execicios.md 2025-10-16

A partir dos conteúdos da Unidade 2 e do livro de referência "Métodos Assintóticos em Estatística" (MTODOS1), que abrange temas como Convergência Estocástica, Notação Assintótica (\$O, o, O_p, o_p\$) e Leis dos Grandes Números, apresento uma lista de 20 exercícios baseados nos conceitos vistos.

Os exercícios a seguir foram adaptados, em sua maioria, das seções de Exercícios do Capítulo 2 (Convergência Estocástica) e utilizam conceitos e resultados introduzidos tanto no Capítulo 1 (Notação Assintótica e Funções Características) quanto no Capítulo 2 do material.

Lista de Exercícios - Convergência Estocástica e Resultados Limite (20 Questões)

Seção I: Ordens de Magnitude de Sequências (\$O, o\$) e Convergência Estocástica (\$O_p, o_p\$)

- 1. Sejam $a_n = 0(b_n)$ of $a_n \le a_n = 0(b_n)$, prove que $a_n + c_n = 0(\max\{|b_n|, |c_n|\})$, onde $c_n \le a_n = 0(\max\{|b_n|, |c_n|\})$, onde $c_n \le a_n = 0(\max\{|b_n|, |c_n|\})$
- 2. Mostre que $n^2 = O(6n^2 + n)$ e justifique por que $n^2 \neq 0$ 0.
- 3. Utilize o Teorema 1.2.1 e o Exemplo 1.2.2 para provar que $O(n^{-1/3}) + O(n^{-1/2}) = O(n^{-1/3})$.
- 4. Seja $X_n = 1$ uma sequência de variáveis aleatórias com distribuição de probabilidade dada por: $P(X_n = 1) = 1/n$ e $P(X_n = 0) = 1 1/n$, para $x_n = 0$ 0 por: $P(X_n = 0) = 1 1/n$, para $x_n = 0$ 0 por: $P(X_n = 0) = 1 1/n$
- 5. Sejam $\{X_n\}_n \ge 1\}$ uma sequência de variáveis aleatórias e $\{a_n\}_n \le 1\}$ uma sequência de números reais positivos tal que $\{E(X_n^2) = O(a_n^2)\}$ e $\{Var(X_n) = O(a_n^2)\}$. Prove que $\{X_n = O_p(a_n)\}$.
- 6. Seja \${X_n}_{n \neq 1}\$ uma sequência de variáveis aleatórias tal que \$E(X_n) \to c\$, onde \$c\$ é uma constante, e \$Var(X_n) \to 0\$ quando \$n \to \infty\$. Usando a desigualdade de Chebyshev, prove que \$X_n c = o_p(1)\$.
- 7. Se \$a_n = O(b_n)\$ e \$X_n = O_p(a_n)\$, prove que \$X_n = O_p(b_n)\$, onde \${X_n}{n \ge 1}\$ é uma sequência de variáveis aleatórias e \${a_n}{n \ge 1}, {b_n}_{n \ge 1}\$ são sequências de números reais e \$b_n \ne 0\$.
- 8. Sejam X_1, X_2, \ldots, X_n uma amostra aleatória de uma variável aleatória $X \sim N(\mu, sigma^2)$. Se $S_n^2 = (n-1)^{-1}\sum_{i=1}^n (X_i \bar{X}_n)^2$ é a variância amostral, prove que $S_n^2 sigma^2 = O_p(n^{-1/2})$.

Seção II: Modos de Convergência Estocástica (Probabilidade, Quase Certa e em Distribuição)

- 9. Defina a convergência de uma sequência de variáveis aleatórias \${X_n}_{n \ge 1}\$ para uma variável aleatória \$X\$ em probabilidade (\$X_n \xrightarrow{P} X\$).
- 10. Defina a convergência de uma sequência de variáveis aleatórias \${X_n}_{n \neq 1}\$ para uma variável aleatória \$X\$ em distribuição (\$X_n \xrightarrow{D} X\$).
- 11. Sejam ${X_n}_{n \ge 1}$ uma sequência de variáveis aleatórias tais que $P(X_n = 0) = 1 1/n$ e $P(X_n = n^2) = 1/n^2$, para $n \ge 1$. Mostre que $X_n \times 1$.
- 12. Sejam X_1 , \dots, X_n variáveis aleatórias independentes e identicamente distribuídas (i.i.d) com X_i \sim U(0, \theta)\$, para $\pi = X_n = X_n = X_1, \dots, X_n$ \$. Prove que $T_n^2 \times Y_n = X_n$ \$.
- 13. Considere o Exemplo 2.3.7 em que X_n converge em probabilidade para X=0. Sejam $F_n(x)$ e F(x) as funções de distribuição de X_n e X, respectivamente. Prove que $F_n(0) = 1$. O

execicios.md 2025-10-16

- que este resultado implica sobre a convergência em distribuição?.
- 14. Sejam $X_n \le 1$ uma sequência de variáveis aleatórias com $X_n \le 1$, $x_j \le 1$ uma sequência de variáveis aleatórias com $X_n \le 1$, $x_j \le 1$ Prove que $x_j \le 1$, $x_j \le 1$ Prove que $x_j \le 1$ Prove qu
- 15. Seja \$f: \mathbb{R} \to \mathbb{R}\$ uma função definida por \$f(t) = t-1\$ se \$t < 0\$ e \$f(t) = t+1\$ se \$t \ge 0\$. Sejam \$X_1, X_2, \dots\$ variáveis aleatórias tais que \$X = 0\$ com probabilidade 1 e \$X_n = -1/n\$ com probabilidade 1, para \$n=1, 2, \dots\$. Prove que \$X_n \xrightarrow{P} X\$, mas \$f(X_n) \xrightarrow{P} f(X)\$ não é satisfeita. (Este exercício destaca a necessidade de continuidade na aplicação do Teorema do Mapeamento Contínuo).
- 16. Sejam \$X_0\$ um vetor aleatório p-dimensional e \${X_n}{n \ge 1}\$ e \${Y_n}{n \ge 1}\$ sequências de vetores aleatórios p-dimensionais tais que \$X_n \xrightarrow{D} X_0\$ e \$Y_n \xrightarrow{P} c\$, onde \$c\$ é um vetor constante em \$\mathbb{R}^p\$. Pelo Teorema de Slutsky (Teorema 2.3.16 i), qual é o limite em distribuição de \$X n + Y n\$?.

Seção III: Leis dos Grandes Números

- 17. Seja ${X_n}_n \ge 1$ uma sequência de variáveis aleatórias independentes e identicamente distribuídas (i.i.d.) com $E(X_1) = \mu 0$ e $Var(X_1) = \sigma^2 < \inf V$. Prove que Γ_0 (Utilize a Lei Forte dos Grandes Números e o Teorema do Mapeamento Contínuo para limites quase certos).
- 18. Seja ${X_n}{n \ge 1}$ uma sequência de variáveis aleatórias independentes e identicamente distribuídas (i.i.d.) com $X_i \le N(0, 1)$. Determine o limite quase certo de $Q_n = \frac{1}^n X_j$ {\sum_{j=1}^n (X_j 1)^2} quando $n \to \infty$.
- 19. Seja ${X_n}_{n \neq 1}$ uma sequência de variáveis aleatórias independentes cujas distribuições de probabilidade são dadas por: $P(X_n = n) = P(X_n = -n) = 1/2n^2$ e $P(X_n = 0) = 1 1/n^2$. Decida se a Lei Forte dos Grandes Números (Kolmogorov, Teorema 2.4.4) se aplica a esta sequência.
- 20. Seja $X_n} = 1$ uma sequência de variáveis aleatórias independentes com distribuições de probabilidade dadas por: $P(X_n = n) = P(X_n = -n) = 1/2$ para $n=1, 2, \alpha$. Prove que essa sequência **não** satisfaz a Lei dos Grandes Números.