7.1 Introduction to graph theory: basic concepts

Notebook: Discrete Mathematics [CM1020]

Created: 2019-10-07 2:31 PM Updated: 2019-12-12 1:04 PM

Author: SUKHJIT MANN

Cornell Notes

Topic:

7.1 Introduction to graph theory: basic concepts

Course: BSc Computer Science

Class: Discrete Mathematics-Lecture

Date: December 11, 2019

Essential Question:

What is a graph and how it is represented with edges, vertices, loops and paths?

Questions/Cues:

- What is a graph?
- What are the origins of graph theory?
- What are some real-world applications of graph theory?
- What is a more formal definition of a graph?
- What is a vertex?
- What is an edge?
- What is meant by adjacency in graph theory?
- What are loops and parallel edges?
- What is a directed graph or Digraph?
- What is a walk?
- What is a trail?
- What is a circuit?
- What is a path?
- What is a cycle?
- What is an Euler path?
- What is an Hamiltonian path?
- What is an Hamiltonian cycle?
- What is an Hamiltonian graph?
- What is connectivity in terms of graphs?
- What is strong connectivity?
- What is Transitive Closure?
- What is the degree of a vertex in terms of an undirected graph?
- What is the in-degree/out-degree of a vertex?
- What is the degree sequence of a graph?
- What are the properties of a degree sequence?
- What is a simple graph?
- What are the properties of simple graphs?
- What is a regular graph?
- What are the properties of a regular graph?
- What are some special regular graphs?
- What is a complete graph?

Notes

What is a graph?

Graphs are discrete structures consisting of vertices (nodes) and edges connecting them

Graph theory is an area in discrete mathematics which studies these type of discrete structures.

Origins of graph theory

The first problem in graph theory is the Seven Bridges of Konigsberg problem solved by Leonhard Euler in 1735

Application of graphs

In a variety of disciplines, problems can be solved using graph models:

- Modelling computer networks
- ·Modelling road maps
- Solving shortest path problems between cities
- •Assigning jobs to employees in an organisation.

Definition: Graph

G is an ordered triple G:=(V, E).

V is a set of nodes, or vertices.

E is a set of edges, lines or connections.

Definition: Vertex

Vertex

- Basic Element of a graph
- Drawn as a node or a dot
- Set of vertices of G is usually denoted by V(G) or V.

Definition: Edges

Edge

- · A is a link between 2 vertices
- Drawn as a line connecting two vertices
- The set of edges in a graph G is usually denoted by E(G), or E.

Definition: Adjacency

Adjacency

- Two vertices are said to be adjacent if they are endpoints of the same edge
- Two edges are said adjacent if they share the same vertex
- If a vertex v is an endpoint of an edge e, then we say that e and v are incident.

Example

 v_1 and v_2 are endpoints of the edge e_1 . We say that v_1 and v_2 are adjacent.

The edges e_1 and e_7 share the same vertex v_1 . We say that e_1 and e_7 are adjacent.

The vertex v_2 is an endpoint of the edge e_1 . We say that e_1 and v_2 are incident.

Loops and parallel edges

 v_2 and v_5 are are linked with two edges (e_6 and e_8). e_6 and e_8 are called parallel edges.

 v_1 is linked to itself by e_9 . The edge e_9 is called a loop.

Directed graphs — Digraph

A directed graph, also called a digraph, is a graph in which the edges have a direction.

This is usually indicated with an arrow on the edge.

Directed graphs

 e_1 is a connection from v_1 to v_2 but not from v_2 to v_1

 e_6 is a connection from v_2 to v_5 whereas e_8 is a connection from v_5 to v_2

Definition of a walk

A walk is a sequence of vertices and edges of a graph were vertices and edges can be repeated.

A walk of length k in a graph is a succession of k (not necessarily different) edges of the form uv, vw, wx,..., yz.

Example 1

 v_1v_2 , v_2v_3 , v_3v_4 , $v_4v_6 = e_1$, e_2 , e_3 , $e_4 = v_1v_2v_3v_4v_6$

A walk of length 4 from v₁ to v_{6t}

Example 2

 v_1v_2 , v_2v_3 , v_3v_2 , $v_2v_5 = e_1$, e_2 , e_2 , e_6 , e_6 , e_7

A walk of length 4 from v_1 to v_5 (passes twice through the edge e_2)

Trail

A trail is a walk in which no edge is repeated. In a trail, vertices can be repeated but no edge is ever repeated.

e1, e2, e3, e5, e6 is a trail

Circuit

A circuit is a is a closed trail. Circuits can have repeated vertices only.

e7, e6, e8, e3, e2, e1 is a circuit

Definition of a path

A path is a trail in which neither vertices nor edges are repeated.

• The length of a path is given by the number of edges it contains

Example

A walk of length 4 from v₁ to v₅ but not a path

 v_1v_2 , v_2v_3 , v_3v_4 , $v_4v_6 = e_1$, e_2 , e_3 , $e_4 = v_1v_2v_3v_4v_6$

A path of length 4 from v₁ to v₆

Cycle

A cycle is a closed path, consisting of edges and vertices where a vertex is reachable from itself.

A walk of length 3 from v_1 to v_1 = closed path = cycle

• Note** In example above for cycle, it is from V_1 to V_5 , instead of V_1 to V_1 .

Euler path

Definition: A Eulerian path in a graph is a path that uses each edge precisely once. If such a path exists, the graph is called traversable.

Example:

 e_2 , e_4 , e_6 , e_7 , e_5 , e_3 , $e_1 = v_1v_3v_4v_5v_2v_4v_1v_2$

Hamiltonian path

A Hamiltonian path (also called a *traceable path*) is a path that visits each vertex exactly once.

A graph that contains a Hamiltonian path is called a traceable graph.

Hamiltonian cycle

A Hamiltonian cycle is a cycle that visits each vertex exactly once (except for the starting vertex, which is visited once at the start and once again at the end).

Hamiltonian cycle

Hamiltonian graph

A graph that contains a Hamiltonian cycle is called a Hamiltonian graph.

Any Hamiltonian cycle can be converted to a Hamiltonian path by removing one of its edges.

Connectivity

An undirected graph is connected if

you can get from *any node to any other* by following a *sequence of edges*

OR

any two nodes are connected by a path.

Connected graph

Not connected graph

there is no path from $(v_1, v_2 \text{ or } v_6)$ to $(v_3 \text{ or } v_4)$

Strong Connectivity

A directed graph is **strongly connected** if there is a **directed path** from any node to any other node.

Strongly connected directed graph

Not Strongly connected directed graph

No directed path from v_4 to any of the other 3 vertices

Transitive Closure

Given a digraph G, the transitive closure of G is the digraph G^* such that: G^* has the same vertices as G if G has a directed path from U to V ($U \neq V$), G^* has a directed edge from U to V

The transitive closure provides reachability information about a digraph.

Terminology – Undirected graphs

Degree of a vertex (deg (v)): the number of edges incident on v

A loop contributes twice to the degree

An isolated vertex has a degree: 0

Terminology – Directed graphs

In-deg (v): number of edges for which v is the terminal vertex

Out-deg (v): number of edges for which v the is initial vertex

deg(v) = Out-deg(v) + IN-deg(v)

A loop contributes **twice** to the degree as it contributes 1 to both in-degree and out-degree.

Example


```
\begin{array}{l} \deg(v_1) = \text{in-deg}(v_1) + \text{out-deg}(v_1) = 2 + 2 = 4 \\ \deg(v_2) = \text{in-deg}(v_2) + \text{out-deg}(v_2) = 1 + 1 = 2 \\ \deg(v_3) = \text{in-deg}(v_3) + \text{out-deg}(v_3) = 2 + 2 = 4 \\ \deg(v_4) = \text{in-deg}(v_4) + \text{out-deg}(v_4) = 1 + 2 = 3 \\ \deg(v_5) = \text{in-deg}(v_5) + \text{out-deg}(v_5) = 1 + 0 = 1 \\ \deg(v_6) = \text{in-deg}(v_6) + \text{out-deg}(v_6) = 0 + 0 = 0 \end{array}
```

Degree sequence of a graph

Given an undirected graph G, a degree sequence is a monotonic nonincreasing sequence of the vertex degrees of all the vertices of G.

Written in descending order separated by commas

Degree sequence property 1

The sum of the degree sequence of a graph is always even

Therefore, it is impossible to construct a graph where the sum of the degree sequence is odd.

Example

The degree sequence of G is: 4,3,3,2,1,1

Sum of the degree sequence = 1+1+2+3+3+4=14

Degree sequence property 2

Given a graph G, the sum of the degree sequence of G is twice the number of edges in G.

Number of edges(G) = (sum of degree sequences of G) / 2

Example 1

The degree degree sequence of G is: 4,3,3,2,1,1

Number of edges = (1+1+2+3+3+4)/2 = 14/2 = 7

Example 2

The degree sequence of G is: 2,2,2

Number of edges = (2+2+2)/2 = 6/2 = 3

Simple graphs

A *simple graph* is a graph without loops and parallel edges.

Properties of simple graphs

Given a simple graph G with n vertices, then the degree of each vertex of G is at most equal to n-1.

Proof:

Let v be a vertex of G such that deg(v) > n-1

However, we have only n-1 other vertices for v to be connected to

Hence, the other connections can only be a result of parallel edges of loops.

Regular graphs

A **graph** is said to be **regular** of degree if all local degrees are the same number.

A graph G where all the vertices the same degree, r, is called an r-regular graph.

Examples

Properties of regular graphs

Given an r-regular G with n vertices, then the following is true:

Degree sequence of G = r, r, r, ..., r (n times)

Sum of degree sequence of $G = r \times n$

Number of edges in $G = r \times n/2$

Example: 3-regular with 6 vertices

Degree Sequence = 3,3,3,3,3,3,3

Sum of degree sequence = 3x6=18

Number of edges = 18/2=9

Special regular graphs: cycles

C₃ is 2-regular graph with 3 vertices C₄ is 2-regular graph with 4 vertices

C₅ is 2-regular graph with 5 vertices

deg seq. of $C_3 = 2,2,2$ deg seq. of $C_4 = 2,2,2,2$ deg seq. of $C_5 = 2,2,2,2,2$

3-regular with 4 vertices

Sum of degree sequence = 3x4 = 12The sum is even, hence it is possible to construct 3-regular graph with 4 vertices.

3-regular graph with 5 vertices

Sum of degree sequence = 3x5= 15 The sum if odd, hence it is impossible to construct a 3-regular graph with 5 vertices.

Complete graphs

A complete graph is a *simple* graph where *every pair of vertices* are *adjacent* (linked with an edge).

We represent a complete graph with n vertices using the symbol K_n .

Complete graph properties

A complete graph with n vertices, \mathbf{k}_{n} , has the following properties:

Every vertex has a degree (n-1)
Sum of degree sequence = n(n-1)

Number of edges = $\frac{n(n-1)/2}{2}$ Another example of a complete graph

There are 5 vertices Degree of each vertex = (5-1) = 4 Sum of deg. Seq. = 5(5-1) = 20 Number of edges = 5(5-1)/2=20/2=10

Summary

In this week, we learned what graph is, how it is defined by its edges, vertices & direction. Alongside this, we explored the different configuration of vertices & edges that result in a path, circuit, cycle and etc. Also we looked at the meaning of a degree sequences and how to count the degree of each vertex with in/out degree for vertices. Finally, we examined special graphs like simple, r-regular and complete graphs.