Differential System

1. Climate

diagnostic

$$R_c = \phi \ln \left(\frac{C}{C_{\rm pi}} \right)$$

$$R = R_c + R_x$$

prognostic

$$\Theta_{s} \, \frac{\mathrm{d}T}{\mathrm{d}t} = R - \frac{\phi \, \ln(2)}{T_{2\times}} \, T - \epsilon_{\mathrm{heat}} \, \theta \, (T - T_{d})$$

$$\Theta_d \frac{\mathrm{d}T_d}{\mathrm{d}t} = \theta \left(T - T_d \right)$$

2. Sea level

diagnostic

$$U_{\text{ohc}} = \alpha_{\text{ohc}} (\Theta_s T + \Theta_d T_d)$$

$$\frac{\mathrm{d}U_{\mathrm{ohc}}}{\mathrm{d}t} = \alpha_{\mathrm{ohc}} \left(\Theta_s \frac{\mathrm{d}T}{\mathrm{d}t} + \Theta_d \frac{\mathrm{d}T_d}{\mathrm{d}t}\right)$$

$$H_{\rm lin} = \Lambda_{\rm lin} U_{\rm ohc}$$

$$\frac{\mathrm{d}H_{\mathrm{lin}}}{\mathrm{d}t} = \Lambda_{\mathrm{lin}} \frac{\mathrm{d}U_{\mathrm{ohc}}}{\mathrm{d}t}$$

prognostic

$$\frac{\mathrm{d}H_{\mathrm{thx}}}{\mathrm{d}t} = \frac{\mathrm{d}H_{\mathrm{lin}}}{\mathrm{d}t} - \frac{H_{\mathrm{thx}} - H_{\mathrm{lin}}}{\tau_{\mathrm{thx}}} + \frac{\Lambda_{\mathrm{thx}} - \Lambda_{\mathrm{lin}} \; \alpha_{\mathrm{ohc}} \; (\Theta_s + \Theta_d)}{\tau_{\mathrm{thx}}} \, T_d$$

$$\frac{\mathrm{d}H_{\mathrm{tot}}}{\mathrm{d}t} = \frac{\mathrm{d}H_{\mathrm{thx}}}{\mathrm{d}t} - \frac{H_{\mathrm{tot}} - H_{\mathrm{thx}}}{\tau_{\mathrm{ice}}} + \frac{\Lambda_{\mathrm{tot}1} + \Lambda_{\mathrm{tot}2}\,T - \Lambda_{\mathrm{thx}}}{\tau_{\mathrm{ice}}}\,T$$

diagnostic (2nd)

$$H_{\text{ice}} = H_{\text{tot}} - H_{\text{thx}}$$

$$\frac{\mathrm{d}H_{\mathrm{ice}}}{\mathrm{d}t} = \frac{\mathrm{d}H_{\mathrm{tot}}}{\mathrm{d}t} - \frac{\mathrm{d}H_{\mathrm{thx}}}{\mathrm{d}t}$$

3. Ocean carbon

diagnostic

$$C_o = \sum_j C_{o,j}$$

$$c_{\text{dic}} = \frac{\alpha_{\text{dic}}}{\beta_{\text{dic}}} C_o$$

$$p_{\text{dic}} = (1.5568 - 0.013993 \, T_o) \, c_{\text{dic}}$$

$$+ (7.4706 - 0.20207 \, T_o) \, 10^{-3} \, c_{\text{dic}}^{2}$$

$$- (1.2748 - 0.12015 \, T_o) \, 10^{-5} \, c_{\text{dic}}^{3}$$

$$+ (2.4491 - 0.12639 \, T_o) \, 10^{-7} \, c_{\text{dic}}^{4}$$

$$- (1.5768 - 0.15326 \, T_o) \, 10^{-10} \, c_{\text{dic}}^{5}$$

$$p_{\text{CO2}} = (p_{\text{dic}} + C_{\text{pi}}) \exp(\gamma_{\text{dic}} T)$$

$$F_{\text{ocean}} = \nu_{\text{gx}} \left(1 + \gamma_{\text{gx}} T \right) \left(C - p_{\text{CO2}} \right)$$

prognostic

$$\frac{\mathrm{d}C_{o,j}}{\mathrm{d}t} = -\frac{C_{o,j}}{\kappa_{\tau_o}\;\tau_{o,j}} + \alpha_{o,j}\;F_{\mathrm{ocean}}$$

$$\frac{\mathrm{d}C_d}{\mathrm{d}t} = \sum_j \frac{C_{o,j}}{\kappa_{\tau_o} \, \tau_{o,j}}$$

4. Land carbon

diagnostic

$$r_{\rm npp} = \left(1 + \frac{\beta_{\rm npp}}{\alpha_{\rm npp}} \left(1 - \left(\frac{C}{C_{\rm pi}}\right)^{-\alpha_{\rm npp}}\right)\right) (1 + \gamma_{\rm npp} T)$$

$$r_{\rm ef} = \left(1 + \beta_{\rm ef} \left(\frac{C}{C_{\rm pi}} - 1\right)\right) (1 + \gamma_{\rm ef} T)$$

$$r_{\rm rh} = \left(1 + \beta_{\rm rh} \left(\frac{C_{s1}}{C_{s1} + C_{s2} + C_{s3}} \left(1 + \frac{\nu_{met}}{\nu_{cs2}}\right) - 1\right)\right) \exp(\gamma_{\rm rh} T)$$

$$F_{\rm npp} = F_{\rm npp,0} r_{\rm npp}$$

$$E_{\text{fire}} = \nu_{\text{fire}} r_{\text{ef}} C_v$$

$$E_{\text{harv}} = \nu_{\text{harv}} C_v$$

$$F_{\text{mort}} = \nu_{\text{mort}} C_v$$

$$E_{\rm rh1} = \nu_{\rm rh1} \, r_{\rm rh} \, C_{s1}$$

$$F_{\rm met} = \nu_{\rm met} \, r_{\rm rh} \, C_{s1}$$

$$E_{\rm rh2} = \frac{\nu_{\rm cs2} - \nu_{\rm rh3} \; \alpha_{\rm pass}}{1 - \alpha_{\rm pass}} \, r_{\rm rh} \, C_{s2}$$

$$F_{\rm pass} = \nu_{\rm rh3} \; \frac{\alpha_{\rm pass}}{1 - \alpha_{\rm pass}} \, r_{\rm rh} \, C_{s2} \label{eq:Fpass}$$

$$E_{\rm rh3} = \nu_{\rm rh3} \, r_{\rm rh} \, C_{s3}$$

$$F_{\text{land}} = F_{\text{npp}} - E_{\text{fire}} - E_{\text{harv}} - E_{\text{rh}1} - E_{\text{rh}2} - E_{\text{rh}3}$$

prognostic

$$\frac{\mathrm{d}C_v}{\mathrm{d}t} = F_{\rm npp} - E_{\rm fire} - E_{\rm harv} - F_{\rm mort}$$

$$\frac{\mathrm{d}C_{s1}}{\mathrm{d}t} = F_{\text{mort}} - F_{\text{met}} - E_{\text{rh}1}$$

$$\frac{\mathrm{d}C_{s2}}{\mathrm{d}t} = F_{\text{met}} - F_{\text{pass}} - E_{\text{rh2}}$$

$$\frac{\mathrm{d}C_{s3}}{\mathrm{d}t} = F_{\mathrm{pass}} - E_{\mathrm{rh3}}$$

diagnostic (2nd)

$$E_{\rm rh} = E_{\rm rh1} + E_{\rm rh2} + E_{\rm rh3}$$

$$C_s = C_{s1} + C_{s2} + C_{s3}$$

5. Permafrost carbon

diagnostic

$$r_{\rm rt} = \exp(\kappa_{\rm rt} \, \gamma_{\rm rt1} \, \alpha_{\rm lst} \, T - \kappa_{\rm rt} \, \gamma_{\rm rt2} \, (\alpha_{\rm lst} \, T)^2)$$

$$\bar{a} = -a_{\min} + \frac{(1 + a_{\min})}{\left(1 + \left(\left(1 + \frac{1}{a_{\min}}\right)^{\kappa_a} - 1\right) \exp(-\gamma_a \kappa_a \alpha_{\text{lst}} T)\right)^{\frac{1}{\kappa_a}}}$$

$$E_{\rm pf} = \sum_{j} \frac{C_{{\rm th},j}}{\kappa_{\tau_{\rm th}} \; \tau_{{\rm th},j}} \, r_{\rm rt}$$

prognostic

$$\begin{split} \frac{\mathrm{d}a}{\mathrm{d}t} &= 0.5 \left(\nu_{\mathrm{thaw}} + \nu_{\mathrm{froz}}\right) \left(\bar{a} - a\right) + 0.5 \left| \left(\nu_{\mathrm{thaw}} - \nu_{\mathrm{froz}}\right) \left(\bar{a} - a\right) \right| \\ \frac{\mathrm{d}C_{\mathrm{th},j}}{\mathrm{d}t} &= \alpha_{\mathrm{th},j} \, \frac{\mathrm{d}a}{\mathrm{d}t} \, C_{\mathrm{fr},0} - \frac{C_{\mathrm{th},j}}{\kappa_{\tau_{\mathrm{th}}} \, \tau_{\mathrm{th},j}} \, r_{\mathrm{rt}} \end{split}$$

diagnostic (2nd)

$$C_{\rm fr} = (1 - a) C_{\rm fr,0}$$

$$\frac{\mathrm{d}C_{\mathrm{fr}}}{\mathrm{d}t} = -\frac{\mathrm{d}a}{\mathrm{d}t} C_{\mathrm{fr},0}$$

6. Atmospheric CO2

diagnostic

$$pH[C] = \kappa_{pH} (8.5541 - 0.00173 C + 1.3264 10^{-6} C^2 - 4.4943 10^{-10} C^3)$$

prognostic

$$\alpha_C \frac{\mathrm{d}C}{\mathrm{d}t} = E_{\text{CO2}} + E_{\text{pf}} - F_{\text{land}} - F_{\text{ocean}}$$

Notations

Drivers

In manual	In code	Units
R_x	ERFx	W m ⁻²
$E_{\rm CO2}$	Eco2	PgC yr ⁻¹

Variables

In manual	In code	Units	Prog?	Dims
R_c	RFco2	W m ⁻²		
R	ERF	W m ⁻²		
T	Т	K	yes	
T_d	Td	K	yes	
$U_{ m ohc}$	OHC	W yr m ⁻²		
$H_{ m lin}$	Hlin	mm		

In manual	In code	Units	Prog?	Dims
$H_{ m thx}$	Hthx	mm	yes	
H_{ice}	Hice	mm		
H_{tot}	Htot	mm	yes	
$C_{o,j}$	Co_j	PgC	yes	$j \in [\![1,5]\!]$
C_o	Со	PgC		
C_d	Cd	PgC	yes	
$c_{ m dic}$	dic	µmol kg ⁻¹		
$p_{ m dic}$	pdic	ppm		
$p_{\rm CO2}$	pCO2	ppm		
F_{ocean}	Focean	PgC yr ⁻¹		
$r_{ m npp}$	r_npp	1		
$r_{ m ef}$	r_ef	1		
$r_{ m rh}$	r_rh	1		
F_{npp}	NPP	PgC yr ⁻¹		
$E_{\rm fire}$	Efire	PgC yr ⁻¹		
$E_{\rm harv}$	Eharv	PgC yr ⁻¹		
$F_{ m mort}$	Fmort	PgC yr ⁻¹		
$E_{\rm rh1}$	RH1	PgC yr ⁻¹		
$F_{ m met}$	Fmet	PgC yr ⁻¹		
$E_{\rm rh2}$	RH2	PgC yr ⁻¹		
$F_{\rm pass}$	Fpass	PgC yr ⁻¹		
$E_{\rm rh3}$	RH3	PgC yr ⁻¹		
$F_{\rm land}$	Fland	PgC yr ⁻¹		
$E_{\rm rh}$	RH	PgC yr ⁻¹		
C_v	Cv	PgC	yes	
C_{s1}	Cs1	PgC	yes	
C_{s2}	Cs2	PgC	yes	

In manual	In code	Units	Prog?	Dims
C_{s3}	Cs3	PgC	yes	
C_s	Cs	PgC		
$r_{ m rt}$	r_rt	1		
\bar{a}	abar	1		
a	a	1	yes	
$E_{ m pf}$	Epf	PgC yr ⁻¹		
$C_{\mathrm{th},j}$	Cth_j	PgC	yes	$j \in [\![1,3]\!]$
C_{fr}	Cfr	PgC		
C	C02	ppm	yes	
рН	рН	1		

Parameters

In manual	In code	Units	Dims
ϕ	phi	W m ⁻²	
$T_{2\times}$	T2x	K	
Θ_s	THs	W yr m ⁻² K ⁻¹	
Θ_d	THd	W yr m ⁻² K ⁻¹	
θ	th	W m ⁻² K ⁻¹	
$\epsilon_{ m heat}$	eheat	1	
$\alpha_{ m ohc}$	аОНС	1	
$\Lambda_{ m lin}$	Llin	mm m ² W ⁻¹ yr ⁻¹	
$\Lambda_{ m thx}$	Lthx	mm K ⁻¹	
$\Lambda_{\mathrm{tot}1}$	Ltot1	mm K ⁻¹	
$\Lambda_{\mathrm{tot}2}$	Ltot2	mm K ⁻²	
$ au_{ m thx}$	tthx	yr	
$ au_{ m ice}$	tice	yr	
$lpha_{ m dic}$	adic	µmol kg ⁻¹ PgC ⁻¹	

In manual	In code	Units	Dims
$\beta_{ m dic}$	bdic	1	
$\gamma_{ m dic}$	gdic	K ⁻¹	
T_o	То	°C	
$ u_{ m gx}$	vgx	yr ⁻¹	
$\gamma_{\rm gx}$	ggx	K ⁻¹	
$\alpha_{o,j}$	aoc_j	1	$j \in [\![1,5]\!]$
$ au_{o,j}$	toc_j	yr	$j \in [\![1,5]\!]$
κ_{τ_o}	k_toc	1	
β_{npp}	bnpp	1	
α_{npp}	anpp	1	
$\gamma_{\rm npp}$	gnpp	K ⁻¹	
$\beta_{ m ef}$	bef	1	_
$\gamma_{ m ef}$	gef	K ⁻¹	
$eta_{ m rh}$	brh	1	
$\gamma_{\rm rh}$	grh	K ⁻¹	
$F_{\mathrm{npp},0}$	npp0	PgC yr ⁻¹	
$ u_{\mathrm{fire}}$	vfire	yr ⁻¹	
$ u_{\mathrm{harv}}$	vharv	yr ⁻¹	
$ u_{\mathrm{mort}}$	vmort	yr ⁻¹	
$\nu_{ m met}$	vmet	yr ⁻¹	
$ u_{\rm rh1}$	vrh1	yr ⁻¹	
$\nu_{\rm cs2}$	vcs2	yr ⁻¹	
$\nu_{ m rh3}$	vrh3	yr ⁻¹	
α_{pass}	apass	1	
α_{lst}	aLST	1	
$\gamma_{\rm rt1}$	grt1	K ⁻¹	

In manual	In code	Units	Dims
$\gamma_{\rm rt2}$	grt2	K ⁻²	
κ_{rt}	krt	1	
a_{\min}	amin	1	
κ_a	ka	1	
γ_a	ga	K ⁻¹	
$ u_{\mathrm{thaw}}$	vthaw	yr ⁻¹	
$ u_{\mathrm{froz}}$	vfroz	yr ⁻¹	
$ u_{\mathrm{froz}}$	vfroz	yr ⁻¹	
$\alpha_{ ext{th},j}$	ath_j	1	$j \in [\![1,3]\!]$
$ au_{ ext{th},j}$	tth_j	yr	$j \in [\![1,3]\!]$
$\kappa_{\tau_{\mathrm{th}}}$	k_tth	1	
$C_{\mathrm{fr,0}}$	Cfr0	PgC	
α_C	aCO2	PgC ppm ⁻¹	
C_{pi}	CO2pi	ppm	
κ_{pH}	k_pH	1	