"Matematici Speciale"

Pentru studentii sectiei frecventa redusa FCIM

PROBLEMELE PENTRU LUCRAEA DE CONTROL (FIECARE STUDENT REZOLVA PROBLEMELE CU NUMĂRUL CORESPUNZĂTOR NUMĂRULUI SĂU DIN REGISTRUL GRUPEI)

PROBLEMA I.

Este data functia logica $f(x_1, x_2, x_3, x_4)$ prin setul de valori a argumentelor pentru care primeste valoarea 1

- 1. DE ALCATUIT TABELUL DE ADEVAR;
- 2. DE OBTINUT FORMA CANONICA DISJUNCTIVA NORMALA (FCDN) SI FORMA CANONICA CONJUNCTIVA NORMALA (FCCN);
- 3. DE MINIMIZAT FCDN PRIN 3 METODE: QUINE, QUINE-MCKLUSKEY, KARNAUGH;
- 4. DE IMPILENTAT SCHEMA LOGIICA IN BAZA: ŞI-NU, SAU-NU
- 5. DE CONSTRUIT DIAGRAMA TEMPORARA PENTRU FUNCTIA $f(x_1, x_2, x_3, x_4)$...

Задана логическая функция $f(x_1, x_2, x_3, x_4)$ набором значений аргументов для которых функция принимает значение 1

- 1. СОСТАВИТЬ ТАБЛИЦУ ИСТИННОСТИ;
- 2. НАЙТИ СОВЕРШЕННУЮ ДИЗЪЮНКТИВНУЮ НОРМАЛЬНУЮ ФОРМУ (СДНФ) И СОВЕРШЕННУЮ КОНЪЮНКТИВНУЮ НОРМАЛЬНУЮ ФОРМУ (СКНФ);
- 3. МИНИМИЗИРОВАТЬ СДНФТРЕМЯ МЕТОДАМИ:КВАЙНА, КВАЙНА-МАККЛАСКИ, КАРНО;
- 4. РЕАЛИЗОВАТЬ ЛОГИЧЕСКИЕ СХЕМЫ В БАЗИСАХ И-НЕ, ИЛИ-НЕ
- 5. ПОСТРОИТЬ ВРЕМЕННУЮ ДИАГРАММУ ДЛЯ ФУНКЦИИ $f(x_1, x_2, x_3, x_4)$...

```
Var.1
                f(x_1, x_2, x_3, x_4) = \Sigma(0, 2, 7, 8, 9, 10, 11, 13);
 Var.2
                f(x_1, x_2, x_3, x_4) = \Sigma(1, 2, 5, 7, 8, 10, 13, 15);
 Var.3
                f(x_1, x_2, x_3, x_4) = \Sigma(4, 6, 8, 9, 10, 11, 15)
 Var.4
                f(x_1, x_2, x_3, x_4) = \Sigma(2, 3, 6, 7, 8, 14, 15);
 Var.5
                f(x_1, x_2, x_3, x_4) = \Sigma(0, 1, 2, 4, 7, 10, 11, 12);
 Var.6
               f(x_1, x_2, x_3, x_4) = \Sigma(0, 5, 7, 8, 9, 12, 13, 15)
Var.7
               f(x_1, x_2, x_3, x_4) = \Sigma(0, 1, 2, 3, 6, 9, 12, 14, 15);
Var.8
              f(x_1, x_2, x_3, x_4) = \Sigma(0, 1, 4, 6, 7, 8, 9, 15);
Var.9
              f(x_1, x_2, x_3, x_4) = \Sigma(0, 3, 4, 5, 7, 8, 10, 11);
Var. 10
              f(x_1, x_2, x_3, x_4) = \Sigma(0, 2, 3, 7, 8, 12, 14, 15);
Var.11
              f(x_1, x_2, x_3, x_4) = \Sigma(1, 2, 5, 6, 8, 9, 10, 14);
Var.12
              f(x_1, x_2, x_3, x_4) = \Sigma(0, 2, 9, 10, 11, 12, 13, 15);
Var.13
              f(x_1, x_2, x_3, x_4) = \Sigma(1, 6, 7, 9, 12, 13, 14, 15)
Var.14
              f(x_1, x_2, x_3, x_4) = \Sigma(1, 2, 4, 10, 11, 13, 14);
Var.15
              f(x_1, x_2, x_3, x_4) = \Sigma(1, 5, 6, 7, 9, 13, 14, 15);
Var. 16
              f(x_1, x_2, x_3, x_4) = \Sigma(1, 2, 3, 4, 9, 12, 15);
Var.17
              f(x_1, x_2, x_3, x_4) = \Sigma(2, 3, 4, 7, 10, 12, 13, 14);
```

 $f(x_1, x_2, x_3, x_4) = \Sigma(4, 5, 7, 9, 10, 11, 12, 15);$

Var.18

```
Var.19
               f(x_1, x_2, x_3, x_4) = \Sigma(3, 4, 6, 8, 10, 11, 12, 14);
Var.20
               f(x_1, x_2, x_3, x_4) = \Sigma(0, 1, 2, 4, 8, 10, 11, 12);
 Var.21
               f(x_1, x_2, x_3, x_4) = \Sigma(1, 5, 7, 8, 9, 12, 13, 15)
 Var.22
               f(x_1, x_2, x_3, x_4) = \Sigma(0, 3, 4, 5, 8, 9, 10, 11);
 Var.23
                 f(x_1, x_2, x_3, x_4) = \Sigma(1, 2, 5, 7, 8, 10, 13, 15);
  Var.24
                 f(x_1, x_2, x_3, x_4) = \Sigma(4, 6, 8, 9, 10, 11, 15)
  Var.25
                 f(x_1, x_2, x_3, x_4) = \Sigma(2, 3, 6, 7, 8, 14, 15);
  Var.26
                 f(x_1, x_2, x_3, x_4) = \Sigma(0, 1, 2, 4, 7, 10, 11, 12);
  Var.27
                  f(x_1, x_2, x_3, x_4) = \Sigma(0, 5, 7, 8, 9, 12, 13, 15)
 Var.28
                  f(x_1, x_2, x_3, x_4) = \Sigma(0, 1, 2, 3, 6, 9, 12, 14, 15);
 Var.29
                 f(x_1, x_2, x_3, x_4) = \Sigma(0, 1, 4, 6, 7, 8, 9, 15);
 Var.30
                 f(x_1, x_2, x_3, x_4) = \Sigma(0, 3, 4, 5, 7, 8, 10, 11);
 Var.31
                 f(x_1, x_2, x_3, x_4) = \Sigma(0, 2, 3, 7, 8, 12, 14, 15);
 Var.32
                 f(x_1, x_2, x_3, x_4) = \Sigma(1, 2, 5, 6, 8, 9, 10, 14);
 Var.33
                f(x_1, x_2, x_3, x_4) = \Sigma(0, 2, 9, 10, 11, 12, 13, 15);
 Var.34
              f(x_1, x_2, x_3, x_4) = \Sigma(1, 6, 7, 9, 12, 13, 14, 15)
 Var.35
              f(x_1, x_2, x_3, x_4) = \Sigma(1, 2, 4, 10, 11, 13, 14);
 Var.36
              f(x_1, x_2, x_3, x_4) = \Sigma(1, 5, 6, 7, 9, 13, 14, 15);
Var.37
             f(x_1, x_2, x_3, x_4) = \Sigma(1, 2, 3, 4, 9, 12, 15);
Var.38 f(x_1, x_2, x_3, x_4) = \Sigma(2, 3, 4, 7, 10, 12, 13, 14);
Var.39
             f(x_1, x_2, x_3, x_4) = \Sigma(4, 5, 7, 9, 10, 11, 12, 15);
Var.40
             f(x_1, x_2, x_3, x_4) = \Sigma(3, 4, 6, 8, 10, 11, 12, 14);
Var.41
             f(x_1, x_2, x_3, x_4) = \Sigma(0, 1, 2, 4, 8, 10, 11, 12);
Var.42
             f(x_1, x_2, x_3, x_4) = \Sigma(1, 5, 7, 8, 9, 12, 13, 15)
Var.43
            f(x_1, x_2, x_3, x_4) = \Sigma(0, 3, 4, 5, 8, 9, 10, 11);
```

PROBLEMA II

. Utilizând algoritmul Ford și Bellman-Kalaba de aflat drumurile de valoare minimă și maximă între vârfurile 1 și 8 în graful dat:

Используя алгоритмы Форда и Bellman-Kalaba найти минимальные и максимальные пути между вершинами 1 и 8 в заданном графе:

Var.1

Var.8

Var.9

Var.10

Var.11

Var.12

Var.13

VAR.14

Var.15

Var.16

Var.17

Var.18

Var.19

Var.21

VAR.22

Var.27

Var.29

VAR.30

Var.31

Var.32

VAR.33

Var.34

Var.35

Var.36

Var.37

VAR.38

Var.39

Var.40

Var.41

Var.42

O alta formulare a problemei de determinare a drumului minim si maxim

Другая формв записи задачи на нахождение минимального и максимального пути в графе:

2. Fiind dat graful ponderat G=(V, U, P), unde V este mulțimea vârfurilor, U - mulțimea arcelor si P - multimea ponderilor să se determine utilizind algoritmii Ford și Bellman-Kalaba drumurile de lungime minimă(maximă) din virful v_1 in virful v_8

В заданном взвешанном графе G=(V, U, P), где V множество вершин, U- множество дуг и P- множество весов найти используя алгоритмы Форда и Беллмана-Калаба минимальные и максимальные пути из вершины v_1 в вершину v_8 .

- *a)* $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U = \{(v_1, v_2), (v_1, v_3), (v_1, v_5), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_3, v_5), (v_3, v_7), (v_4, v_5), (v_4, v_6), (v_4, v_8), (v_5, v_6), (v_5, v_7), (v_5, v_8), (v_6, v_8), (v_7, v_8)\}$, $V = \{v_1, v_2, v_3, v_4, v_6\}$, $V = \{v_1, v_2, v_3, v_4, v_6\}$, $V = \{v_1, v_2, v_6\}$,
- **b**) $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U = \{(v_1, v_2), (v_1, v_3), (v_1, v_5), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_3, v_5), (v_3, v_7), (v_4, v_5), (v_4, v_6), (v_4, v_8), (v_5, v_6), (v_5, v_7), (v_5, v_8), (v_6, v_8), (v_7, v_8)\}$, $P = (p_{ij})$, $p_{ij} = p(v_i, v_j)$, $(v_i, v_j) \in U$, $p_{12} = 3$, $p_{13} = 7$, $p_{15} = 9$, $p_{23} = 3$, $p_{24} = 3$, $p_{34} = 2$, $p_{35} = 3$, $p_{37} = 5$, $p_{45} = 2$, $p_{46} = 4$, $p_{48} = 7$, $p_{56} = 2$, $p_{57} = 3$, $p_{58} = 5$, $p_{68} = 3$, $p_{78} = 3$.
- **c**) $V=\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U=\{(v_1, v_2), (v_1, v_3), (v_1, v_5), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_3, v_5), (v_3, v_7), (v_4, v_5), (v_4, v_6), (v_4, v_8), (v_5, v_6), (v_5, v_7), (v_5, v_8), (v_6, v_8), (v_7, v_8)\}$, $P=(p_{ij})$, $p_{ij}=p(v_i, v_j)$, $(v_i, v_j) \in U$, $p_{12}=4$, $p_{13}=8$, $p_{15}=10$, $p_{23}=4$, $p_{24}=4$, $p_{34}=3$, $p_{35}=4$, $p_{37}=6$, $p_{45}=2$, $p_{46}=5$, $p_{48}=8$, $p_{56}=3$, $p_{57}=4$, $p_{58}=6$, $p_{68}=3$, $p_{78}=2$.
- **d**) $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U = \{(v_1, v_2), (v_1, v_3), (v_1, v_5), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_3, v_5), (v_3, v_7), (v_4, v_5), (v_4, v_6), (v_4, v_8), (v_5, v_6), (v_5, v_7), (v_5, v_8), (v_6, v_8), (v_7, v_8)\}$, $P = (p_{ij}), p_{ij} = p(v_i, v_j), (v_i, v_j) \in U, p_{12} = 5, p_{13} = 9, p_{15} = 11, p_{23} = 5, p_{24} = 5, p_{34} = 4, p_{35} = 5, p_{37} = 7, p_{45} = 6, p_{46} = 6, p_{48} = 8, p_{56} = 4, p_{57} = 2, p_{58} = 7, p_{68} = 5, p_{78} = 5.$
- **e**) $V=\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U=\{(v_1, v_2), (v_1, v_3), (v_1, v_5), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_3, v_5), (v_3, v_7), (v_4, v_5), (v_4, v_6), (v_4, v_8), (v_5, v_6), (v_5, v_7), (v_5, v_8), (v_6, v_8), (v_7, v_8)\}$, $P=(p_{ij})$, $p_{ij}=p(v_i, v_j)$, $(v_i, v_j) \in U$, $p_{12}=6$, $p_{13}=8$, $p_{15}=12$, $p_{23}=2$, $p_{24}=6$, $p_{34}=5$, $p_{35}=4$, $p_{37}=8$, $p_{45}=7$, $p_{46}=7$, $p_{48}=10$, $p_{56}=5$, $p_{57}=4$, $p_{58}=8$, $p_{68}=6$, $p_{78}=4$.
- **f)** $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U = \{(v_1, v_2), (v_1, v_3), (v_1, v_5), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_3, v_5), (v_3, v_7), (v_4, v_5), (v_4, v_6), (v_5, v_6), (v_5, v_7), (v_5, v_8), (v_6, v_8), (v_7, v_8)\}$, $P = (p_{ij})$, $p_{ij} = p(v_i, v_j)$, $(v_i, v_j) \in U$, $p_{12} = 2$, $p_{13} = 8$, $p_{15} = 6$, $p_{23} = 2$, $p_{24} = 2$, $p_{34} = 1$, $p_{35} = 2$, $p_{37} = 4$, $p_{45} = 3$, $p_{46} = 3$, $p_{48} = 6$, $p_{56} = 1$, $p_{57} = 2$, $p_{58} = 5$, $p_{68} = 2$, $p_{78} = 1$.

Pentru Antrenament

Fiind dat graful ponderat G=(V,U,P), unde V este mulțimea vârfurilor, U este mulțimea arcelor și P este ponderea (valoarea) arcelor(m este penultima cifra , iar n – ultima cifra din carnetul de note a studentului) să se determine drumurile de valoare minimă și drumurile de valoare maximă din vârful v_1 până în vârful v_8 . Să se folosească algoritmii Ford si Bellman-Kalaba.

В заданном взвешенном графе G=(V,U,P), где V множество вершин, U множество дуг и P множество весов дуг (m – предпоследняя, а n- последняя цифра номера зачетной книжки студента), найти пути минимальной и максимальной длины из вершины v_1 до вершины v_8 . Использовать алгоритмы Форда и Беллмана-Калаба.

 $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}, U = \{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_3), (v_2, v_5), (v_2, v_6), (v_3, v_6), (v_4, v_3), (v_4, v_6), (v_4, v_7), (v_5, v_6), (v_5, v_8), (v_6, v_7), (v_6, v_8), (v_7, v_8)\}, P = (p_{ij}), p_{ij} = p(v_i, v_j), (v_i, v_j) \in U, P_{12} = 5 + n; P_{13} = 4 + m; P_{14} = 6 + m + n; P_{23} = 5 + 3m; P_{25} = 4 + 2m; P_{26} = 7 + n; P_{36} = 4 + m + n; P_{43} = 3 + 2m; P_{46} = 7 + m + 2n; P_{47} = 4 + m; P_{56} = 7 + 2n; P_{58} = 7 + 3m + n; P_{67} = 3 + 4m; P_{68} = 8 + m + n; P_{78} = 2 + m + n.$

PROBLEMA III.

1. Determina-ţi valoarea fluxului maximal in reţeaua de transport conform algoritmului Ford-Fulkersson. Найти максимальный поток в транспортной сети используя алгорифм Форда- Фалкерссона

VAR.5

Var.11.

Var.12

VAR.13

VAR.14

Var.21

Var.22

VAR.26

VAR.27

VAR.28

VAR.29

Var.33.

Var.43

O alta formulare a problemei de determinare a fluxului maxim in reteaua de transport.

Другая формулировка задачм нахождения максимального потока в транспортной сети

Fiind dată rețeaua de transport G=(V,U,C), unde V este mulțimea vârfurilor, U este mulțimea arcelor și C este mulțimea capacitatăților arcelor, să se determine fluxul maxim în rețea utilizînd algoritmul Ford-Fulkersson.

В заданной транспортной сети G=(V,U,C), где V множество вершин, U множество дуг и C -множество пропускных способностей дуг, вычислить максимальный поток используя алгоритм Форда-Фалкерссона

a) $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U = \{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_5), (v_2, v_7), (v_3, v_5), (v_3, v_7), (v_4, v_6), (v_4, v_7), (v_5, v_8), (v_6, v_5), (v_6, v_8), (v_7, v_8)\}$, $C = (c_{ij})$, $c_{ij} = c(v_i, v_j), (v_i, v_j) \in U$, $c_{12} = 19$, $c_{13} = 24$, $c_{14} = 16$, $c_{25} = 25$, $c_{27} = 12$, $c_{35} = 20$, $c_{37} = 7$, $c_{46} = 14$, $c_{47} = 1$, $c_{58} = 28$, $c_{65} = 5$, $c_{68} = 11$, $c_{78} = 23$.

b) $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U = \{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_5), (v_2, v_7), (v_3, v_5), (v_3, v_7), (v_4, v_6), (v_4, v_7), (v_5, v_8), (v_6, v_5), (v_6, v_8), (v_7, v_8)\}$, $C = (c_{ij})$, $c_{ij} = c(v_i, v_j), (v_i, v_j) \in U$, $c_{12} = 24$, $c_{13} = 27$, $c_{14} = 20$, $c_{25} = 30$, $c_{27} = 16$, $c_{35} = 19$, $c_{37} = 14$, $c_{46} = 19$ $c_{47} = 1$, $c_{58} = 31$, $c_{65} = 6$, $c_{68} = 12$, $c_{78} = 28$.

c) $V=\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U=\{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_5), (v_2, v_7), (v_3, v_5), (v_3, v_7), (v_4, v_6), (v_4, v_7), (v_5, v_8), (v_6, v_5), (v_6, v_8), (v_7, v_8)\}$, $C=(c_{ij})$, $c_{ij}=c(v_i, v_j), (v_i, v_j) \in U$, $c_{12}=20$, $c_{13}=22$, $c_{14}=24$, $c_{25}=26$, $c_{27}=15$, $c_{35}=27$, $c_{37}=5$, $c_{46}=23$ $c_{47}=2$, $c_{58}=32$, $c_{65}=8$, $c_{68}=13$, $c_{78}=27$.

d) $V=\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U=\{(v_1,v_2), (v_1,v_3), (v_1,v_4), (v_2,v_5), (v_2,v_7), (v_3, v_5), (v_3,v_7), (v_4,v_6), (v_4,v_7), (v_5,v_8), (v_6,v_5), (v_6,v_8), (v_7,v_8)\}$, $C=(c_{ij})$, $c_{ij}=c(v_i,v_j), (v_i,v_j)\in U$, $c_{12}=30$, $c_{13}=18$, $c_{14}=24$, $c_{25}=31$, $c_{27}=20$, $c_{35}=23$, $c_{37}=4$, $c_{46}=26$, $c_{47}=2$, $c_{58}=42$, $c_{65}=8$, $c_{68}=14$, $c_{78}=37$.

e) $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U = \{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_5), (v_2, v_7), (v_3, v_5), (v_3, v_7), (v_4, v_6), (v_4, v_7), (v_5, v_8), (v_6, v_5), (v_6, v_8), (v_7, v_8)\}$, $C = (c_{ij})$, $c_{ij} = c(v_i, v_j), (v_i, v_j) \in U$, $c_{12} = 22$, $c_{13} = 19$, $c_{14} = 31$, $c_{25} = 23$, $c_{27} = 19$, $c_{35} = 20$, $c_{37} = 4$, $c_{46} = 32$ $c_{47} = 1$, $c_{58} = 30$, $c_{65} = 9$, $c_{68} = 20$, $c_{78} = 50$

f) $V=\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$, $U=\{(v_1,v_2), (v_1,v_3), (v_1,v_4), (v_2,v_5), (v_2,v_7), (v_3, v_5), (v_3,v_7), (v_4,v_6), (v_4,v_7), (v_5,v_8), (v_6,v_8), (v_7,v_8)\}$, $C=(c_{ij})$, $c_{ij}=c(v_i,v_j), (v_i,v_j)\in U$, $c_{12}=25$, $c_{13}=18$, $c_{14}=21$, $c_{25}=31$, $c_{27}=9$, $c_{35}=14$, $c_{37}=8$, $c_{46}=20$ $c_{47}=1$, $c_{58}=32$, $c_{65}=7$, $c_{68}=14$, $c_{78}=37$