MAT257—Analysis 2

Jonah Chen

November 3, 2021

Contents

Note that $\partial[a,b]=\{b+,a-\}.$

1	Course Overview	1
2	Distances	1
	2.1 Norms and Inner Product	1
	2.2 Distance Functions	3
3	Rectangles	4
4	Compactness	6
	4.1 Finding all compact subsets of \mathbb{R}^n	6
5	Continuity	8
6	Integration	10
1	Course Overview	
	$ullet$ $\mathbb{R} o \mathbb{R}^n$	
	• Linear Algebra	
	• Continuity	
	• Differentiability	
	• Integration	
	• Key theorem of this class is Stokes' Theorem	
	$\int_C \mathrm{d}\omega = \int_{\partial C} \omega$	(1.1)
	Generalizes the fundamental theorem of calculus:	
	$\int_{[a,b]} F'(t) dt = F(b) - F(a) = \int_{\partial [a,b]} F$	(1.2)

2 Distances

- ullet Roughly speaking, continuity from $\mathbb{R} \to \mathbb{R}$ means if two points are near, their images should be near also.
- Thus, in \mathbb{R}^n , the intuitive meaning should be similar.

2.1 Norms and Inner Product

Note there are 2 conventions for \mathbb{R}^n

- 1. The set of all n-dimensional real column vectors.
- 2. The set of all n-dimensional real row vectors.

In this class, the distinction is not very important.

Definition 1: For $x, y \in \mathbb{R}^n$, "The standard (or euclidian) inner product of x and y, denoted

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i \tag{2.1}$$

The norm-squared of x is

$$|x|^2 = \langle x, x \rangle = \sum x_i^2 \tag{2.2}$$

and the norm of x is

$$|x| = \sqrt{|x|^2} = \sqrt{\sum x_i^2} \tag{2.3}$$

Proposition 1: If $x, y, z \in \mathbb{R}^n$ and $a, b \in \mathbb{R}$, then

0. The inner product is bilinear & the norm is "semi-linear".

$$\langle ax + by, z \rangle = a\langle x, z \rangle + b\langle y, z \rangle \tag{2.4}$$

$$\langle z, ax + by \rangle = \dots {2.5}$$

$$|ax| = |a||x| \tag{2.6}$$

Aside:

$$1 = \sqrt{1} = \sqrt{-1 \cdot -1} = \sqrt{-1}\sqrt{-1} = i \cdot i = -1 \tag{2.7}$$

1.

$$|x| \ge 0 \& |x| = 0 \iff x = 0 \tag{2.8}$$

2.

$$\langle x, y \rangle = \langle y, x \rangle \tag{2.9}$$

3. Cauchy-Schwarz inequality

$$|\langle x, y \rangle| \le |x||y| \tag{2.10}$$

with equality if x&y are dependent.

4. Triangle inequality

$$|x+y| \le |x| + |y| \tag{2.11}$$

5. Polarization identity

$$\langle x, y \rangle = \frac{|x+y|^2 - |x-y|^2}{4}$$
 (2.12)

Proof. 1. $|x| = \sqrt{\sum x_i^2} |x| = 0 \implies \sum x_i^2 = 0 \implies \forall i, x_i^2 = 0 \implies \forall i, x_i = 0 \implies x = 0$

2. For $s, t \in \mathbb{R}^n$

$$|s+t|^2 = |s|^2 + |t|^2 + 2\langle s, t \rangle \tag{2.13}$$

Look at

$$0 \le \left| |y|^2 x - \langle x, y \rangle y \right|^2 = |y|^4 |x| + \langle x, y \rangle^2 |y|^2 - 2|y|^2 \langle x, y \rangle^2$$
(2.14)

$$= |y|^2 (|y|^2 |x|^2 - \langle x, y \rangle^2)$$
 (2.15)

This is equal to zero only if $|y|^2x - \langle x, y \rangle y = 0$. If we have equality, that implies x & y are dependent. Why, what does this mean?

As both sides of the triangle inequality are ≥ 0 , square both sides.

$$|x+y|^2 \stackrel{?}{\leq} (|x|+|y|)^2$$
 (2.16)

$$\langle x + y, x + y \rangle \stackrel{?}{\leq} |x|^2 + |y|^2 + 2|x||y|$$
 (2.17)

$$\langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle \stackrel{?}{\leq} |x|^2 + |y|^2 + 2|x||y| \tag{2.18}$$

$$|x|^2 + |y|^2 + 2\langle x, y \rangle \stackrel{?}{\leq} |x|^2 + |y|^2 + 2|x||y|$$
 (2.19)

$$\langle x, y \rangle \stackrel{?}{\leq} |x||y| \tag{2.20}$$

(2.20) is true by cauchy-schwarz.

4. The proof is trivial because you can expand the right hand side.

Note: The inner product and the norm are not independent. If you know how to compute one, you can compute the other.

2.2 Distance Functions

Definition 2: If $x, y \in \mathbb{R}^n$, define the distance between x & y

$$d(x,y) = |x-y| \tag{2.21}$$

Theorem 1:

- 1. d is symmetric: d(x,y) = d(y,x)
- 2. d is positive definite: $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$
- 3. Triangle inequality: $d(x,z) \leq d(x,y) + d(y,z)$

The significance of this theorem is that this is all we need to know about distances to comment on continuity. **Aside:** Later, this theorem will become a definition for a distance function or a metric.

Proof. 1.

$$d(x,y) = |x - y| = |-(y - x)| = |-1||y - x| = |y - x| = d(y,x)$$
(2.22)

2.

$$d(x,y) = 0 \iff |x-y| = 0 \iff x-y = 0 \iff x = y \tag{2.23}$$

3.

$$|x-z| \stackrel{?}{\leq} |x-y| + |y-z|$$
 (2.24)

This is true by the previous triangle inequality, $|p|+|q| \ge |p+q|$. Letting $p=x-y, q=y-z \implies p+q=x-z$.

There are other norms and distance functions that we will rarely use.

- ullet The euclidian norm which we use is $|x|_{L^2}=\sqrt{\sum x_i^2}.$
- There is a L1 norm $|x|_{L^1} = \sum |x_i|$.
- The L-infinity norm is $|x|_{L^{\infty}} = \max |x_i|$.

The distance functions for these norms also satisfys these three properties.

- There is a bijection between linear maps from $\mathbb{R}^n \to \mathbb{R}^m$ and the set of $m \times n$ matrices with real coefficients. This bijection can be realized by choosing a basis.
- In \mathbb{R}^n or \mathbb{R}^m , there is a natural basis (the standard basis) $e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i$ —th position
- by $A \in M_{m \times n} \to L_A(x) = Ax$, where $x \in \mathbb{R}^n$.
- ullet If T is a linear transformation, $M_T = \left(Te_1|Te_2|\dots|Te_n
 ight)$

Definition 3: Homomorphism: A map that preserve the structure.

Theorem 2:

0. Bijective

$$L_{(M_T)} = T, M_{(L_A)} = A (2.25)$$

- 1. $A \rightarrow L_A$ is linear: $L_{aA+bB} = aL_A + bL_b$
 - ullet $T o M_T$ is linear: $M_{aT+bS} = aM_T + bM_S$
- 2. Given $T:\mathbb{R}^n \to \mathbb{R}^m, S:\mathbb{R}^m \to \mathbb{R}^p$, and $S\circ T\equiv T//S:\mathbb{R}^n \to \mathbb{R}^p$. Then, $M_SM_T=M_{S\circ T}$.

End of the review.

3 Rectangles

- It is common to use intervals in \mathbb{R} . In \mathbb{R}^n , we use rectangles.
- ullet To specify a rectangle, we must bound the each of the n coordinates.

Definition 4: Given $a_i \leq b_i$, where $i = 1, \ldots, n$,

ullet The closed rectangle corresponding to a_i,b_i is defined as

$$R = \prod_{i=1}^{n} [a_i, b_i] = \{ x \in \mathbb{R}^n : \forall i \ a_i \le x_i \le b_i \}$$
(3.1)

• The opened rectangle defined by a_i, b_i is defined as

$$R = \prod_{i=1}^{n} (a_i, b_i) = \{ x \in \mathbb{R}^n : \forall i \ a_i < x_i < b_i \}$$
(3.2)

• If X&Y are sets, we define (from set theory) the cartesian product $X\times Y=\{(x,y):x\in X,y\in Y\}$

- Given 3 sets, the cartesian product is strictly speaking not associative as $((x,y),z) \neq (x,(y,z))$. However, for convinence we agree that ((x,y),z) = (x,y,z) = (x,(y,z)). Thus, the cartesian product is associative.
- $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}.$

Definition 5:

- $A \subset \mathbb{R}^n$ is called an open set if $\forall a \in A \exists$ an open rectangle $R : x \in R \subset A$.
- $A \subset \mathbb{R}^n$ is called an open set if $\forall a \in A \exists$ an open ball $B : x \in B \subset A$. An open ball $B = B_r(x_0) = \{y \in \mathbb{R}^n : |x_0 y| < r\}$ Note an open ball can be defined with any norm.

Theorem 3: Defining "open" using rectangles is equivalent to define "open" using balls.

 $Proof. \implies \text{Every open rectangle is open using the ball definition.}$

Every open ball is open using the rectangle definition.

Definition 6: A set B is "closed" if \mathbb{R}^n $B = B^C$ is open.

Proposition 2:

If Y_{α} is any collection of subsets of some universe U,

$$\left(\bigcup Y_{\alpha}\right)^{C} = \bigcap Y_{\alpha}^{C} \tag{3.3}$$

$$\left(\bigcap Y_{\alpha}\right)^{C} = \bigcup Y_{\alpha}^{C} \tag{3.4}$$

Theorem 4:

- 1. \emptyset , \mathbb{R}^n are clopen.
- 2. Any union of open sets is open. Any intersection of closed sets is closed.
- 3. A finite intersection of open sets is open. A finite union of closed sets is closed.

Proof. 1. \mathbb{R}^n is open. $x \in \prod (x_i - 1, x_i + 1) \subset \mathbb{R}^n$. $\Longrightarrow \emptyset$ is closed. The empty set has no points, thus the condition holds. "Every horse in an empty set of horses has horns." $\Longrightarrow \mathbb{R}^n$ is closed.

2. Suppose $\{A_{\alpha}\}_{{\alpha}\in I}$, where I is an arbiturary indexing set, is a collection of open sets.

$$A = \bigcup_{\alpha \in I} A_{\alpha} = \{x : \exists \alpha \in I \ x \in A_{\alpha}\}$$
(3.5)

Let $x \in A$, find α such that $s \in A_{\alpha}$. Find an open rectangle R such that $x \in R \subset A_{\alpha} \subset A$

Suppose $\{B_{\alpha}\}_{{\alpha}\in I}$ is a collection of closed sets, show $\cap B_{\alpha}$ is closed. $\left(\bigcap B_{\alpha}\right)^{C} = \bigcup B_{\alpha}^{C}$ is open $\Longrightarrow \bigcap B_{\alpha}^{C}$ is closed.

Lemma 1: The intersection of two open rectangles, if non-empty, is an open rectangle.

Suppose A_1 and A_2 are open. Pick $x \in A_1 \cap A_2$. By openness of $A_1, x \in A_1 \implies \exists R_1 : x \in \mathbb{R}_1 \subset A_1$. Similarly, by openness of $A_2, x \in A_2 \implies \exists R_2 : x \in \mathbb{R}_2 \subset A_2$. Then, $x \in R_1 \cap R_2 \equiv R \subset A_1 \cap A_2$.

Suppose A_i , i = 1, ..., n are open.

$$\bigcap_{i=1}^{n} A_i = \left(\bigcap_{i=1}^{n-1} A_i\right) \bigcap A_n \tag{3.6}$$

By induction hypothesis, $\left(\bigcap_{i=1}^{n-1} A_i\right)$ is an open set. The intersection of two open sets are open \implies the intersection of n open sets are open.

Suppose B_i , i = 1, ..., n is closed,

$$\left(\bigcup_{i=1}^{n} B_i\right)^C = \bigcup_{i=1}^{n} B_i^C \tag{3.7}$$

Definition 7: Clopen Sets: Suppose $A \subset \mathbb{R}^n$ is clopen $\implies A^C$ is clopen. Suppose neither is empty. Consider the line segment $l_{xy}(t) = ty + (1-t)x$.

$$l_{xy}(0) = x \in A \tag{3.8}$$

$$l_{xy}(1) = y \in A^C \tag{3.9}$$

$$t_0 = \sup_{t \in [0,1]} \{ l_{xy}(t) \in A \}$$
(3.10)

$$l_{xy}(t_0) = z \tag{3.11}$$

if $z\in A$, the rectangele containing $z\cap l_{xy}$ includes $l(t_0+\epsilon)\in A^C$ for some ϵ . Similarly if $z\in A^C\Longrightarrow$ one of A and A^C is not clopen so the other one isn't clopen either. Thus, the only clopen sets is \emptyset and \mathbb{R}^n

• Consider the following example,

$$\bigcap_{n>0} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) = [0, 1] \tag{3.12}$$

This infinite intersection of open sets is not an open set due to the points 0 and 1.

Definition 8: Given $A \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$, there is a tricotomy (exactly one of the following is true)

- 1. x belongs to the *interior* of A: \exists open rectangle R such that $x \in R \subset A$.
- 2. x belongs to the *exterior* of A: \exists open rectangle R such that $x \in R \subset A^C$.
- 3. x belongs to the boundary or A: Every open rectangle R such that $x \in R$ has $R \cap A^C \neq \emptyset$ AND $R \cap A \neq \emptyset$.
- The closure of A is the complement of the exterior. $\overline{A} = (\text{ext}A)^C$. It will satisfy either condition 1 or 3.
- Claims:
 - 1. $\overline{A} \ni x$ iff. every open rectangle $R \ni x$ satisfies $R \cap A \neq \emptyset$.
 - 2. $int A \cup ext A \cup BdA = \mathbb{R}^n$
 - 3. $cl = A \cup BdA$
 - 4. $int A = A \setminus BdA$.
 - 5. $\mathrm{int}S$ is the largest open set in S, $\mathrm{int}S=\bigcup_{U\subset S}U$
 - 6. \overline{S} is the smallest closed set containing S, $\overline{S} = \bigcap_{C \supset S} C$.

Example 1

 $A = [0, 1) \subset \mathbb{R}$

- int A = (0,1)
- $\operatorname{ext} A = (-\infty, 0) \cup (1, \infty)$
- $BdA = \{0, 1\}$
- clA = [0, 1]

4 Compactness

Definition 9: An open cover of a set A is a collection $\{U_{\alpha}\}$ of open sets in \mathbb{R}^n such that

$$\bigcup_{\alpha \in I} U_{\alpha} \supset A \tag{4.1}$$

A **subcover** of $\{U_{\alpha}\}_{{\alpha}\in I}$ is a collection $\{U_{\alpha}\}_{{\alpha}\in I'}$ where $I'\subset I$ such that

$$\bigcup_{\alpha \in I'} U_{\alpha} \supset A \tag{4.2}$$

Definition 10: A set A is called **compact** if **EVERY** open cover of A has a finite sub-cover.

• Note: Showing one finite open cover with a finite subcover is not sufficient.

Examples:

- 1. If $F \subset \mathbb{R}^n$ is finite, then it is compact.
- 2. \mathbb{R} is not compact. Take $\mathbb{R} = \bigcup_{n \in \mathbb{R}} (n-1, n+1) = \bigcup_{n \in \mathbb{R}} (-n, n)$. These open covers does not have a finite subcover.

4.1 Finding all compact subsets of \mathbb{R}^n

Theorem 5: [a,b] is compact.

Proof. Let $\{U_{\alpha}\}_{{\alpha}\in J}$ be an open cover of [a,b]. We will first show there's a subcover from a to g>a.

Define $G = \{g \in [a, b] : \exists J' \subset J\}$ such that J' is a finite subcover of [a, g].

To show $b \in G$ will prove the theorem. Set $\gamma = \sup G$. For G to have a supremum, it must be bounded $(G \subset [a,b])$ and non-empty $(a \in G)$.

Claim: $\gamma = b$. Suppose $\gamma < b$, as $\gamma \in [a, b]$, $\exists \beta \in J$ such that $\gamma \in U_{\beta}$.

As U_{β} is open, $\exists (g', g'') : \gamma \in (g', g'') \subset [g', g''] \subset U_{\beta}$.

 $[a, g''] = [a, g'] \cup [g', g''].$ As $g' < \gamma$, [0, g'] has a finite subcover. [g', g''] is covered by a single set U_{β} . Thus, $g'' \in G$ and this is a contradiction

Next, we show $b = \gamma \in G$.

If b is covered by $\{U_{\alpha}\}_{{\alpha}\in J}$, hence some interval (b^-, b^+) is covered by one set U_{α} . As $\sup G = b > b^-, \exists g' \in G$:

$$[a,b] = [a,g'] \cup [b^-,b] \tag{4.3}$$

Theorem 6: If $A \subset \mathbb{R}^n$ is compact and $b \subset \mathbb{R}^m$ is compact. Then, $A \times B \subset \mathbb{R}^{n+m}$ is compact.

Proof. Suppose $U = \{U_{\alpha}\}$ is an open cover of $A \times B$.

WLOG, each U_{α} is itself an open rectangle.

Lemma 2: For every $x \in A$, we can find an open set $N_x \ni x : N_x \times B$ can be covered with finitely many of the U_{α} s.

Proof. Write $U_{\alpha} = V_{\alpha} \times W_{\alpha}$, where V_{α}, W_{α} are open rectangles in $\mathbb{R}^n, \mathbb{R}^m$ respectively. Consider that $\{W_{\alpha}: x \in V_{\alpha}\}$ covers B which is compact. So find $\alpha_1, \ldots, \alpha_p: \{W_{\alpha_1}, \ldots, W_{\alpha_p}\}$ cover B. So, $\{U_{\alpha_1},\ldots,U_{\alpha_p}\}$ cover $\{x\}\times B$.

Let
$$N_x = \bigcap_{i=1}^p V_{\alpha_i} \subset V_{\alpha_i} \subset V_{\alpha_i} \forall i$$
.

Now,
$$N_x \times B \subset \bigcup_{i=1}^p N_x \times W_{\alpha_i} \subset \bigcup_{i=1}^p V_{\alpha_i} \times W_{\alpha_i} = \bigcup_{i=1}^p U_{\alpha_i}.$$

Now, $\{N_x\}_{x\in A}$ is an open cover of A. By compactness of A, find $x_1,\ldots,x_q:\bigcup_{j=1}^q N_{x_j}\supset A$. i.e. $\bigcup_{j=1}^q N_{x_j}\times B\supset A\times B$. For each $j=1,\ldots,q$ find U_{ji} which are rectangles in U, $i=1,\ldots,p_j:\bigcup_{i=1}^{p_j} U_{ji}\supset N_{x_j}\times B$.

Now,
$$\bigcup_{j=1}^p \bigcup_{i=1}^{p_j} U_{ji} \supset A \times B$$
.

Corollary 1: Closed rectangles $R = \prod_{i=1}^{n} [a_i, b_i]$ are compact.

Proposition 3: A closed subset of a compact set is compact.

Corollary 2: Every closed and bounded subset of \mathbb{R}^n is compact.

Theorem 7: Every compact set in \mathbb{R}^n is closed and bounded.

Proof. Construct a cover for S with open balls of radius R. Given S is compact, it is covered by finitely many elements. Thus, S is bounded.

Let
$$x \in S^C, y \in S$$
, Let $B_y = B(y, \frac{1}{3}|x - y|), C_y = B(x, \frac{1}{3}|x - y|)$

If $X \subset \mathbb{R}^n$ is compact,

- Every open cover has a finite subcover
- Closed and bounded
- Every sequence $(x_n)_n \in X$ has a converging subsequences that converge in X.

Continuity:

- $\epsilon \delta$
- $f^{-1}(open)$ is open
- If x_n converges to x, then $f(x_n)$ converges to f(x).

Continuity 5

Definition 11: Given $F: \mathbb{R}^n \to \mathbb{R}^m$,

- $C \subset \mathbb{R}^n$, the image of C is $F(C) := \{F(\gamma) : \gamma \in C\}$
- $D \subset \mathbb{R}^m$, the preimage of D is $F^{-1}(D) := \{ \gamma \in \mathbb{R}^n : F(\gamma) \in D \}$

Note the image behaves better on points, but preimage behaves better on sets, as,

$$F^{-1}(D_1 \cup D_2) = F^{-1}(D_1) \cup F^{-1}(D_2)$$
(5.1)

$$F^{-1}(D_1 \cap D_2) = F^{-1}(D_1) \cap F^{-1}(D_2)$$
(5.2)

$$F^{-1}(D^C) = F^{-1}(D)^C (5.3)$$

$$F(C_1 \cup C_2) = F(C_1) \cup F(C_2) \tag{5.4}$$

$$F(C_1 \cap C_2) \subset F(C_1) \cap F(C_2) \tag{5.5}$$

$$F(C^C) \neq F(C)^C \tag{5.6}$$

Definition 12: $\pi_i : \mathbb{R}^n \to \mathbb{R}$

$$\pi_i \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_i \tag{5.7}$$

Definition 13: For $F: \mathbb{R}^n \to \mathbb{R}^m$, or

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \to \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix}$$
 (5.8)

Where $f_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m are the coordinate functions of $f_i: f_i = \pi_i \circ F$

Definition 14: Given $f: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^m \to \mathbb{R}^p$, and $h = g \circ f: \mathbb{R}^n \to \mathbb{R}^p$

$$h(x) = g(f(x)) = (g \circ f)(x) \tag{5.9}$$

Definition 15: A function $f: \mathbb{R} \to \mathbb{R}$, the graph of f is

$$\Gamma_f = \{(x, f(x)) : x \in \mathbb{R}\} \subset \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$
(5.10)

A function $f: \mathbb{R}^n \to \mathbb{R}^m$, the graph of f is

$$\Gamma_f = \{x, f(x) : x \in \mathbb{R}^n\} \subset \mathbb{R}^n \times \mathbb{R}^m = \mathbb{R}^{n+m}$$
(5.11)

Definition 16: Suppose $f:A\subset\mathbb{R}^n\to\mathbb{R}^m;a\in\overline{A}$

$$\lim_{x \to a} f(x) = b \text{ means } \forall \varepsilon > 0 \exists \delta > 0 : x \in (B_{\delta}(a) \setminus \{x\}) \cap A \implies f(x) \in B_{\epsilon}(b)$$
 (5.12)

• If the limit exists, it is unique.

Definition 17: $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ is continuous at $a\in A$ if $\lim_{x\to a}f(x)=f(a)$. f is continuous on $A\iff f$ is cont. at every $a\in A$.

$$\iff \forall a \, \forall \epsilon > 0 \, \exists \delta > 0 \, \forall x \in A : |x - a| < \delta \implies |f(x) - f(a)| < \epsilon \tag{5.13}$$

Definition 18: $B \subset A$ is open in A if $\exists U$ open in \mathbb{R}^n such that $B = U \cap A$.

Theorem 8:

 $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ is cont. iff whenever $U\subset\mathbb{R}^m$ is open, $f^{-1}(U)$ is open in A. (i.e. $\exists V\subset\mathbb{R}^n$ which is open and s.t. $f^{-1}(U)=V\cap A$.)

Proof in the case where $A = \mathbb{R}^n$. \Longrightarrow Assume $U \subset \mathbb{R}^m$ is open, NTS $f^{-1}(U)$ is open.

Pick $a \in f^{-1}(U)$, then $f(a) \in U$ so pick $\epsilon > 0$ s.t. $B_{\epsilon}(f(a)) \subset U$, by continuity, find $\delta > 0$ s.t. $f(B_{\delta}(a)) \subset B_{\epsilon}(f(a)) \subset U$.

So, $a \in B_{\delta}(a) \subset f^{-1}(U)$. So, $f^{-1}(U)$ is open.

 \Leftarrow Given $a \in \mathbb{R}^n$ and $\epsilon > 0$, consider $B_{\epsilon}(f(a))$ it is open. So, $a \in f^{-1}(B_{\epsilon}(f(a)))$ is open.

So
$$\exists \delta > 0 : B_{\delta}(a) \subset f^{-1}(B_{\epsilon}(f(a))).$$

Theorem 9: $f: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^m \to \mathbb{R}^p$, f, g cont. $\implies g \circ f$ is continuous.

Proof. Given $U \in \mathbb{R}^p$ open, $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$. By the continuity of g, $g^{-1}(U)$ is open. By the continuity of f, $f^{-1}(g^{-1}(U))$ is open. Thus, $g \circ f$ is continuous.

Theorem 10: If $f: \mathbb{R}^n \to \mathbb{R}^m$ cont and $C \subset \mathbb{R}^n$ is compact. Then, f(C) is compact.

"A cont. image of a compact is compact"

Sketch of Proof. Given an open cover $\{U_{\alpha}\}$ of f(C), $\{f^{-1}(U_{\alpha})\}$ is an open cover of C. Hence, it has a finite subcover. Which in itself corresponds to a finite subcover for f(C)

Corollary 3: A cont. function on a compact set is bounded.

6 Integration

Definition 19: $f: \mathbb{R}^n \to \mathbb{R}, A \subset \mathbb{R}^n$, an Oscillation on A is

$$O(f, A) = \sup_{x \in A} f(x) - \inf_{x \in A} f(x)$$
 (6.1)

Oscillation of f at $a \in \mathbb{R}^n$ is

$$O(f, a) = \lim_{r \to 0} O(f, B_r(a))$$
(6.2)

П

Informally, this is the "jump" of f at a. So, we claim that f is continuous at a iff O(f,a)=0.

Theorem 12: Continuous functions are integrable.

Proof. Assume f is continuous on a rectangle R. A function is continuous if its oscillation at every point is equal to 0. Pick a number δ , for every $a \in R$ find a ball B(a) s.t. $O(f, B(a)) < \delta$. For each a find an open rectangle R_a containing a and s.t. $\overline{R_a} \subset B(a)$. So, $O(f, \overline{R_a}) < \delta$.

The collection $\{R_a\}$ covers R. By compactness, we can find a_1, \ldots, a_p s.t. R_{a_1}, \ldots, R_{a_p} cover R.

Find a partition P whose cut points (t_{ij}) s are all of the endpoints of all of the R_{a_i} s.

Now, if $S \in P$, then $S \subset R_{a_i}$ for some i, so, $O(f, S) \leq O(f, R_{a_i}) < \delta$. Now,

$$U(f,P) - L(f,P) = \sum_{S \in P} \operatorname{vol}(S)(M_S(f) - m_S(f)) = \sum_{S \in P} \operatorname{vol}(S)O(f,s) \le \delta \sum \operatorname{vol}(s) = \delta \operatorname{vol}(R)$$
 (6.3)

Hence, choose
$$\delta = \frac{\varepsilon}{v(R)}$$
 that proves the theorem.

Our goal now is to prove a theorem of the following form:

ullet f is integrable $\iff f$ is continuous except on a tiny set set of measure 0.

Definition 20: A set $A \subset \mathbb{R}^n$ is measure zero in \mathbb{R}^n if $\forall \varepsilon > 0$ you can find a sequence R_i of open or closed rectangles $(i = 1, 2, 3, \dots)$ such that $A \subset \bigcup R_i$ and $\sum \operatorname{vol} R_i < \epsilon$

Examples

- 1. A finite set is of measure 0. (use rectangles small enough)
- 2. An infinite sequence of points $\{x_i\}$ is of measure 0. (use rectangles with volumes less than a geometric sequence)
- 3. A set in \mathbb{R}^m is of measure 0 in \mathbb{R}^n where m < n. (use a single rectangle that's very thin) warning: the notion of "measure zero" is dependent of dimension.

Definition 21: A set X is countable if there is a sequence x_i , $i=1,2,3,\ldots$ s.t. the $\{x_i\}=X$. Or, $\exists f:\mathbb{N}\to X$ s.t. $f(\mathbb{N}) = X$. Claims:

- 1. Finite sets are countable.
- 2. A subset of a countable set is countable.

Definition 22: A set $A \in \mathbb{R}^n$ is said to be content zero if $\forall \varepsilon > 0$ it is contained in a finite union of rectangles whose \sum vols $< \varepsilon$.

Examples:

1. $Z \subset \mathbb{R}$ is measure zero, but not content zero.

Proposition 4: Compact set A of measure zero is of content zero.

Proof. Suppose $\varepsilon > 0$, cover A with countably many open rectangle whose sum of volumes is less than ε . By compactness, finitely many of those who already cover A, and the sum of their volumes is still less than ε .

Proposition 5: $R = \prod [a_i, b_i]$, vol(R) > 0 is not of content zero $\implies R$ is not measure 0. (This also shows [0, 1] is not countable)

Proof. Suppose $(R_i)_{i=1}^N$ are rectangles that cover R. We will show that $\sum_{i=1}^N v(R_i) \ge v(R) > 0$.

WLOG, $R_i \subset R$.

Find a partition P of R s.t. if $S \in P$ then $S \subset R_i$. Then,

$$\operatorname{vol}(R) = \sum_{S \in P} \operatorname{vol}(S) \le \sum_{i=1}^{N} \sum_{S \in P \land S \subset R_i} \operatorname{vol}(S) = \sum_{i=1}^{N} \operatorname{vol}(R_i)$$
(6.4)

Theorem 13: For f bounded on a rectangle $R \subset \mathbb{R}^n$, $f: R \to \mathbb{R}$ is integrable $\iff f$ is continuous except for a set of measure zero.

Proof. Assume f is continuous except on a set E (evil set) of measure 0. Let $\varepsilon > 0$. As E is measure zero, find rectangles B_i s.t. $\bigcup_{i=1}^{\infty} B_i \supset E$, and $\sum_{i=1}^{\infty} \operatorname{vol}(B_i) < \delta_1 = \frac{\varepsilon}{4M}$. Now for every $y \in R \setminus E$, f is continuous at y, so O(f, y) = 0, so find a rectangle A_y s.t. $y \in \operatorname{int}(A_y)$ and

 $O(f, A_y) < \delta_2 = \frac{\varepsilon}{2\text{vol}(R)}$

$$\bigcup_{y \in R \setminus E} \operatorname{int}(A_y) \cup \bigcup_{i=1}^{\infty} \operatorname{int}(B_i) \supset R$$
(6.5)

By compactness, there is a finite subcover, $A_{y1}, \ldots, A_{yp}, B_{i1}, \ldots, B_{yq}$. Let P be the partition of R s.t. if $S \in P$ then $S \subset A_{ij}$ or $S \subset B_{ij}$ for some j.

Because f is bounded on R so $|f| \leq M$

$$U(f,P) - L(f,P) = \sum_{S \in P} \text{vol}(S)O(f,S)$$

$$(6.6)$$

$$\leq \sum_{S \in P \land \exists j: S \subset A_{yi}} \operatorname{vol}(S)O(f, s) + \sum_{S \in P \land \exists j: S \subset B_{yj}}$$
(6.7)

$$\leq \sum \operatorname{vol}(S)\delta_2 + \sum \operatorname{vol}(S) \cdot 2m$$
 (6.8)

$$\leq \operatorname{vol}(R)\delta_2 + 2M\delta_1 \tag{6.9}$$

Assume f is integrable, let $E = \operatorname{disc}(f) = \{x : f \text{ isn't continuous at } x\} = \{x : O(f,x) > 0\} = U_n\{x : O(f,x) > \frac{1}{n}\}.$ Our goal is to show that each E_n is measure zero, but we will show that each E_n is content zero.

Fix some n and fix $\varepsilon > 0$, as f is integrable, find a partition P s.t. $U(f, P) - L(f, P) < \delta$ where $\delta = \frac{\varepsilon}{2n}$.

$$\delta > \sum_{S \in P} \operatorname{vol}(S) O(f, S) \ge \sum_{s \in P \land \operatorname{int} S \cap E_n \neq \emptyset} \operatorname{vol}(S) O(f, S) > \sum_{s \in P \land \operatorname{int} S \cap E_n \neq \emptyset} \implies \sum_{s \in P \land \operatorname{int} S \cap E_n \neq \emptyset} \operatorname{vol}(S) < \frac{n\delta}{2} = \frac{\varepsilon}{2}$$

$$(6.10)$$

Now, $\{S \in P : \int (S) \cap E_n\}$ covers E_n except perhaps $E_n \cap G$ where $G = \bigcup_{\substack{S \in P \\ S}} \text{bd}S$. But, G itself is of content zero

so $E_n \cap G$ can be covered with further rectangles, whose total volume is $\frac{\varepsilon}{2}$.

Now, all rectangles taken together cover E_n and have total volume less than ε .

Warning: this theorem often makes people think measure zero sets can be ignored. This is not true.

Example: $f:[0,1]\to\mathbb{R}$. Let $f(x)=\begin{cases} 1 & x\in\mathbb{Q}\\ 0 & x\notin\mathbb{Q} \end{cases}$

f(x)=0 except on $\mathbb{Q}\cap [0,1]$ which is measure zero. However, f is not integrable because the discontinuities are of measure one.

Corollary 4: If g is integrable and f differs from g on a set of content zero. Then, f is integrable too and $\int f = \int g$.

- 1. Changing finitely many points keeps \int .
- 2. Changing g on a closed set of measure zero keeps \int .

Sketch of Proof. g = f except on B of content zero. Cover B with finitely many rectangles. Take a partition that is good for g. Refine the partition with the rectangles which cover B. As B is content zero, the volumes of the rectangles that intersect B can be made arbiturarily small.

Definition 23: C is Jordan measurable if C is bounded and $\mathrm{bd}C$ is of content zero.

Definition 24: Given a set $C \subset \mathbb{R}^n$. Define

$$\chi_c(x) = 1_c(x) = \begin{cases} 1 & x \in C \\ 0 & x \notin C \end{cases}$$

$$(6.11)$$

$$f\chi_c(x) = \begin{cases} f(x) & x \in C \\ 0 & x \notin C \end{cases}$$
 (6.12)

Define

$$vol(C) = R \supset C\gamma_c \tag{6.13}$$

when C is bounded and $\mathrm{bd}C$ is of content zero. Suppose f is Jordan-measurable set $C \in \mathbb{R}^n$, then

$$\int_{C} f = \int_{R} f \cdot \chi_{C} \tag{6.14}$$

where R is any rectangle containing C.