

Lecture 4: Nonideal Transistor Theory

Outline

- Nonideal Transistor Behavior
 - High Field Effects
 - · Mobility Degradation
 - Velocity Saturation
 - Channel Length Modulation
 - Threshold Voltage Effects
 - Body Effect
 - · Drain-Induced Barrier Lowering
 - Short Channel Effect
 - Leakage
 - Subthreshold Leakage
 - Gate Leakage
 - · Junction Leakage
- Process and Environmental Variations

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Ideal Transistor I-V

☐ Shockley long-channel transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Electric Fields Effects

- ☐ Vertical electric field: E_{vert} = _____
 - Attracts carriers into channel
 - Long channel: $Q_{channel} \propto E_{vert}$
- □ Lateral electric field: E_{lat} = _____
 - Accelerates carriers from drain to source
 - Long channel: $v = \mu E_{lat}$

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Coffee Cart Analogy

- ☐ Tired student runs from VLSI lab to coffee cart
- ☐ Freshmen are pouring out of the physics lecture hall
- \Box V_{ds} is how long you have been up
 - Your velocity = fatigue × mobility
- \square V_{qs} is a wind blowing you against the glass (SiO₂) wall
- $\hfill \Box$ At high $V_{gs},$ you are buffeted against the wall
 - Mobility degradation
- ☐ At high V_{ds}, you scatter off freshmen, fall down, get up
 - Velocity saturation
 - Don't confuse this with the saturation region

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

7

Mobility Degradation

- $\hfill \Box$ High $\hfill E_{vert}$ effectively reduces mobility
 - Collisions with oxide interface

$$\mu_{\text{eff}-n} = \frac{540 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \left(\frac{V_{gs} + V_t}{0.54 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}\right)^{1.85}} \qquad \mu_{\text{eff}-p} = \frac{185 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \frac{\left|V_{gs} + 1.5V_t\right|}{0.338 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}}$$

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Velocity Saturation

- ☐ At high E_{lat}, carrier velocity rolls off
 - Carriers scatter off atoms in silicon lattice
 - Velocity reaches v_{sat}
 - Electrons: 10⁷ cm/s
 - Holes: 8 x 10⁶ cm/s
 - Better model

$$v = \begin{cases} \frac{\mu_{\text{eff}}E}{1 + \frac{E}{E_c}} & E < E_c \\ v_{\text{sat}} & E \ge E_c \end{cases}$$

$$E_c = \frac{2v_{\text{sat}}}{\mu_{\text{eff}}} \quad v_{\text{eff}}$$

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

v (cm/s)

Vel Sat I-V Effects

 $\hfill \square$ Ideal transistor ON current increases with $V_{DD}{}^2$

$$I_{ds} = \mu C_{ox} \frac{W}{L} \frac{(V_{gs} - V_t)^2}{2} = \frac{\beta}{2} (V_{gs} - V_t)^2$$

☐ Velocity-saturated ON current increases with V_{DD}

$$I_{ds} = C_{ox}W(V_{gs} - V_t)v_{max}$$

- ☐ Real transistors are partially velocity saturated
 - Approximate with α -power law model
 - $-I_{ds} \propto V_{DD}^{\alpha}$
 - 1 < α < 2 determined empirically (≈ 1.3 for 65 nm)

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

$$C.-Power Model$$

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ I_{dsat} & \frac{V_{ds}}{V_{dsat}} & V_{ds} < V_{dsat} & \text{linear} \\ I_{dsat} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

$$V_{dsat} = P_v \left(V_{gs} - V_t \right)^{\alpha/2}$$

$$V_{gs} = 0.8$$

Channel Length Mod I-V

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 \left(1 + \lambda V_{ds} \right)$$

- \Box λ = channel length modulation coefficient
 - not feature size
 - Empirically fit to I-V characteristics

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

13

Threshold Voltage Effects

- \Box V_t is V_{gs} for which the channel starts to invert
- ☐ Ideal models assumed V_t is constant
- ☐ Really depends (weakly) on almost everything else:
 - Body voltage: Body Effect
 - Drain voltage: Drain-Induced Barrier Lowering
 - Channel length: Short Channel Effect

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Body Effect

- Body is a fourth transistor terminal
- $\hfill \Box \hfill V_{sb}$ affects the charge required to invert the channel
 - Increasing V_s or decreasing V_b increases V_t

$$V_{t} = V_{t0} + \gamma \left(\sqrt{\phi_{s} + V_{sb}} - \sqrt{\phi_{s}} \right)$$

 \Box ϕ_s = surface potential at threshold

$$\phi_s = 2v_T \ln \frac{N_A}{n_i}$$

- Depends on doping level N_A
- And intrinsic carrier concentration n_i
- \Box γ = body effect coefficient

$$\gamma = \frac{t_{\text{ox}}}{\varepsilon_{\text{ox}}} \sqrt{2q\varepsilon_{\text{si}}N_A} = \frac{\sqrt{2q\varepsilon_{\text{si}}N_A}}{C_{\text{ox}}}$$

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

15

Body Effect Cont.

☐ For small source-to-body voltage, treat as linear

$$V_{\scriptscriptstyle t} = V_{\scriptscriptstyle t0} + k_{\gamma} V_{sb}$$

$$k_{\gamma} = \frac{\gamma}{2\sqrt{\phi_s}} = \frac{\sqrt{\frac{\mathrm{q}\varepsilon_{\mathrm{si}}N_{\mathcal{A}}}{v_T \ln \frac{N_{\mathcal{A}}}{n_i}}}}{2C_{\mathrm{ox}}}$$

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

DIBL

- ☐ Electric field from drain affects channel
- ☐ More pronounced in small transistors where the drain is closer to the channel
- □ Drain-Induced Barrier Lowering
 - Drain voltage also affect V_t

$$V_t' = V_t - \eta V_{ds}$$

☐ High drain voltage causes current to _

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

17

Short Channel Effect

- ☐ In small transistors, source/drain depletion regions extend into the channel
 - Impacts the amount of charge required to invert the channel
 - And thus makes V_t a function of channel length
- ☐ Short channel effect: V_t increases with L
 - Some processes exhibit a reverse short channel effect in which $V_{\rm t}$ decreases with L

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Leakage Sources

- Subthreshold conduction
 - Transistors can't abruptly turn ON or OFF
 - Dominant source in contemporary transistors
- □ Gate leakage
 - Tunneling through ultrathin gate dielectric
- Junction leakage
 - Reverse-biased PN junction diode current

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Subthreshold Leakage

□ Subthreshold leakage exponential with V_{qs}

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_{t0} + \eta V_{ds} - k_y V_{sb}}{m v_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}} \right)$$

- n is process dependent
 - typically 1.3-1.7
- $\hfill \square$ Rewrite relative to $\hfill I_{\rm off}$ on log scale

$$I_{ds} = I_{\text{off}} 10^{\frac{V_{gs} + \eta \left(V_{ds} - V_{dd}\right) - k_{\gamma}V_{sb}}{S}} \left(1 - e^{\frac{-V_{ds}}{v_f}}\right)$$

$$S = \left[\frac{d\left(\log_{10}I_{ds}\right)}{dV_{gs}}\right]^{-1} = nv_T \ln 10$$

- ☐ S ≈ 100 mV/decade @ room temperature
- 4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed

21

Gate Leakage

- ☐ Carriers tunnel thorough very thin gate oxides
- $\hfill \Box$ Exponentially sensitive to t_{ox} and V_{DD}

- A and B are tech constants
- Greater for electrons
 - So nMOS gates leak more
- \Box Negligible for older processes (t_{ox} > 20 Å)
- ☐ Critically important at 65 nm and below $(t_{ox} \approx 10.5 \text{ Å})$

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Junction Leakage □ Reverse-biased p-n junctions have some leakage - Ordinary diode leakage - Band-to-band tunneling (BTBT) - Gate-induced drain leakage (GIDL) 4: Nonideal Transistor Theory CMOS VLSI Design 4th Ed. 23

Diode Leakage

☐ Reverse-biased p-n junctions have some leakage

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

- \Box At any significant negative diode voltage, $I_D = -I_s$
- \Box I_s depends on doping levels
 - And area and perimeter of diffusion regions
 - Typically < 1 fA/ μ m² (negligible)

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Band-to-Band Tunneling

- ☐ Tunneling across heavily doped p-n junctions
 - Especially sidewall between drain & channel when $\mbox{\it halo doping}$ is used to increase $\mbox{\it V}_{t}$
- ☐ Increases junction leakage to significant levels

$$I_{BTBT} = WX_j A \frac{E_j}{E_g^{0.5}} V_{dd} \, \mathrm{e}^{-B \frac{E_g^{1.5}}{E_j}} \qquad \qquad E_j = \sqrt{\frac{2 \mathrm{q} N_{bd/b} N_{sd}}{\varepsilon \left(N_{bd/b} + N_{sd}\right)}} \left(V_{DD} + v_T \ln \frac{N_{bd/b} N_{sd}}{n_i^2}\right)$$

- X_i: sidewall junction depth
- E_g: bandgap voltage
- A, B: tech constants

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

25

Gate-Induced Drain Leakage

- Occurs at overlap between gate and drain
 - Most pronounced when drain is at V_{DD}, gate is at a negative voltage
 - Thwarts efforts to reduce subthreshold leakage using a negative gate voltage

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Temperature Sensitivity □ Increasing temperature - Reduces mobility - Reduces V_t □ I_{ON} _____ with temperature □ I_{OFF} ____ with temperature ✓ V_t v_s 4: Nonideal Transistor Theory CMOS VLSI Design 4th Ed. 27

Envir	onment	tal Varia	ation
V and T	also vary in tim	ne and enace	
⊤v _{DD} and i ⊢Fast:	aiso vary iii tiii	ie and space	
– V _{DD} :			
v DD⋅			
_ T·			
– T: _			
- T:	Voltage	Temperature	7
	Voltage	Temperature	
Corner			

Process Corners

- ☐ Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation.
- ☐ Describe corner with four letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

31

4: Nonideal Transistor Theory

Power

leakage

Subthreshold

CMOS VLSI Design 4th Ed.

32

S