

AD-A106 709 PURDUE UNIV LAFAYETTE IN THERMOPHYSICAL PROPERTIES R--ETC F/0 11/4
SPECIFIC HEAT OF CARBON/CARBON COMPOSITES. (U)
OCT 80 R E TAYLOR AFOSR-77-3280
UNCLASSIFIED TPLR-235 AFOSR-TR-81-0716 NL

11-1
200-704

END
DATE
FILED
11-18-81
NHC

T AFOSR TR 81-0170

TP
R
L

ADA106709

TR-81-0170

THERMOPHYSICAL PROPERTIES RESEARCH LABORATORY

LEVEL

5

DTC
SELECTED
NOV 6 1981

TPRL-235

6 SPECIFIC HEAT OF CARBON/CARBON COMPOSITES.

11 Oct 1981

16

1) Interior report A Report to

Air Force Office of Scientific Research

from

THERMOPHYSICAL PROPERTIES RESEARCH LABORATORY

1C R. E. Taylor
School of Mechanical Engineering
Purdue University
West Lafayette, Indiana 47906

15 AFOSR-77-3281 16 23081 A1

School of Mechanical Engineering
Purdue University, West Lafayette, Indiana

81106053

Approved for public release;
distribution unlimited.

4/11/87

mt

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFOSR-TR- 81 -0716	2. GOVT ACCESSION NO. AD-A06709	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) SPECIFIC HEAT OF CARBON/CARBON COMPOSITES	5. TYPE OF REPORT & PERIOD COVERED Interim	
7. AUTHOR(s) R. E. Taylor	8. CONTRACT OR GRANT NUMBER(s) AFOSR-77-3280	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Purdue University West Lafayette, IN 47907	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 2308/A1	
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research/NA Bolling AFB, DC 20332	12. REPORT DATE October 1980	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	13. NUMBER OF PAGES 11	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited	15. SECURITY CLASS. (of this report) Unclassified	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Heat Capacity Specific Heat		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The specific heat of a fine weave and of a coarse weave carbon/carbon composite was measured from 340 to 750 K and compared to the values obtained on a POCO graphite. These results, added to previously obtained results at higher temperatures measured at NBS show that the specific heat of carbon/carbon composites is equal (within 1%) of that of graphite above 340 K. These results are valuable as they permit conversion of thermal diffusivity data to thermal conductivity results.		

81 11 06 053

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFOSR-TR- 81 - 0716 AD-A106709	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) SPECIFIC HEAT OF CARBON/CARBON COMPOSITES	5. TYPE OF REPORT & PERIOD COVERED Interim	
7. AUTHOR(s) R. E. Taylor	6. PERFORMING ORG. REPORT NUMBER TPRL 235	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Purdue University West Lafayette, IN 47907	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61102F 2308/A1	
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research/NA Bolling AFB, DC 20332	12. REPORT DATE October 1980	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	13. NUMBER OF PAGES 11	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited	15. SECURITY CLASS. (of this report) Unclassified	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Heat Capacity Specific Heat		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The specific heat of a fine weave and of a coarse weave carbon/carbon composite was measured from 340 to 750 K and compared to the values obtained on a POCO graphite. These results, added to previously obtained results at higher temperatures measured at NBS show that the specific heat of carbon/carbon composites is equal (within 1%) of that of graphite above 340 K. These results are valuable as they permit conversion of thermal diffusivity data to thermal conductivity results.		

(TPRL 235)

SPECIFIC HEAT OF CARBON/CARBON COMPOSITES

October 1980

A Report to
Air Force Office of Scientific Research

from

THERMOPHYSICAL PROPERTIES RESEARCH LABORATORY

(R. E. Taylor)
School of Mechanical Engineering
Purdue University
West Lafayette, Indiana 47906

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
REF ID: A65214
This document has been reviewed and is
an official publication of AFSC. JANAF 100-12.
Digitized by AFSC.
MARK J. McMANAMAN
Chief, Technical Information Division

TABLE OF CONTENTS

	Page
INTRODUCTION	1
RESULTS AND DISCUSSION	2
REFERENCES	11

LIST OF TABLES

1. COPY OF INITIAL PORTION OF COMPUTER PRINTOUT (FINE WEAVE C/C)	4
2. SPECIFIC HEAT RESULTS	5
3. COEFFICIENTS FOR LEAST SQUARE CUBIC EQUATIONS	6
4. STATISTICAL COMPARISON	7

LIST OF FIGURES

1. PERKIN-ELMER DIFFERENTIAL SCANNING CALORIMETER	8
2. DIGITAL DATA ACQUISITION SYSTEM	9
3. SPECIFIC HEAT RESULTS	10

Accession For	
NTIS GEN&I	
DTIC TAB	
Unannounced	
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

SPECIFIC HEAT OF CARBON/CARBON COMPOSITES

INTRODUCTION

Several laboratories are measuring thermal diffusivity " α " of carbon/carbon composites and converting these results to thermal conductivity " λ " using the relation $\lambda = \alpha C_p \delta$ where δ is the bulk density and C_p is the specific heat. It has been customary to assume that specific heat values for graphites are applicable to these composites. However, there has been some question as to the validity of this assumption, especially near room temperature. Therefore the present work was undertaken with the aim of obtaining reasonably accurate (within 2%) specific heat values of several carbon/carbon composites from 340 to 750 K and to compare the results with those for POCO graphite AXQ-5M obtained from the National Bureau of Standards.

A Perkin-Elmer model DSC-2 Differential Scanning Calorimeter (Figure 1) was used. This DSC is connected to a minicomputer-based digital data acquisition system (Figure 2) which collects the data and computes the results at 5 °K intervals. A copy of the initial portion of the computer output for a fine weave C/C composite is shown as Table 1.

The fine weave carbon/carbon was fabricated by Fiber Materials, Inc. The sample is from Billet F 25 G B1. The fibers were Hercules Hm 1000 and 3000 PAN. The matrix was Ashland 15V coal tar pitch. The filament properties are as follows:

	Hm 1000 1000	Hm 3000 3000
Yarn precursor: Polyacrylonitrile filaments/yarn		
Fiber type: Graphite		
Cross-section: Round		
Bulk density: 1.80-1.88 g/cm ³		

The composite sample description is as follows:

	X	Y	Z
Number of fibers	2(HM 1000)	2(HM 1000)	1(Hm 3000)
Number of filaments	2000	2000	3000
Fiber volume fraction	13%	13%	22%
Spacing	0.033"	0.033"	0.030"
Bulk density	1.883 g/cm ³		
Maximum processing temperature	2750 °C		
Billet open porosity	4.7%		

The coarse weave carbon/carbon was fabricated by the Jet Propulsion Laboratory and was designated as HEPN-1. It is an AVCO Radially-Pierced FabricTM made from T300 rods and fabric and processed to an average density of 1.9 g/cm⁻³.

RESULTS AND DISCUSSION

The average results at 25 °K intervals (i.e., 20% of the data) are given in Table 2 and plotted in Figure 3. The coefficients for least square cubic equations

$$C_p (\text{Ws gm}^{-1} \text{ K}^{-1}) = A + BT + CT^2 + DT^3$$

where T is in K are given in Table 3 along with the standard and maximum deviations. The equations fit the experimental data well within 1% except for POCO graphite at 340 K where the fit is 1.4%. Using these equations, the results for the four samples are intercompared in Table 4 for the temperature range 350 to 750 K. The maximum deviation of any of the samples from the average is 0.6% (course weave, outer at 475 K). Since the absolute accuracy as determined by measuring a sapphire standard as a sample at the same time was 1%, the comparison shows that the specific heat values of all four samples are indistinguishable, experimentally.

At higher temperatures, it would be expected from solid state theory that the specific heat of graphite and carbon/carbon composites would be close together. Indeed the specific heat results of Cezairliyan [1] and Cezairliyan and Righini [2] for POCO graphite and Cezairliyan and Miiller [3] for a General Electric fine weave carbon/carbon composite were within two percent of each other from 1500 to 3000 K. The present results can be joined smoothly to these curves so it is concluded that the specific heat of carbon/carbon composites is the same as that of POCO graphite and that the values are known within 3 percent from 340 to 3000 K.

A fifth degree polynomial equation which fits the combined POCO specific heat data of Taylor and Groot [4], the present results and the Cezairliyan [1,2] results with a standard deviation of 0.0523 and a maximum of $0.0199 \text{ W sec gm}^{-1}\text{K}^{-1}$ is

$$\begin{aligned}C_p = & -0.3960843 + 0.47482055 \times 10^{-2} T - 0.38883733 \times 10^{-5} T^2 + \\& + 0.16555666 \times 10^{-8} T^3 - 0.35301095 \times 10^{-12} T^4 + 0.29840058 \times 10^{-16} T^5.\end{aligned}$$

$$340 \leq T \leq 3000 \text{ K}$$

TABLE 1
COPY OF INITIAL PORTION OF COMPUTER PRINTOUT
(FINE WEAVE C/C)

RESULTS

Sample Weight: 0.036200

Standard Weight: 0.060500

Temperature (K)	Temperature (F)	Sample Amplitude	Standard Amplitude	Blank Amplitude	Specific Heat (Joule gm ⁻¹ K ⁻¹)	Specific Heat (BTU lb ⁻¹ F ⁻¹)
340	152	-.92736E-02	-.17308E-01	.13676E-02	.81110	.19386
345	161	-.94945E-02	-.17609E-01	.13593E-02	.82256	.19660
350	170	-.97480E-02	-.17931E-01	.13566E-02	.83528	.19964
355	179	-.10035E-01	-.18291E-01	.13605E-02	.84885	.20288
360	188	-.10368E-01	-.18599E-01	.13738E-02	.86835	.20754
365	197	-.10642E-01	-.18965E-01	.13585E-02	.87956	.21022
370	206	-.10873E-01	-.19118E-01	.13584E-02	.89716	.21443
375	215	-.11133E-01	-.19241E-01	.13349E-02	.91769	.21933
380	224	-.11116E-01	-.19237E-01	.13409E-02	.92381	.22080
385	233	-.11139E-01	-.19402E-01	.13620E-02	.92566	.22124
390	242	-.11277E-01	-.19525E-01	.13898E-02	.93806	.22420
395	251	-.11415E-01	-.19592E-01	.14163E-02	.95274	.22771
400	260	-.11555E-01	-.19710E-01	.14552E-02	.96550	.23076
405	269	-.11693E-01	-.19796E-01	.14944E-02	.97962	.23414
410	278	-.11830E-01	-.19880E-01	.15379E-02	.99348	.23745
415	287	-.11970E-01	-.19976E-01	.15809E-02	1.00696	.24067
420	296	-.12079E-01	-.20062E-01	.16365E-02	1.01881	.24350
425	305	-.12203E-01	-.20230E-01	.16656E-02	1.02721	.24551
430	314	-.12322E-01	-.20316E-01	.17111E-02	1.03914	.24836
435	323	-.12434E-01	-.20381E-01	.17542E-02	1.05142	.25130
440	332	-.12536E-01	-.20485E-01	.18050E-02	1.06111	.25361
445	341	-.12655E-01	-.20567E-01	.18627E-02	1.07325	.25651
450	350	-.12760E-01	-.20618E-01	.19144E-02	1.08540	.25942
455	359	-.12864E-01	-.20648E-01	.19725E-02	1.09879	.20262
460	368	-.12962E-01	-.20710E-01	.20009E-02	1.10898	.26505
465	377	-.13058E-01	-.20779E-01	.20380E-02	1.11897	.26744

TABLE 2
SPECIFIC HEAT RESULTS

Temp. (°K)	Temp. (°F)	POCO			Fine Weave			Course Weave (inner)			Course Weave (outer)		
		(+)	(*)	(†)	(+)	(*)	(†)	(+)	(*)	(†)	(+)	(*)	(†)
340	152	0.82283	0.1980	0.8111	0.1939	0.8181	0.1955	0.8179	0.1955	0.8179	0.1955	0.8179	0.1955
350	170	0.84228	0.2014	0.8383	0.2004	0.8425	0.2014	0.8432	0.2015	0.8432	0.2015	0.8432	0.2015
375	216	0.90223	0.2157	0.9112	0.2178	0.9143	0.2185	0.9129	0.2182	0.9129	0.2182	0.9129	0.2182
400	260	0.9705	0.2320	0.9667	0.2310	0.9657	0.2308	0.9703	0.2319	0.9703	0.2319	0.9703	0.2319
425	305	1.0293	0.2460	1.0261	0.2452	1.0226	0.2444	1.0307	0.2463	1.0307	0.2463	1.0307	0.2463
450	350	1.0868	0.2598	1.0810	0.2584	1.0806	0.2583	1.0897	0.2604	1.0897	0.2604	1.0897	0.2604
475	395	1.1485	0.2745	1.1364	0.2716	1.1333	0.2709	1.1464	0.2740	1.1464	0.2740	1.1464	0.2740
500	440	1.1950	0.2856	1.1889	0.2842	1.1831	0.2828	1.1983	0.2864	1.1983	0.2864	1.1983	0.2864
525	485	1.2423	0.2969	1.2372	0.2957	1.2316	0.2944	1.2500	0.2988	1.2500	0.2988	1.2500	0.2988
550	530	1.2866	0.3075	1.2815	0.3063	1.2770	0.3052	1.2924	0.3089	1.2924	0.3089	1.2924	0.3089
575	595	1.3258	0.3169	1.3242	0.3165	1.3207	0.3157	1.3298	0.3178	1.3298	0.3178	1.3298	0.3178
600	620	1.3622	0.3256	1.3617	0.3255	1.3654	0.3263	1.3701	0.3275	1.3701	0.3275	1.3701	0.3275
625	665	1.3979	0.3341	1.3990	0.3344	1.4004	0.3347	1.4021	0.3351	1.4021	0.3351	1.4021	0.3351
650	710	1.4316	0.3422	1.4366	0.3434	1.4393	0.3440	1.4399	0.3441	1.4399	0.3441	1.4399	0.3441
675	755	1.4666	0.3505	1.4689	0.3511	1.4673	0.3507	1.4721	0.3518	1.4721	0.3518	1.4721	0.3518
700	800	1.5143	0.3619	1.5150	0.3621	1.5265	0.3648	1.5257	0.3647	1.5257	0.3647	1.5257	0.3647
725	845	1.5441	0.3690	1.5449	0.3690	1.5453	0.3693	1.5491	0.3702	1.5491	0.3702	1.5491	0.3702
750	870	1.5793	0.3775	1.5773	0.3770	1.5781	0.3772	1.5802	0.3777	1.5802	0.3777	1.5802	0.3777

(*) BTU lb⁻¹ F⁻¹ = cal gm⁻¹ K⁻¹

(†) Ws gm⁻¹ K⁻¹ = J gm⁻¹ K⁻¹

TABLE 3
COEFFICIENTS FOR LEAST SQUARE CUBIC EQUATIONS

Sample	A	B	C	D	Std. Dev.	Max. Dev.
POCO	-0.693351E+00	0.638108E-02	-0.672955E-05	0.301132E-08	0.56330E-02	0.11662E-01
Fine-Weave	-0.640773E+00	0.601223E-02	-0.599403E-05	0.256241E-08	0.29116E-02	0.56866E-02
Course-Weave (Outer)	-0.398888E+00	0.467623E-02	-0.363979E-05	0.123026E-08	0.46838E-02	0.13543E-01
Course-Weave (Inner)	-0.697153E+00	0.632387E-02	-0.646827E-05	0.278292E-08	0.49083E-02	0.11052E-01

TABLE 4
STATISTICAL COMPARISON

Sample List

- 1 POCO
- 2 Fine Weave
- 3 Course Weave (Outer)
- 4 Course Weave (Inner)

Temp.	Average	Standard Deviation	Maximum Deviation	Sample with Max.	Minimum Deviation	Sample with Min.
350	.8429E+00	.2292E-02	.3813E-02	2	-.2311E-03	4
375	.9093E+00	.2504E-02	.3267E-02	2	.1580E-02	3
400	.9719E+00	.3427E-02	.3955E-02	3	.2845E-02	2
425	.1031E+01	.4184E-02	.5495E-02	3	.2532E-02	2
450	.1087E+01	.4625E-02	.6308E-02	3	.2312E-02	2
475	.1139E+01	.4764E-02	.6505E-02	3	.2171E-02	2
500	.1189E+01	.4653E-02	-.6324E-02	4	-.1961E-02	1
525	.1236E+01	.4357E-02	-.6336E-02	4	-.1208E-02	1
550	.1281E+01	.3951E-02	-.6158E-02	4	-.3874E-03	1
575	.1324E+01	.3514E-02	-.5825E-02	4	.4418E-03	1
600	.1364E+01	.3122E-02	-.5374E-02	4	.1224E-02	1
625	.1403E+01	.2834E-02	-.4843E-02	4	.8612E-03	3
650	.1441E+01	.2658E-02	-.4265E-02	4	-.1967E-03	3
675	.1477E+01	.2535E-02	-.3678E-02	4	-.9954E-03	3
700	.1512E+01	.2372E-02	-.3119E-02	4	-.1428E-02	3
725	.1546E+01	.2068E-02	-.2622E-02	4	-.1383E-02	3
750	.1579E+01	.1582E-02	-.2224E-02	4	-.7508E-03	3

FIGURE 1
PERKIN-ELMER DIFFERENTIAL SCANNING CALORIMETER

FIGURE 2
DIGITAL DATA ACQUISITION SYSTEM

FIGURE 3
SPECIFIC HEAT RESULTS

REFERENCES

1. Cezairliyan, A., "Measurement of the Heat Capacity of Graphite in the Range 1500 to 3000 K By a Pulse Heating Method," Proceedings of the Sixth Symposium on Thermophysical Properties, (P.E. Liley, editor), Am. Soc. Mech. Eng., New York, 279-85, 1973.
2. Cezairliyan, A. and Righini, F., "Measurements of Heat Capacity, Electrical Resistivity and Hemispherical Total Emittance of Two Grades of Graphite in the Range 1500 to 3000 K by a Pulse Heating Technique," Rev. Int. Htes. Temp. of Refract., 12(2), 124-31, 1975.
3. Cezairliyan, A. and Miiller, A. P., "Specific Heat Capacity and Electrical Resistivity of a Carbon/Carbon Composite in the Range 1500 to 3000 K by a Pulse Heating Method," Int. J. Thermophysics, 1(3), 1980. In press.
4. Taylor, R. E. and Groot, H., "Thermophysical Properties of POCO Graphite," High Temperatures - High Pressures, 12, 147-60, 1980.

