Complex Analysis

Martin Sig Nørbjerg

 $April\ 20,\ 2022$

Contents

4 CONTENTS

Lecture 20: exam self study

Date: 20 April 2022

Exercise 0.1. Let $f: U \to \mathbb{C}$ be holomorphic on $U \subseteq \mathbb{C}$, with $z_0 \in U$. A powerseries for f with radius of convergence R is given by $f(z) = \sum_{k=0}^{\infty} a_n(z - z_0)^n$. Show:

- i) $g: \bar{U} \to \mathbb{C}, z \mapsto f(\bar{z})$ is holomorphic
- ii) Give a power series expansion for g in $\bar{z_0} \in \bar{U}$, and its radius of convergence

Proof. i) Since g is holomorphic it satisfies the cauchy reimann equations, so

$$\begin{split} \frac{\partial}{\partial x} u(x,y) &= \frac{\partial}{\partial y} v(x,y) \\ \frac{\partial}{\partial y} u(x,y) &= -\frac{\partial}{\partial x} v(x,y) \end{split}$$

Since $g: x+iy \mapsto \overline{f(x-iy)} = u(x,-y) - iv(x,-y) = \hat{u}(x,y) + \hat{v}(x,y)$. g also satisfies these equations.

ii) Suppose $\overline{z} \in U$ then

$$g(z) = \sum_{k=1}^{\infty} a_k (\overline{z} - z_0)^n = \sum_{k=1}^{\infty} \overline{a_k} (\overline{z} - z_0)^n = \sum_{k=1}^{\infty} \overline{a_k} (z - \overline{z_0})^n$$
 (1)

From this it also follows that the radius of convergence is the same

Exercise 0.2. Compute the curve intergral

$$\int_{\partial B(0,1/2)} \frac{\exp 1 - z}{z^3 (1 - z)} dz = \int_{\partial B(0,1/2)} f(z) dz \tag{2}$$

Proof. We have singular points on the outside of the ball at 0 with radi 1/2. Thus we know that f is holomorphic on B(0,1/2), since its the quotient of two holomorphic functions. This implies that f has a primitive and since $\partial B(0,1/2)$ is a closed circuit $\int_{\partial B(0,1/2)} f(z)dz = 0$.

Exercise 0.3. Let $f, gU \to \mathbb{C}$ be holomorphic functions on the domain $U \subseteq \mathbb{C}$, and let $z_0 \in U$, be a root of order n of f and m og g, let $h(z) = \frac{f(z)}{g(z)}$. Show that

6 CONTENTS

- i) If $n \ge m$. Then h has a removable singularity in z_0 and $\lim_{z \to z_0} h(z) = \frac{f^{(m)}(z_0)}{g^{(m)}(z_0)}$.
- ii) n > m. Then h has a pole of order m n in z_0 .

Proof. i) Assumme $n \ge m$, then we apply l'hopital Maybe dont use l'hopital, instead use the definition of the derivative of f and g m times to optain

$$\lim_{z \to z_0} h(z) = \lim_{z \to z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f^{(m)}(z)}{g^{(m)}(z)}$$

but z_0 is not a pole of $f^{(m)}$ and $g^{(m)}$, since these are holomorphic, they are also continus, and thus $\lim_{z\to z_0} \frac{f^{(m)}(z)}{g^{(m)}(z)} = \frac{f^{(m)}(z_0)}{g^{(m)}(z_0)} = c$. Now let $\varepsilon>0$, then by the limit there exists $\delta>0$ st. $||z-z_0|| \Longrightarrow ||h(z)-c|| < \varepsilon$, thus $||h(z)|| < ||c|| + \varepsilon$, and the function h is bounded on the ball $B(z_0, \delta)$, and the pole is removable. by theorem 7.6

ii) Now assume n < m, then $f(z) = (z - z_0)^m f_1(z)$ og $g(z) = (z - z_0)^n g_1(z)$, hvor $f_1(z_0), g_1(z_0) \neq 0$, $g_1, f_1 \in H(G)$. then $\frac{f(z)}{g(z)} = (z - z_0)^{m-n} \frac{f_1(z)}{g_1(z)}$, and from this we get $\lim_{z \to z_0} (z - z_0)^{n-m} \frac{f(z)}{g(z)} = \frac{f_1(z_0)}{g_1(z_0)} \neq 0$