

Content Adaptive Encoding Method for High Frame Rate Screen-Camera Communication

M.S. Defense Presentation

Yaqin Tang

yaqin.tang@rutgers.edu

Advisor(s): Prof. Marco Gruteser, Prof. Kristin Dana, Prof. Narayan Mandayam January 13th 2016

WINLAB, Rutgers University

Screen-camera Communication

Transmitter (screen)

Signal modulation

1 0 1 ...

Receiver (camera)

Image analysis

Signal demodulation

1 0 1 ...

Motivations and Objectives

Key considerations:

User experience Invisibility

Communication performance

Goodput (accurate bits per unit time)

Outline

- User experience: flicker perception factors
- System design
 - content-adaptive encoding method;
 - signal amplitude tracking decoding method;
- Prototype implementation
- System performance evaluation
- Conclusion and future work

Outline

- User experience: flicker perception factors
- System design
 - content-adaptive encoding method;
 - signal amplitude tracking decoding method;
- Prototype implementation
- System performance evaluation
- Conclusion and future work

Flicker Perception

Definition: apparent fluctuation and change in the brightness of the displaying surface.

Affecting factors:

Frame rate

Modulation amplitude

Edge effect

Viewer's field of view Image content

Flicker Perception – frame rate

No obvious flicker if: Brightness change frequency > 100 Hz.

Flicker Perception – modulation amplitude

Signal amplitude experiment:

- x: original brightness;
- α, β: alteration amplitude.

Flicker Perception – modulation amplitude

Brute force method:

• check brightness from $(0~255) \pm (1~10)$.

x ~ (0, 255)							
α, β	1	2	3	4		9	10
1							
2			*				
3							
10							

(+2 / -3) win for flicker perception and camera detection.

Flicker Perception – edge effect viewer's field of view

Observation:

- Along the edges → more obvious flicker.
- Smaller field of view in retina → less flicker.
 (combine viewing distance and display block size)

Gray block experiment

Flicker Perception – image texture

- Attribute representing spatial arrangement of gray levels of the pixels in a region of image.
- Texture regions give less flicker.

Flicker level

Flicker Perception – brightness and contrast

Image brightness:

• Visual perspective, color in R, G, B space or gray scale from 0 to 255 pixel intensity value.

Image contrast:

 Visual concept defined by the difference in the color and brightness of the object.

Both are minor factors!

Flicker Perception Factors

Frame rate -> greater than 100 Hz.

Modulation amplitude -> (+2 / -3) brightness alternation.

Edge effect -> more flicker along edges.

Viewer's field of view -> smaller area in retina, less flicker

Image content -> image texture (major factor) image brightness / contrast (minor)

Outline

- User experience: flicker perception factors
- System design
 - content-adaptive encoding method;
 - signal amplitude tracking decoding method;
- Prototype implementation
- System performance evaluation
- Conclusion and future work

Content Adaptive Encoding Method

Temporal domain encoding:

- Message bit-stream assigned to each frame;
- Image modulated as brightness change.

Consecutive same bits reduce displaying frequency!

Content Adaptive Encoding Method

Temporal domain encoding:

- Manchester code ensures minimum frequency at 60 fps.
- Bit 1, brightness increase 2; bit 0, decrease 3.

Content Adaptive Encoding Method

Spatial domain encoding:

- Checkerboard on top of each frame.
 - improve throughput;
 - decease field of view in retina.
- Texture and edges analysis.

Content Adaptive Encoding Method

Image texture analysis:

Texture range filter.

2	3 Min	4	5
7	8	60	10
12	13	14	15 Max
17	18	19	20

Texture range value: 15 - 3 = 12

5	7	7	6
11	12	12 →	11
11	12	12	11
6	6 7		5

Corresponding texture range value

Original image matrix sample

Content Adaptive Encoding Method

Image texture analysis:

- Texture range filter.
- Choose a band pass filter to:
 - get texture region & avoid edges

Block analysis

Content Adaptive Encoding Method

20

Content Adaptive Encoding Method

Flicker and goodput oriented:

Our encoding method	Reasons	
Temporal encoding • Display at 120fps;	Frame rate	
 Brightness change +2, -3 with Manchester code; 	Modulation amplitude	
 Spatial encoding Checkerboard size 32*32 pixel² 	Viewer's field of view	
 Checkerboard size 32*32 pixel²; Texture range analysis and bandpass filter. 	Edge effect Image texture	

Outline

- User experience: flicker perception factors
- System design
 - content-adaptive encoding method;
 - signal amplitude tracking decoding method;
- Prototype implementation
- System performance evaluation
- Conclusion and future work

Decoding Method

Assumption, receiver knows:

- Starting frame of the message;
- Original video resolution;
- Checkerboard size.
- Encoded checkerboard patterns;

Algorithm:

- Track temporal brightness change, if
 - High to low → "bit 1"
 - Low to high → "bit 0"

Decoding Method

Frame 1 Frame 2

24

Frame Alignment Issue

Frame Alignment Issue

Histogram method to extract clean frames.

Encode Pattern Detection

Recap: - content-adaptive encoding

- selected blocks encoded message.

Algorithm: find large brightness change blocks.

-1	0	0	1	0
1	0	-1	-1	1
0	-1	1	1	0
1	0	0	1	0
1	0	0	-1	-1

-1	1	1	0	1
0	1	-1	-1	0
1	-1	0	0	1
0	1	1	0	1
0	1	1	-1	-1

0	1	1	1	1
1	1	0	0	1
1	0	1	1	1
1	1	1	1	1
1	1	1	0	0

Frame 1

(subtract)

frame 2

(equals)

difference matrix (in absolute value)

Outline

- User experience: flicker perception factors
- System design
 - content-adaptive encoding method;
 - signal amplitude tracking decoding method;
- Prototype implementation
- System performance evaluation
- Conclusion and future work

Prototype Implementation

- 120fps video displayed using glvideoplayer.
- Iphone6 recording at 240 fps.

Experiment Videos

Bosphorus

football

highway

walking

Mobile

Outline

- User experience: flicker perception factors
- System design
 - content-adaptive encoding method;
 - signal amplitude tracking decoding method;
- Prototype implementation
- System performance evaluation
- Conclusion and future work

Pattern Detection Evaluation

Static scene, color videos

Sample Error Markers

bigbuckbunny

Bosphorus

highway

Jockey

Red not encoded blocks as

encoded;

Green bit 0 blocks as not encoded;

Blue bit 1 blocks as not encoded;

Gray original encoded blocks without error. 33

Basic Decoding Algorithm Evaluation

• Static scene, color videos

Goodput: correct bits per unit time.

Basic Decoding Algorithm Evaluation

Dynamic scene, color videos

Goodput: correct bits per unit time.

Conclusions and Future Works

- Explored factors contributing to flicker perception;
- Proposed content-adaptive encoding method to achieve flicker-free screen-camera communication as well as high communication capacity and accuracy;
- Identified reasons causing system error;
- Combine pattern detection to decoding algorithm;
- Applications like screen identification etc.

Thank you!

