Algebraic Topology I

Lectures by Tahl Nowik
Summary by Ari Feiglin (ari.feiglin@gmail.com)

Co	Contents	
1	Categories	1
	1.1 Homotopy Equivalence	2

1 Categories

1.0.1 Definition

A category C is a mathematical object which contains the following

- (1) a class of objects ob(C) (the objects need not be sets),
- for every two objects $A, B \in ob(\mathcal{C})$ a class of **morphisms** Mor(A, B),
- an operation on morphisms \circ , where for every $f \in \text{Mor}(A, B)$ and $g \in \text{Mor}(B, C)$, $g \circ f \in \text{Mor}(A, C)$,
- (4) for every object $A \in ob(\mathcal{C})$ there exists an identity morphism $1_A \in Mor(A,A)$ where for every $A, B \in ob(\mathcal{C})$ and $f \in Mor(A, B), f \circ 1_A = 1_B \circ f = f$,
- (5) for every $A, B, C, D \in ob(\mathcal{C})$ and $f \in Mor(A, B), g \in Mor(B, C), h \in Mor(C, D)$, there is associativity: $(h \circ g) \circ f = h \circ (g \circ f)$.

Although morphisms are not necessarily functions, we use similar notation: both $f: A \longrightarrow B$ and $A \xrightarrow{f} B$ are to be understood to mean $f \in \text{Mor}(A, B)$. And we write $A \in \mathcal{C}$ to mean $A \in \text{ob}(\mathcal{C})$.

Notice that for every $A \in \mathcal{C}$, 1_A is unique: suppose 1_A and $1'_A$ are both identity morphisms then $1_A \circ 1'_A = 1_A$ since $1'_A$ is an identity, but $1_A \circ 1'_A = 1'_A$ since 1_A is an identity so $1_A = 1'_A$.

1.0.2 Definition

Suppose \mathcal{C} and \mathcal{D} are two categories, a **functor** F from \mathcal{C} to \mathcal{D} is a correspondence where for every $A \in \mathcal{C}$ there is defined a single $F(A) \in \mathcal{D}$, and for every $f \in \text{Mor}(A,B)$ there exists a unique $F(f) \in \mathcal{D}$ $\operatorname{Mor}(F(A),F(B))$ such that for all $A,B,C\in\mathcal{C}$ and $f\in\operatorname{Mor}(A,B)$ and $g\in\operatorname{Mor}(B,C)$ we have that $F(g \circ f) = F(g) \circ F(f) \text{ and } F(1_A) = 1_{F(A)}.$

1.0.3 Example

The following are examples of categories:

- The category of all groups, morphisms are taken to be homomorphisms between groups;
- The category of all topological spaces, morphisms are taken to be homeomorphisms;
- The category of all sets, the morphisms are taken to be set functions;
- The category of pairs of topological spaces: the objects are of the form (X,A) where X is a topological space and $A \subseteq X$. Morphisms between (X, A) and (Y, B) of this category are continuous functions f between X and Y such that $f(A) \subseteq B$.
- The category of pointed topological spaces: the objects are (X,a) where X is a topological space and $a \in X$ and the morphisms between (X, a) and (Y, b) are continuous functions between X and Y such that $a \mapsto b$.

An example of a functor is the so-called forgetful functor from the category of topological spaces to the category of sets: map a topological to itself as a pure set.

This course will focus on a specific functor between the category of pointed topological spaces to the category of groups.

1.0.4 Definition

Let \mathcal{C} be a category, and $A, B \in \mathcal{C}$. A morphism $f: A \longrightarrow B$ is an **isomorphism** if there exists a morphism $g: B \longrightarrow A$ such that $g \circ f = 1_A$ and $f \circ g = 1_B$. Such a g is called the **inverse** of f and is denoted f^{-1}

(notice that by symmetry the inverse is also an isomorphism). If there exists an isomorphism between A and B, we denote this by $A \cong B$ and A and B are called **isomorphic**.

Inverses are unique: if g_1 and g_2 are inverses of f then $(g_1 \circ f) \circ g_2 = 1_A \circ g_2 = g_2$ but $g_1 \circ (f \circ g_2) = g_1 \circ 1_B = g_1$ and by associativity these are equal. Furthermore the composition of isomorphisms is an isomorphism: it is easily verified that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$. Notice that 1_A is an isomorphism and it is its own inverse.

1.0.5 Proposition

A functor maps isomorphisms to isomorphisms, in particular $F(f^{-1}) = F(f)^{-1}$ if $f: A \longrightarrow B$ is an isomorphism.

Proof: notice that $F(f) \circ F(f^{-1}) = F(f \circ f^{-1}) = F(1_B) = 1_{F(B)}$ and $F(f^{-1}) \circ F(f) = F(f^{-1} \circ f) = F(1_A) = 1_{F(A)}$. So $F(f^{-1})$ is indeed the inverse of F(f).

1.1 Homotopy Equivalence

1.1.1 Definition

Let X and Y are topological spaces and $f, g: X \longrightarrow Y$ (meaning they are morphisms, thus continuous). We say that f is homotopic to g, denoted $f \sim g$, if there exists an $H: X \times I \longrightarrow Y$ ($I = [0, 1], X \times I$ is the product topology) such that H(x, 0) = f(x) and H(x, 1) = g(x) for all $x \in X$. We denote $h_t(x) := H(x, t)$, and H is called a **homotopy** from f to g.

A homotopy is essentially a smooth mapping from one morphism f to another g. Homotopy is indeed an equivalence relation: firstly $f \sim f$ as we can define H(x,t) = f(x) which is continuous as the composition of continuous functions $(H = f \circ \pi_1)$, if $f \sim g$ then define H'(x,t) = H(x,1-t) which is also continuous (since $(x,t) \mapsto (x,1-t)$ is continuous since its components are) and H'(x,0) = g(x) and H'(x,1) = f(x) so $g \sim f$, and if H_1 is a homotopy from f to g and H_2 is a homotopy from g to g, define

$$H(x,t) = \begin{cases} H_1(x,2t) & 0 \le t \le \frac{1}{2} \\ H_2(x,2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

 $X \times [0, 1/2]$ and $X \times [1/2, 1]$ are closed (since $X \times [0, 1/2]$ is the preimage of [0, 1/2] in the mapping $(x, t) \mapsto t$) and H(x, t) is continuous on both of these (since $H_1(x, 2t)$ and $H_2(x, 2t - 1)$ are continuous), so H(x, t) is continuous.

1.1.2 Proposition

For every topological space X and every two morphisms $f, g: X \longrightarrow \mathbb{R}^n$, f and g are homotopic.

Proof: define H(x,t) = (1-t)f(x) + tg(x) (addition and scalar multiplication are continuous).

1.1.3 Definition

A topological space X is **contractible** if the identity map id_X is homotopic to some constant map.

Notice that all two constant maps are homotopic if and only if the space is path connected. If all two constant maps are homotopic, for $x_1, x_2 \in X$ let H(x,t) be a homotopy from x_1 to x_2 and define $\gamma(t) = H(x_0,t)$ for any $x_0 \in X$, this is a continuous path from x_1 to x_2 . And if X is path connected, for x_1 and x_2 and γ connecting them, define $H(x,t) = \gamma(t)$.

1.1.4 Proposition

Let X, Y, Z be topological spaces, $f, f': X \longrightarrow Y$ and $g, g': Y \to Z$ such that $f \sim f'$ and $g \sim g'$, then $g \circ f \sim g' \circ f'$.

Proof: let H be a homotopy from f to f' and K a homotopy from g to g'. Then define J(x,t) = K(H(x,t),t)which is a composition of continuous functions (map (x,t) to ((x,t),t) to (H(x,t),t) to K(H(x,t),t)).

We call the equivalence classes of morphisms under $\sim homotopy$ classes, and the homotopy class of a morphism f is denoted [f]. So by above, $[f] \circ [g] := [f \circ g]$ is a well-defined operation. This gives us a new category whose objects are topological spaces and morphisms are homotopy classes. What are the isomorphisms in this category? Well the identities are obviously $[1_X]$ since $[f] \circ [1_X] = [f \circ 1_X] = [f]$ and $[1_X] \circ [g] = [1_X \circ g] = [g]$. So an isomorphism $X \xrightarrow{[f]} Y$ is a homotopy class such that there exists a $Y \xrightarrow{[g]} X$ such that $[f] \circ [g] = [f \circ g] = [1_X]$ and $[g \circ f] = [1_Y]$. We give these isomorphisms a different name:

1.1.5 Definition

Let X and Y be topological spaces, then $f: X \longrightarrow Y$ is a homotopic equivalence if there exists a $g: Y \longrightarrow X$ such that $g \circ f \sim \mathrm{id}_X$ and $f \circ g \sim \mathrm{id}_Y$. If a homotopic equivalence exists between X and Y, then X and Y are said to be **homotopy equivalent**, denoted $X \simeq Y$.

Notice that homeomorphisms are homotopic equivalences, since $f^{-1} \circ f = \mathrm{id}_X$ and $f \circ f^{-1} = \mathrm{id}_Y$.

1.1.6 Definition

Let X and Y be topological spaces, $A \subseteq X$, and $f, g: X \longrightarrow Y$. We say that f and g are homotopic relative to A, denoted $f \stackrel{A}{\sim} g$, if there exists a homotopy H from f to g such that H(a,t) = f(a) for all $a \in A$ and $t \in I$. In such a case we must have $f|_A = g|_A$.

It is not enough for $f \sim g$ and $f|_A = g|_A$ for f and g to be homotopic relative to A. For example take I and S^1 and the points 0 and 1 on I. Then we can continuously deform I so that it maps onto the bottom or top of the circle. These are two continuous mappings which are homotopic, but no homotopy between them which keeps the image of 0 and 1 constant.