Keras Library for Neural Networks and Deep Learning

Alex Klibisz

Oak Ridge National Lab (Intern)

alex.klibisz.com, github.com/alexklibisz

Outline

- Neural networks introduction
- Keras Overview
 - Network Structure
 - Optimization
 - Training
 - Callbacks
 - Advanced Features
- Learning Resources
- Real Dataset Example (time-permitting)

Neural Networks Introduction

- Motivation: model high-dimensional data (images, video, audio, text) with minimal manual feature engineering.
- Layer-wise computation: input -> hidden -> output layers
- Training optimizes an objective function.
- Generally, more data helps.

Common Terms

- Layer: take inputs, compute outputs, pass to next layer.
 - Convolutional: sliding filters amplify certain input features.
 - Max-pooling: take max of every h×w input window.
 - Dense: every node computes function over all inputs
 - Activation: apply non-linearity to inputs.
- Parameters: learnable weights in each layer.
- Cost: quantify error in predict vs. correct output.
- Training: update parameters to minimize cost.
- Batch: subset of training data used to update parameters.
- Epoch: approx. one pass through all training data.

```
while loss > 0:

y_pred = network(X, weights)
loss = (y_true - y_pred)^2
weights = optimize(weights, loss)
```

Example: Image Classification

MNIST ConvNet Demo

Keras Overview

- Python
- Abstractions for layers, cost functions, optimization, etc.
- Similar level to Scikit-learn.
- Keras "front-end", Tensorflow/Theano/CNTK "back-end".

Why Keras?

- Python (R bindings)
- Clean abstractions \rightarrow fast prototyping.
- GPU + CPU support.
- Thorough documentation, examples.
- Implement and train simple to state-of-the art networks.

Network Structure

• 28x28x1 image input \rightarrow 10 class output.

Optimization

- Minimize mean($(true predicted)^2$)
- Monitor accuracy during training.

Training

Callbacks

- Functions executed before/after training, epochs, batches.
- Saving metrics and weights, learning rate adjustment, + more

Advanced Features

- Functional API, Inception Example
- Multi-input/output models
- Training with generators

Learning Resources

Ordered easy to difficult

- Data Skeptic Mini Episodes
- ML Mastery E-books (Scikit-learn, Keras, XGBoost)
- PylmageSearch (image processing, deep learning)
- Neural Networks and Deep Learning (Nielsen)
- Stanford CS231n (try the assignments)
- Deep Learning Book (Advanced)

Good math review

Mathematics for Political and Social Research

Time Left? - ISBI 2012 Segmentation Challenge

- Ground-truth Masks
- U-Net Architecture
- Keras U-Net Implementation
- Results

Thanks

- Website: alex.klibisz.com
- Github: https://github.com/alexklibisz