DS6

3h00

- Les calculatrices sont <u>interdites</u> durant les cours, TD et a fortiori durant les DS de mathématiques.
- Si vous pensez avoir découvert une erreur, indiquez-le clairement sur la copie et justifiez les initiatives que vous êtes amené·e ·s à prendre.
- Une grande attention sera apportée à la clarté de la rédaction et à la présentations des solutions. (Inscrivez clairement en titre le numéro de l'exercice, vous pouvez aussi encadrer les réponses finales.)
- Vérifiez vos résultats.
- Le résultat d'une question peut être admis et utilisé pour traiter les questions suivantes en le signalant explicitement sur la copie.

Exercice 1. Soit f la fonction définie par

$$f(x) = \exp(\frac{-1}{x^2})$$

- 1. Justifier que f est dérivable sur \mathbb{R}^* et calculer sa dérivée.
- 2. Montrer que f est prolongeable par continuité en 0. On note encore f la fonction ainsi prolongée.
- 3. Montrer que f est dérivable en 0.
- 4. La fonction f' est-elle continue sur \mathbb{R} ?
- 5. On admet que pour tout n il existe un polynôme $P_n \in \mathbb{R}[X]$ tel que pour tout $x \in \mathbb{R}^*$

$$f^{(n)}(x) = P_n(\frac{1}{x})f(x).$$

(Ici $f^{(n)}$ désigne la dérivée n- éme de f)

- (a) Expliciter les polynômes P_0 et P_1
- (b) Montrer que pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}^*$:

$$P_{n+1}(\frac{1}{x}) = -\frac{1}{x^2}P'_n(\frac{1}{x}) + 2\frac{1}{x^3}P_n(\frac{1}{x})$$

(c) En déduire que pour tout $n \in \mathbb{N}$

$$P_{n+1} = -X^2 P_n' + 2X^3 P_n$$

(d) Soit d_n le degré de P_n , justifier que $d_{n+1} = d_n + 3$ et en déduire la valeur de d_n .

Exercice 2. On dispose d'une urne contenant initialement b boules blanches et r boules rouges. On fait des tirages successifs dans cette urne en respectant à chaque fois le protocole suivant :

- Si la boule tirée est de couleur blanche, on la remet et on ajoute une boule blanche
- Si la boule tirée est de couleur rouge, on la remet et on ajoute une boule rouge.

On appelle B_i l'événement "tirer une boule blanche au *i*-iéme tirage" et on note $p_i = P(B_i)$.

- 1. Calculer p_1 en fonction de b et r.
- 2. Montrer que $p_2 = \frac{b}{b+r}$.
- 3. On a tiré une boule blanche au deuxième tirage. Donner alors la probabilité que l'on ait tiré une boule blanche au premier tirage en fonction de b et r.
- 4. On appelle E_n l'événément

 E_n : "On tire que des boules blanches sur les n premiers tirages "

et F_n l'événement

 F_n : "On tire pour la première fois une boule rouge au n-ième tirage"

- (a) Exprimer E_n à l'aide des événements $(B_k)_{k \in [1,n]}$
- (b) Exprimer F_n à l'aide de E_{n-1} et B_n
- 5. Pour tout $k \geq 2$ calculer $P_{E_{k-1}}(B_k)$.
- 6. Calculer $P(E_n)$ en fonction de b, r et n puis $P(F_n)$.

Exercice 3. On dispose d'une urne \mathcal{U} contenant 3 boules numérotées : -1,0 et 1. Soit $n \in \mathbb{N}$. On fait (n+1) tirages aléatoires et avec remise dans cette urne.

On note la valeur des boules des (n+1) tirages dans une liste, la valeur de la première boule tirée sera notée a_0 , puis la seconde a_1 et ainsi de suite jusqu'à la dernière boule tirée qui sera notée a_n . On dispose donc d'une liste de nombres $L = [a_0, ..., a_n]$ chacun étant pris aléatoirement dans l'ensemble $\{-1, 0, 1\}$.

A cette liste L on associe le polynôme $Q = \sum_{k=0}^{n} a_k X^k$.

On note Z_i l'événement, 'le numéro de a_i vaut 0

- 1. Que vaut $P(Z_i)$?
- 2. On fait (n+1) tirages comme décrit précédemment et on note Q le polynôme qui en résulte. Quelle est la probabilité que Q soit le polynôme nul?
- 3. Soit $Q \in \mathbb{R}[X]$, $a \in \mathbb{R}$ et $k \in N^*$ Rappeler la définition de "a est racine d'ordre exactement k de Q"
- 4. Donner la probabilité que Q admette 0 comme racine double (c'est-à-dire d'ordre exactement 2. On suppose que l'on fait au moins 3 tirages.)
- 5. Soit $p \leq n$. On note D_p l'événement "Q est degré p" Montrer que

$$P(D_p) = \frac{2}{3} \left(\frac{1}{3}\right)^{(n-p)}$$

- 6. On dispose d'une seconde urne contenant des boules numérotées de 0 à n. On tire aléatoirement une boule dans cette urne, on note k son numéro. Ensuite on fait (k+1) tirages aléatoires avec remise, comme décrit précédemment, dans l'urne \mathcal{U} . Puis on associe à ces tirages le polynôme Q.
 - (a) Soit T_{k+1} l'événement "On tire la boule numérotée k". Donner la probabilité $P(T_{k+1})$.
 - (b) Montrer que la probabilité que Q soit nul vaut :

$$\frac{1}{2(n+1)}\left(1-\left(\frac{1}{3}\right)^{(n+1)}\right)$$

(c) Soit $p \leq n$. Montrer que la probabilité que Q soit de degré p vaut :

$$\frac{1}{n+1} \sum_{k=n}^{n} \frac{2}{3} \left(\frac{1}{3}\right)^{(n-p)}$$

(d) Calculer la somme précédente.

On fera au choix l'exercice 4 ou le Problème 1 (plus difficile) Dans tous les cas, on demande de justifier proprement toutes les inégalités.

^{1.} C'est à dire d'ordre k mais pas d'ordre k+1

^{2.} Noté T_{k+1} car alors on fait (k+1) tirages

Exercice 4. On considère pour tout $n \in \mathbb{N}$ l'intégrale

$$I_n = \int_1^e (\ln(x))^n dx$$

1. (a) Démontrer que pour tout $x \in]1, e[$ et pour tout entier naturel $n \in \mathbb{N}$ on a

$$(\ln(x))^n - (\ln(x))^{n+1} > 0.$$

- (b) En déduire que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.
- 2. (a) Calculer I_1 à l'aide d'une intégration par parties.
 - (b) Démontrer, toujours à l'aide d'une intégration par parties que, pour tout $n \in \mathbb{N}$,

$$I_{n+1} = e - (n+1)I_n$$

3. (a) Démontrer que pour tout $n \in \mathbb{N}$,

$$I_n \geq 0$$
.

(b) Démontrer que pour tout $n \in \mathbb{N}$,

$$(n+1)I_n \leq e$$
.

- (c) En déduire la limite de $(I_n)_{n\in\mathbb{N}}$.
- (d) Montrer que pour tout $n \in \mathbb{N}$

$$nI_n + (I_n + I_{n+1}) = e$$

(e) En déduire l'équivalent :

$$I_n \sim_{+\infty} \frac{e}{n}$$

.

OU

 ${\bf Problème}$ 1. Le but de ce problème est d'étudier la fonction définie par :

$$g: x \mapsto \int_{x}^{x^2} \frac{dt}{\ln(t)}.$$

On admet que g est bien définie sur $\mathcal{D}_g =]0, 1[\cup]1, +\infty[$.

- 1. Etude globale:
 - (a) Justifier que g est bien définie sur $\mathcal{D}_q =]0, 1[\cup]1, +\infty[$.
 - (b) Résoudre sur \mathbb{R} l'inéquation $x^2 > x$ puis démontrer que $\forall x \in D_g, g(x) > 0$.
 - (c) Justifier que g est dérivable sur \mathcal{D}_g et montrer que sa dérivée en tout point de \mathcal{D}_g vaut :

$$g'(x) = \frac{x-1}{\ln(x)}$$

- (d) Etudier les variations de g sur \mathcal{D}_g . (les limites aux bornes ne sont pas demandées pour cette question)
- 2. Etude au voisinage de 0
 - (a) (difficile) Montrer que $\forall x \in]0,1[$:

$$\frac{x(x-1)}{2\ln(x)} \le g(x) \le \frac{x(x-1)}{\ln(x)}$$

(On pourra commencer par faire un encadrement de $\frac{1}{\ln(t)}$ et on fera <u>très</u> attention aux différents inégalités mises en jeu, (ordre de x et x^2 , signe du ln, croissance ou décroissance des fonctions...))

- (b) En déduire que g se prolonge par continuité en 0 et préciser la valeur de ce prolongement. Par la suite, on note encore g la fonction continue, prolongée en 0
- (c) Montrer que g est dérivable à droite en 0 et préciser g'(0).
- 3. Etude au voisinage de 1.
 - (a) A l'aide du théorème des accroissements finis appliqué à $h(t) = \ln(t) t$ montrer que pour tout $t \in]0,1[$:

$$0 \le \frac{\ln(t) - t + 1}{t - 1} \le \frac{1 - t}{t}$$

(b) En déduire que pour tout $t \in]0,1[$:

$$\left| \frac{\ln(t) - t + 1}{t - 1} \right| \le \left| \frac{1 - t}{t} \right|.$$

On admet que l'on peut montrer de manière analogue que pour tout t > 1 on

$$\left| \frac{\ln(t) - t + 1}{t - 1} \right| \le \left| \frac{1 - t}{t} \right|.$$

(c) (très difficile) En déduire qu'il existe $\eta>0$ tel que pour tout $t\in[1-\eta,1+\eta]$

$$\left| \frac{1}{\ln(t)} - \frac{1}{t-1} \right| \le 2$$

(d) (très difficile) Conclure que g est prolongeable par continuité en 1.