

2025智慧製造工作坊

提報組別:新竹3

CONTENT

器十、

器十 2

團隊介紹

推車排程與路由優化模型

兩階段優化:最小化報廢數與總行駛距離

研究背景與目標

● 背景介紹:

- ◆工廠/倉儲內多台推車服務多筆 WIP 任務
- ◆需同時考慮推車行駛距離及任務服務情況

● 目標:

- ◆最小化違反Q-time(報廢)的 WIP 數
- ◆在報廢數固定下,最小化推車總行駛距離

距離矩陣

※此用矩陣用來計算不同位置間的距離!

- 深紅色爲LOC之間距離近
- 深綠色爲LOC之間距離遠
- 黑色框起來的部分爲WIP實際要運送的路徑

解題流程

●使用軟體 - Matlab

- ◆數據通常以 Excel 格式存儲,方便輸出結果
- ◆代碼結構淸晰,易讀性方便與團隊共享成果

●兩階段式求解

- ◆第一階段求取最低報廢數-Minimize Broken WIP count
- ◆第二階段求取最短運送時間-Based on First stage Result Minimize Distance

建立變數

- 生成可能路徑
 - ◆ 40個WIP進行兩兩配對,共有C(40,2)=780個組合,考慮兩種運輸 策略,故有780*2個路徑
 - ◆ 每條路徑包含"WIP_ID"、"Strategy(PD-PD or PP-DD)"、"arrTime(包含兩個WIP各別到達時間)"、"Routedist(路徑總時間)"等屬性
 - ◆ 篩選: 透過arrTime中兩個WIP是否違反自身Q-time判斷該路徑是 否可行,並註記不可行路徑

建立數學模型

●第一階段目標 - 最小化報廢數

- ◆限制 1 一台車分配一條路徑(Cart-route)
- ◆限制2-不選取不可行路徑
- ◆限制 3 WIP只能被Cart負責或報廢

●第二階段目標 - 最短化總路徑

- ◆限制1-同上一階段的三個限制
- ◆限制2-報廢數需要等同第一階段結果

●演算法(分支界限法)-聰明的窮舉法

- ◆優勢 保證找到最佳解值,並且透過剪枝去除不必 搜尋的分支
- ◆劣勢 隨問題規模有組合暴增的問題,導致運算時 長過久

Straight PD:分析後發現有幾個WIP的剩餘時 間不多,因此生產排程的運算時間不能太長。

※紅色:送達後剩餘時間小於25分鐘

結果-1

●問題發現:因爲採取分支界限法,進行有系統的窮舉,單 次運算時間約25分鐘,等產出報表再派工,必然會損失 WIP °

第二階段: 報廢數固定 = 0, 總距離 = 894.00

ART_ID	ORDER	WIP_ID	ACTION	COMPLETE_TIME	CART_ID	ORDER	WIP_ID	ACTION	COMPLETE_TIME	
1	1	'W32'	'PICKUP'	16	11	1	'W03'	'PICKUP'		25
1	2	'W38'	'PICKUP'	30	11	2	'W06'	'PICKUP'		2
1	3	'W32'	'DELIVERY	40	11	3	'W03'	'DELIVERY		40
1	4	'W38'	'DELIVERY	48	11	4	'W06'	'DELIVERY		58
2	1	'W11'	'PICKUP'	33	12	1	'W29'	'PICKUP'		- :
2	2	'W11'	'DELIVERY	40	12	2	'W29'	'DELIVERY		2
2	3	'W28'	'PICKUP'	42	12	3	'W40'	'PICKUP'		2
2	4	'W28'	'DELIVERY	47	12	4	'W40'	'DELIVERY		48
3	1	'W31'	'PICKUP'	16	13	1	'W19'	'PICKUP'		2
3	2	'W37'	'PICKUP'	21	13	2	'W19'	'DELIVERY		2
3	3	'W31'	'DELIVERY	41	13	3	'W39'	'PICKUP'		30
3	4	'W37'	'DELIVERY	43	13	4	'W39'	'DELIVERY		35
4	1	'W02'	'PICKUP'	13	14	1	'W13'	'PICKUP'		28
4	2	'W05'	'PICKUP'	30	14	2	'W14'	'PICKUP'		33
4	3	'W02'	'DELIVERY	32	14	3	'W13'	'DELIVERY		3
4	4	'W05'	'DELIVERY	58	14	4	'W14'	'DELIVERY		4
5	1	'W10'	'PICKUP'	20	15	1	'W15'	'PICKUP'		20
5	2	'W27'	'PICKUP'	22	15	2	'W15'	'DELIVERY		2
5	3	'W10'	'DELIVERY	35	15	3	'W24'	'PICKUP'		28
5	4	'W27'	'DELIVERY	37	15	4	'W24'	'DELIVERY		28
6	1	'W07'	'PICKUP'	3	16	1	'W18'	'PICKUP'		2
6	2	'W23'	'PICKUP'	5	16	2	'W35'	'PICKUP'		2
6	3	'W07'	'DELIVERY	31	16	3	'W18'	'DELIVERY		30
6	4	'W23'	'DELIVERY	36	16	4	'W35'	'DELIVERY		5
7	1	'W33'	'PICKUP'	2	17	1	'W20'	'PICKUP'		2
7	2	'W36'	'PICKUP'	7	17	2	'W25'	'PICKUP'		35
7	3	'W33'	'DELIVERY	27	17	3	'W20'	'DELIVERY		50
7	4	'W36'	'DELIVERY	30	17	4	'W25'	'DELIVERY		60
8	1	'W09'	'PICKUP'	23	18	1	'W04'	'PICKUP'		23
8	2	'W34'	'PICKUP'	25	18	2	'W21'	'PICKUP'		4
8	3	'W09'	'DELIVERY	51	18	3	'W04'	'DELIVERY		5
8	4	'W34'	'DELIVERY	53	18	4	'W21'	'DELIVERY		5
9	1	'W16'	'PICKUP'	17	19	1	'W08'	'PICKUP'		1
9	2	'W30'	'PICKUP'	25	19	2	'W17'	'PICKUP'		2
9	3	'W16'	'DELIVERY	33	19	3	'W08'	'DELIVERY		4
9	4	'W30'	'DELIVERY	36	19	4	'W17'	'DELIVERY		4
10	1	'W01'	'PICKUP'	0	20	1	'W22'	'PICKUP'		
10	2	'W01'	'DELIVERY	7	20	2	'W26'	'PICKUP'		3
10	3	'W12'	'PICKUP'	22	20	3	'W22'	'DELIVERY		3
10	4	'W12'	'DELIVERY	32	20	4	'W26'	'DELIVERY		39

衍伸題目

● 規則:若放寬每台推車的負載限制至0~4個WIP

●理解:會造成路徑可能性膨脹至無法列舉的程度,因此能 快速找到零報廢數為主要目標,以最小化時間成本為次要。

解題思路

	Q_time	Pick up Q_time		Delivered Q_time	
W11	41		33		1

● 發現:粗算每個WIP被直接PD後所剩餘時間, W11僅存1分鐘,表示產出排程的時間不能超過1分 鐘,足以說明速度重要性

- 觀察:透過距離矩陣並佐以顏色視覺化,標記每個WIP的from-to,可以知道哪些WIP的起點跟終點較靠近
- 策略:紅色代表相鄰區域,因此適合派出少量的車 負載多個WIP進行運輸,深綠區域代表距離遠(離 LOC1),因此需要更多CART派往進行運輸。

解題思路-快速、可行

- 分組:將所有的WIP,透過所處位置進行分組,紅區(距離近)、淺綠(距離中等)及深綠(距離遠),並根據這個特性分配負責車數以及該組每台車負責車數,提前分組有助於降低計算複雜度。
- 演算法:為解決產生排程速度緩慢的問題,選擇 分組策略加退火演算法,進行快速求取可行解,目 的在於短時間內找出有0報廢的排程,並盡速派工。

紅區	Remaining Q-Time	FROM	TO
W01	85	1	2
W15	63	19	21
W11	41	24	23
W14	90	25	23
W30	90	26	31
W13	70	29	27
W26	50	30	25
W28	79	33	34
W39	60	38	39
W12	89	39	37
W19	115	43	47
W18	74	45	44
W24	91	18	18
浅綠區			
W29	36	7	16
W40	66	12	1
W02	41	10	22
W37	63	13	34
W31	75	14	35
W25	88	25	17
W03	59	36	3
W33	99	5	46
W36	43	6	42
W38	77	22	40
W21	74	28	48
W27	58	37	30
W16	81	42	24
W10	102	46	32
深鋒			
W05	103	23	7
W07	46	4	26
W22	85	8	30
W23	95	9	29
W06	113	36	20
W20	55	43	11
W04	78	11	37
W34	81	12	44
W09	73	16	41
W32	91	15	49
W17	55	19	47
W08	60	20	40
W35	97	45	50

結果-2

Fig1

成功執行PD策略搶救W11

C16	1	W11	PICKUP	33
C16	2	W11	DELIVERY	40

Fig2

發現W24並未移動,許是異常值, 若忽略可以有更多結果的提升

C12	1	W24	PICKUP	18
C12	2	W24	DELIVERY	18

Fig3

最終結果不如原題的好,但產生0 報廢的排程的快速(5秒內),畢竟 搶救WIP才是問題的核心!

最終結果: 違反Q-Time的WIP數量 = 0, 總距離 = 1123.00

結果與討論

也許使用K-MEANS,將真正在鄰近的地區進行分群會有更好的結果, 單純將地圖顏色分組,忽略不在集中區域的WIP會導致不合理的分配。

提前觀察資料並進行簡單的計算可以發現重要的關鍵WIP,並去除異常值可以帶來更好的結果。

將資料視覺化才能透過更淸晰的角度去思考策略!

智能電力管理AIAGENT

智慧調度,穩定供電,從容應對未來挑戰

問題定義:四大困境

困境1

區域供需電力差距

困境3

製程技術發展對能耗影響

困境2

再生能源供應不確定性

困境4

不可控天災之損失

問題定義:四大困境

困境1

區域供需電力差距

- 北部用電需求高,依賴中南部電力輸送
- 2023年北部用電量:931億度,本地發電量:750億度
- 供需差距需靠區域電力調配平衡

困境2

再生能源供應不確定性

- 國際局勢、經濟與碳中和趨勢影響能源成本
- 臺灣能源自給率低,需加速再生能源發展
- 進度延宕,未來供應存在不確定性

問題定義:四大困境

- · 曝光步驟增加:EUV機台比DUV機台耗電更多
- 良率下降,需反覆重製:高階製程缺陷率高,增加檢測與修復工序, 提升能耗

困境3

製程技術發展對能耗影響

- 2025年1月台積電營收報告揭露地震影響
- 生產中晶圓受損,預計2025 Q1認列地震損失約 新台幣53億元

困境4

不可控天災之損失

四大智慧解決方案

方案1

AI 電力需求預測 — 精確預測用電需求

方案3

緊急應變管理 (地震、停電 AI 快速應對)

方案2

智能電力調度 — 優化備電系統與綠電分配

方案4

風冷系統 (輔助冷卻 + 水冷混合)

四大智慧解決方案

AI 電力需求預測 — 精確預測用電需求

智能電力調度 5化備雷系統與綠雷分斷

輸入數據

預測高峰用電時 段

優化電力調配

在非高峰時段充 電

調整高能耗製程

AI 收集並分析歷史生產、天氣和設備數據

AI 識別高峰用電需求 時段 AI 調整電力使用以提 高效率

AI 在電價低時充電設 備 AI 調整製程時間以減 少高峰負荷

四大智慧解決方案

方案1

AI電力需求預測

方案2

智能電力調度 — 優化備電系統與綠電分配

智能切換備電系統(

監測電力供應 - - 切換至UPS或發電機 - - 優先供電給關鍵設備 · - '

(1) 儲能系統智慧調配

監控電力負載

調撥儲能電力

地震應變:

- •AI 連接地震預警系統(P 波感測),提前數秒啟動 UPS 備電,防止關鍵設備斷電。
- •震度過大時,降低機台功耗以減少晶圓報廢。
- •若震後電網不穩,AI 調整產線開機數量,減少不穩定供電風險。

電網異常應變:

- AI 偵測電網頻率異常時,啟動微電網,確保 EUV 產線 與關鍵設備 優先供電。
- 若停電持續 超過 2 小時,AI 降低非必要產線耗電,延長儲能使用時間。

方案3

緊急應變管理 (地震、停電 AI 快速應對) 適用範圍(不適用於半導體核心製程):

- •HPC 高效能運算機房
- •局部散熱需求高的設備
- •電力設備、能源回收系統

適合台灣冬季使用,降低水冷系統負擔,提高冷卻效率。

方案4

風冷系統 (輔助冷卻 + 水冷混合)

四大預期效益

新竹3 團隊構成

分組方式

依據1:科系

依據2:時間

關卡2

會議時間:3/16 22:00,3/18 22:00

討論分式:開會爲主 群組交流爲輔

會議時間:3/20 22:00 進行最終修改與確認

2025智慧製造工作坊

提報組別:新竹3