به نام خدا

بخش چهاردهم



### **Transformers**

حميدرضا برادران كاشاني

## **Neural Machine Translation**







# Sequence-to-sequence architectures







## RNN vs. Transformers







## The Transformer Model



#### **Attention Is All You Need**

Ashish Vaswani\*

Google Brain avaswani@google.com

Noam Shazeer\* Google Brain

noam@google.com

Niki Parmar\*

Google Research nikip@google.com Jakob Uszkoreit\*

Google Research usz@google.com

Llion Jones\*

Google Research llion@google.com

Aidan N. Gomez\* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser\*

Google Brain lukaszkaiser@google.com

Illia Polosukhin\* ‡

illia.polosukhin@gmail.com

https://arxiv.org/abs/1706.03762



## Scaled Dot-Product Attention





(Vaswani et al., 2017)

softmax 
$$\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$$



## **Multi-Head Attention**







## The Encoder







## The Decoder







## RNNs vs Transformer: Positional Encoding







## The Transformer Model







## Summary - 1



- In RNNs parallel computing is difficult to implement
- For long sequences in RNNs there is loss of information
- In RNNs there is the problem of vanishing gradient
- Transformers help with all of the above



# Transformer NLP applications









Chat-bots



#### Other NLP tasks

Sentiment Analysis
Market Intelligence
Text Classification
Character Recognition
Spell Checking



## State of the Art Transformers



Radford, A., et al. (2018) Open Al

Devlin, J., et al. (2018) Google Al Language

Colin, R., et al. (2019) Google GPT-2: Generative Pre-training for Transformer

**BERT**:Bidirectional Encoder Representations from Transformers

T5: Text-to-text transfer transformer



## T5: Text-To-Text Transfer Transformer







## T5: Text-To-Text Transfer Transformer



Stsb sentence1: "Cats and dogs are mammals." Sentence2: "There are four known forces in nature – gravity, electromagnetic, weak and strong."

**Stsb sentence1:** "Cats and dogs are mammals." **Sentence2:** "Cats, dogs, and cows are domesticated."

Summarize: "State authorities dispatched emergency crews Tuesday to survey the damage after an onslaught of severe weather in mississippi..."





## Scaled dot-product attention





(Vaswani et al., 2017)



Weighted sum of values V

Just two matrix multiplications and a Softmax!



# Queries, Keys and Values





Size of the



## **Attention Math**











# Three ways of attention



#### 3.2.3 Applications of Attention in our Model

The Transformer uses multi-head attention in three different ways:

- In "encoder-decoder attention" layers, the queries come from the previous decoder layer, and the memory keys and values come from the output of the encoder. This allows every position in the decoder to attend over all positions in the input sequence. This mimics the typical encoder-decoder attention mechanisms in sequence-to-sequence models such as [38, 2, 9].
- The encoder contains self-attention layers. In a self-attention layer all of the keys, values
  and queries come from the same place, in this case, the output of the previous layer in the
  encoder. Each position in the encoder can attend to all positions in the previous layer of the
  encoder.
- Similarly, self-attention layers in the decoder allow each position in the decoder to attend to
  all positions in the decoder up to and including that position. We need to prevent leftward
  information flow in the decoder to preserve the auto-regressive property. We implement this
  inside of scaled dot-product attention by masking out (setting to −∞) all values in the input
  of the softmax which correspond to illegal connections. See Figure 2.





# Queries, Keys, values and Attention



## **Encoder-Decoder Attention**



Queries from one sentence, keys and values from another









#### Queries, keys and values come from the same sentence



Weight matrix

Meaning of each word **within** the sentence



## Masked Self-Attention



Queries, keys and values come from the same sentence. Queries don't attend to future positions.

it's time for tea

it's

time

for

tea

Weight matrix



## Masked self-attention math







## Multi-Head Attention - Overview







## Multi-Head Attention - Overview







## Multi-Head Attention









 $d_{
m model}$ : Embedding size Figure from deeplearning.ai





#### Overview

- input: sentence or paragraph
  - o we predict the next word
- sentence gets embedded, add positional encoding
  - o (vectors representing  $\{0, 1, 2, ..., K\}$ )
- multi-head attention looks at previous words
- feed-forward layer with ReLU
  - that's where most parameters are!
- residual connection with layer normalization
- repeat N times
- dense layer and softmax for output



























### Transformer for summarization









Figure from deeplearning.ai

## Technical details for data processing





#### Model Input:

ARTICLE TEXT <EOS> SUMMARY <EOS> <pad> ...

#### **Tokenized version:**

[2,3,5,2,1,3,4,7,8,2,5,1,2,3,6,2,1,0,0]

Loss weights: Os until the first <EOS> and then 1 on the start of the summary.

when there is little data for the summaries, it actually helps to weight the article loss with non-zero numbers, say 0.2 or 0.5 or even 1.

