

SH99F01

带增强型8051的电力线载波通信控制器

1.	特性	4
2.	概述	5
3.	方框图	6
	引脚配置	
4.		
5.	引脚描述	
6.	SFR映像	A VIA
7.	标准功能	
	1 CPU	
	7.1.1 CPU内核特殊功能寄存器	
	7.1.2 CPU增强内核特殊功能寄存器	
	7.1.3 可分益 2 RAM	
	2 <i>RAM</i> 7.2.1 特性	
	7.2.2 寄存器	
	3 Flash程序存储器	
	7.3.1 特性	
7.	7.3.2 ICP模式下的Flash操作	17
	4 扇区自编程(SSP)功能	
	+ <i>例込日瑞程(33F)切能</i> 7.4.1 寄存器	
7.	7.4.2 SSP编程注意事项	22
7.5	5 系统时钟和振荡器	23
7.	7.5.1 特性	23
	7.5.2 概述	
	7.5.3 寄存器	
	7.5.4 振荡器类型	
	7.3.3 GIIIX	
	7 // 0 端口	
	7.7.1 特性 7.7.2 寄存器	
	7.7.4 端口共享	
7.8	8 <i>定时器</i>	27
	7.8.1 特性	
	7.8.2 定时器0和定时器1	
	定时器x的模式(x = 0 , 1)	27

SH99F01

寄存器		28
7.9.2 程序超范围中断(OVL)		34
7.9.3 中断允许		35
		40
8. 增强功能		.40
8.1 增强型通用异步收发器(EUART)	A ()	.40
8.1.1 特性		40

8.2 模/数转换器(ADC)		.50
8.2.1 特性		50
8.2.2 ADC模块图		50
8.2.3 寄存器		.51
8.3		.54
8.4.看门狗定时器(WDT) 程序超范围溢出(OVI)复位及其它复位状态	55
	/ XEXX OXE VIO	
程序超范围送出复位		55
	V	
8.5.1 特性		56
8.5.2 空闲模式		56
8.5.3 掉电模式		56
8.6 代码选项		.58
9. 载波通信		59
O 1 #±##		ΕO
3. 行注		.59
9.2 操作描述		.59
9.3 奇仔器		61
40 中气柱州		70
4.C. C. (C. (C. (C. (C. (C. (C. (C. (C. (

SH99F01

11.	应用电路	74
	—·· · · · · ·	
40	江明在自	7.
12.	订购信息	/5
12	村 址信 自	76

1. 特性

- 基于8051指令流水线结构的8位单片机
- Flash ROM: 16K字节
- 类EEPROM: 2K字节
- RAM:内部256字节,外部512字节
- 工作电压:
 - $V_{DD} = 3.0V 5.5V$, $AV_{DD} = 3.0V 3.6V$
- 振荡器:
 - 晶体谐振器: 8MHz 16MHz
- 16个CMOS双向I/O管脚
- I/O内建上拉电阻
- 3个16位定时器/计数器: T0, T1和T2
- 中断源:
 - 定时器0,1,2
 - 外部中断0,1
 - EUART , ADC , PLT
- 增强型UART
- 看门狗定时器(WDT)(代码选项)
- 内建振荡器预热计数器
- 内建低电压复位功能(LVR)(代码选项)
 - LVR电压: 2.8V
- 4通道10位模数转换器(ADC),内建比较功能
- CPU机器周期:1个振荡周期
- 内建电力线载波通信模块(PLT)
- 低功耗工作模式:
 - 空闲模式
 - 掉电模式
- 封装:28引脚TSSOP封装

2. 概述

SH99F01是一颗高集成度的电力线载波通信SOC,内部集成了高速增强型8051兼容单片机和高性能电力线载波通信模块(Powerline Transceiver简称PLT)。 SH99F01具有标准8051芯片的大部分特性。这些特性包括内置256字节RAM和2个16位定时器/计数器,1个UART和外置中断INT0和INT1。此外,SH99F01还集成了512字节RAM,10位ADC,可兼容8052芯片的16位定时器/计数器(Timer2)和适合存储程序和数据的16K字节Flash,同时,芯片内部还提供2K字节类EEPROM用于存放数据。

为了达到高可靠性和低功耗,SH99F01内建了看门狗定时器,低电压复位电路,并提供了2种低功耗省电模式。

SH99F01内建PLT模块设计为全集成电力线载波通信引擎,内建模拟前端电路和调制解调电路,外围电路简洁,支持高性能的扩频载波通信技术和窄带调制通信技术,支持过零传输,并首创了载波双模通信技术,结合先进的前向纠错编解码算法,能够最大程度提高载波物理层通信能力,适应各种低压电力线信道环境。

SH99F01面向低压电力线载波应用,但也支持其他信道的低速控制应用,其主要应用领域包括:

- 自动抄表
- Power Meter
- 路灯远程监控
- 智能家居控制
- 楼宇智能控制

3. 方框图

4. 引脚配置

28脚封装

PCB制图注意:引脚C需要接47uF电解电容。为提高抗干扰特性,电容负端不要直接接地,而是和GND相连,然后再和PCB地线相连,也即一点接地。

5. 引脚描述

引脚编号	类型	说明
I/O端口	ᄌᆂ	4 0-73
P0.0 - P0.7	I/O	8位双向I/O端口
P1.0 - P1.7	I/O	8位双向I/O端口
定时器	., 0	
T0	I/O	Timer0外部输入或比较输出
T1	I/O	Timer1外部输入或比较输出
T2	I/O	Timer2外部输入/波特率时钟输出
T2EX	I	Timer2重载/捕捉/方向控制
增强型异步串行口	<u> </u>	
RXD	I/O	EUART数据输入/输出引脚
TXD	0	EUART数据输出引脚
载波通信		
VCOM	0	内部共模电压输出,推荐选用0.1μF电容接AGND
VOUT	0	发送信号输出
VIN	Ι	主通道接收信号输入
VINCOM	I	副通道接收信号输入
FILI	1	限幅放大器反馈路径输入,在FILI与FILO之间接0.1μF电容
FILO	0	限幅放大器反馈路径输出,在FILI与FILO之间接0.1μF电容
RSSI	0	RSSI电平输出,推荐选用0.1μF电容接AGND
TPO	0	发送信号数字脉冲输出(不经过AFE通道)
RPO	0	接收信号数字脉冲输出(从AFE通道输入)
模数转换器	4	
AN1 - AN3	I	ADC输入通道
中断&复位&时钟&功率	400	
INT0 - INT1	1	外部中断0,1
RST	_	该引脚上保持10μs以上的低电平,CPU将复位。由于有内建30kΩ上拉电阻 连接到V _{DD} ,所以仅接一个0.1μF外部电容即可实现上电复位。
OSCI	I	振荡器输入
OSCO	0	振荡器输出

GND	Р	数字接地
V_{DD}	Р	数字电源(3.0 - 5.5V)
AGND	Р	模拟接地
AV_DD	Р	模拟电源(3.0-3.6V) 在V _{DD} = 5.0V时,如置OP_REG33 = 1使能内部3.3V稳压源,则AV _{DD} 无需外部供电, 只需外接一47μF电解电容至AGND即可,如置OP_REG33 = 0,则AV _{DD} 需外部供电。
稳压源		
CREG		内建稳压源滤波电容引脚,推荐选用47μF电容接地
编程接口		
TDO (P1.0)	0	调试接口:测试数据输出
TMS (P1.1)	I	调试接口:测试模式选择
TDI (P1.2)	I	调试接口:测试数据输入
TCK (P1.3)	Ī	调试接口:测试时钟输入
注意: 当P1.0-1.3作为调试	接口时,F	21.0-1.3的原有功能被限制

6. SFR映像

Table 6.1 C51核SFRs

符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ACC	E0H	累加器	00000000	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
В	F0H	B寄存器	00000000	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
AUXC	F1H	C寄存器	00000000	C.7	C.6	C.5	C.4	C.3	C.2	C.1	C.0
PSW	D0H	程序状态字	00000000	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81H	堆栈指针	00000111	SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
DPL	82H	数据指针1低位字节	00000000	DPL0.7	DPL0.6	DPL0.5	DPL0.4	DPL0.3	DPL0.2	DPL0.1	DPL0.0
DPH	83H	数据指针1高位字节	00000000	DPH0.7	DPH0.6	DPH0.5	DPH0.4	DPH0.3	DPH0.2	DPH0.1	DPH0.0
DPL1	84H	数据指针2低位字节	00000000	DPL1.7	DPL1.6	DPL1.5	DPL1.4	DPL1.3	DPL1.2	DPL1.1	DPL1.0
DPH1	85H	数据指针2高位字节	00000000	DPH1.7	DPH1.6	DPH1.5	DPH1.4	DPH1.3	DPH1.2	DPH1.1	DPH1.0
INSCON	86H	数据指针选择	00-0	-	-	- /	-	DIV	MUL	-	DPS

Table 6.2 功率与时钟控制SFRs

符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PCON	87H	电源控制	00000	SMOD	SSTAT	-	-	GF1	GF0	PD	IDL
SUSLO	8EH	电源控制保护字	00000000	SUSLO.7	SUSLO.6	SUSLO.5	SUSLO.4	SUSLO.3	SUSLO.2	SUSLO.1	SUSLO.0
CLKCON	B2H	系统时钟控制	-000		CLKPS1	CLKPS0	-	-	-	-	PLCLKPS

Table 6.3 Flash控制SFRs

符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_OFF SET	FBH	编程地址偏移寄存器	00000000	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
IB_DATA	FCH	编程数据寄存器	00000000	IB_DATA.7	IB_DATA.6	IB_DATA.5	IB_DATA.4	IB_DATA.3	IB_DATA.2	IB_DATA.1	IB_DATA.0
IB_CON1	F2H	flash控制寄存器1	00000000	IB_CON1.7	IB_CON1.6	IB_CON1.5	IB_CON1.4	IB_CON1.3	IB_CON1.2	IB_CON1.1	IB_CON1.0
IB_CON2	F3H	flash控制寄存器2	00000	-	-	-	IB_CON2.4	IB_CON2.3	IB_CON2.2	IB_CON2.1	IB_CON2.0
IB_CON3	F4H	flash控制寄存器3	0000	-	-	-	-	IB_CON3.3	IB_CON3.2	IB_CON3.1	IB_CON3.0
IB_CON4	F5H	flash控制寄存器4	0000	-	-	-	-	IB_CON4.3	IB_CON4.2	IB_CON4.1	IB_CON4.0
IB_CON5	F6H	flash控制寄存器5	0000	-	-	-	-	IB_CON5.3	IB_CON5.2	IB_CON5.1	IB_CON5.0
FLASHCON	A7H	Information块访问控制寄存器	0	-	-	-	-	-	-	-	FAC

Table 6.4 数据页面控制SFR

符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
XPAGE	F7H	数据页面控制寄存器	00000000	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0

Table 6.5 看门狗定时器SFR

符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RSTSTAT	B1H	看门狗定时器控制寄存器	0-000000	WDOF	-	PORF	LVRF	CLRF	WDT.2	WDT.1	WDT.0

Table 6.6 中断控制SFRs

符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IEN0	A8H	中断允许控制寄存器0	00000000	EA	EADC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	A9H	中断允许控制寄存器1	0	-		-	-	-	-	-	EPLT
IPL0	В8Н	中断优先权控制寄存器0低位字	-0000000	-	PADCL	PT2L	PSL	PT1L	PX1L	PT0L	PX0L
IPH0	B4H	中断优先权控制寄存器0高位字	-0000000	-	PADCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
IPL1	В9Н	中断优先权控制寄存器1低位字	0	- 4	- 1	-	-	-	-	-	PPLTL
IPH1	В5Н	中断优先权控制寄存器1高位字	0	-		7-6		-	-	-	PPLTH

Table 6.7 端口SFRs

符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0	80H	8位端口0	00000000	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
P1	90H	8位端口1	00000000	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
P0CR	E1H	端口0输入/输出方向控制	00000000	P0CR.7	P0CR.6	P0CR.5	P0CR.4	P0CR.3	P0CR.2	P0CR.1	P0CR.0
P1CR	E2H	端口1输入/输出方向控制	00000000	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	P1CR.1	P1CR.0
P0PCR	E9H	端口0内部上拉允许	00000000	P0PCR.7	P0PCR.6	P0PCR.5	P0PCR.4	P0PCR.3	P0PCR.2	P0PCR.1	P0PCR.0
P1PCR	EAH	端口1内部上拉允许	00000000	P1PCR.7	P1PCR.6	P1PCR.5	P1PCR.4	P1PCR.3	P1PCR.2	P1PCR.1	P1PCR.0

Table 6.8 定时器与外部中断 SFRs

符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TCON	88H	定时器/计数器0和1控制寄存器	00000000	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
TMOD	89H	定时器/计数器0和1模式寄存器	00000000	GATE1	C/T1	M11	M10	GATE0	C/T0	M01	M00
TL0	8AH	定时器/计数器0低位字节	00000000	TL0.7	TL0.6	TL0.5	TL0.4	TL0.3	TL0.2	TL0.1	TL0.0
TH0	8CH	定时器/计数器0高位字节	00000000	TH0.7	TH0.6	TH0.5	TH0.4	TH0.3	TH0.2	TH0.1	TH0.0
TL1	8BH	定时器/计数器1低位字节	00000000	TL1.7	TL1.6	TL1.5	TL1.4	TL1.3	TL1.2	TL1.1	TL1.1
TH1	8DH	定时器/计数器1高位字节	00000000	TH1.7	TH1.6	TH1.5	TH1.4	TH1.3	TH1.2	TH1.1	TH1.1
T2CON	C8H	定时器/计数器2控制寄存器	00000000	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
T2MOD	C9H	定时器/计数器2模式寄存器	00	-	-		-	-	-	T2OE	DCEN
RCAP2L	CAH	定时器/计数器2重载/截获低位字节	00000000	RCAP2L.7	RCAP2L.6	RCAP2L.5	RCAP2L.4	RCAP2L.3	RCAP2L.2	RCAP2L.1	RCAP2L.0
RCAP2H	СВН	定时器/计数器2重载/截获高位字节	00000000	RCAP2H.7	RCAP2H.6	RCAP2H.5	RCAP2H.4	RCAP2H.3	RCAP2H.2	RCAP2H.1	RCAP2H.0
TL2	ССН	定时器/计数器2低位字节	00000000	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
TH2	CDH	定时器/计数器2高位字节	00000000	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
TCON1	CEH	定时器/计数器0和1控制寄存器1	00	-	-			-	1	TC1	TC0

Table 6.9 增强型异步串行口SFRs

			207 1000	287 VEURO.							
符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCON	98H	串行控制寄存器	00000000	SM0/FE	SM1/RXOV	SM2/TXCOL	REN	TB8	RB8	TI	RI
SBUF	99H	串行数据缓冲器	00000000	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
SADDR	9AH	从属地址	00000000	SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0
SADEN	9BH	从属地址屏蔽	00000000	SADEN.7	SADEN.6	SADEN.5	SADEN.4	SADEN.3	SADEN.2	SADEN.1	SADEN.0

Table 6.10 模数转换器SFRs

符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADCON	93H	ADC控制寄存器	000000	ADON	ADCIF	EC	-	-	SCH1	SCH0	GO/DONE
ADT	94H	ADC定时控制	000-0000	TADC2	TADC1	TADC0	-	TS3	TS2	TS1	TS0
ADCH	95H	ADC通道配置	000	-	-	-	-	-	CH3	CH2	CH1
ADDL	96H	ADC数据低位字节	00	-	-	-	-	-	-	A1	A0
ADDH	97H	ADC数据高位字节	00000000	A9	A8	A7	A6	A5	A4	A3	A2

Table 6.11 载波通信SFRs

符号	地址	名称	复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PLSTAT	D8H	PLT状态寄存器	000-0000	TXINT	FEC_DONE	CFD_DONE	-	RXNFA	RXFA	RXPD	RXINT
PLCON	D9H	PLT控制寄存器	000000-0	PLTEN	CRCEN	FECEN	FACPR	RSSIEN	SRST	-	TRC
PLADR1	DAH	PLT数据缓冲器地址	00000	-	-	-	ADR1.4	ADR1.3	ADR1.2	ADR1.1	ADR1.0
PLBUF	DBH	PLT数据缓冲器数据	00000000	BUF.7	BUF.6	BUF.5	BUF.4	BUF.3	BUF.2	BUF.1	BUF.0
PLADR2	DCH	PLT配置寄存器地址	000000	-	-	ADR2.5	ADR2.4	ADR2.3	ADR2.2	ADR2.1	ADR2.0
PLREG	DDH	PLT配置寄存器数据	00000000	REG.7	REG.6	REG.5	REG.4	REG.3	REG.2	REG.1	REG.0
PLOCK	DFH	PLT配置寄存器锁定	10100101	LOCK.7	LOCK.6	LOCK.5	LOCK.4	LOCK.3	LOCK.2	LOCK.1	LOCK.0

注意:- :保留位,读为0。

7. 标准功能

7.1 CPU

7.1.1 CPU内核特殊功能寄存器

特性

■ CPU内核寄存器: ACC, B, PSW, SP, DPL, DPH

累加器

累加器ACC是一个常用的专用寄存器,指令系统中采用A作为累加器的助记符。

B寄存器

在乘除法指令中,会用到B寄存器。在其它指令中,B寄存器可作为缓存器来使用。

栈指针(SP)

栈指针SP是一个8位专用寄存器,在执行PUSH、各种子程序调用、中断响应等指令时,SP先加1,再将数据压栈;执行POP、RET、RETI等指令时,数据退出堆栈后SP再减1。堆栈栈顶可以是片上内部RAM(00H-FFH)的任意地址,系统复位后,SP初始化为07H,使得堆栈事实上由08H地址开始。

程序状态字 (PSW) 寄存器

程序状态字(PSW)寄存器包含了程序状态信息。

Table 7.1 PSW寄存器

D0H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	CY	进位标志位 0:算术或逻辑运算中,没有进位或借位发生 1:算术或逻辑运算中,有进位或借位发生
6	AC	辅助进位标志位 0:算数逻辑运算中,没有辅助进位或借位发生 1:算数逻辑运算中,有辅助进位或借位发生
5	F0	F0标志位 用户自定义标志位
4-3	RS[1:0]	R0-R7寄存器页选择位 00:页0(映射到00H-07H) 01:页1(映射到08H-0FH) 10:页2(映射到10H-17H) 11:页3(映射到18H-1FH)
2	ov	溢出标志位 0:没有溢出发生 1:有溢出发生
1	F1	F1标志位 用户自定义标志位
0	P	奇偶校验位 0:累加器A中值为1的位数为偶数 1:累加器A中值为1的位数为奇数

数据指针(DPTR)

数据指针DPTR是一个16位专用寄存器,其高位字节寄存器用DPH表示,低位字节寄存器用DPL表示。它们既可以作为一个16位寄存器DPTR来处理,也可以作为2个独立的8位寄存器DPH和DPL来处理。

7.1.2 CPU增强内核特殊功能寄存器

特性

■ 扩展的'MUL'和'DIV'指令:16位*8位,16位/8位

■ 双数据指针

■ CPU增强内核寄存器: AUXC, DPL1, DPH1, INSCON

SH99F01扩展了'MUL'和'DIV'的指令。使用一个新寄存器-AUXC寄存器保存运算数据的高8位,以实现16位运算。在16位乘除法指令中,会用到AUXC寄存器,在其它指令中,AUXC寄存器可作为缓存器来使用。

CPU在复位后进入标准模式,'MUL'和'DIV'的指令操作和标准8051指令操作一致。当INSCON寄存器的相应位置1后,'MUL'和'DIV'指令的16位操作功能被打开。

	操作		结果				
	3 * 1F		Α	В	AUXC		
MUL	INSCON.2 = 0;8位模式	(A)*(B)	低位字节	高位字节			
IWIOL	INSCON.2 = 1;16位模式	(AUXC A)*(B)	低位字节	中位字节	高位字节		
DIV	INSCON.3 = 0;8位模式	(A)/(B)	商低位字节	余数			
l Div	INSCON.3 = 1;16位模式	(AUXC A)/(B)	商低位字节	余数	商高位字节		

双数据指针

使用双数据指针能加速数据存储移动。标准数据指针被命名为DPTR而新型数据指针命名为DPTR1。

数据指针DPTR1与DPTR类似,是一个16位专用寄存器,其高位字节寄存器用DPH1表示,低位字节寄存器用DPL1表示。 它们既可以作为一个16位寄存器DPTR1来处理,也可以作为2个独立的8位寄存器DPH1和DPL1来处理。

通过对INSCON寄存器中的DPS位置1或清0选择两个数据指针中的一个。所有读取或操作DPTR的相关指令将会选择最近一次选择的数据指针。

7.1.3 寄存器

Table 7.2 数据指针选择寄存器

			7 200	V0200 400*	Acctorb.			
86H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
INSCON	-		4 - 1	-	DIV	MUL	-	DPS
读/写	-	1		-	读/写	读/写	-	读/写
复位值 (POR/WDT/LVR/PIN)	1		1-1		0	0	-	0

位编号	位符号	说明
3	DIV	16位/8位除选择器 0:8位除 1:16位除
2	MUL	16位/8位乘选择器 0:8位乘 1:16位乘
0	DPS	数据指针选择器 0:数据指针 1:数据指针1

7.2 RAM

7.2.1 特性

SH99F01为数据存储提供了内部RAM和外部RAM。下列为内存空间分配:

- 低位128字节的RAM(地址从00H到7FH)可直接或间接寻址。
- 高位128字节的RAM (地址从80H到FFH) 只能间接寻址。
- 特殊功能寄存器 (SFR, 地址从80H到FFH) 只能直接寻址。
- 外部RAM字节可通过MOVX指令间接寻址。

高位128字节的RAM占用的地址空间和SFR相同,但在物理上与SFR的空间是分离的。当一个指令访问高于地址7FH的内部位置时,CPU可以根据指令的寻址方式来区分是访问高位128字节数据RAM还是访问SFR。

注意:未使用的SFR地址禁止读写

SH99F01提供了256字节内部RAM和512字节外部RAM,支持高级语言。 内部和外部RAM配置如下:

内部和外部RAM地址

SH99F01支持传统的访问外部RAM方法。使用MOVX A, @Ri或MOVX@Ri, A来访问外部低位256字节RAM;用MOVX A, @DPTR或MOVX@DPTR, A来访问外部512字节RAM。

用户也能用XPAGE寄存器来访问外部RAM,使用MOVX A,@Ri或MOVX@Ri,A指令即可,此时用XPAGE来表示高于256字节的RAM地址。

在Flash SSP模式下, XPAGE也能用作分段选择器(详见SSP章节)。

7.2.2 寄存器

Table 7.3 数据存储页寄存器

F7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
XPAGE	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	XPAGE[7:0]	RAM页选择器,512字节RAM只分成2页

7.3 Flash程序存储器

7.3.1 特性

■ Flash 内存包括 16 X 1KB 区块,总共 16KB

■ 在工作电压范围内都能进行编程和擦除操作

■ 在线编程(ICP)操作支持写入、读取和擦除操作

■ 快速整体/扇区擦除和编程

■ 编程/擦除次数:至少 10000 次■ 数据保存年限:至少 10 年

■ 低功耗

SH99F01为存储程序代码内置16K可编程Flash,可以通过在线编程(ICP)模式和扇区自编程(SSP)模式对Flash存储器操作。

在ICP(在线编程)模式中,程序能操作所有Flash,例如擦除或写入。Flash的读取或写入操作以字节为单位,但擦除只能以扇区(1K)为单位,或者整体擦除。

在ICP模式中,扇区擦除操作能擦除任何区块。在自编程模式(SSP)中,包含擦除程序代码的扇区不能擦除。

在ICP模式下,还可以整体擦除,这个操作会擦除整个Flash存储器。

注意:SH99F01不支持在系统编程(ISP)功能。

7.3.2 ICP模式下的Flash操作

ICP模式即线上编程模式,即可以在CPU焊在用户板上以后编程。ICP模式下,用户系统必须关机后编程器才能通过ICP编程接口刷新Flash内存。ICP编程接口包括6个引脚(V_{DD},GND,TCK,TDI,TMS,TDO)。

编程器使用4个JTAG引脚(TDO,TDI,TCK,TMS)进入编程模式。只有将特定波形输入4个引脚后,CPU才能进入编程模式。如需详细说明请参考Flash编程器用户指南。

ICP模式支持以下操作:

(1) 代码保护控制模式编程

SH99F01的代码保护功能为用户代码提供了高性能的安全措施。每个分区有两种模式可用。

代码保护模式0:允许/禁止任何编程器的写入/读取操作(不包括整体擦除)。

代码保护模式1:允许/禁止在其它分区中通过MOVC指令进行读取操作,或通过SSP功能进行擦除/写入操作。

用户必须应用Flash编程器设置相应的保护位,以进入所需的保护模式。

(2) 整体擦除

无论代码保护控制模式的状态如何,整体擦除操作都将会擦除所有编程代码,代码选项,代码保护位和自定义ID码的内容。(Flash编程器为用户提供自定义ID码设置功能以区别他们的产品)。

在用户程序区,整体擦除只能由Flash编程器操作,不能通过程序指令完成。

(3) 扇区擦除

扇区擦除操作将会擦除所选扇区中内容。用户程序和Flash编程器都能执行该操作。

若需用户程序执行该操作,必须禁止所选扇区的代码保护控制模式1。

若需编程器执行该操作,必须禁止所选扇区的代码保护控制模式0。

注意:SSP程序所在扇区自身无法通过用户程序执行扇区擦除功能。

(4) 写/读代码

读/写代码操作可以将代码、数据从Flash内存中读出或写入Flash内存。编程器或用户程序都能执行该操作。

若需用户程序执行该操作,必须禁止所选扇区的代码保护控制模式1。不管安全位设置与否,用户程序都能读/写程序自身所在扇区。

若需编程器执行该操作,必须禁止所选扇区的代码保护控制模式0。

编程用时钟控制寄存器

操作	ICP	SSP
代码保护	支持	不支持
扇区擦除	支持 (无安全位)	支持 (无安全位)
整体擦除	支持	不支持
写/读代码	支持 (无安全位)	支持(无安全位或自身扇区)

在ICP模式中,通过6线接口编程器能完成所有Flash操作。因为编程信号非常灵敏,所以使用编程器编程时用户需要先用5个跳线将编程引脚(VCC,TCK,TDI,TMS,TDO)从应用电路中分离出来。如下图所示。

当采用ICP模式进行操作时,建议按照如下步骤进行操作:

- (1) 在开始编程前断开跳线(jumper),从应用电路中分离编程引脚;
- (2) 将芯片编程引脚连接至编程器编程接口,开始编程;
- (3) 编程结束后断开编程器接口,连接跳线恢复应用电路。

7.4 扇区自编程 (SSP) 功能

SH99F01支持SSP操作。如果所选扇区未被加密,利用SSP操作,用户代码可以对程序存储区和客户信息块区/类EEPROM块区进行擦除、编程操作。一旦某扇区或块区被编程,则在该扇区或块区被擦除之前不能被再次编程。

SH99F01内建一个复杂控制流程以避免误入SSP模式导致代码被误修改。为进入SSP模式,IB_CON2-5必须满足特定条件。若IB_CON2-5不满足特定条件,则无法进入SSP模式。

7.4.1 寄存器

擦除/编程用扇区选择和编程用地址偏移量寄存器

此寄存器用来选择待擦除或者待编程扇区的区号,配合IB_OFFSET寄存器来表示待编程字节在扇区内的地址偏移量。

● 对于程序存储区,一个扇区为1024字节,寄存器定义如下:

Table 7.4 擦除/编程用扇区选择和地址偏移寄存器

F7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
XPAGE	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-6	XPAGE[7:6]	无效位,复位为0
5-2	XPAGE[5:2]	被擦除/编程的存储单元扇区号,0000代表扇区0,依此类推,共16个扇区
1-0	XPAGE[1:0]	被擦除/编程的存储单元高2位地址

Table 7.5 编程用地址偏移寄存器

		200		THE I	AND VIOLENA	40007		
FBH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_OFFSET	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	IB_OFFSET[7:0]	被编程的存储单元低8位地址

XPAGE[1:0]和IB OFFSET[7:0]共10位,可以表示1个程序存储扇区内全部1024个字节的偏移量。

● 对于客户信息块区/类EEPROM块区,一个块区为256字节,寄存器定义如下:

Table 7.6 擦除/编程用扇区选择寄存器

F7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
XPAGE	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明					
7-4	XPAGE[7:3]	在擦除/编程块区时无意义					
3-0	XPAGE[2:0]	被擦除/编程的块区号,000代表块0,依此类推,共8个块					

类EEPROM块区对应XPAGE[2:0]为000-111的块,每块256 bytes,共2048 bytes空间。类EEPROM块区的访问可通过指令 "MOVC A,@A+DPTR"或"MOVC A,@A+PC"实现,注意:需要将FAC位(FLASHCON.0)置1。

Table 7.7 编程用地址偏移寄存器

FBH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_OFFSET	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号		说明			
7-0	IB_OFFSET[7:0]	被擦除/编程的块单元地址		4343		

IB_OFFSET[7:0]共8位,可以表示1个块区内全部256个字节的偏移量。

Table 7.8 编程用数据寄存器

FCH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_DATA	IB_DATA.7	IB_DATA.6	IB_DATA.5	IB_DATA.4	IB_DATA.3	IB_DATA.2	IB_DATA.1	IB_DATA.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明						
7-0	IB_DATA[7:0]	待编程数据						

Table 7.9 操作类型选择寄存器

F2H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON1	IB_CON1.7	IB_CON1.6	IB_CON1.5	IB_CON1.4	IB_CON1.3	IB_CON1.2	IB_CON1.1	IB_CON1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明					
7-0	IB_CON1[7:0]	操作类型选择 E6H:扇区擦除(擦除时间 < 40ms) 6EH:编程存储单元(编程时间 < 50μs) AAH:整体擦除(注意:在整体擦除操作中将忽略FAC位,详见FLASHCON寄存器)此命令仅在引导扇区内有效。					

Table 7.10 SSP流程控制寄存器1

F3H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON2	-	-	=	-	IB_CON2.3	IB_CON2.2	IB_CON2.1	IB_CON2.0
读/写	-	-	=	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	IB_CON2[3:0]	必须为05H,否则Flash编程将会终止

Table 7.11 SSP流程控制寄存器2

F4H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON3	=	=	=	-	IB_CON3.3	IB_CON3.2	IB_CON3.1	IB_CON3.0
读/写	=	-	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号		说明
3-0	IB_CON3[3:0]	必须为0AH,否则Flash编程将会终止	

Table 7.82 SSP流程控制寄存器3

F5H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON4	=	=	=	=	IB_CON4.3	IB_CON4.2	IB_CON4.1	IB_CON4.0
读/写	=	=	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	IB_CON4[3:0]	必须为09H,否则Flash编程将会终止

Table 7.13 SSP流程控制寄存器4

F6H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON5	=	-	_		IB_CON5.3	IB_CON5.2	IB_CON5.1	IB_CON5.0
读/写	=			-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	IB_CON5[3:0]	必须为06H,否则Flash编程将会终止

Table 7.14 软件复位标志和指令访问控制寄存器

	47 7010		10. 47					
F7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
FLASHCON	-	-	<u>_</u>	-	-	=	=	FAC
读/写	-	-	-	-	-	-	-	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	-	-	0

位编号	位符号	说明
0	FAC	执行区域选择位 0:MOVC指令或SSP操作执行区在程序存储区 1:MOVC指令或SSP操作执行区在客户信息块区/类EEPROM块区

7.4.2 SSP编程注意事项

为确保顺利完成SSP编程,用户软件应该遵循以下步骤设置:

(1) 用于代码/数据编程:

- 1. 关闭中断;
- 2. 如果待编程地址在客户信息块区/类EEPROM块区,将FAC位(FLASHCON.0)置1;如果待编程地址在程序存储区,将FAC位(FLASHCON.0)清0;
- 3. 按相应的待编程扇区号或块区号设置XPAGE、IB_OFFSET;
- 4. 按编程需要,设置IB_DATA;
- 5. 按照顺序设置IB CON1-5;
- 6. 添加4个NOP指令;
- 7. 开始编程, CPU将进入IDLE模式;编程完成后自动退出IDLE模式;
- 8. 如果需要继续写入数据,跳转至第3步;
- 9. XPAGE寄存器清0;恢复中断设置;根据后续程序需要置1或者清0FAC位(FLASHCON.0)。

(2) 用于扇区或块区擦除:

- 1. 关闭中断;
- 2. 如果待编程地址在客户信息块区/类EEPROM块区,将FAC位(FLASHCON.0)置1;如果待编程地址在程序存储区,将FAC位(FLASHCON.0)清0
- 3. 按相应的扇区或块区设置XPAGE;
- 4. 按照顺序设置IB_CON1 5;
- 5. 添加4个NOP指令;
- 6. 开始擦除,CPU将进入IDLE模式;擦除完成后自动退出IDLE模式;
- 7. 如果需要继续擦除扇区或块区,跳转至第3步;
- 8. XPAGE寄存器清0,恢复中断设置;根据后续程序需要置1或者清0FAC位(FLASHCON.0)。

(3) 用于整体擦除:

整体擦除操作与扇区擦除操作类似。不同之处在于:

- 1. 整体擦除操作只能在引导扇区内进行;
- 2. FAC位 (FLASHCON.0) 的作用将被忽略。

注:SH99F01不支持ISP,因此无法实现基于SSP的整体擦除操作。

注意:数据访问可通过指令"MOVC A , @A+DPTR"或"MOVC A , @A+PC"实现。

7.5 系统时钟和振荡器

7.5.1 特性

■ 仅支持1种振荡器类型:晶体谐振器

■ 支持外部时钟输入

■ 内建系统时钟分频器

■ 内建PLT模块时钟分频器

7.5.2 概述

SH99F01仅支持1种振荡器类型:6M-16M晶体谐振器。由振荡器产生的基本时钟脉冲作为系统时钟提供给CPU和片上外围模块(包括PLT模块)。

7.5.3 寄存器

Table 7.15 系统时钟控制寄存器

						A107 101	207	
B2H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CLKCON	=	CLKPS1	CLKPS0	-	- 4	-	-	PLCLKPS
读/写	=	读/写	读/写	=	-	-	-	读/写
复位值 (POR/WDT/LVR/PIN)	-	0	0	-	-			0

位编号	位符号	说明
6-5	CLKPS[1:0]	系统时钟预分频器 00: f _{SYS} = f _{OSCS} (默认) 01: f _{SYS} = f _{OSCS} /2 10: f _{SYS} = f _{OSCS} /4 11: f _{SYS} = f _{OSCS} /12
0	PLCLKPS	PLT模块时钟分频器 0: f _{PLT} = f _{OSCS} (默认) 1: f _{PLT} = f _{OSCS} /2

7.5.4 振荡器类型

晶体谐振器:8M-16MHz

7.5.5 谐振器负载电容选择

	晶体谐振器		推荐型号	生产厂
频率	C1	C2	推行至与	±) 1
			HC-49U/S 8.000MHz	
	8M-16M 8-15pF		HC-49U/S 12.000MHz	威克创通讯器材有限公司
914 1614		8-15pF 8-15pF -	HC-49U/S 16.000MHz	
OIVI- TOIVI			49S-8.000M-F16E	
			49S-12.000M-F16E	深圳东光晶博电子有限公司
			49S-16.000M-F16E	

注意:

(1) 表中负载电容为设计参考数据!

- (2) 以上电容值可通过谐振器基本的起振和运行测试,并非最优值。
- (3) 请注意印制板上的杂散电容,用户应在超过应用电压和温度的条件下测试谐振器的性能。 在应用陶瓷谐振器/晶体谐振器之前,用户需向谐振器生产厂要求相关应用参数以获得最佳性能。 请登陆http://www.sinowealth.com以取得更多的推荐谐振器生产厂。

7.6 系统电源

SH99F01分模拟和数字两路电源,分别从 V_{DD} 和A V_{DD} 输入。其中 V_{DD} 电压范围3.0V - 5.5V,A V_{DD} 电压范围3.0V - 3.6V。在 V_{DD} 使用5V电源供电时,可使用内部稳压源产生3.3V电源提供给A V_{DD} ,无需外接3.3V电源。

内部稳压源通过客户代码OP REG33开启,开启后AVDD需外接47μF电解电容至AGND,具体应用可参考应用电路。

系统供电选项

OP_REG33	内部3.3V稳压源	VDD引脚	AVD引脚
0 (默认)	禁止	接3V - 5.5V电源供电	接3V - 3.6V电源供电
1	使能	接4V - 5.5V电源供电	接47µF电解电容到AGND

7.7 I/O端口

7.7.1 特性

- 2组8位双向I/O端口
- I/O端口可与其它功能共享

SH99F01提供2组8位位可编程双向I/O端口。端口数据在寄存器Px中。端口控制寄存器(PxCRy)控制端口是作为输入或者输出。当端口作为输入时,每个I/O端口带有由PxPCRy控制的内部上拉电阻(x = 0-1, y = 0-7)。

SH99F01的有些I/O引脚能与选择功能共享。当所有功能都允许时,在CPU中存在优先权以避免功能冲突。(详见**端口共享**章节)。

7.7.2 寄存器

Table 7.16 端口控制寄存器

		A807 A.W	400 VIOLES					
E1H, E2H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0CR (E1H)	P0CR.7	P0CR.6	P0CR.5	P0CR.4	P0CR.3	P0CR.2	P0CR.1	P0CR.0
P1CR (E2H)	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	P1CR.1	P1CR.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PxCRy x = 0-1, y = 0-7	端口输入/输出控制寄存器 0:输入模式 1:输出模式

Table 7.17 端口上拉电阻控制寄存器

E9H, EAH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0PCR (E9H)	P0PCR.7	P0PCR.6	P0PCR.5	P0PCR.4	P0PCR.3	P0PCR.2	P0PCR.1	P0PCR.0
P1PCR (EAH)	P1PCR.7	P1PCR.6	P1PCR.5	P1PCR.4	P1PCR.3	P1PCR.2	P1PCR.1	P1PCR.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号 位符号 说明

_		
	DyDCDy	输入端口内部上拉电阻控制
7-0	7-0 PxPCRy x = 0-1, y = 0-7	0:内部上拉电阻关闭
		1:内部上拉电阻开启

Table 7.18 端口数据寄存器

80H, 90H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0 (80H)	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
P1 (90H)	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

Ĭ	位编号	位符号	说明
	7-0	Px.y x = 0-1, y = 0-7	端口数据寄存器

7.7.4 端口共享

16个双向I/O端口也能共享作为第二功能,默认功能和第二功能不会同时使能。

当允许端口复用为其它功能时,用户可以修改PxCR、PxPCR(x=0-1),但在复用的其它功能被禁止前,这些操作不会影响端口状态。

当允许端口复用为其它功能时,任何对端口的读写操作只会影响到数据寄存器的值,端口引脚值保持不变,直到复用的其它功能关闭。

如果第二功能允许模拟模块例如ADC,不论实际引脚的电平或I/O状态,只能读回0。

PORT0:

- FILI(P0.0): PLT 模块限幅放大器反馈路径输入 - FILO(P0.1): PLT 模块限幅放大器反馈路径输出 - VINCOM(P0.2): PLT 模块副通道接收信号输入

- AN1 (P0.3): ADC 输入通道1 - AN2 (P0.4): ADC 输入通道2 - AN3 (P0.5): ADC 输入通道3 - TPO (P0.6): 发送信号数字脉冲输出 - RPO (P0.7): 接收信号数字脉冲输出

Table 7.19 PORT0共享列表

引脚编号。	功能	允许位
22	P0.0	PLCON寄存器中PLTEN和RSSIEN位均为0
22	FILI	PLCON寄存器中PLTEN位置为1或RSSIEN位置为1
21	P0.1	PLCON寄存器中PLTEN和RSSIEN位均为0
21	FILO	PLCON寄存器中PLTEN位置为1或RSSIEN位置为1
20	P0.2	PLCON寄存器中PLTEN位为0或PLT内部寄存器UMR3中AFECH位为0
20	VINCOM	PLCON寄存器中PLTEN位置为1且PLT内部寄存器UMR3中AFECH位置为1
19	P0.3	ADCH寄存器中的CH1位为0
19	AN1	ADCH寄存器中的CH1位置为1
18	P0.4	ADCH寄存器中的CH2位为0
10	AN2	ADCH寄存器中的CH2位置为1
17	P0.5	ADCH寄存器中的CH3位为0
17	AN3	ADCH寄存器中的CH3位置为1

16	P0.6	PLT UMR1寄存器中的PULSE_OP位为0
10	TPO	PLT UMR1寄存器中的PULSE_OP位为1
P0.7		PLT UMR1寄存器中的LIMIT_OP位为0
15	RPO	PLT UMR1寄存器中的PULSE_OP位为1

PORT1:

- RXD (P1.0) : EUART 数据输入 - TXD (P1.1) : EUART 数据输出 - INT0 (P1.2) : 外部中断0输入

- T0(P1.3):定时器0外部输入或比较输出

- INT1 (P1.4):外部中断1输入

- T1(P1.5): 定时器1外部输入或比较输出 - T2(P1.6): 定时器2外部输入/波特率时钟输出 - T2EX(P1.7): 定时器2重载/捕捉/方向控制输入

Table 7.20 PORT1共享列表

引脚编号	功能	允许位
7	P1.0	SCON寄存器中REN位为0
,	RXD	SCON寄存器中REN位置为1
8	P1.1	不写SBUF寄存器
0	TXD	写入SBUF寄存器
9	P1.2	IEN0寄存器的EX0位为0,或者Port1.2为输出状态
9	INT0	IEN0寄存器的EX0位置1,并且Port1.2为输入状态(上拉由软件设置)
10	P1.3	TCON寄存器的TR0位为0或者TMOD寄存器的C/T0位为0
10	T0	TCON寄存器的TR0位和TMOD寄存器的C/T0位都置1
11	P1.4	IEN0寄存器的EX1位为0,或者Port1.4为输出状态
11	INT1	IEN0寄存器的EX1位置1,并且Port1.4为输入状态(上拉由软件设置)
12	P1.5	TCON寄存器的TR1位为0或者TMOD寄存器的C/T1位为0
12	T1	TCON寄存器的TR1位和TMOD寄存器的C/T1位都置1(自动上拉)
13	P1.6	TCON寄存器的TR2位为0或者TMOD寄存器的C/T2位为0
13	T2	TCON寄存器的TR2位和TMOD寄存器的C/T2位都置1(自动上拉)
		TCON寄存器的TR2位为0或者TMOD寄存器的C/T2位为0,或者T2MOD寄存器的EXEN2位为0
	T2EX	TCON寄存器的TR2位,TMOD寄存器的C/T2位,T2MOD寄存器的EXEN2位都置为1

7.8 定时器

7.8.1 特性

- SH99F01有3个通用定时器(定时器0,1,2)
- 定时器0兼容标准的8051
- 定时器1兼容标准的8051
- 定时器2兼容标准的8052,且有递增递减计数和可编程输出功能
- 定时器0/1增加了比较输出功能

7.8.2 定时器0和定时器1

每个定时的两个数据寄存器(THx & TLx(x = 0,1))可作为一个16位寄存器来访问。它们由寄存器TCON和TMOD控制。 IENO寄存器的ETO和ET1位置1能允许定时器0和定时器1中断。(详见**中断**章节)。

定时器x的模式(x=0,1)

通过计数器/定时器模式寄存器(TMOD)的模式选择位Mx1-Mx0,选择定时器工作模式。

模式0:13位计数器/定时器

在模式0中,定时器x为13位计数器/定时器。THx寄存器存放13位计数器/定时器的高8位,TLx存放低5位(TLx.4-TLx.0)。TLx的高三位(TLx.7-TLx.5)是不确定的,在读取时应该被忽略。当13位定时器寄存器递增,溢出时,系统置起定时器溢出标志TFx。如果定时器x中断被允许,将会产生一个中断。C/Tx位选择计数器/定时器的时钟源。

如果 $C/\overline{Tx}=1$,定时器x输入引脚(Tx)的电平从高到低跳变,使定时器x数据寄存器加1。如果 $C/\overline{Tx}=0$,选择系统时钟为定时器x的时钟源。

当GATEx = 0或GATEx = 1且输入信号INTx有效时,TRx置1打开定时器。GATEx置1允许定时器由外部输入信号INTx控制,便于测量INTx的正脉冲宽度。TRx位置1不强行复位定时器,这意味着如果TRx置1,定时器寄存器将从上次TRx清0时的值开始计数。所以在允许定时器之前,应该设定定时器寄存器的初始值。

当作为定时器应用时,可配置寄存器TCON1中的TC0/1位使定时器0溢出时T0/T1脚自动翻转。如果TC0/1被置1,T0/T1引脚自动设置为输出。

模式1:16位计数器/定时器

除了使用16位定时器/计数器之外,模式1的运行与模式0一致。打开和配置计数器/定时器也如同模式0。

模式2:8位自动重载计数器/定时器

模式2中,定时器x是8位自动重载计数器/定时器。TLx存放计数值,THx存放重载值。当在TLx中的计数器溢出至0x00时, 置起定时器溢出标志TFx,寄存器THx的值被重加载寄存器TLx中。如果定时器中断使能,当TFx置1时将产生一个中断。而在THx 中的重载值不会改变。在允许定时器正确计数开始之前,TLx必须初始化为所需的值。

除了自动重载功能外,模式2中的计数器/定时器的使能和配置与模式1和0是一致的。

当作为定时器应用时,可配置寄存器TCON1中的TC0/1位使定时器0/1溢出时T0/T1脚自动翻转。如果TC0/1被置1,T0/T1引脚自动设置为输出。

模式3:两个8位计数器/定时器(只限于定时器0)

在模式3中,定时器0用作两个独立的8位计数器/定时器,分别由TL0和TH0控制。TL0使用定时器0的控制(在TCON中)和状态(在TMOD中)位:TR0,C/T0,GATE0和TF0。TL0能用系统时钟或外部输入信号作为时钟源。

TH0只能用作定时器功能,时钟源来自系统时钟。TH0由定时器1的控制位TR1控制使能,溢出时定时器1溢出标志TF1置1,控制定时器1中断。

定时器0工作在模式3时,定时器1可以工作在模式0、1或2,但是不能置1 TF1标志和产生中断,可以用来产生串口的波特率。TH1和TL1只能用作定时器功能,时钟源来自系统时钟,GATE1位无效。T1输入脚的上拉电阻也无效。定时器1由模式控制使能与否,因为TR1被定时器0占用。定时器1在模式0、1或2时使能,在模式3时被关闭。

当作为定时器应用时,可配置寄存器TCON1中的TC0位使定时器0溢出时T0脚自动翻转。如果TC0被置1,T0引脚自动设置为输出。

注意:

当定时器0,1作为计数器时,输入信号被系统时钟同步,因此T0/T1必须低于系统时钟二分频,/INT0,/INT1必须低于系统 时钟四分频;

当定时器1作为波特率发生器时,读取或写入TH1/TL1会影响波特率的准确性,因此也会引起通信出错。

寄存器

Table 7.21 定时器/计数器x控制寄存器 (x = 0,1)

88H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7, 5	TFx x = 0, 1	定时器x溢出标志位 0:定时器x无溢出,可由软件清0 1:定时器x溢出,由硬件置1;若由软件置1将会引起定时器中断
6, 4	TRx x = 0, 1	定时器x启动,停止控制位 0:停止定时器x 1:启动定时器x
3, 1	IEx x = 0, 1	外部中断x请求标志位
2, 0	ITx x = 0, 1	外部中断x触发方式选择位

Table 7.22 定时器/计数器x方式寄存器 (x = 0,1)

89H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TMOD	GATE1	C/T1	M11	M10	GATE0	C/T0	M01	M00
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7, 3	GATEx x = 0, 1	定时器x门控位 0:TRx置1,定时器x即被允许 1:只有INTx在高电平期间TRx置1,定时器x才被允许
6, 2	C/Tx x = 0, 1	定时器/计数器方式选择位 0:定时器方式 1:计数器方式
5-4 1-0	Mx[1:0] x = 0, 1	定时器x定时器方式选择位 00:方式0,13位向上计数计数器/定时器,忽略TLx的第7-5位 01:方式1,16位向上计数计数器/定时器 10:方式2,8位自动重载向上计数计数器/定时器 11:方式3(只用于定时器0),两个8位向上计数定时器

Table 7.23 定时器x/计数器x数据寄存器 (x = 0,1)

8AH-8DH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TL0(8AH)	TL0.7	TL0.6	TL0.5	TL0.4	TL0.3	TL0.2	TL0.1	TL0.0
TH0(8CH)	TH0.7	TH0.6	TH0.5	TH0.4	TH0.3	TH0.2	TH0.1	TH0.0
TL1(8BH)	TL1.7	TL1.6	TL1.5	TL1.4	TL1.3	TL1.2	TL1.1	TL1.0
TH1(8DH)	TH1.7	TH1.6	TH1.5	TH1.4	TH1.3	TH1.2	TH1.1	TH1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	TLx.y, THx.y x=0-1, y=0-7	定时器x低及高字节计数器

Table 7.24 定时器/计数器x控制寄存器1 (x = 0,1)

CEH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TCON1	=	-	=	4 - /		=	TC1	TC0
读/写	=	-	-	-	1-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-		0	0

位编号	位符号	说明
1-0	TCx x = 0,1	比较输出功能允许位 0:禁止定时器x比较输出功能 1:允许定时器x比较输出功能

7.8.3 定时器2

两个数据寄存器(TH2和TL2)串联后可作为一个16位寄存器来访问,由寄存器T2CON和T2MOD控制。设置IEN0寄存器中的ET2位能允许定时器2中断。(详见**中断**章节)

定时器2的工作模式与定时器0和定时器1相似。C/T2选择系统时钟(定时器)或外部引脚T2(计数器)作为定时器时钟输入。通过所选的引脚设置TR2允许定时器2/计数器2数据寄存器计数。

定时器2模式

定时器2有4种工作模式:捕获/重载,带递增或递减计数器的自动重载方式,波特率发生器和可编程时钟输出。RCLK,TCLK和CP/RL2的组合能选择这些模式。

Table 7.25 定时器2方式选择

C/T2	T2OE	DCEN	TR2	CP/RL2	RCLK	TCLK		模式
Х	0	Х	1	1	0	0	0	16位捕获
Х	0	0	1	0	0	0	1	16位自动重载定时器
Х	0	1	1	0	0	0	ı	10位目幼星乳足印品
Х	0	X	1	Х	1	Х	2	波特率发生器
^	U	^	•	^	Χ	1	2	
					0	0	3	只用于可编程时钟
0	1	Х	1	X	1	Х	3	带波特率发生器的可编程时钟输出
					Х	1	9	17次10千久工品は5つ場合に11部山
1	1	Х	1	Х	Х	Х	X	不推荐使用
Х	Х	Х	0	Х	Х	Х	X	定时器2停止,T2EX通路仍旧允许

模式0:16位捕获

在捕获模式中,T2CON的EXEN2位有两个选项。

如果EXEN2 = 0,定时器2作为16位定时器或计数器,如果IET2被允许的话,定时器2能设置TF2溢出产生一个中断。

如果EXEN2 = 1,定时器2执行相同操作,但是在外部输入T2EX上的下降沿也能引起在TH2和TL2中的当前值分别被捕获到RCAP2H和RCAP2L中,此外,在T2EX上的下降沿也能引起在T2CON中的EXF2被设置。如果IET2被允许,EXF2位也像TF2一样也产生一个中断。

模式1:16位自动重载定时器

在16位自动重载模式下,定时器2可以被选为递增计数或递减计数。这个功能通过T2MOD中的DCEN位(递减计数允许)选择。系统复位后,DCEN位复位值为0,定时器2默认递增计数。当设置DCEN时,定时器2递增计数或递减计数取决于T2EX引脚上的电平。

当DCEN = 0,通过在T2CON中的EXEN2位选择两个选项。

如果EXEN2 = 0,定时器2递增到0FFFFH,在溢出后置起TF2位,同时定时器自动将用户软件写好的寄存器RCAP2H和RCAP2L的16位值装入TH2和TL2寄存器。

如果EXEN2 = 1,溢出或在外部输入T2EX上的下降沿都能触发一个16位重载,置起EXF2位。如果IET2被使能,TF2和EXF2位都能产生一个中断。

设置DCEN位允许定时器2递增计数或递减计数。当DCEN = 1时,T2EX引脚控制计数的方向,而EXEN2控制无效。

T2EX置1可使定时器2递增计数。定时器递增到0FFFFH,在溢出后设置TF2位。溢出也能分别引起RCAP2H和RCAP2L上的16位值重加载定时器寄存器。

T2EX清0可使定时器2递减计数。当TH2和TL2的值小于RCAP2H和RCAP2L的值时,定时器溢出。置起TF2位,同时0FFFFH重加载定时器寄存器。

无论定时器2溢出, EXF2位都被用作结果的第17位。在此工作方式下, EXF2不作为中断标志。

模式2:波特率发生器

通过设置T2CON寄存器中的TCLK和/或RCLK选择定时器2作为波特率发生器。请注意如果将定时器2作为接收器或发送器而定时器1作他用时,发送和接收的波特率可以是不同的。

设置RCLK和/或TCLK使定时器2进入波特率发生器模式,该模式与自动重加载模式相似。

定时器2的溢出会引起软件将RCAP2H和RCAP2L寄存器中的16位值重加载定时器2寄存器,但不会产生中断。

如果EXEN2被置1,在T2EX脚上的下降沿会置起EXF2,但不会引起重载(RCAP2H,RCAP2L到TH2,TL2)。因此当定时器2作为波特率发生器时,T2EX可作为一个额外的外部中断。

在EUART模式1和3中的波特率由定时器2的溢出率根据下列方程式决定。

$$\begin{aligned} & \text{BaudRate} = \frac{1}{2 \times 16} \times \frac{\text{System Clock}}{65536 - [\text{RCAP2H,RCAP2L}]} \; ; \; \text{C/T2} = 0 \\ & \text{BaudRate} = \frac{1}{16} \times \frac{\text{T2 frequency}}{65536 - [\text{RCAP2H,RCAP2L}]} \; ; \; \text{C/T2} = 1 \end{aligned}$$

注意:

当Timer2在波特率发生器模式下作为定时器工作时(TR2 = 1), TH2或TL2不能读取或写入。原因如下: 定时器在每个状态时间递增,可能导致读取或写入的结果不精确。

RCAP2寄存器能读取不能写入,因为写入会覆盖重载而且会引起写入和重载出错。

因此,在访问TH2/TL2或RCAP2H/RCAP2L/寄存器之后,Timer2必须被关闭(清除TR2)。

模式3:可编程时钟输出

在这种模式中,T2输出占空比为50%的时钟:

Clock Out Frequency =
$$\frac{1}{2 \times 2} \times \frac{\text{System Clock}}{65536 - [\text{RCAP2H,RCAP2L}]}$$

定时器2溢出不产生中断。所以定时器2可以同时以相同频率用作波特率发生器和时钟输出。

注意:

- (1) TF2 和 EXF2 都能引起定时器 2 的中断请求,两者有相同的向量地址。
- (2) 当事件发生时或其它任何时间都能由软件设置 TF2 和 EXF2 为 1, 只有软件以及硬件复位才能使之清 0。
- (3) 当 EA = 1 且 ET2 = 1 时,设置 TF2 或 EXF2 为 1 能引起定时器 2 中断。
- (4) 当定时器 2 作为波特率发生器时,写入 TH2/TL2,写入 RCAPH2/RCAPL2 会影响波特率的准确性,因此也会引起通信 出错。

寄存器

Table 7.26 定时器2控制寄存器

C8H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

	1	
位编号	位符号	说明
7	TF2	定时器2溢出标志位 0:无溢出 1:溢出(如果RCLK = 0和TCLK = 0,由硬件设置)
6	EXF2	T2EX引脚外部事件输入(下降沿)被检测到的标志位 0:无外部事件输入(必须由软件清0) 1:检测到外部输入(如果EXEN2 = 1,由硬件设1)
5	RCLK	EUART0接收时钟控制位 0:定时器1产生接收波特率 1:定时器2产生接收波特率
4	TCLK	EUART0发送时钟控制位 0:定时器1产生发送波特率 1:定时器2产生发送波特率
3	EXEN2	T2EX引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控制位 0:忽略T2EX引脚上的事件 1:当定时器2不做为EUART时钟(T2EX始终包括上拉电阻)时,检测到T2EX 引脚上一个下降沿,产生一个捕获或重载
2	TR2	定时器2开始/停止控制位 0:停止定时器2 1:开始定时器2
1	C/T2	定时器2定时器/计数器方式选定位 0:定时器方式,T2引脚用作I/O端口 1:计数器方式,内部上拉电阻被打开
0	CP/RL2	捕获/重载方式选定位 0:16位带重载功能的定时器/计数器 1:16位带捕获功能的定时器/计数器

Table 7.27 定时器2方式控制寄存器

C9H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T2MOD	-	-	-	-	-	-	T2OE	DCEN
读/写	-	-	-	-	-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	-	0	0

位编号	位符号	说明
1	T2OE	定时器2输出允许位 0:设置P1.6/T2作为时钟输入或I/O端口 1:设置P1.6/T2作为时钟输出(波特率发生器方式)
0	DCEN	递减计数允许位 0:禁止定时器2作为递增/递减计数器,定时器2仅作为递增计数器 1:允许定时器2作为递增/递减计数器

Table 7.28 定时器2重载/捕获和数据寄存器

CAH-CDH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RCAP2L (CAH)	RCAP2L.7	RCAP2L.6	RCAP2L.5	RCAP2L.4	RCAP2L.3	RCAP2L.2	RCAP2L.1	RCAP2L.0
RCAP2H (CBH)	RCAP2H.7	RCAP2H.6	RCAP2H.5	RCAP2H.4	RCAP2H.3	RCAP2H.2	RCAP2H.1	RCAP2H.0
TL2 (CCH)	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
TH2 (CDH)	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	RCAP2L.x	定时器2重载/捕获数据,x = 0 - 7
7-0	RCAP2H.x	是 P J 品 Z 至 \$ J H 3 A 及 J A , A = 0 = 7
7.0	TL2.x	定时器2高位低位计数器,x = 0 - 7
7-0	TH2.x	定的品名同位似位(数品,X - O - 7

7.9 中断

7.9.1 特性

- 9个中断源
- 4层中断优先级
- 程序超范围中断

SH99F01有9个中断源:OVL NMI中断,2个外部中断(外部中断0/1),3个定时器中断(定时器0/1/2),EUART中断,ADC中断,PLT中断。

7.9.2 程序超范围中断 (OVL)

SH99F01有一个不可屏蔽中断(NMI)源——程序超范围中断(OVL),其向量定位在007BH中,不可屏蔽中断用以防止CPU超出有效程序范围。为应用这个特性,用户应该用常量0xA5填满未使用的Flash ROM,如果PC超过了用户的有效程序范围,则运算代码为不存在在8051指令集中的0xA5,CPU因此获知PC已经超出了有效的程序范围,同时OVL中断发生。如果PC超过16K Flash ROM范围,不可屏蔽中断OVL同样会发生。

不可屏蔽中断OVL享有最高优先级(除复位外),不会被其它中断源中断。同样不可屏蔽中断OVL能自身嵌套,但堆栈不会因此增加。当OVL中断发生后,其它中断仍旧被允许,如果满足设定的条件,其它中断的标志将置1。

由于OVL中断是不可屏蔽中断并且具有最高中断优先级,当产生OVL中断时,其它任何中断都被屏蔽掉,不能响应,所以用户必须处理OVL中断以保护系统免受不必要的影响。用户可以用OVL中断服务程序末端的RETI指令来修改压入栈顶的地址(因为进入OVL中断时,压入堆栈顶端的地址是无用的),这样跳出中断服务程序后,程序可以跳转到用户指定的代码,诸如复位入口或保护程序入口。

```
OVL_NMI_SERVICE:
.....

MOV SP, #Initial_value

MOV DPTR, #Start_or_Initial_address

PUSH DPL

PUSH DPH

RETI
```

特别提示:

由于OVL中断是不可屏蔽中断并且具有最高中断优先级,当产生OVL中断时,其它任何中断都被屏蔽掉,不能响应,所以 用户必须处理OVL中断以保护系统免受不必要的影响。

7.9.3 中断允许

任何一个中断源均可通过对寄存器IEN0和IEN1中相应的位置1或清0,实现单独允许或禁止。IEN0寄存器中还包含了一个全局允许位EA,它是所有中断的总开关。一般在复位后,所有中断允许位设置为0,所有中断被禁止。

Table 7.29 初级中断允许寄存器

A8H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IEN0	EA	EADC	ET2	ES	ET1	EX1	ET0	EX0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	EA	所有中断允许位 0:禁止所有中断 1:允许所有中断
6	EADC	ADC中断允许位 0:禁止ADC中断 1:允许ADC中断
5	ET2	定时器溢出中断允许位 0:禁止定时器2溢出中断 1:允许定时器2溢出中断
4	ES	EUART中断允许位 0:禁止EUART中断 1:允许EUART中断
3	ET1	定时器1溢出中断允许位 0:禁止定时器 1溢出中断 1:允许定时器 1溢出中断
2	EX1	外部中断1允许位 0:禁止外部中断1 1:允许外部中断1
1	ET0	定时器0溢出中断允许位 0:禁止定时器0溢出中断 1:允许定时器0溢出中断
0	EX0	外部中断0允许位 0:禁止外部中断0 1:允许外部中断0

Table 7.30 次级中断允许寄存器

	COL AD							
A9H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IEN1	-	-	-	-	-	-	-	EPLT
读/写	-	-	-	-	-	-	-	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	-	-	0

位编号	位符号	说明
0	EPLT	PLT中断允许位 0:禁止PLT中断 1:允许PLT中断

7.9.4 中断标志

每个中断源都有自己的中断标志,当产生中断时,硬件会置起相应的标志位,在中断汇总表中会列出中断标志位。

外部中断源产生外部中断INTx(x=0,1)时,如果中断为边沿触发,CPU在响应中断后,各中断标志位(TCON寄存器的IE0/1位)被硬件清0;如果中断是低电平触发,外部中断源直接控制中断标志,而不是由片上硬件控制。

定时器0/1的计数器溢出时,TCON寄存器的TFx (x = 0 , 1) 中断标志位置1,产生**定时器0/1**中断,CPU在响应中断后,标志被硬件自动清0。

T2CON寄存器的TF2或EXF2标志位置1时,产生**定时器2**中断,CPU在响应中断后,标志不能被硬件自动清0。事实上,中断服务程序必须决定是由TF2或是EXF2产生中断,标志必须由软件清0。

SCON寄存器的标志RI或TI置1时,产生EUART中断,CPU在响应中断后,标志不会被硬件自动清0。事实上,中断服务程序必须判断是收中断还是发中断,标志必须由软件清0。

ADCON寄存器的ADCIF标志位被置1时,产生ADC中断。如果中断产生,ADCDH/ADCDL中的转换结果是有效的。如果ADC模块的连续比较功能打开,在每次转换中,如果转换结果小于比较值时,ADCIF标志位为0;如果转换结果大于比较值时,ADCIF标志位置1,ADCIF中断标志必须由软件清除。

PLSTAT寄存器的标志RXINT或TXINT置1时,产生**PLT**中断,CPU在响应中断后,标志不会被硬件自动清0。事实上,中断服务程序必须判断是接收中断还是发送中断,标志必须由软件清0。

Table 7.31 定时器x/计数器x控制寄存器(x = 0, 1)

88H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TCON	TF1	TR1	TF0	TR0	IE1	IT1	1E0	IT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7, 5	TFx (x = 0, 1)	定时器x溢出标志 0:定时器x无溢出 1:定时器x溢出
6, 4	TRx (x = 0, 1)	定时器x启动,停止控制 0:停止定时器x 1:启动定时器x
3, 1	IEx (x = 0, 1)	外部中断x请求标志 0:无中断挂起 1:中断挂起
2, 0	ITx (x = 0, 1)	外部中断×触发方式 0:低电平触发 1:下降沿边触发

7.9.5 中断向量

当一个中断产生时,程序计数器内容被压栈,相应的中断向量地址被加载程序计数器。中断向量的地址在**中断汇总表**中详细列出。

7.9.6 中断优先级

每个中断源都可被单独设置为4个中断优先级之一,分别通过清0或置1 IPL0,IPH0,IPL1,IPH1中相应位来实现。但OVL不可屏蔽中断无需IPH/IPL控制,在所有中断源中享有最高优先级(除复位外)。中断优先级服务程序描述如下:

响应一个中断服务程序时,可响应更高优先级的中断,但不能响应同优先级或低优先级的另一个中断。

响应最高级中断服务程序时,不响应其它任何中断。如果不同中断优先级的中断源同时申请中断时,响应较高优先级的中断申请。

如果同优先级的中断源在指令周期开始时同时申请中断,那么内部查询序列确定中断请求响应顺序。

中断优先级							
优	先位	中断优先级					
IPHx	IPLx	中國11/6763X					
0	0	等级0(最低优先级)					
0	1	等级1					
1	0	等级2					
1	1	等级3(最高优先级)					

Table 7.32 中断优先级控制寄存器

	1			A 100		SIA. VO.	1	
B8H, B4H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IPL0 (B8H)	-	PADCL	PT2L	PSL	PT1L	PX1L	PT0L	PX0L
IPH0 (B4H)	-	PADCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	0	0	0	0	0	0	0
B9H, B5H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IPL1 (B9H)	4/	AT Y	- 1		-	-	-	PPLTL
IPH1 (B5H)	-			-	-	-	-	PPLTH
读/写	-		-	-	-	-	-	读/写
复位值 (POR/WDT/LVR/PIN)		-	-/	-	-	-	-	0

位编号	位符号	说明
7-0	PxxxL/H	相应中断源xxx优先级选择

7.9.7 中断处理

中断标志在每个机器周期都会被采样获取。所有中断都在时钟的上升沿被采样。如果一个标志被置起,那么CPU捕获到后中断系统调用一个长转移指令(LCALL)调用其中断服务程序,但由硬件产生的LCALL会被下列任何条件阻止:

同级或更高级的优先级中断在运行中。

当前的周期不是执行中指令的最后一个周期。换言之,正在执行的指令完成前,任何中断请求都得不到响应。

正在执行的是一条RETI或者访问专用寄存器IEN0\1或是IPL\H的指令。换言之,在RETI或者读写IEN0\1或是IPL\H之后,不会马上响应中断请求,而至少在执行一条其它指令之后才会响应。

注意:因为更改优先级通常需要2条指令,在此期间,建议关闭相应的中断以避免在修改优先级过程中产生中断。如果当模块状态改变而中断标志不再有效时,将不会响应此中断。每一个轮询周期只查询有效的中断请求。

由硬件产生的LCALL把程序计数器中的内容压入堆栈(但不保存PSW),然后将相应中断源的向量地址(参照中断向量表)存入程序计数器。

中断服务程序从指定地址开始,到RETI指令结束。RETI指令通知处理器中断服务程序结束,然后把堆栈顶部两字节弹出,重加载程序计数器中,执行完中断服务程序后程序回到原来停止的地方。RET指令也可以返回到原来地址继续执行,但是中断优先级控制系统仍然认为一个同一优先级的中断被响应,这种情况下,当同一优先级或低优先级中断将不会被响应。

7.9.8 中断响应时间

如果检测出一个中断,这个中断的请求标志位就会在被检测后的每个机器周期被置起。内部电路会保持这个值直到下一个机器周期,CPU会在第三个机器周期产生中断。如果响应有效且条件允许,在下一个指令执行的时候硬件LCALL指令将调用请求中断的服务程序,否则中断被挂起。LCALL指令调用程序需要7个机器周期。因而,从外部中断请求到开始执行中断程序至少需要3+7个完整的机器周期。

当请求因前述的的三个情况受阻时,中断响应时间会加长。如果同级或更高优先级的中断正在执行,额外的等待时间取决于正执行的中断服务程序的长度。

如果正在执行的指令还没有进行到最后一个周期,假如正在执行RETI指令,则完成正在执行的RETI指令,需要8个周期,加上为完成下一条指令所需的最长时间20个机器周期(如果该指令是16位操作数的DIV,MUL指令),若系统中只有一个中断源,再加上LCALL调用指令7个机器周期,则最长的响应时间是2+8+20+7个机器周期。

所以,中断响应时间一般大于10个机器周期小于37个机器周期。

7.9.9 外部中断输入

SH99F01有2个外部中断输入。外部中断0/1分别有一个独立的中断源,可以通过设置TCON寄存器的IT1,IT0位来选择是电平触发或是边沿触发。当ITx=0(x=0,1)时,外部中断INTx(x=0,1)引脚为低电平触发;当ITx(x=0,1)= 1,外部中断INTx(x=0,1)为沿触发,在这个模式中,一个周期内INTx(x=0,1)引脚上连续采样为高电平而下个周期为低电平,TCON寄存器的中断请求标志位置1,发出一个中断请求。由于外部中断引脚每个机器周期采样一次,输入高或低电平应当保持至少1个机器周期以确保能够被正确采样到。

如果外部中断为下降沿触发,外部中断源应当将中断脚至少保持1个机器周期高电平,然后至少保持1个机器周期低电平。 这样就确保了边沿能够被检测到以使IEx置1。当调用中断服务程序后,CPU自动将IEx清0。

如果外部中断为低电平触发,外部中断源必须一直保持请求有效,直到产生所请求的中断为止,此过程需要2个系统时钟周期。如果中断服务完成后而外部中断仍旧维持,则会产生下一次中断。当中断为电平触发时不必清除中断标志IEx(x=0,1,2,3),因为中断只与输入口电平有关。

当SH99F01进入空闲或是掉电模式,中断会唤醒处理器继续工作,详见**电源管理**章节。

注意:外部中断0/1的中断标志位在执行中断服务程序时被自动硬件清0。

7.9.10 中断汇总

中断源	向量地址	允许位	标记位	轮询优先级
Reset	0000h		-	0 (最高级)
INT0	0003h	EX0	IE0	2
Timer0	000Bh	ET0	TF0	3
INT1	0013h	EX1	IE1	4
Timer1	001Bh	ET1	TF1	5
EUART	0023h	ES	RI+TI	6
Timer2	002Bh	ET2	TF2+EXF2	7
ADC	0033h	EADC	ADCIF	8
PLT	003Bh	EPLT	RXINT+TXINT	9
OVL NMI	007Bh	-	-	1

8. 增强功能

8.1 增强型通用异步收发器(EUART)

8.1.1 特性

- SH99F01带有1个EUART,兼容传统8051
- 波特率可选择为系统时钟分频或定时器1/2的溢出率
- 增强功能包括帧出错检测及自动地址识别
- EUART有四种工作方式

8.1.2 EUART工作方式

EUART有4种工作方式。在通信之前用户必须先初始化SCON,选择方式和波特率。如果使用方式1或方式3应先初始化定时器1或定时器2。

在所有四种方式中,任何将SBUF作为目标寄存器的写操作都会启动发送。在方式0中由设置RI = 0和REN = 1初始化接收。这会在TXD引脚上产生一个时钟信号,然后在RXD引脚上移8位数据。在其他方式中由输入的起始位初始化接收(如果REN = 1)。通过发送起始位,外部发送器开始通信。

注意:由于TxD与P1.1复用,因此当有数据写入SBUF时,UART将通过TxD发送数据。当发送结束后,TxD将恢复成作为I/O使用。所以当需要使用UART时,用户必须在UART初始化程序中将P1.1设置成输出高的状态。

EUART模式列表

SM0	SM1	方式	类型	波特时钟	帧长度	起始位	停止位	第9位
0	0	0	同步	f _{SYS} /(4或12)	8位	无	无	无
0	1	1	异步	定时器1或2的溢出率/(16或32)	10位	1	1	无
1	0	2	异步	f _{SYS} /(32或64)	11位	1	1	0 , 1
1	1	3	异步	定时器1或2的溢出率/(16或32)	11位	1	1	0 , 1

模式0:同步,半双工通讯

方式0支持与外部设备的同步通信。在RXD引脚上收发串行数据。TXD引脚用作发送移位时钟。因此这个模式是串行通信的半双工方式。在这个方式中,每帧收发8位,低位先接收或发送。

通过置SM2位(SCON.5)为0或1,波特率固定为系统时钟的1/12或1/4。当SM2位为0时,串行端口以系统时钟的1/12运行。 当置1时,串行端口以系统时钟的1/4运行。与标准8051唯一不同的是,SH99F01在方式0中有可变波特率。

功能块框图如下图所示。数据通过RXD引脚进入和移出串行端口。移位时钟由TXD引脚输出,用来移位进出SH99F01的数据。

任何将SBUF作为目标寄存器的写操作都会启动发送。下一个系统时钟Tx控制块开始发送。数据转换发生在移位时钟的下降沿,移位寄存器的内容逐次从左往右移位,空位置0。当移位寄存器中的所有8位都发送后,Tx控制模块停止发送操作,然后在下一个系统时钟的上升沿将TI置1(SCON.1),并且RxD引脚保持高电平。

Send Timing of Mode 0

REN(SCON.4)置1和RI(SCON.0)清0初始化接收。下一个机器周期启动接收,在移位时钟的上升沿锁存数据,接收转换寄存器的内容逐次向左移位。当所有8位都移入接收移位寄存器中后,Rx控制块停止接收,然后在下一个机器周期的上升沿上RI置1,直到被软件清0才允许接收。

模式1:8位EUART,可变波特率,异步全双工

模式1提供10位全双工异步通讯,10位由一个起始位(逻辑0),8个数据位(低位为第一位),和一个停止位(逻辑1)组成。在接收时,这8个数据位存储在SBUF中而停止位储存在RB8(SCON.2)中。模式1中的波特率是可变的,串行收发波特率可被设置为定时器1溢出率的1/16或1/32,或是定时器2溢出率的1/16(详见**波特率**章节)。功能块框图如下图所示:

任何将SBUF作为目标寄存器的写操作都会启动发送,实际上发送是从16分频计数器中的下一次跳变之后的系统时钟开始的,因此位时间与16分频计数器是同步的,与对SBUF的写操作不同步。起始位首先在TXD引脚上移出,然后是8位数据位。在发送移位寄存器中的所有8位数据都发送完后,停止位在TXD引脚上移出,在停止位发出的同时TI标志置1。

Send Timing of Mode 1

只有REN位置1时才允许接收。当RXD引脚检测到下降沿时串行口开始接收串行数据。为此,CPU对RXD不断采样,采样速率为波特率的16倍。当检测下降沿时,16分频计数器立即复位,这有助于16分频计数器与RXD引脚上的串行数据位同步。16分频计数器把每一位的时间分为16个状态,在第7、8、9状态时,位检测器对RXD端的电平进行采样。为抑制噪声,在这3个状态采样中至少有2次采样值一致数据才被接收。如果所接收的第一位不是0,说明这位不是一帧数据的起始位,该位被忽略,接收电路被复位,等待RXD引脚上另一个下降沿的到来。若起始位有效,则移入移位寄存器,并接着移入其它位到移位寄存器。8个数据位和1个停止位移入之后,移位寄存器的内容被分别装入SBUF和RB8中,RI置1,但必须满足下列条件:

- 1. RI = 0
- 2. SM2 = 0或者接收的停止位 = 1

如果这些条件被满足,那么停止位装入RB8,8个数据位装入SBUF,RI被置1。否则接收的帧会丢失。这时,接收器将重新去探测RXD端是否另一个下降沿。用户必须用软件清除RI,然后才能再次接收。

Receive Timing of Mode 1

模式2:9位EUART,固定波特率,异步全双工

这个模式使用异步全双工通信中的11位。一帧由一个起始位(逻辑0),8个数据位(低位为第一位),一个可编程的第9数据位和一个停止位(逻辑1)组成。模式2支持多机通信和硬件地址识别(详见**多机通讯**章节)。在数据传送时,第9数据位(SCON中的TB8)可以写0或1,例如,可写入PSW中的奇偶位P,或用作多机通信中的数据/地址标志位。当接收到数据时,第9数据位进入RB8而停止位不保存。PCON中的SMOD位选择波特率为系统工作频率的1/32或1/64。功能块框图如下所示。

任何将SBUF作为目标寄存器的写操作都会启动发送,同时也将TB8加载到发送移位寄存器的第9位中。实际上发送是从16分频计数器中的下一次跳变之后的系统时钟开始的,因此位时间与16分频计数器是同步的,与对SBUF的写操作不同步。起始位首先在TXD引脚上移出,然后是第9数据位。在发送转换寄存器中的所有9位数据都发送完后,停止位在TXD引脚上移出,在停止位发出的同时TI标志置1。

Send Timing of Mode 2

只有REN位置1时才允许接收。当RXD引脚检测到下降沿时串行口开始接收串行数据。为此,CPU对RXD不断采样,采样速率为波特率的16倍。当检测下降沿时,16分频计数器立即复位。这有助于16分频计数器与RXD引脚上的串行数据位同步。16分频计数器把每一位的时间分为16个状态,在第7、8、9状态时,位检测器对RXD端的电平进行采样。为抑制噪声,在这3个状态采样中至少有2次采样值一致数据才被接收。如果所接收的第一位不是0,说明这位不是一帧数据的起始位,该位被忽略,接收电路被复位,等待RXD引脚上另一个下降沿的到来。若起始位有效,则移入移位寄存器,并接着移入其它位到移位寄存器。9个数据位和1个停止位移入之后,移位寄存器的内容被分别装入SBUF和RB8中,RI置1,但必须满足下列条件:

- 1. RI = 0
- 2. SM2 = 0或者接收的第9位 = 1,且接收的字节符合实际从机地址。

如果这些条件被满足,那么第9位移入RB8,8位数据移入SBUF,RI被置1。否则接收的数据帧会丢失。 在停止位的当中,接收器回到寻找RXD引脚上的另一个下降沿。用户必须用软件清除RI,然后才能再次接收。

Receive Timing of Mode 2

模式3:9位EUART,可变波特率,异步全双工

模式3使用模式2的传输协议以及模式1的波特率产生方式。

8.1.3 波特率

在模式0中,波特率可编程为系统时钟的1/12或1/4,由SM2位决定。当SM2为0时,串行端口在系统时钟的1/12下运行。当SM2为1时,串行端口在系统时钟的1/4下运行。

在模式1和模式3中,波特率可选择来至定时器1或定时器2的溢出率。分别置TCLK(T2CON.4)和RCLK(T2CON.5)位为1来选择定时器2作为TX和RX的波特时钟源(详见**定时器**章节)。无论TCLK还是RCLK为逻辑1,定时器2都为波特率发生器方式。如果TCLK和RCLK为逻辑0,只有定时器1作为Tx和Rx的波特时钟源。

模式1和模式3波特率公式如下所示,其中TH1是定时器1的8位自动重载寄存器,SMOD为EUART的波特率二倍频器(PCON.7),[RCAP2H, RCAP2L] 是定时器2的16位重加载寄存器。定时器1时钟源频率为f_{T1},定时器2时钟源频率为f_{T2}。

$$BaudRate = \frac{2^{SMOD}}{32} \times \frac{f_{T1}}{256 - TH1}$$
 用定时器1作为波特率发生器,定时器1工作在方式2
 $BaudRate = \frac{1}{2 \times 16} \times \frac{f_{T2}}{65536 - [RCAP2H, RCAP2L]}$ 用定时器2作为波特率发生器,定时器2时钟源为系统时钟
 $BaudRate = \frac{1}{16} \times \frac{f_{T2}}{65536 - [RCAP2H, RCAP2L]}$ 用定时器作为波特率发生器,定时器2时钟源为T2输入引脚时钟

在模式2中,波特率固定为系统时钟的1/32或1/64,由SMOD位(PCON.7)决定。当SMOD位为0时,EUART以系统时钟的1/64运行。当SMOD位为1时,EUART以系统时钟的1/32运行。

BaudRate =
$$2^{\text{SMOD}} \times (\frac{f_{\text{SYS}}}{64})$$

8.1.4 多机通信

软件地址识别

模式2和模式3有一个专门的适用于多机通讯的功能。在这两个方式下,接收的是9位数据,第9位移入RB8中,然后再来一位停止位。EUART可以这样来设定:当接收到停止位时,只有在RB8 = 1的条件下,串行口中断才会有效(请求标志RI置1)。可以通过将SCON寄存器的SM2位置1使EUART具有这个功能。

在多机通讯系统中,以如下所述来利用这一功能。当主机要发送一数据块给几个从机中的一个时,它先送出一地址字节,以辨认目标从机。地址字节与数据字节可用第9数据位区别,地址字节的第9位为1,数据字节的第9位为0。

如果从机SM2为1,则不会响应数据字节中断。地址字节可以中断所有从机,这样,每一个从机都检查所接收到的地址字节,以判别自己是不是目标从机。被寻到的从机清0 SM2位,并准备接收即将到来的数据字节,当接收完毕时,从机再一次将SM2置1。没有被寻址的从机,则维持它们的SM2位为1,忽略到来的数据字节,继续做自己的事情。

注意:在模式0中,SM2用来选择波特率加倍。在模式1中,SM2用来检测停止位是否有效,如果SM2 = 1,接收中断不会响应直到接收到一个有效的停止位。

自动 (硬件)地址识别

在模式2和模式3中,SM2置1将使EUART在如下状态下运行:当1个停止位被接收时,如果加载RB8的第9数据位为1(地址字节)并且接收到的数据字节符合EUART的从机地址,EUART产生一个中断。接着,从机应该将SM2清零,以接收后续的数据字节。

在9位方式下要求第9位为1以表明该字节是地址而非数据。当主机要发送一组数据给几个从机中的一个时,必须先发送目标从机的地址。所有从机在等待接收地址字节时,为了确保仅在接收地址字节时产生中断,SM2位必须置1。自动地址识别的特点是只有地址匹配的从机才能产生中断,地址比较通过硬件完成而不是软件。

中断产生后,地址相匹配的从机清零SM2,继续接收数据字节。地址不匹配的从机不受影响,将继续等待接收和它匹配的地址字节。一旦全部信息接收完毕,地址匹配的从机应该再次把SM2置1,忽略所有传送的非地址字节,直到接收到下一个地址字节。

使用自动地址识别功能时,主机可以通过调用给定的从机地址选择与一个或多个从机通信。使用广播地址可以联系所有的从机。有两个特殊功能寄存器用来定义从机地址(SADDR)和地址屏蔽(SADEN)。从机地址是一个8位的字节,存于SADDR寄存器中。SADEN用于定义SADDR内位的有效与否,如果SADEN中某一位为0,则SADDR中相应位的被忽略,如果SADEN中某一位置1,则SADDR中相应位的将用于得到给定的从机地址。这可以使用户在不改变SADDR寄存器中的从机地址的情况下灵活地寻址多个从机。使用给定地址可以识别多个从机而排除其它的从机。

记忆码	从机1	从机2
SADDR	10100100	10100111
SADEN(0屏蔽)	11111010	11111001
给定地址	10100x0x	10100xx1
广播地址(或)	1111111x	11111111

从机1和从机2给定地址的最低位是不同的。从机1忽略了最低位,而从机2的最低位是1。因此只与从机1通讯时,主机必须发送最低位为0的地址(10100000)。类似地,从机1的第1位为0,从机2的第1位被忽略。因此,只与从机2通讯时,主机必须发送第1位为1的地址(10100011)。如果主机希望同时与两从机通讯,则第0位为1,第1位为0,第2位被两从机都忽略,此时有两个不同的地址用于选定两个从机(10100001和10100101)。

主机可以通过广播地址与所有从机同时通讯。这个地址等于SADDR和SADEN的逻辑或,结果中的0表示该位被忽略。多数情况下,广播地址为0xFFh,该地址可被所有从机应答。

系统复位后,SADDR和SADEN两个寄存器初始化为0,这两个结果设定了给定地址和广播地址为XXXXXXXX(所有位都被忽略)。这有效地去除了多处机通讯的特性,禁止了自动寻址方式。这样的EUART将对任何地址都产生应答,兼容了不支持自动地址识别的8051控制器。用户可以按照上面提到的方法实现软件识别地址的多机通讯。

8.1.5 帧出错检测

当寄存器PCON中的SSTAT位为逻辑1时,帧出错检测功能才有效。3个错误标志位被置1后,只能通过软件清零,尽管后续接收的帧没有任何错误也不会自动清零。

注意:SSTAT位必须为逻辑1是访问状态位(FE0,RXOVO和TXCOL0),SSTAT位为逻辑0时是访问方式选择位(SM0,SM1和SM2)。

发送冲突

如果在一个发送正在进行时,用户软件写数据到SBUF寄存器时,发送冲突位(SCON寄存器中的TXCOL位)置1。如果发生了冲突,新数据会被忽略,不能被写入发送缓冲器。

接收溢出

如果在接收缓冲器中的数据未被读取之前,RI清0。又有新的数据存入接收缓冲器,那么接收溢出位(SCON寄存器中的RXOV位)置1。如果发生了接收溢出,接收缓冲器中原来的数据将丢失。

帧出错

如果检测到一个无效(低)停止位,那么帧出错位(寄存器SCON中的FE)置1。

暂停检测

当连续检测到11个位都为低电平位时,则认为检测到一个暂停。由于暂停条件同样满足帧错误条件,因此检测到暂停时也会报告帧错误。一旦检测到暂停条件,UART将进入空闲状态并一直保持,直至接收到有效停止位(RXD引脚上出现上升沿)。

8.1.6 寄存器

Table 8.1 电源控制寄存器

87H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PCON	SMOD	SSTAT	SSTAT1	SIDL	GF1	GF0	PD	IDL
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

		<u> </u>
位编号	位符号	说明
7	SMOD	波特率加倍器 若使用定时器1作为波特率发生器,在模式1和3中置1,EUART的波特率会加倍 如果在模式2中置1,EUART的波特率会加倍
6	SSTAT	SCON[7:5]功能选择 0:SCON[7:5]工作方式作为SM0,SM1,SM2 1:SCON[7:5]工作方式作为FE,RXOV,TXCOL
5	SSTAT1	SCON1[7:5]功能选择 0:SCON1[7:5]工作方式如同SM10,SM11,SM12 1:SCON1[7:5]工作方式如同FE1,RXOV1,TXCOL1
3-2	GF[1:0]	用于软件的通用标志位
1	PD	掉电模式控制位
0	IDL	空闲模式控制位

EUART相关SFR

Table 8.2 EUART控制及状态寄存器

98H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCON	SM0 /FE	SM1 /RXOV	SM2 /TXCOL	REN	TB8	RB8	TI	RI
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

	- 1	
位编号	位符号	说明
7-6	SM[0:1]	EUART串行方式控制位,SSTAT = 0 00:模式0,同步方式,固定波特率 01:模式1,8位异步方式,可变波特率 10:模式2,9位异步方式,固定波特率 11:模式3,9位异步方式,可变波特率
7	FE	EUART帧出错标志,当FE位被读时,SSTAT位必须被设置为1 0:无帧出错,由软件清除 1:发生帧出错,由硬件置1
6	RXOV	EUART接收完毕标志位,当RXOV位被读时,SSTAT位必须被设置为1 0:无接收完毕,由软件清除 1:接收完毕,由硬件置1
5	SM2	EUART多处理机通讯允许位(第9位"1"校验器),SSTAT = 0 0:在模式0下,波特率是系统时钟的1/12 在模式1下,禁止停止位确认检验,停止位将置RI为1产生中断 在模式2和3下,任何字节都会置RI为1产生中断 1:在模式0下,波特率是系统时钟的1/4 在模式1下,允许停止位确认检验,只有有效的停止位(1)才能置RI为1产生中断 在模式2和3下,只有寻址字节(第9位 = 1)能置RI为1产生中断
5	TXCOL	EUART发送冲突标志位,当TXCOL位被读时,SSTAT位必须被设置为1 0:无发送冲突,由软件清除 1:有发送冲突,由硬件置1
4	REN	EUART接收器允许位 0:接收禁止 1:接收允许
3	TB8	第9位在EUART的模式2和3下发送,由软件置1或清0
2	RB8	发送器,EUART的第8位 在模式0下,不使用RB8 在模式1下,如果接收中断发生,RB8的停止位会收到信号 在模式2和3下,由第9位接收
1	TI	EUART的传送中断标记 0:由软件清0 1:由硬件置1,在模式0下的第8位最后,或在其它模式下的停止位开始
0	RI	EUART的接收中断标记 0:由软件清0 1:由硬件置1,在模式0下的第8位最后,或在其它模式下的停止位开始

Table 8.3 EUART数据缓冲器寄存器

99H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SBUF	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SBUF[7-0]	SFR访问两个寄存器:一个移位寄存器和一个接收锁存寄存器 SBUF的写入将发送字节到移位寄存器中,然后开始传输 SBUF的读取返回接收锁存器中的内容

Table 8.4 EUART从属地址及地址屏蔽寄存器

9AH-9BH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SADDR (9AH)	SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0
SADEN (9BH)	SADEN.7	SADEN.6	SADEN.5	SADEN.4	SADEN.3	SADEN.2	SADEN.1	SADEN.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SADDR[7:0]	SADDR定义EUART从机地址
7-0	SADEN[7:0]	SADEN是一个位屏蔽寄存器,决定检验SADDR的哪些位对应接收地址 0:在SADDR中的相应位被忽略 1:SADDR中的相应位被检验是否对应接收地址

8.2 模/数转换器 (ADC)

8.2.1 特性

- 10位分辨率
- 内建基准电压
- 可选外接或内建基准电压
- 4模拟通道输入

SH99F01包括一个单端型、10位逐次逼近型数/模转换器,ADC内建的基准电压V_{REF}与AVDD相连,转换精度为1LSB=AVDD/2¹0,4个ADC通道都可以独立输入模拟信号,但是每次转换只能使用一个通道。GO/DONE信号控制开始转换,提示转换结束。当转换完成时,更新ADC数据寄存器与此同时,设置ADCON寄存器中的ADCIF位,并且产生一个中断(如果允许ADC中断)。

ADC模块整合数字比较功能可以比较ADC中的模拟输入的值与数字值。如果允许数字比较功能(在ADCON 寄存器中的EC位置1),并且ADC模块使能(在ADCON寄存器中的ADON位置1),只有当相应的模拟输入的数字值大于寄存器中的比较值(ADDH/L)时,才会产生ADC中断。当GO/DONE置1时,数字比较功能会持续工作,直到GO/DONE清0。这一点与模数转换工作方式不同。

带数字比较功能的ADC模块能在Idle模式下工作,并且ADC中断能够唤醒Idle模式。但是,在Power-Down模式下,ADC模块被禁止。

通道0内部与RSSI模块输出连接,在RSSI模块使能时,通道0只用于测量RSSI输出电压。在RSSI模块禁止时,通道0可用于其它模拟量的采集,此时内部RSSI输出呈现高阻状态,RSSI引脚可输入待测模拟信号。

8.2.2 ADC模块图

AD转换器模块图

8.2.3 寄存器

Table 8.5 ADC控制寄存器

93H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADCON	ADON	ADCIF	EC	ı	-	SCH1	SCH0	GO/DONE
读/写	读/写	读/写	读/写	=	-	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	-	-	0	0	0

位编 号	位符号	说明
7	ADON	ADC允许 0:禁止ADC模块 1:允许ADC模块
6	ADCIF	ADC中断标志 0:无ADC中断 1:由硬件置1 ,表示已完成AD转换或者模拟输入大于ADDATH/L (如果允许数字比较模块)
5	EC	比较功能允许 0:禁止比较功能 1:允许比较功能
2-1	SCH[1:0]	ADC通道选择 00:ADC通道AN0 01:ADC通道AN1 10:ADC通道AN2 11:ADC通道AN3
0	GO/DONE	ADC状态标记 0:当完成AD转换时,由硬件自动清0。在转换期间清0这个位会中止AD转换。 如果允许数字比较功能,该位不会由硬件清0只能由软件清0 1:设置开始AD转换或者启动数字比较功能

Table 8.6 ADC定时控制寄存器

94H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADT	TADC2	TADC1	TADC0	-	TS3	TS2	TS1	TS0
读/写	读/写	读/写	读/写	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	-	0	0	0	0

位编号	位符号	说明
7-5	TADC[2:0]	ADC时钟周期选择位 000: ADC时钟周期t _{AD} = 2 t _{SYS} 001: ADC时钟周期t _{AD} = 4 t _{SYS} 010: ADC时钟周期t _{AD} = 6 t _{SYS} 011: ADC时钟周期t _{AD} = 8 t _{SYS} 100: ADC时钟周期t _{AD} = 12 t _{SYS} 101: ADC时钟周期t _{AD} = 16 t _{SYS} 110: ADC时钟周期t _{AD} = 24 t _{SYS} 111: ADC时钟周期t _{AD} = 32 t _{SYS}
3-0	TS[3:0]	采样时间选择位 2 t _{AD} ≤ 采样时间 = (TS[3:0]+1) * t _{AD} ≤ 15 t _{AD}

注意:

- (1) **请确保t**_{AD} 1μs;
- (2) 即使TS[3:0] = 0000 , 最小采样时间为2t_{AD} ;
- (3) 即使TS[3:0] = 1111, 最大采样时间为15tAD;
- (4) 在设置TS[3:0]前,请估算连接到ADC输入引脚的串联电阻;
- (5) 选择2*t_{AD}为采样时间时,请确保连接到ADC输入引脚的串联电阻小于10kΩ;
- (6) 总共转换时间= 12t_{AD}+ 采样时间。

Table 8.7 ADC通道设置寄存器

	2000	Continues Continues	Valenties.	Suppose				
95H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADCH	-			_	-	CH3	CH2	CH1
读/写	-	-		-	-	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)		-	-/	-	-	0	0	0

位编号	位符号	说明
2-0	CH[3:1]	通道配置 0:P0.3-P0.5作为I/O端口 1:P0.3-P0.5作为ADC输入口

Table 8.8 AD转换数据寄存器 (比较值寄存器)

96H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADDL	=	-	-	=	-	=	A1	A0
读/写	-	-	-	-	-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	-	0	0
97H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADDH	A9	A8	A7	A6	A5	A4	A3	A2
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明					
1-0 7-0	A9-A0	ADC数据寄存器 采样模拟电压的数字值。当完成转换后,这个值会更新。 如果ADC数字比较功能使能(EC = 1),这个值将与模拟输入进行比较。					

启动ADC转换步骤:

- (1) 选择模拟输入通道
- (2) 使能ADC模块
- (3) GO/DONE置1开始ADC转换
- (4) 等待GO/DONE = 0或者ADCIF = 1,如果ADC中断使能,则ADC中断将会产生,用户需要软件清0 ADCIF
- (5) 从ADDH/ADDL获得转换数据
- (6) 重复步骤3-5开始另一次转换

启动数字比较功能步骤:

- (1) 选择模拟输入通道
- (2) 写入ADDH/ADDL,设置比较值
- (3) EC置1使能数字比较功能
- (4) 使能ADC模块
- (5) GO/DONE置1开始数字比较功能
- (6) 如果模拟输入的值比设置的比较值大,ADIF会被置1。如果ADC中断使能,则ADC中断将会产生,用户需要软件清0 ADCIF
- (7) 数字比较功能会持续工作,直到GO/DONE清0

8.3 低电压复位 (LVR)

- LVR 去抖动时间 T_{LVR} 为 30-60 μs
- 当供电电压低于设定电压 VLVR时,将产生内部复位

低电压复位(LVR)功能是为了监测供电电压,当供电电压低于设定电压 V_{LVR} 时,SH99F01将产生内部复位。LVR去抖动时间 T_{LVR} 大约为30 μ s-60 μ s。

8.4 看门狗定时器(WDT),程序超范围溢出(OVL)复位及其它复位状态

8.4.1 特性

- 程序超范围溢出后硬件自动检测,并产生 OVL 复位
- 看门狗可以工作在掉电模式下
- 看门狗溢出频率可选

程序超范围溢出复位

SH99F01为进一步增强CPU运行可靠性,内建程序超范围溢出检测电路,一旦检测到程序计数器的值超出ROM最大值,或者发现指令操作码(不检测操作数)为8051指令集中不存在的A5H,便认为程序跑飞,产生CPU复位信号,同时将WDOF标志位置1。为应用这个特性,用户应该将未使用的Flash ROM用0xA5填满。

注意:由于SH99F01是流水线结构单片机,当在程序存储器边界处(如地址0x3FFC)安排长周期指令时(如JMP指令), 虽然程序空间未超出范围,但由于指令预取指,同样会产生OVL中断。因此,需检查存储器边界处的指令,或预留足够的空间。

看门狗

看门狗定时器是一个递减计数器,独立内建RC振荡器作为时钟源,因此可以通过代码选项选择在掉电模式下仍持续运行。 当定时器溢出时,将芯片复位。通过代码选项可以打开或关闭该功能。

WDT控制位(第2-0位)用来选择不同的溢出时间。定时器溢出后,WDT溢出标志(WDOF)将由硬件自动置1。通过读写RSTSTAT寄存器,看门狗定时器在溢出前重新开始计数。

其它一些复位标志列举如下:

8.4.2 寄存器

Table 8.9 复位状态寄存器

				407 1000		10. VII.		
B1H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RSTSTAT	WDOF	-	PORF	LVRF	CLRF	WDT.2	WDT.1	WDT.0
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR)	0	-/4	1	0	0	0	0	0
复位值 (WDT)	1	-	u	u	u	0	0	0
复位值 (LVR)	u	7 -	u	1	u	0	0	0
复位值 (PIN)	u /	7	u	u	1	0	0	0

位编号	位符号	说明
7	WDOF	看门狗溢出或程序超范围溢出标志位 看门狗溢出时由硬件置1,可由软件或上电复位清0 0:未发生WDT溢出或程序超范围溢出 1:发生WDT溢出或程序超范围溢出
5	PORF	上电复位标志位 上电复位后硬件置1,只能由软件清0 0:没有发生上电复位 1:发生过上电复位
4	LVRF	低压复位标志位 低压复位后置1,可由软件或上电复位清0 0:没有发生低压复位 1:发生过低压复位
3	CLRF	Reset引 脚复位标志位 引脚复位后置1,由软件或上电复位清0 0:没有发生引脚复位 1:发生过引脚复位

2-0	WDT[2:0]	WDT溢出周期控制位 000: WDT RC Clock/2 ¹³ (典型值. = 4096ms) 001: WDT RC Clock/2 ¹¹ (典型值 = 1024ms) 010: WDT RC Clock/2 ⁹ (典型值 = 256ms) 011: WDT RC Clock/2 ⁸ (典型值= 128ms) 100: WDT RC Clock/2 ⁸ (典型值= 64ms) 101: WDT RC Clock/2 ⁵ (典型值= 64ms) 111: WDT RC Clock/2 ⁵ (典型值= 4ms) 111: WDT RC Clock/2 ¹ (典型值= 1ms) 注意:内建WDT RC的频率不是很精确,因此需留有一定裕量
-----	----------	--

8.5 电源管理

8.5.1 特性

- 空闲模式和掉电模式两种省电模式
- 发生中断和复位可退出空闲(Idle)、掉电(Power-Down)模式

为减少功耗,SH99F01提供两种低功耗省电模式:空闲(Idle)模式和掉电(Power-Down)模式,这两种模式都由PCON和SUSLO两个寄存器控制。

8.5.2 空闲模式

空闲模式能够降低系统功耗,在此模式下,程序中止运行,CPU时钟停止,但外部设备时钟继续运行。空闲模式下,CPU 在确定的状态下停止,并在进入空闲模式前所有CPU的状态都被保存,如PC,PSW,SFR,RAM等。

两条连续指令:先设置SUSLO寄存器为55H,随即将PCON寄存器中的IDL位置1,使SH99F01进入空闲模式。如果按顺序要求的连续指令不被满足,CPU在下一个机器周期清除SUSLO寄存器或IDL/SIDL位,CPU也不会进入空闲模式。

IDL位置1是CPU进入空闲模式之前执行的最后一条指令。

两种方式可以退出空闲模式:

- (1) 产生一个中断。这些中断可以是定时器中断,外部中断,ADC中断或PLT中断。在预热定时结束之后,恢复CPU时钟,硬件清除SUSLO寄存器和PCON 寄存器的IDL位。然后执行中断服务程序,随后跳转到进入空闲模式指令之后的指令。
- (2) 复位信号产生后(复位引脚上出现低电平,WDT复位(如果被允许),LVR复位(如果被允许)).在预热定时结束之后,CPU恢复时钟,SUSLO寄存器和在PCON寄存器中的IDL位被硬件清除,最后SH99F01复位。然后程序从地址位0000H开始执行。RAM保持不变而SFR的值根据不同功能模块改变。

8.5.3 掉电模式

掉电模式可以使SH99F01进入功耗非常低的状态。掉电模式将停止CPU和外围设备的所有时钟信号,通过OP_WDT选项决定WDT功能是否有效。在进入掉电模式前所有CPU的状态都被保存,如PC,PSW,SFR,RAM等。

两条连续指令:先设置SUSLO寄存器为55H,随即将PCON寄存器中的PD位置1,使SH99F01进入掉电模式。如果按顺序要求的连续指令不被满足,CPU在下一个机器周期清除SUSLO寄存器或PD位,CPU也不会进入掉电模式。

PD位置1是CPU进入掉电模式之前执行的最后一条指令。

注意:如果同时将IDL和PD位置1,SH99F01将进入掉电模式,不会进入空闲模式。当从掉电模式唤醒后,硬件会自动清除IDL和PD位。

有两种方式可以退出掉电模式:

- (1) 有效外部中断(如INT0,INT1)能使SH99F01退出掉电模式。在中断发生后振荡器启动,在预热计时结束之后CPU时钟和外部设备时钟恢复,SUSLO寄存器和PCON寄存器中的PD位会被硬件清除,然后程序运行中断服务程序。在完成中断服务程序之后,跳转到进入掉电模式之后的指令继续运行。
- (2) 复位信号(复位引脚上出现低电平,WDT复位(如果被允许),LVR复位(如果被允许))。在预热计时之后会恢复CPU时钟,SUSLO寄存器和PCON寄存器中的PD位会被硬件清除,最后SH99F01会被复位。然后程序会从0000H地址位开始运行。RAM将保持不变,而根据不同功能模块SFR的值可能改变。

注意:如要进入这两种低功耗模式,必须在置位PCON中的IDL/PD位后增加3个空操作指令。

8.5.4 寄存器

Table 8.10 电源控制寄存器

87H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PCON	SMOD	SSTAT	=	=	GF1	GF0	PD	IDL
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	-	-	0	0	0	0

位编号	位符号	说明
7	SMOD	UART波特率加倍器
6	SSTAT	SCON[7:5]功能选择位
3-2	GF[1:0]	用于软件的通用标志
1	PD	掉电模式控制位 0:当一个中断或复位产生时由硬件清0 1:由软件置1激活 掉电 模式
0	IDL	空闲模式控制位 0:当一个中断或复位产生时由硬件清0 1:由软件置1激活 空闲 模式

Table 8.11 省电模式控制寄存器

8EH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SUSLO	SUSLO.7	SUSLO.6	SUSLO.5	SUSLO.4	SUSLO.3	SUSLO.2	SUSLO.1	SUSLO.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SUSLO[7:0]	此寄存器用来控制CPU进入省电模式(空闲或掉电)。只有像下面的连续指令才能 使CPU进入省电模式,否则在下个周期中SUSLO,IDL或PD位将被硬件清0。

程序举例:

IDLE_MODE: MOV ORL NOP NOP NOP	SUSLO, #55H PCON, #01H	
POWERDOWN MOV ORL NOP NOP NOP	MODE: SUSLO, #55H PCON, #02H	

8.6 代码选项

OP_LVREN[4]:

0:禁止低电压复位(LVR)功能(默认)

1:允许低电压复位(LVR)功能

OP_WDT[3]:

0:禁止看门狗(WDT)功能(默认)

1:允许看门狗(WDT)功能

OP_REG33[2]:

0:禁止内部3.3V稳压器(REG33)功能(默认)

1:允许内部3.3V稳压器(REG33)功能

9. 载波通信

载波通信是SH99F01的核心模块。包括数字调制解调和模拟前端的单片解决方案,采用全数字结构实现了扩频载波(SSC)和窄带相位调制解调,具有极强的抗噪声性能。SH99F01支持双载波,双模式,过零传输等增强传输模式,具有极大的灵活性和适用性,并可有效提高应对各种复杂电力线环境的稳健性。

9.1 特性

- 接收灵敏度: 0.1mVpp
- 帧长:0-31字节
- 扩频载波调制数据速率:300bps 1.6kbps
- 窄带相位调制 (normal) 数据速率: 1.2kbps 7.5kbps
- 窄带相位调制 (high speed)数据速率: 2.4kbps 15kbps
- 集成模拟前端电路
- 半双工突发传输
- 扩频载波调制技术
- 窄带相位调制技术
- 首创扩频和窄带双模通信方式TM
- 集成前向纠错编解码

- 硬件16位循环冗余校验
- 载波频率可调,调整范围覆盖9KHz-525KHz
- 接收双通道,支持双载波传输
- 提供超短帧功能,支持过零传输(依赖于硬件)
- 集成10位高速DAC,输出正弦波和方波脉冲可选
- 内建发送端预放大器,带三态控制和4级增益可调
- 支持外部驱动电路的直接关断
- 接收端低噪声放大器,总增益达90dB
- 提供接收信号强度指示(RSSI),动态范围达70dB
- 兼容世界范围频谱规范,包括CENELEC EN-50065-1和 FCC规范

9.2 操作描述

用户要使用PLT模块进行通信,按以下过程进行操作:

(1) 系统复位后,配置PLT通信寄存器,置位PLTEN使能PLT模块,进入接收状态。

注意:应避免在发送期间和接收期间配置PLT通信寄存器,建议在PLT模块关闭状态下,或者在等待接收期间配置通信寄存器。

(2) 如用户要求发送,则加载发送数据进入TXBUF,查询RXINT是否置位,如未置位,则置TRC位为1开始发送,发送期间TRC位保持为1表示发送忙,如发送前查询到RXINT置位,则需先处理接收数据再进行发送。

注意:如查询到RXINT置位而未处理,直接置TRC为1,则不会进入发送流程,无信号发送。必须清除RXINT位后才能启动 发送

- (3) 发送期间查询TRC位以确认是否发送完,发送完成后会置位TXINT标记,同时申请PLT中断(中断使能情况下),如未开启中断,则通过查询TRC位或TXINT标记以确定发送完成。发送完成后需清除TXINT标记。
- (4)接收端在完整接收一帧数据以后,如使能CRC校验,并且校验正确,则置位RXINT标记,同时申请PLT中断(中断使能情况下),如未开启中断,则通过查询RXINT标记以确定接收成功。如CRC校验错误,则不会置位RXINT标记。

如未使能CRC校验,接收端在完整接收一帧数据后即置位RXINT标记。同时申请PLT中断(中断使能情况下),如未开启中断,则通过查询RXINT标记以确定接收成功。此时数据帧的校验须由用户完成。

注意:RXPD标记和RXFA标记分别在帧前导检测和帧同步检测阶段置位,可查询此两标记以确认信号接收所处阶段。例如, 用户可在检测到RXFA标记以后启动RSSI电压采样操作,以用于获取接收信号强度。

(5) 用户从RXBUF中读取接收数据,清除RXINT标记,使能接收。

注意:RXINT置位后如未清除则无法再次接收数据,因此必须及时处理RXINT标记。

- (6) 用户可用查询TXINT和RXINT标记的方式来控制载波的收发,也可用中断方式来控制载波的收发,开启PLT中断后需在中断服务程序中查询TXINT和RXINT标记以确认是发送完成中断还是接收完成中断。
 - (7) 如不需PLT通信,可关闭PLT模块以降低功耗。

/*PLT通信配置寄存器配置实例*/ Void Plt_SettingRegister() PLCON ^= 0x04: // PI T模块软复价 PLADR2 = UMR1: PLREG = 0x00: //模式配置为扩频调制 (默认,可略) PLADR2 = UMR2; PLREG = 0x9F; //帧长设置为31字节 PLADR2 = UMR3; //关闭内部DBPF,关闭ABPF,使用VIN通道 PLREG = 0x41; PLADR2 = TXFC; PLREG = 0x5C;//发送载频点设置为290KHz


```
PLADR2 = RXFC:
PLREG = 0x5C;
                //接收载频点设置为290KHz
PLADR2 = SSCI;
PLREG = 0x80;
               //选择3号码组,选择0号序列
PLADR2 = SSCQ;
PLREG = 0x00;
               //选择0号序列(必须与SSCI序列号相同)
PLADR2 = TACQ;
               //扩频捕获门限
PLREG = 0x08;
PLADR2 = TFA;
PLREG = 0x0A;
              //帧同步门限 (默认,可略)
PLCON = 0xE8; //PLT使能 , CRC使能 , FEC使能 , RSSI使能
CLKCON = 0x00; // PLT模块时钟不分频
PLOCK = 0x5A //加锁, PLT通信配置寄存器设置写保护
```

```
/*PLT中断方式控制收发实例*/
EA = 1; // 允许所有中断
EPLT =1; // 允许PLT中断
void PLT_ISR() interrupt 7 //PLT中断处理子程序
   if(RXINT)
                       //判断是发送完成还是接收完成
                      //接收完成 , 清除标记 , 返回接收状态
     RXINT = 0;
     for(i=0; i<31; i++)
       PLADR1 = i;
      data_rcv[i] = PLBUF;
                         //从RXBUF读取接收数据,存放data_rcv中
                        // 置接收完成标记
     rx_flag = 1;
    else if(TXINT)
    TXINT = 0:
                      //发送结束 ,清TXINT ,返回接收状态
      tx_flag = 1;
                        // 置发送完成标记
}
```

```
/*PLT查询方式控制收发实例*/
whilie(1)
   if(RXINT)
                        //判断是发送完成还是接收完成
      RXINT = 0;
                       //接收完成 ,清除标记 ,返回接收状态
        for(i=0; i<31; i++)
          PLADR1 = i;
           data_rcv[i] = PLBUF;
                           //从RXBUF读取接收数据,存放data_rcv中
                           // 置接收完成标记
        rx_flag = 1;
   else if(TXINT)
                           //发送结束,清TXINT,返回接收状态
          TXINT = 0;
          tx_flag = 1;
                               // 置发送完成标记
```



```
… //程序其他操作
}
```

9.3 寄存器

PLT模块包括SFR控制寄存器以及内部通信配置寄存器(SR),内部通信寄存器通过PLADR2和PLREG读写,通信时需要收发双方匹配通信设置。

为避免误操作和被干扰,PLT提供了通信配置寄存器锁定机制,一旦锁定,通信配置信息不能被修改,但能够读出。

Table 9.1 PLT状态寄存器 (PLSTAT)

D8H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PLSTAT	TXINT	FEC_DONE	CFD_DONE	=	RXNFA	RXFA	RXPD	RXINT
读/写	读/写	读/写	读/写	=	读	读	读	读/写
复位值	0	0	0	<u> </u>	0	0	0	0

位编号	位符号	说明
7	TXINT	发送完成标记(默认为0,硬件置位,软件复位) 0:未发送完成 1:发送完成,请求PLT中断(如PLT中断使能),需软件清零 在Standby和Soft Reset状态下被清零
6	FEC_DONE	FEC编解码完成标记(默认为0,硬件置位,软件复位) 0:未完成FEC 1:编解码完成,需软件清零 在Standby和Soft Reset状态下被清零
5	CFD_DONE	载頻检测成功标记(默认为0,硬件置位,软件复位) 0:未完成检测 1:检测成功,请求PLT中断(如PLT中断使能),需软件清零 在Standby和Soft Reset状态下被清零
3	RXNFA	反极性帧同步检测标记(默认为0,硬件置位和复位) 0:无反极性帧同步标记 1:检测到反极性帧同步,随RXINT清除而自动清零,在接收时间溢出时自动清零在Standby和Soft Reset状态下被清零
2	RXFA	正极性帧同步检测标记(默认为0,硬件置位和复位) 0:无正极性帧同步标记 1:检测到正极性帧同步,随RXINT清除而自动清零,在接收时间溢出时自动清零在Standby和Soft Reset状态下被清零
1	RXPD	分组检测成功标记(默认为0,硬件置位和复位) 0:无分组检测成功标记 1:成功检测到分组,随RXINT清除而自动清零,在接收时间溢出时自动清零 在Standby和Soft Reset状态下被清零
0	RXINT	接收完成标记(默认为0,硬件置位,软件复位) 0:未接收完成 1:接收完成,请求PLT中断(如PLT中断使能),需软件清零 在Standby和Soft Reset状态下被清零

Table 9.2 PLT控制寄存器 (PLCON)

D9H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PLCON	PLTEN	CRCEN	FECEN	FACPR	RSSIEN	SRST	-	TRC
读/写	读/写	读/写	读/写	读/写	读/写	读/写	-	读/写
复位值	0	0	0	0	0	0	-	0

位编号	位符号	说明
7	PLTEN	PLT使能(默认为0,软件置位和复位) 0:禁止PLT 1:开启PLT 在Soft Reset状态下被清零
6	CRCEN	CRC16校验使能(默认为0,软件置位和复位) 0:禁止CRC16校验 1:开启CRC16校验 在Soft Reset状态下被清零,Standby状态下不影响
5	FECEN	FEC使能(默认为0,软件置位和复位) 0:禁止FEC 1:开启FEC 在Soft Reset状态下被清零,Standby状态下不影响
4	FACPR	反极性帧同步字使能(默认为0,软件置位和复位) 0:禁止反极性帧同步字,发送正极性帧同步字 1:开启反极性帧同步字,发送反极性帧同步字 在Soft Reset状态下被清零,Standby状态下不影响
3	RSSIEN	RSSI使能(默认为0,软件置位和复位) 0:禁止RSSI 1:开启RSSI 在Soft Reset状态下被清零,Standby状态下不影响
2	SRST	PLT软件复位(默认为0,软件置位,硬件复位) 置位SRST将开启一次软件复位操作,将复位内部控制信号和标记,通信配置寄存器,但不影响SFR控制寄存器其它内容,也不影响数据缓冲区,复位无需等待时间, 完成后SRST自动返回0。
0	TRC	PLT收发控制(默认为0,软件置位,软件复位或硬件复位) 0:接收使能 1:发送使能,发送完成后自动返回0 在Standby和Soft Reset状态下被清零

Table 9.3 PLT数据缓冲区地址(PLADR1)

DAH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PLADR1	-	-	=	ADR1.4	ADR1.3	ADR1.2	ADR1.1	ADR1.0
读/写	-	-	-	读/写	读/写	读/写	读/写	读/写
复位值	-	-	-	0	0	0	0	0

位编号	位符号	说明
4-0	ADR1.4-0	PLT数据缓冲区读写地址寄存器,范围:00H-1FH

Table 9.4 PLT数据缓冲区数据(PLBUF)

DBH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PLBUF	BUF.7	BUF.6	BUF.5	BUF.4	BUF.3	BUF.2	BUF.1	BUF.0
读/写								
复位值	0	0	0	0	0	0	0	0

位编号	位符号		说明
7-0	BUF.7-0	PLT数据缓冲区读写数据寄存器	

Table 9.5 PLT配置寄存器地址 (PLADR2)

DCH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PLADR2	-	-	ADR2.5	ADR2.4	ADR2.3	ADR2.2	ADR2.1	ADR2.0
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
复位值	-	-	0	0	0	0	0	0

位编号	位符号	说明	
5-0	ADR2.5-0	PLT通信配置寄存器读写地址寄存器,范围:00H-3FH	

Table 9.6 PLT配置寄存器数据 (PLREG)

				AP VIOL	20 20	Vill Village til		
DDH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PLREG	REG.7	REG.6	REG.5	REG.4	REG.3	REG.2	REG.1	REG.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	REG.7-0	PLT通信配置寄存器读写数据寄存器

Table 9.7 PLT通信配置寄存器锁定(PLOCK)

DFH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位		
PLOCK	LOCK.7	LOCK.6	LOCK.5	LOCK.4	LOCK.3	LOCK.2	LOCK.1	LOCK.0		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
复位值	1	0	1	0	0	1	0	1		

位编号	位符号	说明
7-0	LOCK.7-0	PLT通信配置寄存器锁定(默认值10100101,软件设置) 10100101:解锁状态 其它:锁定状态(写保护),推荐设为01011010
4	*	

Table 9.8 PLT通信配置寄存器 (通过PLADR2, PLREG读写)

名称	地址	说明	读/写	默认值
UMR1	00H	用户模式寄存器1	读/写	0000 0000
UMR2	01H	用户模式寄存器2	读/写	00-0 1001
UMR3	02H	用户模式寄存器3	读/写	0000 0000
TXFC	03H	发送端载波频率配置	读/写	0011 0010
RXFC	04H	接收端载波频率配置	读/写	0011 0010
SSCI*	05H	通道扩频码序列选择和扩频码组选择	读/写	0000 0000
SSCQ*	06H	Q通道扩频码序列选择	读/写	00 0000
TACQ*	07H	扩频捕获门限	读/写	01 0000
TFA	08H	帧同步门限	读/写	1010
CRCH	09H	接收到16位CRC校验字高字节	读	0000 0000
CRCL	0AH	接收到16位CRC校验字低字节	读	0000 0000
Reserved	0BH	保留	读	0000 0000
NACQDT**	0CH	窄带調制同步捕获门限下限	读/写	0111 1000
NACQUT**	0DH	窄带調制同步捕获门限上限	读/写	1100 1000
NACQCT**	0EH	窄带調制同步捕获计数门限	读/写	0110
NTRKST**	0FH	窄带調制同步跟踪门限	读/写	1111 0000
PLRSSIL	10H	RSSI曲线校准控制字低字节	读	0000 0000
PLRSSIH	11H	RSSI曲线校准控制字高字节	读	0000 0000

注意:

- : 保留位 , 读为0。
- *:SSCI/SSCQ/TACQ/SNR为扩频调制特有寄存器,在窄带调制中没有意义
- **: NACQDT/NACQUT/NACQCT/NTRKST为窄带调制特有寄存器,在扩频调制中没有意义

Table 9.9 UMR1寄存器

00H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UMR1	MODE1	MODE0	SPEED	LIMIT_OP	PULSE_OP	-	-	=
读/写	读/写	读/写	读/写	读/写	读/写	-	-	-
复位值	1	0	1	0	0	=	-	-

位编号	位符号	说明
7-6	MODE1/0	PLT模式选择(默认为00,软件置位和复位) 00:扩频载波调制 01:保留 10:窄带BPSK调制 11:超短帧调制
5	SPEED	窄带模式速度选择(默认为0,软件置位和复位)(包括窄带BPSK调制与超短帧调制) 0:normal模式 1:high speed模式
4	LIMIT_OP	RX波形输出选择(默认为0,软件置位和复位)(宽带窄带下都有效) 0:正常模式,RX波形不输出,P0.7作为普通I/O口 1:RX波形输出模式,P0.7输出接收波形

3	PULSE_OP	TX脉冲输出选择(默认为0,软件置位和复位)(宽带窄带下都有效) 0:正常模式,DAC输出,P0.6作为普通I/O口 1:方波脉冲输出模式,P0.6输出调制方波	
---	----------	--	--

Table 9.10 UMR2寄存器

01H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UMR2	MPKG1	MPKG0	=	LPKG.4	LPKG.3	LPKG.2	LPKG.1	LPKG.0
读/写	读/写	读/写	-	读/写	读/写	读/写	读/写	读/写
复位值	0	0	-	0	1	0	0	1

位编号	位符号	说明
7-6	MPKG1/0	FEC使能时帧长选择(默认为0,软件设置) 00:9字节 01:20字节 10:31字节 11:保留
4-0	LPKG.4-0	FEC禁止时帧长选择(默认为9,软件设置) LPKG.4-0:0-31字节,0字节表示无数据传输

Table 9.11 UMR3寄存器

02H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
UMR3	WAVE_OP	DBPF	DBPFS1	DBPFS0	AMPS1	AMPS0	AFECH	AFEBPF
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	WAVE-OP	输出波形选择(默认为0,软件置位和复位)(仅窄带下有效) 0:正常模式 1:恒包络模式
6	DBPF	PLT内部数字带通滤波器旁路选择(默认为0,软件置位和复位)(仅容带方案) 0:滤波器使能 1:滤波器旁路
5-4	DBPFS1/0	PLT内部数字带通滤波器参数选择(默认为00,软件设置) 00:宽带滤波器,中心频点匹配载频参数N = 50 01:窄带滤波器,中心频点匹配载频参数N = 50 10:窄带滤波器,中心频点匹配载频参数N = 63 11:窄带滤波器,中心频点匹配载频参数N = 89
3-2	AMPS1/0	发送预放大器增益选择(默认为00,软件设置) 00:0dB 01:-3dB 10:-6dB 11:-9dB
1	AFECH	模拟前端输入通道选择(默认为0,软件设置) 0:接收信号从VIND脚输入 1:接收信号从VINCOM脚输入

0 AF	FEBPF	模拟前端带通滤波器旁路选择(默认为0,软件置位和复位) 0:滤波器使能 1:滤波器旁路
------	-------	---

Table 9.12 TXFC寄存器

03H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TXFC	TXFC.7	TXFC.6	TXFC.5	TXFC.4	TXFC.3	TXFC.2	TXFC.1	TXFC.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	1	1	0	0	1	0

位编号	位符号	说明						
7-0	TXFC.7-0	发送端载波频率设置,从0 - 254,默认50						

Table 9.13 RXFC寄存器

04H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RXFC	RXFC.7	RXFC.6	RXFC.5	RXFC.4	RXFC.3	RXFC.2	RXFC.1	RXFC.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	1	1	0	0	1	0

位编号	位符号	说明					
7-0	RXFC.7-0	接收端载波频率设置,从0 - 254,默认50					

Table 9.14 SSCI寄存器

05H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SSCI	SSCS1	SSCS0	SSCI.5	SSCI.4	SSCI.3	SSCI.2	SSCI.1	SSCI.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-6	SSCS1/0	扩频码组选择(默认为0,软件设置) 00:扩频码组1 01:扩频码组2 10:扩频码组3 11:保留
5-0	SSCI.5-0	通道扩频码序列选择,从0 - 63,默认0

Table 9.15 SSCQ寄存器

06H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SSCQ	-	-	SSCQ.5	SSCQ.4	SSCQ.3	SSCQ.2	SSCQ.1	SSCQ.0
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
复位值	-	-	0	0	0	0	0	0

位编号	位符号	说明
5-0	SSCQ.5-0	Q通道扩频码序列选择,从0 - 63,默认0

Table 9.16 TACQ寄存器

07H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TACQ	-	-	TACQ.5	TACQ.4	TACQ.3	TACQ.2	TACQ.1	TACQ.0
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
复位值	-	-	0	1	0	0	0	0

位编号	位符号	说明
5-0	TACQ.5-0	扩频捕获门限,默认16

Table 9.17 TFA寄存器

08H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TFA	-	-	=	-	TFA.3	TFA.2	TFA.1	TFA.0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值	-	-	-	-	1	0	1	0

位编号	位符号		说明	
3-0	TFA.3-0	帧同步门限,默认10		

Table 9.18 CRCH寄存器

09H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CRCH	CRCH.7	CRCH.6	CRCH.5	CRCH.4	CRCH.3	CRCH.2	CRCH.1	CRCH.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	CRCH.7-0	接收到CRC校验字高字节

Table 9.19 CRCL寄存器

0AH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CRCL	CRCL.7	CRCL.6	CRCL.5	CRCL.4	CRCL.3	CRCL.2	CRCL.1	CRCL.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	CRCL.7-0	接收到CRC校验字低字节

Table 9.21 NACQDT寄存器

0CH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
NACQDT	NACQDT.7	NACQDT.6	NACQDT.5	NACQDT.4	NACQDT.3	NACQDT.2	NACQDT.1	NACQDT.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	0	1	1	1	1	0	0	0

位编号	位符号	说明
7-0	NACQDT.7-0	窄带normal模式同步参数,默认120 窄带high speed模式下需设置为60

Table 9.22 NACQUT寄存器

0DH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
NACQUT	NACQUT.7	NACQUT.6	NACQUT.5	NACQUT.4	NACQUT.3	NACQUT.2	NACQUT.1	NACQUT.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	1	0	0	1	0	0	0

I	位编号	位符号		说明
	7-0	NACQUT.7-0	窄带normal模式同步参数,默认200 窄带high speed模式下需设置为100	

Table 9.23 NACQCT寄存器

0EH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
NACQCT	-	-	-	-	NACQCT.3	NACQCT.2	NACQCT.1	NACQCT.0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值	-	-	-	-	0	1	1	0

位编号	位符号	说明
3-0	NACQCT.3-0	窄带調制同步参数,默认6 normal模式和high speed模式无需修改

Table 9.24 NTRKST寄存器

0FH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
NTRKST	NTRKST.7	NTRKST.6	NTRKST.5	NTRKST.4	NTRKST.3	NTRKST.2	NTRKST.1	NTRKST.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值	1	1	1	1	0	0	0	0

位编号	位符号	说明
7-0	NTRKST.7-0	窄带normal模式同步参数,默认240 窄带high speed模式下需设置为120

Table 9.25 PLRSSIL寄存器

10H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PLRSSIL	RSSIL.7	RSSIL.6	RSSIL.5	RSSIL.4	RSSIL.3	RSSIL.2	RSSIL.1	RSSIL.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PLRSSIL.7-0	RSSI曲线校准控制字低字节

Table 9.26 PLRSSIH寄存器

11H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PLRSSIH	RSSIH.7	RSSIH.6	RSSIH.5	RSSIH.4	RSSIH.3	RSSIH.2	RSSIH.1	RSSIH.0
读/写	读	读	读	读	读	读	读	读
复位值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PLRSSIH.7-0	RSSI曲线校准控制字高字节

10. 电气特性

极限参数* *注释

 如果器件的工作条件超过左列"**极限参数**"的范围,将造成器件永久性破坏。只有当器件工作在说明书所规定的范围内时功能才能得到保障。器件在极限参数列举的条件下工作将会影响到器件工作的可靠性。

直流电气特性 (V_{DD} = 3.0 - 5.5V, GND = AGND = 0V, AV_{DD} = 3.0 - 3.6V, f_{OSC} =12MHz, T_A = 25°C, 除非另有说明)

参数	符号	最小值	典型值*	最大值	单位	条件
数字供电电压	V_{DD}	3.0	3.3	5.5	V	fosc = 8MHz - 16MHz
模拟供电电压	AV_DD	3.0	3.3	3.6	٧	fosc = 8MHz - 16MHz
	I _{OP1}	-	4	6	mA	f_{SYS} = f_{PLT} = 12MHz , V_{DD} = 3.3V , AV_{DD} = 3.3V 所有输出引脚无负载 , 所有输入引脚不悬空 ; $CPUH$ (执行NOP指令) , WDT 关 , LVR 关 , PLT 关 , $RSSI$ 关 , 关闭其它所有功能
	I _{OP2}	-	7	12	mA	f_{SYS} = f_{PLT} = 12MHz , V_{DD} = 3.3V , AV_{DD} = 3.3V 所有输出引脚无负载 , 所有输入引脚不悬空 ; CPU 关 (idle模式) , WDT 关 , LVR 关 , PLT开 (接 收状态) , RSSI 关 , 关闭其它所有功能
工作电流	I _{OP3}	-	7	12	mA	f_{SYS} = f_{PLT} = 12MHz , V_{DD} = 3.3V , AV_{DD} = 3.3V 所有输出引脚无负载 , 所有输入引脚不悬空 ; CPU 关 (idle模式) , WDT 关 , LVR 关 , PLT开 (发 送状态 , 空载) , RSSI 关 , 关闭其它所有功能
	I _{OP4}		13	20	mA	f_{SYS} = f_{PLT} = 12MHz , V_{DD} = 3.3V , AV_{DD} = 3.3V 所有输出引脚无负载 , 所有输入引脚不悬空 ; CPU 关 (idle模式) , WDT 关 , LVR 关 , PLT开 (发 送状态 , 260欧电阻负载) , RSSI 关 , 关闭其它所 有功能
	I _{OP5}	-	5	10	mA	f_{SYS} = f_{PLT} = 12MHz , V_{DD} = 3.3V , AV_{DD} = 3.3V 所有输出引脚无负载 , 所有输入引脚不悬空 ; CPU 关 (idle模式) , WDT 关 , LVR 关 , PLT 关 , $RSSI$ 开 , 关闭其它所有功能
待机电流 (空闲模式: IDLE)	I _{SB1}	-	2	5	mA	f_{SYS} = f_{PLT} = 12MHz , V_{DD} = 3.3V , AV_{DD} = 3.3V 所有输出引脚无负载 , 所有输入引脚不悬空 ; CPU 关 (idle模式) , WDT 关 , LVR 关 , PLT 关 , $RSSI$ 关 , 关闭其它所有功能
待机电流 (掉电模式: Power-Down)	I _{SB2}	-	20	50	μΑ	OSC off , V_{DD} = 3.3V , AV_{DD} = 3.3V 所有输出引脚无负载 , 所有输入引脚不悬空 ; CPU关 (power down模式) , WDT关 , LVR关 , PLT关 , RSSI关 , 关闭其它所有功能

续上表

参数	符号	最小值	典型值*	最大值	单位	条件
LVR电流	I_{LVR}	-	0.5	-	μА	所有输出引脚无负载,V _{DD} = 3.3V,LVR开
WDT电流	I_{WDT}	-	3	5	μА	所有输出引脚无负载,V _{DD} = 3.3V,WDT开
输入低电压1	V _{IL1}	GND	-	0.3 X V _{DD}	V	I/O端口
输入高电压1	V _{IH1}	0.7 X V _{DD}	-	V_{DD}	V	I/O端口
输入低电压2	V _{IL2}	GND	-	0.2 X V _{DD}	V	RESET,T0,T1,T2,T2EX,INT0,INT1, RXD(施密特触发器)
输入高电压2	V _{IH2}	0.8 X V _{DD}	-	V_{DD}	V	RESET, T0, T1, T2, T2EX, INT0, INT1, RXD(施密特触发器)
输入漏电流	I _{IL}	-1	-	1	μА	输入,无上拉,V _{IN} = V _{DD} 或者GND
上拉电阻	R _{PH}	-	20	-	kΩ	$V_{DD} = 3.3V$, $V_{IN} = GND$
输出高电压	V _{OH}	V _{DD} - 0.7	-	-	V	I/O端口,I _{OH} = -10mA,V _{DD} = 3.3V
输出低电压	V _{OL1}	-	-	GND + 0.6	V	I/O端口,I _{OL} = 15mA,V _{DD} = 3.3V

注意:

- 1. "*"表示典型值下的数据是在3.3V , 25℃下测得的 , 除非另有说明。
- 2. 流过VDD的最大电流值须小于80mA。
- 3. 流过GND的最大电流值须小于100mA。
- 4. 流过AVDD的最大电流值须小于80mA。
- 5. 流过AGND的最大电流值须小于100mA。

模/数转换器电气特性 (AV_{DD} = 3.0 - 3.6V, AGND = 0V, T_A = 25°C, f_{OSC} = f_{SYS}= 12MHz, ADC使能, 除非另有说明)

参数	符号	最小值	典型值*	最大值	单位	条件
供电电压	V_{AD}	3.0	3.3	3.6	>	$V_{AD} = AV_{DD}$
精度	N_R		10		bit	$GND \le V_{AIN} \le V_{REF}$
A/D输入电压	V _{AIN}	GND		V_{REF}	>	$V_{REF} = V_{AD}$
A/D输入电阻	R _{AIN}	2	-	-	$M\Omega$	$V_{IN} = V_{AD}$
A/D转换电流	l _{AD}	4-	1	3	mA	ADC模块工作, AV _{DD} = 3.3V
A/D输入电流	I _{ADIN}	-	-	10	μΑ	$AV_{DD} = 3.3V$
模拟电压源推荐阻抗	Z _{AIN}	-	-	10	kΩ	$AV_{DD} = 3.3V$
微分非线性误差	D _{LE}	-	-	±1	LSB	$AV_{DD} = 3.3V$
积分非线性误差	ILE	-	-	±2	LSB	$AV_{DD} = 3.3V$
满刻度误差	E _F	-	±1	±3	LSB	$AV_{DD} = 3.3V$
偏移误差	Ez	-	±0.5	±2	LSB	$AV_{DD} = 3.3V$
总绝对误差	E _{AD}	-	-	±3	LSB	AV _{DD} = 3.3V
总转换时间**	T _{CON}	14	-	-	t_{AD}	AV _{DD} = 3.3V

注意:

[&]quot;*"表示"典型值"下的数据是在3.3V, 25℃下测得的,除非另有说明。

载波通信模拟前端电气特性

 $(AV_{DD}$ = 3.0 - 3.6V, AGND = 0V, T_A = 25°C, R_L = 260 Ω , f_{OSC} = f_{PLT} = 12MHz, PLT使能, 除非另有说明)

参数	符号	最小值	典型值*	最大值	单位	条件
模拟前端供电电压	V_{AFE}	3.0	3.3	3.6	V	$V_{AFE} = AV_{DD}$
发送信号幅度	V _{OUT}	-	2.6	-	V	V _{AFE} = 3.3V
少洋泽洋建立时间	t _{TXSU1}	-	-	1	ms	从接收切换到发送
发送通道建立时间	t _{TXSU2}	-	8	20	ms	从待机切换到发送
发送输出阻抗	Z _{VOUT1}	-	5	100	Ω	PLT使能并TRC = 1
发送高阻阻抗	Z _{VOUT2}	1	10	-	МΩ	PLT关闭或TRC = 0
发送通带纹波	R _P	-	-	3	dB	频率范围: 50KHz - 300KHz
发送带外衰减	Rs	15	-	-	dB	频率范围: >1300KHz
发送总谐波失真	THD	-	50	-	dB	f _{PLT} = 12MHz Fin = 119.531KHz
发送二次谐波失真	HD2	-	55	-	dB	f _{PLT} = 12MHz Fin = 119.531KHz
发送三次谐波失真	HD3	-	55	-	dB	f _{PLT} = 12MHz Fin = 119.531KHz
接收信号范围	V _{IN}	0.1		1400	mVpp	
接收输入阻抗	Z _{IN}	1	41	-	ΚΩ	
RSSI动态范围	DR _{RSSI}	-	70	-	dB	AV _{DD} = 3.3V 温度: 25°C Fin = 120KHz 輸入信号范围: 0.45mVpp - 1.4Vpp
RSSI对数一致性	LER _{RSSI}		±6		dB	AV _{DD} = 3.3V 温度: 25°C Fin = 120KHz 输入信号范围: 0.45mVpp - 1.4Vpp
RSSI温度一致性	AER _{RSSI}			±3	dB	AV _{DD} = 3.3V 温度范围: -40°C - +85°C Fin = 120KHz 输入信号范围: 0.45mVpp - 1.4Vpp
RSSI输出电压1	V _{RSSI1}	-	650	-	mV	AV _{DD} = 3.3V 温度: 25°C Fin = 120KHz 输入信号电平: 0.45mVpp
RSSI输出电压2	V _{RSSI2}	-	3.0	-	٧	AV _{DD} = 3.3V 温度: 25°C Fin = 120KHz 输入信号电平: 1.4Vpp
RSSI输出阻抗	Z _{RSSI}	-	10	-	ΚΩ	AV _{DD} = 3.3V 温度: 25°C Fin = 120KHz 输入信号电平: 200mVpp
RSSI响应时间 (纹波 < 5%)	T _{RSSI}	-	100	1000	μs	AV _{DD} = 3.3V 温度: 25°C Fin = 120KHz 输入信号范围: 0.45mVpp - 1.4Vpp ,接0.1uF电容

交流电气特性 (V_{DD} = 3.0V - 5.5V, GND = 0V, T_A = +25°C, f_{OSC} = f_{SYS} = 12MHz, 除非另有说明。)

参数	符号	最小值	典型值	最大值	单位	条件	
复位脉冲宽度	t _{RESET}	10	3.4	-	μS	复位低电平有效	
复位引脚上拉电阻	R _{RPH}	-	30	-	ΚΩ	V_{DD} = 3.3V, V_{IN} = GND	
WDT周期	T _{WDT}	0.8	-	-	ms	对应WDT RC频率低于1.25KHz	
振荡器频率范围	Fosc	6	12	16	MHz		
占空比	Dosc	45	50	55	%	Fosc : 8MHz - 16MHz	
负载电容	C _L	-	12	-	PF	F _{OSC} : 8MHz - 16MHz	
振荡器起振时间	Tosc	-	1	20	ms	F _{OSC} : 8MHz - 16MHz	

低电压复位电气特性 (V_{DD} = 3.0V - 5.5V, GND = 0V, T_A = +25°C, f_{OSC} = f_{SYS} = 12MHz, LVR使能, 除非另有说明。)

参数	符号	最小值	典型值	最大值	单位	条件
LVR电压	V_{LVR}	2.7	2.8	2.9	V	
LVR低电压复位宽度	T _{LVR}	-	30	-	μS	

内部3.3V稳压源电气特性 (V_{DD} = 3.6V - 5.5V, GND = 0V, T_A = +25°C, REG33使能, AV_{DD}引脚接47μF电容, 除非另有说明。)

参数	符号	最小值	典型值	最大值	单位	条件
供电电压	V _{IN}	3.6	5	5.5	V	$V_{IN} = V_{DD}$
输出电压	V _{OUT}	3.1	3.3	3.5	V	AV _{DD} 不加负载
掉电压	V_{DROP}	-	25	100	mV	I _{OUT} = 0 - 15mA
工作损耗	I _{OP}	-	15	50	μΑ	开启 REG33, AV _{DD} 不加负载
待机损耗	I _{SB}	-	1	20	μА	关闭 REG33, AVDD 不加负载

11. 应用电路

注意:

- (1) 请参考7.4.2章节JTAG管脚连接图。
- (2) 可选接口电路,用于需提供UART接口的应用。
- (3) 请参考7.6章节系统电源叙述。
- (4) 可选过零检测电路,用于过零传输模式或使用到过零传输功能的模式。
- (5) 可选电感,增强发送滤波,用于载频点设置为低频50KHz应用,高频应用时需去掉。
- (6) 系统模拟地和数字地在靠近SH99F01的一点连接。

12. 订购信息

产品编号	封装		
SH99F01X/028XU	28 TSSOP		

13. 封装信息

TSSOP 28外形尺寸

单位: 英寸/毫米

Symbol	Dime	nsions in ir	iches	Dimensions in mm		
Syllibol	MIN	NOM	MAX	MIN	NOM	MAX
Α			0.048		-	1.20
A1	0.002	-	0.006	0.05	-	0.15
A2	0.032		0.041	0.80	-	1.05
b	0.007		0.012	0.19		0.30
С	0.004		0.008	0.09		0.20
D	0.378		0.386	9.60		9.80
E	0.248		0.256	6.3	-	6.5
E1	0.169		0.177	4.30		4.50
е		0.026BSC			0.65BSC	
L	0.018		0.030	0.45		0.75
θ	0°		8°	0°		8°
L1		0.039REF			1.00REF	

注意:

- 1. 尺寸D的最大值包括末端毛边。
- 2. 尺寸E不包括树脂凸缘。
- 3. 尺寸e₁为PC板接口的引脚间距设计的,仅供参考。
- 4. 尺寸S包括末端毛边。