Universidade Federal Fluminense — UFF Instituto de Humanidades e Saúde — RHS Departamento de Ciências da Natureza — RCN Campus de Rio das Ostras

Verificação Suplementar de Geometria Analítica e Cálculo Vetorial – 2/2014

16/12/2014

Questão:	1	2	3	4	Total
Pontos:	2	2	5	1	10
Notas:					

T a sea a .	$\mathbf{D_{rof}}$.	Т.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Nome:	Frol.:	Turma:

Instrucões

- A interpretação das questões faz parte dos critérios de avaliação.
- Responda cada questão de maneira clara e organizada.
- Resultados sem justificativas não serão considerados.
- Não é permitido o uso de calculadoras e os celulares devem ser mantidos desligados.
- Não é permitido o compartilhamento de material.
- Não é permitido sair da sala (tomar água, ir ao banheiro e etc) sem entregar definitivamente a avaliação.
- Aos alunos envolvidos em algum tipo de fraude, mesmo que identificada posteriormente, será atribuído nota zero na prova.

Geometria Analítica Plana

- 1. Considere o ponto A = (2, 5) e o vetor $\vec{v} = (3, 2)$.
 - (a) [1 pt] Ache a equação cartesiana da reta r que passa por A na direção do vetor \vec{v} .
 - (b) [1 pt] Encontre as equações paramétricas da reta perpendicular à reta r passando por A.
- 2. [2 pts] Identifique e faça um esboço da cônica

$$4x^2 - y^2 + 2y - 24x + 31 = 0.$$

Geometria Analítica Espacial

Considere o ponto P = (0, 1, 0), os planos $\pi_1 : x + z - 1 = 0$ e $\pi_2 : x - 2y + z - 5 = 0$, e as retas $m = \pi_1 \cap \pi_2$, r : (x, y, z) = (0, 1, 1) + t(1, 0, -1) e s : (-1, 0, 1) + t(1, -1, 0), $t \in \mathbb{R}$.

- 3. Determine:
 - (a) [1 pt] As equações paramétricas da reta m.
 - (b) [1,5 pts] A distância entre $r \in m$.
 - (c) [1,5 pts] A reta que passa por P e é perpendicular a s.
 - (d) [1 pt] Os pontos de s que distam $\sqrt{2}$ de π_1 .
- 4. [1 pt] Determine a distância entre $r \in s$.