

CSE322 Concept of Computability

Lecture #40

Computability

 The Problem of finding out whether a given problem is "Solvable" by automata reduces to the evaluation of function on the set of natural numbers or a given alphabet by mechanical means.

Primitive Recursion Function

- Consider the function $exp(x, y) = x^y$
- $x^0 = 1$
- $x^1 = x$
- $x^2 = x \cdot x$
- ... $x^y = x$. x. x.....(y occurrences of x)
- $x^{y+1} = x \cdot x^{y}$

The two Rewriting Rules:-

•
$$X^0 = 1$$

•
$$X^{y+1} = x. x^y$$

Reducing exponential to reduce multiplication

$$x.0 = 0$$

$$X(y+1) = x + x \cdot y$$

Primitive Recursion is spirit of

Converting exponential into multiplication or addition.

Or in general we can say complex functions into easy functions.

- The primitive recursive functions are among the number-theoretic functions, which are functions from the <u>natural numbers</u> (nonnegative integers) {0, 1, 2, ...} to the natural numbers. These functions take *n* arguments for some natural number *n* and are called *n*ary.
- The basic primitive recursive functions are given by these <u>axioms</u>:
- Constant function or Zero function: The 0-ary constant function 0 is primitive recursive.
- Successor function: The 1-ary successor function S, which returns the successor of its argument is primitive recursive. That is, S(k) = k + 1.
- **Projection function**: For every $n \ge 1$ and each i with $1 \le i \le n$, the n-ary projection function P_i^n , which returns its i-th argument, is primitive recursive.

INITIAL FUNCTIONS

The initial functions over N are given in Table 11.1. In particular,

$$S(4) = 5$$
, $Z(7) = 0$

$$U_2^3(2, 4, 7) = 4$$
, $U_1^3(2, 4, 7) = 2$, $U_3^3(2, 4, 7) = 7$

TABLE

Initial Functions Over N

Zero function Z defined by Z(x) = 0.

Successor function S defined by S(x) = x + 1.

Projection function U_i^n defined by $U_i^n(x_1, \ldots, x_n) = x_i$.

Definition If f_1, f_2, \ldots, f_k are partial functions of n variables and g is a partial function of k variables, then the composition of g with f_1, f_2, \ldots, f_k is a partial function of n variables defined by

$$g(f_1(x_1, x_1, \ldots, x_n), f_2(x_1, x_2, \ldots, x_n), \ldots, f_k(x_1, x_2, \ldots, x_n))$$

If, for example, f_1 , f_2 and f_3 are partial functions of two variables and g is a partial function of three variables, then the composition of g with f_1 , f_2 , f_3 is given by $g(f_1(x_1, x_2), f_2(x_1, x_2), f_3(x_1, x_2))$.

Complexity

- Time Complexity:- Amount of time taken by a Machine to run input string.
- Space Complexity:- Amount of space or memory required by machine to implement input string.

The classes of P and NP problem

Definition A Turing machine M is said to be of time complexity T(n) if the following holds: Given an input w of length n, M halts after making at most T(n) moves.

Note: In this case, M eventually halts. Recall that the standard TM is called a deterministic TM.

Definition A language L is in class **P** if there exists some polynomial T(n) such that L = T(M) for some deterministic TM M of time complexity T(n).

Definition A language L is in class **NP** if there is a nondeterministic TM M and a polynomial time complexity T(n) such that L = T(M) and M executes at most T(n) moves for every input w of length n.

Power of Quantum Computation

In classical complexity theory, the classes **P** and **NP** play a major role, but there are other classes of interest. Some of them are given below:

L—The class of all decision problems which may be decided by a TM running in logarithmic space.

PSPACE—The class of decision problems which may be decided on a Turing machine using a polynomial number of working bits, with no limitation on the amount of time that may be used by the machine.

EXP—The class of all decision problems which may be decided by a TM in exponential time, that is, $O(2^{n^k})$, k being a constant.

The hierarchy of these classes is given by

$$L \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$$

The inclusions are strongly believed to be strict but none of them has been proved so far in classical complexity theory.