

CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

KETHLEN CORREIA DE JESUS

RELATÓRIO: RAÍZES DE EQUAÇÕES

KETHLEN CORREIA DE JESUS

RELATÓRIO: RAÍZES DE EQUAÇÕES

Relatório apresentado a Disciplina de Programação Funcional do curso de bacharelado Ciência da Computação 2018/2 do Centro Universitário Norte do Espírito Santo, como requisito parcial para avaliação.

Orientador: Oberlan Christo Romao

RESUMO

Este relatório faz parte da avaliação parcial da disciplina de Programação Funcional do curso de Bacharelado em Ciência da Computação do Centro Universitário Norte do Espírito Santo. Sua finalidade é apresentar os resultados do estudo feito sobre raízes de equações utilizando três métodos, sendo eles: Método de Bisseção, Método de Newton-Raphson e Método da Secante.

SUMÁRIO

INTRODUÇÃO	4
OBJETIVOS	5
METODOLOGIA	5
JUPYTER NOTEBOOK	5
MÉTODO DE BISSEÇÃO	5
MÉTODO DE NEWTON-RAPHSON	6
MÉTODO DA SECANTE	6
APRESENTAÇÃO DOS RESULTADOS E DISCUSSÕES	7
RESULTADOS OBTIDOS COM A PRIMEIRA FUNÇÃO	7
RESULTADOS OBTIDOS COM A SEGUNDA FUNÇÃO	9
RESULTADOS OBTIDOS COM A TERCEIRA FUNÇÃO	10
CONCLUSÃO	13
ANEXOS:	14
ANEXO I:	14
ANEXO II:	16
ANEXO III:	18
REFERÊNCIAS BIBLIOGRÁFICAS	23

INTRODUÇÃO

Ao longo dos séculos as raízes reais sempre fizeram parte de importantes áreas da matemática, tornando ela um objeto de estudo. Dado uma função f, o objetivo é obter o(s) valor(es) de r, tal que f (r) = 0, onde r é chamado de raiz da equação ou zero da função f. No entanto, para outras funções, temos que usar métodos numéricos, ou resultados, para encontrar uma solução exata ou aproximada para f(r) = 0.

Desejamos encontrar um ponto de intersecção dessas duas curvas, ou seja, precisamos encontrar um r tal que f(r) = g(r) ou f(r) - g(r) = 0. Portanto, um ponto de intersecção das curvas y = f(x) e y = g(x) é um zero da função h(x) = f(x)-g(x). Esse é uma aplicação direta do Teorema do Valor Intermediário Teorema: (Teorema de Bolzano) Seja f(x) uma função contínua no intervalo fechado [a;b], tal que f(r) = 0: Em outras palavras, se f(x) é uma função contínua em um dado intervalo no qual ela troca de sinal, então ela tem, pelo menos, um zero nesse intervalo.

Este relatório apresenta os resultados de um estudo feito sobre raízes de equações, utilizando três métodos: Método de Bisseção, Método de Newton-Raphson e Método da Secante, sendo aplicados em três funções diferentes para fins de comparativo.

OBJETIVOS

O objetivo do trabalho é apresentar os conhecimentos adquiridos nas aulas de programação funcional sendo aplicados em atividades que foram executadas de acordo com o conteúdo aprendido, demonstrando os métodos utilizados e a ordem de serviço para a perfeita execução das atividades propostas.

METODOLOGIA

Os resultados encontrados no procedimento da realização do estudo feito sobre a determinação das raízes de cada função foram através de três métodos e utilizando para a geração dos gráficos o jupyter notebook, que será apresentado junto a suas equações neste trabalho.

JUPYTER NOTEBOOK

O Jupyter Notebook é um aplicativo da Web de código aberto que permite criar e compartilhar documentos que contêm código ativo, equações, visualizações e texto narrativo. Os usos incluem: limpeza e transformação de dados, simulação numérica, modelagem estatística, visualização de dados, aprendizado de máquina e muito mais.

MÉTODO DE BISSEÇÃO

O método da bisseção é um método de busca de raízes que bissecta repetidamente um intervalo e então seleciona um subintervalo contendo a raiz para processamento adicional. Trata-se de um método simples e robusto, relativamente lento quando comparado a métodos como o método de Newton ou o método das secantes. Por este motivo, ele é usado frequentemente para obter uma primeira aproximação de uma solução, a qual é então utilizada como ponto inicial para métodos que convergem mais rapidamente.

O método consiste em dividir o intervalo no seu ponto médio, e então verificar em qual dos dois subintervalos garante-se a existência de uma raiz. Utiliza-se a seguinte equação.

$$x_1 = \frac{a+b}{2}$$

Para tanto, basta verificar se f(a) f(c) < 0. Caso afirmativo, existe pelo menos uma raiz no intervalo (a,c), caso contrário garante-se a existência de uma raiz no intervalo (c,b) . O procedimento é, então, repetido para o subintervalo correspondente à raiz até que c aproxime a raiz com a precisão desejada.

O erro relativo do método é dado por:
$$\left|\frac{a-b}{2}\right|$$
.

O critério de parada, é se f(xi) = 0 ou se $|a - b/2| < \varepsilon$ (igual a 10^-15) ou se o número máximo de iterações (50) for atingido, então xi é a aproximação desejada e a retornamos.

MÉTODO DE NEWTON-RAPHSON

O método de Newton (ou Método de Newton-Raphson), foi desenvolvido por Isaac Newton e Joseph Raphson, tem o objetivo de estimar as raízes de uma função. Para isso, escolhe-se uma aproximação inicial para esta. Após isso, calcula-se a equação da reta tangente (por meio da derivada) da função nesse ponto e a interseção dela com o eixo das abcissas, a fim de encontrar uma melhor aproximação para a raiz. Repetindo-se o processo, cria-se um método iterativo para encontrarmos a raiz da função. O método de Newton é dado pela seguinte sequência recursiva:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x)},$$

onde x1 é uma aproximação inicial dada, n significa a n-ésima iteração do algoritmo e f'(xn) é a derivada da função f no ponto xn.

O erro relativo do método é dado por:
$$\left| \frac{x_{i+1} - x_i}{x_{i+1}} \right|$$

MÉTODO DA SECANTE

O método das secantes é um algoritmo de busca de raízes que usa uma sequência de raízes de linhas secantes para aproximar cada vez melhor a raiz de uma função f.

O método da secante pode ser pensado como uma aproximação por diferenças finitas do método de Newton.

O método das secantes é definido por:

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

ou

$$x_{n+1} = \frac{x_{n-1}f(x_n) - x_nf(x_{n-1})}{f(x_n) - f(x_{n-1})}$$

O método das secantes requer dois valores iniciais, x0 e x1, que devem ser preferencialmente escolhidos próximos da raiz.

O erro relativo do método é dado por: $\left| \frac{x_{i+1} - x_i}{x_{i+1}} \right|$

APRESENTAÇÃO DOS RESULTADOS E DISCUSSÕES

Foi utilizado três funções para o estudo dos métodos, sendo elas:

$$f(x) = \cos(x) + 2x$$

$$f(x) = \sin(x) + 4x-2$$

$$f(x) = \cos(x)-4x^3$$

Dados:

Tolerância: 10^-15

Número Máximo de Iterações: 50

RESULTADOS OBTIDOS COM A PRIMEIRA FUNÇÃO

Função= f(x) = cos(x) + 2x

Intervalo escolhido: [-2,0]

Figura 1: Gráfico da Função 1

Figura 2: Gráfico 1

Figura 3: Gráfico 1

Analisando o primeiro gráfico (Figura 5) que se foi utilizado a segunda função, percebe-se que o Método de Newton-Raphson obteve o resultado da raiz da função mais rápido e teve menos variação entre os resultados das raízes em relação as outras funções e ao número de iterações utilizado. No quesito precisão dos resultados, os métodos de Newton e o da Secante apresentaram uma ótima precisão, porém o Método de Newton-Raphson

por já ter obtido o resultado mais rápido, foi também o melhor método em questão da precisão (Figura 3) (Anexo I).

RESULTADOS OBTIDOS COM A SEGUNDA FUNÇÃO

Função= f(x) = sin(x) + 4x-2

Intervalo escolhido: [-1,1]

Figura 4: Gráfico da Função 2

Figura 5: Gráfico 2

Figura 6: Gráfico 2

Analisando o primeiro gráfico (Figura 5) que se foi utilizado a segunda função, percebe-se que o Método de Newton-Raphson obteve o resultado da raiz da função mais rápido mesmo com o Método da Secante tendo uma menor variação entre os resultados das raízes em relação as outras funções e ao número de iterações utilizado. Apesar do Método de Newton-Raphson ter apresentado um resultado mais rápido (Figura 6), o Método da Secante retornou um resultado mais eficaz em relação aos outros métodos (Anexo II).

RESULTADOS OBTIDOS COM A TERCEIRA FUNÇÃO

Função= $f(x) = f(x) = cos(x)-4x^3$

Intervalo escolhido: [-1,2]

Figura 7: Gráfico da Função 3

Figura 8: Gráfico 3

Figura 9: Gráfico 3

Analisando o primeiro gráfico (Figura 8) que se foi utilizado a terceira função, percebe-se que o Método de Newton-Raphson obteve o resultado da raiz da função mais rápido mesmo com o Método da Bisseção tendo uma menor variação entre os resultados das raízes em relação as outras funções e ao número de iterações utilizado. Apesar do Método de Newton-Raphson ter apresentado um resultado mais rápido (Figura 9), o Método da Secante retornou um resultado mais eficaz em relação aos outros métodos (Anexo III).

CONCLUSÃO

Conclui-se que o método de Newton-Raphson no quesito rapidez na entrega do resultado é o mais indicado, mesmo com a sua variação entre os resultados das raízes ele, porém no quesito eficácia ele acaba não sendo tão eficiente quanto o Método da Secante.

ANEXOS:

ANEXO I:

Função escolhida: cos(x)+2xDerivada da função: -sin(x)+2

==> MÉTODO DE BISSEÇÃO: a=-2 e b=0

i	RAIZ	ERRO
1	-1.00000000000000	1.0000000000000000
2	-0.50000000000000	0.500000000000000
3	-0.250000000000000	0.250000000000000
4	-0.375000000000000	0.125000000000000
5	-0.437500000000000	0.062500000000000
6	-0.46875000000000	0.031250000000000
7	-0.453125000000000	0.015625000000000
8	-0.44531250000000	0.007812500000000
9	-0.44921875000000	0.003906250000000
10	-0.45117187500000	0.001953125000000
11	-0.450195312500000	0.000976562500000
12	-0.449707031250000	0.000488281250000
13	-0.449951171875000	0.000244140625000
14	-0.450073242187500	0.000122070312500
15	-0.450134277343750	0.000061035156250
16	-0.450164794921875	0.000030517578125
17	-0.450180053710938	0.000015258789062
18	-0.450187683105469	0.000007629394531
19	-0.450183868408203	0.000003814697266
20	-0.450181961059570	0.000001907348633
21	-0.450182914733887	0.000000953674316
22	-0.450183391571045	0.000000476837158
23	-0.450183629989624	0.000000238418579
24	-0.450183510780334	0.000000119209290
25	-0.450183570384979	0.000000059604645
26	-0.450183600187302	0.000000029802322
27	-0.450183615088463	0.000000014901161
28	-0.450183607637882	0.00000007450581
29	-0.450183611363173	0.00000003725290

30	-0.450183609500527	0.00000001862645
31	-0.450183610431850	0.000000000931323
32	-0.450183610897511	0.000000000465661
33	-0.450183611130342	0.000000000232831
34	-0.450183611246757	0.00000000116415
35	-0.450183611304965	0.00000000058208
36	-0.450183611275861	0.000000000029104
37	-0.450183611290413	0.00000000014552
38	-0.450183611297689	0.00000000007276
39	-0.450183611294051	0.00000000003638
40	-0.450183611295870	0.00000000001819
41	-0.450183611294960	0.000000000000909
42	-0.450183611294506	0.00000000000455
43	-0.450183611294733	0.000000000000227
44	-0.450183611294847	0.00000000000114
45	-0.450183611294904	0.00000000000057
46	-0.450183611294875	0.000000000000028
47	-0.450183611294861	0.00000000000014
48	-0.450183611294868	0.000000000000007
49	-0.450183611294872	0.000000000000004
50	-0.450183611294873	0.000000000000002

==> MÉTODO DE NEWTON-RAPSON: a=-2

i	RAIZ	ERRO
1	-0.482057284405749	3.148884509577484
2	-0.450367302865199	0.070364747482645
3	-0.450183617532087	0.000408023139800
4	-0.450183611294874	0.00000013854822
5	-0.450183611294874	0.000000000000000

==> MÉTODO DA SECANTE: a=-2 e b=0

i	RAIZ	ERRO
1	-0.369266207205531	4.416146836547143
2	-0.458180784415835	0.194060030962816
3	-0.449415864031419	0.019502917199654

4	-0.450257530282394	0.001869299666008
5	-0.450176496321884	0.000180004867361
6	-0.450184296155349	0.000017325867497
7	-0.450183545372956	0.000001667725089
8	-0.450183617640254	0.000000160528494
9	-0.450183610684093	0.00000015451832
10	-0.450183611353665	0.00000001487331
11	-0.450183611289215	0.00000000143164
12	-0.450183611295418	0.00000000013780
13	-0.450183611294821	0.00000000001326
14	-0.450183611294879	0.00000000000128
15	-0.450183611294873	0.000000000000012
16	-0.450183611294874	0.000000000000001
17	-0.450183611294874	0.000000000000000

ANEXO II:

Função escolhida: sin(x)+4x-2Derivada da função: cos(x)+4

==> MÉTODO DE BISSEÇÃO: a=-1 e b=1

i	RAIZ	ERRO
1	0.00000000000000	1.000000000000000
2	0.500000000000000	0.500000000000000
3	0.250000000000000	0.250000000000000
4	0.375000000000000	0.125000000000000
5	0.437500000000000	0.062500000000000
6	0.406250000000000	0.031250000000000
7	0.390625000000000	0.015625000000000
8	0.398437500000000	0.007812500000000
9	0.402343750000000	0.003906250000000
10	0.400390625000000	0.001953125000000
11	0.401367187500000	0.000976562500000
12	0.401855468750000	0.000488281250000
13	0.402099609375000	0.000244140625000
14	0.402221679687500	0.000122070312500

15	0.402160644531250	0.000061035156250
16	0.402130126953125	0.000030517578125
17	0.402145385742188	0.000015258789062
18	0.402153015136719	0.000007629394531
19	0.402149200439453	0.000003814697266
20	0.402151107788086	0.000001907348633
21	0.402150154113770	0.000000953674316
22	0.402150630950928	0.000000476837158
23	0.402150392532349	0.000000238418579
24	0.402150511741638	0.000000119209290
25	0.402150452136993	0.000000059604645
26	0.402150481939316	0.000000029802322
27	0.402150467038155	0.000000014901161
28	0.402150459587574	0.000000007450581
29	0.402150463312864	0.000000003725290
30	0.402150461450219	0.00000001862645
31	0.402150462381542	0.00000000931323
32	0.402150462847203	0.00000000465661
33	0.402150463080034	0.000000000232831
34	0.402150462963618	0.00000000116415
35	0.402150463021826	0.00000000058208
36	0.402150462992722	0.000000000029104
37	0.402150463007274	0.00000000014552
38	0.402150463014550	0.00000000007276
39	0.402150463010912	0.00000000003638
40	0.402150463012731	0.00000000001819
41	0.402150463011822	0.000000000000909
42	0.402150463012276	0.000000000000455
43	0.402150463012049	0.000000000000227
44	0.402150463012163	0.00000000000114
45	0.402150463012219	0.00000000000057
46	0.402150463012191	0.000000000000028
47	0.402150463012205	0.00000000000014
48	0.402150463012212	0.000000000000007
49	0.402150463012216	0.000000000000004
50	0.402150463012218	0.000000000000002

==> MÉTODO DE NEWTON-RAPSON: a=-1

i	RAIZ	ERRO
1	0.506831599289236	2.973041936221748
2	0.401639597229393	0.261906452415259
3	0.402150452640464	0.001270309178362
4	0.402150463012218	0.000000025790729
==> M	ÉTODO DA SECANTE: a=-1 e b=	=1
i	RAIZ	ERRO
1	0.413097590851173	3.420735492403948
2	0.401762513854255	0.028213376325673
3	0.402164124215824	0.000998623043147
4	0.402149981839227	0.000035166920889
5	0.402150479959891	0.000001238642470
6	0.402150462415294	0.000000043626946
7	0.402150463033243	0.00000001536610
8	0.402150463011477	0.00000000054122
9	0.402150463012244	0.00000000001906
10	0.402150463012217	0.000000000000067
11	0.402150463012218	0.000000000000002

0.000000000000000

ANEXO III:

12

Função escolhida: $cos(x)-4x^3$

Derivada da função: -12x^2-sin(x) ==> MÉTODO DE BISSEÇÃO: a=-1 e b=2

0.402150463012218

i	RAIZ	ERRO
1	0.50000000000000	1.500000000000000
2	1.250000000000000	0.750000000000000
3	0.875000000000000	0.375000000000000
4	0.687500000000000	0.187500000000000
5	0.593750000000000	0.093750000000000
6	0.54687500000000	0.04687500000000

7	0.570312500000000	0.023437500000000
8	0.582031250000000	0.011718750000000
9	0.587890625000000	0.005859375000000
10	0.590820312500000	0.002929687500000
11	0.592285156250000	0.001464843750000
12	0.591552734375000	0.000732421875000
13	0.591918945312500	0.000366210937500
14	0.592102050781250	0.000183105468750
15	0.592010498046875	0.000091552734375
16	0.591964721679688	0.000045776367188
17	0.591987609863281	0.000022888183594
18	0.591976165771484	0.000011444091797
19	0.591981887817383	0.000005722045898
20	0.591984748840332	0.000002861022949
21	0.591986179351807	0.000001430511475
22	0.591985464096069	0.000000715255737
23	0.591985106468201	0.000000357627869
24	0.591984927654266	0.000000178813934
25	0.591984838247299	0.000000089406967
26	0.591984793543816	0.000000044703484
27	0.591984771192074	0.000000022351742
28	0.591984782367945	0.000000011175871
29	0.591984787955880	0.00000005587935
30	0.591984790749848	0.000000002793968
31	0.591984789352864	0.00000001396984
32	0.591984788654372	0.000000000698492
33	0.591984789003618	0.00000000349246
34	0.591984789178241	0.00000000174623
35	0.591984789265553	0.00000000087311
36	0.591984789221897	0.00000000043656
37	0.591984789243725	0.000000000021828
38	0.591984789232811	0.00000000010914
39	0.591984789238268	0.00000000005457
40	0.591984789240996	0.00000000002728
41	0.591984789239632	0.00000000001364
42	0.591984789238950	0.000000000000682
43	0.591984789239291	0.00000000000341
44	0.591984789239461	0.00000000000171
45	0.591984789239376	0.000000000000085

46	0.591984789239334	0.000000000000043
47	0.591984789239312	0.000000000000021
48	0.591984789239323	0.00000000000011
49	0.591984789239318	0.00000000000005
50	0.591984789239320	0.00000000000003

==> MÉTODO DE NEWTON-RAPSON: a=-1

i	RAIZ	ERRO
1	-0.593109244087046	0.686030035730209
2	-0.138822749277949	3.272421106568996
3	10.638957704672841	1.013048529107036
4	7.089932899872769	0.500572410898805
5	4.730593032691361	0.498740824010202
6	3.147903814859576	0.502775596370116
7	2.090136960930616	0.506075378647913
8	1.395461347493370	0.497810716638675
9	0.956278708642948	0.459262174176883
10	0.708508051214159	0.349707610244073
11	0.609129255372335	0.163148945753850
12	0.592432459459551	0.028183458968496
13	0.591985105275019	0.000755684865289
14	0.591984789239480	0.000000533857532
15	0.591984789239323	0.000000000000266
16	0.591984789239323	0.000000000000000

==> MÉTODO DA SECANTE: a=-1 e b=2

i	RAIZ	ERRO
1	-0.631433559400825	0.583697896812630
2	-0.491967248941930	0.283486981620919
3	-0.391791360028298	0.255686825014204
4	-0.308829764912404	0.268632122099451
5	-0.235020539839424	0.314054359348377
6	-0.166551858097162	0.411095274015608
7	-0.101424426445470	0.642127680028907
8	-0.038596841297642	1.627790851156187

9	0.022379034432319	2.724687515646413
10	0.081543682770842	0.725557717386772
11	0.138648840397711	0.411868988323769
12	0.193255699054776	0.282562733850281
13	0.244829490243364	0.210651875055258
14	0.292831633778774	0.163924036880778
15	0.336801758096166	0.130551944164251
16	0.376419204570016	0.105248207298841
17	0.411536428585813	0.085331993905065
18	0.442182862299290	0.069307149431618
19	0.468544197473157	0.056262216704492
20	0.490926104918130	0.045591194317739
21	0.509712183266528	0.036856247437535
22	0.525324079428923	0.029718599953321
23	0.538188664791646	0.023903486275958
24	0.548714179183007	0.019182143984383
25	0.557275091154576	0.015362093349321
26	0.564204225356692	0.012281251877786
27	0.569790294279891	0.009803727756118
28	0.574279052748653	0.007816336756978
29	0.577876611760169	0.006225479519855
30	0.580753828826330	0.004954279977759
31	0.583051040061557	0.003939983084473
32	0.584882676866101	0.003131631140725
33	0.586341512098913	0.002488029932573
34	0.587502417356323	0.001976000818233
35	0.588425599366469	0.001568901847811
36	0.589159334010964	0.001245392548565
37	0.589742242898136	0.000988412979046
38	0.590205168529350	0.000784346962544
39	0.590572706066854	0.000622340879842
40	0.590864446612821	0.000493752073999
41	0.591095981339433	0.000391704112227
42	0.591279709341203	0.000310729421064
43	0.591425485612329	0.000246482903886
44	0.591541139555665	0.000195512933256
45	0.591632889117233	0.000155078534774
46	0.591705671070015	0.000123003642420
47	0.591763404118662	0.000097561032407

48	0.591809198296997	0.000077379970548
49	0.591845521500636	0.000061372777725
50	0.591874331853432	0.000048676469388

REFERÊNCIAS BIBLIOGRÁFICAS

https://ava.ufes.br/pluginfile.php/221460/mod_assign/introattachment/0/EP2.pdf?

forcedownload=1 Acesso: dia 14/11/2018 às 09:03h.

https://pt.wikipedia.org/wiki/M%C3%A9todo_da_bisse%C3%A7%C3%A3o Acesso: dia 03/12/2018 às 9:10h.

https://pt.wikipedia.org/wiki/M%C3%A9todo_de_Newton%E2%80%93Raphson Acesso: dia 03/12/2018 às 9:30h.

http://jupyter.org/ Acesso: dia 04/12/2018 às 16:13h.