Text University Calculus, by Hass, Weir, and Thomas.

Calculator You are required to have a graphing calculator for this course. The TI-86 is

recommended, but the TI-84, 85, 89, and 92 are all sensible options.

Math Students in Math 106 are encouraged to use the Math Resource Center in Resource Avery 13B if they have questions related to this course, or as a place to meet Center and discuss group projects. Hours for the MRC are MTWR 12:30–8:30 pm,

F 12:30–2:30 pm, and Su 1:00–5:00pm.

Students who take Math 106 must satisfy the requirements of the Math Place-Math Placement

ment Policy. You satisfy the policy if you satisfy one of the following condi-

tions:

- i) You have passed UNL's Math 102 or 103 (or the equivalent course at UNO or UNK) with a grade of C, P or better.
- ii) You have passed the prerequisite courses in high school or at another college and have a qualifying score on the Math Placement Exam dated after October 2005. The Math Placement Exam will be given online at the College Testing Center (Burnett 127). For more details ask at the math office (Avery 203), or check the department web site (http://www.math.unl.edu).
- iii) You have a grade of D, D+, or C- in this course from UNL, UNO, or UNK.

This exam will cover techniques of differentiation. To get any credit on the Gateway Exam Gateway Exam you must demonstrate a high level of proficiency and accuracy.

The exam will consist of 10 questions. Of these you must get at least 8 completely correct to pass the exam. No partial credit will be given. You will not be allowed to use calculators or notes. If you do not pass the Gateway exam when it is first administered (Thursday October 12th) you must go to either the College Testing Center or the Math department's computer lab (Avery 18) for a computer administered retake (A picture ID will be required.) You may attempt the electronic version of the Gateway Exam at most once a day. The deadline for passing the Gateway Exam is Thursday November 2nd.

Final Exam The final exam is on Thursday December 14th, from 6-8pm. The room will be announced during the final week of class. Students are expected to arrange their personal and work schedule to allow them to take the exam at the scheduled time. Calculators will be allowed on the final exam, as will a 3"×5" card of notes. No cell phones or other devices with a wireless capability will be allowed during any exam.

Date		Section	Topic		
August 21	Μ		Intro to calculus		
23	W	2.1	Rates of change and tangents to curves		
25	F	2.2	Limit of a function and limit laws		
August 28	\mathbf{M}	2.4	One-Sided Limits and Limits at Infinity		
30	W	2.5	Infinite Limits and Vertical Asymptotes		
September 1	\mathbf{F}	2.6	Continuity		
Labor Day: September 4th					
September 6	W	2.7	Tangents and derivatives at a point		
8	F	3.1	The derivative as a function		
September 11	\mathbf{M}	3.1/3.2	The derivative as a function/Differentiation rules		
13	W	3.2	Differentiation rules		
15	\mathbf{F}	3.3	The derivative as a rate of change		
September 18	Μ	3.4	Derivatives of trigonometric functions		

20	W	Review			
21	R	Exam 1			
22	\mathbf{F}	3.5	The chain rule and parametric equations		
September 25	M	3.5	The chain rule and parametric equations		
27	W	3.6	Implicit differentiation		
29	F	1.5	Inverse functions and logarithms		
October 2	Μ	3.7	Derivatives of inverse functions and logarithms		
4	W	3.8	Inverse trigonometric functions		
5	\mathbf{R}	Project 1.	Assigned		
6	F	3.9	Related rates		
October 9	${f M}$	3.10	Linearization and differentials		
11	W	4.1	Extreme values of functions		
12	\mathbf{R}	Gateway E	Exam		
13	F	4.2	The Mean value theorem		
Fall Break: October 16th-17th					
October 18	W	4.3	Monotonic functions and the first derivative test		
20	\mathbf{F}	4.4	Concavity and curve sketching		
October 23	M	4.7	Newton's Method		
25	W	Review			
26	\mathbf{R}	Exam 2			
27	F	4.5	Applied optimization		
October 30	M	4.5	Applied optimization		
November 1	W	4.6	Indeterminate forms and L'Hopital's rule		
3	\mathbf{F}	4.8	Antiderivatives		
November 6	M	5.1	Estimating with finite sums		
8	W	5.2	Sigma notation and limits of finite sums		
9	\mathbf{R}	Project 1 Due			
10	F	5.3	The definite integral		
November 13	${f M}$	5.4	The Fundamental Theorem of Calculus		
15	W	5.5	Indefinite integrals and the substitution rule		
17	F	5.6	Substitution and area between curves		
November 20	\mathbf{M}	6.1	Volumes by slicing and rotation about an axis		
Thanksgiving Break: November 22nd-26th					
November 27	\mathbf{M}	6.2	Volumes by cylindrical shells		
29	W	Review			
30	\mathbf{R}	Exam 3			
December 1	\mathbf{F}	6.3	Lengths of plane curves		
December 4	Μ	Catch up; ex	xercises to be assigned		
6	W	Review	-		
8	\mathbf{F}	Review			

Departmental Grading Appeals Policy The Department of Mathematics does not tolerate discrimination or harrassment on the basis of race, gender, religion, or sexual orientation. If you believe you have been subject to such discrimination or harrassment, in this or any math course, please contact the department. If, for this or any other reason, you believe your grade was assigned incorrectly or capriciously, appeals may be made to (in order) the instructor, the department chair, the departmental grading appeals committee, the college grading appeals committee, and the university grading appeals committee.