

Lab Report

TERM:	Spring 2022					
Module:	EE1616 Electronic Workshop					
CLASS:	34092102					
BRUNEL ID:	2161047					
NAME:	Xukang Liu					
TUTOR:	Guoquan Li					

June 2022

PIC Lab 2: PICmicro Basic Programming

o Aims (5 Marks)

- To further understand this software and assembly language of PICmicro.
- To learn how to work with 7-segments output.

1 Task 1 (10 Marks)

Address /	Name	Hex	Decimal	Binary		Char
005	PORTA	0x00	0	00000000		1.1
006	PORTB	0x0F	15	00001111		1.1
007	PORTC	0x00	0	00000000		1.1
800	PORTD	0x00	0	00000000		1.1
009	PORTE	0x00	0	00000000		1.1
A00	PCLATH	0x00	0	00000000		1.1
00B	INTCON	0x02	2	00000010		1.1
00C	PIR1	0x00	0	00000000		1.1
00D	PIR2	0x00	0	00000000		1.1
00E	TMR1	0x0000	0	00000000	00000000	11
00E	TMR1L	0x00	0	00000000		1.1
00F	TMR1H	0x00	0	00000000		1.1
010	T1CON	0x00	0	00000000		1.1
011	TMR2	0x00	0	00000000		1.1
012	T2CON	0x00	0	00000000		1.1
013	SSPBUF	0x00	0	00000000		1.1
014	SSPCON	0x00	0	00000000		1.1
015	CCPR1	0x0000	0	00000000	00000000	11
015	CCPR1L	0x00	0	00000000		1.1
016	CCPR1H	0x00	0	00000000		1.1
017	CCP1CON	0x00	0	00000000		1.1
018	RCSTA	0x00	0	00000000		1.1
019	TXREG	0x00	0	00000000		1.1
01A	RCREG	0x00	0	00000000		1.1
01B	CCPR2	0x0000	0	00000000	00000000	11
01B	CCPR2L	0x00	0	00000000		1.1
01C	CCPR2H	0x00	0	00000000		1.1
01D	CCP2CON	0x00	0	00000000		1.1

These are the data of SFR, and the binary of "PORTB" is "00001111".

	Line	Address	Opcode	Label	DisAssy
	1	0000	0186	START	CLRF PORTB
	2	0001	1683		BSF STATUS, 0x5
	3	0002	0186		CLRF PORTB
	4	0003	1283		BCF STATUS, 0x5
	5	0004	1406	LOOPIT	BSF PORTB, 0x0
	6	0005	1486		BSF PORTB, 0x1
	7	0006	1506		BSF PORTB, 0x2
➾	8	0007	1586		BSF PORTB, 0x3
	9	8000	1206		BCF PORTB, 0x4
	10	0009	1286		BCF PORTB, 0x5
	11	000A	1306		BCF PORTB, 0x6
	12	000B	1386		BCF PORTB, 0x7
	13	000C	2804		GOTO 0x4

These are the data of "program memory".

This is my result of task 1. Because I only set pin 0~3 of PORTB to 1, so only four LEDs are on.

2 Task 2 (20 Marks)

```
DELAY MOVLW 255

MOVWF COUNT1

CLRF COUNT2

MOVWF COUNT2

DELAY1 DECFSZ COUNT1, F

GOTO DELAY2

GOTO COMPLETE

DELAY2 DECFSZ COUNT2, F

GOTO DELAY2

GOTO DELAY2

COMPLETE RETURN
```

This is my delay subroutine.

3 Task 3 (20 Marks)

```
; Table for decoding 7-segment display (common anode type)
TABLE ADDWF PCL, F

RETLW B'11000000';0

RETLW B'11111001';1

RETLW B'10110000';2

RETLW B'10110000';3

RETLW B'10011001';4

RETLW B'10010010';5

RETLW B'10000010';6

RETLW B'11111000';7

RETLW B'10000000';8

RETLW B'10010000';9
```

This is my "TABLE" subroutine.

This is my result. Because I haven't set any delay subroutines, so it will continuously output $0\sim9$. But the frequency is too fast, so I can just see the "8" on the 7-segments LCD.

4 Task 4 (20 Marks)

```
#include "p16f877a.inc"
; _config 0xFF32
_CONFIG_FOSC_HS & _WDTE_OFF & _PWRTE_ON & _BOREN_OFF & _LVP_OFF & _CPD_OFF &
WRT OFF & CP OFF
;RES_VECT CODE 0x0000; processor reset vector
: Define variables
W EOU 0
Z EOU 2
PCL EQU H'02'
PORTA EQU H'05'
PORTB EQU H'06'
COUNT EQU H'21'
COUNT1 EQU H'20'; define a new variable
COUNT2 EQU H'22'; define a new variable
STATUS EQU H'03'
TRISA EQU H'85'
TRISB EQU H'86'
OPTION_REG EQU H'81'
: Initialization
ORG 0; Program Counter to 0
CLRF PORTB:
CLRF COUNT:
BSF STATUS,5; BANK1
MOVLW 0x07; Hexidecimal value H'07'
MOVWF H'9F'; Setup the ADCON1 register to make PORTA as digital
CLRF TRISA; PORTA as output
CLRF TRISB: PORTB as output
MOVLW B'00000110'; set timer ratio 1:128
MOVWF OPTION_REG
BCF STATUS.5 : PAGE0
MOVLW 0X01; select the first digit of 7 segment display, 0X02-04 can be used to select 2nd to 4th
digit
MOVWF PORTA;
;Main codes
LOOP INCF COUNT.F
MOVLW 0X0A
SUBWF COUNT,W
BTFSC STATUS,Z
CLRF COUNT
MOVF COUNT,W
CALL TABLE
MOVWF PORTB
CALL DELAY
GOTO LOOP
; Table for decoding 7-segment display (common anode type)
TABLE ADDWF PCL.F
```

```
RETLW B'11000000';0
RETLW B'11111001';1
RETLW B'10100100';2
RETLW B'10110000';3
RETLW B'10011001';4
RETLW B'10010010';5
RETLW B'10000010';6
RETLW B'11111000';7
RETLW B'10000000';8
RETLW B'10010000';9
DELAY MOVLW 255
MOVWF COUNT1
CLRF COUNT2
MOVWF COUNT2
DELAY1 DECFSZ COUNT1,F
GOTO DELAY2
GOTO COMPLETE
DELAY2 DECFSZ COUNT2,F
GOTO DELAY2
GOTO DELAY1
COMPLETE RETURN
END
```

5 Task 5 (20 Marks)

```
#include "p16f877a.inc"
1
2
      ; __config 0xFF32
3
      __CONFIG _FOSC_HS & _WDTE_OFF & _PWRTE_ON & _BOREN_OFF & _LVP_OFF & _CPD_OFF & _WRT_OFF & _CP_OFF
      ;RES_VECT CODE 0x0000 ; processor reset vector
4
5
      ; Define variables
      W EQU 0
 6
      Z EQU 2
8
      PCL EQU H' 02'
9
      PORTA EQU H' 05'
10
      PORTB EQU H' 06'
      COUNT EQU H' 21'
11
12
      COUNT1 EQU H'20'; define a new variable
13
      COUNT2 EQU H'22'; define a new variable
     STATUS EQU H'03'
14
      TRISA EQU H'85'
15
      TRISB EQU H'86'
16
17
      OPTION_REG EQU H'81'
18
       ; Initialization
19
      ORG 0 ; Program Counter to 0
20
      CLRF PORTB ;
21
      CLRF COUNT ;
22
       BSF STATUS, 5 ; BANK1
23
       MOVLW 0x07 ; Hexidecimal value H'07'
       MOVWF H'9F'; Setup the ADCON1 register to make PORTA as digital
25
       CLRF TRISA ; PORTA as output
26
       CLRF TRISB ; PORTB as output
27
       MOVLW B'00000110' ;set timer ratio 1:128
28
       MOVWF OPTION REG
       BCF STATUS, 5 ; PAGEO
29
30
31
       MOVLW 0X01 ; select the first digit of 7 segment display, 0X02-04 can be used to select 2nd to 4th digit
32
       MOVWF PORTA ;
```

```
33
       LOOP INCF COUNT, F
34
       MOVLW OXOA
35
       SUBWF COUNT, W
36
       BTFSC STATUS, Z
37
       CLRF COUNT
38
       MOVF COUNT, W
39
       CALL TABLE
       MOVWF PORTB
40
41
       CALL DELAY
42
       GOTO LOOP
43
       ; Table for decoding 7-segment display (common anode type)
44
       TABLE ADDWF PCL, F
45
       RETLW B' 11000000';0
46
       RETLW B' 111111001';1
47
       RETLW B' 10100100';2
       RETLW B' 10110000';3
48
49
       RETLW B' 10011001'; 4
50
       RETLW B' 10010010' ;5
51
       RETLW B' 10000010';6
52
       RETLW B' 111111000';7
       RETLW B' 10000000';8
53
54
       RETLW B' 10010000' ;9
55
56
       DELAY MOVLW 255
57
       MOVWF COUNT1
       CLRF COUNT2
58
59
       MOVWF COUNT2
60
       DELAY1 DECFSZ COUNT1, F
61
       GOTO DELAY2
       GOTO COMPLETE
62
63
       DELAY2 DECFSZ COUNT2, F
64
       GOTO DELAY2
       GOTO DELAY1
65
       COMPLETE RETURN
66
67
       END
68
```

This is my code.

I use 255 as my delay number.

Delay =
$$1 + 1 + 1 + 1 + ((254 \times 3 + 2) \times 254 \times 3) + 2 + 2 = 582176\mu s = 0.582176s$$

The last number of my Brunel ID is "1047", so the result is correct.

6 Conclusions (5 Marks)

During this experimental class, I further learned PIC16F877 assembly language programming. I can use assembly language to perform 7-segments LCD. Unfortunately, there are many codes I can't identify. So, I am very confused when I write assembly language. So I need more time to learn after class.