

# เรื่อง การศึกษาประสิทธิภาพของโฟมโปรตีนดับเพลิง จากการสกัดโปรตีนจากไข่ขาว

## โดย

- 1. นาย ณัฐพล ถิระปัญญาธร เลขที่ ว
- 2. นางสาว พิสุดา เจริญเมือง เลขที่ 34
- 3. นางสาว ภัทรสิรา ศรีกันยา เลขที่ 36

โรงเรียนยุพราชวิทยาลัย อำเภอเมืองเชียงใหม่ จังหวัดเชียงใหม่

รายงานฉบับนี้เป็นส่วนประกอบของโครงงานวิทยาศาสตร์ ระดับมัธยมศึกษาตอนปลาย ในงานเวทีวิชาการนวัตกรรมสะเต็มศึกษาขั้นพื้นฐานแห่งชาติ ครั้งที่ 1 (ออนไลน์)

The 1st National Basic STEM Innovation E-Forum 2021

วันที่ 18 – 19 กันยายน พ.ศ. 2564

# รายงาน โครงงานวิทยาศาสตร์ เรื่อง การศึกษาประสิทธิภาพของโฟมโปรตีนดับเพลิง จากการสกัดโปรตีนจากไข่ขาว

## โดย

- 1. นาย ณัฐพล ถิระปัญญาธร เลขที่ 7
- 2. นางสาว พิสุคา เจริญเมือง เลขที่ 34
- 3. นางสาว ภัทรสิรา ศรีกันยา เลขที่ 36

อาจารย์ที่ปรึกษา นางบุปผา ธนะชัยขันธ์

ชื่อโครงงาน การศึกษาประสิทธิภาพของโฟมโปรตีนดับเพลิงจากการสกัดโปรตีนจากไข่ขาว

ผู้เสนอโครงงาน 1. นาย ณัฐพล ถิระปัญญาธร เลขที่ 7

2. นางสาว พิสุดา เจริญเมือง เลขที่ 34

3. นางสาว ภัทรสิรา ศรีกันยา เลขที่ 36

อาจารย์ที่ปรึกษาโครงงาน นางบุปผา ธนะชัยขันธ์

โรงเรียน ยุพราชวิทยาลัย

ที่อยู่ 238 ถ. พระปกเกล้า ตำบลศรีภูมิ อำเภอเมืองเชียงใหม่ เชียงใหม่ 50200

โทรศัพท์ 061-2978668

ระยะเวลาทำโครงงาน ตั้งแต่วันที่ 1 พฤศจิกายน 2563 – วันที่ 30 มิถุนายน 2564

## บทคัดย่อ

การจัดทำโครงงานนี้มีวัตถุประสงค์ (1) เพื่อศึกษาหาอัตราส่วนที่เหมาะสมในการผลิตโฟมโปรตีน จากไข่ขาว (2) เพื่อศึกษาประสิทธิภาพของโฟมโปรตีนที่สกัดจากไข่ขาวในการดับเชื้อเพลิง โดยใช้ซิงค์ออก ไซด์ และโซเดียมไฮโดรเจนไบคาร์บอเนต ในอัตราส่วนที่แตกต่างกันและนำมาศึกษาสมบัติต่างๆ โดย วิเคราะห์ผลจากกุณสมบัติทางกายภาพของโฟมโปรตีนที่วัดจากค่าร้อยละความคงตัว ค่าความหนาแน่น อัตราการขึ้นฟู และการเปรียบเทียบประสิทธิภาพของโฟมโปรตีนสกัดจากเปลือกไข่ในการดับเชื้อเพลิง ที่มี อัตราส่วนของสารที่เป็นองค์ประกอบต่างกัน ซึ่งนำไปสู่การหาอัตราส่วนที่เหมาะสมและมีประสิทธิภาพใน การดับเชื้อเพลิงสูงสุด

จากการศึกษาพบว่า อัตราส่วนของโฟมโปรตีนที่ผลิตขึ้นมีค่าความคงตัว อัตราการขึ้นฟูของโปรตีน และความหนาแน่นของโฟมโปรตีนสูงที่สุด คือ สารละลายโปรตีน : ซิงค์ออกไซด์ : โซเคียมไฮโครเจน ใบการ์บอเนต (อัตราส่วน 200 : 04 : 04) ซึ่งมาค่ามีร้อยละความคงตัวและค่าอัตราการขึ้นฟูสูงสุด แต่มีความ หนาแน่นต่ำที่สุด ส่งผลทำให้เนื้อโฟมมีลักษณะละเอียดมีฟองอากาศเล็กและเกาะตัวกันคีไม่ยุบตัวง่ายเมื่อ เจอความร้อนและมีประสิทธิภาพในการคับเชื้อเพลิงสูงสุด

## กิตติกรรมประกาศ

โครงงานวิทยาศาสตร์ เรื่อง การศึกษาประสิทธิภาพของโฟมโปรตีนดับเพลิงจากการสกัดโปรตีน จากไข่ขาว สำเร็จลุล่วงได้ด้วยความกรุณาและความช่วยเหลืออย่างสูงยิ่งจากคุณครูบุปผา ธนะชัยขันธ์ ครูที่ ปรึกษาโครงงานที่ได้กรุณาให้คำปรึกษาแนะนำตลอดจนช่วยแก้ไขข้อบกพร่องทุกขั้นตอนของการจัดทำ โครงงานคณะผู้จัดทำโครงงานขอขอบพระคุณเป็นอย่างสูง

ขอขอบพระกุณกรูที่ปชัย วงษ์วรศรีโรจน์ผู้อำนวยการโรงเรียนยุพราชวิทยาลัยที่ได้กรุณาเมตตาให้ กวามอนุเคราะห์และอำนวยกวามสะควกตลอดระยะเวลาการทำโครงงานขอขอบกุณบิดามารดาเพื่อน นักเรียนตลอดจนผู้ที่เกี่ยวข้องทุกท่านที่ไม่ได้กล่าวนามไว้ ณ ที่นี้ที่ได้ให้กำลังใจและมีส่วนช่วยเหลือให้ โครงงานฉบับนี้สำเร็จลุล่วงได้ด้วยดี

คณะผู้จัดทำ

# สารบัญ

|                                            | หน้า |
|--------------------------------------------|------|
| บทลัดย่อ                                   | ก    |
| กิตติกรรมประกาศ                            | ข    |
| สารบัญ                                     | ค    |
| สารบัญภาพ                                  | จ    |
| บทที่ 1 บทนำ                               |      |
| ที่มาและความสำคัญของโครงงาน                | 1    |
| จุคมุ่งหมายของการศึกษาค้นคว้า              | 2    |
| สมมติฐานการศึกษาค้นคว้า                    | 2    |
| ขอบเขตการศึกษาค้นคว้า                      | 2    |
| ตัวแปรในการศึกษาค้นคว้า                    | 2    |
| ประโยชน์ที่ได้รับ                          | 3    |
| บทที่ 2 เอกสารและ โครงงานที่เกี่ยวข้อง     | 4    |
| บทที่ 3 วิธีการจัดทำโครงงาน                |      |
| วัสคุอุปกรณ์                               | 7    |
| วิธีการคำเนินงาน                           | 8    |
| บทที่ 4 ผลการทดลอง                         | 10   |
| <b>บทที่ 5</b> สรปผล อภิปราย และข้อเสนอแนะ | 11   |

# สารบัญภาพ

| ภาพที่                                                                         | หน้า |
|--------------------------------------------------------------------------------|------|
| ภาพที่ ก.1 ปรับค่าpH ของสารละลายโปรตีนด้วยกรดแอซิติกเจอจาง                     | 14   |
| ภาพที่ ก.2 ปั่นเหวี่ยงสารละลายโปรตีนด้วยด้วยความเร็ว 4,000 รอบต่อวินาที        | 14   |
| ภาพที่ ก.3 นำสารละลายโปรตีนมาอบด้วยความร้อน 80 องศาเซลเซียส                    | 14   |
| ภาพที่ ข.1 นำผงโปรตีนมาละลายค้วยน้ำที่อุณหภูมิ 65 องศาเซลเซียส                 | 15   |
| ภาพที่ ข. 2 นำส่วนผสมของโฟมมาปั่นรวมกันตามอัตราส่วนแต่ละสูตร                   | 15   |
| ภาพที่ ข.3 นำโฟมมาบรรจุภาชนะใส่หัวฉีดโฟม                                       | 15   |
| ภาพที่ ค.1 ภาพแสดงการวัดน้ำหนักเพื่อหาค่าโอเวอร์รันและความหนาแน่นของโฟม        | 16   |
| ภาพที่ ค.2 ภาพแสดงการวัดปริมาตรของเหลวที่แยกตัวออกจากโฟมเพื่อหาร้อยละความคงตัว | 16   |
| ภาพที่ ค.3 เปรียบเทียบลักษณะของเนื้อโฟม                                        | 16   |
| ภาพที่ ง.1 สร้างเชื้อเพลิง                                                     | 17   |
| ภาพที่ ง 2 ฉีดโฟมดับเพลิงใส่เชื้อเพลิง                                         | 17   |

## บทที่ 1

#### บทน้ำ

## 1.1 ที่มาและความสำคัญของโครงงาน

เนื่องจากจังหวัดเชียงใหม่ในหน้าร้อนมักจะเจอกับปัญหาฝุ่นควันเป็นอย่างมากและเพิ่มขึ้นเรื่อย ๆ ในทุก ๆ ปีสาเหตุส่วนหนึ่งมาจากการเกิดไฟป่าในจังหวัดเชียงใหม่โดยจะเกิดในช่วงระหว่างปลายเดือน กุมภาพันธ์ถึงต้นเดือนพฤษภาคม ซึ่งสาเหตุของการเกิดไฟป่าอาจจะมาจากการไปหาของป่าของชาวบ้าน แล้วจุดไฟเผาหรือการไฟป่าที่เกิดขึ้นเองตามธรรมชาติเกิดขึ้นจากหลายสาเหตุ เช่น ฟ้าผ่า กิ่งไม้เสียดสีกัน ภูเขาไฟระเบิด ก้อนหินกระทบกัน แสงแดดตกกระทบผลึกหิน แสงแดดส่องผ่านหยดน้ำ ปฏิกิริยาเคมีในดิน ป่าพรุ การลุกไหม้ในตัวเองของสิ่งมีชีวิตถึงแม้จะมีการแก้ไขโดยการสร้างแนวกันไฟแต่ในบ้างครั้งที่ไฟ ลุกลามเร็วก็ทำให้ไม่สามารถที่จะกั้นไฟป่าได้หรือทำที่กั้นไฟป่าไม่ทันจึงต้องมีการใช้น้ำจำนวนมากในการ ดับแต่เมื่อไฟมีการลุกลามมากขึ้นและลุกลามเร็วการใช้แก่น้ำเพียงอย่างเดียวในการดับไฟป่านั้นไม่เพียงพอ

ปัจจุบันใค้มีการคับใฟด้วยสารเคมีโดยวิธีการพ่นสารเคมีจากเครื่องบินให้ทั่วพื้นที่หรือการใช้ถัง สารเคมีในการคับซึ่งอาจจะทำให้เกิดสารตกค้างหลงเหลือบนพื้นดินหรือหากใช้ถังดับเพลิงแบบที่ไม่เป็น อันตรายต่อมนุษย์ของสิ่งแวดล้อมนั้นก็จะมีราคาที่สูงจึงมีแนวคิดที่จะทำโฟมดับไฟป่าวัสดุธรรมชาติที่ไม่ เป็นอันตรายต่อสิ่งแวดล้อมและมีราคาต่ำโดยโฟมดับเพลิงนั้นมี2ชนิดคือ โฟมโปรตีน (proteinfoamsconcentrate) และโฟมฟลูออโรโปรตีน (fluoroproteinfoam concentrates) โดยจะเห็นได้ว่าทั้ง สองชนิดนี้มีโปรตีนเป็นส่วนประกอบเราจึงเลือกโปรตีนจากไข่ขาวในการนำมาสกัดทำโฟมโปรตีนในครั้ง นี้เพราะใข่ขาวถือเป็นแหล่งโปรตีนที่สมบูรณ์ที่สุด เมื่อเทียบกับโปรตีนได้ที่จากเนื้อสัตว์ นม หรือถั่วเหลือง เนื่องจาก ใข่ขาวให้โปรตีนสูง และมีแอลบูมินในใข่ขาวค่อนข้างเยอะจึงจะทำให้โฟมโปรตีนมีคุณภาพดี

การศึกษาครั้งนี้มีจุดประสงค์เพื่อเพื่อศึกษาหาอัตราส่วนที่เหมาะสมในการผลิตโฟมโปรตีนจาก โปรตีนไข่ขาวโดยการเปรียบเทียบอัตราส่วนของสารที่เป็นองค์ประกอบต่างกันและเพื่อศึกษาประสิทธิภาพ ของโฟมโปรตีนที่สกัดจากไข่ขาวในการดับเชื้อเพลิงโดยการวิเคราะห์ผลจากคุณสมบัติทางกายภาพของโฟ มโปรตีนที่วัดจากความคงตัวค่าความหนาแน่นคำโอเวอร์รันและการเปรียบเทียบประสิทธิภาพของโฟมโปร ตีนเพื่อให้ได้โฟมโปรตีนที่มีอัตราส่วนที่เหมาะสมกับการดับเพลิงและมีประสิทธิภาพสูงสุด

## 1.2 จุดมุ่งหมายของการศึกษาค้นคว้า

- 1. เพื่อศึกษาหาอัตราส่วนที่เหมาะสมในการผลิต โฟมโปรตีนจากโปรตีนไข่ขาว
- 2. เพื่อศึกษาประสิทธิภาพของโฟมโปรตีนที่สกัดจากไข่ขาวในการคับเชื้อเพลิง

## 1.3 สมมติฐานการศึกษาค้นคว้า

- 1. โฟมโปรตีนที่มีอัตราส่วนของสารละลายโปรตีน : สารเร่งปฏิกิริยาประเภทค่าง : ซิงค์ออกไซค์ ที่เหมาะสมสามารถใช้คับเพลิงใค้
- 2. โฟมโปรตีนมีประสิทธิภาพในการคับเชื้อเพลิง

#### 1.4 ขอบเขตการศึกษาค้นคว้า

โครงงานนี้ศึกษาอัตราส่วนที่เหมาะสมกับการดับเพลิงโดยใช้คุณสมบัติทางกายภาพซึ่งประกอบไป ด้วยค่า ร้อยละความคงตัว ค่าแรงตึงผิวความหนาแน่น การวัดอัตราการขึ้นฟู และประสิทธิภาพของ โฟมโปรตีนที่สกัดจากไข่ขาวในการดับเชื้อเพลิงเอทิลแอลกอฮอล์ โดยการศึกษาจากระยะเวลาที่ใช้ในการ ดับเพลิงของโฟมโปรตีน

#### 1.5 ตัวแปรในการศึกษาค้นคว้า

# ตอนที่ 1 เพื่อศึกษาหาอัตราส่วนที่เหมาะสมในการผลิตโฟมโปรตีนจากโปรตีนไข่ขาว

**ตัวแปรต้น** อัตราส่วนของปริมาณสารละลายโปรตีน ซิงค์ออกไซด์ และโซเคียมไฮโครเจน ใบคาร์บอเนต

ตัวแปรตาม ระยะเวลาที่ใช้ในการดับเพลิงของโฟมโปรตีน โดยมีการจับเวลาตั้งแต่เริ่มจุด

ไฟจนถึงมอดดับ

**ตัวแปรควบคุม** ไข่ขาว เชื้อเพลิง และความความเข้มข้นของโปรตีน

## ตอนที่ 2 เพื่อศึกษาประสิทธิภาพของโฟมโปรตีนที่สกัดจากไข่ขาวในการดับเชื้อเพลิง

**ตัวแปรต้น** อัตราส่วนของปริมาณสารละลายโปรตีน ซิงค์ออกไซด์ และโซเคียมไฮโครเจน ใบคาร์บอเนต

ตัวแปรตาม ร้อยละความคงตัว ค่าความหนาแน่น อัตราการขึ้นฟู

ตัวแปรควบคุม สภาพแวดล้อมระหว่างการทดลอง

# 1.6 ประโยชน์ที่ได้รับ

- 1. ได้อัตราส่วนที่เหมาะสมในการผลิตโฟมโปรตีนจากไข่ขาว เพื่อใช้การดับเชื้อเพลิงที่มี ประสิทธิภาพสูงสุด
- 2. สามารถลดค่าใช้จ่ายในการซื้อโฟมโปรตีนสังเคราะห์ได้

## บทที่ 2

## เอกสารและงานวิจัยที่เกี่ยวข้อง

การศึกษาคุณสมบัติทางกายภาพและประสิทธิภาพของโฟมโปรตีนที่สกัดจากไข่ขาวใน การดับเชื้อเพลิงมีวิธีดำเนินการทดลองดังต่อไปนี้

#### 2.1 โฟมโปรตีนดับเพลิง

โฟมโปรตีนดับเพลิง (protein foams concentrate) เป็นโฟมที่ผลิตขึ้นมาเพื่อใช้ดับไฟที่เกิดจาก ของเหลวไฮโดรการ์บอนเท่านั้นมีลักษณะเป็นเนื้อเดียวกันฟองแก๊สขนาดเล็กที่มีผนังเป็นฟิล์มของเหลวของ สารละลายลดแรงตึงผิวที่มารวมตัวอย่างมั่นคงมีความหนาแน่นน้อยกว่าน้ำและน้ำมันจึงสามารถปกคลุมใน แนวราบได้โดยการเคลื่อนที่อย่างอิสระเหนือผิวหน้าของของเหลวที่กำลังลุกใหม้แล้วกลายเป็นแผ่นกว้างไล่ อากาสออกจากบริเวณที่มีเพลิงใหม้พร้อมขวางกั้นไอสารไวไฟไม่ให้สัมผัสกับอากาสที่อยู่รอบ ๆ เปลวไฟ แม้ว่าจะมีลมแรงมีเปลวไฟหรือเกิดความร้อนสูงโฟมดับเพลิงก็จะไม่ถูกทำลายลงไปโดยง่ายโฟมดับเพลิงให้ ประสิทธิภาพที่ดีเยี่ยมในการต้านทานความร้อนการป้องกันไฟลุกติดขึ้นมาใหม่และการระบายน้ำ (foam drainage) ตามปกติแล้วโฟมโปรตีนจะดับเปลวไฟอย่างช้า ๆ แต่สามารถกลุมไฟอย่างดีให้ความปลอดภัย หลังไฟดับในระดับวางใจได้อีกทั้งสามารถที่จะฉีดซ้ำลงไปเนื่องจากโฟมดับเพลิงบางส่วนเกิดความเสียหาย ขณะดับเพลิง

#### 2.2 โปรตีนจากไข่ขาว

ใช่ขาวมีส่วนประกอบหลักคือน้ำ ใช่ขาวมีความชื้นร้อยละ 87-89 และ มีโปรตีนซึ่งเป็นโปรตีน คุณภาพดีที่สุด มีกรดแอมิโนที่จำเป็น (essential amino acid) ครบทุกชนิด โปรตีนในไข่ขาวเป็นแอลบูมิน (albumin) ประกอบด้วย โอแวลบูมิน (ovalbumin) เป็นโปรตีนที่มีมากที่สุดในไข่ขาว มีอยู่ประมาณร้อยละ 54 ของน้ำหนักโปรตีนในไข่ขาวจัดเป็น ฟอสโฟไกลโคโปรตีน(phospoglycoprotein) มีโครงสร้างเป็นสาย พอลิเพปไทด์ที่มีหมู่ฟอสเฟตและคาร์โบไฮเดรตเป็นส่วนประกอบ มีจุดไอโซอิเล็กตริก (isoelectric point) ที่ pH 4.6 และจะตกตะกอนที่ pH 4.6-4.8 ทนความร้อนได้ดีคอนแอลบูมิน (conalbumin) มีประมาณร้อยละ 13 ของโปรตีนในไข่ขาว มีจุดไอโซอิเล็กตริก (isoelectric point) ที่ pH 6.6 เป็นโปรตีนที่ทนต่อความร้อนได้ น้อยกว่าโอแวลบูมิน แต่สูญเสียสภาพธรรมชาติ (protein denaturation) ได้เร็วกว่าโอแวลบูมินโอโวมิวคอยด์ (ovomucoid) พบประมาณร้อยละ 1.2 ของโปรตีนในไข่ขาว มีจุดไอโซอิเล็กตริก (isoelectric point) ที่ pH 3.9-4.3 ในสภาวะที่เป็นกรดจะทนความร้อนได้ดีแต่ จะสูญเสียสภาพธรรมชาติของโปรตีนอย่างรวดเร็วถ้า

อยู่ในสารละลายค่าง ที่อุณหภูมิ 80 องศาเซลเซียส เป็นไกลโคโปรตีนที่มีความเฉพาะเจาะจงกับเอนไซม์ท ริพซิน สามารถยับยั้งเอนไซม์ทริพซิน (trypsin inhibitor) ซึ่งเป็นเอนไซม์โปรตีдอส (protease) มีหน้าที่ ไฮโครไลซ์โปรตีนไลโซโซม (lysosome) พบประมาณ ร้อยละ 3.5 ของโปรตีนในไข่ขาว มีจุดไอโซอิเล็ก ตริก (isoelectric point) ที่ pH 10.7 เป็นเอนไซม์ ที่สามารถทำลายผนังเซลล์ของแบกทีเรียที่มีการปนเปื้อนเข้า มาในฟองไข่ได้ มีสมบัติเป็นสารกันเสีย (preservative) แต่จะถูกทำลายได้ด้วยความร้อนจากการหุงด้ม (cooking) หรือ การพาสเจอไรซ์ ที่อุณหภูมิ 63.5 องศาเซลเซียส เป็นเวลา 10 นาทีโอโวอินฮิบิเตอร์ (ovoinhibitor) มีความเฉพาะเจาะจงกับเอนไซม์ทริพซิน ไคโมทริพซิน ซับทิลิซิน และเอนไซม์โปรตีเอสจาก Aspergillus oryzลeซิสตาติน (cystatin) หรือสารยับยั้งเอนไซม์ปาเปน มีความเฉพาะเจาะจงต่อเอนไซม์ ปาเปน และฟีซิน

#### 2.3 ซึ่งค์ออกไซด์

ซิงค์ออกไซค์ (Zinc Oxide) มีสูตร โมเลกุลคือ ZnO มีลักษณะเป็นผงละเอียคสีขาวมีโครงสร้าง ทั่วไปเป็นแบบเฮกซะ โกนอลเวิร์ทไซท์ (Hexagonal Wurtite structure) ซิงค์ออกไซค์มีขนาดเล็กระดับนาโน เมตร มีสมบัติในการฆ่าเชื้อแบคทีเรียและยับยั้งเชื้อราและยังมีสมบัติทางกายภาพที่เป็นประโยชน์เช่นมีสีขาว สามารถดูดกลืนรังสียูวีได้มีขนาดเล็กแข็งแรงทนทานทนความร้อนและกระจายความร้อนได้ดีสามารถ เกิดปฏิกิริยากับสารเคมีบางชนิดได้และเป็นตัวเร่งปฏิกิริยาทางเคมีได้อีกทั้งยังเป็นสารกึ่งตัวนำได้อีกด้วยจาก สมบัติที่กล่าวมาทำให้ซิงค์ออกไซค์มีการนำไปประยุกต์ในอุตสาหกรรมมากมายอาทิเช่นการนำชิงค์ ออกไซค์ไปใช้เป็นตัวเร่งปฏิกิริยาซึ่งมักนิยมใช้ในการผลิตผลิตภัณฑ์หลายชนิดเช่นเมทานอลไอโซบิวทิล แอลกอฮอล์ฟอร์มัลดีไฮด์เป็นต้นนอกจากนี้ยังได้นำไปใช้ในการเปลี่ยนรูปของสารไซโคลเฮกซานอลเป็น ใซโครเฮกซาโนนและการเติมซิงค์ออกไซค์ทำปฏิกิริยาเพิ่มประสิทธิภาพของโฟม (Additive) ทำให้ โฟมโปรตีนมีความละเลียดคงสภาพโฟมได้ดีและยาวนาน

#### 2.4 โซเดียมใบการ์บอเนต

โซเคียมไฮโดรเจนการ์บอเนตหรือโซเคียมใบการ์บอเนต (Sodium bicarbonate)หรือเบกกิ้งโซดา (baking soda) สูตรทางเกมีคือ NaHCO3 ลักษณะเป็นของแข็งสีขาวมีโครงสร้างเป็นผลึก แต่ปรากฏในรูปผง ละเอียดมีคุณสมบัติเป็นเบสรวมทั้งจัดเป็นสารที่ทำให้เกิดฟองเมื่อเติมสารชนิดนี้เข้าไปจะทำให้ผลิตภัณฑ์ เกิดโครงสร้างที่เป็นรูพรุนโดยทำให้น้ำเข้าไปภายในโครงสร้างในระหว่างการทำให้เป็นเนื้อเดียวกัน (homogenization) และทำให้เกิดรูพรุนในผลิตภัณฑ์ ซึ่งผลิตภัณฑ์ ที่ได้คือแก๊สการ์บอนไดออกไซด์ ( $CO_2$ ) และน้ำ ( $H_2O$ ) เมื่อถูกความร้อน ดังสมการ

$$2NaHCO_3 \longrightarrow NaCO_3 + H_2O + CO_2$$

# บทที่ 3

# วิธีการจัดทำโครงงาน

# 3.1 วัสดุและอุปกรณ์

# วัสดุและอุปกรณ์ที่ใช้ในการทำโครงงานได้แก่

- 1. ปีกเกอร์ ขนาด 50,200,250,600,1000 mL
- 2. แท่งแก้วคนสาร
- 3. กรวยกรอง ขนาด 75 mm
- 4. กระบอกตวง ขนาด 100 mL
- 5. หลอดทดลอง ขนาด 15 x 50 mm
- 6. เครื่องชั่งน้ำหนักสาร
- 7. ช้อนตักสาร
- 8. ถาดเหล็ก
- 9. คืมคืบสแตนเลส
- 10. ไม้ขีดไฟ
- 11. หัวฉีดโฟม
- 12. เครื่องปั่น
- 13. เตาให้ความร้อน
- 14. เครื่องหมุนเหวี่ยง
- 15. ตู้อบ
- 16. pH meter

#### 3.2 สารเคมี

## ชื่อสารเคมี

กรดอะซีติก (Acetic acid)

ซึ่งค์ออกไซค์ (Zinc oxide)

โซเคียมใบคาร์บอเนต (Sodium bicarbonate)

เอทิลแอลกอฮอล์ (Ethyl alcohol)

#### 3.3 วิธีการจัดทำโครงงาน

# 3.3.1 ขั้นตอนการสกัดโปรตีนจากไข่ขาว

- 1. นำไข่ขาวที่ปั่นได้มาปรับค่า pH ด้วยกรดแอซีติกให้มีค่า pH ในช่วง 6-7
- 2. นำไข่ขาวที่ผ่านการปรับค่า pH แล้วมาใส่ในหลอดทดลองและนำเข้าเครื่องปั่นเหวี่ยงด้วย ความเร็ว 4,000 รอบ/นาที เป็นระยะเวลา 10 นาที
- 3. นำไข่ขาวที่ผ่านการปั่นเหวี่ยงมาแล้ว นำมาแยกตะกอน
- 4. นำสารละลายโปรตีนที่ได้มาอบด้วยความร้อน 80 องศาเซลเซียส เป็นเวลา 50 นาที
- 5. นำโปรตีนที่ได้จากการอบมาทำการบดให้เป็นผงโปรตีน

# 3.3.2 ขั้นตอนการนำโปรตีนไข่ขาวที่สกัดได้มาขึ้นรูปเป็นโฟม

- 1. นำผงโปรตีนที่ได้มาละลายน้ำให้มีความเข้มข้น 6 (mg/mL) ด้วยเตาให้ความร้อนโดยให้ ความร้อนในอุณหภูมิ 65 องศาเซลเซียส
- 2. นำสารละลายที่ได้มาเติม ซิงค์ออกไซด์และเติมโซเคียมไบคาร์บอเนตในอัตราส่วน 150:2:4, 150:4:4, 150:4:2, 150:0:4
- 3. ปั่นส่วนผสมด้วยเครื่องปั่นเป็นเวลา 20 วินาที จนเป็นเนื้อโฟมและขึ้นฟู
- 4. นำสารละลายที่ปั่นแล้วบรรจุใส่ผลิตภัณฑ์ฉีดโฟม

# 3.3.3 การศึกษาลักษณะทางกายภาพของโฟมโปรตีนที่สกัดจากไข่ขาว

#### 1. การศึกษาความหนาแน่นของโฟมโปรตีน

- 1.1. นำโฟมโปรตีนบรรจุลงในบีกเกอร์ให้ได้ปริมาตรา 150 มิลลิลิตร โดยไม่ให้เกิดโพรง อากาศภายในบีกเกอร์
- 1.2. ชั่งมวลของบีกเกอร์ที่มีโฟมแล้วนำมาลบกับมวลของบีกเกอร์เปล่า
- 1.3. คำนวณหาค่าความหนาแน่นดังสมการ

# 2. การศึกษาร้อยละความคงตัวของโฟมโปรตีนที่สกัดจากไข่ขาว

- 2.1. บรรจุโฟมโปรตีนลงในกรวยแก้ว 75 มิลลิลิตร
- 2.2. รองรับของเหลวด้วยกระบอกตวงขนาด 100 มิลลิลิตร ในระยะเวลา 20 นาที แล้วคำนวณหาร้อยละความคงตัวของโฟมโปรตีนที่สกัดจากไข่ขาว ดังสมการ

ร้อยละความคงตัวของโฟม (%) = 
$$\frac{x-y}{x} \times 100$$

โดยให้ x แทน ปริมาตรของโฟมโปรตีนตอนเริ่มต้น (มิลลิลิตร)
และ y แทน ปริมาตรของของเหลวที่แยกตัวออกมาจากโฟมในระยะเวลา 20 นาที
(มิลลิลิตร)

# 3.การวัดอัตราการขึ้นฟู

3.1. ชั่งมวลของสารละลายก่อนเข้าเครื่องปั่นและชั่งมวลของโฟมหลังจากเข้าเครื่องปั่นแล้ว แล้วนำมาคำนวณดังสมการ (ดัดแปลงจากปารวีย์ กุณะแสงคำ,2556:38)

อัตราการขึ้นฟู (%) = 
$$\frac{M-N}{N} \times 100$$

โดย M คือ มวลต่อหน่วยปริมาตรของสารละลายก่อนเข้าเครื่องปั่น (มิลลิกรัม)

N คือ มวลต่อหน่วยปริมาตรของโฟม (มิลลิกรัม)

# 4.การศึกษาประสิทธิภาพในการดับเชื้อเพลิงจากโฟมโปรตีนที่สกัดจากไข่ขาว

- 4.1. นำสำลีมาเรียงแล้วราดเอทิลแอลกอฮอล์ลงไปในปริมาตร 50 mL
- 4.2. ทำการจุดไฟใส่สำลีและทดลองฉีดโฟมดับเพลิงในแต่ละอัตราส่วนในแต่ละครั้งจน ครบทุกอัตราส่วน โดยจับเวลาตั้งแต่ไฟติดจนไฟมอดดับลง

บทที่ 4

#### ผลการทดลอง

การศึกษาสมบัติทางกายภาพและประสิทธิภาพของโฟมโปรตีนที่สกัดจากไข่ขาวในการดับเชื้อเพลิง

ตารางที่ 4.1 อัตราส่วนของโฟมโปรตีนจากไข่ขาว

| สูตรที่ | อัตราส่วน | สมบัติทางกายภาพของโฟมดับเพลิงจากไข่ขาว |                 |                |                  |  |
|---------|-----------|----------------------------------------|-----------------|----------------|------------------|--|
|         |           | ความหนาแน่น                            | ร้อยละความคงตัว | อัตราการขึ้นฟู | ระยะเวลาในการดับ |  |
|         |           |                                        |                 |                | ไฟ               |  |
| 1       | 150:02:04 | 0.354                                  | 91.84           | 486.15         | 21.07            |  |
| 2       | 150:04:04 | 0.225                                  | 90.67           | 933.32         | 19.49            |  |
| 3       | 150:04:02 | 0.322                                  | 94              | 437.69         | 24.06            |  |
| 4       | 150:00:04 | 0.235                                  | 92.28           | 613.27         | 34.97            |  |

จากตารางที่4.1 เมื่อศึกษสมบัติทางกายภาพโฟมโปรตีนจากไข่ขาวที่แตกต่างกันจำนวน 4 สูตร พบว่าสูตรที่ 1 มีค่าความคงตัวของโฟมโปรตีนสูงสุดเท่ากับร้อยละ 91.84 เมื่อเปรียบเทียบกับโฟมโปรตีน สูตรอื่น ๆ พบว่าลักษณะทางกายภาพของโฟมโปรตีนสูตรที่ 1 มีลักษณะเป็นฟองโฟมละเอียดมีความเสถียร และมีค่าคงตัวมากสุด

จากการศึกษาค่าความหนาแน่นของโฟมโปรตีนจากไข่ขาวในสูตรที่ 2 (150:04:04) พบว่ามีปริมาณ ซึ่งค์ออกไซค์ เจนไบคาร์บอเนต ดีที่สุดในการทำปฏิกิริยาคีเลชั่นกับโมเลกุล ซึ่งทำให้เนื้อโฟมขึ้นฟูได้ดีที่สุด และเร็วที่สุด ซึ่งดีกว่าสูตรที่ 1, 3 และ 4 ทั้ง 4 สูตร และโฟมโปรตีนของสูตรที่ 2 มีค่าร้อยละความคงตัว 90.67 ขณะที่สูตรที่ 1, 3 และ 94 และ 92.28 ตามลำดับ ซึ่งมีความหนาแน่นมากกว่าน้ำและเอทิลแอลกอฮอล์ โฟมจึงสามารถลอยตัวอยู่เหนือเชื้อเพลิงได้

การวิเคราะห์ร้อยละค่าอัตราการขึ้นฟูของโฟมโปรตีนจากไข่ขาวสูตรที่ 1 และ 3 มีค่าใกล้เคียงกัน เท่ากับ 486.15, 437.69 ตามลำดับซึ่งเนื้อโฟมจะขึ้นฟูได้มากกว่าและเร็วกว่าโฟมโปรตีนสูตรที่ 2 และ 4ซึ่งมี ค่าอัตราการขึ้นฟูเป็น 933.32 และ 613.27 ตามลำดับ

## บทที่ 5

# สรุปผล อภิปราย และข้อเสนอแนะ

การศึกษาคุณสมบัติทางกายภาพและประสิทธิภาพของโฟมโปรตีนที่สกัดจากไข่ขาว ในการคับเชื้อเพลิงประเภทแอลกอฮอล์สามารถสรุปและอภิปรายผลได้ดังต่อไปนี้

#### 5.1. สรุปผล

- 5.1.1 จากการศึกษาหาอัตราส่วนในการผลิต โฟมโปรตีนจากไข่ขาว สูตรที่ 2 (150:04:04) นั้นมีเนื้อโฟม ละเอียดมีฟองอากาศเล็กและเกาะตัวกันได้ดีไม่ยุบตัวง่ายเมื่อเจอความร้อน ดังนั้นอัตราส่วนที่เหมาะสมที่สุด ในการผลิตโฟมโปรตีนจากไข่ขาวคือสูตรที่ 2 (150:04:04)
- 5.1.2 โฟมโปรตีนในสูตรที่2 (อัตราส่วน 150:04:04) ประสิทธิภาพดับเพลิงได้โดยใช้ระยะเวลาเฉลี่ยน้อย ที่สุดเพียง 19.49 วินาที

#### 5.2. อภิปรายผล

การศึกษาสมบัติทางกายภาพของโฟมโปรตีนทั้ง 4 สูตร ผลการศึกษาพบว่าสูตร โฟมดับเพลิงโปรตีน จากไข่ขาวที่มีคุณสมบัติทางกายภาพที่ดีที่สุดคือสูตรที่ 2 เนื่องจากโฟมโปรตีนมีปริมาณซิงค์ออกไซด์และ โซเดียมเจนไบการ์บอเนตที่เหมาะสมในการทำปฏิกิริยาคีเลชั่นกับโมเลกุลโปรตีนจึงทำให้โฟม โปรตีนมี ความคงตัวไม่ยุบตัวง่ายไม่เหลวจนเกินไปและเหมาะสมในการเกิดปฏิกิริยากับสารละลายโปรตีนจึงทำให้มี ค่าอัตราการขึ้นฟูสูงเมื่อเทียบกับสูตรที่ 3 ที่ถึงแม้จะมีความคงตัวสูงกว่าสูตรที่ 2 แต่มีค่าอัตราการขึ้นฟูน้อย กว่า และความหนาแน่นน้อยกว่าทำให้เนื้อโฟมขึ้นฟูได้น้อยกว่าและช้ากว่าโฟมโปรตีนในสูตรที่ 2 ส่วนสูตร ที่ 3 ซึ่งมีโซเดียมไบเจนการ์บอเนตซึ่งเป็นสารที่มีผลต่อการขึ้นฟูของโฟมจึงทำให้โฟมโปรตีนขึ้นฟูได้ช้า กว่าโฟมโปรตีนในสูตรอื่น ๆ และปริมาณซิงค์ออกไซด์ที่ใส่เข้าไปมีมากเกินพอในปฏิกิริยาระหว่างโปรตีน กับ ซิงค์ออกไซด์จึงทำให้โฟมมีความหนีดลดลงมากเกินจำเป็น ทำให้โฟมโปรตีนมีลักษณะเหลว ส่วนสูตร ที่ 4 ถึงจะมีค่าอัตราการขึ้นฟูใกล้เคียงกับสูตรที่ 2 แต่มีค่าคงตัวน้อยกว่าทำให้เนื้อโฟมหยาบเกาะตัวกันไม่ดี ยุบตัวง่ายเมื่อเจอกับความร้อน การศึกษาคุณสมบัติทางกายภาพของโฟมโปรตีน

ขณะดับเพลิงในสูตรที่ 2 พบเนื้อโฟมมีความละเอียดรวมกับออกซิเจนได้ดี มีการยึดติดกันระหว่างผิวสัมผัส เกิดเป็นชั้นฟิล์มซึ่งเมื่ออากาศเข้าไปแทรกตัวจะทำให้เกิดเป็นโฟมที่มีคุณสมบัติเป็นสารลดแรงตึงผิวระหว่าง โฟมโปรตีนกับเชื้อเพลิงทำให้โฟมสามารถแผ่ปกคลุมพื้นผิวของเชื้อเพลิงได้ดี มีความหนาแน่นน้อยกว่าน้ำ และเอทิลแอลกอฮอล์จึงสามารถปกคลุมในแนวราบได้ โดยการเคลื่อนที่อย่างอิสระเหนือผิวหน้าของ

ของเหลวที่กำลังลุกใหม้แล้วกลายเป็นแผ่นกว้างไล่อากาศ ออกจากบริเวณที่มีเพลิงใหม้ พร้อมขวางกั้นไอ ของ สารไวไฟไม่ให้สัมผัสกับอากาศที่อยู่รอบๆ เปลวไฟซึ่งทำให้โอกาสที่ออกซิเจนจะไปทำปฏิกิริยา สันดาป กับเชื้อเพลิงลดลงทำให้ลดลงทำให้ไฟดับ

#### 5.3. ข้อเสนอแนะ

- 5.3.1 ศึกษาการใช้โปรตีนชนิดอื่นและทดสอบคุณภาพโฟมโปรตีน
- 5.3.2 ศึกษาความเป็นไปได้ของสารก่อโฟมแต่ละประเภทในการผลิตโฟมโปรตีน

#### บรรณานุกรม

สาธิต ปิยนลินมาศ. (2556). โฟมดับเพลิง (fire-fighting foam)เลือกอย่างไรให้เหมาะกับการใช้งาน ในอุตสาหกรรม. [ออนไลน์] ได้จาก:https://www.tpa.or.th/publisher/pdfFileDownloadS.pdf

Cosma marketing. (2562). ประโยชน์ของไข่ขาว(ที่ควรรู้). [ออนไลน์]

ได้จาก:http://www.cosmamarketing.co.th

(2562). โฟม EPS คืออะไร. [ออนไลน์] ได้จาก:https://www.mmplus-training.com/foam (2560). วิธีการวัดอัตราการขึ้นฟู. [ออนไลน์] ได้จาก://carit.rmutk.ac.th/Ebook2017/Book/downloads/page0059.pdf

ผศ.คร.พิมพ์เพ็ญ พรเฉลิมพงศ์ ศาสตราจารย์เกียรติกุณ คร.นิธิยา รัตนาปนนท์. (2560).

Egg white / ใช่ขาว. [ออนใลน์] ได้จาก: http://www.foodnetworksolution.com/ 7

สาธิต ปิยนลินมาศ. (2560). โฟมคับเพลิงมีกี่ชนิดอะ ไรบ้าง. [ออนไลน์]

ได้จาก:http://siweb1.dss.go.th/information/FAQ/search

Thai Poly Chemicals Co. (2562). SODIUM BICARBONATE. [ออนไลน์] ได้ จาก:https://thaipolychemicals.weebly.com/

สรัญญา กลับนวล. (2559). อิทธิพลของโลหะเจือต่อสมบัติทางแสงและการเร่งปฏิกิริยาด้วยแสง ของอนุภาคซิงค์ออกไซค์เตรียมด้วยวิธีใฮโครเทอร์มอล. [ออนไลน์]

ใค้จาก:https://kb.psu.ac.th/psukb/bitstream/2016/12077/

#### ภาคผนวก

# ภาคผนวก ก : การสกัดโปรตีนจากไข่ขาว



ภาพที่ ก.1 ปรับค่าpH ของสารละลาย โปรตีนด้วยกรดแอซิติกเจอจาง



ภาพที่ ก.2 ปั่นเหวี่ยงสารละลายโปรตีนด้วย ด้วยความเร็ว 4,000 รอบต่อวินาที



ภาพที่ ก.3 นำสารละลายโปรตีนมาอบด้วย ความร้อน 80 องศาเซลเซียส

## ภาคผนวก ข : การผลิต โฟมโปรตีน



ภาพที่ ข.1นำผงโปรตีนมาละลายด้วยน้ำ
ที่อุณหภูมิ 65 องศาเซลเซียส



ภาพที่ ข.2นำส่วนผสมของโฟมมาปั่น รวมกันตามอัตราส่วนแต่ละสูตร



ภาพที่ ข.3 นำโฟมมาบรรจุภาชนะใส่หัวฉีคโฟม

# ภาคผนวก ค : เปรีบเทียบคุณสมบัติทางกายภาพของ โฟมโปรตีน



ภาพที่ ค.1 ภาพแสดงการวัดน้ำหนักเพื่อหา ค่าโอเวอร์รันและความหนาแน่นของโฟม



ภาพที่ ค.2 ภาพแสดงการวัดปริมาตรของเหลวที่ แยกตัวออกจากโฟมเพื่อหาร้อยละความคงตัว



ภาพที่ ค.3 เปรียบเทียบลักษณะของเนื้อโฟม

## ภาคผนวค ง: ทดสอบประสิทธิภาพของโฟม



ภาพที่ ง.1 สร้างเชื้อเพลิง



ภาพที่ ง.2 ฉีดโฟมดับเพลิงใส่เชื้อเพลิง