

Lending Club Case Study (M.Sc. ML/AI)

- Dhananjay Joshi
- Shajiv Kalangath

Executive Summary

- Objective Lending Club provided historical data with several customer attributes and loan attributes. Objective is to apply EDA principles to find features influencing loan defaults, given the past data for 37K+ consumers.
- Key Conclusions :
 - LC Grades E, F, G have higher defaulting risk. In general, as grade increases, higher defaulting risks from approved loan requests.
 - Zip code ranges 300xx-400xx , 900xx+ and 800xx-900xx have higher defaulting tendency. (may be certain income groups ?)
 - NE state stands out in percentage terms, however, in absolute terms, CA has higher defaulting rate.
 - By absolute terms and percentage terms 'small business' and 'debt consolidation' have higher default.
 - Whoever have 2006/2007 as initial credit line year, have higher defaulting rate.
 - %wise higher defaults in 2007, however absolute number wise 2011 was special year as well when default numbers increased.
 - longer term loans (36 months) have higher risk than shorter term loans, specially it also links to employment length. So, employment length 10+ year, higher interest rate and long-term loans have higher risk of defaulting kind of deadly combination.
 - out of approved loan amount, around 60% of principle could be recovered i.e., remaining average 40% is risk that organisation carries when someone defaults. However, such risk for small loan amounts up to 15K is much higher and Bank may lose from 50-100% of approved amt.
 - Gross recoveries post charge off are higher up to 25K loan amount and for 35K as well. recoveries increased linearly with loan amount up to 25K, which means Bank is not losing money and able to recover from risk position. Likely Bank's recovery infrastructure is strong but maybe it is an additional cost.
 - Loan defaulting increases after 8 years of employment length marginally.
 - For longer term loans given for educational purposes to people with more than 8 years employment do have small risk of defaulting.

Approach

Four Step approach was taken to complete EDA and draw conclusions from the data:

- Data Cleansing
- Descriptive Statistics Review
- Data Visualization
- Inferences

I. Data Cleansing

- Drop redundant features Any features with just 1 unique value were dropped, descriptions
 which are more apt for NLP were dropped
- Conversion of DateTime Features At least five features related to time were in the format Mon-YY, they were converted to Pandas Datetime format
- Handling null values Features with majority having null values were dropped.
- Feature Derivation From existing features new features were derived (e.g., Interest rate percentage from int_rate, Employment length converted into numerical column, Zip-codes were converted as numbers, year columns were derived for few features.

II. Descriptive Statistics Review

• **Histogram Review** – Studied distribution of individual numeric features

• **Distribution and Outlier Review –** Outliers were reviewed with the help of Box Plot and IQR (Inter Quantile Range) calculations

no_of_outliers	min_outliers_value	max_outliers_value	Whisker2	Whisker1	IQR	max	75%	50%	25%	min	etd
1900	144995.00	6000000.00	144715.000	-22125.000	41710.00	6.000000e+06	82150.00	59000.000000	40440.00	4000.00	63793.847392
2490	37093.00	149588.00	37086.000	-16322.000	13352.00	1.495880e+05	17058.00	8856.000000	3706.00	0.00	15881.312055
	25.00	25.00	24.000	0.000	6.00	2.500000e+01	15.00	12.000000	9.00	5.00	3.717805
1230	29275.00	35000.00	29250.000	-8750.000	9500.00	3.500000e+04	15000.00	10000.000000	5500.00	500.00	7457.685297
1038	29500.00	35000.00	29400.000	-9000.000	9600.00	3.500000e+04	15000.00	9625.000000	5400.00	500.00	7188.173748
1000	28513.46	35000.00	28500.000	-9100.000	9400.00	3.500000e+04	14400.00	8975.000000	5000.00	0.00	7125.200485
124	826.31	1305.19	826.285	-228.395	263.67	1.305190e+03	430.78	280.610000	167.11	15.69	208.898305
	NaN	NaN	19.500	-8.500	7.00	1.000000e+01	9.00	4.000000	2.00	0.00	3.605316
430	1.00	11.00	0.000	0.000	0.00	1.100000e+01	0.00	0.000000	0.00	0.00	0.491844
362	3.00	8.00	2.500	-1.500	1.00	8.000000e+00	1.00	1.000000	0.00	0.00	1.070235
	106.00	120.00	103.000	-33.000	34.00	1.200000e+02	52.00	34.000000	18.00	0.00	21.970677
51	22.00	44.00	21.000	-3.000	6.00	4.400000e+01	12.00	9.000000	6.00	2.00	4.400232
211	1.00	4.00	0.000	0.000	0.00	4.000000e+00	0.00	0.000000	0.00	0.00	0.237217
71	52.00	90.00	51,500	-8.500	15.00	9.0000000+01	29.00	20.000000	14.00	2.00	11.400697
114	10.26	6311.47	0.000	0.000	0.00	6.311470e+03	0.00	0.000000	0.00	0.00	375.432676
114	10.26	6307,37	0.000	0.000	0.00	6.307370e+03	0.00	0.000000	0.00	0.00	374.083371
133	32995.80	58563.68	32988.735	-10884.265	10963.25	5.856368e+04	16543.86	9918.339299	5580.61	0.00	9044.347399
144	31838.41	58563.68	31831.240	-10886.120	10679.34	5.856368e+04	15812.23	9299.680000	5132.89	0.00	8940.810211
96	27400.00	35000.02	27350.000	-9050.000	9100.00	3.500002e+04	13700.00	8000.000000	4600.00	0.00	7067.348534
315	6097.72	23563.68	6096.505	-2597.215	2173.43	2.356368e+04	2836.36	1351.530000	662.93	0.00	2609.247895
204	0.01	180.20	0.000	0.000	0.00	1.802000e+02	0.00	0.000000	0.00	0.00	7.294042
421	6.30	29623.35	0.000	0.000	0.00	2.962335e+04	0.00	0.000000	0.00	0.00	689.221089
977	0.06	7009 10	0.000	0.000	0.00	7 0021000400	0.00	0.000000	0.00	0.00	148 775704

III. Data Visualization

• Univariate Analysis – Studied distribution of individual numeric and categorical features

Bi-Variate Analysis – using correlation matrix, Pivot Table and graphs, seaborn scatter plots

IV. Inferences

Customer Attributes influencing Loan Default :

Customer Attributes

Employment Length

Purpose of Loan

First Credit Line year

Zip Code and State Address

Loan Attributes influencing Loan Default :

Customer Attributes

LC Grade

Loan Tenure

Loan Issued Year

Interest Rate

Loan Amount and Recovery