

2 MODIFICACION DE LA FUNCION DE PERDIDA

Se incorporo una modificación en la función de pérdida del modelo para ponderar la presencia del punto caliente en la placa. Se definió de esta manera una nueva función llamada: "MSEcustom batch"

$$L_{batch} = (1 - \alpha) MSE_{resto} + \alpha MSE_{radio}$$

Esta función lo que hace es tomar el punto caliente de cada muestra y crear una ventana de r_n (si $r_n = 1$ entonces se crea una ventana de 9x9) que tiene una dimensión $(2r_n + 1)^2$.

Se toman los índices correspondientes a los puntos dentro de esa ventana y se calcula el MSE_{radio} y con los otros índices se calcula MSE_{resto} . El coeficiente α define el peso de cada termino.

Se implemento la función variando r_n para:

Epochs	Bach_size	Ir	α
1000	32	1e-4	0.95

Figura 1: Curvas de validación obtenidas con la implementación de la función MSEcustom batch

Figura 2: Ejemplo de uso de la función, el punto caliente se empieza a definir

Figura 3: Comparación entre las curvas de validación y entrenamiento para dos modelos de 100000 muestras: run03 - Sin ponderación; run09 - Con ponderación

Figura 4: Modelo de 100 000 muestras con 1000 épocas sin compensación

Figura 5: Modelo de 100 000 muestras con 1000 épocas con compensación ($r=4; \alpha=0.95$)

Figura 6: Modelo de 5000 muestras con 2000 épocas con compensación ($r=2; \alpha=0.5$)

La implementación de la función ayuda siempre y cuando se mantenga el **radio** y el coeficiente α bajo