HAND IN Student id:

Answers recorded on examination paper

Page 1 of 12

QUEEN'S UNIVERSITY FINAL EXAMINATION

FACULTY OF ARTS AND SCIENCE SCHOOL OF COMPUTING

CISC/CMPE 422 and CISC 835

Instructor: J. Dingel Wednesday, Dec 12, 2018

INSTRUCTIONS TO STUDENTS:

This examination is 3 HOURS in length. Please answer all questions in the exam.

The following aids are allowed: One 8.5"x 11" data sheet

Put your student number on all pages including this one (see upper right corner). GOOD LUCK!

PLEASE NOTE:

Proctors are unable to respond to queries about the interpretation of exam questions. Do your best to answer exam questions as written.

This material is copyrighted and is for the sole use of students registered in CISC/CMPE 422, CISC 835 and writing this exam. This material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may also constitute a breach of academic integrity under the University Senate's Academic Integrity Policy Statement.

For marking use only:

Q1	/18
Q2	/38
Q3	/18
Q4	/18
Q5	/40
Total	/132

Question 1: Predicate Logic (18 points total) Student id:
Let \mathcal{V} , \mathcal{F} , and \mathcal{P} denote the following sets of variables, function symbols, and predicate symbols, respectively: $\mathcal{V} = \{x, y\}$, $\mathcal{F} = \{\}$, and $\mathcal{P} = \{P\}$ where P has arity one. Ensure that all formulas that you write in this question are well-formed formulas over these variables and symbols. For parts a), b), and c) below, let ψ be the formula $\forall x. P(x)$.
a) Is it possible to find a formula φ_a such that $\varphi_a \wedge \psi$ is satisfiable? If so, write down that formula φ_a in the space below. If not, write "Impossible".
b) Is it possible to find a formula φ_b such that $\varphi_b \wedge \psi$ is unsatisfiable? If so, write down that formula φ_b in the space below. If not, write "Impossible".
c) Is it possible to find a formula φ_c such that $\varphi_c \wedge \psi$ is valid? If so, write down that formula φ_c in the space below. If not, write "Impossible".
d) Is it possible to find a formula φ_d such that $\forall x. (P(x) \to \varphi_d)$ is satisfiable? If so, write down that formula φ_d in the space below. If not, write "Impossible".
e) Is it possible to find a formula φ_e such that $\forall x. (P(x) \to \varphi_e)$ is unsatisfiable? If so, write down that formula φ_e in the space below. If not, write "Impossible".

f) Is it possible to find a formula φ_f such that $\forall x. (P(x) \to \varphi_f)$ is valid? If so, write down that formula φ_f in the space below. If not, write "Impossible".

Consider the following partial Alloy specification M for a pl	ugin architecture (akin to the one in Eclipse):
<pre>module Plugins sig ExtensionPoint {}</pre>	<pre>sig Plugin { requires : set Plugin, exPoints : set ExtensionPoint, plugsInto : set ExtensionPoint, extends : set Plugin }</pre>
a) (4 points) In the space below, draw an instance of the A satisfy all the constraints expressed in the specification a requires and exPoints relations. In your instance, clearly and every link (i.e., edge) with the relation (i.e., attribute) to	nd contain non-empty (interpretations of the) label every object with the signature (i.e., type)
b) (2 points) What is the smallest scope in which the Alloy as	nalyzer would be able to produce your instance?
c) (4 points) For each of the following Alloy expressions and or formula evaluates to in the instance you have drawn above i) Plugin & ExtensionPoint evaluates to:	formulas, determine which value the expression e and write down that value.
ii) ^extends.^extends = ^extends evaluates to:	

3 of 12

Question 2: Alloy (38 points total)

Student id: _____

Question	2: Alloy (continued)	
For your con	we nience, the Alloy specification M from the prev	vious page is repeated here.
module P	Plugins	sig Plugin { requires : set Plugin,
sig Exte	onsionPoint {}	exPoints : set ExtensionPoint, plugsInto : set ExtensionPoint, extends : set Plugin }
Using the Al	lloy specification above, express each of the follow	
d) (4 points)	"The requires relationship is acyclic."	
	9	
e) (4 points)	"Every extension point belongs to exactly one plu	gin."
f) (4 points) of p2."	"A plugin p1 extends plugin p2 if and only if p1	plugs into at least one of the extension points
g) (4 points)	"A plugin that requires some other plugin cannot	also extend that plugin."

Student id: _____

Student	id:	<u></u>
Student	id:	

Question 2: Alloy (continued)

For your convenience, the Alloy specification M from the previous page is repeated here.

module Plugins

sig Plugin -

sig ExtensionPoint {}

requires : set Plugin,
exPoints : set ExtensionPoint,

plugsInto : set ExtensionPoint,

extends : set Plugin }

h) (12 points) In the table below, the rows and columns are labeled with a sequence of Alloy formulas φ_1 through φ_5 . For each cell (φ_i, φ_j) in the table, determine whether or not φ_i and φ_j are equivalent, i.e., whether or not any instance of M satisfies φ_i if and only if it satisfies φ_j . Write "Yes" into cell (φ_i, φ_j) , if φ_i and φ_j are equivalent. Write "No", otherwise. For all formulas, assume that p denotes a plugin, i.e., that p: Plugin.

	no p.extends	no ~extends.p	p. extends in none	all q:Plugin q !in p.extends	no q:Plugin q->p in extends
no p.extends					
no ~extends.p	3.		8 <		
p.^extends in none					
all q:Plugin q !in p.extends					
no q:Plugin q->p in extends					

Student	id:	
Student	10:	

Question 3: CTL (18 points total)

Consider the three pairs of non-equivalent formulas φ_i , φ_i' below. For each pair, find a Kripke structure that distinguishes them. More precisely, for each pair, draw a Kripke structure M_i such that one formula holds in M_i , but not the other. **Important:** When drawing M_i , make sure that you clearly indicate (1) the initial state of M_i , (2) which atomic propositions occurring φ_i and φ_i' hold in which states of M_i , and (3) which of the two formulas holds in M_i . Also, remember that the transition relation of a Kripke structure is total.

a) (6 points)
$$\varphi_1 = \mathbf{AG} \ p$$
 and $\varphi_1' = \mathbf{AG} \ \mathbf{EX} \ p$

b) (6 points)
$$\varphi_2 = q \wedge \mathbf{E}[p \ \mathbf{U} \ \mathbf{AG} \ q]$$
 and $\varphi_2' = q \wedge \mathbf{E}[p \ \mathbf{U} \ q]$

c) (6 points)
$$\varphi_3 = \mathbf{EF} \ p$$
 and $\varphi_3' = \mathbf{EF} \ \mathbf{EX} \ p$

Question 4: Model checking (18 points total)

Consider the following graphical representation of a Kripke structure M.

For each of the following six CTL formulas φ decide whether the formula holds in M. If your answer is "No", that is, φ does not hold in M, then give a counter example, that is, a sequence of states corresponding to an execution path in M illustrating the *violation* of φ . Remember that some counter examples are infinite. To show infinite counter examples enclose the sequence of states that are repeated in parentheses. E.g., the sequence $s_0(s_1s_2s_3)$ represents an execution that starts with s_0 after which states s_1 , s_2 and s_3 are repeated forever in this order.

a) AG EX p

b) $\mathbf{AG}(r \to \mathbf{AX} \ (p \land q))$

c) EF EG q

Question 4: Model checking (continued)

For your convenience, the Kripke structure ${\cal M}$ from the previous page is repeated here.

d)
$$\mathbf{A}[p \ \mathbf{U} \ (q \wedge \mathbf{AX} \ r)]$$

e)
$$\mathbf{AG} \ \mathbf{AF} \ q$$

f)
$$\neg \mathbf{EF} (p \wedge r)$$

Student id:

Question 5: SMV (40 points total)

Consider the following SMV program.

```
MODULE P1
                                                               MODULE P2(x)
VAR
                                                               VAR
  x : \{a, b, c\};
                                                                 y : \{0, 1, 2\};
ASSIGN
                                                               ASSIGN
  init(x) := a;
                                                                 init(y) := 0;
  next(x) := case
                                                                 next(y) := case
                x=a : \{b, c\};
                                                                               x=b & y=0 : 1;
                TRUE : a;
                                                                               x=b & y=1 : 2;
             esac;
                                                                               x=b & y=2 : 0;
                                                                               TRUE : y;
                                                                            esac;
MODULE main
VAR
 p1 : P1;
 p2 : P2(p1.x);
```

a) (10 points) Draw the Kripke structure M that is defined by the SMV program above. Represent a single state s of M by a pair (x, y) where x is the value of x in process p1 and y is the value of y in process p2. For instance, the initial state of M is represented as (a, 0). Your drawing should clearly indicate the initial states of M, the reachable states of M, and the transition relation of M. You don't need to show the labelling function.

Student	id:	

Question 5: SMV (continued)

For your convenience, the SMV program from the previous page is repeated here.

```
MODULE P1
                                                                MODULE P2(x)
VAR
                                                                VAR
  x : \{a, b, c\};
                                                                  y : \{0, 1, 2\};
ASSIGN
                                                                ASSIGN
  init(x) := a;
                                                                  init(y) := 0;
                                                                  next(y) := case
  next(x) := case
                x=a : \{b, c\};
                                                                                x=b & y=0 : 1;
                TRUE : a;
                                                                                x=b & y=1 : 2;
             esac;
                                                                                x=b & y=2 : 0;
                                                                                TRUE : y;
                                                                             esac;
MODULE main
VAR
  p1 : P1;
  p2 : P2(p1.x);
```

b) (2 points) In the SMV program above, do processes p1 and p2 execute synchronously? Circle the correct answer.

Synchronously

Asynchronously

c) (2 points) Does the SMV program above have any unfair executions? Circle the correct answer.

No

Yes

- d) (6 points) Suppose you want to check that in the SMV program above state (c, 2) is reachable.
 - Write down a CTL formula φ that you could use for this purpose.

 $\varphi =$

• What could you conclude if the SMV program satisfies φ , i.e., if NuSMV does not find a counter example to the formula φ ? Circle the correct answer.

State (c, 2) is reachable

State (c, 2) is not reachable

Questio	ion 5: SMV (continued)	ident id.
the previous	oints) Each of the informally given properties φ_1 throughout page. Express each of them formally in CTL. We us p1. Similarly for p2.y. Given a state s, a successor of s on.	se p1.x to refer to the value of variable x in
	: "Along every path it is always the case that if $p1.x$ ccessor states"	is b and p2.y is 0, then p2.y is 1 in all
	$arphi_1$ in CTL:	
	: "For all states s along every path, if p1.x is a in s and ates of the successor states of s, then p1.x is b in all successor."	
	$arphi_2$ in CTL:	
$arphi_3$:	: "Along every path, p1.x will be b eventually and p2.y	will be 0 until then"
	$arphi_3$ in CTL:	
φ_4 :	: "There exists a path along which p2.y is always 0"	
	$arphi_4$ in CTL:	
$arphi_5$:	: "In every state, along every path, if p2.y is 0, then p2 φ_5 in CTL:	.y is 0 or 1 in all successor states"
	φ ₅ m O1b.	

Student id: _____

	Student id:	
Scratch sheet:		