# Fast Solver of Closely Related Quadratic Programming Problems

Andreas Halle

June 10, 2013

#### **PROMAPS**

- Utviklet av Goodtech og MathConsult
- Kalkulerer leveransepåliteligheten i et nettverk
- ▶ Utfall: Gren i nettverket faller ut
- Formulert som mange like QP-problemer
- Flaskehals: QP-løseren
- Skjermbildet oppdateres hvert 5. minutt
- http://www.tu.no/energi/2011/10/07/ her-beregnes-risikoen-for-svikt-i-kraftnettet

## Objektfunksjonen

$$f(x) = x^{T} \Phi D x + (g - c)^{T} x$$

- $\triangleright x = [\begin{array}{cccc} x_1 & x_2 & \cdots & x_n \end{array}]^T$
- f(x) representerer leveransekostnader (E/s)
- x representerer strømmen over grenene (W)
- $ightharpoonup \Phi$  representerer strømtap (1/W)
- $\triangleright$  D representerer overføringskostnader (E/J)
- ightharpoonup g representerer kostnader for å generere strøm (E/J)
- ightharpoonup c representerer leveransepris (E/J)

## Objektfunksjonen

$$f(x) = x^T H x + b^T x$$

- ightharpoonup H = ΦD representerer kostnader  $(E/(W^2s))$
- ▶ b = g c representerer kostnader (E/J)
- Minimerer kostnader

### Optimeringsproblemet

#### Et konvekst QP-problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to  $Ax = 0, \ l \le x \le u$ 

- ▶ A er en m × n orientert insidensmatrise for et strømnettverk (rettet graf)
- ▶ m noder, n grener
- ▶ I er nedre grenkapasitet (W)
- ▶ u er øvre grenkapasitet (W)

#### Utfall

#### Modellerer utfall

- ▶ Setter  $I_i = u_i = 0 \Rightarrow x_i = 0$
- Løse QP-problemet for så mange utfall som mulig
- ▶ Instans er et QP-problem uten utfall
- Subinstans er en instans med utfall

#### Utfall

- ▶ 2<sup>n</sup> mulige utfall
- Usannsynlig at det er mange utfall
- Løse alle subinstanser med maks et gitt antall utfall

#### Instanser fra Goodtech



#### Instanser fra Goodtech

Table: Størrelse for hver instans

| Problemstørrelse | small | large | vlarge |
|------------------|-------|-------|--------|
| Rader            | 82    | 328   | 1127   |
| Kolonne          | 238   | 952   | 3437   |
| Ikke-nuller A    | 348   | 1392  | 4840   |
| Ikke-nuller H    | 108   | 432   | 894    |

Table: Verdier i objektfunksjonen

|                | small og large          | vlarge                  |
|----------------|-------------------------|-------------------------|
| $\max(h_{ii})$ | $2.9614 \times 10^{-2}$ | $4.9011 \times 10^{-2}$ |
| $\min(h_{ii})$ | $4.9290 \times 10^{-5}$ | $1.1026 \times 10^{-5}$ |
| $mean(h_{ii})$ | $5.2864 \times 10^{-3}$ | $5.8984 \times 10^{-3}$ |
| $\max(b_i)$    | 20                      | 20                      |
| $\min(b_i)$    | -70                     | -50                     |

#### Instanser fra Goodtech

- ► hii ≪ b<sub>i</sub>
- $\mathcal{Q}: \quad \min_{x \in \mathbb{R}^n} \quad x^T H x + b^T x \quad \text{subject to } Ax = 0, \ I \leq x \leq u$   $\mathcal{L}: \quad \min_{x \in \mathbb{R}^n} \quad b^T x \quad \text{subject to } Ax = 0, \ I \leq x \leq u$ 
  - ▶ Optimal løsning til Q noteres  $x^*$
  - ▶ Optimal løsning til  $\mathcal{L}$  noteres  $\hat{x}$
  - ▶  $\Delta$  noterer avviket mellom  $f(x^*)$  og  $f(\hat{x})$

## Hvor like er $\mathcal{L}$ og $\mathcal{Q}$ ?



Figure : Avvik som en funksjon av tettheten i *H*.

## Hvor like er $\mathcal{L}$ og $\mathcal{Q}$ ?

Oppnår 95% optimal verdi etter løst  $\mathcal{L}$ .

- ► Metode basert på successive linear programming (SLP)
- $ightharpoonup x_0 = 0 \Rightarrow 95\%$  av optimal målfunksjonsverdi etter 1 iterasjon

### Et eksempel

Q: minimize 
$$(x-1)^2 + (y-1)^2 - 2$$
  
subject to  $x + y \le 3$   
 $x - y \le 1$   
 $x + 3y \le 4$   
 $x, y \ge 0$   
 $\mathcal{L}$ : minimize  $-2x - 2y$   
subject to  $x + y \le 3$   
 $x - y \le 1$   
 $x + 3y \le 4$   
 $x + 3y \le 4$ 



# Linjesøk







# Sti



#### Endrer et sidekrav



► 
$$-x + 3y \le 4$$

► 
$$-x + 3y \le 0$$

## Like optimale løsninger

► Metode for å redusere antall QP-kall



# Søker etter $\mathcal{M}_{14} = \{2, 3, 4\}$



$$\begin{array}{llll} \mathcal{M}_0 = \{\} & \mathcal{Z}_0 = \{1,3\} \\ \mathcal{M}_2 = \{2\} & \mathcal{Z}_2 = \{2,3,5\} \\ \mathcal{M}_3 = \{1,2\} & \mathcal{Z}_3 = \{1,2,4,5\} \\ \mathcal{M}_7 = \{1,2,3\} & \mathcal{Z}_7 = \{1,2,3,5\} \\ \mathcal{M}_8 = \{4\} & \mathcal{Z}_8 = \{1,4,5\} \\ \mathcal{M}_{10} = \{2,4\} & \mathcal{Z}_{10} = \{2,3,4,5\} \end{array} \quad \begin{array}{lll} \mathcal{M}_{12} = \{3,4\} & \mathcal{Z}_{12} = \{4,3,1\} \\ \mathcal{M}_{15} = \{1,2,3,4\} & \mathcal{Z}_{15} = \{1,2,3,4\} \\ \mathcal{M}_{16} = \{5\} & \mathcal{Z}_{16} = \{1,3,5\} \\ \mathcal{M}_{28} = \{3,4,5\} & \mathcal{Z}_{28} = \{2,3,4,5\} \end{array}$$

Vi løser small og opp til 2 utfall. 28442 subinstanser

Table : Kjøretid i CPU-sekunder

| $\epsilon$ | cClp  | cSlp    | nClp   | nSlp    |
|------------|-------|---------|--------|---------|
| $10^{-1}$  | 45.51 | 55.61   | 72.32  | 85.51   |
| $10^{-2}$  | 46.34 | 55.89   | 73.11  | 85.51   |
| $10^{-3}$  | 51.12 | 59.04   | 75.60  | 85.28   |
| $10^{-4}$  | 52.46 | 73.79   | 77.83  | 107.39  |
| $10^{-5}$  | 54.48 | 232.53  | 81.16  | 355.47  |
| $10^{-6}$  | 65.42 | 1363.46 | 93.29  | 2022.25 |
| $10^{-7}$  | 70.78 | 6522.91 | 100.85 | 9395.92 |



Figure: Kjøretid i CPU-sekunder for å løse small og dens subinstanser.

Table : Kjøretid i CPU-sekunder for å løse de tre instansene.

| Implementasjon | small | large | vlarge  |
|----------------|-------|-------|---------|
| cClp           | 0.52  | 9.55  | 76.18   |
| cSlp           | 0.71  | 32.88 | 585.60  |
| nClp           | 0.65  | 11.68 | 157.53  |
| nSlp           | 0.89  | 39.87 | 1173.74 |

## Tilfeldige instanser

- $ightharpoonup m = \lfloor \frac{7}{20} n \rfloor$
- ▶ 50% null i *b* og *H*

Table : Kjøretid for å løse tilfeldige instanser med økende  $\textit{n.}\ \beta=1.$ 

| n    | cClp  | nClp  | Relativ Speedup |
|------|-------|-------|-----------------|
| 500  | 4.9   | 5.9   | 16.9%           |
| 1000 | 42.1  | 53.0  | 20.6%           |
| 1500 | 181.5 | 234.5 | 22.6%           |
| 2000 | 547.1 | 710.2 | 23.0%           |

Table : Kjøretid i CPU-sekunder for n = 50 og økende  $\beta$ .

| $\beta$ | cClp   | nClp    | Relativ Speedup | Distinkte løsninger |
|---------|--------|---------|-----------------|---------------------|
| 1       | 0.03   | 0.04    | 25.0%           | 37.4 (74.3%)        |
| 2       | 0.64   | 0.94    | 31.9%           | 744.3 (58.3%)       |
| 3       | 7.06   | 15.90   | 55.6%           | 9484.7 (45.4%)      |
| 4       | 77.59  | 188.83  | 58.9%           | 82262.5 (32.8%)     |
| 5       | 586.54 | 1758.23 | 66.6%           | 574685.0 (24.2%)    |

