HW4 SVM xz2735

 $Xiaofan\ Zhang(xz2735)$ 3/23/2019

Problem 1

1.

$$d^{2}(x, x') = ||x - x'||_{2}^{2} = \langle x - x', x - x' \rangle = \sqrt{(x - x')^{T}(x - x')} = \langle x, x \rangle - 2 \langle x, x' \rangle + \langle x', x' \rangle$$

2.

```
Given K(x,x') = \langle \phi(x), \phi(x') \rangle, the distance is d_k^2(x,x') = ||\phi(x) - \phi(x')||_2^2 = \langle \phi(x) - \phi(x'), \phi(x) - \phi(x') \rangle = \sqrt{(\phi(x) - \phi(x'))^T(\phi(x) - \phi(x'))} = \langle \phi(x), \phi(x) \rangle - 2 \langle \phi(x), \phi(x') \rangle + \langle \phi(x'), \phi(x') \rangle = K(x,x) - 2K(x,x') + K(x',x')
```

3.

It calculates the kernel distance between point x and x'.

Problem 2

1.

```
#Load data
library(leaps)
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.2.1 --
## v ggplot2 3.0.0
                    v purrr
                              0.2.5
## v tibble 2.0.1 v dplyr 0.7.7
## v tidyr 0.8.1 v stringr 1.4.0
## v readr 1.3.1
                     v forcats 0.4.0
## Warning: package 'tibble' was built under R version 3.5.2
\mbox{\tt \#\#} Warning: package 'stringr' was built under R version 3.5.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                 masks stats::lag()
credit = read.csv("Credit.csv")
#Define Dummy variables.
credit$Gender = ifelse(credit$Gender == "Female",1,0) %>% as.factor
credit$Student = ifelse(credit$Student == "Yes",1,0) %>% as.factor
credit$African.American = ifelse(credit$Ethnicity == "African American",1,0) %>% as.factor
credit$Asian = ifelse(credit$Ethnicity == "Asian",1,0)%>% as.factor
credit$Married = ifelse(credit$Married == "Yes",1,0)%>% as.factor
credit = subset(credit, select = -c(X, Ethnicity))
head(credit)
```

```
##
      Income Limit Rating Cards Age Education Gender Student Married Balance
                               2 34
## 1 14.891 3606
                      283
                                                     0
                                                             0
                                                                     1
                                                                            333
                                            11
## 2 106.025 6645
                               3 82
                                                                            903
                      483
                                            15
                                                     1
                                                             1
                                                                     1
## 3 104.593 7075
                               4 71
                                                     0
                                                             0
                                                                     0
                                                                            580
                      514
                                            11
## 4 148.924 9504
                      681
                               3
                                  36
                                            11
                                                     1
                                                             0
                                                                     0
                                                                            964
## 5 55.882 4897
                      357
                               2 68
                                            16
                                                     0
                                                             0
                                                                     1
                                                                            331
## 6 80.180 8047
                      569
                               4 77
                                            10
                                                     0
                                                                     0
                                                                          1151
##
     African.American Asian
## 1
## 2
                    0
                           1
## 3
                    0
                           1
                    0
## 4
                           1
                    0
                           0
## 5
## 6
                    0
                           0
```

Best subset selection & Forward stepwise selection & Backward stepwise selection

```
fit.best = regsubsets(Balance~.,nbest = 1, data = credit, method="exhaustive")
fit.fwd = regsubsets(Balance~.,data = credit,method="forward")
fit.bwd = regsubsets(Balance~.,data = credit, method = "backward")
sum.best = summary(fit.best)
sum.fwd = summary(fit.fwd)
sum.bwd = summary(fit.bwd)
library(ggplot2)
library(reshape)
##
## Attaching package: 'reshape'
## The following object is masked from 'package:dplyr':
##
##
       rename
## The following objects are masked from 'package:tidyr':
##
##
       expand, smiths
rss = cbind(sum.best$rss,sum.fwd$rss,sum.bwd$rss) %>% melt
rss$X2 = recode(factor(rss$X2),'1'="best subset selection",'2'="forward stepwise selection",'3'="backwa
ggplot(data=rss, aes(x=X1,y=value,color=X2))+
 geom_line()+
 ggtitle("RSS")+
 xlab("Number of variables")+
 ylab("RSS")
```


2.

Best subset selection

```
bic.min.best = which.min(sum.best$bic)
cp.min.best = which.min(sum.best$cp)
print(bic.min.best )
## [1] 4
print(cp.min.best)
## [1] 6
sum.best
## Subset selection object
## Call: regsubsets.formula(Balance ~ ., nbest = 1, data = credit, method = "exhaustive")
## 11 Variables (and intercept)
##
                     Forced in Forced out
## Income
                         FALSE
                                    FALSE
## Limit
                         FALSE
                                    FALSE
                         FALSE
## Rating
                                    FALSE
                         FALSE
## Cards
                                    FALSE
## Age
                         FALSE
                                    FALSE
## Education
                         FALSE
                                    FALSE
## Gender1
                         FALSE
                                    FALSE
## Student1
                         FALSE
                                    FALSE
```

```
## Married1
                          FALSE
                                      FALSE
## African.American1
                          FALSE
                                     FALSE
## Asian1
                          FALSE
                                      FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
##
            Income Limit Rating Cards Age Education Gender1 Student1 Married1
## 1
     (1)""
                          "*"
                                  11 11
                                        11 11 11 11
                                                       11 11
                                                               11 11
                                                       11 11
                                                               11 11
                                                                         11 11
## 2
                          "*"
     (1)"*"
                                                                         11 11
                                  11 11
                                        . . . . . .
                                                       11 11
## 3
      (1)"*"
                          "*"
                                                               11 * 11
     (1)"*"
## 4
                    "*"
                                                               "*"
                                        . . . . .
                                                                         .. ..
                                                       11 11
                                                               "*"
## 5
     (1)"*"
                    "*"
                          "*"
                                  "*"
     (1)"*"
                    "*"
                          "*"
                                  "*"
                                                               "*"
## 6
                                        "*" " "
                                                                         11 11
## 7
      (1)"*"
                    "*"
                          "*"
                                  "*"
                                                       "*"
                                                               "*"
                                        "*" " "
     (1)"*"
                    "*"
                          "*"
                                  "*"
                                                       "*"
                                                               "*"
## 8
##
            African.American1 Asian1
## 1
      (1)""
                               .....
## 2
     (1)""
## 3 (1)""
     (1)""
## 4
     (1)""
## 5
## 6 (1) " "
                               11 11
## 7 (1)""
## 8 (1) "*"
```

So for BIC, the optimal best subset model has 4 variables such that income, limit, cards, student. So for cp, the optimal best subset model has 6 variables such that income, limit, rating, cards, age student.

Forward stepwise selection

```
bic.min.fwd = which.min(sum.fwd$bic)
cp.min.fwd = which.min(sum.fwd$cp)
bic.min.fwd
## [1] 5
cp.min.fwd
## [1] 6
sum.fwd
## Subset selection object
## Call: regsubsets.formula(Balance ~ ., data = credit, method = "forward")
## 11 Variables (and intercept)
                     Forced in Forced out
##
## Income
                         FALSE
                                     FALSE
## Limit
                         FALSE
                                     FALSE
                         FALSE
                                     FALSE
## Rating
## Cards
                         FALSE
                                     FALSE
## Age
                         FALSE
                                     FALSE
## Education
                         FALSE
                                     FALSE
## Gender1
                         FALSE
                                     FALSE
## Student1
                         FALSE
                                     FALSE
## Married1
                         FALSE
                                     FALSE
## African.American1
                         FALSE
                                     FALSE
## Asian1
                         FALSE
                                     FALSE
```

```
## 1 subsets of each size up to 8
## Selection Algorithm: forward
##
            Income Limit Rating Cards Age Education Gender1 Student1 Married1
     (1)""
                          "*"
                                  11 11
                                        11 11 11 11
## 1
                    11 11
                                  11 11
                                        . . . . . .
                                                       11 11
                                                                .. ..
                                                                         11 11
     (1)"*"
                          "*"
## 2
                                                       11 11
                                                                "*"
## 3
     (1)"*"
                          "*"
                                                       11 11
                                                                         11 11
     (1)"*"
                    "*"
                          "*"
                                  11 11
                                                                "*"
                    "*"
                          "*"
                                  "*"
                                                                "*"
## 5
      (1) "*"
                                                                         11 11
## 6
      (1)"*"
                    "*"
                          "*"
                                  "*"
                                        11 11 11 11
                                                       11 11
                                                                "*"
     (1)"*"
                                                                         11 11
## 7
                    "*"
                          "*"
                                  "*"
                                                                "*"
                                        "*" " "
                                                                         11 11
## 8
     (1)"*"
                    "*"
                          "*"
                                  "*"
                                                       "*"
                                                                "*"
##
            African.American1 Asian1
     (1)""
## 1
     (1)""
## 2
## 3 (1)""
                                11 11
     (1)""
## 4
                                .. ..
## 5
     (1)""
     (1)""
## 6
     (1)""
                                11 11
## 7
## 8 (1)"*"
```

So for BIC, the optimal forward stepwise model has 5 variables such that income, limit, rating, cards, student. So for cp, the optimal forward stepwise model has 6 variables such that income, limit, rating, cards, age student.

Backward stepwise selection

Selection Algorithm: backward

```
bic.min.bwd = which.min(sum.bwd$bic)
cp.min.bwd = which.min(sum.bwd$cp)
bic.min.bwd
## [1] 4
cp.min.bwd
## [1] 6
sum.bwd
## Subset selection object
## Call: regsubsets.formula(Balance ~ ., data = credit, method = "backward")
## 11 Variables (and intercept)
##
                     Forced in Forced out
## Income
                         FALSE
                                     FALSE
                         FALSE
                                     FALSE
## Limit
## Rating
                         FALSE
                                     FALSE
## Cards
                         FALSE
                                     FALSE
                         FALSE
                                     FALSE
## Age
## Education
                         FALSE
                                     FALSE
## Gender1
                         FALSE
                                     FALSE
## Student1
                         FALSE
                                     FALSE
## Married1
                         FALSE
                                     FALSE
## African.American1
                         FALSE
                                     FALSE
## Asian1
                         FALSE
                                     FALSE
## 1 subsets of each size up to 8
```

```
Income Limit Rating Cards Age Education Gender1 Student1 Married1
## 1
                   "*"
                          11 11
                                 11 11
                                       \Pi=\Pi=\Pi=\Pi
                                                      11 11
                                                              11 11
     (1)""
                                 11 11
                                                      11 11
                                                              11 11
## 2 (1) "*"
                          11 11
                                       11 11 11 11
                   "*"
     (1)"*"
                                                              "*"
## 3
                                                              11 * 11
## 4
     (1)"*"
     (1)"*"
## 5
                   "*"
                                 "*"
                                                              "*"
                                       "*" " "
                                                      11 11
## 6
     (1)"*"
                                 "*"
                                                              "*"
     (1)"*"
                   "*"
                          "*"
                                 "*"
                                                      "*"
                                                              "*"
## 7
                                 "*"
                                       "*" " "
## 8
     (1)"*"
                          "*"
                                                      "*"
                                                              11 * 11
##
            African.American1 Asian1
## 1
     (1)""
                               11 11
     (1)""
## 2
                               .. ..
     (1)""
## 3
## 4 (1)""
## 5 (1)""
     (1)""
## 6
                               ......
## 7 (1)""
## 8 (1) "*"
```

So for BIC, the optimal backward stepwise model has 4 variables such that income, limit, cards, student. So for cp, the optimal backward stepwise model has 6 variables such that income, limit, rating, cards, age student.

Problem 3

1.

Load data and split the dataset

```
#Load data
df1 = read.csv("train.5-1.txt")
colnames(df1) = 1:256
df2 = read.csv("train.6.txt")
colnames(df2) = 1:256
df = rbind(df1,df2)
y = as.factor(c(rep(-1, dim(df1)[1]), rep(1, dim(df2)[1])))
#Spilt data into train and test set
set.seed(123)
index = 1:nrow(df)
index = sample(index, size = floor(0.2*nrow(df)), replace = FALSE)
x.train = df[-index,]
y.train = y[-index]
x.test = df[index,]
y.test = y[index]
train = cbind(x.train,y.train)
```

```
(a)
```

```
#linear SVM with soft margin
library(e1071)
```

Warning: package 'e1071' was built under R version 3.5.2

```
library(rpart)
cost = seq(0.01,1,0.01)
j=1
mis.rate=NULL
#Cross valiate andtuning parameter.
for(i in cost){
    svm.fit <- svm(y.train ~., train, type = "C-classification", kernel = "linear", cost= i,cross = 10
    mis.rate[j] = (100- svm.fit$tot.accuracy)/100
    j = j+1
}
optimal.cost = cost[order(min(mis.rate))]
svm.linear = svm(y.train ~., train, type = "C-classification", kernel = "linear", cost= optimal.cost ,
print(optimal.cost)
## [1] 0.01</pre>
```

plot cost and misclassification rate

plot(cost,mis.rate,type="l",main="misclassfication vs cost",ylab = "misclassification rate")

misclassfication vs cost


```
#Compute test error of linear sum
y_pred1 = predict(svm.linear,x.test)
test.error1 = mean(y.test!=y_pred1)
test.error1
```

[1] 0.02469136

The best cost is 0.01.

(b)

train rbf svm and tuning parameters such as cost and gamma(binwidth).

The optimal cost is 2, optimal gamma is 0.01.

plot heatmap about cost, gamma and misclassification rate

plot(tune.out.rbf)

Performance of 'svm'


```
#Compute test error of rbf sum
y_pred2 = predict(tune.out.rbf$best.model,x.test)
test.error2 = mean(y_pred2 != y.test)
test.error2
```

[1] 0.008230453

summary of both models

```
test.error = data.frame(linear.svm = test.error1, rbf.svm = test.error2)
test.error
```

```
## linear.svm rbf.svm
## 1 0.02469136 0.008230453
```

According to the misclassification rate, test error of linear sym is 0.02469136, whereas test error of rbf sym is 0.008230453 rbf sym is better.