



PCT/G/600/03837



INVESTOR IN PEOPLE

GB 00 13837

4

The Patent Office

Concept House

Cardiff Road

Newport

South Wales

NP10 8QQ

REC'D 27 OCT 2000

WIPO

PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 11 October 2000

**PRIORITY  
DOCUMENT**  
SUBMITTED OR TRANSMITTED IN  
COMPLIANCE WITH RULE 17.1(a) OR (b)







## Request for a grant of a patent OCT 1999

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

 Cardiff Road  
 Newport  
 Gwent NP9 1RH

1. Your reference

P007082GB CTH

2. Patent application number

(The Patent Office will fill in this part)

05 OCT 1999

**9923558.2**3. Full name, address and postcode of the or of each applicant  
(underline all surnames)
 Oxford BioMedica (UK) Limited  
 Medawar Centre  
 Robert Robinson Avenue  
 The Oxford Science Park  
 Oxford  
 United Kingdom

Patents ADP number (if you know it) 766 7157001

If the applicant is a corporate body, give the country/state of its incorporation

United Kingdom

4. Title of the invention

Producer Cell

5. Name of your agent (if you have one)

D YOUNG &amp; CO

 "Address for service" in the United Kingdom to which all correspondence should be sent  
(including the postcode)

 21 NEW FETTER LANE  
 LONDON  
 EC4A 1DA

Patents ADP number (if you have one)

59006 ✓

6. If you are declaring priority from one or more earlier patent applications, give the country and date of filing of the or each of these earlier applications and (if you know it) the or each application number

Country

Priority application number  
(if you know it)Date of filing  
(day/month/year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and filing date of the earlier application

Number of earlier application

Date of filing  
(day/month/year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? Answer 'Yes' if:  
a) any applicant named in part 3 is an inventor, or  
b) there is an inventor who is not named as an applicant, or  
c) any named applicant is a corporate body.  
*See note (d))*

Yes

9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document

Continuation sheets of this form No

Description 43

Claims(s) 6

Abstract 1

Drawing(s) 7

8  
42

10. If you are also filing any of the following, state how many against each item.

Priority documents 0

Translations of priority documents 0

Statement of inventorship and right 0  
to grant of a patent (*Patents Form 7/77*)

Request for preliminary examination Yes  
and search (*Patents Form 9/77*)

Request for substantive examination Yes  
(*Patents Form 10/77*)

Any other documents No  
(please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signature



D YOUNG & CO  
Agents for the Applicants

Date

05.10.99

12. Name and daytime telephone number of the person to contact in the United Kingdom

Dr C T Harding

023 8063 4816

#### Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

#### Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 01645 500505
- b) Write your answers in capital letters using black ink or you may type them
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

## PRODUCER CELL

### FIELD OF THE INVENTION

5 The present invention relates to retroviral vectors, in particular to high titre regulatable retroviral vectors.

### BACKGROUND TO THE INVENTION

10 Retroviruses have been proposed as a delivery system (otherwise expressed as a delivery vehicle or delivery vector) for *inter alia* the transfer of a nucleotide sequence of interest (NOI), or a plurality of NOIs, to one or more sites of interest. The transfer can occur *in vitro*, *ex vivo*, *in vivo*, or combinations thereof. When used in this fashion, the retroviruses are typically called retroviral vectors or recombinant retroviral vectors. Retroviral vectors have  
15 been exploited to study various aspects of the retrovirus life cycle, including receptor usage, reverse transcription and RNA packaging (reviewed by Miller, 1992 *Curr Top Microbiol Immunol* 158:1-24).

In a typical recombinant retroviral vector for use in gene therapy, at least part of one or  
20 more of the *gag*, *pol* and *env* protein coding regions may be removed from the virus. This makes the retroviral vector replication-defective. The removed portions may even be replaced by a NOI in order to generate a virus capable of integrating its genome into a host genome but wherein the modified viral genome is unable to propagate itself due to a lack of structural proteins. When integrated in the host genome, expression of the NOI occurs - resulting in, for example, a therapeutic effect. Thus, the transfer of a NOI into a site of interest is typically achieved by: integrating the NOI into the recombinant viral vector; packaging the modified viral vector into a virion coat; and allowing transduction of a site of interest - such as a targetted cell or a targetted cell population.

30 It is possible to propagate and isolate quantities of retroviral vectors (e.g. to prepare suitable titres of the retroviral vector) for subsequent transduction of, for example, a site of interest by using a combination of a packaging or helper cell line and a recombinant vector.

In some instances, propagation and isolation may entail isolation of the retroviral *gag*, *pol* and *env* genes and their separate introduction into a host cell to produce a "packaging cell line". The packaging cell line produces the proteins required for packaging retroviral RNA  
5 but it does not produce RNA-containing retroviral vectors. However, when a recombinant vector carrying a NOI and a *psi* region is introduced into the packaging cell line, the helper proteins can package the *psi*-positive recombinant vector to produce the recombinant virus stock. This can be used to infect cells to introduce the NOI into the genome of the cells.  
10 The recombinant virus whose genome lacks all genes required to make viral proteins can infect only once and cannot propagate. Hence, the NOI is introduced into the host cell genome without the generation of potentially harmful retrovirus. A summary of the available packaging lines is presented in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 449).

15 Retroviral packaging cell lines have been developed to produce retroviral vectors. These cell lines are designed to express three components, which may be located on three separate expression constructs. The *gag/pol* expression construct encodes structural and enzymatic components required in particle formation, maturation, reverse transcription and integration. The envelope (*env*) construct expresses a retroviral or non-retroviral envelope  
20 protein, which mediates viral entry into cells by binding to its cognate receptor. The third expression construct produces the retroviral RNA genome containing a *psi* region, which is packaged into mature, enveloped retroviral particles.

25 It has been observed that different methods, such as electroporation, transfection and retroviral transduction, which have been used to introduce the retroviral expression construct for the RNA genome, termed "the genome", into packaging cells produce different results. These different results can include different end points or "yield" of retroviral producer lines resulting from the derived cell lines. Moreover, electroporation and transfection methods can be problematic in the sense that the titre levels are not always  
30 at a satisfactory level.

By way of example, the transfection of a plasmid DNA construct into packaging cells from a MLV packaging cell line of human origin, called FLYA13, yielded low retroviral vector titres even when different transfection reagents such as calcium phosphate precipitation and fugene transfection reagent were used. The average titres from selected stably transfected 5 cell lines clones ranged from about  $10^3$  to about  $10^4$  per ml. In addition, clones generated by electroporation of constructs gave similar titres of from about  $10^3$  to about  $10^4$  per ml with no clones identified producing at  $>10^5$  per ml. However, when MLV vector particles are prepared in a transient transfection system with a different envelope pseudotype to the packaging cell, and used to transduce a retroviral packaging cell, stably transduced cell 10 lines made by this transduction method produce retrovirus at  $10^6$  to  $10^7$  per ml. Therefore, these results suggest that retroviral transduction is a preferred method for genome introduction into packaging cell lines in order to generate high titre producer cell lines. However, when retroviral transduction is used to introduce a regulated/inactivated 15 retroviral vector genome into packaging cell lines, the regulated retroviral vectors may not be produced in sufficient quantities from these cell lines.

By way of example, some retroviral vectors may comprise (i) internal expression constructs which are themselves regulated or (ii) regulated elements which are present in retroviral 3' LTR sequences, either by design or by their nature. Examples of these 20 regulated vectors include but are not limited to hypoxic regulated vectors and self inactivating (SIN) vectors. If transduced producer cell lines are generated with these regulated vectors, the regulated or inactivated 3' U3 sequence of the LTR is copied to the 5' LTR by the process of retroviral reverse transcription and integration. Therefore, in the producer cell line, the 5' U3 promoter sequence directing expression of retroviral RNA 25 genomes is identical to the regulated or inactivated 3' U3 promoter. This will result in very low levels of retroviral genome production and consequently low titres of functional retrovirus vectors being produced.

One example of such a regulated retroviral system includes MLV and lentivirus vector 30 constructs where the 3' retroviral U3 enhancer element is replaced with a hypoxia responsive element (HRE) or other physiologically regulated, tumour specific or tissue-specific promoters. When these vectors are used to make a transduced producer cell line,

the 3' U3 sequence containing the HRE element is copied to the 5' LTR position and retroviral genomes will only be produced under hypoxic conditions or chemical mimics of hypoxia, such as heavy metal ions and desferrioxamine. Such a requirement for "induction for retroviral production" is not preferable as the different hypoxia induction protocols  
5 negatively affect retroviral producer cell viability.

By way of further example, lentivector U3 enhancers are dependent on the transactivator TAT for transcriptional activation. Therefore, a lentivector producer cell line generated by transduction requires the presence of TAT for high level expression of the lentivector  
10 genome construct. The expression of TAT is not preferable in such a packaging cell line and therefore, in the absence of TAT, only very low titres will be produced from transduced producer cells generated in this way.

Another example of a regulated retroviral systems includes MLV or lentivirus self-inactivating (SIN) vectors. These vectors contain deletions of the elements in their 3' U3 sequences responsible for transcriptional activity. Therefore, on transduction of target cells, the transcriptionally inactive 3' U3 sequence is copied to the 5' LTR position. In standard configurations, an internal expression cassette directs therapeutic or marker gene expression. However, if SIN vectors are used to make a transduced retroviral producer line,  
20 there will be no transcriptional elements present to direct high levels of retroviral RNA genome expression.

Although it is possible to carry out retroviral transduction with much lower-titre vector stocks, for practical reasons, high-titre retrovirus is desirable, especially when a large  
25 number of cells must be infected. In addition, high titres are a requirement for transduction of a large percentage of certain cell types. For example, the frequency of human hematopoietic progenitor cell infection is strongly dependent on vector titre, and useful frequencies of infection occur only with very high-titre stocks (Hock and Miller 1986 Nature 320: 275-277; Hogge and Humphries 1987 Blood 69: 611-617). In these cases, it is  
30 not sufficient simply to expose the cells to a larger volume of virus to compensate for a low virus titre. On the contrary, in some cases, the concentration of infectious vector virions may be critical to promote efficient transduction.

## SUMMARY OF THE INVENTION

We have now shown that it is possible to obtain transduced producer cells capable of  
5 producing high titre regulated retroviral vectors by replacing at least the 3'LTR of the  
integrated provirus using a recombinase based system. Thus whereas with the prior art, the  
U3 region of the 3'LTR is the same as that of the U3 region of the 5' LTR (and vice versa  
for the U5 region) in the provirus due to the way in which the viral vector integrates, the  
introduction of, for example, a replacement 3'LTR results in a provirus that has a 5'LTR  
10 and a 3'LTR that differ. The packaged viral vectors produced by transcription of the  
proviral genome within the producer cells may then ultimately be used to transduce target  
cells where the regulatable sequences present in the 3'LTR of the provirus in the producer  
cells are then present in the 5'LTR of the provirus in the target cells and consequently  
regulate transcription from the provirus as required.

15

This allows the introduction of a 3'LTR, for example a regulatable 3'LTR, into the  
provirus that was not desirable in the original viral vector used to transduce the producer  
cells since the consequential appearance of the regulatable 3'LTR U3 sequences in the  
5'LTR in the provirus may lead to a reduced viral titre.

20

Consequently, the present invention allows transduced producer cells to be constructed that  
are capable of producing high titre regulated retroviral vectors by virtue of comprising a  
5'LTR that directs high level expression of the viral genome in the producer cell and a  
different 3'LTR which as a result of the process of integration into a target cell will then  
25 result in a provirus in the target cell genome that exhibits regulatable expression.

In particular, the present invention allows the modification of a provirus integrated into the  
genome of the producer cells that have been selected for their high titre virus production  
such that the resulting packaged viral particles produced from the provirus may be used to  
30 transduce target cells resulting in a provirus integrated into the genome of the target cells  
that has a different, and preferably regulatable 5'LTR to that of the producer cell provirus.

The present invention is not limited to replacement of the 3'LTR of the provirus in the high titre producer cells, but may also include replacement of the 5'LTR and other viral sequences and/or the introduction of NOIs by the use of suitable constructs, as shown in the Figures.

5

Accordingly, the present invention provides a method of modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3' LTR, the method comprising:

10 introducing into the cell a construct comprising a 5' recombinase recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the construct is introduced into the provirus.

15

Preferably the LTR is a heterologous regulatable LTR.

20 The present invention further provides a nucleic acid vector comprising a 5' recombinase recognition sequence, a regulatable LTR and a 3' recombinase recognition sequence in that order.

In another aspect, the present invention provides a circular nucleic acid molecule comprising a recombinase recognition sequence, and a regulatable LTR.

25 In any of the above aspects and embodiments of the invention, preferably the construct, nucleic acid molecule and/or nucleic acid vector further comprises at least one NOI between the 5' recombinase recognition sequence and the regulatable LTR.

30 Preferably the construct, nucleic acid molecule and/or nucleic acid vector further comprises a 5'LTR and/or a packaging signal

In one embodiment of the invention, the LTR is inactive/transcriptionally quiescent.

The construct, nucleic acid molecule and/or nucleic acid vector of the invention may be used in a recombinase assisted method to introduce a regulated LTR into a proviral genome integrated into a producer cell genome.

5

The present invention also provides a producer cell obtainable by the method of the invention, preferably a high titre producer cells. Also provided is an infectious retroviral particle obtained by the above method.

- 10 The present invention further provides a high titre producer cell comprising integrated into its genome a provirus, which provirus comprises a recombinase recognition site, a 5' LTR and a 3'LTR which 3'LTR differs from the 5'LTR. Such a producuer cell will typically have been produced by the method of the invention.
- 15 Preferably the 5'LTR and the 3'LTR referred to for the purposes of comparison are both "active". The term "active" within the present context means transcriptionally active, that is to say, the 5'LTR comprises a promoter that directs transcription of the viral genome and the 3'LTR comprises a transcriptional stop sequence to terminate transcription. This distinction is relevant since if a provirus produced by the method of the invention comprises more than one 5' LTR or 3'LTR, at least one but not all must be active to allow viral production. Further, if the provirus comprises more than one 3'LTR then it is generally the upstream one that will be active since transcription will tend not to read through to the downstream 3' LTR.
- 20
- 25 In addition, where the method of the invention results in an insertion of a 3'LTR upstream of the original 3'LTR, the comparison should be performed between the additional 3'LTR and the original 5'LTR and not the two original LTRs. Thus it is permitted to have a 5'LTR and 3'LTR within the same provirus that are the same provided that there is also a 5'LTR and 3'LTR that differ.

30

In another aspect, the present invention provides a derived producer cell comprising integrated into its genome a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR;  
5 wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the producer cell.

Preferably the first 5' LTR comprising 5'R and 5' U5 sequences is derivable from a first vector; the second NOI operably linked to a second regulatable 3' LTR is derivable from a second vector; and the third 3'LTR is derivable from the first vector.

10

In a preferred embodiment, the first vector further comprises an internal LTR located upstream of the first NOI and downstream of the packaging signal wherein the internal LTR comprises a heterologous U3 sequence linked to heterologous R and U5 sequences.

15 Preferably the heterologous R and U5 sequences are lentiviral derivable R and U5 sequences, such as EIAV R and U5 sequences.

In a further preferred embodiment, the third 3'LTR is transcriptionally active but expression is directed away from the second regulatable 3'LTR.

20

In another embodiment, the second vector comprises a second NOI operably linked to a second regulatable 3'LTR comprising at least one recombinase recognition sequence. Preferably the second regulatable 3'LTR comprises a deletion in the U3 sequences in the 3'LTR.

25

Preferably, the second NOI comprises a discistronic construct, more preferably a discistronic construct comprising a therapeutic gene, an internal ribosomal entry site (IRES) and a reporter gene.

30 The present invention further provides in another embodiment, a method for producing a high titre regulatable retroviral vector, the method comprising the steps of:

(i) providing a derived producer cell comprising integrated into its genome a first vector;

(ii) introducing a second vector into the derived producer cell using a recombinase assisted method;

wherein the derived producer cell comprises a retroviral vector comprising in the 5' to 3'

direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and  
5 a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable

3'LTR in the derived producer cell.

The present invention also provides the use of a recombinase assisted mechanism to introduce a regulated 3'LTR into a derived producer cell line to produce a high titre

10 regulated retroviral vector.

Aspects of the present invention are also presented in the accompanying claims and in the following description and discussion.

15 These aspects are presented under separate section headings. However, it is to be understood that the teachings under each section heading are not necessarily limited to that particular section heading.

#### DETAILED DESCRIPTION OF THE INVENTION

20 The present invention is advantageous because:

(i) it enables regulated retroviral vectors to be produced at high titres from transduced producer cell lines.

25 (ii) it removes the uncertainty associated with the process of producer cell line derivation and the necessity to screen large numbers of producer cell lines each time a new retroviral expression construct is introduced into a producer cell line.

30 (iii) it greatly facilitates the generation of high titre retroviral stocks without the use of marker genes (such as but not limited to  $\beta$ -galactosidase, green fluorescent protein) and antibiotic resistance genes.

(iv) it avoids the derivation of low titre transfected producer cell lines or the use of hypoxic conditions or chemical mimics for production from traditionally derived transduced producer lines.

5

(v) it enables the production of SIN vectors by stable cell line producer technology. Previously, SIN vectors have not been amenable to production by stable cell line producer technology because the deletion of the 3'U3 sequence resulted in at least a tenfold lower titre of self-inactivating (SIN) vectors in comparison with vectors having intact LTRs.

10 Consequently, SIN vectors have had to be prepared using transfection-based transient expression systems.

#### PRODUCER CELL

15 The high titre regulated retroviral vector particles of the present invention are typically generated in a suitable producer cell. Producer cells are generally mammalian cells but can be, for example, insect cells. A producer cell may be a packaging cell containing the virus structural genes, normally integrated into its genome into which the regulated retroviral vectors of the present invention are introduced. Alternatively the producer cell may be

20 transfected with nucleic acid sequences encoding structural components, such as *gag/pol/env* on one or more vectors such as plasmids, adenovirus vectors, herpes viral vectors or any method known to deliver functional DNA into target cells. The vectors according to the present invention are then introduced into the packaging cell by the methods of the present invention.

25 As used herein, the term "producer cell" or "vector producing cell" refers to a cell which contains all the elements necessary for production of regulated retroviral vector particles and regulated retroviral delivery systems.

Preferably, the producer cell is obtainable from a stable producer cell line.

30

Preferably, the producer cell is obtainable from a derived stable producer cell line.

Preferably, the producer cell is obtainable from a derived producer cell line

As used herein, the term "derived producer cell line" is a transduced producer cell line which has been screened and selected for high expression of a marker gene. Such cell lines 5 contain retroviral insertions in integration sites that support high level expression from the retroviral genome. The term "derived producer cell line" is used interchangeably with the term "derived stable producer cell line" and the term "stable producer cell line"

10 Preferably the derived producer cell line includes but is not limited to a retroviral and/or a lentiviral producer cell.

Preferably the derived producer cell line is an HIV or EIAV producer cell line, more preferably an EIAV producer cell line.

15 Preferably the envelope protein sequences, and nucleocapsid sequences are all stably integrated in the producer and/or packaging cell. However, one or more of these sequences could also exist in episomal form and gene expression could occur from the episome.

#### PACKAGING CELL

20

As used herein, the term "packaging cell" refers to a cell which contains those elements necessary for production of infectious recombinant virus which are lacking in a recombinant viral vector. Typically, such packaging cells contain one or more expression cassettes which are capable of expressing viral structural proteins (such as *gag*, *pol* and 25 *env*) but they do not contain a packaging signal.

The term "packaging signal" which is referred to interchangeably as "packaging sequence" or "*psi*" is used in reference to the non-coding sequence required for encapsidation of retroviral RNA strands during viral particle formation.

30

Packaging cell lines suitable for use with the above-described vector constructs may be readily prepared (see also WO 92/05266), and utilised to create producer cell lines for the

production of retroviral vector particles. As already mentioned, a summary of the available packaging lines is presented in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 449).

5      The packaging cell lines are useful for providing the gene products necessary to encapsidate and provide a membrane protein for a high titre regulated retrovirus vector and regulated nucleic gene delivery vehicle production. When regulated retrovirus sequences are introduced into the packaging cell lines, such sequences are encapsidated with the nucleocapsid (*gag/pol*) proteins and these units then bud through the cell membrane to  
10     become surrounded in cell membrane and to contain the envelope protein produced in the packaging cell line. These infectious regulated retroviruses are useful as infectious units *per se* or as gene delivery vectors.

15     The packaging cell may be a cell cultured *in vitro* such as a tissue culture cell line. Suitable cell lines include but are not limited to mammalian cells such as murine fibroblast derived cell lines or human cell lines. Preferably the packaging cell line is a human cell line, such as for example: HEK293, 293-T, TE671, HT1080.

20     Alternatively, the packaging cell may be a cell derived from the individual to be treated such as a monocyte, macrophage, blood cell or fibroblast. The cell may be isolated from an individual and the packaging and vector components administered *ex vivo* followed by re-administration of the autologous packaging cells.

25     Methods for introducing retroviral packaging and vector components into packaging/producer cells are described in the present invention.

Preferably the method of the present invention utilises a recombinase assisted mechanism.

30     Preferably the method of the present invention utilises a recombinase assisted mechanism which facilitates the production of high titre regulated retroviral vectors from the producer cells of the present invention.

## RECOMBINASE ASSISTED MECHANISM

As used herein, the term "recombinase assisted system" includes but is not limited to a system using the Cre recombinase / loxP recognition sites of bacteriophage P1 or the site-specific FLP recombinase of *S. cerevisiae* which catalyses recombination events between 5 34 bp FLP recognition targets (FRTs).

The site-specific FLP recombinase of *S. cerevisiae* which catalyses recombination events between 34 bp FLP recognition targets (FRTs) has been configured into DNA constructs in 10 order to generate high level producer cell lines using recombinase-assisted recombination events (Karreman *et al.* (1996) NAR 24, 1616-1624). A similar system has been developed using the Cre recombinase / loxP recognition sites of bacteriophage P1. This was configured into a retroviral genome such that high titre retroviral producer cell lines were generated (Vanin *et al.* (1997) J Virol 71, 7820-7826). However, the use of the 15 second method (Vanin *et al ibid*) has centered around the exchange of the central portions of a retroviral cassette using a recombinase-assisted system. Moreover, these methods have used genes encoding selectable markers such as neo<sup>R</sup> and puro<sup>R</sup> (Vanin *et al ibid*) and luciferase and puro<sup>R</sup> linked by an IRES sequence (Karreman *et al ibid*). Karreman and Vanin do not demonstrate or *suggest* that: (i) a regulated or inactive 3'U3 sequence of the 20 3'LTR can be introduced into a producer cell via a recombinase-assisted mechanism or (ii) that therapeutic genes under the control of a regulated LTR may be introduced into a producer cell line via a recombinase assisted step. Vanin *et al ibid* suggests that his Cre-mediated recombination approach to retroviral producer cell line production may be used in combination with other modifications which should result in improved vector 25 performance. Vanin *et al ibid* also suggests that his approach provides a means to generate high titre SIN vectors. However, there is no worked example and in fact no enabling disclosure because the skilled person would not have been aware, on the basis of the Vanin *et al* paper, of the necessary modifications to make the suggested approach work. Vanin *et al* makes no reference to hypoxic regulated vectors and/or regulated/inactivated lentiviral 30 vectors.

LTRs

As already indicated, each retroviral genome comprises genes called *gag*, *pol* and *env* which code for virion proteins and enzymes. In the provirus, these genes are flanked at 5 both ends by regions called long terminal repeats (LTRs). The LTRs are responsible for proviral integration, and transcription. They also serve as enhancer-promoter sequences. In other words, the LTRs can control the expression of the viral gene. Encapsidation of the retroviral RNAs occurs by virtue of a *psi* sequence located at the 5' end of the viral genome.

10

As used herein, the term "long terminal repeat (LTR)" is used in reference to domains of base pairs located at the end of retroviral DNAs.

The LTRs themselves are identical sequences that can be divided into three elements. 15 which are called U3, R and U5. U3 is derived from the sequence unique to the 3' end of the RNA. R is derived from a sequence repeated at both ends of the RNA and U5 is derived from the sequence unique to the 5' end of the RNA. The sizes of the three elements can vary considerably among different retroviruses.

20 For ease of understanding, a simple, generic structures (not to scale) of the RNA and the DNA forms of the MLV retroviral genome is presented in Figure 7 in which the elementary features of the LTRs and the relative positioning of *gag/pol* and *env* are indicated. Please note that (i) *gag/pol* and *env* are normally not spaced apart; and (ii) the overlap normally present between the *pol* and *env* genes and the poly A tail normally 25 present at the 3' end of the RNA transcript are not illustrated in Figure 7.

As shown in Figure 7, the basic molecular organisation of an infectious retroviral RNA genome is (5') R - U5 - *gag/pol*, *env* - U3-R (3'). In a defective retroviral vector genome 30 *gag*, *pol* and *env* may be absent or not functional. The R regions at both ends of the RNA are repeated sequences. U5 and U3 represent unique sequences at the 5' and 3' ends of the RNA genome respectively.

Upon cellular transduction, reverse transcription of the virion RNA into double stranded DNA takes place in the cytoplasm and involves two jumps of the reverse transcriptase from the 5' terminus to the 3' terminus of the template molecule. The result of these jumps is a duplication of sequences located at the 5' and 3' ends of the virion RNA. These sequences 5 then occur fused in tandem on both ends of the viral DNA, forming the long terminal repeats (LTRs) which comprise R U5 and U3 regions. On completion of the reverse transcription, the viral DNA is translocated into the nucleus where the linear copy of the retroviral genome, called a preintegration complex (PIC), is randomly inserted into chromosomal DNA with the aid of the virion integrase to form a stable provirus. The 10 number of possible sites of integration into the host cellular genome is very large and very widely distributed.

Preferably the retroviral genome is introduced into packaging cell lines using retroviral transduction.

15

Preferably retroviral vector particles (such as MLV vector particles) are prepared in a transient expression system with a different envelope pseudotype to the packaging cell, and used to transduce a retroviral packaging cell.

20 Preferably the retroviral transduction step identifies retroviral insertions in integration sites that support high level expression of the resulting regulated retroviral genome.

25 Preferably stable transduced producer cell lines made by this initial retroviral transduction step produce retrovirus at titres of at least  $10^6$  per ml, such as from  $10^6$  to  $10^7$  per ml, more preferably at least  $10^7$  per ml.

#### HIGH TITRE

As used herein, the term "high titre" means an effective amount of a retroviral vector or 30 particle which is capable of transducing a target site such as a cell.

As used herein, the term "effective amount" means an amount of a regulated retroviral or lentiviral vector or vector particle which is sufficient to induce expression of an NOI at a target site.

5 Preferably the titre is from at least  $10^6$  retrovirus particles per ml, such as from  $10^6$  to  $10^7$  per ml, more preferably at least  $10^7$  retrovirus particles per ml.

#### TRANSCRIPTIONAL CONTROL

10 The control of proviral transcription remains largely with the noncoding sequences of the viral LTR. The site of transcription initiation is at the boundary between U3 and R in the left hand side LTR (as shown in Figure 7) and the site of poly (A) addition (termination) is at the boundary between R and US in the right hand side LTR (as shown in Figure 7). The 3'U3 sequence contains most of the transcriptional control elements of the provirus, which  
15 include the promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins.

#### REGULTABLE LTRs

20 AN LTR present, for example, in the construct of the invention and as a 3'LTR in the provirus of the producer cell of the invention may be a native LTR or a heterologous regulatable LTR. It may also be a transcriptionally quiescent LTR for use in SIN vector technology.

25 As used herein, the terms "regulatable LTR" and "regulatable 3'LTR" include vectors which contain responsive elements which are present in retroviral 3' LTR sequences, either by design or by their nature. As used herein, vectors comprising a "regulatable 3'LTR" are referred to as "regulated retroviral vectors". Within the regulatable 3'LTR region, the 3'U3 sequence contains most of the transcriptional control elements of the provirus, which  
30 include the promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins.

Responsive elements include but are not limited to elements which comprise, for example, promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins and/or elements which have been modified to render them inactive. As used herein, the term "modified" includes but is not limited to silencing, disabling, mutating, deleting or removing all of the U3 sequence or a part thereof.

The term "regulated LTR" also includes an inactive LTR such that the resulting provirus in the target cell can not produce a packagable viral genome (self-inactivating (SIN) vector technology) - see the Examples and Figure 6 for a particular embodiment.

10

#### ENHANCER

As used herein, the term "enhancer" includes a DNA sequence which binds other protein components of the transcription initiation complex and thus facilitates the initiation of transcription directed by its associated promoter.

In one preferred embodiment of the present invention, the enhancer is an ischaemic like response element (ILRE).

20 ILRE

The term "ischaemia like response element" - otherwise written as ILRE - includes an element that is responsive to or is active under conditions of ischaemia or conditions that are like ischaemia or are caused by ischaemia. By way of example, conditions that are like ischaemia or are caused by ischaemia include hypoxia and/or low glucose concentration(s).

The term "hypoxia" means a condition under which a particular organ or tissue receives an inadequate supply of oxygen.

30 Ischaemia can be an insufficient supply of blood to a specific organ or tissue. A consequence of decreased blood supply is an inadequate supply of oxygen to the organ or tissue (hypoxia). Prolonged hypoxia may result in injury to the affected organ or tissue.

A preferred ILRE is an hypoxia response element (HRE).

HRE

5

In one preferred aspect of the present invention, there is hypoxia or ischaemia regulatable expression of the retroviral vector components. In this regard, hypoxia is a powerful regulator of gene expression in a wide range of different cell types and acts by the induction of the activity of hypoxia-inducible transcription factors such as hypoxia  
10 inducible factor-1 (HIF-1; Wang & Semenza 1993 Proc Natl Acad Sci 90:430), which bind to cognate DNA recognition sites, the hypoxia-responsive elements (HREs) on various gene promoters. Dachs *et al* (1997 Nature Med 5: 515) have used a multimeric form of the HRE from the mouse phosphoglycerate kinase-1 (PGK-1) gene (Firth *et al* 1994 Proc Natl Acad Sci 91:6496-6500) to control expression of both marker and  
15 therapeutic genes by human fibrosarcoma cells in response to hypoxia *in vitro* and within solid tumours *in vivo* (Dachs *et al ibid*).

Hypoxia response enhancer elements (HREEs) have also been found in association with a number of genes including the erythropoietin (EPO) gene (Madan *et al* 1993 Proc Natl  
20 Acad Sci 90: 3928; Semenza and Wang 1992 Mol Cell Biol 1992 12: 5447-5454). Other HREEs have been isolated from regulatory regions of both the muscle glycolytic enzyme pyruvate kinase (PKM) gene (Takenaka *et al* 1989 J Biol Chem 264: 2363-2367), the human muscle-specific β-enolase gene (ENO3; Peshavaria and Day 1991 Biochem J 275:  
427-433 ) and the endothelin-1 (ET-1) gene (Inoue *et al* 1989 J Biol Chem 264: 14954-  
25 14959).

Preferably the HRE of the present invention is selected from, for example, the erythropoietin HRE element (HREE1), muscle pyruvate kinase (PKM), HRE element, phosphoglycerate kinase (PGK) HRE, B-enolase (enolase 3; ENO3) HRE element,  
30 endothelin-1 (ET-1)HRE element and metallothionein II (MTII) HRE element.

## RESPONSIVE ELEMENT

Preferably the ILRE is used in combination with a transcriptional regulatory element , such as a promoter, which transcriptional regulatory element is preferably active in one or more 5 selected cell type(s), preferably being only active in one cell type.

As outlined above, this combination aspect of the present invention is called a responsive element.

10 Preferably the responsive element comprises at least the ILRE as herein defined.

Non-limiting examples of such a responsive element are presented as OBHRE1 and XiaMac. Another non-limiting example includes the ILRE in use in conjunction with an MLV promoter and/or a tissue restricted ischaemic responsive promoter. These responsive 15 elements are disclosed in WO99/15684.

Other examples of suitable tissue restricted promoters/enhancers are those which are highly active in tumour cells such as a promoter/enhancer from a *MUC1* gene, a *CEA* gene or a 20 *5T4* antigen gene. The alpha fetoprotein (AFP) promoter is also a tumour-specific promoter. One preferred promoter-enhancer combination is a human cytomegalovirus (hCMV) major immediate early (MIE) promoter/enhancer combination.

## PROMOTER

25 The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase binding site.

The promoter may be located in the retroviral 5' LTR to control the expression of a cDNA encoding an NOI.

30

Preferably the NOI is capable of being expressed from the retrovirus genome such as from endogenous retroviral promoters in the long terminal repeat (LTR)

Preferably the NOI is expressed from a heterologous promoter to which the heterologous gene or sequence is operably linked.

5     Alternatively, the promoter may be an internal promoter.

Preferably the NOI is expressed from an internal promoter.

10    Vectors containing internal promoters have also been widely used to express multiple genes. An internal promoter makes it possible to exploit promoter/enhancer combinations other than those found in the viral LTR for driving gene expression. Multiple internal promoters can be included in a retroviral vector and it has proved possible to express at least three different cDNAs each from its own promoter (Overell *et al* 1988 Mol Cell Biol 8: 1803-1808). Internal ribosomal entry site (IRES) elements have also been used to allow 15 translation of multiple coding regions from either a single mRNA or from fusion proteins that can then be expressed from an open reading frame.

#### TISSUE SPECIFIC PROMOTERS

20    The promoter of the present invention may be constitutively efficient, or may be tissue or temporally restricted in their activity.

Preferably the promoter is a constitutive promoter such as CMV.

25    Preferably the promoters of the present invention are tissue specific.

That is, they are capable of driving transcription of a NOI or NOI(s) in one tissue while remaining largely "silent" in other tissue types.

30    The term "tissue specific" means a promoter which is not restricted in activity to a single tissue type but which nevertheless shows selectivity in that they may be active in one group of tissues and less active or silent in another group.

The level of expression of an NOI or NOIs under the control of a particular promoter may be modulated by manipulating the promoter region. For example, different domains within a promoter region may possess different gene regulatory activities. The roles of these 5 different regions are typically assessed using vector constructs having different variants of the promoter with specific regions deleted (that is, deletion analysis). This approach may be used to identify, for example, the smallest region capable of conferring tissue specificity or the smallest region conferring hypoxia sensitivity.

10 A number of tissue specific promoters, described above, may be particularly advantageous in practising the present invention. In most instances, these promoters may be isolated as convenient restriction digestion fragments suitable for cloning in a selected vector. Alternatively, promoter fragments may be isolated using the polymerase chain reaction. Cloning of the amplified fragments may be facilitated by incorporating restriction sites at 15 the 5' end of the primers.

The NOI or NOIs may be under the expression control of an expression regulatory element, such as a promoter and enhancer.

20 Preferably the ischaemic responsive promoter is a tissue restricted ischaemic responsive promoter.

Preferably the tissue restricted ischaemic responsive promoter is a macrophage specific promoter restricted by repression.

25 Preferably the tissue restricted ischaemic responsive promoter is an endothelium specific promoter.

30 Preferably the regulated retroviral vector of the present invention is an ILRE regulated retroviral vector.

Preferably the regulated retroviral vector of the present invention is an ILRE regulated lentiviral vector.

5 Preferably the regulated retroviral vector of the present invention is an autoregulated hypoxia responsive lentiviral vector.

Preferably the regulated retroviral vector of the present invention is regulated by glucose concentration.

10 For example, the glucose-regulated proteins (grp's) such as grp78 and grp94 are highly conserved proteins known to be induced by glucose deprivation (Attenello and Lee 1984 Science 226 187-190). The grp 78 gene is expressed at low levels in most normal healthy tissues under the influence of basal level promoter elements but has at least two critical "stress inducible regulatory elements" upstream of the TATA element (Attenello 1984  
15 ibid; Gazit *et al* 1995 Cancer Res 55: 1660-1663). Attachment to a truncated 632 base pair sequence of the 5'end of the grp78 promoter confers high inducibility to glucose deprivation on reporter genes *in vitro* (Gazit *et al* 1995 *ibid*). Furthermore, this promoter sequence in retroviral vectors was capable of driving a high level expression of a reporter gene in tumour cells in murine fibrosarcomas, particularly in central relatively  
20 ischaemic/fibrotic sites (Gazit *et al* 1995 *ibid*).

Preferably the regulated retroviral vector of the present invention is a self-inactivating (SIN) vector.

25 By way of example, self-inactivating retroviral vectors have been constructed by deleting the transcriptional enhancers or the enhancers and promoter in the U3 region of the 3' LTR. After a round of vector reverse transcription and integration, these changes are copied into both the 5' and the 3' LTRs producing a transcriptionally inactive provirus (Yu *et al* 1986 Proc Natl Acad Sci 83: 3194-3198; Dougherty and Temin 1987 Proc Natl Acad Sci 84:  
30 1197-1201; Hawley *et al* 1987 Proc Natl Acad Sci 84: 2406-2410; Yee *et al* 1987 Proc Natl Acad Sci 91: 9564-9568). However, any promoter(s) internal to the LTRs in such vectors will still be transcriptionally active. This strategy has been employed to eliminate

effects of the enhancers and promoters in the viral LTRs on transcription from internally placed genes. Such effects include increased transcription (Jolly *et al* 1983 Nucleic Acids Res 11: 1855-1872) or suppression of transcription (Emerman and Temin 1984 Cell 39: 449-467). This strategy can also be used to eliminate downstream transcription from the 3' 5 LTR into genomic DNA (Herman and Coffin 1987 Science 236: 845-848). This is of particular concern in human gene therapy where it is of critical importance to prevent the adventitious activation of an endogenous oncogene.

#### RETROVIRAL VECTORS

10

The regulated retroviral vector of the present invention includes but is not limited to: murine leukemia virus (MLV), human immunodeficiency virus (HIV), equine infectious anaemia virus (EIAV), feline immunodeficiency virus (FIV), caprine encephalitis-arthritis virus (CAEV), mouse mammary tumour virus (MMTV), Rous sarcoma virus (RSV), 15 Fujinami sarcoma virus (FuSV), Moloney murine leukemia virus (Mo-MLV), FBR murine osteosarcoma virus (FBR MSV), Moloney murine sarcoma virus (Mo-MSV), Abelson murine leukemia virus (A-MLV), Avian myelocytomatisis virus-29 (MC29), and Avian erythroblastosis virus (AEV).

20 A detailed list of retroviruses may be found in Coffin *et al* ("Retroviruses" 1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 758-763).

Preferred vectors for use in accordance with the present invention are retroviral vectors, such as MLV vectors.

25

Preferably the recombinant retroviral vectors of the present invention are lentiviral vectors, more preferably HIV or EIAV vectors.

#### LENTIVIRAL VECTORS

30

The lentiviruses can be divided into primate and non-primate groups. Examples of primate lentiviruses include but are not limited to: the human immunodeficiency virus (HIV), the

causative agent of human auto-immunodeficiency syndrome (AIDS), and the simian immunodeficiency virus (SIV). The non-primate lentiviral group includes the prototype "slow virus" visna/maedi virus (VMV), as well as the related caprine arthritis-encephalitis virus (CAEV), equine infectious anaemia virus (EIAV) and the more recently described 5 feline immunodeficiency virus (FIV) and bovine immunodeficiency virus (BIV).

A distinction between the lentivirus family and other types of retroviruses is that lentiviruses have the capability to infect both dividing and non-dividing cells (Lewis *et al* 1992 EMBO. J 11: 3053-3058; Lewis and Emerman 1994 J. Virol. 68: 510-516). In 10 contrast, other retroviruses - such as MLV - are unable to infect non-dividing cells such as those that make up, for example, muscle, brain, lung and liver tissue.

Preferred vectors for use in accordance with the present invention are recombinant retroviral vectors, in particular recombinant lentiviral vectors, in particular minimal 15 lentiviral vectors which are disclosed in WO 99/32646 and in WO98/17815.

## VECTOR

As used herein, a "vector" denotes a tool that allows or facilitates the transfer of an entity 20 from one environment to another. In accordance with the present invention, and by way of example, some vectors used in recombinant DNA techniques allow entities, such as a segment of DNA (such as a heterologous DNA segment, such as a heterologous cDNA segment), to be transferred into a target cell. Optionally, once within the target cell, the vector may then serve to maintain the heterologous DNA within the cell or may act as a 25 unit of DNA replication. Examples of vectors used in recombinant DNA techniques include plasmids, chromosomes, artificial chromosomes or viruses.

### OPERABLY LINKED

The term "operably linked" denotes a relationship between a regulatory region (typically a promoter element, but may include an enhancer element) and the coding region of a gene,  
5 whereby the transcription of the coding region is under the control of the regulatory region.

### DERIVABLE

The term "derivable" is used in its normal sense as meaning a nucleotide sequence such as an  
10 LTR or a part thereof which need not necessarily be obtained from a vector such as a retroviral vector but instead could be derived therefrom. By way of example, the sequence may be prepared synthetically or by use of recombinant DNA techniques.

### VECTOR PARTICLES

15

In the present invention, several terms are used interchangeably. Thus, "virion", "virus", "viral particle", "retroviral particle", "retrovirus", and "vector particle" mean virus and virus-like particles that are capable of introducing a nucleic acid into a cell through a viral-like entry mechanism. Such vector particles can, under certain circumstances, mediate the  
20 transfer of NOIs into the cells they infect. A retrovirus is capable of reverse transcribing its genetic material into DNA and incorporating this genetic material into a target cell's DNA upon transduction. Such cells are designated herein as "target cells".

A vector particle includes the following components: a retrovirus nucleic acid, which may  
25 contain one or more NOIs, a nucleocapsid encapsidating the nucleic acid, the nucleocapsid comprising nucleocapsid protein of a retrovirus, and a membrane surrounding the nucleocapsid.

### NUCLEOCAPSID

30

The term "nucleocapsid" refers to at least the group specific viral core proteins (*gag*) and the viral polymerase (*pol*) of a retrovirus genome. These proteins encapsidate the

retrovirus-packagable sequences and themselves are further surrounded by a membrane containing an envelope glycoprotein.

ENV

5

If the retroviral component includes an *env* nucleotide sequence, then all or part of that sequence can be optionally replaced with all or part of another *env* nucleotide sequence such as, by way of example, the amphotropic Env protein designated 4070A or the influenza haemagglutinin (HA) or the vesicular stomatitis virus G (VSV-G) protein.

10 Replacement of the *env* gene with a heterologous *env* gene is an example of a technique or strategy called pseudotyping. Pseudotyping is not a new phenomenon and examples may be found in WO-A-98/05759, WO-A-98/05754, WO-A-97/17457, WO-A-96/09400, WO-A-91/00047 and Mebatsion *et al* 1997 Cell 90, 841-847.

15 In one preferred aspect, the retroviral vector of the present invention has been pseudotyped. In this regard, pseudotyping can confer one or more advantages. For example, with the lentiviral vectors, the *env* gene product of the HIV based vectors would restrict these vectors to infecting only cells that express a protein called CD4. But if the *env* gene in these vectors has been substituted with *env* sequences from other 20 RNA viruses, then they may have a broader infectious spectrum (Verma and Somia 1997 Nature 389:239-242). By way of example, workers have pseudotyped an HIV based vector with the glycoprotein from VSV (Verma and Somia 1997 *ibid*).

In another alternative, the Env protein may be a modified Env protein such as a mutant 25 or engineered Env protein. Modifications may be made or selected to introduce targeting ability or to reduce toxicity or for another purpose (Valsesia-Wittman *et al* 1996 J Virol 70: 2056-64; Nilson *et al* 1996 Gene Therapy 3: 280-6; Fielding *et al* 1998 Blood 9: 1802 and references cited therein).

## TARGET CELL

As used herein the term "target cell" simply refers to a cell which the regulated retroviral vector of the present invention, whether native or targeted, is capable of infecting or  
5 transducing.

The lentiviral vector particle according to the invention will be capable of transducing cells which are slowly-dividing, and which non-lentiviruses such as MLV would not be able to efficiently transduce. Slowly-dividing cells divide once in about every three to  
10 four days including certain tumour cells. Although tumours contain rapidly dividing cells, some tumour cells especially those in the centre of the tumour, divide infrequently.

Alternatively the target cell may be a growth-arrested cell capable of undergoing cell division such as a cell in a central portion of a tumour mass or a stem cell such as a  
15 haematopoietic stem cell or a CD34-positive cell.

As a further alternative, the target cell may be a precursor of a differentiated cell such as a monocyte precursor, a CD33-positive cell, or a myeloid precursor.

20 As a further alternative, the target cell may be a differentiated cell such as a neuron, astrocyte, glial cell, microglial cell, macrophage, monocyte, epithelial cell, endothelial cell, hepatocyte, spermatocyte, spermatid or spermatozoa.

Target cells may be transduced either *in vitro* after isolation from a human individual or may be transduced directly *in vivo*.

25

NOI

In accordance with the present invention, it is possible to manipulate the viral genome or the regulated retroviral vector nucleotide sequence, so that viral genes are replaced or  
30 supplemented with one or more NOIs which may be heterologous NOIs.

The term "heterologous" refers to a nucleic acid sequence or protein sequence linked to a nucleic acid or protein sequence which it is not naturally linked.

With the present invention, the term NOI (i.e. nucleotide sequence of interest) includes any  
5 suitable nucleotide sequence, which need not necessarily be a complete naturally occurring DNA sequence. Thus, the DNA sequence can be, for example, a synthetic DNA sequence, a recombinant DNA sequence (i.e. prepared by use of recombinant DNA techniques), a cDNA sequence or a partial genomic DNA sequence, including combinations thereof. The DNA sequence need not be a coding region. If it is a coding region, it need not be an entire  
10 coding region. In addition, the DNA sequence can be in a sense orientation or in an anti-sense orientation. Preferably, it is in a sense orientation. Preferably, the DNA is or comprises cDNA.

The NOI(s) may be any one or more of selection gene(s), marker gene(s) and therapeutic  
15 gene(s).

As used herein, the term "selection gene" refers to the use of a NOI which encodes a selectable marker which may have an enzymatic activity that confers resistance to an antibiotic or drug upon the cell in which the selectable marker is expressed.

20

## SELECTABLE MARKERS

Many different selectable markers have been used successfully in retroviral vectors. These are reviewed in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: JM  
25 Coffin, SM Hughes, HE Varmus pp 444) and include, but are not limited to, the bacterial neomycin (neo) and hygromycin phosphotransferase genes which confer resistance to G418 and hygromycin respectively; a mutant mouse dihydrofolate reductase gene which confers resistance to methotrexate; the bacterial *gpt* gene which allows cells to grow in medium containing mycophenolic acid, xanthine and aminopterin; the bacterial *hisD* gene  
30 which allows cells to grow in medium without histidine but containing histidinol; the multidrug resistance gene (*mdr*) which confers resistance to a variety of drugs; and the bacterial genes which confer resistance to puromycin or phleomycin. All of these markers

are dominant selectable and allow chemical selection of most cells expressing these genes. Other selectable markers are not dominant in that their use must be in conjunction with a cell line that lacks the relevant enzyme activity. Examples of non-dominant selectable markers include the thymidine kinase (*tk*) gene which is used in conjunction with *tk* cell lines.

Particularly preferred markers are blasticidin and neomycin, optionally operably linked to a thymidine kinase coding sequence typically under the transcriptional control of a strong viral promoter such as the SV40 promoter.

10

#### NOIs WITH THERAPEUTIC AND/OR DIAGNOSTIC APPLICATIONS

In accordance with the present invention, suitable NOI sequences include those that are of therapeutic and/or diagnostic application such as, but are not limited to: sequences 15 encoding cytokines, chemokines, hormones, antibodies, engineered immunoglobulin-like molecules, a single chain antibody, fusion proteins, enzymes, immune co-stimulatory molecules, immunomodulatory molecules, anti-sense RNA, a transdominant negative mutant of a target protein, a toxin, a conditional toxin, an antigen, a tumour suppressor protein and growth factors, membrane proteins, vasoactive proteins and peptides, anti-viral 20 proteins and ribozymes, and derivatives therof (such as with an associated reporter group). When included, such coding sequences may be typically operatively linked to a suitable promoter, which may be a promoter driving expression of a ribozyme(s), or a different promoter or promoters, such as in one or more specific cell types.

25 NOIs FOR TREATING CANCER

Suitable NOIs for use in the invention in the treatment or prophylaxis of cancer include NOIs encoding proteins which: destroy the target cell (for example a ribosomal toxin), act as: tumour suppressors (such as wild-type p53); activators of anti-tumour immune 30 mechanisms (such as cytokines, co-stimulatory molecules and immunoglobulins); inhibitors of angiogenesis; or which provide enhanced drug sensitivity (such as pro-drug activation enzymes); indirectly stimulate destruction of target cell by natural effector cells

(for example, strong antigen to stimulate the immune system or convert a precursor substance to a toxic substance which destroys the target cell (for example a prodrug activating enzyme).

5 PRO-DRUG ACTIVATING ENZYMES

Examples of prodrugs include but are not limited to etoposide phosphate (used with alkaline phosphatase; 5-fluorocytosine (with cytosine deaminase); Doxorubicin-N-p-hydroxyphenoxyacetamide (with Penicillin-V-Amidase); Para-N-bis (2-chloroethyl)aminobenzoyl glutamate (with Carboxypeptidase G2); Cephalosporin nitrogen mustard carbamates (with B-lactamase); SR4233 (with p450 reductase); Ganciclovir (with HSV thymidine kinase); mustard pro-drugs with nitroreductase and cyclophosphamide or ifosfamide (with cytochrome p450).

15 NOIs FOR TREATING HEART DISEASE

Suitable NOIs for use in the treatment or prevention of ischaemic heart disease include NOIs encoding plasminogen activators. Suitable NOIs for the treatment or prevention of rheumatoid arthritis or cerebral malaria include genes encoding anti-inflammatory proteins, antibodies directed against tumour necrosis factor (TNF) alpha, and anti-adhesion molecules (such as antibody molecules or receptors specific for adhesion molecules).

BYSTANDER EFFECT

25 The expression products encoded by the NOIs may be proteins which are secreted from the cell. Alternatively the NOI expression products are not secreted and are active within the cell. In either event, it is preferred for the NOI expression product to demonstrate a bystander effector or a distant bystander effect; that is the production of the expression product in one cell leading to the killing of additional, related cells, either neighbouring or 30 distant (e.g. metastatic), which possess a common phenotype. Encoded proteins could also destroy bystander tumour cells (for example with secreted antitumour antibody-ribosomal toxin fusion protein), indirectly stimulated destruction of bystander tumour cells (for

example cytokines to stimulate the immune system or procoagulant proteins causing local vascular occlusion) or convert a precursor substance to a toxic substance which destroys bystander tumour cells (eg an enzyme which activates a prodrug to a diffusible drug). Also, the delivery of NOI(s) encoding antisense transcripts or ribozymes which interfere with expression of cellular genes for tumour persistence (for example against aberrant *myc* transcripts in Burkitts lymphoma or against *bcr-abl* transcripts in chronic myeloid leukemia. The use of combinations of such NOIs is also envisaged.

## CYTOKINES

10

The NOI or NOIs of the present invention may also comprise one or more cytokine-encoding NOIs. Suitable cytokines and growth factors include but are not limited to: ApoE, Apo-SAA, BDNF, Cardiotrophin-1, EGF, ENA-78, Eotaxin, Eotaxin-2, Exodus-2,

15 FGF-acidic, FGF-basic, fibroblast growth factor-10 (Marshall 1998 Nature Biotechnology 16: 129).FLT3 ligand (Kimura *et al* (1997), Fractalkine (CX3C), GDNF, G-CSF, GM-

CSF, GF- $\beta$ 1, insulin, IFN- $\gamma$ , IGF-I, IGF-II, IL-1 $\alpha$ , IL-1 $\beta$ , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8 (72 a.a.), IL-8 (77 a.a.), IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, IL-16, IL-17, IL-18 (IGIF), Inhibin  $\alpha$ , Inhibin  $\beta$ , IP-10, keratinocyte growth factor-2 (KGF-2), KGF, Leptin, LIF, Lymphotactin, Mullerian inhibitory substance, monocyte colony inhibitory factor,

20 monocyte attractant protein (Marshall 1998 *ibid*), M-CSF, MDC (67 a.a.), MDC (69 a.a.), MCP-1 (MCAF), MCP-2, MCP-3, MCP-4, MDC (67 a.a.), MDC (69 a.a.), MIG, MIP-1 $\alpha$ ,

MIP-1 $\beta$ , MIP-3 $\alpha$ , MIP-3 $\beta$ , MIP-4, myeloid progenitor inhibitor factor-1 (MPIF-1), NAP-

25 2, Neurturin, Nerve growth factor,  $\beta$ -NGF, NT-3, NT-4, Oncostatin M, PDGF-AA, PDGF-AB, PDGF-BB, PF-4, RANTES, SDF1 $\alpha$ , SDF1 $\beta$ , SCF, SCGF, stem cell factor (SCF), TARC, TGF- $\alpha$ , TGF- $\beta$ , TGF- $\beta$ 2, TGF- $\beta$ 3, tumour necrosis factor (TNF), TNF- $\alpha$ , TNF- $\beta$ ,

29 TNIL-1, TPO, VEGF, GCP-2, GRO/MGSA, GRO- $\beta$ , GRO- $\gamma$ , HCC1, 1-309.

The NOI or NOIs may be under the expression control of an expression regulatory element, such as a promoter and/or a promoter enhancer as known as "responsive elements" in the

30 present invention.

## VIRAL DELIVERY SYSTEMS

When the regulated retroviral vector particles are used to transfer NOIs into cells which they transduce, such vector particles also designated "viral delivery systems" or "retroviral delivery systems". Viral vectors, including retroviral vectors, have been used to transfer NOIs efficiently by exploiting the viral transduction process. NOIs cloned into the retroviral genome can be delivered efficiently to cells susceptible to transduction by a retrovirus. Through other genetic manipulations, the replicative capacity of the retroviral genome can be destroyed. The vectors introduce new genetic material into a cell but are unable to replicate.

The regulated retroviral vector of the present invention can be delivered by viral or non-viral techniques. Non-viral delivery systems include but are not limited to DNA transfection methods. Here, transfection includes a process using a non-viral vector to deliver a gene to a target mammalian cell.

Typical transfection methods include electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection, liposomes, immunoliposomes, lipofectin, cationic agent-mediated, cationic facial amphiphiles (CFAs) (Nature Biotechnology 1996 14: 556), multivalent cations such as spermine, cationic lipids or polylysine, 1, 2,-bis (oleoyloxy)-3-(trimethylammonio) propane (DOTAP)-cholesterol complexes (Wolff and Trubetskoy 1998 Nature Biotechnology 16: 421) and combinations thereof.

Viral delivery systems include but are not limited to adenovirus vector, an adeno-associated viral (AAV) vector, a herpes viral vector, a retroviral vector, a lentiviral vector, or a baculoviral vector. These viral delivery systems may be configured as a split-intron vector. A split intron vector is described in WO 99/15683.

Other examples of vectors include *ex vivo* delivery systems, which include but are not limited to DNA transfection methods such as electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection.

The vector may be a plasmid DNA vector. Alternatively, the vector may be a recombinant viral vector. Suitable recombinant viral vectors include adenovirus vectors, adeno-associated viral (AAV) vectors, Herpes-virus vectors, or retroviral vectors, lentiviral 5 vectors or a combination of adenoviral and lentiviral vectors. In the case of viral vectors, gene delivery is mediated by viral infection of a target cell.

If the features of adenoviruses are combined with the genetic stability of retro/lentiviruses then essentially the adenovirus can be used to transduce target cells to become transient 10 retroviral producer cells that could stably infect neighbouring cells.

#### PHARMACEUTICAL COMPOSITION

The present invention also provides a pharmaceutical composition for treating an 15 individual by gene therapy, wherein the composition comprises a therapeutically effective amount of a regulated retroviral vector according to the present invention. The pharmaceutical composition may be for human or animal usage. Typically, a physician will determine the actual dosage which will be most suitable for an individual subject and it will vary with the age, weight and response of the particular patient.

20

The composition may optionally comprise a pharmaceutically acceptable carrier, diluent, excipient or adjuvant. The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as - or in addition to - the 25 carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s), and other carrier agents that may aid or increase the viral entry into the target site (such as for example a lipid delivery system).

Where appropriate, the pharmaceutical compositions can be administered by any one or 30 more of: minipumps, inhalation, in the form of a suppository or pessary, topically in the form of a lotion, solution, cream, ointment or dusting powder, by use of a skin patch, orally in the form of tablets containing excipients such as starch or lactose, or in capsules or

ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intracavernosally, intravenously, intramuscularly or subcutaneously. For parenteral administration, the compositions may be best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

10 DISORDERS

The present invention is believed to have a wide therapeutic applicability - depending on *inter alia* the selection of the one or more NOIs.

15 For example, the present invention may be useful in the treatment of the disorders listed in WO-A-98/05635. For ease of reference, part of that list is now provided: cancer, inflammation or inflammatory disease, dermatological disorders, fever, cardiovascular effects, haemorrhage, coagulation and acute phase response, cachexia, anorexia, acute infection, HIV infection, shock states, graft-versus-host reactions, autoimmune disease, 20 reperfusion injury, meningitis, migraine and aspirin-dependent anti-thrombosis; tumour growth, invasion and spread, angiogenesis, metastases, malignant, ascites and malignant pleural effusion; cerebral ischaemia, ischaemic heart disease, osteoarthritis, rheumatoid arthritis, osteoporosis, asthma, multiple sclerosis, neurodegeneration, Alzheimer's disease, atherosclerosis, stroke, vasculitis, Crohn's disease and ulcerative colitis; periodontitis, 25 gingivitis; psoriasis, atopic dermatitis, chronic ulcers, epidermolysis bullosa; corneal ulceration, retinopathy and surgical wound healing; rhinitis, allergic conjunctivitis, eczema, anaphylaxis; restenosis, congestive heart failure, endometriosis, atherosclerosis or endosclerosis.

30 In addition, or in the alternative, the present invention may be useful in the treatment of disorders listed in WO-A-98/07859. For ease of reference, part of that list is now provided: cytokine and cell proliferation/differentiation activity; immunosuppressant or

immunostimulant activity (e.g. for treating immune deficiency, including infection with human immune deficiency virus; regulation of lymphocyte growth; treating cancer and many autoimmune diseases, and to prevent transplant rejection or induce tumour immunity); regulation of haematopoiesis, e.g. treatment of myeloid or lymphoid diseases; 5 promoting growth of bone, cartilage, tendon, ligament and nerve tissue, e.g. for healing wounds, treatment of burns, ulcers and periodontal disease and neurodegeneration; inhibition or activation of follicle-stimulating hormone (modulation of fertility); chemotactic/chemokinetic activity (e.g. for mobilising specific cell types to sites of injury or infection); haemostatic and thrombolytic activity (e.g. for treating haemophilia and 10 stroke); antiinflammatory activity (for treating e.g. septic shock or Crohn's disease); as antimicrobials; modulators of e.g. metabolism or behaviour; as analgesics; treating specific deficiency disorders; in treatment of e.g. psoriasis, in human or veterinary medicine.

In addition, or in the alternative, the present invention may be useful in the treatment of 15 disorders listed in WO-A-98/09985. For ease of reference, part of that list is now provided: macrophage inhibitory and/or T cell inhibitory activity and thus, anti-inflamatory activity; anti-immune activity, i.e. inhibitory effects against a cellular and/or humoral immune response, including a response not associated with inflammation; inhibit the ability of macrophages and T cells to adhere to extracellular matrix components and 20 fibronectin, as well as up-regulated fas receptor expression in T cells; inhibit unwanted immune reaction and inflammation including arthritis, including rheumatoid arthritis, inflammation associated with hypersensitivity, allergic reactions, asthma, systemic lupus erythematosus, collagen diseases and other autoimmune diseases, inflammation associated with atherosclerosis, arteriosclerosis, atherosclerotic heart disease, reperfusion injury, 25 cardiac arrest, myocardial infarction, vascular inflammatory disorders, respiratory distress syndrome or other cardiopulmonary diseases, inflammation associated with peptic ulcer, ulcerative colitis and other diseases of the gastrointestinal tract, hepatic fibrosis, liver cirrhosis or other hepatic diseases, thyroiditis or other glandular diseases, glomerulonephritis or other renal and urologic diseases, otitis or other oto-rhino- 30 laryngological diseases, dermatitis or other dermal diseases, periodontal diseases or other dental diseases, orchitis or epididymo-orchitis, infertility, orchidal trauma or other immune-related testicular diseases, placental dysfunction, placental insufficiency, habitual abortion,

eclampsia, pre-eclampsia and other immune and/or inflammatory-related gynaecological diseases. posterior uveitis, intermediate uveitis, anterior uveitis, conjunctivitis, chorioretinitis, uveoretinitis, optic neuritis, intraocular inflammation. e.g. retinitis or cystoid macular oedema, sympathetic ophthalmia, scleritis, retinitis pigmentosa, immune and inflammatory components of degenerative fundus disease. inflammatory components of ocular trauma, ocular inflammation caused by infection, proliferative vitreoretinopathies, acute ischaemic optic neuropathy, excessive scarring, e.g. following glaucoma filtration operation, immune and/or inflammation reaction against ocular implants and other immune and inflammatory-related ophthalmic diseases, inflammation associated with autoimmune diseases or conditions or disorders where, both in the central nervous system (CNS) or in any other organ, immune and/or inflammation suppression would be beneficial, Parkinson's disease, complication and/or side effects from treatment of Parkinson's disease, AIDS-related dementia complex HIV-related encephalopathy, Devic's disease, Sydenham chorea, Alzheimer's disease and other degenerative diseases. conditions or disorders of the CNS, inflammatory components of stokes, post-polio syndrome, immune and inflammatory components of psychiatric disorders, myelitis, encephalitis, subacute sclerosing pan-encephalitis, encephalomyelitis, acute neuropathy, subacute neuropathy, chronic neuropathy, Guillain-Barre syndrome, Sydenham chora, myasthenia gravis, pseudo-tumour cerebri, Down's Syndrome, Huntington's disease. amyotrophic lateral sclerosis, inflammatory components of CNS compression or CNS trauma or infections of the CNS, inflammatory components of muscular atrophies and dystrophies, and immune and inflammatory related diseases, conditions or disorders of the central and peripheral nervous systems, post-traumatic inflammation, septic shock, infectious diseases, inflammatory complications or side effects of surgery, bone marrow transplantation or other transplantation complications and/or side effects, inflammatory and/or immune complications and side effects of gene therapy, e.g. due to infection with a viral carrier, or inflammation associated with AIDS, to suppress or inhibit a humoral and/or cellular immune response, to treat or ameliorate monocyte or leukocyte proliferative diseases, e.g. leukaemia, by reducing the amount of monocytes or lymphocytes, for the prevention and/or treatment of graft rejection in cases of transplantation of natural or artificial cells, tissue and organs such as cornea, bone marrow, organs, lenses, pacemakers, natural or artificial skin tissue.

## SUMMARY

Thus, in summation, the present invention provides high titer regulated retroviral vectors.

5 These regulated retroviral vectors include lentivectors, HRE-regulated vectors and functional SIN vectors which can be produced at high titres from derived producer cell lines.

The present invention also provides a method other than retroviral transduction for the

10 transfer of a regulated retroviral vector into a derived producer cell line. This method comprises a recombinase assisted method.

## INTRODUCTION TO THE EXAMPLES SECTION AND THE FIGURES

15 The present invention will now be described only by way of example in which reference is made to the following Figures:

Figure 1 shows an MLV-based transduction method using a Cre/LoxP system as described by Vanin *et al ibid* (1997);

20

Figure 2 shows an EIAV-based transduction method using a Cre/Lox system;

Figure 3 shows an MLV SIN vector construct transduction method with an EIAV/HIV genome insertion using a Cre/Lox system;

25

Figure 4 shows an MLV-based transduction method with HRE 3'LTR using a Cre/Lox P system;

Figure 5 shows an MLV-based transduction method for MLV SIN vector production using  
30 a Cre/Lox P system;

Figure 6 shows an MLV-based transduction method with integration of a complete second genome construct using a Cre/LoxP system; and

5 Figure 7 shows the basis molecular organisation of an RNA genome and a proviral DNA genome.

## EXAMPLES

### EXAMPLE 1

10

Vanin *et al* (*ibid*) describe a recombinase system whereby an initial retroviral transduction event introduces retroviral LTRs and expressed gene/s flanked by two recombinase target sites (exemplified by loxP) into a cell line. Stable transduced cell lines are selected by resistance to the antibiotic neomycin and screened for high expression of the expressed 15 gene(s) (see Figure 1). Such cell lines (Cell Line 1) contain retroviral insertions in integration sites that support high level expression from the retroviral genome.

20 The next step involves the transfection of the relevant recombinase expression construct (exemplified here by Cre recombinase) into the identified high expressing cell line. The expressed gene(s) is/are excised and a single loxP site is retained in the construct (Cell Line 2). In this instance, thymidine kinase gene (tk) is used as a negative selectable marker in combination with the drug, gancyclovir. The final step involves the re-insertion of a therapeutic or marker gene of choice into the single loxP site via a Cre-assisted mechanism. Cell lines are identified that have been successfully recombined (Cell Line 3) 25 and they will produce retroviruses at the same titre as the parental Cell Line 1.

### EXAMPLE 2

30 Figure 2 and Figure 3 describe the production of EIAV or HIV high titre transduced producer cell lines.

Figure 2 shows a minimal EIAV genome construct with the 3' U3 sequences replaced by a strong constitutive promoter, CMV. A reporter gene such as blasticidin resistance gene (*bsr*) is flanked by loxP sites. Virus is made in a transient system and is transduced into an EIAV producer cell line and clones identified that maximally express the blast marker 5 gene. A line is chosen (termed Cell Line 1) and the marker gene is excised by a Cre recombinase-assisted excision event, generating Cell Line 2.

Construct B comprises two loxP sites which flank an internal expression cassette and also the native EIAV 3' LTR. Therefore, this construct is recombined into the cell line such that 10 the 5' R and U5 sequences are inherited from the packaging cell line, whereas the 3' LTR sequences are wholly derived from the recombined construct. The 3' LTR from Cell Line 2 is present downstream of the functional EIAV genome expression construct. This CMV-R-U5 module is still transcriptionally active but expression is directed away from the EIAV genome.

15

Figure 3 shows a further aspect of the invention. Construct C is based on an MLV SIN vector, with a deletion in the 3' U3 sequences. The cassette includes an internal CMV promoter linked to EIAV R and U5 sequences. This is followed by a blasticidin resistance gene (*bsr*) flanked by two loxP sites. Virus is made in a transient transfection system and 20 the genome is transduced into a packaging line. Blast-resistant clones are identified and the highest expressing line is chosen for further analysis. This line is transfected with Cre recombinase and the blast gene is excised. The last step involves the insertion of construct B into the single loxP site. Once again, a complete EIAV 3' LTR is introduced into the producer cell line. This leads to a CMV-driven EIAV genome expression cassette with the 25 EIAV 3' LTR still located at the 3' end of the genome. Transcriptionally quiescent MLV SIN LTRs flanks these EIAV sequences.

### EXAMPLE 3

30 Figure 4 shows an additional aspect of the invention. Construct D is an MLV-based vector with a CMV promoter in the 3' LTR in place of the U3 sequences. Virus is made in a transient system and is transduced into a packaging cell line as described previously. The

neo and TK genes are excised by the action of Cre recombinase and construct E is recombined into the single loxP target sequence. The modified MLV 3' LTR including the HRE or similarly regulated system is transferred into the packaging cell line by the recombinase mechanism. Therefore, the 5' R and U5 sequences are inherited from the 5 producer cell line whereas the therapeutic and marker gene/s and regulated 3' LTR is inherited from construct E. The final producer cell line is constitutively driven by the 5' CMV promoter and will produce high titre retroviral vectors which are regulated in the transduced target cells. This approach avoids the derivation of low titre transfected producer cell lines or the use of hypoxic conditions or chemical mimics for production 10 from traditionally derived transduced producer lines.

#### **EXAMPLE 4**

Figure 5 shows yet another aspect of the invention. Construct D is an MLV-based vector 15 with a CMV promoter in the 3' LTR as previously described. The same process is carried out as shown in Figure 4 until the final recombination is performed. Construct F contains a deletion in U3 sequences in the 3' LTR and an internal expression cassette comprising a promoter and gene sequences. The final cell line containing the Cre-mediated recombination will be CMV-driven and will constitutively produce high titre MLV SIN 20 vectors. Previously, SIN vectors have not been amenable to production by stable cell line producer technology. Instead they have been prepared using transfection-based transient expression systems.

#### **EXAMPLE 5**

25 Figure 6 shows an MLV-based transduction method with integration of complete second genome construct by Cre/LoxP system. In this approach, construct 1 is called TRAP1) is an MLV vector construct containing an internal CMV promoter operably linked to a marker gene (a truncated form of the human low affinity nerve growth factor receptor, 30 called LNGFR). The enhancer elements in the 3' U3 sequence have been excised and replaced by a 34bp loxP site. Virus stocks are prepared in a transient system and the TRAP1 genome is stably transduced into packaging cell lines.

The modified 3'U3 sequences, including the lox P sequence, is copied from the 3'LTR position to the 5'LTR, such that there is little 5' promoter activity. Cell lines are screened for high levels of expression of LNGFR protein by fluorescent activated cell sorter (FACS) analysis and clonal lines are derived by standard techniques. A Cre recombinase expression plasmid is transfected into the derived cell line to excise all sequences between the two loxP sites. Next, cells are negatively selected by FACS for absence of LNGFR expression and clonal lines are derived by standard techniques. Construct 2 in this example comprises a complete HIV or EIAV or also MLV retroviral genome, which is flanked by two minimal 34bp loxP recombinase sites. A strong constitutive promoter such as CMV directs transcription of the genome. On transfection of plasmid 2 and Cre expression plasmid, the complete lentivirus vector or MLV vector genome is inserted in the producer cell line. These sequences are flanked to the 5' by a small portion of MLV U3 sequence and a loxP site and to the 3' by the second loxP site, enhancerless-U3 sequences, R and U5 derived from the MLV construct 1.

#### Derivation of Plasmid TRAP1 (Figure 6 - Construct 1)

Oligonucleotides VSAT129 and VSAT130 were synthesised which correspond to the 20 minimal 34bp loxP sites and contain a 5' overhang for NheI and a 3' overhang for XbaI. The sequences 5' to 3' are as follows: VSAT129 (CTAGCATAACTTCGTATA ATGTATGCTATACGAAGTTATT) and VSAT130 (CTAGAATAACTTCGTATAGC ATACATTATACGAAGTTATG). The two oligonucleotides were treated with T4 polynucleotide kinase and were heated to 95°C for 5 minutes, before gradual cooling to 25 room temperature. The annealed and kinased oligos were ligated to a 2,830 bp NheI/XbaI fragment from LTR plasmid. Fragments were ligated and correct clones of LTRloxP were identified by sequence analysis. Plasmid LTRloxP was then digested with NheI and ScaI and a 2,185bp fragment was prepared for following cloning steps.

30 Plasmids TRAP1 and TRAP1G were derived from LTRloxP and the MLV genome CGCLNGFR (encodes GFP and LNGFR from an internal CMV promoter). However, the GFP gene was excised by EcoRI/BsmI digestion and the 6,796bp fragment was filled in by

T4 DNA polymerase and re-ligated, in order to generate plasmid CXCLNGFR. Plasmid TRAP1 was generated by ligation of a 2,185bp NheI/ScaI fragment from LTRloxP to a 4,426bp NheI/ScaI fragment from CXCLNGFR. Plasmid TRAP1G was generated by ligation of a 2,185bp NheI/ScaI fragment from LTRloxP to a 5,179bp NheI/ScaI fragment from CGCLNGFR.

#### **Derivation of Plasmid pONY8z-lox (Figure 6 - Construct 2)**

In this example, the retroviral genome inserted into the loxP site in Figure 6 was based on the EIAV vector genome, pONY8z. pONY8z was cut with SnaBI and NruI, and the 4358bp fragment purified and self-ligated to form pONY8z-shuttle. This plasmid has unique 5' sites (DraIII and BglII) and unique 3' sites (PvuII and BspLUII). Oligonucleotides encoding the 34bp loxP sites were inserted with suitable base pair overhangs at the unique 5' DraIII site and then the unique 3' BspLUII, to generate plasmid pONY-8z-shuttleloxP.

Plasmid pONY8z-loxP was made as follows. Plasmid pONY-8z-shuttleloxP was digested with BsrG I and NspV, and the 3670bp fragment was purified as the vector fragment. The insert for ligation to this fragment was derived from pONY8z by partial digestion with BsrGI (two sites) followed by digestion with NspV. A 7,328bp fragment was purified and ligated to the 3670bp fragment described above.

#### **Further Description of System Components**

The Cre recombinase plasmid as used in this system is pBS185 (Gibco).

All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described

modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

CLAIMS

1. A method of modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3' LTR, the method comprising:

5 introducing into the cell a construct comprising a 5' recombinase recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in  
10 the construct is introduced into the provirus.

2. A method according to claim 1 wherein the construct further comprises at least one NOI between the 5' recombinase recognition sequence and the LTR, which NOI is operably linked to a transcriptional regulatory sequence.

15

3. A method according to claim 1 or claim 2 wherein the construct further comprises a 5'LTR and/or a packaging signal.

4. A method according to any one of claims 1 to 3 wherein the LTR is a heterologous  
20 regulatable LTR.

5. A method according to claim 4 wherein the regulatable LTR comprises an ischaemic like response element (ILRE).

25 6. A method according to any one of claims 1 to 3 wherein the LTR is inactive.

7. A method according to any one of the preceding claims wherein the provirus comprises an NOI encoding a selectable marker, which NOI is flanked by recombinase recognition sites

30

8. A method according to any one of the precedings claims wherein the provirus comprises an internal 5' LTR upstream of the recombinase site or the 5' recombinase site

where there is more than one site.

9. A method according to any one of the preceding claims wherein the U3 region of the 5' LTR is inactive.

5

10. A method according to any one of the preceding claims wherein the U3 region of the 5' LTR and/or the U3 region of the second internal 5'LTR comprises a heterologous promoter.

10 11. A method according to any one of the preceding claims wherein the provirus comprises two recombinase recognition sites and as a preliminary step, the recombinase is expressed in the host cell such that the nucleotide sequence present between the two sites is excised.

15 12. A method according to any one of the preceding claims wherein the producer cell is a high titre producer cell.

13. A method according to any one of the preceding claims wherein the provirus is a lentivirus.

20

14. A method according to claim 13 wherein the lentivirus is HIV or EIAV.

15. A method according to any one of the preceding claims wherein the provirus further comprises a second NOI.

25

16. A producer cell obtainable by the method of any one of claims 1 to 15.

17. An infectious retroviral particle obtainable from the producer cell of claim 16.

30 18. A derived producer cell comprising integrated into its genome a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR;

wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the producer cell.

19. A producer cell according to claim 18 wherein the first 5' LTR comprising 5'R and  
5 U5 sequences is derivable from a first vector; the second NOI operably linked to a  
second regulatable 3' LTR is derivable from a second vector; and the third 3'LTR is  
derivable from the first vector.

20. A producer cell according to claim 18 or claim 19 wherein the first vector  
10 comprises a retroviral vector wherein the retroviral vector comprises a first NOI flanked by  
recombinase recognition sequences.

21. A producer cell according to claim 19 or claim 20 wherein the retroviral vector  
further comprises an internal LTR located upstream of the first NOI and downstream of the  
15 packaging signal wherein the internal LTR comprises a heterologous U3 sequence linked  
to heterologous R and U5 sequences.

22. A producer cell according to any one of claims 18 to 21 wherein the third 3'LTR is  
transcriptionally quiescent.

20

23. A producer cell according to claim 22 wherein the third 3' LTR comprises a  
deletion in the U3 sequence.

24. A producer cell according to any one of claims 18 to 24 wherein the first NOI is a  
25 selectable marker.

25. A producer cell according to claim 19 wherein the second vector comprises a  
second NOI operably linked a second regulatable 3'LTR comprising at least one  
recombinase recognition sequence.

30

26. A producer cell according to 25 wherein the second regulatable 3'LTR comprises a  
deletion in the U3 sequences in the 3'LTR.

27. A producer cell according to claim 25 or claim 26 wherein the second NOI comprises a coding sequence operably linked to a promoter.

5 28. A producer cell according to claim 27 wherein the second NOI comprises a discistronic construct.

29. A producer cell according to claim 28 wherein the discistronic construct comprises a therapeutic gene, an internal ribosomal entry site (IRES) and a reporter gene.

10

30. A method for producing a high titre regulatable retroviral vector, the method comprising the steps of:

(i) providing a derived producer cell comprising integrated into its genome a first vector;

15

(ii) introducing a second vector into the derived producer cell using a recombinase assisted method;

wherein the derived producer cell comprises a retroviral vector comprising in the 5' to 3'  
20 direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and  
a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable  
3'LTR in the derived producer cell.

31. A method according to claim 30 wherein the third 3' LTR is transcriptionally active  
25 but expression is directed away from the second regulatable 3'LTR.

32. A method for introducing a second regulatable 3'LTR into a derived producer cell  
wherein the method comprises a recombinase assisted method.

30 33. A method according to claim 61 or claim 31 wherein the recombinase assisted  
method is a Cre/lox recombinase method.

34. A process for preparing a regulated retroviral vector as defined in claim 17 comprising performing the method according to any one of claims 30 to 33 and preparing a quantity of the regulated retroviral vector.

5 35. A regulated retroviral vector produced by the process according to claim 34.

36. A regulated retroviral vector according to claim 35 wherein the retroviral vector is capable of transducing a target site.

10 37. A regulated retroviral vector according to claim 36 wherein the retroviral vector is produced in sufficient amounts to effectively transduce a target site.

38. A regulated retroviral vector according to claim 36 or claim 37 wherein the target site is a cell.

15

39. A cell transduced with a regulated retroviral vector according to claim 38.

40. Use of a regulated retroviral vector according to any one of claims 35 to 38 in the manufacture of a pharmaceutical composition to deliver an NOI to a target site.

20

41. Use of a regulated retroviral vector according to any one of claims 35 to 38 in the manufacture of a medicament for diagnostic and/or therapeutic and/or medical applications.

25 42. Use of a recombinase assisted mechanism to introduce a regulated 3'LTR into a derived producer cell line to produce a high titre regulated retroviral vector.

43. A derived stable producer cell capable of expressing regulated retroviral vectors according to claims 35 to 38.

30

44. A derived stable producer cell according to claim 43 wherein the regulated retroviral vector is a high titre regulated retroviral vector.

45. A nucleic acid vector comprising a construct as defined in any one of claims 1 to 5.

46. A circular nucleic acid molecule comprising a recombinase recognition sequence,  
5 and an LTR.

47. A nucleic acid molecule according to claim 46 further comprising at least one NOI.

48. A nucleic acid molecule according to claim 46 or 47 further comprising a 5'LTR  
10 and/or a packaging signal

49. A nucleic acid molecule according to any one of claims 46 to 48 wherein the LTR  
is a heterologous regulatable LTR.

15 50. A nucleic acid molecule according to any one of claims 46 to 48 wherein the LTR  
is transcriptionally quiescent.

51. A high titre producer cell comprising integrated into its genome a provirus, which  
proivirus comprises a recombinase recognition site, an active 5' LTR and an active 3'LTR  
20 which 3'LTR differs from the 5'LTR.

## ABSTRACT

### PRODUCER CELL

5 A method is provided for modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3' LTR, the method comprising:

introducing into the cell a construct comprising a 5' recombinase recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence  
10 of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the construct is introduced into the provirus.



Figure 1: MLV-based transduction using Cre/loxP system as previously described





Figure 2: EIAV-based transduction Cre/loxP system





Figure 3: MLV SIN vector approach, with EIAV components in blue





Figure 4: MLV-based transduction with HRE 3' LTR using Cre/loxP system





Figure 5: MLV-based transduction for SIN vector production using Cre/loxP system





Figure 6: MLV SIN-vector based transduction system. This general approach can be used with EIAV, HIV or MLV genomes



Figure 7



5/10/00  
PCT/GB00/03837

D Young & Co