ПрИб-181	Лабораторная работа №4	Зачёт
,	Изучение описательной статистики	

<u>Цель работы:</u> Изучение описательной статистики средствами ЯП Python.

Теорет

1/21/8-181 Ladoporgsteal p	stora 14 Baron	
Канзенков.А. Изучение от		
yers postorn: Uzgranue o gregorbanu python.	pricasesenos	Caracraka
Feopus! Eagobre Cravicion	reckur he to	gu (coursera
Crancruca Crancruca	Doka zag	uka
(Mozhosspor omicari gannone ran, uni, onu sysu nonerna gol gp, ucciegobaruno)	(110 zles se	er Modeper
Описательная статистика	ueno sezyera	il que baes

Meroge Onucarelesson crarueraku llapa Меры центральной пристивости TERES EPELLUL (Ha cuartico cursus gel Haxongenul Kantosee pagspocaus quarenus m чининих значений переменной Tunwenoro) (Lea Esseme repa waren un - slog a (наиболее часто врет, значения) высти, тем былее разноста,
- медиана (вредина упорядот реда значения) будет дначение по разне Maps: Moga (nowsome vacro Esper, marciais) - Среди. арисомент (сума значен (кол. во) ру.) llesse (Ест ост слижая банное значение, выброс, - pagnax (lace, quarexheir. quares) TO OH homes checoure speaker) (выбросы мешают) Гогда мого вибросивают уможение, (yourser 25% comex Sommer suso respytoral regulation) quar, u 25% carrix narexx (200 - wentbos Twents pagnax) -етандартное относнение (quanagon or prequero uspraished (au Bree 16 - HUNER. 2 PARLUSA кории) (если прибавить - верхи, граница) позволяно кратко описать собранные диния

Bu sopornoe opequec: X = (X, + X, + ... + Xn) Среднее арториетическое! информативние мера центранного положения Кабиодовног преношной, если сообщается gobepresent mags due (znareme Boxpy? Оценки, где с уровиен доверия, какодияся истинов (Ken bec + 400) cpegkec. Theserrence pagnepa Butopue geocet Oyerry среднего более надамной, (Увентение розброса Hooding marenes ynouseras ungempoet over Вишсичие доверия интервалов основывается Ha ysegnosomerum "Hopseasonscrut Kassegueryx Cesurum Ger nero O sura romer Suro Noros, sest Coul havek regosper, Нутио содержатечно обобщить дожной. Учагранни - этправн. точка Монко стоть инф-ушт

Образ донних но имо сформировани: - gual of rero cocroux Beautinea - зная расселяност кабоночения popyya: Deguara? Mu ynopegobarubanu (Mr, max) Down prog guosso sucrement remover, c potents weeds was been took in because Tope n- nerespe: (n+ JS 1211 => 12 Von n-45 54: Caporo requaris net. aprepresur n=20 Deg genoregoien

lloga: Maya M - Randovec ractol quarence (Ссли дошие петреривни - угуппирует и вычислен модальную группу. Nea, radoga ne wester moga (+ X Te ; 6 vo ogna) Unorga >1: Vorga > 2 quaremel Corporatore Ogucaso mes pag u Properoesto somme gf. zuarement Pages venoebyers wan ody Kapanse prom Средняе арторинения Mor receiverpur pochpeges, se odosyary noxagates. Bibenerence: WX1 + W2 X2 + nee + Wn Xn W, +W2+ oo + Wn

Pagrax (unrap Bal uprenewal. mak - min При выброгох водит заблушаемие Klourusu! Tpegnosomer, 400 Xo > Xn Beruruea X 001 kbourus (go re 1% nassequen a bowe 99 %) (neplow + Janveres) X0,02 - Brapos ibouruse u v.g. Cruci sebee Xp semur ~ 100% kasarsgemis X 0,0, X0,2 ... X0,9 - gell - madop Ka 10 13yn , genera (10-0, 20-0, 0.0 90-5 4 Banowse Cowney X 0,25, X 0,5, ..., X 0,75 (geogram 4 20 yours) Kbaparen (25-5, 50-5, 75-5) 50-5 квартиль - медиака.

Ducnepaul - Crepone 99 vonemus kanny Trocks паднодения от средк. орган Если не гонеролен. Совонупиять, а But sopra, so But sopound que nop cus 02 S (X: -X) Bepurgue 6 regelsex cyclevrol u regy min cande gallye Buspoc. Orasonesous quareane Aceuserpue Ilepa ceccure pun pacopegese une Cepa Traces beyer beaut agret not becure

Marcrusa: 1) TERCY + KDHCTEKY - Y 2) De 9 grecy unsum - Vanosus - P 3) Moerpoeure rucrospans. Bulog: Uzyreva omecareveras cronucrusa pegarbasu python.

Постановка задачи:

Выберите не менее 9 дисциплин, которые читаются всему потоку (трем группам на одном курса разом). Каждую дисциплину для данного курса рассматривайте отдельно. Проведите анализ выбранных вами данных с использованием всех средств описательной статистики. Выполните построение соответствующих столбчатых диаграмм, поверх диаграмм должен располагаться график распределения, наиболее близко характеризующий вашу выборку.

```
Практическая часть (код программы):
# библиотеки
import seaborn as sns
import pandas as pd
import numpy as np
from scipy import stats
# функция создания подписей гистограмм описательной статистики
def set up statistic(marks, ax):
      # Среднее арифметическое
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.90,
      'Среднее арифметическое: {0}'.format(np.mean(marks)), fontsize=9)
      # Медиана
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.85,
      'Медиана: {0}'.format(np.median(marks)), fontsize=9)
      # Мода
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.80,
      'Мода: {0}'.format(stats.mode(marks)[0]), fontsize=9)
      # Среднее геометрическое
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.75,
      'Среднее геометрическое: {0}'.format(stats.hmean(marks)), fontsize=9)
      # Размах
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.70,
      'Paзмax: {0}'.format(np.ptp(marks)), fontsize=9)
      # Межквартальный размах
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.65,
      'Межквартальный размах: {0}'.format(stats.igr(marks)), fontsize=9)
      # Межквантильный диапазон (Интердециальный размах)
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.60,
      'Интердециальный размах: {0}'.format(stats.iqr(marks, rng=(10, 90))),
      fontsize=9)
      # Дисперсия
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.55,
```

```
'Дисперсия: {0}'.format(stats.variation(marks)), fontsize=9)
      # Среднеквадратичное отклонение
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.50,
      'Среднеквадратичное отклонение: {0}'.format(np.std(marks)), fontsize=9)
      # Коэффициент ассиметрии
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.45,
      'Коэффициент ассиметрии : {0}'.format(stats.skew(marks)), fontsize=9)
# Файл csv
data = pd.read_csv('marks_groups.csv')
# Ненужный столбец
data = data.drop('Γρyππa', axis=1)
# Колонки
subjects = [column for column in data.columns][:]
# Создвние диаграмм для всех дисциплин
for subject in subjects:
      subject data = data[[subject]]
      # Построение распределения
      g = sns.displot(subject data, x=subject, binwidth=4, height=4,
      facet_kws=dict(margin_titles=True), kde=True, color = 'green')
      subject_marks = np.array([mark for mark in subject_data[subject]])
      # Настройка удобного отображения
      set_up_statistic(subject_marks, g.ax)
      # Вывод
      g.savefig('./diagrams/{0}.svg'.format(subject))
```

Этапы выполнения работы:

1. Подключаем необходимые библиотеки:

```
# библиотеки
import seaborn as sns
import pandas as pd
import numpy as np
from scipy import stats
```

```
2. Определим функцию для подписей графиков:
Это основная функция. Передаются значения интервалов для каждого
отдельного вычисления, её подпись, размер шрифта и тип вычисления.
# функция создания подписей гистограмм описательной статистики
def set up statistic(marks, ax):
      # Среднее арифметическое
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.90,
      'Среднее арифметическое: {0}'.format(np.mean(marks)), fontsize=9)
      # Медиана
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.85,
      'Медиана: {0}'.format(np.median(marks)), fontsize=9)
      # Мода
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.80,
      'Мода: {0}'.format(stats.mode(marks)[0]), fontsize=9)
      # Среднее геометрическое
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.75,
      'Среднее геометрическое: {0}'.format(stats.hmean(marks)), fontsize=9)
      # Размах
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.70,
      'Paзмax: {0}'.format(np.ptp(marks)), fontsize=9)
      # Межквартальный размах
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.65,
      'Межквартальный размах: {0}'.format(stats.igr(marks)), fontsize=9)
      # Межквантильный диапазон (Интердециальный размах)
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.60,
      'Интердециальный размах: {0}'.format(stats.iqr(marks, rng=(10, 90))),
      fontsize=9)
      # Дисперсия
      ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.55,
      'Дисперсия: {0}'.format(stats.variation(marks)), fontsize=9)
      # Среднеквадратичное отклонение
```

ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.50,

'Среднеквадратичное отклонение: {0}'.format(np.std(marks)), fontsize=9)

```
# Коэффициент ассиметрии ax.text(ax.viewLim.intervalx.max(), ax.viewLim.intervaly.max() * 0.45, 
'Коэффициент ассиметрии : {0}'.format(stats.skew(marks)), fontsize=9)
```

3. Загружаем и подготавливаем графики:

```
# Файл csv

data = pd.read_csv('marks_groups.csv')

# Ненужный столбец

data = data.drop('Группа', axis=1)

# Колонки

subjects = [column for column in data.columns][:]
```

4. Проходим по всем колонкам и строим графики статистики, сохраняем их на диске.

```
# Создание диаграмм для всех дисциплин
for subject in subjects:
    subject_data = data[[subject]]

# Построение распределения
    g = sns.displot(subject_data, x=subject, binwidth=4, height=4,
    facet_kws=dict(margin_titles=True), kde=True, color = 'green')
    subject_marks = np.array([mark for mark in subject_data[subject]])

# Настройка удобного отображения
    set_up_statistic(subject_marks, g.ax)

# Вывод
    g.savefig('./diagrams/{0}.svg'.format(subject))
```

Практическая часть (результат подведения статистики):

Операционные системы Экзамен

Практическая часть (подведение итогов):

Были проанализированы результаты сессий по 10 предметам. Данные визуализированы с помощью гистограмм и библиотек python для дальнейшей работы с ними. (описательная статистика)

Вывод: Изучена описательная статистика средствами Python.