8.5 Sequencing Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.

NO: bipartite graph with odd number of nodes.

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V?

Claim. DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes.

Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

Pf. \Rightarrow

Suppose G has a directed Hamiltonian cycle Γ .

Then G' has an undirected Hamiltonian cycle (same order).

Pf. ←

Suppose G' has an undirected Hamiltonian cycle Γ' .

 Γ' must visit nodes in G' using one of following two orders:

Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one. \blacksquare

Claim. $3-SAT \leq_P DIR-HAM-CYCLE$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2ⁿ Hamiltonian cycles which correspond in a natural way to 2ⁿ possible truth assignments.

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses. Construct G to have 2^n Hamiltonian cycles.

Intuition: traverse path i from left to right \Leftrightarrow set variable $x_i = 1$.

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses. For each clause: add a node and 6 edges.

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. \Rightarrow

Suppose 3-SAT instance has satisfying assignment x^* .

Then, define Hamiltonian cycle in G as follows:

- if $x_i^* = 1$, traverse row i from left to right
- if $x^*_i = 0$, traverse row i from right to left
- for each clause $C_{\rm j}$, there will be at least one row i in which we are going in "correct" direction to splice node $C_{\rm j}$ into tour

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. ⇐

Suppose G has a Hamiltonian cycle Γ .

If Γ enters clause node C_i , it must depart on mate edge.

- thus, nodes immediately before and after $\mathcal{C}_{\mathbf{j}}$ are connected by an edge e in G
- removing C_j from cycle, and replacing it with edge e yields Hamiltonian cycle on G { C_j }

Continuing in this way, we are left with Hamiltonian cycle Γ' in $G - \{C_1, C_2, \ldots, C_k\}$.

Set $x^*_i = 1$ iff Γ' traverses row i left to right.

Since Γ visits each clause node $C_{\rm j}$, at least one of the paths is traversed in "correct" direction, and each clause is satisfied. lacktriangle

Longest Path

SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges?

LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges?

Claim. $3-SAT \leq_P LONGEST-PATH$.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.

Pf 2. Show HAM-CYCLE ≤ p LONGEST-PATH.

The Longest Path †

Lyrics. Copyright © 1988 by Daniel J. Barrett.

Music. Sung to the tune of The Longest Time by Billy Joel.

Woh-oh-oh, find the longest path! Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive难捉摸的:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done:
GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh, find the longest path! Woh-oh-oh, find the longest path! Woh-oh-oh, find the longest path.

t Recorded by Dan Barrett while a grad student at Johns Hopkins during a difficult algorithms final.

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Optimal TSP tour

Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

11,849 holes to drill in a programmed logic array Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Optimal TSP tour

Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V?

Claim. HAM-CYCLE \leq_P TSP. Pf.

Given instance G = (V, E) of HAM-CYCLE, create n cities with distance function $\int_{-1}^{\infty} \frac{1}{if(u, v)} dv dv = E$

 $d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$

TSP instance has tour of length \leq n iff G is Hamiltonian. \blacksquare

Remark. TSP instance in reduction satisfies Δ -inequality.

8.6 Partitioning Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

3D-MATCHING. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

Instructor	Course	Time		
Wayne	COS 423	MW 11-12:20		
Wayne	COS 423	TTh 11-12:20		
Wayne	COS 226	TTh 11-12:20		
Wayne	COS 126	TTh 11-12:20		
Tardos	COS 523	TTh 3-4:20		
Tardos	COS 423	TTh 11-12:20		
Tardos	COS 423	TTh 3-4:20		
Kleinberg	COS 226	TTh 3-4:20		
Kleinberg	COS 226	MW 11-12:20		
Kleinberg	COS 423	MW 11-12:20		

3D-MATCHING. Given disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Claim. $3-SAT \leq_P INDEPENDENT-COVER$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-matching that has a perfect matching iff Φ is satisfiable.

Construction. (part 1)

number of clauses

Create gadget for each variable x_i with 2k core and tip elements.

No other triples will use core elements.

In gadget i, 3D-matching must use either both grey triples or both blue ones.

set x_i = true set x_i = false

Construction. (part 2)

For each clause C_j create two elements and three triples. Exactly one of these triples will be used in any 3D-matching. Ensures any 3D-matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3 .

Construction. (part 3)

For each tip, add a cleanup gadget.

Claim. Instance has a 3D-matching iff Φ is satisfiable.

Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z?

Claim. Instance has a 3D-matching iff Φ is satisfiable.

Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z?

8.7 Graph Coloring

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR $\leq p$ k-REGISTER-ALLOCATION for any constant $k \geq 3$.

Claim. $3-SAT \leq_P 3-COLOR$.

Pf. Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.

- For each literal, create a node.
- ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
- iii. Connect each literal to its negation.
- iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.

- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.

- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

Consider assignment that sets all T literals to true.

- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \leftarrow Suppose 3-SAT formula Φ is satisfiable.

Color all true literals T.

Color node below green node F, and node below that B.

Color remaining middle row nodes B.

Color remaining bottom nodes T or F as forced. •

8.8 Numerical Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3-COLOR, 3D-MATCHING.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Subset Sum

SUBSET-SUM. Given natural numbers w_1 , ..., w_n and an integer W, is there a subset that adds up to exactly W?

Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in binary encoding.

Claim. $3-SAT \leq_{p} SUBSET-SUM$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.

Subset Sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

Claim. Φ is satisfiable iff there exists a subset that sums to W.

Pf. No carries possible.

$$C_1 = \overline{x} \lor y \lor z$$

$$C_2 = x \lor \overline{y} \lor z$$

$$C_3 = \overline{x} \lor \overline{y} \lor \overline{z}$$

dummies to get clause columns to sum to 4

	×	У	z	C_1	C_2	<i>C</i> ₃	
×	1	0	0	0	1	0	100,110
$\neg x$	1	0	0	1	0	1	100,101
У	0	1	0	1	0	0	10,100
¬ y	0	1	0	0	1	1	10,011
Z	0	0	1	1	1	0	1,110
¬ z	0	0	1	0	0	1	1,001
(0	0	0	1	0	0	100
	0	0	0	2	0	0	200
et	0	0	0	0	1	0	10
s	0	0	0	0	2	0	20
	0	0	0	0	0	1	1
	0	0	0	0	0	2	2
W	1	1	1	4	4	4	111,444

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time t_i , release time r_i , and deadline d_i , is it possible to schedule all jobs on a single machine such that job i is processed with a contiguous slot of t_i time units in the interval $[r_i, d_i]$?

Claim. SUBSET-SUM ≤ P SCHEDULE-RELEASE-TIMES.

Pf. Given an instance of SUBSET-SUM w_1 , ..., w_n , and target W, Create n jobs with processing time $t_i = w_i$, release time $r_i = 0$, and no deadline $(d_i = 1 + \Sigma_j w_j)$.

Create job 0 with $t_0 = 1$, release time $r_0 = W$, and deadline $d_0 = W+1$.

8.10 A Partial Taxonomy of Hard Problems

Polynomial-Time Reductions

Homeworks

Homework: 8.3, 8.5, 8.7, 8.16, 8.39

Extra Slides

Subset Sum (proof from book)

Construction. Let $X \cup Y \cup Z$ be a instance of 3D-MATCHING with triplet set T. Let n = |X| = |Y| = |Z| and m = |T|.

Let $X = \{x_1, x_2, x_3, x_4\}$, $Y = \{y_1, y_2, y_3, y_4\}$, $Z = \{z_1, z_2, z_3, z_4\}$ For each triplet $t = (x_i, y_j, z_k) \in T$, create an integer w_t with 3n digits that has a 1 in positions i, n+j, and 2n+k.

Claim. 3D-matching iff some subset sums to W = 111,..., 111.

Tr	riplet	t _i	× ₁	X ₂	x ₃	x ₄	y ₁	y ₂	y ₃	y ₄	z ₁	Z ₂	z ₃	Z ₄	w_i
x_1	y ₂	z_3	1	0	0	0	0	1	0	0	0	0	1	0	100,001,000,010
× ₂	y ₄	Z ₂	0	1	0	0	0	0	0	1	0	1	0	0	10,000,010,100
x_1	y ₁	z_1	1	0	0	0	1	0	0	0	1	0	0	0	100,010,001,000
× ₂	y ₂	Z ₄	0	1	0	0	0	1	0	0	0	0	0	1	10,001,000,001
× ₄	y ₃	Z ₄	0	0	0	1	0	0	1	0	0	0	0	1	100,100,001
x ₃	y ₁	Z ₂	0	0	1	0	1	0	0	0	0	1	0	0	1,010,000,100
x ₃	y ₁	z_3	0	0	1	0	1	0	0	0	0	0	1	0	1,010,000,010
X ₃	y ₁	z_1	0	0	1	0	1	0	0	0	1	0	0	0	1,010,001,000
x ₄	y ₄	Z ₄	0	0	0	1	0	0	0	1	0	0	0	1	100,010,001

111,111,111,111

Partition

SUBSET-SUM. Given natural numbers w_1 , ..., w_n and an integer W, is there a subset that adds up to exactly W?

PARTITION. Given natural numbers v_1 , ..., v_m , can they be partitioned into two subsets that add up to the same value?

$$\frac{1}{2} \Sigma_i V_i$$

Claim. SUBSET-SUM \leq_{P} PARTITION.

Pf. Let $W, w_1, ..., w_n$ be an instance of SUBSET-SUM.

Create instance of PARTITION with m = n+2 elements.

$$- v_1 = w_1, v_2 = w_2, ..., v_n = w_n, v_{n+1} = 2 \sum_i w_i - W, v_{n+2} = \sum_i w_i + W$$

There exists a subset that sums to W iff there exists a partition since two new elements cannot be in the same partition. •

$v_{n+1} = 2 \Sigma_i w_i - W$	W	subset A
$v_{n+2} = \Sigma_i w_i + W$	$\Sigma_{i} \; w_{i} \;$ - W	subset B

Extra Slides: 4 Color Theorem

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that no two edges cross.

Applications: VLSI circuit design, computer graphics.

Kuratowski's Theorem. An undirected graph G is non-planar iff it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.

Planarity Testing

Planarity testing. [Hopcroft-Tarjan 1974] O(n).

1

simple planar graph can have at most 3n edges

Remark. Many intractable graph problems can be solved in poly-time if the graph is planar; many tractable graph problems can be solved faster if the graph is planar.

Planar 3-Colorability

Claim. 3-COLOR $\leq P$ PLANAR-3-COLOR.

Proof sketch: Given instance of 3-COLOR, draw graph in plane, letting edges cross if necessary.

Replace each edge crossing with the following planar gadget W.

- in any 3-coloring of W, opposite corners have the same color
- any assignment of colors to the corners in which opposite corners have the same color extends to a 3-coloring of W

Planar k-Colorability

PLANAR-2-COLOR. Solvable in linear time.

PLANAR-3-COLOR. NP-complete.

PLANAR-4-COLOR. Solvable in O(1) time.

Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.

Resolved century-old open problem.

Used 50 days of computer time to deal with many special cases.

First major theorem to be proved using computer.

False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and PLANAR-5-COLOR.

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an $O(n^3)$ algorithm to determine if a graph can be embedded in the torus \Box \Box \Box in such a way that no two edges cross.

Pf of theorem. Tour de force绝技.

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an $O(n^3)$ algorithm to determine if a graph can be embedded in the torus in such a way that no two edges cross.

Mind boggling fact 1. The proof is highly non-constructive!

Mind boggling fact 2. The constant of proportionality is enormous!

Unfortunately, for any instance G = (V, E) that one could fit into the known universe, one would easily prefer n^{70} to even constant time, if that constant had to be one of Robertson and Seymour's. - David Johnson

Theorem. There exists an explicit O(n) algorithm. Practice. LEDA implementation guarantees $O(n^3)$.

Homeworks

Homework: 8.3, 8.7, 8.16, 8.39

3. Suppose you're helping to organize a summer sports camp, and the following problem comes up. The camp is supposed to have at least one counselor who's skilled at each of the *n* sports covered by the camp (baseball, volleyball, and so on). They have received job applications from *m* potential counselors. For each of the *n* sports, there is some subset of the *m* applicants qualified in that sport. The question is: For a given number *k* < *m*, is it possible to hire at most *k* of the counselors and have at least one counselor qualified in each of the *n* sports? We'll call this the *Efficient Recruiting Problem*.

Show that Efficient Recruiting is NP-complete.

7. Since the 3-Dimensional Matching Problem is NP-complete, it is natural to expect that the corresponding 4-Dimensional Matching Problem is at least as hard. Let us define 4-Dimensional Matching as follows. Given sets W, X, Y, and Z, each of size n, and a collection C of ordered 4-tuples of the form (w_i, x_j, y_k, z_ℓ) , do there exist n 4-tuples from C so that no two have an element in common?

Prove that 4-Dimensional Matching is NP-complete.

16. Consider the problem of reasoning about the identity of a set from the size of its intersections with other sets. You are given a finite set U of size n, and a collection A_1, \ldots, A_m of subsets of U. You are also given numbers c_1, \ldots, c_m . The question is: Does there exist a set $X \subset U$ so that for each $i = 1, 2, \ldots, m$, the cardinality of $X \cap A_i$ is equal to c_i ? We will call this an instance of the *Intersection Inference Problem*, with input U, $\{A_i\}$, and $\{c_i\}$.

Prove that Intersection Inference is NP-complete.

39. The *Directed Disjoint Paths Problem* is defined as follows. We are given a directed graph G and k pairs of nodes $(s_1, t_1), (s_2, t_2), \ldots, (s_k, t_k)$. The problem is to decide whether there exist node-disjoint paths P_1, P_2, \ldots, P_k so that P_i goes from s_i to t_i .

Show that Directed Disjoint Paths is NP-complete.