Definition 1 (Q). For a literal/clause φ , $Q(\varphi)$ denotes the quantifier block consisting of every lifting variable in φ with appropriate quantifier type. The order is yet to be defined

For
$$l \in C$$
 for $C \in \Gamma$: $Q(l) = \exists \bar{y}$
For $l \in C$ for $C \in \Delta$: $Q(l) = \forall \bar{x}$

basic axioms which should be fulfilled for a reasonable procedure

start

•
$$\Gamma \models \operatorname{LI}_{\operatorname{cl}}(C)$$

$$\Gamma = \{P(f(x))\} \Rightarrow \operatorname{LI}_{\operatorname{cl}}(C) \stackrel{\text{must be}}{=} \exists x P(x)$$

$$\Gamma = \{\neg P(f(x))\} \Rightarrow \operatorname{LI}_{\operatorname{cl}}(C) \stackrel{\text{must be}}{=} \exists x \neg P(x)$$

• $\Delta \models$?

inferences LI is always basically just Γ-part always want: $\Gamma \models \text{LI}$, $\Delta \models \neg \text{LI}$

•
$$\Gamma: P(f(x)) \Rightarrow \exists x P(x)$$

 $\Delta: \neg P(y) \Rightarrow \forall y \neg P(x)$

•
$$\Gamma : \neg P(f(x)) \Rightarrow \exists x \neg P(x)$$

 $\Delta : P(y) \Rightarrow \forall y P(x)$

•
$$\Gamma : \neg P(x) \Rightarrow \forall x \neg P(x)$$

 $\Delta : P(g(y)) \Rightarrow \exists y P(y)$

•
$$\Gamma: P(x) \Rightarrow \forall x P(x)$$

 $\Delta: \neg P(g(y)) \Rightarrow \neg \exists y P(y)$

but must not tear apart $P(x) \lor \neg P(x)$ to $\forall x P(x) \lor \forall x \neg P(x)$

example for "var does not occur in clause any more-condition":

$$\frac{R(f(z)) - R(x) \vee P(x)}{-R(x) \mid P(x)}$$
 Note that $(\forall y_{f(x)} - R(y_{f(x)})) \vee P(x)$ is not valid!

attempt for a definition

Definition 2 (LI).

Base case.

For
$$l \in C$$
 for $C \in \Gamma \cup \Delta$: $Q(l)\ell[C] \in LI_{cl}(C)$

LI as usual

Resolution.

Definition 3 (χ : lifting with quantification on literal level).

$$\chi(F \circ G) \stackrel{\text{def}}{=} \chi(F) \circ \chi(G)$$
$$\chi(\neg G) \stackrel{\text{def}}{=} \neg \chi(F)$$
$$\chi(Q(\lambda)\lambda) \stackrel{\text{def}}{=} Q(\lambda\sigma)\lambda\sigma$$

where $Q(\lambda \sigma)$ is $Q(\lambda)$ with quantifiers and lifting variables for additional maximal colored terms introduced by σ into λ

$$\operatorname{LI}_{\operatorname{cl}} C \stackrel{\operatorname{def}}{=} \chi(\operatorname{LI}_{\operatorname{cl}}(C_1) \setminus \{l_{\operatorname{LIcl}}\}) \vee \chi(\operatorname{LI}_{\operatorname{cl}}(C_2) \setminus \{l'_{\operatorname{LIcl}}\})$$

- 1. If l is Γ-colored: LI(C) $\stackrel{\text{def}}{=} \chi(\text{LI}(C_1)) \vee \chi(\text{LI}(C_2))$
- 2. If l is Δ -colored: $LI(C) \stackrel{\text{def}}{=} \chi(LI(C_1)) \wedge \chi(LI(C_2))$
- 3. If l is grey: $LI(C) \stackrel{\text{def}}{=} (\ell[l_{LIcl}\tau] \wedge \ell[LI(C_2)\tau]) \vee (\neg \ell[l'_{LIcl}\tau] \wedge \ell[LI(C_1)\tau])$

Δ

Conjectured Lemma 4. $\Gamma \models LI(C) \lor LI_{cl}(C)$

Proof. Start works.

Step:

resolved literals: have same coloring

IH:

$$\Gamma \vDash \operatorname{LI}(C_1) \vee \operatorname{LI}_{\operatorname{cl}}(C_1^*) \vee l_{\operatorname{LIcl}} \Gamma \vDash \operatorname{LI}(C_2) \vee \operatorname{LI}_{\operatorname{cl}}(C_2^*) \vee l'_{\operatorname{LIcl}}$$