Homework 6

Problem 1. (a) Prove part (a) of Enderton's Homomorphism Theorem, page 96. (b) Give an example of two \mathcal{L} -structures M, N, a homomorphism $f: M \to N$ and a formula $\varphi(x_1, \ldots, x_k)$ such that for some $a_1, \ldots, a_k \in |M|$, $M \models \varphi(a_1, \ldots, a_k)$ but $N \models \neg \varphi(a_1, \ldots, a_k)$.

Proof. (a) Let $h: M \to N$ be a homomorphism and let s map the set of variables into |M|. If t is a constant symbol, then $h(\overline{s}(t)) = h(t^M) = t^N = \overline{h \circ s}(t)$. Suppose that the statement is true for a term built by applying n or fewer function symbols and let t be a term built by applying n+1 function symbols. Then $t = f(t_1, \ldots, t_k)$ and

$$h(\overline{s}(t)) = h(\overline{s}(f^{M}(t_{1}, \dots, t_{k})))$$

$$= h(f^{M}(\overline{s}(t_{1}), \dots, \overline{s}(t_{k})))$$

$$= f^{N}(h(\overline{s}(t_{1})), \dots, h(\overline{s}((t_{k}))))$$

$$= f^{N}(\overline{h \circ s}(t_{1}), \dots, \overline{h \circ s}(t_{k}))$$

$$= \overline{h \circ s}(t).$$

(b) Let $M = (\mathbb{N}, <)$ and $N = (\mathbb{Q}, <)$. Let $h : M \to N$ be the identity map. Let $\varphi = \exists x \forall y ((x < y) \lor (x = y))$. Then $M \models \varphi$ witnessed by x = 0 but $N \models \neg \varphi$ since there is no least element of \mathbb{Q} .

Problem 2. Let M, N be \mathcal{L} structures. Say that M is an elementary submodel of N (written $M \leq N$) if $|M| \subseteq |N|$ and 1(b) is not an issue, i.e. for every $k < \omega$, every \mathcal{L} -formula φ in k free variables, and $a_1, \ldots, a_k \in |M|$, $M \models \varphi(a_1, \ldots, a_k)$ iff $N \models \varphi(a_1, \ldots, a_k)$.

- (a) Show that $M \leq N$ iff for every \mathcal{L} -formula $\varphi(x, y_1, \ldots, y_k)$ and every $a_1, \ldots, a_k \in |M|$, if $N \models \exists x \varphi(x, a_1, \ldots, a_k)$ then $N \models \varphi(c, a_1, \ldots, a_k)$ for some $c \in |M|$.
- (b) Let $\langle M_i \mid i < \omega \rangle$ be an elementary chain, i.e. $i < j \implies M_i \leq M_j$. Let $M = \bigcup_{i < \omega} M_i$. Show that for each $i < \omega$, $M_i \leq M$.
- (c) Give an example to show that $(M \subseteq N \text{ and } M \equiv N)$ doesn't imply $M \preceq N$.
- *Proof.* (a) Suppose that $M \leq N$. Then $N \models \exists x \varphi(x, a_1, \ldots, a_k)$ if and only if $M \models \exists x \varphi(x, a_1, \ldots, a_k)$. But if that's true then there must be some $c \in |M|$ which witnesses it, so that $M \models \varphi(c, a_1, \ldots, a_k)$. But then $N \models \varphi(c, a_1, \ldots, a_k)$. Now suppose the hypothesis for the converse. If φ is a formula in k free variables and $M \models \varphi$, then certainly $N \models \varphi$ since M is a submodel of N. Now if $N \models \varphi$ then $N \models \exists x \varphi(x, a_1, \ldots, a_k)$ since we can always add a tautology using x to φ . But then by hypothesis, $N \models \varphi(c, a_1, \ldots, a_k)$ for some $c \in |M|$ and therefore $M \models \varphi(c, a_1, \ldots, a_k)$ which means $M \models \varphi(a_1, \ldots, a_k)$.
- (b) Clearly $|M_i| \subseteq |M|$. If φ is a formula in k free variables and $M_i \models \varphi(a_1, \ldots, a_k)$ but $M \models \neg \varphi(a_1, \ldots, a_k)$, then there must exist j such that $M_j \models \neg \varphi(a_1, \ldots, a_k)$. But then $M_i \not\preceq M_j$ which is a contradiction. Conversely, suppose that $M \models \varphi(a_1, \ldots, a_k)$ for $a_1, \ldots, a_k \in M_i$. Then it must be the case that $M_i \models \varphi(a_1, \ldots, a_k)$ since M_i is a submodel of M.

(c) Let
$$M = (\mathbb{Q}, 1, +, \cdot)$$
 and $N = (\mathbb{R}, 1+, \cdot)$. Then let $\varphi = \neg(x \cdot x) = (1+1)$.

Problem 3. Suppose Γ is a set of \mathcal{L} -sentences, c is a constant symbol which does not occur in \mathcal{L} , and $\varphi = \varphi(x)$ is an \mathcal{L} -formula in one free variable. Then

$$\Gamma \cup \{\exists x \varphi(x) \to \varphi(c)\}\$$

is consistent.

Proof. Suppose $\Gamma' = \Gamma \cup \{\exists x \varphi(x) \to \varphi(c)\}$ is not consistent. Then we can derive any formula from Γ' . In particular $\Gamma' \vdash \varphi(c)$. From the generalization of constants, we know also that $\Gamma' \vdash \forall x \varphi(x)$. But then we have $\Gamma' \vdash \forall x \varphi(x) \to \varphi(c)$. This is a contradiction.

Problem 4. A binary relation \leq on a set P is a partial ordering if it is irreflexive and transitive. If $Y \subseteq P$ is any subset, $c \in P$ is an upper bound for Y if $y \leq c$ for every $y \in Y$. Zorn's lemma states that if (P, <) is a nonempty partially ordered set such that every chain in P has an upper bound, then P has a maximal element. A filter F is principle if there is $X \in F$ such that for all $Z \in F$, $X \subseteq Z$. Show using Zorn's lemma that every filter on an infinite set I which does not contain any finite subsets of I can be extended to a nonprincipal ultrafilter.

Proof. Partially order the filters on I by containment. For a filter \mathcal{F} , let $\overline{\mathcal{F}}$ be the set of filters bigger than or equal to \mathcal{F} . Let C be a chain of filters in $\overline{\mathcal{F}}$ and let $U_C = \bigcup_{\mathcal{G} \in C} \mathcal{G}$. We know that $\mathcal{F} \subseteq U$, so $U \neq \emptyset$, If $G \in U$, then G is in some filter in C, which means that every superset of G is in G. If $G \in U$, then $G \in U$ is an unit of G is in G. We can assume without loss of generality that $G \in G$ is that $G \in G$. But then $G \in G$ and thus $G \cap G$ is an upper bound for $G \cap G$ and so by Zorn's lemma $G \cap G$ is in some maximal filter $G \cap G$ of $G \cap G$ in $G \cap G$ is an upper bound for $G \cap G$ and so by Zorn's lemma $G \cap G$ is in some maximal filter $G \cap G$ is maximal, it must be an ultrafilter for $G \cap G$ is in $G \cap G$.

Problem 5. Say that a class R of \mathcal{L} -structures is an elementary class if there is a first-order set of sentences T such that $M \in R$ iff $M \models T$.

(a) Show that R is an elementary class iff it is closed under elementary equivalence and ultraproducts. (This means that any ultraproduct of elements of R is again in R, and if $M \equiv N$ with $N \in R$ then $M \in R$.)
(b) Using (a), give an example of a nonempty R which is not an elementary class.

Proof. Let R be an elementary class. It's clear that R is closed under elementary equivalence since if $M \models T$ and $M \equiv N$ then $N \models T$ as well. We also know that if M_i are elements of R and $M_i \models \varphi$, then $N = \prod_{i \in I} M_i/\mathcal{D}$ for some ultrafilter \mathcal{D} is also a model such that $N \models \varphi$. Thus R is closed under ultraproducts as well.

Now let R be a set of \mathcal{L} -structures which is closed under ultraproducts and elementary equivalence. Let T be the set of \mathcal{L} -sentences such that if $\varphi \in T$ then $M \models \varphi$. Thus $M \models T$ for all $M \in R$. Now let M be a model of T and let S be the set of \mathcal{L} -sentences φ for which $M \models \varphi$. Let S' be the set of all finite subsets of S. We know for each $s \in S'$ with $s = \{\varphi_1, \ldots, \varphi_n\}$, there exists a model $M_s \in R$ such that $M_s \models s$ because otherwise, $\neg(\varphi_1 \land \cdots \land \varphi_n) \in T$, but would be false in M. But now we know there exists an ultraproduct $N = \prod_{i \in S'} M_i$ for which $N \models S$. Since R is closed under ultraproducts, $N \in R$. But since every model of R is elementary equivalent to M, we have $M \equiv N$. Thus $M \in R$ and R is the class of all models of T. \square