物理实验报告

陈建烨 12411913 2025.3.25 P4125

一. 实验名称: 氢氘原子光谱

二. 实验目的

对氢原子的光谱巴尔末线系列进行测量和分析,同时学习光栅光谱仪的工作原理和谱线测量的基本技术,学习测量里 德伯常量的方法;学习获得氚原子的光谱及其分析方法。通过对氢氚原子的研究,探究同位素光谱的研究方法。

三.实验原理

1. 里德伯常量及氢氘原子核质比的计算

氢原子光谱图可以明显地看到有三个谱线系列,一个谱线系列在可见光和近紫外区,称为巴尔末系;一个谱线系列在紫外,为莱曼系;另一个谱线系列在红外,为帕邢系。此外,在长波长方向还有一些不很清楚的线系。每个谱线系都很有规律,间隔向短波方向递减

变密变弱。巴尔末发现谱线的波长与谱线的序号n有关, n=1,2,3..., 它们之间的关系是:

$$\lambda = B \frac{n^2}{n^2 - 4}$$

其中 $B = 3.6465 \times 10^{-7} m$,是里德伯常量。

之后,瑞典物理学家里德伯(Johannes Rydberg)将公式改写为以波数 σ 表示的形式:

$$\sigma = rac{1}{\lambda} = rac{1}{B} \left(rac{1}{2^2} - rac{1}{n^2}
ight) = rac{2\pi^2 m_e e^4 Z^2}{(4\piarepsilon_0)^2 h^3 c (1 + rac{m_e}{m_Z})} \left(rac{1}{2^2} - rac{1}{n^2}
ight)$$

其中Z为原子核的电荷数, m_e 为电子的质量, m_Z 为原子核的质量, ε_0 为真空介电常数,h为普朗克常数,c为光速,e为电子的电荷量。里德伯常数可写为:

$$R=rac{2\pi^2m_ee^4Z^2}{(4\piarepsilon_0)^2h^3c(1+rac{m_e}{m_Z})}$$

若 $m_Z \to \infty$,则 $R_\infty = rac{2\pi^2 m_e e^4 Z^2}{(4\pi arepsilon_0)^2 h^3 c} = (10973731.534 \pm 0.012) m^{-1}$,所以 $R_Z = rac{R_\infty}{(1+rac{m_e}{m_Z})}$ 。因为 $\sigma_H = R_H \left(rac{1}{2^2} - rac{1}{n^2}
ight)$, $\sigma_D = R_D \left(rac{1}{2^2} - rac{1}{n^2}
ight)$,所以有:

$$\Delta \lambda = \lambda_H - \lambda_D = \lambda_H \left(1 - rac{\lambda_D}{\lambda_H}
ight) = \lambda_H (1 - rac{\sigma_H}{\sigma_D}) = \lambda_H (1 - rac{R_H}{R_D})$$

因为 $R_H=rac{R_\infty}{(1+rac{m_e}{m_H})}$, $R_D=rac{R_\infty}{(1+rac{m_e}{m_D})}$,所以有:

$$rac{R_H}{R_D} = rac{\left(1 + rac{m_e}{m_D}
ight)}{\left(1 + rac{m_e}{m_H}
ight)} \Leftrightarrow rac{m_D}{m_H} = rac{rac{R_D}{R_H}}{1 - rac{m_H}{m_e}\left(rac{R_D}{R_H} - 1
ight)}$$

四.实验仪器

光源 (氢氘放电管)、光栅光谱仪、光点倍增管

五.实验内容

- 1.将光谱仪的电压旋钮逆时针旋至最小,启动设备,打开软件,复位光谱仪至200nm位置。
- 2.光谱仪的定标(Hg灯光谱的测量)
 - a)将Hg灯放在光谱仪入射狭缝前,开启电源,将负高压调至500V。
 - b)调节好以下设置后点击"单程"图标,开始扫描。

软件设置			
模式: 能量	间隔: 0.05nm	起始波长: 350nm	终止波长: 590nm
最大值: 1000	最小值: 0	采集次数: 4	增益: 3

c) 扫描后:

- 1) 如Hg灯的谱线峰值高过1000, 适当降低电压值, 重新扫描;
- 2) 如Hg灯的谱线峰值过低(最高峰<700),适当提高电压值,重新扫描;
- 3) 其中508nm附近为二级衍射峰,可视作干扰,不论峰值高低都应人为忽略。
- d)依次记录谱线中每个峰对应的波长(共9个峰)。(如图1所示)

3.HD灯光谱的测量

- a)将HD灯放在光谱仪入射狭缝前,开启电源,将负高压调至800V左右。
- b)从HD灯后部的小孔望进去,并移动HD灯,找到光线的焦平面(即最细最亮的线),并使其与光谱仪的入射狭缝重合,以便尽可能多的光线进入光谱仪。
 - c)调节好以下设置后点击"单程"图标,开始粗扫。

软件设置		
间隔: 0.05nm	起始波长: 350nm	终止波长: 660nm

扫描之后,找到3个明显的峰。(如图2所示)

d)细扫光谱 确定准确波长

- 1) 设定采集间隔为0.01nm,依次在n=3,4,5(即656nm,486nm,434nm)的 3个峰附近 $\pm 5nm$ 的范围内扫描。光谱仪上的负高压可根据谱线的高低而调节。目的将每一个n值(主量子数)对应的H、D谱线峰值分离开,共需测出3组(n=3,4,5) HD 双峰。
 - 2) 如H、D谱线峰值不能分离(20nm范围的谱线只有一个峰值),可微调HD灯的摆放位置。
 - 3)得到H、D双峰后,记录峰值波长(短波长为D,长波长为H)。(如图3,图4,图5所示)

六.实验数据

Hg灯的波长

序号	1	2	3	4	5	6	7	8	9
测量值(nm)	364.85	365.30	366.10	404.65	407.65	435.90	546.50	577.45	579.60
理论值(nm)	365.02	365.48	366.30	404.66	407.78	435.84	546.07	576.96	579.07

记录的HD灯的波长

序号	3	4	5
D峰值波长(nm)	657.44	486.21	433.95
H峰值波长(nm)	657.63	486.33	434.07

七.数据处理

1.拟合修正公式

以Hg灯的测量波长为横轴,理论Hg波长为纵轴,进行线性拟合,得到修正公式:

$$\lambda_{Hg}=lpha+eta\lambda_{Hg}^0=1.3963+0.9967\lambda_{Hg}^0$$

2.修正HD灯的波长

$$\begin{split} \lambda_{H,3} &= \alpha + \beta \lambda_{H,3}^0 = 1.3963 + 0.9967 \times 657.63 = 656.85nm \\ \lambda_{D,3} &= \alpha + \beta \lambda_{D,3}^0 = 1.3963 + 0.9967 \times 657.44 = 656.66nm \\ \lambda_{H,4} &= \alpha + \beta \lambda_{H,4}^0 = 1.3963 + 0.9967 \times 486.33 = 486.12nm \\ \lambda_{D,4} &= \alpha + \beta \lambda_{D,4}^0 = 1.3963 + 0.9967 \times 486.21 = 486.00nm \\ \lambda_{H,5} &= \alpha + \beta \lambda_{H,5}^0 = 1.3963 + 0.9967 \times 434.07 = 434.03nm \\ \lambda_{D,5} &= \alpha + \beta \lambda_{D,5}^0 = 1.3963 + 0.9967 \times 433.95 = 433.91nm \end{split}$$

3.计算 R_H

$$\begin{split} R_{H,3} &= \frac{1}{\lambda_{H,3}(\frac{1}{2^2} - \frac{1}{3^2})} = \frac{1}{656.85nm*(\frac{1}{2^2} - \frac{1}{3^2})} = 10961381.48m^{-1} \\ R_{H,4} &= \frac{1}{\lambda_{H,4}(\frac{1}{2^2} - \frac{1}{4^2})} = \frac{1}{486.12nm*(\frac{1}{2^2} - \frac{1}{4^2})} = 10971272.89m^{-1} \\ R_{H,5} &= \frac{1}{\lambda_{H,5}(\frac{1}{2^2} - \frac{1}{5^2})} = \frac{1}{434.03nm*(\frac{1}{2^2} - \frac{1}{5^2})} = 10971351.28m^{-1} \\ \bar{R}_H &= \frac{R_{H,3} + R_{H,4} + R_{H,5}}{3} = \frac{10961381.48 + 10971272.89 + 10971351.28}{3} = 10968001.89m^{-1} \end{split}$$

4.计算 R_D

$$\begin{split} R_{D,3} &= \frac{1}{\lambda_{D,3}(\frac{1}{2^2} - \frac{1}{3^2})} = \frac{1}{656.66nm*(\frac{1}{2^2} - \frac{1}{3^2})} = 10964542.58m^{-1} \\ R_{D,4} &= \frac{1}{\lambda_{D,4}(\frac{1}{2^2} - \frac{1}{4^2})} = \frac{1}{486.00nm*(\frac{1}{2^2} - \frac{1}{4^2})} = 10973972.90m^{-1} \\ R_{D,5} &= \frac{1}{\lambda_{D,5}(\frac{1}{2^2} - \frac{1}{5^2})} = \frac{1}{433.91nm*(\frac{1}{2^2} - \frac{1}{5^2})} = 10974375.42m^{-1} \\ \bar{R}_D &= \frac{R_{D,3} + R_{D,4} + R_{D,5}}{3} = \frac{10964542.58 + 10973972.90 + 10974375.42 +}{3} = 10970963.64m^{-1} \end{split}$$

5.计算 $rac{m_D}{m_H}$

$$\$rac{m_D}{m_H} = rac{rac{R_D}{R_H}}{1 - rac{m_H}{m_e}(rac{R_D}{R_H} - 1)} = rac{rac{10968001.89}{10970963.64}}{1 - rac{1.674 \times 10^{-27}}{1098001.39}(rac{10970963.64}{1098001.39} - 1)} = 1.984$$
.

八.误差分析

- 1.光谱仪的仪器误差, 机械测量的误差
- 2.衍射过程中微小的误差
- 3.环境光干扰
- 4.测量环境不严格真空

九.实验结论

本实验使用光栅光谱仪测量氢氘原子光谱,测得氢的里德伯系数为 $R_H=10968001.89m^{-1}$,氘的里德伯系数为 $R_D=10970963.64m^{-1}$,计算得同位素质量比为 $\frac{m_D}{m_H}=1.984$,与理论值基本相符。

十.思考题

	3	4	5	6
H波长(nm)	656.3	486.1	434.1	410.2
D波长(nm)	656.1	486.0	433.9	410.1