CSCB63 Tutorial, Week 2

Yufei Cui

January 14, 2019

1 Complexity

1.1 Big Notations

We define a series of notations to help us understand and describe the asymptotic relations between functions. We will use the conventional O, Ω , and Θ notations to represent a function's asymptotic upper, lower, and tight bound, respectively.

Definition. Let $g: \mathbb{N} \to \mathbb{R}_{>0}$

$$O(g) = \{ f \mid \exists c \in \mathbb{R}_{>0} \text{ and } n_0 \in \mathbb{N} \text{ such that, if } n \ge n_0 \text{ then } f(n) \le c \cdot g(n) \}$$
 (1)

$$\Omega(g) = \{ f \mid \exists c \in \mathbb{R}_{>0} \text{ and } n_0 \in \mathbb{N} \text{ such that, if } n \ge n_0 \text{ then } c \cdot g(n) \le f(n) \}$$
 (2)

$$\Theta(g) = \{ f \mid \exists c_1, c_2 \in \mathbb{R}_{>0}, n_0 \in \mathbb{N} \text{ such that, if } n \ge n_0 \text{ then } c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}^1$$
(3)

Note. Notice how O(g), $\Omega(g)$, and $\Theta(g)$ are all defined as sets, you can think of them as being family of functions. When we say "f is big-O of g" we really mean to say f belongs in the set O(g), that is, $f \in O(g)$. Though it's often the case that textbooks use the notation f = O(g) to mean the same thing. Refer to chapter 3.1 in the C.L.R.S for more detail.

Exercise 1.1. Using definitions 1, 2, and 3, confirm the following:

- (a) $n \in O(n/2 1)$
- (b) $n^2 n + \sqrt{n}/3 \in \Omega(n^2)$
- (c) $\log_2 n! \in \Theta(n \log_2 n)$
- (d) $n \notin O(n^{1+\sin(n)})$
- (e) $n \notin \Omega(n^{1-\cos(n)})$

 $^{{}^{1}\}Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$ is an equivalent definition.

Example 1.1. Below is a table with commonly seen functions distributed across the top row and left most column. A check mark is placed in the cell if and only if the column function is big-O of the row function.²

$(col) \in O(row)$	$\ln(n)$	$\lg(n)$	$\lg(n^2)$	$(\lg(n))^2$	n	$n \lg(n)$	2^n	2^{3n}
ln(n)	√	✓	✓	√	√	√	\checkmark	√
$\lg(n)$	√	✓	✓	✓	√	√	√	√
$\lg(n^2)$	√	✓	✓	✓	√	√	√	√
$(\lg(n))^2$				✓	√	√	√	√
n					√	√	√	√
$n \lg(n)$						√	√	√
2^n							√	√
2^{3n}								√

Table 1: Big-O Table

Example 1.2. We will prove a selected few examples from Table 1

(a)
$$n \in O(n \lg(n))$$

Proof. we want to find a constant c and a sufficiently large value n_0 so that we can bound n by $cn \lg(n)$

Choose
$$c = 1$$
, $n_0 = 2$
Suppose $n \ge n_0$

$$n = 1 \cdot n \cdot 1$$

 $\leq 1 \cdot n \cdot \lg(n)$ $(n \geq n_0 = 2 \implies 1 \leq \lg(n))$
 $= cn \lg(n)$

(b) $(\lg(n))^2 \in O(n)$

Proof.

 $^{^{2}\}ln(n)$ is the natural log and $\lg(n)$ is $\log_{2}(n)$

³Your TA might have drawn a similar table where the check mark is placed if and only if the row function is big-O of the column function, they are equivalent.

Choose
$$c = 1$$
, $n_0 = 3$
Suppose $n \ge n_0$

$$(\lg(n))^{2} = \lg(n) \cdot \lg(n)$$

$$\leq \sqrt{n} \cdot \sqrt{n}$$

$$= n$$

$$= 1 \cdot n$$

$$= cn$$

$$(n \geq n_{0} = 3 \implies \lg(n) \leq \sqrt{n})$$

(c) $n \lg(n) \notin O(n)$

Proof. Suppose on the contrary that the statement is true. That is, $n \lg(n) \in O(n)$, then there exist some c and some n_0 such that if $n \ge n_0$ then $n \lg(n) \le cn$

Let
$$n \ge \max\{n_0, 1, 2^c + 1\}$$

 $n \lg(n) \le cn$ (by definition of big-O)
 $\implies \lg(n) \le c$ ($n \ge 1 \implies n \ne 0$)
 $\implies 2^{\lg(n)} \le 2^c$ (raise both sides to the power of 2)
 $\implies n \le 2^c$ (log property)

We let $n \ge \max\{n_0, 1, 2^c + 1\} \implies n \ge 2^c + 1$ but $n \le 2^c$. That is a contradiction as there's no such $c \in \mathbb{R}_{\ge 0}$ such that $2^c + 1 \le n \le 2^c$. Therefore, our original assumption must have been false, so $n \lg(n) \notin O(n)$.

(d) Using the limit theorems, prove $2^{3n} \notin O(2^n)$

Proof. One of the limit theorem states

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty\implies f(n)\notin O(g(n))$$

Applying the above theorem

$$\lim_{n \to \infty} \frac{2^{3n}}{2^n}$$

$$= \lim_{n \to \infty} \frac{(2^n)^3}{2^n}$$
 (by exponent law)
$$= \lim_{n \to \infty} \frac{(2^n)(2^n)(2^p)}{2^n}$$

$$= \lim_{n \to \infty} (2^n)^2$$

$$= \infty$$

Therefore, $2^{3n} \notin O(2^n)$ by the limit theorem.

Example 1.3. We'll take our understanding of the definitions one step further and create a Big-Theta table similar to Table 1

$(\operatorname{col}) \in \Theta (\operatorname{row})$	$\ln(n)$	$\lg(n)$	$\lg(n^2)$	$(\lg(n))^2$	n	$n \lg(n)$	2^n	2^{3n}
$\ln(n)$	√	✓	✓					
$\lg(n)$	√	✓	✓					
$\lg(n^2)$	√	√	✓					
$(\lg(n))^2$				√				
n					\checkmark			
$n \lg(n)$						√		
2^n							√	
2^{3n}								√

Table 2: Big-Theta Table

Example 1.4. Big Omega/Theta proofs

(a)
$$3n^2 - 4n \in \Omega(n^2)$$

Proof.

Choose c = 1, $n_0 = 2$

Suppose $n \ge n_0$

$$3n^{2} - 4n \ge 3n^{2} - 2n^{2}$$
 (see note below)
$$= n^{2}$$

$$= cn^{2}$$

Note. We want an n_0 such that $-4n \ge -2n^2$, we will try to find the range of n_0 by simplifying the inequality

$$-4n \ge -2n^2$$

$$\implies 4n \le 2n^2$$

$$\implies 2n \le n^2$$

$$\implies 2 \le n \qquad \text{(we've found our } n_0\text{)}$$

(b)
$$f(n) = 6n^5 + n^2 - n^3 \in \Theta(n^5)$$

Proof. There are many ways to prove this, here's one way

Choose $c_1 = 5$, $c_2 = 7$, $n_0 = 1$ Suppose $n \ge n_0$

$$6n^{5} + n^{2} - n^{3} \le 6n^{5} + n^{2}$$

 $\le 6n^{5} + n^{5}$
 $= 7n^{5}$
 $= c_{1}n^{5}$
 $(n \ge 1 \implies n^{2} \le n^{5})$

$$6n^{5} + n^{2} - n^{3} \ge 6n^{5} - n^{3}$$

 $\ge 6n^{5} - n^{5}$
 $= 5n^{5}$
 $= c_{2}n^{5}$
 $(n \ge 1 \implies -n^{3} \ge -n^{5})$

Therefore, whenever $n \ge 1 \implies c_1 n^5 \le f(n) \le c_2 n^5$

Exercise 1.2. Let functions $f, g, h : \mathbb{N} \to \mathbb{R}_{\geq 0}$. Prove the following properties:

(a)
$$f \in O(g) \land g \in O(h) \implies f \in O(h)$$

(b)
$$f \in \Omega(g) \land g \in \Omega(h) \implies f \in \Omega(h)$$

(c)
$$f \in \Theta(g) \land g \in \Theta(h) \implies f \in \Theta(h)$$

(d)
$$f \in O(g) \iff g \in \Omega(f)$$

(e)
$$f \in \Theta(g) \iff g \in \Theta(f)$$

(f)
$$f + g \in O(\max\{f, g\})$$

(g)
$$f \cdot g \in O(f \cdot g)$$

(h)
$$\exists u, v : \mathbb{N} \to \mathbb{R}_{\geq 0}, u \notin O(v) \land v \notin O(u)$$
 [Hint: Exercise 1.1]

Example 1.5. Exercise 1.2 can be a little intimidating for some of you who haven't seen these or has forgotten them, so we will cover some of them.

(a)
$$f \in O(g) \land g \in O(h) \implies f \in O(h)$$

This is called the *transitive* property. This intuitively makes sense if you consider the implication: f can be asymptotically bounded above by g and similarly g can be bounded by h then you would imagine that f can be also bounded above by h.

Proof. Suppose $f \in O(g) \land g \in O(h)$. That is, $\exists c_g, n_g$ such that $f(n) \leq c_g g(n)$ whenever $n \geq n_g$. Likewise, $\exists c_h, n_h$ such that $g(n) \leq c_h h(n)$ whenever $n \geq n_h$.

Choose $c = max\{c_g, c_h, c_g \cdot c_h\}, n_0 = max\{n_g, n_h\}$ Suppose $n \ge n_0$

$$f(n) \le c_g g(n)$$
 (by definition of $f \in O(g)$)
 $\le c_g \cdot (c_h h(n))$ (by definition of $g \in O(h)$)
 $\le (c_g \cdot c_h) h(n)$
 $\le ch(n)$

(f) $f + g \in O(\max\{f, g\})$

This is called the *sum* property.⁴ This property is a more formal way of saying we are allowed to "ignore the lower order terms" of a function when we deal with Big-O. For example, $n^2 + n + \log n \in O(n^2)$.

Proof. Choose $c=2,\,n_0\geq 0$ and suppose $n\geq n_0$

$$f(n) + g(n) \le \max\{f(n), g(n)\} + \max\{f(n), g(n)\}$$

$$\le 2 \cdot \max\{f(n), g(n)\}$$

$$\le c \cdot \max\{f(n), g(n)\}$$

The more general version of the sum rule is: $f_1 \in O(g_1) \land f_2 \in O(g_2) \implies f_1 + f_2 \in O(\max\{g_1, g_2\})$. Similarly, $f_1 \in O(g_1) \land f_2 \in O(g_2) \implies f_1 \cdot f_2 \in O(g_1 \cdot g_2)$ is a general version of the product rule, which is question (g) in Exercise 1.2.