Высшая математика

Лисид Лаконский

March 2023

Содержание

1	Высшая математика - 13.03.2023	
	1.1	Нахождение среднего значения функции в указанном промежутке
		1.1.1 Примеры
		Нахождение точек экстремума и точек перегиба
		1.2.1 Примеры

1 Высшая математика - 13.03.2023

1.1 Нахождение среднего значения функции в указанном промежутке

$$\mu = \frac{1}{b-a} \int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

Если функция y = f(x) непрерывна на отрезке [a;b], то существует точка $c \in [a;b]$, что значение $f(c) = \mu$ Если f(x) > 0 при $x \in [a;b]$, то площадь криволинейной трапеции, ограниченной линиями x = a, x = b, y = 0 и y = f(x) равна площади прямоугольника с основанием [a,b] и высотой f(c)

1.1.1 Примеры

Пример №1 Найти среднее значение функции $y = 5x^4 - 2$ на промежутке [1;2]

$$\mu = \frac{1}{2-1} \int_{1}^{2} (5x^4 - 2) \, dx = (x^5 - 2x) \Big|_{1}^{2} = (32 - 4) - (1 - 2) = 29$$

1.2 Нахождение точек экстремума и точек перегиба

Точки экстремума и точки перегиба функции $\Phi(x)$, заданной интегралом с переменным верхним пределом.

$$\Phi(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

Если f непрерывна в точке x, то $\Phi'(x)=f(x) \implies \Phi''(x)=f'(x)$

$$\Phi(x) = \int_{a}^{x} f(t) dt = F(t) \Big|_{a}^{x} = F(x) - F(a)$$

f''>0 - вогнутая, f''<0 — выпуклая

1.2.1 Примеры

Пример №1
$$\Phi(x) = \int_{1}^{x} (t - t^3) dt = \left(\frac{t^2}{2} - \frac{t^4}{4}\right)\Big|_{1}^{x} = \frac{x^2}{2} - \frac{x^4}{4} - \frac{1}{2} + \frac{1}{4} = \frac{x^2}{2} - \frac{x^4}{4} - \frac{1}{4}$$
 $x - x^3 = \Phi'(x) \iff x - x^3 = 0 \iff x_1 = 0, \ x_{2,3} = \pm 1$

Изобразим знаки $\Phi'(x)$ и $\Phi(x)$ на координатной прямой с отмеченными точками $x=-1,\,x=0,\,x=1.$ Найдем точки максимума и минимума; $x_{min}=0,\,x_{max_1}=-1,\,x_{max_2}=1$ $\Phi(0)=-\frac{1}{4}-\min,\,\Phi(\pm 1)=0-\max$

$$\Phi''(x) = f'(x) = 1 - 3x^2$$

 $1 - 3x^2 = 0 \iff x_{1,2} = \pm \frac{1}{\sqrt{3}}$

Изобразим знаки $\Phi''(x)$ и $\Phi(x)$ на координатной прямой с отмеченными точками $x=-\frac{1}{\sqrt{3}},\ x=\frac{1}{\sqrt{3}}$. Определим, на каких промежутках график функции вогнут, а на каких выпукл.

$$\Phi(-\frac{1}{\sqrt{3}}) = \frac{1}{6} - \frac{1}{36} - \frac{1}{4} = -\frac{1}{9}, \ \Phi(\frac{1}{\sqrt{3}}) = -\frac{1}{9}$$
 $x = \pm \frac{1}{\sqrt{3}}$ — точки перегиба