Прогрессии и части.

Определение 1. Целой частью числа x называется наибольшее целое число n такое, что $n \leq x$. Обозначается |x|.

Определение 2. Дробной частью числа x называется число $\{x\} = x - |x|$.

Определение 3. Последовательность чисел $a_0, a_1, \ldots, a_n, \ldots$ называется арифметической прогрессией, если существует такое число d, что $a_{i+1} = a_i + d$ для любого $i \geqslant 0$. Число d называется разностью или шагом арифметической прогрессии.

Определение 4. Последовательность чисел $b_0, b_1, \ldots, b_n, \ldots$ называется геометрической прогрессией, если $b_0 \neq 0$ существует такое число $q \neq 0$, что $b_{i+1} = qb_i$ для любого $i \geqslant 0$. Число q называется знаменателем геометрической прогрессии.

Упражнение 1. Докажите, что последовательность чисел $a_0, a_1, \ldots, a_n, \ldots$ является арифметической прогрессией тогда и только тогда, когда $a_{i+1} = \frac{a_i + a_{i+2}}{2}$ для любого $i \geqslant 0$.

Упражнение 2. Докажите, что последовательность чисел $b_0, b_1, \ldots, b_n, \ldots$ является геометрической прогрессией тогда и только тогда, когда $b_{i+1}^2 = b_i b_{i+2}$ для любого $i \geqslant 0$ и b_0 и b_1 не равны 0.

Упражнение 3. Для любого положительного числа x докажите, что $\lfloor 2x \rfloor - 2 \lfloor x \rfloor$ равно либо 0, либо 1.

Упражнение 4. Найдите явную формулу для n-го члена арифметической и геометрической последовательности, а также суммы первых n членов.

Задача 1. Пусть A арифметическая прогрессия и $a_0 \in \mathbb{Z}$ её нулевой член, а $d \in \mathbb{Z}$ — разность. докажите, что если $(a_0, d) = 1$, то для любого m в A найдётся член, который делится на m.

Задача 2. Найдите все положительные x, такие что число $\{x\}(x + \lfloor x \rfloor)$ целое.

Задача 3. Найдите, когда одна и таже последовательность чисел является и арифметической и геометрической последовательностью.

Задача 4. а) Докажите, что число $G_n = \frac{(\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n}{\sqrt{5}}$ являтся целым числом. б) Докажите, что $G_n - n$ -ое число Фибоначчи. (Числами Фибоначи называется последовательность чисел $F_0, F_1, \ldots, F_n, \ldots$ такая, что $F_0 = 0, F_1 = 1$, а каждый следующий равен сумме двух предыдущих $F_{n+2} = F_{n+1} + F_n$.)

Задача 5. Существует ли возрастающая арифметическая прогрессия, состоящая из 2012 натуральных чисел, в разложении каждого из которых на простые множители чётное число различных простых чисел?