Список индивидуальных лабораторных заданий

Лабораторное задание №1. Матрицы и определители матриц

Задание 1.1. Выполнить действия над матрицами (см. табл. 1).

Задание 1.2. Вычислить определитель $\Delta^{(4)}$ (см. табл. 2) четвёртого порядка:

- 1) путем понижения порядка (предварительно получив максимальное количество нулей в строке или столбце);
- 2) путем приведения определителя к треугольному виду.

Задание 1.3. Вычислить определитель $\Delta^{(4)}$ четвёртого порядка (см. табл. 2) $(\alpha_1, \alpha_2, \alpha_3, \alpha_4$ — параметры) путем понижения порядка, предварительно получив максимальное количество нулей в строке (столбце). Значения коэффициентов a,b,c,d соответствующего варианта студента берутся из табл. 4.

Bap	Задание
1	Даны матрицы $A,B,C:$ $A=\begin{pmatrix}1&-1\\2&0\end{pmatrix},$ $B=\begin{pmatrix}1&-1\\0&1\\2&0\end{pmatrix},$ $C=\begin{pmatrix}1&0&-1\\2&1&-1\\2&1&0\end{pmatrix}.$ Вычислить матрицу $D=A\cdot B^T\cdot C^{-1}$;
2	Даны матрицы $A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 2 & 1 & 0 \\ -2 & -1 & 0 \\ 3 & 2 & -1 \end{pmatrix}$. Найти матрицу $D = A^{-1} \cdot B^T \cdot (C + E)$, где E — соответствующего размера единичная матрица;
3	Даны матрицы $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$. Найти матрицу $C = A^{-1} \cdot B^T \cdot B^{-1}$. Показать, что $(AB)^{-1} = B^{-1} \cdot A^{-1}$;
4	Даны матрицы $A = \begin{pmatrix} -1 & 0 & 0 \\ -2 & -1 & 0 \\ 3 & 2 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 2 & -3 \\ -4 & 5 & 6 \end{pmatrix}$. Найти матрицу $C = B^{-1} \cdot (B^T - E) \cdot A$. Выяснить, справедливо ли равенство $(AB)^{-1} = A^{-1} \cdot B^{-1}$;
5	Даны матрицы $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ -2 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ a & b \\ 0 & 1 \end{pmatrix}$. Найти общий вид матрицы $D = \begin{pmatrix} A^{-1} \cdot B^T \cdot C \end{pmatrix}^{-1}$. Указать, при каком условии, наложенном на числа a,b , можно найти матрицу $D = \begin{pmatrix} A^{-1} \cdot B^T \cdot C \end{pmatrix}^{-1}$;

	Даны матрицы $A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 1 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -2 \\ 3 & -2 \\ 0 & -1 \end{pmatrix}$. Найти, если возможно, матрицу
6	$\begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 2 \\ 0 & -1 \end{pmatrix}$
	$C = (A \cdot A^T)^{-1} + B \cdot B^T$. Выяснить, выполняется ли матричное равенство
	$\left(A \cdot A^{T}\right)^{-1} = \left(A^{T}\right)^{-1} A^{-1};$
	$\begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
7	Даны матрицы $A = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 2 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 \\ 2 & -1 \\ 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Найти матрицы:
	1) A^{-1} (сделать проверку); 2) $D = A^{1} \cdot B \cdot (2C + E)$. 3) Выяснить, существуют ли
	матрицы $(B \cdot B^T)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку.
	Даны матрицы $A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ -2 & -2 \\ 3 & 0 \end{pmatrix}, C = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}$. Найти мат-
8	$\begin{bmatrix} 2 & 2 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} -2 & -2 \\ 3 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$. Пайти мат-
	рицы: 1) A^{-1} (сделать проверку); 2) $D = A^{T} \cdot B \cdot (E - 2C)$. 3) Выяснить, сущест-
	вуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку;
	Даны матрицы $A = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 0 & -1 \end{pmatrix}, C = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$. Найти матрицы: 1)
9	$\begin{bmatrix} 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}. \text{ Tailing Manipulation } 1)$
	$(A+E)^{-1}$ (сделать проверку); 2) $D = (A+E)^{-1} \cdot B \cdot (E-C)$. 3) Выяснить, сущест-
	вуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку;
	Даны матрицы $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 & -1 \\ 0 & 2 \\ 1 & 1 \end{pmatrix}, C = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$. Найти матрицы: 1)
10	$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$
	$(A+E)^{-1}$ (сделать проверку); 2) $D = (A+E)^{-1} \cdot B \cdot (E-C)$. 3) Выяснить, суще-
	ствуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку;
11	Даны матрицы $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 3 & 2 & -2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 & -1 \\ 1 & -2 & 3 \\ 0 & 0 & 1 \end{pmatrix}$. Найти матрицу
11	$C = B^{-1} \cdot (B^T + E) \cdot A$. Выяснить, справедливо ли матричное равенство
	$(AB)^{-1} = A^{-1} \cdot B^{-1};$
	$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$
12	Даны матрицы $A = \begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & -1 \\ 1 & 2 & 0 \end{pmatrix}$. Вычислить
	матрицу $D = (A + E) \cdot B \cdot (C - E)^{-1}$;

	Даны матрицы $A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 1 & 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ -1 & -1 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 1 \\ 0 & -1 \end{pmatrix}$. Найти матри-
13	цы: 1) $(A + E)^{-1}$ (сделать проверку); 2) $D = (A + E)^{-1} \cdot B \cdot (E - C)$. 3) Выяснить, существуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку;
14	Даны матрицы $A, B, C: A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$. Вычислить
	матрицу $D = A^{-1} \cdot (-B^T) \cdot C^{-1}$;
15	матрицу $D = A^{-1} \cdot \left(-B^{T}\right) \cdot C^{-1}$; Даны матрицы $A = \begin{pmatrix} 2 & 2 & -2 \\ 0 & 1 & 4 \\ 0 & 1 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -1 & -2 \\ 2 & 1 \\ 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 1 \\ 0 & -1 \end{pmatrix}$. Найти матри-
	цы. 1) $(A + E)$ (сделать проверку), 2) $D = (A - E)$ · $D \cdot (E - C)$. 3) Выяснить,
	существуют ли матрицы $(B^T \cdot B)^{-1}$, $(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку;
16	Найти значение многочлена $f(x) = x^2 - 2x$ от матрицы $A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & -2 & 1 \end{pmatrix}^{-1}$
17	Даны матрицы $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & -3 & 2 \end{pmatrix}$. Найти матрицу
	$D = A^{-1} \cdot B^{T} \cdot (C - E)^{-1}$, E — соответствующего размера единичная матрица;
18	Даны матрицы $A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 1 \\ -1 & 2 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 0 & -1 \end{pmatrix}$. Найти матрицу
	$D = (2A^{-1} - B) \cdot C$. Проверить, выполняется ли для данных матриц A, B матрич-
	ное равенство $(A + B)^{-1} = A^{-1} + B^{-1}$;
	Найти значение многочлена $f(x) = x^2 - 3x + 1$ от матрицы A (вычислить
19	$f(A) = A^{2} - 3A + E : 1) A = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}; 2) A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 3 & -1 & 0 \end{pmatrix};$
	Даны матрицы $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & -2 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}, C = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}$. Найти матрицу
	$D = (A + E)^{-1} \cdot B \cdot (E + C)$. Выяснить, существуют ли матрицы $(B^T \cdot B)^{-1}$,

	$(C \cdot C^T)^{-1}$. Если да, то найти их. Сделать проверку;
21	Даны матрицы $A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 0 & 1 \end{pmatrix}$. Найти матрицы $D = \begin{pmatrix} D & D^T \end{pmatrix}^{-1}$, $D = D = \begin{pmatrix} A & D \end{pmatrix}$, $D = \begin{pmatrix} A & A^T \end{pmatrix}$.
	$D_1 = (B \cdot B^T)^{-1}, D_2 = B \cdot (A - E), D_3 = A \cdot A^T;$
22	Даны матрицы $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 2 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & -2 & -1 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ -2 & 0 & 1 \end{pmatrix}$. Найти матрицы: 1) B^{-1} (сделать проверку); 2) $D = A^T \cdot B \cdot \left(C^T + E\right)$ (E — соответствующего размера единичная матрица);
23	Даны матрицы $A = \begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & -1 \end{pmatrix}$. Найти матрицу
	$D = (A^{-1} + B) \cdot (C \cdot C^T)^{-1};$
24	Даны матрицы $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix}$, $C = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 2 & -1 \end{pmatrix}$. Найти матрицу
	$D = (2A^{-1} - B) \cdot (C \cdot C^T)^{-1};$
25	Даны матрицы $A = \begin{pmatrix} 1 & 1 & 0 \\ -2 & -1 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix}, C = \begin{pmatrix} 1 & -2 & 0 \\ 0 & -1 & 1 \\ -2 & 0 & 3 \end{pmatrix}.$ Найти матрицы $D_1 = A \cdot A^T - 2B^{-1}, \ D_2 = C \cdot A^T$;
26	Даны матрицы $A = \begin{pmatrix} -1 & 2 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 3 & -1 \\ -1 & 0 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 \\ -1 & 2 \\ 0 & 1 \end{pmatrix}$. Найти матрицу $D = \begin{pmatrix} A^{-1} \cdot A^T \end{pmatrix} \cdot \begin{pmatrix} B + 2C \end{pmatrix}$;
27	Даны матрицы $A = \begin{pmatrix} -1/2 & 3/2 \\ 0 & 1/2 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 2 \\ -2 & 3 & 4 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ -1 & 2 & 1 \end{pmatrix}$. Вычислить матрицу $D = 2A \cdot B \cdot (C - E)^{-1}$;
28	Даны матрицы $A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & -1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$. Найти матрицы: 1) B^{-1} (сделать проверку); 2) $D = A \cdot B \cdot C^{T}$. 3) Выяснить, существует ли мат-
	рица $(C \cdot C^T)^{-1}$. Если да, то найти ее;
29	Даны матрицы A, B, C : $A = \begin{pmatrix} 0 & -1 \\ 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -2 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix}$. Вычис-
	лить матрицу $D = A \cdot B^T \cdot C^{-1}$;

30 Даны матрицы $A = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 2 \\ 3 & -2 \end{pmatrix}, C = \begin{pmatrix} 2 & 1 & 0 \\ -2 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$. Найти матрицу $D = A^{-1} \cdot B^T \cdot (C - 2E)$;

Ron	Опрополитон	Don			Паолица 2
Bap	Определитель	Bap	Определитель	Bap	Определитель
1	$ \begin{vmatrix} 8 & 7 & 2 & 0 \\ -8 & 2 & 4 & 3 \\ 5 & 1 & 0 & 1 \\ 3 & 7 & 2 & -2 \end{vmatrix} $	2	$ \begin{vmatrix} 2 & 3 & -3 & 4 \\ 2 & 4 & -2 & -2 \\ 3 & 1 & 0 & -2 \\ 1 & 2 & 4 & 1 \end{vmatrix} $	3	$ \begin{vmatrix} 0 & 1 & 2 & -3 \\ -1 & 0 & 5 & 2 \\ -2 & -5 & 0 & 4 \\ 3 & -2 & -4 & 0 \end{vmatrix} $
4	3 4 3 6 9 8 5 9 3 7 1 2 1 2 3 4	5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
7	1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7	8	1 0 1 0 2 1 2 1 3 2 3 2 4 3 4 1	9	$ \begin{vmatrix} 2 & -1 & 1 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & -3 & -4 & 2 \\ 4 & 2 & 0 & 1 \end{vmatrix} $
10	-3 0 3 9 0 1 2 4 2 3 1 -2 -1 2 2 -3	11	$ \begin{vmatrix} -1 & -2 & -3 & -4 \\ 4 & 5 & 6 & -2 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 3 \end{vmatrix} $	12	3 0 1 3 2 -1 2 -1 -1 1 3 3 5 -5 -3 7
13	2 3 -3 4 2 4 -2 -2 3 1 0 -2 1 2 4 1	14	1 2 4 -3 2 5 6 -4 4 5 -2 3 3 8 24 -19	15	2 7 4 5 4 4 8 5 1 -9 -3 -5 3 5 7 5
16	5 3 2 4 3 1 0 2 4 -1 3 7 2 2 3 -3	17	$ \begin{vmatrix} 1 & 3 & -2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 5 & -2 & 3 \\ 2 & 8 & -3 & 9 \end{vmatrix} $	18	1 3 5 7 3 -1 -5 9 7 3 5 1 7 5 3 1
19	$\begin{vmatrix} 2 & -1 & 1 & 2 \\ 6 & -2 & 2 & 4 \\ 6 & -3 & 4 & 8 \\ 4 & -9 & 1 & 1 \end{vmatrix}$	20	3 0 1 -2 2 -2 2 1 1 0 3 -2 1 -3 3 5	21	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

22	2 7 4 5 4 4 8 5 1 -9 -3 -5 3 5 7 5	23	$ \begin{vmatrix} 1 & -2 & 3 & 2 \\ 4 & 4 & 0 & 8 \\ 2 & -3 & 4 & 3 \\ -3 & -1 & 7 & 3 \end{vmatrix} $	24	$ \begin{vmatrix} 2 & -1 & 1 & 0 \\ 2 & 1 & 0 & 9 \\ 3 & -1 & 2 & 6 \\ -7 & 1 & -3 & -15 \end{vmatrix} $
25	$ \begin{vmatrix} 1 & 2 & 4 & -3 \\ 2 & 5 & 6 & -4 \\ 4 & 5 & -2 & 3 \\ 3 & 8 & 24 & -19 \end{vmatrix} $	26	1 2 3 4 1 4 9 16 1 8 27 64 0 -1 2 -1	27	$ \begin{vmatrix} -1 & -2 & 3 & 4 \\ -1 & 4 & 9 & 16 \\ -2 & 8 & 27 & 64 \\ 0 & -1 & 2 & -1 \end{vmatrix} $
28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	2 0 -3 4 4 -4 2 3 1 -9 -3 -5 7 1 7 11

Bap	Определитель $\Delta^{(4)}$	Bap	Определитель $\Delta^{(4)}$
1–7	$\Delta^{(4)} = \begin{vmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\ 2 & a & b & c \\ b & 2c & a+b & -a \\ -d & -a & c+b & 0 \end{vmatrix}$	8–14	$\Delta^{(4)} = \begin{vmatrix} a+b & b+c & c+d & a+d \\ 1 & -a & -b & -c \\ -b & 2 & b-c & a-d \\ \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{vmatrix}$
15–22	$\Delta^{(4)} = \begin{vmatrix} a-b & 1 & 2c & \alpha_1 \\ b-c & -a & 3b & \alpha_2 \\ c-d & -b & 2a & \alpha_3 \\ d-a & -c & 0 & \alpha_4 \end{vmatrix}$	23–30	$\Delta^{(4)} = \begin{vmatrix} d & \alpha_1 & 0 & a^2 \\ c & \alpha_2 & 1 & b^2 \\ b & \alpha_3 & 2 & c^2 \\ a & \alpha_4 & 4 & d^2 \end{vmatrix}$

								•	толица ч
Bap	а	b	С	d	Bap	a	b	С	d
1	2	2	3	4	16	3	4	4	2
2	2	4	3	1	17	3	2	4	1
3	3	2	1	4	18	2	3	4	3
4	4	1	2	3	19	4	4	2	1
5	2	4	1	3	20	2	2	4	3
6	2	1	3	2	21	2	2	3	4
7	1	3	4	2	22	4	2	2	2
8	2	3	1	2	23	1	4	3	2
9	2	3	1	4	24	4	1	2	3
10	3	2	1	4	25	2	4	2	2
11	2	3	1	3	26	3	4	3	2

12	1	3	3	4	27	1	2	4	4
13	3	4	3	2	28	1	3	4	3
14	2	2	3	4	29	2	3	3	4
15	3	3	2	3	30	2	3	4	2

Лабораторное задание №2. Нахождение обратной матрицы

Задание 2.1. Выяснить, является ли матрица A (см. табл. 5) неособенной матрицей. В случае, если она является неособенной, найти для нее обратную матрицу при помощи элементарных преобразований. Сделать проверку.

<u>Задание 2.2.</u> Вычислить обратную матрицу для матрицы из задания 2.1 при помощи разбиения ее на блоки. Сравнить с результатом задания 2.1.

Таблица 5

Bap	М атрица <i>А</i>	Bap	Матрица А
1	$A = \begin{pmatrix} 1 & 4 & 1 & 3 \\ 0 & -1 & 3 & -1 \\ 3 & 1 & 0 & 2 \\ 1 & -2 & 5 & 1 \end{pmatrix}$	2	$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 4 & 2 & 3 \\ 1 & 10 & 3 & 6 \\ 6 & 10 & 1 & 4 \end{pmatrix}$
3	$A = \begin{pmatrix} 1 & 2 & 3 & -2 \\ 2 & -1 & -2 & -3 \\ 3 & 2 & -1 & 2 \\ 2 & -3 & 2 & 1 \end{pmatrix}$	4	$A = \begin{pmatrix} -2 & 2 & 1 & 0 \\ 1 & -3 & 3 & 7 \\ 2 & -1 & 2 & -3 \\ -5 & 4 & -1 & 2 \end{pmatrix}$
5	$A = \begin{pmatrix} 1 & -1 & -1 & 1 \\ -1 & 2 & 2 & 0 \\ 0 & -1 & 1 & 4 \\ 1 & 1 & -1 & -1,5 \end{pmatrix}$	6	$A = \begin{pmatrix} 3 & -2 & 2 & 0 \\ 2 & 1 & 1 & -2 \\ 3 & -1 & 2 & 1 \\ 1 & 2 & -1 & -1 \end{pmatrix}$
7	$A = \begin{pmatrix} 5 & -4 & 0 & 2 \\ -1 & 1 & 1 & -1 \\ 2 & 3 & -1 & 6 \\ 1 & 2 & 0 & -1 \end{pmatrix}$	8	$A = \begin{pmatrix} 4 & -1 & 0 & 1 \\ 3 & 2 & -1 & 2 \\ 0 & 2 & 2 & 1 \\ -1 & 1 & -3 & -1 \end{pmatrix}$
9	$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ -1 & -3 & 3 & -1 \\ 0 & 4 & -10 & 2 \\ 1 & -1 & 2 & -1 \end{pmatrix}$	10	$A = \begin{pmatrix} 1 & 4 & -3 & 0 \\ 0 & 4 & 1 & 2 \\ -1 & 2 & 4 & 1 \\ 1 & 0 & -1 & 5 \end{pmatrix}$

11	$A = \begin{pmatrix} 2 & -1 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 3 & 0 & -1 & -3 \\ 1 & -1 & 1 & 3 \end{pmatrix}$	12	$A = \begin{pmatrix} 2 & 1 & 2 & 0 \\ -1 & -3 & 3 & -1 \\ 1 & 3 & -8 & 1 \\ 1 & -1 & 2 & -1 \end{pmatrix}$
13	$A = \begin{pmatrix} 2 & 3 & 0 & 1 \\ -1 & 1 & 3 & 0 \\ 0 & 2 & -1 & 1 \\ 3 & -1 & 1 & -2 \end{pmatrix}$	14	$A = \begin{pmatrix} 1 & 0 & 3 & 2 \\ -1 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ -1 & 3 & 3 & 3 \end{pmatrix}$
15	$A = \begin{pmatrix} 1 & 0 & 3 & 24 \\ 0 & 1 & 5 & 6 \\ -3 & 4 & 10 & 6 \\ 0 & -6 & 0 & -6 \end{pmatrix}$	16	$A = \begin{pmatrix} 3 & 1 & 3 & 3 \\ 2 & 2 & 1 & 3 \\ 1 & 0 & 2 & 0 \\ 1 & 1 & 1 & 3 \end{pmatrix}$
17	$A = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 2 & 3 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & -2 & 1 \end{pmatrix}$	18	$A = \begin{pmatrix} -2 & -2 & -1 & 3 \\ 2 & 1 & 0 & -1 \\ 3 & 2 & 1 & -3 \\ 4 & 3 & 2 & -4 \end{pmatrix}$
19	$A = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 3 & -1 & -1 & -2 \\ 2 & 3 & -1 & -1 \\ 1 & 2 & 3 & -1 \end{pmatrix}$	20	$A = \begin{pmatrix} 1 & 2 & 3 & -2 \\ 2 & -1 & -2 & -3 \\ 3 & 2 & -1 & 2 \\ 2 & -3 & 2 & 1 \end{pmatrix}$
21	$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 3 & 2 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix}$	22	$A = \begin{pmatrix} 1 & 1 & -3 & 0 \\ 2 & 5 & 1 & 2 \\ 0 & 6 & 4 & 1 \\ 6 & -1 & -1 & 5 \end{pmatrix}$
23	$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & -1 & 1 & 2 \\ 2 & 1 & -2 & -6 \\ 1 & -1 & 1 & 3 \end{pmatrix}$	24	$A = \begin{pmatrix} 2 & 5 & -3 & 2 \\ 0 & -4 & 5 & -2 \\ 1 & 3 & -8 & 1 \\ 1 & 1 & 2 & 1 \end{pmatrix}$
25	$A = \begin{pmatrix} 2 & 1 & -3 & 0 \\ 1 & 5 & 1 & 2 \\ 3 & 6 & 4 & 1 \\ 0 & -1 & -1 & 5 \end{pmatrix}$	26	$A = \begin{pmatrix} 1 & -1 & 2 & -1 \\ 1 & 0 & 2 & -1 \\ 2 & -3 & 3 & 0 \\ 1 & 2 & 3 & 5 \\ -1 & -3 & 0 & 3 \end{pmatrix}$

27	$A = \begin{pmatrix} 2 & -1 & 3 & 2 \\ 3 & 3 & 3 & 2 \\ 3 & -1 & -1 & 2 \\ 3 & -1 & 3 & -1 \end{pmatrix}$	28	$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{pmatrix}$
29	$A = \begin{pmatrix} 2 & -1 & 1 & -1 \\ 2 & -1 & 0 & -3 \\ 3 & 0 & -1 & 1 \\ 2 & 2 & -2 & 5 \end{pmatrix}$	30	$A = \begin{pmatrix} 1 & 1 & 3 & 4 \\ -1 & 0 & 3 & -2 \\ 2 & 1 & 2 & -3 \\ 1 & 2 & -1 & 1 \end{pmatrix}$

Лабораторное задание №3.

Решение систем линейных алгебраических уравнений. Исследование систем линейных алгебраических уравнений с параметром на совместность

<u>Задание 3.1.</u> Решить СЛАУ (см. табл. 6) двумя способами (матричным и по формулам Крамера). Сделать проверку решения.

<u>Задание 3.2.</u> Решить СЛАУ (см. табл. 7) методом Гаусса. Сделать проверку решения.

Задание 3.3. Исследовать СЛАУ (см. табл. 8) с параметром λ (СЛАУ задана в виде своей расширенной матрицы $(A(\lambda)|b(\lambda))$) и решить ее в каждом случае. Выполнить проверку решения в каждом из случаев.

Таблица 6

Bap	СЛАУ	Bap	СЛАУ	Bap	СЛАУ
	$\int x + 5y + 5z = 9$		$\int x + 9y - 4z = 9$		$\int x + y - z = -2$
1	$\begin{cases} x + 5y + z + 0 \end{cases}$	2	$\begin{cases} 2x + 5y - 3z = 4 \end{cases}$	3	$\begin{cases} 2x - 4y + z = -4 \end{cases}$
1	3x + 4y + 2z = 8	2	5x + 6y - 2z = 18	3	2x + y = 5
	$\int x + y - 2z = 6$		$\int 2x + y = 5$		$\int 7x + 2y + 2z = 15$
4	$\begin{cases} 2x + 3y - 7z = 16 \end{cases}$	5	$\begin{cases} x + 3z = 16 \end{cases}$	-	$\begin{cases} 5x - 2y + 2z = 15 \end{cases}$
4	$\int 5x + 2y + z = 16$	3	5y - z = 10	6	10x - 11y + 5z = 36
	$\int x - 3y + z = 2$		$\int 2x - 2y + z = 1$		$\int 2x - y + 5z = 6$
7	$\begin{cases} 2x + y + 3z = 3 \end{cases}$	8	$\begin{cases} 4x - 5y + z = 0 \end{cases}$	9	$\begin{cases} x + 2y + 3z = 6 \end{cases}$
	2x - y - 2z = 8	0	$ \left -9x + y - 2z = -10 \right $	9	x + 3y - 2z = 2
	$\int x + 3y = 7$		$\int x + 2y - 4z = 0$		$\int 2x - 3y + z = 3$
10	$\begin{cases} 2x + y - z = 1 \end{cases}$	11	$\begin{cases} 3x + y - 3z = -1 \end{cases}$	10	$\begin{cases} x + y - 2z = 4 \end{cases}$
10	4x - 3y - 2z = -8	11	2x - y + 5z = 3	12	3x - 2y + 6z = 0
	$\int x + y - 2z = 1$		$\int 3x + 2y - z = 3$		$\int 2x - 3y + 3z = 0$
13	$\begin{cases} 2x + 3y + z = 0 \end{cases}$	14	$\begin{cases} x - y + 2z = -4 \end{cases}$	15	$\begin{cases} x + y - 2z = -7 \end{cases}$
13	$\int x - 2y - z = 7$	14	2x + 2y + z = 4	15	$\int x - 2y + 3z = 3$

	$\int x + 5y - z = -1$		$\int 3x - 2y + 2z = 3$		$\int 2x + 3y - z = 2$
16	$\begin{cases} 2x + y - 2z = 7 \\ x - 4y - z = 0 \end{cases}$	17	$\begin{cases} 2x + y - z = -5 \\ 5x - y + 3z = 4 \end{cases}$	18	$\begin{cases} x + 2y + 3z = 0 \\ x - y - 2z = 6 \end{cases}$
19	$\begin{cases} 3x + y + 2z = -4 \\ x - 2y - z = -1 \\ 2x + 3y + 2z = 0 \end{cases}$	20	$\begin{cases} 2x - 3y - 5z = 1\\ 3x + y - 2z = -4\\ x - 2y + z = 5 \end{cases}$	21	$\begin{cases} 3x + y - 2z = 1 \\ x - 2y + 3z = 5 \\ 2x + 3y - z = -4 \end{cases}$
22	$\begin{cases} 2x - y + 3z = 3\\ x + 2y + z = 2\\ x - 3y + 4z = -1 \end{cases}$	23	$\begin{cases} x - 2y + z = 4 \\ 2x + y + 3z = 5 \\ 3x + 4y + z = -2 \end{cases}$	24	$\begin{cases} 2x - y + 3z = 1 \\ x + 2y + z = 8 \\ 4x - 3y - 2z = -1 \end{cases}$
25	$\begin{cases} 3x + 3y + 2z = -1 \\ 2x + y - z = 3 \\ x - 2y - 3z = 4 \end{cases}$	26	$\begin{cases} 5x - 2y + z = -1 \\ 2x + y + 2z = 6 \\ x - 3y - z = -5 \end{cases}$	27	$\begin{cases} 4x + 3y - 2z = -1 \\ 3x + y + z = 3 \\ x - 2y - 3z = 8 \end{cases}$
28	$\begin{cases} 2x+3y-z=2\\ x-y+3z=-4\\ 3x+5y+z=4 \end{cases}$	29	$\begin{cases} x - 3y + z = 2\\ 2x + y + 3z = 3\\ 2x - y - 2z = 8 \end{cases}$	30	$\begin{cases} 2x - 3y - 5z = 1\\ 3x + y - 2z = -4\\ x - 2y + z = 5 \end{cases}$

Bap	СЛАУ	Bap	СЛАУ
1	$\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ 3x_1 - x_2 - x_3 - 2x_4 = -4 \\ 2x_1 + 3x_2 - x_3 - x_4 = -6 \\ x_1 + 2x_2 + 3x_3 - x_4 = -4 \end{cases}$	2	$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 = 6 \\ x_1 - x_2 - 2x_3 - 3x_4 = 8 \\ 3x_1 + 2x_2 - x_3 + 2x_4 = 4 \\ 2x_1 - 3x_2 + 2x_3 + x_4 = -8 \end{cases}$
3	$\begin{cases} x_1 - x_2 + x_3 - 2x_4 = -1 \\ 2x_1 - 3x_2 - x_3 - x_4 = -3 \\ 3x_1 + 2x_2 - x_3 = 4 \\ -x_1 - 3x_2 + x_3 + 4x_4 = 1 \\ 3x_1 - 4x_2 - 3x_4 = -4 \end{cases}$	4	$\begin{cases} 2x_1 - x_2 + 3x_3 - x_4 = 5 \\ x_1 - 4x_2 - 2x_3 + x_4 = -1 \\ -3x_1 + x_2 - x_3 + 4x_4 = -4 \\ 2x_1 - x_2 + 4x_3 + 6x_4 = 6 \\ 5x_1 - 2x_2 + 4x_3 - 5x_4 = 9 \end{cases}$
5	$\begin{cases} x_2 - 3x_3 + 4x_4 = -5 \\ x_1 - 2x_3 + 3x_4 = -4 \\ 3x_1 + 2x_2 - 5x_4 = 12 \\ 4x_1 + 3x_2 - 5x_3 = 5 \end{cases}$	6	$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 5 \\ 2x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ 3x_1 + 2x_2 + x_3 + 2x_4 = 1 \\ 4x_1 + 3x_2 + 2x_3 + x_4 = -5 \end{cases}$

	$\left(x_1 + 3x_2 + 5x_3 + 7x_4 = 12\right)$		$\int 2x_1 + x_2 - 5x_3 + x_4 = 8$
_	$3x_1 + 5x_2 + 7x_3 + x_4 = 0$	•	$\begin{vmatrix} x_1 - 3x_2 - 6x_4 = 9 \end{vmatrix}$
7	$\begin{cases} 5x_1 + 7x_2 + x_3 + 3x_4 = 4 \end{cases}$	8	$\begin{cases} 2x_2 - x_3 + 2x_4 = -5 \end{cases}$
	$7x_1 + x_2 + 3x_3 + 5x_4 = 16$		$x_1 + 4x_2 - 7x_3 + 6x_4 = 0$
	$\int x_1 + 5x_2 + 3x_3 - 4x_4 = 20$		$\int 4x_1 + x_2 - x_4 = -9$
	$3x_1 + x_2 - 2x_3 = 9$	4.0	$x_1 - 3x_2 + 4x_3 = -7$
9	$\int_{0}^{\pi} 5x_{1} - 7x_{2} + 10x_{4} = -9$	10	$3x_2 - 2x_3 + 4x_4 = 12$
	$3x_2 - 5x_3 = 1$		$x_1 + 2x_2 - x_3 - 3x_4 = 0$
	$2x_1 - x_2 + 3x_3 + 2x_4 = 4$		$\int x_1 + 2x_2 - x_3 + x_4 = 8$
11	$3x_1 + 3x_2 + 3x_3 + 2x_4 = 6$	12	$2x_1 + x_2 + x_3 + x_4 = 5$
11	$\int 3x_1 - x_2 - x_3 + 2x_4 = 6$	12	$\int x_1 - x_2 + 2x_3 + x_4 = -1$
	$3x_1 - x_2 + 3x_3 - x_4 = 6$		$x_1 + x_2 - x_3 + 3x_4 = 10$
			$\int 5x_1 - x_2 + x_3 + 2x_4 = 3$
13	$5x_1 - 6x_2 - x_3 - x_4 = -7$	14	$-2x_1 - x_2 - 2x_3 - 3x_4 = -5$
	$\begin{cases} -x_1 + 4x_2 - x_3 + x_4 = 7 \end{cases}$	14	$\begin{cases} 3x_1 + 2x_2 - x_3 + x_4 = 0 \\ 2x_1 + 2x_2 - x_3 + x_4 = 0 \end{cases}$
	$2x_1 - 3x_2 + x_3 + 4x_4 = -4$		$-3x_1 - x_2 + x_3 + 4x_4 = 5$
	$3x_1 - 4x_2 - x_3 + 3x_4 = -5$		$\left(-x_1 - 4x_2 - 3x_4 = -3\right)$
	$2x_1 - x_2 + x_3 - x_4 = 1$		$x_1 + x_2 - x_3 - x_4 = 0$
15	$\int_{0}^{1} 2x_1 - x_2 - 3x_4 = 2$	16	$\int x_2 - 2x_3 - x_4 = 2$
	$3x_1 - x_3 + x_4 = -3$		$ x_1 - x_2 - x_4 = -1$
	$2x_1 + 2x_2 - 2x_3 + 5x_4 = -6$		$(-x_1 + 3x_2 - 2x_3 = 0)$
	$4x_1 - 2x_2 + x_3 - 4x_4 = 3$		$\int_{0}^{1} (x_1 - x_2 + x_3 - 3x_4) = -8$
17	$\begin{cases} 2x_1 - x_2 + x_3 - x_4 = 1 \\ 3x_1 - x_3 + x_4 = -3 \\ 2x_1 + 2x_2 - 2x_3 + 5x_4 = -6 \end{cases}$	18	$\begin{cases} 2x_1 - 3x_2 + x_3 - 2x_4 = -7 \\ -3x_1 + 2x_2 - x_3 + x_4 = 3 \end{cases}$
	$3x_1 - x_3 + x_4 = -3$		$\begin{vmatrix} -3x_1 + 2x_2 - x_3 + x_4 &= 3 \\ -4x_1 - x_2 + x_3 + x_4 &= 4 \end{vmatrix}$
	$2x_1 + 2x_2 - 2x_3 + 5x_4 = -6$		$\begin{vmatrix} -4x_1 - x_2 + x_3 + x_4 - 4 \\ x_2 - 4x_2 - x_4 = -10 \end{vmatrix}$
	$2x_1 + x_3 + 4x_4 = 9$		$\int 2x_1 - 6x_2 + 2x_3 + 2x_4 = 12$
19		20	$x_1 + 3x_2 + 5x_3 + 7x_4 = 12$
19	$2x_1 + x_2 + x_3 + x_4 = 5$	20	$3x_1 + 5x_2 + 7x_3 + x_4 = 0$
	$\begin{cases} x_1 + 2x_2 - x_3 + x_4 = 8 \\ 2x_1 + x_2 + x_3 + x_4 = 5 \\ x_1 - x_2 + 2x_3 + x_4 = -1 \end{cases}$		$\int 5x_1 + 7x_2 + x_3 + 3x_4 = 4$

		I	
21	$\begin{cases} x_1 + 5x_2 = 2\\ 2x_1 - x_2 + 3x_3 + 2x_4 = 4\\ 3x_1 - x_2 - x_3 + 2x_4 = 6\\ 3x_1 - x_2 + 3x_3 - x_4 = 6 \end{cases}$	22	$\begin{cases} x_1 - x_2 + x_3 - 2x_4 = -1 \\ 2x_1 - 3x_2 - x_3 - x_4 = -3 \\ 3x_1 + 2x_2 - x_3 = 4 \\ -x_1 - 3x_2 + x_3 + 4x_4 = 1 \\ 3x_1 - 4x_2 - 3x_4 = -4 \end{cases}$
23	$\begin{cases} x_1 - 4x_2 - x_4 = 2 \\ x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ 2x_1 + 3x_2 - x_3 - x_4 = -6 \\ x_1 + 2x_2 + 3x_3 - x_4 = -4 \end{cases}$	24	$\begin{cases} 5x_1 - x_2 + x_3 + 3x_4 = -4 \\ x_1 + 2x_2 + 3x_3 - 2x_4 = 6 \\ 2x_1 - x_2 - 2x_3 - 3x_4 = 8 \\ 3x_1 + 2x_2 - x_3 + 2x_4 = 4 \end{cases}$
25	$\begin{cases} 4x_1 - 2x_2 + x_3 - 4x_4 = 3\\ 2x_1 - x_2 + x_3 - x_4 = 1\\ 3x_1 - x_3 + x_4 = -3\\ 2x_1 + 2x_2 - 2x_3 + 5x_4 = -6 \end{cases}$	26	$\begin{cases} x_1 + x_2 + x_3 - 2x_4 = -2\\ 2x_1 - x_2 + 4x_3 - 3x_4 = 0\\ -x_1 + 2x_2 - x_3 + x_4 = 4\\ 8x_1 - 4x_2 + 4x_3 - x_4 = 8\\ 3x_1 + 5x_3 - 5x_4 = -2 \end{cases}$
27	$\begin{cases} 2x_1 - x_3 - 2x_4 = -1 \\ x_2 + 2x_3 - x_4 = 2 \\ x_1 - x_2 - x_4 = -1 \\ -x_1 + 3x_2 - 2x_3 = 0 \end{cases}$	28	$\begin{cases} -x_1 + x_2 + x_3 + x_4 = 4 \\ 2x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ 3x_1 + 2x_2 + x_3 + 2x_4 = 1 \\ 4x_1 + 3x_2 + 2x_3 + x_4 = -5 \end{cases}$
29	$\begin{cases} 5x_1 + 3x_2 - 7x_3 + 3x_4 = 1 \\ x_2 - 3x_3 + 4x_4 = -5 \\ x_1 - 2x_3 + 3x_4 = -4 \\ 4x_1 + 3x_2 - 5x_3 = 5 \end{cases}$	30	$\begin{cases} x_1 + x_2 - x_3 - x_4 = 0 \\ x_1 + 2x_3 - 2x_4 = 1 \\ x_1 - x_2 - x_4 = -1 \\ -x_1 - 3x_2 - 2x_3 = 0 \end{cases}$

Bap	СЛАУ	Bap	СЛАУ
	$\begin{pmatrix} \lambda & 3 & -4 & 2 \end{pmatrix}$		$\begin{pmatrix} \lambda + 3 & 2 & 5 \mid 0 \end{pmatrix}$
1	$\begin{bmatrix} 5 & \lambda + 2 & 1 & -7 \\ 12 & 11 & -2 & -12 \end{bmatrix}$	2	$ \begin{vmatrix} 2 & -7 & 4 & 2 \\ 6 & 12\lambda & 13 & 4 \end{vmatrix} $
3	$\begin{pmatrix} 2 & \lambda + 5 & -1 & -4 \\ \lambda + 3 & -4 & 2 & 3 \\ 11 & -7 & 5 & 5 \end{pmatrix}$	4	$ \begin{pmatrix} 7 & 5 & 1 - \lambda & 3 \\ 2 & 2\lambda + 1 & 3 & -2 \\ 11 & 27 & 5 & -1 \end{pmatrix} $

5	$\begin{pmatrix} 2 & -3 & 2\lambda & 10 \\ 5 & \lambda + 2 & 3 & -7 \\ 12 & 7 & 0 & -4 \end{pmatrix}$	6	$ \begin{pmatrix} 5 & -\lambda - 3 & -1 & 1 \\ \lambda - 2 & 4 & 2 & -3 \\ 12 & -2 & -1 & 0 \end{pmatrix} $
7	$ \begin{pmatrix} \lambda + 1 & -7 & 5 & -2 \\ \lambda & 2\lambda - 3 & 1 & 1 \\ 7 & 23 & -11 & 3 \end{pmatrix} $	8	$ \begin{pmatrix} 3 & 2 & \lambda - 3 & 4 \\ 2 & -2\lambda - 1 & 2 & -1 \\ 11 & -1 & 2 & 11 \end{pmatrix} $
9	$ \begin{pmatrix} 2\lambda + 1 & 1 & -2 & 1 \\ 5 & \lambda - 2 & 1 & 4 \\ 26 & 4 & -5 & 7 \end{pmatrix} $	10	$ \begin{pmatrix} \lambda+1 & 1 & -4 & 2 \\ 2 & -\lambda-2 & 5 & -3 \\ 5 & 1 & 11 & -7 \end{pmatrix} $
11	$ \begin{pmatrix} 2+\lambda & -2 & 3 & 4 \\ 3 & \lambda+3 & -1 & 5 \\ 6 & -4 & 8 & 7 \end{pmatrix} $	12	$ \begin{pmatrix} 2 & -3 & \lambda + 1 & 3 \\ 5 & \lambda - 2 & 3 & -1 \\ 11 & -8 & 15 & 8 \end{pmatrix} $
13	$ \begin{pmatrix} 1 & 4 & \lambda - 1 & 8 \\ 5 & \lambda + 3 & 3 & -2 \\ 9 & 21 & 7 & 30 \end{pmatrix} $	14	$\begin{pmatrix} 4 & \lambda + 1 & \lambda & 6 \\ \lambda - 2 & 5 & -3 & -2 \\ 14 & 20 & 9 & 16 \end{pmatrix}$
15	$\begin{pmatrix} \lambda + 7 & \lambda & 2 & & 4 \\ \lambda - 1 & 5 & -7 & & -8 \\ 32 & 14 & -1 & & 4 \end{pmatrix}$	16	$\begin{pmatrix} 1 & \lambda + 2 & 1 & & 4 \\ 2 & 3 & 4 & & 0 \\ -3\lambda & 4 & -5\lambda & & 4 \end{pmatrix}$
17	$ \begin{pmatrix} 5 & \lambda + 2 & -1 & 0 \\ \lambda - 1 & \lambda & 5 & 3 \\ 8 & 10 & 14 & 9 \end{pmatrix} $	18	$\begin{pmatrix} \lambda + 4 & \lambda + 1 & 3 & 1 \\ \lambda - 3 & 2 & -5 & 4 \\ 23 & 16 & 1 & 7 \end{pmatrix}$
19	$ \begin{pmatrix} \lambda + 1 & -7 & 5 & -2 \\ \lambda & 2\lambda - 3 & 1 & 1 \\ 7 & 23 & -11 & 3 \end{pmatrix} $	20	$ \begin{pmatrix} 5 & 2 & -1 & \lambda \\ \lambda - 1 & \lambda & 5 & 3 \\ 3\lambda - 6 & -2 & 6 - 2\lambda & 3 \end{pmatrix} $
21	$\begin{pmatrix} 1 & \lambda + 4 & 5 & 7 \\ \lambda + 2 & \lambda + 3 & -5 & 4 \\ 7 & 23 & 10 & 25 \end{pmatrix}$	22	$ \begin{pmatrix} \lambda + 1 & 2 & -3 & 4 \\ 2 & \lambda - 2 & 1 & 6 \\ 11 & 6 & -8 & 18 \end{pmatrix} $
23	$\begin{pmatrix} 2 & 5\lambda & -2 & 7 \\ \lambda + 1 & 3 & 3 & 4 \\ 5 & -27 & -3 & 25 \end{pmatrix}$	24	$ \begin{pmatrix} \lambda + 1 & 2 & -5 & 2 \\ 3 & \lambda - 2 & 4 & 7 \\ 25 & 12 & -6 & 11 \end{pmatrix} $

25	$ \begin{pmatrix} 4 & -\lambda - 2 & 6 & -7 \\ \lambda + 1 & 2 & -5 & 3 \\ 14 & -12 & 7 & -11 \end{pmatrix} $	26	$ \begin{pmatrix} 3 & \lambda + 3 & 1 & -4 \\ \lambda - 1 & 5 & -7 & 3 \\ 8 & 17 & -5 & -5 \end{pmatrix} $
27	$ \begin{pmatrix} 1 & \lambda + 2 & 3 - \lambda & 4 \\ 3 & \lambda + 4 & 5 & -1 \\ 7 & 31 & 6 & 2 \end{pmatrix} $	28	$\begin{pmatrix} 4 & \lambda + 2 & 5 & 2 \\ \lambda + 1 & 3 & -4 & 5 \\ 16 & 18 & 11 & 11 \end{pmatrix}$
29		30	$ \begin{pmatrix} 5 & \lambda + 2 & -1 & 0 \\ \lambda - 1 & \lambda & 5 & 3 \\ 8 & 10 & 14 & 9 \end{pmatrix} $

Лабораторное задание №4.

(ФСР) для системы (см. табл. 10).

Нахождение общих решений неоднородных и однородных систем линейных алгебраических уравнений

<u>Задание 4.1.</u> Исследовать неоднородную **СЛАУ** (см. табл. 9) на совместность и определенность. В случае совместности найти общее решение системы. <u>Задание 4.2.</u> Найти общее решение и фундаментальную систему решений

Bap	СЛАУ	Bap	СЛАУ
Бар	CJIAJ	рар	CJIAJ
1	$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + x_5 = 1, \\ 3x_1 - x_2 + x_3 + x_4 + 3x_5 = 4, \\ x_1 + 5x_2 - 9x_3 - 8x_4 + x_5 = 0. \end{cases}$	2	$\begin{cases} x_1 - 2x_2 + 3x_3 - x_4 = 3, \\ 2x_1 - x_2 + x_3 + x_4 + x_5 = -4, \\ x_1 - x_2 - 2x_3 - x_4 + x_6 = 2, \\ 4x_1 - 4x_2 + 2x_3 - x_4 + x_5 + x_6 = 1. \end{cases}$
3	$\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 = -3, \\ 3x_1 - x_2 + 2x_3 + 4x_4 = 8, \\ x_1 + x_2 + 3x_3 - 2x_4 = 6, \\ -x_1 + 2x_2 + 3x_3 + 5x_4 = 3. \end{cases}$	4	$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + 2x_5 = -1, \\ 3x_1 + 2x_2 + x_3 + x_4 - x_5 = 2, \\ -2x_1 + 3x_2 - x_3 + x_4 + 3x_5 = 4, \\ 2x_1 + 6x_2 - 2x_3 + x_4 + 4x_5 = 5. \end{cases}$
5	$\begin{cases} x_1 + 2x_2 - x_3 + 2x_4 = 3, \\ x_1 - 2x_2 + 3x_3 + 2x_4 - x_5 = 4, \\ 2x_1 + x_2 - x_3 + x_4 - x_6 = -2, \\ 4x_1 + x_2 + x_3 + 5x_4 - x_5 - x_6 = 5. \end{cases}$	6	$\begin{cases} 2x_1 - x_2 + x_3 - x_5 = -3, \\ 3x_1 - 2x_3 + x_4 + x_5 = -1, \\ -2x_1 + 3x_2 + x_3 + 2x_4 - 2x_5 = 4, \\ 2x_1 - 6x_2 + 6x_3 - 4x_4 - 3x_5 = -11, \\ -3x_1 - x_2 + 11x_3 - x_4 - 9x_5 = -5. \end{cases}$

7	$\begin{cases} 4x_1 + x_2 - 2x_3 + x_4 = 3, \\ x_1 - 2x_2 - x_3 + 2x_4 = 2, \end{cases}$	8	$\begin{cases} 3x_1 - 2x_2 + 3x_3 - 3x_4 = 0, \\ x_1 + 2x_2 - 3x_3 + 2x_4 - 2x_5 = 0, \end{cases}$
,	$\begin{cases} 2x_1 + 5x_2 - x_4 = -1, \\ 3x_1 + 3x_2 - x_3 - 3x_4 = 1. \end{cases}$	o	$\left[-x_1 + 6x_2 - 9x_3 + 7x_4 + x_5 = 0. \right]$
9	$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + x_5 = 1, \\ 3x_1 - x_2 + x_3 + x_4 + 3x_5 = 4, \\ x_1 + 5x_2 - 9x_3 - 8x_4 + x_5 = 0. \end{cases}$	10	$ \begin{cases} 2x_1 - x_2 + 3x_3 - x_4 + x_5 = 3, \\ x_1 - 4x_2 - 2x_3 + x_4 - x_5 = -1, \\ 5x_1 - 6x_2 + 4x_3 - x_4 + x_5 = 5. \end{cases} $
11	$\begin{cases} 5x_1 + 2x_2 + 4x_3 - 9x_4 - 7x_5 = 5, \\ x_1 - 2x_2 + 3x_4 + x_5 = 1, \\ 4x_1 + x_2 + 3x_3 - 6x_4 - 5x_5 = 4, \\ 7x_1 - 8x_2 + 2x_3 + 9x_4 + x_5 = 7, \end{cases}$	12	$\begin{cases} 2x_1 - x_2 + x_3 + x_4 + 3x_5 = 1, \\ x_1 - 3x_2 + 2x_3 + 3x_4 + 4x_5 = -2, \\ 3x_1 + 2x_2 + 2x_3 + x_4 + x_5 = -5, \\ -x_1 + 3x_2 + 4x_3 + x_4 + 2x_5 = 2, \end{cases}$
	$2x_1 - x_2 + x_3 - x_5 = 2.$		$9x_1 + 4x_2 - 4x_3 - 5x_4 - x_5 = 3.$
	$\begin{cases} -x_1 - 2x_2 + x_3 + 3x_4 - x_5 = 2; \\ 2x_1 + x_2 - x_3 + x_4 - x_5 = -3; \end{cases}$		$\begin{cases} 4x_1 + x_2 - 2x_3 + x_4 = 3, \\ x_1 - 2x_2 - x_3 + 2x_4 = 2, \end{cases}$
13	$\begin{cases} x_1 + 3x_2 - 2x_3 - x_4 + x_5 = 0. \end{cases}$	14	$\begin{cases} 2x_1 + 5x_2 & -x_4 = -1, \\ 3x_1 + 3x_2 - x_3 - x_4 = 1. \end{cases}$
	$\left[-3x_1 - 2x_2 + 2x_3 + x_4 - x_5 = 2, \right]$		$\left(x_1 - 3x_2 + 2x_3 + x_4 - x_5 = 0,\right)$
15	$\begin{cases} 2x_1 + 3x_2 - 4x_3 + x_4 - 2x_5 = 0, \end{cases}$	16	$\begin{cases} 2x_1 + x_2 - 3x_3 + 4x_4 - x_5 = -1, \end{cases}$
13	$\int 5x_1 + 5x_2 - 6x_3 = -2.$	10	$x_2 + 2x_3 - 4x_4 = 2.$
	$\begin{cases} 2x_1 - x_2 - x_3 + 2x_4 & = 1, \end{cases}$		
17	$\begin{cases} -3x_1 + x_2 - 2x_3 + x_4 - x_5 = 4, \\ 5x_1 - 2x_2 + x_3 + x_4 = -3. \end{cases}$	18	$\begin{cases} -x_1 + 2x_2 - 3x_3 - 2x_4 + x_5 = -4, \\ -2x_1 - x_2 + x_3 - x_4 = 2 \end{cases}$
	$3x_1 - x_2 + x_3 + 2x_4 - x_5 = -2,$		$(x_1 + 2x_2 + x_3 + x_4 + x_5 = 1,$
19	$\begin{cases} x_1 + 2x_2 - 4x_3 + x_4 & = 1, \end{cases}$	20	$\begin{cases} 2x_1 - x_2 + x_3 - 2x_4 + x_5 = 0, \end{cases}$
19	$4x_1 + x_2 - 3x_3 + 3x_4 = -1.$	20	$3x_1 + x_2 + 2x_3 - x_4 + 3x_5 = 3.$
	$\int 5x_1 - x_2 + x_3 + 3x_4 = -4,$		$\left(2x_1 + 3x_2 + 4x_3 + x_4 - x_5 = 0,\right.$
21	$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 = 6, \\ 2x_1 - x_2 - 2x_3 - 3x_4 = 8 \end{cases}$	22	$\begin{cases} 3x_1 + 4x_2 - x_3 + x_4 - 3x_5 = 2, \\ x_1 + 3x_2 - 4x_3 + 5x_4 = 4. \end{cases}$
	$\begin{cases} x_1 + 2x_2 - x_3 + 2x_4 & = 3, \end{cases}$		$\begin{cases} 2x_1 + x_2 - x_3 - 3x_4 + 2x_5 & = 1, \end{cases}$
23	$\int x_1 - 2x_2 + 3x_3 + 2x_4 - x_5 = 4,$	24	$\begin{cases} -2x_1 + x_2 + 3x_3 - 3x_4 + 2x_5 & 1, \\ -2x_1 + x_2 + 3x_3 - 2x_4 - 4x_5 & = 5, \end{cases}$
	$\begin{vmatrix} 2x_1 + x_2 - x_3 + x_4 & = -2, \\ 4x_1 + x_2 + x_3 + 5x_4 - x_5 & = 5. \end{vmatrix}$		$2x_1 + 3x_2 + x_3 - 8x_4 = 7.$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

25	$\begin{cases} x_1 + 2x_2 - x_3 + x_4 - 2x_5 = 2, \\ x_1 - x_2 + x_3 - x_4 + x_5 = -3, \\ 5x_1 + 4x_2 - x_3 + x_4 - 4x_5 = 0. \end{cases}$	26	$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 - x_5 = 1, \\ 3x_1 - 2x_2 + x_3 + 2x_4 + x_5 = 2, \\ -3x_1 + 10x_2 - 8x_3 - x_4 - 5x_5 = -1, \\ 11x_1 - 2x_2 - x_3 + 8x_4 + x_5 = 8, \\ -5x_1 + 14x_2 - 11x_3 - 2x_4 - 7x_5 = -2. \end{cases}$
27	$\begin{cases} 2x_1 - 2x_2 + x_3 + x_4 + 3x_5 = 1, \\ x_1 - 3x_2 + 3x_3 + 2x_4 + x_5 = -2, \\ 4x_1 + 2x_2 + 2x_3 + x_4 + x_5 = -5, \\ -x_1 + 3x_2 + 4x_3 + x_4 + 2x_5 = 2, \\ 10x_1 - 7x_3 - 2x_4 + 8x_5 = 3. \end{cases}$	28	$\begin{cases} 2x_1 - x_2 + x_3 & -x_5 = 2, \\ x_1 - 2x_2 - 2x_3 + x_4 + x_5 = -2, \\ -3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = 2, \\ 7x_1 - x_2 + 6x_3 - 3x_4 - 2x_5 = 8, \\ 2x_1 + 4x_2 + 11x_3 - 2x_4 - 10x_5 = 16. \end{cases}$
29	$\begin{cases} 2x_1 - x_2 - 3x_3 + x_4 - 2x_5 = -1, \\ x_1 - 3x_2 + x_3 - 2x_4 + 3x_5 = 2, \\ 4x_1 - 7x_2 - x_3 + 4x_5 = 3. \end{cases}$	30	$\begin{cases} x_1 - x_2 + x_3 - x_5 = 4, \\ 3x_1 + 2x_2 - 4x_3 + x_4 + x_5 = -1, \\ -2x_1 + 3x_2 + x_3 + x_4 - 2x_5 = 1, \\ -x_1 - 10x_2 + 10x_3 - 3x_4 - 3x_5 = 13, \\ -7x_1 - 7x_2 + 17x_3 - 2x_4 - 9x_5 = 20. \end{cases}$

Bap	Система	Bap	Система
1	$\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 - x_5 = 0, \\ 3x_1 - x_2 - x_3 - 2x_4 + 2x_5 = 0, \\ 2x_1 + 3x_2 + 5x_3 + x_4 - x_5 = 0, \\ 6x_1 + 3x_2 + 6x_3 + 2x_4 = 0. \end{cases}$	2	$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 - x_5 = 0, \\ x_1 - x_2 - 2x_3 - 3x_4 + 2x_5 = 0, \\ 3x_1 + 2x_2 + x_3 + 2x_4 - 3x_5 = 0, \\ 5x_1 + 3x_2 + 2x_3 - 3x_4 - 2x_5 = 0. \end{cases}$
3	$\begin{cases} -x_1 - x_2 + x_3 + x_4 - x_5 &= 0, \\ x_1 - 2x_2 + 3x_3 + 4x_4 - x_5 &= 0, \\ x_1 - 2x_2 - 3x_3 - x_4 + 3x_5 &= 0, \\ 3x_1 - 6x_2 + 3x_3 + 7x_4 + x_5 &= 0. \end{cases}$	4	$\begin{cases} -x_1 - 3x_2 + x_3 + 2x_4 - x_5 = 0, \\ 2x_1 + x_2 - x_3 + 2x_4 - x_5 = 0, \\ 3x_1 + 4x_2 - 5x_3 - x_4 + 2x_5 = 0. \end{cases}$
5	$\begin{cases} x_1 + 2x_2 - x_3 + 2x_4 = 0, \\ x_1 - 2x_2 + 3x_3 + 2x_4 - x_5 = 0, \\ 2x_1 + x_2 - x_3 + x_4 - x_6 = 0, \\ 4x_1 + x_2 + x_3 + 5x_4 - x_5 - x_6 = 0. \end{cases}$	6	$\begin{cases} x_1 - 2x_2 + 3x_3 - x_4 = 0, \\ 2x_1 - x_2 + x_3 + x_4 + x_5 = 0, \\ x_1 - x_2 - 2x_3 - x_4 + x_6 = 0, \\ 4x_1 - 4x_2 + 2x_3 - x_4 + x_5 + x_6 = 0. \end{cases}$
7	$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + 2x_5 = 0, \\ 3x_1 + 2x_2 + x_3 + x_4 - x_5 = 0, \\ -2x_1 + 3x_2 - x_3 + x_4 + 3x_5 = 0, \\ 2x_1 + 6x_2 - 2x_3 + x_4 + 4x_5 = 0. \end{cases}$	8	$\begin{cases} x_1 + 2x_2 - x_3 + x_4 - 2x_5 = 0, \\ x_1 - 3x_2 + x_3 - x_4 + x_5 = 0, \\ x_1 + x_2 - x_3 + x_4 - 2x_5 = 0. \end{cases}$

	$\int x_1 - 2x_2 - x_3 + 3x_4 + x_5 = 0,$		$3x_1 + x_2 - 2x_3 + x_4 + 3x_5 = 0,$
9	$\begin{cases} x_1 - x_2 + x_3 - 2x_4 + 3x_5 = 0, \end{cases}$	10	$\begin{cases} -x_1 + 3x_2 + 2x_3 - x_4 + x_5 = 0, \end{cases}$
	$\begin{bmatrix} -3x_1 + 3x_2 + x_3 + x_5 = 0. \end{bmatrix}$		$3x_1 + x_2 + 4x_3 + x_4 = 0.$
	$\begin{cases} x_1 + 2x_2 - 3x_3 + 2x_4 + x_5 - x_6 = 0, \end{cases}$		$\begin{cases} 2x_1 - x_2 + 3x_3 - x_4 + x_5 = 0, \end{cases}$
11	$\begin{cases} 2x_1 + 4x_2 + 3x_3 - 3x_4 + x_5 = 0, \\ 2x_1 + 4x_2 + 3x_3 - 3x_4 + x_5 = 0, \end{cases}$	12	$\begin{cases} 2x_1 + x_2 + 2x_3 + x_4 + x_5 = 0, \\ x_1 - 4x_2 - 2x_3 + x_4 - x_5 = 0, \end{cases}$
	$\begin{cases} 3x_1 - 2x_2 + x_3 + 2x_4 = 0. \end{cases}$		$\begin{bmatrix} x_1 & 1x_2 & 2x_3 & x_4 & x_5 \\ 5x_1 - 7x_2 + 7x_3 - 2x_4 + 2x_5 & = 0. \end{bmatrix}$
	$2x_1 + 3x_2 + x_3 - x_4 + x_5 = 0,$		
13		14	$\begin{cases} x_1 & x_2 + 2x_3 & 3x_4 + x_5 = 0, \\ 2x_1 - 2x_2 - x_3 + 2x_4 + x_5 = 0, \end{cases}$
	$\begin{cases} 2x_1 + 3x_2 - 3x_3 + x_4 - x_5 = 0, \\ 2x_1 + 3x_2 - 3x_3 + x_4 - x_5 = 0, \end{cases}$		$2x_1 + 6x_2 - 2x_3 + x_4 + 4x_5 = 0.$
	$(x_1 + x_2 - x_3 + x_4 - 2x_5 = 0.$		$(2\lambda_1 + 0\lambda_2 - 2\lambda_3 + \lambda_4 + 4\lambda_5 - 0.$
	$\int -x_1 - 2x_2 + x_3 - x_4 + 2x_5 = 0,$		$\int x_1 + x_2 - 2x_3 - x_4 + 2x_5 = 0,$
15	$\begin{cases} x_1 + 3x_2 + 2x_3 - x_4 - x_5 = 0, \end{cases}$	16	$\int 3x_1 + 2x_2 + x_3 + x_4 - x_5 = 0,$
	$2x_1 + 3x_2 + 5x_3 + x_4 - x_5 = 0,$		$2x_1 + x_2 + 3x_3 + 2x_4 - 3x_5 = 0,$
	$2x_1 + 4x_2 + 8x_3 - x_4 = 0.$		$\left(x_1 + x_2 - 2x_3 - x_4 + 2x_5 = 0.\right)$
17	$\int 2x_1 + 9x_2 - 11x_3 - 15x_4 - 3x_5 = 0,$	10	$\int -x_1 - 2x_2 - 3x_3 + x_4 = 0,$
17	$\left\{ -2x_1 + x_2 + x_3 - x_4 - 3x_5 = 0, \right.$	18	$\begin{cases} 2x_1 - x_2 + 2x_3 - x_5 = 0, \end{cases}$
	$x_1 + 2x_2 - 3x_3 + 4x_4 = 0.$		$\left[-x_1 + 4x_2 - x_3 + x_5 = 0. \right]$
	$\int x_1 + 2x_2 + 3x_3 - x_5 = 0,$		$\int x_1 - 2x_2 + 3x_3 - x_4 = 0,$
19	$\int 2x_2 + x_3 - 2x_4 + x_5 = 0,$	20	$\begin{cases} 4x_1 - 4x_2 + 2x_3 - x_4 + x_5 = 0, \end{cases}$
	$\int x_1 - x_2 + x_4 + x_5 = 0,$		$\left \left(x_1 - x_2 - 2x_3 - x_4 + x_6 = 0. \right) \right $
	$2x_1 - 3x_2 + x_3 + x_4 = 0.$		
	$\left(x_1 + x_2 + 2x_3 + 3x_4 - x_5 = 0,\right.$		$\int x_1 + 2x_2 + 3x_3 - 2x_4 - x_5 = 0,$
21	$\begin{vmatrix} -3x_1 + 2x_2 + 4x_3 & -x_5 = 0, \end{vmatrix}$	22	
21	$\begin{cases} -3x_1 + 2x_2 + 4x_3 & -x_5 = 0, \\ x_1 - x_2 + x_3 + 4x_4 & = 0, \end{cases}$	22	$\begin{cases} 3x_1 + 2x_2 + x_3 + 2x_4 - 3x_5 = 0, \\ 5x_1 + 3x_2 + 2x_3 - 3x_4 - 2x_5 = 0. \end{cases}$
	$2x_1 + 3x_3 + 7x_4 - 2x_5 = 0.$		
			$\int -x_1 - 3x_2 + x_3 + 2x_4 - x_5 = 0,$
22	$x_1 - 2x_2 + 3x_3 + 4x_4 - x_5 = 0,$	24	$\begin{cases} 2x_1 + x_2 - x_3 + 2x_4 - x_5 = 0, \end{cases}$
23		24	$\begin{cases} -x_1 - 3x_2 + x_3 + 2x_4 - x_5 = 0, \\ 2x_1 + x_2 - x_3 + 2x_4 - x_5 = 0, \\ 3x_1 + 4x_2 - 5x_3 - x_4 + 2x_5 = 0. \end{cases}$
	$3x_1 - 6x_2 + 3x_3 + 7x_4 + x_5 = 0.$		1 2 3 4 3
	$2x_1 - x_2 + 4x_3 - 2x_4 = 0,$		$3x_1 + 8x_2 + x_3 + x_4 - x_5 = 0,$
25	$\begin{cases} x_1 + 3x_2 - 3x_3 + x_4 = 0, \end{cases}$	26	$\left \left\{ -x_1 + 2x_2 + 3x_3 - x_4 + x_5 = 0, \right. \right $
	$5x_1 + x_2 + 5x_3 - 3x_4 + 2x_5 = 0.$		$\begin{cases} 3x_1 + 8x_2 + x_3 + x_4 - x_5 = 0, \\ -x_1 + 2x_2 + 3x_3 - x_4 + x_5 = 0, \\ 2x_1 + 3x_2 - x_3 + x_4 - x_5 = 0. \end{cases}$

27	$\begin{cases} 2x_1 + 3x_2 - x_3 + 2x_4 - 3x_5 = 0, \\ x_1 + 4x_2 - x_3 - 3x_4 + 2x_5 = 0, \\ 3x_1 + 7x_2 - 2x_3 - x_4 + x_5 = 0, \\ 2x_1 - x_3 + 7x_4 - 8x_5 = 0. \end{cases}$	28	$\begin{cases} -x_1 - x_2 + x_3 - x_4 = 0, \\ 5x_1 - 6x_2 - x_3 - x_4 = 0, \\ -x_1 + 4x_2 - x_3 + x_4 = 0, \\ 2x_1 - 3x_2 + x_3 + 4x_4 = 0, \\ 3x_1 - 4x_2 - x_3 + 3x_4 = 0. \end{cases}$
29	$\begin{cases} 2x_1 - x_2 + x_3 - x_5 = 0, \\ x_1 - 2x_2 + 3x_4 + x_5 = 0, \\ 4x_1 + x_2 + 3x_3 - 6x_4 - 5x_5 = 0, \\ 7x_1 - 8x_2 + 2x_3 + 9x_4 + x_5 = 0, \\ 5x_1 + 2x_2 + 4x_3 - 9x_4 - 7x_5 = 0. \end{cases}$	30	$\begin{cases} x_1 - 2x_2 + x_3 + 3x_4 - x_5 = 0, \\ 2x_1 + x_2 - 2x_3 + x_4 + x_5 = 0, \\ -3x_1 + 2x_2 + x_3 - x_4 - 3x_5 = 0, \\ 2x_1 - 10x_2 + 6x_3 + 8x_4 - 2x_5 = 0, \\ -5x_1 - 9x_2 + 11x_3 + 8x_4 - 10x_5 = 0. \end{cases}$

Лабораторное задание №5.

Исследование на линейную зависимость строк (столбцов) матрицы и системы векторов. Собственные числа и векторы матрицы

Задание 5.1. Дана матрица А (см. табл. 11). Найти ранг матрицы А при помощи элементарных преобразований. Исследовать на линейную зависимость строки (столбцы) матрицы, выделив линейно независимые строки (столбцы). Представить строки (столбцы) матрицы через линейно независимые строки (столбцы).

<u>Задание 5.2.</u> Выяснить, является линейно зависимой или линейно независимой система векторов $\{a_1, a_2, a_3, a_4\}$ (см. табл. 12). Найти ранг и базис данной системы векторов. Выразить оставшиеся векторы системы через этот базис.

<u>Задание 5.3.</u> Найти собственные числа и соответствующие им собственные векторы матрицы (см. табл. 13).

Bap	Матрица	Bap	Матрица	Bap	Матрица
1	$\begin{bmatrix} -3 & 5 & 2 & 4 \\ 0 & 1 & -2 & 3 \\ 2 & 4 & -6 & 15 \\ -4 & 14 & -2 & 23 \\ 2 & 2 & -2 & 9 \end{bmatrix}$	2	2 2 4 -3 5 4 3 8 5 -1 5 4 10 -2 7 -3 5 -6 -4 1 2 1 4 8 -6	3	\[\begin{array}{cccccccccccccccccccccccccccccccccccc
4	4 -6 5 -3 0 1 -2 3 5 -3 8 -18 13 -15 18 -24 5 -5 12 -24	5	5 2 10 4 1 -3 3 -6 -6 3 -6 4 -12 -5 -1 4 5 8 3 1 -8 1 -16 -10 2	6	1 4 2 0 -3 -3 5 -6 -16 8 2 -14 -3 10 13 -3 10 13

7	$\begin{bmatrix} -4 & 10 & -3 & 1 \\ 0 & 1 & -2 & 3 \\ -3 & 1 & -8 & 30 \\ -11 & 21 & -14 & 32 \\ -3 & -1 & -4 & 24 \end{bmatrix}$	8	-3 2 -6 -4 1 1 3 2 10 -9 10 4 20 3 7 -4 5 -8 -1 -3 4 1 8 14 -10	9	$ \begin{bmatrix} 1 & -4 & -6 \\ 0 & 1 & 1 \\ -3 & 10 & 16 \\ -8 & 2 & 18 \\ 1 & -6 & -7 \\ 1 & -6 & -7 \end{bmatrix} $ $ \begin{bmatrix} -3 & 0 & 7 & 5 \\ 0 & 1 & 2 & 2 \end{bmatrix} $
10	7 -2 -6 8 -2 5 3 -9 1 -15	11	5 3 10 -3 8 -3 4 -6 -7 4 -3 5 -6 -5 2 -2 1 -4 0 -2 [3 0 -4 2 -4]	12	0 1 -2 3 7 5 -6 0 1 5 8 10 7 3 -2 -6
13	-3 1 5 -1 3 7 -2 -6 8 -2 5 3 -9 1 -15	14	2 1 -5 -1 -7 -4 -2 6 -2 10 -5 3 6 -4 0	15	-4 2 -8 3 -7 -5 3 -10 2 -7 2 4 4 4 -2 3 5 6 5 -2 -1 1 -2 -1 0
16	$\begin{bmatrix} 3 & 0 & -4 & 2 & -4 \\ 2 & 1 & -5 & -1 & -7 \\ -4 & -2 & 6 & -2 & 10 \\ -5 & 3 & 6 & -4 & 0 \end{bmatrix}$	17	[-5 0 -3 -13 -3 -4 1 6 -2 4 -3 -2 -10 -16 -6 6 3 -12 0 -18	18	[-3 2 -6 -5 2 6 3 12 -4 10 -4 4 -8 3 -7 -5 5 -10 -6 1 9 1 18 1 8
19	[-5 0 -3 -13 -3 -4 1 6 -2 4 -3 -2 -10 -16 -6 6 3 -12 0 -18		2 0 8 12 8 -5 1 -3 -13 -5 8 -2 4 20 8 -3 3 -15 -21 -21	21	8 2 16 2 6 -3 3 -6 -5 2 -5 4 -10 -8 3 2 5 4 3 -1 -11 1 -22 -7 -4
22	1 0 8 4 -3 -3 2 -3 -5 2 16 16 0 -3 -21 -6 19 19	23	[-3 0 -4 -10 -4 4 1 2 10 0 -4 -2 -6 -14 -2 2 3 12 16 6	24	-4 2 -8 -3 -1 2 3 4 4 -2 4 4 8 4 0 -3 5 -6 -2 -1 6 1 12 7 -1
25	[-3 0 -4 -10 -4 4 1 2 10 0 -4 -2 -6 -14 -2 2 3 12 16 6	26	7 0 -5 9 -5 -9 1 -3 -21 -5 -5 -2 14 4 18 -3 3 -27 -33 -33	27	$\begin{bmatrix} -5 & 2 & -10 & 7 & -12 \\ -3 & 3 & -6 & -9 & 6 \end{bmatrix}$

	$\begin{bmatrix} 7 \\ 0 \end{bmatrix}$	-9 1	-5 -2	-3		$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	-6	-3	-17		-3 -1		-6 2	2 -6	-5
28	-5	-3		-27	29	-3	-1	-2 4	-18	30				3	-9
		-21 -5		-33 -33		1 -3	-13 -3	-2 8	-20 -24		2 2	5 1	4	1 -8	1 10

Bap	Система векторов $\{a_1, a_2, a_3, a_4\}$
1	$\overline{a}_1(1,2,3,-4), \ \overline{a}_2(2,3,-4,1), \ \overline{a}_3(2,-5,8,-3), \ \overline{a}_4(3,-4,1,2)$
2	$\overline{a_1}(3,2,-5,4), \overline{a_2}(3,-1,3,-3), \overline{a_3}(3,5,-13,11), \overline{a_4}(9,3,-7,5)$
3	$\overline{\dot{a}_1}(4,3,-1,1), \ \overline{\dot{a}_2}(2,1,-3,2), \ \overline{\dot{a}_3}(1,-3,0,1), \ \overline{\dot{a}_4}(1,5,2,-2)$
4	$\overline{\dot{a}_1}(2, 1, -2, -1), \ \overline{\dot{a}_2}(-9, 5, -6, 21), \ \overline{\dot{a}_3}(2, -5, -1, 3), \ \overline{\dot{a}_4}(-1, -1, 1, 5)$
5	$\overline{\dot{a}_1}(1, 1, 1, 1), \ \overline{\dot{a}_2}(2, 0, 1, -1), \ \overline{\dot{a}_3}(3, -4, 0, -1), \ \overline{\dot{a}_4}(15, -10, 3, -2)$
6	$\overline{\dot{a}_1}$ (-1, 0, 2, 4), $\overline{\dot{a}_2}$ (2, 3, -1, 2), $\overline{\dot{a}_3}$ (0, 3, 3, 10), $\overline{\dot{a}_4}$ (7, 9, -5, 2)
7	$\overline{\dot{a}_1}(1,-1,2,-1), \ \overline{\dot{a}_2}(2,3,-1,2), \ \overline{\dot{a}_3}(4,1,3,1), \ \overline{\dot{a}_4}(-1,-9,8,-7)$
8	$\overline{\dot{a}_1}(1, 1, -4, -1), \ \overline{\dot{a}_2}(1, 2, -1, 4), \ \overline{\dot{a}_3}(0, 1, 3, 5), \ \overline{\dot{a}_4}(3, 8, 3, 22)$
9	$\overline{\dot{a}_1}(1, 2, -2, 1), \ \overline{\dot{a}_2}(-3, 1, 2, -3), \ \overline{\dot{a}_3}(0, 7, -4, 0), \ \overline{\dot{a}_4}(0, 1, 2, 3)$
10	$\overline{\dot{a}_1}(2,3,0,-2), \ \overline{\dot{a}_2}(1,4,2,10), \ \overline{\dot{a}_3}(0,1,-3,2), \ \overline{\dot{a}_4}(3,5,8,4)$
11	$\overline{\dot{a}_1}(2,-1,3,5), \overline{\dot{a}_2}(4,-3,1,3), \overline{\dot{a}_3}(4,-1,15,17), \overline{\dot{a}_4}(7,-6,-7,0)$
12	$\overline{\dot{a}_1}$ (2, 4, 11, 15), $\overline{\dot{a}_2}$ (-10,-11,-1, 4), $\overline{\dot{a}_3}$ (12, 15, 12, 9), $\overline{\dot{a}_4}$ (1, 2, 3, 0)
13	$\overline{\dot{a}_1}(1, 2, 3, -4), \ \overline{\dot{a}_2}(2, 3, -4, 1), \ \overline{\dot{a}_3}(3, -4, 1, 2), \ \overline{\dot{a}_4}(5, 26, -9, -12)$
14	$\overline{\dot{a}_1}(0, 2, -3, 4), \ \overline{\dot{a}_2}(1, 3, 0, 5), \ \overline{\dot{a}_3}(1, 9, 6, 6), \ \overline{\dot{a}_4}(2, 4, 0, 1)$
15	$\overline{\dot{a}}_1(2, -3, 4, -5), \ \overline{\dot{a}}_2(1, -2, 7, -8), \ \overline{\dot{a}}_3(3, -4, 1, -2), \ \overline{\dot{a}}_4(4, -5, 6, -7)$
16	$\overline{\dot{a}}_1(3, 2, 1, -4), \ \overline{\dot{a}}_2(5, 10, 2, 0), \ \overline{\dot{a}}_3(21, 34, 8, -8), \ \overline{\dot{a}}_4(2, 8, 1, 4)$
17	$\overline{a}_1(2, -1, 3.5), \overline{a}_2(4, -3, 1, 3), \overline{a}_3(3, -2, 3, 4), \overline{a}_4(4, -1, 15, 17)$
18	$\overline{a}_1(3, 6, 18, 0), \overline{a}_2(1, 2, -4, 3), \overline{a}_3(0, 2, 1, 2), \overline{a}_4(2, 2, 1, 1)$
19	$\overline{\dot{a}}_1(2, 3, -4, -1), \ \overline{\dot{a}}_2(1, -2, 1, 3), \ \overline{\dot{a}}_3(5, -3, -1, 8), \ \overline{\dot{a}}_4(3, 8, -9, -5)$
20	$\overline{\dot{a}}_1(19,-12,5,-17), \ \overline{\dot{a}}_2(4,-2,0,8), \ \overline{\dot{a}}_3(2,-1,0,4), \ \overline{\dot{a}}_4(3,-2,1,-5)$
21	$\overline{a}_1(3, 2, -5, 4), \overline{a}_2(3, -1, 3, -3), \overline{a}_3(3, 5, -15, 11), \overline{a}_4(12, -1, 4, -5)$
22	$\overline{\dot{a}}_1(1,-3,0,10), \ \overline{\dot{a}}_2(2,-4,3,5), \ \overline{\dot{a}}_3(-5,11,-6,-20), \ \overline{\dot{a}}_4(1,-1,3,-5)$
23	$\overline{\dot{a}}_1(2,3,5,1), \overline{\dot{a}}_2(1,-1,2,5), \overline{\dot{a}}_3(3,7,8,-3), \overline{\dot{a}}_4(1,-1,1,3)$
24	$\overline{\dot{a}_1}(2,-1,3,-1), \ \overline{\dot{a}_2}(1,2,-3,2), \ \overline{\dot{a}_3}(5,-5,12,-5), \ \overline{\dot{a}_4}(1,-3,6,-3)$

25	$\overline{\dot{a}_1}(4,3,-1,1), \ \overline{\dot{a}_2}(2,1,-3,2), \ \overline{\dot{a}_3}(1,-3,0,1), \ \overline{\dot{a}_4}(1,5,2,-2)$
26	$\overline{\dot{a}_1}(1, 2, -1, -2), \ \overline{\dot{a}_2}(2, 3, 0, -1), \ \overline{\dot{a}_3}(1, 2, 1, 3), \ \overline{\dot{a}_4}(1, 3, -1, 0)$
27	$\overline{\dot{a}_1}(1, 1, 1, 1), \overline{\dot{a}_2}(-1, -1, -1, 1), \overline{\dot{a}_3}(1, 2, 3, -4), \overline{\dot{a}_4}(2, 3, 4, 1)$
28	$\overline{\dot{a}_1}(3, -4, 1, 2), \overline{\dot{a}_2}(1, -1, -1, -1), \overline{\dot{a}_3}(4, -3, 1, 2), \overline{\dot{a}_4}(1, -6, 1, 2)$
29	$\overline{\dot{a}_1}(1,-1,2,-1), \ \overline{\dot{a}_2}(2,3,-1,2), \ \overline{\dot{a}_3}(4,1,3,1), \ \overline{\dot{a}_4}(-1,-9,8,-7)$
30	$\overline{\dot{a}_1}(5, 2, -3, 1), \overline{\dot{a}_2}(4, 1, -2, 3), \overline{\dot{a}_3}(1, 1, -1, -2), \overline{\dot{a}_4}(3, 4, -1, 2)$

Bap	Матрица	Bap	Матрица	Bap	Матрица
1	$ \begin{pmatrix} 2 & -5 & -3 \\ -1 & -2 & -3 \\ 3 & 15 & 12 \end{pmatrix} $	2	$ \begin{pmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix} $	3	$\begin{pmatrix} -1 & 1 & 1 \\ -3 & 2 & 2 \\ -1 & 1 & 1 \end{pmatrix}$
4	$ \begin{pmatrix} 3 & -1 & 1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix} $	5	$ \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -2 & -1 \end{pmatrix} $	6	$ \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix} $
7	$ \begin{bmatrix} 7 & -12 & -2 \\ 3 & -4 & 0 \\ -2 & 0 & -2 \end{bmatrix} $	8	$ \begin{pmatrix} -2 & 8 & 6 \\ -4 & 10 & 6 \\ 4 & -8 & -4 \end{pmatrix} $	9	$ \begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix} $
10	$ \begin{pmatrix} 4 & -2 & 2 \\ 2 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} $	11	$ \begin{pmatrix} -1 & -5 & 2 \\ -1 & -2 & -1 \\ 4 & 5 & 1 \end{pmatrix} $	12	$ \begin{pmatrix} 3 & -6 & 9 \\ 1 & -2 & 3 \\ -3 & 6 & -9 \end{pmatrix} $
13	$ \begin{pmatrix} 7 & -12 & 6 \\ 10 & -19 & 10 \\ 12 & -24 & 13 \end{pmatrix} $	14	$ \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix} $	15	$\begin{pmatrix} 4 & -2 & 0 \\ 8 & -10 & 4 \\ 10 & -14 & 6 \end{pmatrix}$
16	$ \begin{pmatrix} -2 & 2 & 0 \\ -4 & 4 & 0 \\ -4 & 2 & 2 \end{pmatrix} $	17	$ \begin{pmatrix} 7 & 8 & 4 \\ 5 & 6 & 3 \\ -22 & -26 & -13 \end{pmatrix} $	18	$ \begin{pmatrix} -22 & -22 & -16 \\ 16 & 16 & 12 \\ 8 & 8 & 6 \end{pmatrix} $
19	$ \begin{pmatrix} -6 & 9 & -3 \\ -9 & 12 & -3 \\ -9 & 9 & 0 \end{pmatrix} $	20	$ \begin{pmatrix} -6 & -15 & 36 \\ -8 & -17 & 42 \\ -5 & -11 & 27 \end{pmatrix} $	21	$\begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$
22	$ \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix} $	23	$ \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix} $	24	$\begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix}$

25	$ \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix} $	26	$ \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix} $	27	$ \begin{pmatrix} -2 & -4 & -4 \\ 2 & 4 & 2 \\ 0 & 0 & 2 \end{pmatrix} $
28	$ \begin{pmatrix} 17 & -8 & 4 \\ -8 & 17 & -4 \\ 4 & -4 & 11 \end{pmatrix} $	29	$ \begin{pmatrix} 0 & -3 & 6 \\ -2 & -5 & 12 \\ -1 & -3 & 7 \end{pmatrix} $	30	$\begin{pmatrix} 4 & 3 & -1 \\ 2 & 3 & 1 \\ -2 & 3 & 5 \end{pmatrix}$

Лабораторное задание №6.

Численные методы решения систем линейных алгебраических уравнений (схема Гаусса, метод простых итераций)

<u>Задание 6.1.</u> Пользуясь схемой Гаусса, решить СЛАУ (см. табл. 14) с точностью до третьего знака после запятой (все расчеты проводить с точностью до пятого знака после запятой). Сделать проверку полученного решения.

Задание 6.2. Решить СЛАУ из задания 6.1 методом простых итераций с точностью до $\varepsilon = 0,001$ (предварительно привести систему к допустимому для итерации виду, определить число шагов итераций, достаточных для достижения требуемой точности). Сравнить с результатом, полученным в задании 6.1.

<u>Задание 6.3.</u> Решить СЛАУ (табл. 14) методом простых итераций с точностью до $\varepsilon = 0{,}001$ (предварительно определить число шагов итераций, достаточных для достижения требуемой точности).

Bap	СЛАУ (задание 6.1)	СЛАУ (задание 6.3)
	$\begin{cases} 3,2x_1 - 4,2x_2 + 2,1x_3 = 5; \end{cases}$	$\int x_1 = 0,26x_1 - 0,24x_2 + 0,3x_3 + 2,15;$
1	$\begin{cases} 7x_1 + 1, 1x_2 - 2, 2x_3 = 4, 7; \end{cases}$	$\begin{cases} x_2 = 0.05x_1 - 0.1x_2 & -3.88; \end{cases}$
	$0.4x_1 - 1.4x_2 - 0.6x_3 = -1.2.$	$x_3 = 0.1x_1 + 0.09x_2 - 0.16x_3 + 3.62.$
	$\left[-0.4x_1 - 1.1x_2 + 7x_3 = 6.1; \right]$	
2	$\begin{cases} 1,1x_1 - 2,1x_2 + 5,1x_3 = -4,1; \end{cases}$	$\begin{cases} x_2 = -0.09x_1 + 0.2x_2 + 0.11x_3 - 2.22; \end{cases}$
	$\left[-0.7x_1 + 0.8x_2 - 0.3x_3 = -0.2. \right]$	$x_3 = 0.2x_1 + 0.12x_2 + 0.05x_3 + 4.2.$
	$\begin{cases} 2.5x_1 - 3.1x_2 - 4.2x_3 = -7.5; \end{cases}$	$\int x_1 = 0.24x_1 - 0.08x_2 + 0.22x_3 - 3.03;$
3	$\begin{cases} 0.6x_1 + 0.7x_2 - 0.5x_3 = 0.4; \end{cases}$	$\begin{cases} x_2 = -0.16x_1 & -0.14x_3 + 1.5; \end{cases}$
	$-x_1 - 2.1x_2 + 0.8x_3 = 1.1.$	$x_3 = 0.1x_1 + 0.27x_2 + 2.3.$
		$\begin{cases} x_1 = -0.4x_1 & -0.09x_3 - 2.04; \end{cases}$
4	$\begin{cases} 0.4x_1 - 1.4x_2 - 0.6x_3 = -1; \end{cases}$	$\begin{cases} x_2 = -0.1x_1 + 0.26x_2 + 0.23x_3; \end{cases}$
	$3,2x_1 - 4,3x_2 + 2,1x_3 = 5,1.$	$x_3 = 0.12x_1 - 0.14x_2 + 0.21x_3 + 0.12.$
_		$\begin{cases} x_1 = -0.34x_2 - 0.12x_3 - 1.33; \end{cases}$
5	$\left\{-0.7x_1+0.8x_2-0.2x_3=-0.2;\right\}$	$\begin{cases} x_2 = 0.11x_1 - 0.23x_2 - 0.05x_3 + 0.84; \end{cases}$
	$0.4x_1 - 1.1x_2 + 7x_3 = 6.2.$	$x_3 = 0.05x_1 - 0.12x_2 + 0.14x_3 - 1.16.$

	$0.6x_1 + 0.7x_2 - 0.1x_3 = 0.4;$	$x_1 = 0.17x_1 + 0.14x_2 + 0.1x_3;$
6	$\begin{cases} -x_1 - 2.1x_2 + 0.9x_3 = -1.2; \end{cases}$	$\begin{cases} x_2 = -0.15x_1 + 0.23x_2 + 0.14x_3 - 3.32; \end{cases}$
	$2.5x_1 - 3.1x_2 - 5x_3 = -7.5.$	$x_3 = 0.24x_1 - 0.33x_2 - 3.02.$
		$x_1 = 0.17x_1 + 0.1x_2 - 0.08x_3 - 1.71;$
7	$\left\{-1,7x_1+3,5x_2-0,8x_3=2,6;\right\}$	$\begin{cases} x_2 = -0.1x_1 - 0.29x_2 + 0.2x_3 + 0.62; \end{cases}$
	$0.6x_1 + 0.8x_2 - 1.9x_3 = 1.7.$	$x_3 = 0.32x_1 - 0.18x_2 + 0.05x_3 - 0.89.$
	$0.1x_1 + 12x_2 - 0.2x_3 = 0.1;$	$\begin{cases} x_1 = -0.34x_2 - 0.19x_3 - 3.33; \end{cases}$
8	$\begin{cases} 0.2x_1 + 0.7x_2 + 0.1x_3 = -0.1; \end{cases}$	$\begin{cases} x_2 = -0.25x_1 + 0.21x_3 + 0.28; \end{cases}$
	$-0.1x_1 + 0.2x_2 + 0.6x_3 = 0.4.$	$x_3 = 0.29x_1 + 0.23x_2 - 0.09x_3.$
	$0.7x_1 + 0.1x_2 + 0.1x_3 = 0.3;$	$x_1 = 0.19x_1 - 0.07x_2 + 0.28x_3 - 0.81;$
9	$\begin{cases} 0.1x_1 + 0.3x_2 - 0.4x_3 = 0.3; \end{cases}$	$\begin{cases} x_2 = -0.22x_1 + 0.08x_2 & -0.69; \end{cases}$
	$0.2x_1 - 0.3x_2 + 0.1x_3 = -0.1.$	$x_3 = 0.33x_1 - 0.07x_2 + 0.09x_3 + 1.71.$
10	$0.3x_1 - 1.2x_2 + 0.1x_3 = 0.3;$	$\begin{cases} x_1 = -0.13x_1 - 0.14x_2 & -3; \end{cases}$
10	$\left\{-1,4x_1+0,3x_2+0,2x_3=-0,4;\right\}$	$\begin{cases} x_2 = 0.21x_1 + 0.25x_2 - 0.19x_3 + 5; \end{cases}$
	$0.1x_1 + 0.3x_2 + 0.7x_3 = -0.3.$	$x_3 = 0.38x_1 - 0.18x_3 + 1.$
11	$0.2x_1 - 0.4x_2 + 0.14x_3 = -0.17;$	$\int x_1 = 0.07x_1 - 0.08x_2 + 0.11x_3 - 0.51;$
11	$\left\{-0.1x_1 + 0.4x_2 + 0.8x_3 = 0.6;\right\}$	$\begin{cases} x_2 = -0.32x_2 + 0.21x_3 + 1.17; \end{cases}$
	$1,2x_1 - 0,1x_2 - 0,3x_3 = 1,1.$	$x_3 = 0.13x_1 + 0.09x_2 - 0.21x_3 - 1.02.$
12	$-1,2x_1+0,5x_2-0,8x_3=1,2;$	$\int x_1 = 0.13x_1 + 0.24x_2 - 0.1x_3 + 2.4;$
12	$\begin{cases} 0.6x_1 - 0.7x_2 - 0.4x_3 = 0.15; \end{cases}$	$\begin{cases} x_2 = -0.26x_1 + 0.07x_2 - 0.08x_3; \end{cases}$
	$\left[-0.3x_1 + 0.43x_2 - 0.9x_3 = -0.5\right]$	$x_3 = 0.23x_1 - 0.29x_2 - 1.2.$
12	$0.7x_1 - 1.4x_2 - 0.2x_3 = 1.8;$	$\begin{cases} x_1 = 0.18x_1 - 0.03x_2 & -1.2; \end{cases}$
13	$\begin{cases} 0.5x_1 - 0.2x_2 + 0.4x_3 = -0.8; \end{cases}$	$\begin{cases} x_2 = 0.21x_1 + 0.07x_2 - 0.08x_3 + 0.81; \end{cases}$
	$0.9x_1 + 0.4x_2 + 0.6x_3 = 0.6.$	$x_3 = -0.23x_1 - 0.27x_2 + 0.09x_3 - 0.92.$
14	$0.8x_1 + 1.6x_2 - 1.7x_3 = 1.1;$	$x_1 = 0.22x_1 - 0.13x_2 + 0.16x_3 - 1.55;$
14	$\left\{-1,2x_1+2,7x_2-x_3=-0,4;\right\}$	$\begin{cases} x_2 = 0.19x_2 + 0.1x_3 + 3.12; \end{cases}$
	$0.5x_1 - 0.2x_2 - 0.4x_3 = 1.4.$	$x_3 = -0.17x_1 + 0.2x_3 + 3.4.$
15	$\begin{cases} 1,6x_1 + 0,12x_2 + 0,6x_3 = 0,81; \end{cases}$	$x_1 = 0.13x_1 - 0.14x_2 + 0.06x_3 + 1.21;$
15	$\begin{cases} 0.4x_1 + 0.25x_2 - 3.3x_3 = 0.6; \end{cases}$	$\begin{cases} x_2 = 0.12x_1 + 0.23x_2 & -0.72; \end{cases}$
	$0.3x_1 + 0.5x_2 - 1.1x_3 = 0.9.$	$x_3 = 0.08x_1 - 0.12x_2 + 0.23x_3 - 3.58.$
16		$x_1 = 0.09x_1 - 0.1x_2 + 0.18x_3 + 2.04;$
10	$\begin{cases} 0.8x_1 - 0.5x_2 - 2.4x_3 = -0.1; \\ 0.8x_1 - 0.5x_2 - 2.4x_3 = -0.1; \end{cases}$	$\begin{cases} x_2 = 0.28x_1 & -0.19x_3 + 3.2; \end{cases}$
	$2x_1 - 0.1x_2 + 1.3x_3 = 1.5.$	$x_3 = 0.3x_1 + 0.2x_2 + 0.09x_3 - 0.82.$

	$0.1x_1 - 0.4x_2 - 0.3x_3 = -0.1;$	$x_1 = 0.24x_1 + 0.05x_2 + 0.16x_3 + 1.42;$
17	$\begin{cases} -0.04x_1 + 0.34x_2 + 0.05x_3 = 0.31; \end{cases}$	$\begin{cases} x_2 = 0.27x_1 + 0.32x_2 + 0.05x_3 - 0.57; \end{cases}$
	$-0.13x_1 + 1.5x_2 + 0.6x_3 = 0.$	$x_3 = -0.27x_2 - 0.25x_3 + 0.68.$
	$0.6x_1 + 0.1x_2 + 0.1x_3 = 0.3;$	$\int x_1 = 0.32x_1 - 0.1x_3 + 1.4;$
18	$\begin{cases} 0.1x_1 + 0.3x_2 + 0.1x_3 = 0.1; \end{cases}$	$\begin{cases} x_2 = -0.04x_1 + 0.33x_2 + 0.14x_3 + 5.13; \end{cases}$
	$0.2x_1 + 0.21x_2 + 0.71x_3 = 0.42.$	$x_3 = -0.32x_1 + 0.21x_3 + 3.09.$
	$1,2x_1 - 0,2x_2 + 0,3x_3 = -0,6;$	$\begin{cases} x_1 = 0.15x_1 + 0.18x_3 - 0.48; \end{cases}$
19	$\left\{-0.2x_1+1.6x_2-0.1x_3=0.3;\right\}$	$\begin{cases} x_2 = -0.32x_1 - 0.04x_2 - 0.12x_3 + 1.24; \end{cases}$
	$-0.3x_1 + 0.1x_2 - 1.5x_3 = 0.4.$	$x_3 = 0.47x_1 + 0.06x_2 - 0.08x_3 + 1.15.$
• •	$0.3x_1 + 1.2x_2 - 0.2x_3 = -0.6;$	
20	$\left\{-0.1x_1 - 0.2x_2 + 1.6x_3 = 0.3;\right\}$	$\begin{cases} x_2 = -0.27x_1 + 0.23x_2 + 0.1x_3 + 0.99; \end{cases}$
	$\left[-1,5x_1 - 0,3x_2 + 0,1x_3 = 4. \right]$	$x_3 = 0,36x_2 + 0,09x_3 - 1,2.$
21	$\int -1.9x_1 + x_2 - 1.3x_3 = -0.7;$	$\int x_1 = 0.12x_1 + 0.08x_2 + 0.13x_3 - 0.22;$
21	$\left\{ -0.4x_1 - 1.5x_2 + 1.1x_3 = -2.1; \right.$	$\begin{cases} x_2 = 0.07x_1 - 0.38x_2 - 0.05x_3 + 1.98; \end{cases}$
	$1,1x_1 + 1,3x_2 + 1,9x_3 = -2,4.$	$x_3 = 0.13x_1 + 0.22x_2 + 0.11x_3 - 1.3.$
22	$6,4x_1 + 11,8x_2 + 10x_3 = -41,7;$	$x_1 = 0.24x_1 - 0.13x_2 + 0.08x_3 + 0.84;$
22	$\begin{cases} 7,4x_1 + 19x_2 + 11,8x_3 = -49,5; \end{cases}$	$\begin{cases} x_2 = -0.17x_1 + 0.23x_2 + 0.1x_3 + 3.19; \end{cases}$
	$5,8x_1 + 7,4x_2 + 6,4x_3 = -27,7.$	$x_3 = 0.09x_1 - 0.46x_2 - 1.07.$
23	$0.4x_1 + 0.11x_2 + 0.18x_3 = 0.4;$	$x_1 = 0.17x_1 - 0.23x_2 + 0.11x_3 - 1.2;$
23	$\begin{cases} 0.3x_1 - 0.6x_2 - 0.1x_3 = 0.1; \end{cases}$	$\begin{cases} x_2 = 0.38x_1 & -0.08x_3 + 0.33; \end{cases}$
	$0.2x_1 + 0.24x_2 + 0.1x_3 = 0.22.$	$x_3 = 0.22x_1 + 0.18x_2 + 0.05x_3 + 0.48.$
24	$\int -0.2x_1 + 0.3x_2 - 0.4x_3 = 1.2;$	$\begin{cases} x_1 = 0.22x_1 - 0.18x_2 & -4.49; \end{cases}$
27	$\begin{cases} 0.4x_1 - 0.35x_2 + 1.12x_3 = 0.86; \end{cases}$	$\begin{cases} x_2 = 0.15x_1 + 0.25x_2 + 0.1x_3 + 2.39; \\ 0.0000000000000000000000000000000000$
25	$\begin{cases} 1,2x_1 + 0,2x_2 - 0,4x_3 = 1,5; \\ 0.12 & 0.25 \end{cases}$	$\begin{cases} x_1 = 0.13x_1 + 0.22x_2 - 0.13x_3 + 0.11; \\ 0.25 = 0.25 \end{cases}$
23	$\begin{cases} 0.4x_1 + 0.36x_2 + 0.12x_3 = 1.21; \\ 0.2x_1 + 0.2x_2 = 0.1 \end{cases}$	$\begin{cases} x_2 = 0.25x_1 & +0.07x_3 - 0.34; \\ 0.00 & 0.42 & 0.05 \end{cases}$
	$0.3x_1 - 0.4x_2 - 0.2x_3 = 0.1.$	
26	$\begin{cases} 1,3x_1 - 1,2x_2 - 2,3x_3 = 2; \\ 1,2x_1 - 2,2x_2 - 2,3x_3 = 2; \end{cases}$	$\begin{cases} x_1 = 0.11x_1 + 0.22x_2 + 0.26x_3 - 4.4; \\ 0.22x_1 + 0.20x_2 + 0.26x_3 - 4.4; \\ 0.22x_1 + 0.20x_2 + 0.26x_3 - 4.4; \\ 0.22x_1 + 0.20x_2 + 0.26x_3 + 0.26x_3 - 4.4; \\ 0.22x_2 + 0.20x_3 $
	$\begin{cases} -1.2x_1 + 0.9x_2 + 0.3x_3 = 4.1; \\ 2.1x_1 + x_2 + 0.4x_3 = 0.1 \end{cases}$	$\begin{cases} x_2 = -0.23x_1 + 0.28x_2 & -1.39; \\ x_1 = 0.00x_1 & 0.21x_1 + 1.02 \end{cases}$
	$\begin{cases} 3.1x_1 + x_2 + 0.4x_3 = -0.1. \\ 1.6x_1 + 2.18x_2 = 0.72x_1 - 1.15 \end{cases}$	$\begin{cases} x_3 = 0.09x_1 & -0.21x_3 + 1.02. \\ x_4 = 0.09x_1 & 0.22x_1 + 0.22x_2 + 1.24. \end{cases}$
27	$\begin{cases} 1.6x_1 + 2.18x_2 - 0.72x_3 = 1.15; \\ 0.43x - 0.16x + 0.53x = 0.83; \end{cases}$	$\begin{cases} x_1 = 0.08x_1 - 0.23x_2 + 0.32x_3 + 1.34; \\ x_2 = 0.16x_1 - 0.23x_2 + 0.18x_2 - 2.33; \end{cases}$
	$\begin{cases} 0.43x_1 - 0.16x_2 + 0.53x_3 = 0.83; \\ 0.34x_1 + 0.57x_1 - 0.83x_1 = -0.42 \end{cases}$	$\begin{cases} x_2 = 0.16x_1 - 0.23x_2 + 0.18x_3 - 2.33; \\ x_2 = 0.15x_1 + 0.12x_2 + 0.32x_3 + 0.34 \end{cases}$
	$0.34x_1 + 0.57x_2 - 0.83x_3 = -0.42.$	$x_3 = 0.15x_1 + 0.12x_2 + 0.32x_3 + 0.34.$

20	$0.8x_1 - 0.3x_2 + 0.6x_3 = 1.2;$	$\int x_1 = -0.39x_1 + 0.09x_2 - 0.1x_3 + 4.44;$
28	$\begin{cases} 0.4x_1 + 0.57x_2 + 0.32x_3 = 0.84; \end{cases}$	$\begin{cases} x_2 = 0.28x_1 +0.19x_3; \end{cases}$
	$0.5x_1 + 0.6x_2 - 0.3x_3 = 0.3.$	$x_3 = -0.3x_1 - 0.2x_2 - 0.09x_3 + 1.82.$
	$\int -1.1x_1 - 0.3x_2 + 1.2x_3 = 0.6;$	$x_1 = 0.34x_1 + 0.23x_2 - 0.06x_3 + 1.42;$
29	$\left\{-0.4x_1 - 0.9x_2 + 0.1x_3 = 0.66;\right\}$	$\begin{cases} x_2 = 0.15x_1 - 0.26x_2 + 0.09x_3 + 1.6; \end{cases}$
	$0.2x_1 + 3x_2 - 0.64x_3 = -0.38.$	$x_3 = -0.07x_1 - 0.41x_2 + 2.4.$
	$0.7x_1 - 0.8x_2 + 1.1x_3 = 0.7;$	$\int x_1 = 0.29x_1 + 0.14x_2 - 0.2x_3 + 2.14;$
30	$\left\{-1,1x_1-0,1x_2+0,5x_3=0,8;\right\}$	$\begin{cases} x_2 = -0.08x_1 - 0.39x_2 + 3.02; \end{cases}$
	$0.3x_1 + 0.2x_2 - 0.5x_3 = -0.1.$	$x_3 = -0.23x_1 + 0.08x_2 - 0.05x_3 + 1.2.$

Лабораторное задание №7.

Элементы аналитической геометрии на плоскости

<u>Задание 7.1.</u> Даны вершины треугольника MNP (см. табл. 15). Сделать чертёж в прямоугольной декартовой системе координат. Найти:

- 1) длины сторон треугольника MNP;
- 2) общие уравнения сторон (MN), (NP), (MP) и их угловые коэффициенты;
- 3) угол N (через косинус и тангенс);
- 4) общее уравнение высоты (РQ) и её длину;
- 5) общее уравнение медианы (MR), координаты точки S пересечения ее с высотой (PQ);
 - 6) уравнение прямой, проходящей через точку S параллельно стороне MN.

<u>Задание 7.2.</u> Привести общее уравнение кривой второго порядка (см. табл. 16) к каноническому виду методом поворота осей координат системы Оху и последующего параллельного переноса, определить тип этой кривой.

Таблица 15

No	Координаты <i>М, N, P</i>	№	Координаты <i>М, N, Р</i>
1	M(-3, 9), N(2, 0), P(7, 4);	2	M(0, 2), N(10, -1), P(6, 7);
3	M(-4, 6), N(3, -3), P(7, 9);	4	M(1, 8), N(5, 3), P(3, 0);
5	M(-2, -1), N(0, 10), P(4, 12);	6	<i>M</i> (-4, 4), <i>N</i> (5, 5), <i>P</i> (1, -4);
7	M(2, 5), N(10, -4), P(0, -3);	8	<i>M</i> (-1, -3), <i>N</i> (8, 3), <i>P</i> (4, 7);
9	M(-2, 1), N(10, 0), P(5, 7);	10	M(-6, 8), N(1, 1), P(4, 5);
11	M(3, 6), N(10, -3), P(13, 11);	12	M(-10, 5), N(1, -1), P(0, 10);
13	M(-4, 5), N(0, 0), P(9, 7);	14	M(-3, -3), N(9, 1), P(7, 10);
15	M(4, 1), N(-5, -5), P(0, 8);	16	M(7, 4), N(5, -5), P(-3, 1);
17	M(0, 3), N(8, 10), P(4, -3);	18	M(0, 4), N(4; 0), P(7, 7);
19	M(0, -2), N(-4, 0), P(7, 7);	20	M(2, 2), N(6, -2), P(8, 6);
21	M(-3, 0), N(3, 3), P(2, -5);	22	<i>M</i> (3, -5), <i>N</i> (-4, -4), <i>P</i> (2, 5);
23	M(5, 2), N(-4, 4), P(-2, -5);	24	M(-9, 6), N(3, -3), P(7, 4);

25	M(4, 2), N(4, -4), P(6, 8);	26	M(0, 0), N(-4, 6), P(6, 8);
27	M(0, -4), N(10, 9), P(1, 15);	28	M(0, 3), N(10, -6), P(5, 8);
29	M(-5, -3), N(4, -5), P(3, 8);	30	M(-5, 1), N(7, -2), P(1, 7).

Bap	Уравнение кривой второго порядка
1	$x^2 + 8xy + 7y^2 + 14x + 20y + 4 = 0$
2	$3 x^2 + 2 x y + 3 y^2 - 16 x - 16 y + 28 = 0$
3	$-x^2 + 6xy + 7y^2 + 4x + 20y - 20 = 0$
4	$5 x^2 - 8 x y + 5 y^2 + 28 x - 26 y + 32 = 0$
5	$-2x^2 + 4xy + y^2 - 12x - 12 = 0$
6	$7 x^2 + 2 x y + 7 y^2 + 18 x + 30 y + 15 = 0$
7	$-x^2 + 6xy - y^2 - 16x + 16y - 40 = 0$
8	$16 x^2 + 4 x y + 19 y^2 + 76 x + 122 y + 199 = 0$
9	$12 x^2 + 68 x y + 63 y^2 + 160 x + 320 y + 320 = 0$
10	$11 x^2 + 6 x y + 19 y^2 + 62 x + 126 y + 231 = 0$
11	$x^2 + 10 xy + y^2 + 44 x + 28 y + 88 = 0$
12	$25 x^2 - 14 x y + 25 y^2 + 36 x + 36 y - 252 = 0$
13	$-3 x^2 + 8 x y + 3 y^2 - 12 x - 34 y + 18 = 0$
14	$8 x^2 - 4 x y + 5 y^2 + 44 x - 38 y + 65 = 0$
15	$-7 x^2 + 18 x y + 17 y^2 - 10 x + 70 y - 15 = 0$
16	$18 x^2 + 8 x y + 33 y^2 + 64 x - 50 y + 55 = 0$
17	$x^2 + 8xy + y^2 + 28x + 22y + 46 = 0$
18	$14 x^2 - 6 x y + 6 y^2 - 80 x + 60 y + 185 = 0$
19	$-3 x^2 + 10 x y - 3 y^2 + 22 x + 6 y + 37 = 0$
20	$x^2 + xy + y^2 + 5x + 7y + 10 = 0$
21	$-13 x^2 + 28 x y + 8 y^2 + 24 x - 72 y - 48 = 0$
22	$14 x^2 - 4 x y + 11 y^2 + 52 x + 14 y + 29 = 0$
23	$2 x^2 + 6 x y + 2 y^2 - 24 x - 26 y + 57 = 0$
24	$11 x^2 + 14 x y + 11 y^2 - 8 x + 8 y - 28 = 0$
25	$x^2 + 44 x y + 34 y^2 + 42 x + 24 y - 99 = 0$
26	$7 x^2 - 2 x y + 7 y^2 - 46 x + 34 y + 79 = 0$
27	$x^2 + 24 x y + 19 y^2 - 90 x - 80 y = 0$
28	$29 x^2 + 4 x y + 26 y^2 + 120 x + 60 y = 0$
29	$-2x^2 + 12xy + 7y^2 + 16x + 52y + 58 = 0$
30	$3 x^2 - 2 x y + 3 y^2 + 26 x - 14 y + 51 = 0$

Лабораторное задание №8.

Линейные пространства и подпространства линейных пространств. Базис и размерность линейного пространства

<u>Задание 8.1.</u> Исследовать на линейную зависимость систему векторов (систему арифметических векторов, систему многочленов, систему матриц, систему линейных форм, см. табл. 17). В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы.

<u>Задание 8.2.</u> Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений из задания 4.2, написать линейную оболочку пространства решений.

Задание 8.3. Дана система векторов a_1 , a_2 , a_3 в пространстве R^3 (табл. 18).

- 1) Доказать, что она является базисом, написать матрицу T перехода от стандартного базиса e_1 , e_2 , e_3 пространства R^3 к базису a_1 , a_2 , a_3 .
- 2) Написать формулы преобразования координат при преобразовании базиса. Найти координаты вектора b = (3, 5, -8) в базисе a_1 , a_2 , a_3 .

<u>Задание 8.4.</u> Найти базисы и размерности линейных подпространств (табл. 19) $W_1 = L(a_1, a_2, a_3) \subset R^4$, $W_2 = L(b_1, b_2, b_3) \subset R^4$, $W_3 = W_1 + W_2$, $W_4 = W_1 \cap W_2$.

Bap	Система векторов		
1	Система матриц		
	$a_1 = \begin{pmatrix} -1 & 0 & 2 \\ 3 & 4 & 2 \end{pmatrix}, \ a_2 = \begin{pmatrix} 3 & -2 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ a_3 = \begin{pmatrix} -2 & -1 & 3 \\ -1 & 0 & 3 \end{pmatrix}, \ a_4 = \begin{pmatrix} 7 & 1 & -4 \\ 9 & 9 & -5 \end{pmatrix}$		
2	Система многочленов $a_1(x) = 1 + x + x^2 + x^3$, $a_2(x) = 1 + 2x + 3x^2 + 4x^3$,		
	$a_3(x) = 1 - x - 2x^2 - x^3$, $a_4(x) = -3 - 2x - 2x^2 - 4x^3$		
3	Система арифметических векторов $a_1 = (1, -2, -3, 0)$,		
	$a_2 = (1, 2, 3, -5), a_3 = (-2, -1, 0, -3), a_4 = (1, 7, 9, -2)$		
4	Система линейных форм $y_1 = 3x_1 + 2x_2 - 5x_3 + 4x_4$,		
	$y_2 = 3x_1 - x_2 + 3x_3 - 3x_4, y_3 = 3x_1 + 5x_2 - 13x_3 + 11x_4$		
5	Система матриц		
	$a_1 = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}, \ a_2 = \begin{pmatrix} -2 & 3 \\ 0 & 1 \end{pmatrix}, \ a_3 = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}, \ a_4 = \begin{pmatrix} -2 & 6 \\ 7 & -3 \end{pmatrix}$		
6	Система многочленов $a_1(x) = 2 - 2x + x^2 + x^3$, $a_2(x) = x - x^2 - 2x^3$,		
	$a_3(x) = 1 + 3x - 2x^2 + x^3$, $a_4(x) = 6 + x - x^2 + 6x^3$		
7	Система арифметических векторов		
	$\overline{\dot{a}_1}(3, -4, 1, 2), \ \overline{\dot{a}_2}(1, -1, -1, -1), \ \overline{\dot{a}_3}(4, -3, 1, 2), \ \overline{\dot{a}_4}(1, -6, 1, 2)$		
8	Система линейных форм		
	$y_1 = 2x_1 + 3x_2 - 4x_3 - x_4, y_2 = x_1 - 2x_2 + x_3 + 3x_4,$		
	$y_3 = 5x_1 - 3x_2 - x_3 + 8x_4, y_4 = 3x_1 + 8x_2 - 9x_3 - 5x_4$		

•			
9	Система матриц		
	$\begin{bmatrix} a_1 = \begin{pmatrix} -1 & -2 \\ -3 & 4 \end{pmatrix}, \ a_2 = \begin{pmatrix} 2 & -2 \\ 3 & -1 \end{pmatrix}, \ a_3 = \begin{pmatrix} -3 & -2 \\ -11 & 12 \end{pmatrix}, \ a_4 = \begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix}$		
10	Система многочленов $a_1(x) = 2 + 3x + 4x^2 + 5x^3$, $a_2(x) = -1 - x - x^2 - x^3$,		
	$a_3(x) = 1 - x - 2x^2 - x^3, \ a_4(x) = 8 + 4x + 3x^2 + 8x^3$		
11	Система арифметических векторов		
	$\hat{a}_1(1,-1,2,-1), \hat{a}_2(2,3,-1,2), \hat{a}_3(4,1,3,1), \hat{a}_4(-1,-9,8,-7)$		
12	Система линейных форм		
	$y_1 = x_1 + 2x_2 + 3x_3 + x_4, y_2 = 2x_1 + 3x_2 + x_3 + 2x_4,$		
	$y_3 = 3x_1 + x_2 + 2x_3 - 2x_4, y_4 = 4x_2 + 2x_3 + 5x_4$		
13	Система матриц		
	$\begin{vmatrix} a_1 = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}, \ a_2 = \begin{pmatrix} -1 & -2 & 0 \\ 3 & 4 & -1 \end{pmatrix}, \ a_3 = \begin{pmatrix} 2 & -1 & -2 \\ -2 & 0 & 3 \end{pmatrix}, \ a_4 = \begin{pmatrix} -1 & -7 & -5 \\ 4 & 7 & -1 \end{pmatrix}$		
14	Система многочленов $a_1(x) = x^3 - 2x^2 + 3x - 2$, $a_2(x) = 3x^3 - 4x^2 - x - 1$,		
	$a_3(x) = 2x^3 + x^2 - 2x + 1$, $a_4(x) = -x^3 + 3x^2 + x$		
15	Система арифметических векторов		
	$\overline{\dot{a}_1}(4,3,-1,1), \ \overline{\dot{a}_2}(2,1,-3,2), \ \overline{\dot{a}_3}(1,-3,0,1), \ \overline{\dot{a}_4}(1,5,2,-2)$		
16	Система линейных форм		
	$y_1 = 2x_1 + 3x_2 + 5x_3 - 4x_4 + x_5, y_2 = x_1 - x_2 + 2x_3 + 3x_4 + 5x_5,$		
	$y_3 = 3x_1 + 7x_2 + 8x_3 - 11x_4 - 3x_5, y_4 = x_1 - x_2 + x_3 - 2x_4 + 3x_5$		
17	Система матриц		
	$\begin{vmatrix} a_1 = \begin{pmatrix} -1 & -2 & 0 \\ 0 & -1 & 4 \end{vmatrix}, \ a_2 = \begin{pmatrix} 1 & 5 & 6 \\ 3 & -1 & 2 \end{pmatrix}, \ a_3 = \begin{pmatrix} 0 & 2 & 4 \\ -2 & 5 & 3 \end{pmatrix}, \ a_4 = \begin{pmatrix} 0 & 5 & 10 \\ 1 & 3 & 9 \end{pmatrix}$		
	$\begin{bmatrix} a_1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}, \ a_2 = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \ a_3 = \begin{bmatrix} -2 \\ 5 \\ 3 \end{bmatrix}, \ a_4 = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$		
18	Система многочленов $a_1(x) = 6x^3 + 5x^2 - 2x + 16$, $a_2(x) = -x^3 + x^2 + 2x + 3$,		
	$a_3(x) = 2x^3 - x^2 - 4x$, $a_4(x) = 3x^3 + 2x^2 - x + 5$		
19	Система многочленов $a_1(x) = -x^3 + x^2 - x + 1$, $a_2(x) = -2x^3 + 3x^2 + 4x$,		
	$a_3(x) = x^3 - 2x^2 - 4x + 2$, $a_4 = -5x^3 + 8x^2 + 11x - 3$		
20	Система линейных форм		
	$y_1 = 2x_1 - x_2 + 3x_3 + 4x_4 - x_5,$ $y_2 = x_1 + 2x_2 - 3x_3 + x_4 + 2x_5,$		
	$y_3 = 5x_1 - 5x_2 + 12x_3 + 11x_4 - 5x_5, y_4 = x_1 - 3x_2 + 6x_3 + 3x_4 - 3x_5$		
21	Система матриц		
	$ \begin{vmatrix} a_1 = \begin{pmatrix} 0 & 2 & 1 \\ 5 & 3 & -2 \end{pmatrix}, \ a_2 = \begin{pmatrix} 1 & -2 & 0 \\ -2 & -3 & 1 \end{pmatrix}, \ a_3 = \begin{pmatrix} 2 & 1 & 0 \\ 3 & -2 & 1 \end{pmatrix}, \ a_4 = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -2 & 2 \end{pmatrix} $		
22	Система многочленов $a_1(x) = 2x^3 + 4x^2 - 5x - 2$, $a_2(x) = -x^3 + x^2 + x - 1$,		
	$a_3(x) = 2x^3 + 11x^2 - 5x - 5, a_4(x) = x^3 - 2x^2 - 4x$		
23	Система арифметических векторов		

	$\overline{\dot{a}_1}(2,-1,3,-1), \ \overline{\dot{a}_2}(1,2,-3,2), \ \overline{\dot{a}_3}(5,-5,12,-5), \ \overline{\dot{a}_4}(1,-3,6,-3)$		
24	Система линейных форм		
	$y_1 = 4x_1 + 3x_2 - x_3 + x_4 - x_5, $ $y_2 = 2x_1 + x_2 - 3x_3 + 2x_4 - 5x_5,$		
	$y_3 = x_1 - 3x_2 + x_4 - 2x_5,$ $y_4 = x_1 + 5x_2 + 2x_3 - 2x_4 + 6x_5$		
25	Система матриц		
	$a_1 = \begin{pmatrix} 2 & 3 & -1 \\ 3 & 4 & 2 \end{pmatrix}, \ a_2 = \begin{pmatrix} 1 & 2 & 1 \\ 4 & 7 & 5 \end{pmatrix}, \ a_3 = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 3 & 4 \end{pmatrix}, \ a_4 = \begin{pmatrix} 1 & 2 & 0 \\ -2 & 0 & 1 \end{pmatrix}$		
26			
20	Система многочленов $a_1(x) = 2x^3 + x^2 - 2$, $a_2(x) = -2x^3 + x^2 - 3x + 1$,		
	$a_3(x) = 1 + 3x - x^2 + x^3$, $a_4(x) = 6 + x - x^2 + 6x^3$		
27	Система арифметических векторов		
	$\overline{a_1}(3, 6, 18, 0), \overline{a_2}(1, 2, -4, 3), \overline{a_3}(0, 2, 1, 2), \overline{a_4}(2, 2, 1, 1)$		
28	Система линейных форм		
	$y_1 = x_1 + 2x_2 - x_3 + 3x_4 - x_5 + 2x_6, y_2 = 2x_1 - x_2 + 3x_3 - 4x_4 + x_5 - x_6,$		
	$y_3 = 3x_1 + x_2 - x_3 + 2x_4 + x_5 + 3x_6, y_4 = 4x_1 - 7x_2 + 8x_3 - 15x_4 + 6x_5 - 5x_6,$		
	$y_5 = 5x_1 + 5x_2 - 6x_3 + 11x_4 + 9x_6$		
29	Система матриц		
	$a_{1} = \begin{pmatrix} 2 & 0 \\ -4 & 3 \end{pmatrix}, \ a_{2} = \begin{pmatrix} 2 & -4 \\ 5 & 1 \end{pmatrix}, \ a_{3} = \begin{pmatrix} 3 & -6 \\ 2 & 11 \end{pmatrix}, \ a_{4} = \begin{pmatrix} -3 & 2 \\ -4 & 6 \end{pmatrix}$		
30	Система многочленов $a_1(x) = -x^3 + x^2 - x$, $a_2(x) = 2x^2 + x - 3$,		
	$a_3(x) = x^3 + 4x^2 - x - 3, \ a_4(x) = -2x^3 + 8x^2 + x - 9$		

Bap	Система векторов a_1, a_2, a_3
1	$a_1 = (1, 2, -3), a_2 = (0, 1, -2), a_3 = (2, -1, 0)$
2	$a_1 = (1, 3, 0), a_2 = (-1, -4, 2), a_3 = (-3, -4, 1)$
3	$a_1 = (2, 4, 1), a_2 = (0, -2, 1), a_3 = (3, 0, 2)$
4	$a_1 = (-1, 0, 2), a_2 = (4, -2, 0), a_3 = (0, 3, -3)$
5	$a_1 = (1, 2, 4), a_2 = (0, 2, 1), a_3 = (-2, 0, 5)$
6	$a_1 = (4, 2, 1), a_2 = (-1, 2, 0), a_3 = (5, -1, 0)$
7	$a_1 = (2, 1, 0), a_2 = (1, 5, 2), a_3 = (0, -2, 4)$
8	$a_1 = (3, 2, 1), a_2 = (-1, 0, 2), a_3 = (0, 2, 6)$
9	$a_1 = (-3, 2, -1), a_2 = (4, 0, -2), a_3 = (0, -2, 5)$
10	$a_1 = (-1, -2, 1), a_2 = (-4, 1, -3), a_3 = (1, 2, 0)$
11	$a_1 = (-2, 0, -3), a_2 = (1, -1, 0), a_3 = (-1, -2, 4)$
12	$a_1 = (4, 2, 3), a_2 = (-1, -3, -2), a_3 = (0, -1, -2)$

```
a_1 = (-1, -2, -4), a_2 = (1, 3, 0), a_3 = (2, -1, 2)
13
14
      a_1 = (0, -1, -2), a_2 = (1, -2, -3), a_3 = (2, -3, 1)
      a_1 = (1, 1, 4), a_2 = (1, 2, -2), a_3 = (-2, 3, 0)
15
      a_1 = (-2, 1, 3), a_2 = (2, -1, -1), a_3 = (2, -1, 0)
16
17
      a_1 = (-3, 1, 0), a_2 = (4, 3, 2), a_3 = (5, 4, 3)
18
      a_1 = (-4, 2, -3), a_2 = (-1, -2, 3), a_3 = (2, -3, 1)
      \overline{a_1} = (0, 2, 0), a_2 = (1, 0, 3), a_3 = (5, 6, 7)
19
20
      a_1 = (-1, 5, 0), a_2 = (2, 3, 4), a_3 = (-2, 3, -1)
      a_1 = (1, -2, 2), a_2 = (-1, 0, 1), a_3 = (5, -3, -7)
21
      a_1 = (2, 1, 2), a_2 = (1, 0, 3), a_3 = (-4, 1, 2)
22
23
      a_1 = (2, 2, 1), a_2 = (3, -1, 1), a_3 = (4, -2, 3)
      a_1 = (-1, -1, 1), a_2 = (2, 4, 0), a_3 = (0, 3, 1)
24
25
      a_1 = (0, 4, 3), a_2 = (1, 1, 2), a_3 = (2, -1, -2)
26
      a_1 = (2, -2, 1), a_2 = (3, -1, 0), a_3 = (-1, 0, 3)
27
      a_1 = (-1, 1, 0), a_2 = (0, 1, 1), a_3 = (2, 0, 1)
28
      a_1 = (-2, 2, 1), a_2 = (0, 1, 3), a_3 = (2, 0, -2)
29
     a_1 = (3, 0, -4), a_2 = (-2, 1, 2), a_3 = (0, -4, 1)
30
      a_1 = (-2, -2, 1), a_2 = (-3, 1, -1), a_3 = (1, -2, 3)
```

Bap	Подпространства $W_1 = L(a_1, a_2, a_3), W_2 = L(b_1, b_2, b_3)$
1	$W1 := \{ [2 -3 -2 4], [3 4 2 -1], [7 -2 -2 7] \}$
	$W2 := \{ [-9 -8 4 -8], [-4 -11 -6 6], [-17 -30 -8 4] \}$
2	$W1 := \{ [2 -3 -2 4], [7 -2 -2 7], [3 4 2 -1] \}$
	$W2 := \{ [-9 -8 4 -8], [-17 -30 -8 4], [-4 -11 -6 6] \}$
3	$W1 := \{[-13 \ 2 \ -3 \ 13], [-4 \ 5 \ -3 \ 6], [-5 \ -8 \ 3 \ 1]\}$
	$W2 := \{ [15 -12 -8 -12], [27 30 -26 -4], [6 21 -9 4] \}$
4	$W1 := \{[-4 \ 5 \ -3 \ 6], [-5 \ -8 \ 3 \ 1], [-13 \ 2 \ -3 \ 13]\}$
	$W2 := \{ [27 30 -26 -4], [15 -12 -8 -12], [6 21 -9 4] \}$
5	$W1 := \{ [17 -22 2 -15], [4 1 -8 -3], [-3 8 -6 3] \}$
	$W2 := \{[-3 16 4 -10], [11 -6 -10 -9], [36 -34 -34 -17]\}$
6	$W1 := \{[-6 -4 4 -4], [12 -4 9 -2], [-48 4 -19 -2]\}$
	$W2 := \{ [12 -8 -6 -2], [-24 -4 -1 -6], [-84 -4 3 -16] \}$
7	$W1 := \{[-19 \ 18 \ 34 \ -13], [9 \ -8 \ -6 \ 7], [4 \ -3 \ 8 \ 4]\}$
	$W2 := \{ [9 -16 4 4], [-1 2 22 1], [-12 22 62 -1] \}$
8	$a1 := \begin{bmatrix} -4 & 3 & -8 & 3 \end{bmatrix}$ $a3 := \begin{bmatrix} -9 & 8 & 6 & -7 \end{bmatrix}$ $a2 := \begin{bmatrix} 19 & -18 & -34 & 27 \end{bmatrix}$
	b1 := [-9 16 -4 10] b2 := [1 -2 -22 13] b3 := [12 -22 -62 29]
9	a1 := [8 2 6 6] a3 := [-6 -6 -12 6] a2 := [34 22 48 -6]

```
-12 8 4] b2 := [22 10 24 6] b3 := [72 42
                                                                                                                        14]
                      -1 4 -3] a3 := [3 4 -3 6] a2 := [0 -11 18 -21]
       a1 := [2]
10
                       0 3 -4] b2 := [2 -23 \ 40 \ -45] b3 := [-7 -23 \ 43 \ -49]
                      -3 2 1] a3 := [1 -4 9 -4] a2 := [-8 -1 -12 11]
11
       b1 := [-3 \quad -2 \quad -7 \quad 0] \quad b2 := [-18 \quad -5 \quad -22 \quad 23] \quad b3 := [-21 \quad -7 \quad -29 \quad 23]
       a1 := \begin{bmatrix} -3 & -5 & 3 & 6 \end{bmatrix} a3 := \begin{bmatrix} 2 & -6 & 0 & -1 \end{bmatrix} a2 := \begin{bmatrix} -13 & -3 & 9 & 20 \end{bmatrix}
12
       b1 := \begin{bmatrix} -6 & -4 & -11 & -2 \end{bmatrix} b2 := \begin{bmatrix} -29 & -11 & 21 & 46 \end{bmatrix} b3 := \begin{bmatrix} -35 & -15 & 10 & 44 \end{bmatrix}
       a1 := [2 \quad -2 \quad 9 \quad -6] \quad a3 := [4 \quad 4 \quad 6 \quad 4] \quad a2 := [-2 \quad -14 \quad 15 \quad -26]
13
       b1 := \begin{bmatrix} -12 & 3 & 2 & 2 \end{bmatrix} b2 := \begin{bmatrix} -2 & -30 & 39 & -58 \end{bmatrix} b3 := \begin{bmatrix} -14 & -27 & 41 & -56 \end{bmatrix}
       a1 := \begin{bmatrix} 0 & -2 & 7 & 2 \end{bmatrix} a3 := \begin{bmatrix} 2 & 0 & -6 & 4 \end{bmatrix} a2 := \begin{bmatrix} -4 & -6 & 33 & -2 \end{bmatrix}
14
       b1 := [-6 \ 3 \ -2 \ 6] \ b2 := [-8 \ -14 \ 73 \ -2] \ b3 := [-14 \ -11 \ 71 \ 4]
       a1 := \begin{bmatrix} -3 & -4 & 5 & 6 \end{bmatrix} a2 := \begin{bmatrix} 9 & 10 & -9 & 14 \end{bmatrix} a3 := \begin{bmatrix} 3 & 3 & -2 & 10 \end{bmatrix}
15
       b1 := [3 \quad 4 \quad -1 \quad 4] \quad b2 := [12 \quad 14 \quad -14 \quad 8] \quad b3 := [21 \quad 24 \quad -27 \quad 12]
       a1 := \begin{bmatrix} -2 & -15 & 21 & -5 \end{bmatrix} a3 := \begin{bmatrix} 3 & 2 & 14 & 16 \end{bmatrix} a2 := \begin{bmatrix} 8 & 19 & 7 & 37 \end{bmatrix}
16
       b1 := [3 \quad 0 \quad -16 \quad 8] \quad b2 := [10 \quad 34 \quad -14 \quad 42] \quad b3 := [17 \quad 68 \quad -12 \quad 76]
       a1 := \begin{bmatrix} -5 & -3 & -6 & 4 \end{bmatrix} a3 := \begin{bmatrix} 3 & 5 & -5 & 11 \end{bmatrix} a2 := \begin{bmatrix} 11 & 13 & -4 & 18 \end{bmatrix}
17
       b1 := [3 \quad 12 \quad 0 \quad -4] \quad b2 := [16 \quad 16 \quad 2 \quad 14] \quad b3 := [29 \quad 20 \quad 4 \quad 32]
        a1 := [2 \ -1 \ 11 \ -1] \ a3 := [3 \ -2 \ 4 \ -2] \ a2 := [4 \ -3 \ -3 \ -3]
18
        b1 := [3 -8 -2 8] b2 := [2 -2 -14 -2] b3 := [1 4 -26 -12]
        a1 := [3 \ 5 \ -8 \ -8] \ a3 := [-2 \ 6 \ 6 \ -1] \ a2 := [13 \ 3]
                                                                                                  -36 -22]
19
       b1 := [6 -1 11 -8] b2 := [29 11 -80 -52] b3 := [35]
                                                                                                  10 -69 -60]
       a1 := \begin{bmatrix} -2 & -5 & 10 & 4 \end{bmatrix} a3 := \begin{bmatrix} 3 & -4 & 0 & 1 \end{bmatrix} a2 := \begin{bmatrix} -12 & -7 \end{bmatrix}
                                                                                                  30 10]
20
       b1 := [-9 \ 2 \ -9 \ 8] \ b2 := [-26 \ -19 \ 70 \ 24] \ b3 := [-35 \ -17 \ 61 \ 32]
       W1 := \{[17 \ -22 \ 2 \ -15], [4 \ 1 \ -8 \ -3], [-3 \ 8 \ -6 \ 3]\}
21
       W2 := \{ [-3 \quad 16 \quad 4 \quad -10], [11 \quad -6 \quad -10 \quad -9], [36 \quad -34 \quad -34 \quad -17] \}
       W1 := \{ [-6 \quad -4 \quad 4 \quad -4], [12 \quad -4 \quad 9 \quad -2], [-48 \quad 4 \quad -19 \quad -2] \}
22
       W2 := \{ [12 -8 -6 -2], [-24 -4 -1 -6], [-84 -4 3 -16] \}
       W1 := \{[-19 \ 18 \ 34 \ -13], [9 \ -8 \ -6 \ 7], [4 \ -3 \ 8 \ 4]\}
23
       W2 := \{ [9 -16 \ 4 \ 4], [-1 \ 2 \ 22 \ 1], [-12 \ 22 \ 62 \ -1] \}
       a1 := \begin{bmatrix} -4 & 3 & -8 & 3 \end{bmatrix} a3 := \begin{bmatrix} -9 & 8 & 6 & -7 \end{bmatrix} a2 := \begin{bmatrix} 19 & -18 & -34 & 27 \end{bmatrix}
24
       b1 := [-9 \quad 16 \quad -4 \quad 10] \quad b2 := [1 \quad -2 \quad -22 \quad 13] \quad b3 := [12 \quad -22 \quad 13]
                                                                                                               -62 291
       a1 := [8 \ 2 \ 6 \ 6] \ a3 := [-6 \ -6 \ -12 \ 6] \ a2 := [34 \ 22 \ 48]
                                                                                                                -6]
25
       b1 := [-6 \quad -12 \quad 8 \quad 4] \quad b2 := [22 \quad 10 \quad 24 \quad 6] \quad b3 := [72 \quad 42]
       a1 := \begin{bmatrix} -3 & -4 & 5 & 6 \end{bmatrix} a2 := \begin{bmatrix} 9 & 10 & -9 & 14 \end{bmatrix} a3 := \begin{bmatrix} 3 & 3 & -2 & 10 \end{bmatrix}
26
       b1 := [3 \quad 4 \quad -1 \quad 4] \quad b2 := [12 \quad 14 \quad -14 \quad 8] \quad b3 := [21 \quad 24 \quad -27 \quad 12]
       a1 := \begin{bmatrix} -2 & -15 & 21 & -5 \end{bmatrix} a3 := \begin{bmatrix} 3 & 2 & 14 & 16 \end{bmatrix} a2 := \begin{bmatrix} 8 & 19 & 7 & 37 \end{bmatrix}
27
       b1 := [3 \quad 0 \quad -16 \quad 8] \quad b2 := [10 \quad 34 \quad -14 \quad 42] \quad b3 := [17 \quad 68 \quad -12 \quad 76]
       a1 := \begin{bmatrix} -5 & -3 & -6 & 4 \end{bmatrix} a3 := \begin{bmatrix} 3 & 5 & -5 & 11 \end{bmatrix} a2 := \begin{bmatrix} 11 & 13 & -4 & 18 \end{bmatrix}
28
       b1 := [3 \quad 12 \quad 0 \quad -4] \quad b2 := [16 \quad 16 \quad 2 \quad 14] \quad b3 := [29 \quad 20 \quad 4 \quad 32]
        a1 := [2 \ -1 \ 11 \ -1] \ a3 := [3 \ -2 \ 4 \ -2] \ a2 := [4 \ -3 \ -3 \ -3]
29
        b1 := [3 -8 -2 8] b2 := [2 -2 -14 -2] b3 := [1 4 -26 -12]
        a1 := [3 \ 5 \ -8 \ -8] \ a3 := [-2 \ 6 \ 6 \ -1] \ a2 := [13 \ 3 \ -36 \ -22]
30
       b1 := [6 \ -1 \ 11 \ -8] \ b2 := [29 \ 11 \ -80 \ -52] \ b3 := [35 \ 10 \ -69 \ -60]
```

Лабораторное задание №9.

Евклидовые пространства. Скалярное произведение. Процесс ортогонализации. Ортогональные дополнения

<u>Задание 9.1.</u> Проверить, является ли система векторов a_1 , a_2 , a_3 (см. табл. 20) базисом в пространстве R^3 . Если система является базисом, то построить по этой системе ортонормированный базис (провести процесс ортогонализации Шмидта).

Задание 9.2. Проверить ортогональность векторов a_1 , a_2 (см. табл. 21) пространства R^4 и дополнить эти векторы до ортогонального базиса.

<u>Задание 9.3.</u> Подпространство $W^=$ линейного пространства R^4 задано в виде однородной системы линейных алгебраических уравнений (см. табл. 22). Найти ортогональную проекцию $x^= \in W^=$ вектора $a = (-2, 1, 0, -3) \in R^4$ на подпространство $W^=$ и его ортогональную составляющую $y^\perp \in W^\perp$.

Bap	Система векторов a_1, a_2, a_3
1	$a_1 = (1, -2, 2), a_2 = (-1, 0, 1), a_3 = (5, -3, -7)$
2	$a_1 = (2, 1, 2), a_2 = (1, 0, 3), a_3 = (-4, 1, 2)$
3	$a_1 = (-1, 1, 0), a_2 = (0, 1, 1), a_3 = (2, 0, 1)$
4	$a_1 = (-3, \sqrt{8}, \sqrt{8}), a_2 = (5, -1, 1), a_3 = (\sqrt{2}, 1, 1)$
5	$a_1 = (2, 2, 1), a_2 = (3, -1, 1), a_3 = (4, -2, 3)$
6	$a_1 = (-1, -1, 1), a_2 = (2, 4, 0), a_3 = (0, 3, 1)$
7	$a_1 = (0, 4, 3), a_2 = (1, 1, 2), a_3 = (2, -1, -2)$
8	$a_1 = (2, -2, 1), a_2 = (3, -1, 0), a_3 = (-1, 0, 3)$
9	$a_1 = (-1, \sqrt{2}, 1), a_2 = (0, -1, 2), a_3 = (3, 0, -1)$
10	$a_1 = (-2, 2, 1), a_2 = (0, 1, 3), a_3 = (2, 0, -2)$
11	$a_1 = (-\sqrt{3}, \sqrt{3}, \sqrt{3}), a_2 = (2, 0, -1), a_3 = (3, -1, 2)$
12	$a_1 = (3, 0, -4), a_2 = (-2, 1, 2), a_3 = (0, -4, 1)$
13	$a_1 = (1, \sqrt{7}, 1), a_2 = (2, -2, -1), a_3 = (-2, 0, 1)$
14	$a_1 = (1, -\sqrt{2}, 1), a_2 = (3, 1, 0), a_3 = (-1, 2, 1)$
15	$a_1 = (3, \sqrt{8}, -\sqrt{8}), a_2 = (0, 1, 2), a_3 = (3, -1, 0)$
16	$a_1 = (0, -1, \sqrt{3}), a_2 = (-\sqrt{2}, 0, \sqrt{2}), a_3 = (0, \sqrt{2}, \sqrt{2})$
17	$a_1 = (2, -2, -1), a_2 = (0, 0, 1), a_3 = (4, 2, -3)$
18	$a_1 = (1, 1, 1), a_2 = (1, 1, 2), a_3 = (-1, 2, 3)$

19	$a_1 = (-2, -2, 1), a_2 = (-3, 1, -1), a_3 = (1, -2, 3)$
20	$a_1 = (1, -2, -1), a_2 = (0, 1, -1), a_3 = (2, 3, -2)$
21	$a_1 = (1, 1, 4), a_2 = (1, 2, -2), a_3 = (-2, 3, 0)$
22	$a_1 = (-2, 1, 3), a_2 = (2, -1, -1), a_3 = (2, -1, 0)$
23	$a_1 = (-3, 1, 0), a_2 = (4, 3, 2), a_3 = (5, 4, 3)$
24	$a_1 = (-4, 2, -3), a_2 = (-1, -2, 3), a_3 = (2, -3, 1)$
25	$a_1 = (0, 2, 0), a_2 = (1, 0, 3), a_3 = (5, 6, 7)$
26	$a_1 = (-1, 5, 0), a_2 = (2, 3, 4), a_3 = (-2, 3, -1)$
27	$a_1 = (0, 4, 3), a_2 = (1, 1, 2), a_3 = (2, -1, 0)$
28	$a_1 = (-2, 1, -2), a_2 = (4, 3, -2), a_3 = (1, 0, 2)$
29	$a_1 = (\sqrt{2}, \sqrt{2}, 0), a_2 = (0, -1, \sqrt{3}), a_3 = (4, -1, \sqrt{3})$
30	$a_1 = (-\sqrt{3}, 1, \sqrt{5}), a_2 = (1, \sqrt{3}, 0), a_3 = (0, \sqrt{5}, 1)$

Bap	Векторы a_1, a_2	Bap	Векторы a_1, a_2
1	$a_1(-4, -2, 1, 3), a_2(-2, 3, -2, 0)$	2	$a_1(2, 1, 4, 0), a_2(-2, 0, 1, 3)$
3	$a_1(2, -1, 0, 1), a_2(-1, 3, -1, 5)$	4	$a_1(3, -1, 3, 1), a_2(2, 4, 0, -2)$
5	$a_1(0, 3, 4, -1), a_2(2, 2, -1, 2)$	6	$a_1(0, -2, 3, 3), a_2(1, 3, 4, -2)$
7	$a_1(1, 2, 3, -3), a_2(-2, 1, -4, -4)$	8	$a_1(3, 4, 5, -4), a_2(-4, 0, 4, 2)$
9	$a_1(0, 3, -2, -1), a_2(-3, 2, 4, -2)$	10	$a_1(3, 2, 1, 2), a_2(-2, 0, 6, 0)$
11	$a_1(-2, 0, -1, 2), a_2(-2, 1, 2, -1)$	12	$a_1(-1, 2, 0, 2), a_2(2, 4, -3, -3)$
13	$a_1(0, -3, 1, -2), a_2(2, 1, 5, 1)$	14	$a_1(5,-2, 6,-1), a_2(-4, 1, 3,-4)$
15	$a_1(-3, 3, 1, 0), a_2(2, 0, 6, 4)$	16	$a_1(0,-2,-3,-5), a_2(-3, 1,-4,2)$
17	$a_1(10, 2, 3, -3), a_2(-0.2, 10, -4, 2)$	18	$a_1(-3, 5, 2, 1), a_2(2, 0, 4, -2)$
19	$a_1(-1, 1/2, 3/2, 2), a_2(1/2, 1, -2, 3/2)$	20	$a_1(-1, -2, -3, 7), a_2(2, 0, 4, 2)$
21	$a_1(1, 0, 3, 4), a_2(-2, 3, -2, 2)$	22	$a_1(-4, 0, 4, 2), a_2(3, 4, 5, -4)$
23	$a_1(-2, 1, -4, -4), a_2(1, 2, 3, -3)$	24	$a_1(-1, 3, 3, -2), a_2(2, 1, 0, 1/2)$
25	$a_1(\sqrt{2}, 0, 1, -4), a_2(0, 1, -2, -1/2)$	26	$a_1(2, 3, -1, -3), a_2(\sqrt{2}, 0, 2\sqrt{2}, 0)$
27	$a_1(-2, 3, 2, 1), a_2(4, 3, -1, 1)$	28	$a_1(0, 3, 4, -5), a_2(-1, -3, 1, -1)$
29	$a_1(3, -4, 1, 0), a_2(-5, -3, 3, 2)$	30	$a_1(5, -6, 7, 1), a_2(-2, -3, -1, -1)$

Bap	Система	Bap	Таолица 22 Система
1	$(x_1 + 2x_2 - x_3 = 0,$	2	$(x_1 - x_2 + x_4 = 0,$
	$\begin{cases} x_1 + x_2 - x_4 = 0. \end{cases}$		$\begin{cases} -x_1 + 2x_2 - x_3 = 0. \end{cases}$
3	$\int x_1 + x_2 - x_4 = 0,$	4	$\int 2x_1 - x_2 + x_3 = 0,$
	$\begin{cases} 2x_1 - x_3 + 2x_4 = 0. \end{cases}$		$\begin{cases} x_1 + 2x_2 - x_3 + x_4 = 0. \end{cases}$
5	$\int x_2 - x_3 - 2x_4 = 0,$	6	$\int x_1 - x_2 - 2x_4 = 0,$
	$\int x_1 + x_2 - x_4 = 0.$		$2x_1 + x_3 - x_4 = 0.$
7	$\int x_1 - x_2 + x_4 = 0,$	8	$\int x_1 - x_2 + x_3 + x_4 = 0,$
	$2x_1 - 2x_2 + x_3 = 0.$		$\left(-x_1 - x_3 + 2x_4 = 0. \right)$
9	$\int x_1 + x_2 - x_4 = 0,$	10	$\int -x_1 + x_2 - 2x_3 = 0,$
	$x_2 - 2x_3 + x_4 = 0.$		$2x_1 - x_2 + 2x_4 = 0.$
11	$\int 2x_1 - x_2 - x_4 = 0,$	12	$\int x_1 + 2x_2 - 2x_3 + x_4 = 0,$
	$(x_1 - 3x_2 + x_3 = 0.$		$3x_1 - x_2 + x_3 + 3x_4 = 0.$
13	$\int x_2 - 2x_3 + x_4 = 0,$	14	$\int 3x_1 + x_2 - 2x_3 = 0,$
	$(x_1 - 3x_2 - x_3 + 2x_4 = 0.$		$\left[-x_1 + 2x_2 - x_3 + 2x_4 = 0. \right]$
15	$\int x_1 + x_2 - x_3 + 2x_4 = 0,$	16	$\int 2x_1 - 3x_3 = 0,$
	$2x_1 - x_2 - x_3 + 3x_4 = 0.$		$(x_1 - 2x_2 - 3x_3 + x_4 = 0.$
17	$\int x_1 - x_2 + x_3 - x_4 = 0,$	18	$\int -x_2 - 3x_3 + 2x_4 = 0,$
	$\left[-x_1 + 2x_2 - x_3 + 2x_4 = 0. \right]$		$(x_1 - 5x_2 - x_4 = 0.$
19	$\int 3x_1 - 4x_3 - 2x_4 = 0,$	20	$ \begin{cases} -3x_1 + 2x_3 - x_4 = 0, \end{cases} $
	$(x_1 - x_2 + 3x_3 - x_4 = 0.$		$(2x_1 - x_2 + x_3 = 0.$
21	$\begin{cases} 2x_1 - 3x_2 + x_3 - 2x_4 = 0, \end{cases}$	22	$\int 3x_1 - 5x_2 + x_4 = 0,$
	$\int x_1 + x_2 + 3x_3 = 0.$		$\int -2x_1 + x_2 - 3x_3 + 4x_4 = 0.$
23	$ \begin{cases} -x_1 + 2x_2 + 3x_3 - 4x_4 = 0, \end{cases} $	24	$\begin{cases} 3x_1 & x_3 - 2x_4 = 0, \end{cases}$
	$3x_1 + 5x_2 - x_3 + x_4 = 0.$		$2x_2 - x_3 + 4x_4 = 0.$
25	$\begin{cases} x_1 - 4x_2 + 2x_3 - 3x_4 = 0, \end{cases}$	26	$\begin{cases} -x_2 + 3x_3 - 2x_4 = 0, \end{cases}$
	$2x_1 + 3x_2 - x_3 = 0.$		$\left(x_1 + 3x_2 - 2x_3 + x_4 = 0.\right)$
27	$\begin{cases} -x_1 + 2x_2 - 4x_3 + x_4 = 0, \end{cases}$	28	$\begin{cases} 3x_1 + 2x_2 - 4x_3 + x_4 = 0, \end{cases}$
	$(x_1 - 3x_2 - 5x_3 + 2x_4 = 0.$	_	$-x_2 - 2x_3 + 3x_4 = 0.$
29	$\begin{cases} -2x_1 + 3x_2 - 4x_3 + x_4 = 0, \end{cases}$	30	$\begin{cases} 3x_1 + 4x_2 - x_3 & = 0, \end{cases}$
	$\int 3x_1 - 2x_2 - x_3 + x_4 = 0.$		$\int -2x_1 - x_2 - 3x_3 + x_4 = 0.$

Лабораторное задание №10. Линейные операторы, их структуры.

Собственные числа и собственные векторы матрицы линейного оператора <u>Задание 10.1.</u>

- 1) Доказать, что соответствие $\mathbf{A}: R^3 \to R^3$ (см. табл. 23), переводящее вектор $\mathbf{x} = (x_1, x_2, x_3)$ в вектор $\mathbf{A}(x) = y$, является линейным оператором. Найти матрицу $A = (a_{ij})_{i,j=1}^3$ этого оператора в стандартном базисе $B = (e_1, e_2, e_3)$ линейного пространства R^3 . Описать его структуру (образ, ранг, ядро, дефект, найти базисы образа и ядра оператора).
- 2) Найти матрицу $A' = \left(a_{ij}\right)_{i,j=1}^3$ оператора **A** в новом базисе $B' = \left(e_1', e_2', e_3'\right)$. Проверить выполнимость равенства определителей матриц оператора в разных базисах.
- 3) Найти собственные числа и соответственные собственные векторы оператора $\bf A$ в базисах $B = (e_1, e_2, e_3)$ и $B' = (e_1', e_2', e_3')$.

<u>Задание 10.2.</u>

- 1) Найти собственные числа и соответственные собственные векторы линейного оператора $\mathbf{A}: R^3 \to R^3$, заданного матрицей A (см. табл. 24) в базисах $B = \left(e_1, e_2, e_3\right)$ и $B' = \left(e_1', e_2', e_3'\right)$;
- 2) Выяснить, можно ли матрицу А привести к диагональному виду переходом к новому базису. Если это можно сделать, то указать новый базис.

 Вар
 Соответствие $A: R^3 \to R^3$, базис $B' = \left(e_1', e_2', e_3'\right)$

 1
 $A(x) = (x_1 + 2x_2, -x_1 + 2x_3, 2x_1 + 6x_2 + 2x_3)$,

 $e_1' = e_1 + e_2$, $e_2' = -e_1 + 2e_2$, $e_3' = -e_3$

 2
 $A(x) = \left(-x_1 + x_2 - x_3, -x_1 + 3x_2 - 4x_3, x_1 + x_2 - 2x_3\right)$,

 $e_1' = -e_2$, $e_2' = 2e_1 - e_3$, $e_3' = e_1 + e_2$

 3
 $A(x) = \left(-x_1 - x_2 - x_3, x_1 + 5x_2 - x_3, x_1 + 3x_2\right)$,

 $e_1' = 2e_1 - e_2$, $e_2' = -e_1$, $e_3' = e_1 - e_3$

 4
 $A(x) = \left(-3x_1 + x_2 - x_3, -4x_1 + x_2 - 2x_3, x_1 + x_3\right)$,

 $e_1' = -e_1 - e_2$, $e_2' = e_1 - 2e_2$, $e_3' = e_2 - e_3$

 5
 $A(x) = \left(x_1 - x_2 - x_3, -2x_1 + x_2 - x_3, x_1 - 2x_2 - 4x_3\right)$,

 $e_1' = -e_1 + e_3$, $e_2' = -2e_2 + e_3$, $e_3' = e_1 - e_2$

 6
 $A(x) = \left(2x_1 - 3x_3, -x_1 + x_2, 5x_1 + x_2 - 9x_3\right)$,

 $e_1' = 3e_1$, $e_2' = -2e_2$, $e_3' = e_1 - e_2 + 2e_3$

7	$\mathbf{A}(x) = (2x_1 + 3x_2 - x_3, 3x_1 + 4x_2 - x_3, x_1 + x_2),$
	$e_1' = -2e_2 + e_3, \ e_2' = -e_1, \ e_3' = 3e_1 - 2e_3$
8	$\mathbf{A}(x) = (-x_1 + 7x_2 - 8x_3, -x_1 + x_2, 3x_2 - 4x_3),$
	$e_1' = -e_1 - e_3, \ e_2' = -e_2 + 2e_3, \ e_3' = e_1 + 2e_2$
9	$\mathbf{A}(x) = (5x_1 + x_2 - 6x_3, x_1 + 2x_2 - 3x_3, x_1 - x_2),$
	$e_1' = 2e_1 - 2e_2, e_2' = e_1 + 2e_3, e_3' = e_1 + e_2 - e_3$
10	$\mathbf{A}(x) = (-x_1 + x_2 - x_3, 5x_2 - x_2 - 2x_3, 2x_1 - 3x_2),$
	$e_1' = -e_3, \ e_2' = 2e_1 + 3e_2, \ e_3' = -e_1 - 3e_2 - e_3$
11	$\mathbf{A}(x) = (3x_1 - 5x_2 + x_3, -2x_1 + 3x_2, x_1 - 2x_2 + x_3),$
	$e_1' = e_1 + e_2 + e_3, e_2' = -2e_1 + e_2, e_3' = -e_3$
12	$\mathbf{A}(x) = (x_1 - 3x_2 - 4x_3, 2x_2 - x_3, 3x_1 - 7x_2 - 13x_3),$
	$e_1' = e_1 - 2e_2, \ e_2' = 2e_1 - e_3, \ e_3' = e_1 - e_3$
13	$\mathbf{A}(x) = (x_1 - 2x_2, -x_1 + x_2 - x_3, -x_1 - 2x_2 - 4x_3),$
	$e_1' = e_3, \ e_2' = e_2 + e_3, \ e_3' = e_1 + 2e_2 + 3e_3$
14	$\mathbf{A}(x) = (2x_1 + 2x_2 - 3x_3, x_1 + 2x_2, x_1 - 3x_3),$
	$e_1' = -e_1 - e_2 - e_3, e_2' = -e_1 - e_2, e_3' = e_1 - 2e_3$
15	$\mathbf{A}(x) = (-3x_1 + 2x_2 - 6x_3, -4x_1 + 5x_2 - 2x_3, -x_1 + 3x_2 + 4x_3),$
	$e_1' = -e_1 + 2e_2, e_2' = -e_1 + 2e_3, e_3' = -e_2$
16	$\mathbf{A}(x) = (x_1 + x_2 - 2x_3, -x_1 + 2x_2 - 3x_3, x_1 + 4x_2 - 7x_3),$
	$e_1' = 2e_1 + e_2, \ e_2' = 3e_1 - e_3, \ e_3' = -e_3$
17	$\mathbf{A}(x) = (3x_1 + 4x_2 - 5x_3, x_1 + 8x_2 - 4x_3, -2x_1 + 4x_2 + x_3),$
	$e_1' = -2e_1 + e_2, e_2' = e_1, e_3' = 2e_2 - 3e_3$
18	$\mathbf{A}(x) = (3x_1 - 2x_2 + x_3, 2x_1 - 3x_2 + x_3, 12x_1 - 13x_2 + 5x_3),$
	$e_1' = -2e_1 + 3e_2, e_2' = -2e_1 + e_2 + 2e_2, e_3' = 2e_1 - e_2$
19	$\mathbf{A}(x) = (-3x_1 - 2x_2 + 4x_3, 4x_1 - 2x_2 + x_3, 11x_1 - 2x_2 - 2x_3),$
	$e_1' = 3e_1 - e_2 + 2e_3, e_2' = e_1 - 2e_2 + 3e_2, e_3' = e_1 - 2e_2$
20	$\mathbf{A}(x) = (x_1 + 3x_2 - 4x_3, 3x_2 - x_3, 3x_1 + 12x_2 - 13x_3),$
	$e_1' = -e_1 + 2e_2, e_2' = -2e_2 - 3e_3, e_3' = 3e_1 - e_3$
21	$\mathbf{A}(x) = (x_1 + 3x_2 - 4x_3, 3x_2 - x_3, 3x_1 + 12x_2 - 13x_3),$
	$e_1' = 2e_1 - e_2, \ e_2' = -e_1, \ e_3' = e_1 - e_3$
22	$\mathbf{A}(x) = (-x_1 + 2x_2 - 5x_3, 4x_1 - 2x_2 + x_3, 2x_1 + 2x_2 - 9x_3),$
	$e'_1 = e_1 - 2e_2, e'_2 = -e_1 - e_2, e'_3 = -e_2 + e_3$

23	$\mathbf{A}(x) = (3x_1 + x_2 - 3x_3, 7x_1 - 2x_2 + 3x_3, -4x_1 + 3x_2 - 6x_3),$
	$e_1' = e_1 + e_3, e_2' = -2e_2 + e_3, e_3' = e_1 - e_2$
24	$\mathbf{A}(x) = (11x_1 + 6x_2 - 8x_3, 3x_1 - 4x_2 + 6x_3, 7x_1 + x_2 - x_3),$
	$e_1' = 2e_1, \ e_2' = -3e_2, \ e_3' = e_1 - 2e_2 + 2e_3$
25	$\mathbf{A}(x) = (-3x_1 + 2x_2 - 4x_3, 3x_1 - 2x_2 + 4x_3, 3x_1 + x_2 - 5x_3),$
	$e_1' = -2e_2 + e_3, e_2' = 3e_1 - 2e_3, e_3' = -e_1$
26	$\mathbf{A}(x) = (-x_1 + 2x_2 - 5x_3, 4x_1 - 2x_2 + x_3, 2x_1 + 2x_2 - 9x_3),$
	$e_1' = e_1 + 2e_2, \ e_2' = -e_1 - e_3, \ e_3' = -e_2 + 2e_3$
27	$\mathbf{A}(x) = (-3x_1 + 4x_2 - x_3, x_1 + 4x_2 + 5x_3, -2x_1 + 8x_2 + 4x_3),$
	$e_1' = e_1 + e_2 - e_3, e_2' = e_1 + 2e_3, e_3' = 3e_1 - 2e_2$
28	$\mathbf{A}(x) = (10x_1 + 5x_2 - 9x_3, 2x_1 + 3x_2 - 5x_3, 4x_1 + x_2 - 2x_3),$
	$e_1' = e_1 + 2e_3, \ e_2' = -2e_1 + 2e_2, \ e_3' = e_1 + e_2 - 3e_3$
29	$\mathbf{A}(x) = (-3x_1 + x_2 - x_3, 2x_1 - x_2 + 4x_3, -5x_1 + 2x_2 - 5x_3),$
	$e_1' = -e_1 - 3e_2 - e_3, e_2' = 2e_1 + 3e_2, e_3' = -e_2$
30	$\mathbf{A}(x) = (-4x_1 + 2x_2, 3x_1 - 3x_3, -x_1 + 2x_2 - 3x_3),$
	$e_1' = 2e_1 + 3e_2 - e_3, e_2' = -e_1 + e_2, e_3' = e_1 - 2e_3$

Bap	Матрица	Bap	Матрица	Bap	Матрица
1	$ \begin{pmatrix} -2 & 2 & 0 \\ -4 & 4 & 0 \\ -4 & 2 & 2 \end{pmatrix} $	2	$ \begin{pmatrix} 2 & -5 & -3 \\ -1 & -2 & -3 \\ 3 & 15 & 12 \end{pmatrix} $	3	$ \begin{pmatrix} 3 & -6 & 9 \\ 1 & -2 & 3 \\ -3 & 6 & -9 \end{pmatrix} $
4	$\begin{pmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix}$	5	$ \begin{pmatrix} 3 & -1 & 1 \\ -2 & 4 & -2 \\ -2 & 2 & 0 \end{pmatrix} $	6	$ \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix} $
7	$ \begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ -2 & -2 & -1 \end{pmatrix} $	8	$ \begin{pmatrix} 7 & -12 & -2 \\ 3 & -4 & 0 \\ -2 & 0 & -2 \end{pmatrix} $	9	$ \begin{pmatrix} 4 & -2 & 0 \\ 8 & -10 & 4 \\ 10 & -14 & 6 \end{pmatrix} $
10	$ \begin{pmatrix} -2 & 8 & 6 \\ -4 & 10 & 6 \\ 4 & -8 & -4 \end{pmatrix} $	11	$ \begin{pmatrix} 4 & -2 & 2 \\ 2 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} $	12	$ \begin{pmatrix} -2 & -4 & -4 \\ 2 & 4 & 2 \\ 0 & 0 & 2 \end{pmatrix} $

13	$ \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix} $	14	$ \begin{pmatrix} 7 & -12 & 6 \\ 10 & -19 & 10 \\ 12 & -24 & 13 \end{pmatrix} $	15	$\begin{pmatrix} 4 & 3 & -1 \\ 2 & 3 & 1 \\ -2 & 3 & 5 \end{pmatrix}$
16	$ \begin{pmatrix} 7 & 8 & 4 \\ 5 & 6 & 3 \\ -22 & -26 & -13 \end{pmatrix} $	17	$ \begin{pmatrix} -22 & -22 & -16 \\ 16 & 16 & 12 \\ 8 & 8 & 6 \end{pmatrix} $	18	$ \begin{pmatrix} 1 & -3 & 3 \\ -2 & -6 & 13 \\ -1 & -4 & 8 \end{pmatrix} $
19	$ \begin{pmatrix} -6 & 9 & -3 \\ -9 & 12 & -3 \\ -9 & 9 & 0 \end{pmatrix} $	20	$ \begin{pmatrix} -6 & -15 & 36 \\ -8 & -17 & 42 \\ -5 & -11 & 27 \end{pmatrix} $	21	$ \begin{pmatrix} 2 & 1 & -2 \\ 4 & -1 & -2 \\ 1 & -1 & 1 \end{pmatrix} $
22	$ \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix} $	23	$ \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix} $	24	$\begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix}$
25	$ \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix} $	26	$ \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix} $	27	$ \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix} $
28	$ \begin{pmatrix} 17 & -8 & 4 \\ -8 & 17 & -4 \\ 4 & -4 & 11 \end{pmatrix} $	29	$ \begin{pmatrix} 0 & -3 & 6 \\ -2 & -5 & 12 \\ -1 & -3 & 7 \end{pmatrix} $	30	$\begin{pmatrix} -1 & 1 & 1 \\ -3 & 2 & 2 \\ -1 & 1 & 1 \end{pmatrix}$

Лабораторное задание №11. Квадратичные формы, их основные характеристики. Приведение квадратичной формы к каноническому виду

Задание 11.1. Привести квадратичную форму $F(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} a_{ij} x_i x_j$ (см.

табл. 25) к каноническому виду $K(y_1, y_2, y_3) = \sum_{i=1}^3 b_i y_i^2$ методом Лагранжа, ука-

зать соответствующее неособенное линейное преобразование.

<u>Задание 11.2.</u>

- 1. Привести квадратичную форму (см. табл. 26) к каноническому виду методом ортогонального преобразования, написать соответствующее ортогональное преобразование (матрицу U преобразования), выполнить проверку.
- 2. Определить тип квадратичной формы (по каноническому виду квадратичной формы, по собственным значениям, по критерию Сильвестра).
- 3. Привести квадратичную форму к каноническому виду методом Лагранжа, указать соответствующее неособенное линейное преобразование, выполнить проверку.
- Задание 11.3. Привести общее уравнение кривой второго порядка из задания 7.2 к каноническому виду, приведя соответствующую квадратичную форму кривой при помощи ортогонального преобразования к каноническому виду.

Bap	Квадратичная форма $F(x_1, x_2, x_3)$
1	$F(x_1, x_2, x_3) = x_1^2 - 2x_2^2 + 4x_3^2 - 2x_1x_2 + 2x_2x_3$
2	$F(x_1, x_2, x_3) = 2x_1^2 + x_2^2 - 4x_3^2 + 4x_1x_2 - 6x_2x_3 + 2x_1x_3$
3	$F(x_1, x_2, x_3) = -2x_1^2 - x_2^2 + 2x_3^2 + 6x_1x_2 - 2x_2x_3$
4	$F(x_1, x_2, x_3) = -x_2^2 + 2x_3^2 + 2x_1x_2 - 4x_2x_3 + 6x_1x_3$
5	$F(x_1, x_2, x_3) = 2x_1^2 + 4x_3^2 - 2x_1x_2 - x_2x_3 + x_1x_3$
6	$F(x_1, x_2, x_3) = x_1^2 + x_2^2 - 2x_1x_2 - x_2x_3 + 4x_1x_3$
7	$F(x_1, x_2, x_3) = -x_1^2 - x_2^2 + 2x_3^2 + 4x_1x_2 - 6x_2x_3 + x_1x_3$
8	$F(x_1, x_2, x_3) = x_2^2 + 2x_3^2 + 4x_1x_2 - 4x_2x_3 - 6x_1x_3$
9	$F(x_1, x_2, x_3) = 2x_1^2 + x_2^2 - 4x_3^2 + 4x_1x_2 - 6x_2x_3 + 2x_1x_3$
10	$F(x_1, x_2, x_3) = -x_2^2 + x_3^2 + 2x_1x_3 + 2x_2x_3$
11	$F(x_1, x_2, x_3) = -2x_1^2 - x_2^2 + 4x_3^2 + 4x_2x_3 - 2x_1x_3$
12	$F(x_1, x_2, x_3) = 2x_1^2 - x_2^2 + 4x_3^2 + 6x_1x_2 - 2x_1x_3$
13	$F(x_1, x_2, x_3) = x_1^2 + 4x_2^2 - x_3^2 + 2x_1x_2 - 4x_2x_3 + x_1x_3$
14	$F(x_1, x_2, x_3) = -2x_1^2 - 2x_2^2 + x_3^2 + x_1x_2 + 2x_2x_3 + x_1x_3$
15	$F(x_1, x_2, x_3) = x_1^2 + x_2^2 + 17x_3^2 - 2x_1x_2 + 8x_2x_3$
16	$F(x_1, x_2, x_3) = x_1^2 - 4x_2^2 + 4x_3^2 + 6x_1x_2 - 2x_1x_3 + 8x_2x_3$
17	$F(x_1, x_2, x_3) = -x_1^2 - 2x_2^2 - 4x_3^2 + 2x_1x_2 - 6x_2x_3 + 2x_1x_3$
18	$F(x_1, x_2, x_3) = 4x_1^2 + 2x_3^2 + 4x_1x_2 - 2x_2x_3 + 6x_1x_3$
19	$F(x_1, x_2, x_3) = 2x_1^2 - 2x_2^2 - x_3^2 + x_1x_2 - 2x_2x_3 + 4x_1x_3$
20	$F(x_1, x_2, x_3) = x_2^2 + x_3^2 + 4x_1x_2 - x_2x_3 + 6x_1x_3$
21	$F(x_1, x_2, x_3) = -2x_1^2 - x_2^2 + 4x_3^2 + 4x_1x_2 - 2x_2x_3 + 6x_1x_3$
22	$F(x_1, x_2, x_3) = x_1^2 + 2x_2^2 - x_3^2 + 4x_1x_2 - 2x_2x_3 + x_1x_3$
23	$F(x_1, x_2, x_3) = 4x_1^2 + x_2^2 - 4x_3^2 + 6x_1x_2 - 8x_2x_3 + 2x_1x_3$
24	$F(x_1, x_2, x_3) = x_1^2 + x_2^2 - 4x_3^2 + 10x_1x_2 - x_2x_3 + 2x_1x_3$
25	$F(x_1, x_2, x_3) = -x_1^2 + 4x_2^2 - 2x_3^2 + 6x_1x_2 - 10x_2x_3$
26	$F(x_1, x_2, x_3) = x_2^2 - 4x_3^2 + 6x_1x_2 - 4x_2x_3 + 2x_1x_3$
27	$F(x_1, x_2, x_3) = 4x_1^2 - x_2^2 + 6x_1x_2 - 3x_2x_3 + 2x_1x_3$
28	$F(x_1, x_2, x_3) = -x_1^2 + 4x_2^2 - 2x_3^2 + 2x_2x_3 + 5x_1x_3$
29	$F(x_1, x_2, x_3) = -x_1^2 + x_2^2 - 3x_3^2 + x_1x_2 - 2x_2x_3$
30	$F(x_1, x_2, x_3) = -x_1^2 - x_2^2 - x_3^2 + 4x_1x_2 - 5x_1x_3$

Bap	Квадратичная форма $F(x_1, x_2, x_3)$
1	$F(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_2x_3$
2	$F(x_1, x_2, x_3) = 2x_1^2 + x_2^2 - 4x_2x_3 - 4x_1x_2$
3	$F(x_1, x_2, x_3) = x_1^2 - 2x_2^2 - 2x_3^2 - 4x_1x_2 + 4x_1x_3 + 8x_2x_3$
4	$F(x_1, x_2, x_3) = 5x_1^2 + 6x_2^2 + 4x_3^2 - 4x_1x_2 - 4x_1x_3$
5	$F(x_1, x_2, x_3) = 3x_1^2 + 6x_2^2 + 3x_3^2 - 4x_1x_2 - 8x_1x_3 - 4x_2x_3$
6	$F(x_1, x_2, x_3) = 7x_1^2 + 5x_2^2 + 3x_3^2 - 8x_1x_2 + 8x_2x_3$
7	$F(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 2x_3^2 - 4x_1x_3 - 4x_2x_3$
8	$F(x_1, x_2, x_3) = 5x_1^2 + 3x_2^2 + 4x_3^2 - 4x_1x_3 + 4x_2x_3$
9	$F(x_1, x_2, x_3) = 4x_1^2 + 5x_2^2 + 6x_3^2 - 4x_1x_3 + 4x_2x_3$
10	$F(x_1, x_2, x_3) = 3x_1^2 + 7x_2^2 + 5x_3^2 + 8x_1x_3 - 8x_2x_3$
11	$F(x_1, x_2, x_3) = x_1^2 + 2x_3^2 - 4x_1x_2 - 4x_1x_3$
12	$F(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + x_3^2 - 4x_1x_2 - 4x_1x_3$
13	$F(x_1, x_2, x_3) = 4x_1^2 + 5x_2^2 + 3x_3^2 - 4x_1x_2 + 4x_1x_3$
14	$F(x_1, x_2, x_3) = 6x_1^2 + 4x_2^2 + 5x_3^2 - 4x_1x_3 - 4x_2x_3$
15	$F(x_1, x_2, x_3) = 5x_1^2 + 3x_2^2 + 7x_3^2 + 8x_1x_2 - 8x_1x_3$
16	$F(x_1, x_2, x_3) = 5x_1^2 + 6x_2^2 + 7x_3^2 - 4x_1x_2 + 4x_2x_3$
17	$F(x_1, x_2, x_3) = 6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_1x_3 - 8x_2x_3$
18	$F(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 11x_3^2 - 20x_1x_2 + 4x_1x_3 + 16x_2x_3$
19	$F(x_1, x_2, x_3) = x_1^2 + x_2^2 + 5x_3^2 - 6x_1x_2 + 2x_1x_3 - 2x_2x_3$
20	$F(x_1, x_2, x_3) = 7x_1^2 + 5x_2^2 + 6x_3^2 + 4x_1x_3 - 4x_2x_3$
21	$F(x_1, x_2, x_3) = \frac{7}{3}x_1^2 + 2x_2^2 + \frac{5}{3}x_3^2 - \frac{4}{3}x_1x_3 - \frac{4}{3}x_2x_3$
22	$F(x_1, x_2, x_3) = 2x_1^2 + \frac{5}{3}x_2^2 + \frac{7}{3}x_3^2 + \frac{4}{3}x_1x_2 - \frac{4}{3}x_1x_3$
23	$F(x_1, x_2, x_3) = \frac{2}{3}x_1^2 + \frac{1}{3}x_2^2 + 2x_3^2 + 4x_1x_2 - \frac{8}{3}x_1x_3 + \frac{4}{3}x_2x_3$
24	$F(x_1, x_2, x_3) = 2x_1^2 + \frac{2}{3}x_2^2 + \frac{1}{3}x_3^2 - \frac{8}{3}x_1x_2 - \frac{4}{3}x_1x_3 - 4x_2x_3$
25	$F(x_1, x_2, x_3) = \frac{10}{9}x_1^2 - \frac{2}{9}x_2^2 + \frac{1}{9}x_3^2 - \frac{8}{9}x_1x_2 - \frac{20}{9}x_1x_3 - \frac{28}{9}x_2x_3$
26	$F(x_1, x_2, x_3) = -\frac{1}{9}x_1^2 + \frac{5}{9}x_2^2 + \frac{14}{9}x_3^2 + \frac{32}{9}x_1x_2 - \frac{4}{9}x_1x_3 + \frac{28}{9}x_2x_3$

27	$F(x_1, x_2, x_3) = \frac{5}{9}x_1^2 - \frac{1}{9}x_2^2 + \frac{14}{9}x_3^2 - \frac{32}{9}x_1x_2 - \frac{28}{9}x_1x_3 - \frac{4}{9}x_2x_3$
28	$F(x_1, x_2, x_3) = -\frac{11}{9}x_1^2 - \frac{5}{9}x_2^2 - \frac{2}{9}x_3^2 + \frac{16}{9}x_1x_2 + \frac{4}{9}x_1x_3 + \frac{20}{9}x_2x_3$
29	$F(x_1, x_2, x_3) = 5x_1^2/9 + 2x_2^2/9 + 11x_3^2/9 + 20x_1x_2/9 + 16x_1x_3/9 - 4x_2x_3/9$
30	$F(x_1, x_2, x_3) = 11x_1^2/3 + 3x_2^2 + 7x_3^2/3 - 8x_1x_2/3 + 8x_2x_3/3$