Deep Learning of Graphs

Natural Disasters Damage to Banks and Firm Investment

Rank Fan & Gauss

XMU WISE

2021年10月14日

Outline

Background figure table

Literature Review

Data Introduction Methodology and Variables Regression Results 附录

What's this course about?

- Specific statistical methods for many research problems
- Hyperlinks (click here)
 - ► How to learn (or create) new methods
 - Inference: Using facts you know to learn about facts you don't know
- How to write a publishable scholarly paper
- All the practical tools of research theory, applications, simulation, programming, word processing, plumbing, whatever is useful
- A Outline and class materials:

2021

- ► The syllabus gives topics, not a weekly plan.
- ▶ We will go as fast as possible subject to everyone following along
- We cover different amounts of material each week

WISE Alerts

- First level alert
- Second level alert
- Third level alert
- Fourth level alert
- Fifth level alert

Systematic Components: Examples

•
$$E(Y_i) \equiv \mu_i = X_i \beta = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$$

•
$$\Pr(Y_i = 1) \equiv \pi_i = \frac{1}{1 + e^{-x_i\beta}}$$

•
$$V(Y_i) \equiv \sigma_i^2 = e^{x_i\beta}$$

- Interpretation:
 - ► Each is a class of functional forms
 - \triangleright Set β and it picks out one member of the class
 - β in each is an "effect parameter" vector, with different meaning

Recall:

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B) \frac{\Pr(B)}{\Pr(B)}$$

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B) \Pr(B)$$

$$\mathsf{NegBin}(y|\phi,\sigma^2) = \int_0^\infty \mathsf{Poisson}(y|\lambda) \times \mathsf{gamma}(\lambda|\phi,\sigma^2) d\lambda$$

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B) \Pr(B)$$

$$\begin{aligned} \mathsf{NegBin}(y|\phi,\sigma^2) &= \int_0^\infty \mathsf{Poisson}(y|\lambda) \times \mathsf{gamma}(\lambda|\phi,\sigma^2) d\lambda \\ &= \int_0^\infty \P(y,\lambda|\phi,\sigma^2) d\lambda \end{aligned}$$

Recall:

$$\Pr(A|B) = \frac{\Pr(AB)}{\Pr(B)} \implies \Pr(AB) = \Pr(A|B) \Pr(B)$$

$$\begin{split} \mathsf{NegBin}(y|\phi,\sigma^2) &= \int_0^\infty \mathsf{Poisson}(y|\lambda) \times \mathsf{gamma}(\lambda|\phi,\sigma^2) d\lambda \\ &= \int_0^\infty \P(y,\lambda|\phi,\sigma^2) d\lambda \\ &= \frac{\Gamma\left(\frac{\phi}{\sigma^2-1} + y_i\right)}{y_i!\Gamma\left(\frac{\phi}{\sigma^2-1}\right)} \left(\frac{\sigma^2-1}{\sigma^2}\right)^{y_i} \left(\sigma^2\right)^{\frac{-\phi}{\sigma^2-1}} \end{split}$$

2 columns

- SVM
- GMM
- EM

数据与 tabular 环境

WISE

Category of your contents	Different types of each Category	other type of your data			
	Different types of each Category	other type of your data			
	θ-1kg				
	0.0056 ± 0.0097, 0.0021 ± 4.0056	3.5 × 10 ⁵ ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	$3.5 \times 10^5 : 5.43 (9.30\%)$			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5 × 10 ⁵ ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	$3.5 \times 10^5 : 5.43 (9.30\%)$			
Type of date (numbers)	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	$3.5 \times 10^5 : 5.43 (9.30\%)$			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	$3.5 \times 10^5 : 5.43 (9.30\%)$			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)			
Mathematical formulas	$\frac{\mu^2}{\pi - 2\theta} \times \sqrt[3]{\ \nu_i - \hat{\phi}\ } + \lim_{x \to \infty} \int_0^{+\infty} f(x)e^{xxi}dx$	$f(x) \in C^{1}[0, +\infty], f(x^{n}) _{2} \le \lambda$			
	$\frac{\mu^2}{\pi - 2\theta}$ × $\sqrt[3]{\ \nu_i - \hat{\phi}\ }$ + $\lim_{s \to \infty} \int_0^{+\infty} f(x)e^{ssi}dx$	$f(x)\in C^1[0,+\infty],\ f(x^n)\ _2\leqslant \lambda$			
	$\frac{\mu^2}{\pi - 2\theta} \times \sqrt[3]{\ \nu_i - \hat{\phi}\ } + \lim_{s \to \infty} \int_0^{+\infty} f(s)e^{ssi}ds$	$f(x) \in C^1[0,+\infty], \ f(x^n)\ _2 \leqslant \lambda$			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
Language description	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	This is the element described in your language	Mathematical language description			
	3.5×10^{5} This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
Projection data	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
Projection data	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	$3.5 imes 10^5$ This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$			

tabel 1 Contents of different types of tables.

Rank Fan & Gauss Deep Learning of Graphs 2021 年 10 月 14 日 8

Word2Vec

WISE

topic 1		topic 2		topic 3			topic 4				
1	科技	0.9995	2	板块	mm	3	科技	mm	4	3500	mm
1	板块	0.9994	2	锂电池	mm	3	新能源	mm	4	反弹	mm
1	调整	0.9994	2	a 股	mm	3	in	机构	4	指数	
1	资金	0.9994	2	芯片	mm	3	in	板块	4	清仓	
1	业绩	0.9994	2	散户	mm	3	in	半导体	4	券商	mm
1	公司	0.9994	2	震荡	mm	3	in	中国	4	科技	mm
1	股价	0.9994	2	早盘	mm	3	in	芯片	4	in	mm
1	股市	0.9994	2	inches	mm	3	in	mm	4	in	mm
1	大跌	0.9994	2	inches	mm	3	in	mm	4	in	mm
1	基金	0.9994	2	inches	mm	3	in	mm	4	in	mm

tabel 2 Word2Vec of texts

Structural Features

Levels of Structure

- usual LATEX \section, \subsection commands
- 'frame' environments provide slides
- 'block' environments divide slides into logical sections
- 'columns' environments divide slides vertically (example later)
- overlays (à la prosper) change content of slides dynamically

例 (Overlay Alerts)

On the first overlay, this text is highlighted (or *alerted*). On the second, this text is.

Structural Features

Levels of Structure

- usual LATEX \section, \subsection commands
- 'frame' environments provide slides
- 'block' environments divide slides into logical sections
- 'columns' environments divide slides vertically (example later)
- overlays (à la prosper) change content of slides dynamically

例 (Overlay Alerts)

On the first overlay, this text is highlighted (or *alerted*). On the second, this text is.

Algoritmos 代码 1

Algorithm 1: Algorithm Example

```
input : x: float, y: float
  output: r: float
1 while True do
2
     r = x + y;
     if r >= 30 then
          "O valor de r é maior ou iqual a 10.";
          break:
5
     else
6
          "O valor de r =". r:
      end
8
 end
```


Reviewing DeepWalk algorithm

Algorithm 2: Reviewing random walk + skip gram

Run SGNS on \mathcal{D} with b negative samplpes.

Example: Mnist

WISE

```
### Using the SkLearn interface ###
  from keras.datasets import mnist
  from catboost import CatBoostClassifier, Pool
  from sklearn.model_selection import GridSearchCV
  from sklearn.metrics import accuracy score
  import numpy as np
  (X,y),(X test,y test) = mnist.load data()
  # (60000.28.28)
  print('x shape:'.X.shape)
10 # 60000
  print('v_shape:',v.shape)
12 X = X.reshape(X.shape[0].-1)/255
  X_test = X_test.reshape(X_test.shape[0],-1)/255
14
   param_test = {'iterations':np.arange(10,51,20),'learning_rate':[0.1,0.2],
16
           'depth':np.arange(4.9.2)}
18 cat = CatBoostClassifier(eval metric="AUC".one hot max size=31.12 leaf reg= 9.silent=False)
  grid search = GridSearchCV(estimator=cat.param grid=param test.cv=2.verbose=2.n jobs=-1)
  grid_search.fit(X,y)
   # grid search.cv results # Search for detailed results
  grid_search.best_params_
  grid_search.best_score_
  cat = grid_search.best_estimator_ # Best model
  y_pred = cat.predict(X_test)
  accuracy = accuracy_score(y_pred,y_test)
  print("The test set accuracy rate is: %.2f%%"%(accuracy*100.0))
```


Blocks

Normal block

A set consists of elements.

Alert block

2 = 2.

Example block

The set $\{1,2,3,5\}$ has four elements.

Theorems and Proofs

The proof uses *reductio ad absurdum*.

定理

There is no largest prime number.

证明

1 Suppose *p* were the largest prime number.

4 But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Theorems and Proofs

The proof uses *reductio ad absurdum*.

定理

There is no largest prime number.

证明

- 1 Suppose p were the largest prime number.
- 2 Let q be the product of the first p numbers.
- 4 But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Theorems and Proofs

The proof uses reductio ad absurdum.

定理

There is no largest prime number.

证明

- 1 Suppose *p* were the largest prime number.
- 2 Let q be the product of the first p numbers.
- 3 Then q+1 is not divisible by any of them.
- 4 But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

Data

16 / 21

Methodology and Variables

 $Regression\ Results$

Details

WISE

19 / 21

参考文献I

Hosono K and Miyakawa D and Uchino T, et al.

Natural disasters damage to banks and firm investment, 2016.

 $\verb|https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.592.8648 \& rep=rep1 \& type=pdf | for the first of the first$

Thanks!