WWW 2012

New Objective Functions for Social Collaborative Filtering

Joseph Noel, **Scott Sanner**, Khoi-Nguyen Tran, Peter Christen, Lexing Xie, Edwin Bonilla, Ehsan Abbasnejad, Nicolas Della Penna

ANU Link Recommender (LinkR)

Recommends 3 daily links on Facebook

Non-friend Recommendation (only link context)

> Rating + Optional Link Feedback

Friend Recommendation (friend message + link context)

ANU Link Recommender (LinkR)

Recommends 3 daily links on Facebook

s App View Non-friend http://www.youtube.com/watch?v=rtOvBOTyX00 Reco How to leverage social network and App data to learn to recommend links? This talk: Existing baselines New algorithms (training objectives) Live user trial evaluation (5 months) Lessons learned and future work What aspects of religion should atheists (respectfully) adopt? Alain de Botton suggests a "religion for atheists" -- call it Atheism 2.0 -- that incorporates religious forms and traditions to satisfy our human need for connection, ritual and transcendence.

Recommendation

Predict missing from observed ratings?

Social Recommendation

Adds indirect social context to users

Question 1:

What existing (social) collaborative filtering techniques make good Facebook link recommenders?

Content-based Filtering (CBF)

Predict like / dislike directly from features

Collaborative Filtering (CF): KNN

No features? k-nearest neighbor, e.g., k=2

Collaborative Filtering: PMF

Or low k-rank matrix factorization, e.g. k=2

Features in CF: Matchbox

$$\min_{U, V} \sum_{(\mathbf{x}, \mathbf{y}) \in D} \frac{1}{2} (R_{\mathbf{x}, \mathbf{y}} - [\sigma] \mathbf{x}^T U^T V \mathbf{y})^2$$

Project features into latent space – helps coldstart problem.

Reduces to previous PMF CF if x, y are indicators.

Social Collaborative Filtering

We find that social CF based on matrix factorization works best.

Question 2:

Can we extend objectives to make it work better?

Yes, we introduce new objective functions for social collaborative filtering.

Objective Framework

$$\min_{\mathbf{w},\ U,\ V} Obj = \sum_{i} \lambda_{i} Obj_{i}$$

Prediction objectives and regularizers to constrain learning.

Standard Objective

$$Obj_{pmcf} = \sum_{(\mathbf{x}, \mathbf{y}) \in D} \frac{1}{2} (R_{\mathbf{x}, \mathbf{y}} - [\sigma] \mathbf{x}^T U^T V \mathbf{y})^2 =$$

Other predictors aside from MF?

Standard Regularizers

$$Obj_{ru} = \frac{1}{2} ||U||_{Fro}^{2} = \frac{1}{2} \operatorname{tr}(U^{T}U) \qquad Obj_{rv} = \frac{1}{2} \operatorname{tr}(V^{T}V)$$

$$Obj_{rw} = \frac{1}{2} ||\mathbf{w}||_{2}^{2} = \frac{1}{2} \mathbf{w}^{T} \mathbf{w}$$
This is first pro-

$$Obj_{rv} = \frac{1}{2}\operatorname{tr}(V^T V)$$

Social Regularizers

$$Obj_{rs} = \sum_{\mathbf{x}} \sum_{\mathbf{z} \in friends(\mathbf{x})} \frac{1}{2} (S_{\mathbf{x},\mathbf{z}} - \langle U\mathbf{x}, U\mathbf{z} \rangle)^2$$

This is first proposal... feature-based S.R.

> Other social regularizers?

Proposal 1 ½

 Use interactions to learn latent spectral projection of user and features

$$Obj_{rss} = \sum_{\mathbf{x}} \sum_{\mathbf{z} \in friends(\mathbf{x})} \frac{1}{2} S_{\mathbf{x},\mathbf{z}}^{+} \|U\mathbf{x} - U\mathbf{z}\|_{2}^{2}$$

$$= \sum_{\mathbf{x}} \sum_{\mathbf{z} \in friends(\mathbf{x})} \frac{1}{2} S_{\mathbf{x},\mathbf{z}}^{+} \|\mathbf{x} - \mathbf{z}\|_{2}^{2}$$

Proposal II

Directly model information diffusion

$$Obj_{phy} = \sum_{(\mathbf{x}, \mathbf{y}) \in D} \frac{1}{2} (R_{\mathbf{x}, \mathbf{y}} - (\sigma) \mathbf{w}^T \mathbf{f}_{\mathbf{x}, \mathbf{y}} - [\sigma] \mathbf{x}^T U^T V y)^2$$

Features such as:

Did user z (a friend of x), also like y?

Proposal III

- Exploit the fact that users have common
 - interests in restricted areas
 - Use co-preferences $P_{x,z,y}$
 - Did users x and z (dis)like item y?

Reweight user regularization according to latent dimensions for co-preferred item.

$$Obj_{cp} = \sum_{(\mathbf{x}, \mathbf{z}, \mathbf{y}) \in C} \frac{1}{2} (P_{\mathbf{x}, \mathbf{z}, \mathbf{y}}) - \langle U\mathbf{x}, U\mathbf{z} \rangle_{V\mathbf{y}})^{2}$$
$$= \sum_{(\mathbf{x}, \mathbf{z}, \mathbf{y}) \in C} \frac{1}{2} (P_{\mathbf{x}, \mathbf{z}, \mathbf{y}} - \mathbf{x}^{T} U^{T} \operatorname{diag}(V\mathbf{y}) U\mathbf{z})^{2}$$

And also spectral variant

Social Recommendation Evaluation via User Trials

Link Recommendation on Facebook

ANU Link Recommender (LinkR)

Recap: Recommend 3 daily links on Facebook

Non-friend Recommendation (only link context)

http://www.voutube.com/watch?v=rtOvBOTvX00

Christina Perri - A Thousand Years (Official Music Video) @ 2011 WMG "a thousand years" on itunes: http://atlr.ec/npHAdW directed by: jay martin "a thousand years" is a brand new song me + my best friend david hodge...

Rating + Optional Link Feedback

Rate this Recommendation:
Not Rated Like Dislike Comment: How was this recommendation? Save Comment

Post Link to Your Wall Recommended on Mon, 30 Jan 2012 at 09:39

Friend Recommendation (friend message + link context)

Original Post from Khoi-Nguyen Tran on Wed, 18 Jan 2012 at 05:00 Message: Religion for Atheists

http://www.ted.com/talks/alain_de_botton_atheism_2_0.html? awesm=on.ted.com_deBotton&utm_campaign=&utm_medium=on.ted.comstatic&utm_source=direct-on.ted.com&utm_content=awesmpublisher

Alain de Botton: Atheism 2.0 | Video on TED.com What aspects of religion should atheists (respectfully) adopt? Alain de Botton suggests a "religion for atheists" -- call it Atheism 2.0 -- that incorporates religious forms and traditions to satisfy our human need for connection, ritual and transcendence.

Trials and Algorithms

- Trial 1: Baselines
 - SVM (Content-based filtering CBF)
 - KNN (Collaborative filtering CF)
 - Matchbox MB (CF + CBF)
 - Social Matchbox SMB (CBF + CF + Soc. Reg)
- Trial 2: New Objectives
 - SMB
 - Spectral Reg. variant of SMB Sp. MB
 - SMB + Information Diffusion S. Hybrid
 - MB + Spectral Copreference Reg. S. CP

LinkR Statistics

Table	#Records (App Users)	#Records (App User and Friends)
Users	103	39,850
Column	#Non-empty (App Users)	#Non-empty (App User
		and Friends)
Gender	102	36,401
Birthday	103	27,624

Breakdown	Count (App Users)	Count (App User and Friends)
Male	73	19,742
Female	29	16,659
High School	104	29,503
College	115	29,223
Graduate School	56	7733

App Users	Posts	Tags	Comments	Likes
Wall	27,955	5,256	15,121	11,033
Link	3,974		5,757	4,279
Photo	4,147	22,633	8,677	5,938
Video	211	2,105	1,687	710
A TT	D 4	Tr.		T •1
App Users	Posts	Tags	Comments	Likes
App Users and Friends	Posts	Tags	Comments	Likes
1	3,384,740	912,687	2,152,321	1,555,225
and Friends				
and Friends Wall	3,384,740		2,152,321	1,555,225

LinkR Usage Statistics

Trial 1 - Aug. 25, 2011 to Oct. 13, 2011

	SMB	MB	SVM	KNN	Total
Users All	26	26	28	28	108
Users ≥ 10	13	9	13	5	40
Users ≥ 30	9	3	11	3	26
Ratings All	819	526	901	242	2508
Ratings ≥ 10	811	505	896	228	2440
Ratings ≥ 30	737	389	851	182	2159
Clicks All	383	245	413	218	1259

Trial 2 – Oct. 14, 2011 to Feb. 10, 2012

	SMB	Sp.MB	Sp.CP	SHyb.	Total
Users All	27	27	29	28	111
Users ≥ 10	15	11	8	12	46
Users ≥ 30	12	9	5	10	36
Ratings All	1434	882	879	614	3809
Ratings ≥ 10	1411	878	863	602	3754
Ratings ≥ 30	1348	850	802	570	3570
Clicks All	553	320	278	199	1350

Likes (dark) over

Trial 1: Baselines

Non-friends

Trial 2: New Objectives

Click Behavior

Impact of Popularity

Individual Link Comments

Individual Link Comments

Comment Type	#	%
not interested	88	36.5%
wrong language	37	15.4%
really liked it!	35	14.5%
bad YouTube	25	10.4%
seen it already	25	10.4%
problem / dead	20	8.3%
outdated	7	2.9%
miscellaneous	4	1.7%

Survey

```
User Survey Comments
```

want more control over recommendations made (music, blogs, news)

want option to see > 3 recommendations

links need description / context or explanation of recommendation

more variety, diversity

Experimental Design in Retrospect

- Originally wanted to do active learning
 - In our Google Grant proposal
 - But with user uptake, difficult to evaluate this
 - Need very active users (only 25% were active)
- But we were stuck with the original experimental design after the first trial
 - Hard to statistically compare small user groups
 - If do again, would instead interleave interactions (each recommendation comes from a randomly selected algorithm – so all users see all algorithms)
 - But main results of Spec. MB significant nonetheless

Conclusions

- Social spectral regularization
 - Undeniably the top-performer
 - As good as direct information diffusion features
 - Interactions stronger than co-preferences
 - Or co-preferences harder to optimize?

Overall

- Machine learning works!
 - Better than more ad-hoc methods like KNN
 - Power of latent factorization methods
- User socially informed regularizers!
 - In general, users who interact a lot have similar preferences!

Future Work

Are all interactions equal?

- No!
 - Learning predictiveness of fine-grained interactions can do as well as MF, but with simple classifiers!
 - Work in progress...

Thank you!

Especially to Doug Aberdeen (Google Zurich) for supporting our Google Grant

And to Sally-Ann Williams for 100+ pairs of Google flip-flops, which have helped us attract users for our live trials!

Extra Slides

Aside: Matrix Definitions

$$U = \begin{bmatrix} U_{1,1} & \dots & U_{1,I} \\ \vdots & U_{k,i} & \vdots \\ U_{K,1} & \dots & U_{K,I} \end{bmatrix}$$

$$V = \begin{bmatrix} V_{1,1} & \dots & V_{1,J} \\ \vdots & V_{k,j} & \vdots \\ V_{K,1} & \dots & V_{K,J} \end{bmatrix}$$

Proposal I

Use interactions to learn latent projection of user and features

$$Obj_{rs} = \sum_{\mathbf{x}} \sum_{\mathbf{z} \in friends(\mathbf{x})} \frac{1}{2} (S_{\mathbf{x},\mathbf{z}} - \langle U\mathbf{x}, U\mathbf{z} \rangle)^{2}$$
$$= \sum_{\mathbf{x}} \sum_{\mathbf{z} \in friends(\mathbf{x})} \frac{1}{2} (S_{\mathbf{x},\mathbf{z}} - \mathbf{x}^{T} U^{T} U\mathbf{z})^{2}$$