

PROPUESTA DE GEMELO DIGITAL PARA EL PROCESO DE POTABILIZACIÓN EN HIDROLÓGICAS DESDE LA VISIÓN DE LA INDUSTRIA 4.0

Tutor: PhD. Juan Cardillo

Cotutor: PhD. Edgar Chacón

Tesista: Br. Ysis Lacruz

CAPÍTULO I Introducción

Introducción

Durante los próximos diez años los factores de riesgo de mayor impacto estarán relacionados con el agua, definiendo como un problema la disponibilidad, el gasto excesivo y la calidad.

14.0 ofrece nuevos métodos para encarar los procesos complejos de sistemas críticos, aquellos que son clave en el desarrollo humano e industrial.

Antecedentes

Clarificación y acueductos. Evitar propagación de enfermedades.

Uso del cloro para desinfección. Filtrado con carbón activado.

Modelo de la unidad de potabilización de agua, orientado a sistemas de control supervisorio.

Rojas J, Cerrada M.

Revolución inteligente del agua, un reto social. TadaKu, análisis de datos e Inteligencia Artificial.

Lietha V., ABB

Gemelo digital de planificación en base a simulaciones, seguimiento del la producción y evaluación de desempeño.

Mrosik J., Siemens, AADECA

Planteamiento del Problema

Se propone desarrollar los modelos de comportamiento del proceso de potabilización, que incluye el modelo de proceso, el modelo de flujo de producto y el modelo de los recursos, con el fin de determinar el modelo operacional (secuencia de operaciones) para establecer el gemelo digital de la unidad de potabilización.

Objetivos

Objetivo General:

Generar la propuesta de un gemelo digital de la unidad de potabilización de una hidrológica desde la visión de la industria 4.0, basado en Sistemas Híbridos.

Objetivos Específicos:

- Determinar los modelos de comportamiento de la unidad de potabilización.
- Establecer las condiciones de conmutación de los modelos obtenidos desde el punto de vista de sistemas a eventos discretos.
- Generar el modelo de comportamiento desde el punto de vista de los sistemas híbridos.
- Implementar el modelo de comportamiento de la unidad de potabilización en un ambiente de simulación.
- Establecer condiciones para generar el gemelo digital e incorporarlas al ambiente de simulación.

Metodología

- Revisión bibliográfica pertinente, con base en el estudio del proceso de potabilización y en la evolución que ofrece la industria 4.0 como enfoque en la integración de procesos.
- Estudio del modelo de negocios que rige a la industria hidrológica.
- Determinación de los modelos del proceso, para realizar la sistematización basada en condición.
- Definición del proceso como una unidad holónica de producción, en base al enfoque de la Industria 4.0.
- Para el desarrollo de las simulaciones en el computador son usados modelos discretos, el software Epanet y el toolkit para MATLAB®, debido a la imposibilidad de implantarlo en el proceso real.

CAPÍTULO II Marco Teórico

Sistemas de Suministro de Agua Potable, hacia la 14.0

Forman parte de sistemas críticos debido a importancia de industria hidrológica, un proceso clave para el bienestar común persistencia de otros sistemas; aunado a que dependen de un recurso limitado У vulnerable como lo es el agua.

(Cardillo et al, 2018)

Industria 4.0

Es la integración de dispositivos físicos con sensores y software en red, utilizados para predecir, monitorear, controlar y planificar, en pro de mejores resultados industriales.

(Otto et al, 2015)

Componentes principales:

- Sistemas Ciber-Físicos
- Internet (Industrial) de las Cosas, I(I)oT
- Analítica de Datos
- Empresa Inteligente

14.0: Sistemas Ciber-físicos

"Sistemas físicos y de ingeniería cuyas operaciones son supervisadas, controladas, coordinadas e integradas por un núcleo informático y de comunicaciones."

(Lee et al, 2018)

(Monostori et al, 2018)

14.0: Internet de las Cosas

Sistema que comprende objetos inteligentes en red, tecnologías de información y plataformas de computación en la nube, que permiten acceso, análisis, recopilación, comunicación e intercambio de información en tiempo real, inteligente y autónomo.

(Boyes et al, 2018)

14.0: Analítica de Datos

Consiste en la extracción de datos de distintas fuentes y analizarlos con el fin de obtener información útil, necesaria para tomar mejores decisiones corporativas y plantear estrategias.

(Qing et al, 2018)

14.0: Empresa Inteligente

Fábricas donde los sistemas Ciber-Físicos se comunican a través del IoT, colaborando con los demás componentes y operadores en la ejecución de tareas.

(Otto et al, 2015)

Gemelo Digital

Representación digital de una entidad o sistema del mundo real a través de la información obtenida de sensores o automatismos, permitiendo la interconexión de procesos.

(Freiberger et all, 2017)

Modelo de Conocimiento

Un modelo es la representación en un lenguaje entendible que expresa el comportamiento de un fenómeno.

El modelo de procesos industriales se basa en el modelo de negocio y el modelo de producción.

El modelo de conocimiento abarca las condiciones operativas del proceso, el flujo de producto y los recursos.

Modelo Híbrido

Es la representación de las transiciones discretas y la evolución de las dinámicas continuas, afectadas por eventos discretos.

Redes de Petri

 $RdP = (P, T, D^+, D^-, \mu_0)$

Sistema continuo

$$\dot{x}(t) = f\Big(x(t), u(t), t\Big)$$

f es la función de transición de estado, x(t) es el vector de variables de estado, u(t) es el vector de entradas, t es el tiempo,

Hidrológicas

Las hidrológicas son una empresa de servicio cuya misión es proporcionar agua potable a una población, utilizando para ello las fuentes que proporciona la naturaleza, procesando el agua y devolviéndola al ambiente.

Hidrológicas

Hidrológicas

Modelo de una Unidad de Producción

Cada etapa o eslabón de la cadena de valor del flujo de producción, es vista como una unidad de producción; continua, lotes, manufactura, híbrida, dependiendo de la evolución del producto.

Proceso de Potabilización del Agua

Proceso de Potabilización del Agua

Condiciones de Calidad

Turbidez:

- Agua cruda captada menor a 100 NTU.
- De superar los 100 NTU, se requiere mayor cantidad de coagulante, afectando costos.
- Consumo humano a menos de 2 NTU.
- Los valores varían según las condiciones climáticas.
- Instrumento: Turbidímetro.

Color Aparente:

- Límite permisible para aguas potabilizadas menor a 15 PCU.
- Instrumento: Espectrofotómetro.

pH:

- Valores entre 6,9 y 9.
- Instrumento: pH-metro.

Unidad de Coagulación

Entrada:

Agua cruda, captada de una fuente.

Salida:

Agua con químicos coagulantes

Proceso:

Se trata de realizar una mezcla rápida mientras se añaden los químicos coagulantes.

El tiempo de residencia es corto, dependerá del flujo de entrada adecuado al resalto hidráulico existente.

Los químicos permiten la reacción de las partículas coloidales.

Unidad de Floculación

Entrada:

Agua con coagulante + químicos añadidos.

Salida:

Agua con flóculos.

Proceso:

Se realiza una mezcla lenta para permitir la aglomeración de partículas coloidales.

Tiempo de retención entre 20 y 30 min, dependiendo del estudio de jarras.

Agitador mecánico en el caso de estudio, regulación de frecuencia según cálculos de gradiente.

Unidad de Sedimentación

Entrada:

Agua con flóculos formados

Salida:

Agua laminar sin flóculos.

Proceso:

Tanque con láminas inclinadas 60° que retienen los flóculos en suspensión provenientes de la unidad anterior.

Tiempo de retención entre 2 y 4 h, dependiendo del estudio de jarras.

El flujo que pasa a la siguiente unidad es recolectado por canales en la parte superior del tanque.

Es necesario realizar lavados periódicamente, dependiendo de la calidad de la fuente.

La condición de lavado será determinada por la turbidez o la altura en el tanque.

Unidad de Filtración

Entrada:

Agua clarificada

Salida:

Agua sin sedimentos

Proceso:

Se hace pasar el agua por un medio poroso para retener los sólidos que la decantación no logró remover.

Tiempo de filtrado en filtros rápidos 120-360 m3/m2/día.

Es necesario realizar retrolavados periódicamente con agua ya purificada, dependiendo de la calidad de la fuente, buscando que el gasto del recurso sea mínimo.

La condición de lavado será determinada por la turbidez o la altura en el tanque.

Unidad de Desinfección

Entrada:

Agua filtrada

Salida:

Agua potabilizada

Proceso:

Se hace uso de agentes químicos que destruyen los microorganismos.

La dosis de desinfectante se determina en el laboratorio.

Unidad Holónica de Producción

Hidrológicas como modelo UPH

Epanet

Es un programa orientado al análisis de los procesos de distribución de agua y el seguimiento de calidad, donde se conjugan algoritmos de cálculos e interfaz gráfica que permiten plasmar los componentes de una red hidráulica (tuberías, tanques, bombas, válvulas, reservorios)

Representación	Elemento
•	Nodos
=	Embalses
T	Tanques
•——•	Tuberías
• *	Válvulas

CAPÍTULO III Modelos del Gemelo Digital para Potabilización

Condiciones de Operación

Toda unidad inicia, opera y se detiene, asociado a estados de arranque, operación y parada.

Arranque (A) → Operando (O) Parada (P) Normal (N)
Degradado (D)
Fallo (F)

Estados				
L_0	Unidad disponible			
L_a	Unidad en arranque			
L_n	Condición normal			
L_d	Condición degradada			
L_f	Condición de falla			
L_m	Mantenimiento de la unidad			
Eventos				
T_0	Inicio			
T_{sa}	Fin de secuencia de arranque			
T_n	Modo normal			
T_d	Modo degradado			
T_f	Modo falla			
T_m	Mantenimiento			
T_{sm}	Fin de secuencia de mantenimiento			

Unidad de Coagulación

Estado Condición	Flujo	Recursos	Proceso
Normal	Qi ≈ Qp ≈ Qo NTU < 100 6,5 < pH < 9	Cantidad suficiente de químicos para adicionar. Sensores funcionales (recurso humano o tecnológico). Válvula de salida abierta, en funcionamiento. Válvula de entrada abierta, en funcionamiento.	Cantidad de coagulante adecuada.
Degradado	Qi << Qp, Qi >> Qp Qo << Qp, Qo >> Qp NTU > 100 pH < 6,5, pH > 9	Cantidad limitada o nula de químicos para adicionar. Sensores en falla (falta de personal, falla en dispositivos) Válvulas con fallas mecánicas, sin interrupción total de flujo. Mantenimiento de la unidad.	Cantidad de coagulante fuera del rango ideal.
Falla	Qi ≈ 0	Válvula de entrada en falla, interrupción del flujo.	

Qp = Caudal de producción

Unidad de Floculación

Estado Condición	Flujo	Recursos	Proceso
Normal	Qi ≈ Qp ≈ Qo NTU < 100 6,5 < pH < 9 Nivel del tanque adecuado.	Sensores funcionales (recurso humano o tecnológico). Válvula de salida abierta, en funcionamiento. Válvula de entrada abierta, en funcionamiento. Válvula de desagüe cerrada, en funcionamiento. Mezclador mecánico en funcionamiento.	Cumplimiento del gradiente de velocidad y tiempo de retención, según los cálculos. Formación de flóculos.
Degradado	Qi << Qp, Qi >> Qp Qo << Qp, Qo >> Qp NTU > 100 pH < 6,5 , pH > 9 Nivel por debajo o por encima del ideal	Sensores en falla (falta de personal, falla en dispositivos) Válvulas con fallas mecánicas, sin interrupción total de flujo, o sin exceso de perdidas en el caso del desagüe. Mantenimiento de la unidad.	Poca formación de flóculos (denota falla en cálculos de gradiente, frecuencia de aspas o coagulante de la unidad anterior)
Falla	Qi≈0	Válvula de entrada en falla, interrupción del flujo. Válvula de desagüe en falla, pérdida del fluido.	

Unidad de Sedimentación

Estado Condición	Flujo	Recursos	Proceso
Normal	Qi ≈ Qp ≈ Qo NTU < 10 6,5 < pH < 9 Nivel del líquido dentro de los límites.	Sensores funcionales (recurso humano o tecnológico). Válvula de salida abierta, en funcionamiento. Válvula de entrada abierta, en funcionamiento. Válvula de desagüe cerrada, en funcionamiento.	Cumplimiento del gradiente de velocidad y tiempo de retención, según los cálculos. Formación de flóculos.
Degradado	Qi << Qp, Qi >> Qp Qo << Qp, Qo >> Qp NTU > 10 pH < 6,5 , pH > 9 Nivel del agua por encima por de lo esperado.	Sensores en falla (falta de personal, falla en dispositivos) Válvulas con fallas mecánicas, sin interrupción total de flujo, o sin exceso de perdidas en el caso del desagüe. Mantenimiento de la unidad.	Poca formación de flóculos (denota falla en cálculos de gradiente, frecuencia de aspas o coagulante de la unidad anterior)
Falla	Qi ≈ 0 Nivel del tanque por debajo de lo esperado, el proceso se detiene.	Válvula de entrada en falla, interrupción del flujo. Válvula de desagüe en falla, pérdida del fluido o imposibilidad de realizar el vaciado de lodos.	

Unidad de Filtración

Estado Condición	Flujo	Recursos	Proceso
Normal	Qi ≈ Qp ≈ Qo NTU < 5 6,5 < pH < 9 Nivel del líquido dentro de los límites.	Sensores funcionales (recurso humano o tecnológico). Válvula de salida abierta, en funcionamiento. Válvula de entrada abierta, en funcionamiento. Válvula de desagüe cerrada, en funcionamiento. Lecho filtrante no colmatado.	Tiempo de retención ideal para evitar el aumento del nivel.
Degradado	Qi << Qp, Qi >> Qp Qo << Qp, Qo >> Qp NTU > 5 pH < 6,5 , pH > 9 Nivel del agua por encima de lo esperado.	Sensores en falla (falta de personal, falla en dispositivos) Válvulas con fallas mecánicas, sin interrupción total de flujo, o sin exceso de perdidas en el caso del desagüe. Mantenimiento de la unidad.	Tiempos de retención altos, denota faltas previas en el proceso y pronta colmatación de filtros.
Falla	Qi ≈ 0 Nivel del agua en mínimo, se debe parar el proceso.	Válvula de entrada en falla, interrupción del flujo. Válvula de desagüe en falla, pérdida del fluido a tratar.	

Unidad de Desinfección

Estado Condición	Flujo	Recursos	Proceso
Normal	Qi ≈ Qp ≈ Qo NTU < 1 pH < 7,5 Nivel del líquido dentro de los límites.	Sensores funcionales (recurso humano o tecnológico). Válvula de salida abierta, en funcionamiento. Válvula de entrada abierta, en funcionamiento. Válvula de desagüe cerrada, en funcionamiento. Químicos disponibles.	Cantidad ideal de químicos, según estudios en el laboratorio.
Degradado	Qi << Qp, Qi >> Qp Qo << Qp, Qo >> Qp NTU > 1 pH < 5 , pH > 7,5 Nivel del agua fuera del rango de operación.	Sensores en falla (falta de personal, falla en dispositivos) Válvulas con fallas mecánicas, sin interrupción total de flujo, o sin exceso de perdidas en el caso del desagüe. Mantenimiento de la unidad. Químicos limitados o nulos.	Fallas en las cantidades de químicos a añadir.
Falla	Qi ≈ 0	Válvula de entrada en falla, interrupción del flujo. Válvula de desagüe en falla, pérdida del fluido a tratar.	

CAPÍTULO IV Implementación

Implementación

Propuesta de Gemelo Digital

Unidad de Coagulación

Dosis de coagulante a añadir calculado mediante un modelo continuo. Modos de operación.

Unidad de Sedimentación

Comportamiento del nivel del tanque y mantenimiento, utilizando Epanet. Modos de operación.

Interconexión de unidades

Monitoreo de ambas unidades haciendo uso de Matlab y Toolkit Epanet.

Modelo de Coagulación

Datos

Datos	Valor mínimo	Valor máximo
Dosis Sulfato de Aluminio (DSA)	$63 \ kg/h$	$252 \ kg/h$
Turbidez (T)	12~NTU	1500 NTU
Color (C)	50~UC	9000 UC
pH (Ph)	6,9	7, 2
Alcalinidad (A)	$22 \ mg/L$	$27 \ mg/L$

Modelo

Modelo	Variables	R^2	RMSE-Modelo	RMSE-Validación
Md2	T, C	0,9839	5,2719	7,2295
Md6	T, C	0,9826	5,4767	50,1042
Md1	Т	0,9322	10,8130	10,1283
Md5	T, C, Ph, A	0,9076	12,6241	11,5470
Md3	T, C, Ph	0,9070	12,6699	12,0967
Md4	T, C	0,9038	12,8805	12,0229

$$md7 = a_0 + a_1T + a_2C + a_3T^2 + a_4TC + a_5C^2 + a_6T^2C + a_7TC^2 + a_8C^3 + a_9T^3$$

Modelo de Coagulación

$$md7 = a_0 + a_1T + a_2C + a_3T^2 + a_4TC + a_5C^2 + a_6T^2C + a_7TC^2 + a_8C^3 + a_9T^3$$

Modelo de Coagulación

Valor de Turbidez de agua entrante

Estados		
L_a	Turbidez baja	
L_b	Turbidez media	
L_c	Turbidez alta	
Eve	Eventos	
T_a	T < 12	
T_b	$12 \leq T \leq 100$	
T_c	T > 100	

Condiciones de dosificación de coagulante

Esta	Estados	
L_0	Unidad sin dosificar	
L_1	Unidad con dosificación	
L_d	Unidad dosificando, en degradado	
Eventos		
T_{n0}	NTU < 12	
T_{n1}	$12 \leq NTU \geq 50$	
T_{n2}	NTU > 50	

VCQ2_in

Modelo de Sedimentación

Sedimentador 2

Nivel	Altura (m)	Operación
max-max	3,65	Desborde
max	3,45	Apertura de compuerta de lodos
min	3,16	Mínimo de operación
min-min	2,65	Cierre de compuerta de lodos

Modelo de Sedimentación

Valor de Caudal de entrada

Est	Estados	
L_a	Caudal de operación	
L_b	Caudal en degradado	
L_c	Caudal en falla	
Eve	Eventos	
T_a	$270 \le q_i \le 300 \text{ aprox.}$	
T_b	$q_i \le 270$	
T_c	$q_i \approx 0$	

Altura en el tanque

Esta	Estados	
L_x	Altura máxima	
L_o	Altura de operación	
L_v	Altura en vacío	
L_m	Altura mínima	
Eve	Eventos	
T_x	h > 3,40m	
T_o	$3,20m \leq h \leq 3,40m$	
T_v	2,65m < h < 3,40m	
T_m	$h \le 2,65m$	

Modelo de Sedimentación

Estado de la compuerta de lodos

Esta	Estados	
L_a	Compuerta abierta	
L_c	Compuerta cerrada	
Eve	Eventos	
T_a	Abrir compuerta	
T_{fa}	Falla en apertura	
T_c	Cerrar compuerta	
T_{fc}	Falla en cierre	

Estado del tanque

Estados	
L_o	Tanque en operación
L_x	Tanque saturado
L_v	Tanque en ciclo de vacío
L_m	Tanque en mínimo
L_l	Tanque en ciclo de llenado
Eventos	
T_o	Condiciones de operación
T_x	Condiciones de saturación
T_v	Condiciones para vaciar
T_m	Condiciones de mínimo
T_l	Condiciones para llenar

Emulación del Gemelo Digital

Epanet Matlab Toolkit como herramienta de interconexión.

Escenario I

the end

Software utilizado

Matlab y el Toolkit de Epanet para Matlab como software de interconexión entre unidades del proceso.

Software utilizado

La interconexión permite obtener variaciones durante el proceso sin necesidad de correr el programa de nuevo, de esta forma se conoce el comportamiento final de la unidad.

Ciudades Inteligentes

Ciudades que visualizan el desarrollo sustentable social y tecnológico, empleando tecnologías de información y comunicación para permitir la interrelación en los sistemas que la conforman.

Una parte clave de las ciudades inteligentes es el continuo aprendizaje y manejo de conocimientos, para generar desarrollo tecnológico que pueda implementarse en procedimientos de innovación.

DESIRED OUTCOME Productivity Innovation Community **SMART** Governance Liveability CITY Planning Wellbeing Policy Technology A balanced and sustainable development DRIVERS Sustainability Accessibility Environment INPUT **PROCESS** OUTPUT The Input-Process-Output Model Logic: (Assets) (Outcomes)

Vito, 2015

Sistemas Holónicos

Se trata de la cooperación entre distintos holones, unidades autónomas capaces de transformar, transportar y almacenar información y/o productos físicos.

CAPÍTULO III Caso de Estudio

Proceso de Potabilización del Agua

Modelo de Negocio para Hidrológicas

Proceso de Potabilización del Agua

Unidad Planta Potabilizadora

Unidades Funcionales:

- Coagulación
- Floculación
- Sedimentación
- Filtración
- Desinfección

Unidad de Floculación

Unidad de Sedimentación

Unidad de Filtración

Unidad de Desinfección

Unidad de Coagulación

