

CHEMISTRY

50th and 51st class Date: 18-11-2021

Dr. K. Ananthanarayanan
Associate Professor (Research)
Department of Chemistry
Room No 319, 3rd Floor, Raman Research Park

Email: ananthak@srmist.edu.in Phone: +91-9840154665

18CYB101J-Chemistry

Dr K Ananthanarayanan

Page 1

In this class...

Determination of molecular weight of a polymer by viscosity average method

Expt. No.: 8

11/18/202

Experiment

☐ Aim:

To determine the molecular weight of a polymer in solution by using a Ostwald viscometer.

■ Materials required:

Ostwald viscometer, beaker, stop watch, standard flasks, pipette, suction bulb

☐ Chemicals required :

Given polymer solution, suitable solvents

11/18/2021

3

Polymer

- ☐ A polymer is a substance or material consisting of very large molecules, or macromolecules, composed of many repeating subunits.
- □ Polymerization is the process by which monomers (smaller chemical units) are combined to form a polymer.

However the catalyst catalyst
$$H_2$$
 H_2 H_3 H_4 H_5 H_5 H_6 H_8 H_8

11/18/2021

nd paper presentation-Vidya

Polymer used – polyvinyl alcohol

11/18/202

5

Molecular weight

- ☐ The molecular weight of a synthetic polymer does not have a single value, since different chains will have different lengths and different numbers of side branches.
- There will therefore be a distribution of molecular weights, so it is common to calculate the average molecular weight of the polymer.
- □ Several different ways to define the average molecular weight the two most common being the number average molecular weight and the weight average molecular weight.
- □ Other averages exist, such as the <u>viscosity average</u> <u>molecular weight.</u>

11/18/2021

Number average molecular weight

The number average molecular weight <u>is defined as the total</u> weight of polymer divided by the total number of molecules.

Total weight
$$=\sum\limits_{i=1}^{\infty}N_{i}M_{i}$$

where N_i is the number of molecules with weight M_i

Total number
$$=\sum\limits_{i=1}^{\infty}N_{i}$$

The number average molecular weight is therefore given by:

$$\overline{M_N} = rac{\sum\limits_{i=1}^{\infty} N_i M_i}{\sum\limits_{i=1}^{\infty} N_i}$$

11/18/2021

7

Weight average molecular weight

The weight average molecular weight <u>depends not only on</u> <u>the number of molecules present, but also on the weight of</u> <u>each molecule</u>. To calculate this, N_i is replaced with N_iM_i.

$$\overline{M_W} = rac{\sum\limits_{i=1}^{\infty} N_i M_i^2}{\sum\limits_{i=1}^{\infty} N_i M_i}$$

This can also be written as:

$$\overline{M_W} = \sum_{i=1}^\infty w_i M_i$$

where w_i is the weight fraction of polymer with molecular weight M_i .

11/18/2021

Molecular weight

Consider a polymer sample comprising of 5 moles of polymer molecules having molecular weight of 50.000 g/mol and 9 moles of polymer molecules having molecular weight of 30.000 g/mol.

$$\overline{M}_n$$
 = $\frac{(9 \text{ mol } \times 30,000 \text{ g/mol}) + (5 \text{ mol } \times 50,000 \text{ g/mol})}{9 \text{ mol } + 5 \text{ mol}} = 37,000 \text{ g/mol}$

$$\overline{M}_{w} = \frac{9 \text{ mol}(30,000 \text{ g/mol})^{2} + 5 \text{ mol}(50,000 \text{ g/mol})^{2}}{9 \text{ mol}(30,000 \text{ g/mol}) + 5 \text{ mol}(50,000 \text{ g/mol})} = 40,000 \text{ g/mol}$$

Viscosity average molecular weight

$$\overline{M}_{V} = \begin{bmatrix} \sum_{i} N_{i} M_{i}^{1+a} \\ \frac{\sum_{i} N_{i} M_{i}}{\sum_{i} N_{i} M_{i}} \end{bmatrix}^{1/a}$$

11/18/2021

where a is the exponent in Staudinger-Mark-Houwinks equation: $[\eta] = k*M^a$ ($[\eta] = intrinsic viscosity$). For a flexible polymer in a good solvent, a ≈ 0.7 .

M_V is determined by viscosity measurements.

Determination of molecular weight

a. Absolute method:

Mass spectrometry
Colligative property
End group analysis
Light scattering
Ultracentrifugation.

b. Relative method : Solution viscosity

 $\textbf{c. Fractionation method}: \mathsf{GPC} \ (\mathsf{Gel} \ \mathsf{Permeation}$

Chromatography)

Viscosity is a measure of a fluid's resistance to flow. It describes the internal friction of a moving fluid caused due to intermolecular forces between particles within the fluid. A fluid with large viscosity resists motion because its molecular makeup gives it a lot of internal friction. Water Olive Oil Honey Increasing viscosity

Poiseuille's equation The precise definition of viscosity is based on laminar, or non turbulent, flow characterized by the smooth flow of the fluid in layers that do not mix. The flow rate Q of the laminar flow of an incompressible fluid having viscosity η through a horizontal tube of uniform radius r and length I is given by the Poiseuille's equation: $Q = \frac{(P_2 - P_1)\pi r^4}{8\eta l}$

Principle

In a capillary viscometer, the <u>viscosity of a liquid is</u> proportional to the time taken by a known volume of liquid to flow through the capillary under a specified hydrostatic pressure at a fixed temperature.

Provided the flow is laminar, using the Poiseuille's equation it is possible to show that if t, η and β are the flow time, viscosity and density of solution :

$$\frac{\frac{n}{n}}{n_o} = \frac{\rho}{\rho_o} \frac{t}{t_o}$$

 $\frac{\eta}{\eta_a}$ = Relative viscosity η_{rel}

The specific viscosity is defined as $\eta_{\rm sp}$. = $\eta_{\rm rel}$ - 1

 η_0 : solvent viscosity t: flow time of solution

t_o: flow time of solvent

Specific viscosity: $\eta_{sp} = \frac{\eta - \eta_o}{\eta_o} = \frac{t - t_o}{t_o} = \eta_{rel} - 1$

Reduced viscosity: $\eta_{rel} = \frac{\eta_{sp}}{c}$ The ratio of a solution's specific viscosity to the concentration of the solute extremals. concentration.

Intrinsic viscosity [η] = $\lim_{c \to 0} \frac{\eta_{s p}}{c}$ Intrinsic viscosity reflects the capability of a polymer in solution to enhance the viscosity of the solution

Principle contd..

 \Box The Staudinger – Mark – Houwink's equation which relates η_{int} with molecular weight

$$\eta_{int} = K(M)^{\alpha}$$

□ Where 'K' is an empirical parameter characteristic of a particular solute – solvent pair and 'α' is a shape parameter. (both are constants). a = Mark-Houwink constant relating to structure (0 to 0.1 – sphere, 0.35 to 0.80 – random coil, 1.5 to 2 – rigid rod).

- \square Plot of $\eta_{\rm sp}$ /C Vs C , extrapolated to C= 0 gives $\eta_{\rm int}$
- From known values of K and α, molecular weight can be determined.

11/18/2021

SRM Procedure ☐ 1% solution of polymer (PVA) in water will be supplied. Prepare at least 5 dilutions i.e 0.1%, 0.2%, 0.3%, 0.4% and 0.5% polymer in water. ☐ Dilutions can be done by using the volumetric expression N₁V₁ $= N_2 V_2$. \square Set up the Ostwald viscometer and measure the flow time (t_0) of a fixed volume of pure solvent (12.5 ml). Take the average reading (at least three iterations). ☐ Rinse the viscometer thoroughly with the most dilute solution, measure the flow time (t_1) keeping the flow volume the same. ☐ Repeat the procedure for other solutions. figspace Calculate $\eta_{\rm rel}$ and $\eta_{\rm sp}$. Plot $\eta_{\rm sp}$ /C Vs C , extrapolate to C= 0 to obtain $\eta_{\text{int}}.$ From the given values of K and α , calculate the molecular weight.

Tabular column

S.No.	Concentration of the polymer solution	Time of flow in sec (average)	Relative viscosity $\eta/\eta_0 = t_s/t_0$	Specific viscosity η _{sp} =η/η ₀ -1	Reduced viscosity η _{sp} /C
1.	Pure Solvent	to			
2.	0.1%	t _s			
3.	0.2%	ts			
4.	0.3%	t _s			1 = 2
5.	0.4%	ts			
6.	0.5%	ts		2 N 1	

11/18/2021 20

Result

☐ The molecular weight of the given polymer is =

11/18/2021

Tabular column, values

SI. No	Concentration of the polymer solution (c) (%)	Time of flow in sec (average) sec	Relative viscosity $\frac{n}{n_0} = \frac{t}{t_0}$	Specific viscosity n _{sp} = (relative viscosity -1)	Reduced viscosity n_{sp} \overline{c}
1	Pure solvent	38 (t _o)			
2	0.1	43	1.131	0.131	1.31
3	0.2	46			
4	0.3	50			
5	0.4	55			
6	0.5	62			