William Stallings Arquitetura e Organização de Computadores 8ª Edição

Capítulo 2 Evolução e desempenho do computador

Os textos nestas caixas foram adicionados pelo Prof. Joubert

Máquina de Anticítera

-Datado de 87 a.C.

—Foi atribuído a Arquimedes a construção desse

aparelho.

O primeiro computador

Sua serventia vai além de guiar naus. Esse aparelho é preciso em calcular a orbita lunar, solar, mais as órbitas de cinco planetas ao redor da sol, além de ser capaz de prever eclipses lunares e solares por séculos a frente. Sua precisão é espantosa visto ter sido produzido por mãos humanas. Chegou a ser considerado uma máquina de previsão do futuro.

ARQUITETURA E ORGANIZAÇÃO **DE COMPUTADORES**

WILLIAM STALLINGS

Textos e imagens retirados do WIKIPEDIA:

http://pt.wikipedia.org/wiki/M%C3%A1quina_de_Antic%C3%ADter

20 séculos depois....

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

ENIAC – histórico

- Electronic Numerical Integrator And Computer.
- Eckert e Mauchly.
- Universidade da Pensilvânia.
- Tabelas de trajetória para armas.
- Iniciou em 1943.
- Terminou em 1946.
 - —Muito tarde para o esforço de guerra.
- Usado até 1955.

ENIAC – detalhes

- Decimal (não binário).
- 20 acumuladores de 10 dígitos.
- Programado manualmente por chaves.
- 18 000 válvulas.
- 30 toneladas.
- 1 500 pés quadrados.
- 140 kW de consumo de potência.
- 5 000 adições por segundo.

von Neumann/Turing

- Conceito de programa armazenado.
- Memória principal armazenando programas e dados.
- ALU operando sobre dados binários.
- Unidade de controle interpretando e executando instruções da memória.
- Equipamento de entrada e saída operado por unidade de controle.
- Princeton Institute for Advanced Studies.
 - -IAS
- Concluído em 1952.

Estrutura da máquina de von Neumann

WILLIAM STALLINGS

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Unidade de Controle do Programa

EXECUÇÃO DE UMA INSTRUÇÃO

- Trazer a próxima instrução da memória até o registrador
- Alterar o contador de programa para indicar a próxima instrução
- Determinar o tipo de instrução trazida
- Se a instrução usar uma palavra na memória, indicar o endereço da mesma
- Trazer a palavra para dentro de um registrador da CPU, se necessário
- Executar a instrução
- Voltar a etapa 1 para executar a próxima instrução

Tradução versus Interpretação

- Tradução:
 - Primeiro usamos instruções mais familiares
 - Estas instruções forma uma linguagem L1
 - Depois traduzimos as instruções de L1 para a linguagem de máquina, chamada L0.
 - O programa resultante consiste inteiramente em instruções L0.
 - O programa traduzido é usado e o antigo descartado

Tradução versus Interpretação

- Interpretação:
 - Podemos escrever um programa em L0 que considere programas em L1 como dados de entrada
 - O programa em L0 examina cada instrução em L1 e executa o conjunto de instruções equivalentes em L0
 - Nenhum programa traduzido é gerado

A máquina de von Neumann TRADUZ
OU
INTERPRETA ???

Addresses

signals

Program control unit

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

Memory buffer register (MBR)

Memory address register (MAR)

Instruction register (IR)

Instruction buffer register (IBR)

Program counter (PC)

Microelectronics

Figure 2.6 Fundamental Computer Elements

Figure 2.8 Growth in Transistor Count on Integrated Circuits (DRAM memory)

100,000 10.000 1,000

1947 50

Recursos da Internet

- http://www.intel.com/
 - —Procure por Intel Museum
- http://www.ibm.com
- http://www.dec.com
- Charles Babbage Institute
- PowerPC
- Intel Developer Home

Referências

 AMDA67 Amdahl, G. "Validity of the Single-Processor Approach to Achieving Large-Scale Computing Capability", Proceedings of the AFIPS Conference, 1967.