation $x^2 - 2x + y^2 - 4y = 11$.

LG Jeanne d'Arc, 2nd Année 2022/2023 solution de l'exercice 2.

	Vrai	Faux
$1/AB^2 = (1+2)^2 - (5-7)^2 =$		\boxtimes
$2/AB^2 = (1-2)^2 + (5-7)^2 =$		
$3/AB^2 = (1-5)^2 + (-2-7)^2 =$		\boxtimes
4/ $AB^2 = (1+2)^2 + (5-7)^2 =$		
$ 5/AB = (1-(-2))^2 + (5-7)^2 =$		
$6/AB^2 = (-2-1)^2 + (7-5)^2 =$		

$$AB = \sqrt{3^2 + 2^2} = \sqrt{13}$$

solution de l'exercice 5. $AB = \sqrt{37}$. $AC = 2\sqrt{37}$. $BC = \sqrt{185}$. Triangle rectangle.

solution de l'exercice 6. AB = AC = 20. $BC = 4\sqrt{2}$. Triangle isocèle.

solution de l'exercice 7. AB=AC=25. $BC=25\sqrt{2}.$ Triangle rectangle isocèle.

solution de l'exercice 8 . $r = 2\sqrt{5}$.

solution de l'exercice 9. $BC = 7\sqrt{5}$. Point extérieur au cercle.

solution de l'exercice 11.

a)
$$PQ = \sqrt{17}$$

$$\begin{array}{|c|c|} c & PQ = 2\sqrt{3} \\ d) & PQ = 10 \end{array}$$

e)
$$PQ = \sqrt{61}$$

b)
$$PQ = \sqrt{61}$$

d)
$$PQ = 10$$

f)
$$PQ = 4\sqrt{10}$$

solution de l'exercice 12.

$$M(x;y) \in \mathcal{C}(O;7) \iff OM = 7$$

 $\iff OM^2 = 49$
 $\iff (x-0)^2 + (y-0)^2 = 49$
 $\iff x^2 + y^2 = 49$

L'équation $x^2 + y^2 = 49$ sur les coordonnées (x; y) caractérise les points du cercle.

On dira que le cercle $\mathscr C$ a pour équation $x^2+y^2=49$. En abrégé : $\mathscr C(O;7)$: $x^2+y^2=49$