Tutorial 7 Real-Time Volume Graphics

Klaus Engel

Markus Hadwiger

Christof Rezk Salama

Real-Time Volume Graphics [01] Introduction and Theory

Appliations: Medicine

CT Human Head:
Visible Human Project,
US National Library of Medicine,
Maryland,
USA

CT Angiography:
Dept. of Neuroradiology
University of Erlangen,
Germany

Applications: Geology

REAL-TIME VOLUME GRAPHICS

Applications: Archeology

Hellenic Statue of Isis

3rd century B.C.

ARTIS, University of ErlangenNuremberg, Germany

Sotades Pygmaios Statue,
5th century B.C
ARTIS, University of ErlangenNuremberg, Germany

Applications:

Material Science, Quality Control

Micro CT, Compound Material,

Material Science Department, University of Erlangen

Biology

biological sample of the soil, CT,
Virtual Reality Group,
University if Erlangen

Applications

Computational Science and Engineering

Applications: Computer Science

Visualization of Pseudo Random Numbers

Entropy of Pseudo Random Numbers,
Dan Kaminsky, Doxpara Research, USA,
www.doxpara.com

Outline

 in real-time on commodity graphics hardware

REAL-TIME VOLUME GRAPHICS

Physical Model of Radiative Transfer

Increase true emission in-scattering Decrease true absorption out-scattering

Physical Model of Radiative Transfer

Increase true emission in-scattering Decrease true absorption out-scattering

How do we determine the radiant energy along the ray?

How do we determine the radiant energy along the ray?

How do we determine the radiant energy along the ray?

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

 $I(s) = I(s_0) e^{-\tau(s_0,s)}$

Extinction τ Absorption κ

$$\tau(s_1, s_2) = \int_{s_1}^{s_2} \kappa(s) \, ds.$$

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

One point \tilde{s} along the viewing ray emits additional radiant energy.

$$I(s) = I(s_0) e^{-\tau(s_0,s)} + q(\tilde{s})$$

Active emission

at point s

How do we determine the radiant energy along the ray?

$$I(s) = I(s_0) e^{-\tau(s_0,s)} +$$

$$q(\tilde{s}) e^{-\tau(\tilde{s},s)}$$

How do we determine the radiant energy along the ray?

Physical model: emission and absorption, no scattering

Every point \tilde{s} along the viewing ray emits additional radiant energy

REAL-TIME VOLUME GRAPHICS

$$I(s) = I(s_0) e^{-\tau(s_0,s)} + \int_{s_0}^{s} q(\tilde{s}) e^{-\tau(\tilde{s},s)} d\tilde{s}$$

Ray Casting

Software Solution

Extinction:
$$\tau(0,t) = \int_0^t \kappa(\hat{t}) d\hat{t}$$

Extinction:
$$\tau(0,t) = \int_0^t \kappa(\hat{t}) d\hat{t}$$

Approximate Integral by Riemann sum:

$$\tau(0,t) \approx \sum_{i=0}^{\lfloor t/\Delta t \rfloor} \kappa(i \cdot \Delta t) \, \Delta t$$

REAL-TIME VOLUME GRAPHICS

$$A_i = 1 - e^{-\kappa(i\cdot\Delta t)\,\Delta t}$$

$$1 - A_i = e^{-\kappa(i\cdot\Delta t)\,\Delta t}$$

$$1 - A_i = e^{-\kappa(i\cdot\Delta t)\,\Delta t}$$

$$1 - A_i = e^{-\kappa(i\cdot\Delta t)\,\Delta t}$$

$$e^{-\tilde{\tau}(0,t)} = \prod_{i=0}^{\lfloor t/\Delta t \rfloor} (1 - A_i)$$

$$q(t) \approx C_i = c(i \cdot \Delta t) \Delta t$$

$$e^{-\tilde{\tau}(0,t)} = \prod_{i=0}^{\lfloor t/\Delta t \rfloor} (1 - A_i)$$

$$q(t) \approx C_i = c(i \cdot \Delta t) \Delta t$$

$$\tilde{C} = \sum_{i=0}^{\lfloor T/\Delta t \rfloor} C_i e^{-\tilde{\tau}(0,t)}$$

$$e^{-\tilde{\tau}(0,t)} = \prod_{i=0}^{\lfloor t/\Delta t \rfloor} (1 - A_i)$$

$$q(t) \approx C_i = c(i \cdot \Delta t) \Delta t$$

$$\tilde{C} = \sum_{i=0}^{\lfloor T/\Delta t \rfloor} C_i e^{-\tilde{\tau}(0,t)}$$

$$e^{-\tilde{\tau}(0,t)} = \prod_{i=0}^{\lfloor t/\Delta t \rfloor} (1 - A_i)$$

$$q(t) \approx C_i = c(i \cdot \Delta t) \Delta t$$

$$\tilde{C} = \sum_{i=0}^{\lfloor T/\Delta t \rfloor} C_i \prod_{j=0}^{i-1} (1 - A_j)$$

$$\tilde{C} = \sum_{i=0}^{\lfloor T/\Delta t \rfloor} C_i \prod_{j=0}^{i-1} (1 - A_j)$$

can be computed recursively

$$C'_{i} = C_{i} + (1 - A_{i})C'_{i-1}$$

Radiant energy observed at position i

Radiant energy emitted at position i

Absorption at position *i*

Radiant energy observed at position *i*—1

Back-to-front compositing

$$C'_i = C_i + (1 - A_i)C'_{i-1}$$

Front-to-back compositing

$$C'_{i} = C'_{i+1} + (1 - A'_{i+1})C_{i}$$

 $A'_{i} = A'_{i+1} + (1 - A'_{i+1})A_{i}$

Back-to-front compositing

$$C_i' = C_i + (1$$

Early Ray Termination:

Stop the calculation when

$$A_i' \approx 1$$

Front-to-back compositing

$$C'_{i} = C'_{i+1} + (1 - A'_{i+1})C_{i}$$

 $A'_{i} = A'_{i+1} + (1 - A'_{i+1})A_{i}$

Summary

Emission Absorption Model

$$I(s) = I(s_0) e^{-\tau(s_0,s)} + \int_{s_0}^{s} q(\tilde{s}) e^{-\tau(\tilde{s},s)} d\tilde{s}$$

Numerical Solutions

REAL-TIME VOLUME GRAPHICS

Back-to-front iteration

$$C'_{i} = C_{i} + (1 - A_{i})C'_{i-1}$$
 $C'_{i} = C'_{i+1} + (1 - A'_{i+1})C_{i}$
 $A'_{i} = A'_{i+1} + (1 - A'_{i+1})A_{i}$

