Trigonométrie

Règles de calculs 1. Valeurs particuliéres

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\tan\left(x\right)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ND	0

Règles de calculs 2. Pour tout $\theta \in \mathbb{R}$:

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

$$\frac{1}{\cos^2(\theta)} = 1 + \tan^2(\theta)$$

Règles de calculs 3. Pour tout $x \in \mathbb{R}$

$$\cos(-x) = \cos(x) \qquad \sin(-x) = \sin(x) \qquad \tan(-x) = -\tan(x)$$

$$\cos(x+\pi) = -\cos(x) \qquad \sin(x+\pi) = -\sin(x) \qquad \tan(x+\pi) = \tan(x)$$

$$\cos(x-x) = -\cos(x) \qquad \sin(x-x) = \sin(x) \qquad \tan(x+\pi) = \tan(x)$$

$$\cos(x+\pi) = -\sin(x) \qquad \sin(x+\pi) = \sin(x) \qquad \tan(x+\pi) = -\tan(x)$$

$$\cos(x+\pi) = -\sin(x) \qquad \sin(x+\pi) = \cos(x) \qquad \tan(x+\pi) = -\tan(x)$$

$$\cos(x+\pi) = -\sin(x) \qquad \sin(x+\pi) = \cos(x) \qquad \tan(x+\pi) = -\tan(x)$$

$$\cos(x+\pi) = -\sin(x) \qquad \sin(x+\pi) = \cos(x) \qquad \tan(x+\pi) = -\tan(x)$$

$$\cos(x+\pi) = -\sin(x) \qquad \sin(x+\pi) = \cos(x) \qquad \tan(x+\pi) = -\tan(x)$$

$$\cos(x+\pi) = -\sin(x) \qquad \sin(x+\pi) = \cos(x) \qquad \tan(x+\pi) = -\tan(x)$$

$$\cos(x+\pi) = -\sin(x) \qquad \sin(x+\pi) = \cos(x) \qquad \tan(x+\pi) = -\tan(x)$$

$$\cos(x+\pi) = -\sin(x) \qquad \sin(x+\pi) = \cos(x)$$

$$\sin(x+\pi) = -\sin(x) \qquad \tan(x+\pi) = -\tan(x)$$

$$\tan(x+\pi) = -\tan(x)$$

$$\tan(x$$

Règles de calculs 4. Pour tout $a, b \in \mathbb{R}^2$ on a :

- $\cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$ $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$
- $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$ $\sin(a-b) = \sin(a)\cos(b) \sin(b)\cos(a)$
- $\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 \tan(a)\tan(b)}$ $\tan(a-b) = \frac{\tan(a) \tan(b)}{1 + \tan(a)\tan(b)}$

Règles de calculs 5. Pour tout $a \in \mathbb{R}$, on a :

- $\cos(2a) = \cos^2(a) \sin^2(a) = 2\cos^2(a) 1 = 1 2\sin^2(a)$
- $\cos^2(a) = \frac{\cos(2a)+1}{2}$ $\sin^2(a) = \frac{1-\cos(2a)}{2}$
- $\sin(2a) = 2\sin(a)\cos(a)$