Apellidos			Firma
Nombre	D.N.I o pasaporte	Grupo	

Modelos matemáticos I 16/17Grado en Matemáticas 2° Prueba Temas 1 y 2

- 1 Responda de forma razonada a las siguientes cuestiones breves:
 - a) Según el modelo de Von Bertalanffy la dinámica que rige el tamaño (longitud) de muchas especies marinas cumple las siguientes hipótesis:
 - \blacksquare La longitud máxima que puede alcanzar es K;
 - El crecimiento en cada nueva medición, $L_{n+1} L_n$, es proporcional a lo que falta para alcanzar su longitud máxima teórica (L_n es la longitud medida en el tiempo n-ésimo y $\mu > 0$ es el factor de proporcionalidad).

Describa el modelo discreto correspondiente y determine la longitud de equilibrio. ¿Bajo qué condiciones la longitud de equilibrio es asintóticamente estable?

- b) Se considera la ecuación en diferencias lineal $x_{n+4} x_{n+2} + x_n = 1$. ¿Son N-periódicas sus soluciones? En caso afirmativo, ¿Cuál es el valor de N? (Ver nota¹)
- c) Indica los sistemas dinámicos para los que existe un equilibrio asintóticamente estable (localmente).
 - 1) $\{\mathbb{R}, F(x)\}\$ con $F(x) = x x^3$
 - 2) $\{\mathbb{R}, F(x)\}\$ con $F(x) = x x^2 + x^3$
 - 3) $\{[0,2], F(x)\}\$ con $F(x) = \frac{x+2}{1+2x}$
- 2 En el modelo económico de la telaraña suponemos que la oferta de un producto de consumo, y su demanda son funciones lineales del precio de ese producto en la forma:

$$O(p) = a + bp$$
, $D(p) = c - dp$

con a, b, c y d constantes. Supongamos que se ha observado que el marginal de la demanda, d, no es constante sino que decrece en la forma

$$d(p_{n+1}) = \frac{\alpha}{p_n} \text{ con } \alpha > 0$$

Se establece un modelo de oferta-demanda para el producto de manera que se cumple la ley implícita de actualización de precios $O(p_n) = D(p_{n+1})$.

Para los valores $a=1,\,b=2,\,c=4,$ deduzca la ecuación en diferencias del modelo, calcule el precio de equilibrio y determine su estabilidad según los valores de α .

¹Si $z^2 = \mu(\cos(\theta) + i \sin(\theta))$; entonces, $z = \pm \sqrt{\mu}(\cos(\theta/2) + i \sin(\theta/2))$

3 En nuestro actual sistema bancario el modelo utilizado para el cálculo de las cuotas de una hipoteca es el denominado $modelo\ francés$, en el que la cuota permanece fija a lo largo de toda la vida del préstamo, variando el capital amortizado y los intereses abonados. Supongamos que T representa el capital total, I el tipo de interés mensual correspondiente, C la cuota mensual (la suponemos fija) y N es el número total de cuotas. El objetivo de este ejercicio es determinar el valor de la cuota C en función de I, T y N.

Sea n el número de meses transcurridos desde la constitución del préstamo $(1 \le n \le N)$, y sean:

- A_n la parte de la cuota n-ésima destinada a amortización,
- \blacksquare B_n la parte destinada al pago de los intereses, y
- X_n el capital total amortizado tras las n primeras cuotas.

Obviamente $C = A_n + B_n$, para $1 \le n \le N$, y

$$X_n - X_{n-1} = A_n, (1)$$

Por otra parte, el capital pendiente antes de pagar la cuota n-ésima será $T - X_{n-1}$, con lo que los intereses correspondientes a dicha cuota serán

$$B_n = I \cdot (T - X_{n-1}). \tag{2}$$

a) Puesto que la cuota C es constante, se tiene

$$A_n + B_n = A_{n+1} + B_{n+1}. (3)$$

Deduzca que X_n verifica la ecuación en diferencias lineal homogénea:

$$X_{n+2} - (2+I)X_{n+1} + (1+I)X_n = 0$$

- b) Determine una expresión para X_n sabiendo que $X_0=0$ y $X_N=T$.
- c) Utilice las ecuaciones (1) y (2) para obtener a partir del apartado anterior el valor de la cuota $C = A_n + B_n$ (en función de I, T y N).

Granada, a 25 de Noviembre de 2016

