

Lecture 4

Subgroup

& Cyclic Group

What you will learn in Lecture 4

4.1 Subgroup (部分群)

4.2 Cyclic Group (巡回群)

Let us consider the groups $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$, where + is the usual addition of numbers, and note the following:

- 1. Both these groups have the same binary operation.
- 2. \mathbb{Z} is a subset of \mathbb{Q} .

The same is true for the groups $(\mathbb{Z}, +)$ and $(\mathbb{R}, +)$; $(\mathbb{Q}, +)$ and $(\mathbb{R}, +)$; $(\mathbb{R}, +)$ and $(\mathbb{C}, +)$.

This leads us to the concept of a subgroup. Before formally defining subgroups, let us also note the following:

Let (G, \circ) be a group and H be a nonempty subset of G. Then H is said to be closed under the binary operation \circ if $a \circ b \in H$ for all $a, b \in H$.

Suppose H is **closed** under **the binary operation** \circ . Then the restriction of \circ to $H \times H$ is a mapping from $H \times H$ into H. Thus, the binary operation \circ defined on G induces **a binary operation on** G induces **a binary operation on** G induces a binary operation on G induces a binary operation of G induces a binary operation

It also follows that \circ is **associative** as a binary operation on H, i.e., $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in H$.

If (H, \circ) is a group, then we call H a subgroup of G.

More formally, we have the following definition.

Definition 4.1

Let (G, \circ) be a group and H be a nonempty subset of G. If (H, \circ) is a group, then (H, \circ) is called a subgroup of (G, \circ) .

For example, consider the rational number group $(\mathbb{Q}, +)$ and its subgroups $(\mathbb{Z}, +)$. Now the identity elements of both these groups is 0.

Next, let $a \in \mathbb{Z}$. Then $a \in \mathbb{Q}$.

Also, the inverse of a in \mathbb{Z} as well as in \mathbb{Q} is -a. In other words, the inverse of a in \mathbb{Z} and the inverse of a in \mathbb{Q} is the same. In general, we have the following result.

Theorem 4.1

Let (G, \circ) be a group and (H, \circ) be a subgroup of (G, \circ) .

- (i) The identity elements of (H, \circ) and (G, \circ) are the same.
- (ii) If $h \in H$, then the inverse of h in H and the inverse of h in G is the same.

Remark

If (G,\circ) is a group, then $(\{e\},\circ)$ and (G,\circ) are subgroups of (G,\circ) . These subgroups are called trivial subgroup (自明な部分群).

Example 4.1

Consider the following list of groups.

(i)
$$(\{0\}, +), (\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +),$$

(ii)
$$(\{1\},\cdot)$$
, $(\mathbb{Q}\setminus\{0\},\cdot)$, $(\mathbb{R}\setminus\{0\},\cdot)$, $(\mathbb{C}\setminus\{0\},\cdot)$,

where + is the usual addition operation and \cdot is the usual multiplication operation.

Each group is a subgroup of the group listed to its right.

For example, $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, and $(\mathbb{C}, +)$, and $(\mathbb{R}\setminus\{0\},\cdot)$ is a subgroup of $(\mathbb{C}\setminus\{0\},\cdot)$.

Theorem 4.2

Let (G, \circ) be a group and H be a **nonempty subset** of G. Then (H, \circ) is a subgroup of (G, \circ) **if and only if** for all $a, b \in H$, $a \circ b^{-1} \in H$.

Proof:

Suppose (H, \circ) is a subgroup of (G, \circ) . Let $a, b \in H$. Because (H, \circ) is a subgroup, it is a group. Therefore, $b \in H$ implies that $b^{-1} \in H$. Thus, $a \circ b^{-1} \in H$ because H is closed under the binary operation.

Conversely, suppose H is a nonempty subset of G such that $a,b \in H$ implies $a \circ b^{-1} \in H$. Because $H \neq \emptyset$, there exists $a \in H$. Now $a, a^{-1} \in H$. Therefore, $a \circ a^{-1} = e \in H$, i.e., H contains the identity. Next, let $b \in H$. Then $e,b \in H$, implies that $b^{-1} = e \circ b^{-1} \in H$. Thus, every element of H has an inverse in H.

To show that H is closed under the binary operation, let $a, b \in H$. Then $a, b^{-1} \in H$. Thus, $a \circ b = a \circ (b^{-1})^{-1} \in H$.

Hence, H is closed under the binary operation. From the statements preceding Definition, associativity holds for H. Hence, (H, \circ) is a group, so (H, \circ) is subgroup of (G, \circ) .

Example 4.2 Find all subgroups of $(\mathbb{Z}, +)$.

Solution: Let (H, +) be a subgroup of $(\mathbb{Z}, +)$. Suppose $H \neq \{0\}$.

Let a be a nonzero element of H. Then $-a \in H$. Since either a or -a is a positive integer, H contains a positive integer. With the help of the principle of well-ordering, we can show that H contains a smallest positive integer. Let a be the smallest positive integer in H. We claim that $H = \{na \mid n \in \mathbb{Z}\}$.

Now $na \in H$ for all $n \in \mathbb{Z}$ and so $\{na \mid n \in \mathbb{Z}\} \subseteq H$. On the other hand, let $b \in H$.

By the division algorithm, there exist c and r in \mathbb{Z} such that b = ca + r, where $0 \le r < a$. Suppose $r \ne 0$. Then $r = b - ca \in H$. Thus, H contains a positive integer smaller than a, a contradiction.

Hence, r = 0 and so $b = ca \in \{na \mid n \in \mathbb{Z}\}.$

This implies that $H \subseteq \{na \mid n \in \mathbb{Z}\}$. Thus, $H = \{na \mid n \in \mathbb{Z}\}$ for some $a \in \mathbb{Z}$. Also, for all $n \in \mathbb{Z}$, the set $T = \{nm \mid m \in \mathbb{Z}\} = n\mathbb{Z}$ generate a subgroup of $(\mathbb{Z}, +)$.

Hence, $(n\mathbb{Z}, +)$, n = 0, 1, 2, ... are the subgroups of $(\mathbb{Z}, +)$.

Definition 4.2

Let H and L be nonempty subsets of G from a group (G, \circ) . The product of H and L is defined to be the set $HL = \{h \circ l \mid h \in H, l \in L\}$.

Example 4.3

Consider the group of symmetries of the square.

```
Let H = \{r_{360}, d_1\} and L = \{r_{360}, h\}. Then (H, \circ) and (L, \circ) are subgroups of (G, \circ). Now HL = \{r_{360} \circ r_{360}, r_{360} \circ h, d_1 \circ r_{360}, d_1 \circ h\} = \{r_{360}, h, d_1, r_{90}\}.
```

Now for $h, d_1 \in HL$, $h \circ d_1 = r_{270} \notin HL$, so HL is **not closed** under the binary operation.

Hence, HL is **not** a **subgroup** of the symmetries of the square. Also, note that

$$LH = \{r_{360} \circ r_{360}, \qquad r_{360} \circ d_1, \qquad h \circ r_{360}, \qquad h \circ d_1\} = \{r_{360}, \qquad d1, \qquad h, \qquad r_{270}\},$$

Therefore, we see $HL \neq LH$.

And $\langle H \cup L \rangle = \{r_{360}, r_{90}, r_{180}, r_{270}, h, v, d_1, d_2\}.$

This example shows that in general the product of subgroups need not be a subgroup.

2019/6/24

Figure. Rigid motions of a square in symmetry

2019/6/24

$$r_{90} \circ h$$

The complete operation table for the operation • is as following

0	r_{360}	r_{90}	r_{180}	r_{270}	h	v	d_1	d_2
r_{360}	r_{360}	r_{90}	r_{180}	r_{270}	h	v	d_1	d_2
r_{90}	r_{90}	r_{180}	r_{270}	r_{360}	d_1	d_2	v	h
r_{180}	r_{180}	r_{270}	r_{360}	r_{90}	v	h	d_2	d_1
r_{270}	r_{270}	r_{360}	r_{90}	r_{180}	d_2	d_1	h	v
h	h	d_2	v	d_1	r_{360}	r_{180}	r_{270}	r_{90}
v	v	d_1	h	d_2	r_{180}	r_{360}	r_{90}	r_{270}
d_1	d_1	h	d_2	v	r_{90}	r_{270}	r_{360}	r_{180}
d_2	d_2	v	d_1	h	r_{270}	r_{90}	r_{180}	r_{360}

In the following theorem, we give a necessary and sufficient condition for the product of subgroups to be a subgroup.

Theorem 4.3

Let (H, \circ) and (L, \circ) be subgroups of a group (G, \circ) . Then (HL, \circ) is a subgroup of (G, \circ) if and only if HL = LH.

Corollary 3.2

If (H,\circ) and (L,\circ) are subgroups of a <u>commutative</u> group (G,\circ) , then (HL,\circ) is a <u>subgroup</u> of (G,\circ) .

4.2 Cyclic Group (巡回群)

In the previous section, we introduced the notion of a subgroup generated by a set. **Groups** that are generated by a single element, called cyclic groups, are of special importance. Cyclic groups are easier to study than any other group.

Definition 4.3

A group (G, \circ) is called a cyclic group if there exists $\alpha \in G$ such that

$$G = \langle a \rangle$$

where $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$. (Here $a^n = \underline{a \circ a \circ \cdots \circ a}$)

Let $G = \langle a \rangle$ defines a cyclic group and $b, c \in G$. Then $b = a^n$ and $c = a^m$ for some $n, m \in Z$. Now

$$bc = a^n a^m = a^{n+m} = a^{m+n} = a^m a^n = cb.$$

This shows that *G* is commutative. Hence, every cyclic group is commutative. We record this result in the following theorem.

Theorem 4.4

Every cyclic group is commutative.

Example 4.4

- (i) $(\mathbb{Z}, +)$ is a cyclic group because $\mathbb{Z} = \langle 1 \rangle$.
- (ii) $(\{na \mid n \in \mathbb{Z}\}, +)$ is a cyclic group, where a is any fixed element of \mathbb{Z} .

Example 4.5

Consider the set $G = \{e, a, b, c\}$. Define \circ on G by means of the following operation table.

0	e	a	b	С	
e	e	a	b	С	
a	а	e	С	b	
b	b	С	e	a	
С	С	b	а	e	

From the multiplication table, it follows that (G, \circ) is a **commutative** group. However, G is NOT a cyclic group because

$$\langle e \rangle = \{e\}, \langle a \rangle = \{e, a\}, \langle b \rangle = \{e, b\}, \text{ and } \langle c \rangle = \{e, c\}$$

i.e. there is no element in G can generate all elements in G.

And each of these subgroups is properly contained in G. G is known as the **Klein 4-group** (クラインの四元群).

Theorem 4.5

Let $\langle a \rangle$ be a finite cyclic group of order n.

Then
$$\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}.$$

Theorem 4.6

Every subgroup of a cyclic group is cyclic.

Corollary 3.2

Let $G = \langle a \rangle$ be a cyclic group of order n, n > 1, and H be a proper subgroup of G.

Then $H = a^k$ for some integer k such that k divides n and k > 1. Furthermore, the order |H| divides n.

Review for Lecture 4

- Subgroup (部分群)
- Trivial Subgroup (自明な部分群)
- Cyclic Group (巡回群)

22

Assignment

Please Check https://github.com/uoaworks/Applied-Algebra

References

- [1] Thomas W. Judson etc. Abstract Algebra Theory and Applications, 2018
- [2] D. S. Malik, John N. Mordeson, M.K. Sen, Introduction to Abstract Algebra, 2007
- [3] (おすすめ) 松本 眞, 代数系への入門, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/TEACH/daisu-nyumon2014.pdf
- [4] Wikipedia
- [5] Materials from internet.