Miejsce na naklejkę z kodem szkoły

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

Czas pracy 180 minut

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 12). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 8. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 9. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.

Życzymy powodzenia!

LISTOPAD ROK 2006

Za rozwiązanie wszystkich zadań można otrzymać łącznie

50 punktów

Wypełnia zdający przed rozpoczęciem pracy										
PESEL ZDAJACEGO										

Zadanie 1. (*5 pkt*)

Funkcja homograficzna f jest określona wzorem $f(x) = \frac{px-3}{x-p}$, gdzie $p \in R$ jest parametrem i $|p| \neq \sqrt{3}$.

- a) Dla p=1 zapisz wzór funkcji w postaci $f(x)=k+\frac{m}{x-1}$, gdzie k oraz m są liczbami rzeczywistymi.
- b) Wyznacz wszystkie wartości parametru p, dla których w przedziale $(p,+\infty)$ funkcja f jest malejąca.

Zadanie 2. (*5 pkt*)

Wyznacz wszystkie wartości $k \in R$, dla których pierwiastki wielomianu $W(x) = (x^2 - 8x + 12) \cdot (x - k)$ są trzema kolejnymi wyrazami rosnącego ciągu geometrycznego.

Zadanie 3. (4 pkt)

Na rysunku poniżej przedstawiono wykres funkcji logarytmicznej $\,f\,$.

Rozwiąż równanie $(f(x))^2 - 16 = 0$.

Zadanie 4. (*7 pkt*)

Trójkąt prostokątny ABC, w którym $| \not \prec BCA | = 90^\circ$ i $| \not \prec CAB | = 30^\circ$, jest opisany na okręgu o promieniu $\sqrt{3}$. Oblicz odległość wierzchołka C trójkąta od punktu styczności tego okręgu z przeciwprostokątną. Wykonaj odpowiedni rysunek.

Zadanie 5. (*3 pkt*)

Sporządź wykres funkcji f danej wzorem $f(x) = 2|x| - x^2$, a następnie, korzystając z niego, podaj wszystkie wartości x, dla których funkcja f przyjmuje maksima lokalne i wszystkie wartości x, dla których przyjmuje minima lokalne.

Zadanie 6. (4 pkt)

Podstawa AB trapezu ABCD jest zawarta w osi Ox, wierzchołek D jest punktem przecięcia paraboli o równaniu $y=-\frac{1}{3}x^2+x+6$ z osią Oy. Pozostałe wierzchołki trapezu również leżą na tej paraboli (patrz rysunek). Oblicz pole tego trapezu.

Zadanie 7. (*3 pkt*)

Wyznacz wszystkie rozwiązania równania $2\cos^2 x = \cos x$ należące do przedziału $\langle 0, 2\pi \rangle$.

Zadanie 8. (*4 pkt*)

Uczeń analizował własności funkcji f, której dziedziną jest zbiór wszystkich liczb rzeczywistych i która ma pochodną f'(x) dla każdego $x \in R$. Wyniki tej analizy zapisał w tabeli.

x	$(-\infty, -1)$	-1	(-1, 2)	2	(2, 3)	3	$(3, +\infty)$
f'(x)	(+)	0	(-)	0	(-)	0	(-)
f(x)		2		-1		1	

Niestety, wpisując znaki pochodnej, popełnił jeden błąd.

- a) Przekreśl błędnie wpisany znak pochodnej i wstaw obok prawidłowy.
- b) Napisz, czy po poprawieniu błędu w tabeli, zawarte w niej dane pozwolą określić dokładną liczbę miejsc zerowych funkcji f. Uzasadniając swoją odpowiedź możesz naszkicować przykładowe wykresy funkcji.

Zadanie 9. (*3 pkt*)

Niech $A \subset \Omega$ i $B \subset \Omega$ będą zdarzeniami losowymi. Mając dane prawdopodobieństwa zdarzeń: P(A) = 0.5, P(B) = 0.4 i $P(A \setminus B) = 0.3$, zbadaj, czy A i B są zdarzeniami niezależnymi.

Zadanie 10. (5 pkt)

Ciąg liczbowy (a_n) jest określony dla każdej liczby naturalnej $n \ge 1$ wzorem $a_n = (n-3)(2-p^2)$, gdzie $p \in R$.

- a) Wykaż, że dla każdej wartości p ciąg (a_n) jest arytmetyczny.
- b) Dla p = 2 oblicz sumę $a_{20} + a_{21} + a_{22} ... + a_{40}$.
- c) Wyznacz wszystkie wartości p, dla których ciąg (b_n) określony wzorem $b_n = a_n pn$ jest stały.

Zadanie 11. *(3 pkt)*

Funkcja f przyporządkowuje każdej liczbie naturalnej n>1 największą liczbę całkowitą spełniającą nierówność $x^2-3nx+2n^2<0$ o niewiadomej x. Wyznacz wzór funkcji f.

Zadanie 12. *(4 pkt)*

Dwa okręgi, każdy o promieniu 8, są styczne zewnętrznie. Ze środka jednego z nich poprowadzono styczne do drugiego okręgu. Oblicz pole zacieniowanej figury (patrz rysunek).

BRUDNOPIS