

REVISION HISTORY

Revision No.	Description of change	Release Date
V0.50	Initial release	

Battery Pack Protection and Monitor IC

FEATURES

- Supports 5-8 Series Li-ion Battery Cells including Cobalt, Manganese and Phosphate Cells
- Multi-channel ADC for current, voltage and temperature measurement
 - 8 channels for cell voltage measurement (12 bits).
 - 1 channel for current measurement (16 bits)
 - 1 channel for internal temperature measurement (12 bits)
 - 3 channels reserved for customer specific applications (12 bits, one for external extra channel; two for external temperature channels)
- Built-in Protections include:
 - Over voltage (OV)
 - Under voltage (UV)
 - Reversal voltage (RV)
 - Over current (OC)
 - Short circuit (SC)
 - Over temperature (OT)
 - Under temperature (UT)
 - Permanent Fail (PF)
- Embedded 64X16 Bits EEPROM supports programmable settings of various protection thresholds/timers and protection release thresholds/timers
- Supports Internal/External Bleeding for Cell balance
- Supports hardware mode (without uP) or software mode (with uP)
- Supports separate charge and discharge loop
- Integrated 3.3V, 10V voltage regulator
- Integrated N-MOSFET driver
- Supports SMBus serial Interface
- Low power consumption

APPLICATIONS

- Electric Bicycle
- Electric Motorcycle
- Power Tools

UPS backup battery

GENERAL DESCRIPTION

OZ8920 is a highly integrated battery pack protection and monitor IC for managing Li-lon or Li-polymer pack in electric bicycle, electric motorcycle, power tools, and UPS applications. It supports 5-8 series Li-lon battery pack or Li-polymer battery pack applications.

With integrated multi-channel 16-bit ADC, OZ8920 works constantly to monitor each cell's voltage, the charge/discharge current and the pack temperature to provide over-voltage, under-voltage, reversal over-current, short circuit, voltage, and under-temperature safety temperature protection. Working with embedded FET driver circuits, the protection circuits will independently shut off the FETs when the battery cells are experiencing extreme stress. When cell voltage is higher than the pre-set maximum rating voltage PFVH or lower than pre-set lowest working voltage PFVL, OZ8920 can automatically assert the Permanent Fail (PF) signal to blow an external fuse to cut off the power line or to signal an alarm to user. All of the protection thresholds and their related delay time are programmable in EEPROM for different battery types and different applications.

"Balance on Demand (BOD)" technology has been embedded in the OZ8920 to support internal/ external bleeding for cell voltage balance during charge state and optional idle state (no charge and discharge) (1 bit EEPROM configuration); BOD technology can achieve the longer life cycle of the battery pack..

OZ8920 can be configured to work in hardware mode (without uP) or software mode (with uP) by embedded EEPROM. In hardware mode OZ8920 can work independently for battery pack protection and Monitoring. In software mode, OZ8920 can work with external uP or MCU to implement a more accurate coulomb counting gas gauge function.

Package: LQFP 48L Operating Temperature Range: -40°C to +85°C

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Name	Pin	I/O	Description		
Name	No "O		Hardware Mode	Software Mode	
BAT2	1	I	Cell2 positive input		
CB2	2	0	Cell2 external bleeding control		
GNDA	3	Ground	Analog ground		
SRP	4	I	Current sense resistor positive terminal		
SRN	5	I	Current sense resistor negative terminal		
BAT1	6	1	Cell1 positive input		
CB1	7	0	Cell1 external bleeding control		
BAT0	8	I	Cell1 negative input		
PCHG	9	0	Pre-charge MOSFET control		
GNDP	10	Ground	MOSFET driver power ground		
DSG	11	0	Discharge MOSFET control		
CHG	12	0	Charge MOSFET control		

N	Pin	1/0	Description		
Name	No No	I/O	Hardware Mode	Software Mode	
SCRL	13	I	Short circuit external automatic	release input	
GNDA	14	Ground	Analog ground		
GPIO0	15	I/O	External thermal sensor driver voltage	GPIO0	
GPIO1	16	I/O	External thermal sensor input	GPOI1	
GPIO2	17	I/O	External thermal sensor input	GPIO2	
GPIO3	18	I/O	External thermal sensor input	GPIO3	
EFETC	19	I/O	External FET control signal, can be configured to input or output		
RSTN	20	I/O	External reset input		
PF	21	0	Permanent failure output. Active	high	
TCLK	22	I	External clock input		
ALERTN	23	0	Interrupt output in software mod	e. Active low	
GNDD	24	Ground	Digital ground		
SDA	25	I/O	4-wire SMBUS data input		
SDAO	26	I/O	4-wire SMBUS data output		
SCL	27	I/O	4-wire SMBUS clock input		
SCLO	28	I/O	4-wire SMBUS clock output		
INCHGN	29	0	Indicates "In charge" state. Activ	ve low	
VDDD	30	Power	Digital 3.3V power		
GNDA	31	Ground	Analog ground		
V3.3	32	Power	3.3V power supply		
NC	33				
V10	34	Power	10V power supply		
NC	35				
vcc	36	Power	Chip Power supply		
ВАТ8	37	ı	Cell8 positive input		
CB8	38	0	Cell8 external bleeding control		
BAT7	39	I	Cell7 positive input		
СВ7	40	0	Cell7 external bleeding control		
BAT6	41	I	Cell6 positive input		
CB6	42	0	Cell6 external bleeding control		
BAT5	43	I	Cell5 positive input		
CB5	44	0	Cell5 external bleeding control		

Name	Pin	I/O	Descrip	otion	
Name	No	1/0	Hardware Mode	Software Mode	
BAT4	45	I	Cell4 positive input		
CB4	46	0	Cell4 external bleeding control		
ВАТ3	47	1	Cell3 positive input		
CB3	48	0	Cell3 external bleeding control		

TYPICAL APPLICATION SCHEMATICS

Hardware Mode R32 230K D7 IN4148

DC CHARACTERISTICS

Absolute Maximum Ratings

Supply voltage range		VCC	-0.3V to 48V
	Analog	SRP,SRN	-0.3V to 5.5V
	Analog	THERMV(power supply for temperature sense	-0.3V to 5.5V
		resistor)	
	Analog	THERM1(12bits ADC	-0.3V to 5.5V
		input),THERM2(12bits),THERM3(12bits)	
Input	Analog	BAT0 to BAT1,BAT1 to BAT2,BAT2 to	-0.3V to 5.5V
mpat		BAT3,BAT3 to BAT4,BAT4 to BAT5,BAT5 to	
		BAT6,BAT6 to BAT7,BAT7 to BAT8	
	Analog	SCRL	-0.3V to 48V
	Digital	RSTN, TCLK	-0.3V to 5.5V
		All other input pins	
	Analog	PCHG,CHG	-0.3V to 48V
	Analog	DSG	-0.3V to 10V
Output	Digital	PF	-0.3V to 5.5V
	Digital	CB1,CB2,CBnCB8	(n-1)*Vcell to
			n*Vcell
I/O	Digital	GPIO[0:3], SCLO, SCL, SDAO, SDA, EFETC,	-0.3V to 5.5V
		INCHGN	
Operating free-air temperature range, TA			-40°C to 85°C
Storage ter	mperature ra	inge, Tstg	-55°C to 150°C
Lead tempe	erature(solde	ering, 10 sec)	300°C

Note 1: All voltages are with respect to ground of this device except BATn - BAT(n-1), where n=1,2,3,4,5,6,7,8 cell voltage

Note 2: Ground refers to common node of GNDA, GNDD, and GNDP

Electrical Characteristics

Power Supply						
Parameter	Test Conditions	MIN	TYP	MAX	Unit	
Supply Voltage(VCC)		8		48	V	
Supply Current	Normal Mode		590		uA	
	Sleep Mode		38		uA	
	Shut Down		24		uA	

General Purpose Inputs And Outputs(GPIO)							
Parameter	Test Conditions	MIN	TYP	MAX	Unit		
V _{IH} High-level Input Voltage		2			V		
V⊩ Low-level Input Voltage				0.8	V		
Voн Output Voltage High	ILoad=-0.5mA	V3.3-0.7			V		
Vo∟ Output Voltage Low	ILoad=0.5mA			0.4	V		
Current Drive Capability	GPIO0		1		mA		
Current Drive Capability	GPIO1, 2, 3		8		mA		

3.3V LDO Regulator							
Parameter	Test Conditions	MIN	TYP	MAX	Unit		
Regulator Output Voltage	I _o <60mA	2.97	3.3	3.63	V		
Line Regulation @ iload=32.8mA		-52			dB		
Load Regulation @ Vcc=32V				127	mV		
3.3V Current Limit				60	mA		

10V LDO Regulator							
Parameter	Test Conditions	MIN	TYP	MAX	Unit		
Regulator Output Voltage		9.45	10.5	11.55	V		
Line Regulation @ iload=32.8mA		-45			dB		
Load Regulation @ Vcc=32V				184	mV		
10V Current Limit				60	mA		

Multi-Channel ADC							
Parameter		Test Conditions	MIN	TYP	MAX	Unit	
	Input Voltage Range		-250		250	mV	
Compant Channal	Resolution			16 bits			
Current Channel (1 channel)	Conversion Time				256	mS	
	Offset		Auto	Auto offset cancellation			
	Slope			In software mode, support slope calibration			
	Input Voltage Range		-0.3		5	V	
Line in Oall	Resolution			12 bits			
Lion-ion Cell Voltage Channel	Conversion Time				16	mS	
Voltage Orialises	Offset		Auto	Auto offset cancellation			
	Slope			In software mode, support slope calibration			

	Input Voltage Range	0.1		2.5	V
Letens el Terre en en eterre	Resolution		12 bits		
Internal Temperature (1 channel)	Conversion Time			16	mS
(1 chamile)	Offset	Auto o	ffset cance	ellation	
	Slope		In software mode, support slope calibration		
	Input Voltage Range	0.1		2.5	V
	Resolution		12 bits		
GPIO[1:2] channel	Conversion Time			16	mS
	Offset	Auto o	Auto offset cancellation		
	Slope		In software mode, support slope calibration		
	Input Voltage Range	0.1		2.5	V
	Resolution		12 bits		
GPIO[3]	Conversion Time			16	mS
	Offset	Auto o	Auto offset cancellation		
	Slope		In software mode, support slope calibration		

Internal Oscillator							
Parameter	Test Conditions	MIN	TYP	MAX	Unit		
512kHz Oscillator Frequency		470	512	552	KHz		
32kHz Oscillator Frequency		21	29	37	KHz		

Over-Current(OC) And Short-Circuit(SC) Protection					
Parameter	Test Conditions	MIN	MAX	Step/Unit	
OC0 Detection Threshold Range (16-bit setup)		16 bits pro	grammable	Negative ADC Value	
OC0 Delay Time(3-bit setup)		2	32	Scan Cycle	
OC0 Release Time(3-bit setup)		2	32	Scan Cycle	
	Charge	10mV	105mV	5mV	
OC Detection Threshold Range	Discharge	30	285mV	5mV	
OC Hystorasia Value	Charge	N/A			
OC Hysteresis Value	Discharge	111	πV	mV	
OC Delay Time (8-bit setup)		2ms	16.3s	Note1	
OC Release Time (3-bit setup)	Charge	1s	32s	Variable	
OO Nelease Time (3-bit setup)	Discharge	1s	32s	Variable	
SC Detection Threshold Range	Discharge	50mV	620mV	10mV	

Parameter	Test Conditions	MIN	MAX	Step/Unit
SC Hysteresis Value	Charge	N/A		
SC Hysteresis value	Discharge	151	mV	mV
SC Delay Time (8-bit setup)		8us	32.8ms	Note 2
SC Release Time (3-bit setup)		0.25min	1.75min	0.25min

Note1: 8-bit OC delay control byte divided into two sections, The high 5 bits are used to indicate the over current delay time as N+1 (N is the 5 bits value) delay units; the low 3 bits are used to indicate the OC delay unit as following:

OC delay scale	OC delay unit	OC delay scale	OC delay unit
3'b000	2ms*1=2ms	3'b100	2ms*31=62ms
3'b001	2ms*3=6ms	3'b101	2ms*63=126ms
3'b010	2ms*7=14ms	3'b110	2ms*127=254ms
3'b011	2ms*15=30ms	3'b111	2ms*255=510ms

The OC delay time = (N+1)*(OC delay unit), so its range is 2ms~16.3s

Note2: 8-bit SC delay control byte divided into two sections. The high 5 bit are used to indicate the short circuit delay time as N+1 (N is the 5 bits value) delay units; the low 3 bits are used to indicate the SC delay unit as following:

SC delay scale	SC delay unit	SC delay scale	SC delay unit
3'b000	4us*2=8us	3'b100	4us*32=128us
3'b001	4us*4=16us	3'b101	4us*64=256us
3'b010	4us*8=32us	3'b110	4us*128=512us
3'b011	4us*16=64us	3'b111	4us*256=1024us

The SC delay time = (N+1)*(SC delay unit), so its range is 8us~32.8ms

Over-Voltage(OV) And Under-Voltage(UV) Protection					
Parameter	Test Condition	MIN TYP MAX U		Unit/step	
OV Detection Threshold Value		12bits pro	grammable	(0-5V)	V
OV Release Value		12bits pro	grammable	(0-5V)	V
OV Delay Time (4-bit setup)		1		16	Scan Cycle
OV Release Time (same as OV delay time)		1 16 Scan		Scan Cycle	
UV Detection Threshold Value		12bits programmable (0-5V) V			V
UV Release Value		12bits programmable (0-5V) V			V
UV Delay Time (4-bit setup)		1		16	Scan Cycle
UV Release Time (same as UV delay time)		1		16	Scan Cycle
RV Detection Threshold Value		1.0V			
RV Release Value		Same as UV release value			
RV Delay Time (2-bit setup)		2ms		8ms	Variable

Permanent Fail Voltage (PFVL, PFVH and Cell Un-balance PF) Protection					
Parameter	Test Conditions	MIN	TYP	MAX	units/step
PFVL Threshold Range		12bits programmable (0-5V)			V
PFVL Delay Time (4bits setup)		1 16			Scan Cycle
PFVH Threshold Range		12bits programmable (0-5V) V			V
PFVH Delay Time (4bits setup)		1 16		Scan Cycle	
Cell Un-balance PF threshold					
Range		12bits programmable(0-5V) V			V
Cell un-balance PF Delay Time					
(4bits setup)		1		16	Scan Cycle

Internal Thermal Protection (OT & UT)					
Parameter	Test Conditions	MIN	MIN TYP MAX		Unit/Step
OT Detection Threshold value		User	Programma	ıble	1°C /2.1mV
OT Detection release Range		User	Programma	ıble	1°C /2.1mV
OT Delay Time (4-bit setup)		1 16		Scan Cycle	
OT Release Time (same as OT delay time)		1		16	Scan Cycle
UT Detection Threshold Value		User Programmable V			V
UT Detection Release Value		User Programmable V			V
UT Delay Time (4-bit setup)		1		16	Scan Cycle
UT Release Time (same as UT delay time)		1 16		Scan Cycle	

External Thermal Protection (OT & UT)					
Parameter	Test Conditions	MIN	TYP	MAX	Unit/Step
OT Detection Threshold value		User Programmable (Not			(Note1)
OT Detection release Range		User Programmable (Note:			(Note1)
OT Delay Time (4-bit setup)		1 16		Scan Cycle	
OT Release Time (same as OT delay time)		1		16	Scan Cycle
UT Detection Threshold Value		User Programmable V			V

 CONFIDENTIAL
 OZ8920 - DS-V0.50
 Page 12

External Thermal Protection (OT & UT)					
Parameter	Test Conditions	MIN	TYP	MAX	Unit/Step
UT Detection Release Value		User Programmable V			V
UT Delay Time (4-bit setup)		1		16	Scan Cycle
UT Release Time (same as UT delay time)		1		16	Scan Cycle

Note1: Depends on external temperature sensor characteristics, refer to 'External Temperature Sensor'.

Parameter	Test Conditions	MIN	TYP	MAX	Unit
CHG High Level			Vcc		V
CHG Low Level			Vcc-10		V
PCHG High Level			Vcc		V
PCHG Low Level			Vcc-10		V
Rise Time			TBD		
Fall Time			TBD		
DSG High Level		9.45	10.5	11.55	V
DSG Low Level		0		0.5	V
Rise Time			TBD		
Fall Time			TBD		_

AC TIMING

SMBUS Bus Timing

		Lir	mits		
Symbol	Parameter	Min	Max	Units	Note
FSMB	SMBUS Bus Operating Frequency	10	250	KHz	
tO	Bus free time between Stop and Start condition	4.7	-	μS	
t1	Hold time after (Repeated) Start condition. After this period, the first clock is generated	4.0	-	μЅ	
t2	Repeated Start condition set up time	4.7		μS	
t3	Stop Condition setup time	4.0	-	μS	
t4	Data hold time	150	-	ns	
t5	Data setup time	250	-	ns	
TIMOUT		25	35	ms	See Note 1
t6	Clock low period	4.7	-	μS	
t7	Clock high period	4.0	50	μS	See Note 2
TLOW:SEXT	Cumulative clock low extend time (slave device)	-	25	ms	See Note 3
TLOW:MEXT	Cumulative clock low extend time (master device)	-	10	ms	See Note 4
tF	Clock/Data Fall time	-	300	ns	See Note 5
tR	Clock/Data Rise Time	-	1000	ns	See Note 5

Note 1: A device will timeout when any clock low duration exceeds this value

Note 2: t5 Max provides a simple guaranteed method for devices to detect bus idle conditions.

Note 3: TLOW:SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from the initial start to stop. If a slave device exceeds this time, it is expected to release both its clock and data lines and reset itself.

Note 4: TLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within one byte of a message as defined from start-to-ack, ack-to-ack, or ack-to-stop.

Note 5: Rise and Fall times are measured between 10% to 90% of the signal amplitude.

FUNCTIONAL DESCRIPTION

OZ8920 Power Up Sequence

Fig.1 shows the OZ8920 power up sequence. When power supply is applied to VCC, the common bias starts firstly, then 10V LDO and 3.3V LDO. When Vldo3.3>2.4V, the power on reset block generates Power On Reset (POR) signal to enable the 512K oscillator and initializes the digital section. When Power and clock are ready, the digital circuits will read EEPROM data, and then go to different working state based on the *auto_scan_enable* setting. If the *auto_scan_enable* (2-bit in EEPROM register *Scan Rate [19h]*) is 00 (default), the OZ8920 will go to the assembly state, in this state, OZ8920 doesn't do ADC scan, only after pushing RSTN (reset pin), OZ8920 can go to the normal working state; if the *auto_scan_enable* bit is 11, OZ8920 will go to the normal working state directly.

Fig. 1 OZ8920 Power Up

Page 16

Measurements

OZ8920's multi-channel ADC (as shown in Fig. 2) measures up to 8 cell voltages, current, internal temperature and external temperature based on cyclic scan and time slot method. It will periodically measure all these values by predefined scan rate. During one measurement period, voltage, current, etc will be measured one by one in different time slot.

The ADC scan cycle period can be programmed in EEPROM register scan rate [19h] from 0.5S~16S.

Fig. 2, Muti-Channel ADC

1. ADC Channel Description

a. Current Channel (1 channel)

This is a dedicated channel to measure the current across the sense resistor ($2m\Omega$ to $10m\Omega$), during charging and discharging for coulomb counting or other purpose.

Resolution: 16-bit (signed)
Input Voltage Range: ± 250mV

Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

b. Lion-ion Cell Voltage Channel (5~8 channels)

These channels are designed for cell voltage measurement.

Resolution: 12bits (signed)
Input Voltage Range: -0.3V~5.0V

Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

c. Internal Temperature (1 channel)

This channel is designed for internal temperature sensor.

Resolution: 12bits (signed)
Input Voltage Range: 0.1V~2.5V
Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

d. GPIO Channel (3 channel)

GPIO1, GPIO2 and GPIO3 can be configured as external temperature sensor (please refer to the external thermal sensor section) or other analog input in software mode, for detailed configuration information please refer to EEPROM register *GP Mode [1ah]*.

GPIO1, GPIO2, GPIO3 can be configure to the external thermal sensor

Accuracy: 12bits (signed)

Input Voltage Range: 0.1V~2.5V

Auto offset cancellation

Slope calibration can be implemented in software mode for better accuracy.

GPIO1, GPIO2, GPIO3 can be configure to other analog input or digital I/O in software mode.

2. ADC Time Slot

Note:

- (1) The time slot's length is not in scale.
- (2) Max cell can be cell5~cell8.
- (3) IT indicates 12-bit internal temperature channel.
- (4) GP1 indicates 12-bit gpio1 channel; GP2 indicates 12-bit gpio2 channel; GP3 indicates 12-bit gpio3 channel. gpio1, gpio2, gpio3 channel can be scanned or not controlled by the control registers mapped from EEPROM; If gpio1, gpio2, gpio3 channel is not scanned, the corresponding ADC time slot will be skipped.

Internal/External Bleeding

OZ8920 can do cell bleeding for Li-ion batteries when the cells are being charged or in idle state. OZ8920 supports internal bleeding and external bleeding (can be configured by setting 1 Bit in EEPROM register [1dh]: Select External Bleeding). The bleeding function can also be disabled by setting 1 Bit in EEPROM register [18h]: Hardware Bleeding Support. Bleeding is performed during charging process or optionally during idle state (enable in EEPROM register [1d]: Allow Idle Bleeding) and start bleeding voltage point is programmable (Bleeding Start: 12 Bits in EEPROM registers [56h, 57h]).

Fig.3 External Bleeding Diagram

For internal bleeding, the current will be 10mA~15mA for the thermal consideration, and the cell with highest voltage will be bled one time; for the external bleeding, bleeding current is decided by external bleeding resistor Rb (Fig. 3), and can support 1~4 or 7 maximum cell bleeding simultaneously (configured in EEPROM 1dh). Balance accuracy is programmable from 9.76mV~78.1mV (*Bleeding Accuracy:* 3 Bits in EEPROM register [1dh]).

OZ8920 has embedded O2micro "Balance on Demand (BOD)" technology:

- Battery pack is in charge state (current larger than charge current threshold) or in idle state (current smaller than charge current threshold and larger than discharge current threshold) if idle bleeding is enabled by setting 1 Bit in EEPROM register [1dh]: Allow Idle Bleeding.
- The bleeding function is enabled
- The highest cell voltage exceeds the *Bleeding Start* voltage
- The cell voltages' difference exceeds the Bleeding Accuracy
- No error event, like OT, UT, UV, RV, OC0, OC, SC. If any error event happens, bleeding stops right away.

In software mode, hardware bleeding is supported by setting 1 Bit in EEPROM register **[18h]**: **Hardware Bleeding Support**. If software bleeding is selected, software can start cell bleeding by writing the bleeding control/statue register at any time. If any bleeding error(s) happen, the bleeding control/status will be automatically cleared to stop the bleeding (software can know the bleeding error exactly because any safety bleeding error will make ALERTN active to inform the software). If software wants to continue to do bleeding, it needs to write the bleeding control/status register again.

Battery Protection

OZ8920 includes a digital Battery Protection Engine (BPE), which can operate independently. The BPE constantly monitors data from the ADC and other protection circuits. If a protection error condition is detected and persists for certain time, the BPE will force the charge and/or discharge FET off. If some vital safety condition, such as extremely high cell voltage (PFVH) or extremely low cell voltage (PFVL), or extremely un-balanced cell voltage happens, or the Power MOSFET fails, the BPE will assert the Permanent Fail (PF) signal to instruct an optional external fuse circuit to permanently disable the battery pack. In software mode the chip provides an exclusive pin ALERTN to inform the uP while switching off the protection power mosfet when error condition happens.

1. Over-current (OC)

OZ8920 includes two level over current protection, first level OC0 is based on the ADC measured current value; second level OC is based on an independent hardware over-current detector (separate from the ADC) that monitors the sense resistor to detect over-current condition in either charge or discharge. If the over-current condition continues for a programmable delay time, the protection circuit will turn off the charge and discharge FETs. The charge and discharge over-current thresholds are set in protection register in EEPROM.

OC0 Protection Set

OC0 protection detection is for discharge current protection which is based on the current measurement of ADC, by comparing the 16-bit signed current value with the 16-bit signed threshold which is a negative value (indicating the discharge state). When current value < the threshold for a specified delay time, the OC0 state is detected; when current value >= the threshold, no OC0 state is detected. Please refer to EEPROM register information: **OC0 Control [27h]**, **OC0 Threshold [2ch, 2dh]**.

When the OC0 state is detected and continues for some delay time selected by the 3-bit in EEPROM register *OC0 Control [27h]*, all of the FETs (charge FET, discharge FET, precharge FET) will be turned off. When no OC0 continues for some delay time selected by 3-bit in EEPROM register *OC0 Control [27h]*, charge FET and discharge FET will be turned on, if no other error(s) happen.

In general, compared to the OC protection, OC0's threshold is lower than that of OC protection and OC0's delay time is longer than the OC's one. For example, for discharge state, the absolute value of current is larger and larger, at first OC0's threshold is met, OC0 is detected; then, OC's (discharge OC) threshold is met, OC is detected. If user wants to disable the OC0 protection, he can set the OC0's threshold as most minimum value (16'8000) in EEPROM register **OC0 Threshold [2ch, 2dh]**.

OC Protection Set

OZ8920 includes an independent hardware over-current detector that monitors the current that flows through the sense resistor to detect over-current condition in either charge or discharge. If the over-current condition continues for a programmable delay time, the protection circuit will turn off the charge and discharge FETs. The charge and discharge over-current thresholds are set in EEPROM registers *Charge OC Threshold* [1eh] and *Discharge OC Threshold* [1fh].

The real OC value is the Voc/Rs, where Rs is current sense resistor value. The over-current delay allows the system to momentarily accept a high current condition. The delay time can be programmed from 2ms to 16.3s by the parameter in EEPROM register *OC Delay [2ah]*. Charge and discharge OC share the same delay time. Charge OC release time and Discharge OC release time can be programmed from 1second to 32 seconds in EEPROM register *OC Release Control [2dh]* independently.

Item		Description
ОС	Charge	5bits EEPROM (<i>Charge OC Threshold [1eh]</i>) Control: Start: 10mV; Stop:105mV; Step:5mV ^I
Value Discharge 6b		6bits EEPROM (<i>Discharge OC Threshold [1fh]</i>) Control: Start: 30mV; Stop:285mV; Step: 5mV
Hyst.	Charge	N/A
Value	Discharge	10mV
Dela	ay Time	8bits EEPROM (<i>OC Delay [2ah]</i>) Configure, Range from 2mS to 16.3S
	Charge	3 bits EEPROM (<i>OC Release Control [2dh]</i>) Control: Range from 1S to 32S
Release Discharge		3bits control external release or timer release (<i>OC Delay [2ah]</i>) Control: (000: external release; 001~111: 1S~31S)

2. Short-circuit (SC)

Short circuit protection is very similar to over-current protection. When short circuit condition is detected, OZ8920 will turn off charge and discharge FETs. Short circuit threshold and delay time can be programmed. Vsc can be programmed from 50mV to 620mV in 10mV steps by the parameter in EEPROM register *SC Threshold [2bh]*. The real current is Vsc/Rs. Short circuit delay time can be programmed from 8us to 32.8ms. The short circuit delay time is configured by EEPROM register *SC Delay [2ch]*. SC release time can be programmed in EEPROM register *SC Release Control [2dh]* from 0.25min~1.75min in 0.25min step. OZ8920 also supports an external release function, when SC happens, the chip will release when the input analog signal of Pin SCRL come back to the normal levels, this function is enabled by setting in EEPROM register *SC Release Control [2dh]*.

Item		Description				
SC Value Charge N/A						
	Discharge	6bits EEPROM (<i>SC Threshold [2bh]</i>) Control:Start:50mV; Stop:620mV; Step:10mV				
	Discharge	Control:Start:50mV; Stop:620mV; Step:10mV				
Hysteresi	is Value	20mV				
Delay		8bits EEPROM (SC Delay [2ch]) Configure, Range from 8uS to 32.8mS				
Release		3bits EEPROM (<i>SC Release Control [2dh]</i>) Control: (000: external release; 001~111:0.25min~1.75min)				

3. Over-voltage (OV)

The protection engine performs over-voltage detection by comparing 12 bit values from the ADC with an OV threshold, which is programmed in EEPROM register *OV Threshold [38h, 39h]*. When over-voltage condition is detected, OZ8920 will turn off the charge FET after a specified delay time. This delay time can be programmed in EEPROM register *OV Delay Control [25h]*. When cell voltage is less than the OV release value and persists for the specified time which is the same as OV delay time, OZ8920 Protection Engine will quit the OV condition and turn on the charge FET. The OV release value also can be programmed in EEPROM register *OV Release [3ah, 3bh]*. The OV release value should set lower than OV threshold value.

4. Under-voltage (UV)

Under-voltage protection operates in the same way as over-voltage protection. When under-voltage condition is detected, OZ8920 will turn off discharge FET after a specified delay time. Its threshold can also be programmed in EEPROM register *UV Threshold [3ch, 3dh]*. UV release value can be programmed in EEPROM register *UV Release [3eh, 3fh]*. The UV release voltage value should be set higher than UV threshold value. Under-voltage protection and release has the same delay time as the over-voltage protection and release.

5. Reversal Voltage (RV)

OZ8920 incorporates cell reversal-voltage (RV) protection function. When cell voltage falls under about 1.0V, OZ8920 will turn off the discharge MOSFET immediately to prevent the battery cells from immediate reversal. The RV protection will be released only when cell voltage recovers to the configured release threshold voltage and delay a certain time which pre-configured. RV function and RV delay time can be set in EEPROM register Gp Mode [1ah]. RV release value and release delay time are the same as UV setting.

Item	Description
RV Value	About 1.0V
RV Release Value	Same as UV release value. UV Threshold [3ch, 3dh]
R V Delay Time	2bits EEPROM (<i>Gp Mode [1ah]</i>) Control: (00:RV disable; 01~11:2ms~8ms)
RV Release Time	Same as UV release value. UV Release [3eh, 3fh]

6. Thermal Protection (OT and UT)

Thermal protection is performed based on inputs from both the internal temperature sensor and the optional external temperature sensors. Thermal information may be used to temporarily interrupt the charge cycle and/or disable discharge. OZ8920 provides both under temperature (UT) and over temperature (OT) protection. When over-temperature is detected, OZ8920 will turn off charge and discharge FETs after a specified delay time; when under-temperature is detected, OZ8920 will turn off charge FET after a specified delay time and permit discharge if no other protection events happen. Both OT and UT thresholds are programmable. For discharge state, 12-bit DOTE threshold can be programmed in EEPROM registers DOTE Threshold [28h and 29h], 12-bit DOTE release value can be programmed in EEPROM registers DOTE Release [2ah, 2bh]. For charge state, 12-bit COTE threshold can be programmed in EEPROM registers COTE Threshold [4eh and 4fh], 12-bit COTE release value can be programmed in EEPROM registers COTE Release [50h, 51h]. External under temperature (UTE) threshold is set up in EEPROM registers UTE Threshold [52h, 53h], UTE release value can be programmed in EEPROM registers UTE Release [54h, 55h]. Internal over temperature (OTI) threshold setting is in EEPROM registers OTI Threshold [4ah, 4bh]. OTI release value can be programmed in EEPROM registers OTI Release [48h, 49h1. Internal under temperature (UTI) threshold setting is in EEPROM registers UTI Threshold [4ah, 4bh]. UTI release value is programmed in EEPROM registers UTI Release [4ch, 4dh]. External and Internal OT/UT delay time can be programmed in EEPROM register OT/UT Delay Control [25h].

7. Permanent Fail (PF) protection

a. Cell voltage extremely low or high permanent fail (PFVL and PFVH)

If any cell voltage lower than PFVL or higher than PFVH continues for pre-defined time (4-bit configuration in *EEPROM register PF Control [26h]*), OZ8920 will assert a PF signal to blow the external fuse then shut down the system and the pack will be in permanent fail; this function acts as the secondary voltage protection and can be disabled by setting the *PFVH enable* and *PFVL enable* bits in the EEPROM register *PF Control [26h]*. The PFVL and PFVH thresholds are programmable by setting the EEPROM register *PFVH Threshold [40h, 41h]* and *PFVL Threshold [42h, 43h]*.

b. Cell voltage extremely unbalances permanent fail (PFUB)

If the (max cell voltage – min cell voltage) > the extremely unbalanced threshold voltage, the cell unbalance is detected, if the cell unbalance is detected for a specified delay time (4-bit configuration in *EEPROM register PF Control [26h]*), it will send out PF to blow the external fuse and shut down the system. This function can be disabled by setting the *PF unbalance enable* bit in EEPROM register *PF Control [26h]*. The PFUB threshold is programmable by setting the EEPROM register *PF Unbalance Threshold [44h, 45h]*.

c. MOSFET failure permanent fail (PFMF)

If the charge MOSFET, precharge MOSFET are both turned off, but the chip is in charge state (the current > the "in_charge" current threshold), the charge or pre-charge MOSFET will be regarded as failure; on the other hand, if the discharge MOSFET is turned off, but the chip is in discharge state (the

current < the "in_discharge" current threshold; the current, discharge current threshold both are negative value), the discharge MOSFET will be regarded as failure.

If the MOSFET fail is detected for a specified delay time (4-bit configuration in *EEPROM register PF Control [26h]*), it will send out PF and shut down the system. This function can be disabled by setting the *PF mosfet fail enable* bit in EEPROM register *PF Control [26h]*.

	i ==: realitegisto: r. contact [=crij:
PFVL threshold value [40h, 41h]	12Bits EEPROM programmable
PFVH threshold value [42h, 43h]	12Bits EEPROM programmable
PFUB threshold value [44, 45h]	12Bits EEPROM programmable
PF Mosfet Failure [26h]	There is discharge current when discharge MOSFET is off or there is charge current when charge MOSFET is off
Release Value	N/A
Delay Time <i>[26h]</i>	Range: 1~16 scan cycles Step: 1scan cycle

Power Mode

To save power, OZ8920 works in different power modes according to the system status. There are 3 power modes as follows:

Fig. 4 OZ8920 Power Mode Diagram

State Description (Fig. 4)

State	Description
Full Power	Voltage, temp. and current scan
	Safety protection check
Sleep	Stop voltage, temp. and current scan
	Stop safety protection check
	Wake up ,RV protection block ,and SCRL pin is working
Shut Down	Only common bias is working
	Power consumption<25uA

Transition Description

Transition	Initial State	Condition	Final	
		Hardware Mode	Software Mode	State
1	Full Power	 No charge/discharge and No protection event occurs for 10 minutes Sleep timer expired No bleeding event SMBUS is not active 	uP makes decision	Sleep

Transition	Initial State	Condition	Final	
		Hardware Mode	State	
2	Sleep	 sleep timer expired SC or RV event occurs SMBUS is active EFETC Signal wake-up circuit detected charge/discharge current 	uP makes decision	Full Power
3	Full Power	 PF (PFVL, PFVH, PFUB, PFMF) shut down EFETC shutdown active 	uP makes decision	Shutdown
4	Shutdown	 Any one of the Wake up events happens: EFETC shut down inactive Reset or SMBUS active for PF shutdo shutdown 	Full Power	

Internal Temperature Sensor

OZ8920 takes advantage of silicon device physics and circuit design technology for the internal temperature sensor. The internal temperature sensor generates a voltage level which is proportional to the temperature. As Fig.5 showing below, with a temperature increase of 1°C, internal temperature sensor output voltage will increase 2.0976mV. The offset can be get from the 12Bit EEPROM which measured in the ATE test. So, if at T0, ADC reading out VT0, the characteristic curve function can be get: VTS (mV)=2.0976*T+(VT0 – 2.0976*T0)

Fig. 5 Internal Temperature Sensor Curve

External Temperature Sensor

OZ8920 provides 3 GPIOs for external temperature detection, the application circuitry is shown in Fig.6. We recommend using 103 NTC type thermistor.

103 NTC Thermistor RT characteristics are shown in Fig. 7. The sensed voltage Vt characteristics are shown in Fig. 8

For Example: Vt2=3.3V * RT2 / (RB2 + RT2)

Fig.6 External Temperature Sensor Application

Vt Characteristics

Fig.7 Thermistor RT characteristics

Fig.8 The sensed voltage Vt characteristics

Power MOSFET Driver Control

Smart MOSFET driver is designed for N-type MOSFET controlled charge, and discharge. The driver also supports parallel and series charge discharge loop.

The charge and discharge MOSFET are controlled through protection register, subject to override by the Battery Protection Engine (BPE). OZ8920 also provides a pin (EFETC) for external MOSFET control signal input or internal MOSFET control signal output (it makes the MOSFET control very flexible. The discharge (DSG) MOSFET gate-to-source voltage is clamped to 10V (typical) when MOSFET is in ON state; the charge and pre-charge MOSFET gate-to-source voltage is decide by external divider resistor and the pack voltage.

Note ^① 2Bits in EEPROM configure the PIN's function: charge & discharge FET off (input), charge FET off (input), discharge FET off (input) and discharge FET off (output)

Serial Communication Bus

OZ8920 supports SMBus communication interface. The SMBUS master can access OZ8920's registers with SMBUS protocol. In this condition, OZ8920 is working as an SMBUS slave node.

2-wire SMBUS Bus

In this case, Pin27 should be shorted with Pin28 as input clock pin and the clock comes from external SMBUS host, Pin25 should be shorted with Pin 26 as bi-directional data pin. For detailed SMBUS protocol and timing information, please refer to the SMBUS Specifications.

4-wire SMBUS Bus

In this case, Pin28 is the output clock pin (SCLO) and Pin27 is the input clock pin (SCL), Pin26 is the output data pin (SDAO), Pin25 is the input data pin (SDA). This bus protocol and timing is the same as 2-wire SMBUS bus except separating input/output line.

4-wire SMBUS bus is used to support non-common ground communication.

Deadman

Deadman check function is enabled by a non-zero value to "deadman control" register (operation register 2ch). If deadman check is enabled, OZ8920 will increment the deadman timer every second when the safety scan is enabled. The software needs to do as following:

- Read the deadman timer by reading the operation register Deadman Timer 2dh
- Write "1" into the bit 7 "clear deadman timer" of operation register Deadman Timer 2dh to clear the deadman timer.

If the handshake between OZ8920 and the software is normal, the software will clear the deadman timer before the deadman timer expires. In a result no deadman is found.

If the handshake has some problems, the software can not clear the deadman timer in time, while the deadman timer will do +1 every second. After some time, the deadman timer exprires. As a result, OZ8920 will send out a 64ms low active pulse to RSTN pin to reset the external uP.

It is noted that when starting up the deadman check, it's possible to get a false deadman. To avoid this problem, handshake procedure is needed immediately after writing a non-zero value to "deadman control".

EEPROM AND OPERATION REGISTERS MAP

OZ8920 has two types of registers. One type is OZ8920's operation registers which address is from 00h to 7fh; the other type is embedded EEPROM registers which address is from 00h to 7fh. Software can directly access OZ8920's operation registers via SMBUS bus; and software can access the EEPROM registers indirectly by access the operation register 5ch~5fh.

EEPROM registers are used to store important battery pack, battery cell information and to configure the OZ8920 chip. Operation registers are used to store ADC instant data, OZ8920 status information, and some parameters to control OZ8920 state-machine, etc. When system is powered on, the data in EEPROM register 12h-15h, 16h-27h, 5ah-5bh, 74h-75hwill be loaded into the Operation registers 02h-05h, 06h-17h, 18h-19h, 1ah-1bh respectively. Fig. 9 shows the configuration of EEPROM registers and Operation registers.

Fig.9 Configuration of EEPROM Register and Operation Register

EEPROM Section	Description
00h~15h	This section reserved for O2Micro internal use only.
ATE data	
16h~5bh User data	This section used for user control, programming data. 16h~27h are mapped into the Operation registers 06h~17h; 5ah~5bh are mapped into the Operation registers 18h~19h; Access is controlled by 2-bit <i>paramter_access</i> in bit7, bit6 of EEPROM register <i>Parameter Access [5bh]</i> . Parameter_access = 00: the safety scan is disabled; readable; writable; Parameter_access = 01: the safety scan is enabled; readable; writable; Parameter_access = 10: the safety scan is enabled; read only; Parameter_access = 11: the safety scan is enabled; not-readable; not-writable
5ch~7bh Project info data	This section stores project information data. 74h~75h are mapped into the Operation registers 1ah~1bh. Access is controlled by 1-bit project_info_access in bit7 of EEPROM register Project Info Access [75h]. Project_info_access = 0: readable; writable; Project_info_access = 1: not-readable; not-writable
7ch~7fh Log Data	These data are readable, writable always.

 CONFIDENTIAL
 OZ8920 - DS-V0.50
 Page 25

OZ8920 EEPROM Registers

Reg	Reg		Bit Number							
index	Name	7	6	5	5 4 3 2			1	0	
(hex)										
00~15				Re	served					
16	Cell Number	sda_delay_e nable	pec enable		SMBus add	dress config		Cell n	umber	
17	Hardware Mode			rese	rved			hardwa	re mode	
18	Function Support	reserved		efetc mode		reserved	Pre_charge support	hardware bleeding support	sleep support	
19	Scan Rate	auto sca	n enable		reserved			scan rate	•	
1a	Gp Mode	rv su	pport	gp3 i	mode	gp2 i	mode	gp1	mode	
1b	Charge/Discharge Threshold	rese	rved	charge thres	shold control	rese	erved		threshold ntrol	
1c	Sleep Control	charge integ	rator control		integrator itrol		sleep tim	ne control		
1d	Bleeding Mode	select external bleeding	ble	eeding accura	ісу	allow idle bleeding	allow bleeding all bleeding number			
1e	Charge OC Threshold		Reserved			cha	arge OC threshold			
1f	Discharge OC Threshold	rese	rved			discharge C	OC threshold			
20	OC Delay		0	C delay numb	er		(OC delay scal	е	
21	OC Release Control	rese	rved	dischar	ge OC release	e control	charge OC release control			
22	SC Threshold	rese	rved			SC thr	reshold			
23	SC Delay		S	C delay numb	er			SC delay scal	е	
24	SC Release Control	prmt_ reserved4	prmt_ reserved3	prmt_ reserved2	prmt_ reserved1	prmt_ reserved0	sc	C release con	trol	
25	OT/UT, OV/UV Delay Control		OT/UT	delay			OV/U\	/ delay		
26	Pf Control	pfvh enable	pfvl enable	pf unbalance enable	pf mosfet fail enable		pf d	elay		
27	OC0 Control	rese	rved	OC	0 release con	itrol		OC0 delay		
28	DOTE Throubald	bit3~	bit0 of discha	rge OTE thre	shold		Rese	erved		
29	DOTE Threshold	bit11~bit4 of discharge OTE threshold								
2a	DOTE D.	bit3~bit0 of OTE release for discharge OTE				Rese	erved			
2b	DOTE Release	Bit11~bit4 of OTE release for discharge OTE								
2c	000 Th		bit7~bit0 of OC0 (level-0 ocver current) threshold							
2d	OC0 Threshold				bit15~bit8 of 0	OC0 threshold	t			
2e~37	reserved				Rese	erved				

 CONFIDENTIAL
 OZ8920 - DS-V0.50
 Page 26

Controlled Recipient #115848 printed on 12/4/2007. Updates will be provided to registered

Reg	Reg	Bit Number								
index	Name	7	6	5	4	3 2 1				
(hex)		_ ′	8	5	4	3	2	1	0	
38	OV Threshold		bit3~bit0 of	OV threshold		Reserved				
39	OV TITICSHOID				bit11~bit4 of	OV threshold	l			
3a	OV Release		bit3~bit0 of	OV release			Rese	erved		
3b	OV Release				bit11~bit4 of	f OV release				
3c	UV Threshold		bit3~bit0 of	UV threshold			Rese	erved		
3d	Ov Threshold				bit11~bit4	of threshold				
3e	LIV/ Dalance		bit3~bit0 of	UV release			Rese	erved		
3f	UV Release				bit11~bit4 of	f UV release				
40			bit3~bit0 of p	ofvh threshold			Rese	erved		
41	Pfvh Threshold				bit11~bit4 of	r pfvh threshold	d			
42	54.5		bit3~bit0 of	ofvl threshold			Rese	erved		
43	Pfvl Threshold				bit11~bit4 of	pfvl threshold				
44	Pf Unbalance	bit3	~bit0 of pf un	balance thres	hold		Rese	erved		
45	Threshold			bit1	1~bit4 of pf un	l balance thres	shold			
46			bit3~bit0 of 0	OTI threshold			Rese	erved		
47	OTI Threshold				bit11~bit4 of	I OTI threshold	<u> </u>			
48			bit3~bit0 of	OTI release			Rese	erved		
49	OTI Release				bit11~bit4 of	OTI release				
4a			bit3~bit0 of U	JTI threshold		Reserved				
4b	UTI Threshold				bit11~bit4 of	L UTI threshold	j			
4c			bit3~bit0 of	UTI release			Rese	erved		
4d	UTI Release				bit11~bit4 of	UTI release				
4e	+	bit3	3~bit0 of char	ge OTE thres	hold	Reserved				
4f	COTE Threshold	hreshold bit11~bit4 of charge OTE threshold								
50	COTE Release	bit3~bit0 of		for charge OT	E or internal		Rese	erved		
51	OOTE Neicase			bit11~bit4 of	OTE release	for charge O	TE or internal			
52			bit3~bit0 of U	JTE threshold				erved		
53	UTE Threshold				bit11~bit4 of l	I UTE threshold	d			
54		bit3~bit0 of UTE release					erved			
55	UTE Release		bit11~bit4 of U			UTE release				
56			bit3~bit0 of bleeding start				rese	rved		
57	Bleeding Start				bit11~bit4 of	l bleeding star				
58~59	Reserved					erved				
5a	Reserved					erved				
					.000					

Reg	Reg	Bit Number								
index	Name	7	7 6 5 4 3 2 1 0							
(hex)		,	6	3	4	3	2	1		
5b	Parameter Access	paramete	parameter access reserved							
5c	Current_		•		Low byte of cu	rrent 2 nd offse	et			
5d	2nd_offset				High byte of cu	ırrent 2 nd offs	et			
5e	Gpio1_2nd_offset				gpio1 2 ^r	nd offset				
5f	Gpio2_2nd_offset				gpio2 2 ^r	nd offset				
60	Gpio3_ 2 nd _offset				gpio3 2 ^r	nd offset				
61	Reserved				rese	rved				
62~6d	Factory Name				Factory Name	e(ASCII code)			
6e~72	Project Name				Project Name	(ASCII code))			
73	Version Number				Version	Number				
74	Reserved				rese	rved				
75	Project Info Access	project info access				reserved				
76	Reserved				rese	rved				
77	Reserved				rese	rved				
78~79	Reserved		reserved							
7a	Reserved		reserved							
7b	Reserved		reserved							
7c	Pf Record		reserved pfvl pf unbalance mosfet fa						pf mosfet fail	
7d~7f	Reserved				rese	rved				

Detailed EEPROM Register Information

EE register 00h~15h are reserved for OZ8920 chip's internal use. Some of the data in this area are mapped into operation register 02h~05h..

EE register 16h \sim 5bh are paramter data which are used by customer for OZ8920 chip configuration, battery management control setup and customer information purpose. EE register 16h \sim 27h, 5bh are mapped to operation register 06h \sim 17h, 19h respectively. Its access is controlled by the EEPROM-mapped 2-bit *parameter access*.

Register 16h-Cell Number Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
16h	sda_delay	pec_enabl	SMBus address config				cell n	umber
	_enable	е						

This register specifies cell number, SMBus address, sda delay and pec control

	0 1	I Sividus addie.	Description	D/M	Default Value			
Bit #	Name		R/W	Default Value				
7	sda_delay_enable	the extra delay on S	Control the extra delay on SDA input line. If "1", enable the extra delay on SDA input line; if "0", disable the extra delay on SDA input line.					
6	pec_enable	Enable PEC (packed protocol. If "1", enail the PEC function. It is noted that where support is one-byte PEC-read; doesn't doesn't support mu	RW	0h				
5:2	SMBus address config	Specify the 8-bit SM	RW	0h				
		Specify the cell cour	nt in the battery pack as following:					
		cell number	cell count in the battery pack					
1:0	coll number	2'b00	5	RW	Oh			
1.0	cell number	ceii number	2'b01	6	KVV	0h		
		2'b10	7					
		2'b11	8					

Register 17h -Hardware Mode Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
17h		reserved						

This register selects hardware mode or software mode.

Bit #	Name	Description	R/W	Reset Value
7:2	reserved	Reserved.	R	0h
1:0	Hardware mode	Select hardware mode or software mode. If "0", "1", "3", select hardware mode; if "2", select software mode. this bit can not be written directly via SMBus interface. Instead this bit can be changed only when EEPROM mapping.	R	1h

Register 18h - Function Support Register

rtogioto: i	<u> </u>	on Capport						
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
18h	reserved		efetc mode		reserved	Precharge support	Hardware bleeding support	Sleep support

This register specifies efetc mode, precharge, hardware bleeding and sleep control.

Bit #	Name	mode, precharge, hardware bleeding and sleep control. Description	R/W	Reset Value
7	reserved	reserved	R	Oh
′	reserved	reserveu	K	UII
6:4	EFETC mode	Select EFETC pin function as following: EFETC	RW	Oh
3	Reserved	reserved	R	0h
2	Precharge support	Support precharge function. If "1", support precharge function; if "0", don't support precharge function.	RW	0h
1	Hardware bleeding support	Select hardware bleeding or software bleeding. If "1", select hardware bleeding; if "0", select software bleeding, software can control the bleeding by writing the bleeding control/status register.	RW	0h
0	Sleep support	Support sleep function. If "1", support sleep function; if "0", don't support sleep function.	RW	0h

Register 19h -Scan Rate Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
19h	auto_sca	an_ebale		reserved		scan rate		

This register specified auto scan control and configuration

11113 10	nis register specified auto scarr control and corniguration.								
Bit #	Name	Description	R/W	Default Value					
7:6	auto_scan_enable	auo scan control. If "01", "10", "11", auto scan is enabled. After power on reset, the safety scan will automatically start afterEEPROM mapping. if "00", auto scan is disabled. After power on reset, the safety scan will not start after EEPROM mapping until the detection of a low pulse on RSTN pin. For reliability reason, if want to enable auto scan, we need to set it to "11"; if want to disable auto scan, we need to set it set it to "00".	RW	0h					
5:3	reserved	reserved	R	0h					

Bit #	Name		Description	R/W	Default Value
2:0	scan rate	Select the s	afety scan period as following table:	RW	0h
		scan rate	scan period		
		000	1s		
		001	2s		
		010	4s		
		011	6s		
		100	8s		
		101	12s		
		110	16s		
		111	0.5s		
		-			

Register 1ah -GPIO Mode Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1ah	RV protect	tion control	gpio3	mode	gpio2	mode	gpio1	mode

This register sets GPIO mode and reversal voltage control.

Bit #	Name		Description	R/W	Reset Value
		RV(Reverse \	Voltage) Protection control as following:		
	D) /	RVcontrol	RV function		
7.0	RV	2'b00	RV protection function is disabled.		Oh
7:6	protection control	2'b01	RV delay time is 2ms	R	0h
	CONTROL	2'b10	RV delay time is 4ms		
		2'b11	RV delay time is 8ms		
		Select gpio3	function as following:		
		gpio3	gpio3 function		
		mode			
		2'b00	not-scanned analog pin.		
5:4	gp3 mode	2'b01	scanned analog pin (12-bit adc	RW	0h
J. 4	gps mode		channel); no temperature check on	IXVV	OH
			gp3.		
		2'b10 scanned analog pin (12-bit adc			
			channel); temperature check on gp3.		
		2'b11	a digital pin.		
			function as following:		
		gpio2	gp2 function		
		mode			
		2'b00 not-scanned analog pin.			
3:2	gp2 mode	2'b01	scanned analog pin (12-bit adc	RW	0h
	91		channel); no temperature check on		
		01-40	gp2.		
		2'b10	scanned analog pin (12-bit adc		
		0/544	channel); temperature check on gp2.		
		2'b11	a digital pin.		
			function as following:		
		gpio1 mode	gp1 function		
		2'b00	not accounted analog nin		
		2'b01	not-scanned analog pin. scanned analog pin (12-bit adc		
1:0	gp1 mode	2 00 1	channel); no temperature check on	RW	0h
			gp2.		
		2'b10	scanned analog pin (12-bit adc		
			channel); temperature check on gp2.		
		2'b11	a digital pin		
	1	~	~ ~.3 biii	L	

Register 1bh-Charge/Discharge Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
1bh	reserved		charge_t	charge_threshold		reserved		discharge_threshold	
			cor	ntrol			cor	ntrol	

This register sets charge/discharge state threshold.

Bit #	Name	D	escription	R/W	Default Value
7:6	reserved	Reserved.		R	0h
5:4	charge_thresh old control	Specify charge state current charge_threshold control 2'b00 2'b01 2'b10 2'b11 If the current > charge state in charge state; otherwise the	RW	0h	
3:2	reserved	Reserved.	R	0h	
1:0	discharge_thre shold control	discharge_th control 3'b000 3'b001 3'b010 3'b011	discharge state threshold(Unit is current ADC's LSB) -16 -32 -64 -128 e state threshold, the chip will be cotherwise the chip is not in	RW	0h

Register 1ch -Sleep Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1ch	J	ntegrator	Discharge	integrator	Sleep time control			
	cor	ntrol	cor	control				

This register specifies sleep time control and charge/discharge integrator control.

Bit #	Name	De	escription	R/W	Default Value	
		Control the time width of charwake up current:	ge integrator to define the char	ge		
7.0	Charge	charge integrator control	The integrating time width	D144	0.1	
7:6	integrator control	2'b00	8ms	RW	0h	
		2'b01	16ms			
		2'b10	32ms			
		2'b11	64ms			
		Control the time width of char	ge integrator to define the			
		discharge wake up current:				
5:4	Discharge	Discharge integrator control	The integrating time width	RW	0h	
0	integrator control	2'b00	8ms		0	
		2'b01	16ms			
		2'b10	32ms			
		2'b11	64ms			
3:0	Sleep time	Control the sleep time as following:			0h	
3.0	control	Sleep time control	Sleep time	RW	311	

Bit #	Name	De	escription		R/W	Default Value		
		4'b0000	disable sleep time expired wakeup function.					
		4'b0001	1 minutes					
			N minutes					
		4'b1111	15 minutes					
		In sleep mode every sleep time, the chip will wake up to enter						
		into full power mode to check	into full power mode to check the events.					

Register 1dh -Bleeding Mode Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
1dh	select	bleeding accuracy			allow idle	allow	bleeding number		
	external					bleeding			
	bleeding					all			

This register specifies bleeding mode.

This re	egister specifies ble	eeding mode.	1	1 -
Bit #	Name	Description	R/W	Reset Value
7	select external bleeding	Select external bleeding. If "1", select external bleeding; if "0", select internal bleeding.	RW	0h
6:4	bleeding accuracy	Select bleeding accuracy as follows: 3 bits Bleeding accuracy 3'b000 4*2.44 = 9.76mv 3'b001 8*2.44 = 19.5mv 3'b010 12*2.44 = 29.3mv 3'b011 16*2.44 = 39.0mv 3'b100 20*2.44 = 48.80mv 3'b101 24*2.44 = 58.56mv 3'b101 28*2.44 = 68.3mv 3'b111 32*2.44 = 78.1mv The cell bleeding is to be stopped if the max_voltage - min_voltage < bleeding accuracy.	RW	0h
3	allow idle bleeding	If "1", allow bleeding in idle state and bleeding in OV state; if "0", don't allow bleeding in idle state or OV state.	RW	0h
2	allow bleeding all	If "1", allow bleeding all cells; if "0", only allow bleeding one cell at the same time.	RW	0h
1:0	bleeding number	Select the maximum bleeding number for external bleeding, if allow bleeding all is "0", select the maximum bleeding number as N+1. For example, if bleeding number is 2'b10, the maximum bleeding number is 3. For other cases, the maximum bleeding number is 1.	RW	0h

Register 1eh-Charge OC Threshold

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1eh		Reserved			Cha	rge OC thres	hold	

This register sets the charge over current protection threshold.

Bit #	Name	Description	R/W	Default Value
7:5	reserved	Reserved.	R	0h
4:0	Charge OC threshold	Configure the charge OC threshold. The charge OC threshold as the following: 4 bits over current offset M from bit 7~bit4 in EE register03h (M is limited in -6~+6);	RW	0h

Bit #	Name	Desc	ription	R/W	Default Value
		its start value is 10mv and its ste	ep is 5mv;		
		The threshold = $(N+M-4)*5mv$;			
			ent offset=30mv), the threshold =		
		(N+2)*5mv (N:0~31) so that its r	•		
		for the case M=0(over curre			
		(N-4)*5mv (N:6~31) so that its ra			
		for the case M=-6(over curre			
		= (N-10)*5mv (N:12~31) so that			
		In a result, when M is in the			
		be in the range 10mv~105mv.			
		At the condition the over current	offset =0, the charge over		
		current threshold as followings:			
		5 bits control	Charge OC threshold		
		0	-20mv		
		1	-15mv		
		2	-10mv		
		3	-5mv		
		4	0mv		
		5	5mv		
		6			
		N			
		30	130mv		
		31	135mv		

Register 1fh-Discharge OC Threshold Register

i togiotoi i	togister in Bissinarys se initionista Register											
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
1fh	Rese	erved		Discharge OC threshold								

This register sets the discharge over current protection threshold.

Bit #	Name	Des	cription	R/W	Reset Value
7:6	reserved	Reserved.		R	0h
5:0	Discharge OC threshold	from bit7~bit4 in EE register03h (value is 30mv and its step is 5mv The discharge OC threshold as the (N+M)*5mv for the case M=6(over currer (N+6)*5mv (N:0~63) so that its rafe for the case M=0(over currer N*5mv (N:6~63) so that its range for the case M=-6(over currer (N-6)*5mv (N:12~63) so that its range (N-6)*5mv (N:12)*5mv (N:12)	the following: the following:	RW	Oh

Bit #	Name	Description F			R/W	Reset Value
		N	N*5mv			
		62	310mv			
		63	315mv			

Register 20h -OC Delay Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
20h	OC delay number					(OC delay scale	Э

This register sets over current delay time

	Jister Sets Over	current delay time.				
Bit #	Name		Description		R/W	Reset Value
7:3	OC delay	,	mber are used to indicate the over current		RW	0h
	number	. ,	I+1 (N is the 5 bits value); 3 bits OC delay			0
		scale are used to i	cale are used to indicate the oc delay unit as following:			
		Oc delay scale	oc delay unit			
	OC delay scale 3'b000 2ms*1=2ms 3'b001 2ms*3=6ms 3'b010 2ms*7=14ms 3'b011 2ms*15=30ms 3'b100 2ms*31=62ms	2ms*1=2ms				
		3'b001	2ms*3=6ms	RW	0h	
		3'b010	2ms*7=14ms			
		3'b011	2ms*15=30ms			
2:0		3'b100	2ms*31=62ms			
	Scale	3'b101	2ms*63=126ms			
		3'b110	2ms*127=254ms			
		3'b111	2ms*255=510ms			
		The OC delay time	= (N+1)*(oc delay unit)., so its range is			
		2ms~16.3s				

Register 21h -OC Release Control Register

togioto: = iii oo itoiotoo oontii oi itogioto:									
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
21h	reserved		Discharge OC release control			Charge OC release control			

This register sets over current release control.

Bit # Name Description R/W Res	et Value
7:6 reserved Reserved. R	0h
Control the discharge OC release as following: 3-bit control Bexternal release. The discharge OC will be released by the signal from analog SCRL Pin. 3'b000 3'b000 1s time release. The discharge OC will be released after 1 second. 3'b010 2s time release. The discharge OC will be released after 2 seconds. 3'b011 4s time release. The discharge OC will be released after 4 seconds. 3'b100 8s time release. The discharge OC will be released after 8 seconds. 3'b101 16s time release. The discharge OC will be released after 16 seconds. 3'b110 24s time release. The discharge OC will be released after 16 seconds. 3'b110 24s time release. The discharge OC will be released after 24 seconds. 3'b110 32s time release. The discharge OC will be released after 24 seconds.	Oh

Bit #	Name		Description	R/W	Reset Value
			be released after 32 seconds.		
		Control the char	ge OC release as following:		
		3-bit control	charge OC release		
Ī		3'b000			
			released after 1 second.		
		3'b001	1s time release. The charge OC will be		
			released after 1 second.		
	Charge OC	3'b010	2s time release. The charge OC will be		
			released after 2 seconds.		
2:0		3'b011	4s time release. The charge OC will be	RW	0h
2.0	release control		released after 4 seconds.		
		3'b100	8s time release. The charge OC will be		
			released after 8 seconds.		
		3'b101	16s time release. The charge OC will be		
			released after 16 seconds.		
		3'b110	24s time release. The charge OC will be		
			released after 24 seconds.		
		3'b111	32s time release. The charge OC will be		
			released after 32 seconds.		

Register 22h -SC Threshold

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
22h	rese	rved			SC thre	eshold		

This register sets the short circuit current protection threshold.

Bit #	<u> </u>	Description	R/W	Reset Value
7:6	reserved	Reserved.	R	0h
5:0	SC threshold	Configure the SC threshold as following: 4 bits short circuit offset M from bit3~bit0 in EE register03h (M is limited in -3~+3); Its start value is 50mv and its step is 10mv*1; The threshold*2 = (N+M+2)*10mv. for the case M=3(short circuit offset=30mv), the threshold = (N+5)*10mv (N:0~63) so that its range is 50mv~680mv; for the case M=0(short circuit offset=0mv), the threshold = (N+2)*10mv (N:3~63) so that its range is 50mv~650mv; for the case M=-3(short circuit offset=-30mv), the threshold = (N-1)*10mv (N:6~63) so that its range is 50mv~620mv. In a result, when M is in the range -3~+3, the threshold can be in the range 50mv~620mv. At the condition the short circuit offset =0, the short circuit threshold as following: 6 bits SC threshold control 0 20mv 1 30mv 2 40mv 3 50mv 4 60mv	RW	Oh

Bit #	Name		Description	R/W	Reset Value
		N	(N+2)*10mv		
		62	640mv		
		63	620mv		

Register 23h -SC Delay

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
23h		S	C delay numb		,	SC delay scale)	

This register sets short circuit delay time.

Bit #	Name	•	Description		R/W	Reset Value
7:3	SC delay number		per are used to indicate the short circle. I (N is the 5 bits value); 3 bits SC dela		RW	0h
2:0	SC delay scale	are used to indicate t SC delay scale 3'b000 3'b001 3'b010	he sc delay unit as following: sc delay unit 4us*2=8us 4us*4=16us 4us*8=32us 4us*16=64us 4us*32=128us 4us*64=256us 4us*128=512us 4us*256=1024us	ay scale	RW	0h
			(N+1)*(sc delay unit), so its range is			

Register 24h -SC Release Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2 Bit1 Bit0		
24h	prmt_rese	prmt_rese	prmt_rese	prmt_rese	prmt_rese	SC release control		
	rved4	rved3	rved2	rved1	rved0			

This register sets short circuit release control.

Bit #	Name	CHOIL GHOUR FORCE	Description	R/W	Reset Value
7	prmt_re served4	real registe	r is reserved for future use.	RW	0h
6	prmt_re served3	real registe	r is reserved for future use.	RW	0h
5	prmt_re served2	real registe	r is reserved for future use.	RW	0h
4	prmt_re served1	real registe	r is reserved for future use.	RW	0h
3	prmt_re served0	real registe	r is reserved for future use.	RW	0h
2:0	SC Control the SC re 3-bit SC control 3'b000		External release. The SC will be released by SCRL Pin. 0.25min time release. The SC will be released after 0.25 minutes. 0.5min time release. The SC will be released after 0.5 minutes. 0.75min time release. The SC will be released after 0.5 minutes.	RW	0h

Bit #	Name		Description		R/W	Reset Value
			released after 0.75 minutes.			
		3'b100	1.0min time release. The SC will be released after 1.0 minutes.			
	3'b101 1.25min time release. The SC will be released after 1.25 minutes.					
	3'b110 1.5min time release. The SC will be released after 1.5 minutes.					
		3'b111	1.75min time release. The SC will be released after 1.75 minutes.			

OT/UT, OV/UV Delay Control Register 25h

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
25h		OT/UT	Delay		OV/UV Delay				

This register sets over voltage/under voltage, over temperature/under temperature delay time.

	e register dete ever remage, ander remage, ever temperature, ander temperature detay time.								
Bit #	Name	Description	R/W	Reset Value					
7:4	OT/UT Control the OT/UT delay time and release time as (N+1) Delay scan cycles		RW	0h					
3:0	OV/UV Delay	Control the OV/UV delay time and release time as (N+1) scan cycles	RW	0h					

Register 26h -PF Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
26h	pfvh enable	pfvl enable	pf unbalance enable	pf mosfet fail enable		pf d	elay	

This register sets PF functions and delay time.

Bit #	Name	Description	R/W	Reset Value
7	pfvh enable	Enable pfvh function. If "1", enable pfvh function; if "0', disable pfvh function.	RW	0h
6	pfvl enable	Enable pfvl function. If "1", enable pfvl function; if "0', disable pfvl function.	RW	0h
5	pf unbalance enable	Enable pf unbalance function. If "1", enable pf unbalance function; if "0', disable pf unbalance function.	RW	0h
4	pf mosfet enable	Enable pf mosfet fail function. If "1", enable mosfet fail function; if "0", disable mosfet fail function. The detailed mosfet fail function as following: If the charge mosfet, precharge mosfet both are turned off, but the chip is in charge state(the current > the charge current threshold), the mosfet will be regarded as falied; in other hand, if the discharge mosfet is turned off, but the chip is in discharge state(the current < the discharge current threshold. (the current, discharge current threshold both are negative value), the mosfet will be regarded as failed. If this bit is "0", disable the mosfet fail detection.	RW	0h
3:0	Pf delay	Configure the pf delay time for pfvh, pfvl, pf unbalance, pf mosfet fail's delay time as (N+1) scan cycles. If the pfvh or pfvl or pf unbalance or pf mosfet fail is detected for continuous pf delay time, OZ8920 will send out PF and shut down the system.	RW	0h

Register 27h -OC0 Control Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
27h	Rese	erved	OCO	OC0 Release Control		00	0 Delay Con	trol

This register specifies OC0 control.

Bit #	Name	l control.	Description	R/W	Default Value
			Description		
7:6	reserved	reserved		R	0h
7:6 5:3			elease as following:		
		3 bit control	OC0 release		
		000	2 scan cycles		
		001	4 scan cycles		
5:3	OC0 Release	010	6 scan cycles	RW	Oh
5.5	Control	011	8 scan cycles	KVV	UII
		100	12 scan cycles		
		101	16 scan cycles		
		110	24 scan cycles		
		111	32 scan cycles		
		Control OC0 d	elay as following:		
		3 bit control	OC0 delay		
		000	2 scan cycles		
		001	4 scan cycles		
0.0	OC0 Delay	010	6 scan cycles	DVV	OI-
2:0	Control	011	8 scan cycles	RW	Un
		100	12 scan cycles		
		101	16 scan cycles		Oh
		110	24 scan cycles		
		111	32 scan cycles		

Register 28h~29h -DOTE Threshold Register

Register	2011 2311 L	OIL IIIIes	illola itegis	tei					
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
28h	bit3~	bit3~bit0 of discharge OTE threshold				reserved			
29h			hit11a	-hit4 of discha	arge OTF thre	shold			

These two registers are used to specify the 12-bit discharge OTE (external over temperature) threshold voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 2ah~2bh -DOTE Release Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
2ah	bit3~bit0	bit3~bit0 of OTE release for discharge OTE				reserved				
2bh			bit11~bit	4 of OTE rele	ase for discha	arge OTE				

These two registers are used to specify the 12-bit discharge OTE (external over temperature) release voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 2ch~2dh -OC0 Threshold Register

1109.010.				· -					
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
2ch		bit7~bit0 of OC0 (level 0 over current) threshold							
2dh		•		bit15~bit8 of (OC0 threshold	t	•		

These two registers are used to specify the 16-bit OC0 (level 0 over current) threshold voltage (-250mV~250mV). Please refer to OC0 protection for detail.

Registers 2eh~37h -Reserved

Register 38h~39h -OV Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
38h		bit3~bit0 of 0	OV threshold			rese	rved	
39h		•		bit11~bit4 of	OV threshold		•	

These two registers are used to specify the 12-bit OV (over voltage) threshold voltage (-300mV~5000mV).

Register 3ah~3bh -OV Release

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
3ah		bit3~bit0 of OV release				reserved				
3bh				bit11~bit4 of	OV release					

These two registers are used to specify the 12-bit OV (over voltage) release voltage (-300mV~5000mV). User should set this OV release voltage lower than OV threshold voltage.

Register 3ch~3dh-UV Threshold

			•-					
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
3ch		bit3~bit0 of UV threshold				rese	rved	
3dh				bit11~bit4 of	UV threshold			

These two registers are used to specify the 12-bit UV (under voltage) release voltage (-300mV~5000mV).

Register 3eh~3fh -UV Release Register

- itogictor		v i tologoo i	togioto:					
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
3eh		bit3~bit0 of	UV release		reserved			
3fh				bit11~bit4 of	f UV release			

These two registers are used to specify the 12-bit UV (under voltage) release voltage (-300mV~5000mV). User should set this UV release voltage higher than UV threshold voltage.

Register 40h~41h -PFVH Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
40h		bit3~bit0 of PFVH threshold				reserved				
41h			b	it11~bit4 of P	FVH threshol	d				

These two registers are used to specify the 12-bit PFVH (high voltage permanent failure) threshold voltage (-300mV~5000mV). User should set this PFVH threshold higher than OV threshold.

Register 42h~43h- PFVL Threshold Register

	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ī	42h		bit3~bit0 of Pl	FVL threshold	l		rese	rved	
Ī	43h			t	it11~bit4 of P	FVL threshold	d		

These two registers are used to specify the 12-bit PFVL (low voltage permanent failure) threshold voltage (-300mV~5000mV). User should set this PFVH threshold lower than UV threshold.

Register 44h~45h -PF-Unbalance Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
44h	bit3~bit0 of PF unbalance threshold						reserved				
45h			bit11	~bit4 of PF ur	nbalance thre	shold					

These two registers are used to specify the 12-bit PF unbalance (unbalance permanent failure) threshold voltage (-300mV~5000mV).

Register 46h~47h -OTI Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
46h		bit3~bit0 of 0	OTI threshold		reserved				
47h		bit11~bit4 of OTI threshold							

These two registers are used to specify the 12-bit OTI (internal over temperature) threshold voltage (100mV~2500mV). Please refer to 'internal Temperature Sensor' section.

Register 48h~49h --OTI Release Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
48h	bit3~bit0 of OTI release reserved							
49h		bit11~bit4 of OTI release						

These two registers are used to specify the 12-bit OTI (internal over temperature) release voltage (100mV~2500mV). Please refer to 'internal Temperature Sensor' section.

Register 4ah~4bh- UTI Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
4ah		bit3~bit0 of U	JTI threshold		reserved			
4bh				bit11~bit4 of	UTI threshold			

These two registers are used to specify the 12-bit UTI (internal under temperature) threshold voltage (100mV~2500mV). Please refer to 'internal Temperature Sensor' section.

Register 48h~49h- UTI Release Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
4ch		bit3~bit0 of	UTI release		reserved				
4dh				bit11~bit4 of	UTI release				

These two registers are used to specify the 12-bit UTI (internal under temperature) release voltage (100mV~2500mV). Please refer to 'internal Temperature Sensor' section.

Register 4eh~4fh -COTE Threshold Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
4eh	bit3	-bit0 of charg	ge OTE thresh	nold		rese		
4fh			bit1	1~bit4 of char	ge OTE thres	hold		

These two registers are used to specify the 12-bit charge OTE (external over temperature) threshold voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

CONFIDENTIAL OZ8920 - DS-V0.50 Page 41

Register 50h~51h -COTE Release Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
50h	bit3~bi	t0 of OTE rele	ease for charg	ge OTE	reserved				
51h		bit11~bit4 of OTE release for charge OTE							

These two registers are used to specify the 12-bit charge OTE (external over temperature) release voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 52h~53h -UTE Threshold Register

	· - · · · · · · · · · · · · · · · · · ·			•					
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
52h		bit3~bit0 of U	TE threshold		reserved				
53h		bit11~bit4 of UTE threshold							

These two registers are used to specify the 12-bit UTE (external under temperature) threshold voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 54h~55h - UTE Release Register

	D.4.	D:/ 0	514-	B.14.4	D140	D.140	B14.4	D140
Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
54h		bit3~bit0 of	UTE release			rese	rved	
55h				bit11~bit4 of	UTE release			

These two registers are used to specify the 12-bit UTE (external under temperature) release voltage (100mV~2500mV). Please refer to 'External Temperature Sensor' section.

Register 56h~57h - Bleeding Start Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
56h		bit3~bit0 of b	leeding start		reserved				
57h		bit11~bit4 of bleeding start							

These registers are used to specify the bleeding start voltage and its LSB is 2.44mv. Only when the cell voltage > the bleeding start voltage, the cell can be in bleeding.

Registers 58h~5ah - Reserved

Register 5bh -Parameter Access Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
5bh	paramete	er access			rese	rved		

This register is used to control access of parameter.

Bit #	Name		Description	R/W	Reset Value
		Control the acc	cess to the parameter data②.		
		parameter			
		access			
7:6	parameter	2'b00	2'b00 The safety scan is disabled; can read/write		0h
7.0	access		parameter data.	RW	OH
		2'b01	The safety scan is enabled; can read/write		
			parameter data. The safety scan is enabled; can read parameter		
		2'b10			

Bit #	Name		Description	R/W	Reset Value
			data, can not write parameter data.		
		2'b11	The safety scan is enabled; can not read		
			parameter; can not write parameter data.		
		It is noted the	se 2 bits themselves can be read out always.		
5:0	Reserved	reserved		R	0h

EE register 5ch ~ 75h are project info data which are used by customer. EE register 75h is mapped to internal register 1bh. Its access is controlled by the EEPROM-mapped 1-bit **project_info_access**.

Current _2nd_offset and GPIO_2nd_offset Registers 5ch~60h

Current 2nd offset Register

Ourrent_2	intent_E _onset itegister									
Address	Bit7									
5ch		Low byte of current 2 nd offset								
5dh		High byte of current 2 nd offset								

GPIO 2nd offset Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
5eh		gpio1 2 ^{hd} offset								
5fh		gpio2 2 nd offset								
60h			•	gpio3 2	nd offset	•		•		

These registers are used to specify the 2nd offset for current, gpio channels.

Reserved Registers 61h

Register 62h~6dh - Factory Name

10-byte registers for factory name (ASCII code) used by the user.

Register 6eh~72h -Project Name

5-byte registers for project name (ASCII code) used by the user.

Register 73h -Version Number

1-byte register for version number used by the user.

Registers 74h - Reserved

Register 75h - Project Info Access Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
75h	project info access				reserved			

This register is used to control access of project info.

Registers 76h~7bh - Reserved

EE register 7ch ~ 7fh are Log data which are used by customer. They can be read out or written always.

Register 7ch - PF Record Register

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
75c		rese	rved		pfvh	pfvl	pf	pf mosfet
							unbalance	fail

This register saves the PF event record. When any individual PF event happens, the related PF record bit will be set to "1".

Registers 7dh~7fh - Reserved

OZ8920 Operation Registers

OZ8920 operation registers from 00h to 7fh store the instant ADC readings, OZ8920 chip status information, etc. They also provide the control registers to control OZ8920's operation.

Register index	Register Name				Bit Nu	ımber			
(hex)	Name	7	6	5	4	3	2	1	0
00	Chip ID & Revision		Chi	p ID			Chip r	evision	
01~04	Reserved				Rese	erved			
05~1b				Маррі	ng from EEPR	OM			
1c~1d	Reserved				Rese	erved			
1e	Safety Event	scan event	RV event	UT event	OT event	SC event	OC event	UV event	OV event
1f	PF Event	pfvh event	pfvl event	pf unbalance event	pf mosfet fail event	reserved	OC0 event	shut o	lown
20	Sleep Event	sleep_expire d_event	integrator_w akeup_event		rv_wakeup_e vent	efetc_wakeup _event	reserved	sleep re	equest
21	Alert Enable	scan event enable	sleep_expire d event enable			rese	reserved		
22	FET Enable			reserved			Precharge enable	Charge enable	Discharge enable
23	FET Disable Status	OC0 disable	RV disable	UT disable	OT disable	SC disable	OC disable	UV disable	OV disable
24	Bleeding Control/ Status	cell8_ bleeding	cell7_ bleeding	cell6_ bleeding	cell5_ bleeding	cell4_ bleeding	cell3_ bleeding	cell2_ bleeding	cell1_ bleeding
25	OV/UV timer		ov t	imer	<u>I</u>		uv t	imer	
26	OT/UT timer		ot ti	imer			ut ti	mer	
27	OC Timer				OC 1	imer			
28	PF timer		rese	erved			PF t	imer	
29	Charge/ Discharge State			OC0 timer			OC0 state	charge state	discharge state
2a	Safety Status	pfvh_state	pfvl_state	pf_ unbalance_ state	pf_ mosfet_fail_ state	ut_state	ot_state	uv_state	ov_state
2b	softeare reset	softwar	e reset		•	rese	rved	•	
2c	Deadman Control			rese	erved			deadmar	control
2d	Deadman Timer	clear deadman timer		reserved		deadman timer			
2e	GPIO Data	gp3 in	gp2 in	gp1 in	gp0 in	GP3 out enable	GP3 out	GP2 out enable	GP2 out
2f	Reserved				rese	served			
30	Cell1 ADC	Low by	te of cell1's le	eft-justified AD	C data		rese	erved	
<u> </u>	_	<u> </u>				TOSCIVCU			

 CONFIDENTIAL
 OZ8920 - DS-V0.50
 Page 45

Register Register Controlled Recipient #115848 printed on 12/4/2007. Updates will be provided to registered

index	Register Name		Bit Number									
(hex)	ranio	7	6	5	4	3	2	1	0			
31	Data		•	High b	oyte of cell1's l	eft-justified AD	C data	•	•			
32	Cell2 ADC	Low by	yte of cell2's l	eft-justified AD	OC data	reserved						
33	Data			High b	oyte of cell2's I	left-justified ADC data						
34	Cell3 ADC	Low by	yte of cell3's l	eft-justified AD	C data		rese	rved				
35	Data			High b	oyte of cell3's I	eft-justified AD	C data					
36	Cell4 ADC	Low by	yte of cell4's l	eft-justified AD	C data	reserved						
37	Data			High b	oyte of cell4's I	eft-justified AD	C data					
38	Cell5 ADC	Low by	yte of cell5's l	eft-justified AD	C data		rese	rved				
39	Data			High b	oyte of cell5's I	eft-justified AD	C data					
3a	Cell6 ADC	Low by	yte of cell6's l	eft-justified AD	C data		rese	rved				
3b	Data			High b	C data							
3c	Cell7 ADC	Low by	yte of cell7's l	eft-justified AD	C data		rese	rved				
3d	Data			High b	oyte of cell7's I	eft-justified AD	C data					
3e	Cell8 ADC	Low by	yte of cell8's l	eft-justified AD	C data	reserved						
3f	Data				oyte of cell8's l	eft-justified AD	C data					
40	Internal Temp ADC Data	Low byte of	•	erature's left-j ata	justified ADC		rese	rved				
41				High byte of ir	nternal temper	ature's left-jus	tified ADC data	3				
42	Gpio1 ADC	Low byte	e of gpio1's o	f left-justified A	ADC data		rese	rved				
43	Data			High b	yte of gpio1's	left-justified Al	OC data					
44	Gpio2 ADC	Low byte	e of gpio2's of	f left-justified A				rved				
45	Data				yte of gpio2's	left-justified AI	OC data					
46	Gpio3 ADC	Low byte	e of gpio3's o	f left-justified A	ADC data	reserved						
47	Data			_	yte of gpio3's							
48	Current ADC Data				te of current's							
49				High by	te of current's		DC data					
4a	Group1 Offset				· · · · · · · · · · · · · · · · · · ·	1 offset						
4b	Group2					2 offset						
4c	Current Offset	Low byte o	f Current offs	et's left-justifie	d ADC data		rese	rved				
4d				High byte	of Current offs	set's left-justified ADC data						
4e~5a	Reserved		res				served					
5b	Reserved				rese	served						
5c	EEPROM Data			•		g data or read back data						
5d				High byt	te of ee writing	g data or read back data						
5e	EEPROM Address	reserved				ee address						

Bit Number

CONFIDENTIAL OZ8920 - DS-V0.50 Page 46

_	Register Name	Bit Number								
(hex)		7	6	5	4	3	2	1	0	
5f	EEPROM Control	ee busy	ee mode			ee op_code				
60-7f	Reserved			Reserved						

Detailed Operation Register Information

Register 00h-Chip ID & Revision Register

Bit #	Name	Description	R/W	Reset Value
7:4	Chip ID	This indicates the chip ID of OZ8920s	R	1h
3:0	Chip Revision	This indicates the chip revision of OZ8920. "0" indicates A version.	R	0h

Register 01h~04-Reserved

Register 05h-Cell Number Register

This register is mapped from EE register 15h.

Register 06h~19h-Parameter Data

These registers are mapped from EE register 16h~5bh.

Register 1ah~1bh-Project Info

These registers are mapped from EE register 5ch~75h.

Register 1ch~1dh-Reserved

Register 1eh-Safety Event Register

Bit #	Name	Description	R/W	Reset Value
7		When an adc scan is completed, this bit will be set to "1". Once this bit is set to "1", it will be kept until software clears it by writing "1" into this bit.	RW	0h
6	RV event	When RV (reverse voltage) happens, this bit will be set to high. And then it is kept as "1" until software clears it by writing "1" into this bit.	RW	0h
5	UT event	Once UT (under temperature) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h
4	OT event	Once OT (over temperature) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h
3	SC event	Once SC (short circuit) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h
2	OC event	Once OC (over current) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h
1	UV event	Once UV (under voltage) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into this bit.	RW	0h

	0	OV event	Once OV (over voltage) event happens, this bit will be set to "1". And then it is kept as "1" until software clear it by writing "1" into	RW	0h
ı			this bit.		

Register 1fh- PF Event Register

Bit #	Name	Description	R/W	Reset Value
7	pfvh event	When the pfvh is detected, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
6	pfvl event	When the pfvl is detected, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
5	pf unbalance event	When the pf unbalance is detected, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
4	pf mosfet fail event	When the pf mosfet fail is detected, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
3:2	reserved	Reserved.	R	0h
2	OC0 event	When OC0 is detected, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
1:0	software shut down	In software mode, if these bits are "01", the chip will be shut down; when these bits are "00", "10", "11", the chip will work normally. In hardware mode, this bit is ignored.	RW	10h

Register 20h-Sleep Event Register

Bit #	Name	Description	R/W	Reset Value
7	sleep_expired_event	when the sleep timer is expired, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.		0h
6	integrator_wakeup_event	When the wakeup from wakeup integrator block is acvite, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
5	sc_wakeup_event	In sleep state, when the sc_wakeup signal is active, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
4	rv_wakeup_event	In sleep state, when the rvp signal is active, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	RW	0h
3	efetc_wakeup_event	In sleep state, if efetc shut down function is enabled, when efetc pin is active, this bit will be set to "1" and be kept until the software clears it by writing "1" into this bit.	R	0h
2	reserved	Reserved.	R	0h
1:0	sleep request	Request sleep. In software mode, if these bits are "01", the chip will enter into sleep state (if no events (OV, OC, OC0, SC, OT, UT, pfvh, pfvl, pf unbalance, pf mosfet fail, no bleeding, not charge state, not discharge state; if there is any of events, the chip will stay in the full power mode even this sleep request bits are set "01"); if these bits are "00", "10", "11", the chip will go to full power state from sleep state. In hardware mode, these bits will be ignored.	RW	10h

If any of sleep_expired_event, integrator_wakeup_event, sc_wakeup_event, rv_wakeup_event is found, the alert_n will be active to inform the software.

Register 21h-Alert Enable Register

Bit #	Name	Description	R/W	Reset Value
7	scan event	If this bit is set to "1", when scan event happens, the interrupt	RW	0h

 CONFIDENTIAL
 OZ8920 - DS-V0.50
 Page 48

Bit #	Name	Description		Reset Value
	enable	signal alert_n will be active; If this bit is set to "0", the scan event will not make the interrupt signal alert_n active.		
6	Sleep expired	If this bit is set to "HIGH", when sleep expired event happens, the interrupt signal alert_n will be active. If this bit set to "LOW", the ADC event will not make the interrupt signal alert_n active.	RW	0h
5:0	Reserved	Reserved	R	0h

In software mode or hardware mode, any safety events including RV event, UT event, OT event, SC event, OC event, OC0 event, UV event, OV event, PFVH event, PFVL event, PF unbalance event, PF mosfet fail event, any sleep events including integrator wakeup event, SC wakeup event, RV wakeup event, EFETC wakeup event will make AlertN pin active to inform the software; additionally if scan event enable bit is "1", scan event will make alertn pin active; and more, if sleep expired event enable bit is "1", sleep expired event will make alertn pin active.

Register 22h-FET Enable Register

Bit #	Name	Description	R/W	Reset Value
7:3	Reserved	Reserved.	R	0h
2	PreCharge enable	In software mode, if "1", turn on the precharger FET if the safety check doesn't force the FET to turn off; if "0", turn off the precharger FET unconditionally. In hardware mode, this bit is ignored.	RW	0h
1	Charge enable	In software mode, if "1", turn on the charger FET if the safety check doesn't force the FET to turn off; if "0", turn off the charger FET unconditionally. In hardware mode, this bit is ignored.	RW	0h
0	Discharge enable	In software mode, if "1", turn on the discharger FET if the safety check doesn't force the FET to turn off; if "0", turn off the discharger FET unconditionally. In hardware mode, this bit is ignored.	RW	0h

Register 23h-FET Disable Status Register

Bit #	Name	Description	R/W	Reset Value
7:0	OT, SC, OC, UV, OV disable	Each of bits 7~0 will be set by OZ8920 in response to the safety event continues for some delay time. And the bits can be cleared automatically after some time when the corresponding events disappear.	R	0h

Register 24h-Bleeding Control/Status Register

Bit #	Name	Description	R/W	Reset Value
7	cell8_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. If "1", enable cell8 bleeding; if "0", disable cell8 bleeding. When hw_bld_support = 1 (select hardware bleeding), this bit is read only indicating cell8 is in bleeding.		0h
6	Cell7_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. If "1", enable cell7 bleeding; if "0", disable cell7 bleeding. When hw_bld_support = 1 (select hardware bleeding), this bit is read only indicating cell7 is in bleeding.	RW/R	0h
5	Cell6_bleeding	When hw_bld_support = 0 (select software bleeding), this bit is readable/writeable. if "1", enable cell6 bleeding; if "0", disable cell6 bleeding.	RW/R	0h

Bit #	Name	Description	R/W	Reset Value
DIL#	INAITIE	When hw_bld_support = 1 (select hardware bleeding), indicate	IX/VV	Neset value
		cell6 is in bleeding, this bit is read only.		
		When hw_bld_support = 0 (select software bleeding), this bit is		
4	Cell5_bleeding	readable/writeable. if "1", enable cell5 bleeding; if "0", disable	RW/R	0h
		cell5 bleeding.	,	.
		When hw_bld_support = 1 (select hardware bleeding), this bit		
		is read only indicating cell5 is in bleeding.		
		When hw_bld_support = 0 (select software bleeding), this bit is		
3	Cell4_bleeding	readable/writeable. if "1", enable cell4 bleeding; if "0", disable	RW/R	0h
3	Cell4_bleeding	cell4 bleeding.	1000/10	OH
		When hw_bld_support = 1 (select hardware bleeding), this bit		
		is read only indicating cell4 is in bleeding, this bit is read only.		
		When hw_bld_support = 0 (select software bleeding), this bit is		
2	Cell3_bleeding	readable/writeable. if "1", enable cell3 bleeding; if "0", disable	RW/R	0h
		cell3 bleeding.	KVV/K	OH
		In hardware mode, this bit is read only indicating cell3 is in		
		bleeding, this bit is read only.		
		When hw_bld_support = 0 (select software bleeding), this bit		
	CallO blacalina	is readable/writeable. if "1", enable cell2 bleeding; if "0", disable	RW/R	Ol-
1	Cell2_bleeding	cell2 bleeding.	RVV/R	0h
		When hw_bld_support = 1 (select hardware bleeding), this bit		
		is read only indicating cell2 is in bleeding, this bit is read only.		
		When hw_bld_support = 0 (select software bleeding), this bit is		
	Outld to be a discour	readable/writeable. if "1", enable cell1 bleeding; if "0", disable	DW//D	01.
0	Cell1_bleeding	cell1 bleeding.	RW/R	0h
		When hw_bld_support = 1 (select hardware bleeding), this bit		
		is read only indicating cell1 is in bleeding, this bit is read only.		

Register 25h-OV/UV Timer Register

Bit #	Name	Description		Reset Value
7:4	ov timer	ov timer(unit is a scan cycle)	R	0h
3:0	ut timer	uv timer(unit is a scan cycle)	R	0h

Register 26h-OT/UT Timer Register

Bit #	Name	Description		Reset Value
7:4	ot timer	ot timer(unit is a scan cycle)	R	0h
4:0	ut timer	ut timer(unit is a scan cycle)	R	0h

Register 27h–OC Timer Register

Bit #	Name	Description	R/W	Reset Value
7:0	OC timer	It indicates the OC timer. When OC delay, Its unit is OC delay unit controlled by OC delay register; when OC release, the unit is 0.25s.	R	0h

Register 28h-PF Timer Register

Bit	# Name	Description	R/W	Reset Value
7:6	Reserved	Reserved.	R	0h
3:0		PF timer(unit is a scan cycle).	R	0h

Register 29h-Charge/Discharge State Register

- 5					
Bit #	Name	De	escription	R/W	Reset Value

7:3	OC0 timer	5-bit OC0 timer.		0h
2	OC0 state	OC0 state indicating OC0 is detected.	R	0h
1	charge state	Indicates OZ8920 is in charge state. If "1", in charge state; if "0", not in charge state.		0h
0	discharge state	Indicates OZ8920 is in discharge state. If "1", in discharge state; if "0", not in djscharge state.	R	0h

Register 2ah-Safety Status Register

Bit #	Name	Description	R/W	Reset Value
7	pfvh_state	Indicate pfvh is detected.	R	0h
6	pfvl_state	Indicate pfvl is detected.	R	0h
5	pf unbalance state	Indicate pf unbalance is detected.	R	0h
4	pf mosfet state	Indicate pf mosfet fail is detected.	R	0h
3	ut_state	Indicate UT is detected.	R	0h
2	ot_state	Indicate OT is detected.	R	0h
1	uv_state	Indicate UV is detected.	R	0h
0	ov_state	Indicate OV is detected.	R	0h

Register 2bh-Software Reset Register

Bit #	Name	Description	R/W	Reset Value
7:6	software reset	When software writes "01" into these bits, a software reset pulse is generated to reset the safety scan engine; when writes "00", "10", "11", there is no effect. If software reads this bit, "00" is read out always.	RW	0
5:0	reserved	reserved	R	0

Register 2ch-Deadman Control Register

Bit #	Name	Description		R/W	Reset Value	
7:2	Reserved	Reserved.		R	0h	
		Specify the deadman time as following table:				
	1:0 deadman control	deadman control	deadman expired time	RW		
1.0		00	deadman check is disabled.		0h	
1.0		01	4 seconds			
		10	8 seconds			
		11	16 seconds			

Deadman check function is enabled by a non-zero value to "deadman control" register. If deadman check is enabled, OZ8920 will increment the deadman timer every second when the safety scan is enabled. The software needs to do as following:

- Read the deadman timer by reading the register 2dh
- Write "1" into the bit 7 "clear timer" of register 2dh to clear the deadman timer.

If the handshake between OZ8920 and the software is normal, the software will clear the deadman timer before the dedman timer reaches the deadm expired time. In a result no deadman is found.

If the handshake has some problems, the software can not clear the deadman timer in time, while the deadman timer will do +1 every second. After some time, the deadman timer will reach the deadman expired time. In a result, OZ8920 will send out a 64ms low active pulse to RSTN pin to reset the external uP.

CONFIDENTIAL OZ8920 - DS-V0.50 Page 51

It is noted that when starting up the deadman check, it's possible to get a false deadman. To avoid this problem, do the above handshake procedure immediately after writing a non-zero value to "deadman control".

Register 2dh-Deadman Timer Register

Bit #	Name	Description	R/W	Reset Value
7	7 clear deadman timer. If write "1" into this bit, the deadman timer will be cleared to "0"; if write "0" into this bit, no effect on the deadman timer. When read this bit, "0" is read out always.			0h
6:4	reserved	Reserved.	R	0h
3:0	deadman timer	the deadman timer and its unit is 1s.		0h

Register 2eh-GPIO Enable & Data Register

Bit #	Name	Description	R/W	Reset Value
7	gp3 in	gpio3 input.	R	0h
6	gp2 in	gpio2 input	R	0h
5	gp1 in	gpio1 input	R	0h
4	gp0 in	gpio0 input	R	0h
3	gp3 out gp3 out enable gp3 is configured as a digital pin, enable gp3 output. If "1", enable gp3 output (output bit2 gp3 out); if "0", disable gp3 output.		RW	0h
2	gp3 out	the gpio3's output data.		0h
1	gp2 out enable	If gp2 is configured as a digital pin, enable gp2 output. If "1", enable gp2 output (output bit0 gp2 out); if "0", disable gp2 output.	RW	0h
0	gp2 out	the gpio2's output data.	RW	0h

Register 2fh-Reserved Register

Register 30h~3fh-Cell Voltage ADC Data Register

These registers are used to store the cell1~cell8's left-justified ADC data which LSB is 2.44mv (5000mv/2048). The cell1~cell4's adc data are the adjusted value with the corresponding group1 offset register (4ah); the cell5~cell8's adc data are the adjusted value with the corresponding group2 offset register (4bh).

In adc fft mode, the adc data is the raw data without the adjustment and stored in current adc data registers (48h, 49h).

Register 40h~41h–Internal Temperature ADC Data Register

These registers are used to store the internal temperature's left-justified adc data which LSB is 1.22mv (2500mv/2048).

Register 42h~47h–GPIO ADC Data Register

These registers are used to store the 3 gpios's left-justified adc data which LSB is 1.22mv (2500mv/2048).

Register 48h~49h-Current ADC Data Register

These registers are used to store the current's left-justified adc data which LSB is 7.63uv (250mv/32768). The adc data is the adjusted value with the current offset register (4ch, 4dh). In adc fft mode, the adc data is the raw data without the adjustment with current offset.

CONFIDENTIAL OZ8920 - DS-V0.50 Page 52

Register 4ah~4dh-Group1, Group2, Current Offset Register

These registers are used to store the group1 offset, group2 offset, current offset in 2's format.

For register 4ah, 4bh, offset = N*2.44mv (N:-128~127); For register 4ch & 4dh, offset = N*7.63uv (N:-2048~2047).

Register 4eh~5bh-Reserved Register

Register 5ch~5dh-EEPROM Data Register

When writing word into EEPROM, this register is used to store the writing data; when read word from EEPROM, this register is used to store the read back word. When writing byte into EEPROM, register 5ch is used to store the writing data; register 5dh is not used.

To save the gate count, in adc fft mode, the bit3~bit0 of register 5ch can be used to specify the adc channel.

Register 5eh-EEPROM Address Register

	Bit #	Name	Description	R/W	Reset Value
I	7	Reserved	Reserved.	R	0h
	6:0	ee address	ee_address[6:1] are used to specify the EEPROM's word address. For byte write, ee_address[0] is used to specify the high or low byte. If "0", select the low byte; if "1", select the high byte.	RW	0h

Register 5fh-EEPROM Control Register

Bit #	Name	Description			Reset Value
7	ee_busy	This bit is high indicating the E After the access, it is low. Only software can start another EE	y when this bit is low, the	R	0h
6:4	ee_mode	These bits are used to select EEPROM mode. If set to "101", select EEPROM mode; if set to other values, select non-EEPROM mode. In EEPROM mode, software can access the EEPROM and the safety scan is disabled. In non-EEPROM mode, software can not access the EEPROM.			0h
3:0	ee op code	These bits are used to specify following: ee_op_code 4'b0000 4'b0011 4'b0011 4'b0100 4'b0111 4'b0110 4'b0111 4'b1000 4'b1001 4'b1010 4'b1011 Others	the EEPROM's accesses as Access no access Word erase Word write Block erase Block Write Normal read Internal high test read External high test read External low test read Block read Byte write Reserved	RW	0h

Register 60h ~ 7fh - Reserved Registers

User Configurable Parameters

In order to make OZ8920 work normally and protect the battery pack, user should configure EEPROM registers correctly. Instead of setting EEPROM registers in binary code, O2Micro developed a software utility (Taurus) to help end user configure the EEPROM registers easily understandable, intuitive engineering parameters.

Group	Name	Units/Steps/Values	Description
Battery Setting	CellNumber	5-8 Li battery in series	To set the number of the battery Pack cells
Mode	HWMode		Hard/Software Mode selection
Mode	EFETC Mode		To set the EFETC control mode
	SMBUSAddress	N: 4 bits, Addr: 60h+2*N Support up to 16 devices	SMBUS address setting
SMBUS Configuration	PECEnable		Enable packet error check based on SMBUS protocol
	SDA delay enable		Enable the extra delay on SDA input line
	RV Control	Disable,2,4,8 ms	Reverse Voltage function control
GPIO Config	GP1 mode		GP1 function selection
GF10 Coning	GP2 mode		GP2 function selection
	GP3 mode		GP3 function selection
	PreCHGEnable		Pre-charge function enable
Options	Rsense	mOhm	The value of the sense resistor (Rs)
	Parameter Access		Control the access to parameter data
	CHGCurrentTH	8~64 ADC LSB / Rs	Charge current threshold
	DSGCurrentTH	-128~-16 ADC LSB / /Rs	Discharge current threshold
Idle Mode Configuration	ScanRate	0.5,1,2,4,6,8,12,16, seconds	To Specify the protection scan period in Idle Mode
	Auto Scan Enable		Auto Scan Control
	SleepEnable		Enable the sleep mode
Sleep Mode Configuration	SleepTime	0-15 Minutes step:1 Min	To select the period of sleep mode, after every sleep interval the chip will do protection scan
OC/SC Configuration	CHGOverCurrentTH	-20mV/Rs-135mV/Rs with step of 5mV/Rs	Charge over current threshold
	DSGOverCurrentTH	0mV/Rs-315mV/Rs with step of 5mV/Rs	Discharge over current threshold
	OverCurrentDelay	2ms-16.3s	Over current delay time
	ShortCurrentTH	50mV/Rs-620mV/Rs with step of 10mV/Rs	Short current threshold

Controlled Recipient #115848 printed on 12/4/2007. Updates will be provided to registered

CONFIDENTIAL OZ8920 - DS-V0.50 Page 55

Group	Name	Units/Steps/Values	Description
	SC Delay	4us-32.6mS	Short current delay time
	DOC Release Time	External, 1~31s	DOC release time setting
	COC Release Time	1~32s	COC release time setting
	SC Release Time	0.25~1.75min with step of 0.25min	SC release time setting
	OC0 Delay Time	2~32 scan cycle	OC0 delay time setting
	OC0 Rlease Time	2~32 scan cycle	OC0 release time setting
	OC0 Threshold	Signed 16 bits data (negtive)	OC0 threshold
	OverVoltageTH	0-5V	Over voltage(OV) threshold voltage setting
0)/////	OVRelease	0-5V	OV release voltage setting
OV/UV Configuration	UnderVoltageTH	0-5V	Under voltage(UV) threshold voltage setting
	UVRelease	0-5V	UV release voltage setting
	OVUVDelay	1~16 scan cycle	OV and UV delay time setting
	COTE TH	°C	Charge external over temperature threshold
	COTE Release	°C	Charge external OT release
	DOTE TH	°C	Discharge external over temperature threshold
	DOTE Release	°C	Discharge external OT release
OT/UT Configuration	UTE TH	°C	External under temperature (UT) threshold
	UTE Release	°C	External UT release
	ОТІ ТН	°C	Internal OT threshold
	OTI Release	°C	Internal OT release value
	UTI TH	°C	Internal UT threshold
	UTI Release	°C	Internal UT release value
	OTUTDelay	1-16 scan cycle	OT UT delay time setting
	PF Record		PF record register
	PFVHTH	0-5V	Permanent failure(PF) high voltage threshold set
	PFVLTH	0-5V	PF low voltage threshold setting
PF Configuration	PFDelay	1-16 scan cycle	PF delay time
	PFVHEnable		PFVH function enable
	PFVLEnable		PFVL function enable
	MOSFailEnable		PF of MOSFET failure enable
	PFUnbalanceEn		PF of the cell unbalance enable
<u> </u>	PFUnbalanceTH	0-2.5V	PF of the cell unbalance threshold
Bleeding	BleedEnable		Bleeding function enable

 CONFIDENTIAL
 OZ8920 - DS-V0.50
 Page 56

Group	Name	Units/Steps/Values	Description
Configuration	ExtBleedSel		To select the external or internal bleeding method
	BleedCellNumber	1-4	Max bleeding cell number in external bleeding method
	BleedAll		Enable all cell bleeding option
	Idle Bleed Enable		Enable bleed in idle state
	BleedStartPoint	0-5V	Bleeding start point voltage
	BleedAccuracy	9.76, 19.50, 29.30, 39.00, 48.80, 58.56, 68.30, 78.10mV	Bleeding accuracy setting

PACKAGE INFORMATION

48L LQFP 7x7mm Package Outline Drawing

DIMENSION (MM)

SYMBOL

MIN NOR MAX Α 0.05 0.15 1.35 1.40 1.45 С 9.00 BSC 7.00 BSC Е 9.00 BSC E1 7.00 BSC 0.50 BSC е L 0.45 0.75 1.00 REF L1 θ

0°

12° TYP

NOTE:

1. REFER TO JEDEC STD MS-026 BBC

 CONFIDENTIAL
 OZ8920 - DS-V0.50
 Page 58

IMPORTANT NOTICE

No portion of O_2 Micro specifications/datasheets or any of its subparts may be reproduced in any form, or by any means, without prior written permission from O_2 Micro.

 O_2 Micro and its subsidiaries reserve the right to make changes to their datasheets and/or products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

 O_2 Micro warrants performance of its products to the specifications applicable at the time of sale in accordance with O_2 Micro's standard warranty. Testing and other quality control techniques are utilized to the extent O_2 Micro deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customer acknowledges that O_2 Micro products are not designed, manufactured or intended for incorporation into any systems or products intended for use in connection with life support or other hazardous activities or environments in which the failure of the O_2 Micro products could lead to death, bodily injury, or property or environmental damage ("High Risk Activities"). O_2 Micro hereby disclaims all warranties, and O_2 Micro will have no liability to Customer or any third party, relating to the use of O_2 Micro products in connection with any High Risk Activities.

Any support, assistance, recommendation or information (collectively, "Support") that O_2 Micro may provide to you (including, without limitation, regarding the design, development or debugging of your circuit board or other application) is provided "AS IS." O_2 Micro does not make, and hereby disclaims, any warranties regarding any such Support, including, without limitation, any warranties of merchantability or fitness for a particular purpose, and any warranty that such Support will be accurate or error free or that your circuit board or other application will be operational or functional. O_2 Micro will have no liability to you under any legal theory in connection with your use of or reliance on such Support.

COPYRIGHT © 2005-2007, O₂Micro International Limited