Automated
Pneumonia Diagnosis
Using CNNs on
Radiographic Images

Problem to Investigate

- **GOAL:** Automatically detect pneumonia in patients using chest X-ray images using a deep learning approach
- **PROBLEM STATEMENT:** Can we build a deep learning model that accurately identifies pneumonia from chest X-ray images, distinguishing it from normal lungs?
- **OBJECTIVE:** Train a CNN-based binary classifier to detect:
 - Class 0: Normal
 - Class 1: Pneumonia
- MOTIVATION: Pneumonia is a major global health burden
 - Chest X-rays are diagnostic standard, but error-prone
 - Al can support faster, scalable, and more consistent diagnoses

Project Scope

Included

- Binary classification (Pneumonia vs. Normal)
- Deep learning models (custom CNN + pretrained model)
- Image preprocessing & augmentation
- Evaluation with standard ML metrics

Not Included

- Multiclass disease classification
- Clinical deployment or integration
- Real-time image pipeline or API

Dataset Overview

- **Source:** Kaggle Chest X-Ray Images (Pneumonia)
- Image Type: Grayscale X-Ray JPEGs
- Structure:
 - ~5,200 training images
 - ~600 test images
 - Labels: NORMAL or PNEUMONIA
- Challenges:
 - o Slight class imbalance
 - Variable image resolution
 - No patient metadata (pure image-based)

Measurable Objectives

- 1. Build a custom CNN model from scratch
- 2. Fine-tune a pretrained model
- 3. Evaluate with metrics: accuracy, precision, recall, F1 score, AUC
- 4. Use Grad-CAM to visualize decision regions

Key Approaches & Findings

CNN-Based Models

- CheXNet (Rajpurkar et al., 2017)
 - 121-layer DenseNet trained on ChestXray14 (adult)
 - AUC ~0.915 (matches radiologist-level accuracy)

Transfer Learning

- Pretrained models (e.g., ResNet, VGG, EfficientNet)
- Kermany et al., (2018) fine-tuned models on pediatric data
 - Achieved high accuracy with limited samples

Custom Architectures & Ensembles

- PneumoniaNet (Alsharif et al., 2021)
 - Pediatric-specific CNN with ~99.7% accuracy
- Qiuyu et al. 2024
 - Ensemble: DenseNet + EfficientNet + Attention
 - AUC > 0.95

Explainability

- o Grad-CAM (Selvaraju et al., 2017)
 - Visual heatmaps highlight regions influencing predictions
 - Essential for clinical interpretability

Comparing Methodologies

Study	Model	Dataset	AUC / Accuracy	Notes
Rajpurkar	DenseNet-121	ChestXray14 (Adult)	AUC ~0.915	Strong baseline
Kermany	VGG/ResNet (transfer)	Pediatric	~93-95%	Few images, expert-level perf.
Alsharif	PneumoniaNet	Pediatric	~99.7%	Custom CNN
Qiuyu	Ensemble (DenseNet + EfficientNet)	Pediatric	AUC > 0.95	Uses attention modules
Cohen	ResNet	External Pediatric	AUC ~0.54	Shows generalization issue

Model Architecture

- Backbone: Pretrained ResNet50 (include_top=False)
- **Fine-tuning:** Last 50 layers unfrozen
- Input: 224×224 cropped X-rays (3-channel)
- Head:
 - \circ GlobalAveragePooling \rightarrow Dropout (0.5)
 - \circ Dense (128, ReLU) \rightarrow Dropout (0.3)
 - Output: Dense (1, Sigmoid)

- Loss: BinaryFocalCrossentropy (γ=2.0)
- Optimizer: Adam (LR=1e-5)
- Metrics: Accuracy, AUC, Recall
- Imbalance Handling: class_weight + focal loss
- Callbacks: EarlyStopping, ReduceLROnPlateau

```
Epoch 5/15
                           — 192s 1s/step - accuracy: 0.8480 - auc: 0.9299 - loss: 0.0860 - recall: 0.8243 - val_accuracy: 0.8554 - val_auc:
131/131 -
0.9561 - val loss: 0.0840 - val recall: 0.8129 - learning_rate: 2.0000e-06
Epoch 6/15
131/131 —
                          — 212s 2s/step - accuracy: 0.8487 - auc: 0.9284 - loss: 0.0884 - recall: 0.8375 - val accuracy: 0.7586 - val auc:
0.9591 - val_loss: 0.1232 - val_recall: 0.6787 - learning_rate: 2.0000e-06
Epoch 7/15
                          — 0s 1s/step – accuracy: 0.8518 – auc: 0.9309 – loss: 0.0819 – recall: 0.8321
131/131 —
Epoch 7: ReduceLROnPlateau reducing learning rate to 3.999999989900971e-07.
                           – 204s 2s/step – accuracy: 0.8519 – auc: 0.9309 – loss: 0.0819 – recall: 0.8322 – val_accuracy: 0.7193 – val_auc:
131/131 -
0.9613 - val_loss: 0.1464 - val_recall: 0.6258 - learning_rate: 2.0000e-06
Epoch 8/15
                           — 213s 2s/step - accuracy: 0.8449 - auc: 0.9353 - loss: 0.0810 - recall: 0.8193 - val_accuracy: 0.7615 - val_auc:
131/131 -
0.9613 - val loss: 0.1246 - val recall: 0.6826 - learning rate: 4.0000e-07
Epoch 8: early stopping
Restoring model weights from the end of the best epoch: 5.
```

Cropping Issue

Problem:

- Original X-rays include non-lung regions (neck, shoulders)
- Model sometimes focused on irrelevant areas in training
- Led to overfitting and poor generalization especially for NORMAL cases

Solution:

- Applied fixed lung-region cropping before training
- Removed distractions and guided model toward relevant anatomy

Before vs. After Cropping

Before vs. After Cropping

	Full Image	Cropped Image
Grad-CAM Focus	Neck, corners	Lungs, lower lobes
Normal Recall	15%	98%
Accuracy	66%	86%

Evaluation Metrics & Results

BEFORE:

Classification	Report: precision	recall	f1-score	support
Normal	0.72	0.15	0.24	234
Pneumonia	0.65	0.97	0.78	390
accuracy			0.66	624
macro avg	0.69	0.56	0.51	624
weighted avg	0.68	0.66	0.58	624

AFTER:

	precision	recall	f1-score	support
Normal Pneumonia	0.64 0.99	0.98 0.81	0.78 0.89	269 775
accuracy macro avg weighted avg	0.82 0.90	0.90 0.86	0.86 0.83 0.86	1044 1044 1044

Evaluation Metrics & Results

Takeaways

- Lung cropping significantly improved model focus and reduced overfitting
- Class imbalance handled with focal loss + class weights
- Normal class recall improved from 15% to 98%
- Grad-CAM visualizations confirmed anatomically meaningful attention
- Final model achieved 86% accuracy and 0.96 AUC
- Outperformed baseline and matched or exceeded literature benchmarks
- Demonstrated that simple preprocessing can drive large performance gains

Future Work

- Integrate lung segmentation (U-Net) for dynamic, patient-specific cropping
- Implement uncertainty estimation for clinical decision support
- Expand to multi-class classification (e.g., bacterial vs viral pneumonia)
- Fine-tune on larger or more diverse datasets for better generalization

Questions?