Mathématiques I

Dr. Mucyo Karemera

Ce document a été préparé avec l'aide du Prof. Stéphane Guerrier

Assistants: G. Blanc, B. Poilane & H. Voegeli

Séries

Définition (Série).

Étant donné une suite $(u_k)_{k\in\mathbb{N}}$, on considère on appelle **série** de terme général u_k , l'expression formelle suivante: $\sum_{k=0}^{\infty} u_k$.

$$\sum_{k=0}^{\infty} u_k = \lim_{n \to \infty} \sum_{k=0}^{n} u_k = \lim_{n \to \infty} (u_0 + u_1 + \ldots + u_n) = u_0 + u_1 + \ldots$$

La suite $(s_n)_{n\in\mathbb{N}}$ définie par la formule $s_n = \sum_{k=0}^n u_k$ est appelée **la suite des sommes partielles** de la série.

On dit que la série $\sum_{k=0}^{\infty} u_k$ est convergente de limite $L \in \mathbb{R}$, si la suite (s_n) tend vers L, i.e.

$$\sum_{k=0}^{\infty} u_k = \lim_{n \to \infty} s_n = L.$$

On dit que la série $\sum_{k=0}^{\infty} u_k$ est divergente si la suite (s_n) diverge.

Notation

On note $\sum_{k=0}^{\infty} u_k < \infty$ pour dire qu'une série converge sans désigner sa limite (qui peut être connue ou inconnue).

Propriétés des séries convergentes

Remarque.

La convergence ou la divergence d'une série n'est pas affecté par une modification ou une suppression d'un nombre fini de termes. En particulier, si $\sum_{k=0}^{\infty} u_k < \infty$ alors $\sum_{k=1}^{\infty} u_k < \infty$, $\sum_{k=56}^{\infty} u_k < \infty$, ou encore $\sum_{k=120}^{\infty} u_k < \infty$. En math, cette phrase s'écrit

$$\sum_{k=0}^{\infty} u_k < \infty \implies \sum_{k=1}^{\infty} u_k < \infty, \sum_{k=56}^{\infty} u_k < \infty, \sum_{k=120}^{\infty} u_k < \infty$$

Il suit naturellement de la définition des séries et du théorème sur les propriétés des limites de suites que :

Théorème (opérations sur les séries convergentes).

Si
$$\sum_{k=0}^{\infty} u_k = L_1 < \infty$$
 et $\sum_{k=0}^{\infty} v_k = L_2 < \infty$ alors

1)
$$\sum_{k=0}^{\infty}(u_k+v_k)=L_1+L_2<\infty$$
 et $\sum_{k=0}^{\infty}(u_k-v_k)=L_1-L_2<\infty$,

2)
$$\sum_{k=0}^{\infty} c \cdot u_k = c \cdot L_1 < \infty, \forall c \in \mathbb{R}.$$

Critères de convergence (divergence)

Si une série $\sum_{k=0}^{\infty} u_k$ converge (i.e. $\sum_{k=0}^{\infty} u_k < \infty$) alors la suite (u_k) tend nécessairement vers 0 (i.e. $\lim_{k \to \infty} u_k = 0$). Cet énoncé est équivalent au suivant

Théorème (critère de divergence).

Si $\lim_{k\to\infty} u_k \neq 0$ alors $\sum_{k=0}^{\infty} u_k$ diverge.

Grâce à ce résultat on déduit facilement que

1) Si (u_k) est une suite constante non nulle alors la série $\sum_{k=0}^{\infty} u_k$ diverge et $\sum_{k=0}^{\infty} u_k = \pm \infty$. Ainsi,

$$\sum_{k=0}^{\infty} \frac{1}{2} = +\infty.$$

2) Si $u_k = (-1)^k$ alors $\sum_{k=0}^{\infty} u_k$ diverge et n'a pas de limite.

Critère de convergence (comparaison)

Théorème (critère de comparaison).

Soient deux suites (u_k) et (v_k) telles que $0 \leqslant u_k \leqslant v_k$, $\forall k \in \mathbb{N}$. Alors on a

$$\bullet \ \sum_{k=0}^{\infty} v_k < \infty \quad \Rightarrow \quad \sum_{k=0}^{\infty} u_k < \infty$$

•
$$\sum_{k=0}^{\infty} u_k \text{ diverge}$$
 \Rightarrow $\sum_{k=0}^{\infty} v_k \text{ diverge}$

En d'autres termes, la convergence de la série $\sum_{k=0}^{\infty} v_k$ entraı̂ne la convergence de la série $\sum_{k=0}^{\infty} u_k$. La divergence de la série $\sum_{k=0}^{\infty} u_k$ entraı̂ne la divergence de la série $\sum_{k=0}^{\infty} v_k$.

Ce résultat peut se comprendre comme une extension du théorème du sandwich pour les séries.

Série harmonique (diverge)

En utilisant ces deux résultats, on peut montrer que

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty.$$

Faux critère de convergence pour les séries

Ce résultat montre que la condition $\lim_{k\to\infty}u_k=0$ n'est pas suffisante pour garantir que $\sum_{k=0}^{\infty}u_k<\infty$.

Série harmonique (diverge)

On montre que

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty.$$

Preuve

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \cdots$$

$$= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \left(\frac{1}{9} + \cdots\right)$$

$$> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \left(\frac{1}{16} + \cdots\right)$$

$$= 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \frac{8}{16} + \frac{16}{32} + \cdots = 1 + \sum_{k=1}^{\infty} \frac{1}{2} = +\infty$$

Problème de Bâle: $\sum_{k=1}^{\infty} \frac{1}{k^2} = ?$

On peut montrer que cette série converge mais calculer sa limite est **beaucoup** plus compliqué. Euler a déterminé en 1741 que la limite est $\frac{\pi^2}{6}!!$

Preuve

On veut montrer que

$$\sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.$$

Tout d'abord, on remarque que $\forall k \geqslant 2$ on a $k^2 > k(k-1)$. Par conséquent, $\forall k \geqslant 2$

$$\frac{1}{k^2}<\frac{1}{k(k-1)}$$

Ainsi, en utilisant le critère de comparaison, on a

$$\sum_{k=2}^{\infty} \frac{1}{k(k-1)} < \infty \implies \sum_{k=2}^{\infty} \frac{1}{k^2} < \infty \implies \sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \sum_{k=2}^{\infty} \frac{1}{k^2} < \infty^a.$$

^aCette phrase mathématique peut se traduire en français par :

Si $\sum_{k=2}^{\infty} \frac{1}{k(k-1)}$ converge alors $\sum_{k=2}^{\infty} \frac{1}{k^2}$ converge et donc $\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \sum_{k=2}^{\infty} \frac{1}{k^2}$ converge.

Problème de Bâle: $\sum_{k=0}^{\infty} \frac{1}{k^2} = ?$

Il suffit donc de montrer que $\sum_{k=2}^{\infty} \frac{1}{k(k-1)} < \infty$.

On remarque que $\forall k \geqslant 2$ on a

$$\frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}.$$

On considère le terme générale de la suite des sommes partielles de la série, i.e.:

$$s_n = \sum_{k=2}^n \frac{1}{k(k-1)} = \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right)$$
$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$
$$= 1 - \frac{1}{n}.$$

On achève la preuve par le théorème s ur les propriétés des limites puisque

$$\sum_{k=2}^{\infty} \frac{1}{k(k-1)} = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right) = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{n} = 1 - 0 = 1.$$

$$\sum_{k=1}^{\infty} \frac{1}{k^3} = ?$$

Que dire de la convergence de $\sum_{k=1}^{\infty} \frac{1}{k^3}$

Il suffit d'utiliser le critère de comparaison

En effet, $\forall k \geqslant 1$, on a $k^3 \geqslant k^2$ et donc $\frac{1}{k^3} \leqslant \frac{1}{k^2}$. Ainsi, on a

$$\sum_{k=1}^{\infty} \frac{1}{k^3} \leqslant \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.$$

Le même argument peut être utilisé pour montrer que :

1) $\forall \alpha \geqslant 2$ on a

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} < \infty,$$

2) $\forall \alpha \leqslant 1$, sachant que $\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$, on a

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} = +\infty.$$

On est parvenu à montrer que

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} = \left\{ \begin{array}{ll} \text{diverge} & \text{ si } \alpha \leqslant 1 \\ \text{converge} & \text{ si } \alpha \geqslant 2. \end{array} \right.$$

Et pour $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ avec $\alpha \in (1,2)$? on "triche", merci théorème suivant

Théorème (conv/div des séries de Riemann).

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} = \left\{ \begin{array}{ll} \textit{converge} & \textit{si } \alpha > 1 \\ \textit{diverge} & \textit{si } \alpha \leqslant 1. \end{array} \right.$$

Série géométrique

Définition.

Une série géométrique est une série dont le terme général peut s'écrire sous la forme $u_k = r^k$, où $r \in \mathbb{R}$.

Théorème (conv/div des séries géométriques).

La série géométrique converge si |r| < 1, et diverge si $|r| \ge 1$. Plus précisément, lorsque |r| < 1, on

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}.$$

Remarque.

La formule pour les sommes partielles d'une série géométrique est souvent utile: $\forall n \in \mathbb{N}$, on a

$$s_n = \sum_{k=0}^n r^k = \frac{1 - r^{n+1}}{1 - r}.$$