大物笔记

October 31, 2024

无 34 gx

1. 热学

1.1. 基础

- 平衡态: 热力学系统内部没有宏观的粒子和能量流动状态,系统各种宏观性质不随时间变化.
 - ► 应满足平衡条件:系统与外界达成**力学平衡、热平衡、相平衡**,内部达成**化学平衡**.
- 热力学系统的分类:

类型	功交换	热交换	粒子交换
孤立系统	×	×	×
绝热系统	\checkmark	×	×
封闭系统	\checkmark	\checkmark	×
开放系统	√	√	\checkmark

- 物态参量(态参量): 描述**平衡态**的宏观物理量, 如 p, V, T, S 等.
- 理想气体物态方程

$$pV = \nu RT = \frac{m}{M}RT \Rightarrow p = nkT$$

- ► M: 摩尔质量, n: 单位体积内粒子数, k: 玻尔兹曼常量.
- 准静态过程: 系统的每一状态都无限接近于平衡态的过程, 即准静态过程是由一系列平衡态 组成的过程.
 - ▶ 条件: $\Delta t_{\text{process}} \gg$ 弛豫时间 τ .

1.2. 微观层面——气体动理论

- 理想气体压强公式: $p = \frac{1}{3}nm\overline{v^2} = \frac{2}{3}n\bar{\varepsilon}_t$.
 由此可知(单原子分子)平均动能 $\bar{\varepsilon}_t = \frac{3}{2}kT$,均方根速率 $\sqrt{\overline{v^2}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$.
- 能量均分定理
 - ▶ 分子自由度(不考虑分子振动)

原子数	平动自由度 v	转动自由度 r	总自由度 i
单	3	0	3
双	3	2	5
多	3	3	6

- 能量均分定理:每个自由度所对应的平均动能都等于 $\frac{1}{2}kT$.
- ・ 即 **刚性分子平均动能** $\bar{\varepsilon}_t=\frac{i}{2}kT$,**刚性分子理想气体内能** $E=N\bar{\varepsilon}_t=N\frac{i}{2}kT=\frac{i}{2}\nu RT$.
- 麦克斯韦速度分布律
 - ▶ 麦克斯韦速率分布函数

$$\frac{dN_v}{N} = f(v) = 4\pi v^2 \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2kT}}$$

1

- 最概然速率 $v_p = \sqrt{\frac{2kT}{m}}$, 平均速率 $\bar{v} = \sqrt{\frac{8kT}{\pi m}}$, 均方根速率 $v_{\rm rms} = \sqrt{\frac{3kT}{m}}$, $v_p: \bar{v}: v_{\rm rms} = \sqrt{\frac{3kT}{m}}$
- 讨论速率分布使用 v_p , 计算分子平均动能使用 $v_{\rm rms}$, 讨论分子碰撞使用 \bar{v} .
 - 分子碰壁数 $\Gamma = \frac{1}{4}n\bar{v}$
- 理想气体速度分函数(正态分布)

$$\begin{split} g(v) &= \left(\frac{m}{2\pi kT}\right)^{\frac{1}{2}} e^{-\frac{mv^2}{2kT}},\\ F(\vec{v}) &= g(v_x) \cdot g\big(v_y\big) \cdot g(v_z) = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m\vec{v}^2}{2kT}} \end{split}$$

• *玻尔兹曼分布

设系统处于外势场中,每个分子的势能为 $\varepsilon_p = \varepsilon_p(\vec{r})$,则处于空间体积元 $\mathrm{d}^3\vec{r} = \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$ 内的 分子数为:

$$\mathrm{d}N_{\vec{r}} = n_0 e^{-\frac{\varepsilon_p(r)}{kT}} \cdot \mathrm{d}^3 \vec{r}.$$

结合麦克斯韦分布律,有麦克斯韦—玻尔兹曼分布律:

$$\mathrm{d}N = n_0 \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{\varepsilon}{kT}} \cdot \mathrm{d}^3 \vec{r} \cdot \mathrm{d}^3 \vec{v},$$

其中 $\varepsilon = \varepsilon_k + \varepsilon_p$ 为分子总能量.

- 分子平均自由程
 - ト 平均碰撞频率 $\bar{z}=\sigma \bar{u}\cdot n=\pi d^2n\bar{u}$, 其中碰撞截面 $\sigma=\pi d^2$, 平均相对速度 $\bar{u}=\sqrt{2}\bar{v}$.
 - ▶ 平均自由程 $\bar{\lambda} = \frac{\bar{v}}{\bar{z}} = \frac{1}{\sqrt{2}\pi d^2 n}$. 注意: 实际平均自由程受容器线度 l 的限制, 故 $\bar{\lambda} = \min \left(l, \frac{1}{\sqrt{2\pi d^2 n}} \right)$

1.3. 实际气体与非平衡态输运过程

• 范德瓦耳斯方程: 对单位 mol 的范氏气体:

$$\left(p + \frac{a}{V_m^2}\right)(V_m - b) = \nu RT,$$

其中 b 是与分子体积有关的修正量, a 是与分子间引力作用有关的修正量.

- 范氏气体内能: $E_k=\frac{i}{2}\nu RT,\, E_p=\int_V^\infty -p_{\rm in}\,{\rm d}V=-\nu^2\cdot\frac{a}{V}.$
- ***输运过程**: 非平衡态下, 热力学系统各部分性质不均匀, 导致 ε, p, m 的迁移.

热传导	温度 T 不均匀 $ ightarrow$ 能量 $ar{arepsilon}_q$ 的迁移	热导率 $\kappa = \frac{1}{3}\rho \bar{v}\bar{\lambda}c_V$
内摩擦	定向速度 u 不均匀 \rightarrow 定向动量 p 的迁移	黏度 $\eta = \frac{1}{3}\rho \bar{v}\bar{\lambda}$
扩散	密度 ρ 不均匀 \rightarrow 质量 m 的迁移	扩散系数 $D = \frac{1}{3}\bar{v}\bar{\lambda}$

注意 κ 式中 $c_V = \frac{C_V}{Nm}$ 为定体比热.

1.4. 热力学第一定律

- 体积功 dA = p dV, $A = \int_{V_{-}}^{V_{2}} p dV$.
- 热力学第一定律: $Q = \Delta E + A$, dQ = dE + dA.
- 摩尔热容量: 1mol 物质温度升高 1 度所吸热量, 与过程有关.

 - $\Delta E = \nu C_{V,m} \Delta T$, $C_{p,m} C_{V,m} = R$ (近耶公式).
 $C_{V,m} = \frac{i}{2}R$, $C_{p,m} = \frac{i+2}{2}R$, 比热比 $\gamma = \frac{C_{p,m}}{C_{v,m}} = \frac{i+2}{i}$
- 绝热过程方程: $pV^{\gamma} = C$.

- 多方过程: $pV^n=C$, n 为多方指数, 过程满足 $A=\frac{p_1V_1-p_2V_2}{n-1}$, $C_m=C_{V,m}-\frac{1}{n-1}R$.
- 热机
 - 热循环: p-V 图上顺时针, 吸热 > 放热, 对外做功 设吸收总热量为 Q_1 , 放出总热量为 $|Q_2|$, 定义热循环效率 $\eta = 1 - \frac{|Q_2|}{Q_1}$.
 - 致冷循环: p-V 图上顺时针, 吸热 > 放热, 对外做功 设放出总热量为 $|Q_1|$,吸收总热量为 Q_2 ,定义致冷系数 $w=\frac{Q_2}{|Q_1|-Q_2}$ (可以大于 1!).
 - ▶ 卡诺循环: 工质只和两个恒温热源交换热量的无摩擦的准静态循环. (热机循环过程: T_1 等温膨胀 \to 绝热膨胀 \to T_2 等温压缩 \to 绝热压缩) 卡诺热机 $\eta_c=1-\frac{T_2}{T_1},$ 同理对卡诺制冷机有 $w_c=\frac{T_2}{T_1-T_2}$

1.5. 热力学第二定律

- **克劳修斯熵公式**: 对**可逆**元过程, $dS = \frac{dQ}{T}$, $\Delta S = \int \frac{dQ}{T}$. (不可逆则为 > 号)
 - 结合热一律,进一步可得 T dS = dE + dA = dE + p dV.
 - ・ 可逆绝热过程 dS=0. 等温: $\Delta S=\frac{Q}{T}$, 等体: $\Delta S=cm\int_{T_1}^{T_2}\frac{dT}{T}$.
- 理想气体熵公式: 对 1mol 理想气体, $S_m=C_{V,m}\ln\frac{T}{T_0}+R\ln\frac{V}{V_0}+S_0.$
- 熵增加原理: 热力学系统经绝热过程熵不会减少, 可逆绝热过程熵不变, 不可逆过程熵增加. 绝热系统或孤立系统由非平衡态向平衡态过渡时熵增加,最终的平衡态是熵最大的状态.
- 玻尔兹曼熵公式: $S = k \ln \Omega$. (对于非平衡态也适用)
- T-S 图:可方便表示热量, $Q=\int T\,\mathrm{d}S$.

2. 波动光学

2.1. 光的干涉

- 光强 $I \propto A^2$.
- 条纹衬比度 $V = \frac{I_{\max} I_{\min}}{I_{\max} + I_{\min}} = \frac{2A_1A_2}{A_1^2 + A_2^2}$ 双缝干涉波程差 $\delta \approx d \sin \theta \approx d \frac{x}{L}$,
- 相长条件 $\delta = k\lambda$, 相消条件 $\delta = (k + \frac{1}{2})\lambda$, 条纹间距 Δx 满足 $\lambda L = d\Delta x$.
- **半波损失**: 光从光疏介质射向光密介质, 反射时相位发生 π 的偏移, 即波程差加上或减去 $\frac{\lambda}{2}$.
- 时间相干性: 设谱线宽度 Δx : 最大相干级次 $k_M=\frac{\lambda}{\Delta\lambda},$ 相干长度 $\delta_M=k_M\lambda=\frac{\lambda^2}{\Delta\lambda},$ 相干时间 $\tau=\frac{\delta_M}{c}.$
- 薄膜干涉 条纹间距 $L = \frac{\lambda}{2n\theta}$.
- 牛顿环第 k 个暗环半径 r_k 满足 $r_k^2 = kR\lambda$.
- 等倾于涉: $\delta = 2ne \cos r$

2.2. 光的衍射

- 单缝夫琅禾费衍射: 光源和屏幕均处于无限远, 可用透镜模拟
 - 半波带法
 - 衍射角 $\theta = 0$ 时, $\delta = 0$, 形成中央明纹;
 - $-a\sin\theta = \frac{k}{2}\lambda \ (k \ge 2)$ 时,将缝分为 k 个半波带:
 - k 为偶数: k 个半波带相消,形成暗纹中心;
 - k 为奇数: k-1 个半波带相消, 剩余 1 个半波带形成近似的明纹中心.
 - 得到主极大 $\theta = 0$, 次极小 $\sin \theta = \frac{k\lambda}{a}$, 近似次极大 $\sin \theta = (k + \frac{1}{2})\frac{\lambda}{a}$.
 - 中央明纹宽度 $d \approx \frac{2k\lambda}{a}$.
- ・相量法得到光强公式 $\stackrel{a}{I}=I_0\big(\frac{\sin\alpha}{\alpha}\big)^2, \alpha=\frac{\pi a\sin\theta}{\lambda}.$ **圆孔夫琅禾费衍射**:第一次极小 $\sin\theta=1.22\frac{\lambda}{D}.$

- 瑞利判据: 对两个等光强的非相干物点, 如果它们的一个主极大中心恰与另一个主极大边缘 (第一暗纹处) 重合, 则两物点刚可分辨.
 - ・ 最小分辨角 $\delta \theta$ 为第一暗纹位置,定义分辨率 $R = \frac{1}{\delta \theta} = \frac{D}{1.22\lambda}$.
- 光栅衍射

 - 透光部分宽度 a, 不透光部分宽度 b, 光栅常数d=a+b.
 由相量法得到 $I=I_0\left(\frac{\sin N\beta}{\sin \beta}\right)^2$, $\beta=\frac{\pi d \sin \theta}{\lambda}$, 考虑衍射,得到 $I=I_0\left(\frac{\sin \alpha}{\alpha}\right)^2\left(\frac{\sin N\beta}{\sin \beta}\right)^2$.

 主极大 $\sin \theta=k\frac{\lambda}{d}$, 次极小 $\sin \theta=\left(k+\frac{k'}{N}\right)\frac{\lambda}{d}$.

 - 主极大间距 $\frac{k}{d}$, 次极小间距 $\frac{1}{N}$ $\frac{k}{d}$.
 - 两个主极大之间有 N-1 个次极小,N-2 个次极大(不关心).
 - 斜入射方程: $d(\sin \theta \sin i) = k\lambda$.
- · X 射线衍射
 - 布拉格公式 $2d \cdot \sin \varphi = k\lambda$, 其中 φ 为掠射角.
- 3. 量子力学
- 3.1. 光的偏振
- 3.2. 这是什么
- 3.3. 我操真牛逼