Week 7 Section Review of SVD

Zichen Chen

Content

Review

Demo

Singular value decomposition

- Eigen decomposition
- Rank of a Matrix
- Norm of a Matrix

Eigen decomposition

- Eigenvector, eigenvalue
- Eigenvector
 - a vector whose product when multiplied by the matrix is a scalar multiple of itself.
 - corresponding multiplier —> eigenvalue
- if A is a matrix, v is a eigenvector of A, and λ is the corresponding eigenvalue, then $Av=\lambda v$.

Eigen decomposition - Example

$$A = \begin{pmatrix} 4 & 0 & -1 \\ 2 & -2 & 3 \\ 7 & 5 & 0 \end{pmatrix} \quad v = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$Av = \begin{pmatrix} 4 & 0 & 1 \\ 2 & -2 & 3 \\ 5 & 7 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4*1+0*1+1*2 \\ 2*1+-2*1+3*2 \\ 5*1+7*1+0*2 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ 12 \end{pmatrix} = 6v$$
Eigenvector

Eigenvalue

Find the eigenvalues/vectors

- To find the eigenvalues/vectors of a $n \times n$ square matrix
 - solve $det(A \lambda I) = 0$
 - Where A is the matrix, λ is the eigenvalue, and I is an $n \times n$ identity matrix.

Find the eigenvalues/vectors - example

$$A = \begin{pmatrix} 4 & 3 \\ 2 & -1 \end{pmatrix}$$

$$\det(A - \lambda I) = \det\begin{pmatrix} 4 & 3 \\ 2 & -1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) = \det\begin{pmatrix} 4 - \lambda & 3 \\ 2 & -1 - \lambda \end{pmatrix} = 0$$

•
$$det(A - \lambda I) = (4 - \lambda)(-1 - \lambda) - 3 * 2 = \lambda^2 - 3\lambda - 10 = (\lambda + 2)(\lambda - 5) = 0$$

• eigenvalues of A must be -2 and 5 —> corresponding eigenvectors

Singular Value Decomposition

- SVD is a factorization of a matrix that generalizes the eigen decomposition of a square matrix to any mxn matrix
- We will decompose A into 3 matrices

- U and V are orthogonal matrices $(U^{\mathsf{T}}=U^{-1} \text{ and } V^{\mathsf{T}}=V^{-1})$
- D is a diagonal matrix (all 0 except the diagonal).
 - Its elements σ i are ordered: σ 0 > σ 1 > ... $\sigma_{\min(m,n)-1} \ge 0$
- σ are called the **singular values** of M

SVD - example

How the linear transformation associated with matrices?

each coordinate of the unit circle was multiplied by two

SVD - calculation

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \longrightarrow \mathbf{A}^{T} \mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \\
\mathbf{A} \mathbf{A}^{T} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Get eigenvalue and eigenvector

$$A^{T}A: \lambda_{1} = 3; v_{1} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}; \lambda_{2} = 1; v_{2} = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

$$AA^{T}: \lambda_{1} = 3; u_{1} = \begin{pmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix}; \lambda_{2} = 1; u_{2} = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{pmatrix}; \lambda_{3} = 0; u_{3} = \begin{pmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$$

SVD - calculation

- $Av_i = \sigma_i u_i, i = 1,2 ((A^T A)v_i = \lambda_i v_i)$
- Singular value

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \sigma_1 \begin{pmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix} \Rightarrow \sigma_1 = \sqrt{3}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \sigma_2 \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{pmatrix} \Rightarrow \sigma_2 = 1$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \sigma_2 \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{pmatrix} \Rightarrow \sigma_2 = 1$$

· SVD:

$$A = U\Sigma V^{T} = \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

SVD - importance

$$A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T \approx U_{m \times k} \Sigma_{k \times k} V_{k \times n}^T$$

To approach the matrix

Extend - from machine learning

Clustering

 Clustering can be used to simplify our data by reducing the number of rows in our dataset by grouping several rows into one

Dimensionality reduction

 Dimensionality reduction can be used to simplify our data by reducing the number of columns in our dataset.

Dimensionality reduction

- Dimensionality reduction algorithms help us simplify our data.
 - reduce the number of features in the dataset without losing much information

Summary

- A common type of unsupervised learning algorithms
 - clustering and dimensionality reduction
- Clustering is used to group data into similar clusters to extract information or make it easier to handle.
- Dimensionality reduction is a way to simplify our data, by joining certain similar features and losing as little information as possible.
- Singular value decomposition can simplify our data by reducing both the number of rows and columns.