To Do

Read Sections 4.3 - 4.5.

Do End-of-Chapter Problems 1-17 in preparation for Tutorial Test 2.

Important Ideas from Last Day

- (1) Interval Estimation Using the Relative Likelihood Function
- (2) Interval Estimation Using the Log Relative Likelihood Function
- (3) Definition of Coverage Probability
- (4) Interval Estimation Using Confidence Intervals
- (5) Interpretation of a Confidence Interval

Definition of a Confidence Interval

Definition

A 100p% confidence interval for a parameter is an interval estimate [L(y), U(y)] for which

$$P(\theta \in [L(Y), U(Y)]) = P[L(Y) \le \theta \le U(Y)] = p.$$

The value *p* is called the confidence coefficient for the confidence interval.

Interpretation of a Confidence Interval

Suppose

$$0.95 = P(\theta \in [L(Y), U(Y)]) = P[L(Y) \le \theta \le U(Y)].$$
 (1)

Suppose also that we draw repeated independent random samples from the same population and each time we construct the interval [L(y), U(y)] based on the observed data y.

Then (1) tells us that we should expect 95% of these constructed intervals to contain the true but unknown value of θ .

We also expect that 5% of these constructed intervals will not contain the true but unknown value of θ .

Interpretation of a Confidence Interval

Of course we usually only construct one such interval based on one set of data.

We hope that we are one of the lucky 95%!

For a particular sample we say that we are 95% confident that the true value of θ is contained in the interval we have constructed.

Today's Lecture

- (1) Definition of a Pivotal Quantity
- (2) How to Use a Pivotal Quantity to Construct a Confidence Interval
- (3) Approximate Pivotal Quantities
- (4) Approximate Confidence Intervals for Binomial

Example from Last Day: 95% Confidence Interval for the Mean μ of a Gaussian Population, Known Standard Deviation σ

Suppose $Y_1, Y_2, ..., Y_n$ is a random sample from a $G(\mu,1)$ distribution where $E(Y_i) = \mu$ is unknown but $sd(Y_i) = 1$ is known. Since

$$P\left(\mu \in \left[\overline{Y} - \frac{1.96}{\sqrt{n}}, \overline{Y} + \frac{1.96}{\sqrt{n}}\right]\right) = 0.95$$

therefore

$$\left[\overline{y} - \frac{1.96}{\sqrt{n}}, \overline{y} + \frac{1.96}{\sqrt{n}} \right] \text{ or } \overline{y} \pm \frac{1.96}{\sqrt{n}}$$

is a 95% confidence interval for μ .

Confidence Intervals and Pivotal Quantities

Note that the statement

$$P\left(\mu \in \left[\overline{Y} - \frac{1.96}{\sqrt{n}}, \overline{Y} + \frac{1.96}{\sqrt{n}}\right]\right) = 0.95$$

holds no matter what the true value of μ is.

We now consider a general method for constructing confidence intervals which have this very useful property.

Definition of a Pivotal Quantity

Definition

A pivotal quantity $Q = Q(Y;\theta)$ is a function of the data Y and the unknown parameter θ such that the distribution of the random variable Q is completely known.

Note: This definition implies that probability statements such as $P(Q \le a)$ and $P(Q \ge b)$ depend on a and b but not on θ or any other unknown information.

Example

Suppose $Y_1, Y_2, ..., Y_n$ is a random sample from a $G(\mu, \sigma)$ distribution where $E(Y_i) = \mu$ is unknown but $sd(Y_i) = \sigma$ is known.

A point estimator for μ is $\widetilde{\mu} = \overline{Y}$ and the sampling distribution of this estimator is

$$\widetilde{\mu} = \overline{Y} \sim G\left(\mu, \frac{\sigma}{\sqrt{n}}\right).$$

Example Cont'd

Since

$$Q = Q(Y; \mu) = \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \sim G(0,1)$$

has a completely known distribution, Q is a pivotal quantity.

Pivotal quantities can be used for constructing confidence intervals.

How to Use a Pivotal Quantity to Construct a Confidence Interval

- (1) Determine numbers a and b such that $P[a \le Q(Y; \theta) \le b] = p$. (Why are you able to do this?)
- (2) Re-express the inequality $a \le Q(Y; \theta) \le b$ in the form $L(Y) \le \theta \le U(Y)$, then

$$p = P[a \le Q(Y;\theta) \le b] = P[L(Y) \le \theta \le U(Y)]$$
 so the coverage probability equals p .

(3) For observed data y, the interval [L(y),U(y)] is a 100p% confidence interval for θ .

How to Construct a 95% Confidence Interval for the Mean μ of a Gaussian Population, Known σ

(1) Find the value a from Normal tables such that

$$0.95 = P\left(-a \le \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \le a\right)$$

(2) Solve the inequality for μ :

$$-a \le \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \le a \text{ iff } \overline{Y} - a \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{Y} + a \frac{\sigma}{\sqrt{n}}$$

(3) A 95% confidence interval for μ based on the observed data $y_1, y_2, ..., y_n$ is $\left[\overline{y} - a \frac{\sigma}{\sqrt{n}}, \overline{y} + a \frac{\sigma}{\sqrt{n}} \right]$

95% Confidence Interval for the Mean μ of a Gaussian Population, Known σ

There are an infinite number of values a and b are such that

$$0.95 = P \left(a \le \frac{\overline{Y} - \mu}{\sigma / \sqrt{n}} \le b \right)$$

The interval

$$\left[\overline{y} - b\frac{\sigma}{\sqrt{n}}, \overline{y} - a\frac{\sigma}{\sqrt{n}}\right]$$

is also a 95% confidence interval.

Since the Gaussian distribution is symmetric about its mean we use a = -1.96 and b = 1.96 which gives the narrowest confidence interval.

95% Confidence Interval for the Mean μ of a Gaussian Population, Known σ

Note: The confidence interval

$$\left[\overline{y} - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{y} - 1.96 \frac{\sigma}{\sqrt{n}} \right] \text{ or } \overline{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

is symmetric about the point estimate of μ , $\hat{\mu} = \overline{y}$.

100p% Confidence Interval for the Mean μ of a Gaussian Population, Known σ

How to construct a 100p% confidence interval for μ for Gaussian data when σ is known (short version):

Use the Normal table to find the value a such that $P(-a \le Z \le a) = p$ where $Z \sim G(0,1)$ or equivalently $P(Z \le a) = \frac{1+p}{2}$.

A 100p% confidence interval for μ is:

$$\overline{y} \pm a \frac{\sigma}{\sqrt{n}}$$

Useful Numbers

For a 100p% confidence interval for μ we find the value a in the Normal table such that $P(-a \le Z \le a) = p$ or $P(Z \le a) = (1+p)/2$ where $Z \sim G(0,1)$.

For a 90% confidence interval, p = 0.90, (1+p)/2 = 0.95 and a = 1.645.

For a 95% confidence interval, p = 0.95, (1+p)/2 = 0.975 and a = 1.960.

For a 99% confidence interval, p = 0.99, (1+p)/2 = 0.995 and a = 2.576.

"Two-sided, Equal-tailed" Confidence Intervals

A 100p% confidence interval for μ is of the form:

point estimate ± (table value) × sd(estimator)

Such an interval is often called a "two-sided, equal-tailed" confidence interval.

We will encounter other examples of twosided, equal-tailed confidence intervals in this course.

Approximate Pivotal Quantities

For most statistical models it is not possible to find "exact" pivotal quantities or confidence intervals for θ .

Fortunately, we can often find random variables $Q_n = Q_n(Y_1, Y_2, ..., Y_n; \theta)$ such that as $n \rightarrow \infty$, the distribution of Q_n ceases to depend on θ or other unknown information.

We call Q_n an asymptotic or approximate pivotal quantity.

Approximate Confidence Intervals for Binomial

For a Binomial experiment, $Y \sim Binomial(n, \theta)$ and the point estimator of θ is

$$\widetilde{\theta} = \frac{Y}{n}$$

For large n, the approximate sampling distribution

of
$$\tilde{\theta} = \frac{Y}{n}$$
 is
$$\frac{\tilde{\theta} - \theta}{\sqrt{\frac{\theta(1-\theta)}{n}}} \sim G(0,1) \text{ approximately}$$

by the Central Limit Theorem.

Approximate Confidence Intervals for Binomial

It can be also shown for large n that

$$Q_n = \frac{\widetilde{\theta} - \theta}{\sqrt{\frac{\widetilde{\theta}(1 - \widetilde{\theta})}{n}}} \sim G(0,1) \text{ approximately.}$$

 Q_n is an approximate pivotal quantity which can be used to construct approximate confidence intervals for θ .

Approximate Confidence Intervals for Binomial

Since

$$0.95 \approx P \left(-1.96 \le \frac{\tilde{\theta} - \theta}{\sqrt{\frac{\tilde{\theta}(1 - \tilde{\theta})}{n}}} \le 1.96 \right)$$
$$= P \left(\tilde{\theta} - 1.96 \sqrt{\frac{\tilde{\theta}(1 - \tilde{\theta})}{n}} \le \theta \le \tilde{\theta} + 1.96 \sqrt{\frac{\tilde{\theta}(1 - \tilde{\theta})}{n}} \right)$$

therefore an approximate 95% confidence interval for θ is given by

$$\hat{\theta} \pm 1.96 \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}.$$