

B. Parkování pro kola

Název úlohy	bikeparking
Časový limit	1 sekunda
Paměťový limit	1 gigabajt

Sanne nedávno vymyslela lukrativní podnikatelský nápad: pronájem prémiového parkování pro kola u vlakové stanice v Eindhovenu. Aby měla co největší zisky, rozhodla se, že parkoviště rozdělí na N různých tříd, očíslovaných od 0 do N-1. Třída 0, ta nejprémiovější, je velmi blízko nástupišť, zatímco třídy s většími čísly jsou dál (čím větší číslo, tím horší místo). V třídě t je celkem x_t parkovacích míst.

Uživatelé, kteří chtějí zaparkovat, dostanou svoje parkovací místo pomocí aplikace. Každý uživatel má koupenou úroveň předplatného a očekává od parkovacích míst odpovídající třídu. Ne vždy ovšem uživatelé dostanou parkovací místo, které odpovídá jejich předplatnému.

Pokud uživatel s úřovní předplatného s dostane místo třídy t, tak se stane jedna z následujících věcí:

- 1. Pokud je t < s, tak bude uživatel dojat a dá aplikaci like.
- 2. Pokud je t=s, tak bude uživatel neutralizován a nic neudělá.
- 3. Pokud je t>s, tak dostane uživatel záchvat vzteku a dá aplikaci dislike.

Dnes má Sannina aplikace $y_0+y_1+...+y_{N-1}$ uživatelů, kde y_s je počet uživatelů s úrovní předplatného s. Sanne potřebuje vaši pomoc s přiřazením parkovacích míst těmto uživatelům. Každy potřebuje právě jedno místo a žádné místo nemůže být přiřazeno více než jednomu uživateli. Některé místa mohou zůstat nevyužitá.

Sanne chce maximalizovat hodnocení své aplikace. Nechť U je počet liků a D počet disliků. Váš úkol je dosáhnout co největšího U-D.

Vstup

První řádek obsahuje jedno celé číslo N, které představuje zároveň počet úrovní předplatného a počet tříd parkovacích míst.

Druhý řádek obsahuje N celých čísel $x_0, x_1, ..., x_{N-1}$, počty míst odpovídajících tříd.

Třetí řádek obsahuje N celých čísel $y_0,y_1,...,y_{N-1}$, počty uživatelů s odpovídající úrovní předplatného.

Výstup

Vypište jedno celé číslo, a to maximální hodnotu U-D, které jde dosáhnout optimálním přidělením uživatelů k parkovacím místům.

Omezení a bodování

- $1 < N < 3 \cdot 10^5$.
- $0 \le x_i, y_i \le 10^9$ pro i = 0, 1, ..., N 1.
- $y_0 + y_1 + ... + y_{N-1} \le x_0 + x_1 + ... + x_{N-1} \le 10^9$.

Vaše řešení bude testováno na několika testovacích sadách, každá z nich ohodnocena určitým počtem bodů. Každá testovací sada obsahuje několik testovacích příkladů. Pro zisk bodů z určité testovací sady je potřeba správně vyřešit všechny příklady v dané testovací sadě.

Sada	Body	Omezení
1	16	$N=2, x_i \leq 100, y_i \leq 100$
2	9	$x_i=x_j=y_i=y_j$ pro všechna $i,j.$ Jinak řečeno všechna x a y na vstupu jsou stejná.
3	19	$x_i,y_i\leq 1$
4	24	$N, x_i, y_i \leq 100$
5	32	Žádné další omezení.

Příklady

Všimněte si, že některé příklady nejsou platnými vstupy pro všechny testovací sady. i-tý příklad je platný alespoň pro i-tou testovací sadu.

V prvním příkladu můžete přiřadit uživatele s úrovní předplatného 0 k místu třídy 0, přiřadit dva uživatele s úrovní předplatného 1 k místu třídy 0 (což vede ke 2 likům) a přiřadit zbývajícího uživatele s úrovní 1 k místu třídy 1. To vede k hodnocení 2.

Ve druhém příkladu můžete uživatele s úrovní 1 přiřadit k místu třídy 0, uživatele s úrovní 2 k místu třídy 1 a uživatele s úrovní 0 k místu třídy 2. Tím získáte 2 liky a 1 dislike, což vede k hodnocení 1.

Ve třetím příkladu můžete přiřadit uživatele s úrovní 1 k místu třídy 0, uživatele s úrovní 0 k místu třídy 2 a uživatele s úrovní 4 k místu třídy 3. Tím opět získáte 2 liky a 1 dislike, což vede k hodnocení 1.

Čtvrtý příklad je znázorněn níže. Uživatele s úrovní předplatného 1 můžete přiřadit k místúm tříd 0, 0, 3 a 3, což vede k 2 likům a 2 dislikům. Dále můžete přiřadit uživatele s úrovní 2 k místům tříd 1, 2, 3 a 3, což povede k 1 liku a 2 dislikům. To znamená 3 liky a 4 disliky, takže hodnocení je -1.

V pátém příkladu můžete každému přiřadit místo odpovídající jeho vlastní úrovni předplatného, takže hodnocení je 0.

Input	Output
2 3 3 1 3	2
3 1 1 1 1 1 1	1
6 1 0 1 1 0 1 1 1 0 0 1 0	1
4 2 1 1 8 0 4 4 0	-1
1 100000000 100000000	0