Calc II - Tutorial 4

November 29, 2019

- 1. Questions
 - (a) Verify that all members of the family $y = \frac{1}{x+C}$ are solutions to the D.E. $y' = -y^2$.
 - i. Differentiate y

$$y' = \frac{d}{dx} \left[(x+C)^{-1} \right]$$
$$= -(x+C)^{-2}$$
$$= -\left(\frac{1}{x+C} \right)^2$$
$$y' = -y^2$$

- ii. Thus, all members of $y = \frac{1}{x+C}$ is the solution to the D.E. $y' = -y^2$
- (b) Find a solution of the initial-value problem

$$y' = -y^2, y(0) = 0.5$$

i. From the top, $y\left(x\right) = \frac{1}{x+c}$, at $y\left(0\right)$:

$$y(0) = \frac{1}{0+c}$$
$$0.5 = \frac{1}{c}$$
$$c = \frac{1}{\frac{1}{2}}$$
$$= 2$$

ii. Obtain the final solution

$$y = \frac{1}{x+2}$$

2. Question

(a) Verify that all members of the family $y=\left(C-x^2\right)^{-\frac{1}{2}}$ are solutions to the D.E. $y'=xy^3$.

$$y' = \frac{d}{dx} \left[(C - x^2)^{-\frac{1}{2}} \right]$$

$$= -\frac{1}{2} (C - x^2)^{-\frac{3}{2}} \cdot -2x^3$$

$$= (C - x^2)^{-\frac{3}{2}} x^3$$

$$= \left[(C - x^2)^{-\frac{1}{2}} \right]^3 x^3$$

$$y' = xy^3$$

(b) Find a solution of the initial-value problem

$$y' = xy^3, y(0) = 2$$

i. Answer

$$y\left(0\right)=2$$

$$C^{-\frac{1}{2}}=2$$

$$\frac{1}{2}=\sqrt{c}$$

$$c=\frac{1}{4}\left(\text{cannot be negative, cause }\sqrt{-n}=undefined\right)$$

ii.
$$y = (\frac{1}{4} - x^2)^{-\frac{1}{2}}$$

3. Show that $y=x^{-\frac{3}{2}}$ is a solution to the D.E. $4x^2y''+12xy'+3y=0$ for x>0

$$y' = -\frac{3}{2}x^{-\frac{5}{2}}$$
$$y'' = \frac{15}{4}x^{-\frac{7}{2}}(LHS)$$

$$4x^{2}y'' + 12xy' + 3y = 0$$

$$4x^{2}y'' + 12x\left(-\frac{3}{2}x^{-\frac{5}{2}}\right) + 3\left(x^{-\frac{1}{2}}\right) = 0$$

$$4x^{2}y'' - 18x^{-\frac{3}{2}} + 3x^{-\frac{1}{2}} = 0$$

$$4x^{2}y'' - 15x^{-\frac{3}{2}} = 0$$

$$4x^{2}y'' = 15x^{-\frac{3}{2}}$$

$$y'' = \frac{15}{4}x^{-\frac{1}{2}}$$

- (a) Therefore, $y = x^{-\frac{1}{2}}$ is a solution to the D.E. for x > 0
- 4. Question
 - (a) Show that $y = \frac{3}{4} + \frac{C}{x^2}$ is the general solution to the D.E. 2xy' + 4y = 3.

$$y = \frac{3}{4} + Cx^{-2}$$
$$y' = -2Cx^{-3}$$
$$y' = -2Cx^{-3}$$

$$2xy' + 4y = 3$$

$$2x(-2Cx^{-3}) + 4y = 3$$

$$-4Cx^{-2} + 4y = 3$$

$$4y = 3 + 4Cx^{-2}$$

$$y = \frac{3}{4} + \frac{C}{x^2}$$

(b) Find the solution of the I.V.P. 2xy' + 4y = 3, y(1) = -4.

$$-4 = \frac{3}{4} + \frac{C}{1}$$
$$-4 - \frac{3}{4} = C$$
$$C = -\frac{19}{4}$$

i.
$$\therefore y = \frac{3}{4} - \frac{19}{4x^2}$$

5. Use Euler's Method with step size 0.5 to compute the approximate y-value y_1,y_2,y_3 and y_4 of the solution of the I.V.P. $y'=y-2x,y\left(1\right)=0$.

n	Xn	$y_n = y_{n-1} + 0.5(y_{n-1} - 2x_{n-1})$	y_n
0	1	0	0
1	1.5	$y_n = 0 + 0.5(0 - 2(1)) = 0.5(-2)$	-1
2	2	$y_n = -1 + 0.5(-1 - 2(1.5))$	-3
3	2.5	$y_n = -3 + 0.5(-3 - 2(2))$	-6.5
4	3	$y_n = -6.5 + 0.5(-6.5 - 2(2.5))$	-12.25

6. Use Euler's Method with step size 0.2 to estimate y(1.4), where y(x) is the solution of the initial value problem y' = x - xy, y(1) = 0.

n	Xn	$y_n = y_{n-1} + 0.2(x_{n-1} - x_{n-1}y_{n-1})$	y_n
0	1	0	0
1	1.2	$y_n = 0 + 0.2(1 - 1(0))$	0.2
2	1.4	$y_n = 0.2 + 0.2 (1.2 - 1.2 (0.2))$	0.392

7. Use Euler's Method with step size 0.1 to estimate y(1), where y(x) is the solution of the initial-value problem y' = 1-xy, y(0) = 0.

n	Xn	$y_n = y_{n-1} + 0.1 \left(1 - x_{n-1} y_{n-1} \right)$	y_n
0	0	0	0
1	.1	$0 + 0.1 (1 - 0 \cdot 0)$	0.1
2	.2	$0.1 + 0.1 (1 - (0.1) \cdot (0.1))$	0.199
3	.3	$0.199 + 0.1 (1 - (0.2) \cdot (0.199))$	0.2950
4	.4	$0.2950 + 0.1 (1 - (0.3) \cdot (0.2950))$	0.3862
5	.5	$0.3862 + 0.1 (1 - (0.4) \cdot (0.3862))$	0.4708
6	.6	$0.4708 + 0.1 (1 - (0.5) \cdot (0.4708))$	0.5473
7	.7	$0.5473 + 0.1 (1 - (0.6) \cdot (0.5473))$	0.6145
8	.8	$0.6145 + 0.1 (1 - (0.7) \cdot (0.6145))$	0.6715
9	.9	$0.6715 + 0.1 (1 - (0.8) \cdot (0.6715))$	0.7178
10	1	$0.7178 + 0.1 (1 - (0.9) \cdot (0.7178))$	0.7532

8. Use Euler's Method with step size 0.1 to estimate y(0.5), where y(x) is the solution of the initial-value problem $y' + 2y = 2 - e^{-4x}$, y(0) = 1.

$$y' = 2 - 2y - e^{-4x}$$

n	Xn	$y_n = y_{n-1} + h\left(y'_{n-1}\right)$	y_n
0	0	1	1
1	.1	$1 + 0.1 \left(2 - 2\left(1\right) - e^{-4\left(0\right)}\right)$	0.9
2	.2	$0.8530 + 0.1 \left(2 - 2 \left(0.8530\right) - e^{-4(.1)}\right)$	0.8530
3	.3	$0.8530 + 0.1 \left(2 - 2 \left(0.8530\right) - e^{-4(.2)}\right)$	0.8375
4	.4	$0.8375 + 0.1 \left(2 - 2 \left(0.8375\right) - e^{-4(.3)}\right)$	0.8399
5	.5	$0.8399 + 0.1(2 - 2(0.8399) - e^{-4(.4)})$	0.8517

9. Use Euler's Method with step size 0.1 to estimate y(0.5), where y(x) is the solution of the initial-value problem y' = y + xy, y(0) = 1.

n	Xn	$y_n = y_{n-1} + h\left(y'_{n-1}\right)$	y_n
0	0	1	1
1	.1	$y_n = 1 + 0.1 (1 + (0) (1))$	1.1
2	.2	1.1 + 0.1 (1.1 + (.1) (1.1))	1.221
3	.3	1.221 + 0.1 (1.221 + (.2) (1.221))	1.3675
4	.4	1.3675 + 0.1 (1.3675 + (.3) (1.3675))	1.5453
5	.5	1.5453 + 0.1 (1.5453 + (.4) (1.5453))	1.7616

- 10. Question
 - (a) Use Euler's Method with step size 0.2 to estimate y(1.4), where y(x) is the solution of the initial-value problem $y' + 3y = x^2$, y(1) = 1

n	Xn	$y_n = y_{n-1} + 0.2 \left(x_{n-1}^2 - 3y_{n-1} \right)$	y_n
0	1	1	1
1	1.2	$y_n = 1 + 0.2(1 - 3(1))$	0.6
2	1.4	$0.6 + 0.2 (1.2^2 - 3 (0.6))$	0.528

(b) Repeat part (a) with step size 0.1.

n	Xn	$y_n = y_{n-1} + 0.1 \left(x_{n-1}^2 - 3y_{n-1} \right)$	y_n
0	1	1	1
1	1.1	1 + 0.1 (1 - 3 (1))	0.8
2	1.2	$0.8 + 0.1 \left(1.1^2 - 3(0.8)\right)$	0.681
3	1.3	$0.681 + 0.1 (1.2^2 - 3 (0.681))$	0.6207
4	1.4	$0.6207 + 0.1 \left(1.3^2 - 3 \left(0.6207\right)\right)$	0.6035