Corso di Chimica

Esercitazione 10: Proprietà colligative

6 Maggio 2016

1. Introduzione

Le proprietà colligative sono proprietà fisiche delle soluzioni che dipendono dal numero di particelle di soluto in soluzione, ma non dalla loro attività. Le principali proprietà sono:

- Abbassamento della tensione di vapore (Legge di Raoult): La tensione di vapore del solvente in presenza di un soluto non volatile è proporzionale alla frazione molare del solvente stesso.
- 2. Innalzamento ebullioscopico: Un liquido entra in ebollizione quando la sua tensione di vapore uguaglia la pressione atmosferica. Quando ad un solvente puro aggiungiamo un soluto non volatile, si è visto che si ha un abbassamento della tensione di vapore. Ciò rende necessaria una temperatura di ebollizione più elevata rispetto a quella del solvente puro. Pertanto, una soluzione bolle a una temperatura maggiore di quella del solvente puro; l'aumento del punto di ebollizione è chiamato innalzamento ebullioscopico.
- 3. **Abbasamento crioscopico:** Una soluzione congela a una temperatura più bassa di quella del solvente puro: la diminuizione del punto (o temperatura) di congelamento si chiama abbassamento crioscopico.
- 4. **Pressione Osmotica:** Esistono membrane, dette semipermeabili, che permettono il passaggio delle molecole di solvente, ma non di quelle del soluto. Quando una di queste membrane è interposta tra una soluzione ed il solvente puro, si ha diffusione del solvente nella soluzione e questo fenomeno è noto come *osmosi*. La pressione che deve essere applicata per impedire il passaggio del solvente puro nella soluzione è detta *pressione osmotica*. La pressione osmotica (π) è data da una relazione approssimata del tutto simile all'equazione generale di stato dei gas e cioè: $\pi V = nRT$.

2. Problemi Svolti

2.1 Problema

In 100g di H_2O sono contenuti 100g di glucosio $C_6H_{12}O_6$ (p.f. 180g/mol). Calcolare la tensione di vapore a 28 °C, sapendo che l'acqua pura a 28 °C ha una tensione di vapore di 28,35mmHg.

• Le moli di glucosio e di H₂O sono:

$$\begin{split} n_{\mathrm{C_6H_{12}O_6}} &= \tfrac{100g}{180g/mol} = 0,55moli \\ n_{\mathrm{H_2O}} &= \tfrac{100g}{18g/mol} = 55,5moli \end{split}$$

· Le moli totali della soluzione sono guindi:

$$n_{tot} = n_{\text{C}_6\text{H}_{12}\text{O}_6} + n_{\text{H}_2\text{O}} = 0,55 + 55,5 = 56,05 moli$$

• A questo punto possiamo determinarci la frazione molare del solvente:

$$\chi_{\text{H}_2\text{O}} = \frac{n_{\text{H}_2\text{O}}}{n_{tot}} = \frac{55,5}{56,05} = 0,99$$

 Avendo ricavato la frazione molare del solvente possiamo ricavarci la tensione di vapore della soluzione:

$$P_{soluzione} = P_{solvente} \cdot \chi_{solvente} = 28,35 \cdot 0,99 = 28,07 mmHg$$

2.2 Problema

Una soluzione KBr ha una concentrazione di 0,272 mol/l. Determinare il valore della pressione osmotica esercitata dalla soluzione alla temperatura di 25 °C.

• I due elementi coinvolti nella soluzione si dissociano:

$$KBr \longrightarrow K^{+} + Br^{-}$$

• Quindi il coefficiente di *Van't Hoff* è pari a 2, in quanto corrisponde al numero di ioni prodotti dall'elettrolita nella dissociazione. Avendo a disposizione la molarità e la temperatura possiamo ricavarci il valore della pressione osmotica (π) :

$$\pi V = inRT$$

$$\pi = i\frac{n}{V}RT = iMRT = 2\cdot 0,272\cdot 0,082\cdot 298 = 13,3atm$$

2.3 Problema

Determinare la pressione osmotica a 35 °C di una soluzione del volume di 1L contenente 12g di glucosio (p.f. 180g/mol).

• Inizialmente ci ricaviamo le moli del soluto e successivamente la concentrazione:

$$n_{{\rm C_6H_{12}O_6}} = \frac{12g}{180g/mol} = 0,0667moli$$

$$M = \frac{0.0667mol}{1L} = 0.0667mol/l$$

 Conoscendo la concentrazione e la temperatura possiamo facilmente ricavarci la pressione osmotica:

$$\pi V = nRT - > \pi = MRT = 0,0667 \cdot 0,082 \cdot 308 = 1,686atm$$

2.4 Problema

Calcolare i grammi di saccarosio, $C_{12}H_{22}O_{11}$ (p.f. 342g/mol), da aggiungere a 3kg di H_2O per ottenere una soluzione che congeli a -3°C.

· Si può scrivere:

$$\Delta_t = k_{cr} \cdot m = (1, 86 mol e^{-1} kg) \cdot \frac{\frac{xg}{342g/mol}}{3ka} = 3 \, ^{\circ} C$$

• dove x sono i grammi di $C_{12}H_{22}O_{11}$ da aggiungere. Risolvendo si ha x=1660g.

2.5 Problema

Calcolare il punto di ebollizione e di congelamento di una soluzione formata da 12g di urea $CO(NH_2)_2$ e da 500g di H_2O .

 La costante ebullioscopica di H₂O è 0,52 °C mole⁻¹kg ed il peso molecolare di CO(NH₂)₂ è 60. La molalità della soluzione è:

$$\frac{12g}{60q/mol} \cdot \frac{1}{0.500kq} = 0,40m$$

· L'innalzamento ebullioscopico sarà dato dal prodotto:

$$\Delta_t = k_{eb} \cdot m = 0,52 \cdot 0,40 = 0,21 \, \, ^{\circ}$$

 Il punto di ebollizione è quindi 100+0,21 = 100,21 °C. Poichè la costante crioscopica dell'H₂O è 1,86 °Cmole⁻¹kg possiamo ricavarci l'abbassamento crioscopico:

$$\Delta_t = k_{cr} \cdot m = 1,86 \cdot 0,40 = 0,74 \, ^{\circ} \text{C}.$$

e guindi il punto di congelamento è: 0 - 0,74 = -0,74 °C.

2.6 Problema

Data una soluzione di 5,00 g di saccarosio (p.f. 342,3 g/mol) in 100,0 g di H₂O a 100 ℃ calcolare la tensione di vapore dell'acqua.

 Per calcolare la tensione di vapore dell'acqua si ha bisogno di conoscere il numero di moli totali della soluzione di acqua e saccarosio. Per prima cosa, conoscendo la massa molare e la quantità in grammi di saccarosio all'interno della soluzione di acqua se ne possono calcolare il numero di moli.

$$\begin{split} n_{\mathrm{C}_{12}\mathrm{H}_{22}\mathrm{O}_{11}} &= \frac{5g}{342,3g/mole} = 0,0146moli \\ n_{\mathrm{H}_2\mathrm{O}} &= \frac{100g}{18,02g/mol} = 5,549moli \\ n_{tot} &= 0,0146+5,549=5,564mol \end{split}$$

A questo punto possiamo ricavarci la frazione molare dell'acqua:

$$\chi_{\rm H_2O} = \frac{5,549}{5,564} = 0,99$$

 Poichè a 100 ℃ la tensione di vapore del solvente puro è 760 Torr la tensione di vapore dell'acqua sarà:

$$P = 0.99 \cdot 760 = 758Torr$$

2.7 Problema

Determinare il punto di congelamento di una soluzione acquosa ottenuta sciogliendo 45g di CuSO₄ in 300mL di acqua.

(p.f.
$$CuSO_4 = 249,6 \text{ g/mol}$$
; $Kcr = 1,853 \text{ °C/m}$)

• Per risolvere l'esercizio dobbiamo applicare la formula $\Delta_t = -k_{cr} \cdot m \cdot i$. Calcoliamo quindi la molalità, trovando prima il numero di moli di soluto, e dividendo per la massa in Kg del solvente.

$$n_{\text{CuSO}_4} = \frac{45g}{249g/mol} = 0, 181 moli$$

$$m_{\text{CuSO}_4} = \frac{0,181 mol}{0,3kq} = 0, 6m$$

 Adesso applichiamo la formula, tenendo presente che il soluto è un sale che dissocia completamente in acqua, dando uno ione Cu⁺⁺ ed uno ione SO₄²⁻ (quindi i = 2).

$$\Delta_t = -1,853 \cdot 0,6 \cdot 2 = -2,23 \, ^{\circ}$$

La temperatura di congelamento sarà quindi -2,23 ℃.

2.8 Problema

In 600g di un solvente organico vengono solubilizzati 66g di naftalene (p.f. 128,17 g/mol), determinando un abbassamento crioscopico di -3 ℃. Calcolare la costante crioscopica del solvente.

• Troviamo la formula inversa per calcolare la K_{cr} dall'equazione

$$\Delta_t = -k_{cr} \cdot m \cdot i \tag{2.1}$$

$$k_{cr} = -\frac{\Delta_t}{m \cdot i} \tag{2.2}$$

- Siccome il naftalene non dissocia in soluzione (composto organico privo di centri acidi/basici o salificati) abbiamo i = 1.
- Prima di applicare la formula ci serve la molalità della soluzione, che calcoliamo trovando il numero di moli di soluto:

$$n_{naftalene} = \frac{66g}{128g/mol} = 0,515moli$$

$$m_{naftalene} = \frac{0,515molo}{0.6kg} = 0,86m$$

• Adesso possiamo applicare la formula inversa (2.2) trovata inizialmente:

$$k_{cr} = \frac{-3}{0.86.1} = 3,49 \text{ °C/m}$$

2.9 Problema

Si calcoli il p.f. di una specie (non elettrolita) noto che una soluzione costituita da 2,10g di essa, disciolti in 120,0 g di H₂O mostra un abbassamento crioscopico di 0,35 °C, e noto il valore $k_{cr} = 1,86K \cdot mol^{-1} \cdot kg$.

• I fenomeni crioscopici seguono la relazione $\Delta_t = k_{cr} \cdot m$, più utilmente scritta, per applicazione a problemi numerici:

$$\Delta_t = k_{cr} \cdot \frac{q \cdot 1000}{PM \cdot g} \tag{2.3}$$

- Dove k_{cr} è la costante crioscopica del solvente, q sono i grammi di soluto di peso molecolare PM e g i grammi del solvente.
- Quindi sfruttando la relazione (2.3) otteniamo:

$$0,35 = 1,86 \cdot \left(\frac{2,10 \cdot 1000}{PM \cdot 120,0}\right)$$
$$0,35 \cdot PM = 32,55$$
$$PM = 93q/mol$$

2.10 Problema

Noto che la temperatura di ebollizione del metanolo (CH $_3$ OH) vale 64,9 °C e che la sua pressione di vapor saturo a 49,9 °C vale 400 Torr, si calcoli il valore medio del ΔH di evaporazione nel campo di temperatura considerato.

• Per i calcoli viene applicata l'equazione di Clapeyron (nella forma integrata):

$$ln(\frac{p1}{p2}) = \frac{\Delta H_{ev}}{R} \cdot \frac{T1 - T2}{T1 \cdot T2} \tag{2.4}$$

 Ricordando che alla temperature di ebollizione, la pressione di vapore vale per convenzione 760 Torr, sostituendo nella (2.4) otteniamo:

$$ln(\frac{400}{760}) = \frac{\Delta H_{ev}}{8,314} \cdot \frac{323,05-338,05}{323,05\cdot338,05}$$
$$-0,641 = -0,000016 \cdot \Delta H_{ev}$$
$$\Delta H_{ev} = 38851J \cdot mol^{-1} = 38,86kJ \cdot mol^{-1}$$

3. Problemi da svolgere

3.1 Problema

Una soluzione viene preparata miscelando 500mL di etanolo (C_2H_6O) e 500mL di H_2O a 25 °C. Le tensioni di vapore di H_2O pura e C_2H_6O puro a tale temperatura sono 23,76 e 56,76 mmHg rispettivamente. Le densità di H_2O e C_2H_6O puro sono rispettivamente 0,9971 g/mL e 0,786 g/mL. Determinare le pressioni parziali dei due componenti e la pressione totale.

[R. P_{tot} = 32,55mmHg]

3.2 Problema

Avendo disciolto 8,05 g di un composto incognito in 100g di C₆H₆ la tensione di vapore di quest'ultimo è discesa da 100 Torr a 94,8 Torr a 26 °C. Quali sono:

- A) La frazione molare del soluto;
- B) La massa molecolare del composto incognito;

[R. 0,052; 115g/mol]

3.3 Problema

Calcolare l'innalzamento ebullioscopico ed il punto di ebollizione standard di una soluzione acquosa contenente:

- A) $C_{12}H_{22}O_{11}$; m = 0,10mol/kg
- B) NaCl; m = 0.22 mol/kg

 $(k_{eb} = 0.51 \, ^{\circ}\text{Ckg/mol})$, si ammetta che il sale si disciolga completamente.

[R. A) 100,051 °C; B) 100,22 °C]

3.4 Problema

La temperatura di ebollizione dell'etanolo (C_2H_6O) è 78,5 °C. Quanto vale la temperatura di ebollizione di una soluzione di 3,4g di vanillina (p.f. =152,14 g/mol) in 50g di etanolo. (K_{eb} (etanolo) = 1,22 °Ckg/mol)

[R. 79°C]

3.5 Problema

Determinare il punto di ebollizione in condizioni standard per una mole totale di una soluzione acquosa la cui pressione di vapore è 751 Torr a 100 ℃.

 $(K_{eb}(H_2O) = 0.51 \, ^{\circ}Ckg/mol)$

[R. 100,34°C]

3.6 Problema

Calcolare il punto di congelamento di una soluzione ottenuta mescolando 15g di idrochinone (p.f. = 109 g/mol) con 400 mL di cicloesano.

 $(k_{cr} = 20.2 \, ^{\circ}\text{C/m} ; T_f = 6.2 \, ^{\circ}\text{C} ; d = 0.779 \, \text{g/mL})$

[R. 5,33°C]

3.7 Problema

20g di un composto organico ignoto non dissociato viene solubilizzato in 500g di canfora, determinando un abbassamento crioscopico di 25 °C. Calcolare il peso molecolare della sostanza.

[R. 64,5g/mol]

3.8 Problema

Una soluzione acquosa bolle a 100,35 °C. Calcolare il punto di gelo di questa soluzione. $(k_{eb} = 0.52 \text{ °Ckg/mol})$

[R. -1,25°C]