

Lecture 11: Variants in Gradient Descent & MSE1

Dr. Vani Vasudevan

Professor –CSE, NMIT

OUTLINE

- LOCAL MINIMA
- PICKING UP MOMENTUM
- VARIANTS IN GRADIENT DESCENT...
- OTHER IMPROVEMENTS
- MSE1 REVISION:
 - UNIT I & UNIT II

LOCAL MINIMA...

- The driving force behind the learning rule is the minimisation of the network error by gradient descent (using the derivative of the error function to make the error smaller)
- performing an optimisation: we are adapting the values of the weights in order to minimise the error function.
- By approximating the gradient of the error and following downhill ends up at the bottom of the slope.
- Following the slope downhill only guarantees to end up at a local minimum, a
 point that is lower than those close to it.

LOCAL MINIMA

• If we imagine a ball rolling down a hill, it will settle at the bottom of a dip. However, there is no guarantee that it will have stopped at the lowest point—only the lowest

 There may be a much lower point over the next hill, but the ball can't see that, and it doesn't have enough energy to climb over the hill and find the global minimum

PICKING UP MOMENTUM...

- Commonly done finding the global minimum
 - By trying out several different starting points
 - By training several different networks
- Adding momentum
 - can help to avoid local minima,
 - makes the dynamics of the optimisation more stable, improving convergence

$$w_{\zeta\kappa}^t \leftarrow w_{\zeta\kappa}^{t-1} + \eta \delta_o(\kappa) a_{\zeta}^{\text{hidden}} + \alpha \Delta w_{\zeta\kappa}^{t-1},$$

PICKING UP MOMENTUM...

$$w_{\zeta\kappa}^t \leftarrow w_{\zeta\kappa}^{t-1} + \eta \delta_o(\kappa) a_{\zeta}^{\text{hidden}} + \alpha \Delta w_{\zeta\kappa}^{t-1},$$

- Where t is used to indicate the current update and t-1 is the previous one.
- $\Delta w_{\zeta\kappa}^{t-1}$ is the previous update that we made to the weights
- So $\Delta w_{\zeta\kappa}^t = \eta \delta_o(\kappa) a_{\zeta}^{\text{hidden}} + \alpha \Delta w_{\zeta\kappa}^{t-1}$
- 0 < α < 1 is the momentum constant. Typically, a value of α = 0.9 is used. This is a very easy addition to the code and can **improve the speed of learning a lot**.

PICKING UP MOMENTUM

- Another parameter that can be added is known as weight decay.
 - This reduces the size of the weights as the number of iterations increases.
 - small weights are better since they lead to a network that is closer to linear (since they are close to zero, they are in the region where the sigmoid is increasing linearly),
- Only those weights that are essential to the non-linear learning should be large.
- After each learning iteration through all of the input patterns, every weight is multiplied by some constant $0 < \epsilon < 1$. This makes the network simpler and can often produce improved results,
- But occasionally it can make the learning significantly worse, so it should be used with care.
- Setting the value of ϵ is typically done experimentally.

MINIBATCHES AND STOCHASTIC GRADIENT DESCENT...

- To reiterate,
- Batch algorithm converges to a local minimum faster than the sequential algorithm
- Sequential algorithm computes the error for each input individually and then does a weight update, but it is sometimes less likely to get stuck in local minima.
- Reason,
- Batch algorithm makes a better estimate of the steepest descent direction, so that the direction it chooses to go is a good one, but this just leads to a local minimum.

MINIBATCHES

- A minibatch method is to find some happy middle ground between the two.
- Split the training set into random batches
 - Estimating the gradient based on one of the subsets of the training set
 - · Performing a weight update,
 - · And then using the next subset to estimate a new gradient and using that for the weight update,
- Until all the training set have been used.
- The training set are then randomly shuffled into new batches and the next iteration takes place.
- If the batches are small, then there is often a reasonable degree of error in the gradient estimate, and so the optimisation has the chance to escape from local minima, though at the cost of heading in the wrong direction.

STOCHASTIC GRADIENT DESCENT

- A more extreme version of the minibatch idea is
 - to use just one piece of data to estimate the the gradient at each iteration of the algorithm,
 - to pick that piece of data uniformly at random from the training set.
 - So, a single input vector is chosen from the training set, and the output
 - Hence the error for that one vector computed, and this is used to estimate the gradient and so update the weights.
- A new random input vector (which could be the same as the previous one) is then chosen and the process repeated.

MINIBATCHES AND STOCHASTIC GRADIENT DESCENT

- This is known as **stochastic gradient descent(SGD)**, and can be used for any gradient descent problem, not just the MLP.
- It is often used if the training set is very large, since it would be very expensive to use the whole dataset to estimate the gradient in that case.

OTHER IMPROVEMENTS

- There are a few other things that can be done to improve the convergence and behaviour of the back-propagation algorithm.
- 1. To reduce the learning rate as the algorithm progresses.
 - Reason: Network should only be making large-scale changes to the weights at the beginning when the weights are random; if it is still making large weight changes later, then something is wrong.
- 2. Something that results in much larger performance gains: to **include information about the** second derivatives of the error with respect to the weights.

MSE 1

Unit -I (T1 - Chapters 1&2)

Introduction: Machine Learning, Types of Machine Learning, Machine Learning Process, Supervised Learning, Examples of Machine Learning Applications,

Machine Learning Preliminaries: Weight Space, Curse of Dimensionality, Testing Machine Learning Algorithms: Overfitting, Training, Testing, and Validation Sets, Confusion Matrix, Accuracy Metrics, ROC Curve, Unbalanced Datasets, Measurement Precision,

Basic Statistics: Averages, Variance, Covariance, Gaussian, Bias, Variance Tradeoff

Unit -II (T1 - Chapters 3 & 4)

Neurons, Neural Networks: The Brain and the Neuron, Neural Networks, The Perceptron, Training a Perceptron, Learning Boolean Functions, Linear Separability, Multilayer Perceptron: The Multi-layer Perceptron Algorithm, Initialising the Weights, Different Output Activation Functions, Backpropagation Algorithm, Sequential and Batch Training, local minima, picking up momentum, minibatches and stochastic gradient descent, other improvements

REFERENCE

1. STEPHAN MARSLAND, **MACHINE LEARNING**, **AN ALGORITHMIC PERSPECTIVE**, CRC PRESS SECOND EDITION, 2015.