Cummins College of Engineering for Women, Pune (An Autonomous Institute Affiliated to Savitribai Phule Pune University)

A.Y. 2022-23, Semester: II

Third Year B. Tech.

In semester Examination (T1), February- 2023

Course Code: 20PEEC601D

Course Name: Deep Learning

Maximum Marks: 25

Time: 1:00 Hour

Instructions to candidates:

- 1. All questions are compulsory.
- 2. Use of scientific calculator is allowed.
- 3. Draw diagrams wherever necessary.
- 4. Assume suitable data wherever necessary.

Q. No.	Questions	Mark s	СО	BL
No. Q.1	(A) McCulloch-Pitts neuron is most widely used the case of functions. (a) binary logic (b) ternary logic (c) quadratic (d) polynomial (B) Recognize from the given equations the type of the neural network model. Equation (1) indicates model and Equation (2) indicates $ y = 1 if \sum_{i=0}^{n} x_i \ge 0 \\ $	s (04)	CO1	L1

				9
	$y = 1 if \sum_{i=0}^{n} w_i * x_i \ge 0$ $= 0 if \sum_{i=0}^{n} w_i * x_i < 0$ (C) Match the following and find the relationships between biological			
	neural network and artificial neural network.			
	Biological Artificial neuron neuron			
	 i. Dendrites a) Net input ii. Soma b) Weights or interconnections iii. Cell c) Output iv. Axon d) Neuron 			
	(D) A neural network with multiple hidden layers and sigmoid nodes can form non-linear decision boundaries.			
	i. True ii. False			
Q.2	(A) Consider the following fully connected neural network with all activations are sigmoid functions. If we initialize all the weights and biases to zero and forward propagate an input x in the network. What is the predicted output,? $ x_1^{(I)} \longrightarrow a_1^{(I)} \\ x_2^{(I)} \longrightarrow a_1^{(I)} \\ x_2^{(I)} \longrightarrow a_1^{(I)} \\ x_n^{(I)} \longrightarrow a_1^{(I)} \\ x_n^{(I)$	(06)	C01	L2
	(B) A feedforward network is fed with initial weight, $w_1 = 0.3$ and bias = 1. Actual output of the network is y=0.01 and predicted output is = 0.851432. The derivative of loss function w.r.t. weight w_1 is 0.082167 and the learning rate used is 0.4. Find the updated weight for the w_1 using weight update rule.			
Q.3		(05)	CO1	L3

	880				
Q.5	Design a 2-input and single output feedforward network, to be used for a binary classification task. This network has one hidden layer with 2 hidden neurons.	(06)	CO6	L4	
	Write a Python program/script to implement the design.				
	Assume suitable data and notations for inputs, weights, and output.				
	Show the following steps in your program/script:				
	a) Importing suitable libraries, reading data, and initializing the model parameters.				
	b) Use of suitable activation and loss functions, training rule/algorithm.				
	c) Computation of net input and output at each layer during forward propagation.		,		
l			1	1	1