A. Problems to Submit

To receive full credit, you must provide detailed written solutions for each of these problems.

- 1. Let Y_1, Y_2, \ldots, Y_n be a random sample such that $Y_i \sim \operatorname{GAM}(\theta, \kappa)$. The random variable Y_i represents the amount of rainfall accumulated over a year in a reservoir, with $\mu = \mathbb{E}(Y_i) = 132$ and $\sigma^2 = \mathbb{V}(Y_i) = 26.4$. Consider $\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - (a) Give an approximation of $P(\bar{Y}_n \ge 200)$ for n = 500.
 - (b) What is the true distribution of \bar{Y}_n ?
 - (c) Does \bar{Y}_n converges in probability? If so, what is its limit?
 - (d) Calculate the true probability $P(|\bar{Y}_n \mu| \le 0.4)$ for n = 20. Explain what $|\bar{Y}_n - \mu| \le 0.4$ means, in terms of the amount of rainfall, and interpret the above result.
 - (e) Find $P(|\bar{Y}_n \mu| \le 0.4)$ when n = 25, 50, 100, 200, and 300. What pattern do you observe among the values for $P(|\bar{Y}_n \mu| \le 0.4)$ for the various values of n?
 - (f) Now suppose $\sigma^2 = 79.3$, re-calculate the probabilities in part (c). Do the results change drastically? How do you explain such a trend?
 - (g) Compared to $P(|\bar{Y}_n \mu| \le 0.4)$, will the probability $P(|\bar{Y}_n \mu| \le \varepsilon)$ increase or decrease, for $\varepsilon < 0.2$, n = 50 and $\sigma^2 = 26.4$. Justify your answer.
- 2. Suppose that X_n follows a binomial distribution with parameter (n,π) where $\pi \in (0,1)$. Define $Y_n = \frac{1}{n}X_n$ for each n.
 - (a) Find the asymptotic normal distribution of Y_n .
 - (b) Find the asymptotic normal distribution of $ln(Y_n)$.

In each case, clearly indicate which theorems you have used to establish the result.

Hint: First, write Y_n as a sample mean of a random sample that you will specify.

3. BE Exercise: 7.15

 $\mathbf{Hint} \colon \mathsf{For} \ 7.15$ (e), please do use BE Theorem 7.5.1.

4. BE Exercise: 7.16

B. Additional Practice Problems

- 1. Let $X_n \sim \text{Exponential}(1/n)$. Show that $X_n \stackrel{p}{\to} 0$ using Theorem 7.6.1 **AND** an exact expression for the related probability P_n .
- 2. BE Exercise 7.13
- 3. BE Exercises: 7.14, 7.17
- 4. Let X_1, \ldots, X_n be a random sample from a Poisson(μ) distribution.
 - (a) Show that $\bar{X}_n \stackrel{p}{\to} \mu$
 - (b) Show that $\bar{X}_n \stackrel{d}{\to} \mu$
 - (c) Show that $\sqrt{n}(\bar{X}_n \mu)/\sqrt{\mu} \stackrel{d}{\to} N(0, 1)$
 - (d) Show that $\sqrt{n}(\bar{X}_n \mu)/\sqrt{\bar{X}_n} \stackrel{d}{\to} N(0, 1)$

In each case, clearly indicate which theorems you have used to establish the result.