

NATIONAL TECHNICAL UNIVERSITY «KHARKIV POLYTECHNIC INSTITUTE»

Department of Computer Engineering and Programming

Compiler Design Theory

Practical lesson 7

Push-down automata

Prof. Gavrylenko Svitlana Yuryivna +380664088551 (Viber) +380632864663 (Telegram)

Svitlana.Gavrylenko@khpi.edu.ua Evening building, study # 306

Problem statement

There are example of string:

- *Struct a* { *int b*; }
- Struct a {float a; int b; }
- Struct a {float a; int b; int c; }.
- 1. Identify value four objects of formal grammar $G = \{V_T, V_A, I \in V_A, R\}$. Create production rules. Make a derivation of a string.
- 2. Check this grammar for having non-generating and non-reachable symbols in the production rules.
- 3. Create Functions FIRST(μ), Functions FOLLOW(A) and SELECTION (μ) sets.
- 4. Construct transition functions. Make stack implementation of predictive parsing for any string.

Building grammar productions

- 1) Write some examples of the input strings.
- 2) Analyze the structure of the strings, picked out beginning, end, repeated symbols or group of symbols.
- 3) Introduce notations for complex structures consisting of groups of symbols; such notations are non-terminal symbols of the desired grammar.
- 4) Build production rule for each of the selected structures, using recursive production to specify repeated structures.
- 5) Combine all the production rule.
- 6) Check the possibility of obtaining strings with different structures by derivation.

Objects of formal grammar:

```
V_T = \{ \text{struct}, \{, \}, a, b, c, "; " \text{ int, float} \},
V_A = \{ I, T, A, S, E, R \}
Production rules:
```

- 1) $I \rightarrow \text{struct } A\{S\}$
- 2) $A \rightarrow a \mid b \mid c$
- 3) $S \rightarrow ER$
- 4) $E \rightarrow TA$;
- 5) $T \rightarrow int \mid float$
- 6) $R \rightarrow ER \mid \$ (=\epsilon)$

Derivation the string: Struct a { int b; }.

I \Rightarrow struct A {S} \Rightarrow struct a {S} \Rightarrow struct a {ER} \Rightarrow struct a {TA; R} \Rightarrow struct a {int A; R} \Rightarrow struct a {int b; }.

Non-generating symbols. Part 1

A symbol $X \in V_A$ is defined as non-generating if no finite terminal symbol can be derived from it.

The procedure for detecting non-generating symbols:

- 1. Make a list of non-terminal symbols, for which there's at least one production rule that doesn't have a non-terminal symbols in the right part.
- 2. If a production rule is found, in which all non-terminals in the right part are already in the list, add the non-terminal from the left part to the list.
- 3. Once no more non-terminals can be added to the list from step 2, the list contains all generating symbols of the grammar, and the non-terminals that are not in the list are non-generating symbols.

Production rules containing non-generating symbols should be eliminated from the grammar.

Non-generating symbols. Part 2

The procedure for detecting non-generating symbols:

- 1. Make a list of non-terminal symbols, for which there's at least one production rule that doesn't have a non-terminal symbols in the right part.
- 2. If a production rule is found, in which all non-terminals in the right part are already in the list, add the non-terminal from the left part to the list.
- 3. Once no more non-terminals can be added to the list from step 2, the list contains all generating symbols of the grammar, and the non-terminals that are not in the list are nongenerating symbols.

- 1) I \rightarrow struct A{S}
- 2) $A \rightarrow a \mid b \mid c$
- 3) $S \rightarrow ER$
- 4) $E \rightarrow TA$;
- 5) $T \rightarrow int \mid float$
- 6) $\mathbb{R} \to \mathbb{E}\mathbb{R} \mid \$$

Non-generating symbols

- 1.A, T, R
- 2.A, T, R, **E**
- 3.A, T, R, E, S
- 4.A, T, R, E,S, I

There are no Nongenerating symbol.

Unreachable symbols. Part 1

Symbol $X \in V_A$ is called unreachable in context-free grammar G, if X does not appear in any generated string.

The procedure for detecting unreachable symbols:

- 1. Create a single-element list that contains the initial symbol I of the grammar.
- 2. If there is a production rule for which the left non-terminal symbol is already in the list, add to the list all symbols of the right part of this production rule.
- 3. Once no more non-terminals can be added to the list from step 2, the list contains all reachable symbols. Non-terminals symbols that aren't in the list are unreachable.

Production rules containing unreachable symbols should be eliminated from the grammar.

Unreachable symbols. Part 2

The procedure for detecting unreachable symbols:

- 1. Create a single-element list that contains the initial symbol I of the grammar.
- 2. If there is a production rule for which the left non-terminal symbol is already in the list, add to the list all symbols of the right part of this production rule.
- 3. Once no more non-terminals can be added to the list from step 2, the list contains all reachable symbols. Non-terminals symbols that aren't in the list are unreachable.

- 1) $I \rightarrow \operatorname{struct} A\{S\}$
- 2) $A \rightarrow a \mid b \mid c$
- 3) S \rightarrow ER
- 4) $E \rightarrow TA$;
- 5) $T \rightarrow int \mid float$
- 6) $R \rightarrow ER \mid \$$

Unreachable symbols

- 1.]
- 2. I, A, S
- 3. I, A, S, E, R
- 4. I, A, S, E, R, T

There are no Unreachable symbols.

Function FIRST(μ)

FIRST (μ) is a set of terminal symbols that begins a string μ under a derivation.

If μ is a string of grammar symbols, than FIRST(A $\rightarrow \mu$) is the set of terminal symbols that begin the strings derived from μ :

• if the string μ starts with the terminal symbol $(A \rightarrow b\mu')$:

$$FIRST(A \rightarrow b \mu') = \{b\};$$

• if the string μ is an empty (A \rightarrow \$):

$$FIRST(A \rightarrow \$) = \{\$\};$$

• if the string μ starts with a non-terminal symbol B (A \rightarrow B μ '), and there are than some productions for B :

$$\mathbf{B} \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_n$$
,

and there is no derivation $B \Rightarrow * \$$, then:

$$FIRST(A \rightarrow B\mu') = FIRST(\alpha_1) \cup FIRST(\alpha_2) \cup ... \cup FIRST(\alpha_n);$$

• if the string μ starts with a non-terminal symbol B $(A \rightarrow B\mu')$, and there are next productions rules:

$$\mathbf{B} \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_n$$

and there is derivation $B \Rightarrow * \$$, then:

$$FIRST(A \rightarrow B\mu') = FIRST(\mu')$$
 $\mathcal{D} FIRST(\alpha_1)$ $\mathcal{D} FIRST(\alpha_2)$ $\mathcal{D} ...$ $\mathcal{D} FIRST(\alpha_n)$.

```
    I → struct A{S}
    A → a | b | c
    S → ER
    E → TA;
    T → int | float
    R → ER | $
```

```
FIRST (I \rightarrow struct A{S})= FIRST (1) = {struct}

FIRST (2.1) = {a}; FIRST (2.2) = {b}; FIRST (2.3) = {c}

FIRST (5.1) = {int}; FIRST (5.2) = {float}

FIRST (6.2) = {$}

FIRST (3) = FIRST (E)= FIRST (T)= {int, float}

FIRST (4) = FIRST (T) = {int, float}

FIRST (6.1) = FIRST (E)= FIRST (T)= {int, float}
```

Function FOLLOW(B)

FOLLOW(B), for nonterminal B, to be the set of terminals *a* that can appear immediately to the right of B in the derivation started from initial symbol *I*: if there are production rules:

$$X_1 \rightarrow \mu_1 B \alpha_1, X_2 \rightarrow \mu_2 B \alpha_2, \dots, X_n \rightarrow \mu_n B \alpha_n$$

• there is no derivation $\alpha_i \Rightarrow * \$$, then

$$FOLLOW(B) = FIRST(\alpha_1)$$
 $FIRST(\alpha_2)$ $...$ $FIRST(\alpha_n)$ $...$

• there is derivation $\alpha_i \Rightarrow * \$$, for example $\alpha_1 \to \$$,:

$$FOLLOW(B) = FOLLOW(X_1)$$
 \mathcal{D} $FIRST(\alpha_2)$ \mathcal{D} ... \mathcal{D} $FIRST(\alpha_n)$.

```
1) I \rightarrow \text{struct } A\{S\}
  2) A \rightarrow a |b| c
  3) S \rightarrow ER
  4) E \rightarrow TA;
  5) T \rightarrow int \mid float
  6) R \rightarrow ER \mid \$
FIRST(1) = \{struct\}
FIRST (2.1) = \{a\}; FIRST (2.2) = \{b\}; FIRST (2.3) = \{c\}
FIRST (5.1) = \{int\}; FIRST (5.2) = \{float\}
FIRST (6.2) = \{\$\}
FIRST(3) = FIRST(E) = FIRST(T) = \{int, float\}
FIRST(4) = FIRST(T) = \{int, float\}
FIRST(6.1) = FIRST(E) = FIRST(T) = \{int, float\}
```

```
FOLLOW (A)= {{,;}}

FOLLOW (S)= {{}}}

FOLLOW (E)= FIRST (R) ∪ FOLLOW (S) = FIRST (E) ∪

∪ FOLLOW (S) = FIRST (T) ∪ FOLLOW (S) = {int, float, }}

Because there is production R→$

FOLLOW (R) = FOLLOW (S)= {{}}} because R is the last symbol

FOLLOW (T)= FIRST (A) = {a, b, c};
```

Set SELECTION(μ)

1) If there is production rule $B \to \alpha$ and there is no derivation $\alpha \to \$$, then

SELECTION(
$$B \rightarrow \alpha$$
) = FIRST(α).

2) If there is production rule $B \rightarrow \$$, then

SELECTION(
$$B \rightarrow \$$$
) = FOLLOW(B).

3) If there is production rule $B \to \alpha$ and there is derivation $\alpha \to \$$, then

SELECTION(
$$B \rightarrow \alpha$$
) = FIRST(μ) \mathcal{D} FOLLOW(B).

```
1) I \rightarrow \text{struct } A\{S\}
2) A \rightarrow a |b| c
3) S \rightarrow ER
    E \rightarrow TA;
    T \rightarrow int \mid float
6) R \rightarrow ER \mid \$
FIRST (5.1) = \{int\}; FIRST (5.2) = \{float\}
FIRST (2.1) = \{a\}; FIRST (2.2) = \{b\}; FIRST (2.3) = \{c\}
FIRST(1) = \{struct\}
FIRST (6.1) = FIRST (E) = FIRST (T) = {int, float}
FIRST (6.2) = \{\$\}
FIRST (3) = FIRST (E)= FIRST (T)= \{int, float\}
FIRST(4) = FIRST(T) = \{int, float\}
FOLLOW (R)= {}}
```

```
SELECTION (1) = FIRST (1) = \{\text{struct}\}
SELECTION (2.1) = FIRST (2.1) = \{a\}
SELECTION (2.2) = FIRST (2.2) = \{b\};
SELECTION (2.3) = FIRST (2.3) = \{c\}
SELECTION (3) = FIRST (E)= FIRST (T)= \{int, float\}
SELECTION (4) = FIRST (4)= FIRST (T) = \{int, float\}
SELECTION (5.1) = FIRST (5.1) = \{int\}
SELECTION (5.2) = FIRS\mathcal{T}(5.2) = {float}
SELECTION (6.1) = FIRST (6.1) = {int, float};
SELECTION (6.2) \neq FOLLOW (R) = {}}
```

This grammar is an LL(1) grammar, since the SELECTION set for rules starting with the same terminals does not contain the same characters.

Construction transition functions

1) For each production rule $A \rightarrow a\alpha$, starting with a terminal symbol a, construct a transition function:

 $f(s, a, A) = (s, \alpha')$, where α' is the mirror image of the string α .

2) For each production rule $A \rightarrow B\alpha$, starting with a non-terminal symbol B, construct a transition function:

$$f^*(s, x, A) = (s, \alpha' B)$$

where f^* is a transition function without shifting an input head, a α' is a mirror image of the string α , $x \in SELECTION (A \to B\alpha)$ set. The number of transition functions determines by the number of the $x \in SELECTION (A \to S)$.

3) For each empty production rule $A \rightarrow S$ construct a transition function:

$$f^*(s, x, A) = (s, \$)$$

where f^* is a transition function without shifting an input head, a α' is a mirror image of the string α , $x \in SELECTION (A \to S)$ set. The number of transition functions determines by the number of the $x \in SELECTION (A \to S)$.

4) For all terminal symbol (for example, symbol b), that appears in the middle or at the end of production rules, create a transition function:

$$f(s, b, b) = (s, \$).$$

5) To get a final state of push-down automata create a transition function:

$$f^*(s, \$, h_0) = (s, \$, \$).$$

```
2) A \rightarrow a \mid b \mid c
3) S \rightarrow ER
4) E \rightarrow TA:
5) T \rightarrow int \mid float
6) R \rightarrow ER \mid \$
SELECTION (5.1) = FIRST (5.1)
                                                 {int}
SELECTION (5.2) = FIRST (5.2) = {float}
SELECTION (2.1) = FIRST (2.1) =
SELECTION (2.2) = FIRST (2.2) = \{b\};
SELECTION (2.3) = FIRST (2.3) = \{c\}
SELECTION (3) = FIRST (E)= FIRST (T)=\sqrt{\frac{1}{1000}}
float}
SELECTION (6.1) = FIRST (6.1) = {int, float};
SELECTION (6.2) = FOLLOW (R) = \{\}\}
SELECTION (4) = FIRST (4) = FIRST (T) = \{int, int, int \}
float}
SELECTION (1) = FIRST (1) = \{\text{struct}\}\
```

1) $I \rightarrow \text{struct } A\{S\}$

```
1. f(s, struct, I) = (s, S(A))
                                      11. f(s, ; , ;) = (s, \$)
2. f(s, \frac{1}{2}, \frac{1}{2}) = (s, \frac{1}{2})
                                      12. f(s, float, T) = (s, \$)
3. f(s, \{, \}) = (s, \$)
                                      13. f(s, int, T) = (s, \$)
A. f(s, a, A) = (s, \$)
                                      14. f *(s, int, R) = (s, R)
                                      15. f *(s, float, R) = (s, RE)
5. f(s, b, A) = (s, \$)
6. f(s, c, A) = (s, \$)
                                      16. f *(s, ) , R) = (s, $)
7. f^*(s, int, S) = (s, RE)
                                      17. f^*(s, \$, h_0) = (s, \$).
8. f^*(s, float, S) = (s, RE)
9. f^*(s, int, E) = (s, ;AT)
10.f^*(s, float, E) = (s, AT)
```

Tr '.'	C .	C /1	1 1	4 4
Transition	filincfions	of the	niish-down	automata
Tuibinon	Idilottolis	or the	publi do wii	aatomata

$\frac{1. f(s, struct, I)}{(s, SA)} = \frac{1}{(s, SA)}$

$$2. f(s, \}, \}) = (s, \$)$$

$$3. f(s, \{, \{\}) = (s, \$)$$

4.
$$f(s, a, A) = (s, \$)$$

5.
$$f(s, b, A) = (s, \$)$$

6.
$$f(s, c, A) = (s, \$)$$

7.
$$f^*(s, int, S) = (s, RE)$$

8.
$$f^*(s, \underline{float}, S) = (s, \underline{RE})$$

9.
$$f^*(s, int, E) = (s, AT)$$

$$10. f^*(s, \underline{float}, E) = (s, ;AT)$$

$$11. \ f(s, ; , ;) = (s, \$)$$

12.
$$f(s, float, T) = (s, \$)$$

13.
$$f(s, int, T) = (s, \$)$$

14.
$$f *(s, int, R) = (s, R)$$

15.
$$f *(s, float, R) = (s, RE)$$

16.
$$f *(s,), R) = (s,)$$

17.
$$f^*(s, \underline{\$}, h_0) = (s, \$)$$
.

Stack implementation of predictive parsing for string:

(s, struct b { float a;, int b;},
$$h_0I$$
) $\vdash 1$ start configuration

$$(s, b\{ float a; int b; \}, h_0\}S\{A\} \mid 5$$

$$(s, \{ float a; int b; \}, h_0 \} S \{ \} \mid 3$$

(s, float a; int b;
$$\}$$
, $h_0 \} S$) \vdash 8

(s,
$$\underline{\text{float}}$$
 a; int b;}, h_0 } RE) \vdash 10

(s, float a; int b;},
$$h_0$$
} R ; AT) | 12

$$(s, a; int b;), h_0 R; A) \vdash 4$$

$$(s, ; int b; \}, h_0 \} R;) \vdash 11$$

$$(s, \underline{int} \ b; \}, h_0 \} R) \mid 14$$

$$(s, \underline{int} \ b; \}, h_0 \} RE) \mid 9$$

$$(s, \text{ int b;}), h_0 R; AT) \vdash 13$$

$$(s, b; \}, h_0 \} R; A) - 5$$

$$(s, ;), h_0 R;) - 11$$

$$(s, 2, h_0)R) - 16$$

$$(s, \}, h_0\}) - 2$$

$$(s, \S, h_0) \vdash 17$$

finish configuration

Thank you for your attention!