R Distribution Function Types

- d*: Density / PMF (probability mass or density function). Example: dnorm(x, mean, sd)
- p*: Cumulative distribution function (CDF). Example: pnorm(q, mean, sd) = $P(X \le q)$
- q*: Quantile function (inverse CDF). Example: qnorm(p, mean, sd) = x s.t. P(X) $\leq x = p$
- r*: Random number generation. Example: rnorm(n. mean. sd)

Discrete Distribution Families

Bernoulli(p)

Binary trial (success/failure).

PMF: $P(X = x) = p^{x}(1-p)^{1-x}, x \in \{0,1\}$

Mean: p, Var: p(1-p)R: d/p/q/rbinom(n=1, p)

Binomial(n, p)

successes in n Bernoulli trials.

PMF: $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$

Mean: np, Var: np(1-p)

R: dbinom, pbinom, qbinom, rbinom

Geometric(p)

Failures before 1st success.

PMF: $P(X = x) = (1 - p)^x p, x > 0$ Mean: (1-p)/p, Var: $(1-p)/p^2$ R: dgeom, pgeom, qgeom, rgeom

NegBin(k, p)

Failures before k-th success. PMF: $P(X = x) = {x+k-1 \choose x} p^k (1-p)^x$ Mean: k(1-p)/p, Var: $k(1-p)/p^2$

R: dnbinom, pnbinom, qnbinom, rnbinom

$Poisson(\lambda)$

Counts in interval, rate λ .

PMF: $P(X = x) = \frac{\lambda^x e^{-\lambda}}{r!}$

Mean: λ . Var: $\hat{\lambda}$

R: dpois, ppois, qpois, rpois

Continuous Distribution Families

Uniform(a, b)

All values equally likely on [a, b].

PDF: $f(x) = \frac{1}{b-a}, \ a \le x \le b$

Mean: (a+b)/2, Var: $(b-a)^2/12$

Skewness: 0 (symmetric)

R: dunif, punif, qunif, runif

Normal(μ, σ^2)

Bell-shaped,

 $-\infty < \mu < \infty$

 $\sigma^2 > 0$

PDF: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$

Mean: μ , Var: σ^2

Skewness: 0 (symmetric)

R: dnorm, pnorm, qnorm, rnorm;

Lognormal(μ, σ^2)

If $\ln X \sim N(\mu, \sigma^2)$.

PDF: $f(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-(\ln x - \mu)^2/(2\sigma^2)}$ Mean: $e^{\mu + \sigma^2/2}$, Var: $(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$ Skewness: $(e^{\sigma^2} + 2)\sqrt{e^{\sigma^2} - 1}$

R: dlnorm, plnorm, glnorm, rlnorm;

Exponential(λ)

Time between Poisson events.

Positive RV, wait time, memoryless

 (λ) is average rate

 (β) is mean wait time

PDF: $f(x) = \lambda e^{-\lambda x}, x \ge 0$ Mean: $1/\lambda$, Var: $1/\lambda^2$

Skewness: 2

R: dexp, pexp, qexp, rexp;

Beta (α, β)

On [0,1], Bayesian priors.

PDF: $f(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$

Mean: $\alpha/(\alpha+\beta)$, Var: $\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

R: dbeta, pbeta, qbeta, rbeta;

Weibull (k, λ)

Lifetimes, survival, reliability.

PDF: $f(x) = \frac{k}{\lambda} (x/\lambda)^{k-1} e^{-(x/\lambda)^k}$

Mean: $\lambda\Gamma(1+1/k)$, Var: $\lambda^2[\Gamma(1+2/k) - \Gamma(1+1/k)^2]$ Skewness: $\frac{\Gamma(1+3/k)\lambda^3 - 3\mu\sigma^2 - \mu^3}{\sigma^3}$

R: dweibull, pweibull, qweibull, rweibull;

$Gamma(\alpha, \theta)$

Waiting time for α events.

PDF: $f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha-1} e^{-x/\theta}$

Mean: $\alpha\theta$. Var: $\alpha\theta^2$ Skewness: $2/\sqrt{\alpha}$

R: dgamma, pgamma, qgamma, rgamma;

R: Computing Expected Value

Discrete RV

X < -0:2

 $p \leftarrow c(0.2, 0.5, 0.3)$

 $EV \leftarrow sum(X*p)$

Continuous RV (numerical integration)

f <- function(x) 2*x

EV <- integrate(function(x) x*f(x), 0.1)\$value

From sample (Monte Carlo)

samples <- rnorm(10000, mean=5, sd=2) mean(samples)

Define the PDF function

 $f \leftarrow function(x) 2*x$

prob <- integrate(f, lower = 0.5, upper =</pre> 0.75) \$value # Integrate over [0.5, 0.75]