Практическое задание 4 Номер задачи 2

Бабенко Никита, гр. 8383

Необходимо реализовать нейронную сеть вычисляющую результат заданной логической операции. Затем реализовать функции, которые будут симулировать работу построенной модели. Функции должны принимать тензор входных данных и список весов. Должно быть реализовано 2 функции:

- 1. Функция, в которой все операции реализованы как поэлементные операции над тензорами
- 2. Функция, в которой все операции реализованы с использованием операций над тензорами из NumPy

Для проверки корректности работы функций необходимо:

- 1. Инициализировать модель и получить из нее веса (Как получить веса слоя, Как получить список слоев модели)
- 2. Прогнать датасет через не обученную модель и реализованные 2 функции. Сравнить результат.
- 3. Обучить модель и получить веса после обучения
- 4. Прогнать датасет через обученную модель и реализованные 2 функции. Сравнить результат.

Решение

Функция numpy_sim – функция, в которой все операции реализованы с использованием операций над тензорами из NumPy.

Функция not_numpy_sim – функция, в которой все операции реализованы как поэлементные операции над тензорами.

Функция - model_prediction – прогон датасета через модель и реализованные 2 функции (а также «достаются» веса из модели)

- Исходные данные загружаются из input.csv.
- Вычисляются правильные ответы с помощью функции expression.
- Создается модель (входной слой, 2 слоя Relu по 20 нейронов, 1 слой Sigmoid активационный)
- Компилируется модель
- Прогоняется датасет через необученную модель и реализованные 2 функции
- Обучается модель (50 эпох)
- Прогоняется датасет через обученную модель и реализованные 2 функции
- Результаты записываются в файл result.txt

Результат (после обучения)

Model[[0.6914321]	Not Numpy[[0.69143213]	Numpy[[0.69143213]
[0.7443149]	[0.74431493]	[0.74431493]
[0.28450903]	[0.28450901]	[0.28450901]
[0.5032186]	[0.5032186]	[0.5032186]
[0.2748833]	[0.27488328]	[0.27488328]
[0.25980875]	[0.25980874]	[0.25980874]
[0.29069367]	[0.29069367]	[0.29069367]
[0.45901343]]	[0.45901342]]	[0.45901342]]

Значения совпадают с небольшой погрешностью.