# Honors Multivariable Calculus: : Homework 03

January 25, 2024

Ahmed Saad Sabit, Rice University

# 1 Problem

(a) By definition a ball is

$$B_r(\vec{a}) = \{ \vec{x} \in \mathbb{R}^n : |\vec{x} - \vec{a}| < r \}$$

Here r > 0. Let there be a point  $\vec{y}$  such that  $\vec{y} \in B_r(\vec{a})$ . This means  $|\vec{y} - \vec{a}| < r$ . We can consider a ball around  $\vec{y}$ ,



Figure 1: Proof of a ball being open set

of radius. The ball around  $\vec{y}$ ,

$$B_{\rho}(\vec{y}) = {\{\vec{x} \in \mathbb{R}^n : |\vec{x} - \vec{y}| < \rho\}}$$

If  $B_{\rho}(\vec{y})$  exists inside  $B_r(\vec{a})$  for  $\rho > 0$  then  $\vec{y}$  must be an interior point.  $\vec{y}$  can be in general, any point that is a member of  $B_r(\vec{a})$ , hence, proving all points being interior, and hence,  $B_r(\vec{a})$  being an open set.

Now, we can choose  $\rho$  to be,

$$\rho = r - |\vec{y} - \vec{a}|$$

If  $\vec{y} \in B_r(\vec{a})$ , then  $|\vec{y} - \vec{a}| < r$  for all cases, hence  $\rho > 0$ . Thus, there always exists  $\rho$  radius ball around a member point in the set  $B_r(\vec{a})$  that is a member of the set. This hence proves all points are interior points, hence the set is open.

(b) The complement of the open set is a closed set. Consider the complement of  $\overline{B_r}(\vec{a})$ 

$$\mathbb{R}^n \setminus \overline{B_r}(\vec{x}) = \{ \vec{x} \in R^n : |\vec{x} - \vec{a}| > r \}$$

We can consider a point  $\vec{y}$  outside of the  $\overline{B_r}(\vec{a})$  such that the ball around it has radius  $\rho$ ,

$$\rho = |\vec{y} - \vec{a}| - r$$

From conditions,  $|\vec{y} - \vec{a}| > r$  for all cases if it wants to be member of the complement set. Hence,  $\rho > 0$  always exists, hence a ball always exists for the complement set that does not have any member point from the  $\overline{B_r}(\vec{a})$ , hence the complement  $\mathbb{R}^n \setminus \overline{B_r}(\vec{a})$  is always an open set. Which by definition means the  $\overline{B_r}(\vec{a})$  is a closed set.

# 2 Problem

(a)

Definition 1. For a set  $D \in \mathbb{R}^n$ , we say that a point  $\vec{a} \in \mathbb{R}^n$  is a **Limit Point** of D, if, for every r > 0, there is some point  $\vec{x} \in D$  such that  $\vec{x} \neq \vec{a}$  and  $|\vec{x} - \vec{a}| < r$ .

Being a bit loose with tools we use, this is simply a ball, we define a ball like the last problem.

Let's pick  $\vec{x} \in A$ . The ball around it is a set  $B_r(\vec{x})$ . This  $\vec{x}$  follows a few conditions revolving around its periphery r. Let r > 0, then

- if  $B_r(\vec{x}) \in A$  it is an interior point by definition. And hence, also a limit point by ball definition.
- if  $B_r(\vec{x}) \notin A$  then it's not a limit point of A. We have nothing to do with this.
- if  $B_r(\vec{x})$  has some member points  $\vec{y}$  such that  $\vec{y} \in A$ , and some member points  $\vec{y}' \notin A$ , for all r > 0, the by definition this belongs to the boundary point definition for A.

 $\vec{x}$  can either be in A, or either be in  $\mathbb{R}^n \setminus A$ , or either in both. And we have found each cases separately, hence proving limit point of A is either in A or at it's boundary.

(b) Consider the set  $\mathbb{R}^n \setminus A$ , and A. The points that are not the boundary points are,

$$\vec{x} \in \mathbb{R}^n \setminus A : \vec{x} \not\in A$$

$$\vec{x} \not \in \mathbb{R}^n \setminus A : \vec{x} \in A$$

Consider this  $\vec{x}$  to be somewhere outside  $\partial A$ . Consider a boundary point  $\vec{c} \in \partial A$ . The set P be such that  $\vec{c} \notin P$ . Let's pick  $\rho$  such that,

$$\rho = \min(|\vec{x} - \vec{c}_1|, |\vec{x} - \vec{c}_2|, \ldots)$$

Now considering the ball R around  $\vec{x}$ ,

$$B_R(\vec{x}) = \{ \vec{x} \in \mathbb{R}^n : R < \rho \}$$

Given  $\vec{x} \notin \partial A$ ,  $\rho > 0$  for all case. Hence,  $B_R(\vec{x})$  always exists with points, hence proving  $\vec{x}$  to be limit point.  $B_R(\vec{x})$  can exist for any  $\vec{x} \in \mathbb{R}^n \setminus \partial A$ , for this, the rest of the area being an open set,  $\partial A$  is closed.

#### 3 Problem

Suppose that D is a subset of  $\mathbb{R}^n$ . Now  $f, g: D \to \mathbb{R}$  is continuous for all points. We have to show that  $h: D \to \mathbb{R}^2$  given  $h(\vec{x}) = (f(\vec{x}), g(\vec{x}))$  is continuous for all points.

Because h is a linear map,

$$|h(f(\vec{x}), g(\vec{x})) - h(f(\vec{a}), g(\vec{a}))| = |h(f(\vec{x}) - f(\vec{a}), g(\vec{x}) - g(\vec{a}))| < \epsilon$$

Because of continuity,

$$|f(\vec{x}) - f(\vec{a})| < \epsilon_f$$
  
 $|g(\vec{x}) - g(\vec{a})| < \epsilon_q$ 

Hence,

$$|h(f(\vec{x}) - f(\vec{a}), g(\vec{x}) - g(\vec{a}))| < |h(\epsilon_f, \epsilon_q)|$$

We can have  $|h(\epsilon_f, \epsilon_g)|$  given  $\vec{x} \to \vec{a}$  and it's distance norm is smaller than some  $\delta$ , which it already is.

So h is continuous.

## 4 Problem

Assume we have a map  $f: \mathbb{R}^2 \to \mathbb{R}$ . Let this be injective and continuous. If B is a closed disk in  $\mathbb{R}^2$ , then f to B is one-to-one from B to f(B). f(B) should be a compact connected subset of  $\mathbb{R}$ , or simply, a segment. Take a point p such that  $p \in B$  and f(p) is not an endpoint of segment f(B). Then  $f(B \setminus \{p\})$  is not connected while  $B \setminus \{p\}$  is still connected. Which is a contradiction. My intuitive point is two random points on the line segment probably



Figure 2: Diagram to illustrate the problem 4

maps to the same point p, which breaks down injective condition.

## 5 Problem

(a) Let the sets be  $U_1, U_2, \ldots$  So, let's consider the first  $U_1$  and  $U_2$ . So,

$$x \in U_1 \cup U_2$$

If  $x \in U_1$ , and  $U_1$  is open, the there for sure exists r > 0 such that  $B_r(x)$  is a subset of  $U_1$  and that also happens to be a subset of  $U_1 \cup U_2$ . From definition we know  $B_r(x)$  is an open set. Hence  $U_1 \cup U_2$  is an open set. Like so we can prove  $(U_1 \cup U_2) \cup U_3$  is an open set using the similar method. Hence the series of union is an open set.

- (b) Consider each ball  $B_r(x)_i$  in every *i*-th set in the intersection. x by definition is a member common in every set (because of intersection). Because it is open, consider the smallest ball  $B_r(x)_{\min}$  that is amongst the sets. Hence, this should be a member of the intersection, because every other else balls are bigger. [Solution inspired from "Understanding Analysis: Abott"]
- (c) Not necessarily. One counter example I know of is the open interval  $(-\frac{1}{n} \dots \frac{1}{n}) \subset \mathbb{R}$ . Taking intersection of all, it happens to be  $\{0\}$ . Which is closed.

One example I came up with while wandering at the sky is considering an infinite chain of disks with radius  $r_i$  that keep decreasing. So, for  $n \geq N$ , there always exists  $r_n < \epsilon$ .

These disks who happen to share the same center but keep decreasing to the limit of 0 radius, well, the only thing common with them is  $\{0\}$  in the intersection. This is a closed set. This is one counter example so it won't work to say  $\forall S$  sets.