INTEGRALES DOBLES

INTEGRAL DOBLE SOBRE UN RECTÁNGULO. VOLUMEN.

Sean

- * $R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d\}$ rectángulo.
- * $f: R \subset \mathbb{R}^2 \to \mathbb{R}$ continua.
- * $S = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in R, 0 \le z \le f(x, y)\}$ sólido que yace por debajo de la superficie z = f(x, y) y por encima de R.

Teorema de Fubini

No es necesario que $f(x, y) \ge 0 \ \forall (x, y) \in R$. Esto sólo se usa para interpretar a la integral doble de f sobre R como el volumen bajo la gráfica de f.

Ejemplo

Evalúe la integral doble $\iint_R (x - 3y^2) dA$ donde $R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 2, 1 \le y \le 2\}$

Solución

Por el teorema de Fubini

$$\iint_{R} f(x,y)dA = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx$$

$$\iint_{R} (x - 3y^{2})dA = \int_{0}^{2} \left(\int_{1}^{2} (x - 3y^{2})dy \right) dx$$

$$= \int_{0}^{2} [xy - y^{3}]_{y=1}^{y=2} dx$$

$$= \int_{0}^{2} (2x - 8 - (x - 1)) dx$$

$$= \int_{0}^{2} (x - 7) dx$$

$$= \left[\frac{x^{2}}{2} - 7x \right]_{0}^{2}$$

$$= 2 - 14 - (0 - 0) = -12$$

Aplicando de nuevo el teorema de Fubini pero esta vez integrando primero respecto de *x*:

2

1

R

$$\iint_{R} f(x,y)dA = \int_{c}^{d} \left(\int_{a}^{b} f(x,y)dx \right) dy$$

$$\iint_{R} (x - 3y^{2})dA = \int_{1}^{2} \left(\int_{0}^{2} (x - 3y^{2})dx \right) dy = \int_{1}^{2} \left[\frac{x^{2}}{2} - 3xy^{2} \right]_{x=0}^{x=2}$$

$$= \int_{1}^{2} (2 - 6y^{2} - (0 - 0)) dy$$

$$= [2y - 2y^{3}]_{1}^{2} = 4 - 16 - (2 - 2) = -12$$

INTEGRALES DOBLES SOBRE REGIONES GENERALES

Con el objetivo de extender el concepto de integral doble sobre regiones acotadas más generales que rectángulos se definen lo que se denominan regiones Gráfica de f

elementales.

REGIONES ELEMENTALES

Se llaman así a los siguientes tipos de regiones:

Región y-simple (o de tipo I)

Si

$$* \varphi_1: [a, b] \subset \mathbb{R} \longrightarrow \mathbb{R}$$

*
$$\varphi_2$$
: $[a,b] \subset \mathbb{R} \to \mathbb{R}$

son funciones **continua**s en [a, b]

A la región *D* definida por:

$$D = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x)\}$$

se la llama región y-simple o de tipo I.

Ejemplos

D

Se usa la denominación y-simple porque la región se puede describir de un modo relativamente simple expresando y en función de x.

$$D = \{(x, y) \in \mathbb{R}^2 \mid c \le y \le d, \psi_1(y) \le x \le \psi_2(y)\}$$

se la llama **región** *x-simple* **o de tipo II**.

Región simple

Es una región que es *y-simple* y *x-simple* a la vez.

Por ejemplo a la región $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ se la puede considerar como *y-simple*:

y también como *x-simple*:

TEOREMA: INTEGRALES ITERADAS PARA REGIONES Y-SIMPLE

De manera análoga:

TEOREMA: INTEGRALES ITERADAS PARA REGIONES X-SIMPLE

$$\iint_D f(x,y)dA = \int_c^d \left(\int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx \right) dy$$

En caso que $f(x,y) = 1 \ \forall (x,y) \in D$, donde D es una región elemental en el plano:

$$\iint_{D} f(x,y)dA = \iint_{D} 1dA = \underbrace{A(D)}_{c} = \begin{cases} \underbrace{\int_{a}^{b} \left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} dy\right) dx}_{Si \ D \ es \ y-simple} = \underbrace{\int_{a}^{b} \left[\varphi_{2}(x) - \varphi_{1}(x)\right] dx}_{Si \ D \ es \ x-simple} \\ \underbrace{\int_{c}^{d} \left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} dx\right) dy}_{Si \ D \ es \ x-simple} = \underbrace{\int_{c}^{d} \left[\psi_{2}(y) - \psi_{1}(y)\right] dy}_{C}$$

Ejemplo 1

Evalúe la integral doble $\iint_D (x + 2y) dA$ donde D es la región de \mathbb{R}^2 determinada por la siguiente desigualdad:

$$2x^2 \le y \le 1 + x^2$$

Solución

$$= \int_{-1}^{1} [x(1+x^2) + (1+x^2)^2 - (2x^3 + 4x^4)] dx$$

$$= \int_{-1}^{1} [x + x^3 + 1 + 2x^2 + x^4 - 2x^3 - 4x^4)] dx$$

$$= \int_{-1}^{1} [x - x^3 + 1 + 2x^2 - 3x^4] dx$$

$$= \left[\frac{x^2}{2} - \frac{x^4}{4} + x + \frac{2x^3}{3} - \frac{3x^5}{5} \right]_{-1}^{1} = \frac{32}{15}$$

Ejemplo 2

Obtenga el volumen de la región sólida de \mathbb{R}^3 determinada por el conjunto de todas las ternas ordenadas (x,y,z) que satisfacen el siguiente sistema de desigualdades:

$$\begin{cases} 0 \le z \le x^2 + y^2 \\ x^2 \le y \le 2x \end{cases}$$

La región sólida S es la que yace debajo del paraboloide $z=x^2+y^2$ y arriba de la región D del plano xy acotada por la recta y=2x y la parábola $y=x^2$.

O sea que
$$S = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in D, 0 \le z \le \underbrace{x^2 + y^2} \}$$
 es la región sólida y
$$f(x, y)$$

D puede considerarse tanto y-simple como x-simple, es decir, podemos describirla como:

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 2, x^2 \le y \le 2x\}$$
 (y-simple)

$$a = 0$$

$$b = 2$$

$$\varphi_1(x) = x^2$$

$$\varphi_2(x) = 2x$$

$$o \ D = \left\{ (x, y) \in \mathbb{R}^2 \ \middle| \ 0 \le y \le 4, \frac{1}{2} y \le x \le \sqrt{y} \right\}$$
 (x-simple)

$$c = 0$$

$$d = 4$$

$$\psi_1(y) = \frac{1}{2}y$$

$$\psi_2(y) = \sqrt{y}$$

Si se considera a D como región <u>y-simple</u>, el volumen de S se obtiene de la siguiente manera:

$$V(S) = \iint_{D} f(x,y)dA = \int_{a}^{b} \left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y)dy \right) dx$$

$$= \int_{0}^{2} \left(\int_{x^{2}}^{2x} (x^{2} + y^{2}) dy \right) dx$$

$$= \int_{0}^{2} \left[x^{2}y + \frac{y^{3}}{3} \right]_{y=x^{2}}^{y=2x} dx$$

$$= \int_{0}^{2} \left[2x^{3} + \frac{8}{3}x^{3} - \left(x^{4} + \frac{x^{6}}{3} \right) \right] dx$$

$$= \int_{0}^{2} \left[\frac{14}{3}x^{3} - x^{4} - \frac{x^{6}}{3} \right] dx$$

$$= \left[\frac{14}{12}x^{4} - \frac{1}{5}x^{5} - \frac{1}{21}x^{7} \right]_{0}^{2}$$

$$= \left[\frac{7}{6}x^{4} - \frac{1}{5}x^{5} - \frac{1}{21}x^{7} \right]_{0}^{2}$$

$$= \frac{112}{6} - \frac{32}{5} - \frac{128}{21}$$

$$= \frac{56}{3} - \frac{32}{5} - \frac{128}{21}$$

$$= \frac{1960 - 672 - 640}{105}$$

$$= \frac{648}{105}$$

$$= \frac{216}{35}$$

Si se considera a D como región <u>x-simple</u>, el volumen de S se obtiene de la siguiente manera:

$$V(S) = \iint_{D} f(x,y)dA = \int_{c}^{d} \left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y)dx \right) dy$$

$$V(S) = \iint_D (x^2 + y^2) dA$$

$$= \int_0^4 \left(\int_{\frac{1}{2}y}^{\sqrt{y}} (x^2 + y^2) dx \right) dy$$

$$= \int_0^4 \left[\frac{x^3}{3} + xy^2 \right]_{x = \frac{1}{2}y}^{x = \sqrt{y}} dy$$

$$= \int_0^4 \left[\frac{y^{\frac{3}{2}}}{3} + y^{\frac{1}{2}} y^2 - \left(\frac{y^3}{24} + \frac{y^3}{2} \right) \right] dy$$

$$= \int_0^4 \left[\frac{y^{\frac{3}{2}}}{3} + y^{\frac{5}{2}} - \frac{13y^3}{24} \right] dy$$

$$= \left[\frac{2}{15} y^{\frac{5}{2}} + \frac{2}{7} y^{\frac{7}{2}} - \frac{13}{96} y^4 \right]_0^4$$

$$=\frac{216}{35}$$

<u>Ejemplo 3</u>

Obtenga el volumen de la región sólida de \mathbb{R}^3 determinada por el conjunto de todas las ternas ordenadas (x,y,z) que satisfacen el siguiente sistema de desigualdades:

$$\begin{cases} x \ge 0 \\ 0 \le y \le 1 - x \\ 0 \le z \le 1 - x^2 \end{cases}$$

<u>Solución</u>

En este caso se considera a D como y-simple. También se la puede considerar como x-simple ya que es de ambos tipos a la vez.

$$V(S) = \iint_{D} f(x,y)dA = \int_{a}^{b} \left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x,y)dy \right) dx$$

$$V(S) = \int_{0}^{1} \left(\int_{0}^{1-x} (1-x^{2})dy \right) dx$$

$$= \int_{0}^{1} [y-x^{2}y]_{y=0}^{y=1-x} dx$$

$$= \int_{0}^{1} (1-x-x^{2}(1-x)) dx$$

$$= \int_{0}^{1} (1-x-x^{2}+x^{3}) dx$$

$$= \left[x - \frac{x^{2}}{2} - \frac{x^{3}}{3} + \frac{x^{4}}{4} \right]_{0}^{1}$$

$$= 1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4}$$

$$= \frac{12 - 6 - 4 + 3}{12}$$

$$= \frac{5}{12}$$