Linear Algebra Exercises A Solutions Paul L. Bailey

Exercise 5. Express i and j in terms of v and w.

(b)
$$v = 2i + 3j, w = i - j$$

Solution. We wish to show that \vec{i} and \vec{j} are in the span of $\vec{v} = (2,3)$ and $\vec{w} = (1,-1)$. To do this, we need to find $a,b,c,d \in \mathbb{R}$ such that

$$\vec{i} = a\vec{v} + b\vec{w}$$
 and $\vec{j} = c\vec{v} + d\vec{w}$.

The first equation amounts to solving the system of equations

$$2a + b = 1;$$

$$3a - b = 0.$$

Adding these gives 5a = 1, so $a = \frac{1}{5}$. Then the second equation produces $b = \frac{3}{5}$. Thus

$$\vec{i} = \frac{1}{5}\vec{v} + \frac{3}{5}\vec{w}.$$

Similarly,

$$2c + d = 0;$$

$$3c - d = 1.$$

So again adding the equation gives 5c=1, which implies that $c=\frac{1}{5}$. The second equation then says $\frac{3}{5}-d=1$, so $d=-\frac{2}{5}$. Therefore

$$\vec{j} = \frac{1}{5}\vec{v} - \frac{2}{5}\vec{w}.$$

Exercise 8. Find the values for $x \in \mathbb{R}$ such that $v \perp w$.

(b)
$$v = (x, 12), w = (x^2, -18)$$

Solution. We know that $\vec{v} \perp \vec{w}$ if and only if $\vec{v} \cdot \vec{w} = 0$. Now $\vec{v} \cdot \vec{w} = x^3 - 216$, so we need to solve $x^3 - 216 = 0$. The unique real solution is $x = \sqrt[3]{216} = 6$.

Exercise 9. Find the values for $x \in \mathbb{R}$ such that the angle between v = (1,1) and w = (x,1) is 60° .

Solution. We know that if θ is the angle between \vec{v} and \vec{w} , then

$$\cos \theta = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}.$$

Since $\cos 60^{\circ} = \frac{1}{2}$, we need to solve the equation

$$\frac{x+1}{\sqrt{2}\sqrt{x^2+1}} = \frac{1}{2}.$$

Squaring both sides and multiplying by 2 gives

$$\frac{x^2 + 2x + 1}{x^2 + 1} = \frac{1}{2}.$$

Cross multiplying and simplifying produces

$$x^2 + 4x + 1 = 0.$$

The quadratic formula now gives

$$x = \frac{-4 \pm \sqrt{16 - 4}}{2} = -2 \pm \sqrt{3}.$$

Testing these in our original equation shows that squaring both sides introduced an extraneous solution; the single correct solution is

$$x = -2 + \sqrt{3}$$
.

Alternate Solution. The angle that \vec{v} makes with the origin is 45°, so the angle that \vec{w} makes with the origin is 105°. Now

$$\cos 105^{\circ} = \cos 60^{\circ} \cos 45^{\circ} - \sin 60^{\circ} \sin 45^{\circ} = \frac{1}{2} \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{2} - \sqrt{6}}{4};$$

$$\sin 105^{\circ} = \cos 60^{\circ} \sin 45^{\circ} + \sin 60^{\circ} \cos 45^{\circ} = \frac{1}{2} \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}.$$

If r = |w|, the tip of \vec{w} is at the point $(x, 1) = (r \cos 105^{\circ}, r \sin 105^{\circ})$. Thus $r \sin 105^{\circ} = 1$, so $r = \frac{4}{\sqrt{2} + \sqrt{6}}$. Therefore

$$x = r\cos 105^{\circ} = \frac{4}{\sqrt{2} + \sqrt{6}} \frac{\sqrt{2} - \sqrt{6}}{4} = \frac{(\sqrt{2} - \sqrt{6})^2}{2 - 6} = \frac{2 + 6 - 2\sqrt{12}}{-4} = -2 + \sqrt{3}.$$

Exercise 10. Find the angle between the diagonal of a cube and one of its edges.

Solution. Select the cube determined by the vectors $\vec{i} = (1,0,0)$, $\vec{j} = (0,1,0)$, and $\vec{k} = (0,0,1)$ in \mathbb{R}^3 . The diagonal vector is $\vec{v} = \vec{i} + \vec{j} + \vec{k} = (1,1,1)$. If θ is the angle between \vec{v} and \vec{i} , then

$$\cos \theta = \frac{\vec{v} \cdot \vec{i}}{|\vec{v}||\vec{i}|} = \frac{1}{\sqrt{3}}.$$

Thus
$$\theta = \arccos \frac{1}{\sqrt{3}} \approx 54.7^{\circ}$$
.