【问题描述】

对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的 课程。

在可以选择的课程中,有 2n 节课程安排在 n个时间段上。在第 i £ 1 〈 i 〈 n 〉个 时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教 室 § 上课,而另一节课程在教室 di 进行。

在不提交任何申请的情况下,学生们需要按时间段的顺序依次完成所有的 n 节安 排好的课程。如果学生想更换第 i 节课程的教室,则需要提出申请。若申请通过,学生 就可以在第 i 个时间段去教室 di 上课,否则仍然在教室%上课。

由于更换教室的需求太多,申请不一定能获得通过。通过计算,牛牛发现申请更 换第 i 节课程的教室时,申请被通过的概率是一个已知的实数 ki,并且对于不同课程 的申请,被通过的概率是互相独立的。

学校规定,所有的申请只能在学期开始前一次性提交,并且每个人只能选择至多 m节课程进行申请。这意味着牛牛必须一次性决定是否申请更换每节课的教室,而不 能根据某些课程的申请结果来决定其他课程是否申请,牛牛可以申请自己最希望更换 教室的 m门课程,也可以<u>不用完</u>这 m个申请的机会,甚至可以一门课程都不申请。

因为不同的课程可能会被安排在不同的教室进行,所以牛牛需要利用课间时间从 一间教室赶到另一间教室。

牛牛所在的大学有 v个教室,有 e条道路。每条道路连接两间教室,并且是可 以<u>双向通行</u>的。由于道路的长度和拥堵程度不同,通过不同的道路耗费的体力可能会 有所不同。当第 i £ 1 < i < n - 1) 节课结束后,牛牛就会从这节课的教室出发,选择 一条耗费体力最少的蹈前往下一节课的教室。

现在牛牛想知道,申请哪几门课程可以使他因在教室间移动耗费的体力值的总和 的期望值最小,请你帮他求出这个最小值。

【输入格式】

第一行四个整数 n, m, v, e。n表示这个学期内的时间段的数量; m表示牛牛最多 可以申请更换多少节课程的教室: v表示牛牛学校里教室的数量; e表示牛牛的学校 里道路的数量。

第二行 n个正整数,第 i £ 1 < i < n) 个正整数表示 d,即第 i 个时间段牛牛被安 排上课的教室;保证 1 < Ci < v $^{\prime\prime}$

第三行 n个正整数,第 i £ 1 < i < n)个正整数表示 a ,即第 i 个时间段另一间上 同样课程的教室;保证 1 < di < v —

第四行 n个实数,第 i £ 1 < i < n) 个实数表示 ki ,即牛牛申请在第 i 个时间段更 换教室获得 通过的概率。保证 0 < ki < 1 -

接下来 e行,每行三个正整数 aj , bj , Wj ,表示有一条双向道路连接教室 aj , bj 通过这条道路需要耗费的体力值是 Wj ;保证 1 < aj , bj < v , 1 < Wj < 100 。

保证 1 < n < 2000 , 0 < m < 2000 , 1 < v < 300 , 0 < e < 90000 -

保证通过学校里的道路,从任何一间教室出发,都能到达其他所有的教室。 保证输入的实数最多包含 3 位小数。

【输出格式】

输出一行,包含一个实数,四舍五入精确到小数点后<u>恰好2位</u>,表示答案。你的 输出必须和标准输出完全一样才算正确。

测试数据保证四舍五入后的答案和准确答案的差的绝对值不大于 4×10^{-3} 。(如果 你不知道什么是浮点误差,这段话可以理解为:对于大多数的算法,你可以正常地使 用浮点数类型而不用对它进行特殊的处理)

【样例1输入】

3 2 3 3

2 1 2

1 2 1

0.8 0.2 0.5

1 2 5

133

231

【样例1输出】

2.80

【样例1说明】

所有可行的申请方案和期望收益如下表:

申请更换教室 的时间段	申请通过的时间段		耗费的体力值	耗费的体力值 的 期望	
无	无	1. 0	8	8. 0	
1	1	0.8	4	4. 8	
	无	0. 2	8		
2	2	0. 2	0	6. 4	
۷	无	0.8	8		
3	3	0. 5	4	6. 0	
	无	0. 5	8		
1, 2	1, 2	0. 16	4		
	1	0. 64	4	4. 48	
	2	0. 04	0		
	无	0. 16	8		
1, 3	1、3	0. 4	0	2. 8	
	1	0. 4	4		
	3	0. 1	4		
	无	0. 1	8		
2、3	2, 3	0. 1	4	5. 2 	
	2	0. 1	0		
	3	0. 4	4		
	无	0. 4	8		

【提示】

道路中可能会有癸双向道路连接相同的两间教室。也有可能有道路两端连接 的是 \overline{n} 一间教室。请注意区分n, m, v, e的意义,n不是教室的数量,m不是道路的数量。

【子任务】

测试点	n	<i>m</i>	[J]	特殊性质 1	特殊性质 2			
1	< 1	< 1	< 300	X	X			
2	< 2	< 0	< 20					
3		< 1	< 100					
4		< 2	< 300					
5	< 3	< 0	< 20	<i>K</i>	K			
6		< 1	< 100		V			
7		< 2	< 300					

	T	T	1		
8	< 10	< 0		K	K
9		< 1	< 20		X
10		< 2	< 100	X	
11		< 10	< 300		K
12	< 20	< 0	< 20	K	X
13		< 1	< 100	X	
14		< 2	< 300	K	
15		< 20		X	K
16	< 300	< 0	< 20		X
17		< 1	< 100		
18		< 2	< 300	K	K
19		< 300			
20	< 2000	< 0	< 20	X	X
21		< 1			
22		< 2	< 100		
23					
24		< 2000	< 300		
25					
		l.	1		

特殊性质 1: 图上任意两点 ai , bi , ai 更 bi 间,存在一条耗费体力最少的路径只 包含一条道路。

特殊性质 2: 对于所有的 1 〈 i 〈 n , ki = 1 -