3.2. Árboles AVL DEFINICIONES (I)

- # La eficiencia en la búsqueda de un elemento en un árbol binario de búsqueda se mide en términos de:
 - Número de comparaciones
 - La altura del árbol
- # Árbol completamente equilibrado: los elementos del árbol deben estar repartidos en igual número entre el subárbol izquierdo y el derecho, de tal forma que la diferencia en número de nodos entre ambos subárboles sea como mucho 1
- * Problema: el mantenimiento del árbol
- * Árboles AVL: desarrollado por Adelson-Velskii y Landis (1962). Los AVL son árboles balanceados (equilibrados) con respecto a la altura de los subárboles:
 - "Un árbol está equilibrado respecto a la altura si y solo si para cada uno de sus nodos ocurre que las alturas de los dos subárboles difieren como mucho en 1"
- Consecuencia 1. Un árbol vacío está equilibrado con respecto a la altura
- * Consecuencia 2. El árbol equilibrado óptimo será aquél que cumple:

$$n = 2^h - 1$$
,

donde $n = n^{\circ} \text{ nodos y } h = \text{altura}$

1

© DLSI (Univ. Alicante)

Tema 3. Tipo árbol

3.2. Árboles AVL

- ** Si T es un árbol binario no vacío con TL y TR como subárboles izquierdo y derecho respectivamente, entonces T está balanceado con respecto a la altura si y solo si
 - TL y TR son balanceados respecto a la altura, y
 - | hl hr | ≤ 1 donde hl y hr son las alturas respectivas de TL y TR
- # El factor de equilibrio FE (T) de un nodo T en un árbol binario se define como hr hl. Para cualquier nodo T en un árbol AVL, se cumple FE (T) = -1, 0, 1

3.2. Árboles AVL OPERACIONES BÁSICAS. INSERCIÓN (I)

Representación de árboles AVL

- Mantener la información sobre el equilibrio de forma implícita en la estructura del árbol
- Atribuir a, y almacenar con, cada nodo el factor de equilibrio de forma explícita TNodoArb {

Titem fitem:

TArbBin fiz, fde;

int FE; }

Inserción en árboles AVL. Casos:

Después de la inserción del ítem, los subárboles I y D igualarán sus alturas

© DLSI (Univ. Alicante)

Tema 3. Tipo árbol

3.2. Árboles AVL OPERACIONES BÁSICAS. INSERCIÓN (II)

Después de la inserción, I y D tendrán distinta altura, pero sin vulnerar la condición de equilibrio

■ Si hl > hD y se realiza inserción en I, ó hI < hD y se realiza inserción en D</p> Formas de rotación: II, ID, DI, DD

© DLSI (Univ. Alicante)

Tema 3. Tipo árbol

3.2. Árboles AVL OPERACIONES BÁSICAS. INSERCIÓN. EJEMPLO (IV)

Ejemplo. Insertar en el siguiente árbol los elementos 5 y 12

Hay que tener en cuenta que la actualización del FE de cada nodo se efectúa desde las hojas hacia la raíz del árbol

6

© DLSI (Univ. Alicante)

Tema 3. Tipo árbol

3.2. Árboles AVL operaciones básicas. inserción. implementación (v)

```
ALGORITMO INSERTAR
                                                  ALGORITMO INSERTARAUX
                                                      ENTRADA/SALIDA\ I: Iterador; \quad Crece:\ Integer;\ c:Item\ ;
     ENTRADA/SALIDA
             A: AVL; c: Item
                                                      VAR CreceIz, CreceDe: Integer; B: Arbol;
     VAR I: Iterador; Crece: Integer;
     METODO
                                                              si EsVacioArbIt ( I ) entonces
                                                                  B = Enraizar (c); Mover (I, B); Crece = TRUE;
             I = Primer(A);
             InsertarAux ( I, c, Crece );
                                                              sino
     fMETODO
                                                                  Crece = CreceIz = CreceDe = FALSE;
                                                                  si ( c < Obtener ( I ) ) entonces
                                                                     INSERTARAUX (HijoIzq (I), c, CreceIz);
                                                                     Crece = CreceIz;
                                                                  sino
                                                                     si ( c > Obtener ( I ) ) entonces
                                                                         INSERTARAUX (HijoDer (I), c, CreceDe);
                                                                         Crece = CreceDe;
                                                                  fsi
                                                                  si Crece entonces
                                                                     caso de:
                                                                         1) ( CreceIz y FE ( I ) = 1 ) \acute{o} ( CreceDe y FE ( I ) = -1 ) :
                                                                               Crece = FALSE; FE(I) = 0;
                                                                         2) CreceIz y FE ( I ) = 0 : FE ( I ) = -1 ;
                                                                         3) CreceDe y FE ( I ) = 0 : FE ( I ) = 1 ;
                                                                         4) CreceIz y FE ( I ) = -1 : EquilibrarIzquierda ( I, Crece );
                                                                         5) CreceDe y FE (I) = 1: EquilibrarDerecha (I, Crece);
                                                                     fcaso
                                                                  fsi
                                                              fsi
                                                      fMETODO
```

© DLSI (Univ. Alicante)

Tema 3. Tipo árbol

3.2. Árboles AVL OPERACIONES BÁSICAS. INSERCIÓN. IMPLEMENTACIÓN (VI)

```
ALGORITMO EQUILIBRARIZQUIERDA
   ENTRADA/SALIDA I : Iterador; Crece: Integer;
   VAR J, K: Iterador; int E2;
   METODO
            si (FE (HijoIzq (I) = -1 entonces
                                                     //ROTACIÓN II
                          Mover (J, HijoIzq (I));
                          Mover (HijoIzq (I), HijoDer (J));
                          Mover (HijoDer (J), I);
                          FE(J) = 0; FE(HijoDer(J)) = 0;
                          Mover (I,J);
            sino
                                                      //ROTACIÓN ID
                          Mover (J, HijoIzq (I));
                          Mover (K, HijoDer (J));
                          E2 = FE(K);
                          Mover (HijoIzq (I), HijoDer (K));
                          Mover (HijoDer (J), HijoIzq (K));
                          Mover (HijoIzq (K), J);
                          Mover (HijoDer (K), I);
                         FE(K) = 0;
                          caso de E2
                             -1: FE (HijoIzq (K)) = 0; FE (HijoDer (K)) = 1;
                             +1: FE (HijoIzq (K)) = -1; FE (HijoDer (K)) = 0;
                             0: FE (HijoIzq (K)) = 0; FE (HijoDer (K)) = 0;
                          fcaso
                          Mover (I, K);
            fsi
           Crece = FALSE:
   fMETODO
```

3.2. Árboles AVL EJERCICIOS inserción

- 1) Construir un árbol AVL formado por los nodos insertados en el siguiente orden con etiquetas 4, 5, 7, 2, 1, 3, 6
- 2) Insertar las mismas etiquetas con el siguiente orden: 1, 2, 3, 4, 5, 6, 7

9

© DLSI (Univ. Alicante)

Tema 3. Tipo árbol

3.2. Árboles AVL

EJERCICIOS inserción: SOLUCIÓN

1) La solución para los 2 ejercicios es la siguiente:

© DLSI (Univ. Alicante)

Tema 3. Tipo árbol

3.2. Árboles AVL OPERACIONES BÁSICAS. BORRADO (I)

Borrado en árboles AVL. Casos:

Borrar el ítem nos llevará en el árbol a un FE = 0, no será necesario reequilibrar

 Borrar el ítem nos llevará en el árbol a un FE = ±1, en este caso tampoco será necesario reequilibrar

1

© DLSI (Univ. Alicante)

Tema 3. Tipo árbol

3.2. Árboles AVL OPERACIONES BÁSICAS. BORRADO (II)

Rotaciones simples

■ ROTACIÓN DD (+2,0)

(+2,+1) La altura del árbol decrece

12

3.2. Árboles AVL OPERACIONES BÁSICAS, INSERCIÓN Y BORRADO

Estudio de las complejidades de ambos algoritmos

 El análisis matemático del algoritmo de inserción es un problema todavía no resuelto. Los ensayos empíricos apoyan la conjetura de que la altura esperada para el árbol AVL de n nodos es

h = log2(n) + c / c es una constante pequeña

- Estos árboles deben utilizarse sólo si las recuperaciones de información (búsquedas) son considerablemente más frecuentes que las inserciones → debido a la complejidad de las operac. de equilibrado
- Se puede borrar un elemento en un árbol equilibrado con log (n) operaciones (en el caso más desfavorable)

Diferencias operacionales de borrado e inserción:

- Al realizar una inserción de una sola clave se puede producir como máximo una rotación (de dos o tres nodos)
- El borrado puede requerir una rotac. en todos los nodos del camino de búsqueda
- Los análisis empíricos dan como resultado que, mientras se presenta una rotación por cada dos inserciones.
- sólo se necesita una por cada cinco borrados. El borrado en árboles equilibrados es, pues, tan sencillo (o tan complicado) como la inserción

© DLSI (Univ. Alicante)

Tema 3. Tipo árbol

3.2. Árboles AVL EJERCICIOS borrado

1) Dado el siguiente árbol AVL de entrada, efectuar los siguientes borrados en el mismo: 4, 8, 6, 5, 2, 1, 7. (Nota: al borrar un nodo con 2 hijos, sustituir por el mayor de la izquierda)

3.2. Árboles AVL

EJERCICIOS borrado

 Dado el siguiente árbol AVL de entrada, efectuar los siguientes borrados en el mismo: 55, 32, 40, 30. (Nota: al borrar un nodo con 2 hijos, sustituir por el mayor de la izquierda)

17

© DLSI (Univ. Alicante)

Tema 3. Tipo árbol 3.2. Árboles AVL

EJERCICIOS borrado: SOLUCIÓN

2) La solución es la siguiente:

