Particle spectrograph

Wave operator and propagator

$\mathcal{A}_{lpha} \stackrel{\#1}{1^-f_{c}}$	0			$\frac{\beta_1}{2}$ 0		0									
#2 1-3	0	0	0	$\frac{\alpha_0 + \beta_1}{2 \sqrt{2}}$	0	0	0								
\mathcal{A}_{α}				4 β ₁)	1 B1		4 β ₁) /		1	^{#1} σ	_		$\overset{\#1}{2}\sigma_{\alpha\beta\chi}$		
1.3	0			$\frac{1}{4} \left(\alpha_0 - 4 \ \beta_1 \right)$	$\frac{\alpha_0 \cdot 4 \beta_1}{2 \sqrt{2}}$	0	$i(\alpha_0-4\ \beta_1)k$	2+σ+		$-\frac{16\mu}{\alpha_0^2-4\mu}$	$\alpha_0 \beta_1$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0		
βκ	$\frac{3_1)k}{2}$	0	0				211	#1 2 ⁺ τ†	αβ	$-\frac{2i}{\alpha_0}$	<u>/2</u> k	$\frac{2}{\alpha_0 k^2}$	0		<i>×</i>
$_{1^{+}f\alpha\beta}^{\#1}$	$\frac{i\left(\alpha_04\beta_1\right)k}{2\sqrt{2}}$	0	0					$\frac{^{#1}}{2}\sigma^{\alpha}$	βχ	0		0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$		$^{#1}_{2}$ 3 $^{\mathcal{A}_{\alpha\beta\chi}}$
$^{\#2}_{1}{}^{+}\mathcal{A}_{lphaeta}$	$\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}}$	0	0	0	0	0	0			#1) ⁺ σ	#1 0 ⁺ τ	#2 0 ⁺ τ	^{#1} σ		$f_{\alpha\beta}$
		1	1/4 k	0	0	0	0	#1 0 ⁺ σ†	α_0^2	$\frac{8 \beta_1}{-4 \alpha_0 \beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0		β 2 ⁺
$_{1}^{*1}^{*}\mathcal{A}_{lphaeta}$	$\frac{1}{4}\left(lpha _{0}$ -4 $eta _{1} ight)$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	$\frac{i(\alpha_0 - 4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0^{+1} τ †	<u> </u>	$\frac{1}{\alpha_0 k}$	$-\frac{1}{\alpha_0 k^2}$	0	0		#1 2 ⁺ Aαβ
		αβ - A †	αβ f †	ğ+	α+	_ t + α	$\frac{#2}{1^-f}$	#2 0 ⁺ τ†		0	0	0	0		
	$_{1}^{\#1}\mathcal{A}_{+}^{\alpha\beta}$	1^{*2}	$_{1}^{*1}f$	$^{\#1}_{1}\mathcal{A}^{\dag}$	$^{#2}_{1}\mathcal{A}^{\dagger}$	$\frac{*1}{1^-}f$	$\frac{*2}{1^{-}}$	$0^{+1} \sigma +$		0	0	0	$\frac{2}{\alpha_0 - 4\beta_1 + 2\alpha_3}$	3 k ²	

0

 $2 \beta_1 k^2$

 $-\frac{\alpha_0}{4} + \beta_1$

 $2^{+}\mathcal{A}^{\dagger}$ $2^{+}\mathcal{A}^{\dagger}$ $2^{+}f^{\dagger}$

#1 0⁺ *A*(

0

#1 0⁺ f †

#1 0 *A* †

 $^{#2}_{1^-f^{lpha}}$

 0^{+1}

i (α₀-4 β₁) k

 $-4 \beta_1 k^2$

0

 $-\frac{1}{2}\,\bar{i}\left(\alpha_0-4\;\beta_1\right)k$

#2 0⁺ f #1 0 ℜ

0

0

0

 $\frac{\alpha_0}{2}$ -2 $\beta_1 + \alpha_3 k^2$

0 0

Massive and massless spectra

$J^{P} = 0$ $R^{p} = (\mathcal{E}, 0, p)$ $R^{p} = $? $k^{\mu} = (p, 0, 0, p)$? ?	? $k^{\mu} = (p, 0, 0, p)$ \uparrow ? ?			
V ·->	Massless particle	Massless particle			
	Poleresidue: $\frac{1}{\alpha_0 - 4\beta_1} > 0$ Polarisations: 2	Poleresidue: $\frac{1}{\alpha_0} > 0$ Polarisations: 2			

Unitarity conditions