Licenciatura en Estadística Muestreo y Planificación de Encuestas Ejer Pruebita 4 2017

Ejercicio 1 Para estimar el total de una determinada variable y se propone tomar una muestra de tamaño n=200 mediante un diseño Estratificado Simple (STSI). La población U es particionada en 4 estratos, y se sabe que:

Estrato	$S_{y_{U_h}}$	N_h
1	10	300
2	20	250
3	38	100
4	100	50

Se pide:

- 1. Determinar los tamaños de muestra por estrato, n_h , utilizando asignación óptima. Observe que para algún h el n_h inicialmente asignado cumple $n_h > N_h$.
- 2. Calcular la $V_{STSI,\acute{o}pt}\left(\hat{t}_{\pi}\right)$ resultante de 1., en caso de ser posible.

Ejercicio 2 Demostrar que la asignación óptima coincide (aproximadamente) con la uniforme, $n_h = \frac{n}{H}$, cuando los estratos se construyen utilizando la fórmula de Dalenius y Hodges. Recordar que $\sqrt{12} \sum_{h=1}^{H} w_h S_{y_{U_h}} \doteq \sum_{h=1}^{H} \left(z_h - z_{h-1}\right)^2$ y esta última cantidad se minimiza cuando se toma $z_h - z_{h-1}$ constante e igual a $\frac{z_H - z_0}{H}$.

Ejercicio 3 En una población con N=50 y $N_I=25$ se toma una muestra mediante un diseño SIC con $n_I=2$, y se obtuvo:

Cluster	Elemento	
i	k	y_k
3	10	300
3	11	200
7	27	100
7	28	50
7	29	50

Adicionalmente, se sabe que $N_3=2$ y $N_7=3$. Se pide:

- 1. Calcule el estimador π de t_y .
- 2. Calcule $\widehat{V}_{SIC}(\widehat{t}_y)$.
- 3. ¿El estimador empleado en 2., es insesgado? Justifique su respuesta.