Circuit Theory and Electronics Fundamentals

EXAM PART II = TEST 2

July/08/2021. Duration: 1h30m

Only blank scratch paper and calculator are allowed on your desktop. Checking books or notes is not allowed. <u>Solve each problem group in a separate sheet group to facilitate and speed up grading</u>. Write your name and student number on all sheets delivered. <u>Unidentified sheets will not be graded</u>. The figures are in the next page.

- **1.** Consider the limiter circuit in Figure 1, where $V_{ON}=0.5$ V for the diode D1, and $V_{ON}=1$ V for the LED.
- **a)** Compute V_0 for V_s =2V and V_s =-3V.
- **b)** Derive the $v_0(v_s)$ characteristic and draw its graph for v_s in the interval [-3, 3] V.
- c) For $v_s(t) = 2 \sin(\omega t) V$, draw the graphs of $v_s(t)$, $v_o(t)$ and $i_2(t)$ during one period.
- *d)* Under the same conditions of c), compute the maximum instantaneous power dissipated by the diode D1 and by the LED.
- **2.** Consider the BJT amplifier circuit in Figure 2.
- a) Find the value of I_P for which V_E =6V at the quiescent operating point.

If you have not answered a), for the following questions assume $I_P = 1mA$.

- **b)** Draw the incremental circuit for the pass-band, determine the <u>unloaded</u> voltage gain and the input and output impedances.
- c) Determine the 3dB cut-off frequency for $C_I = C_O = \infty$, $C_\pi = 2pF$, and indicate the type of filtering realized by the amplifier. Justify your answer.
- **3.** Consider the OP-AMP circuit in Figure 3.
- a) Compute V_O for V_A =-0.5V and V_B =5V with the 3-way switch in position 1.
- **b)** Compute V_O for $V_A=1V$ and $V_B=-4V$ with the switch in position 2.
- c) Compute $v_0(t)$ with the <u>switch in position 2</u>, $V_B=2V$ and $V_A=-2\cos(\omega t)$ V. Draw its graph during one period.
- **d)** Compute $v_0(t)$ with the switch in position 3, $V_B=-1$ V, $v_A=\cos(\omega t)$ V and f=1kHz.

TRADUÇÃO

Apenas a calculadora e folhas brancas de rascunho são permitidos. O teste é sem consulta. <u>Resolva cada grupo de problemas num grupo de folhas separado para facilitar e acelerar a correção</u>. Escreva o seu nome e número de aluno em todas as folhas entregues. **Folhas não identificadas não serão cotadas**. As figuras estão na página seguinte.

- **1.** Considere o circuito limitador da Figura 1, onde $V_{ON}=0.5$ V para o díodo D1, e $V_{ON}=1$ V para o LED.
- a) Calcule V_0 para $V_S=2V$ e $V_S=-3V$.
- **b)** Obtenha a característica $v_0(v_s)$ para v_s no intervalo [-3, 3] V e faça o seu gráfico.
- c) Para $v_s(t) = 2 \sin(\omega t)$ V, desenhe os gráficos de $v_s(t)$, $v_o(t)$ e $i_o(t)$ durante um período.
- d) Nas mesmas condições de c), calcule a potência instantânea máxima dissipada pelo díodo D1 e pelo LED.

- **2.** Considere o circuito amplificador TJB da Figura 2.
- *a*) Calcule o valor de I_P para o qual V_E =6V no ponto de funcionamento em repouso.

Se não respondeu a a), para as questões seguintes assuma que $I_P = 1mA$.

- *b)* Desenhe o esquema incremental do circuito para a banda de passagem, determine o ganho de tensão <u>sem carga</u>, e as impedâncias de entrada e saída.
- *c)* Determine a frequência de corte a 3dB para $C_1=C_0=\infty$, $C_\pi=2pF$, e indique o tipo de filtragem realizado pelo amplificador. Justifique a sua resposta.
- **3.** Considere o circuito AMP-OP da Figura 3.
- *a*) Calcule V_0 para V_A =-0.5V e V_B =5V com <u>o interruptor de 3 vias na posição 1</u>.
- **b)** Calcule V_O para V_A =1V e V_B =-4V com <u>o interruptor de 3 vias na posição 2</u>.
- *c*) Calcule $v_0(t)$ com <u>o interruptor de 3 vias na posição</u> 2, V_B =2V e v_A =-2 $cos(\omega t)$ V. Faça o seu gráfico durante um período.
- **d)** Calcule $v_0(t)$ com <u>o interruptor de 3 vias na posição 3</u>, V_B =-1V, v_A = $cos(\omega t)$ V e f=1kHz.

Answers' grading / Cotação das perguntas

1-a)	1-b)	1-c)	1-d)	2-a)	2-b)	2-c)	3-a)	3-b)	3-c)	3-d)
0.5	2.5	2.5	1.5	2	2.5	1	1	1.5	3	2

Figures / Figuras

Suggestion: copy the figure and data of each problem to your answer's sheet before solving it.

Sugestão: copie a figura e dados de cada problema para a sua folha de resposta antes de o resolver.

Figure 1

Figure 2

Figure 3