Tutorial 3

Janine Egert, Daniel Lill, Daniel Kaschek, Mirjam Kaschek

May 22, 2019

Exercise 8: FitzHugh-Nagumo model

The ODEs of the FitzHugh-Nagumo model $\dot{\vec{u}} = f(\vec{u})$ are given by:

$$\dot{v}(t) = v(t) \cdot (a - v(t)) \cdot (v(t) - 1) - w(t) + I_{app}, \tag{1}$$

$$\dot{w}(t) = \epsilon \cdot (v(t) - \gamma \cdot w(t)) \tag{2}$$

where all parameters $(\alpha, \epsilon, \gamma) \in \mathbb{R}^3_+$ are positive.

- Write a function $FN(\vec{du}, \vec{u}, \vec{p}, t)$ that can be passed as a function argument to $prob = ODEProblem(FN, \vec{u}_0, \vec{t}_{span})$ of the Julia package Differential Equations . Solve the problem with sol = solve(prob) . Hint: Check out the ODE examples on julia diffeq.org.
- Use prob = ODEProblem(FN, $\vec{u}_0, \vec{t}_{span}$) to integrate the system for $a = 0.25, \epsilon = 0.002, \gamma = 1.1, I_{app} = 0$ and $t_{span} = (0.0, 1000)$ for different initial values (v(0), w(0)) varying v(0) around a = 0.25 and keeping w(0) = 0. Plot the solutions in configuration space and in phase space.
- Write a function $\operatorname{FNnc}(\vec{u})$ for $\vec{u} = -0.3:0.1:1$ returning the nullclines of the system w(v) for $\dot{v}(t) = 0$ and w(v) for $\dot{w}(t) = 0$. Add them to your phase-space plot.
- Now test $I_{app} > 0$. Plot the solutions in config space for $I_{app} = [0, 0.02, 0.1, 0.5, 0.7]$ and use the nullclines to understand the behaviour in phase space. The initial value (v(0), w(0)) can be fixed to (0, 0).

Cathedral exercise

The southern portal dates from the Renaissance. What is the connection between the Renaissance portal, the reformation, the counter reformation and Erasmus from Rotterdam?