• Introduction to Earthquake Faulting and Seismic Waves

- Lecture 1 of 4 on earthquake hazards
- Foundation for the module
- Split into two parts:
 - Study of faults and the earthquake cycle

Earthquake Cycle and Faults

- o Concept of periodic build-up and release of stress on faults
- Example: magnitude 7.8 Kaikoura earthquake (November 2016, New Zealand)
 - Surface rupture: pronounced linear trend of deformation
 - Common misconception: surface ruptures are not chasms; adjacent blocks slip past each other

Observation of Surface Ruptures

- Offset roads indicate slip along a fault
- Visual cues: fences and stream channels cut by faults

• Fault Characteristics

- Fault scarp: landform resulting from vertical offset
- o Surface rupture indicates where the fault intersects Earth's surface
- Importance of understanding that earthquakes involve slip along faults, not just points.

Kaikoura Earthquake Dynamics

- o Involvement of about a dozen different faults
- o Slip movement observed along the Kekarengu fault
- o Epicenter: point where slip starts; just a reference point

• Fault Plane Features

- o Fault planes exhibit corrugations and striations from repeated slip
- Smooth, polished surfaces from earthquake slip
- Seismogenic zone: typically 10-20 kilometers deep; varies in subduction zones

Types of Faults

• 1. Reverse Faults

- Thrusting motion, leading to shortening and crustal thickening
- Dip angle varies; classified as thrust faults if very low
- Example: Chi-Chi earthquake (1999, Taiwan) and Himalayan thrust fault

o 2. Normal Faults

- One side slides down leading to extension and crustal thinning
- Typically steeper than reverse faults
- Examples: Hebgen Lake earthquake (1959) and Norcia earthquake (2016)

o 3. Strike-Slip Faults

- Lateral movement with no crustal thickening/thinning
- Can be left-lateral or right-lateral
- Examples: Ridgecrest earthquake (2019) and Kumamoto earthquake (2016)

Mapping Earthquake Surface Ruptures

- Importance of mapping for understanding seismic hazards
- o Traditional methods vs. modern satellite imagery techniques

Earthquake Slip Mechanics

- Stick-slip behavior: cyclic build-up of stress followed by slip
- Earthquakes cannot be predicted due to variability in slip behavior

Inter-Seismic and Co-Seismic Phases

- Inter-seismic: gradual build-up of strain, causing slight warping
- o Co-seismic: rapid release of strain leading to surface offsets
- Example of actual fence offset from the Darfield earthquake (2010)

• Long-term Earthquake Cycles

- Geological offsets represent cumulative impacts of multiple earthquakes
- o Major earthquakes re-trigger existing faults, not create new ones

• Subduction Zone Earthquake Cycle

- Involves vertical and horizontal motions
- Long-term convergence: overriding plate bulges and then rapidly releases during an earthquake
- Tsunami generation associated with offshore uplift during co-seismic phase

Conclusion

- Overview of the mechanisms and types of faults related to earthquake dynamics and hazards.
- Introduction to Seismic Waves
- Two basic categories of seismic waves:

Surface Waves

- Travel around the Earth's surface (analogous to ripples in a pond).
- Slower than body waves (typically 2-3 km/s).

Body Waves

- Pass through the Earth's interior.
- Faster than surface waves, reaching distant points sooner.

Characteristics of Seismic Wave Propagation

- Body waves form a curved path within the Earth.
- Material properties change with depth:
 - Silicate rocks become denser and stiffer with increasing depth.
- o Seismic wave velocities:
 - Deep mantle: fastest
 - Upper mantle: slower
 - Surface: slowest

• Types of Body Waves

• P Waves (Primary Waves)

- Fastest seismic waves, arrive first.
- Particles move in the same direction as the wave (compression).
- Can travel through liquids (e.g., molten iron outer core).

S Waves (Secondary Waves)

- Second fastest, arrive second.
- Particles move side-to-side, perpendicular to wave direction.
- Cannot pass through fluids.

Types of Surface Waves

Love Waves

- Similar particle motion to S waves (side-to-side).
- Particles at the surface move more than those at depth.

Rayleigh Waves

- Particle motion described as a retrograde ellipse.
- Also, particles at the surface move more than those at depth.
- Sometimes called ground roll.

Seismometers and Seismograms

- o Seismometers record ground vibrations caused by seismic waves.
 - Traditional design: weight/pendulum suspended from a frame.
- o Seismographs:
 - Instrument + recording device.
 - Seismogram: graphical representation of ground displacement over time.
 - Typically records motions along three X, Y, Z axes.

• Identifying Seismic Waves on Seismograms

- P Waves: excite vertical component, arrive first.
- S Waves: excite radial component, arrive second.
- Surface Waves: appear later with larger amplitudes, hence more damaging.
 - Love waves: transverse component (side-to-side).
 - Rayleigh waves: excite vertical and radial components.

• Earthquake Early Warning Systems

- Systems detect and locate earthquakes quickly to alert people before surface waves arrive.
- Key to effectiveness: seismic stations surrounding the causative fault.
- Few regions have operational early warning systems.

Locating Earthquakes Using Seismograms

- P wave travel time (Tp) < S wave travel time (Ts): Ts Tp increases with distance.
- Velocity: distance = time x velocity (for P and S waves).
- Calculation example:

■ Separation time of 90 seconds, Vp = 6.0 km/s, Vs = 3.75 km/s yields a distance of 900 km to earthquake.

- o Method:
 - Plot distances on a schematic map as circles.
 - Intersection of circles locates the earthquake.

• Global Seismology

- Exploits refraction and reflection of body waves at Earth's major boundaries.
 - Example: Outer core is liquid as indicated by P wave shadow zone.
- Epicentral distance defined by angles between the earthquake, Earth's center, and distance seismometer.

• Future Topics

- Discuss magnitude and intensity scales in the next lecture.
- Explore basin resonance and detailed impacts of seismic waves during future sessions.