Math 2000-B Handout 9: Diagonalizability and Similar Matrices

Subhadip Chowdhury

Exercise 1.

- (a) A is a 4×4 matrix with three eigenvalues. One eigenspace is one-dimensional, and one of the other eigenspaces is two-dimensional. Is it possible that A is not diagonalizable? Justify your answer.
- (b) A is a 7 \times 7 matrix with three eigenvalues. One eigenspace is two-dimensional, and one of the other eigenspaces is three-dimensional. Is it possible that A is not diagonalizable? Justify your answer.

■ Exercise 2.

- (a) Construct a nonzero 2×2 matrix that is invertible but not diagonalizable.
- (b) Construct a nondiagonal 2×2 matrix that is diagonalizable but not invertible.

■ Exercise 3.

Verify the following statements. The matrices are square.

- (a) if A is both diagonalizable and invertible, then so is A^{-1} .
- (b) If A is invertible and similar to B, then B is invertible and A^{-1} is similar to B^{-1} .
- (c) If A is similar to B, then A^2 is similar to B^2 .
- (d) If B is similar to A and C is similar to A, then B is similar to C.
- (e) If A is diagonalizable and B is similar to A, then B is also diagonalizable.
- (f) If $B = P^{-1}AP$ and $\vec{\mathbf{x}}$ is an eigenvector of A corresponding to an eigenvalue λ , then $P^{-1}\vec{\mathbf{x}}$ is an eigenvector of B corresponding also to λ .

■ Exercise 4.

Define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\vec{x}) = A\vec{x}$, where A is a 3×3 matrix with eigenvalues 5 and -2. Does there exist a basis \mathscr{B} for \mathbb{R}^3 such that the \mathscr{B} -matrix for T is a diagonal matrix? Discuss.

■ Exercise 5.

Let V be a vector space with a basis $\mathscr{B} = \{\vec{\mathbf{b}}_1, \vec{\mathbf{b}}_2, \dots, \vec{\mathbf{b}}_n\}$ and let W be the same space as V with a basis $C = \{\vec{\mathbf{c}}_1, \vec{\mathbf{c}}_2, \dots, \vec{\mathbf{c}}_n\}$, and let I be the identity transformation $I: V \to W$. Find the matrix for I relative to \mathscr{B} and \mathscr{C} . This is called the change-of-coordinates matrix from \mathscr{B} to \mathscr{C} .