Hongyang Zhou

hongyang@bu.edu · Github

-	FTT	OTTE		
L.V		OYN	/I L N	
r.w			/ -	

Boston University	Boston, MA
Research Scientist	2023/10-now
University of Helsinki	Helsinki, Finland
Postdoctoral Researcher	2020/11-2023/05
University of Michigan	Ann Arbor, MI
Research Assistant	2015/08-2020/09
EDUCATION	
University of Michigan	Ann Arbor, MA
Ph.D of Climate and Space Sciences and Scientific	2015/08-2020/09
Computing	
University of Science and Technology of	Anhui, China
China (USTC)	0044/00 0045/04
Bachelor of Geophysics	2011/09-2015/06
AWARDS	
University of Michigan	2020
Climate and Space Sciences Outstanding Doctoral Student Research Award	
University of Michigan	2016
Michigan Institute for Computational Discovery and Engineering Fellowship	
USTC	2015
Outstanding Teaching Scholarship	
USTC	2014
The First Prize, Outstanding Student Scholarship	
EXPERIENCE	

EXPERIENCE

Planetary Magnetosphere Modeling

2023/10-now

Supervisor: Chuanfei Dong

- Studying Earth and planetary magnetosphere with numerical simulations
- Developing kinetic shock and foreshock models

Understanding Ultra-Low Frequency (ULF) Waves in Hybrid Vlasov Simulations

2020/11-2023/05

Supervisor: Lucile Turc & Minna Palmroth

- Developed time-varying boundary conditions in Vlasiator and the postprocessing package Vlasiator.jl
- · Studied ULF waves properties in Earth's magnetosheath and foreshock region using global 2D simulations

Numerical model development for **SWMF**

2015-2020

Supervisor: Gábor Tóth

- Developed new boundary setups and extended MPI-OpenMP parallel code capability for BATS-R-US
- Developed an open-source package Batsrus.jl for efficient data processing, analysis and visualization
- Initiated a GPU-portable magnetohydrodynamic (MHD) solver with OpenACC, OpenMP & CUDA

MHD-EPIC simulation of Ganymede's magnetosphere

2016-2020

Supervisor: Gábor Tóth & Xianzhe Jia

- · Constructed a global magnetosphere model by coupling Hall MHD with Particle-In-Cell in generalized coordinates
- Analyzed the magnetic reconnection processes at Ganymede

SELECTED PUBLICATIONS

Kinetic signatures, dawn-dusk asymmetries, and flux transfer events associated with Mercury's dayside magnetopause reconnection from 3D MHD-AEPIC simulations

Li, Changkun and Jia, Xianzhe and Chen, Yuxi and Tóth, Gábor and **Zhou, Hongyang** and Slavin, James A and Sun, Weijie and Poh, Gangkai, JGR, 2024

Dayside Pc2 Waves Associated With Flux Transfer Events in a 3D Hybrid-Vlasov Simulation

Tesema, Facil and Palmroth, Minna and Turc, Lucile and **Zhou, Hongyang** and Cozzani, Giulia and Alho, Markku and Pfau-Kempf, Yann and Horaites, Konstantinos and Zaitsev, Ivan and Grandin, Maxime, GRL, 2024

Vlasiator. jl: A Julia package for processing Vlasiator data

Zhou, Hongyang, Journal of Open Source Software, 2023

FLEKS: A flexible particle-in-cell code for multi-scale plasma simulations Chen, Yuxi and Tóth, Gábor and **Zhou, Hongyang** and Wang, Xiantong, CPC, 2023

Magnetospheric Response to a Pressure Pulse in a Three-Dimensional Hybrid-Vlasov Simulation Horaites, Konstantinos and Rintamäki, E and Zaitsev, I and Turc, L and Grandin, M and Cozzani, G and **Zhou, H** and Alho, M and Suni, J and Kebede, F and others, JGR, 2023

Magnetotail plasma eruptions driven by magnetic reconnection and kinetic instabilities

Palmroth, Minna and Pulkkinen, Tuija I and Ganse, Urs and Pfau-Kempf, Yann and Koskela, Tuomas and Zaitsev, Ivan and Alho, Markku and Cozzani, Giulia and Turc, Lucile, **Zhou, Hongyang** and others, Nature Geoscience, 2023

Magnetospheric responses to solar wind Pc5 density fluctuations: Results from 2D hybrid Vlasov simulation **Zhou, Hongyang** and Turc, Lucile and Pfau-Kempf, Yann and Battarbee, Markus and Tarvus, Vertti and Dubart, Maxime and George, Harriet and Cozzani, Giulia and Grandin, Maxime and Ganse, Urs, Frontiers in Astronomy and Space Sciences, 2022

A global view of Pc3 wave activity in near-Earth space: Results from hybrid-Vlasov simulations Turc, Lucile and **Zhou, Hongyang** and Tarvus, Vertti and Ala-Lahti, Matti and Battarbee, Markus and Pfau-Kempf, Yann and Johlander, Andreas and Ganse, Urs and Dubart, Maxime and George, Harriet and others, Frontiers in Astronomy and Space Sciences, 2022

Reconnection-driven dynamics at Ganymede's upstream magnetosphere: 3-D global Hall MHD and MHD-EPIC simulations

Zhou, Hongyang and Tóth, Gábor and Jia, Xianzhe and Chen, Yuxi, JGR, 2020

Efficient OpenMP parallelization to a complex MPI parallel magnetohydrodynamics code **Zhou, Hongyang** and Tóth, Gábor, Journal of Parallel and Distributed Computing, 2020

Embedded kinetic simulation of Ganymede's magnetosphere: Improvements and inferences **Zhou, Hongyang** and Tóth, Gábor and Jia, Xianzhe and Chen, Yuxi and Markidis, Stefano, JGR, 2019

SKILLS

Programming Languages - Julia, Fortran, C, C++, MATLAB, Python, IDL, CUDA, Rust, Perl, LaTeX

Visualization Tools - Paraview, VisIt, Tecplot

Languages - English, Chinese