$\mathcal{H}azy\ II$

a brief introduction to Cloudy 90 Computational Methods

G.J. Ferland

Department of Physics and Astronomy University of Kentucky, Lexington http://www.pa.uky.edu/~gary/cloudy

Use of this program is not restricted provided each use is acknowledged upon publication. The bibliographic reference to this version of CLOUDY is Ferland, G.J., 1996, *Hazy, a Brief Introduction to Cloudy,* University of Kentucky Department of Physics and Astronomy Internal Report.

Portions of this document have been published, and are copyrighted by, The American Astronomical Society and The Royal Astronomical Society. The remainder of this document, and the code CLOUDY, are copyrighted 1978-1997 by Gary J. Ferland.

CLOUDY is an evolving code. Updates are made on a roughly quarterly basis, while major revisions occur roughly every three years. You should confirm that you have the most recent version of the code by checking the web site http://www.pa.uky.edu/~gary/cloudy or asking to be placed on the CLOUDY mailing list.

October 21, 1997.

CLOUDY 90

G. J. Ferland

Department of Physics and Astronomy University of Kentucky Lexington

Table of Contents

1. INTRODUCTION	201
2. THE CONTINUUM MESH	202
2.1. Overview	202
2.2. Continuum Range	
2.3. The Continuum Mesh	
2.3.1. Defining the continuum energy mesh	202
2.3.2. Changing the energy resolution of the mesh	
2.3.3. Pointers within the continuum mesh	
2.4. Continuum Arrays	203
2.4.1. Continuum definition	203
2.4.2. Continuum intensity	204
2.4.3. Continuum optical depth arrays	205
2.5. Continuum Generation	
2.5.1. Blackbody emission	206
2.5.2. Continuum Normalization	206
2.6. Energy Units; The Rydberg	
2.7. Conversion Factors	207
3. CONTINUUM INTERACTIONS	208
3.1. Attenuation of the Incident Continuum	208
3.2. Recombination Equilibrium	208
3.2.1. On-the-spot approximation	208
3.2.2. Outward only approximation	209
3.3. Continuous Opacities	209
3.3.1. Opacity arrays	209
3.3.2. Cross-section array	
3.3.3. Photoionization rates	
3.3.4. Attenuation within the zone	
3.3.5. Rayleigh scattering	
3.3.6. Free-free opacity	
3.3.7. Bound-free opacity	
3.3.8. Plasma frequency	212
4. LINE DETAILS	213
4.1. Overview	
4.2. Line Boltzmann Factors	
4.3. Optical Depths, Opacities, and Transition Probabilities	213

4.3.1. Optical depths	213
4.3.2. Absorption cross section	213
4.3.3. Line Widths	
4.3.4. Oscillator strengths	
4.3.5. Voigt function	
4.3.6. Mean vs. line center optical depths	
4.4. Optical depths and iterations	
4.4.1. tauout	
4.4.2. update	
4.4.3. lgTauOutOn	
4.5. The Einstein Coefficients	
4.6. The Line Source Function	
4.7. The Line Escape Probability Functions	
4.7.1. Escape probability routines	
4.7.2. Incomplete redistribution	
4.7.3. damping constant	
4.7.4. Background opacity and Destruction probability	
4.7.5. Complete redistribution	
4.7.6. Masing lines	
4.7.7. Continuum fluorescence	
4.7.8. Stark broadening	
4.7.9. Net escape probability	
4.8. Level populations	
4.9. Optical Depths and the Geometry	221
4.9.1. Open geometry	991
4.9.2. Closed geometry overview	
4.9.3. Wind	
4.10. Collision Strengths	
· · · · · · · · · · · · · · · · · · ·	
4.11. Born Approximation	
4.12. The g-bar Approximation	
4.12.1. The van Regemorter approach	222
4.12.2. The g-bar implementation	223
4.13. The Critical Density	
4.14. Thermalization Length	
4.15. Averaging Levels into Terms	
4.15.1. Collision strengths	
4.15.2. Transition probabilities	
4.16. The Heavy Element Line Arrays	
4.16.1. Overview	
4.16.2. Level 1 and Level 2 lines	
4.16.3. Fine structure lines	
4.16.4. Evaluation of stored quantities	
4.16.5. Contents of the optical depth arrays	
4.16.6. Dumping the line array.	
4.16.7. Generating a line label	
4.16.8. Line excitation temperature	
4.16.9. A Simple Two Level Atom	
4.16.10. Adding lines to the optical depth arrays	229

5. THE MODEL HYDROGEN ATOM	231
5.1. Overview	231
5.2. Hydrogen Departure Coefficients	231
5.3. Hydrogen Level Energies	231
5.4. Effective Hydrogenic Transition Probabilities	232
5.4.1. Einstein As	
5.4.2. Hydrogen optical depth arrays	
5.5. Recombination Rates and Cooling	
5.5.1. Formalism	
5.5.2. Results	
5.5.3. Rational approximations	
5.5.4. Recombination coefficients	
5.6. The Collisional Rate Equations	
5.7. The Radiative Rate Equations	
5.7.1. Photoionization - recombination	
5.7.2. Derivation of radiative balance equations	
5.7.3. Final radiative equations	
5.8. Continuous Thermal Emission	240
6. H ⁻ AND MOLECULES	243
6.1. Overview	
6.2. The Saha Equation for Arbitrary Systems	
6.3. The Hydrogen Network	
6.4. LTE Populations of Hydrogen Molecules	
6.5. The H ⁻ Balance; Radiative Processes	
6.5.1. Radiative attachment	
6.5.2. Photodetachment	
6.5.3. Photodetachment by hard photons	
6.5.4. The approach to LTE; high radiation densities	
6.6. The H ⁻ Balance; Collisional Processes	
6.6.1. Associative detachment	
6.6.2. Electron collisional detachment	
6.6.3. Collisional ionization by suprathermal electrons	
6.6.5. Charge neutralization with heavy elements	
6.6.6. Neglected processes	
6.6.7. The approach to LTE; high hydrogen densities	250 250
6.7. The HeH+ Molecular Ion	
6.8. The H ₂ Molecule	
6.8.1. Associative detachment of H ⁻	251
6.8.2. Catalysis on grain surfaces	
6.8.3. Excited atom radiative association	
6.8.4. Excited molecular dissociation	
6.8.5. Discrete absorption into Lyman and Werner bands	
6.8.6. Photo-ionization to H ₂ +	
6.8.7. Collisional dissociation by H^0 , He^0 , and e^-	
6.8.8. H ₂ cooling	
6.8.9. H ₂ heating	

6.9.	Heavy Element Molecules	253
	6.9.1. Collisional Processes	254
	6.9.2. Photochemical processes and heating	254
	6.9.3. Cooling	254
7 HEL	IUM	255
	Overview	
	The Helium Ion	
	The Helium Singlets	
	The Helium Triplets	
	Ionization Equilibria	
	Line Emission	
	Helium Line and Continuum Arrays	
	7.7.1. Recombination coefficients	
o THE		
	HEAVY ELEMENTS	
	Overview	
	Solar System Abundances	
	Periodic Table Ionization Balance	
0.4.	8.4.1. Photoionization cross sections	
	8.4.2. Auger multi-electron ejection	
	8.4.3. Collisional ionization rate coefficients	
	8.4.4. Radiative recombination rate coefficients	
	8.4.5. Low temperature dielectronic recombination	
	8.4.6. Charge transfer	
8.5	Ionization Potentials	
0.0.	8.5.1. Ionization potential pointers	
8.6	Heavy Element Variables	
0.0.	8.6.1. Atomic weights	
	8.6.2. Ionic and total abundances	
	8.6.3. Element names	
	8.6.4. Photoionization rates	
	8.6.5. Fluorescence yields	
	8.6.6. Ionization potential pointers	
8.7.	Isoelectronic Sequences	
	Carbon	
	Nitrogen	
	0. Oxygen	
	8.10.1. The O I model atom	
8.11	l. Neon	266
8.12	2. Magnesium	266
	B. Aluminum	
8.14	I. Calcium	267
	8.14.1. The Ca II model atom	267
8.15	5. Iron	268
	8.15.1. The FeII model atom	268
	8.15.2. The FeIV model atom	268
	9 15 9 Fo Ko amission	268

	8.16. Heavy Element Opacities	269
	8.17. Overall Reliability	269
	8.18. The Bi-Diagonal Matrix	272
9 . '	THERMAL EQUILIBRIUM	273
	9.1. Overview	
	9.2. Thermal Stability	273
	9.3. Compton Energy Exchange	
	9.4. Bound Compton Ionization, Heating	
	9.5. Expansion Cooling	
	9.6. Free-free Heating-Cooling	
	9.7. Photoelectric Heating, Recombination Cooling	
	9.8. Collisional Ionization - Three-Body Recombination	
	9.9. H ⁻ Heating and Cooling	
	9.9.1. H ⁻ bound-free	
	9.9.2. H ⁻ free-free	279
	9.10. Line Cooling, Hydrogen and Helium	279
	9.11. Heavy Element Line Heating and Cooling	280
	9.11.1. Overview	280
	9.11.2. Array pointers	280
	9.11.3. Two level atoms	
	9.11.4. Three level atoms	281
	9.11.5. N level atoms	282
	9.11.6. Li Sequence	283
	9.11.7. Boron Sequence	284
	9.11.8. Beryllium sequence atoms	284
	9.12. Evaluation of the Cooling Function	285
	9.12.1. Total cooling	285
	9.12.2. The cooling derivative	285
	9.13. Evaluation of the Heating Function	
	9.14. Equilibrium Calculations	
	9.14.1. Hydrogen only	
	9.14.2. Metal rich gas	287
10	GRAIN PHYSICS	289
	10.1. Overview	
	10.2. Grain Opacity	289
	10.2.1. ISM grains	
	10.2.2. Orion grains	
	10.2.3. PN grains	
	10.2.4. Extinction	
	10.3. Photoelectric Emission	290
	10.4. Collisional Charging of a Grain	
	10.5. Grain Potential	
	10.6. Grain Drift Velocity	
	10.7. Radiative Heating and Cooling of a Grain	
	10.8. Collisional Heating of a Grain	
	10.9. Grain Temperature	
	10.10. Photoelectric Heating of the Gas	

	10.11. Collisional Cooling of the Gas	294
	10.12. Grain Sublimation	
	10.13. Ionic Recombination on Grain Surfaces	295
	10.14. Grain Variables	295
11.	OTHER PHYSICAL PROCESSES	297
	11.1. Overview	
	11.2. Cosmic Ray Interactions	
	11.3. Line Radiation Pressure	
	11.3.1. Formalism	299
	11.3.2. Line width	300
	11.3.3. Background opacity and thermalization	
	11.4. Radiative Acceleration	301
	11.5. Pressure Laws	302
	11.5.1. Units	
	11.5.2. Ideal gas laws	
	11.5.3. Equation of state	
	11.5.4. Turbulent pressure?	
	11.5.5. Ram or dynamic pressure	
	11.5.6. Pressure variables and routines	
	11.6. Wind Geometry	
	11.7. Secondary Ionization	
	11.7.1. Ionization, heating, and cooling	
	11.7.2. Evaluation of rate of hot electron energy input	
	11.7.3. Secondary rates per atom	
	11.7.5. Rates during the hydrogen balance solution	
	11.7.6. Molecules and Suprathermal Electrons	
	11.8. Jeans Length and Mass	
	11.9. Luminosity Distance	
	•	
12.	GLOSSARY OF SYMBOLS	308
13.	REFERENCES	312
14	INDEX	210
17.	INDEA	313
	List of Figures	
	Free-free gaunt factors	
	Hydrogen recombination cooling	
	Hydrogen level populations vs density	
	Hydrogen level populations vs radiation density	
	Thermal emission from nebular gas	
	Thermal emission near LTE	
	H- departure coefficients vs radiation density	
	H- departure coefficients vs density	
	C - l C A l l	0 - ~
	Solar System Abundances Iron photoionization cross sections	257 259

Density of Ionization Potentials	262
The O I model atom	
The Ca II model atom	267
Fe II IR model atom	268
Fe IV model atom	268
Fe Kα fluorescence yield and energy	269
Opacity of neutral gas at high energies	
Thermal equilibria in the Compton limit	
Thermal equilibria near the Compton limit	
Beryllium sequence model atom	
Boron Sequence	
The approach to thermodynamic equilibrium	287
Thermal equilibrium of metal-rich gas	
ISM grain opacity functions	
Wind velocity vs depth	304
T O.T. 1.1	
List of Tables	
Conversion Factors	207
Line Boltzmann Factors	213
Heavy Element Line Pointers	227
Needed Line Parameters	
Hydrogen recombination coefficients	234
Recombination cooling coefficients	
Ionization Potentials of the Elements	
Isoelectronic Sequences	264
Ionization Balance Reliability	
Lithium Sequence Lines	
<u>*</u>	
Secondary Ionization Variables	

1. INTRODUCTION

This section outlines the computational methods used in version 90 of CLOUDY. Parts are modified from Ferland and Mushotzky (1984), Ferland and Rees (1988), Ferland and Persson (1989), Rees, Netzer, and Ferland (1989), Baldwin et al. (1991), Ferland, Fabian, and Johnstone (1994), Ferland et al. (1992) and Ferland (1992). The code has been designed to be as general as possible (but limited to non-relativistic regimes which are not Compton-thick) while remaining computationally expedient. Similar discussions of hydrogen line formation, focusing on the density range $n \le 10^{11}$ cm⁻³ appropriate to quasar emission-line clouds, can be found, for instance, in Mathews, Blumenthal, and Grandi (1980) and Drake and Ulrich (1980). Discussions of line formation and ionization and thermal equilibria are presented by Osterbrock (1988), Davidson and Netzer (1979), Kwan and Krolik (1981), Halpern and Grindlay (1980), Weisheit, Shields, and Tarter (1981), Kallman and McCray (1982), Hubbard and Puetter (1985), Vernazza, Avrett, and Loeser (1981), Avrett and Loeser (1988), and Netzer (1990).

dintro 201

2. THE CONTINUUM MESH

2.1. Overview

Under most circumstances the continuum produced by the central object is the only source of heat and ionization for the emission-line clouds. This section describes how this continuum is treated.

2.2. Continuum Range

The energy interval 1.001×10^{-5} Ryd -7.354×10^{6} Ryd is divided into ~3000 energy bins with nearly logarithmically increasing widths.

emm This is the low energy limit to the continuum array and is stored as the first variable in the common block **bounds**. It can only be changed by modifying the data statement in block data **scalar**. Its current value is 1.001×10^{-5} Ryd.

egamry This is the high energy limit to the continuum array and is stored as the second variable in the common block **bounds**. The current value is 7.354×10^6 Ryd.

ncell All of the continuum vectors described in the following are dimensioned **ncell** long. **ncell** appears in countless parameter statements throughout the code. **ncell** is always the same, no matter how hard or soft the continuum is, and is currently 3000. It is solely used to define the dimension of the arrays described below.

nupper This is the number of cells needed to define the continuum up to its high energy limit of 7.354×10⁶ Ryd. It does not depend on the continuum shape but does depend on how fine the frequency mesh is. Frequency pointers are defined up through **nupper**:

nflux Each of the continuum intensity vectors is defined up to the high-energy limit for the particular continuum generated. The pointer to this higher energy limit is the variable **nflux**. **nflux** is chosen so that, for the highest energy considered, $v_{high} = anu(nflux)$, $vf_v(v_{high})/vf_v(v_{peak}) < flxfnt$, where v_{peak} is the frequency where the continuum reaches its maximum vf_v . **flxfnt** is normally 10^{-10} and is reset with the **set flxfnt** command.

2.3. The Continuum Mesh

2.3.1. Defining the continuum energy mesh

The continuum energy array **anu** is defined in routine **SetPoint**. The continuum energy mesh is established by successive calls to routine **fill**. Each call defines the continuum mesh over a specific energy range at a specific resolution. The full continuum is set by a series of calls to **fill**, each with its own range and resolution.

fill has five arguments. The first two are the lower and upper bounds to the energy range defined by that call to **fill**. The third argument is the energy resolution desired over that energy range, expressed as a relative resolution, $\delta v/v$. The 4th argument is the frequency grid pointer, and can extend up to **ncell**. The fifth

argument is a pointer indicating which energy band this is — it is incremented for each call to *fill*.

The code will stop if it is not possible to define the entire energy range 1.001×10^{-5} Ryd – 7.354×10^{6} Ryd with *ncell* cells. *nupper* is set to the pointer to the highest energy cell, at 7.354×10^{6} Ryd, after these calls to *fill*.

2.3.2. Changing the energy resolution of the mesh

Altering the value of the third argument to **fill** can change the resolution of a particular range of the continuum mesh. This number is the fractional resolution $\delta v/v$, where v is the energy.

If the energy resolution is increased then the code will require more mesh points to cover the full continuum, and will run more slowly. It may no longer be possible to define the full continuum with only *ncell* points. If this happens then it will be necessary to increase *ncell* everywhere it appears in the code.

2.3.3. Pointers within the continuum mesh

Most of these are called within routine **SetPoint**.

ipoint This function converts energies (Rydberg) into pointers to the cell in **anu** containing the specified energy. It has a single argument, the energy in Rydberg, and returns the pointer to the appropriate cell. **ipoint** will stop if the energy does not lie within the continuum bounds of the code.

ipLinSafe This routine calls ipoint and generates a pointer to the energy of an emission line which is guaranteed to be the only line at that energy in anu. Line labels are stored in the four-character array chlineLabel. The array flxsav is used as a temporary holding area by this routine to count the number of lines stored at a given energy.

ipConSafe This routine calls **ipoint** and generates a pointer to the energy of a continuum edge that is guaranteed to be unique. Line labels are stored in the four-character array **chContLabel**. The array **flux** is used as a temporary holding area by this routine to count the number of lines stored at a given energy.

2.4. Continuum Arrays

Several vectors deal with aspects of the attenuated incident and diffuse continua. All fluxes are stored in units photons cm⁻² s⁻¹ cell⁻¹ and they all map one-to-one with one another.

2.4.1. Continuum definition

anu The energy (in Rydbergs) of the center of each cell is stored in the vector **anu**. There are **nupper** cells with defined energies. This energy grid *does* have a weak dependence on continuum shape since the center of the cell is defined by a weighted average over the incident continuum.

anuSave This array saves the initial frequency array, so that it may be reset when the code is initialized during computations of many grid models. The initial array of opacities is actually defined using this energy array.

corind Continuum Boltzmann factors, the ratio $\exp(-hv/kT)$, are stored in the vector **corind**, which is evaluated in routine **boltgn**.

widflx The width of each cell (Rydbergs) is stored in the vector **widflx**. There are **nupper** cells with defined widths, and this energy grid does not depend on the continuum shape.

2.4.2. Continuum intensity

condif This is a continuum that is carried outward, but does not interact with the gas. It contains mainly continua whose gas interactions are included by other methods, such as OTS. This does not affect the ionization of the gas directly, but is included in the punched continuum.

diffus The local diffuse continuum (total local emission due to all processes, *per unit volume* with no filling factor) is stored in **diffus**. Continuous diffuse emission is evaluated in routine **diffem**.

flux The attenuated incident continuum is stored in the vector **flux**. The actual contents of **flux** are given by

$$flux(\mathbf{n}) = 4\mathbf{p}I_{inc} \frac{\Delta \mathbf{n}}{h\mathbf{n}} \text{ photons cm}^{-2} \text{ s}^{-1}$$
(100)

where the cell width is Δv .

occnum The photon occupation number associated with the attenuated incident continuum is stored in the vector **occnum**. The continuum occupation number at a frequency v is given by

$$h_n \equiv J_n / (2hn^3 / c^2) = (\exp(hn / kT_{ex}) - 1)^{-1}$$
 (100)

Here J_{ν} is the mean intensity of the net continuum at the frequency, and T_{ex} is the excitation temperature of the continuum at the frequency.

outcon stores the continua that are carried outward and treated as sources of ionizing radiation. This continuum is the local outward continuum at the current position within the nebula, with correction for r^2 dilution of radiation. This array is incremented in routine **metdif**.

outlin stores the many lines that are carried outward and treated as sources of ionizing radiation.

otscon and **otslin** Two vectors, **otscon** and **otslin**, store the local on-the-spot (OTS) photon fluxes for continua and lines. Both are totally local rates, and are reevaluated for every zone.

refcon, reflin The "reflected" continuum and lines (that emergent from the illuminated face of the cloud) are stored in the vectors **reflin** and **refcon**. The reflected continuum and lines are updated for each zone in **metdif**, and the contents of the arrays are the quantity integrated over the computed geometry. Throughout the calculation the reflected continuum and lines are stored relative to the inner radius of the cloud. This is only computed for an open geometry.

SummedDif This is the sum of **otscon**, **otslin**, **outlin**, and **outcon**, and is the summed diffuse continua. They are evaluated in routine **SumContinuum**. This and the following two arrays are used to save time in computing photoionization rate integrals. This is evaluated in routine **SumContinuum**.

SummedOcc This is the continuum occupation number corresponding to **SummedCon**. This is evaluated in routine **SumContinuum**.

SummedCon This is the sum of **SummedDif** and **flux**, the attenuated incident continuum. This is evaluated in routine **SumContinuum**.

2.4.3. Continuum optical depth arrays

depabs, **depsct** These are the arrays containing the absorption and scattering optical depths from the current position to the illuminated face of the cloud.

exptau The vector **exptau** contains the term $\exp(-\tau_v)$ for each frequency in **anu**. This is the attenuation from the current position to the illuminated face of the cloud.

e2tau The vector **e2tau** contains the term $E_2(\tau)$ where τ is the absorption optical depth from the current position to the illuminated face of the cloud.

facexp This is the term $\exp(-d\tau)$ for the current zone.

opac This is the array of continuous absorption opacities (units cm⁻¹). It is evaluated in **addopc**.

scatop This is the array of continuous scattering opacities (units cm⁻¹). It is evaluated in **addopc**.

tauabs, tausct, tautot Total absorption, scattering, and total (absorption plus scattering) optical depths are stored in three arrays, tauabs(ncell,2), and tausct(ncell,2), tautot(ncell,2), respectively. These map one-to-one with anu. The first element of the second dimension of the array gives the optical depth from the illuminated face to the current position. The second element gives the total optical depth determined in the previous iteration. For an open geometry this optical depth is only the optical depth of the computed structure. For a closed geometry the optical depth at the illuminated face is set equal to the computed optical depth. During an iteration tauabs(i,1) is incremented in routine radinc.

At the end of the iteration *tauabs*(i,2) is set to the total optical depth in routine *update*.

2.5. Continuum Generation

The continuum is generated by the function **ffun**. **ffun** has a single argument, the energy in Rydbergs, and it returns the number of photons per unit area, time, and Rydberg, at that energy. **ffun** sums over all the specified continua and applies the appropriate normalization factors. Another function, **ffun1**, evaluates each individual continuum, and is normally called only by **ffun**.

The units, and their conversion to other measures of the continuum, are given below. The photon flux density is:

$$\mathbf{j}_{n}(\mathbf{n}) = \text{FFUN}(\mathbf{n}) \quad \text{photons} \quad \text{cm}^{-2} \text{ s}^{-1} \text{ Ryd}^{-1} .$$
 (101)

This is stored in the photon array:

$$FLUX(\mathbf{n}_i) = \mathbf{j}_n(\mathbf{n}) \, \mathbf{d}\mathbf{n}_i = FFUN(\mathbf{n}_i) \times WIDFLX(\mathbf{n}) \quad \text{photons} \quad \text{cm}^{-2} \, \text{s}^{-1} \quad . \tag{102}$$

Finally, the energy flux density is given by

$$f_n(\mathbf{n}) = \text{FFUN}(\mathbf{n}) h \left(\frac{\mathbf{n}}{\mathbf{n}_{912}} \right) \text{ erg } \text{cm}^{-2} \text{ s}^{-1} \text{ Hz}^{-1}$$
 (103)

and

$$n f_n(n) = \text{FFUN}(n) h \left(\frac{n}{n_{912}}\right) n_{912} h n_{Ryd} \quad \text{erg} \quad \text{cm}^{-2} \quad \text{s}^{-1} \quad \text{Hz}^{-1} \quad .$$
 (104)

2.5.1. Blackbody emission

For reference, the Planck function is given by

$$B_{n} = \frac{F_{n}}{p} = \frac{2h\mathbf{n}^{3}}{c^{2}} \frac{1}{\exp(h\mathbf{n}/kT) - 1} \quad \text{erg cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ Hz}^{-1}.$$
 (105)

Function *plankf* evaluates the Planck function for the current electron temperature. It has a single argument, a pointer to the desired continuum energy. It returns the photon flux for that cell.

2.5.2. Continuum Normalization

The continuum normalization is performed in routine *conorm*.

2.6. Energy Units; The Rydberg

Continuum energies are usually given in Rydbergs. One Rydberg is approximately equal to the ionization potential of hydrogen, which is

$$R_H \equiv 2.178728 \times 10^{-11} \text{ erg} = 13.59842 \text{ eV} = 91.176340 \text{ nm} = 109677.576 \text{ cm}^{-1}$$
 (106)

This was the Rydberg unit used by CLOUDY before 1988, and is not the more commonly used R_{∞} , for infinite mass nuclei.

The energy scale is now in terms of R_{∞} , using the 1986 Codata revision of the fundamental constants (Cohen and Taylor 1987). In these units, the wavenumber corresponding to R_{∞} is

$$R_{\infty} = \frac{2\mathbf{p}^2 m_e q_e^4}{ch^3} = 109737.315 \,\text{cm}^{-1} \quad , \tag{107}$$

the wavelength in vacuum is

$$1/R_{\infty} = 91.126732 \,\mathrm{nm},$$
 (108)

the frequency is

$$c R_{\infty} = 3.289842 \times 10^{15} \text{ s}^{-1}$$
, (109)

and this corresponds to an energy

$$1\text{Ryd} = chR_{\infty} = 2.179874 \times 10^{-11} \text{erg} = 13.605698 \text{ eV} = 1.5788866 \times 10^{5} \text{ K}$$
 (110)

Thus the ionization potential of hydrogen is actually 0.99946 Ryd, referred to by the variable **HIonPot** in parameter statements within the code. This difference is significant since it enters as the third power in the photon phase-space conversion factor $2hv^3/c^2$.

Another commonly used unit is the "atomic unit", also called the Hartree, which is equal to *two* Rydbergs (i.e., $2R_{\infty}$).

2.7. Conversion Factors

Table 16 gives conversion factors between various common units. The last column of the table gives the variable names for constants that occur in parameter statements within the code. These should be used instead of entering the constant directly. In the following all Rydbergs are for infinite mass nuclei.

The fundamental constants now used by the code are from a variety of revisions of the basic data, some dating back to the 1970's. An effort is now underway to convert the constants to the 1986 CODATA recommended values (see http://physics.nist.gov/PhysRefData/codata86/codata86.html).

Table 16 Conversion Factors

To convert from	Variable	to	multiply by	Parameter
phot/s/cm ²	flux	f_{v}	ν _{Ryd} hν ₁ (erg)	
phot/Ryd/s/cm ²	flux/widflx	vf_v	$v_{\rm Ryd}^2$ hv ₁ (erg)	
phot/Ryd/s/cm ²	flux/widflx	J_{ν}	$v_{\rm Ryd}$ h	
optical depth	tautot	A _V (mag)	1.08574	
energy (eV)		ergs	1.602192(-12)	
energy (eV)		K	1.1604448(4)	eVdegK
energy (Ryd)	anu	Kelvin	1.5788866(5)	te1ryd
energy (Ryd)	anu	ergs	2.179874(-11)	en1ryd
energy (Ryd)	anu	cm ⁻¹	109737.315	1/WavNRyd
energy (Ryd)	anu	eV	13.6056981	evRyd
energy (Ryd)	anu	Å	911.6	rydlam
energy (Ryd), T	anu, Te	hν /kT	1.5788866(5)*anu/Te	te1ryd
temperature (K)	Te	eV	8.617385(-5)	
temperature (K)	Te	ergs	1.38063(-16)	<i>boltzmann</i>
temperature (K)	Te	Rydbergs	1/1.5788866(5)	1/ te1ryd
wavelength (cm)		microns	1(+4)	
wavelength (cm)		Å	1(+8)	
wavelength (Å)		degree K	$1.43877(+8)/\lambda(cm)$	WavNKelv
wavelength (cm)		degree K	$1.43877/\lambda$ (cm)	WavNKelv
wavelength (micron)		degree K	$1.43877(+4)/\lambda(cm)$	WavNKelv
wavenumbers (cm ⁻¹)		ergs	1.98648(-16)	
wavenumbers (cm ⁻¹)		degree K	1.43877	WavNKelv
wavenumbers (cm ⁻¹)		Rydbergs	9.1126732(-6)	WavNRyd

3. CONTINUUM INTERACTIONS

3.1. Attenuation of the Incident Continuum

In an open geometry scattering is assumed to attenuate the incident continuum as

$$I = I_o (1 + 0.5 dt_{scat})^{-1} (111)$$

Scattering does not affect the continuum in a closed geometry. Absorption is assumed to attenuate the incident continuum as

$$I = I_a \exp(-dt_{abs}) \quad . \tag{112}$$

for both geometries.

3.2. Recombination Equilibrium

3.2.1. On-the-spot approximation

A modified version of the "on-the-spot" (OTS) approximation is used in the treatment of sources of diffuse ionizing radiation when the diffuse ots command is used. Were no other opacity sources present, then, for a closed geometry which is optically thick in the Lyman continuum, all recombinations of hydrogen or helium to the ground state would produce ionizing photons which would be quickly absorbed by other atoms of the recombined species. In this case OTS is an excellent approximation (Van Blerkom and Hummer 1967; Bässgen, Bässgen, and Grewing 1988). However, other opacity sources are present, and these compete in absorbing protons produced by recombinations, making the recombination process more efficient than the OTS approximation would suggest.

The recombination coefficients for all states of hydrogen and helium are modified by the presence of all other opacity sources, such as grains, free-free or H-absorption, and the heavy element opacities, in the following manner. The net effective recombination rate coefficient (cm³ s⁻¹) to level n, $\hat{a}(T_e,n)$, is written in terms of the spontaneous radiative recombination rate coefficient $a(T_e,n)$, and the opacities (cm⁻¹) κ_n and κ_0 for the level n and other opacity sources respectively, as

$$\hat{\boldsymbol{a}}(T_e, n) = \boldsymbol{a}(T_e, n) \left\{ P_c(n) + \left[1 - P_c(n) \right] \left(\frac{\boldsymbol{k}_o}{\boldsymbol{k}_o + \boldsymbol{k}_n} \right) \right\} , \qquad (113)$$

where P_c (n) is the continuum escape probability. In general, P_c (n) varies between 0 and 0.5 for an optically thick open geometry (see, for example Davidson 1977), $P_c \sim 1$ if the gas is optically thin, and $P_c \sim 0$ for ground states if the gas is optically thick and the geometry is closed. All computed opacity sources are included in κ_o .

These recombination continua produce a flux of local on-the-spot photons, ϕ_{OTS} (cm $^{-2}$ s $^{-1}$). The OTS photoabsorption rate Γ_{OTS} (s $^{-1}$), used to determine the ionization or heating rate for the gas or grain constituents, is then $\Gamma_{OTS} = \alpha_{\nu} \; \phi_{OTS}$ where α_{ν} is the absorption cross section at frequency $\nu.$ The OTS flux is related to the spontaneous recombination rate coefficient by

$$\mathbf{j}_{OTS} = \mathbf{a} \left(T_e, n \right) n_e n_{ion} \left[\frac{1 - P_c(\mathbf{t})}{\mathbf{k}_o + \mathbf{k}_n} \right] \text{ cm}^{-2} \text{ s}^{-1}$$
(114)

where n_{ion} is the density of the ion in question. These are stored in the vectors **otscon** and **otslin**, which map one-to-one onto **flux** and **anu**.

3.2.2. Outward only approximation

A composite "outward-only"-"on-the-spot" approximation is used in the treatment of sources of diffuse ionizing radiation when the diffuse outward command is used. This is the default assumption. The escaping radiation is then propagated in the outward direction (all for the spherical case, and half for an open geometry).

3.3. Continuous Opacities

The cloud is divided into a large number of concentric shells (zones) and the attenuated and diffuse continua and physical conditions are then determined within each.

The main opacity sources in the ultraviolet continuum are generally photoelectric and free-free (inverse brems) absorption, grain opacity, electron scattering (of both bound and free electrons), and the damping wings of Lyman lines (Rayleigh scattering). The main reemission mechanisms are generally free-free (bremstrahlung), grain emission, free-bound, and two photon emission. Grains are not present by default but can be added as an option. Continuous absorption and reemission by all ground states, and many excited states, of all ionization stages of the 30 elements in the calculation are explicitly included. Great care is taken to ensure that each absorption mechanism is balanced by a reemission process, and vice versa, so that energy balance in the strict thermodynamic equilibrium limit can be achieved.

3.3.1. Opacity arrays

Total absorption opacities (cm⁻¹) are storied in the vector **opac**. Total scattering opacities (cm⁻¹) are stored in **scatop**. The opacities are evaluated in routine **AddOpac**.

3.3.2. Cross-section array

Storage. The cross sections per particle (cm²) for individual species (atoms, ions, molecules, etc) are stored within the array **opsv**, a stack array with a single dimension. These cross sections are evaluated when the code is initialized in routine **opac0**.

Pointers. Each species has an associated pointer that defines the offset between the origin of **opsv**, the frequency array **anu**, and the opacity at the threshold. If this offset has the name **ioff**, for instance, then the cross section at threshold will be given by array element **opsv(ioff**). If **ip** is the pointer to the threshold energy, then the pointer to the cross section at an energy **i** will be **i-ip+ioff**.

Individual cross-sections. The function *csphot* returns the cross section at a specific frequency for any species. It has three arguments, 1) the pointer to the

frequency in **anu** where the cross section is to be evaluated, 2) the pointer to the threshold for the species, and 3) the **ioff** offset described above. All are integer variables.

3.3.3. Photoionization rates

Photoionization rates (units s⁻¹) can be computed by several functions. Which is used at a particular time is determined by circumstances.

gamfun The photoionization rate is given by

$$\Gamma_n = 4p \int_{n_o}^{\infty} \frac{J_n}{h n} a_n dn . \tag{115}$$

The routine has three integer arguments, the **anu** pointers to the lower and upper energies, and the offset to the opacity array **ioff** (described above).

gamk This computes the photoionization rate with allowance for an arbitrary fluorescence yield. This routine is a major pace-setter for the code since it is used to evaluate the continuum rates in the majority of the cases.

PrtGamma This is a special version of **gamfun** that punches (on any IO unit) the step by step results of the integration. The output lists the product of the photon flux and the cross section, the photon flux, and the opacity.

bnfun This is a special version of **gamfun** that is used when the correction for stimulated emission or induced recombination is important. The photoionization rate is given by

$$\Gamma_n = 4p \int_{n}^{\infty} \frac{J_n}{h \, n} \, a_n \, dn \tag{116}$$

and the rate for induced recombination and its associated cooling is computed as

$$\mathbf{a}(ind) = P_n^* 4\mathbf{p} \int_{\mathbf{n}_o}^{\infty} \frac{J_n}{h\mathbf{n}} \mathbf{a}_n \exp(-h\mathbf{n}/kT) d\mathbf{n} . \tag{117}$$

where P* is the LTE population.

3.3.4. Attenuation within the zone

A correction must be made to account for the attenuation of the continuum across the zone (Netzer and Ferland 1983). Assuming that the continuum varies across the zone as

$$\frac{I(\mathbf{n}, \mathbf{d})}{I_o(\mathbf{n})} = \exp(-\mathbf{k}(\mathbf{n})f(r)\mathbf{d})$$
(118)

then the intensity averaged over a zone with thickness δr is

$$\left\langle \frac{I(\mathbf{n}, \mathbf{d})}{I_o(\mathbf{n})} \right\rangle = \frac{1 - \exp(-\mathbf{k}(\mathbf{n})f(r)\mathbf{d})}{\mathbf{k}(\mathbf{n})f(r)\mathbf{d}}$$
(119)

where $\kappa(v)$ is the absorption opacity and f(r) is the filling factor. The coefficients giving this ratio as a function of energy are stored in the vector **tmn**, and are

evaluated in subroutine *radinc*. The continuum stored in *flux* is multiplied by these factors in the same subroutine.

3.3.5. Rayleigh scattering

Clouds with neutral hydrogen column densities greater than $\sim 10^{23}$ cm⁻² are optically thick to Rayleigh scattering at wavelengths near Ly α , and this process is a major scattering opacity source at short wavelengths for grain-free environments.

Rayleigh scattering cross sections given by Gavrila (1967) are used, joined with expressions for the radiative damping wings of Lyman lines (Mihalas 1978). For wavelengths longward of 1410Å a power-law fit to Gavrila's quantal calculations is used:

$$\mathbf{s}_{Ray} = 8.41 \times 10^{-25} \,\mathbf{e}^4 + 3.37 \times 10^{-24} \,\mathbf{e}^6 + 4.71 \times 10^{-22} \,\mathbf{e}^{14} \quad \text{cm}^2$$
 (120)

where $\varepsilon \equiv v/cR_{\infty}$ is the photon energy in Rydbergs. This fit is accurate to typically a percent, with occasional errors as large as 4 percent.

For wavelengths between 1410Å and the Lyman limit, radiative broadening of the Lyman lines is assumed (Mihalas 1978);

free free gaunt factors

Figure 1 Thermally averaged free-free gaunt factor. The gaunt factor is shown as a function of photon energy and temperature. gaunt

$$\mathbf{s}_{Ray} = \sum_{i=2}^{4} \left(\frac{q_e^2 f_{1,i}}{m_e c} \right) \frac{\Gamma / 4\mathbf{p}}{\left(\mathbf{n} - \mathbf{n}_{1,i} \right)^2} \quad \text{cm}^2$$
(121)

where Γ is the reciprocal lifetime of the upper level *i* and the sum is over the first four Lyman lines. This expression gives cross sections in excellent agreement with Gavrila (1967) for these wavelengths.

3.3.6. Free-free opacity

The main opacity source in the infrared-radio spectral region for many conditions is free-free opacity with a cross section given by

$$\mathbf{a}_{n}(ff) = 3.69 \times 10^{8} \ \overline{g}_{III}(\mathbf{n}, T) \ f(r) \ \mathbf{n}^{-3} \ T^{-1/2} \left\{ 1 - \exp(-h\mathbf{n}/kT) \right\} \sum_{A} \sum_{z} z^{2} \ n_{A}^{+z} \quad \text{cm}^{2}$$
(122)

(see, for example, Mihalas 1978). The sum is over all ions n^{+z} of element A and over all elements. The temperature averaged gaunt factor $\overline{g}_{II}(\boldsymbol{n},T)$ is taken from Hummer (1988; see also Karzas and Latter 1961) and are evaluated in routine *gffsub* that was written by D. Hummer.

This routine did not extend to energies that could be treated by asymptotic expansions of the gaunt factor. *gffsub* was modified by J. Ferguson to extend over the full temperature and energy range considered by CLOUDY. Figure 1 shows the gaunt factors as functions of photon energy and temperature.

3.3.7. Bound-free opacity

Continuum optical depths for photoabsorption from level n are given by

$$d\mathbf{t}_{n}(\mathbf{n}) = \mathbf{a}_{n}(n) n_{n} \left[1 - \exp(-h\mathbf{n}/kT)/b_{n} \right] f(r) \mathbf{d}$$
(123)

where b_n is the departure coefficient for level n and α_{ν} is the absorption cross section.

3.3.8. Plasma frequency

The plasma frequency, the energy where the index of refraction of an ionized medium goes to zero, is given by

$$\mathbf{n}_{pl} = \left(\frac{n_e q_e^2}{\mathbf{p} m_e}\right)^{1/2} = 8.978 \times 10^3 \ n_e^{1/2} \ s^{-1} = 2.729 \times 10^{-12} \ n_e^{1/2} \ \text{Ryd} \,.$$
 (124)

An ionized gas will reflect the incident continuum for energies smaller than this. This shielding becomes important for the energy range considered by CLOUDY for electron densities greater than $\sim 10^{13}$ cm⁻³. For higher densities this process is treated by setting the intensity of the incident continuum to zero for energies below the plasma frequency, and adding this portion of the incident continuum to the reflected continuum.

4. LINE DETAILS

4.1. Overview

The effects of optical depths, continuum pumping, collisions, and destruction by background opacity, are computed for *all* permitted and intercombination lines. The cooling is usually distributed among many lines in high-density models, and these lines are usually optically thick.

4.2. Line Boltzmann Factors

The Boltzmann factor hv/kT for a line with a known wavelength or energy is given by Table 17. The table lists the ratio hv/k for various units of the line energy. Vacuum, not air, wavelengths, must be used for all quantities involving wavelengths.

Table 17 Line Boltzmann Factors			
Line Energy Units	hν/K (K)		
Angstroms	1.43877(+8)/λ(Å)		
microns	$1.43877(+4)/\lambda(\mu)$		
wavenumbers	1.43877×σ		
Rydbergs	$1.5788866(+5) \times E$		

4.3. Optical Depths, Opacities, and Transition Probabilities

4.3.1. Optical depths

The line center optical depth for a transition u-l, where u and l are the upper and lower levels, is given by

$$d\mathbf{t}_{l,u} = \mathbf{a}_{n} (n_{l} - n_{u} g_{l} / g_{u}) f(r) dr .$$
 (125)

Here f(r) is the filling factor and α_v the absorption cross section (cm²).

The term in parenthesis is the population of the lower level, with correction for stimulated emission. This term is the only place where stimulated emission enters in the radiative balance equations (Elitzur et al. 1983) .

4.3.2. Absorption cross section

The line center absorption cross section α_v (cm²) is related to the dimensionless absorption oscillator strength f_{lu} or f_{abs} by

$$\boldsymbol{a}_{n} = \frac{\boldsymbol{p}^{1/2} q_{e}^{2} \boldsymbol{I} f_{abs}}{m_{e} c v_{Dop}} \boldsymbol{j}_{n}(x) = 0.014974 f_{abs} \frac{\boldsymbol{I}_{cm}}{v_{Dop}} \boldsymbol{j}_{n}(x) = 1.4974 \times 10^{-6} f_{abs} \frac{\boldsymbol{I}_{mn}}{v_{Dop}} \boldsymbol{j}_{n}(x) \quad \text{cm}^{2}$$
(126)

with the relative line displacement given by

$$x \equiv \frac{\mathbf{n} - \mathbf{n}_o}{\Delta \mathbf{n}_{Don}} \tag{127}$$

and $\mathbf{j}_n(x)$ is the Voigt function. With this definition of the relative line displacement, the line profile due to thermal motions along is exp (-x²). Equation 126 is evaluated in routine **abscf**.

4.3.3. Line Widths

In equation 126 the velocity Doppler width (cm s^{-1}), the observed half-width of the line, is given by

$$v_{Dop}^2 = 2kT / m_A + v_{turb}^2 ag{128}$$

as determined by the local electron temperature. The micro-turbulent velocity v_{turb} is assumed to be zero unless it is reset with the **turbulence** command. The Doppler width (cm s⁻¹) is computed in routine **velset**, and values are stored in the array **doppler**. The element of the array **doppler(n)** is the velocity width of the element with atomic number n, and this extends from hydrogen through the value of **limelm**, currently 30.

In **velset** the Doppler width is evaluated as

$$v_{Dop} = \sqrt{2kT/m_A + v_{turb}^2} = \sqrt{1.651 \times 10^8 T/m_{AMU} + v_{turb}^2}$$
 (129)

The atomic weight in atomic mass units, m_{AMU} , is stored in the vector **AtomicWeight**, which contains m_{AMU} for the first 30 elements.

4.3.4. Oscillator strengths

The absorption $(f_{abs}, f_{l,u})$ and emission $(f_{em}, f_{u,l})$ oscillator strengths are related by

$$g_l f_{l,u} = -g_u f_{u,l} \tag{130}$$

where the g's are the statistical weights. This product is symmetric, neglecting sign, and the code tries to use gf's throughout.

4.3.5. Voigt function

Optical depths a relative displacement *x* away from line center are related to the line center optical depth by

$$t(x) = t_o j_n(x) \quad . \tag{131}$$

The relative displacement is given by

$$x \equiv \frac{\mathbf{n}}{\mathbf{n}_{Dop}} \tag{132}$$

where v_{Dop} is given by equation 129. The Voigt function is normalized to unity at line center and is approximately given by

$$\mathbf{j}_{n}(x) \approx \exp(-x^{2}) + a/(\mathbf{p}^{1/2}x^{2})$$
 (133)

4.3.6. Mean vs. line center optical depths

CLOUDY tries to work with line center optical depths throughout (see, for example, Mihalas 1978). In many places routines or approximations using *mean* optical depths are encountered (e.g., Hummer and Kunasz 1980). For comparison, the line center optical depth is $\pi^{1/2}$ times *smaller* than the mean optical depth.

4.4. Optical depths and iterations

4.4.1. tauout

Routine *tauout* is called soon after the initial boundary conditions are established, to estimate the total line and continuum optical depths for hydrogen and helium. It uses various methods to estimate these.

4.4.2. update

Routine **update** is called at the end of an iteration to use the computed structure, together with results of previous iterations, to estimate total line and continuum optical depths for the next iteration.

4.4.3. lgTauOutOn

This logical variable indicates whether or not the outward optical depths have been estimated. It is false on the first iteration and true thereafter.

4.5. The Einstein Coefficients

The oscillator strength is related to the transition probability by

$$g_{u}f_{em} = \frac{mc\boldsymbol{I}_{cm}^{2}}{8\boldsymbol{p}^{2}q_{e}^{2}}g_{u}A_{u,l} = 1.4992g_{u}A_{u,l}\boldsymbol{I}_{cm}^{2} = 1.499 \times 10^{-8}g_{u}A_{u,l}\boldsymbol{I}_{mm}^{2}$$
(134)

where $\lambda_{\mu m}$ is the wavelength in microns and λ_{cm} the wavelength in centimeters. Neglecting sign the absorption oscillator strength is related to the transition probability by

$$f_{abs} = \frac{mc\mathbf{l}_{cm}^2}{8\mathbf{p}^2q_a^2} \frac{g_u}{g_l} A_{u,l} = 1.4992 \times 10^{-8} A_{u,l} \mathbf{l}_{mn}^2 \frac{g_u}{g_l}$$
(135)

or

$$A_{u,l} = \frac{8\mathbf{p}^2 q_e^2}{mc \mathbf{l}_{cm}^2} \frac{g_l}{g_u} f_{abs} = \frac{f_{abs}}{1.4992 \times 10^{-8}} \mathbf{l}_{mn}^{-2} \frac{g_l}{g_u} . \tag{136}$$

Equation 136 is evaluated in routine *eina*. Combining equations 126 and 135 we obtain an expression relating the transition probability and the absorption cross section;

$$\boldsymbol{a}_{n} = \frac{c^{2} g_{u}}{8 \boldsymbol{p} \boldsymbol{n}^{2} g_{l}} \frac{\boldsymbol{J}_{n}(x)}{\boldsymbol{p}^{1/2} v_{Dop}} A_{u,l} = \frac{\boldsymbol{I}^{2} g_{u}}{8 \boldsymbol{p} g_{l}} \frac{\boldsymbol{J}_{n}(x)}{\boldsymbol{p}^{1/2} v_{Dop}} A_{u,l} = 2.24484 \times 10^{-14} A_{u,l} \boldsymbol{I}_{mn}^{3} \frac{g_{u}}{g_{l}} \frac{\boldsymbol{J}_{n}(x)}{v_{Dop}} \quad \text{cm}^{2} \quad .$$

$$(137)$$

The coefficient for induced emission, B_{ul} , is related to A_{ul} by the phase space factor $2h\mathbf{n}^3/c^2$;

$$A_{u,l} = \frac{2h\mathbf{n}^3}{c^2} B_{ul}$$
 (138)

and the induced emission and absorption probabilities are related by

$$g_{l}B_{lu} = g_{u}B_{ul} \tag{139}$$

so that the rate of induced radiative excitation (continuum pumping) is given by

$$r_{l,u} = n_l B_{l,u} J_{l,u} = n_l A_{u,l} \frac{J}{2h\mathbf{n}^3 / c^2} \frac{g_u}{g_l} = n_l A_{u,l} \mathbf{h}_{l,u} \frac{g_u}{g_l}$$
(140)

where η is the continuum occupation number at the line energy. Similarly the rate of induced radiative de-excitation is related by detailed balance,

$$r_{u,l} = r_{l,u} \frac{g_l}{g_u} . {141}$$

The absorption cross section is related to B_{l,u} by

$$\mathbf{a_n} = \frac{h\mathbf{n}}{4\mathbf{p}} B_{l,u} \quad \text{cm}^2.$$

In these terms the optical depth increment (equation 125) is given by

$$d\mathbf{t}_{l,u} = \mathbf{a_n} (n_l - n_u g_l / g_u) f(r) dr = B_{l,u} \frac{h\mathbf{n}}{4\mathbf{p}} (n_l - n_u g_l / g_u) f(r) dr .$$
 (142)

4.6. The Line Source Function

The source function for a line is defined as

$$S_n(T_{exc}) \equiv B_n(T_{exc}) \equiv \frac{j_n}{k_n} = \frac{A_{u,l}n_u}{B_{l,u}(n_l - n_u g_l / g_u)} \quad \text{erg Hz}^{-1} \text{ sr}^{-1} \text{ s}^{-1}$$
 (143)

where T_{exc} is the line excitation temperature (see equation 185, page 228), and $B_{\nu}(T_{exc})$ is the Planck function at the line excitation temperature. Combining the definitions of the Einstein relations we find equation

$$S_{\mathbf{n}}(T_{exc}) = \frac{2h\mathbf{n}^{3}}{c^{2}} \frac{n_{u} / g_{u}}{\left(n_{l} / g_{l} - n_{u} / g_{u}\right)} . \tag{144}$$

4.7. The Line Escape Probability Functions

At low densities, line scattering for a two level atom is coherent in the atom's reference frame, and the line profile function is described by the incomplete redistribution function. At high densities the Stark effect can broaden the line. When the radiation density is high scattering within excited states can broaden resonance lines such as Ly β (line interlocking), destroying the coherence of the scattering process. In these cases complete redistribution in a Doppler core more closely describes the scattering process. CLOUDY uses two escape probability functions to take these processes into account. Strong resonance lines are treated with partial redistribution with a Voigt profile. Subordinate lines are treated with complete redistribution in a Doppler core.

4.7.1. Escape probability routines

Three routines compute the fundamental escape probabilities. These are **esccom**, **escinc**, and **escla**. They compute escape probabilities for complete redistribution (either with or without the damping wings), incomplete redistribution, and Ly α . A

separate routine, *escmase*, is called by these to compute escape probabilities when the optical depth is less than zero. These routines are called by higher level line transfer routines throughout the code.

4.7.2. Incomplete redistribution

Incomplete redistribution is assumed for resonance transitions such as C IV $\lambda 1549$ and the Ly α transitions of hydrogen and helium. Two studies of line formation using this approximation are those of Bonilha et al. (1979) and Hummer and Kunasz (1980). Both studies suggest escape probabilities of the form

$$P_l(\mathbf{t}) = \left\{1 + b(\mathbf{t})\mathbf{t}\right\}^{-1} \tag{145}$$

but there is substantial disagreement in the form and value of the factor $b(\tau)$, sometimes by more than a factor of 2. (This is after due allowance for the different definitions of line opacities in the two papers.) CLOUDY uses the Hummer and Kunasz (1980) results for HI, He I, and HeII Ly α and strong resonance lines such as CIV $\lambda 1549$. Their tabulated values were fitted by interpolation.

4.7.3. damping constant

The damping constant a is given by

$$a = \frac{\Gamma}{4\mathbf{p}\Delta\mathbf{n}_{D}} = \frac{\mathbf{I}_{cm}\sum A}{4\mathbf{p}v_{Dop}} = \frac{\mathbf{I}_{cm}\sum A7.958\times10^{-2}}{v_{Dop}} = \frac{\mathbf{I}_{mn}\sum A7.958\times10^{-6}}{v_{Dop}}$$
(146)

where Γ is the sum of the A's from the upper level, and Δv_D is the Doppler width in frequency units (Mihalas 1978), λ_{cm} and $\lambda_{\mu m}$ are the wavelengths in cm and microns respectively, and v_{Dop} is the Doppler width in cm s⁻¹. The ratio $\Gamma \lambda / 4\pi$ is stored in the vectors **dampln**, **hdamp**, **he1dmp**, and **he2dmp**. The *a*'s are then evaluated in the routines deriving the escape probabilities.

4.7.4. Background opacity and Destruction probability

The ratio of continuous to total opacity is parameterized as

$$X_c = \frac{\sum \mathbf{k}_c \ n_c}{\mathbf{k}_l n_l + \sum \mathbf{k}_c \ n_c}$$
 (147)

where the κ_l 's are the line center absorption opacities and the n's the number of absorbers.

Destruction probabilities are computed in routine *eovrlp*.

4.7.5. Complete redistribution

Lines arising from excited states (hydrogen Balmer, Paschen, etc.) and Lyman lines with $n_u > 2$ are treated assuming complete redistribution in a Doppler core (i.e., the damping constant a is assumed to be zero). In this case, if the total optical depth of the slab is T, then the escape probability at a depth τ from the illuminated face is given by;

$$P_{u,l}(\mathbf{t}, T, X_c) = \left[1 - X_c F(X_c)\right] \frac{1}{2} \left[K_2(\mathbf{t}, X_c) + K_2(T - \mathbf{t}, X_c)\right] , \qquad (148)$$

and the destruction probability is

$$D_{u,l}(X_c) = X_c F(X_c). {149}$$

The function is

$$F(X_c) = \int_{-\infty}^{\infty} \frac{\boldsymbol{j}(x)}{X_c + \boldsymbol{j}(x)} dx \quad , \tag{150}$$

where in these expressions (and in this part of the code) the *mean opacity is used*, and $\phi(x) \approx \pi^{-1/2} \exp(-x^2)$ is the Voigt function. $F(X_c)$ is interpolated from the tables presented by Hummer (1968). The function

$$K_{2}(\boldsymbol{t}, X_{c}) = \frac{1}{1 - X_{c} F(X_{c})} \int_{-\infty}^{\infty} \frac{\boldsymbol{j}^{2}(x)}{X_{c} + \boldsymbol{j}(x)} E_{2}[(X_{c} + \boldsymbol{j}(x))\boldsymbol{t}] d\boldsymbol{t}$$

$$(151)$$

is evaluated numerically.

4.7.6. Masing lines

A line mases when its optical depth is negative. Routine *escmase* evaluates this escape probability as (Elitzur 1992; p 32)

$$b(t) = \frac{1 - \exp(-t)}{t} \quad . \tag{152}$$

The code will generate a comment if strong maser action occurs for any transition.

4.7.7. Continuum fluorescence

Continuum fluorescence is treated as in Ferland and Rees (1988) and Ferland (1992).

Consider the case of a continuum that has been attenuated by photoelectric (and all other) opacity sources. The transmitted continuum has a flux of photons ϕ_{ν} (photons cm $^{-2}$ s $^{-1}$ Ryd $^{-1}$). Continuum pumping is included among the general line excitation processes for all lines considered by the code.

Figure 2 This figure shows the probability that a photon will penetrate to the line center optical depth shown on the x-axis, and then be absorbed by the line. The curves are for various values of the damping constant a (the ratio of damping width to Doppler width), as indicated on the figure. ppump

The photon occupation number of the attenuated continuum is given by

$$\boldsymbol{h}_{n} = \boldsymbol{j}_{n} \frac{c^{2}}{8\boldsymbol{p} \, \boldsymbol{n}_{1}^{3} \, \boldsymbol{n}_{Ryd}^{2}}$$
 (153)

where ν_{Ryd} is the frequency in Rydbergs, ν_1 is the frequency of 1 Rydberg, and the other symbols have their usual meaning. The rate ions are excited from a lower level with population n_l (cm⁻³) is then given by

$$r_{l,u} = A_{u,l} \frac{g_u}{g_l} \mathbf{h_n} \, \mathbf{g}_{,u} \, n_l \tag{154}$$

where $A_{u,l}$ is the transition rate and the g's are the statistical weights. In this expression $\gamma_{l,u}$ is the probability that continuum photons penetrate a line-center distance τ_o and are then absorbed by an atom:

$$\mathbf{g}_{l,u} = \int_{0}^{\infty} \mathbf{j}_{n} \exp(-\mathbf{t}_{n} \mathbf{j}_{n}) d\mathbf{n} / \int_{0}^{\infty} \mathbf{j}_{n} d\mathbf{n} . \tag{155}$$

where, in this expression only, ϕ_v is the Voigt function. Figure 2 shows $\gamma_{l,u}$ for a wide variety of values of the damping constant a.

4.7.8. Stark broadening

Distant collisions with charged particles broaden the upper levels of lines, and in the limit of very high densities this will make the scattering process completely non-coherent even for Ly α (i.e., complete redistribution obtains). CLOUDY closely follows the treatment of Puetter (1981) in treating Stark broadening. For transitions described by incomplete redistribution a total escape probability $P_{l. tot}$ given by

$$P_{u,l} = \min(P_{inc} + P_{Stark}, P_{com}) \tag{156}$$

is defined, where the escape probabilities are those for incomplete, Stark, and complete redistribution respectively. The total effective escape probability is not allowed to exceed the complete redistribution value for $\tau > a^{-1}$.

4.7.9. Net escape probability

If τ is the optical depth in the direction towards the source of ionizing radiation and T is the total optical depth computed in a previous iteration, then the escape probability entering the balance equations is

$$P_{u,l}(t,T) = \left\{ P_{u,l}(t) + P_{u,l}(T-t) \right\} / 2 \quad . \tag{157}$$

In general the total optical depth T is only known after the first iteration, so more than one iteration must be performed when radiative transfer is important.

4.8. Level populations

Both escape and destruction probabilities enter in the calculation of a level population and line emissivity. The true escape probability (the probability that a line photon will escape in a single scattering, Elitzur et al. 1983; Elitzur 1984) is given by $P_{u,l}$. The destruction probability (the probability that a line photon will be destroyed in a single scattering) is given by $D_{u,l}$.

The radiative line de-excitation rate is given by

$$\left(\frac{dn_u}{dt}\right)_{rad} = n_u A_{u,l} \left(P_{u,l} + D_{u,l}\right) - n_l A_{u,l} h g_{u,l}$$

$$\tag{158}$$

where η is the photon occupation number of the attenuated external radiation field and $\gamma_{u,l}$ is the fluorescence probability.

The net emission from a transition between the level n to a lower level l is then simply

$$4\mathbf{p}j(n,l) = n_n A_{n,l} h \mathbf{n}_{n,l} P_{u,l}(\mathbf{t}_{n,l}) f(r)$$
(159)

where f(r) is the filling factor. The local cooling rate (erg cm⁻³ s⁻¹) due to the line is related to the level populations by

$$\Lambda_{u,l} = \left(n_l C_{l,u} - n_u C_{u,l} \right) f(r) h \mathbf{n} \tag{160}$$

and the local flux (cm $^{-2}$ s $^{-1}$) of "on-the-spot" (OTS) photons caused by line loss (used to compute heating or photoionization rates for the sources of the background opacity) is

$$\mathbf{j}_{OTS} = \frac{n_u A_{u,l} D_{u,l}(X_c)}{\sum_{k} \mathbf{k}_c n(c)} . \tag{161}$$

The ratio of inward to total line intensity is then given by

$$\frac{4\mathbf{p}\ j(in)}{4\mathbf{p}\ j(total)} = \frac{P_{u,l}(\mathbf{t})}{\left[P_{u,l}(\mathbf{t}) + P_{u,l}(T - \mathbf{t})\right]} \ . \tag{162}$$

4.9. Optical Depths and the Geometry

The terms open and closed geometry are defined in a section in Part I. The treatment of transfer in these two limits is described here.

4.9.1. Open geometry

This is the default. During the first iteration the line escape probability is defined using only optical depths accumulated in the inward direction. This optical depth is initialized to *taumin*, a very small number, at the start of the calculation. At the end of the first iteration the total optical depth is set to the optical depth accumulated in the inward direction in routine *update*. At the end of subsequent iterations the total optical depth is defined as a mean of the new and old inward optical depths.

4.9.2. Closed geometry overview

Continuum photons are assumed to interact with gas fully covering the continuum source. At the end of the first iteration the total continuum optical depths are set equal to twice the computed optical depths, and the inner optical depths reset to the computed optical depths. The same recipe is followed on subsequent iterations, except that means of old and computed optical depths are used.

Closed expanding geometry This is the default if the **sphere** command is entered. In this case it is assumed that line photons do not interact with lines on the "other" side of the expanding spherical nebula. The treatment of the optical depths is entirely analogous to that described for an open geometry, since the presence of the distant material has no effect on line transfer.

Closed static geometry This is assumed if the **sphere static** command is entered. In this case line photons from all parts of the spherical shell do interact. As a result, the optical depth scale is poorly defined on the first iteration, and more than one iteration is required. On second and later iterations the total line optical depth is set to twice the optical depth of the computed structure, and the optical depth at the illuminated face of the shell is set to half of this. The optical depth scale is only reliably defined after at least a second iteration.

4.9.3. Wind

The model is a large velocity gradient ($v \propto R$ Sobolev approximation) wind. This is described further on page 304.

4.10. Collision Strengths

I have tried to follow the Opacity Project notation throughout this document (Lanzafame et al. 1993). The energy specific collision strength Ω_{lu} for a transition between upper and lower levels u and l is related to the excitation cross section Q_{lu} (cm²) by

$$Q_{lu} = \frac{\mathbf{p}\Omega_{lu}}{glk_{lu}^2} \tag{163}$$

where k_{lu}^2 is the wavenumber of the collision energy. If the collisions are with thermal electrons having a Maxwellian velocity distribution f(v) and velocity v then the rate coefficient q_{lu} is given by

$$q_{lu} = \int_0^\infty f(v)vQ_{lu} dv = \frac{2\mathbf{p}^{1/2}\hbar^2}{g_{ll}m_e} a_o \left(\frac{R_{\infty}}{kT}\right) Y_{lu} \exp\left(-\frac{E_{lu}}{kT}\right) \sqrt{\frac{2kT}{m_e}} .$$
 (164)

E_{ul} is the transition energy in Rydbergs, a_o is the Bohr radius,

$$a_o = \frac{\hbar^2}{m_e q_e^2} = 0.529177249 \times 10^{-8} \text{cm}$$
 (165)

and R_{∞} is the Rydberg energy. Then the thermally averaged collision strength is given by

$$Y_{lu} = \int_0^\infty \Omega_{lu} \exp\left(-\frac{\mathbf{e}}{kT}\right) d\left(\frac{\mathbf{e}}{kT}\right) . \tag{166}$$

The rate coefficient for collisional de-excitation is then given by

$$q_{ul} = \frac{Y}{g_u \sqrt{T_e}} \left(\frac{2\mathbf{p}}{k}\right)^{1/2} \frac{\hbar^2}{m_e^{3/2}} = \frac{Y8.6291 \times 10^{-6}}{g_u \sqrt{T_e}} \text{ cm}^3 \text{ s}^{-1}.$$
 (167)

The rate coefficient for excitation follows from detailed balance:

$$q_{lu} = q_{ul} \frac{g_u}{g_l} \exp(-\mathbf{c}) = \frac{Y8.6291 \times 10^{-6}}{g_l \sqrt{T_e}} \exp(-\mathbf{c}) \text{ cm}^3 \text{ s}^{-1}.$$
 (168)

4.11. Born Approximation

For energies much larger than the excitation energy of the transition, the Born approximation is valid and the energy specific collision strength is given by Bethe (1930)

$$\Omega_{lu} \approx \frac{4g_l f_{lu}}{E_{lu}} \ln \left(\frac{4\mathbf{e}}{E_{lu}} \right) \tag{169}$$

where f_{lu} is the absorption oscillator strength of the permitted transition.

4.12. The g-bar Approximation

4.12.1. The van Regemorter approach

The g-bar or van Regemorter (1962) approximation relates the collision strength to the transition probability A_{ul} and wavelength λ (in microns). Here, the collision strength for the downward transition Y_{ul} is approximately given by

$$Y_{u,l} = \frac{2\mathbf{p}}{\sqrt{3}} \frac{m^2 e^2}{h^3} \mathbf{I}_{mn}^3 10^{-12} g_u A_{u,l} \overline{g}
\approx 2.388 \times 10^{-6} \mathbf{I}_{mn}^3 g_u A_{u,l} \overline{g}
\approx 159 \mathbf{I}_{mn} g_l f_{abs} \overline{g}$$
(170)

where g_u and g_l are the statistical weights of the upper and lower levels and f_{abs} is the absorption oscillator strength. For energies of interest in astrophysical plasmas, where kT < hv, \overline{g} is approximately given by

$$\overline{g} \approx \begin{cases}
0.2; & \text{positive ions} \\
(kT/hn)/10; & \text{neutrals}
\end{cases}$$
(171)

(van Regemorter 1962). These approximations are generally accurate to better than 1 dex.

4.12.2. The g-bar implementation

Far better collision data are available today. Dima Verner wrote a routine, *ColStrGBar*, which uses the best available data to generate collision strengths for the transferred emission lines, using data stored in the line array. The array element *ipLnCS1* points to stored information identifying the type of transition.

4.13. The Critical Density

The critical density is defined as the density at which the radiative de-excitation rate $A_{ul}\ P_{ul}$ (A is the transition probability and P is the escape probability) equals the collisional de-excitation rate $q_{ul}n_e$. Setting

$$A_{ul}P_{ul} = C_{ul} = q_{ul}n_e = Y \frac{8.629 \times 10^{-6}}{g_u \sqrt{T_e}} n_e$$
 (172)

where Y is the thermally averaged collision strength, the critical density is given by

$$n_{crit} = \frac{A_{ul} P_{ul} g_u \sqrt{T_e}}{V8.629 \times 10^{-6}} \text{ cm}^{-3}.$$
 (173)

For an optically allowed transition, in which the g-bar approximation may apply, this density is approximately given by

$$n_{crit} = \frac{4.8 \times 10^{10} \sqrt{T_e}}{I_{mn}^3 \overline{g}} \text{ cm}^{-3}.$$
 (174)

4.14. Thermalization Length

Radiative transfer will affect the thermal equilibrium of the gas when the collision time scale approaches an effective lifetime $\tau \sim (A_{ul} / N_{scat})^{-1}$, where A_{ul} is the transition probability and N_{scat} is the number of scatterings a line photon undergoes before escape. For permitted metal lines (which often have optical depths $\sim 10^4 - 10^6$) line thermalization becomes important at densities $n_e > 10^{15} / \tau \sim 10^{10}$ cm⁻³. These effects are important for hydrogen at considerably lower densities. Additionally,

continuum transfer affects the ionization and thermal equilibrium of the gas at all densities.

4.15. Averaging Levels into Terms

4.15.1. Collision strengths

Often cases are encountered in which a multiplet consisting of many lines can be treated as the equivalent two-level atom with a single transition. In these cases it is necessary to define effective collision strengths and transition probabilities. If the collision strength from an individual level i is Y_i , and the statistical weights of the level and term are g_i and g_{tot} respectively, then the effective collision strength Y_{eff} is related to Y_i by a simple argument. The collision rate q_i is proportional to the ratio

$$n_i q_i \propto n_i \frac{\mathbf{Y}_i}{g_i} \tag{175}$$

so that

$$n_{tot} q_{tot} = \sum_{i} n_i q_i \propto \sum_{i} n_i \frac{Y_i}{g_i} . \tag{176}$$

In many cases it is valid to assume that the levels within the term are populated according to their statistical weight, viz.,

$$n_i = n_{tot} \frac{g_i}{g_{tot}} \quad . \tag{177}$$

Then, the effective collision strength Y_{tot} is operationally defined by the relations

$$n_{tot} \frac{\mathbf{Y}_{tot}}{\mathbf{g}_{tot}} = \sum_{i} n_{i} \frac{\mathbf{Y}_{i}}{\mathbf{g}_{i}} = n_{tot} \sum_{i} \frac{\mathbf{g}_{i}}{\mathbf{g}_{tot}} \frac{\mathbf{Y}_{i}}{\mathbf{g}_{i}} = n_{tot} \frac{\sum_{i} \mathbf{Y}_{i}}{\mathbf{g}_{tot}} . \tag{178}$$

So, the effective collision strength of the entire multiplet is

$$Y_{tot} = \sum_{i} Y_{i} \quad . \tag{179}$$

4.15.2. Transition probabilities

Under similar circumstances an effective transition probability $\boldsymbol{A}_{\text{eff}}$ may be defined as

$$n_{tot}A_{tot} = \sum_{i} n_i A_i = n_{tot} \sum_{i} \frac{g_i}{g_{tot}} A_i$$

$$\tag{180}$$

so that the effective transition probability is

$$A_{tot} = \sum_{i} \frac{g_i}{g_{tot}} A_i \quad . \tag{181}$$

So collision strengths are added, and transition probabilities averaged.

4.16. The Heavy Element Line Arrays

4.16.1. Overview

Each emission line is associated with a vector containing all the details needed to transfer it and predict its intensity. These vectors are variables in common block *TauLines* and *WindData*. Each is dimensioned 37 long, the dimension of the variable *nta* in the file nta.par. Although the two groups are considered differently under some circumstances, their internal structure is identical.

4.16.2. Level 1 and Level 2 lines

Level 1 Lines: The **TauLines** common block appears in two forms. The version contained in the file **TLinesEXP.com** explicitly lists all the emission lines so that any individual line can be addressed directly. The version contained in **TLinesARR.com** addresses the line information as a two dimensional vector **TauLines(nta, nTauLines)**. **nta** is described above and **nTauLines** is an integer variable that gives the number of lines. In this second form all lines can be accessed in a simple loop. For most purposes the explicit form of the array is used. All level 1 lines are guaranteed to have a pointer to a unique energy cell, whose line OTS is totally controlled by that line.

Level 2 Lines: The *WindData* array is the large group of lines brought in by Dima Verner. Many of these lines have Opacity Project wavelengths, generally accurate to about 10%. Level 2 lines do not have unique pointers to continuum bins (there are too many of these lines), and so do not control a local OTS flux.

4.16.3. Fine structure lines

In versions 86 and before, the infrared fine structure lines of the heavy elements were stored in a separate line array from the permitted UV and X-Ray lines. There is a single unified treatment of heavy element line transfer in the current version. The infrared fine structure lines were singled out because their absorption of the incident continuum has long been know to be an important heating mechanism in photodissociation regions (Tielens and Hollenbach 1985a) and the lines can mase (Greenhouse et al 1993; Ferland 1993).

The code will still indicate whether the infrared fine structure lines are optically thick, or if *any* of the transferred lines are an important heating source or mase. For this purpose an infrared transition is defined as one with t(*ipLnEnrWN*) less than 10⁴ wavenumbers.

4.16.4. Evaluation of stored quantities

Line arrays store information dealing with the solution of the equations of statistical equilibrium, and rates related to the line transfer. Quantities dealing with the populations are evaluated in the routine that computes the level populations, and this depends on the individual lines. Quantities dealing with the line transfer are evaluated in routine *MakeRT*, which calls either *MakeStatRT* (for static solutions) or *MakeWindRT* (for a large velocity gradient model).

4.16.5. Contents of the optical depth arrays

Nearly all interactions between a line and the physical environment are computed using quantities stored with the line optical depth arrays. Quantities within the line vector should be addressed using the pointers stored in the parameter statements in the *ipLnArry* parameter statements. The names of these pointers and the physical meaning of the quantity are indicated in the following table.

ipLnTauIn The optical depth in the inward direction (i.e., towards the illuminated face of the cloud). This is incremented in subroutine *tauinc*.

ipLnTauTot The total optical depth through the cloud, computed in the previous iteration. This is not defined on the first iteration.

ipLnTauCon The optical depth to the continuum source.

ipLnEscP The escape probability for the line. The escape probabilities are evaluated in **MakeRT**.

ipLnDesP The destruction probability for the line. This includes only line destruction by background opacity sources, generally photoelectric, bremsstrahlung, or grains.

ipLnInwd The *fraction* of the line escaping in the inward direction. This is between 0 and 1.

ipLnPump This is the local rate of continuum pumping for the transition. It is the product of the local continuum and the pumping probability, given by

$$TauArray(ipLnPump) = A_{u,l} \left(\frac{g_u}{g_l}\right) P \mathbf{h}$$
(182)

where η is the occupation number of the attenuated continuum, and P the line pumping probability.

ipLnWlAng The wavelength (Å) of the line as used in the print out of the line optical. This number is only a label and can be an air wavelength.

ipLnDampRel The ratio $\Gamma \lambda/4\pi$, used to derive the damping constant. For a two level system this is just $A_{ul}\lambda/4\pi$. This is given by

$$TauArray(ipLnDamp \operatorname{Re} l) = 531 f_{abs} \mathbf{1}_{mn} \frac{g_l}{g_u} . \tag{183}$$

ipLnPopl, ipLnPopu, These are the lower and upper level populations (cm⁻³) for the transition.

ipLnPopOpc The correction for stimulated emission is included in the optical depth scale for all lines of the heavy elements. The effective population determining the optical depth scale is given by the population stored here, computed as

$$n_l^{eff} = n_l - n_u \frac{g_l}{g_u} \quad . \tag{184}$$

ipLnCS1, *ipLnCS2* These indicates the type of transition, and is used when the Mewe or Verner g-bar routines are used as the source of the collision strengths. If

ipLnCS1 is zero then the line is a "high quality" or "level 1" transition, and has its own pointer to the OTS line array. If **ipLnCS1** is not zero, (a "level 2" transition) then the collision strength is generated from the contents of **ipLnCS1** and **ipLnCS2**.

ipLnIpCont This is the pointer to the line in the continuum array.

ipLnRedis This indicates the type of line redistribution function to be used, for level 1 lines only. Valid values are -1 and +1. If the value is positive then incomplete redistribution is used. If it is negative then complete redistribution in a Doppler core (Hummer's 'K2' function) is used.

ipLnGl, *ipLnGu* These are the statistical weights of the lower and upper levels.

Table 18 Pointers within heavy element line arrays

		Table 18 Pointers within neavy element	
	Variable	quantity	where computed
1	ipLnTauIn	inward optical depth	tauinc
2	ipLnTauTot	total optical depth	tauinc
3	ipLnEscP	escape probability	MakeRT
4	ipLnInwd	fractional inward part of the line	MakeRT
5	ipLnWlAng	line WL	block data
6	ipLnDampRel	related to the damping constant	block data
7	ipLnIpCont	pointer to line in continuum array	routine ipline
8	ipLnGl	lower stat. weight	block data
9	ipLnGu	upper stat. weight	block data
10	ipLnGF	gf value	block data
11	ipLnAul	A_ul	from gf
12	ipLnBolt	trans energy degrees kelvin	from ipLnEnrWN
13	ipLnDesP	destruction probability by background opacities	MakeRT
14	ipLnOpac	line opacity	from gf
15	ipLnEnrWN	excitat energy-wavenumbers	block data
16	ipLnIonStg	stage of ionization	block data
17	ipLnPump	continuum pumping rate	MakeRT
18	ipLnPopl	lower level population	line cooling function
19	ipLnEnrErg	trans energy ergs	derived from ipLnEnrWN
20	ipLnNPhots	num of phot EMIT per s in line	line cooling function
21	ipLnAovTOT	ratio A21/(A21+C21)	line cooling function
22	ipLnNelem	atomic number of the atom	block data
23	ipLnDamp	damping constant for line	routines
24	ipLnColovTOT	ratio of collisional to total excitation	cooling routine
25	ipLnInten	intensity of line	cooling routine
26	ipLnRedis	redistribution function	block data
27	ipLnCS	line collision strength	it depends
28	IpLnRyd	line excitation energy in Rydbergs	routine ipline
29	ipLnOTS	local OTS line destruction, photons/sec	cooling routine
30	ipLnDTau	total opacity (cm ⁻¹) in line	tauchn
31	ipLnCool	heat exchange, collisional excitation	cooling routine
32	ipLnHeat	heat exchange, collisional de-excitation	cooling routine
33	IpLnCS1	type of transition, for Mewe g-bar	block data
34	ipLnCS2	second part of CS expansion for above	block data
35	ipLnPopu	upper level population	cooling routine
36	ipLnPopOpc	pop of low level - corrected for stim em	cooling routine
37	ipLnTauCon	optical depth to the continuum source	tauinc

4.16.6. Dumping the line array.

The contents of the line array can be printed by calling routine **DumpLine**, with the single argument being the line optical depth array.

4.16.7. Generating a line label

Two functions can be used to generate a designation for an emission line using the information stored in the line arrays. A 10-character function, *chLineLbl*, will generate a label for an emission line. This label is the spectroscopic designation for a line, such as C 4 1549Å. It is called with a single argument, the line array.

The spectroscopic designation of the ion by itself ("C 4", "O 6", etc) can be obtained from the 4 character function *chIonLbl*. It is called with a single argument, the line array.

Two cautions about routine *chLineLbl*. It cannot be used in a Fortran write statement since it uses a write statement to generate the label. Also, this routine is surprisingly slow and should be used as sparingly as possible.

4.16.8. Line excitation temperature

Routine **TexcLine** will use the contents of the line array to generate the line excitation temperature. The line excitation temperature $T_{\rm exc}$ is operationally defined from the relative level populations n_u and n_l and the line energy hv as

$$\frac{n_u / g_u}{n_l / g_l} = \exp\left(-h\mathbf{n}/kT_{exc}\right) . \tag{185}$$

Routine **TexcLine** uses the contents of the line arrays to evaluate T_{exc} as follows:

$$T_{exc} = -t(ipLnBolt) / \log \left(\frac{t(ipLnPopu) / t(ipLnGu)}{t(ipLnPopl) / t(ipLnGl)} \right)$$
(186)

if both populations are positive. The routine returns an excitation temperature of zero if either population is non-positive.

4.16.9. A Simple Two Level Atom

The following code fragment uses the information in the line optical depth arrays to compute the population of a two level atom. The treatment includes pumping by the attenuated external radiation field, collisional excitation and deexcitation, and photon escape and destruction by background opacity. To see more examine routine *level2* within the code.

```
following is explicit form of line arrays
include "TLinesEXP.com"

following is set of pointers to line arrays
include "ipLnArry.par"

following includes variables te and eden, the electron
temperature and electron density
include "phycon.com"

following contains abundances of all ions
include "IonFracs.com"

following includes sqrte, the square root of te
include "sqrte.com"

radiative de-excitation by line escape and destruction
Aul = t(ipLnAul)* ( t(ipLnEscP) + t(ipLnDesP) )
upward pumping by external continuum
```

```
PumpLU = t(ipLnPump)
downward pumping by external continuum
PumpUL = PumpLU * t(ipLnGl) / t(ipLnGu)
collisions from lower to upper, and upper to lower
Boltzmann factor
Boltz = t(ipLnBolt) / te
collisions from upper to lower
Cul = 8.629E-6/sqrte * t(ipLnCS)* eden / t(ipLnGu)
collisional excitation
sexp is special form of exp that sets zero if very small
Clu = Cul * t(ipLnGu)/t(ipLnGl) * sexp(-Boltz)
xIonFracs(nelem,i) density of ith ion stage (cm^-3)
Abun = xIonFracs( int(t(ipLnNelem)) ,int(t(ipLnIonStg)) )
this is ratio of upper to lower level population
ratio = (Clu+PumpLU) / ( Cul+PumpUL+Aul )
uppper level population
upper = Abun / (1. + 1./ratio)
```

4.16.10. Adding lines to the optical depth arrays

The two versions of the line common block (**TLineARR** and **TLineEXP**) are generated automatically by the program makelist.f that lives in the *TauLines* subdirectory off the main CLOUDY directory. The program makelist.f and the file lines.dat within this sub-directory should be used to add or remove lines from CLOUDY — this must not be done by hand.

Follow these steps:

- Assign a unique label to the emission line, and add this to the list of lines in the file lines.dat, located in the cloudy/TauLines subdirectory. All level 1 lines are contained in the file lines.dat. The line label should begin in the first column and the label ends with the first space. The label can be any valid Fortran 90 variable name. A field containing a description of the line can follow the label. This field can contain anything since it is ignored. For simplicity, the lines are sorted within the lines.dat list to be in order of increasing atomic number and level of ionization.
- Run the makelist.f program. It is called a.out. This program will read in the contents of the lines.dat file and generate the common block files TLineARR.com and TLineEXP.com. A parameter statement for the number of lines nTauLines will appear in the TLineARR.com file.
- Copy the TLineARR.com and TLineEXP.com files up into the CLOUDY directory. The script cpup will do this for you.
- Enter the atomic data. Edit the file blckline.for (this lives in the CLOUDY sub-directory), which is a block data file containing all atomic data for the lines. The existing data statements should provide an outline of what the data statements should look like, and Table 19 provides a worksheet. Each line should have all the associated data statements clustered together. Data that must be entered are the following. The line wavelength (used only as a label when printing the line). The statistical weights of the lower and upper levels of the transition. The gf value or the transition probability for the transition (either can be entered, but the other must be set to zero). The excitation energy of the transition in wavenumbers (this is used to get the line photon energy

and Boltzmann factors). The ionization stage of the ion (1 for atom, 2 for first ion, etc.). The atomic number for the element (6 for carbon, etc.). Finally, the form of the redistribution function (-1 for complete redistribution, +1 for incomplete redistribution). The reference for the source of the gf or A should be given as a comment.

- **Compute the line intensity and cooling.** This is done by calling one of the line cooling routines, *level2*, *level3*, etc. It will be necessary to assign a collision strength to the transition. This can be done by calling *PutCS*, a routine with two arguments, the collision strength and the line vector.
- **Add the line to the line output routine.** This is done in one of the members of the *lines* Family of routines. A call to routine *PutLine*, which has as a single argument the line vector, will enter all of the needed information about the line production in the current zone.
- **Update** CLOUDY Go to the CLOUDY directory and "touch" all files which contain the line arrays. This can be done with the **update** script that also lives in the main directory. Type

```
update TLineARR.com
update TLineEXP.com
```

then "make" the code.

Table 19 Needed Line Parameters

Label	λ	gı	g_{u}	gf	Ε(σ)	Ion	Nelem	Redis	A_{ul}
	ipLnWlAng	ipLnGl	ipLnGu	ipLnGF	ipLnEnrWN	ipLnlonStg	ipLnNelem	ipLnRedis	ipLnAul
					_				

label Fortran variable name. This must also be entered in the lines.dat file in the TauLines sub-directory.

1 This is the line wavelength in Ångstroms or microns, and is only used as a line label. It can be an air wavelength.

- $\mathbf{g_l}$, $\mathbf{g_u}$ Lower and upper statistical weights.
- **gf**, **A** It is only necessary to specify either the gf or A. If the transition probability is to be entered instead of the gf, the gf must be assigned a value of zero. If gf is specified then A does not need to be set.
- ${f E}({f s})$ This is the line energy in wavenumbers, and is used to generate Boltzmann factors.

Redis This must be non-zero. Negative values indicate complete redistribution with a Doppler core, and positive values incomplete redistribution.

5. THE MODEL HYDROGEN ATOM

5.1. Overview

CLOUDY is designed to model environments that range from the low density limit to LTE. Hydrogen is treated as a multi-level atom plus continuum. Tests in the low-density, or nebular, limit show that the model atom predicts level populations and emissivities that are in much better than 1% agreement with Seaton (1959), and with the Storey and Hummer (1995) results. The atom goes to LTE in the high radiation or matter density limits.

5.2. Hydrogen Departure Coefficients

Departure coefficients, rather than actual level populations, are used in the solution of the hydrogen level populations. The LTE relative population density for level *n* is stored in the vector *hlte* and is given by

$$P_{n}^{*} = \frac{n_{n}^{*}}{n_{e}n_{p}} = \frac{g_{n}}{g_{e}g_{p}} \left(\frac{h^{2}}{2\mathbf{p}mkT}\right)^{3/2} \exp(+\mathbf{c}_{n})$$

$$= \frac{g_{n}}{g_{e}g_{p}} 4.14158 \times 10^{-16} T^{-3/2} \exp(+\mathbf{c}_{n}) \text{ cm}^{3}$$
(187)

where the electron statistical weight is $g_e = 2$, all nuclear statistical weights are ignored, and $g_n = 2n^2$ is the statistical weight of hydrogen level n. These are stored in the vector hstat(n). n_n^* is the LTE population of level n (cm⁻³), and the other symbols have their usual meaning. Here

$$c_n = \frac{I_n}{kT} = \frac{15.7807 \times 10^4 Z^2}{n^2 T}$$
 (188)

where I_n is the ionization threshold for level n and Z is the nuclear charge, and the exponent in equation 187 is greater than one. The departure coefficients are stored in the vector **hbn** and are related to the LTE relative population density by

$$b_{n} = \frac{n_{n}}{P_{n}^{*} n_{e} n_{p}} \tag{189}$$

where n_n is the actual population of the level.

5.3. Hydrogen Level Energies

Boltzmann factors for transitions between levels are stored in the array *hlbolt*, defined as

$$HLBOLT(l, u) = \exp(\mathbf{c}_u - \mathbf{c}_l), \tag{190}$$

and evaluated in subroutine *hcolst*. The sign convention is such that *hlbolt* is less than unity, decreasing with increasing temperature. Boltzmann factors for levels relative to the continuum are stored in the vector

$$HCBOLT(n) = \exp(-c_n) . (191)$$

Line temperatures in degrees Kelvin are stored in the array $\pmb{HdetlaT}(u,l)$. Energies in Rydbergs are stored in $\pmb{HEnrRyd}(u,l)$. Ionization threshold energies relative to the continuum are stored in $\pmb{HNIonRyd}(n)$ and $\pmb{HCionT}(n)$, in Rydbergs and Kelvin respectively.

5.4. Effective Hydrogenic Transition Probabilities

5.4.1. Einstein As

Two routines are used to compute hydrogenic transition probabilities, in the limit of a completely l-mixed atom. The routine *fosc*(u, l) returns the absorption oscillator strength of the transition. Routine *EinstA* (u, l) drives *fosc* to actually obtain the transition probability. There routines were coded by Jason Ferguson, using algorithms given by Johnson (1972).

Note that the code considers the 2s and 2p as two separate levels. These routines return transition probabilities for a well l-mixed atom, and cannot be applied directly to the separate 2s and 2p levels.

5.4.2. Hydrogen optical depth arrays

Several arrays are defined to store information related to the hydrogen optical depth scale and escape probabilities.

hbul(n) The term
$$\sum_{u} A_{u,n} (g_u / g_n) h_{u,n} g_{u,n}$$
 is stored here.

hesc The escape probability for the transition u—l is stored as the element **hesc(**u,l), while the effective transition rate (the spontaneous rate multiplied by the escape probability) is stored in **hesc(**l,u). Escape and destruction probabilities are evaluated in routine **HydroPesc**, which is called by routine **htrans**.

htau The optical depth for the center of the zone is stored in **htau**(u,l); this includes corrections for stimulated emission so it may be negative. (A comment is printed if a level inversion occurs.)

htnext The optical depth for the center of the next zone is stored in **htnext(u,l)**.

hfrcin The fraction of the escapes that occur in the inward direction is stored in **hfrcin**(**u**,**l**).

htlim The limiting outward optical depth deduced from previous iterations is stored here.

pestrk The Stark contribution to the total escape probability is stored in **pestrk**(u,l); **pestrk**(l,u) contains this escape probability multiplied by the spontaneous transition rate for the u–l transition.

hdest The array **hdest** contains the corresponding arrays of destruction rates.

iphl These are the hydrogen line pointers **iphl**(**u, l**).

nh These are the hydrogen continuum pointers **nh(n)**.

hemis(u,l) This stores the product $A_{u,l} P_{u,l}$.

hjbar(u,l) This function returns the continuum occupation number.

hcont(u,l) The term η A γ is stored here.

5.5. Recombination Rates and Cooling

State-specific rates for radiative recombination and radiative recombination cooling are needed for the temperature range 2.8 K \leq $T_e \leq 10^{10}$ K. The methods and assumptions used to derive these for hydrogenic ions are described here.

5.5.1. Formalism

The Milne relation for the state-specific radiative recombination rate coefficient (cm 3 s $^{-1}$) to a level n can be expressed as (Brown and Mathews 1974; Gould 1978; Mihalas 1978);

$$\mathbf{a}_{n}(T) = \left(\frac{2\mathbf{p}\,m_{e}k}{h^{2}}\right)^{-3/2} \frac{8\mathbf{p}}{c^{2}} \frac{g_{n}}{g_{e}g_{ion}} T^{-3/2} \int_{h\mathbf{n}_{o}}^{\infty} \mathbf{n}^{2}\mathbf{a}_{n}(n) \exp\left(-h(\mathbf{n}-\mathbf{n}_{o})/kT\right) d\mathbf{n}$$

$$= 4.12373 \times 10^{11} \frac{g_{n}}{g_{e}g_{ion}} T^{-3/2} \int_{h\mathbf{n}_{o}}^{\infty} \mathbf{n}_{Ryd}^{2} \mathbf{a}_{n}(n) \exp\left(-h(\mathbf{n}-\mathbf{n}_{o})/kT\right) d\mathbf{n}_{Ryd}$$
(192)

where the g's are the statistical weights of the constituents, $h\nu_{Ryd}$ is the photon energy in Rydbergs, $h\nu_o\sim z^2/n^2$ is the ionization potential in Rydbergs, $\alpha_\nu(n)$ is the photoionization cross section, and the other symbols have their usual meanings.

In implementing this formalism the fact that, for hydrogen, the energy scale is shifted by the ratio of the reduced mass of the nucleus to an infinite mass was explicitly taken into account. If the energy of level n of hydrogen is n^{-2} R_H, then the temperature corresponding to 1 Rydberg, appearing in the exponential, is 157807 K, not the commonly quoted 157890 K. This does affect the results slightly since the energy scale enters as an exponential in equation 192.

Hydrogenic photoionization cross sections are required over a very wide range of energy since recombination coefficients over a wide range of temperature are needed. Cross sections $\alpha_v(n)$ were calculated using a program based on routines developed by Hummer (1988) and Storey and Hummer (1991, and private communication). The program generates the cross section values at arbitrary photon energies for all hydrogenic (n,l) states, as well as for the total n, employing analytic expressions and some very accurate expansions and numerical procedures. The calculations were carried out at a number of different mesh sizes to check for convergence. The results are typically accurate to better than 0.1 percent.

The recombination cooling rate coefficient (erg $\mbox{cm}^3\mbox{ s}^{\mbox{-}3}$) is given by

$$kT\boldsymbol{b}(t,n) = \left(\frac{2\boldsymbol{p}\boldsymbol{m}_{e}k}{h^{2}}\right)^{-3/2} \frac{8\boldsymbol{p}}{c^{2}} \frac{g_{n}}{g_{e}g_{ion}} T^{-3/2} \int_{h\boldsymbol{n}_{o}}^{\infty} \boldsymbol{n}^{2}\boldsymbol{a}_{n}(n)h(\boldsymbol{n}-\boldsymbol{n}_{o}) \exp(-h(\boldsymbol{n}-\boldsymbol{n}_{o})/kT)d\boldsymbol{n}$$
(193)

5.5.2. Results

Table 20 State Specific and Case B Recombination Coefficients

log(T _e)	1	2	3	4	5	6	case B
0.5	9.258-12	5.087-12	3.512-12	2.684-12	2.172-12	1.825-12	5.758-11
1.0	5.206-12	2.860-12	1.974-12	1.508-12	1.220-12	1.025-12	2.909-11
1.5	2.927-12	1.608-12	1.109-12	8.465-13	6.842-13	5.737-13	1.440-11
2.0	1.646-12	9.028-13	6.216-13	4.732-13	3.811-13	3.183-13	6.971-12
2.5	9.246-13	5.055-13	3.460-13	2.613-13	2.084-13	1.720-13	3.282-12
3.0	5.184-13	2.805-13	1.888-13	1.395-13	1.085-13	8.717-14	1.489-12
3.5	2.890-13	1.517-13	9.779 - 14	6.884-14	5.099-14	3.912-14	6.430-13
4.0	1.582-13	7.699-14	4.555-14	2.965-14	2.053-14	1.487-14	2.588-13
4.5	8.255-14	3.461-14	1.812-14	1.076-14	6.953-15	4.775-15	9.456-14
5.0	3.882-14	1.316-14	6.059-15	3.314-15	2.022-15	1.331-15	3.069-14
5.5	1.545-14	4.196-15	1.736-15	8.918-16	5.219-16	3.335-16	8.793-15
6.0	5.058-15	1.146-15	4.392 - 16	2.160-16	1.229-16	7.694-17	2.245-15
6.5	1.383-15	2.760-16	1.005-16	4.807-17	2.685-17	1.660-17	5.190-16
7.0	3.276-16	6.031-17	2.129-17	1.000-17	5.523-18	3.385-18	1.107-16
7.5	7.006-17	1.227-17	4.251-18	1.976-18	1.083-18	6.606-19	2.221-17
8.0	1.398-17	2.377-18	8.139-19	3.759-19	2.052-19	1.248-19	4.267-18
8.5	2.665-18	4.455-19	1.515-19	6.970-20	3.796-20	2.303-20	7.960-19
9.0	4.940-19	8.175-20	2.769-20	1.271-20	6.913-21	4.190-21	1.457-19
9.5	9.001-20	1.481-20	5.005-21	2.294-21	1.247-21	7.552-22	2.636-20
10.0	1.623-20	2.662-21	8.985-22	4.116-22	2.235-22	1.354-22	4.737-21

The numerical results are presented in Tables 20 and 21. The first column of the table gives the log of the temperature. Columns 2 through 7 give the total recombination coefficient for $1 \le n \le 6$ summed over l states. The last column gives the case B sum, $2 \le n \le 1000$. A very large temperature range is considered for completeness; actually, at very low temperatures three-body recombination predominates for most densities (Bates et al. 1963), while at very high temperatures other processes (i.e., Compton scattering, collisions) dominate the balance and the neutral fraction is vanishingly small.

As tests, these predictions of the recombination rate coefficients are compared with those of Seaton (1959), Ferland (1980), Hummer and Storey (1987), and Martin (1988). (Note that the total recombination rate given by Hummer and Storey is the sum of radiative and net three-body recombination. For this comparison their results for a density of 10^2 cm⁻³ were used to minimize the contribution of the second process.) The agreement with all of these results is good, usually much better than 1

Table 21 State Specific and Case B Recombination Cooling Coefficients

log(T _e)	1	2	3	4	5	6	case B
0.5	4.025-27	2.211-27	1.527-27	1.167-27	9.441-28	7.929-28	2.295-26
1.0	7.158-27	3.932-27	2.713-27	2.072-27	1.676-27	1.406-27	3.595-26
1.5	1.273-26	6.985-27	4.815-27	3.671-27	2.962-27	2.479-27	5.514-26
2.0	2.262-26	1.239-26	8.507-27	6.451-27	5.171-27	4.293-27	8.236-26
2.5	4.015-26	2.184-26	1.483-26	1.107-26	8.708-27	7.074-27	1.187-25
3.0	7.099-26	3.785-26	2.488-26	1.784-26	1.341-26	1.039-26	1.629-25
3.5	1.241-25	6.245-26	3.796-26	2.505-26	1.740-26	1.255-26	2.082-25
4.0	2.094-25	9.195-26	4.856-26	2.845-26	1.795-26	1.198-26	2.395-25
4.5	3.234-25	1.112-25	4.923-26	2.557-26	1.483-26	9.305-27	2.376-25
5.0	4.173-25	1.056-25	3.990-26	1.891-26	1.034-26	6.240-27	1.981-25
5.5	4.149-25	7.981-26	2.698-26	1.208-26	6.389-27	3.771-27	1.390-25
6.0	3.121-25	4.961-26	1.572-26	6.827-27	3.549-27	2.073-27	8.316-26
6.5	1.843-25	2.616-26	8.015-27	3.429-27	1.768-27	1.028-27	4.307-26
7.0	9.016-26	1.204-26	3.628-27	1.541-27	7.917-28	4.591-28	1.967-26
7.5	3.847-26	4.978-27	1.487-27	6.296-28	3.229-28	1.870-28	8.109-27
8.0	1.490-26	1.897-27	5.644-28	2.385-28	1.222-28	7.077-29	3.092-27
8.5	5.397-27	6.811-28	2.023-28	8.541-29	4.375-29	2.533-29	1.115-27
9.0	1.867-27	2.346-28	6.959-29	2.937-29	1.504-29	8.706-30	3.872-28
9.5	6.261-28	7.849-29	2.327-29	9.820-30	5.028-30	2.910-30	1.316-28
10.0	2.057-28	2.575-29	7.633-30	3.220-30	1.649-30	9.543-31	4.436-29

Figure 3 The recombination cooling for several states is shown as a function of temperature. recool

percent. Seaton (1959) calculates the recombination cooling coefficients. The present results agree with his to better than 5 percent. Figure 3 shows the recombination cooling coefficient for several states.

5.5.3. Rational approximations

It is not numerically expedient to compute these rate coefficients on-the-fly in large scale ionization/thermal structure calculations. The rate coefficients were fitted with a high-order rational approximation. The recombination rate coefficient is expressed as

$$a(n,T) = 10^{F(n,T)} T^{-1}$$
(194)

with

$$F(n,T) = \frac{a_n + c_n x + e_n x^2 + g_n x^3 + i_n x^4}{1 + b_n x + d_n x^2 + f_n x^3 + h_n x^4}$$
(195)

and $x \equiv \log(T)$. The coefficients for the expansion are given in routine **hrcf**, which evaluates the rate. These approximations reproduce the numerical results with a mean error well below 0.1 percent. For levels below n=20 the largest error is also under 0.1 percent, although errors as large as 1.4 percent occur for the highest sum at temperatures below 100 K.

Recombination cooling coefficients were fitted to equations of the form

$$kTb(n,T) = 10^{F(n,T)}$$
 (196)

where F(T,n) is given above, and the fitting coefficients are given in the code. The errors in fitting these coefficients are larger, typically 0.5 percent, but sometimes as large as several percent.

5.5.4. Recombination coefficients

Hydrogen and helium recombination coefficients are stored in the two dimensional vectors hrec, helrec, and helrec. The first dimension of the vector indicates the level of the model atom - hrec(1,x) would refer to the ground level. The second dimension points to several quantities related to computation of the effective recombination coefficient.

hrec(n,1) This is the radiative recombination rate coefficient to level n (cm³ s⁻¹), the term $\alpha(T,n)$ in equation **113**.

hrec(n,2) This is the dimensionless OTS effective recombination efficiency, given by the term

$$\left\{ P_c(n) + \left[1 - P_c(n)\right] \left(\frac{\mathbf{k}_o}{\mathbf{k}_o + \mathbf{k}_n}\right) \right\}$$
(197)

This term is zero deep in the cloud, and unity for an optically thin region.

hrec(n,3) This is the continuum escape probability $P_c(n)$.

ophf These are the vectors containing the ratio of "other" to "total" opacities, which appears as the term $\kappa_0/(\kappa_0 + \kappa_n)$ in equation 197.

5.6. The Collisional Rate Equations

The collision rates between two terms in strict TE are related by detailed balance. Then

$$n_l^* C_{l,u} = n_u^* C_{u,l} (198)$$

and we get the usual relation between collisional excitation and de-excitation rates,

$$C_{1,y} = (n_y^* / n_t^*) C_{y,t} = (g_y / g_t) \exp(-\mathbf{c} / kT) C_{y,t} . \tag{199}$$

Considering only collisional terms, the departure coefficient for level n is given by

$$\frac{db_n}{dt} = \sum_{l} b_l C_{n,l} + \sum_{u} \frac{P_u^*}{P_n^*} b_u C_{u,n} - b_n \left\{ \sum_{l} C_{n,l} + \sum_{u} \frac{P_u^*}{P_n^*} C_{u,n} + C_{n,k} \left(1 - b_n^{-1} \right) \right\}$$
(200)

where the sums are over upper and lower levels. The collision rates (s⁻¹) from level i to level j are denoted by C_{ij} . The first term on the RHS represents collisional excitation to n from lower levels, the second is collisional deexcitation to n from higher levels, and the last term accounts for destruction processes. These include collisions to lower levels, upper levels, and the continuum. The factor multiplying the collisional ionization rate $C_{n \ \kappa}$ accounts for collisional ionization less three-body recombination. Note that this is often a net recombination process for the atom since, under many circumstances, $b_n < 1$.

Figure 4 shows a test case where collisional processes are dominant. All of the radiative processes discussed below are actually included, but the intensity of the external continuum is set to a very low (and hence negligible) value. As a result collisional and spontaneous radiative processes are dominant. The electrons are given a temperature of 50,000 K, and the level populations and ionization of the gas are determined by solving the full set of equations of statistical equilibrium. The model is of a very thin cell of gas that is optically thin in the lines and

equilibrium. The model is of a Figure 4. The equilibrium populations of the ground state and levels 2s, 2p, and 4 of the model hydrogen atom are shown as a function of the total hydrogen density n_H... hbnvsn continuum. Departure coefficients for the ground state, 2s, 2p, and 4 are shown.

The radiation field is set to a very low intensity, and the column density is kept small enough for optical depth effects to be negligible. A constant electron temperature of 5×10^4 K is assumed, so the gas is primarily collisionally ionized and excited. Levels 2s and 2p do not mix until a density of nearly 10^{14} cm⁻³ is reached, and do not come into LTE until the density is nearly 100 times higher. The entire atom is nearly in LTE at densities greater than 10^{18} cm⁻³

The ground state is overpopulated relative to its LTE value when upward collisional processes are much slower than downward radiative processes. It is only when the collisional rates approach the radiative rates that b_1 approaches unity. The 2s level also has a large overpopulation for much the same reason. It is highly metastable and accumulates a large overpopulation until 2s - 2p collisions become fast enough to mix the two l levels. The more highly excited levels ($n \ge 3$) have a behavior very similar to that of n=4, which is shown in the figure. They are under populated relative to their LTE value when radiative decays to lower levels are competitive with collisional processes. It is only at a density of $n_H > 10^{18}$ cm⁻³ that collisional processes completely dominate the rate equations and the atom reaches LTE. The mean departure coefficient at a density of 10^{19} cm⁻³ is $\bar{b}_i = 1.0007 \pm 0.0022$ for the entire atom, and the largest single deviation from unity is 0.7% (for the ground term).

5.7. The Radiative Rate Equations

5.7.1. Photoionization - recombination

The photoionization rate (s⁻¹) from level n, stored in the vector $\textbf{\textit{hgamnc(n)}}$, is given by

$$\Gamma_n = 4p \int_{n_o}^{\infty} \frac{J_n}{hn} a_n dn$$
 (201)

and the induced recombination rate coefficient (cm³ s⁻¹) by

$$\mathbf{a}(ind) = P_n^* 4\mathbf{p} \int_{\mathbf{n}_o}^{\infty} \frac{J_n}{h\mathbf{n}} \mathbf{a}_n \exp(-h\mathbf{n}/kT) d\mathbf{n} . \tag{202}$$

This is evaluated at each zone by direct integration.

The ground level of the model hydrogen atom also includes destruction due to bound Compton scattering.

Spontaneous radiative recombination rate coefficients are computed as described above. The rate coefficients are evaluated in subroutine htrans, are stored in hrec(n,1), and have units cm³ s⁻¹. These recombinations produce ionizing radiation, and a recombination efficiency is defined to take this into account. These efficiencies are stored in the array hrec(n,i). Elements hrec(n,3) are the escape probabilities, computed including only the single-flight absorption due to the geometry, while the escape probabilities stored in hrec(n,2) include both this as well as destruction by the background absorbing continuum.

5.7.2. Derivation of radiative balance equations

Consider the balance for a level n of a three level system, with upper and lower levels u and l.

$$n_n (B_{n,u} + B_{n,l} + A_{n,l}) = n_u (B_{u,n} + A_{u,n}) + n_l B_{l,n}.$$
(203)

Converting densities n_i into departure coefficients, $n_i = b_i P_i^*$, we obtain

$$P_n^* b_n (B_{n,u} + B_{n,l} + A_{n,l}) = P_u^* b_u (B_{u,n} + A_{u,n}) + P_l^* b_l B_{l,n} . \tag{204}$$

Gathering LTE densities we find

$$b_n \left(B_{n,u} + B_{n,l} + A_{n,l} \right) = \frac{P_u^*}{P_n^*} b_u \left(B_{u,n} + A_{u,n} \right) + \frac{P_l^*}{P_n^*} b_l B_{l,n} . \tag{205}$$

Writing $B_{ln} = B_{nl} g_n/g_l$, we obtain the final form

$$b_n \left(\frac{g_u}{g_n} B_{u,n} + B_{n,l} + A_{n,l} \right) = \frac{P_u^*}{P_n^*} b_u \left(B_{u,n} + A_{u,n} \right) + \frac{P_l^*}{P_n^*} b_l \frac{g_n}{g_l} B_{n,l}.$$
 (206)

5.7.3. Final radiative equations

The full set of radiative balance equations can be written as

$$\frac{db_{n}}{dt} = \sum_{l} \frac{P_{l}^{*}}{P_{n}^{*}} b_{l} A_{n,l} \frac{g_{n}}{g_{l}} \mathbf{h}_{n,l} \mathbf{g}_{n,l} + \sum_{u} \frac{P_{u}^{*}}{P_{n}^{*}} b_{u} \left(A_{u,n} P_{u,n} + A_{u,n} \mathbf{h}_{u,n} \mathbf{g}_{u,n} \right) + \left[\mathbf{a} (rad) + \mathbf{a} (ind) \right] / P_{n}^{*} -$$

$$b_{n} \left(\sum_{l} \left(A_{n,l} P_{n,l} + A_{n,l} \mathbf{h}_{n,l} \mathbf{g}_{n,l} \right) + \sum_{u} A_{u,n} \frac{g_{u}}{g_{n}} \mathbf{h}_{u,n} \mathbf{g}_{u,n} + \Gamma_{n} \right) \tag{207}$$

where the continuum occupation number in the transition *ij* is given by

$$\mathbf{h}_{i,j} = J_{\mathbf{n}}(i,j) / (2h\mathbf{n}_{ij}^3 / c^2) = (\exp(h\mathbf{n} / kT_{ex}) - 1)^{-1} .$$
 (208)

Here $J_{\nu}(ij)$ is the mean intensity of the net continuum at the line frequency, and T_{ex} is the excitation temperature of the continuum at the level frequency.

Figure 5 shows a test case that, in contrast to that shown in Figure 4, is dominated by radiative transitions.

Again, the full set of equations coupling the levels are solved, but spontaneous and induced processes are more important than collisions for many values of the radiation density. The model is of a very thin cell of gas, so that all lines and continua are

Figure 5 The calculations are for a constant temperature ($T_e = 5 \times 10^4 \text{ K}$) optically thin gas exposed to black body radiation with a color temperature of $T_{color} = 5 \times 10^4 \text{ K}$, but with various values of the energy density, parameterized as $T_{II} = (u/a)^{1/4}$, where u is the actual radiation density. hbnvsu

optically thin, has a density of n(H) = 10^{10} cm⁻³, and an electron temperature of 5×10^4 K. The gas is exposed to a black body continuum with a color temperature of $T_{color} = 5 \times 10^4$ K, but the intensity of this continuum is varied. This intensity is parameterized by an energy density temperature defined by $T_u \equiv (u/a)^{1/4}$ where u and a are, respectively, the actual radiation energy density and Stefan's radiation density constant.

A radiation field given by Planck's law (i.e., $T_u \equiv T_{color}$) forces the ionization and level population of an atom or ion to LTE in much the same way that high electron densities do. As Figure 5 shows, at very low values of T_u (low photon densities) the ground and n=2 states are overpopulated for much the same reason that this occurs at low electron densities; the downward spontaneous radiative rates are fast relative to the induced (upward and downward) rates. At very low T_u (< 500 K), $n \ge 3$ levels are under populated since they decay at a rate much faster than the induced rates (for $T_e = 5 \times 10^4$ K these levels have hv « kT, so induced processes will be fast relative to spontaneous rates when $T_u = T_{color}$ and the atom is in LTE). As T_u increases, fluorescence from the ground state over-populates excited states (because the ground state is itself overpopulated) and b_4 exceeds unity. Finally, in the limit where $T_u = T_{color}$, the departure coefficients reach unity and the atom goes to LTE. (The actual mean departure coefficient for the entire atom is $\bar{b}_i = 1.013 \pm 0.029$). Note that the

vast majority of the neutral hydrogen population is in excited states when the atom approaches LTE at these temperatures.

The hydrogen density (n(H) = 10^{10} cm⁻³) is low enough for radiation to be the main agent affecting level populations for most values of T_u . Fluorescence from the ground state drives the population of n=4 above its LTE value for many radiation

Figure 6 The emission from a slab of gas is compared with the predictions of Ferland (1980). hemis

densities. Induced processes, mainly transitions between adjacent levels, drive the atom to LTE when T_u reaches $5\times 10^4\, K.$

5.8. Continuous Thermal Emission

Diffuse emission (free-free and free-bound) by the model hydrogen atom is computed using the stored photoabsorption cross sections and detailed balance (i.e., the Milne relation; see Mihalas 1978).

Free-bound continua of all levels of hydrogen and helium are treated as follows. The Milne relation for the emissivity $4\pi j$ (erg cm³ Hz⁻¹ s⁻¹) can be expressed as (Brown and Mathews 1970)

$$4p \ j_{n} = hn \left(\frac{2pm_{e}k}{h^{2}}\right)^{-3/2} \frac{8p}{c^{2}} \frac{g_{n}}{g_{e}g_{ion}} T^{-3/2} n^{2} a_{n}(n) \exp\left(-h(\mathbf{n} - \mathbf{n}_{o})/kT\right)$$
(209)

where the statistical weight of level n is $g_n = 2n^2$ for H^o and He^+ , and $g_n = n^2$ for helium singlets. Statistical weights for hydrogen are stored in the vector **hstat**, while statistical weights for singlet and ionized helium are stored in **he1stat** and **he2stat**.

The code actually works with units similar to photons Ryd⁻¹ s⁻¹ cm⁻². The photon emissivity (photons cm³ s⁻¹ Ryd⁻¹) is then

$$\mathbf{j}_{n}(T,n) = \left(\frac{2\mathbf{p}\,m_{e}k}{h^{2}}\right)^{-3/2} \frac{8\mathbf{p}}{c^{2}} \frac{g_{n}}{g_{e}g_{ion}} T^{-3/2} \mathbf{n}^{2} \mathbf{a}_{n}(n) \exp\left(-h(\mathbf{n}-\mathbf{n}_{o})/kT\right)$$

$$= 4.12373 \times 10^{11} \frac{g_{n}}{g_{e}g_{ion}} T^{-3/2} \mathbf{n}_{Ryd}^{2} \mathbf{a}_{n}(n) \exp\left(-h(\mathbf{n}-\mathbf{n}_{o})/kT\right)$$
(210)

where the g's are the statistical weights of the constituents, v_{Ryd} is the photon energy in Rydbergs, $hv_0 \sim z^2/n^2$ is the ionization potential in Rydbergs, $\alpha_v(n)$ is the

photoionization cross section, and the other symbols have their usual meanings. Equation 210 is evaluated directly using the stored photoionization cross sections. A similar approach is used for other absorption opacities, such as brems and H⁻. Detailed balancing between absorption and emission mechanisms is necessary if LTE is to be achieved.

A test case with an ionized hydrogen plasma at a temperature of 10^4 K and a density of 10^7 cm⁻³ (to suppress two photon emission) was computed, and is shown in Figure 6.

The input stream used to derive the figure is given as hemis.in in Part III of this document. As can be seen from the figure, the predicted diffuse continuum is generally within 10 percent of the exact value (Ferland 1980).

Figure 7 shows another series of test cases in which a very high density gas with cosmic abundances is irradiated with a 50,000 K blackbody radiation field in strict

Figure 7 The emission from a dense slab of gas with cosmic abundances is shown as a function of the optical depth at the Lyman limit. The log of this optical depth is indicated on the figure. The top curve is for emission given by Planck's law. The continuous emission goes to the blackbody limit in the case of large continuum optical depths. conlte

thermodynamic equilibrium. As can be seen from the figure, the predicted continuum goes to the blackbody limit.

6. H- AND MOLECULES

6.1. Overview

An ion-molecule network, initially based on Black (1978) but heavily revised to include the network described by Hollenbach and McKee (1979; 1989), is included in CLOUDY. The network presently includes H^- , H_2 , H_2^+ , H_3^+ , HeH^+ , OH, OH^+ , CH, CH^+ , O_2 , O_2^+ , CO, CO^+ , H_2O , H_2O^+ , H_3O^+ , and CH_2^+ .

The treatment of the major hydrogen molecules (i.e., H₂, H₂+, H₃+ and H-) is discussed in the first subsection, and is based on Lambert and Pagel (1968); Black (1978); Lites and Mihalas (1984); Hollenbach and McKee (1979; 1989; hereafter HM79 and HM89); Tielens and Hollenbach (1985a, b; hereafter TH85), Lenzuni, Chernoff, and Salpeter (1991; hereafter LCS91), and Wolfire, Tielens, and Hollenbach (1990); Crosas and Weisheit (1993); and Puy et al (1993). This section is adapted from Ferland and Persson (1989) and Ferland, Fabian, and Johnstone (1994).

6.2. The Saha Equation for Arbitrary Systems

The Boltzmann equation relates the densities of related species by the expression

$$\frac{n_{final}}{n_{initial}} = \frac{\mathbf{r}_{final}}{\mathbf{r}_{initial}} \exp(-\Delta E / kT)$$
 (211)

where $n_{initial}$ and n_{final} indicate the densities of the initial and final states, and the ρ 's are the densities of available states at a given energy. Consider the process $i \Rightarrow j+k$. The energy change during this process is

$$\Delta E = \mathbf{c}_I + \frac{1}{2}mv^2 \tag{212}$$

where the first term is the ionization or dissociation potential of the initial system, and the second term represents the kinetic energy of the system in the final state. The sign of ΔE is related to the energies of the initial and final systems by

$$E_{final} = E_{initial} + \Delta E \quad . \tag{213}$$

The ρ 's entering equation 211 are the total densities of states accessible at an energy E. Since the initial state is a bound particle we can take it as at rest in the lab frame, and consider the final state consisting of two constituent particles moving with kinetic energy ΔE . The density of states of the final particles can be written as the product of densities of states due to electron spin and to motion of the particle. Nuclear spins are assumed to be uncorrelated, so nuclear statistical weights cancel out and are not carried through.

Considering only spin and motion (momentum) the total density of states is the spin statistical weight of the particle g_{spin} multiplied by the density of states due to momentum g_p (Mihalas 1978, p 112; Elitzur 1992, p 14):

$$\mathbf{r}_{total} = g_{spin} g_{p} \tag{214}$$

where g_p is

$$g_{p} = \frac{dx \, dy \, dz \, dp_{x} \, dp_{y} \, dp_{z}}{h^{3}} \quad . \tag{215}$$

The volume element can be removed from the problem by defining it as the volume containing one particle,

$$dx\,dy\,dz = \left(n_k / g_k\right)^{-1} \tag{216}$$

while the momentum volume element is given in terms of the particle's speed v by

$$dp_x dp_y dp_z = 4pp^2 dp = 4p m^3 v^2 dv . (217)$$

Combining these with equation 211 we find

$$\frac{n_{final}n_k}{n_{initial}} = \frac{n_j n_k}{n_i} = \left(\frac{g_{spin,j}g_{spin,k}}{g_{spin,i}}\right) \left(\frac{g_{p,j}g_{p,k}}{g_{p,i}}\right) \exp(-\Delta E / kT).$$
(218)

Shortening $g_{spin,x}$ to simply g_x , and using equation 217, we find

$$\frac{n_{j}n_{k}}{n_{i}} = \left(\frac{g_{j}g_{k}}{g_{i}}\right) \left(\frac{4\mathbf{p}}{h^{3}} \frac{m_{j}^{3}v_{j}^{2} \exp\left(-\frac{1}{2}m_{j}v_{j}^{2} / kT\right) dv_{j} m_{k}^{3}v_{k}^{2} \exp\left(-\frac{1}{2}m_{k}v_{k}^{2} / kT\right) dv_{k}}{m_{i}^{3}v_{i}^{2} \exp\left(-\frac{1}{2}m_{i}v_{i}^{2} / kT\right) dv_{i}}\right) \exp\left(-\mathbf{c} / kT\right) \tag{219}$$

Integrating each energy term over velocity, making the substitution

$$x \equiv \left(\frac{m}{2kT}\right)^{1/2} v \quad , \tag{220}$$

we find

$$\int_0^\infty v_j^2 \exp\left(-\frac{1}{2}m_j v_j^2 / kT\right) dv_j = \left(\frac{2kT}{m_j}\right)^{3/2} \int_0^\infty \exp\left(-x^2\right) x^2 dx = \left(\frac{2kT}{m_j}\right)^{3/2} \frac{\boldsymbol{p}^{1/2}}{4}$$
(221)

where the root π over 4 is the value of the integral. The final form of the Saha equation, for an arbitrary system, is:

$$\frac{n_{j}n_{k}}{n_{i}} = \left(\frac{g_{j}g_{k}}{g_{i}}\right)\left(\frac{2\boldsymbol{p}\,kT}{h^{2}}\frac{m_{j}m_{k}}{m_{i}}\right)^{3/2} \exp(-\boldsymbol{c}/kT)$$

$$= 8.7819 \times 10^{55} \left(\frac{g_{j}g_{k}}{g_{i}}\right)\left(\frac{Tm_{j}m_{k}}{m_{i}}\right)^{3/2} \exp(-\boldsymbol{c}/kT)$$
(222)

For the case of ionization producing an electron, the mass of the electron is neglected relative to the mass of the atom. If the atom and ion are i and j, then the assumption is that m_i and m_k are identical, and cancel out. In this case we obtain the form of the Saha equation most often encountered, with the 2 being the spin statistical weight of the electron:

$$\frac{n_{ion}n_e}{n_{atom}} = \left(\frac{2g_j}{g_i}\right) \left(\frac{2\mathbf{p}\,m_e kT}{h^2}\right)^{3/2} \exp\left(-\mathbf{c}/kT\right). \tag{223}$$

 $244\,$ dmole

In the case of molecular hydrogen

$$\frac{n_H n_H}{n_{H_2}} = 4 \left(\frac{\mathbf{p} \, kT m_p}{h^2} \right)^{3/2} \exp(-\mathbf{c} \, / \, kT). \tag{224}$$

6.3. The Hydrogen Network

The main hydrogen network includes H^- , H_2 , H_2^+ , H_3^+ , and HeH^+ , and its solution is performed in subroutine *hmole*.

The statistical weight of H_2^+ is 4 while that of H_2 is 1 and the dissociation energies are 2.647 eV and 4.477 eV respectively.

The set of balance equations for the first three species is solved simultaneously, using the matrix:

$$\begin{pmatrix}
H \text{ conservation} \\
H^{-} \text{ balance} \\
H_{2} \text{ balance} \\
H_{2}^{+} \text{ balance} \\
H_{3}^{+} \text{ balance}
\end{pmatrix}
\begin{pmatrix}
n(H^{\circ}) \\
n(H^{-}) \\
n(H_{2}) \\
n(H_{2}^{+}) \\
n(H_{3}^{+})
\end{pmatrix} = \begin{pmatrix}
n(H^{\circ}) \\
0 \\
0 \\
0
\end{pmatrix}.$$
(225)

In the balance equations the process that destroy species x are entered as c(x, x), (these are negative), while those which create x from y are entered as c(x, y).

6.4. LTE Populations of Hydrogen Molecules

In much of the following discussion comparison and relationships will be made between the predicted hydrogen species populations and their LTE values.

The LTE relative population density of H- is

$$P^*(H^-) = \frac{n^*(H^-)}{n_e n(H^o)} = \frac{g_{H^-}}{g_{H^o} g_e} \left(\frac{h^2}{2\mathbf{p} m_e kT}\right)^{3/2} \exp(I(H^-)/kT) \quad (\text{cm}^3)$$
 (226)

where g_i is the statistical weight of the constituents, ($g_{H^-} = 1$; $g_{H^o} = 2$; and $g_e = 2$), I(H-) = 0.055502 Ryd is the binding energy of the negative hydrogen ion, and other constants have their usual meaning. This population ratio is computed in routine **hmole** and assigned the variable name **phmlte**.

The LTE relative population density of H₂ is

$$P^{*}(H_{2}) = \frac{n^{*}(H_{2})}{n(H^{o})n(H^{o})} = \frac{g_{H_{2}}}{g_{H^{o}}g_{H^{o}}} \left(\frac{h^{2}}{\boldsymbol{p}\,m_{p}kT}\right)^{3/2} \exp(I(H^{-})/kT) \quad (\text{cm}^{3})$$
 (227)

This is referred to as *ph2lte*. The LTE population of H_{2}^{+} is computed similarly, and referred to as *phplte*.

6.5. The H⁻ Balance; Radiative Processes

Although only a trace amount of hydrogen is in the form of H⁻, the opacity provided by this ion is often dominant in the optical and near infrared, and helps couple energy in the near infrared continuum to moderately ionized gas. The methods and approximations employed to include heating and cooling by H⁻ are described here. Other discussions can be found in Lambert and Pagel (1968), Vernazza, Avrett, and Loeser (1981), and Lites and Mihalas (1984). This section is based on Ferland and Persson (1989).

The equilibrium density of H⁻ is determined by assuming statistical equilibrium, and balancing production and destruction mechanisms. Great care is taken in including both forward and back reactions, to ensure that the present treatment of H⁻ is capable of going to LTE in the limit of high radiation or particle densities.

6.5.1. Radiative attachment

This is the most important creation mechanism for H⁻ at low densities, when three-body processes are negligible;

$$H^{o} + e^{-} \Rightarrow H^{-} + g \quad . \tag{228}$$

For temperatures greater than 10⁴ K the rate coefficient is evaluated by numerically integrating the photodetachment cross section over frequency;

$$\mathbf{a}_{rad}(T) = P^* \left(H^-\right) \int_{\mathbf{n}_o}^{\infty} \mathbf{a}_n \frac{8\mathbf{p} \, \mathbf{n}^2}{c^2} \exp\left(-h\mathbf{n} / kT\right) d\mathbf{n} \quad \left(\text{cm}^3 \text{ s}^{-1}\right)$$
 (229)

where cross sections computed by Wishart (1979) and spline interpolation are used. These cross sections are in excellent agreement with the velocity operator bound-free cross sections tabulated by Doughty et al. (1966). The energy interval between the photodetachment threshold at 0.055502 Ryd and ~ 1.8 Ryd is divided into roughly 100 cells with logarithmically increasing width, and the integration is carried out as a straight forward sum.

This method is not numerically expedient for very low temperatures, where the energy bandwidth of the integral is small, and a much finer frequency grid would be required. Rather, the integration was carried out using spline interpolation and 32 point gaussian quadrature, integrating over factors of two in hv/kT. The results were then fitted with a set of power-laws. The rate coefficients (cm⁻³ s⁻¹) can be approximated by:

$$\boldsymbol{a}(T_e) = \begin{cases} 8.934 \times 10^{-18} \, T^{0.505} & 1K \le T < 31.62 \, ^{\circ} \, \mathrm{K} \\ 5.159 \times 10^{-18} \, T^{0.664} & 31.62 \, ^{\circ} \, \mathrm{K} \\ 2.042 \times 10^{-18} \, T^{0.870} & 90 \, ^{\circ} \, \mathrm{K} \\ 8.861 \times 10^{-18} \, T^{0.663} & 1200 \, ^{\circ} \, \mathrm{K} \\ 8.204 \times 10^{-17} \, T^{0.393} & 3800 \, ^{\circ} \, \mathrm{K} \end{cases}$$

These approximations fit the exact numerical results with a mean deviation of 0.7 percent, and the largest error of 2.05 percent, over the indicated temperature range.

Tests show that the numerical radiative attachment rates computed here are in very good agreement with the approximation given by Hutchings (1976), who used the cross sections computed by Doughty et al. (1966), for temperatures $500 \text{ K} \leq T \leq 2500 \text{ K}$. (Notice that there is a typographical error in the approximation for the radiative attachment rate given by Palla, Salpeter, and Stahler 1983.) It is also within 10% of the value given by Dalgarno and Kingston (1963), which was based on earlier calculations of the photodetachment cross section.

Continuum occupation numbers can be large in the infrared. The induced radiative attachment rate coefficient is

$$\boldsymbol{a}_{ind}(T) = P^*(H^-) \int_{\boldsymbol{n}_o}^{\infty} \boldsymbol{a}_{\boldsymbol{n}} \frac{4\boldsymbol{p} J_{\boldsymbol{n}}(\boldsymbol{t})}{h\boldsymbol{n}} \exp(-h\boldsymbol{n}/kT) d\boldsymbol{n} \quad (\text{cm}^3 \text{ s}^{-1})$$
(231)

where the mean intensity of the depth-dependent continuum is $J_{\nu}(\tau)$. This expression is used for all temperatures.

6.5.2. Photodetachment

Photodetachment,

$$H^{-} + g \Longrightarrow H^{o} + e^{-} \tag{232}$$

is the dominant H⁻ destruction mechanism for many conditions. The rate is evaluated in the standard manner;

$$\Gamma(H^{-}) = \int_{n_0}^{\infty} \mathbf{a}_n(bf) \frac{4\mathbf{p} J_n(t)}{h\mathbf{n}} d\mathbf{n} \quad (s^{-1}) \quad .$$
 (233)

The integral is evaluated as a sum over the numerically binned continuum. The incident continuum is then attenuated by optical depth increments

$$dt(H^{-}) = a_{n}(bf) n(H^{-}) \{ 1 - \exp(-h\mathbf{n}/kT)/b_{H^{-}} \} f(r) dr$$
(234)

where b_{H^-} is the departure coefficient for H⁻, $b_{H^-} \equiv n(H^-)/n^*(H^-)$, f(r) is the filling factor, and $n^*(H^-)$ is the LTE H⁻ density.

6.5.3. Photodetachment by hard photons

The H^- photoabsorption cross section increases above $\sim 3/4$ Ryd, energies where excitation of $n \ge 2$ levels is possible. Cross sections that include this process are taken from Broad and Reinhardt (1976). These calculations do not extend to high energies, so I scaled high-energy hydrogen cross sections by the ratio of H^- to H^0 cross sections at 18Å in order to take absorption of x- and y- rays into account.

The cross section for $(\gamma, 2e^-)$ absorption is much smaller than (γ, e^-) (Broad and Reinhardt 1976), and this latter process is neglected.

6.5.4. The approach to LTE; high radiation densities

As a test of the assumptions and methods, the approach to LTE under conditions determined by radiative attachment (spontaneous and induced) and photodetachment are first considered. Tests in which gas with temperature T_e is exposed to black body radiation fields with color temperature T_{color} are computed. The color and gas temperatures are set equal, T_e = T_{color}, and the intensity of the radiation field is varied up to the black body limit. The intensity of the radiation field is parameterized by the equivalent energy density temperature $T_u = (u/a)^{1/4}$, where *u* is the energy density (erg cm $^{-3}$; see above) and a is the Stefan's radiation density

Figure 8 Departure coefficients for H $^-$. The figure shows tests in which the hydrogen density was held fixed at a low and the gas irradiated by black bodies with color temperatures of 5, 10, and 20 \times 10 3 K. Gas temperature and color temperatures were equal. The energy density temperature T $_{\rm U}$. was varied up to its LTE limit. The H $^-$ departure coefficient is within 0.2% of unity when T $_{\rm U}$ = T $_{\rm COlor}$. hmivsu

constant. The equilibrium population of $H^{\text{-}}$ was computed, including all process mentioned below, but with the hydrogen density small enough (typically $\sim 10^5$ cm $^{\text{-}3}$) for radiative processes to be most important. The $H^{\text{-}}$ population is expressed as a departure coefficient, and the results are shown in Figure 8, for tests in which $T_{color} = 0.5, 1,$ and 2×10^4 K.

When $T_u = T_{color}$, and the radiation field is in strict thermodynamic equilibrium, radiative processes must hold H^- in LTE and departure coefficients of unity are expected. The computed departure coefficients for the three temperatures are 0.9998, 0.9996, and 1.0030, respectively. As the Figure shows, when T_u is lowered below T_{color} , the intensity of the radiation field falls below its thermodynamic equilibrium value, and the population of H^- increases. This is because the photodetachment rate (which is proportional to the intensity of the radiation field) is no longer in balance with the radiative attachment rate (which is proportional only to the electron density).

6.6. The H⁻ Balance; Collisional Processes

6.6.1. Associative detachment

The most important H_2 formation mechanism in grain-free environments, and a significant H^- destruction mechanism, is associative detachment,

$$H^- + H^o \Leftrightarrow H_2 + e^- \tag{235}$$

where rate coefficients from Bieniek and Dalgarno (1979) are used. The reverse reaction rate coefficient C_R , for electron collisional dissociation of H_2 , is related to the forward rate coefficient C_F by detailed balance;

$$C_R = C_F \frac{P^*(H^-)}{P^*(H_2)} . {236}$$

6.6.2. Electron collisional detachment

For nebular temperatures (~104 K) and moderate levels of ionization, the process

$$H^- + e^- \Leftrightarrow H + 2e^- \tag{237}$$

is a competitive H⁻ destruction mechanism. Rates taken from the compendium of Janev et al. (1987) are used. The reverse process, electron three-body recombination with neutral hydrogen, is included via detailed balance;

$$C_R = C_F P^*(H^-)$$
 (238)

6.6.3. Collisional ionization by suprathermal electrons

The total suprathermal collisional ionization rate is computed using approximations from Shull and Van Steenberg (1985). Ionization of H $^-$ by suprathermal electrons is scaled from the H 0 rates using cross sections at 20 eV given by Janev et al. (1987). This energy was chosen as representative of the mean energy of the secondary electron shower. The majority of these collisions are of the form e $^-$ + H $^ \rightarrow$ H(1s) + 2e $^-$, although e $^-$ + H $^ \rightarrow$ H $^+$ + 3e $^-$ collisions occur roughly 1% of the time.

6.6.4. Mutual neutralization

Neutral hydrogen can charge transfer with the negative ion through

$$H^- + H^+ \Leftrightarrow H + H^*$$
 (239)

The rate coefficients given in Janev et al. (1987) are used. By far the largest rate coefficients are for collisions that populate hydrogen in the n=3 level. These rates are based on both experimental and theoretical data (see, for example, Peart et al. 1985).

The reverse reaction is included using detailed balance. If the rate coefficient for the forward reaction is C_F then the reverse reaction rate, and its rate coefficient C_R , are given by

$$H_{1s} n_i C_R = b_i P^*(H^-) n_e n_p C_F$$
 (240)

where n_i and b_i are the population and departure coefficient of hydrogen in the i^{th} level.

6.6.5. Charge neutralization with heavy elements

The process

$$H^- + A^+ \Leftrightarrow H^o + A^o \tag{241}$$

is considered by Dalgarno and McCray (1973), who give rate coefficients for very low temperatures and ionization levels. Judging from the curves given by Peterson et al. (1971), upon which the Dalgarno and McCray rates are based, the

approximation they give should still be valid (although very uncertain) at temperatures of general interest ($\sim 0.5-1.0\times 10^4\,\mathrm{K}$). Here A+ is all singly ionized species, which are assumed to be neutralized at the same rate.

6.6.6. Neglected processes

Collisional detachment by protons (p⁺ + H⁻ \rightarrow H +p⁺ + e⁻), which has a negligible rate coefficient according to Janev et al. (1987), is neglected, as is collisional detachment by atomic hydrogen (H⁻ + H \rightarrow 2H + e⁻), which has no reliable rate coefficient according to Lites and Mihalas (1984).

6.6.7. The approach to LTE; high hydrogen densities

A series of models in collisional equilibrium was computed. Radiative processes were also included, but the incident radiation field, a 10^4 K blackbody, was given a negligible intensity (an ionization parameter of 10^{-12}). Three temperatures, 0.5, 1, and 2×10^4 K, were considered to span the temperature range typical of regions with significant H- population. The hydrogen density was varied between 10^8 and 10^{18} cm⁻³ to confirm the approach to LTE at high densities. The results of these calculations are shown in Figure 9.

For the majority of the calculations hydrogen is largely neutral, and for the smaller temperatures a significant fraction of the hydrogen was in the molecular form (H_2 and H_2 ⁺). The calculation confirms that the departure coefficients are within 2% of unity at the highest densities computed.

6.7. The HeH⁺ Molecular Ion

Rates for radiative association of He and H+ to form HeH+ are taken from Zygelman and Dalgarno (1990).

6.8. The H₂

The hydrogen chemistry network includes the ion-molecules H_2 , H^- , H_2^+ , and H_3^+ . All of the chemical reactions involving H_2 described by HM79, TH85, HM89, and LCS91 have been

Figure 9 Departure coefficients for H⁻ are shown. The radiation density was low and the total hydrogen density varied. Three gas temperatures are shown. Collisions bring H⁻ to LTE at high densities. hmivsn

incorporated in the present treatment. Rather than go into these details, which are well presented in these papers, we only outline details of how some of the processes have been implemented.

6.8.1. Associative detachment of H

The process

$$H^- + H \Rightarrow H_2 + e \tag{242}$$

is the main H_2 formation mechanism in low-density grain-free regions, and is treated as described above. At temperatures of interest here ($\sim 10^3$ K) the rate for H_2 formation by this process is set by the rate for radiative association to form H-, and is of order 10^{-15} cm³ s⁻¹ (see above).

6.8.2. Catalysis on grain surfaces

The process

$$2H + \text{grain} \Rightarrow H_2 + \text{grain}$$
 (243)

is a competitive H_2 formation process when grains are present. The rate coefficient is taken from Hollenbach and McKee (1979). Defining the fraction of atoms which form molecules as

$$f_a = \left(1 + 10^4 \exp(-600 / T_{gr})\right)^{-1} \tag{244}$$

then the rate coefficient is given by

$$\mathbf{a}_{gr}(H_2) = 3 \times 10^{-18} \frac{\sqrt{T_e} A_{gr} f_a}{1 + 0.04 \sqrt{T_{gr} + T_e} + 0.002 T_e + 8 \times 10^{-6} T_e^2}$$
(245)

where A_{gr} is the grain abundance relative to the ISM value, and T_e and T_{gr} are the electron and grain temperatures respectively. The grain temperature is determined self-consistently, including radiative and collisional heating and cooling, as described in the section "Grain Physics" beginning on page 289.

At T_e =10³ K and T_{gr} =100 K (representative values of the gas and grain temperature in regions near a H^o - H_2 interface) the rate coefficient for grain catalysis is ~4×10⁻¹⁸ cm⁻³ s⁻¹. For most conditions of interest here radiative association is at least a competitive H_2 formation mechanism. The ratio of the two processes (referred to as the H- and grain H_2 formation routes) is then

$$\frac{r(H^{-})}{r(\text{grain})} = \frac{n_e \mathbf{a}(H^{-})}{n_H \mathbf{a}(\text{grain})} \approx \frac{n_e}{n_H} 250$$
(246)

i.e., the H^- route is faster for conditions of moderate ionization ($n_e/n_H>4\times10^{-3}$) even when grains are present. When grains are absent (or deficient) the H^- route dominates.

6.8.3. Excited atom radiative association

Rates for the process

$$H(n=2) + H(n=1) \Rightarrow H_2 + h\mathbf{n}$$
(247)

are taken from Latter and Black (1991).

6.8.4. Excited molecular dissociation

Rates for the process

$$H_2(v \ge 4) + e^- \Rightarrow \left(H_2^-\right)^* \Rightarrow H + H^- \tag{248}$$

are given in Janev et al. (1987; their process 2.2.17), and these have been adopted by Lenzuni et al. (1991) and Crosas and Weisheit (1993) in their work on high density gas. Tests show that this process, if taken at face value, is by far the fastest destruction mechanism for molecular hydrogen under ISM conditions.

The process outlined by Janev et al. (1987) involves an electron capture by H_2 into vibrationally excited levels ($4 \le v \le 9$). The process is fast at low temperatures because the energy barrier is small, and the excited levels have large populations at laboratory densities. The process proceeds much more slowly at ISM densities, however, because excited levels have populations below their LTE value. This situation is thus similar to that described by Dalgarno and Roberge (1979). We have modified the Janev et al. (1987) rates using the physics outlined by Dalgarno and Roberge.

6.8.5. Discrete absorption into Lyman and Werner bands

Line absorption and excitation leading to dissociation through the vibrational continuum,

$$H_2 + h\mathbf{n} \Rightarrow H_2^* \Rightarrow 2H + h\mathbf{n}$$
 (249)

is the dominant H_2 destruction mechanism in regions where photodissociation (by photons with hv > 14.7 eV) and photo-ionization (with hv > 15.4 eV) do not occur (Stecher and Williams 1967).

Photodissociation through the Lyman-Werner bands occurs through a large number of transitions between 1109Å and the Lyman edge for a region shielded by atomic hydrogen (i.e., no radiation shortward of 912Å). Individual $\rm H_2$ electronic transitions become optically thick for sufficient column densities, and eventually the $\rm H_2$ becomes self-shielding. $\rm H_2$ then becomes the dominant hydrogen species.

Photodissociation through the Lyman-Werner bands is included using the approximations outlined by TH85. The incident radiation field is taken as the mean over the energy interval 1109Å–912Å , (appropriate for photo-excitation into the $B^1 \Sigma_u^+$ electronic state). This quantity is then reposed in terms of the Habing (1968) radiation field, which is the quantity used by TH85. H_2 self-shielding is included using escape probabilities and the deduced optical depth, again using the approximations described by TH85.

6.8.6. Photo-ionization to H_2^+

Photons with energies greater than 15.4 eV produce H₂+ via

$$H_2 + h\mathbf{n} \Leftrightarrow H_2^+ + e^* \quad . \tag{250}$$

This process both creates H_2^+ and heats the gas. Photo-absorption cross sections are taken from the compendium of Janev et al. (1987).

6.8.7. Collisional dissociation by Ho, Heo, and e-

The rate coefficient for the forward process, collisional dissociation by the species S (one of H^o, He^o, or e⁻),

$$H_2 + S \Rightarrow 2H + S \tag{251}$$

is taken from Dove and Mandy (1986; dissociation by H^o), Dove et al. (1987; dissociation by H^o) and Janev et al. (1987; dissociation by electrons). These can be important destruction mechanisms only for warm regions of the ISM because of the large binding energy of H_2 (~50,000 K).

The reverse reactions are included via detailed balance. Three-body formation of H_2 is important only for very high densities (n» 10^{10} cm⁻³).

6.8.8. H₂ cooling

Cooling due to collisional excitation of vibration-rotation levels of $\rm H_2$ is treated using the analytic fits given in Lepp and Shull (1983). Both $\rm H_2$ -H and $\rm H_2$ -H₂ collisions are included.

6.8.9. H₂ heating

Many electronic excitations eventually decay to excited vibration-rotation levels within the ground electronic state, and these can then heat by gas following collisionally de-excitation. The scheme outlined by TH85 is again used.

6.9. Heavy Element Molecules

The heavy element molecule network described by Hollenbach and McKee (1989) has been incorporated into CLOUDY.

The system of equations which are solved are as follows:

(C conservation)	$\begin{pmatrix} C \end{pmatrix}$	1	(C_{total})	1
O conservation	0		$O_{\scriptscriptstyle total}$	
CH balance	СН		0	
CH ⁺ balance	CH^{+}		0	l
OH balance	ОН		0	
<i>OH</i> ⁺ balance	OH^+		0	
CH_2^+ balance	CH_2^+		0	
C^+ balance	$C^{\scriptscriptstyle +}$	=	0	
CO balance	CO		0	
CO ⁺ balance	CO^+		0	İ
H_2O balance	H_2O		0	
H_2O^+ balance	H_2O^+		0	
H_3O^+ balance	H_3O^+		0	
O_2 balance	O_2		0	
O_2^+ balance	O_2^+		0	

(252)

The heavy element chemistry network includes the molecules CH, CH $^+$, OH, OH $^+$, CH $_2^+$, CO, CO $^+$, H $_2$ O, H $_2$ O $^+$, H $_3$ O $^+$, O $_2$, and O $_2^+$. The heavy element network, the hydrogen network described above, and the hydrogen-helium ionization balance network, are solved self-consistently. Of the 12 molecules in the heavy element network only CO develops a significant population under most circumstances.

6.9.1. Collisional Processes

The collision network described by Hollenbach and McKee (1989) is included (the original implementation of the network was based entirely on this work). Their approximations for the temperature dependence of the rate coefficients are used.

6.9.2. Photochemical processes and heating

Rates for photochemical reactions of the form hv + XY => X + Y are largely taken from the compendium of Roberge et al. (1991). These are posed in terms of the average interstellar radiation field. They have been incorporated by taking the depth-dependent continuum, renormalizing this to the average interstellar radiation field, and then using the coefficients given by Roberge et al.

An exception to this prescription is CO, which can become a major opacity source. Photodissociation is treated by numerically integrating over the continuum (with a thresh hold of 12.8 eV) using the photodissociation cross section given by HM79.

Photodissociation heats the gas if the internal energy of the daughters is small. The kinetic energy is taken to be $\langle h\mathbf{n}-\mathrm{DE}\rangle$ where DE is the dissociation energy and the mean is over the portion of the Balmer continuum that is active. Again, an exception is CO (the most important since it is the only heavy molecule that becomes optically thick), where the heating is evaluated by numerically integrating over the attenuated incident continuum.

6.9.3. Cooling

Cooling due to collisional excitation of vibration-rotation levels of CO, CH, OH, and H_2O is treated using the scheme outlined by HM79. Of these CO is the most important.

7. HELIUM

7.1. Overview

Work on the helium atom is still underway, and this is a portion of the code that is most likely to change over the next few years. The following outlines the treatments of the various ions. The present situation is that the ionization of helium should be exact for all matter and photon densities. Problems arise for predicted HeII line emissivities at low densities, in which case the listed case B predictions should be used instead.

7.2. The Helium Ion

He⁺ is treated as a ten level atom, entirely analogous to the hydrogen atom. Full l-mixing is assumed, and 2s and 2p are treated independently.

7.3. The Helium Singlets

The He singlets are treated as a ten level atom, entirely analogous to the hydrogen atom. Full l-mixing is assumed, and 2s and 2p are treated independently.

7.4. The Helium Triplets

The helium triplets are presently treated as a five level atom. The number of levels is stored as **nhe3lvl**. Populations are stored in the vector **he3n**, which contains the population ratio n_i/He^+ .

The population of the metastable 2³S level is determined including all processes that create and destroy the level. Processes that destroy 2³S include photoionization and collisional ionization, radiative decays to ground, and collisional transitions to the singlets. Processes that create populations include three-body and radiative recombination and collisions to the triplets from the singlets. Including only radiative recombination, exchange collisions to the singlets, and radiative decays to ground, the relative population of 2³S can be written as

$$\frac{He(2^{3}S)}{He^{+}} = \frac{5.79 \times 10^{-6} t_{4}^{-1.18}}{1 + 3110 t_{4}^{-0.51} n_{e}^{-1}}$$
(253)

where t_4 is the electron temperature in units of 10^4 K. This actual computed value of this ratio (all processes included) is **hn3n(1)**.

7.5. Ionization Equilibria

The ionization equilibria of the various ions/atoms is accurate for all photon and electron densities. Tests presented in Part III of this document show that the balance goes to LTE in the high photon and electron density limits.

7.6. Line Emission

Emission from the triplets should be nearly exact. The model helium ion and singlets assumes full l-mixing of levels higher than 2, and so the line calculations are

dhelium 255

only correct at high densities. At low densities the case B predictions (printed with the label "Ca B") should be used instead.

The model atoms assume complete l-mixing for the singlets and helium ion, and they give exact results in the context of this assumption. Line intensities predicted by the 10-level atoms are indicated by the label "TOTL". These include all optical depth and collisional effects.

Although the predictions are exact in the context of the well l-mixed approximation, this approximation is not valid at low densities, and the model atoms do not give accurate emissivities. The greatest problem is HeII $\lambda 4686$, for which the complete l-mixing assumption results in an intensity much smaller than the low density limit approximation. For these situations the simple case B predictions are preferred. Model atom predictions have labels such as "TOTL 4686" while the case B predictions have labels like "Ca B 4686".

To summarize: For low density conditions, such as galactic nebulae, case B predictions should be used. At intermediate densities ($10^6 \le n_e \le 10^9 \ cm^{-3}$) the predictions of the 10-level atom are probably better than case B predictions. At high densities ($n_e > 10^9 \ cm^{-3}$), where collisional and radiative transfer effects are important, predictions of the 10-level atoms are better.

7.7. Helium Line and Continuum Arrays

The treatment of singlet and ionized helium is entirely analogous to that of hydrogen. Escape and destruction probabilities are evaluated in routine *HeTran*.

heltau and **hellim** These are the optical depths to the illuminated face, and the total optical depths from the previous iteration, for the Hel singlets.

he2tau and **he2lim** These are the optical depths to the illuminated face, and the total optical depths from the previous iteration, for the HeI singlets.

iphe11, iphe21 Pointers to helium singlet and ion lines are called *iphe11(u, 1)*, and *iphe21 (u, 1)*.

nhe1, **nhe2** Pointers to helium singlet and ion level ionization thresholds are called **nhe1** (**n**), and **nhe2**(**n**).

7.7.1. Recombination coefficients

Hydrogen and helium recombination coefficients are stored in the two dimensional vectors hrec, helrec, and helrec. The first dimension of the vector indicates the level of the model atom - helrec(1,x) would refer to the ground level. The second dimension points to several quantities related to computation of the effective recombination coefficient.

he1rec, **he2rec** These mirror the **hrec** terms described on page 236, but for the helium atom and ion.

ophe1f, **ophe2f** These are the vectors containing the ratio of "other" to "total" opacities, which mirror the **ophf** term, described on page 236.

256 dhelium

8. THE HEAVY ELEMENTS

8.1. Overview

The treatment of the ionization equilibrium of the elements heavier than helium is fairly conventional (see, for instance, Halpern and Grindlay 1980; Kallman and McCray 1982). This treatment is more approximate than that of hydrogen and helium at high densities (n_H » 10¹⁰ cm⁻³) because the majority of ions are treated considering only the ground term and continuum for each ionization stage. In all cases, collisional ionization from ground (using data from Voronov 1997; and Xu and McCray 1991)) and a net three-body recombination coefficient (see, for example, Burgess and Summers 1976; the actual code is taken from Cota 1987) are included. Photoionization rates are modified for induced recombination as described by equation 202. All published charge transfer rate coefficients are also included (Kingdon and Ferland 1996). Inner shell photoionization is treated using Auger yields given by Kaastra and Mewe (1993). Photoionization cross sections are from Verner et al. (1996).

This treatment is approximate at high densities for two reasons. First, net radiative recombination coefficients, which have been summed over all levels (Aldrovandi and Pequignot 1972; Aldrovandi and Pequignot 1974; Gould 1978; Verner and Ferland 1996), are used. These sums are correct only in the low-density limit. At high densities levels can undergo collisional ionization before radiative decays to the ground state occur. A second problem is that substantial populations can build up in highly excited states when the density and temperature are high.

When this occurs the partition function of the atom or ion is no longer equal to the statistical weight of the ground state. As a result the ionization equilibrium of the heavy elements is approximate for very high densities (n » 10^{10} cm^{-3}), with uncertainties increasing for higher densities. The statistical and thermal equilibrium of highdensity gas is an area of on-going research.

Many exotic line transfer effects can influence certain lines due to coincidental line overlap. A good general reference to a number of these processes is the paper

Figure 10 Solar system abundances are shown. ssystem

by Swings and Struve (1940). All of these processes are included in the line formation processes for those lines that are predicted by the code. Morton, York, and Jenkins (1988) and Verner, Verner, and Ferland (1996) provide a line lists for UV resonance lines, and Bowen's 1960 paper on forbidden lines remains a classic.

The effects of resonant structures often dominate collision strengths for infrared transitions. Oliva, Pasquali and Reconditi (1996) stress the uncertainties these may introduce.

8.2. Solar System Abundances

Figure 10 plots the solar system abundances of the elements, as tabulated by Anders and Grevesse (1989) and Grevesse and Noels (1993). These abundances vs atomic number. The x-axis is the abundance by number relative to a scale where the abundance of silicon is 10^6 . The y-axis lists the atomic number and the chemical symbol for the element.

8.3. Periodic Table

A periodic table of the first 36 elements follows.

1																	2
Н																	He
3	4											5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
11	12 13 14 15 16 17 1											18					
Na	Mg											Αl	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr

8.4. Ionization Balance

8.4.1. Photoionization cross sections

Photoionization cross sections for all elements are evaluated using Dima Verner's routine *phfit*, which fits Opacity Project data where possible, and the best theoretical or experimental data for other cases. The fitting procedure is described in Verner Yakovlev, Band, and Trzhaskovshaya (1993), Verner and Yakovlev (1995), and Verner, Ferland, Korista, and Yakovlev (1996).

8.4.2. Auger multi-electron ejection

Many electrons may be ejected following removal of an inner electron. This is fully treated using electron yields taken from Kaastra and Mewe (1993), see page 263 for more details. This process couples non-adjacent stages of ionization. The code iterates on the ionization solution to keep the system of equations a bi-diagonal matrix (see page 272).

Figure 11 shows photoionization cross sections for each shell of atomic iron, along with plots of the electron yield, taken from Kaastra and Mewe (1993). A single photoionization of the 1s shell can remove as many as 8 electrons.

Figure 11 Photoionization cross sections and electron yields for neutral iron. Each of the subshell is shown along with the electron yield. IronPhoto

8.4.3. Collisional ionization rate coefficients

Fits to collisional ionization rate coefficients are evaluated in Dima Verner's routine *cfit*. These rates come mainly from Arnaud and Raymond (1992) and Arnaud and Rothenflug (1985), and by interpolation where rates are not given.

8.4.4. Radiative recombination rate coefficients

Radiative recombination rate coefficients are evaluated by Dima Verner's routine **rrfit**, which uses fits by Arnaud and Raymond (1992), Verner and Ferland (1996), Shull and van Steenberg (1982), and by Landini and Monsignori Fossi (1990, 1991). Electron recombination rates are stored in **RecomRate(ion)** and are evaluated in the routine that drives the ionization balance.

8.4.5. Low temperature dielectronic recombination

Dielectronic recombination through low-lying autoionizing states is known to be the dominant recombination mechanism for many ions of second-row elements (i.e., Nussbaumer and Storey 1983). Unfortunately, these have not been computed for most third row or higher elements. This constitutes a major uncertainty in understanding the ionization balance of these elements, and has been described, for instance, by Ali et al. (1991). For those elements where a dielectronic recombination rate coefficient has not been computed and the parent ion is not a closed shell, the mean of the rate coefficient for C, N, O, and Ne is used instead. This assumption can be modified with the dielectronic recombination command described in part I.

8.4.6. Charge transfer

Rates for charge transfer between hydrogen and the heavy elements are evaluated using Jim Kingdon's routines **HCTIon** and **HCTRecom**. These rates are evaluated in routine **MakeCharTran**, which is called by routine **ionize**, and stored into master arrays, **HCharExcIon** and **HCharExcRec**. The rate coefficient for the process $A_{nelem}^{i+1} + H^o => A_{nelem}^i + H^+$ is stored as **HCharExcRec(i, nelem)**. The rate coefficient for the process $A_{nelem}^{i+1} + H^o$ is stored as **HCharExcIon(i, nelem)**.

For species more than 4 times ionized, a statistical estimate made by Alex Dalgarno (Ferland et al. 1997) is used. The rate coefficient for transfer between atomic hydrogen and a highly ionized species is given by 1.92×10^{-9} ζ cm³ s⁻¹, where ζ is the charge of the ion. Other atoms are treated analogously.

Charge transfer rates for elements other than hydrogen are evaluated within each routine responsible for determining the ionization balance of an element. These are accumulated as two sums, *CTHrec(1)* and *CTHion(1)*. Damped values are stored as array elements *CTHrec(2)* and *CTHion(2)*, which are entered within the hydrogen matrix loop. The arrays *HCharExcRec(I,nelem)* and *HCharExcIon(I,nelem)* are the hydrogen recombination and ionization charge transfer rates. These were evaluated in routine *MakeCharTran*. The array *chargt(ion,1)* is the ionization, and *chargt(ion,2)* the recombination, charge transfer for species other than hydrogen, and was set in the routine that determines the ionization balance of the element.

8.5. Ionization Potentials

Table 22 lists ionization potentials for photoionization of the outer shell of the first thirty elements. These are given in Rydbergs for infinite mass nuclei.

Figure 12 shows the number of ions with valence shell ionization potentials within logarithmically increasing energy widths, as a function of the log of the ionization potentials in Rydbergs. Two large peaks occur, one near $\sim\!25$ Ryd ($\sim\!350$ eV) and a second near $\sim\!160$ Ryd ($\sim\!2$ keV). The continuum binning used in the code is designed to resolve these as separate features.

8.5.1. Ionization potential pointers

The vector *ipElement* contains pointers to thresholds of all valence and inner shell ionization edges of the elements. It has four dimensions. The first dimension is atomic weight of the element, and the second is the ionization stage, 1 for the atom, ranging up to the atomic number of the element. The third dimension is the shell number, 1 for the K-shell, ranging up to 7. The fourth dimension is a set of pointers. One is the lower energy limit or threshold for the shell, 2 is the upper limit as set in

Table 22 Ionization Potentials of the Elements (Rydbergs)

	Table 22 Ionization I otentials of the Elements (Nyubergs)											
	1 H	2 He	3 Li	4 Be	5 B	6 C	7 N	80	9 F	10 Ne		
1	9.996(-1)	1.807	3.963(-1)	6.852(-1)	6.099(-1)	8.276(-1)	1.068	1.001	1.280	1.585		
2		4.000	5.559	1.338	1.849	1.792	2.176	2.581	2.570	3.010		
3			9.003	1.131(+1)	2.788	3.520	3.487	4.038	4.609	4.664		
4				1.600(+1)	1.907(+1)	4.740	5.694	5.689	6.405	7.138		
5					2.500(+1)	2.882(+1)	7.195	8.371	8.393	9.275		
6						3.601(+1)	4.058(+1)	1.015(+1)	1.155(+1)	1.161(+1)		
7							4.903(+1)	5.434(+1)	1.361(+1)	1.524(+1)		
8								6.405(+1)	7.011(+1)	1.757(+1)		
9									8.107(+1)	8.790(+1)		
10										1.001(+2)		

routine *LimitSh*, and element three is the offset pointer to the opacity array.

A parallel two dimensional array, **nsShells(nelem, ion)**, contains the number of shells for the ionization stage i of the element with a given atomic weight. With this nomenclature, the pointer to the valence shell threshold of ionization stage i of an element n would be **ipElement**(n,i, **nsShells**(n,i). These valence pointers are also stored in the array **ipHeavy(nelem, nstage)** in the common block of the same name. The array **ipLyHeavy** contains parallel pointers for the Ly α transitions of the elements.

Table 22b Ionization Potentials of the Elements (Rydbergs)

									<u> </u>	
	11 Na	12 Mg	13 AI	14 Si	15 P	16 S	17 CI	18 Ar	19 K	20 Ca
1	3.777(-1)	5.620(-1)	4.400(-1)	5.991(-1)	7.710(-1)	7.614(-1)	9.533(-1)	1.158	3.191(-1)	4.493(-1)
2	3.476	1.105	1.384	1.202	1.450	1.715	1.750	2.031	2.325	8.724(-1)
3	5.264	5.890	2.091	2.461	2.220	2.560	2.911	2.994	3.367	3.742
4	7.270	8.033	8.820	3.318	3.781	3.477	3.930	4.396	4.477	4.944
5	1.017(+1)	1.039(+1)	1.130(+1)	1.226(+1)	4.780	5.342	4.985	5.514	6.075	6.211
6	1.266(+1)	1.371(+1)	1.400(+1)	1.507(+1)	1.620(+1)	6.471	7.131	6.689	7.309	7.996
7	1.532(+1)	1.653(+1)	1.774(+1)	1.812(+1)	1.934(+1)	2.065(+1)	8.393	9.136	8.643	9.349
8	1.942(+1)	1.955(+1)	2.092(+1)	2.228(+1)	2.274(+1)	2.412(+1)	2.560(+1)	1.055(+1)	1.137(+1)	1.082(+1)
9	2.204(+1)	2.412(+1)	2.426(+1)	2.580(+1)	2.732(+1)	2.786(+1)	2.941(+1)	3.105(+1)	1.292(+1)	1.384(+1)
10	1.077(+2)	2.701(+1)	2.935(+1)	2.950(+1)	3.120(+1)	3.286(+1)	3.349(+1)	3.518(+1)	3.703(+1)	1.553(+1)
11	1.212(+2)	1.295(+2)	3.249(+1)	3.499(+1)	3.525(+1)	3.710(+1)	3.890(+1)	3.961(+1)	4.150(+1)	4.350(+1)
12		1.443(+2)	1.533(+2)	3.848(+1)	4.119(+1)	4.150(+1)	4.351(+1)	4.544(+1)	4.627(+1)	4.830(+1)
13			1.693(+2)	1.792(+2)	4.497(+1)	4.790(+1)	4.827(+1)	5.043(+1)	5.253(+1)	5.341(+1)
14				1.965(+2)	2.070(+2)	5.198(+1)	5.511(+1)	5.555(+1)	5.782(+1)	6.010(+1)
15					2.256(+2)	2.370(+2)	5.949(+1)	6.283(+1)	6.329(+1)	6.575(+1)
16						2.568(+2)	2.689(+2)	6.747(+1)	7.115(+1)	7.162(+1)
17							2.900(+2)	3.029(+2)	7.607(+1)	7.989(+1)
18								3.253(+2)	3.389(+2)	8.504(+1)
19									3.626(+2)	3.770(+2)
20										4.020(+2)

Table 22c Ionization Potentials of the Elements (Rydbergs)

	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn
1	5.396(-1)	5.012(-1)	4.954(-1)	4.974(-1)	5.464(-1)	5.808(-1)	5.780(-1)	5.613(-1)	5.678(-1)	6.904(-1)
2	9.408(-1)	9.981(-1)	1.077	1.213	1.149	1.190	1.255	1.335	1.491	1.320
3	1.820	2.020	2.154	2.275	2.475	2.253	2.462	2.596	2.708	2.919
4	5.401	3.180	3.433	3.613	3.763	4.028	3.768	4.035	4.217	4.366
5	6.752	7.298	4.798	5.105	5.321	5.513	5.843	5.593	5.872	6.071
6	8.136	8.783	9.415	6.662	7.037	7.281	7.497	7.938	7.570	7.938
7	1.014(+1)	1.035(+1)	1.107(+1)	1.177(+1)	8.768	9.187	9.481	9.775	1.022(+1)	9.996
8	1.162(+1)	1.252(+1)	1.275(+1)	1.357(+1)	1.430(+1)	1.111(+1)	1.160(+1)	1.191(+1)	1.227(+1)	1.286(+1)
9	1.323(+1)	1.412(+1)	1.513(+1)	1.538(+1)	1.630(+1)	1.717(+1)	1.368(+1)	1.418(+1)	1.463(+1)	1.492(+1)
10	1.654(+1)	1.587(+1)	1.694(+1)	1.796(+1)	1.825(+1)	1.926(+1)	2.024(+1)	1.651(+1)	1.705(+1)	1.749(+1)
11	1.836(+1)	1.948(+1)	1.879(+1)	1.990(+1)	2.102(+1)	2.133(+1)	2.244(+1)	2.359(+1)	1.956(+1)	2.014(+1)
12	5.052(+1)	2.142(+1)	2.264(+1)	2.191(+1)	2.311(+1)	2.431(+1)	2.469(+1)	2.588(+1)	2.711(+1)	2.284(+1)
13	5.562(+1)	5.790(+1)	2.472(+1)	2.608(+1)	2.525(+1)	2.653(+1)	2.786(+1)	2.822(+1)	2.947(+1)	3.085(+1)
14	6.106(+1)	6.344(+1)	6.585(+1)	2.824(+1)	2.962(+1)	2.883(+1)	3.021(+1)	3.162(+1)	3.197(+1)	3.337(+1)
15	6.817(+1)	6.923(+1)	7.172(+1)	7.431(+1)	3.199(+1)	3.359(+1)	3.263(+1)	3.408(+1)	3.557(+1)	3.601(+1)
16	7.416(+1)	7.673(+1)	7.791(+1)	8.063(+1)	8.327(+1)	3.596(+1)	3.763(+1)	3.663(+1)	3.822(+1)	3.984(+1)
17	8.041(+1)	8.313(+1)	8.584(+1)	8.709(+1)	8.996(+1)	9.275(+1)	4.017(+1)	4.199(+1)	4.094(+1)	4.255(+1)
18	8.915(+1)	8.974(+1)	9.261(+1)	9.547(+1)	9.680(+1)	9.981(+1)	1.027(+2)	4.462(+1)	4.652(+1)	4.549(+1)
19	9.466(+1)	9.893(+1)	9.959(+1)	1.026(+2)	1.056(+2)	1.070(+2)	1.106(+2)	1.133(+2)	4.929(+2)	5.130(+1)
20	4.171(+2)	1.047(+2)	1.093(+2)	1.100(+2)	1.131(+2)	1.163(+2)	1.178(+2)	1.211(+2)	1.242(+2)	5.420(+1)
21	4.435(+2)	4.593(+2)	1.154(+2)	1.201(+2)	1.208(+2)	1.241(+2)	1.275(+2)	1.291(+2)	1.318(+2)	1.357(+2)
22		4.870(+2)	5.036(+2)	1.265(+2)	1.314(+2)	1.322(+2)	1.357(+2)	1.392(+2)	1.400(+2)	1.435(+2)
23			5.326(+2)	5.499(+2)	1.382(+2)	1.433(+2)	1.441(+2)	1.478(+2)	1.503(+2)	1.521(+2)
24				5.803(+2)	5.983(+2)	1.504(+2)	1.557(+2)	1.566(+2)	1.597(+2)	1.629(+2)
25					6.300(+2)	6.489(+2)	1.631(+2)	1.687(+2)	1.689(+2)	1.737(+2)
26						6.819(+2)	7.015(+2)	1.763(+2)	1.807(+2)	1.822(+2)
27							7.357(+2)	7.563(+2)	1.900(+2)	1.945(+2)
28								7.923(+2)	8.129(+2)	2.043(+2)
29									8.504(+2)	8.724(+2)
30										9.106(+2)

Figure 12 The number of elements with valence shell ionization potentials within logarithmically increasing energy widths is shown as a function of the log off the ionization potential. ipDen

8.6. Heavy Element Variables

8.6.1. Atomic weights

These are stored in atomic mass units, within the vector **AtomicWeight**. The mass (gm) of unit atomic weight m_{AMU} is stored as the included parameter file **amu**.

8.6.2. Ionic and total abundances

Information concerning the abundance of an element and the distribution of this abundance over the various stages of ionization is stored in the two dimensional real array **xIonFracs**(atomic number, ionization stage). This array is the sole member of the common block of the same name. The first dimension is the atomic number of the element, ranging from 1 (hydrogen) through the value of **limelm**, currently 30. The second dimension of the array ranges from 0 through **limelm+1**. Element 0 is the total abundance of that element in all gas phase forms, including molecules (but not grains). Elements 1 and higher are the abundances of that element in these stages of ionization (1 is the atom, 2 the first ion, etc). All abundances have units particles cm⁻³.

8.6.3. Element names

chElementSym Standard chemical symbols for all elements now in the code are stored within this 2-character variable. This vector is the sole member of common block **ElmntSym**.

chIonStage This is a two character vector **limeIm**+1 long, containing the numbers from 1 through **limeIm**+1. It is used for the spectroscopic designation of the

spectrum produced by a level of ionization. C IV would be represented as C 4. This vector is the sole member of common block *IonStage*.

chElNames This is a four character vector **limelm** long with the first four letters of the names of the first **limelm** elements. This vector is the sole member of common block **ElNames**.

8.6.4. Photoionization rates

These are stored in the multidimensional vector **PhotoRate**. This vector is the sole content of the common block of the same name. The first dimension is the atomic number of the element, and the second is the ionization stage, with the atom being one. The third dimension is a pointer to the shell. These range from 1 to 7, and are 1s, 2s, 2p, 3s, 3p, 3d, 4s. Note that, for neutrals and ions of third row and heavier elements, some of the inner shells may be only partially filled. The 4th dimension contains the photoionization rate (1) and the heating rate (2).

8.6.5. Fluorescence yields

These are taken from the compilation by Kaastra and Mewe (1993), and are stored in common block *yield*. The real variable *yield* has 4 dimensions. These are the atomic number (6 for carbon, etc), the stage of ionization (1 for the atom), the shell number in Dima's notation (1 for the 1s shell), and the fraction of ejected electrons corresponding to that index. For the latter, the index 1 will return the fraction of ionizations of that shell that eject only 1 electron. The second part of the common block is an integer array that indicates the most number of electrons that can be ejected.

8.6.6. Ionization potential pointers

These are set within routine **SetPoint**, which calls routine **ipShells** to actually set the pointers.

8.7. Isoelectronic Sequences

Table 23 lists all isoelectronic sequences for the first thirty elements. For sequences of elements heavier than K the ground configuration is correct for ions twice or more times ionized. For these heavier elements the atom and first ion may have non-standard configurations for the outer shell. The bottom row on the table indicates the shell number, in the nomenclature used for the photoionization shell layering.

8.8. Carbon

Low temperature dielectronic recombination rate coefficients are taken from Nussbaumer and Storey (1983).

Table 23 Isoelectronic Sequences

	Table 23 Isoelectronic Sequences											
1 H	2 He	3 Li	4 Be	5 B	6 C	7 N	<i>80</i>	9 F	10 Ne			
1s ² S	1s ² 1S	2s ² S	2s ² 1S	2p ² P	2p ² ³ P	2p³ 4S	2p ⁴ ³ P	2p ⁵ ² P	2p ⁶ ¹ S			
H 1	He 1	Li 1	Be 1	Bo 1	C 1	N 1	0 1	F 1	Ne 1			
He 2	Li 2	Be 2	Bo 2	C 2	N 2	0 2	F 2	Ne 2	Na 2			
Li 3	Be 3	Bo 3	C 3	N 3	O 3	F 3	Ne 3	Na 3	Mg 3			
Be 4	Bo 4	C 4	N 4	O 4	F 4	Ne 4	Na 4	Mg 4	Al 4			
Bo 5	C 5	N 5	O 5	F 5	Ne 5	Na 5	Mg 5	Al 5	Si 5			
C 6	N 6	0 6	F 6	Ne 6	Na 6	Mg 6	Al 6	Si 6	P 6			
N 7	0 7	F 7	Ne 7	Na 7	Mg 7	Al 7	Si 7	P 7	S 7			
0 8	F 8	Ne 8	Na 8	Mg 8	Al 8	Si 8	P 8	S 8	CI 8			
F 9	Ne 9	Na 9	Mg 9	Al 9	Si 9	P 9	S 9	CI 9	Ar 9			
Ne10	Na10	Mg10	Al10	Si10	P 10	S 10	CI10	Ar10	K 10			
Na11	Mg11	Al11	Si11	P 11	S 11	CI11	Ar11	K 11	Ca11			
Mg12	Al12	Si12	P 12	S 12	Cl12	Ar12	K 12	Ca12	Sc12			
Al13	Si13	P 13	S 13	Cl13	Ar13	K 13	Ca13	Sc13	Ti13			
Si14	P 14	S 14	CI14	Ar14	K 14	Ca14	Sc14	Ti14	V 14			
P 15	S 15	CI15	Ar15	K 15	Ca15	Sc15	Ti15	V 15	Cr15			
S 16	Cl16	Ar16	K 16	Ca16	Sc16	Ti16	V 16	Cr16	Mm16			
CI17	Ar17	K 17	Ca17	Sc17	Ti17	V 17	Cr17	Mm17	Fe17			
Ar18	K 18	Ca18	Sc18	Ti18	V 18	Cr18	Mm18	Fe18	Co18			
K 19	Ca19	Sc19	Ti19	V 19	Cr19	Mm19	Fe19	Co19	Ni19			
Ca20	Sc20	Ti20	V 20	Cr20	Mm20	Fe20	Co20	Ni20	Cu 20			
Sc21	Ti21	V 21	Cr21	Mm21	Fe21	Co21	Ni21	Cu 21	Zn 21			
Ti22	V 22	Cr22	Mm22	Fe22	Co22	Ni22	Cu 22	Zn 22				
V 23	Cr23	Mm23	Fe23	Co23	Ni23	Cu 23	Zn 23					
Cr24	Mm24	Fe24	Co24	Ni24	Cu 24	Zn 24						
Mm25	Fe25	Co25	Ni25	Cu 25	Zn 25							
Fe26	Co26	Ni26	Cu 26	Zn 26								
Co27	Ni27	Cu 27	Zn 27									
Ni28	Cu 28	Zn 28										
Cu 29	Zn 29											
Zn 30	_	_	_	_	_	_	_	_	_			
1	1	2	2	3	3	3	3	3	3			

11 Na	12 Mg	13 AI	14 Si	15 P	16 S	17 CI	18 Ar	19 K	20 Ca
3s ² S	3s ² 1S	3p ² P	3p ² ³ P	3p ³ ⁴ S	3p ⁴ ³ P	3p ⁵ ² P	3p ⁶ ¹ S	3d ² D	3d ² ³ F
Na 1	Mg 1	Al 1	Si 1	P 1	S 1	Cl 1	Ar 1	K 1 ¹	Ca 1 ¹
Mg 2	Al 2	Si 2	P 2	S 2	CI 2	Ar 2	K 2	Ca 2 ¹	Sc 2 ¹
Al 3	Si 3	P 3	S 3	CI 3	Ar 3	K 3	Ca 3	Sc 3	Ti 3
Si 4	P 4	S 4	CI 4	Ar 4	K 4	Ca 4	Sc 4	Ti 4	V 4
P 5	S 5	CI 5	Ar 5	K 5	Ca 5	Sc 5	Ti 5	V 5	Cr 5
S 6	CI 6	Ar 6	K 6	Ca 6	Sc 6	Ti 6	V 6	Cr 6	Mm 6
CI 7	Ar 7	K 7	Ca 7	Sc 7	Ti 7	V 7	Cr 7	Mm 7	Fe 7
Ar 8	K 8	Ca8	Sc 8	Ti 8	V 8	Cr 8	Mm 8	Fe 8	Co 8
Κ9	Ca 9	Sc 9	Ti 9	V 9	Cr 9	Mm 9	Fe 9	Co 9	Ni 9
Ca10	Sc10	Ti10	V 10	Cr10	Mm10	Fe10	Co10	Ni10	Cu 10
Sc11	Ti11	V 11	Cr11	Mm11	Fe11	Co11	Ni11	Cu 11	Zn 11
Ti12	V 12	Cr12	Mm12		Co12	Ni12	Cu 12	Zn 12	
V 13	Cr13	Mm13	Fe13	Co13	Ni13	Cu 13	Zn 13		
Cr14	Mm14	Fe14	Co14	Ni14	Cu 14	Zn 14			
Mm15	Fe15	Co15	Ni15	Cu 15	Zn 15				
Fe16	Co16	Ni16	Cu 16						
Co17	Ni17	Cu 17	Zn 17						
Ni18	Cu 18	Zn 18							
Cu 19	Zn 19								
Zn 20									
4	4	5	5	5	5	5	5	6	6
21 Sc	22 Ti	23 V	24 Cr	25 Mm	26 Fe	27 Co	28 Ni	29 Cı	
3d ³ ⁴ F	3d ⁴ ⁵ D	3d ⁵ ⁶ S	3d ⁶ ⁵ D	3d ⁷ ⁴ F	3d ⁸ ³ F	3d ⁹ ² D	3d ¹⁰ ¹ S	4s ² S	4s ² ¹ S
Sc 1	Ti 1	V 1	Cr 1	Mm 1	Fe 1	Co 1	Ni 1	Cu 1	Zn 1
Ti 2 V 3	V 2 Cr 3	Cr 2 Mm 3	Mm 2 Fe 3	Fe 2 Co 3	Co 2 Ni 3	Ni 2 Cu 3	Cu 2 Zn 3	Zn 2	
v 3 Cr 4	Mm 4	Fe 4	Co 4	Ni 4	Cu 4	Zn 4	LIIJ		
Mm 5	Fe 5	Co 5	Ni 5	Cu 5	Zn 5	4 11 T			
Fe 6	Co 6	Ni 6	Cu 6	Zn 6	0				
Co 7	Ni 7	Cu 7	Zn 7						
Ni 8	Cu 8	Zn 8							
Cu 9	Zn 9								
Zn 10	,	,	,	,				_	_
6	6	6	6	6	6	6	6	7	7

8.9. Nitrogen

Low temperature dielectronic recombination rate coefficients are taken from Nussbaumer and Storey (1983). Photoionization from the excited 2D level of $N^{\rm o}$ is included, and can be the dominant ionization mechanism in well-shielded regions.

8.10. Oxygen

Low temperature dielectronic recombination rate coefficients are taken from Nussbaumer and Storey (1983).

¹ Neutral and first ion have non-standard filling.

Photoionization from the first two excited states of O²⁺ is included as a general ionization mechanism. This can dominate the ionization of the ion since it occurs behind the He+ - He++ ionization front, which shields the region from 4 Ryd and higher radiation. Similarly, photoionization from the first excited state and all inner shells of Oo are included.

8.10.1. The O I model atom

A partial Grotrian diagram for the O I atom considered in the Lyβ–O

Figure 13 The levels of O^{O} included in the calculation of the OI–Ly $\!\beta$ pumping problem are shown. oigrot

I fluorescence problem is shown in Figure 13. Multiplet averaged transition probabilities are taken from unpublished Opacity Project data, and the collision strengths are from the \overline{g} approximation for collisions between electrons and neutrals. Rates for fluorescence between the two transitions are computed as in Netzer et al. (1985).

Level populations including all physical processes are computed in routine *oilevl*. This routine is called by routine *p8446*, which is responsible for the interactions between the hydrogen and oxygen atoms. Routine *p8446* is called by routine *htrans*, and by routine *oxycol*.

8.11. Neon

Low temperature dielectronic recombination rate coefficients are taken from Nussbaumer and Storey (1987).

8.12. Magnesium

Low temperature dielectronic recombination rate coefficients for recombination to the atom are taken from Nussbaumer and Storey (1986). Rate coefficients have not been computed for recombination to the ions. Means of CNO are used.

Photoionization from the excited ²P^o level of Mg⁺ is included as a general Mg⁺ destruction mechanism using Opacity Project data retrieved from *TopBase*. This can easily be the dominant Mg⁺ destruction mechanism in BLR calculations since the excited state has an ionization potential below 1 Ryd. The code will generate a

comment at the end of the calculation if this is a competitive Mg⁺ destruction mechanism.

8.13. Aluminum

Low temperature dielectronic recombination rate coefficients for recombination to the atom and first ion are taken from Nussbaumer and Storey (1986). Rate coefficients have not been computed for recombination to other ions. Means of CNO are used.

8.14. Calcium

Low temperature dielectronic recombination rate coefficients have not been computed for this element. Means of CNO are used.

8.14.1. The Ca II model atom

The Ca II ion is treated as a five—level atom plus continuum. The model atom is shown in Figure 14, and is

similar to that described by Shine and Linsky (1974). Collision strengths for j-mixing collisions are from Saraph (1970). Collision and radiative data for the 4s - 4p transition are taken from the compendium of Mendoza (1983), and all other collision data are from Chidichimo (1981) and Saraph (1970). Radiative data for the 3d - 4p and 4s - 3d transitions are from Black, Weisheit, and Laviana (1972); these are in good agreement with the calculations of Osterbrock (1951). The compendium by Shine and Linsky (1974) provides photoionization cross sections for excited levels, which are adopted here. Photoionization of the excited ²D level by Lyα

Figure 14 The five levels of Ca^+ included in the calculations are shown. The wavelengths of the predicted lines are K (3934), H (3969), X (8498), Y (8542), Z (8662), F1 (7291), and F2 (7324). ca2grot

(Wyse 1941) and all other line or continuum sources is explicitly included. Recombination contributions to the population of individual levels are included by dividing the excited state recombination coefficient among the excited levels considered, according to their statistical weight and the rules of LS coupling.

All Ca II transitions (including the forbidden lines) can become quite optically thick. Radiative transfer is treated with the escape probability formalism, assuming incomplete redistribution, including destruction by background opacities.

8.15. Iron

Low temperature dielectronic recombination rate coefficients have not been computed for this element. Means of CNO are used. Charge transfer rate coefficients are from Neufeld and Dalgarno (1989), Neufeld (1989) and Ferland, Korista, Verner, and Dalgarno (1997).

8.15.1. The FeII model atom

This is an area of extensive activity. The majority of the cooling and emission due to FeII for high-density conditions comes from the simplified model atom

Figure 15 The sixteen level atom used to compute Fell IR emission. Lines predicted are indicated.

proposed by Wills, Netzer, and Wills (1985). The lowest sixteen levels of the first four terms are also included. Figure 15 shows the atom and some of the lines predicted. The lines predicted by this model atom have been checked against the vastly larger and more complex FeII atom Katya Verner is now incorporating into the code, and the two agree very well.

8.15.2. The FeIV model atom

FeIV is treated as a twelve-level atom, with energies from Sugar and Corliss (1985), transition probabilities from Garstang (1958), and collision strengths from Berrington and Pelan (1996). Figure 16 shows the model atoms with the lines predicted by the code indicated.

8.15.3. Fe Ka emission

The intensity of the Fe K α line is predicted including both recombination and fluorescence. Figure 17 shows the fluorescence yield and K α energy. The line predictions are separated into "cold" iron (i.e., iron with M-shell electrons present) and "hot" iron (those

Figure 16 The twelve level atom used to compute FelV emission. Lines predicted are indicated.

ionization states producing lines with energies greater than ~6.4 keV). This includes the recombination and collisional contribution. The "TOTL" $K\alpha$ is the sum of the two.

Figure 17 The fluorescence yield and energy of the emitted Fe $K\alpha$ photon are shown as a function of ionization stage. feka

8.16. Heavy Element Opacities

Figure 18 shows a calculation of the opacity of a solar gas with very low ionization.

8.17. Overall Reliability

Table 24 Ionization Balance Reliability

	Ionization Zaranto Itonabine										
	1 H	2 He	3 Li	4 Be	5 B	6 C	7 N	8 O	9 F	10 Ne	
1	Α	А	А			Α	А	Α			
2		Α	Α	Α		Α	Α	Α		Α	
3			Α	Α	Α	Α	Α	Α		Α	
4				Α	Α	Α	Α	Α		Α	
5					Α	Α	Α	Α		Α	
6						Α	Α	Α		Α	
7							Α	Α	Α	Α	
8								Α	Α	Α	
9									Α	Α	
10										Α	

Figure 18 The opacity of a neutral gas with solar abundances is shown as a function of energy. The curve is scaled to allow direct comparison with conventional calculations of opacity at X-Ray energies (i.e., Morrison and McGammon 1983). hevopc

Ionization Balance Reliability Continued

	11 11-	10.14-		11.6				10.4	10 K	20.0-
	11 Na	12 Mg	13 AI	14 Si	15 P	16 S	17 CI	18 Ar	19 K	20 Ca
1	Α	Α	Α							
2		Α	Α							
3			Α							
4				Α						
5					Α					
6						Α				
7							Α			
8								Α		
9	Α								Α	
10	Α	Α								Α
11	Α	Α	Α							
12		Α	Α	Α						
13			Α	Α	Α					
14				Α	Α	Α				
15					Α	Α	Α			
16						Α	Α	Α		
17							Α	Α	Α	
18								Α	Α	Α
19									Α	Α
20										A

			Io	nizatior	n Balanc	e Reliab	ility Co	ntinued		
	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn
1										
2										
3										
4 5										
6										
7										
8										
9										
10										
11	Α									
12 13		Α	А							
14			А	Α						
15				/ (Α					
16						Α				
17							Α			
18								Α		
19	A								Α	
20 21	A	A A	٨							Α
22	А	A	A A	Α						
23		^	A	A	А					
24			• •	A	A	Α				
25					Α	Α	Α			
26						Α	Α	Α		
27							Α	A	A	
28								Α	A	A
29 30									А	A A
30										Α

It is difficult to estimate the overall uncertainty present in an ionization balance calculation. The current photoionization cross section data are based on accurate experiments or the Opacity Project (Verner et al. 1996). These should be accurate to roughly 10% except near resonances. Although resonances are included in the Opacity Project data, the positions of these resonances are uncertain by more than their width because the OP was not intended as a structure calculation. Recombination coefficients including low temperature dielectronic recombination have yet to be computed for the majority of the stages of ionization of the elements now in Cloudy, but recombination from parent ions with closed shells is not affected, and good rates exist (Verner and Ferland 1996).

It is possible to make a subjective estimate of the uncertainty in the calculation of the ionization balance for nebular temperatures. Table 24 lists the elements now included in the calculations and gives this estimate of the uncertainty. For recombination from a closed shell autoionization resonances do not occur near threshold, recombination is primarily radiative, and the calculations should be virtually exact. Dielectronic recombination rates are also known for those species treated by Nussbaumer and Storey. These are given a quality weighting of A.

These uncertainties refer to the ionization balance of an optically thin cell of gas at nebular temperatures. The intensities of emission lines will be less uncertain than this for two reasons. First, the thermostat effect of any collisionally excited line prevents its intensity from changing by much. Second is the fact that the integrated

column density in an ion is affected as much by (fairly exact) quantities such as the ionization structure of H or He, as by the atomic data of a particular ion. At coronal temperatures the Burgess mechanism dominates, and the situation should be somewhat better.

8.18. The Bi-Diagonal Matrix

The ionization-recombination balance equations are written as a series of *n* equations coupling adjacent levels of ionization, i.e.,

$$n_z \Gamma_z^{eff} = n_{z+1} \sum n_x a_{z+1}$$
 (254)

where the effective photoionization rate Γ includes all ionization processes (photoionization of valence and inner shells, collisional ionization, charge transfer ionization, etc) and is modified to include the Auger effect. The total recombination rate coefficient $\sum n_x \mathbf{a}_{z+1}$ includes all recombination processes (dielectronic, radiative, 3-body, charge transfer). In much of the following this total recombination rate coefficient will be written simply as $\mathbf{n}_{\mathrm{e}}\alpha_{\mathrm{e}}$, with the implicit understanding that all recombination processes are actually included.

The vector **destroy(nelem, ion)** contains total destruction rates. **create(nelem, ion)** is the total creation rates. The resulting ionization balance is solved in routine **BiDiag**.

9. THERMAL EQUILIBRIUM

9.1. Overview

This section describes the system of equations setting the local thermal balance of a cloud. The electron temperature is the only thermodynamic temperature used to characterize the system. The electron velocity distribution is predominantly Maxwellian (Bohm and Aller 1947) although a trace constituent of non-thermal electrons may contribute under some circumstances. The electron temperature is defined by the balance between heating and cooling.

Heating or cooling can be defined relative to either the ground state or continuum, and this difference has caused some confusion in the literature. CLOUDY defines heating and cooling relative to the continuum, as in Osterbrock (1989). Note that, in this scheme of bookkeeping, photoionization contributes an amount of heat given by $h(v-v_0)$, where hv_0 is the ionization potential of the atom or ion, and emission of a recombination line *does not* constitute a cooling process. Heating and cooling rates are computed in cgs units (ergs, not Rydbergs) throughout CLOUDY.

9.2. Thermal Stability

The criterion for thermal stability used by CLOUDY is that the net cooling (i.e., cooling minus heating) has a positive temperature derivative (Field 1965). This can be expressed as

$$\frac{d(\Lambda - G)}{dT} > 0 \quad . \tag{255}$$

The code will print a "u" next to the temperature in the zone results, and make a comment in the end, if possibly thermally unstable solutions were found. The criterion used by the code is that the derivative *at constant density* (isochoric) be positive. The more traditional criterion is that the derivative *at constant pressure* (isobaric) be positive (Field 1965).

The fact that the code identifies a region as possibly thermally unstable does not necessarily show that it is. The derivatives used in equation 255 are those found during the search for the thermal solution. As such, they are evaluated out of equilibrium, as part of the temperature solver. Their primary purpose was not to perform this thermal stability analysis. A section of Part III of this document goes into more detail about the stability check performed by the code, and how to do a better one.

9.3. Compton Energy Exchange

There are two parts to the Compton energy exchange problem. First, photons scatter off an electron at an angle θ , causing a change of photon energy due to Compton recoil given by

$$\frac{\Delta \mathbf{e}_{-}}{\mathbf{e}_{o}} = \left[1 - \frac{1}{1 + \left(\mathbf{e}_{o} / m_{e} c^{2}\right)\left(1 - \cos \mathbf{q}\right)}\right]$$
 (256)

For isotropic scattering the median scattering angle corresponds to $\cos \theta = 0.5$. Scattering by thermal electrons crates a shift with a distribution centered at

$$\frac{\Delta \mathbf{e}_{-}}{\mathbf{e}_{o}} = \frac{4kT}{m_{e}c^{2}} \tag{257}$$

and a standard deviation given by

$$\frac{\mathbf{s}}{\mathbf{e}_o} = \sqrt{\frac{2kT}{m_e c^2}} \tag{258}$$

(see, e.g., Zycki et al. 1994).

The net volume heating rate (erg s^{-1} cm⁻³) due to Compton energy exchange is given by

$$G_{Comp} - \Lambda_{Comp} = \frac{4\mathbf{p} \, n_e}{m_e c^2} \left\{ \int \mathbf{s}_h J_n h \mathbf{n} [1 + \mathbf{h}_n] \, d\mathbf{n} - 4kT \int \mathbf{s}_c J_n \, d\mathbf{n} \right\}$$
(259)

(see, for instance, Levich and Sunyaev 1970; and Krolik, McKee, and Tarter 1981). The two terms in braces are the heating and cooling terms respectively, while the factor in brackets in the first term accounts for heating due to both spontaneous and stimulated Compton scattering. Induced Compton heating is important when η_{ν} is large at frequencies where $h\nu \geq kT$. In fact it is, at most, a few percent effect in most circumstances.

The terms σ_h and σ_c appearing in equation 259 are the effective energy exchange (scattering) cross section for energy exchange, and differ from the Thomson cross section for energies $h\nu \sim m_e c^2$, where the Klein-Nishina cross section must be used. The numerical fits to Winslow's (1975) results, as used by Krolik, McKee, and Tarter (1981) and kindly provided by Dr. C.B. Tarter, were used. Defining

$$\boldsymbol{a} = \left\{ 1 + \boldsymbol{n}_{Ryd} \left(1.1792 \times 10^{-4} + 7.084 \times 10^{-10} \boldsymbol{n}_{Ryd} \right) \right\}^{-1}$$
 (260)

and

$$\boldsymbol{b} = \left\{ 1 - \boldsymbol{a} \boldsymbol{n}_{Ryd} \left(1.1792 \times 10^{-4} + 2 \times 7.084 \times 10^{-10} \boldsymbol{n}_{Ryd} \right) / 4 \right\} , \qquad (261)$$

where v_{Ryd} is the photon frequency in Rydbergs, the Compton energy-exchange rate coefficients are then $\sigma_h = \sigma_T \, \alpha$ and $\sigma_c = \sigma_T \alpha \, \beta$. Tests show that these are in excellent (much better than 1%) agreement with Guilbert's (1986) calculations for hv < 10 MeV, the energies where Guilbert's calculations are valid.

The total Compton heating-cooling rates are evaluated zone by zone in routine **highen**. The coefficients for the heating and cooling terms, i.e., α and the product $\alpha\beta$, are calculated in subroutine **SetPoint** at the beginning of the calculation and stored in the vectors $\textbf{\textit{csigh}}(v)$ and $\textbf{\textit{csigc}}(v)$. The heating is determined by summing over the continuum:

$$G_{Comp} = \frac{n_e}{mc^2} \mathbf{s}_T \left(h \mathbf{n}_{Ryd} \right)^2 \sum \mathbf{a}_i \mathbf{j}_i \mathbf{n}_i^2 (1 + \mathbf{h}_i)$$
 (262)

Figure 19 Thermal equilibrium in the Compton Limit. Calculations are for blackbody continua of various temperatures, given as T_{color} along the x-axis. The energy density temperature T_u is set equal to T_{color} . The density is adjusted to maintain ionization parameters $U \sim 10^{10}$, so that the thermal equilibrium equations are dominated by the Compton exchange problem. The deviation of the computed equilibrium temperature T_e from the asymptotic Compton temperature T_{color} is shown. Compton

where φ_i is the photon flux, stored in the vector variable **flux**, η_i is the photon occupation number, σ_T is the Thomson cross section, and v_i is the photon energy in Rydbergs, stored in the vector variable **anu**. The heating and cooling rates are stored as the variables **cmheat** and **cmcool**.

Tests in which Compton energy exchange was the dominant physical process affecting the temperature were made, and the results are shown in Figure 19. A series of models in which the gas was irradiated by black body continua in strict thermodynamic equilibrium (i.e., $T_u = T_{color}$) and various hydrogen densities, was computed. Over the temperature range 3 K \leq $T_{color} \leq$ 10¹⁰ K the computed equilibrium electron temperature equaled the color temperature within much better than 1% ($\langle T_e - T_{color} \rangle / T_{color} = -0.00073 \pm 0.0019$).

The input streams for the two limiting cases (for temperatures of $10^{9.5}$ K and 3 K respectively) follow²;

```
title Compton limit; high temperature limit
blackbody 9.5 lte % lte sets blackbody in strict T.E.
hden 10
                  % low enough for Compton to dominate
stop zone 1
print short
tolerance 0.0001 % set fine tolerance to check temp exactly
title Compton limit; low temperature limit
black linear 3 lte
                             % set to 3K
lowest temperature linear 2K % allow equil temp below 10K
brems 5
                             % must have ionizing radiation
ionization parameter -5
                             % but not too much
hden -10
                             % set HDEN but does not matter
eden -2
                             % add some free electrons
stop zone 1
print short
tolerance 0.0001
```

The intended temperature range of validity for CLOUDY is $2.8 \text{ K} - 10^{10} \text{ K}$. Over the more limited range 10 K -10^9 K the computed Compton temperature. for conditions in which strict TE is expected, is generally equal to the color temperature within three significant figures (see Figure 19). At temperatures much greater than 109 K the electrons become relativistic; CLOUDY is not intended for these conditions. For temperatures much less than 10 K the computed temperature fails high because the energy bandwidth of the continuum array does not extend below 1.001×

Figure 20 Calculations are for 10^5 K blackbodies and various values of the energy density temperature $T_{\rm u}$, indicated along the x-axis. The ratio of the computed equilibrium temperature $T_{\rm e}$ to the color temperature $T_{\rm color}$ is shown. The two are equal when the energy density and color temperatures are equal. cmpnIte

²The high temperature example will not run on an IEEE 32-bit machine. The continuum overflows because of its extreme energy density. The high temperature tests must be computed on a machine with a longer word, such as a Cray.

10⁻⁵ Ryd. As a further test, the models presented by Krolik, McKee, and Tarter (1981) were recomputed with excellent agreement (typically within 3%) with their computed Compton temperatures.

For a blackbody radiation field with $T_u \neq T_{color}$ the Compton temperature will not be equal to T_{color} because induced scattering will not contribute the required amount of heating-cooling. This case is shown in Figure 20, the results of a series of calculations in which the energy density temperature was varied (this is shown as the x-axis), but the color temperature held fixed at 10^5 K.

Note also that when $T_u > T_{color}$ induced Compton heating drives T_e above T_{color} . Only when the color and energy density temperatures are equal do the equilibrium and color temperatures match.

9.4. Bound Compton Ionization, Heating

Compton scattering can ionize atoms for photons of sufficiently high energy (\approx 2.3 keV for hydrogen). Rates for bound Compton scattering are computed in routine **highen**.

9.5. Expansion Cooling

Adiabatic cooling (erg cm⁻³ s⁻¹) due to the hydrodynamic expansion of the gas is given by

$$\Lambda_{\text{exp}} = -\frac{DU}{Dt} = -\frac{p}{\mathbf{r}} \frac{D\mathbf{r}}{Dt} - U\nabla \cdot \mathbf{v} \approx kT \frac{dn}{dt} = nkT \left[\frac{a}{v} + \frac{2v}{r} \right] \quad \text{erg s}^{-1} \text{ cm}^{-3}$$
 (263)

where n, a, v, and r are the total particle density, acceleration, wind velocity, and radius respectively. This cooling term is only included when a wind geometry is computed.

9.6. Free-free Heating-Cooling

The volume free-free heating rate is given by

$$G_{ff} = 4\mathbf{p} \int_{\mathbf{n}_{e}}^{\infty} n_{e} \, \mathbf{a}_{n}(ff) \, J_{n} \, d\mathbf{n}$$
 (264)

where the free-free cross section is denoted by $\alpha_{\nu}(ff)$ and ν_{l} is the low energy limit of the code (1.001×10⁻⁵ Ryd). The continuum J_{ν} is the sum of the attenuated incident radiation field and the OTS line fields. Diffuse reemission, mainly free-free emission, *is not* included in this integral, as discussed below. The heating rate is called *ffheat*, and is evaluated in routine *freeht*.

The cooling by free-free emission, and the subsequent absorption of this radiation, must also be treated. The rate is evaluated in routine *coolr* and is stored as the variable *hbrems*.

The code works with the difference between cooling and heating, since this is numerically more stable than considering each term as an independent heat source or coolant. The net heating or cooling is calculated in routine *HydroCool*, and is stored directly in the heating array there.

Cooling due to diffuse continua are treated by defining a critical frequency v_c as follows. Gas at a depth r into the cloud is transparent to photons with energies above a critical frequency v_c such that

$$\boldsymbol{t}_{c} = \int_{0}^{r} \boldsymbol{k}(\boldsymbol{n}_{c}) f(r) dr = \int_{0}^{r} \boldsymbol{a}_{n}(ff, \boldsymbol{n}_{c}) n_{e} f(r) dr = 1$$
(265)

and optically thick at lower frequencies. The critical frequency v_c is evaluated in routine *tauff*. The energy in Rydbergs is stored as *tff*, while the variable *ntff* points to the cell in the continuum array.

The free-free cooling rate is then given by

$$\Lambda_{ff}(\mathbf{t}) = \int_{\mathbf{n}_{e}}^{\infty} n_{e} \mathbf{a}_{n}(ff) 4\mathbf{p} B_{n}(T_{e}) d\mathbf{n} = \Lambda_{ff}(0) \times \exp(-h\mathbf{n}_{e}/kT)$$
(266)

where $\Lambda_{ff}(0)$ is the optically thin cooling rate and B_{ν} (T_e) is Planck's function. This is equivalent to assuming that, for $\nu < \nu_c$, where the cloud is optically thick, free-free heating and cooling exactly balance, as suggested by Kirchhoff's law and detailed balance considerations. Energies below ν_c are not included in free-free heating. This critical frequency is not allowed to be less than the plasma frequency for the current conditions.

9.7. Photoelectric Heating, Recombination Cooling

The net heating rate due to photoelectric heating less spontaneous and induced recombination cooling of level *n* is given by

$$G = G_{n,k} - \Lambda_{ind,n} - \Lambda_{spon,n} \tag{267}$$

where the volume heating rate due to photoionization is

$$G_{n,k} = n_n \int_{\mathbf{n}_o}^{\infty} \frac{4\mathbf{p} J_n}{h\mathbf{n}} \, \mathbf{a}_n \, h(\mathbf{n} - \mathbf{n}_o) \, d\mathbf{n} \quad , \tag{268}$$

the volume cooling rate due to induced recombination is

$$\Lambda_{ind,n} = n_e n_p \, 4\mathbf{p} \, P_n^* \int_{\mathbf{n}_o}^{\infty} \frac{J_n}{h \, \mathbf{n}} \, \mathbf{a}_n \exp(-h \, \mathbf{n} / kT) \, h(\mathbf{n} - \mathbf{n}_o) \, d\mathbf{n} \quad , \tag{269}$$

and the cooling rate due to spontaneous radiative recombination is

$$\Lambda_{spon,n} = n_e n_p k T \mathbf{b}(T,n) \quad . \tag{270}$$

The cooling rate coefficient $\beta(T,n)$ is evaluated as described on page 233.

9.8. Collisional Ionization - Three-Body Recombination

The net volume heating rate due to collisional ionization less three-body recombination is given by

$$G_{n,k} - \Lambda_{n,k} = \sum_{n} P_n^* n_e n_p C_{n,k} h \mathbf{n}_o (1 - b_n)$$
(271)

where $C_{n,\kappa}$ is the collisional ionization rate. The term (1 - b_n) is only large and positive for very low levels, in which $I_n > kT$. Far from thermodynamic equilibrium

this is usually a net cooling process only for the ground term. This is because departure coefficients for excited states are nearly unity while the ground level usually has b_n » 1.

9.9. H⁻ Heating and Cooling

9.9.1. H⁻ bound-free

The volume heating rate due to spontaneous absorption (photodissociation) is

$$G_{H^{-}} = n(H^{-}) \int_{\mathbf{n}_{o}}^{\infty} \frac{4\mathbf{p} J_{n}}{h \mathbf{n}} \mathbf{a}_{n} h(\mathbf{n} - \mathbf{n}_{o}) d\mathbf{n} \quad (\text{erg s}^{-1} \text{ cm}^{-3})$$
 (272)

where symbols have their usual meaning. The volume cooling rate due to induced radiative attachment is

$$\Lambda_{ind, H^{-}} = n_{e} n_{H^{o}} P^{*}(H^{-}) \int_{\mathbf{n}_{o}}^{\infty} \mathbf{a}_{n} \frac{4\mathbf{p} J_{n}}{h \mathbf{n}} \exp(-h \mathbf{n} / kT) h(\mathbf{n} - \mathbf{n}_{o}) d\mathbf{n} \quad (\text{erg s}^{-1} \text{ cm}^{-3})$$
 (273)

while the volume cooling rate for spontaneous radiative attachment is

$$\Lambda_{spon, H^{-}} = n_{e} n_{H^{o}} 8 \boldsymbol{p} P^{*}(H^{-}) \int_{\boldsymbol{n}_{o}}^{\infty} \boldsymbol{a}_{n} \frac{\boldsymbol{n}^{2}}{c^{2}} \exp(-h\boldsymbol{n}/kT) h(\boldsymbol{n} - \boldsymbol{n}_{o}) d\boldsymbol{n} .$$
 (274)

9.9.2. H⁻ free-free

Free-free heating and cooling by H⁻ is also significant, although less so than bound-free heating. This is included, making the appropriate correction for stimulated emission, using the cross sections given by Vernazza et al. (1981; see also Bates et al. 1975).

Under most circumstances H⁻ bound-free heating and cooling are much more important than H⁻ free-free processes. This is surprising at first sight, since standard opacity curves comparing bound-free and free-free opacities (Bates et al. 1975; Mihalas 1978) show that the two are comparable. These curves are for strict thermodynamic equilibrium, with H⁻ departure coefficients of unity. Like the ground state of hydrogen, the departure coefficient for H⁻ is often many orders of magnitude larger than unity, so that the H⁻ bound-free opacity and the resulting heating greatly exceed the H⁻ free-free opacity.

9.10. Line Cooling, Hydrogen and Helium

The net heating due to line collisional deexcitation less excitation is given by

$$G_{line} - \Lambda_{line} = \sum_{n=1}^{N-1} \sum_{u=n+1}^{N} P_n^* n_e n_p C_{u,n} h \mathbf{n}_{u,n} \left(b_u - b_n \right)$$
 (275)

where C_{un} is the downward collision rate. Far from thermodynamic equilibrium collisions involving the ground state tend to cool the gas (since $b_1 > 1$) and those between levels with $n \ge 3$ tend to heat the gas (since b_n tends to increase with n).

9.11. Heavy Element Line Heating and Cooling

9.11.1. Overview

All lines of the heavy elements that are transferred are treated in a common vector format. The following sections describe that vector format and the major routines for computing heating and cooling for *n*-level atoms of the heavy elements. Emission lines are often optically thick. All lines are transferred using escape probabilities, by determining level populations including both collisional and radiative processes (see, for example, Elitzur 1991). Line masing can sometimes occur, and again is treated using escape probabilities.

In all cases the net cooling due to a transition is given as

$$\Lambda_{line} = h \mathbf{n}_{u,l} \left(n_l C_{l,u} - n_u C_{u,l} \right) \tag{276}$$

where the populations of levels are given by n_i and C_{ij} is the collision rate. This cooling is evaluated in routines *level2*, *level3*, *levelN*, and *beseq*. Each routine is responsible for evaluating the line intensity, cooling, and destruction rate, and entering these into the appropriate stacks. Each routine sets the following attributes.

Lines can act to **heat** rather than cool the gas if an intense continuum is present. This is an important gas heating mechanism for PDRs, for instance (Tielens and Hollenbach 1985). If η is the photon occupation number of the attenuated incident continuum, then the rate atoms are excited from the ground level is given by $\eta\epsilon A_{ul}$ where ϵ is the line escape probability. A fraction $C_{ul}/(|C_{ul}+\epsilon|A_{ul})$ of these radiative excitations is converted into heat by collisional de-excitation. The net heating due to this process is then

$$G_{FIR} = n_l \, \boldsymbol{h_n} \, \boldsymbol{e}_{lu} \, A_{ul} \left(\frac{C_{ul}}{C_{ul} + \boldsymbol{e}_{lu} \, A_{ul}} \right) h \boldsymbol{n} \quad \text{erg cm}^{-3} \, \text{s}^{-1}$$
(277)

where n_l is the density of the ground level. This process is included for all transferred lines.

9.11.2. Array pointers

The elements of the line formation array, and what must be placed there by the cooling routine, are the following:

ipLnPopl The population of lower level.

ipLnPopu The population of upper level.

ipLnPopOpc The population of lower level with correction for stimulated emission.

ipLnInten The line intensity, ergs/s/cm³.

ipLnNPhots The number of photons emitted in the line.

ipLnOTS The part of line destroyed by background opacity.

ipLnAovTOT The ratio $A_{ul}/(A_{ul}+C_{ul})$.

ipLnCool The upward collisional cooling.

ipLnHeat, downward collisional heating.

PopLevIs(1-n) The level populations.

ipLnCool This is added to the cooling stack by calling *coladd*.

Finally, the routine must evaluate the cooling derivative and add destroyed part of line to local OTS field.

9.11.3. Two level atoms

Cooling due to collisional excitation of two level atoms of the heavy elements is evaluated in routine *level2*. This routine does the following: a) finds the abundance of the two levels by balancing collisional and radiative processes, subject to the sum $n_l + n_u =$ abundance. b) adds the line cooling (or heating) to the total cooling, c) adds the line derivative to dC/dT, d) evaluates the fraction of the escaping line destroyed by background opacity, e) adds this to the local OTS radiation field, f) records the line opacity population $n_l - n_u$ g_l/g_u . The populations of the atom are saved in the vector *PopLevIs* contained in the common block of the same name. The lowest level is *PopLevIs(0)*.

9.11.4. Three level atoms

The level populations, cooling, and line destruction by background opacity sources are computed for three level atoms in routine *level3*.

Routine *level3* is called with three arguments, the three line arrays. Level populations corrected for stimulated emission are returned in the individual line arrays. The true level populations, with no correction for stimulated emission, are returned in the array *PopLevls*, contained in the common block of the same name. The lowest level is *PopLevls*(0).

Levels are designated by the indices 0, 1, and 2, with 0 the lowest level. The routine is called with three line arrays, indicated by t10, t21, and t20, each representing the downward radiative transition between the indicated levels. Any one of these transitions may be a dummy transition, (using the dummy line TauDmmy). The total rates between any two levels $i\Rightarrow j$ is indicated by R_{ij} . This includes collisions, radiative decays (both photon escape and destruction by background opacity), and induced transitions. If the total abundance of the parent ion is A, the three balance equations are

$$n_0 + n_1 + n_2 = A (278)$$

$$n_0(R_{01} + R_{02}) = n_1 R_{10} + n_2 R_{20} (279)$$

$$n_1(R_{10} + R_{12}) = n_2 R_{21} + n_0 R_{01} . {(280)}$$

Setting n₀ to A-n₁-n₂ equation 279 becomes

$$(R_{01} + R_{02})(A - n_1 - n_2) = n_1 R_{10} + n_2 R_{20}. (281)$$

After gathering terms this equation becomes

$$A(R_{01} + R_{02}) = n_1(R_{10} + R_{01} + R_{02}) + n_2(R_{20} + R_{01} + R_{02}).$$
(282)

Substituting for n₀, equation 280 becomes

$$n_1(R_{10} + R_{12}) = n_2 R_{21} + R_{01}(A - n_1 - n_2). (283)$$

Gathering terms this equation becomes

$$n_1(R_{10} + R_{12} + R_{01}) = AR_{01} + n_2(R_{21} - R_{01}) . (284)$$

Solving 282 for n₁ we obtain

$$n_{1} = \frac{A(R_{01} + R_{02})}{R_{10} + R_{01} + R_{02}} - \frac{n_{2}(R_{20} + R_{01} + R_{02})}{R_{10} + R_{01} + R_{02}}$$
(285)

and solving 284 we find

$$n_1 = \frac{AR_{01}}{R_{10} + R_{12} + R_{01}} + \frac{n_2(R_{21} - R_{01})}{R_{10} + R_{12} + R_{01}}$$
(286)

Equating the two and gathering terms we obtain

$$n_2 \left(\frac{R_{21} - R_{01}}{R_{10} + R_{12} + R_{01}} + \frac{R_{20} + R_{01} + R_{02}}{R_{10} + R_{01} + R_{02}} \right) = \frac{A(R_{01} + R_{02})}{R_{10} + R_{01} + R_{02}} - \frac{AR_{01}}{R_{10} + R_{12} + R_{01}}$$
(287)

with the solution

$$n_{2} = A \left(\frac{\left(R_{01} + R_{02} \right)}{R_{10} + R_{01} + R_{02}} - \frac{R_{01}}{R_{10} + R_{12} + R_{01}} \right) \left(\frac{R_{21} - R_{01}}{R_{10} + R_{12} + R_{01}} + \frac{R_{20} + R_{01} + R_{02}}{R_{10} + R_{01} + R_{02}} \right).$$
 (288)

In the code the term in the numerator in the previous equation is called **alpha**, and the denominator **beta**. Replacing n_2 in equation 285 we obtain

$$n_{1} = \left[A \left(R_{01} + R_{02} \right) - n_{2} \left(R_{20} + R_{01} + R_{02} \right) \right] / \left(R_{10} + R_{01} + R_{02} \right) . \tag{289}$$

Again the two terms are called **alpha** and **beta**.

9.11.5. N level atoms

The level populations, cooling, and line destruction by background opacity sources are computed for n level atoms in routine *LevelN*. The number of levels *n* can be as large as the value of *limLevelN* (currently 10) which appears in a parameter statement within the routine.

Routine **LevelN** is called with 12 arguments. These are:

nlev This is the number of levels for the model atom. It is an integer and can be as large as the value of **limLevelN**, currently 20.

abund This is the total abundance of the ion. The total population of the **nlev** levels will add up to this quantity, which is a real variable.

 ${\it g}$ This is a real vector of dimension ${\it nlev}$. It contains the statistical weights of the levels.

ex This is a real vector of dimension **nlev**. It contains the excitation temperature (K) of the **nlev** levels *relative to ground*. The excitation temperature of the lowest level should be zero.

p This is a real vector of dimension nlev and is the computed population of the nlev atom. It will contain all zeros if abund is zero, and p(1) will equal abund if the temperature is so low that the Boltzmann factors are zero for the current cpu.

data This two dimensional real vector is **data(nlev, nlev)**. **data(u,l)** is the effective transition probability (the product of the Einstein A and the escape probability) for the transition. **data(l,u)** is the collision strength for the transition.

dest This two dimensional real vector is **dest(nlev, nlev)**. **dest(u,l)** is the destruction rate (the product of the Einstein A and the destruction probability) for the transition. **dest(l,u)** is not used.

pump This two dimensional real vector is **pump(nlev, nlev)**. **pump(u,l)** is the upward pumping rate (the Einstein B_{lu}) for the transition.

ipdest This two dimensional integer vector is *ipdest(nlev, nlev)*. *ipdest(u,l)* is the pointer to the line in the continuum array. *LevelN* computes the local line destruction rate and includes this in the OTS field if the pointers are non-zero. If this vector contains zeros then no flux is added to the OTS field.

coolt! This real variable is the total cooling in ergs/s produced by the model atom.

chLabel This is a 4 character variable, and is a label for the ion.

negpop This logical variable is true if any of the level populations were negative.

9.11.6. Li Sequence

Table 25 gives the stronger lines of Li-sequence ions. *Level3* is used for this sequence.

Table 25 Lithium Sequence Lines

Ν	Ion	j=3/2-1/2	j=1/2-1/2	j=3/2-1/2	j=1/2-1/2	
6	CIV	1548.195	1550.770	312.422	312.453	
7	ΝV	1238.821	1242.804	209.270	209.303	
8	O VI	1031.9261	1037.6167	150.088	150.124	
10	Ne VIII	770.409	780.324	88.134		
12	Mg X	609.79	624.95	57.88	57.92	
13	ALXI	550.03	568.15	48.30	48.34	
14	Si XII	499.40	520.67	40.92		
16	S XIV	417.61	445.77	30.43		
18	Ar XVI	353.92	389.14	25.53		
20	Ca XVIII	302.215	344.772	18.69	18.73	
26	Fe XXIV	192.017	255.090	10.62	10.66	
	·	·	·	·	·	

9.11.7. Boron Sequence

Figure **22** shows levels within the lowest three configurations of the Boron sequence.

9.11.8. Beryllium sequence atoms

The level populations, cooling, and line destruction by background opacity sources are computed for a specialized four level atom in routine **beseq**.

Routine **beseq** is called with five arguments, the collision strengths between the excited triplet levels, the line optical depth array for the fast (j=1 to j=0) transition, and the transition probability for the slow (j=2 to j=0) transition. Induced processes are only included for the fast transition. The collision strength stored in the line array is the collision strength for the entire multiplet. Rates to levels within the term are assumed to scale as the ratio of level statistical weight to term statistical weight. The level populations for the ground and excited states, with no correction for stimulated emission, are returned in the array **PopLevIs**, contained in the common block of the same name. The lowest level is **PopLevIs**(0).

The total rates between any two levels $i \Rightarrow j$ is indicated by R_{ij} . This includes collisions, radiative decays (for the fast transition, both photon escape and destruction by background opacity, and induced transitions). If the total abundance of the parent ion is A, the three balance equations are

$$n_0 + n_1 + n_2 + n_3 = A (290)$$

$$n_0(R_{01} + R_{02} + R_{03}) = n_1 R_{10} + n_2 R_{20} + n_3 R_{30}$$
(291)

$$n_1(R_{10} + R_{12} + R_{13}) = n_3 R_{31} + n_2 R_{21} + n_0 R_{01} . {292}$$

Figure 21 The four levels included in routine beseq. beseq1

Figure 22 Energy Level Diagram for Boron Sequence. Boron

$$n_2(R_{20} + R_{21} + R_{23}) = n_3 R_{32} + n_1 R_{12} + n_0 R_{02} . (293)$$

Collisions are included in all these terms. R_{32} includes the slow downward line escape, while R_{02} and R_{20} includes escape, destruction by background opacity, and fluorescent excitation - deexcitation. In the code the terms on the LHS of equations 292, 293, and 291 are called α , β , and γ .

9.12. Evaluation of the Cooling Function

9.12.1. Total cooling

The cooling function is evaluated in routine *coolr*. This in turn calls other routines which compute cooling for individual elements. Each individual coolant is entered as a separate quantity in the array *cooling*. Under some extreme circumstances agents which are normally coolants can actually heat the gas. Negative coolants are stored in a parallel array, *heatnt*. Both *cooling* and *heatnt* are part of common block *coolnt*.

The total cooling is the sum of this array, referred to as the variable *ctot*, and evaluated in routine *SumCool*.

9.12.2. The cooling derivative

As the cooling is evaluated, its approximate temperature derivative is computed by making analytic expansions of the cooling for individual agents. For instance, collisionally excited lines of positive ions have collisional excitation rates which depend on the product

$$\Lambda_{line} \approx n_e n_{ion} t^{-1/2} \exp(-T_{exc} / T_e)$$
(294)

where T_{ex} is the excitation temperature of the line. In this case the derivative of the cooling function can be expressed as

$$\frac{d\Lambda_{line}}{dT} \approx n_e n_{ion} \frac{d}{dT} T^{-1/2} \exp(-T_{exc} / T) = \Lambda_{line} \left[\frac{T_{exc}}{T^2} - \frac{1}{2T} \right]$$
 (295)

This derivative is used by the thermal predictor-corrector routine to make the initial guess at a new temperature. This is approximate since both electron and ionic densities also depend on the temperature.

The variable **tsq1** contains the value $1/T^2$, while **halfte** is 1/2T. Both are part of common block **dcool**.

9.13. Evaluation of the Heating Function

Various contributions to the heating function are evaluated throughout the code. Each heating agent stores its contribution to the total heating within a cell of the two dimensional array *heating*. The total heating is always the sum of the total contents of the *heating* array.

Heating due to photoionization of all stages of ionization of the 30 elements now included in the code are stored as *heating*(*nelem, ion*). Heating due to photoionization of ionization stage i (i=1 for the atom) of element with atomic

number **nelem** is stored as **heating(nelem,i)**. Other agents are stored in unused portions of this array. The total heating and its temperature derivative are deduced from this array in routine **SumHeat**. The heating is stored as the variable **htot**.

Line heating is treated as a special case. The level population routines are supposed to sort lines into heating and cooling components, and put these into the line vector as *ipLnHeat* and *ipLnCool*. The entries stored as *ipLnHeat* are then added to the heating stack as *heating(1,23)* when the total line cooling is evaluated in routine *SumCool*. The entries stored as *ipLnCool* are added to the cooling stack here too. Normally this will catch all negative coolants early. Attempts to add negative cooling to the cooling stack are trapped and stored in the array *heatnt*. This is added to the total heating in routine *SumCool*.

9.14. Equilibrium Calculations

9.14.1. Hydrogen only

Figure 23 shows the results of a series of calculations in which the full set of statistical and thermal equilibrium equations are solved for thin cells of hydrogen gas with various densities.

The ionizing continuum is, in all cases, a black body with $T_{\rm color} = 5 \times 10^4$ K, and the energy density of the radiation field is varied, up to the thermodynamic equilibrium limit, $T_{\rm u} = T_{\rm color}$.

Although the gas temperature in the thermodynamic equilibrium limit does not depend on the gas density, the physical processes that drive the gas to this temperature do. Thermal equilibrium calculations were performed with three densities chosen to span a fairly wide range. For low densities $(n(H)=10^5~{\rm cm}^{-3})$ the gas remains highly ionized for all values of T_u shown and the temperature in thermodynamic equilibrium is set by the balance between Compton and inverse-Compton scattering. The intermediate density case $(n(H)=10^{10}~{\rm cm}^{-3})$ reaches thermodynamic equilibrium with $\sim\!\!3/4$ of the heating-cooling set by Compton scattering and the remainder due to free-free and free-bound processes. The high-density $(n(H)=10^{15}~{\rm cm}^{-3})$ case reaches its thermodynamic equilibrium temperature with a balance between free-free $(1/3~{\rm of}$ the total) and free-bound $(2/3~{\rm of}$ the total) processes. In all cases the level populations and electron temperature are within $\sim\!\!1\%$ of their expected thermodynamic equilibrium values when $T_u=T_{\rm color}$.

Figure 23 Thermal equilibrium calculations for an optically thin gas with 3 hydrogen densities are shown as a function of the radiation field energy density, parameterized as T_u . Ionization is by a 5×10^4 K black body. Various processes drive the gas to thermodynamic equilibrium when T_u reaches 5×10^4 K. hlte

9.14.2. Metal rich gas

Simulations of very metal rich gas is now a major emphasis of the code (Hamann and Ferland (1993; Ferland et al. 1996). In these cases the thermal and ionization balance is totally dominated by the heavy elements.

Figure 24 shows the results of a series of calculations in which gas with strongly enhanced abundances of the heavy elements is exposed to a series of black body radiation fields with different temperatures and energy densities. Ferland and Rees (1988) and Ferland and Persson (1989) gave analogous calculations for pure hydrogen clouds. The filled circle represents the cases where the energy densities of the radiation field are equal to the color temperature, and strict thermodynamic equilibrium is expected. This is indeed the case. The distribution of ionization for each color temperature is radically different, but the line interactions with this field bring the gas to the expected equilibrium temperature. This tests both the ionization and thermal balance in this extreme environment.

Figure 24 Equilibrium temperature of gas exposed to five black bodies with various energy density temperatures. The color temperatures of the blackbodies are 10,000K, 40,000K, 70,000K, 100,000K and 130,000K. The metallicity was 10 times solar (Hamann and Ferland 1993) so that heating cooling of thousands of heavy element emission lines dominates the thermal equilibrium. The simulation is of an optically thin cell of gas with density 10¹⁰ cm⁻³ (results do not depend on this density). The x-axis is the local energy density relative to the energy density in thermodynamic equilibrium at that temperature. The gas goes to thermodynamic equilibrium when the radiation field does (the color and energy density temperatures are equal). highzlte

10. GRAIN PHYSICS

10.1. Overview

The following discussion outlines some physical processes relating to grains, as incorporated in CLOUDY. It is adopted from Baldwin et al. (1991), and was written in close collaboration with P.G. Martin.

Several grain populations, types of graphite and "astronomical silicates", are available. Usually one of each type, for a total of two, is selected, although there is no limit to the number of grain populations. Optical properties like opacity of the species are based on a realistic power-law size distribution. Other properties (like potential and temperature) are computed for a mean grain size rather than calculated for each individual size.

10.2. Grain Opacity

Grains are not included in the calculation by default. When enabled with the grain command the default mixture has interstellar medium (ISM) properties. Grains more similar to those seen in Orion or planetary nebulae are also available.

10.2.1. ISM grains

The optical constants for the default (ISM) grain species are from the calculations of Martin and Rouleau (1990). These extend the work of Draine and Lee (1984) to ionizing energies where the grains are strongly absorbing. These opacity calculations were based on the Mathis, Rumpl, and Nordsieck (1977) power-law size distribution to simulate interstellar extinction in diffuse clouds.

10.2.2. Orion grains

Grains within the Orion Nebula have a relatively large ratio of total to selective extinction R and an exceptionally gray opacity in the ultraviolet. These are both indicative of a deficiency in small grains and a larger mean grain size. To account for this, a second set of opacity functions is included, the Orion group. For this the value of the smallest size (a) in the Mathis et al. (1977) size distribution was increased from $0.0025\mu m$ to $0.03\mu m$. While this simple adjustment of the size distribution is not entirely adequate for explaining the details of the visible and near ultraviolet Orion extinction curve (Mathis and Wallenhorst 1981), it should be an improvement for the ionizing ultraviolet portion, which is most important.

The Orion extinction curve is designed to simulate the large R grains observed in this HII region. Relative to ISM standard grains the total amount of grain material was preserved, so that α_{abs} in the infrared and in the EUV and X-Ray regions remains unchanged. The main differential effect is to lower the cross section through a broad peak at 1 Ryd.

10.2.3. PN grains

Infrared opacities for the silicate component are taken from unpublished work by K. Volk. Ultraviolet silicate cross sections, and the graphite constituent, are standard ISM.

10.2.4. Extinction

The ISM extinction properties, both effective scattering (subscript *scat*) and absorption (subscript *abs*), are shown in Figure 25.

The quantities plotted are cross sections (cm²) per H nucleon: $\sigma = \kappa/n(H)$, where κ (cm⁻¹) is the opacity due to grains and n(H) (cm⁻³) is the local density of H in any form. Rather than the total scattering cross section σ_s an effective scattering cross section $\sigma_{scat} = \sigma_s$ (1-g) is plotted. This discounts the radiation scattered near the forward direction. The asymmetry parameter g approaches unity at high and low energies, particularly for larger grains, so that σ_{scat} becomes much less than α_{abs} .

The optical depth τ is σ times the hydrogen column density (or κ integrated over the path). Absorption attenuates the incident radiation field as $\exp(-\tau_{abs})$. The effects of scattering are more difficult to model. In an open geometry, scattering attenuates approximately as $(1+0.5~\tau_{scat})^{-1}$. However, in a closed geometry, to within factors of order unity, the scattered light is not lost from the beam, and the scattering opacity can be ignored. In either case, effective grain scattering optical depth is generally fairly small through the ionized nebula at ionizing energies.

10.3. Photoelectric Emission

As discussed below, photoelectric emission from grains contributes directly to heating the gas and, through the grain potential U_g established, affects radiative and collisional heating of the grains and the grain drift velocity.

The photoionization rate of a grain, per unit projected area, is

$$\Gamma_{g} = \int_{\mathbf{n}_{o}}^{\infty} Q_{abs} \, \frac{4\mathbf{p}J}{h\mathbf{n}} \, \hat{Y} \, d\mathbf{n} \tag{296}$$

where \hat{Y} is the effective photoelectric yield per absorbed photon, Q_{abs} is the absorption efficiency factor, and 4 π J/hv symbolizes the photon flux of direct, diffuse, and OTS radiation fields. For the OTS line component, the integral is of course just a sum over the line photons that are sufficiently energetic. The threshold for photoemission, to be determined self-consistently, is given by hv₀ = max{ V_n + V_g, V_n }, where V_n is the photoelectric threshold for a neutral grain and V_g = eU_g.

 V_g will depend on grain size through Q_{abs} and \hat{Y} . In the present implementation, a typical V_g is defined for each species by using Q_{abs} averaged over the size distribution: $Q_{abs} = \alpha_{abs}/\Sigma = \kappa_{abs}/n(H) \Sigma$. The projected grain area per H, Σ , is similar for each species: 2.1×10^{-22} cm² for graphite and 2.4×10^{-22} cm² for silicates.

 \hat{Y} is constructed as follows. The basic laboratory data measure the yield (per absorbed photon) for a neutral surface, Y_n . For each incident photon energy hv, the photoelectrons emerging from the neutral surface have varying energies E, with a probability distribution $p_n(E)$. To account for electron escape from finite sized

Figure 25 The absorption and scattering cross sections (cm² per hydrogen nucleon) for the two ISM grain populations, graphite and silicate, are shown. The effective scattering cross section is the scattering cross section multiplied by 1-g, where g is the asymmetry parameter. grnopc

grains, yields measured for semi-infinite sheets in the laboratory have to be corrected by a factor f(E) (which introduces a size dependence). Such a correction would change the shape of the probability distribution as well as increase the integrated emission from a neutral surface (Draine 1978 gives an approximate expression for the overall increase). Then, formally

$$\hat{Y} = Y_n \int_{E_n}^{(h\mathbf{n} - V_n)} f \ p_n \ dE \tag{297}$$

where $E_0 = max\{0, V_g\}$ introduces the fact that the lowest energy photoelectrons do not escape from positively charged grains.

The form adopted is

$$Y_{n} = \min \left\{ Y_{o} (1 - V_{n} / h \mathbf{n}), Y_{1} \right\}$$
 (298)

for $h\nu \ge V_n$, and $V_n = 8$ eV and $Y_0 = 0.5$ is assumed for both grain populations; according to Draine (1978) this combination gives about the right amount of

photoelectric emission to heat neutral H I clouds in interstellar space (hv \leq 13.6 eV). For the higher energies a cap at Y₁ = 0.2 is introduced, which is suggested by experimental data. For p_n a simple form that is independent of *E* (Draine 1978) is adopted:

$$p_n = \left(h\mathbf{n} - V_n\right)^{-1} \quad . \tag{299}$$

While only approximate, this induces the physically correct response (decrease) in \hat{Y} (and the photoelectric heating) when the grain is positively charged. Because the form of f(E) is highly uncertain f=1 is assumed (this again avoids a size dependency). Extension of the flat cap in Y_n to high energies also addresses this issue to some degree. With these assumptions, \hat{Y} is known in analytic form:

$$\hat{Y} = Y_n \min \left\{ 1, 1 - V_g / (h \mathbf{n} - V_n) \right\} . \tag{300}$$

10.4. Collisional Charging of a Grain

Per unit projected area of a grain, collisions with particles of space density n, mass m, and charge Z (Z = -1 for electrons) give an effective recombination rate

$$\mathbf{a}(gr) = -n \,\overline{v} \, SZ \, \mathbf{h} \,, \tag{301}$$

where

$$\overline{v} = \sqrt{8kT/\mathbf{p}\,m_e} \tag{302}$$

is the mean particle speed. In this expression, and for other collisional rates involving n below, it is implicit that there is a sum of similar terms over all species in the gas. For electrons S is the sticking probability which we take to be 1 (Spitzer 1948; Watson 1972; Draine 1978). For positively charged nuclei, SZ is the charge transfer efficiency, taken to be Z here. The last factor η , the correction for Coulomb interactions between the grain and the recombining particles of charge Z, is given in terms of

$$y = ZV_g / kT_e ag{303}$$

by

$$\mathbf{h} = \begin{cases} 1 - \mathbf{y} & \text{if } \mathbf{y} \le 0\\ \exp(-\mathbf{y}) & \text{if } \mathbf{y} > 0 \end{cases}$$
 (304)

Terms for positively charged nuclei are included, but are usually small relative to the contribution from free electrons.

10.5. Grain Potential

The steady state grain potential is determined for each grain species independently by requiring charge balance. Expressed as a balance per unit area this is $\alpha_{gr} = \Gamma_{gr}$. Because of the many dependencies on V_g , this is carried out numerically.

10.6. Grain Drift Velocity

The grain drift velocity is determined by balancing the radiative acceleration due to the direct attenuated radiation field with the drag forces given by equations 1–6 of Draine and Salpeter (1979). The equations are solved numerically for the drift velocity, including interactions with electrons and all ions present in the gas.

10.7. Radiative Heating and Cooling of a Grain

Once the grain potential is known, the rate of radiative heating of the grain per unit projected area is

$$G_{grain}(rad) = \int_0^{\mathbf{n}_o} Q_{abs} 4\mathbf{p} J d\mathbf{n} + \int_{\mathbf{n}_o}^{\infty} Q_{abs} \frac{4\mathbf{p} J}{h\mathbf{n}} (h\mathbf{n} - EY) d\mathbf{n}.$$
 (305)

The last term represents the portion of the photon energy that does not heat the grain, but rather passes to the escaping electrons:

$$EY = Y_n \int_{E_o}^{(h\mathbf{n} - V_n)} E \ f \ p_n \ dE \quad . \tag{306}$$

With the above approximations for f and p_n this is given analytically by

$$EY = 0.5 Y_n \min \left\{ (h\mathbf{n} - V_n), \left[(h\mathbf{n} - V_n)^2 - V_g^2 \right] / (h\mathbf{n} - V_n) \right\}.$$
 (307)

The cooling of a grain by radiative losses, per unit projected area, is given by

$$\Lambda_{grain}(rad) = \int_0^\infty Q_{abs} \, 4\mathbf{p} \, B_{\mathbf{n}}(T_g) \, d\mathbf{n} \tag{308}$$

where $B_{\nu}(T_g)$ is the Planck function for the grain temperature.

10.8. Collisional Heating of a Grain

Collisions with electrons, ions, and neutral particles also heat the grains. Per unit projected area of the grain, this heating rate may be written as

$$G_{grain}(col) = n \,\overline{v} \,S\left(2kT_e\mathbf{x} - ZV_g\mathbf{h} + I\mathbf{h} - 2kT_g\mathbf{h}\right) . \tag{309}$$

The first term corresponds to kinetic energy extracted from the gas. The factor ξ makes adjustment for Coulomb interactions and is given by

$$\mathbf{x} = \begin{cases} 1 - \mathbf{y} / 2 & \text{if } \mathbf{y} \le 0 \\ (1 + \mathbf{y} / 2) \exp(-\mathbf{y}) & \text{if } \mathbf{y} > 0 \end{cases}$$
 (310)

The second term in $G_{grain}(col)$ allows for the change of the particle's energy in the grain potential. In the third term, the product In is the average chemical energy released per impact. Here it is assumed that when impinging ions recombine the ionization energy released is deposited as heat in the grain (there is then no corresponding term for heating the gas in Λ_g below). The last term describes the effect of thermal evaporation of neutralized ions and thermally accommodated neutral particles (there is no corresponding term for electrons).

In implementing the above processes, S for electrons is again the sticking probability. For positively charged nuclei, S is the energy transfer efficiency, taken here to be unity (this process should be evaluated consistently with that for charge transfer). For neutral particles of mass m striking a grain whose typical atom has mass M, the accommodation coefficient $S \approx 2 \text{ m M/(m + M)^2}$ (Draine 1978).

10.9. Grain Temperature

The equilibrium grain temperature is determined by the balance between cooling (Λ) and heating (G) by radiative and collisional processes. For the radiative terms, Q_{abs} averaged over the size distribution is used to obtain a typical temperature for each species.

As a test of the bandwidth of the code, and its behavior in a well-defined limit, tests where computed in which the grains were irradiated by black body radiation in strict thermodynamic equilibrium (i.e., the color and energy density temperatures were equal). Radiation temperatures between 10 K and 10⁹ K, the temperature limits to the code, were used. These tests showed that the deduced grain equilibrium temperature was within much better than 1 percent of the blackbody temperature.

10.10. Photoelectric Heating of the Gas

Heating of the gas by photoemission from grains can be an important process in ionized regions (Spitzer 1948; Oliveira and Maciel 1986). For charged grains this heating rate (erg cm⁻³ s⁻¹) is given by

$$G_{gas} = \int_{\mathbf{n}_{o}}^{\infty} \mathbf{k}_{abs} \frac{4\mathbf{p}J}{h\mathbf{n}} \left(EY - V_{g} \hat{Y} \right) d\mathbf{n}.$$
(311)

The first term describes the energy of the photoelectrons as they leave the surface, balancing the similar term in $G_{grain}(rad)$. The second term compensates for the grain potential, and can be seen to balance the related term in $G_g(col)$ when charge balance holds.

10.11. Collisional Cooling of the Gas

The gas is cooled as the gas particles hit the cooler grain surface. Per unit volume, this cooling rate may be written as

$$\Lambda_{gas} = n \, n(H) \, \Sigma \, \bar{v} \, S \left(2k T_e \mathbf{x} - 2k T_{grain} \mathbf{h} \right) \quad , \tag{312}$$

the individual terms consistently balancing the corresponding ones in $G_g(\text{col})$ (see equation 310).

10.12. Grain Sublimation

The code checks that grain survival is likely by comparing the highest grain temperature with the sublimation temperatures. These are taken to be 1400 K for silicates and 1750 K for graphite and are based on the paper by Laor and Draine (1993). These values are stored in the vector *sublimat* and initialized in block data *martin*. A warning will be printed at the end of the calculation if the grain

temperature rises above the sublimation point. A caution will be printed if the temperature rises above 90% of the sublimation point.

10.13. Ionic Recombination on Grain Surfaces

Positive ion recombination on grain surfaces proceeds at a rate $n_{ion}n_H\alpha_{gr}$ where the recombination coefficient is taken from Draine and Sutin (1987; their equation 5.15). For a standard grain size distribution this rate coefficient is ~5.8×10⁻¹³ $T_e^{-0.5}$ cm³ s⁻¹. This process is included for all ions included in the calculation when grains are present, but is not generally important. The rate coefficient is evaluated in routine *hmole* and stored as the variable *gionrc*.

10.14. Grain Variables

ndust The number of grain species. This variable appears in parameter statements throughout the code. Currently **ndust** is 20.

IgDustOn This logical variable is true if grains are enabled, and false otherwise. This is the variable to check to determine whether grains exist in the current model.

dqabs(energy, ndust) Absorption Q for this grain species as a function of energy.

dqscat(energy, ndust) Scattering Q for this grain species as a function of energy.

dston1(ndust) A logical variable that indicates whether this grain species is enabled.

dstab1(energy, ndust) Absorption cross section for this grain species

dstsc1(energy, ndust) Scattering cross section for this grain species.

dstab(energy) Total absorption cross section for all grain species.

dstsc(energy) Total scattering cross section for all grain species.

dstq(ndust) The grain charge, in units of number of electrons.

dstpot(ndust) The grain potential, in Rydbergs.

dstdft(ndust) The grain species' drift velocity.

avdft(ndust) Variable used to derive average drift velocity of a grain species.

dustp(4, ndust) These are parameters describing the grain species, and are set in block data **martin**. They are defined in Peter Martin's program that computes grain optical parameters. The four elements of the array are the grain density, molecular weight, normalizing abundance, and depletion.

eev(limcrs, ndust) is an **limcrs** long array of energies (in Rydbergs, despite the variable name). **ndpts** of these are energies where the grain optical parameters are defined.

sab(limcrs, ndust) is an **limcrs** long array of absorption cross sections for the grain species, at the **ndpts** energy points. These are defined as the effective absorption cross section per hydrogen nucleon.

sse(limcrs, ndust) is an **limcrs** long array of scattering cross sections for the grain species, at the **ndpts** energy points. These are defined as the effective scattering cross section per hydrogen nucleon, multiplied by (1-g) where g is the grain asymmetry factor.

ndpts(ndust) is the number of energies where the grain optical properties are defined, for each species.

darea(ndust) is the grain surface area (cm²) per hydrogen nucleon.

dsize(ndust) is the grain radius (cm) per hydrogen nucleon.

dwork(ndust) Grain species neutral surface work function in Rydbergs.

dstfac(ndust) This is the log of the depletion scale factor for each grain species. It is equal to 0 for "normal" abundances, -1 for 1/10th of "normal", etc. This is the first optional number that appears on the **grains** command. The number remains the log of the depletion throughout the calculation.

tedust(ndust) The equilibrium temperature for a grain species.

11. OTHER PHYSICAL PROCESSES

11.1. Overview

This section describes other physics processes that have been incorporated into CLOUDY. Some of these are taken from published papers that have described the formalism used by CLOUDY in detail. The original papers are cited in the beginning of each section.

11.2. Cosmic Ray Interactions

The implementation of cosmic rays was done in collaboration with Richard Mushotzky. This section is taken from Ferland and Mushotzky (1984).

Synchrotron radio sources are usually modeled in terms of an interaction between a magnetic field and a relativistic gas with a typical energy per electron of a few hundred MeV (see Pacholczyk 1970; Longair 1981). The spectral index of the radio emission for radio-loud active galaxies is usually \sim -0.7, and this suggests that the electrons, which make the dominant contribution to synchrotron emission, have a density (per unit energy interval) given by n(cr, E) \sim E^{-2.4} (Kellerman 1966). The total relativistic electron density is sensitive to the lower bound of the energy distribution, which is typically of order 10–100 MeV, corresponding to relativistic factor of $\gamma \sim$ 10–100 (Lee and Holman 1978).

The cosmic ray density used by CLOUDY is defined as

$$n(cr) = \int_{E_{\text{min}}}^{E_{\text{max}}} n(cr, E) dE$$
 (313)

with the lower bound set to $E_{min}=5$ MeV, corresponding to $\gamma\sim 10$. The density is only weakly sensitive to the upper limit $E_{max}\approx 10$ GeV because of the strong convergence of the electron density function, although uncertainties in the lower energy bound introduce a fundamental uncertainty. Cosmic ray protons should have much smaller affects than the electrons, so the total cosmic ray electron density n(cr) is the only parameter.

The code assumes that the gas is "optically thin" to the energetic electrons. Serious and fundamental uncertainties afflict detailed treatments of the penetration of energetic particles into gas, particularly if magnetic fields are present. In the simplest case penetration is impeded only by ionization and heating losses resulting from two-body collisions. In this case the ability to heat an entire cloud is determined by the range of a particle, or the column density of gas required to stop it (see Rossi 1952). Relativistic electrons have a range that is given to within 15% by (Berger and Seltzer 1965)

$$R_e = 10^{25} \left(\frac{E}{100 \text{ MeV}} \right)^{0.8} \text{ cm}^{-2}$$
 (314)

for a gas composed of neutral hydrogen. The range of a 100 MeV electron in a fully ionized gas, in which bremsstrahlung and Coulomb losses are more important than ionization, would be some 10 times smaller.

dother 297

The relativistic particles both heat and ionize the gas. The main concern is for the rate with which energy is transferred to the cold gas (Lea and Holman 1978; Ginzberg and Syrovatskii 1964). In the H⁺ zone the main interaction will be with free electrons. Kinetic energy is passed to the cold electrons at a rate

$$G_{cr} = 8.5 \times 10^{-19} \ n_e \, n(cr) \quad \left(\text{erg cm}^{-3} \, \text{s}^{-1}\right)$$
 (315)

by direct Coulomb interactions (Jackson 1975; Spitzer 1962; Ginzburg and Syrovatskii 1964; Pacholczyk 1970). Here $n_{\rm e}$ is the thermal electron density, and the integration is over the electron distribution given above.

In regions where hydrogen is neutral the main interaction between thermal and relativistic gases is through ionization of the cold gas. For large neutral fractions very little of the energy of secondary electrons goes into actually heating the gas (Rossi 1952; Spitzer and Tomasko 1968). Calculations show that secondary electrons have typical energies of $\sim 40~{\rm eV}$, and that there is roughly one ionization per 15 eV deposited. Using the Bethe-Bloch approximation (Ginzburg and Syrovatskii 1964) the neutral heating rate is

$$G_{cr} = 3.7 \times 10^{-20} \ n(H^{\circ}) \ n(cr) \ (erg \ cm^{-3} \ s^{-1})$$
 (316)

and the Ho ionization rate is

$$\Gamma = 1.5 \times 10^{-8} \ n(cr) \ n(H^{\circ}) \ \left(\text{cm}^{-3} \ \text{s}^{-1}\right) \ . \tag{317}$$

This ionization rate was scaled through Lotz's (1967) curves to include collisional ionization of heavy elements in the calculation of heavy element ionization equilibria.

If cosmic rays are not included, and the hydrogen ground state photoionization rate falls below the galactic background cosmic ray ionization rate, then a comment will be generated warning that the cosmic ray background should perhaps be included. According to Spitzer (1978), the background cosmic ray ionization rate is very uncertain, but of the order of 2×10^{-17} s⁻¹ for neutral hydrogen. According to the equations above, this rate corresponds to a cosmic ray density of $\sim 2\times10^{-9}$ cm⁻³, the value used as the "background" cosmic ray density option for the **cosmic ray** command.

The discussion above, as well as the code, includes only two-body Coulomb interactions, and *does not* include collective effects, such as those discussed by Scott et al. (1980). Rephaeli (1987) notes that collective effects may not be important in most circumstances.

11.3. Line Radiation Pressure

Line radiation pressure was implemented in CLOUDY in collaboration with Moshe Elitzur. The following was written in collaboration with Moshe, and is adopted from Elitzur and Ferland (1986).

298 dother

11.3.1. Formalism

For radiation intensity I_{ν} , the standard expression for the radiation pressure per unit frequency, P_{ν} , is (e.g. Schwarzchild 1965)

$$P_{n} = \frac{1}{c} \int I_{n} \mathbf{m}^{2} d\Omega \quad , \tag{318}$$

where $\mu = \cos(\theta)$ and θ is the direction of propagation of the radiation. When the radiation field is isotropic, its pressure and energy density,

$$u_n = \frac{1}{c} \int I_n \, d\Omega \quad , \tag{319}$$

are related by the familiar expression

$$P_{n} = \frac{1}{3}u_{n} \quad . \tag{320}$$

This relation holds for a rather wide range of circumstances. If the angular distribution of I_{ν} is expanded in a power series in μ , then only powers higher than the second will lead to violations of equation 320. However, the successive coefficients of this expansion are decreasing approximately like the optical depth (e.g. Schwarzchild 1965, p 40), so deviations from equation 320 will only be proportional to $1/\tau^2$. Hence, when the medium is optically thick at the frequency ν equation 320 is an excellent approximation for the radiation pressure.

The only radiative quantity we need to know in order to calculate the radiation pressure is the angle-averaged flux, J_{ν} , since

$$u_n = \frac{1}{c} 4 \mathbf{p} J_n \quad . \tag{321}$$

The integrated radiation pressure is then

$$P(\mathbf{n}) = \frac{4\mathbf{p}}{3c} \int J_{\mathbf{n}} d\mathbf{n} \quad . \tag{322}$$

Introducing the line-width, defined by

$$\Delta \mathbf{n} = \frac{1}{\bar{J}_{u,l}} \int J_n \, d\mathbf{n} \quad , \tag{323}$$

where

$$\bar{J}_{u,l} = \int J_{\mathbf{n}} \,\Phi(\mathbf{n}) \,d\mathbf{n} \tag{324}$$

is the integrated mean intensity in the line and $\Phi(v)$ is the normalized line profile $\left[\int \Phi(\mathbf{n}) d\mathbf{n} = 1\right]$. The quantity \bar{J} is readily available in the escape probability approximation because it is related directly to the source function S by

$$\bar{J}_{u,l} = S(1 - P_{u,l}) \tag{325}$$

where $P_{u,l}$ is the photon escape probability. The line source function S is simply B_v (T_{exc}), the Planck function of the line excitation temperature. The final expression for the pressure due to a line at frequency v is therefore

$$P(\mathbf{n}) = \frac{4\mathbf{p}}{3c} B_{\mathbf{n}} (T_{exc}) \Delta \mathbf{n} (1 - P_{u,l})$$
(326)

Combining equation 326 with equation 144 on page 216 we obtain the final form of the line radiation pressure,

$$P(\mathbf{n}) = \frac{8\mathbf{p} h \mathbf{n}^{3}}{3c^{3}} \frac{n_{u} / g_{u}}{(n_{l} / g_{l} - n_{u} / g_{u})} \Delta \mathbf{n} (1 - P_{u,l}) .$$
 (327)

In these expressions the line width is given in frequency units. Within the code the line width is given in velocity units, and the line pressure is given as

$$P(\mathbf{n}) = \frac{8\mathbf{p}h\mathbf{n}^{4}}{3c^{4}} \frac{n_{u} / g_{u}}{(n_{l} / g_{l} - n_{u} / g_{u})} \Delta \nu (1 - P_{u,l}) = \frac{8\mathbf{p}h}{3\mathbf{I}^{4}} \frac{n_{u} / g_{u}}{(n_{l} / g_{l} - n_{u} / g_{u})} \Delta \nu (1 - P_{u,l})$$

$$= 6.872 \times 10^{-68} \mathbf{n}^{4} \frac{n_{u} / g_{u}}{(n_{l} / g_{l} - n_{u} / g_{u})} \Delta \nu (1 - P_{u,l})$$

$$= 5.551 \times 10^{-26} \mathbf{I}^{-4} \frac{n_{u} / g_{u}}{(n_{l} / g_{l} - n_{u} / g_{u})} \Delta \nu (1 - P_{u,l})$$

$$(328)$$

11.3.2. Line width

The line width is a crucial parameter in the calculations since the line radiation pressure is directly proportional to it. For lines with a moderate optical depth (i.e., $\tau \leq 10^4$) the damping wings are optically thin, and the line emission profile is essentially identical to the absorption profile. Then $\Phi(\nu)$ is simply described by the Doppler profile $\pi^{1/2} \exp(-x^2)$, where $x=(\nu-\nu_o)/\Delta\nu_{Dop}$ is the dimensionless frequency shift from line center and $\Delta\nu_{Dop}=(2kT/m)^{1/2}\,\nu_o/c$ is the Doppler width. The line full width is then

$$\Delta \mathbf{n} = \Delta \mathbf{n}_{Dop} \times 2(\ln \mathbf{t})^{1/2} \tag{329}$$

for $\tau \gg 1$.

The situation when the line optical depth exceeds $\sim 10^4$ is much more complicated. This is because scattering in the damping wings becomes significant, and the frequency dependence of the emission profile is not known before the entire radiative transfer problem is solved. In general, it is known that, for Ly α (generally the most important source of line radiation pressure) and large optical depths, the line width (in dimensionless units) is

$$x = k(a \mathbf{t})^{1/3} \quad , \tag{330}$$

(Adams 1972; Harrington 1973; Bonilha et al. 1979). In this expression *a* is the damping constant (a $\approx 4.72 \times 10^{-4} \ t_4^{-1/2}$ for Ly α), τ is the line center optical depth, t_4 is the temperature in units of 10^4 K, and k is a number of order unity.

 $300\,$ dother

The frequency width required here is the value that will provide a rectangular profile with the same area as the proper integral of the source function. The results of Adams (1972) are adopted, and the resulting expression for the full line width in the case of large optical depths (τ » 1) is

$$\Delta \mathbf{n} = \Delta \mathbf{n}_{Dop} 2.3 (a\mathbf{t})^{1/3} \tag{331}$$

An important point, evident from the plots provided by Adams for the source function as a function of frequency (his Fig 3), is that the width of the frequency distribution varies very little with position in the slab. This is also evident from the mean intensity plots of Harrington, as mentioned above, and is a result of the strong coupling between distant regions caused by scattering in the line wings. The expression provided in equation 331 for all locations in the slab, with τ being half the total slab thickness.

11.3.3. Background opacity and thermalization

Background opacity is included in the determination of the level populations using the formalism outlined in the section on line radiative transfer. Its main effect is to lower the line excitation temperature by providing a second "escape" (actually destruction) route for trapped photons. This is assumed to be the only effect background opacity has on radiation pressure. Balmer continuous absorption typically has an optical depth only of order unity, while the line optical depths are many orders of magnitude larger. Absorption in the Balmer continuum can only compete with line scattering in the extreme wings, at frequency shifts exceeding ~ (a τ)^{1/2}, which are much larger than the line width predicted by equation 331.

Collisional de-excitation can also break the assumption of pure scattering because a photon will be lost to the thermal pool before the radiative process can take place. This will happen when the density is high enough that the rate for collisional de-excitation, C_{ul} , exceeds the probability for the effective rate for the transition, $P_{ul}\,A_{ul}$, where P_{ul} is the line escape probability and A_{ul} is the Einstein coefficient. Because at large optical depths P_{ul} is essentially equal to τ^{-1} , the "effectively thin" assumption breaks down when

$$t \approx A_{u,l} / C_{u,l} \quad . \tag{332}$$

Once the line optical depth exceeds \sim A/C, a "thermalization limit" is encountered, and the assumption of a purely scattering nebula does not apply anymore. Therefore, in evaluating the optical depth for the line width expression (equation 331) the minimum of the actual line optical depth and the one prescribed by A/C is used. This is a conservative estimate of the effect of collisions on photon scattering. This is probably the most poorly understood part of the calculation of the line radiation pressure.

11.4. Radiative Acceleration

The radiative acceleration (cm s-2) due to the direct attenuated continuum flux F_{ν} , for density ρ , is given by

$$a_{rad} = \frac{1}{rc} \int F_{\mathbf{n}} \mathbf{k}_{\mathbf{n}} d\mathbf{n} + \frac{1}{rc} \sum_{l} F_{\mathbf{n}}(l) \mathbf{k}_{l} \mathbf{g}_{l} B_{l,u} . \tag{333}$$

Here \mathcal{K}_n is the effective continuous opacity. The radiative acceleration is computed in routine **radinc** and includes the usual photoelectric and free-free absorption in the gas, and Compton and Rayleigh scattering. In addition it includes the term κ_{abs} + (1-g) κ_s for the grain contributions if grains are present. The integral is over all energies considered by the code (from $\lambda \approx 1$ cm to hv ≈ 100 MeV).

The second term is a sum is over all transferred lines (typically 10^4 to 10^5 transitions). Here κ_l is the line opacity, B_l is the Einstein coefficient, and γ_l is the escape probability in the direction towards the source of ionizing radiation (Ferland and Rees 1988).

11.5. Pressure Laws

11.5.1. Units

Pressure is force per unit area. The unit of force in the cgs system is the dyn, which is 10^{-5} N. The fundamental units of the dyn are g cm s⁻². For pressure these are dyn cm⁻² or gm cm⁻¹ s⁻².

11.5.2. Ideal gas laws

For a non-relativistic non-degenerate gas the energy density is

$$u = \frac{3}{2} n_{tot} k T_e \tag{334}$$

and the pressure is

$$P_{gas} = n_{tot}kT_e = \frac{2}{3}u$$
 dynes cm⁻². (335)

 n_{tot} is the total particle density (cm $^{-3}$). For a relativistic non-degenerate gas the energy density is

$$u = 3n_{tot}kT_e \tag{336}$$

and the pressure is

$$P_{gas} = n_{tot}kT_e = \frac{1}{3}u \text{ dynes cm}^{-2}.$$
 (337)

11.5.3. Equation of state

When the pressure is held constant (with the constant pressure command) the pressure law is given by

$$P(r) = P_{gas}(r_o) + \int a_{rad} \mathbf{r} dr = P_{gas}(r) + P_{line}(r)$$
(338)

where

$$P_{gas}(r_o) = n_{tot} kT ag{339}$$

is the gas pressure at the illuminated face of the cloud stored as the variable **PresInit**. The total particle density n_{tot} is (referred to by the variable **pden**), and r is the radius of the current position.

11.5.4. Turbulent pressure?

Turbulence can be included as a line broadening mechanism. Its only affect is in modifying the line opacities and resulting optical depths. Turbulence should add a component to the total pressure of

$$P_{turb}(r_o) = \frac{1}{2} \mathbf{r} v_{turb}^2 = 5.8 \times 10^6 \left(\frac{n}{10^5 \text{ cm}^{-3}} \right) \left(\frac{v_{turb}}{1 \text{ km s}^{-1}} \right)^2 \text{ cm}^{-3} \text{ K}$$
 (340)

where n is the density and v_{turb} is the turbulent velocity. Turbulent pressure is not included in the pressure law since it would be either negligible, or so large that it would not be possible to determine the gas pressure.

11.5.5. Ram or dynamic pressure

Pressure associated with energy of bulk motion can be referred to as ram or dynamic pressure. It is given by ρ v².

11.5.6. Pressure variables and routines

TotalPressure This routine evaluates the sum of the gas and line radiation pressures. This routine *does not* evaluate the force term due to the attenuation and reflection of the incident continuum. The function has a single dummy argument, and returns the total pressure in dynes/cm².

PresInit This is the gas pressure at the illuminated face of the cloud.

pgas This is the gas pressure, nkT, with units dynes/cm²., and is evaluated in routine **TotalPressure**.

prad This is the line radiation pressure, evaluated as described on page 298. It is also evaluated in **TotalPressure**.

pinteg The integrated radiative force on the gas is evaluated in routine **radinc** and is stored as the variable **pinteg**. This is kept separate from the local gas pressure since it is really a global quantity, unaffected by changes at the current position.

pnow This is the current sum of gas and local line radiation pressure.

presur This routine obtains the current total pressure, and ratios that with the desired total pressure. This scale factor is then applied to various physical quantities.

perror This is the fractional error allowed in the pressure convergence. It currently is set in a data statement within **presur**.

presok presur will set the variable **presok** to false if the change in the local conditions was too large, and so capped, and to true if a good final pressure was achieved. The pressure is declared converged by **presur** when **pnow** (the local pressure) is within **perror** of being equal to the sum of **PresInit** and **pinteg**.

Pionte This routine calls **presur**.

11.6. Wind Geometry

CLOUDY will do a simple wind geometry if the **wind** command is specified. The effective acceleration is written as $a_{\rm eff} = a_{\rm rad} - g_{\rm grav}$, where $a_{\rm rad}$ is computed in equation 333 above, and $g_{\rm grav}$ is the inward gravitational acceleration due to the central object. The default is one solar mass. The velocity is computed assuming that the acceleration is constant across the zone. In this case the change in the wind velocity v between the inner and outer edges of a zone of thickness dr will be

$$v^2 - v_o^2 = 2a_{eff} dr ag{341}$$

where v_o is the velocity at the inner edge. The calculation will stop if the velocity ever falls below zero.

All calculations involving the velocity and density associated with this wind are performed in routine **presur**. The density at the illuminated face of the cloud is entered with the **hden** command. The density is varied across the model to conserve mass flux (i.e., the product $\rho(r)$ r^2 v(r) is kept constant). Because of this, a filling factor would not make physical sense, and should not be used. Note also that it is usually necessary to set an outer radius when a wind model is computed to stop the calculation from extending to infinity.

A simple Sobolev approximation is used for line transfer when a wind is computed. The effective optical depth is given by;

$$\boldsymbol{t}_{l,u}(r) = \boldsymbol{a}_{l,u} \left(n_l - n_u \frac{g_l}{g_u} \right) r \frac{v_{th}}{\max(v_{th}, v_{exp})}$$
(342)

where r is the smaller of the radius or depth and v_{th} and v_{exp} are the thermal and expansion velocities respectively. The choice of the smaller of the radius or depth is not in strict keeping with the Sobolev approximation, but is necessary since calculations often begin at very large radii from the central object. The optical depths would have unphysically large values were this choice not made.

Figure 26 shows a test case in which a wind is driven in the plane parallel electron scattering limit. As can be seen the numerical solution is in

Figure 26 The wind velocity is computed using the input stream shown in one of the test cases in the last section. Parameters were chosen to have a readily computed final velocity. The velocity at the outer edge of the slab is within 1 percent of its expected value, wind

excellent agreement with the analytically predicted result.

11.7. Secondary Ionization

11.7.1. Ionization, heating, and cooling

Although the electron velocity distribution is predominantly Maxwellian (Bohm and Aller 1947), a small constituent of non-thermal secondary electrons may be present when high-energy radiation is present. Secondary ionizations by suprathermal electrons are treated following Xu and McCray (1991). All sources of energetic electrons, including both Auger and primary electrons, are considered in the initial input of high-energy electrons into the gas. The resulting coefficient giving the rate of non-thermal electrons is stored as the variable *csupra*, which has units s⁻¹. A typical energy of an electron in the non-thermal shower is ~ 20 eV; this energy is used to evaluate collisional ionization and excitation cross sections. Secondary ionization is included among the general ionization processes considered for all species. The coefficient giving the rate for excitations of Lyα is given as *x12*.

11.7.2. Evaluation of rate of hot electron energy input

The variable *ipSecIon* points to the lowest photon energy (100 eV) where a photoelectron can produce secondary ionization. Below this energy photoelectrons are assumed to produce 100% heat with no secondary ionization.

Each of the routines that evaluate photoionization or Comptonization rates records the total energy input by photons with energy greater than this. These are saved with units Rydbergs per photoionization per atom, \mathbf{e}_{Rvd}^* .

11.7.3. Secondary rates per atom

The secondary ionization energy redistribution coefficients are evaluated in routine **nockon**. Three variables, the heating efficiency **heatef**, the ionization efficiency **efionz**, and the efficiency for exciting Ly α **exctef**, are defined. In the following equations $\mathbf{e}_{R_{vd}}^*$ is the initial energy of the hot photoelectron.

heatef This is a fraction (between 0 and 1) of the energy of the photoelectron that goes into heating the Maxwellian electron bath. The heat actually deposited in the free electrons (Ryd cm 3 s $^{-1}$) is given by

$$\Lambda_{\text{sec}} = \mathbf{e}_{Rvd}^* \times \text{HEATEF}. \tag{343}$$

efionz This is the number of hydrogen ionizations produced per Rydberg of heat input by suprathermal electrons. The number (s⁻¹) of knock-on secondary ionizations is given by

$$r_{ion} = \text{CSUPRA} = e_{R_{vd}}^* \times \text{EFIONZ},$$
 (344)

exctef This is the energy in Rydbergs that goes into Ly α excitations. The number (s⁻¹) of excitations of Lya is given by

$$r_{Lva} = \text{SECLA} = e_{Rvd}^* \times \text{EXCTEF} \times 4/3,$$
 (345)

Table 27 Secondary Ionization Efficiencies

Table 26 Secondary Ionization
Variables

Variables			
Agent	Ionization	Lya	
Hydrogen	sechi	hlax	
Helium	seche	helax	
Compton	seccmp	scmpla	
Heavies	secmet	smetla	

Electron	Secondary	Heating	Lyα	
fraction	Ionization	Efficiency	Excitations	sum
1.00E-04	3.75E-01	1.11E-01	4.19E-01	9.06E-01
3.16E-04	3.66E-01	1.51E-01	3.99E-01	9.15E-01
1.00E-03	3.51E-01	2.03E-01	3.71E-01	9.25E-01
3.16E-03	3.28E-01	2.73E-01	3.35E-01	9.36E-01
1.00E-02	2.92E-01	3.66E-01	2.87E-01	9.45E-01
3.16E-02	2.39E-01	4.87E-01	2.25E-01	9.51E-01
1.00E-01	1.64E-01	6.40E-01	1.50E-01	9.54E-01
3.16E-01	6.98E-02	8.24E-01	6.50E-02	9.59E-01
1.00E+00	0.00E+00	9.97E-01	0.00E+00	9.97E-01

11.7.4. Total interaction rates

The interaction rates per unit volume are given by the rates per atom (given by the variables in Table 26) and the density of the atom. This results in the total number of secondary interactions per unit volume. This total rate is converted into a rate per target atom by dividing the volume rate by the number of *atoms* per unit volume, given by the variable *collid* (evaluated by routine *TotalPressure*). The results are the rates (with units s⁻¹) referred to by the variable *csupra* (secondary ionization rate) and *x12* (secondary rate of excitation of Lyman lines).

11.7.5. Rates during the hydrogen balance solution

The hydrogen ionization balance is performed in routine *hlevel*. In deep regions of X-Ray ionized clouds the dominant source of secondaries is often inner shell ionization of the heavy elements, especially oxygen. Often secondary ionization is the dominant ionization source of hydrogen, and in this case the secondary ionization rate changes as the electron density changes, during searches for the ionization balance. It would not be computationally expedient to reevaluate all heavy element ionization rates during the search for the hydrogen ionization balance, so, during this search an effective secondary ionization rate, given by a simple scaling law using the current electron fraction, and the secondary rate and electron fraction where it was last evaluated. The effective suprathermal rate is referred to as *csupeff*.

11.7.6. Molecules and Suprathermal Electrons

The collisional and heating effects of the suprathermal secondary electrons following inner-shell photoionization are treated using standard assumptions (Bergeron and Souffrin 1971; Shull and van Steenberg 1985; Voit 1991).

 $8~{\rm eV}$ of heat is deposited for each H_2 ionization by a cosmic ray (Tielens and Hollenbach 1985). Relative rates are taken from HM89.

The result of this is a secondary ionization rate that must then be multiplied by scale factors that account for the relative collision cross section for each species relative to hydrogen. These are taken from HM89 and TH85.

Secondary electrons also produce a diffuse background of electronic H_2 lines that can photodissociate most molecules. This is treated using the scaling rule of Gredel, Lepp, and Dalgarno (1987) and Gredel et al. (1989).

11.8. Jeans Length and Mass

The Jeans length and mass are computed for each zone in the calculation. The smallest computed Jeans length and mass are saved, and a note is printed at the end of the calculation if the computed structure is Jeans unstable.

The expression for the Jeans length is

$$I_{J} = \left(\frac{p k T}{m m_{p} G r}\right)^{1/2} = 6.257 \times 10^{7} \left(\frac{T}{m r}\right)^{1/2} \quad \text{(cm)}$$

where μ is the mean mass per particle

$$\mathbf{m} = \frac{\sum n_i \, m_i}{\sum n_i} \quad (gm) \tag{347}$$

of the gas (referred to as the variable **wmole**) and ρ is the density of the gas (gm, referred to as the variable **densty**). Both are computed in routine **TotalPressure**.

The Jeans mass is then given by

$$M_J = \frac{4\mathbf{p}}{3} \mathbf{r} \left(\frac{\mathbf{I}_J}{2}\right)^3 \quad \text{(gm)}$$

where the mass is that of a sphere with radius λ_J /2.

The minimum Jeans mass is evaluated in routine tauinc as the calculation progresses. The code will generate a comment if the computed structure is Jeans unstable.

11.9. Luminosity Distance

The luminosity distance D_L is given by equation 349.

$$D_{L} = \begin{cases} \frac{cz}{H_{o}} (1+z/2) & q_{o} = 0\\ \frac{c}{H_{o}q_{o}^{2}} \left\{ q_{o}z + (q_{o}-1) \left[(2q_{o}z+1)^{1/2} - 1 \right] \right\} & q_{o} > 0\\ \frac{2c}{H_{o}} \left[1+z - (1+z)^{1/2} \right] & q_{o} = 1/2 \end{cases}$$
(349)

For $q_0=1/2$ and $H_0=70$ km/s/Mpc the luminosity distance is

$$D_L = 2.643 \times 10^{26} \left[1 + z - (1+z)^{1/2} \right] \text{ cm}$$
 (350)

The proper distance D is given by $D_L = D(1+z)$.

12. GLOSSARY OF SYMBOLS

As far as possible, the notation used by HAZY follows standard texts (Osterbrock 1989; Mihalas 1978). This is a summary of some of the symbols used. Page references to Part II of HAZY or the numerical quantity are listed in the third column of this glossary.

The fundamental constants now used by the code are from a variety of revisions of the basic data, some dating back to the 1970's. An effort is now underway to convert the constants to the 1986 CODATA recommended values (see http://physics.nist.gov/ PhysRefData/ codata86/ codata86.html).

Symbol	Description	Units	Notes
a	Stefan radiation density	erg cm ⁻³ K ⁻⁴	7.56464×10 ⁻¹⁵
a	damping constant	-	page 217
a_{0}	Bohr radius	cm	0.5291775×10^{-8}
a _{rad}	radiative acceleration	cm s ⁻²	page 298
A_{ul}	radiative rate from level u to l	s ⁻¹	
b_n	departure coefficient	-	page 231
В	magnetic field	esu	
B_{v}	Planck function	erg cm ⁻² s ⁻¹ Hz ⁻¹ sr ⁻¹	
c	speed of light	cm s ⁻¹	2.997925×10^{10}
C	collisional rate	s^{-1}	
C_{ul}	line collision rate	s ⁻¹	
D_{ul}^{ul}	line destruction probability	-	page 218
f	oscillator strength		
f(r)	filling factor	-	
f_{ν} F_{ν}		erg cm ⁻² s ⁻¹ Hz ⁻¹	
g	grain asymmetry factor	-	page 290
g_{i}	statistical weight	-	
g _{III}	T aver free-free gaunt factor	-	
G	energy gains	heating	erg cm ⁻³ s ⁻¹
I	integrated intensity	erg s ⁻¹ sr ⁻¹ Hz ⁻¹	
I_n	ionization potential of level n	erg; Ryd	
I_{ν}	intensity	erg s ⁻¹ sr ⁻¹ Hz ⁻¹	
h	Planck's constant	erg s	6.62620×10^{-27}
J	integrated mean intensity	erg s ⁻¹ sr ⁻¹	
J_{ν}	mean intensity	erg s ⁻¹ sr ⁻¹ Hz ⁻¹	
k	Boltzmann constant	eV deg ⁻¹	8.6171×10^{-5}
k	Boltzmann constant	erg deg ⁻¹	1.38062×10^{-16}
${ m L}_{\odot}$	luminosity of sun	erg s ⁻¹	3.826×10^{33}
m_A	mass of atom A	gm	
m_{AMU}	atomic mass unit	gm	1.6605402×10^{-24}
m_e	electron mass	gm	9.10956×10^{-28}
$m_e^c c^2$	electron energy	Ryd	3.75584×10^4
$m_{\rm p}$	proton mass	gm	1.6726231×10^{-24}
$M_{\rm J}$	Jeans' mass	gm	page 307
-·-J		o	IO

M	mass of the sun	of the	1 000, 1033
$ m M_{\odot}$	mass of the sun	gm	1.989×10^{33}
M_{\oplus}	mass of the Earth	gm	5.977×10^{27}
n_e	electron density	cm ⁻³	
n _i	population of level j	cm ⁻³	
$n_{\rm D}$	proton density	cm ⁻³	
n(H)	total H density, all forms	cm ⁻³	
n(x)	density of species x	cm ⁻³	007
n(cr)	cosmic ray density	cm ⁻³	page 297
n N/()	atom's level	9	
N(x)	column density of species x	cm ⁻²	
N(H)	total H col den, all forms	cm ⁻²	
N_{eff}	effective H column density	cm ⁻²	004
$P^*(x)$	LTE relative population	cm ³	page 231
P_{gas}	gas pressure	dyn cm ⁻²	page 303
P _{lines}	line radiation pressure	dyn cm ⁻²	page 303
P _{tot}	total pressure	dyn cm ⁻²	page 303
P_{ul}	line escape probability	-	page 218
$P_{\tau x}(n)$	continuum escape prob	-	
pc	parsec	cm	3.085678×10^{18}
$\mathbf{q_{ij}}$	line collisional rate coefficient	cm ³ s ⁻¹	
$\mathbf{q}_{\mathbf{n}}$	collisional rate coefficient	$\mathrm{cm}^3\mathrm{s}^{\text{-}1}$	
q_e	electron charge	esu	4.80325×10^{-10}
Q_{abs}	grain absorption efficiency	-	page 290
Q(H)	hydrogen ionizing photons	s ⁻¹	
r	radius	cm	
$r_{l,u}$	rate	s ⁻¹	
r_o	inner radius	cm	
R	total to selective extinction	-	
R_{H}	Rydberg unit for H	-	page 206
$ m R_{\infty}$	Rydberg unit for inf mass	-	page 206
$ m R_{\odot}$	radius of the sun	cm	6.9599×10^{10}
T_{e}	electron temperature	cm ⁻³	
T_{exc}	excitation temperature	K	page 228
T_{color}	color temperature	K	2 0
T _{low}	lowest temp allowed	K	2.8 K
$T_{\rm u}$	energy density temperature	K	page 239
u	energy density	erg cm ⁻³	1 0
U_{σ}	grain potential	volt	page 292
V	velocity (mean or projected)	cm s ⁻¹	1 0
\overline{v}	mean particle speed	cm s ⁻¹	page 292
v_{Dop}	Doppler velocity	cm s ⁻¹	page 214
$v_{\rm exp}$	expansion velocity	cm s ⁻¹	1 0
v_{th}	thermal velocity	cm s ⁻¹	page 214
V _{turb}	turbulent velocity	cm s ⁻¹	page 214
Vg	grain potential	eV	page 292
V_n	grain work function	eV	page 292
W	geometric dilution factor	-	1 <i>O</i>

v	relative shift from line center		page 213
$X X_c$	continuous to total opacity	_	page 217
$\hat{\hat{Y}}$	grain photoelectric yield	_	page 290
I Z	redshift	_	page 200
Z	nuclear charge	_	
$\alpha(n, T)$	recombination coefficient	cm ³ s ⁻¹	page 233
$\overline{a}(n,T)$	effec recomb coefficient	$cm^3 s^{-1}$	page 208
α_{v}	continuous abs cross section	cm ²	page 200
α_{lu}	line absorption cross section	cm^2	page 213
β	recombination cooling coef	cm ³ s ⁻¹	page 235
η_{v}	photon occupation number	-	page 239
δr	zone thickness	cm	1.0
Δr	depth into cloud	cm	
$\gamma_{\rm u, l}$	cont pumping probability		page 219
$\Gamma_{\rm n}$	photoionization rate	s^{-1}	page 238
Г	reciprocal lifetime of up level	s-1	page 217
$\Gamma_{ m OTS}$	OTS photoionization rate	s-1	page 209
- 013 К	absorption opacity	cm ⁻¹	1 0
$\kappa_{ m lu}$	line absorption opacity	cm ⁻¹	
κ _s	continuous scattering opacity	cm ⁻¹	
$\kappa_{\rm V}$	continuous absorption opacity	cm ⁻¹	
$\lambda_{ m J}^{ m v}$	Jeans' length	cm	page 307
$\stackrel{ extsf{J}}{\Lambda}$	energy loss, cooling	erg cm ⁻³ s ⁻¹	1 0
μ	mean molecular weight	-	page 307
$\dot{\Omega}$	energy specific collision		page 221
	strength		1
Ω	shell coverage	sr	
$\Omega/4\pi$	covering factor	-	
$\Phi(H)$	flux of ionizing photons	cm ⁻² s ⁻¹	
$\phi_{\scriptscriptstyle \mathcal{V}}$	photon flux density	cm ⁻² s ⁻¹ Ryd ⁻¹	
ϕ_{OTS}	flux of OTS photons	cm ⁻² s ⁻¹	page 209
ρ	mass density	gm cm ⁻³	
πa_0^2	area of first Bohr orbit	cm ²	87.9737×10^{-18}
σ_{T}	Thomson cross section	cm ²	6.6524×10^{-25}
σ_{v}	scattering cross section	cm ²	
σ_{Ray}	Rayleigh scat cross section	cm ²	page 211
Σ	projected grain area	cm ²	page 290
τ	optical depth	-	
$ au_{ m abs}$	absorption optical depth	-	
$\tau_{ m scat}$	scattering optical depth	-	
$\tau_{\mathrm{u,l}}$	line optical depth	-	
Y	thermal averaged collision		page 221
	strength	**	
ν	frequency	Hz	
$v_{\rm Ryd}$	frequency	Ryd	
δν	line width	Hz	
δv_{Dop}	Doppler width	Hz	

 χ_n hv/kT -

13. REFERENCES

Abbott, D. C., 1982, ApJ 259, 282

Adams, T., 1972, ApJ 174, 439

Aldrovandi, S., & Pequignot, D., 1972, A&A 17, 88

Aldrovandi, S., & Pequignot, D., 1974, Revista Brasileira de Fisica, 4, 491

Ali, B., Blum, R.D., Bumgardner, T.E., Cranmer, S.R., Ferland, G.J., Haefner, R.I., & Tiede, G.P., 1991, Publ. A.S.P. 103, 1182

Allen, C.W., 1976, Astrophysical Quantities, Third Edition (London: Athlone Press).

Aller, L.H., 1984, in *Physics of Thermal Gaseous Nebulae*, (Reidel: Dordrecht).

Aller, L.H., & Czyzak, S.J. 1983, ApJ Sup. 51, 211.

Arimoto, N., & Yoshii, Y., 1987, A&A 173, 23

Arnaud, M., & Raymond, J., 1992, ApJ 398, 394

Arnaud, M., & Rothenflug, R., 1985, A&AS 60, 425

Avni, Y., & Tananbaum, H., 1986, ApJ 305, 83

Avni, Y., Worrall, D. M., & Morgan, W. A., ApJ 1995, 454, 673

Avrett, E.H., & Loeser, R., 1988, ApJ 331, 211

Bajtlik, S., Duncan, R.C., & Ostriker, J.P. 1988, ApJ 327, 570

Balbus, S.A., & McKee, C.F., 1982, ApJ 252, 529

Baldwin, J., Ferland, G.J., Martin, P.G., Corbin, M., Cota, S., Peterson, B.M., & Slettebak, A., 1991, ApJ 374, 580

Baldwin J.A., Ferland, G.J., Korista, K.T., Carswell, R., Hamann, F., Phillips, M., Verner, D., Wilkes, B., & Williams, R.E., 1996, ApJ 461, 683

Baldwin, J. A., Ferland, G.J., Korista K. T., and Verner, D., 1995ApJ 455, L119

Baldwin, J., Wampler, J., and Gaskell, C.M., 1989, ApJ 338, 630

Bässgen, G., Bässgen, M., & Grewing, M., 1988, Ast. Ap. 200, 51

Bates, D.R., Kingston, A. E., & McWhirter, R.W.P., 1962, Proc. R. Soc., A267, 297

Bechtold, J., Weymann, R.J., Lin, Z., & Malkan, M. A., 1987, ApJ 315, 180

Bell, K.L., Kingston, A. E., & McIlveen, W. A., 1975, J. Phys. B 8, 358

Berger, M.J., & Seltzer, S.M., 1965, NASA SP-3012

Bergeron, J., & Collin-Souffrin, S., 1971, A&A 14, 167

Berrington, K., and Pelan, A., 1995, A&AS 114, 367

Bethe, H., 1930, Ann. Phys. 5, 325

Bica, E., 1988, A&A 195, 76

Bieniek, R.J., & Dalgarno, A., 1979, ApJ 228, 635

Binette, L., Prieto, A., Szuszkiewicz, E., & Zheng, W., 1989, ApJ 343, 135

Black, J.H., 1978, ApJ 222, 125

Black, J.H., 1987, in Interstellar Processes, Hollenbach & Thronson, editors

Bohm, D., & Aller, L.H., 1947, ApJ 105, 131

Bonihala, J. R. M., Ferch, R., Salpeter, E. E., Slater, G., & Noerdlinger, P., 1979, ApJ 233, 649

Borkowski, K.J., & Harrington, J.P., 1991, ApJ 379, 168

Boyd, R., & Ferland, G.J., 1987, ApJ 318, L21

Bowen, I. S., 1960, ApJ 132, 1

Bregman, J.D., Allamandola, L.J., Tielens, A.G.G.M., Geballe, T.R., and Witteborn, F.C., 1989, ApJ 344, 791

Broad, J.T., & Reinhardt, W. P., 1976, Phys Rev A 14, 2159

Brown, R.L., & Mathews, W.G., 1970, ApJ 160, 939

Burgess, A., 1965, ApJ 141, 1588

Burgess, A., & Summers, H.P., 1969, ApJ 157, 1007

Burgess, A., & Summers, H.P., 1976, MNRAS 174, 345

Butler, S. E., Bender, C.F., & Dalgarno, A., 1979, ApJ 230, L59

Butler, S. E., & Dalgarno, A., 1979, ApJ 234, 765

Butler, S. E., Heil, T. G., & Dalgarno, A., 1980, ApJ 241, 442

Butler, S. E., & Dalgarno, A., 1980, ApJ 241, 838

Callaway, J. 1994, At Dat Nuc Dat Tab 57, 9

Cameron, A.G.W., 1982, in *Essays in Nuclear Astrophysics*, ed CA Barnes, DD Clayton, & DN Schramm, (Cambridge Univ Press; London)

Canfield, R.C., & Puetter, R.C., 1980, ApJ 236, L7

Cardelli, J. A., 1994, Science 264, 209

Cardelli, J. A., et al. 1991, ApJ 377, L57

Carswell R.F. and Ferland, G.J. 1988, MNRAS 235, 1121

Castor, J.I., 1970, MNRAS 149, 111

Chaffee, F. H., & White, R. E., 1982, ApJ Sup. 50, 169

Chan, E.S., Avrett, E.H., & Loeser, R., 1991, A&A 247, 580

Chapman, R. D., & Henry, R.J.W., 1971, ApJ 168, 169

Chidichimo, M.C., 1981, J. Phys. B. 14, 4149

Clavel, J., & Santos-Lleo, M., 1990, A&A 230, 3

Clegg, R.E.S., 1987, MNRAS 229, 31p

Clegg, R.E.S., & Harrington, J.P., 1989, MNRAS 239, 869

Cohen, E.R., and Taylor, B.N., 1987, Rev Mod Phys 57, 1121

Cota, S.A., 1987, Ph.D. Thesis, OSU

Cota, S.A., & Ferland, G.J., 1988, ApJ, 326, 889

Cowie, L.L., & Songaila, A., 1986, ARAA 24, 499

CrinkLaw, G., Federman, S. R., & Joseph, C. L., 1994, Ap J 424, 748

Crosas, M., & Weisheit, J.C., 1993, MNRAS 262, 359

Cruddace, R., Paresce, F., Bowyer, S., & Lampton, M., 1974, ApJ 187, 497

Dalgarno, A., & Kingston, A. E., 1963, Observatory 83, 39

Dalgarno, A., & McCray, R.A., 1973, ApJ 181, 95

Dalgarno, A., & Roberge, W.G., 1979, ApJ 233, L25

Davidson, K., 1972, ApJ 171, 213

Davidson, K., 1975, ApJ 195, 285

Davidson, K., 1977, ApJ 218, 20

Davidson, K., & Netzer, H., 1979, Rep. Prog. in Physics 51, 715

Davidson, K., & Fesen, R.A., 1985, Ann. Rev. A&A 23, 119

Desert, F.-X., Boulanger, F., and Puget, J.L., 1990, A&A 237, 215

Dove, J.E., Rush, A., Cribb, P., & Martin, P.G., 1987, ApJ 318, 379

Dove, J.E., & Mandy, M.E., 1986, ApJ, 311, L93

Draine, B.T., 1978, ApJS 36, 595

Draine, B.T., & Lee, H.M., 1984, ApJ 285, 89

Draine, B.T., & Salpeter, E. E., 1979, ApJ 231, 77

Draine, B.T., & Sultin, B., 1987, ApJ 320, 803

Drake, S.A., & Ulrich, R.K., 1980, ApJS 42, 351

Elitzur, M., 1982, Rev. Mod. Phys 54, 1125

Elitzur, M., 1984, ApJ 280, 653

Elitzur, M. 1992, Astronomical Masers, Kluwer, Dordrecht

Elitzur, M., Ferland, G.J., Mathews, W.G., & Shields, G., 1983, ApJ 272, L55

Elitzur, M., & Ferland, G.J., 1986, ApJ 305, 35

Elvis, M. et al. 1994, ApJS 95, 1

Fabian, A. C., Pringle, J.E., & Rees M.J., 1976, MNRAS 175, 43

Federman, S. R., et al. 1993, ApJ 413, L51

Ferguson, J., Ferland, G.J., & A. K. Pradhan, 1995, ApJ 438, L55

Ferguson, J., & Ferland, G.J., 1997, ApJ 479 363

Ferguson, J.W., Korista, K.T., Baldwin, J.A., & Ferland, G.J., 1997, ApJ 487, 122

Ferland, G.J., 1977, ApJ 212, L21

Ferland, G.J., 1979, MNRAS 188, 669

Ferland, G.J., 1980a, MNRAS 191, 243

Ferland, G.J., 1980b, BAAS 12, 853

Ferland, G.J., 1980c, PASP 92, 596

Ferland, G.J., 1986, PASP 98, 549

Ferland, G.J., 1986, ApJ, 310, L67

Ferland, G.J., 1992, ApJ 389, L63

Ferland, G.J., 1993, ApJS 88, 49

Ferland, G.J., Baldwin J. A., Korista, K.T., Hamann, F., Carswell, R., Phillips, M., Wilkes, B., & Williams, R. E., 1996, ApJ 461, 683

Ferland, G., Binette, L., Contini, M., Harrington, J., Kallman, T., Netzer, H., Pequignot, D., Raymond, J., Rubin, R., Shields, G., Sutherland, R., & Viegas, S., 1995, in *The Analysis of Emission Lines*, Space Telescope Science institute Symposium Series, R. Williams & M. Livio, editors (Cambridge University Press)

Ferland, G.J., & Elitzur, M., 1984, ApJ 285, L11

Ferland, G.J., Fabian, A. C., & Johnstone, R.M., 1994, MNRAS 266, 399

Ferland, G.J. Korista, K.T. and Peterson, B.M., 1990, ApJ 363, L21

Ferland, G.J., Korista, K.T., Verner, D. A., and Dalgarno, A., 1997, ApJ 481, L115

Ferland, G.J., Lambert, D.L., Netzer, H., Hall, D. N. B., & Ridgway, S.T., 1979a, ApJ 227, 489

Ferland, G.J., Lambert, D.L., Slovak, M., Shields, G. A., & McCall, M., 1982, ApJ 260, 794

Ferland, G.J., & Mushotzky, R.F., 1982, ApJ 262, 564

Ferland, G.J., & Mushotzky, R.F., 1984, ApJ 286, 42

Ferland, G.J., & Netzer, H., 1979, ApJ 229, 274

Ferland, G.J., & Netzer, H., 1983, ApJ 264, 105

Ferland, G.J., Netzer, H., & Shields, G. A., 1979, ApJ 232, 382

Ferland, G.J., Peterson, B.M., Horne, K., Welsh, W.F., & Nahar, S.N., 1992, ApJ 387, 95

Ferland, G.J. & Persson, S. E., 1989, ApJ 347, 656

Ferland, G.J. & Rees, M.J., 1988, ApJ 332, 141

Ferland, G.J., & Shields, G. A., 1978, ApJ 226, 172

Ferland, G.J., & Shields, G. A., 1985, in *Astrophysics of Active Galaxies & Quasi-stellar Objects*, J.S. Miller, Ed.

Ferland, G.J., & Truran, J.W., 1981, ApJ 244, 1022

Ferland, G.J., Williams, R. E., Lambert, D. L., Shields, G. A., Slovak, M., Gondhalekar, P.M., & Truran, J.W., 1984, ApJ 281, 194

Field, G. B., 1965, ApJ 142, 431

Francis, P.J. 1993, ApJ 407, 519

Gaetz, T.J., & Salpeter, E. E., 1983, ApJS 52, 155

Garstang, R.H., 1958, MNRAS, 118, 57

Gavrila, M., 1967, Phys Rev 163, 147, also JILA Report #86, Sept 19, 1966

Ginzburg, V. I., & Syrovatskii, S.I., 1964, The Origin of Cosmic Rays, (Oxford: Pergamon)

Gould, R. S., 1978, ApJ 219, 250

Gredel, R., Lepp, S., & Dalgarno, A., 1987, ApJ 323, L137

Gredel, R., Lepp, S., Dalgarno, A., & Herbst, E., 1989, ApJ 347, 289

Greenhouse, M., et al. 1993, ApJS 88, 23

Grevesse, N., & Anders, E., 1989, *Cosmic Abundances of Matter*, AIP Conference Proceedings 183, p. 1, Ed. C. J. Waddington, (New York: AIP)

Grevesse, N. & Noels, A. 1993 in Origin & Evolution of the Elements, ed. N. Prantzos, E. Vangioni-Flam, & M. Casse (Cambridge Univ. Press, p. 15)

Guhathakurta, P., and Draine, B.T., 1989, ApJ 345, 230

Guilbert, P.W., 1986, MNRAS 218, 171

Guilbert, P., & Rees, M.J., 1988, MNRAS 233, 475

Habing, H.J., 1968, Bull. Astr. Inst. Netherlands 19, 421

Halpern, J. P., & Grindlay, J.E., 1980, ApJ 242, 1041

Hamann, F., & Ferland, G., 1992, ApJ391, L53

Hamann, F., & Ferland, G.J., 1993, ApJ 418, 11

Harrington, J. P., 1969, Ap J 156, 903

Harrington, J. P., 1973, MNRAS 162, 43

Heitler, W., 1954, The Quantum Theory of Radiation (Oxford: Oxford University Press)

Hjellming, R.M., 1966, ApJ 143, 420

Hollenbach, D., & McKee, C.F., 1979, ApJS 41, 555

Hollenbach, D., & McKee, C.F., 1989, ApJ 342, 306

Hubbard, E.N., & Puetter, R.C., 1985, ApJ 290, 394

Hummer, D.G., 1962, MNRAS 125, 21

Hummer, D.G., 1968, MNRAS 138, 73

Hummer, D.G., 1988, ApJ 327, 477

Hummer, D. G, Berrington, K. A., Eissner, W., Pradhan, A. K., Saraph H. E., Tully, J. A., 1993, A&A, 279, 298

Hummer, D.G., & Kunasz, 1980, ApJ 236, 609

Hummer, D.G., & Seaton, M.J., 1963, MNRAS 125, 437

Hummer, D.G., & Storey, P., 1987, MNRAS 224, 801

Hutchings, J.B., 1976, ApJ 205, 103

Ikeuchi, S., & Ostriker, J.P., 1986, ApJ 301, 522

Jackson, J. D., 1975, Classical Electrodynamics (New York: Wiley)

Janev, R.K., Langer, W. D., Post, D. E., & Evans, K., 1987, *Elementary Processes in Hydrogen–Helium Plasmas* (Springer--Verlag; Berlin)

Jenkins, E.B., 1987, in *Interstellar Processes*, D. Hollenbach & H. Thronson, Eds, (Dordrecht: Reidel), p.533

Johnson, L.C., 1972, ApJ 174, 227

Johnstone, R.M., Fabian, A. C., Edge, A. C., & Thomas, P.A., 1992, MNRAS 255, 431

Kallman, T.R., & McCray, R., 1982, ApJS 50, 263

Karzas, W.J., & Latter, R., 1961, ApJS 6, 167

Kaastra, J.S., & Mewe, R., 1993, A&AS 97, 443

Kato, T., 1976, ApJS 30, 397

Kellerman, K.I., 1966, ApJ 146, 621

Khromov, G.S., 1989, Space Science Reviews 51, 339

Kingdon, J.B., & Ferland, G.J., 1991, PASP 103, 752

Kingdon, J.B., & Ferland, G. J., 1993, ApJ, 403, 211

Kingdon, J.B., Ferland, G. J., & Feibelman, W.A., 1995, ApJ, 439, 793

Kingdon, J.B., & Ferland, G.J., 1995, ApJ 450, 691

Kingdon, J.B., & Ferland, G.J., 1996, ApJS 106, 205

Korista, K.T., & Ferland, G.J., 1989, ApJ 343, 678

Korista, K.T., Baldwin, J., and Ferland, G.J., 1997, ApJ in press

Krolik, J., McKee, C.M., & Tarter, C.B., 1981, ApJ 249, 422

Kurucz, R.L., 1970, SAO Special Reports 309

Kurucz, R.L., 1979, ApJS 40, 1

Kurucz, R.L., 1991, in *Proceedings of the Workshop on Precision Photometry: Astrophysics of the Galaxy*, A.C. Davis Philip, A.R. Upgren, & K.A. James (Davis, Schenectady), p 27

Kwan, J., & Krolik, J., 1981, ApJ 250, 478

Lambert, D.L., & Pagel, B.E.J., 1968, MNRAS 141, 299

La Franca, Franceshini, A., Cristiani, S., & Vio, R., 1995, A&A 299, 19

Lame N.J., and Ferland, G.J., 1991 ApJ 367, 208

Landini, M., & Monsignori Fossi, B., 1990, A&AS 82, 229

Landini, M., & Monsignori Fossi, B., 1991, A&AS 91, 183

Lanzafame, A. ., Tully, J. A., Berrington, K. A., Dufton, P. L., Byrne, P. B., & Burgess, A., 1993, MNRAS 264, 402

Laor, A., & Draine, B.T., 1993, ApJ 402, 441

Latter, W.B., & Black, J.H., 1991, ApJ 372, 161

Lea, S., & Holman, G., 1978, ApJ 222, 29

Lennon, D. J., & Burke, V.M., 1991, MNRAS 251, 628

Lenzuni, P., Chernoff, D.F., & Salpeter, E.E., 1991, ApJS 76, 759

Levich, E.V., & Sunyaev, R.A., 1970, Astrophy Let 7, 69

Lepp, S., & Shull, J.M., 1983, ApJ 270, 578

Lightman, A. P., & White, T.R., 1988, ApJ 335, 57

Lites, B.W., & Mihalas, D., 1984, Solar Physics 93, 23

Liu, X.-W., Storey, P.J., Barlow, M.J., & Clegg, R.E.S., 1995, MNRAS, 272, 369

Longair, M. S., 1981, High Energy Astrophysics, (Cambridge, Cambridge University Press)

Lotz, W., 1967, ApJS 14, 207

MacAlpine, G. M., 1971, ApJ 175, 11

Maguire, S., 1993, Writing Solid Code, Microsoft Press

Mallik, D.C.V., & Peimbert, M., 1988, Rev Mexicana 16, 111

Martin, P.G., 1979, Cosmic Dust (Oxford, Clarendon Press)

Martin, P.G., 1988, ApJS 66, 125

Martin, P.G., & Ferland, G.J., 1980, ApJ 235, L125

Martin, P.G., & Whittet, D.C.B., 1990, ApJ 357, 113

Masters, A. R., Pringle, J. E., Fabian, A. C., & Rees, M. J., 1977, MNRAS 178, 501

Mathews, W.G., Blumenthal, G. R., & Grandi, S.A., 1980, ApJ 235, 971

Mathews, W.G., & Ferland, G.J., 1987, ApJ 323, 456

Mathis, J. S., 1982, ApJ 261, 195

Mathis, J. S., 1985, ApJ 291, 247

Mathis, J. S. Rumpl, W., & Nordsieck, K.H., 1977, ApJ 217, 425

Mathis, J. S., & Wallenhorst, S.G., 1981 ApJ 244, 483

Matteucci, F., & Tornambe, A., 1987, A&A 185, 51

Matteucci, F., & Greggio, A., 1986, A&A 154, 279

Mendoza, C., 1983, in *Planetary Nebulae*, IAU Sym 103, D. R. Flower, Ed., p 143, (Dordrecht: Reidel)

Mihalas, D., 1972, Non-LTE Model Atmospheres for B & O Stars, NCAR-TN/STR-76

Mihalas, D., 1978, Stellar Atmospheres, 2nd Edition (W.H. Freeman: San Francisco)

Mihalszki, J. S., & Ferland, G. J., 1983, PASP 95, 284

Morrison, R., & McCammon, D., 1983, ApJ 270, 119

Morton, D. C., York, D. G., & Jenkins, E.B., 1988, ApJS 68, 449

Nahar, S.N., & Pradhan, A. K., 1992, ApJ 397, 729

Netzer, H., 1990, in *Active Galactic Nuclei, Saas-Fee Advanced Course 20*, Courvorsier, T.J.-L., & Mayor, M., (Springer-Verlag; Berlin)

Netzer, H., Elitzur, M., & Ferland, G.J., 1985, ApJ 299, 752

Netzer, H., & Ferland, G.J., 1984, PASP 96, 593

Neufeld, D. A., 1989, Harvard Research Exam

Neufeld, D. A., & Dalgarno, A., 1989, Phys Rev A, 35, 3142

Nussbaumer, H., & Storey, P.J. 1983, A&A 126, 75

Nussbaumer, H., & Storey, P.J. 1984, A&AS 56, 293

Nussbaumer, H., & Storey, P.J. 1986, A&AS 64, 545

Nussbaumer, H., & Storey, P.J. 1987, A&AS 69, 123

Oliveira, S., & Maciel, W.J., 1986, Ap&SS 126, 211

Oliva, E., Pasquali, A., and Reconditi, M., 1996, A&A 305, 210

Osterbrock, D. E., 1951, ApJ 114, 469

Osterbrock, D. E., 1989, Astrophysics of Gaseous Nebulae & Active Galactic Nuclei, University Science Press

Osterbrock, D. E., & Flather, E., 1959, ApJ 129, 26

Osterbrock, D. E., Tran, H.D., & Veilleux, S., 1992, ApJ 389, 305

Ostriker, J. P., & Ikeuchi, S., 1983, ApJ 268, L63

Pacholczyk, A.G., 1970, Radio Astrophysics (San Francisco: Freeman)

Palla, F., Salpeter, E. E., & Stahler, S. W., 1983, ApJ 271, 632

Peebles, P.J.E., 1971, *Physical Cosmology*, (Princeton U. Press; Princeton)

Peimbert, M., ApJ 150, 825

Pengelly, R.M., 1964, MNRAS 127, 145

Pequignot, D., 1986, Wordshop on Model Nebulae, (Paris: l'Observatoire de Paris) p363

Pequignot, D., & Aldrovandi, S.M.V., 1986, A&A 161, 169

Pequignot, D., Petitjean, P., and Boisson, C., 1991, A&A 251, 680

Peterson, J.R., Aberth, W., Moseley, J., & Sheridan, J., 1971, Phys Rev A, 3, 1651

Press W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P., 1992, *Numerical Recipes*, (Cambridge University Press; Cambridge)

Puetter, R.C., 1981, ApJ 251, 446

Puy, D., Alecian, G., Le Bourlot, J., Leorat, J., Pineau des Forets, G., 1993, A&A 267, 337

Raymond, J.C., Cox, D. P., & Smith, B.W., 1976, ApJ 204, 290

Rees, M.J., Netzer, H., & Ferland, G.J., 1989, ApJ 347, 640

van Regemorter, H., 1962, ApJ 136, 906

Rauch, T., 1997 A&A 320, 237

Rephaeli, Y., 1987, MNRAS 225, 851

Reilman, R.F., & Manson, S.T., 1979, ApJS 40, 815, errata 46, 115; 62, 939

Roberge, W.G., Jones, D., Lepp, S., & Dalgarno, A., 1991, ApJS 77, 287

Rossi, B., 1952, High-Energy Particles (New York; Prentice-Hall)

Rowan, T., 1990, Functional Stability Analysis of Numerical Algorithms, Ph.D. Thesis, Department of Computer Sciences, University of Texas at Austin

Rubin, R.H., 1968, ApJ 153, 671

Rubin, R.H., 1983, ApJ 274, 671

Rubin, R.H., Simpson, J.R., Haas, M.R., & Erickson, E.F., 1991, ApJ 374, 564

Rybicki, G. B., & Hummer, D. G. 1991, A&A, 245, 171

Rybicki, G. B., & Hummer, D. G. 1992, A&A, 262, 209

Rybicki, G. B., & Hummer, D. G. 1994, A&A, 290, 553

Rybicki, G. B., & Lightman, A.P., 1979, Radiative Processes in Astrophysics (Wiley, New York)

Sanders, D. B., et al. 1989, ApJ 347, 29

Saraph, H. E., 1970, J.Phys.B. 3, 952

Savage, B. D., and Sembach, K. R., 1996, ARAA 34, 279

Sciortino, S., et al., 1990, ApJ 361, 621

Scott, J.S., Holman, G.D., Ionson, J. A., & Papadopoulos, K., 1980, ApJ 239, 769

Schuster, A., 1905, ApJ 21, 1

Schutte, W.A., Tielens, A.G.G.M., and Allamandola, L.J., 1993 ApJ 415, 397

Schwarzschild, M., 1965, Structure & Evolution of the Stars, (New York: Dover)

Seaton, M.J., 1959, MNRAS 119, 90

Seaton, M.J., 1987, J.Phys. B 20, 6363

Sellmaier, F.H., Yamamoto, T., Pauldrach, A.W.A., & Rubin, R.H. 1996, A&A, 305, L37

Shine, R.A., & Linsky, J.L., 1974, Solar Physics 39, 49

Shull, J.M., 1979, ApJ 234, 761

Shull, J.M., & Van Steenberg, M. E., 1982, ApJS 48, 95

Shull, J.M., & Van Steenberg, M. E., 1985, ApJ 298, 268

Sellgren, K., Tokunaga, A.T., and Nakada, Y., 1990, ApJ 349, 120

Sikora, M., Begelman, M.C., & Rudak, B., 1989, ApJ, 341, L33

Simonyi, C., 1977, Meta-Programming: A Software Production Method, Thesis, Stanford University

Snow, T. P., & Dodger, S. L., 1980, ApJ 237, 708

Snow, T. P., & York, D. G., 1981, ApJ 247, L39

Snow, T.P., & Witt, A., 1996, ApJ 468, L65

Spitzer, L., 1948, ApJ 107, 6

Spitzer, L., 1962, Physics of Fully Ionized Gasses, (Interscience: New York)

Spitzer, L., 1978, Physical Processes in the Interstellar Medium, (Wiley: New York)

Spitzer, L., 1985, ApJ 290, L21

Spitzer, L., & Tomasko, M.G., 1968, ApJ 152, 971

Stecher, T.P., & Williams, D.A., 1967, ApJ 149, 29

Stoy, R.H., 1933, MNRAS 93, 588

Storey, P.J., 1994, A&A 282, 999

Storey, P.J., & Hummer, D. G., 1991, Comput. Phys. Commun. 66, 129

Storey, P.J., & Hummer, D. G., 1995, MNRAS 272, 41

Swings, P., & Struve, O., 1940, ApJ 91, 546

Tarter, C.B., & McKee, C.F., 1973, ApJ 186, L63

Tielens, A.G.G.M., & Hollenbach, D., 1985a, ApJ 291, 722

Tielens, A.G.G.M., & Hollenbach, D., 1985b, ApJ 291, 746

Tout, C.A., Pols, O.R., Eggleton, P.P. and Han, Z., 1996, MNRAS 281, 257

Turner, J., & Pounds, K., 1989, MNRAS 240, 833

Van Blerkom, D., & Hummer, D. G., 1967, MNRAS 137, 353

van Regemorter, H., 1962, ApJ 136, 906

Vedel, H., Hellsten, U., and Sommer-Larsen, J., 1994, MNRAS 271, 743

Vernazza, J.E., Avrett, E.H., & Loeser, C.B., 1981, ApJS 45, 635

Verner, D.A., Yakovlev, D.G., Band, I.M., & Trzhaskovshaya, M.B., 1993, Atomic Data Nuc Data Tables 55, 233

Verner, D.A., & Yakovlev, 1995, A&AS 109, 125

Verner, D.A., & Ferland, G.J., 1996, ApJS 103, 467

Verner, D. A., Ferland, G., Korista, K., & Yakovlev D. G., 1996, ApJ, 465, 487

Verner, D.A., Verner, K., & Ferland, G.J., 1996, Atomic Data Nuc Data Tables, 64, 1

Voronov, G.S., 1997, ADNDT 65, 1

Voit, G. M., 1991, ApJ 377, 1158

Vriens, L., & Smeets, A.H.M., 1980, Phys Rev A 22, 940

Watson, W. D., 1972, ApJ 176, 103

Weisheit, J.C., 1974, ApJ 190, 735

Weisheit, J.C., and Collins, L.A., 1976, ApJ 210, 299

Weisheit, J.C., & Dalgarno, A., 1972, Ap. Letters, 12, 103

Weisheit, J., Shields, G. A., & Tarter, C.B., 1981, ApJ 245, 406

Werner, K., & Heber, U., 1991, in *Stellar Atmospheres: Beyond Classical Models*, p 341, NATO ASI Series C, eds. L. Crivellari, I. Hubney, & D.G. Hummer, (Kluwer; Dordrect)

White, R. E., 1986, ApJ 307, 777

Wiese, W.L., Smith, M.W., and Glennon, B.M., 1966, NSRDS-NBS 4

Wilkes, B.J., Ferland, G.J., Truran, J., & Hanes, D., 1981, MNRAS 197, 1

Wilkes, et al 1994, ApJS 92, 53

Wilkinson, D.T., 1987, in *13th Texas Symposium on Relavistic Astronphysics*, M.P. Ulmer, ed., (World Scientific; Singapore), p209

Williams, R.E., 1967, ApJ 147, 556

Williams, R.E., 1992, ApJ 392, 99

Wills, B., Netzer, H., & Wills D., 1985, ApJ 288, 94

Winslow, A.M., 1975, Lawrence Livermore Lab. report UCID-16854

Wishart, A.W., 1979, MNRAS 187, 59p

Wolfire, M. G., Tielens, A., & Hollenbach, D., 1990, ApJ 358, 116

Worral et al 1987, ApJ 313, 596

Wyse, A. B., 1941, PASP 53, 184

York, D. G., Meneguzzi, M., & Snow, T. 1982, ApJ 255, 524

Xu, Y., & McCray, R., 1991, ApJ 375, 190

Zamorani, G., et al. 1981, ApJ 245, 357

Zycki, P.T., Krolik, J.H., Zdziarski, A.A., and Kallman, T.R., 1994, 437, 597

Zygelman, B., & Dalgarno, A., 1990, ApJ 365, 239

14. INDEX

	beta code, 402	charge transfer	numerical input, 20
– A–	Bethe-Block approximation,	heavy element, 135, 260	reading in, 414
absolute magnitude, 26	298	punching rates, 114	temperature conventions, 21
absolute magnitude	blackbody	statistical, 135	comments
command, 26	definition, 206	turning off, 133	input stream, 20
abundances	evaluated, 206	chemical composition	comparison calculations, 440
absolute defined, 50	blackbody command, 35	printed, 601	comphi.in
changing input order, 55	vary, 124	set, 51	input script, 465
command, 51	blister.in	Cloudy	compiling command, 128
default, 50	input script, 458	84 vs 80, 436	compiling stellar
depletion, 57	predictions, 444	90 vs 84, 434	atmospheres, 128
fluctuations, 56	blr.in	adding lines, 229	complo.in
ionic, 262	input script, 459	changes to code, 418	input script, 465
overview, 50	Bohr radius, 222, 308	date, 419	composition. see abundance
printed, 601	Boltzmann factor	flowchart, 414	Compton
reading from table, 56	continuum, 204	future improvements, 437	bound heating, 277
scale defined, 50	line, 213	history, 431	bound ionization, 238, 277
set, 51	Born approximation, 222	known modes, 437	cooling
starburst, 54	bound-free	mailing list, 401	calculated, 274
variables used, 423	opacity, 212	making a revision, 437	output, 606
abundances command, 51	Bowen OI, 266	revision history, 431	energy exchange
abundances starburst	brems.in	running 1 model, 402	accuracy, 275
command, 54	input script, 459	running a grid, 405	methods, 274
acceleration. see radiative	bremsstrahlung	search phase, 423	turning off, 133
acceleration acceleration	continuum, 36	setting up, 1	heating
adding lines, 229	cooling, 277	size, 431	calculated, 274
adding models together, 411,	heating, 277	source versions, 402	output, 606
412	opacity, 212	version numbers, 419	ionization, 134
	bremsstrahlung command, 36	cloudy.ini file, 21, 132	temperature, 275
adiabatic cooling. see	brightness temperature, 604	co-adding many models, 411,	output, 603
expansion cooling	broken code, 419	412	timescale
age	broken code, 419	coding conventions, 416	
checking, 65	– C–	broken code, 419	output, 617
printing, 98	_	_	compton.in
age command, 11, 65	calcium, 267	changes to code, 418	test input, 466
agn command, 32	Cameron abundances, 52	characters, 418	computer
albedo	carbon, 263	integers, 417 logical variables, 418	Cray, 401 Exemplar, 136
punch	carbon fully molecular,	real numbers, 417	•
cloud, 107	stopped because of, 609	routine descriptions, 419	Sparcstation, 401
gas, 112	casea.in	•	conserv.in
Alfvén velocity, 86	input script, 460	sanity checks, 418	input script, 466
alpha code, 402	casebn2.in	strong typing, 417	constant density command, 59
alpha ox	input script, 461	test code, 419 collion.for	constant gas pressure command, 59
printed, 602	casebn8.in		,
setting, 31	input script, 461	input script, 464	constant pressure command,
aluminum, 267	casec.in	collision rate, 222	59
apparent helium abundance,	input script, 462	detailed balance, 236	constant temperature
616	caunot, 410	ionization, 259	command, 82
arbitrary density law, 60	cautions	collision strengths	continue command, 20
assign statement in VMS, 43	checks, 4	averaging, 224	continuous heavy element
Atlas 1991 atmospheres, 45	printed, 611	defined, 221	opacity, 269
atlas.in	routine to print, 410	g-bar, 222	continuum
input script, 457	cdColm, 408	column density, 420	agn, 32
atomic data references, 418	cdDriv, 407	effective	arrays, 203
atomic mass, 214	cdEms, 408	defined, 90	binning, 202, 260
atomic weight, 214, 262	cdGett, 412	printout, 616	changing, 129
Auger effect, 258, 263	cdInit, 406	ionized, 90	Boltzmann factor, 204
averaging over terms, 224	cdIonf, 408	neutral, 90	cell width, 204
D	cdLine, 407	total, 90	changing resolution, 203
– B–	cdNoex, 407	printed, 605	described, 202
background	cdNwcns, 409	command	diffuse, 6, 204
cosmic, 34, 36, 37	cdOutp, 406	comments, 20	printed, 98
cosmic ray, 84, 298	cdRead, 406	continue option, 20	punched, 105
background command, 34	cdTalk, 407	example, 21	diffuse printed, 621
bangot, 410	cextra command, 82	format, 18	emission, 240
Be-sequence cooling, 284	changes to code, 418	line length, 19	energy bounds, 202

	11. 445	1 1 045	1 1.101
energy pointer, 203	history, 115	molecules, 245	drive pointers command, 131
fluoresence, 218	hydrodynamic, 277	output, 604	drive starburst command, 132
frequencies saved, 203	hydrogen lines, 279	mass, 421	drive.for
frequency array, 203	hydrogen recombination,	molecules, 245	input script, 471
generation, 205	233	particle, 421	dumping
high energy limit, 136, 202	induced, 278	power-law, 63, 64	line, 228
incident	low energy continuum, 33,	range, 13	dust. see grain
defined, 6	34, 39	structure	dyn, 302
punched, 106	map, 84, 86, 97	output, 613	E
incident printed, 621	n level atoms, 282	structure saved, 422	– E–
intensity	numerical derivatives, 138	table entered, 61	eden command, 132
specifying, 25	plot, 97	total particle, 303	eden.in
ionization edge pointers,	printout, 98, 615	wind law, 304	input script, 472
203	punch, 108	density per particle, 421	Einstein coefficients, 215
low energy limit, 202	recombination, 233, 278	departure coefficients	electron
luminosity	tests, 286	hydrogen, 231	adding extra, 132
specifying, 25	three level atoms, 281	printing, 98	density
mesh defined, 202	two level atoms, 281	depletion factors, 57	evaluated, 421
normalization, 206	cooling flow continuum, 41	depth	saved, 421
occupation number, 204,	corners4.for	defined, 7	mean speed, 85
232, 239, 603	input script, 469	derivative	non-thermal secondaries,
opacity, 209	coronal equilibrium	cooling, 285	305
optical depth, 205	command, 83	heating, 286	
OTS, 204, 208	coronal.in	numerical heating, cooling,	secondary ionization, 305
outward, 204	input script, 468	138	supra-thermal, 305
,			temperature. see
outward only, 209	cosmic ray, 82, 83, 86	destruction probability, 217	temperature
outward punched, 107	background, 84, 298	hydrogen, 232	element
PDR, 27	command, 83	line	abundances stored, 262
photon flux, 204	physics, 297	complete, 218	chemical symbols, 262
plasma frequency, 212	range, 297	dielectronic recombination	ionization stage symbols,
pointers, 203	cosmic ray command, 83, 298	3rd and 4th row elements,	262
printing, 98	cosmology	130	names, 263
range, 33, 202	distance, 307	Burgess, 130	periodic table, 258
reflected, 204	covering factor	Nussbaumer and Storey, 130	element table command, 56
defined, 7	command, 65	dielectronic recombination	elements command, 54
printed, 98	computational details, 424	command, 130	vary, 124
resolution, 129	defined, 8	diffuse fields	elements read command, 55
shape commands, 33	geometric, 424	defined, 6	emission line list, 626
specify, 2	radiative transfer, 425	evaluated, 204	emission measure, 616
summed, 205	sphere option, 68	punching source function,	end of input stream, 19
surface brightness, 623	covering factor command, 65	115	end of line characters, 19
transmitted	Cray, 401	test case, 474	energy density
defined, 6	critical density, 223	transfer, 71	gas, 302
convergence	cyclotron cooling, 85	diffuse fields command, 71	energy density command, 27
tracing, 117	cylinder command, 66	diffuse OTS command, 71, 208	equivalent width
conversion factors, 207	cymiaer commana, oo	diffuse outward command, 71,	computing, 621
coolcurve.for, 427	– D–	209	escape probability
input script, 467		dilution factor, 36	
coolhii.in	damping constant	_	heavy element, 225
	defined, 217	dissociation energy	helium, 256
input script, 470	stored, 217, 226	H-, 245	hydrogen, 232
predictions, 441	density	H2, 245	line, 216
cooling	arbitrary law, 60	H2+, 245	complete, 217
adiabatic, 277	commands, 59	distance	incomplete, 217
balance, 84, 87	constant, 59	from redshift, 307	maser, 218
Be-sequence atoms, 284	constant gas pressure, 59	dlaw command, 60	routines, 216
bremsstrahlung, 277	constant total pressure, 59	Doppler width	escape probability command,
collisional, 279	cosmic ray, 83, 297	computed, 214	71
Compton, 116, 133, 134, 274,	electron	double optical depths	excitation energy, 213
277, 606	evaluated, 421	command, 71	excitation temperature, 228
cyclotron, 85	limiting, 91	dqher.in	Exemplar, 136
definition, 273	output, 604	input script, 470	expansion cooling, 277
derivative, 285	energy, 35	predictions, 453	extinguish command, 36
error, 616	fluctuations, 61	drive command, 131	e e
evaluation, 285	globule law, 62	drive escape probabilities, 131	– F–
expansion, 277	H-, 246	drive fread, 131	f(nu) command, 27
extra, 82	LTE, 245	drive gaunt factor command,	fabden, 60
free-free, 277, 278	H2	131	Fe II atom
grain, 73, 293, 294, 606	LTE, 245	drive hyas command, 131	command, 72
H-, 279	hydrogen, 28, 59	drive molecules command,	punching intensities, 112
heavy elements, 280	LTE, 231	131	Fe II command, 72
neary elements, 200	LIL, WUI	101	re ii command, 12

CH: . C			
filling factor, 66, 69, 304, 606,	specify, 2, 3	grain, 73, 290, 292, 293, 294,	recombination coefficients,
616	spherical, 4, 7, 68, 80, 611	606 H-, 279	256
defined, 8, 67 filling factor command, 66	thick shell, 7, 611 wind, 7, 69, 221, 617	heating array, 285	recombination efficiency
vary, 124	globule command, 62	history, 115	punching, 114 singlets, 255
fine structure lines, 225	globule.in	hydrogen lines, 279	statistical weight, 240
fireball command, 37	input script, 473	line, 286	triplets, 255
floating point errors, 401, 429	glossary	low energy continuum, 33,	helium collisions command,
flowcharts, 414	routines, 692	39	76
Cloudy, 414	symbols, 308	map, 84, 86, 97	hemis.in
ionte, 415	Go continuum, 28	neutron, 87	input script, 474
MainCl, 414	gold code, 402	numerical derivatives, 138	hextra command, 85
PIonte, 414	grain, 289	photoelectric, 278, 613	high temperature approach
TauInc, 415	absorption efficiency factor,	plot, 97	command, 85
fluc.in	290	print, 99, 116	highn.in
input script, 472	agb, 74	printout, 615	input script, 475
fluctuations command, 56, 61	area, 290	punch, 108	HII region abundances, 52
fluorescence	collisional charging, 292	quantum grain, 80	hiiregions.for
continuum, 218	drift velocity, 293	secondaries, 135	input script, 476
yields, 263	dust to gas ratio, 74	structure saved, 421	hizlte.for
flux	exist?, 295	tests, 286	input script, 477
converting to luminosity,	extra species, 74	total, 605, 616	hizqso.in
623	gas cooling, 294	evaluated, 286	input script, 478
force temperature command,	gas heating, 294	heavy element	Hungarian naming
84	gray, 74	abundances stored, 262	convention, 416
free-free	heating and cooling, 293	adding lines, 229	hydrodynamic cooling, 277
cooling, 277	HII Hegion, 74	atomic weights, 262	hydrogen
H-, 279	ionic recombination, 134,	Auger ejection, 258, 263	2s 2p collisions turned off,
emission, 240	295	charge transfer, 260	133
gaunt factor, 114, 212	ISM, 73	chemical symbols, 262	balance equations, 236
heating, 277	opacity, 289	collisional ionization, 259	Boltzmann factors, 231
H-, 279	punching, 112	depletion, 57	collisional ionization, 236
opacity, 212	Orion, 74	FeII atom, 72	collisional rate equations,
free-free cooling	PAH, 74	fluorescence yields, 263	236
plasma frequency, 278 fudge factors command, 132	photoelectric emission, 290 planetary nebula, 74	ionization pointers, 260, 263 ionization potentials, 260	collisions turned off, 77 column density, 90
rudge factors command, 132	potential, 292	ionization stored, 262	continuum pointer, 232
– G–	quantum heating, 80	labels for lines, 228	density, 28, 59, 62
	specifying, 72	limits, 16	LTE, 231
gas albedo	temperature, 294	line pointers, 226	saved, 421
punched, 107, 112	variables, 295	line transfer, 225	departure coefficient, 231
energy density, 302	grains command, 72	molecules, 253	destruction probability, 232
equation of state, 302	grey1.opac, 74	names, 263	emission, 240
heat content, 302	grid0.for	number of subshells, 261	escape probability, 232
mass density, 421	input script, 474	opacity offsets, 260	H-, 246
opacity	• •	overview, 257	H2, 250
punching, 111	– H–	photoionization cross	HeH+, 250
particle density, 421	H II region abundances, 52	section, 258	induced recombination, 237
pressure, 59, 303	Habing radiation field, 27	photoionization rates	ionization energies, 231
gaunt factor	Hartree, 207	stored, 263	ionization processes, 108
drive command, 131	Hazy	punching opacity, 112	ionization solution, 236
free-free, 114, 212	printing, 438	punching pointers, 113	level energies, 231
g-bar approximation, 222	hden command, 62	recombination	level populations punched,
geometry	vary, 124	dielectronic, 259	108
closed, 9, 68, 613	heating	grain surface, 295	levels command, 77
closed expanding, 221	balance, 84, 87	radiative, 259	line intensities, 623
closed static, 221	bound Compton, 277	reliability, 271	line pointer, 232
cylindrical, 7	bremsstrahlung, 277	shell number, 263	lowest temp command, 77
definition, 7	collisional ionization, 278	TauLines subdirectory, 229	matrix inversion routines,
details, 419	Compton, 116, 133, 134, 274,	helium	77
disk, 65	277, 603, 606	continuum pointers, 256	molecules, 245
ionized from both sides, 71	continuum, 202	escape probability, 256	negative ion, 246
matter-bounded, 9, 89, 91	cosmic ray, 84, 297, 298	ion, 255	number of levels, 77
open, 3, 8, 68, 76, 80, 221,	definition, 273	line pointer, 256	oscillator strengths, 232
613	derivative, 286	printout	overview, 14
plane parallel, 7, 67, 611	evaluated, 285	ionization, 606	populations punched, 108
plane parallel vs spherical,	extra, 82, 85, 607	lines, 614	radiative rate equations, 237
34, 65	fine structure lines, 225, 280	punching, 108	recombination coefficients,
printed, 611	free-free, 134, 277, 278, 616	radiative transfer, 256	233, 238
radiation-bounded, 10, 89			elements defined, 236

recombination cooling, 233 source function, 216 electron, 85 - Lrecombination efficiency spectroscopic designation, metals command, 56 l(nu) command, 28 punching, 114 vary, 124 labels for lines, 228 Milne relation, 233, 240 statistical weight, 231, 240 surface brightness, 623 lalpha.in three body recombination, thermalization length, 223 molecular weight, 421 input script, 482 trace, 116 molecules, 16, 243 laser command, 39 transfer flowchart, 415 top off, 78 drive command, 131 laser1.in transition probabilities, 232 wavelength convention, 626 heavy element, 253 input script, 482 driving, 131 width, 214 hydrogen, 245 laser2.in turning off 2s 2p collisions, wind geometry, 221 printed, 607 input script, 483 line cooling. see cooling Moore's Law, 431 133 laser3.in turning off collisions, 77 liner.in input script, 484 -Ninput script, 485 hydrogen command, 76 ldl.in linpack routines, 77 naming convention, 416 input script, 484 - Iloop. see infinite loop negative line intensities, 615 level 1 line, 225, 227 illuminate command, 67 LTE negative mole abundance, level 2 line, 225, 227 illuminated face, 7 H- density, 245 stopped because of, 609 levels H departure coefficient, 231 induc in neon, 266 averaging, 224 H level population, 231 input script, 478 neutron line induced emission probability, H2 density, 245 heating, 87 adding to line arrays, 229 lte.in neutrons command, 87 input script, 485 induced recombination, 237 ngc5548.in printing, 228 infinite loop. see unending ltemetl.in input script, 487 array punched, 109 input script, 486 nitrogen, 265 loop asymmetries, 622 luminosity init command, 21, 132 nlr.in beaming, 622 converting to flux, 623 initialization command, 21, input script, 487 Boltzmann factor, 213 132 distance, 307 predictions, 451 closed expanding geometry, initialization file, 21, 132 sun. 308 no 2p2s command, 133 luminosity command, 25, 29 inner radius, 8 no Auger effect command, 133 closed static geometry, 221 input line. see command vary, 124 no charge transfer command, continuum contrast, 622 intensity command, 25, 27 continuum pumping – M– vary, 124 no Compton effect command, contribution, 625 interpolate command, 38 machine environment, 401 133 correction for stimulated interstellar radiation field, 41 magnesium, 266 no feii pumping command, emission, 213 ionic abundnaces, 262 magnetic field data punched, 110 ionization parameter cyclotron cooling, 85 no fine structure command, dumping, 228 command, 28 pressure, 86 133 energy pointer, 203 ionization potential magnetic field command, 85 no free free heating command, equivalent width, 621 density, 260 magnitude escape probability, 216 absolute, 26 elements, 260 no grain neutralization excitation temperature, 228 pointers, 260 visual, 26 command, 134 fine structure heating, 225, ionte MainCl no induced processes 280 flowchart, 415 flowchart, 414 command, 134 heating, 286 no molecules command, 134 iron, 268 map hydrogen escape number of steps, 138 Fe II atom. 72 no on the spot command, 134 probability, 232 ISM abundances, 52 no photoionization command, output, 428 infrared defined, 225 ism.in plot map command, 97 134 intensities punch output, 111 input script, 479 no radiation pressure with grains, 624 isobaric, 59 map command, 86 command, 134 label isochoric, 59 map.in, 426 no recoil ionization command, generating, 228 input script, 486 isoelectronic sequence, 263 134 punching, 110 Martin, P.G. no scattering opacity iterate command, 78 level 1, 225, 227 added lines, 97 iteration command, 80 level 2, 225, 227 print sort, 102 last, 423 no secondary ionization list. 626 variables, 422 maser command, 135 masing, 280 no Stark broadening correction for stimulated open geometry, 221 _ J_ emission, 213 command, 135 optical depth, 213 no three body recombination Jeans length, 307, 617 escape probability, 218 optical depth arrays, 221, command, 135 Jeans mass, 307, 617 mass AMU. 308 no vary command, 119, 135 optical depth printing, 101 -Kelectron, 308 normalize command, 4, 95 output, 634 Jeans', 308 noteot, 410 kk.in outward, 204 proton, 308 notes input script, 480 pointer, 203 sun, 309 checks, 4 predictions, 454 radiation pressure, 298 mass density, 421 printed, 611 kmt.for, 427 maximum printed, 616 kmt.in matchn2.in routine to print, 410 printed, 605 input script, 487 nova.in input script, 481 stop, 608 matrix inversion routines, 77 input script, 488 K-shell energy limit, 137 redistribution function, 227 matter-bounded geometry, 9 nuf(nu) command, 29 Kurucz 1991 atmospheres, 45 reflected, 204 nul(nu) command, 30 mean speed

numerical input. see	intensity, 121	– P–	heavy element continua, 260
command	iterations, 121	PAH grains, 74	heavy element lines, 227
- 0-	lines, 121 luminosity, 121	Paris	power law command, 39 vary, 124
observed quantities, 621	no vary command, 119	H II region, 442, 492	power law continuum, 42
occupation number	Powell method, 122	NLR, 493	pressure
array, 204	Press et al codes, 119	planetary nebula, 493 parishii.in	compared, 86
continuum, 220, 239, 603	punch, 122	input script, 492	constant, 59, 134
defined, 204	range of variation, 122	predictions, 442	gas, 59
hydrogen, 232	subplex method, 123	parisnlr.in	total, 59
pumping rate, 216 summed continuum, 205	tolerance, 123 trace flow, 123	input script, 493	convergence, 303 dynamic, 303
OI fluorescense, 266	trace starting at xx, 123	predictions, 449	gas, 4, 59, 303, 606, 607
oldblr.in	variables, 127	parispn.in input script, 493	getting from code, 409
input script, 488	optimize column density	predictions, 446	instability, 60, 70, 608
opacity, 209	command, 120	parsec, 309	integrated continuum, 303
absorption array, 205	optimize increment command, 120	particle density, 303, 421	magnetic, 60, 86 printed, 607
arrays, 209 background line, 217	optimize intensity command,	path	punching, 114
bound-free, 212	121	setting, 138	radiation, 4, 68, 70, 78, 134,
free-free, 212	optimize iterations command,	PDR continuum, 27 pdr.in	303, 605, 606, 607, 616
heavy element continuous,	121	input script, 494	ram, 303
269	optimize lines command, 121	Peimbert temperature	total, 59, 302, 607
permited line, 215	optimize luminosity command, 121	fluctuations, 617	printed, 607 turbulent, 60, 81, 303
pointers, 209 punching, 111	optimize Powell, 122	periodic table, 258	units. 302
punching negative, 137	optimize punch command,	phfit command, 138	variables and routines, 303
Rayleigh scattering, 211	122	phi(h) command, 30 vary, 124	primal.in
scattering array, 205	optimize range command, 122	photoerosion, 617	input script, 495
stimulated emission, 213	optimize subplex command,	photoionization	print ages command, 98
optical depth	123 optimize tolerance command,	cross sections, 258	print all command, 97 print arrays command, 98
arrays, 221 closed geometry, 221	123	subshell, 112	print arrays command, 98
commands, 70	optimize trace flow, 123	version, 138	print coolants command, 98
continuum, 205, 212	optimize trace start command,	fluorescence yields, 263 rates evaluated, 210	print departure coefficients
convergence, 78	123	rates punched, 109	command, 98
correction for stimulated	optimizing the spectrum, 118	rates stored, 263	print errors command, 99
emission, 213	Orion abundances, 52 orion.in	turning off, 134	print every command, 99
double, 71 filling factor, 67	input script, 489, 490	physical conditions	print faint command, 99 print heating command, 99
grain, 290	orionpdr.in	punching, 114	print last command, 99
helium, 256	input script, 491	PIonte flowchart, 414	print line all command, 100
hydrogen, 232	oscillator strength, 213	Planck function. see	print line collisions command,
incremented, 205	absorption, 214	blackbody	100
line, 213 line center, 213	emission, 214 OTS fields	computed, 115	print line heat command, 100 print line inward command,
line center vs mean, 214	described, 208	plane parallel geometry, 7	100
mean vs line center, 214	punching, 112	planetary nebula abundances, 52	print line optical depths
open geometry, 221	output	plasma frequency, 212	command, 100
output, 618	apparent helium	free-free cooling, 278	print line pump command,
outward	abundance, 616	plot	100
first estimate, 215 later updates, 215	cautions, 611 comments, 611	continuum, 96	print line sum command, 101 print off command, 101
test for definition, 215	continuum, 620	map, 97	print on command, 101
printing, 101	emission lines, 612	opacity, 96 printed, 612	print only command, 101
sphere, 68	header, 601	publication quality, 95	print optical depths
stimulated emission, 213	line, 634	range options, 96	command, 101
stopped because of, 609	map, 428 notes, 611	plot command, 95	print quiet command, 102 print short command, 102
stopping, 90, 92 updated, 205, 422	Peimbert, 617	plot continuum command, 96	print sort command, 102
wind, 69, 221	redirection, 406	plot map command, 97	print starting at command,
optical to X-ray ratio, 31, 602	surprises, 611	plot opacity command, 96 pnots.in	102
optim.in	warnings, 611	input script, 494	proper distance, 307
input script, 489	wavelength convention, 626	pointers	punch
optimize amoeba method, 120	zone, 604 outward-only approximation,	generating, 203	_dr_, 114 _raw continuum, 107
column density, 120	209	H continua, 232	abundances, 104
convergence criteria, 123	oxygen, 265	H lines, 232 He continua, 256	charge transfer, 114
example, 119		He lines, 256	continuum, 104
increment, 120		,	continuum bins, 105

107	number of 114	.JT.11. 407	No.+DD 69 490
convergence, 107	punched, 114	cdTalk, 407	NextDR, 62, 420
cooling, 108	wind, 605	cfit, 259	nockon, 305
diffuse continuum, 105	radius	chIonLbl, 228	noteot, 410
emitted continuum, 106	defined, 7	chLineLbl, 228	oilevl, 266
file name, 103	inner, 8	Cloudy, 414	opac0, 209
gammas, 109	saved, 422	coladd, 281	p8446, 266
heating, 108	sun, 309	ColStrGBar, 223	phfit, 258
helium, 108	radius command, 67	conorm, 206	PIonte, 303, 414
hydrogen conditions, 108	vary, 125	conpmp, 131	Plankf, 115, 206
hydrogen ionization, 108	range option, 25	Convloniz, 415	presur, 303, 304, 414
			•
hydrogen populations, 108	ratio command, 31	coolr, 82, 277, 285	PrintElem, 424
incident continuum, 106	rauch.in	csphot, 209	PrtGamma, 210
initial unit, 137	input script, 495	descriptions, 419	PunCool, 108
interactive continuum, 106	Rayleigh scattering, 13, 68, 77,	dgeco, 77	PunHeat, 108
ionizaton structure, 108	211, 302, 619	dgesl, 77	PutCS, 230
ionizing continuum, 106	reading commands with fillar,	diffem, 204	PutLine, 230
ip, 109	414	dmpary, 98	radinc, 205, 303
line	reageo, 410	DoPunch, 102	rdfile, 74
contrast, 622	recombination	drvary, 414	reageo, 410
lines	arrays, 236	DumpLine, 228	rrfit, 259
		•	,
array, 109	coefficients, 236	eina, 215	SetCon, 136
contrast, 104, 138	helium, 256	EinstA, 131, 232	SetPoint, 202, 263, 274
cumulative, 109	punching, 114	eovrlp, 217	SumContinuum, 205
data, 110	cooling, 233	esccom, 216	SumCool, 285, 286
intensity, 110	efficiency, 236	escinc, 216	SumHeat, 286
labels, 110	punching, 114	escla, 216	tauff, 278
structure, 110	grain surface, 295	escmase, 216, 218	TauInc, 415, 420
map, 111	hydrogenic, 233, 236	esum, 421	tauout, 215
* '	induced, 237	fabden, 60	TestCode, 419
opacity, 111			
OTS, 112	modifying dielectronic, 130	ffun, 205	TexcLine, 228
outward continuum, 107	radiative rates, 259	ffun1, 205	tfidle, 421, 422
overview, 113	three body, 135	fill, 129, 202	TotalPressure, 303, 307, 421
PDR, 113	redirecting output, 406	fillar, 414	update, 79, 205, 215, 422,
physical conditions, 114	redshift	flcsub, 62	429
pointers, 113	distance, 307	fosc, 232	veclib, 77
pressure, 114	reflector.in	freeht, 277	velset, 214
recombination coefficients,	input script, 495	fudge, 132	warnot, 410
114	plotted, 7, 622	gamfun, 210	wgadd, 411
reflected continuum, 107	reliability, 16	gamk, 210	wginit, 411
	9	C	e e e e e e e e e e e e e e e e e e e
reserved, 103	revision history, 431	GetPunch, 102	wgline, 411
results	rnfa.in	gffsub, 212	zonsrt, 419, 422
command, 113	input script, 496	GrnVryDpth, 75	routine glossary, 692
using, 412	predictions, 455	hcolst, 231	routine names, 685
source function, 115	rnfb.in	HCTIon, 260	routine naming convention,
special, 115	input script, 497	HCTRecom, 260	685
tegrid, 115	predictions, 456	HeTran, 256	running Cloudy, 402
TPredictor command, 115	routine	highen, 274, 277	Rydberg unit, 206
transmitted continuum, 107	abscf, 213	hjbar, 232	ny aberg ann, 200
Verner, 112	AddOpac, 209	hmole, 245, 295	– S–
	_ *		
punch command, 102	bangot, 410	hrcf, 235	Saha equation
punch output, 102	beseq, 284	htrans, 232, 238	arbitrary species, 243
0	BiDiag, 272	HydroCool, 277	ions, 244
– Q–	bnfun, 210	HydroPesc, 232	molecular hydrogen, 245
Q(H) command, 30	boltgn, 204, 414	ionte, 414, 415	secndary.in
vary, 124	broken, 419	ipConSafe, 203	input script, 497
qheat command, 80	caunot, 410	ipLinSafe, 203	secondary ionization
quiet mode	cdColm, 408	ipoint, 203	physics, 305
setting, 102, 407	cdDriv, 407, 414	ipShells, 263	routines, 305
setting, 102, 407	cdEms, 408	level2, 281	
– R–			setting rate, 135
	cdErrors, 410	level3, 281	test case, 497
radiation pressure, 303	cdGetPres, 409	LevelN, 282	turning off, 135
line, 298	cdGett, 113, 412	LimitSh, 261	variables, 305
maximum printed, 616	cdGetTe, 409	linpack, 77	set command, 135
printed, 605	cdInit, 406, 414	MainCl, 414	charge transfer, 135
stop, 608	cdIonf, 408	MakeCharTran, 260	colimt, 135
radiation-bounded	cdLine, 407	MakeRT, 225	csupra, 135
	cdNoex, 407	MakeStatRT, 225	didz, 136
geometry, 10	cdNwcns, 409	MakeWindRT, 225	
radiative acceleration			dr, 136
computed, 301	cdOutp, 406	matin1, 77	drmax, 136
printed, 607	cdRead, 406	metdif, 204	drmin, 136

D JW 1 : 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A .1 45	. 400
DstWght, 136	column density reached, 610	Atlas, 45	conserv.in, 466
EdenError, 136	criteria discussed, 89	Kurucz, 44	coolcurve.for, 427, 467
Exemplar, 136	dr small rel to thick, 609	Mihalas, 44	coolhii.in, 470
flxfnt, 136	drad small, 609	Werner, 48	corners4.for, 469
iPunDef, 137	highest Te reached, 610	table command, 40	coronal.in, 468
	0		
kshell, 137	internal error, 610	table stars command	dqher.in, 470
negopc, 137	line ratio reached, 610	vary, 125	drive.for, 471
nend, 137	low electron fraction, 608	TauInc	eden.in, 472
nmaps, 138	lowest EDEN reached, 608	flowchart, 415	fluc.in, 472
numerical derivatives, 138	lowest Te reached, 610	temperature	globule.in, 473
		•	
path, 138	negative mole abundan, 609	blackbody, 35	grid0.for, 474
phfit, 138	nzone reached, 610	brightness, 604	hemis.in, 474
PunchLWidth, 138	optical depth reached, 609	Compton, 275	highn.in, 475
test, 139	outer radius reached, 610	output, 603	hiiregions.in, 476
trace, 139	radiation pressure, 608	constant electron, 82	hizlte.for, 477
	reason, 608	coronal equilibrium, 83	_
trim, 139		•	hizqso.in, 478
tsqden, 139	temperature out of bounds,	cosmic ray, 84	induc.in, 478
WeakHeatCool, 140	610	electron	ism.in, 479
setting the path, 138	wind velocity $< 0,608$	output, 604	kk.in, 480
shell number, 263	stop column density	energy density, 35	kmt.for, 427
			_
shielded face, 7	command, 90	output, 603, 606	kmt.in, 481
size of code, 431	vary, 125	excitation, 228	lalpha.in, 482
Sobolev approximation, 304	stop eden command, 91	failure, 84, 427	laser1.in, 482
solar luminosity, 308	stop efrac command, 91	fireball, 34, 37	laser2.in, 483
solar mass, 309	stop line command, 91	fluctuations, 617	laser3.in, 484
solar radius, 309	•	force. 84	ldl.in, 484
	stop optical depth command,		_ ′
sound travel time, 616	92	getting from code, 409	liner.in, 485
source function	stop temperature command,	grain, 73, 294	lte.in, 485
punching continuum, 115	93	output, 606	ltemetl.in, 486
Sparcstation, 401	stop thickness command, 93	high approach, 85	map.in, 426, 486
spectral index	vary, 125	history, 115	matchn2.in, 487
alpha ox, 31	stop zone command, 94	hydrogen low limit, 77	ngc5548.in, 487
incident continuum, 31, 602	Stoy ratio, 101	input format, 21	nlr.in, 487
transmitted continuum, 617	strom.in	jumps, 428	nova.in, 488
speed	input script, 498	last, 422	oldblr.in, 488
electron, 85	strong typing, 417	line excitation, 228	optim.in, 489
			•
sphere	structure variables, 421	LTE limit, 286	orion.in, 489, 490
approximations used, 68	style conventions for coding,	Lyα excitation, 606	orionpdr.in, 491
static vs expanding, 9	416	map, 86	parishii.in, 492
sphere command, 3, 68	subroutine	map plot, 97	parisnlr.in, 493
spherical geometry, 7	use as a, 404	mean grain	parispn.in, 493
	,		
sphericity ratio, 420	sun	output, 618	pdr.in, 494
sqrden.in	luminosity, 308	multi-phase, 428	pnots.in, 494
input script, 498	mass, 309	predictor punched, 115	primal.in, 495
stability	radius, 309	proposed, 422	rauch.in, 495
thermal, 273, 604	supra-thermal ionization. See	range, 13	reflector.in, 495, 622
starburst abundances, 54, 132	secondary ionization	saved, 422	rnfa.in, 496
Stark broadening, 219	surface brightness	stability, 428	rnfb.in, 497
statistical weight	computing, 623	stellar atmosphere, 45	secndary.in, 497
electron, 231	surprises	stop command, 93	sqrden.in, 498
H-, 245	checks, 4	t2, 617	strom.in, 498
H2, 245	printed, 611	tolerance, 87	varyN.for, 499
	•		· ·
H2+, 245	routine to print, 410	unstable, 604	varyNU.for, 500
helium, 240	TT.	variables, 422	vbhum.in, 501
Ho, 245	– T–	terms	werner.in, 502
hydrogen, 240	t ² analysis, 139	averaging, 224	wind.in, 502
line, 227	table	test code, 419	thermal maps. see map
nuclear ignored, 231			
Ü	agn, 40	tests	creating, 97
stellar atmospheres	akn 120, 41	atlas.in, 457	thermal stability, 273, 604
Atlas91, 45	Atlas, 45	blister.in, 458	thermalization length, 223
compiling, 128	cooling flow, 41	blr.in, 459	thick shell geometry, 7
Kurucz, 44	crab, 41	brems.in, 459	three body recombination, 135
			three level atoms, 281
Mihalas, 44	density law, 61	casea.in, 460	
Werner, 48	ISM radiation field, 41	casebn2.in, 461	time dependent command, 11,
stimulated emission	Kurucz, 44	casebn8.in, 461	87
optical depths corrected for,	Mihalas, 44	casec.in, 462	timescale
213	power law, 42	collion.for, 464	age command, 65
	•		Compton, 617
stop	read, 43	comphi.in, 465	
cabon fully molecular, 609	Rubin, 44	complo.in, 465	photoerosion, 617
code returned busted, 609	star	compton.in, 466	sound travel, 616

thermal, 617 csigc, 274 hcbolt, 231 ipLnGu, 227 HCharExcIon, 260 title command, 115 csigh, 274 ipLnHeat, 227, 281 csupeff, 306 HCharExcRec. 260 tolerance command, 87 ipLnInten, 227, 280 csupra, 135, 305 HCionT. 232 trace command, 116 ipLnInwd, 226, 227 trace convergence command, CTHion, 260 hcont, 233 ipLnIonStg, 227 CTHrec, 260 HCTMin, 135 ipLnIpCont, 227 117 ctot, 285 ipLnNelem, 227 trace output, 116 hdamp, 217 transition probability, 215 dampln, 217 HdeltaT, 232 ipLnNPhots, 227, 280 averaging, 224 darea, 296 hden, 15 ipLnOpac, 227 driving hydrogenic, 131 densty, 307, 421 ipLnOTS, 227, 280 hdest, 232 turbulence, 82, 214, 607 depabs, 205 he1dmp, 217 ipLnPopl, 226, 227, 280 setting, 81 deplon, 424 he1lim, 256 ipLnPopOpc, 226, 227, 280 velocity, 81 depsct, 205 he1rec, 256 ipLnPopu, 226, 227, 280 turbulence command, 81 depset, 423, 424 he1stat, 240 ipLnPump, 226, 227 depth, 609 two level atoms, 281 he1tau, 256 ipLnRedis, 227 destroy, 272 he2dmp, 217 ipLnRyd, 227 – U– he2lim, 256 didz, 136 ipLnTauCon, 226, 227 diffus, 105, 204 he2rec, 256 ipLnTauIn, 226, 227 unending loop. see loop he2stat, 240 ipLnTauTot, 226, 227 dlaw, 61 Unix path, 138 dmetal, 57, 424 he2tau, 256 ipLnWlAng, 226, 227 doppler, 214 he3n, 255 ipLyHeavy, 261 – V– drad, 419, 609 heatef, 305 ipSecIon, 305 dReff, 420, 422 iPunDef, 137 V filter, 26 heating, 285 drnxt, 420 heatnt, 285 iter, 79, 414, 422 van Regemorter itermx, 79, 422 dsize, 296 heatstr, 421 approximation, 222 dstab, 295 helax, 306 itoptm, 121 variable dstab1, 295 hemis, 232 ItrDim, 93, 94, 422 abnset, 424 dstdft. 295 HEnrRyd, 232 KshellLimit, 137 alogete, 422 dstfac. 296 hesc. 232 ldDoPhoto, 415 alogte, 422 dston1, 295 hfrcin, 232 LevTrace, 139 amu, 262 dstpot, 295 hgamnc, 237 lgAbnSolar, 424 AngleIllum, 67 lgAutoIt, 79 dstq, 295 hiistr, 421 anu, 203, 275 dstsc, 295 HIonPot, 207 lgDustOn, 295 anuSave, 203 dstsc1, 295 histr, 421 lgElmtOn, 55, 423 AtomicWeight, 214, 262 DstWght, 136 hlax, 306 lgFluor, 134 autocv, 79, 429 hlbolt, 231 lgLastIt, 423 avdft, 295 dustp, 295 dVeff. 420, 422 hlte, 231 lgOpacOn, 423 bit32, 401 dwork, 296 HNIonRyd, 232 lgOptimFlow, 123 boltzmann, 207 called, 414 e2tau, 205 hrec, 236, 238 lgPHFIT, 138 eden, 421 hreff, 134 lgSearch, 423 cdsqte, 421 EdenError, 136, 421 hstat, 231, 240 lgTauOutOn, 215 cextpw, 82 edensgte, 421 htau, 232 lgTestOn, 139 cextra, 82 EdenTrue, 421 htlim, 232 lgVarOn, 127 ch2pls, 420 ednstr. 421 htnext, 232 limfal, 84, 427 character, 418 eev, 295 htot, 286 limLevelN, 282 chargt, 272 in equations, 418 chContLabel, 203 efionz, 305 limpar, 119 efrend, 91 integers, 417 limpun, 102 chDate, 419 limspc, 23, 38 egamry, 202 ipElement, 260 chDffTrns, 71 emm, 202 iphe1l, 256 limTabD, 56, 61 chehp, 420 en1ryd, 207 iphe2l, 256 lmhlvl, 77 chElementSym, 262 logical, 418 endedn, 91 ipHeavy, 261 chElNames, 263 EnergyKshell, 137 iphl, 232 mxstpl, 92 chheat, 275 ipLnAovTOT, 227, 280 eVdegK, 207 naming convention, 416 chi. 420 evRyd, 207 ipLnAul, 227 nAtlas, 130 chii, 420 exctef, 305 ipLnBolt, 227 ncell. 202 chIonStage, 262 exptau, 205 ipLnColovTOT, 227 ndplot, 95 chLineLabel, 203 ndpts, 296 facexp, 205 ipLnCont, 227 chmin, 420 ffheat, 277 ipLnCool, 227, 280 ndust, 295 chOptRtn, 127 floating, 417 ipLnCS, 227 nend, 137, 423 chVersion, 419 cmcool, 275 flong, 62 ipLnCS1, 223, 226, 227 nflux, 202 nh. 232 flux, 107, 204, 275 ipLnCS2, 226, 227 colden, 420 FluxFaint, 136 ipLnDamp, 227 nhe1, 256 colh2, 420 flxfnt, 202 ipLnDampRel, 226, 227 nhe2, 256 colimt, 135, 609 ipLnDesP, 226, 227 getpar, 412 nhe3lvl, 255 collid, 306 condif, 204 gionrc, 295 ipLnDTau, 227 nhlvl, 77 grmetl, 57 ipLnEnrErg, 227 nkrd, 19, 406 cooling, 285 halfte, 285 ipLnEnrWN, 227 nmaps, 87, 111, 138 corind, 204 covgeo, 65, 424 hbn, 231 ipLnEscP, 226, 227 nobslm, 121 hbrems, 277 ipLnGF, 227 nparm, 127 covrt, 65, 425 hbul. 232 ipLnGl, 227 npass, 422 create, 272

326

		TI to EVD 000	
npunlm, 109, 111	real, 417	TLineEXP, 229	gray grains, 74
nRauch, 130	RecomRate, 272	tmn, 210	PAH grains, 74
nsShells, 261	refcon, 106, 204	tsq1, 285	PN nuclei, 48
nta, 225	reflin, 204	tsqden, 139	quantum grain heating, 80
nterp, 39	rinner, 419	varang, 123, 127	stellar atmospheres, 45, 128
ntff, 278	rmr0, 420	vformt, 127	table density law, 61
nupper, 202	router, 420	vincr, 120, 127	
nvarxt, 127	sab, 295	volstr, 422	– W–
nvary, 127	scalem, 424	vparm, 127	warnings
nvfpnt, 127	scatop, 205, 209	vtoler, 123	checks, 4
nWerner, 130	scmpla, 306	WavNKelv, 207	printed, 611
nzdump, 98	seccmp, 306	WavnNRyd, 207	routine to print, 410
nzlim, 421	seche, 306	WeakHeatCool, 140	warnot, 410
nzone, 414, 422	sechi, 306	widflx, 204	warnot, 410 wavelength
occnum, 204	secmet, 306	WindData, 225	O
opac, 205, 209	smetla, 306	wmole, 307, 421	output convention, 626
•			wavenumber, 222
ophe1f, 256	solar, 423	x12, 135, 305	Werner atmospheres, 48
ophe2f, 256	SolarSave, 423	xIonFracs, 262, 424	werner.in
ophf, 236	sqabs, 295	yield, 263	input script, 502
opsv, 209	sqscat, 295	variable naming convention,	wgadd, 411
otscon, 107, 204, 209	sse, 296	416	wginit, 411
otslin, 107, 204, 209	struc, 421	varyN.for	wgline, 411
otsmin, 134	sublimat, 294	input script, 499	wind, 304, 605
outcon, 107, 204	SummedCon, 205	varyNU.for	density vs radius, 304
outlin, 107, 204	SummedDif, 205	input script, 500	line transfer, 304
pden, 303, 421	SummedOcc, 205	vbhum.in	wind command, 69
pdenstr, 422	tauabs, 205	input script, 501	wind.in
perror, 303	TauDmmy, 281	veclib routines, 77	input script, 502
pestrk, 232	TauLines, 225	velocity	r r -,
pgas, 303	taumin, 221	Alfvén, 86	– X–
ph2lte, 245	tausct, 205	Doppler, 81	X-ray to optical ratio, 31, 602
phmlte, 245	tautot, 205	electron, 85	A-ray to optical ratio, 31, 002
PhotoRate, 263	te, 422	mean speed, 85, 292	– Z–
phplte, 245	te1ryd, 207	stored, 214	
pinteg, 303	tedust, 296	thermal, 81, 214	zone
pirsq, 420	tehigh, 93	turbulent, 81	attenuation, 209
pnow, 303	telogn, 422	Verner	defined, 4
•		Fe II atom, 72	limiting number, 18
PopLevls, 281, 284	telow, 93, 139	*	output, 604
prad, 303	tend, 139	version numbers, 419	stopping, 94
PresInit, 303	TeProp, 422	VMS	thickness, 419
presok, 303, 414	testr, 422	assign statement, 43	setting, 136
PunchLWidth, 104, 138, 622	tfail, 414	path, 138	variables, 422
r1r0sq, 420	tff, 278	Voigt function, 214	
radius, 419	tlast, 422	Volk, Kevin	
radstr, 422	TLineARR, 229	grain extra species, 74	