CS 3120 - Module 1 HW 2

Tyler Kim

September 21

1 Prove Set Countability

To prove that the set $|\mathbf{Q} = \frac{a}{b}|$ such that $a \in \mathbf{Z}$ and $b \in \mathbf{Z}^+$ is countable, I must prove that $|\mathbf{Q}| \leq |\mathbf{N}|$.

Let the set $q = \mathbf{Z} \times \mathbf{Z}^+$ where each element in q represents a possible a and b pair in \mathbf{Q} .

Figure 1: Mapping from $\mathbf{Z} \times \mathbf{Z}^+$ with \mathbf{N}

Essentially, we start at (1,0) and let that map to x=0 and move in a snake-like pattern starting at the positive side and moving towards the negative side and vice versa, similar to that of a pendulum \mathbf{Z} . Everytime we move to a different element, we increase x by one. This is surjective because following this pattern means that we will hit every element in the co-domain of $\mathbf{Z} \times \mathbf{Z}^+$ to each value in \mathbf{N} . Since its surjective, this means that $|\mathbf{Q}| \leq |\mathbf{N}|$; therefore, \mathbf{Q} is countable.

2 Prove through Diagonalization

To prove that the set $F = \{f : \mathbf{N} \to \mathbf{N} | (a \ge b) \to (f(a) \ge f(b))\}$ is uncountable, I need to prove that there is no bijection between any function in F and the \mathbf{N} .

I will prove it by proving that a subset is uncountable since a set is uncountable if its subset is uncountable. Let $F' = \{f : \mathbf{N} \to \mathbf{N} | \forall a \in \mathbf{N}, f(a) = a^2 + b | b \in \mathbf{N}\}.$

N	0	1	2	3	4	
$f(x) = x^2$	0	1	4	9	16	•••
$f(x) = x^2 + 1$	1	2	5	10	17	•••
$f(x) = x^2 + 2$	2	3	6	11	18	
$f(x) = x^2 + 3$	3	4	7	12	19	

Figure 2: Mapping of all in F'

The Figure above represents all the possible functions in the set F' to \mathbb{N} . Let each digit i be called d_i and the transformed value to n_i . I will increment d_0 by 1 making n_0 to 1. For the following digits, n_i will be next highest value that is strictly greater than n_{i-1} and d_i . This will yield the new string to be $1, 3, 7, 13, \ldots$ I have created a new string that will not appear in the mapping because it will differ by at least one digit for each possible entry.

Since F' is not bijective to \mathbf{N} and $F' \subset F$, F is not bijective to \mathbf{N} . Therefore, $F = \{f : \mathbf{N} \to \mathbf{N} | (a \ge b) \to (f(a) \ge f(b))\}$ is uncountable.

3 Each Subset in N is Countable

To prove that every subset of N is countable, I must prove that the cardinality of each subset in N is less or equal to |N|.

Given an arbitrary subset of \mathbf{N} which we will call x, a bijective function can be made between x and \mathbf{N} . Let each element in x correspond to a particular index. For each subset of x, if a specific value exists, then the corresponding index will be 1, otherwise, it will be a 0.

```
For example: Let x = \{0, 1, 2\}

f(\{\}) = 000

f(\{0\}) = 100

f(\{0, 1\} = 110

f(\{0, 1, 2\}) = 111

etc.
```

The function is injective because given subsets of **N** which we will call X and Y where $X \neq Y$, $f(X) \neq f(Y)$ because there will be at least one bit that is different.

In addition, the function is surjective because I can find a subset of N such that it corresponds to appropriate bit configuration in N.

4 Proving $A \cup B$ is countable where B is a finite set

Given that A is a countably infinite set and B is a finite set, I must prove that $A \cup B$ must also be countable.

To make $A \cup B$ where B is a finite set countable, I need to provide a bijective function from $A \cup B$ to \mathbf{N} . To make the function, you can simply first map B to \mathbf{N} since B is a finite set. Then you can make map the rest of \mathbf{N} to A. This is injective because each value in $A \cup B$ will map to a unique value in \mathbf{N} . The function is surjective because each value in \mathbf{N} will be mapped by some value in $A \cup B$. Therefore, $A \cup B$ is bijective to \mathbf{N} making it countable.

5 Proving $A \cup B$ is countable when B is countably infinite

Given that A and B are countably infinite sets, I must prove that $|A \cup B|$ is also countable. To prove that that $A \cup B$ is countable, I must argue how $A \cup B$ can be bijectively mapped to \mathbf{N} . You can simply make a function such that each value in A is mapped to each even number in \mathbf{N} and that each value in B can be mapped to the odd values in \mathbf{N} . The function will be surjective because each value in \mathbf{N} will be mapped to $A \cup B$ since A and B are both infinite in size. The function will be injective because each value in A will be mapped to a unique even number and each value in B mapped to a unique odd number.

Therefore, you can make a bijective function from $A \cup B$ to **N** proving that $A \cup B$ is countable.