

林火碳排放研究蓝皮书 (2023)

林火碳排放研究蓝皮书 (2023)

目 录

摘	要	. 1
一、	林火与碳排放	3
((一) 林火及发生条件	.3
((二) 林火的生态效应	. 5
((三) 林火的气候效应	. 5
(四)林火的环境效应	.6
(五)林火碳排放核算方法	.6
<u>-</u> ,	全球林火碳排放	.9
((一)全球森林分布与林火重点区	.9
	1. 全球森林面积与分布现状	.9
	2. 全球森林过火面积与重点区	10
((二) 林火碳排放的时空动态	11
((三)主要国家林火碳排放特征	13
((四) 小结	14
三、	极端林火事件及其综合效应评估	15
((一) 2023 年加拿大林火碳排放	15
((二) 2023 年加拿大林火环境效应	16
(三) 其他极端林火事件碳排放	18
	1. 2019 年亚马逊林火	18

2. 2019~2020 年澳大利亚林火	19
3. 2021 年俄罗斯林火	19
(四) 小结	21
四、中国林火碳排放	23
(一)中国森林资源分布状况	23
(二)中国林火基本状况	23
(三)中国林火面积及碳排放	23
1. 热点和过火面积分布	23
2. 中国林火的碳排放	24
(四)林火管理对碳汇的影响	25
1. 中国林火管理及投入	25
2. 中外林火管理政策比较	26
(五)小结	27
五、启示与建议	29
(一)建立包括自然过程的全口径碳核算体系	29
(二)加强极端林火防范与管理	29
(三)深化林火碳排放的科学研究和国际合作	30

摘要

林火是陆地生态系统中重要的干扰过程。2001~2022 年间,全球年均森林过火面积为4695 万公顷,是同期年均人工林增长面积的11 倍。22 年间,全球林火共排放339 亿吨二氧化碳(CO₂),可使大气CO₂浓度增加4.35 ppm(百万分之一),已成为当前重要的碳排放源。

全球林火 CO₂ 排放存在明显的空间差异。林火高发区分布在南纬 5°~20°的热带雨林边缘区和北纬 45°以上的高纬度针叶林区。近年来,北半球高纬度针叶林区的林火 CO₂ 排放量呈现快速增加趋势。

极端林火事件频发是造成全球林火碳排放增加的主要原因。如 2023 年加拿大极端林火直接排放 CO₂ 超过 15 亿吨,严重削弱生态系统碳汇功能。准确预测和防控极端林火事件,对于全球碳减排和应对全球气候变化具有重要意义。

中国一直采取积极的林火防控政策,取得良好效果。中国森林面积占全球的 5.4%,但林火碳排放量仅占全球林火碳排放总量的 0.65%,显著低于全球平均水平。2001~2022 年间,中国林火年均 CO₂ 排放量为 0.10 亿吨,且森林过火面积和碳排放量呈现明显下降趋势。

鉴于林火碳排放对全球气候和环境的显著影响,建议将 其纳入当前碳收支评估体系和国家减排责任机制,尽快建立 包括林火等自然因素在内的全口径碳核算体系。

一、林火与碳排放

(一) 林火及发生条件

林火,又称森林火灾,是森林生态系统中一种常见的干扰过程。林火会显著影响森林的组成、结构和演替特征,从而改变森林生态系统的物质循环和能量流动。重大林火还会产生显著的生态、气候和环境效应。

林火的发生需要同时具备三个条件,即可燃物、火源和气象条件(图1.1)。首先,可燃物是林火发生的基础,主要包括纤维素、半纤维素、木质素等有机物质。森林可燃物分为有焰燃烧和无焰燃烧两类。有焰燃烧可燃物如树枝、树皮、苔藓、森林凋落物等,能挥发出可燃性气体并产生火焰,占所有可燃物的85%~90%,其特点是蔓延速度快,燃烧面积大。无焰燃烧可燃物如泥炭、朽木等,无法分解产生足够的可燃性气体,燃烧时没有火焰,其特点是蔓延速度慢,持续时间长,在空气湿度较大的情况下仍可继续燃烧。

可燃物需要达到一定的温度才能燃烧,该温度称为"燃点"。森林可燃物中,干枯杂草的燃点为 150~200℃,木材的燃点为 250~300℃。火源是引导森林可燃物达到燃点的关键,分为人为和自然两类。人为火源,包括生产性火源(如烧垦、烧荒、烧木炭、开山崩石等)和非生产性火源(如野外用火、吸烟、燃放烟花爆竹等),引起的林火次数占总数的 80%以上。自然火源包括雷击、火山爆发、陨石坠落等,其中最常见的自然火源是雷击火,雷电产生的瞬间高温(2.5 万摄氏度)

极易引燃森林可燃物。

林火三要素 「「燃物」 「「燃物」 「「燃物」 「対域、対け、苔藓等

图 1.1 林火发生三要素

在森林可燃物充足和火源具备的情况下,林火规模还取决于天气状况,高温、大风等气象条件显著影响林火的发生和扩散。高温促进可燃物水分蒸发,降低可燃物湿度,同时提高了可燃物温度,使可燃物加速达到燃点。大风对森林火灾的发生起到降低可燃物湿度和补充氧气的双重作用,使可燃物更易燃烧,并加速林火蔓延。

气候变暖对林火发生三要素均可产生重要影响。高温、热浪和干旱频发,造成可燃物水分含量下降,增加林火发生的频率和蔓延速度。对于高纬度地区而言,气候变暖存在"北极放大效应"(即高纬度地区的气候变暖速率高于全球平均水平),形成气候变暖-林火加剧-碳排放增加的正反馈机制。因此,气候变暖对高纬度地区森林火灾的影响尤为显著。

(二) 林火的生态效应

林火通过地表火、树冠火等多种形式改变森林生态系统的树种组成、年龄结构和分布格局。地表火清除枯枝落叶堆积物、改良土壤表层的物理与化学性质、调节林分结构。树冠火烧除林木地上部分,加速树种演替。此外,林火还可以减少某些昆虫和病原体的数量,控制虫害和疾病的传播。

但是,近年来受气候变化和人类活动影响,极端林火事件频繁发生,不仅降低了森林调节气候、涵养水源、维持生物多样性的生态系统服务功能,还改变了生态系统的结构和过程,甚至将森林转变为灌木或草本等储碳能力较低的植被,严重削弱生态系统碳汇功能。

(三) 林火的气候效应

林火是温室气体排放的重要来源,产生的温室气体包括 CO₂、甲烷 (CH₄)和一氧化二氮 (N₂O)等,其中 CO₂约占总排放量的 90%。2001~2022年间,全球林火共排放约 339 亿吨 CO₂,可使大气 CO₂浓度升高 4.35 ppm。

林火通过排放温室气体、改变下垫面反照率、释放气溶 胶影响辐射平衡等生物地球物理过程,对地表能量的吸收和 再分配产生复杂的影响。在热带稀树草原,火烧频繁,林火 释放的灰分降低反照率,导致正辐射强迫,地表温度升高。 然而,在高纬度地区,林火熄灭后,早期恢复以低矮植被(如 草本或灌木)为主,反照率较高,负辐射强迫增强,导致地 表温度降低。此外,植物通过蒸腾作用吸收土壤中的水分并 释放到大气,从而降低环境温度。林火的发生会抑制该过程, 导致植被释放的潜热通量减少,近地表气温升高,空气湿度降低。

林火向大气释放大量的气溶胶,对太阳辐射起到散射和反射作用,导致地表吸收的太阳辐射减少,短期内会造成局部温度下降。这种降温效应在大气中通常只能持续一周左右的时间。然而,林火造成森林生态系统结构和物种组成的变化,可能会导致净辐射和感热通量大幅下降,其效应将持续数十年。

林火产生的颗粒物随着大气环流形成长距离传输,降落到冰雪表面,促进冰雪融化,对全球气候变暖造成不可忽视的影响。发生在高纬度冻土区域的林火,将加速地下冻土层融化,存储在冻土中的大量甲烷得以释放,促进全球气候变暖。

(四) 林火的环境效应

除排放大量温室气体外, 林火还产生细颗粒物(PM_{2.5})、可吸入颗粒物(PM₁₀)、一氧化碳(CO)、氮氧化物(NO_x)、挥发性有机物(VOC)、多环芳烃、重金属等污染物。NO_x和VOC等气体进入大气后,通过一系列均相和非均相化学反应,进一步生成臭氧(O₃)等二次大气污染物。林火污染物中最主要的是PM_{2.5},会诱发慢性支气管炎等人体呼吸系统和心血管系统疾病,导致哮喘加重、呼吸困难、心律失常等症状。

(五) 林火碳排放核算方法

林火碳排放核算主要有"自上而下"和"自下而上"两种方法。

"自上而下"方法主要基于观测的大气温室气体浓度和气象场资料,结合大气化学物质输送模型,估算区域和全球林火碳排放,也被称为大气反演法。这种方法的本质是基于统计理论的非线性最优化算法,可以实现林火碳排放量的快速反演,但其准确性和空间分辨率较低,难以量化 CO₂ 排放的源汇关系。

"自下而上"方法主要基于火烧碳排放模型,通过观测得到的过火面积或辐射功率,结合生物量、燃烧系数、排放因子等参数计算不同温室气体的排放量,具有空间分辨率高、可明确碳排放源类型的优点,但对数据类型和质量有较高要求。

近期,中国科学院沈阳应用生态研究所专家基于"自下而上"方法,提出了一种林火碳排放量快速计算方法,可实现近实时估算。

二、全球林火碳排放

(一) 全球森林分布与林火重点区

1. 全球森林面积与分布现状

根据联合国粮农组织数据,2020年全球森林总面积为40.6亿公顷(图 2.1)。其中,天然林占93%(37.7亿公顷)、人工林占7%(2.9亿公顷)。从分布区域看,亚洲(包括西伯利亚)分布最广,森林面积为12.3亿公顷,全球占比30%;其次是南美洲,森林面积为8.4亿公顷,全球占比21%,主要分布在巴西亚马逊热带雨林;北美洲森林面积为7.5亿公顷,全球占比19%,以美国和加拿大的温带和北方森林为主;非洲森林面积为6.4亿公顷,全球占比16%;欧洲森林面积为4.1亿公顷,全球占比10%;大洋洲森林面积为1.9亿公顷,全球占比5%,主要是澳大利亚和新西兰的温带森林;南极洲无森林分布。

图 2.1 全球森林覆盖度分布(空间分辨率 0.25°) 根据联合国粮农组织数据,2000~2020年间,全球森林

面积净损失量为 0.99 亿公顷。其中,南美洲森林(主要为亚马逊热带雨林地区)年均净损失面积最高,为 392 万公顷。非洲森林年均净损失率最高,年均减少面积为本区域森林面积的 0.55%。亚洲森林面积净增长最高,为 0.29%/年,增幅达 176.4 万公顷/年。欧洲森林面积年均净增长仅次于亚洲,增长率和增幅分别 0.08%和 76 万公顷/年。

2. 全球森林过火面积与重点区

2001~2022 年间,全球森林过火面积为 10.33 亿公顷¹,年均 4695 万公顷。年均森林过火面积相当于同期人工林年均增长面积的 11 倍。

南半球林火集中在热带地区,包括非洲南部和中部、大 洋洲东南部(主要是澳大利亚)和南美洲亚马逊热带雨林区 域。北半球则主要集中于欧亚大陆与美洲大陆中高纬度区域。 从纬度分布来看,林火高发区主要分布在南纬 5°~20°(热带 雨林边缘区),年均森林过火面积为 45 万公顷。此外,北纬 45°以上的针叶林区也是林火高发区(图 2.2)。

2001~2022年间,非洲年均森林过火面积最高(图 2.2), 约为 3332万公顷(其中,约 52%的面积属于重复火烧),占 全球年均森林过火面积的 71%;其次为南美洲和亚洲,其年 均森林过火面积分别为 518万公顷和 512万公顷;大洋洲和 北美洲年均森林过火面积分别为 153 万公顷和 152 万公顷; 欧洲年均森林过火面积为 26 万公顷。

¹全球年均重复火烧面积为 1926 万公顷, 其中, 非洲约占 90%, 南美占 3.7%, 亚洲占 4.9%, 其他占 1.4%。

图 2.2 全球 2001~2022 年间的年均森林过火面积 (空间分辨率 0.25°)

除北美洲外,其他大洲森林过火面积均呈下降趋势(图 2.3)。非洲最为显著(-21 万公顷/年),其次为南美洲(-10 万公顷/年)。亚洲森林过火面积也呈现下降趋势(-6.65 万公顷/年)。

图 2.3 全球 2001~2022 年间的森林过火面积变化 (空间分辨率 0.25°)

(二) 林火碳排放的时空动态

2001~2022 年间,全球林火 CO₂ 排放量为 339 亿吨,年

均为 15.4 亿吨(图 2.4)。林火 CO₂排放量的热点区域分布在非洲南部和中部、南亚和东南亚、大洋洲东南部(主要是澳大利亚)和南美洲亚马逊热带雨林。北半球则集中于欧亚大陆与美洲大陆的中高纬度森林分布区,包括西伯利亚与美国、加拿大的寒温带针叶林区域,以及东南亚中南半岛等地区(图 2.4)。

图 2.4 全球 2001~2022 年间的年均林火 CO₂ 排放 (空间分辨率 0.25°)

2001~2022 年间,非洲和亚洲的林火 CO₂ 年均排放量分别为 5.90 亿吨和 4.46 亿吨,共占全球年均排放量的 67%;南美洲和北美洲的林火 CO₂ 年均排放量分别为 3.04 亿吨和 1.59 亿吨;大洋洲的林火 CO₂ 年均排放量为 0.34 亿吨;欧洲的林火 CO₂ 年均排放量为 500 万吨(图 2.5)。

图 2.5 各大洲 2001~2022 年间的林火 CO₂ 排放量统计图

全球林火 CO₂ 排放量在 2001~2022 年间,平均减少 0.44 亿吨/年(图 2.6)。排放量增加的区域集中在非洲中部、东南亚、欧亚大陆与美洲大陆中高纬度地区。林火 CO₂ 排放量下降的区域主要集中在亚洲温带森林和热带稀树草原。

图 2.6 全球 2001~2022 年间的林火 CO₂ 排放变化趋势 (空间分辨率 0.25°)

(三) 主要国家林火碳排放特征

全球森林过火面积和碳排放量较大的国家有巴西、俄罗

斯、加拿大和美国。

2001~2022 年间,巴西森林过火面积总计 0.63 亿公顷,年均 286 万公顷,林火 CO₂排放量总计 47.74 亿吨,年均 CO₂排放量为 2.17 亿吨,占全球林火碳排放总量的 14.08%。

俄罗斯森林过火面积总计 0.50 亿公顷, 年均 227 万公顷, 林火 CO₂排放量总计 38.06 亿吨, 年均 CO₂排放量为 1.73 亿吨, 占全球林火碳排放总量的 11.23%。

加拿大森林过火面积总计 0.11 亿公顷, 年均 50 万公顷, 林火 CO₂ 排放量总计 13.74 亿吨, 年均 CO₂ 排放量为 0.62 亿吨, 占全球林火碳排放总量的 4.05%。

美国森林过火面积总计 0.09 亿公顷, 年均 41 万公顷, 林火 CO₂ 排放量总计 11.29 亿吨, 年均 CO₂ 排放量为 0.51 亿吨, 占全球林火碳排放总量的 3.33%。

(四) 小结

2001~2022 年间,全球林火 CO₂ 排放量总计 339 亿吨,年均排放量为 15.4 亿吨。林火 CO₂ 排放量的热点区域是热带和北半球中高纬度地区;全球林火碳排放存在显著的空间差异,高纬度针叶林区域林火 CO₂ 排放呈现增加趋势。

三、极端林火事件及其综合效应评估

极端林火事件是指过火面积大、影响范围广,并集中发生在某一时空范围内的一系列森林火烧事件。近5年发生的典型极端林火事件包括2019年亚马逊林火、2019~2020年澳大利亚林火、2021年俄罗斯林火和2023年加拿大林火。

近年来,极端林火事件数量增加,排放的 CO₂往往远超同区域多年林火碳排放的总和,释放的污染物随大气环流运动,对全球气候和环境带来巨大影响。在气候变暖背景下,全球森林火情形势严峻,值得国际社会高度关注。

(一) 2023 年加拿大林火碳排放

根据加拿大跨机构消防中心发布的统计数据,截至当地时间 2023 年 10 月 6 日,加拿大全境林火过火面积已达 1840 万公顷,累积火烧次数超过 6500 起;产生的 CO2 排放量已超过 15 亿吨(图 3.1),高于过去 22 年林火产生 CO2 排放量的总和 (13.74 亿吨)。目前,全国数百处林火仍然活跃,预计 CO2 排放量还将继续增加。

2023 年加拿大林火表现出与平常年份不同的显著特点。一是火烧季节开始早,火情发展迅速,三分之二的单日过火面积超过 10 万公顷。5~6 月份的累计过火面积,是 2019~2022年间同期平均水平的 20 倍。二是火场数量多且遍布全境。几乎每天都有超过 500 个火场同时燃烧,导致扑火工作顾此失彼。三是火场面积大,平均火场面积超 2500 公顷。造成加拿大极端林火事件的原因既有自然过程,也有人为影响。高温

和干旱是主要的气象驱动因子。今年3月以来,加拿大遭遇持续严重干旱,叠加异常高温,易于造成林火发生和蔓延。此外,粗放的森林管理和林火防控也是导致这次林火事件的重要因素。加拿大主要树种是可燃性较高的针叶树,加之没有及时清除森林内堆积的可燃物,增加了林火发生和蔓延的风险。

图 3.1 加拿大 2023 年林火累积 CO₂ 排放量与其他年份对比

(二) 2023 年加拿大林火环境效应

根据全球火灾同化系统数据,2023年5~8月,加拿大林火累积排放1002万吨 PM_{2.5},是过去20年同期平均排放量的6.5倍。5月,林火 PM_{2.5}排放主要发生在西南部地区;6月,西南部和西北部地区均有大量的PM_{2.5}排放;7月和8月,北部地区的PM_{2.5}排放量显著增加(图3.2)。

加拿大林火造成的环境污染不仅影响全境,还通过大气 环流作用,影响全球其他区域,对北半球广大地区的空气质 量产生显著影响。

图 3.2 2023 年加拿大林火 PM_{2.5} 逐月排放空间分布

利用气溶胶和大气化学模式(IAP-AACM)对加拿大林火排放 PM_{2.5} 的全球传输特征进行了模拟和分析(图 3.3)。结果显示,2023 年 5~8 月,加拿大林火导致了 6 次大范围的 PM_{2.5} 污染和传输过程,分别为 5 月 15~22 日、6 月 5~9 日、6 月 24 日~7 月 1 日、7 月 12 日~8 月 1 日、8 月 7~15 日、8 月 17~22 日。第 1 次污染过程主要发生在加拿大西南部地区,影响到美国中北部地区。第 2 次传输过程对美国东北部地区产生显著影响,造成纽约市出现罕见的重度空气污染。在第 3 次传输过程中,高浓度的 PM_{2.5} 传输到欧洲地区。在第 4 次传输过程中,加拿大西部林火排放的 PM_{2.5} 再次显著影响到美国中北部地区。7 月和 8 月,林火发生区北移,排放的吸收性气溶胶沉降到北极冰雪表面,加速冰雪融化,加剧气候变暖。

图 3.3 2023 年 5~8 月加拿大林火 PM_{2.5} 浓度全球传输特征

(三) 其他极端林火事件碳排放

1.2019 年亚马逊林火

毁林开荒等活动导致亚马逊雨林近年来的人为火灾呈增加趋势。2019年遭遇了自 2010年以来最大的一次林火。在超过 2500 起火灾事件中,88%发生在巴西境内,其次是玻利维亚境内(8%)和秘鲁境内(4%)。据估算,2019年亚马逊林火产生的 CO₂超过 5 亿吨(图 3.4),约占当年全球林火CO₂排放量的 32%。

图 3.4 亚马逊 2019 年林火累积 CO₂ 排放量与其他年份对比

2.2019~2020 年澳大利亚林火

2019~2020 年的澳大利亚林火季节,又称"黑色夏季", 损毁了 2730 万公顷的森林和灌木,近 80%的澳大利亚居民 受到不同程度的影响。据估算,此次极端林火事件排放了 7.72 亿吨 CO₂(图 3.5),约占 2019~2020 年全球林火 CO₂排放量 的 26%。

图 3.5 澳大利亚 2019~2020 年林火累积 CO₂ 排放量与其他年份对比

3.2021 年俄罗斯林火

2021年,俄罗斯森林大火的过火面积超过1600万公顷。

据估算,此次极端林火事件排放了 12.45 亿吨 CO₂(图 3.6), 约占当年全球林火 CO₂排放量的 44%。

图 3.6 俄罗斯 2021 年林火累积 CO₂ 排放量与其他年份对比 表 3.1 近 5 年来极端林火事件及 CO₂ 排放量

序号	CO ₂ 排放量(亿吨)	国别	年份
1	15.20(仍在增加)	加拿大	2023
2	12.45	俄罗斯	2021
3	8.71	俄罗斯	2018
4	8.06	俄罗斯	2020
5	7.72	澳大利亚	2019~2020
6	7.67	印度尼西亚	2019
7	7.49	俄罗斯	2019
8	6.33	巴西	2021
9	6.32	巴西	2022
10	6.15	巴西	2019

近5年,全球发生了10起CO₂排放量超过6亿吨的极端林火事件,主要发生在俄罗斯、巴西、加拿大、澳大利亚和印度尼西亚(表3.1)。相比而言,中国林火排放CO₂最高

的年份为 2008 年 (0.37 亿吨), 远低于表 3.1 中的极端林火事件。

(四) 小结

近年来,气候变暖和人为活动导致极端林火事件增加,释放的 CO₂ 往往远超同区域多年林火碳排放的总和,**对全球气候和环境产生重要影响**。2023 年加拿大林火产生的 CO₂排放量目前已经超过 15 亿吨,高于日本 2021 年燃烧化石燃料产生的 CO₂排放量 (10.67 亿吨),已引起国际社会的广泛关注。

四、中国林火碳排放

(一) 中国森林资源分布状况

根据 2022 年中国国家统计局和联合国粮农组织发布的数据,中国森林面积为 2.20 亿公顷,蓄积量为 176 亿立方米,分别位居世界森林面积和蓄积量的第五位和第六位。尽管森林资源位居世界前列,但人均森林面积仅为 0.15 公顷,不足世界平均水平(0.52 公顷)的三分之一。中国政府高度重视林业建设。随着三北防护林工程、天然林保护工程、退耕还林还草工程、京津风沙源治理工程的实施,森林面积在1998~2018 年间增加了 0.62 亿公顷。

(二) 中国林火基本状况

根据中国国家统计年鉴数据,2000~2021年间,中国共发生133954次林火,过火面积386万公顷,年均林火发生次数和过火面积分别为6089次和17.55万公顷。除个别年份外,森林过火面积总体呈显著下降趋势。

2000~2021年间,重大(过火面积大于100公顷)和特大(过火面积大于1000公顷)森林火灾共计发生339次。特别是2011年以来,重大和特大森林火灾发生次数明显下降,2013年和2021年无新增重大森林火灾。

(三)中国林火面积及碳排放

1. 热点和过火面积分布

卫星数据显示,2001~2022 年间,中国林火热点数量年 均约为5755个,年均过火面积为26万公顷。受气候条件、 人类行为、火灾管理等因素的影响,林火活动具有明显的年 际波动,2003年和2008年林火活动高于多年平均水平。自 2010年以来,林火活动下降趋势明显。

2001~2022 年间,中国林火活动呈现明显的空间聚集特征(图 4.1)。林火活动热点区域为东北林区(大、小兴安岭)和东南林区,分别占总过火面积的 63.3%和 27.0%;西南林区森林过火面积相对较低(7.7%)。其他区域森林过火面积仅占 2.0%。

图 4.1 中国 2001~2022 年间的林火热点数分布图

2. 中国林火的碳排放

基于"自下而上"方法,利用卫星观测数据,结合不同植被类型的排放因子,分析了中国林火 CO₂ 排放的动态变化。2001~2022 年间,中国林火 CO₂ 排放总量为 2.22 亿吨,年均 CO₂ 排放量约为 0.10 亿吨,在世界上处于较低水平,年际变化总体呈下降趋势(图 4.2)。其中,在 2003 年和 2008 年出

现林火 CO₂ 排放高峰,两年的排放量约占 22 年总排放量的 30%。

图 4.2 中国 2001~2022 年间的林火 CO₂ 排放量

从分布区域看,东北、西南和东南林区林火 CO₂ 排放量分别占 53.0%、12.9%和 31.1%(图 4.3)。其中,东南林区林火 CO₂ 排放量呈下降趋势,东北林区和西南林火 CO₂ 排放量变化趋势不明显。

图 4.3 中国 2001~2022 年间的林火 CO2 空间排放分布

(四) 林火管理对碳汇的影响

1. 中国林火管理及投入

中国森林防灭火工作大致历经三个阶段:起步发展阶段 (1949~1986年)、快速发展阶段(1987~2018年)和创新发展阶段(2018年至今)。特别是1987年大兴安岭"5·6"特大森林火灾发生后,中国实行了"预防为主、积极消灭"的林火防控工作方针。经过多年发展,森林防火基础设施和装备建设明显加快,预防、扑救、保障三大体系不断完善,森林火灾综合防控能力明显加强。

在全社会的共同努力下,中国林火管理基本实现了"早发现、早扑灭",极大降低了林火的发生,有效保护了森林资源和人民群众生命财产安全。2023年,根据《关于全面加强新形势下森林草原防灭火工作的意见》,中国进一步加大防火力度,力争到2025年,将森林火灾受害率控制在0.9‰以内。

2. 中外林火管理政策比较

世界各国对林火管理秉承不同的理念。如美国、澳大利亚将计划火烧作为森林管理的手段之一,用于清除森林可燃物。加拿大针对不同类型区域,采取差异化措施,对居民区、高附加值的森林及游憩区,通常以灭火为主;对边远且经济价值低的森林区域,通常只监测其发展动态。

然而,在某些情况下火情发展迅速,如仅仅采取观察策略,很有可能造成难以控制的极端事件,导致过火面积及碳排放大量增加。因此,在气候变暖和人类活动加剧的背景下,松散的林火管理政策增加了极端林火的发生概率,对林火碳排放产生重要影响。

(五) 小结

2001~2022 年间,中国的年均林火 CO₂ 排放量约为 0.10 亿吨,巴西、俄罗斯、加拿大和美国分别为 2.17 亿吨、1.73 亿吨、0.62 亿吨和 0.51 亿吨。同时,中国森林过火面积和碳排放量呈明显下降趋势。

中国实行积极的林火防控政策,投入了巨大的资源用于防火监测和森林消防。在森林面积和蓄积量双增长的背景下,有效降低了林火发生和碳排放量,为应对全球气候变化作出了积极贡献。

五、启示与建议

2001~2022年间,全球林火年均排放 15.4 亿吨 CO₂,已成为不容忽视的碳排放源。北半球高纬度地区林火面积和 CO₂ 排放量有所增加。随着气候变化和人类活动加剧,未来林火发生的频率与强度可能呈增加趋势。

基于上述分析,建议如下。

(一)建立包括自然过程的全口径碳核算体系

林火具有明显的人为干预与可控属性,积极主动的管理是有效减少林火发生和 CO₂ 排放的核心手段。然而,当前的全球碳核算体系没有涵盖林火碳排放,更没有考虑通过调整森林管理措施控制林火碳排放。中国等国家在林火防控上投入了巨大的资金与人力,降低了林火、特别是极端林火事件的发生频率,大幅减少林火碳排放。如不将这些努力纳入气候变化国际评估,则不利于建立公平合理的减排责任分担机制。为此,亟需建立全面、客观、公正的碳排放监测与计量系统,兼顾人类活动(化石燃料排放、工业排放)和自然过程(林火等)碳排放。同时,将林火碳排放的风险防控纳入碳汇林市场的碳交易体系。

(二)加强极端林火防范与管理

实践表明,科学有效的森林管理是预防极端林火发生的 重要手段。在林火发生的三要素中,处理森林可燃物和火源 管理是林火防控的关键措施。建议加强防火宣传,增强全社 会的防火意识。将可燃物处理纳入森林管理,通过计划火烧、 机械清除、林分疏透和自然火利用等方式,减少可燃物载量, 降低林火发生强度。因地制宜,调整森林的树种组成,优化 防火林带结构和布局,通过天然"绿色防火道"等有效措施, 构建分区分策的林火管理体系。

(三)深化林火碳排放的科学研究和国际合作

林火预测和防控是世界性难题。建议加强相关的基础研究和关键核心技术攻关,构建林火风险识别、预警-预测和防控技术体系,革新智能防火设备和科学决策系统,研发灾后植被重建和碳汇快速恢复技术。加强国际合作,建立统一标准的林火碳排放计量与评估系统,发起国际大科学计划,共同应对挑战。