MAT 344 Lecture Notes

Tianyu Du

February 20, 2019

This work is licensed under a Creative Commons "Attribution-NonCommercial 4.0 International" license.

Github Page https://github.com/TianyuDu/Spikey_UofT_Notes Note Page TianyuDu.com/notes

Contents

	2
Induction	3
4.2 Hamiltonian Graphs	7
	Pigeon Hole Principle and Complexity 3.1 Pigeon Hole Principle

1 Strings, Sets, and Binomial Coefficients

1.1 Strings and Sets

Notation 1.1. Let $n \in \mathbb{Z}_{++}$, and we use [n] to denote the n-element set $\{1, 2, \ldots, n\}$.

Definition 1.1. Let X be a set, then an X-string of length (or a word/array) n is a function $s : [n] \to X$, and X is called the alphabet of the string, and each $x \in X$ is called a character or letter.

Remark 1.1. An X-string defined by $s:[n] \to X$ with length n can be equivalently defined as a **sequence** consisting elements in X.

$$s(1)s(2)\dots s(n) \tag{1.1}$$

Definition 1.2. In the case $X = \{0,1\}$, strings generated from X are called **binary strings**. When $X = \{0,1,2\}$, strings are called **ternary strings**.

Definition 1.3. Let X be a *finite* set and let $n \in \mathbb{Z}_{++}$. An X-string $s = x_1 x_2 \dots x_n$ is a **permutation** of size m if $x_i \neq x_j \ \forall x_i, x_j \in s$.

Proposition 1.1. If X is an m-element set and $m \ge n \in \mathbb{Z}_{++}$, then the number of X-strings of length n that are permutations is

$$P(m,n) \equiv \frac{m!}{(m-n)!} \tag{1.2}$$

Definition 1.4. Let X be a *finite* set and let $0 \le k \le |X|$. Then $S \subseteq X$ with |S| = k is a **combination** of size k.

Proposition 1.2. Let $n, k \in \mathbb{Z}$ such that $0 \le k \le n$, then the number of combinations is

$$\binom{n}{k} \equiv \frac{P(n,k)}{n!} = \frac{n!}{k!(n-k)!} \tag{1.3}$$

Proposition 1.3. For all integers n and k with $0 \le k \le n$

$$\binom{n}{k} = \binom{n}{n-k} \tag{1.4}$$

Example 1.1. Binomial coefficients can be used to find the number of integer solutions of

$$\sum_{i=1}^{k} x_i \le N \tag{1.5}$$

given appropriate integers $k, N \in \mathbb{Z}$.

- (i) $x_i > 0 \ \forall i \in [k]$ and equality holds, then C(N-1, k-1).
- (ii) $x_i \ge 0 \ \forall i \in [k]$ and equality holds, then C(N+k-1,k-1).
- (iii) $x_i > 0 \ \forall i \neq j, x_i = Z$ and equality holds, then C(N Z + k 2, k 2).
- (iv) $x_i > 0 \ \forall i \in [k]$ and strict inequality holds, then C(N-1,k).
- (v) $x_i \ge 0 \ \forall i \in [k]$ and strict inequality holds, then C(N+k-1,k).
- (vi) $x_i \ge 0 \ \forall i \in [k]$ and weak inequality holds, $C(N+k,k)^3$.

$$\binom{N+k-1}{k-1} + \binom{N+k-1}{k} = \binom{N+k}{k} \tag{1.6}$$

¹Simulate choosing $x_i + 1$ instead of x_i .

²Image there is a placeholder $x_{k+1} > 0$.

³This can be calculated by adding case (ii) and case (v) together, and apply Pascal's identity

Definition 1.5. Define a plane as \mathbb{Z}^2 , then a lattice path in the plane is a sequence of elements in \mathbb{Z}^2

$$((x_i, y_i))_{i=1}^t (1.7)$$

such that for every $i \in \{1, \dots, t-1\}$, either

- (i) (Horizontal move) $x_{i+1} = x_i + 1 \land y_{i+1} = y_i$
- (ii) Or (vertical move) $x_{i+1} = x_i \wedge y_{i+1} = y_i + 1$

Lemma 1.1. Let $(p,q), (m,n) \in \mathbb{Z}^2$, then the number of lattice paths from (p,q) to (m,n) is

$$\binom{(p-m)+(q-n)}{p-m} \tag{1.8}$$

Proof. The lattice is isomorphic to a H, V-string with length (p-m)+(q-n). There are exactly p-m horizontal moves as well as exactly q-n vertical moves.

Theorem 1.1. Given $n \in \mathbb{Z}_+$, the number of lattice paths from (0,0) to (n,n) which never go above the diagonal line is the **Catalan number**

$$C(n) \equiv \frac{1}{n+1} \binom{2n}{n} \tag{1.9}$$

Proof. Omitted

Theorem 1.2 (Binomial Theorem). Let $x, y \in \mathbb{R}$, then $\forall n \in \mathbb{Z}_+$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i$$
 (1.10)

Theorem 1.3 (Multinomial Theorem). Let $r \in \mathbb{Z}_+$, $\{x_i\}_{i=1}^r \in \mathcal{P}(\mathbb{R})$. Then for every $n \in \mathbb{Z}_+$,

$$\left(\sum_{i=1}^{r} x_i\right)^n = \sum_{|\alpha|=n} \binom{n}{\alpha} (x_i)^{\alpha} \tag{1.11}$$

where $\alpha \equiv (\alpha_i)_{i=1}^r$, $\alpha_i \in \mathbb{Z}_{++} \ \forall i$ is a **multi-index**, and

$$(x_i)^{\alpha} \equiv \sum_{i=1}^r x_i^{\alpha_i} \tag{1.12}$$

$$|\alpha| \equiv \sum_{i=1}^{r} \alpha_i \tag{1.13}$$

$$\binom{n}{\alpha} \equiv \frac{n!}{\alpha_1! \alpha_2! \dots \alpha_r!} \tag{1.14}$$

2 Induction

Theorem 2.1 (Well-Ordering Principle). Every non-empty set of Z_{++} has a least element.

Proof. Prove using principle of mathematical induction and contradiction.

Definition 2.1. Recursive definition

Theorem 2.2 (The Principle of Mathematical Induction). If S is any set of natural numbers with properties that

1. 1 is in S, and

2. k+1 is in S whenever k is any number in S.

then $S = \mathbb{Z}_+$.

Remark 2.1. Recursive definitions can also be recast as inductive definitions.

Definition 2.2 (Summation). Summation operator beginning with index 1, $\sum : \mathcal{F}_1 \times Z_{++} \to \mathbb{R}$, where \mathcal{F}_1 is the set of unary real-valued functions, is defined inductively as

$$\sum_{i=1}^{1} f(i) \equiv f(1) \tag{2.1}$$

$$\sum_{i=1}^{k+1} f(i) \equiv \sum_{i=1}^{k} f(i) + f(k+1)$$
(2.2)

Theorem 2.3 (The Principle of Complete Mathematical Induction). If S is any set of natural numbers with the properties that

- 1. $1 \in S$, and
- $2. \{1, 2, \dots, k\} \subset S \implies k+1 \in S,$

then $S = \mathbb{Z}_+$.

3 Pigeon Hole Principle and Complexity

3.1 Pigeon Hole Principle

Theorem 3.1. Let $f: X \to Y$ be a function, then

$$f \text{ injective } \Longrightarrow |X| < |Y| \tag{3.1}$$

Theorem 3.2 (Pigeon Hole Principle). Let $f: X \to Y$, and suppose |X| > |Y|, then f is not injective, that's

$$\exists x_1 \neq x_2 \in X \ s.t. \ f(x_1) = f(x_2) \tag{3.2}$$

Proof. Contrapositive form of the theorem 3.1

Theorem 3.3 (Erods/Szekeres). Let $m, n \in \mathbb{Z}_+$, then any sequence of mn+1 distinct real numbers either

- (i) has an increasing subsequence of m+1 terms,
- (ii) or it has a decreasing subsequence of n+1 terms.

Proof. Let $\sigma = (x_1, x_2, \dots, x_{mn+1})$ be a sequence with length mn+1 consisting of distinct reals. For each $i \in [mn+1]$ define a_i as the maximum length of an increasing subsequence of σ beginning with x_i . Define b_i as the maximum length of a decreasing subsequence of σ ending with x_i .

Case (i)

$$\exists i \in [mn+1] \ s.t. \ a_i \ge m+1 \lor b_i \ge n+1$$
 (3.3)

then the theorem is proven.

Case (ii) Suppose otherwise

$$\forall i \in [mn+1] \ a_i \le m \land b_i \le n \tag{3.4}$$

construct function $f:[mn+1] \to [m] \times [n]$ defined as

$$f(i) \equiv (a_i, b_i) \tag{3.5}$$

Note that $|[mn+1]| > |[m] \times [n]|$ so f cannot be injective, so there exists $j \neq k \in [mn+1]$ such that $(a_j, b_j) = (a_k, b_k)$.

WLOG, assume j < k.

Since all elements in σ are distinct, $j \neq k \implies x_j \neq x_k$.

Sub-case (i) $x_j < x_k$, then any increasing subsequence beginning with x_k can be extended by prepending x_j , so $a_j > a_k$.

Sub-case (ii) $x_j > x_k$, then any decreasing subsequence ending with x_j can be extended by appending x_k , so $b_k > b_j$.

Either sub-case leads to a contradiction, so case (ii) is impossible.

3.2 Complexity

Definition 3.1. Let $f, g : \mathbb{N} \to \mathbb{R}$ be a function, then the **big oh** $\mathcal{O}(f)$ is a collection of functions such that, for every $g \in \mathcal{O}(f)$

$$\exists c \in \mathbb{R}, n^* \in \mathbb{N} \ s.t. \ \forall n \in \mathbb{N}, n \ge n^* \implies g(n) \le cf(n)$$
(3.6)

Definition 3.2. Let $f, g : \mathbb{N} \to \mathbb{R}$ be a function. If $f(n) > 0 \ \forall n \in \mathbb{N}$, then the **little oh** o(f) is the collection of functions such that, for every $g \in o(f)$,

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0 \tag{3.7}$$

Definition 3.3. Let $f, g : \mathbb{N} \to \mathbb{R}$, then the **little oh**, o(f) is defined as the collection of functions such that $g \in o(f)$ if and only if

$$\exists c \in \mathbb{R}, n^* \in \mathbb{N}, \ s.t. \ \forall n \in \mathbb{N}, n > n^* \implies |q(n)| < c|f(n)|$$
(3.8)

Definition 3.4. Define $\pi: \mathbb{Z}_{++} \to \mathbb{Z}_{+}$ as $\pi(n) \equiv$ the number of primes among the first n positive integers.

Theorem 3.4 (Prime Number Theorem). $\pi(n)$ grows at a rate the same as $\frac{n}{\ln(n)}$. That's

$$\lim_{n \to \infty} \pi(n) \frac{\ln(n)}{n} = 1 \tag{3.9}$$

Definition 3.5. The class of **polynomial time** problems, denoted as \mathcal{P} , is the set of decision problems for which there exists one polynomial run time algorithm as the solution.

Definition 3.6. The class of **nondeterministic polynomial time** problems, denoted as \mathcal{NP} , is the set of decision problems for which there is a certificate for a yes answer whose correctness can be verified in polynomial time.

4 Graph Theory

Definition 4.1. A graph \mathcal{G} is defined as an order pair of sets (V, E). **Vertex** set V is a set consisting of **vertex** objects. **Edge set** E contains **edges** as pairs of elements in E.

Definition 4.2. A graph \mathcal{G} is called a **simple graph** if it is unweighted, undirected and contains no loop or multiple edges. That's, if $\mathcal{G} \equiv (V, E)$ is a simple graph, then

- 1. (Undirected) $\forall x, y \in V, xy \in E \iff yx \in E$.
- 2. (No loop) $\forall xy \in E, x \neq y$.
- 3. (No multiple edge) all elements in E are distinct.
- 4. Vertices or edges in \mathcal{G} have no weight.

Graphs with multiple edges or loops are called multi-graphs.

Remark 4.1. In this course, unless explicitly mentioned, we consider simple graphs only.

Definition 4.3. Let $x, y \in V$, if $xy \in E$, then x and y are **adjacent**, and edge xy is **incident to** vertices x and y. If $xy \notin E$, we say x and y are **non-adjacent**.

Definition 4.4. Let $\mathcal{G} \equiv (V, E)$ and $x \in V$, then the **neighbourhood** of x is defined as

$$\mathcal{N}(x) \equiv \{ v \in V : xy \in E \} \tag{4.1}$$

Then the **degree** of x in graph \mathcal{G} is defined as

$$\deg_{\mathcal{C}}(x) \equiv |\mathcal{N}(x)| \tag{4.2}$$

Definition 4.5. Let $\mathcal{G} \equiv (V, E)$ and $\mathcal{H} \equiv (W, F)$, we say \mathcal{H} is a **subgraph** of \mathcal{G} when $W \subseteq V$ and $F \subseteq E$. \mathcal{H} is an **induced subgraph** if

$$F = \{ xy \in E : x, y \in W \} \tag{4.3}$$

 \mathcal{H} is a spanning subgraph if W = V.

Definition 4.6. $\mathcal{G} \equiv (V, E)$ is a complete graph (\mathbf{K}_n) if

$$E = \{xy : \text{ distinct pair } x, y \in V\}$$

$$(4.4)$$

Definition 4.7. A graph $\mathcal{G} \equiv (V, E)$ is a **independent graph** (\mathbf{I}_n) if for every distinct pair $(x, y) \subset V$, $xy \notin E$.

Definition 4.8. A walk in graph $\mathcal{G} \equiv (V, E)$ is a sequence of vertices (x_1, x_2, \dots, x_n) such that

$$x_i x_{i+1} \in E \ \forall i \in \{1, \dots, n-1\}$$
 (4.5)

Definition 4.9. A **path** is a walk with *distinct* vertices. The length of path is defined as the number of edges in it.

Definition 4.10. A cycle is a path $(x_1, x_2, ..., x_n)$ with $n \neq 3$ such that $x_1 x_n \in E$.

Definition 4.11. Two graphs $\mathcal{G} \equiv (V, E)$ and $\mathcal{H} \equiv (W, F)$ are **isomorphic**, denoted as $\mathcal{G} \cong \mathcal{H}$, if there exists a bijection $f: V \to W$ such that

$$\forall x, y \in V, \ xy \in E \iff f(x)f(y) \in F \tag{4.6}$$

And we say \mathcal{G} contains \mathcal{H} is there is a subgraph of \mathcal{G} isomorphic to \mathcal{H} .

Definition 4.12. A graph \mathcal{G} is **connected** when for every distinct pair $x, y \in V$, there exists a path from x to y. Otherwise, \mathcal{G} is **disconnected**.

Definition 4.13. Provided \mathcal{G} is disconnected, then a **component** of \mathcal{G} is a maximal connect subgraph of \mathcal{G} . That's, if \mathcal{H} is a component, it is connected and any super-graph of \mathcal{H} is disconnected.

Definition 4.14. A graph \mathcal{G} is acyclic when it does not contain any cycle on three or more vertices. An acyclic graph is also called **forests**. Further, if a acyclic graph is connected, it's called a **tree**.

Definition 4.15. Given \mathcal{G} is connected⁴, a subgraph $\mathcal{H} \equiv (W, F)$ of \mathcal{G} is a **spanning graph** if both V = W and \mathcal{H} is a tree.

Theorem 4.1. Let $\mathcal{G} \equiv (V, E)$ be a graph, then

$$\sum_{v \in V} \deg_{\mathcal{G}}(v) = 2|E| \tag{4.7}$$

Corollary 4.1. For any graph, the number of vertices with odd degree is even.

Definition 4.16. Let \mathcal{T} be a tree, a vertex v is a **leaf** if $\deg_{\mathcal{C}}(v) = 1$.

Proposition 4.1. Every tree with $|V| \ge 2$ has at least two leaves.

Proof. Let \mathcal{T} be a tree. The corollary above suggests that it cannot have one leaf. Consider the case it has no leaf, then since every vertex has at least degree of 2 and \mathcal{T} is connected, there must exist a cycle, which leads to a contradiction.

 $^{^4}$ If $\mathcal G$ is disconnected, it's impossible for any of its spanning subgraph to be connected.

4.1 Eulerian Graphs

Definition 4.17. Let $\mathcal{G} \equiv (V, E)$ be a graph, then a sequence of vertices $(v_0, v_1, \dots v_t)$ is an **Eulerian** circuit if

- (i) $v_0 = v_t$;
- (ii) $v_i v_{i+1} \in E \ \forall i \in \{0, \dots, t-1\};$
- (iii) $\forall e \in E, \exists ! i \in \mathbb{Z} \text{ s.t. } v_i v_{i+1} = e.$

That's, it is a graph cycle which uses each graph edge exactly once.

Definition 4.18. A graph is **Eulerian** if it contains an eulerian circuit.

Remark 4.2. Some definitions require Eulerian graph to be connected but some don't, check with the lecture notes.

Definition 4.19. A circuit is a walk with $x_0 = x_n$.

Theorem 4.2. A graph \mathcal{G} is Eulerian if and only if it is connected and every vertex has even degree.

4.2 Hamiltonian Graphs

Definition 4.20. Let $\mathcal{G} \equiv (V, E)$ be a graph, then a sequence of vertices (v_0, v_1, \dots, v_t) is a **Hamiltonian** cycle if

- 1. $v_0v_t \in E$;
- 2. $v_i v_{i+1} \in E \ \forall i \in \{0, \dots, t-1\};$
- 3. $\forall v \in V, \exists i \in \mathbb{Z} \text{ s.t. } v_i = v.$

Definition 4.21. A graph containing Hamiltonian cycle is Hamiltonian.

Theorem 4.3. If \mathcal{G} is a graph with n vertices, and $\deg_{\mathcal{G}}(v) \geq \lceil \frac{n}{2} \rceil \ \forall v \in V$, then \mathcal{G} is Hamiltonian.

4.3 Graph Colouring

References

 $\label{eq:Keller} Keller,\ M.\ T.,\ \&\ Trotter,\ W.\ T.\ (2017). \ \textit{Applied combinatorics}\colon \ Mitchel\ T.\ Keller,\ William\ T.\ Trotter. \\ \texttt{https://www.rellek.net/appcomb}$