Gabriele Rastello

1 Giugno 2022

Giochi di Gale-Stewart

Giochi di Gale-Stewart su A

Sia $A \neq \emptyset$ un insieme e $X \subseteq A^{\omega}$ un **payoff set**. Consideriamo il gioco di Gale-Stewart G(A,X)

Giochi di Gale-Stewart su A

Sia $A \neq \emptyset$ un insieme e $X \subseteq A^{\omega}$ un **payoff set**. Consideriamo il gioco di Gale-Stewart G(A,X)

dove

- I vince se $(a_n)_{n<\omega}\in X$;
- II vince se $(a_n)_{n<\omega} \notin X$.

Giochi di Gale-Stewart su T

Sia $T\subseteq A^{<\omega}$ non vuoto e potato, $X\subseteq [T]$ un payoff set; allora possiamo considerare il gioco G(T,X)

con la restrizione aggiuntiva $(a_0,\dots,a_n)\in T$ per ogni $n<\omega$ e le medesime condizioni di vittoria.

Giochi di Gale-Stewart su T

Sia $T\subseteq A^{<\omega}$ non vuoto e potato, $X\subseteq [T]$ un payoff set; allora possiamo considerare il gioco G(T,X)

con la restrizione aggiuntiva $(a_0,\dots,a_n)\in T$ per ogni $n<\omega$ e le medesime condizioni di vittoria.

Remark

Se $T=A^{<\omega}$ otteniamo i giochi di Gale-Stewart su A.

Strategie

Fissiamo un gioco G(X,T).

Definizione

Una **strategia** per I è un albero $\sigma \subseteq T$ tale che per ogni $j < \omega$

- 1. σ è potato e non vuoto;
- 2. se $(a_0,\dots,a_{2j})\in\sigma$ allora ogni $(a_0,\dots,a_{2j},a_{2j+1})\in T$ è in $\sigma;$
- 3. se $(a_0,\dots,a_{2j+1})\in\sigma$ allora esiste un unico $a_{2j+2}\in A$ tale che $(a_0,\dots,a_{2j+1},a_{2j+2})\in\sigma$.

Se
$$A=\{0,1,2\}$$
 e $T=A^{<\omega}$ allora

è una strategia per I.

Strategie

Definizione

Una strategia $\sigma\subseteq T$ per I è **vincente** se $[\sigma]\subseteq X$ i.e. se I vince ogni partita giocata seguendo σ .

Strategie

Strategie

Definizione

Una strategia $\sigma\subseteq T$ per I è **vincente** se $[\sigma]\subseteq X$ i.e. se I vince ogni partita giocata seguendo σ .

Similmente definiamo strategie per II.

Una strategia $\sigma\subseteq T$ per I è **vincente** se $[\sigma]\subseteq X$ i.e. se I vince ogni partita giocata seguendo σ .

Similmente definiamo strategie per II.

Remark

Non è possibile che sia I che II abbiano una strategia vincente.

Un gioco G(X,T), o solamente l'insieme $X\subseteq T$, si dice **determinato** se uno dei due giocatori ha una strategia vincente.

Determinatezza

Definizione

Un gioco G(X,T), o solamente l'insieme $X\subseteq T$, si dice determinato se uno dei due giocatori ha una strategia vincente.

Domande

- I chiusi e gli aperti sono determinati?
- I Boreliani sono determinati?
- I proiettivi sono determinati?

Determinatezza dei giochi chiusi

Teorema (Gale-Stewart)

Dato $T\subseteq A^{<\omega}$ potato e non-vuoto se $X\subseteq [T]$ è aperto (o chiuso) in [T] allora G(X,T) è determinato.

Posizioni non perdenti

Definizione

Data una posizione $p=(a_0,\dots,a_{2n+1})\in T$ diciamo che p è **non perdente** per I se II non ha una strategia vincente a partire da p. Formalmente p è non perdente per I se II non ha una strategia vincente per il gioco $G(T_p,X_p)$ dove

$$T_p = \{s \in A^{<\omega} : p^\smallfrown s \in T\} \quad \text{e} \quad X_p = \{x \in A^\omega : p^\smallfrown x \in X\}.$$

Posizioni non perdenti

Definizione

Data una posizione $p = (a_0, \dots, a_{2n+1}) \in T$ diciamo che p è **non perdente** per I se II non ha una strategia vincente a partire da p. Formalmente p è non perdente per I se II non ha una strategia vincente per il gioco $G(T_n, X_n)$ dove

$$T_p = \{s \in A^{<\omega} : p^\smallfrown s \in T\} \quad \mathrm{e} \quad X_p = \{x \in A^\omega : p^\smallfrown x \in X\}.$$

Osservazione

Se una posizione $p = (a_0, \dots, a_{2n+1}) \in T$ è non perdente per I allora esiste un a_{2n+2} che I può giocare (i.e. $(a_{2n+2}) \in T_n$) tale che per ogni a_{2n+3} con cui II può rispondere (i.e. $(a_{2n+2},a_{2n+3})\in T_n$) la posizione $p^{(a_{2n+2}, a_{2n+3})} \in T$ sia ancora non perdente per I.

Lavoriamo con X chiuso ed assumiamo che II non abbia strategia vincente (se la ha allora abbiamo il teorema).

Lavoriamo con X chiuso ed assumiamo che II non abbia strategia vincente (se la ha allora abbiamo il teorema).

Per costruire una strategia vincente per I osserviamo che se II non ha una strategia vincente allora \emptyset è una posizione non perdente per I. Allora I può, come prima mossa, giocare un a_0 tale che per ogni a_1 per cui $(a_0,a_1)\in T$ quest'ultima posizione è ancora non perdente per I.

Lavoriamo con X chiuso ed assumiamo che II non abbia strategia vincente (se la ha allora abbiamo il teorema).

Per costruire una strategia vincente per I osserviamo che se II non ha una strategia vincente allora ∅ è una posizione non perdente per I. Allora I può, come prima mossa, giocare un a_0 tale che per ogni a_1 per cui $(a_0, a_1) \in T$ quest'ultima posizione è ancora non perdente per I.

Adesso per ogni a_1 con cui II può rispondere, per scelta di a_0 , esiste un a_2 che I può giocare e tale che per ogni a_3 tale che $(a_0, a_1, a_2, a_3) \in T$ questa sia una posizione non perdente per I.

In questo modo costruiamo una strategia $\sigma\subseteq T$ per I con la proprietà che, se $(a_0,\dots,a_{2n+1})\in\sigma$ allora questa è una posizione non perdente per I.

In questo modo costruiamo una strategia $\sigma \subseteq T$ per I con la proprietà che, se $(a_0, \dots, a_{2n+1}) \in \sigma$ allora questa è una posizione non perdente per I.

Sia $(a_n)_n$ una partita dove I ha seguito σ i.e. $(a_n)_n \in [\sigma]$. Se $(a_n)_n \notin X$, cioè $(a_n)_n \in [T] - X$, siccome [T] è chiuso abbiamo che esiste un $k < \omega$ tale che

$$N_{(a_0,\dots,a_{2k+1})}\cap [T]\subseteq [T]-X.$$

Ma, se esiste un tale k, abbiamo che (a_0, \dots, a_{2k+1}) è una posizione perdente per I siccome II vince giocando mosse arbitrarie.

Questo è assurdo perché $(a_0, \dots, a_{2k+1}) \in \sigma$ e dunque deve essere non perdente per I. Dobbiamo dunque avere $(a_n)_n \in X$ e quindi $[\sigma] \subseteq X$; I ha una strategia vincente.

Questo è assurdo perché $(a_0,\dots,a_{2k+1})\in\sigma$ e dunque deve essere non perdente per I. Dobbiamo dunque avere $(a_n)_n\in X$ e quindi $[\sigma]\subseteq X;$ I ha una strategia vincente.

Se X è aperto possiamo ripetere lo stesso argomento invertendo i ruoli di I e II.

Dato $T\subseteq A^{<\omega}$ potato e non-vuoto. Un **ricoprimento** di T è una tripla (\tilde{T},π,φ) dove

- 1. \tilde{T} è un albero potato e non-vuoto;
- 2. $\pi: \tilde{T} \to T$ è monotona i.e. se $s \subseteq t$ allora $\pi(s) \subseteq \pi(t)$ e tale che $|\pi(s)| = |s|;$
- 3. φ mappa strategie per I (e per II) in \tilde{T} a strategie per I (e per II) in T in modo tale che $\varphi(\tilde{\sigma})$ ristretta a posizioni di lunghezza $\leq n$ dipende solo da $\tilde{\sigma}$ ristretta a posizioni di lunghezza $\leq n$;
- 4. se $\tilde{\sigma}$ è una strategia per I (o II) in \tilde{T} e $x \in [\varphi(\tilde{\sigma})] \subseteq [T]$ allora esiste $\tilde{x} \in [\tilde{\sigma}] \subseteq [\tilde{T}]$ tale che $\pi(\tilde{x}) = x$.

Ricoprimenti 0000

Se $(\tilde{T}, \pi, \varphi)$ è un ricoprimento di T e $X \subseteq [T]$ allora a G(T, X)associamo $G(\tilde{T}, \tilde{X})$ dove $\tilde{X} = \pi^{-1}(X)$. Infatti ad ogni partita $\tilde{x} \in [\tilde{T}]$ corrisponde $\pi(x) \in [T]$, una partita di G(T, X).

Se (\tilde{T},π,φ) è un ricoprimento di T e $X\subseteq [T]$ allora a G(T,X) associamo $G(\tilde{T},\tilde{X})$ dove $\tilde{X}=\pi^{-1}(X)$. Infatti ad ogni partita $\tilde{x}\in [\tilde{T}]$ corrisponde $\pi(x)\in [T]$, una partita di G(T,X).

Osservazione

Se $\tilde{\sigma}$ è una strategia vincente per I (o II) in $G(\tilde{T},\tilde{X})$ allora $\varphi(\tilde{\sigma})$ è una strategia vincente per I (o II) in G(T,X).

Osservazione

Se $\tilde{\sigma}$ è una strategia vincente per I (o II) in $G(\tilde{T},\tilde{X})$ allora $\varphi(\tilde{\sigma})$ è una strategia vincente per I (o II) in G(T,X).

Se così non fosse dovrebbe esserci un $x \in [\varphi(\tilde{\sigma})]$ tale che $x \notin X$. Ma, per la condizione 4, esiste un $\tilde{x} \in [\tilde{\sigma}]$ tale che $\pi(\tilde{x}) = x$. Ora siccome $\tilde{\sigma}$ è vincente $\tilde{x} \in \tilde{X}$ e dunque $\pi(\tilde{x}) = x \in X$; assurdo.

k-ricoprimenti

Definizione

Fissato $k<\omega$ un ricoprimento (\tilde{T},π,φ) è un k-ricoprimento se

- 1. $T \upharpoonright 2k = \tilde{T} \upharpoonright 2k$ dove $T \upharpoonright n = \{x \in T : |x| \le n\};$
- 2. $\pi \upharpoonright (\tilde{T} \upharpoonright 2k)$ è la funzione identità.

Fissato $k<\omega$ un ricoprimento (\tilde{T},π,φ) è un k-ricoprimento se

- 1. $T \upharpoonright 2k = \tilde{T} \upharpoonright 2k$ dove $T \upharpoonright n = \{x \in T : |x| \le n\};$
- 2. $\pi \upharpoonright (\tilde{T} \upharpoonright 2k)$ è la funzione identità.

Questo significa che nel gioco $G(\tilde{T},\tilde{X})$ le prime k mosse di entrambi i giocatori sono le stesse che in G(T,X).

Fissato $k < \omega$ un ricoprimento $(\tilde{T}, \pi, \varphi)$ è un k-ricoprimento se

- 1. $T \upharpoonright 2k = \tilde{T} \upharpoonright 2k$ dove $T \upharpoonright n = \{x \in T : |x| < n\}$;
- 2. $\pi \upharpoonright (\tilde{T} \upharpoonright 2k)$ è la funzione identità.

Questo significa che nel gioco $G(\tilde{T}, \tilde{X})$ le prime k mosse di entrambi i giocatori sono le stesse che in G(T, X).

Inoltre se $\tilde{\sigma}$ è una strategia per \tilde{T} allora $\varphi(\tilde{\sigma}) \upharpoonright 2k = \tilde{\sigma} \upharpoonright 2k$ i.e. φ mappa strategie in strategie senza cambiare le prime k mosse.

Un ricoprimento (\tilde{T},π,φ) srotola $X\subseteq [T]$ se $\pi^{-1}(X)$ è un clopen di $\tilde{T}.$

Un ricoprimento (\tilde{T},π,φ) srotola $X\subseteq [T]$ se $\pi^{-1}(X)$ è un clopen di $\tilde{T}.$

Osservazione

In particolare se (\tilde{T},π,φ) srotola X allora $G(\tilde{T},\tilde{X})$ è un gioco chiuso, dunque determinato, e quindi anche G(T,X) è determinato perché φ trasforma strategie vincenti in strategie vincenti.

Determinatezza Boreliana

Teorema (Determinatezza Boreliana)

Dato $T \subseteq A^{<\omega}$ potato e non-vuoto se $X \subseteq [T]$ è Boreliano in [T]allora G(X,T) è determinato.

Determinatezza Boreliana

Teorema (Determinatezza Boreliana)

Dato $T\subseteq A^{<\omega}$ potato e non-vuoto se $X\subseteq [T]$ è Boreliano in [T] allora G(X,T) è determinato.

Teorema

Dato $T\subseteq A^{<\omega}$ potato e non-vuoto se $X\subseteq [T]$ è Boreliano in [T] allora per ogni $k<\omega$ esiste un k-ricoprimento di T che srotola X.

Lemma 1

Siano T un albero potato e non-vuoto e $X \subseteq [T]$ un chiuso. Allora per ogni $k < \omega$ esiste un k-ricoprimento di T the srotola X.

Lemma 1

Siano T un albero potato e non-vuoto e $X\subseteq [T]$ un chiuso. Allora per ogni $k<\omega$ esiste un k-ricoprimento di T the srotola X.

Lemma 2

Sia $k<\omega$ e $(T_{i+1},\pi_{i+1},\varphi_{i+1})$ un (k+i)-ricoprimento di T_i per i=0,1,2,... Allora esiste un albero potato T_∞ e mappe $\pi_{\infty,i},\varphi_{\infty,i}$ tali che $(T_\infty,\pi_{\infty,i},\varphi_{\infty,i})$ sia un (k+i)-ricoprimento di T_i e

$$\pi_{i+1} \circ \pi_{\infty,i+1} = \pi_{\infty,i}, \quad \varphi_{i+1} \circ \varphi_{\infty,i+1} = \varphi_{\infty,i}.$$

Mostreremo per induzione su $1 \le \alpha < \omega_1$ che per ogni $T, k < \omega$ e $X \subseteq [T]$ in $\Sigma^0_\alpha([T])$ esiste un k-ricoprimento di T che srotola X.

Mostreremo per induzione su $1 \leq \alpha < \omega_1$ che per ogni $T, k < \omega$ e $X \subseteq [T]$ in $\Sigma^0_\alpha([T])$ esiste un k-ricoprimento di T che srotola X.

Osserviamo che un k-ricoprimento che srotola X srotola anche $\neg X$ (dove $\neg X = [T] - X$) perché $\pi^{-1}(\neg X) = \neg \pi^{-1}(X)$ e il complementare di un clopen è clopen. Dunque per il Lemma 1 abbiamo la tesi per $\alpha = 1$.

Ora assumiamo di avere la tesi per ogni $\beta < \alpha$. In particolare abbiamo che per ogni $T,Y \in \Pi^0_\beta([T])$ e $k < \omega$ esiste un k-ricoprimento di T che srotola $\neg Y \ (\in \Sigma^0_\beta([T]))$ e dunque anche Y.

Ora assumiamo di avere la tesi per ogni $\beta < \alpha$. In particolare abbiamo che per ogni $T,Y \in \Pi^0_\beta([T])$ e $k < \omega$ esiste un k-ricoprimento di T che srotola $\neg Y \ (\in \Sigma^0_\beta([T]))$ e dunque anche Y.

Sia $X\in \Sigma^0_{\alpha}([T])$ e $k<\omega$. Allora $X=\bigcup_{i<\omega}X_i$ con $X_i\in \Pi^0_{\beta_i}([T])$ e $\beta_i<\alpha$. Sia (T_1,π_1,φ_1) un k-ricoprimento di $T=T_0$ che srotola X_0 . Ora $\pi_1^{-1}(X_i)\in \Pi^0_{\beta_i}([T_1])$ per $i\geq 1$ siccome $\Pi^0_{\beta_i}$ è una boldface pointclass. Per ricorsione sia $(T_{i+1},\pi_{i+1},\varphi_{i+1})$ un (k+i)-ricoprimento di T_i che srotola $(\pi_1\circ\ldots\circ\pi_i)^{-1}(X_i)$.

$$T_0 \leftarrow T_1 \leftarrow T_2 \leftarrow T_2 \leftarrow T_3 \cdots$$

Ora, per il Lemma 2, sia $(T_\infty,\pi_{\infty,i},\varphi_{\infty,i})_{i<\omega}$ il limite. Osserviamo che $(T_\infty,\pi_{\infty,0},\varphi_{\infty,0})$ srotola ogni X_i .

Ora, per il Lemma 2, sia $(T_{\infty},\pi_{\infty,i},\varphi_{\infty,i})_{i<\omega}$ il limite. Osserviamo che $(T_{\infty},\pi_{\infty,0},\varphi_{\infty,0})$ srotola ogni X_i .

Infatti per ogni $i < \omega$ abbiamo

$$\begin{split} \pi_{\infty,0}^{-1}(X_i) &= (\pi_1 \circ \ldots \circ \pi_{i+1} \circ \pi_{\infty,i+1})^{-1}(X_i) \\ &= \pi_{\infty,i+1}^{-1}(\pi_{i+1}^{-1}((\pi_1 \circ \ldots \circ \pi_i)^{-1}(X_i))) \end{split}$$

ma $\pi_{i+1}^{-1}((\pi_1\circ\ldots\circ\pi_i)^{-1}(X_i))$ è un clopen per definizione di π_{i+1} e $\pi_{\infty,i+1}$ è continua dunque $\pi_{\infty,0}^{-1}(X_i)$ è clopen.

Adesso abbiamo che $\pi_{\infty,0}^{-1}(X)=\bigcup_{i<\omega}\pi_{\infty,0}^{-1}(X_i)$ è un aperto di $[T_\infty]$ quindi, per il Lemma 1, esiste (\tilde{T},π,φ) k-ricoprimento di T_∞ che srotola $\pi_{\infty,0}^{-1}(X)$. Infine $(\tilde{T},\pi_{\infty,0}\circ\pi,\varphi_{\infty,0}\circ\varphi)$ è un k-ricoprimento di T che srotola X.