Computer Architecture

Hw4: Single Cycle CPU

Due: 2020/1/3

1. Goal

Utilizing the ALU in hw3 to implement a 32-bit single cycle CPU supporting RV64I. The CPU reads 32-bit instructions and operates on 64-bit registers and data memory.

2. Requirements

- a. Please use Modelsim or Xinlinx as your HDL simulator.
- b. Extend your ALU in hw3 to **64-bit** to support 64-bit registers in RV64I.
- c. Cout and Overflow ports of ALU wouldn't be used in this assignment.
- d. ProgramerCounter, InstructionMemory, DataMemory, RegisterFile, Adder and testbench are supplied.
- e. Instruction set: the following instructions need to be supported by your CPU

R-type: add, sub, and, or, slt (50%)
I-type: addi, slti, ld (30%)
S-type: sd (10%)
B-type: beq (10%)

J-type: jal (20%) (bonus)

- f. All x1 x31 registers are assumed to be general-purpose registers. (The register x0 is hardwired to the constant 0)
- g. Your CPU should read **machine code** rather than assembly code.
- h. We provide two testcases for testing. If you want to change the testcase, please modify the 38-th line of InstructionMemory.v

```
$readmemb("test/testl.txt", Instr_Mem); //Read instruction from "testl.txt"
```

- beq rs1, rs2, offset
 if rs1 == rs2, then PC = PC + (signed extend(offset) << 1)
- jal rd, offsetPC = PC + (signed_extend(offset) << 1), rd = PC + 4

31	27	26	25	24	2	0	19	15	14	12	11	7	6	0	
	funct7				rs2		rs	1	func	ct3	r	$^{\mathrm{d}}$	opco	ode	R-type
	ir	nm[11:0)]			rs	1	func	ct3	r	$^{\mathrm{d}}$	opco	ode	I-type
	$\operatorname{imm}[11:$				rs2		rsi	1	func	ct3		[4:0]	opco	ode	S-type
in	imm[12 10:5] rs2			rs1 funct3		ct3	imm[4	4:1[11]	opco	ode	B-type				
	imm[31:12]								r	$^{\mathrm{d}}$	opco	ode	U-type		
imm[20 10:1 11 19:12]								r	d	opco	ode	J-type			

RV64I Base Instruction Set (in addition to RV32I)

		,			*	_
imm[11:	0]	rs1	110	rd	0000011	LWU
imm[11:	0]	rs1	011	rd	0000011	LD
imm[11:5]	rs2	rs1	011	imm[4:0]	0100011	SD

RV32I Base Instruction Set

		base Instru	iction Se	et		_
	imm[31:12]	rd	0110111	LUI		
	imm[31:12]	rd	0010111	AUIPC		
	n[20 10:1 11 19	9:12]		rd	1101111	JAL
imm[11:	0]	rs1	000	$^{\mathrm{rd}}$	1100111	JALR
imm[12 10:5]	imm[12 10:5] rs2			imm[4:1 11]	1100011	$_{ m BEQ}$
imm[12 10:5]	imm[12 10:5] rs2		001	imm[4:1 11]	1100011	BNE
	imm[12 10:5] rs2			imm[4:1 11]	1100011	BLT
imm[12 10:5]	rs2	rs1	101 imm[4:1 11]		1100011	BGE
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU
imm[11:		rs1	000	rd	0000011	LB
imm[11:		rs1	001	rd	0000011	LH
imm[11:		rs1	010	rd	0000011	LW
imm[11:		rs1	100	rd	0000011	LBU
imm[11:		rs1	101	$^{\mathrm{rd}}$	0000011	LHU
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW
imm[11:	0]	rs1	000	$^{\mathrm{rd}}$	0010011	ADDI
	imm[11:0]			$^{\mathrm{rd}}$	0010011	SLTI
	imm[11:0]			$^{\mathrm{rd}}$	0010011	SLTIU
	imm[11:0]			rd	0010011	XORI
imm[11:	rs1	110	$^{\mathrm{rd}}$	0010011	ORI	
imm[11:	0]	rs1	111	$^{\mathrm{rd}}$	0010011	ANDI
0000000	shamt	rs1	001	rd	0010011	SLLI
0000000	shamt	rs1	101	rd	0010011	SRLI
0100000	shamt	rs1	101	$^{\mathrm{rd}}$	0010011	SRAI
0000000	rs2	rs1	000	$^{\mathrm{rd}}$	0110011	ADD
0100000	rs2	rs1	000 rd		0110011	SUB
0000000	rs2	rs1	001	$^{\mathrm{rd}}$	0110011	SLL
0000000 rs2		rs1	010 rd		0110011	SLT
0000000 rs2		rs1	011 rd		0110011	SLTU
0000000 rs2		rs1	100 rd		0110011	XOR
0000000 rs2		rs1	101	$^{\mathrm{rd}}$	0110011	SRL
0100000	rs2	rs1	101	rd	0110011	SRA
0000000 rs2		rs1	110	rd	0110011	OR
0000000 rs2		rs1	111	rd	0110011	AND
fm pred succ		rs1	000	$^{\mathrm{rd}}$	0001111	FENCE
000000000	00000	000	00000	1110011	ECALL	
000000000	001	00000	000	00000	1110011	EBREAK

3. Architecture Diagram

The components for J-type instructions are not included in this diagram. You need to design by yourself.

4. Grade

- a. Total: 100 points + 20 bonus (plagiarism will get 0 point)
- b. No late submission

5. Hand in

- a. These files don't need to submit
 - Data Memory.v
 - Instr Memory.v
 - Reg File.v
 - ProgramCounter.v
 - testbench.v
 - Adder.v
 - test directory, testcast1.txt, testcase2.txt
- b. Please zip the archive, name it as "ID.zip" and upload the assignment to ceiba

6. Q&A

For any questions regarding hw4, please contact 范航熏 (rr1155001100@gmail.com)

7. Reference

RISC-V spec