CS 260 Design and Analysis of Algorithms 7. P and NP

Mikhail Moshkov

Computer, Electrical and Mathematical Sciences & Engineering Division King Abdullah University of Science and Technology

P and NP

In this section, we will study the classes P and NP of decision problems, and discuss the notions of NP-hard and NP-complete problems.

If we prove that some problem is *NP*-hard or *NP*-complete we will have indirect but serious confirmation of high complexity of the problem.

We will work with decision problems for which the output is *yes* or no. The input of a decision problem can be encoded as a word in some finite alphabet A.

Let *L* be a language over the alphabet *A* which contains only words that corresponds to inputs of the initial decision problem for which the output is *yes*.

Instead of the initial decision problem we will consider the problem of recognition of the language L: for a given word $\alpha \in A^*$ (A^* is the set of all finite words (strings) over A including the empty word λ), it is required to recognize if $\alpha \in L$.

Let A and B be two finite alphabets and A be an algorithm which implements a mapping $\varphi: A^* \to B^*$.

We say that A is a polynomial algorithm if there exists a polynomial p(n) such that, for every natural n, the time of A work on every input word of the length n is at most p(n).

In particular, it means that for any $\alpha \in A^*$, $|\varphi(\alpha)| \leq |\alpha| + p(|\alpha|)$ where $|\alpha|$ is the length (the number of letters) of the word α .

We can consider only polynomials with nonnegative coefficients, i.e., p(n) is an increasing function.

The class P is the class of all languages (decision problems) for each of which there exists a polynomial algorithm for the problem of language recognition.

Let A and B be finite alphabets. Let us consider a predicate $Q(x,y): A^* \times B^* \to \{true, false\}$. We will say that Q is a polynomial predicate if there exists a polynomial algorithm that, for given words $\alpha \in A^*$ and $\beta \in B^*$, computes the value $Q(\alpha, \beta)$.

We will say that a language $L\subseteq A^*$ belongs to the class NP if and only if there exists an alphabet B, a polynomial q and a polynomial predicate $Q(x,y):A^*\times B^*\to \{true,false\}$ such that, for any word $\alpha\in A^*$, we have $\alpha\in L$ if and only if there exists a word $\beta\in B^*$ such that $|\beta|\leq q(|\alpha|)$ and $Q(\alpha,\beta)=true$.

The word β is called the *certificate* for α , and the algorithm for computation of the value $Q(\alpha, \beta)$ is called the *verification* algorithm.

Another definition of the class *NP* is connected with the notion of nondeterministic Turing Machine: *L* belongs to *NP* if and only if there exists a nondeterministic Turing Machine which has polynomial time complexity and solves the problem of language *L* recognition.

Theorem 7.1. $P \subseteq NP$.

Proof. Let $L \in P$ and $L \subseteq A^*$. Let $B = \{0\}$ and q(n) = 1. We now consider a predicate $Q(\alpha, \beta)$ such that $Q(\alpha, \beta) = true$ if and only if $\alpha \in L$. Since $L \in P$, the predicate Q is a polynomial predicate.

It is clear that $\alpha \in L$ if and only if there exists $\beta \in B^*$ such that $|\beta| \le 1$ and $Q(\alpha, \beta) = true$ (we can take $\beta = 0$).

We say that a language $L_1 \subseteq A^*$ is polynomial-time reducible to language $L_2 \subseteq B^*$ (written $L_1 \leq_P L_2$) if there exists a polynomial time computable function $\varphi : A^* \to B^*$ such that, for all α , $\alpha \in L_1$ if and only if $\varphi(\alpha) \in L_2$.

One can prove the following three simple statements:

Proposition 7.2. If $L_1 \leq_P L_2$ and $L_2 \in P$ then $L_1 \in P$.

Proposition 7.3. If $L_1 \leq_P L_2$ and $L_1 \notin P$ then $L_2 \notin P$.

Proposition 7.4. If $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$ then $L_1 \leq_P L_3$.

NP-Hard and NP-Complete Problems

A language L is NP-hard if $L' \leq_P L$ for all $L' \in NP$. (Note that it is not necessary to have $L \in NP$.)

The most important properties of *NP*-hard problems are the following:

- ▶ Let L be NP-hard and $L \in P$. Then NP = P.
- ▶ Let *L* be *NP*-hard and *NP* \neq *P*. Then *L* \notin *P*.

NP-Hard and NP-Complete Problems

We should note that there are extensions of the notion of *NP*-hard problem that allow us to use this notion for different kinds of problems, in particular, for optimization problems.

A language L is NP-complete if $L \in NP$ and L is NP-hard.

Satisfiability Problem

Conjunctive normal form (CNF) is a Boolean formula of the kind

$$F(x_1,\ldots,x_m)=C_1\wedge C_2\wedge\ldots\wedge C_k$$

where for each $j \in \{1, \dots, k\}$ we have

$$C_j = t_{j1} \vee t_{j2} \vee \ldots \vee t_{jn_j}$$

and t_{jj} is either a variable x_p or a negation of variable \bar{x}_p .

We assume that each variable occurs in each C_j at most one time. The expression C_i is called *clause*, and t_{ii} is called *literal*.

Satisfiability Problem

Satisfiability problem (SAT): for a given CNF $F(x_1, ..., x_n)$ it is required to recognize if there exists a tuple of values $(a_1, ..., a_m)$ of variables $x_1, ..., x_m$ such that $F(a_1, ..., a_m) = 1$.

Let us show that $SAT \in NP$. A certificate for F is a tuple (a_1, \ldots, a_m) of values of variables x_1, \ldots, x_m ; the verification algorithm checks that $F(a_1, \ldots, a_m) = 1$.

Satisfiability Problem

Theorem 7.5. (Cook, 1971) SAT is NP-complete problem.

We now consider other examples of NP-complete problems. To prove that a problem L_1 is NP-complete it is enough to prove that $L_1 \in NP$ and, for some NP-hard problem L_2 , we have $L_2 \leq_P L_1$.

Let G = (V, E) be an undirected graph. We say a set of nodes $S \subseteq V$ is *independent* if no two nodes in S are joined by an edge.

Independent Set problem: for a given undirected graph G and a number k we should recognize if G contains an independent set with at least k nodes.

Independent Set belongs to NP: a certificate is a subset with at least k nodes; the verification algorithm checks, for these nodes, that no edge joins any pair of nodes.

Example 7.6. Independent sets in graphs

To prove that Independent Set is NP-complete we will show that SAT \leq_P Independent Set.

Let
$$F(x_1, ..., x_m)$$
 be a CNF and $F = C_1 \wedge ... \wedge C_k$ where $C_j = t_{j1} \vee t_{j2} \vee ... \vee t_{jn_j}$ for $j = 1, ..., k$.

We correspond to SAT an Independent Set problem with input $G_F = (V_F, E_F)$, k where G_F is undirected graph with the set of nodes $V_F = \{t_{11}, \ldots, t_{1n_1}, \ldots, t_{k1}, \ldots, t_{kn_k}\}$.

Let $t_{j_1,i_1},t_{j_2,i_2} \in V_F$. Then the edge $\{t_{j_1,i_1},t_{j_2,i_2}\}$ belongs to E_F if and only if one of the following conditions holds:

- 1. $j_1 = j_2$.
- 2. $j_1 \neq j_2$ and there exists a variable $x_p \in \{x_1, \dots, x_m\}$ such that $\{t_{j_1, i_1}, t_{j_2, i_2}\} = \{x_p, \bar{x}_p\}.$

It is clear that G_F does not contain independent set with more than k nodes. One can show that G_F contains an independent set with k nodes if and only if there exists a tuple (a_1, \ldots, a_m) of values of variables such that $F(a_1, \ldots, a_m) = 1$.

It is not difficult to understand that the considered reduction is a polynomial-time reduction of SAT to Independent Set.

Therefore Independent Set is *NP*-complete.

Example 7.7. Polynomial-time reduction of SAT to Independent Set

$$(x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_3) \land (x_1 \lor x_3)$$

$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 0$

Let G = (V, E) be a undirected graph. We say that a set $S \subseteq V$ is a *vertex cover* if every edge $e \in E$ has at least one end in S.

We formulate the *Vertex Cover problem* as follows: for a graph G and a number k it is required to recognize if G contains a vertex cover with at most k nodes.

Vertex Cover belongs to NP: certificate is a subset with at most k nodes; the verification algorithm checks that each edge has at least one end among these nodes.

Example 7.8. Vertex covers in graphs

Let us show that Independent Set $\leq_P V$ ertex Cover. To this end it is enough to prove that a subset $S \subseteq V$ is an independent set if and only if $V \setminus S$ is a vertex cover.

Let S be an independent set. Then, evidently, for each $e \in E$, at least one end of e belongs to $V \setminus S$. Therefore $V \setminus S$ is a vertex cover. Let $V \setminus S$ be a vertex cover. Then there is no edge for which both ends belongs to S, and S is an independent set.

From the considered statement it follows that G has an independent set with at least k nodes if and only if G has a vertex cover with at most |V| - k nodes.

Thus, Vertex Cover is *NP*-complete problem.

Set Cover problem: for a given set U, a family F of subsets of U such that $U = \bigcup_{S \in F} S$, and a number k, it is required to recognize if there exists a subfamily Q of F with at most k subsets such that $U = \bigcup_{S \in Q} S$.

Set Cover belongs to NP: certificate is a subfamily Q of F with at most k subsets; the verification algorithm checks that every element from U belongs to at least one subset from Q.

Example 7.9. Set cover problem

$$U = \{a_1, a_2, a_3, a_4, a_5, a_6\}, F = \{S_1, S_2, S_3, S_4\}$$

 $S_1 = \{a_1, a_2, a_3\}, S_2 = \{a_1, a_4\}, S_3 = \{a_2, a_5\}, S_4 = \{a_3, a_6\}$

Let us show that Vertex Cover \leq_P Set Cover. Let G = (V, E) be an undirected graph.

We correspond to G a Set Cover problem U_G , F_G in the following way: $U_G = E$ and $F_G = \{S_v : v \in V\}$ where S_v is the set of edges from E that have v as an end.

One can show that $\{v_{i_1}, \ldots, v_{i_t}\}$ is a vertex cover for G if and only if

$$\bigcup_{S_{v} \in \{S_{v_{i_{1}}}, ..., S_{v_{i_{t}}}\}} S_{v} = U_{G}.$$

Thus, Set Cover is NP-complete.

Example 7.10. Polynomial-time reduction of Vertex Cover to Set Cover

$$U = \{a, b, c, d, e, f, g, h, k\}, F = \{S_1, S_2, S_3, S_4, S_5, S_6\},$$

$$S_1 = \{a, b\}, S_2 = \{a, c, d\}, S_3 = \{b, c, e, f\}, S_4 = \{d, e, g, h\},$$

$$S_5 = \{f, g, k\}, S_6 = \{h, k\}$$