28 Feb	2018	The Fo	st Fourie	r Transfori	n
Announcemen	etre s				
	s are graded	make -14	s are not		
Grad	es will be	announced	on Piazzo	c after	Thursday's make-up test.
- Fri	March 2.	Guest lea	ture by Jo	on Kleinberg	, , ,
,	March 2. (Closest	Pair of	Points	Chapter	5.??)
Finishing	(M. 128)	integer 1	nultiplication	٦ ٠)
Last lecture	- presented	multiplicat	ion of a	degree n-1	polynomials
using	$O(n^{(0)}z^{-}) =$	O("1.28)	arithme	tic operation	u on
Coefficients	$O(n^{1.58})$ presented $O(n^{\log_2 3}) =$			74 7	
Standing ass	sumption in	this lect	re and	Throughout	theory of algorithms: n bits, ers
When w	iorking ph a	_ problem	with in	nt size	n 6HS
arithmeti	e operations	(+)	*, \)	on lutes	e/s
of size	(lg v	() bits	Take	O(1) +u	ie.
M. II'I Ha	2	1	<i>O a</i>	0	G
Mary	e binary nur	by	la la	n-3	<u>_</u>
		7	9h-1 2n-2	m- 3	- b
Method: D	ecine A(x)	= ax	+ . +	a. B(x)) = b _{n-1} x + + b _o
Commente	C(x) = A((1) B(V) =	2,	~Z	-) shq
4550	0 (N'58) arith	nmetat a	2n-2×		0
(pefficionts	of ((x)		, 00(1 (0.0)		
	c, =	2 a. L), 1	Convoluto	n
	0 5	$C_{\nu} \leq k$	Cv	. has	E les ~ Lits.
The same	applies to	The m	bernediate	Dolynomial	r wed in
the s	niable of	the dri	de li cong	ver: all	cofficient
Fa	d such po	lymmials	are (s	igned) into	29ers
of a	bodute value	, ' < n	, hence	e 0(la	n) Lits suffice.
Every	withmetic a	p take	0(1)		,
•					
The inpu	it integers	Were	A(2), $B($	(2),	
The out	nt should	be	C(2)	-	

An algorithm that multiplies degree not phynomials using O(n 10, n) withmeter ops... FFT! Super useful because poly. mult. encodes Convolution and convolution is everywhere! Ex. \times and \times are random vars, indep, taking $\{0,...,n-1\}$ values. Compute for all $0 \le k \le 2n-2$, $\{(x+y=k),...\}$ Pr(X+Y=k) = $\sum_{i=0}^{K} Pr(X=i) Pr(Y=k-i)$ Define $A(x) = \sum_{i=0}^{n-1} P_r(X=i) \times \hat{B}(x) = \sum_{i=0}^{n-1} P_r(Y=i) \times \hat{A}$ then solving the probability problem above is just computing $A(x) \cdot B(x)$. Composts $C_{i} := \frac{1}{3}(a_{i-1} + a_{i} + a_{i+1}).$ This is equivit to multiply $A(x) := \sum a_{i}x^{i} \qquad B(x) = \frac{1}{3} + \frac{1}{3}x + \frac{1}{3}x.$ A fish als. For phynomial mult. is the following. (1) Let $\omega = e^{2\pi i / 2n}$ (2) Evaluate $A(\omega^k)$ for k = 0,..., 2n-1Do the same for $B(\omega^k)$, FFT de (3) Compute $C(\omega^k) := A(\omega^k) \cdot B(\omega^k)$ (4) Interpolate to find the coeffs of the unique degree $2m \cdot 1$ plum-mi-al C whose values at $1, \omega, \omega^2, \ldots, \omega^{2m-1}$ match the computed values. both these steps in 0(n log n)

