

Lecture 7. Digital Communications Part II. Digital Modulation

- Digital Baseband Modulation
- Digital Bandpass Modulation

Digital Communications

Digital Modulation

· How to choose proper digital waveforms to "carry" the digits?

Digital Modulation

- Bit Rate: number of bits transmitted in unit time
- Required channel bandwidth: determined by the bandwidth of the modulated signal.
- Bandwidth Efficiency:

$$\gamma \triangleq \frac{\text{Information Bit Rate } R_b}{\text{Required Channel Bandwidth } B_h}$$

Digital Baseband Modulation

- Pulse Amplitude Modulation (PAM)
- Pulse Shaping

Digital Baseband Modulation

- Choose baseband signals to carry the digits.
 - Each baseband signal can carry multiple bits.
 - · Each baseband signal carries 1 bit.

Binary • Bit Rate: $R_b = 1/\tau$

- · Totally 2 baseband signals are required.
- Each baseband signal carries a symbol (with log₂M bits).

M-ary

- Symbol Rate: $R_s = 1/\tau$ Bit Rate: $R_b = (\log_2 M)/\tau$
- · Totally M baseband signals are required.

Digital Baseband Modulation

- Focus on "amplitude modulation"
 - The baseband signals have the same shape, but different amplitudes.
 - Time-domain representation of the modulated signal:

$$s(t) = \sum_{n=-\infty}^{\infty} Z_n \cdot v(t - n\tau)$$

where Z_n is a discrete random variable with $\Pr\{Z_n = a_i\} = 1/M, i = 1,...,M,$ v(t) is a unit baseband signal.

Power spectrum of the modulated signal:

$$G_{s}(f) = \frac{1}{\tau} |V(f)|^{2} \cdot \left(\sigma_{Z}^{2} + \frac{\mu_{Z}^{2}}{\tau} \sum_{m=-\infty}^{\infty} \delta\left(f - \frac{m}{\tau}\right)\right)$$

Read
3008_Lecture7
_Supplemental.
pdf for details.

Pulse Amplitude Modulation (PAM)

- Binary PAM
- Binary On-Off Keying (OOK)
- 4-ary PAM

Binary PAM

1: a positive rectangular pulse with amplitude A and width τ

0: a negative rectangular pulse with amplitude -A and width au

$$s(t) = \sum_{n=-\infty}^{\infty} Z_n \cdot v(t - n\tau)$$

$$\checkmark Pr{Z_n = \pm 1} = 1/2$$

$$\checkmark v(t) = \begin{cases} A, & 0 \le t \le \tau \\ 0, & \text{otherwise} \end{cases}$$

Power Spectrum of Binary PAM

$$G_{s}(f) = \frac{1}{\tau} |V(f)|^{2} \cdot \left(\sigma_{Z}^{2} + \frac{\mu_{Z}^{2}}{\tau} \sum_{m=-\infty}^{\infty} \delta\left(f - \frac{m}{\tau}\right)\right)$$
With Binary PAM: $V(f) = A\tau \operatorname{sinc}(f\tau)$

$$\mu_{Z} = 0, \quad \sigma_{Z}^{2} = 1$$

$$G_{BPAM}(f) = A^{2}\tau \operatorname{sinc}^{2}(f\tau)$$

See Textbook (Sec. 3.2) or Reference [Proakis & Salehi] (Sec. 8.2) for more details.

Effective Bandwidth of Binary PAM

• Suppose 90% of signal power must pass through the channel (90% in-band power):

Required Channel Bandwidth: $B_{h_90\%}=1/\tau$ Bit rate: $R_{h}=1/\tau$ $B_{h_90\%}=R_{b}$

• Suppose 95% of signal power must pass through the channel (95% in-band power):

Required Channel Bandwidth: $B_{h=95\%} = 2/\tau = 2R_{b}$

Bandwidth Efficiency of Binary PAM

• Bandwidth Efficiency: $\gamma = \frac{\text{Information Bit Rate } R_b}{\text{Required Channel Bandwidth } B_b}$

Bandwidth Efficiency of Binary PAM:

$$R_b=1/ au$$
 $\gamma_{BPAM}=1$ with 90% in-band power $B_{h_95\%}=1/ au$ $\gamma_{BPAM}=0.5$ with 95% in-band power

What if the two pulses have unsymmetrical amplitudes?

Binary On-Off Keying (OOK)

1: a positive rectangular pulse with amplitude A and width τ

O: nothing (can be regarded as a pulse with amplitude 0)

$$s(t) = \sum_{n = -\infty}^{\infty} Z_n \cdot v(t - n\tau)$$

$$\checkmark$$
 $\Pr\{Z_n = 1\} = \Pr\{Z_n = 0\} = 1/2$

$$\checkmark \quad v(t) = \begin{cases} A, & 0 \le t \le \tau \\ 0, & \text{otherwise} \end{cases}$$

Power Spectrum of Binary OOK

$$G_{s}(f) = \frac{1}{\tau} |V(f)|^{2} \cdot \left(\sigma_{Z}^{2} + \frac{\mu_{Z}^{2}}{\tau} \sum_{m=-\infty}^{\infty} \delta\left(f - \frac{m}{\tau}\right)\right)$$
With Binary OOK: $V(f) = A\tau \text{sinc}(f\tau)$

$$\mu_{Z} = 1/2, \ \sigma_{Z}^{2} = 1/4$$

$$G_{BOOK}(f) = \frac{1}{\tau} \left(A\tau \text{sinc}(f\tau)\right)^{2}$$

$$\left(\frac{1}{4} + \frac{1}{4\tau} \sum_{m=-\infty}^{\infty} \delta\left(f - \frac{m}{\tau}\right)\right)$$

Bandwidth Efficiency of Binary OOK

• Bandwidth Efficiency: $\gamma = \frac{\text{Information Bit Rate } R_b}{\text{Required Channel Bandwidth } B_h}$

Bandwidth Efficiency of Binary OOK:

$$R_b=1/ au$$
 $\gamma_{BOOK}=1$ with 90% in-band power $B_{h_95\%}=1/ au$ $\gamma_{BOOK}=0.5$ with 95% in-band power

Can we improve the bandwidth efficiency without sacrificing the in-band power?

4-ary PAM

• 4-ary PAM: Each waveform carries 2-bit information.

$$s(t) = \sum_{n = -\infty}^{\infty} Z_n \cdot v(t - n\tau)$$

✓
$$\Pr{Z_n = 1} = \Pr{Z_n = 1/3}$$

= $\Pr{Z_n = -1} = \Pr{Z_n = -1/3}$
= 1/4

$$\checkmark \quad v(t) = \begin{cases} A, & 0 \le t \le \tau \\ 0, & \text{otherwise} \end{cases}$$

Power Spectrum of 4-ary PAM

$$G_s(f) = \frac{1}{\tau} |V(f)|^2 \cdot \left(\sigma_Z^2 + \frac{\mu_Z^2}{\tau} \sum_{m=-\infty}^{\infty} \delta\left(f - \frac{m}{\tau}\right)\right)$$
 With 4-ary PAM: $V(f) = A\tau \mathrm{sinc}(f\tau)$
$$\mu_Z = 0, \ \sigma_Z^2 = 5/9$$

$$G_{4PAM}(f) = \frac{5}{9} A^2 \tau \mathrm{sinc}^2(f\tau)$$

• Required channel bandwidth with 90% in-band power: $B_{h=90\%} = 1/\tau$

• Required channel bandwidth with 95% in-band power: $B_{h_{-}95\%} = 2/ au$

Bandwidth Efficiency of 4-ary PAM

• Symbol rate: $R_s = 1/\tau$

• Bit rate:
$$R_b = 2 \cdot R_S = 2 / \tau$$

Require channel bandwidth:

with 90% in-band power:
$$B_{h_{-90\%}} = 1/\tau = R_S = \frac{1}{2}R_b$$

with 95% in-band power: $B_{h=95\%} = 2/\tau = 2R_S = R_b$

$$\gamma_{4PAM} = 2$$

 $\gamma_{APAM} = 1$ with 95% in-band power

with 90% in-band power

4-ary PAM achieves higher bandwidth efficiency than binary PAM!

Bandwidth Efficiency of M-ary PAM

- Suppose there are totally *M* distinct amplitude (power) levels.
- How many bits are carried by each symbol?

$$M = 2^k \implies k = \log_2 M$$

• What is the relationship between symbol rate R_S and bit rate R_b ?

$$R_S = R_b / k$$
 or $R_b = kR_S$

What is the required channel bandwidth with 90% in-band power?

$$B_{h_{-}90\%} = R_S = R_b / k$$

Bandwidth Efficiency of M-ary PAM

Tradeoff between bandwidth efficiency and fidelity performance

$$\gamma_{MPAM} = k = \log_2 M$$
 with 90% in-band power

• A larger *M* also leads to a smaller minimal amplitude difference – higher error probability (to be discussed).

Pulse Shaping

- Inter-Symbol Interference (ISI)
- Sinc-Shaped Pulse and Raised-Cosine Pulse

Transmission over Bandlimited Channel

PAM signal

Baseband Channel

 $\rightarrow G_{Y}(f) = G_{PAM}(f) |H(f)|^{2}$

The signal distortion incurred by channel is always non-zero!!

Time domain

$$s(t) = \sum_{n=-\infty}^{\infty} Z_n \cdot v(t - n\tau)$$

Baseband Channel h(t)

$$y(t) = s(t) * h(t) = \sum_{n = -\infty}^{\infty} Z_n \cdot x(t - n\tau)$$

$$x(t) = v(t) * h(t)$$

Sample y(t) at $m\tau$, m=1,2,..., we have

$$y(m\tau) = \sum_{n=-\infty}^{\infty} Z_n \cdot x(m\tau - n\tau) = Z_m \cdot x(0) + \sum_{n \neq m} Z_n \cdot x(m\tau - n\tau)$$

Inter-symbol Interference (ISI)!

ISI and Eye Diagram

- An eye diagram is constructed by plotting overlapping k-symbol segments of a baseband signal.
- An eye diagram can be displayed on an oscilloscope by triggering the time sweep of the oscilloscope.

See Reference [Ziemer & Tranter] (Sec. 4.6) for more details about eye diagram.

- ISI is caused by insufficient channel bandwidth.
- Any better choice than rectangular pulse?

Sinc-Shaped pulse

Sinc-Shaped Pulse

Rectangular Pulse

Sinc-Shaped Pulse

Binary Sinc-Shaped-Pulse Modulated Signal

1: a positive sinc-shaped pulse with amplitude A and first crossing-zero point $\pm \tau$

0: a negative sinc-shaped pulse with amplitude -A and first crossing-zero point $\pm \tau$

$$s(t) = \sum_{n=-\infty}^{\infty} Z_n \cdot v(t - n\tau)$$

$$\checkmark Pr{Z_n = \pm 1} = 1/2$$

$$\checkmark v(t) = A \operatorname{sinc}(t/\tau)$$

Power Spectrum of Sinc-Shaped-Pulse Modulated Signal

$$G_s(f) = \frac{1}{\tau} |V(f)|^2 \cdot \left(\sigma_Z^2 + \frac{\mu_Z^2}{\tau} \sum_{m=-\infty}^{\infty} \delta\left(f - \frac{m}{\tau}\right)\right)$$

With Binary Sinc-Shaped- $\mu_Z=0,\ \sigma_z^2=1$ $\ \ \ \ \ G_{BSSP}(f)=A^2\tau,\ \ |f|\leq \frac{1}{2\tau}$ Pulse Modulated Signal: $V(f) = A\tau$, $|f| \le \frac{1}{2\tau}$

$$G_{BSSP}(f) = A^2 \tau$$
, $|f| \le \frac{1}{2\tau}$

Bit Rate: $R_b = 1/\tau$

Required channel bandwidth: $B_h = 1/(2\tau) = R_b/2$

$$\gamma_{BSSP}=2$$
 (with 100% in-band power)

Sinc-Shaped-Pulse Modulated Signal over Bandlimited Channel

Frequency domain

Binary Sinc-Shaped-Pulse signal

Baseband Channel H(f) $-B_h \quad 0 \quad B_h \quad f$

· Time domain

Binary Sinc-Shaped-Pulse signal

$$s(t) = \sum_{n=-\infty}^{\infty} Z_n \cdot v(t - n\tau)$$

Baseband Channel h(t)

$$y(t) = s(t) * h(t)$$

Zero ISI at $t=m\tau$!

Are there any other (better) choices to achieve zero ISI?

Nyquist pulse-shaping criterion for zero ISI

A necessary and sufficient condition for pulse v(t) to satisfy

$$v(n\tau) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

is that its Fourier transform V(f) satisfies $\sum_{i} V(f + \frac{m}{\tau}) = \tau$.

Suppose that the bandwidth of unit pulse v(t) is W, which is also the required channel bandwidth. To pass the digital modulated signal with symbol rate 1/ authrough the channel:

• If $1/\tau$ -W>W, there is no way to satisfy the Nyquist pulse-shaping criterion for zero ISI.

 $\sum_{m=-\infty} V(f+\frac{m}{\tau}) \neq \tau$ $-2/\tau$ $W 1/\tau - W$

EE3008 Principles of Communications

Lecture 7

Nyquist pulse-shaping criterion for zero ISI

A necessary and sufficient condition for pulse v(t) to satisfy

$$v(n\tau) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

is that its Fourier transform V(f) satisfies $\sum_{m=-\infty}^{\infty} V(f+\frac{m}{\tau}) = \tau$.

Suppose that the bandwidth of unit pulse v(t) is W, which is also the required channel bandwidth. To pass the digital modulated signal with symbol rate $1/\tau$ through the channel:

• If the symbol rate $1/\tau=2W$, we must have $V(f)=\begin{cases} \tau, & |f|< W\\ 0, & \text{otherwise} \end{cases}$

EE3008 Principles of Communications

Nyquist pulse-shaping criterion for zero ISI

A necessary and sufficient condition for pulse v(t) to satisfy

$$v(n\tau) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

is that its Fourier transform V(f) satisfies $\sum_{m=-\infty}^{\infty} V(f+\frac{m}{\tau}) = \tau$.

Suppose that the bandwidth of unit pulse v(t) is W, which is also the required channel bandwidth. To pass the digital modulated signal with symbol rate $1/\tau$ through the channel:

• If the symbol rate $1/\tau < 2W$, we have numerous choices.

According to Nyquist pulse-shaping criterion for zero ISI:

- ✓ If the symbol rate $1/\tau$ >2W, there is no way that we can design a system with zero ISI.
- ✓ If the symbol rate $1/\tau=2W$, we must have $V(f) = \begin{cases} \tau, & |f| < W \\ 0, & \text{otherwise} \end{cases}$
 - The maximum symbol rate for zero ISI is 2W.
 - In the binary case, the highest bandwidth efficiency for zero-ISI is
 2, which is achieved by the binary sinc-shaped-pulse modulated signal.
- ✓ If the symbol rate $1/\tau$ <2W, we have numerous choices. One of them is called Raised-Cosine Pulse.

See Textbook (Sec. 4.4) for more details.

Raised-Cosine Pulse: Tradeoff between Bandwidth Efficiency and Robustness

Sinc-Shaped Pulse:

- Strong ISI at $t \neq n\tau$.
- Perfect synchronization is required at the receiver side.

Raised-Cosine Pulse: $v(t) = A \operatorname{sinc}(t/\tau) \left[\frac{\cos(2\pi\beta t)}{1 - (4\beta t)^2} \right]$

• Larger eta < More robustLarger bandwidth

Summary I: Digital Baseband Modulation

		Complexity	Bandwidth Efficiency
PAM	Binary PAM	Low	1 (90% in-band power)
	4-ary PAM	Low	2 (90% in-band power)
Binary Sinc- Shaped-Pulse Modulation		High (Susceptible to timing jitter)	2 (100% in-band power)
Binary Raised- Cosine-Pulse Modulation		Moderate	$1 < \frac{R_b}{\frac{1}{2}R_b + \beta} < 2$ (100% in-band power)

Digital Bandpass Modulation

- Binary ASK
- Binary FSK
- Binary PSK
- Quaternary PSK

Digital Bandpass Modulation

How to transmit a baseband signal over a bandpass channel?

Binary Amplitude Shift Keying (ASK)

- Generate a binary ASK signal:
 - Send the carrier signal if the information bit is "1";
 - Send 0 volts if the information bit is "0".

Power Spectrum of BASK

Power spectrum of Binary OOK:

$$G_{BOOK}(f) = \frac{1}{\tau} \left(A\tau \operatorname{sinc}(f\tau) \right)^{2} \cdot \left(\frac{1}{4} + \frac{1}{4\tau} \sum_{m=-\infty}^{\infty} \delta \left(f - \frac{m}{\tau} \right) \right)$$

Power spectrum of Binary ASK:

$$G_{RASK}(f) = \frac{1}{4} [G_{ROOK}(f - f_c) + G_{ROOK}(f + f_c)]$$

Read the supplemental material for details.

Bandwidth Efficiency of BASK

The bandwidth of BASK signal is twice of that of its baseband signal (binary On-Off Keying)!

The required channel bandwidth for 90% in-band power:

$$B_{h_90\%} = 2R_b$$

Bandwidth Efficiency of BASK:

 $\gamma_{BASK} = 0.5$ with 90% in-band power

 $\gamma_{\rm BASK} = 0.25\,$ with 95% in-band power

Binary Frequency Shift Keying (BFSK)

- Generate a binary FSK signal: Frequency offset
 - Send the signal $A\cos(2\pi(f_c + \Delta f)t)$ if the information bit is "1";
 - Send the signal $A\cos(2\pi(f_c \Delta f)t)$ if the information bit is "0".

$$s_{BFSK}(t) = \underbrace{s_{b1,BFSK}(t)\cos(2\pi(f_c + \Delta f)t) + s_{b2,BFSK}(t)\cos(2\pi(f_c - \Delta f)t)}_{c}$$

$$s_{b1,BFSK}(t) = \begin{cases} A & b_i = 1 \\ 0 & b_i = 0 \end{cases}$$

$$s_{b2,BFSK}(t) = \begin{cases} 0 & b_i = 1 \\ A & b_i = 0 \end{cases}$$

Binary On-Off Keying

Binary On-Off Keying

Bandwidth Efficiency of BFSK

$$\begin{split} G_{BFSK}(f) &= \frac{1}{4} [G_{b1,BFSK}(f - (f_c + \Delta f)) + G_{b1,BFSK}(f + (f_c + \Delta f))] \\ &+ \frac{1}{4} [G_{b2,BFSK}(f - (f_c - \Delta f)) + G_{b2,BFSK}(f + (f_c - \Delta f))] \end{split}$$

The required channel bandwidth for 90% in-band power:

$$B_{h_{-90\%}} = 2\Delta f + 2R_b$$

• Bandwidth efficiency of BFSK: $\gamma_{BFSK} = 0.5 \cdot \frac{1}{1 + \Delta f / R_b} < 0.5 = \gamma_{BASK}$ (with 90% in-band power)

The bandwidth efficiency of BFSK signal is lower than that of BASK signal!

Binary Phase Shift Keying (BPSK)

- Generate a binary PSK signal:
 - Send the signal $A\cos(2\pi f_c t)$ if the information bit is "1";
 - Send the signal $A\cos(2\pi f_c t + \pi)$ if the information bit is "0". = $-A\cos(2\pi f_c t)$

 $s_{BPSK}(t) = s_{RPAM}(t)\cos(2\pi f_c t)$

Binary PAM $s_{BPAM}(t)$ X $\cos(2\pi f_c t)$

Bandwidth Efficiency of BPSK

$$G_{BPSK}(f) = \frac{1}{4} [G_{BPAM}(f - f_c) + G_{BPAM}(f + f_c)]$$

The required channel bandwidth for 90% in-band power:

$$B_{h 90\%} = 2R_{b}$$

Bandwidth Efficiency of BPSK:

$$\gamma_{\rm BPSK} = 0.5$$
 with 90% in-band power $\gamma_{\rm BPSK} = 0.25$ with 95% in-band power

The bandwidth efficiency of BPSK signal is the same as that of BASK signal!

✓ Binary PSK:

M-ary PSK

 $s_1(t) = A\cos(2\pi f_c t)$

 $s_A(t) = A\cos(2\pi f_a t + 5\pi/4)$

• M-ary PSK: transmitting pulses with M possible different carrier phases, and allowing each pulse to represent $\log_2 M$ bits.

"0"
$$s_2(t) = A\cos(2\pi f_c t + \pi)$$

V Quaternary PSK: "11" $s_1(t) = A\cos(2\pi f_c t + (-\pi/4))$

(QPSK) "10" $s_2(t) = A\cos(2\pi f_c t + \pi/4)$

"00" $s_3(t) = A\cos(2\pi f_c t + 3\pi/4)$

"01"

QPSK

"1 1"
$$s_1(t) = A\cos(2\pi f_c t - \pi/4)$$

"1 0"
$$s_2(t) = A\cos(2\pi f_c t + \pi/4)$$

"0 0"
$$s_3(t) = A\cos(2\pi f_c t + 3\pi/4)$$

"0 1"
$$s_4(t) = A\cos(2\pi f_c t + 5\pi/4)$$

A QPSK signal can be decomposed into the sum of two PSK signals: an in-phase component and a quadrature component.

$$s_{QPSK}(t) = d_{I} \frac{A}{\sqrt{2}} \cos(2\pi f_{c}t) + d_{Q} \frac{A}{\sqrt{2}} \sin(2\pi f_{c}t)$$

$$d_{I} = \begin{cases} 1 & \text{if } b_{2i-1} = 1 \\ -1 & \text{if } b_{2i-1} = 0 \end{cases}$$

$$d_{Q} = \begin{cases} 1 & \text{if } b_{2i} = 1 \\ -1 & \text{if } b_{2i} = 0 \end{cases}$$

QPSK Modulator

Bandwidth Efficiency of QPSK

• Symbol rate: $R_{S,OPSK} = 1/\tau$

- Bit rate: $R_{b,OPSK} = 2R_{S,OPSK} = 2/\tau$
- Required Channel Bandwidth:

$$B_{h_{-90\%}} = 2R_{S,QPSK} = R_{b,QPSK}$$

 $B_{h_{-95\%}} = 4R_{S,QPSK} = 2R_{b,QPSK}$

Bandwidth Efficiency:

$$\gamma_{QPSK}=1$$
 with 90% in-band power $\gamma_{QPSK}=0.5$ with 95% in-band power

QPSK achieves higher bandwidth efficiency than BPSK!

Summary II: Digital Bandpass Modulation

Bandwidth Efficiency (90% in-band power)

Binary ASK

0.5

Binary FSK

$$0.5 \cdot \frac{1}{1 + \Delta f / R_h}$$

Binary PSK

0.5

QPSK

1