Maximum Marks	2 Marks	
Download the Dataset		
import numpy as np import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.models import Sequential import matplotlib.pyplot as plt import os		
batch_size = 16		
Image Augmentation		
<pre>data_aug = Sequential(</pre>		
os.listdir("C:\\Users\\Harini\\Flowers-Dataset")		
['flowers']		
train_data = tf.keras.utils.image_dataset_from_directory("C:\\Users\\Harini\\Flowers-Dataset", validation_splite0.25, subset="training", seed=120, image_sizee(180, 180), batch_size=batch_size)		
Found 4317 files belonging to 1 classes. Using 3238 files for training.		
<pre>val_data_set = tf.keras.utils.image_dataset_from_directory("C:\\Users\\Harrini\\Plowers-Dataset", validation_polit=0.25,</pre>		

29 September 2022

G.Harsha vardhini 910619104028

In [8]: class_names = train_data.class_names plt.fiqure(figsize=(15, 15))
for images, labels in train_data.take(1):
 for in range(6):
 ax = plt.subplot(3, 3, i + 1)
 plt.imhow(images[0].numpy().astype("uint8"))
 plt.title(class_names[labels[i]])

In [10]: normalization_layer = layers.Rescaling(1./255) In [11]:
 dataset_normalized = train_data.map(lambda x, y: (normalization_layer(x), y))
 image_batch, labels_batch = next(iter(dataset_normalized)) Create Model ${\sf Add\ Layers\ (Convolution, MaxPooling, Flatten, Dense-(Hidden\ Layers), Output)}$ In [12]: num_classes = len(class_names) num_classes = Ten(class_names)
model = Sequential([
data_aug,
layers.Rescaling(1/255, input_shape=(180, 180, 3)),
layers.Rescaling(1/255, input_shape=(180, 180, 3)),
layers.Rescaling(20(), layers.Conv2D(32,
3,activation='relu'),
layers.MaxPooling(20(), layers.Conv2D(32,
3,activation='relu'),
layers.MaxPooling(20(), layers.Conv2D(64,
3, activation='relu'),
layers.MaxPooling(2D(), layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])

Assignment Date

Student Roll Number

Found 4317 files belonging to 1 classes. Using 1079 files for validation.

Student Name

Fit The Model

In [14]: epochs=15

Compile The Model

compiling model with categorical cross entropy and adam optimizer

model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

203/203 [== Epoch 3/15 203/203 [== Epoch 4/15 203/203 [== Epoch 5/15 203/203 [== ---- - 29s 141ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val loss: 0.0000e+00 - val accuracy: 1.0000 203/203 [=

--] - 33s 154ms/step - loss: 0.0000e+00 - accuracy: 1.0000 - val_loss: 0.0000e+00 - val_accuracy: 1.0000

Training and Validation Accuracy 1.02 0.98 0.96 plt.figure(figsize=(8, 8))
plt.plot(epochs_range, history.history['loss'], label='Training Loss')
plt.plot(epochs_range, history.history['val_loss'], label='Validation Loss') plt.legend()
plt.title('Training and Validation Loss')
plt.show() Training and Validation Loss 0.02

plt.title('Training and Validation Accuracy')
plt.show()

Save The Model In [17]: model.save("./flowers.h5") In [18]: model.load_weights('./flowers.h5')

Test The Model

-0.02

from tensorflow.keras.preprocessing import image
import numpy as np

In [28]: img=image.load_img('C:\\Users\\Harini\\Flowers-Dataset\\flowers\\rose\\5172171681_5934378f08.jpg',target_size=(70,70)) img

Out[20]:

In []: