Digital Logic Recap

ECSE 324: Computer Organization

Fall 2023 - Tutorial 1

Revision History: A. Karsidag (2025), J. Li (2023), M. Jalaleddine (2022)

Outline

Boolean Algebra

Combinational Circuits

Sequential Circuits

```
    Operations: OR (+);
    AND (×) (omit × for saving space);
    NOT (' or ___).
```

```
• Laws: Commutative (a+b=b+a,ab=ba);

Distributed (a\times(b+c)=ab+ac,a+bc=(a+b)(a+c));

Associative (a+(b+c)=(a+b)+c,a(bc)=(ab)c);

Identity (a+0=a,a\times1=a);

Complement (a+a'=1,a\times a'=0).
```

• DeMorgan's Laws: $(a+b+c+\cdots)'=a'\times b'\times c'$...; $(a\times b\times c\times\cdots)'=a'+b'+c'+\cdots.$

- Sum of Product (SOP): $(a \times b) + (c \times d)$.
- Product of Sum (POS): $(a + b) \times (c + d)$.

K-Map

cd	00	01	11	10
ab				
00	1	1	1	1
01	1			
11	1			
10	1			

Why SOP? Why POS?

Simplify the logical expression!

$$f = a'b'c'd' + a'b'c'd + a'b'cd + a'b'cd' + a'bc'd' + abc'd' + ab'c'd'$$

$$f = a'b' + c'd'$$

Q1

Simplify the following expression:

$$f = (a' + b' + c + d) \times (a' + b' + c + d') \times (a' + b' + c' + d') \times (a + b' + c' + d') \times (a + b + c' + d') \times (a + b + c' + d) \times (a + b' + c' + d) \times (a' + b + c' + d)$$

Logic gates:

NOT gate: y = x'

AND gate: $y = x_1 \times x_2$

OR gate: $y = x_1 + x_2$

n inputs AND gates: $y = x_1 \times x_2 \times \cdots$

n inputs OR gates: $y=x_1+x_2+\cdots$

 $(x1+x2)\times x3:$

(((x')')')':

Q2

What is the difference between a demultiplexer and a decoder?

Q3

Design a combinational circuit for the following one-hot encoder:

x1	x2	х3	x4	f1	f2
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Combinatorial vs Sequential:

Combinational: $y_i = f_i(x_1,...,x_n)$

Sequential: 1) Memory 2) Time Steps (Clock)

$$y_i^t = f_i(x_1^t,...,x_n^t, s_1^t, ...,s_m^t)$$

$$S_i^{t+1} = g_i(x_1^t,...,x_n^t, s_1^t,...,s_m^t)$$

Q4 What is the difference between a latch and a flip-flop?

Q5 What is the difference between different designs (Mealy and Moore Machine) of a finite state machine (FSM)?

- The FSM (TFF) can be in one of two states
 - State A: Q = 0
 - State B: Q = 1
- Depending on the input, the FSM may change states at each positive edge of the clock
 - When w = 0 the state does not change
 - When w = 1 the state toggles

• Initial state: the state at which the FSM "starts"

State Diagram and Table

State table

Present state	Next	Output z	
	w = 0	w = 1	
A	A	В	0
В	В	A	1

Write down a state transition diagram for a sequence detector that detects two consecutive bit 1s in the input data stream. 1 bit arrives at the input per clock cycle. For example, a bit 0 arrives at the clock period 1, a bit 1 arrives at the clock period 2, a bit 1 arrives at the clock period 3, and the detector outputs the signal for successfully detecting two consecutive bit 1s. If the next incoming bit is 1 once two consecutive bit 1s are detected, the detector still outputs the signal for successfully detecting two consecutive bit 1s.