

(Prior Art)

Figure 1

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 1 of 15

Figure 2

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 2 of 15

Figure 3

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 3 of 15

Figure 4A

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 4 of 15

			450		
<u>401</u>	<u>402</u>	<u>403</u>	<u>404</u>	<u>405</u>	<u>406</u>
<u>407</u>	<u>408</u>	<u>409</u>	<u>410</u>	<u>411</u>	<u>412</u>
<u>413</u>	<u>414</u>	<u>415</u>	<u>416</u>	<u>417</u>	<u>418</u>
<u>419</u>	<u>420</u>	<u>421</u>	<u>422</u>	<u>423</u>	<u>424</u>
<u>425</u>	<u>426</u>	<u>427</u>	<u>428</u>	<u>429</u>	<u>430</u>
<u>431</u>	<u>432</u>	<u>433</u>	<u>434</u>	<u>435</u>	<u>436</u>

Figure 4B

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 5 of 15

0 <u>401</u>	0 <u>402</u>	6 <u>403</u>	4 <u>404</u>	1 <u>405</u>	2 <u>406</u>
2 <u>407</u>	2 <u>408</u>	4 <u>409</u>	3 <u>410</u>	3 <u>411</u>	6 <u>412</u>
2 <u>413</u>	8 <u>414</u>	2 <u>415</u>	0 <u>416</u>	5 <u>417</u>	0 <u>418</u>
2 <u>419</u>	2 <u>420</u>	3 <u>421</u>	3 <u>422</u>	2 <u>423</u>	0 <u>424</u>
0 <u>425</u>	0 <u>426</u>	1 <u>427</u>	0 <u>428</u>	0 <u>429</u>	1 <u>430</u>
0 <u>431</u>	0 <u>432</u>	1 <u>433</u>	2 <u>434</u>	1 <u>435</u>	0 <u>436</u>

Figure 5

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 6 of 15

Figure 6

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 7 of 15

602
604
606
608

Figure 7

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 8 of 15

B(v)	8	5	12	3	5	0
b(v)	3	4	2	3	0	0
p(b)	2.5	3.6	2	0.8	4	5
q(v)	1.3	8.6	0.5	∞	1.0	∞

Figure 8

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 9 of 15

1. Set $C_t[j] = 0$ for $1 \leq j < L_i$ and sink t. Set $v = t$
2. while $v \neq s$ do
 - for $j = 1$ to $L_i - 1$ do
 - Set $C_{par(v)}[j] = C_v[j-1]$
 - Set $C_{par(v)}[0] = q(par(v)) + \min\{C_v[j] \mid 0 \leq j < L_i\}$
 - Set $v = par(v)$.
3. Let v be such that $par(v) = s$. Return $\min\{C_v[j] \mid 0 \leq j < L_i\}$.

Figure 9

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 10 of 15

Figure 10A

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 11 of 15

Figure 10B

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 12 of 15

Figure 10C

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 13 of 15

Figure 11

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 14 of 15

1. Pick an unvisited node v such that all descendants of v have been visited.
While $v \neq s$ do
2. if v is a sink then
Set $C_v[j] = 0$ for $1 \leq j < L_i$.
3. if v has one child $l(v)$ then
for $j = 1$ to $L_i - 1$ do
Set $C_v[j] = C_{l(v)}[j-1]$
Set $C_v[0] = q(v) + \min\{C_{l(v)}[j] \mid 0 \leq j < L_i\}$
4. if v has two children $l(v)$ and $r(v)$ then
4.1 for $j = 2$ to $L_i - 1$ do
Set $C_v[j] = \min\{C_{l(v)}[j_l] + C_{r(v)}[j_r] \mid j_l + j_r + 2 = j\}$
4.2 Set $C_v[0] = q(v) + \min\{C_{l(v)}[j_l] + C_{r(v)}[j_r] \mid j_l + j_r + 2 \leq L_i\}$
4.3 Set $C_v[1] = \infty$
4.4 for $j = 1$ to $L_i - 1$ do
Set $C_v[j] = \min\{C_v[j], q(v) + C_{l(v)}[j-1], q(v) + C_{r(v)}[j-1]\}$
5. mark v as visited
pick an unvisited node v such that all descendants of v have been visited.
6. Return $\min\{C_s[j] \mid 0 \leq j < L_i\}$.

Figure 12

Alpert et al.
AUS920010118US1
Practical Methodology for Early Buffer
and Wire Resource Allocation
Page 15 of 15

