- 1. Calcula las matrices inversas de las siguientes matrices:

 - a) $\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$ b) $\begin{pmatrix} 1 & -1 \\ 3 & 4 \end{pmatrix}$ c) $\begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$

- c) $\begin{pmatrix} -1 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & 1 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 2 & 0 \\ 2 & -1 & 1 \\ 0 & 5 & -1 \end{pmatrix}$ e) $\begin{pmatrix} 2 & -1 & 0 \\ 3 & 1 & 2 \\ 4 & 0 & 1 \end{pmatrix}$
- Dadas las matrices $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix}$, calcula $(A \cdot B)^{t}$ y $(A \cdot B)^{-1}$. 2.
- Calcula $B^{-1} \cdot A^2 \cdot B$, siendo $A = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$ y $B = \begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix}$. 3.
- 4. Calcula el rango de las siguientes matrices para los distintos valores de a:
- a) $\begin{pmatrix} a-2 & a+2 \\ 1 & 2 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 0 & -1 \\ 0 & a & 3 \\ 4 & 1 & -a \end{pmatrix}$ c) $\begin{pmatrix} 2a & 1 & 1 \\ 2 & a & 1 \\ 2 & 1 & a \end{pmatrix}$

- d) $\begin{pmatrix} a-1 & -1 & -1 \\ 0 & 2 & 1 \\ 0 & a+2 & 1 \end{pmatrix}$ e) $\begin{pmatrix} 2 & 0 & 0 & 1 \\ 2 & 1 & 3 & 1 \\ a & 1 & 3 & 2 \end{pmatrix}$ f) $\begin{pmatrix} 1 & 1 & 2 & 0 \\ 1 & a & 3 & 1 \\ 1 & a+1 & 5 & a+1 \end{pmatrix}$
- Obtén la matriz inversa de $A + A^t$, siendo $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{bmatrix}$. 5.
- La matriz $M = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ es distinta de la matriz nula. ¿Tiene inversa? Justifica tu 6. respuesta y, en caso afirmativo halla M^{-1} .
- Consider las matrices $A = \begin{pmatrix} 1 & 0 & 2 \\ -2 & 1 & x \\ 1 & x & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ y $C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$:
 - a) ¿Para qué valores de x tiene inversa la matriz A?
 - b) Encuentra la matriz inversa de A cuando x = -1.
 - c) ¿Qué dimensiones debe tener la matriz X para que la ecuación $A \cdot X = B \cdot C$ tenga sentido? Halla esta matriz cuando x = 1.
- Sabiendo que las matrices B y C son cuadradas y tienen inversa y dada la ecuación 8. matricial $C \cdot (A + X) \cdot B = I_3$:
 - a) ¿Qué dimensiones tiene la matriz X para que tenga sentido?
 - b) ¿Cuál es la solución?
- Dadas las matrices $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ y $C = \begin{pmatrix} 1 & 1 & 2 \end{pmatrix}$, determina la matriz X que verifica $X = A^{-1} \cdot B \cdot C$

Resuelve las siguientes ecuaciones matriciales, donde A, B y C son las siguientes matrices:

$$A = \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

- a) $X \cdot A = B$ b) $A \cdot X + B = C$ c) $X \cdot A + B = 2C$ d) $A \cdot X + B \cdot X = C$ e) $X \cdot A \cdot B X \cdot C = 2C$ f) $A \cdot X B C = 0$
- Dada la ecuación matricial: $X \cdot \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$
 - a) ¿Cuáles son las dimensiones de una matriz solución de la identidad anterior?
 - b) Calcula la solución.
- 12. Dadas las matrices: $A = \begin{pmatrix} 1 & -1 & 3 \\ -1 & 0 & -3 \\ -1 & 2 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 0 \\ -1 & 2 \\ 0 & 1 \end{pmatrix}$ $C = \begin{pmatrix} 0 & -1 & 2 \\ -2 & 1 & -1 \end{pmatrix}$
 - a) Halla la inversa de $A B \cdot C$.
 - b) Resuelve la ecuación matricial $A \cdot X B \cdot C \cdot X = A$.
- Resuelve la ecuación matricial $A \cdot X \cdot B = C$ siendo:

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$

14. Dadas las matrices: $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 4 \end{pmatrix}$ $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

halla la matriz X que cumple que $A \cdot X \cdot A^{-1} = B$.

- 15. Dadas las matrices: $P = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ $Q = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ calcula:
 - a) La matriz P^{-1} .
 - b) La matriz real cuadrada X tal que $P^{-1} \cdot X \cdot P = Q$.
 - c) La matriz $(P \cdot Q \cdot P^{-1})^2$.
- 16. Dadas las matrices: $A = \begin{pmatrix} 4 & -3 & -3 \\ 5 & -4 & -4 \\ 1 & 1 & 0 \end{pmatrix}$ $B = \begin{pmatrix} 3 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & 3 \end{pmatrix}$
 - a) Calcula la matriz inversa, A^{-1} .
 - b) Comprueba que no existe la matriz inversa B^{-1} .
 - c) Resuelve la ecuación: $X \cdot A = B + 2 \cdot I_3$.
- Se consideran las matrices $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ y $C = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$. Halla una matriz A tal que al multiplicarla por B y sumarle C resulte 2A.