FGI-2 – Formale Grundlagen der Informatik II

Modellierung und Analyse von Informatiksystemen

Musterlösung 9: P/T-Netze: Überdeckungsgraph, S-Invarianten, Fairness

Präsenzteil am 09./10.12. – Abgabe am 16./17.12.2013

Präsenzaufgabe 9.1: Konstruieren Sie für das folgende Netz $N_{9.1}$ den Überdeckungsgraphen nach Algorithmus 7.4. (Seite 131). Bestimmen Sie die Menge der unbeschränkten Plätze.

Lösung:

$$(0,0,1)$$

$$c \swarrow \qquad \downarrow d$$

$$(1,0,0) \qquad (\omega,0,1) \supset d$$

$$a \downarrow \qquad \downarrow a \qquad \searrow c$$

$$(0,1,0) \qquad (\omega,\omega,1) \supset a,d \qquad (\omega,0,0)$$

$$\downarrow b,c \qquad \swarrow a$$

$$(\omega,\omega,0) \supset a$$

Mit Hilfe des Überdeckungsgraphen können wir die Menge der unbeschränkten Plätze bestimmen: $\{p_1,p_2\}$

Präsenzaufgabe 9.2: Gegeben sei das folgende P/T Netz $N_{9.2}$:

1. Falls **i** eine S-Invariante eines Netzes ist: Gilt dann für alle erreichbaren Markierungen **m** die folgende, von **i** abgeleitete Invariantengleichung? Gilt diese Gleichung für das Netz $N_{9.2}$?

$$\mathbf{i}(p_1) \cdot \mathbf{m}(p_1) + \mathbf{i}(p_2) \cdot \mathbf{m}(p_2) = const.$$

Lösung: Ja, dies ist der Satz von Lautenbach. Für $N_{9,2}$ gilt dies nicht, siehe Skript (23.11.12) Seite 146ff.

2. Aus der Anfangsmarkierung $\mathbf{m}_0 = (1,0)$ heraus gilt für alle erreichbaren Markierungen die folgende Invariantengleichung:

$$1 \cdot \mathbf{m}(p_1) + 1 \cdot \mathbf{m}(p_2) = 1 \cdot \mathbf{m}_0(p_1) + 1 \cdot \mathbf{m}_0(p_2) = 1$$

Da nur t_1 bzw. t_2 schalten können, wechselt die Marke immer zwischen p_1 und p_2 , es existiert also zu jedem Zeitpunkt genau eine Marke im System.

Zeigen Sie, dass der zur Gleichung zugehörige Vektor $\mathbf{i} = (1,1)^{tr}$ jedoch kein Invariantenvektor ist. Erläutern Sie die Ursachen!

Lösung: Mit $\Delta = \begin{pmatrix} -1 & 1 & -2 \\ 1 & -1 & 3 \end{pmatrix}$ folgt $\Delta^{tr}\mathbf{i} = (0,0,1)^{tr} \neq \mathbf{0}$. Man beachte, dass für dieses Beispiel die Anfangsmarkierung gerade so gewählt ist, dass in keiner erreichbaren Markierung t_3 aktiviert ist. Für eine andere Anfangsmarkierung, z.B. $\mathbf{m} = (2,0)^{tr}$ ist t_3 aktiviert, und die Invariantengleichung ist ungültig.

3. Verhält sich $N_{9.2}$ unter der gegebenen Anfangsmarkierung fair?

Lösung: Nein, t_3 kommt in der einzigen unendlichen Schaltfolge $w_1 = (t_1 t_2)^{\omega}$ nicht vor.

4. Verhält sich $N_{9.2}$ mit der Anfangsmarkierung $\mathbf{m}_0' = (2,0)^{tr}$ fair?

Lösung: Nein, t_3 kann nun zwar unendlich oft schalten, z.B. in der Schaltfolge $w_2 = (t_1 t_3 t_2)^{\omega}$. Es tritt aber in der weiterhin möglichen unendlichen Schaltfolge w_1 nicht auf.

5. Verhält sich $N_{9.2}$ mit der Anfangsmarkierung $\mathbf{m}_0' = (2,0)^{tr}$ fair unter der verschleppungsfreien Schaltregel?

Lösung: Nein, die unendlichen Schaltfolge w_1 wird durch die verschleppungsfreie Schaltregel nicht ausgeschlossen, da t_3 nicht permanent aktiviert ist.

6. Verhält sich $N_{9.2}$ mit der Anfangsmarkierung $\mathbf{m}'_0 = (2,0)^{tr}$ fair unter der fairen Schaltregel?

Lösung: Zwar wird die unendliche Schaltfolge w_1 durch die faire Schaltregel ausgeschlossen, da t_3 unendlich oft aktiviert ist. Aber man kann nun $w_2 = t_1 t_1 t_2 w_1$ schalten. Nach dem Präfix $= t_1 t_1 t_2$ ist t_3 nie mehr aktiviert, muss also auch unter der fairen Schaltregel nicht schalten. Also verhält sich $N_{9.2}$ auch unter der fairen Schaltregel nicht fair.

Übungsaufgabe 9.3: Folgende zwei Netze unterscheiden sich nur durch die Inhibitorkante zwischen Transition d und Platz p_2 :

von 4

 $N_{9.3a}$

 $N_{9.3b}$

- 1. Konstruieren Sie für die beiden Netze jeweils den Überdeckungsgraphen nach Algorithmus 7.4.
- 2. Bestimmen Sie jeweils die Menge der unbeschränkten Plätze, die sich nach den Überdeckungsgraphen ergeben.
- 3. Konstruieren Sie den Erreichbarkeitsgraphen zu $N_{9.3b}$.
- 4. Diskutieren Sie die Aussagekräftigkeit des Übderdeckungsgraphen für Inhibitornetze.

Lösung: Die Graphen:

In beiden Netzen ist angeblich der Platz p_2 unbeschränkt. Im Inhibitornetz $N_{9.3b}$ führt das Monotoniekriterium jedoch zu einem falschen Ergebnis. p_2 ist nicht unbeschränkt, da Transition d nur ein einziges Mal schalten kann. Entsprechend eignet sich der Überdeckungsgraph nicht zur Analyse von Inhibitornetzen.

 $\it Zum\ Vergleich$: Der Erreichbarkeitsgraph zu $\it N_{9.3a}$ beginnt folgendermaßen:

Übungsaufgabe 9.4: Eine große Firma möchte ihre Produktion und die Interaktion mit dem Verbraucher analysieren. Hierfür modelliert ein Informatiker für die Firma ein Petrinetz:

von 8 Netz $N_{9.4a}$:

Hierbei soll der linke Teil des Netzes einen Fertigungsprozess in einer Firma simulieren, der rechte Teil den Konsum des gefertigten Produktes und der Platz p_3 das Lager der Firma.

1. Geben Sie die Wirkungsmatrix $\Delta_{N_{9.4a}}$ an.

Lösung:

$$\Delta_{N_{9.4a}} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

2. Bestimmen Sie die Menge aller S-Invariantenvektoren von $N_{9.4a}$.

Lösung:

$$\Delta_{N_{9.4a}}^{tr} \cdot \mathbf{i} = \mathbf{0}$$

$$\Leftrightarrow \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \\ i_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} i_1 & -i_2 & = & 0 & | +i_2 \\ -i_1 & +i_2 & +i_3 & = & 0 & | +i_1 \\ -i_3 & -i_4 & +i_5 & = & 0 & | +i_3; +i_4 \\ i_4 & -i_5 & = & 0 & | +i_5 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} i_1 & = & i_2 \\ -i_1 & +i_2 & +i_3 & = & 0 \\ i_4 & = & i_5 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} i_1 & = & i_2 \\ i_2 + i_3 & = & i_1 & | i_1 = i_2; -i_2 \\ i_5 & = & i_3 + i_4 & | i_4 = i_5; -i_5 \\ i_4 & = & i_5 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} i_1 & = & i_2 \\ i_3 & = & 0 \\ 0 & = & i_3 \\ i_4 & = & i_5 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} i_1 & = & i_2 \\ i_3 & = & 0 \\ 0 & = & i_3 \\ i_4 & = & i_5 \end{pmatrix}$$

Nach Umstellen des Gleichungssystems ergibt sich als Lösungsmenge für den Vektor i:

$$\left\{ \begin{pmatrix} k \\ k \\ 0 \\ l \\ l \end{pmatrix} \middle| k, l \in \mathbb{Z} \right\} \setminus \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

Hinweis: Der Nullvektor ist zwar eigentlich eine mathematisch korrekte Lösung des Gleichungssystems, wird aber gemäß Def. 7.31 explizit als Invariantenvektor ausgeschlossen.

3. Überprüfen Sie nach Theorem 7.35 (Seite 149), ob $N_{9.4a}$ strukturell beschränkt ist.

Lösung: Unabhängig davon wie k und l gewählt werden, bleibt an der dritten Stelle des S-Invariantenvektors eine 0. Somit kann mit Theorem 7.35 nicht festgestellt werden, dass $N_{9.4a}$ strukturell beschränkt, da $\mathbf{i}(3)>0$ nicht gilt. ist. Eine genaue Betrachtung zeigt, dass das Netz einen unbeschränkten Platz p_3 besitzt. (Anfangsmarkierung: $\mathbf{m}_0=(1,0,0,0,0)^{tr}$ Schaltfolge: $w=(ab)^\omega$)

- 4. Während der Analyse beschließt der Informatiker einen neuen Platz p_6 einzufügen. Zusätzlich fügt er zwei neue Kanten (c,p_6) & (p_6,b) ein. Für das entstandene Netz $N_{9.4b}$
 - geben Sie die Wirkungsmatrix $\Delta_{N_{9,4b}}$ an,
 - bestimmen die Menge aller S-Invarianten
 - \bullet und überprüfen mit Theorem 7.35, ob $N_{9.4b}$ strukturell beschränkt ist.

Netz $N_{9.4a}$:

Lösung:

$$\Delta_{N_{9.4b}} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & 0 \end{pmatrix}$$

Nach Umstellen des Gleichungssystems ergibt sich als Lösungsmenge für den Vektor i:

$$\left\{ \begin{pmatrix} k \\ k \\ l \\ m \\ m \\ l \end{pmatrix} \middle| k, l, m \in \mathbb{Z} \right\} \setminus \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

Hinweis: Der Nullvektor ist zwar eigentlich eine mathematisch korrekte Lösung des Gleichungssystems, wird aber gemäß Def. 7.31 explizit als Invariantenvektor ausgeschlossen.

Für k=l=n=1 ergibt sich der positive, überdeckende S-Invariantenvektor

$$\mathbf{i}_2 = \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix}$$

Es folgt mit Theorem 7.35, dass $N_{9.4b}$ strukturell beschränkt ist.

5. Was fällt beim Vergleich der beiden Netze auf. Diskutieren Sie, warum der Informatiker die Änderung am Ursprungsnetz $(N_{9.4a})$ vorgenommen hat. Beachten Sie, dass das Netz, welches der Informatiker entworfen hatte, reale Bedingungen einer Firma simulieren sollte.

Lösung: Beim Vergleich der beiden Netze fällt auf, dass $N_{9.4b}$ im Gegensatz zu $N_{9.4a}$ strukturell beschränkt ist. Bereits in den vorangegangenen Aufgaben wurde das darauf zurückgeführt, dass der Platz p_3 im Netz $N_{9.4a}$ nicht zwangsläufig unter jeder Anfangsmarkierung beschränkt ist. Der Grund, warum der beteiligte Informatiker den weiteren Platz p_6 eingefügt hat, ist, dass unter realen Bedingungen ein Lager nicht unendlich groß ist. Deshalb ist es beim Modellieren eines solches Platzes von Interesse, dass er beschränkt ist. Durch den Platz p_6 und die Kanten (c, p_6) & (p_6, b) wird eine Kapazität des Platzes p_3 simuliert.

6. Einer der Invariantenvektoren zu $N_{9.4b}$ lautet $\mathbf{i}_1 = (2, 2, 5, 1, 1, 5)^{tr}$. Geben Sie die zugehörige Invariantengleichung gemäß Satz von Lautenbach an. Die Anfangsmarkierung sei $\mathbf{m}_0 = (1, 1, 0, 3, 0, 1)^{tr}$

Lösung:

```
 \begin{array}{lll} \forall \mathbf{m} \in R(N,\mathbf{m}_0): & & \mathbf{i}^{tr} \cdot \mathbf{m}_0 & = & \mathbf{i}^{tr} \cdot \mathbf{m} \\ 2 \cdot 1 + 2 \cdot 1 + 5 \cdot 0 + 1 \cdot 3 + 1 \cdot 0 + 5 \cdot 1 & = & 2 \cdot \mathbf{m}(p_1) + 2 \cdot \mathbf{m}(p_2) + 5 \cdot \mathbf{m}(p_3) + 1 \cdot \mathbf{m}(p_4) \\ & & & + 1 \cdot \mathbf{m}(p_5) + 5 \cdot \mathbf{m}(p_6) \\ 12 & = & 2\mathbf{m}(p_1) + 2\mathbf{m}(p_2) + 5\mathbf{m}(p_3) + \mathbf{m}(p_4) \\ & & & + \mathbf{m}(p_5) + 5\mathbf{m}(p_6) \end{array}
```

Bisher erreichbare Punktzahl: 103