Vitali覆盖引理1

- 设 $E \subset \mathbb{R}^1$, $\Gamma = \{I_{\alpha}\}$ 是一个区间族. 若对任意的 $x \in E$ 以及 $\epsilon > 0$, 存在 $I_{\alpha} \in \Gamma$, 使得 $x \in I_{\alpha}$, $|I_{\alpha}| < \epsilon$, 则称 Γ 是 E 的 Vitali 覆盖.
- 例. $E = [a, b], \{r_n\} \in E$ 中的有理数构成的集合.

$$\Gamma = \left\{ \left[r_n - \frac{1}{m}, r_n + \frac{1}{m} \right] : n, m = 1, 2, \dots \right\}$$

• 设 $E \subset \mathbb{R}^1$, 且 $m^*(E) < \infty$, Γ 是 E 的 Vitali 覆盖, 则对于任意的 $\epsilon > 0$, 存在有限个互不相交的 $I_i \in \Gamma(j=1,2,\cdots,n)$, 使得

$$m^*(E\setminus\bigcup_{j=1}^n I_j)<\epsilon.$$

刘建明 (北大数学学院) 1 / 34

Vitali 覆盖引理2

• 注: 假设上面所有区间都包含在一个开集 $G \supset E$ 中(Γ 中包含于 G 中的区间构成的集合依然是 Vitali 覆盖), 且 $m(G) < m^*(E) + \epsilon$. 存在有限个互不相交的 $G \supset I_j \in \Gamma(j=1,2,\cdots,n)$, 使得

$$m^*(E) - \epsilon < \sum_{j=1}^n |J_j| < m^*(E) + \epsilon$$

- 注: $m^*(E\setminus\bigcup_{i=1}^{+\infty}I_i)=0$. 对 n 维空间有类似定理.
- 证明思路: 依次选取 I_j , 使得 I_j 与 $\bigcup_{k=1}^{j-1} I_k$ 不交, 而且 I_j 在与 $\bigcup_{k=1}^{j-1} I_k$ 不交的区间中, 它的长度"较大".

刘建明 (北大数学学院) 2 /

覆盖的构造

• 设全部区间都是闭区间. 取一个开集 $G \supset E$, 使得 $m(G) < +\infty$. 假设所有方体包含在 G 中. 任取 $I_1 \in \Gamma$. 若已经选出互不相交的区间 I_1, I_2, \cdots, I_k . 令

$$\delta_k = \sup\{|I| : I \in \Gamma, I \cap I_j = \phi, j = 1, 2, \cdots, k\}$$

选取 /_{k+1}, 使得

$$|I_{k+1}| > \frac{1}{2}\delta_k, I_{k+1} \cap I_j = \phi, j = 1, 2, \dots, k$$

显然 $\sum_{i=1}^{\infty} |I_i| < m(G) < +\infty$, 因此 $|I_k| \to 0$, $\delta_k \to 0$.

刘建明 (北大数学学院) 3 / 34

覆盖引理的证明

• 对任意的 $\epsilon > 0$,取 n 满足 $\sum_{j=n+1}^{\infty} |I_j| < \frac{\epsilon}{5}$. 要证 $m^*(E \setminus \bigcup_{j=1}^n I_j) < \epsilon$,只要证明

$$E \setminus \bigcup_{j=1}^{n} I_j \subset \bigcup_{j=n+1}^{\infty} 5I_j,$$

其中 $5l_j$ 的长度是 l_j 的5倍,中心相同.

对任意 $x \in E \setminus \bigcup_{j=1}^{n} I_j$, 存在 $I \in \Gamma$, $x \in I$, $I \cap I_j = \phi$, $j = 1, 2, \dots, I_n$. 设 I_{n+1}, I_{n+2}, \dots 中第一个与 I 相交的是 I_{n_0} , 则有 $|I| \leq \delta_{n_0-1} < 2|I_{n_0}|$, $I \subset 5I_{n_0}$, 从而 $x \in 5I_{n_0}$.

刘建明 (北大数学学院) 4 /

另一个覆盖引理

- 设 $E \subset \mathbb{R}^n$ 是有界集, $\{I_{\alpha}\}$ 是 E 的一个开方体覆盖,则存在可数个互不相交的 $\{I_j\} \subset \{I_{\alpha}\}$,使得 $\{5I_j\}$ 是 E 的覆盖,当然也有 $m(E) \leq 5^n \sum |I_j|$.
- 不妨设所有 I_{α} 与 E 的交集非空,且 $\delta_1 = \sup\{I(I_{\alpha})\} < \infty(I(I_{\alpha})\}$ 为方体的边长.这里假设方体的边长有界,否则的话找一个足够大的 I_{α} 即可).选 I_{1} 满足 $I(I_{1}) > \delta_{1}/2$.若已经去选出互不相交的区间 I_{1},I_{2},\cdots,I_{k} .令

$$\delta_k = \sup\{I(I_\alpha) : I_\alpha \cap I_j = \phi, j = 1, 2, \cdots, k\}.$$

选取 / k+1, 使得

$$I(I_{k+1}) > \frac{1}{2}\delta_k, I_{k+1} \cap I_j = \phi, j = 1, 2, \cdots, k.$$

对任意 I_{α} , 设 I_{k} 是与之相交的第一个方体, 则有 $I_{\alpha} \subset 5I_{k}$.

刘建明 (北大数学学院) 5 / 34

Dini'导数

• f(x) 在 $x_0 \in \mathbb{R}$ 附近有定义. 定义右上导数, 右下导数, 左上导数, 左 下导数

$$D^{+}f(x_{0}) = \limsup_{h \to 0+} \frac{f(x_{0} + h) - f(x_{0})}{h},$$

$$D_{+}f(x_{0}) = \liminf_{h \to 0+} \frac{f(x_{0} + h) - f(x_{0})}{h},$$

$$D^{-}f(x_{0}) = \limsup_{h \to 0-} \frac{f(x_{0} + h) - f(x_{0})}{h},$$

$$D_{-}f(x_{0}) = \liminf_{h \to 0-} \frac{f(x_{0} + h) - f(x_{0})}{h}$$

刘建明 (北大数学学院) 6 / 34

Dini'导数的性质

- 由定义,
 - $D^+f(x_0) \ge D_+f(x_0), \quad D^-f(x_0) \ge D_-f(x_0),$ $D^+(-f)(x_0) = -D_+f(x_0), \quad D^-(-f)(x_0) = -D_-f(x_0).$
- f(x) 在 x_0 点右导数存在 \iff $D^+f(x_0) = D_+f(x_0)$. f(x) 在 x_0 点左导数存在 \iff $D^-f(x_0) = D_-f(x_0)$. f(x) 在 x_0 点导数存在 \iff 四个Dini导数相等.
- f(x) 在 x_0 点导数不存在,则有 $D^+f(x_0) > D_-f(x_0)$,或者 $D^-f(x_0) > D_+f(x_0)$.

刘建明 (北大数学学院) 7 / 34

Lebesgue 定理

f(x) 是定义在 [a, b] 上的单调上升函数,则 f(x) 的不可微点集是零测集.且有

$$\int_a^b f'(x)dx \le f(b) - f(a).$$

• 只要证明下面集合是零测集

$$E_1 = \{x \in [a,b]: D^+f(x) > D_-f(x)\}$$

 $E_2 = \{x \in [a,b]: D^-f(x_0) > D_+f(x_0)\}$
为证明 E_1 是零测集, 只要证明 $A = A_{r,s} = \{x \in [a,b]: D^+f(x) > r > s > D_-f(x)\}$ 是零测集.

刘建明 (北大数学学院) 8 / 34

证明思路

• 证明思路: 利用 Vitali 覆盖引理, 找有限个不交区间 $[x_j - h_j, x_j]$, $j = 1, 2, \cdots, p$, 使得 $\sum_{j=1}^p h_j < m^*(A) + \epsilon$,

$$\sum_{j=1}^{p} f(x_j) - f(x_j - h_j) < s \sum_{j=1}^{p} h_j \le s(m^*(A) + \epsilon).$$

找有限个不交区间 $[y_j,y_j+k_j],\ j=1,2,\cdots,q,$ 使得 $\sum_{j=1}^q k_j>m^*(A)-2\epsilon,$

$$\sum_{j=1}^{q} f(y_j + k_j) - f(y_j) > r \sum_{j=1}^{q} h_j \ge r(m^*(A) - 2\epsilon).$$

若还有任意区间 $[y_j, y_j + k_j]$ 包含在某个 $[x_j - h_j, x_j]$ 中,则有

$$\sum_{j=1}^{q} f(y_j + k_j) - f(y_j) \leq \sum_{j=1}^{p} f(x_j) - f(x_j - h_j)$$

刘建明 (北大数学学院) 9 / 34

定理证明中不交区间的选取

• A 的覆盖: 对任意 $x \in A$, $D_{-}f(x) < s$, 则存在任意小的 h > 0, 使得 $\frac{f(x-h)-f(x)}{-h} < s$. 满足 $[x-h,x] \subset G$ 的全体区间构成 A 的 Vitali 覆盖, 存在限个不交区间 $[x_{j}-h_{j},x_{j}]$, $j=1,2,\cdots,p$, 使得 $\sum_{j=1}^{p}h_{j} < m^{*}(A) + \epsilon$,

$$\sum_{j=1}^{p} f(x_j) - f(x_j - h_j) < s \sum_{j=1}^{p} h_j \le s(m^*(A) + \epsilon).$$

令 $B = A \cap \bigcup_{j=1}^{p} (x_j - h_j, x_j)$, 对任意 $x \in B$, $D^+ f(x) > s$, 则存在任意 小的 h > 0, 使得 $\frac{f(x+h) - f(x)}{h} > r$. 满足 $[x, x+h] \subset \bigcup_{j=1}^{p} (x_j - h_j, x_j)$ 的全体区间构成 B 的 Vitali 覆盖. 存在限个不交区间 $[y_j, y_j + k_j]$, $j = 1, 2, \cdots, q$, 使得 $\sum_{j=1}^{q} k_j > m^*(B) - \epsilon > m^*(A) - 2\epsilon$,

$$\sum_{j=1}^{q} f(y_j + k_j) - f(y_j) > r \sum_{j=1}^{q} h_j \ge r(m^*(A) - 2\epsilon).$$

刘建明 (北大数学学院) 10 / 34

定理中不等式的证明

• 假定 x > b 时 f(x) = b. 令 $f_n(x) = n[f(x + \frac{1}{n}) - f(x)]$, 则有 $f_n(x) \ge 0$, $f_n(x) \to f'(x)$, a.e. $x \in [a, b]$. 利用Fatou引理

$$\int_{a}^{b} f'(x)dx \le \liminf_{n \to \infty} \int_{a}^{b} f_{n}(x)dx = \liminf_{n \to \infty} n \int_{a}^{b} \left[f(x + \frac{1}{n}) - f(x) \right] dx$$

$$= \liminf_{n \to \infty} n \left[\int_{b}^{b + \frac{1}{n}} f(x)dx - \int_{a}^{a + \frac{1}{n}} f(x)dx \right]$$

$$= \liminf_{n \to \infty} \left[f(b) - n \int_{a}^{a + \frac{1}{n}} f(x)dx \right] \le f(b) - f(a)$$

• 上面不等式说明 f'(x) 几乎处处有限.

刘建明 (北大数学学院) 11 / 34

逐项微分定理

• 设 $f_n(x)$ 是 [a, b]上的递增函数列,且 $\sum_{n=1}^{\infty} f_n(x)$ 在 [a, b] 上收敛,则有

$$\frac{d}{dx}\Big(\sum_{n=1}^{\infty}f_n(x)\Big)=\sum_{n=1}^{\infty}\frac{d}{dx}f_n(x), a.e.x \in [a,b].$$

• 证明思路: 设 $R_N(x) = \sum_{n=N+1}^{\infty} f_n(x)$, 则 $R_N(x)$ 几乎处处可微.

$$\frac{d}{dx}\Big(\sum_{n=1}^{\infty}f_n(x)\Big)=\sum_{n=1}^{N}\frac{d}{dx}f_n(x)+R'_N(x)$$

只要证明 $R'_N(x) \rightarrow 0$, a.e. $x \in [a, b]$.

刘建明 (北大数学学院) 12 / 34

$$R_N'(x) o 0$$
, a.e. $x \in [a, b]$ 的证明

- $R'_N(x) = f'_{N+1}(x) + R'_{N+1}(x) \ge R'_{N+1}(x)$, a.e. $x \in [a, b]$.
- 由控制收敛定理,

$$\int_{a}^{b} \lim_{N \to \infty} R'_{N}(x) dx = \lim_{N \to \infty} \int_{a}^{b} R'_{N}(x) dx \le \lim_{N \to \infty} (R_{N}(b) - R_{N}(a)) = 0$$

$$\text{Elike } \lim_{N \to \infty} R'_{N}(x) = 0 \text{ a.s.}$$

因此 $\lim_{N\to\infty} R'_N(x) = 0$, a.e.

刘建明 (北大数学学院) 13 / 34

有界变差函数的定义

• f(x) 是 [a,b] 上的函数, 分划 $\Delta: a = x_0 < x_1 < \cdots < x_n = b$, 变差

$$v_{\Delta} = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|.$$

f 在 [a, b] 上的全变差

$$\bigvee_{a}^{b}(f) = \sup\{v_{\Delta} : \Delta \text{为 } [a,b] \text{ 的任一分割}\}.$$

- 有界变差函数: f 在 [a,b] 上的全变差有限, 记为 $f \in BV([a,b])$.
- 性质: 有界变差函数有界; BV([a, b]) 是线性空间.

刘建明 (北大数学学院) 14 / 34

全变差的可加性

• 例: f(x) 是单调函数,

$$\bigvee_{a}^{b}(f)=|f(b)-f(a)|$$

例: f(x) 在 [a,b] 上可导, 且 |f'(x)| ≤ M,

$$\bigvee_{a}^{b}(f) \leq M|f(b) - f(a)|$$

- $f(x) = \begin{cases} x \sin \frac{\pi}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, $V(f) = +\infty$.
- 定理: f(x) 是 [a,b] 上的函数, 分划 $\Delta: a < c < b$, 则有

$$\bigvee_{a}^{b}(f) = \bigvee_{a}^{c}(f) + \bigvee_{c}^{b}(f)$$

刘建明 (北大数学学院) 15 / 34

全变差的可加性的证明

• 证明: 对 [a,b] 的任意分割 Δ (若 c 是不是分点,加入 c 得分割 Δ' . 显然有 $v_{\Delta} \leq v_{\Delta'}$), 有

$$v_{\Delta} \leq \bigvee_{a}^{c}(f) + \bigvee_{c}^{b}(f) \Rightarrow \bigvee_{a}^{b}(f) \leq \bigvee_{a}^{c}(f) + \bigvee_{c}^{b}(f)$$

取 [a,c] 的分割 $a=x_0' < x_1' < \cdots < x_m'$, [c,d] 的分割 $c=x_0'' < x_1'' < \cdots < x_n''$, 使得下面式子成立,

$$\sum_{i=1}^{m} |f(x_i') - f(x_{i-1}')| > \bigvee_{a}^{c} (f) - \frac{\epsilon}{2}, \quad \sum_{i=1}^{n} |f(x_i'') - f(x_{i-1}'')| > \bigvee_{c}^{b} (f) - \frac{\epsilon}{2}$$

若 $\Delta = \Delta' \cup \Delta''$, 则有

$$v_{\Delta} > \bigvee_{a}^{c}(f) + \bigvee_{c}^{b}(f) - \epsilon$$

刘建明 (北大数学学院) 16 / 34

Jordan 分解定理

- $f \in BV([a,b])$ 当且仅当 f(x) 可表示为 [a,b] 上单调上升函数的差.
- 证明: 定义函数

$$g(x) = \frac{1}{2} \bigvee_{a}^{x} (f) + \frac{1}{2} f(x), h(x) = \frac{1}{2} \bigvee_{a}^{x} (f) - \frac{1}{2} f(x),$$

则 f(x) = g(x) - h(x). g, h 都是单调增函数, 因为对 $a \le x \le y \le b$,

$$g(y) - g(x) = \frac{1}{2} \bigvee_{x}^{y} (f) + \frac{1}{2} (f(y) - f(x)) \ge 0.$$

• 对上面的分解,

$$\overset{\times}{\underset{a}{\mathsf{V}}}(f) = \overset{\times}{\underset{a}{\mathsf{V}}}(g) + \overset{\times}{\underset{a}{\mathsf{V}}}(h)$$

刘建明 (北大数学学院) 17 / 34

Jordan 分解定理2

• $f \in BV([a,b])$, 若另有分解 $f(x) = g_1(x) - h_1(x)$ (这里 $g_1(x)$, $h_1(x)$ 是 递增函数), 则有

$$g_1(x) - g_1(a) \ge g(x) - g(a), h_1(x) - h_1(a) \ge h(x) - h(a)$$

• 证明: 显然有

$$g(x) - g(a) + h(x) - h(a) = 2g(x) - 2g(a) - f(x) + f(a)$$

$$= \bigvee_{a}^{x} (f) \le \bigvee_{a}^{x} (g_1) + \bigvee_{a}^{x} (h_1)$$

$$= g_1(x) - g_1(a) + h_1(x) - h_1(a) = 2g_1(x) - 2g_1(a) - f(x) + f(a)$$

刘建明 (北大数学学院) 18 / 34

• $f \in L([a,b])$, $F(x) = \int_a^x f(t)dt$, 则有

$$\bigvee_{a}^{b} F = \int_{a}^{b} |f(t)| dt$$

• 证明: 设 $a = x_0 < x_1 < \cdots < x_n = b$,

$$\sum_{k=1}^{n} |F(x_k) - F(x_{k-1})| = \sum_{k=1}^{n} |\int_{x_{k-1}}^{x_k} f(t)dt|$$

$$\leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f(t)|dt = \int_{a}^{b} |f(t)|dt$$

因此
$$\bigvee_{a}^{b}(F) \leq \int_{a}^{b} |f(t)| dt$$

刘建明 (北大数学学院) 19 / 34

• 证明(续): 存在阶梯函数列 $\phi_n(x)$ (不妨设 $|\phi_n(x)| \leq 1$) 依 L^1 收敛于 $\operatorname{sgn}(f(x))$, 而且 $\phi_n(x)$ 几乎处处收敛到 $\operatorname{sgn}(f(x))$, 若 $\phi_n(x) = \sum_{k=1}^m a_k \chi_{[x_{k-1},x_k)}$, $|a_k| \leq 1$. 当 n 足够大时

$$\int_{a}^{b} |f(x)| dx - \epsilon \le \int_{a}^{b} \phi_{n}(x) f(x) dx = \sum_{k=1}^{m} a_{k} (F(x_{k}) - F(x_{k-1}))$$

$$\le \sum_{k=1}^{m} |F(x_{k}) - F(x_{k-1})| \le \bigvee_{k=1}^{b} (F)$$

刘建明 (北大数学学院) 20 / 34

• Jordan分解中 $g(x) = \frac{1}{2} \bigvee_{a}^{x} (f) + \frac{1}{2} f(x), \ h(x) = \frac{1}{2} \bigvee_{a}^{x} (f) - \frac{1}{2} f(x)$ 都是递增函数, 因此有

$$g'(x) = \frac{1}{2} \left(\bigvee_{a}^{x} (f) \right)' + \frac{1}{2} f'(x) \ge 0,$$

$$h'(x) = \frac{1}{2} \left(\bigvee_{a}^{x} (f) \right)' - \frac{1}{2} f'(x) \ge 0.$$

因此有

$$\left(\bigvee_{a}^{x}(f)\right)' \geq |f'(x)| \Rightarrow \bigvee_{a}^{x}(f) \geq \int_{a}^{x} \frac{d}{dt} \bigvee_{a}^{t}(f) dt \geq \int_{a}^{x} |f'(t)| dt$$

• 注: 若令 $F(x) = \bigvee_{a=0}^{x} f(x) - \int_{a}^{x} |f'(t)| dt$, 则 F(x) 递增.

刘建明 (北大数学学院) 21 / 34

f ∈ BV([a, b]), 则有

$$\frac{d}{dx}\bigvee_{a}^{x}(f)=|f'(x)|, \text{a.e.} x\in[a,b]$$

• 证明: 构造函数 $g_n(x)$ 使得 $g_n(a) = 0$, $\bigvee_{a}^{x} (f) - g_n(x)$ 是递增函数, 且

$$|g'_n(x)| = |f'(x)|, \text{ a.e. } x \in [a, b], \bigvee_{a}^{b} (f) - g_n(b) < 2^{-n}$$

因此

$$\sum_{n=1}^{\infty} \left(\bigvee_{a}^{X} (f) - g_n(x) \right) < +\infty, x \in [a, b]$$

逐项求导, 利用 $\overset{\times}{\underset{a}{\bigvee}}(f)$ 的导数非负即得.

刘建明 (北大数学学院) 22 / 34

• $g_n(x)$ 的构造: 对 $\epsilon = 2^{-n}$, 存在划分 $a = x_0 < x_1 < \dots < x_k = b$, 使得

$$\bigvee_{a}^{b}(f) - \sum |f(x_i) - f(x_{i-1})| < \epsilon$$

构造函数 $g_n(x)$ 在 $[x_i, x_{i-1}]$ 满足

$$g_n(x) = \begin{cases} f(x) + c_i, & f(x_i) \ge f(x_{i-1}) \\ -f(x) + c_i, & f(x_i) < f(x_{i-1}) \end{cases}$$

调整 c_i, c_i' 使得 $g_n(x)$ 在 x_i 的值一致以及 $g_n(a) = 0$. 因为 $\bigvee_{a}^{x}(f) \pm f(x) + c$ 是单调增函数, $\bigvee_{a}^{x}(f) - g_n(x)$ 是递增函数.

刘建明 (北大数学学院) 23 / 34

问题

• 问题: $f \in L([a,b])$, 定义 $F(x) = \int_a^b f(x) dx$, 是否有 F'(x) = f(x), a.e. $x \in [a,b]$. 若定义(当 $x \notin [a,b]$ 时, 令 f(x) = 0)

$$F_h(x) = \frac{1}{h} \int_x^{x+h} f(t) dt,$$

上面结论等价于对 a.e. $x \in [a, b]$,

$$\lim_{h \to 0} F_h(x) - f(x) = \lim_{h \to 0} \frac{1}{h} \int_0^h (f(x+t) - f(x)) dt = 0$$

刘建明 (北大数学学院) 24 / 34

引理

• 引理: 设 f ∈ L([a, b]), 则有

$$\lim_{h \to 0} \int_{a}^{b} |F_{h}(x) - f(x)| dx = 0$$

● 证明: 不妨设 h > 0,

$$F_h(x) - f(x) = \frac{1}{h} \int_0^h f(x+t) dt - f(x) = \frac{1}{h} \int_0^h [f(x+t) - f(x)] dt$$

因此

$$\int_{a}^{b} |F_{h}(x) - f(x)| dx \le \int_{\mathbb{R}} \frac{1}{h} \int_{0}^{h} |f(x+t) - f(x)| dt dx$$
$$= \int_{0}^{h} \frac{1}{h} dt \int_{\mathbb{R}} \frac{1}{h} |f(x+t) - f(x)| dx \to 0$$

刘建明 (北大数学学院) 25 / 34

主要定理

- 定理: 设 $f \in L([a,b])$, $F(x) = \int_a^b f(x) dx$, 则有 F'(x) = f(x), a.e. $x \in [a,b]$.
- 证明1: 由引理, 存在序列 $h_k \to 0$, 使得 $F_{h_k} \to f(x)$ a.e. $x \in [a, b]$. 又 F(x) 几乎处处可导, $F_{h_k} \to F'(x)$ a.e. $x \in [a, b]$, 因此 F'(x) = f(x), a.e. $x \in [a, b]$.
- 证明2: $F_h \to F'(x)$ a.e. $x \in [a, b]$, 由Fatou引理,

$$\int_{a}^{b} |f(x) - F'(x)| dx \le \liminf_{h \to 0} \int_{a}^{b} |f(x) - F_{h}(x)| dx = 0$$

刘建明 (北大数学学院) 26 / 34

推理

推理: 设 f ∈ L([a, b]), 则有

$$\lim_{h \to 0} \frac{1}{h} \int_0^h |f(x+t) - f(x)| dt = 0, \text{ a.e. } x \in [a, b].$$

• 证明: 若 f(x) 有限,且对任意有理数 r, $\frac{1}{h} \int_0^h |f(x+t) - r| dt \rightarrow |f(x) - r|$,

$$\frac{1}{h} \int_0^h |f(x+t) - f(x)| dt \le \frac{1}{h} \int_0^h |f(x+t) - r| dt + |f(x) - r|$$

对任意 $\epsilon > 0$, 取 r 满足 $|f(x)-r| < \frac{\epsilon}{3}$, 存在 $\delta > 0$,使得当 $0 < |h| < \delta$ 时,

$$\left|\frac{1}{h}\int_0^h|f(x+t)-r|dt-|f(x)-r|\right|<\epsilon$$

刘建明 (北大数学学院) 27 / 34

问题

• 问题:对什么样的函数 f(x) 有

$$f(x) - f(a) = \int_a^x f'(t)dt,$$

- 必要条件1: f(x) 几乎处处可微, 且 $f'(x) \in L([a,b])$, 此时 $f(x) = f(a) + \int_a^x f'(t) dt$ 一定是有界变差函数.
- 必要条件2: f(x) 是连续函数.
- Cantor 函数是连续的有界变差函数, 但是对 Cantor 函数上面的等式 不成立.

刘建明 (北大数学学院) 28 / 34

绝对连续函数

• 设 f(x) 是 [a,b] 上的函数. 若对任给 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 [a,b] 中任意有限个互不相交的开区间 $(x_i,y_i)(i=1,2,\ldots,n)$ 的长度和小于 δ 时,有

$$\sum_{i=1}^n |f(y_i) - f(x_i)| < \epsilon,$$

- 性质: 绝对连续函数是连续函数.
- 性质: [a, b] 上的绝对连续函数全体构成一个线性空间.
- 例: [a, b] 上的满足下列Lipschitz条件的函数.

$$|f(x)-f(y)|\leq M|x-y|.$$

刘建明 (北大数学学院) 29 / 34

几乎处处导数为零的函数

- 引理: 设 f(x) 在 [a,b] 上几乎处处可导. 且 f'(x) = 0, a.e. $x \in [a,b]$. 若 f(x) 不是常数函数,则 f(x) 不是绝对连续函数.
- 证明思路: 对任意 $\delta > 0$, r > 0, 找 [a,c] 的分割 $a = x_0 < x_1 < x_1 + h_1 < x_2 < x_2 + h_2 < \cdots < x_n < x_n + h_n < x_{n+1} = c$ 使得 $\sum h_k > (c-a) \delta$, $|f(x_i + h_i) f(x_i)| < rh_i$, 规定 $h_0 = 0$,

$$|f(c)-f(a)| \leq \sum_{i=0}^{n} |f(x_{i+1})-f(x_i+h_i)| + \sum_{i=1}^{n} |f(x_i+h_i)-f(x_{i+1})|$$

第二个求和的值可以任意小(由 r 定), 所以可以使第一个和大于一个固定的值, 比如 $\frac{|f(c)-f(a)|}{2}$, 但第一个和式中的区间长度之和小于 δ .

• x_i , h_i 的选取: $E = \{x \in (a,c) : f'(x) = 0\}$, 对任意 $x \in E$, 存在任意 小的 h > 0, 使得 x + h < c, |f(x + h) - f(x)| < rh. 再利用Vitali覆盖引理.

刘建明 (北大数学学院) 30 / 34

变上限积分是绝对连续函数

- 定理: 设 $f(x) \in L([a,b])$. 则 $F(x) = \int_a^x f(t)dt$ 是 [a,b] 上的绝对连续函数.
- 证明: (x_i, y_i) , $i = 1, 2, \dots, n$ 是 [a, b] 中互相不交的区间

$$\sum_{i=1}^{n} |F(y_i) - F(x_i)| = \sum_{i=1}^{n} |\int_{x_i}^{y_i} f(x) dx| \le \int_{\bigcup_{i=1}^{n} (x_i, y_i)} |f(x)| dx$$

由积分的绝对连续性, 对给 $\epsilon > 0$, 存在 $\delta > 0$, 当 $m(\bigcup_{i=1}^{n}(x_i, y_i)) < \delta$ 时, 上面积分小于 ϵ .

刘建明 (北大数学学院) 31 / 34

绝对连续函数是有界变差函数

- 定理: 若 f(x) 是 [a,b]) 上的绝对连续函数,则 f(x) 是 [a,b]) 上的有界变差函数,.
- 证明: 存在 $\delta > 0$, 当 [a, b] 中任意有限个互不相交开区间 $(x_i, y_i)(i = 1, 2, \dots, n)$ 长度和小于 δ 时,

$$\sum_{i=1}^{n} |f(y_i) - f(x_i)| < 1.$$

因此对任意长度小于 δ 的区间 [c,d] 有 $\bigvee_{c}^{d}(f) < 1$. 把 [a,b] 分解为有限个长度小于 δ 的区间即得.

- [a, b] 上的绝对连续函数几乎处处可导, 而且其导函数在 [a, b] 上可积.
- 若 [a,b] 上绝对连续函数的导数几乎处处为零, 则必为常数.

刘建明 (北大数学学院) 32 / 34

微积分基本定理

• 定理: 若 f(x) 是 [a, b]) 上的绝对连续函数, 则有

$$f(x) - f(a) = \int_a^x f'(t)dt.$$

• 证明: 令

$$g(x) = \int_a^x f'(t)dt.$$

则 f(x) - g(x) 是绝对连续函数, 且导数几乎处处为零.

• 若 [a, b]) 上的绝对连续函数 f(x) 可表示为

$$f(x)-f(a)=\int_a^x g(t)dt, g\in L([a,b]).$$

则 g(x) = f'(x), a.e. $x \in [a, b]$.

刘建明 (北大数学学院) 33 / 34

绝对连续函数级数的逐项求导

• 定理: 若 $g_k(x)(k=1,2,\cdots)$ 是 [a,b] 上的绝对连续函数, 若存在 $c \in [a,b]$, 使得 $\sum_{k=1}^{\infty} g_k(c)$, $\sum_{k=1}^{\infty} \int_a^b |g_k'(x)| dx < \infty$, 则级数 $\sum_{k=1}^{\infty} g_k(x)$ 在 [a,b] 上收敛, 且其和函数(设为 g(x))是 [a,b] 上的绝对连续函数, 且有

$$g'(x) = \sum_{k=1}^{\infty} g'_k(x), a.e.x \in [a, b].$$

• 证明: 由逐项积分定理, 令

$$G(x) = \sum_{k=1}^{\infty} g'_k(x), \int_c^x G(t)dt = \sum_{k=1}^{\infty} (g_k(x) - g_k(c)) = g(x) - g(c).$$

因此 g(x) 是绝对连续函数, 且 g'(x) = G(x), $a.e.x \in [a, b]$.

刘建明 (北大数学学院) 34 / 34