fzymodel

— Version 2.9 as of 29 July 2020 —

 $A\ neuro-fuzzy\ modeling\ tool$

Manfred Männle, 2020

Contents

1	Licen	se	4
2		duction	
3	Instal	llation	(
1	Code	description	,
	4.1	main	8
	4.2	Real	9
	4.3	mode_type	9
	4.4	Global constants	,
	4.5	Fuzzy Set constants	1
	4.6	Global variables	1
		4.6.1 Options and settings for all modes	20
		4.6.2 Options for mode == MODELING	2^{4}
		4.6.3 Options for mode == PRINT_SETS	3
		4.6.4 Options for mode == ESTIMATION or SIMULATION.	3
		4.6.5 Options for mode == SIMULATION	3
		4.6.6 Options for mode == MAKE_DATA	3
		4.6.7 Options for mode == NORMALIZE	3
	4.7	Help functions	3
	4.8	Error and exception handling	4
		4.8.1 Error	4
		4.8.2 FileOpenError	4
		4.8.3 IncompleteCoverageError	4
		4.8.4 ConsdimError	4
		4.8.5 ParseError	4
		4.8.6 SystemCallError	4
		4.8.7 SVDError	4
		4.8.8 FunctionUndefinedError	4
	4.9	Main modules	4
	4.10	Fuzzy Set funtions	4
	4.11	FSet	4
	4.14	FRule	5
	4.17	FModel	5
	4.20	Data	6

Takagi/Sugeno/Kang Fuzzy Modeling

fzymodel is a collection of tools for fully automatic modeling of Takagi/Sugeno/Kang-type neuro-fuzzy models (systems identification), normalization of data sets, and systems simulation.

Here is a list of highlights:

- sigmoidal or trapezoidal fuzzy sets
- RPROP and SVD parameter optimization (deep learning), heuristic search of fuzzy rules (fzymodel)
- estimation, i.e. one-step prediction (fzyestim)
- simulation, i.e. multiple step prediction (fzysimul)
- LaTeX output of fuzzy rules, graphical visualization of fuzzy sets (fzy2sets)
- normalization of input data (fzymkdat)

For an introduction to the philosophy of ${\tt fzymodel}$ go on reading the Introduction.

1 License

License

MIT License

Copyright (c) 1999, 2020 Manfred Maennle

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 $\mathbf{2}$

Introduction

The fzymodel package provides a set of tools to build and evaluate TSK-type neuro-fuzzy model.

In order to make investigations and results easier to reproduce it is recommended to use fzymodel and its derivatives through shell scripts or similar. Therefore, all the tools are command line based and provide options to set relevant parameters.

For a usage description type fzymodel -h, fzyestim -h, fzysimul -h, fzymkdat -h, or fzy2sets -h.

The algorithm for structure and parameter optimization (deep learning) is described in my scientific papers and PhD thesis.

3

Installation

For installation go to the src directory, edit the Makefile (in particular the destination path), and type make install.

The installation is tested for Sun Solaris and Linux. You must use GNU make, gcc is recommended. You need to have the TNT (template numerical toolkit) library installed; set the include path INCPATH accordingly. You need to have flex and bison properly installed.

To remake the documentation you need doc++ version 3.3 or later and pdflatex. For this, go to the src directory and type make doc, then go to the doc/tex directory and check doc.pdf.

If you encounter problems during installation or usage, contact the author at fzymodel@maennle.org.

The source code is split into the files:

- global.{hh|cc}: command line options and global variables and functions
- main.{hh|cc}: parse command line, print help, catch exceptions
- fzymodel.{hh|cc}: TSK modeling
- fzyestim. {hh|cc}: estimation, one-step prediction
- fzysimul. {hh|cc}: simulation, multiple step prediction
- fzy2sets.{hh|cc}: print tex description of a model
- fzymkdat. {hh|cc}: prepare (normalize) training/validation data
- fmodel.{hh|cc}: fuzzy model class
- data.{hh|cc}: training/validation data class
- svd. {hh|cc}: singular value decomposition
- data_lex.{1|h}: parse data files
- fzy_prs.y, fzy_lex.{1|h}: parse fuzzy model files (.fzy)

4.1		main	
4.2	typedef	Real	
4.3	enum	mode_type	
4.4		Global constants	5
4.5		Fuzzy Set consta	ants
4.6		Global variables	
4.7		Help functions	
4.8		Error and excep	tion handling
4.9		Main modules	
4.10		Fuzzy Set funtion	ns
4.11	class	FSet	
4.12	typedef	Premise	
4.13	typedef	Consequence	
4.14	class	FRule	
4.15	typedef	FSetContainer	
4.16	typedef	FRuleContainer	
4.17	class	FModel : public I	Function
4.18	#define	DATA_HH	we only have one function to minimize
4.19	typedef	Uvector	
4.20	class	Data	
4.21	void	Matrix <rea< td=""><td>x<real>& A, Matrix<real>& Q, al>& U, al>& V) throw(SVDError)</real></real></td></rea<>	x <real>& A, Matrix<real>& Q, al>& U, al>& V) throw(SVDError)</real></real>

____ 4.1 ____ main

Names

4.1.1	int	$\mathbf{main} \; (\mathrm{int} \; \mathrm{argc}, \; \mathrm{char}^* \; \mathrm{argv}[], \; \mathrm{char}^* \; \mathrm{env}[]) \ldots \ldots$	8
4.1.2	void	<pre>print_options (ofstream& strm, int argc,</pre>	
			8

_ 4.1.1 _

```
int main (int argc, char* argv[], char* env[])
```

The main program.

Parses command line, checks command line arguments and then calls the appropriate module (e.g., fzymodel, fzyestim, etc.).

 ${\bf Return~Value:} \hspace{1.5cm} {\bf The} \hspace{0.2cm} {\bf return} \hspace{0.2cm} {\bf status} \hspace{0.2cm} {\bf of} \hspace{0.2cm} {\bf the} \hspace{0.2cm} {\bf model} \\$

ing/simulation (0 = ok, else error).

Parameters: argc The number of commandline parame-

ters.

argv The commandline parameters.

Author: Manfred Männle

Version: $Revision: 2.9 \ Date: 2020 - 08 - 2910: 47: 39 + 00:$

00:02

_ 4.1.2 _

```
void print_options (of
stream& strm, int argc, char* argv[], {\rm char}^*~{\rm env}[])
```

Print the command line arguments to a stream.

Parameters: strm output file stream

argc no. of command line argumentsargv command line argument vector

env environment vector

4.2 _

typedef Real

The type Real is determined by the definition of either LONGDOUBLE, DOUBLE, or FLOAT. The constants REAL_MAX, REAL_MIN, REAL_EPSILON, and REAL_NAME are then set accordingly to the type of Real.

_ 4.3 _

enum mode_type

Mode enumeration: UNDEFD_MODE == undefined mode; (initial value) MODELING == build fuzzy model based on training and validation data ESTIMATION == one-step prediction using data from file SIMULATION == multiple step prediction using data from file PRINST_SETS == print LaTeX and graphical descrition of a fuzzy model MAKE_DATA == prepare data for fuzzy modeling

_ 4.4 __

Global constants

Names

- 4.4.1 extern const char*
 - model_prefix prefix of fuzzy model output file . 10
- 4.4.2 extern const char*
 - fzy2pixl_prefix prefix of pixel output file 11
- 4.4.3 extern const char*

	${\bf data_prefix}$	prefix of data generation file	11
4.4.4	extern const char*		
	${ m estimation_prefix}$	refix of estimation output file	11
4.4.5	extern const char*		
	$\mathbf{simulation_prefix}$		11
4.4.0		prefix of simulation output file	11
4.4.6	extern const char* model_suffix	suffix of fuzzy model output file .	12
4.4.7	extern const char*		
	$ m r2_suffix$	suffix of r2 output file	12
4.4.8	extern const char* error_suffix	suffix of error output file	12
4.4.9	extern const char*		
	$\log_{ ext{-}} ext{suffix}$	suffix of logfile	12
4.4.10	extern const char*	CC	10
	output_suffix	suffix of output file	13
4.4.11	extern const char* pixl_suffix	suffix of pixel file (for graphical de-	
		scription of a fuzzy set)	13
4.4.12	extern const char*		
	eps_suffix	suffix of eps file (graphical eps description of a fuzzy set)	13
4.4.13	extern const char*		
	$ ext{tex_suffix}$	suffix of LaTeX file (LaTeX description of a fuzzy model)	13
4.4.14	extern const char*		
	release	software release number	14
4.4.15	extern const char* release_date	software release date	14

_ 4.4.1 ____

extern const char* $\mathbf{model_prefix}$

prefix of fuzzy model output file

prefix of fuzzy model output file

_ 4.4.2 ____

extern const char* $fzy2pixl_prefix$

prefix of pixel output file

prefix of pixel output file

_ 4.4.3 _

extern const char* $data_prefix$

prefix of data generation file

prefix of data generation file

_ 4.4.4 _____

 ${\rm extern\ const\ char}^*\ {\bf estimation_prefix}$

prefix of estimation output file

prefix of estimation output file

4.4.5

extern const char* simulation_prefix

prefix of simulation output file

prefix of simulation output file

 $\mathit{suffix}\ of\ logfile$

suffix of logfile

4.4.10

extern const char* $\mathbf{output_suffix}$

 $\mathit{suffix}\ \mathit{of}\ \mathit{output}\ \mathit{file}$

suffix of output file

_ 4.4.11 _

extern const char* pixl_suffix

suffix of pixel file (for graphical description of a fuzzy set)

suffix of pixel file (for graphical description of a fuzzy set)

4.4.12

extern const char* eps_suffix

suffix of eps file (graphical eps description of a fuzzy set)

suffix of eps file (graphical eps description of a fuzzy set)

_ 4.4.13 _____

extern const char* $\mathbf{tex_suffix}$

 $suffix\ of\ LaTeX\ file\ (LaTeX\ description\ of\ a\ fuzzy\ model)$

suffix of LaTeX file (LaTeX description of a fuzzy model)

4.4.14

extern const char* release

 $software\ release\ number$

software release number

_ 4.4.15 _____

extern const char* release_date

 $software\ release\ date$

software release date

4.5

Fuzzy Set constants

Name	S			
4.5.1	const Real	$\mathbf{mu}_{-}\mathbf{left}$	definition of right border of input space	15
4.5.2	const Real	$\mathrm{mu_right}$	definition of left border of input space	15
4.5.3	const Real	$\cos0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16
4.5.4	const Real	$delta_mu_0$	initialize delta μ	16
4.5.5	const Real	$delta_cons_0$	$initialize \ delta \ c \ \dots \dots$	16
4.5.6	const Real	$sigma_0$	initialize σ	16
4.5.7	const Real	$delta_sigma_0$	initialize delta σ	17
4.5.8	const Real	max_delta_mu	upper border of delta μ	17
4.5.9	const Real	\max_{-delta_cons}	upper border of delta c	17
4.5.10	const Real	$\max_{\text{delta_sigma}}$		

			upper border of delta σ	17
4.5.11	const Real	$\mathbf{min_delta_mu}$	lower border of delta μ	18
4.5.12	const Real	\min_{-delta_cons}	$lower\ border\ of\ delta\ c$	18
4.5.13	const Real	min_delta_sigma	lower border of delta σ	18
4.5.14	const Real	max_sigma_init	upper border of σ	18
4.5.15	const Real	min_sigma_init	lower border of σ	19
4.5.16	const Real	${ m eta}_{ ext{-}}{ m plus}$	RPROP step lengthening for successful step	19
4.5.17	const Real	eta_minus	RPROP step shortening for unsuccessful step	19

Constants for Fuzzy Sets.

_ 4.5.1 _____

 ${\rm const} \ {\rm Real} \ {\bf mu_left}$

 $definition\ of\ right\ border\ of\ input\ space$

definition of right border of input space

_ 4.5.2 _____

const Real mu_right

 $definition\ of\ left\ border\ of\ input\ space$

definition of left border of input space

4.5.3	
const Real cons_0	
	initialize consequence parameters o
initialize consequence parameters c	
4.5.4	
const Real delta_mu_0	
	initialize delta μ
initialize delta μ	
4.5.5	
const Real delta_cons_0	
	initialize delta d
initialize delta c	
4.5.6	
const Real sigma_0	
	$initialize$ σ
initialize σ	

4.5.15

const Real min_sigma_init

lower border of σ

lower border of σ

_ 4.5.16 _____

 $const\ Real\ eta_plus$

 $RPROP\ step\ lengthening\ for\ successful\ step$

RPROP step lengthening for successful step $\,$

_ 4.5.17 ____

const Real **eta_minus**

 $RPROP\ step\ shortening\ for\ unsuccessful\ step$

RPROP step shortening for unsuccessful step

_ 4.6 ___

Global variables

Names

4.6.1	Options and settings for all modes	20
4.6.2	Options for mode == MODELING	24
4.6.3	Options for mode == PRINT_SETS	32
4.6.4	Options for mode == ESTIMATION or SIMULATION.	

		34
4.6.5	Options for mode == SIMULATION	36
4.6.6	Options for mode == MAKE_DATA	36
4.6.7	Options for mode == NORMALIZE.	38

4.6.1 _

Options and settings for all modes

Names 4.6.1.1 extern mode_type $the\ mode\ (modeling,\ estimation,$ mode $simulation, etc) \dots \dots \dots$ 21 4.6.1.2 extern char* prgname program name 21 4.6.1.3 extern char* binary path 21 binpath 4.6.1.4 extern int **tracelevel** $trace\ level\ \dots\dots\dots\dots\dots$ 21 4.6.1.5 extern int **verbose** verbose level 22 4.6.1.6 extern int quiet 22 $inhibit\ verbose\ output\ \dots\dots\dots$ 4.6.1.7 extern string basefilename basic filename of output files ... 22 4.6.1.8 extern string $filename_extension$ $output\ files'\ filename\ extension$. 22 4.6.1.9 extern string tracefilename name of trace file 23 4.6.1.10extern ofstream tracefile trace log stream 23 4.6.1.11 extern string logfilename name of verbose log file 23 4.6.1.12extern ofstream logfile verbose log stream 23 4.6.1.13extern int denormalize take back normalization 24

4.6.1.13

extern int denormalize

 $take\ back\ normalization$

take back normalization

4.6.2

Options for mode == MODELING

Names	5			
4.6.2.1	extern algo	v <u>-</u>	optimization algorithm	26
4.6.2.2	extern size	_t		
		$consequence_dim$	dension dimension of fuzzy rules' consequences quences	26
4.6.2.3	extern int	norm	$error\ norm\ (eg,\ 1 == L1\text{-}norm,\ 2 == L2\text{-}norm)\ \dots$	26
4.6.2.4	extern int	$local_cons_optim$	ization local consequence optimization	26
4.6.2.5	extern int	shortcut	use shortcut for Kang's heuristic search	27
4.6.2.6	extern int	${\bf reset_cons}$	reset consequence parameters	27
4.6.2.7	extern int	${\bf update_premise}$	update premise when optimizing	27
4.6.2.8	extern size	$_{ m t}^{ m t}$ max_n_rules	limit no.	27
4.6.2.9	extern size	$_{ m t}^{ m t}$ $_{ m min_n_rules}$	minimal no	28
4.6.2.10	Oextern int	adjacent_equal_n	nu	
			same mu of adjacent fuzzy sets (ie, input space divisions)	28
4.6.2.1	lextern size	_t		

steps	_per_validation	
	take mean of several optimization iterations before validation	28
4.6.2.12extern int conse	$ m_{equence_optimize_SVD}$	
	optimize the consequence of each new candidate model by SVD	28
4.6.2.13extern size_t		
max_	opt_iterations_parallel	
	$maximal\ no.$	29
4.6.2.14extern size_t		
\min_{-0}	${ m opt_iterations}$	
	$minimal\ no.\ \dots\dots\dots$	29
$4.6.2.15$ extern size_t		
max_	${ m opt_iterations}$	
	$maximal\ no.\ \dots\dots\dots$	29
$4.6.2.16 extern~Real\mathbf{max}_{-}$	sigma maximal sigma of fuzzy sets	29
$4.6.2.17$ extern Real \min_{-8}	sigma minimal sigma of fuzzy sets	30
$4.6.2.18$ extern Real R2 _ir	nprovement	
	terminate modeling when $R2$ improvement is below \ldots	30
4.6.2.19extern Real best_	$ m R2_improvement$	
	terminate modeling when best model's R2 improvement is below	
		30
4.6.2.20extern int optin	nize_epoch_best	
_	no	30
4.6.2.21 extern int optin	nize_global_best	
1	no	31
4.6.2.22extern Real alpha	gradient descent learning rate	31
4.6.2.23extern Real beta	gradient descent momentum	31
4.6.2.24extern algo_type		
	${ m lel}_{ extsf{-}}$ optimization	
_	algorithm for parameter optimiza- tion (fine tuning) using parallel	0.1
	model	-31

4.6.2.1

extern algo_type optimization

 $optimization\ algorithm$

optimization algorithm

4.6.2.2

 $extern\ size_t\ {\bf consequence_dimension}$

 $dimension\ of\ fuzzy\ rules'\ consequences$

dimension of fuzzy rules' consequences

_ 4.6.2.3 _____

extern int **norm**

 $error\ norm\ (eg,\ 1 == L1\text{-}norm,\ 2 == L2\text{-}norm)$

error norm (eg, 1 == L1-norm, 2 == L2-norm)

_ 4.6.2.4 _

 $extern\ int\ {\bf local_cons_optimization}$

 $local\ consequence\ optimization$

local consequence optimization

limit no. of fuzzy rules

4.6.2.9

extern size_t min_n_rules

minimal no.

minimal no. of fuzzy rules

_ 4.6.2.10 _____

extern int adjacent_equal_mu

same mu of adjacent fuzzy sets (ie, input space divisions)

same mu of adjacent fuzzy sets (ie, input space divisions)

_ 4.6.2.11 _____

extern size_t **steps_per_validation**

 $take\ mean\ of\ several\ optimization\ iterations\ before\ validation$

take mean of several optimization iterations before validation

 $_$ 4.6.2.12 $_$

extern int consequence_optimize_SVD

 $optimize\ the\ consequence\ of\ each\ new\ candidate\ model\ by\ SVD$

optimize the consequence of each new candidate model by $\ensuremath{\mathrm{SVD}}$

maximal sigma of fuzzy sets

maximal sigma of fuzzy sets

4.6.2.17

extern Real min_sigma

minimal sigma of fuzzy sets

minimal sigma of fuzzy sets

_ 4.6.2.18 _____

extern Real R2_improvement

terminate modeling when R2 improvement is below

terminate modeling when R2 improvement is below

_ 4.6.2.19 _____

extern Real best_R2_improvement

 $terminate\ modeling\ when\ best\ model's\ R2\ improvement\ is\ below$

terminate modeling when best model's R2 improvement is below

_ 4.6.2.20 _

 $extern\ int\ {\bf optimize_epoch_best}$

no.

no. of additional optimization iterations at each epoch's best model

4.6.2.21

 $extern int optimize_global_best$

no.

no. of additional optimization iterations at the globally best model

 $_$ 4.6.2.22 $_$

extern Real alpha

 $gradient\ descent\ learning\ rate$

gradient descent learning rate

_ 4.6.2.23 ____

extern Real beta

gradient descent momentum

gradient descent momentum

_ 4.6.2.24 _

 $extern\ algo_type\ \textbf{parallel_optimization}$

 $algorithm\ for\ parameter\ optimization\ (fine\ tuning)\ using\ parallel\ model$ $algorithm\ for\ parameter\ optimization\ (fine\ tuning)\ using\ parallel\ model$

4.6.3

Options for mode == PRINT_SETS

Names	8			
4.6.3.1	extern size.	_t		
		$n_{ ext{-}pixels}$	no	32
4.6.3.2	extern int	$global_fset_value$	$normalize$ each fset value as $F(x)/(sum\ Fi(x))$	32
4.6.3.3	extern int	scale	scale of y-axis	33
4.6.3.4	extern int	$\mathbf{tex_precision}$	precision of numbers to beeing output in the TeX file	33
4.6.3.5	extern int	$execute_gnuplot_$	$system_call$ $execute gnuplot system call;$ $0==no, 1==yes \dots$	33
4.6.3.6	extern strir	$_{ m ig}$ gnuplot_file_exten	nsion	
		0 1	gnuplot script file extension, usually "gpl"	33

_ 4.6.3.1 _____

extern size_t n_pixels

no.

no. of interpolation pixels for fuzzy sets' graphical output

__ 4.6.3.2 _____

extern int global_fset_value

normalize each fset value as $F(x)/(sum \ Fi(x))$

normalize each fset value as $F(x)/(sum\ Fi(x))$

4.6.3.3

extern int scale

 $scale\ of\ y\mbox{-}axis$

scale of y-axis

_ 4.6.3.4 _____

extern int **tex_precision**

precision of numbers to beeing output in the TeX file

precision of numbers to beeing output in the TeX file

4.6.3.5

 $extern\ int\ \mathbf{execute_gnuplot_system_call}$

 $execute\ gnuplot\ system\ call;\ 0{=}{=}no,\ 1{=}{=}yes$

execute gnuplot system call; 0==no, 1==yes

_ 4.6.3.6 _____

extern string gnuplot_file_extension

gnuplot script file extension, usually "gpl"

gnuplot script file extension, usually "gpl"

4.6.4

Options for mode == ESTIMATION or SIMULATION.

Names 4.6.4.1 extern Realerror_offset error offset (only added when printing the RMS into a file) ... 34 4.6.4.2 extern int page_hinkley perform Page-Hinkley test: first $column\ increase,\ second\ decrease$ 34 4.6.4.3 extern Real page_hinkley_mu_0 mean value 35 4.6.4.4 extern Real page_hinkley_nu_inc increase step to detect 35 4.6.4.5 extern Real page_hinkley_nu_dec 35 decrease step to detect 4.6.4.6 extern Real page_hinkley_lambda $sensitivity\ lambda\ \dots\dots\dots$ 35

4.6.4.1 _

extern Real error_offset

error offset (only added when printing the RMS into a file)

error offset (only added when printing the RMS into a file)

_ 4.6.4.2 _

extern int page_hinkley

perform Page-Hinkley test: first column increase, second decrease

perform Page-Hinkley test: first column increase, second decrease

sensitivity lambda

4.6.5

Options for mode == SIMULATION.

Names

4.6.5.1 extern int **order**

 $order \ of \ y \ (y-1, \ y-2, \ , \ y-order)$

36

___ 4.6.5.1 ____

 ${\rm extern\ int}\ {\bf order}$

 $order\ of\ y\ (y-1,\ y-2,\ ,\ y-order)$

order of y (y-1, y-2, , y-order)

_ 4.6.6 ____

Options for mode == MAKE_DATA.

Names

4.6.6.1	extern int	$n_training_data$	no	37
4.6.6.2	extern int	n_skip_data	no	37
4.6.6.3	extern vect		$dynamic\ orders\ of\ u\ and\ y\ \ldots$	37
4.6.6.4	extern int	ut_regressor	$start \ with \ u(t) \ as \ regressor \ (instead \ of \ u(t-1)) \ \dots \ \dots$	37

_ 4.6.6.1 _____

extern int $n_training_data$

no.

no. of learning/training patterns

_ 4.6.6.2 _____

extern int n_skip_data

no.

no. patterns to skip at the beginning

4.6.6.3

extern vector<int> dynamic_orders

 $dynamic\ orders\ of\ u\ and\ y$

dynamic orders of ${\bf u}$ and ${\bf y}$

_ 4.6.6.4 ____

extern int $ut_regressor$

start with u(t) as regressor (instead of u(t-1))

start with u(t) as regressor (instead of u(t-1))

4.6.7

Options for mode == NORMALIZE.

Names

4.6.7.1	extern int	scale_only_used_o	lata	
			compute scale by using only some data, instead of by the whole set	38
4.6.7.2	extern int	scale_by_standar	$ m d_deviation$	
			scale by standard deviation (de-	
			<i>fault)</i>	38
4.6.7.3	extern int	${\bf scale_by_range}$	scale by range	36
4.6.7.4	extern Rea	lsigma_factor	$scale\ by\ (sigma_factor\ *\ stddev)$	39

4.6.7.1

$extern int scale_only_used_data$

compute scale by using only some data, instead of by the whole set

compute scale by using only some data, instead of by the whole set

_ 4.6.7.2 _____

$extern\ int\ {\bf scale_by_standard_deviation}$

scale by standard deviation (default)

scale by standard deviation (default)

4.6.7.3

extern int $scale_by_range$

scale by range

scale by range

_ 4.6.7.4 _

extern Real $\mathbf{sigma_factor}$

 $scale\ by\ (sigma_factor\ *stddev)$

scale by (sigma_factor * stddev)

4.7 _____

Help functions

-	ъ. т				
	IN	а	n	1	25

4.7.1	template	e <class t=""> void</class>		
		tracemsg (int lev	rel, const string& name,	
		const	T& object)	
				40
4.7.2	template	e <class t=""> void</class>		
		verbose (int level	, const string& name,	
		const T	& object)	
				40
4.7.3	inline I	Real		
		\mathbf{sign} (Real x)		40
4.7.4	string	itos (int i)		40
4.7.5	string	$\mathbf{dtos}\ (\mathrm{double}\ \mathrm{r})$		41
476	string	dtos2 (double r)		41

4.7.1

template<class T> void **tracemsg** (int level, const string& name, const T& object)

print trace information

__ 4.7.2 _____

template<class T> void **verbose** (int_level, const_string& name, const_T& object)

print verbose information

__ 4.7.3 _____

inline Real **sign** (Real x)

signum function

_ 4.7.4 _____

string itos (int i)

integer to string

__ 4.7.5 _____

string **dtos** (double r)

double to string

_ 4.7.6 _____

string dtos2 (double r)

double to string

__ 4.8 _____

Error and exception handling

Names

4.8.1	class	Error	41
4.8.2	class	FileOpenError : public Error	42
4.8.3	class	${\bf Incomplete Coverage Error}: {\tt public Error} \ldots \ldots$	43
4.8.4	class	ConsdimError : public Error	43
4.8.5	class	ParseError: public Error	44
4.8.6	class	SystemCallError : public Error	44
4.8.7	class	SVDError : public Error	44
4.8.8	class	${\bf Function Undefined Error}: {\rm public} \ {\rm Error}$	45

_ 4.8.1 ____

 ${\rm class} \ \ {\bf Error}$

Inheritance

Error base class.

Inheritance

Error when opening a file or file not present.

Inheritance

Input value found that is not covered by a model's rule.

Inheritance

Invalid consequence dimension.

4.8.5

class ParseError: public Error

Inheritance

Parse error when loading a fuzzy model from file.

_ 4.8.6 _____

class $\mathbf{SystemCallError}$: public Error

Inheritance

System call was unsuccessful.

_ 4.8.7 _____

class $\mathbf{SVDError}$: public Error

Inheritance

Singular Value Decomposition (SVD) unsuccessful.

class FunctionUndefinedError : public Error

Inheritance

Input value found where function is not defined

Names

			46
4.9.3	void	fzy2sets (char* infilename,	
		char* normfilename) throw(Error)	
			47
4.9.4	void	fzymkdat (char* normfilename, char* infilename,	
		char* outfilename) throw(Error)	
			47

4.9.1

void **fzymodel** (char* learnfilename, char* validationfilename) throw(Error)

Build a fuzzy model, based on learning and validation data.

The output file names are created using the input file name as prefix: Writes estimation results to $mod_[filename_extension]c[C]_r[R].out$, best $mod_[filename_extension]c[C]_r[R].mod$, R2 to $mod_[filename_extension]c[C].r2$, and error to $mod_[filename_extension]c[C].err$

void **fzyestim** (char* fzyfilename, char* datafilename)
throw(Error)

Write the one-step (estimation) or multiple step prediction (simulation) of a fuzzy model for a given data set

The output file names are created using the input file name as prefix: Writes estimation results to est_[filename].out or simulation results to sim_[filename].out, R2 to est_[filename_extension].r2 or sim_[filename_extension].r2, and error to est_[filename].err or sim_[filename].err.

4.9.3

 $\label{eq:char} \mbox{void } \mbox{\bf fzy2sets (char* infilename, char* normfilename)} \\ \mbox{throw(Error)}$

Write a LaTeX and a graphical description of a fuzzy model

Load a Fuzzy Model from file and write a LaTeX description and a graphical description (interpolation points) into files. The output file names are created using the input file name as prefix.

_ 4.9.4 _

void **fzymkdat** (char* normfilename, char* infilename, char* outfilename) throw(Error)

Prepare data for fuzzy modeling (order shift and normalization).

_ 4.10 _

Fuzzy Set funtions

Names

4.10.1	inline	Real	
		trapezoid (Real sigma, Real u)	48
4.10.2	Real	sigmoid (Real x)	48
4.10.3	inline	Real t_norm (Real a, Real b)	48
4.10.4	inline	Real inference (Real prem Real cons)	48

4.10.1

inline Real **trapezoid** (Real sigma, Real u)

Membership value of trapezoidal fuzzy set.

Return Value: membership value Parameters: sigma steepness

u position

___ 4.10.2 ____

Real **sigmoid** (Real x)

Membership value of sigmoidal fuzzy set.

Return Value: membership value

Parameters: x position

_ 4.10.3 _____

inline Real t_norm (Real a, Real b)

Product t-norm.

__ 4.10.4 _____

inline Real **inference** (Real prem, Real cons)

Product inference.

_ 4.11 ___

 ${\rm class} \ \ {\bf FSet}$

Public Members

4.11.3 Real \mathbf{F} (Real u) c

compute the membership value .

49

Protected Members

4.11.1 inline void

 $limit_delta_mu$ (void)

4.11.2 inline void

 $\mathbf{limit_delta_sigma} \ (\mathrm{void})$

 $check\ border\ of\ \Delta\sigma\quad \dots \qquad 50$

Fuzzy Set.

_ 4.11.3 ___

Real **F** (Real u)

 $compute\ the\ membership\ value$

compute the membership value

4.11.1

inline void limit_delta_mu (void)

check border of $\Delta\mu$

check border of $\Delta \mu$

4.11.2

inline void limit_delta_sigma (void)

check border of $\Delta \sigma$

check border of $\Delta \sigma$

_ 4.12 __

typedef Premise

Fuzzy Rule's Premise: a vector of pointers to Fuzzy Sets.

4.13

typedef Consequence

Fuzzy Rule's Consequence: a vector of its parameters.

_ 4.14 _

class FRule

Public Members

			compute a Fuzzy Rule's premise value for a given input vector	52
4.14.5	void	refine (FRule* r, FSet* news	refine a Fuzzy Rule in uindex u; save additional new rule under	52
Protec	cted Memb	ners	1 Teact	02
	_	CIS		
4.14.1	Premise	prem_		52
Fuzzy 1	Rule.			
	4.14.2			
voi	id copy (e	const FRule& r,	FSet* fset_begin, const FSet*	

copy a Fuzzy Rule by value

copy a Fuzzy Rule by value

_ 4.14.3 _

Real **consvalue** (const Uvector& u) const

 $r_fset_begin)$

 $compute\ a\ Fuzzy\ Rule's\ consequence\ value\ for\ a\ given\ input\ vector$

compute a Fuzzy Rule's consequence value for a given input vector

4.14.4

Real **premvalue** (const Uvector& u) const

compute a Fuzzy Rule's premise value for a given input vector

compute a Fuzzy Rule's premise value for a given input vector

_ 4.14.5 ____

void **refine** (FRule* r, size_t u, FSet* newleftfset, FSet* newrightfset)

refine a Fuzzy Rule in uindex u; save additional new rule under FRule* r

refine a Fuzzy Rule in uindex u; save additional new rule under FRule* r

_ 4.14.1 _____

Premise **prem**_

__ 4.15 _____

 ${\bf typedef}\; {\bf FSetContainer}$

Fuzzy Set Container: a vector of Fuzzy Sets

__ 4.16 _____

${\bf typedef}\; {\bf FRule Container}$

Fuzzy Rule Container: a vector of Fuzzy Rules

1 17

class $\ensuremath{\mathbf{FModel}}$: public Function

Inheritance

Public Members

4.17.13	$\mathbf{FModel}\ ()$	empty model	56
4.17.14	FModel (const Da	ta& d, size_t cons_dimension) initial one-rule model	56
4.17.15 void	copy (const FMod	el& oldmodel) copy a whole model	57
4.17.16	FModel (const FM size_t ru	Model& oldmodel, leindex, size_t uindex) refine a model's structure in rule rindex at index uindex	57
4.17.17 void	load (char* filenan	ne) throw(Error) load a model from file	57
4.17.18 Real	sum_w (const Uve	$ctor \& u)$ $w = sum(premise \ values) \dots$	57
4.17.19 Real	y_hat (const Uvect	tor& u) throw(Error) $feed forward step; returns \hat{y} \dots$	58
4.17.20 void	optimize SVD (c	onst Data& d) throw(Error)	

		optimize consequence parameters using SVD	58
4.17.21 void	$reset_consequence$	reset consequence parameters	58
4.17.22 void	RPROP_init (voi		00
	(initialize model for RPROP	58
4.17.23 Real	RPROP (const D	ata& learndata) throw(Error) one RPROP step; returns $\varepsilon = (y - \hat{y})^2$	59
4.17.24 void	RPROP_backste	p (void) RPROP backstep: cancel last RPROP parameter update	59
4.17.25 Real	$optimize_RPROI$	P (const Data& a, const Data& b, size_t min_iterations, size_t max_iterations) optimize model by cross validation; returns last error	59
4.17.26 void	GRAD_DESCEN	$egin{aligned} \mathbf{NT_init} & (\mathrm{void}) \\ initialize & model & for \\ GRAD_DESCENT & \dots & \dots \end{aligned}$	59
4.17.27 Real	GRAD_DESCEN	VT (const Data& learndata) throw(Error) one $GRAD_DESCENT$ step; re- turns $\varepsilon = (y - \hat{y})^2$	60
4.17.28 void	GRAD_DESCEN	NT_backstep (void) GRAD_DESCENT backstep: can- cel last GRAD_DESCENT param- eter update	60
4.17.29 Real	${\bf optimize_GRAD}$	DESCENT (const Data& a,	60
4.17.30 Real	R2 (const Data& c	estimation error; returns $R2$	61
4.17.31 size_t	worst rule index	(const Data& d) throw(Error)	01
1.11.01 0120_0	JIBULI GIOLIIIGEA	(const Datas a) tillow (Ellot)	

			determine index of rule with biggest approximation error	61
4.17.32	Real	estimation (const	Data& d) throw(Error) estimation error; returns $\varepsilon = (y - \hat{y})^2 \dots \dots$	61
4.17.33	Real	$ \begin{array}{c} \textbf{estimation} \ (const \\ const \end{array} $	Data& d, char* outfilename) throw(Error) write estimation into a file; re- turns estimation error	61
4.17.34	Real	$\mathbf{simulation} \ (\mathbf{const}$	Data& d) throw(Error) simulation error; returns simula- tion error	62
4.17.35	Real	$\begin{array}{c} \textbf{simulation} \ (const\\ const \end{array}$	Data& d, char* outfilename) throw(Error) write simulation into a file; re- turns simulation error	62
4.17.36	void	create_parameter	rs (Data* learning_data, Data* validation_data) prepare FModel for Minimizer	62
4.17.37	void	$erase_parameters$	s () erase parameters for Minimizer	62
4.17.38	Real	${\bf calculate}\ ()$	calculate function value (for learning/training)	63
4.17.39	Real	$\mathbf{validate}\ ()$	calculate function value (for validation)	63
4.17.40	void	$\mathbf{derivate}\ ()$	calculate derivation	63
Protec	ted Memb	ers		
4.17.1	$size_t$	\mathbf{rdim}_{-}	number of rules	63
4.17.2	$size_t$	\mathbf{udim}_{-}	input space dimension	64
4.17.3	$size_t$	\mathbf{cdim}_{-}	consequence dimension	64
4.17.4	$size_t$	sdim_{-}	$number\ of\ fsets = 2\ *\ (rdim-1)$.	64
4.17.5	$size_t$	$worst_rule_$	index of rule with biggest error .	64
4.17.6	vector <size.< td=""><td>_t> history_</td><td>history of refinements</td><td>65</td></size.<>	_t> history_	history of refinements	65
4.17.7	FSetContai	ner		

		\mathbf{fsets}_{-}	the model's Fuzzy Sets	65
4.17.8	FRuleCont	${f ainer} \ {f frules}_{-}$	the models Fuzzy Rules	65
4.17.9	string	$\mathbf{learnfilename}_{-}$	name of the learning/training data file	65
4.17.10	string	validationfilenan	$egin{aligned} \mathbf{ne} \ name \ of \ the \ validation \ data \ file \end{aligned}$	66
4.17.11	vector <con< td=""><td>sParam> cons_</td><td>for the usage of a Minimizer</td><td>66</td></con<>	sParam> cons_	for the usage of a Minimizer	66
4.17.12	inline void	-	(Consequence::iterator& p) check border of Δ c	66

Fuzzy Model.

FModel ()

 $empty\ model$

 $empty\ model$

FModel (const Data& d, size_t cons_dimension)

 $initial\ one$ -rule model

initial one-rule model

4.17.15

void copy (const FModel& oldmodel)

copy a whole model

copy a whole model

__ 4.17.16 _____

FModel (const FModel& oldmodel, size_t ruleindex, size_t uindex)

refine a model's structure in rule rindex at index uindex

refine a model's structure in rule rindex at index uindex

_ 4.17.17 _____

void **load** (char* filename) throw(Error)

load a model from file

load a model from file

4.17.18

Real **sum_w** (const Uvector& u)

 $w = sum(premise\ values)$

w = sum(premise values)

 $initialize\ model\ for\ RPROP$

initialize model for RPROP

4.17.23

Real **RPROP** (const Data& learndata) throw(Error)

one RPROP step; returns $\varepsilon = (y - \hat{y})^2$

one RPROP step; returns $\varepsilon = (y - \hat{y})^2$

_ 4.17.24 _

void RPROP_backstep (void)

RPROP backstep: cancel last RPROP parameter update

RPROP backstep: cancel last RPROP parameter update

 $_$ 4.17.25 $_$

Real **optimize_RPROP** (const Data& a, const Data& b, size_t min_iterations, size_t max_iterations)

optimize model by cross validation; returns last error

optimize model by cross validation; returns last error

_ 4.17.26 ___

void GRAD_DESCENT_init (void)

 $initialize\ model\ for\ GRAD_DESCENT$

initialize model for GRAD_DESCENT

4.17.27 _

 $\label{eq:const_def} \begin{aligned} \text{Real } \mathbf{GRAD_DESCENT} \text{ (const} & \text{Data\&} & \text{learndata)} \\ & \text{throw(Error)} \end{aligned}$

one GRAD_DESCENT step; returns $\varepsilon = (y - \hat{y})^2$

one GRAD_DESCENT step; returns $\varepsilon = (y - \hat{y})^2$

 $_{-}$ 4.17.28 $_{-}$

void GRAD_DESCENT_backstep (void)

GRAD_DESCENT backstep: cancel last GRAD_DESCENT parameter update

 ${\tt GRAD_DESCENT\ backstep:\ cancel\ last\ GRAD_DESCENT\ parameter\ update}$

4.17.29 _

Real optimize_GRAD_DESCENT (const Data& a, const Data& b, size_t min_iterations, size_t max_iterations)

 $optimize\ model\ by\ cross\ validation;\ returns\ last\ error$

optimize model by cross validation; returns last error

4.17.30

Real **R2** (const Data& d)

estimation error; returns R2

estimation error; returns R2

_ 4.17.31 _

size_t worst_rule_index (const Data& d) throw(Error)

determine index of rule with biggest approximation error

determine index of rule with biggest approximation error

_ 4.17.32 ___

Real estimation (const Data& d) throw(Error)

estimation error; returns $\varepsilon = (y - \hat{y})^2$

estimation error; returns $\varepsilon = (y - \hat{y})^2$

_ 4.17.33 __

Real **estimation** (const Data& d, const char* outfilename) throw(Error)

 $write\ estimation\ into\ a\ file;\ returns\ estimation\ error$

write estimation into a file; returns estimation error

4.17.34

Real **simulation** (const Data& d) throw(Error)

simulation error; returns simulation error

simulation error; returns simulation error

 $_~4.17.35~_$

Real **simulation** (const Data& d, const char* outfilename) throw(Error)

write simulation into a file; returns simulation error

write simulation into a file; returns simulation error

_ 4.17.36 _____

void **create_parameters** (Data* learning_data, Data* validation_data)

 $prepare\ FModel\ for\ Minimizer$

prepare FModel for Minimizer

 $_$ 4.17.37 $_$

void erase_parameters ()

erase parameters for Minimizer

erase parameters for Minimizer

Code description

4

number of fsets = 2 * (rdim-1)

size_t worst_rule_

__ 4.17.5 _____

index of rule with biggest error

index of rule with biggest error

Code description

4

check border of Δ c

4.18 _

 $\# define DATA_HH$

we only have one function to minimize

we only have one function to minimize

_ 4.19 __

typedef Uvector

Type of an input value vector u (u-part of one pattern).

4.20

class Data

Public Members 4.20.8 Data () 68 empty data 4.20.9Data (Subscript N, size_t M, Real x0) create data matrix filled with x0 69 4.20.10 const string& filename () const filename of loaded data 69 4.20.11 const vector
> Uvector> & u-parts of all patterns 69 U () const 4.20.12 const vector <Real> & y () const y-parts of all patterns 69 4.20.13 const vector<Real> & scale_factor () const 70 scale factor 4.20.14 const vector<Real> & scale_shift () const scale shift 70 4.20.15 const size_t& **blocksize** () const *blocksize* (for twodimensional 70 *print*) 4.20.16 const Real& mean_y () const mean of all y values 70 4.20.17 const Real& variance_y () const variance of all y values 71 4.20.18 vector

Uvector> & modify u-parts of all patterns ... $\mathbf{U}()$ 71 4.20.19 vector<Real> &

		y ()	modify y-parts of all patterns	71
4.20.20	void	load (char* filenam	ne) throw(Error) load data matrix from file	71
4.20.21	void	`	vector <real>& factor, vector<real>& shift) throw(Error) normalize data matrix with given scale_factor and scale_shift</real></real>	72
Protec	cted Memb	ers		
4.20.1	$size_t$	${\bf blocksize}_{-}$	$block\ size\ for\ two dimensional\ plots$	72
4.20.2	vector <uve< td=""><td>ators</td><td></td><td>12</td></uve<>	ators		12
4.20.2	vector vo ve	\mathbf{U}_{-}	u-parts of the patterns	72
4.20.3	vector <rea< td=""><td>l></td><td></td><td></td></rea<>	l>		
		\mathbf{y}_{-}	y-parts of the patterns	72
4.20.4	Real	$mean_y_$	mean of all y values	73
4.20.5	Real	$\mathbf{variance}_{-}\mathbf{y}_{-}$	variance of all y values	73
4.20.6	vector <rea< td=""><td>l> scale_factor_</td><td></td><td>73</td></rea<>	l> scale_factor_		73
4.20.7	vector <rea< td=""><td></td><td></td><td>73</td></rea<>			73
Data co	ontainer.			
	4.20.8			

 $empty\ data$

empty data

 $\mathbf{Data}()$

 \mathbf{Data} (Subscript N, size_t M, Real x0)

 $create\ data\ matrix\ filled\ with\ x0$

create data matrix filled with x0

_ 4.20.10 __

const string& filename () const

filename of loaded data

filename of loaded data

4.20.11

const vector

 Vector> & \mathbf{U} () const

 $u\hbox{-}parts\ of\ all\ patterns$

u-parts of all patterns

_ 4.20.12 _

const vector<Real> & y () const

 $y ext{-}parts\ of\ all\ patterns$

y-parts of all patterns

const vector<Real> & scale_factor () const

 $scale\ factor$

scale factor

4.20.14

const vector<Real> & $scale_shift$ () const

 $scale \ shift$

scale shift

4.20.15

const size_t& blocksize () const

blocksize (for twodimensional print)

blocksize (for twodimensional print)

_ 4.20.16 _____

const Real& mean_y () const

mean of all y values

mean of all y values

const Real& variance_y () const

 $variance\ of\ all\ y\ values$

variance of all y values

_ 4.20.18 ____

vector<Uvector> & U ()

modify u-parts of all patterns

modify u-parts of all patterns

_ 4.20.19 _____

vector<Real> & \mathbf{y} ()

 $modify\ y\text{-}parts\ of\ all\ patterns$

modify y-parts of all patterns

_ 4.20.20 _

void **load** (char* filename) throw(Error)

load data matrix from file

load data matrix from file

void **normalize** (const_vector<Real>&_factor, const_vector<Real>&_shift) throw(Error)

 $normalize\ data\ matrix\ with\ given\ scale_factor\ and\ scale_shift$

normalize data matrix with given scale_factor and scale_shift

__ 4.20.1 ____

size_t blocksize_

 $block\ size\ for\ two dimensional\ plots$

block size for two dimensional plots

__ 4.20.2 _____

vector
< Uvector> \mathbf{U}_{-}

u-parts of the patterns

u-parts of the patterns

 $_{-}$ 4.20.3 $_{-}$

vector<Real> \mathbf{y}_{-}

 $y ext{-}parts$ of the patterns

y-parts of the patterns

_ 4.20.4 _____

Real mean_y_

mean of all y values

mean of all y values

 $_~4.20.5~$

Real variance_y_

 $variance\ of\ all\ y\ values$

variance of all y values

_ 4.20.6 _____

vector<Real> scale_factor_

scale factor Holds scale(u) in $scale_factor_[0n_columns-1]$ and scale(y) in $scale_factor_[n_columns]$.

__ 4.20.7 _____

vector<Real> scale_shift_

scale shift Holds shift(u) in $shift_factor_[0n_columns-1]$ and shift(y) in $shift_factor_[n_columns]$.

4.21

void **SVD** (const Matrix<Real>& A, Matrix<Real>& Q, Matrix<Real>& U, Matrix<Real>& V) throw(SVDError)

Compute the Singular Value Decomposition (SVD) of a m x n matrix A.

This function computes the Singular Value Decomposition (SVD) of a given matrix A. Precondition: $m \ge n$. The SVD algorithm can be used to solve the least squares problem of overdetermined linear equation systems.

The algorithm is taken from: J.H. Wilkinson, C.Reinsch: Linear Algebra, Springer 1971, p. 134ff

The function computes the singular values Q and the complete orthogonal decomposition (U, V) of a real rectangular matrix A with A = U * Q * V.transp(); U.transp() * U = V.transp() * V = I.

With this, you can solve a linear least squares problem given by the m equations y = A * p with p = V * Q.inverse() * U.transp() * y where Q.inverse() is easy to compute, since Q is a diagonal matrix.

P	ar	an	net	er	s:

- A m x n input matrix to decompose; m rows, n columns. Precondition: m >= n.
- Q n x n diagonal matrix holding the singular values in its diagonal (return value).
- U m x n matrix with orthonormalized columns (return value).
- V n x n matrix with orthogonal columns (return value).

Exceptions:

SVDException This exception will be thrown whenan error occurs during the computation.

Author:

Steffen Bloedt, (minor changes by Manfred Männle)

Class Graph

Error	41
$\longrightarrow \begin{array}{c} 4.8.6 \\ \hline \\ \text{SystemCallError} \end{array}$	44
$ \begin{array}{c} 4.8.7 \\ \hline SVDError \end{array} $	44
$\xrightarrow{\text{4.8.5}} \text{ParseError}$	44
$ \xrightarrow{\text{4.8.3}} $	43
$\xrightarrow{\text{4.8.8}} \overline{\text{FunctionUndefinedError}}$	45
$\xrightarrow{\text{FileOpenError}} 4.8.2 $	42
4.8.4 ConsdimError	43
4.11 FSet	49
4.14 FRule	50

Class Graph

4.17 FModel	 53
4.20	67