Министерство Науки и Высшего Образования Российской Федерации Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования

Национальный Исследовательский Ядерный Университет «МИФИ»

Институт Ядерной Физики и Технологий Кафедра Теплофизики

Оценка характеристик биологической защиты BBЭP-1000

Домашнее задание по курсу «Теория переноса излучений»

Работу выполнил:

М. Д. Панин

Группа: Б18-101

Преподаватель:

М.Ю Терновых

Москва 2022

Содержание

1.	Опи	сание конструкции реактора	3
2.	Тепл	юфизический расчет	4
	2.1.	Постановка задачи	4
	2.2.	Исходные данные для проведения расчетов	5
	2.3.	Выбор турбины	6
	2.4.	Расчет КПД термодинамического цикла	8
	2.5.	Расчет изменения теплового потока в наиболее нагруженном ка-	
		нале	10
	2.6.	Расчет распределения температуры теплоносителя по высоте	10
	2.7.	Расчет распределения температуры внешней стенки оболочки по	11
	2.0	Высоте	
	2.8.	Расчет температуры топлива	15
	2.9.	Определение перепадов давления и необходимой мощности на-	4.0
	5.40	сосов на прокачку	16
	2.10.	Выводы из теплофизического расчета	18
3.	Ней	гронно-физический расчет	19
	3.1.	Постановка задачи	19
	3.2.	Описание инструмента ячеечного расчета	19
	3.3.	Модель ячейки	19
	3.4.	Расчет ячеек без выгорания	20
	3.5.	Расчет полиячеек без выгорания	21
	3.6.	Расчет длительности цикла и выгорания при частичных пере-	
		грузках	21
4.	Расч	ет биологической защиты	23
	4.1.	Постановка задачи	23
	4.2.	Построение расчетной модели биологической защиты	23
	4.3.	Расчет дозы нейтронов из активной зоны реактора	27
	4.4.	Расчет дозы нейтронов за защитой или минимального размера	
		слоя биологической защиты для нейтронов	29
	4.5.	Расчет дозы гамма-квантов из активной зоны	30
	4.6.	Расчет дозы гамма-квантов за защитой или минимального раз-	
		мера слоя биологической защиты для гамма-квантов	33
	4.7.	Заключение	35
Па	noue	и использорани и истонии ор	36

1. Расчет биологической защиты

1.1. Постановка задачи

Необходимо рассчитать дозу облучения при стационарном режиме работы ЯЭУ ВВЭР-1000 за биологической защитой

1.2. Построение расчетной модели биологической защиты

Для формирования расчетной модели рассмотрим разомкнутую компоновку элементов и помещений ЯЭУ с РУ ВВЭР-1000. Такая компоновка предполагает разделения реакторного и машинного залов в разные здания, что позволяет локализовать возможную аварию и обеспечить большую безопасность.

Рисунок 1.1. Общая компоновка энергоблока с РУ ВВЭР-1000 разомкнутой компоновки (Южно-Украинская АЭС) [2]:

1 — реактор; 2 — машина для перегрузки топлива; 3 — подъемный кран реакторного отделения; 4 — компенсатор давления, 5 — барботер; 6 — деаэратор; 7 — гидроемкость, 8 — турбогенератор; 9 — подъемный кран машинного зала; 10 — регенеративные подогреватели; 11 — защитная оболочка; 12 — блочный щит управления;

Элементы компоновки вокруг реактора Рассмотрим основные элементы защиты, внешние по отношению к ВВЭР-1000 в сборе. Корпус реактора установливается в бетонную шахту (рис 4.2), которая играет роль основной опоры и крепления реактора с учетом сейсмических нагрузкок, а также биологической защиты от излучения со стороны АЗ. Между корпусом реактора и шахтой имеется кольцевой зазор, предназначенный для периодического контроля металла корпуса в связи с требованиями правил. Шахта резделена по высоте на два объема разделительным сильфоном:

- Верхний, снабжен гидрозатвором и соединяется с бассейном выдержки. При перегрузке верхний объем шахты вместе с бассейном заливается водой.
- Нижний, условно разделяемый фермой опорной на шахту зоны патрубков и шахту цилиндрической части корпуса. Соединяется проемом, снабженным герметичной дверью, с помещением для машины осмотра корпуса.

В помещении зоны патрубков биологическая защита выполнена из металлических коробов, заполненных специальным составом, в который входят серпентинитовая галя, кристаллический карбид бора, дробь чугунная литая. В районе активной зоны применяется «сухая» защита, которая представляет из себя слой серпентинитового бетона толщиной 720 мм и высотой 4,7 м, облицованного металлической оболочкой. Такой бетон обладает высокой радиационной стой-костью, что позволяет удовлетворить требования по нейтронной защите. [1]

Рисунок 1.2. Бетонная шахта реактора

Все оборудование первого контура заключено в цилиндрическую оболочку, в верхней части которой расположен грузоподъемный поворотный кран. Между реакторным и машинным залами располагается этажерка электротехнических устройств, где размещены также деаэраторы и различные лаборатории.

Корпус и внутрикорпусные элементы компоновки Корпус представляет собой вертикальный герметичный сосуд цилиндрической формы с эллиптическими днищем и крышкой с наружним диаметром 4535 мм, высотой 10.897 м и толщиной 192 мм в цилиндрической части и 210 мм в районе патрубков [1]. В качестве основного материала используется сталь сталь 15Х2НМФА. е. Вся внутренняя поверхность корпуса покрыта антикоррозионной наплавкой из нержавеющей стали толщиной не менее 8 мм. В местах соприкосновения корпуса с крышкой, шахтой, уплотнительными прокладками, в местах приварки кронштейнов, деталей крепления трубок КИП, на поверхности разделительного кольца выполнена наплавка толщиной не менее 15 мм. Внутрь реактора также устанавливается шахта, которая представляет собой цилиндрическую обечайку с фланцем и эллиптическим днищем, в котором закреплены 163 опорные трубы (стаканы) с шагом 236 мм, верхние части которых образуют опорную плиту для установки и дистанционирования кассет активной зоны. Материал шахты — сталь 08Х18Н10Т толщиной 55 мм.

Устройство твэла Твэл ядерного реактора ВВЭР-1000 представляет собой трубку, заполненную таблетками из двуокиси урана UO2 и герметично уплотненную концевыми деталями на сварке. Трубка твэла изготовлена из циркония, легированного 1 % ниобия. Наружный диаметр трубки твэла 9.1±0.05 мм, ее толщина 0.65±0.03 мм, а внутренний диаметр 7.72+0.08 мм. В эту трубку с зазором 0.19–0.32 мм на диаметр помещены таблетки двуокиси урана высотой (длиной) 20 мм и диаметром 7.57±0.04 мм. В середине этих таблеток имеются отверстия диаметром 1.5 мм, а края таблеток скруглены фасками. Общая длина столба этих таблеток в твэле составляет 3530 мм. Все размеры указаны для холодного состояния. Длина трубки твэла составляет 3800 мм, поэтому положение столба топливных таблеток в твэле зафиксировано разрезными втулками из нержавеющей стали и пружиной, не препятствующими тепловым перемещениям. Вид твэла приведён на рис. 4.3 [3]

Рисунок 1.3. Тепловыделяющий элемент: 1 — заглушка верхняя; 2 — оболочка; 3 — фиксатор; 4 — таблетка; 5 — заглушка нижняя

Преимущество циркония заключается в удачном сочетании ядерных и физических характеристик с механическими и коррозионными свойствами. Цирконий коррозионно стоек в большинстве сред, применяемых в качестве теплоносителей ядерных реакторов, и достаточно технологичен.

Естественная радиоактивность одной свежей ТВС составляет $1.8 \cdot 10^{10}$ Бк., гамма- излучение на поверхности около 0.2 бэр/ч.

Построение одномерной модели В качестве помещения постоянного пребывания персонала рассматривается блочный щит управления, расположенный в этажерке электроустройств (цифра 12 на рис. 2.5). Также в этажерке электроустройств размещаются распределительные устройства сетей электропитания двигателей электростанции, аккумуляторные батареи, трансформаторы и т. д. Для построения расчетной модели был определен ряд значимых элементов конструкции реакторной установки с точки зрения нейтронной защиты. От активной зоны рассматриваемое помещение отделено внутрикорпусными элементами, такими как оболочка твэла, внутрикорпусная шахта; корпусом, бетонной внешней шахтой, внешней бетонной оболочкой реактора и бетонной стеной машинного зала. Суммарный слой бетона складывается из 3 м основания гермо-

оболочки, 0.72 м сухой защиты шахты, 1.5 м шахты и 0.5 м стены машинного зала перед этажеркой. Основная доля нейтронного излучения в реакторе приходится на нейтроны теплового спектра. Для таких энергий хрошими поглотителями являются кадмий, графит, бетон. Присутствующее гамма-излучение для своего эффективного поглощения требует свинец и подобные высокоплотные материалы. Таким образом были выбран слои биологической защиты, представленные в таблице 4.1:

Таблица 1.1: Слои биологической защиты

Название	Материал	Размер, см	$\mid \Pi$ лотность, г/см 3
Внутрикорпусная шахта	сталь 08Х18Н10Т	5.5	7.9
Теплоноситель	$\mathrm{H_{2}O}$	26.3	0.71
Корпус	сталь 15Х2НМФА	19.25	7.8
Шахта + гермооболочка + стена	бетон	572	2.35

1.3. Расчет дозы нейтронов из активной зоны реактора

Таблица 1.2: Основные параметры для расчета

Параметр	Значение
Тепловая мощность реактора, МВт $W_{ m теп}$	$2.904 \cdot 10^3$
Средняя энергия, выделяющаяся в одной реакции деления, МэВ E_f	200
Средняя энергия нейтронов спектра деления, МэВ E_{nf}	2
Среднее число нейтронов деления на середину кампани, $ u_f$	2.42
Коэффициент размножения K_{∞}	1.03
Доля нейтронов спектра деления в спектре утечки γ	0.5
Среднее число гамма-квантов деления на середину кампании	7.51
Высота активной зоны $H_{\rm as}$, м	3.5
Радиус активной зоны $R_{\rm as}$, м	1.58

Число реакций деления в реакторе в единицу времени:

$$N_f = \frac{W_{\text{теп}}}{E_f} \tag{1}$$

$$N_f = \frac{2.90 \cdot 10^9}{2.00 \cdot 10^2 \cdot 1.60 \cdot 10^{-13}} = 9.06 \cdot 10^{19} \, \frac{\text{дел}}{\text{с}}$$

Число нейтронов, образующихся в реакторе в единцу времени:

$$N_n = N_f \cdot \nu_f \tag{2}$$

$$N_n = 9.06 \cdot 10^{19} \cdot 2.42 = 2.19 \cdot 10^{20}$$

Площадь полной поверхности акивной зоны

$$S_{\text{пов}} = S_{\text{бок}} + 2S_{\text{top}} \tag{3}$$

где

•
$$S_{\mathrm{бок}} = H_{\mathrm{a}\mathrm{s}} 2\pi R_{\mathrm{a}\mathrm{s}}$$

•
$$S_{\text{top}} = \pi R_{\text{as}}^2$$

$$S_{\text{пов}} = 3.50 \cdot 2 \cdot \pi \cdot 1.58 + 2 \cdot \pi \cdot (1.58)^2 = 5.04 \cdot 10^1 \ \mathrm{m}^2$$

Поток нейтронов утечки из активной зоны:

$$\Phi = \frac{N_n(K_{\infty} - 1)}{S_{\text{TOR}}} \tag{4}$$

$$\Phi = \frac{2.19 \cdot 10^{20} (1.03-1)}{5.04 \cdot 10^1} = 1.30 \cdot 10^{17} \, \frac{\text{нейтрон}}{\text{c} \cdot \text{m}^2}$$

Поток нейтронов спектра деления в утечке из активной зоны:

$$\Phi_f = \Phi \cdot \gamma \tag{5}$$

$$\Phi_f = 1.30 \cdot 10^{17} \cdot 5.00 \cdot 10^{-01} = 6.52 \cdot 10^{16} \; \frac{\text{нейтрон}}{\text{c} \cdot \text{m}^2}$$

Мощность экивалентной дозы нейтронов перед защитой

$$D_{0n} = \Phi_f \cdot E_{nf} \cdot \overline{\mu_{\text{3H}}} \cdot K \tag{6}$$

где

- $\overline{\mu_{
 m 3H}}=\frac{1~{
 m M}^2}{100~{
 m kr}}$ массовый коэффициент поглощения энергии в биологической ткани, принимается равным отношению площади человека к его массе
- $K=10~\frac{{
 m 3B}}{{
 m \Gamma p}}$ коэффициент качества нейтронов спектра деления

$$D_{0n} = 6.52 \cdot 10^{16} \cdot 2.00 \cdot 1.60 \cdot 10^{-13} \cdot 1.00 \cdot 10^{-02} \cdot 1.00 \cdot 10^{1} = 2.09 \cdot 10^{3} \frac{3B}{C}$$

Результаты расчетов дозы нейтронов из активной зоны представлены в таблице **4.3**

Таблица 1.3: Результаты расчета дозы нейтронов

Параметр	Значение
N_f , дел	$9.06 \cdot 10^{19}$
N_n , нейтрон	$2.19 \cdot 10^{20}$
S_{nob} , m^2	50.4
$\Phi, \frac{\text{нейтрон}}{M^2 \cdot C}$	$1.3 \cdot 10^{17}$
$\Phi_f, rac{ ext{нейтрон}}{ ext{м}^2 \cdot ext{с}}$	$6.52 \cdot 10^{16}$
$D_{0n}, \frac{3\mathrm{B}}{\mathrm{C}}$	$2.09 \cdot 10^3$

1.4. Расчет дозы нейтронов за защитой или минимального размера слоя биологической защиты для нейтронов

Для расчета дозы нейтронов за защитой используется модель сечения выведения многослойной системы.

Сечение выведение для многослойной системы:

$$D = D_0 \exp\left(-\sum_{i} \Sigma_{\text{rem}}^{i} \cdot d_i\right) \tag{7}$$

Для текущей модели раскрывается как:

$$D = D_0 \exp\left(-\Sigma_{\rm rem}^{\rm H_2O} \cdot d_{\rm H_2O} - \Sigma_{\rm rem}^{\rm cr} \cdot d_{\rm cr} - \Sigma_{\rm rem}^{\rm \varkappa/6} \cdot d_{\rm \varkappa/6}\right) \tag{8}$$

где $\Sigma^{\rm H_2O}_{\rm rem}$ — сечение выведеня слоя воды, $\Sigma^{\rm cr}_{\rm rem}$ — сечение выведения слоя стали, $\Sigma^{\rm x/6}_{\rm rem}$ — сечение выведения слоя бетона, $d_{\rm H_2O}, d_{\rm cr}, d_{\rm x/6}$ — толщины слоев воды, стали и бетона

Таблица 1.4: Значения сечений выведений защиты и толщины различных слоев [3]

Слой защиты	d, см	$ ho, rac{\Gamma}{{ m CM}^3}$	$\Sigma_{ m rem}$, ${ m cm}^{-1}$
Вода	26.3	0.71	0.069
Сталь	24.75	7.9	0.166
Бетон	572	2.35	0.08

$$D_n = 2.09 \cdot 10^3 \exp\left(-6.90 \cdot 10^{-02} \cdot 2.63 \cdot 10^1 - 1.66 \cdot 10^{-01} \cdot 2.48 \cdot 10^1 - 8.00 \cdot 10^{-02} \cdot 5.78 \cdot 10^{-01} \cdot 10^{-01}$$

Для учета 20% погрешности по дозе модели сечения выведения необходимо использовать поправочный коэффициент 1.2. Итоговая доза с учетом погрешности в 3в / нед:

$$D_{n,\mathrm{нед}} = 1.2 \cdot 7 \cdot 24 \cdot 60 \cdot 60 \cdot 7.490 \cdot 10^{-20} = 5.436 \cdot 10^{-14} \ \frac{\mathrm{3B}}{\mathrm{нед}}$$

1.5. Расчет дозы гамма-квантов из активной зоны

Для расчета гамма-квантов перед защитой применен приближенный алгоритм. Его идея — оценить поток гамма-квантов деления из активной зоны реактора в одномерной геометрии и внести поправку на утечку гамма-квантов от других их источников.

Число гамма-квантов, образующихся в реакторе в единицу времени:

$$I = N_f \cdot \nu_\gamma \cdot N_\gamma \tag{9}$$

где $N\gamma$ — доля гамма-квантов определенной энергии в реакции деления, для E=3 MэB $N_{\gamma,3{
m M}{
m 9B}}=0.2$, для E=5 MэB $N_{\gamma,5{
m M}{
m 9B}}=0.15$ Тогда число гамма-квантов в единицу времени для двух энергий:

$$\begin{split} I_{3\text{ M} \ni \text{B}} &= 9.064 \cdot 10^{19} \cdot 2.000 \cdot 10^{-01} \cdot 7.510 = 1.361 \cdot 10^{20} \, \frac{\text{KB}}{\text{C}} \\ I_{5\text{ M} \ni \text{B}} &= 9.064 \cdot 10^{19} \cdot 1.500 \cdot 10^{-01} \cdot 7.510 = 1.021 \cdot 10^{20} \, \frac{\text{KB}}{\text{C}} \end{split}$$

Рассмотрим перенос нерассеянных гамма-квантов в однородной пластине с внешним источником, перпендикулярным границам пластины. При этом потребуем выполнения следующих условий:

- 1. толщина пластины равна L средней ходе активной зоны $L=\frac{4V_{\rm as}}{S_{\rm nos}}$, где $V_{\rm as}$ объем активной зоны
- 2. линейный коэффициент ослабления пластины μ_{γ} вычисляется через коэффициенты ослабления элементарной ячейки реактора

$$\mu_{\gamma} = \mu_{U} \varepsilon_{U} + \mu_{\text{of}} \varepsilon_{\text{of}} + \mu_{\text{T/H}} \varepsilon_{\text{T/H}} + \mu_{\text{3am}} \varepsilon_{\text{3am}}$$
 (10)

где ε_i — объемные доли топлива, конструкционных материалов, теплоносителя и замедлителя в элементарной ячейке.

Таблица 1.5: Объемные доли материалов

Материал	\mid Обьемная доля $arepsilon_i$
Топливо	0.166
Оболочка (Zr)	0.071
теплоноситель/замедлитель (вода)	0.733

Таблица 1.6: Линейные коэффициенты ослабления μ для гамма-квантов с энергией 3 и 5 МэВ

Материал	$\mid \mu_3, \text{cm}^{-1} \mid$	$\mid \mu_5, extsf{cm}^{-1} \mid$
Топливо	0.81	0.83
Оболочка (Zr)	0.237	0.221
теплоноситель/замедлитель (вода)	0.028	0.021

Таким образом полный линейный коэффициент ослабления для энергий E=3 MэB, 5 Мэв:

$$\begin{array}{l} \mu_{\gamma,3 \text{ M}_{\textrm{ЭВ}}} = 1.66 \cdot 10^{-1} \cdot 8.10 \cdot 10^{-1} + 7.10 \cdot 10^{-2} \cdot 2.37 \cdot 10^{-1} + 7.33 \cdot 10^{-1} \cdot 2.80 \cdot 10^{-2} \\ = 1.72 \cdot 10^{-1} \text{ cm}^{-1} \end{array}$$

$$\begin{array}{l} \mu_{\gamma,5~\mathrm{M} \ni \mathrm{B}} = 1.66 \cdot 10^{-1} \cdot 8.30 \cdot 10^{-1} + 7.10 \cdot 10^{-2} \cdot 2.21 \cdot 10^{-1} + 7.33 \cdot 10^{-1} \cdot 2.10 \cdot 10^{-2} \\ = 1.69 \cdot 10^{-1} ~\mathrm{cm}^{-1} \end{array}$$

Объем активной зоны:

$$V_{\rm a3} = \pi R_{\rm a3}^2 H_{\rm a3} = \pi \cdot 1.58^2 \cdot 3.5^2 = 27.45 {\rm m}^3$$

Толщина пластины:

$$L = \frac{4 \cdot 27.45}{5.04 \cdot 10^1} = 2.18$$
м $= 217.7$ см

Источник гамма-квантов, равномерно распределенный по объему пластины:

$$Q = \frac{I}{L} \tag{11}$$

$$\begin{split} Q_{3 \text{ M} \ni \text{B}} &= \frac{1.361 \cdot 10^{20}}{2.177 \cdot 10^2} = 6.253 \cdot 10^{17} \frac{\text{KB}}{\text{C} \cdot \text{CM}} \\ Q_{5 \text{ M} \ni \text{B}} &= \frac{1.021 \cdot 10^{20}}{2.177 \cdot 10^2} = 4.690 \cdot 10^{17} \frac{\text{KB}}{\text{C} \cdot \text{CM}} \end{split}$$

Число нерассеянных гамма-квантов через поверхность пластины

$$N = \frac{Q}{\mu_{\gamma}} \left(1 - \exp\left(-\mu_{\gamma}L\right) \right) \tag{12}$$

$$\begin{split} N_{3\text{ M} \ni \text{B}} &= \frac{6.25 \cdot 10^{17}}{1.72 \cdot 10^{-1}} \cdot \left(1 - \exp\left(-1.72 \cdot 10^{-1} \cdot 2.18 \cdot 10^{2}\right)\right) = 3.64 \cdot 10^{18} \frac{\text{KB}}{\text{C}} \\ N_{5\text{ M} \ni \text{B}} &= \frac{4.69 \cdot 10^{17}}{1.69 \cdot 10^{-1}} \cdot \left(1 - \exp\left(-1.69 \cdot 10^{-1} \cdot 2.18 \cdot 10^{2}\right)\right) = 2.78 \cdot 10^{18} \frac{\text{KB}}{\text{C}} \end{split}$$

Поток нерассеянных гамма-квантов деления из активной зоны:

$$\Phi_{\gamma} = \frac{N}{S_{\text{TOR}}} \tag{13}$$

$$\begin{split} &\Phi_{\gamma,3~\text{M} \ni \text{B}} = \frac{3.64 \cdot 10^{18}}{5.04 \cdot 10^{5}} = 7.22 \cdot 10^{12} \frac{\text{KB}}{\text{cm}^{2} \cdot \text{c}} \\ &\Phi_{\gamma,5~\text{M} \ni \text{B}} = \frac{2.78 \cdot 10^{18}}{5.04 \cdot 10^{5}} = 5.51 \cdot 10^{12} \frac{\text{KB}}{\text{cm}^{2} \cdot \text{c}} \end{split}$$

Полный поток гама-квантов из активной зоны с учетом поправочного коэффициента $\xi=2$:

$$\Phi_{\gamma}^{\text{full}} = \Phi_{\gamma} \xi \tag{14}$$

$$\begin{split} &\Phi_{\gamma,3~\text{M} \ni \text{B}}^{\text{full}} = 7.22 \cdot 10^{12} \cdot 2 = 1.44 \cdot 10^{13} \frac{\text{KB}}{\text{CM}^2 \cdot \text{C}} \\ &\Phi_{\gamma,5~\text{M} \ni \text{B}}^{\text{full}} = 5.51 \cdot 10^{12} \cdot 2 = 1.10 \cdot 10^{13} \frac{\text{KB}}{\text{CM}^2 \cdot \text{C}} \end{split}$$

Мощность эквивалентной дозы гамма-квантов перед защитой

$$D_{0\gamma} = \Phi_{\gamma}^{\text{full}} \cdot E \cdot \overline{\mu_{\text{OH}}} \cdot K \tag{15}$$

$$D_{0\gamma,3 \text{ M} \rightarrow \text{B}} = 1.44 \cdot 10^{13} \cdot 3 \cdot 1.60 \cdot 10^{-13} \cdot 100 \cdot 1 = 6.94 \cdot 10^{2} \frac{3\text{B}}{\text{C}}$$

$$D_{0\gamma,5 \text{ M} \rightarrow \text{B}} = 1.10 \cdot 10^{13} \cdot 5 \cdot 1.60 \cdot 10^{-13} \cdot 100 \cdot 1 = 8.82 \cdot 10^{2} \frac{3\text{B}}{\text{C}}$$

Результат расчета дозы гамма квантов из активной зоны для энергий 3, 5 МэВ представлены в таблицах 4.7, 4.8 соответственно.

Таблица 1.7: Результаты расчета дозы гамма-квантов энергии 3 МэВ

Параметр	Значение
I_3 , кв	$1.36 \cdot 10^{20}$
L, cm	217.7
Q_3 , кв / (см \cdot с)	$6.25 \cdot 10^{17}$
$\Phi_{\gamma}3, \frac{\text{KB}}{\text{CM}^2 \cdot \text{C}}$	$7.22 \cdot 10^{12}$
N_3 , кв / с	$3.64 \cdot 10^{18}$
$D_{0\gamma~3}$, Зв / с	694

Таблица 1.8: Результаты расчета дозы гамма-квантов энергии 5 МэВ

Параметр	Значение	
$I_5,$ кв	$1.02 \cdot 10^{20}$	
L, cm	217.7	
Q_5 , кв / (см \cdot с)	$4.69 \cdot 10^{17}$	
Φ_{γ} 5, $\frac{\text{kb}}{\text{cm}^2 \cdot \text{c}}$	$5.51 \cdot 10^{12}$	
N_5 , кв / с	$2.78 \cdot 10^{18}$	
$D_{0\gamma~5}$, Зв / с	882	

1.6. Расчет дозы гамма-квантов за защитой или минимального размера слоя биологической защиты для гамма-квантов

Для расчета дозы гамма-квантов за защитой или минимального размера слоя биологической защиты для гамма-квантов примиенена модель дозовых факторов накоплений. Эквивалентная дозы нерассеянных гамма-квантов:

$$D_{\gamma} = D_{0\gamma} \exp\left(-\sum_{i} \mu_{\gamma i} d_{i}\right) \tag{16}$$

где $\mu_{\gamma i}$ — линейный коэффициент ослабления і-го слоя, d_i — толщина і-го слоя

Таблица 1.9: Линейные коэффициенты ослабления μ для гамма-квантов с энергией 3 и 5 МэВ за активной зоной

Материал	$\mid \mu_3, { m cm}^{-1} \mid$	$\mid \mu_5, extsf{cm}^{-1} \mid$
Сталь	0.3	0.25
Бетон	0.08	0.07
Вода	0.028	0.021

$$\begin{split} D_{\gamma, \text{Hepac}, 3 \text{ M} \ni \text{B}} &= 6.94 \cdot 10^2 \cdot \exp(-3.00 \cdot 10^{-1} \cdot 2.48 \cdot 10^1 - 8.00 \cdot 10^{-2} \cdot 5.72 \cdot 10^2 \\ &- 2.80 \cdot 10^{-2} \cdot 2.63 \cdot 10^1) = 2.65 \cdot 10^{-21} \, \frac{3\text{B}}{\text{C}} \\ D_{\gamma, \text{Hepac}, 5 \text{ M} \ni \text{B}} &= 8.82 \cdot 10^2 \cdot \exp(-2.50 \cdot 10^{-1} \cdot 2.48 \cdot 10^1 - 7.00 \cdot 10^{-2} \cdot 5.72 \cdot 10^2 \\ &- 2.10 \cdot 10^{-2} \cdot 2.63 \cdot 10^1) = 4.26 \cdot 10^{-18} \, \frac{3\text{B}}{\text{C}} \end{split}$$

Дозовый фактор, равный отношению эквивалентной дозы гамма-излучения для квантов всех энергий к эквивалентной дозе излучения нерасеянных гамма-квантов от одного источника

$$B_D = \frac{D_{\text{Hepac}} - D_{\text{pac}}}{D_{\text{Hepac}}} = 1 + \frac{D_{\text{pac}}}{D_{\text{Hepac}}} \tag{17}$$

Тогда полная доза гамма-квантов за защитой:

$$D_{\text{полн}} = B_D \cdot D_{\text{нерас}}$$
 (18)

Для нахождения фактора накоплени гомогенной среды можно применить формулу Тейлора:

$$B(\mu d) = A_1 \exp(-\alpha_1 \mu d) + (1 - A_1) \exp(-\alpha_2 \mu d) \tag{19}$$

По формуле Д.Л. Бродлера:

$$B_{\text{ret}} = B_N \left(\sum_{i}^{N} \mu_i d_i \right) + \sum_{n=1}^{N-1} \left[B_n \left(\sum_{i}^{n} \mu_i d_i \right) - B_{n+1} \left(\sum_{i}^{n} \mu_i d_i 3 \right) \right]$$
(20)

где $B_j\left(\sum_i^n \mu_i d_i\right)$ — фактор накопения, вычисляемые по формуле Тейлора. Тогла:

$$B_{\text{ret 3 M} \rightarrow \text{B}} = 92.3$$

 $B_{\text{ret 5 M} \rightarrow \text{B}} = 34.7$

Полная доза гамма-квантов за защитой:

$$D_{\gamma \text{ 3 M} \rightarrow \text{B}} = 92.3 \cdot 2.65 \cdot 10^{-21} = 2.45 \cdot 10^{-19} \frac{3\text{B}}{\text{C}}$$

$$D_{\gamma \text{ 5 M} \rightarrow \text{B}} = 34.7 \cdot 4.26 \cdot 10^{-18} = 1.48 \cdot 10^{-16} \frac{3\text{B}}{\text{C}}$$

Мощность эквивалентной дозы, создаваемой гамма-квантами всех энергий за защитой в 3в / нед:

$$D_{\gamma} = 7 \cdot 24 \cdot 60 \cdot 60 \cdot (D_{\gamma \text{ 3 MэВ}} + D_{\gamma \text{ 5 MэВ}}) = 8.95 \cdot 10^{-11} \frac{\text{Зв}}{\text{нед}}$$

Суммарная мощность, создаваемая за защитой нейтронами и гамма-квантами с учетом погрешности метода фактора накопления:

$$D=1.15(D_n+D_\gamma)=1.15\cdot(5.44\cdot10^{-14}+8.95\cdot10^{-11})=1.03\cdot10^{-10}$$
 Зв/нед

1.7. Заключение

В работе проводился расчет биологической защиты, была проведена оценка мощностей эквивалентных доз нейтронов и гамма-квантов за защитой.

Оценка проводилась для нейтронных потоков методом сечения выведения для системы со слоями, а также для гамма-квантов с энергиями 3 и 5 МэВ методом дозовых факторов накопления.

По результату работы было получена суммарная мощность эквивалентной дозы нейтронов и гамма-квантов за защитой не превышает $1.03 \cdot 10^{-7} \frac{\text{м3в}}{\text{нед}}$. Получившаяся доза сильно меньше предельной поглощенной дозы для персонала АЭС, которая составляет $0.4 \frac{\text{м3в}}{\text{нед}}$, из чего можно сделать вывод, что рассматриваемое помещение БЩУ безопасно с точки зрения радиационной защиты

Перечень использованных источников

- 1. *Лескин С.*, *Шелегов А.*, *Слободчук В*. Физические особенности и конструкция реактора ВВЭР-1000: [учебное пособие для вузов]. М.: НИЯУ "МИФИ", 2011. ISBN 9785726214924.
- 2. *Монахов А.* Атомные электрические станции и их технологическое оборудование: Учеб. пособие для энерг. и энергостроит. техникумов. М.: Энергоатомиздат, 1986.
- 3. Физика и эксплуатационные режимы реактора ВВЭР-1000 / В. И. Белозеров [и др.]. М. : НИЯУ МИФИ, 2014. С. 159, 157, 167, 172.