Colas de Prioridad

Guillermo Palma

Universidad Simón Bolívar Departamento de Computación y T.I.

CI-2612: Algoritmos y Estructuras II

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 1 / 26

Plan

- Heaps
- Colas de Prioridad

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 2 / 26

Definiciones

Heap

Es una estructura de árbol binario que almacena una colección de claves y tiene las siguientes dos propiedades:

- Todas las hojas en el mismo nivel y todas los nodos internos tienen grado 2, excepto posiblemente por el último nivel, el cual es construido de izquierda a derecha.
- Propiedad del Heap:
 - Para un Max-heap la clave de un nodo x es menor o igual a la clave del padre, esto es $Parent(x) \ge x$
 - Para un Min-heap la clave de un nodo x es mayor o igual a la clave del padre, esto es $Parent(x) \le x$,

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 4 / 26

Heaps

Max-heap

Para todos los nodos x, excepto la raíz, se cumple que $Parent(x) \ge x$

Figura: Ejemplo de un Max-heap

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 5 / 26

Min-heap

Para todos los nodos x, excepto la raíz, se cumple que $Parent(x) \le x$

Figura: Ejemplo de un Min-heap

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 6 / 26

Heaps

Representación de un Heap

- Se puede representar como un arreglo
- La raíz es A[1]
- Padre de $A[i] = A[\lfloor i/2 \rfloor]$ (Parent $(i) = \lfloor i/2 \rfloor$)
- Hijo izquierdo de A[i] = A[2i] (LEFT(i) = 2i)
- Hijo derecho de A[i] = A[2i + 1] (RIGHT(i) = 2i + 1)
- Altura del heap A ≤ length(A)

Figura: Ejemplo de un Max-heap. Fuente [1]

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 7 / 26

MAX-HEAPIFY

- Procedimiento que mantiene las propiedades de un Heap
- Sea un nodo i más pequeño que su hijo:
 - Los subárboles izquierdo y derecho de *i* son Max-heaps
 - Intercambia con el hijo más grande
 - Mover la clave hacia bajo del heap
 - Continuar hasta que no haya ningún nodo sea más pequeño que su hijo

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 8 / 26

Heaps

Ejemplo de MAX-HEAPIFY

Figura: Llamada MAX-HEAPIFY (A, 2, 10). a) A[2] viola la propiedad del Heap. b) A[4] viola la propiedad del Heap. c) Se cumple la propiedad del Max-heap. Fuente [1]

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 9 / 26

Procedimiento MAX-HEAPIFY

Procedimiento MAX-HEAPIFY(A, i, n)

inicio

```
I \leftarrow \text{LEFT}(i);

r \leftarrow \text{RIGHT}(i);

\textbf{si} \ I \leq n \ y \ A[I] > A[i] \ \textbf{entonces}

\lfloor \text{largest} \leftarrow I;

\textbf{en otro caso}

\lfloor \text{largest} \leftarrow i;

\textbf{si} \ r \leq n \ y \ A[r] > A[\text{largest}] \ \textbf{entonces}

\lfloor \text{largest} \leftarrow r;

\textbf{si} \ \text{largest} \neq i \ \textbf{entonces}

\lfloor \text{SWAP}(A[i], A[\text{largest}]);

\text{MAX-HEAPIFY}(A, \text{largest}, n);
```


10 / 26

G. Palma Colas de Prioridad CI-2612 sep-dic 2019

Heaps

Tiempo del peor caso de MAX-HEAPIFY

- Se recorre el camino más largo de la raíz a la hoja
- En cada nivel se hace dos comparaciones
- O(Altura del heap), esto es O(log n)

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 11 / 26

Sobre las Colas de Prioridad

- Tipo abstracto de datos que contiene a un conjunto de elementos identificados con una clave, en donde los elementos son requeridos por el orden de sus claves.
- El elemento con más clave más grande (o pequeña) es requerido primero
- Soporta las operaciones de insertar, eliminar el máximo (mínimo), obtener el máximo (mínimo), e incrementar clave.
- Ejemplos de usos de las Colas de Prioridad:
 - El planinificador de procesos de un OS, tiene una cola de prioridad para permitir el acceso al CPU al proceso de mayor prioridad
 - Se usan en los algoritmos para determinar el árbol mínimo cobertor
 - Se usan en los algoritmos para determinar caminos de costo mínimo
- Posible implementaciones:
 - Como un arreglo
 - Como una lista enlazada
 - Como un Max-Heap (o Min-Heap)

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 13 / 26

Colas de Prioridad

Operaciones de las Colas de Prioridad

Dada una representación de una Cola de Prioridad como un conjunto ordenado S, en donde nos interesa obtener el elemento mayor de S se tienen las siguientes operaciones:

- INSERT(S, x): Incluye un elemento con clave x en el conjunto S
- MAXIMUM(S): Obtiene el elemento x con la clave más grande
- INCREASE-KEY(S, x, k): Incrementa la clave del x en el conjunto S, con la nueva clave k
- EXTRACT-MAX(S): Elimina el elemento con la clave más grande de S

Vamos a suponer que se implementa una Cola de Prioridad como un Max-Heap.

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 14 / 26

HEAP-MAXIMUM

Función HEAP-MAXIMUM(A)

inicio

retornar A[1]

HEAP-MAXIMUM es O(1)

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 15 / 26

Colas de Prioridad

Ejemplo de HEAP-MAXIMUM

Figura: En este Max-Heap se tiene que HEAP-MAXIMUM retorna 7

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 16 / 26

HEAP-EXTRACT-MAX

- Extrae el elemento con clave más grande del Max-Heap
- Intercambia el elemento raíz con el último elemento
- Se decrementa el tamaño del Max-Heap
- Se llama a MAX-HEAPIFY para arreglar el valor de la nueva raíz

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 17 / 26

Colas de Prioridad

Ejemplo de HEAP-EXTRACT-MAX

Figura: Se extrae el elemento 16 del Max-Heap

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 18 / 26

Función HEAP-EXTRACT-MAX

Función HEAP-EXTRACT-MAX(A)

inicio

```
si A.heapSize < 1 entonces

L retornar error heap underflow

max ← A[1];

A[1] ← A[A.heapSize];

A.heapSize ← A.heapSize − 1;

MAX-HEAPIFY (A, 1);

retornar max
```

HEAP-EXTRACT-MAX es $O(\log n)$

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 19 / 26

Colas de Prioridad

HEAP-INCREASE-KEY

- Se incrementa una clave existente en el conjunto
- Se chequea si la nueva clave viola las propiedades del heap.
- Si se violan entonces se atraviesa el árbol hasta la raíz o hasta encontrar la posición correcta para la nueva clave

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 20 / 26

Ejemplo de HEAP-INCREASE-KEY

Figura: Se incrementa la clave 4 a 15 en el Max-Heap

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 21 / 26

Colas de Prioridad

Procedimiento HEAP-INCREASE-KEY

Procedimiento HEAP-INCREASE-KEY(A, i, key)

inicio

```
si key < A[i] entonces

\bot error la nueva clave es menor

A[i] \leftarrow key;

mientras i > 1 \land A[PARENT(I)] < A[i] hacer

\bot SWAP (A[i], A[PARENT(i)]);

i \leftarrow PARENT(i);
```

HEAP-INCREASE-KEY es $O(\log n)$

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 22 / 26

MAX-HEAP-INSERT

- Se quiere insertar un elemento nuevo en la Cola de Prioridad
- Se aumenta el tamaño del Max-Heap en una unidad
- Se agrega al final del Max-Heap una hoja con clave menos infinito
- Se usa el procedimiento HEAP-INCREASE-KEY para incrementar la clave con menos infinito, con el valor que se quiere insertar

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 23 / 26

Colas de Prioridad

Ejemplo de MAX-HEAP-INSERT

Insert value 15: - Start by inserting -∞

8 (15) 9 3 2 4 1 7 Increase the key to 15
Call HEAP-INCREASE-KEY on A[11] = 15

The restored heap containing the newly added element

Figura: Se inserta la clave 15 en el Max-Heap

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 24 / 26

Procedimiento MAX-HEAP-INSERT

Procedimiento MAX-HEAP-INSERT(A, key)

inicio

 $A.heapSize \leftarrow A.heapSize + 1$; $A[A.heapSize] \leftarrow infinitoNegativo$; HEAP-INCREASE-KEY(A, A.heapSize, key)

MAX-HEAP-INSERT es $O(\log n)$

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 25 / 26

Referencias

T. Cormen, C. Leirserson, R. Rivest, and C. Stein. *Introduction to Algorithms*.

McGraw Hill, 3ra edition, 2009.

G. Palma Colas de Prioridad CI-2612 sep-dic 2019 26 / 26