Linear Classifiers, Logistic Regression

CSC 461: Machine Learning

Fall 2022

Prof. Marco Alvarez
University of Rhode Island

Linear classifiers

Linear classifiers

- Discriminative
 - ✓ Perceptron
 - √ Logistic regression
 - √ Support vector machines
- Generative
 - √ Linear discriminant analysis
 - ✓ Naive bayes

Binary classification

$$\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})\}$$

$$\mathbf{x}^{(i)} \in \mathbb{R}^d \qquad y^{(i)} \in \{-1, +1\}$$

X1	X2	Y
0.5	0.1	+1
0.3	0.9	-1
0.3	0 . 875	-1
0.45	0. 15	+1
***	***	•••

Plots (regression x classification)

Binary classification goal

Learn a decision boundary such that two classes can be separated

The sign function

$$sign(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ +1 & \text{if } x > 0 \end{cases}$$

$$h(\mathbf{x}) = sign\left(\mathbf{w}^T\mathbf{x}\right)$$

Decision boundary

Decision boundary

A hyperplane in \mathbb{R}^2 is a line

$$0 = b + w_1 x_1 + w_2 x_2$$

$$x_2 = -\frac{b}{w_2} - \frac{w_1}{w_2} x_1$$

Absorbing the bias

$$h(\mathbf{x}) = sign\left(\mathbf{w}^T\mathbf{x} + b\right)$$

$$= sign\left(\sum_{i=1}^{d} w_i x_i + b\right)$$

$$x_0 = 1, \quad w_0 = b$$

$$h(\mathbf{x}) = sign\left(\sum_{i=0}^{d} w_i x_i\right)$$

$$= sign\left(\mathbf{w}^T\mathbf{x}\right)$$

X0	X1	X2	Υ
1	0.5	0.1	+1
1	0.3	0.9	-1
1	0.3	0.875	-1
1	0.25	0.561	-1
1	0.45	0.15	+1
		•••	

Absorbing the bias

Learning

Example

Provide a solution (weight vector)

$$x_0$$
 x_1 x_2 y
 1 0 0 -1
 1 0 1 -1
 1 1 0 -1
 1 1 1 1 1

The sign function (again)

Note that the gradient is zero almost everywhere and the gradient is undefined at x = 0.

Can we use the squared loss?

- Treat target labels (binary) as continuous
 - ✓ final prediction decided by checking $h(\mathbf{x}) > 0$

Predicted values can fall outside [-1,1] range

Square loss penalizes correct predictions with large losses

Logistic regression

Logistic function

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

mapping \mathbb{R} to [0,1]

continuous and differentiable

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.Logistic

Logistic regression

- Binary classifier
 - ✓ uses a logistic function (type of sigmoid function, S-shaped)
 - ✓ models probability of output in terms of input
- It is considered a linear classifier
 - ✓ even though the *activation function* is non-linear
- It is a discriminative model
 - \checkmark models decision boundary directly, $P(y \mid \mathbf{x})$ in this case

Conditional probabilities

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-X	-у	0.1

$$P(+x|+y)$$
? 2/.6 $P(-x|+y)$? 4/.6 $P(-y|+x)$? 3/.5

Set up

$$\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})\}$$

$$\mathbf{x}^{(i)} \in \mathbb{R}^d$$

$$y^{(i)} \in \{-1, +1\}$$

Probabilistic interpretation

$$h(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} = \frac{e^{\mathbf{w}^T \mathbf{x}}}{e^{\mathbf{w}^T \mathbf{x}} + 1}$$

(probability of class +1)
$$P(y = +1 \mid \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} = \sigma(\mathbf{w}^T \mathbf{x})$$

$$P(y = -1 \mid \mathbf{x}) = 1 - P(y = +1 \mid \mathbf{x})$$

(probability of class -1)
$$P(y = -1 \mid \mathbf{x}) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}} = \sigma(-\mathbf{w}^T \mathbf{x})$$

Probabilistic interpretation

$$P(y = +1 \mid \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} = \sigma(\mathbf{w}^T \mathbf{x})$$

$$P(y = -1 \mid \mathbf{x}) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}} = \sigma(-\mathbf{w}^T \mathbf{x})$$

$$P(y \mid \mathbf{x}) = \frac{1}{1 + e^{-y\mathbf{w}^T\mathbf{x}}} = \sigma(y\mathbf{w}^T\mathbf{x})$$

Decision boundary

$$P(y = +1 \mid \mathbf{x}) = P(y = -1 \mid \mathbf{x}) = 0.5$$

$$\frac{\sigma(\mathbf{w}^T \mathbf{x})}{\sigma(-\mathbf{w}^T \mathbf{x})}$$

Logistic regression has a linear decision boundary $\mathbf{w}^T \mathbf{x} = 0$

Linear decision boundary

Logistic regression

Solving logistic regression

Maximum likelihood estimation (MLE)

- MLE estimates **parameters** based on the principle that if we observe \mathcal{D} , we should choose the parameters that make \mathcal{D} most probable
- We can derive formulas for W that maximize $p(\mathcal{D}; W)$
 - ✓ many machine learning algorithms follow this maximum likelihood principle
 - \checkmark want $P(y \mid \mathbf{x}; W)$
 - $\sqrt{\text{learn } W^* = \arg \max P(y \mid \mathbf{x}; W)}$

Maximum likelihood estimation (MLE)

The conditional data likelihood $\mathcal{L}(\mathbf{w})$ is the probability of the observed labels y conditioned on the feature values \mathbf{x}

✓ weights can be learned by maximizing this likelihood

$$\mathcal{L}(\mathbf{w}) = P(y^{(1)}, ..., y^{(n)} \mid \mathbf{x}^{(1)}, ..., \mathbf{x}^{(n)}; \mathbf{w}) = \prod_{i=1}^{n} P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w})$$

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg\,max}} \prod_{i=1}^{n} P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w})$$

Maximum likelihood estimation

$$\mathbf{w}^* = \underset{\mathbf{w}}{\text{arg max}} \prod_{i=1}^n P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w})$$

$$= \underset{\mathbf{w}}{\operatorname{arg max}} \log \left(\prod_{i=1}^{n} P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w}) \right)$$

$$= \arg\max_{\mathbf{w}} \frac{1}{n} \log \left(\prod_{i=1}^{n} P(y^{(i)} \mid \mathbf{x}^{(i)}; \mathbf{w}) \right) \frac{1}{1 + e^{-y^{(i)}\mathbf{w}^{T}\mathbf{x}^{(i)}}}$$

$$= \underset{\mathbf{w}}{\operatorname{arg max}} - \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y^{(i)} \mathbf{w}^{T} \mathbf{x}^{(i)}} \right)$$

$$\frac{\text{negative log}}{\text{likelihood}} = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \log\left(1 + e^{-y^{(i)}\mathbf{w}^T\mathbf{x}^{(i)}}\right) \qquad \text{error (loss)} \\ e\left(h(\mathbf{x}), y\right)$$

Loss function

$$L(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y^{(i)} \mathbf{w}^T \mathbf{x}^{(i)}} \right)$$
 cross-entropy loss (over a dataset)

- ▶ no closed-form solution (non-linear function), but loss is convex
- can use gradient descent or second-order methods

Example: 2d dataset

Example: loss function

plot shows contour lines in the space of parameters w₁ and w₂, w₀ is omitted

Solution

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.Logistic

Logistic function (derivative)

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \frac{(1 + e^{-x})(0) - (1)(-e^{-x})}{(1 + e^{-x})^2}$$

$$= \frac{e^{-x}}{(1 + e^{-x})^2}$$

$$= \sigma(x)(1 - \sigma(x))$$

Gradient

$$\nabla_{\mathbf{w}} L(\mathbf{w}) = \begin{bmatrix} \frac{\partial L(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial L(\mathbf{w})}{\partial w_d} \end{bmatrix}$$

$$\frac{\partial L(\mathbf{w})}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{n} \sum_{i=1}^n \log\left(1 + e^{-y^{(i)}\mathbf{w}^T\mathbf{x}^{(i)}}\right)$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \sigma\left(-\mathbf{w}^{T} \mathbf{x}^{(i)}\right) y^{(i)} x_{j}^{(i)}$$

How to classify new data?

• Once the final hypothesis $h(\mathbf{x})$ is known ...

$$\checkmark h(\mathbf{x}) = p(+1 \mid \mathbf{x})$$

 \checkmark predict label +1 to input instance **x**

$$\checkmark$$
 if $p(+1 \mid \mathbf{x}) \ge 0.5$

 \checkmark predict label −1 to input instance **x**

✓ if
$$p(+1 | \mathbf{x}) < 0.5$$

Final remarks

- Simple classifier with probabilistic outputs
- Loss function is convex and can be trained with GD methods (no closed-form)
- ▶ Robust to overfitting
- Offers interpretability to weights (feature importance)
- However, decision boundary is still linear