Naive Bayes Classifier

Bayesian recipe for classification

- The Bayesian recipe is simple, optimal, and in principle, straightforward to apply
- •We could design an optimal classifier if we knew:
 - $\bullet P(\omega_i)$ (priors)
 - •p(x | ω_i) (class-conditional densities)
- •We have some knowledge and training data $\{(\mathbf{x}_i, \omega_i)\}$
- •Use the samples to estimate the unknown probability distributions
- x is typically high-dimensional
- ullet Need to estimate $P(x|\omega)$ from limited data

Naive Bayes Classifier

- Along with decision trees, neural networks, nearest neighbor, one of the most practical learning methods.
- Categories $\{\omega_1, \omega_2, ..., \omega_c\}$,
- Feature/attribute vector $\mathbf{x} = [x_1, x_2, ..., x_d]^T$
- Naive Bayes assumption:

$$P(x_1, \dots, x_d \mid \omega_j) = \prod_i P(x_i \mid \omega_j)$$

• Naive Bayes classifier:

$$\omega_{NB} = \arg \max_{\omega_{j}} P(\omega_{j}) \prod_{i} P(x_{i} | \omega_{j})$$

Performs optimally under certain assumptions

3

Naive Bayes Classifier

- Given training data set D
- Need to estimate probabilistic parameters, no need for complicated training process as in neural networks
- Estimate $P(\omega_i) = n/n$ (Maximum Likelyhood estimation)
- Estimate $P(x_i = a_{ik} | \omega_i)$
 - ML Estimation N_{jik}/n_j discrete feature

Training Examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

5

Example

Consider PlayTennis problem, and new instance
 <Outlk=sun, Temp=cool, Humid=high, Wind=strong>

We estimate parameters

P(yes) = 9/14, P(no) = 5/14

P(Wind=strong|yes) = 3/9

P(Wind=strong|no) = 3/5

. . .

We have

P(y) P(sun|y) P(cool|y) P(high|y) P(strong|y) = .005

P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

• Therefore this new instance is classified to "no"

Estimation of Probabilities from Small Samples

- Estimate $P(x_i = a_{ik} | \omega_i)$ discrete feature
 - ML Estimation N_{iik}/n_i
 - Poor estimates when n_i is small
 - What if none of the training instances with category ω_j have feature value $x_i=a_{ik}$?

$$P(x_i=a_{ik} \mid \omega_i) = 0$$
, which lead to $P(\omega_i|..., x_i=a_{ik},...)=0$

Typical solution is Bayesian estimate

7

 Bayesian estimates for estimating θ_k=P(X_i=k) from data set Dj

$$P(X_i = k \mid D_j) = \frac{N_{jik} + Mp_k}{n_j + M}$$

- Laplace estimates: M=|Dm(X_i)|, Mp_k=1
- M: imaginary equivalent sample size
- p_k: prior belief about θ_k, summation to 1
- The larger the equivalent sample size *M*, the more confident we are in our prior

- Estimate density $p(x_i | \omega_j)$ continuous feature
 - Assume e.g. Gaussian distribution $N(\mu,\sigma^2)$, then estimate $\mu,\,\sigma,\,$ or
 - Discretize into {1, ..., k}
 - Equal-width interval: $Width = (x_{max} x_{min})/k$
 - Convert *x* to *i* if *x* is in *i*th interval

a

Naive Bayes Classifier

- Conditional independence assumption is often violated
- But it works surprisingly well anyway (Domingos and Pazzani, 1997)
- Successful applications:
 - Diagnosis
 - · Learn which news articles are of interest.
 - Learn to classify web pages by topic.
 - Learn to assign proteins to functional families
- Performance often comparable to that of neural networks, decision tree, etc.

Learning to Classify Text

- Learn which news articles are of interest
- Target concept Interesting? : Documents → {+,-}
- Learning: Use training examples to estimate
 P(+), P(-), P(doc|+), P(doc|-)
- What attributes shall we use to represent text documents?

11

Text Representation

- Represent each document by vector of words
 - one attribute per word position in document

$$P(doc|\omega_j) = P(length(doc)|\omega_j) \prod_{i=1}^{|doc|} P(X_i = \mathbf{w}_k | \omega_j)$$

- We need a probability for each word occurrence in each position in the document: 2 x length x |vocabulary|
 - Too many probabilities to estimate!
 - Limited samples

Binary Independence Model

- Given a vocabulary V: $(w_1, ..., w_{|V|})$
- A document is a vector of binary features (X₁, ..., X_{|V|})
- X_i is 1 if w_i appears in the document, 0 otherwise

$$P(doc|\omega_{j}) = \prod_{i=1}^{|V|} P(x_{i} | \omega_{j}) = \prod_{i=1}^{|V|} \theta_{ji}^{x_{i}} (1 - \theta_{ji})^{1 - x_{i}}$$

$$\hat{\theta}_{ji} = \frac{N_{ji} + c_1}{N_j + c}$$
 N_{ji} :# of documents in class j with word w_i

- Multi-variate Bernoulli Model
- The number of times a word occurs in a document is not captured

13

Multinomial Model

- Assume that probability of encountering a specific word in a particular position is independent of the position, $P(w_k|\omega_i)$
 - The number of probabilities to be estimated drops to 2 x |vocabulary|
- Treat each document as a bag of words!
- Each document d results from |d| draws on a multinomial variable X with |V| values
- The number of times a word occurs in a document is captured

Multinomial Model

Assume that the lengths of documents are independent of class

$$P(d|\omega_j) = P(|d|) \frac{(\sum_k N_k)!}{\prod_k N_k!} \prod_{k=1}^{|V|} P(w_k |\omega_j)^{N_k}$$

 N_k is the # of occurrences of w_k in document d

$$P(\mathbf{w}_{k} | \omega_{j}) = \hat{\theta}_{jk} = \frac{N_{jk} + c_{k}}{\sum_{k} N_{jk} + c}$$

 N_{jk} is the # of occurrences of w_k in documents in class j

15

Learn_naive_Bayes_text(Examples)

- 1. collect all words and other tokens that occur in *Examples*
 - Vocabulary: all distinct words and other tokens in Examples
- 2. calculate the required probability terms
 - For each target value ω_i do
 - $docs_i$: subset of *Examples* for which the target value is ω_i
 - $P(\omega_i) = |docs_i|/|Examples|$
 - Text_i: a single document created by concatenating all members of docs_i
 - *n* total number of words in *Text*_i (counting duplicate words multiple times)
 - for each word w_k in Vocabulary
 - n_k : number of times word w_k occurs in $Text_i$
 - $P(w_k|\omega_i) = (n_k + 1)/(n + |Vocabulary|)$

Classify_naive_Bayes_text(*Doc*)

- 1. *positions*: all word positions in *Doc* that contain tokens found in *Vocabulary*
- 2. Return $\omega_{\it NB}$, where

$$\omega_{NB} = \arg \max_{\omega_{j}} P(\omega_{j}) \prod_{i \text{ in positions}} P(x_{i} | \omega_{j})$$

17

Naive Bayes Classifier

- Twenty NewsGroups
- Given 1000 training documents from each group. Learn to classify new documents according to which newsgroup it came from

comp.graphics

comp.os.ms-windows.misc misc.forsale
comp.sys.ibm.pc.hardware rec.autos
comp.sys.mac.hardware rec.motorcycles
comp.windows.x rec.sport.baseball
alt.atheism rec.sport.hockey
soc.religion.christian talk.religion.misc

talk.politics.mideast sci.space sci.crypt sci.electronics

talk.politics.misc sci.med

talk.politics.guns

Naive Bayes Classifier

- Use 2/3 documents as training examples
- Performance was measured over the remaining third
- Naive Bayes: 89% classification accuracy
 - 100 most frequent words were removed from Vocabulary ("the", "of")
 - Any word occurring fewer than 3 times was removed