a) i) of (4-3x) = 6(4-3x	$(\vec{u}) d x^2 e^{1x} = u^{1} + u^{1}$ $u^{2} x^{2}$ $u^{2} 1x$ $v = e^{1x}$ $v = e^{1x}$ $v^{2} e^{1x}$ $u^{2} 1x$ $v^{2} e^{1x}$ $u^{2} 1x$ $v^{2} 1$	2 + 3 + 3 + 5 0	$(ii) s_{20} = \frac{37}{100} (iii) s_{20} = \frac{a}{100} (iii) s_{20} = \frac{a}{100} (iii) s_{20} = \frac{34}{100} (iii) (iii) s_{20} = \frac{34}{100} (iii) s_{20} = \frac{34}{100} (iii) s_{20} = \frac{34}{100} (iiii) s_{20} = \frac{34}{100} (iiii) s_{20} = \frac{34}{100} (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii$
(Q2 contd) (y) AABC is isosceles if exactly 2 sides on equal. L2: 2+4-7=0 sub.y=1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	das = dac + dac
Suestion 2 a) 127-13+118 = 19x3-13+118 = 313-13+312	<u>~</u>		(ii) $sub y = 1 \text{ it.} L_1$ (iv) $Sub y = 1 \text{ it.} L_1$ (iv) $Sub y = 1 \text{ it.} L_2$ (v) $Sub y = 1 \text{ it.} L_3$ $Sub y = 1 \text{ it.} L_4$
Trial HSC 1998 Solutions Solutions (Suestion!	b) 23.1 = 0.081994821 53.6 × 125.04 = 0.0820 (35.9.49)	c) $\frac{d}{dx} \tan(\frac{1}{2}x) = \frac{1}{2} \cdot \sec^{2}(\frac{x}{2})$ d) $2 - 3p \cdot 47$ $- 3p \cdot 45$ $p > -5$	$y = 54^{\circ} + 90^{\circ}$ $= 144^{\circ}$ $f) - \frac{x-2}{2} + \frac{x+1}{5} = 2$ $5(x-2) + 2(x+1) = 2 \times 2 \times 5$ $5x - 10 + 2x + 2 = 20$ $7x - 8 = 20$ $7x = 28$ $7x = 28$

	Question S	a) 5 function values 1.4 strip	A A	h.	+ 1		A==3-(-30-ty-+242+ty3+:	3(0+4x1.386 + 2x3.2	+4×5.545 + 8.04	= 14.121	= 14.12 units (2d.p.)		b) y = 2x2 -4x+1	.=]		1.0n	-4×	1- 4- 25- x		(x-1)= 14+2		vertex is at (1,-1).	$(u_1) 4\alpha = \frac{1}{2}$		∞	(ii)] - " z	100				_
(Q4 contid)	if y'= 322-62-9	Then y : 6x - 6	at x=3, y"= 6x3-6	O ^	. (3,-18) is concert up	min.		1 2 (1-) x 3 = " g " = (-= x - to	0 7		max		o="" + ta sta noix sit (iii)	9-29=0	- u × ::	9+x3-2x2-6x=6.	= 13-3(1)-1(1)+9	2-2	: infl. pt. at (1,-2)	is cult charges from	concave clown to	CONCAUX. UP. at (1,-2).	(ix) y-intercept at x=0	200	₹ 14	5	(0.0)		(3,-(8)	AS X & SQ + X SQ + X SQ	asx- p, g->00	-
	Question 4	a)(1) 6 = c + a - 2ac cos B	= 3.312 + 4.562 - 2x3.31x 4.56	× Cas 46.21	31.7497 - 20.798598		= 3.31 (2d.p.)		(4) A: Lac SinB	2 x 4.56 x 3.3 x Six 4627	: 5.4697	A = Sm = (to manest mt)	:::::::::::::::::::::::::::::::::::::::	(d - 3x² - 4x - 9	3	i) y = J 3x2-6x-9 dx	7 x 2 - 3 x + - 9 x + C	through (1, -2)	2 = (1) - 3(1) - 9(1) + c	-2=1-3-9+6	6 = 2 ::	: 4 = 2 = - 3 x 9 x + 9 is		ii) stat. pts. when y'= 0		0: x2 - 2x -3	()+x)(2-x) = 0	1-28 00 K Z Z	Sub. Into 4=x3-3x2-9x+9			_
(23 contin.)	ky: 6 (2)	, , ,	at x=1, y=1	II.		Mr. "- (at x=1, y=ha!	<u> </u>	('\tilde{\t	(1-x)1-10-1	1+ 2- 5 5	S! 0= 1- h+x:	the normal.														:	:			

(86 cont/d)	1 + 1.005 + + 1.005 59 15 A G.S. with x=1, r=1.005, 5.0 = 1 ((1.005 to 1)) = 1 ((1.005 to 1))	M : \$1159.97			
(ale contid)	() \$60 000 r=18per month n=5 x 12 = 60 months M=monthy repayment i) After 1 month Bruce	ii) After 2 morths Bruces iii) After 2 morths Bruces owes $A_t = A_t \times 100S - M$ $= ($b000000000 - M)$ $\times 100S - M$ $\times 100S - M$	$A_{3} = A_{2} \times 1005 - M$ $= ($6000 \times 105^{2} - 1005 M$ $- M_{3} = $6000 \times 105^{3} - 100^{3} M$ $= 1005 M - M$ $= $[6000(1.005)^{3}$ $= M[1.005^{4} + 1.005 + 1]]$	##) A = \$60000 × 1.005" - M (1+1.005 × 1.005 ² + + 1.005 ⁿ⁻¹) but n = 60 mooths	$= \frac{6 \times 000 \times 1.005}{1.005} \times 0.005 $
	Question 6 a) $y = \sin x$ (oots like $\frac{1}{2\pi} = \pi$ $y = \sin 2x$ has period $\frac{2\pi}{2} = \pi$ (i) $\frac{\pi}{2}$	X X X X X X X X X X X X X X X X X X X	12 2 12 13 13 13 13 13 13 13 13 13 13 13 13 13	1) from t-0 to 3 it tauelled from 25 to t it. 9 me tos to t-8 from t-3 to t-8 it travelled from 2-3 to -1	four t=8 to 10 it tavelled In. total distance=9+4+1
(as contd)	5	NMP = 40° angle of a Ketangle) NMP = PÔR MN PO (OPO Sides OF a 'ectangle) MNP = OR (Otternate Ls, MN PO)	(ii) MN = aP (corresp. L's equal) (iii) MN = aP (corresp. SimilarAs)	αρ 4 cm PQ = 4 cm	

(98 card)	ii) Area = Jostanx dx - Jostanx	. A: [. G. cosx]3 - [2005x]3	A = (-10 cos # 6.0050)	- (-2cos Z - 2cos O)	3	= - 1/2 + 0 + 1 + 2	= 3 · 6 ½																									
	Question 8	a) 15,18,21,24	A.S. d: 21 -18 a=15	1 0 M	1) 4, 3, a + (n:1)d		= 168 cars		11) S= = = (a+6)	(891 + 51) 2 =	. 4758 cars		b) (3 x dx = [= (1, x = 1)]3	, (1	= 1/24(32+1) - 1/4(1°+1)	= 2410 - 2412	≈ 0.8047/89.56		() 42 tanx 4 325inx	i) tanx		28,7x = 2x sin #	15/4 7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	; 43		r.m		1) di (x cos x) : q cos x	A3 605×	1 20/5- 2	XVX	
	$0) = \chi (i)$	5 = (x (1+2t)	1 + 2 t	- d	≈ 73.7 sccondo		W) V = 2	1+24	z z	1+65-1	7 2	89	× 0.013475894.	A. z 4	1 1	4		× 1.82×10-4		iv) since v= 2 and t=0	17.24	then V20 forall t	similarly and for all &	always moving in a	positive direction	it does not charge	direction					
4	Que stion 7	a) z2 + (k+3)x - k =0	4	-(K+3) ((K, K)) - K+10K+9	1921 Lasts when A >0	1. K2 + 10k +930	(K+9)(K+1) 20.	1-27/6-27	++	4		1-27 or K2-1		b) if Vis dec. at an inc. rate	1) AV 40 and AVV 40		→ (n			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		C) -2 = 5 + (x(1+2+)		X,	= # (5 + (1+2£))			A = dv		2 - 2	= -2×24	

(210 0000)	1. V & 5.7596 units	$\mathcal{L}_{\mathbf{r}}$	\frac{7}{4^2}
	Trz Question 10	where $S_{\infty} = a$	**************************************
(ad contide)	hence, L = 1000 + 4x + 17	1) L is a minmum 1	
	Question 9	2x 12x + 4x 0 2x	000 01 = h