

THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ

Spécialité: Physique

École doctorale nº564: Physique en Île-de-France

réalisée

Laboratoire Jean Perrin

sous la direction de Volker Bormuth

présentée par

Hugo Trentesaux

pour obtenir le grade de :

DOCTEUR DE SORBONNE UNIVERSITÉ

Sujet de la thèse:

Intégration multisensorielle dans le cerveau de la larve de poisson zèbre

soutenue le 1er février 2020

devant le jury composé de :

M.	?	Rapporteur
M.	?	Rapporteur
M.	Christoph Schmidt-Hieber	Tuteur
$\mathbf{M^{me}}$	Marie Breau	Marraine

M. Volker BormuthM. Georges DebrégeasDirecteur de thèse

Table des matières

I	Int	troduction			
	I.1	Introd	luction générale		
		I.1.1	L'intégration de l'environnement sensoriel, une fonction complexe .		
		I.1.2	Des techniques d'imagerie trop locales ou trop globales		
		I.1.3	L'échelle intermédiaire, neurones en réseaux sur le cerveau entier .		
		I.1.4	La larve de poisson zèbre, un organisme modèle en neurosciences .		
		I.1.5	La microscopie à feuille de lumière, un scanner 3D rapide		
		I.1.6	La réalité virtuelle pour l'interaction dans un environnement sen-		
			soriel riche		
	I.2	Intégr	ration multisensorielle		
		I.2.1	Définition		
		I.2.2	Exemples et illusions		
		I.2.3	Mécanismes et échelles		
		I.2.4	Les études antérieurs et leurs limites		
	I.3	Image	erie fonctionelle par microscopie à feuille de lumière		
		I.3.1	Comment enregistrer le cerveau entier?		
		I.3.2	3.2 Imagerie fonctionnelle calcique		
			a) Architecture et fonctionnement du neurone		
			b) Le calcium dans le neurone		
			c) GCaMP, rapporteur calcique		
		I.3.3	Microscopie à fluorescence et feuille de lumière		
			a) Principe de la microscopie		
			b) Fluorescence		
			c) Sectionnement optique		
			d) Microscopie confocale		
			e) Microscopie deux photons		
			f) Microscopie à feuille de lumière		
I.4		La lar	rve de poisson zèbre pour l'étude de l'intégration multisensorielle		
		I.4.1	Boucle sensorimotrice		
			a) Imagerie en nage libre		
			b) Réalité virtuelle		
		I.4.2	Modèle viso-vestibulaire		
			a) Système visuel		
			b) Système vestibulaire		
			c) Intégration viso-vestibulaire		

ii		TABLE DES MATIÈF	RES
]	I.5	TODO Objectifs de la thèse	14
Bib	oliog	raphie	15

Chapitre I

Introduction

I.1 Introduction générale

1.1.1 L'intégration de l'environnement sensoriel, une fonction complexe

De nombreux animaux sont capables de se repérer et de se déplacer dans leur environnement, une fonction complexe qui nécessite de traiter des entrées sensorielles multiples et de produire une réponse motrice adaptée. Le système nerveux, constitué d'un réseau de neurones capables de guider l'information depuis les organes sensoriels vers le cerveau, et depuis le cerveau vers les organes moteurs répond bien à ce problème. Ce traitement centralisé de l'information permet d'atteindre un grand niveau de complexité. On compte par exemple dans le cerveau humain plusieurs dizaines de milliards de neurones.

1.1.2 Des techniques d'imagerie trop locales ou trop globales

On dispose aujourd'hui d'outils pour appréhender cette complexité comme l'imagerie par résonance magnétique fonctionnelle (IRMf), qui mesure un rapporteur de l'oxygénation du sang, et donc de l'activité locale des tissus cérébraux. Cette technique est cependant limitée à une résolution spatiale de quelques millimètres cube, soit une centaine de milliers de neurones et à une résolution temporelle de l'ordre du Hertz. À l'opposé, les techniques d'électrophysiologie comme patch-clamp permettent d'enregistrer l'activité électrique du neurone unique avec une résolution temporelle de l'ordre de la milliseconde mais sont invasives et limitées à une centaines de neurones simultanément.

1.1.3 L'échelle intermédiaire, neurones en réseaux sur le cerveau entier

Ces techniques ont engendré beaucoup de découvertes sur le fonctionnement global et local du cerveau, mais peinent à décrire des phénomènes qui concernent l'échelle intermédiaire : un faible nombre de neurones répartis sur l'entièreté du cerveau. C'est précisément à cette échelle que se situe l'intégration multisensorielle, c'est-à-dire la manière dont le cerveau combine l'information liée à plusieurs modalités sensorielles pour produire une réponse motrice unique. Ce phénomène fait appel à la fois aux noyaux sensoriels, à des circuits intégrateurs et aux neurones moteurs, autrement dit une petite centaines de neurones répartis sur le cerveau entier. Pour répondre à ces questions, il a fallu appliquer une

nouvelle technique d'imagerie à un nouvel animal modèle.

1.1.4 La larve de poisson zèbre, un organisme modèle en neurosciences

La larve de poisson zèbre, déjà largement utilisée en biologie du développement s'est trouvée bien adaptée à ces questions. À l'age de six jours après fertilisation de l'œuf, elle possède déjà un système sensoriel fonctionnel (systèmes visuel, vestibulaire, tactile, auditif...) et un répertoire de comportements riche et complexe (nage, chasse, fuite...). Son cerveau est encore de petite taille (cent milles neurones), mais comporte quasiment toutes les régions anatomiques d'un cerveau de vertébré adulte. On dispose d'une grande variété de lignées notamment des mutants dépigmentés transparents et des lignées transgéniques incluant un rapporteur calcique. Ces lignées permettent une imagerie fonctionnelle par fluorescence pour suivre l'activité des neurones.

I.1.5 La microscopie à feuille de lumière, un scanner 3D rapide

La technique d'imagerie la plus utilisée en biologie est certainement la microscopie confocale à fluorescence. Il s'agit d'illuminer point par point l'échantillon avec un faisceau laser et de ne collecter que la fluorescence émise par ce point. Cela permet d'atteindre une très bonne résolution spatiale en échange de résolution temporelle. Pour l'imagerie fonctionnelle neuronale du cerveau entier, la microscopie par feuille de lumière est plus adaptée car elle utilise une illumination plan par plan de l'échantillon par une nappe laser. La résolution temporelle est donc largement augmentée tout en conservant une résolution spatiale suffisante, inférieure à la taille d'un neurone.

I.1.6 La réalité virtuelle pour l'interaction dans un environnement sensoriel riche

Pour étudier le fonctionnement du cerveau, on fixe donc la larve de poisson zèbre transgénique sous un microscope à feuille de lumière. Il est possible d'étudier l'activité spontanée des neurones, mais pour explorer la réponse du cerveau à une stimulation sensorielle, il faut créer ces stimuli. La manière la plus aboutie de recréer cette stimulation sensorielle est la réalité virtuelle, c'est-à-dire un environnement sensoriel qui réagit aux actions motrices comme si le sujet n'était pas fixé.

I.2 Intégration multisensorielle

I.2.1 Définition

L'intégration multisensorielle est le processus par lequel le cerveau combine les informations perçues pour produire une représentation interne de l'environnement extérieur. La prise d'information peut passer par plusieurs modalités sensorielles comme les systèmes visuel, vestibulaire, tactile, auditif, olfactif, proprioceptif, ou encore somesthésique. Ces différentes modalités peuvent donner des informations cohérentes qui se complètent pour améliorer la perception mais également des information contradictoires qui peuvent entrainer des illusions sensorielles.

1.2.2 Exemples et illusions

-).1 Orientation verticale Prenons par exemple la perception de l'orientation hautbas. Le système vestibulaire détecte l'accélération gravitationnelle et nous donne une information de la direction verticale et de l'orientation vers le bas. Le système visuel détecte les lignes verticales dans notre champ de vision (arbres, arêtes de murs) et distingue le ciel lumineux du sol plus sombre. Ces deux modalités sont en général cohérentes, mais on peut concevoir une salle dans lesquelles toutes les lignes sont penchées, ce qui peut perturber nos sens au point de nous faire perdre l'équilibre.
-).2 Reconnaissance du langage Autre exemple avec la reconnaissance du langage : on comprend mieux une personne quand on la voit parler. L'information auditive du son de la voix est combinée à l'information visuelle des mouvements des lèvres et autres expressions, ce qui améliore la compréhension. Mais on peut tromper le cerveau en faisant écouter un son qui ne correspond pas aux mouvement des lèvres, ce qui est alors interprété comme un autre son (cet effet connu sous le nom McGurk).
-).3 Détection d'une source sonore Le système auditif permet de déterminer approximativement la direction de la source d'un son grâce à l'espacement entre les deux oreilles, information qui peut être confirmée lorsque le système visuel identifie la source. Mais lorsque l'on voit un objet bouger au rythme d'un son provenant d'ailleurs, on peut lui attribuer la source du son et ignorer l'information auditive, c'est l'illusion qu'utilisent les ventriloques pour faire parler leur marionnette.
-).4 Illusion proprioceptive Un exemple encore plus marquant est l'illusion proprioceptive que l'on peut déclencher avec un casque de réalité virtuelle. Dans une situation normale, le sens du toucher est combiné à l'information visuelle pour déterminer la nature des objets que l'on touche. Mais si l'on présente une main factice en image à un sujet, il peut avoir l'illusion que cette main est la sienne au point de ressentir un objet qui touche la fausse main.

1.2.3 Mécanismes et échelles

Ces multiples exemples montrent l'omniprésence de l'intégration multisensorielle dans les phénomènes perceptifs mais n'en indiquent pas les mécanismes neuronaux. Ces derniers sont complexes, avec une origine à la fois à l'échelle du neurone unique et à l'échelle des réseaux de neurones.

).1 À l'échelle du neurone unique À l'échelle du neurone unique, l'intégration multisensorielle se manifeste par des phénomènes tels que la super-additivité ou la sous-additivité. Comme l'ont montré des études électrophysiologiques, certains neurones ont une réponse bien plus forte en présence de plusieurs stimuli simultanés que lorsqu'ils sont présentés séparément. L'amplitude de ce phénomène est d'autant plus forte que les stimuli présentent une corrélation spatiale et temporelle [1]. Ces phénomènes propres à certains neurones ne sont pas présents dès la naissance et nécessitent une phase d'apprentissage.

).2 À l'échelle des réseaux, prédominance du modèle multisensoriel Du point de vue des réseaux de neurones, les résultat actuels suggèrent une prédominance du modèle multisensoriel sur le modèle unisensoriel. En effet, contrairement à la vision répandue que les phénomènes multisensoriels auraient lieu en aval de régions corticales dédiées à une seule modalité sensorielle, des études en IRM tendent à montrer que les différentes modalités sensorielles sont fortement liées dès un stade précoce du traitement de l'information [1].

Ces éléments montrent que l'étude de l'intégration multisensorielle doit nécessairement passer par l'analyse des réseaux entiers à l'échelle du neurone unique, ce qui nous mène à mon sujet d'étude.

1.2.4 Les études antérieurs et leurs limites

).1 Les études passées L'intégration multisensorielle a déjà été étudiée à la lumière de différentes modalités sensorielles et sur différents animaux modèle.

Dans une revue de 2008 [2], les auteurs promeuvent le système vestibulaire comme particulièrement adapté à l'étude de l'intégration multisensorielle. En effet, il n'y a pas de sensation consciente du signal capté par les organes car l'intégration multimodale a lieu très tôt dans les réseaux de neurone impliqués.

À l'opposé, certain phénomènes d'intégration peuvent avoir lieu de manière consciente, certains auteurs parlent alors d'"intéraction multisensorielle" TODOcitedriver2008multisensory.

-).2 Leurs limites Comme on l'a vu, de nombreuses études des bases neuronales de l'intégration multisensorielle ont mis en évidence des comportement typiques pour différentes modalités sensorielles sur des animaux allant du macaque
-).3 TODO Études sur le primate
-).4 TODO Le poisson zèbre comme animal modèle adapté > motiver utilisation zebrafish

1.3 Imagerie fonctionelle par microscopie à feuille de lumière

I.3.1 Comment enregistrer le cerveau entier?

Comme nous l'avons vu, les techniques d'acquisition de l'activité neuronale comme l'électrophysiologie et l'imagerie par résonance magnétique ne sont pas adaptées pour réaliser l'imagerie du cerveau entier à l'échelle du neurone unique. Il est donc nécessaire d'utiliser une technique d'acquisition non invasive capable de telles performances. Travailler sur un animal transparent comme la larve de poisson zèbre facilite l'acquisition utilisant la lumière visible, c'est-à-dire l'imagerie optique. Celle-ci est très développée en biologie et peut assurer à la fois une bonne résolution et un champ large. Cependant, plusieurs innovations importantes à la fois en optique, en ingéniérie moléculaire, et en génétique ont dû être combinées pour arriver à un tel résultat. Nous l'introduisons ici.

FIGURE I.1 – Schéma d'un neurone accompagné de cellules gliales. Astrocytes (en vert), oligodendrocytes (en bleu). Le neurone dispose d'un long prolongement appelé axone qui le connecte à d'autres neurones via des boutons synaptiques.

1.3.2 Imagerie fonctionnelle calcique

a) Architecture et fonctionnement du neurone

Le neurone est une cellule fortement présente dans le cerveau et caractérisée par son prolongement axonal capable de transmettre un influx nerveux. Il est toujours accompagné par des cellules gliales comme les astrocytes ou les oligodendrocytes qui assurent en grande partie les fonctions métaboliques. Il est aujourd'hui considéré comme principal responsable des processus cognitifs bien que de nombreuses recherches montrent l'importance des cellules gliales dans des phénomènes tels que l'intégration du signal calcique et l'établissement de connexions synaptiques [3] [4].

Le neurone est doté d'une longue projection nommée axone, qui lui permet de se connecter et transmettre un signal à d'autres neurones éloignés de lui. Comme la plupart des cellules, des protéines transmembranaires lui permettent d'atteindre une différence de potentiel avec l'extérieur de -70 mV au repos et comme d'autres cellules dites excitables, cela lui permet de transmettre un signal électrique par ouverture et fermeture de canaux ioniques.

b) Le calcium dans le neurone

Le neurone est équipé de pompes et canaux ioniques sur sa membrane qui lui permettent de se polariser en faisant varier la concentration d'ions intracellulaires par rapport au milieu extracellulaire. Ce potentiel électrochimique transmembranaire varie brusquement lors d'événements de dépolarisation qui permettent la propagation d'un message le long des projections axonales vers d'autres neurones. Lors de ces événements, des flux d'ions traversent la paroi cellulaire, ce qui modifie largement leur concentration intracellulaire. Par exemple, l'ion calcium (Ca2+) passe d'une concentration de 0.1 µmol/L à 10 µmol/L soit un facteur 100 [5], la concentration extracellulaire étant de 1 mmol/L, encore cent fois plus. La durée des potentiels d'actions est de l'ordre de la milliseconde,

FIGURE I.2 – Des protéines transmembranaires permettent à la cellule de se polariser et de se dépolariser. Les pompes ioniques consomment de l'énergie sous forme d'ATP pour forcer le passage d'ions. Des transporteurs ioniques actifs (symport, antiport) et passifs (uniport) permettent un transport dirigé d'ions. Des canaux sélectifs et non sélectifs permettent un transport rapide.

et la concentration de calcium évolue sur des échelles de temps similaires, de l'ordre de la dizaine de millisecondes [?].

c) GCaMP, rapporteur calcique

Du fait de ses grandes variations de concentration, l'ion calcium est un bon indicateur des potentiels d'actions et donc de l'activité neuronale. C'est la raison pour laquelle des rapporteurs calciques ont été développés. Parmi eux, le rapporteur encodé génétiquement GCaMP résulte de l'assemblage entre la calmodulin (calcium modulated protein), une protéine qui se lie au calcium ce qui change sa conformation, et d'une protéine fluorescente verte (GFP, Green Fluorescent Protein). Le résultat est une protéine qui devient fluorescente en présence d'ion calcium, avec une dynamique de l'ordre du dixième de seconde. Le code génétique de cette protéine peut être inséré dans une région d'intérêt du génome, pour être exprimée dans des populations ciblées de neurones.

Ainsi, l'organisme génétiquement modifié est équipé d'une molécule présente dans les neurones dont la fluorescence varie en fonction de l'activité du neurone. Cela permet de réaliser l'imagerie fonctionnelle, c'est-à-dire l'imagerie des cellules lors de leur fonctionnement, par l'observation des modifications de leur métabolisme aux échelles de temps courtes.

1.3.3 Microscopie à fluorescence et feuille de lumière

a) Principe de la microscopie

Le principe général d'un microscope optique est d'éclairer un échantillon et d'observer la lumière qui rentre dans le système de détection. Sur un échantillon mince, on peut faire de la microscopie en transmission ou en réflexion, mais pour un échantillon biologique

FIGURE I.3 – Structure tridimensionnelle de l'indicateur calcique GCaMP composée de trois ensembles protéiques.

FIGURE I.4 – Illustration du phénomène de fluorescence. À gauche point de vue quantique avec les niveaux d'énergie interne, à droite point de vue ondulatoire avec les spectres d'absorption et d'émission

épais, le phénomène de diffusion rend ces techniques inutilisables. Lorsque le volume imagé est prédéfini, par exemple en imagerie médicale, il faut se contenter de l'auto-fluorescence et élaborer des techniques sophistiqués pour repousser les limites de la diffusion. Au contraire, lorsque l'on contrôle le volume à imager, il est possible de réaliser un marquage fluorescent qui permet de cibler un sous-ensemble précis du tissus biologique et d'émettre autour d'une longueur d'onde choisie.

b) Fluorescence

La fluorescence est un phénomène d'absorption-réémission de lumière par une molécule. Dans le cas de GFP (ainsi que GCaMP), la protéine absorbe les longueurs d'onde dans le bleu et émet dans le vert. Il est ainsi possible de stimuler la fluorescence en utilisant un laser à 488 nm (en imagerie un photon) et de collecter la lumière ré-émise.

Un des avantages de la microscopie à fluorescence est qu'avec un jeu de filtres adapté,

FIGURE I.5 – Sectionnement optique par différentes techniques

- a. Microscopie confocale, un sténopé est placé de manière à bloquer la lumière provenant des points hors focus.
- b. Microscopie deux photons, l'effet deux photons permet d'exciter uniquement la fluorescence dans le point de focalisation du laser.
- c. Feuille de lumière, une nappe produite avec une lentille cylindrique éclaire une couche de l'échantillon.
- d. Balayage laser, une nappe produite par balayage laser éclaire une couche de l'échantillon.

on peut obtenir un excellent rapport signal à bruit. Ainsi, en plaçant sur la ligne de détection un filtre coupe bande à la longueur d'onde du laser, on peut couper toute lumière venant de celui-ci. En ajoutant un filtre passe bande vert, seule la lumière liée à la fluorescence est détectée.

c) Sectionnement optique

Si l'on éclaire l'ensemble d'un échantillon fluorescent et que l'on tente de l'imager avec un objectif de microscope, le rapport signal à bruit est catastrophique. En effet, pour collecter le maximum de lumière, il faut une grande ouverture numérique et donc une faible la profondeur de champ. Un objet lumineux hors du plan focal apparaît donc totalement flou, ce qui constitue une lumière parasite qui couvre celle émise par les objets dans le plan focal. Il faut donc d'une manière ou d'une autre éliminer la lumière provenant d'en dehors du plan focal.

d) Microscopie confocale

Il existe pour cela plusieurs techniques dites de "sectionnement optique". La plus connue, la microscopie confocale, utilise une illumination focalisée en un seul point. L'objet en ce point est donc fortement éclairé, et le reste beaucoup moins. De plus, un sténopé conjugué à ce point ne laisse passer que la lumière qui en est issue. L'imagerie d'un plan est ensuite obtenue en scannant ce point dans le plan focal, et l'imagerie d'un volume et répétant l'opération pour plusieurs couches. Cette technique est largement répandue et déclinée, et a l'avantage d'être souple et d'atteindre de bonnes résolutions. Cependant, elle ne peut pas combiner une haute définition (10e8 voxels) à une fréquence élevée (1Hz) et doit sacrifier l'un pour l'autre. Elle est donc réservée soit à l'observation détaillée d'échantillons statiques, soit à l'observation peu détaillée d'échantillons dynamiques. Cette lenteur est liée au fait de scanner un point sur une surface, mais on peut gagner en vitesse au détriment du rapport signal à bruit en éclairant une ligne d'un coup et en remplaçant le trou par une fente, car il suffit alors de scanner dans une seule dimension.

e) Microscopie deux photons

Le microscopie deux photons utilise une propriété non linéaire de la lumière pour exciter la fluorescence uniquement en un point. De manière analogue à la microscopie confocale, un faisceau est concentré en un point de l'échantillon, mais l'utilisation d'un laser pulsé dans l'infrarouge permet d'atteindre des niveaux de puissance instantanée bien plus élevés tout en pénétrant mieux les tissus biologiques. De plus, l'utilisation d'un sténopé n'est pas nécessaire car l'effet deux photons est proportionnel au carré de l'intensité lumineuse, et seul le point de focalisation est donc excité. Comme la microscopie confocale, il s'agit alors de scanner un point à travers tout l'échantillon, ce qui est trop lent pour l'imagerie de grands volumes.

f) Microscopie à feuille de lumière

En microscopie confocale ou deux photons, l'illumination passe par le même objectif que la détection. Mais pour certains échantillons, l'éclairage peut également être fait par le côté. Une feuille de lumière coïncidant avec le plan focal de l'objectif peut être produite à l'aide d'une lentille cylindrique, ou bien par balayage d'un faisceau laser. C'est ce qu'on appelle la microscopie à feuille de lumière, microscopie à nappe laser, ou encore SPIM pour Single Plane Imaging Microscopy. Cette technique, en dépit d'un rapport signal à bruit et d'une résolution inférieurs à la microscopie confocale, suffit pour réaliser l'imagerie à la résolution cellulaire. De plus, elle permet d'imager un plan entier d'un seul coup, ce qui est bien pus rapide. En scannant l'objectif et la feuille de lumière, on peut ainsi produire une imagerie volumique à fréquence bien plus élevée qu'en microscopie confocale. Par exemple, avec trente couches espacées de dix microns, on peut acquérir l'ensemble du cerveau d'une larve de poisson zèbre à environ 2Hz.

Si la microscopie par fluorescence à feuille de lumière est une technique particulièrement adaptée à la bio-imagerie fonctionnelle, son utilisation reste toutefois relativement faible. En 2011, un article de revue pointait le manque de système commercial en microscopie à feuille de lumière [6]. En 2017, un autre déplorait le faible niveau de propagation de cette technique au regard de ses performances [7]. La technique reste donc cantonnée à

des laboratoires capables de développer leur propre microscope en dépit du succès qu'elle rencontre dans ses applications.

1.4 La larve de poisson zèbre pour l'étude de l'intégration multisensorielle

La microscopie à feuille de lumière permet d'enregistrer le cerveau entier d'une larve de poisson zèbre à la résolution du neurone et avec une fréquence de quelques Hertz. Plusieurs études ont mis en œuvre cette technique pour étudier différents aspects du fonctionnement du cerveau. Je m'intéresse ici aux stratégies mises en œuvre pour étudier l'intégration multisensorielle pour étudier la boucle sensorimotrice, et plus particulièrement sur le modèle visuo-vestibulaire.

I.4.1 Boucle sensorimotrice

Une capacité intéressante du cerveau est le fonctionnement en boucle fermée. En effet, à la manière d'un système d'asservissement, il est capable de mesurer un paramètre extérieur, le comparer à une valeur de commande et agir pour le contrôler. Par exemple, lorsqu'un poisson est emporté par le courant d'une rivière, il détecte un flux optique sous lui et déclenche la nage. Le flux optique résultant est alors la somme de la vitesse du poisson par rapport au fluide et de la vitesse du fluide par rapport au sol. Ce flux optique mesuré permet au poisson d'évaluer si sa nage est efficace pour compenser le courant, s'il doit nager plus vite ou moins vite. Beaucoup des réflexes sont en fait des boucles sensorimotrices dans lesquelles les entrées sensorielles servent en permanence à évaluer la sortie motrice. Deux options se présentent pour étudier ces boucles sensorimotrices. L'une est l'étude en nage libre, l'autre est l'étude en environnement virtuel avec rétroaction.

a) Imagerie en nage libre

Une option pour étudier le poisson dans son environnement naturel est de construire un microscope motorisé capable de suivre les mouvements du poisson lors de la nage de manière à toujours pouvoir imager le cerveau. C'est l'approche adoptée par le laboratoire RoLi TODOcitekim2017pan-neuronal qui peut ainsi observer certains comportements difficile à reproduire avec un poisson immobilisé. L'illumination par le côté étant impossible dans ce cas, c'est une technique de microscopie structurée développée par Jérôme Mertz TODOciteMertzplanar2011 qui a été utilisée.

b) Réalité virtuelle

b).1 Adaptation motrice fictive Ahrens et al ont étudié cette boucle sensorimotrice dans le cas de l'OMR [8]. Ils ont pour cela créé un environnement fictif dans lequel une larve paralysée est placée au dessus d'un écran. Des bandes mobiles sont présentées au poisson, ce qui déclenche le réflexe optomoteur. L'activité des neurones moteurs est enregistrée à l'aide d'électrodes (les muscles sont inactifs car le poisson est paralysé), et ce signal est utilisé pour simuler un déplacement par un mouvement des bandes en sens opposé. Dans cet environnement virtuel, ils ont pu tester des mécanismes comme

l'adaptation de gain tout en enregistrant l'activité des neurones. Cela a permis d'identifier les neurones responsables de l'augmentation du gain, de la diminution du gain, essentiels pour le fonctionnement de la boucle de rétroaction.

- b).2 TODO > TODO Sans rétroaction, le poisson peut décider d'arrêter de répondre aux stimuli. \rightarrow give up
- * TODO setups existants pour autres modalités sensorielles * rétroaction système visuel (Portuguese, Ahrens) * TODO comment stimuler le système vestibulaire? * pinces optiques (ne pas parler de pinces magnétiques) * plateforme rotative

1.4.2 Modèle viso-vestibulaire

Un terrain idéal pour étudier l'intégration multisensorielle est le modèle viso-vestibulaire. Ces deux modalités sensorielles sollicitées de concert lors de la nage pour la stabilisation de la posture et de la vision sont pratiquement développées chez la larve de six jours. En effet, le système visuel est fonctionnel dès 4 jours [9], et le système vestibulaire dès 5 jours (seulement l'utricule) [10]. Mais avant de décrire les réflexes qui mettent en jeux ces deux modalités sensorielles simultanément, intéressons-nous séparément à l'appareil visuel et à l'appareil vestibulaire.

a) Système visuel

- a).1 Organisation La partie neuronale du système visuel commence par une rétine munie de cellules qui captent la lumière. La répartition des capteurs en fonction de leur couleur correspond aux teintes rencontrées dans l'habitat naturel du poisson. Des circuits neuronaux dans la rétine réalisent un pré-traitement qui, bien qu'en pleine évolution chez une larve de six jours, lui permet déjà de réaliser des opérations complexes. Par exemple, certaines cellules ganglionnaires rétiniennes sont sensibles à l'orientation de motif ou à la direction de mouvement d'un objet, d'autres à la taille d'un objet ou à son évolution [9]. L'étude de l'arborescence de ces ganglions révèle plusieurs zones spécifiques à certains stimuli, comme des variations globales de luminance, le mouvement de petits objets, des déplacements sur tout le champ de vision... La plupart de ces ganglions projettent vers le tectum optique (équivalent du colliculus supérieur chez l'humain) où la suite du traitement est effectuée à travers sa structure laminaire.
- a).2 OMR, réponse optomotrice Certains comportements comme l'OMR (optomotor response, réponse optomotrice) et l'OKR (optokinetic response, réponse optocinétique) sont purement liés au système visuel. L'OMR est un comportement qui survient de manière très reproductible lors d'un mouvement de translation global dans l'ensemble du champ de vision. La larve se met à nager à l'encontre du flux optique rencontré. Dans la nature, ce comportement permet de compenser le courant d'une rivière pour rester au même niveau en se servant de l'environnement visuel comme référence. En laboratoire, on peut facilement reproduire ce comportement en projetant un motif en translation sous la larve, ce qui provoque des mouvements de queue.

a).3 OKR, réponse optocinétique L'OKR est un mécanisme de stabilisation de la vision dans lequel l'œil compense les mouvements globaux de l'environnement pour en conserver une vision nette. Cette réponse peut également être étudiée facilement en laboratoire en présentant un motif mobile sur un écran face à une larve. Ces deux comportements sont important dans l'étude des réponse aux stimulations vestibulaires en présence d'un environnement lumineux. En effet, une accélération ou une rotation de la larve entraîne mécaniquement un mouvement global de l'environnement visuel de celle-ci.

b) Système vestibulaire

b).1 Organisation L'organe vestibulaire, quant à lui, est situé dans l'oreille interne. Grâce à des cellules ciliées sensibles à leur propre déflexion, il peut mesurer les accélérations inertielle et gravitationnelle auxquelles sont soumises les otolithes (petites pierres osseuses) et les accélérations angulaires du liquide présent dans les canaux semi-circulaires. Bien que quasiment mature chez la larve dès cinq jours, la taille des canaux semi-circulaires les rend inefficace et donc seule l'utricule (un des otolithes) est fonctionnel. Cela est cependant suffisant (et nécessaire [11]) pour que la larve puisse nager tout en conservant son équilibre.

Les neurones répondant aux stimulations vestibulaires sont présents à de nombreux endroits du cerveau, à la fois dans le prosencéphale (télencéphale, habenulae, thalamus, prétectum), dans le mésencéphale (tectum, nMLF, tegentum), et dans le rombencéphale (cervelet, MON, rhombomère 5-7) [12]. Chacune de ces région est impliquée différemment dans les réflexes vestibulaires comme le réflexe vestibulo-oculaire (vestibulo-ocular reflex, VOR) et le contrôle postural où réflexe vestibulo-spinal (vestibulo-spinal reflex, VSR).

- b).2 VOR, réflexe vestibulo-oculaire Le VOR, largement répandu chez les vertébrés et également observé chez le poisson-zèbre [13]. C'est un mouvement réflexe des yeux qui compense les mouvements de la tête pour stabiliser la vision. Bianco et al l'ont mis en évidence chez la larve de poisson zèbre de plus de 4 jours en la soumettant à une rotation selon l'axe de tangage, ce qui génère une rotation des yeux opposée, avec un angle limité par le maximum physiologique. Le circuit neuronal associé est constitué d'un neurone afférent primaire, un neurone vestibulaire de second ordre, et un motoneurone oculaire qui guide la rotation de l'œil. Ce circuit est présent en deux exemplaires avec une symétrie bilatérale, pour chacun des utricules. Il a également été montré que les neurones du noyau tangentiel ont des projections dans les motoneurones oculaires contra-latéraux, et que ces neurones sont essentiels au fonctionnement du réflexe.
- b).3 VSR, réflexe vestibulo-spinal Le VSR est un réflexe de contrôle de posture qui utilise également l'information vestibulaire. Chez le poisson zèbre adulte, la vessie natatoire est un organe important qui permet de contrôler la flottaison, mais chez la larve, elle n'est pas encore fonctionnelle. Les effecteurs du contrôle postural sont donc surtout la queue et les nageoires. Ehrlich et al ont étudié le déséquilibre naturel de la larve en tangage et ont montré que les événements de nage sont à la base du développement de l'équilibre [14]. Favre-Bulle et al ont étudié le contrôle de l'équilibre dans l'axe de roulis en stimulant directement les utricules dans l'oreille interne et ont constaté une déflexion proportionnelle de la queue [12].

FIGURE I.6 – Schéma adapté de G. Migault

- A. Larve de poisson zèbre à 6 jours vue de dessus (haut) et de côté (bas). On distingue les yeux (Y), l'oreille interne avec ses otolithes (O) et la vessie natatoire (VNat).
- B. Agrandissement de l'oreille interne vue de côté (B1) avec le schéma correspondant (B2). On souligne en pointillé les canaux semi-circulaires, en gris les deux otolithes, et en couleur les neuro-épithéliums.
- C. Otolithe en fonctionnement. Lorsqu'il est à l'horizontale (C1), les cils sont au repos, lorsqu'il est incliné (C2), les cils sont défléchis car l'accélération gravitationnelle change de direction, lorsqu'il est en mouvement accéléré vers la gauche (C3), l'accélération inertielle (a) s'ajoute à l'accélération gravitationnelle (g) et donne la résultante (r). On voit que l'utricule ne permet pas de différencier l'accélération gravitationnelle de l'accélération inertielle.

c) Intégration viso-vestibulaire

Les quatre réflexes cités précédemment peuvent être isolés en laboratoire, en contrôlant séparément la stimulation visuelle et la stimulation vestibulaire, mais en réalité, ces réflexes sont très intriqués. En effet, le OKR et le VOR contrôlent tous les deux le mouvement des yeux alors que l'OMR et le VSR contrôlent tous les deux le mouvement de la queue et des nageoires. Dans certains cas, ils peuvent jouer dans le même sens (stimulations cohérentes) alors que dans d'autres ils peuvent entrer en conflit (stimulations incohérentes). C'est précisément cette interaction entre les deux modalités sensorielles qui nous intéresse, et c'est également la raison pour laquelle le système vestibulo-oculaire se prête particulièrement bien à l'étude des stimulations multimodales. Une première étude montre comment dans certains cas, l'information visuelle peut moduler les rotations de l'œil induites par l'utricule [13].

1.5 TODO Objectifs de la thèse

TODO Open question. Hypotheses. Outline your personal thesis work and results Les objectifs de ma thèse ont été d'une part de reproduire la boucle sensorimetrice du contrôle postural dans un environnement virtuel, et d'autre part de réaliser un montage capable d'acquérir l'activité neuronale lors de stimulations visuelle et vestibulaire simultanées.

Bibliographie

- [1] B. E. STEIN & T. R. STANFORD; «Multisensory integration: current issues from the perspective of the single neuron»; 9, p. 255–266. ISSN 1471-003X, 1471-0048. http://www.nature.com/articles/nrn2331. 3, 4
- [2] D. E. ANGELAKI & K. E. CULLEN; «Vestibular System: The Many Facets of a Multi-modal Sense»; **31**, p. 125–150. ISSN 0147-006X. https://www.annualreviews.org/doi/10.1146/annurev.neuro.31.060407.125555; publisher: Annual Reviews. 4
- [3] A. VERKHRATSKY & H. KETTENMANN; «Calcium signalling in glial cells»; 19, p. 346-352. ISSN 0166-2236. http://www.sciencedirect.com/science/article/ pii/0166223696100485. 5
- [4] F. W. PFRIEGER & B. A. BARRES; «Synaptic Efficacy Enhanced by Glial Cells in Vitro»; 277, p. 1684–1687. ISSN 0036-8075, 1095-9203. https://science.sciencemag.org/content/277/5332/1684.1; publisher: American Association for the Advancement of Science Section: Report. 5
- [5] C. GRIENBERGER & A. KONNERTH; «Imaging Calcium in Neurons»; 73, p. 862–885. ISSN 0896-6273. https://www.cell.com/neuron/abstract/S0896-6273(12) 00172-9; publisher: Elsevier. 5
- [6] P. A. SANTI; «Light Sheet Fluorescence Microscopy: A Review»; . https://journals.sagepub.com/doi/10.1369/0022155410394857; publisher: SAGE PublicationsSage CA: Los Angeles, CA. 9
- [7] R. M. POWER & J. HUISKEN; «A guide to light-sheet fluorescence microscopy for multiscale imaging»; 14, p. 360-373. ISSN 1548-7091, 1548-7105. http://www.nature.com/articles/nmeth.4224. 9
- [8] M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A. F. Schier, F. Engert & R. Portugues; «Brain-wide neuronal dynamics during motor adaptation in zebrafish»; . ISSN 0028-0836, 1476-4687. http://www.nature.com/doifinder/10.1038/ nature11057. 10
- [9] J. H. BOLLMANN; «The Zebrafish Visual System: From Circuits to Behavior»; 5, p. 269–293. ISSN 2374-4642, 2374-4650. https://www.annualreviews.org/doi/10.1146/annurev-vision-091718-014723. 11
- [10] C. HADDON & J. LEWIS; «Early ear development in the embryo of the Zebrafish, Danio rerio»; **365**, p. 113–128. ISSN 1096-9861. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9861% 2819960129%29365%3A1%3C113%3A%3AAID-CNE9%3E3.0.C0%3B2-6. 11

16 BIBLIOGRAPHIE

[11] B. B. RILEY & S. J. MOORMAN; «Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish»; 43, p. 329–337. ISSN 1097-4695. https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-4695%2820000615%2943%3A4%3C329%3A%3AAID-NEU2%3E3.0.C0%3B2-H. 12

- [12] I. A. FAVRE-BULLE, G. VANWALLEGHEM, M. A. TAYLOR, H. RUBINSZTEIN-DUNLOP & E. K. Scott; «Cellular-Resolution Imaging of Vestibular Processing across the Larval Zebrafish Brain»; 28, p. 3711-3722.e3. ISSN 09609822. https://linkinghub.elsevier.com/retrieve/pii/S0960982218312855. 12
- [13] I. H. BIANCO, L.-H. MA, D. SCHOPPIK, D. N. ROBSON, M. B. ORGER, J. C. BECK, J. M. LI, A. F. SCHIER, F. ENGERT & R. BAKER; «The Tangential Nucleus Controls a Gravito-inertial Vestibulo-ocular Reflex»; 22, p. 1285–1295. ISSN 0960-9822. https://www.cell.com/current-biology/abstract/S0960-9822(12) 00579-9; publisher: Elsevier. 12, 14
- [14] D. E. EHRLICH & D. SCHOPPIK; «Control of Movement Initiation Underlies the Development of Balance»; 27, p. 334-344. ISSN 09609822. http://linkinghub.elsevier.com/retrieve/pii/S096098221631449X. 12