Density Estimation Framework for Model Error Quantification

Khachik Sargsyan, Xun Huan, Jason Bender*, Habib N. Najm Sandia National Laboratories, Livermore, CA, USA

*currently at Lawrence Livermore National Laboratory, Livermore, CA, USA

ISBA World Meeting 2016

Goal: Model Error Quantification

Develop statistical framework for model error representation, quantification and propagation for physical models.

- Represent and estimate the error associated with
- -Simplifying assumptions, parameterizations
- -Mathematical formulation, theoretical framework
- -Numerical discretization
- Inverse modeling context $y_i = f(x_i; \lambda) + \epsilon_i$
- \bullet Given data, calibrate for λ , accounting for model error
- Model error is deviation from 'truth'

Truth $g(x) \neq f(x; \lambda)$ Model

Model Error Challenge

Additive model discrepancy (Kennedy-O'Hagan, 2001)

$$y_i = \underbrace{f(x_i; \lambda) + \delta(x_i) + \epsilon_i}_{\text{truth } g(x_i)}$$

has challenges for physical models:

- Strong priors required on $\delta(x)$ to satisfy physical constraints
- Disambiguation of model error $\delta(x_i)$ and data error ϵ_i
- QoI-specific calibration; no extrapolation to other QoIs
- ullet Correlation structure in $\delta(x)$ should ideally be informed by the model $f(x; \lambda)$

Embed uncertainty within the model

 $y_i = \tilde{f}(x_i; \lambda, \Theta) + \epsilon_i$ $y_i = f(x_i; \Lambda(x_i)) + \epsilon_i$ $y_i = f(x_i; \Lambda) + \epsilon_i$

Black-boxExtra 'physics' $Random\ field$

- Embed model error in specific submodel phenomenology
- Allows targeted model error placement
- Naturally preserves model structure and physical constraints
- Disambiguate model and data errors
- ullet Cast input parameters λ as a random variable Λ
- ullet Parameter estimation of λ turns into PDF estimation of Λ
- Parameterize PDF form $\pi_{\Lambda}(\cdot;\alpha)$
- -e.g. Polynomial Chaos $\Lambda = \sum_{k=0}^{K} \alpha_k \Psi_k(\xi)$
- Back to parameter estimation, now for $\alpha = (\alpha_0, \dots, \alpha_K)$

Bayesian Density Estimation

K. Sargsyan, H. Najm, and R. Ghanem, "On the Statistical Calibration of Physical Models". International Journal for Chemical Kinetics, 47(4): pp 246–276, 2015.

Likelihood Construction

• Full Likelihood: $L(\alpha) = p(y|\alpha) = p(y_1, \ldots, y_N|\alpha) = \pi(y)$

Email: ksargsy@sandia.gov

- Marginal Apprx: $L(\alpha) \approx \prod_{i=1}^{N} p(y_i | \alpha) = \prod_{i=1}^{N} \pi(y_i)$
- Approximate Bayesian Computation: $L(\alpha) = \frac{1}{\epsilon}K\left(\frac{\rho(S_M, S_D)}{\epsilon}\right)$ Gaussian Apprx: $L(\alpha) \propto e^{-\frac{1}{2}(y-\mu(\alpha))^T\Sigma^{-1}(\alpha)(y-\mu(\alpha))}$

Forward Prediction

$$f(x;\Lambda) = f(x; \sum_{k} \alpha_k \Psi_k(\xi)) \stackrel{NISP}{=} \sum_{k} f_k(x;\alpha) \Psi_k(\xi)$$

- Non-intrusive spectral projection (NISP) employed for
- -Likelihood computation and posterior predictions
- -Easy access to first two moments:

$$\mu(x;\alpha) = f_0(x;\alpha), \qquad \sigma^2(x;\alpha) = \sum_{k>0} f_k^2(x;\alpha) ||\Psi_k||^2$$

- Predictive mean $\mathbb{E}[y(x)] = \mathbb{E}_{\alpha}[\mu(x;\alpha)]$
- Decomposition of predictive variance

$$\mathbb{V}[y(x)] = \mathbb{E}_{\alpha}[\sigma^{2}(x;\alpha)] + \mathbb{V}_{\alpha}[\mu(x;\alpha)] + \sigma_{d}^{2}$$
Model error Poserior/Data error

Demonstration

Calibrating linear, quadratic and cubic models w.r.t. 'truth'

 $g(x) = 6 + x^2 - 0.5(x+1)^{3.5}$ measured with noise $\sigma = 0.1$

Left-over model error with increased data amount

Applications

(1) Chemical ignition of methane: Model-to-model calibration

• Single-step global reaction model calibrated against a detailed chemical kinetic model

(2) Atmospheric transport: Multi-model calibration

- CO₂ measurements at 77 sites
 - Find fluxes at 22 locations
- Without model error, only 'effective' fluxes are computed

(3) Large eddy simulation of turbulent flow: Extrapolate to other QoIs

- Calibrate static subgrid model vs data from dynamic model
 - Use simulation data of turbulent kinetic energy (TKE), predict both TKE and Pressure

