EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele și specializările, mai puțin specializarea matematică-informatică

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

 Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Se consideră sarcina electrică elementară $e = 1.6 \cdot 10^{-19}$ C

SUBIECTUL I -(15 puncte)

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

1. Simbolurile mărimilor fizice fiind cele utilizate în manuale, pentru un nod de rețea este valabilă relația:

$$\mathbf{a.} \sum_{k=1}^{n} I_k = 0$$

b.
$$\sum_{k=1}^{n} R_k I_k = \sum_{i=1}^{m} E_i$$
 c. $I = \frac{U}{R}$

$$\mathbf{c.}\,I = \frac{U}{R}$$

d.
$$E = I(R + r)$$
 (2p)

2. Simbolurile mărimilor fizice fiind cele utilizate în manuale, unitatea de măsură a mărimii fizice descrise de expresia *U* · *I* · *t* este :

b. W

$$c.N \cdot m/C$$

(3p)

(5p)

3. Se consideră două surse identice având fiecare t.e.m. E = 1,2 V şi rezistența internă de $r = 0.4 \Omega$ sunt conectate ca în figura alăturată. Valoarea tensiunea U_{AB} este:

a. -1,2 V

b. 0

c.2 V

d. 2.4 V

4. Tensiunea la bornele unui generator de t.e.m continuă depinde de intensitatea curentului din circuit conform figurii alăturate. Rezistenta internă a generatorului are

a. 0,1 Ω

b. 0.3Ω

c. $1,0 \Omega$

d. $3,0\Omega$ (3p)

5. La bornele unui rezistor cu rezistenta electrică R se conectează în paralel două surse identice având E și rezistența internă r. În acest caz, intensitatea curentului electric prin rezistorul R are expresia:

a.
$$I = \frac{E}{R + r}$$

b.
$$I = \frac{E}{R + 0.5r}$$
 c. $I = \frac{E}{R + 2r}$ **d.** $I = \frac{2E}{R + 2r}$

c.
$$I = \frac{E}{R + 2r}$$

d.
$$I = \frac{2E}{R + 2r}$$
 (2p)