← Back	Information Theory & Neural Coding Graded Quiz • 1h	Due May 2, 2	2:59 AM EDT
Inforr Total point	nation Theory & Neural Coding		
	se that we have a neuron which, in a given time period, will fire with probability 0.1, yielding a <i>Bern</i>	noulli	2 points
Which	ution for the neuron's firing (denoted by the random variable $F = 0$ or 1) with $P(F = 1) = 0.1$. of these is closest to the entropy $H(F)$ of this distribution (calculated in bits, i.e., using the base 2 log	garithm)?	
0 -	4690 0.1954		
_	999 1954		
	ued from Question 1: ets add a stimulus to the picture. Suppose that we think this neuron's activity is related to a light fla	shing in the	4 points
← Back	Information Theory & Neural Coding Graded Quiz • 1h is a flash, the neuron will fire with probability 1/2. If there is not a flash, the neuron will fire with pr	Due May 2, 2	2:59 AM EDT
1/18.	call this random variable F (whether the neuron fires or not). of these is closest, in bits (log base 2 units), to the mutual information MI(S,F)?	,	
O 0.	0904 8476		
_	.3786 .3786		
3.	$I(\vec{x}) = \sum_{i} a_{i} \phi_{i}(\vec{x}) + \epsilon(\vec{x})$		1 point
E	$= \sum_{\vec{x}} \left[I(\vec{x}) - \sum_{i} a_{i} \phi_{i}(\vec{x}) \right]^{2} + \lambda \sum_{i} C(a_{i})$		
	x L , , ,		
intuiti	ath from lecture 4.3 could potentially be intimidating, but in fact the concept is really simple. Getting on for it will help with many types of problems. Let's work out a metaphor to understand it. se we want to build a complex image. We could do that by layering a whole bunch of pieces together.		
(math	Information Theory & Neural Coding Graded Quiz • 1h	ting them Due May 2,2	2:59 AM EDT
more	rse, if our neural system was trying to make visual fields that worked for any sort of input, we would han just roads, skies, and bikes to work with! One possibility is to have a bunch of generic shapes obrientations, and locations within the image. If we chose the right variety, we could blend/sum thes	f various	
pieces transp	together to make just about any image! One way to blend them is to let them have varying arencies/opacities, and to set them on top of each other. That is what we would call a weighted sun		
wants	rse, we may not want to have too many possible shapes to use. As mentioned in the video, the orga to conserve energy. That means having as few neurons firing as possible at once. If we conceptually ation between these shapes and the neurons, then we can point out we would want to use as few sh	y make a	
This n	while maintaining an accurate image. ath gives us a way of summing a bunch of pieces together to represent an image, to attempt to makentation look as much like the image as possible, and to make that representation efficient - using a		
pieces Now l	as possible. That is a lot of work for two lines of math! et's put this metaphor into action to understand what all these symbols mean. I'll give you one to sta	art with.	
What	ctor x in the equation above represents the coordinates of a point in the image. Now you fill in the r to the ϕ_i s, called the "basis functions," represent in our metaphor?	est:	
O TI	ne level of transparency vs. opacity/influence of each piece. The importance of coding efficiency. The difference between the actual image and the representation.		
● TI	ne pieces that make up the image. Information Theory & Neural Coding	Due May 2,2	2:59 AM EDT
What	Graded Quiz • 1h dea from Question 5. loes € represent?		1 point
_	ne difference between the actual image and the representation. The importance of coding efficiency.		
_	ne level of transparency vs. opacity/influence of each piece. ne pieces that make up the image.		
	ued from Question 7: In the a_i 's represent?		1 point
TI	he level of transparency vs. opacity/influence of each piece he importance of coding efficiency.		
_	ne pieces that make up the image.		
6. Conti	ued from Question 3:		1 point
What	Information Theory & Neural Coding	Due May 2,2	2-59 AM EDT
От	Graded Quiz • 1h ne pieces that make up the image. ne importance of coding efficiency.		
7. In the	following three questions, we will explore Poisson neuron models and population coding.		5 points
behav	dercise is based on a set of artificial "experiments" that we've run on four simulated neurons that en ior found in the cercal organs of a cricket. Please note that all the supplied data is synthetic. Any res al cricket is purely coincidental.		
In the	first set of experiments, we probed each neuron with a range of air velocity stimuli of uniform intensing direction. We recorded the firing rate of each of the neurons in response to each of the stimulus	values.	
comb	f these recordings lasted 10 seconds and we repeated this process 100 times for each neuron-stimunation. supplied you with a .mat file for each of the neurons that contains the recorded firing rates (in Hz).	These are	
the ve	If $neuron1, neuron2, neuron3$, and $neuron4$. The stimulus, that is, the direction of the air vector named $stim$. oad the file:	elocity, is in	
Ø	tuning MAT File		
and sa	ve it into your MATLAB/Octave directory. To load the data, use the following command: Information Theory & Neural Coding		
← Back	Graded Quiz • 1h tuning_2.7	Due May 2,	2:59 AM EDT
<u>(</u>	PICKLE File		
To loa	PICKLE File d the data, make sure you are in the same directory you saved it and add the following (shown for 2	7) to your	
script	import pickle	. r, to your	
5	<pre>data = pickle.load(f)</pre>		
	ill load everything into a dict called data, and you'll be able to access the stim and neuron response itim'], data['neuron1'], etc. (In general, data.keys() will show you all the keys available in the dict.)	s using	
with a	ON DOWNLOADING CODE AND DATA: Currently, downloaded files are automatically renamed to long string of random characters (we hope to have this fixed soon). Sometimes the file type is ed. In order to ensure that all of the files in the quizzes work correctly, make sure that after do lile you rename it to the file name shown in the original quiz question. If you still have trouble	s also ownloading	
of the	files to open feel free to search or inquire on the class Discussion Forums.) Information Theory & Neural Coding	Due May 2,2	2-59 AM EDT
the st	Graded Quiz \cdot 1h mulus of value stim(n) to $neuron1$. e tuning curve the mean firing rate of the neuron as a function of the stimulus for each of the ne		
	of the following functions best describes the tuning curve? near function.		
_	nrectified cosine. Bussian.		
• н	alf-wave rectified cosine.		
We ha	ued from Question 7: we reason to suspect that one of the neurons is not like the others. Three of the neurons are Poisson are accurately modeling using a Poisson process), but we believe that the remaining one might not l		5 points
Which	of the neurons (if any) is NOT Poisson? Think carefully about what it means for a neuron to be Poisson. You may find it useful to review the	last lecture	
conve In ord	k 2. Note that we give you the <i>firing rate</i> of each of the neurons, not the spike count. You may find it the firing rates to spike counts in order to test for "Poisson-ness", however this is not necessary. For to realize why this might be helpful, consider the fact that, for a constant a and a random variable a and a random variable a .	e $X,$	
$\mathbb{E}[aX$	$[x]=a\mathbb{E}[X]$ but $Var(aX)=a^2Var(X)$. What might this imply about the Poisson statistics (Nactor) when we convert the spike counts (the raw output of the Poisson spike generator) into a firing $[x]$	like the	
← Back	Information Theory & Neural Coding Graded Quiz • 1h euron 3.	Due May 2, 2	2:59 AM EDT
O N	euron 2.		
	euron 1. ued from Question 7:		
Finally	we ran an additional set of experiments in which we exposed each of the neurons to a single stime, we direction for 10 trials of 10 seconds each. We have placed the results of this experiment in the fo		5 points
0	pop_coding MAT File		
	ould save the file into your MATLAB/Octave directory and import the data using the following comn	nand:	
The e	quivalent python files are: pop_coding_2.7		
	PICKLE File		
← Back	Information Theory & Neural Coding Graded Quiz • 1h can be loaded in the same way as described in question 7 above.	Due May 2, 2	2:59 AM EDT
(NOTI	can be loaded in the same way as described in question 7 above. ON DOWNLOADING CODE AND DATA: Currently, downloaded files are automatically renamed to long string of random characters (we hope to have this fixed soon). Sometimes the file type is ed. In order to ensure that all of the files in the quizzes work correctly, make sure that after do	s also	
each f	ile you rename it to the file name shown in the original quiz question. If you still have trouble files to open feel free to search or inquire on the class Discussion Forums.) Information Theory & Neural Coding	getting any	D-EO 444 T
	Graded Quiz • 1h ponding to neuron 1, neuron 2, neuron 3, and neuron 4.	Due May 2, 2	2:59 AM EDT
neuro	e the neural responses and recover the mystery stimulus vector by computing the population vectors. You should use the maximum average firing rate (over any of the stimulus values in 'tuning.mat') as the value of r_{max} for that neuron. That is, r_{max} should be the maximum value in the tuning cun.) for a	
What i	s the direction, in degrees, of the population vector? You should round your answer to the nearest or should contain the value only (no units!) and should be between 0° and 360° . If your calculations we number or a number greater than or equal to 360, convert it to a number in the proper range (you	s give a	
the m	we number or a number greater than or equal to 360, convert it to a number in the proper range (you not function to do this). The agents as 0 0 as need to convert your resulting vector from Cartesian coordinates to polar coordinates to find the set the atan() function in MATLAB to do this. Note that the the convention we're using defines 0 0 to p	e angle. You	
direct degre	on of the positive y-axis and 90° to point in the direction of the positive x-axis (i.e., 0 degrees is nores is east).		
	Honor Code Learn more		
	Honor Code Learn more erstand that submitting work that isn't my own may result in permanent failure of this course or de unt.	activation of	my Coursera
	e name on your government issued ID		

г