CS 463/516 Medical Imaging

Lecture 3

Magnetic Resonance Imaging (MRI)

- MRI has best soft tissue contrast of all imaging modalities
 - can capture a wide range of different tissue types. More flexible than CT.
- Example: 5 different images all acquired from same person using MRI
 - We will see how MRI pulse sequences can be designed to generate a range of contrasts

3 tesla MRI 'tesla' is a unit of magnetic field strength

MRI vs CT

- CT voxel values measured in attenuation coefficients: μ
 - Brighter = higher attenuation (skull absorbs most X-rays)
 - Hounsfield Units $HU = 1000 \cdot \frac{\mu \mu_{water}}{\mu_{water} \mu_{air}}$
- MRI is (usually) not quantitative
 - Voxel values are just numbers with no physical units
 - However, ongoing research on quantitative MRI:
 - https://www.sciencedirect.com/science/article/abs/pii/S2468451117300247
- MRI better than CT because:
 - MRI doesn't use X-rays (CT will give you cancer if you do too many scans)
 - MRI has better soft tissue contrast (can visualize more structures)
 - MRI better for functional imaging, flow imaging, microstructure imaging
- CT better than MRI because:
 - Faster CT image acquisition <1 minute, MRI scan takes up to 30 minutes
 - More patient-friendly environment
 - No loud noises, no strong magnetic fields, less claustrophobia risk

MRI acquisition

- MRI acquisition very different from CT or any other method
- MRI acquires images in 'frequency space' also known as 'k-space'
- To understand MRI, we must first understand the Fourier transform

Fourier transform (FT) concept

1.0

0.8

0.6

0.4

approximation original boxcar

- Fourier transform decomposes a function into its constituent *frequencies*
- FT is a linear transform that maps time (or space) domain to frequency domain

FT

Joseph Fourier 1768-1830

time (seconds)

1 second of data from boxcar function

Notice the peak at ~5 Hz (there are 5 boxcars cycles in one second, count them) Hz = cycles/second 5 cycles

Approximating the boxcar using more and more frequencies:

Discrete Fourier transform (DFT)

- DFT transforms sequence of N complex numbers $x_0, x_1, ... x_{N-1}$ into another sequence of complex numbers $X_0, X_1, ... X_{N-1}$:
- $X_k = \sum_{n=0}^{N-1} x_n \cdot \left[\cos\left(\frac{2\pi}{N}kn\right) i \cdot \sin\left(\frac{2\pi}{N}kn\right)\right] = \sum_{n=0}^{N-1} x_n \cdot e^{\frac{-i2\pi}{N}kn}$ (Euler's formula)
- DFT is an invertible linear transform: $x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \cdot e^{\frac{i2\pi kn}{N}}$
- $x_0, x_1, ... x_{N-1}$ is often a time series, and $X_0, X_1, ... X_{N-1}$ is a frequency spectrum:

Hz = cycles/second So if there are 16 cycles in 10 seconds, 16/10 = 1.6 Hz

Cooley-Tukey FFT algorithm

Cooley & Tukey

- How to compute the DFT and the inverse DFT on a digital computer?
- Computing $x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \cdot e^{\frac{i2\pi kn}{N}}$ for $x_1 \dots x_N$ is too slow! $O(N^2)$ running time.
- Cooley-Tukey algorithm divide and conquer, O(NlogN) running time for DFT:

```
def fft(X):
                                           Naïve python implementation.
                                                                               x[0]o-▶
    N = len(X)
                                           Works, but not optimized.
    if N <= 1:
                                           Use the scipy version (link below)
         return
                                                                                           DFT
                                           https://docs.scipy.org/doc/scipy
                                                                               x[4]o-▶
    even = np.array(X[0:N:2])
                                           /reference/generated/scipy.fft.ff
    odd = np.array(X[1:N:2])
                                                                               x[6]∘--
                                           t.html#scipy.fft.fft
                                                                               x[1]o_▶
    fft (even)
    fft (odd)
    for k in range (0, N//2):
                                                                                           DFT
                                                                               x[5]∘--
         t = np.exp(np.complex(0, -2 * np.pi * k / N)) * odd[k]
         X[k] = even[k] + t
                                                                               x[7]∘->
         X[N//2 + k] = even[k] - t
```


Data flow diagram for *N*=8: a decimation-in-time radix-2 FFT breaks a length-*N* DFT into two length-*N*/2 DFTs followed by a combining stage

Quiz: match the Fourier transform to the time series

 $1 \rightarrow d$, $2 \rightarrow a$, $3 \rightarrow c$, $4 \rightarrow e$, $5 \rightarrow b$

Magnitude and phase

- Fourier transform yields a complex function with two parts: real and imaginary
- Fourier transform plots we have seen so far have been magnitude spectra:
 - Magnitude of complex number z = a + bi is $r = |z| = \sqrt{a^2 + b^2}$
 - Magnitude of Fourier coefficient represents amount of that frequency present in original signal
- The *angle* of a complex number: z = a + bi is $\varphi = tan^{-1}(b/a)$ (also called *phase*)
 - Where a is real part (Re), b is imaginary part (Im)

For most of this course, whenever you see a plot of 'frequency spectrum' or 'frequency space' or 'Fourier domain', etc., it is typically a magnitude spectrum (meaning real and imaginary parts have been combined to yield |z|)

2d Discrete Fourier transform (2d DFT)

- We have image h(n, m) with N columns and M rows
- $\hat{h}(k,l) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} e^{-i(\omega_k n + \omega_l m)} h(n,m)$ (2d DFT)
- $h(n,m) = \frac{1}{NM} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} e^{i(\omega_k n + \omega_l m)} \hat{h}(k,l)$ (inverse 2d DFT)
- Can create any image by summing 2d sinusoids:

- c) image created by summing the images from a,b. $c=\alpha+b$
- (c) is a simple image, created using only 2 waves, but any arbitrary image can be approximated by a sum of sin/cosine waves (as with 1d case)

Code to reproduce figure

2d DFT example

- Red wave represented in 2d FFT as higher values closer to the center (low frequencies)
- Green wave represented in 2d FFT as higher values in center and mid frequency range
- Blue wave represented as higher values further from center (higher frequencies)

Creating rgb image (above) in python:

```
sz = 128
rgb[:,:,0] = np.sin(xpr/10) + np.random.rand(sz,sz)/5
rgb[:,:,1] = np.cos(ypr/3) + np.random.rand(sz,sz)/5
rgb[:,:,2] = rotate(np.cos(xpr),45,reshape=False,mode='reflect') + np.random.rand(sz,sz)/5
```

Quiz: match the 2d Fourier transform to the image

Filtering in frequency space

- Filters are used in image/signal processing to reduce or accentuate certain frequencies
- Can use low-pass filter to increase the low frequency content of image (and vice versa)

N.B. – this slide *does not* apply to MRI, it is for CT only. I'm just trying to show how the filtered backprojection method uses frequency space filtering to reconstruct the image.

Radon transform again

Filtered backprojection technique of iradon relies on filtering in frequency space. The ramp filter is a *high-pass* filter that reduces low frequency contribution

(one column from Radon(raw))

Frequency

As you can see, filtered backprojection reduces the low frequency content of the reconstructed image

backprojection image

Ramp filter

Frequency

do backprojection for all angles

invert filtered FFT and

filtered backprojection

Magnitude spectrum after applying ramp filter

