第五次作业

- 1、在短文本分析和图像匹配应用中,使用的典型特征提取方法分别是什么?
- 2、简述 PCA 和 LDA 的异同
- 3、给定均值为 d 维 0 向量的样本集合 $X = [x_1, x_2, \dots, x_N] \in \mathbb{R}^{d \times N}$, 其中 d 是样本特征的个
- 数,N 是样本个数,即, $\sum_{i=1}^{N} x_i = \mathbf{0}$, x_i 是第 i 个样本。假定使用 PCA 算法对其进行特征变
- 换,需要保留 k 个主成分。
- (1) 写出特征变换的流程
- (2) 如果特征的维度很高(例如 10000 维),并且 d>>N,应该如何处理?
- (3) 写出 KPCA 对样本集合进行特征变换的流程。
- 4、处理模式识别高维数据的两种基本方法是什么?它们有什么不同之处?
- 5、根据特征选择与分类器的结合程度,特征选择方法可以分为哪三类?各有什么特性?
- 6、ID3、C4.5 和 CART 是三种典型的决策树分类算法,请分别说明这三种算法具体使用的决策特征选择方法(注: CART 分别说明分类和回归两种情况)。
- 7、简述最优特征选择方法的基本思想。
- 8、简述决策树剪枝的目的,以及两种常用的判断决策树是否需要剪枝的准则。
- 9、决策树的剪枝策略一般有哪些?各有什么优缺点?
- 10、给出信息增益、信息增益率、Gini 指数的计算公式,并对如下数据,
- (1) 计算属性"色泽"的信息增益;
- (2) 计算属性"触感"的信息增益率;
- (3) 计算属性"脐部"的 Gini 指数。

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1 .	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否