Progettazione di Reti Informatiche

19/06/2020

Tabella 1. Host per LAN/VLAN

Subnet	#Hosts		
VLAN B1.SRV	10		
VLAN B1.A	100		
VLAN B1.B	100		
LAN B2.1	100		
VLAN B2.SRV	10		
VLAN B2.A	25		

Tabella 2.
Assegnamento porte su S.B1.1

Ports	Assignment
Fa0/1	To R.B1
Fa0/2	To S.B1.2
Fa0/3	To S.B1.3
Fa0/4 - 24	VLAN B1.SRV – VLAN 10

Tabella 4. Assegnamento porte su S.B1.3

Ports	Assignment			
Fa0/1	To S.B1.1			
Fa0/2	To S.B1.2			
Fa0/3 - 24	VLAN B1.B – VLAN 30			

Tabella 3.
Assegnamento porte su S.B1.2

Ports	Assignment				
Fa0/1	To S.B1.1				
Fa0/2	To S.B1.3				
Fa0/3 - 24	VLAN B1.A – VLAN 20				

Tabella 5.
Assegnamento porte su S.B2.2

Ports	Assignment
Fa0/1	To R.B2
Fa0/2 - 6	VLAN B2.SRV – VLAN 10
Fa0/7 - 24	VLAN B2.A – VLAN 20

La rete aziendale in figura è composta dalle reti fisicamente separate **B1** e **B2**, connesse alla rete Internet mediante ISP diversi.

Prova pratica

Progettazione di Reti Informatiche

19/06/2020

- Assumendo che venga usato un unico blocco di indirizzi per l'indirizzamento di host e apparati nelle reti B1 e B2, determinare la dimensione minima di tale blocco in accordo ai requisiti specificati in Tabella 1 e tenendo conto della necessità di realizzare una VPN mediante tunnel GRE fra i router R.B1 e R.B2.
- 2. Sia X la lunghezza della *subnet mask* determinata al punto 1. Assumendo che il blocco di indirizzi **192.168.8.0/X** sia disponibile per l'allocazione, progettare e documentare uno schema di indirizzamento per le reti **B1** e **B2**, secondo quanto determinato al punto 1.
- 3. Utilizzando *Packet Tracer*, riprodurre la topologia della rete ed eseguire la configurazione di base come segue:
 - a. configurare le VLAN ed assegnare le porte degli switch come indicato nelle Tabelle 2-5;
 - b. configurare gli apparati *router* e *switch* in accordo agli schemi di indirizzamento progettati ai punti 2 e 3;
 - c. configurare come *default route* su **R.B1** il collegamento seriale verso il *router* **ISP.B1** utilizzando il blocco di indirizzi **209.165.201.0/30**;
 - d. configurare come *default route* su **R.B1** il collegamento seriale verso il *router* **ISP.B1** utilizzando il blocco di indirizzi **209.165.201.4/30**;
 - e. configurare il tunnel GRE fra i router R.B1 e R.B2.
- 4. Configurare il routing come segue:
 - a. configurare OSPF come protocollo di routing interno per la comunicazione fra le reti B1 e B2 mediante il tunnel GRE configurato (Nota Bene: le default route non devono quindi essere redistribuite dal protocollo OSPF).
- 5. Configurare i servizi di rete come segue:
 - a. su **R.B2** il servizio DHCP per la LAN **B2.1** e la VLAN **B2.A**;
 - b. su S.B1.SRV il servizio DHCP per le VLAN B1.A e B1.B;
 - c. su **S.B1.SRV** il servizio DNS;
- 6. Configurare la traduzione di indirizzi come segue:
 - a. gli indirizzi degli *host* nella VLAN **B1.SRV** sono tradotti staticamente su **R.B1**. In particolare, all'*host* **S.B1.SRV** è assegnato l'indirizzo **209.165.201.33**;
 - b. gli indirizzi degli *host* nella VLAN **B1.A** sono tradotti dinamicamente su **R.B1**, utilizzando il pool di indirizzi **209.165.201.57 209.165.201.62**;
 - c. tutti gli altri indirizzi non subiscono traduzione; i relativi pacchetti devono essere filtrati dai *router* **R.B1** o **R.B2** e non inoltrati da/per il collegamento verso i rispettivi *router* ISP.
- 7. Configurare una o più ACL in modo tale che gli *host* nella VLAN **B2.1** possano comunicare esclusivamente con gli *host* nella VLAN **B1.SRV**.

Prova pratica

Progettazione di Reti Informatiche

19/06/2020

Subnet Name	Needed Size	Alloca- ted Size	Address	Mask	Dec Mask	Assignable Range	Broadcast
VLAN B1.A 20	100+1	126	192.168.8.0	/25	255.255.255.128	192.168.8.1 - 192.168.8.126	192.168.8.127
VLAN B1.B 30	100+1	126	192.168.8.128	/25	255.255.255.128	192.168.8.129 - 192.168.8.254	192.168.8.255
LAN B2.1	100+1	126	192.168.9.0	/25	255.255.255.128	192.168.9.1 - 192.168.9.126	192.168.9.127
VLAN B2.A 20	25+1	30	192.168.9.128	/27	255.255.255.224	192.168.9.129 - 192.168.9.158	192.168.9.159
VLAN B1.SRV 10	10+1	14	192.168.9.160	/28	255.255.255.240	192.168.9.161 - 192.168.9.174	192.168.9.175
VLAN B2.SRV 10	10+1	14	192.168.9.176	/28	255.255.255.240	192.168.9.177 - 192.168.9.190	192.168.9.191
Tunnel B1-B2	2	2	192.168.9.192	/30	255.255.255.252	192.168.9.193 - 192.168.9.194	192.168.9.195

Device	Interface	IP Address	Subnet Mask	Default Gateway
R.B1	Se0/0/0	209.165.201.1	255.255.255.252	N/A
	Fa0/0.10	192.168.9.161	255.255.255.240	N/A
	Fa0/0.20	192.168.8.1	255.255.255.128	N/A
	Fa0/0.30	192.168.8.129	255.255.255.128	N/A
	Tun0	192.168.9.193	255.255.255.252	N/A
R.B2	Se0/0/0	209.165.201.5	255.255.255.252	N/A
	Fa0/0	192.168.9.1	255.255.255.128	N/A
	Fa0/1.10	192.168.9.177	255.255.255.240	N/A
	Fa0/1.20	192.168.9.129	255.255.255.224	N/A
	Tun0	192.168.9.194	255.255.255.252	N/A
ISP.B1	Se0/0/0	209.165.201.2	255.255.255.252	N/A
	Fa0/0	209.165.202.1	255.255.255.0	N/A
ISP.B2	Se0/0/0	209.165.201.6	255.255.255.252	N/A
	Fa0/0	209.165.202.2	255.255.255.0	N/A
S.B1.SRV	F0	192.168.9.174	255.255.255.240	192.168.9.161
S.B2.SRV	F0	192.168.9.190	255.255.255.240	192.168.9.177
www	F0	209.165.202.3	255.255.255.0	209.165.202.1