درس جبرخطی۱ نیم سال دوم ۱۳۹۸

تمرین تحویلی سری دوم (امتیازی)

نید (یا است: $\det A$ و $A = A + \Upsilon I = O$ و $A \in M_n(\mathbb{R})$ نابت کنید (۱۰ فرض کنید است) باید نید است:

$$f(x) = (x - 1)(x - 7)(x - 77) \dots (x - 7n).$$

- $\det\left(A^{\mathsf{Y}}+I\right)\geq\circ$ ثابت کنید $A\in M_n(\mathbb{R})$ فرض کنید (آ) .۲
- $A^{\mathsf{Y}}=I$ یا $A^{\mathsf{Y}}=O$ یا گورد و A ماتریسی مربعی از مرتبه ی n و با درایههای حقیقی است. ثابت کنید که اگر $A^{\mathsf{Y}}=I$ یا $\det{(A+I)} \geq \det{(A-I)}$ آنگاه (ب
- ۳. فرض کنید n یک عدد طبیعی و A_1, A_7, \ldots, A_n مجموعههایی دلخواه باشند. ماتریس $P = [p_{ij}]_{n \times n}$ را بدین صورت تعریف می کنیم:

$$p_{ij} = \left\{ egin{array}{ll} 1 & \text{ when } A_j & \text{ when } A_i \\ \circ & \text{ one } O$$
 ورمجموعه مرات A_i

ثابت كنيد ماتريس P پوچتوان است.

۴. فرض کنید $A\in M_n(\mathbb{R})$ ماتریسی وارونپذیر باشد. ثابت کنید:

$$\det A = \frac{1}{n!} \begin{vmatrix} tr(A) & 1 & 0 & 0 & \cdots & 0 \\ tr(A^{\mathsf{T}}) & tr(A) & \mathsf{T} & 0 & \cdots & 0 \\ tr(A^{\mathsf{T}}) & tr(A^{\mathsf{T}}) & tr(A) & \mathsf{T} & \cdots & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ tr(A^{n-1}) & tr(A^{n-1}) & \cdots & & tr(A) & n-1 \\ tr(A^n) & tr(A^{n-1}) & tr(A^{n-1}) & \cdots & & tr(A) \end{vmatrix}$$

۵. ثابت کنید دترمینان ماتریس زیر عددی صحیح است.

$$H = \begin{bmatrix} 1 & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \cdots & \frac{1}{n} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{0} & \cdots & \frac{1}{n+1} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+7} & \frac{1}{n+7} & \cdots & \frac{1}{7n-1} \end{bmatrix}$$

بشد. واعداد اول p را بیابید که دترمینان زیر بر p^{π} بخش پذیر باشد.

$$\begin{vmatrix} Y^{r} & 1 & 1 & \cdots & 1 \\ 1 & Y^{r} & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & (p+Y)^{r} \end{vmatrix}$$

 $A=B^{
m Y}+C^{
m Y}$ ، ثابت کنید که ماتریسهای $B,C\in M_{
m Y}(\mathbb{R})$ وجود دارند بهطوری که $A\in M_{
m Y}(\mathbb{R})$.۷

است. $AB=A^{\mathsf{Y}}+B^{\mathsf{Y}}$ و داریم $AB=A^{\mathsf{Y}}+B^{\mathsf{Y}}$. اگر $AB=A^{\mathsf{Y}}+B^{\mathsf{Y}}$ وارونپذیر باشد، ثابت کنید A