## **A Supplementary Material**

## A.1 Technical Matter

We use the following inequality, defined for  $x \in [0, 1]$ .

$$\sqrt{1-x} + \sqrt{1+x} \le 2. \tag{12}$$

From concavity of  $\sqrt{1+z}$  if follows  $\sqrt{1+z} \le 1+\frac{1}{2}z$  and thus we have,  $\sqrt{1-x}+\sqrt{1+x} \le 1-\frac{1}{2}x+1+\frac{1}{2}x=2$ .

## A.2 Proof of Thm. 1

Proof: Define

$$\Psi_i(\mathbf{v}) = \frac{1}{2} \|\mathbf{v}\|^2 + \sum_{j=1}^i \frac{Z_j Q_j}{2} \left( y_j - \mathbf{v}^\top \mathbf{x}_j \right)^2 ,$$

Thm .3 of Cesa-Bianchi et al [11] states,

$$\begin{split} &\frac{1}{2}Z_{i}Q_{i}\left(y_{i}-\hat{p}_{i}\right)^{2} \\ &=\inf_{\mathbf{v}}\Psi_{i+1}(\mathbf{v})-\inf_{\mathbf{v}}\Psi_{i}(\mathbf{v}) \\ &+\frac{Z_{i}Q_{i}}{2}\mathbf{x}_{i}^{\top}A_{i}^{-1}\mathbf{x}_{i}-\frac{Z_{i}Q_{i}}{2}\left(\mathbf{x}_{i}^{\top}A_{i-1}^{-1}\mathbf{x}_{i}\right)\hat{p}_{i}^{2} \\ &=\inf_{\mathbf{v}}\Psi_{i+1}(\mathbf{v})-\inf_{\mathbf{v}}\Psi_{i}(\mathbf{v})+\frac{Z_{i}Q_{i}}{2}\frac{r_{i}}{1+r_{i}}-\frac{Z_{i}Q_{i}}{2}r_{i}\hat{p}_{i}^{2} \;. \end{split}$$

Summing over i,

$$\begin{split} &\frac{1}{2} \sum_{i} Z_{i} Q_{i} \left( y_{i} - \hat{p}_{i} \right)^{2} \\ \leq &\inf_{\mathbf{v}} \Psi_{m+1}(\mathbf{v}) + \sum_{i} \frac{Z_{i} Q_{i}}{2} \frac{r_{i}}{1 + r_{i}} - \sum_{i} \frac{Z_{i} Q_{i}}{2} r_{i} \hat{p}_{i}^{2} \\ \leq &\frac{1}{2} \left\| \mathbf{v} \right\|^{2} + \sum_{i=1}^{m} \frac{Z_{i} Q_{i}}{2} \left( y_{i} - \mathbf{v}^{\top} \mathbf{x}_{i} \right)^{2} \\ &+ \sum_{i} \frac{Z_{i} Q_{i}}{2} \frac{r_{i}}{1 + r_{i}} - \sum_{i} \frac{Z_{i} Q_{i}}{2} r_{i} \hat{p}_{i}^{2} \,. \end{split}$$

Expanding the two square terms, and rearranging we get,

$$\frac{1}{2} \sum_{i} Z_{i} Q_{i} \left( \hat{p}_{i}^{2} - 2y_{i} \hat{p}_{i} - \frac{r_{i}}{1 + r_{i}} + r_{i} \hat{p}_{i}^{2} \right) 
\leq \frac{1}{2} \|\mathbf{v}\|^{2} + \sum_{i=1}^{m} \frac{Z_{i} Q_{i}}{2} \mathbf{v}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v} - \sum_{i=1}^{m} Z_{i} Q_{i} y_{i} \mathbf{v}^{\top} \mathbf{x}_{i} 
= \frac{1}{2} \mathbf{v}^{\top} \left( \mathbf{I} + \sum_{i=1}^{m} Z_{i} Q_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \right) \mathbf{v} - \sum_{i=1}^{m} Z_{i} Q_{i} y_{i} \mathbf{v}^{\top} \mathbf{x}_{i} 
= \frac{1}{2} \mathbf{v}^{\top} A_{\mathbf{v}} \mathbf{v} - \sum_{i=1}^{m} Z_{i} Q_{i} y_{i} \mathbf{v}^{\top} \mathbf{x}_{i} ,$$
(13)

where we used (9) for the last step.

Since v is arbitrary we can replace it with a scaled version cv. Using a trivial relation  $1 - x \le \max\{1 - x, 0\}$  yields,

$$-Z_i Q_i c y_i \mathbf{v}^\top \mathbf{x}_i \le -c Z_i Q_i + c Z_i Q_i \ell \left( y_i \mathbf{v}^\top \mathbf{x}_i \right) . \tag{14}$$

Re-arraigning, and substituting (14) in (13),

$$\frac{1}{2} \sum_{i} Z_{i} Q_{i} \left( \hat{p}_{i}^{2} - 2y_{i} \hat{p}_{i} - \frac{r_{i}}{1 + r_{i}} + r_{i} \hat{p}_{i}^{2} + 2c \right) 
\leq \frac{1}{2} c^{2} \mathbf{v}^{\top} A_{\mathbf{v}} \mathbf{v} + c \sum_{i} Z_{i} Q_{i} \ell \left( y_{i} \mathbf{v}^{\top} \mathbf{x}_{i} \right) .$$
(15)

We now split the first sum into two alternatives, depending whether an update error was performed  $i \in \mathcal{M}$  or an update which is not an error  $i \in \mathcal{U}$ . We start with the first case of an error  $i \in \mathcal{M}$ , in which we have,  $-y_i\hat{p}_i = |\hat{p}_i|$ , and consider two subcases, depending whether the function  $\Theta(|\hat{p}_i|, r_i)$  is positive  $(i \in \mathcal{S} \cap \mathcal{M})$  or negative  $(i \in \mathcal{A} \cap \mathcal{M})$ . In the former subcase  $Q_i$  is random variable with expectation  $\mathbb{E}\left[Q_i\right] = \frac{2c}{2c + \Theta(|\hat{p}_i|, r_i)}$  and thus

$$\mathbb{E}\left[Z_iQ_i\left(\hat{p}_i^2 - 2y_i\hat{p}_i - \frac{r_i}{1+r_i} + r_i\hat{p}_i^2 + 2c\right)\right] = 2c\mathbb{E}\left[Z_i\right].$$

In the later subcase,  $Q_i = 1$  (be definition), and we bound,

$$\begin{split} \mathbb{E}\left[Z_iQ_i\bigg(\hat{p}_i^2-2y_i\hat{p}_i-\frac{r_i}{1+r_i}+r_i\hat{p}_i^2+2c\bigg)\right] \\ & \geq 2c\mathbb{E}\left[Z_i\right]-\frac{r_i}{1+r_i}\;. \end{split}$$

Now we consider examples for which an update (that is not a mistake) was performed, that is  $0 \leq y_i \hat{p}_i$ , and by definition  $i \in \mathcal{U}$ . Such cases occur only when  $i \in \mathcal{A}$ , that is  $i \in \mathcal{U} \cap \mathcal{A}$ . Updates in this case are performed when the margin is negative or causing an aggressive update (see Fig. 1), thus

$$0 \le y_i \hat{p}_i \le \theta(r_i) \le \frac{1 - \sqrt{1 - r_i}}{1 + r_i}$$

where the last inequality follows (12). We thus bound,

$$\hat{p}_i^2 - 2y_i\hat{p}_i - \frac{r_i}{1+r_i} + r_i\hat{p}_i^2 + 2c$$

$$= (1+r_i)\hat{p}_i^2 - 2y_i\hat{p}_i + \frac{r_i}{1+r_i} - 2\frac{r_i}{1+r_i} + 2c$$

$$= f(y_i\hat{p}_i) - 2\frac{r_i}{1+r_i} + 2c$$

where  $f(y_i\hat{p}_i)=(1+r_i)\hat{p}_i^2-2y_i\hat{p}_i+\frac{r_i}{1+r_i}$  is a quadratic equation with two non-negative roots and a minima,  $\frac{1\pm\sqrt{1-r_i}}{1+r_i}$ . Thus, if  $y_i\hat{p}_i$  is lower than the smaller root,  $y_i\hat{p}_i\leq \frac{1-\sqrt{1-r_i}}{1+r_i}$  then  $f(y_i\hat{p}_i)\geq 0$ , and we bound,

$$\begin{split} \mathbb{E}\left[Z_iQ_i\bigg(\hat{p}_i^2-2y_i\hat{p}_i-\frac{r_i}{1+r_i}+r_i\hat{p}_i^2+2c\bigg)\right] \\ &\geq 2c\mathbb{E}\left[Z_i\right]-\frac{2r_i}{1+r_i}\;. \end{split}$$

To summarize.

$$\frac{1}{2} \sum_{i} \mathbb{E} \left[ Z_{i} Q_{i} \left( \hat{p}_{i}^{2} + 2|\hat{p}_{i}| - \frac{r_{i}}{1 + r_{i}} + r_{i} \hat{p}_{i}^{2} + 2c \right) \right]$$

$$\geq c \sum_{i \in \mathcal{M}} \mathbb{E} \left[ Z_{i} \right] + c \sum_{i \in \mathcal{U}} \mathbb{E} \left[ Z_{i} \right]$$

$$- \frac{1}{2} \mathbb{E} \left[ \sum_{i \in \mathcal{A} \cap \mathcal{M}} \frac{r_{i}}{1 + r_{i}} \right] - \mathbb{E} \left[ \sum_{i \in \mathcal{A} \cap \mathcal{U}} \frac{r_{i}}{1 + r_{i}} \right] . \quad (16)$$

Taking the expectation of (15), using (16) to lower bound the left-hand-side concludes the proof, and the definitions,  $M = \sum_{i \in \mathcal{M}} Z_i$  and  $U = \sum_{i \in \mathcal{U}} Z_i$  we get,

$$\mathbb{E}[M] \leq \frac{1}{2} c \mathbf{v}^{\top} \mathbb{E}[A_{\mathbf{v}}] \mathbf{v} + \mathbb{E}\left[\sum_{i} Z_{i} Q_{i} \ell\left(y_{i} \mathbf{v}^{\top} \mathbf{x}_{i}\right)\right]$$

$$+ \frac{1}{2c} \mathbb{E}\left[\sum_{i \in \mathcal{A} \cap \mathcal{M}} \frac{r_{i}}{1 + r_{i}}\right]$$

$$+ \frac{1}{c} \mathbb{E}\left[\sum_{i \in \mathcal{A} \cap \mathcal{U}} \frac{r_{i}}{1 + r_{i}}\right] - \mathbb{E}[U]$$

$$\leq \frac{1}{2} c \mathbf{v}^{\top} \mathbb{E}[A_{\mathbf{v}}] \mathbf{v} + \mathbb{E}\left[\sum_{i} Z_{i} Q_{i} \ell\left(y_{i} \mathbf{v}^{\top} \mathbf{x}_{i}\right)\right]$$

$$+ \frac{1}{c} \mathbb{E}\left[\sum_{i \in \mathcal{A}} \frac{r_{i}}{1 + r_{i}}\right] - \mathbb{E}[U].$$

## A.3 Proof of Thm. 2

**Proof:** Similar the argument in beginning of Thm. 1, [22, Theorem 1] stated,

$$\sum_{i} Z_{i}Q_{i} (y_{i} - \hat{p}_{i})^{2}$$

$$= \min_{\mathbf{v}} \left( b \|\mathbf{v}\|^{2} + \sum_{i} Z_{i}Q_{i}a_{i} (y_{i} - \mathbf{v}^{\top}\mathbf{x}_{i})^{2} \right)$$

$$\leq b \|\mathbf{v}\|^{2} + \sum_{i} Z_{i}Q_{i}a_{i} (y_{i} - \mathbf{v}^{\top}\mathbf{x}_{i})^{2}$$

Expanding the two square terms,

$$\sum_{i} Z_{i} Q_{i} \left( y_{i}^{2} - 2y_{i} \hat{p}_{i} + \hat{p}_{i}^{2} \right)$$

$$\leq b \|\mathbf{v}\|^{2} + \sum_{i} Z_{i} Q_{i} a_{i} \left( y_{i}^{2} - 2y_{i} \mathbf{v}^{\top} \mathbf{x}_{i} + \mathbf{v}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \mathbf{v} \right) .$$

$$(17)$$

Rearranging (17) and using both  $y_i^2 = 1$  and (11),

$$\sum_{i} Z_{i}Q_{i} \left(1 - a_{i} - 2y_{i}\hat{p}_{i} + \hat{p}_{i}^{2}\right)$$

$$\leq b \|\mathbf{v}\|^{2} + \sum_{i} Z_{i}Q_{i}a_{i}\mathbf{v}^{\top}\mathbf{x}_{i}\mathbf{x}_{i}^{\top}\mathbf{v} - 2\sum_{i} Z_{i}Q_{i}a_{i}y_{i}\mathbf{v}^{\top}\mathbf{x}_{i}$$

$$= \mathbf{v}^{\top}A_{\mathbf{v}}^{a}\mathbf{v} - 2\sum_{i} Z_{i}Q_{i}a_{i}y_{i}\mathbf{v}^{\top}\mathbf{x}_{i}.$$
(18)

We use again the relation (14). Substituting in (18) together with the bound [22, Eq. 30],

$$1 \le a_i \le \frac{b}{b-1}, \ a_i - 1 \le \left(\frac{b}{b-1}\right)^2 \frac{r_i}{1+r_i}$$

we obtain,

$$\sum_{i} Z_{i}Q_{i} \left( -\frac{r_{i}}{1+r_{i}} - 2y_{i}\hat{p}_{i} + \hat{p}_{i}^{2} + 2ca_{i} \right)$$

$$\leq c^{2}\mathbf{v}^{\top}A_{\mathbf{v}}^{a}\mathbf{v} + 2\sum_{i} Z_{i}Q_{i}\frac{bc}{b-1}\ell\left(y_{i}\mathbf{x}_{i}^{\top}\mathbf{v}\right)$$

$$+\left(\left(\frac{b}{b-1}\right)^{2} - 1\right)\sum_{i} Z_{i}Q_{i}\frac{r_{i}}{1+r_{i}}.$$
(19)

As before, split the first sum into two alternatives, depending whether an update error was performed  $i \in \mathcal{M}$  or an update which is not an error  $i \in \mathcal{U}$ . We start with the first case of an error  $i \in \mathcal{M}$ , in which we have,  $-y_i\hat{p}_i = |\hat{p}_i|$ , and consider two subcases, depending whether the function  $\Gamma(|\hat{p}_i|, r_i)$  is positive  $(i \in \mathcal{S} \cap \mathcal{M})$  or negative  $(i \in \mathcal{A} \cap \mathcal{M})$ . In the former subcase  $Q_i$  is random variable with expectation  $\mathbb{E}\left[Q_i\right] = \frac{2ca_i}{2ca_i + \Gamma(|\hat{p}_i|, r_i)}$  and thus,

$$\mathbb{E}\left[Z_iQ_i\left(\hat{p}_i^2 - 2y_i\hat{p}_i - \frac{r_i}{1+r_i} + 2ca_i\right)\right] = 2c\mathbb{E}\left[Z_ia_i\right]$$
  
 
$$\geq 2c\mathbb{E}\left[Z_i\right].$$

In the later subcase,  $Q_i = 1$  (be definition), and we bound,

$$\begin{split} \mathbb{E}\left[Z_iQ_i\bigg(\hat{p}_i^2-2y_i\hat{p}_i-\frac{r_i}{1+r_i}+2ca_i\bigg)\right]\\ &\geq 2c\mathbb{E}\left[Z_i\right]-\frac{r_i}{1+r_i}\;. \end{split}$$

Now we consider examples for which an update (that is not a mistake) was performed, that is  $0 \leq y_i \hat{p}_i$ , and by definition  $i \in \mathcal{U}$ . Such cases occur only when  $i \in \mathcal{A}$ , that is  $i \in \mathcal{U} \cap \mathcal{A}$ . Updates in this case are performed when the margin is negative or causing an aggressive update (see Fig. 1),

$$0 \le y_i \hat{p}_i \le \gamma(r_i) \le 1 - \sqrt{1 - \frac{r_i}{1 + r_i}}$$

where the last inequality follows (12). We thus bound,

$$\hat{p}_{i}^{2} - 2|\hat{p}_{i}| - \frac{r_{i}}{1 + r_{i}} + 2ca_{i}$$

$$= \hat{p}_{i}^{2} - 2|\hat{p}_{i}| + \frac{r_{i}}{1 + r_{i}} - 2\frac{r_{i}}{1 + r_{i}} + 2ca_{i}$$

$$= f(y_{i}\hat{p}_{i}) - 2\frac{r_{i}}{1 + r_{i}} + 2ca_{i},$$

where  $f(y_i\hat{p}_i)=\hat{p}_i^2-2|\hat{p}_i|+\frac{r_i}{1+r_i}$  is a quadratic equation with two non-negative roots and a minima,  $\frac{1\pm\sqrt{1-r_i}}{1+r_i}$ . Thus, if  $y_i\hat{p}_i$  is lower than the smaller root,  $y_i\hat{p}_i\leq 1-\sqrt{1-\frac{r_i}{1+r_i}}$  then  $f(y_i\hat{p}_i)\geq 0$ , and we bound,

$$\mathbb{E}\left[Z_iQ_i\left(\hat{p}_i^2 - 2y_i\hat{p}_i - \frac{r_i}{1+r_i} + 2ca_i\right)\right]$$

$$\geq 2c\mathbb{E}\left[Z_i\right] - \frac{2r_i}{1+r_i}.$$

To summarize,

$$\frac{1}{2} \sum_{i} \mathbb{E} \left[ Z_{i} Q_{i} \left( \hat{p}_{i}^{2} + 2|\hat{p}_{i}| - \frac{r_{i}}{1+r_{i}} + 2ca_{i} \right) \right]$$

$$\geq \frac{1}{2} c \sum_{i \in \mathcal{M}} \mathbb{E} \left[ Z_{i} \right] + \frac{1}{2} c \sum_{i \in \mathcal{U}} \mathbb{E} \left[ Z_{i} \right]$$

$$- \frac{1}{2} \mathbb{E} \left[ \sum_{i \in \mathcal{A} \cap \mathcal{M}} \frac{r_{i}}{1+r_{i}} \right] - \mathbb{E} \left[ \sum_{i \in \mathcal{A} \cap \mathcal{U}} \frac{r_{i}}{1+r_{i}} \right] . \quad (20)$$

Taking the expectation of (19), using (20) to lower bound the left-hand-side concludes the proof, and the definitions,  $M = \sum_{i \in \mathcal{M}} Z_i$  and  $U = \sum_{i \in \mathcal{U}} Z_i$  we get,

$$\mathbb{E}\left[M\right] \leq \frac{1}{2}c\mathbf{v}^{\top}\mathbb{E}\left[A_{\mathbf{v}}^{a}\right]\mathbf{v} + \frac{b}{b-1}\mathbb{E}\left[\sum_{i} Z_{i}Q_{i}\ell\left(y_{i}\mathbf{v}^{\top}\mathbf{x}_{i}\right)\right] \\ + \frac{1}{2c}\mathbb{E}\left[\sum_{i\in\mathcal{A}\cap\mathcal{M}} \frac{r_{i}}{1+r_{i}}\right] + \frac{1}{c}\mathbb{E}\left[\sum_{i\in\mathcal{A}\cap\mathcal{U}} \frac{r_{i}}{1+r_{i}}\right] \\ + \frac{1}{c}\left(\left(\frac{b}{b-1}\right)^{2} - 1\right)\sum_{i\in\mathcal{M}\cup\mathcal{U}}\mathbb{E}\left[Z_{i}Q_{i}\frac{r_{i}}{1+r_{i}}\right] - \mathbb{E}\left[U\right] \\ \leq \frac{1}{2}c\mathbf{v}^{\top}\mathbb{E}\left[A_{\mathbf{v}}^{a}\right]\mathbf{v} + \frac{b}{b-1}\mathbb{E}\left[\sum_{i\in\mathcal{M}\cup\mathcal{U}} Z_{i}Q_{i}\ell\left(y_{i}\mathbf{v}^{\top}\mathbf{x}_{i}\right)\right] \\ + \frac{1}{c}\left(\left(\frac{b}{b-1}\right)^{2} + 1\right)\mathbb{E}\left[\sum_{i\in\mathcal{M}\cup\mathcal{U}} \frac{r_{i}}{1+r_{i}}\right] - \mathbb{E}\left[U\right].$$

Table 4: Average number of queries and test error results for six algorithms for 10 binary classification problems based on the RCV1 dataset.

|           | 1                 | RAND    |             | BBQ     |              | CBGZ-ridge |             | DAGGER-ridge |                    | DAGGER-wemm |             | AROW    |             |
|-----------|-------------------|---------|-------------|---------|--------------|------------|-------------|--------------|--------------------|-------------|-------------|---------|-------------|
|           |                   | queries | error       | queries | error        | queries    | error       | queries      | error              | queries     | error       | queries | error       |
|           | CCAT ECAT         | 11,809  | 5.26 (0.30) | 14,409  | 6.98 (0.34)  | 23,448     | 3.25 (0.12) | 20,831       | <b>2.44</b> (0.04) | 21,014      | 2.52 (0.03) | 355,360 | 2.23 (0.04) |
|           | CCAT GCAT         | 14,006  | 3.69 (0.23) | 0       | 63.54 (0.11) | 21,393     | 2.29 (0.12) | 18,741       | <b>1.62</b> (0.03) | 20,279      | 1.70 (0.03) | 419,648 | 1.47 (0.03) |
|           | CCAT MCAT         | 14,338  | 4.38 (0.23) | 0       | 33.57 (0.13) | 21,305     | 2.63 (0.05) | 19,262       | <b>1.98</b> (0.02) | 19,411      | 2.06 (0.04) | 429,676 | 1.80 (0.01) |
|           | ECAT GCAT         | 14,560  | 3.95 (0.20) | 0       | 28.16 (0.10) | 19,977     | 2.75 (0.17) | 18,518       | <b>2.09</b> (0.07) | 17,030      | 2.19 (0.06) | 218,603 | 1.89 (0.05) |
|           | ECAT MCAT         | 15,899  | 4.89 (0.36) | 9,881   | 10.03 (1.01) | 21,039     | 3.36 (0.10) | 20,663       | <b>2.55</b> (0.04) | 19,155      | 2.61 (0.04) | 238,628 | 2.33 (0.04) |
|           | MCAT GCAT         | 11,545  | 2.68 (0.20) | 0       | 46.02 (0.12) | 21,313     | 1.58 (0.03) | 17,984       | <b>1.15</b> (0.02) | 20,835      | 1.23 (0.03) | 346,270 | 1.07 (0.03) |
|           | CCAT              | 18,271  | 5.46 (0.13) | 3,216   | 17.52 (2.21) | 23,582     | 3.64 (0.06) | 22,926       | <b>2.67</b> (0.03) | 20,791      | 2.76 (0.01) | 548,056 | 2.37 (0.02) |
| l B       | ECAT              | 18,253  | 3.16 (0.12) | 6,708   | 6.53 (0.21)  | 19,780     | 2.07 (0.03) | 19,640       | <b>1.53</b> (0.03) | 19,248      | 1.60 (0.02) | 548,056 | 1.43 (0.03) |
|           | GCAT              | 18,232  | 2.42 (0.14) | 2,736   | 6.48 (1.62)  | 20,340     | 1.41 (0.03) | 19,077       | <b>0.91</b> (0.02) | 18,877      | 0.97 (0.02) | 548,056 | 0.82 (0.02) |
|           | MCAT              | 18,369  | 3.78 (0.23) | 8,088   | 13.62 (1.36) | 21,008     | 2.34 (0.11) | 19,062       | <b>1.67</b> (0.02) | 20,701      | 1.71 (0.05) | 548,056 | 1.51 (0.04) |
|           | CCAT ECAT         | 35,482  | 4.29 (0.22) | 42,036  | 5.30 (0.16)  | 46,529     | 3.08 (0.05) | 42,255       | <b>2.42</b> (0.04) | 38,226      | 2.49 (0.04) | 355,360 | 2.23 (0.04) |
|           | CCAT GCAT         | 41,954  | 3.05 (0.10) | 0       | 63.54 (0.11) | 43,187     | 2.16 (0.06) | 36,897       | <b>1.61</b> (0.01) | 36,609      | 1.68 (0.04) | 419,648 | 1.47 (0.03) |
| 0000      | CCAT MCAT         | 42,883  | 3.74 (0.23) | 25,460  | 7.58 (0.76)  | 43,400     | 2.54 (0.10) | 38,811       | <b>1.96</b> (0.04) | 35,648      | 2.04 (0.03) | 429,676 | 1.80 (0.01) |
| 1 8       | ECAT GCAT         | 43,751  | 3.40 (0.22) | 39,384  | 6.31 (0.80)  | 47,920     | 2.62 (0.09) | 39,539       | <b>2.06</b> (0.06) | 43,612      | 2.15 (0.06) | 218,603 | 1.89 (0.05) |
| 1/        | ECAT MCAT         | 39,824  | 4.37 (0.23) | 37,003  | 7.94 (0.77)  | 41,509     | 3.21 (0.11) | 36,696       | <b>2.52</b> (0.06) | 35,018      | 2.62 (0.05) | 238,628 | 2.33 (0.04) |
| ès        | MCAT GCAT         | 34,636  | 2.17 (0.13) | 0       | 46.02 (0.12) | 43,120     | 1.55 (0.04) | 40,951       | <b>1.15</b> (0.03) | 37,922      | 1.22 (0.03) | 346,270 | 1.07 (0.03) |
| eri.      | MCAT GCAT<br>CCAT | 36,703  | 5.05 (0.19) | 3,216   | 17.52 (2.21) | 46,976     | 3.37 (0.05) | 39,700       | <b>2.60</b> (0.04) | 42,266      | 2.71 (0.01) | 548,056 | 2.37 (0.02) |
| - 8       | ECAT              | 36,532  | 2.85 (0.07) | 6,708   | 6.53 (0.21)  | 40,953     | 1.97 (0.05) | 34,733       | <b>1.52</b> (0.04) | 35,564      | 1.59 (0.03) | 548,056 | 1.43 (0.03) |
|           | GCAT              | 36,489  | 2.38 (0.35) | 2,736   | 6.48 (1.62)  | 41,383     | 1.27 (0.04) | 40,761       | <b>0.92</b> (0.02) | 34,467      | 0.98 (0.02) | 548,056 | 0.82 (0.02) |
|           | MCAT              | 36,542  | 3.23 (0.24) | 8,088   | 13.62 (1.36) | 43,090     | 2.20 (0.11) | 38,523       | <b>1.63</b> (0.03) | 37,315      | 1.68 (0.04) | 548,056 | 1.51 (0.04) |
|           | CCAT ECAT         | 82,909  | 3.79 (0.04) | 74,711  | 4.78 (0.16)  | 91,057     | 3.04 (0.05) | 63,865       | <b>2.42</b> (0.02) | 59,145      | 2.49 (0.03) | 355,360 | 2.23 (0.04) |
| 10        | CCAT GCAT         | 84,014  | 2.79 (0.09) | 45,729  | 4.76 (0.43)  | 85,096     | 2.06 (0.05) | 70,422       | <b>1.61</b> (0.02) | 69,709      | 1.66 (0.04) | 419,648 | 1.47 (0.03) |
| 100000    | CCAT MCAT         | 85,732  | 3.33 (0.15) | 58,353  | 6.10 (0.29)  | 87,427     | 2.46 (0.06) | 74,771       | <b>1.97</b> (0.03) | 69,960      | 2.01 (0.04) | 429,676 | 1.80 (0.01) |
|           | ECAT GCAT         | 65,599  | 3.19 (0.12) | 39,384  | 6.31 (0.80)  | 71,451     | 2.64 (0.11) | 39,539       | <b>2.06</b> (0.06) | 43,612      | 2.15 (0.06) | 218,603 | 1.89 (0.05) |
|           | ECAT MCAT         | 71,373  | 3.98 (0.12) | 65,837  | 6.82 (0.51)  | 77,841     | 3.25 (0.03) | 44,888       | <b>2.52</b> (0.06) | 42,829      | 2.64 (0.03) | 238,628 | 2.33 (0.04) |
| \ \varphi | MCAT GCAT         | 80,748  | 1.91 (0.06) | 81,336  | 3.49 (0.56)  | 84,463     | 1.52 (0.04) | 51,039       | <b>1.15</b> (0.04) | 57,702      | 1.21 (0.04) | 346,270 | 1.07 (0.03) |
| ij.       | CCAT<br>ECAT      | 91,279  | 4.39 (0.20) | 58,233  | 11.08 (1.39) | 95,560     | 3.27 (0.09) | 87,712       | <b>2.56</b> (0.01) | 80,371      | 2.65 (0.02) | 548,056 | 2.37 (0.02) |
| dne       | ECAT              | 72,992  | 2.81 (0.06) | 6,708   | 6.53 (0.21)  | 84,122     | 1.90 (0.05) | 69,718       | <b>1.54</b> (0.03) | 70,069      | 1.58 (0.01) | 548,056 | 1.43 (0.03) |
|           | GCAT              | 72,986  | 1.83 (0.09) | 64,671  | 3.28 (0.68)  | 83,104     | 1.26 (0.03) | 79,874       | <b>0.91</b> (0.03) | 66,697      | 0.95 (0.01) | 548,056 | 0.82 (0.02) |
|           | MCAT              | 73,087  | 3.05 (0.07) | 8,088   | 13.62 (1.36) | 88,594     | 2.13 (0.08) | 74,872       | <b>1.62</b> (0.02) | 73,548      | 1.67 (0.03) | 548,056 | 1.51 (0.04) |

Table 5: Average number of queries and test error results for six algorithms for three binary classification problems based on the sentiment dataset.

|                 | I                                | RAND                          |                                                   | BBQ                          |                                             | CBGZ-ridge                    |                                            | DAGGER-ridge                  |                                                   | DAGGER-wemm                   |                                                   | AROW                          |                                            |
|-----------------|----------------------------------|-------------------------------|---------------------------------------------------|------------------------------|---------------------------------------------|-------------------------------|--------------------------------------------|-------------------------------|---------------------------------------------------|-------------------------------|---------------------------------------------------|-------------------------------|--------------------------------------------|
|                 |                                  | queries                       | error                                             | queries                      | error                                       | queries                       | error                                      | queries                       | error                                             | queries                       | error                                             | queries                       | error                                      |
|                 | Amazon 4<br>Amazon 3<br>Amazon 1 | 25,516<br>25,593<br>25,515    | <b>29.59</b> (1.14)<br>8.62 (0.52)<br>7.56 (0.68) | 37,416<br>14,069<br>18,598   | 29.12 (1.05)<br>11.12 (1.48)<br>7.06 (0.52) | 48,347<br>49,632<br>43,549    | 23.54 (0.53)<br>5.89 (0.22)<br>5.35 (0.14) | 43,287                        | - (-)<br>- (-)<br><b>4.37</b> (0.12)              | 47,202<br>42,103              | - (-)<br><b>4.32</b> (0.10)<br>4.60 (0.20)        | 765,424<br>765,424<br>765,424 | 19.48 (0.18)<br>3.73 (0.04)<br>4.13 (0.05) |
| queries< 100000 | Amazon 4<br>Amazon 3<br>Amazon 1 | 76,694<br>76,304<br>76,554    | 28.44 (1.13)<br>7.92 (0.34)<br>6.97 (0.23)        | 37,416<br>96,134<br>18,598   | 29.12 (1.05)<br>7.95 (0.59)<br>7.06 (0.52)  | 94,716<br>96,706<br>88,039    | 23.50 (0.48)<br>5.70 (0.30)<br>5.42 (0.22) | 95,753<br>83,840              | - (-)<br><b>3.94</b> (0.16)<br><b>4.26</b> (0.06) | 93,071<br>87,776<br>74,582    | <b>20.38</b> (0.26)<br>4.06 (0.16)<br>4.50 (0.04) | 765,424<br>765,424<br>765,424 | 19.48 (0.18)<br>3.73 (0.04)<br>4.13 (0.05) |
| queries< 150000 | Amazon 3                         | 127,472<br>127,799<br>127,434 | 28.06 (0.97)<br>7.28 (0.45)<br>6.37 (0.38)        | 101,647<br>96,134<br>116,984 | 27.73 (0.75)<br>7.95 (0.59)<br>6.31 (0.10)  | 146,741<br>149,158<br>138,964 | 23.62 (0.61)<br>5.57 (0.41)<br>5.23 (0.28) | 140,657<br>135,749<br>134,827 | <b>3.94</b> (0.10)                                | 136,259<br>139,086<br>126,939 | 20.56 (0.26)<br>4.17 (0.10)<br>4.42 (0.15)        | 765,424<br>765,424<br>765,424 | 19.48 (0.18)<br>3.73 (0.04)<br>4.13 (0.05) |
| queries< 200000 | Amazon 3                         | 179,052<br>178,764<br>153,328 | 27.30 (0.53)<br>7.14 (0.53)<br>6.54 (0.36)        | 101,647<br>96,134<br>116,984 | 7.95 (0.59)                                 | 180,405<br>182,867<br>171,912 | 24.10 (0.36)<br>5.70 (0.19)<br>5.52 (0.32) | 177,854<br>179,273<br>159,887 | <b>3.89</b> (0.21)                                | 177,543<br>163,613<br>152,422 | 20.78 (0.15)<br>4.26 (0.15)<br>4.43 (0.18)        | 765,424<br>765,424<br>765,424 | 19.48 (0.18)<br>3.73 (0.04)<br>4.13 (0.05) |



Figure 4: More results: error vs no of queries labels for 12 datasets: 1vs-rest RCV (2 datasets), 1vs1 RCV (4 datasets) and 20NG (5 datasets).



Figure 5: More results: error vs no of queries labels for 12 datasets of 1vs-rest 20NG 1vs-rest.