

Our Goal

The Credit Card Approval Prediction dataset aims to predict whether a credit card application will be approved or denied based on various features

BUILD A MACHINE LEARNING MODEL FOR

PREDICTION

WORKFLOW

1

APPLICATION RECORD

NUMERICAL DATA CATEGORICAL DATA ORDINAL DATA

Contains appliers personal information, which we could use as features for predicting.

4	3	2	1	0	
5008809	5008808	5008806	5008805	5008804	ID
ı	F	М	М	М	CODE_GENDER
N	N	Υ	Υ	Υ	FLAG_OWN_CAR
١	Υ	Υ	Υ	Υ	FLAG_OWN_REALTY
(0	0	0	0	CNT_CHILDREN
270000.0	270000.0	112500.0	427500.0	427500.0	AMT_INCOME_TOTAL
Commercial associate	Commercial associate	Working	Working	Working	NAME_INCOME_TYPE
Secondary / secondary specia	Secondary / secondary special	Secondary / secondary special	Higher education	Higher education	NAME_EDUCATION_TYPE
Single / not married	Single / not married	Married	Civil marriage	Civil marriage	NAME_FAMILY_STATUS
House / apartmen	House / apartment	House / apartment	Rented apartment	Rented apartment	NAME_HOUSING_TYPE
-19110	-19110	-21474	-12005	-12005	DAYS_BIRTH
-3051	-3051	-1134	-4542	-4542	DAYS_EMPLOYED
1	1	1	1	1	FLAG_MOBIL
(0	0	1	1	FLAG_WORK_PHONE
1	1	0	0	0	FLAG_PHONE
1	1	0	0	0	FLAG_EMAIL
Sales staf	Sales staff	Security staff	NaN	NaN	OCCUPATION_TYPE
1.0	1.0	2.0	2.0	2.0	CNT_FAM_MEMBERS

APPLICATION RECORD

NUMERICAL DATA
CATEGORICAL DATA
ORDINAL DATA

CREDIT RECORD
NUMERICAL DATA
CATEGORICAL DATA

In this table, a person month record identifies a
row. Every row represents a
client's condition in
different months

	ID	MONTHS_BALANCE	STATUS
0	5001711	0	х
1	5001711	-1	0
2	5001711	-2	0
3	5001711	-3	0
4	5001712	0	С
5	5001712	-1	С
6	5001712	-2	С
7	5001712	-3	С
8	5001712	-4	С
9	5001712	-5	С

Target production Vintage Analysis

- Vintage analysis is a widely used method in credit risk management.
- Provides a dynamic understanding of credit portfolio performance.
- Identifies patterns in the emergence of bad customers over different periods.
- Facilitates proactive risk management strategies based on historical trends
- Evaluate the performance of customers in defined time intervals post loan or credit issuance.
- Aggregate the cumulative percentage of customers exhibiting unfavorable outcomes
 within each time window
- It assesses the performance of a portfolio over distinct periods post the issuance of a loan or credit card
- Calculate the cumulative percentage of bad customers within specific performance windows.
- Create a bad customer ratio based on historical data, offering insights into the evolving risk over time.

Vintage Analysis

We want to keep the performance window most common in all cases. We don't simply look at the most recent data, because as we can see for certain clients, we may have last payment information from 2 years ago.

Let's visualize it and see the mode and median value

We can observe that applicants typically delay making their payments until after the 7-month period.

Vintage Analysis

STEP 1 We want to keep the performance window most common in all cases. We don't simply look at the most recent data, because as we can see for certain clients, we may have last payment information from 2 years ago.

STEP 2

Calculate ratios

Vintage Analysis

STEP 1 We want to keep the performance window most common in all cases. We don't simply look at the most recent data, because as we can see for certain clients, we may have last payment information from 2 years ago.

STEP 2

Calculate ratios

STEP 3

Analyzing Bad Customers

	ID	MONTHS_BALANCE	STATUS	open_month	end_month	window
0	5008804	0	С	-15	0	15
1	5008804	-1	С	-15	0	15
2	5008804	-2	С	-15	0	15
3	5008804	-3	С	-15	0	15
4	5008804	-4	С	-15	0	15
777710	5150487	-25	С	-29	0	29
777711	5150487	-26	С	-29	0	29
777712	5150487	-27	С	-29	0	29
777713	5150487	-28	С	-29	0	29
777714	5150487	-29	С	-29	0	29

Let's say that we consider someone a bad client if they have a payment overdue more than 60 days

In this situation, if a client becomes high risk after 60 days of overdue payment, it's observed that things settle down after about 20 months. After this time, there's usually no significant new information, making a 20-month timeframe suitable for making a confident decision

Vintage Analysis

- Low Risk vs. High Risk: Research indicates that users late on payments by 30 days or more in any month are classified as 'high risk'. Those who do not exhibit this behavior are labeled as 'low risk' credit users.
- Default Criteria: A customer is considered 'bad' if they default by being 90 days or more past due within a 20-month performance window. The decision to use this timeframe is based on analysis and practical experience, focusing on identifying high risk through payments overdue by more than 60 days.

Now that we have the targets, let's check our class distribution

	0	1	2	3	4
ID	5008806	5008810	5008811	5112956	5008825
CODE_GENDER	М			М	
FLAG_OWN_CAR	Υ	N	N		
FLAG_OWN_REALTY					N
CNT_CHILDREN					
AMT_INCOME_TOTAL	112500.0	270000.0	270000.0	270000.0	130500.0
NAME_INCOME_TYPE	Working	Commercial associate	Commercial associate	Working	Working
NAME_EDUCATION_TYPE	Secondary / secondary special	Secondary / secondary special	Secondary / secondary special	Higher education	Incomplete higher
NAME_FAMILY_STATUS	Married	Single / not married	Single / not married	Married	Married
NAME_HOUSING_TYPE	House / apartment	House / apartment	House / apartment	House / apartment	House / apartment
DAYS_BIRTH	-21474	-19110	-19110	-16872	-10669
DAYS_EMPLOYED	-1134	-3051	-3051	-769	-1103
FLAG_MOBIL					
FLAG_WORK_PHONE					
FLAG_PHONE					
FLAG_EMAIL					
OCCUPATION_TYPE	Security staff	Sales staff	Sales staff	Accountants	Accountants
CNT_FAM_MEMBERS	2.0	1.0	1.0	2.0	2.0
target	0	0	0	0	0
				· · · · · · · · · · · · · · · · · · ·	

Now that we have the targets, let's check our class distribution

	0	1	2	3	4
ID	5008806	5008810	5008811	5112956	5008825
CODE_GENDER	М			М	
FLAG_OWN_CAR	Υ	N	N		
FLAG_OWN_REALTY					N
CNT_CHILDREN					
AMT_INCOME_TOTAL	112500.0	270000.0	270000.0	270000.0	130500.0
NAME_INCOME_TYPE	Working	Commercial associate	Commercial associate	Working	Working
NAME_EDUCATION_TYPE	Secondary / secondary special	Secondary / secondary special	Secondary / secondary special	Higher education	Incomplete higher
NAME_FAMILY_STATUS	Married	Single / not married	Single / not married	Married	Married
NAME_HOUSING_TYPE	House / apartment	House / apartment	House / apartment	House / apartment	House / apartment
DAYS_BIRTH	-21474	-19110	-19110	-16872	-10669
DAYS_EMPLOYED	-1134	-3051	-3051	-769	-1103
FLAG_MOBIL					
FLAG_WORK_PHONE					
FLAG_PHONE					
FLAG_EMAIL					
OCCUPATION_TYPE	Security staff	Sales staff	Sales staff	Accountants	Accountants
CNT_FAM_MEMBERS	2.0	1.0	1.0	2.0	2.0
target	0	0	0	0	0

EXPLORATORY DATA ANALYSIS

Univariate feature plots

Histogram and Density plots showing each attribute's frequency

- Looking on the DAYS_EMPLOYED plot we can clearly see that there are some outliers
- It is difficult for us to simply remove those outliers due to their high frequency
- We will investigate later the way we will use them on the data cleaning process

Whisker plot

- We can also see the outliers on DATA_EMPLOYED.
- We observe that there are also outliers on the family members and children per family

Bar plot

Let's check each case now based on the target classes

Distribution Plots for Each Column AMT_INCOME_TOTAL Normal AMT_INCOME_TOTAL Default 2000 60 1500 1000 20 500 1M 1.5M 600k 200k 800k DAYS_BIRTH Normal DAYS_BIRTH Default 15 600 200 _25k -20k -15k -10k -10k DAYS_EMPLOYED Normal DAYS_EMPLOYED Default 10k 300 200 5k 100 100k 200k 300k 100k 200k 300k CNT_CHILDREN Normal CNT_CHILDREN Default 300 200 100 CNT_FAM_MEMBERS Normal CNT_FAM_MEMBERS Default 8000 200 6000 150 4000 100 2000 10 15

EXPLORATORY DATA ANALYSIS

Bar plot

Let's check each case now based on the target classes without scaling so we can see how imbalanced our data are and make some observations

BINARY

At first, we will encode the binary features CODE_GENDER, FLAG_OWN_CAR and FLAG_OWN_REALTY.

In the attribute CODE_GENDER we will replace female 'F' to value 0 and male 'M' to value 1.

In the attribute FLAG_OWN_CAR we will replace yes 'Y' and no 'N' to 1 and 0 respectively.

In the attribute FLAG_OWN_REALTY we will replace as above yes 'Y' and no 'N' to 1 and 0 respectively.

Before

BINARY

At first, we will encode the binary features CODE_GENDER, FLAG_OWN_CAR and FLAG_OWN_REALTY.

In the attribute CODE_GENDER we will replace female 'F' to value 0 and male 'M' to value 1.

In the attribute FLAG_OWN_CAR we will replace yes 'Y' and no 'N' to 1 and 0 respectively.

In the attribute FLAG_OWN_REALTY we will replace as above yes 'Y' and no 'N' to 1 and 0 respectively.

Before

After

In the attribute **NAME_EDUCATION_TYPE** there are five unique values which are :

Because this column has a hierarchy, we are going to implement ordinal encoding in order to preserve the ordinal nature of our feature.

Label encoding should not be used with linear models where magnitude of features plays an important role

ORDINAL

NAME_EDUCATION_TYPE

- 0 Secondary / secondary special
- 1 Secondary / secondary special
- 2 Secondary / secondary special
- 3 Higher education
- 4 Incomplete higher

Before

In the attribute **NAME_EDUCATION_TYPE** there are five unique values which are :

Because this column has a hierarchy, we are going to implement ordinal encoding in order to preserve the ordinal nature of our feature.

Label encoding should not be used with linear models where magnitude of features plays an important role

ORDINAL

NAME_EDUCATION_TYPE

- 0 Secondary / secondary special
- Secondary / secondary special
- 2 Secondary / secondary special
- 3 Higher education
- 4 Incomplete higher

Before

After

	NAME_EDUCATION_TYPE
0	1
1	1
2	1
3	3
4	2

In this case, because our categorical variables NAME_FAMILY_STATUS,
NAME_HOUSING_TYPE and
OCCUPATION_TYPE have equal order, we are going to implement One-hot encoding.

In One-hot encoding our number of features will increase, which is not good for any tree based algorithm like Decision-trees, Random Forest etc

CATEGORICAL

	NAME_FAMILY_STATUS	NAME_HOUSING_TYPE	OCCUPATION_TYPE
0	Married	House / apartment	Security staff
1	Single / not married	House / apartment	Sales staff
2	Single / not married	House / apartment	Sales staff
3	Married	House / apartment	Accountants
4	Married	House / apartment	Accountants

Before

In this case, because our categorical variables NAME_FAMILY_STATUS, NAME_HOUSING_TYPE and OCCUPATION_TYPE have equal order, we are going to implement One-hot encoding.

In One-hot encoding our number of features will increase, which is not good for any tree based algorithm like Decision-trees, Random Forest etc

CATEGORICAL

	NAME_FAMILY_STATUS	NAME_HOUSING_TYPE	OCCUPATION_TYPE
0	Married	House / apartment	Security staff
1	Single / not married	House / apartment	Sales staff
2	Single / not married	House / apartment	Sales staff
3	Married	House / apartment	Accountants
4	Married	House / apartment	Accountants

Before

After

	0	1	2	3	4
NAME_FAMILY_STATUS0	0.0	0.0	0.0	0.0	0.0
NAME_FAMILY_STATUS1	1.0	0.0	0.0	1.0	1.0
NAME_FAMILY_STATUS2	0.0	0.0	0.0	0.0	0.0
NAME_FAMILY_STATUS3	0.0	1.0	1.0	0.0	0.0
NAME_FAMILY_STATUS4	0.0	0.0	0.0	0.0	0.0
NAME_HOUSING_TYPE0	0.0	0.0	0.0	0.0	0.0
NAME_HOUSING_TYPE1	1.0	1.0	1.0	1.0	1.0
NAME_HOUSING_TYPE2	0.0	0.0	0.0	0.0	0.0
NAME_HOUSING_TYPE3	0.0	0.0	0.0	0.0	0.0
NAME_HOUSING_TYPE4	0.0	0.0	0.0	0.0	0.0
NAME_HOUSING_TYPE5	0.0	0.0	0.0	0.0	0.0
OCCUPATION_TYPE0	0.0	0.0	0.0	0.0	0.0
OCCUPATION_TYPE1	1.0	0.0	0.0	0.0	0.0
OCCUPATION_TYPE2	0.0	1.0	1.0	1.0	1.0
OCCUPATION_TYPE3	0.0	0.0	0.0	0.0	0.0

For the case of **CNT_FAM_MEMBERS** and **CNT_CHILDREN**, we observe some outliers.

In order to deal with those edge cases and have a consistency across our dataset, we choose to group these columns into buckets

CONTINUOUS

Before

	CNT_FAM_MEMBERS	CNT_CHILDREN
0	2.0	0
1	1.0	0
2	1.0	0
3	2.0	0
4	2.0	0

For the case of **CNT_FAM_MEMBERS** and **CNT_CHILDREN**, we observe some outliers.

In order to deal with those edge cases and have a consistency across our dataset, we choose to group these columns into buckets

CONTINUOUS

After

	CNT_FAM_MEMBERS	CNT_CHILDREN
0	1	0
1	0	0
2	1	0
3	1,	0
4	1,	0

OTHER ways

of data cleaning

INITIAL DATA YEARS AFTER AGE-CLUSTRERING DAYS_BIRTH DAYS_BIRTH DAYS_BIRTH -21474 0 58 -19110 52 -19110 52 -16872 46 -10669 29

DAYS_EMPLOYED

BEFORE

	DAYS_EMPLOYED
0	-1134
1	-3051
2	-769

AFTER

	FLAG_UNEMPLOYED	YEARS_EMPLOYED
0	0	3.106849
1	0	8.358904
2	0	2.106849

An important step for our project

Split to Train and Test

Normalization of features

• Normalizing our features before oversampling depends on the specific oversampling technique we are using and the nature of our data.

```
G OWN CAR', 'FLAG OWN REALTY', 'CNT CHILDRE
                         'NAME_INCOME_TYPE2', 'NAME_INCOME_TYPE:
                      ', 'NAME_FAMILY_STATUS0', 'NAME_FAMILY_STA
                    rusa', 'name family statusa', 'name family s
                   YPE0', 'NAME HOUSING TYPE1', 'NAME HOUSING T
                  TYPE3', 'NAME HOUSING TYPE4', 'NAME HOUSING
                 PEO', 'OCCUPATION_TYPE1', 'OCCUPATION_TYPE2
                 YPE3'11
Dataset
               stype(int)
Test
          st, y train, y test = train test split(X, Y,
         Frames for y train and y test
        od.DataFrame({'target': y_train, 'dataset':
       od.DataFrame({'target': y_test, 'dataset':
      ed = pd.concat([df_train, df_test])
    istributions using Plotly Express
                                                 From now on,
    x.histogram(df combined, x='target', color=
                                                        we are
                labels={'target': 'Target', 'da
                                                     going to
                title='Distribution of Target
                                                     continue
update layout(width = 1000)
                                                     with the
.show()
                                                     training
                                                    data only
```

FEATURE SELECTION

Select From Model • For Linear cases • Ex. Logistic Regression • Feature importance through a coef_ attribute

FEATURE SELECTION

- For **Tree-based** cases
- Ex. Random Forest
- feature_importances attribute

FEATURE SELECTION

feature_importances attribute

FEATURE SELECTION

Select From Model

Random Forest

RFECV

Extra Trees Classifier

CODE_GENDER

CNT_FAM_MEMBERS

FLAG_OWN_CAR

YEARS_EMPLOYED

AMT_INCOME_TOTAL

NAME_EDUCATION_TYP E

DAYS_BIRTH

Using Stratified k-fold and f1 scoring

CODE_GENDER

AMT_INCOME_TOTAL

NAME_EDUCATION_T YPE

DAYS_BIRTH

CNT_FAM_MEMBERS

YEARS_EMPLOYED

CODE_GENDER

FLAG_PHONE

FLAG_OWN_CAR

CNT_FAM_MEMBERS

CNT_CHILDREN

YEARS_EMPLOYED

AMT_INCOME_TOTAL

NAME_EDUCATION_T YPE

DAYS_BIRTH

FLAG_PHONE

Training Set Class Balance before:target 0 4669 1 261

SMOTE-NC

 Creates synthetic data for categorical as well as quantitative features in the data set.

- A subset of minority class is taken and new synthetic data points are generated based on it.
- SMOTE, is a clever way to perform oversampling over the minority class to avoid overfitting(unlike random oversampling that has overfitting problems)

Training Set Class Balance before:target

0 4669

1 261

SMOTE

OVERSAMPLING

When working on a dataset with class imbalance problem, one needs to oversample or under sample only the train set and not the test set Training Set Class Balance before:target
0 4669
1 261

Training Set Class Balance now:target

- 4669
- 1 4669

SMOTE-NC

 Creates synthetic data for categorical as well as quantitative features in the data set.

- A subset of minority class is taken and new synthetic data points are generated based on it.
- SMOTE, is a clever way to perform oversampling over the minority class to avoid overfitting(unlike random over-sampling that has overfitting problems)

Training Set Class Balance now:target

0 4669

261

1 4669

OVERSAMPLING

When working on a dataset with class imbalance problem, one needs to oversample or under sample only the train set and not the test set

BUILD A MACHINE

LEARNING MODEL FOR PREDICTION

MODEL SELECTION

HYPERPARAMETER

TUNNING

Tuning methods

GridSearchCV

RandomizedSearchCV

EVALUATION METRICS

F1-score

is a metric that combines precision and recall into a single value. It is particularly useful in binary classification settings where there is an imbalance between the classes

Precision Recall Curve

Provide insights into the model's performance

Confusion Matrix

Represents classifier's performance

Classification Report

With all the above now we can have a classification report

F1-score

Training set

Algorithm	Baseline	Normalization	Oversampling	Feature Selection
Logistic Regression	0.000000	0.007547	0.658003	0.664809
Random Forest	0.022884	0.011775	0.960154	0.959742
SVC	0.000000	0.000000	0.832008	0.857495
Naive Bayes	0.000000	0.095734	0.506672	0.694134
XGBoost	0.034447	0.034447	0.961965	0.960625
LightGBM	0.024964	0.025871	0.966350	0.965120

F1-score

Training set

Algorithm	Baseline	Normalization	Oversampling	Feature Selection
Logistic Regression	0.000000	0.007547	0.658003	0.664809
Random Forest	0.022884	0.011775	0.960154	0.959742
SVC	0.000000	0.000000	0.832008	0.857495
Naive Bayes	0.000000	0.095734	0.506672	0.694134
XGBoost	0.034447	0.034447	0.961965	0.960625
LightGBM	0.024964	0.025871	0.966350	0.965120

Our Path Forward

Perform Predictions

Finalize model

For three winning algorithms

Random Forest XGBoost LightGBM

Logistic Regression

Select the final model

LGBM CLASSIFIER

LOGISTIC REGRESSION

Conclusions

Training Data

The Impact of Oversampling in Training

Oversampling data performs better

- Best Algorithms
 - XGBoost
 - LightGBM
 - Random Forest
 - !!!Logistic Regression

Test Data

Test Data without oversampling

To evaluate True Model Performance

Differces in f1 score

Best f1-score Logistic

Regression but the

performance is worst than
others

Imbalanced data

Numerous Attempts
(normalization,
oversampling, feature
selection, stratifiedkfold
cross validation
, hyperparameter tuning)
, but the Data Imbalance
Remained a Challenge

ALTERNATIVE APPROACHES

We can use the **unsupervised** data and make clusters

✓ Outlier Detection

-Isolation Forest

Robust to high-dimensional data and can efficiently isolate outliers.

-One-Class SVM

Handles high-dimensional data and can effectively identify outliers by learning the normal patterns in the feature space.

Thank you for your time !!!