Exercise #4:

Case 1: Age (0-9)

Bel (Age IO-9]) = P (Age = IO-9] | Gender = Male, Susceptibility = High) = P(Gender = Male, Susceptibility = High | Age = IO-9]) × P(Age = IO-9]) P(Gender = Male, Susceptibility = High)

= P(Gender = Male, Susceptibility = High, Age = [0-97)
P(Gender = Male, Susceptibility = High)

Joint probability use chain role:

P(Gender = Male, Susceptibility = High, Age = [0-9]) =

P(Gender = Male) x P(Susceptibility = High | Gender = Male, Age = [0-9]) x

P(Age=[0-9]) = 0.5500 × 0.0000 × 0.0043 = 0.0000

Since numerator is 0 the probability is 0.0%

0.0000 or 0.0000% is the probability given age is 0-9, the susceptibility is high and gender is male.

Case 2: Age = (40-49)

Bel (Age[40-49]) = P (Age= [40-49] | Gender = Male, Susceptibility = High)

= P(Gender = Male, Susceptibility = High | Age = [40-49]) × P(Age = [40-49])

P(Gender = Male, Susceptibility = High)

= P(Gender = Male, Susceptibility = High, Age = [40-49])
P(Gender = Male, Susceptibility = High)

Joint probability use chain rule:

P(Gender = Male, Susceptibility = High, Age = [40-49]) =

P(Gender = Male) × P(Susceptibility = High | Gender = Male, Age=[40-49])

× P(Age = [40-49]) = 0.5500 × 0.5000 × 0.0900 = 0.02475

Joint probability use chain rule:

PCGender = Male, Age, Susceptibility = High) =

Land defined

[[P (Gender = Male) x P (Age=i) x P (Susceptibility = High | Age=i, Gender= Male) [3]

Age=i	1	2	3	I TT
0-9	0.5500	0.0043	0.000	0.0000
10-19	0.5500	0.0062	0.3548	0.00 12 09 868
20-29	0.5500	0.0935	0.1910	0.009822175
30-39	0.5500	0.1153	0.3010	0.019087915
40-49	0.5500	00000	0.5000	0.024750000
50-59	0.5500	0.1072	0.2719	0.016031224
60-69	0.5500	0.2487	0.1509	0.0206408565
70-79	0.5500	0.2735	0.6193	0.0931582025
80-89	0.5500	0.0582	0.1183	0.003786783
90-99	0.5500	0.0030	0.9900	0.001633500
				0

0.190120524 -> Sum of all these

PCGender = Male, Age, Susceptibility = High) = 0.190120524

Now we plug it in:

= 0.02475 = 0.1301805796 0.190120524

0.1302 or 13.02% is the probability given 40-49, susceptibility is high and gender is male.

Case 3: Age = (90-99)

Bel (Age[90-99]) = P (Age=[90-99]| Gender = Male, Susceptibility = High)

= P(Gender = Male, Susceptibility = High | Age=[90-99]) × P(Age=[90-99])

P(Gender = Male, Susceptibility = High)

= P(Gender = Male, Susceptibility = High, Age = [90-99])
P(Gender = Male, Susceptibility = High)

P(Gender = Male, Susceptibility = High, Age=[90-99]) = 0.001633500

PCGender = Male, Age, Susceptibility = High) = 0.190120524

Now we plug it in:

P(Gender=Male, Susceptibility = High, Age = [90-99])

P(Gender=Male, Susceptibility=High)

<u>0.001633500</u> <u>0.0085919183</u> 0.190120524

0.008591 o Susceptibility	r 0.8591 is high o	is the	probability is male.	given	PP-0P