ROB 101 - Computational Linear Algebra Recitation #4

Justin Yu, Riley Bridges, Tribhi Kathuria, Eva Mungai

1 Matrix Determinant

Recall: Determinant Facts

- det(A) is a real number
- Ax = b, a system of equations with n equations and n unknowns has a unique solution for any b if an only if $det(A) \neq 0$
- When det(A) = 0, the system may have either infinite or no solution
- det(A) = ad bc, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

In addition to the previous facts, we also have:

Additional Fact: Determinant of product of matrices

• Let A and B be $n \times n$ matrices $\Rightarrow det(AB) = det(A)det(B)$ (Note that the order of the multiplication doesn't matter since det(A) and det(B) are both scalars)

Matrix Determinant via LU Factorization: Given A=LU, we now have

$$det(A) = det(L)det(U)$$

Additional Fact: Determinant of triangular matrices

• Let A be a triangular matrix, then det(A) = product of the elements on the diagonal (Note by triangular we mean either upper or lower triangular)

Example: Find the determinant of
$$A=\begin{bmatrix}3&0&0\\4&5&0\\7&8&9\end{bmatrix}$$

$$det(A)=3*5*9=135 \tag{1}$$

Additional Fact: Determinant of triangular matrices

- Let P be a permutation matrix, then $det(P)=\pm 1$

Inverse of Matrices

A matrix A is invertible if there exists a matrix A^{-1} such that $AA^{-1} = A^{-1}A = I_n$ Given $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ The following statements are equivalent

- A is invertible
- $det(A) \neq 0$
- A is a square matrix

Fact: Inverse of a product of matrices $(AB)^{-1}=B^{-1}A^{-1}$ (Note: the order of the multiplication matters here)

3 Determinants and Inverses

Additional Fact: Determinant of inverse of a matrix

• Let
$$det(A^{-1}) = \frac{1}{det(A)}$$

Given PA = LU we have

$$\begin{split} PA &= LU \\ P^{-1}PA &= P^{-1}LU \\ A &= P^{-1}LU \\ det(A) &= det(P^{-1}LU) \\ &= det(P^{-1})det(L)det(U) \\ &= \frac{1}{det(P)}det(L)det(U) \end{split}$$

4 Transpose of a Matrix

Let A^{T} be the transpose of A. To get A^{T} we simply take the rows of A and use them as the columns of A^{T} or we can equivalently take the columns of our A matrix and turn them into the rows of A^{T} . So if A is an nxm matrix, the transpose, A^{T} is an mxn matrix. Let's take a look at an example:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \Rightarrow A^{\mathsf{T}} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
 (2)

To find the transpose in julia, we can either use transpose(A) or $A^{'}$. Properties of the Transpose of a matrix

- $(A^{\mathsf{T}})^{\mathsf{T}} = A$
- if A is square $det(A^{\intercal}) = det(A)$
- $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$

(Note: the order of the multiplication matters here)

Linear Combination 5

A vector, $v \in \mathbb{R}^n$ is said to be a Linear Combination of vectors $v_1, v_2 \cdots v_m \in \mathbb{R}^n$ if there exits real numbers $\alpha_1, \alpha_2 \cdots \alpha_m$ such that

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m$$

Using this formulation, find if the given vector v, is a linear combination of the vectors $v_1, v_2 \cdots v_m$ in the question, if true, also find the vector of coefficients, α

1.
$$v = \begin{bmatrix} 11 \\ 7 \end{bmatrix}$$

$$v_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Solution: Goal find $\alpha_1, \alpha_2, \alpha_3$ such that $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = v$

$$\alpha_1\begin{bmatrix} 3\\4 \end{bmatrix} + \alpha_2\begin{bmatrix} 2\\2 \end{bmatrix} + \alpha_3\begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 11\\7 \end{bmatrix}$$
 From the system of equations above we get 2 equations:

(a)
$$3\alpha_1 + 2\alpha_2 + \alpha_3 = 11$$

(b)
$$4\alpha_1 + 2\alpha_2 - \alpha_3 = 7$$

From (a) we get: $\alpha_3 = 11 - 3\alpha_1 - 2\alpha_2$

Substituting $\alpha_3=11-3\alpha_1-2\alpha_2$ into (b) we get $7\alpha_1+4_2=18$

We now need to pick α_1 and α_2 such that $7\alpha_1 + 4\alpha_2 = 18$

Let's go with $\alpha_1=2$ and $\alpha_2=1$ with this choice we get, $\alpha_3=11-3*2-2*1=3$

So we now have that v is a linear combination of v_1, v_2 and v_3 given $\alpha_1 = 2, \alpha_2 = 1, \alpha_3 = 3$

2.
$$v = \begin{bmatrix} 7 \\ 5 \\ 4 \end{bmatrix}$$
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Solution: Goal find α_1, α_2 such that $\alpha_1 v_1 + \alpha_2 v_2 = v$

$$\alpha_1 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + \alpha_2 v_2 = \begin{bmatrix} 2\\1\\0 \end{bmatrix} = \begin{bmatrix} 7\\5\\4 \end{bmatrix}$$

From the system of equations above we get the following 3 equations

(a)
$$\alpha_1 + 2\alpha_2 = 7$$

(b)
$$2\alpha_1 + \alpha_2 = 5$$

(c)
$$3\alpha_1 = 4$$

Starting with (c), we get that $\alpha_1=\frac{4}{3}$ Plugging $\alpha_1=\frac{4}{3}$ into (b), we get: $2\frac{4}{3}+\alpha_2=5\Rightarrow\alpha_2=5-\frac{8}{3}=\frac{7}{3}$ Even though we have α_1 and α_2 we are not done yet. We need to check whether α_1 and α_2 satisfy (a):

$$\frac{4}{3} + 2\frac{7}{3} = \frac{18}{3} = 6 \neq 7$$

which they do not $\Rightarrow v$ is not a linear combination of v_1 and v_2

Linear Independence

The vectors $\{v_1, v_2, ..., v_m\}$ are **linearly independent** if the **only** real numbers $\alpha_1, \alpha_2, ..., \alpha_m$ yielding a linear combination of vectors that adds up to the zero vector,

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_m v_m = 0, \tag{3}$$

are $\alpha_1 = 0, \alpha_2 = 0, \dots, \alpha_m = 0.$

Concise definition of Linear Independence:

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_m v_m = 0 \iff \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Using this Definition, determine if the following vectors are linearly independent.

1.
$$v_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

1.
$$v_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
Solution: Goal find α_1, α_2 such that $\alpha_1 v_1 + \alpha_2 v_2 = 0$

$$\alpha_1 \begin{bmatrix} 4 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
From the system of equations above, we have 2 equations

(a)
$$4\alpha_1 + 2\alpha_2 = 0$$

(b)
$$\alpha_1 + 3\alpha_2 = 0$$

(a) gives us $\alpha_1 = -3\alpha_2$

Plugging this into (b) we have $4(-3\alpha_2) + 2\alpha_2 = -12\alpha_2 + 2\alpha_2 = -10\alpha_2 = 0 \Rightarrow \alpha_2 = 0$ and since $\alpha_1 = -3\alpha_2$ we have $\alpha_1 = 0$

Therefore since $\alpha_1=0$ and $\alpha_2=0$, v_1 and v_2 are linearly independent from each other

2.
$$v_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $v_4 = \begin{bmatrix} 11 \\ 7 \end{bmatrix}$ (Note that this problem is the same as problem 1 in Section 5)

Solution: Goal find
$$\alpha_1, \alpha_2, \alpha_3, \alpha_4$$
 such that $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \alpha_4 v_4 = 0$
$$\alpha_1 \begin{bmatrix} 3 \\ 4 \end{bmatrix} + \alpha_2 \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \alpha_4 \begin{bmatrix} 11 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(a)
$$3\alpha_1 + 2\alpha_2 + \alpha_3 + 11\alpha_4 = 0$$

(b)
$$4\alpha_1 + 2\alpha_2 - \alpha_3 + 7\alpha_4 = 0$$

Recall that in problem 1 of Section 5 we found that v was the linear combination of v_1, v_2 and v_3 given $\alpha_1=2,\alpha_2=1,\alpha_3=3.$ Using this as our basis, let's try using $\alpha_1=2,\alpha_2=1,\alpha_3=3,\alpha_4=-1$ to solve our system of equations. We get:

(a)
$$3*2+2*1-3-11=0$$

(b)
$$4*2+2-3-7=0$$

$$\textbf{Therefore, with } \alpha_1=2, \alpha_2=1, \alpha_3=3, \alpha_4=-1 \textbf{ we have } \alpha_1\begin{bmatrix}3\\4\end{bmatrix}+\alpha_2\begin{bmatrix}2\\2\end{bmatrix}+\alpha_3\begin{bmatrix}1\\-1\end{bmatrix}+\alpha_4\begin{bmatrix}11\\7\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}.$$

Since all the alpha's are not $0, v_1, v_2, v_3$, and v_4 are not linear independent. In fact, we can conclude in general that if a vector v is a linear combination of a set of vectors $\{v_1,...v_m\}$, then the set of vectors $\{v_1,...,v_m,v\}$ are not linearly independent.

7 Solutions of Ax=b and Linear Independence

Existence

The system of equation Ax = b has a solution if:

b is a linear combination of the columns of A and if the columns of A are linearly independent

Using this definition, let's set up the problem below as if we were to find if the following system of equations have a solution:

$$-a + 3b + 5c = 20$$

 $-2a - 2c = -8$
 $-3a + 3b + 4c = 10$

Solution: From the system of equations above, we have $\begin{bmatrix} -1 & 3 & 5 \\ -2 & 0 & -2 \\ -3 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 20 \\ -8 \\ 10 \end{bmatrix}$

Let
$$v_1 = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix}$, $v_3 = \begin{bmatrix} 5 \\ -2 \\ 4 \end{bmatrix}$, $v_4 = \begin{bmatrix} 20 \\ -8 \\ -10 \end{bmatrix}$

- 1. Are the columns of A linearly independent? Goal: find $\alpha_1, \alpha_2, \alpha_3$ such that $\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 = 0$
- 2. Is b a linear combination of the columns of A? Goal: find $\alpha_1,\alpha_2,\alpha_3$ such that $\alpha_1v_1+\alpha_2v_2+\alpha_3v_3=v_4$

8 Facts: Linear Independence, Determinant and Inverse

Given $A = [v_1|v_2|v_3|...|v_m]$

- The set of vectors $\{v_1,..,v_m\}$ are linearly independent
- \bullet A is invertible
- $det(A^{\intercal}A) \neq 0$