Extended Answer Section

There are three questions in this section, each with a number of parts. Write your answers in the space provided below each part. If you need more space there are extra pages at the end of the examination paper.

1. The parametric vector form of the line \mathcal{L}_1 is given as $\mathbf{r}_1 = \mathbf{u}_1 + r\mathbf{v}_1$ $(r \in \mathbb{R})$ where \mathbf{u}_1 is the position vector of $P_1 = (1, 1, -3)$ and $\mathbf{v}_1 = P_1Q_1$ where $Q_1 = (3, 3, -2)$. The parametric vector form of the line \mathcal{L}_2 is given as $\mathbf{r}_2 = \mathbf{u}_2 + s\mathbf{v}_2$ $(s \in \mathbb{R})$ where \mathbf{u}_2 is the position vector of $P_2 = (-2, 0, 2)$ and $\mathbf{v}_2 = -\mathbf{j} - \mathbf{k}$.
(a) [2 marks] Give the parametric scalar equations of \mathcal{L}_1 .
(b) [2 marks] Find a <i>unit</i> vector $\hat{\mathbf{n}}$ that is perpendicular to both \mathcal{L}_1 and \mathcal{L}_2 .
Question 1 continues on the next pag

(c) [4 marks] The shortest distance between two lines is the length of a vector that connects the two lines and is perpendicular to both lines. For \mathcal{L}_1 and \mathcal{L}_2 this is expressed in the vector equation $\mathbf{r}_1 + t\hat{\mathbf{n}} = \mathbf{r}_2$ where $t \in \mathbb{R}$ is a parameter. The corresponding system of linear equations is

$$2r - \frac{1}{3}t = -3$$
$$2r + s + \frac{2}{3}t = -1$$
$$r + s - \frac{2}{3}t = 5.$$

Solve this system of linear equations.

Question 1 continues on the next page

⊕ on ≥₁ one	at is closest t	\cup \mathcal{L}_2 .		

2. (a) Let
$$A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 3 & 2 \\ -1 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

(i) [3 marks] Find the inverse A^{-1} .

Question 2 continues on the next page

(ii)	[2 marks] Hence find the 3×3 lower triangular matrix X such that $AX = B$.
(iii)	[1 mark] Find det(A). (Hint: This may be done directly, but also follows easily from a correct answer to part (ii).)
	Question 2 continues on the next page

- (b) Consider the matrix $C = \begin{bmatrix} 0 & 0 & 2 \\ 2 & 1 & -4 \\ 1 & 0 & -1 \end{bmatrix}$.
 - (i) [2 marks] Find all eigenvalues of C.

Question 2 continues on the next page

(i)	i) [2 marks]	Find the eigenspace	of C corresponding t	to eigenvalue 1.

3. Recall the definition of an *altitude* of a triangle ABC:

It is the line joining a vertex A to the opposite side at D so that \overrightarrow{AD} and \overrightarrow{BC} are orthogonal.

Let O be the centre of a circumscribing circle around a triangle ABC, and let H be the point of intersection of the altitudes AD, BE and CF:

Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, and $\overrightarrow{OC} = \mathbf{c}$.

(a) [2 marks] Write the vectors \overrightarrow{AB} and \overrightarrow{BC} in terms of **a**, **b** and **c**.

Question 3 continues on the next page

(b) $[2 \text{ marks}]$ Show that $\mathbf{b} + \mathbf{c}$ and $\mathbf{b} - \mathbf{c}$ are orthogonal.
(c) [2 marks] Hence, or otherwise, justify the statement:
A parametric vector equation for the line through A and D is
$\mathcal{L}_1: \mathbf{r}_1 = \mathbf{a} + t(\mathbf{b} + \mathbf{c}), t \in \mathbb{R}.$
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page
Question 3 continues on the next page

(d) [4 marks] Express the vector \overrightarrow{OH} in terms of \mathbf{a} , \mathbf{b} and \mathbf{c} . (Hint: use a parametric vector equation for the line through C and F.)

Extra blank	pages are p	nere are r rovided in c		ce for your	answers

Page 26 of 30

8002A SEMESTER 1 2011

Page 27 of 30

8002A SEMESTER 1 2011

Page 28 of 30

8002A SEMESTER 1 2011

Page 29 of 30

8002A SEMESTER 1 2011

This blank page may be used if you need more space for your answers

End of Extended Answer Section

This is the last page of the question paper.