Fundamentos de Sistemas de Operação

Gestão de Memória: MV por Paginação a pedido

(revisões/continuação)

Memória Virtual (revisão)

- Memória virtual (VM) separação dos endereços lógicos (virtuais) dos físicos
 - Só alguns dos programas precisam de estar carregados em memória.
 - EE virtuais podem ser muito maiores do que a RAM.
 - Pode permitir partilha de partes do espaço de endereçamento entre processos (tal como vimos na paginação).
 - Permite uma criação de processos mais eficiente (COW).
 - É completamente transparente ao utilizador/programador
- VM pode ser suportada através de:
 - Paginação-a-pedido
 - Segmentação a pedido (não estudada)

Memória Virtual: motivações (rev.)

- Usar a RAM como Cache para o Disco
 - O EE "completo" "existe" no disco. É trazido para a RAM quando for necessário
 - O espaço de endereçamento do processo pode exceder a dimensão da memória; a soma dos espaços de endereçamento dos vários processos pode exceder o tamanho da memória física.
- Simplificar a gestão de memória
 - Múltiplos processos residem em memória central cada um com o seu próprio espaço de endereçamento. Só zonas (código, dados, stack, ...) "activas" é que estão em RAM – permite "overbooking".
 - Fornece protecção os processos não interferem uns com os outros, porque estão em espaços diferentes e diferentes secções do espaço de um processo têm permissões diferentes.

Memória Virtual por paginação-a-pedido

- A página só é carregada para memória quando é referenciada (naturalmente há um carregamento inicial)
 - Menos I/O
 - Menos RAM utilizada
 - Tempo de resposta pior (sistema "mais lento"?!)
 - Mais programas em RAM
 - Página referenciada por uma instrução
 - Referência válida ⇒ executar a instrução
 - ATU indica "Não-em-memória" (Intel só usa um bit)
 - Página válida ⇒ Necessário trazer página para RAM
 - Página inválida ⇒ Abortar a execução

Memória Virtual: bit de validade (rev.)

- □ Cada página tem associado um bit de Validade (V)
 (V==1 ⇒ em RAM, V==0 ⇒ em disco ou inválida-Intel)
- Inicialmente V==0 em todas as páginas.
- □ Na transformação de endereços, se V na entrada da tabela de páginas está a
 0 ⇒ page fault (falta de página).

Frame #	valid-invalid	
	1	bit
	1	
	1	
	1	
	0	
:		
	0	
	0	

Tabela de páginas

Memória Virtual: falta de página

- Tabela de páginas indica que o conteúdo referenciado pelo endereço virtual não está em RAM
- É invocado um procedimento de excepção para trazer os dados para memória:
 - o processo corrente é suspenso, outros podem continuar
 - o SO tem controlo completo sobre a localização das páginas

Memória Virtual: atendimento da falta de página

- CPU (executa código do driver do disco) pede ao controlador:
 - ler bloco de dim. P a partir do end. X e escrever na RAM começando no end. Y (driver adormece)
 - Ocorre a leitura
 - Dados no buffer do controlador
 - Direct Memory Access (DMA)
 - sob controlo do I/O controller
 - I / O Controller assinala o fim
 - Interrupção, driver acorda
 - SO passa o processo a READY

Memória Virtual: bit de "página modificada"

- Cada página tem associado um bit de Modificada (M), ou dirty (suja)
 (M==1 ⇒ foi modificada desde que veio do disco, M==0 ⇒ versão da página em RAM igual à cópia em disco)
- Inicialmente M==0 em todas as páginas que são carregadas; durante a execução, algumas poderão ser modificadas (variáveis que mudam de valor, stack/heap,...)
- Se fôr preciso libertar uma frame em que M==1, a página tem de ser copiada para disco (para a área de paginação do SO)
 - Unix: disco tem zona de swap
 - Windows: disco tem ficheiro pagefile.sys

Frame #	M	dirty
	1	bit
	0	
	0	
	1	
	0	
:		
	0	
	0	

Tabela de páginas

Memória Virtual: tabela "completa"

- Se o SO tiver de "sacrificar" uma página (diz-se vítima) presente em RAM para libertar a frame (porque é necessária para esse mesmo ou para um outro processo), não é muito interessante sacrificar uma que foi modificada, porque esta terá de ser escrita em disco (operação "lenta")
- Bits de protecção (bits, não letras!!!)
 - Associados a cada página, realizam o controle de acessos e são diferentes para as páginas de:

_	Constantes:	r
_	Variáveis:	rw-
_	Heap:	rw-
_	Stack:	rwx
_	Código:	r-x

Tabela de páginas

Frame #	Р	V	M
	r	1	0
	rw-	1	0
	rwx	0	0
	rwx	1	1
		0	0
:			
	r-x	0	0
	r-x	1	0

Tabela de Páginas do x86 (fictícia)

O PTBR (Page Table Base Register) é um reg. do CPU que aponta para o início da Tabela de Páginas do processo. É guardado no PCB.

No Intel CR3=PTBR

1 M entradas —

A PT é guardada em RAM, logo é guardada em frames Neste exemplo, a PT está guardada nas frames 201 a 204 (daí PTBR = 201)

Linear Page Table					
PTBR 201 —					
		valid	prot	PFN	
		1 1	rx rx	12 13	PFN 204 PFN 203 RFN 202 PFN 201
		<u>0</u>	- rw	100	PFN
		0	-	-	02
		0	-	-	$\frac{1}{2}$
		0	_	-	4
		0	-	-	/ E
		0	-	-	1 20
		0	-	-	노
		0	-	-	4
		0	_	_	20.
		1	rw	86	Z
		1	rw	15	Д

Cada frame só tem espaço para 4 PTEs. O EE deste exemplo é 16 x 4KB (assumindo que 1 página=4KB)

Páginas inválidas ("buracos" no EE)

Outubro, 2019

Unix Windows NT Netware MacOS DOS/VS Vax/VMS
Linux Solaris HP/UX AIX Mach

Revisões de preparação para o 1º teste