南京大学数学课程试卷 (商学院19级)

2020/2021 学年 第___ 学期 考试形式 闭卷 课程名称 概率统计 (A卷)

考试时间 2021.1.4 系别 ______ 学号 _____ 姓名____

题号	- 36	二10	三12	四 10	五 10	六 12	七10	合计
得分								

 Φ (1. 0) =0.8413, Φ (1.28) = 0.90, Φ (1.38)=0.9162, Φ (1.58)=0.943, Φ (1.645) = 0.95, Φ (1.96) = 0.975, Φ (2)=0.9772, Φ (2.33) = 0.99, $\mathbf{t}_{0.025}(8)$ =2.306, $\mathbf{t}_{0.025}(9)$ =2.262, $\mathbf{t}_{0.05}(8)$ =1.86, $\mathbf{t}_{0.05}(9)$ =1.83, $\mathbf{t}_{0.025}(16)$ =2.12, $\mathbf{t}_{0.05}(16)$ =1.746, $\mathbf{t}_{0.025}(17)$ =2.11, $\mathbf{t}_{0.05}(17)$ =1.740, $\chi^2_{0.025}(8)$ =17.535, $\chi^2_{0.025}(9)$ =19.023, $\chi^2_{0.05}(8)$ =15.507, $\chi^2_{0.05}(9)$ =16.919 $\chi^2_{0.975}(8)$ =2.18, $\chi^2_{0.975}(9)$ =2.70, $\chi^2_{0.95}(8)$ =2.733, $\chi^2_{0.95}(9)$ =3.325 Φ . (6 Φ)×6=36 Φ)

1. 将 10 本书任意地放到书架上,其中有两套书,一套书有 3 本,另一套有 4 本,求下列事件的概率:(1) 3 本一套的书放在一起;(2) 两套书各自放在一起.

2. 设随机变量 $X_i \sim N(2, 3^2)$, $i = 1, 2, \dots 10$, 且相互独立, 求 $E[2X_1 \sum_{i=1}^{10} X_i]$.

3. 设 $\{X_k\}$ 为相互独立的随机变量序列,且有 $P(X_k = \sqrt{\ln k}) = P(X_k = -\sqrt{\ln k}) = \frac{1}{2}$, $k=1,2,\cdots$. 试证: $\forall \varepsilon > 0$,有 $\lim_{n \to \infty} P(\left|\frac{1}{n}\sum_{k=1}^n X_k\right| \geq \varepsilon) = 0$,即 $\{X_k\}$ 服从大数定律. 4. 设 X_1, X_2, \dots, X_9 是来自正态总体 $X \sim N$ (μ , σ^2) 的简单随机样本,设 $Y_1 = \frac{1}{6}$ ($X_1 + X_2 + \dots + X_6$), $Y_2 = \frac{1}{3}$ ($X_7 + X_8 + X_9$), $S^2 = \frac{1}{2} \sum_{i=1}^9 (X_i - Y_2)^2$, $Z = \frac{\sqrt{2}(Y_1 - Y_2)}{S}$, 求统计量 Z 的分布. (如有自由度需指出)

- 5. 随机抽取 9 发炮弹做试验,测得炮口速度的样本标准差 $S=\sqrt{\frac{1}{8}\sum_{i=1}^9(x_i-\bar{x}_i)^2}=11$,设炮口速度 X 服从正态分布 $N(\mu,\sigma^2)$,求炮口速度的标准差 σ 的 95%置信区间.
- 6. 设总体 $X \sim N(\mu, 9)$, μ 未知, X_1, X_2 ,… X_{36} 为样本,如果以区间($\overline{X} 1, \overline{X} + 1$)作为 μ 的 置信区间,那么置信度是多少?(其中 $\overline{X} = \frac{1}{36}\sum_{i=1}^{36} X_i$)

二. $(10\, f)$ 设事件 A 在一次试验中发生的概率为 $\frac{1}{4}$. 如果做了四次伯努利独立试验,事件 A 均未发生,则事件 B 也不发生;如果四次伯努利试验中事件 A 发生一次,则事件 B 发生的概率为 $\frac{2}{3}$;而四次试验中若事件 A 发生两次及两次以上,则事件 B 一定发生. 试求: (1)P(B); (2)若已知事件 B 已经发生,问四次试验中事件 A 至少发生两次及两次以上的概率.

13

三. (12 分) 设随机变量 X 的概率密度为 $p(x) = \frac{1}{2}e^{-|x|}$, $-\infty < x < +\infty$. (1) 求 EX , DX; (2) 求 X 与 Y = |X| 的协方差,并问 X 与 Y 是否相关? (3) 讨论 X 与 Y 是否相互独立? 为什么?

四. $(10 \, f)$ 设 $X_1, X_2, \cdots X_{200}$ 是取自总体 X 的一个简单随机样本. 总体 X 服从 $0\sim1$ 分布, $X\sim\begin{pmatrix}0&1\\\frac12&\frac12\end{pmatrix}$,试利用中心极限定理计算概率 $P\{\sum_{i=1}^{100}(X_{2i}-X_{2i-1})^2\leq 60\}$.

五.(10分) 设 X_1 , X_2 , ..., X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,记 $T = \overline{X}^2 - \frac{1}{n}S^2$, (1) 证明 T 是 μ^2 的无偏估计量; (2) 当 $\mu=0$, $\sigma^2=1$ 时,求 T 的方差 DT.

六. $(12\ \mathcal{G})$ 设总体 X 的密度函数为 $p(x) = \begin{cases} \frac{1}{\lambda}e^{-\frac{x}{\lambda}} \ , & x>0 \\ 0 \ , & x\leq 0 \end{cases}$ 、 $(\lambda>0), X_1, X_2, \dots, X_n$ 是取自总体 X 的一个简单随机样本(n>1). 令 $\widehat{\lambda_1} = \overline{X} = \frac{1}{n}\sum_{l=1}^n X_l$, $\widehat{\lambda_2} = n\{min(X_1, X_2, \dots, X_n)\}$, (1)讨论 λ 的两个估计量 $\widehat{\lambda_1}$ 与 $\widehat{\lambda_2}$ 的无偏性。(2) 比较 $\widehat{\lambda_1}$ 与 $\widehat{\lambda_2}$ 的有效性。

七. (10 分) 已知某种罐头中维生素 C(Vc)的含量 X 服从正态分布,按照规定 Vc 的平均含量不得少于 21 毫克,现从一批罐头中取了 17 罐,算得 Vc 含量平均值 $\overline{x}=19$,样本标准差 $S=\sqrt{\frac{1}{16}\sum_{i=1}^{17}(x_i-\overline{x})^2}=3.98$,(1)问该批罐头 Vc 的含量是否合格?(即对假设 H_0 : $\mu\geq 21$; H_1 : $\mu<21$ 进行检验) ($\alpha=0.05$) (2) 求 $\mu=EX$ 的置信度为 95%的置信区间.