Mathematical Physics

Pugazharasu

July 2020

Preface

This document is simply the collective summary of all of the fundamental mathematics that I have learnt over the years. This assumes a little mathematical maturity. More niche subjects such as analysis, topology and Lie theory are relegated in separate documents. This should only be treated as a revision/recall document and not as a learning material since it is devoid of lenghty explanations and often assumes you have at least briefly read through the cited texts or similar material.

Contents

Preface											
1	Rings										
	1.1	Definition									
	1.2	Formal Construction of Integers and Polynomials									
2	Galois Theory										
	2.1	Heuristics									
		2.1.1 The big question									
		2.1.2 More big questions									
		2.1.3 Visualizing field extensions									
		2.1.4 Irreducible polynomials									
		2.1.5 Galois groups									
		2.1.6 The heart of Galois theory									
		2.1.7 Unsolvability									
	2.2	The Main Theorem of Galois Theory									
	2.3	Cubic Equations									
	2.4	Symmetric Functions									
	2.5	Primitive Elements									
	2.6	Proof of the Main Theorem									
	2.7	Quartic Equations									
	2.8	Kummer Extensions									
	2.9	Cyclotomic Extensions									
	2.10	Quintic Equations									
3	Unconstrained Optimization & Linear Programming										
	3.1	Basic Concepts									
	3.2	Linear Programming									
	3.3	Simplex Method									
		3 3 1 Simpley Method: Difficulties									

vi *CONTENTS*

4	Graphs & Combinotorial Optimization								
	4.1	Combinotorial Optimization	7						
	4.2	Graphs	8						
	4.3	Digraphs	8						
	4.4	Shortest Path Problems	8						
		4.4.1 Complexities	8						
	4.5	Bellman's Principle	8						
	4.6	Dijkstra's Algorithm	8						
	4.7	Shortest Spanning Trees	8						
		4.7.1 Greedy's Algorithm	8						
		4.7.2 Prim's Algorithm	8						
	4.8	Flows in Networks	8						
		4.8.1 Maximum Flow: Ford-Fulkerson Algorithm	8						
	4.9	Bipartite Graphs	8						
5	Pro	bability	9						
6	S Statistics								

Rings

- 1.1 Definition
- 1.2 Formal Construction of Integers and Polynomials

Galois Theory

ο .	4	TT			•	, •	
2.		н	e_1	ır	18	1. 1	CS

- 2.1.1 The big question
- 2.1.2 More big questions
- 2.1.3 Visualizing field extensions
- 2.1.4 Irreducible polynomials
- 2.1.5 Galois groups
- 2.1.6 The heart of Galois theory
- 2.1.7 Unsolvability
- 2.2 The Main Theorem of Galois Theory
- 2.3 Cubic Equations
- 2.4 Symmetric Functions
- 2.5 Primitive Elements
- 2.6 Proof of the Main Theorem
- 2.7 Quartic Equations
- 2.8 Kummer Extensions
- 2.9 Cyclotomic Extensions
- 2.10 Quintic Equations

Unconstrained Optimization & Linear Programming

- 3.1 Basic Concepts
- 3.2 Linear Programming
- 3.3 Simplex Method
- 3.3.1 Simplex Method: Difficulties

6CHAPTER 3. UNCONSTRAINED OPTIMIZATION & LINEAR PROGRAMMING

Graphs & Combinotorial Optimization

4.1 Combinatorial Optimization

Combinatorial Optimization concerns optimization problems of a discrete or combinatorial struture. It uses graphs and digraphs as basic tools.

- 8
- 4.2 Graphs
- 4.3 Digraphs
- 4.4 Shortest Path Problems
- 4.4.1 Complexities
- 4.5 Bellman's Principle
- 4.6 Dijkstra's Algorithm
- 4.7 Shortest Spanning Trees
- 4.7.1 Greedy's Algorithm
- 4.7.2 Prim's Algorithm
- 4.8 Flows in Networks
- 4.8.1 Maximum Flow: Ford-Fulkerson Algorithm
- 4.9 Bipartite Graphs

Chapter 5
Probability

Chapter 6
Statistics

Bibliography

- [1] Jean Claude Dutailly. *Mathematics for theoretical physics*. arXiv:1209.5665v2
- [2] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion. Addison-Wesley, Reading, Massachusetts, 1993.
- [3] Nathan Carter *Visual Group Theory*. Annalen der Physik, 322(10):891–921, 1905.
- [4] James R. Munkres *Topology*. Annalen der Physik, 322(10):891–921, 1905.
- [5] John Stillwell Naive Lie Theory. Annalen der Physik, 322(10):891–921, 1905.
- [6] Michael Artin *Algebra*Computers and Typesetting, http://www-cs-faculty.stanford.edu/~uno/abcde.html