1

LECTURE 3

Thin strand of dielectric material we call fiber (transmission of

light) where as if it is of metal we call it a wire (transmission

of electrical signal)

Laser diode: Forward biased

Photo diode: Reverse biased?

n= refractive index

"Fiber optics is a technology in which electrical signal is converted to optical signals and transmitted through fibers and reconverted back into electrical signals"

Optical Fiber: Structure

Human hair thickness ~ 100μm

- 1. Core Light guiding region
- 2. Cladding- confine the light to the core
- 3. Buffer or Sheath protect the fiber from physical and environmental damage

Additional functions of cladding

- ✓ To maintain the uniformity along the length of the fiber
- ✓ To protect the outer surface of the core
- ✓ To reduce the cone of the light

4

TOTAL INTERNAL REFLECTION happens when a ray light pass from the denser medium to rarer medium:

Snell's law

$$\sin\theta_2 = \frac{n_1}{n_2}\sin\theta_1$$

Critical angle

$$\sin \theta_c = \frac{n_2}{n_1}$$

TOTAL INTERNAL REFLECTION

$$\theta > \theta_c$$

Principle on which Fiber optic communication rely on TOTAL

INTERNAL REFLECTION

$$\theta_{\rm imax} = \sin^{-1}\left(\sqrt{n_1^2 - n_2^2}\right)$$

θ_{imax} is the acceptance angle of the fiber.

 $2\theta_{\text{imax}}$ = acceptance cone

Relative Refractive Index

 $\triangleright \Delta$ is always positive because $n_1 > n_2$.

$$\Delta = \frac{n_1 - n_2}{n_1}$$

 \triangleright Typically value of \triangle is the order of 0.01

 \triangleright For effective light transmission through the fiber, $\Delta <<1$.

Numerical aperture

$$\sin \theta_{\rm imax} = \sqrt{n_1^2 - n_2^2}$$

$$NA = sin\theta_{imax}$$

$$NA = \sqrt{n_1^2 - n_2^2}$$

$$NA = n_1 \sqrt{2\Delta}$$

$$NA = n_1 \sqrt{2\Delta}$$

- Measure of the light gathering ability of the fiber
- Depends only on the refractive indices of the core and cladding.
- Independent of the dimension of the fiber
- Typical values are in the range 0.13 to 0.50

Classification of Optical Fibers

- 1. The material from which it is made
 - i. Glass optical fibers
 - ii. Plastic Optical fibers
 - iii. Plastic Clad Silica (PCS) optical fibers
- 2. The propagation modes through it
 - i. Single mode optical fibers
 - ii. Multimode optical fibers
- 3. The refractive index profile of the material used
 - i. Step-index optical fibers
 - ii. Graded index optical fibers
- 4. the modes and refractive index profile
 - i. Step-index single mode(SISM) optical fiber
 - ii. Step index multimode (SIMM) optical fiber
 - iii. ??? GISM☺
 - iv. Graded-index multimode (GIMM) optical fiber

V-number (*V*) gives the upper limit of the number of modes that can be transmitted in a multi mode optical fiber.

$$N_m = \frac{1}{2}V^2$$

$$N_m \cong \frac{1}{4}V^2$$

Step index fiber

Graded Index fiber

Modes: possible number of allowed paths of light in the optical fiber..*in* a simple sense

Launching angle

$$0 \le \theta \le \theta_{imax}$$

Accepted by the fiber to propagate

Quick QUIZ

Quick Quiz Response on the 9/13/2018 Lecture

No	Question	Attempts	Right	Wrong
1	How does the refractive index vary in Graded Index fiber?	56	14	42
2	The core of an optical fiber has a	56	25	31
3	The numerical aperture of a fiber if the angle of acceptance is 15 degrees, is	56	9	47
4	Dispersion is used to describe the	56	29	27

How does the refractive index vary in Graded Index fiber?

- a) Tangentially
- b) Radially
- c) Longitudinally
- d) Transversely

Ans: B

The core of an optical fiber has a

- a) Lower refracted index than air
- b) Lower refractive index than the cladding
- c) Higher refractive index than the cladding
- d) Similar refractive index with the cladding

Ans: C

The numerical aperture of a fiber if the angle of acceptance is 15 degrees, is

- a) 0.17
- b) 0.26
- c) 0.50
- d) 0.75

Ans: B

Dispersion is used to describe the

- a) Splitting of white light into its component colors
- b) Propagation of light in straight lines
- c) Bending of a beam of light when it goes from one medium to another
- d) Bending of a beam light when it strikes a mirror

Ans: A

LECTURE SCHEDULE

- Lecture 1: Fiber optics introduction, optical fibers, Total internal reflection, acceptance angle, relative refractive index numerical aperture,
- Lecture 2: Classification of fibers, Step index and graded index fibers, V-number, optical fiber as a dielectric wave guide and modes of propagation;
- Learn fundamentals of optical fiber, the fundamental parameters of optical fibers and propagation of light through optical fiber, and types of fibers

Lecture 3: Losses associated with optical fibers; Application of optical fibers;

learn the reason for data loss. Learn about the applications,... endoscopy

LOSSES IN OPTICAL FIBERS

ATTENUATION

The loss of signal amplitude is known as attenuation

The loss of optical power as light travels down the fiber exponentially depends on the distance

$$P_0 = P_i e^{-\alpha L} \qquad \qquad \alpha = \frac{1}{L} \ln \frac{P_i}{P_0}$$

 P_o is the power at distance L, P_i input power and α is the **fiber attenuation constant**

In unit of dB/km, is defined as, $\alpha_{dB/km} = \frac{10}{L} log \frac{P_i}{P_0}$

In ideal case, $P_i = P_o$ and attenuation is zero

Losses in optical fibers

When the optical signal is made to propagate through the optical fiber, signal strength reduces due to

- 1. Attenuation
 - a) Material absorption
 - b) Rayleigh scattering
- Intrinsic loss/attenuation
- 2. Bending of optical fiber \Rightarrow Extrinsic $\frac{|Extrinsic|}{|loss/attenuation|}$
- ☐ Loss of amplitude of the signal: attenuation
- ☐ Change in shape of the signal: Distortion/dispersion Which we are not considering

LOSSES IN OPTICAL FIBERS

1. Losses due to Attenuation

a) Material absorption

Ц	Imperfection and impurities in the fiber account for 3-5 % loss
	☐ OH- common impurity-
	☐ Due to water trapped during the manufacturing process
	☐ Humidity from the atmosphere
	Cu, Ni, Cr, V, Mn impurities in glass absorb visible wavelength
	Electronic absorption at UV and vibrational absorption at IR wavelengths
	are un avoidable
	Absorption found to be minimum around 1.3 µm
	Propagation of light with wavelength above 1700nm is not possible due to
	infrared (IR) absorption

LOSSES IN OPTICAL FIBERS

1. Losses due to Attenuation

- b) Rayleigh scattering
- \square Account for the 96% of attenuation in the fiber
- ☐ Microscopic density variation causes changes in refractive index locally in the fiber ====
- ☐ These obstructions act as scattering centers and scatter light in all direction- Rayleigh scattering
- \Box It varies as $1/\lambda^4$ high at lower wavelength
- ☐ Lower wavelength limit is **800 nm**

Material absorption set the upper wavelength limit at 1700 nm and Rayleigh scattering set the lower wavelength limit at 800 nm. So light having wavelength in the range **800-1700nm** is used in optical communication!

20

1. Losses due to Attenuation

λnm	loss dB/km
820-880	2.2
1220-1320	0.6
1550-1610	0.2

- ✓ The band of wavelength at which the attenuation is a minimum is called optical window or transmission window or low-loss window
- ✓ The range 1550-1610 is most preferable
- ✓ 1300 nm is suitable as the dispersion is minimum

LOSSES IN OPTICAL FIBERS

2. Losses due to bending of Optical fiber

a) Macrobend

Fiber is bend in noticeable way and strain induced 'n' change TIR conditions and light escape

b) Microbend

- Small scale local bend on the fiber
- Not clearly visible
- Indicative of pressure on the fiber
- Light refracted into the cladding as TIR condition get changed

Applications of optical fiber

1 In communication system

hundred thousands times better than other transmission lines (microwave, radio waves) or wires in carrying the amount of information- higher band width

2. In Fiber optic sensors

Temperature sensor
Mechanical strain sensor
Vibration sensor
Pressure sensor
Acceleration sensor
Chemical sensor

Light beam is changed in five optical properties like, intensity, phase, polarization, wavelength, and spectral distribution. These are sensed

3. Military applications

Wiring of the communication equipment used in guided missiles

Applications of optical fiber

4. In Medical applications

- Diagnostics- Endoscopy
- Ophthalmology- guiding lasers
- Cardiology- optical energy guided to evaporate plaque (blocking the blood circulation in the body)
- ❖ Cancer treatment- IR energy transmission line (Infrared laser used)

endoscopy (looking inside) to look inside the body- We will have a look at the ENDOSCOPY technique now.

OPTICAL ENDOSCOPES

ENDOSCOPE

- Fiber bundles (incoherent bundles) used for illuminating the object inside the body
- and another bundle (coherent bundle) used to obtain the image of the object to be seen/scanned
- 10,000 fibers forms the bundle of 1 mm diameter
- Visual inspection of internal parts of a human body

Type of endoscopy

- a) Broncho- endoscope
- b) Gastrointestinal endoscope
- c) Laparoscope

ENDOSCOPES- Parts

- 1. Viewing accessories
 - ✓ connected to the coherent optical fiber bundle
 - Can be connected to a TV screen or just look with your eyes
- 2. Light source with a focusing lens
 - connected to the incoherent optical fiber bundle through a beam splitter

ENDOSCOPES- Parts

- 3. Incoherent bundle of optical fiber- receive light from the light source and illuminate the inside body parts
 - ✓ It include a beam splitter that pass through the both sides of coherent optical fiber bundle
- 4. Coherent bundle of optical fiber receive the reflected light from the body parts and the image is fed to the screen

ENDOSCOPE- Parts

- 5. Imaging accessories (Prism and lenses encapsulated in the transparent tube) at other end of the coherent and incoherent fiber optic bundles
 - ✓ feed focused light from the incoherent fiber optic bundles to the body parts
 - ✓ receive the reflected light from the illuminated body
 - ✓ and feed back those light to the coherent fiber optic bundles.. Remember this light not coupled to the incoherent optical fiber bundle

Now we connect the these five component together in the 'right way' we get a an ENDOSCOPE as can been in the next slide

ENDOSCOPE and **ENDOSCOPY**

Now you do some imaging with this instrument (ENDOSCOPE) and it is 'ENDOSCOPY' ©

Quick QUIZ

The loss in signal power as light travels down a fiber is called

- a. Dispersion
- **b.** Scattering
- c. Absorption
- d. Attenuation

A dielectric waveguide for the propagation of electromagnetic energy at light frequencies is know as

- a. Stripline
- b. Microstrip
- c. Laser beam
- d. Optical Fiber

Which of the following is used as an optical transmitter on the Fiber Optical Communications?

- a. Avalanche Photo Diode APD
- b. Tunnel diode
- c. PIN diode
- d. Light Emitting Diode

Which of the following is used as an optical receiver in fiber optics communications?

- a. Avalanche Photo Diode (APD)
- b. Tunnel diode
- c. Laser diode
- d. Light Emitting Diode (LED)

UNIT III: Fiber optics

Syllabus

Fiber optics introduction, optical fiber as a dielectric wave guide, total internal reflection, acceptance angle, numerical aperture, relative refractive index, V-number, step index and graded index fibers, losses associated with optical fibers, application of optical fibers.

So we uncovered the UNIT III- and hence you are all now the masters of 'Optical fiber' and the science behind it...

And.. My job done... and you study well and score high and start loving physics... Good engineers are good physicist as well

