SOME PROBLEMS RELATED TO QUEUEING AND NETWORKS

THESIS SUBMITTED TO
BUNDELKHAND UNIVERSITY
FOR AWARD OF THE DEGREE OF
DOCTOR OF PHILOSOPHY

IN

OPERATIONSRESEARCH (MATHEMATICS)

BY

GAJENDRA DUTT MISHRA

UNDER THE SUPERVISION & GUIDANCE OF DR. VIJAY KUMAR SEHGAL READER, DEAN (FACULTY OF SCIENCE)

DEPARTMENT OF MATHEMATICS & STATISTICS BUNDELKHAND UNIVERSITY JHANSI (U.P.)-INDIA.

DECLARATION

This thesis entitled "Some Problems Related to Queueing and Networks." submitted in Department of Mathematics and Statistics, Bundelkhand University, Jhansi (U.P.), by me, for the award of the degree of Doctor of Philosophy is based on my research work carried on under the supervision of Dr. V.K.Sehgal.

The work, either in part or in full has not been submitted to any university or institution for the award of any degree.

(DR.V.K.SEHGAL)

Supervisor, Reader,

Dean (Faculty of Science),

Department of Mathematics & Statistics,

Dundallahand University

Bundelkhand University,

Jhansi - (U.P.).

(GAJENDRA DUTT MISHRA)!

(DR.P.N.SRIVASTAVA)

Reader and Head,

Department of Mathematics & Statistics,

Bundelkhand University,

Jhansi-(U.P.)

ACKNOWLEDGMENT

No words can adequately express the sense of gratitude that I owe to my supervisor, Dr. V.K. Sehgal, who has been a source of constant inspiration and affectionate guidance. It was really a pleasure to discuss the subject matter with him. I have learnt a great deal under him because of his frank discussions and painstaking efforts. Needless to add, this work has been completed because of his very able and valuable guidance and working under him was a rewording experience.

My grateful thanks are also due to **Professor**S. Biswas. Deptt. of Statistics, University of Delhi.

Dr. P.K. Kapur, Reader, Deptt. of Operation, Research.

University of Delhi and Dr. R.B. Garg, Delhi University

Computer Centre, who has supported me and gave me all help and encouragement.

I am also thankful to **Dr. P.N. Srivastava**, Reader and Head. Deptt. of Mathematics & Statistics, Bundelkhand University, Jhansi and all teachers of faculties.

Last, but not the least, I sincerely acknowledge blessings showered on me by my parents and good wishes to me from my elder sister and younger brother.

(GAJENDRA DUTT MISHRA)

TABLE OF CONTENTS

CHAPTER-1	Page No				
1.1 INTRODUCTION	1				
1.2 SERIES QUEUES (QUEUE OUTPUT)	9				
1.3 SERIES QUEUES WITH BLOCKING	15				
1.4 OPEN JACKSON NETWORK	2)				
1.5 CLOSED JACKSON NETWORK					
1.6 CYCLIC QUEUES	30				
1.7 TRANSIENT SOLUTION OF QUEUEING SYSTEM M/M/1 32_					
1.8 DESCRETE TIME TRANSIENT SOLUTION	42				
CHAPTER-2					
2.1 INTRODUCTION	52				
2.2 ASSUMPTIONS	53				
2.3 NOTATIONS	53				
2.4 ANALYSIS OF THE MODEL	57				
2.5 CONCLUSIONS	60				
CHAPTER-3					
3.1 INTRODUCTION	61				
3.2 ASSUMPTIONS	63				
3.3 NOTATIONS	63				
3.4 ANALYSIS OF THE MODEL	64				
3.5 BACKWARD FIRST TIME DISTRIBUTIO	N ANALYSIS	64			
3.6 IMPORTANT PERFORMANCE MEASURE	es 7				

	Page No
3.7 GENERAL CASE	72
3.8 CONTINUOUS TIME CASE	73
3.9 FORWARD FIRST PASSAGE TIME	73
3.10 i-CHANNEL BUSY PERIOD	75
3.11 NUMERICAL RESULTS	75
3.12 CONCLUSIONS	77
CHAPTER-4	
4.1 INTRODUCTION	84
4.2 ASSUMPTIONS	86
4.3 NOTATIONS	86
4.4 MODEL ANALYSIS	87
4.5 GENERAL CASE	96
4.6 CONTINUOUS TIME CASE	97
4.7 NUMERICAL RESULTS	98
4.8 CONCLUSIONS	100
CHAPTER-5	
5.1 INTRODUCTION	105
5.2 NOTATIONS	106
5.3 ANALYSIS AND ESTIMATION	iol
5.4 CONCLUSIONS	109
BIBLOGRAPHY	111

CHAPTER ONE

11 INTRODUCTION

The Oleveing networks is a current area of great research and application intersect with many extremely difficult, volens. It increased applicability to modeling loopule, and communication nets. Dishey (1981), Kelley (1977) and Lemaine (1977) referred it further.

Kelley (1975) has studied the pehaviour of equilibrium of networks of queues in which customers may be different types. The type of a customer is allowed to influence his choice of path through the network and under centain conditions his service time distribution at each queue. The model assumed will usually cause each service time distribution to be of a form related to the negative exponential distribution. Kelley (1976) has obtained equilibrium distribution and in certain basis it is shown that the state of an individual queue is independent of the state of the retwork.

Matworks of queues described as a group of nodes where each node represents a service facility of some kind. The customer way acrive from catalog the system to any node and may depart from the system from any node.. Customers

and returned to nodes previously vibiled, skip some nodes shittely and even choose to remain in the system forever. Arrivals from the obtainer to node follow a poisson process and service limbs for each charnel at node ere independent and experiminally distributed, retworks that have these process are called Jackson networks (1957, 1961).

When no customer may eiter the system from the customer and leave the system are known as alless Cackson networks. When the customers flow in a circle shape from node I to node I and them back to node I, such close network system is known as cyclic queues. For open network when customer may enter from outside only at node I and capable from node K, we generalize the series queues. In series queues in the series queues In series queues in the series queues in the series queues in the series queues the series queues. In the less that the series are the service at all statuons is septembried and there are limits on the support of the series between stations. When there are limits on the support of the series is a reaction down stream comes up to capacity and thereby presents and further processing at upstream stations which feed it.

A single server at each station model where no queue is allowed to form at either station is known as simple

sequential two station. If a customer is in station two and service completed at station one, the station one customer must whit there until the station two dustomer is completed, that is, the system is blocked. Arrivals at station one when the system is blocked are turned away. If a customer is in the process at the station one, even if the station two is wear, arriving customers are turned away, since the system is a sequential one, that is all electraces require service at the and then service at two. The problem expands if one allow limits other than zero on queue length or considers mire stations. If one customer is allowed to wait between stations the result is seven state probabilities for which to solve, utilizing seven equations and a boundary condition. The complexity results from having to write a difference equation for each possible system state. These types of series queusing situations can be attached via themethodology. For large numbers of equations, as long as we navy a finite set numerical techniques for solving these simultaneous equations can also be exployed.

Junt (1956) treated a modified earlies model which finite difference operators to solve a two station sequential selies queue in which no waiting is allowed between stations, but where a queue with no limit is

permitted in-front of the first station. He obtained the steady state probabilities for this model, the expected system size and the meximum allowable for steady state to be assured. He also calculated the maximum allowable for some gene alizations of this two station model to three and four station systems with no waiting between stations.

any idea according to a poisson process. At servers at inche work according to an exponential distribution. When a customer completes service at node, he goes next to node. Since there is Markovian system, we use our usual types of analysis to write a steady state system equations. Since various numbers of customers can be at various nodes in the network, we desire the joint probability distribution for the number of customers at each node. From this we can obtain the ranginal distribution for number of customers a particular node. We use the method of stochastic balance to obtain the steady state equations for this network.

Discrey (1791) shows that the actual internal flow in these kinds of network is not poisson. There is any kind of Facilities, that is customer our return to previously visited nodes, the internal flows are not poisson. The complexity and intrigue of network waiting time is known as

Soyours time. Burke (1961) showed that in a three stations series queue with the first and third stations having a single server but the middle station having multiple servers. Since and Poley (1979) considered a three station queueing multiple with the server at the first and third stations and multiple servers at the second station.

If there are multiple servers at abetion when than the first or last so that customer can bypess one chother, system sojourn times for successive customers are independent. Malamed (1979) showed for nodes from which units could leaves the nations, that these departure processes are poisson and that the collections over all nodes that yield these poisson departure processes are mutually independent.

From thus node is also poisson. In nodes with feedback, one wan think of two departing streams one with customers who will sither directly a avertually feed back, and other with austomers who will not. As long as there is no feed back, as as an earlied or arborescent network, flows between nodes and to the purside are truly poisson reed back destroys poisson flows.

In the closed Jackson network, no customer may some the system from the outside and no customer may leave

the system. Gordon and Newell (1967) find the product from colution for this network. Bazen (1973) present most useful result for closed Jackson networks. Bruell and Balbo (1980) gave a computational algorithms for closed networks.

A typic queue is a sort of series queue in a circle, where the output of the last node feed back to the first node. This is special case of a closed queueing network. Jackson networks have been extended in several ways. First in 1963, for open networks he allowed state-dependent exogenous enrival processes and state dependent internal service. The poisson arrival processes could depend on the total number of units in the network, while the exponential service time could depend on the number of customers present at that node. Disputation of the normalizing-constants must be done similarly to that for closed network. Another avenue of generalization of Jackson network is to include that all that always be modeled as another node, but most often these are apple server nodes.

Posses and Bernholt: [1967] treated closed Jackson metworks but allowed for ample service travel time modes with general travel time distribution. For any nodes in a Jackson network with ample service, the forms of service time distributions do not explicitly enter as long as the marginal

distributions of interest do not include these nodes. The Final extension of Jackson networks which allow for different classes of customers. A multi-class Jackson network is a Jackson network with multiple classes of customers, where such of customers has the our read sorival rate, its own notting structure has the our read sorival rate, its own notting structure and where the mean service rimes at a node may depend on the particular custome, type.

Paskert et al (1975) treated nulti-class Jackson networks and obtained product from solutions for processor-sharing, ample service and LOFS with preemptive servicing. They allow the network to be open for some classes of customers and closed for others. Customers may switch classes after finishing at a nose according to the probability distribution for D server FCFS nodes, service time for all classes are independent and identical distributed exponential.

Kelly's work (1975, 1976, 1979), represents the state of art in the generalization of Jackson network. He also advantaged multiple customer classes. He further conjectured that han, of his results can be extended to include general service size distribution. The dinjecture was can always be well approximated by finite mixtures of gamma

distributions. Kelly's conjecture is proved by Barbour (1976) Gruss and Ince (1981) have applied Helly's multi results to a closed networks and obtained numerical solutions For an application in repairable item inventory control. A great ceal of effort has been expended in obtaining complicational results for closed multi liass Jackson notworks on to their use in modeling computer system. The basic mode generally consider a computer system with it terranals, one for each user logged on. Since user log on end off daring busy period one car assume all terminals are in use so that there are always N customers in the system. These can be at various stages in the system such as "thinking", at the terminal waiting in the queue to enter the Central Processing Unit (CPU), being serviced by the CPU, waiting or in service at input/output stations and so on. Bruell and Eacho (1980) provided a compendium of algorithms developed to theat such models. When the probability that a customer who has complete: service at node will go next to node are allowed to be state dependent, then this network is known as non-Deckson THE TAKE THE

1.2 SERIES QUEUES (QUEUE OUTPUT)-

In such type of queue there are a series of service stations through which each calling doct must progress prior to leaving the system.

We become that the calling unit arrive according to a Poisson process, mean λ and the service time of each server at stacks, 1 is exponential with mean $1/\mu_{\chi}$.

We consider an $M/M/c/\omega$ queue in steady state. Let N(t) max represent the number of customers in the system at a lime t after the last departure.

Let T represent the random variable "time between successive departures" and

$$F'(t) = Pr(t)(t) = n \text{ and } T(t)$$

Bo $F_{\rm L}(z)$ is the joint probability that there are a customers in the system at a line c after the last departure. The commitative distribution of the random variable T is given by

$$C(t) = P_{T} (T \leq t)$$

$$\omega$$

$$D = \sum_{n=0}^{\infty} F_{n}(t)$$

Binds $\sum_{n=0}^{\infty} F_n(t) = Fr$ (Y)to is the marginal

ismplementary commutative distribution of T.

The difference equation concerning $F_{\perp}(t)$.

Tai c 5 11

Combining all terms of C(Δt , and neglecting terms of cross 20(Δt); and nigher, we get

$$\mathbb{P}_n(t-\Delta t) = \mathbb{P}_n(t) = -(\lambda + \alpha_n(\Delta t) \mathbb{P}_n(t) + \lambda \mathbb{P}_{n-1}(t) \Delta t + O(\Delta t)$$
 Divided by Δt and taking limit $\Delta t \longrightarrow 0$

$$\frac{d}{dt} F_n(t) = -(\lambda + c\mu) F_n(t) + \lambda F_{n-1}(t)$$

$$\frac{d}{dt} T_n(t) = (\lambda + c\mu) F_n(t) = \lambda F_{n-1}(t) \longrightarrow (1.1)$$

For Stie

$$F_{n}(t \cdot \Delta t) = F_{n}(t) \cdot (1 \cdot \lambda \Delta t + 0(\Delta t)) \cdot (1 + \mu \Delta t + 0(\Delta t))$$

$$= F_{n}(t) \cdot (\lambda \Delta t + 0(\Delta t)) \cdot (1 + \mu \Delta t + 0(\Delta t)) \cdot (\Delta t)$$

To binding all the terms of $\mathcal{O}(\Delta t)$ and neglecting to see of this: $\mathbb{IO}(\Delta t) \, J^2$ and higher, we get

$$T_{n}\left(\pm\Delta\pm\right) = F_{n}\left(\pm\right) = -\left(\lambda\pm\epsilon\mu\right)\left(\Delta\pm\right)\Gamma_{n}\left(\pm\right) + \lambda F_{n-1}\left(\pm\right)\Delta\pm \pm O\left(\Delta\pm\right)$$

Divided by Δt and taking limit as $\Delta t \longrightarrow 0$

$$\frac{d}{dt} \Gamma_{n}(t) = -\langle \lambda + i\mu \rangle \Gamma_{n}(t) + \lambda \Gamma_{n-1}(t)$$

$$\frac{d}{dt} \Gamma_{n}(t) = \langle \lambda + c\mu \rangle \Gamma_{n}(t) + \lambda \Gamma_{n-1}(t) \longrightarrow (1.2)$$

$$F_{0}(\cdot,\Delta t) = F_{0}(t)$$
 (1- $\lambda \Delta t + 0$, Δt)) $+ 0$ (Δt)

$$F_{\alpha}(\cdot, \Delta z) = F_{\alpha}(\cdot, z) = -\lambda \Delta z F_{\alpha}(\cdot, z) + c(\Delta z)$$

Divided by Δt and taking limit so $\Delta t \longrightarrow 0$

$$\frac{d}{dt} \Gamma_{\zeta}(t) + \lambda \Gamma_{\zeta}(t) = 0 \qquad (1.3)$$

Equation (1.0) can be written as

Or integrating

lig
$$T_0(t) + S_2 \Delta t$$

 $T_3(t) + S_3^2 \Delta t$

Using Scandary Edholtions $F_{\gamma}(\psi) = \Re \gamma (\sqrt{\epsilon}) = \sqrt{\epsilon} + \frac{1}{2} + \frac{1}{2}$

E. L. T. C.

F. or equation (1.1), per second Equation (1.1)

$$\frac{1}{22}$$
 $T_{1}(t) + (\lambda + c\mu)F_{1}(t) + \lambda T_{0}(t) + \lambda P_{0}^{-\lambda t}$

$$\triangle \text{ III} = \exp \left\{ (\lambda - \epsilon \mu) \exists z = e^{(\lambda - \epsilon \mu) \pm \epsilon} \right\}$$

Solution is

$$\Gamma_{\pm}(t) = \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{1}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda + \epsilon \mu) t}{(\lambda + \epsilon \mu) t} = \frac{1}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda - \epsilon \mu) t} = \frac{\lambda}{\lambda + \epsilon} \int_{-\infty}^{\infty} \frac{(\lambda - \epsilon \mu) t}{(\lambda -$$

et 1 0, F₁:0; - 2,

$$\frac{\lambda}{c\mu} = \frac{\lambda}{c\mu} + \frac{C}{C}$$
End for $p_{\pm} = \frac{\lambda}{c\mu} + C$

The century

$$F_{\pm}(t) = \frac{\lambda}{c\mu} F_{0}^{\pm} \lambda t$$

$$F_{\pm}(t) = \frac{\lambda}{c\mu} F_{0}^{\pm} \lambda t$$

$$F_{\pm}(t) = F_{\pm}e^{-\lambda}t \longrightarrow (1.5)$$

→ C == 0

Where $p_1 = \frac{\lambda}{2\mu} p_0$

Pull rell in Equation (1.1)

$$\frac{d}{dt} F_{2}(t) = (\lambda_{1}(\mu)) F_{2}(t) = \lambda_{1}(t)$$

$$\frac{d}{dt} F_{2}(t) = (\lambda_{1}(\mu)) F_{2}(t) = \lambda_{1}(t)$$

$$\frac{d}{dt} F_{2}(t) = (\lambda_{1}(\mu)) F_{2}(t) = \lambda_{1}(t)$$

$$\frac{d}{dt} F_{2}(t) = (\lambda_{1}(\mu)) F_{2}(t) = \lambda_{2}(t)$$

The aft a aplation beacons

$$F_{\mathbb{Z}}(1) = \frac{(\lambda + c\mu)^{\frac{1}{2}}}{(\lambda + c\mu)^{\frac{1}{2}}} = \int_{\mathbb{R}} \frac{(\lambda + c\mu)^{\frac{1}{2}}}{(\lambda + c\mu)^{\frac{1}{2}}} = \lambda_{0} \int_{\mathbb{R}} \frac{(\lambda + c\mu)^{\frac{1}{2}}}{(\lambda + c\mu)$$

$$\pi_2(\Sigma) = \frac{\lambda}{\lambda} + c\mu + \frac{\lambda}{c\mu} + \frac{\lambda}{c\mu} + \frac{\mu}{c} ct + c$$

At the Tight + Pi

Therefore $F_{\pm}(0)$, $1 = \frac{\lambda}{c\mu} \rho_1 + \epsilon'$

Figure
$$F_{\pm}(t)$$
, $\epsilon^{(\lambda+c\mu)}t = \left(\frac{\lambda}{c\mu}\right) + \epsilon^{-\lambda}t$

$$T_{\pm}(\pm) = \frac{\lambda}{c\mu} p_{\pm} e^{-\lambda \cdot \xi}$$

$$T_{2}(t) = F_{2}e^{-\lambda t} \qquad (1.6)$$

where
$$\rho_{\Xi} = \frac{\lambda}{z\mu} \rho_{\perp}$$

and an an

In general

$$F_{n}(t) = \frac{\lambda}{n} f_{n}$$
where
$$F_{n+1} = \frac{\lambda}{n} f_{n}$$

From Equation (1.2)

Fig. 7. (1.2)
$$\frac{d}{dt} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{$$

IF
$$= \exp \int (\lambda - \mu) dt = e^{(\lambda + \mu)} C$$

Thurefore

$$T_{\perp}(1) \in (\lambda + \mu) + \sum_{i=1}^{n} (\lambda + \mu) + \sum_{i=1}^{n} \lambda + \mu + D_{\perp}$$

$$F_{\perp}(1) \in (\lambda + \mu) + \sum_{i=1}^{n} \lambda + D_{\perp} = \lambda + D_{\perp}$$

$$T_{\perp}(1) \in (\lambda + \mu) + \sum_{i=1}^{n} \lambda + D_{\perp} = \lambda + D_{\perp}$$

$$T_{\perp}(1) \in (\lambda + \mu) + \sum_{i=1}^{n} \lambda + D_{\perp} = \lambda + D_{\perp}$$

Fig. (a)
$$P_{1} = \frac{\lambda}{\mu} P_{0} + C_{1}$$

$$P_{2} = \frac{\lambda}{\mu} P_{0} + C_{1}$$

$$P_{3} = \frac{\lambda}{\mu} P_{0} + C_{3}$$

Hence
$$F_1(t) = \frac{\lambda}{\mu} F_0 e^{\mu t}$$

$$F_1(t) = \frac{\lambda}{\mu} F_0 e^{\lambda t}$$

$$F_{\perp}(1) \leftarrow F_{\perp}^{-\frac{1}{2}} \qquad (1.7)$$

where $\mu_1 = \frac{\lambda}{\mu} + \epsilon_0$

Fut nel is equation (1.2)

$$\frac{d}{dt} \Gamma_{2}(t) = (\lambda + 2\mu) \Gamma_{2}(t) + \lambda \Gamma_{1}(t)$$

$$\Gamma_{2}(t) = (\lambda + 2\mu) \Gamma_{2}(t) + \lambda \rho_{1} e^{-\lambda t}$$

$$\Gamma_{3}(t) = (\lambda + 2\mu) \Gamma_{3}(t) + \lambda \rho_{1} e^{-\lambda t}$$

$$\Gamma_{4}(t) = (\lambda + 2\mu) \Gamma_{5}(t) + \lambda \rho_{1} e^{-\lambda t}$$

$$F_{\pm}(1)e^{(\lambda+2\mu)t} = \lambda p_1 \int e^{2\mu t} dt + C_{\pm}$$

$$F_{\pm}(1)e^{(\lambda+2\mu)t} = \frac{\lambda}{2\mu} F_{\pm}e^{2\mu t} + C_{5}$$

At the off
$$F_2(0) = F_2$$

$$P_2 = \frac{\lambda}{2\mu} P_1 + C_2$$
for $P_2 = \frac{\lambda}{2\mu} P_2 \Rightarrow C_2 = 0$
Therefore $F_2(0) = \frac{\lambda}{2\mu} P_1 \Rightarrow C_2 = 0$

$$F_2(0) = \frac{\lambda}{2\mu} P_2 \Rightarrow C_2 = 0$$

$$F_2(0) = \frac{\lambda}{2\mu} P_1 \Rightarrow C_2 = 0$$

$$F_2(0) = \frac{\lambda}{2\mu} P_1 \Rightarrow C_2 = 0$$

$$F_2(0) = \frac{\lambda}{2\mu} P_1 \Rightarrow C_2 = 0$$
And so on
In general for isome
$$F_2 = \frac{\lambda}{2\mu} P_1$$
where
$$P_1 = \frac{\lambda}{(n+1)\mu} P_1$$

Hence the solution of equations $F_{n} = F_{n} z^{-\lambda} t$ where $F_{n+1} = \frac{\lambda}{c\mu} F_{n}, \qquad \text{where} \qquad - \leq n$ $F_{n+1} = \frac{\lambda}{c\mu} F_{n}, \qquad \text{where} \qquad \leq n \leq c$

1.3 SERIES QUEUES WITH BLOCKING :

We suppose that there are two simple sequential stations, single server at each station model where no queue

is ellowed to form at wither station. If a customer is in station Lko, and service is completed at station one, the station one dustomers must wait the custoff the station two customers to completed, the system is blocked.

As 1.31. In state of one whose the lyster is blocked and the state. Since if a customer is in process et station one, along if statics the lies empty, a civing customers are turned away, since the system is a population and, that is all mustomers require service at one and then service at two.

To find the sheady-state probability $p_{\rm ni,n2}$ of n_1 in the first station and n_2 in the second station. For this midsl the possible states are given below in Table.

W. W. Harrist Stranger	F. y & Florida		Description
	C , O		Eystes empty
	1 , 0		Duriusani in protess I only
	ar g in		Dustanting process I maly
	t de de		Customora to present and 2
	in A	Tarbitonia - 1	2 prosesses 2 and
			stylpties i la blackerd.

Assuming arrivals to the system are polision with μ_{+} anoth is λ included vice is exponential with parameters μ_{+}

and an repeatively.

lenge illéferance equations written as :

$$\begin{split} F_{O,\, C}(t+\Delta t) &= F_{C,\, O}(t) \; \left(1-\lambda \Delta t + D(\Delta t)\right) \\ &= F_{C,\, C}(t) \; \left(1-\lambda \Delta t + O(\Delta t)\right) \; \left(\mu_{\widetilde{C}} \Delta t + O(\Delta t)\right) \end{split}$$

$$P_{O_{1}O_{2}}(t) = \lambda_{P_{O_{1}O_{2}}(t)}\Delta t = \mu_{D_{O_{1}O_{2}}(t)}\Delta t$$
 $+ O_{1}\Delta t$ $+ O_{2}\Delta t$ learns and signer terms

$$\stackrel{\Xi}{\text{dt}} P_{0,0}(t) = -\lambda P_{0,0}(t) + \mu_{\Xi} P_{0,0}(t) \longrightarrow (1.10)$$

$$\begin{split} F_{1,C}(\pm \Delta t) &= P_{1,C}(\pm) \cdot (1 - \mu_1 \Delta t + 0 \langle \Delta t \rangle), \\ &= P_{1,1}(\pm) \cdot (1 - \mu_1 \Delta t + 0 \langle \Delta t \rangle) \cdot (\mu_2 \Delta t + 0 \langle \Delta t \rangle), \\ &= P_{0,C}(\pm) \cdot (\lambda \Delta t + 0 \langle \Delta t \rangle). \end{split}$$

Divided by Δt and inking $\Delta t \longrightarrow 0$

$$\frac{d}{dt} F_{1,0}(t) = -\mu_1 F_{1,0}(t) + \mu_2 F_{1,1}(t) + \lambda F_{0,0}(t) \rightarrow (1.11)$$

Divided by Δt and taling $\Delta t \longrightarrow 0$

$$\frac{d}{dt} F_{0,1}(t) = \lambda_{P_{0,1}(t)} - \mu_{P_{0,1}(t)} - \mu_{P_{0,1}(t)} + \mu_{P_{0,1}(t)} + \mu_{P_{0,1}(t)} + \mu_{P_{0,1}(t)}$$

$$= \frac{1}{2\pi} F_{0,2}(t) = -\lambda_{P_{0,1}(t)} - \mu_{P_{0,1}(t)} + \mu_{P_{0,$$

$$\hat{\mathbb{E}}_{\mathbb{F}_{0,2}}(t) = -\lambda \cdot \mu_{2} \cdot \mu_{2} \cdot \mu_{2} \cdot \mu_{1,0}(t) + \mu_{2} \mu_{1,1}(t)$$

→ (1.12)

$$\mu_{\perp,\perp}(\pm\Delta\pm) = \mu_{\perp,\perp}(\pm) \quad (\pm \mu_{\perp}\Delta\pm\pm(\Delta\pm)) \quad (\pm \mu_{\perp}\Delta\pm\pm(\Delta\pm))$$

$$\mu_{0,1}(t)$$
 ($\lambda\Delta t + O(\Delta t)$, ($t + \mu_{2}\Delta t + O(\Delta t)$)

$$P_{2,1}(t,\Delta t) + P_{2,1}(t) + \cdots + (\mu_1 + \mu_2) p_{2,1}(t,\Delta t + \lambda \rho_{0,1}(t)\Delta t + O(\Delta t)$$
 takes and higher

Divided by Δt and taking $\Delta t \longrightarrow c$

$$\frac{c}{ct} F_{1,1}(t) = -(\mu_1 \cdot \mu_2) p_{1,1}(t) + \lambda p_{0,1}(t) \longrightarrow (2.13)$$

$$F_{\rm b, d}$$
 (t+At) = $p_{\rm b, d}$ (t) (2 $\mu_{\rm c}\Delta$ t+2 Δ t);

$$\gamma = P_{1,2}$$
 (ii) $(\mu_2 \Delta t + 0 \langle \Delta t \rangle) / (1 \gamma_2 \Delta t + 0 \langle \Delta t \rangle)$

$$F_{\mathrm{D},1}(1)\Delta t$$
 $F_{\mathrm{E},2}(1) = \mu_{\mathrm{D},1}(1)\Delta t - \mu_{\mathrm{E},1}(t)\Delta t$

P.At: burms and Ligher

Tiplides by As and taking likest Al-

$$\frac{\mathcal{E}}{4\pi} \left\{ \mu_{2,1} + \frac{1}{2} + \frac{1}{2} \mu_{2,2} + \frac{1}{2} + \frac{1}{2} \mu_{2,2} + \frac$$

Tor eteady evets solution, we have as

$$F_{ni,n2}(t) \longrightarrow F_{ni,n2} \xrightarrow{\text{dist}} \frac{c}{c} F_{ni,n2}(t) \longrightarrow O_g$$

write these conditions in Equation (1.10) to Equation (1.14); Therafors

If we also that $\mu_1 = \mu_2 : \mu_3$ then the results are

From (1.15)
$$p_{2,1} = \frac{\lambda}{\mu} p_{2,2} = \frac{\lambda}{\mu} p_{2,2}$$
 (1.26)

From (1.179) and (1.20) $-2\mu_{V_{1,1}}=\lambda_{\mu}^{\lambda}$ $\mu_{C_{\mu}O}$

$$F_{C_{1}C} = \frac{\lambda^{2}}{c\mu^{2}} F_{C_{1}C} \longrightarrow (1.21)$$

fara Tq. (1.17) & Eq. (1.21)

$$\mu_{0,1} \circ \mu_{0,1}$$

$$\mu_{0,1} = \frac{\lambda^2}{2a^2} \rho_{0,0} \longrightarrow (1.22)$$

From Iq.(1.18) 5 Iq.(1.11)

$$\frac{\partial}{\partial x} P_{1,0} = \frac{\lambda^2}{2\mu} P_{0,0} + \lambda P_{0,0} = 0$$

$$\frac{\partial}{\partial x} P_{1,0} = \left(\lambda^{\frac{\lambda^2}{2\mu}}\right) P_{0,0}$$

$$\frac{\partial}{\partial x} P_{1,0} = \frac{\lambda(\lambda + 2\mu)}{2\mu^2} P_{0,0}$$

$$\frac{\partial}{\partial x} P_{0,0} = \frac{\lambda(\lambda + 2\mu)}{2\mu^2} P_{0,0}$$
(1.21)

Sow weing beamdary condition

$$\Sigma \Sigma F_{n1,n2} = 1$$

Nersa . Francis are

$$F_{1,0} = \frac{\lambda(\lambda + i\mu)}{2\mu^2} F_{0,0}$$

$$F_{1,1} = \frac{\lambda^2}{2\mu^2} F_{0,0}$$

$$\frac{\lambda^2}{2\mu^2} F_{0,0}$$

$$\frac{\lambda^2}{2\mu^2} F_{0,0}$$

1.4 OPEN JACKSON NETWORKS

We consider a networks of a service facilities of contain Distinguic Landauxi. Since Figure 1 to any node contains on a poisson process. We will represent the mean action to the note is x_1 will solve at node is work action to an exponential distribution with mean μ_1 (all log operators and given node are identical).

When a dustomer complete convice ad node is no gresseric to the cut of with probability r_{ij} (let,2,..k). There is a probability r_{ij} that a customer will leave the network at under 1 upon completion of service. There is no limit on queue dispatily at any local that is, we have a bloked system to odd.

Binde we have a Markovian Eystem, we can use our usual types of analysis to write the sceady state system equations. We first, nowever, must determine him to castrice a system state. Since various numbers of authorems can be at various nodes in the networks, we deal a the joint publication for the naber of distormers at each mode, that in latting we have mader and desire for the lattice for the random variable for the lattice of the lattice for the steady state. We desire

From this joint probability distribution, we can obtain the marginal distribution for the number of customers at a particular node by appropriate sending over the other culture.

Simplified State Descriptors

at Merci		•
ga minin		Simulified Notation
		Ti Ci
	in 2 same to the management	40 A 40
	1 2 + 4 + 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	i i i i
		15 4 4 4 3

Uwing Sticerastic Balance Equation :

The into state T : Flow out of state T and assuming that $C_i=i$ (Single Server Neels) and that $n_i\geq 1$ at each node, We obtain

$$\sum_{k=1}^{k} \gamma_{k} = \sum_{n=1}^{k} \sum_{i=1}^{k} \mu_{i} = \sum_{i=1}^{k}$$

$$\sum_{\substack{j=1 \ j=1}}^{k} \sum_{\substack{i=1 \ (j\neq j)}}^{\mu_{i}} \mu_{i, i, j} \mu_{n; i, j}^{-} + \cdots = \left(\mu_{1} \Gamma_{12} \beta_{n; 1, 2}^{-} + \beta_{1} \mu_{1} \Gamma_{13} \beta_{n; 1, 3}^{-} + \beta_{1} \mu_{2} \Gamma_{13} \beta_{n; 1, 3}^{-} + \cdots + \beta_{1} \mu_{1} \Gamma_{13} \beta_{n; 1, 4}^{-} + \cdots + \beta_{1} \Gamma_{13} \beta_{n; 1, 4$$

$$\frac{\mu_{k',k2}}{\kappa_{k',k2}} = \frac{\mu_{k',k2}}{n_{ik',k2}} + \frac{\mu_{k',kk+1}}{\kappa_{k',kk+1}} = \frac{\mu_{k',kk+1}}{n_{ik',kk+1}} = \frac{\mu_{k',kk+1}}{n_{ik',kk+1}} = \frac{\mu_{k',k2}}{n_{ik',k2}} = \frac{\mu_{k',k$$

$$\sum_{k=1}^{K} \mu_{k+1} p_{nk}^{-} + \sum_{k=1}^{K} \mu_{k} p_{nk}^{-} + \sum_{k=1}^{K} \mu_{k}^{-} + \sum_{k=1}^{K} \mu_{k}^{-} + \sum_{k=1}^{K$$

$$\sum_{i=1}^{k} \mu_{i} \left(1 - r_{ii}\right) p_{n} = \mu_{i} \left(1 - r_{ii}\right) p_{n} + \mu_{2} \left(1 - r_{22}\right) p_{n} + \dots + \mu_{k} \left(1 - r_{kk}\right) p_{n}$$

$$\sum_{i=1}^{k} \gamma_{k} = \gamma_{i} = \gamma_{i} = \gamma_{i} = \gamma_{i} = \gamma_{i} = \gamma_{k} =$$

Fackbon showed that the solution to these steady state calance equations, is, analingly of what has come to be generally called "product form".

Let λ_{j} be the total seas flow sere jobs some injects at the ideas and from other nodes:

Lut r_{ij} - mean enrived to node i

ij e probability that a customer who has completed service at note j will go next to note i i=1,2,3,..k ; j=0,1,2,..k

From the system from nude i.

$$\lambda_{j} = \gamma_{1} + \sum_{j=1}^{k} c_{j1} \lambda_{j} \qquad \longrightarrow (1.26)$$

We start $\rho_1 = \frac{\lambda_1}{\mu_1}$ q 1-1-1, λ_2 . A

Usckson showed that the steady state solution to Equation (1.27) is . . .

$$F_n = (1 - \rho_1) \rho_1^{n_1} - (1 - \rho_2) \rho_2^{n_2} - \dots - (1 - \rho_k) \rho_k^{n_k} \rightarrow (1.27)$$

To blows (1.17) batisfies (1.25) we first show that

$$p_{n} = 0 \ p_{1}^{n_{1}} \ p_{2}^{n_{2}} \ \dots \ p_{k}^{n_{k}}$$

TableFied (1.25) where $c = \prod_{i=1}^{k} (1-\rho_i)$

Va 1st

$$\mathbf{n} = \rho_1^{\mathbf{1}} \frac{\mathbf{n}_2}{\rho_2^{\mathbf{2}}} \dots \rho_k^{\mathbf{k}}$$

Then of becomes

$$F_{n,n} = \mathbb{D}^{n} \ \rho_{i}^{-1} = \frac{\mathbb{D}}{\rho_{i}} \ \mathbb{R}^{n}$$

$$F_{n,n} + \mathbb{D}^{n} \ \rho_{i} \rho_{j}^{-1} = \frac{\mathbb{D}}{\rho_{i}} \ \mathbb{R}^{n}$$

$$F_{n,n} + \mathbb{D}^{n} \ \rho_{i} \rho_{j}^{-1} = \frac{\mathbb{D}}{\rho_{i}} \ \mathbb{R}^{n}$$

Substituting these values in Equation (1.25)

$$\mathbb{CR}^{\tilde{n}} \sum_{i=1}^{k} \frac{\gamma_{i}}{\rho_{i}} = \mathbb{CR}^{\tilde{n}} \sum_{j=1}^{k} \sum_{i=1}^{k} \mu_{i} \otimes_{i,j} \frac{\rho_{i}}{\rho_{j}}$$

$$= \mathbb{CR}^{\tilde{n}} \sum_{i=1}^{k} \mu_{i} \otimes_{i,0} \rho_{i} = \mathbb{CR}^{\tilde{n}} \sum_{i=1}^{k} \mu_{i} \otimes_{i,0} \beta_{i,0}$$

$$= \mathbb{CR}^{\tilde{n}} \sum_{i=1}^{k} \mu_{i} \otimes_{i,0} \rho_{i} = \mathbb{CR}^{\tilde{n}} \sum_{i=1}^{k} \mu_{i} \otimes_{i,0} \beta_{i,0}$$

is sailing with Ext. We have

$$\sum_{i=1}^{k} \frac{\gamma_{i} \mu_{i}}{\lambda_{i}} = \sum_{j=1}^{k} \sum_{i=1}^{k} \mu_{i} + \sum_{i} \frac{\lambda_{i} \mu_{j}}{\mu_{i} \lambda_{j}} + \sum_{i=1}^{k} \mu_{i} +$$

from equation (1.17), we have

$$\lambda_{j} = \gamma_{j} + \sum_{i=1}^{K} z_{i,j} \lambda_{i} + z_{j,i} \lambda_{j}$$

$$\lambda_{i} = \lambda_{j} - \gamma_{j} - z_{j,i} \lambda_{j}$$

Substituting in Equation (1.33), we get
$$\sum_{i=1}^k \gamma_i \frac{\mu_i}{\lambda_i} = \sum_{i=1}^k \frac{\mu_i}{\lambda_j} (\lambda_j - \gamma_j - \gamma_j \lambda_j) = \sum_{i=1}^k \mu_i r_{i0} \frac{\lambda_i}{\mu_i}$$

$$= \sum_{i=1}^k \left[\mu_i - \mu_i + \gamma_{ii} - \gamma_i \right]$$

Daugity the substitute for j to t in strd been of 188

Total flow out of the network - Total flow in the Network

For steady-state, these must be equal. Now to evaluate C, we have

$$\sum_{\substack{n_k = 0 \\ n_k = 0}}^{\infty} \sum_{\substack{n_k = 0 \\ n_k = 0}}^{\infty} -\sum_{\substack{n_2 = 0 \\ n_2 = 0}}^{\infty} \sum_{\substack{n_1 = 0 \\ n_2 = 0}}^{\infty} -\rho_1^{n_1} \rho_2^{n_2} -\rho_k^{n_k} = 1$$

$$\sum_{\substack{n_k = 0 \\ n_k = 0}}^{\infty} \rho_k^{n_k} -\sum_{\substack{n_2 = 0 \\ n_2 = 0}}^{\infty} \rho_2^{n_2} -\sum_{\substack{n_1 = 0 \\ n_1 = 0}}^{\infty} \rho_1^{n_1} \right] = 1$$

$$\sum_{\substack{n_1 = 0 \\ (1-\rho_1) \\ (1-\rho_2) }}^{\infty} \frac{1}{(1-\rho_k)} -\sum_{\substack{n_1 = 0 \\ (1-\rho_k) }}^{\infty} \frac{1}{(1-\rho_k)} -1$$

$$\sum_{\substack{n_1 = 0 \\ (1-\rho_1) \\ (1-\rho_2) }}^{\infty} \frac{1}{(1-\rho_k)} -1$$

$$C = \prod_{i=1}^{k} (1 - \rho_i); \qquad \rho_i \leq 1, i = 1, 2, \dots, k$$

We can obtain expected measure rather essily for individual nodes since

$$\frac{\rho_i}{1 + \rho_i}$$
 and $\psi_i = \frac{\lambda_i}{\lambda_i}$

This is so because of the product form of the solution of the

The above results for Jackson networks generalize easily to Orchannel nodes.

Let 0 represents the number of servers at node i each having exponential service time with parameter μ_i . Then Equation (i.27) becomes

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{i}^{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, n_{2}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, \dots, n_{k}) = \prod_{i=1}^{k} \frac{P_{n_{i}}}{a_{i} \cdot n_{i}} + e_{n_{i}}$$

$$P_{n} = P(n_{1}, \dots, n_{k}) = P(n_{1}, \dots, n_{k})$$

$$P_{n} = P(n_{1}, \dots, n_{k}) = P(n_{1}, \dots, n_{k})$$

$$P_{n} = P(n_{1}, \dots, n_{k}) = P(n_{1}, \dots, n_{k})$$

$$P_{n} = P(n_{1}, \dots, n_{k}) = P(n_{1}, \dots, n_{k})$$

$$P_{n} = P(n_{1}, \dots, n_{k}) = P(n_{1}, \dots, n_{k})$$

$$P_{n} = P(n_{1}, \dots, n_{k}) = P(n_{1}, \dots, n_{k})$$

$$P_{n} = P(n_{1}, \dots, n_{k}) = P(n_{1}, \dots, n_{k})$$

$$P_{n} = P(n_{1}, \dots, n_{k}) = P(n_{1}, \dots, n_{$$

are por the stable ingli

$$\sum_{n_i=1}^{\infty} F_{n_i} = \sum_{\vec{n}_i \in \{\vec{n}_i\}} F_{n_i} = 1$$

15 CLOSED JACKSON NETWORKS :

The a closed Jackson betweek $\gamma_{j}=0$ and $r_{10}=0$ for all 1 Alor we have a finite stance quell of $N(\cos y)$ items along continuously that all inside the pathorms.

If yielding $x_1 \approx 1$ and $x_{10} \approx 0$ in the equation (1.27) of the transition of the part.

$$\sum_{j=1}^{k} \sum_{i=1}^{k} \mu_{i} = \sum_{j=1}^{k} \mu_{j} = \sum_{i=1}^{k} \mu_{i} = \sum_{j=1}^{k} \mu_{i} = \sum_{j=1}^{k} \mu_{j} = \sum_{i=1}^{k} \mu_{i} = \sum_{j=1}^{k} \mu_{i} = \sum_{j=1}^{k} \mu_{j} = \sum_{i=1}^{k} \mu_{i} = \sum_{j=1}^{k} \mu_{i} = \sum_{j=1}^{k}$$

It also have a product from solution. The solution says in of the form

$$P_{\tilde{h}} = \mathcal{P}_{1}^{\tilde{h}_{1}} P_{2}^{\tilde{h}_{2}} - P_{\tilde{h}_{1}}^{\tilde{h}_{2}} \longrightarrow (1.31)$$

716-11

$$P_{i,j}^{+} + \frac{P_{i,j}}{P_{i,j}} \mathfrak{R}^{\tilde{n}}, P_{\tilde{n}} = \mathfrak{C} \mathfrak{R}^{\tilde{n}}$$

Dubstitute these values in Eq. (1.30)

$$\sum_{j=1}^{k} \sum_{i=1}^{k} \mu_{i+1,j} = \bigoplus_{\rho_{i,j}} \Re^{\mathbb{Z}} = \sum_{i=1}^{k} \mu_{i,j} (1-r_{i,j}) (\Re^{\mathbb{Z}})$$

$$\sum_{k=1}^{k} \mu_{1} = \sum_{k=1}^{k} \sum_{k=1}^{k} \mu_{1} = \sum_{k=1}^{k}$$

$$\sum_{j=1}^{k} \frac{1}{\rho_{j}} \left(\sum_{k=1}^{k} \mu_{j} \rho_{k} \right) = \sum_{k=1}^{k} \mu_{j} \qquad (1.32)$$

where the flow into rude i is equal to flow out $\alpha \rho$ now i. We get

$$\mu_1 \rho_2 = \sum_{j=1}^k \mu_j r_{j1} \rho_j \qquad (1.33)$$

Using Equation (1.23) to Equation (1.32)

$$\sum_{j=1}^{k} \frac{1}{\rho_{j}} \mu_{j} \rho_{j} = \sum_{l=1}^{k} \mu_{l}$$

$$\sum_{j=1}^{k} \mu_{l} = \sum_{l=1}^{k} \mu_{l}$$

$$\downarrow = 1$$

State in an industrially

Now to evaluate D, we use

The constant D is shown as O(N), since it is a suction of the lange written

41.61

$$\hat{r}_{n_1 n_2 \dots n_k} = \frac{1}{3! 11} \circ_1^1 \cdot \frac{\alpha_1}{\rho_2} \longrightarrow \rho_1^{\alpha_2} \longrightarrow (1.36)$$

Terra

$$\Gamma(N) = \sum_{\substack{p_1+p_2+\ldots+p_2=N}} \rho_1^{p_1} \rho_2^{p_2} \longrightarrow (1.57)$$

Again chis closed network can easily be estanded to servers at node i. Than the solution becomes

$$P_{n_1,n_2,\dots,n_k} = \frac{1}{\Im(N)} \prod_{i=1}^k \frac{\rho_i^{n_i}}{\frac{4\pi}{4\pi}(n_i)} \longrightarrow (2.38)$$

1.5

$$\mathbf{a}_{1}(n_{1}) = \begin{cases} (n_{1} - \mathbf{c}) \\ (n_{1} - \mathbf{c}) \\ (n_{2} - \mathbf{c}) \end{cases} \quad \mathbf{a}_{1} \ge \mathbf{c}_{1}$$

5114

$$G(N) = \sum_{\substack{n_1+n_2+\ldots+n_k=N \\ 1 = 1}} \frac{1}{n_1 + n_2 + \ldots + n_k} \frac{p_1^{n_1}}{n_1 + n_2 + \ldots + n_k}$$

.6 CYCLIC QUEUES :

If a closed network of h hodes such that

$$\begin{cases} 1 & (j=i+1, 1 \leq i \leq (k-1)) \\ 1 & (j=k, j=1) \\ 0 & (elsewhere) \end{cases}$$
 (i.39)

then we have a lyalla qualer.

A syalic quoue is a sort of series queue in a circle have the output of the last node foeds back to the first ode.

Hence for single servers at each node we have quadions such that

$$P_{n_1,n_2,\dots,n_k} = P_1^{n_1,n_2} \dots P_n^{n_k} \longrightarrow (1.40)$$

1.2.6.

$$\mu_{j}\rho_{j} = \sum_{j=1}^{k} \mu_{j} \gamma_{j} \rho_{j}$$

Using (1.37) in Equation (1.40), we get

$$\mu_{1}\rho_{1} = \begin{cases} \mu_{1-1}\rho_{1-1} & \text{(i=2,3,--k)} \\ \mu_{1}\rho_{k} & \text{(i=1)} \end{cases}$$

That is the state of

Similarly
$$\rho_{\lambda} = \frac{\mu_{\lambda}}{\mu_{\lambda}} \rho_{\lambda}$$

We salect ho = 1 and substituting in (1.41), we

5/12 to 1 1

$$\mathbb{E}(\mathbb{N}) = \sum_{\substack{n_1+n_2+\ldots+n_k=N}} \rho_1^{n_1} \rho_2^{n_2} \ldots \rho_k^{n_k} \longrightarrow (\mathbb{L}_* \mathbb{A}\mathbb{D})$$

1.7 TRANSIENT SOLUTION OF QUEUEING SYSTEM M/M/1 -

In Labellat solution of questing system, the system is like the mystem can be added as

Let $\mathbb{F}_{q}(\mathbb{R})$. In these see , unlike in the equivalental trace to

 $\Gamma_{\rm cont}(1) = \Gamma_{\rm cont}(1$

$$\begin{split} F_{\rm B}(\mathsf{t}^{\mathsf{A}}\Delta\mathsf{t}) &= F_{\rm B}(\mathsf{t}) \cdot (1\cdot\lambda\Delta\mathsf{t}^{\mathsf{A}}\mathsf{t}) \cdot (1\cdot\mu\Delta\mathsf{t}^{\mathsf{A}}\mathsf{t}, \Delta\mathsf{t}) \,, \\ &= F_{\rm B, c}(\mathsf{t}) \cdot (\lambda\Delta\mathsf{t}^{\mathsf{A}}\mathsf{t}^{\mathsf{A}}\mathsf{t}) \cdot (1\cdot\mu\Delta\mathsf{t}^{\mathsf{A}}\mathsf{t}^{\mathsf{A}}\mathsf{t}, \Delta\mathsf{t}) \,, \\ &= F_{\rm B, c}(\mathsf{t}) \cdot (\mu\Delta\mathsf{t}^{\mathsf{A}}\mathsf{t}^{\mathsf{A}}\mathsf{t}, \Delta\mathsf{t}) \,, \quad (1\cdot\lambda\Delta\mathsf{t}^{\mathsf{A}}\mathsf{t}, \Delta\mathsf{t}) \,, \quad \bullet \cdot (\Delta\mathsf{t}) \,. \end{split}$$

 $\Gamma_{\perp}(\mathbb{L}(\Delta L)) + \Gamma_{\mathrm{R}}(\Omega) = \Omega + (\lambda \cdot (\mu \cdot (\Delta L)) - \Gamma_{\mathrm{Re}^{\perp}}(\mathbb{L}) \cdot \lambda \Delta L - \Gamma_{\mathrm{Re}^{\perp}}(\Omega) \cdot \mu \Delta L$ $+ O(\Delta L)$

 $F_{i}(\mathbf{t}) \wedge \Delta \mathbf{t}) + F_{i}(\mathbf{t}) = -(\lambda \cdot \mu) \Delta \mathbf{t} \quad F_{i}(\mathbf{t}) + \lambda P_{i+1}(\mathbf{t}) \Delta \mathbf{t} + \mu F_{i+1}(\mathbf{t}) \Delta \mathbf{t}$ $+ \mathcal{O}(\Delta \mathbf{t})$

Figure 1. At and taking $\Delta t \longrightarrow T_{n}$ in Fave $\frac{1}{2} \left(\frac{1}{2} \right) \left($

700 FOO

$$F_{C}(\mathbb{C}^{2}\Delta t)$$
 = $F_{O}(\mathbb{C})$ = (no arrival in $(\mathbf{t},\mathbf{t}\cdot \Delta t)$) + $O(\Delta \mathbb{C})$

$$\} F_{c}(t+\Delta t) + F_{c}(t) = -\lambda \Delta t F_{c}(t) + \mu \Delta t F_{c}(t) + \rho(\Delta t)$$

divided by Δt and taking $\Delta t \longrightarrow 0$

$$\frac{c}{F_{5}} F_{0}(t) = \lambda F_{0}(t) + \mu F_{1}(t) \longrightarrow (1.45)$$

leat the probability generating function (p.g.f)

$$\Xi(z,t) = \sum_{n=0}^{\infty} P_n(t) z^n \qquad \longrightarrow (1.46)$$

Multiplying by $z^{\rm T}$ in Eq. (1.44), summing over n and adding (1.46), Then we get

$$\frac{1}{2\pi i} \left[\sum_{n=1}^{\infty} F_{n}(z) z^{n} + F_{n}(z) \right] = -i\lambda \cdot \mu \sum_{n=1}^{\infty} F_{n}(z) z^{n} - \lambda F_{n}(z) z^{n} - \lambda F_{n}(z) z^{n} + \mu \sum_{n=1}^{\infty} F_{n-1}(z) z^{n} - \lambda F_{n}(z) + \mu F_{n}(z) \right]$$

$$= -i\lambda \cdot \mu \sum_{n=1}^{\infty} F_{n}(z) z^{n} - \lambda F_{n}(z) + \mu F_{n}(z)$$

$$+ \lambda z \sum_{n=1}^{\infty} F_{n-1}(z) z^{n-1} + \frac{\mu}{z} \sum_{n=1}^{\infty} F_{n+1}(z) z^{n-1}$$

$$-\lambda F_{n}(z) + \mu F_{n}(z)$$

$$\frac{d}{dt} \left[G(z,t) \right] = -(\lambda \cdot \mu) G(z,t) + \lambda z \sum_{n=0}^{\infty} F_n(t) z^n + \frac{\mu}{z} \sum_{n=2}^{\infty} F_n(t) z^n + \mu F_0(t) + \mu F_1(t)$$

$$\frac{\mathbf{c}}{\mathbf{d}^{N}} \left[\mathbb{E}(\mathbf{c}_{+}, \mathbf{c}_{+}) \right] = -(\lambda \cdot \mu) \mathbb{E}(\mathbf{c}_{+}, \mathbf{c}_{+}) + \lambda \mathbb{E}(\mathbf{c}_{+}, \mathbf{c}_{+}) + \frac{\mu}{\mathbf{r}} \sum_{\mathbf{p} = \mathbf{0}}^{\infty} \mathbb{E}_{\mathbf{p}_{+}}(\mathbf{c}_{+}) \mathbb{E}^{\mathbf{0}}$$

$$= \frac{\mu}{\mathbb{E}} \left[-\mathbb{E}_{\mathbf{c}_{+}}(\mathbf{c}_{+}) \mathbb{E}^{\mathbf{c}_{+}}(\mathbf{c}_{+}) \right] = \mu \mathbb{E}_{\mathbf{0}}(\mathbf{c}_{+}) + \mu \mathbb{E}_{\mathbf{0}}(\mathbf{c}_{+})$$

$$\frac{d}{dt} \left[\exists (z, t) \right] = -(\lambda)\mu^{-}\lambda z (\exists (z, t) + \frac{\mu}{2} \exists (z, t) + \mu \left(z - \frac{1}{2} \right) F_2(t)$$

$$\frac{G}{2H}\left[G\left(2,1\right)\right]=\left(\lambda-\mu-\lambda z-\frac{\mu}{2}\right)-G\left(2,1\right)-\mu\left(1-\frac{1}{2}\right)-F_{O}(t)\rightarrow -(1.47)$$

Let the system start at time t=0 with I units in the cystum.

Put 3=0 in Equation (1.46), we get

$$\Xi(z,0) = \sum_{n=0}^{\infty} F_{n}(0)^{n}$$

Lars of

Where $\delta_{i,k}$ is called the Kronecker delta.

Let g(z,s) be the Laplace Transform (L.T.) of G(z,t)

$$\mathbb{I}\left[\mathbb{G}(z,t)\right]:\ \varsigma(z,s)=\int_{0}^{\infty}e^{-st}\ \varsigma(z,t)\ \mathrm{d}t\xrightarrow{}\ (1.47)$$

Taking Laplace Transform on buth sides of equation (1.47),

$$\mathbb{E}\left[\frac{G}{G^{\frac{1}{2}}}\left[\mathbb{E}\left(x_{j}, x_{j}\right)\right] + \mathbb{E}\left[\left(\lambda + \mu - \lambda x_{j} + \frac{\mu}{2}\right)\mathbb{E}\left(x_{j}, x_{j}\right)\right] + \mathbb{E}\left[\mu\left(x_{j} - \frac{1}{2}\right)\mathbb{E}_{\mathbb{Q}}(\mathbf{t})\right]$$

$$\int_{-\pi}^{\pi} e^{\frac{i\pi L}{2}} \left[\frac{1}{2\pi L} \left[\frac{1}{2\pi L} \left[\frac{1}{2\pi L} \left[\frac{1}{2} \right] \right] \right] dt = -\left[\frac{1}{2\pi L} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \right] - \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2} \right] + \mu \left[\frac{1}{2} \left[\frac{1}{2}$$

$$\begin{bmatrix} e^{-ist}z(z,t) \end{bmatrix}_{0}^{\infty} = \int_{0}^{\infty} (-z)e^{-ist} G(z,t)dz$$

$$= -(\lambda + \mu + \lambda z - \frac{\mu}{z})g(z,s) + \mu(1 - \frac{1}{z})p_{0}(s)$$

$$-G(z,0) + s \int_{0}^{z-st} G(z,t) dt = -(\lambda + \mu + \lambda z + \frac{\mu}{z}) g(z,s) + \mu (1 - \frac{1}{z}) P_{0}(s)$$

$$-z^{\frac{1}{2}} + \operatorname{BG}(z, z) = -(\lambda \cdot \mu \cdot \lambda z - \frac{\mu}{z}) \operatorname{G}(z, z) + \mu \left(1 - \frac{1}{z}\right) \operatorname{F}_{\operatorname{O}}(z)$$

$$(s \rightarrow \mu \rightarrow z + \frac{\mu}{z}) \circ (z,s) = z^{\frac{1}{2}} + \mu (z - \frac{1}{z}) \circ (s)$$
 (1.50)

$$\frac{\mathbb{E}^{2^{k+1}} \cdot \mu(z-1) \rho_{\mathcal{O}}(z) \mathbb{I}}{\mathbb{E}(\pm A \cdot \mu) z \cdot \lambda z^{2k} \cdot \mu \mathbb{I}} \longrightarrow (1.51)$$

To find the perce of descripator, we put

$$(\pi \wedge \pi_{\mu})\pi + \lambda \pi^{2} + \mu = 0$$

$$\lambda z^{\frac{\pi}{2}} \cdot (\sin \lambda \beta \mu) \pm i\mu = 0$$

$$\frac{(3-\lambda \cdot \mu) \pm \sqrt{(3-\lambda \cdot \mu)^2 - (\lambda \mu)}}{2}$$

Let if her two routs $\alpha_1(s)$, and $\alpha_2(s)$. Hence

$$\alpha_{1}(\mathbf{s}) = (2\lambda)^{-1} \left[(\mathbf{s} \cdot \lambda \cdot \mu) \cdot \sqrt{(\mathbf{s} \cdot \lambda \cdot \mu)^{2}} \cdot A \mu \right] \longrightarrow (1.52)$$

$$\alpha_{1}(\mathbf{s}) = (2\lambda)^{-1} \left[(\mathbf{s} \cdot \lambda \cdot \mu) \cdot \sqrt{(\mathbf{s} \cdot \lambda \cdot \mu)^{2}} \cdot A \mu \right] \longrightarrow (1.52)$$

 $(0.21 + 1.6 \times \lambda \cdot \mu) = (1.5 \times \lambda)^2 \cdot \mu = \frac{1}{2} \cdot (1.5 \times \lambda)^2 \cdot \mu$

Ther or the walk sincle [s]ef

$$|f(\omega)| = |s + \mu| > |\lambda \cdot \mu| = |\omega|$$

Hence f(z) and f(z) ag(z) have the same number of werds inside the unit circle. But f(z) has body one zero, and so f(z)+g(z) also has only one zero inside the unit circle. This zero will be α . Thus we have

$$\frac{z^{1+1}}{\mu(1-z)\rho_{O}(s)} = 0$$

$$\frac{\mu(1-z)\rho_{O}(s) = z^{1+1}}{\frac{z^{1+1}}{\mu(1-z)}}$$

Sut root of 2 is α_1 . Therefore $\frac{\alpha_1^{i+1}}{\mu(i-\alpha_1)} \longrightarrow (1.55)$

The Equations (1.51)
$$\frac{1}{5(2\pi s)} = \frac{1}{-\lambda (2^2 - (8\pi \lambda - \mu))/\lambda} \frac{1}{2\pi \mu/\lambda},$$

$$G(4,E) = \frac{e^{\frac{1+4}{4} - \lambda (1-z)\alpha_{1}^{1+1} / \lambda (1-\alpha_{1})}}{-\lambda (2-\alpha_{1})(z-\alpha_{2})} \longrightarrow (4.34)$$

$$g(z, s) = -\frac{z^{\frac{1+1}{2}}(1-\alpha_1)(1-z)\alpha_1^{\frac{1+1}{2}}}{2\lambda(z-\alpha_1)(z-\alpha_1)(1-\alpha_1)}$$

$$G(z,z) = \frac{(z^{\frac{1+1}{2}} - \alpha_1^{\frac{1+1}{2}}) - 2\alpha_1(z^{\frac{1}{2}} - \alpha_1^{\frac{1}{2}})}{2\alpha_1(1+\alpha_1)(1+\alpha_2)(1+\alpha_2)(1+\alpha_1)}$$

$$\frac{(z\cdot\alpha_1)(z^2\cdot\alpha_2z^{2-1}\cdot z\cdot\alpha_1^2)\cdot z\alpha_1(z\cdot\alpha_1)(z^2\cdot z\cdot\alpha_2^{2-1}\cdot z\cdot\alpha_1^2)\cdot z\alpha_2(z\cdot\alpha_1^2)}{\lambda\alpha_1(z\cdot\alpha_1)(z\cdot\alpha_2)(z\cdot\alpha_2^2)(z\cdot\alpha_1^2)}$$

$$S(\mathbf{x},\mathbf{x}) = \frac{(\mathbf{x}\cdot\mathbf{a}_1; \left[\mathbf{x}^{\mathbf{x}\cdot\mathbf{a}_1}\mathbf{a}_1\mathbf{x}^{\mathbf{1}-1}\mathbf{a}_1, \dots, \mathbf{a}_1^{\mathbf{x}\cdot\mathbf{a}_1}\mathbf{a$$

$$S(z,z) = \frac{z^{2}(1-\alpha_{1}) + \alpha_{2}z^{2} + 1}{\lambda \alpha_{1}(1-z/\alpha_{2})(1-\alpha_{1})} + \frac{z^{2}(1-\alpha_{1}) + \alpha_{1}z^{2}}{\lambda \alpha_{1}(1-z/\alpha_{2})(1-\alpha_{1})}$$

$$\psi(1, \alpha) = \frac{(1, \alpha_1)(z^1, \alpha_1 z^{1-1} + \dots + \alpha_1^1)}{\lambda \alpha_1 (1 - 1/\alpha_2)(1 - \alpha_1)}$$

$$\text{Size} := \frac{(1 - \alpha_1) \left(2^{\frac{1}{4}} + \alpha_1 2^{\frac{1}{4} + \frac{1}{4}} + \dots + \alpha_1^{\frac{1}{4}} \right)}{\lambda \alpha_1 \left(1 + 2 / \alpha_1 \right) \left(1 + \alpha_1 \right)} \cdot \frac{\alpha_1^{1 + \frac{1}{4}}}{\lambda \alpha_2 \left(1 + 2 / \alpha_1 \right) \left(1 + \alpha_1 \right)} \cdot \frac{\alpha_1^{1 + \frac{1}{4}}}{\lambda \alpha_2 \left(1 + 2 / \alpha_1 \right) \left(1 + \alpha_1 \right)}$$

$$(z + \alpha_1) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_1) (z + \alpha_2) + \frac{\alpha_1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_1) (z + \alpha_2) = \frac{1}{\lambda \alpha_2} (z + \alpha_2) = \frac{1}$$

By Binominal expansion, we can write
$$\left(1 - \frac{1}{\alpha_{\perp}}\right)^{-1} = \sum_{k=0}^{\infty} \left(-\frac{\pi}{\alpha_{\perp}}\right)^{k}$$

$$\frac{1}{\lambda \alpha_{\pm}} (2^{\frac{1}{2}} + \alpha_{\pm}) = \frac{1}{\lambda \alpha_{\pm}} \left(\frac{1}{\alpha_{\pm}} \right)^{\frac{1}{2}} \left(\frac{1}{\alpha_{\pm}} \right)^{\frac{1}{2}}$$

$$\frac{\alpha_{\pm}^{\frac{1}{2}+\frac{1}{2}}}{\lambda \alpha_{\pm}(1 - \alpha_{\pm})} \sum_{k=0}^{\infty} \left(\frac{1}{\alpha_{\pm}} \right)^{\frac{1}{2}} \longrightarrow (1.57)$$

Next F_{μ} (5), the large transform of F_{μ} (6; is the coefficient of x^{μ} in g(x,y) .

The coefficient of \mathbf{z}' from the second term on the .SyM1 and side of Equation (1.57)

$$\frac{\alpha_{1}^{4+1}}{\lambda \alpha_{1}(1-\alpha_{1})} \frac{1}{\alpha_{1}^{2}} \frac{1}{\alpha_{1}^{2}} \frac{1}{(1-\alpha_{1})^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1}{\lambda \alpha_{1}^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1}{\lambda \alpha_{1}^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1}{\lambda \alpha_{1}^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1}{\lambda \alpha_{1}^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1}{\lambda \alpha_{1}^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1}{\lambda \alpha_{1}^{2}} \frac{1}{\lambda \alpha_{2}^{2}} \frac{1$$

and the

Therefore of Coefficient of $z^{\rm D}$ from the second term on RHS

$$\frac{1}{\lambda} \left(\frac{\lambda}{\mu} \right)^{n+1} \sum_{k=n+1+2}^{\infty} \left(\frac{\mu}{\lambda} \right)^{k} \frac{1}{\alpha_{22}^{k}} \longrightarrow (1.58)$$

The Tiret term on RHS can be well'the

$$\frac{1}{\lambda \alpha_{2}} \left(\frac{1}{\alpha_{1}} + \alpha_{1} + \frac{1}{\alpha_{2}} + \frac{1}{\alpha_{2}} \right) \sum_{k=0}^{\infty} \left(\frac{1}{\alpha_{2}} \right)^{k}$$

$$= \frac{1}{\lambda \alpha_{2}} \left[\frac{1}{\alpha_{2}} + \alpha_{2} + \frac{1}{\alpha_{2}} + \frac{1}{\alpha_{2$$

The SoutFicient of a

$$\sum_{m=(1-n)}^{\infty} \frac{1}{\lambda \alpha_{\pm}} \sum_{m=(1-n)}^{\infty} \frac{\alpha_{\pm}^{m}}{\alpha_{\pm}^{(n-1+m)}} = \sum_{m=(1-n)}^{\infty} \frac{1}{\lambda \alpha_{\pm}} \frac{(\mu/\lambda \alpha_{\pm})^{m}}{\alpha_{\pm}^{(n-1+m)}}$$

The coefficient of in

$$\sum_{m=(1-r)}^{1} + \frac{(\mu,\lambda)^{(1)}}{\lambda \alpha_{m}^{(n-1-2)(n-1)}} \longrightarrow (1.57)$$

The Losefficient of phot Equation (1.57) can be written as

$$F_{i,i}(1) = \frac{1}{\lambda} \left[\sum_{m=(1-n)^{+}}^{1} \frac{\langle \mu/\lambda \rangle^{m}}{\alpha_{2i}^{(m-1)(2n+1)}} + \left(\frac{\lambda}{\mu} \right)^{\frac{1}{2}} \sum_{k=n+1}^{\infty} \frac{\langle \mu/\lambda \rangle^{k}}{\alpha_{2i}^{k}} \right] \rightarrow (1.40)$$

Tow like inverse Laplace Transform

Where $\Gamma_{ij}(z)$ is the modified bessel function of the

71 to kind and order
$$v$$
, given
$$I_{v}(z) = \sum_{k=0}^{\infty} \frac{(2/2)^{v+2/v}}{k!\sqrt{(v+k+1)}} \longrightarrow (1.62)$$

THERESTOR

$$= L^{-1} \left[\frac{1}{\alpha_{\pm}^{-1}} \right] - L^{-1} \left[\alpha_{\pm}^{-k} \right]$$

$$= L^{-1} \left[\left(2\lambda \right)^{+k} \left\{ \left((a + \lambda + \mu) \right) - \sqrt{(a + \lambda + \mu)^{-1} - 4\lambda \mu} \right\}^{-k} \right]$$

$$= (2\lambda)^{k} L^{-1} \left[\left\{ \left((a + \lambda + \mu) \right) - \sqrt{(a + \lambda + \mu)^{-1} - 4\lambda \mu} \right\}^{-k} \right]$$

$$= (2\lambda)^{k} e^{-(\lambda + \mu) \cdot k} L^{-1} \left[\left\{ e^{-(\lambda + \mu) \cdot k} \right\}^{-k} \right]^{-k} \left\{ e^{-(\lambda + \mu) \cdot k} \right\}^{-k} \left$$

 $= \left(\frac{1}{\alpha_{\pm}^{1}} \right) + e^{-(\lambda + \mu) + 1} \left(\sqrt{\lambda / \mu} \right)^{\frac{1}{2}} \frac{1}{2} \frac{1}{2} \left(\sqrt{\lambda / \mu} + 1 \right) \longrightarrow (1.63)$

Of wileyly was den white

$$L^{-1} \left[\frac{1}{\alpha_{\perp}^{(m+1+2m+1)}} \right] = e^{-(\lambda + \mu) t} \left(\sqrt{\lambda / \mu} \right)^{m-1+2m+1}$$

$$\lambda = \frac{(m+1+2m+1)}{t} \mathbb{I}_{(m+1+2m+1)} \left(2\sqrt{\lambda / \mu} \right) \longrightarrow (1.64)$$

Taking the liverse Laplace Transform of Equation

$$\frac{1}{\lambda} \left\{ \sum_{m=(1-m)}^{\lambda} \frac{(\mu/\lambda)^{\frac{1}{2}}}{\alpha \left(\frac{1}{\mu}\right)^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}}} \left(\frac{\lambda}{\mu} \right) \sum_{k=m+1+2}^{(m+\lambda)^{\frac{1}{2}}} \frac{(\mu/\lambda)^{\frac{1}{2}}}{\alpha \frac{k}{2}} \right]$$

$$F_{n}(z) = \frac{1}{\lambda} \sum_{m=(i-m)^{+}}^{i} \left(\frac{\mu}{\lambda}\right)^{m} L^{-1} \left[\frac{1}{\alpha \frac{n-1+2m+1}{2}}\right] - \frac{1}{\lambda} \left(\frac{\lambda}{\mu}\right)^{m+1} \sum_{k=n+i+2}^{\infty} \left(\frac{\mu}{\lambda}\right)^{k} L^{-1} \left[-\frac{1}{\alpha \frac{k}{2}}\right]$$

Bubstituting the values of inverse Laplace Transform

$$\mathbb{E}_{\mathbb{R}^{(k)}} = \sum_{m=(k-n)}^{k} + \left(\frac{\mu}{\lambda}\right)^{2k} = (\lambda \cdot \mu) = \left(\sqrt{\lambda / \mu}\right)^{(k-1) \cdot 2m+1}$$

$$\mathbb{E}_{\mathbb{R}^{(k)}} = \left(\frac{(k-1) \cdot 2m+1}{k}\right) = \left($$

$$\Gamma_{\perp}(\pm) = \frac{e^{-(\lambda + \mu) \pm}}{\lambda} \left[\left(\sqrt{\lambda / \mu} \right)^{\frac{n}{n-1+2}} \sum_{m=(1-n)^{+}}^{t} \frac{\left(\frac{n-1+2m+1}{2} \right)}{\pm} \right]$$

$$= \frac{1}{\left(\frac{n-1+2m+1}{2} \right)^{\frac{n-1+2m+1}{2}}} \left(\frac{\sum_{k=n+1+2}^{t} \frac{m}{k}}{\sum_{k=n+1+2}^{t} \left(\frac{\sum_{k=n+1}^{t} \frac{m}{k}}{\sum_{k=n+1+2}^{t} \left(\frac{m}{k}} \right) \right]} \right]$$

$$= \frac{1}{2} \left(\frac{m}{k} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \left(\frac{m}{k} \right)^{\frac{1}{$$

Or mading column and well-block

$$\left(\frac{1}{2}\right) \left[\sqrt{\mu}\right] = \left[\sqrt{\mu}\right] = \left[\sqrt{\mu}\right] \qquad (1.66)$$
i. equations (1.65), we get
$$\left[\sqrt{\mu}\right] = \left[\sqrt{\mu}\right] = \left$$

1.8 DISCERTE TIME TRANSIENT SOLUTION :

Strengl quadeling problems have been solved using steady state localitions. As compared to these problems, it seems that not much have been done to obtain the impressponding branchest solutions. This is because of the fact that the transient solutions are not only mathematically intractable or excessively labourious but also compared tonally very costly. Therefore, we can say that most

solution or some approximations. In most of the cases even elead, state actuallions are difficult to compute. Chaudhry, Man, Man, P.C., and Templeton, J.C.C. (1991, 1992) have set a most of the current in queue the coupling form solutions as well as exact computational results are obtained by this approach.

Tackac's (1962) gives two solutions for the M/M/1/ ∞ neither of which easy to compute. The first solution is in terms of integrals whereas the second involves an infinite some of Datasi functions.

The solution becomes a bit simpler if the waiting space in finite which may be true in many applications. In their case arrival and service rates are constant. Resides this they make use of space al decomposition which require to find left and right sign vectors. This is not say if the matrix is very large.

The methods developed by Chardrey, N.L., Napur, P.K., and Templation, J.I.C. (1771) avoides exectral decomposition and well suited method for small and larges matrices. The final leahniques such as Reaga Katta, Sulear, Taylor and Dandonization have been used to find transient solution.

Whereas first three have been amployed in solving differential equation, the later one is particular suited for burying queueing problems. In order to get greater accuracy the needs to introduce the number of steps. This together the marker of simultaneous equations to be solved shows down the solution produce considerably. Recently Sharms and Das (1788) have orderined transfers addition to a special dategory of Market Dillined transfers addition to a special dategory of Market Dillined transfers addition to a special dategory of Market Dillined transfers addition to a special dategory of Market Dillined transfers addition to a special dategory of Market Dillined transfers addition to a special dategory of Market Dillined transfers addition to a special dategory of Market Dillined transfers additional difficulties arises.

Chaudhry, M.L., Kapur,F.N., and Templeton, C.C.I.(1991) have made attempt to obtained similar results in discrete time for finite waiting space problems in queueing theory. Since the transient solution depend on the initial state of system, it is intersecting to know the effect on the Lystem bahavior. Nobeysani (1962) has discussed the several system which operate at discrete time many machine cycling of a processor and several other examples in Computer Ocience.

Chaudhry, M.L., Kepur, P.K., and Templeton, D.J.D. (1591) give the transiert solcutions for a general class discrete time models in quelong theory. In this they

This assumed that the queue consists I. Finite waiting space, Interactival and service probabilities are dependent on the state of the system, one interactival and service time distributions are geometric but independent of the end queue discipline is first in first out.

Green-Le squalities. The solve these equations they use the stations of the Yahring of these equations they use the equations in the Yahrix form. Drawer Rule has been applied for finding the sullutions of these equations. Explicit closed for expressions for distributions — as been obtained in them of the roots of a characteristic equation.

To find the eigen values is distributed in cots they make use of ORCOT softward package which is developed in Royal Military Dollege at Danada by M.L. Cheuchry (1992).

Tur the shelyels of the model the following solutions are used:

- X₁ Number of Clatchers in quaue at epoch & a
- N Size of waiting space.
- λ_{j_1} . Interestivel protability when a clustomers care to system:
- the Bystem.

$$\phi_{ii} = \mu_{ii} (1 - \lambda_{ii})$$

$$\phi_{ii} = \lambda_{ii} (1 - \mu_{ii})$$

Here $P_n(n)$ denote the probability that the sistem is in the n^{2n} Liste at the Legioning of n^{2n} speck. $X_1, x \ge 0$ is an integer valued distrete obschaetic process taking value $(0,1,0,\dots,M)$. $X_1 = n \pmod {C \le r \le N}$ implies that there are no clifforence in the system at epoch P. The difference equations are

$$P_{n+1}(n) = P_{m}(n) = P_{m}(n) \left(-\phi_{n} - \psi_{n}\right) + P_{m}(n-1)\psi_{n-1} + P_{m}(n+1)\phi_{n+1}$$

$$+ 1 \le n \le (N-1) \longrightarrow (1.68)$$

$$F_{m+1}(N) = -\phi_N P_m(N) + F_m(N-1) \psi_{N-1} \longrightarrow (1.69)$$
and
$$F_0(1) = 1 \qquad 0 \le 1 \le N$$

Let $P_{g}(n)$ be the p.g.f. of $P_{m}(n)$ defined as

$$\mathbb{F}_{\mathbb{Z}}(n) = \sum_{n \in \mathbb{N}} \mathbb{Z}^n \, \mathbb{F}_{\mathbb{R}}(n) \qquad \qquad |Z| \le 1$$

Now taking the $p_{*g_*F_*}$ of Equation (1.67),(1.68) and (1.17).

refer in all year

$$\beta_{k0} = \begin{bmatrix} \delta_{k0} & \delta_{k1} & \dots & \delta_{kN} \end{bmatrix}' \longrightarrow (1.70)$$

where A is a real tridiagens! (N-1]:[N+1] unitis, p is column, actor and $\delta_{\bf k}$ is the Erenecker Telta defined as

$$\delta_{\mathbf{k}_{1}} = \begin{cases} 1/z & \text{k=i} \\ 0 & \text{otherwise} \end{cases}$$

Defining (1-Z)/Z \circ s and assuming $\mu_{<}\circ$ C and $\lambda_{<}=$ C

.....

$$F: \left\{ \begin{array}{c} F_{\pm}(0) \\ \vdots \\ F_{\pm}(N) \end{array} \right\} \text{ (NFL) x1} \qquad (1.72)$$

From (1.70) of int Dommer's Rule $\mathbb{P}_{q_0}(\tau)$ are explicitly determined on

$$F_2(n) = \frac{|S_{n+2}(z)|}{|F(z)|}, \qquad |S| \le 1$$

first one from and obtains the expressions of |f(s)| in may be expressed as |s|D(s)|, where D(s) is the matrix of the NAN given by

ı								(N)
0	0	ı					p mx-	μ+ (μ ₁ +μ
0	0				4		1+4+(4+40)	$0 - \sqrt{\psi} \phi_1 = + \psi + (\mu_1 + \mu_2)$
0	0	,		*		*	14 (\$ 1 + \$) \$	0
0	$-\sqrt{\psi(\phi_1+\phi_2)}$				a .) O	0
-1 4 4 1	$s+\psi^{+}(\phi_{1}+\phi_{2})$ $-\sqrt{\psi(\phi_{1}+\phi_{2})}$		•	•			0	0
S+(\phi_1 +\lambda)	-1 4 4 1	# 1	t g		# a	(· >	°
			D(s) =					- constant

If D(s) expanded it will be a polynominal of degree N. The roots of the polynominal |A(s)| are real, negative and distinct (the root being zero). Let $\alpha_{ij}(k=0,1,-1)$ be the root of |A(s)| with $\alpha_{ij}(0,1)$ then

$$| f(z) | = z \prod_{k=1}^{N} (z - \alpha_k)$$

and hence
$$F_{\underline{i}}(n) = \frac{\left|F_{\underline{i}+\underline{i}}(s)\right|}{N}$$
 $0 \le n \le N \longrightarrow (1.74)$

Resolving the Right Hand Side of $\Gamma_2(n)$ into partial fractions replacing s by (inz)/z, using initial conditions and comparing coefficient of z^{\pm} , we have

Shark α_{i_1,i_2} and b_{i_1,i_2} are defined as

$$\alpha_{k} = \begin{cases} \frac{1}{N-1}(\alpha_{k})D_{11}(\alpha_{k}) \\ \alpha_{k} = 1 \\ \alpha_{k} = 1 \end{cases} (\alpha_{k} - \alpha_{j}) \\ \frac{\alpha_{k}}{\alpha_{k}} = 1 \end{cases}$$

$$\frac{C_{N-p}(0)C_{p}(0)}{N} \qquad 0 \le t \le N \longrightarrow (1.75)$$

$$\prod_{k=1}^{N} (-\alpha_{k})$$

Where $\Omega_n(s)$ and $\Omega_n(s)$ being the determinants obtained by the bottom right and top jest (nxe) square matrides from a feet A(s) such that

$$|\delta(\mathbf{s})| = \mathbf{D}_{N+1}(\mathbf{s}) + \mathbf{D}_{N+1}(\mathbf{s})$$

For convenience, we write $T_n(s)$ and $D_n(s)$ as C_n and $D_n(s)$ as C_n and

The Dire and Dire are given by

$$\mathbf{c}_{1} = \begin{bmatrix} \mathbf{e}^{\mathbf{w}}_{N+1+1}, \mathbf{w}_{N+1+1} \\ \mathbf{c}_{1+1} \end{bmatrix} \mathbf{c}_{1+1} = \begin{bmatrix} \mathbf{e}_{N+2}, \mathbf{w}_{N+1+1} \\ \mathbf{e}_{N+2}, \mathbf{w}_{N+1+1} \end{bmatrix} \mathbf{c}_{1+2}$$

 $2 \le i \le (N+1) \longrightarrow (1.77)$

$$\mathbb{E}_{i} = \begin{bmatrix} \mathbf{s} - \boldsymbol{\phi}_{i-1} & \boldsymbol{\psi}_{i-1} \end{bmatrix} \mathbb{D}_{i-1} - \begin{bmatrix} \boldsymbol{\phi}_{i-1} & \boldsymbol{\psi}_{i-2} \end{bmatrix} \mathbb{D}_{i-2}$$

$$2 \le i \le (N+1) \longrightarrow (1.78)$$

Using DRGOT Software package, we find the rect α_k called the characteristic equation of A(s). After finding the rote they discuss many cases and find the numerical results.

CHAPTER TWO

DISCRETE TIME TRANSIENT SOLUTION FOR Geom(n)/Geom(n)/2/N

WITH HETEROGENEOUS SERVER

2.1 INTRODUCTION:

Sin this chapter attempt has been made to ontak a discrete time transfer. Solution of the model Decm(n)/Geom(n)/I/N with noterogeneous server. We assume that the internantial probabilities and service time probabilities of first and second servers to be geometrically distributed with parameters λ , μ_1 and μ_2 respectively. We also assume that μ_1/μ_2 that is the service time probability for first server is less than that of second server. Which further implies that we are considering modified quade classifies i.e. the first arriving unit from amongst the initial number of unit present at the start of the service poins the first counter for service.

Therefore the arriving unit goes to the counter thin it first free. The maximum number of customers in the system is restricted to N. We further assure that there is no unit initial waiting at the time to when the service starts.

2.2. ASSUMPTIONS :

- 1: The queue consists of Finite waiting space.
- 2. Inter arrival probabilities and service probabilities does not depend on the state of the system.
- The interactival and service time distribution are geometric but independent of time.
- 4. λ is the interactival probability of a customer in the system and μ_1 and μ_2 be the service probability of a customer for server 1 and server 2 (aspectively such that $\mu_1 < \mu_2$ i.e. probability that a customer is serviced at server one is less than that of server two.
- 5. Quode discipline is First In First Out (FIFO).

2.3 NOTATION:

 X_{ij} i denote the number of sustaner at epoch λ .

N : 3the of waiting space.

 λ : Interactivel probability of a sustomer.

 μ , so Service probability of a destioner for server one.

 $\mu_{\pi^{\pm}}$ Service probability of a customer for server two.

 ϕ_{+} , $\mu_{+}(1-\lambda_{-})$

 $\phi_{\pi}: \mu_{\pi}(1-\lambda)$

ψ : λ(1-μ₁-μ₂)

24 ANALYSIS OF THE MODEL :

Let \mathbb{P}_n in) (n=0,1,2,1.N) denote the probability that the system is in the state at the hoghening of the nth spect of time plot. Let X_n be the number of questioners in the system at discrete time spect b. Then X_p , $p\geq 0$ is an integer valual discrete stathentic process taking values 0,1,2,...N. $X_n = 0$ (*SnEN) implies that there are a questioners in the system at epoch k.

The Tollowing clifference can be written as

$$F_{m+1}(0) - F_{\alpha}(0) = -\lambda F_{\alpha}(0) + \phi_1 F_{\alpha}(1) \qquad \longrightarrow (2.1)$$

$$\mathbb{P}_{m+1}(1) = \mathbb{P}_{m}(1) + \mathbb{P}_{m}(1) (\psi + \phi_{1} + \phi_{2}) + \lambda \mathbb{P}_{m}(1) + (\phi_{1} + \phi_{2}) \mathbb{P}_{m}(2) \rightarrow (2.2)$$

$$\mathbb{F}_{n+1}(n) + \mathbb{F}_{n}(n) = -(\psi + \phi_{1} + \phi_{2}) \mathbb{F}_{n}(n) + \psi \mathbb{F}_{n}(n-1) + (\phi_{1} + \phi_{2}) \mathbb{F}_{n}(n+1)$$

$$\mathbb{I} \leq n \leq (N-2) \longrightarrow (2.3)$$

$$P_{3\rightarrow2}(N-1) = -\langle \psi_1, \phi_1 \rangle_m (N-1) \cdot \psi_{n_0}(N-2)$$

$$= (\mu_1 \cdot \mu_2) P_n(N) \qquad \longrightarrow (2.4)$$

$$F_{N+1}(N) = -(\mu_1 \cdot \mu_2) F_{N}(N) + \psi F_{N}(N-1) \longrightarrow (2.5)$$
where $F_{n}(1) = 1$ $0 \le 1 \le N$

Let P(x, be the steady state distribution

$$\lim_{m\to\infty} \mathbb{P}_{m}(n) = \mathbb{P}(n)$$

Let $F_{\chi}(n)$ be the probability generating function (p.g.f.) of $F_{\chi}(n)$ defined as

$$\mathbb{E}(\mathbb{E}_{+}) = \mathbb{E}_{\pm}(\mathbb{E}) = \sum_{m=0}^{\infty} \mathbb{E}_{\mathbb{E}}(n) \mathbb{E}^{n}$$

Taking the pages, of equation (2.1) to (2.5). For this we multiply the equation by z^{th} and taking summation from 0 to ∞ for a and using $\frac{(1+x)}{x}z$ s, we get

$$\sharp$$
 \cong r \leq $(N-2)$ \longrightarrow (2.5)

$$-\psi \mathbb{P}_{z}(N-2) + (\mathbf{s} + \psi \cdot \phi_{z}) \mathbb{P}_{z}(N-1) - (\mu_{1} + \mu_{2}) \mathbb{P}_{z}(N) = 1/z \longrightarrow (2.9)$$

These equations (2.5) to (2.10) can be written as in γ the matrix form

$$\mathsf{Pr} = \left[\; \mathsf{S}_{1,2} \; \mathsf{S}_{3,1} \; \ldots \; \mathsf{S}_{3,N} \right]' \qquad \longrightarrow (3.11)$$

Where 4 is a real tridiagonal (N+1)x(N+1) matrix, F is a column vector of order (N+1)x1 and $\mathbf{S}_{i,j}$ is the Krinzikar dolta defined as

l	-								
Z	0	0	0	•	•	•	0	$(\mu_1^{+}\mu_2^{-})$	(s+\mu_1+\mu_2)
(N-1)	0	0	0	•	•	•	$(s+\psi+\phi_1+\phi_2) - (\phi_1+\phi_2)$	$(s+\psi+\phi_1+\phi_2)^{-(\mu_1+\mu_2)}$	s) m-
2)							p1+02)	À+8)	
(N-2)	0	0	0	٠	•	٠	b+m+s)	2	0
•		•		•	•		•		•
٠	•		•	•	•	•	•	•	•
•	• 7	•	•	•	•	•	•	•	•
61	0	$(s+\psi+\phi_1+\phi_2) - (\phi_1+\phi_2)$	$(s+\psi+\phi_1+\phi_2)$		•		0	0	0
- -1	- \$	(s+w+ф1+¢	*	• ,	•	•	0	0	0
0	φ- (γ+s)	~	0	•	•		0	0	0
	0	-	Ŋ	•	•		(N-2)	(N-1)	z
						A(s)			56
		٠					* *		

and
$$\nabla$$
 of $\left[\Gamma_2(0) - \Gamma_2(1) \right]$

Them equation (2.11), using Gramer's Rule F₂(n) are explicitly determined as

$$P_{\pm}(n) = \frac{|A_{n+1}(s)|}{|A(s)|} \qquad C \leq c \leq N$$

Where $A_{n+1}(s)$ is obtained from A(s) by replacing the $(n+1)^{-\frac{t}{12}}$ column of A(s) by the right hand side of equation (2.11) and |A(s)| is the determinant of A(s).

Applying some row and column transformations on |A(s)|, it has be expressed as L|D(s)| is a real symmetric, tidiagonal matrix of order (N(s)).

						½	7
z	.				a	$\sqrt{\phi_{N-1}}\psi$	$s + \phi_N + \psi_{N-1}$
(N-1)		*			2	明+ 今+ 第 N-1 1 N-2	$\sqrt{\phi_{N-1}\psi_{N-1}}$
\(\hat{\sigma}\)_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		•	*	•		- 40N-2WN-2 =+0+ + WN-2 1 VN-1WN-1	,
						1	
			*				
	*	*	•				
м	0	- 1 02 W2	z			ä	. "
Ŋ	+40 7 1 1 1	$s + \phi_2 + \psi_1 - \sqrt{\phi_2 \psi_2}$.				•	*
i	$= +\phi_1 + \psi_0$	$-\sqrt{\phi_1 w_1}$	u u	*		•	•
	<u></u>	Ø					
	*******	1.4	•)(s)=		(N-1)	Z

|D(a)| is a polynominal of degree N is a.

The roots of $|\mathbb{D}(s)|$ are the agatives of the digervalues of the matrix $\mathbb{D}(0)$. The matrix $\mathbb{D}(0)$ is a positive definite symmetric tridiagonal matrix. Therefore, it is well habour that the eigenvalues are positive and distinct. Hence the solution of the polynominal |A(s)| are real, negative and distinct. Let α_k (keC.1,2,..N) be the soctal of |A(s)| with α_0 then

$$\{A(S)\}$$
 = $\sum_{k=1}^{N} (S-\alpha_k)$

wyw. Praviro

$$F_{\lambda}(n) = \frac{\left| A_{n+1}(n) \right|}{n}, \quad 0 \le n \le N$$

$$= \prod_{j=1}^{n} \left(s - \alpha_j \right)$$

This living the right hand side of $F_{\chi}(a)$ into partial describes, relating a b. (1/a)/z, using initial conditions and there in Leafficient of x^{μ} , we can find but the value of $F_{\chi}(a)$. It will be brunded for $\{1/\alpha, 1/\alpha, 1/\alpha\}$

By sain, CROWT influence package, which is developed at Royal Military College, Carada by Mili. Chauchary (1792), who was got the roots $\alpha_{\rm R}$ (170,1,2,...) of [A(a)] of malical line characteristics equation of Pist. Too large N we make use of IMSL package which require much large memory. Therefore, and might be Force to use the main France computer for greater foreign. For large N (i.e. N>200).

25 CONCLUSIONS :

Deponition of the discussed a discrete time obtained its branched splittin. Numerical Despirations for an action and chained not for review particular custom. The discrete time access as a very important for application purpose, in same this access of recast it has largely been ignored, particularly when their transitant solutions are needed. This work is that sense given aspects to the analysis of discrete time models with helperogeneous servers.

CHAPTER 3

DISCRETE TIME TRANSIENT SOLUTION FOR A FIRST PASSAGE TIME DISTRIBUTION IN QUEUEING THEORY

3.1 INTRODUCTION:

This chapter provides councient solution in discrete time for a first-passage time distribution in Turusing Theory under arbitrary initial condition and finite waiting space. Next of the Clearing Theory literature concentrates on finding the process to have been done to evaluate the transient solutions. Evan at times steady state solutions are difficult to compute. Chaudhry M.L., Agarwal M., and Templeton J.G.C. (1771) have robuly concentrated on this using the technique of scale. Table, attempts at finding transient solutions can be selected. In Texase 1. (1762) and Morea F.M. (1758). Morea of these are computational difficulties with their spincies.

How with has increased skill semileble in Tunquistions with the use of computers, researchers especially in Conguter Science have started looking for instablent solutions and easy to compute closed form solutions. Decently, Sharma O.P. and Dass S.(1938) have provided translant solutions to a class of Markovian models in Gueueing Theory. However, they did not concentrate on the

computational difficulties of finding the locks of miger values if the met.ides involved are large.

chick similar results in discrete tile for finite writing apace printens in The leng Treory. As the transiest solution is not independent of the initial state of the system it is interesting to know its effect on the system's behavior. Firther, sime eystems may not exist long enough to reach their oteaty state.

There are general eyeress which operate at discrete times see Noteyeshi H.(1987) As a result, it becomes important to study them. In such cases events are clock controlled.

midel the Che Diver passage blue distribution to a absorbing state given his initial state. Buth problems occur not endy in Justicial state. Buth problems occur not endy in Justicial state. Buth problems occur not endy in Justicial Theory but also in Bio-Boience and now in Justicial Theory but also in Bio-Boience and now in Justicial Tolerate. We give allosed Fion solution to this class afternoons and results are computed awar noon the matrices in Mississipped and results are computed awar noon the matrices in Mississipped. It is also shown, how the results for the continuous case can be obtained. Interesting snalogy exists without the discrete-time models and their continuous—time continuous—

never been shown before.

Feeding presented in this chapter Further intry the treatment given by Theodies / This. Rape Frit. Templeton D.S.I. (1791). It is worth noting, though continuous-time raddle are particular cases of discrete time rodels, yet this area of research has remain regiscited except some feeble although wade by Fry.

3.2 ASSUMPTIONS:

- it The geome consists of finite valuing space:
- I. Interarrival and service probabilities are dependent on the state of the system.
- u. Interaccipal and service time distributions are govern in the integrandant of time.
- 4. Camba disciplina in fictivia-fi. si-con (FIFO).

3.3 NOTATIONS -

- X_{ij} , such that the project is the system of apart κ .
- ho s size of how quals (nextern).
- $\lambda_{p_{i}}$, into Eyerbes.
- \mathcal{M}_{p} , hereize probability when \mathbf{n} -customers are in the system.
- $\psi_{\tau_i} = \lambda_{i,i} \left(1 \cdot \mu_{i,i}\right)$.
- # 1 H (1-2)
- h . absorbing barrier (h≥0) (h<n).

3.4 ANALYSIS OF THE MODEL :

Let N_{χ} be the number of clateract in the system at discussive time upont k. Then N_{χ} , $k\geq 1$ is an integer valued given at attachment process taking values $(t, tot), \ldots, N)$. N_{χ} , $(t \leq 1)$, indicating that the edge n inequals in the eyeten at discussive time upont k. When a customer and two or inequals additionable time specific process occurs. The process M, behaves as a discretic line for N process and represents the state of the system.

n at the deginning of the $e^{\pm ih}$ equal as $P_n(n)$

3.5 BACKWARD FIRST TIME-DISTRIBUTION ANALYSIS:

Dissidering the case for the elepsed time sict m_s the following difference equations bey be ensity written before two changes in Sor the Siret time reaches in

$$\mathbb{F}_{n^{-1}}$$
 and \mathbb{F}_n and \mathbb{F}_n is $\mathbf{\phi}_{n+2}$ in \mathbb{F}_n (n-1) in $\mathbf{\phi}_{n+2}$ in \mathbb{F}_n (n-2) \mathbb{F}_n (n-2)

$$P_{n+1}(N) = P_{m}(N) + \phi_{N-1}(N) + \phi_{N-1} P_{m}(N-1)$$
 (3.4) where $\lambda_{N} = 0$ and $P_{0}(1) = 1$, $1 \le i \le N$.

let P(n) be the stead, state flat, ib. Lieb, i.e.

$$\frac{1}{m} = \frac{1}{m}$$
 $\frac{1}{m} = \frac{1}{m}$ $\frac{1}$

If such a distribution exists, it is inique, initying (U.S.) to (U.S.) to (U.S.) to (U.S. Stationary case, as got

Let F_g it; here the probability gardeding function for LeFined as

$$\mathbb{C}(z,r) = \mathbb{F}_z(n) + \mathbf{\Sigma}_{m=0}^{\mathbf{o}} + \mathbb{F}_{m}(n), \qquad |z| \leq 1.$$

Taking the pagefoof equations (1) to (4), we have

$$A_{k} = \begin{bmatrix} \delta_{kh} & \delta_{k(h+1)} & \cdots & \delta_{kN} \end{bmatrix} \longrightarrow (0.15)$$

Proces A is a rest tri-diagonal (N-h+1)x(N-h+1)

matrice, T is a column vector and $\boldsymbol{\delta}_{\{i\}}$ is the Kronbeker delta defined as

Isolity and itempolar was have A(e) -

From equation (3.5), using Gramer's rule $\mathcal{P}_{_{\mathbf{T}}}(\beta)$ are explicitly determined as

$$P_{Z}(n) = \frac{\left|A_{n-h+2}(s)\right|}{\left|A(s)\right|}$$
 $h \le n \le N$

the (a $^{n+1}$) is obtained from A(s) by replacing the (a $^{n+1}$) is the determinant of A(s).

Fig. 1/10G some for and column transformations on |f(z)|, it may be ampressed as z|D(s)|, where D(s) is a real, synthetric, tri-diagonal matrix of order (N-h) x (N-h).

	0	٥	8	ä	-4WN-1 WN-1	S+Ø+W-1
	z				-14N-24N-2 5+WN-1+4N-1 -14N-14N-1	-4WN-1WN-1
		2			-1 WN-2 WN-2	
	•			•	•	
		-1wh+24h+2			ď	•
D(s) ==	$-4w_{h+1}\phi_{h+1}$	5+4+1+4+2 -14h+24h+2.	=	•		
Specifically.	1 + 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	-1 Wh+1 Ph+1		#		•
Spec	Ť.	7				

To an internal control of the contr

|D(s)| is a polynomial of degree (N-h) in s. It may be noted that the roots of |D(s)| are the negatives of the digen values of the matrix D(0) .

It has be observed that D(0) is a positive definite, symmetric friediagonal matrix. It is well known that its eigen values are positive, real and distinct. Thus, the roots are bully polynomial |A(s)| are real, negative and distinct (one not in zero). Let α_k (k=0,1,2,..., N=h) be the roots of |A(s)| with

$$| \triangle(s) | = s \pi \frac{N-h}{k=1} \langle s - \alpha_{R} \rangle,$$

ind haniu

$$\frac{1}{2} \frac{\partial_{n-j+1}(s)}{\partial n} = \frac{1}{n} \frac{\partial_{n-j+1}(s)}{\partial n}$$

Resolving the right hand side of $P_{\rm g}(n)$ into partial fractions and replacing a by $(1-\pi)/\pi$, using initial conditions and comparing the coefficients of $x^{\rm m}$, we get

$$\Gamma_{\rm c}({\rm kh})$$
 with π $\pi_{\rm c}=\pi$ $\phi_{\rm c}=1$ $\Sigma_{\rm k=1}^{\rm M-h}$ $\Gamma_{\rm kh}$ (if $\alpha_{\rm k}$) $\Gamma_{\rm c}$

$$F_{n}(n) = n \frac{1-1}{r=n} \phi_{r+1} \sum_{k=1}^{N-n} a_{kr} (1+\alpha_{k})^{n} , \quad \text{in } (n < s)$$

$$F_{in}(n) = \Sigma_{i=1}^{N-n} a_{in} (1+\alpha_{in})^{m}$$
, $n=1$

$$T_{in}(...) = \pi_{i+1}^{n-1} \psi_{i+1} \Sigma_{k+1}^{N-h} \Xi_{kn} (1+\alpha_{k})^{m}, \quad i \leq n \leq N$$

$$\frac{C_{N-1}(\alpha_{k})}{\alpha_{k} \pi_{k}^{N-h}(\alpha_{k}^{N-a})}$$

$$\frac{C_{N-1}(\alpha_1)}{\alpha_1} \frac{D_{n-1}(\alpha_2)}{(\alpha_1 - \alpha_3)} \qquad \text{for and } c$$

$$\frac{C_{\text{total}}(\alpha_{1}) \cdot D_{\text{total}}(\alpha_{1})}{\alpha_{1} \cdot n_{j=1 \times k} \cdot (\alpha_{k} \cdot \alpha_{j})} \qquad \qquad n = 1$$

$$\alpha_{kn} = \frac{C_{N,n}(\alpha_k) D_{k-1}(\alpha_k)}{\alpha_k \pi_{j+1+k}^{N-1}(\alpha_{k-1})} + 1 \le n \le N$$

with D is and D (a) being the determinants obtained by the boldom light and Lop left (n x n) Equare matrices follow from A(b) such that

$$\{\text{Timily}\}$$
 is $C_{N-N+1}(s) = D_{N-N+2}(s)$

(15 M) is remarked that For the probabilities $F_m(n)$ (15 M), he remain bounded, $|1+\alpha_1|$ (11 April 15 true if $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 11. Under this condition, the sum of the absolute values of the plements in each row of the matrix D(0) is less than I and hence from Gerschgorin's theorem $|\alpha_k|$ (1. Hunter I). (1751) which implies $|1+\alpha_k|$ (1. $C_n(a)$ and $C_n(a)$ may be delocated by the following recurrence relations.

Assuming $C_0(s)=C_0(s)=1$, $C_1(s)=s+\phi_N$, $D_1(s)=s+\phi_N$ and $\lambda_N(s)=s+\phi_N(s)=s$

$$C_{i}(s) = (s - \psi_{N+1-i} + \phi_{N+1-i})C_{i-1} - \psi_{N+1-i} \phi_{N+2-i}C_{i-2}$$

$$2 \le i \le N - 3 + 1$$

$$\sum_{i=1}^{n} (e^{-\psi_{h+i-1}} \psi_{h+i-1}) D_{i-1} - \psi_{h+i-2} \psi_{h+i-1} D_{i-2}$$

$$2 \le i \le N-h+1$$

$$2 \le i \le N-h+1$$

Loin, the standard IMSL package one can find the eiger values and hence the zeros of the polynomial |A(s)|. Find the using the recurrence relations for $C_i(s)$ and $D_i(s)$. $C_i(s)$ can easily be evaluated.

Laing IMBL to find eigen values for large N would eigen buch larger manory, hence for greater precision for large N (N>200) one might be force to use the Main Frame Computer. To find eigen values or characteristics roots for large N, we make use of IMBL package, which require much is go accounty. Therefore, one might be force to use the mainframe computer for greater precision for large N. (i.e. M>200). The eigen value or characteristics roots on also be obtained by using DROOT Software Package developed at RMC, Canada by Daudhary M.L. (1992). Therefore, some comment on DROOT will be in order. The accuracy of the roots by GROOT given by [Aim.) < 10⁻¹⁴ is not sufficient for the problems under consideration because of the recurrence cludions involved in finding the roots and the probabilities [Aim.). However, if it is increased, it takes lot more time

and still the accuracy is not sufficient to meet the requirements. We faced no problems using IMSL as far as accuracy goes, however the problem is with the memory when N is very large. IMSL proves better then GROOT for the problem considered in this paper.

Since $(:+\infty_k)^m$. ->0 as m $->\infty$, the steady state distribution P(n) is given by

$$P(h) = 1$$

$$P(n) = 0$$
, $(h+1) \le n \le N$

See appendix for illustration. Besides, it may be remarked that the solution presented here is expressed as the sum of two parts, one pertaining to the steady state and the other to the transient state.

3.6 IMPORTANT PERFORMANCE MEASURES:

Using closed from expressions for $P_m(n)_+$ some important measures can be analytically and numerically derived.

Expected number of customers in the system (for fixed i) $E(X_n) = Z_{n=0}^N + P_m(n)$

2. If $f_{\rm in}$ denotes the number of customers present in the queue (excluding the customers receiving service)

$$P_{m} = \sum_{n=h+r}^{N} (n-r) P_{m}(n)$$

3. Frobability that the system state is greater than a given number < is given by (c≥h)

$$\mathbf{\Sigma}_{n=c}^{N} \mathbf{P}_{m}(n)$$

4. Relamption time which is a measure of length of time required for the system to settle down to its steady state condition is defined, Morse P.M. (1958), as $\frac{N}{RT} = -1/\frac{min}{n+1} \left(-Re\left(\alpha_i\right)\right)$

If m > RT.

$$F_{n}(n) = P(n), \forall n$$

3.7 GENERAL CASE :

So far initial queue size has been assumed to be fixed and equal to 1. It implies that the initial probability vector can contain 1/z in any one place only. We now consider a deneral case of this problem, where there can be more than one non-zero elements in the initial probability vector. The probability $O_{n}(n)$ (n=h.h+1,...N) (probability of a customers at epoth is irrespective of the state of the system) may be defined as

 $G_m(n) = \sum_{i=1}^M P_m(n,i) P_Q(i), \quad h \le n \le N$ where $P_m(n,i)$ is $P_m(n)$ for a given i and $P_Q(i)$ is the initial A probability.

3.8 CONTINUOUS TIME CASE :

Letting $\lambda_n = \lambda_n \Delta + O(\Delta)$, $\mu_n = \mu_n \Delta + O(\Delta)$, m=t and m+1=t+ Δ in equations (3.1) to (3.4), the difference equations in m can be transformed to differential equations in t. The transformed equations can be solved for continuous—time probabilities. Alternatively, the roots α_k of the polynomial |A(s)| are transformed to α_k ' Δ . It may be noted that $(1+\alpha_k)^{\Delta}$ tends to $e^{\alpha k}$ in continuous time where t is divided into m subintervals of length Δ such that $t=m\Delta$. Treating λ_n and μ_n as interarrival and service rates respectively, one gets the transient solutions for continuous—time model. ϵ may be treated as the transform parameter in the continuous case. Right hand side of (3.5) will have 1 in the ith place.

3.9 FORWARD FIRST PASSAGE TIME :

Next we consider the absorbing barrier on the maximum queue size, we may write the difference equations as $P_{m+1}(O) = P_m(O) = -\psi_O P_m(O) + \phi_1 P_m(1)$

$$P_{m+1}(n) - P_{m}(n) = -(\psi_{n} + \phi_{n})P_{m}(n) + \psi_{n-1}P_{m}(n-1) + \phi_{n+1}P_{m}(n+1)$$

$$1 \le n \le N-2$$

$$P_{m+1}(N-1) - P_{m}(N-1) = -(\psi_{N-1} + \phi_{N-1})P_{m}(N-1) + \psi_{N-2}P_{m}(N-2) P_{m+1}(N)$$

$$P_{m+1}(N) - P_m(N) = \psi_{N-1} P_m(N-1)$$

where $\mu_0 = 0$ and $P_0(i) = 1$. $0 \le i \le N$

Proceeding as above the steady state probabilities may be given as

$$F(i) = 0 \qquad 0 \le i \le N-1$$

The crobabilities $P_{m}(n)$ may be expressed as

$$F_{m}(n) = n \frac{1-1}{r+n} \varphi_{r+1} \Sigma_{k=1}^{N} a_{kn} \left(1 + \alpha_{k} \right)^{m} \quad , \quad 0 \le n \le i$$

$$P_{\mathbf{m}}(\mathbf{n}) = \mathbf{\Sigma}_{\mathbf{k}=\mathbf{T}^{\mathbf{n}}\mathbf{k}\mathbf{n}}^{\mathbf{N}} + \mathbf{n} = \mathbf{i}$$

$$P_{m}(n) = n \frac{n-1}{r=i} \psi_{r} \sum_{k=1}^{N} e_{kn} \left(1 + \alpha_{k}\right)^{m}, \quad i < n \le N$$

$$F_m(h) = 1 + \pi \frac{N-1}{r-1} \psi_r \Sigma_{k=1}^N \alpha_{kN} \left(1 + \alpha_k \right)^m$$

$$a_{kn} = \frac{c_{N-1} (\alpha_k) D_n (\alpha_k)}{\alpha_k n_{j=1=k} (\alpha_k - \alpha_j)}, \quad 0 \le n \le i$$

$$a_{kn} = \frac{c_{N-1}(\alpha_k) D_n(\alpha_k)}{\alpha_k n_{j+1} a_k(\alpha_k - \alpha_j)}, \quad n = i$$

$$\frac{a_{kn}}{a_{kn}} = \frac{\frac{M-n}{(a_{k})} \frac{D_{i}(a_{i})}{D_{i}(a_{i})}}{\frac{a_{kn}}{a_{kn}} \frac{D_{i}(a_{k})}{a_{kn}}}, i < n < N$$

$$\frac{D_{i}}{a_{kn}} \frac{a_{kn}}{a_{kn}} \frac{D_{i}(a_{kn})}{a_{kn}}$$

$$\frac{D_{i}}{a_{kn}} \frac{a_{kn}}{a_{kn}} \frac{D_{i}(a_{kn})}{a_{kn}}$$

 $\mathcal{C}_{n}(s)$ and $\mathcal{D}_{n}(s)$ are as defined earlier.

3.10 :- CHANNEL BUSY PERIOD :

We define i-channel busy period (O<i≤N) to begin with an arrival to the system at an epoch when there are (i-1) customers in the system to the very next epoch when there are adain (i-1) customers in the system. Assuming \(\lambda_n \) and \(\mu \) to be the interarrival and service probabilities respectively, when there are \(n \) customers in the system, the following difference equations may be written

$$P_{m+1}(i-1) - P_{m}(i-1) = \phi_{i}P_{m}(i)$$

$$P_{m+1}(i) = P_{m}(i) = -(\psi_{i} + \phi_{i})P_{m}(i) + \phi_{i+1}P_{m}(i+1)$$

$$F_{m+1}(n) = F_{m}(n) = -(\psi_{n} + \psi_{n})P_{m}(n) + \psi_{n-1}P_{m}(n-1) + \phi_{n+1}P_{m}(n+1)$$

$$i \le n \le (N-1)$$

$$P_{m+1}(N) - P_m(N) = - MP_m(N) + W_{N-1}P_m(N-1)$$
 where $N_N = 0$ and $P_0(i) = i$

The solution to these equations can be obtained as before with heirf and helmi. It may be noted that $P_m(i-1)$ and $\phi_i P_m(i)$ are respectively the probability distribution and probability mass function of the busy period.

3.11 NUMERICAL RESULTS:

de give below the numerical results for both the discrete and continuous cases for each of the models discussed above. For the sake of convenience, results for

only moderate values of N are given though there were no $\mathbf{p}_{\mathbf{r}}$ oblight even for large values of N.

Case (1) Backward First Passage Time

Discrete case

Assume r=6. N=20, λ =0.8, μ =0.15. m=10, i=4.5.6,...,20, h=4 (h≤i≤N) and P₀(i) = 1/17. Table 3.1 gives the probabilities P_m(n) for different i (i=4,5,...,20). the unconditional probabilities $Q_m(n)$ and the steady state probabilities P(n). The last two rows give the values of $E(X_m)$ and $E(Y_m)$. For i=20, the time to reach steady state is m = 700 which is >> RT = 47.

Continuous Case

Assume r=6, N=20, $\lambda=0.8$, $\mu=0.15$, t=10, $i=4.5,6,\ldots,20$, h=4 (h $\leq i\leq N$) and $P_O(i)=1/17$. Table 3.2 gives the probabilities $P_O(t)$ for different $i=(i=4,5,\ldots,20)$, the unconditional probabilities $Q_O(t)$ and the steady state probabilities p(n). The last two rows give values of $E(X_m)$ and $E(Y_m)$. For i=80, the time to reach steady state is t=900 which is >> 0.7=86.

Case (11) Forward First Passage Time

Discrete Case

Assume r=6. N=16. λ =0.8, μ =0.15, m=10, i=0,1.2...,16 and $F_0(i)$ =1/17. Table S.S gives the probabilities $f_m(n)$ for different i (i=4.5,...,20), the unconditional probabilities $G_m(n)$ and the steady state

probabilities P(n). The last two rows give values of $E(X_m)$ and $E(Y_m)$.

Continuous Case

Assume r=6. N=16, λ =0.8, μ =0.15, t=10. i=0.1.2,....16 and $P_0(i)$ =1/17. Table 3.4 gives the probabilities $P_n(t)$ for different i (i=4.5,...,20), the unconditional probabilities $Q_n(t)$ and the steady state probabilities P(n). The last two rows give values of $E(x_m)$ and $R(x_m)$.

Case (111) i-channel busy period

Assume r=6. N=20, λ =0.3, μ =0.15, m=10. i=5.6. Table 3.5 gives the probabilities $P_m(n)$ and the steady state probabilities.

3.12 CONCLUSIONS :

We have discussed a discrete-time Markovian model Geom(n)/Geom(n)/r/N for a first passage problem and obtained its transient solution. Numerical computations have been carried out extensively for the backward and forward first passage models and also for i-channel busy period which is a particular case of backward first passage time model. Computations have also been carried out for their counterpart in the continuous time. The discrete-time models are very important for application purposes such as Computers, it seems this area of research has largely been ignored

particularly when the transient solutions are needed. This study in that sense gives impetus to the analysis of discrete time models. An analogy is also established between the discrete and continuous time models. Such an analogy has not been illustrated before. Finally the accuracy of the eigen values/roots that is needed in the kind of problems under study is very very large because of the recurrence relations involved in computing the probabilities.

Table 3.1 : Probabilities Pa(n), P(n) and means for Geom(n)/Geom(n)/r/N with r=6, N=20, λ =0.8, μ =0.15, i=4,5,6,...,20, h=4 (h<ii>SN)' and $Q_m(n)$ with $P_0(i)$ = 1/17

or designation of the state of	The state of the s				Secure and the second security of the second second	Constitution and the second se	***************************************	
<u>-</u>	‡	ഗ	í	877	10	20	Q m (n)	P(n)
7	1.0000	0.5507	0.3163	0.0000	0.000	0.0000	0.1217	1.000
rO	0.0000	.136	187	.000	.000	.00	.037	
9		.208	.302	.000	.000	00.	.071	00.
~	0.0000	.079	.137	.000	.000	00.	.062	
က	0.0000	0.0204	0.0444	0.0000	0.0000	0.0000	0.0597	0.000
တ		.003	.010	.000	.000	.00	.059	00.
	00.	.000	.001	.000	.000	00.	.058	00.
	80.	.000	.000	.000	.000	00.	.058	00.
12	00.	.000	.000	.002	.000	.00	.058	00.
ET Ta	00.	.000	.000	.011	.002	00.	.058	00
14	8.	.000	.000	.042	.011	00.	.058	00
15	00.	000.	000:	.103	.042	.01	.058	00
9	ς.	.000	.000	.202	.110	.04	.058	00
17	80.	.000	.000	.255	.203	12	.056	00
130	000.	000:	000	.213	.261	.23	051	0
<u>ა</u>	000	0	.000	.116	.229	31	041	00
	00000	000.	.000	.047	00	26	.027	00
Sum	1.0000	1.0000	1.0000	1.0000	1.0000	.000	.000	
E (X)	4.0000	4.8954	5.4449	15.9809	17.8967	18.5685	11.1196	4.0000
田(八国)	0.0000	0.1335	0.2648	10.9809	11.8967	12.5685	5.3999	0.0000
	-							
house some some some interest	CAN THE OTHER PROPERTY OF THE	THE STREET, STATES OF THE STREET, STRE	Annual Control of the	And the second name of the secon	A	The second secon	Constitution of the last of th	The state of the county of the

t=10, i =4,5,6,...,20, and means for Table 3.2 : Probabilities $P_n(t)$, P(n)M/M/r?N with r=6, N=20, λ =0.8, μ =0.15, h=4 (h≤i≤N) and $Q_n(t)$ with $P_0(i)=1/17$

	\$	ro.	œ	87	100	20	Q, (t)	(c) G
4	1.0000	0.8219	0,6693	0.0018	0.0009	0.0005	0.2459	1,0000
ഹ	000000	0 15	.026	00	0	Č		
9	0.000.0	.023	0.40					00.0
2	00.	700	, 0	,			0.0%	00.0
α	000	100) () (000	00.0	. 002	0.03	0.00
) (700	000	. 009	0.00	700.	0.047	00.0
n -		. C.	.045	.015	0.010	.007	0.046	0.00
		.013	.037	.023	0.016	013	0.053	0,00
(5 6	.014	.028	.034	0.026	.021	0.05	0.00
		.010	.019	.049	0.038	033	0.056	0.00
ლ :	0.0000	0.0064	0.0131	0.0654	0.0557	0.0501	0.0568	0.000
		.003	.008	.082	0.075	070	0.056	0.00
15		.002	.004	199	0.095	092	0,055	0.00
9	000	.001	.002	113	0.115	115	0.054	
17	0000.0	.000	.001	123	0, 131	1 (0)	000	
100	_	.000	000	127	141) (000	
	000	000		1 0	1 (1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	t t	0.049	0.00
) () () (777	ウナイ・ロー	70	0.045	0.000
		000.	000	113	0,136	147	0.041	0.000
Sum	. 000	1.0000	1.0000	000.	.000	.000	000.	
(×) ;;	4.0000	. 628	. 586	15.9648	16.4125	16.6546	10.8242	4.0000
(人)	0.000	0.4879	0.9517	9.9638	10.4150	10.6561	5,3330	0.0000
)		Anna de de la constante de la	dente nasso		Maritin Spec) ;	•

Probabilities $P_{m}(n)$, P(n) and means for Geom(n)/Goom(n)/r/N with r=6, N=16, λ =0.8, μ =0.15, m=10, i=0,1,2,...,16, and a_{m} (n) with P_{0} (i) = 1/17 . დ Table

-	1											-								Dr. Profesion (South	
P(n)	0.0000	Č	č	č	õ	9 0	ŏ	č	òò	òò	òò			00	0.000		0	0000	16.0000	11.0000	
(1) (2)	0.0001	.001	000	0.00	101	0.1567	042	075	061	059	058	057	055	047	033	0.	.084	000		3.5030	
16	0, 0000	.000	000	000	000	0.0000	000.	.000	000	000	000	000	000	000	0.0000	00	1.0000	1.00001		11.0000	ian antonio
13	0.0000	0.	00.	00.	00.	0.000.0	00:	00.	00.	00.	0.	0.4	10	18	20	.12	0.3282	1.00001	4	9.2047	
14	0.0000	.000	.000	.000	.000	0.0000	000	000.	.002	.011	.042	109	201	252	0.2042	0.1916	0.0842	1.00001	33	8.0336	
£/1	0.0002	.003	.026	. 114	.270	0.3448	.203	.032	.003	.000	.000	000.	.000	0	0.0000	0.0000	0.0000	00.	4.6854	0.2799	
1	0.0003	.005	.037	. 144	.300	0.3290	.161	.020	.001	000.	.000	. 000	.000	0.000.0	0.000.0	0000.0	0.0000	.000	4.4840	0.2075	in the second
0	0.0004	0	.05		60	့	23	.01	00	00.	0	00.	00.	0000.0	0.000.0	00000.0	0.0000	1.0000	4.2848	0.1481	• • • • • • • • • • • • • • • • • • • •
/	0		N	m	4	ഹ	9	^	ω (e T	177	ដ	ග :	Sum	(E)	E(Ym)	

for means and t=10, P (n) µ=0.15, P (t), λ=0,8, Probabilities N = 160 11 6 * * With 3,4 M/N/N/N Table

= 1/17

 \dots , 16, and $0_n(t)$ with $F_0(i)$

=0,1,2,

0.0000 0.0000 0000 0.0000 0.000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0,000 0.000.0 4.0560 11.0000 P(n) 1.0000 0.0958 0.0849 0.0578 0.0454 0.0038 0.0184 0.0757 0.0653 0.0088 0.0435 0.0271 0.0356 0.0180 0, (t) 1.0000| 0.000 0.0000 0.0000 0000.0 0.000.0 0.0000 0000.0 0.000.0 0.0000 0.000.0 0.0000 0.000 0.000.0 0.000 0.0000 9.6472 11.0000 16 1.0000 0.0000 0,0001 0.0006 0.0019 0.0042 0.0072 0.0104 0.0148 0.0201 0.0257 0.0305 0.0333 0.0329 0.0210 0.0108 0.0287 0.7576 15 1.0000 0.0003 0.0015 0.0043 0.0600 0.0484 0.0010 5520 0000 0,0153 0.0212 0.0294 0.0389 0.0364 0.0186 8.4257 14 1.0000 0.1048 0.1613 0.1839 0,1650 0.1199 0.0449 0.0824 0.0537 0.0332 0.0194 0.0108 7000 0.0057 0.0029 0.0013 0.0006 0.8278 0.009 O 0.0545 0.1747 0.1619 0.0735 0.0266 0.0147 0.0078 0.0039 1,0000 0.0123 0.0018 0.0008 0.6783 0.0002 0004 0.0657 0.0643 0.0377 0.0209 0.0110 0.0005 0.0002 0.0002 1.0000 0.1869 0.1920 0.1034 0.0159 0.1562 0.0026 0.0012 0.5530 0 E(X, ر. Sum E(Y C

Table 3.5 : Probabilities $P_m(n)$, P(n) for Geom(n)/Geom(n)/r/n for i-channel busy period with r=6, N=20, λ =0.8, μ =0.15, m=10, i=5,6.

10

 \subseteq

i=6

P(n)	1.0000	00	00	00	000	000	000	000	000	000	000	000	000	000	000	0.0000
P _m (n)	0.8524	010	0.18	0.0227	023	020	016	012	900	005	003	002	001	000	000	000
С	വ	ω	~	ထ	ത	0,7	77	12	ლ ლ	14	ហ	16	17	ආ ††	6	20
		reinbart y gurbas v	-	V who a de	,	***********				*******	****				*****	

		- milyaningan nguyaga w	• •							-	,	, *	(v-	1	· C	
												-			-	arregania user
<u> </u>	 	***************************************			-		-									
ر د	0000	0000	0000	000	000	0000	000	0000	000	000	000	000	000	000	000	000
P(n)	1.(30										_	_		- 1
	7	۲- (າ ພ	4	ဖ	in	0	0	0	0		0	0	0	0	0
P (n)	550	ග ල	ဘေ	0	0	000	00	00	00	00	00	00	0	8	00	000
U'	o	o c	00	o		o o										0

CHAPTER FOUR

NUMERICAL COMPUTATIONS OF DISCRETE-TIME SOLUTIONS FOR A MULTI-SERVER QUEUE WITH BALKING AND RENEGING

4.1 INTRODUCTION :

Gueueing Theory litrature mostly concentrates on finding the steady state solutions or approximations. Little seems to have been done to evaluate the transient solutions. Even at times steady state solutions are difficult to compute. Chaudhary M.L. (1791) have mostly concentrated on this. Problem in principle has been to find the roots of a polynominal in a (laplace transform variable). Earlier attempts at finding the transient solutions can be attributed to Takacs L. (1952) and Morse P.M. (1958). However there are difficulties in computations with these methods. Recently Sharma O.P. (1990) have provided transient solutions to a class of Markovian models in queueing theory. However, he did not look into the computational difficulties involved if the matrices are large.

Moreover, no attempt seems to have been made to obtain simplar results in discrete time for finite waiting space problems in queueing theory. As the transient solutions

are not independent at the initial state of the systems, it is interesting to know its effect on system's behaviour. Further, some systems may not exists long enough to reach steady state.

There are several systems, which operate at discrete times, see Kobayashi H. (1983). Therefore, it becomes important to study them. In such cases, events are clock controlled.

In this chapter we analyze a discrete time multi-server queue with balking and reneging given the initial state. We also discuss the case when the initial state is arbitrary. We give closed from solutions to this class of problems in terms of roots of a polynominal in z-transform and results are computed even when the matrices involved are large. It is also shown, how the results in the continious case can be obtained. Interesting analogy exists between the discrete time models and their continous time counterparts. Such as analogy, though simple in nature has not been shown before. Results presented in this chapter further unify the treatment given earlier in E1-2,63.

It is worth nothing, though continous time models are particular cases of discrete time models, yet this area of research has remain neglected. It is in this sense that

this chapter should simulate the study of discrete time models in other areas such as computer science. Finally extensive numerical computations were performed in order to judge the accuracy of the results (see comments on computational aspects). Case of Machine Interference problems is also given.

4.2 ASSUMPTIONS :

- 1. The queue size is finite.
- 2. Inter-arrival and service probabilities "are dependent on the state of the system.
- 3. Inter-arrival and service time distributions are geometric but independent of time.
- 4. Queue discipline is First Come First Serve (FCFS).

4.3 NOTATIONS :

 ${f x}$. Number of customers in the queue at time epoch ${f k}$

M : Makimum queue size.

in the system.

 μ_n : Service probability when n customers are in the system.

T : = (1-4)

0 : 4 (1.e)

44 MODEL ANALYSIS :

We develop a general discrete time Markov model for a finite waiting space queueing system and analyze the effects of customer impatience on its transient behaviour. Impatismore can be due to balking, reneging or both. Balking is the reluctance of a customer to join the queue upon arrival. Henceing is the reluctance of a customer to remain in the queue after toining it and leaving the queue without being serviced. It may be noted that initial number of customers c will not renege because of their immediate entry to the service facility. Still these c customers join the queue with some balking probability. We assume that intermarrival and service times have geometric distributions with parameters and prepectively. An arriving customer balks with probability m/N n=0.1,2,...N. Thus intermarrival probability may be defined as

A customer may renege after joining the queue if he or she decides the decrease waiting time will be larger that can be tolerated. This reneging time is assumed to have a geometric distribution with parameters Ω . Since any one of the (n=c) customers may renege, the reneging probability may be expressed as

0 for
$$0 \le n \le c-1$$

 $(n-c)\Omega$ for $c \le n \le N$

Thus the service probability may be expressed as

$$\mu_n = \left\{ \begin{array}{ll} n\mu, & \text{for } 0 \le n \le c-1 \\ c\mu + (n-c)\Omega & \text{for } n \le c \le N \end{array} \right.$$

Let X_k be the number of customers in the system at discrete time epoach k. Then X_k , $k \geq 0$ is an integer valued discrete stochastic process taking values $0,1,2,\ldots,N$. $X_k = n \ (0 \leq n \leq N)$ implies that there are n customers in the system at epoch k. As and when a customers arrives or leaves, a discontinuity in the stochastic process occurs. Thus the process X_k behaves as a discrete-time Markov process and represents the state of the system.

Denote the probability that the system is in state n at the m apoch as $p_m(n)$ (O \leq n \leq N). The following difference equations may easily be written

$$P_{m+1}(0) = P_{m}(0)(1-P) + P_{m}(1)\mu(1-(\frac{1}{2}) + N)$$
 (4.1)

$$P_{m+1}(c) = p_{m}(c) (1-(N-c)e/N-c)e/N-c+2ce\mu(N-c)/N) + p_{m}(c-1)(1-(c-1)\mu)$$

$$(N-c+1)e/N+p_{m}(c+1)(c\mu+0)(1-(N-c-1)e/N) \longrightarrow (4.3)$$

$$P_{m}(n) = P_{m}(n)(1-(N-n) \in /N - c\mu - (n-c)\Omega + 2(c\mu + (n-c)\Omega) \in (N-n)/N) + P_{m}(n-1)(1-c\mu - (n-c-1)\Omega)(N-n+1) \in /N + P_{m}(n+1)$$

$$(c\mu + (n-c+1)\Omega)(1-(N-n-1) \in /N), \quad c+1 \le n \le N-1 \longrightarrow (4,4)$$

$$(N) = \rho_{m} (A) \left(1 - \epsilon \mu - (N - \epsilon) \Omega\right) + \rho_{m} (N - 1) \left(1 - \epsilon \mu - (N - \epsilon - 1) \Omega\right) \in /N \rightarrow (4.5)$$

with
$$p_{\sigma}(i) = 1$$
. $0 \le i \le N$
Let $p_{\sigma}(n)$ be the popologoup of $p_{\sigma}(n)$ defined as
$$p_{\sigma}(n) = \sum_{m=0}^{\infty} z^{m} p_{m}(n), \qquad |z| \le 1$$

Taking p.g.f. of equations (4.1) to (4.5), we get

where T and O are defined above, and

$$p = \begin{cases} p_{\underline{z}}(0) \\ p_{\underline{z}}(n) \\ \vdots \\ p_{\underline{z}}(N-1) \\ p_{\underline{z}}(N) \end{cases}$$

From equation (4.6), using Cramer's rule, we made termine $\rho_{\mathbf{z}}(n)$ explicitely as

$$p_{\mathbf{z}}(n) = \frac{|A_{n+\mathbf{z}}|}{|A(s)|}, \qquad 0 \le n \le N$$

where A (s) is obtained from A(s) by replacing the thickness column of A(s) by the right hand side in (4.6) and |A(s)| is the determinant of A(s).

We may observe that $|A(s)| = sg_{N}(s)$, where $g_{N}(s)$ satisfies the recurrence relation

$$Q_{n}^{(5)-(5+T)} + Q_{n-n+4} + Q_{n-4}^{(5)} + T_{n-1+4}^{-} Q_{n-2}^{(5)} = 0,$$

$$1 \le n \le N$$

Wilth g-1(s) = 0 and $g_0(s) = 1.$

 $g_{_{\mathbf{N}}}$ (s) may also be expressed as the determinant of NkN real symmetric matrix g(s) as

The zeros of $g_N(s)$ are the negatives of the eigenvalues of the matrix g(0), g(0) is a positive definite symmetric tri-diagonal matrix. Hence its eigen values are real, positive (>0) and distinct. Hence the roots of $g_N(s)$ are real, negative and distinct. Let $\alpha_1, \alpha_2, \ldots, \alpha_N$ be the roots of $g_N(s)$. Thus,

$$p_{\alpha}(n) = \frac{\left|A_{n+1}(s)\right|}{N} \quad 0 \le n \le N$$

$$s \prod_{i=1}^{n} (s-\alpha_{i})$$

Resolving the right hand side of p (n) into partial fractions, replacing s by (1-z)/z and comparing the coefficients of z^{m} we have

Case I

$$b_{n} + \frac{i!}{n!} \mu^{4-n} \times_{n} \sum_{k=4}^{N} \hat{q}_{kn} (1-\alpha_{k})^{m}, \qquad 0 \le n \le i$$

$$p_{m}(n) = b_{n} + \sum_{k=4}^{N} \hat{q}_{kn} (1-\alpha_{k})^{m}, \qquad n = i$$

$$b_{n} \rightarrow \frac{(n-1)!}{(n-n)!} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{n-2} \right) \prod_{j=1}^{n-4} \left(\frac{1}{2} - \frac{1}{2} \mu \right) \sum_{k=4}^{n} a_{k} \left(\frac{1}{2} - \alpha_{k} \right)^{m},$$

 $i < n \le c$

where

$$X_{n} = \prod_{j=n}^{n} (1 - \epsilon + (j+1)\epsilon/N)$$

Case 11

For csis N

$$b_{n} + \frac{(c-1)!}{n!} \sum_{k=1}^{c-n-1} \frac{(-c+1)!}{k^{2}} (\mu n) + (i-c+1-k \mu n).$$

$$\sum_{k=1}^{n} a_{kn} (1-\alpha_{k})^{m}, \qquad 0 \le n \le c-1$$

$$\lim_{n \to \infty} \frac{1-n}{k=4} \left(c\mu + (1-c+4-k)\Omega \right) \times \sum_{n=4}^{n} a_{kn} \left(1-\alpha_{k} \right)^{m}, \quad c \leq n < 1$$

$$b_n + \sum_{k=1}^{N} a_{kn} (1-a_k)^m$$
, $n = i$

$$\frac{E_{n} + \frac{(n-i)!}{(N-n)!} (e/N)^{n-i}}{\sum_{k=i}^{n} (1-(c\mu+(k-c)\Omega))} \prod_{k=i}^{n-i} (1-(c\mu+(k-c)\Omega)).$$

$$\sum_{k=i}^{n} a_{kn} (1-\alpha_{k})^{m}, \qquad i+1 \le n \le N$$

where a 's are defined as

$$\frac{C_{N-4}(\alpha_k)D_n(\alpha_k)}{N}, \qquad 0 \le n \le i$$

$$\alpha_k \prod_{j=4}^{m} (\alpha_k - \alpha_j)$$

$$= \sum_{k=1}^{m} (\alpha_k)D_k(\alpha_k)$$

$$= \sum_{k=1}^{m} (\alpha_k - \alpha_k)$$

$$= \alpha_k \prod_{j=4}^{m} (\alpha_k - \alpha_j)$$

$$= \alpha_k \prod_{j=4}^{m} (\alpha_k - \alpha_j)$$

with C (s) and D (s) being the determinants obtained by the bottom right and top left (nxn) square matrices formed from A(s) such that

$$|A(s)| = C_{N+s}(s) = D_{N+s}(s)$$

 $C_{\mathbf{n}}^{-}(\mathbf{s})$ and $D_{\mathbf{n}}^{-}(\mathbf{s})$ may be determined by the following recursive relations

$$C_{n}(s) = (s+0) + T_{N-n+1} + T_{N-n+1} + C_{n-1}(s) + T_{N-n+1}(n-1) + C_{n-2}(s),$$

$$1 \le n \le N+1$$

with $C_a(s) = 1$ and $C_{-1}(s) = 0$

$$D_{n-1} = (s+0) + r_{n-1} + r_{n-1} = D_{n-1} = (s) + r_{n-2} = D_{n-2} = (s),$$

$$1 \le n \le N+1$$
with $D_{n}(s) = 1$ and $D_{n-1}(s) = 0$
and
$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 - (i-1)\mu)$$

$$1 + \sum_{n=1}^{\infty} N_{n} (c/N\mu)^{n} = \frac{1}{1} (1 -$$

It may be remarked that for probabilities $p_m(n)$ to remain bounded $\left|1+\alpha_k\right|<1$, which is true if $2+\tau_{k-1}<1$. Under this condition, the sum of the absolute values of the

plements in each row of the matrix D(O) is less than 2 and hence from the Gerschoorin's theorem $|a_k| < 2$ (see Hunter J.J. (1983)), which implies $|1+a_k| < 1$.

Using IMSL package, we can get the eigen values(roots) of $g(0)(g_N(s))$. The routines of this package are quite efficient and produce results to a high degree of accuracy, even when the matrix size is large (>50).

Since $(1+\alpha_k)^m \to 0$ as $m\to\infty$, the steady state distribution of ρ_m (n) may be defined as

$$p(n) = \lim_{m \to \infty} p_m(n) = b$$

$$0 \le n \le N$$

It may be noted that the values of $\rho_m(n)$ have been expressed as the sum of two expressions, one pertaining to the steady state and the other pertaining to the transient state.

!mportant Performance Measures :

Using explicit expressions for $p_{\mathbf{m}}^{-}(n)$, some important neasures can be defined as under (for fixed i)

1. Mean number of customers in the system at epoch m ${\bf N}$

$$\mathbb{E}(X_{\mathbf{m}}) = \sum_{n=0}^{\mathbf{r}} n \, \rho_{\mathbf{m}}(n)$$

2. Mean number of customers in the queue (excluding those in service) at epoch m

$$\mathbb{E}(Y_{\mathbf{m}}) = \sum_{\mathbf{n}=\mathbf{c}}^{\mathbf{N}} (\mathbf{n} - \mathbf{c}) \, p_{\mathbf{m}}(\mathbf{n})$$

Probability there are r or more customers in the system at epoch m

$$\sum_{n=r}^{N} \rho_{m}(n)$$

4. Probability all servers are busy at epoch m

$$E(2_{\mathbf{m}}) = \sum_{\mathbf{n}=\mathbf{c}} p_{\mathbf{m}}(\mathbf{n})$$

Relaxation Time (RT) (a measure of the length of time required by the system to settle to its steady state EMorse P.M. (1958)]) may be defined as

$$RT = \frac{1}{\min_{i \in \mathcal{A}_i} (-\infty_i)}$$

If m >> RT then $p_m(n) \approx p(n)$

6. The probability of balking at epoch m

$$E(A_{m}) = \sum_{n=0}^{N} (n/N) \rho_{m}(n)$$

7. The probability of waiting up to epoch m in the queue by those joining it

$$E(B_m) = \sum_{n=c+1}^{N} (1-n/N) \rho_m(n)$$

4.5 GENERAL CASE :

So far we have assumed that the initial queue size is fixed and equal to i i.e. 1/2 occurs in only one position in the initial probability vector. This assumption is important when we are interested in the transient solution.

The steady state solution does not depend on the initial probability vector. We now consider a more general case of this problem.

When there are more than one non-zero elements in the initial probability vector. The probability $Q_n(n)$ (n=0,1,...N) defined as the probability of n customers in the system at epoch m irrespective of the state of the system may be defined as

$$Q_{m}(n) = \sum_{i=0}^{N} p_{m}(n,i)p_{a}(i), \qquad 0 \le n \le N$$

where $\rho_{o}(i)$ is the i^{th} element of the initial probability vector and $\rho_{m}(n,i)$ is the probability of number of customers.

4.6 CONTINUOUS TIME CASE :

 $(1+\alpha_k^{})^m$ tends to e_k^m 't in continuous time when t is divided into m sub-intervals each of length θ such as $t=m\theta$. Moreover, parameter s itself may be treated as the transform parameter in continuous time. Right hand side of (4.6) will have 1 in the i^{th} place instead of 1/z.

Treating $\Omega=0$, \in =Ne, (i=0,1.2,...N), b s represent the steady-state probabilities for a geom(n)/geom(n)/c/N machine interference model.

4.7 NUMERICAL RESULTS :

We give below the numerical results for both the discrete and continuous cases for each of the models disscussed above.

Case (1) Balking and Reneging

Discrete Case

Assume C = 5, N = 20, C = 0.5, $\mu = 0.15$, m = 10 $\Omega = 0.005$. C = (1-i/N)C, $\mu = i\mu$, for $0 \le i \le c$, $\mu = c\mu + (i-c)\Omega$ for $C \le i \le N$ and $P_0(1) = 1/21$. Table 1 gives the probabilities $P_m(n)$ for different $P_m(n)$ for different $P_m(n)$ and the steady-state probabilities $P_m(n)$. The last five rows give the values for $P_m(n)$. The last five rows give the values for $P_m(n)$. $P_m(n)$ and $P_m(n)$ and $P_m(n)$. The epoch to reach steady state is $P_m(n)$.

c < i \leq N and p_o(i) = 4/21. Table 2 gives the probabilities p_i(n) for different i(0 \leq i \leq 20), the unconditional probabilities G_i(n) and the steady-state probabilities p(n). The last five rows give the values for E(X_i), E(Y_i).E(Z_i).E(A_i) and E(B_i). The time to reach steady state is t \approx 260 which is \approx RT = 31.

Case (11) Machine Interference Model

Discrete Case

Assume C=5, N=20, $\epsilon=0.04$, $\mu=0.1$, m=10, $\epsilon=(N-i)\epsilon$, $\mu=i\mu$, for $0 \le i < c$, $\mu=c\mu$ for $c \le i \le N$ and $\rho_0(i)=1/21$. Table 3 gives the probabilities $\rho_m(n)$ for $0 \le i \le 20$. The unconditional probabilities $\rho_m(n)$ and the steady-state probabilities $\rho_m(n)$. The last five rows give the values for $\rho_m(n)$, $\rho_$

Continuous Case

Assume t=10 and rest of the parameters as in Table 3, Table 4 gives the probabilities $p_{i}(n)$ for different $i(0 \le i \le 20)$, the unconditional probabilities $Q_{i}(n)$ and the steady—state probabilities p(n). The time to reach steady

state is t \approx 130 which is \gg RT = 20.

4.8 CONCLUSION :

We have discussed a discrete-time Markovian Model Geom(n)/Geom(n)/r/N for a balking and reneging problem and obtained its transient solution. Numerical computations have been carried out for balking and reneging problem and also for a machine interference problem which is a particular case of balking and reneging problem. Computations have also been carried out for their counterpart in continuous time. Discrete time models are very important for areas such as computer Science. An analogy has also been established between discrete time and continuous time models. Finally the accuracy of the eigen values (roots) that is needed in such problems is very very large because of the recurrence relations involved in computing the probabilities.

.... PICUAULLICIES P. (n), W. (n), pin) and some important problem with c=5, N=20, m=10, e=0.5, μ =0.05, D=0.005, 1=0,1,...20 performance measures for Geom(n)/Geom(n)/c/N balkink and reneging and $p_o(i) = 1/21$.

	0	, -1	И		D		30	(a)	p (n)
0	*	0.0025	0.0010		0.000	0.0000	0000	0.0005	0000
 1	0.0480	0.025	0.0124	*	0.000	0.0000	0.000		0000
N	0.1552	ं	0		0.000	0.0000	0.000		0.000
M	0.2673		ं	:	0.0000	0.000	0.000		0.00.0
4	0.2712	ं	0.2574	*	0.000	0.0000	0.000		0000
ហ	0.1673		0.2468	:	000000	0.0000	0.0000		0.0420
9	0.0654	ं	0.1580	:	0.0000	0.0000			0.0712
7	0.0167	ਂ	0.0711	:	0.000	0.0000			0.1058
0	0.0026	0	0.0219	*	00000	0.0000	0.000	0.0654	0.1372
6 ≻⊹	0.000	0	0.0045	:	0.000	0.0000	0.0000	0.0645	0.1546
10	0000.0	0.0002	0.0006	=	0.0003	0.000.0	0.0000	0.0642	0.1504
 		0.000	0000.0	=	0.0029	0.0005		0.0642	0.1257
H (*	0000.0	0.000.0	:	0.0152	0.0040	0.0007	0.0641	0.0893
M :		0.000	0000.0	:	0.0548	0.0203		0.0631	0.0534
4 :	0.000	0.000	0.000.0		-	0.0690	0.0267	0.0637	0.0264
io :		0.000.0	0.000.0	:	0.2301	0.1603	0.0860	0.0619	0.0108
16		0.000	0.000.0	*		0.2525	0.1873		0.0034
17	*	0.000.0	0.000.0	*	0.1939	0.2619	0.2725		0.0008
18	#	2	0.000.0	*	0.0843	*	0.2533		0.0001
6 1	=		0.000.0	*	0.0184	0.0570	0.1359	×	
Q N	0000.0	0.000.0	0000.0		0.0014	0.0072	0.0320	0.0019	0.000.0
	1.0000	1.0000	1.0000	=	1,0000	1.0000	1.0000	1.0000	1.0000
E(Xm)	3.6143	•	4.5603	1	5.6806	16.4180	17.1554		9.2255
E(Ym)	=			*	0.6806	11.4180	12,1554	5.1826	
	*	.3736	0.5029	*	1.0000	0	•		Û.
Œ !	*	.2041		:	0.7840	0.8209	0.8578	0.4977	46
E (Bm)	0.0584	0.1072	0.1727	*	0.2160	0.1791	0.1422	0.3339	483

	p, (n), Q, (n), p(n) tor m/m/a/n queue	parameters as in table (4.1).	18 19 20 Q (n) p (n)	0.0000 0.0000 0.0000	0,0000 0,0000 0 0000 0 0000 0	0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	#00.0 @C20.0 COOO O COOO O	410.0 Cato C COOC C COOC C COCC C C C C C C C C C	0.0000 0.0000 0.0000 0.0457 0.04	0.0000 0.0000 0.0000.0	0.0000 0.0000 0.0000 0.0664 0.097	0.0002 0.0001 0.0000 0.0454 0 11	0.0008 0.0003 0.0001 0.0647 0.13	0.0029 0.0011 0.0004 0.0644 0	0.0095 0.0038 0.0004 0.0643 0.1	0.0265 0.0120 0.0049 0.0642 0.0	0.0629 0.0325 0.0152 0.0638 0.	0.1235 0.0745 0.0396 0.0428 0.0	0.1948 0.1409 0.0879 0.0401 0.01	2353 0.2119 0.1894 0.0843 0.004	2023 0.2399 0.278 0.048 0.00	092 0.1868 0.2403 0.0291 0.00	0.0834 0.1663 0.0139 0.	9 0.0128 0.0567 0.0035 0.000	1,0000 1,0000 1,0000 1	106 16.4514 17.1922 9.9568 9	.7106 11.4514 12.1922 5.2352 4.	.0000 1.0000 1.0000 0.8544 0.	.7855 0.8226 0.8596 0.4978 0	0.1774 0.1404 0.3291 0
	p(n)	n table	6			And the second	Section 1																834	128						1774 0
	Cus in	10 0 0 L	8	Ó	Ó	o	¢	Ó	o	o	0	0	0	Ó	0	0	0	0	Ö	353 0.	023 0.	092 0.	92 0.	29 0.	000	106 16.	106 11.	000	Ċ	ं
	p, (n),	aramet	***		*		10	*	*	*			*	-		*		*	×	CA	1.4	***	0	0			0.7	0		N
	lities	of the	N	0.0038	0.0	0.09	0.176	0.221	0.195		0.080	ं			*	0.0001	*	0.000.0	0.000.0	0.000	0.000	0,0000	0.0000	0.0000	0.	. 523	M	.475	ď.	0.1847
	probabil	d rest	н	0.0089	0.03	0.13	0	0	ं	0.7	0.0	0	ं	ं	ં	ं	ं	#	0.0000	0.000.0	0.000	0.000	*	0.000.0	8	.025	in M	*	. 201	0.1300
	4.2 :	t=10 and	Ŭ	ö	Ö.	1.	N	Ň	0.1391	ò	်	਼	Š.	္	္ပ	ဝို	8	8	8	8	0.000	8	8	0.000.0	ö	in In	ญี่ :	70	0.1768	œ.
in the second dependency of the latter of th	Table 4	with		0	~-!	N	M	4	ID.	-0	^	œ	ዕ ጉ	0 :	! !	H N	m :	4	T C	16	17	8	19	S N	Tota1	ω×.	E (Ym)	E (Zm)	II (Am)	E (Bm)

	4.51	probabili	t i es	p (c),		(u) d	and some		Important
Derf	performance	measure	s for	Geom(n)	(u)/Geom	(mt/c/N n	/Geomin)/c/N machine interferenc	nterfer	* U C *
979 60	lem with	Z	=20, m=	10,	e =0.4,		1=0,1,	20 and	Ĵ.
1/1	21.								
	0		N		18			(u) a	p (n)
0	000.	ċ	Ö		0.0000	0.0000	0.0000	0.000	0.000
- -1		ं	ं		0.000	0.0000	0.0000		
CV I	0.0478	ं	ं		0.000	0.0000	0.0000		0.0027
۲) ·	0.1651	ं	ं	:	0.0000	0.0000	0.000	0.0305	
4 1	0.2458	· •	o.	* *		0.0000	0.000	0.0708	0.0532
n·	VB/N.0	j ,	0.2837	*		0,0000	0.0000	0.0956	0.1021
1 0	0.1448	· ·				0.0000	0.0000		7~
<u> </u>		o ·		:	*	0.0000	0.0000	0.0807	162
ω :		×	×	*	0.0000	0.0000	0.0000	0	
0 ≻ ;		=		= =	*	0.0001		0.07	
<u></u>		*		*		0.0012	0.0001	0.070	
i i	*	*	*	*	0.0269	0.0089	0.0019	0	
CJ !	*	*	0,000	=======================================		0.0374	0.0130	0	0
M :	=	#	0.000	*		0.1022	0.0511	0	0
4			0,000	# #		0.1896	129	90	
in :			0.000	*	0.2293	0.2442	219	C.	.001
9 !		*		x x	0.1620	0.2183	253		
/ 1			0.000	= =	0.0782	0.1328	0.1983		
D (*	*	*			0.0522	0.1002	0.0092	
7 -		=	0000.	*	0.0043	0.0119	0.0296	0.0023	
70	0.000	0.000	0000.0	# #	0.0003	0.0012	0.0039	0.0003	0.000
Tota1	 i		*	*	1.0000	1.0000	1.0000	1,0000	1.0000
E(Xm)	4	-				15.1456			
E (\mu)	o ·			*			10,8104		
E(Zm)	-	0.5571	40	*	0	1.0000	1.0000	9068.0	
E (Am)	o ·		0.2501	*	72	0.7573		0.4730	0.3868
E (Bm)	0.1406	0.1833	0.2300	*	0.2760	0.2427	0.2095	M	

lable 4.4: probabilities p_t(n), Q_t(n), p(n) and some important performance measures inperformance measures for a m/m/c/N machine interference with t=10 and rest of the paramemeters as in table 4.5.

p(n)	9000.0	0.0044			0.0683			0.1175	0.1222	0.1173			0.0594		0.0213	0.0102	0.0041	0.0013	0.0003	0.0001	0.0000	1.0000	8.0480	3.2672	8698.0	0.4024	0.4235
(1)		Ó	0	0.0456	0.0657	0.0720	0.0746	0.0747	0.0737		0.0715							Ö	0	0.0059	0.0012	1.0000	9.5082	4.7681	0.8575	0.4754	0.3507
Ġ	0.0000	0.0000	0.0000	0.0000	0.000	*	0.0001	0.0003	0.0008	0.0024	0.0063	0.0153	0.0335	0.0650	0.1104	0.1607	0.1950	0.1893	0.1378	0.0669	0.0162	1.0000	15.8790	10.8790	1.0000	0.7940	0.2060
¢1	0,000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	9000.0	0.0019	0.0050	0.0124	0.0275	0.0546	0.0954	0.1441	0.1837	0.1912	0.1548	0.0902	0.0329	0.0054	1.0000	15.2087	10.2087	1.0000	0.7604	0.2395
10	0.000	000000	0.0000	0.0000	0.000	0.0002	0.0005	0.0015	0.0040	0.0099	0.0225	0.0457	0.0820	0.1281	0.1706	0.1887	0.1668	0.1115	0.0518	0.0144	0.0018	1.0000	4.5384	9.5384	6666.0	0.7269	0.2729
		*	*		*	*	*	*	* *	:	*	*	*	*		*	:	:		*	*	*	***	=	*	:	
N		0.0243	*	*	0,1892	0.1805	0.1493	0.1071	0.0664	0.0356	0.0163	0.0064	0.0021	9000.0	0.0001	0.000.0	0.000.0	0000.0	0000.0	0.000.0	0.000	1.0000	5.0294	0.8460	0.5644	0.2515	0.2456
-	0.0054	0.0325	0.0923	0.1634			0.1381	0.0920	0.0530	0.0262	0.0112	0.0041	0.0013	22	0.0001	0.000.0	0.000.0	0.000	0.000.0		0,000.0		4.7178	0.6793	.50	M	0.2108
0	0.0078	0.0429	0.1115	0.1820	0.2080	0.1736	0.1247	0.0774	0.0415	0.0193	0.0077	0.0026	0.0008	0.0002	*	0.000	*	0.000.0	*		0.000	*	*	0.5419	44	.221	0.1784
	0	, - 1	N	M	4	ល	9	_	œ	0-	្ព	i	CA CA	M	14	ខ	16	17	8	۲- ا	S	Total	(Xm)	(/ m)	(Zm)	: (Am)	E (Bm)

CHAPTER 5

ESTIMATION OF PARAMETERS OF JACKSON NETWORKS WITH THREE NODES

5.1 INTRODUCTION :

In this chapter we have try to estimate the parameters involved in Jacksons Networks. As we know Jackson networks have been extended in several ways. First Jackson (1963) for open networks allowed state dependent exogenous arrival processes and state dependent internal service. The parameters of the exogenous poisson process depend upon the total number of customers present at that node. We consider a network of three service facilities customers can arrive from outside to any node according to poisson law. All servers at different node work according to exponential distribution when a customer complete a service at a particular node he goes to next node with some probability.

To estimate the parameters we have to use method maximum likelihood function, which require the joint probability density function for the number of customers at each node. This likelihood function of the parameters involved in the Jackson networks.

52 NOTATIONS :

The following parameters are involved in the networks with three nodes:

- γ_i = mean arrival rate at node i (i=1,2,3) follows according to poisson process.
- μ_{i} = mean service rate at node i (i=1,2,3) follows according to exponential distributions.

 λ_i = Total mean flow rate into node i (i=1,2,3).

$$\lambda_i = \gamma_i + r_{1i} \lambda_1 + r_{2i} \lambda_2 + r_{3i} \lambda_3.$$

 $\rho_i = \lambda_i / \mu_i$

 i_j^{\pm} probability that a customer complete service at node i (i=1,2,3) and he goes to next node j (j=1,2,3).

r_{iO} probability that a customer will leaves the network at node i upon completion of service.

Further we assume that there is no limit to the capacity at any node i (i=1,2,3).

5.3 ANALYSIS AND ESTIMATION :

Let us denote N_1,N_2 and N_3 be the random variables for the number of customers at node 1, node 2 and node 3 respectively. The joint probability density function of N_1,N_2 and N_3 is given by

$$L = P(N_1 = n_1, N_2 = n_2, N_3 = n_3)$$

$$L = (1 - \rho_1) \rho_1^{n_1} (1 - \rho_2) \rho_2^{n_2} (1 - \rho_3) \rho_3^{n_3} \longrightarrow (5.1)$$

Taking logarithm both sides, we have

$$\log L = \log(1-\rho_{1}) + \log(1-\rho_{2}) + \log(1-\rho_{3})$$
$$+ n_{1}\log\rho_{1} + n_{2}\log\rho_{2} + n_{3}\log\rho_{3}$$

On differentiating this equation with respect to $oldsymbol{
ho}_1$,

ρ₂ and ρ₃, we get

$$\frac{\delta(\log L)}{\delta \rho_1} = \frac{-1}{(1-\rho_1)} + \frac{\eta_1}{\rho_1} = 0 \qquad (5.2)$$

$$\frac{\delta(\log L)}{\delta \rho_{\mathcal{Q}}} = \frac{-1}{(1-\rho_{\mathcal{Q}})} + \frac{n_{\mathcal{Q}}}{\rho_{\mathcal{Q}}} = 0 \qquad \longrightarrow (5.3)$$

$$\frac{\delta(\log L)}{\delta \rho_3} = \frac{-1}{(1-\rho_3)} + \frac{n_3}{\rho_3} = 0$$
 (5.4)

On solving the above likelihood equations, we can use the estimate of $ho_1,
ho_2$ and ho_3 as follows:

$$\hat{\rho}_{1} = \frac{n_{1}}{(n_{1}+1)}$$

$$\hat{\rho}_{2} = \frac{n_{2}}{(n_{2}+1)}$$

$$\hat{\rho}_{3} = \frac{n_{3}}{(n_{2}+1)}$$

$$(5.5)$$

Alternatively, we can substitute the value of $ho_i=\lambda_i/\mu_i$ (i=1,2,3) in the joint probability density function given in (5.1), behave the likelihood function as

$$\begin{bmatrix} 1 - \frac{\lambda_1}{\mu_1} \end{bmatrix} \begin{bmatrix} 1 - \frac{\lambda_2}{\mu_2} \end{bmatrix} \begin{bmatrix} 1 - \frac{\lambda_3}{\mu_3} \end{bmatrix} \begin{bmatrix} \frac{\lambda_1}{\mu_1} \end{bmatrix}^{n_1} \begin{bmatrix} \frac{\lambda_2}{\mu_2} \end{bmatrix}^{n_2} \begin{bmatrix} \frac{\lambda_3}{\mu_3} \end{bmatrix}^{n_3}$$

On taking the logarithm both sides and differentially with respect to unknown parameters $^{\lambda_1,\lambda_2,\lambda_3,\mu_1,\mu_2}$ and $^{\mu_3}$, we get the same estimated as obtain in equation (5.5).

Further, on using the following relation

$$\lambda_{i} = \gamma_{i} + \sum_{j=1}^{8} r_{ji} \lambda_{j}$$
 (5.7)

History 171

Similarly, we can find out

$$-r_{12}\lambda_{1} + (1-r_{22})\lambda_{2} - r_{32}\lambda_{3} = r_{2} \longrightarrow (5.9)$$

$$-r_{13}\lambda_{1} - r_{23}\lambda_{2} + (1-r_{33})\lambda_{3} = r_{3} \longrightarrow (5.10)$$

Once we know the estimates of the unknown parameters λ_1 , λ_2 and λ_3 , we can obtain the estimates of γ_1 , γ_2 and γ_3 using equation (5.8) to (5.10) only when routing probabilities $r_{i,j}$ (i=1,2,3; j=1,2,3) are known

$$\hat{r}_{1} = \left(1 - r_{11}\right)\hat{\lambda}_{1} - r_{21}\hat{\lambda}_{2} - r_{31}\hat{\lambda}_{3}$$

$$\hat{r}_{2} = -r_{12}\hat{\lambda}_{1} + \left(1 - r_{22}\right)\hat{\lambda}_{2} - r_{32}\hat{\lambda}_{3}$$

$$\hat{r}_{3} = -r_{13}\hat{\lambda}_{1} - r_{23}\hat{\lambda}_{2} + \left(1 - r_{33}\right)\hat{\lambda}_{3}$$

$$(5.11)$$

Similar estimation can be done on closed jackson networks which are particular case of Open Jackson Networks.

For closed jackson networks, we have

$$\gamma_i = 0$$
 and $\gamma_{i0} = 0$ (i=1,2,3)

Then on solving equation (5.8) to (5.10), we can obtain the estimates of λ_1,λ_2 and λ_3 respectively. We can write these equations in matrix as follows

where
$$A = \begin{bmatrix} (1-r_{11}) - r_{21} - r_{31} \\ -r_{12} - (1-r_{22}) - r_{32} \\ -r_{13} - r_{23} - (1-r_{33}) \end{bmatrix}$$
 and $X = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}$

If matrix A is a non singular matrix then all estimates of λ_1,λ_2 and λ_3 becomes zero which is not possible. Hence, A must be a singular matrix.

5.4 CONCLUSION :

In the estimation of the parameters of Jackson Networks we assume that the number of servers is equal to

pumber of customers in the systems which may not be true in general. Further, this can be extended to class of networks which allow for different class of customers at different nodes. This will be complicated to estimate of the parameters. The main purpose of estimating the parameters is to know the behavior of the system.

BIBLOGRAPHY

- (1) Barbour, A.D., (1976) Networks of Queues and the method of Stages, Adv. Appl. Prob. 8(584-591).
- (2) Baskett, F., Chandy, K.M., Muntz, R.R. and Palacios, F.G. (1975) Open, Closed and Mixed Networks of Queues with different Classes of Customers, J. Assoc. Comput. Mach. 22, (248+260)

(3) Beutler, F.J. and Melamed, B. (1977) Decomposition and Customer Streams of Feed-Back Queueing Networks in Equilibrium, Technical Report 77-1, Computer, Information and Control Engineering Program, The University of Michigan.

- (4) Beutler, F.J., Melamed, B., Zeigler, B.P., (1976), Equilibrium properties of Arbitrary Interconnected Queueing Networks, Technical Report 75-4, Computer, Information and Control Engineering Program, University of Michigan.
- (5) Bruell, S.C. and Balbo, G., (1980), Computational Algorithms for Closed Queueing Networks, Operating and Programming System Series, P.J. Denning (Ed.), New York, Oxford: North Holland.

- (6) Burke, P.J., (1956), The Output of A Queueing System, Oper. Res. 4 (699-714).
- (7) Burke, P.J., (1968), The Dependence Service in Tandem
 M/M/S Queues, Oper. Res. 17 (754-755).
- (8) Buzen, J.P., (1973), Computational Algorithms for Closed Gueueing Networks with Exponential Servers, Comm : ACM 16 (527-531).
- (9) Chaudhary, M.L., Templeton, J.G.C. (1977), A Note on The Distribution of A Busy Period for M/H/C Queueing System, Math. Oper. for Sch. Statist. 4, (75-79).

- (10) Chaudhry M.L., Kapur P.K., Templeton J.G.C.(1991)

 Discrete-Time Transient Solution for A Class Of Problems In

 Queueing Theory: Geom(n)/Geom(n)/r/N. Communicated.
- (11) Chaudhry M.L., Kapur P.K., Sim S.H. (1991), Numerical Computations of Transient Solutions in Discrete-Time for a Class of Problems in ReliabilityTheory. Communicated.

- (12) Chaudhry M.L., Agarwal M. and Templeton J.G.C.(1992), Exact and approximate Numerical Solutions of Steady-State Distribution arising in the Queue G/G/1. 10 105-152.
- (13) Chaudhry M.L.(1992), QROOT Software Package. A & A Publications, 395 Carrie Crescent, Kingston, Ontorio, K7M 5x7, Canada.
- (14) Disney, R.L., (1981), Queueing Networks, American Mathematical Society Proceedings of symposia in Applied Mathematics 25, (53-83).
- (15) Feller, W., (1957), An Introduction of Probability Theory and Its Applications, Vol. I, New York, Willey.
- (16) Gordon, W.J. and Newell, G.F., (1967), Closed Queueing Systems with Exponential Servers, Oper. Res. 15 (254-265).
- (17) Gross, D. and Ince, J., (1981), The Machine Repair Problem with Heterogenous Populations, Oper. Res. 29, (532-549).
- (18) Gross D. and Harris C.M.(1985), Fundamentals of Queueing Theory, $2^{\rm nd}$ ed., John Wiley, New York .

- (19) Hunt, G.C., (1956), Sequential Arrays of Waiting Lines, Oper- Res. 4, (674-683).
- (20) Hunter J.J.(1983), Mathematical Technique of Applied

 Probability, Vol I: Discrete Time Models: Basic Theory,

 Academic Press, New York.
- (21) Jackson, J.R., (1957), Networks of Waiting Lines, Oper Res. 5, (674-683).
- Mange. Sci. 10 (131-142).
- Different Type, J. Appl. Prob. 12 (542-554).
- (24) Kelly, F.P., (1976), Networks of Queues, Adv. Appl. Prob. 8, (416-432).
- (25) Kelly, F.P., (1979), Reversibility and Stochastic Networks, New York: Willey.
- (26) Kijima M.(1992), The Transient Solution of a Class of Markovian Queues, Computers and Mathematics with Applications. 24, 17-24.

- (27) Kingman, J.F.C., (1965), The Heavy Traffic Approximation in the theory of Queues, University of North Carolina Press, Chapel Hill. (137-169).
- (28) Kobayashi H. (1983), Discrete-Time Queueing systems In Probability Theory and Computer Science. Louchard, 6., Latouche, G. (eds.), Academic Press, New York.
- (29) Kollerstrom, J., (1974), Heavy Traffic Theory for Queues with Several Servers I, J. Appl. Prob. vol. II (544-552).
- (30). Lee, A.M. (1966), Applied Queueing Theory, Montreal Canada: St. Martin's Press.
- (31) Ledrmam, W, and Renter, G.E.H., (1954), Spectral Theory for the Differential Equations of Simple Birth and Death Process, Phil. Trans. R. Soc. London 246, (321-369).
- (32) Lee, A.M., (1966), Applied Queueing Theory, Montreal Canada: St. Martin's Press.
- (33) Lemoine, A.J., (1977), Networks of Queues A Survey of Equilibrium Analysis, Manage Sci. 24, (466-481).

- (34) Melamed, B., (1976), Analysis and Simplifications of Discrete Event Systems and Jackson Queueing Networks, Technical Report 76-6, Departure of Technical and Operations Engineering. The University of Michigan.
- (35) Melamed, B., (1977), Characteristics of Poisson Traffic Streams in Jackson Queueing Network, Technical Report 77-2, Computer, Information and Control Engineering Program, The University of Michigan.
- (36) Melamed, B., (1979), Characteristics of Poisson Traffic Streams in Jackson Queueing Networks, Adv. Appl. Prob. 11 (422-438).
- (37) Melamed, B., Ziegler, B.P. and Beutler, F.J., (1975), Simplification If Jackson Queueing Networks, Technical Report 163, Department of Computer and Communication Services, The University of Michigan.
- (38) Morse P.M. (1958), Queues, Inventories and Queueing Theory. John Wiley, New York.
- (39) Parthasarathy, P.R., (1987), A Transient Solution to a M/M/1 Queue A Simple Approach, Adv. Appl. Prob. 19, (977-998).

- (40) Posner, M. and Bernholtz, B., (1968), Closed Finite Queueing Networks with Times Legs, Oper. Res. 16, (962-976).
- (41) Raju, S.N., and Bhat, U.N., (1982), A Computationally Oriented Analysis of the G/M/1 Queue, Opsearch 19, (67-83).
- (42) Reich, E., (1957), Waiting Times When Queues are in Tandem, Ann. Math. Statist., 28, (768-773).
- (43) Reich, E., (1963), Note on Queues in Tandem, Ann. Math. Statist. Volume 34, (338-341).
- (44) Reich, E., (1965), Departture Processess, University of North Carolina Press, Chapel Hill, (439-457).
- (45) Saaty, T.L., (1960), Time Dependent Solution of the Many Server Poisson Queue, Oper. Res. 8, (755-771).
- (46) Saaty, T.L., (1961), Elements of Queueing Theory with Applications, Mc. Graw Hill, New York.
- (47) Sharma O.P. and Dass S. (1988), Multiserver Markovian Queues with Finite Waiting Space. Sakhya, B-50, 328-331.

(48) Simon, B. and Foley, R.D., (1979), Some Results on Sojourn Times Cyclic Jackson Networks, Manage. Sc. 25, (1027-1034).

(49) Takacs L. (1962), Introduction to the Theory of Queues. Oxford University Press, New York .