

Churn Ultimatum

> On a mission to uncover hidden truths about customer retention

Table of Contents

Business Case & Data Overview

Key Insights

Conclusions & Next Steps

Understanding Churn

Identify Precisely

Focus on customers who will most likely churn

Wasted Resources

Ensure effective allocation of resources

Model Performance

	Predicted: No-Churn	Predicted: Will Churn
Actual: No-Churn	Predicted not to churn correctly	Predicted to churn but actually not going to churn
Actual: Will Churn	Customer will churn and model did not predict it.	Predicted to churn correctly

Large Data Imbalance

Much **fewer churned** data points

Can be **difficult to**predict a minority class

Dummy Model

128 times predicted customer would churn but did not.....

Predicted:

Predicted:

No-Churn

Will Churn

... or **128** times resources wasted

Actual:

No-Churn

Predicted not to churn correctly

727

Predicted to churn incorrectly

128

0.13
Precision score

Actual:

Will Churn

Predicted to not churn incorrectly

123

Predicted to churn correctly

22

Final Model: test results

0 times predicted customer would churn... Model may be **overfit**

Predicted:

Predicted:

No-Churn

Will Churn

Final model does not predict all churn

Actual:

No-Churn

Predicted not to churn correctly

855

Predicted to churn incorrectly

0

1.0 precision (.91 cross-val)

Actual:

Will Churn

Predicted not to churn incorrectly

123

Predicted to churn correctly

21

Final Features

Final Features

Model shows highest importance for your **international plan**

Likely an area you will want to focus on

May want to consider an **indirect approach**

Conclusions

Precision allows you to be confident with resource allocation

 Model is **precise** in targeting ACTUAL churn and not targeting FALSE churn. But still misses a lot of churn

 Model is more precise when it comes to international plan indicating this could be an area of concern.

Feature Engineering

Experiment by adding, removing, merging or transforming features

Next Steps

Adjusting Model for

recall

Tweak the model to miss less positive cases by trying different algorithms and parameters

Analyze location features

Certain locations could be more competitive or provide worse coverage

Thanks!

Do you have any questions?

For additional info, contact Max Ross on GitHub (https://github.com/ImMaxRoss)

