

Marco Listanti

Esercizi strato di rete (parte 1)

Esercizio 1 (1)

- Si consideri la rete mostrata in figura.
- (a) nell'ipotesi di rete datagram, si determini la tabella di routing di A tale che tutto il traffico verso H3 sia inoltrato sull'interfaccia 3
- (b) nell'ipotesi di rete datagram, si determini una tabella di routing di A tale che tutto il traffico da H1 e destinato a H3 sia inoltrato attraverso l'interfaccia 3, mentre quello da H2 e H3 sia inoltrato sull'interfaccia 4
- (c) nell'ipotesi di rete a circuito virtuale in cui siano attive connessioni tra H1 e H3 e tra H2 e H3, si scriva una possibile tabella di forwarding di A tale che tutto il traffico da H1 verso H3 sia inoltrato sull'interfaccia 3, mentre tutto il traffico da H2 verso H3 sia inoltrato sull'interfaccia 4
- (d) nelle stesse ipotesi del quesito (c) si determini le tabelle di inoltro dei nodi B , C e D.

Esercizio 1 (2)

 a) I pachetti entranti recanti come destination address l'indirizzo di H3 saranno inoltrati sull'interfaccia 3, La tabella di routing di A sarà:

ROUTER A											
Interfaccia di ingresso	Destination address	Interfaccia di uscita									
1	Н3	3									

b) Non esiste nessuna configurazione possible per la tabella di routing che soddisfi alla condizione posta. Il routing è infatti basato esclusivamente sull'analisi del destination address che è uguale in entrambi i casi.

Esercizio 1 (3)

c) Una possible configurazione della tabella di forwarding di A è la seguente:

ROUTER A											
Interfaccia di ingresso	VCI entrante	Interfaccia di uscita	VCI uscente								
1	12	3	22								
2	63	4	18								

 d) Possibili configurazioni delle tabelle di forwarding di B, C e D sono

ROUTER D											
Interfaccia di ingresso	VCI entrante	Interfaccia di uscita	VCI uscente								
1	24	3	70								
2	50	3	76								

ROUTER B										
Interfaccia di ingresso	VCI entrante	Interfaccia di uscita	VCI uscente							
1	22	2	24							

ROUTER C										
Interfaccia di ingresso	VCI entrante	Interfaccia di uscita	VCI uscente							
1	18	2	50							

Esercizio 2 (1)

- Considerate una rete a circuito virtuale con un VCI di lunghezza uguale a 2 bit.
- Si assuma che:
 - (1) la rete deve impostare un circuito virtuale su quattro collegamenti: A, B, C e D
 - (2) che su ciascun collegamento siano attivi altri due VC
 - (3) che i loro numeri di VC siano i seguenti:

Coll. A	Coll. B	Coll. C	Coll. D
00	01	10	11
01	00	11	00

Esercizio 2 (2)

- Nell'ipotesi che ciascun circuito virtuale possa attraversare solo uno dei quattro collegamenti, rispondere alle seguenti domande:
- (a) Se ciascun VC deve necessariamente usare lo stesso VCI su tutti i collegamenti lungo il suo percorso, quale VCI potrebbe essere assegnato al nuovo VC?
- (b) Se a ciascun VC debbno essere assegnato VCI diversi sui differenti collegamenti, quante combinazioni diverse dei quattro VCI (uno per collegamento) si potrebbero utilizzare?

Esercizio 2 (3)

La configurazione di rete è la seguente

- a) non esiste nessuna configurazione di VCI possibile, perché tutte sono già utilizzate su almeno uno degli altri collegamenti
- b) Su ogni collegamento sono possibili due configurazioni di VCI $(A=10,11;\ B=10,11;\ C=00,01;\ D=01,10);$ in totale, sui quattro collegamenti, le configurazioni possibili sono quindi $2^4=16$

Esercizio 3 (1)

- Due pacchetti arrivano a contemporaneamente su due diverse porte di input di un router e non vi siano altri pacchetti.
- (a) Nell'ipotesi che i due pacchetti debbano essere inoltrati a due diverse porte di output: è possibile inoltrare contemporaneamente i due pacchetti attraverso la switching fabric, se il router usa una struttura bus?
- (b) Nell'ipotesi che i due pacchetti debbano essere inoltrati a due diverse porte di output: è possibile inoltrare contemporaneamente i due pacchetti attraverso la switching fabric se questa è di tipo crossbar?
- (c) Nell'ipotesi che i due pacchetti debbano essere inoltrati alla stessa porta di output. È possibile inoltrare i due pacchetti contemporaneamente attraverso la switching fabric se questa è di tipo crossbar?

Esercizio 3 (2)

- a) NO: non si possono trasferire contemporaneamente i due pacchetti sul bus, il trasferimento deve avvenire in modo sequenziale. Se lo speed up è almeno uguale a 2 (velocità del bus doppia rispetto a quella delle linee) non è necessaria la bufferizzazione in ingresso
- b) SI: la struttura crossbar consente il trasferimento contemporaneo di due pacchetti verso uscite diverse; occorre infatti chiudere due punti di incrocio di bus diversi su colonne diverse
- c) NO: la struttura crossbar non consente il trasferimento contemporaneo di due pacchetti verso la stessa uscita; occorrebbe infatti chiudere due punti di incrocio di bus diversi sulla stessa colonna

Esercizio 4 (1)

- Si consideri un router in cui la switching fabric abbia uno speed-up uguale a n
- Si assuma che tutti i pacchetti abbiano la stessa lunghezza, che n pacchetti arrivino nello stesso momento a n porte di input e che tutti gli n pacchetti debbano essere inoltrati su porte di output differenti
- Si determini il ritardo massimo D_{max} di un pacchetto se la struttura di commutazione è (a) a memoria condivisa, (b) a bus condiviso o (c) a crossbar?

Esercizio 4 (2)

- Indichiamo con T il tempo necessario a trasferire un pacchetto all'interno della switching fabric.
- Nel caso di struttura memory based, il primo pacchetto sarà trasferito immediatamente, mentre i pacchetti successivi dovranno attendere il termine del trasferimento del pacchetto precedente, per cui nel caso peggiore il massimo ritardo subito da un pacchetto sarà D_{max}=(n-1)T
- Nel caso di strutture a bus, può essere ripetuto il ragionamento precedente, quindi il valore massimo del ritardo sarà ancora D_{max}=(n-1)T
- Nel caso di strutture crossbar, si ha la possibilità di trasferire ccontemporaneamente tutti gli n pacchetti, quindi,0 poiché non ci sono attese, si ha D_{max}=0

Esercizio 5 (1)

- Si consideri il router mostrato in figura.
- La switching fabric è di tipo crossbar; tutti i pacchetti hanno la stessa lunghezza e in un ciclo di trasmissione (slot) un pacchetto può essere trasferito da una porta di input a una di output.
- Si determini:
 - (a) il numero minimo di slot necessari per trasferire i pacchetti mostrati dalle porte di input a quelle di output
 - (b) il numero massimo numero di slot necessari nel caso peggiore di scheduling, assumendo che una coda in ingresso che non sia vuota non è mai bloccata

Esercizio 5 (2)

- Il minimo numero di slot necessari al trasferimento di tutti i pacchetti è 3.
 - Slot 1: trasferimento del pacchetto della linea 1 diretto all'uscita a e del pacchetto della linea 2 diretto all'uscita b
 - Il pacchetto della linea 2 diretto alla linea b blocca il trasferimento del pacchetto diretto verso l'uscita c (HOL blocking)
 - Slot 2: trasferimento del pacchetto diretto all'uscita a dalla linea 2 e del pacchetto diretto all'uscita b dalla linea 3
 - Slot 3: trasferimento del pacchetto diretto all'uscita c
- Il massimo numero di slot necessari al trasferimento di tutti i pacchetti è 3.
 - Analogamente al caso precedente, nel primo e nel secondo slot possono essere trasferiti due pacchetti, mentre nel terzo slot sarà trasferito l'ultimo pacchetto

Esercizio 6 (1)

Considerate una rete a pacchetto con indirizzi a 32 bit. Si assuma che un router abbia quattro linee di uscita (0,1,2,3) e che i pacchetti debbano essere inoltrati verso le quest linee come segue:

	Inter	Interfaccia d'uscita		
da a		00000000		0
da a		01000000 01000000		1
da a		01000001 01111111		2
		3		

Esercizio 6 (2)

Si chiede di:

- Scrivere la tabella di routing che utilizza la regola del longest prefix matching che realizzi l'instradamento indicato
- Illustrare come la tabella di routing effettui l'instradamento per i pacchetti con i seguenti indirizzi di destinazione:
 - **DA1:** 11001000 10010001 01010001 01010101
 - **DA2:** 11100001 01000000 11000011 00111100
 - **DA3:** 11100001 10000000 00010001 01110111

Esercizio 6 (3)

Quesito (a)

I prefissi per i primi due intervalli sono dati dai bit più significativi uguali per tutti gli indirizzi compresi nell'intervallo (evidenziati in verde)

	Intervalli indirizzi di destinazione	Interfaccia d'uscita
da a	11100000 00 <mark>000000 00000000 000000000 000000</mark>	0
da a	11100000 01000000 00000000 00000000 11100000 01000000 11111111 11111111	1
da a	1110000 11100001 01111111 11111111 11111111	2
	Altrimenti	3

Per il terzo intervallo non può essere direttamente utilizzato il prefisso evidenziato in giallo, perché indurrebbe un errore di instradamento per gli indirizzi del tipo [11100001.1xxxxxxxx.xxxxxxxxxx] che dovrebbero essere instradati verso l'uscita 3 e non all'uscita 2. Occorre quindi escludere gli indirizzi di questo tipo

Esercizio 6 (4)

 Quindi la tabella di routing può essere configurata nel seguente modo

Prefix	Interfaccia d'uscita
11100000 00	0
11100000 01000000	1
1110000	2
111000001 1	3
Altrimenti	3

Esercizio 6 (5)

Quesito (b)

- L'indirizzo DA1
 (11001000 10010001 01010001 01010101)
 non ha nessun matching quindi viene instradato sull'uscita 3
- L'indirizzo DA2
 (11100001 01000000 11000011 00111100)
 ha un matching con il terzo record, quindi è instradato sull'uscita 2
- L'indirizzo DA3
 (11100001 10000000 00010001 01110111)
 ha un matching con il quarto record, quindi è instradato sull'uscita 3

Esercizio 7 (1)

Considerate una rete a pacchetto con indirizzi a 8 bit;
 un router utilizzi abbia la seguente tabella di routing

Prefisso	Uscita
00	0
010	1
011	2
10	2
11	3

Per ciascuna delle quattro interfacce, si determini l'intervallo degli indirizzi di host di destinazione e il numero di questi indirizzi

Esercizio 7 (2)

Il numero di indirizzi per prefisso è il seguente:

- Int. 0
 - Prefisso [00]
 - 6 bit di host_id \rightarrow 26 = 64 indirizzi
- Int. 1
 - Prefisso [010]
 - 5 bit di host_id \rightarrow 2⁵ = **32** indirizzi
- Int. 2
 - Prefisso [011] \rightarrow 5 bit di host_id \rightarrow 25 = 32 indirizzi
 - Prefisso [10] \rightarrow 6 bit di host_id \rightarrow 26 = 64 indirizzi
 - Totale 32 + 64 = 96 indirizzi
- Int. 3
 - Prefisso [11]
 - 6 bit di host_id \rightarrow 26 = 64 indirizzi

Marco Listanti

Algoritmi di Scheduling per traffico Best Effort

Scheduling per traffico best-effort

Si consideri:

- Un link x di capacità C (bit/s)
- 5 flussi f_i (1 $\le i \le S$) di pacchetti ognuno caratterizzato da una banda richiesta $W(f_i)$ (1 $\le i \le S$) (bit/s)
- Lo scheduler "alloca" link x ad ogni flusso una banda R(f_i) (1≤i≤S) (bit/s)

Definizione di Fairness

- L'obiettivo di una disciplina di scheduling è ripartire la capacità di un link in modo equo tra i flussi (Fairness)
- Dato un link di banda C (bit/s) e il vettore delle bande richieste $[W(f_1), W(f_2), ..., W(f_s)]$, l'allocazione $[R(f_1), R(f_2), ..., R(f_s)]$ è detta ammissibile se

$$\sum_{i=1}^{S} R(f_i) \leq C$$

- Max-Min Fairness
 - L'allocazione di banda che risulta sul link x è detta max-min fair (MMF) se non è possibile incrementare la banda di un flusso s mantenendo l'ammissibilità dell'allocazione senza ridurre la banda di un altro flusso p con $R(f_p) \le R(f_s)$
- Un allocazione MMF è quella per cui il flusso che riceve la banda minore ha il valore maggiore possibile di banda senza avere spreco di risorse

Max-Min Fairness

- I flussi sono ordinati in modo crescente rispetto al valore di banda richiesta
 - I flussi hanno priorità decrescente in ragione del valore della banda richiesta (flussi "piccoli" hanno priorità maggiore dei flussi "grandi")
- Nessun flusso riceve più banda rispetto a quella richiesta
- I flussi "piccoli" vedono completamente accettata la richiesta di banda
- La banda rimanente è suddivisa in parti uguali tra i flussi "grandi"

Analogia con un meccanismo "Water-filling"

Customers (sorted by amount requested)

Max-Min Fairness

Algoritmo

- 1. Selezionare il flusso f_j dall'insieme $[f_n, i=1,2,...N]$ con richiesta di banda minore
- 2. Se W(f_j) \leq C/N, allora R(f_j) = W(f_j)
- 3. Se $W(f_j) > C/N$, allora $R(f_j) = C/N$
- 4. Poni N=N-1, $C=C-R(f_i)$, rimuovi il flusso dall'insieme $[f_n]$
- 5. Se N > 0 torna al passo 1
- 6. Stop

Max-Min Fairness

Esempio

Soluzione

- $R(f_1)=0.1$
- $R(f_2) = 0.9/3 = 0.3$
- $R(f_3) = 0.6/2 = 0.3$
- $R(f_4) = 0.3/1 = 0.3$

Osservazioni

La fairness di un disciplina di scheduling dipende dalla scala temporale su cui si misura

Esempi:

1. In una <u>finestra temporale infinita</u>, un sistema senza perdita (buffer infinito) se è soddisfatta la seguente condizione

$$\sum_{i=1}^{S} W(f_i) \leq C$$

qualsiasi sia la disciplina di scheduling è sempre MMF

- 2. In una finestra temporale infinita, un sistema a perdita è MMF solo se la politica di scheduling permette un'allocazione MMF
- 3. Un sistema a buffer finito gestito da uno scheduling FIFO non è MMF in finestre temporali finite

Scheduling per traffico best-effort

- Una disciplina di scheduling FIFO (First-In-First-Out) non è fair
 - Sono i flussi che emettono più traffico ad utilizzare maggiormente la capacità

Esercizio 1 (1)

Numero di flussi

$$S = 4$$

Capacità del link

$$C = 1 \text{ Mbit/s}$$

Pacchetti di lunghezza costante

$$L = 1000 bit;$$

Asse dei tempi slottato con durata dello slot

$$T_s = L/C = 1 \text{ ms}$$

DIET DEPT

Flusso 1

Flusso 2

Flusso 3

Flusso 4

Esercizio 1 (2)

Determinare

- Il bit-rate medio W[f_i] (i=1,...,4) offerto da ciascun flusso nell'intervallo [0,16 T_s]
- L'ordine di trasmissione dei pacchetti se è adottata una disciplina di scheduling FIFO
- Il throughput R[f_i] (i=1,..,4) per ciascun flusso nell'intervallo [0,16 T_s]

Soluzione

Valutazione bit rate medio W[f_i] (i=1,..4)

$$W[f_1] = \frac{12 L}{16 T_s} = \frac{12 C}{16} = \frac{3 C}{4} = 750 \text{ kbit/s}$$

$$W[f_j] = \frac{5L}{16T_s} = \frac{5C}{16} = 312.5 \text{ kbit/s}$$
 j=2,3,4

Esercizio 1 (3)

1 6	T_{s}					12T _s			BT _s	<u>I</u>	<u> </u>	4	T _s	ı	<u> </u>	l	0	
	1,12		1,11		1,10	1,9		1,8	1,7	1,6		1,5	1,4	1,3	1,2		1,1	Flusso 1
	2,5				2,4				2,3				2,2		-		2,1	Flusso 2
	3,5				3,4				3,3				3,2				3,1	Flusso 3
	4,5				4,4				4,3				4,2				4,1	Flusso 4

Scheduling FIFO

tempo

Esercizio 1 (4)

Throughput $R^*[f_i]$ (i=1,...,4)

$$R^*[f_1] = \frac{7L}{16T_s} = \frac{7C}{16} = 437.5 \text{ kbit/s}$$

$$R^*[f_j] = \frac{3L}{16T_s} = \frac{3C}{16} = 187,5 \text{ kbit/s} \quad j=2,3,4$$

Allocazione Fair

$$R[f_i] = \frac{C}{4} = 250 \text{ kbit/s} \quad i=1,...,4$$

Round Robin (RR)

tempo

Esercizio 5 (1)

Numero di flussi

$$S = 4$$

Capacità del link

$$C = 1 \text{ Mbit/s}$$

Pacchetti di lunghezza costante

$$L = 1000 bit;$$

Asse dei tempi slottato con durata dello slot

$$T_s = L/C = 1 \text{ ms}$$

Determinare

- L'ordine di trasmissione dei pacchetti se è adottata una disciplina di scheduling RR
- Il throughput R[f_i] (i=1,..,4) per ciascun flusso nell'intervallo [0,16T_s] nel caso di scheduling RR

16	T_{s}		12T _s			8T _s 4T _s					T_{s}	(0				
_																	
	1,12		1,11		1,10	1,9		1,8	1,7	1,6		1,5	1,4	1,3	1,2		1,1
	2,5				2,4				2,3				2,1				2,1
	3,5				3,4				3,3			3,2					3,1
	4,5				4,4				4,3				4,2				4,1

Flusso 1 Flusso 2 Flusso 3 Flusso 4

Esercizio 5 (2)

16T₅		I	12T _s				8T _s				4T _s				0			
	1,12		1,11		1,10	1,9		1,8	1,7	1,6		1,5	1,4	1,3	1,2		1,1	Flusso 1
	2,5				2,4				2,3		-	,	2,2		•	•	2,1	Flusso 2
	3,5				3,4				3,3				3,2				3,1	Flusso 3
	4,5				4,4				4,3				4,2				4,1	Flusso 4

Scheduling FQ

tempo

Esercizio 5 (3)

Throughput $R^*[f_i]$ (i=1,...,4)

$$R_{FQ}[f_1] = \frac{4L}{16T_s} = \frac{4C}{16} = 250 \text{ kbit/s}$$

$$R_{FQ}[f_j] = \frac{4L}{16T_s} = \frac{4C}{16} = 250 \text{ kbit/s}$$
 j=2,3,4

Se i pacchetti hanno lunghezza fissa lo scheduling RR è MMF

Esercizio 6 (1)

Numero di flussi

$$S = 4$$

Capacità di trasferimento

$$C = 1 \text{ Mbit/s}$$

Lunghezza pacchetti flusso 1

$$L_1 = 2L = 2000 \text{ bit}$$

Lunghezza pacchetti flusso i

$$(i=2,3,4)$$

$$L_2 = L = 1000 \text{ bit}$$

Asse dei tempi slottato con durata dello slot

$$T_s = L/C = 1 \text{ ms}$$

Flusso 1 Flusso 2

Flusso 3

Flusso 4

Esercizio 6 (2)

Determinare

- L'ordine di trasmissione dei pacchetti se è adottata una disciplina di scheduling Round Robin (RR)
- Il throughput $R[f_i]$ (i=1,..4) per ciascun flusso nell'intervallo $[0,16T_s]$ se è adottata una disciplina di scheduling RR

tempo

Esercizio 6 (3)

Scheduling FQ

Esercizio 6 (4)

- FQ scheduling
- Valutazione throughput R[f_i] (i=1,..4)

$$R_{FQ}[f_1] = \frac{7L}{16T_s} = \frac{7C}{16} = 437.5 \text{ kbit/s}$$

$$R_{FQ}[f_j] = \frac{3L}{16T_s} = \frac{3C}{16} = 187,5 \text{ kbit/s} \quad j=2,3,4$$

 Poiché i pacchetti sono di lunghezza variabile lo scheduling RR non è MMF

