

人工智能与自动化学院

模式识别

授课教师: 杨卫东 邹腊梅

第三讲 线性回归 (Linear Regression)

- 3.1 线性回归问题 (Linear Regression Problem)
- 3.2 线性回归算法 (Linear Regression Algorithm)
- 3.3 梯度下降法 (Gradient Descent)

人工智能与自动化学院

3.1 线性回归问题

线性回归示例

回归问题: $y \in \mathbb{R}$

人工智能与自动化学院

3

3.1 线性回归问题

为什么需要回归?

分类(Classification)

输出结果(*Output*): 类别标签(Class label)

检测(分类+定位)

Detection (Classification + Localization)

输出结果(*Output*): 类别标签+位置坐标 Class label + Box in the image (x, y, w, h)

人工智能与自动化学院

第三讲 线性回归 (Linear Regression)

- 3.1 线性回归问题 (Linear Regression Problem)
- 3.2 线性回归算法 (Linear Regression Algorithm)
- 3.3 梯度下降法 (Gradient Descent)

人工智能与自动化学院

7

3.2 线性回归算法

算法A的目的是在 $H(h(\cdot))$ 中找到最优结果

作为回归模型 g

- ▶ 最优结果: g ≈ f
- ightarrow 学习的资源:在训练集ightarrow上,如果每一个样本都有: $g(\mathbf{x}_n) = y_n = f(\mathbf{x}_n)$,则在训练集ightarrow上做到了 $g \approx f$
- ightharpoons 困难: $\mathcal{H}(h(\cdot))$ 的候选模型无穷多

人工智能与自动化学院

用矩阵/向量形式表示 $L_{in}(w)$

$$L_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - y_{n})^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n}^{T} \mathbf{w} - y_{n})^{2}$$

$$= \frac{1}{N} \begin{bmatrix} \mathbf{x}_1^T \mathbf{w} - y_1 \\ \mathbf{x}_2^T \mathbf{w} - y_2 \\ \dots \\ \mathbf{x}_N^T \mathbf{w} - y_N \end{bmatrix}^2 = \frac{1}{N} \begin{bmatrix} --\mathbf{x}_1^T - - \\ --\mathbf{x}_2^T - - \\ \dots \\ --\mathbf{x}_N^T - - \end{bmatrix} \mathbf{w} - \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{bmatrix} \end{bmatrix}^2$$

$$\mathbf{X}:\ N\times(d+1)$$

$$\mathbf{w}$$
: $(d+1) \times 1$

$$Y: N \times 1$$

15

3.2 线性回归算法

求最佳解: $\min_{w} L_{in}(w) = \frac{1}{N} ||\mathbf{X}w - Y||^2$

 L_{in} 曲线具有连续、可微、凸函数的特点

$$\nabla L_{in}(\mathbf{w}) = \begin{bmatrix} \frac{\partial L_{in}(\mathbf{w})}{\partial w_0} \\ \frac{\partial L_{in}(\mathbf{w})}{\partial w_1} \\ \vdots \\ \frac{\partial L_{in}(\mathbf{w})}{\partial w_d} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 $VL_{in}(\mathbf{w}) = \mathbf{0}$ 时求得最佳解 \mathbf{w}^*

$\nabla L_{in}(\mathbf{w})$ 求解:

$$L_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - Y\|^2 = \frac{1}{N} (\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{w}^T \mathbf{X}^T \mathbf{Y} + \mathbf{Y}^T \mathbf{Y}) = \frac{1}{N} (\mathbf{w}^T \mathbf{A} \mathbf{w} - 2\mathbf{w}^T \mathbf{b} + c)$$

当w是单变量时

$$L_{in}(w) = \frac{1}{N}(aw^2 - 2bw + c)$$

$$\nabla L_{in}(w) = \frac{1}{N}(2aw - 2b)$$

当w是向量时

$$L_{in}(w) = \frac{1}{N} (\mathbf{w}^T \mathbf{A} \mathbf{w} - 2\mathbf{w}^T \mathbf{b} + c)$$

$$\nabla L_{in}(w) = \frac{1}{N}(2\mathbf{A}w - 2\mathbf{b})$$

$$\nabla L_{in}(\mathbf{w}) = \frac{2}{N} (\mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{Y})$$

人工智能与自动化学院

17

线性回归算法

● 对训练样本集 D 构造输入特征向量矩阵 X 和输出向量 Y

$$\mathbf{X} = \begin{bmatrix} --\mathbf{x}_1^T - - \\ --\mathbf{x}_2^T - - \\ \vdots \\ --\mathbf{x}_N^T - - \end{bmatrix}, \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

● 计算广义逆: $\mathbf{X}^{\dagger} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$

 \mathbf{X} : $N \times (d+1)$

● 计算回归值: $g = w^* = X^{\dagger}Y$

Y: $N \times 1$ X[†]: $(d+1) \times N$

 \mathbf{w} : $(d+1) \times 1$

人工智能与自动化学院

19

第三讲 线性回归 (Linear Regression)

- 3.1 线性回归问题 (Linear Regression Problem)
- 3.2 线性回归算法 (Linear Regression Algorithm)
- 3.3 梯度下降法 (Gradient Descent)

人工智能与自动化学院

回顾感知器算法:

- 对样本的特征向量x和权向量w 增广化
- 初始化权向量 \mathbf{w}_0 (例如: $\mathbf{w}_0 = \mathbf{0}$)
- **for** t = 0,1,2,... (t 代表迭代次数)
 - ① 进行到第t 次迭代时权向量为 \mathbf{w}_t ,它对样本 $(\mathbf{x}_{n(t)}, y_{\mathbf{n}(t)})$ 错分 sign $(\mathbf{w}_t^T \mathbf{x}_{n(t)}) \neq y_n$
 - ② 通过下式对权向量 \mathbf{w}_t 进行更新: $\mathbf{w}_{t+1} = \mathbf{w}_t + y_n \mathbf{x}_{n(t)}$

…直到满足停止条件,此时的 \mathbf{w}_{t+1} 作为学到的 \mathbf{g}

人工智能与自动化学院

回顾感知器算法:

- 对样本的特征向量x和权向量w 增广化
- 初始化权向量 \mathbf{w}_0 (例如: $\mathbf{w}_0 = \mathbf{0}$)
- for t = 0,1,2,... (t 代表迭代次数)
 - ① 进行到第t 次迭代时权向量为 w_t ,它对样本 $(\mathbf{x}_{n(t)}, y_{n(t)})$ 错分 $\mathrm{sign}(\mathbf{w}_t^T \mathbf{x}_{n(t)}) \neq y_n$
 - ② 通过下式对权向量 w_t 进行更新: $w_{t+1} = w_t + y_n \mathbf{x}_{n(t)}$
 - ① 对某些样本n,通过下式对权向量 w_t 进行更新:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \left[\operatorname{sign}(\mathbf{w}_t^T \mathbf{x}_{n(t)}) \neq y_n \right] \mathbf{x}_{n(t)}$$

…直到满足停止条件,此时的 \mathbf{w}_{t+1} 作为学到的 \mathbf{g}

人工智能与自动化学院

23

3.3 梯度下降法

回顾感知器算法:

- 对样本的特征向量x和权向量w 增广化
- 初始化权向量 \mathbf{w}_0 (例如: $\mathbf{w}_0 = \mathbf{0}$)
- **for** t = 0,1,2,... (t 代表迭代次数)
 - ① 对某些样本n,通过下式对权向量 w_t 进行更新:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + 1 \cdot (\left[\operatorname{sign}(\mathbf{w}_t^T \mathbf{x}_{n(t)}) \neq y_n\right] \mathbf{x}_{n(t)})$$

…直到满足停止条件,此时的 \mathbf{w}_{t+1} 作为学到的 \mathbf{g}

人工智能与自动化学院

回顾感知器算法:

- 对样本的特征向量x和权向量w 增广化
- 初始化权向量 \mathbf{w}_0 (例如: $\mathbf{w}_0 = \mathbf{0}$)
- for t = 0,1,2,... (t 代表迭代次数)
 - ① 对某些样本n, 通过下式对权向量 w_t 进行更新:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \underbrace{1}_{\eta} \cdot \underbrace{\left(\left[\operatorname{sign} \left(\mathbf{w}_t^T \mathbf{x}_{n(t)} \right) \neq y_n \right] \mathbf{x}_{n(t)} \right)}_{\mathbf{v}}$$

…直到满足停止条件,此时的 w_{t+1} 作为学到的g

算法可理解成通过选择(η, v), 以及确定"停止条件"的找到最佳解的<u>迭代优化过程</u>

人工智能与自动化学院

25

3.3 梯度下降法

迭代优化:

● **for** t = 0,1,2,... (t 代表迭代次数)

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{\eta} \cdot \mathbf{v}$$

…直到满足停止条件,此时的 w_{t+1} 作为学到的g

人工智能与自动化学院

梯度下降法实现线性回归

- 初始化权向量w₀
- for t = 0,1,2,... (t 代表迭代次数)
 - ① 计算梯度: $\nabla L_{in}(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n y_n) \mathbf{x}_n$
 - ② 对权向量 \mathbf{w}_t 进行更新: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \mathbf{\eta} \nabla L_{in}(\mathbf{w}_t)$

…直到 $\nabla L_{in}(\mathbf{w}) = \mathbf{0}$,或者迭代足够多次数

返回最终的 W_{t+1} 作为学到的g

人工智能与自动化学院

Root Mean Square:

$$w_{i,1} \leftarrow w_{i,0} - \frac{\eta}{\sigma_{i,0}} \frac{\partial L_{in}}{\partial w_{i,0}} \qquad \sigma_{i,0} = \sqrt{(\frac{\partial L_{in}}{\partial w_{i,0}})^2}$$

$$w_{i,2} \leftarrow w_{i,1} - \frac{\eta}{\sigma_{i,1}} \frac{\partial L_{in}}{\partial w_{i,1}} \qquad \sigma_{i,1} = \sqrt{\frac{1}{2} \left[\left(\frac{\partial L_{in}}{\partial w_{i,0}} \right)^2 + \left(\frac{\partial L_{in}}{\partial w_{i,1}} \right)^2 \right]}$$

$$w_{i,3} \leftarrow w_{i,2} - \frac{\eta}{\sigma_{i,2}} \frac{\partial L_{in}}{\partial w_{i,2}}$$

$$W_{i,t+1} \leftarrow W_{i,t} - \frac{\eta}{\sigma_{i,t}} \frac{\partial L_{in}}{\partial w_{i,t}} \qquad \sigma_{i,t} = \sqrt{\frac{1}{t+1} \sum_{t=0}^{t} (\frac{\partial L_{in}}{\partial w_{i,t}})^2}$$

$$\overline{w_{i,t+1}} \leftarrow w_{i,t} - \frac{\eta}{\sigma_{i,t}} \frac{\partial L_{in}}{\partial w_{i,t}}$$

$$\sigma_{i,0} = \sqrt{(\frac{\partial L_{in}}{\partial w_{i,0}})^2}$$

$$\sigma_{i,1} = \sqrt{\frac{1}{2} \left[\left(\frac{\partial L_{in}}{\partial w_{i,0}} \right)^2 + \left(\frac{\partial L_{in}}{\partial w_{i,1}} \right)^2 \right]}$$

$$w_{i,3} \leftarrow w_{i,2} - \frac{\eta}{\sigma_{i,2}} \frac{\partial L_{in}}{\partial w_{i,2}} \qquad \sigma_{i,2} = \sqrt{\frac{1}{3} \left[\left(\frac{\partial L_{in}}{\partial w_{i,0}} \right)^2 + \left(\frac{\partial L_{in}}{\partial w_{i,1}} \right)^2 + \left(\frac{\partial L_{in}}{\partial w_{i,2}} \right)^2 \right]}$$

$$\sigma_{i,t} = \sqrt{\frac{1}{t+1} \sum_{t=0}^{t} (\frac{\partial L_{in}}{\partial w_{i,t}})^2}$$

39

3.3 梯度下降法(AdaGrad)

自适应动态学习率

(Learning rate adapts dynamically):

$$w_{i,t+1} \leftarrow w_{i,t} - \frac{\eta}{\sigma_{i,t}} \frac{\partial L_{in}}{\partial w_{i,t}}$$

AdaGrad

曲线平缓, $\sigma_{i,t}$ 小

冒能与自动化学院

自适应动态学习率(Learning rate adapts dynamically):

41

3.3 梯度下降法 (RMSProp)

 $0 < \alpha < 1$

RMSProp:

$$w_{i,1} \leftarrow w_{i,0} - \frac{\eta}{\sigma_{i,0}} \frac{\partial L_{in}}{\partial w_{i,0}}$$
 $\sigma_{i,0} = \sqrt{(\frac{\partial L_{in}}{\partial w_{i,0}})^2}$

$$w_{i,2} \leftarrow w_{i,1} - \frac{\eta}{\sigma_{i,1}} \frac{\partial L_{in}}{\partial w_{i,1}}$$

$$w_{i,3} \leftarrow w_{i,2} - \frac{\eta}{\sigma_{i,2}} \frac{\partial L_{in}}{\partial w_{i,2}}$$

$$w_{i,t+1} \leftarrow w_{i,t} - \frac{\eta}{\sigma_{i,t}} \frac{\partial L_{in}}{\partial w_{i,t}}$$

$$w_{i,t+1} \leftarrow w_{i,t} - \frac{\eta}{\sigma_{i,t}} \frac{\partial L_{in}}{\partial w_{i,t}}$$

$$\sigma_{i,0} = \sqrt{(\frac{\partial L_{in}}{\partial w_{i,0}})^2}$$

$$w_{i,2} \leftarrow w_{i,1} - \frac{\eta}{\sigma_{i,1}} \frac{\partial L_{in}}{\partial w_{i,1}} \qquad \sigma_{i,1} = \sqrt{\alpha(\sigma_{i,0})^2 + (1-\alpha)(\frac{\partial L_{in}}{\partial w_{i,1}})^2}$$

$$w_{i,3} \leftarrow w_{i,2} - \frac{\eta}{\sigma_{i,2}} \frac{\partial L_{in}}{\partial w_{i,2}} \qquad \sigma_{i,2} = \sqrt{\alpha(\sigma_{i,1})^2 + (1-\alpha)(\frac{\partial L_{in}}{\partial w_{i,2}})^2}$$

$$w_{i,t+1} \leftarrow w_{i,t} - \frac{\eta}{\sigma_{i,t}} \frac{\partial L_{in}}{\partial w_{i,t}} \qquad \sigma_{i,t} = \sqrt{\alpha(\sigma_{i,t-1})^2 + (1-\alpha)(\frac{\partial L_{in}}{\partial w_{i,t}})^2}$$

3.3 梯度下降法 (Momentum) 结合动量特性的梯度下降法(Gradient Descent + Momentum) 动量:上一步的动量减去当前梯度 初始值为 \mathbf{w}_0 动量 $m_0 = 0$ $\nabla L_{in}(\mathbf{w}_0)$ $\nabla L_{in}(\mathbf{w}_1)$ 计算梯度: $\nabla L_{in}(\mathbf{w}_0)$ 动量 $m_1 = \lambda m_0 - \eta \nabla L_{in}(\mathbf{w}_0)$ $\nabla L_{in}(\mathbf{w_2})$ 权向量更新 $\mathbf{w}_1 \leftarrow \mathbf{w}_0 + \mathbf{m}_1$ 计算梯度: $\nabla L_{in}(\mathbf{w}_1)$ ▶ 梯度向量 动量 $m_2 = \lambda m_1 - \eta \nabla L_{in}(\mathbf{w}_1)$ > 动量 $\nabla L_{in}(\mathbf{w}_3)$ 权向量更新 $\mathbf{w}_2 \leftarrow \mathbf{w}_1 + \mathbf{m}_2$ ••• 上一步 动量 权向量更新时不仅考虑负梯度方向 还同时要考虑上一步的动量 人工智能与自动化学院 51

3.3 梯度下降法(Adam)

Adam: RMSProp + Momentum

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9, \, \beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

for RMSprop

Require: α : Stepsize

Require: $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates

Require: $f(\theta)$: Stochastic objective function with parameters θ

Require: θ_0 : Initial parameter vector

 $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize 2nd moment vector) \rightarrow for momentum

 $t \leftarrow 0$ (Initialize timestep)

while θ_t not converged do

 $t \leftarrow t + 1$

 $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $g_t \leftarrow y_f(v_{t-1})$ (e.g. (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased second raw moment estimate)

 $\widehat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (Compute bias-corrected first moment estimate)

 $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate)

 $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters)

end while

return θ_t (Resulting parameters)

人工智能与自动化学院

梯度下降法实现线性回归

- 初始化权向量w₀
- for t = 0,1,2,... (t 代表迭代次数)
 - ① 计算梯度: $\nabla L_{in}(\mathbf{w}) = \frac{2}{N} \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n y_n) \mathbf{x}_n$

每次迭代N个样本均要计算,时间复杂度与Pocket算法相似

- ② 对权向量 \mathbf{w}_t 进行更新: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \mathbf{\eta} \nabla L_{in}(\mathbf{w}_t)$
- …直到 $\nabla L_{in}(\mathbf{w}) = \mathbf{0}$,或者迭代足够多次数

返回最终的 \mathbf{w}_{t+1} 作为学到的 \mathbf{g}

人工智能与自动化学院

57

3.3 梯度下降法

梯度下降法实现线性回归

- 初始化权向量w₀
- for t = 0,1,2,... (t 代表迭代次数)
 - ① 计算梯度: $\nabla L_{in}(\mathbf{w}) = (\mathbf{w}^T \mathbf{x}_n y_n) \mathbf{x}_n$

随机梯度下降法 (Stochastic Gradient Descent) (SGD)

- ② 对权向量 \mathbf{w}_t 进行更新: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \mathbf{\eta} \nabla L_{in}(\mathbf{w}_t)$
- …直到 $VL_{in}(\mathbf{w}) = \mathbf{0}$,或者迭代足够多次数

返回最终的 W_{t+1} 作为学到的g

人工智能与自动化学院

batch

batch

batch

batch

批量(batch)用于梯度下降

 $\mathbf{w}^* = arg \min_{\mathbf{w}} L$

- 随机设置一个初始向量 w_0
- ightharpoonup 计算梯度 $\nabla L_1(\mathbf{w}_0)$,更新: $\mathbf{w}_1 \leftarrow \mathbf{w}_0 \frac{\eta}{\eta} \nabla L_1(\mathbf{w}_0)$
- ▶ 计算梯度 $\nabla L_2(\mathbf{w}_1)$,更新: $\mathbf{w}_2 \leftarrow \mathbf{w}_1 \frac{\eta}{\eta} \nabla L_2(\mathbf{w}_1)$
- ightharpoonup 计算梯度 $\nabla L_3(w_2)$,更新: $w_3 \leftarrow w_2 \eta \nabla L_3(w_2)$

1 epoch = 所有的batch遍历一遍 → 每一次epoch后进行Shuffle

61

N

3.3 梯度下降法

人工智能与自动化学院

批量(batch)大小对训练过程速度的影响

60000 updates in one epoch

较小的批量(batch)做完一次epoch时需要花费更多的时间

工智能与自动化学院

批量(batch)大小对分类性能的影响

	Name	Network Type	Data set
CD OFC	F_1	Fully Connected	MNIST (LeCun et al., 1998a)
SB = 256	F_2	Fully Connected	TIMIT (Garofolo et al., 1993)
	C_1	(Shallow) Convolutional	CIFAR-10 (Krizhevsky & Hinton, 2009)
LB =	C_2	(Deep) Convolutional	CIFAR-10
0.1 x data set	$\overline{C_3}$	(Shallow) Convolutional	CIFAR-100 (Krizhevsky & Hinton, 2009)
U.I x data set	C_4	(Deep) Convolutional	CIFAR-100
			I

	Training Accuracy			
Name	SB	LB		
F_1	$99.66\% \pm 0.05\%$	$99.92\% \pm 0.01\%$		
F_2	$99.99\% \pm 0.03\%$	$98.35\% \pm 2.08\%$		
C_1	$99.89\% \pm 0.02\%$	$99.66\% \pm 0.2\%$		
C_2	$99.99\% \pm 0.04\%$	$99.99\% \pm 0.01\%$		
C_3	$99.56\% \pm 0.44\%$	$99.88\% \pm 0.30\%$		
C_4	$99.10\% \pm 1.23\%$	$99.57\% \pm 1.84\%$		

Testing Accuracy				
SB	LB			
$98.03\% \pm 0.07\%$	$97.81\% \pm 0.07\%$			
$64.02\% \pm 0.2\%$	$59.45\% \pm 1.05\%$			
$80.04\% \pm 0.12\%$	$77.26\% \pm 0.42\%$			
$89.24\% \pm 0.12\%$	$87.26\% \pm 0.07\%$			
$49.58\% \pm 0.39\%$	$46.45\% \pm 0.43\%$			
$63.08\% \pm 0.5\%$	$57.81\% \pm 0.17\%$			

On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima

https://arxiv.org/abs/ 1609.04836

较小的批量在测试数据集上也能获得更好的性能

人工智能与自动化学院

65

3.3 梯度下降法

批量(batch)大小对梯度下降优化时的影响总结

	批量小	批量大
一次更新需要的速度 (无并行处理)	Faster	Slower
一次更新需要的速度 (有并行处理)	Same	Same (not too large)
一个epoch花费的时间	Slower	Faster
梯度的特点	Noisy	Stable
优化性能	Better 💥	Worse
泛化性能	Better 💥	Worse

批量大小(batch size)作为超参数(hyperparameter)由算法设计者确定

人工智能与自动化学院

第三讲 线性回归 (Linear Regression)

3.1 线性回归问题

模型的输出为实数值,有众多应用场景

3.2 线性回归算法

损失函数为均方误差时, 可通过求解广义逆得到解析解

3.3 梯度下降法

迭代优化,更一般的损失函数;固定学习率、AdaGrad、 RMSProp、动量(Momentum)、Adam、SGD、批量大小(batch size)

人工智能与自动化学院