IMDB MOVIE RECOMMENDATION SYSTEM

Data Collection (Web Scraping)

Tools Used: Selenium, Pandas

Approach:

- Scraped IMDb movie data based on different genres.
- Extracted movie details using tag names and class names.
- Converted extracted data into a Pandas DataFrame (pd.DataFrame()).
- Added a "genre" column to each movie for better categorization.
- Concatenated multiple dataframes and saved the final dataset as a .csv file.

Text Cleaning:

Tools Used: NLTK, SpaCy

Steps:

- Removed numbers, symbols, and special characters from movie descriptions.
- Applied stopword removal (e.g., "the", "is", "and").
- Used stemming/lemmatization to reduce words to their root forms.
- Converted all text to lowercase for consistency.

Text Representation (Feature Engineering)

Technique Used: TF-IDF Vectorizer (from Scikit-learn) Why TF-IDF?

- Converts text into numerical values.
- Assigns higher importance to unique words in movie descriptions.

Dimensionality Reduction:

• Used **Principal Component Analysis (PCA)** to reduce feature space and make data visualization possible.

Cosine Similarity for Movie Recommendation

Algorithm Used: Cosine Similarity Why Cosine Similarity?

· Measures similarity between movies based on their textual descriptions.

Model Deployment:

- Used Streamlit to build a user-friendly interface for movie recommendations.
- Allowed users to input movie names and retrieve similar movies based on cosine similarity.

Conclusion

 This project successfully scraped and processed IMDb movie data, cleaned textual information, applied machine learning techniques for similarity detection, and deployed a functional movie recommendation system. Future improvements may include incorporating deep learning models and expanding the dataset for better accuracy.