Lecture 20: Other amplifiers

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Review of the last lecture

- Active loads
 - Ideal current source
 - PMOS
 - NMOS
- Concept of input impedance
 - Why do we need it?

Input/output impedances

- When calculating the impedance, the voltage sources at other terminals are neglected.
- Input and output impedances

Source degeneration

- Consider a case with a source resistor, R_S .
 - Caculate the gain and the output impedance.

Biasing

- What is the gate voltage?
- Condition for saturation mode?

$$\mu_n C_{ox} = 100 \,\mu\text{A/V}^2$$

 $W/L = 5/0.18$

Calculate the drain current. (BTW, where is the drain?)

Configurations

- Three terminals of the MOSFET
 - The common terminal, the input terminal, and the output terminal

Source	Gate	Drain	Remark
Common	Input	Output	Common-source amp.
Common	Output	Input	X
Input	Common	Output	It will be covered.
Output	Common	Input	X
Input	Output	Common	X
Output	Input	Common	It will be covered.

Common-gate amplifier

- Why do we study other amplification topologies?
 - Different circuit properties
- Common-gate amplifier

Small-signal model

Let's draw the small-signal model together!

Gain & input impedance (1/2)

- Neglect the output resistance, r_0 .
 - Voltage gain

$$A_{v} = +g_{m}R_{D}$$

Input impedance

$$R_{in} = \frac{1}{g_m}$$

It's small!

Gain & input impedance (2/2)

- Consider the output resistance, r_0 .
 - Voltage gain

$$A_v = +\left(g_m + \frac{1}{r_O}\right)(R_D||r_O)$$

Input impedance

$$R_{in} = \frac{r_O + R_D}{g_m r_O + 1}$$

Output impedance

• Without a finite source resistance, $R_{out} = r_0 ||R_D||$

Generic form of CS and CG stages

Setting for calculating R_{out}

Source follower

- Also called the "common-drain" stage
 - The drain is ac grounded.
- Wait a minute!
 - Is it a real amplifier?

Its core

• Gain is less than 1?? (Neglecting r_0)

$$A_v = +\frac{g_m R_S}{1 + g_m R_S}$$

You should be able to draw the small-signal model.

Useless?

- Calculate the input and output impedances.
 - Since the gate is the input terminal, the input impedance is very high at low frequencies.
 - How about the output impedance?

$$R_{out} = \frac{1}{g_m} ||r_O||R_S$$

- It is relatively low.
- High input imp., low output imp.
 - They can serve as good "buffers."

 In integrated circuits, the follower is typically realized as shown below. Determine the voltage gain if the current source is ideal. Neglect the channel-length modulation.

 A source follower is realized as shown below. Calculate the voltage gain of the circuit.

- Design the source follower.
 - Determine W/L and R_S .
 - The DC drain current is 1 mA.
 - The voltage gain is 0.8.

