Лабораторная Работа №14

Модели обработки заказов

Гэинэ Андрей

Российский университет дружбы народов им. Патриса Лумумбы, Москва, Россия

Докладчик

- Гэинэ Андрей
- НФИбд-02-22
- Российский университет дружбы народов
- [1032219249@pfur.ru]

Выполнение лабораторной

работы

Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель оформления заказов клиентов одним оператором

```
; operator
GENERATE 15,4
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 10,2
RELEASE operator
TERMINATE O
:timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 1: Модель оформления заказов клиентов одним оператором

Отчёт по модели оформления заказов в интернет-магазине

```
END TIME BLOCKS FACILITIES STORAGES
                        480.000 9 1
          NAME
       OPERATOR
                              10001.000
       OPERATOR O
                              10000.000
LABEL
               LOC BLOCK TYPE
                               ENTRY COUNT CURRENT COUNT BETRY
                   GENERATE
                   TERMINATE
                   GENERATE
                   TERMINATE
FACILITY
             ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY
OPERATOR
                              9.589 1
              MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
OPERATOR Q
              1 0 32 31 0.001
                       ASSEM CURRENT NEXT PARAMETER VALUE
  34 0 496.081 34 0 1
  35 0
```

Рис. 2: Отчёт по модели оформления заказов в интернет-магазине

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Упражнене. Изменение интервалов поступления заказов и время оформления клиентов

```
; operator

GENERATE 3.14,1.7

QUEUE operator

GEPART operator

DEPART operator

GEPART operator

TERMINATE 0

; timer

GENERATE 480

TERMINATE 1

START 1
```

Рис. 3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

STA	ART TIME 0.000						
OPER	NAME RATOR RATOR_Q		VALUE 10001.00 10000.00				
LABEL	1 GEN 2 QUE 3 SEI 4 DEP 5 ADV 6 REL 7 TEE 8 GEN	CK TYPE ERATE UE ZE ART ANCE EASE MINATE ERATE MINATE	15 15 7 7 7	12 10 10 10		0 0 0	
FACILITY OPERATOR	ENTRIES UT					INTER RETRY	
QUEUE OPERATOR_Q	MAX CONT. 82 82	ENTRY ENT	TRY(0) AV	TE.CONT	. AVE.TIM 123.46	E AVE.(-0)	RETRY 0
FEC XN PRI 71 0 154 0 155 0	BDT 480.405 483.330 960.000	71	5		PARAMETER	VALUE	

Рис. 4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A,B,C,D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Построение гистограммы распределения заявок в очереди

```
Waittime QTABLE operator q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator q,1,Fin
SAVEVALUE Custnum+, X$Custnum
ASSIGN Custnum, X$Custnum
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 5: Построение гистограммы распределения заявок в очереди

Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

Рис. 6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Построение гистограммы

Рис. 7: Гистограмма распределения заявок в очереди

Анализ гистограммы

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок — 12-14 минут, 12 заявок — 8-10 минут, в остальных диапазонах 0-4 заявок.

Модель обслуживания двух типов заказов от клиентов в интернетмагазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE–DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE–RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора.

Модель обслуживания двух типов заказов от клиентов в интернетмагазине

```
ADVANCE 10,2
RELEASE operator
TERMINATE O
; order and service package
GENERATE 30.8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE O
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 8: Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Отчёт по модели оформления заказов двух типов

Рис. 9: Отчёт по модели оформления заказов двух типов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra RELEASE operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным

Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

```
: order
GENERATE 15.4
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 10.2
TRANSFER 0.3, noextra, extra
extra ADVANCE 5.2
noextra RELEASE operator
TERMINATE O
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 10: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Отчёт по модели оформления заказов двух типов заказов

	START TIME 0.000	END TI 480.0	ME BLOCKS FAC		ORAGES	
	NAME EXTRA		7.000			
	NOEXTRA		8.000			
	OPERATOR OPERATOR Q		10001.000			
	OFERATOR_C		200001000			
LABEL	LOC	BLOCK TYPE	ENTRY COUNT C	URRENT COUN	T RETRY	
	1	GENERATE	33	0	0	
	2	QUEUE	33	0	0	
	3	SEIZE DEPART	33 33	0	0	
	3	ADVANCE	33	0	o	
	6	TRANSFER	33	0	0	
EXTRA	7	ADVANCE	8	1	0	
NOEXTRA	8	RELEASE	32	0	0	
	9	TERMINATE GENERATE	32	0	0	
	10	TERMINATE	1	0	0	
	**		*	0		
FACILITY	ENTRIES	UTIL. AVE.	TIME AVAIL. OW			
OPERATOR			TIME AVAIL. OW 11.146 1	NER PEND IN 34 0		DELAY
OF ENGLOP						
QUEUE	WAY C	OUT PUTBU PUT	RY(0) AVE.CONT.	NUM TIME	NUTE (-0)	DETRY
OPERATOR					3.220	
OFERMION			20 01004	01701	31000	
FEC XN 34	PRI BDT 0 482.		URRENT NEXT P	ARAMETER	VALUE	
35	0 487.		0 1			
36	0 960.		0 10			

Рис. 11: Отчёт по модели оформления заказов двух типов заказов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator,1, сегмент моделирования времени остается без изменений

Модель оформления заказов несколькими операторами

```
Фаил Машина вил ввол устроиства Справка
operator STORAGE 4
GENERATE 5,2
QUEUE operator q
ENTER operator,1
DEPART operator q
ADVANCE 10,2
LEAVE operator, 1
TERMINATE 0
:timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 12: Модель оформления заказов несколькими операторами

Отчет по модели оформления заказов несколькими операторами

```
END TIME BLOCKS FACILITIES STORAGES
                     480.000 9 0
         NAME
       OPERATOR
                            10000.000
       OPERATOR O
LABEL
              LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
              1 GENERATE 93
              MAY CONT. ENTRY ENTRY (O) AVE. CONT. AVE. TIME AVE. (-0) BETRY
OPERATOR O
STORAGE
             CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
             4 2 0 4 93 1 1,926 0,482 0 0
  95 0 480,457 95 0 1
```

Рис. 13: Отчет по модели оформления заказов несколькими операторами

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q,2, которая проверяет больше ли в очереди клиентов, чем два, если нет — клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели

Модель оформления заказов несколькими операторами с учетом отказов клиентов

```
operator STORAGE 4
GENERATE 5,2
TEST LE OSoperator q,2
QUEUE operator q
ENTER operator,1
DEPART operator q
ADVANCE 30,2
LEAVE operator, 1
TERMINATE 0
:timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 14: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

Рис. 15: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Выводы

В результате была реализована с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.