

DECISION ANALYTICS.

Lab10: Transportation problem

BACKGROUND.

In this exercise you will implement a transportation problem model as linear program.

Task 1.

Let's assume there are two energy suppliers connected to the grid delivering the following amount of energy

	Supply	
Supplier A	6	
Supplier B	9	

This energy is to meet the consumer demand as follows

	Demand	
Consumer A	8	
Consumer B	5	
Consumer C	2	

Let's further assume the DSO of the electricity grid charges the following transmission fees

	Consumer A	Consumer B	Consumer C
Supplier A	5	5	3
Supplier B	6	4	1

Define a linear program that optimises the transmission costs between energy suppliers and consumers and determine the optimal energy mix for each consumer.