- 1. Mulţimea soluţiilor ecuaţiei $\sqrt{3x+1} = x+1$ este: **(5 pct.)** a) $\{-1,3\}$; b) $\{1,3\}$; c) $\{0,1\}$; d) \emptyset ; e) $\{\sqrt{2},2\}$; f) $\{-1,1\}$.
- 2. Fie $S = 2C_{2014}^1 C_{2014}^{2013}$. Atunci: **(5 pct.)** a) S = 2013; b) S = 2012; c) S = 2010; d) S = 1012; e) S = 2020; f) S = 2014.
- 3. Fie $f:(0,\infty)\to\mathbb{R}$, $f(x)=\ln x-x$. Abscisa punctului de extrem al funcției f este: (5 pct.) a) $x=\frac{1}{e^2}$; b) $x=\frac{1}{e^2}$; c) x=e; d) $x=e^2$; e) $x=\frac{1}{e}$; f) x=1.
- 4. Fie progresia aritmetică 1, 4, 7, 10, Să se calculeze al 2014-lea termen al progresiei. (5 pct.) a) 5012; b) 6040; c) 6041; d) 1258; e) 6039; f) 5420.
- 5. Suma soluțiilor ecuației $\begin{vmatrix} 2 & x^2 \\ -1 & -8 \end{vmatrix} = 0$ este: **(5 pct.)** a) $\sqrt{2}$; b) $1 + \sqrt{2}$; c) 0; d) 2014; e) 5; f) -2.
- 6. Fie funcția $f : \mathbb{R} \to |R, f(x) = 4x + 3$. Să se determine mulțimea $A = \{x \in \mathbb{R} \mid f(x) > 1\}$. **(5 pct.)** a) $A = \mathbb{R}$; b) $A = \emptyset$; c) $A = [-1, \infty)$; d) $A = \{-2\}$; e) $A = (-\frac{1}{2}, \infty)$; f) $A = (-\infty, 0)$.
- 7. Modulul numărului complex $z = \frac{1-i}{1+i}$ este: (5 pct.)
 - a) $\sqrt{2}$; b) 2; c) 3; d) $\sqrt{3}$; e) $\sqrt{5}$; f) 1.
- 8. Să se calculeze produsul P al soluțiilor ecuației $3x^2 2x 1 = 0$. (5 pct.) a) P = 2; b) P = 3; c) P = 1; d) $P = \frac{1}{2}$; e) $P = -\frac{1}{3}$; f) P = -1.
- 9. Să se calculeze termenul care nu-l conține pe x din dezvoltarea $(x + \frac{1}{x})^{10}$. (5 pct.) a) C_{10}^3 ; b) C_{10}^2 ; c) $2C_{10}^8$; d) 3; e) C_{10}^1 ; f) C_{10}^5 .
- 10. Soluția ecuației $\log_2(x^2+1) \log_2 x = 1$ este: **(5 pct.)** a) x=4; b) x=2; c) $x=\sqrt{2}$; d) x=1; e) x=3; f) x=0.
- 11. Mulţimea soluţiilor ecuaţiei $3^{x^2+x+2} = 9$ este: **(5 pct.)** a) $\{-1,0\}$; b) $\{-2,2\}$; c) $\{0,4\}$; d) \emptyset ; e) $\{1,3\}$; f) $\{-1,1\}$.
- 12. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + e^x$. Atunci: **(5 pct.)** a) f'(1) = 3e; b) f'(1) = 2; c) f'(1) = 2 + e; d) f'(1) = 0; e) f'(1) = e; f) $f'(1) = e^2$.
- 13. Fie matricea $A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$. Atunci A^2 este: **(5 pct.)** a) $\begin{pmatrix} 6 & 5 \\ 4 & 3 \end{pmatrix}$; b) $\begin{pmatrix} 7 & 12 \\ 18 & 31 \end{pmatrix}$; c) $\begin{pmatrix} 1 & 2 \\ 10 & 31 \end{pmatrix}$; d) $\begin{pmatrix} 5 & 10 \\ 15 & 25 \end{pmatrix}$; e) $\begin{pmatrix} 7 & 10 \\ 12 & 15 \end{pmatrix}$; f) $\begin{pmatrix} 8 & 10 \\ 18 & 4 \end{pmatrix}$.
- 14. Să se calculeze integrala $I = \int_0^1 (x^3 + 2x) dx$. (5 pct.) a) $I = \frac{1}{2}$; b) $I = \frac{3}{2}$; c) $I = \frac{5}{2}$; d) $I = \frac{7}{2}$; e) $I = \frac{1}{4}$; f) $I = \frac{5}{4}$.
- 15. Fie polinomul $P=2X^3+4X^2-5X+a$. Să se determine a astfel încât polinomul P să fie divizibil cu X-1. (5 pct.)
 - a) a = -3; b) a = 3; c) a = 0; d) a = -1; e) a = -2; f) a = 2.
- 16. Fie f un polinom de gradul 2014 cu rădăcinile $-1, -2, -3, \ldots, -2014$. Pentru $x \in (-2, \infty)$, se consideră ecuația: $\int_{x+1}^{x+2} \frac{f'(t)}{f(t)} dt = \ln(x+2016) x^2$. Dacă n este numărul soluțiilor negative și m este numărul soluțiilor pozitive ale ecuației date, atunci: (5 pct.)
 - a) n = 0, m = 2; b) n + m = 3; c) n = 1, m = 1; d) 2n + m = 4; e) n = 0, m = 1; f) n = 1, m = 0.

17. Fie funcția $f:(0,\infty)\to\mathbb{R},\, f(x)=x\ln x.$ Dacă

 $M=\{x_0\in(0,\infty)\mid$ dreapta tangentă la graficul lui f în punctul de abscisă x_0 trece prin $A(2,1)\}$

și
$$S = \sum_{x_0 \in M} x_0$$
, atunci: (5 pct.)

a)
$$S \in (3,4);$$
 b) $S \in (\frac{3}{2},2);$ c) $S \in [1,\frac{3}{2});$ d) $S \in (4,5);$ e) $S \in (2,3);$ f) $S \in (5,6).$

18. Mulţimea soluţiilor reale ale ecuaţiei $2\sqrt[3]{2x-1} = x^3 + 1$ este: **(5 pct.)**

a)
$$\{1, \frac{-1 \pm \sqrt[3]{5}}{2}\}$$
; b) $\{1, \frac{1 \pm \sqrt{3}}{2}\}$; c) $\{1, \frac{-2 \pm \sqrt{5}}{2}\}$; d) $\{1, \frac{-1 \pm \sqrt{5}}{2}\}$; e) $\{1, \frac{-1 \pm \sqrt[3]{3}}{2}\}$; f) $\{1, \frac{-2 \pm \sqrt{7}}{3}\}$.