allFill_Kvary

December 20, 2017

1 Varying the carrying capacity across the landscape matrix

Number of simulations: 1000
Number of generations: 500
Creation probability: NA
Bottleneck proportion: NA

The results here relate to simulations that were run where the carrying capacity was varied across the landscape. The matrix was completely full from the outset and thus there are no colonization dynamics or founder effects. This was done at varying migration rates, as shown below. The carying capacity was varied from 1000 at the "rural" end, declining linearly to a carrying capacity of 10 at the "urban" end. The other parameters in the simulations were as follows:

```
• pA and pB: 0.5
   • Migration rate: varied from 0 to 1.0
In [2]: library(ggplot2)
       library(grid)
       library(data.table)
       library(Rmisc)
       library(dplyr)
Loading required package: lattice
Loading required package: plyr
data.table + dplyr code now lives in dtplyr.
Please library(dtplyr)!
Attaching package: dplyr
The following objects are masked from package:plyr:
    arrange, count, desc, failwith, id, mutate, rename, summarise,
    summarize
The following objects are masked from package:data.table:
    between, first, last
The following objects are masked from package:stats:
    filter, lag
```

```
intersect, setdiff, setequal, union
In [3]: #Working directory for datasets varying migration rate and bottleneck proportion
        setwd('/Users/jamessantangelo/Documents/Academia/Doctorate_PhD/Projects/SEC_Simulating.e
        volutionary.clines/SEC_Data/summary-datasets/allFill_Kvary')
        #Dataset with mean and proportions across all 1000 simulations
       Kvary_Mig_Summary <- fread('20171106_Kvary-WithMig_SlopeSummaryGen_distRev.csv', header</pre>
        = T)
       Kvary_Mig_Summary$Mig_rate <- as.factor(as.character(Kvary_Mig_Summary$Mig_rate))</pre>
        #Dataset with slope and P-value every generation every simulation
       KVary_Mig_Coefs <- fread('20171106_Kvary-WithMig_Coef_distRev.csv', header = T)</pre>
Read 19500000 rows and 6 (of 6) columns from 0.996 GB file in 00:00:12
In [152]: # Dataset used for plotting distribution of slopes in dominant allele clines. No
         Migration. Generation 250
         Coefs_pA_NoMig_Gen250 <- subset(KVary_Mig_Coefs, id == "pA" & Mig_rate == 0 & Generation
         == 250)
         # Dataset used for plotting distribution of slopes HCN clines. No Migration. Generation
         Coefs_Cyan_NoMig_Gen250 <- subset(KVary_Mig_Coefs, id == "Cyan" & Mig_rate == 0 &
         Generation == 250)
         # Dataset used for plotting change in mean slope and proportions with increasing
         Kvary_Mig_Summary_Cyan <- subset(Kvary_Mig_Summary, id == "Cyan" & Mig_rate %in% c("0",</pre>
         "0.001", "0.0025", "0.005", "0.01", "0.02", "0.035", "0.05"))
         Kvary_Mig_Summary_Cyan$prop_sigPos[Kvary_Mig_Summary_Cyan$prop_sigPos == 1.000] <- 0.0</pre>
         # Dataset used for plotting change in mean slope and proportions with varying migration
         Kvary_Mig_Summary_250 <- subset(Kvary_Mig_Summary, Generation == 250)</pre>
In [5]: str(KVary_Mig_Coefs)
Classes data.table and 'data.frame': 19500000 obs. of 6 variables:
          : chr "Cyan" "Cyan" "Cyan" "Cyan" ...
$ Mig_rate : num 0 0 0 0 0 0 0 0 0 ...
              : int 0000000000...
$ Sim
$ Generation: int 1 2 3 4 5 6 7 8 9 10 ...
 $ estimate : num 9.47e-05 1.30e-03 1.28e-03 6.23e-04 9.50e-04 ...
 $ p.value : num 0.00827 0.09663 0.12777 0.51763 0.37218 ...
 - attr(*, ".internal.selfref")=<externalptr>
In [2]: #Themes used for plotting
       ng1=theme(aspect.ratio=0.7,panel.background = element_blank(),
                 panel.grid.major = element_blank(),
                 panel.grid.minor = element_blank(),
                 panel.border=element_blank(),
                 axis.line.x = element_line(color="black",size=1),
                 axis.line.y = element_line(color="black",size=1),
                 axis.ticks=element_line(color="black"),
                 axis.text=element_text(color="black",size=15),
                 axis.title=element_text(color="black",size=1),
                 axis.title.y=element_text(vjust=2,face="bold",size=15),
                 axis.title.x=element_text(vjust=0.1,face="bold",size=15),
```

The following objects are masked from package:base:

```
axis.text.x=element_text(size=13),
          axis.text.y=element_text(size=13),
          legend.position = "right", legend.direction="vertical",
          legend.text=element_text(size=11), legend.key = element_rect(fill = "white"),
          legend.title = element_text(size=13,face="bold"),legend.key.size = unit(0.5,
"cm"))
ng1.45=theme(aspect.ratio=0.7,panel.background = element_blank(),
          panel.grid.major = element_blank(),
          panel.grid.minor = element_blank(),
          panel.border=element_blank(),
          axis.line.x = element_line(color="black",size=1),
          axis.line.y = element_line(color="black",size=1),
          axis.ticks=element_line(color="black"),
          axis.text=element_text(color="black",size=15),
          axis.title=element text(color="black".size=1).
          axis.title.y=element_text(vjust=2,face="bold",size=15),
          axis.title.x=element_text(vjust=0.1,face="bold",size=15),
          axis.text.x=element_text(size=13,angle=45,hjust=1),
          axis.text.y=element_text(size=13),
          legend.position = "right", legend.direction="vertical",
          legend.text=element_text(size=11), legend.key = element_rect(fill = "white"),
          legend.title = element_text(size=13, face="bold"), legend.key.size = unit(0.5,
"cm"))
```

1.1 Distribution of slopes for allele and phenotype clines

For each simulation (n = 1000), I ran a linear model examining the change in either the frequency of either dominant allele with distance from the starting population or the frequency of HCN with distance. These models have different predictions: for clines in the dominant alleles at either locus, we expect on average half to go up and half to go down whereas for clines in HCN we expect the majority to go up (i.e. positive, loss of HCN across space) due to the duplicate ressecivity underlying the phenotype.

We can start to get at these predictions by looking at the distribution of the slopes from the different models. Note that the distribution of slopes is plotted when migration is 0. **First, we look** at the distribution of slopes from models examining the change in the frequency of Ac with distance. As predicted, approximately half are positive and half are negative. Blue shading represents significant clines.

We find the same thing for the *Li* allele. Results not shown For clines in the frequeny of HCN, however, the majority of the slopes are negative and there are no significantly positive slopes. The mean slop is also negative

1.2 Mean slope with migration

Here I looked at how the mean slope of allele clines and HCN clines changed with migration.

Migration had no effect on the mean slope of clines in *Ac* or *Li*. However, increasing migration resulted in HCN clines with slopes closer to 0. This is consistent with migration homogenizing alleles and flatenning out clines.

```
"#FF3721", linetype = "dashed") + ng1.45
MeanSlope_Cyan_byGen
```


1.3 Effects of migration on proportion of negative and positive clines

Here I look at how migration affects the proportion of significantly negative and positive clines in the *Ac* and *Li* alleles and in HCN clines.

Positive clines: Less HCN in urban environment (i.e. loss of HCN across space) **Negative clines**: More HCN in urban environment (i.e. gain in HCN across space)

Increasing migration decreased the proportion of significantly positive clines in HCN, again consistent with the homogenizing effects of migration. In contrast, migration had little effect on the proportion of positive allele clines, although there seems to be a slight increase in the proportion with increasing migration.

```
prop_sigNeg,
    shape = factor(id), fill = factor(id))) +
    geom_errorbar(aes(ymin = prop_sigNeg - ci_sigNeg, ymax = prop_sigNeg + ci_sigNeg),
width=0.15, size = 0.7,
    position = position_dodge(width = 0.55)) +
    ylab("Proportion sig. negative clines") + xlab("Migration rate") + geom_point(size =
3.5, color = "black",
    position = position_dodge(width = 0.55)) +
    scale_shape_manual(labels = c("Cyan", "pA", "pB"), values=c(21, 22, 23)) +
    scale_fill_manual(labels = c("Cyan", "pA", "pB"), values=c("black", "white",
"grey"))
NegClines_Mig_Type + ng1.45
```



```
geom_errorbar(aes(ymin = prop_sigPos - ci_sigPos, ymax = prop_sigPos + ci_sigPos),
width=0.15, size = 0.7,
   position = position_dodge(width = 0.55)) +
    ylab("Proportion sig. positive clines") + xlab("Migration rate") + geom_point(size =
3.5, color = "black",
   position = position_dodge(width = 0.55)) +
   scale_shape_manual(labels = c("Cyan", "pA", "pB"), values=c(21, 22, 23)) +
   scale_fill_manual(labels = c("Cyan", "pA", "pB"), values=c("black", "white",
"grey")) +
   coord_cartesian(ylim = c(0, 0.4)) + scale_y_continuous(breaks = seq(from = 0, to =
0.4, by = 0.05)) +
   labs(shape = "HCN/Allele", fill = "HCN/Allele") + ng1.45
PosClines_Mig_Type
```



```
geom_line(size = 0.5, aes(color = Mig_rate)) +
coord_cartesian(xlim = c(0, 500)) + scale_x_continuous(breaks = seq(from = 0, to =
500, by = 50)) +
labs(color = "Migration rate") +
geom_vline(data = Kvary_Mig_Summary_Cyan, xintercept = 250, size = 1, colour =
"#FF3721", linetype = "dashed") + ng1.45
PropSigPos_Cyan_byGen
```



```
In [157]: #Extra columns that will be used to create melting dataset for plotting proportion of
    positive and negative slopes
    SlopeSum_Melt_Mig <- dplyr::select(Kvary_Mig_Summary_250, id, Mig_rate, prop_sigPos,
        ci_sigPos, prop_sigNeg,
        ci_sigNeg)
    SlopeSum_Melt_Mig <- SlopeSum_Melt_Mig %>%
        filter(id == "Cyan")

#Melt dataframe
dm1 <- melt(SlopeSum_Melt_Mig[c("Mig_rate", "prop_sigPos", "ci_sigPos", "id")],</pre>
```

```
id=c("Mig_rate", "ci_sigPos", "id"))
         #Rename columns
         setnames(dm1, old = "ci_sigPos", new = "ci")
         setnames(dm2, old = "ci_sigNeg", new = "ci")
         #Merge melted dataframes
         SlopeSum_Melt_Mig <- rbind(dm1, dm2)</pre>
In [156]: \#Plot proportion of significant slopes by migration rate
         PropSig_Mig <- ggplot(SlopeSum_Melt_Mig, aes(x = factor(Mig_rate), y = value,</pre>
             shape = variable, fill = variable)) +
             geom_errorbar(aes(ymin = value - ci, ymax = value + ci), width=0.15, size = 0.7,
             position = position_dodge(width = 0.55)) +
            ylab("Proportion sig. slopes") + xlab("Migration rate") + geom_point(size = 3.5,
         color = "black",
             position = position_dodge(width = 0.55)) +
             scale_shape_manual(labels = c("Positive", "Negative"), values=c(22, 23)) +
             scale_fill_manual(labels = c("Positive", "Negative"), values=c("white", "black")) +
             scale_y\_continuous(breaks = seq(from = 0, to = 1.0, by = 0.05)) +
             labs(shape = 'Cline direction', fill = 'Cline direction')
         PropSig_Mig + ng1.45
```



```
In [31]: path = "/scratch/research/projects/trifolium/SEC_Simulation.Evolutionary.Clines/SEC_Sync
    /SEC_Figures/Drift.Migration/Mig_Bot_Vary"

# ggsave("PropSig_Mig.pdf", plot = PropSig_Mig, device = "pdf", width = 6.0, height =
6.0, path = path, dpi = 600)

# ggsave("HistSlopes_pA_NoMig.pdf", plot = HistSlopes_pA_NoMig, device = "pdf", width =
6.0, height = 6.0, path = path, dpi = 600)

# ggsave("HistSlopes_HCN_NoMig.pdf", plot = HistSlopes_Cyan_NoMig, device = "pdf", width
= 6.0, height = 6.0, path = path, dpi = 600)

# ggsave("MeanSlope_Mig_Type.pdf", plot = MeanSlope_Mig_Type, device = "pdf", width =
6.0, height = 6.0, path = path, dpi = 600)

ggsave("MeanSlope_Mig_Type.pdf", plot = MeanSlope_Mig_Type, device = "pdf", width = 6.0,
height = 6.0, path = path, dpi = 600)

ggsave("PropSig_Mig.pdf", plot = PropSig_Mig, device = "pdf", width = 6.0, height = 6.0,
path = path, dpi = 600)
```