MTH517: TIME SERIES ANALYSIS End Semester Examination: Full Marks 100

Date: November 18, 2014

- [1] (a) Let $\{X_t\}$ and $\{Y_t\}$ be two time series defined by $X_t = te^{-Y}$ and $Y_t = X_t X_{t-2}$, where $Y \sim \exp(1)$. Prove or disprove " $\{X_t\}$ and $\{Y_t\}$ are both covariance stationary".
 - (b) Let $\{\gamma_X(h)\}$ be the autocovariance sequence of an $MA(\infty)$ process, $\{X_t\}$, given by $X_t = \sum_{j=0}^{\infty} \psi_j \, \varepsilon_{t-j}, \sum_j |\psi_j| < \infty, \, \varepsilon_t \sim WN(0, \sigma^2). \text{ Prove or disprove "} \sum_{h=-\infty}^{\infty} \gamma_X(h) = \sigma^2 \left(\sum_{j=0}^{\infty} \psi_j\right)^2 \text{"}.$
 - (c) Let $\{X_t\}$ be a covariance stationary time series with mean μ and autocovariance sequence $\{\gamma_X(h)\}$. Prove or disprove "if $\lim_{n\to\infty} Cov(X_n, \overline{X}_n) = 0$ then $\lim_{h\to\infty} \gamma_X(h) = 0$ ".
 - (d) Let $\{X_t\}$ be a covariance stationary time series with mean μ and autocovariance sequence $\{\gamma_X(h)\}$ such that $\lim_{n\to\infty} E(\overline{X}_n \mu)^2 = 0$, find $\lim_{n\to\infty} \left(\sum_{h=0}^{n-1} \frac{\gamma_X(h)}{n}\right)^2$.

20 (5+5+5+5) Marks

- [2] Let $\{X_t\}$ be a sequence of independent and identically distributed N(0,1) random variables. Define $Y_t = (-1)^t + X_t + X_{t-1} + X_{t-2}$ and $Z_t = (-1)^t X_t$. Prove or disprove the following statements:
 - (a) $\{Y_t\}$ is Gaussian and strictly stationary.
 - **(b)** $\{Z_t\}$ is Gaussian and strictly stationary.
 - (c) $\begin{pmatrix} Y_t \\ Z_t \end{pmatrix}$ is covariance stationary bivariate process.

15 (5+5+5) Marks

- [3] Let $\{X_t\}$ and $\{Y_t\}$ be two time series given by $X_t = 0.5X_{t-1} + \varepsilon_t$, $Y_t = 0.5Y_{t-1} + \varepsilon_{t-1}$, $\varepsilon_t \sim WN(0, \sigma^2)$.
 - (a) Find the BLP of X_{t+2} based on Y_t .
 - (b) Find the mean square prediction error of the BLP obtained in (a).

12 (7+5) Marks

[4] Consider the 2-variate vector process $\{X_t\}$ given by $X_t = \Phi X_{t-1} + \varepsilon_t + \Theta \varepsilon_{t-1}$, $\Phi = \begin{pmatrix} 0.5 & 0 \\ 2 & 0 \end{pmatrix}$,

$$\Theta = \begin{pmatrix} 0 & 0.5 \\ 0 & 2 \end{pmatrix} \text{ and } \underline{\varepsilon}_t \sim VWN(0, \Sigma), \ \Sigma > 0.$$

- (a) Find Ψ_j associated with the $VMA(\infty)$ representation $X_t = \sum_{j=0}^{\infty} \Psi_j \mathcal{E}_{t-j}$ of $\{X_t\}$.
- **(b)** Verify whether $\{\Psi_j\}_{j=0}^{\infty}$ is absolutely summable.

(c) Obtain impulse response of the 2 variables (in X_i) with respect to shocks in the other variable.

[5] Let $\{X_i\}$ and $\{Y_i\}$ be two independent covariance stationary time series such that $X_i \sim WN\left(0, \sigma_1^2\right)$ and $Y_i = \delta + \varepsilon_i + \varepsilon_{i-1}$, $\varepsilon_i \sim WN(0, \sigma_2^2)$. Find the spectral density function of $Z_i = X_i Y_i$ and comment on the nature of the time series $\{Z_i\}$.

- [6] Let $\{Z_t\}$ be a covariance stationary time series with spectral density function $f_Z(\lambda) = \frac{1}{2\pi}$; $-\pi \le \lambda \le \pi$. $\{X_i\}$ is obtained from $\{Z_i\}$ using a linear filter with coefficients g_{-1}, g_0, g_1 $X_t = g_{-1}Z_{t+1} + g_0Z_t + g_1Z_{t-1}$. The ACVF of $\{X_t\}$ is $\gamma_X(h) = e^{-|h|}$ and spectral density function $f_X(\lambda)$. Let $Y_i = X_{i-2} - X_{i+2}$ and $f_Y(\lambda)$ the spectral density function of $\{Y_i\}$.
 - (a) Obtain the values of $f_X(0)$ and $f_Y(0)$.
- **(b)** Find the cross covariance $\gamma_{ZV}(2) = Cov(Z_t, Y_{t+2})$.

12 (8+4) Marks

[7] The spectral distribution function of a covariance stationary time series is given by

Trum and/or disparts provided in the series is given by
$$\begin{cases}
\frac{3(\pi + \lambda)}{2\pi}, & -\pi \le \lambda < -\pi/2 \\
\frac{5\pi + 3\lambda}{2\pi}, & -\pi/2 \le \lambda < -\pi/3 \\
\frac{3(2\pi + \lambda)}{2\pi}, & -\pi/3 \le \lambda < \pi/3 \\
\frac{7\pi + 3\lambda}{2\pi}, & \pi/3 \le \lambda < \pi/2 \\
\frac{3(3\pi + \lambda)}{2\pi}, & \pi/2 \le \lambda \le \pi
\end{cases}$$
Trum and/or disparts provided in the latter (1)

- (a) Find the continuous spectrum and/or discrete spectrum associated with F_X (.).
- **(b)** Using $F_X(.)$, obtain the ACVF sequence.
- (c) Identify the time series for which the above is the spectral distribution function.

20 (8+8+4) Marks

Useful Information:

• p.d.f. of
$$Y \sim \exp(1)$$
 is $f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & o/w. \end{cases}$