Computational Geometry

Convex Hull

Convexity

- A set *S* is convex if any two points in *S* are visible to each other.
- The convex hull of S, denoted by conv(S) or $(\mathcal{H}(S))$, is the intersection of all convex sets that contain S.

Convex Hull

Convex Combinations

• A convex combination of a set of points $S = \{p_1, p_2, ..., p_n\}$ is of the form:

$$\lambda_1 p_1 + \lambda_2 p_2 + ... + \lambda_n p_{n_i}$$

where $\lambda_i \ge 0$ and $\sum \lambda_i = 1$

Barycentric Coordinates

• The barycentric coordinates of a point p with respect to a polygon of n vertices are the set of unique real numbers $a_1, a_2, ..., a_n$, such that $a_1v_1 + a_2v_2 + ... + a_nv_n = p$,

where $a_i \ge 0$ and $\sum a_i = 1$

• The point p is known as the Bary center when all the weights a_i are evenly distributed.

Triangular Barycentric Coordiantes

Theorem

- The convex hull of *S* is the set of all convex combinations of *S*.
- Let $M = \{\lambda_1 p_1 + ... + \lambda_n p_n \mid \lambda_i \ge 0, \sum \lambda_i = 1\}$
- $conv(S) \subseteq M$: by proving that M is convex
- $M \subseteq \text{conv}(S)$: by induction on n