

AULA 1 - DEFINIÇÃO

Definição

Chamamos função polinomial do 2º grau a função de $\mathbb{R} \to \mathbb{R}$ que tem formato:

$$f(x) = ax^2 + bx + c$$
, $com a, b, c \in \mathbb{R} e a \neq 0$

Valor da função em x

Para calcularmos o valor da função para um determinado x_i , ou seja, $f(x_i)$, substituímos x por x_i na função.

AULA 2 - GRÁFICOS - TABELA

Os gráficos de funções do segundo grau são sempre parábolas.

Assim como em toda função, podemos plotar seu gráfico construindo uma tabela de pares (x,y), ou seja, atribuímos valores para x e calculamos seus y correspondentes, que são iguais a f(x).

AULA 3 - GRÁFICOS - COEFICIENTES E RAÍZES

Existe, porém, uma forma mais eficiente para fazer gráficos de funções do 2º grau. Apenas olhando a função já conseguimos tirar informações importantes sobre seu gráfico.

Os coeficientes da função vão determinar de forma direta o formato da parábola (concavidade pra cima ou pra baixo) e o ponto de intersecção com o eixo y.

Coeficiente a

O **coeficiente** *a* irá determinar se a parábola terá concavidade para cima ou para baixo.

Coeficiente c

O **coeficiente** c vai determinar onde a parábola corta o eixo y, pois para x=0 temos f(x)=c.

<u>Raízes</u>

Chamamos de raízes da função ou zeros da função os valores de x para os quais f(x)=0. Portanto, para encontrarmos as raízes de uma função do 2° grau, simplesmente igualamos f(x) a 0 e resolvemos a equação.

1

No gráfico, as raízes serão os pontos onde a parábola corta o eixo x pois, para estes pontos, y=0.

Relembrando das aulas de eq. do 2º grau, as raízes são:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

Portanto, se:

- $\Delta > 0$: duas raízes reais \rightarrow gráfico corta o eixo x em 2 pontos
- $\Delta = 0$: uma raiz real \rightarrow gráfico corta o eixo x em 1 ponto
- $\Delta < 0$: nenhuma raiz real \rightarrow gráfico NÃO corta o eixo x

Para a > 0:

Para a < 0:

AULA 4 - VÉRTICE DA PARÁBOLA

O vértice da parábola é o ponto de inversão no sentido crescente/decrescente de y. Em outras palavras, o vértice é o ponto de mínimo ou de máximo da função.

As coordenadas do vértice são dadas por:

$$x_v = -\frac{b}{2a}$$

$$y_v = -\frac{\Delta}{4a}$$

Se a função tem <u>concavidade para cima</u>, dizemos que o vértice é o "<u>ponto de mínimo</u>" da função, ou seja, é o ponto onde ela assume seu menor valor.

Se a função tem <u>concavidade para baixo</u>, dizemos que o vértice é o "<u>ponto de máximo</u>" da função, ou seja, é o ponto onde ela assume seu maior valor.

AULA 5 - DETERMINAÇÃO DA LEI DA FUNÇÃO

Para que possamos descobrir a lei de uma função do 2º grau, são necessários <u>3 pontos distintos</u> da função. Com isso já é possível formar um sistema de equações com seus coeficientes e, resolvendo-o, obter a lei da função.

AULA 6 - DOMÍNIO E IMAGEM

Domínio

O domínio das funções do 2º grau é o conjunto R.

Imagem

O conjunto imagem das funções do 2º grau depende de a:

a > 0

$$Im(f)=\{y\in\mathbb{R}\:/\:y\geq y_v\}$$

a < 0

$$Im(f) = \{ y \in \mathbb{R} / y \le y_v \}$$

AULA 7 - ESTUDO DOS SINAIS

Os sinais das funções do 2º grau são determinados analisando-se o coeficiente a e o $\Delta.\,$

<u>a>0</u>

<u>a<0</u>

