数字逻辑与部件设计

16. 时序逻辑电路

习题课

【例1】画出门控SR锁存器输出端Q的波形图

初态: Q=1

【例2】画出D触发器输出端Q波形图

 \bar{S}_D : 异步置1

 \bar{R}_D : 异步置0

初态: Q=1

【例3】画出D触发器输入D、输出端Q波形图

初态: $Q_0 = 0$

解:

$$O^{n+1}=D$$

【例4】画出JK触发器输出端Q波形图

解:

初态: $Q_0 = 0$

同步時序电路

分析、還计

【例5】当A=100110从左至右输入,求输出Z序列?

解: 电路状态改变入下图,对应的输出序列 Z = 011010

【例6】求011序列检测器的Mealy型状态图

序列检测器:一个串行输入端x,一个输出端Z,当检测到011时Z=1,否则Z=0.

现态	<u>次态/Z</u>			
少6767	x = 0	x = 1		
\boldsymbol{A}	<i>B</i> /0	<i>A</i> /0		
B	<i>B</i> /0	<i>C</i> /0		
$\boldsymbol{\mathcal{C}}$	<i>B</i> /0	D/ 1		
D	<i>B</i> /0	<i>A</i> /0		

现态	次态/Z			
少U/心·	x = 0	x = 1		
\boldsymbol{A}	<i>B</i> /0	<i>A</i> /0		
В	<i>B</i> /0	<i>C</i> /0		
C	<i>B</i> /0 <i>A</i> /1			

【例7】分析: 同步时序电路

解: 输入: A; 输出: Y Mealy型

2个D触发器

$$\mathbf{Q_1^*} = D_1 = A \overline{Q}_1 Q_0$$

$$Q_0^* = D_0 = \bar{A} + \bar{Q}_1 Q_0$$

$$Y = AQ_1$$

Q_1Q_0	$Q_1^*Q_0^*$ /Y		
	A = 0	A = 1	
00	01/0	00/0	
01	01/0	11/0	
10	01/0	00/1	
11	01/0	00/1	

【例8】用T触发器设计同步2位二进制计数器

输入AB	功能
0 0	保持
0 1	 递增计数
1 0	 递减计数
11	求反

解:输入: AB;输出:触发器状态 Q_1 , Q_0 -

$$T_1 = A\bar{Q}_0 + BQ_0$$

$$T_0 = A + B$$

AB	Q_1Q_0	$Q_{1}^{*}Q_{0}^{*}$	T_1T_0
0 0	0 0	0 0	0 0
0 0	0 1	0 1	0 0
0 0	1 0	1 0	0 0
0 0	1 1	1 1	0 0
0 1	0 0	0 1	0 1
0 1	0 1	1 0	1 1
0 1	1 0	1 1	0 1
0 1	1 1	0 0	1 1
1 0	0 0	1 1	1 1
1 0	0 1	0 0	0 1
1 0	1 0	0 1	1 1
1 0	1 1	1 0	0 1
1 1	0 0	1 1	1 1
1 1	0 1	1 0	1 1
1 1	1 0	0 1	1 1
1 1	1 1	0 0 11 / 2	24 1 1

假设:只出售一种饮料,1.5元/瓶。只允许投入1元、5角硬币。

当投入1.5元后,送出一瓶饮料;

当投入2.0元后,送出一瓶饮料,退还5角硬币找零。

① 输入: 投币0元、5角、1元对应 $X_1X_2=00$ 、 $X_1X_2=01$ 、 $X_1X_2=10$

 $Z_1 = 1$: 输出饮料, $Z_2 = 1$: 输出5角硬币

所有输出: $Z_1Z_2 = 00$ 、 $Z_1Z_2 = 10$ 、 $Z_1Z_2 = 11$

- ③ 系统状态:记忆已经投入的硬币总额。
 - :最小单位是5角,Mealy的输出由当前状态+当前输入共同作用,
 - :需要记忆的金额最多为1元,即 0元、5角、1元,三种状态 $S_0S_1S_2$ 1

投币0元: $X_1X_2 = 00$

投币5角: $X_1X_2 = 01$

投币1元: $X_1X_2 = 10$

 $Z_1 = 1$: 输出饮料

 $Z_2=1$: 输出5角硬币

—————————————————————————————————————		<mark>次态</mark> /Z ₁ Z ₂				
_	现态	$X_1 X_2 = 00$	$X_1X_2=01$	$X_1X_2=10$		
0元	S_0	S ₀ /00	S ₁ /00	S ₂ /00		
5角	S_1	S ₁ /00	S ₂ /00	S ₀ / 1 0		
1元	S_2	S ₂ /00	S ₀ /10	S ₀ /11		

现态		<mark>次态 /Z₁Z₂</mark>	
少(5)(5)(5)	$X_1 X_2 = 00$	$X_1 X_2 = 01$	$X_1X_2=10$
S_0	S ₀ /00	S ₁ /00	S ₂ /00
S_1	S ₁ /00	S ₂ /00	S ₀ / 1 0
S_2	S ₂ /00	S ₀ / 1 0	S ₀ / 11

Q_1Q_2	$oldsymbol{Q_1^*Q_2^*}/Z_1Z_2$					
V1V2	$X_1 X_2 = 00$	$X_1 X_2 = 01$	$X_1 X_2 = 11$	$X_1 X_2 = 10$		
00	00/00	01/00	dd/dd	11/00		
01	01/00	11/00	dd/dd	00/ 1 0		
11	11/00	00/ 1 0	dd/dd	00/11		
10	dd/dd	dd/dd	dd/dd	dd/dd		

D触发器

 $+\bar{Q}_2X_1$

 D_2

10 ,

$$Z_2 = Q_1 X_1$$

14 / 24

0.0		$oldsymbol{Q_1^*Q_2^*}$	$/Z_1Z_2$	
Q_1Q_2	$X_1X_2=00$	$X_1X_2=01$	$X_1 X_2 = 11$	$X_1X_2=10$
00	00/00	01/00	11 /dd	11/00
01	01/00	11/00	11/1 d	00/ 1 0
11	11/00	00/ 1 0	dd/ 11	00/11
10	1 d/dd	dd/ 1 d	11/11	11 /d 1

 $+\overline{Q}_2X_1$

 $+\overline{Q}_2X_1$

$$Z_1 = Q_1 X_2 + Q_2 X_1$$

$$Z_2 = Q_1 X_1$$

0.0	$Q_1^*Q_2^*/Z_1Z_2$					
Q_1Q_2	$X_1X_2=00$	$X_1X_2=01$	$X_1 X_2 = 11$	$X_1X_2=10$		
00	00/00	01/00	11/00	11/00		
01	01/00	11/00	11/10	00/10		
11	11/00	00/ 1 0	00/11	00/11		
10	10/00	00/10	11/11	11/01		

$$Z_1 = Q_1 Q_2 \bar{X}_1 X_2 + Q_2 X_1 \bar{X}_2$$

$$Z_2 = Q_1 Q_2 X_1 \overline{X}_2$$

 Z_2

11

d

d

d

d

10

投币0元: $X_1X_2 = 00$

投币5角: $X_1X_2 = 01$

投币1元: $X_1X_2 = 10$

clk -

 $Z_1 = 1$: 输出饮料

rightarrow $Z_2 = 1$:输出5角硬币

解:用Moore型:输出仅与状态有关!

			次态		输出
	现态	$X_1 X_2 = 00$	$X_1 X_2 = 01$	$X_1X_2=10$	Z_1Z_2
0元	S_0	S_0	S_1	S_2	00
5角	S_1	S_1	S_2	S_3	00
1元	S_2	S_2	S_3	S_4	00
1.5元	S_3	S_0	S_1	S_2	1 0
2元	S_4	S_0	S_1	S_2	11

【例10】画出状态转换图,并确定它的模

解: 163为同步清0,模11递增计数器

【例11】写出FPGA输出Y的逻辑函数

解:
$$L_1 = B\bar{E} + CE$$

$$L_0 = B + C$$

$$Y = AL_1 + \overline{A}L_0 = A(B\overline{E} + CE) + \overline{A}(B + C)$$

B	\mathcal{C}	D	E		L_1	L_0
0	0	0	0		0	0
0	0	0	1		0	0
0	0	1	0		0	0
0	0	1	1		0	0
0	1	0	0		0	1
0	1	0	1		1	1
0	1	1	0		0	1
0	1	1	1		1	1
1	0	0	0		1	1
1	0	0	1		0	1
1	0	1	0		1	1
1	0	1	1		0	1
1	1	0	0		1	1
1	1	0	1		1	1
1	1	1	0		1	1
1	1	1	1	20 /	24 1	1

【作业1】有多少存储元,至少要几根地址线、数据线?

• $64K \times 1$

解: 存储元=64K*1=64K个

地址线: **16**根 $2^{16} = 64K$

数据线: 1根

• $256K \times 4$

解:存储元=256K*4=1M个

地址线: **18**根 $2^{18} = 256K$

数据线: 4根

【作业2】用ROM实现两个3位二进制数乘法

解: 两个3位二进制数相乘, 共有6位输入, 即地址线需要6根;

两个3位二进制数相乘最大值=49 (11_0001)2,共有6位输出,即数据线要6根。

所以,ROM的容量: $2^6 \times 6$ 位。

【作业3】DRAM 刷新

一个有 4096 位的 DRAM,如果存储矩阵为 64×64 结构形式,且每个存储单元刷新时间为 100ns,则存储单元全部刷新一遍最快需要多长时间?如果刷新每行的最长间隔时间为 15.6 μs,则该 DRAM 的刷新周期最长为多少?刷新操作所用时间占刷新周期的百分比是多少?

解:一次刷新一行,刷新全部(刷新时间)需要:

 $64 \ rows \times 100 \ ns = 6.400 \ ns = 6.4 \ \mu s$

全部64行刷新(刷新周期)需要:

 $64 \ rows \times 15.6 \mu s = 998.4 \ \mu s \approx 1 \ ms$

刷新时间占刷新周期的百分比:

$$\frac{6.4 \ \mu s}{1 \ ms} = 0.64\%$$

【作业4】 SRAM 8K×8位 → 16K×16位

