TYE, Emma (elt16)

Imperial College London

Department of Computing Academic Year **2019-2020**

Page created Thu Feb 20 02:15:21 GMT 2020

499 fbelard 6 j4 elt16 v1

 $\underline{ Electronic \ \underline{ s} ubmission }$

Tue - 18 Feb 2020 17:58:03

elt16

Exercise Information

Module: 499 Modal Logic for Strategic

Reasoning in AĬ

Exercise: 6 (CW)

Title: Coursework2
FAO: Belardinelli, Francesco (fbelard)

Issued: Wed - 05 Feb 2020

Due: Wed - 19 Feb 2020
Assessment: Individual
Submission: Electronic

Student Declaration - Version 1

• I declare that this final submitted version is my unaided work.

Signed: (electronic signature) Date: 2020-02-18 17:57:29

For Markers only: (circle appropriate grade)

TYE, Emma (elt16) 01201320 j4 2020-02-18 17:57:29 A* A B C D E F

Modal Logic - Coursework 2

Emma Tye

February 18, 2020

$$\pi \models \varphi \operatorname{R} \psi$$
 iff if $\exists i \geq 0$ such that $\pi[i, \infty] \not\models \psi$, then $\exists j \geq 0$ such that $\pi[j, \infty] \models \varphi$ and $\forall 0 \leq k \leq j \ \pi[k, \infty] \models \psi$

Got one solution but missed the other

(b) $(\psi U(\psi \wedge \varphi)) \vee G\psi$

(c) $\pi \models \varphi \mathbf{R} \psi \iff \pi \models (\psi \mathbf{U}(\psi \wedge \varphi)) \vee G\psi$

Solution could have been simplified futher

• (\Longrightarrow): Let π be an arbitrary path. Assume $\pi \models \varphi R \psi$.

If $\exists i \geq 0$ such that $\pi[i, \infty] \not\models \psi$, then $\exists j \geq 0$ such that $\pi[j, \infty] \models \varphi$ and $\forall 0 \leq k \leq j \ \pi[k, \infty] \models \psi$.

Assume $\exists i \geq 0$ such that $\pi[i, \infty] \not\models \psi$. Then $\exists j \geq 0$ such that $\pi[j, \infty] \models \varphi$. We also have that $\pi[j,\infty] \models \psi$, since $\pi[k,\infty] \models \psi$ for all $0 \le k \le j$. Hence, we have that $\pi[j,\infty] \models \psi \land \varphi$.

But as $\pi[k,\infty] \models \psi$ for all $0 \le k \le j$, we certainly have that $\pi[k,\infty] \models \psi$ for all $0 \le k < j$. So, by semantics of until U, we have that $\pi \models \psi U(\psi \land \varphi)$. But by semantics of or, we have that $\pi \models (\psi U(\psi \land \varphi)) \lor G \psi.$

Assume there doesn't exist an $i \geq 0$ such that $\pi[i, \infty] \not\models \psi$, i.e. $\pi[i, \infty] \models \neg \psi$. So by semantics of until U, $\pi \not\models \chi U \neg \psi$ for any formula χ - therefore $\pi \not\models \top U \neg \psi$. So $\pi \models \neg (\top U \neg \psi)$ and hence $\pi \models G \psi$. By semantics of or, we have that $\pi \models (\psi U(\psi \land \varphi)) \lor G \psi$.

• (\iff): Let π be an arbitrary path. Assume $\pi \models (\psi U(\psi \land \varphi)) \lor G\psi$.

Assume $\pi \models \psi U(\psi \land \varphi)$. Then there exists an $i \geq 0$ such that $\pi[i, \infty] \models \psi \land \varphi$, and forall $0 \le j < i$, we have $\pi[j,\infty] \models \psi$. Therefore, we have that $\pi[i,\infty] \models \psi$ and $\pi[i,\infty] \models \varphi$. So we must have that for all $0 \le j \le i \ \pi[j, \infty] \models \psi$.

So we can rename variables to give $\exists j \geq 0$ such that $\pi[j,\infty] \models \varphi$ and $\forall 0 \leq k \leq j, \, \pi[k,\infty] \models \psi$. If B is true, then $A \implies B$ is true no matter the truth of A, so we have that if $\exists i \geq 0$ such that $\pi[i,\infty] \not\models \psi$, then $\exists j \geq 0$ such that $\pi[j,\infty] \models \varphi$ and $\forall 0 \leq k \leq j, \, \pi[k,\infty] \models \psi$. Hence, $\pi \models \varphi \, \mathbf{R} \, \psi$.

Assume $\pi \models G \psi$. Then $\pi \models \neg(\top U \neg \psi) \iff \pi \not\models \top U \neg \psi$. So we do not have that there exists an $i \geq 0$ such that $\pi[i, \infty] \models \neg \psi$ and for all $0 \leq j < i, \pi[j, \infty] \models \top$. But $\lambda \models \top$ is always true for any path λ , so we must have that there is no $i \geq 0$ such that $\pi[i, \infty] \models \neg \psi \iff \pi[i, \infty] \not\models \psi$.

If A is false, then $A \implies B$ is true no matter the truth of B, so we have that if $\exists i \geq 0$ such that $\pi[i,\infty] \not\models \psi$, then $\exists j \geq 0$ such that $\pi[j,\infty] \models \varphi$ and $\forall 0 \leq k \leq j, \, \pi[k,\infty] \models \psi$. Hence, $\pi \models \varphi \, \mathbb{R} \, \psi$.

- (d) We have that $\bot R \psi \equiv (\psi U(\psi \land \bot)) \lor G \psi$, from (c). Let π be an arbitrary path.

$$\begin{split} \pi &\models (\psi \, \mathrm{U}(\psi \wedge \bot)) \vee \mathrm{G} \, \psi \iff \pi \models \psi \, \mathrm{U}(\psi \wedge \bot) \text{ or } \pi \models \mathrm{G} \, \psi \\ \pi &\models \psi \, \mathrm{U}(\psi \wedge \bot) \iff \text{ there exists } i \geq 0 \text{ such that } \pi[i, \infty] \models \psi \wedge \bot \text{ and } \\ & \text{ forall } 0 \leq j < i, \, \pi[j, \infty] \models \psi \\ \pi[i, \infty] &\models \psi \wedge \bot \iff \pi[i, \infty] \models \psi \text{ and } \pi[i, \infty] \models \bot \end{split}$$

But $\lambda \models \bot$ is always false for any path λ , so $\pi[i, \infty] \not\models \psi \land \bot$ for any $i \geq 0$, hence $\pi \not\models \psi \cup (\psi \land \bot)$.

So

$$\pi \models \bot R \psi \iff \pi \models (\psi U(\psi \land \bot)) \lor G \psi$$

$$\iff \text{false or } \pi \models G \psi$$

$$\iff \pi \models G \psi$$

Solution correct and very well explained, all steps given adequate reasoning. However, resolution of one of the solutions of a is not given due to the error in a

• $(M,q) \models E F \Phi$ iff for some path λ from q, for some $j \geq 0$, $(M,\lambda[j]) \models \Phi$

$$(M,q) \models \operatorname{EF} \Phi \iff (M,q) \models \operatorname{E}(\top \operatorname{U}\Phi)$$

$$\iff \text{ for some path } \lambda \text{ from } q, \, (M,\lambda) \models \top \operatorname{U}\Phi$$

$$(M,\lambda) \models \top \operatorname{U}\Phi \iff \text{ for some } j \geq 0, \, (M,\lambda[j]) \models \Phi \text{ and for all } 0 \leq k < j, \, (M,\lambda[k]) \models \top$$

But $(M, p) \models \top$ is true for any state p, so we have

$$(M, \lambda) \models \top \cup \Phi \iff \text{for some } j \geq 0, (M, \lambda[j]) \models \Phi$$

 $(M, q) \models \mathsf{EF} \Phi \iff \text{for some path } \lambda \text{ from } q, \text{ for some } j \geq 0, (M, \lambda[j]) \models \Phi$

• $(M,q) \models A F \Phi$ iff for every path λ from q, for some $j \geq 0$, $(M,\lambda[j]) \models \Phi$

$$(M,q) \models \mathbf{A} \, \mathbf{F} \, \Phi \iff (M,q) \models \mathbf{A} (\top \, \mathbf{U} \, \Phi)$$

$$\iff \text{ for all paths } \lambda \text{ from } q, \, (M,\lambda) \models \top \, \mathbf{U} \, \Phi$$

$$(M,\lambda) \models \top \, \mathbf{U} \, \Phi \iff \text{ for some } j \geq 0, \, (M,\lambda[j]) \models \Phi \text{ and for all } 0 \leq k < j, \, (M,\lambda[k]) \models \top$$

But $(M, p) \models \top$ is true for any state p, so we have

$$(M, \lambda) \models \top \cup \Phi \iff \text{for some } j \geq 0, (M, \lambda[j]) \models \Phi$$

 $(M, q) \models A F \Phi \iff \text{for all paths } \lambda \text{ from } q, \text{ for some } j \geq 0, (M, \lambda[j]) \models \Phi$

• $(M,q) \models E G \Phi$ iff for some path λ from q, for all $j \geq 0$, $(M,\lambda[j]) \models \Phi$

$$(M,q) \models \operatorname{E} \operatorname{G} \Phi \iff (M,q) \models \neg \operatorname{A}(\top \operatorname{U} \neg \Phi)$$

$$\iff (M,q) \not\models \operatorname{A}(\top \operatorname{U} \neg \Phi)$$

$$\iff \operatorname{not} \text{ for all paths } \lambda \text{ from } q, (M,\lambda) \models \top \operatorname{U} \neg \phi$$

$$\iff \operatorname{for some path } \lambda \text{ from } q, (M,\lambda) \not\models \top \operatorname{U} \neg \Phi$$

$$(M,\lambda) \models \top \operatorname{U} \neg \Phi \iff \operatorname{for some } j \geq 0, (M,\lambda[j]) \models \neg \Phi \text{ and for all } 0 \leq k < j, (M,\lambda[k]) \models \top$$

But $(M, p) \models \top$ is true for any state p, so we have

$$(M,\lambda) \models \top \, \mathbf{U} \, \neg \Phi \iff \text{for some } j \geq 0, \, (M,\lambda[j]) \models \neg \Phi \\ \iff \text{for some } j \geq 0, \, (M,\lambda[j]) \not\models \Phi \\ (M,\lambda) \not\models \top \, \mathbf{U} \, \neg \Phi \iff \text{not for some } j \geq 0, \, (M,\lambda[j]) \not\models \Phi \\ \iff \text{for all } j \geq 0, \, \text{not } (M,\lambda[j]) \not\models \Phi \\ \iff \text{for all } j \geq 0, \, (M,\lambda[j]) \models \Phi$$

Hence

$$(M,q) \models E G \Phi \iff \text{for some path } \lambda \text{ from } q, \text{ for all } j \geq 0, (M,\lambda[j]) \models \Phi$$

• $(M,q) \models A G \Phi$ iff for all paths λ from q, for all $j \geq 0$, $(M,\lambda[j]) \models \Phi$

$$(M,q) \models \operatorname{AG}\Phi \iff (M,q) \models \neg \operatorname{E}(\top \operatorname{U} \neg \Phi)$$

$$\iff (M,q) \not\models \operatorname{E}(\top \operatorname{U} \neg \Phi)$$

$$\iff \operatorname{not} \text{ for some path } \lambda \text{ from } q, \ (M,\lambda) \models \top \operatorname{U} \neg \Phi$$

$$\iff \operatorname{for all paths } \lambda \text{ from } q, \ (M,\lambda) \not\models \top \operatorname{U} \neg \Phi$$

$$(M,\lambda) \models \top \operatorname{U} \neg \Phi \iff \operatorname{for some } j \geq 0, \ (M,\lambda[j]) \models \neg \Phi \text{ and for all } 0 \leq k < j, \ (M,\lambda[k]) \models \top$$

But $(M, p) \models \top$ is true for any state p, so we have

$$(M,\lambda) \models \top \, \mathbf{U} \, \neg \Phi \iff \text{for some } j \geq 0, \, (M,\lambda[j]) \models \neg \Phi \\ \iff \text{for some } j \geq 0, \, (M,\lambda[j]) \not\models \Phi \\ (M,\lambda) \not\models \top \, \mathbf{U} \, \neg \Phi \iff \text{not for some } j \geq 0, \, (M,\lambda[j]) \not\models \Phi \\ \iff \text{for all } j \geq 0, \, \text{not } (M,\lambda[j]) \not\models \Phi \\ \iff \text{for all } j \geq 0, \, (M,\lambda[j]) \models \Phi$$

Hence

$$(M,q)\models \operatorname{A} \operatorname{G} \Phi \iff \text{for all paths } \lambda \text{ from } q, \text{ for all } j\geq 0, \, (M,\lambda[j])\models \Phi$$

- (a) Take Φ a CTL formula. We will prove that Φ is a CTL* formula by induction on the structure of CTL formulae.
 - Let $\Phi = p$, where $p \in AP$. Then Φ is a CTL* formula by definition.
 - Let $\Phi = \neg \Psi$. Assume Ψ is a CTL* formula for the inductive hypothesis.

Then $\neg \Psi$ is a CTL* formula by definition, and hence Φ is a CTL* formula.

• Let $\Phi = \Psi \wedge \Omega$. Assume Ψ and Ω are CTL* formulae for the inductive hypothesis.

Then $\Psi \wedge \Omega$ is a CTL* formula by definition, and hence Φ is a CTL* formula.

• Let $\Phi = E X \Psi$. Assume Ψ is a CTL* formula for the inductive hypothesis.

Since Ψ is a CTL* state formula, we have that Ψ is also a CTL* path formula, hence $X\Psi$ is a CTL* path formula. Therefore, $EX\Psi$ is a CTL* state formula, so Φ is a CTL* formula.

• Let $\Phi = E(\Psi \cup \Omega)$. Assume Ψ and Ω are CTL* formulae for the inductive hypothesis.

Since Ψ and Ω are CTL* state formulae, they are also CTL* path formulae. So Ψ U Ω is a CTL* path formula, hence $E(\Psi \cup \Omega)$ is a CLT* state formula and so Φ is a CTL* state formula.

• Let $\Phi = A X \Psi$. Assume Ψ is a CTL* formula for the inductive hypothesis.

Since Ψ is a CTL* state formula, we have that Ψ is also a CTL* path formula, hence $X\Psi$ is a CTL* path formula. Therefore, $AX\Psi$ is a CTL* state formula, so Φ is a CTL* formula.

• Let $\Phi = A(\Psi \cup \Omega)$. Assume Ψ and Ω are CTL* formulae for the inductive hypothesis.

Since Ψ and Ω are CTL* state formulae, they are also CTL* path formulae. So Ψ U Ω is a CTL* path formula, hence $A(\Psi \cup \Omega)$ is a CLT* state formula and so Φ is a CTL* state formula.

Very well explained. Well Done!

(b) Let $\Phi = A p$.

 Φ is a CTL* formula: p is a CTL* state formula, hence it is also a CTL* path formula. Therefore, A p is a CTL* state formula by definition.

 Φ is not a CTL formula: p is a CTL state formula, but it is not a CTL path formula - path formulas must be of the form $X \Psi$ or $\Psi U \Omega$. But by the definition of CTL, A can only prefix a path formula, hence A p is not a CTL formula.

Let M be a model and s a state in that model.

Take Φ a CTL formula. We will show that $(M,s) \models^{\text{CTL}} \Phi \iff (M,s) \models^{\text{CTL}^*} \Phi$, by induction over the structure of CTL formulae.

• Let $\Phi = p$, where $p \in AP$. Then

$$(M,s) \models^{\text{CTL}} \Phi \iff s \in V(p)$$
 by def. of CTL semantics $\iff (M,s) \models^{\text{CTL*}} \Phi$ by def. of CTL* semantics

• Let $\Phi = \neg \Psi$. For all states q in M, assume $(M,q) \models^{\text{CTL}} \Psi \iff (M,q) \models^{\text{CTL*}} \Psi$ for the inductive hypothesis. Then

$$(M,s) \models^{\text{CTL}} \Phi \iff (M,s) \not\models^{\text{CTL}} \Psi$$
 $\iff (M,s) \not\models^{\text{CTL}*} \Psi \qquad \text{inductive hypothesis}$
 $\iff (M,s) \models^{\text{CTL}*} \Phi \qquad \text{by def. of CTL* semantics}$

• Let $\Phi = \Psi \wedge \Omega$. For all states q in M, assume $(M,q) \models^{\text{CTL}} \Psi \iff (M,q) \models^{\text{CTL}^*} \Psi$ and $(M,q) \models^{\text{CTL}} \Omega \iff (M,q) \models^{\text{CTL}^*} \Omega$ for the inductive hypothesis. Then

$$(M,s)\models^{\mathrm{CTL}}\Phi\iff (M,s)\models^{\mathrm{CTL}}\Psi \text{ and } (M,s)\models^{\mathrm{CTL}}\Omega \qquad \text{by def. of CTL semantics}$$

$$\iff (M,s)\models^{\mathrm{CTL}^*}\Psi \text{ and } (M,s)\models^{\mathrm{CTL}^*}\Omega \qquad \text{inductive hypothesis}$$

$$\iff (M,s)\models^{\mathrm{CTL}^*}\Phi \qquad \text{by def. of CTL* semantics}$$

• Let $\Phi = \operatorname{EX} \Psi$. For all states q in M, assume $(M,q) \models^{\operatorname{CTL}} \Psi \iff (M,q) \models^{\operatorname{CTL}^*} \Psi$ for the inductive hypothesis. Then

$$(M,s)\models^{\mathrm{CTL}}\Phi\iff$$
 for some path λ starting from $s,\ (M,\lambda)\models^{\mathrm{CTL}}\mathrm{X}\Psi$ by def. of CTL semantics \Leftrightarrow for some path λ starting from $s,\ (M,\lambda[1])\models^{\mathrm{CTL}}\Psi$ by def. of CTL semantics \Leftrightarrow for some path λ starting from $s,\ (M,\lambda[1])\models^{\mathrm{CTL}^*}\Psi$ inductive hypothesis \Leftrightarrow for some path λ starting from $s,\ (M,\lambda[1..\infty][0])\models^{\mathrm{CTL}^*}\Psi$ re-arranging indexes \Leftrightarrow for some path λ starting from $s,\ (M,\lambda[1..\infty])\models^{\mathrm{CTL}^*}\Psi$ by def. of CTL* semantics \Leftrightarrow for some path λ starting from $s,\ (M,\lambda[1..\infty])\models^{\mathrm{CTL}^*}\mathrm{X}\Psi$ by def. of CTL* semantics \Leftrightarrow $(M,s)\models^{\mathrm{CTL}^*}\Phi$ by def. of CTL* semantics

• Let $\Phi = \mathrm{E}(\Psi \cup \Omega)$. For all states q in M, assume $(M,q) \models^{\mathrm{CTL}} \Psi \iff (M,q) \models^{\mathrm{CTL}^*} \Psi$ and

```
(M,q) \models^{\text{CTL}} \Omega \iff (M,q) \models^{\text{CTL}^*} \Omega for the inductive hypothesis. Then
   (M,s)\models^{\mathrm{CTL}}\Phi\iff \text{for some path }\lambda\text{ starting from }s,\,(M,\lambda)\models^{\mathrm{CTL}}\Psi\,\mathrm{U}\,\Omega
                                                                                                                                  by def. of CTL semantics
                            \iff for some path \lambda starting from s, for some i \geq 0,
                                    (M, \lambda[i]) \models^{\text{CTL}} \Omega \text{ and } (M, \lambda[j]) \models^{\text{CTL}} \Psi \text{ for all } 0 < j < i
                                                                                                                                  by def. of CTL semantics
                            \iff for some path \lambda starting from s, for some i \geq 0,
                                    (M, \lambda[i]) \models^{\text{CTL*}} \Omega \text{ and } (M, \lambda[j]) \models^{\text{CTL*}} \Psi \text{ for all } 0 \leq j < i
                                                                                                                                          inductive hypothesis
                            \iff for some path \lambda starting from s, for some i \geq 0,
                                     (M, \lambda[i..\infty][0]) \models^{\text{CTL}^*} \Omega and
                                    (M, \lambda[j..\infty][0]) \models^{\text{CTL}^*} \Psi \text{ for all } 0 \leq j < i
                                                                                                                                          re-arranging indexes
                            \iff for some path \lambda starting from s, for some i \geq 0,
                                    (M, \lambda[i..\infty]) \models^{\mathrm{CTL}^*} \Omega and
                                    (M, \lambda[j..\infty]) \models^{\text{CTL*}} \Psi \text{ for all } 0 \leq j < i
                                                                                                                                by def. of CTL* semantics
                            \iff for some path \lambda starting from s, (M, \lambda) \models^{\text{CTL}^*} \Psi \cup \Omega
                                                                                                                                by def. of CTL* semantics
                            \iff (M, s) \models^{\text{CTL*}} \Phi
• Let \Phi = A X \Psi. For all states q in M, assume (M,q) \models^{\text{CTL}} \Psi \iff (M,q) \models^{\text{CTL}^*} \Psi for the inductive
   hypothesis. Then
   (M,s) \models^{\text{CTL}} \Phi \iff \text{for all paths } \lambda \text{ starting from } s, (M,\lambda) \models^{\text{CTL}} X \Psi
                                                                                                                              by def. of CTL semantics
                            \iff for all paths \lambda starting from s, (M, \lambda[1]) \models^{\text{CTL}} \Psi
                                                                                                                              by def. of CTL semantics
                            \iff for all paths \lambda starting from s, (M, \lambda[1]) \models^{\text{CTL}^*} \Psi
                                                                                                                                      inductive hypothesis
                            \iff for all paths \lambda starting from s, (M, \lambda[1..\infty][0]) \models^{\text{CTL}^*} \Psi
                                                                                                                                      re-arranging indexes
                            \iff for all paths \lambda starting from s. (M, \lambda[1..\infty]) \models^{\text{CTL}^*} \Psi
                                                                                                                             by def. of CTL* semantics
                            \iff for all paths \lambda starting from s, (M, \lambda) \models^{\text{CTL*}} \mathbf{X} \Psi
                                                                                                                             by def. of CTL* semantics
                            \iff (M,s) \models^{\text{CTL*}} \Phi
                                                                                                                             by def. of CTL* semantics
• Let \Phi = A(\Psi \cup \Omega). For all states q in M, assume (M,q) \models^{CTL} \Psi \iff (M,q) \models^{CTL^*} \Psi and
   (M,q) \models^{\text{CTL}} \Omega \iff (M,q) \models^{\text{CTL}*} \Omega for the inductive hypothesis. Then
   (M,s) \models^{\text{CTL}} \Phi \iff \text{for all paths } \lambda \text{ starting from } s, (M,\lambda) \models^{\text{CTL}} \Psi \cup \Omega
                                                                                                                                  by def. of CTL semantics
                            \iff for all paths \lambda starting from s, for some i \geq 0,
                                     (M, \lambda[i]) \models^{\text{CTL}} \Omega \text{ and } (M, \lambda[i]) \models^{\text{CTL}} \Psi \text{ for all } 0 \leq i \leq i
                                                                                                                                  by def. of CTL semantics
                            \iff for all paths \lambda starting from s, for some i \geq 0,
                                    (M, \lambda[i]) \models^{\text{CTL*}} \Omega \text{ and } (M, \lambda[j]) \models^{\text{CTL*}} \Psi \text{ for all } 0 \leq j < i
                                                                                                                                          inductive hypothesis
                            \iff for all paths \lambda starting from s, for some i \geq 0,
                                    (M, \lambda[i..\infty][0]) \models^{\text{CTL*}} \Omega and
                                     (M, \lambda[j..\infty][0]) \models^{\text{CTL}^*} \Psi \text{ for all } 0 \leq j < i
                                                                                                                                          re-arranging indexes
                            \iff for all paths \lambda starting from s, for some i \geq 0,
                                    (M, \lambda[i..\infty]) \models^{\text{CTL}^*} \Omega and
                                    (M, \lambda[j..\infty]) \models^{\text{CTL*}} \Psi \text{ for all } 0 \leq j < i
                                                                                                                                by def. of CTL* semantics
                            \iff for all paths \lambda starting from s, (M, \lambda) \models^{\text{CTL*}} \Psi \cup \Omega
                                                                                                                                by def. of CTL* semantics
```

 $\iff (M, s) \models^{\text{CTL*}} \Phi$

- (a) From question 3, any CTL formula is also a CTL* formula. From question 4, we have that $(M, s) \models^{\text{CTL}} \Phi \iff (M, s) \models^{\text{CTL}*} \Phi$, so you can just take the same formula but in the CTL* context.
- 2
- (b) Consider the CTL* formula $\Phi = A F G p$, where F, G are the usual abbreviations. This is equivalent to the LTL formula F G p by Theorem 1.12 in Lecture 5. It is also easy to see they're equivalent: $M \models^{\text{CTL*}} A F G p$ iff for every initial state s_0 in M, for all paths λ starting from s_0 , $(M, \lambda) \models^{\text{CTL*}} F G p$, and $M \models^{\text{LTL}} F G p$ iff for every initial state s_0 in M, for all paths λ starting from s_0 , $(M, \lambda) \models^{\text{LTL}} F G p$, and path semantics are defined almost identically for CTL* and LTL.

But from Lecture 5, we saw that there is no equivalent CTL formula for this LTL formula. The equivalent formula would be of the form A F A G p, but taking the model from slide 214 in Lecture 5 shows that A F A G p and F G p are not equivalent.

Lemma: Let N, N' be models. Let u, u' be states in those models, such that (N, u) and (N', u') are bisimilar. Then for any path π in N starting from u, there exists a bisimilar path π' in N' starting from u'.

Proof. Let π be an arbitrary path in N. Construct the path π' in N' by

- 1. $\pi'[0] = u'$
- 2. $\pi'[i+1] = s'$, where $B(\pi[i+1], s')$ and $\pi'[i] \to s'$ (choose random s' if there are multiple satisfying this)

This is a valid path and is bisimilar to π - since $B(\pi[0], \pi'[0])$, and by definition $B(\pi[j], \pi'[j])$ for all 0 < j, it is sufficient to show that an s' satisfying the conditions shown always exists.

Take $0 \le i$ arbitrary.

We have that $\pi[i] \to \pi[i+1]$ since π is a path. By the forth property of bisimulations, there must exist an s' such that $\pi'[i] \to s'$ and $B(\pi[i+1], s')$, as $(N, \pi[i]) \cong (N', \pi'[i])$.

Let M, M' be models, t, t' states in those models (respectively) such that $(M, t) \cong (M, t')$. Let Φ be a CTL* state formula.

Assume for the inductive hypothesis that:

- 1. For any state s in M, for any state subformula of Φ , say Ψ , if $(M,s) \cong (M',s')$ for some $s' \in M'$, then $(M,s) \models^{\text{CTL}*} \Psi \iff (M',s') \models^{\text{CTL}*} \Psi$.
- 2. For any path π in M, for any path formula ϕ , if $(M,\pi) \cong (M',\pi')$ for some path π' in M', then $(M,\pi) \models^{\text{CTL*}} \phi \iff (M',\pi') \models^{\text{CTL*}} \phi$.
- Let $\Phi = p$. Then

$$(M,t) \models^{\text{CTL*}} \Phi \iff t \in V(p)$$
 by def. of CTL* semantics $\Leftrightarrow t' \in V'(p)$ by def. of bisimulation $\Leftrightarrow (M',t') \models^{\text{CTL*}} \Phi$ by def. of CTL* semantics

• Let $\Phi = \neg \Psi$. Then

$$(M,t) \models^{\text{CTL*}} \Phi \iff (M,t) \not\models^{\text{CTL*}} \Psi$$
 by def. of CTL* semantics
$$\iff (M',t') \not\models^{\text{CTL*}} \Psi$$
 inductive hypothesis 1
$$\iff (M',t') \models^{\text{CTL*}} \Phi$$
 by def. of CTL* semantics

• Let $\Phi = \Psi \wedge \Omega$. Then

$$(M,t) \models^{\text{CTL*}} \Phi \iff (M,t) \models^{\text{CTL*}} \Psi \text{ and } (M,t) \models^{\text{CTL*}} \Omega \qquad \text{by def. of CTL* semantics} \\ \iff (M',t') \models^{\text{CTL*}} \Psi \text{ and } (M',t') \models^{\text{CTL*}} \Omega \qquad \text{inductive hypothesis 1} \\ \iff (M',t') \models^{\text{CTL*}} \Phi \qquad \qquad \text{by def. of CTL* semantics}$$

• Let $\Phi = E \phi$. Then

$$(M,t) \models^{\text{CTL*}} \Phi \iff \text{for some path } \lambda \text{ starting from } t, (M,\lambda) \models^{\text{CTL*}} \phi \text{ by def. of CTL* semantics}$$

By the Lemma, letting M=N and M'=N', there is a path λ' in M' starting from t' that is bisimilar to λ .

$$(M,t) \models^{\text{CTL*}} \Phi \iff \text{for some path } \lambda \text{ starting from } t, (M', \lambda') \models^{\text{CTL*}} \phi$$

$$\text{where } \lambda \cong \lambda' \qquad \text{inductive hypothesis 2}$$

$$\implies \text{for some path } \lambda' \text{ starting from } t', (M', \lambda') \models^{\text{CTL*}} \phi \qquad \text{Lemma}$$

$$\iff (M',t') \models^{\text{CTL*}} \Phi \qquad \text{by def. of CTL* semantics}$$

So this proves the iff in one direction. But if we assume that $(M',t') \models^{\text{CTL}^*} \Phi$, then we can use this exact same proof, but swapping round every instance of M,t,λ for M',t',λ' (i.e. taking M'=N, M=N' in the Lemma), and hence get that

$$(M',t')\models^{\mathrm{CTL}^*}\Phi\iff$$
 for some path λ' starting from $t',(M',\lambda')\models^{\mathrm{CTL}^*}\phi$ by def. of CTL* semantics \iff for some path λ' starting from $t',(M,\lambda)\models^{\mathrm{CTL}^*}\phi$ where $\lambda'\cong\lambda$ inductive hypothesis 2 \implies for some path λ starting from $t,(M,\lambda)\models^{\mathrm{CTL}^*}\phi$ Lemma $\iff (M,t)\models^{\mathrm{CTL}^*}\Phi$ by def. of CTL* semantics

• Let $\Phi = A \phi$. Then

The Lemma tells us that for every path λ starting from t in M, there exists a bisimilar path λ' in M' starting from t'. So if we prove a property about every path λ' in M' starting from t', then since every λ in M is bisimilar to one of these λ' , we can prove that property about every λ .

Hence, we can prove the iff in one direction:

$$(M',t')\models^{\mathrm{CTL}*}\Phi\iff \text{for all paths λ' starting from t', $(M',\lambda')\models^{\mathrm{CTL}*}\phi$ by def. of CTL* semantics \Leftrightarrow for all paths λ' starting from t', $(M,\lambda)\models^{\mathrm{CTL}*}\phi$ inductive hypothesis 2 \Rightarrow for all paths λ starting from t, $(M,\lambda)\models^{\mathrm{CTL}*}\phi$ Lemma \Leftrightarrow $(M,t)\models^{\mathrm{CTL}*}\Phi$ by def. of CTL* semantics$$

But, again, we can just swap round the M, t, λ and M', t', λ' , since the Lemma is a property about all models, and get the other direction for free:

$$(M,t) \models^{\text{CTL*}} \Phi \iff \text{for all paths } \lambda \text{ starting from } t, (M,\lambda) \models^{\text{CTL*}} \phi \text{ by def. of CTL* semantics} \Leftrightarrow \text{for all paths } \lambda \text{ starting from } t, (M',\lambda') \models^{\text{CTL*}} \phi \text{ inductive hypothesis 2} \Leftrightarrow \text{for all paths } \lambda' \text{ starting from } t', (M',\lambda') \models^{\text{CTL*}} \phi \text{ Lemma} \Leftrightarrow (M',t') \models^{\text{CTL*}} \Phi \text{ by def. of CTL* semantics}$$

Let M, M' be models, λ and λ' paths in those models (respectively) such that $(M, \lambda) \cong (M', \lambda')$. Let ϕ be a CTL* path formula.

Assume for the inductive hypothesis that:

- 1. For any path π in M, for any state subformula of ϕ , say ψ , if $(M,\pi) \cong (M',\pi')$ for some π' a path in M', then $(M,\pi) \models^{\text{CTL*}} \psi \iff (M',\pi') \models^{\text{CTL*}} \psi$.
- 2. For any state formula Φ , for any state t in M, if $(M,t) \cong (M',t')$ for some state t' in M', then $(M,t) \models^{\text{CTL*}} \Phi \iff (M',t') \models^{\text{CTL*}} \Phi$.
- Let $\phi = \Phi$. Then

$$(M,\lambda)\models^{\mathrm{CTL}^*}\phi\iff (M,\lambda[0])\models^{\mathrm{CTL}^*}\Phi$$
 by def. of CTL* semantics

Since λ and λ' are bisimilar, we must have that $\lambda[0]$ and $\lambda'[0]$ are bisimilar by the definition of bisimilarity, so

$$(M,\lambda)\models^{\mathrm{CTL}^*}\phi\iff (M',\lambda'[0])\models^{\mathrm{CTL}^*}\Phi\qquad \text{inductive hypothesis 2}\\ \iff (M',\lambda')\models^{\mathrm{CTL}^*}\phi\qquad \text{by def. of CTL* semantics}$$

• Let $\phi = \neg \psi$. Then

$$(M,\lambda) \models^{\operatorname{CTL}^*} \phi \iff (M,\lambda) \not\models^{\operatorname{CTL}^*} \psi$$
 by def. of CTL* semantics
$$\iff (M',\lambda') \not\models^{\operatorname{CTL}^*} \psi$$
 inductive hypothesis 1
$$\iff (M',\lambda') \models^{\operatorname{CTL}^*} \phi$$
 by def. of CTL* semantics

• Let $\phi = \psi \wedge \omega$. Then

$$(M,\lambda)\models^{\mathrm{CTL}^*}\phi\iff (M,\lambda)\models^{\mathrm{CTL}^*}\psi\text{ and }(M,\lambda)\models^{\mathrm{CTL}^*}\omega\qquad \text{by def. of CTL* semantics}\\ \iff (M',\lambda')\models^{\mathrm{CTL}^*}\psi\text{ and }(M',\lambda')\models^{\mathrm{CTL}^*}\omega\qquad \text{inductive hypothesis 1}\\ \iff (M',\lambda')\models^{\mathrm{CTL}^*}\phi\qquad \text{by def. of CTL* semantics}$$

• Let $\phi = X \psi$. Then

$$(M,\lambda) \models^{\mathrm{CTL}^*} \phi \iff (M,\lambda[1..\infty]) \models^{\mathrm{CTL}^*} \psi$$
 by def. of CTL* semantics

Since λ and λ' are bisimilar, $\lambda[1..\infty]$ and $\lambda'[1..\infty]$ must also be bisimilar - if they aren't, then there's an index $i \geq 1$ such that $(M, \lambda[i]) \not\cong (M', \lambda'[i])$, hence λ and λ' wouldn't be bisimilar.

So

$$(M,\lambda) \models^{\text{CTL*}} \phi \iff (M',\lambda'[1..\infty]) \models^{\text{CTL*}} \psi$$
 inductive hypothesis 1 $\iff (M',\lambda') \models^{\text{CTL*}} \phi$ by def. of CTL* semantics

• Let $\phi = \psi \cup \omega$. Then

$$(M, \lambda) \models^{\text{CTL*}} \phi \iff (M, \lambda[i..\infty]) \models^{\text{CTL*}} \omega \text{ for some } i \geq 0,$$

and $(M, \lambda[j..\infty]) \models^{\text{CTL*}} \psi \text{ for all } 0 \leq j < i$ by def. of CTL* semantics

By a similar argument as in the previous point, $(M, \lambda[k..\infty]) \cong (M', \lambda'[k..\infty])$ for any $0 \leq k$. So certainly $(M, \lambda[i..\infty]) \cong (M', \lambda'[i..\infty])$ for any $i \geq 0$, and $(M, \lambda[j..\infty]) \cong (M', \lambda'[j..\infty])$ for any $0 \leq j < i$.

Hence

$$\begin{split} (M,\lambda) \models^{\text{CTL*}} \phi &\iff (M',\lambda'[i..\infty]) \models^{\text{CTL*}} \omega \text{ for some } i \geq 0, \\ &\quad \text{and } (M',\lambda'[j..\infty]) \models^{\text{CTL*}} \psi \text{ for all } 0 \leq j < i \\ &\iff (M',\lambda') \models^{\text{CTL*}} \psi \cup \omega \end{split} \qquad \text{by def. of CTL* semantics}$$

6

We will prove that CTL-equivalence is a bisimulation.

Let M, M' be models and t, t' be states those models (respectively). Assume t, t' are CTL-equivalent.

(a) Atoms are preserved

Since t, t' are CTL-equivalent, $(M, t) \models^{\text{CTL}} p \iff (M', t') \models^{\text{CTL}} p$ (since p is a CTL formula), so this condition is trivially proved.

(b) Forth

Assume that $t \to u$, for a state u in M. Assume for a contradiction that there is no u' in M' such that $t' \to u'$ and u, u' are CTL-equivalent.

Take an atom p. Either $u \in V(p)$, or $u \notin V(p)$. In the first case, let $\Phi = p$, otherwise let $\Phi = \neg p$ - so $(M, u) \models^{\text{CTL}} \Phi$. Hence, $(M, t) \models^{\text{CTL}} \to X \Phi$.

Therefore we must have that $(M', t') \models^{\text{CTL}} \text{EX} \Phi$. This implies that there is a path starting from t' (satisfying $X \Phi$), hence there exists some u' such that $t' \to u'$.

Take the set $S' = \{u' \mid t' \to u'\}$. We have just shown that this set is non-empty. Since the states of M and M' are finite, and S' is a subset of the states of M', it must also be finite.

Since we assumed that no element of S' is CTL-equivalent with u, for every $u'_i \in S'$, there must be a formula Φ_i such that $(M, u) \models^{\text{CTL}} \Phi_i$ but $(M', u'_i) \not\models^{\text{CTL}} \Phi_i$.

So $(M, u) \models^{\text{CTL}} \Phi_1 \wedge ... \wedge \Phi_n$, but $(M', u'_i) \not\models^{\text{CTL}} \Phi_1 \wedge ... \wedge \Phi_n$ for any $u'_i \in S'$.

Hence $(M,t) \models^{\text{CTL}} \text{EX}(\Phi_1 \wedge ... \wedge \Phi_n)$ but $(M',t') \not\models^{\text{CTL}} \text{EX}(\Phi_1 \wedge ... \wedge \Phi_n)$, which is a contradiction.

(c) Back

Assume that $t' \to u'$, for a state u' in M'. Assume for a contradiction that there is no u in M such that $t \to u$ and u and u' are CTL equivalent.

Take an atom p. Either $u' \in V'(p)$, or $u' \notin V'(p)$. In the first case, let $\Phi = p$, otherwise let $\Phi = \neg p$ - so $(M', u') \models^{\text{CTL}} \Phi$. Hence, $(M', t') \models^{\text{CTL}} E X \Phi$.

Therefore we must have that $(M,t) \models^{\text{CTL}} \text{EX} \Phi$. This implies that there is a path starting from t (satisfying $X\Phi$), hence there exists some u such that $t \to u$.

Let $S = \{u \mid t \to u\}$. We have just shown that this set is non-empty. Since the states of M and M' are finite, and S is a subset of the states of M, S is finite.

Since we assumed no element of S is CTL-equivalent with u', for every $u_i \in S$, there must be a formula Φ_i such that $(M', u') \models^{\text{CTL}} \Phi_i$ but $(M, u_i) \not\models^{\text{CTL}} \Phi_i$.

So $(M', u') \models^{\text{CTL}} \Phi_1 \wedge ... \wedge \Phi_n$, but $(M, u_i) \not\models^{\text{CTL}} \Phi_1 \wedge ... \wedge \Phi_n$ for any $u_i \in S$.

Hence $(M',t') \models^{\text{CTL}} \text{EX}(\Phi_1 \wedge ... \wedge \Phi_n)$ but $(M',t') \not\models^{\text{CTL}} \text{EX}(\Phi_1 \wedge ... \wedge \Phi_n)$, which is a contradiction

We will show that (M,t) and (M',t') are CTL-equivalent if and only if they are CTL* equivalent.

- (\Longrightarrow): Assume that (M,t) and (M,t') are CTL-equivalent.
 - By question 7, (M,t) and (M,t') are bisimilar. But by question 6, CTL* formulae are preserved across bisimulations, so (M,t) and (M',t') are CTL* equivalent.
- (\iff): Assume that (M,t) and (M,t') are CTL*-equivalent.

By question 5, CTL* is more expressive than CTL, so if CTL* formulae are preserved then CTL formulae are preserved, hence (M, t) and (M', t') are CTL equivalent.

Although CTL* is strictly more expressive than CTL, their distinguishing power is the same. So any property that characterises a model can be written as a CTL formula.

5

	Out of	49	
		1	1/0
a/ 2	b/ 2	Solution conect and very	Solution correct and very well explained, all steps given adequate reasoning However, resolution of one
Got one solution but missed the other	Solution could have been simplified further	well explained. However, both conditions not satisfied due to error in a	of the solutions of a is no given due to the error in a
1	1	2	2
		2	
a/ 2	b/ 2	c/ 2	d /2
2	2	2	2
		3	
a/ 3		b/ 2	
Very well exp	lained. Well Done!	2	
		4	
/5			
5	Very we	ll written!	
		5	
a/ 2		b/ 2	
2		2	
	6	7	8
/6	/6	/5	

Induction is well carried out and justified. Well Done!