Homework Lecture 4

3.1

Show the results of adding the following pairs of five-bit twos complement numbers and indicate whether or not overflow occurs for each case.

+ 1 1 1 0 1

3.3

Add the following twos complement and ones complement binary numbers as indicated. For each case, indicate if there is overflow.

3.4

Show the process of serial unsigned multiplication for 1010 (multiplicand) and multiplied by 0101 (multiplier).

In the lecture hardware for a sequential unsigned multiplier is given. So for this example the intermediate steps (content of the registers after each step).

Exercise 1

There is not a unique floating point number system. DEC introduced a 32 bit floating point number system with the following properties (base 2):

- Fraction: 23 bits and additional 1 hidden bit. Point is left of hidden bit
- Exponent: 8 bits in excess 128 code

- Sign bit (0 is positive, 1 is negative).
- Number is not normalized if exponent field is filled with zero's. In that case the represented value (independent of sign and fraction field) is zero.
- Rounding style is truncation.

Questions:

For a) until f) the normalized numbers:

- a) Max decimal value of the mantissa (M_{max})
- b) Min decimal value of the mantissa (M_{min})
- c) Max decimal value of the exponent (E_{max})
- d) Min decimal value of the exponent (E_{min})
- e) Largest positive decimal value that can be represented (V_{max})
- f) Smallest positive decimal value that can be represented (V_{min})
- g) What is the smallest positive decimal numbers that can be represented? And what is the next positive value that can be exactly represented?
- h) What is the representation of $2^{9}/_{16}$?
- i) What is the representation of the decimal value 0.2?
- j) What decimal value is represented with the pattern:
 - 1 00000111 110100000000000000000001

Exercise 2

The IEEE FP standard 754 also defines a "double precision" floating point number system. Properties:

- total number of bits 64
- sign: single bit (left most bit)
- exponent: 11 bits, excess 1023 code, all zero and all one is used for special numbers.
- fraction 52 bits. A hidden bit is used (not included in the 52 bits). Point is right of hidden bit.

Question: the same questions as a) to f) of previous exercise.