## NASA Contractor Report 159260

NASA-CR-159260 1981 0006883

ACCESS 3 - APPROXIMATION CONCEPTS CODE FOR EFFICIENT STRUCTURAL SYNTHESIS - USER'S GUIDE

Claude Fleury and Lucien A. Schmit

UNIVERSITY OF CALIFORNIA, LOS ANGELES Los Angeles, California 90024

NASA Grant NSG-1490 September 1980 LIBRARY COPY

OCT 1 0 1980

MARGLE ARRESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665



## CONTENTS

| List | of.  | Figures                                                         |
|------|------|-----------------------------------------------------------------|
| List | of   | Tables                                                          |
| Abst | ract |                                                                 |
| 1.   | INTE | RODUCTION                                                       |
| 2.   | THE  | ACCESS-3 COMPUTER PROGRAM                                       |
|      | 2.1  | Program Organization                                            |
|      | 2.2  | Program Implementation                                          |
|      | 2.3  | Restrictions and Limitations                                    |
| 3.   | INPU | JT DATA PREPARATION                                             |
|      | 3.1  | System of Units                                                 |
|      | 3.2  | Node Numbering Scheme                                           |
|      | 3.3  | Symmetric Wing Model                                            |
|      | 3.4  | Design Variable Linking and Stress Constraint 1 Regionalization |
|      | 3.5  | Failure Criteria                                                |
|      | 3.6  | Computation of Constraints                                      |
|      | 3.7  | Zero Order Approximation of the Stress Constraints . 1          |
|      | 3.8  | Optimization Algorithms                                         |
|      | 3.9  | Printout Control Parameters                                     |
| 4.   | INPU | UT DATA DESCRIPTION                                             |
| REFE | RENC | CES                                                             |
| FIGU | RES  |                                                                 |
| TABL | ES   |                                                                 |
| APPE | NDIX | K A. Element Library 6                                          |
|      |      | R Evamples                                                      |

## CONTENTS

## List of Figures

|      |            |      | т • и и                   | - 1 s = 1 | er ta i | 5 c • t          | გმუსმ                                      | t of Fr                                | Lin            |
|------|------------|------|---------------------------|-----------|---------|------------------|--------------------------------------------|----------------------------------------|----------------|
| Fig. | <u>.</u> 1 | Bas  | ic Organiza               | tion of   | ACCESS  | 3                | • . • . • . • essic                        | ცე. გ56ე                               | cil            |
| Fig. | 2          | Ove: | rlay Struct               | ure of    | ACCESS- | 3 (IBM V         | Version). • •                              | • ••• <b>57</b> 5                      | સવ <u>ા</u> ડે |
| Fig. | 3          | SSP  | Element Mo                | del Exa   | mple ·  |                  |                                            | 58                                     |                |
| Fig. | 4          |      | ncation Bou<br>Truncation |           |         | 'BV.):• .3:3:4:1 | (1535° (* COMP                             | on• = 59                               | . \$.          |
| 4    |            |      |                           |           |         | isatha           | wer more                                   | 1 1.3                                  |                |
| •    |            | v    |                           |           | 11 -    | reins            | a i garan waka 1655 a .                    | e e e e e e e e e e e e e e e e e e e  |                |
|      |            |      | Y 9                       | F         |         | er Brown         | and isolation                              | . •                                    |                |
|      |            |      |                           | j.        |         | 771)(            | ÷. Pro | ·                                      |                |
| þ    |            |      | F                         |           | s r r   | . 2.1            | The second section of                      | . 1                                    |                |
|      | ٠          |      | •                         |           | e ( )   | . 108            |                                            |                                        |                |
|      |            |      |                           |           |         | e je             | To the same                                |                                        |                |
|      |            |      | gen g <del>el</del>       | 11.31     | * ·     |                  | to dispates                                |                                        |                |
|      |            |      |                           |           |         |                  |                                            |                                        |                |
|      |            |      |                           |           |         |                  | t in the state of                          |                                        |                |
|      |            | ٠.   |                           | 1         | •       |                  | *                                          |                                        |                |
|      |            |      |                           |           |         | ** * *           | *                                          |                                        |                |
|      |            |      |                           |           | • • • • |                  | · · · · · · · · · · · · · · · · · · ·      |                                        |                |
|      |            |      |                           |           |         |                  | dalbhail 70m                               |                                        | :              |
|      |            |      |                           |           |         |                  | * *                                        | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                |

## List of Tables

| Table l | Temporary Files 60                                 |
|---------|----------------------------------------------------|
| Table 2 | Required Blank Common Size 61                      |
| Table 3 | Available Options for Frequency Constraints 62     |
| Table 4 | Algorithm Options for Various Kinds of Problems 63 |
| Table 5 | Analysis Printout Control - IPRINT 63              |
| Table 6 | NEWSUMT Optimizer Printout Control - JPRINT 64     |
| Table 7 | PRIMAL2 Optimizer Printout Control - JPRINT 65     |
| Table 8 | DUAL1 Optimizer Printout Control - JPRINT 66       |
| Table 9 | DUAL2 Optimizer Printout Control - JPRINT 67       |

THIS PAGE LEFT BLANK INTENTIONALLY

## Abstract

This report serves as a user's guide for the ACCESS-3 computer program. ACCESS-3 is a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure.

The ACCESS-3 program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible.

The following new features have been added in the program:

- . four distinct optimizer options:
  - . interior point penalty function method (NEWSUMT)
  - . second order primal projection method (PRIMAL2)
  - . second order Newton-type dual method (DUAL2)
  - . first order gradient projection-type dual method (DUALI)
- . pure discrete and mixed continuous-discrete design variable capability
- . zero order approximation of the stress constraints.

#### ACCESS - 3

## Approximation Concepts Code for Efficient Structural Synthesis

#### User's Guide

#### 1. INTRODUCTION

The ACCESS computer programs have been developed to demonstrate the effectiveness of an automated structural synthesis capability formed by combining finite element analysis techniques and mathematical programming algorithms using approximation concepts. Structures with prescribed configuration and given material properties are optimized so that their structural weight is minimized by modifying the sizing of finite elements, i.e. cross-sectional areas or thicknesses.

The ACCESS-1 program (see Refs. 1 and 2) was designed to test the effectiveness of the coordinated use of approximation concepts on problems of relatively small scale, subject to simple static constraints. As reported in Ref. 1, efficiency, in terms of the number of finite element structural analyses needed to obtain near optimal designs, was improved significantly over previously reported capabilities having comparable generality. However, many practical design problems were beyond the capacity of ACCESS-1 and consideration of more complicated constraints than those treated in ACCESS-1 was desirable.

The ACCESS-2 computer program was developed in response to these needs and to build a body of experience that can be used to set effective guidelines for future developments of

large scale industrial application problems (see Refs. 3 and Through the use of dynamic array allocation techniques 4). and data transfer by sequential data files, ACCESS-2 is capable of treating larger problem sizes than its predecessor ACCESS-1. A thermal load analysis capability was added, providing experience with problems involving load vectors which depend on design variables. Frequency constraints were also installed. In addition to the usual Taylor series expansion with respect to the reciprocals of linked design variables, additional options for representing natural frequency constraints as first or second order Taylor series expansion with respect to regular linked variables were implemented. Finally the element library was extended. A constant strain triangular element with arbitrary orthotropic material properties (CSTOR) was included to model laminated fiber composite material membrane structures. A thermal shear panel element (TSP) was introduced to take uniform soak temperature effects into account, with emphasis on midplane symmetric wings.

The ACCESS-3 program continues along these lines and provide a further improved structural synthesis capability by combining dual methods and approximation concepts (see Ref. 5). The detailed analytical development of the methods implemented by the ACCESS-3 computer program as well as numerical results representing a substantial body of computational experience will be found in Ref. 6.

Approximation concepts are used to convert the general structural synthesis problem into a sequence of explicit problems of separable algebraic form. The dual method formulation exploits the separable form of each approximate problem to construct a sequence of explicit dual functions. These dual functions are maximized subject to nonnegativity constraints on the dual variables, which are the Lagrangian multipliers associated with the linearized behavior constraints.

The main advantages of the dual methods lies in their high level of computational efficiency, which is due to the fact that the dimensionality of the dual problem is relatively low for many structural optimization problems of practical interest. Another important advantage of the dual formulation is its ability to accommodate discrete design variables, e.g. available cross-sectional areas of bars, available gage sizes of sheet metal, the numbers of plies in a laminated composite skin, etc... The ACCESS-3 program provides two dual optimization algorithm options: (a) DUAL2 (2nd order Newton type of algorithm), which is restricted to pure continuous design variable problems; and (b) DUALL (1st order gradient projection type of algorithm), which can solve pure discrete and mixed continuous-discrete design variable problems.

In addition, a 2nd order primal projection algorithm called PRIMAL2 has been introduced, which operates, like NEWSUMT, on each explicit approximate problem expressed in

terms of the reciprocal design variables. Hence a collection of four distinct optimizer options are available in the ACCESS-3 computer program: NEWSUMT, PRIMAL2, DUAL2 and DUAL1.

Another new feature of ACCESS-3 is that the stress constraints can be replaced with zero order explicit approximations instead of first order ones. The zero order approximations are obtained using classical stress ratio formulas. They can be expressed as simple side constraints, which is especially beneficial when dual methods are employed. A selection criterion permits automatic subdivision of the stress constraints in two categories: those requiring first order approximation (full linear Taylor series) and those for which zero order approximation (side constraint) is accurate enough (see Ref. 7).

In summary, the main feature of ACCESS-3 lies in the joining together of approximation concepts and dual methods. This solution scheme can be interpreted as a generalized optimality criteria method. Another new capability is the zero order approximation of the stress constraints based on the conventional "Fully Stressed Design" optimality criterion. Therefore the ACCESS-3 program can be regarded as an advanced research tool where mathematical programming and optimality criteria approaches coalesce to provide an efficient and reliable structural weight minimization method.

#### 2. THE ACCESS-3 COMPUTER PROGRAM

## 2.1 Program organization

The fundamental structure of the ACCESS-3 program is outlined in Fig. 1. Upon activation the preprocessor reads and prints out the input data in a readable format. processor then computes all the ancillary data that are independent of changes in the design variables and it stores the results in appropriate arrays as well as in temporary external files (see Table 1). When preprocessing is completed successfully, the design process control (DPC) block is activated and it initializes the design iteration process. At the outset the design given in the input data is transferred to the approximate problem generator (APG), and this design is analyzed by the finite element method. Constraint functions are evaluated using the response quantities obtained from the finite element analysis and then the initial set of critical and potentially critical constraints is identified and tagged. Explicit approximate expressions for these tagged constraints are computed using the Taylor series expansion with respect to appropriate intermediate design variables. Reciprocals of independent design variables are used as intermediate variables throughout the program, except for an optional use of the independent design variables themselves when expanding frequency constraints. In ACCESS-3, the objective function is the structural weight and it may be expressed exactly and explicitly in terms of the independent design variables or their

reciprocals. Thus, the APG block can generate an approximate problem statement of the form:

Minimize  $W(\vec{X})$ 

$$\vec{X} = (x_1, x_2, \dots x_n)$$

Subject to

$$\widetilde{H}_{q}(\overrightarrow{X}) \stackrel{\geq}{=} 0 \qquad q = 1, 2, \dots Q$$

where  $W(\vec{X})$  and all  $\widetilde{H}_q(\vec{X})$  are explicit analytic functions of  $\vec{X}$ . Note that the number of constraints Q for this approximate problem is much smaller than that of the original structural design problem, because only the tagged constraints are included and all other constraints are temporarily ignored during a particular design stage.

The data which define the approximate problem are sent back to DPC and subsequently given to the optimization algorithm block (OA). The primary function of OA is to carry out a numerical search process which will improve the design by operation on the current approximate problem statement. Since OA deals with problems that are stated in algebraically explicit form, it is not even aware that these problems are related to structural design. Therefore, any established algorithm for inequality constrained minimization of a function of many variables may be used. However the main feature of ACCESS-3 is that special purpose, highly efficient OA have been selected, which capitalize upon the special mathematical structure of the explicit problems generated by APG. Unlike its prede-

cessor ACCESS-2, in which only one general purpose OA was implemented (NEWSUMT), the new ACCESS-3 program offers a collection of four available options (NEWSUMT, PRIMAL2, DUAL2 and DUAL1). The user can select an OA from this collection, taking into account the size of the problem, the nature of the constraints and the definition of the design variables (continuous or discrete). Section 3.8 gives a description of the available OA.

After carrying out a numerical search with the approximate problem, the optimization algorithm (OA) block proposes an improved design  $\vec{X}$  to DPC. This step completes one stage of the design iteration procedure.

In summary, one stage of iteration includes one finite element structural analysis, one constraint deletion process, one sensitivity evaluation for retained constraints, and one optimization of an approximate problem. Since the final design is subjected to a detailed finite element analysis, the total number of finite element analyses equal the number of iteration stages plus one, which will be typically around 10. The iterative design process is terminated when one of the specified convergence criteria is satisfied.

## 2.2 Program Implementation

The ACCESS-3 computer program may be executed as a stand alone program. It consists of approximately 15000 FORTRAN statements. Two operational versions of the program exist, one for IBM 360/370 systems and the other for CDC 6600/7600

systems. Since it contains no machine dependent statements, it can be made operational on various computers, provided enough main memory capacity and auxiliary data storage support are available.

Auxiliary storage files are required as shown in Table 1. Files 10, 11, 12, 13, 14 and 15 are required for all problems. File 16 is required only when type 4 elements (TSP) are used in the structural model. Files 18, 19, 20, 21 and 22 are required only when second order expansions of frequency constraints are specified. File 17 is required only when zero order approximation of stress constraints is specified.

The required size of blank common is very problem dependent: i.e. it depends on the structural analysis model (number of nodes, elements and load conditions), the number of independent design variables, and the constraint types included. For certain problems, it also depends on the initial design. Hence, it is rather difficult to give explicit formulas which estimate the size of blank common requirements. Table 2 gives actual blank common array size requirements for several example problems.

Overlay or segmentation of the program can be designed easily by referring to Fig. 2. The simple 3 level overlay is adequate to solve most of the meaningful problems. If an operating system allows more flexible overlay structure, it is possible to decrease the core requirement further.

However, the net gain acquired by the elaborate overlay may not be significant, since most of the core is used for data and not for instructions.

All routines are written in standard FORTRAN IV language and they have been tested on:

- (a) the IBM 360/91 using the FORTRAN-H compiler at UCLA
- (b) the CDC 6600 at the NASA Langley Research Center. Implementation on other computers will be straightforward provided those computers have the required main memory capacity. Except for the blank common arrays,  $330_{10}$ k and  $95_{10}$ k bytes are required on IBM 360/91 without and with program overlay, respectively. On a CDC 6600, the corresponding basic memory requirement is  $100_{8}$ k words with overlay.

## 2.3 Restrictions and Limitations

The amount of main memory storage required for solution of a particular problem depends upon many factors, including the number of nodes, the number of elements, the number of design variables, the element types used, the kinds of constraints imposed, and even the initial design employed, etc. For static problems, it is necessary to retain two system stiffness matrices and the load vectors in core. For dynamic problems, three system matrices must be retained in core. If a problem involves dynamic constraints and thermal shear panel elements, four system matrices must be in core simultaneously. Also a complete approximate problem statement (all retained

constraint values and all the corresponding derivative components) must be in core for the OA block. It is difficult to estimate the array size required for a system stiffness matrix in advance. Only the nonzero skyline of an upper half matrix is stored, hence the memory requirement depends on the node numbering scheme. For medium size problems (300-600 DOF), the density of nonzero elements in the matrix is usually 20-50% and a first approximation can be made by estimating the density based on observation of the finite element model. The main memory storage required for the integer portion of the blank COMMON is usually less than 10,000 words, but the real variable portion is very dependent on the nature of the problem. problems in which the number of constraints retained tends to be larger and in which there are many independent design variables (e.g. structures involving laminated fiber composite skins) the constraint derivative array size [i.e. (Number of Design Variables) x (Number of Constraints Retained) | may limit the problem size, since this large array must be in core in addition to the instructions and local variables. Furthermore, a large number of available discrete values may also limit the problem size, since a separate set of discrete values must be associated to each independent linked design variable, in view of the design variable normalization process used in ACCESS-3.

When first order approximations are used, frequency constraints can be imposed on any subset of frequencies within the lowest NFREQ frequencies. If second order approximations

are employed, all frequencies in the lowest NFREQ frequencies must be bounded.

Capabilities for aeroelastic constraints are not available in this version, therefore NMODE must be zero and the flight condition specification flags must all be zero.

There are 4 available optimization algorithms in ACCESS-3. However only NEWSUMT is a general purpose optimizer, which can be used even when the explicit approximate constraints are not linear in the reciprocal design variables. As a consequence, the possible combinations of frequency constraint approximations and optimization algorithms are not all acceptable; Table 3 shows the available combinations that may be used.

It is also important to recognize that only the DUAL1 optimization algorithm is applicable to problems involving discrete design variables. For the case of pure continuous design variable problems, all four optimizers are applicable. The algorithm options available for various kinds of problems are summarized in Table 4.

## 3. INPUT DATA PREPARATION

It is assumed that the reader is familiar with elastic structural analysis via the finite element displacement method, as well as with associated structural modelling techniques and typical data preparation procedures. Sufficient information for preparing the input data card images is given in Section 4, therefore, the explanations given in this section are limited to topics which require somewhat detailed technical discussion in order to avoid possible misunderstandings.

## 3.1 System of Units

Input data of the ACCESS-3 computer program may be prepared in any system of units as long as they are consistent. For example, if it is decided that the units for length and force are to be centimeters and Newtons, respectively, then the corresponding units for pressure load or allowable stress must be N/cm<sup>2</sup>. Note that the material constant specification calls for the specific weight of the material, not its mass density. To be consistent lumped nodal mass should be given using weight rather than mass units. Example problems given in Appendix B, as well as the corresponding computer input data, are presented using numerical values associated with the US units, simply because all the examples were originally presented in the literature using US units.

## 3.2 Node Numbering Scheme

The system stiffness and mass matrices are stored in a vector form within the skyline of the nonzero elements, i.e. there are no operations or no storage allocations with elements that remain zero during the solution. This scheme allows somewhat more flexible node numbering arrangement than the ordinary band equation solver. It is better, however, to follow the same guidelines in preparing data as for a banded matrix solution scheme; i.e., differences among node numbers associated with an element must be kept as small as possible for all elements.

## 3.3 Symmetric Wing Model

If the webs of a midplane symmetric wing are modelled with SSP elements, only the upper (or lower) half of the wing is modelled. Assuming that the X-Y reference plane is the plane of symmetry, the X and Y displacement components and loading components are then anti-symmetric. Displacements and loadings in the Z direction are identical for both sides of the X-Y plane. For example, if a cantilever beam such as that shown in Fig. 3(a) is to be modelled using two SSP elements, then the simplified model should be that shown in Fig. 3(b). Note that only half of the load P needs to be applied to the node 3, since the other half is implicitly applied to the conjugate node 3' (which does not exist explicitly in the model). The SSP elements are always perpendicular to the X-Y plane of symmetry.

The assumed displacement function for SSP elements cannot accommodate uniform thermal expansion of each SSP element. specified midplane symmetric temperature changes are specified for a midplane symmetric structural model, in which the vertical webs are represented by SSP elements, ACCESS 3 branches and makes a separate calculation which adds in the midplane symmetric temperature change effects. This is accomplished by assembling equilibrium equations for the midplane symmetric structure with all of the SSP elements replaced by TSP elements while only considering midplane symmetric temperature change loading. These equilibrium equations are solved for displacements  $\dot{\vec{u}}_{\text{th}}$  due only to midplane symmetric temperature changes. These thermally induced midplane symmetric displacements are superimposed on the previously computed midplane antisymmetric displacement state due to mechanical loads only. Treating the symmetric and antisymmetric contributions separately reduces the number of displacement degrees of freedom that need to be considered in each of the two analyses and for thin wings it also tends to improve the accuracy of the analysis by avoiding the poor conditioning often associated with simultaneous treatment of bending and membrane response. The strain state is computed based on the total displacement, and the stress state is computed by transforming the strain state using the stressstrain relationships.

# 3.4 <u>Design Variable Linking and Stress Constraint Regionali-</u> zation

The general concept of design variable linking is discussed in Sec. 2.3.1 of Ref. 1. In the ACCESS-3 computer program, if the sizes of some group of finite elements of the same type are controlled by a single design variable, these elements are said to belong to the same design variable linking group. The sizes of elements in a design variable linking group are modified in proportion to the initial sizes given in the input data.

Design variable linking groups are also used to define "regions" for the regionalization of stress constraints. The general idea of regionalization is described in Sec. 2.4.1 of Ref. 1. Elements which belong to the same design variable linking group form a region and only one stress constraint per load condition (the most critical) is considered for each group in any stage of the iterative design procedure. Selection of the critical stress constraints within a region is not rigidly fixed, but dynamically updated at the beginning of each stage. If the location of the critical stress constraints shifts frequently within a region from stage to stage the iteration process may be unstable, although this type of instability was not observed in solving any of the problems given in Ref. 1. However, if the user desires to remove the regionalization of stress constraints, it is only necessary to specify IGLINK = -200.

## 3.5 Failure Criteria

The CSTOR element is implemented to model structures made with orthotropic materials including multi-layered fiber composite laminates. While strength failure criteria for isotropic metal alloy materials are imposed using the <a href="mailto:von\_Mises">von\_Mises</a> combined effective stress, strength failure criteria for CSTOR elements are selected from 3 available options. They are:

## A. Maximum strain criteria

$$\bar{\varepsilon}_{L}^{c} \leq \varepsilon_{L} - \alpha_{L} \Delta T \leq \bar{\varepsilon}_{L}^{t}$$

$$\bar{\varepsilon}_{T}^{c} \leq \varepsilon_{T} - \alpha_{T} \Delta T \leq \bar{\varepsilon}_{T}^{t}$$

$$|\gamma_{LT}| \leq \bar{\gamma}_{LT}$$

## B. Stress interaction formulas

$$\left(\frac{\sigma_{L}}{F_{L}}\right)^{2} \leq 1$$

$$\left(\frac{\sigma_{\mathrm{T}}}{F_{\mathrm{T}}}\right)^2 + \left(\frac{\tau_{\mathrm{LT}}}{F_{\mathrm{LT}}}\right)^2 \le 1$$

## C. Tsai-Azzi Criterion

$$\left(\frac{\sigma_{L}}{F_{L}}\right)^{2} - \frac{\sigma_{L}\sigma_{T}}{F_{L}F_{T}} + \left(\frac{\sigma_{T}}{F_{T}}\right)^{2} + \left(\frac{\sigma_{LT}}{F_{LT}}\right)^{2} \leq 1$$

where

 $\epsilon_{\scriptscriptstyle T.}$  : longitudinal strain

 $\gamma_{T,TP}$  : shear strain

 $\sigma_{\tau}$ : longitudinal stress

 $\sigma_m$ : transverse stress

 $\tau_{rm}$  : shear stress

 $\bar{\epsilon}_{\tau}^{\mathbf{C}}$  : allowable longitudinal compressive strain

 $\bar{\epsilon}_{\tau}^{t}$  : allowable longitudinal tensile strain

 $\bar{\epsilon}_m^{\text{C}}$  : allowable transverse compressive strain

 $\bar{\epsilon}_m^{t}$  : allowable transverse tensile strain

 $\bar{\gamma}_{\text{r.m.}}$  : allowable shear strain

 $\mathbf{F_{L}} = \begin{cases} \mathbf{\bar{\sigma}_{L}^{t}} & \text{if } \mathbf{\sigma_{L}} \geq 0 \\ \mathbf{\bar{\sigma}_{L}^{c}} & \text{if } \mathbf{\sigma_{L}} < 0 \end{cases} : \text{ allowable longitudinal tensile stress}$ 

 $\mathbf{F_{T}} = \begin{cases} \overline{\sigma}_{\mathbf{T}}^{\text{t}} \text{ if } \sigma_{\mathbf{T}} \geq 0 & : \text{ allowable transverse tensile stress} \\ \overline{\sigma}_{\mathbf{T}}^{\mathbf{C}} \text{ if } \sigma_{\mathbf{T}} < 0 & : \text{ allowable transverse compressive stress} \end{cases}$ 

 $\mathbf{F}_{\mathbf{LT}}$  : allowable shear stress

Poisson's ratio relating to contraction in the longitudinal direction due to extension in the in-plane transverse direction

LT: Poisson's ratio relating to contraction in the in-plane transverse direction due to extension in the longitudinal direction

Among the three alternative strength criteria, the maximum strain criterion is the most conservative while the stress interaction formulas are usually the least conservative.

## 3.6 Computation of Constraints

All constraints, except the side constraints, are normalized so that potentially critical constraint functions in the feasible region assume values between 0.0 and 1.0. Constraint functions are defined as follows:

## Displacement Constraints

$$(\delta^{(U)} - \delta)/\delta^{(U)} \geq 0$$

$$(\delta - \delta^{(L)})/\delta^{(L)} \geq 0$$

## Slope (Relative Displacement) Constraints

Slope

$$\frac{s^{(U)} - (\delta_2 - \delta_1)/d_p}{s^{(U)}} \geq 0$$

Relative Displacement

$$\frac{r^{(U)} - (\delta_2 - \delta_1)}{r^{(U)}} \geq 0$$

where  $d_p$  is the projection of the distance between the two points on a plane normal to the displacement components  $\delta_1$  and  $\delta_2.$ 

## Stress (Strain) Constraints

$$\frac{\sigma^{(U)} - \sigma}{\sigma^{(U)}} \geq 0$$

$$\frac{\sigma - \sigma^{(L)}}{\sigma^{(L)}} \ge 0$$

For interaction formulas and Tsai-Azzi failure criteria, see Section 3.5, B and C.

## Frequency Constraints

$$\frac{\omega^{(U)^2} - \omega^2}{\omega^{(U)^2}} \ge 0$$

$$\frac{\omega^2 - \omega^{(L)^2}}{\omega^{(L)^2}} \ge 0$$

## 3.7 Zero Order Approximation of the Stress Constraints

It is well known that in a structural synthesis problem, the stress constraints can often be efficiently treated using the classical "Fully Stressed Design" (FSD) concept. In this approach a stress ratio formula is employed to transform the stress constraints into simple side constraints, which can be interpreted as zero order explicit approximations (see Ref. 6, page 39).

The zero order approximation of stress constraints leads to a significant reduction in the number of behavior constraints retained in each explicit approximate problem. This feature is particularly beneficial when dual methods are employed, because the dimensionality of the dual problem corresponds to the number of constraints represented by first order approximations. On the other hand, the FSD procedure does not always converge to the true optimum and is sometimes

the source of instability or divergence of the optimization process. However, in practical structures, it is observed that many of the stress constraints can be approximated with sufficient accuracy by zero order explicit approximations using FSD, while others require a more accurate approximation, using first order Taylor series expansion with respect to the reciprocal design variables.

The ACCESS-3 program provides the capability of selecting automatically the stress constraints for which a zero order approximation by FSD is sufficiently accurate. For each retained potentially critical stress constraint, the following test is accomplished (see Ref. 6):

$$\left| \frac{\text{STR} - \text{LRDV} \times \text{GRD}}{\text{STR}} \right| \leq \text{EPS}$$

STR denotes the reference value describing the stress state, i.e., the tensile or compressive stress in a TRUSS element, the Von Mises combined effective stress in a CSTIS element, the longitudinal, transverse or shear strain in a CSTOR element, etc... (see Section 3.5). LRDV represents the linked reciprocal design variable describing the element in which the current STR is evaluated. GRD stands for the first partial derivative of STR with respect to LRDV.

All the stress constraints for which the test above is satisfied will be replaced with zero order explicit approxima-

Note that LRDV = 1 in view of the normalization process used in ACCESS-3.

tions using stress ratio formulas (side constraints) while the others continue to be transformed into first order explicit approximations using Taylor series expansion (full linear constraints). Of course this selection of zero/first order approximations for the stress constraints must be repeated at each design stage, exactly like the well known truncation procedure for selecting the potentially critical constraints.

The severity of the test depends on the value adopted for the tolerance EPS, which is provided by the user. If EPS is taken close to 1, a small number of stress constraints will be first order approximated. The smaller is the value of EPS, the larger will be the number of first order approximated stress constraints.

## 3.8 Optimization Algorithms

The ACCESS-3 program includes four distinct optimization algorithms (OA) that the user can select depending upon the nature of the constraints, the expected number of strictly critical first order approximated constraints, the number of design variables, and their continuous or discrete character.

## NEWSUMT Optimizer

The NEWSUMT optimization algorithm is the same as in the ACCESS-2 program, where it was the only available option.

This optimizer implements a sequence of unconstrained minimizations techniques using a modified Newton's method and a quadratic extended penalty function feature to facilitate the

unconstrained minimizations. One virtue of this interior penalty function type of OA is that it can usually be controlled so as to provide an improved design that is also feasible with respect to all of the constraints at each stage in the design process. NEWSUMT is thus particularly interesting when the constraints of the primary problem are highly nonlinear in the reciprocal variables, in which case each approximate problem must be solved only partially to preserve the design feasibility.

Another advantage of the NEWSUMT optimizer lies in its generality. Unlike the other optimization algorithms available in ACCESS 3, NEWSUMT can indeed accommodate explicit constraints which are not linear in the reciprocal design variables. As a result, NEWSUMT must be employed when second order Taylor series expansions are generated to represent the frequency constraints.

From the point of view of the computational cost, however, the NEWSUMT optimizer is far less efficient than the other available options. It should be selected only in the special cases previously indicated.

## PRIMAL2 Optimizer

PRIMAL2 is a second order projection algorithm for problems with separable objective function and linear constraints. It uses a weighted projection operator to generate a sequence of Newton's search directions that are constrained to reside in the subspace defined by the set of active constraint hyperplanes (see Ref. 6, page 80). Like NEWSUMT, the PRIMAL2 optimizer generates a sequence of improved feasible designs with respect to the explicit approximate problem. Hence PRIMAL2 can be adequately used for seeking a partial solution to each approximate problem, in such a way that the constraints of the primary problem remain almost satisfied. This is accomplished by prescribing an upper limit on the number of one-dimensional minimizations performed before updating the approximate problem statement. Of course, PRIMAL2 is also well suited to solve exactly each approximate problem, in which case it produces the same iteration history as the dual methods, with comparable efficiency.

PRIMAL2 is computationally more economical than NEWSUMT. However, in the current version of the ACCESS-3 program, the PRIMAL2 algorithm has not been tested extensively enough and it should be used with circumspection.

## DUAL2 Optimizer

The dual method formulation, which exploits the separable form of the approximate problem, consists in maximizing the explicit dual function subject to nonnegativity constraints on the dual variables. The efficiency of this approach is due to the fact that the dimensionality of the dual space, which is primarily dependent on the number of critical behavior constraints, is relatively low for many structural optimization problems of practical interest. In contrast to the primal optimizers NEWSUMT and PRIMAL2, which usually seek a

partial solution to each approximate problem, reducing the weight while remaining feasible, the dual methods efficiently find the "exact" minimum weight solution of each separable approximate problem (see ¶2.4.1, Ref. 6). Therefore, at the end of any stage, the design may not be strictly feasible, in which case scale up is needed to obtain a feasible design. It should be noted, however, that the design infeasibility, if any, is usually small and decreases stage by stage.

DUAL2 is a dual method which employs a second order

Newton type of algorithm to find the maximum of the dual

function when all the design variables are continuous. Since

the DUAL2 optimizer has been found to be very efficient in

practice, it is the recommended option for pure continuous

variable problems.

## DUAL1 Optimizer

DUALI is a dual method which employs a specially devised first order gradient projection type of algorithm to find the maximum of the dual function when the design variables are all discrete or mixed continuous discrete. The DUAL algorithm incorporates special features for handling the dual function gradient discontinuities that arise from the primal discrete variables. These discontinuities occur on specific hyperplanes in the dual space. The DUAL algorithm determines usable search directions by projecting the dual function gradient on the intersection of the successively encountered first order discontinuity planes. When a maximum

has been obtained, the algorithm is restarted releasing all of the previously accumulated discontinuity planes. The whole maximization process is terminated when two successive restarts yield the same dual point. When all the design variables are continuous, the DUAL1 algorithm reduces to a special form of the conjugate gradient method; however it is generally less efficient than the DUAL2 optimizer for pure continuous variable problems.

#### Control over Convergence

Strictly speaking each new design generated by the optimization algorithm is an improved design only with respect to the approximate problem statement. When this new design is analysed by means of the finite element method, it may turn out that some behavior constraints are violated. This situation may occur when the design changes in one stage exceed the applicable range of the approximate problem statement.

The NEWSUMT optimizer is capable of locating feasible designs starting from an infeasible design; however violation of constraints usually has a deleterious effect on the convergence characteristics. The PRIMAL2 optimizer contains a built-in scaling procedure which readily finds a feasible critical design starting from any design (n.b. this scaling process is only applicable to static constraint violations). It is worthwhile noticing that constraint violation can usually be controlled or eliminated by appropriate use of the maximum step size parameter STEPMX (move limit) and its

dynamic modification feature via the parameters STEPMXmultiplier and STEPMX-lower limit (see Section 4; block of
data XXIV). Furthermore, constraint violation is less
likely to occur if the optimization algorithms are used to
seek a design improvement that corresponds to only a partial
solution of each approximate problem. When the NEWSUMT
option is selected, this can be done by reducing the number
of response surfaces and/or increasing the response factor
cut ratio (see Ref. 8). When the PRIMAL2 optimizer is used,
the same effect is obtained by reducing the maximum allowable number of one-dimensional minimizations.

On the other hand, the dual optimizers DUAL1 and DUAL2 generate a sequence of not necessarily feasible designs and their performance is not adversely affected when design infeasibility is encountered. However, if for some reason the user wants to control constraint violation, this can still be done through the STEPMX parameters.

## 3.9 Printout Control Parameters

There are two parameters used to control the line printer output quantity, namely IPRINT and JPRINT. The greater the integer numbers assigned to these parameters, the more detailed output will be printed. IPRINT controls printout from all programs except the optimizers. Brief summaries of the output items are given in Table 5. Standard output will be obtained from the optimizers (see Tables 6,7,8 and 9). The standard value is JPRINT = 0 for all optimizers.

## 4. INPUT DATA DESCRIPTION

All input data are read in with fixed format, hence column positions of the punched data are of critical importance. Especially note that all blank columns are regarded as zeroes for numerical inputs.

- I. Job description and heading cards (I1, 79Al)
  The first column is used as follows
  - O or blank: ordinary heading cards, whose contents in columns 2-80 will be printed on the page of the output.
  - : indicates that this is the last heading card and input data cards follow.
  - 2 : request for immediate normal termination
     of this job.

Any number of cards may be used to describe or to comment the job. Note that the last heading card must have "1" punched in the first column. Without this, all of the data may be regarded as heading cards.

## II. Primary control cards

Card 1 (715)

IOPT : 1 = Input data check only

2 = Structural analysis only

3 = Structural analysis and constraint
 function evaluation

= optimization by the NEWSUMT optimizer see section 3.8  $\begin{cases} 5 = \text{optimization by the PRIMAL2 optimizer} \\ 6 = \text{optimization by the DUAL1 optimizer} \end{cases}$ optimization by the DUAL2 optimizer IPRINT : Printout control parameter except for output from each optimizer Standard output: IPRINT=2 (see Table 5). **IGLINK** 0 = standard execution -200 = removal of stress constraint regionalization -300 = removal of stress constraint regionalization for fixed size elements only IANALY(1) : 1 = Compute displacement 0 = Skip displacement calculation IANALY(2): 1 = Compute stress/strain for all elements 0 = Skip stress/strain calculation IANALY(3) : 1 = Compute eigenanalysis 0 = Skip eigenanalysis

IANALY(4): 0 always

#### Card 2 (12I5)

IN : Total number of nodes

IBN : Number of boundary nodes

INL : Number of load conditions

IMATIS : Number of isotropic materials

IMATOR : Number of orthotropic materials

INITVG: Number of initial value groups for design

variables

ILOWBG : Number of minimum size groups for design

variables

IUPPBG : Number of maximum size groups for design

variables

ITHLDG : Number of thermal load groups

IPRLDG : Number of pressure load groups

IDISVG: Number of discrete value groups for design

variables

NVAL : Maximum number of available discrete values

in each IDISVG discrete value group

Default option: if NVAL=0, the program

adopts NVAL=20

#### Card 3 (1015)

IETP(i), i = 1, 2, ... 10

Number of elements in the i-th element type

i = 1 TRUSS

2 CSTIS (CST isotropic)

3 CSTOR (CST orthotropic)

- 4 SSP (symmetric shear panel)
- 5 PSP (pure shear panel)
- 6 TSP (thermal shear panel)

### III. Node Coordinates (I5, 5X, 3E10.4)

IN cards are required to specify the node coordinates of node numbers 1 through IN. The order of the cards may be random.

n; : Number of the i-th node

 $X_{ni}$ : X coordinate of the node  $n_i$ 

Yni : Y coordinate of the node ni

Z<sub>ni</sub> : Z coordinate of the node n<sub>i</sub>

### IV. Boundary Conditions (415)

If all 3 degrees of freedom associated with a node are free, the node is not a boundary node. Otherwise it is a boundary node and for each boundary node, a card is required.

bn<sub>i</sub> : i-th boundary node number

IBX<sub>bn</sub> :

IBY<sub>bn</sub> :

Constraint code: 0 = free

1 = fixed

### V. Element Data

If IETP(i) = 0 for the i-th element type, no data is required. For each element type with IEPT(i)  $\neq$  0, IETP(i)+1 cards are required.

## Card 2-IETP(i)+l : element information (12I5)

M; : element number

NP : node number corresponding to the internal

node number P

NQ : node number Q

NR : node number R

NS : node number S

LGN : linking group number, = 0 for the fixed size

elements

IGN : initial value group number

LBGN : lower bound group number

UBGN : upper bound group number

MTLGN : material group number

> 0 for isotropic materials: 1,2,...

< 0 for orthotropic materials: -1,-2,...

SCC : side constraint code

-1 : element size restricted by the lower

bound only

0 : non-negativity constraint only

l : element size restricted by the upper

bound only

2 : element size restricted by both lower

and upper bounds

DVGN : discrete value group number, = 0 for the

continuous design variables. DVGN≠0 is

valid only with DUAL1 optimizer (IOPT=6).

Special option: if DVGN = 999, the program

adopts the following set of available discrete values for element M;:

DMIN, 2xDMIN, 3xDMIN,...,NVAL xDMIN
where DMIN denotes the minimum gauge for
element M<sub>i</sub> (depending upon the LBGN value
defined on the same data card). The special
option DVGN=999 is useful for fiber composite material problems, where DMIN represents the smallest change in lamina thickness. For example, if the laminates are
required to be symmetric, DMIN will be equal
to the thickness of two plies.

#### Comments

- 1. Elements must be numbered starting from 1 through IETP(i) for each element type. For example, if a structure is modeled using 100 TRUSS elements and 300 CST elements, TRUSS element numbers are 1,2,3...100 and CST element numbers are 1,2,3,...300. Within an element type, order of element data cards may be random.
- 2. NR and/or NS are not required for element types with only 2 or 3 nodes per element.
- 3. LGN, linked group number, starts from 1 for each element type. For example, if a structure is modeled with 100 TRUSS and 300 CST elements, with 10 and 30 design variables allocated to TRUSS and

CST, respectively, then the linked group number for TRUSS runs from 1 through 10 and that for CST ranges from 1 through 30.

### VI. Initial Values (7E10.4)

INITVG real numbers must be given. If INITVG > 7, two or more cards are required. The first value of the first card indicates the initial value for the group number 1, and so on.

#### VII. Lower Bound Values (7E10.4)

Minimum gauge values. ILOWBG real numbers must be given.

If ILOWBG > 7, two or more cards are required. If

ILOWBG = 0, no card is required.

### VIII. Upper Bound Values (7E10.4)

Maximum gauge values. IUPPBG real numbers must be given.

If IUPPBG > 7, two or more cards are required. If

IUPPBG = 0, no card is required.

### IX. Available Discrete Values (7E10.4/7E10.4...)

IDISVGxNVAL real numbers must be given, i.e.: for each of the IDISVG discrete value groups, NVAL discrete values must be specified in ascending order. If, for a given group, the number of available discrete values, say NVALG, is less than NVAL, the remaining (NVAL-NVALG) positions must be left as blank.

If IDISVGxNVAL > 7, two or more cards are required. If
IDISVG = 0, no card is required.

## X. Isotropic Material Data (6E10.4)

IMATIS cards are required and on each card the following 6 real numbers must be given:

E : Elastic modulus

ν : Poisson's ratio

 $\gamma$ : Specific weight

α : Thermal expansion coefficient

 $\sigma_{TR}$ : Allowable compressive stress

σ<sub>IIB</sub> : Allowable tensile stress

## XI. Orthotropic Material Data (7E10.4/7E10.4/6E10.4)

IMATOR  $\times$  3 cards are required, i.e. for each material group, 3 cards are required, containing the following data.

## Card 1

E, : Longitudinal elastic modulus

 $\textbf{E}_{\phi}$  : Transverse elastic modulus

 $G_{T,T}$ : Shear modulus

 $v_{\mathrm{LT}}$  : Longitudinal Poisson's ratio

γ : Specific weight

 $\alpha_{\text{T.}}$  : Longitudinal thermal expansion coefficient

## Card 2

 $^{\ell}{}_{ ext{L}}$  : ) Direction cosines of the longitudinal

 $m_{
m L}$  :  $\rangle$  axis with respect to system reference

 $n_{\tau_i} : I$  coordinates

 $\epsilon_{\scriptscriptstyle T}^{\scriptscriptstyle +}$  : Tensile allowable longitudinal strain

 $\tilde{\epsilon}_{\tau}^{\mathbf{C}}$  : Compressive allowable longitudinal strain

 $\bar{\epsilon}_m^t$  : Tensile allowable transverse strain

 $\bar{\epsilon}_{\mathbf{p}}^{\mathbf{C}}$  : Compressive allowable transverse strain

### Card 3

 $\bar{\gamma}_{rm}$ : Allowable shear strain

 $\sigma_{\tau}^{t}$ : Tensile allowable longitudinal stress

 $\bar{\sigma}_{\tau}^{c}$  : Compressive allowable longitudinal stress

 $\sigma_{m}^{t}$ : Tensile allowable transverse stress

 $\bar{\sigma}_m^c$  : Compressive allowable transverse stress

 $F_{\tau,m}$  : Shear allowable stress

### Comments

1. The transverse Poisson's ratio  $v_{TL}$  is internally computed using the relation  $v_{TL}E_{L} = v_{LT}E_{T}$ 

2. Depending upon the failure criteria applied to the specific material, either strain allowables or stress allowables are left unspecified. Failure criteria options will be specified later in the category XXI.

### XII. Lumped Nodal Loads

Two card groups are required to specify lumped nodal loads applied to the structure.

### Card Group 1 (14I5)

Number of nodes subject to lumped nodal loads for each load conditions. INL integer numbers must be given.

## <u>Card Group 2</u> (I5, 5X, 3E10.4)

For each load condition, the specified number (by the

group 1 cards) of cards must be given to identify the node numbers and associated load components in the reference coordinate system.

Supply one blank card if there is no lumped nodal load.

### XIII. Pressure Load Data

No card is required if IPRLDG = 0. If IPRLDG > 0, the following 5 groups of cards must be given.

## Card Group 1 (1015)

Number of elements subject to pressure load for each element type. (Presently, only CSTIS and CSTOR elements can be subject to pressure loads).

### Card Group 2 (1415)

Pressure load ON-OFF for each load condition.

 $ONOFF^{k} = 0$  No pressure load for load condition k

= 1 Pressure load should be considered for the k-th load condition.

### Card Group 3 (1415)

Element numbers subject to pressure loads for all member types mentioned in card group 1. For each element type, the first element number subject to pressure load must be punched in columns 1-5; namely the group 3 cards should be subgrouped for different element types.

#### Card Group 4 (1415)

For each load condition corresponding to a load condition with  $\mathsf{ONOFF}^k = 1$ , an identical amount of data

similar to that specified in the card group 3 must be given. Those numbers designate the pressure magnitude group numbers, which are the pointers to the pressure magnitude applied to the corresponding element type and element number. This set of cards should be given for all load conditions with  $\mathsf{ONOFF}^k = 1$ .

## Card Group 5 (7E10.4)

Pressure load magnitude for each pressure load group must be given. IPRLDG real numbers are required.

### Comments:

1. The direction of the pressure force is determined by the node numbering scheme of the triangular element and also by the sign of the pressure load magnitude specified in the card group 5. When the P, Q and R nodes of the triangle are in counter clockwise order and the corresponding pressure magnitude has a positive sign, positive pressure is applied to the surface of the triangular region.



Pressure Load Sign Convention

2. Pressure applied on a single triangular surface must be uniform; no variation of pressure over an element surface can be represented.

## XIV. Inertia Load Data

Self-weight in a gravitational field or uniform translational acceleration will be accounted for by specifying this set of data. Note that rotational inertia loads cannot be considered. Two groups of cards are required.

Card Group 1 (1415)

 $INERTL^k$ : k = 1, 2, ...INL

Inertia load ON-OFF for each load condition.

1 : Inertia load exists

2 : No inertia load for the load condition

## Card Group 2 (4E10.4)

For each load condition with  $INERTL^{k} \neq 0$ , one card will be required.

ACC<sup>k</sup>: Magnitude of acceleration in units of the standard earth gravitational field

(e.g. 4g)

X : Direction cosine components of the
Y : acceleration vector in the reference
C : coordinate system.

Supply one blank card if there is no inertia load.

## XV. Thermal Load Data

No card is required if ITHLDG = 0. If ITHLDG > 0, the following 5 groups of cards must be given.

#### Card Group 1 (1015)

Number of elements subject to thermal load for each element type.

## Card Group 2 (14I5)

Thermal load ON-OFF for each load condition.

 $ON-OFF^k = 0$  No thermal load for load condition k

1 Thermal load should be considered for the k-th load condition.

### Card Group 3 (14I5)

Element numbers subject to thermal loads for all member types mentioned in card group 1. For each element type, the first element number subject to thermal load must be punched in columns 1-5; namely the group 3 cards should be subgrouped for different element types.

#### Card Group 4 (14I5)

For each load condition corresponding to the load condition with  $\text{ON-OFF}^k = 1$ , an identical amount of data similar to that specified in the card group 3 must be given. Those numbers designate the temperature magnitude applied to the corresponding element type and element number. This set of cards should be given for all load conditions with  $\text{ONOFF}^k = 1$ .

### Card Group 5 (7E10.4)

Temperature change for each thermal load group must be given. ITHLDG real numbers are required.

### Comments:

- 1. Each element is considered to have uniform temperature.
- 2. Temperature change should be computed with respect to an appropriate uniform reference temperature. Note that if all elements are made of the same material and assume the same temperature, then thermal stresses are not induced.

### XVI. Flight Condition Data

This block of data will be reserved for future development of the ACCESS-3 program which may include aeroelastic constraints. Supply one blank card.

#### XVII. Lumped Nodal Mass Data

#### Card 1 (I5)

NMASS : Number of lumped nodal masses

#### Card 2 - (NMASS + 1) (I5, 5X, E10.4)

Node number to which the mass is attached

w<sub>N</sub>: Weight of the mass

Note that the magnitude w<sub>N</sub> must be given in weight units, not in mass units.

Supply one blank card if there is no lumped nodal mass.

# XVIII. Stress Constraint Approximation Data (3E10.4)

The automatic selection between zero and first order approximations for the stress constraints proceeds as follows. A retained potentially critical stress constraint will be replaced by its zero order approximation (using stress ratio), rather than by its first order Taylor series expansion (linearization), if the following test is satisfied:

$$\left| \frac{\text{STR-GRD}}{\text{STR}} \right| \le \text{EPS} \qquad 0 \le \text{EPS} \le 1$$

where STR is the constrained quantity and GRD is the relevant gradient component (see Section 3.7). Two limiting cases are instructive:

Initially the tolerance EPS is set to be EPS-initial and, at the end of each design stage, EPS is updated by

$$EPS = EPS \times (EPS multiplier)$$

Since EPS-multiplier is chosen to be less than 1, EPS is decreased stage by stage, which means that more and more stress constraints are linearized as the design proceeds (but simultaneously more and more stress

constraints are truncated; see card group XXI).

Three real numbers must be specified:

EPS-initial : initial tolerance for zero/first

order approximation

EPS-min : lower limit of EPS

EPS-multiplier: EPS modification multiplier.

Supply one blank card if this capability is not used.

### XIX-XXII Constraint Control Data

There are 4 types of constraints which can be specified. Each constraint type may have different truncation control, although the method used is identical for all types of behavior constraints. The truncation strategy is similar to the one used in ACCESS-1 (Refs. 1 and 2), but the sign convention defining the feasible region is reversed.

If a  $q^{th}$  constraint function at a design  $\vec{\alpha}$  is evaluated as  $h_q(\vec{\alpha})$  (see Section 3.6),  $h_q(\vec{\alpha})$  is compared with a truncation boundary value (TBV) which is determined by:

TBV = + {Min[h<sub>q</sub>(
$$\overset{\rightarrow}{\alpha}$$
) - C]}x TRF + C

where Min is applied to all q's in the constraint type.

q
Initially, TRF is set to be TRF-initial and at the end of each design stage, TRF is updated by

$$TRF = TRF \times (TRF multiplier)$$

Since TRF-multiplier is chosen to be greater than 1, TRF is increased stage by stage, i.e. TBV is decreased, which means that more and more constraints are truncated as the design

proceeds (see Fig. 4).

It should be noted that the side constraints do not appear in this block of data, because there is no need to truncate them. The side constraint codes are specified in the element data.

### XIX. Displacement Constraint Control Data

Card 1 (I5)

NDPC : Number of constrained displacement degrees of freedom

Card 2 (5E10.4)

TRF-initial : Initial truncation factor

TRF-max : Upper limit of TRF

C-cutoff : Cutoff base value

TRF-multiplier : TRF modification multiplier

Min. Norm Ftr. : Minimum constraint normalization

factor. Constraints are usually

normalized by the absolute values

of the limiting values.

Card 3 - (NDPC+2) (315, 5X, 2E10.4)

Node . . . Node number associated with the

i-th displacement constraint

Ixyz : Direction identifier

0 = not used

1 = X direction

2 = Y direction

3 = Z direction

Code : -1 = Lower bound only

0 = No constraint

1 = Upper bound only

2 = Both

Lower Bound : Lower bound of the displacement

component

Upper Bound : Upper bound of the displacement

component

## XX. Slope/Relative Displacement Constraint Control Data

This constraint type is restricted to place bounds on relative displacement components of two arbitrary nodes. In other words, the difference between Y-displacement components of the L<sup>th</sup> and U<sup>th</sup> nodes may be bounded. But the difference between the Z-displacement of L<sup>th</sup> and X-displacement component of U<sup>th</sup> node cannot be bounded.

Card 1 (I5)

NSLC : Number of slope/relative-displacement

constraints

Card 2 (5E10.4)

TRF-initial : Initial truncation factor

TRF-Max : Upper limit of TRF

C-cutoff : Cutoff base value

TRF-multiplier : TRF modification multiplier

Min. Norm. Ftr : Minimum constraint normaliza-

tion factor

## Card 3-(NSLC+2) (315, E10.4)

Node (L)

: Node number of the L<sup>th</sup> node
associated with the i<sup>th</sup> slope
constraint

Node (U)

: Node number of the U<sup>th</sup> node associated with the i<sup>th</sup> slope constraint

 $I_{xyz}$ 

: Direction and code

0 : not used

1 : X direction
2 : Y direction
3 : Z direction
relative
displacement

4 : X direction

Upper Bound

: Upper bound of the slope/rel. displ.

#### Note:

- 1. If  $I_{xyz} = 1$ , for example, the constraint function is  $1 (U_x^{Node}(U) U_x^{Node}(L)) / Upper Bound > 0$
- 2. If  $I_{XYZ} = 4$ , for example, constraint function is

$$1 - \frac{U_X^{\text{Node}}(U) - U_X^{\text{Node}}(L)}{D_{YZ}} / \text{Upper-bound} \ge 0$$

3. If lower bound is to be specified, node (L) and node (U) should be exchanged to transform it to an upper bound constraint.

## XXI. Stress/Strain Constraint Data

## Card 1 (10I5)

Code MTYP : Stress/Strain constraint code (see Section 3.5)

## Except for element type 3

- -1 = read stress constraint code element by element
- 0 = no stress constraint
- 1 = all elements in this element type are constrained by lower bounds on compression stress
- 2 = all elements in this element type are constrained by upper bounds on tensile stress or Von Mises combined stress (Element Type 1 or Types 2,4,5,6)
- 3 = effectively this implies that both codes 1
  and 2 are applied simultaneously

#### For element type 3

- -1 = read strain constraint code element by element
  - 0 = no strain constraint imposed
  - 1 = maximum strain envelope criteria imposed on
     all elements
- 2 = stress interaction criteria imposed on all
   elements
- 3 = Tsai-Azzi criteria imposed on all elements

### Card 2 (7E10.4)

TRF-initial : Initial truncation factor

TRF-max : Upper limit of TRF

C-cutoff : Cutoff base value

TRF-multiplier : TRF modification multiplier

Min.Stress Norm. Ftr.: Minimum stress constraint

normalization factor

Min.Strain Norm. Ftr.: Minimum strain constraint

normalization factor

TEBCF : Truss Euler buckling control factor

If TEBCF > 0, TEBCF stands for the specified mean radius r of the truss element assuming tubular cross section. Stress constraint is

$$\sigma \geq \text{Max}\{\sigma_{\text{allowable}}^{\text{C}}, \pi^{2} \text{Er}^{2}/2\ell^{2}\}$$

If TEBCF < 0, it stands for the thickness (t) to mean radius (r) ratio of the truss element assuming cylindrical cross section. Stress constraint is

$$\sigma \geq \text{Max} \{\sigma_{\text{allowable}}^{c}, \pi^{2} \text{EA}/[4\ell^{2} \cdot (\frac{t}{r})]\}$$

If TEBCF = 0, no Euler buckling constraints are considered.

#### Card 3 (14I5)

Stress/strain constraint specification for element type code, Code MTYP < 0. If all  $\mathsf{Code}^{\mathsf{MTYP}}$  are positive, no cards are required.

For each element type with Code MTYP = -1, stress/strain

code must be given to all elements sequentially starting from element number 1.

### Element stress/strain constraint code:

#### Stress code

-1 : only compression stress is bounded

0 : no constraint

+1 : only tensile (truss only) or Von Mises
combined stress is bounded

+2 : both compressive and tensile stress are bounded.

#### Strain Code

same as Code MTYP specification

## XXII. Natural Frequency Constraint Data

#### Card 1 (2I5)

NFREQ : number of lowest frequencies to be bounded

NSPACE : frequency constraint approximation scheme

- 0 = first order Taylor series expansion with respect to linked reciprocal variables (linear in the optimization design space).
- 1 = first order Taylor series expansion with
   respect to linked direct variables
   (with NEWSUMT optimizer only: IOPT=4)
- 2 = second order Taylor series expansion
   with respect to linked direct variables
   (with NEWSUMT optimizer only: IOPT=4)

#### Card 2 (7E10.6)

TRF-initial : Initial truncation factor

TRF-max : Upper limit of TRF

C-cutoff : Cutoff base value

TRF-multiplier : TRF modification multiplier

Min.Norm. Ftr. : Minimum constraint normalization

factor

Eig. Conv. : Eigenvalue analysis convergence

criteria (see note below)

Acc. Gravity : Acceleration of gravity

If 0.0, American standard unit

is assumed and replaced by

 $386.0 \text{ in/sec}^2$ .

Note: Subspace iteration algorithm is used to obtain eigenvalues and eigenvectors. Iteration is judged to be converged if the relative differences of all eigenvalues are less than Eig. Conv.

## Card 3 (I5, 2E10.4)

Code f=1: constraint code

-1 = lower bound only

0 = not bounded

1 = upper bound only

2 = lower and upper bounds

Lower Bound : lower bound on the i<sup>th</sup> eigenvalue  $(\omega_i^2)$ 

Upper Bound : upper bound on the i<sup>th</sup> eigenvalue  $(\omega_i^2)$ 

### XXIII. Flutter Constraint Data

Supply one blank card.

### XXIV. Optimizer Control Parameters

Four distinct options are available for solution of the explicit approximate problem generated at each design stage (see Section 3.8). The following block of data takes on different meaning depending upon the value selected for IOPT (Card II).

If IOPT = 4 : NEWSUMT Optimizer Control Cards

Card 1: (5I5)

JPRINT : Optimizer printout control (see Table 6)

standard output = 0

MAXSTG : Maximum allowable number of stages

MAXRSF : Maximum number of response surfaces

per stage; i.e. response factor is

reduced MAXRSF times before the approxi-

mate problem is updated

MAXODM : Maximum allowable number of one dimen-

sional minimizations per response surface

JSIGNG : sign of feasible region

1 : feasible region is  $g_{q}(\vec{\alpha}) \ge 0$ 

-1 : feasible region is  $g_{\alpha}(\overset{\rightarrow}{\alpha}) \leq 0$ 

Card 2: (8E10.4)

EPSSTG : Stage convergence criterion.

Overall iteration is judged to be con-

verged if both of the following conditions

are satisfied at the end of the pth stage.

$$|W_p - W_{p-1}|/W_p \le EPSSTG$$

$$|W_{p-1} - W_{p-2}|/W_{p-1} \le EPSSTG$$

EPSODM: Unconstrained minimization convergence criterion. Convergence is obtained if the relative values of total function at the ends of 3 successive one dimensional

RACUT : Response factor decrease ratio

RAMIN : Minimum response factor

STEPMX: Maximum step size at each stage (move limit). All design variable components are constrained by

$$\frac{1}{\text{STEPMX}} \le \beta_i \le \text{STEPMX} \quad i = 1, ...B.$$

minimizations are not different by EPSODM.

ITP : Initial transition point for the extended penalty function

Power Fr : specify = 0.5

Coefficient : specify = 1.0

<u>Card 3</u> (2E10.4)

STEPMX-mul : STEPMX modification multiplier

STEPMX-1.1. : Lower limit on the STEPMX

If IOPT = 5 : PRIMAL2 Optimizer Control Cards

Card 1 (3I5)

JPRINT : Optimizer printout control (see Table 7)

Standard output = 0

MAXSTG : Maximum allowable number of stages

MAXODM : Maximum allowable number of one dimen-

sional minimizations per stage; i.e.

MAXODM search directions are computed

before the approximate problem is updated.

Special option: if MAXODM = 0, complete

solution of the approximate problem is

performed at each stage.

Card 2 (5E10.4)

EPSSTG : Stage convergence criterion.

Same as NEWSUMT

DUMMY : not used

DUMMY : not used

DUMMY : not used

STEPMX : Maximum step size at each stage (move

limit) Same as NEWSUMT

Card 3 (2E10.4)

STEPMX-mul : STEPMX modification multiplier

STEPMX-1.1. : Lower limit on the STEPMX

If IOPT = 6: DUAL1 Optimizer Control Cards

#### Card 1 (5I5)

JPRINT : Optimizer printout control (see Table 8).

Standard output = 0.

MAXSTG : Maximum allowable number of stages

MAXRES : Maximum allowable number of restarts in

the solution of the dual problem (dis-

crete and mixed discrete-continuous cases).

MAXODM : Maximum allowable number of one dimensional

maximizations per restart. MAXODM should

be at least equal to the number of con-

straints retained in the first stage.

ICOMB : Specify = 1

Card 2 (5E10.4)

EPSSTG : Stage convergence criterion

Same as NEWSUMT

EPSODM : Dual maximization convergence criterion

TAUMAX : Maximum step size in dual space.

Standard option: if TAUMAX = 0, the

program automatically estimates an

appropriate value for TAUMAX and simul-

taneously determines a good starting

point for dual maximization in the first

stage. TAUMAX  $\neq$  0 can be used in order

to reduce the storage requirement for

computation of the intercept-distances

to discontinuity planes

DUMMY

: not used

STEPMX

Maximum step size at each stage (move

limit in the primal space).

Card 3 (2E10.4)

STEPMX-mul : STEPMX modification multiplier

STEPMX-1.1.

: Lower limit on the STEPMX

If IOPT = 7 : Dual 2 Optimizer Control Cards

Card 1 (215)

**JPRINT** 

Optimizer printout control (see Table 9)

Standard output = 0.

MAXSTG

Maximum allowable number of stages

Card 2 (5E10.4)

**EPSSTG** 

: Stage convergence criterion

Same as NEWSUMT

**EPSODM** 

: Dual maximization convergence criterion.

Convergence is achieved when the norm

of the vector made up of the primal

constraint values is less than EPSODM.

DUMMY

: not used

DUMMY

not used

STEPMX

Maximum step size at each stage (move

limit in the primal space).

Card 3 (2E10.4)

STEPMX-mul

STEPMX multiplier

STEPMX-1.1.

: Lower limit on STEPMX.

#### REFERENCES

- Schmit, L.A. and Miura, H., "Approximation Concepts for Efficient Structural Synthesis," NASA CR-2552, March 1976.
- 2. Miura, H. and Schmit, L.A., "ACCESS 1 Program Documentation and User's Guide," NASA CR-144905, 1976.
- 3. Schmit, L.A. and Miura, H., "An Advanced Structural Analysis/Synthesis Capability ACCESS 2," Int. J. Num. Meth. Engrg., Vol. 12, No. 2, February 1978, pp. 353-377
- 4. Miura, H. and Schmit, L.A., "ACCESS 2 Approximation Concepts Code for Efficient Structural Synthesis - User's Guide," NASA CR-158949, September 1978.
- 5. Schmit, L.A. and Fleury, C., "An Improved Analysis/ Synthesis Capability Based on Dual Methods - ACCESS 3," Proc. AIAA/ASME/AHS 20th Structures, Structural Dynamics and Materials Conf., St. Louis, Missouri, April 1979, pp. 23-50.
- Fleury, C. and Schmit, L.A., "Dual Methods and Approximation Concepts in Structural Synthesis," NASA CR-3226,
   1980.
- 7. Fleury, C. and Sander, G., "Structural Optimization by Finite Element," LTAS Report SA-58, University of Liege, Belgium, January 1978.
- 8. Miura, H. and Schmit, L.A., "NEWSUMT A Fortran Program for Inequality Constrained Function Minimization," NASA CR-159070, June 1979.



Figure 1. Basic Organization of ACCESS 3



Fig. 2 Overlay Structure of ACCESS-3 (IBM version)





Figure 3. SSP Element Model Example



Figure 4. Truncation Boundary Value (TBV) vs. Truncation Factor (TRF)

Table 1. Temporary Files

| File Name | Contents                                                                                                                                                     |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10        | Stiffness matrix components associated with unit values of independent design variables and load vector components which are independent of design variables |
| 11        | Mass matrix components associated with unit values of independent design variables                                                                           |
| 12        | Load vector components due to thermal loads and dependent on independent design variables                                                                    |
| 13        | Load vector components due to inertia loads and dependent on independent design variables                                                                    |
| 14        | Constraint gradients                                                                                                                                         |
| 15        | Input data and a part of preprocessor output                                                                                                                 |
| 16        | Thermal shear panel stiffness matrix components. Used only when IETP(6) $\neq 0$                                                                             |
| 17        | Constraint gradients (except stress constraints). Required only when zero order approximation of the stress constraints is considered.                       |
| 18        | Eigenvector sensitivity vectors, if computed                                                                                                                 |
| 19        | Mass matrix post-multiplied by eigenvectors. Required only when second order expansion of frequency constraints is used.                                     |
| 20        | Original system stiffness and mass matrices. Required only when second order expansion of frequency constraints is used.                                     |
| 21 .      | Modified [K- $\lambda_1$ M] in the eigenvector sensitivity computation. Stored in decomposed form.                                                           |
| 22        | $\left(\frac{\partial K}{\partial \alpha_b} - \lambda_i \frac{\partial M}{\partial \alpha_b}\right) \vec{X}_i$ , ((i=1, NEIG), b=1, B)                       |
|           | Required only when second order expansion of frequency constraints is used.                                                                                  |

Table 2. Required Blank Common Size

| Problems                                                                     | Elements            | Total No.        | Free Displ. | No. of                          | Total No. of | Requ       | ired          |
|------------------------------------------------------------------------------|---------------------|------------------|-------------|---------------------------------|--------------|------------|---------------|
|                                                                              |                     | of Elements      | d.o.f.s.    | Design Variables                | Constraints  | Real Array | Integer Array |
| Wing Carry-Through<br>Truss Model<br>(Static)                                | TRUSS               | 63               | 42          | 63                              | 256          | 4291       | 1606          |
| Swept Wing (Metal)<br>(Static)                                               | CST<br>SSP          | 60<br><b>7</b> 0 | 120         | 18                              | 268          | 5238       | 2305          |
| Delta Wing-Composite<br>(Static & Dynamic)                                   | CSTOR               | 252<br>70        | 105         | 60                              | 2661         | 13090      | 9433          |
| Delta Wing-Composite<br>(Static, Thermal<br>and Dynamic)                     | CSTOR<br>SSP<br>TSP | 252<br>70<br>70  | 105         | 60                              | 2661         | 18652      | 9103          |
| Delta Wing-Composite<br>(Static, Thermal,<br>Dynamic, discrete<br>variables) | CSTOR<br>SSP<br>TSP | 252<br>70<br>70  | 105         | 60{12 continuous<br>48 discrete | 2661         | 22327      | 8567          |

Table 3. Available Options for Frequency Constraints

| $\lambda=\omega^2$ Approx. | lst order<br>Reciprocal<br>DV's | lst order<br>Direct<br>DV's | 2nd order<br>Direct<br>DV's |
|----------------------------|---------------------------------|-----------------------------|-----------------------------|
| NEWSUMT                    | *                               | *                           | *                           |
| PRIMAL2                    | *                               | ` <b>-</b>                  | 4. <b>–</b>                 |
| DUALL                      | * *                             | <b>-</b>                    | . <del>-</del>              |
| DUAL2                      | *                               | _                           |                             |

<sup>\*</sup>available combination in ACCESS-3 program

Table 4. Algorithm Options for Various Kinds of Problems

| Kinds<br>of DV's<br>Algorithm | Pure<br>Continuous | Pure<br>Discrete | Mixed<br>Continuous -<br>Discrete |
|-------------------------------|--------------------|------------------|-----------------------------------|
| NEWSUMT                       | *                  | -                | = .                               |
| PRIMAL2                       | *                  | -                | · <del>-</del> ·                  |
| DUAL1                         | *                  | *                | *                                 |
| DUAL2                         | *                  | <b>-</b>         | -                                 |

<sup>\*</sup> available for application in ACCESS-3 program

Table 5 Analysis Printout Control - IPRINT

All messages above the horizontal line corresponding to each value of IPRINT are printed

| IPRINT  | Information Printed                                                        |     |
|---------|----------------------------------------------------------------------------|-----|
|         | Constraint identification code                                             |     |
| i       | Posture table at each stage                                                |     |
|         | Time statistics of the job                                                 |     |
|         | Messages prior to any error termination                                    |     |
| 0       |                                                                            |     |
|         | Input data in readable format                                              |     |
|         | Initial and final nodal displacements                                      |     |
| _       | Initial and final eigenanalysis results                                    |     |
| 1       |                                                                            |     |
| ,       | Element sizes and weight information                                       |     |
|         | Scaling factor and scaled weight New list of linearized constraints (after |     |
|         |                                                                            | ÷   |
| ·       | zero order stress approximation) Independent linked design variable values |     |
|         | (including lower and upper limits)                                         | -   |
|         | Modified truncation factors                                                |     |
|         | Initial and final element stresses                                         |     |
|         | Initial and final values of all constraints                                |     |
| 2*      |                                                                            |     |
| _       | Element stresses and constraint values at                                  |     |
|         | each stage                                                                 |     |
|         | Lower limits, upper limits and allowable                                   | ĺ   |
|         | discrete values after design variable                                      |     |
|         | normalization                                                              | - 1 |
| _       | Interface data (with optimizer)                                            |     |
| 3       |                                                                            | ĺ   |
|         | Listing of data cards                                                      | l   |
|         | Element geometry data                                                      | ĺ   |
|         | Load vectors                                                               |     |
| 4       | Gradients of retained constraints                                          |     |
| <b></b> | Element stiffness/mass matrices                                            | i   |
|         | Master stiffness/mass matrices                                             | {   |
|         | Integer and real pointer vectors for                                       | ļ   |
|         | dynamic array allocation                                                   | . [ |
|         | Debugging of integer and real arrays                                       | ļ   |
|         |                                                                            | - 1 |

<sup>\*</sup> Standard Values

Table 6 NEWSUMT Optimizer Printout Control - JPRINT

All messages above the horizontal line corresponding to each value of JPRINT are printed

| JPRINT | Information Printed                                                                                                                                                                                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0*     | Control and system parameters Initial design analysis results Response surface penalty multipliers ODM's results summary Final results of optimization Time and counting statistics Results for each response surface |
| 2      | Direction finding data  ODM's results at each design point Golden section search data                                                                                                                                 |
| 3      | Penalty function detailed data                                                                                                                                                                                        |

Standard value

Table 7 PRIMAL2 Optimizer Printout Control - JPRINT All messages above the horizontal line corresponding to each value of JPRINT are printed

| JPRINT | Information Printed                                                                                                |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------|--|--|
| 0*     | Initial and final results summary                                                                                  |  |  |
| 0"     | Final values of all linear constraints<br>and associated dual variables<br>Identification of each constraint added |  |  |
| 1      | to or dropped from the active set.  Final design variables                                                         |  |  |
| 2      | ODM's results summary Active set strategy data                                                                     |  |  |
| 2      | Design variables and search directions                                                                             |  |  |

<sup>\*</sup> Standard value

Table 8 DUAL1 Optimizer Printout Control - JPRINT
All messages above the horizontal line corresponding to each value of JPRINT are printed

| JPRINT | Information Printed                                                                                  |
|--------|------------------------------------------------------------------------------------------------------|
| 0*     | Control and system parameters Final results summary                                                  |
|        | Final dual variable values                                                                           |
|        | Summary of dual solution analysis (discrete case)                                                    |
| 1      | Results in brief summary form (each restart)                                                         |
| _      | Initial dual variable values (each<br>restart)<br>Final primal variable and constraint<br>values     |
|        | Analysis of upper and lower bound solutions (discrete case) Results in brief summary form (each ODM) |
| 2      | Initial primal variable and constraint values (each restart) List of best discrete solutions         |
| 3      | Primal and dual variable values (each ODM) Search direction and sensitivity of                       |
|        | primal variables in ODM  Newton iteration results                                                    |
| 4      | Detailed ODM's data                                                                                  |
| 5      | Detailed Newton iterations data                                                                      |

<sup>\*</sup> Standard value

Table 9 DUAL2 Optimizer Printout Control - JPRINT
All messages above the horizontal line corresponding to each value of JPRINT are printed

| JPRINT | Information Printed                                                                                                                                                                      |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0*     | Final results summary                                                                                                                                                                    |
| _      | Identification of the starting point   (first stage only) Final values of all dual variables and   associated primal constraints Identification of the dual subspace   at each iteration |
| 1      | Final primal variable values                                                                                                                                                             |
| 2      | Summary of results after each iteration                                                                                                                                                  |
| 3      | Data on search of a suitable dual start- ing point (first stage only) Search direction and dual variables at each iteration ODM's results                                                |
|        | Primal variable values after each iteration                                                                                                                                              |

<sup>\*</sup> Standard value

#### APPENDIX A

#### ELEMENT LIBRARY

Currently, 6 element types are available: they are TRUSS, CSTIS, CSTOR, SSP, PSP and TSP. Basic characteristics of these elements are given in the sequel.

1. Type 1 - TRUSS : Pin jointed bar element of uniform cross section



Fig. A-1 Space Truss Element

Strain-Displacement Relation (local coordinate)

$$\varepsilon = \frac{1}{L} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{Bmatrix} \tilde{u}_p \\ \tilde{u}_0 \end{Bmatrix}$$
 (A-1)

#### Stress Strain Relation (local coordinate)

$$\sigma = E \varepsilon - E\alpha\Delta T \tag{A-2}$$

where  $\alpha$ : thermal expansion coefficient

 $\Delta T$ : average temperature change

### Force Displacement Relation (local coordinate)

$$\frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \tilde{u}_{p} \\ \tilde{u}_{Q} \end{bmatrix} - E\alpha\Delta TA \begin{bmatrix} -1 \\ 1 \end{bmatrix} - \begin{bmatrix} \tilde{f}_{p} \\ \tilde{f}_{Q} \end{bmatrix} = 0$$
 (A-3)

where  $\mathbf{F}_{\mathbf{p}}$ ,  $\mathbf{F}_{\mathbf{q}}$  are externally applied force at P and Q nodes, respectively.

#### Force Displacement Relation (reference coordinates)

$$\frac{EA}{L} = \begin{bmatrix} \ell^2 & \ell m & \ell n & -\ell^2 & -\ell m & -\ell n \\ m^2 & mn & -\ell m & -m^2 & -mn \\ n^2 & -\ell n & -mn & -n^2 \\ \ell^2 & \ell m & \ell n \\ \ell^2 & \ell m & \ell n \\ m^2 & mn \\ n^2 & mn \\ n^2 & m \end{bmatrix} = \begin{bmatrix} U_p \\ V_p \\ W_p \\ U_Q \\ V_Q \\ W_Q \end{bmatrix}$$

$$= -E\alpha\Delta TA$$

$$\begin{pmatrix} \mathcal{L} \\ m \\ r \\ -\mathcal{L} \\ -m \\ -m \end{pmatrix} + \begin{pmatrix} X_{P} \\ Y_{P} \\ Z_{P} \\ X_{Q} \\ Y_{Q} \\ Z_{Q} \end{pmatrix}$$

$$(A.4)$$

# Consistent Mass Matrix (reference coordinates)

$$[M] = \frac{\rho AL}{6} \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ & 2 & 0 & 0 & 1 & 0 \\ & & 2 & 0 & 0 & 1 \\ & & & 2 & 0 & 0 \\ & & & & 2 & 0 \\ & & & & & 2 \end{bmatrix}$$

$$(A-5)$$
Sym 2 0

where  $\rho$  : density

2. Type 2 - CSTIS: Constant strain triangular membrane element with uniform thickness and isotropic material



Strain-Displacement Relation (local coordinate)

$$\begin{cases}
\varepsilon_{x}^{\cdot} \\
\varepsilon_{y}^{\cdot} \\
\gamma_{xy}
\end{cases} = \frac{1}{bh} \begin{bmatrix}
(s-b) & 0 & -s & 0 & b & 0 \\
0 & -h & 0 & h & 0 & 0 \\
-h & (s-b) & h & -s & 0 & b
\end{bmatrix}
\begin{cases}
\tilde{u}_{p} \\
\tilde{v}_{p} \\
\tilde{w}_{p} \\
\tilde{u}_{Q} \\
\tilde{v}_{Q} \\
\tilde{w}_{Q}
\end{cases}$$
(A-6)

# Stress-Strain Relation (local coordinate)

$$\begin{pmatrix} \sigma_{\mathbf{x}} \\ \sigma_{\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{pmatrix} = \frac{E}{1-\nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{pmatrix} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{pmatrix} - \frac{E\alpha\Delta\mathbf{T}}{1-\nu} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{A-7}$$

## Stress-Displacement Relation (local coordinate)

$$\begin{pmatrix} \sigma_{X} \\ \sigma_{Y} \\ \tau_{XY} \end{pmatrix} = \frac{E}{bh (1-v^{2})} \begin{pmatrix} (s-b) & -vh & -s & vh & b & 0 \\ v (s-b) & -h & -vs & h & vb & 0 \\ \frac{-(1-v)h}{2} \frac{(1-v)(s-b)}{2} \frac{(1-v)h}{2} \frac{-(1-v)s}{2} \frac{0}{2} \frac{(1-v)b}{2} \begin{pmatrix} \tilde{v}_{Q} \\ \tilde{v}_{Q} \\ \tilde{w}_{Q} \end{pmatrix}$$

$$-\frac{E\alpha\Delta T}{1-v} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
(A-8)

## Local-Reference Displacement Relation

$$\begin{cases}
\tilde{\mathbf{u}}_{P} \\
\tilde{\mathbf{v}}_{P} \\
\tilde{\mathbf{u}}_{Q} \\
\tilde{\mathbf{v}}_{Q} \\
\tilde{\mathbf{u}}_{R} \\
\tilde{\mathbf{v}}_{R}
\end{cases} = \begin{cases}
\vec{\lambda}_{X}^{T} \cdot \vec{\mathbf{v}}_{P} \\
\vec{\lambda}_{Y}^{T} \cdot \vec{\mathbf{v}}_{Q} \\
\vec{\lambda}_{X}^{T} \cdot \vec{\mathbf{v}}_{Q} \\
\vec{\lambda}_{X}^{T} \cdot \vec{\mathbf{v}}_{R} \\
\vec{\lambda}_{X}^{T} \cdot \vec{\mathbf{v}}_{R}
\end{cases}$$
or  $\tilde{\mathbf{u}} = [T]\tilde{\mathbf{v}}$  (A-9)

where  $\vec{\lambda}_{\mathbf{x}}$  : unit vector parallel to the x-axis

 $\vec{\lambda}_{_{\mathbf{v}}}$  : unit vector parallel to the y-axis

 $\mathbf{U}_{\mathbf{P}}, \mathbf{U}_{\mathbf{Q}}, \mathbf{U}_{\mathbf{R}}$ : displacement vectors of P,Q,R nodes.

$$[T] = \begin{cases} x & m_{x} & n_{x} \\ x & m_{x} & n_{x} \\ y & m_{y} & n_{y} \\ 0 & & & x & m_{x} & n_{x} \\ & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & n_{x} \\ & & & & & x & m_{x} & m_{x} \\ & & & & x & m_{x} & m_{x} & m_{x} \\ & & & & x & m_{x} & m_{x} \\ & & & & x & m_{x} & m_{x} \\ & & & & x & m_{x} & m_{x} \\ & & & & x & m_{x} & m_{x} & m_{x} \\ & & & & x & m_{x} & m_{x} \\ & & & & x & m_{x} & m_{x} & m_{x} \\ & & & & x & m_{x} & m_{x} \\ & & & x & m_{x} & m_{x} & m_{x} \\ & & & x & m_{x} & m_{x} & m_{x} \\ & & & x & m_{x} & m_{x} & m_{x} \\ & & & x & m_{x} & m_{x} & m_{x} \\ & & & x & m_{x} & m_{x} & m_{x} \\ & & x & m_{x} & m_{x} & m_{x} \\ & & x & m_{x} & m_{x} & m_{x} \\ & & x & m_{x} & m_{x}$$

Stiffness Matrix (local coordinate system)

$$K = K_n + K_s \tag{A-11}$$

where

## Force-Displacement Relation (local coordinates)

$$K \tilde{u} + \frac{E\alpha\Delta Tt}{2(1-v)}$$

$$\begin{cases} h \\ s \\ -h \\ -b \\ 0 \end{cases}$$

$$(A-12)$$

#### Consistent Mass Matrix

$$[M] = \frac{\rho A t}{12} \begin{cases} 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ & & 2 & 0 & 0 & 1 & 0 & 0 & 1 \\ & & & 2 & 0 & 0 & 1 & 0 & 0 \\ & & & & 2 & 0 & 0 & 1 & 0 \\ & & & & & 2 & 0 & 0 & 1 \\ & & & & & 2 & 0 & 0 \\ & & & & & & 2 & 0 & 0 \\ & & & & & & & 2 & 0 & 0 \end{cases}$$

$$(A-13)$$

where  $\rho$ : density

Type 3 - CSTOR: Constant strain triangular membrane element 3. with uniform thickness of an orthotropic material



$$\begin{cases} \varepsilon \times \mathbf{x} \\ \varepsilon \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \end{cases} = \frac{1}{\mathbf{bh}} \begin{pmatrix} (\mathbf{s} - \mathbf{b}) & 0 & -\mathbf{s} & 0 & \mathbf{b} & 0 \\ 0 & -\mathbf{h} & 0 & \mathbf{h} & 0 & \mathbf{o} \\ -\mathbf{h} & (\mathbf{s} - \mathbf{b}) & \mathbf{h} & -\mathbf{s} & 0 & \mathbf{b} \\ \end{pmatrix} \begin{cases} \tilde{\mathbf{u}}_{\mathbf{p}} \\ \tilde{\mathbf{v}}_{\mathbf{p}} \\ \tilde{\mathbf{u}}_{\mathbf{Q}} \\ \tilde{\mathbf{v}}_{\mathbf{Q}} \\ \tilde{\mathbf{v}}_{\mathbf{Q}} \\ \tilde{\mathbf{v}}_{\mathbf{R}} \\ \tilde{\mathbf{v}}_{\mathbf{R}} \end{pmatrix}$$
 (A-14)

 $= [B] \tilde{u}$ 

#### Stress-Strain Relation (material axis)

$$\begin{pmatrix}
\sigma_{LL} \\
\sigma_{TT} \\
\gamma_{LT}
\end{pmatrix} = \begin{pmatrix}
\frac{E_{L}}{1 - \nu_{LT} \nu_{TL}} & \frac{\nu_{TL} E_{L}}{1 - \nu_{LT} \nu_{TL}} & 0 \\
\frac{\nu_{LT} E_{T}}{1 - \nu_{LT} \nu_{TL}} & \frac{E_{T}}{1 - \nu_{LT} \nu_{TL}} & 0 \\
0 & 0 & G_{LT}
\end{pmatrix}
\begin{pmatrix}
\varepsilon_{LL} \\
\varepsilon_{TT} \\
\gamma_{LT}
\end{pmatrix} - \Delta T \begin{pmatrix}
\frac{E_{L} (\alpha_{L} + \nu_{TL} \alpha_{T})}{1 - \nu_{LT} \nu_{TL}} \\
\frac{E_{T} (\alpha_{T} + \nu_{LT} \alpha_{L})}{1 - \nu_{LT} \nu_{TL}} \\
0 & 0
\end{pmatrix}$$

$$(A-15)$$

### Strain Transformation Law (material-local)

$$\begin{pmatrix}
\varepsilon_{LL} \\
\varepsilon_{TT} \\
\varepsilon_{TT}
\end{pmatrix} = \begin{pmatrix}
\ell_{Lx}^{2} & \ell_{Ly}^{2} & \ell_{Lx}^{\ell} \\
\ell_{Tx}^{2} & \ell_{Ty}^{2} & \ell_{Tx}^{\ell} \\
\ell_{Ty}^{2} & \ell_{Tx}^{\ell} \\
\ell_{Ty}^{2} & \ell_{Tx}^{\ell} \\
\ell_{Ty}^{\ell} & \ell_{Tx}^{\ell} \\
\ell_{Ty}^{\ell} & \ell_{Tx}^{\ell} \\
\ell_{Ty}^{\ell} & \ell_{Ty}^{\ell} \\
\ell_{xy}^{\ell} & \ell_{xy}^{\ell} \\
\ell_{xy}^{$$

where 
$$\ell_{Lx} = \vec{e}_L^T \cdot \vec{e}_x = \cos\theta$$
,  $\ell_{Tx} = \vec{e}_T^T \cdot \vec{e}_x = -\sin\theta$   
 $\ell_{Ly} = \vec{e}_L^T \cdot \vec{e}_y = \sin\theta$ ,  $\ell_{Ty} = \vec{e}_T^T \cdot \vec{e}_y = \cos\theta$ 

Note: the direction of  $\vec{e}_2$  is chosen so that  $(\vec{e}_1 \times \vec{e}_2) \cdot (\vec{e}_X \times \vec{e}_v) > 0$ .

#### Stress-Displacement Relation

$$\begin{cases}
\sigma_{LL} \\
\sigma_{TT} \\
\gamma_{LT}
\end{cases} = [D][T][B] \tilde{u} - \Delta T \cdot \tilde{h}$$
(A-17)

# Local-Reference Displacement Relation

same as type 2

# Stiffness Matrix (local coordinate)

$$K = K_{n} + K_{s}$$

$$C_{1}(s-b)^{2} - C_{2}(s-b)h - C_{1}(s-b)s C_{2}(s-b)h C_{1}(s-b)b 0$$

$$C_{2}h^{2} C_{2}hs - C_{3}h^{2} - C_{2}bh 0$$

$$C_{1}s^{2} - C_{2}hs - C_{1}bs 0$$

$$C_{2}h^{2} C_{2}h 0$$

$$C_{1}s^{2} - C_{2}hs 0$$

$$C_{2}h^{2} C_{2}bh 0$$

$$C_{1}b^{2} 0$$

$$C_{1}b^{2} 0$$

(A-18)

where

$$C_{1} = \rho^{4} E_{L} + 2\rho^{2}\mu^{2}\nu_{LT}E_{T} + \mu^{4}E_{T}$$

$$C_{2} = \rho^{2}\mu^{2}E_{L} + (\rho^{4} + \mu^{4})\nu_{LT}E_{T} + \rho^{2}\mu^{2}E_{T}$$

$$C_{3} = \mu^{4}E_{L} + 2\rho^{2}\mu^{2}\nu_{LT}E_{T} + \rho^{4}E_{T}$$

$$\cdot \nu_{LT}E_{T} = \nu_{TL}E_{L}$$

$$\rho = \sin\theta$$

 $\mu = \cos \theta$ 

|    | (s-b) <sup>2</sup> D <sub>1</sub>                                                   |                                                                             |                                                                                  | Symm.                                                                               |                                |                               | )      |
|----|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|-------------------------------|--------|
|    | + 2h(s-b)D <sub>2</sub> +h <sup>2</sup> D <sub>3</sub>                              |                                                                             |                                                                                  |                                                                                     |                                |                               | ·      |
|    | $h(s-b)D_1 + [h^2 - (s-b)^2]D_2 - h(s-b)D_3$                                        | $h^{2}D_{1}^{-2h(s-b)D_{2}} + (s-b)^{2}D_{3}$                               |                                                                                  |                                                                                     |                                |                               |        |
|    | -s(s-b)D <sub>1</sub> -(2s-b)hD <sub>2</sub> -h <sup>2</sup> D <sub>3</sub>         | $-hsD_{1}[(s-b)s-h^{2}]D_{2} + (s-b)h D_{3}$                                | ·s <sup>2</sup> D <sub>1</sub> +2hsD <sub>2</sub> +h <sup>2</sup> D <sub>3</sub> |                                                                                     |                                |                               | (2.00) |
| 78 | -h(s-b)D <sub>1</sub><br>+[(s-b)s-h <sup>2</sup> ]D <sub>2</sub> +sh D <sub>3</sub> | -h <sup>2</sup> D <sub>1</sub> +h(2s-b)D <sub>2</sub> -s(s-b)D <sub>3</sub> | $\begin{array}{c} hsD_1 + (h^2 - s^2)D^2 \\ -hs D_3 \end{array}$                 | h <sup>2</sup> D <sub>1</sub> -2hs D <sub>2</sub><br>+s <sup>2</sup> D <sub>3</sub> |                                |                               | (A-20) |
| 1  | b(s-b)D <sub>1</sub> +bh D <sub>2</sub>                                             | bhp <sub>1</sub> -b(s-b) <sub>D2</sub>                                      | -bsD <sub>1</sub> -bh D <sub>2</sub>                                             | -bhD <sub>1</sub> +bs D <sub>2</sub>                                                | b <sup>2</sup> D <sub>1</sub>  |                               |        |
|    | -b(s-b)D <sub>2</sub> -bh D <sub>3</sub>                                            | -bhD <sub>2</sub> +b(s-b)D <sub>3</sub>                                     | bs D <sub>2</sub> + bh D <sub>3</sub>                                            | bh D <sub>2</sub> -bs D <sub>3</sub>                                                | -b <sup>2</sup> D <sub>2</sub> | b <sup>2</sup> D <sub>3</sub> |        |

where 
$$D_1 = 4\rho^2\mu^2$$
  
 $D_2 = 2\rho\mu(\rho^2 - \mu^2)$   
 $D_3 = (\rho^2 - \mu^2)^2$ 

#### Equilibrium Equation (local coordinate)

$$K\tilde{u} + \vec{h} = \vec{f}$$

$$\vec{h} = \pm \Delta T \begin{cases} -(b-s)(\rho^{2}h_{1}+\mu^{2}h_{2}) + 2h\rho\mu(h_{1}-h_{2}) \\ -h(\mu^{2}h_{1} + \rho^{2}h_{2}) + 2(b-s)\rho\mu(h_{1}-h_{2}) \\ -s(\rho^{2}h_{1} + \mu^{2}h_{2}) - 2h\rho\mu(h_{1}-h_{2}) \\ h(\mu^{2}h_{1} + \rho^{2}h_{2}) + 2s\rho\mu(h_{1}-h_{2}) \\ b(\rho^{2}h_{1} + \mu^{2}h_{2}) \\ -2b\rho\mu(h_{1}-h_{2}) \end{cases}$$

$$(A-21)$$

where

$$\mathbf{h_1} = -\frac{\mathbf{E_L}(\alpha_{\mathbf{L}} + \nu_{\mathbf{TL}}\alpha_{\mathbf{T}})}{1 - \nu_{\mathbf{LT}}\nu_{\mathbf{TL}}}$$

$$h_2 = -\frac{E_T (\alpha_T + \nu_{LT} \alpha_L)}{1 - \nu_{LT} \nu_{TL}}$$

Consistent Mass Matrix (reference coordinate)

same as type 2

4. Type 4 - SSP: Symmetric shear panel element with uniform thickness and isotropic material

This is a special element used to model relatively thin symmetric structures such as idealized supersonic lifting surfaces. Theoretical discussion is given in Ref. 1. It is assumed that this element models the upper (or lower but not both) half of the symmetric structure and the element plane of symmetry coincides with the X-Y plane. It is further assumed that all SSP elements are placed vertically with respect to the X-Y reference coordinate plane.



Note:

- 1. There are only two nodes per element.
- The line of intersection with the XY plane does not move in the XY plane. It can only move vertically.

- 3. If the heights PP' and QQ' are different, the average (PP' + QQ')/2 is considered as the height of the element, i.e. b.
- 4. No thermal load can be considered in this element

#### Strain Displacement Relation (local coordinate)

$$\begin{pmatrix} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ -\frac{2\eta}{a} & 0 & \frac{2\eta}{a} & 0 \\ \frac{2\nu\eta}{a} & 0 & \frac{2\nu\eta}{a} & 0 \\ \frac{1}{b} & -\frac{1}{a} & \frac{1}{b} & \frac{1}{a} \end{pmatrix} \begin{pmatrix} \widetilde{\mathbf{u}}_{\mathbf{p}} \\ \widetilde{\mathbf{v}}_{\mathbf{p}} \\ \widetilde{\mathbf{v}}_{\mathbf{Q}} \\ \widetilde{\mathbf{v}}_{\mathbf{Q}} \end{pmatrix} \tag{A-22}$$

$$\tilde{\epsilon} = [B]u$$

wherein  $\eta = \tilde{Y}/b$ 

## Stress-Strain Relation (local coordinate)

$$\begin{pmatrix} \sigma_{\mathbf{x}} \\ \sigma_{\mathbf{y}} \\ \tau_{\mathbf{xy}} \end{pmatrix} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{cases} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ \gamma_{\mathbf{xy}} \end{pmatrix} \tag{A-23}$$

# Stress Displacement Relation (local coordinate)

$$\begin{pmatrix} \sigma_{\mathbf{x}} \\ \sigma_{\mathbf{y}} \\ \tau_{\mathbf{xy}} \end{pmatrix} = \mathbf{E} \begin{bmatrix} -\frac{2\eta}{a} & 0 & \frac{2\eta}{a} & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2(1+\nu)b} & \frac{1}{2(1+\nu)a} & \frac{1}{2(1+\nu)b} & \frac{1}{2(1+\nu)a} \end{bmatrix} \begin{pmatrix} \tilde{\mathbf{u}}_{\mathbf{p}} \\ \tilde{\mathbf{v}}_{\mathbf{p}} \\ \tilde{\mathbf{u}}_{\mathbf{Q}} \\ \tilde{\mathbf{v}}_{\mathbf{O}} \end{pmatrix} (A-24)$$

## Local to Reference Displacement Transformation

\*(-) sign if  $Z_p < 0$  and  $Z_Q < 0$ 

where  $\ell_{_{\mathbf{X}}}$  and  $m_{_{\mathbf{X}}}$  are components of a unit vector  $\vec{e}_{_{\mathbf{X}}}$  along the local  $\tilde{\mathbf{x}}$  axis.

## Stiffness Matrix (local coordinate)

where 
$$\alpha = \frac{a}{b}$$

$$F = \frac{2(1+v)}{\alpha}$$

Consistent Mass Matrix (local coordinate)

$$\frac{1}{9} + G - \frac{1}{12} H \quad 0 \quad \frac{1}{18} - G - \frac{1}{12} H \quad 0$$

$$\frac{1}{3} \quad 0 \quad \frac{1}{12} H \quad \frac{1}{6} \quad 0$$

$$\frac{1}{9} \quad 0 \quad 0 \quad \frac{1}{18}$$

$$\frac{1}{9} + G \quad \frac{1}{12} H \quad \frac{1}{3}$$

$$Symm. \qquad \frac{1}{3} \quad 0$$

where 
$$\rho = \dot{d}ensity$$

$$G = \frac{\alpha^2}{30} + \frac{v}{18} + \frac{v^2}{30\alpha^2}$$

$$H = \alpha + \frac{1}{\alpha}$$

It may look strange that the mass matrix depends upon Poisson's ratio  $\nu$  through G. This is due to the fact that the assumed displacement field is derived based on assumed stress field.

5. Type 5 - PSP: Pure symmetric shear panel element with uniform thickness and isotropic material

This element is identical to a type 4 (SSP) element, except for a minor change in the assumed displacement state so that the stress state of the element is pure shear: i.e.  $\sigma_{\mathbf{x}} = \sigma_{\mathbf{y}} \equiv 0.$  This implies that  $\varepsilon_{\mathbf{x}} = \varepsilon_{\mathbf{y}} \equiv 0.$ 

# Strain Displacement Relation (local coordinate)

$$\gamma_{xy} = \left[\frac{1}{b}, -\frac{1}{a}, \frac{1}{b}, \frac{1}{a}\right] \left\{\tilde{u}_{p}, \tilde{v}_{p}, \tilde{u}_{Q}, \tilde{v}_{Q}\right\}^{T}$$
(A-28)

Stress-Strain Relation (local coordinate)

$$\tau_{xy} = \frac{E}{2(1+v)} \gamma_{xy}$$
 (A-29)

## Stress-Displacement Relation

$$\tau_{xy} = \frac{E}{2(1+v)} \left[ \frac{1}{b}, -\frac{1}{a}, \frac{1}{b}, \frac{1}{a} \right] \left\{ \tilde{u}_p, \tilde{v}_p, \tilde{u}_Q, \tilde{v}_Q \right\}^T$$
 (A-30)

# Local to Reference Displacement Transformation

same as type 4.

# Stiffness Matrix (local coordinate)

same as type 4 except  $F \equiv 0$ .

#### Mass Matrix

Assumed to be the same as type 4.

## Strain-Displacement Relation (local coordinates)

$$\begin{cases}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{xy}
\end{cases} = 
\begin{cases}
-\frac{1}{a} - \frac{v}{b}(1 - \frac{2x}{a}) & \frac{1}{a} & \frac{v}{b}(1 - \frac{2x}{a}) \\
0 & \frac{2}{b}(1 - \frac{x}{a}) & 0 & \frac{2x}{ab} \\
0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
\tilde{u}_{p} \\
\tilde{v}_{p} \\
\tilde{u}_{Q} \\
\tilde{v}_{Q}
\end{cases}$$
(A-31)

#### Stress-Strain Relation

$$\begin{cases}
\varepsilon_{\mathbf{x}} \\
\varepsilon_{\mathbf{y}} \\
\gamma_{\mathbf{x}\mathbf{y}}
\end{cases} = \frac{E}{1-\nu^{2}} \begin{bmatrix}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1+\nu}{2}
\end{bmatrix}
\begin{cases}
\varepsilon_{\mathbf{x}} \\
\varepsilon_{\mathbf{y}} \\
\gamma_{\mathbf{x}\mathbf{y}}
\end{cases} - \frac{E\alpha\Delta\mathbf{T}}{1-\nu} \begin{bmatrix}
1 \\
1 \\
0
\end{cases} (A-32)$$

#### Stress-Displacement Relation

$$\begin{cases}
\sigma_{x} \\
\sigma_{y} \\
\gamma_{xy}
\end{cases} = \frac{E}{1-v^{2}} \begin{bmatrix}
-\frac{1}{a} & \frac{v}{b} & \frac{1}{a} & \frac{v}{b} \\
-\frac{v}{a} & \frac{1}{b}[2-v^{2}-\frac{2(1-v^{2})}{a}x] & \frac{v}{a} & \frac{1}{b}[v^{2}+\frac{2(1-v^{2})}{a}x] \\
0 & 0 & 0
\end{cases} \begin{bmatrix}
u_{p} \\
v_{p} \\
u_{Q} \\
v_{Q}
\end{bmatrix}$$

$$-\frac{E\alpha\Delta T}{1-v} \begin{cases} 1 \\ 1 \\ c \end{cases} \tag{A-33}$$

# Local to reference displacement transformation

same as type 4

## Stiffness Matrix (local coordinate

$$K = \frac{\text{Et}}{2(1-v^2)} \begin{bmatrix} \frac{1}{\alpha} & -v & -\frac{1}{\alpha} & -v \\ & \frac{4-v^2}{3}\alpha & v & \frac{2+v^2}{3}\alpha \\ & & \frac{1}{\alpha} & v \\ & & \frac{4-v^2}{3}\alpha \end{bmatrix} \begin{bmatrix} \tilde{u}_p \\ \tilde{v}_p \\ \tilde{u}_Q \\ \tilde{v}_Q \end{bmatrix}$$

$$\text{Symm.} \qquad \frac{4-v^2}{3}\alpha$$

where  $\alpha = \frac{a}{b}$ 

Force Displacement Relation (local coordinate)

$$K \tilde{u} - \frac{E\alpha\Delta T t}{2(1-v)} \qquad \begin{cases} -b \\ a \\ b \end{cases} = \tilde{f}$$
(A-35)

#### Consistent Mass Matrix

Assumed to be the same as type 4

Note: As shown in the stress-displacement relation, stress distribution is linear with respect to x. In order to simplify the problem, an approximate stress displacement relation is used in computing stress and stress sensitivity.

$$\begin{cases}
\sigma_{x} \\
\sigma_{y}
\end{cases} = \frac{E}{1-v^{2}} \begin{bmatrix}
-\frac{1}{a} & \frac{v}{b} & \frac{1}{a} & \frac{v}{b} \\
-\frac{v}{a} & \frac{1}{b} & \frac{v}{a} & \frac{1}{b}
\end{bmatrix}
\begin{cases}
\tilde{u}_{p} \\
\tilde{v}_{p} \\
\tilde{u}_{Q} \\
\tilde{v}_{Q}
\end{cases} - \frac{E\alpha\Delta T}{1-v} \begin{cases}
1 \\
1
\end{cases} (A-36)$$

6. Type 6 - TSP: Thermal symmetric shear panel element with uniform thickness and isotropic material

Since SSP and PSP cannot be used for problems involving thermal loads, this special element is added to the ACCESS-3 element library. The TSP element is designed to be used under steady thermal soak load conditions such that the temperature change in each TSP element is uniform and therefore symmetric with respect to the X-Y plane.

If the structure is subject to both mechanical and thermal loads, two structural models must be created and analyzed separately. One model is to use SSP elements to model shear panels and it is subject to only mechanical loads. The other model uses TSP elements to model the shear panels and it is subject to only thermal soak loads. These two models are created automatically, if the user specifies both SSP and TSP elements. Displacement and stress states of the structure subject to both thermal and mechanical loads are generated by superimposing the results obtained from the two separate models.

Theoretically, it is also possible to consider the PSP - TSP element combination, but this is not implemented in the current version of the program.

Note that the TSP option requires a significant amount of core memory and CPU time, since two system stiffness matrices are stored and decomposed. Sensitivity analyses of the responses must be carried out separately and superimposed afterwards. Therefore, analysis effort is nearly doubled when thermal effects need to be considered.

#### Appendix B

#### Examples

Two simple examples are given to illustrate input data preparation and program output for various features of the ACCESS 3 code. To help understand these examples, Figs. Bl and B2 represent the geometrical layout of the structures and the following indications are provided:

#### (1) 10-bar cantilever truss

- . static constraints only;
- automatic selection of stress constraints requiring first order approximation;
- . equality constraints on displacement;
- . DUAL 2 optimizer

Note that displacements at nodes 4 and 5 in the Y direction are required to be <u>equal</u> to -5.08 cm (-2.0 in) and -2.54 cm (-1.0 in), respectively.

#### (2) 10 element delta wing

- . static constraints and frequency constraint;
- . mechanical and thermal loads;
- . mixed continuous-discrete problem;
- . titanium webs (continuous) and composite skin (discrete);
- . DUAL 1 optimizer.

Note that the available discrete thicknesses for the CSTOR elements are {0.0254, 0.0508, 0.0762, 0.1016,....5.08} (cm) or {0.01, 0.02, 0.03, 0.04,....2.0} (in).



Fig. Bl 10 bar cantilever truss



Fig. B2 10 element delta wing

# (1) 10 bar cantilever truss

| ITEST              | BAR T<br>FOR<br>2  | RUSS<br>DUAL<br>0 | ALGOR  | QUALI<br>THMS<br>1 | TY CC<br>IN A           | NSTRA<br>CCESS<br>0 | INTS<br>3<br>0 | 0     | 0     | 0                                  |    |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|--------------------|--------------------|-------------------|--------|--------------------|-------------------------|---------------------|----------------|-------|-------|------------------------------------|----|---|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 10<br>1<br>2<br>3  |                    | 0.7               | 600E3  | 0.0                |                         |                     |                |       |       |                                    |    |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 456-               |                    | 0.3               | 1      | 0.3                | 600E3<br>600E3<br>600E3 |                     | 74.2.7         |       |       |                                    |    |   | · · · · · · · · · · · · · · · · · · · | The first section of the section of |           |
| 3<br>4<br>5        | 000                |                   | i<br>1 |                    |                         |                     |                |       | ļ     |                                    |    |   |                                       | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>      |
| 944                | 1 2                | 2<br>3            | 0      | 0                  | 1 2                     | 1                   | 1              | 00    | 1     | -1<br>-1                           |    |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 3 4 5              | 3<br>4<br>5        | 4<br>5<br>6       | 0000   | 0000               | 3<br>4<br>5             | 1<br>1<br>1         | 1<br>1<br>1    | 0000  | i     | -1<br>-1<br>-1                     |    |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 02000              | 2 2                | 5                 | 0000   | 0000               | 7<br>8<br>9             | 1                   | 1              | 0000  | 1     | - 1<br>- 1                         |    |   |                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| 20.0<br>0.1<br>0.1 | 00 0 E 8           | 0.3               | 000E0  | 0.1                | 000E0                   | 0.0                 | 000E0          | -0.2  | 500E5 | 0.2500                             | :5 |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| N300               | .0                 | 0.0               | 000E0  | -0.1<br>-0.1       | 000E6<br>000E6          |                     |                |       |       | INERTIA<br>FLIGHT                  |    |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 2                  | 00 0 E 0           |                   | 000E0  |                    | 0 0 0E 0                | 1 . 1               |                |       |       | MASS<br>DISPL.                     |    |   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 9 1<br>6<br>5      | 00.0 E 0<br>2<br>2 | 0.8<br>2<br>2     | OBOEO  | -2.0<br>-1.0       |                         | -2.0<br>-1.0        |                | _0.0  |       | SLOPE<br>STRESS                    |    |   |                                       | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>· · · |
| 0.1<br>0           | 00 0 E 0           | 0.8               | 000E0  | 1.0                | 000E0                   | 1.2                 | 000E0          | C • 1 | DOOE4 | STRESS<br>0.1<br>FREQU.<br>FLUTTER | +  | • |                                       | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>-     |
|                    | 001E0              | 0.0               | 001E0  | 0.0                | 000 <b>€</b> 0          | 0.0                 | 000E0          | 1.0   | DODES | <del>   </del>                     | +  |   |                                       | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |

į

92

|                              |               |                            | COMPLETE OP                                              | TIMIZATION E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y DUAL2 JPT 1                             | IMIZER                               |                                              |                   |                  |                  |
|------------------------------|---------------|----------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------------|-------------------|------------------|------------------|
|                              |               |                            | ANALYSIS PR                                              | INT OUT CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ROL = 2                                   |                                      |                                              |                   |                  |                  |
|                              |               |                            | DESIGN IN L                                              | INKED SIZING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VARIABLE SP                               | PACE                                 |                                              |                   |                  |                  |
|                              |               |                            | NUMBER OF L<br>NUMBER OF L<br>NUMBER OF B<br>NUMBER OF I | GDES  OTAL ELEMENT: INKED VARIABI GAC CONDITION CUNDARY NODE SOTROPIC MATERIALIST METHORIC ME | LES 10<br>NS 1<br>S 6<br>Erials 1         | · <del>-</del>                       |                                              |                   |                  |                  |
|                              | TRUSS         | CST<br>ISOTROPIC           | CST<br>CRTHOTROPIC                                       | SSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PSP                                       | TSP                                  | TB0                                          | TBD               | TBO              | <b>1</b> 80      |
| ELEMENTS<br>LINKED VARIABLES | 10            |                            |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                         | ~                                    |                                              |                   |                  |                  |
|                              | . <del></del> | Node number                | x                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Υ                                         |                                      | Z                                            |                   |                  |                  |
|                              |               | 1<br>2<br>3<br>4<br>5<br>6 | 0.0<br>360.000<br>720.000<br>720.000<br>360.000          | ა<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0<br>0.0<br>0.0<br>360.0000<br>360.0000 |                                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0              |                   |                  |                  |
|                              |               |                            | DI SPLA                                                  | CEMENT BOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ARY CONJITIO                              | ONS                                  |                                              |                   |                  |                  |
|                              | - си          |                            | CUNDARY CODES*                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FRESCE                                    | RIBED DI                             | SPLACEMENT                                   | z                 | 1                |                  |
|                              |               | 1                          | i o i                                                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 0 •0<br>0 •0<br>0 •0<br>0 •0<br>0 •0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0              |                   |                  |                  |
|                              | <b></b>       |                            | * -1=PR                                                  | ESCRIBED. 0=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FREE, 1=FIXE                              | ED                                   |                                              |                   |                  |                  |
| EMENT NODE                   | NUMBERS<br>N3 | LINE<br>N4 GRO             |                                                          | INITIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EMENT LOW + 81                            | SIZE                                 | UPP-8D                                       | MATERIAL<br>GROUP | SIDE CO<br>CODE* | NSTRAINT         |
| TRUSS ELEMENTS               |               | :<br>                      | 2                                                        | 20.000000<br>20.000000<br>20.000000<br>20.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-10000<br>0-10000<br>0-10000<br>0-10000  | 0<br>0.                              | 0.100000<br>0.100000<br>0.100000<br>0.100000 | 1<br>1<br>1       | -1<br>-1<br>-1   | 0<br>0<br>0<br>0 |

| ELEMENT<br>NO.                        | NEDE<br>NI NZ                                     | NUMBE!<br>EN                           | 75<br>N4              | L INKED<br>GROUP                          |                                             | INITIAL                                                                                   | ELEMEN       | T LÜW.8D                                                                                                                     | SIZE       | UPP•BD                                                                                                   | MATERIAL<br>GROUP               | SIDE COI                               | NSTRAINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------|---------------------------------------------------|----------------------------------------|-----------------------|-------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T RUS:                                | 5 ELEMENTS 1 2 3 4 5 6 5 6 2 5 1 5 2 6 2 4 3 5    |                                        | · · ··                | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4     | 20.000000<br>20.000000<br>20.000000<br>20.000000<br>20.000000<br>20.0000000<br>20.0000000 |              | 0 - 100 00 0<br>0 - 100 00 0 |            | 0.100000<br>0.100000<br>0.100000<br>0.100000<br>0.100000<br>0.100000<br>0.100000<br>0.100000<br>0.100000 | 1<br>1<br>1<br>1<br>1<br>1<br>1 | -1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1 | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                                     | -2=FIXED A<br>0=NCN NEG<br>2=dCTH UP<br>SECOND NU | ATIVIT                                 |                       | 1 =UPP                                    | PER BOUNDS (<br>PER BOUNDS (<br>ROUP NUMBER |                                                                                           | <del></del>  |                                                                                                                              |            |                                                                                                          |                                 | · · · · · · · · · · · · · · · · · · ·  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | der oraș didentespropaga (de 1924).               |                                        | m                     |                                           | MATERIAL CO                                 | NSTANTS                                                                                   | - ISOTR      | OPIC MAT                                                                                                                     | ERIALS     |                                                                                                          |                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | GRD<br>N                                          | UP<br>0•                               | YOUNG S               | . F                                       | Z'NOZZIC<br>Oltar                           | SPEC<br>WE                                                                                | IFIC<br>IGHT | THE<br>EXPAN                                                                                                                 | RMAL       | COMPRESSIVE<br>A. STRESS                                                                                 | TENSII<br>A. STRE               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                   | 1                                      | 100000000             |                                           | 0.3000                                      | 0.10                                                                                      | 0000         | C.O                                                                                                                          |            | -25000•0                                                                                                 | 25000                           | -0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                   |                                        |                       |                                           |                                             |                                                                                           |              |                                                                                                                              |            |                                                                                                          |                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                   |                                        |                       |                                           |                                             | LOAD CO                                                                                   | NDITION      | is .                                                                                                                         |            |                                                                                                          |                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                   |                                        |                       |                                           |                                             |                                                                                           |              | 10.056                                                                                                                       |            |                                                                                                          | <del></del>                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · · | <del></del>                                       |                                        |                       |                                           |                                             | LUMPED LO                                                                                 | AL AL N      | 10062                                                                                                                        | <b>-</b> . | · · · · · · · · · · · · · · · · · · ·                                                                    |                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                   |                                        | NOCE NUME             | ER                                        |                                             | хх                                                                                        |              |                                                                                                                              | Υ          |                                                                                                          | Z                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                   | <b></b>                                | LOAD CONDII<br>2<br>3 | LICH I                                    | 0 • · · · · · · · · · · · · · · · · · ·     |                                                                                           |              | 0000.000                                                                                                                     |            | 0.0                                                                                                      |                                 |                                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                   | # ##********************************** |                       | **                                        |                                             | DDFSSI                                                                                    | IRE LOAL     | ·                                                                                                                            | •          |                                                                                                          |                                 |                                        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       |                                                   |                                        |                       |                                           |                                             |                                                                                           |              | • "                                                                                                                          |            |                                                                                                          |                                 |                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       |                                                   |                                        |                       |                                           | NC P                                        | RESSURE L                                                                                 | .OAD SPE     | CIFIED                                                                                                                       |            |                                                                                                          |                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                   |                                        |                       |                                           |                                             | GRAVI                                                                                     | TY LOAD      | 2                                                                                                                            |            |                                                                                                          |                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                   | LOAD                                   | CONDITION 1           | NO.                                       | MAGNITUDE (                                 | G)                                                                                        |              | c.                                                                                                                           | DIRECTI    | ON COSINES                                                                                               |                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                   |                                        | 0                     | NO                                        | GRAVITY LO                                  | AD                                                                                        |              |                                                                                                                              |            |                                                                                                          |                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | en a desperie par                                 |                                        |                       |                                           |                                             | THERMA                                                                                    | AL LOAD      | _                                                                                                                            |            |                                                                                                          |                                 |                                        | The second secon |
|                                       |                                                   | •                                      |                       |                                           | NO T                                        | HERMAL LO                                                                                 | DAD SPE      | CIFIED                                                                                                                       |            |                                                                                                          |                                 | * ** · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

CONSTRAINT TYPE 6

CONSTRAINT DATA

| SIDE CONSTRAINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIDE CONSTRAINT SPECIFICATIONS ARE GIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N IN THE ELEMENT                                 | DATA                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DISPLACEMENT CONSTRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NTS                                              |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INITIAL TRUNCATION FACTOR MAXIMUM TRUNCATION FACTOR BASIS CUTOFF FACTOR MULTIPLIER FGR TRF UPDATING MINIMUM NORMALIZATION FACTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1000<br>0.8000<br>1.0000<br>1.2000<br>R 0.0100 | , ,                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NODE NO. DIRECTION** CODE* REGION NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOWER BOUND                                      | UPPER BOUND                                         | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1 4 2 2<br>2 5 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.000000<br>-1.000000                           | -2.000000<br>-1.00000                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *-1=LOWER ECUND CNLY, 0=NC CONSTRAINT L=UFPER ECUND CNLY, 2=LOWER AND UFPER BCUNDS ** IF 0. SPHERICAL DISPLACEMENT BOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SLOPE/RELATIVE DISPLACEMENT C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ONSTRAINTS                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NC SLOPE CONSTRAINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STRESS/STRAIN CONSTRAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NTS                                              |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INITIAL TRUNCATION FACTOR MAXIMUM TRUNCATION FACTOR BASIS CUTOFF FACTOR MILITIPLIER FOR TRE UPDATING MINIMUM NORMALIZATION FACTO STRESS STRAIN NO EULER BUCKLING CONSTRAIN SELECTION FACTOR FOR ZERO ORDER APPROXIMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B<br>1000.0000<br>.100000E+00                    |                                                     | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CLEMENT TYPE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL ELEMENTS ARE CONSTRAINED E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y BOTH LOWER AND                                 | UPPER BOUNDS                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPTIMIZER CONTROL PARAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ETERS                                            |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CUAL 2 PRINT CUT CONTECT MAX. NO. CE STAGES DIMINISHING RETURN CRITERION AND DIMINISHING RETURN CRITERION AND MAX. STEP SIZE ALLOWED IN A SING STEP SIZE MODIFICATION FACTOR STEP SIZE MINIMUM ALLOWABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NG D.D.M. 0.1<br>LE STAGE 0.1                    | 000E-03<br>000E-03<br>000E+04<br>000E+01<br>200E+01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONSTRAINT IDENTIFICATION CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONSTRUCT OF COURT OF | 00C6 <b>-1</b> 0007                              | -10008 -                                            | -10010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CGNSTRAINT TYPE 2 4 CCNSTRAINTS IN THIS TYPE -100120004 100120004 -100220005 100220005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONSTRAINT TYPE 3 O CONSTRAINTS IN THIS TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                     | . The second sec |
| CONSTRAINT TYPE 4 20 CCNSTRAINTS IN THIS TYPE -10010001 10010001 -10010002 10010002 -10010003 1001 -10010006 10010006 -10010007 10010007 -10010008 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0003 -10010004<br>0008 -10010009                 |                                                     | 010005 10010005<br>010010 10010010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CONSTRAINT TYPE 5 O CONSTRAINTS IN THIS TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

O CENSTRAINTS IN THIS TYPE

DAKE PANAFOR ACCORADE

CONSTRAINT IDENTIFICATION CODES

| CONSTRAINT IDENTIFICATION CO                                  | DES                               |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|---------------------------------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|----------|------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| CONSTRAINT TYPE 1 -10002                                      | 20001-<br>E0001-                  | NI PTAINTS IN                       | THIS TYPE<br>-10005                 | -10006   | -10007                 | -1 00 08                              | -1 0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -10010                                              |
| CGNSTRAINT TYPE 2<br>-100120004 100120004 -                   | 4 CCN9                            | STRAINTS IN<br>100220005            | THIS TYPE                           |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| CENSTRAINT TYPE 3                                             | 0 CENS                            | STRAINTS IN                         | THIS TYPE                           |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| CONSTRAINT TYPE 4<br>-13010001 10010001<br>-10010006 10010006 | 20 CCNS<br>-10010002<br>-10010007 | STRAINTS IN<br>10010002<br>10010007 | THIS TYPE<br>-10010003<br>-10010008 | 10010003 | -10010004<br>-10010009 | 10010004                              | -10010005<br>-10010010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10010005                                            |
| CONSTRAINT TYPE 5                                             | 0 CCN                             | STRAINTS IN                         | THIS TYPE                           |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| CONSTRAINT TYPE 6                                             | O CEN                             | STRAINTS IN                         | THIS TYPE                           |          | ••                     | marin many ang mer                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
|                                                               | NTS 24                            |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| NUMBER OF DESIGN VARIABLES                                    | 10                                |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| NUMBER OF DISCRETE VARIABLES                                  | Q                                 |                                     |                                     |          |                        |                                       | r resident de descripción de la company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |
|                                                               |                                   |                                     | END OVERLAY                         | PREPCO   |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   | '                                   | ENTER OVERLAY                       | L DESIĞN |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F1000 4.0 4.0 6.0 1000 1000 1000 1000 1000 1000 100 |
|                                                               |                                   |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               | •                                 |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   |                                     |                                     |          |                        |                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>w</b>                                            |
|                                                               |                                   |                                     |                                     |          | ••                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   |                                     |                                     | •        | A                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   |                                     |                                     |          |                        | *                                     | The second secon |                                                     |
| •                                                             |                                   |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               | •                                 |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·               |
|                                                               |                                   |                                     | ·                                   | -        |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   |                                     |                                     |          |                        | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
|                                                               |                                   |                                     |                                     |          |                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |

E/A

0.0

6

0.0

|                           |                 |                |                            | <u>-</u>                 | IOCAL DISPL                             |                |                              |                                                                |                                       |                                       |
|---------------------------|-----------------|----------------|----------------------------|--------------------------|-----------------------------------------|----------------|------------------------------|----------------------------------------------------------------|---------------------------------------|---------------------------------------|
| NODE .                    |                 | х              | Y .                        |                          | ·<br>                                   | NODE           | x                            | <b></b>                                                        |                                       | Z                                     |
| LOAD CON                  | IDITION         | t              |                            |                          |                                         |                |                              |                                                                |                                       |                                       |
| 1                         | 0.0             | ······ ·· (    | 0.0                        | 0.0                      |                                         | 2              | -0.36834E+00                 |                                                                |                                       |                                       |
| 3<br>5                    | 0.3516          | 5E+00 -        | 0.19698E+01<br>0.83717E+00 | 0.0                      |                                         | <b>4</b><br>6  | 0.42388E+00<br>0.0           | 0.0                                                            | 0.0                                   |                                       |
|                           | <u>-======</u>  |                | =========                  | =======                  | : = = = = = = = = = = = = = = = = = = = |                |                              | 323 32 23 23 23 23 22 2 <b>2</b> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                       | *****                                 |
| 4 DI SPLACE               | MENT CONST      | DATNTS         |                            | ,                        | TO 4                                    | MOST CEITIG    | CAL CONSTRAINT               | = =0.1628311E                                                  |                                       |                                       |
| 0.5123E-01                | -0.5123E-0      | 0.162          | BE+00 -0.16                | 28E+00                   | 10 4                                    | MUSI CRITE     | CAL CONSTRAINT               |                                                                | · · · · · · · · · · · · · · · · · · · |                                       |
| MIYP M                    | LC.             | S-CEMB         | INED                       | S                        | <b>(</b> 5                              | <b>Y</b> .     | SXY SX-T                     | HERM SY-THE                                                    | ERM SXY-                              | THERM                                 |
| 1 1                       |                 | 0.102316       |                            | 0.1023E+0                |                                         | 0.0            |                              | *                                                              |                                       |                                       |
| 1 1                       |                 | 0.102316       |                            | 0.1023E+0:<br>0.2994E+0: |                                         | 0.0            |                              |                                                                |                                       |                                       |
| 1 2                       | 1 -             | 0.299372       | E+04 -                     | 0.2994E+0                | 0.0                                     | 0.0            |                              |                                                                |                                       |                                       |
| 1 3                       |                 | 0.200619       |                            | 0.2006E+0<br>0.2006E+0   |                                         | 0.0            |                              |                                                                |                                       |                                       |
| <u> </u>                  | <b>L</b>        | 0.200620       | E+04                       | 0.2006E+0                |                                         | 0.0            |                              | ** * *****                                                     |                                       |                                       |
| 1 4                       |                 | 0.200620       |                            | 0.2006E+0<br>0.9768E+0   |                                         | 0.0            |                              |                                                                |                                       |                                       |
| į š                       | 1               | 0.976816       | E+04                       | 0.9768E+0                | 0.0                                     | 0.0            |                              |                                                                |                                       |                                       |
| 16                        |                 | 0.177446       |                            | 0.1774E+0<br>0.1774E+0   |                                         | 0 • 0          |                              |                                                                |                                       |                                       |
| 1 7                       |                 | 0.674326       |                            | 0.6743E+0                |                                         | 0.0            |                              |                                                                |                                       |                                       |
| 1 7                       | 1 -             | 0.674326       | E+04 -                     | 0.6743E+0                |                                         | 0.0            |                              |                                                                |                                       |                                       |
|                           |                 | 0.739875       |                            | 0.7399E+0<br>0.7399E+0   |                                         | 0 • 0<br>0 • 0 |                              |                                                                |                                       | · · · · · · · · · · · · · · · · · · · |
| i 9                       |                 | 0.283721       |                            | 0.2837E+0                |                                         | 0.0            |                              |                                                                |                                       | •                                     |
| 1 9                       |                 | 0.283721       | E+04 -                     | 0.2837E+0                | 4 0.0                                   | 0.0            |                              |                                                                |                                       |                                       |
| 1 10                      |                 | 0.423376       |                            | 0.4234E+0<br>0.4234E+0   |                                         | 0.0<br>0.0     |                              |                                                                |                                       |                                       |
| 20 STRESS/S               | TRAIN CONS      | TRAINTS        |                            | 5                        | TC 24                                   | MOST CRITI     | CAL CONSTRAINT               | = 0.5907344E                                                   | +00                                   |                                       |
| 0.59C7E+00.<br>0.1071E+01 | 0.1409E+0       | 0.880<br>0.730 |                            | 20E+01 0<br>70E+01 0     | .1080E+01 (                             | )•9198E+00     | 0.1080E+01 0<br>0.8865E+00 0 | -9198E+00 0-                                                   | 1391E+01                              | 0.6093E+00<br>0.8306E+00              |
|                           | STRAINTS OU     |                |                            | POINT=                   | 0.883717E+0                             | 00             |                              |                                                                |                                       |                                       |
| 0 CONS                    | STRAINTS QU     | JT DF 0        | CUTOFF                     | POINT=                   | 0.883717E+0                             | 00             |                              |                                                                |                                       |                                       |
| 10 CONS                   | STRAINTS OU     | IT DE DO       | CUTCEE                     | PCINT=                   | 0.959073E+0                             | 20             |                              |                                                                |                                       |                                       |
| 5                         | 3 '.MAIN' 3, UC | 7              | 10                         | 12                       | 14                                      | 16             | 17                           | 20                                                             | 21                                    | 24                                    |
|                           |                 | IT DE 10       | RETAINED                   | DUE TO V                 | APIABLE LINE                            | CING           |                              |                                                                |                                       |                                       |
| וס כסאַנ                  |                 |                |                            |                          |                                         |                |                              |                                                                |                                       | •                                     |
| 5                         | STRAINTS OU     | 7              | 10                         | 12                       | 14<br>0.959073E+6                       | 16             | 17                           | 20                                                             | 21                                    | 24                                    |

AVAILABLE INTEGER ARRAY= 2500 OVERLAY ANALYS REQUIREMENT= 314

POSTURE TABLE

|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                          |                                                                                                  |                                   | •                                    |                  |                                |                                                                                                                                              | 2        |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                     | RETAINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL                                                                                                                       | TYPE                                                                                                     | MEMBER                                                                                           | NODE C                            | IRECTION                             | L.C.             | MODE                           | CONSTRAINT VALUES                                                                                                                            | i        |
|                                                                                                                     | DISPLACEMEN<br>1<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T CONSTRAIN 1 2 3                                                                                                           | NTS MC                                                                                                   | ST CRITICAL                                                                                      | = -0.162<br>2<br>2<br>2<br>2<br>2 | 2831E+00<br>4<br>4<br>5<br>5         | 1<br>1<br>1      | -1<br>-1<br>-1                 | 0.512276E-01<br>-0.512276E-01<br>0.162831E+00<br>-0.162831E+00                                                                               |          |
|                                                                                                                     | STRESS/STRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             | INTS H                                                                                                   | MOST CPITICA<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                        | L = 0.59                          | 90734E+0C                            |                  | -1<br>-1<br>1<br>1<br>-1<br>-1 | 0.590734E+00<br>0.880251E+00<br>0.919752E+00<br>0.919752E+00<br>0.609273E+00<br>0.929021E+00<br>0.730270E+00<br>0.704050E+00<br>0.830650E+00 |          |
|                                                                                                                     | MODE STA<br>NEGA<br>FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NDS FOR THE<br>TIVE=LCWER<br>R STRESS CO<br>I = VCNGIT<br>I = TRANSY<br>4 = SFEAR<br>5 = FIRST<br>6 = SECOND<br>7 = I SAI-V | BOUND FONSTRAINT, LISES EQUIVIDINAL STAIN STRAIN EQUATION AZZI CRITE                                     | CSITIVE=UPI<br>(CODE+1)<br>/ALENT STRES<br>/TRAIN<br>MIN<br>OF STRESS<br>I OF STRESS             | NTERACTION                        | ) N                                  |                  |                                |                                                                                                                                              |          |
| AVAILABLE RE                                                                                                        | AL ARRAY =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7500                                                                                                                        | YERLAY AN                                                                                                | NALYS REQUI                                                                                      | EMENT=                            | 304                                  |                  |                                |                                                                                                                                              |          |
| SELECTION OF                                                                                                        | 10 1ST CRUER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ADDDOYTMAT                                                                                                                  | TEN STRESS                                                                                               | CONSTRATAL                                                                                       |                                   |                                      |                  |                                |                                                                                                                                              | - 14     |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             | , co 31 NE30                                                                                             | CUNSTRAIN                                                                                        | 5                                 | NEW NUMB                             | ER OF LINEAR     | IZED CON                       | STRAINTS - NTCE                                                                                                                              |          |
| ASSEMBL ASSEMBL DECCMPO SOLUTIO FREQUEN FLUTIER CONSTRE                                                             | TIME DATA LE MASS/STIFF E LOAD VECTO DSE STIFFNESS ON OF DISPLAC NCY ANALYSIS A ANALYSIS AINT EVALUATI E TABLE SET LVE GRADIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NESS MATRI)<br>RS<br>MATRIX<br>EMENTS                                                                                       | 0.2790<br>0.3204<br>0.7324<br>0.7324<br>0.0<br>0.1066<br>0.3353                                          | 083E-01<br>835E-03<br>822E-03<br>822E-03<br>812E-03<br>812E-01<br>818E-01<br>833E+00             | 'S                                | NEW NUMB                             | ER OF LINEAR     | IZED CON                       | STRAINTS - NTCE                                                                                                                              | <u> </u> |
| ASSEMBL<br>ASSEMBL<br>DECCMPO<br>SOLUTIO<br>FREQUEN<br>FLUTIER<br>CONSTRA<br>POSTURE<br>SELECTI                     | LE MASS/STIFF LE LOAD VECTO DSE STIFFNESS DN OF DISPLAC NCY ANALYSIS R ANALYSIS AINT EVALUATI E TABLE SET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NESS MATRI)<br>RS<br>MATRIX<br>EMENTS<br>ON<br>EVALUATION                                                                   | 0.2790<br>0.3204<br>0.7324<br>0.7324<br>0.0<br>0.1068<br>0.3353<br>0.3041                                | 043E-01<br>435E-03<br>422E-03<br>422E-03<br>312E-03<br>388E-01                                   |                                   | NEW NUMB                             | ER OF LINEAR     | IZED CON                       | STRAINTS - NTCE                                                                                                                              | <u> </u> |
| ASSEMBL<br>ASSEMBL<br>DECCMPO<br>SOLUTIO<br>FREQUEN<br>FLUTIER<br>CONSTRA<br>POSTURE<br>SELECTI                     | LE MASS/STIFF LE LOAD VECTO DSE STIFFNESS DN OF DISPLAC NCY ANALYSIS A ANALYSIS AINT EVALUATI E TABLE SET LVE GRADIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NESS MATRI)<br>RS<br>MATRIX<br>EMENTS<br>ON<br>EVALUATION                                                                   | 0.2790<br>0.3204<br>0.7324<br>0.7324<br>0.0<br>0.1068<br>0.3353<br>0.3041                                | 0d3E-01<br>435E-03<br>422E-03<br>422E-03<br>812E-03<br>812E-03<br>808E-01<br>100E-01             |                                   |                                      | ER OF LINEAR     | IZED CON                       | STRAINTS - NTCE                                                                                                                              | <u> </u> |
| ASSEMBL ASSEMBL DECCMPO SOLUTIO FREQUEN FLUITER CONSTRA POSTURE SELECTI                                             | LE MASS/STIFF LE LOAD VECTO DSE STIFFNESS DN OF DISPLAC NCY ANALYSIS A ANALYSIS AINT EVALUATI E TABLE SET LVE GRADIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NESS MATRI)<br>RS<br>MATRIX<br>EMENTS<br>ON<br>EVALUATION                                                                   | 0.2790<br>0.3204<br>0.7324<br>0.7326<br>0.0<br>0.1668<br>0.3353<br>0.1658                                | 0d3E-01<br>435E-03<br>422E-03<br>422E-03<br>312E-03<br>388E-01<br>108E-01<br>933E+00             |                                   | -AY ANALYS                           | ER OF LINEAR     | IZED CON                       | STRAINTS - NTCE                                                                                                                              | <u> </u> |
| ASSEMBL ASSEMBL DECCMPO SOLUTIO FREQUEN FLUITER CONSTRA POSTURE SELECTI GRAN                                        | LE MASS/STIFF E LOAD YECTO DSE STIFFNESS ON OF DISPLAC NCY ANALYSIS R ANALYSIS RINT EVALUATI T TABLE SET TVE GRADIENT AND TOTAL CPU  ALING FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NESS MATRI) RS MATRIX EMENTS ON EVALUATION TIME                                                                             | 0.2790<br>0.3204<br>0.7324<br>0.7326<br>0.0<br>0.1668<br>0.3353<br>0.1658                                | 0d3E-01<br>435E-03<br>422E-03<br>422E-03<br>312E-03<br>388E-01<br>108E-01<br>933E+00             | END DVERI                         | -AY ANALYS                           |                  | IZED CON                       | STRAINTS - NTCE                                                                                                                              | <u> </u> |
| ASSEMBL ASSEMBL DECCMPO SOLUTIO FREQUEN FLUITER CONSTURE SELECTI GRAN  SCA                                          | LE MASS/STIFF E LOAD YECTO DSE STIFFNESS ON OF DISPLAC NCY ANALYSIS R ANALYSIS RINT EVALUATI T TABLE SET TVE GRADIENT AND TOTAL CPU  ALING FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NESS MATRI) RS MATRIX EMENTS ON EVALUATION TIME                                                                             | 0.2790<br>0.3204<br>0.7324<br>0.7326<br>0.0<br>0.1668<br>0.3353<br>0.1658                                | 0d3E-01<br>435E-03<br>422E-03<br>422E-03<br>312E-03<br>388E-01<br>108E-01<br>933E+00             | END DVERI                         | -AY ANALYS                           |                  | IZED CON                       | STRAINTS - NTCE                                                                                                                              |          |
| ASSEMBL ASSEMBL DECCMPO SOLUTIO FREQUEN FLUITER CONSTURE SELECTI GRAN  SCA                                          | LE MASS/STIFF E LOAD YECTO DSE STIFFNESS ON OF DISPLACE NCY ANALYSIS ANALYS A | NESS MATRI) RS MATRIX EMENTS ON EVALUATION TIME  0.11628                                                                    | 0.2790<br>0.3204<br>0.7324<br>0.7324<br>0.00<br>0.1068<br>0.3041<br>0.1658                               | 0d3E-01<br>435E-03<br>922E-03<br>922E-03<br>9312E-03<br>938E-01<br>108E-01<br>933E+00<br>955E+00 | END OVERI<br>ED WEIGHT            | -AY ANALYS<br>0.575                  |                  | IZED CON                       | STRAINTS - NTCE                                                                                                                              |          |
| ASSEMBL ASSEMBL DECCMPO SOLUTIO FREQUEN FLUITER CONSTURE SELECTI GRAN  SCA                                          | LE MASS/STIFF E LOAD YECTO DSE STIFFNESS ON OF DISPLACE NCY ANALYSIS ANALYS A | NESS MATRI) RS MATRIX EMENTS ON EVALUATION TIME  0.11628                                                                    | 0.2790<br>0.3204<br>0.7324<br>0.7324<br>0.00<br>0.1068<br>0.3041<br>0.1658                               | 0d3E-01<br>435E-03<br>922E-03<br>922E-03<br>9312E-03<br>938E-01<br>108E-01<br>933E+00<br>955E+00 | END DVERI<br>THDIEW DE.           | -AY ANALYS<br>0.575                  |                  | IZED CON                       | STRAINTS - NTCE                                                                                                                              | <u> </u> |
| ASSEMBL ASSEMBL DECCMPO SOLUTIO FREQUEN FLUITER CONSTURE SELECTI GRAN  SCA NEW LIST OF L 1 2                        | LE MASS/STIFF E LOAD YECTO DSE STIFFNESS ON OF DISPLACE NCY ANALYSIS ANALYS | NESS MATRI) RS MATRIX EMENTS  ON EVALUATION TIME  0.11628 INSTRAINTS 7 10                                                   | 0.2790<br>0.3204<br>0.7324<br>0.7326<br>0.0<br>0.1068<br>0.3041<br>0.1658<br>0.2862                      | 0d3E-01<br>435E-03<br>922E-03<br>922E-03<br>93E-01<br>108E-01<br>108E-01<br>933E+00<br>955E+00   | END OVERI<br>ED WEIGHT            | -AY ANALYS<br>0.975<br>24<br>Traints | 954€ <b>+</b> 04 |                                |                                                                                                                                              |          |
| ASSEMBL ASSEMBL DECCMPO SOLUTIO FREQUEN FLUTIER CONSTRA POSTURE SELECTI  GRAN  SCA NEW LIST OF L 1 2  RELATIVE MOVE | LE MASS/STIFF E LOAD YECTO DSE STIFFNESS ON OF DISPLACE NCY ANALYSIS ANALYSIS AINT EVALUATI E TABLE SET IVE GRADIENT ND TOTAL CPU  ALING FACTOR  LINEAFIZED CO 3 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NESS MATRI) RS MATRIX EMENTS  ON EVALUATION TIME  0.11628 INSTRAINTS 7 10                                                   | 0 . 2790<br>0 . 3204<br>0 . 7324<br>0 . 7324<br>0 . 7324<br>0 . 1668<br>0 . 3354<br>0 . 1658<br>0 . 2862 | 0d3E-01<br>435E-03<br>922E-03<br>922E-03<br>9312E-03<br>938E-01<br>108E-01<br>933E+00<br>955E+00 | END OVERI<br>ED WEIGHT            | -AY ANALYS<br>0.575                  |                  | ACT                            | UAL UPPER                                                                                                                                    | <u> </u> |

#### SIDE CONSTRAINTS

| RELATIVE MOVE LIMIT                        | 0•                                                   | 1000E-02                 |                                       |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      |                                       |
|--------------------------------------------|------------------------------------------------------|--------------------------|---------------------------------------|--------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|---------------------------------------|
| A LEA I PAY NU MER                         |                                                      | ACTUAL<br>SIZE           | UPPER<br>BOUND                        | VARIABLE<br>NUMBER       |                                        | ACTUAL<br>SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UPPER<br>BOUND           |      |                                       |
| 5<br>7                                     | 0.1000E+00<br>0.1000E+00<br>0.1000E+00<br>0.1000E+00 | 0.2000E+02<br>0.2000E+02 | 0.2000E+05<br>0.2000E+05              | 2<br>4<br>6<br>8<br>10   | 0.1000E+00<br>0.1000E+00<br>0.1000E+00 | 0.2000E+02<br>0.2000E+02<br>0.2000E+02<br>0.2000E+02<br>0.2000E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2000E+05<br>0.2000E+05 |      |                                       |
| MJST VIOLATED SIDE C                       |                                                      | DESIGN VAR               | RIABLE 10                             | CONSTRAINT VAL           | UE 0.99508                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      | · · · · · · · · · · · · · · · · · · · |
|                                            |                                                      |                          | EN                                    | TER OVERLAY PREDU2       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      |                                       |
| AVAILABLE REAL ARRA<br>AVAILABLE INTEGER A | Y = 7500<br>ARRAY= 2500                              | OVERLAY F                | PREDUZ REQUIRE                        | MENT = 389<br>MENT = 327 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      |                                       |
|                                            |                                                      | T                        |                                       |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del>             |      | The sharping growth of a debat for T  |
|                                            |                                                      |                          | ••                                    |                          | · · · · · · · · · · · · · · · · · · ·  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | ···· |                                       |
|                                            |                                                      |                          | • •                                   |                          | <b>.</b>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      |                                       |
|                                            |                                                      |                          | <b>.</b>                              |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-</del>             |      | ·                                     |
|                                            |                                                      |                          |                                       |                          |                                        | . According to the second of t |                          | :    | 0.0                                   |
|                                            |                                                      |                          |                                       |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      |                                       |
|                                            |                                                      |                          |                                       |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      |                                       |
|                                            | ·                                                    | •                        |                                       |                          |                                        | e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |      |                                       |
|                                            |                                                      |                          |                                       |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      |                                       |
|                                            |                                                      | ÷                        | · · · · · · · · · · · · · · · · · · · |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      | <del></del>                           |
|                                            |                                                      |                          |                                       | *                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      |                                       |
|                                            |                                                      |                          |                                       |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |      | i.                                    |

# THE CONTENT ACTUAL YE MOITONUT HE MOITASIMIXAM

. . . . . . . . . . . .

\_ .... ... .. .. ..

| STARTING PCINT               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONSTRAINT 1 DUAL VARIABLE = | 0.318613E+03  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION L                  |               | en de la companya de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NORM OF PROJECTED GRADIENT   | 0.8165646-05  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS   | 1 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION 2                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NGRM OF PROJECTED GRADIENT   | 0.130177E+02  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS   | 1 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION 3                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORM OF PROJECTED GRADIENT   | 0.310776E+01  | and the second s |
| LIST OF ACTIVE CONSTRAINTS   | t 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I TERATION 4                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORM OF PROJECT ED GRADIENT  | 0.404002E+01  | And the second s |
| LIST OF ACTIVE CONSTRAINTS   | 1 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NCRM OF PROJECTED GRADIENT   | 0.189293E+01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS   | 1 7           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ITERATION 6                  |               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NORM OF PROJECTED GRADIENT   | 0.733978E+00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS   | 1 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION 7                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORM OF PROJECTED GRADIENT   | 0.190092E+00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS   | 1 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION 8                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORM OF PROJECTED GRADIENT   | _0.194896E-01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS   | 1 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION 9                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORM OF PROJECTED GRADIENT   | 0.285972E-03  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS   | 1 7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION 10                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORM OF PROJECTED GRADIENT   | 0.192597E-04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS   | 1 7 10        | e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ITERATION II                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORM OF PROJECTED GRADIENT   | 0.119668E+01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS   | 1 7 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|          | NORM OF PROJECTED GRADIENT               | 0.733978E+00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | LIST OF ACTIVE CONSTRAINTS               | 1 7                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •        | ITERATION 7                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~        | NORM OF PROJECTED GRADIENT               | 0.190092E+00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>↓</b> | LIST OF ACTIVE CONSTRAINTS               | 1 7                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ITERATION 8                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | NORM_DE_PROJECTED GRADIENT               | 0.194896E-01           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (        | LIST OF ACTIVE CONSTRAINTS               | 1 7                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ITERATION 9                              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | NORM OF PROJECTED GRADIENT               | 0.285972E-03           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -        | LIST OF ACTIVE CONSTRAINTS               | 1 7                    | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | ITERATION 10                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | NORM OF PROJECTED GRADIENT               | 0.192597E-04           | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | LIST OF ACTIVE CONSTRAINTS               | . 1 7 10               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ITERATION 11                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | NORM OF PROJECTED GRADIENT               | 0.119668E+01           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3        | LIST OF ACTIVE CONSTRAINTS               | 1 7 10                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ITERATION 12                             | - · · · · · ·          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ١        | NORM OF PEDJECTED GRADIENT               | 0.508975E+00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | LIST OF ACTIVE CONSTRAINTS               | 1 7 10                 | ·· · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | ITERATION 13                             |                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                          | 0.4504635.00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | NORM OF PROJECTED GRADIENT               | 0.159497E+00<br>1 7 10 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | ITERATION 14                             | •                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                          |                        | the state of the s |
|          | NORM OF PROJECTED GRADIENT               | 0.244894E-01           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | LIST DE ACTIVE CONSTRAINTS ITERATION 15  | 1 7 10                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | NORM OF PROJECTED GRADIENT               | 0.746817E-03           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | LIST OF ACTIVE CONSTRAINTS  ITERATION 16 | 1 7 10                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ITERATION 16                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | NORM_OF _PROJECTED_GRADIENT              | 0.202480E-05           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •        | LIST OF ACTIVE CONSTRAINTS               | 1 7 10 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | ITERATION 17                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -1       | NORM OF PROJECTED GRADIENT               | 0.388537E+00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ٧        | LIST OF ACTIVE CONSTRAINTS               | 1 7 4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>-</i> | 11 NCITAPATI                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | NCRM OF PROJECTED GRADIENT               | 0.199019E+00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _        | LIST OF ACTIVE CONSTRAINTS               | 174 ,                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                                          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| ITERATION 19                   |                |                                                                                                                |
|--------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|
| NORM OF PROJECTED GRADIENT     | 0.7558656-01   | en de la companya de |
| LIST OF ACTIVE CONSTRAINTS     | 1 7 4          |                                                                                                                |
| ITERATION 20                   |                |                                                                                                                |
| NERM OF PREJECTED GRADIENT     | 0.121933E-01   |                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS     | 1 7 4          |                                                                                                                |
| ITERATION 21                   | · · ·          |                                                                                                                |
| NORM OF PROJECTED GRADIENT     | 0.330171E-03   |                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS     | 1 7 4          |                                                                                                                |
| ITERATION NUMBER               | 22             |                                                                                                                |
| PRIMAL VARIABLES EVALUATIONS   | 47             |                                                                                                                |
| NORM OF DUAL FUNCTION GRADIENT | 0.250481E-05   |                                                                                                                |
| DUAL OBJECTIVE FUNCTION        | 473.837109E+01 |                                                                                                                |
| FINAL WEIGHT                   | 473-836719E+01 |                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS     | 1 7 4          |                                                                                                                |
| LINEAFIZED CONSTRAINTS         |                |                                                                                                                |

|    | DUAL VARIABLE  | UFPER         | LIMITING      | CURRENT VALUE | CCNSTRAINT<br>NE |  |
|----|----------------|---------------|---------------|---------------|------------------|--|
|    | 0 • 434644E+04 | 0.995992E+00  | -0.999992E+30 | 0.99993E+00   | l                |  |
|    | 0.0            | 0.9959925+00  | -0.999992E+30 | -0.999993E+00 | 2                |  |
| 03 | 0 • 0          | 0.9999936+00  | -0.999993E+30 | 0.999991E+00  | 3                |  |
|    | 0.665807E+03   | -0.9999936+00 | -0.999993E+30 | -0.999991E+00 | 4                |  |
|    | 0.0            | 0.995996E+00  | -0.999996E+30 | 0.3680788+00  | 5                |  |

| ے      | -014444435400 | -0.9999926730 | 0.9939925700  | 0.0          | <b>–</b>   |
|--------|---------------|---------------|---------------|--------------|------------|
| 3      | 0.999991E+00  | -0.999993E+30 | 0.9999936+00  | 0 • 0        | 03         |
| <br>4  | -0.99991E+00  | -0.999993E+30 | -0.999993E+00 | 0.665807E+03 |            |
| 5      | 0.368078E+00  | -0.999996E+30 | 0.995996E+00  | 0 • 0        |            |
| <br>6  | 0.441806±+00  | -0.999998E+30 | 0.995998E+00  | 0.0          |            |
| 7      | 0.999997E+00  | -0.99999E+30  | 0-99999E+00   | 0.105776E+04 |            |
| <br>8  | 0.974624E-01  | -0.999998E+30 | 0.999998E+00  | 0 • 0        |            |
| 9      | 0.292556E+00  | -0.999997E+30 | 0.999997E+00  | 0.0          | ·          |
| <br>10 | 0.281930E+00  | -0.999999E+30 | 0.955995E+00  | 0.0          |            |
| 11     | 0.409273E+00  | -0.999997E+30 | 0.999997=+00  | 0.0          |            |
| 12     | 0.512176E+00  | -0.999997E+30 | 0.999997E+00  | 0.0          |            |
| 13     | 0.352379E-01  | -0.999999E+30 | 0.99999E+00   | 0.0          |            |
| 14     | 0.504031E+00  | -0.99999E+30  | 0.99999E+00   | 0 • 0        | . <b>.</b> |
|        |               |               |               |              |            |

END OVERLAY PREDL2

| STRESS/STRAIN CONSTRAINT                                  | 0.12000UE+0<br>0.120000E+0 | 0              |             |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>   |
|-----------------------------------------------------------|----------------------------|----------------|-------------|------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| SELECTION FACTOR (F.S.D.)                                 | 0.100000E+0                | 0              |             |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| UPDATED SCALING FACTORS<br>0.1231E+01 0.4107E+00          | 0.6977E-01                 | 0.3240E+C0     | 0-1.189E+01 | 0.1516E+00 | 0.5859E+00 | 0.6419E+00 | 0.4582E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5808E+00 |
| UPDATED WEIGHT COEFFICIENTS 0.8861E+03 0.2957E+03 0.0 0.0 | Q.5023E+02                 | 0.2333E+03     | 0.8559E+03  | Q+1091E+03 | 0.5966E+03 | 0+6536E+03 | 0.4665E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0-5914E+03 |
|                                                           |                            |                |             | -          |            |            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                           |                            |                |             | -          |            | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          |
|                                                           |                            |                |             |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                           |                            |                | ·           |            |            |            | . <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|                                                           |                            |                |             | -          |            |            | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|                                                           |                            | •              |             |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                           |                            |                |             |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                           |                            |                |             |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                           |                            |                |             |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                           | •                          |                | •           |            |            |            | The state of the s |            |
|                                                           | <del></del>                | <del>-</del> · |             | . <u>-</u> |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                           |                            |                |             |            |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |

## STAGE NO. 2 APPROXIMATE PROBLEM GENERATOR

CURPENT MEMBER SIZE

MEMBER TYPE NUMBER 1 0.2461E+02 0.8214E+01 0.1395E+01 0.6480E+01 0.2377E+02 0.3031E+Cl 0.1172E+02 0.1284E+02 0.9164E+01 0.1162E+02

CURRENT WEIGHT DATA

WEMBER TYPE NUMBER 1 WEIGHT = 0.473837E+04

VARIABLE STRUCTURAL WEIGHT 0.473837E+04

FIXED STRUCTURAL WEIGHT 0.473837E+04

TOTAL STRUCTURAL WEIGHT 0.473837E+04

NCH-STRUCTURAL WEIGHTHT 0.0

TOTAL WEIGHT 0.473837E+04

CONVERGENCE CHECK STAGE NO.= 2 0.7713E+00 0.1191E+27 MLST BE LESS THAN 0.100000E-03 DBJECTIVE FUNCTION OF THREE CONSECUTIVE STAGES ARE 0.100000E+31 0.839292E+04 0.473837E+04

ENTER OVERLAY ANALYS

AVAILABLE INTEGER ARRAY = 2500 OVERLAY ANALYS REQUIREMENT = 314

### POSTURE TABLE

| RETAINED               | TO TAL                                                | TYPE                               | MEMBER                   | NODE DIRECTION                     | L.C.             | MODE                     | CONSTRAINT VALUES                                                                                           |     |
|------------------------|-------------------------------------------------------|------------------------------------|--------------------------|------------------------------------|------------------|--------------------------|-------------------------------------------------------------------------------------------------------------|-----|
| DISPLACEMENT 1 2 2 3 4 | CONSTRAINTS 1 2 3 4                                   |                                    | CRITICAL =               | -0.691996E-01<br>2 4<br>2 5<br>2 5 | 1 1              | -1<br>-1<br>-1           | -0.691996E-01<br>0.691996E-01<br>-0.615721E-01<br>0.615721E-01                                              | 105 |
| STRESS/STRAIDS 67789   | N CONSTRAINTS<br>5<br>7<br>10<br>12<br>14<br>16<br>17 | MOS1<br>1<br>1<br>1<br>1<br>1<br>1 | CRITICAL = 1 2 3 4 5 6 7 | 0.387008E+0C                       | 1<br>1<br>1<br>1 | -1<br>-1<br>1<br>1<br>-1 | 0.657426E+00<br>0.617142E+00<br>0.38708E+00<br>0.667999E+00<br>0.661680E+00<br>0.860421E+00<br>0.569398E+00 |     |
| <br>13<br>14           | 20 _<br>21<br>24                                      | 1<br>1<br>1                        | 9<br>10                  |                                    | . 1.<br>1        | -i                       | 0.511736E+00<br>0.867999E+00<br>0.617144E+00                                                                |     |

MODE STANDS FOR THE FCLLOWING

NEGATIVE=LCWER BOUND FOSITIVE=UPPER BOUND
FOR STRESS CONSTRAINT. (CODE+1)

1 = VCN MISES ECUIVALENT STRESS
2 = LONGITUDINAL STRAIN

FUSILIVE-UPPER BUUND FOR STRESS CONSTRAINT. (CODE+1) 1 = VCN MISES EQUIVALENT STRESS 3 = YRARITURILASIRIAIN 5 = FRANT STRAIN
5 = FIRST EQUATION OF STRESS INTERACTION
6 = SECOND EQUATION OF STRESS INTERACTION 7 = TSAI-AZZI CRITERION FUR FREGUENCY CONSTRAINTS. ASSOCIATED MODE NUMBER AVAILABLE REAL ARRAY = 7500 OVERLAY ANALYS REQUIREMENT= ...... END OVERLAY ANALYS SCALING FACTOR \_\_\_\_0\_106920E+01 SCALED WEIGHT 0.506626E+04 NEW LIST OF LINEARIZED CONSTRAINTS 16 SIDE CONSTRAINTS

RELATIVE MOVE LIMIT 0.1000E-C2 ACTUAL UPPER LIPPER VARIABLE LOWER **ACTUAL** VARIABLE LOWER NUMBER BOUND BOUND RCUND SIZE NUMBER BOUND SIZE 0.8214E+01 0.8214E+04 0.6480E+01 0.6480E+04 0.84326+01 C.2461E+02 0.3145E+01 0.2461E+05 0.1395E+04 0.1000E+00 0.1395E+01 0.8553E+00 3 0.2377E+C2 0.2377E+05 0.1000E+00 0.3031E+01 0.7568E+01 0.3031E+04 0-1000E+00 Q-1172E+02 0.1172E+05 0.1000E+00 0.1284E+02 0-1284E+05 0.1000E+00 0.9164E+01 0.9164E+04 0.1000E+00 0.1162E+02 MOST VIOLATED SIDE CONSTRAINT - DESIGN VARIABLE CCNSTRAINT VALUE ... 0.6171E+00

ENTEP OVERLAY PRECU2

AVAILABLE REAL ARRAY = 7500 OVERLAY PREDUZ REQUIREMENT= 275 AVAILABLE INTEGER ARRAY = 2500 OVERLAY PREDUZ REQUIREMENT = 323

\*\*\*\*\* MAXIMIZATION OF DUAL FUNCTION BY NEWTON METHOD \*\*\*\*\*

ITERATION 1.

NERM OF PROJECTED GRAJIENT

0.426830E+J1

LIST OF ACTIVE CONSTRAINTS

1 4 5

ITERATION 2

# ==== MAXIMIZATION OF DUAL FUNCTION BY NEWTON METHOD =====

| ITERATION I                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NORM OF PROJECTED GRADIENT     | 0.426830E+31   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS     | 1 4 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION 2                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORM OF PROJECTED GRADIENT     | 0.425099E+01   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS     | 1 4 5          | A Committee of the comm |
| ITERATION 3                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORM OF PROJECTED GRADIENT     | 0.396776E+00   | and the second of the second o |
| LIST OF ACTIVE CONSTRAINTS     | 1 4 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION 4                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NCRM DE PROJECTED GRADIENT.    | 0.181875E+00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS     | 1 4 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION 5                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORM OF PROJECTED GRADIENT     | 0.135036E-01   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIST OF ACTIVE CONSTRAINTS     | 1 4 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION 6                    |                | <b>L</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NORM OF PROJECTED GRADIENT     | 0.667348E-03   | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LIST OF ACTIVE CONSTRAINTS     | 1 4 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITERATION NUMBER               | 7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PRIMAL VARIABLES EVALUATIONS   | 26             | to the second of |
| NORM OF DUAL FUNCTION GRADIENT | 0.638549E-05   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DUAL DRIECTIVE FUNCTION        | 439.013672E+01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FINAL WEIGHT                   | 439.014062E+01 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LIST. DF .ACTIVE CONSTRAINTS   | 1 4 5          | AND THE PARTY OF T |

# LINEARIZED CONSTRAINTS

|                                       |             | CURRENT VALUE |               | G VALUE       | DUAL VARIABLE         |
|---------------------------------------|-------------|---------------|---------------|---------------|-----------------------|
|                                       | NC          |               | LOWER         | UFPER         |                       |
|                                       | 1           | 0.999996E+00  | -0.999998E+30 | 0.999998±+00  | 0.381796E+04          |
|                                       | <u></u> 2 . | -0.999966+00  | -0.999998E+30 | -0.99999EE+00 | 0.0                   |
|                                       | 3           | 0.599396L+00  | -0.999998E+30 | 0.999998E+00  | 0 • 0                 |
|                                       | 4           | -0.999996E+00 | -0.999998E+30 | -0.9959986+00 | 0.415256 <u>E</u> +03 |
|                                       | ซี          | 0.100001E+01  | -0.100000E+31 | 0.100000E+01  | 0.987451E+03          |
|                                       | Ó           | 0.309419E+00  | -0.999998E+30 | 0.9959986+00  | 0.0                   |
|                                       | 7           | 0.395159E+00  | -0.999999E+30 | 0.99999E+00   | 0.0                   |
| · · · · · · · · · · · · · · · · · · · | . 8         | J. 524055L+00 | -0.999998E+30 | 0.99998E+00   | 0.0                   |
|                                       | 9           | 0.3616146-01  | -0.100000E+31 | 0.100000E+01  | 0.0                   |

# LINEARIZED CONSTRAINTS

| CONSTRAINT<br>NO | CURRENT VALUE         | LIMITING<br>LOWER | G VALUE<br>UFPER | DUAL VARIABLE |
|------------------|-----------------------|-------------------|------------------|---------------|
|                  |                       |                   |                  |               |
| 1                | 0.9999968+00          | -0.999998E+30     | 0.999998=+00     | 0.381796E+04  |
| . 2              | -0.999996E+00         | -0.999998E+30     | -0.9999966+00    | 0.0           |
| 3                | 0.599396 <u>L</u> +00 | -0.999998E+30     | 0.999998E+00     | 0.0           |
| 4                | -0.999996E+00         | -0.999998E+30     | -0.995998£+00    | 0.415256E+03  |
| ÷                | 0.100001E+01          | -0.100000E+31     | 0.100000E+01     | 0.987451E+03  |
| , <b>ó</b>       | 0.309419E+00          | -0.999998E+30     | 0.995998E+00     | 0.0           |
| 7                | 0.395159E+00          | -0.999999E+30     | 0.99999E+00      | 0.0           |
| <b>8</b>         | 0.524055E+00          | -0.999998E+30     | 0.999985+00      | 0 • 0         |
| 9                | 0.361614E-01          | -0.100000E+31     | 0.100000E+01     | 0 • 0         |
| . 1.0            | 0.472636E+00          | -0.100000E+31     | J.100000E+01     | 0.0           |

END OVERLAY PREDUZ

RESPONSE FACTOR REDUCED TO TRUNCATION FACTORS MODIFIED AS FOLLOWS

DISPLACEMENT. CONSTRAINTS 0.358317E+00

STRESS/STRAIN CONSTRAINT 0.358317E+00

SELFCTION FACTOR (F.S.D.) 0.100000E+00 UPDATED SCALING FACTORS 0.1079E+01 0.4217E+00 0.5000E-02 0.7006E-01 0.1133E+01 0.5000E-C2 0.7272E+00 0.6347E+00 0.7405E+03 0.0 0.0 10

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | المتعادية |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| CURPENT MEMBER SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| MEMBER TYPE NUMBER 1<br>0.2158E+02 0.8434E+01 0.1000E+00 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 401E+01 0.2266E+02 0.1   | 00CE+00 0.1454E+02                    | 0.1269E+02 0.1982E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-1193E+02                                                                                                    |
| CURRENT WEIGHT DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                       | <del> '</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |
| MEMBER TYPE NUMBER   WEIGHT = 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4881E+04                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| VARIABLE STRUCTURAL WEIGHT 0.40488LE FIXED STRUCTURAL WEIGHT 0.40 TCTAL STRUCTURAL WEIGHT 0.40 NCN-STRUCTURAL WEIGHTHT 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4881E+04                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                             |
| THRISW LATET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.404881E+04             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| CONVERGENCE CHECK STAGE NI== 8 OBJECTIVE FUNCTION OF THREE CONSECUTIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | -03 MUST BE LESS 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENTER OVERLAY AN         | IALYS                                 | . A market a row of the contract of the contra |                                                                                                               |
| AVAILABLE INTEGER ARRAY = 2500 OVERLAY ANAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YS REQUIREMENT = 310     |                                       | . <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . <u> </u>                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POSTURE TABLE            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| RETAINED TOTAL TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DIRECT PAGE NO SERVEN    | FION L.C.                             | MODE CONSTRAINT VALUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRITICAL = -0.371933E-   | -04                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>2<br>2              | 4 1                                   | -1 -0.371933E-04<br>1 0.371933E-04<br>-1 -0.209808E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |
| 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                        | š i                                   | 1 0.209808E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               |
| STRESS/STRAIN CONSTRAINTS MOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ST CRITICAL = -0.376562  | E-Q4                                  | -1 0.625415E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| 6 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<br>3                   | 1                                     | -1 0.537578E+00<br>1 -0.376562E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |
| 9 20 1<br>10 24 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,<br>,<br>,<br>10        |                                       | -1 0.619110E+00<br>1 0.545171E+00<br>1 0.537578E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |
| MODE STANDS FOR THE FCLLOWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| NEGATIVE∓LCWER BOUND FOS<br>FOR STRESS CUNSTRAINT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (CDDE+1)                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| l = VCN MISES EQUIVAL<br>2 = Longitud Inal Str.<br>3 = Transverse Strait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AIN /                    | · · · · · · · · · · · · · · · · · · · | to the company of the control of the |                                                                                                               |
| 4 = SHEAR STRAIN<br>5 = FIRST EQUATION OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| 6 = SECOND EQUATION (<br>7 = TSAI-AZZI CRITER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OF STRESS INTERACTION    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| FOR FREGUENCY CONSTRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AINTS. ASSOCIATED MODE N | UMBER                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |
| AVAILABLE REAL ARRAY = 7500 OVERLAY ANAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | YS REQUIREMENT = 300     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | END OVERLAY A            | NAL YS                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCALED WEIGHT            | 0.404896E+04                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| NEW LIST OF LINEARIZED CONSTRAINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| 1 2 3 4 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · ·                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |
| The state of the s | SIDE CONSTRAIN           | 15                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |

STAGE NO. 8 APPROXIMATE PROBLEM GENERATOR

4 = SPEAR STRAIN
5 = FIRST EQUATION OF STRESS INTERACTION
6 = SECOND EQUATION OF STRESS INTERACTION
7 = TSAI-AZZI CRITERION
FOR FREQUENCY CONSTRAINTS. ASSOCIATED MODE NUMBER

| AVAILABLE DEAL ARRAY = 7500 OVERLAY REFULIS REGISTREMENT 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FOR FR                                  | EGUENCY CENS                           | STRAINTS. ASS                          | SOCIATED MO | DE NUMBER   |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|-------------|-------------|----------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCALENG FACTOR 0.103004E+01 SCALED WEIGHT 0.404896E+04  NEW LIST OF LINEARIZED CONSTRAINTS  I 2 3 4 10  SIDE CONSTRAINTS  RELATIVE MOVE LIMIT 0.1000E-02  VARIABLE LOWER ACTUAL UPPER BOUND SIZE BOUND NUMBER BOUND SIZE BOUND  I 0.8043L+01 0.2158E+02 0.2158E+05 2 0.3990E+01 0.8434E+01 0.8434E+04 3 0.1000E+00 0.1000E+00 0.1000E+03 4 0.1000E+00 0.1401E+04 5 0.1000E+00 0.2266E+02 0.2266E+05 6 0.1000E+00 0.1401E+04 5 0.1000E+00 0.2266E+02 0.2266E+05 6 0.1000E+00 0.1000E+00 0.2266E+03 7 0.5590E+01 0.1454E+0.2 0.1454E+0.5 1 0.175E+01 0.1259E+02 0.2259E+03 9 0.1000E+00 0.1982E+04 0.1982E+04 10 0.2515E+01 0.1193E+02 0.1193E+03 0.1 | AVAILABLE REAL ARRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y = 7500                                | OVERLAY A                              | NALYS REQUI                            | REMENT=     | 300         |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SCALENG FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e e e e e e e e e                       |                                        |                                        | -           |             |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NEW LIST OF LINEARIZED CONSTRAINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                       |                                        |                                        | END OVERL   | AY ANALYS   |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SIDE CONSTRAINTS  RELATIVE MOVE LIMIT 0.1000E-02  VARIABLE LOWER ACTUAL UPPER VARIABLE BOUND SIZE BOUND  1 0.80331+01 0.2158E+02 0.2138E+05 2 0.3900E+01 0.8434E+01 0.8434E+01 3 0.1000E+00 0.1000E+03 4 0.1000E+00 0.1000E+00 3 4 0.1000E+00 0.1000E+00 5 5 0.1000E+00 0.226E+03 5 0.1000E+00 0.226E+03 5 0.1000E+00 0.226E+03 5 0.1000E+00 0.226E+03 5 0.1000E+00 0.100E+00 0.1000E+00 0.1000E+00 0.100E+00 0.1000E+00 0.1000E+00 0.1000E+00 0.1000E+0 | SCALING FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CTOR 0.1                                | 00004E+01                              | SCAL                                   | ED WEIGHT   | 0.404       | 896E+04                                |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SIDE CONSTRAINTS  RELATIVE MOVE LIMIT 0.1000E-02  VARIABLE LOWER ACTUAL UPPER VARIABLE LOWER ACTUAL UPPER BOUND SIZE BOUND  1 0.80331-01 0.2158E+02 0.2138E+05 2 0.3900E+01 0.8434E+01 0.8434E+04 3 0.1000E+00 0.1000E+00 0.1000E+03 4 0.1000E+00 0.1401E+01 0.1401E+04 5 0.1000E+00 0.2266E+02 0.2266E+05 6 0.1000E+00 0.1000E+00 0.1000E+03 7.04554.01 0.1454E+02 0.1454E+05 3 0.5774E+01 0.1698E+05 9 0.1000E+00 0.1982E+04 10 0.5515E+01 0.1193E+02 0.1193E+05  MOST VIOLATED SIDE CONSTRAINT - DESIGN VARIABLE 6 CONSTRAINT VALUE 0.0  ENTER OVERLAY PREDU2  AVAILABLE REAL ARRAY = 7500 OVERLAY PREDU2 REQUIREMENT= 155 AVAILABLE INTEGER ARRAY = 2500 OVERLAY PREDU2 REQUIREMENT= 155 AVAILABLE INTEGER ARRAY = 2500 OVERLAY PREDU2 REQUIREMENT= 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Ts                                     |                                        |             |             |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ### PROOF LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                      |                                        |                                        |             |             | · ·-                                   |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VARIABLE LOWER ACTUAL UPPER VARIABLE LOWER ACTUAL UPPER NUMBER BOUND SIZE BOUND  1 0.80331+01 0.2158E+02 0.2158E+05 2 0.3900E+01 0.8434E+01 0.8434E+04 3 0.1000E+00 0.1000E+00 0.1000E+03 4 0.1000E+00 0.1401E+04 5 0.1000E+00 0.2266E+02 0.2266E+05 6 0.1000E+00 0.1000E+00 0.1000E+03 7 0.554 0E+01 0.1454E+02 0.1454E+05 3 0.5774E+01 0.1269E+02 0.1269E+05 9 0.1000E+00 0.1982E+01 0.1982E+04 10 0.5515E+01 0.1193E+02 0.1193E+05  MOST VIOLATED SIDE CONSTRAINT - DESIGN VARIABLE 6 CONSTRAINT VALUE 0.0  ENTER QVERLAY PREDU2  AVAILABLE REAL ARRAY = 7500 DVERLAY PREDUZ REQUIREMENT = 155 AVAILABLE INTEGER ARRAY = 2500 OVERLAY PREDUZ REQUIREMENT = 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                                        | SIDE CONST  | FAINTS      | 100                                    | • ***                                  | Marin de la companio | to the state of th |
| VARIABLE LOWER ACTUAL UPPER VARIABLE LOWER ACTUAL UPPER NUMBER BOUND SIZE BOUND  1 0.8033L+01 0.2158E+02 0.2158E+05 2 0.3900E+01 0.8434E+01 0.8434E+04 3 0.1000E+00 0.1000E+00 0.1000E+03 4 0.1000E+00 0.1401E+04 5 0.1000E+00 0.2266E+02 0.2266E+05 6 0.1000E+00 0.1000E+00 0.1000E+03 7 0.5540E+01 0.1454E+02 0.454E+05 3 0.5774E+01 0.1269E+02 0.1269E+05 9 0.1000E+00 0.1982E+01 0.1982E+04 10 0.5515E+01 0.1193E+02 0.1193E+05  MOST VIOLATED SIDE CONSTRAINT - DESIGN VARIABLE 6 CONSTRAINT VALUE 0.0  ENTER QVERLAY PREDUZ  AVAILABLE REAL ARRAY = 7500 OVERLAY PREDUZ REQUIREMENT= 155 AVAILABLE INTEGER ARRAY = 2500 OVERLAY PREDUZ REQUIREMENT= 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RELATIVE MOVE LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.                                      | 1000E-02                               |                                        |             |             |                                        | •                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 0.1000E+00 0.1000E+00 0.1000E+03 4 0.1000E+00 0.1401E+04 5 0.1000E+00 0.2266E+02 0.2266E+05 6 0.1000E+00 0.1000E+00 0.1000E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VARIABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOWER                                   | ACTUAL                                 |                                        |             |             |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ENTER OVERLAY PREDU2  AVAILABLE REAL ARRAY = 7500 OVERLAY PREDU2 REQUIREMENT= 155  AVAILABLE INTEGER ARRAY= 2500 OVERLAY PREDU2 REQUIREMENT= 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1000E+00<br>0.1000E+00<br>_0.5540E+01 | 0.1000E+00<br>0.2266E+02<br>0.1454E+02 | 0.1000E+03<br>0.2266E+05<br>0.1454E+05 | •.          | 4<br>6<br>8 | 0.1000E+00<br>0.1000E+00<br>0.5774E+01 | 0.1401E+01<br>0.1000E+00<br>0.1269E+02 | 0.1401E+04<br>0.1000E+03<br>0.1269E+05                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AVAILA-LE REAL ARRAY = 7500 OVERLAY PREDU2 REQUIREMENT= 155 AVAILA-BLE INTEGER ARRAY= 2500 OVERLAY PREDU2 REQUIREMENT= 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MOST VIOLATED SIDE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CNSTRAINT -                             | DESIGN VAF                             | SIABLE 6                               | CCNST       | RAINT VALU  | IE 0.0                                 | • or ex                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AVAILABLE REAL ARRAY = 7500 OVERLAY PREDU2 REQUIREMENT= 155 AVAILABLE INTEGER ARRAY= 2500 OVERLAY PREDU2 REQUIREMENT= 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                                        | ENTED DVEDI | AV BRERIA   |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AVAILABLE INTEGER ARRAY = 2500 OVERLAY PREDUZ REQUIREMENT= 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                                        | -WIEW GAEWE | .AI PREDUZ  |                                        |                                        |                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVAILABLE REAL ARRA<br>AVAILABLE INTEGER A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y = 7500<br>RRAY= 2500                  | OVERLAY F                              | PREDUZ REQUIR                          | REMENT=     | 314         | ÷                                      |                                        |                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                                        |             |             |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                | • •                                    |                                        |             |             |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                                        |             |             |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second of the second o |                                         |                                        |                                        | e.          | 4.4         | •                                      |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                                        |             |             |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                                        |             |             |                                        | · · · · · · · · · · · · · · · · · · ·  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                        |                                        |             |             |                                        |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## = MAXIMIZATION OF DUAL FUNCTION BY NEWTON METHOD ======

| ITERATION I.                   |                |
|--------------------------------|----------------|
| NORM OF PROJECTED GRADIENT     | 0.567979E-03   |
| LIST OF ACTIVE CONSTRAINTS     | l 3 5          |
| ITERATION NUMBER               | 2              |
| PRIMAL VARIABLES EVALUATIONS   | 2              |
| NORM OF DUAL FUNCTION GRADIENT | 0.955535E-06   |
| DUAL OBJECTIVE FUNCTION        | 404.8955C8E+01 |
| FINAL WEIGHT                   | 404.895557E+01 |
| LIST OF ACTIVE CONSTRAINTS     | 1 3 5          |

LINEARIZED CONSTRAINTS

| 1 0.599997E+00 -0.399997E+30 0.999997E+00 0.302979E+04 2 -0.599997E+00 -0.599997E+30 -0.995957E+00 0.0 3 0.59999BE+00 -0.99999BE+30 0.99599BE+00 0.354674E+03 4 -0.59599BE+00 -0.95999BE+30 -0.99999BE+00 0.0 5 0.100000E+01 -0.100000E+31 0.100000E+01 0.532447E+03 | <br>CCNSTRAINT<br>NO | CURRENT VALUE | LOWER LIMITING | G VALUE<br>UFPER | DUAL VARIABLE  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|----------------|------------------|----------------|
| 3 0.999998E+00 -0.999998E+30 0.999998E+00 0.354674E+03 4 -0.999998E+00 -0.999998E+30 -0.999998E+00 0.0                                                                                                                                                               | <br>1                | 0.5999976+00  | -0.999997E+30  | 0.999997E+00     | 0 • 302979E+04 |
| 4 -0.99998E+00 -0.999998E+30 -0.999998E+00 0.0                                                                                                                                                                                                                       | <br><b>2</b>         | -0.999997E+00 | -0.599997E+30  | -0.995957E+00    | 0.0            |
|                                                                                                                                                                                                                                                                      | 3                    | 0.999998E+00  | -0.999998E+30  | 0.999998E+00     | 0.354674E+03   |
| 5                                                                                                                                                                                                                                                                    | <br>4                | -0.99998E+00  | -0.999998E+30  | -0.999998E+00 "  | 0.0            |
|                                                                                                                                                                                                                                                                      | 5                    | J. 100000E+01 | -0.100000E+31  | 0.10000GE+01     | 0.532447E+03   |

END OVERLAY PREDL2

| <br>• | • • • |  | _2_ |
|-------|-------|--|-----|
|       |       |  |     |

RESPONSE FACTOR REDUCED TO 0.0

TRUNCATION FACTORS MODIFIED AS FOLLOWS
DISPLACEMENT CONSTRAINTS 0.429380E+00
STRESS/STRAIN CONSTRAINT 0.429980E+00
SELECTION FACTOR (F.S.D.) 0.100000E+00

UFDATED SCALING FACTORS 0.1079E+01 0.4217E+00 0.5000E-02 0.7006E-01 0.1133E+01 0.5000E-02 0.7272E+00 0.6347E+00 0.9908E-01 0.5964E+00

UPDATED WEIGHT COEFFICIENTS

0.7768E+03 0.3036E+03 0.3600E+01 0.5044E+02 0.8159E+03 0.3600E+01 0.7405E+03 0.6463E+03 0.1009E+03 0.6073E+03
0.0 0.0

|                                                       | 0.0                                                  |            |            |                  |            |                                                   |                                       |                                        |         |
|-------------------------------------------------------|------------------------------------------------------|------------|------------|------------------|------------|---------------------------------------------------|---------------------------------------|----------------------------------------|---------|
|                                                       | FCLLOWS<br>0.429980E+0<br>0.42998CE+0<br>0.100000E+0 | 0          |            |                  |            | ·                                                 |                                       | ,                                      |         |
| UFDATED SCALING FACTORS<br>0.1079E+01 0.4217E+00      | 0.5000E-02                                           | 0.7006E-01 | 0.1133E+01 | 0.5000E-02       | 0.7272E+00 | 0.6347E+00                                        | 0.9908E-01                            | 0.5964E+00 -                           |         |
| UPDATED WEIGHT COEFFICIENTS 0.7768E+03 0.3036E+03 0.0 | Q.360QE+01                                           | Q.5044E+02 | 0.8159E+Q3 | 0+3600E+01       | 0.7405E±03 | 0.6463E+03                                        | 0-1009E+03                            | 0.6073E+03                             |         |
|                                                       |                                                      |            |            |                  |            | · · ·                                             |                                       |                                        |         |
|                                                       | er om                                                |            |            | er<br>Programmer |            |                                                   | · · · · · · · · · · · · · · · · · ·   |                                        |         |
|                                                       |                                                      |            |            |                  |            |                                                   |                                       |                                        |         |
|                                                       |                                                      |            |            |                  |            | · <del></del> · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                        |         |
|                                                       |                                                      |            |            | ·                |            |                                                   |                                       |                                        | ·——     |
|                                                       |                                                      |            |            |                  |            |                                                   |                                       | -                                      |         |
|                                                       |                                                      |            |            |                  |            |                                                   |                                       |                                        | 113     |
|                                                       |                                                      |            |            |                  | -<br>      |                                                   |                                       |                                        |         |
|                                                       | ·                                                    |            |            | •                |            | · · · · · · · · · · · · · · · · · · ·             | ··· · · · · · · · · · · · · · · · · · |                                        |         |
|                                                       |                                                      |            |            |                  |            |                                                   |                                       |                                        |         |
|                                                       |                                                      |            |            | •                |            |                                                   |                                       |                                        |         |
|                                                       |                                                      |            |            |                  |            |                                                   |                                       | ************************************** | <b></b> |

|             |                                                             | • •                                                                        |                    |                    |                        |                  |                                 |                                         |          |            |
|-------------|-------------------------------------------------------------|----------------------------------------------------------------------------|--------------------|--------------------|------------------------|------------------|---------------------------------|-----------------------------------------|----------|------------|
| CURRENT     | MEMBER SI                                                   | ZE                                                                         |                    |                    |                        |                  |                                 |                                         |          |            |
| MEMBE       | TYPE NUMI                                                   | BER 1<br>0.8434E+01 0.1                                                    | 000E+00 0.         | 14015+01           | 0.2266E+02             | 0 - 10 0 CE + 00 | 0.1454E+02                      | 0.1269E+02 0.                           | 1982E+01 | 0.1193E+02 |
| CURRENT     | T MEIGHT DA                                                 | TA                                                                         |                    |                    |                        |                  | •                               |                                         |          |            |
| мечье       | R TYPE NUM                                                  | BER 1 WEI                                                                  | GhT = 0.4          | 04d96E+04          | •                      |                  |                                 |                                         |          |            |
|             | FIXED STRU                                                  | TRUCTURAL WEIGHT<br>CTURAL WEIGHT<br>STRUCTURAL WEIGHT<br>TRUCTURAL WEIGHT | 0.0<br>SHT 0.4     | 04896E+04          | •                      |                  |                                 | •                                       |          |            |
|             |                                                             |                                                                            |                    | 0.40489            | -<br>96E+04            |                  |                                 |                                         |          |            |
| 2 5 5 7 7 E | EGGENCE CHE                                                 | CK STAGE NO.<br>NCTION OF THREE                                            | = 9<br>CONSECUTIVE | 0.3497<br>STAGES A | 7E-04 0.<br>ARE 0.4049 | 5246E-04 N       | 4UST BE LESS TO<br>404881E+04 0 | HAN 0.100000E                           | -03      |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    | ENTER OVERL            | AY ANALYS        |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             | <del></del>                                                 |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    | *                      |                  | * **                            |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 | 4 · · · · · · · · · · · · · · · · · · · | .,       |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             | and the same and the same same same same same same same sam |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    |                        |                  |                                 |                                         |          |            |
|             |                                                             |                                                                            |                    |                    | NCCAL DIS              | PLACEMENTS       |                                 |                                         |          |            |
| <b>-</b>    | NODE.                                                       | ×                                                                          | Y                  |                    | ۷                      | NODE             | xx                              | ΥΥ                                      |          | Z          |
|             | LCAD CCNDI                                                  | TION 1                                                                     |                    |                    |                        |                  |                                 |                                         | . ,      |            |
|             |                                                             | 0.0                                                                        | 0.0                | 0.0                |                        | 2                | -0.33711E+00                    | -0.11558E+01                            | 0.0      |            |
|             | l                                                           |                                                                            |                    | 1 0.0              |                        | 4                | C. 37864E400                    | -0.20000E+01                            | 0.0      |            |

## NCCAL DISPLACEMENTS

|   | NODE                                  | x                                                              | Y                                                                | ۷                                                                                 | NODE                            | X                                                                | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|---------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | LCAD CONDITION                        | 1                                                              |                                                                  |                                                                                   |                                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 5 0.                                  | 75327E+00 -<br>31441E+0C -                                     | 0.0<br>-0.29000E+01<br>-0.10000E+01                              |                                                                                   | 2<br>4<br>6                     | -0.33711E+00 -0.1<br>C.37864E+00 -0.2<br>0.0 0.0                 | 0.000E+01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 1DISPLACEMENT C<br>0.14316-05 -0.143  |                                                                | 32E-05 -0 <b>•</b> 1132                                          | 1 TO 4<br>2E-05                                                                   | MOST CRITIC                     | CAL CONSTRAINT= -Q.1                                             | 430511 <i>E</i> -05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| М | TYP M LC                              | S-CCME                                                         | HINED                                                            | sx                                                                                | SY                              | SXY SX-THERM                                                     | _SY-THERMSX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y-IHERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -0.936425<br>-0.936425<br>-0.115600<br>-0.115600<br>0.25000    | 5E+04 -0 0<br>0E+05 -0 0<br>0E+05 -0 0<br>0E+05 0 0<br>0E+05 0 0 | .9364E+04 0.0<br>.9364E+04 0.0<br>.1156E+05 0.0<br>.1156E+05 0.0<br>.2500E+05 0.0 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 |                                                                  | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 1 4 1<br>1 5 1<br>1 5 1<br>1 6 1      | 0.17842<br>0.17842<br>0.87335<br>0.87335<br>0.43272<br>0.43272 | 1E+04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                        | 1784E+04 0.0<br>1784E+04 0.0<br>8734E+04 0.0<br>8734E+04 0.0<br>4327E+04 0.0      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 1 7 1<br>1 7 1<br>1 9 1<br>1 9 1      | -0.952209<br>-0.952209<br>-0.113704<br>-0.113704<br>-0.178422  | 9Ë+04 -00<br>4E+05 00<br>4E+05 00<br>2E+04 -00                   | .9522E+04                                                                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | · · · · · · · · · · · · · · · · · · ·                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | 1 10 1                                | 0.115600                                                       | 0E+05 0.                                                         | 1156E+05 0.0                                                                      | 0.0                             | <b>-</b>                                                         | e and de no in the comment of the co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 0.1173E+01 0.826                      | 5E+Q1 0.537<br>9E+00 0.619                                     | 76E+00 0.1462<br>91E+00 0.138                                    | 1E+01 0.1455E+0                                                                   | 01 -0.4687E-06<br>01 0.5452E+00 | CAL CONSTRAINT= -0.4<br>0.1071E+01 0.9286E<br>0.5286E+00 0.1071E | +00 0-1349E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6507E+00<br>0.5376E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 4 CONSTRAINT                          |                                                                | 4 CLTOFF F<br>3                                                  | CINT= 0.57002                                                                     | 20E+00                          | <del></del> .                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enement of the second of the s |
|   | O CONSTRAINT                          | S OUT OF                                                       | O CUTOFF F                                                       | POINT # 0.57002                                                                   | 10E+00                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 4 CONSTRAINT                          | 5 QUT 3F20                                                     | O CUTSEF F                                                       | POINT= 0.57002<br>24                                                              | 20E±00                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 4 CONSTRAINT                          | S JUT DF 4                                                     | 4 RETAINED D                                                     | DUE TO VARIABLE                                                                   | LINKING                         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                       |                                                                |                                                                  | 101NT- 0 5300                                                                     | 10E+00                          |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | ) CONSTRAINT                          | S OUT DF (                                                     | O CUTOFF F                                                       | -01M1= 0.57002                                                                    | .02.705                         |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### POSTURE TABLE

| RE                                                              | TAINED TO                                                        | TAL T                                                                  | YPE M                                                  | EMBER                         | NODE DIF           | RECTION          | L.C.        | MODE                                    | CONSTRAINT VALUES                                             |                                       |
|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------|--------------------|------------------|-------------|-----------------------------------------|---------------------------------------------------------------|---------------------------------------|
| DISF                                                            | LACEMENT CONS                                                    | TRAINTS                                                                | MOST C                                                 | RITICAL =                     | -0.14305<br>2<br>2 | 51E-05<br>4<br>4 | 1           | - <u>1</u>                              | 0.143051E-05<br>-0.143051E-05                                 |                                       |
|                                                                 | 3<br>4                                                           | 3<br>4                                                                 |                                                        |                               | 2<br>2             | 5<br>5           | 1           | -1<br>1                                 | 0.113249E-05<br>-0.113249E-05                                 |                                       |
| STRE                                                            | SS/STRAIN CON                                                    | ISTRAINTS<br>7<br>10<br>20<br>24                                       | MOST                                                   | CRITICAL<br>2<br>3<br>8<br>10 | = -0.4687          | 750E-06          | 1<br>1<br>1 | - L                                     | 0.537601E+00<br>-0.468750E-06<br>0.545185E+00<br>0.537601E+00 | Albert Bill to an about               |
|                                                                 | IDDE STANDS FO                                                   |                                                                        |                                                        |                               |                    |                  |             |                                         | 0.5376012700                                                  | w                                     |
|                                                                 | FOR STRE                                                         | .CWER BOUND<br>ESS CONSTRA<br>/CN MISES E<br>.CNGITUDINA<br>'FANSVERSE | INT. (CE<br>EQUIVALEN<br>L STRAIN                      | DE+1)<br>IT STRESS            | BOUND              |                  |             |                                         |                                                               |                                       |
|                                                                 | 4 = 5<br>5 = 6<br>6 = 5<br>7 = 1                                 | FEAR STRAI<br>FIRST EQUAT<br>SECOND EQUA<br>SAI-AZZI C<br>FREQUENCY C  | N<br>TON OF S<br>TION OF<br>RITERION                   | STRESS IN<br>I                | TERACTION          |                  |             |                                         | ·                                                             |                                       |
| AVAILABLE REAL A                                                |                                                                  | O OVERLA                                                               | Y ANALYS                                               | REQUIREM                      | FNT = 2            | <br>98           |             | • • • • • • • • • • • • • • • • • • • • |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               |                                       |
| ELECTION OF 1 15                                                | ST CROER APPRO                                                   | XIMATED ST                                                             | RESS CON                                               | ISTRAINTS                     |                    | NEW NUMBE        | R OF LINE   | RIZED CO                                | NSTRAINTS - NTCE                                              | <b>5</b>                              |
| ASSEMBLE LO<br>DECOMFOSE S'<br>SOLUTION OF                      | SS/STIFFNESS M<br>ND VECTORS<br>TIFFNESS MATRI<br>.DISPLACEMENTS | 0 .<br>IX 0 .<br>S. 0                                                  | 235825E<br>411987E<br>639233E<br>639233E               | -03<br>-03                    |                    |                  |             |                                         |                                                               |                                       |
| FREQUENCY AFFLUTTER ANAL CONSTRAINT   POSTURE TABLE SELECTIVE G | YSIS<br>EVALUATION                                               | 0.                                                                     | ,0<br>,106812E-<br>,337372E-<br>,222015E-<br>,193954E- | -01<br>-01                    |                    |                  |             | ~                                       |                                                               | 116                                   |
|                                                                 | TAL CPU TIME                                                     |                                                                        | 3140726                                                |                               |                    |                  |             |                                         |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               | · · · · · · · · · · · · · · · · · · · |
| DIMINISH                                                        | ING RETURN OF                                                    | THREE CONS                                                             | SECUTIVE                                               | STAGES                        | ND QVERLA          | Y ANALYS         |             |                                         |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               |                                       |
| DESIGN TIME                                                     | STATISTICS                                                       |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               | •                                     |
|                                                                 | REPARATION                                                       | 4.1873<br>0.0397                                                       |                                                        |                               |                    |                  |             |                                         |                                                               |                                       |
| DESIGN PH<br>ANALYSI<br>OPTIMIZ                                 | ASE<br>S TOTAL<br>ER TOTAL                                       | 4.1477<br>2.53<br>0.27                                                 | 15                                                     |                               |                    |                  |             |                                         |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               | ND OVERLA          | Y DESIGN         |             |                                         |                                                               |                                       |
|                                                                 |                                                                  |                                                                        |                                                        |                               |                    |                  |             |                                         |                                                               |                                       |

| DESIGN TIME STATISTICS TOTAL INITIAL PREPARATION DESIGN PHASE ANALYSIS TOTAL OPTIMIZER TOTAL | 4.1873<br>0.0397<br>4.1477<br>2.5315<br>0.2755 |                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                              | ·                                              | END OVERLAY DESIGN                                                                                                                                                                                                               |
| MAIN PRIGRAM TIME STATISTICS PRE-PROCESSOR DESIGN PHASE                                      | 0.2518<br>4.1915                               |                                                                                                                                                                                                                                  |
| GRANG TOTAL                                                                                  | 4.4432                                         | en de la companya de<br>La companya de la co |
|                                                                                              |                                                | ENTER OVERLAY PREPCO                                                                                                                                                                                                             |
|                                                                                              |                                                |                                                                                                                                                                                                                                  |
|                                                                                              | •                                              |                                                                                                                                                                                                                                  |
|                                                                                              |                                                |                                                                                                                                                                                                                                  |
|                                                                                              |                                                |                                                                                                                                                                                                                                  |
|                                                                                              |                                                |                                                                                                                                                                                                                                  |
|                                                                                              |                                                |                                                                                                                                                                                                                                  |
|                                                                                              |                                                |                                                                                                                                                                                                                                  |
|                                                                                              |                                                |                                                                                                                                                                                                                                  |
|                                                                                              |                                                |                                                                                                                                                                                                                                  |
|                                                                                              |                                                |                                                                                                                                                                                                                                  |

.

4

,

|       | MINI DE<br>DISPLAC<br>THERMAL                                                                    | LOAD                               | S STA                                   | ROBLE<br>ESS A                          | M<br>ND FR            | EQUEN                                                        | CY CC                                              | NSTRA                                   | INTS                                                                             |                                        |                                         |                        |       |
|-------|--------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------|--------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|------------------------|-------|
| <br>1 | OCTOBER                                                                                          | D.O.F<br>1978                      | • -                                     | 13 D                                    | • • •                 |                                                              |                                                    |                                         |                                                                                  |                                        |                                         | i                      |       |
|       | 6<br>1<br>2                                                                                      | 16<br>0.0<br>0.0<br>400.0<br>800.0 |                                         | 960.0<br>480.0<br>480.0                 | 1<br>13<br>6          | 6 • 4<br>17 • 6<br>5 • 4<br>5 • 9<br>5 • 1<br>4 • 0          | 68<br>9<br>92<br>66<br>43                          | 2                                       | 0                                                                                | 3                                      | 200                                     |                        |       |
|       | 3<br>1<br>1<br>2<br>3<br>1<br>1<br>2<br>3<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 5555779755555                      | 444444444444444444444444444444444444444 | 000000000000000000000000000000000000000 | 1-2234556455678889    | 8<br>9<br>9                                                  | · ·                                                | 000000000000000000000000000000000000000 | -1<br>-2<br>-3<br>-4<br>-1<br>-2<br>-3<br>-4<br>-1<br>-2<br>-3<br>-4<br>-2<br>-3 | -1<br>-1<br>-1<br>-1<br>-1<br>-1<br>-1 | 999999999999999999999999999999999999999 |                        |       |
|       | 1 4<br>2 3<br>4 5<br>5 1<br>6 4                                                                  | 6                                  |                                         | 000                                     | 1<br>2<br>3<br>3<br>4 | 10<br>11<br>12<br>12<br>13                                   | 2 2 2 2                                            | 0000                                    | 1<br>1<br>1<br>1<br>1                                                            | -1<br>-1<br>-1<br>-1<br>-1             |                                         |                        |       |
|       | 1 4<br>2 3<br>4 5<br>5 1<br>6 4<br>0 10                                                          | 0.3<br>0.1                         | 50                                      | 0                                       | 123344<br>00          | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>0 • 6 | 50                                                 | 0<br>0<br>0<br>0<br>0<br>0              | 1<br>1                                                                           | -1<br>-1<br>-1<br>-1<br>-1<br>0.2      | 5<br>0                                  | 0 • 2                  | o     |
| (     | 0.0100E0<br>0.1640E8<br>0.2100E8                                                                 | 0.0<br>0.3<br>0.1                  | 700E7                                   | 0.1                                     | 6<br>500E6            |                                                              |                                                    | ì                                       |                                                                                  |                                        | 250E5<br>00E-5                          | 0.16                   | 005-4 |
|       | 8462E-2<br>0-2100E8                                                                              | 0.1                                | 700E7                                   | 1                                       | 500E6                 |                                                              |                                                    | l                                       |                                                                                  |                                        | 1                                       | -1.76<br>0.16<br>-1.76 |       |
|       | 8462E-2<br>0-2100E8<br>0-7071                                                                    | 0.1                                | 700E7                                   |                                         | 500E6                 | 0.2                                                          | 100F0                                              | 0.0                                     | 56.0Ed                                                                           | -0-21                                  |                                         | 0.16                   | 00E-4 |
|       | .8462E-2<br>0.2100E8                                                                             |                                    | 700E7                                   |                                         | 500E6                 | 0.2                                                          | 100E0                                              | 0.0                                     | 56 0E 0                                                                          | -0.21                                  | <br> 00F=6                              | 0-16                   | 47E-2 |
|       | 8462E-2<br>3<br>4<br>5<br>6<br>4<br>5                                                            | 0.0<br>0.0<br>-0.0<br>-0.0         |                                         | 0.0<br>0.0<br>-0.0<br>-0.0              |                       | 0.9                                                          | 421E5<br>421E5<br>421E5<br>421E5<br>421E5<br>421E5 | UMPED                                   | LOAD                                                                             | s<br>                                  | -34c-3                                  | -1.76                  | 475-2 |
|       | 0 0                                                                                              | 16                                 |                                         | o<br>5                                  | 6<br>6                | . 7                                                          |                                                    | NERTI                                   |                                                                                  | ·                                      |                                         |                        |       |
|       | 15 16                                                                                            | 3<br>1                             |                                         | 5<br>1                                  | 6                     | 1                                                            | 8                                                  | 9                                       | 10                                                                               | .11                                    |                                         | 13                     |       |
|       | 1 1<br>2 2<br>1 1                                                                                | 2<br>1                             | 2                                       |                                         | 2<br>1                | 1                                                            |                                                    | 1                                       | 1                                                                                | 1                                      | 1                                       | 1                      | 1     |
|       | 1 1 2                                                                                            | 2                                  | . 2                                     | ) · }                                   | 2                     |                                                              |                                                    |                                         |                                                                                  | •                                      |                                         | ]                      |       |

(2) 10 element delta wing

| 1.8462E-2<br>0.2100E8 0.1700E7<br>0.0 1.00 | 0.6500E6 0.2100F                                           | FO 0.0560E0-0.2100E-6 0.1600E-4<br>-3-8.5714E-3 4.7059E-3-1.7647E-2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    | 0.0 0.94218<br>0.0 0.94218<br>0.0 0.94218<br>-0.0 -0.94218 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                               | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6 -0.0<br>0 0 16 0                         | 0 6 -0.94218                                               | THERTIA LOADS                                                       | en de la companya de<br>La companya de la co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 2 3 4<br>15 16 3 4                       | 5 6 7                                                      | 8 9 10 11 12 13 14                                                  | , the grant of the second of t |
| 1 1 1 1 2 2 2 1 1 1 1 1 1                  | 2 2                                                        |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2    | 2 2                                                        | FLIGHT CONDITIONS                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 1.5000E4<br>6 1.2000E4<br>0.0 0.0        | 0 • d                                                      | DISPLACEMENT CONSTRAINTS<br>SLOPE CONSTRAINTS                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1 0.9                                    | 1.0 1.5                                                    | FREQUENCY CONSTRAINTS                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1<br>-1 0.4 000E2                        |                                                            | FLUTTER CONSTRAINTS                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0050 0.0001<br>0.75 1.2                  | 0.0                                                        | 5.0000E0                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 10 15 40                                 | 25 30 35                                                   | 40 45 50 55 60 65 70                                                | H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                | EMENT, STRESS AND FREQUENCY CONSTRAINTS |               |          |              |
|----------------|-----------------------------------------|---------------|----------|--------------|
|                | FREGUENCY                               |               | •        |              |
| X              | AND                                     |               | 13 0.4   |              |
| ROBL           | ESS                                     |               | <u>۳</u> |              |
| 9              | STR                                     |               | ı        |              |
| MINI DELTA WIN | DISPLACEMENT, STRESS AND                | THERMAL LOADS | 9 D.D.F. | CCT38ER 1978 |

| *************                | *****                                                                 | ******                                | ********                                                                                                     | ******                                                                                                                                                                                       | *******                                                                                                                                                                                                                       | ******                                | ********                                                                                                                                               | *******                                                                                | ********                                                                                                                       | ******   |
|------------------------------|-----------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------|
|                              |                                                                       |                                       | COMPLETE OPT                                                                                                 | INIZATION                                                                                                                                                                                    | BY DUAL! OPT                                                                                                                                                                                                                  | IMIZER                                |                                                                                                                                                        |                                                                                        |                                                                                                                                | •        |
|                              |                                                                       |                                       | ANALYSIS PRI                                                                                                 | NT OUT CON                                                                                                                                                                                   | ITROL = 2                                                                                                                                                                                                                     |                                       |                                                                                                                                                        |                                                                                        |                                                                                                                                |          |
|                              |                                                                       |                                       | DESIGN IN LI                                                                                                 | NKED SIZIN                                                                                                                                                                                   | IG VARIABLE S                                                                                                                                                                                                                 | PACE                                  |                                                                                                                                                        |                                                                                        |                                                                                                                                |          |
|                              |                                                                       |                                       | NUMBER OF TO<br>NUMBER OF LI<br>NUMBER OF LI<br>NUMBER OF BO<br>NUMBER OF BO<br>NUMBER OF IS<br>NUMBER OF GR | TAL ELEMEN<br>NKED VARIA<br>AD CONDITI<br>UNDARY NOD<br>OTROPIC MA                                                                                                                           | ABLES 13<br>ONS 2<br>DES 3<br>ATERIALS 1                                                                                                                                                                                      | '<br>                                 |                                                                                                                                                        |                                                                                        |                                                                                                                                |          |
|                              | TRUSS                                                                 | CST<br>ISOTROPIC                      | CST<br>ORTHOTROPIC                                                                                           | SSP                                                                                                                                                                                          | PSP                                                                                                                                                                                                                           | TSP                                   | TBD                                                                                                                                                    | TBD                                                                                    | TBD                                                                                                                            | TBO      |
| ELEMENTS<br>Linked variables | 0<br>0                                                                | 0                                     | 16                                                                                                           | 6<br>4                                                                                                                                                                                       | 0                                                                                                                                                                                                                             | 6<br>0                                |                                                                                                                                                        |                                                                                        |                                                                                                                                |          |
|                              | NOI                                                                   | DE NUMBER                             | x                                                                                                            |                                                                                                                                                                                              |                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · | Z                                                                                                                                                      |                                                                                        |                                                                                                                                |          |
|                              |                                                                       | 1<br>2<br>3<br>4<br>5                 | 0.0<br>0.0<br>0.0<br>400.0000<br>400.0000                                                                    |                                                                                                                                                                                              | 960.0000<br>480.0000<br>480.0000                                                                                                                                                                                              |                                       | 6.4680<br>17.6900<br>5.4920<br>5.9660<br>5.1430<br>4.0000                                                                                              | • — — — — — — — — — — — — — — — — — — —                                                |                                                                                                                                |          |
|                              |                                                                       | • <u>-</u>                            |                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                       |                                                                                                                                                        | <u> </u>                                                                               | ·                                                                                                                              | <u>1</u> |
|                              | n annahilikila ili anan mada wa kurupi .                              |                                       | DI SPLAC                                                                                                     | EMENT BOUN                                                                                                                                                                                   | IDARY CONDITI                                                                                                                                                                                                                 | ONS                                   |                                                                                                                                                        |                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                          |          |
|                              |                                                                       |                                       |                                                                                                              |                                                                                                                                                                                              |                                                                                                                                                                                                                               |                                       | 4                                                                                                                                                      |                                                                                        |                                                                                                                                |          |
|                              | NODE                                                                  |                                       | NDARY CODES*                                                                                                 |                                                                                                                                                                                              | FRESC                                                                                                                                                                                                                         | RIBED DI:<br>Y                        | SPLACEMENT                                                                                                                                             |                                                                                        |                                                                                                                                |          |
|                              |                                                                       | 1 1<br>2 1<br>3 1                     | 1 1                                                                                                          | 0.0                                                                                                                                                                                          | · 🚨                                                                                                                                                                                                                           | 0.0                                   | 0 • 0<br>0 • 0<br>0 • 0                                                                                                                                |                                                                                        |                                                                                                                                | ·        |
|                              |                                                                       |                                       | + -1=PRE                                                                                                     | SCRIBED. 0                                                                                                                                                                                   | )=FREE. 1=F1>                                                                                                                                                                                                                 | ED.                                   |                                                                                                                                                        |                                                                                        |                                                                                                                                |          |
| ELEMENT NODE                 | NUMBERS                                                               | LINKE<br>N4 GROU                      |                                                                                                              | INITIAL E                                                                                                                                                                                    | ELEMENT<br>LOW .E                                                                                                                                                                                                             | SIZE                                  | UPP-BQ                                                                                                                                                 | MATERIAL<br>GROUP                                                                      | SIDE CONST                                                                                                                     | RAINT    |
| CCNSTANT STRAIN  1           | TRIANGULA<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>5<br>5<br>6<br>6<br>6 | F - CRTHCTRO 1 22 33 4 55 6 6 7 7 8 8 |                                                                                                              | 0.400033<br>0.350000<br>0.350000<br>0.100000<br>1.250000<br>0.750000<br>0.250000<br>1.250000<br>0.750000<br>0.750000<br>0.750000<br>0.250000<br>0.250000<br>0.250000<br>0.250000<br>0.250000 | 0 - 01 0 00<br>0 - 01 0 00 | 0                                     | 0.02000<br>0.02000<br>0.02000<br>0.02000<br>0.02000<br>0.02000<br>0.02000<br>0.02000<br>0.02000<br>0.02000<br>0.02000<br>0.02000<br>0.02000<br>0.02000 | -1<br>-2<br>-3<br>-4<br>-1<br>-2<br>-3<br>-4<br>-1<br>-2<br>-3<br>-4<br>-1<br>-2<br>-3 | -1 999<br>-1 999 |          |

| CONSTA   | NT STRAIN TRIANGULAR                          | - CRIHITACPIC |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                       |    |
|----------|-----------------------------------------------|---------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------|----|
| 1        | 1 2 4                                         | 1             | 0.400000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1         | -1 999                                |    |
| 2        | î 2 4                                         | ž             | 0.350000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2         | -1 999                                |    |
| 3        | 1 2 4                                         | Ž             | 0.350000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3         | -1 999                                |    |
| ă        | i 2 4                                         | 3             | 0.100000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4         | -1 999                                |    |
| 5        | 2 5 4                                         | 4             | 1.250000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -i         | -1 999                                |    |
| <u> </u> | 2 5 A                                         | . 5           | 0.750000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2         | -1 999                                | •• |
| 7        | 2 5 4                                         | š             | 0.750000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <u>3</u> | -1 999                                |    |
| ė        | 5 5 4                                         | ě             | 0.250000 | 0.01000  | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | -1 999                                |    |
| ŏ        | 2 3 6                                         | Ă             | 1.250000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - i        | -1 999                                |    |
| 10       | 2 1 5                                         | Š             | 0.750000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -ž         | -i 999                                | —  |
| 17       | 5 3 6                                         | š             | 0.750000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3         | -1 999                                |    |
| 12       | 2 3 3                                         | . 6           | 0.250000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | -i 999                                |    |
| 12       | 2 5 5                                         | 7             | 0.200000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ī         | -1 999                                |    |
|          | . 4 50                                        | ė             | 0.100000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - <u>ż</u> | -i 999                                |    |
| 15       | , <u>, , , , , , , , , , , , , , , , , , </u> | ğ             | 0.100000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3         | -i 999                                |    |
| 16       | 4 5 6                                         | o o           | 0.100000 | 0.010000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | -1 999                                |    |
| 10       | 4 5 6                                         | ,             | 0.100000 | 0.01000  | 0.02000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 777                                   |    |
| SYMMET   | RIC SHEAR PANEL                               | •             |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                       |    |
| 1        | 4 5                                           | 1             | 0.600000 | 0.020000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          | -1 o                                  |    |
| 2        | 2 4                                           | · 2           | 0.600000 | 0.02000  | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          | -1 0                                  |    |
| <b>3</b> |                                               | 3             | 0.600000 | 0.020000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          | 1 Q.                                  |    |
| 4        | 5 6                                           | . 3           | 0.600000 | 0.02000  | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          | -1 0                                  |    |
| 5        | 1 4                                           | . 4           | 0.600000 | 0.020000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          | -1 0                                  |    |
| 6        | 4 6                                           | 4             | 0.600000 | 0.02000  | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · 1        | -1 0                                  |    |
| THERMA   | L SYMMETRIC PANEL                             |               |          | • •      | er e de la merca della merca d |            |                                       |    |
| 1        | 4 5                                           | i             | 0.350000 | 0.020000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1          | -1 0                                  |    |
| ž        | <b>2</b> 4                                    | ž             | 0.350000 | 0.020000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ĩ          | -i ō                                  |    |
| 3        | 3 5                                           | • 3           | 0.350000 | 0.020000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ì          | -i o                                  |    |
|          | 5 6                                           | 3             | 0.350000 | 0.020000 | 0.02000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ` <u>ī</u> | · · · · · · · · · · · · · · · · · · · |    |
| Š        | ĭ ă                                           | Ă             | 0.350000 | 0-020000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ĭ          | -i ö                                  |    |
| š        | À 6                                           | Ă             | 0.350000 | 0.020000 | 0.020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ī          | -1 0                                  |    |
| U        | <b>-</b>                                      |               |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                       |    |

\* -2=FIXED AT INITIAL VALUE -1=LOWER BOUNDS ONLY
0=NCN NEGATIVITY ONLY 1=UPPER BOUNDS CNLY
2=BCTH UPPER AND LOWER BOUNDS
SECOND NUMBER = DISCRETE VALUE GROUP NUMBER

## MATERIAL CONSTANTS - ISOTROPIC MATERIALS

| GROUP<br>NO. | MODULUS<br>MODULUS | POISSON'S<br>RATIO | SPECIFIC WEIGHT | THERMAL<br>EXPANSION. | COMPRESSIVE<br>A. STRESS | TENSILE<br>A. STRESS | H 2 |
|--------------|--------------------|--------------------|-----------------|-----------------------|--------------------------|----------------------|-----|
| 1            | 16400000.0         | 0.3000             | 0.160000        | 0.00000560            | -125000.0                | 125000.0             | 2   |

### MATERIAL CONSTANTS - ORTHOTROPIC MATERIALS

| GROUP<br>NO.         | YOUNG'S<br>MODULUS<br>(EL)                           | YOUNG'S<br>MODULUS<br>(ET)                       | SHEAR<br>MODULUS<br>(GLT)                    | POISSON'S<br>RATIO<br>(NULT)                 | SPECIFIC<br>WEIGHT<br>(GAMMA) | THERMAL<br>EXPANSION<br>(ALPHAL)                         | THERMAL<br>Expansion<br>(Alphat)                     |                                    | DIRECTION C<br>F LONGITUDIN       | OSINES<br>AL AXIS<br>Z   |  |
|----------------------|------------------------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------|-----------------------------------|--------------------------|--|
| -1<br>-2<br>-3<br>-4 | 21000000.0<br>21000000.0<br>21000000.0<br>21000000.0 | 1700000.0<br>1730000.0<br>1700000.0<br>1700000.0 | 650000.0<br>650000.0<br>650000.0<br>650000.0 | 0.210000<br>0.210000<br>0.210000<br>0.210000 | 0.056000<br>0.056000          | -0.00000021<br>-0.00000021<br>-0.00000021<br>-0.00000021 | 0.00001600<br>0.00001600<br>0.00001600<br>0.00001600 | 1.0000<br>0.7071<br>-0.7071<br>0.0 | 0.0<br>0.7071<br>0.7071<br>1.0000 | 0.0<br>0.0<br>0.0<br>0.0 |  |

| (EPSTL) (                          | P.LIMIT TEN.LIMIT COMP.LIMIT<br>(EPSCL) (EPSTT) (EPSCT)                                                              | SHEAR LIMIT TEN-LONG.<br>(GAMMALT) (FTL) | COMP .LONG TEN .TRANS         | COMP.TRANS | SHEAR<br>(FLT)    |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|------------|-------------------|
| -2 0.008571 -0.<br>-3 0.008571 -0. | .008571 0.004706 -0.017647<br>.008571 0.004706 -0.017647<br>.008571 0.004706 -0.017647<br>.008571 0.004706 -0.017647 | 0.018462 0.0<br>0.018462 0.0             | 0-0 0-0<br>0-0 0-0<br>0-0 0-0 | 0.0        | 0.0<br>0.0<br>0.0 |

#### LOAD CONDITIONS

### LUMPED LOAD AT NODES

| NODE NUMBER      | X              | Y            | 2          |
|------------------|----------------|--------------|------------|
| LOAD CONDITION 1 | 0 • 0<br>0 • 0 | C. O<br>O. O | 94210.0000 |

|                      |                                              |                                                                      |                                         |                                              |                                                  |                      |                              | 1                             |                                              |                                       |                                       |
|----------------------|----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|--------------------------------------------------|----------------------|------------------------------|-------------------------------|----------------------------------------------|---------------------------------------|---------------------------------------|
| ,<br>čň.             | TENELIMI (EPSTL)                             | COMP.LI                                                              | MIT T                                   | EN-LIMIT<br>(EPSTT)                          | COMP .LIMIT                                      | ' SHEAR LIMIT        | STRESS<br>TEN·LONG.<br>(FTL) | STRESS<br>COMP.LONG.<br>(FCL) | STRESS<br>TEN•TRANS<br>(FTT)                 | STRESS<br>COMP.TRANS<br>(FCT)         | STRESS<br>SHEAR<br>(FLT)              |
| -1<br>-2<br>-3<br>-4 | 0.008571<br>0.008571<br>0.008571<br>J.008571 | -0.008<br>-0.008<br>-0.008<br>-0.008                                 | 1571<br>1571<br>1571                    | 0.004706<br>0.004706<br>0.004706<br>0.004706 | -0.017647<br>-0.017647<br>-0.017647<br>-0.017647 | 0.018462<br>0.018462 | 0.0<br>0.0<br>0.0<br>0.0     | 0.0<br>0.0<br>0.0<br>0.0      | 0.0<br>0.0<br>0.0<br>0.0                     | 0.0<br>0.0<br>0.0<br>0.0              | 0.0<br>0.0<br>0.0<br>0.0              |
|                      |                                              |                                                                      |                                         |                                              |                                                  |                      |                              |                               |                                              |                                       | -                                     |
|                      |                                              |                                                                      |                                         |                                              |                                                  | LOAD CONDI           | TIONS                        |                               |                                              |                                       |                                       |
|                      |                                              |                                                                      |                                         |                                              |                                                  |                      |                              | • -                           |                                              |                                       | ***                                   |
|                      |                                              |                                                                      |                                         | * .                                          |                                                  | LUMPED LOAD          | AT NODES.                    |                               | ***                                          |                                       |                                       |
| ,                    |                                              | **                                                                   | NODE                                    | NUMBER                                       |                                                  | ×                    |                              | Υ                             | Z                                            |                                       |                                       |
|                      |                                              |                                                                      |                                         | NOITION                                      | 1                                                |                      |                              |                               |                                              |                                       |                                       |
|                      |                                              |                                                                      |                                         | 4<br>5<br>6                                  |                                                  | ) • 0<br>) • 0       | C.O<br>G.O<br>G.O            | 94                            | 210.0000<br>210.0000<br>210.0000             |                                       |                                       |
|                      |                                              |                                                                      |                                         | NDIT ICN                                     | 2                                                | 1.0                  | 0.0                          | -94                           | 210.0000                                     |                                       |                                       |
|                      |                                              |                                                                      | _                                       | 5<br>6                                       |                                                  | 0.0                  | 0 • 0<br>0 • 0               | -94<br>-94                    | 210.0000<br>210.0000                         |                                       |                                       |
|                      |                                              |                                                                      |                                         |                                              |                                                  |                      |                              |                               |                                              |                                       |                                       |
|                      |                                              |                                                                      |                                         |                                              |                                                  | PRESSURE             |                              |                               |                                              |                                       |                                       |
|                      |                                              |                                                                      |                                         |                                              | NO                                               | PRESSURE LOAD        | SPECIFIED                    |                               |                                              |                                       |                                       |
|                      |                                              |                                                                      |                                         |                                              |                                                  | GRAVITY              | LOAD                         | -                             |                                              |                                       |                                       |
|                      |                                              | . 040                                                                | CONDITI                                 | 0N NO                                        | MA CAUTTURE                                      |                      |                              |                               | C. 1. 1. C.                                  |                                       |                                       |
|                      | <del></del>                                  | LUAD                                                                 | CONDITI                                 |                                              | MAGNITUDE                                        |                      |                              | IRECTION CO                   | 21 UE2                                       |                                       |                                       |
|                      |                                              |                                                                      |                                         |                                              |                                                  |                      |                              |                               |                                              |                                       |                                       |
|                      |                                              |                                                                      |                                         |                                              |                                                  | THERMAL L            |                              |                               |                                              |                                       | ·                                     |
|                      |                                              |                                                                      |                                         |                                              |                                                  |                      |                              |                               |                                              |                                       |                                       |
|                      |                                              | 1                                                                    |                                         |                                              |                                                  | THE                  | RMAL LCAD GR                 |                               | · · · · · · · · · · · · · · · · · · ·        |                                       |                                       |
|                      | TYPE                                         | T<br>NUMBER                                                          | 1                                       | 2 3                                          | 4 5                                              | 6 7 8                | LOAD CONDI                   | TIONS<br>11 12 1              | 3 14 15                                      | 16 17                                 | 18 19 20                              |
|                      | 3<br>3                                       | 1 2                                                                  | 1                                       | i<br>1                                       |                                                  |                      |                              |                               |                                              |                                       |                                       |
|                      |                                              |                                                                      |                                         | •                                            |                                                  |                      |                              |                               |                                              |                                       |                                       |
|                      | 3                                            | 3                                                                    | į                                       | i                                            |                                                  |                      |                              |                               |                                              |                                       |                                       |
|                      | 3<br>3<br>3                                  | 4<br>5<br>6                                                          | <u> </u>                                | i<br>1<br>1                                  |                                                  |                      |                              |                               |                                              |                                       | ers, krage og per ogskommerer         |
|                      | 3                                            | 4<br>5<br>6<br>7<br>8                                                | 1<br>1<br>1<br>1                        | 1<br>1<br>1<br>1<br>1                        |                                                  |                      |                              |                               | <u>:                                    </u> |                                       | <u></u>                               |
|                      | 3<br>3<br>3<br>3<br>3<br>3<br>3              | 4<br>5<br>6<br>7<br>8<br>9<br>10                                     | 1 1 1 1 1 1 1                           | 1<br>1<br>1<br>1<br>1                        |                                                  |                      |                              |                               |                                              | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
|                      | 33 33 33 33 33 33 33                         | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      |                                                  |                      |                              |                               |                                              | · · · · · · · · · · · · · · · · · · · |                                       |
|                      | 33<br>33<br>33<br>33<br>33<br>33             | 4<br>5<br>6<br>7<br>8<br>9<br>10                                     |                                         |                                              |                                                  |                      |                              |                               |                                              |                                       |                                       |
| -                    | 33333333333666                               | 4<br>56<br>7<br>8<br>9<br>10<br>112<br>13<br>14<br>15<br>16<br>12    | 1 1 1 1 1 1 1 1 1 1 2 2 2               | 1 1 1 1 1 1 1 1 2 2 2 2                      |                                                  |                      |                              |                               |                                              |                                       |                                       |
|                      | 33333333333333333333333333333333333333       | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2           | 111111112222222                              |                                                  |                      |                              |                               |                                              |                                       |                                       |

THERMAL LOAD MAGNITLDE

-200.0000 -100.0000

|             | 3<br>3      | 15<br>16 | 1                                     | 1<br>1 |                                                                    |          |             |
|-------------|-------------|----------|---------------------------------------|--------|--------------------------------------------------------------------|----------|-------------|
|             | 6           | 1        |                                       | 2      |                                                                    |          |             |
|             | 6<br>6      | 2<br>3   | 2 2 2                                 | 2 2 2  |                                                                    |          |             |
|             | ઇ<br>ઇ      | 4<br>5   | 1 2                                   | 2      |                                                                    |          |             |
|             | 6           | 6        | 2                                     | 2      |                                                                    | ·        | ,           |
|             |             | ١        |                                       |        |                                                                    |          |             |
|             |             |          |                                       |        | THERMAL LOAD MAGNITUDE                                             |          |             |
|             |             |          |                                       |        |                                                                    |          |             |
|             | -200.0000   |          |                                       |        |                                                                    |          |             |
|             | 335852 1575 | :=====   | ======                                | =====  | :                                                                  | # E      |             |
|             |             |          |                                       |        | NCN-STRUCTURAL MASS                                                |          |             |
|             | ** ****     |          |                                       |        | TOUT OF INDEPENDENCE                                               |          |             |
|             |             |          |                                       |        | NODE NUMBER WEIGHT OF LUMPED MASS                                  |          |             |
|             |             |          |                                       |        | 4 21000.0000                                                       | •        |             |
|             |             |          |                                       |        | 5 15000.000<br>6 12000.000                                         |          |             |
|             |             |          |                                       |        |                                                                    | <u>.</u> |             |
|             |             |          |                                       |        |                                                                    |          |             |
|             |             |          |                                       |        | · · · · · · · · · · · · · · · · · · ·                              |          |             |
|             |             |          |                                       |        | CONSTRAINT DATA                                                    |          |             |
|             |             |          |                                       |        | SIDE CONSTRAINTS                                                   | ·        |             |
|             |             |          |                                       |        |                                                                    |          |             |
|             |             |          |                                       | SIDE   | CONSTRAINT SPECIFICATIONS ARE GIVEN IN THE ELEMENT DATA            |          |             |
|             |             |          |                                       |        | ARCHITECTURAL CONCERNATION                                         |          |             |
|             |             |          |                                       |        | DISPLACEMENT CONSTRAINTS                                           |          |             |
| <del></del> |             |          |                                       |        | NO DISPLACEMENT CONSTRAINTS                                        |          | <del></del> |
|             |             |          |                                       |        |                                                                    |          | H           |
|             |             |          |                                       |        | SLOPE/RELATIVE DISPLACEMENT CONSTRAINTS                            |          | <u>2</u> _  |
|             |             |          |                                       |        |                                                                    |          |             |
|             |             |          |                                       |        | NC SLOPE CONSTRAINTS                                               |          |             |
|             |             |          |                                       |        |                                                                    |          |             |
|             |             | <u>.</u> |                                       |        | STRESS/STRAIN CONSTRAINTS                                          |          |             |
|             |             |          |                                       |        |                                                                    |          |             |
|             |             |          |                                       |        | INITIAL TRUNCATION FACTOR 0.1000 MAXIMUM TRUNCATION FACTOR 0.9000  |          |             |
|             |             |          | ·                                     | • -    | BASIS CUTDEF FACTOR 1.0000                                         |          |             |
|             |             |          |                                       |        | MULTIPLIER FOR TRF UPDATING 1.5000<br>MINIMUM NORMALIZATION FACTOR |          |             |
|             |             |          |                                       |        | STRESS 1000.0000<br>STRAIN 0.10000E-02                             |          |             |
|             |             |          |                                       |        | NO EULER BUCKLING CONSTRAINTS IMPOSED                              |          |             |
|             |             |          |                                       |        | ELEMENT TYPE 1 NO STRESS/STRAIN CONSTRAINTS SPECIFIED              |          |             |
|             |             |          |                                       |        |                                                                    |          |             |
|             |             |          |                                       |        | ELEMENT TYPE 2 NO STRESS/STRAIN CONSTRAINTS SPECIFIED              | •        |             |
|             |             |          |                                       |        | ELEMENT TYPE 3                                                     |          |             |
|             |             |          |                                       |        | ALL ELEMENTS ARE SUBJECT TO STRAIN ENVELOPE CONSTRAINTS            |          |             |
|             |             |          |                                       |        | ELEMENT TYPE 4                                                     | •        |             |
|             |             |          |                                       |        |                                                                    |          |             |
|             |             |          |                                       |        | ALL ELEMENTS ARE CONSTRAINED BY UPPER BOUNDS ONLY                  |          |             |
|             |             |          |                                       |        | ELEMENT TYPE 5 NO STRESS/STRAIN CONSTRAINTS SPECIFIED              |          |             |
| •           |             |          |                                       |        | ELEMENT TYPE 6                                                     |          |             |
|             |             |          |                                       |        | NO STRESS/STRAIN CONSTRAINTS SPECIFIED                             |          |             |
|             |             |          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        |                                                                    |          |             |

|                                                                | ELEMENT TYP<br>NO STR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E 2<br>ESS/STRAIN CONSTR                                                                            | AINTS SPECIFI                      | LED                                  |                                                |                                                |                                              |                 |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------|-----------------|
| •                                                              | ELEMENT TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                     | <del>-</del> 1                     |                                      |                                                |                                                |                                              |                 |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>Ements are subjec                                                                              | T TO STRAIN E                      | ENVELOPE CONS                        | TRAINTS                                        |                                                |                                              |                 |
|                                                                | ELEMENT TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                     |                                    |                                      |                                                |                                                |                                              |                 |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>Ements are constr                                                                               | AINED BY UPPE                      | R BOUNDS ONL                         | . <b>Y</b>                                     |                                                |                                              |                 |
|                                                                | ELEMENT TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                     |                                    |                                      |                                                |                                                |                                              |                 |
|                                                                | ELEMENT TYP<br>NO STR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E 6<br>ESS/STRAIN CONSTR                                                                            | AINTS SPECIFI                      | I <b>E</b> D                         |                                                |                                                |                                              |                 |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                    |                                      | • • • • • • • • • • • • • • • • • • • •        | ALL BURK :                                     |                                              |                 |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FREQUENCY CON                                                                                       | STRAINTS                           |                                      |                                                |                                                |                                              |                 |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B-SPACE FIRST ORD                                                                                   | ER EXPANSION                       |                                      |                                                | •                                              |                                              |                 |
|                                                                | MAX<br>BAS<br>MUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIAL TRUNCATION F<br>IMUM TRUNCATION F<br>IS CUTOFF FACTOR<br>TIPLIER FOR TRE<br>IMUM NORMALIZATION | ACTOR C                            | 0.1000<br>0.8000<br>1.0000<br>1.2000 |                                                | •                                              |                                              | ··· <del></del> |
|                                                                | CGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VERGENCE CRITERIA<br>ELELATION OF GRAV                                                              | 0.10000<br>ITY 0.38607             |                                      |                                                |                                                |                                              |                 |
|                                                                | FREQUENCY NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CODE#                                                                                               | LOWER BOUN                         | 1D .UF                               | PER BOUND                                      |                                                |                                              |                 |
|                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                                                                                  | 40.0000                            | o                                    | 0.0                                            |                                                |                                              |                 |
|                                                                | +-1=LOWER BOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ONLY. 0=NO CONSTR<br>ONLY. 2=LOWER AND                                                              | AINTS                              | •                                    |                                                |                                                |                                              |                 |
|                                                                | 1-OPPER BOOND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                     |                                    | •                                    |                                                |                                                |                                              |                 |
|                                                                | manus and a second seco | OPTIMIZER CONTRO                                                                                    | L PARAMETERS                       |                                      |                                                |                                                |                                              |                 |
|                                                                | DUAL I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T CONTROL                                                                                           |                                    | 2                                    |                                                |                                                |                                              | س               |
|                                                                | MAX. NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CF STAGES<br>OF RESTARTS                                                                            |                                    | 10<br>10                             | •                                              |                                                |                                              | <del></del>     |
|                                                                | MAX. NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OF ONE DIM. MIN.<br>ORIAL METHOD (DIS                                                               | / RESTART                          | 100                                  |                                                |                                                |                                              |                 |
|                                                                | DIMINISH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ING RETURN CRITER<br>ING RETURN CRITER                                                              | ION AMENG STA                      | AGES 0.500                           | 00E-02                                         |                                                |                                              |                 |
|                                                                | MAX. STE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P SIZE ALLOWED IN<br>E MODIFICATION FA                                                              | I A SINGLE STA                     | AGE 0.500                            | 00E+01                                         |                                                |                                              |                 |
|                                                                | STEP SIZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E MINIMUM ALLOWAE<br>E IN DUAL SPACE                                                                |                                    |                                      | OE+OI                                          |                                                |                                              |                 |
|                                                                | 376, 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E IN DONE SPACE                                                                                     | •                                  | 0.0                                  |                                                |                                                |                                              |                 |
| CONSTRAINT IDENTIFICATION COM                                  | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                    |                                      |                                                |                                                |                                              |                 |
| CONSTRAINT TYPE 1<br>9930001 99930002<br>000240003             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TS IN THIS TYPE<br>0005 99930006                                                                    | 99930008                           | 99930013                             | 99930014                                       | 99930016                                       | -40001                                       |                 |
| CONSTRAINT TYPE 2                                              | 0 CONSTRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TS IN THIS TYPE                                                                                     |                                    |                                      |                                                |                                                |                                              |                 |
| CONSTRAINT TYPE 3                                              | O CENSTRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TS IN THIS TYPE                                                                                     |                                    |                                      | * ** *                                         |                                                |                                              |                 |
| CONSTRAINT TYPE 4                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TS IN THIS TYPE                                                                                     |                                    |                                      |                                                |                                                |                                              |                 |
| -11030001                                                      | -12030003 1203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0001 13030001                                                                                       | -11 030 002<br>-11 030 004         | 11030002                             | -12030002<br>-12030004                         | 12030002<br>12030004                           | 13030002<br>13030004                         |                 |
| -11030005 11030005<br>-11030007 11030007                       | -12030007 1203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0005 13030005<br>0007 13030007                                                                      | -11030006<br>-11030008             | 11030006                             | -12030006<br>-12030008                         | 12030006<br>12030008                           | 13030006                                     |                 |
| -11030009 11030009<br>-11030011 11030011                       | -12030011 1203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0009 13030009<br>0011 13030011                                                                      | -11030010<br>-11030012             | 11030010                             | -12030010<br>-12030012                         | 12030010<br>12030012                           | 13030010                                     |                 |
| -11030013 11030013<br>-11030015 11030015<br>10040001 10040002  | -12030015 1203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0013 13030013<br>0015 13030015<br>0004 10040005                                                     | -11030014<br>-11030016<br>10040006 | 11030014                             | -12030014<br>-12030016<br>21030001<br>21030003 | 12030014<br>12030016<br>-22030001<br>-22030003 | 13030014                                     |                 |
| 23030001 -21030002                                             | 10040003 1004<br>21030002 -2203<br>21030004 -2203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0002 22030002                                                                                       | 23 0 3 0 0 0 0 2<br>23 0 3 0 0 0 4 | -21030001<br>-21030003               | 21030001                                       | -22030003                                      | 13030016<br>22030001<br>22030003<br>22030005 |                 |
| 23030003 -21030004<br>23030005 -21030006<br>23030007 -21030008 | 21030006 -2203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0006 22030006                                                                                       | 23030006                           | -21030005<br>-21030007               | 21030005<br>21030007                           | -22030005<br>-22030007<br>-33030000            | 220300 <b>07</b>                             |                 |
| 23030009 -21030010                                             | 21030008 -2200<br>21030010 -2200<br>21030012 -2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0010 22030010                                                                                       | 23030008<br>23030010               | -21030009<br>-21030011               | 21030009<br>21030011                           | -22030009<br>-22030011                         | 22030009<br>22030011                         |                 |
| 23030011 -21030012<br>23030013 -21030014<br>23030015 -21030014 | 21030012 -2203<br>21030014 -2203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0014 22030014                                                                                       | 23030012<br>23030014               | -21030013<br>-21030015               | 21030013<br>21030015                           | -22030013<br>-22030015                         | 22030013<br>22030015                         | -               |
| 23030015 -21030016<br>20040005 20040006                        | 21030016 -220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0016 22030016                                                                                       | 23030016                           | 20040001                             | 20040002                                       | 20040003                                       | 20040004                                     | •               |

| CCNSTRAINT TYPE 4 -11030001 11030001 -11030003 11030003 -11030005 11030005 -11030007 11030007 -11030009 11030009 -11030011 11030013 -11030015 11030013 -11030015 11030015 -23030001 -21030004 -23030005 -21030004 -23030007 -21030006 -23030007 -21030006 -23030011 -21030012 -23030011 -21030012 -23030013 -21030014 -23030013 -21030014 -23030015 -21030016 -23030015 -21030016 -23030015 -21030016 -23030015 -21030016 -23030016 -21030016 -23030017 -21030016 -23030018 -21030016 -23030018 -21030016 -23030018 -21030016 -23030018 -21030016 | 172 CCNSTRAINTS IN -12030001 12030001 -12030003 12030005 -12030007 12030007 -12030007 12030009 -12030011 12030011 -12030013 12030013 -12030015 12030015 -10040003 10040004 -21030002 -22030002 -21030004 -22030004 -21030006 -22030006 -21030008 -22030008 -21030016 -22030010 -21030014 -22030016 | THIS TYPE 13030001 13030003 13030005 13030007 13030011 13030013 13030015 10040005 22030004 22030004 22030006 22030008 22030008 22030010 22030012 22030014 | -11 0 30 0 02<br>-11 0 30 0 04<br>-11 0 30 0 06<br>-11 0 30 0 10<br>-11 0 30 0 10<br>-11 0 30 0 14<br>-11 0 30 0 16<br>10 0 40 0 06<br>23 0 30 0 02<br>23 0 30 0 00<br>23 0 30 0 00<br>23 0 30 0 01<br>23 0 30 0 12<br>23 0 30 0 14<br>23 0 30 0 16 | 11030002<br>11030004<br>11030006<br>11030010<br>11030010<br>11030014<br>11030016<br>-21030003<br>-21030005<br>-21030007<br>-21030007<br>-21030011<br>-21030013<br>-21030013<br>-21030013<br>-21030013 | -12030002<br>-12030004<br>-12030006<br>-12030010<br>-12030012<br>-12030014<br>-12030014<br>-12030001<br>21030003<br>21030005<br>21030007<br>21030007<br>21030001<br>21030013<br>21030013 | 12030002<br>12030004<br>12030006<br>12030010<br>12030011<br>12030014<br>12030016<br>-22030003<br>-22030005<br>-22030007<br>-22030007<br>-22030011<br>122030013<br>-22030013<br>-22030013<br>-22030013 | 13030002<br>13030004<br>13030008<br>13030010<br>13030012<br>13030014<br>13030016<br>22030003<br>22030005<br>22030007<br>22030007<br>22030001<br>22030011<br>22030013<br>22030015<br>22030015 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONSTRAINT TYPE 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 CONSTRAINTS IN                                                                                                                                                                                                                                                                                   | THIS TYPE                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O CONSTRAINTS IN                                                                                                                                                                                                                                                                                   | THIS TYPE                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                              |
| NUMBER OF BEHAVIOUR CONSTRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INTS 173                                                                                                                                                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                              |
| NUMBER OF DESIGN VARIABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                                                                 |                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                              |
| NUMBER OF DISCRETE VARIABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S 9                                                                                                                                                                                                                                                                                                |                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                  | END OVERLAY                                                                                                                                               | PREPOO                                                                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                              |
| Man a basic and Man and Man Man Man and Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    | ENTER OVERLAY                                                                                                                                             | DESIGN                                                                                                                                                                                                                                              |                                                                                                                                                                                                       |                                                                                                                                                                                          | en <sub>g</sub> a n <del>ama</del>                                                                                                                                                                    |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       | ۳                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       | 12-<br>6                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           | a.                                                                                                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                                                                                                          |                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                       | ÷                                                                                                                                                                                        |                                                                                                                                                                                                       |                                                                                                                                                                                              |

## STAGE NO. 1 APPROXIMATE PROBLEM GENERATOR

CURRENT MEMBER SIZE

STAGE NO. 1 APPROXIMATE PROBLEM GENERATOR CURFERT MEMBER SIZE MEMBER TYPE NUMBER 3 0.4000E+00 0.3500E+00 0.3500E+00 0.7500E+00 0.2500E+00 0.2000E+00 0.750CE+00 0.7500E+00 0.2500E+00 0.1250E+01 0.1000E+00 0.1250E+01 0-1000E+00 0.1000E+00 0.1000E+00 MEMBER TYPE NUMBER 4 0.6000E+00 0.6000E+00 0.600CE+00 0.6000E+00 0.6000E+03 0.6000E+00 MEMBER TYPE NUMBER 6 0.6000E+00 0.6000E+00 0.6000E+00 CURRENT WEIGHT DATA MEMBER TYPE NUMBER MEMBER TYPE NUMBER WEIGHT = 0.414119E+05 WEIGHT = 0.176169E+04 VARIABLE STRUCTURAL WEIGHT 0.431736E+05
FIXED STRUCTURAL WEIGHT 0.0431736
TOTAL STRUCTURAL WEIGHT 0.480000 0-4317365+05 0.480000E+05 TOTAL WEIGHT 0.911736E+05 0.1000E+01 MUST BE LESS THAN 0.500000E-02 STAGE NO.= 0.2316E+26 CONVERGENCE CHECK DBJECTIVE FUNCTION OF THREE CONSECUTIVE STAGES ARE 0.200000E+31 0.100000E+31 0.431736E+05 ENTER OVERLAY ANALYS N

## NODAL DISPLACEMENTS

| NODE        | : X                        | Y                         | Z                         | NODE        | X                                   | Υ                                 | Z                                 |
|-------------|----------------------------|---------------------------|---------------------------|-------------|-------------------------------------|-----------------------------------|-----------------------------------|
| LCAD CCNDI  | TION 1                     |                           |                           |             |                                     |                                   |                                   |
| 1<br>3<br>5 | 0.0<br>0.0<br>-0.23434E+00 | U.O<br>O.U<br>O.70071E-01 | 0.0<br>0.0<br>0.91633E+01 | 2<br>4<br>6 | 0.0<br>-0.48375E-01<br>-0.11012E+01 | 0.0<br>0.57807E-01<br>0.36850E+00 | 0.0<br>0.23022E+01<br>0.69293E+02 |

## NODAL DISPLACEMENTS

|   | OAD COND   |                     |                    |                    |   |                     |                    |                    |  |
|---|------------|---------------------|--------------------|--------------------|---|---------------------|--------------------|--------------------|--|
|   | Ĭ          | 0.0                 | 0.0                | 0.0                | 2 | 0.0<br>-0.48375E-01 | 0.0<br>0.57807E-01 | 0.0<br>0.23022E+01 |  |
|   | 3          | 0.0<br>-0.23434E+00 | 0.0<br>0.70071E-01 | 0.0<br>0.91633E+01 | 6 | -0.11012E+01        | 0.36850E+00        | 0.69293E+02        |  |
|   | 3          | 0.254542.00         | 01.00.12 01        | 01710052.01        | • |                     |                    |                    |  |
| L | CAD COND   | ITION 2             |                    |                    |   |                     |                    |                    |  |
|   | i          | <b>0.0</b>          | 0.0                | 0.0                | 2 | 0.0                 | 0.0                | 0.0                |  |
|   | <b> 3.</b> | Q • Q · .           | Q • Q              | 0.0                | 4 | 0.48375E-01         | -0.57807E-01       | -0.23022E+01       |  |
|   | 5          | 0.23434E+00         | -0.70071E-01       | -0.91633E+01       | 6 | 0.11012E+01         | -0.36850E+00       | -0.69293E+02       |  |

NODAL DISPLACEMENTS

| NODE        | x                          | Υ                         | 2                          | NODE        | хх                                  | Y                                  | Z                                   |
|-------------|----------------------------|---------------------------|----------------------------|-------------|-------------------------------------|------------------------------------|-------------------------------------|
| LCAD CCNDT  | TION 1                     |                           |                            |             |                                     |                                    |                                     |
| 1<br>3<br>5 | 0.0<br>0.0<br>-0.78961E-01 | 0.0<br>0.0<br>0.10947E+00 | 0.0<br>0.0<br>-0.36802E-02 | 2<br>4<br>6 | 0.0<br>-0.34813E-01<br>-0.13376E+00 | 0.0<br>-0.96274E-01<br>0.81952E-01 | 0.0<br>-0.54249E-02<br>-0.23098E-02 |

LCAD CONDITION 2

#### NODAL DISPLACEMENTS

| <br>NODE      | X                          | Υ ,                       | 2                          | NODE | X                                 | : Y                                | Z                                                                                                               |
|---------------|----------------------------|---------------------------|----------------------------|------|-----------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| LOAD COND     | 1   NC1TI                  |                           |                            |      |                                   |                                    | in the second |
| 1<br>3<br>5   | 0.0<br>0.0<br>-0.78961E-01 | 0.0<br>0.0<br>0.10947E+00 | 0.0<br>0.0<br>-0.36802E-02 |      | 0.0<br>0.34813E-01<br>0.13376E+00 | 0.0<br>-0.96274E-01<br>0.81952E-01 | 0.0<br>-0.54249E-02<br>-0.23098E-02                                                                             |
| <br>LCAD CCND | S NCITIO                   |                           |                            |      |                                   |                                    |                                                                                                                 |
| 1<br>3<br>5   | 0.0<br>0.0<br>-0.78961E-01 | 0.0<br>0.0<br>0.10947E+00 | 0.0<br>0.0<br>-0.36802E-02 | 4 -0 | 0.0<br>0.34813E-01<br>0.13376E+00 | 0.0<br>-0.96274E-01<br>0.81952E-01 | 0.0<br>-0.54249E-02<br>-0.23098E-02                                                                             |

NEW AVAILABLE REAL ARRAY = 7473

EIGEN VECTORS SCALED BY MAX. COMPONENTS

VECTOR NO.= 1 FREQUENCY = 0.100863E+01 C/S

-0.4982E-03 0.60837E+03 0.2227E-01 -0.3075E-02 0.9783E-03 0.1115E+00 +0.1662E+01 0.5249E-02 0.1000E+01

VECTOR NO.= 2 FREQUENCY = 0.331536E+01 C/S

-0.4632E-02 0.5255E-02 0.2572E+00 -0.1389E-01 0.8978E-02 0.1000E+01 0.4398E-01 0.1313E-01 -0.4307E+00

VECTOR NO.= 3 FREQUENCY = 0.608329E+01 C/S

-0.1858E-01 0.6063E-02 0.1000E+01 0.4682E-02 -0.3427E-01 -0.4144E+00 -0.1285E-01 -0.5324E-01 -0.2432E-01

EIGEN VALUES 0.4016E+02 0.4339E+03 0.1461E+04

EIGEN VECTORS SCALED BY UMU

VECTOR NO.= 1 FREQUENCY= 0.100863E+01 C/S

-0.8080E-04 0.1112E-03 0.3612E-02 -0.4987E-03 0.1587E-03 0.1808E-01 -0.2696E-02 0.8513E-03 0.1622E+00

| MTYP                                          | М              | LC     | S-COMBINED   | ,<br>SX                                   | SY                                       | SXY                                       | SX-THERM                              | SY-THERM   | SXY-THERM                 |  |
|-----------------------------------------------|----------------|--------|--------------|-------------------------------------------|------------------------------------------|-------------------------------------------|---------------------------------------|------------|---------------------------|--|
| <u>ت</u> ــــــــــــــــــــــــــــــــــــ | 1              | 1 1    |              | -0.2894E-03<br>-0.4179E-03                |                                          | -0.1035E-04<br>0.2297E-03                 | -0.1286E-03                           | 0.3200E-02 | 0-2401E-03                |  |
| 3                                             | 2              | 1      |              | -0.3449E-03                               | 0.3127E-02                               | -0.2894E-03<br>-0.3759E-03                | -0.2053E-03                           |            |                           |  |
| 3                                             | 3              |        | ·            | -0.1149E-03                               | -0.1396E-03<br>0.2897E-02<br>-0.2894E-03 | 0.3760E-03                                | 0.3487E-04                            | 0.3037E-02 | 0.8660E-04                |  |
| 3                                             | 4<br>5         | i<br>1 |              | -0.4200E-04                               | 0.2824E-02                               | -0.2302E-03<br>-0.9603E-03                | -0.4200E-04                           | 0.3114E-02 | -0.2402E-03               |  |
| 3                                             | 5              | 1      |              |                                           | -0.6498E-03                              | -0.8118E-03<br>-0.2397E-03                | -0.1286E-03                           |            |                           |  |
| 3                                             | 7              | 1      |              | -0.6340E-04<br>-0.6499E-03<br>-0.8751E-03 | 0.3105E-03                               |                                           | -0.3738E-03                           |            | 0.3421E-03<br>-0.3420E-03 |  |
| . <u>.</u> 3                                  | 8<br>8         | 1      |              | -0.5006E-04<br>-0.5207E-03                | -0.2893E-03<br>0.2824E-02                | 0.9603E-03<br>0.8117E-03                  |                                       |            | -0.1486E-03               |  |
| 3<br>3                                        | 9<br>9<br>10   | 1      |              | -0.6058E-03<br>-0.8452E-03                | 0.3200E-02                               | -0.7571E-03<br>-0.1030E-02<br>-0.6056E-03 | -0.2394E-03                           | 0.3200E-02 | -0.2733E-03               |  |
| 3                                             | 10             | 1      |              | 0.7174E-04<br>-0.6813E-03                 | 0.2283E-02                               | -0.8029E-03                               | -0.3988E-05                           | 0.2965E-02 | -0.1973E-03               |  |
| . 3                                           | 11<br>12<br>12 | 1      |              | -0.9587E-03                               | -0.6058E-03                              | 0.7571E-03                                | -0.2773E-03                           |            | 0.1975E-03                |  |
| 3<br>3                                        | 13             | · 1    |              | -0.4200E-04<br>-0.2597E-02<br>-0.2776E-02 | -0.5005E-04                              | 0.1030E-02<br>-0.1432E-02<br>-0.1455E-02  | -0.4200E-04<br>-0.1790E-03            |            | 0.2734E-03<br>-0.2319E-04 |  |
| 3                                             | 14<br>14       | 1      |              | -0.6073E-03<br>-0.9205E-03                | -0.2039E-02<br>0.8662E-03                | -0.2547E-02<br>-0.2255E-02                | · · · · · · · · · · · · · · · · · · · |            | 0.2916E-03                |  |
| 3                                             | 15<br>15<br>16 | l<br>L |              | -0.2376E-02                               | -0.6073E-03<br>0.2321E-02<br>-0.2597E-02 | 0.2255E-02                                |                                       | 0.2929E-02 | -0.2916E-03               |  |
| 3<br>4                                        | 16             | i<br>1 | 0.304057E+05 | -0.5207E-03                               | 0.4664E-03                               |                                           |                                       | 0.3063E-02 | 0.2319E-04                |  |
| 41                                            |                |        |              |                                           |                                          |                                           |                                       |            |                           |  |

| · • .                                   | 3 9<br>3 10<br>3 11<br>3 11<br>3 12<br>3 12<br>3 13<br>3 13                                                                                                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1               | -0.8452E-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | 3 14<br>3 14<br>3 15                                                                                                                                                                  | î<br>1<br>1                                        | -0.2776E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | 3 15<br>3 16<br>3 16                                                                                                                                                                  | 1 1                                                | -0.2376E-02 0.2321E-02 0.2255E-02 -0.3364E-03 0.2929E-02 -0.2916E-03 -0.5006E-04 -0.2597E-02 0.1432E-02 -0.5207E-03 0.4664E-03 0.1455E-02 -0.4706E-03 0.3063E-02 0.2319E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | 4 .1.<br>6 1<br>4 2                                                                                                                                                                   | 1                                                  | -0.4190E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 150 - <b>100 1</b> .                  | 6 2<br>4 3<br>6 3                                                                                                                                                                     | 1 0.414035E+05<br>1 0.135441E+05<br>1 0.118229E+05 | 0.8328E+04 0.8517E+04 0.2340E+05 0.1031E+05 0.8517E+04 0.0 -0-9608E+04 0.0 0.5512E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | 4 4<br>6 4<br>45                                                                                                                                                                      | 1 0.585200E+05<br>1 0.546482E+05<br>1 0.260525E+05 | -0.3554E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | 6 5<br>4 6<br>6 6                                                                                                                                                                     | 1 0.274643E+05<br>1 0.245984E+05<br>1 0.204168E+05 | 0.1027E+05 0.5704E+04 -0.1500E+05 0.1225E+05 0.5704E+04 0.0 -0.2396E+05 0.0 0.3227E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | 3 1                                                                                                                                                                                   | 2 2                                                | -0.2081E+05 -0.2600E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 3 2 3 3 3                                                                                                                                                                             | 2<br>2<br>                                         | 0.1396E-03 0.1497E-03 0.2094E-03 -0.6564E-04 0.3427E-02 0.2029E-03 -0.2053E-03 0.3277E-02 -0.8652E-04 0.1498E-03 0.1396E-03 -0.2094E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 3 4                                                                                                                                                                                   | 2 2 2                                              | 0.1847E-03 0.3176E-02 -0.2028E-03 0.3487E-04 0.3037E-02 0.8660E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | 3 5                                                                                                                                                                                   | 2 2 2                                              | 0.2894E-03 0.5001E-04 0.9603E-03<br>0.1608E-03 0.2821E-02 0.1109E-02 -0.1286E-03 0.2771E-02 0.1486E-03<br>-0.3104E-03 0.6498E-03 0.2397E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | 3 7<br>3 7<br>3 8                                                                                                                                                                     | 2 2 2                                              | -0.6842E-03 0.3666E-02 0.5819E-03 -0.3738E-03 0.3017E-02 0.3421E-03 0.499E-03 -0.3105E-03 -0.238E-03 0.4247E-03 0.2558E-02 -0.5809E-03 -0.2252E-03 0.2868E-02 -0.3420E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · ·   | 3 8<br>3 9                                                                                                                                                                            | 2                                                  | 0.5006E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | 3 10<br>3 10<br>3 11                                                                                                                                                                  | 2 2 2                                              | -0.7573E-04 0.6815E-03 0.6056E-03 -0.7572E-04 0.3646E-02 0.4083E-03 -0.3988E-05 0.2965E-02 -0.1973E-03 ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 3 11<br>3 12<br>3 12                                                                                                                                                                  | 2 2 2                                              | 0.4040E-03 0.3162E-02 -0.4086E-03 -0.2773E-03 0.3238E-02 0.1978E-03 0.1065E-08 0.6058E-03 -0.7571E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | 3 13<br>3 14                                                                                                                                                                          | 2 2                                                | 0.4200E-04 0.3608E-02 -0.4837E-03 -0.4200E-04 0.3003E-02 0.2734E-03 0.2597E-02 0.5005E-04 0.1432E-02 -0.1790E-03 0.2771E-02 -0.2319E-04 0.6073E-03 0.2039E-02 0.2547E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 3 14<br>3 15<br>3 15                                                                                                                                                                  | 2                                                  | 0.2941E-03 0.4945E-02 0.2838E-02 -0.3132E-03 0.2906E-02 0.2916E-03 0.2039E-02 0.6073E-03 -0.2547E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • • • • • • • • • • • • • • • • • • • • | 3 16<br>3 16<br>4 1                                                                                                                                                                   | 2<br>2<br>.2 0.304057E+05                          | 0.1703E-02 0.3536E-02 -0.2838E-02 -0.3364E-03 0.2929E-02 -0.2916E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | 6 1<br>4 2<br>6 2                                                                                                                                                                     | 2 0.307812E+05<br>2 0.405860E+05<br>2 0.419795E+05 | 0.1383E+04 -0.3969E+04 -0.1755E+05 0.9638E+03 -0.3969E+04 0.0 0.1983E+04 0.0 -0.2340E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 43<br>6 3<br>4 4                                                                                                                                                                      | 2 0.135441E+05<br>2 0.179892E+05<br>2 0.585200E+05 | 0.1229E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         | 6 4<br>5 5                                                                                                                                                                            | 2 0.628994E+05<br>2 0.260525E+05<br>2 0.287868E+05 | 0.4265E+05 0.5723E+03 -0.2664E+05 0.7109E+04 0.5723E+03 0.0 0.1978E+04 0.0 0.1500E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | 4 6<br>6 6                                                                                                                                                                            | 2 0.245984E+05<br>2 0.290347E+05                   | 0.1423E+C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 000000000000000000000000000000000000000 | 2 3TRE 5S/S1<br>0.9512E+00<br>0.9366E+00<br>0.9312E+00<br>0.9014E+00<br>0.9014E+00<br>0.6762E+00<br>0.7228E+00<br>0.7228E+00<br>0.7544E+00<br>0.9390E+00<br>0.9399E+00<br>0.90738E+00 | 0.1013E+01                                         | 1 TO 172 MOST CRITICAL CONSTRAINT = -0.2026535E+00 0.3200E+00 0.9796E+00 0.9959E+00 0.1040E+01 0.1177E+01 0.3355E+00 0.9776E+00 0.3246E+00 0.9560E+00 0.9926E+00 0.1005E+01 0.1160E+01 0.3999E+00 0.9875E+00 0.3246E+00 0.9944E+00 0.9939E+00 0.1061E+01 0.1160E+01 0.3999E+00 0.9560E+00 0.3200E+00 0.9944E+00 0.9939E+00 0.1061E+01 0.1160E+01 0.3999E+00 0.9560E+00 0.2959E+00 0.9565E+00 0.9951E+00 0.105E+01 0.1129E+01 0.5149E+00 0.9565E+00 0.2959E+00 0.9565E+00 0.9951E+00 0.1005E+01 0.1136E+01 0.4907E+00 0.9442E+00 0.5067E+00 0.9339E+00 0.1005E+01 0.1136E+01 0.4907E+00 0.9442E+00 0.5067E+00 0.8779E+00 0.8926E+00 0.1007E+01 0.1049E+01 0.8159E+00 0.8779E+00 0.5062E+00 0.8779E+00 0.9339E+00 0.1061E+01 0.1026E+01 0.909E+00 0.9212E+00 0.5628E+00 0.7803E+00 0.8367E+00 0.1019E+01 0.9812E+00 0.1181E+01 0.3250E+00 0.1194E+01 0.2769E+00 0.9865E+00 0.1050E+01 0.9785E+00 0.1180E+01 0.3250E+00 0.1208E+01 0.2269E+00 0.9939E+00 0.1050E+01 0.99812E+00 0.1160E+01 0.3250E+00 0.12193E+01 0.2769E+00 0.9939E+00 0.1050E+01 0.9552E+00 0.1181E+01 0.3250E+00 0.1207E+01 0.2252E+00 0.9979E+00 0.1043E+01 0.9552E+00 0.1181E+01 0.3250E+00 0.1204E+01 0.2332E+00 0.9973BE+00 0.1047E+01 0.9552E+00 0.1180E+01 0.3250E+00 0.1204E+01 0.2332E+00 0.9973BE+00 0.1047E+01 0.9552E+00 0.1180E+01 0.3250E+00 0.1204E+01 0.2332E+00 0.9973BE+00 0.1047E+01 0.9552E+00 0.1180E+01 0.3250E+00 |

|           | •      |                                                | ''            |                                       |          |                |                                       |                                     |                                       |                                 |                          |                          |                          |                          |                                                                                        |
|-----------|--------|------------------------------------------------|---------------|---------------------------------------|----------|----------------|---------------------------------------|-------------------------------------|---------------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------------------------------------------------------|
|           | 6      | 3                                              | 2             | ٥                                     | . 179    | 1872E+         | 0.5                                   | 0.1730E                             | +05 0-5816F                           | +04 -0.55128                    | +04 0.76                 | 91E+04 0.58              | 16E+04 0.0               |                          |                                                                                        |
|           | 4      | 4                                              | 2             |                                       |          | 200E+          |                                       | 0 . 3554E                           |                                       | -0.2684E                        |                          |                          | • • • • • • • •          |                          |                                                                                        |
|           | 6      | 4                                              | 2             | . 0                                   | .026     | 3994E+         | 05                                    | 0 . 4265E                           |                                       | +03 -0.2684E                    | +05 0.71                 | .09E+04 0+57             | 23E+03 0.0               |                          |                                                                                        |
|           | 4      | 5                                              | 2             |                                       |          | )525E+         |                                       | 0.1978E                             |                                       | U. 1 500E                       |                          |                          |                          |                          |                                                                                        |
|           | 6      | 5                                              | 2             |                                       |          | 868E+          |                                       | J-1423E                             |                                       | +04 0.1500E                     |                          | 25E+05 0.57              | 04E+04 0.0               |                          |                                                                                        |
|           | 4      | 6                                              | 2             |                                       |          | 9846+          | 05                                    | 0.2396E                             | F05 0∙0                               | -0.32275                        |                          | 48E+04 -0.26             | 005104 0 0               |                          |                                                                                        |
|           | 6      | 6                                              | 2             | U                                     | . 290    | )347E+         | 05                                    | 0.5/10E                             | FUS -U.200UE                          | +04 -0.32276                    | +04 0.31                 | 405704 -0420             | 002+04 0+0               |                          |                                                                                        |
| 1         | 172 ST | FE 35 /S                                       | TRAIN C       | ON S.T.                               | RAIN     | TS:            |                                       | 1                                   | TO 172                                | MOST CRITI                      | CAL CONSTRAI             | NT= -0.20265             | 35E+00                   |                          |                                                                                        |
| •         |        | 2E+00                                          | 0.13496       |                                       |          | ITULE          | +01 0.32                              | 00E+00                              | 0.5876E+00                            | 0.9598E+00                      | 0.1040E+01               | 0.1177E+01               | 0.3355E+00               | 0.9796E+00               |                                                                                        |
|           | 0.936  | 6E +00                                         | 0.10138       | + 01                                  | ٥.       | 1164E          | +01 0.38                              | 44E+00                              | 0.9796E+00                            | 0.9951E+00                      | 0.1005E+01               | 0 • 1 1 60 E + 0 L       | 0.3999E+00               | 0-9875E+00               |                                                                                        |
|           |        | 2E+00                                          | 0.1049        |                                       |          | 1154E          |                                       | 17E+00                              | 0.9560E+00                            | 0.9926E+00                      | 0.1007E+01               | 0.1134E+01               | 0.4971E+00               | 0.9945E+00               |                                                                                        |
|           |        | 9E+00                                          | 0.11020       |                                       |          | 1180E          |                                       | 46E+00                              | 0.9944E+00                            | 0.9393E+00                      | 0.1061E+01               | 0-1160E+01               | 0.3999E+00               | 0.9560E+00               |                                                                                        |
|           |        | 4E.+00                                         | 0 • 1 0 9 9 8 |                                       |          | TIBLE          |                                       | 00E+00                              | 0.9442E+00<br>0.9565E+00              | 0.1008E+01<br>0.9951E+00        | 0.9916E+00<br>0.1005E+01 | 0.1129E+01<br>0.1136E+01 | 0.5149E+00<br>0.4907E+00 | 0.9565E+00<br>0.9442E+00 |                                                                                        |
|           | 0.888  | 2E+00                                          | 0.11126       |                                       |          | 1188E<br>1154E |                                       | 59E+00<br>17E+00                    | 0.9212E+00                            | 0.8926E+00                      | 0.1107E+01               | 0.1049E+01               | 0.8159E+00               | 0.8779E+00               |                                                                                        |
| *         |        | 8E +00                                         | 0.1277        |                                       |          | 1132E          |                                       | 67E+00                              | 0.8779E+00                            | 0.9393E+00                      | 0.1061E+01               | 0.1026E+01               | 0.9009E+00               | 0.9212E+00               |                                                                                        |
|           |        | 4E+00                                          | 0.65888       |                                       |          | 9054E          |                                       | 28E+00                              | 0.7803E+00                            | 0.8367E+00                      | 0.1019E+01               | 0.9812E+00               | 0-1181E+01               | 0-3200E+00               |                                                                                        |
|           |        | 4E+00                                          | 0.9923        |                                       |          | 1008E          |                                       | 94E+01                              | 0.2718E+00                            | 0.9890E+00                      | 0.1022E+01               | 0.9785E+00               | 0.1180E+01               | 0.3250E+00               |                                                                                        |
|           |        | 0E +00.                                        | 0.99516       |                                       |          | 1005E          |                                       | 93E+01                              | 0.2769E+00                            | 0.9865E+00                      | 0.1019E+01               | 0.9812E+00               | 0-1160E+01               | 0.4005E+00               |                                                                                        |
|           |        | 9E+00                                          | 0.92026       |                                       |          | 1080E          |                                       | 08E+01                              | 0.2209E+00                            | 0.9685E+00                      | 0.1050E+01               | 0.9505E+00               | 0.1145E+01               | 0.4565E+00               |                                                                                        |
|           |        | 5E+00                                          | 0.95098       |                                       |          | 1049E          |                                       | 93E+01                              | 0.2769E+00                            | 0.9399E+00                      | 0.1043E+01               | 0.9572E+00               | 0-1181E+01               | 0.3200E+00               |                                                                                        |
|           | 0.973  |                                                | 0.99078       |                                       |          | 1009E          |                                       | 07E+01                              | 0.2252E+00                            | 0.9779E+00                      | 0.1047E+01               | 0.9529E+00               | 0-1179E+01               | 0.3280E+00               |                                                                                        |
|           | 0.923  | 9E +00                                         | 0.99518       |                                       |          | 1005E<br>9657E |                                       | 04E+01                              | 0.2332E+00<br>-0.5079E-01             | 0.9738E+00<br>0.8463E+00        | 0.1282E+01<br>0.1199E+01 | 0.7179E+00<br>0.8013E+00 | 0.1160E+01<br>0.1200E+01 | 0.4005E+00<br>0.2486E+00 |                                                                                        |
|           |        | 3E +0 0                                        | 0.95098       |                                       |          | 1049E          |                                       |                                     | -0.2027E+00                           | 0.9237E+00                      | 0.7538E+00               | 0.6642E+00               | 0.1200E+01               | 0.4968E+00               |                                                                                        |
|           |        | 7E+00                                          | 0.7677        |                                       | •        | 10476          | . 01 0113                             | 216,01                              | -0120212100                           | 0172372700                      | 0.13305.00               | 0100425100               | 0103012100               | 0143002.00               |                                                                                        |
|           |        |                                                |               |                                       |          |                |                                       |                                     |                                       |                                 | •                        |                          |                          |                          |                                                                                        |
|           |        |                                                | Y CONSTR      | RAIN                                  | TS       |                |                                       | 173                                 | TC 173                                | MOST CRITI                      | CAL CONSTRAI             | NT= 0.40698              | 98E-02                   |                          |                                                                                        |
|           | 0.497  | 0E-02                                          |               |                                       |          |                |                                       |                                     |                                       |                                 |                          |                          |                          |                          |                                                                                        |
|           | . 0    | CONS                                           | TRAINTS       | OUT                                   | ٦e       | 0              | CHITOEE                               | POINT=                              | 0.0                                   |                                 |                          |                          |                          |                          |                                                                                        |
| • • • • • | . •    | 20113                                          | 1007012       |                                       |          | •              | COTSIT                                | -01111-                             | •••                                   |                                 |                          |                          |                          | •                        |                                                                                        |
|           | 0      | CONS                                           | TRAINTS       | JUT                                   | ΩF.      | 0              | CUTOFF                                | POINT=                              | 0.0                                   |                                 |                          |                          |                          |                          |                                                                                        |
|           |        | 6015                                           | TOATHTC       | 0.17                                  | 0.5      | . 70           | CHICEE                                |                                     | A 07077CC                             |                                 |                          |                          |                          |                          |                                                                                        |
|           | 50_    | LUNS                                           | TRAINTS.      | 9                                     |          | 112            | 14                                    | =TMIC9                              | 0.879735E<br>24                       | +UU<br>29                       | 34                       | 39                       | 44                       | 49                       |                                                                                        |
|           |        | 54                                             |               | 59                                    |          |                | 61                                    | 64                                  | 69                                    | 70                              | 71                       | 39<br>74                 | 75                       | 81                       |                                                                                        |
|           |        | 82                                             |               | 84                                    |          |                | 85                                    | 86                                  | 90                                    | 95                              | 100                      | 1 05                     | 110                      | 115                      |                                                                                        |
|           |        |                                                |               |                                       |          |                | 130                                   | 135                                 | 140                                   | 145                             | 148                      | 150                      | 155                      |                          |                                                                                        |
|           |        |                                                |               | 123                                   |          |                |                                       |                                     |                                       |                                 |                          |                          |                          |                          |                                                                                        |
|           |        | 120<br>158                                     |               | 125<br>160                            |          |                | 161                                   | 165                                 | 167                                   | 168                             | 169                      | i 70                     | iřī                      | 156<br>172               |                                                                                        |
|           |        | 158                                            |               | 160                                   |          |                | 161                                   | 165                                 | 167                                   | 168                             |                          |                          | iří                      | 172                      |                                                                                        |
|           | 31     | 158                                            | TRAINTS       | 160<br>0UT                            | 0F       |                | 161<br>RETAINED                       | 165<br>DUE TO                       | 167<br>VARIABLE LI                    | i68<br>NKING                    | 169                      | 170                      | 171                      |                          |                                                                                        |
|           | 31     | 158<br>CONS                                    | TRAINTS       | 160<br>BUT                            | OF       |                | 161<br>RETAINED<br>19                 | 165<br>DUE TO<br>39                 | 167<br>VARIABLE LI                    | 168<br>NKING<br>54              | 169                      | 170                      | 171                      |                          |                                                                                        |
|           | 31     | 158<br>CONS<br>4<br>75                         | TRAINTS       | 160<br>0UT<br>9                       | OF       | 50             | 161<br>RETAINED<br>19<br>82           | 165<br>DUE TO<br>39<br>84           | VARIABLE LI                           | 168<br>NKING<br>54<br>90        | 169<br>- 61<br>95        | 170<br>64<br>105         | 171<br>71<br>115         | 74<br>130                | <del>- ندا</del><br>ندا                                                                |
|           | 31     | 158<br>CONS<br>4<br>75<br>145                  | TRAINTS       | 160<br>BUT                            | OF       | 50             | 161<br>RETAINED<br>19                 | 165<br>DUE TO<br>39                 | 167<br>VARIABLE LI                    | 168<br>NKING<br>54              | 169                      | 170                      | 171                      |                          | 31                                                                                     |
|           | 31     | 158<br>CONS<br>4<br>75                         | TRAINTS       | 160<br>0UT<br>9                       | OF       | 50             | 161<br>RETAINED<br>19<br>82           | 165<br>DUE TO<br>39<br>84           | VARIABLE LI                           | 168<br>NKING<br>54<br>90        | 169<br>- 61<br>95        | 170<br>64<br>105         | 171<br>71<br>115         | 74<br>130                | 31                                                                                     |
|           | 31     | 158<br>CONS<br>4<br>75<br>145<br>172           | TRAINTS       | 00T<br>9<br>81<br>148                 | OF       | 50             | 161<br>RETAINED<br>19<br>82           | 165<br>DUE TO<br>39<br>84<br>155    | VARIABLE LI                           | 168<br>NKING<br>54<br>90<br>161 | 169<br>- 61<br>95        | 170<br>64<br>105         | 171<br>71<br>115         | 74<br>130                | 31                                                                                     |
|           | 31     | 158<br>CONS<br>4<br>75<br>145<br>172           | <u> </u>      | 00T<br>9<br>81<br>148                 | OF       | 50             | 161<br>RETAINED<br>19<br>82<br>150    | 165<br>DUE TO<br>39<br>84<br>155    | 167<br>VARIABLE LI<br>44<br>85<br>158 | 168<br>NKING<br>54<br>90<br>161 | 169<br>- 61<br>95        | 170<br>64<br>105         | 171<br>71<br>115         | 74<br>130                | 31                                                                                     |
|           | 31     | 158<br>CONS<br>75<br>145<br>172<br>CONS<br>173 | TRAINTS       | 00T<br>9<br>81<br>148                 | OF<br>OF | 50             | RETAINED<br>19<br>82<br>150<br>CUTOFF | DUE TO<br>39<br>84<br>155<br>PCINT= | 167<br>VARIABLE LI<br>44<br>85<br>158 | 168<br>NKING 54<br>90<br>161    | 169<br>- 61<br>95        | 170<br>64<br>105         | 171<br>71<br>115         | 74<br>130                | 13<br>13<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 |
|           | 1      | 158<br>CONS<br>75<br>145<br>172<br>CONS<br>173 | <u> </u>      | 00T<br>9<br>81<br>148                 | OF<br>OF | 50             | RETAINED<br>19<br>82<br>150<br>CUTOFF | 165<br>DUE TO<br>39<br>84<br>155    | 167<br>VARIABLE LI<br>44<br>85<br>158 | 168<br>NKING 54<br>90<br>161    | 169<br>- 61<br>95        | 170<br>64<br>105         | 171<br>71<br>115         | 74<br>130                | 131                                                                                    |
|           | 1      | 158<br>CONS<br>75<br>145<br>172<br>CONS<br>173 | TRAINTS       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | OF<br>OF | 50             | RETAINED<br>19<br>82<br>150<br>CUTOFF | DUE TO<br>39<br>84<br>155<br>PCINT= | 167<br>VARIABLE LI<br>44<br>85<br>158 | 168<br>NKING 54<br>90<br>161    | 169<br>- 61<br>95        | 170<br>64<br>105         | 171<br>71<br>115         | 74<br>130                | 131                                                                                    |

AVAILABLE INTEGER ARRAY = 2500 DVERLAY ANALYS REQUIREMENT = 812

## POSTURE TABLE

|                               | RETAINED      | TOTAL       | TYPE | MEMBER   | NODE DIRECTION                          | L.C. | MODE     | CONSTRAINT VALUES |
|-------------------------------|---------------|-------------|------|----------|-----------------------------------------|------|----------|-------------------|
|                               | STRESS/STRAIN | CONSTRAINTS | MOST | CRITICAL | = -0.202653E+0C                         |      |          |                   |
|                               | 1             | 4           | 3    | 1        | *************************************** | •    | - 3      | 0.319969E+00      |
|                               | . 5           | á           | Ĭ    | 5        |                                         | ī    | <b>~</b> | 0.335487E+00      |
|                               |               | 19          | ă    | <u> </u> |                                         | •    | <b>4</b> | 0.399856E+00      |
| en ' de reserva de la colonia |               | 39          | 3    | 5        |                                         |      | 3        | 0.399880E+00      |
|                               |               |             | 3    | ٥        |                                         |      | . 3      |                   |
|                               | . э           | 4.4         | . 3  | . 9      |                                         |      |          | 0.319997E+00      |
|                               | õ             | 54          | 3    | 11       |                                         | 1    | 3        | 0.295887E+00      |
|                               |               | 61          | 3    | 13       |                                         |      | -2       | 0.676179E+00      |
|                               | 8             | 64          | 3    | 13       |                                         | L    | 3        | 0.421723E+00      |
|                               | 9             | 71          | 3    | 15       |                                         | 1    | -2       | 0.722825E+00      |
| •                             | 10            | . 74        | . 3  | 15       |                                         | 1    | 3        | 0.506687E+00      |
|                               | 11            | 75          | 3    | 15 '     |                                         | 1    | Ã        | 0.877862E+00      |
|                               | 12            | 81          | Ā    | 1        |                                         | ĭ    | i        | 0.754393E+00      |
|                               | 13            | 82          | À    | ,        |                                         | ī    | i        | 0.668771E+00      |
|                               | 14            | 84          | À    | · Ā      |                                         | ;    |          | 0.562814E+00      |
|                               | iš            | 85          | Ä    | . 2      |                                         | •    | •        |                   |
|                               | 16            | 90          | 7    | 3        |                                         |      |          | 0.780285E+00      |
|                               | 19            |             | ې    | 4        | •                                       | Š    | 3        | 0.319966E+00      |
|                               | 1.            | 95          | 3    | ج        |                                         | 2    | 3        | 0.271844E+00      |
|                               | 18            | 105         | 3    | 4        |                                         | . 2  | 3        | 0.276867E+00      |
| •                             | 19            | 115         | 3    | 6 .      |                                         | 2    | 3        | 0.220887E+00      |
|                               | 20            | 130         | 3    | 9        |                                         | 2    | 3        | 0.320004E+00      |
|                               | 21            | 145         | . 3  | 12       |                                         | 2    | 3        | 0.233213E+00      |
|                               | 22            | 148         | 3    | 13       |                                         | 5    | . 2      | 0.717949E+00      |
|                               | 23            | 150         | • 3  | iš       |                                         | 2    | 7        | 0.4004626400      |

|                                                                                                                                                        | 4 J<br>5 44<br>6 5.7<br>7 6 8<br>9 7,7<br>10 7,112 8<br>13 8<br>14 8<br>15 8;<br>16 9,17 9<br>18 10<br>19 11<br>20 13<br>21 14<br>22 14<br>22 14<br>22 15<br>25 15<br>26 16<br>27 16<br>29 16<br>30 17 | 33333334444333333333333333444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 9 1 1 3 3 1 5 5 1 5 1 5 4 6 9 2 2 3 3 1 4 5 1 5 6 1 2 4 6 6 1 5 5 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 | •                              |                              | 111111111111111111111111111111111111111              | 333323232332431111                                                               | 0.399856E+0 0.399880E+0 0.319997E+0 0.295887E+0 0.676179E+0 0.722825E+0 0.506687E+0 0.754393E+0 0.754393E+0 0.7682814E+0 0.780285E+0 0.271844E+0 0.2718444E+0 0.2718444E+0 0.2718444E+0 0.2718444E+0 0.2718444E+0 0.27184444+0 0.27184444+0 0.27184444 | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----|
| FREQUE                                                                                                                                                 | NCY CONSTRAIN<br>32 17                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRITICAL =                                                                                        | 0.406990E-02                   |                              |                                                      | -1                                                                               | 0.406990E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                         |     |
| MOD                                                                                                                                                    | E STANDS FOR NEGATIVE=LCW FOR STRESS 1. = Y.GN 3 = TRA 4 = SHE 5 = FIR 6 = SEC 7 = TSA                                                                                                                 | THE FOLLOWING RE BOUND IN CONSTRAINT IN MISES EQUIDINAL STAIN THE FORM THE | POSITIVE=UPP<br>(CODE+1)<br>VALENT_STRES<br>TRAIN<br>AIN<br>OF STRESS IN<br>OF STRESS<br>ERION    | ER BOUND S NTERACTION          | 3ER                          |                                                      |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |     |
| AVAILABLE REAL ARRA                                                                                                                                    |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |                                | -                            |                                                      |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | 132 |
| ANALYSIS TIME DAY ASSEMBLE MASSA ASSEMBLE LOAD DECOMPOSE STIF SOLUTION OF DI FREQUENCY ANAL FLUTIER ANALYS CONSTRAINT EVA POSTUFE TABLE SELECTIVE GRAC | TA STIFFNESS MAT VECTORS FNESS MATRIX SPLACEMENTS YSIS IS LUATION SET IENT EVALUATI                                                                                                                    | RIX 0.985<br>0.519<br>0.239<br>0.271<br>0.323<br>0.0<br>0.160<br>0.601<br>CN 0.486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 413E-01<br>714E-01<br>563E-02<br>606E-02<br>944E-01<br>202E+00<br>044E-01<br>03BE+00              |                                |                              |                                                      |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |     |
|                                                                                                                                                        | Market Market                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   | FUR OVER AN ANA                |                              |                                                      |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |     |
| SCALING FA                                                                                                                                             | CTUR 0.12                                                                                                                                                                                              | 20265E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SCAL                                                                                              | END OVERLAY ANA<br>ED WEIGHT 0 |                              | 228E+05                                              |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |     |
|                                                                                                                                                        |                                                                                                                                                                                                        | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   | SIDE CONSTRAINTS               | -                            |                                                      |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |     |
| RELATIVE MOVE LIMIT                                                                                                                                    | LOWER                                                                                                                                                                                                  | 2000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UPPER                                                                                             | VARIA                          |                              | LOWER                                                | ACTUAL                                                                           | UPPER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            | •   |
| DIS. 3 DIS. 5 DIS. 7 DIS. 9 L1                                                                                                                         | 0.8000E-01<br>0.2000E-01<br>0.1500E+00<br>0.4000E-01<br>0.2000E-01<br>0.1200E+00<br>0.1200E+00                                                                                                         | 0.1000E+00<br>0.7500E+00<br>0.2000E+00<br>0.1000E+00<br>0.6000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2000E+01<br>0.5100E+00<br>0.5100E+01<br>0.1010E+01<br>0.5100E+01<br>0.3000E+01<br>0.3000E+01    | DIS.<br>DIS.<br>DIS.<br>DIS.   | 2<br>4<br>6<br>8<br>10<br>12 | 0.2500E+00<br>0.5000E-01<br>0.2000E-01<br>0.1200E+00 | 0.3500E+00<br>0.1250E+01<br>0.2500E+00<br>0.1000E+00<br>0.6000E+00<br>0.6000E+00 | 0.1260E+01<br>0.1260E+01<br>0.5100E+00<br>0.3000E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |     |
| MOST VIOLATED SIDE                                                                                                                                     | CONSTRAINT -                                                                                                                                                                                           | DESIGN VAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IABLE 4                                                                                           | CONSTRATAL                     |                              |                                                      | ٠,                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                          |     |

SCALED WEIGHT 0.519228E+05

U & AMULUUL TUA

0.2000E+00

RELATIVE MOVE LIMIT

## SIDE CONSTRAINTS

| <u>.</u> .   |                                                | VARIABLE<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | LOWER<br>BCUND                           | ACTUA<br>SIZ                                                               |                                                     | UPPER<br>BOUND                                 |                                              | VARIA<br>NUM         | BER                          |                         | LOWER<br>BOUND                                 | ACTU<br>SI                                               |                               | UPPER<br>BOUND                                    |                                              |           |
|--------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------|------------------------------|-------------------------|------------------------------------------------|----------------------------------------------------------|-------------------------------|---------------------------------------------------|----------------------------------------------|-----------|
|              | <b>₩</b> * * * * * * * * * * * * * * * * * * * | DIS. 1<br>DIS. 3<br>DIS. 5<br>DIS. 7<br>DIS. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.800<br>0.200<br>0.150<br>0.400<br>0.200<br>0.120 | 0E-01<br>0E-01<br>0E-01<br>0E-01         | 0.4000E+0<br>0.1000E+0<br>0.7500E+0<br>0.2000E+0<br>0.1000E+0<br>0.6000E+0 | 0 0.510<br>0 0.200<br>0 0.101<br>0 0.510<br>0 0.300 | 00E+01<br>00E+01<br>00E+01<br>00E+01<br>00E+01 |                                              | DIS.<br>DIS.<br>DIS. | 2<br>4<br>6<br>8<br>10<br>12 | 0.250<br>0.500<br>0.200 | 00E-01<br>00E+00<br>00E-01<br>00E-01<br>00E+00 | 0.3500E+<br>0.1250E+<br>0.2500E+<br>0.1000E+<br>0.6000E+ | 01 0-20<br>00 0-12<br>00 0-51 | 60E+01<br>000E+01<br>60E+01<br>100E+00<br>100E+01 |                                              |           |
| -            | MOST. VI DI                                    | ATED SIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CONSTRA                                            | INT -                                    | DESIGN V                                                                   | ARIABLE                                             | 4                                              | CONST                                        | RAINT                | VALU                         | E (                     | .6000E                                         | +00                                                      |                               |                                                   | •                                            |           |
|              | *                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                          |                                                                            |                                                     | EN.                                            | TER OVERL                                    | AY PRE               | DLI                          |                         |                                                |                                                          |                               |                                                   |                                              |           |
|              | AVAILABL                                       | E REAL ARR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AY =<br>ARRAY=                                     | 7500<br>2500                             | OVERLAY<br>OVERLAY                                                         | PREDUI<br>PREDUI                                    | REQUIRE                                        | MENT= 4                                      | 796<br>770           |                              |                         |                                                |                                                          |                               |                                                   |                                              |           |
| . <u>-</u> - |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                          |                                                                            |                                                     |                                                |                                              |                      |                              |                         |                                                |                                                          |                               |                                                   |                                              |           |
| <u> </u>     |                                                | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                                          |                                                                            |                                                     |                                                |                                              |                      |                              |                         |                                                |                                                          |                               |                                                   | e deservices approximations and              |           |
| _            |                                                | The second secon |                                                    |                                          |                                                                            |                                                     |                                                |                                              |                      |                              |                         |                                                |                                                          |                               | • . • • •                                         | <u>-</u>                                     | . a. Mesa |
|              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | ·                                        |                                                                            |                                                     |                                                |                                              |                      |                              |                         |                                                | -                                                        | . <u></u>                     |                                                   |                                              |           |
|              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                          |                                                                            |                                                     |                                                |                                              |                      |                              |                         |                                                |                                                          |                               |                                                   | <u> </u>                                     |           |
|              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                          |                                                                            |                                                     |                                                |                                              |                      |                              |                         |                                                |                                                          |                               | <del>-</del>                                      |                                              | ······    |
| •••••        |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                          |                                                                            |                                                     |                                                |                                              |                      |                              |                         |                                                |                                                          |                               |                                                   |                                              |           |
| • • •        | · ·                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                          | e em e juli                                                                |                                                     |                                                |                                              |                      |                              |                         |                                                | -                                                        |                               |                                                   |                                              |           |
|              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                          |                                                                            |                                                     |                                                |                                              |                      |                              |                         |                                                |                                                          |                               |                                                   |                                              | ••        |
|              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                          |                                                                            |                                                     |                                                |                                              |                      |                              |                         |                                                |                                                          |                               | -                                                 |                                              |           |
|              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                          |                                                                            | === D U                                             |                                                | CPTI                                         |                      |                              | 22 22 2                 |                                                |                                                          |                               |                                                   |                                              |           |
|              | DUAL                                           | VARIABLES<br>0.887941<br>0.887941<br>0.887941<br>0.887941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E+04<br>E+04<br>E+04                               | 0.88754<br>0.88754<br>0.88754<br>0.88754 | t:+04 0.<br>E+04 0.                                                        | 88794E+0<br>88794E+0<br>88794E+0<br>88794E+0        | 4 0.88                                         | 8794E+04<br>8794E+04<br>8794E+04<br>8794E+04 | 0.88<br>0.88         | 794E<br>794E<br>794E<br>794E | +04<br>+04              | 0.8879<br>0.8879<br>0.8879<br>0.8879           | 4E+04 0                                                  | .88794E<br>.88794E<br>.88794E | 04 0.                                             | 88794E+0<br>88794E+0<br>88794E+0<br>88794E+0 | )4<br>)4  |
|              | PHASE CE                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L OBJ.                                             |                                          | WEIGHT                                                                     |                                                     | ZMCD                                           | , ,                                          | NACT                 |                              | NPLAN                   | •                                              |                                                          | NALFA                         | NEWTON                                            |                                              |           |

thte

# ==== DUALI CPTIMIZER =====

|                                                                                                       | /ARIABLES : 0.88794E+0 0.88794E+0 0.88794E+0 0.88794E+0                                                                                                            | 4 0.8879<br>4 0.8879                                                                    | 4E+04 0.88<br>4E+04 0.88                                | 794E+04<br>794E+04 | 0.88794E+04<br>0.88794E+04<br>0.88794E+04<br>0.88794E+04 | 0.8879<br>0.8879<br>0.8879<br>0.8879                          | 4E+04 0.86<br>4E+04 0.88                 | 794E+04<br>794E+04<br>794E+04<br>794E+04 | 0.88794E<br>0.88794E<br>0.88794E        | +04 0.887<br>+04 0.887                 | 794E+04<br>794E+04<br>794E+04<br>794E+04 |                    |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------|----------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------|--------------------|
| PHASE DDM                                                                                             | 1 DUAL                                                                                                                                                             | OBJ.                                                                                    | WEI GHT                                                 | z                  | MCD                                                      | NACT                                                          | NPLAN                                    | ICONJ                                    | NALFA                                   | NEWTON                                 | NDIS                                     | IOIS               |
|                                                                                                       | -0.1720                                                                                                                                                            |                                                                                         | _Q.2313E+05                                             |                    | 73E+01                                                   | 32                                                            | 0                                        | Q                                        | 11                                      |                                        | 82                                       | 0                  |
| 1 2                                                                                                   | -0.1477<br>-0.1098                                                                                                                                                 |                                                                                         | 0.2277E+05<br>0.2248E+05                                |                    | 2JE+01<br> 82E+01                                        | 31<br>30                                                      | 0                                        | 0                                        | 14<br>26                                | ŏ                                      | 2                                        | Ö                  |
| i 4                                                                                                   | -0.9786                                                                                                                                                            | E+04                                                                                    | 0.2243E+05                                              | 0 • 26             | 96E+01                                                   | 29                                                            | ŏ                                        | 0                                        | 22                                      | Ō                                      | ō                                        | Ó                  |
| 5                                                                                                     | -0.8654<br>-0.7762                                                                                                                                                 |                                                                                         | 0.2211E+05<br>0.2206E+05                                |                    | 36E+01<br>58E+01                                         | 28<br>27                                                      | 0                                        | Q .                                      | . 7<br>25                               | 0                                      | 3.                                       |                    |
| i 7                                                                                                   | -0.6301                                                                                                                                                            | E+04                                                                                    | 0.2183E+05                                              | 0.21               | 79E+01                                                   | 26                                                            | ŏ                                        | Õ                                        | 12                                      | ŏ                                      | ĭ                                        | Ŏ                  |
| 1 8                                                                                                   | -0.6285                                                                                                                                                            |                                                                                         | 0.2183E+05                                              |                    | 57E+01                                                   | 25<br>24                                                      | 0                                        | 0                                        | 28<br>30                                | 0                                      | 9                                        | 0                  |
| 1 10                                                                                                  | -0.3566<br>-0.3016                                                                                                                                                 |                                                                                         | 0.2134E+05<br>0.2133E+05                                |                    | 31E+01<br>199E+01                                        | 23                                                            | y                                        |                                          | 31                                      | ······································ | ŏ                                        | ŏ                  |
| 1 11                                                                                                  | -0.2625                                                                                                                                                            |                                                                                         | 0.2132E+05                                              |                    | 36E+01                                                   | 22                                                            | 0                                        | 0                                        | 9<br>29                                 | 0                                      | 0                                        | 0                  |
| 1 12                                                                                                  | 0.2447<br>0.3767                                                                                                                                                   |                                                                                         | 0.2074E+05<br>0.2075E+05                                |                    | 64E+01<br>32E+01                                         | 21<br>20                                                      | Ö                                        | ŏ                                        | 13<br>15                                | Ŏ.                                     |                                          | ŏ                  |
| 1 14                                                                                                  | 0.9601                                                                                                                                                             | E+04                                                                                    | 0.2086E+05                                              | 0.14               | 12E+01                                                   | Ī9                                                            | Ó                                        | Ö                                        |                                         | 0                                      | 2                                        | 0                  |
| 1 15                                                                                                  | 0.1006<br>0.1289                                                                                                                                                   |                                                                                         | 0.2086E+05<br>0.2085E+05                                |                    | 102E+01                                                  | 18<br>17                                                      | Ö                                        | 0                                        | 8<br>4                                  | ŏ                                      | 5                                        | ŏ                  |
| 1_7                                                                                                   | 0.1290                                                                                                                                                             | E+05                                                                                    | 0.2085E+05                                              | 0.10               | 91E+01                                                   | 16                                                            | <u>0</u>                                 | <u>Q</u>                                 | 3                                       |                                        |                                          | <u>0</u>           |
| 1 18<br>1 19                                                                                          | 0.1562<br>0.1864                                                                                                                                                   |                                                                                         | 0.2083E+05<br>0.2089E+05                                |                    | '39E+00<br>332E+00                                       | 15<br>14                                                      | 0                                        | . 0                                      | 23<br>2                                 | 0                                      | 3<br>3                                   | 9                  |
| 1 20                                                                                                  | 0.1977                                                                                                                                                             | E+05                                                                                    | 0.2088E+05                                              | 0.80               | 85E+00                                                   | 13                                                            | ŏ                                        | ō                                        | 20                                      | ŏ                                      | ō '                                      | Ŏ.                 |
| 1 21                                                                                                  | 0.1977                                                                                                                                                             |                                                                                         | 0.2088E+05                                              |                    | 24E+00<br>599E+00                                        | 12<br>11                                                      |                                          |                                          | 16                                      | <u> </u>                               |                                          | <del></del>        |
| i 23                                                                                                  | 0.1977                                                                                                                                                             |                                                                                         | 0.2088E+05                                              |                    | 86E+00                                                   | iò                                                            | ŏ                                        | ŏ                                        | • • • • • • • • • • • • • • • • • • • • | ŏ                                      | ŏ                                        | ŏ                  |
| 1 24<br>1 25                                                                                          | 0.1993                                                                                                                                                             |                                                                                         | 0.2093E+05<br>0.2105E+05                                |                    | 941E+00<br>371E+00                                       | 9                                                             | Ŏ                                        | 0                                        | 10                                      | 0                                      | 1                                        | 0                  |
| 1 26                                                                                                  | 0.2062                                                                                                                                                             |                                                                                         | 0.2154E+05                                              |                    | 88E+00                                                   | 7                                                             |                                          | ŏ                                        | 19                                      | <del>8</del>                           | <del>-</del> 8                           | <del></del>        |
| 1 27                                                                                                  | 0.2232                                                                                                                                                             |                                                                                         | 0.2167E+05                                              |                    | 73E+00                                                   | 6                                                             | 0                                        | o<br>O                                   | 18                                      | 0                                      | 3                                        | <u> </u>           |
| 1 28                                                                                                  | 0 • 2 2 8 7<br>0 • 2 3 1 9                                                                                                                                         |                                                                                         | 0.2240E+05<br>0.2304E+05                                |                    | 331E+00<br>177E-01                                       | 5<br>4                                                        | 0                                        | 0                                        | 21<br>19                                | Ö                                      | 9                                        | υ ω<br>4. <b>0</b> |
| 1 30                                                                                                  | 0.2326                                                                                                                                                             | E+05                                                                                    | 0.2293E+05                                              | 0.87               | 710E-01                                                  | 3                                                             | ŏ -                                      | ō 1                                      | 0                                       | Ō                                      | 3                                        | 9                  |
| 1 31<br>1 32                                                                                          | 0.2338<br>0.2341                                                                                                                                                   |                                                                                         | 0.2413E+05<br>0.2354E+05                                |                    | 076E-01<br>532E-01                                       | 3<br>2                                                        | 1                                        | 0                                        | 24                                      | 0                                      | 11                                       | • •                |
|                                                                                                       | 0.2341                                                                                                                                                             |                                                                                         | 0.2354E+05                                              | 0.0                |                                                          | . <b>2</b>                                                    |                                          | <u>o</u>                                 | <u> </u>                                | ŏ                                      | 6                                        |                    |
| DUAL 1                                                                                                | VARIABLES :                                                                                                                                                        |                                                                                         |                                                         |                    |                                                          |                                                               |                                          |                                          |                                         |                                        |                                          |                    |
|                                                                                                       | 0.0                                                                                                                                                                | 0.0                                                                                     | 0.0                                                     |                    | 0.0                                                      | 0.0                                                           | 0.0                                      |                                          | 0.0                                     | 0.0                                    |                                          |                    |
|                                                                                                       | 0.0                                                                                                                                                                | 0.0                                                                                     | 0.0                                                     |                    | 0.0                                                      | 0.• 0<br>0 • 0                                                | 0.0                                      |                                          | 0.0                                     | 0.0                                    |                                          |                    |
|                                                                                                       |                                                                                                                                                                    |                                                                                         |                                                         | 341E+04            | 0.0                                                      | 0.0                                                           | 0.0                                      |                                          | 0.0                                     |                                        | 692E+05                                  |                    |
|                                                                                                       | 0.0                                                                                                                                                                | 0.0                                                                                     | 0.60                                                    | J412.04            |                                                          |                                                               |                                          |                                          | 0.0                                     |                                        |                                          |                    |
| PHASE OD                                                                                              | 0.0                                                                                                                                                                | 0.0<br>LBD                                                                              | WEIGHT                                                  |                    | ZMOD                                                     | NACT                                                          | NPLAN                                    | LICONAL                                  | NALFA                                   | NEWTON                                 | NDIS                                     | IDIS               |
|                                                                                                       | 0.0<br>M DUAL<br>0.2341                                                                                                                                            | DBJ.                                                                                    |                                                         |                    | ZMOD<br>532E-01                                          | 2                                                             |                                          | 0                                        | NALFA<br>0                              | NEWTON<br>0                            | ND1s                                     | 9                  |
| PHASE 0.01<br>2 1<br>2 2                                                                              | 0.0<br>M DUAL<br>0.2341                                                                                                                                            | 08J.<br>E+05                                                                            | WEI GHT                                                 |                    | 532E-01                                                  |                                                               | NPLAN                                    |                                          | NALFA                                   | NEWTON                                 | NDIS<br>I                                |                    |
|                                                                                                       | 0.0<br>M DUAL<br>0.2341<br>0.2341                                                                                                                                  | 08J.<br>E+05                                                                            | WEIGHT<br>0.2354E+05                                    | 0.2                | 532E-01                                                  | 2<br>2                                                        |                                          | 0                                        | NALFA<br>0                              | NEWTON<br>0                            | NOIS                                     | 9                  |
| 2 1<br>2 2<br>NUMBER OF                                                                               | 0.0<br>M DUAL<br>0.2341<br>0.2341                                                                                                                                  | 08J.<br>E+05<br>E+05                                                                    | WEI GHT<br>0.2354E+05<br>0.2354E+05                     | 0.2                | 532E-01                                                  | 2<br>2<br>= 10                                                |                                          | 0                                        | NALFA<br>0                              | NEWTON<br>0                            | NOIS                                     | 9                  |
| 2 1<br>2 2<br>Number of<br>Total Num                                                                  | 0.0<br>M DUAL<br>0.2341<br>0.2341<br>RESTARTS                                                                                                                      | 08J.<br>E+05<br>E+05                                                                    | WEIGHT.  0.2354E+05 0.2354E+05 2                        | 0.2                | 10-32E-01<br>HQXAM<br>MQQXAM                             | 2<br>2<br>= 10                                                |                                          | 0                                        | NALFA<br>0                              | NEWTON<br>0                            | NDIS<br>I                                | 9                  |
| 2 1<br>2 2<br>NUMBER OF<br>TOTAL NUM                                                                  | O.O<br>M DUAL<br>O.2341<br>O.2341<br>RESTARTS<br>BER OF O.C.M.                                                                                                     | DHJ.<br>E+05<br>E+05                                                                    | WEIGHT.  0.2354E+05 0.2354E+05 2                        | 0.2                | MAXPH<br>MAXODM<br>NTCE                                  | 2<br>2<br>= 10<br>= 100                                       |                                          | 0                                        | NALFA<br>0                              | NEWTON<br>0                            | NOIS                                     | 9                  |
| 2 1<br>2 2<br>NUMBER OF<br>TOTAL NUM<br>NUMBER OF                                                     | O.O  M DUAL  0.2341 0.2341 RESTARTS  BER OF O.C.M.                                                                                                                 | DHJ.<br>E+05<br>E+05<br>L VARIABL                                                       | WEIGHT.  0.2354E+05 0.2354E+05 2 35 ES 2                | 0.2                | MAXPH<br>MAXODM<br>NTCE                                  | 2<br>2<br>= 10<br>= 100<br>= 32<br>= 13                       |                                          | 0                                        | NALFA<br>0                              | NEWTON<br>0                            | I I                                      | 9                  |
| 2 1 2 2 NUMBER OF TOTAL NUM NUMBER OF NUMBER OF                                                       | DUAL  0.2341 0.2341 0.2341 RESTARTS  HER OF O.C.M. NON-ZERO DUA                                                                                                    | DBJ.<br>E+05<br>E+05<br>L VARIABLE<br>Y PLANES                                          | WEIGHT.  0.2354E+05 0.2354E+05 2 35 ES 2                | 0.24<br>0.0        | MAXPH<br>MAXDDM<br>NTCE<br>NLDV                          | 2<br>2<br>= 10<br>= 100<br>= 32<br>= 13<br>= 0.10             | 2                                        | 0                                        | NALFA<br>0                              | NEWTON<br>0                            | NOIS                                     | 9                  |
| 2 1 2 2 NUMBER OF TOTAL NUM NUMBER OF UMAL OBJE-                                                      | DUAL  0.2341 0.2341 RESTARTS BER OF O.C.M. NON-ZERO DUA DISCONTINUIT CTIVE FUNCTIO                                                                                 | DBJ.<br>E+05<br>E+05<br>L VARIABLE<br>Y PLANES                                          | WEIGHT.  0.2354E+05 0.2354E+05 2 35 ES 2 0.2            | 0.24<br>0.0        | MAXPH<br>MAXODM<br>NTCE<br>NLDV<br>EPSPH                 | 2<br>2<br>= 10<br>= 100<br>= 32<br>= 13<br>= 0.10             | 1<br>2<br>2<br>00 0 GE - 0 4             | 0                                        | NALFA<br>0                              | NEWTON<br>0                            | NOIS                                     | 9                  |
| 2 1 2 2 NUMBER OF TOTAL NUM NUMBER OF UMAL OBJE-                                                      | DUAL  0.2341 0.2341 0.2341 RESTARTS  BER OF O.C.M. NON-ZERO DUA DISCONTINUIT CTIVE FUNCTION PROJECTED) GEVARIABLES: 0.0                                            | DHJ. E+05 E+05  L VÄRIABL! Y PLANES IN ADIENT 0.0                                       | WEIGHT  0.2354E+05 0.2354E+05 2 35 ES 2 0.0             | 0.24<br>0.0        | MAXPH MAXODM NTCE NLDV EPSPH EPSODM                      | 2<br>2<br>= 10<br>= 100<br>= 32<br>= 13<br>= 0.100            | 1 2 2 00 0 0E - 0 4 00 0 0E - 0 3        | 0                                        | NALFA<br>0<br>0                         | NEWTON<br>0<br>0                       | NOIS                                     | 9                  |
| 2 1 2 2 NUMBER OF TOTAL NUM NUMBER OF UMAL OBJE-                                                      | O.O  M DUAL  0.2341 0.2341 RESTARTS  HER OF O.C.M.  NON-ZERO DUA  DISCONTINUIT  CTIVE FUNCTION  PROJECTED) GE  VARIABLES: 0.0 0.0                                  | DHJ. E+05 E+05  L VARIABLE Y PLANES ON ADIENT 0.0                                       | WEIGHT  0.2354E+05 0.2354E+05 2 35 ES 2 0.0             | 0.24<br>0.0        | MAXPH MAXODM NTCE NLDV EPSPH EPSODM                      | 2<br>= 10<br>= 100<br>= 32<br>= 13<br>= 0.100<br>= 0.100      | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  | 0                                        | NALFA<br>0<br>0                         | NEWTON 0 0                             | I I                                      | 9                  |
| 2 1 2 2 NUMBER OF TOTAL NUM NUMBER OF UMAL OBJE-                                                      | DUAL  0.2341 0.2341 0.2341 RESTARTS  BER OF O.C.M. NON-ZERO DUA DISCONTINUIT CTIVE FUNCTION PROJECTED) GEVARIABLES: 0.0                                            | DHJ. E+05 E+05  L VÄRIABL! Y PLANES IN ADIENT 0.0                                       | WEIGHT  0.2354E+05 0.2354E+05 2 35 ES 2 0.6             | 0.24<br>0.0        | MAXPH MAXODM NTCE NLDV EPSPH EPSODM                      | 2<br>2<br>= 10<br>= 100<br>= 32<br>= 13<br>= 0.100            | 1 2 2 00 0 0E - 0 4 00 0 0E - 0 3        | 0                                        | NALFA<br>0<br>0                         | NEWTON 0 0 0                           | NOIS                                     | 9                  |
| 2 1 2 2 NUMBER OF TOTAL NUM NUMBER OF OUAL OBJE NORM OF (                                             | DOOD  M DUAL  0.2341  0.2341  RESTARTS  BER OF G.C.M.  NON-ZERG DUA  DISCONTINUIT  CTIVE FUNCTION  PROJECTED) GE  VARIABLES: 0.0 0.0 0.0                           | DBJ. E+05 E+05  L VARIABLE Y PLANES IN ADIENT 0.0 0.0 0.0                               | WEIGHT  0.2354E+05 0.2354E+05 2 35 ES 2 0.6             | 0.2<br>0.0         | MAXPH MAXODM NTCE NLDV EPSPH EPSODM                      | 2<br>2<br>= 10<br>= 100<br>= 32<br>= 13<br>= 0.100<br>= 0.100 | 1<br>2<br>00 0 0E - 0 4<br>00 0 0E - 0 3 | 0                                        | 0<br>0<br>0                             | NEWTON 0 0 0                           |                                          | 9                  |
| 2 1 2 2 NUMBER OF TOTAL NUM NUMBER OF NUMBER OF DUAL OBJE NORM OF ( DUAL ANALYSIS                     | O.O  M DUAL  0.2341 0.2341 RESTARTS  HER OF O.C.M.  NON-ZERO DUA  DISCONTINUIT  CTIVE FUNCTION  PROJECTED) GE  VARIABLES:  0.0  0.0  0.0  0.0                      | E+05<br>E+05<br>L VARIABLEY PLANES<br>ON ADIENT O.0 O.0 O.0 O.0                         | WEIGHT  0.2354E+05 0.2354E+05 2 35 ES 2 0.6             | 0.2<br>0.0         | MAXPH MAXODM NTCE NLDV EPSPH EPSODM                      | 2<br>2<br>= 10<br>= 100<br>= 32<br>= 13<br>= 0.100<br>= 0.100 | 1<br>2<br>00 0 0E - 0 4<br>00 0 0E - 0 3 | 0                                        | 0<br>0<br>0                             | NEWTON 0 0 0                           |                                          | 9                  |
| 2 1 2 2 NUMBER OF TOTAL NUM NUMBER OF NUMBER OF DUAL OBJE NORM OF ( DUAL ANALYSIS NUMBER OF           | DUAL  O.2341  O.2341  RESTARTS  BER DF O.C.M.  NON-ZERO DUA  DISCONTINUIT  CTIVE FUNCTION  PROJECTED) GE  VARIABLES:  O.O  O.O  O.O  O.O  O.O  O.O  O.O  O         | DHJ. E+05 E+05  AL VARIABLE Y PLANES ON ADJENT  0.0 0.0 0.0 10N  Y PLANES               | WEIGHT  0.2354E+05 0.2354E+05 2 35 ES 2 0.0 0.0 0.0     | 0.2<br>0.0         | MAXPH MAXODM NTCE NLDV EPSPH EPSODM                      | 2<br>2<br>= 10<br>= 100<br>= 32<br>= 13<br>= 0.100<br>= 0.100 | 1<br>2<br>00 0 0E - 0 4<br>00 0 0E - 0 3 | 0                                        | 0<br>0<br>0                             | NEWTON 0 0 0                           |                                          | 9                  |
| 2 1 2 2 NUMBER OF TOTAL NUM NUMBER OF NUMBER OF DUAL OBJE NORM OF ( DUAL ANALYSIS NUMBER OF NUMBER OF | DUAL  O.2341  O.2341  O.2341  RESTARTS  BER OF O.C.M.  NON-ZERO DUA  DISCONTINUIT  CTIVE FUNCTION  PROJECTED) GE  VARIABLES: O.O. O.O. O.O. O.O. O.O. O.O. O.O. O. | CHU- E+05 E+05  AL VARIABLE Y PLANES ON ADIENT  0.0 0.0 0.0 0.0 TION Y PLANES MAL POINT | WEIGHT  0.2354E+05 0.2354E+05 2 35 ES 2 0.0 0.0 0.0 0.0 | 0.2<br>0.0         | MAXPH MAXODM NTCE NLDV EPSPH EPSODM  0.0 0.0 0.0         | 2<br>2<br>= 10<br>= 100<br>= 32<br>= 13<br>= 0.100<br>= 0.100 | 1<br>2<br>00 0 0E - 0 4<br>00 0 0E - 0 3 | 0                                        | 0<br>0<br>0                             | NEWTON 0 0 0                           |                                          | 9                  |

|       | NUMBER OF DISCONTINUITY                                                     | PLANES                                                       | 2                                                            | NLDV =                                                       | 13                                                           |                                                              |                                                              |                                                              |                                         |
|-------|-----------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|
|       | DUAL OBJECTIVE FUNCTION                                                     |                                                              | 0.234060E+0                                                  | 5 EPSPH =                                                    | 0.10000E-0                                                   | 4                                                            |                                                              |                                                              |                                         |
|       | NORM OF (PROJECTED) GPAD                                                    | IENT                                                         | 0.0                                                          | EPSODM =                                                     | 0.100000E-0                                                  | 3                                                            |                                                              |                                                              |                                         |
|       | DUAL VARIABLES : 0.0 0.0 0.0 0.0 0.0 0.0                                    | 0.0<br>0.0<br>0.0<br>0.0                                     | 0.0<br>0.0<br>0.0<br>0.68341E+04                             | 0 • 0<br>0 • 0<br>0 • 0<br>0 • 0                             | 0 • 0<br>0 • 0<br>0 • 0<br>0 • 0                             | 0 • 0<br>0 • 0<br>0 • 0<br>0 • 0                             | 0 • 0<br>0 • 0<br>0 • 0<br>0 • 0                             | 0.0<br>0.0<br>0.0<br>0.2<br>0.24692E+05                      |                                         |
|       | ANALYSIS OF DUAL SCLUTIO                                                    | <u>n</u>                                                     |                                                              |                                                              |                                                              |                                                              |                                                              |                                                              |                                         |
|       | NUMBER OF DISCONTINUITY                                                     | PLANES                                                       | 2                                                            |                                                              |                                                              |                                                              | •                                                            |                                                              |                                         |
|       | NUMBER OF POSSIBLE PRIMA                                                    | L POINTS                                                     | 4                                                            |                                                              |                                                              |                                                              |                                                              |                                                              | •                                       |
|       | WEIGHT OF UPPER BOUND SO                                                    | LUTION                                                       | 0.235435E+0                                                  | 5 INFEASIB                                                   | LE                                                           |                                                              |                                                              |                                                              |                                         |
|       | MOST VIOLATED CENSTRAINT                                                    |                                                              | 32                                                           | VALUE =                                                      | 0.386053E-0                                                  | 12                                                           |                                                              |                                                              |                                         |
|       | PRIMAL VARIABL<br>0.22500E+00<br>0.30000E+00                                | ES<br>0.17143E+00<br>0.91339E+00                             | 0.20000E+00<br>0.90757E+00                                   | 0.47200E+00<br>0.12504E+01                                   | 0.50667E+00<br>0.63760E+00                                   | 0.20000E+00                                                  | 0.33500E+01                                                  | 0-18000E+01                                                  |                                         |
|       | CCNSTRAINTS<br>-0-31949E+00<br>-0-7651JE+00<br>-0-14412E+00<br>-0-85364E+00 | -0.29248E+00<br>-0.33371E+00<br>-0.11014E+00<br>-0.88975E+00 | -0.43518E+00<br>-0.10150E+01<br>-0.62869E-01<br>-0.34064E-01 | -0.43528E+00<br>-0.69578E+00<br>-0.32001E+00<br>-0.69567E+00 | -0.31999E+00<br>-0.49557E+00<br>-0.92540E-01<br>-0.50304E+00 | -0.25984E+00<br>-0.78027E+00<br>-0.84791E+00<br>-0.67107E+00 | -0.89255E+00<br>-0.46765E+00<br>-0.46658E+00<br>-0.78161E+00 | -0.56579E+00<br>-0.31990E+00<br>-0.44490E-01<br>0.38605E-02  | - · · - · · · · · · · · · · · · · · · · |
|       | WEIGHT OF LOWER BOLND SO                                                    | LUTION                                                       | 0.233821E+0                                                  | 5                                                            |                                                              |                                                              |                                                              |                                                              |                                         |
|       | PRIMAL VARIABL<br>0.22500E+00<br>0.22000E+00                                | ES<br>0.17143E+00<br>0.91339E+00                             | 0.20000E+00<br>0.90757E+00                                   | 0.46400E+00<br>0.12504E+01                                   | 0.50667E+00<br>Q.63760E+Q0                                   | 0.20000E+00                                                  | 0.33500E+01                                                  | 0-18000E+01                                                  |                                         |
|       | CCNSTRAINTS<br>-0.31988E+00<br>-0.76043E+00<br>-0.13932E+00<br>-0.83804E+00 | -0.28817E+00<br>-0.33308E+00<br>-0.10704E+00<br>-0.87175E+00 | -0.43398E+00<br>-0.10196E+01<br>-0.63235E-01<br>0.26137E-01  | -0.43409E+00<br>-0.69177E+00<br>-0.32001E+00<br>-0.69165E+00 |                                                              | -0.81486E+00                                                 | -0.89527E+00<br>-0.46699E+00<br>-0.47699E+00<br>-0.77469E+00 | -0.57868E+00<br>-0.31990E+00<br>-0.16078E-01<br>-0.62685E-02 |                                         |
|       | WEIGHT OF FINAL DESIGN                                                      |                                                              | 0.235435E+0                                                  | 5 INFEASIE                                                   | ILE                                                          |                                                              |                                                              |                                                              | <u>س</u>                                |
|       | MOST VIOLATED CONSTRAINT                                                    |                                                              | 32                                                           | VALUE =                                                      | 0.386053E-0                                                  | 12                                                           |                                                              |                                                              | •                                       |
|       | NUMBER OF PRIMAL VARIABL                                                    | ES FROM LOWER                                                | BOUND SOLUTION                                               | o o                                                          |                                                              |                                                              |                                                              |                                                              |                                         |
|       | PRIMAL VARIABL<br>0.22500E+00<br>0.30000E+00                                | ES<br>0.17143E+00<br>0.91339E+00                             | 0.20000E+00<br>0.90757E+00                                   | 0.47200E+00<br>0.12504E+01                                   | 0.50667E+00<br>0.63760E+00                                   | 0-20000E+00                                                  | 0.33500E+01                                                  | 0-18000E+01                                                  |                                         |
| ***** | CCNSTRAINTS<br>-0.31989E+00<br>-0.76513E+00<br>-0.14412E+00<br>-0.85364E+00 | -0.29248E+00<br>-0.33371E+00<br>-0.11014E+00<br>-0.88975E+00 | -0.43518E+00<br>-0.10150E+01<br>-0.62869E-01<br>-0.34064E-01 | -0.43528E+00<br>-0.69578E+00<br>-0.32001E+00<br>-0.69567E+00 | -0.31999E+00<br>-0.49557E+00<br>-0.92539E-01<br>-0.50304E+00 | -0.25984E+00<br>-0.78027E+00<br>-0.84791E+00<br>-0.67107E+00 |                                                              | -0.56579E+00<br>-0.31990E+00<br>-0.44490E-01<br>0.38605E-02  |                                         |

END OVERLAY PREDUI

RESPONSE FACTOR REDUCED TO 0.0

TPUNCATION FACTORS MODIFIED AS FOLLOWS GRESS/STRAIN CONSTRAINT G.150000E+00 0.120000E+00

UPDATED SCALING FACTORS
0.2250E+00 0.1714E+00 0.2000E+00 0.1250E+01 0.6376E+00 0.6376E+0

| <br>RESPONSE FACTOR R                                | EDUCED TO                                 | 0.0                                      |                   |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |                                       |
|------------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------|--------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|---------------------------------------|
| <br>TRUNCATION FACTOR SIRESS/STRAIN OFFEQUENCY CONST | CNSTRAINT                                 | S FOLLOWS<br>.0.150000E+0<br>0.120000E+0 | o<br>0            |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |                                       |
| <br>UPDATED SCALING<br>0.2250E.±00<br>0.9076E+00     |                                           | Ω.2000E+00<br>0.6376E+00                 | 0.4720E+00        | 0.5067E+00               | 0-2000E+00                            | 0.3350E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1800E+01      | 0.3000E+00  | .0.9134E+00 |                                       |
|                                                      | COEFFICIENTS<br>0.6456E±03.<br>0.4748E+03 | Q.1076E+03                               | 0.6346E+04<br>0.0 | 0.8175E+04<br>0.4800E+05 | 0.5378E+03                            | 0.3602E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1935E+04      | _0-1613E+03 | 0.2338E+03  |                                       |
| <br>                                                 |                                           |                                          |                   |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |                                       |
|                                                      |                                           |                                          |                   |                          |                                       | ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·               |             |             |                                       |
| <br>                                                 |                                           |                                          |                   |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             | ·.          |                                       |
| <br>                                                 |                                           |                                          |                   |                          | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1 .         |             |                                       |
|                                                      |                                           |                                          |                   |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |                                       |
| <br>                                                 |                                           |                                          |                   |                          |                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • • • • • • • |             |             |                                       |
|                                                      |                                           |                                          |                   |                          |                                       | The state of the s |                 |             |             | 136                                   |
| <br>***************************************          |                                           |                                          |                   |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |             |                                       |
| <br>                                                 |                                           |                                          |                   |                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             | <del></del> | · · · · · · · · · · · · · · · · · · · |
| <br>                                                 |                                           | Providente de l'agranda                  |                   |                          | 4 - L                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | <u></u>     |             | <del></del>                           |

.:

ı

ذ

STAGE NO. 6 APPROXIMATE PROBLEM GENERATOR

CURRENT MEMBER SIZE

MEMBER TYPE NUMBER 3
0.1000E-01 0.1000E-01 0.1000E-01 0.1000E-01 0.5600E+00 0.4600E+00 0.4600E+00 0.1000E-01 0.5600E+00 0.4600E+00 0.1000E-01 0.5800E+00 0.1100E+00 0.1100E+00 0.1000E-01

MEMBER TYPE NUMBER 4
0.6823E+00 0.7736E+00 0.6715E+00 0.6715E+00 0.5700E+00 0.5700E+00

MEMBER TYPE NUMBER 6
0.6823E+00 0.7736E+00 0.6715E+00 0.6715E+00 0.5700E+00 0.5700E+00

CURRENT WEIGHT DATA

MEMBER TYPE NUMBER 3 WEIGHT = 0.205963E+05
MEMBER TYPE NUMBER 4 WEIGHT = 0.193988E+04

VARIABLE STRUCTURAL WEIGHT 0.225361E+05

FIXED STRUCTURAL WEIGHT 0.225361E+05

TOTAL STRUCTURAL WEIGHT 0.225361E+05

NON-STRUCTURAL WEIGHT 0.480000E+05

TOTAL WEIGHT . 0.705361E+05

CONVERGENCE CHECK STAGE NG.= 6 0.1077E-02 0.8010E-02 MUST BE LESS THAN 0.500000E-02 DBJECTIVE FUNCTION OF THREE CONSECUTIVE STAGES ARE 0.227411E+05 0.225604E+05 0.225361E+05

ENTER OVERLAY ANALYS

NEW AVAILABLE REAL ARRAY = 7473

AVAILABLE INTEGER ARRAY# 2500 OVERLAY ANALYS REQUIREMENT# 772

POSTURE TABLE

| <br>RETAINED      | TO TAL       | TYPE       | MEMBER      | NODE DIRECTION     | L.C.     | MODE | CONSTRAINT VALUES |
|-------------------|--------------|------------|-------------|--------------------|----------|------|-------------------|
| <br>STRESS/STRAIN |              | _ MO:      | ST CRITICAL | = 0.742754E-01     |          | =    | 0.0547755.00      |
| , <u>,</u>        | 54<br>95     | 3          | 1 7         |                    | 1        | 3    | 0.264776E+00      |
| <u> </u>          |              |            | <u> </u>    |                    | 2        | 3    | 0-191498E+00      |
|                   | 105          | 3          | *           |                    | 5        | . 3  | 0.159115E+00      |
| <br>              | 115          | 2          |             |                    | <u> </u> | 3    | 0.101879E+00      |
| 5                 | 145          | . 3        | 12          |                    | 2        | 3    | 0.141490E+00      |
| 6                 | 155          | 3          | 14          |                    | 2        | 3    | 0.742754E-01      |
| 7                 | 165          | 3          | 16          |                    | 2        | 3    | 0.960189E-01      |
| <br>FREQUENCY CON | STRAINTS     | MOST C     | RITICAL =   | -0.498237E-02      |          |      | •                 |
| 8                 | 173          |            |             | - <del>-</del> - · |          | -1   | -0.498237E-02     |
| HCDE CTAND        | C COO THE 50 | I A DU TAG |             |                    |          |      |                   |

MODE STANDS FOR THE ECLIDWING

| I M I Z E R =====  O.O O.O C.O  NACT NPLAN ICONJ NALFA                                                      | 0.29118E+05 NEWTON NOIS I 0 2 |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|
| 3872<br>746<br>                                                                                             | 0.29118E+05                   |
| 3872<br>746                                                                                                 |                               |
|                                                                                                             |                               |
| RIAY PREDUI                                                                                                 |                               |
|                                                                                                             |                               |
| STRAINT VALUE 0.0                                                                                           |                               |
|                                                                                                             |                               |
| DIS. 8 0.9000E-01 0.1100E+00 0.14<br>10 0.5686E+00 0.6823E+00 0.81<br>12 0.5596E+00 0.6715E+00 0.81         | 38E+QQ                        |
| DIS. 2 0.1000E-01 0.1000E-01 0.20<br>DIS. 4 0.4600E+00 0.5600E+00 0.60<br>DIS. 6 0.1000E-01 0.1000E-01 0.20 | 00E-01                        |
| DIS. 2 0.1000E-01 0.1000E-01 0.20                                                                           | DOE-01                        |
| VARIABLE LOWER ACTUAL NUMBER BOUND SIZE                                                                     | UPPER                         |
| _                                                                                                           |                               |
| ISTRAINTS                                                                                                   |                               |
|                                                                                                             |                               |
| RLAY ANALYS<br>IT 0.226490E+05                                                                              |                               |
|                                                                                                             |                               |
| 370<br>                                                                                                     |                               |
| 976                                                                                                         | •                             |
| MODE NUMBER                                                                                                 |                               |
| •                                                                                                           |                               |
| ON<br>ION                                                                                                   |                               |
|                                                                                                             |                               |
| ON                                                                                                          |                               |
|                                                                                                             |                               |

DUAL VARIABLES :

## ===== DUAL1 OPTIMIZER =====

| DUAL.     | VARIABLES :                           | 0.0          | 0.0                      | 0.0               | 0.0        | 0.0        | )        | 0.0                                                                                                             | 0 • 291  | 18E+05                                  |                       |
|-----------|---------------------------------------|--------------|--------------------------|-------------------|------------|------------|----------|-----------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|-----------------------|
| PHASE OD  | M , DUAL                              | OHJ.         | WE I GHT                 | ZMCD              | NACT       | NPLAN      | ICONJ    | NALFA                                                                                                           | NEWTON   | NDIS                                    | IDIS                  |
| 1 1 1 2   |                                       | 6E+05        | 0.2250E+05<br>0.225CE+05 | 0.1068E-01<br>0.0 | 1          | 0          | 0        | 0                                                                                                               | 0        | 2 2                                     | 5<br>5                |
| DUAL      | VARIABLES :                           | 0.0          | 0.0                      | 0.0               | 0.0        | 0.0        |          | 0.0                                                                                                             | 0 - 298  | 30E+05                                  | and the second second |
| PHASE OD! | M DUAL                                | OR1•         | WEIGHT                   | ZMOD              | NACT       | NPLAN      | ICONJ    | NALFA                                                                                                           | NEWTON   | NDIS                                    | IDIS                  |
| 2 1       | 0.224                                 | ∪E+05        | 0.2250E+05               | 0.0               | 1          | 1          | 0        | 0                                                                                                               | 0        | 2                                       | 5                     |
| NUMBER OF | PESTARTS                              |              | 2                        | MAXPH             | = 10       |            |          |                                                                                                                 |          |                                         | 4                     |
| MUN JATOT | BER OF O.D.M                          |              | 3                        | MAXODM            | 1 = 100    |            |          |                                                                                                                 |          |                                         |                       |
| NUMBER OF | NCN-ZERO DU                           | AL VARIABLES | 1                        | NTCE              | = 8        |            |          | •                                                                                                               |          |                                         |                       |
| NUMBER OF | DISCONTINUI                           | TY PLANES    | 1                        | NLDV              | = . 13     |            |          |                                                                                                                 |          | • • • • • • • • • • • • • • • • • • • • |                       |
| DUAL OBJE | CTIVE FUNCTI                          | אכ           | 0.22464                  | E+05 EPSPH        | = 0.1000   | 00E-04     |          |                                                                                                                 |          |                                         | :                     |
| NORM OF ( | PROJECTED) G                          | RADIENT      | 0.0                      | EPSODM            | 0 - 1000   | 00E-03     |          | en i de la compania d |          |                                         |                       |
|           | VARIABLES :                           | 0.0          | 0.0                      | 0.0               | 0.0        | 0.0        |          | _0 • 0                                                                                                          | 0.298    | 30E±05                                  |                       |
| ANALYSIS  | F DUAL SCLU                           | TION         |                          |                   |            |            |          |                                                                                                                 |          |                                         |                       |
| NUMBER OF | DISCONTINUI                           | TY PLANES    | 1                        |                   |            |            |          |                                                                                                                 |          |                                         | -                     |
| NUMBER OF | POSSIBLE PR                           | IMAL POINTS  | 2                        |                   |            |            |          |                                                                                                                 |          |                                         |                       |
| WEIGHT OF | UPPER BOUND                           | SOLUTION     | 0.22495                  | TE+05 FEASIE      | <b>JLE</b> |            |          | ***************************************                                                                         |          |                                         | <del></del>           |
|           | PRIMAL VARI                           |              |                          |                   |            |            |          |                                                                                                                 |          |                                         | 39                    |
|           | 0.10000E+                             | 01 0.100C0   |                          |                   |            |            | 0000E+01 | 0.82759E+0                                                                                                      | 0 0.818  | 118E+00                                 |                       |
|           | CCNSTRAINTS                           | 00 -0.19952  | E+00 -0.16876E           | +00 -0.10666E+0   | 0 -0.14653 | SE+00 -0.4 | 2562E-01 | -0.48527E-0                                                                                                     | 1 -0-104 | 35E-02                                  |                       |
| WEIGHT OF | LOWER BOUND                           | SOLUTION     | 0.22280                  | E+05              |            |            |          |                                                                                                                 |          |                                         |                       |
|           | PRIMAL VARI                           | ABLES        |                          |                   |            |            | _        | <u></u> .                                                                                                       |          |                                         |                       |
|           | 0.10000E+<br>0.10000E+                |              |                          |                   |            |            | 0000E+01 | 0.82759E+0                                                                                                      | 0 0.818  | 18E+00                                  |                       |
|           | CENSTRAINTS<br>-0.26770E+             |              | E+00 -0.16822E           | +00 -0.10368E+0   | 0 -0.14372 | E+00 -0.4  | 0227E-01 | -0.48694E-0                                                                                                     | 1 0.616  | 80E-02                                  |                       |
| WEIGHT OF | FINAL DESIG                           | N            | 0.22495                  | E+05 FEASIE       | ILE -      |            |          |                                                                                                                 |          |                                         |                       |
| NUMBER OF | PRIMAL VARI                           | ABLES FROM L | CWER BOUND SOLU          | ION 0             |            |            |          |                                                                                                                 |          |                                         |                       |
|           | PRIMAL VARI<br>0.10000E+<br>0.10000E+ | 0.10000      |                          |                   |            |            | 0000E+01 | 0.82759E+0                                                                                                      | 0 0.818  | 18E+00                                  |                       |
|           | CONSTRAINTS<br>-D.26941E+             |              | E+000.16876E-            | -00 -0.10666E+0   | 0.14653    | E+00 -0.4  | 2562E-01 | -0.48527E-0                                                                                                     | 1 -0.104 | 35E-02                                  | •                     |

END OVERLAY PREDLI

RESPONSE FACTOR REDUCED TO 0.0

TRUNCATICN FACTORS MODIFIED AS FOLLOWS
STAESS/STRAIN CCNSTRAINT 0.900000E+00
FREQUENCY CONSTRAINTS 0.298598E+00

UPDATED SCALING FACTORS
0.2500E-01 0.2857E-01 0.1000E+00 0.4480E+00 0.6533E+00 0.4000E-01 0.2400E+01 0.9000E+00 0.1000E+00 0.1179E+01 0.1352E+01 0.1114E+01 0.9939E+00 0.1052E+01 0.1114E+01 0.9939E+00 0.1054E+05 0.1076E+03 0.2580E+04 0.9677E+03 0.5376E+02 0.3017E+03 0.614 X+03 0.4231E+03 0.6677E+03 0.0 0.4800E+05

DOLLAR SCALING FACTORS
0.614 X+03 0.4231E+03 0.6677E+03 0.0 0.4800E+05 0.4800E+05

) +

NODAL DISPLACEMENTS

| NODE        | X                          | Y                         | ۷                         | NODE        | ×                                   | ΥΥ                                | Z                                 |
|-------------|----------------------------|---------------------------|---------------------------|-------------|-------------------------------------|-----------------------------------|-----------------------------------|
| LCAD COND   | ITION 1                    |                           |                           |             |                                     |                                   |                                   |
| 1<br>3<br>5 | り•0<br>り•0<br>−0•40865±+00 | 0.0<br>0.0<br>0.19068E+00 | 0+0<br>0+0<br>0+15345E+02 | 2<br>4<br>6 | 0.0<br>-0.14310E+00<br>-0.76908E+00 | 0.0<br>0.42576E-01<br>0.52852E+00 | 0.0<br>0.38610E+01<br>0.68358E+02 |
| LCAD COND   | ITION 2                    |                           |                           |             |                                     |                                   |                                   |
| ا<br>د      | 0.0                        | 0.0<br>0.0                | 0 • 0<br>0 • 0            | 2 4         | 0.0<br>0.14310E+00                  | 0.0<br>-0.42576E-01               | 0.0<br>-0.38610E+01               |

| NODE        | х                          | Y                          | - 2                        | NODE        | X                                   | Y                                   | Z                                   |
|-------------|----------------------------|----------------------------|----------------------------|-------------|-------------------------------------|-------------------------------------|-------------------------------------|
| LCAD CCND1  | ITION 1                    |                            |                            |             |                                     |                                     |                                     |
| 1<br>3<br>5 | 0.0<br>0.0<br>-0.40865E+00 | 0.0<br>0.0<br>0.19068E+00  | 0.0<br>0.0<br>0.15345E+02  | 2<br>4<br>6 | 0.0<br>-0.14310E+00<br>-0.76908E+00 | 0.0<br>0.42576E-01<br>0.52852E+00   | 0.0<br>0.38610E+01<br>0.68358E+02   |
| LCAD COND   | ITION 2                    |                            |                            |             |                                     | • • •                               |                                     |
| 1<br>3<br>5 | 0.0<br>0.0<br>0.40865E+00  | 0.0<br>0.0<br>-0.19068E+00 | 0.0<br>0.0<br>-0.15345E+02 | 2<br>4<br>6 | 0-0<br>0-14310E+00<br>0-76908E+00   | 0.0<br>-0.42576E-01<br>-0.52852E+00 | 0.0<br>-0.38610E+01<br>-0.68358E+02 |

NOCAL DISPLACEMENTS

| NODE        | X                          | Υ                         | ۷                          | NODE        | . x                                | ΥΥ                                 | Z                                   |
|-------------|----------------------------|---------------------------|----------------------------|-------------|------------------------------------|------------------------------------|-------------------------------------|
| LOAD COND   | 1 NCITIO                   |                           |                            |             |                                    | · .                                |                                     |
| 1<br>3<br>5 | 0.0<br>0.0<br>-0.97583E-01 | 0.0<br>0.0<br>0.12948E+00 | 0.0<br>0.0<br>-0.34034E-02 | 2<br>4<br>6 | 0.0<br>0.29981E-01<br>-0.98203E-01 | 0.0<br>-0.21788E+00<br>0.26211E-01 | 0.0<br>-0.55807E-02<br>-0.23360E-02 |
| LCAD CCND   | ITION 2                    |                           |                            |             |                                    |                                    | •                                   |
| 1           | 0.0<br>1                   | 0.0                       | 0.0                        | 2           | 0.0                                | 0.0                                | 0.0                                 |

| <br>NODE        | x                          | Y                         | Z                          |       | NODE        | X                                  | Y                                               | Z                                           |
|-----------------|----------------------------|---------------------------|----------------------------|-------|-------------|------------------------------------|-------------------------------------------------|---------------------------------------------|
| LOAD CON        | 1 NCITIO                   |                           |                            | e*    |             |                                    |                                                 |                                             |
| <br>1<br>3<br>5 | 0.0<br>0.0<br>-0.97583E-01 | 0.0<br>0.0<br>0.12948E+00 | 0.0<br>0.0<br>-0.34034E-02 |       | 2<br>4<br>6 | 0.0<br>0.29981E-01<br>-0.98203E-01 | 0.0<br>-0.21788E+00<br>0.26211E-01              | 0.0<br>-0.55807E-02<br>-0.23360E-02         |
| <br>LOAD CON    | DITION 2                   | • •                       |                            |       |             |                                    |                                                 |                                             |
| <br>1<br>3<br>5 | 0.0<br>0.0<br>-0.97583E-01 | 0.0<br>0.0<br>0.12948E+00 | 0.0<br>0.0<br>-0.34034E-02 |       | 2<br>4<br>6 | 0.0<br>0.29981E-01<br>-0.98203E-01 | 0.0<br>-0.21788E+00<br>0.26211E-01              | 0.0<br>-0.55807E-02<br>-0.23360E-02         |
| 2222242         |                            |                           |                            | ***** | ========    |                                    | 3 2 2 3 4 4 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 24622222222322<br>2462222222222222222222222 |

NEW AVAILABLE REAL ARRAY = 7473

EIGEN VECTORS SCALED BY MAX. COMPONENTS

VECTOR NO.= 1 FREQUENCY= 0.100502E+01 C/S

-0.1581E-02 0.5819E-03 0.4175E-01 -0.5727E-02 0.2836E-02 0.2085E+00 -0.1181E-01 0.8035E-02 0.1000E+01

VECTOR NO.= 2 FREQUENCY= 0.395797E+01 C/S

-0.1471E-01 0.2455E-02 0.4279E+00 -0.1342E-01 0.8765E-02 0.1000E+01 0.4540E-01 0.1912E-02 -0.5979E+00

VECTOR NO.= 3 FREQUENCY= 0.54353E+01 C/S

-0.3510E-01 -0.2519E-03 0.1000E+01 0.5961E-02 -0.3440E-01 -0.5307E+00 -0.1697E-01 -0.6252E-01 0.3832E-01

EIGEN VALUES 0.3988E+02 0.6185E+03 0.1166E+04

EIGEN VECTORS SCALED BY UNU
VECTOR NO. = 1 FREQUENCY = 0.100502E+01 C/S
-0.2418E-03 0.8897E-04 0.6384E-02 -0.8756E-03 0.4336E-03 0.3188E-01 -0.1805E-02 0.1229E-02 0.1529E+00

| MTYP       | М                                          | LC_                                                                                                                                                                        | S-COMBINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sx          | SY         | SXY        | SX-THERM                                | SY-THERM                                 | SXY-THERM   | _              |
|------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|-----------------------------------------|------------------------------------------|-------------|----------------|
|            | 1                                          | 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.6401E-03 | 0-8129E-07 | 0.1183E-03 |                                         |                                          |             |                |
| 3          | . 1                                        | 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0.3200E-02 | 0.6624E-03 | 0.3330E-04                              | 0.3200E-02                               | 0.5441E-03  |                |
| 3          | 2                                          | 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            |                                         |                                          |             |                |
| 3 .        | 2                                          | . !                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0.2762E-03                             | 0.3510E-05                               | 0.7538E-04  |                |
| <u></u>    | <b></b>                                    | <del> </del>                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            |                                         |                                          |             |                |
| 3          | 3                                          |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | 0.20145-03                              | 0.2900E-02                               | -0.7521E-04 |                |
| 3          | 4                                          |                                                                                                                                                                            | and the second s |             |            |            | -0 42005-04                             | A 3076E A0                               | 0 54405-07  |                |
| ,<br>1     | Š                                          | •                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0.42005-04                             | 0.32/06-02                               | -0.5440E-03 |                |
|            |                                            |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | A0-30EEE.0                              | 0.34765-03                               | 0-2787E-07  |                |
| 3          | 5                                          | i                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | 0.2220E04                               | 0024105-02                               | 0.2/0/2-03  |                |
| 3          | 6                                          | i                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0.5054F-03                             | 0-3015F-02                               | 0.7991F-03  |                |
| 3          | 7                                          | i                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | *************************************** | J. J |             |                |
| 3          | 7                                          | 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0.2267E-03                             | 0-2736E-02                               | -0.7989E-03 |                |
| 3          | 4                                          | 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.3496E-03 |            |            | , , , , , , , , , , , , , , , , , , , , | ••••••                                   | 00.000      |                |
| 3          | 8                                          | 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            | 0.1098E-02 | -0.7657E-03                             | 0.3275E-02                               | -0.2788E-03 |                |
| 3          |                                            | ı                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            |                                         |                                          |             |                |
| 3          |                                            | 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0.2859E-03                             | 0.3200E-02                               | -0.3234E-03 |                |
| 3          |                                            | ı                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            |                                         |                                          |             |                |
|            |                                            | 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0.2245E-05                             | 0.2916E-02                               | -0-2438E-03 |                |
| 3          |                                            | ı.                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            |                                         |                                          |             |                |
| ્યુ        |                                            | 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0.3256E-03                             | 0.3240E-02                               | 0.2441E-03  | • • •          |
| ž          | 12                                         |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0 43005 04                             | 0 00565-00                               |             |                |
| 3          |                                            | 1                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |            |            | -0.4200E-04                             | 0.2420F-05                               | 0.3234E-03  |                |
| <b>1</b>   |                                            | i                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0 47565-04                             | 0.24765-02                               | -0 36055 05 |                |
| 3          |                                            | i                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0143505-04                             | 0.24/05-02                               | -0.7602E-02 |                |
| . <u>.</u> |                                            | ī                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            | -0-4008F-03                             | 0.283AF-02                               | 0-72215-03  | And the second |
| 3          | 15                                         | ì                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |            |            | 0040002 05                              | 0120042 02                               | 0112212-03  |                |
| 3          | 15                                         | i                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.2070E-02 |            |            | -0.4084E-03                             | 0.2841E-02                               | -0.7221E-03 |                |
| 3          | 16                                         | t                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |            |                                         |                                          |             |                |
| . 3        | 16                                         | 1                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.1115E-02 | 0.1919E-02 | 0-1701E-02 | -0.7657E-03                             | 0.3198E-02                               | 0.7596E-05  |                |
| 4 '        | 1 .                                        | . 1                                                                                                                                                                        | 0.323892E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.5060E+04 | 0.0        | 0.1847E+05 |                                         | <del> </del>                             |             |                |
| 6          | 1                                          | 1                                                                                                                                                                          | 0.3300/56+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A A3555.4.  | •          |            |                                         |                                          |             |                |
|            | MTYP 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 3 1<br>3 2<br>3 2<br>3 3 4<br>3 4<br>4 4 5<br>5 5<br>5 6 6<br>3 7 7<br>3 7 8<br>3 8<br>3 9<br>3 10<br>3 11<br>3 11<br>3 12<br>3 12<br>3 13<br>3 14<br>3 14<br>3 15<br>3 15 | 3 1 1 1 3 1 4 1 3 1 5 1 1 3 1 4 1 3 1 5 1 3 1 4 1 3 1 5 1 3 1 4 1 3 1 5 1 3 1 6 1 1 5 1 5 1 3 1 6 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3           | 3          | 3          | 1                                       | 3 1 1 1                                  | 1           | 1              |

| 3                                                                                                                                                           | 1                                                                       | -0.1115b-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                             | 2 0.325109E+05<br>2 0.398012E+05<br>2 0.426886E+05                      | 0.5060E+04 0.0 -0.1847E+05 0.7659E+03 -0.5367E+04 -0.1847E+05 -0.4294E+04 -0.5367E+04 0.0 -0.2273E+05 0.1906E+05 0.9274E+04 -0.2273E+05 0.1320E+05 0.9274E+04 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 172 STRESS/S 0.9292E+00 0.1001E+01 0.9292E+00 0.8355E+00 0.8435E+00 0.815HE+00 0.8456E+00 0.7585E+00 0.7585E+00 0.7559E+00 0.9613E+00 0.9613E+00 0.9103E+00 | 0.1071E+01 0.1121E+01<br>0.1164E+01 0.1166E+01<br>0.1156E+01 0.1181E+01 | 1 TC 172 MOST CRITICAL CONSTRAINT = 0.4482635E-01 0.3199E+00 0.9641E+00 0.9235E+00 0.1076E+01 0.1184E+01 0.3095E+00 0.9694E+00 0.4504E+00 0.9694E+00 0.9951E+00 0.1005E+01 0.1149E+01 0.4399E+00 0.9641E+00 0.5481E+00 0.9405E+00 0.9636E+00 0.1036E+01 0.1104E+01 0.6107E+00 0.9725E+00 0.3774E+00 0.9724E+00 0.8699E+00 0.1130E+01 0.1149E+01 0.4400E+00 0.9405E+00 0.3200E+00 0.9939E+00 0.1023E+01 0.9771E+00 0.1094E+01 0.6466E+00 0.9297E+00 0.2695E+00 0.9296E+00 0.9951E+00 0.1005E+01 0.1108E+01 0.5960E+00 0.9297E+00 0.5481E+00 0.9079E+00 0.9970E+00 0.103E+01 0.1066E+01 0.7509E+00 0.9887E+00 0.3894E+00 0.9887E+00 0.8699E+00 0.1130E+01 0.106E+01 0.5960E+00 0.9887E+00 0.1214E+01 0.961E+00 0.8699E+00 0.1130E+01 0.1109E+01 0.5923E+00 0.9079E+00 0.1214E+01 0.168E+00 0.8483E+00 0.1079E+01 0.9214E+00 0.1181E+01 0.3199E+00 0.122E+01 0.1679E+00 0.96770E+00 0.1079E+01 0.99383E+00 0.1190E+01 0.2892E+00 0.1228E+01 0.1679E+00 0.9770E+00 0.1079E+01 0.99383E+00 0.1190E+01 0.3995E+00 0.1222E+01 0.160E+00 0.9409E+00 0.1102E+01 0.8888E+00 0.1160E+01 0.3995E+00 0.1222E+01 0.160E+00 0.9409E+00 0.1190E+01 0.99103E+00 0.1181E+01 0.4597E+00 0.1222E+01 0.160E+00 0.9103E+00 0.1190E+00 0.1181E+01 0.4597E+00 0.1222E+01 0.160E+00 0.9103E+00 0.1190E+00 0.1181E+01 0.4597E+00 |

· ) (-

```
0+2448E+05 0+1799E+04 -0+2347E+05
                                0.4/0199E+05
                                                                                                0.4648E+04 0.1749E+04
                                0.418502E+05
                                                     0.3263E+04 0.0
                                                                         0.2409E+05
                                                     0.1934E+05 0.6646E+04 0.2409E+05
                                0.450599F+05
                                                                                                0.1607E+05 0.6646E+04
                                                     0.2032E+05 0.0
                                                                             -0.3833E+04
                                0.213741E+05
                                                     0.2137E+05 -0.3529E+04 -0.3633E+04
                                                                                                0.1050E+04 -0.3529E+04 0.0
                                0.242581 F+05
       172 STRESS/STRAIN CONSTRAINTS
                                                               TC 172
                                                                            MOST CRITICAL CONSTRAINT= 0.4482635E-01
         0.4292E+00 0.1071E+01 0.1181E+01 0.3199E+00 0.9641E+00 0.9235E+00 0.1005E+01 0.1184E+01 0.3095E+00 0.9694E+00 0.1001E+01 0.9792E+00 0.1184E+01 0.4399E+00 0.9641E+00 0.9951E+00 0.1005E+01 0.1189E+01 0.4399E+00 0.9641E+00
                                                                                                                                0.964 LE+00
                                                                                                                                0.9725E+00
                                                                                        0.1036E+01
                                                                                                      0-1104E+01
                                                                                                                   0.6107E+00
         D. 9292E+00
                      0.1071E+01
                                   0.1121E+01
                                                 0.5481E+00
                                                              0.9405L+00
                                                                           0.9636E+00
                                                                                        0.1130E+01
0.9771E+00
                                                                                                      0 -1 1 49E+ 01
0 -1 0 94E+ 01
                                                                                                                   0.4400E+00
                                                                                                                                0.9405E+00
         0.8355E+00
                      0.1164E+01
                                   0.1166E+01
                                                 0.3/74E+00
                                                              0.9724E+00
                                                                           0.8699E+00
                                                                                                                                0.9297E+00
                                                                                                                   0.6466E+00
                                                                           0.1023E+01
0.9951E+00
         0.8435E+00
                      0.1156E+01
                                   0.1181E+C1
                                                 0.3200E+00
                                                              0.9039E+00
                                                                                                                                0.9039E+00
                                                                                         0.1005E+01
                                                                                                                   0.5960E+00
         0 . 815BE+00
                      0.1184E+01
                                   0.1195E+01
                                                 0.2695E+00
                                                              0.9296E+00
                                                                                                      0-1108E+01
                                                                                                                   0.7509E+00
                                                                                                                                0.9887E+00
         J. 8456E+00
                      0.1154E+01
                                   0.1121E+01
                                                 0.5481E+00
                                                              0.9079E+00
                                                                           0.9570E+00
                                                                                         0.1043E+01
                                                                                                      0-1066E+01
                                                                                         0.1130E+01
                                                                                                                   0.5923E+00
                                                                                                                                0.9079E+00
                                                                                                      0-1109E+01
         0.7585E+00
                      0.1241E+01
                                   0.1163E+01
                                                0.3894E+00
                                                              0.9887E+00
                                                                           0.8699E+00
                                                                                                                                0.3199E+00
                                                                                                      0.9214E+00
         0.7359E+00
                      0.6779E+00
                                   0.8894E+00
                                                 0.6710E+00
                                                              0.6546E+00
                                                                            0.8483E+00
                                                                                         0.1079E+01
                                                                                                                   0-1181E+01
                                                                                                                   0.1190E+01 0.2892E+00
         0.5769E+00
                      0.1012E+01
                                   0.98806+00
                                                 0.1214E+01
                                                              0.1988E+00
                                                                            0.9612E+00
                                                                                         0.1062E+01
                                                                                                      0.9383E+00
         0.9613E+00
                      0.9951E+00.
                                   0.1005E+01
                                                 0.1222E+01
                                                              0.1679E+00
                                                                            0.9770E+00
                                                                                         0.1079E+01
                                                                                                      0.9214E+00
                                                                                                                   0.1160E+01 0.3995E+00
                                                                                                      0.8884E+00
                                                                                                                   0-1144E+01
         0.9103E+00
                      0.9185E+00
                                   0.1082E+01
                                                 0.1238E+01
                                                              0.1079E+00
                                                                            0.9409E+00
                                                                                         0.1112E+01
                                                                                                                                 0.4597E+00
         0.9410E+00
                      0.9515E+00
                                   0.1049E+01
                                                 0 . 1222E+01
                                                              0.1680E+00
                                                                            0.9103E+00
                                                                                         0.1090E+01
                                                                                                      0.9103E+00
                                                                                                                   0-1181E+01
                                                                                                                                 0.3200E+00
         0.9389E+00
                      0.9766E+00
                                   0.1023E+C1
                                                 0.1236E+01
                                                                            0.9561E+00
                                                                                         0.1108E+01
                                                                                                      0.8918E+00
                                                                                                                   0.1172E+01
                                                                                                                                 0.3536E+00
                                                              0.1140E+00
                      0.9951E+00
                                   0.1005E+01
                                                              0.1476E+00
                                                                                         0.1144E+01
                                                                                                      0.8558E+00
                                                                                                                   0.1160E+01
                                                                                                                                0.3995E+00
         Q. 956 0E +QQ
                                                0.1227E+01
                                                                           0.9389E+00
         0.9087E+00
                      0.9495E+00
                                   0.1050E+01
                                                 0.1255E+01
                                                              0.4483E-01
                                                                            0.9105E+00
                                                                                         0-1146E+01
                                                                                                      0.8538E+00
                                                                                                                   0.1159E+01
                                                                                                                                0.4031E+00
         0.9105E+00
                      0.9515E+00
                                   0.1049E+01 0.1254E+01
                                                              0.4839E-01
                                                                           0.9087E+00
                                                                                         0.7399E+00
                                                                                                      0.6585E+00
                                                                                                                   0.8289E+00
                                                                                                                                0.6238E+00
         0.6395E+00
                      0.8059E+00
           FREQUENCY CONSTRAINTS
                                                          173
                                                                TO 173
                                                                            MOST CRITICAL CONSTRAINT= -0.3106689E-02
        -0.31C7F-02
                 CONSTRAINTS OUT OF
                                              CUTOFF POINT=
                 CONSTRAINTS OUT OF
                                              CUTCEE POINT=
                                              CUTOFF POINT=
                 CONSTRAINTS DUT OF 172
                                                                0-140344E+00
                              135
                                                        165
                 CONSTRAINTS OUT OF
                                            RETAINED DUE TO VARIABLE LINKING
                              155
                 CONSTRAINTS OUT OF
                                              CUTOFF POINT=
                                                                0.700475E+00
                 173
                CONSTRAINTS OUT OF
                                              CUTOFF POINT=
                                                                0.700475E+00
___AVAILABLE INTEGER ARRAY# 2500
                                         DYERLAY ANALYS REQUIREMENT= 766
                                                             POSTURE TABLE
                    RETAINED
                                                        MEMBER
                                                                     NODE DIRECTION
                                                                                           L.C.
                                                                                                      MODE
                                                                                                              CONSTRAINT VALUES
                  STRESS/STRAIN CONSTRAINTS
                                                   MJST CRITICAL = 0.448264E-01
                                    115
                                                             6
                                                                                                         3
                                                                                                                   0-107891E+00
                                                            14
                                                                                                                   0.448264E-01
0.483855E-01
                  FREQUENCY CONSTRAINTS
                                              MCST CRITICAL = -0.310669E-02
                   4 173
                                                                                                                  -0.310669E-02
                     MODE STANDS FOR THE FOLLOWING
                         NEGATIVE=LCWER BOUND POSITIVE=UPPER BOUND
FOR STRESS CONSTRAINT, (CODE+1)
1 = VCN MISES ECLIVALENT STRESS
2 = LCNGITUDINAL STRAIN
3 = TRANSVERSE STRAIN
                               5 = FIRST EQUATION OF STRESS INTERACTION
6 = SECOND EQUATION OF STRESS INTERACTION
                               7 = TSAI-AZZI CRITERION
FOR FREQUENCY CONSTRAINTS. ASSOCIATED MODE NUMBER
    AVAILABLE REAL ARRAY = 7500 DVERLAY ANALYS REQUIREMENT= 972
```

3 = TRANSVERSE STRAIN
4 = SHEAR STRAIN
5 = FIRST EQUATION OF STRESS INTERACTION
6 = SECOND EGUATION OF STRESS INTERACTION
7 = TSAI-AZZI CRITERION
FOR FREQUENCY CONSTRAINTS. ASSOCIATED MODE NUMBER

AVAILABLE REAL ARRAY = 7500 OVERLAY ANALYS REQUIREMENT= 97

ANALYSIS TIME DATA

ASSEMBLE MASS/STIFFNESS MATRIX

ASSEMBLE LOAD VECTORS

DECOMPOSE STIFFNESS MATRIX

SOLUTION OF DISPLACEMENTS

FREQUENCY ANALYSIS

CONSTRAINT EVALUATION

DISTURE TABLE SET

SELECTIVE GRADIENT EVALUATION

GRAND TOTAL CPU TIME

0.647018E+00
0.239563E-01
0.239563E-02
0.270081E-02
0.335541E-01
0.0
0.154373E+00
0.192719E-01
0.342300E+00

END OVERLAY ANALYS

DIMINISHING RETURN OF THREE CONSECUTIVE STAGES

DESIGN TIME STATISTICS TUTAL INITIAL PREPARATION DESIGN PHASE ANALYSIS TOTAL CPTIMIZES TOTAL

7.4834 0.0502 7.4333 5.4043 0.5090

9 4960

END OVERLAY DESIGN

MAIN PRIGRAM TIME STATISTICS

DESIGN TIME STATISTICS TOTAL INITIAL PREPARATION DESIGN PHASE ANALYSIS TOTAL CPTIMIZER TOTAL

7.4834 0.0502 7.4333 5.4043 0.5690

END OVERLAY DESIGN

|                                          |                  | END DAFKENI DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESIGN PHASE                             | 0.6258<br>7.4886 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GRAND TOTAL                              | 8.1144           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| en e | <b></b>          | ENTER OVERLAY PREPOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | and the second s |
|                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · • · • · · · · · · · · · · · · · · · ·  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                  | en de la companya de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * " |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u></u>                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | The second secon |
|                                          |                  | e de la companya del companya de la companya del companya de la co |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                                                                                                                                                                                                |                                                             |                                                     |                                               | •                                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|--|--|--|
| 1. Report No.<br>NASA CR-159260                                                                                                                                                                                | 2. Government Access                                        | ion No.                                             | 3. Reci                                       | pient's Catalog No.                           |  |  |  |  |
| 4. Title and Subtitle ACCESS 3 - APPROXIMATIO STRUCTURAL SYNTHESIS - I                                                                                                                                         | NT Sep                                                      | ort Date<br>tember 1980<br>orming Organization Code |                                               |                                               |  |  |  |  |
|                                                                                                                                                                                                                |                                                             |                                                     |                                               |                                               |  |  |  |  |
| 7. Author(s) Claude Fleury and Lucie                                                                                                                                                                           |                                                             | orming Organization Report No.                      |                                               |                                               |  |  |  |  |
| Performing Organization Name and Addr                                                                                                                                                                          |                                                             | CUnit No.<br>0-33-63-02                             |                                               |                                               |  |  |  |  |
| University of Californi<br>Los Angeles, CA 90024                                                                                                                                                               | a, Los Angeles                                              |                                                     | NSG                                           | ract or Grant No.<br>-1490                    |  |  |  |  |
| 12. Sponsoring Agency Name and Address                                                                                                                                                                         |                                                             |                                                     |                                               | of Report and Period Covered                  |  |  |  |  |
|                                                                                                                                                                                                                |                                                             | 4.3                                                 |                                               | tractor Report                                |  |  |  |  |
| National Aeronautics and Washington, DC 20546                                                                                                                                                                  | d Space Administra                                          | tion                                                | 1                                             | ,                                             |  |  |  |  |
|                                                                                                                                                                                                                |                                                             |                                                     |                                               |                                               |  |  |  |  |
| 15. Supplementary Notes                                                                                                                                                                                        |                                                             | · · · · · · · · ·                                   |                                               |                                               |  |  |  |  |
| Technical Monitor: J. So<br>Hampt                                                                                                                                                                              | bieski, NASA Lang<br>on, VA 23665                           | ley Resea                                           | rch Center, M                                 | ail Stop 243,                                 |  |  |  |  |
| This report serves as a a research oriented progimation concepts to achi element method is used forogramming are applied                                                                                       | ram which combine<br>eve excellent eff<br>or structural ana | s dual me<br>iciency i<br>lysis and                 | thods and a c<br>n structural<br>dual algorit | ollection of approx-<br>synthesis. The finite |  |  |  |  |
| The ACCESS-3 program ret<br>tion formats are fully o<br>the program:                                                                                                                                           | ains all of the A<br>compatible. The f                      | CCESS-2 collowing                                   | apabilities a<br>new features                 | nd the data prepara-<br>have been added in    |  |  |  |  |
| o four distinct op                                                                                                                                                                                             | timizer options:                                            |                                                     |                                               |                                               |  |  |  |  |
| o interior point penalty function method (NEWSUMT) o second order primal projection method (PRIMAL2) o second order Newton-type dual method (DUAL2) o first order gradient projection-type dual method (DUAL1) |                                                             |                                                     |                                               |                                               |  |  |  |  |
| o pure discrete an<br>o zero order appro                                                                                                                                                                       |                                                             |                                                     |                                               | able capability                               |  |  |  |  |
|                                                                                                                                                                                                                |                                                             |                                                     |                                               |                                               |  |  |  |  |
| 17. Key Words (Suggested by Author(s)) Structural analysis Structural optimization                                                                                                                             |                                                             |                                                     | on Statement assified - Un                    | limited                                       |  |  |  |  |
| Aerodynamics<br>Aeroelasticity<br>Active controls                                                                                                                                                              |                                                             |                                                     |                                               | ect Category 39                               |  |  |  |  |
| 19. Security Classif, (of this report)                                                                                                                                                                         | 20. Security Classif. (of this                              | page)                                               | 21. No. of Pages                              | 22. Price*                                    |  |  |  |  |
| Unclassified                                                                                                                                                                                                   | Unclassified                                                |                                                     | 152                                           | A08                                           |  |  |  |  |

**End of Document**