MH1820 Introduction to Probability and Statistical Methods Tutorial 5 (Week 6) Solution

Note: You may use the tables provided in NTULearn > Content > TABLES.pdf for calculations using the standard normal and chi-square distribution. No interpolation is required for calculating $\Phi(z)$, i.e. you may round the number to 2 decimal places before using the table. E.g. $\Phi(0.7897)$ can be approximated by just $\Phi(0.79)$ etc.

Problem 1 (Normal distribution)

- (a) If X is normally distributed with a mean of 6 and a variance of 25, find
 - (i) $\mathbb{P}(6 \le X \le 12)$
 - (ii) $\mathbb{P}(|X 6| < 15)$
 - (iii) $\mathbb{P}(X > 21)$
- (b) If $X \sim N(650, 625)$, find the constant c such that $\mathbb{P}(|X 650| \le c) = 0.9544$.

Solution (a)

(i)
$$\mathbb{P}(6 \le X \le 12) = \Phi\left(\frac{12-6}{5}\right) - \Phi\left(\frac{6-6}{5}\right) = \Phi(1.2) - \Phi(0) = 0.8849 - 0.5 = 0.3849.$$

(ii) Expanding |X - 6| < 15, we have -15 < X - 6 < 15, and so -9 < X < 21. Thus,

$$\mathbb{P}(|X-6| < 15) = \mathbb{P}(-9 < X < 21)$$

$$= \Phi((21-6)/5) - \Phi((-9-6)/5)$$

$$= \Phi(3) - \Phi(-3)$$

$$= \Phi(3) - (1 - \Phi(3))$$

$$= 2\Phi(3) - 1 = 2(0.9987) - 1 = 0.9974.$$

(ii)
$$\mathbb{P}(X > 21) = 1 - \mathbb{P}(X \le 21) = 1 - \Phi((21 - 6)/5) = 1 - \Phi(3) = 1 - 0.9987 = 0.0013.$$

(b)

$$\mathbb{P}(|X - 650| \le c) = 0.9544$$

$$\mathbb{P}(650 - c \le X \le 650 + c) = 0.9544$$

$$\mathbb{P}\left(\frac{650 - c - 650}{25} \le Z \le \frac{650 + c - 650}{25}\right) = 0.9544$$

$$\mathbb{P}\left(\frac{-c}{25} \le Z \le \frac{c}{25}\right) = 0.9544$$

$$\Phi\left(\frac{c}{25}\right) - \Phi\left(-\frac{c}{25}\right) = 0.9544$$

$$\Phi\left(\frac{c}{25}\right) - 1 + \Phi\left(\frac{c}{25}\right) = 0.9544$$

$$2\Phi\left(\frac{c}{25}\right) = 1.9544$$

$$\Phi\left(\frac{c}{25}\right) = 0.9772$$

From the table, we have $\Phi(2)=0.9772$. Therefore, $\frac{c}{25}=2$, whence c=50.

Problem 2 (Normal distribution) Find the distribution of $W = X^2$ when

- (i) X is N(0,4)
- (ii) X is $N(0, \sigma^2)$

Solution (i) The CDF of W is

$$F(w) = \mathbb{P}(W \le w)$$

$$= \mathbb{P}(X^2 \le w)$$

$$= \mathbb{P}(-\sqrt{w} \le X \le \sqrt{w})$$

$$= \Phi\left(\frac{\sqrt{w}}{2}\right) - \Phi\left(-\frac{\sqrt{w}}{2}\right)$$

$$= \Phi\left(\frac{\sqrt{w}}{2}\right) - 1 + \Phi\left(\frac{\sqrt{w}}{2}\right)$$

$$= 2\Phi\left(\frac{\sqrt{w}}{2}\right) - 1$$

The PDF is given by

$$f(w) = F'(w)$$

$$= 2\frac{d}{du}\Phi(u) \cdot \frac{du}{dw} \text{ where } u = \sqrt{w}/2$$

$$= 2\frac{1}{\sqrt{2\pi}}e^{-u^2/2}\frac{1}{4\sqrt{w}}$$

$$= \frac{1}{2\sqrt{2\pi}}w^{-1/2}e^{-w/8}.$$

(ii) Repeating the above with σ , the CDF of W is

$$F(w) = \mathbb{P}(W \le w)$$

$$= \mathbb{P}(X^2 \le w)$$

$$= \mathbb{P}(-\sqrt{w} \le X \le \sqrt{w})$$

$$= \Phi\left(\frac{\sqrt{w}}{\sigma}\right) - \Phi\left(-\frac{\sqrt{w}}{\sigma}\right)$$

$$= \Phi\left(\frac{\sqrt{w}}{\sigma}\right) - 1 + \Phi\left(\frac{\sqrt{w}}{\sigma}\right)$$

$$= 2\Phi\left(\frac{\sqrt{w}}{\sigma}\right) - 1$$

The PDF is given by

$$f(w) = F'(w)$$

$$= 2\frac{d}{du}\Phi(u) \cdot \frac{du}{dw} \text{ where } u = \sqrt{w}/\sigma$$

$$= 2\frac{1}{\sqrt{2\pi}}e^{-u^2/2}\frac{1}{2\sigma\sqrt{w}}$$

$$= \frac{1}{\sigma\sqrt{2\pi}}w^{-1/2}e^{-\frac{w}{2\sigma^2}}.$$

Problem 3 (Normal distribution) A candy maker produces mints that have a label weight of 20.4 grams. Assume that the distribution of the weights of these mints is N(21.37, 0.16). Suppose that 15 mints are selected independently and weighted. Let Y equal the number of these mints that weigh less than 20.857 grams. Find $\mathbb{P}(Y \leq 2)$.

Solution Let X be the weight of a mint. Let p be the probability that the weight of a mint is less than 20.857. Then $p = \mathbb{P}(X < 20.857) = \Phi\left(\frac{20.857 - 21.37}{0.4}\right) = \Phi(-1.2825) \approx 1 - \Phi(1.28) = 1 - 0.8997 = 0.1003$.

Y is binomially distributed, i.e. $Y \sim Binomial(15, p)$. So

$$\mathbb{P}(Y \le 2) = \binom{15}{0} p^0 (1-p)^{15} + \binom{15}{1} p^1 (1-p)^{14} + \binom{15}{2} p^2 (1-p)^{13}$$
$$= (0.8997)^{15} + 15(0.1003)(0.8997)^{14} + 105(0.1003)^2 (0.8997)^{13} \approx 0.815.$$

Problem 4 (Normal distribution) The price of an asset is such that its distribution is found by $Y = e^X$, where X is N(10, 1). Find the CDF and PDF of X, and compute $\mathbb{P}(10,000 < Y < 20,000)$.

Note: $F(y) = \mathbb{P}(Y \leq y) = \mathbb{P}(e^X \leq y) = \mathbb{P}(X \leq \ln y)$. For CDF, you can leave your answer in terms of $\Phi(\cdot)$.

Solution The CDF of Y is

$$F(y) = \mathbb{P}(Y \le y) = \mathbb{P}(e^X \le y) = \mathbb{P}(X \le \ln y)$$
$$= \mathbb{P}\left(Z \le \frac{\ln y - 10}{1}\right), \text{ where } Z \sim N(0, 1)$$
$$= \Phi\left(\ln y - 10\right)$$

The PDF of Y is

$$f(y) = \frac{d}{dy}\Phi(\ln y - 10)$$

$$= \frac{d}{du}\Phi(u) \cdot \frac{du}{dy}, \text{ where } u = \ln y - 10$$

$$= \frac{1}{\sqrt{2\pi}}e^{-u^2/2} \cdot \frac{1}{y}$$

$$= \frac{1}{y\sqrt{2\pi}}e^{-(\ln y - 10)^2/2}$$

$$\begin{split} \mathbb{P}(10,000 < Y < 20,000) &= \mathbb{P}(\ln 10,000 < X < \ln 20,000) \\ &= \Phi\left(\frac{\ln 20,000 - 10}{1}\right) - \Phi\left(\frac{\ln 10,000 - 10}{1}\right) \\ &= \Phi(-0.0965) - \Phi(-0.7897) \\ &= 1 - \Phi(0.0965) - 1 + \Phi(0.7897) \\ &\approx \Phi(0.79) - \Phi(0.10) \\ &\approx 0.7852 - 0.5398 \approx 0.25. \end{split}$$

Problem 5 (Chi-square distribution) If X is $\chi^2(17)$, find

- (i) $\mathbb{P}(X < 7.564)$
- (ii) $\mathbb{P}(X > 27.59)$
- (iii) $\mathbb{P}(6.408 < X < 27.59)$
- (iv) $\chi_{0.95}^2(17)$
- (v) $\chi^2_{0.025}(17)$

Solution

(i)
$$\mathbb{P}(X < 7.564) = \mathbb{P}(X < \chi^2_{0.975}(17)) = 0.025.$$

(ii)
$$\mathbb{P}(X > 27.59) = \mathbb{P}(X < \chi_{0.05}^2(17)) = 0.05.$$

(iii)

$$\mathbb{P}(6.408 < X < 27.59) = \mathbb{P}(X < 27.59) - \mathbb{P}(6.408)$$

$$= \mathbb{P}(X < \chi^{2}_{0.05}(17)) - \mathbb{P}(X < \chi^{2}_{0.99}(17))$$

$$= 0.95 - 0.01 = 0.94.$$

- (iv) $\chi_{0.95}^2(17) = 8.672$.
- (v) $\chi^2_{0.025}(17) = 30.19$.

Problem 6 (Chi-square distribution)

Cars arrive at a tollbooth at a mean rate of 5 cars every 10 minutes according to a Poisson distribution. Let X be the time (in minutes) that the toll collector will have to wait before collecting the **eighth** toll.

- (i) Find $\mathbb{E}[X]$ and the standard deviation of X.
- (ii) Find the probability that the toll collector will have to wait longer than 26.30 minutes before collecting the eighth toll.

Solution The cars arrive at the tollbooth on an average of $\lambda = \frac{5}{10} = \frac{1}{2}$ cars per minutes. Let X be the waiting time (in minutes) until the eighth toll. Then $X \sim Gamma(\alpha = 8, \theta = \frac{1}{\lambda} = 2) = \chi^2(16)$.

(i)
$$\mathbb{E}[X] = \alpha \theta = 8(2) = 16.$$

$$\text{Var}[X] = \alpha \theta^2 = 8(2)^2 = 32 \Longrightarrow \text{standard deviation} = \sqrt{32} \approx 5.66.$$

(ii) From the chi-square table, $\chi^2_{0.05}(16) = 26.30$. Thus, $\mathbb{P}(X > 26.30) = 0.05$.

Answer Keys. 1(a)(i). 0.3849 (ii). 0.9974 (iii). 0.0013 1(b). 50 2(i). CDF: $F(w) = 2\Phi\left(\frac{\sqrt{w}}{2}\right) - 1$, PDF: $f(w) = \frac{1}{2\sqrt{2\pi}}w^{-1/2}e^{-w/8}$ 2(ii). CDF: $F(w) = 2\Phi\left(\frac{\sqrt{w}}{\sigma}\right) - 1$, PDF: $f(w) = \frac{1}{\sigma\sqrt{2\pi}}w^{-1/2}e^{-\frac{w}{2\sigma^2}}$ 3. 0.815 4. 0.25 5(i). 0.025 (ii). 0.05 (iii). 0.94 (iv). 8.672 (v). 30.19 6(i). 16, 5.66 (ii). 0.05