Some consequences of mod p multiplicity one for Shimura curves Andrea Dotto

Outline (1) local-global compatibility for complete Car.
(2) Categorical mod p Larglands for non-split
inner-forms of GL2(Rp).

Notations F/Q tot real, deg=f.

p inert in F.

coeff: E/Qp finite. E=0 -> k.

wv: infin place of F.

D/F quadernion, non-split at all infin places

except possibly cov.

=> Either Dp > M2(Qp) or division algebra

(split) (non-split).

· When Dos is Split (indefinite)

Xn = Shinura curve of tame level K and

Kp = Kn = per(GL2(OFp) -> GL2(OFp/p^n))

Or 1+ MDp.

Define Tn = Het(Xn × FF, k) and T = Lim, Tn.

· When Do is non-split (definite)

Let The = Space of mod p modular form D*(AF)

of level KKn and TT = Ling Trn.

Then T has commuting action of Dp & Hecke algorithms T= k[Tv, Si | v s.t. Kir hyperspecial].

and Golf in the indef case.

Expectation Let m, m' be max'l ideals of T

s.t. TI[m], TI[m'] are nonzero.

Assume that rm, rm: Galf -> Glz(k) satisfy.

rm|Galfp = rm: |Galfp

(and K' is minimal for m and m'.)

Then TI[m] = TI[m'] as Pp-rep'n.

Partial results Assume Dp is split.

no, no non-Eisenstein S.t. rm. tm. satisfy

Taylor-Wiles assumption.

If rm/colfp = rmiloulip sufficiently generic, then

(1) Socciop Tm = Socciop Tmi

where TTm = TTIMJ or Homoule (rm, TTIMJ)

(def'te) (indef'te).
(2) TTM' = TTM' as Gla (Fpf) - rep's.

 $(3) \quad \left(\prod_{m}^{I_{m_i}} \longrightarrow \prod_{m}^{K_i} \right) \cong \left(\prod_{m}^{I_{m_i}} \longrightarrow \prod_{m'}^{K_i} \right)$

(4) dinu Gla(Fp) TIM = dinu Gla(Fp) TIM = f.

One of the main input is mod p multi one:

If σ is an irred $h[GL_2(\mathbb{F}_p \mathfrak{f})]$ -rep (Serre $\omega \mathfrak{f}$)

then dim $Hom_{GL_2(G_{\mathbb{F}_p})}(\sigma, T_{\mathbb{F}_p}) = 1$ or O.

More generally, this holds after replacing σ by $Proj_{hIGL_2(\mathbb{F}_p \mathfrak{f})}(\sigma)$.

The Assume \mathcal{D}_{p}^{\times} non-split. Let $f: \mathcal{O}_{p}^{\times} \longrightarrow k^{\times}$ regular char $(+ + \psi^{f})$. Then dim $\operatorname{Hom}_{\mathcal{O}_{p}^{\times}}(+, \operatorname{Tim}) = 1$ or 0.

(*) Work in progress (with Le Hung):
Use this to show that dimp* Tm = f.

Multi one in split case:

Construct a "patched module".

Mos S O[Gl2(Fp)] × Rp, p= 7ml Galfp
Such that

(a) For every lattice T° in an $E(GL_{2}(\mathbb{F}_{p}L))$ -irrep.

We have that $Hom_{GL_{2}(\mathbb{O}_{p})}(\tau^{\circ}, M_{\infty})^{\vee}$ $M_{\infty}(\tau^{\circ})$ is supported on \mathbb{R}_{p}^{τ} .

Where $\mathbb{R}_{p}^{\tau} = (pos\ semistable\ def'te\ ring$ w/ minimal HT type and inertia type τ .

(b) Mω(τ°)/m= Homcl2(0F) (τ° ωk, Tm)

then Show that Mω(τ°) ≥ R= whenever τ°

has irred co Socle (induction on Serre wt).

Two ways to fix this problem

(1) p-adic uniformization

Let BIF be obtained from D by switch invest p and ov. For all regular 4.

= lattice ~ (4) = DL-rep attached to +

st. din Homoz (+, TTp[m])

< Lin Homolz(OF) (τ°(+) + τ(+)°, πB[M])

(2) Construction using the BK mod of the p-torsion in the conn Néron model.

8 Applications to categorical mod p langlands

Conj (Emerton-Gee-Hellmann)

Jelly faithful, exact functor

A: Df, (Gl2(Opt), K) → Dch(X2, opt)

s.t. (i) if to lattice in E[GLz(Fp)]-irrep then
A(cIndKz (t°⊗k)) is concentrated in dego,

and supp on 12, of *6 k.

(2) A compatible with Mo(t) after pulling back to versal rings.

By (2), multi one \Rightarrow the sheaf in (1)

are invertible over their support.

Conj in nonsplit case leads (1).

 \forall generic $\forall: \emptyset_{\mathcal{D}_{p}} \to k^{\times}$, \exists invertible sheaf L(+)on $X_{2}, \emptyset_{p} \times_{0} k$ s.t. $\exists t_{\mathcal{D}_{p}^{*}}(c-Ind(\oplus +), c-Ind(\oplus +)) \cong \exists t_{\mathcal{D}_{p}^{*}}(\oplus L(+), \oplus L(+)).$