Metody numeryczne

Wykład 1 - Wprowadzenie

Janusz Szwabiński

Plan wykładu

1. Sprawy administracyjne

2. Warsztat pracy

3. Arytmetyka komputerowa

4. Błędy w obliczeniach numerycznych

Sprawy administracyjne

- Kontakt: https://prac.im.pwr.edu.pl/~szwabin/
- Materialy do kursu: https://eportal.pwr.edu.pl/course/view.php?id=1820
- Zasady zaliczenia: https://eportal.pwr.edu.pl/course/view.php?id=1820

Plan kursu

- Układy równań liniowych
- Równania nieliniowe
- Interpolacja i aproksymacja
- Całkowanie numeryczne
- Różniczkowanie numeryczne
- Równania różniczkowe zwyczajne

Bibliografia

- 1. Jaan Kiusalaas, Numerical Methods in Engineering with Python
- 2. G. Dahlquist, A. Björk, Metody numeryczne
- 3. pozostałe pozycje jak w karcie przedmiotu

Warsztat pracy

Podstawowe narzędzia:

- Python 3.X
- biblioteki numeryczne: numpy, scipy
- inne biblioteki: matplotlib, sympy

Warto znać:

- pygsl
- Maxima, Yacas
- GNU Octave

Warsztat pracy

LIST STATISTICS R _{max} and R _{peak} values are in GFlops. For more details about other fields, check the TOP500 description.	LIST STATISTICS R _{max} and R _{max} values are in 0Flops. For more details about other fields, check the TOP500 description
TOP500 Release	TOP500 Release
June 2024 🗸	June 2024 ✓
Category Operating System	Category
Operating System	Operating system Family
Submit	Submit
Operating System System Share	Operating system Family System Share
0 certifs 0 HPE Cray US 0 Try Linux Environment 0 or ly Linux Environment 0 of the Enterprise Linux 0 thorsing SSA LLTS	1100%

https://top500.org/statistics/list/

Arytmetyka komputerowa (i jej ograniczenia)

Demo

Reprezentacja stałopozycyjna

Rozważmy liczby w formacie 5-cyfrowym, z dwoma cyframi w części ułamkowej

Liczba 256,78 ma w tym formacie naturalną reprezentację

Reprezentacja stałopozycyjna

Najmniejsza liczba

Największa liczba

Reprezentacja stałopozycyjna

Liczba 256,786 będzie miała tylko reprezentację przybliżoną

- w oby przypadkach błąd mniejszy od 0.01
- ogólnie przy zaokrągleniu błąd średnio dwukrotnie mniejszy niż przy obcięciu

Podstawowe błędy

Błąd bezwględny:

$$|X - X_{o}|$$

gdzie Xo to wartość dokładna.

Błąd względny:

$$\frac{|X-X_0|}{X_0}$$

Podstawowe błędy

Przykład

Liczby 256,786 i 3,546 mają takie same błędy bezwzględne w naszej reprezentacji z zaokrąglaniem:

$$|X^{(1)} - X_0^{(1)}| = |256.786 - 256.79| = 0,004$$

 $|X^{(2)} - X_0^{(2)}| = |3,546 - 3,55| = 0,004$

Podstawowe błędy

Przykład

Błędy względne są większe dla małych liczb:

$$\epsilon_1 = \frac{256.786 - 256.79}{256.786} * 100\% = 0,001558\%$$

$$\epsilon_2 = \frac{3,546 - 3,55}{3,546} * 100\% = 0,11280\%$$

Arytmetyka zmiennopozycyjna

 $ZNAK \times MANTYSA \times 10^{WYKLADNIK}$

Co zyskujemy?

- zwiększa się zakres liczb możliwych do przedstawienia
- błędy względne małych i dużych liczb są porównywalne

Arytmetyka zmiennopozycyjna

Przykład Liczba 576329,78 zapisana na 5 miejscach

$$|X - X_0| = 29,78$$

$$\epsilon_t = 0,0051672\%$$

Liczba 256,78 zapisana na 5 miejscach

$$|X - X_0| = 0,02$$

$$\epsilon_t = 0,0077888\%$$

Standard IEEE 754

Dla liczb 32-bitowych mamy:

$$(-1)^{b_{31}} \times 2^{(b_{30}b_{29}...b_{23})_2-127} \times (1.b_{22}...b_0)_2$$

Standard IEEE 754

$$(-1)^{ZNAK} \times 2^{E-127} \times \left(1 + \sum_{i=1}^{23} b_{23-i} 2^i\right)$$

Jednostka maszynowa

Definicja

Jednostka maszynowa to najmniejsza liczba ϵ taka, że spełniony jest dla niej na komputerze warunek

$$1 + \epsilon \neq 1$$

Demo

Niech X > o oraz

$$X = q \times 2^m, \quad 1 \leqslant q < 2$$

Wówczas

$$X = (1.a_1a_2...)_2 \times 2^m, \quad a_i \in \{0,1\}$$

Jeśli mantysa liczb maszynowych ma t bitów po kropce:

- \Rightarrow liczba maszynowa bliska X powstanie przez odrzucenie zbędnych bitów a_{t+1}, a_{t+1}, \dots
 - obcięcie:

$$X_{-} = (1.a_1a_2...a_t)_2 \times 2^m, X_{-} \leq X$$

 zaokrąglenie: odrzucamy zbędne bity i jednoczesnie dodajemy jedynkę na ostatniej pozycji

$$X_{+} = \left[(1.a_{1}a_{2} \dots a_{t})_{2} + 2^{-t} \right] \times 2^{m}, \quad X_{+} - X_{-} = 2^{m-t}$$

Definicja

Najbliższa względem X liczba maszynowa fl(X) to bliższa z liczb X_+ i X_- .

Jeśli $fl(X) = X_{-}$, wówczas

$$|X - fl(X)| \leq \frac{1}{2}|X_{+} - X_{-}| = 2^{m-t-1}$$

Podobnie, jeśli $fl(X) = X_+$, to

$$|X - fl(X)| \leq \frac{1}{2}|X_{+} - X_{-}| = 2^{m-t-1}$$

Błąd względny:

$$\frac{|X - fl(X)|}{|X|} \leqslant \frac{2^{m-t-1}}{q2^m} = \frac{1}{q}2^{-t-1} \leqslant 2^{-t-1}$$

Niech

$$\delta = \frac{fl(X) - X}{X}$$

Wówczas

$$fl(X) = X(1 + \delta), \quad |\delta| \leq \epsilon$$

Przykład

Niech $X = \frac{2}{3}$:

- Jaka jest postać dwójkowa X dla t=23?
- Ile wynoszą liczby X_ i X_?
- Która z tych liczb będzie fl(X)?
- Jaki będzie błąd przybliżenia?

$$\frac{2}{3} = (0.a_1a_2...)_2 / \cdot 2$$

$$\frac{4}{3} = (a_1.a_2a_3...)_2$$

Część całkowita obu stron jest równa 1 = a_1 . Po jej odjęciu mamy

$$\frac{1}{3}=(0.a_2a_3\dots)_2$$

Powtarzając obustronne mnożenie przez 2 i ewentualne odejmowanie części całkowitej otrzymamy

$$X = \frac{2}{3} = (0.101010...)_2 = (1.010101...)_2 \times 2^{-1}$$

Dwie bliskie liczby maszynowe:

$$X_{-} = (1. \underbrace{010101...010}_{t = 23 \text{ bitów}})_{2} \times 2^{-1}$$
 $X_{+} = (1. \underbrace{010101...011}_{t \text{ bitów}})_{2} \times 2^{-1}$

Obliczmy różnice

$$X - X_{-} = (0.101010...)_{2} \times 2^{-24} = \frac{2}{3} \times 2^{-24}$$

$$X_{+} - X = X_{+} - X_{-} - (X - X_{-}) = 2^{-24} - \frac{2}{3} \times 2^{-24} = \frac{1}{3} \times 2^{-24}$$

Czyli

$$fl(X) = X_+$$

Błąd bezwględny

$$|fl(X) - X| = \frac{1}{3} \times 2^{-24}$$

Błąd względny

$$\frac{|fl(X) - X|}{|X|} = \frac{\frac{1}{3} \times 2^{-24}}{\frac{2}{3}} = 2^{-23}$$

Chcemy obliczyć

gdzie ⊙ oznacza jedno z działań arytmetycznych

Niech:

- X i Y będą liczbami maszynowymi
- mantysa wyniku jest normalizowana i zaokrąglana, tzn. wynikiem działania jest $f(X \odot Y)$

Przykład

Komputer działający na liczbach z mantysą pięciocyfrową z przedziału [0.1, 1). Niech:

$$X = 0.31426_{10} 3$$

$$Y = 0.92577_{10} 5$$

Załóżmy, że surowe wyniki umieszczane są w akumulatorze podwójnej długości (typowe w nowoczesnych komputerach):

```
X + Y = 0.9289126000_{10} 5

X - Y = -0.9226274000_{10} 5

X \times Y = 0.2909324802_{10} 8

X/Y = 0.3394579647_{10} - 2
```

Po zaokrągleniu mantys:

W dobrze zaprojektowanym komputerze:

$$fl(X \odot Y) = (X \odot Y)(1 + \delta), \quad |\delta| \leqslant \epsilon \quad \forall \odot$$

Jeśli X i Y nie są liczbami maszynowymi:

$$fl(fl(X) \odot fl(Y)) = [X(1 + \delta_1) \odot Y(1 + \delta_2)] (1 + \delta_3), \quad |\delta_i| \leq \epsilon$$

Błąd względny wyrażeń arytmetycznych

Niech X, Y i Z będą liczbami maszynowymi:

$$fl(X(Y+Z)) = [X * fl(Y+Z)] (1 + \delta_1) = [X * (Y+Z)(1 + \delta_2)] (1 + \delta_1)$$

= $X(Y+Z)(1 + \delta_1 + \delta_2 + \delta_1\delta_2) \simeq X(Y+Z)(1 + \delta_1 + \delta_2)$
= $X(Y+Z)(1 + \delta_3)$

$$|\delta_1| \leqslant \epsilon, \quad |\delta_2| \leqslant \epsilon, \quad |\delta_3| \leqslant 2\epsilon$$

Błąd względny wyrażeń arytmetycznych

Twierdzenie

Jeśli $X_0, X_1, ..., X_n$ są dodatnimi liczbami maszynowymi, to błąd względny sumy $\sum_{i=0}^n X_i$ jest równy co najwyżej

$$(1+\epsilon)^n-1\simeq n\epsilon.$$

Utrata cyfr znaczących

Przykład Niech

$$X = 0.3721478693, \quad Y = 0.3720230772$$

 $X - Y = 0.0001248121$

Utrata cyfr znaczących

Przykład

W obliczeniach z 5-cyfrowymi mantysami:

$$fl(X) = 0.37215, \quad fl(Y) = 0.37202$$

 $fl(X) - fl(Y) = 0.00013$

Różnica ma mniej cyfr znaczących w porównaniu z odjemną i odjemnikiem \Rightarrow duży błąd względny!

$$\frac{|X - Y - [fl(X) - fl(Y)]|}{x - y} \simeq 0.04$$

Utrata cyfr znaczących

Twierdzenie

Jeśli liczby maszynowe X i Y są takie, że X > Y > o oraz

$$2^{-q} \leqslant 1 - \frac{\mathsf{Y}}{\mathsf{X}} \leqslant 2^{-p}$$

(p i q są całkowite), to liczba bitów znaczących straconych przy odejmowaniu X — Y jest równa co najmniej p i co najwyżej q.

- utraty cyfr znaczących można uniknąć odpowiednio planując obliczenia!
- w szczególności należy unikać odejmowania bliskich sobie liczb

Utrata cyfr znaczących

Demo

Definicja

Algorytm numeryczny jest niestabilny, jeżeli małe błędy popełnione na jakimś etapie obliczeń rosną w następnych etapach.

Przykład Rozważmy ciąg

$$X_0 = 1$$
, $X_1 = \frac{1}{3}$, $X_{n+1} = \frac{13}{3}X_n - \frac{4}{3}X_{n-1}$, $n > 1$

Jeśli będziemy liczyć wyrazy ciągu w arytmetyce z 24-bitowymi mantysami:

```
X_0 = 1.0000000
                         (7 cyfr znaczących)
 X_1 = 0.33333333
  X_2 = 0.1111112
                         (6 cyfr znaczących)
 X_3 = 0.0370373
                         (5 cvfr znaczacych)
 X_4 = 0.0123466
                        (4 cyfr znaczących)
 X_5 = 0.0041187
                         (3 cvfr znaczacych)
 X_6 = 0.0013857
                         (2 cvfr znaczacych)
                          (1 cyfra znacząca)
 X_7 = 0.0005131
                     (brak cyfr znaczących)
 X_{\circ} = 0.0003757
                        (bład wzgledny 108)
  X_{15} = 3.657493
```

Można pokazać, że rozważany ciąg równoważny jest ciągowi o wyrazach

$$X_n = \left(\frac{1}{3}\right)^n, \quad n \geqslant 0$$

Demo

Uwarunkowanie

Uwarunkowanie to wrażliwość rozwiązania zadania na małe zmiany danych początkowych:

$$a \rightarrow a + \delta a$$

 $W(a) \rightarrow W(a + \delta a)$

Niech w będzie wektorem wyników oraz

$$\delta W = \underbrace{WN(a, \epsilon)}_{\text{wynik numeryczny}} -W(a)$$

Uwarunkowanie

Wskaźnik uwarunkowania B(a):

$$\frac{\|\delta \mathbf{w}\|}{\|\mathbf{w}\|} \leqslant B(a) \frac{\|\delta a\|}{\|a\|}$$

Uwarunkowanie

Jeśli naszym zadaniem jest policzenie funkcji:

$$f(\underbrace{x+h}_{\text{zaburzenie}}) = \underbrace{f'(\xi)h}_{\text{tw. o wart. śr.}} \simeq f'(x)h$$

Wówczas

$$\frac{f(x+h)-f(x)}{f(x)} \simeq \frac{hf'(x)}{f(x)} = \underbrace{\frac{xf'(x)}{f(x)}}_{B(x)} \left(\frac{h}{x}\right)$$

Źródła błędów w obliczeniach numerycznych

- błędy wejściowe
- błędy obcięcia
- błędy zaokrągleń

Błędy wejściowe

- dane wejściowe są wynikiem pomiarów
- skończona długość słów binarnych
- wstępne zaokrąglanie liczb niewymiernych

$$\pi=$$
 3.14 \dots

Warto wiedzieć

$$\pi = 4 * arctg(1.0)$$

Błędy obcięcia

Spowodowane użyciem przybliżonej formuły zamiast pełnej operacji matematycznej

- przejścia graniczne (np. pochodne i całki oznaczone)
- sumy nieskończone szeregów

Błędy zaokrągleń

• skończona długość słów binarnych