Instrument Reviews, Visualized

Jake Norbie

Basic Notes about Dataset

Amazon Reviews of Instruments

- 10261 documents total
 - 8209/2052 train-test split

- "Review" tag included reviews
 - Highly variable words
 - Required removal of punctuation and splitting of words

- "Overall" tag had values '1.0', '2.0', '3.0', '4.0', and '5.0'.
 - Five stars of rating for musical instruments.

Fun Fact: Kaggle says there are 10255 unique reviews, so 6 reviews are identical to existing ones!

Distribution for labels is not uniform

Label '5.0' accounted for average 65% of documents.

Label '4.0' accounted for average 20% of documents.

- Labels '1.0', '2.0', and '3.0' accounted for the rest (~15%).

```
5.0 6938
4.0 2084
3.0 772
2.0 250
1.0 217
Name: overall, dtype: int64
```

Preprocessing Psuedocode

```
df.Reviews = df.Reviews.apply(remove punctuation)

df.Reviews = df.Reviews.apply(split sentence into words)

df.Reviews = df.Reviews.apply(lowercasing)

df.Reviews = df.Reviews.apply(remove stop words in nltk stopwords corpus)

If ignore preprocessing step == False:

    df.Reviews = df.Reviews.apply(PorterStemmer from nltk.stem)

train(df)
```

Training Psuedocode (initial steps)

```
train_data, test_data = split df into 80/20 split

For row in train_data:
    For word in train_data.review:
        If word not in bag_of_words_map:
            bag_of_words_map.append(word)

For label in df.overall.unique:
        Label_prob_dict[label] = count of labels in train data / total documents
```

Training Psuedocode (building model)

```
Word_probabilities = {}

For target_label in labels:
    Labeled_train_data = train data where label == target_label
    Word_counts = total words in labeled_train_data
    For each word in bag_of_word_map:
        word_probabilities[target_label].append((total word count in documents with label + 1) / (total word count for label + number of labels))
```

Testing Psuedocode

```
Test_data.feature = test_data.review.apply(convert review to
bag_of_words vector)

Test_data.prediction = test_data.feature.apply(predict)

Create confusion matrix, metrics, etc.
```

Testing Psuedocode (predict function)

Predicting Psuedocode

```
S = input("Enter your sentence: ")
Feature_vector = preprocessing(S)
Prediction, predict_dict = predict(feature_vector, labels_map,
label_probs, word_probs)
Print probabilities and labels from labels map, predict dict
```

Methodologies

- My own code

- Attempted straightforward translation of assignment

- Switched to more ambiguous functions for prediction and testing

The Raw Data

Test results / metrics for label '5.0':	Test results / metrics for label '4.0':	Test results / metrics for label '3.0':	Test results / metrics for label '2.0':	Test results / metrics for label '1.0':
Number of true positives: 1305	Number of true positives: 34	Number of true positives: 0	Number of true positives: 0	Number of true positives: 0
Number of false negatives: 71	Number of false negatives: 382	Number of false negatives: 174	Number of false negatives: 47	Number of false negatives: 39
Number of false positives: 609	Number of false positives: 102	Number of false positives: 1	Number of false positives: 1	Number of false positives: 0
Number of true negatives: 67	Number of true negatives: 1534	Number of true negatives: 1877	Number of true negatives: 2004	Number of true negatives: 2013
Sensitivity (recall): 0.9484011627906976	Sensitivity (recall): 0.08173076923076923	Sensitivity (recall): 0.0	Sensitivity (recall): 0.0	Sensitivity (recall): 0.0
Specificity: 0.09911242603550297	Specificity: 0.9376528117359413	Specificity: 0.9994675186368477	Specificity: 0.9995012468827931	Specificity: 1.0
Precision: 0.6818181818181818	Precision: 0.25	Precision: 0.0	Precision: 0.0	Precision: nan
Negative predictive value: 0.4855072463768116	Negative predictive value: 0.8006263048016702	Negative predictive value: 0.9151633349585568	Negative predictive value: 0.977084349098001	Negative predictive value: 0.9809941520467836
Accuracy: 0.6686159844054581	Accuracy: 0.7641325536062378	Accuracy: 0.9147173489278753	Accuracy: 0.9766081871345029	Accuracy: 0.9809941520467836
F-Score: 0.7933130699088146	F-Score: 0.12318840579710146	F-Score: 0.0	F-Score: 0.0	F-Score: 0.0

Test results / metrics for label '5.0':	Test results / metrics for label '4.0':	Test results / metrics for label '3.0':	Test results / metrics for label '2.0':	Test results / metrics for label '1.0':
Number of true positives: 1352	Number of true positives: 11	Number of true positives: 0	Number of true positives: 0	Number of true positives: 0
Number of false negatives: 4	Number of false negatives: 438	Number of false negatives: 154	Number of false negatives: 46	Number of false negatives: 47
Number of false positives: 671	Number of false positives: 17	Number of false positives: 1	Number of false positives: 0	Number of false positives: 0
Number of true negatives: 25	Number of true negatives: 1586	Number of true negatives: 1897	Number of true negatives: 2006	Number of true negatives: 2005
Sensitivity (recall): 0.9970501474926253	Sensitivity (recall): 0.024498886414253896	Sensitivity (recall): 0.0	Sensitivity (recall): 0.0	Sensitivity (recall): 0.0
Specificity: 0.035919540229885055	Specificity: 0.9893948845913911	Specificity: 0.9994731296101159	Specificity: 1.0	Specificity: 1.0
Precision: 0.6683143845773604	Precision: 0.39285714285714285	Precision: 0.0	Precision: nan	Precision: nan
Negative predictive value: 0.8620689655172413	Negative predictive value: 0.7835968379446641	Negative predictive value: 0.9249146757679181	Negative predictive value: 0.9775828460038987	Negative predictive value: 0.9770955165692008
Accuracy: 0.6710526315789473	Accuracy: 0.7782651072124757	Accuracy: 0.9244639376218323	Accuracy: 0.9775828460038987	Accuracy: 0.9770955165692008
F-Score: 0.8002367564368156	F-Score: 0.04612159329140461	F-Score: 0.0	F-Score: 0.0	F-Score: 0.0

It's A Lot, Right?

Let's Break it Down

Confusion Matrices

ROC Curves

Distribution for labels is not uniform

Label '5.0' accounted for average 65% of documents.

Label '4.0' accounted for average 20% of documents.

- Labels '1.0', '2.0', and '3.0' accounted for the rest (~15%).

```
5.0 6938
4.0 2084
3.0 772
2.0 250
1.0 217
Name: overall, dtype: int64
```

And because of this...

Data weighting is skewed.

If you knew on a multiple choice exam that each question had an 80% chance of having answer 'a', you could almost always select 'a' on every question and average 80%.

The results show this. Metrics with true negatives are really high, and metrics with positives are really low (almost never predicted).

Test results / metrics for label '5.0':	Test results / metrics for label '4.0':	Test results / metrics for label '3.0':	Test results / metrics for label '2.0':	Test results / metrics for label '1.0':
Number of true positives: 1305	Number of true positives: 34	Number of true positives: 0	Number of true positives: 0	Number of true positives: 0
Number of false negatives: 71	Number of false negatives: 382	Number of false negatives: 174	Number of false negatives: 47	Number of false negatives: 39
Number of false positives: 609	Number of false positives: 102	Number of false positives: 1	Number of false positives: 1	Number of false positives: 0
Number of true negatives: 67	Number of true negatives: 1534	Number of true negatives: 1877	Number of true negatives: 2004	Number of true negatives: 2013
Sensitivity (recall): 0.9484011627906976	Sensitivity (recall): 0.08173076923076923	Sensitivity (recall): 0.0	Sensitivity (recall): 0.0	Sensitivity (recall): 0.0
Specificity: 0.09911242603550297	Specificity: 0.9376528117359413	Specificity: 0.9994675186368477	Specificity: 0.9995012468827931	Specificity: 1.0
Precision: 0.68181818181818	Precision: 0.25	Precision: 0.0	Precision: 0.0	Precision: nan
Negative predictive value: 0.4855072463768116	Negative predictive value: 0.8006263048016702	Negative predictive value: 0.9151633349585568	Negative predictive value: 0.977084349098001	Negative predictive value: 0.9809941520467836
Accuracy: 0.6686159844054581	Accuracy: 0.7641325536062378	Accuracy: 0.9147173489278753	Accuracy: 0.9766081871345029	Accuracy: 0.9809941520467836
F-Score: 0.7933130699088146	F-Score: 0.12318840579710146	F-Score: 0.0	F-Score: 0.0	F-Score: 0.0

Test results / metrics for label '5.0':	Test results / metrics for label '4.0':	Test results / metrics for label '3.0':	Test results / metrics for label '2.0':	Test results / metrics for label '1.0':
Number of true positives: 1352	Number of true positives: 11	Number of true positives: 0	Number of true positives: 0	Number of true positives: 0
Number of false negatives: 4	Number of false negatives: 438	Number of false negatives: 154	Number of false negatives: 46	Number of false negatives: 47
Number of false positives: 671	Number of false positives: 17	Number of false positives: 1	Number of false positives: 0	Number of false positives: 0
Number of true negatives: 25	Number of true negatives: 1586	Number of true negatives: 1897	Number of true negatives: 2006	Number of true negatives: 2005
Sensitivity (recall): 0.9970501474926253	Sensitivity (recall): 0.024498886414253896	Sensitivity (recall): 0.0	Sensitivity (recall): 0.0	Sensitivity (recall): 0.0
Specificity: 0.035919540229885055	Specificity: 0.9893948845913911	Specificity: 0.9994731296101159	Specificity: 1.0	Specificity: 1.0
Precision: 0.6683143845773604	Precision: 0.39285714285714285	Precision: 0.0	Precision: nan	Precision: nan
Negative predictive value: 0.8620689655172413	Negative predictive value: 0.7835968379446641	Negative predictive value: 0.9249146757679181	Negative predictive value: 0.9775828460038987	Negative predictive value: 0.9770955165692008
Accuracy: 0.6710526315789473	Accuracy: 0.7782651072124757	Accuracy: 0.9244639376218323	Accuracy: 0.9775828460038987	Accuracy: 0.9770955165692008
F-Score: 0.8002367564368156	F-Score: 0.04612159329140461	F-Score: 0.0	F-Score: 0.0	F-Score: 0.0

Results for more popular labels

-Without Stemming is better in 8 of 12 metrics

-Accuracies are roughly the same

-Most metrics are within 0.05 of each other

-Note: different tests revealed different or near opposite results

Conclusions

- Impartial Distribution of labels without impartial labelling on simple models leads to skewed results, favoring most popular label
- 2) For this dataset, stemming had very little effect on results