

第五章 双稳态触发器及应用

§ 5.1 RS触发器

基本RS触发器

输入 $\overline{R}_D=0$, $\overline{S}_D=1$ 时

基本RS触发器

若原状态: Q=0 $\overline{Q}=1$

输出: Q=0 $\overline{Q}=1$

若原状态: Q=1 $\overline{Q}=0$

输出:

$$Q = 0$$
 $\overline{Q} = 1$

输入 $\overline{R}_D=1,\overline{S}_D=0$ 时

基本RS触发器

若原状态: Q=0 $\overline{Q}=1$

输出: Q=1 $\overline{Q}=0$

若原状态: Q=1 $\overline{Q}=0$

输出: Q

$$Q = 1$$
 $\overline{Q} = 0$

输入 $\overline{R}_D=1$, $\overline{S}_D=1$ 时

基本RS触发器

若原状态: Q=0 $\overline{Q}=1$

输出保持: Q=0 $\overline{Q}=1$

若原状态: Q=1 $\overline{Q}=0$

输出保持: Q=1 $\overline{Q}=0$

输出保持不变

输入 $\overline{R}_D = 0$, $\overline{S}_D = 0$ 时

设计电路时此种情况应避免! 这种输入在这里规定为禁用状态!

由与非门组成的 基本 RS 触发器状态表

$\overline{S}_{\mathrm{D}}$	$\bar{R}_{ m D}$	Q^{n+1}	功能
1	1	Q ⁿ	保持
1	0	0	置 0
0	1	1_	置1
0	0	同时变1 后不确定	禁用

输入端低电平有效

-S_D (Set Directly) ---- 直接置"1"端(置位端)

 \overline{R}_D (Reset Directly) ---- 直接置"0"端(复位端)

Q --- 原来的状态, 称为初态或原态

Qn+1 --- 加触发信号后新的状态, 称为次态或新态

由或非门组成的 基本 RS 触发器状态表

$\overline{S_{\mathrm{D}}}$	$R_{\rm D}$	Q^{n+1}	功能
0	0	Q ⁿ	保持
0	1	0	置 0
1	0	1	置 1
1	1	同时变 0 后不确定	禁用

逻辑符号

 $R_{
m D}$ — R — 输入端 $S_{
m D}$ — S — S

基本R-S 触发器的波形图:

通过引导电路来实现时钟脉冲对输入端RS的控制作用

CP为0时

触发器保持原态

CP为1时

输入R、S为高电平有效

可控 RS 触发器

功能表

EN	S	R	Q^{n+1}	功能
0	X	×	Q^{n}	保持
1	0	0	Q ⁿ	保持
1	0	1	0	置 0
1	1	0	1	置 1
1	1	1	同时变0 后不确定	禁用

A STATE OF THE STA

例: 画出可控 RS 触发器的输出波形

基本RS触发器功能表

S	R	Q^{n+1}
0	0	Qn
0	1	0
1	0	1
1	1	不定

CP高电平时触发器状态由R、S确定

直接置0或置1端

有"o":表示低电平有效

无"o":表示高电平有效

直接置0或置1端无需看CP有效性

§ 5.2 边沿触发器

脉冲跃迁检测器

WCH, Department of Electrical & Electronic Technology, SAEE, USTB

常见边沿触发器的逻辑符号

JK触发器

功	能	表
---	---	---

CP	\boldsymbol{J}	K	Q^{n+1}	功能
\downarrow	0	0	Q ⁿ	保持
\downarrow	0	1	0	置 0
\downarrow	1	0	1	置1
\downarrow	1	1	$ar{Q}^{ m n}$	翻转

逻辑符号

J一相当于置"1"端

K-相当于置"0"端

J、K-高电平有效

CP为下 降沿翻转 CP为边 沿翻转

D触发器

CP	D	Q ⁿ⁺¹	功能
↑	0	0	置 0
\uparrow	1	1	置1

例: 时钟CP及输入信号的波形如图所示,试画 出各触发器输出端Q的波形,设各输出端Q的 初始状态=0.

WCH, Department of Electrical & Electronic Technology, SAEE, USTB

WCH, Department of Electrical & Electronic Technology, SAEE, USTB

异步置数和清零端子

T′触发器

JK端都接高电平,每 来一个时钟信号有效沿 触发器就翻转一次

T'触发器具有计数功能

WCH, Department of Electrical & Electronic Technology, SAEE, USTB

练习: 若电路输入波形如图, 且Q的初态为"0",

宗习:设各触发器初态为0,画出 Q_1 和 Q_2 的波形

§ 5.3 触发器的应用

实现时钟信号的分频

如何实现4分频?

$$f_{2Q} = f_{1Q} / 2 = f_{CP} / 4$$

移位寄存器

计数器

$$J_0 = K_0 = 1$$

 $J_1 = K_1 = 1$
 T' 触发器

计数器

CLOCK PULSE	Q_1	Q_0
Initially	0	0
1	0	1
2	1	0
3	1	1
4 (recycles)	0	0
	9349433443344344343345345366666666666666	

两位二进制计数器

抢答电路

四人参加比赛,每人一个按钮,其中一人按下按钮后,相应的指示灯亮,此后其它按钮按下不起作用。

清零 1Q $1\overline{Q}$ 1D 2D $2\overline{Q}$ 2Q GND

公用清零

74LS175管脚图

CP

Q

CLR

WCH, Department of Electrical & Electronic Technology, SAEE, USTB

CP

CLR

触发器的特性方程

JK 触发器

$$Q^{n+1} = JQ^n + \overline{K}Q^n$$

D触发器

$$Q^{n+1} = D$$

触发器特性方程的推导

JK触发器

功能表			
\overline{J}	K	Q^{n+1}	
0	0	Q ⁿ	
0	1	0	
1	0	1	
1	1	$\overline{\overline{\mathbf{Q}}}_{\mathbf{n}}$	

状态表				
J	K	Q n	Qn+1	功能
0	0	0	0	保
0	0	1	1	保持
0	1	0	0	置
0	1	1	0	0
1	0	0	1	置
1	0	1	1	1
1	1	0	1	翻
1	1	1	0	转

小子士

触发器特性方程的推导

JK触发器

Q^{n+1} K	Q n 00	01	11	10
0	0	1	0	0
1	1	1	0	1

状态表

切能	Q_{n+1}	Q_{n}	K	J
但法	0	0	0	0
保持	1	1	0	0
置 0	0	0	1	0
	0	1	1	0
22 4	1	0	0	1
置1	1	1	0	1
40 / 1	1	0	1	1
翻转	0	1	1	1

特性方程:

$$Q^{n+1} = J \overline{Q^n} + \overline{K} Q^n$$

D触发器的特征方程

功能表

D	Q ⁿ⁺¹
0	0
1	1

$$Q^{n+1} = D$$

触发器小结

特点: 有记忆功能的逻辑部件

双稳态触发器

有两个稳定状态 0和1

功能: 在输入信号的作用下(即输入端加入有效电平)

能够从一种状态(0或1)转变成另一种状态(1或0)

边沿触发器抗干扰能力强,应用广泛

D触发器和JK触发器

在应用触发器时, 要特别注意触发时间