

91258 / B0385 Natural Language Processing

Lesson 12. word2vec

Alberto Barrón-Cedeño a.barron@unibo.it

14/11/2024

Previously

- Introduction to neural networks
- First Keras neural network
- Considerations when building/training a network

Table of Contents

1. Introduction

2. Word Vectors

3. Computing word2vec representations

Chapter 6 of Lane et al. (2019)

Previously

BoW Each token represents one dimension

TF-IDF Document- and corpus-level statistics

LSA Dimensional reduction for a dense representation¹

Previously

BoW Each token represents one dimension

TF-IDF Document- and corpus-level statistics

LSA Dimensional reduction for a dense representation¹

Drawbacks

- They ignore the (nearby) context of a word
- They ignore the overall meaning of a statement

Word vectors. Numerical vector representations of word semantics, or meaning, including literal and implied meaning (Lane et al., 2019, p. 182)

Word vectors. Numerical vector representations of word semantics, or meaning, including literal and implied meaning (Lane et al., 2019, p. 182)

Math with words

q = "She was a key physics figure in Europe in the early 20th century"

Word vectors. Numerical vector representations of word semantics, or meaning, including literal and implied meaning (Lane et al., 2019, p. 182)

Math with words

q = "She was a key physics figure in Europe in the early 20th century"

Word vectors. Numerical vector representations of word semantics, or meaning, including literal and implied meaning (Lane et al., 2019, p. 182)

Math with words

q = "She was a key physics figure in Europe in the early 20th century"

```
answer_vector = wv['she'] + wv['physics'] + \
                wv['Europe'] + wv['scientist']
```

Even better:

```
answer_vector = wv['she'] + wv['physics'] + \
                wv['Europe'] + wv['scientist'] - \
                wv['he'] - wv['America']
```

Intuition

Word2vec (Mikolov et al., 2013)

Learns the meaning of words by processing a large corpus²

Intuition

Word2vec (Mikolov et al., 2013)

- Learns the *meaning* of words by processing a large corpus²
- The corpus is not labeled

Intuition

Word2vec (Mikolov et al., 2013)

- Learns the *meaning* of words by processing a large corpus²
- The corpus is not labeled
 - \rightarrow unsupervised

Intuition

Word2vec (Mikolov et al., 2013)

- Learns the meaning of words by processing a large corpus²
- The corpus is not labeled
 - \rightarrow unsupervised

Can we train a NN to predict word occurrences near a target word w?

Intuition

Word2vec (Mikolov et al., 2013)

- Learns the meaning of words by processing a large corpus²
- The corpus is not labeled
 - \rightarrow unsupervised

Can we train a NN to predict word occurrences near a target word w?

We do not care about the prediction (that is handy, but not important here). We care about the resulting internal representation

Vector Algebra (again)

- word2vec transforms token-occurrence vectors into lower-dimensional vectors
- The dimension is usually in the 100s (e.g., 100, 200, 300)

2024

Vector Algebra (again)

- word2vec transforms token-occurrence vectors into lower-dimensional vectors
- The dimension is usually in the 100s (e.g., 100, 200, 300)

Typical process

Input: Text
Output: Text

Vector Algebra (again)

- word2vec transforms token-occurrence vectors into lower-dimensional vectors
- The dimension is usually in the 100s (e.g., 100, 200, 300)

Typical process

Input: Text

Output: Text

- 1. Compute vectors
- 2. Do algebra
- 3. Map back to text

Vector Algebra (again)

 $Portland\ Timbers + Seattle - Portland =?$

2024

10 / 26

A. Barrón-Cedeño DIT, LM SpecTra

Vector Algebra (again)

$$\label{eq:portland} Portland Timbers + Seattle - Portland = ?$$

$$ourput_vector = wv['Seattle'] + wv['Portland Timbers'] - wv['Portland']$$

10 / 26

A. Barrón-Cedeño DIT, LM SpecTra 2024

Vector Algebra (again)

 $\label{eq:continuous} Portland \ Timbers + Seattle - Portland =? \\ our put_vector = wv['Seattle'] + wv['Portland \ Timbers'] - wv['Portland']$

^a(Lane et al., 2019, p. 188)

Vector Algebra (again)

Portland Timbers + Seattle - Portland =? $ourput_vector = wv['Seattle'] + wv['Portland Timbers'] - wv['Portland']$

Word2vec "knows" that

- $\bullet \ \textit{dist}(\mathsf{Portland}, \mathsf{Portland} \ \mathsf{Timbers}) \approx \textit{dist}(\mathsf{Seattle}, \mathsf{Seattle} \ \mathsf{Sounders})$
- The diffs between the pairs of vectors are roughly in the same direction

4 D M 4 B M 4 E M

Some "typical" operations/properties

Some "typical" operations/properties

$$PI/Sg \vec{x}_{coffee} - \vec{x}_{coffees} \approx \vec{x}_{cup} - \vec{x}_{cups} \approx \vec{x}_{cookie} - \vec{x}_{cookies}$$

Some "typical" operations/properties

$$PI/Sg \vec{x}_{coffee} - \vec{x}_{coffees} \approx \vec{x}_{cup} - \vec{x}_{cups} \approx \vec{x}_{cookie} - \vec{x}_{cookies}$$

$${\color{red}\mathsf{Locations}} \quad \mathsf{San} \; \mathsf{Francisco} \; - \; \mathsf{California} \; + \; \mathsf{Colorado} \; \rightarrow \; \mathsf{Denver}$$

Some "typical" operations/properties

Gender
$$king + woman - man \rightarrow queen$$

$$PI/Sg \qquad \vec{x}_{coffee} - \vec{x}_{coffees} \approx \vec{x}_{cup} - \vec{x}_{cups} \approx \vec{x}_{cookie} - \vec{x}_{cookies}$$

$${\color{red}\mathsf{Locations}}\quad \mathsf{San}\ \mathsf{Francisco}-\mathsf{California}+\mathsf{Colorado}\to\mathsf{Denver}$$

Culture tortellini — Bologna + Valencia
$$\rightarrow$$
 paella ?

Computing word2vec representations

The grand canal of Venice (Claude Monet, 1908)

Alternatives to Build word2vec Representations

skip-gram

Input one (target) word

Output context words

Alternatives to Build word2vec Representations

skip-gram

Input one (target) word

Output context words

CBOW (continuous bag-of-words)

Input context words

Output one target word

Definition Skip-grams are *n*-grams that contain gaps (skips over intervening tokens)

Definition Skip-grams are *n*-grams that contain gaps (skips over intervening tokens)

Input: one word

Output: context words

Definition Skip-grams are *n*-grams that contain gaps (skips over intervening tokens)

Input: one word

Output: context words

Neural Network Structure

Neural Network Structure

• *n* is the number of vector dimensions in the model

Neural Network Structure

- *n* is the number of vector dimensions in the model
- M is the number of input/output neurons; M = |vocabulary|

Neural Network Structure

- *n* is the number of vector dimensions in the model
- M is the number of input/output neurons; M = |vocabulary|
- The output activation function is a softmax Typical in multi-class problems; $\sum_{M} = 1.0$

(Lane et al., 2019, p. 193)

Learning the Representations (1/3)

• Window size: 2 words \rightarrow 5-grams

Learning the Representations (1/3)

- Window size: 2 words → 5-grams
- Input: the token at time t: w_t
- Output: all context tokens on the left and right, one at a time

Learning the Representations (1/3)

- Window size: 2 words → 5-grams
- Input: the token at time t: w_t
- Output: all context tokens on the left and right, one at a time

 $s = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_{10}$

Learning the Representations (1/3)

- Window size: 2 words → 5-grams
- Input: the token at time t: w_t
- Output: all context tokens on the left and right, one at a time

$$s = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_{10}$$

$$[\ldots] w_{t-2} w_{t-1} \underline{w_t} w_{t+1} w_{t+2} [\ldots]$$

A. Barrón-Cedeño

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

(Lane et al., 2019, p. 194)

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

input		expecte	ed output	
w_t	W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}
Claude			Monet	painted

2024

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

input	expected output				
W_t	W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	
Claude			Monet	painted	
Monet		Claude	painted	the	

2024

Learning the Representations (2/3)

input	expected output				
W_t	W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	
Claude			Monet	painted	
Monet		Claude	painted	the	
painted	Claude	Monet	the	Grand	
the	Monet	painted	Grand	Canal	
Grand	painted	the	Canal	of	

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

input	expected output					
w_t	W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}		
Claude			Monet	painted		
Monet		Claude	painted	the		
painted	Claude	Monet	the	Grand		
the	Monet	painted	Grand	Canal		
Grand	painted	the	Canal	of		
Canal	the	Grand	of	Venice		
of	Grand	Canal	Venice	in		
Venice	Canal	of	in	1908		

2024

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

input	expected output				
W_t	W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	
Claude			Monet	painted	
Monet		Claude	painted	the	
painted	Claude	Monet	the	Grand	
the	Monet	painted	Grand	Canal	
Grand	painted	the	Canal	of	
Canal	the	Grand	of	Venice	
of	Grand	Canal	Venice	in	
Venice	Canal	of	in	1908	
in	of	Venice	1908		
1908	Venice	in			

(Lane et al., 2019, p. 194)

◆ロト ◆母 ト ◆ き ト ◆ き ・ か へ ○

Learning the Representations (3/3)

Training

- Both input and output are a one-hot vector
- n-1 iterations when using n-grams:

$$[\ldots] w_{t-2} w_{t-1} \underline{w_t} w_{t+1} w_{t+2} [\ldots]$$

i	input	output
0	W_t	W_{t-2}
1	W_t	w_{t-1}
2	w_t	w_{t+1}
3	w_t	W_{t+2}

Learning the Representations (3/3)

Training

- Both input and output are a one-hot vector
- n-1 iterations when using n-grams:

$$\left[\ldots\right]w_{t-2}\,w_{t-1}\,\underline{w_t}\,w_{t+1}\,w_{t+2}\left[\ldots\right]$$

i	input	output	i
0	Wt	W_{t-2}	4
1	w_t	w_{t-1}	5
2	w_t	w_{t+1}	6
3	w_t	W_{t+2}	7

i	input	output
4	w_{t+1}	w_{t-1}
5	w_{t+1}	W_t
6	w_{t+1}	W_{t+2}
7	w_{t+1}	W_{t+3}

Learning the Representations (3/3)

Training

- Both input and output are a one-hot vector
- n-1 iterations when using n-grams:

$$\left[\ldots\right]w_{t-2}\,w_{t-1}\,\underline{w_t}\,w_{t+1}\,w_{t+2}\left[\ldots\right]$$

1	прис	output
0	Wt	W_{t-2}
1	w_t	w_{t-1}
2	w_t	w_{t+1}
3	w_t	W_{t+2}

i	input	output
4	w_{t+1}	w_{t-1}
5	w_{t+1}	W_t
6	w_{t+1}	W_{t+2}
7	w_{t+1}	W_{t+3}

I	input	outpu
8	W_{t+2}	W_t
9	W_{t+2}	w_{t+1}
10	W_{t+2}	W_{t+3}
11	W_{t+2}	W_{t+4}

Learning the Representations (3/3)

Training

- Both input and output are a one-hot vector
- n-1 iterations when using n-grams:

$$\left[\ldots\right]w_{t-2}\,w_{t-1}\,\underline{w_t}\,w_{t+1}\,w_{t+2}\left[\ldots\right]$$

i	input	output	i	input	output	i	input	output
0	W_t	W_{t-2}	4	w_{t+1}	w_{t-1}	8	W_{t+2}	W_t
1	W_t	w_{t-1}	5	w_{t+1}	W_t	9	W_{t+2}	w_{t+1}
2	w_t	w_{t+1}	6	w_{t+1}	W_{t+2}	10	W_{t+2}	W_{t+3}
3	W_t	W_{t+2}	7	w_{t+1}	W_{t+3}	11	W_{t+2}	W_{t+4}

To simplify the loss calculation, the softmax is converted to one-hot

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ト ・ 差 ・ 釣 へ (*)

Outcome

• The output layer can be *ignored*²

Outcome

- The output layer can be *ignored*²
- Semantically similar words end up with similar vectors
 - —they were trained to predict similar contexts

Outcome

- The output layer can be *ignored*²
- Semantically similar words end up with similar vectors
 —they were trained to predict similar contexts
- The weights from input to hidden layer are used to compute embeddings

Outcome

- The output layer can be *ignored*²
- Semantically similar words end up with similar vectors
 —they were trained to predict similar contexts
- The weights from input to hidden layer are used to compute embeddings

$$wv_w = dot(one\ hot_w, W)$$

Embedding Computation

One-hot vector in vocabulary of six words

Three neuron weight matrix

The dot product calculation

$$(0^*.03) + (1^*.06) + (0^*.14) + (0^*.24) + (0^*.12) + (0^*.32)$$

$$= (0^*.92) + (1^*.32) + (0^*.62) + (0^*.99) + (0^*.02) + (0^*.23)$$

$$(0^*.66) + (1^*.61) + (0^*.43) + (0^*.62) + (0^*.44) + (0^*.55)$$

Resulting 3-D word vector

Definition Continuous bag-of-words

Input: context words

Output: target (centre) word

Definition Continuous bag-of-words

Input: context words

Output: target (centre) word

(Lane et al., 2019, p. 196)

| 4日 | 4日 | 4日 | 4日 | 1日 | 9000

A. Barrón-Cedeño

Learning the Representations (1/3)

Window size: 2 words \rightarrow 5-grams

Learning the Representations (1/3)

Window size: 2 words \rightarrow 5-grams

Input: multi-hot vector (sum of all context one-hot vectors)

Output: one-hot vector

Learning the Representations (1/3)

Window size: 2 words \rightarrow 5-grams

Input: multi-hot vector (sum of all context one-hot vectors)

Output: one-hot vector

 $s = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_{10}$

Learning the Representations (1/3)

Window size: 2 words \rightarrow 5-grams

Input: multi-hot vector (sum of all context one-hot vectors)

Output: one-hot vector

$$s = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_{10}$$

$$\left[\ldots\right] \underline{w_{t-2} w_{t-1}} w_t \underline{w_{t+1} w_{t+2}} \left[\ldots\right]$$

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

(Lane et al., 2019, p. 194)

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - り Q ()

Learning the Representations (2/3)

input				expected output
W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	W_t
		Monet	painted	Claude

Learning the Representations (2/3)

input				expected output
W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	w_t
		Monet	painted	Claude
	Claude	painted	the	Monet

Learning the Representations (2/3)

input				expected output
W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	W_t
		Monet	painted	Claude
	Claude	painted	the	Monet
Claude	Monet	the	Grand	painted
Monet	painted	Grand	Canal	the
painted	the	Canal	of	Grand

Learning the Representations (2/3)

input				expected output
W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	W_t
		Monet	painted	Claude
	Claude	painted	the	Monet
Claude	Monet	the	Grand	painted
Monet	painted	Grand	Canal	the
painted	the	Canal	of	Grand
the	Grand	of	Venice	Canal
Grand	Canal	Venice	in	of
Canal	of	in	1908	Venice

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

input				expected output
W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	W_t
		Monet	painted	Claude
	Claude	painted	the	Monet
Claude	Monet	the	Grand	painted
Monet	painted	Grand	Canal	the
painted	the	Canal	of	Grand
the	Grand	of	Venice	Canal
Grand	Canal	Venice	in	of
Canal	of	in	1908	Venice
of	Venice	1908		in
Venice	in			1908

(Lane et al., 2019, p. 194)

- 4日ト 4部ト 4度ト 4度ト - 夏 - 幻Q(

Learning the Representations (3/3)

Training

• The input is a multi-hot vector: $w_{t-2} + w_{t-1} + w_{t+2} + w_{t+2}$

• The output is a one-hot vector w_t

Final Remarks

Skip-gram

- Works well with small corpora
- High-frequency [2,3]-grams can be added as single terms (e.g., New_York, Atlanta_Braves)
- ullet High-frequency tokens are subsampled (\sim to IDF over stopwords)
- Negative sampling. Not all weights are updated given a pair, just a few negative samples (much cheaper; roughly the same result)

Final Remarks

Skip-gram

- Works well with small corpora
- High-frequency [2,3]-grams can be added as single terms (e.g., New_York, Atlanta_Braves)
- ullet High-frequency tokens are subsampled (\sim to IDF over stopwords)
- Negative sampling. Not all weights are updated given a pair, just a few negative samples (much cheaper; roughly the same result)

CBOW

- Higher accuracy for frequent words
- Much faster to train

References

Lane, H., C. Howard, and H. Hapkem

2019. Natural Language Processing in Action. Shelter Island, NY: Manning Publication Co.

Mikolov, T., K. Chen, G. Corrado, and J. Dean

2013. Efficient estimation of word representations in vector space. In Arxiv.

2024