第一章 分子的对称性与群论基础

本章主要内容:

对称元素和对称操作 群的基本知识 分子点群 对称操作的矩阵表示 群表示及其性质 不可约表示的性质 群论与量子力学

§ 2.1 对称元素和对称操作

一、对称元素和对称操作

1、定义

对称操作:指对物体(分子)施加这样的变换,其最后位置与最初位置是物理上不可分辨的,同时物体中各对点的距离保持不变。

对称元素:与一定的对称操作相联系的几何元素(对称轴、对称面、对称中心)。

2、对称元素和对称操作的类型

(1)旋转轴与旋转(真转轴与真转动) n-fold axis of symmetry

n 次真转轴: C_n , 转角 为 $\alpha = \frac{2\pi}{n}$

n 次真转动: $\hat{C}_{...}$

例如BF3有1个三重轴、3个二重对称轴(B-F键)

$$120^{\circ} - - - \hat{C}_{3}$$

$$240^{\circ} - - - \hat{C}_{3}\hat{C}_{3} = \hat{C}_{3}^{2}$$

$$360^{\circ} - - - \hat{C}_{3}\hat{C}_{3}\hat{C}_{3} = \hat{C}_{3}^{3} = \hat{E}$$

$$\hat{C}_n^m \hat{C}_n^k = \hat{C}_n^{m+k}$$

$$\hat{C}_n^m \hat{C}_n^k = \hat{C}_n^k \hat{C}_n^m$$

$$C_n: \hat{C}_n^1 = \hat{C}_n, \ \hat{C}_n^2, \ \hat{C}_n^3, \ \dots, \ \hat{C}_n^n = \hat{E}$$

主旋转轴: 阶次最高的旋转轴。

(2) 对称面和反映操作(plane of symmetry)

$$\sigma egin{cases} \sigma_V(\sigma_d) & \text{vertical(dihedral)} & \text{包含主轴} \\ \sigma_h & \text{horizontal} & \text{垂直于主轴} \end{cases}$$

$$\sigma$$
: $\hat{\sigma}$, $\hat{\sigma}\hat{\sigma} = \hat{E}$

(3) 对称中心与反演操作(center of symmetry)

$$(x, y, z) \xrightarrow{\hat{i}} (-x, -y, -z)$$

$$i$$
: \hat{i} , $\hat{i}\hat{i} = \hat{E}$

(4)象转轴与象转动(非真转轴与非真转动) Rotation-reflection axis of symmetry

n 次象转轴 : S_n

n 次象转动: \hat{S}_n $(=\hat{\sigma}_h\hat{C}_n=\hat{C}_n\hat{\sigma}_h)$

$$\hat{S}_1 = \hat{\sigma}_h \hat{C}_1 = \hat{\sigma}$$

$$\hat{S}_2 = \hat{\sigma}_h \hat{C}_2 = \hat{i}$$

n 为奇数:
$$\hat{S}_n: \hat{S}_n, \hat{S}_n^2 = \hat{C}_n^2, \dots, \hat{S}_n^n = \hat{\sigma}_h, \dots, \hat{S}_n^{2n} = \hat{E}$$

n 为偶数:
$$\hat{S}_n$$
: \hat{S}_n , $\hat{S}_n^2 = \hat{C}_n^2$,, $\hat{S}_n^n = \hat{E}$

二、例子

1、NH₃ 分子

对称元素 对称操作 $C_3 \qquad \qquad \hat{C}_3 \,, \, \hat{C}_3^2 \,, \, \hat{C}_3^3 = \hat{E}$ $\sigma_V \qquad \qquad \hat{\sigma}_V '$ $\sigma_V '' \qquad \qquad \hat{\sigma}_V ''$

2、重叠式乙烷

对称元素 对称操作

C_3	\hat{C}_3 , \hat{C}_3^2 , $\hat{C}_3^3 = \hat{E}$
$\sigma_{\scriptscriptstyle h}$	$\hat{\sigma}_{\scriptscriptstyle h}$
C_2, C_2', C_2''	$\hat{C}_{2},\hat{C}_{2}',\hat{C}_{2}''$
$\sigma_{_{\!V}},\sigma_{_{\!V}}$ ', $\sigma_{_{\!V}}$ "	$\hat{\sigma}_{_{V}},\hat{\sigma}_{_{V}}$ ', $\hat{\sigma}_{_{V}}$ "
$S_3(C_3)$	\hat{S}_3 , \hat{S}_3^5

三、对称操作的乘积

1、定义

 $\hat{R}_2\hat{R}_1$

从右到左、依次进行。

2、可交换的乘积

- (1) 同轴的转动。
- (2) 转轴相互垂直的的两个 C₂ 转动。
- (3) 转动与反映面垂直于转轴的反映。
- (4) 反映面相互垂直的两个反映。
- (5) C_2 转动与反映面包含 C_2 转轴的反映。
- (6) 反演、恒等操作与任何对称操作。

四、几个关系

- (1) 若存在 C_n 转轴和一个垂直于该轴的 C_2 转轴,则必存在 n 个垂直于该 Cn 轴的 C2 转轴。
- (2) 若存在 C_n 转轴和一个包含它的反映面,则必存在 n 个包含 C_n 转轴的反映面。
- (3) 若存在一个偶数阶的真转轴和一个垂直于该转轴的反映面,则必存在反演中心。
- (4) 若存在两个相交的反映面,则其交线必为一真转轴。 (反映面相交的两个反映,其乘积是绕交线的转动。)
- (5) 两个真转动的乘积必定是一个真转动。

说明

I、若存在 C_n 转轴和一个垂直于该轴的 C_2 转轴,则必存在 n 个垂直于该 C_n 轴的 C_2 转轴。

$$\hat{C}_3\hat{C}_2=\hat{C}_2$$
"

$$\hat{C}_{3}^{2}\hat{C}_{2}=\hat{C}_{2}'$$

II、反映面相交的两个反映, 其乘积是绕交线的转动。

$$\hat{\sigma}$$
' $\hat{\sigma}$ = $\hat{C}_{\infty}^{2arphi}$

§ 2.2 群的基本知识

一、定义

考虑一组元素的集合 $G{A, B, C, D, E, ...}$,元素之间可以定义结合规则("乘法"),若满足以下条件,则称该组元素的集合构成一个群:

(1)封闭性

若A和B是该集合的任意两个元素,则它们的积AB也一定是该集合的元素。

(2)结合性

结合规则满足结合律: (AB)C=A(BC)

(3) 恒等元素

该集合必须含有一个元素 E,对于该集合中的任何元素 A,都有:AE=EA=A

(4) 逆元素

对于该集合的任何元素 A, 一定有一个逆元素 A^{-1} , 它也是该集合的一个元素, 使得: $AA^{-1}=A^{-1}A=E$ 。

* 群元素:数、矩阵、对称操作、算符

* 阶: 群元素的数目

* "乘法":元素间的某种结合规则,须满足结合律。

* 乘积元素的逆: (AB)⁻¹ = B⁻¹A⁻¹ (B⁻¹A⁻¹)(AB) = B⁻¹ (A⁻¹A)B=E

*交换群:

如果所有的群元素间的乘法全都对易 (即 AB=BA, AC=CA,),则称为阿贝尔群(Abelian群)或交换群。

* 交换群的一个特例是循环群(群的所有元素可由某个元素的自身乘积产生)。

例如: \hat{C}_3 群: \hat{C}_3 , \hat{C}_3^2 , $\hat{C}_3^3 = \hat{E}$

二、群的例子

1、全部正、负整数及零的集合,结合规则是数的加法。

说明: (1)结合性:数的加法具有结合性

(2) 封闭性:整数的加和仍为整数

(3) 恒等元素: 0

(4) 逆元素: 相反数 (1 与 -1, 2 与 -

2,)

2、 数组: $G = \{+1, -1, i, -i\}$,结合规则是数的乘法。

说明: (1)结合性:满足

(2) 封闭性:满足

(3) 恒等元素: +1

(4) 逆元素:

$$(i)^{-1} = -i, (-1)^{-1} = -1$$

故: 数组 $G = \{+1, -1, i, -i\}$ 构成四阶群

同理:

3、 分子全部对称操作的集合构成一个群 ---- 分子点群

- (1) 封闭性: 若 \hat{R}_1 , \hat{R}_2 是分子的对称操作, 则 $\hat{R}_2\hat{R}_1$ 必是分子的对称操作。
- (2) 单位元: 恒等操作 \hat{E}
- (3) 逆元素: 逆操作

$$(\hat{\sigma})^{-1} = \hat{\sigma}, \ (\hat{C}_n)^{-1} = \hat{C}_n^{n-1}, \dots$$

(4) 结合律: $(\hat{R}_3\hat{R}_2)\hat{R}_1 = \hat{R}_3(\hat{R}_2\hat{R}_1)$

例: NH_3 分子 --- C_{3V} 群(6阶) $\left\{\hat{E},\,\hat{C}_3\,,\,\hat{C}_3^2\,,\,\hat{\sigma}_V\,,\,\hat{\sigma}_V^{'},\hat{\sigma}_V^{''}\,\right\}$

三、群乘法表

将群元素间的乘法关系按一定顺序列成表格, 称群的乘法表(群表)。群的全部重要性质都包含在它的乘法表中。

G	E	A	В	C	
E	Е	A	В	C	
\boldsymbol{A}	A	AA	AB	AC	
В	В	BA	BB	BC	
C	C	CA	CB	CC	

C3V 群 的乘法表

C_{3V}	E	C_3	C_3^2	Ø	σų'	oη"
E	E	C_3	C_3^2	OΛ	oų'	σγ"
C_3	C_3	$C_3^{\ 2}$	\mathbf{E}	⊙γ"	σ_{V}	σų'
C_3^2	C_3^2	\mathbf{E}	C_3	oų'	⊙γ"	σ_{V}
QΛ	σų	σų,	σų"	\mathbf{E}		C_3^2
σ _V '	୦୪,	E ∽v' ∽v"	σų	C_3^2	\mathbf{E}	C_3
5 γ"	ರೡ"	QΛ	σų'	C_3	C_3^2	E

定理1(重排定理): 群的元素在乘法表的每一行或每一列必出现且只出现一次。

证明(反证法):

假定群的元素 D 在乘法表的某一行出现两次, 例如:

$$AB = D$$
, $AC = D$

则有: A-1AB=A-1D , A-1AC=A-1D

$$(A^{-1}A) B = A^{-1}D$$
, $(A^{-1}A) C = A^{-1}D$

即: $B = A^{-1}D$, $C = A^{-1}D$

不合,故原命题成立。

四、子群、类

1、子群

定义: 若一个群的子集合按照与原群相同的结合规则(乘法)构成一个群,则称该子集合形成原群的子群。

平凡子群: (1)群 G 本身、(2)由单位元构成的一阶群。

真子群: 平凡子群以外的其他子群。

定理2: 子群的阶必是母群阶的整数因子。

例:
$$C_{3V}$$
 群(6阶) $\left\{\hat{E},\,\hat{C}_3\,,\,\hat{C}_3^2\,,\,\hat{\sigma}_V,\,\hat{\sigma}_V',\hat{\sigma}_V''\,\right\}$

子群: C3 群(3阶)
$$\left\{\hat{E},\,\hat{C}_{3}\,,\,\hat{C}_{3}^{2}\,\right\}$$

$$\mathbf{Cs}$$
 群 (2阶) $\left\{\hat{E},\,\hat{\sigma}_{_{\!V}}\,\right\}$ $\left\{\hat{E},\,\hat{\sigma}_{_{\!\!V}}\,'\,\right\}$

2、共轭与类

定义:如果群中的元素 P和 Q满足关系:

$$P = X^{-1}QX$$

其中X也是此群的元素,则称 P 是 Q 的共轭变换,或称 P 与 Q 共轭。

若上式左乘X,并右乘 X^{-1} ,则:

$$Q = XPX^{-1}$$

令: $X^{-1}=Y$, 显然 Y 也是该群的一个元素,则:

$$Q = Y^{-1}PY$$

若P与Q共轭,则P与Q相互共轭。

定理3(共轭关系的可传递性): 若群的元素 A 与 B共轭, B 与 C共轭,则A 与 C 共轭。

证明:
$$B = X^{-1}AX$$
, $C = Y^{-1}BY$

则:
$$C = Y^{-1}BY$$

$$= \mathbf{Y}^{-1}(\mathbf{X}^{-1}\mathbf{A}\mathbf{X})\mathbf{Y}$$

$$= (XY)^{-1}A (XY) = Z^{-1}AZ$$

(证毕)

由定理3,相互共轭的群元素组成一个封闭的子集合,称为一个类(共轭类)。

从而可以把一个群的元素按共轭类划分,不同的类没有共同元素。

如果群的某个元素与其他元素的乘积都可交换,则该元素自成一类(不与其他元素共轭)。

若: PA = AP, PB = BP,

必有: $A^{-1}PA = P$, $B^{-1}PB = P$,

即:元素 P 不与其他元素共轭。

对于分子点群:

恒等操作自成一类; 反演操作自成一类。

互换群的每个元素都自成一类。

三、同构与同态

1、同构

定义: 若群G与群H的元素一一对应,且群G的元素的乘积对应于群H的相应元素的乘积,则称群G与群H同构。

群G与群H同构,则两者的阶相同,且乘法表相同。

群G: ..., A_i , ..., A_j ,, $A_iA_j = A_k$,

群H:, B_i ,, B_j ,, $B_iB_j = B_k$,

示 例

(1) CS 群

Cs	E	σ
E	E	σ
σ	σ	E

(2) Ci 群

$C_{\mathbf{i}}$	Ε	į
E	Ε	į
į	į	E

CS与Ci 同构:元素一一对应, "乘积对应乘积":

$$E-E$$
, $\sigma-i$, $\sigma\sigma-ii$, $E\sigma-Ei$

(3) 群 G = { 1, -1} G l -1

所有二阶群都是同构的,所有三阶群也都是同构的。

2、同态

定义:考虑群G与群H,若G的一组元素对应与H的一个元素,且群G的元素的乘积对应于群H的相应元素的乘积,则称群H是群G的一个同态映像。

群G: ...,
$$\{A_{ik}\}$$
, ..., $\{A_{jl}\}$, ..., $\{A_{ik}A_{jl}\}$,

群H:,
$$B_i$$
,, B_j ,, B_iB_j ,

- * 同态的群, 其群元素的乘法关系相同。
- * 若两个同态的群的阶相同,则两者同构。

示 例

(1) $\# G = \{1, -1, i, -i\}$

G	1	- 1	i	- i
1	1	- 1 1	i	- i
-1	- 1	1	- i	i
i	i	- i	- 1	1
- i	- i	i	1	- 1

(2) 群 H = { 1, -1}

Н	1	-1
1	1	-1
-1	-1	1

		1		
1	1	1 1	- 1	- 1
1	1	1	- 1	- 1
-1	- 1	- 1	1	1
-1	- 1	- 1	1	1

群 H 是群G的一个同态映像:

G元素 {1,-1} 对应 H 的 {1}、{i,-i} 对应 H的 {-1},且 "乘积对应乘积"。

*由数{1}构成的一阶群(按数的乘法),是任何群的同态映像。

§ 2.3 分子点群

一、无轴群

1、 C₁ 点群

------ 无对称元素

仅有对称操作: \hat{E}

2、C_s 点群

----- 仅有一个对称面

对称操作:

 \hat{E} , $\hat{\sigma}$

3 、*C_i* 点群

----- 仅有一个对称中心

对称操作: \hat{E} , \hat{i}

二、单轴群

1、C_n 点群

----- **仅有一个**^{Ch} 轴

对称操作(n个): \hat{E} , \hat{C}_n , \hat{C}_n^2 , \cdots , \hat{C}_n^{n-1}

2、C_{nV} 点群

----- 有一个 C_n 轴和n个包含该轴的对称面

对称操作(2n个):

$$\hat{E}, \hat{C}_n, \hat{C}_n^2, \dots, \hat{C}_n^{n-1}, n\hat{\sigma}_V(\hat{\sigma}_d)$$

3、C_{nh} 点群

----- 有一个 C_n 轴和垂直于该轴的对称面

对称操作(2n个):

$$\hat{E}$$
, \hat{C}_n^1 , \hat{C}_n^2 , ..., \hat{C}_n^{n-1} , $\hat{\sigma}_h$, $\hat{\sigma}_h\hat{C}_n^1$, $\hat{\sigma}_h\hat{C}_n^2$, ..., $\hat{\sigma}_h\hat{C}_n^{n-1}$

4、S_{2n} 点群

----- 仅有一个
$$S_{2n}$$
 轴

对称操作(2n个):

$$\hat{E}, \ \hat{S}_{2n}, \ \hat{S}_{2n}^2, \cdots, \ \hat{S}_{2n}^{2n-1}$$

(2n阶循环群):

 S_4

三、双面群

1、D_n 点群

----- 有一个 C_n 轴和 n 个垂直于该轴的 C_2 轴

对称操作(2n个):

$$\hat{E}, \hat{C}_n, \hat{C}_n^2, \dots, \hat{C}_n^{n-1}, n\hat{C}_2'$$

2、D_{nh} 点群

----- 有一个 C_n 轴、 \mathbf{n} 个垂直于该轴的 C_2 轴 和一个垂直于 主轴的对称面 和 \mathbf{n} 个包含该轴的对称面

对称操作(4n个):

$$\left\{ \hat{E}, \hat{C}_{n}, \hat{C}_{n}^{2}, \dots, \hat{C}_{n}^{n-1}, n\hat{C}_{2}', \\ \hat{\sigma}_{h}, \hat{\sigma}_{h}\hat{C}_{n}, \hat{\sigma}_{h}\hat{C}_{n}^{2}, \dots, \hat{\sigma}_{h}\hat{C}_{n}^{n-1}, n\hat{\sigma}_{d}(\hat{\sigma}_{V}) \right\}$$

3、 *D_{nd}* 点群

----- 有一个 C_n 轴、 \mathbf{n} 个垂直于该轴的 C_2 轴和 \mathbf{n} 个包含该轴的 对称面

对称操作(4n个):

$$\left\{\hat{E}, \hat{C}_n, \hat{C}_n^2, \cdots, \hat{C}_n^{n-1}, n\hat{C}_2', \hat{\sigma}_h, \hat{\sigma}_h\hat{C}_n, \hat{\sigma}_h\hat{C}_n^2, \cdots, \hat{\sigma}_h\hat{C}_n^{n-1}, n\hat{\sigma}_d(\hat{\sigma}_V)\right\}$$

四、线型分子

1、C∞v 点群

----- 有一个 C_{∞} 轴和无穷个包含该轴的对称面

对称操作: $\hat{E}, \hat{C}^{\varphi}_{\infty}, \dots, \infty \hat{\sigma}_{V}$

 $HF, \cdots HCN, \cdots$

2、D_{∞h} 点群

----- 有一个 C_{∞} 轴、无穷个包含和垂直该轴的对称面(对称中心)

对称操作: $\hat{E},\ \hat{C}^{\varphi}_{\infty},\ \cdots,\infty\hat{\sigma}_{V},\hat{i},\hat{S}^{\varphi}_{\infty},\ \cdots,\infty\hat{C}_{2}$ '

 $O_2, \cdots CO_2, C_2H_2 \cdots$

五、立方群

具有多于一个高次轴(Cn, n>2)的群,对应于凸正多面体。

4个 C₃ 轴 3个 C₂ 轴 $\left\{egin{array}{cccc} & T & & & \ & T_h & (i) & & \ & T_d & (6\,\sigma_{\!d}) & \end{array}
ight.$

正四面体

3个 C₄ 轴 4个 C₃ 轴 6个 C₂ 轴 0

 O_h (i)

正八面体 正六面体

6个 C₅ 轴 10个 C₃ 轴 15个 C₂ 轴 I

 I_h (i)

正二十面体 正十二面体

1、 T_d 点群

对称元素: $4 \cap C_3$ 轴(顶点和相对面心), $3 \cap C_2$ (S_4)轴(相对棱心), $1 \cap C_2$ ($1 \cap C_3$) 有 $1 \cap C_3$ ($1 \cap C_3$) 和($1 \cap C_3$

24个对称操作, 分为5个共轭类:

$$\{\hat{E}\}, \quad 3\{\hat{C}_2\}, \quad 4\{\hat{C}_3, \hat{C}_3^2\}, \quad 6\{\hat{\sigma}_d\}, \quad 3\{\hat{S}_4, \hat{S}_4^3\}$$

CCl₄, NH₄⁺, MnO₄⁻, Si(CH₃)₄, C(CH₃)₄

2、*O_h* 点群

对称元素: $3 \cap C_4$ 轴(相对顶点)、 $4 \cap C_3$ 轴(相对面心)、 $6 \cap C_2$ 轴 (相对棱心)、 对称中心.

48个对称操作, 分为10个共轭类:

$$\begin{cases} \hat{E} \}, \quad 3 \{ \hat{C}_4, \hat{C}_4^3 \}, \quad 3 \{ \hat{C}_2 \}, \quad 4 \{ \hat{C}_3, \hat{C}_3^2 \}, \quad 6 \{ \hat{C}_2 \}, \\ \{ \hat{i} \}, \quad 3 \{ \hat{S}_4, \hat{S}_4^3 \}, \quad 3 \{ \hat{\sigma}_h \}, \quad 4 \{ \hat{S}_6, \hat{S}_6^5 \}, \quad 6 \{ \hat{\sigma}_d \} \end{cases}$$

 SF_6 , WF_6 , UF_6 , $Fe(CN)_6^{4-}$, $Mo(CO)_6$

3、 I_h 点群

对称元素: $6 \cap C_5$ 轴(相对顶点)、 $10 \cap C_3$ 轴(相对面心)、 $15 \cap C_5$ 轴(相对棱心)、对称中心.

120个对称操作, 分为10个共轭类:

$$\begin{cases} \hat{E} \}, \quad 6 \hat{C}_5, \hat{C}_5^4 \}, \quad 6 \hat{C}_5^2, \hat{C}_5^3 \}, \quad 10 \hat{C}_3, \hat{C}_3^2 \}, \quad 15 \hat{C}_2 \}, \\
\hat{i} \}, \quad 6 \hat{S}_{10}, \hat{S}_{10}^9 \}, \quad 6 \hat{S}_{10}^3, \hat{S}_{10}^7 \}, \quad 10 \hat{S}_6, \hat{S}_6^5 \}, \quad 15 \hat{C}_d \}$$

 $[B_{12}H_{12}]^{2}$

 C_{60}

C60 是截角二十面体, 有12个正五边形面, 20个正六边形面

作业:教材-李俊清_物质结构导论_习题 第四章

- 1. (a) (b) (c)
- 2.
- 5.
- 6. (a), (b), (c), (d), (e)
- 15
- 17(b)(c)