A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 2EA

Bookmark

Show all steps: (

ON

Problem

Solve the following linear congruences:

- (a) $12x \equiv 7 \pmod{25}$
- (b) $35x \equiv 8 \pmod{12}$
- (c) $15x \equiv 9 \pmod{6}$
- (*d*) $42x \equiv 12 \pmod{30}$
- (e) $147x \equiv 49 \pmod{98}$
- $(f)39x \equiv 26 \pmod{52}$

Step-by-step solution

Step 1 of 10

(a)

Consider the congruence equation

$$12x \equiv 7 \pmod{25}$$

Use the result, if gcd(a,n)=1 then $ax \equiv b \pmod{n}$ has a solution modulo n, to solve the given equation.

The congruence equation $12x \equiv 7 \pmod{25}$ has a solution modulo 25 because

$$\gcd(12,25)=1$$

The congruence equation $12x \equiv 7 \pmod{25}$ is equivalent to $\overline{12x} = \overline{7}$ in Z_{25} .

$$\overline{x} = (\overline{12})^{-1} \overline{7} \text{ in } Z_{25}$$
 $\overline{x} = (\overline{23}) \overline{7} \text{ in } Z_{25}$
 $\overline{x} = \overline{11} \text{ in } Z_{25}$

Therefore, the solution of the congruence equation $12x \equiv 7 \pmod{25}$ is $x \equiv 11 \pmod{25}$.

Comment

Step 2 of 10

(b)

Consider the congruence equation

$$35x \equiv 8 \pmod{12}$$

Use the result, if $\gcd(a,n)=1$ then $ax\equiv b\pmod{n}$ has a solution modulo n, to solve the given equation.

The congruence equation $35x \equiv 8 \pmod{12}$ has a solution modulo 12 because

$$\gcd(35,12)=1$$

The congruence equation $35x \equiv 8 \pmod{12}$ is equivalent to $\overline{35x} = \overline{8}$ in Z_{12} .

$$\bar{x} = (\bar{35})^{-1} \bar{8} \text{ in } Z_{12}$$

$$\bar{x} = (\bar{1}1)^{-1} \bar{8} \text{ in } Z_{12}$$

$$\bar{x} = 118 \text{ in } Z_{12}$$

$$\overline{x} = \overline{4}$$
 in Z_{12}

Therefore, the solution of the congruence equation $35x \equiv 8 \pmod{12}$ is $x \equiv 4 \pmod{12}$.

Comment

Step 3 of 10

(c)

Consider the congruence equation

$$15x \equiv 9 \pmod{6}$$

Use the result, the congruence $ax \equiv b \pmod{n}$ has a solution if and only if $\gcd(a,n) \mid b$ to solve the given equation.

The congruence equation $15x \equiv 9 \pmod{6}$ has a solution modulo 6 because $\gcd(15,9) = 3$ and $3 \mid 9$.

Comment

Step 4 of 10

The solution of congruence equation $15x \equiv 9 \pmod{6}$ is same as the solution of

$$5x \equiv 3 \pmod{2} \left(\operatorname{since} \frac{15}{3} x \equiv \frac{9}{3} \left(\operatorname{mod} \frac{6}{3} \right) \right).$$

The congruence equation $5x \equiv 3 \pmod{2}$ is equivalent to $\overline{5x} = \overline{3}$ in \mathbb{Z}_2 .

$$\overline{x} = (\overline{5})^{-1} \overline{3} \text{ in } Z_2$$

$$\overline{x} = \overline{33} \text{ in } Z_2$$

$$\overline{x} = \overline{1} \text{ in } Z_2$$

Therefore, the solution of the congruence equation $15x \equiv 9 \pmod{6}$ is $x \equiv 1 \pmod{2}$.

Comment

Step 5 of 10

(d)

Consider the congruence equation

$$42x \equiv 12 \pmod{30}$$

Use the result, the congruence $ax \equiv b \pmod{n}$ has a solution if and only if $\gcd(a,n) \mid b$ to solve the given equation.

The congruence equation $42x \equiv 12 \pmod{30}$ has a solution modulo 30 because $\gcd(42,30) = 6$ and $6 \mid 12$.

Comment

Step 6 of 10

The solution of congruence equation $42x \equiv 12 \pmod{30}$ is same as the solution of

$$7x \equiv 2 \pmod{5} \left(\text{ since } \frac{42}{6} x \equiv \frac{12}{6} \left(\text{ mod } \frac{30}{6} \right) \right).$$

The congruence equation $7x \equiv 2 \pmod{5}$ is equivalent to $\overline{7x} = \overline{2}$ in Z_5 .

$$\overline{x} = (\overline{7})^{-1} \overline{2} \text{ in } Z_5$$

$$\overline{x} = \overline{32} \text{ in } Z_5$$

$$\bar{x} = \bar{1}$$
 in Z_5

Step 7 of 10

(e)

Consider the congruence equation

$$147x \equiv 49 \pmod{98}$$

Use the result, the congruence $ax \equiv b \pmod{n}$ has a solution if and only if $\gcd(a,n) \mid b$ to solve the given equation.

The congruence equation $147x \equiv 49 \pmod{98}$ has a solution modulo 98 because $\gcd(147,98) = 49$ and $49 \mid 49$.

The solution of congruence equation $147x \equiv 49 \pmod{98}$ is same as the solution of

$$3x \equiv 1 \pmod{2} \left(\operatorname{since} \frac{147}{49} x \equiv \frac{49}{49} \left(\operatorname{mod} \frac{98}{49} \right) \right).$$

Comment

Step 8 of 10

The congruence equation $3x \equiv 1 \pmod{2}$ is equivalent to $\overline{3x} = \overline{1}$ in \mathbb{Z}_2 .

$$\overline{x} = (\overline{3})^{-1} \overline{1} \text{ in } Z_2$$

$$\overline{x} = (\overline{1})^{-1} \overline{1} \text{ in } Z_2$$

$$\overline{x} = (\overline{1}) \overline{1} \text{ in } Z_2$$

$$\overline{x} = \overline{1} \text{ in } Z_2$$

Therefore, the solution of the congruence equation $147x \equiv 49 \pmod{98}$ is $x \equiv 1 \pmod{2}$.

Comment

Step 9 of 10

(f)

Consider the congruence equation

$$39x \equiv 26 \pmod{52}$$

Use the result, the congruence $ax \equiv b \pmod{n}$ has a solution if and only if $\gcd(a,n) \mid b$ to solve

the given equation.

The congruence equation $39x \equiv 26 \pmod{52}$ has a solution modulo 52 because $\gcd(39,52) = 13$ and $13 \mid 26$.

The solution of congruence equation $39x \equiv 26 \pmod{52}$ is same as the solution of

$$3x \equiv 2 \pmod{4} \left(\text{ since } \frac{39}{13} x \equiv \frac{26}{13} \left(\text{mod } \frac{52}{13} \right) \right).$$

Comment

Step 10 of 10

The congruence equation $3x \equiv 2 \pmod{4}$ is equivalent to $\overline{3x} = \overline{2}$ in \mathbb{Z}_4 .

$$\bar{x} = (\bar{3})^{-1} \bar{2} \text{ in } Z_4$$

$$\overline{x} = (\overline{3})\overline{2}$$
 in Z_4

$$\overline{x} = \overline{2}$$
 in Z_4

Therefore, the solution of the congruence equation $39x \equiv 26 \pmod{52}$ is $x \equiv 2 \pmod{4}$.

Comment