Probabilistic Linear Regression

CS698X: Topics in Probabilistic Modeling and Inference
Piyush Rai

Probabilistic Linear Regression

- lacktriangle Assume training data $\{x_n,y_n\}_{n=1}^N$, with features $x_n\in\mathbb{R}^D$ and responses $y_n\in\mathbb{R}$
- Assume each y_n generated by a noisy linear model with wts $\mathbf{w} = [w_1, ..., w_D]$

$$y_n = oldsymbol{w}^ op oldsymbol{x}_n + \epsilon_n$$
 where $\epsilon_n \sim \mathcal{N}(0, eta^{-1})$

Output y_n assumed generated from a Gaussian with mean $\mathbf{w}^\mathsf{T} \mathbf{x}_n$

- Precision (β) variance of the Gaussian noise tells is how noisy the outputs are (i.e., how far from the mean they are)
- Other noise models also possible (e.g., Laplace distribution for noise)

Each weight

Plate diagram. Hyperparams (λ, β) are fixed and not shown for brevity

■ The linear model with Gaussian noise corresponds to a Gaussian likelihood

$$p(y_n|\mathbf{x}_n,\mathbf{w},\beta) = \mathcal{N}(y_n|\mathbf{w}^{\top}\mathbf{x}_n,\beta^{-1})$$
 | NLL corresponds to squared loss prop. to $(y_n - \mathbf{w}^{\top}\mathbf{x}_n)^2$

NLL corresponds to squared

Assuming responses to be i.i.d. given features and weights

 $N \times D$ feature matrix

$$p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(\mathbf{y}_n|\mathbf{w}^{\top}\mathbf{x}_n,\beta^{-1}) = \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w},\beta^{-1}\mathbf{I}_N)$$

■ The above is equivalent to the following

 $N \times 1$ response vector

$$y = Xw + \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, \beta^{-1}I_N)$

■ Assume the following Gaussian prior on w,

Neg. log-prior corresponds to ℓ_2 regularizer with λ being the reg. constant

$$p(\mathbf{w}) = \prod_{d=1}^{D} p(w_d) = \prod_{d=1}^{D} \mathcal{N}(w_d | 0, \lambda^{-1}) = \mathcal{N}(\mathbf{w} | \mathbf{0}, \lambda^{-1} \mathbf{I}_D) = \left(\frac{\lambda}{2\pi}\right)^{\frac{D}{2}} \exp\left[-\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w}\right]$$
Can even use different λ 's for different w_d 's. Useful in sparse modeling (later)

- Then $y = Xw + \epsilon$ is simply a linear Gaussian model
 - Can use all the rules of linear Gaussian models to perform inference/predictions ②

 $p(w_d) = \mathcal{N}(w_d|0,\lambda^{-1})$

The precision λ of the Gaussian prior controls how aggressively the prior pushes the elements towards mean (0)

The Posterior

Will only look at fully Bayesian inference. For MLE/MAP, refer to CS771 slides or book

■ The posterior over \boldsymbol{w} (for now, assume hyperparams $\boldsymbol{\beta}$ and $\boldsymbol{\lambda}$ to be known)

$$p(\mathbf{w}|\mathbf{y},\mathbf{X},\beta,\lambda) = \frac{p(\mathbf{w}|\lambda)p(\mathbf{y}|\mathbf{w},\mathbf{X},\beta)}{p(\mathbf{y}|\mathbf{X},\beta,\lambda)} \propto p(\mathbf{w}|\lambda)p(\mathbf{y}|\mathbf{w},\mathbf{X},\beta)$$
Must be a Gaussian due to conjugacy

Must be a Gaussian due to conjugacy

Must be a Gaussian assumed given and not being modeled

 $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) \propto \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda^{-1}\mathbf{I}_D) \times \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I}_N)$

Using the "completing the squares" trick (or linear Gaussian model results)

$$p(w|y, X, \beta, \lambda) = \mathcal{N}(\mu_N, \Sigma_N)$$

Note that λ and β can be learned under the probabilistic set-up (though assumed fixed as of now)

where
$$\Sigma_N = (\beta \sum_{n=1}^N x_n x_n^\top + \lambda I_D)^{-1} = (\beta \mathbf{X}^\top \mathbf{X} + \lambda I_D)^{-1}$$
 (posterior's covariance matrix)

$$\mu_N = \mathbf{\Sigma}_N \left[\beta \sum_{n=1}^N y_n \mathbf{x}_n \right] = \mathbf{\Sigma}_N \left[\beta \mathbf{X}^\top \mathbf{y} \right] = (\mathbf{X}^\top \mathbf{X} + \frac{\lambda}{\beta} \mathbf{I}_D)^{-1} \mathbf{X}^\top \mathbf{y} \quad \text{(posterior's mean)}$$

The Posterior: A Visualization

- Assume a lin. reg. problem with true $\mathbf{w} = [w_0, w_1], w_0 = -0.3, w_1 = 0.5$
- Assume data generated by a linear regression model $y = w_0 + w_1 x + "noise"$
 - Note: It's actually 1-D regression (w_0 is just a bias term), or 2-D reg. with feature [1,x]
- \blacksquare Figures below show the "data space" and posterior of \boldsymbol{w} for different number of observations (note: with no observations, the posterior = prior)

Posterior Predictive Distribution

lacktriangle To get the prediction y_* for a new input x_* , we can compute its PPD

$$p(y_*|x_*,\mathbf{X},y,\beta,\lambda) = \int p(y_*|x_*,w,\beta)p(\mathbf{w}|\mathbf{X},y,\beta,\lambda)d\mathbf{w} \int \mathbf{y}(\mathbf{w}|\mathbf{x},\mathbf{y},\beta,\lambda)d\mathbf{w} \int \mathbf{y}(\mathbf{y}_*|\mathbf{x}_*,\mathbf{y},\beta^{-1}) \int \mathbf{y}(\mathbf{w}|\mathbf{y},\mathbf{y},\beta,\lambda)d\mathbf{w} \int \mathbf{y}(\mathbf{w}|\mathbf{y},\mathbf{y},\beta,\lambda)d\mathbf{w} \int \mathbf{y}(\mathbf{y}_*|\mathbf{w}^{\mathsf{T}}\mathbf{x}_*,\beta^{-1}) \int \mathbf{y}(\mathbf{w}|\mathbf{y},\mathbf{y},\beta,\lambda)d\mathbf{w} \int \mathbf{y}(\mathbf{y},\mathbf{y},\beta,\lambda)d\mathbf{w} \int \mathbf{y}(\mathbf{y},\mathbf{y},\mathbf{y},\lambda)d\mathbf{w} \int \mathbf{y}(\mathbf{y},\mathbf{y},\mathbf{y},\lambda)d\mathbf{w} \int \mathbf{y}(\mathbf{y},\mathbf{y},\lambda)d\mathbf{w} \int \mathbf{y}(\mathbf{y},\mathbf{y},\lambda$$

■ The above is the marginalization of \boldsymbol{w} from $\mathcal{N}(y_*|\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}_*, \boldsymbol{\beta}^{-1})$. Using Gaussian results

$$p(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y},\beta,\lambda) = \mathcal{N}(\boldsymbol{\mu}_N^\top \mathbf{x}_*,\beta^{-1} + \mathbf{x}_*^\top \mathbf{\Sigma}_N \mathbf{x}_*)$$
 Can also derive it by writing $y_* = \mathbf{w}^\top \mathbf{x}_* + \epsilon$ where $\mathbf{w} \sim \mathcal{N}(\boldsymbol{\mu}_N, \boldsymbol{\Sigma}_N)$ and $\epsilon \sim \mathcal{N}(0,\beta^{-1})$

- \blacksquare So we have a predictive mean $\mu_N^T x_*$ as well as an input-specific predictive variance
- \blacksquare In contrast, MLE and MAP make "plug-in" predictions (using the point estimate of \boldsymbol{w})

$$p(y_*|x_*, w_{MLE}) = \mathcal{N}(w_{MLE}^\top x_*, \beta^{-1})$$
 - MLE prediction Since PPD also takes into account the uncertainty in w , the predictive variance is larger

■ Unlike MLE/MAP, variance of y_* also depends on the input x_* (this, as we will see later, will be very useful in sequential decision-making problems such as active learning) y_* TPMI

Posterior Predictive Distribution: An Illustration

Black dots are training examples

- Width of the shaded region at any x denotes the predictive uncertainty at that x (+/- one std-dev)
- Regions with more training examples have smaller predictive variance

Nonlinear Regression

- Can extend the linear regression model to handle nonlinear regression problems
- lacktriangle One way is to replace the feature vectors $m{x}$ by a nonlinear mapping $m{\phi}(m{x})$

$$p(y|\mathbf{x}, \mathbf{w}) = \mathcal{N}(\mathbf{w}^{\top} \phi(\mathbf{x}), \beta^{-1})$$

Can be pre-defined or extracted by a pretrained deep neural net

- Alternatively, a kernel function can be used to implicitly define the nonlinear mapping
- More on nonlinear regression when we discuss Gaussian Processes

More on Visualization of Uncertainty

■ Figures below: Green curve is the true function and blue circles are observations

■ Posterior of the nonlinear regression model: Some curves drawn from the posterior

■ PPD: Red curve is predictive mean, shaded region denotes predictive uncertainty

Hyperparameters

■ The probabilistic linear reg. model we saw had two hyperparams (β, λ)

■ Thus total three unknowns $(\mathbf{w}, \beta, \lambda)$

$$p(\mathbf{w}, \beta, \lambda | \mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta, \lambda) p(\mathbf{w}, \lambda, \beta)}{p(\mathbf{y} | \mathbf{X})}$$

$$PPD \text{ would require integrating out all 3} = \frac{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta, \lambda) p(\mathbf{w} | \lambda) p(\beta) p(\lambda)}{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta, \lambda) p(\mathbf{w} | \lambda) p(\beta) p(\lambda)}$$

PPD would require integrating out all 3 unknowns
$$= \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta, \lambda)p(\mathbf{w}|\lambda)p(\beta)p(\lambda)}{\int p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta)p(\mathbf{w}|\lambda)p(\beta)p(\lambda) d\mathbf{w} d\lambda d\beta}$$

$$p(\mathbf{y}_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \int p(\mathbf{y}_*|\mathbf{x}_*, \mathbf{w}, \beta)p(\mathbf{w}, \beta, \lambda|\mathbf{X}, \mathbf{y}) d\mathbf{w} d\beta d\lambda$$

- Posterior and PPD computation is intractable. Several ways to address this
 - MLE-II for (β, λ) : $\hat{\beta}, \hat{\lambda} = \arg\max_{\beta, \lambda} p(\mathbf{y}|\mathbf{X}, \beta, \lambda)$. Use them to infer the posterior of θ and PPD

Need posterior over

- Use alternating estimation like EM (e.g., E step computes θ , M step computes (β, λ))
- Use MCMC or Variational Inference to approximate the above posterior and PPD

MLE-II

For any model where hyperparams are estimated by MLE-II, the posterior and PPD is approximated in a similar fashion

solutions

■ For the probabilistic linear regression model, the overall posterior over unknowns

$$p(\mathbf{w}, \beta, \lambda | \mathbf{X}, \mathbf{y}) = p(\mathbf{w} | \mathbf{X}, \mathbf{y}, \beta, \lambda) p(\beta, \lambda | \mathbf{X}, \mathbf{y})$$

■ With MLE-II approx of (β, λ) , $p(\beta, \lambda | \mathbf{X}, \mathbf{y}) \approx \delta(\hat{\beta}, \hat{\lambda})$, a point mass at $\hat{\beta}$, $\hat{\lambda}$

$$p(w, \beta, \lambda | \mathbf{X}, \mathbf{y}) \approx p(w | \mathbf{X}, \mathbf{y}, \hat{\beta}, \hat{\lambda})$$
 Same as the posterior of w with the hyperparameters fixed

■ Likewise, the PPD will be approximated as follows

$$p(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y}) = \int p(y_*|\mathbf{x}_*,\mathbf{w},\beta)p(\mathbf{w},\beta,\lambda|\mathbf{X},\mathbf{y}) \ d\mathbf{w} \ d\beta \ d\lambda$$

$$= \int p(y_*|\mathbf{x}_*,\mathbf{w},\beta)p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)p(\beta,\lambda|\mathbf{X},\mathbf{y})d\beta \ d\lambda \ d\mathbf{w}$$
Same form for the PPD as in the case of fixed hyperparams
$$\approx \int p(y_*|\mathbf{x}_*,\mathbf{w},\beta)p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)p(\beta,\lambda|\mathbf{X},\mathbf{y})d\beta \ d\lambda \ d\mathbf{w}$$

$$p(y_*|\mathbf{x}_*,\mathbf{w},\beta)p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)p(\beta,\lambda|\mathbf{X},\mathbf{y})d\beta \ d\lambda \ d\mathbf{w}$$
Only need to integrate over \mathbf{w} , since other two are fixed at their MLE-II

Road So Far and What Lies Ahead

- Seen Bayesian inference for several models with a single unknown parameter (and another simple case where we had two unknown parameters - Gaussian with unknown mean and precision)
- Focused on the cases where the likelihood and prior are conjugate
- Both posterior as well as posterior predictive are computable easily in such cases
- Saw various nice properties of exp. family distributions and parameter estimation for such distributions. Also saw estimation in a conditional model (linear regression)
- Things become more challenging/interesting for more complex models, e.g.,
 - Multiple unknown parameters (e.g., hyperparams, latent variables, hierarchical models etc)
 - Likelihood and prior are not conjugate. Approximate inference methods (MCMC, VI, etc)
- Basic ideas we saw will turn out to be useful in more complex models as well
 - Conditionally-conjugate or locally-conjugate models (conjugacy exists in sub-parts of the model)
 - Some approximate inference methods, e.g., Gibbs sampling, VI, also rely on conjugacy

Coming Up Next

- Hyperparameter estimation for Bayesian linear regression
- Sparse modeling

