Afternating Current (AC):

AE in a periodic current whose average value over

Peniodic Current (PC)

square wave

An oscillating current which reccurs at a ceretain time.

Oscillating Curnent: and sign soul harmony de pulpating de

Alternately increases and derireases at definite law.

phase difference =
$$\theta_1 - (-\theta_2) = \theta_1 + \theta_2$$

Phase in the breactional part of the period through which time on associated time angle has advanced from an ambiterry reference.

is leads in by
$$(\theta_1 + \theta_2)$$
.

in lags in by $(\theta_1 + \theta_2)$.

$$\theta_1 - \theta_2 = +ve$$
 i₁ leading, i₂ laging $\theta_1 - \theta_2 = -ve$ i₁ laging, i₂ leading

Impedance function on Impedance:

Ratio of Vmax to Imax

Angle of difference between V and i

Impedance $Z \subset Angle = \frac{V_{max}}{I_{max}} \subset \theta_V - \theta_i$

example: $v = 150 \sin(\omega t + 75^{\circ})$ $i = 10 \sin(\omega t + 30^{\circ})$

> · impedance $2 < Angle = \frac{150}{10} < (75-30)^{\circ}$ = 15 < 450

parameters: R (nesintance), L (inductance), C (capacitance), f (frequency).

The R branch: Let $V = V_{max} \sin \omega t$ is applied to an R branch. we know, $V = iR \Rightarrow i = \frac{V_{R}}{R}$ $\Rightarrow \frac{V_{m}}{I_{m}} = R$ $= I_{m} \sin \omega t$

impedance Zr = R<0° AAA

example: $V = 100 \sin(\omega t + 30^{\circ})$ $i = 20 \sin(\omega t + 30^{\circ})$ $7 = 5 < 0^{\circ} \longrightarrow R \text{ Branch}$ R = 5

$$P = vi = Vm Im sin^2wt$$

$$= \frac{Vm Im}{2} (1 - cos 2wt)$$

$$= \frac{Vm Im}{2} - \frac{Vm Im}{2} cos 2wt$$

: In Resintant Branch -> power will dalways be lossed

$$Pav = \frac{V_m J_m}{2}$$

Helico, L. in here,
$$0.0 > 3 = 5$$

Branch:

$$V = L \frac{di}{dt} = V_m \sin \omega t$$
 1.7/12

$$\Rightarrow$$
 $i = \frac{-V_m}{Lw} \cos wt + c_1$ (on integraction)

transient current

At steady state value, G=0 decide and the sold

$$i = -\frac{V_m}{L w}$$
 cos wt = $\frac{V_m}{w L} \sin(wt - 90^\circ)$

$$I_m = \frac{V_m}{\omega L}$$

impedance,
$$Z_L = \frac{V_m}{I_m} < \theta_V - \theta_i$$

= $\omega L < 0 - (-90°)$

inductance reactance, XL = WL Hene, L in in henry,

$$2L = \omega L$$
 is in ohm (2)

example:
$$f = 60 \text{ Hz}$$
,
 $L = 10 \times 10^3 \text{ H}$
 $X_L = ?$

$$Ans \Rightarrow X_{L} = \omega L$$

$$= 2\pi f \cdot L$$

$$= (2\pi \times 60 \times 10 \times \overline{0^3}) \cdot \Omega$$

$$V_m = 100 \, \text{V}$$
, $v \neq ?$ $i = ?$

$$Ans \Rightarrow V = V_m \sin \omega t$$

= 100 $\sin (2\pi \times 60 t)$

$$i = \frac{V_m}{\omega L} \sin(\omega t - 90) = \frac{100}{2\pi \times 60 \times 10 \times 10^3} \sin(2x60 \times \pi t - 90)$$

(Am)

$$P = vi$$

= $(V_m \sin wt) \cdot \int I_m \sin (wt - 90^\circ) f$

= $-\frac{V_m I_m}{2} \sin 2wt$

Pavg = 0

Here, is and i wavers are single frequency variation but P double trequency variation.

There is no loss in pure inductaonce.

Time period -> half of vorci wave.

$$P = \int -\frac{V_{m} I_{m}}{2} \sin 2\omega t dt$$

$$= \left[-\frac{V_{m} I_{m}}{2} \left(\cos 2\omega t \right) \cdot \frac{1}{2\omega} \right] \frac{T_{2}}{T_{4}}$$

$$= \frac{V_{m} I_{m}}{4\omega} \left\{ \cos 2 \cdot \frac{2\pi}{T} \cdot \frac{1}{2} - \cos 2 \cdot \frac{2\pi}{T} \cdot \frac{1}{4} \right\}$$

$$= \frac{V_{m} I_{m}}{4\omega} \left\{ \cos 2\pi - \cos \pi \right\}$$

$$= \frac{V_{m} I_{m}}{4\omega} \times (1+1)$$

$$= \frac{V_{m} I_{m}}{4\omega} \times (1+1)$$

$$= \frac{V_{m} I_{m}}{2\omega} \quad \text{Quarter cycle - } \omega \text{ power}$$

$$= \frac{1}{2} L I_{m}^{2} \quad \text{Vm} = I_{m} \omega 1$$

Capacitance:

$$\int_{1}^{1} \int_{T}^{C} c$$

$$V = \frac{q}{C} = V_m \sin \omega t$$

$$\Rightarrow c = \frac{q}{V_m} q = V_m C \sin \omega t$$

$$i = \frac{dq}{dt} = V_m w C \cos \omega t$$

$$= \frac{V_m}{dt} \sin \left(\omega t + 90^{\circ} \right)$$

$$\frac{1}{1} = \frac{\sqrt{m}}{\frac{1}{wc}} = \frac{1}{wc}$$

impedence,
$$Z_c = \frac{1}{wc} < -90^{\circ}$$
 AAAA

capacitive reactance $X_c = \frac{1}{wc}$

Here, C in in Farade (F)

 $\frac{1}{wc}$ in ohm (Ω)

example:
$$f = 25 \text{ Hz}$$
, $C = 15 \text{ MF}$, $X_c = \frac{9}{2}$, $V_m = 200 \text{ V}$
 $X_c = \frac{1}{wC}$
 $= \frac{1}{2\pi f \times C} = \frac{1}{2\times 3.1416 \times 25 \times 15 \times 10^6} = 424.41 - \Omega$
(Ans)

$$i = \frac{V_m}{wc} \sin(\omega t + 90^\circ)$$

$$= 0.471 \sin(157.08 + 90^{\circ})$$
 (Aus)

$$P = vi = V_m \sin \omega t$$
. $I_m \sin(\omega t + 90^\circ)$
= 200 x 0.471 $\sin(157.08t)$. $\sin(157.08t + 90^\circ)$

P= vi = Vm Sin wt · Im Sin (wt+90°)

=
$$\frac{V_m I_m}{2} \sin(2\omega t)$$
.

$$Wc = \int_{0}^{\sqrt{4}} \frac{V_{m} I_{m}}{2} \sin 2\omega t dt$$

R-L Branch:

voltage drop, v= Ri+ Lidi

Let, i= Im sin wt

TR+(W4) WL

$$\Rightarrow \frac{v}{\sqrt{R^{2} + (\omega t)^{2}}} = \frac{R}{\sqrt{R^{2} + (\omega t)^{2}}} I_{m} \sin \omega t + \frac{\omega L}{\sqrt{R^{2} + (\omega t)^{2}}} I_{m} \cos \omega t$$

$$\Rightarrow \frac{v}{\sqrt{R^{2} + (\omega t)^{2}}} = I_{m} \cos \theta. \sin \omega t + I_{m} \sin \theta. \cos \omega t$$

$$\Rightarrow \frac{v}{\sqrt{R^{2} + (\omega t)^{2}}} = I_{m} \in \sin (\omega t + \theta)$$

$$\Rightarrow v = I_{m} \cdot \sqrt{R^{2} + (\omega t)^{2}} \cdot \sin (\omega t + \theta)$$

$$\Rightarrow v = V_{m} \sin (\omega t + \theta)$$

$$\frac{V_{m}}{I_{m}} = P \int_{\mathbb{R}^{n}+} (\omega L)^{L}$$

$$+ \frac{V_{m}}{I_{m}} = \sqrt{R^{n}+} (\omega L)^{L}$$

$$+ \frac{\omega L}{R} \Rightarrow 0 = tan^{1} \frac{\omega L}{R}$$

impedence =
$$\sqrt{R^{+}(\omega L)^{-}} < 0$$
of

 $R-L$ Branch = $\sqrt{R^{+}(\omega L)^{-}} < \tan^{-1}\frac{\omega L}{R}$

H Voltage leading, Current lagging,

$$\begin{array}{ccc}
& & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$Z_{RL} = \sqrt{R + (\omega L)^{\circ}} < +a\bar{n} \cdot \frac{\omega L}{R}$$

= 29.08 < 46.65°

$$V = 200 \sin 377t$$
,

$$i = I_m \sin \omega t$$

$$= 6.88 \sin (376.99t - 46.5) \frac{V_m}{I_m} = \int R^7 + (\omega L)^{2}$$

$$\Rightarrow I_m = 6.88$$

=
$$\frac{Vm Im}{2}$$
 2 sin wt. $as\theta + \frac{Vm Im}{2}$. 2 sin wt. $as tot. sin tot.$

(m) (m) (m)

$$= \frac{\sqrt{m} \text{Im}}{2} \cos \theta - \frac{\sqrt{m} \text{Im}}{2} \cos \left(2\omega t + \theta\right)$$

Parg =
$$\frac{V_{m}T_{m}}{2}$$
 (050 (Real Value Power)

Power Reactive power = Vm Im sin 0

Power factor = coso.

Reactive factor = sino

R-L CKT

$$v = V_m \sin(\omega t + 0)$$

$$i = I_m \sin \omega t$$

$$p = vi = \frac{I_m V_m \cos \theta - \frac{V_m I_m}{2} \cos \theta \cdot \cos \omega t + \frac{V_m T_m}{2} \sin \theta}{\sin 2\omega t}$$

in indiana

Vm Im cos 0 - Vm Im cos 0. cos 2wt -> Instancous Real Powerc (always +ve)

Vm Im cos 0 -> Real Power ; Power factor = cos 0

(p.f.)

VmIm sind sin 2wt - Instantaneous Reactive Powers

Par = $\frac{V_m I_m}{2}$ 050 - a measured by a wall moter.

VmIm sind > Reactive powers; Reactive factor = sind (r.f)
measured by varameter

$$v = Ri + L \frac{di}{dt} + \frac{q}{c}$$

Let, i = Im sin wt and

$$\frac{q}{C} = \frac{\int i \, dt}{C} = \frac{-I_m \cos \omega t}{\omega C}$$

dividing both the sides by
$$\sqrt{R^2 + (\omega L - \frac{1}{wc})^2}$$

$$\frac{\sqrt{R^{2}(\omega L - \frac{1}{\omega c})^{2}}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^{2}}{R^{2}(\omega L - \frac{1}{\omega c})^{2}} = I_{m} \cdot \frac{(\omega L - \frac{1}{\omega c})^$$

$$\int_{\mathbb{R}^{+}} \left(\omega L - \frac{1}{\omega} \right)^{2} \omega L - \frac{1}{\omega} c$$

Let
$$\cos\theta = \frac{R}{\sqrt{R^2 + (w^2 - w^2)^2}}$$

then $\sin \theta = \frac{\omega L - \frac{1}{\omega c}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega c})^{1/2}}}$

i hanson

$$\Rightarrow V = I_m \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2} \sin(\omega t + \theta)$$

$$= V_m \sin(\omega t + \theta)$$

impedance
$$Z_{RLC} = \frac{V_m}{I_m} \angle \theta$$

= $\sqrt{R^n + (\omega L - \frac{1}{\omega c})^2} \angle \frac{1}{4an'} \frac{\omega L - \frac{1}{\omega c}}{R}$

e.g:
$$R = 20-0$$
 L= 0.056 henry C= 50 mF
 $V = 200 \sin 377t$, $Z_{RLC} = ?$ $i = ?$

$$w = 377$$

$$Z_{RLC} = \sqrt{(20)^{2} + (377 \times 0.056 - \frac{1}{377 \times 50 \times 10^{6}})^{2}}$$

$$i = \frac{200}{33.5} \sin(377+72.61)$$

12.
$$v = 100 \sin(\omega t - 30)$$
 and $i = 10 \sin(\omega t - 60)$

i and $v = ?$ lead = ?

ii and $v = ?$ lead = ?

If how difference = $-60 - (-30)$

I Am: phase difference = $-60 - (-30)$
 $= -30$

V is leading.

13. $v = 100 \cos(\omega t - 30)$ & $i = -10 \sin(\omega t - 60)$

phase difference $v & i = ? \log ?$
 $v = 100 \sin(v + 120)$
 $v = 100 \sin(\omega t + 120)$

the

18.
$$V = 150$$
 cos $314t$
 $R = 30-2$

A:
$$V = 150 \sin(90 + 314t)$$

$$W = 314$$

$$=$$
 $2\pi f = 314$

$$\Rightarrow \int f_{v} = 50 = f_{i}$$

$$\frac{I_m}{V_m} = R$$
 $\frac{V_m}{I_m} = R$

$$\Rightarrow I_m = \frac{150}{30} A = 5A$$

$$= 150 \times 5 \times \cos^2(314t)$$

$$= \sqrt{750 \cdot \cos^2(314t)} = 375 \left(1 + \cos 628t\right)$$

Charles of the end of

in a most allthe said i was

mentabled: : medical f

100 Smither than

22.
$$V = -150 \sin 377t$$

 $i = 10 \cos 377t$

$$\&$$
- phase différence = $\theta_v - \theta_i = 180' - 90'$

$$\int R^{\nu} I = \frac{V_m}{WL}$$

$$\Rightarrow L = \frac{V_m}{I_m w} = 0.0397 \text{ herry}$$

L

4

29.
$$R = 10.02$$
, $L = 0.05$ henry $f = 25$ cycles, $V_m = 150 \cdot V$

a)
$$Z_{R-h} = ?$$

c)
$$i = ?$$
 d) $P = ?$

a)
$$Z_{R-L} = \int R^{7} + (WL)^{-} \cdot \angle tan^{7} = \frac{WL}{R}$$

$$= \int 10^{2} + (2\pi \times 25 \times 0.05)^{2} \angle tan^{7} = \frac{2\pi \times 25 \times 0.05}{10}$$

$$= 12.7 \angle 38.14^{\circ}$$

b)
$$V = V_m \sin(\omega t + \theta)$$

$$= 150 \sin \omega (157t + 30)$$

$$\Rightarrow \theta = 30^{\circ}$$

$$9v - 0i = 38.14 \Rightarrow 0i = -8.14$$
 .: $i = 11.811 (157t - 8.14)$