MEEN 621 Notes

Shivanand P

November 15, 2022

Contents

1 Potential Flow				
	1.1	$Cartesian \Leftrightarrow Polar \ Velocities \qquad \dots \qquad \dots \qquad \dots \qquad \dots$		
	1.2	Stream Function \Leftrightarrow Potential Function \Leftrightarrow Velocities		
	1.3	Complex Potentials in Cartesian Coordinates		
	1.4	Complex Potentials in Polar Coordinates		
		1.4.1 Legend		

1. Potential Flow

$$i = \sqrt{-1}$$

$$z = x + iy = re^{i\theta} = r(\cos\theta + i\sin\theta)$$

$$\bar{z} = x - iy = re^{-i\theta} = r(\cos\theta - i\sin\theta)$$

$$x = r\cos\theta$$

$$y = r\sin\theta$$

$$r = \sqrt{x^2 + y^2} = |z| = |z\bar{z}|^{\frac{1}{2}}$$

$$\theta = \arctan\frac{y}{x}$$

Complex Potential $F(z) = \phi(z) + i\psi(z)$

Complex Velocity
$$w(z) = u - iv = (v_r - iv_\theta)e^{-i\theta} = \frac{dF(z)}{dz}$$

$$\bar{w}(z) = u + iv = (v_r + iv_\theta)e^{i\theta}$$

1.1. Cartesian ⇔ Polar Velocities

$$u = v_r \cos \theta - v_\theta \sin \theta$$
$$v = v_r \sin \theta + v_\theta \cos \theta$$
$$v_r = u \cos \theta + v \sin \theta$$

$$v_{\theta} = -u \sin \theta + v \cos \theta$$

1.2. Stream Function ⇔ Potential Function ⇔ Velocities

Also called Cauchy Reimann Equations

$$u = \frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}$$
$$v = \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$$

$$v_r = \frac{\partial \phi}{\partial r} = \frac{1}{r} \frac{\partial \psi}{\partial \theta}$$
$$v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = -\frac{\partial \psi}{\partial r}$$

1.3. Complex Potentials in Cartesian Coordinates

	φ	ψ	и	V
Uniform	$U(x\cos\alpha+y\sin\alpha)$	$U(y\cos\alpha-x\sin\alpha)$	$U\cos\alpha$	$U\sin\alpha$
Corner				
Source	$\frac{m}{4\pi} \ln[(x-x_0)^2 + (y-y_0)^2]$	$\frac{m}{2\pi}$ arctan $\frac{y-y_0}{x-x_0}$	$\frac{m}{2\pi} \left(\frac{x}{x^2 + y^2} \right)$	$\frac{m}{2\pi} \left(\frac{y}{x^2 + y^2} \right)$
Free Vortex	$\frac{m}{4\pi} \ln[(x-x_0)^2 + (y-y_0)^2]$	$\frac{m}{2\pi}$ arctan $\frac{y-y_0}{x-x_0}$	$\frac{m}{2\pi} \left(\frac{x}{x^2 + y^2} \right)$	$\frac{m}{2\pi} \left(\frac{y}{x^2 + y^2} \right)$

1.4. Complex Potentials in Polar Coordinates

	φ	ψ	V _r	$V_{ heta}$
Uniform	$Ur\cos(\theta-lpha)$	$Ur\sin(\theta-\alpha)$	$U\cos(\theta-\alpha)$	$-U\sin(\theta-\alpha)$
Corner	$Cr^n\cos n\theta$	$Cr^n \sin n\theta$	$nCr^{n-1}\cos[(n-1)\theta]$	$-nCr^{n-1}\sin[(n-1)\theta]$
Source	$\frac{m}{2\pi} \ln r$	$\frac{m}{2\pi}\theta$	$\frac{m}{2\pi r}$	0
Free Vortex	$\frac{m}{4\pi} \ln[(x - x_0)^2 + (y - y_0)^2]$	$\frac{m}{2\pi}$ arctan $\frac{y-y_0}{x-x_0}$	$\frac{m}{2\pi} \left(\frac{x}{x^2 + y^2} \right)$	$\frac{m}{2\pi} \left(\frac{y}{x^2 + y^2} \right)$

Legend

• Uniform

- U: Uniform velocity magnitude
- α : Angle of attack the angle at which the direction of the uniform velocity is oriented with respect to the horizontal

• Corner

- C: Indicates the direction. C > 0 always
- n: $\frac{\pi}{\text{angle of the corner}}$

• Source/Sink

- m: Volume flow rate per unit dimension normal to the page. For source, m>0, whereas for sink, m<0