String Modification

Roy was given a string s containing only uppercase English letters. He can do any number of modifications on s. The allowed modifications are:

- 1. He can add underscore ('_') character in anywhere inside the string.
- 2. He can delete any existing character of the string.
- 3. He can swap any two characters of the string.

Every character in the resulting string has a value equal to its ASCII value.

After doing the modifications the string needs to have the following properties:

- 1. The length of the string should be equal to n.
- 2. There should be at least k characters of higher value between two equal letters (Note that, underscore is not a letter).

Calculate how many different strings Roy can achieve **modulo** $1000003 (10^6 + 3)$.

Note: In the increasing order of ASCII value, we can arrange the alphabet in the following way,

$$A < B < C < D < \cdots < X < Y < Z <$$

Input Format

The first line contains two space separated integers n $(1 \le n \le 10^9)$ and k $(0 \le k \le 10^9)$. The second line contains string s containing only uppercase English letters $(1 \le |s| \le 2500)$.

Output Format

Print the number of different strings Roy can achieve modulo $1000003 \, (10^6 + 3)$.

Sample Input #1

3 1 LBB

Sample Output #1

15

Sample Input #2

5 2 PPPP

Sample Output #2

9

Sample Input #3

8 7 DQ 73

Sample Input #4

1078 223 RMXQYQPKSSBJCAFWPXZ

Sample Output #4

451838

Explanation

In the first test case, the 15 valid strings are

BLB

 $BL_{_}$

B_B

 B_L

B_ LB_

L_B

L__

_BL

B _LB

_ _L_ _B __L