AULA 23: OS TEOREMAS DE CONVERGÊNCIA (CONTINUAÇÃO)

Teorema 1 (de convergência monótona). Seja (X, \mathcal{B}, μ) um espaço de medida e seja $\{f_n\}_{n\geq 1}$ uma sequência não decrescente de funções mensuráveis sem sinais, i.e.

$$0 \le f_1 \le f_2 \le \dots$$

Então,

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X \lim_{n \to \infty} f_n \, d\mu.$$

Demonstração. A prova deste resultado é similar a do caso da integral de Lebesgue em \mathbb{R}^d . Ela usa um argumento de tempos de parada para conseguir algum comportamento uniforme da sequência $\{f_n\}_{n\geq 1}$. Esboçamos o argumento abaixo.

Seja

$$f(x) := \lim_{n \to \infty} f_n(x) = \sup_{n \ge 1} f_n(x).$$

Então, f é mensurável.

Pela monotonicidade da integral, já que $f_n \leq f_{n+1}$ para todo $n \geq 1$, a sequência $\left\{ \int_X f_n \, d\mu \right\}_{n \geq 1}$ é não decrescente, então $\lim_{n \to \infty} \int_X f_n \, d\mu$ existe e

$$\lim_{n \to \infty} \int_X f_n \, d\mu \le \int_X f \, d\mu.$$

Resta provar a desigualdade aposta:

$$\int_X f \, d\mu \le \lim_{n \to \infty} \int_X f_n \, d\mu.$$

Como

$$\int_X f \, d\mu = \sup \left\{ \int_X s \, d\mu \colon 0 \le s \le f, \, s \text{ \'e simples e finita} \right\},$$

basta provar que dada uma função simples e finita s tal que $0 \le s \le f$, temos que

$$\int_X s \, d\mu \le \lim_{n \to \infty} \int_X f_n \, d\mu.$$

Seja $\epsilon > 0$ arbitrário. Então é suficiente provar que

$$(1 - \epsilon) \int_X s \, d\mu \le \lim_{n \to \infty} \int_X f_n \, d\mu.$$

Escrevemos

$$s = \sum_{i=1}^k c_i \, \mathbf{1}_{E_i},$$

onde para todo $i \in [k], c_i \in (0, \infty)$ e $E_i \in \mathcal{B}$ são conjuntos disjuntos.

Fixe $j \in [k]$. Se $x \in E_j$ então $s(x) = c_j$, logo

$$(1 - \epsilon)c_j = (1 - \epsilon)s(x) < f(x) = \sup_{n \ge 1} f_n(x).$$

Portanto, existe $n_x \in \mathbb{N}$ tal que

$$(1) (1-\epsilon)c_j < f_{n_x}(x).$$

Definimos, para todo $n \ge 1$,

$$E_{j,n} := \{ x \in E_j : (1 - \epsilon)c_j < f_n(x) \}.$$

Então $E_{j,n}$ é mensurável (já que f_n e E_j são mensuráveis) e claramente, usando (1) e a monotonicidade da sequência $\{f_n\}_{n\geq 1}$, segue que

$$E_{i,n} \nearrow E_i$$
 quando $n \to \infty$.

Pelo teorema de convergência monótona para conjuntos, segue que

$$\mu(E_{j,n}) \to \mu(E_j)$$
 quando $n \to \infty$.

Para todo $n \ge 1$ definimos

$$s_n := \sum_{j=1}^k (1 - \epsilon) c_j \, \mathbf{1}_{E_{j,n}} \,.$$

Não é difícil perceber que para todo $x \in X$, tem-se

$$s_n(x) \le f_n(x)$$
.

Então,

$$\int_{X} f_n \, d\mu \ge \int_{X} s_n \, d\mu = \sum_{j=1}^{k} (1 - \epsilon) c_j \, \mu(E_{j,n}).$$

Tomando o limite quando $n \to \infty$, segue que

$$\lim_{n \to \infty} \int_X f_n \, d\mu \ge \sum_{j=1}^k (1 - \epsilon) c_j \, \mu(E_j) = (1 - \epsilon) \int_X s \, d\mu,$$

finalizando a prova do teorema.

Consequências do Teorema de convergência monótona

Teorema 2 (de Tonelli). Seja $\{f_n\}_{n\geq 1}$ uma sequência de funções mensuráveis $f_n\colon X\to [0,\infty]$. Então a série $\sum_{n=1}^{\infty} f_n$ é mensurável e

$$\int_X \sum_{n=1}^{\infty} f_n \ d\mu = \sum_{n=1}^{\infty} \int_X f_n \, d\mu.$$

Demonstração. Evidentemente, a sequência

$$s_n := f_1 + \ldots + f_n , n \ge 1$$

de somas parciais satisfaz as hipóteses do Teorema de convergência monótona (já que $f_n \ge 0$). Portanto,

$$\int_X \sum_{n=0}^{\infty} f_n d\mu = \int_X \lim_{n \to \infty} s_n d\mu = \lim_{n \to \infty} \int_X s_n d\mu = \lim_{n \to \infty} \left(\sum_{k=1}^n \int_X f_k d\mu \right) = \sum_{n=1}^{\infty} \int_X f_n d\mu.$$

Lema 1 (de Borel-Cantelli). Seja (X, \mathcal{B}, μ) um espaço de medida e seja $\{E_n : n \geq 1\} \subset \mathcal{B}$ uma sequência de conjuntos mensuráveis. Suponha que

$$\sum_{n=1}^{\infty} \mu(E_n) < \infty.$$

Então, μ -q.t.p. $x \in X$ pertence apenas a um número finito de conjuntos E_n , ou seja, para μ -q.t.p. $x \in X$,

$$\#\{n \in \mathbb{N} : x \in E_n\} < \infty.$$

Demonstração. Para todo $n \geq 1$, seja $\mathbf{1}_{E_n}$ a função indicadora do conjunto mensurável E_n . Note que, dado $x \in X$ a série

$$\sum_{n=1}^{\infty} \mathbf{1}_{E_n}(x)$$

conta exatamente o número de conjuntos E_n onde x pertence, ou seja,

$$\sum_{n=1}^{\infty} \mathbf{1}_{E_n}(x) = \#\{n \in \mathbb{N} : x \in E_n\}.$$

Pelo Teorema de Tonelli,

$$\int_X \left(\sum_{n=1}^\infty \mathbf{1}_{E_n}\right) d\mu = \sum_{n=1}^\infty \int_X \mathbf{1}_{E_n} d\mu = \sum_{n=1}^\infty \mu(E_n) < \infty.$$

Portanto, pelo Teorema 1 (5) da aula 22,

$$\sum_{n=1}^{\infty} \mathbf{1}_{E_n} < \infty \quad \mu\text{-q.t.p.},$$

assim mostrando que

$$\#\{n \in \mathbb{N} \colon x \in E_n\} < \infty$$

para μ -q.t.p. $x \in X$.

Lema 2 (de Fatou). Sejam (X, \mathcal{B}, μ) um espaço de medida e $\{f_n\}_{n\geq 1}$ uma sequência de funções mensuráveis $f_n \colon X \to [0, \infty]$ (uma sequência não necessariamente monótona). Então,

$$\int_{X} \liminf_{n \to \infty} f_n \, d\mu \, \leq \, \liminf_{n \to \infty} \int_{X} f \, d\mu$$

Demonstração. Seja

$$g := \liminf_{n \to \infty} g_n = \lim_{n \to \infty} \inf_{k > n} f_k$$
.

Para todo $n \ge 1$ denote por $g_n := \inf_{k \ge n} f_k$. Então g_n é mensurável e

$$g_n \nearrow g$$
 quando $n \to \infty$.

Pelo teorema de convergência monótona, temos que

$$\int_X g_n d\mu \to \int_X g d\mu \quad \text{quando } n \to \infty$$

Portanto,

$$\int_{X} \liminf_{n \to \infty} f_n d\mu = \int_{X} g d\mu = \lim_{n \to \infty} \int_{X} g_n d\mu$$

$$= \lim_{n \to \infty} \int_{X} \inf_{k \ge n} f_k d\mu \le \lim_{n \to \infty} \inf_{k \ge n} \int_{X} f_k d\mu$$

$$= \lim_{n \to \infty} \inf_{k \ge n} \int_{X} f_k d\mu,$$

onde a desigualdade acima é válida por causa da monotonicidade da integral.

De fato,

$$\inf_{k \ge n} f_n \le f_k$$
 para todo $k \ge n$

então

$$\int_X \inf_{k \ge n} f_n \, d\mu \le \int_X f_k \, d\mu \text{ para todo } k \ge n,$$

logo

$$\int_X \inf_{k \ge n} f_n \, d\mu \, \le \, \inf_{k \ge n} \int_X f_k \, d\mu.$$

Observação 1. A desigualdade no lema de Fatou pode ser estrita. Isso acontece por exemplo com alguns tipos de sequências de funções bump em movimento.

Para todo $n \geq 1$, seja $f_n := n \mathbf{1}_{(0,\frac{1}{n}]} \colon \mathbb{R} \to \mathbb{R}$ Então $f_n \to 0$ em todo ponto e

$$\int_{\mathbb{R}} \lim_{n \to \infty} \inf f_n \, d\mu = \int_{\mathbb{R}} 0 \, d\mu = 0 < 1 = \lim_{n \to \infty} \int_{\mathbb{R}} f_n \, d\mu.$$

Um outro exemplo é a sequência

$$f_n := \frac{1}{n} \mathbf{1}_{[0,n]} \colon \mathbb{R} \to \mathbb{R}$$

de funções bump baixas e longas (em vez de altas e curtas).

Temos que $f_n \to 0$ uniformimente, enquanto $\int f_n = 1 \to 1 > 0 = \int 0$.

Observação 2. A condição $f_n \ge 0$ no lema de Fatou (ou, pelo menos, uma outra cota inferior apropriada) é necessária.

Por exemplo, consideremos, para todo $n \geq 1$,

$$f_n := -\frac{1}{n} \mathbf{1}_{[n,2n]} \colon \mathbb{R} \to \mathbb{R},$$

temos que $f_n \to 0$ uniformimente, logo

$$\int_{\mathbb{R}} \lim_{n \to \infty} \inf f_n \, d\mu = \int_{\mathbb{R}} 0 \, d\mu = 0,$$

enquanto

$$\int_{\mathbb{D}} f_n \, d\mu = -1 \to -1 < 0,$$

logo

$$\int_{\mathbb{R}} \lim_{n \to \infty} \inf f_n \, d\mu > \liminf_{n \to \infty} \int_{\mathbb{R}} f_n \, d\mu.$$

Teorema 3 (de convergência dominada). Sejam (X, \mathcal{B}, μ) um espaço de medida, $\{f_n\}_{n\geq 1}$ uma sequência de funções mensuráveis, $f_n: X \to \mathbb{R}$, e $f: X \to \mathbb{R}$ uma outra função tal que

$$f_n \to f \ em \ \mu - q.t.p.$$

Suponha que exista $g \in L^1(X, \mathcal{B}, \mu)$ tal que $|f_n| \leq g$ para todo $\mu - q.t.p.$ e para todo $n \geq 1$ (ou seja, suponha que a sequência $\{f_n\}_{n\leq 1}$ seja dominada por uma função absolutamente integrável). Então, $f \in L^1(X, \mathcal{B}, \mu)$ e

$$\int_X f_n \, d\mu \, \to \, \int_X f \, d\mu.$$

Demonstração. Como $f_n \to f$ e $|f| \le g \ \mu - q.t.p.$ para todo $n \ge 1$, seque que $|f| \le g \ \mu - q.t.p.$ Logo,

$$\int_X |f| \ d\mu \le \int_X g \ d\mu < \infty,$$

mostrando que $f \in L^1(X, B, \mu)$.

Como $|f_n| \leq g \ \mu - q.t.p.$, temos que

$$-g \le f_n \le g \ \mu - q.t.p.,$$

então

$$\begin{cases} f_n + g \ge 0 & \mu - q.t.p. \\ g - f_n \ge 0 & \mu - q.t.p. \end{cases}$$

Portanto, podemos aplicar o lema de Fatou é aplicável às sequências $\{f_n+g\}_{n\geq 1}$ e $\{g-f_n\}_{n\geq 1}$.

$$\int_X \liminf_{n \to \infty} (f_n + g) \, d\mu \le \liminf_{n \to \infty} \int_X (f_n + g) \, d\mu.$$

Como

$$\int_{X} \liminf_{n \to \infty} (f_n + g) d\mu = \int_{X} \liminf_{n \to n} f_n d\mu + \int_{X} g,$$

$$\liminf_{n \to \infty} \int_{Y} (f_n + g) d\mu = \liminf_{n \to \infty} \int_{Y} f_n d\mu + \int_{Y} g d\mu$$

e $\int_X g \, d\mu \in \mathbb{R}$, segue que

(2)
$$\int_{X} \liminf_{n \to \infty} f_n \, d\mu \leq \liminf_{n \to \infty} \int_{X} f_n \, d\mu.$$

$$\int_{X} \liminf_{n \to \infty} (g - f_n) d\mu \le \liminf_{n \to \infty} \int_{X} (g - f_n) d\mu.$$

$$\int_{X} \liminf_{n \to \infty} (g - f_n) d\mu = \int_{X} g d\mu + \int_{X} \liminf_{n \to \infty} (-f_n) d\mu = \int_{X} g d\mu - \int_{X} \limsup_{n \to \infty} f_n d\mu,$$

$$\liminf_{n\to\infty} \int_X (g-f_n) \, d\mu = \int_X g \, d\mu + \liminf_{n\to\infty} \int_X (-f_n) \, d\mu = \int_X g \, d\mu - \limsup_{n\to\infty} \int_X f_n \, d\mu,$$

(3)
$$\int_{X} \lim_{n \to \infty} \sup f_n \, d\mu \ge \lim_{n \to \infty} \sup \int_{X} f_n \, d\mu.$$

Combinando (2) e (3), tem-se

$$\int_X f \, d\mu = \int_X \liminf_{n \to \infty} f_n \, d\mu \leq \liminf_{n \to \infty} \int_X f_n \, d\mu$$

$$\leq \limsup_{n \to \infty} \int_X f_n \, d\mu \leq \int_X \limsup_{n \to \infty} f_n \, d\mu = \int_X f \, d\mu,$$

$$\log \lim_{n \to \infty} \int_X f_n \, d\mu \text{ existe e \'e igual a} \int_X f \, d\mu.$$

Corolário 1. Dada uma sequência de funções mensuráveis $\{f_n \colon X \to \mathbb{R}\}_{n \geq 1}$ tal que $f_n \to f$ em μ -q.t.p. e $|f_n| \leq g$ para todo $n \geq 1$ e para alguma função $g \in L^1(X)$, segue que

$$f_n \to f \text{ em } L^1$$
.

Demonstração. Como $|f_n| \leq g$ e $g \in L^1(X)$, tem-se

$$\int_X |f_n| \ d\mu \le \int_X g \, d\mu < \infty,$$

logo $f_n \in L^1(X)$.

Já que $f_n \to f$ em μ -q.t.p.,

$$|f_n - f| \to 0$$
 μ -q.t.p.

Além disso,

$$|f_n - f| \le |f_n| + |f| \le g + |f| \mu - q.t.p.$$

 \mathbf{e}

$$\int_X (g \, + \, |f|) \, d\mu \, = \, \int_X g \, d\mu \, + \, \int_X |f| \, \, d\mu \, < \infty,$$

portanto $g + |f| \in L^1(X)$.

Pelo teorema de convergência dominada aplicada à sequência $\{|f_n-f|\}_{n\geq 1}$, segue que

$$||f_n - f||_1 = \int_X |f_n - f| d\mu \to \int_X 0 d\mu = 0,$$

mostrando que $f_n \to f$ com respeito a norma um (a norma L^1).

Exercício 1. Calcule

$$\lim_{n\to\infty} \int_0^1 nx^2 \, \operatorname{sen}\left(\frac{1}{nx}\right) \, dx.$$

Solução. Para todo $n \geq 1$, definimos $f_n : [0,1] \to \mathbb{R}$ por

$$f_n(x) = \begin{cases} n x^2 \operatorname{sen}\left(\frac{1}{nx}\right) & \operatorname{se} x \neq 0\\ 0 & \operatorname{se} x = 0. \end{cases}$$

Então f_n é contínua em [0,1], logo é Rieman e Lebesgue integrável em [0,1]. Além disso,

$$\int_0^1 f_n(x) \, dx = \int_{[0,1]} f_n \, d\mathbf{m}.$$

Se $x \neq 0$, então

$$f_n(x) = \frac{\operatorname{sen}(\frac{1}{nx})}{\frac{1}{nx}} \cdot x \to 1 \cdot x = x \text{ quando } n \to \infty.$$

Seja $f: [0,1] \to \mathbb{R}, f(x) = x$.

Note que $f\in\,L^{1}\left([0,1],\mathbf{m}\right),$ pois

$$\int_{[0,1]} |f| \ d\mathbf{m} \ = \ \int_0^1 x \, dx \ = \ \frac{1}{2} \ < \ \infty.$$

Além disso, já que $\left|\frac{\sin t}{t}\right| \le 1$ para todo $t \ne 0$, temos que $|f_n(x)| \le x$ para todo $x \ne 0$. Então o teorema de convergência dominada é aplicável e temos que

$$\int_0^1 f_n(x) dx = \int_{[0,1]} f_n d\mathbf{m} \to \int_{[0,1]} x d\mathbf{m} = \frac{1}{2}.$$