Ландшафт функции потерь в задаче гроккинга: связность оптимумов

Сергей Вячеславович Грозный

Московский государственный университет им. Ломоносова

Науч. рук: к.ф.-м.н. Д.П. Ветров Консультант: Т. А. Южаков

*	а	b	С	d	е
а	а	d	?	С	d
b	С	d	d	а	С
С	?		d	b	d
d	а		?	b	С
е	b	b	С	?	а

Отрезок

$$\phi(t) = tw_1 + (1-t)w_2, t \in [0,1]$$

Ломаная (колено)

$$\phi_{\theta}(t) = \begin{cases} 2(t\theta + (0.5 - t)w_1), & t \in [0, 0.5] \\ 2((t - 0.5)w_2 + (1 - t)\theta), & t \in [0.5, 1] \end{cases}$$

График точности характерный для эффекта "гроккинга" (левый рисунок) Синтетические данные для задачи "гроккинга" (правый рисунок)

Примеры параметризации кривой для соединения минимумов

Будем оптимизировать лосс следующего вида:

$$L(\theta) = \int_0^1 Loss(\phi_{\theta}(t)) dt = E_{t \sim U[0,1]} Loss(t)$$

Соединение отрезком

Рис. 2: Кросс-энтропия с l_2 регуляризацией (слева), ошибка (центр) и норма стох. града (справа) как функции от точек на кривой $\phi(t)$ - отрезок.

Попробуем соединить несколькими отрезками

Рис. 3: Однослойный decoder-only трансформер, оптимизатор SGD с параметрами lr=0.1, weight decay=0.001, логирование весов модели каждые сто эпох (красные круги).

Первый и последний отрезок

Ломаная с одним изгибом

Соединяем другие точки

Выводы:

- ландшафт функции потерь имеет сложную структуру
 гроккинг возникает в силу блуждания по многообразию функции потерь с
- гроккинг возникает в силу олуждания по многоооразию функции потерь с нулевой ошибкой.
- с помощью построения ломаной с одним изгибом удалось достичь довольно низкую ошибку на отложенной выборке, стартуя из точки с низкой валидацией