## NOTES ON ERGODIC THEORY

## ZHAOSHEN ZHAI

ABSTRACT. Notes on the Summer 2025 Reading Group on Ergodic Theory, following [Tse22], organized by Frédéric Kai, Ludovic Rivet, and Zhaoshen Zhai (website).

## CONTENTS

- Lecture 1 (Samy Lahlou): Crash course on Measure Theory, Part I
  Lecture 2 (Samy Lahlou): Crash course on Measure Theory, Part II
  Lecture 3 (Peng Bo): Introduction to Ergodic Theory
  - 1. Lecture 1 (Samy Lahlou): Crash course on Measure Theory, Part I

Given a set X, our goal is to define a map  $\mu: \mathcal{P}(X) \to [0, \infty]$  that assigns to each subset  $A \subseteq X$  a measure  $\mu(A) \in [0, \infty]$  that 'behaves like the volume of A'. This turns out to be impossible in full generality (and we shall see using ergodic-theoretic methods that this impossibility is for good reason), so we instead restrict to special subsets of X with a nice algebraic (think: 'constructible') structure.

Further reading. [Tse23, Lectures 1 to 5] and [Fol99, Chapter 1].

**Definition 1.1.** Let X be a set. A  $\sigma$ -algebra on X is a collection  $\mathcal{B} \subseteq \mathcal{P}(X)$  of subsets of X containing  $\varnothing$  and is closed under complements and countable unions. More precisely:

- 1. (Non-trivial).  $\emptyset \in \mathcal{B}$ .
- 2. (Closure under complements). For any  $A \in \mathcal{B}$ , we have  $X \setminus A \in \mathcal{B}$ .
- 3. (Closure under countable unions). For any countable family  $\{A_n \in \mathcal{B} : n \in \mathbb{N}\}$ , we have  $\bigcup_n A_n \in \mathcal{B}$ .

**Definition 1.2.** If  $\mathcal{B}$  is a  $\sigma$ -algebra on a set X, the pair  $(X,\mathcal{B})$  is said to be a measurable space.

A useful way to construct a  $\sigma$ -algebra is to start with an arbitrary family  $\mathcal{C} \subseteq \mathcal{P}(X)$  and close<sup>1</sup> it under the above three conditions. Abstractly:

**Definition 1.3.** The  $\sigma$ -algebra generated by  $\mathcal{C} \subseteq \mathcal{P}(X)$  is  $\langle \mathcal{C} \rangle_{\sigma} := \bigcap \{\mathcal{B} : \mathcal{B} \supseteq \mathcal{C} \text{ is a } \sigma\text{-algebra on } X\}$ .

Note that  $\langle \mathcal{C} \rangle_{\sigma}$  is indeed a  $\sigma$ -algebra on X since the intersection of  $\sigma$ -algebras is again a  $\sigma$ -algebra.

**Definition 1.4.** Let X be a topological space. The *Borel*  $\sigma$ -algebra on X is  $\mathcal{B}(X) := \langle \mathcal{T} \rangle_{\sigma}$ , where  $\mathcal{T}$  is the topology on X. The elements of  $\mathcal{B}(X)$  are called the *Borel sets* of X.

Date: May 10, 2025.

<sup>&</sup>lt;sup>1</sup>This 'closure' operation can be made precise as follows. Starting with  $\mathcal{C}_0 := \mathcal{C}$ , throw in all the subsets of X that is necessary to satisfy Definition 1.1 relativized to  $\mathcal{C}_0$  to obtain  $\mathcal{C}_1$  (that is, let  $\mathcal{C}_1$  contain  $\varnothing$  and such that if  $A \in \mathcal{C}_0$ , then  $X \setminus A \in \mathcal{C}_1$ , and similarly for condition 3). Then, let  $\mathcal{C}_2$  be defined by throwing in all the countable unions and complements of sets in  $\mathcal{C}_1$ . Doing so infinitely-many times and taking the union  $\bigcup_{\alpha} \mathcal{C}_{\alpha}$  will give us  $\langle \mathcal{C} \rangle_{\sigma}$ , but beware that this process must proceed into the transfinite up to  $\alpha < \omega_1$ , where  $\omega_1$  is the first uncountable ordinal; ask your local set theorist why.

Intuitively, for any topological space X, one would like to 'measure' the Borel sets. This is justified since if one wants a measure compatible with the topology, then one must be able to measure the open sets, and hence also closed sets, countable unions of closed sets (called  $F_{\sigma}$  sets), countable intersections of open sets (called  $G_{\delta}$  sets), countable intersections of  $F_{\sigma}$  sets, countable unions of  $G_{\delta}$  sets, and so on<sup>2</sup>.

**Definition 1.5.** A measure on a measurable space  $(X, \mathcal{B})$  is a map  $\mu : \mathcal{B} \to [0, \infty]$  such that  $\mu(\emptyset) = 0$  and  $\mu(\bigsqcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$  for any pairwise disjoint family  $\{A_n \in \mathcal{B} : n \in \mathbb{N}\}.$ 

The triple  $(X, \mathcal{B}, \mu)$  is then called a *measure space*. A *Borel measure* is a measure defined on some Borel  $\sigma$ -algebra.

**Example 1.6** (Lebesgue). Equip  $\mathbb{R}$  with its usual topology. There is<sup>3</sup> a unique measure  $\lambda : \mathcal{B}(\mathbb{R}) \to [0, \infty]$  on  $\mathbb{R}$ , called the *Lebesgue measure*, such that  $\lambda([a, b]) = b - a$  for each  $a \leq b$ .

**Example 1.7** (Bernoulli). Equip  $2 = \{0,1\}$  with the discrete topology and consider the product topology on  $2^{\mathbb{N}}$ . For each  $p \in [0,1]$ , is a unique measure  $\mu_p : \mathcal{B}(2^{\mathbb{N}}) \to [0,\infty]$  on  $2^{\mathbb{N}}$ , called the *Bernoulli* (p) measure, such that for each word  $w \in 2^{<\mathbb{N}}$ , we have  $\mu_p([w]) = p^{n_1}(1-p)^{n_0}$  where  $n_i$  is the number of  $i \in \{0,1\}$  in w and [w] is the set of all sequences in  $2^{\mathbb{N}}$  containing w as a prefix.

If p = 0 (similarly if p = 1), then  $\mu_p(\xi) \in \{0, 1\}$ , and we have  $\mu_p(\xi) = 1$  iff  $(p, p, p, \ldots) \in \xi$ . Thus, all of the measure is concentrated at  $(p, p, p, \ldots)$ . Measures in which this occurs are called *Dirac measures*.

**Example 1.8** (Dirac). Let X be a set and fix  $x \in X$ . The *Dirac measure concentrated* at x is the measure  $\delta_x : \mathcal{P}(X) \to \{0,1\}$  defined by  $\delta_x(A) := 1$  iff  $x \in A$ , and  $\delta_x(A) := 0$  iff  $x \notin A$ .

**Definition 1.9.** A measure  $\mu$  on  $(X,\mathcal{B})$  is said to be *finite* if  $\mu(X) < \infty$ , a probability measure if  $\mu(X) = 1$ , and  $\sigma$ -finite if there is a partition  $X = \bigsqcup_{n \in \mathbb{N}} X_n$  such that  $X_n \in \mathcal{B}$  and  $\mu(X_n) < \infty$  for all  $n \in \mathbb{N}$ .

Unless otherwise stated, all measures are assumed to be  $\sigma$ -finite. In fact, we will usually only deal with probability measures, since we can also normalize a finite measure to a probability measure by  $\mu \mapsto \mu/\mu(X)$ .

Lastly, even though  $\mu$  is only defined on the  $\sigma$ -algebra  $\mathcal{B}$ , we can slightly extend  $\mu$  to a larger  $\sigma$ -algebra.

**Definition 1.10.** Let  $(X, \mathcal{B}, \mu)$  be a measure space. A subset  $Z \subseteq X$  is said to be  $\mu$ -null if there exists some  $Z' \in \mathcal{B}$  such that  $Z \subseteq Z'$  and  $\mu(Z') = 0$ . We write  $\text{Null}_{\mu}$  for the set of all  $\mu$ -null subsets of X. A subset  $A \subseteq X$  is said to be  $\mu$ -conull if  $X \setminus A$  is  $\mu$ -null.

**Definition 1.11.** Let  $(X, \mathcal{B}, \mu)$  be a measure space. A subset  $A \subseteq X$  is  $\mu$ -measurable<sup>4</sup> if there exists some  $B \in \mathcal{B}$  and some  $\mu$ -null set Z such that  $A = B \cup Z$ . We write Meas<sub> $\mu$ </sub> for the set of all  $\mu$ -measurable sets.

It is an exercise that  $\operatorname{Meas}_{\mu} = \langle \mathcal{B} \cup \operatorname{Null}_{\mu} \rangle_{\sigma}$ . Moreover,  $\mu$  admits a unique extension to a map  $\overline{\mu} : \operatorname{Meas}_{\mu} \to [0, \infty]$ , called the *completion* of  $\mu$ , and this measure satisfies  $\operatorname{Meas}_{\overline{\mu}} = \operatorname{Meas}_{\mu}$ . Hint:  $\overline{\mu}(B \cup Z) := \mu(B)$ .

**Definition 1.12.** A measure  $\mu$  is *complete* if  $\overline{\mu} = \mu$ .

For convenience, we will always assume that measures are complete. Neither measures  $\lambda$  nor  $\mu_p$  in Examples 1.6 and 1.7 are complete, so we tacitly extend them.

We end with some easy exercises on measures; please read/prove them, as they will be used freely in the future; they are roughly ranked by difficulty. Throughout, let  $(X, \mathcal{B}, \mu)$  be a measure space and let  $A_n \in \mathcal{B}$ .

**Exercise 1.13** (Monotonicity). If  $A_1 \subseteq A_2$ , then  $\mu(A_1) \leq \mu(A_2)$ .

Deduce that if  $\mu$  is finite, then  $\mu$  is a bounded function. (Are  $\sigma$ -finite measures bounded?)

**Exercise 1.14** (Inclusion-exclusion). For any  $A_1, A_2 \in \mathcal{B}$ , we have  $\mu(A_1 \cup A_2) + \mu(A_1 \cap A_2) = \mu(A_1) + \mu(A_2)$ .

<sup>&</sup>lt;sup>2</sup>This goes up the *Borel hierarchy*, studied in *Descriptive Set Theory*; see [Kec95].

<sup>&</sup>lt;sup>3</sup>We will not prove this fact, but it is an application of Carathéodory's Extension Theorem; see [Tse23, Lecture 4].

<sup>&</sup>lt;sup>4</sup>Very confusing terminology. One might think that elements of  $\mathcal{B}$  are the 'measurable' ones, but this removes  $\mu$  from the picture. In general, there are much more  $\mu$ -measurable sets that there are sets in  $\mathcal{B}$ . Indeed, there are  $2^{\aleph_0}$ -many Borel sets on  $\mathbb{R}$ , but there are  $2^{2^{\aleph_0}}$ -many  $\lambda$ -measurable sets!

**Exercise 1.15** (Continuity  $\nearrow$ ). If  $(A_n)_{n\in\mathbb{N}}$  is increasing, then  $\mu(\bigcup_{n\in\mathbb{N}}A_n)=\lim_n\mu(A_n)$ .

**Exercise 1.16** (Continuity  $\searrow$ ). If  $(A_n)_{n\in\mathbb{N}}$  is decreasing and  $\mu(A_1)<\infty$ , then  $\mu(\bigcap_{n\in\mathbb{N}}A_n)=\lim_n\mu(A_n)$ .

**Exercise 1.17.** Show that  $\lambda(\mathbb{Q}) = 0$ . Hint: What is the Lebesgue measure of singletons?

Let P be a property of some points in X. We say that P holds  $\mu$ -almost everywhere (or  $\mu$ -almost surely) if  $\{x \in X : x \text{ satisfies } P\}$  is  $\mu$ -conull.

**Exercise 1.18** (Borel-Cantelli Lemmas). Let  $(A_n)_{n\in\mathbb{N}}$  be a sequence of  $\mu$ -measurable sets.

- 1. If  $\sum_{n\in\mathbb{N}}\mu(A_n)<\infty$ , then  $\mu$ -almost every  $x\in X$  lives in at-most finitely-many  $A_n$ .
- 2. (Measure Compactness). If  $\mu(X) < \infty$  and there exists  $\varepsilon > 0$  such that  $\mu(A_n) \ge \varepsilon$  for all  $n \in \mathbb{N}$ , then at least an  $\varepsilon$ -measure set of  $x \in X$  lives in infinitely-many  $A_n$ 's.

For measurable spaces  $(X_1, \mathcal{B}_1)$  and  $(X_2, \mathcal{B}_2)$ , define  $\mathcal{B}_1 \otimes \mathcal{B}_2 := \langle B_1 \times B_2 : B_i \in \mathcal{B}_i \rangle_{\sigma}$ .

**Exercise 1.19.** Show that if  $X_i$  are second-countable topological spaces, then  $\mathcal{B}(X_1 \times X_2) = \mathcal{B}(X_1) \otimes \mathcal{B}(X_2)$ .

**Exercise 1.20.** Let X be a topological space. A Cantor set is a subset  $C \subseteq X$  homeomorphic to  $2^{\mathbb{N}}$ .

- 1. Show that the 'middle-thirds Cantor set'  $C \subseteq [0,1]$  is a Cantor set as in the above definition. Moreover, show that  $\lambda(C) = 0$ . Hint: Recall the construction  $C = \bigcap_{n \in \mathbb{N}} C_n$  and use continuity.
- 2. Define a Cantor set  $C \subseteq [0,1]$  with positive Lebesgue measure. HINT: fatten the standard construction.

A measurable set  $A \subseteq X$  is said to be an *atom* if there is no subset  $B \subseteq A$  with  $0 < \mu(B) < \mu(A)$ . For example, singletons  $\{x\}$  are atoms under the Dirac measure  $\delta_x$ . More generally:

**Exercise 1.21** (Atomic Decomposition). If  $(X, \mathcal{B}, \mu)$  is a  $\sigma$ -finite measure space,  $\mathcal{B}$  is countably generated (i.e.,  $\mathcal{B} = \langle \mathcal{B}_0 \rangle$  for some countable  $\mathcal{B}_0 \subseteq \mathcal{P}(X)$ ), and separates points (i.e., if  $x \neq y$ , then there exists  $B \in \mathcal{B}$  such that  $x \in B \not\ni y$ .), then every atom  $A \in \mathcal{B}$  is a singleton. Moreover, if  $\{x_\alpha\}$  are all the atoms (how many can there be?), then  $\mu = \mu_0 + \sum_{\alpha} a_{\alpha} \delta_{x_{\alpha}}$  for some atomless measure  $\mu_0$  and some  $a_{\alpha} \geq 0$ .

2. Lecture 2 (Samy Lahlou): Crash course on Measure Theory, Part II

Let  $(X, \mathcal{B}, \mu)$  be a measure space. Our goal is to define the *Lebesgue integral*  $\int f d\mu$  for a function  $f: X \to \mathbb{R}$ . Again, this is not possible in full generality, so we restrict ourselves to the so-called *measurable functions*.

Further reading. [Tse23, Lectures 9 to 13, 17 to 21] and [Fol99, Chapters 2 and 3].

**Definition 2.1.** A simple function is an  $\mathbb{R}$ -linear combination of characteristic functions on  $\mu$ -measurable sets, i.e., if  $(E_i)_{i \leq n}$  is a collection of pairwise-disjoint  $\mu$ -measurable sets and  $(a_i)_{i \leq n}$  are distinct reals, then  $\varphi := \sum_{i \leq n} a_i \chi_{E_i}$  is a said to be a simple function. Define its (Lebesgue) integral as  $\int \varphi \, d\mu := \sum_{i \leq n} a_i \mu(E_i)$ .

For a (bounded) positive function  $f: X \to \mathbb{R}_{\geq 0}$ , we might define  $\int f \, d\mu$  by approximating f by simple functions from below, say by an increasing sequence  $(\varphi_n)$  of simple functions such that  $f = \lim_n \varphi_n$  uniformly. However, not all functions f admit such an approximation.

To see this, let us attempt to construct such a sequence  $(\varphi_n)$ . For each n, we will approximate the cutoff of f at  $2^n$ , i.e., the function  $\min(f,2^n)$ . We do so by partitioning the codomain  $[0,2^n]$  into intervals of length  $2^{-n}$ , for a total of  $k_n := 2^n/2^{-n} = 2^{2n}$  intervals. Set  $E_k := f^{-1}([2^{-n}k,\infty))$  for each  $k \in \{1,\ldots,k_n\}$ , and let  $\varphi_n := \sum_{k \le k_n} 2^{-n} \chi_{E_k}$ . One easily checks that  $f = \lim_n \varphi_n$  uniformly.

However,  $E_k$  is not guaranteed to be  $\mu$ -measurable! To fix this, we simply define the issue away.

**Definition 2.2.** A function  $f: X \to Y$  between measurable spaces  $(X, \mathcal{B})$  and  $(Y, \mathcal{C})$  be measurable spaces is said to be  $(\mathcal{B}, \mathcal{C})$ -measurable if  $f^{-1}(C) \in \mathcal{B}$  for all  $C \in \mathcal{C}$ .

A function  $f: X \to Y$  between topological spaces is said to be *Borel* if it is  $(\mathcal{B}(X), \mathcal{B}(Y))$ -measurable. A *Borel isomorphism* is a bijection  $f: X \to Y$  such that both f and  $f^{-1}$  are Borel.

Exercise 2.3. Continuous maps are Borel. HINT: Define a  $\sigma$ -algebra containing open sets in the codomain.

So far we only dealt with measurable spaces. Let us now bring a measure into the picture.

**Definition 2.4.** Let  $(X, \mu)^5$  be a measure space and Y be a topological space. A function  $f: X \to Y$  is said to be  $\mu$ -measurable if it is  $(\text{Meas}_{\mu}, \mathcal{B}(Y))$ -measurable.

**Remark 2.5.** Compositions of  $\mu$ -measurable functions need not be  $\mu$ -measurable.

The following exercise is one of the main reasons why  $\mu$ -measurable functions are introduced, and ultimately also why the Lebesgue integral is superior compared to the Riemann integral.

**Exercise 2.6.** In separable metric spaces, pointwise limits of  $\mu$ -measurable functions are  $\mu$ -measurable, i.e., if  $(f_n)$  is a sequence of  $\mu$ -measurable maps  $f_n: X \to Y$  from a measure space  $(X, \mu)$  to a separable space Y, and  $f := \lim_n f_n$  (pointwise), then  $f: X \to Y$  is  $\mu$ -measurable.

HINT: Let  $\mathcal{C} := \{B \in \mathcal{B}(Y) : f^{-1}(B) \in \operatorname{Meas}_{\mu}\}$ . Show that  $\mathcal{C}$  is a  $\sigma$ -algebra containing all open set in Y, so  $\mathcal{C} = \mathcal{B}(Y)$ , as desired. For each  $U \subseteq Y$  open, use separability to write  $U = \bigcup_{n \in \mathbb{N}} B_n$ , where each  $B_n$  is a ball whose closure is contained in U, and show that  $f^{-1}(U) \in \operatorname{Meas}_{\mu}$ .

**Exercise 2.7.** If  $f_1, f_2 : (X, \mu) \to \mathbb{R}$  are  $\mu$ -measurable and  $g : \mathbb{R}^2 \to \mathbb{R}$  is Borel, then  $g(f_1, f_2) : X \to \mathbb{R}$  is also  $\mu$ -measurable. In particular,  $f_1 + f_2$  and  $f_1 \cdot f_2$  are  $\mu$ -measurable.

**Exercise 2.8.** If  $(f_n)$  is a sequence of  $\mu$ -measurable functions  $f_n: X \to \overline{\mathbb{R}}$ , then  $\sup_n f_n$ ,  $\inf_n f_n$ ,  $\lim \sup_n f_n$ , and  $\lim \inf_n f_n$  are also  $\mu$ -measurable.

**Notation 2.9.** We write  $L(X,\mu)$  for the set of all  $\mu$ -measurable functions  $f:(X,\mu)\to\overline{\mathbb{R}}$ , and  $L^+(X,\mu)$  for those which are non-negative.

We are finally ready to define the Lebesgue integral.

**Definition 2.10.** Let  $(X,\mu)$  be a measure space. The (Lebesgue) integral of  $f \in L^+(X,\mu)$  is

$$\int f \,\mathrm{d}\mu \coloneqq \sup \left\{ \int \varphi \,\mathrm{d}\mu : 0 \le \varphi \le f \text{ simple function} \right\}.$$

In general, if  $f \in L(X, \mu)$ , we decompose  $f = f^+ - f^-$  where  $f^+ := \max\{f, 0\}$  and  $f^- := \max\{-f, 0\}$ . The (Lebesgue) integral of f is  $\int f d\mu := \int f^+ d\mu - \int f^- d\mu$ , provided that one of the terms is finite.

If  $\int f d\mu < \infty$ , we say that f is  $\mu$ -integrable, in which case we write  $f \in L^1(X,\mu)$ . More generally,

**Definition 2.11.** Take  $p \in [1, \infty]$  and let  $L^p(X, \mu)$  be the set of all  $\mu$ -measurable functions  $f: X \to \overline{\mathbb{R}}$  such that  $\|f\|_p < \infty$ , where  $\|f\|_p := (\int |f|^p d\mu)^{1/p}$  if  $p < \infty$  and  $\|f\|_{\infty} := \text{ess-sup} |f| := \inf \{c \ge 0 : |f| \le c \ \mu\text{-a.e.} \}$ .

**Exercise 2.12.** Let  $f, g \in L^p(X, \mu)$ . If  $f \leq g$ , then  $||f||_p \leq ||g||_p$ .

Since a  $\mu$ -measurable function  $f: X \to \overline{\mathbb{R}}$  can be approximated from below by simple functions  $(\varphi_n)$ , we should be able to calculate  $\int f d\mu$  as the limit of  $\int \varphi_n d\mu$ . Indeed,

**Theorem 2.13** (Monotone Convergence Theorem). If  $(f_n) \in L^+(X, \mu)$  and  $f_n \nearrow f$ , then  $\int f_n d\mu \nearrow \int f d\mu$ .

Corollary 2.14. If  $(f_n) \in L^+(X,\mu)$ , then  $\sum_n \int f_n d\mu = \int \sum_n f_n d\mu$ .

**Exercise 2.15.** For any  $f, g \in L^1(X, \mu)$  and  $a, b \in \mathbb{R}$ , we have  $\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu$ . Hint: Simple  $\leadsto_{MCT} L^+ \leadsto L^1$ .

**Exercise 2.16.** Let  $f, g \in L^1(X, \mu)$ . If  $f = g \mu$ -a.e., then  $\int f d\mu = \int g d\mu$ . Hint: Consider  $\int (f - g) d\mu$ .

We list two more convergence theorems that will be useful later on.

**Theorem 2.17** (Fatou's Lemma). If  $(f_n) \in L^+(X, \mu)$ , then  $\int \liminf_n f_n d\mu \leq \liminf_n \int f_n d\mu$ .

**Theorem 2.18** (Dominated Convergence Theorem). Let  $(f_n) \in L^1(X, \mu)$ . If  $f_n \to f$   $\mu$ -a.e. and  $|f_n| \leq g$  for some  $g \in L^1(X, \mu)$ , then  $\lim_n \int f_n d\mu = \int f d\mu$ .

<sup>&</sup>lt;sup>5</sup>Whenever the  $\sigma$ -algebra is not stated, we assume that  $\mu$  is defined on Meas $_{\mu}$ . In particular, we assume that  $\mu$  is complete.

Let us now discuss differentiation of functions  $f: X \to \mathbb{R}$ ; for convenience, we assume<sup>6</sup> that  $f \in L^+(X, \mu)$ . For these functions, we can define a new measure  $\nu$  on  $\mathcal{B}$  by  $\nu(B) := \int_B f \, \mathrm{d}\mu := \int f \cdot \chi_B \, \mathrm{d}\mu$ , which measures the 'area under the curve'. Note that for each  $B \in \mathcal{B}$ , we have B is  $\nu$ -null whenever B is  $\mu$ -null.

It turns out that the 'correct' setting to discuss differentiation is between two measures  $\mu$  and  $\nu$  which satisfy the above condition.

**Definition 2.19.** If  $\mu, \nu$  are measures on a measurable space  $(X, \mathcal{B})$  and B is  $\nu$ -null whenever B is  $\mu$ -null for each  $B \in \mathcal{B}$ , we say that  $\nu$  is absolutely continuous w.r.t  $\mu$ , and write  $\nu \ll \mu$ .

**Theorem 2.20** (Lebesgue-Radon-Nikodym Theorem). If  $\nu \ll \mu$  are  $\sigma$ -finite measures on a measurable space  $(X, \mathcal{B})$ , then there exists a  $\mathcal{B}$ -measurable map  $f: X \to \mathbb{R}_{>0}$  such that  $\nu(B) = \int_B f \, \mathrm{d}\mu$  for all  $B \in \mathcal{B}$ .

Such a function  $f: X \to \mathbb{R}_{\geq 0}$  is unique  $\mu$ -a.e., and is called the *Radon-Nikodym derivative of*  $\nu$  *w.r.t.*  $\mu$ , denoted  $\frac{d\nu}{d\mu}$ . Thus, we have  $\nu(B) = \int_B \frac{d\nu}{d\mu} d\mu$  for all  $B \in \mathcal{B}$ .

Corollary 2.21. In the above setting, we have  $\int g d\mu = \int g \frac{d\mu}{d\nu} d\nu$  for all  $g \in L^1(X, \mu)$ .

To relate  $d\nu/d\mu$  to derivatives in calculus (say on  $\mathbb{R}^n$ ), we let  $\mu := \lambda$  be Lebesgue measure on  $\mathbb{R}^n$ .

**Theorem 2.22** (Lebesgue Differentiation Theorem). For any locally-integrable function  $f: \mathbb{R}^n \to \mathbb{R}$  (i.e. if  $f \cdot \chi_K \in L^1(\mathbb{R}^n, \lambda)$  for every compact  $K \subseteq \mathbb{R}^n$ ) and for  $\lambda$ -a.e.  $x \in \mathbb{R}^n$ , we have

$$f(x) = \lim_{\varepsilon \to 0} \frac{1}{\lambda(B_{\varepsilon}(x))} \int_{B_{\varepsilon}(x)} f \, d\lambda.$$

**Corollary 2.23.** For any locally-finite Borel measure  $\mu \ll \lambda$  on  $\mathbb{R}^n$  and for  $\lambda$ -a.e.  $x \in \mathbb{R}^n$ , we have

$$\frac{\mathrm{d}\mu}{\mathrm{d}\lambda}(x) = \lim_{\varepsilon \to 0} \frac{\mu(B_{\varepsilon}(x))}{\lambda(B_{\varepsilon}(x))}.$$

We end by briefly mentioning the 'Isomorphism Theorem'. These justify why we only gave three examples in Lecture 1, and allows us to work in concrete spaces like [0,1] or  $2^{\mathbb{N}}$ .

**Definition 2.24.** A measurable space  $(X, \mathcal{B})$  is said to be *standard Borel* if  $\mathcal{B}$  is the Borel  $\sigma$ -algebra of some Polish (i.e. separable and completely metrizable) topology on X.

A probability space  $(X, \mathcal{B}, \mu)$  is standard if  $(X, \mathcal{B})$  is standard Borel.

**Theorem 2.25** (Borel Isomorphism Theorem). Any two uncountable standard Borel spaces are Borel isomorphic. In particular, they all have cardinality continuum and are Borel isomorphic to  $2^{\mathbb{N}}$ .

**Definition 2.26.** Let  $(X, \mathcal{B})$  and  $(Y, \mathcal{C})$  be measurable spaces. If  $f: X \to Y$  is  $(\mathcal{B}, \mathcal{C})$ -measurable and  $\mu$  is a measure on  $\mathcal{B}$ , the pushforward measure of  $\mu$  by f is the measure  $f_*\mu$  on  $\mathcal{C}$  defined by  $f_*\mu(C) := \mu(f^{-1}(C))$ .

**Definition 2.27.** A function  $f: X \to Y$  between measure spaces  $(X, \mathcal{B}, \mu)$  and  $(Y, \mathcal{C}, \nu)$  is said to be a measure isomorphism if  $f_*\mu = \nu$ , and if there exist a  $\mu$ -conull set  $X_0 \subseteq X$  and a  $\nu$ -conull set  $Y_0 \subseteq Y$  such that  $f|_{X_0}: X_0 \to Y_0$  is a bijection and  $f|_{X_0}$  (resp.  $f^{-1}|_{Y_0}$ ) is  $\mu$ -measurable (resp.  $\nu$ -measurable).

**Theorem 2.28** (Measure Isomorphism Theorem). Any two atomless standard probability spaces are measure isomorphic. In particular, they are all measure isomorphic to  $([0,1],\lambda)$ .

3. Lecture 3 (Peng Bo): Introduction to Ergodic Theory

**TODO:** intro

Further reading. None!

<sup>&</sup>lt;sup>6</sup>Otherwise, we will need to discuss 'signed measures'.

## REFERENCES

- [Fol99] Gerald B. Folland. Real Analysis. Modern Techniques and Their Applications. 2nd ed. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. John Wiley & Sons, 1999.
- [Kec95] Alexander S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics. Springer New York, NY, 1995.
- [Tse23] Anush Tserunyan. MATH564: Advanced Real Analysis 1. URL: https://www.math.mcgill.ca/atserunyan/Courses/2023F.Math564.Analysis%201/.
- [Tse22] Anush Tserunyan. MATH594: Topics in Ergodic Theory and Measured Group Theory. URL: https://www.math.mcgill.ca/atserunyan/Courses/2022\_W.Math594.Erg&MsGrp/.

Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada

 $Email\ address: \verb| zhaoshen.zhai@mail.mcgill.ca| \\$