Sprawozdanie z ćwiczenia 48

Wyznaczenie stałej plancka na podstawie charakterystyki diody elektroluminescencyjnej

Michał Puchyr, Dawid Chudzicki

23 kwietnia 2023

1 Cele ćwiczenia

- Pomiar charakterystyki prądowo-napięciowej diody elektroluminescencyjnej w kierunku przewodzenia.
- Wyznaczenie długości fali promieniowania emitowanego przez diodę elektroluminescencyjną.
- Obliczenie stałej Plancka.

2 Wstęp teoretyczny

Stała Plancka – jedna z podstawowych stałych fizycznych łącząca energię fotonów z częstotliwością promieniowania elektromagnetycznego. Wartość¹ stałej Plancka wynosi

$$h = 6,62607015 \times 10^{-34} \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-1}$$

Światło (wg. terminologii naukowej promieniowanie optyczne) – jest to promieniowanie podlegające prawom optyki geometrycznej oraz falowej. Przyjmuje się, że promieniowanie optyczne obejmuje zakres fal elektromagnetycznych o długości od 100 nm do 1 mm, podzielony na trzy zakresy: ultrafiolet, światło widzialne i podczerwień. Wszystkie te zakresy można obserwować i mierzyć, używając podobnego zestawu przyrządów, a wyniki tych badań można opracowywać, stosując te same prawa fizyki.

W eksperymencie pomiary były wykonywane na diodzie żółtej (dł. fali od 565 nm do 590 nm) oraz niebieskiej (dł. fali od 450 nm do 485 nm).

Wykaz przyrzadów:

- Układ zasilający z płynną regulacją napięcia w kierunku przewodzenia i zaporowym
- Dioda elektroluminescencyjna
- Woltomierz cyfrowy KEMOT KT890
- Amperomierz cyfrowy SANWA CD771
- Monochromator
- Detektor fotooporowy

 $^{^{1}}$ do 20 maja 2019 wartość stałej przyjmowana była jako $h=6,626070040(81)\times10^{-34}~\mathrm{J\cdot s}$

Schemat elektryczny układu do pomiaru charakterystyki prądowo-napięciowej diody elektroluminescencyjnej w kierunku przewodzenia

Schemat blokowy układu do pomiaru charakterystyki prądowo-napięciowej diody elektroluminescencyjnej

3 Przykładowe obliczenia

3.1 Niepewności mierników

Niepewność pomiaru napięcia dla woltomierza KEMOT KT890: Dla zakresu 20 V:

$$\pm 0,5\%$$
 rdg + 1 dgt = $\pm 0,5\% \cdot 0,35 + 1 \cdot 0,01 = \pm 0,01175 \approx \pm 0,012[V]$

$$u_b(U) = \frac{\Delta U}{\sqrt{3}} = \frac{0,012}{\sqrt{3}} = 0,00692 \approx 0,007[V]$$

Niepewność pomiaru natężenia dla amperomierza SANWA CD771: Dla zakresu 40 mA:

$$\pm 1,4\% \text{ rdg} + 3 \text{ dgt} = \pm 1,4\% \cdot 2,51 + 3 \cdot 0,01 = \pm 0,06514 \approx \pm 0,066[mA]$$
$$u_b(I) = \frac{\Delta I}{\sqrt{3}} = \frac{0,066}{\sqrt{3}} = 0,03810 \approx 0,039[mA]$$

3.2 Obliczenia dla pomiarów

Średnia długość fali:

$$\overline{\lambda} = \frac{1}{n} \sum_{i=1}^{n} \lambda_i = \frac{1}{3} \cdot (447 + 444 + 449) = \frac{1}{3} \cdot 1340 = 446, (6)7 \approx 447[nm]$$

Wyznaczenie regresji liniowej:

Regresja liniowa wyznaczana była w taki sposób, aby była jak najlepiej dopasowana do prostoliniowej części charakterystyki w kierunku przewodzenia. Na wykresie zostało przedstawione przykładowe dopasowanie linii regresji liniowej do większości punktów, które można "połączyć" linią prostą.

Wartość napięcia odpowiadającego barierze potencjału (miejsce zerowe regresji liniowej):

$$U_b = -\frac{b}{a} = -\frac{134,3}{62,82} = 2,137351 \approx 2,14[V]$$

Niepewność obliczenia bariery potencjału:

$$u(U_b) = \sqrt{\left(\frac{\partial U_b}{\partial a}\right)^2 \cdot u(a)^2 + \left(\frac{\partial U_b}{\partial b}\right)^2 \cdot u(b)^2} = \sqrt{\left(\frac{b}{a^2}\right)^2 \cdot u(a)^2 + \left(\frac{-1}{a}\right)^2 \cdot u(b)^2}$$
$$= \sqrt{\left(\frac{-0,135}{0,0629^2}\right)^2 \cdot 0,0035^2 + \left(\frac{-1}{0,0629}\right)^2 + 0,009} = 0,186375 \approx 0,19[V]$$

Obliczenie stałej Plancka:

$$h = \frac{e}{c}\lambda U_b = \frac{1, 6 \cdot 10^{-19}}{299792458} \cdot 447 \cdot 2, 14 = 6,6814222 \approx 6,68143 \text{ [kg} \cdot \text{m}^2 \cdot \text{s}^{-1}\text{]}$$

gdzie:

- e ładunek elektryczny elementarny
- c prędkość światła w próżni

Niepewność obliczenia stałej Plancka:

$$u_c(h) = \frac{e}{c} \sqrt{U_b^2 \cdot u(\lambda)^2 + \lambda^2 \cdot u(U_b)^2} = 5,33 \cdot 10^{-28} \sqrt{2,14^2 \cdot (10 \cdot 10^{-9})^2 + (585^2 \cdot 0,19 \cdot 10^{-9})^2}$$
$$= 6,04105 \cdot 10^{-35} \text{ [kg} \cdot \text{m}^2 \cdot \text{s}^{-1}]$$

4 Pomiary układów

4.1 Pomiary długości fali

Zmierzone długości fali dla diody żółtej

Zmierzone długości fali dla diody niebieskiej									
	Lp.	$\lambda[\mathrm{nm}]$	$\mathrm{u}(\lambda)[\mathrm{nm}]$	$\overline{\lambda}[\mathrm{nm}]$					
	1	447	10						

Lp.	$\lambda[\mathrm{nm}]$	$\mathrm{u}(\lambda)[\mathrm{nm}]$	$\overline{\lambda}[\mathrm{nm}]$
1	585	10	
2	585	10	585
3	585	10	

Lp.	$\lambda[\mathrm{nm}]$	$\mathrm{u}(\lambda)[\mathrm{nm}]$	$\overline{\lambda}[\mathrm{nm}]$
1	447	10	
2	444	10	447
3	449	10	

4.2 Dioda niebieska

--- Regresja liniowa: y = 62,9x - 135

Wykres zależności napięcia od natężenia dla niebieskiej diody

Pomiary i obliczone wartości dla układu z diodą niebieską

Lp.	U[V]	u(U)[V]	I[mA]	u(I)[mA]	$U_b[V]$	$u(U_b)[V]$	$h[kg \cdot m^2 \cdot s^{-1}]$	$u(h)[kg \cdot m^2 \cdot s^{-1}]$
1	0,3500	0,0068	0,000	0,018				
2	0,7000	0,0078	0,000	0,018				
3	1,0500	0,0089	0,000	0,018				
4	1,500	0,011	0,000	0,018				
5	1,720	0,011	0,090	0,019				
6	1,990	0,012	2,510	0,038				
7	2,030	0,012	3,440	0,046				
8	2,100	0,012	4,940	0,058				
9	2,150	0,012	6,810	0,073				
10	2,180	0,013	7,250	0,076	2,14	0,19	$6,68143 \cdot 10^{-34}$	$6,04105 \cdot 10^{-35}$
11	2,250	0,013	9,750	0,097	2,14	0,13	0,00140 10	0,04100 10
12	2,300	0,013	11,92	0,12				
13	2,350	0,013	14,11	0,14				
14	2,370	0,013	15,91	0,15				
15	2,400	0,013	16,58	0,16				
16	2,430	0,013	18,70	0,17				
17	2,450	0,013	19,42	0,18				
18	2,470	0,013	20,50	0,19				
19	2,500	0,013	22,64	0,21				
20	2,520	0,014	24,40	0,22				

4.3 Dioda żółta

--- Regresja liniowa: y = 61, 0x - 171

Wykres zależności napięcia od natężenia dla żółtej diody

Pomiary i obliczone wartości dla układu z diodą żółtą

Lp.	U	u(U)	I[mA]	u(I)[mA]	$U_{b}[V]$	$u(U_b)[V]$	$h[kg \cdot m^2 \cdot s^{-1}]$	$u(h)[kg \cdot m^2 \cdot s^{-1}]$
1	0,5000	0,0073	0,000	0,018				
2	1,0000	0,0087	0,000	0,018				
3	1,5000	0,0102	0,000	0,018				
4	2,000	0,012	0,000	0,018				
5	2,500	0,013	0,050	0,018				
6	2,650	0,014	0,740	0,024				
7	2,700	0,014	1,330	0,029				
8	2,730	0,014	1,960	0,034				
9	2,770	0,014	2,660	0,039				
10	2,800	0,014	3,350	0,045	2,80	0,16	$6,67982 \cdot 10^{-34}$	$4,09991 \cdot 10^{-35}$
11	2,830	0,014	4,280	0,052	2,00	0,10	0,07502 10	4,03331 10
12	2,860	0,015	5,30	0,07				
13	2,890	0,015	6,49	0,07				
14	2,920	0,015	7,86	0,09				
15	2,950	0,015	9,35	0,10				
16	2,980	0,015	11,06	0,11				
17	3,010	0,015	12,86	0,13				
18	3,040	0,015	14,77	0,14				
19	3,070	0,015	17,08	0,16				
20	3,090	0,015	18,72	0,17				

5 Wnioski

Przy pomocy pomiarów oraz wykonanych obliczeń udało się wyznaczyć przybliżenie stałej Plancka.

Udało się również wyznaczyć długości fali promieniowania emitowanego przez diody elektroluminescencyjne, które pokrywają się z wartościami faktycznymi.

Wpływ na niewielką rozbieżność między faktyczną wartością stałej a tą wyznaczonej z eksperymentu ma niedokładność mierników oraz niedoskonałość w ocenie koloru przez ludzkie oko.

Porównując wartość stałej plancka

$$h = 6,62607015 \times 10^{-34} \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-1}$$

do tych, które zostały wyznaczone przy pomocy pomiarów i obliczeń

$$h = (6,68143 \pm 0,604105) \times 10^{-34} \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-1}$$

$$h = (6,67982 \pm 0,409991) \times 10^{-34} \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-1}$$

można stwierdzić, że eksperyment został pomyślnie przeprowadzony.

6 Bibliografia

• https://pl.wikipedia.org/wiki/StaĆa_Plancka