

QuTiP Control

Alexander Pitchford

30 June 2015

Tutorial Overview

- QuTiP introduction
- Quantum Control
- GRAPE
- QuTiP control modules
 - History
 - Features
 - Code object model
- Worked examples

- Quantum Toolbox in Python
- Simulate dynamics of quantum systems
 - Open systems solvers
 - Visualisation tools
- Open source
- Open platform Linux, Mac OS, MS Windows
- License free

Quantum Control

- System or Drift Hamiltonian
- Control fields
- Combined Hamiltonian
- Schrödinger equation
- System evolves over time
- Target evolution
- Can we determine pulses?
 - Maximise fidelity
 - Minimise energy
 - Minimise time

$$H_0 = H_i + H_s$$

$$H(t) = H_0 + \sum_{j=1}^{\infty} u_j(t)H_j$$

$$\dot{U}(t) = -iH(t)U(t)$$

$$U_{target}$$

GRAPE Algorithm

- GRadient Ascent Pulse Engineering [1]
- Timesliced control amplitudes
- Hamiltonian constant within the timeslot
- Propagation
- Time evolution
- Fidelity error $\varepsilon = 1 f$
- Normalisation
 - Unitary dynamics
 - Frobenius norm [3]

Diagram taken from [2]

$$H_{t_k} \approx H(t)$$

$$X_k := e^{-iH_{t_k}} \Delta t$$

$$X(t_k) := X_k X_{k-1} \cdots X_1 X_0$$

$$f = \frac{1}{N} \{ X_{\text{target}}^{\dagger} X(T) \} \qquad f_{PSU}^2 = \frac{1}{N^2} |\{ X_{\text{target}}^{\dagger} X(T) \}|^2$$

$$\Lambda = X_{\mathrm{target}} - X(T)$$

$$\varepsilon = \lambda \{\Lambda^\dagger \Lambda\}$$

- 1. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, and S. J. Glaser, J. Magn. Reson. 172, 296 (2005).
- 2. S. Machnes, U. Sander, S. J. Glaser, P. De Fouquieres, A. Gruslys, S. Schirmer, and T. Schulte-Herbrueggen, Phys. Rev. A 84, 1 (2010).
- 3. F. F. Floether, P. de Fouquieres, and S. G. Schirmer, New J. Phys. 14, 073023 (2012)

GRAPE - 'Hill climbing'

Minimise fidelity error w.r.t. the piece-wise control amplitudes

- Multi-variable function optimisation problem
- BFGS
 - Quasi 2nd-order Newton method
- · Gradient calculation
- Propagator gradient
 - Unitary spectral theorem [2]
 - General augmented matrix [3]
 - Frechet derivative

$$\frac{\partial f}{\partial u_i} = \frac{1}{N} \{ \Lambda_{M:k+1}^{\dagger} \left(\frac{\partial X_k}{\partial u_i} \right) X_{k-1:0} \} \qquad \Lambda_{M:k+1}^{\dagger} = U_{targ}^{\dagger} X_{M:k+1}$$

$$\frac{\partial X}{\partial u_j} \qquad \begin{pmatrix} X_k & \frac{\partial X}{\partial u_j} \\ 0 & X_k \end{pmatrix} = exp \begin{pmatrix} A_u \Delta t & A_{u_j} \Delta t \\ 0 & A_u \Delta t \end{pmatrix}$$

qutip.control History

- 2012 Group working with DYNAMO [2]
- Limitations of MATLAB licenses
- HPC Wales opportunity
- Jan 2014 Started Qtrl development
 - Porting DYNAMO to Python
 - Open source, open platform license free
- Oct 2014 Merged into QuTiP
- Jan 2015 Released in QuTiP 3.10
- April 2015 Incorporated CRAB algorithm [4]

References:

2. S. Machnes, U. Sander, S. J. Glaser, P. De Fouquieres, A. Gruslys, S. Schirmer, and T. Schulte-Herbrueggen, Phys. Rev. A **84**, 1 (2010). 4. T. Caneva, T. Calarco, and S. Montangero, Phys. Rev. A - At. Mol. Opt. Phys. **84**, (2011).

qutip.control

Features

- Algorithms
 - GRAPE
 - CRAB
- Minimisation functions
 - L-BFGS-B
 - Any scipy.optimize
- Quantum dynamics
 - Closed systems Unitary
 - Open systems -Lindbladian
 - QHO Sympletic

Fidelity measures

- Unitary (overlap)
- General (Frobenius)
- Custom
- Gradient methods
 - Spectral theorem
 - Frechet derivative
 - Approximate methods

qutip.control

Code Object Model

Example single qubit Hadamard

Unitary evolution

$$\begin{array}{c|c} u(t) \ B_X \\ \hline Control \\ \hline B_Z & Drift \\ \end{array}$$

$$U_{targ} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

$$H_0 = \sigma_z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

$$H_1 = \sigma_x = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

Example two qubit QFT

Unitary evolution

Target: Quantum Fourier Transform

$$u_{1}(t) B_{X} \longrightarrow u_{3}(t) B_{X} \longrightarrow u_{4}(t) B_{Y}$$

$$u_{2}(t) B_{Y}$$

$$H_1 = \sigma_x \otimes \mathbb{1}$$

$$H_2 = \sigma_y \otimes \mathbb{1}$$

$$H_0 = \frac{1}{2} H_3 \equiv \mathbb{1} \mathcal{S} \sigma_x \sigma_y \otimes \sigma_y + \sigma_z \otimes \sigma_z$$

$$H_4 = \mathbb{1} \otimes \sigma_y$$

Example Amplitude damping channel

Markovian dynamics: described by some Lindblad operator

Lindblad operator:

vectorising the density operator

$$\mathcal{L} = \gamma (2\sigma \otimes (\sigma^{\dagger})^{T} - (\sigma^{\dagger}\sigma \otimes \mathbb{1} + \mathbb{1} \otimes (\sigma^{\dagger}\sigma)^{T}))$$

Controls added similarly

Example Coupled oscillators

- Continuous variable
- Gaussian states
- Symplectic dynamics

Controls on first oscillator:

- Rotation
- Squeezing

Target: Boson swap

Finally

• Summary:

- QuTiP control modules available for research and teaching
- License free
- Open source, open platform

• Future development plans:

- Tighter integration with QuTiP
- More fidelity types
- Additional algorithms (Krotov?)
- Collaborators welcome