SEGUNDO PARCIAL DE GEOMETRÍA Y ÁLGEBRA LINEAL 2 MARTES ${f 1}$ DE DICIEMBRE DE 2020

Nro de Parcial	Cédula	Apellido y nombre

- El puntaje total es 60 puntos.
- La duración del parcial es de tres horas.
- Sólo se consideran válidas las respuestas escritas en los casilleros correspondientes.

Notación: En el parcial se usa la siguiente notación:

- $\mathcal{M}_{m \times n}(k)$ es el espacio de las matrices de tamaño $m \times n$ sobre el cuerpo k.
- \mathcal{P}_n es el conjunto de los polinomios reales de grado menor o igual que n.

(I) Verdadero Falso. Total: 16 puntos

Puntajes: 2 puntos si la respuesta es correcta, -2 puntos si la respuesta es incorrecta, 0 punto por no contestar. Indique sus respuestas (V/F) en los casilleros correspondientes.

Ej 1	Ej 2	Еј 3	Ej 4	Ej 5	Ej 6	Ej 7	Ej 8
F	V	F	F	F	V	F	F

Ejercicio 1:

Existe $T: \mathbb{R}^3 \to \mathbb{R}^3$ un operador autoadjunto no nulo tal que $T^2 = 0$.

Ejercicio 2:

Sea $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Dado $Y \in \mathbb{R}^m$, el vector X que minimiza ||Y - AX|| es la solución del sistema $(A^t A)X = A^t Y$.

Ejercicio 3:

Todo operador $T: \mathbb{R}^n \to \mathbb{R}^n$ ortogonal es diagonalizable.

Ejercicio 4:

Sea $T: \mathbb{C}^n \to \mathbb{C}^n$ un operador unitario y $\lambda \in \mathbb{C}$ un valor propio de T. Entonces $\lambda = 1$ o $\lambda = -1$.

Ejercicio 5:

Consideremos \mathbb{R}^n con el producto interno usual y $T:\mathbb{R}^n\to\mathbb{R}^n$ un operador lineal. Si λ y μ son dos valores propios distintos de T; entonces los subespacios propios S_{λ} y S_{μ} son ortogonales.

Ejercicio 6:

Toda isometría lineal $T: \mathcal{P}_2 \to \mathbb{R}^3$ es invertible.

Ejercicio 7:

Consideremos \mathbb{R}^2 con el producto interno usual y el operador lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que su matriz asociada en la base canónica es la matriz $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Entonces T es autoadjunto.

Ejercicio 8:

La forma cuadrática $q: \mathbb{R}^2 \to \mathbb{R}$ dada por $q(x,y) = ax^2 + 2bxy + cy^2$ es definida positiva si y sólo si a y c son positivos.

(II) Ejercicios de respuesta corta. Total: 24 puntos

Para uso docente:

Ejercicio 1	Ejercicio 2	Ejercicio 3

Nota: Escriba en los recuadros correspondientes solamente lo que se pide en cada problema; eso será lo único que se tendrá en cuenta para la corrección.

Ejercicio 1: (8 puntos)

Considere \mathbb{R}^2 y \mathbb{R}^3 con los productos internos habituales. Sea $T:\mathbb{R}^2\to\mathbb{R}^3$ la transformación lineal definida por

$$T(x,y) = (x+y, 2x, y).$$

Escribir explícitamente $T^*(x, y, z)$:

$$T^*(x, y, z) = (x + 2y, x + z).$$

Ejercicio 2: (8 puntos)

En \mathbb{R}^3 con el producto interno usual consideramos el operador autoadjunto $T:\mathbb{R}^3\to\mathbb{R}^3$ tal que:

- El determinante de T vale -48.
- T(x, y, z) = 4(x, y, z) para todo $(x, y, z) \in U = \{(x, y, z) \in \mathbb{R}^3 : 2x + z = 0\}.$

Entonces, T(3,0,4) vale:

$$T(3,0,4) = (-16,0,2)$$

Ejercicio 3: (8 puntos)

Considere el espacio vectorial \mathcal{P}_2 con el producto interno $\langle ax^2 + bx + c, dx^2 + ex + f \rangle = 2ad + be + cf$. Considere además el funcional lineal $T: \mathcal{P}_2 \to \mathbb{R}$ definido por:

$$T(ax^2 + bx + c) = a - b + c.$$

El representante de Riesz del funcional T es:

$$\frac{1}{2}x^2 - x + 1$$

(III) Múltiple opción. Total: 20 puntos

Puntajes: 10 puntos si la respuesta es correcta, -2 puntos si la respuesta es incorrecta, 0 punto por no contestar. Indique sus respuestas en los casilleros correspondientes.

Ejercicio 1	Ejercicio 2		
A	A		

Ejercicio 1

Sea V un espacio vectorial de dimensión finita con producto interno y consideremos S un subespacio no trivial de V. La descomposición $V = S \oplus S^{\perp}$ implica que todo $v \in V$ se escribe de forma única como v = s + s' con $s \in S$ y $s' \in S^{\perp}$. Esto nos permite definir el operador $T: V \to V$ tal que T(v) = s - s'. Indique la opción correcta:

- A) T es un operador autoadjunto y unitario.
- B) T es un operador autoadjunto pero no unitario.
- C) T es un operador unitario pero no autoadjunto.
- D) T no es un operador ni unitario ni autoadjunto.

Ejercicio 2

Considere la siguiente forma cuadrática en \mathbb{R}^3 :

$$Q(x, y, z) = 2x^2 + 4y^2 + 3z^2 + 4xz + 4yz.$$

Indique la opción correcta:

- A) Q es semidefinida positiva.
- B) Q es definida positiva.
- C) Q es semidefinida negativa.
- D) Q es indefinida.