Introduction to Computer Vision

COMP3005

Mark Nixon and Jonathon Hare

Processing Scheme

Acquire image

Low-level processing

High-level processing

Operational Computer Vision Systems

What can image analysis achieve?

Images consist of picture elements, "pixels"

Point Operations

Recalculate point values

Modify brightness

Find Intensity

2D Images are thus matrices of numbers

Grey level image

3D view

Orresponding Matrix

Pixel

Group Operations

Process neighborhoods

Image Filtering

Edge Detection

Feature Extraction

Finds shapes

Roads in remotelysensed image

Artery in ultrasound image

Applications of Image Processing/Vision

- ►Image Coding (MPEG/JPEG)
- **Product Inspection**
- **№** Robotics
- **№** Modern Cameras
- Medical imaging

Statistical Gait Recognition

Recognising people from the motion of the whole body

Silhouette Flow Edges Symmetry Feature Space

Gait Recognition

natural walking (well....)

Gait recognition

Including a funny walk ...

Ear biometrics

- Person identification from ear image
- Uniqueness: used in forensics
- Unique advantage: age invariant
- Unique disadvantage: hair!
- Much smaller field than gait recognition

Lumbar Spine Location in Fluoroscopic Images by Evidence Gathering

Yalin Zheng*, Mark S. Nixon* and Robert Allen[†]

*School of Electronics and Computer Science

†Institute of Sound and Vibration Research

University of Southampton

Digital Videofluoroscopic Imaging

High Level Feature Extraction

Animated Extraction

Zheng, Nixon and Allen, *IEEE TMI 2003*

Vision and Image Processing Support

- > WWW homepages
- Worksheets
- Demos:

http://www.ecs.soton.ac.uk/~msn/book/new_demo/

- > Links
- Notes
- > Book

(Southampton's) Biometrics

BIOMETRICS Personal Identification

Recommended Textbook

http://www.ecs.soton.ac.uk/~msn/book

CONTENTS

- 1. Introduction
- 2. Images, sampling and frequency domain processing
- 3. Basic image processing operations
- 4. Low-level feature extraction (including edge detection)
- 5. Feature extraction by shape matching
- 6. Flexible shape extraction (snakes and other techniques)
- 7. Object description
- 8. Introduction to texture description, segmentation and classification
- 9. Moving Object Extraction and Description
- 10. Appendices

1st Edition 2002; 2nd Edition 2008

3rd Edition 2012 (Current price ~ £47 Amazon)

Worksheet Support

- Mathcad
- Used in lectures
- Free download viewer
- ☐ Used for independent study
- ☐ Some Matlab, but incomplete

Differences between ELEC3021 (Image Processing) and COMP3005 (Computer Vision)

- > ELEC3021: analytics and hardware
- > COMP3005: algorithms and software
- > E.g. try Fourier:

$$\Im(f(x,y)) = f(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{\frac{-j2\pi}{N}(ux+vy)}$$

> Gives fantastic insight and practical use, eg.jpg

Finally

- ✓ Enjoy!
- ✓ Emails:

Mark Nixon msn@ecs.soton.ac.uk;

Jonathon Hare jsh2@ecs.soton.ac.uk

