Organización de Computadoras 2010

Práctica 2 – Lógica y compuertas 1

Objetivos de la práctica: que el alumno domine

- Operaciones lógicas
- Uso de máscaras y las equivalencias entre operaciones sucesivas.
- Predecir la salida de circuitos combinatorios simples.
- Confeccionar la tabla de verdad.
- Describir la relación entre entradas y salidas por ecuaciones.
- Implementar circuitos a partir de su tabla, ecuación o especificación de funcionamiento.

Bibliografía:

- "Principios de Arquitectura de Computadoras" de Miles J. Murdocca, apéndice A, pág. 441.
- Apunte 3 de la cátedra, "Sistemas de Numeración: Operaciones Lógicas".

Operaciones Lógicas

- 1. Realizar las siguientes operaciones lógicas:
 - a. 10101100 AND 11000101
 - b. 00100010 AND 11111101
 - c. 10101100 OR 11000101
 - d. 00100010 OR 11111101
 - e. 10101100 XOR 11000101
 - f. 00100010 XOR 111111101
 - g. NOT 00101100
 - h. NOT 11000101
 - i. 10101011 NAND 11000101
 - j. 00100010 NAND 11111101
 - k. 10101110 NOR 11010101
 - 1. 00101010 NOR 11100101
 - m. 10101100 XNOR 11000101
 - n. 10101100 XNOR 11111101
- 2. Dado un byte X=[X₇,X₆,X₅,X₄,X₃,X₂,X₁,X₀] (indeterminado), ¿qué resultado obtendré al aplicarle una operación lógica junto a un valor predeterminado (máscara)?: Analice para cada operación cómo los bits de la 'máscara' condicionan el resultado que se obtendrá.
 - a. X OR 10101010
 - b. X OR 11111000
 - c. X AND 10101010
 - d. X AND 10001111
 - e. X XOR 10101010
 - f. X XOR 00001111
 - g. X OR 10000000, al resultado AND 11110000, y al resultado XOR 00011110
 - h. X AND 10101111, al resultado OR 11110000, y al resultado XOR 00011110
 - i. X XOR 10101010, al resultado AND 11110000, y al resultado OR 00011110
 - j. X XNOR 10101010, al resultado NAND 11110000, y al resultado NOR 00011110
 - k. X XOR 10101010, al resultado NAND 11110000, y al resultado NOR 00011110

En los casos de más de una operación, obtenga el resultado y a éste resultado aplíquele la operación siguiente.

- 3. Complete con el operador lógico adecuado (AND, OR, XOR, NOT) las siguientes expresiones de modo tal que se cumpla la igualdad propuesta:
 - a. $1000 \dots$;?... 1101 = 1101
 - b. 1111 ...;?... 0101 = 0101
 - c. $1101 \dots \dot{6}?\dots 1001 = 0100$
 - d. $\dot{\epsilon}$?... (1111 ... $\dot{\epsilon}$?... 0011) = 1100
 - e. $X_3 X_2 X_1 X_0 \dots i_{\ell}? \dots 1110 \dots i_{\ell}? \dots 0101 \dots i_{\ell}? \dots 0101 = X_3 0 X_1 0$; Se entiende que cada X es un bit que puede ser 1 o 0, debiendo obtenerse el resultado final combinando diferentes operaciones lógicas en un orden correcto.

Práctica 2 1/2

Organización de Computadoras 2010

- 4. Dado un byte $X=[X_7,X_6,X_5,X_4,X_3,X_2,X_1,X_0]$ (indeterminado), aplíquele operaciones lógicas (1 o más) con un byte MASK, que deberá también determinar, para lograr los siguientes efectos:
 - a. Poner a 1 los bits 0, 2 y 6 dejando los demás inalterados.
 - b. Poner a 1 los bits 4 y 7 dejando los demás inalterados.
 - c. Poner a 0 los bits 0, 2 y 6 dejando los demás inalterados.
 - d. Poner a 0 los bits 4 y 7 dejando los demás inalterados.
 - e. Cambiar los bits 0, 2 y 6 dejando los demás inalterados.
 - f. Cambiar los bits 4 y 7 dejando los demás inalterados.
 - g. Poner el bit 3 en 1, el bit 6 en 0, cambiar el bit 2 y dejar los demás inalterados.
 - h. Poner a 0 los bits 0, 3 y 7, cambiar el bit 2 y dejar los demás inalterados.

Circuitos Combinatorios

5. Construir la tabla de verdad de los siguientes circuitos:

6. Especifique la ecuación que describe la relación entre entradas-salidas de los circuitos del ejercicio anterior.

Práctica 2 2/2