КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

Факультет інформаційних технологій

Кафедра прикладних інформаційних систем

напрям 6.040302 «Інформатика»

(шифр і назва напряму підготовки або спеціальності)

Звіт

з лабораторної роботи №3

На тему: «Ланцюги Маркова»

Виконав: студент 4 курсу навчання групи інформатика (I-42) Довбня Дмитро Володимирович **Мета**: Ознайомлення з методикою вирішення задач моделювання за допомогою ланцюгів Маркова

Завдання 1

- А) Знайти стаціонарний розподіл ймовірностей.
- Б) Визначити, як скоро встановлюється стаціонарний режим, тобто на якому кроці ймовірності станів становляться незмінними.

Хід виконання:

- 1. Задаємо початкових умов:
 - ORIGIN початковий індекс матриць та векторів
 - Р матриця ймовірностей переходів
 - РО вектор початкового розподілу
 - І Одинична матриця

ORIGIN := 1
$$P := \begin{pmatrix} 0.45 & 0.25 & 0.3 \\ 0.45 & 0.05 & 0.5 \\ 0.6 & 0.15 & 0.25 \end{pmatrix} \qquad P0 := \begin{pmatrix} 0.1 \\ 0.3 \\ 0.6 \end{pmatrix} \qquad I := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2. Знаходимо матрицю коефіцієнтів системи . Останній рядок складається із коефіцієнтів рівняння p0+p1+p2=1 і має вигляд (1,1,1). Та визначаємо вектор стовпець q правих частин рівняння у вигляді $(0,0,1)^T$.

$$\begin{split} & \underset{j}{C} := P^T - I \\ & j := 1..3 \\ & \underset{\mathcal{C}_{3}}{C} := 1 \end{split} \qquad \qquad C = \begin{pmatrix} -0.55 & 0.45 & 0.6 \\ 0.25 & -0.95 & 0.15 \\ 0.3 & 0.5 & -0.75 \end{pmatrix} \\ & \underset{\mathcal{C}}{C} := \begin{pmatrix} -0.55 & 0.45 & 0.6 \\ 0.25 & -0.95 & 0.15 \\ 1 & 1 & 1 \end{pmatrix} \qquad q := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{split}$$

3. 3 рівняння pC=q, p=C⁻¹q. Отримуємо стаціонарний розподіл ймовірностей станів C.

$$p := C^{-1} \cdot q$$
 $p = \begin{pmatrix} 0.498 \\ 0.182 \\ 0.32 \end{pmatrix}$

4. Послідовно отримали вектори розподілу ймовірностей станів системи за періоди k=1.. 5

$$\begin{aligned} k &:= 1..5 & p_{4k} &:= P0^T \cdot P^k \\ p_1 &= (0.54 \ 0.13 \ 0.33) & p_3 &= (0.496 \ 0.181 \ 0.323) \\ p_2 &= (0.5 \ 0.191 \ 0.309) & p_4 &= (0.498 \ 0.182 \ 0.32) \\ p_5 &= (0.498 \ 0.182 \ 0.32) \end{aligned}$$

На четверному кроці, система переходить до стаціонарного стану і надалі не змінюється

Висновок: З отриманих результатів можна зробити висновок що найбільна ймовірність ϵ в першого. Та те, що стаціонарний стан, досягається на 4 кроці.

Завдання 2

- А) На підставі розміченої діаграми станів скласти систему диференціальних рівнянь Колмогорова і записати початкові умови для її розв'язку.
- Б) Вирішити систему диференціальних рівнянь Колмогорова із використанням програмного пакету математичних розрахунків.
- В) Знайти стаціонарні ймовірності станів.

Хід виконання:

1. Запишемо систему диференціальних рівнянь Колмогорова у загальному вигляді, за початкових умов Y0, з використанням чисел відповідно до варіанту.

2. Вирішимо систему засобами MathCAD, задаємо функцію Rkadapt для пошуку наближеного рішення, що перевіряє як швидко змінюється наближений результат і самостійно визначає крок.

$$D(\mathsf{t}, \mathsf{Y}) := \begin{bmatrix} -(\lambda 01 + \lambda 02) \, \mathsf{Y}_0 + \lambda 10 \, \mathsf{Y}_1 + \lambda 20 \, \mathsf{Y}_2 \\ \lambda 01 \, \mathsf{Y}_0 - (\lambda 12 + \lambda 10) \, \mathsf{Y}_1 + \lambda 21 \, \mathsf{Y}_2 \\ \lambda 02 \, \mathsf{Y}_0 + \lambda 12 \, \mathsf{Y}_1 - (\lambda 20 + \lambda 21) \, \mathsf{Y}_2 \end{bmatrix} \rightarrow \begin{pmatrix} 4 \cdot \mathsf{Y}_1 - 6 \cdot \mathsf{Y}_0 + 3 \cdot \mathsf{Y}_2 \\ 4 \cdot \mathsf{Y}_0 - 7 \cdot \mathsf{Y}_1 + 2 \cdot \mathsf{Y}_2 \\ 2 \cdot \mathsf{Y}_0 + 3 \cdot \mathsf{Y}_1 - 5 \cdot \mathsf{Y}_2 \end{pmatrix}$$

3. Визначення стаціонарних можливостей з використанням функції Isolve, що представляє чисельний метод LU розкладу за алгоритмом Гауса.

$$\mathbf{M} := \begin{pmatrix} -6 & 4 & 3 \\ 4 & -7 & 2 \\ 1 & 1 & 1 \end{pmatrix} \qquad \text{soln} := 1 \text{solve}(\mathbf{M}, \mathbf{Y0}) \qquad \qquad \text{soln} = \begin{pmatrix} 0.367 \\ 0.304 \\ 0.329 \end{pmatrix}$$

Висновок: Під час виконання лабораторної роботи, було досліджено моделювання за допомогою ланцюгів Маркова. Отримані результати на стаціонарної ймовірності та значення отримані за допомогою ймовірнісного моделювання не містять відхилень.

Ланцюг Маркова	Стаціонарні ймовірності	Імовірнісне моделювання	Відхилення, %
дискретний	0.498	0.498	
	0.182	0.182	0%
	0.32	0.32	
неперервний	0.367	0.367	
	0.304	0.304	0%
	0.329	0.329	