Asymptotics Drill 2

Tom Bohbot

Octover 2020

1 Comparing Relative Order-of-Growth Of Two Functions

Row	f(n)	g(n)	Your Answer $(1/2/3)$
1	$\log n^2$	logn + 5	3
2	\sqrt{n}	$\log n^2$	2
3	$\log^2 n$	logn	2
4	n	$\log^2 n$	2
5	nlogn + n	logn	2
6	10^{10}	$\log 42$	3
7	2^n	$10n^{2}$	2
8	2^n	1.5^{n}	2
9	$2(\log n)^2$	logn + 1	2
10	2^n	2^{2n}	1

2 Asymptotics

2.1

You've proven that an algorithm is $O(n^2)$: can I infer that it cannot take O(n) on some inputs?

No, it is possible for an alogirthm to take O(n) time on some inputs. For example, Insertion sort takes $O(n^2)$ time worst case, but if a sorted listed is inserted it will only take O(n) time to run.

2.2

You've proven that an algorithm takes $\mathrm{O}(n^2)$: can I infer that it takes $\mathrm{O}(n)$ on all inputs?

No, Being $O(n^2)$ means that the algorithm can take up to n^2 time to run, so one should not assume that it will only take O(n) time to run.

2.3

You've proven that an algorithm takes $\Theta(n^2)$ worst-case time: can I infer that it cannot take O(n) on some inputs?

No, if an algorithm takes $O(n^2)$ time, this means that Big-Omega and Big-O are both $O(n^2)$, which proves that this algorithm can never be O(n). However, if inputs are ideal then the running time of the algorithm can decrease like in insertion sort going from n^2 to n when the list inserted is pre-sorted.

2.4

You've proven that an algorithm takes $\Theta(n^2)$: can I infer that that it's impossible for it to take O(n) on all inputs?

Yes, one can infer this because $\Theta(n^2)$ means that the algorithm will take n^2 worst case, which means that at least one case disproves this statement.

2.5

Given a function where $f(n) = 100n^2$ for even n and $f(n) = 20n^2$ (n log2n) for odd n, can we claim that $f(n) = \Theta(n^2)$?

Yes, since only the leading terms are considered when calculating Θ runtime and both of these functions are just $\Theta(n^2)$, this algorithm has a $\Theta(n^2)$ runtime.