4.4 The Effect of a Change of Bases on Matrices

The effect of a change of bases on the representation of a linear map is described in the following proposition.

Proposition 4.5. Let E and F be vector spaces, let $\mathcal{U} = (u_1, \ldots, u_n)$ and $\mathcal{U}' = (u'_1, \ldots, u'_n)$ be two bases of E, and let $\mathcal{V} = (v_1, \ldots, v_m)$ and $\mathcal{V}' = (v'_1, \ldots, v'_m)$ be two bases of F. Let $P = P_{\mathcal{U}',\mathcal{U}}$ be the change of basis matrix from \mathcal{U} to \mathcal{U}' , and let $Q = P_{\mathcal{V}',\mathcal{V}}$ be the change of basis matrix from \mathcal{V} to \mathcal{V}' . For any linear map $f: E \to F$, let $M(f) = M_{\mathcal{U},\mathcal{V}'}(f)$ be the matrix associated to f w.r.t. the bases \mathcal{U} and \mathcal{V} , and let $M'(f) = M_{\mathcal{U}',\mathcal{V}'}(f)$ be the matrix associated to f w.r.t. the bases \mathcal{U}' and \mathcal{V}' . We have

$$M'(f) = Q^{-1}M(f)P,$$

or more explicitly

$$M_{\mathcal{U}',\mathcal{V}'}(f) = P_{\mathcal{V}',\mathcal{V}}^{-1} M_{\mathcal{U},\mathcal{V}}(f) P_{\mathcal{U}',\mathcal{U}} = P_{\mathcal{V},\mathcal{V}'} M_{\mathcal{U},\mathcal{V}}(f) P_{\mathcal{U}',\mathcal{U}}.$$

Proof. Since $f: E \to F$ can be written as $f = \mathrm{id}_F \circ f \circ \mathrm{id}_E$, since $P = P_{\mathcal{U}',\mathcal{U}}$ is the matrix of id_E w.r.t. the bases (u'_1, \ldots, u'_n) and (u_1, \ldots, u_n) , and $Q^{-1} = P_{\mathcal{V}',\mathcal{V}}^{-1} = P_{\mathcal{V},\mathcal{V}'}$ is the matrix of id_F w.r.t. the bases (v_1, \ldots, v_m) and (v'_1, \ldots, v'_m) as illustrated by the following diagram

$$\mathcal{U}, E \xrightarrow{f} \mathcal{V}, F$$

$$P_{\mathcal{U}', \mathcal{U}} \middle|_{\mathrm{id}_{E}} \middle|_{\mathrm{Id}_{F}} \middle|_{\mathcal{V}', \mathcal{V}} \middle|_{\mathrm{id}_{F}} \middle|_{\mathcal{U}', \mathcal{V}'} \middle|_{f} \middle|_{F}$$

by Proposition 4.2, we have $M'(f) = Q^{-1}M(f)P$.

As a corollary, we get the following result.

Corollary 4.6. Let E be a vector space, and let $\mathcal{U} = (u_1, \ldots, u_n)$ and $\mathcal{U}' = (u'_1, \ldots, u'_n)$ be two bases of E. Let $P = P_{\mathcal{U}',\mathcal{U}}$ be the change of basis matrix from \mathcal{U} to \mathcal{U}' . For any linear map $f: E \to E$, let $M(f) = M_{\mathcal{U}}(f)$ be the matrix associated to f w.r.t. the basis \mathcal{U} , and let $M'(f) = M_{\mathcal{U}'}(f)$ be the matrix associated to f w.r.t. the basis \mathcal{U}' . We have

$$M'(f) = P^{-1}M(f)P,$$

or more explicitly,

$$M_{\mathcal{U}'}(f) = P_{\mathcal{U}'\mathcal{U}}^{-1} M_{\mathcal{U}}(f) P_{\mathcal{U}',\mathcal{U}} = P_{\mathcal{U},\mathcal{U}'} M_{\mathcal{U}}(f) P_{\mathcal{U}',\mathcal{U}},$$