SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG NGÃI

KỲ THI CHỌN ĐỘI TUYỂN THAM DỰ KỲ THI CHỌN HSG QUỐC GIA NĂM 2018

ĐỀ CHÍNH THỰC

Ngày thi: 26/10/2017 Môn thi: Toán Thời gian làm bài: 180 phút

Bài 1. (5 điểm)

a) Cho q là số thực thuộc khoảng (0;1) và dãy $\left\{u_n\right\}_{n\geq 1}$ thỏa mãn điều kiện $\left|u_{n+2}-u_{n+1}\right| < q\left|u_{n+1}-u_n\right|, \ \forall n\geq 1.$ Chứng minh rằng dãy $\left\{u_n\right\}$ có giới hạn hữu hạn.

b) Cho dãy $\left\{v_n\right\}_{n\geq 1}$ xác định bởi $0 < v_1 \neq 1$ và $v_{n+1} = \frac{3}{2+v_n}, \forall n \geq 1$. Chứng minh rằng dãy $\left\{v_n\right\}$ có giới hạn hữu hạn và tính $\lim v_n$.

Bài 2. (5 điểm)

Tìm số nguyên dương n nhỏ nhất để 5^n+1 chia hết cho 7^{2018} .

Bài 3. (5 điểm)

Có bao nhiều bộ sắp thứ tự (a,b,c); với a,b,c là các số nguyên dương thỏa mãn điều kiện $[a,b,c] = 2^3.3^5.5^7$? (Kí hiệu [a,b,c] là bội chung nhỏ nhất của ba số nguyên dương a,b,c).

Bài 4. *(5 điểm)*

Cho tam giác nhọn ABC có B, C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABD, ACE vuông cân tại A và hình vuông BCFG. Dựng tam giác XAB vuông cân tại X (X khác phía với D đối với đường thẳng AB), tam giác YAC vuông cân tại Y (Y khác phía với E đối với đường thẳng AC).

- a) Chứng minh rằng 3 điểm D, Y, F thẳng hàng.
- b) Các đường thẳng DY, EX cắt nhau tại P. Chứng minh rằng đường thẳng AP luôn đi qua một điểm cố định khi A thay đổi.

Α.
ЦЕТ

- Thí sinh không được sử dụng tài liệu và máy tính cầm tay.
- Cán bộ coi thi không giải thích gì thêm.

SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG NGÃI

KỲ THI CHỌN ĐỘI TUYỂN THAM DỰ KỲ THI CHỌN HSG QUỐC GIA NĂM 2018

Ngày thi: 26/10/2018 Môn: Toán Thời gian làm bài: 180 phút

HƯỚNG DẪN CHẨM

Bài	Nội dung	Điểm
	Bài 1. (5 điểm)	
	a) Cho q là số thực thuộc khoảng $(0;1)$ và dãy $\{u_n\}_{n\geq 1}$ thỏa mãn điều kiện	
	$ u_{n+2} - u_{n+1} < q u_{n+1} - u_n , \forall n \ge 1$. Chứng minh rằng dãy $\{u_n\}$ có giới hạn	
	hữu hạn.	
	b) Cho dãy $\{v_n\}_{n\geq 1}$ xác định bởi $0 < v_1 \neq 1$ và $v_{n+1} = \frac{3}{2+v_n}, \forall n \geq 1$. Chứng	
	minh dãy $\{v_n\}$ có giới hạn hữu hạn và tính $\lim v_n$.	
a.	Ta có	
	$ u_{n+k} - u_n = u_{n+k} - u_{n+k-1} + u_{n+k-1} - u_{n+k-2} + \dots + u_{n+1} - u_n $	
	$ < q(u_{n+k} - u_{n+k-1} + u_{n+k-1} - u_{n+k-2} + \dots + u_{n+1} - u_n)$	1 điểm
	$ < (q^k + q^{k-1} + + q) u_{n+1} - u_n $	
	$<(q^k+q^{k-1}++q)q^{n-2} u_2-u_1 $	
	$= \frac{q^{n-1}(1-q^k)}{1-q} u_2 - u_1 $	1 điểm
	$ \left < \frac{q^{n-1}}{1-q} \left u_2 - u_1 \right \right $	
	Vì $\lim q^n = 0$ nên $\forall \varepsilon > 0, \exists N_0 \in \mathbb{N}$ sao cho $ u_{n+k} - u_n < \varepsilon, \forall n > N_0, \forall k > 0$	2
	Do đó, theo tiêu chuẩn Cauchy dãy $\{u_n\}$ có giới hạn hữu hạn.	1 điểm
	Ta có $\{v_n\}$ là dãy số dương.	
b.	$\left \left v_{n+2} - v_{n+1} \right = \left \frac{3}{2 + v_{n+1}} - \frac{3}{2 + v_n} \right = \left \frac{3(v_{n+1} - v_n)}{(2 + v_{n+1})(2 + v_n)} \right < \frac{3}{4} \left v_{n+1} - v_n \right .$	1 điểm

The	o câu a), dãy $\{v_n\}$ hội tụ và tính được $\lim v_n = 1$.	1 điểm
Bài	2. (5 điểm) Tìm số nguyên dương n nhỏ nhất để 5^n+1 chia hết cho 7^{2018} .	
Nhậ	$\sin x \neq 1 \pmod{7}$ và $ord_7(5) = 6$	1 điểm
	$5^{n}+1$ chia hết cho 7^{2018} suy ra $5^{n}=5^{3}.5^{n-3}\equiv -1.5^{n-3}\equiv -1 \pmod{7}$ $5^{n-3}\equiv 1 \pmod{7}$ suy ra $6 n-3$ hay $n=6k+3$.	1 điểm
	$\lim_{k \to \infty} k \text{ dề cho } 7^{2018} 5^{6k+3}+1 \text{ hay } v_7((5^3)^{2k+1}+1) \ge 2018.$ o định lý LTE ta có $v_7((5^3)^{2k+1}+1)=v_7(5^3+1)+v_7(2k+1)=1+v_7(2k+1)$	1 điểm
	$v_{7}(2k+1) \ge 2017$ suy ra $2k+1=7^{m}.t$ với m,t là các số nguyên dương 2017 và t là số lẻ.	1 điểm
Khi	đó $n=3.7^m.t$ nên số nguyên dương n nhỏ nhất là $n=3.7^{2017}.$	1 điểm
dươ	3. (5 điểm) Có bao nhiều bộ sắp thứ tự (a,b,c) , với a,b,c là các số nguyên mg thỏa mãn điều kiện $[a,b,c] = 2^3.3^5.5^7$? (kí hiệu $[a,b,c]$ là bội chung nhất của ba số nguyên dương a,b,c).	
0 ≤ Ta o	$a = 2^{a_1} 3^{a_2} 5^{a_3}, \ b = 2^{b_1} 3^{b_2} 5^{b_3}, \ c = 2^{c_1} 3^{c_2} 5^{c_3}.$ $a_1, b_1, c_1 \le 3, \ 0 \le a_2, b_2, c_2 \le 5, \ 0 \le a_3, b_3, c_3 \le 7.$ $coto[a, b, c] = 2^3 3^5 5^7 \text{ khi và chỉ khi}$	1 điểm
Ta c	$\begin{split} & \{a_1, b_1, c_1\} = 3, \max \big\{a_2, b_2, c_2\big\} = 5, \max \big\{a_3, b_3, c_3\big\} = 7. \\ & \text{Tếm tất cả các bộ có thứ tự gồm các số nguyên không âm } \big(a_1, b_1, c_1\big) \text{ sao} \\ & \max \big\{a_1, b_1, c_1\big\} = 3. \text{ Dặt:} \\ & \big\{(a_1, b_1, c_1) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \mid a_1 = 3, 0 \leq b_1, c_1 \leq 3\big\} \end{split}$	1 điển
C =	$\begin{aligned} &\left\{ \left(a_1,b_1,c_1\right) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \mid b_1 = 3, 0 \leq a_1,c_1 \leq 3 \right\} \\ &\left\{ \left(a_1,b_1,c_1\right) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \mid c_1 = 3, 0 \leq a_1,b_1 \leq 3 \right\} \\ &\text{đó, } A \cup B \cup C \text{ là tập hợp tất cả các bộ có thứ tự gồm các số nguyên} \end{aligned}$	
khô	ng âm (a_1,b_1,c_1) sao cho max $\{a_1,b_1,c_1\}=3$. có $ A = B = C =16, A\cap B = B\cap C = C\cap A =4, A\cap B\cap C =1$.	?
Do o	đó $ B \cup C = (A + B + C) - (A \cap B + B \cap C + C \cap A) + A \cap B \cap C = 37.$	1 điển

Vậy số tất cá các bộ có thứ tự gồm các số nguyên không âm (a_1,b_1,c_1) sao cho $\max\{a_1,b_1,c_1\}=3$ bằng 37. Tương tự: Số tất cá các bộ có thứ tự gồm các số nguyên không âm (a_2,b_2,c_2) sao cho $\max\{a_2,b_2,c_2\}=5$ bằng 91. Số tất cả các bộ có thứ tự gồm các số nguyên không âm (a_3,b_3,c_3) sao cho $\max\{a_3,b_3,c_3\}=7$ bằng 169. Theo quy tấc nhân số tất cả các bộ số nguyên dương (a,b,c) thỏa mãn bài toán bằng $37x91x169=569023$. Bài $4.(5 diễm)$ Cho tam giác ABC cố B , C cố định, A thay đổi. Phía ngoài tam giác ABC dưng các tam giác ABD và ACE là các tam giác vuông cân tại A và hình vuông $BCFG$. Dựng tam giác XAB vuông cân tại X (X khác phía với D đổi với đường thẳng AC). a. Chứng minh rằng 3 điểm D , Y , F thẳng hàng. b. Các đường thằng DY , EX cắt nhau tại P . Chứng minh rằng đường thẳng AP luôn đi qua một điểm cổ định khi A thay đổi. a. B Phép quay $Q_0^{opr}: F \to D$. Gọi Y' là tâm của phép quay $Q_1^{opr}: C^{opr}$. Theo tính chất tích của 2 phép quay, ta có $(AC,AY')=45''$ và $(CY',CA)=45''$. Suy ra tam giác YAC cần tại Y' . Suy ra $Y'=Y'$. Do đó $Q_1^{opr}: F \to D$. Nến D , Y , F thẳng hàng. Hơn nữa, Y là trung điểm DF .		
Tương tư: Số tất cả các bộ có thứ tư gồm các số nguyên không âm (a_2,b_2,c_2) sao cho $\max\{a_2,b_2,c_2\}=5$ bằng 91. Số tất cả các bộ có thứ tư gồm các số nguyên không âm (a_3,b_3,c_3) sao cho $\max\{a_3,b_3,c_3\}=7$ bằng 169. Theo quy tấc nhân số tất cả các bộ số nguyên dương (a,b,c) thỏa mãn bài toán bằng $37x91x169=569023$. Bài 4 . (3 tiểm) Cho tam giác ABC có B , C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABD và ACE là các tam giác vuông cân tại A và hình vuông $BCFG$. Dựng tam giác XAB vuông cân tại X (X khác phía với D đổi với đường thẳng AB), tam giác YAC vuông cân tại Y (Y khác phía với E đổi với đường thẳng AB), tam giác YAC vuông cân tại Y (Y khác phía với E đổi với đường thẳng AB), tam giác YAC vuông cân tại Y . Chứng mình rằng đường thẳng AP luôn đi qua một điểm cổ định khi A thay đổi. a. B B A B A B A B A B B A B B A B B B A B	Vậy số tất cả các bộ có thứ tự gồm các số nguyên không âm (a_1,b_1,c_1) sao	
Số tất cả các bộ có thứ tự gồm các số nguyên không âm (a_2,b_2,c_2) sao cho $\max\{a_2,b_2,c_2\}=5$ bằng 91. Số tất cả các bộ có thứ tự gồm các số nguyên không âm (a_3,b_3,c_3) sao cho $\max\{a_3,b_3,c_3\}=7$ bằng 169. Theo quy tấc nhân số tất cả các bộ số nguyên dương (a,b,c) thỏa mãn bài toán bằng $37x91x169=569023$. Bài $4.(5 tildem)$ Cho tam giác ABC có B , C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABD và ACE là các tam giác vưông cân tại A và hình vuông $BCFG$. Dựng tam giác XAB vuông cân tại $X(X)$ khác phía với D đối với đường thẳng AB), tam giác YAC vuông cân tại $Y(Y)$ khác phía với E đổi với đường thẳng E 0, E 1, E 2, E 3, E 4, E 4, E 5, E 5, E 5, E 7, E 8, E 8, E 9,	cho $\max\{a_1, b_1, c_1\} = 3$ bằng 37.	
Số tất cả các bộ có thứ tự gồm các số nguyên không âm (a_3,b_3,c_3) sao cho $\max\{a_3,b_3,c_3\}=7$ bằng 169. Theo quy tắc nhân số tất cả các bộ số nguyên dương (a,b,c) thỏa mãn bài toán bằng $37x91x169=569023$. Bài 4. (5 điểm) Cho tạm giác ABC có B , C cổ định, A thay đổi. Phía ngoài tạm giác ABC dựng các tạm giác ABD và ACE là các tạm giác vưông cân tại A và hình vuông $BCFG$. Dựng tạm giác YAC vuông cân tại Y (Y khác phía với D đổi với đường thẳng AB), tạm giác YAC vuông cân tại Y (Y khác phía với E đổi với đường thẳng AC). a. Chứng minh rằng Y điểm Y , Y , Y thẳng hàng. b. Các đường thẳng Y , Y , Y , Y , Y thẳng hàng. b. Các đường thẳng Y ,		1 điểm
$\max \left\{a_3,b_3,c_3\right\} = 7 \text{ bằng } 169.$ Theo quy tắc nhân số tất cả các bộ số nguyên dương}(a,b,c) thỏa mãn bài toán bằng $37x91x169 = 569023$. $\mathbf{Bài} \ 4. (3 diễm)$ Cho tam giác ABC có B , C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABD và ACE là các tam giác vuông cân tại A và hình vuông $BCFG$. Dựng tam giác XAB vuông cân tại Y (Y khác phía với D đối với đường thẳng AB), tam giác YAC vuông cân tại Y (Y khác phía với E đổi với đường thẳng E). a. Chứng minh rằng E diễm E , E cắt nhau tại E . Chứng minh rằng đường thẳng E luôn đi qua một điểm cố định khi E thay đổi. a. \mathbf{B} B	$\max\{a_2, b_2, c_2\} = 5 \text{ bằng } 91.$	
Theo quy tắc nhân số tất cả các bộ số nguyên dương (a,b,c) thỏa mãn bài toán bằng $37x91x169 = 569023$. Bài 4. (5 điểm) Cho tam giác ABC có B , C cổ định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABD và ACE là các tam giác vuông cân tại A và hình vuông $BCFG$. Dựng tam giác XAB vuông cân tại X (X khác phía với D đối với đường thẳng AB), tam giác YAC vuông cân tại Y (Y khác phía với E đổi với đường thẳng E). a. Chứng minh rằng E điểm E 0, E 1 thẳng hàng. b. Các đường thẳng E 2, E 3 thành tại E 4 thay đổi. a. B E 4 Theo quay E 5 thành tại E 6 thành thình thành t	Số tất cả các bộ có thứ tự gồm các số nguyên không âm (a_3,b_3,c_3) sao cho	
toán bằng $37 \times 91 \times 169 = 569023$. Bài $4. (5 \text{ diễm})$ Cho tam giác ABC có B , C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABD và ACE là các tam giác vuông cân tại A và hình vuông $BCFG$. Dựng tam giác XAB vuông cân tại X (X khác phía với D đối với đường thẳng AB), tam giác YAC vuông cân tại Y (Y khác phía với E đối với đường thẳng E AC hững minh rằng E điểm E AC điểm E E AC đường thẳng E AC điểm E AC điểm E AC điểm E AC đường thẳng E AC điểm E điểm E AC đi	$\max\{a_3,b_3,c_3\} = 7$ bằng 169.	
Bài $4. (S diễm)$ Cho tam giác ABC có B , C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABC có B , C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABC có định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABC dựng cán tại A và hình vuông $BCFG$. Dựng tam giác ABC vuông cân tại Y (Y khác phía với D đối với đường thẳng AC). a. Chứng minh rằng B điểm B , B , B thẳng hàng. b. Các đường thẳng B ,	Theo quy tắc nhân số tất cả các bộ số nguyên dương (a,b,c) thỏa mãn bài	?
Cho tam giác ABC có B , C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABD và ACE là các tam giác vuông cân tại A và hình vuông $BCFG$. Dựng tam giác XAB vuông cân tại X (X khác phía với D đối với đường thẳng AB), tam giác YAC vuông cân tại Y (Y khác phía với E đối với đường thẳng AC). a. Chứng minh rằng S điểm S ,		1 điệm
Phép quay $Q_C^{90^o}: F \to B$ và phép quay $Q_A^{90^o}: B \to D$. Do đó $Q_A^{90^o}, Q_C^{90^o}: F \to D$. Gọi Y ' là tâm của phép quay $Q_A^{90^o}, Q_C^{90^o}$. Theo tính chất tích của 2 phép quay, ta có $(AC, AY') = 45^o$ và $(CY', CA) = 45^o$. Suy ra tam giác $Y'AC$ cân tại Y' . Suy ra $Y' \equiv Y$. Do đó $Q_Y^{180^o}: F \to D$.	Cho tam giác ABC có B , C cố định, A thay đổi. Phía ngoài tam giác ABC dựng các tam giác ABD và ACE là các tam giác vuông cân tại A và hình vuông $BCFG$. Dựng tam giác XAB vuông cân tại X (X khác phía với D đối với đường thẳng AB), tam giác YAC vuông cân tại Y (Y khác phía với E đối với đường thẳng AC). a. Chứng minh rằng X 0, X 1, X 2, X 3, X 4, X 5, X 5, X 5, X 6, X 6, X 6, X 7, X 8, X 8, X 9,	
Suy ra tam giác YAC cân tại Y . Suy ra $Y' \equiv Y$. Do đó $Q_Y^{180^o}: F \to D$.	Phép quay $Q_C^{90^o}: F \to B$ và phép quay $Q_A^{90^o}: B \to D$. Do đó $Q_A^{90^o} Q_C^{90^o}: F \to D$. Gọi Y ' là tâm của phép quay $Q_A^{90^o} Q_C^{90^o}$. Theo tính chất tích của 2 phép quay, ta có $(AC, AY') = 45^o$ và	1 điểm
	Suy ra tam giác $Y'AC$ cân tại Y' . Suy ra $Y' \equiv Y$.	
		1 điểm

b.		
	Tương tự câu a, chứng minh được X là trung điểm của EG . Gọi $M = AG \cap DF$, $N = AF \cap EG$.	1 điểm
	$V_1 \triangle BAG \sim \triangle BDF$ nên $\angle BAG = \angle BDF$. Do đó, tứ giác $BDAM$ nội tiếp.	
	Suy ra $BM \perp DF$.	
	Grong tự, $CN \perp EG$.	
	Do đó, 6 điểm B, C, F, G, M, N cùng nằm trên đường tròn ngoại tiếp hình	1 điểm
	ruông <i>BCFG</i> .	
G	Gọi T là giao điểm của tiếp tuyến tại F và tiếp tuyến tại G của đường tròn	
n	goại tiếp hình vuông <i>BCFG</i> .	
Á	Ap dụng định lý Pascal cho 6 điểm B, C, F, G, M, N ta được A, P, T thẳng	1 điểm
h	àng.	
V	Vậy đường thẳng AP luôn đi qua điểm T cố định.	