

$$\chi + 4 = 1$$

$$\chi = -3 = 0 \text{ My crit. num.}$$

$$\chi = -4? \text{ No.}$$

$$\chi = 0$$
 is $\chi = 0$ is

$$2x + \frac{1}{4x}(4x)y + 4x \frac{1}{4x}(y) + 2y \frac{1}{4x} - 0 = 0$$

$$2x + 4y + 4x \frac{1}{4x} + 2y \frac{1}{4x} = 0$$

$$4x \frac{dy}{dx} + 2y \frac{dy}{dx} = -(2x + 4y)$$

$$\frac{dy}{dx} \left(\frac{4x + 2y}{4x + 2y} \right) = -\left(\frac{2x + 4y}{4x + 2y} \right)$$

$$\frac{dy}{dx} = -\frac{2(2) + 4(1)}{4(2) + 2(1)}$$

$$= -8/0 = -\frac{4}{5}$$
Recall larly = large (year)
$$\frac{dy}{dx} = \frac{1}{5} \cdot \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{1}$$

ay # - 27 提

Find z when
$$y = 45$$
: $90^{2} + y^{2} = 2^{2}$
 $Z = \sqrt{90^{2} + y^{2}}$. Hence, $Z = \sqrt{90^{2} + 45^{2}}$
 $Z = \sqrt{90^{2} + y^{2}}$. Hence, $Z = \sqrt{90^{2} + 45^{2}}$
 $Z = \sqrt{90^{2} + 45^{2}}$. $Z = \sqrt{90^{2} + 45^{2}}$
 $Z = \sqrt{90^{2} + 45^{2}}$. $Z = \sqrt{90^{2} + 45^{2}}$
 $Z = \sqrt{90^{2} + 45^{2}}$. $Z = \sqrt{90^{2} + 45^{2}}$
 $Z = \sqrt{90^{2} + 45^{2}}$. $Z = \sqrt{90^{2} + 45^{2}}$
 $Z = \sqrt{90^{2} + 45^{2}}$. $Z = \sqrt{90^{2} + 45^{2}}$
 $Z = \sqrt{90$

$$V = \frac{3}{3} \left(\frac{3}{3} h \right)^{2} h = \frac{3}{1000} h^{3}$$

$$\frac{dV}{dt} = \frac{9\pi}{100} h^{2} \frac{dV}{dt}$$

$$\frac{dh}{dt} = \frac{100}{9\pi h^{2}} \frac{dV}{dt}$$

$$\frac{dV}{g\pi h^{2}} = \frac{100}{9\pi h^{2}} \frac{dV}{dt}$$

$$\frac{dh}{dt} = \frac{1$$

 $\frac{\chi}{131014}$ $\frac{\chi}{54}$ $\frac{\chi}{$

Unnecessary here, but use the 2^{nt} $\frac{1}{4x}$ test to very x=3 is a rel. many. $f'(x)=27-3x^{2}$ f''(x)=-(0x) f''(3)=-(e(3)=-18<0 $f''(0)\Rightarrow f$ is CD near $3\Rightarrow \omega c$. of a rel. many.