

COE/EE152: Basic Electronics

Lecture 6 Andrew Selasi Agbemenu

https://sites.google.com/site/agbemenu/courses/ee-coe-152

EE/COE 152 – A.S Agbemenu

1 of 28

Outline

- Load Line Analysis and Operating Point Determination
- Small Signal Model

EE/COE 152 – A.S Agbemenu

Load Line Analysis

 Consider the DC equivalent circuit for npn common emitter configuration shown

EE/COE 152 – A.S Agbemenu

3of 28

Load Line Analysis

- Input Load Line equation
 - · Obtained by solving KVL for the input loop

$$V_{BB} = i_B R_B + V_{BE}$$

- Output Load Line equation
 - · Obtained by solving KVL for the output loop

$$V_{CC} = i_C R_C + V_{CE}$$

EE/COE 152 - A.S Agbemenu

Load Line Analysis

Load line drawn on (a) input characteristics (b) output characteristics for CE configuration

EE/COE 152 - A.S Agbemenu

5of 28

Problem Solving Technique: BJT Biasing

- · Determine the transistor operating mode which will be dependent on the application. e.g assume forward active mode
 - $V_{BE} = V_{BE}(on), I_{B} > 0, \& I_{C} = \beta I_{B}$
- · Analyze 'linear' circuit.
 - The goal is to establish the Q-point which establishes initial operating region of the transistor
 - The Q-point controls the diffusion capacitance, transconductance, input and output resistances
 - The Q-point is represented by (Ic, VcE) for an npn transistor or (I_C, V_{EC}) for a pnp transistor.

Problem Solving Technique: BJT Biasing

- Evaluate the resulting state of transistor.
 - If V_{CE} > V_{CE}(sat), assumption is correct
 - If I_B < 0, transistor likely in cutoff
 - If V_{CE} < 0, transistor likely in saturation
- If initial assumption is incorrect, make new assumption and return to Step 2.

EE/COE 152 – A.S Agbemenu

7of 28

Voltage Transfer Characteristics for npn circuit

$$V_{1} = I_{B}R_{B} + V_{BE}$$

$$V_{0} = V_{CE} = V^{+-I_{C}}R_{C}$$

EE/COE 152 - A.S Agbemenu

Voltage Transfer Characteristics for pnp circuit

EE/COE 152 – A.S Agbemenu

9of 28

Digital Logic: Transistor biased to work in Cutoff and Saturation Regions

(a)
pyright © The McGraw-Hill Companies, Inc.
Inverter

V_1	V_0
ON	OFF
OFF	ON

(b) NOR gate

V_1	V_2	\mathbf{V}_0
ON	ON	OFF
ON	OFF	OFF
OFF	ON	OFF
OFF	OFF	ON

EE/COE 152 – A.S Agbemenu

Amplifier: Transistor biased to work in the Forward Active Regioin

By choosing the right values of $R_{\rm B}$ and $R_{\rm C}$, the Q-point is the middle as desired The transistor amplifiers the whole signal

EE/COE 152 – A.S Agbemenu

11of 28

Effects of Improper Biasing

- The Q-point is not chosen in the middle of transfer characteristics
- Part of the signal moves into the cutoff or saturation regions where it is cut at zero or cut at V_{DD}

EE/COE 152 - A.S Agbemenu

Single Base Resistor Biasing

EE/COE 152 – A.S Agbemenu

13of 28

Four Resistor or Voltage Divider Riasina

Example: Four-Resistor Bias Network

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

First find Thevenin Equivalent of the circuit

EE/COE 152 – A.S Agbemenu

15of 28

Example: Four-Resistor Bias Network

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

First find Thevenin Equivalent of the circuit

EE/COE 152 – A.S Agbemenu

Four-Resistor Bias Network

Thevenin Equivalent of Base Bias Network

$$V_{TH} = V_{CC} \frac{R_1}{R_1 + R_2}$$
 $R_{TH} = \frac{R_1 R_2}{R_1 + R_2}$

Frm Diagram:

$$R_{TH} = R_{EQ}$$

$$V_{TH} = V_{EO}$$

Now determine Load Line equation And plot on characteristic curve

EE/COE 152 - A.S Agbemenu

17of 28

Four-Resistor Bias Network: Solution

$$V_{TH} = I_{B} R_{TH} + V_{BE} + I_{E} R_{E}$$

$$I_{B} = \frac{V_{TH} - V_{BE}}{R_{TH} + (\beta + 1) R_{E}}$$

$$for \ \beta = 75$$

$$I_{B} = 2.29 \mu A$$

$$I_{C} = \beta I_{B} \approx 202 \mu A$$

$$I_{E} = (\beta + 1) I_{B} \approx 204 \mu A$$

$$V_{CE} = V_{CC} - I_{C} R_{C} - I_{E} R_{E} = 4.29 V$$

 V_{EQ} V_{EQ} V

Q point is $(202 \mu A, 4.29 V)$

⇒ Foward active region is correct

Four-Resistor Bias Network: Circuit Design

- **Problem:** Design 4-resistor bias circuit with given parameters.
- Given data: I_c = 750 μ A, β = 100, V_{cc} = 15 V, V_{CE} = 5 V
- **Assumptions:** Forward-active operation region, $V_{BE} = 0.7 \text{ V}$
- **Analysis:** Divide (V_{CC} V_{CE}) equally between R_E and R_C . Thus, V_E = 5 V and V_C = 10 V; Choose nearest 5% resistor values.

EE/COE 152 – A.S Agbemenu

19of 28

BJT Small Signal Model

 We want to investigate how a transistor circuit can amplify a small, time-varying signal.

EE/COE 152 – A.S Agbemenu

I_B Versus V_{BE} Characteristic of Transistor with Small Signal

$$i_B \cong I_{BQ}(1 + \frac{V_b}{V_T}) = I_B + i_b$$

Base current varies around the Q-point current with small signal Input to a well biased transistor

Permission required for reproduction or displa

EE/COE 152 - A.S Agbemenu

21of 28

Small-Signal Equivalent Circuit

Copyright © The McGraw-Hill Companies, Inc.

- After finding the DC operating point values
- Take out the DC sources as shown in (a) – the ac equivalent circuit

Small-Signal Hybrid π Model for npn BJT

Transconductance:

$$g_m = \frac{I_{CQ}}{V_T}$$
, where I_{CQ} is Q -point current

Diffusion (emiter – base) resistanvce:

$$r_{\pi} = \frac{\beta V_{T}}{I_{cQ}}$$

$$g_m r_\pi = \beta$$

Phasor (magnitude and angle) signals are shown in parenthesis

Copyright © The McGraw-Hill Companies, Inc.

EE/COE 152 – A.S Agbemenu

23of 28

Small-Signal Voltage Gain, A_{V}

Frm output portion of circuit: $V_0 = V_{CE} = -(g_m V_\pi) R_C$

Frm output portion of circuit:

$$V_S = \left(\frac{r_\pi}{r_\pi + R_B}\right)$$

Small – Signal Voltage Gain:

$$A_{v} = \frac{V_{0}}{V_{s}} = -(g_{m}R_{C}).\left(\frac{r_{\pi}}{r_{\pi}+R_{B}}\right)$$

Problem-Solving Technique: BJT AC **Analysis**

- Analyze circuit with only dc sources to find Q point.
- Replace each element in circuit with small-signal model, including the hybrid π model for the transistor.
- Analyze the small-signal equivalent circuit after setting dc source components to zero.

EE/COE 152 – A.S Agbemenu

25of 28

Element Transformation

Element	DC Model	AC Model
Resistor	R	R
Capacitor	Open	С
Inductor	Short	L
Diode	+V _{γ′} r _f -	$r_d = nV_T/I_D$
	┧╟┼ѴѴ	
Independent Constant Voltage Source	+ V _s - - ⊢	Short
Independent Constant Current Source	I _s →	Open

EE/COE 152 - A.S Agbemenu

Example

EE/COE 152 – A.S Agbemenu

27of 28

EE/COE 152 – A.S Agbemenu