ЛАБОРАТОРНАЯ РАБОТА № 4 ПРИМЕНЕНИЕ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ ДЛЯ ВЫ-ПРЯМЛЕНИЯ ПЕРЕМЕННОГО ТОКА

Цель задания

- 1) Получение навыков построения и исследования схем выпрямителей.
- 2) Получение навыков использование осциллографа при моделировании электронных схем.

Постановка задачи

Для однополупериодной схемы выпрямителя (рис.1), при заданных значениях R_H , E_m , ω (табл.1), получить временные диаграммы на диоде (D) и сопротивлении нагрузки (R_H).

Определить среднее значение выпрямленного напряжения.

Рис.1. Однополупериодная схемы выпрямителя

Содержание отчета

- 1) Постановка задачи.
- 2) Схема исследования электрической цепи.
- 3) Исходные и полученные временные диаграммы.
- 4) Выводы.

Методические указания

1) В качестве исходных данных примем: $R_{\rm H}\!=\!R\!=\!100({\rm OM});~E_{\rm m}$ =5(B); $\omega\!=\!31,\!41(1/c).$

Рис.2. Схема с подключенным осциллографом В качестве источника переменного напряжения используется генератор (группа Instruments, пункт Function Generator).

Описание генератора (Function Generator).

В генераторе можно задавать:

- Форму выходного сигнала (три кнопки):синусоидальную, треугольную и прямоугольную.
- Частоту выходного сигнала (окно Frequency).
- Коэффициент заполнения в процентах (окно Duty cycle): для импульсов это отношение длительности импульса к периоду повторения величина обратная скважности.
- Амплитуду выходного сигнала (окно Amplitude).
- Смещение постоянной составляющей выходного сигнала (окно Offset).

В генераторе имеется три клеммы: «+», «-», и Com – общий.

Значение частоты f определяется из соотношения: $\omega = 2\pi f$.

К узлам 1 и 2 подключается осциллограф (группа Instruments, пункт Oscilloscope) для наблюдения входного напряжения и напряжения на диоде (рис.2).

Описание осциллографа (Oscilloscope).

Имеет два канала (Channel) A и B. Для каждого канала можно регулировать чувствительность в диапазоне от 10мкВ/дел (mV/div) до 5кВ/дел (kV/div), смещение по вертикали (Y Position) и выбирать режим — кнопки AC, 0, DC.

AC — для наблюдения только сигналов переменного тока. 0 — вход замыкается на землю. DC — для измерения как постоянного, так и переменного тока. Для каждого канала рядом с кнопками расположен входной зажим.

Режим развертки выбирается кнопками: Y/T, B/A, A/B.

Y/T – режим, когда по вертикали напряжение сигнала, по горизонтали время.

В/А - режим, когда по вертикали сигнал канала В, по горизонтали сигнал канала А.

А/В - режим, когда по вертикали сигнал канала А, по горизонтали сигнал канала В.

В режиме Y/Т задается:

Длительность развертки (Time base) в диапазоне от 0,1 нс/дел (ns/div) до 1 с/дел (s/div) и смещение по горизонтали (X Position).

Ждущий режим (Trigger), в котором имеется возможность запуска развертки (Edge) по переднему или заднему фронту запускающего импульса (соответственно две кнопки) с регулировкой уровня запуска (окно Level).

Кнопки Avto, A, B, Ext позволяют выбрать режимы запуска развертки: Avto – от канала A или B;

А - от канала А;

В - от канала В;

Ext — от внешнего источника, который подключается к соответствующему зажиму на панели Trigger.

Клемма Ground – для заземления прибора.

Кнопка Expand – для увеличения размера экрана. В данном режиме появляется возможность более точного измерения напряжения в двух каналах A, B и временных интервалов с помощью визирных линий. В данном режиме можно инвертировать изображение (кнопка Reverse) и записывать данные в файл (кнопка Save). Возвращение в исходный режим осуществляется кнопкой Reduce.

2) На экране осциллографа (рис.3) имеем две временные диаграммы, соответствующие входному сигналу (рис.3 - верхняя диаграмма) и напряжению на сопротивлении нагрузки (рис.3 - нижняя диаграмма).

Рис.3. Временные диаграммы

Из нижней диаграммы с помощью визирных линий определим амплитудное значение напряжения: U_{max} =4,21B.

Кроме этих диаграмм необходимо построить временную диаграмму напряжения на диоде. Она строится из соотношения: U_D =E- U_R .

<u>Варианты</u>

Nº	$R_{H}(O_{M})$	$E_m(B)$	ω(1/c)
1	50	12	100
2	20	4	200
3	25	6	250
4	10	13	150
5	30	5	50
6	50	10	150
7	20	4	100
8	25	6	200
9	30	5	300
10	40	7	50
11	70	10	350
12	25	10	200
13	60	8	100
14	50	15	350
15	100	12	250

№	R _H (OM)	E _m (B)	ω(1/c)
16	20	5	200
17	50	8	100
18	25	14	250
19	10	11	50
20	40	7	150
21	70	5	100
22	25	6	350
23	60	4	100
24	50	20	350
25	100	8	250
26	250	4	200
27	30	14	50
28	40	15	100
29	25	9	200
30	60	5	300