Prima Parte

Da non compilare se si è superato il primo compitino con un voto soddisfacente. Non si può consegnare solo la prima parte.

Domande a risposta multipla

es2

Si consideri un codice di correzione di Hamming su 16 bit. Dire quale sequenza di bit è memorizzata in memoria se si devono memorizzare i seguenti 16 bit 1001001010001110 di dati:

a 000011001001010001110

b 110101010100001111001

100100101000111000001

- c 100100010100001110001
- e nessuna delle risposte precedenti è corretta

Spiegazione:

es3

Sia dato un disco rigido con le seguenti caratteristiche:

- capacità di 1TB;
- 2 piatti (4 facce);
- 65536 tracce per faccia e 8192 settori per traccia;
- velocità di rotazione di 10000 rpm;
- tempo medio di posizionamento della testina di 6,5 ms.

Il tempo totale medio per trasferire (tempo di accesso totale medio, secondo il libro) $256 \mathrm{KB}$ memorizzati in una stessa traccia è di circa

a 9,6875

b 9,875 ms

c 9,59375 ms

d 10,25 ms

e nessuna delle risposte precedenti è corretta

Spiegazione:

Sappiamo che

$$T_S = 6.5 \text{ ms e } T_L = (1000/(10000/60)) / 2 \approx 3.0 \text{ ms}$$

e che il tempo totale di trasferimento è dato da

$$T = T_S + T_L + T_t$$

dove il tempo di trasferimento (in millisecondi) è dato dalla formula

$$T_{t} = \frac{b}{rN} \times 1000$$

$$\begin{bmatrix} b & \text{#byte da trasferire} \\ N & \text{#byte per traccia} \\ r & \text{velocità rotazione} \\ \text{(in rotazioni per sec.)} \end{bmatrix}$$

Il numero di byte per faccia sarà dato dalla capacità totale del disco diviso il numero di facce

$$1TB / 4 = 2^{40} / 2^2 = 2^{38}$$

Il numero di byte per traccia N sarà dato dalla capacità totale di una faccia diviso il numero di tracce ($65536 = 2^{16}$)

$$N = 2^{38} / 2^{16} = 2^{22}$$

Quindi

$$T_t = [1000 \times 256\text{KB}] / [(10000/60) \times 2^{22}]$$

= $[1000 \times 2^{18}] / [(10000/60) \times 2^{22}]$
= 0.375 ms

Pertanto il tempo totale di accesso è

$$T = 6.5 + 3.0 + 0.375 = 9.875 \text{ ms}$$

Esercizio

es8

Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU e che la memoria abbia il contenuto esadecimale mostrato di seguito:

				$_{ t _}$ ind	byte	ind	byte	ind	byte	ind	byte
7	≠ indirizzo	l/s	byte		J		v		J		J
			scritto	100	80	101	OA	102	D7	103	02
	(binario)		(HEX)	104	1F	105	00	106	80	107	EO
-	000100001000	s	D4	108	ΑE	109	73	10A	AF	10B	23
2	2 000100001111	1		10C	A1	10D	42	10E	90	10F	75
;	3 000100001110	s	DC	110	В9	111	16	112	FD	113	DO
4	1 000100011101	s	9F	114	OA	115	07	116	03	117	71
	5 000100011001	1		118	3E	119	D3	11A	71	11B	23
(6 000100011111	1		11C	A1	11D	88	11E	90	11F	15
1	7 000100000001	s	FF	120	F9	121	86	122	AO	123	00
8	8 000100000010	1		124	E9	125	16	126	05	127	00

Si assuma che la dimensione di parola coincida con un byte, e la presenza di una cache di ampiezza 32B, dimensione di blocco 4B, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo LRU, politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.

Soluzione (da compilare)

• Indicare di seguito in quali campi (e la loro dimensione) gli indirizzi emessi dalla CPU sono suddivisi:

tag: 8 bit, set: 2 bit, word: 2

• Indicare di seguito in quante linee/set la cache è suddivisa:

8 linee suddivise in 4 set

Indicare l'evoluzione della cache e della modifica della memoria nello schema sottostante:

Indirizzo	hit/	Cache	Modifica memoria
	miss	(per ogni linea di cache indicare il contenuto del campo tag)	M[ind.] = contenuto
0001 0000 1000 1 0 8	m	SET 10 [AE 73 AF 23] linea 0 tag:00010000 w.a.	
		[D4 73 AF 23]*	
0001 0000 1111 1 0 F	m	SET 11 [A1 42 90 75] linea 0 tag:00010000	

continuare nella pagina sequente

Indirizzo	hit/ miss	Cache (per ogni linea di cache indicare il contenuto del campo tag)	Modifica memoria M[ind.] = contenuto
	IIIISS		M[ina.] = contenuto
0001 0000 1110	h	SET 11 [A1 42 DC 75]* linea 0	
1 0 E		tag:00010000	
0001 0001 1101	m	SET 11 [A1 8A 90 15] linea 1	
1 1 D		tag:00010001 I w.a.	
		v [A1 9F 90 15]*	
0001 0001 1001	m	SET 10 [3E D3 71 23] linea 1	
1 1 9		tag:00010001	
0001 0001 1110	h	SET 11 [A1 9F 90 15]* linea 1	
1 1 F		tag:00010001	
0001 0000 0001	m	SET 00 [08 0A D7 02] linea 0	
1 0 1		tag:00010000 w.a.	
		v [08 FF D7 02]*	
0001 0000 0010	h	SET 00 [08 FF D7 02]* linea 0	
1 0 2		tag:00010000	

es8bis

Sia data la seguente sequenza di indirizzi in lettura (l) o scrittura (s) emessi dalla CPU e che la memoria abbia il contenuto esadecimale mostrato di seguito:

				ind	byte	ind	byte	ind	byte	ind	byte
#	indirizzo	l/s	parola		· ·		· ·		•		•
			scritta	100	08	101	OA	102	D7	103	02
	(binario)		(HEX)	104	1F	105	00	106	80	107	EO
1	000100001000	s	D4FF032A	108	ΑE	109	73	10A	AF	10B	23
2	000100001100	1		10C	A1	10D	42	10E	90	10F	75
3	000100011100	s	DC3E1189	110	В9	111	16	112	FD	113	DO
4	000100010100	s	9F9E9B9C	114	OA	115	07	116	03	117	71
5	000100011000	1		118	3E	119	D3	11A	71	11B	23
6	000100010000	1		11C	A1	11D	88	11E	90	11F	15
7	000100000000	s	FF112233	120	F9	121	86	122	AO	123	00
8	000100100100	1		124	E9	125	16	126	05	127	00

Si assuma che la dimensione di parola coincida con 4 byte, e la presenza di una cache di ampiezza 32B, dimensione di blocco di 2 parole, inizialmente vuota, e ad associazione a 2 vie (politica di rimpiazzo LRU, politica di scrittura write-back e gestione dei miss in scrittura con la politica write allocate).

Si mostri come sia il contenuto della cache che il contenuto della memoria cambia.

Soluzione (da compilare)

• Indicare di seguito in quali campi (e la loro dimensione) gli indirizzi emessi dalla CPU sono suddivisi:

tag: 8 bit, set: 1 bit, word: 3 (di cui ultimi 2 indicano la posizione del byte nella parola)

• Indicare di seguito in quante linee/set la cache è suddivisa:

4 linee suddivise in 2 set

Indicare l'evoluzione della cache e della modifica della memoria nello schema sottostante:

Indirizzo	hit/	Cache	Modifica memoria
	miss	(per ogni linea di cache indicare il contenuto del campo tag)	M[ind.] = contenuto
0001 0000 1000 1 0 8	m	SET 1 [AE 73 AF 23 A1 42 90 75] linea 0 tag:00010000 w.a. v	
0001 0000 1100 1 0 C	h	[D4 FF 03 2A A1 42 90 75]* SET 1 [D4 FF 03 2A A1 42 90 75]* linea 0 tag:00010000	

continuare nella pagina seguente

Indirizzo	hit/	Cache	Modifica memoria
	miss	(per ogni linea di cache indicare il contenuto del campo tag)	M[ind.] = contenuto
0001 0001 1100 1 1 C	m	SET 1 [3E D3 71 23 A1 8A 90 15] linea 1 tag:00010001 w.a. v	
0001 0001 0100 1 1 4	m	[3E D3 71 23 DC 3E 11 89]* SET 0 [B9 16 FD D0 0A 07 03 71] linea 0 tag:00010001	
0001 0001 1000 1 1 8	h	SET 1 [3E D3 71 23 DC 3E 11 89]* linea 1 tag:00010001	
0001 0001 0000	h	SET 0 [B9 16 FD D0 9F 9E 9B 9C]* linea 0 tag:00010001	
0001 0000 0000 1 0 0	m	SET 0 [08 0A D7 02 1F 00 80 E0] linea 1 tag:00010000 w.a. v [FF 11 22 33 1F 00 80 E0]*	
0001 0010 0100 1 2 4	m	SET 0 [F9 86 A0 00 E9 16 05 00] linea 0 (LRU) tag:00010010	M[100-107] = [B9 16 FD D0 9F 9E 9B 9C]