ECON3123 Macroeconomic Theory I

Tutorial #10: The IS-LM-PC model (cont.)

Today's tutorial

- A fall in consumer confidence and the impact of policy responses in the IS-LM-PC model
- In the midst of the COVID-19 outbreak, what has been happening to the oil price and what is its likely impact?
- What can we say about the combined likely impact of COVID-19 and the oil price on the world economy?

- Assume the IS-LM-PC model with $\pi^e_t=\pi_{-1}$
 - IS: $Y_t = C(Y_t T) + I(r_t + x, Y_t) + G$
 - LM: $r_t = \overline{r}$
 - PC: $\pi_t \pi_t^e = \frac{\alpha}{AL} (Y_t Y_n)$
- Suppose that the economy starts at medium term equilibrium, and that there is a sudden and severe drop in consumer confidence
 - That is c_0 falls

1) Show the initial equilibrium on a diagram, and show where the economy moves to in the short term as a result of the fall in consumer confidence

• We have PC:
$$\pi_t - \pi_t^e = \frac{\alpha}{AL} \; (Y_t - Y_n)$$

• Assume
$$\frac{\alpha}{AL} = 0.005$$

- At t = 0, economy at A
- At t=1, consumer confidence falls and economy moves to A'

Time	Event	$\pi_t^e = \pi_{-1}$	Y_t	Y_n	π_t	$egin{array}{c} oldsymbol{\pi_t} \ -\pi_t^e \end{array}$
0		0.0%	100	100	0.0%	0.0%
1	Fall in $c_{ m 0}$	0.0%	90	100	-5.0%	-5.0%

We have $\Delta Y < 0$ and $\Delta \, c_0 < 0$

Wage setting: $W = AP^e(1 - \alpha u + z)$

Price setting: $P = \frac{W}{A}(1+m)$

1) At t = 1 we have:

variable	effect	variable	effect
С	\downarrow	W/P	_
G	_	i	_
T	_	r_t	_
и	\uparrow	I	\downarrow
W	\downarrow	π_t	\downarrow
P	\downarrow	π^e_t	_

- 2) Now assume that beginning at time t=2 the central bank cuts real interest rates four times by the same amount each time (assume 1% four times) to bring the economy back to medium term equilibrium
- At t = 2 we have:

2) At
$$t = 2$$
 we have: PC: $\pi_t - \pi_t^e = 0.005(Y_t - Y_n)$

Time	Event	$\pi_t^e = \pi_{-1}$	Y _t	Y _n	π_t	$egin{array}{c} oldsymbol{\pi_t} \ - \pi_t^e \end{array}$
0		0.0%	100	100	0.0%	0.0%
1	Fall in c_0	0.0%	90	100	-5.0%	-5.0%
2	r cut by 1% point	-5.0%	92.5	100	-8.75%	-3.75%

3) At t = 5 we have:

3) At
$$t = 5$$
 we have: PC: $\pi_t - \pi_t^e = 0.005(Y_t - Y_n)^{-\frac{1}{r}} = 5\%$

t = 5

Time	Event	$\begin{vmatrix} \pi_t^e \\ = \pi_{-1} \end{vmatrix}$	Y_t	Y _n	π_t	$egin{array}{c} \pi_t \ -\pi_t^e \end{array}$
0		0.0%	100	100	0.0%	0.0%
1	Fall in $c_{ m 0}$	0.0%	90	100	-5.0%	-5.0%
2	r cut by 1% point	-5.0%	92.5	100	-8.75%	-3.75%
3	r cut by 1% point	-8.75%	95	100	-11.25%	-2.5%
4	r cut by 1% point	-11.25%	97.5	100	-12.5%	-1.25%
5	r cut by 1% point	-12.5%	100	100	-12.5%	0.0%

4) At $t=5\,$ onwards, the economy is at medium term equilibrium with $Y_t=Y_n\,$

		-
T		L
ι	_	

Time	Event	$\pi_t^e = \pi_{-1}$	Y_t	Y_n	π_t	$\pi_t - \pi_t^e$
0		0.0%	100	100	0.0%	0.0%
1	Fall in c_0	0.0%	90	100	-5.0%	-5.0%
2	r cut by 1% point	-5.0%	92.5	100	-8.75%	-3.75%
3	r cut by 1% point	-8.75%	95	100	-11.25%	-2.5%
4	r cut by 1% point	-11.25%	97.5	100	-12.5%	-1.25%
5	r cut by 1% point	-12.5%	100	100	-12.5%	0.0%
6		-12.5%	100	100	-12.5%	0.0%
7		-12.5%	100	100	-12.5%	0.0%
8		-12.5%	100	100	-12.5%	0.0%
9		-12.5%	100	100	-12.5%	0.0%
10		-12.5%	100	100	-12.5%	0.0%

11) In the medium term what has happened to the following <u>compared to the initial equilibrium</u> (ie compared to point A) in this case (ie zero lower bound and increased government spending)?

variable	effect	variable	effect
Y	_	P	\
С	\downarrow	W/P	_
G	_	i	↓
T	_	r_t	↓
и	_	I	↑
W	\	π_t	↓

5) What would happen if nominal interest rates, i, reached zero before the adjustment process was complete? That is, before the economy had returned to Y_n ?

5) What would happen if nominal interest rates, i, reached zero before the adjustment process was complete? That is, before the economy had returned to Y_n ?

5) At $t=5\,$ onwards, the economy is at medium term equilibrium with $Y_t=Y_n\,$

		-
t	_	L
ι		•

Time	Event	$\pi_t^e = \pi_{-1}$	Y_t	Y_n	π_t	$egin{array}{c} \pi_t \ -\pi_t^e \end{array}$
0		0.0%	100	100	0.0%	0.0%
1	Fall in c_0	0.0%	90	100	-5.0%	-5.0%
2	r cut by 1% point	-5.0%	92.5	100	-8.75%	-3.75%
3	r cut by 1% point	-8.75%	95	100	11.25%	-2.5%
4	r cut by 1% point	-11.25%	97.5	100	12.5%	-1.25%
5	Increase G	-12.5%	100	100	12.5%	0.0%
6		-12.5%	100	100	12.5%	0.0%
7		-12.5%	100	100	12.5%	0.0%
8		-12.5%	100	100	12.5%	0.0%
9		-12.5%	100	100	12.5%	0.0%
10		-12.5%	100	100	12.5%	0.0%

- 6) Why doesn't the government just increase *G* at the beginning to avoid the problems of zero nominal interest rates?
- For the reasons mentioned previously:
 - Fiscal policy takes longer to agree and implement and is more difficult to reverse
 - Fiscal policy tends to take place in large discrete amounts, compared to monetary policy which can be implemented in smaller amounts
 - Monetary policy can be more responsive to changing economic conditions
 - Can take advantage of positive feedback loops

11) In the medium term what has happened to the following <u>compared to the initial equilibrium</u> (ie compared to point A) in this case (ie zero lower bound and increased government spending)?

variable	effect	variable	effect
Y	_	P	\downarrow
С	\downarrow	W/P	_
G	\uparrow	i	\downarrow
T	_	r_t	↓
и	_	I	↑
W	\downarrow	π_t	↓

What's been happening to the price of oil recently?

- Since the beginning of 2020, the price of oil has collapsed by around 70%
- At one point in April, the oil price went negative for a brief period:

WTI crude price goes negative for the first time in history

By CAMERON WALLACE on 4/20/2020

- You would be paid to 'buy' oil!
- This has been caused by the collapse of a production agreement between Saudi Arabia and Russia, with both countries increasing production very aggressively

Source: Bloomberg, World Oil

What will be the impact on the world economy of the fall in the oil price?

- Price setting: $\frac{W_t}{P_t} = \frac{(1+m)}{A}$
- Wage setting: $\frac{W_t}{P_t^e} = A (1 \alpha u_t + z)$
- At $P_t = P_t^e$ we have:
 - Natural rate of unemployment: $u_n = \frac{m+z}{\alpha}$
- We model the fall in the price of oil as a reduction in m
 - Firms costs are reduced and so they can hire more workers to produce at the same level of cost as before
- Therefore, the Price setting relation shifts upwards, and the natural rate of unemployment falls

What does the IS-LM-PC model tell us about the fall in the oil price?

 $\pi_t - \pi_{-1}$

- The fall in u_n is equivalent to an increase in Y_n
- An increase in Y_n causes the Phillips curve to shift downwards and to the right:

• PC:
$$\pi_t - \pi_t^e = \frac{\alpha}{AL} (Y_t - Y_n)$$

- At A', the economy experiences deflation
- Fiscal policy and/or monetary policy can be used to drive the economy to its medium term equilibrium Y_n^\prime
- Notice that Y_n' is bigger than Y_n so the lower oil price has made the country wealthier
 - In this model, a lower oil price is a good thing in the medium term

What does the IS-LM-PC model tell us about the fall in the oil price?

• Either fiscal policy or monetary policy or both can be used to drive the economy to the medium term equilibrium at $A^{\prime\prime}$

So what happens with COVID-19 and the lower oil price?

• We can put the effects of the fall in consumer confidence and the lower oil price together

COVID-19 and the lower oil price: Conclusions

- The fall in consumer confidence associated with COVID-19 is a negative demand shock, leading to recession and lower inflation in the short term
- The lower oil price increases the natural level of income, and so makes countries (that are net importers of oil)
 richer in the medium term
- In the short term, the lower oil price also reduces inflation
- The combined effect of COVID-19 and the lower oil price implies a very significant role for macroeconomic policy around the world
- But nominal interest rates are close to zero in much of the world, so the Zero Lower Bound will limit how much monetary policy can be used
- Therefore, a much more important role for fiscal policy
- Prediction: Governments around the world will announce very large fiscal stimulus packages during the rest of the year