Análise de uma Rede de Sistemas de Fila com Dois Servidores em Série

*Projeto Final.

Adrian Alejandro Chavez Alanes, Everton Vilhena Cardoso

Prof. Samuel Baraldi Mafra Instituto Nacional de Telecomunicações – INATEL

30 de junho de 2025

Introdução

A modelagem de sistemas de filas é essencial para compreender e otimizar o desempenho de serviços sujeitos à variabilidade de chegada e atendimento. Este trabalho analisa uma rede com dois servidores em série: o primeiro com buffer finito (M/M/1/K) e o segundo com buffer infinito (M/M/1). Essa configuração é comum em redes de comunicação, centros de dados e linhas de produção. São avaliadas métricas como taxa de bloqueio e tempo médio de espera, considerando três cenários operacionais: sistema subdimensionado, equilibrado e com gargalo. A abordagem combina análise analítica e simulação para avaliar o impacto do dimensionamento.

Introdução

- Contexto: Rede com dois servidores em série (M/M/1/K → M/M/1), aplicável a redes de telecomunicações, linhas de produção e sistemas computacionais (Kleinrock, 1975).
- **Objetivo**: Analisar métricas de desempenho (bloqueio, vazão efetiva, ocupação média) em três cenários:
 - Subdimensionado.
 - Equilibrado.
 - Gargalo.
- Resultados-Chave:
 - Alto bloqueio no Servidor 1.
 - Estabilidade.
 - Crescimento ilimitado da Fila 2.
- Contribuição: Validação analítica-simulativa para otimização de recursos, alinhada a aplicações em QoS (Gupta & Zhang, 2019) e AQM (Smith & Li, 2020).

Fonte: Modelo baseado em Kleinrock (1975) e Lakken (2013).

Descrição Geral do Sistema

- Rede com dois servidores em série.
- Servidor 1: fila com buffer finito de tamanho J, taxa de serviço μ_1 .
- Servidor 2: fila com buffer infinito, taxa de serviço μ_2 .
- Chegadas externas seguem processo de Poisson com taxa γ_1 .
- Quando fila 1 cheia, novas chegadas são bloqueadas.
- Saída do servidor 1 alimenta a fila 2.

Notação e Modelagem

- Primeiro estágio: sistema M/M/1/K
 - ullet Chegadas: Poisson com taxa λ_1
 - Serviço: exponencial com taxa μ_1
 - Capacidade total: K = J + 1

Notação e Modelagem

- Segundo estágio: sistema M/M/1
 - Chegadas: saída do servidor 1 com taxa λ_2
 - Serviço: exponencial com taxa μ_2
 - Buffer infinito

Variáveis e Eventos Principais

- Variáveis:
 - λ_1 : taxa de chegadas externas
 - K: capacidade total da fila 1
 - μ_1, μ_2 : taxas de serviço dos servidores 1 e 2
 - $n_1(t), n_2(t)$: número de clientes nas filas 1 e 2 no tempo t
- Eventos:
 - 1. Chegada externa: cliente entra se $n_1 < K$, se não é bloqueado
 - 2. Término no servidor 1: cliente vai para fila 2
 - 3. Término no servidor 2: cliente sai do sistema

Representação do Estado do Sistema

- Estado representado pelo par (i, j):
 - *i*: clientes na fila 1 (incluindo em atendimento), $0 \le i \le K$
 - j: clientes na fila 2 (incluindo em atendimento), $j \ge 0$
- Evolução do sistema:
 - Chegada externa: $(i,j) \rightarrow (i+1,j)$ se i < K, se não bloqueado
 - Término servidor 1: $(i,j) \rightarrow (i-1,j+1)$ se i > 0
 - Término servidor 2: $(i,j) \rightarrow (i,j-1)$ se j > 0

Análise Analítica – M/M/1/K

Fator de utilização do servidor 1:

$$\rho_1 = \frac{\lambda_1}{\mu_1}$$

Probabilidade de ocupação de cada estado n:

$$P(n) = \frac{(1-\rho_1)\rho_1^n}{1-\rho_1^{K+1}}$$

Probabilidade de bloqueio (fila cheia):

$$P_{bloq1} = P_1(K) = \frac{(1-\rho_1)\rho_1^K}{1-\rho_1^{K+1}}$$

• Número médio de clientes no sistema:

$$E[q_1] = rac{
ho_1}{1-
ho_1} - rac{(K+1)
ho_1^{K+1}}{1-
ho_1^{K+1}}$$

• Tempo médio de permanência no sistema 1:

$$E[tq_1] = rac{E[q_1]}{(1-P_{bloq1})\lambda_1}$$

Análise Analítica – M/M/1

Taxa efetiva de chegada no segundo estágio:

$$\lambda_2 = \lambda_1 \left(1 - P_{bloq1} \right)$$

• Fator de utilização do servidor 2:

$$\rho_2 = \frac{\lambda_2}{\mu_2}$$

• Número médio de clientes na fila 2:

$$E[q_2] = \frac{\rho_2}{1 - \rho_2}$$

• Tempo médio de permanência no sistema 2:

$$E[tq_2] = \frac{\rho_2}{\mu_2 - \lambda_2}$$

Resultados e Cenários

- Foram simulados 3 cenários principais:
 - Cenário 1 (subdimensionado): alta taxa de bloqueio e filas instáveis
 - Cenário 2 (equilibrado): baixa perda, filas estáveis
 - Cenário 3 (gargalo no servidor 2): crescimento infinito da fila 2
- Parâmetros chave:

Cenário	λ_1	μ_1	μ_2	K
1	4.5	4.0	4.5	3
2	1.5	2.0	2.0	5
3	1.5	2.0	1.0	5

Simulação - Cenário 1: Sistema Subdimensionado

- Cenário com alta demanda e servidor lento, gerando alta probabilidade de bloqueio e instabilidade nas filas.
- A ocupação das filas apresenta alta volatilidade e perdas significativas na fila 1.

Figura: Ocupação das filas no Cenário 1, evidenciando alta taxa de bloqueio e instabilidade.

Simulação - Cenário 2: Sistema Equilibrado

- Sistema bem dimensionado, baixa probabilidade de bloqueio e filas estáveis.
- A ocupação das filas é estável, com pequenas flutuações naturais e fluxo contínuo.

Figura: Ocupação das filas no Cenário 2, mostrando estabilidade e baixa perda.

Simulação - Cenário 3: Gargalo no Servidor 2

- Gargalo no servidor 2 provoca crescimento ilimitado da fila 2 e instabilidade do sistema.
- A fila 2 cresce continuamente, resultando em tempos médios de espera muito elevados.

Figura: Ocupação das filas no Cenário 3, com crescimento ilimitado da fila 2 devido ao gargalo.

Resultados Analíticos e Simulados dos Cenários

Principais resultados analíticos e simulados para os três cenários avaliados.

Cenário	P_{bloq}	λ_2	ρ_2	$E[q_1]$	$E[tq_1]$	$E[q_2]$	$E[tq_2]$	$E[tq]_{total}$			
Resultados Analíticos											
1	0.2957	3.169	0.704	1.6466	0.5195	2.3818	0.5293	1.0488			
2	0.0722	1.3917	0.696	1.7009	1.2221	2.2873	1.1438	2.3659			
3	0.0722	1.3917	1.3917	1.7009	1.2221	_	_	_			
Resultados Simulados											
1	0.2960	3.169	0.704	1.6474	0.5199	2.0371	0.6428	1.1627			
2	0.0740	1.3909	0.695	1.7110	1.2302	2.1057	1.5139	2.7441			
3	0.0728	1.3943	1.3987	1.7119	1.2278	19896.9	14332.1	14333.4			

Conclusões

Principais conclusões

- Demostra a importância do dimensionamento para evitar bloqueios e gargalos.
- Os cenários evidenciam impacto da capacidade e taxas de serviço na estabilidade.
- E os resultados reforçam a necessidade de balanceamento para garantir qualidade de serviço.

Relevância

Então, qual é a grande contribuição do nosso trabalho? Nós demostramos um modelo validado tanto por análise matemática quanto por simulação, que serve como uma ferramenta para a otimização de recursos.

Isso é especialmente relevante para tecnologias atuais, como *QoS* (Qualidade de Serviço), para garantir uma boa experiência em redes, e *AQM* (Gerenciamento Ativo de Filas), que são técnicas para evitar congestionamentos. Nosso trabalho se alinha com pesquisas recentes nessas áreas, como as de Gupta & Zhang e Smith & Li.

16 / 17

Referências

Kleinrock, L.

Queueing Systems, Volume I: Theory.

Wiley-Interscience, 1975.

ISBN: 0471491101.

Disponível em: https:

 $// \verb|www.wiley.com/en-us/Queueing+Systems|| 2C+Volume+I-p-9780471491101.$

Kleinrock, L.

Queueing Systems, Volume II: Computer Applications.

Wiley-Interscience, 1976.

ISBN: 047149111X.

Disponível em: https://www.wiley.com/en-us/Queueing+Systems%2C+Volume+

2%3A+Computer+Applications-p-9780471491118.

Lakatos, L.

Queueing Theory: A Linear Algebraic Approach.

Wiley, 2013.

Disponível em:

https://onlinelibrary.wiley.com/doi/book/10.1002/9781118625651.