Heat: Section 2.3, mostly

1. The damped string equation is given by

$$u_{tt} - c^2 u_{xx} + \gamma u_t = 0, x \in \mathbb{R}, t \in R.$$

Using the energy function E(t) from lecture, show that energy is decreasing. As usual, assume the data is of compact support.

- 2. Let $u(x,t) = 1 x^2 2kt$.
 - (a) Show that u solves the heat equation $u_t = ku_{xx}$ on $-1 \le x \le 2$, t > 0 and determine the initial temperature distribution.
 - (b) Determine the maximum and minimum of u(x,t) on the rectangle $[-1,1] \times [0,T]$.
- 3. Consider the diffusion equation $u_t = u_{xx}$ in $[0,1] \times [0,\infty)$ with u(0,t) = u(1,t) = 0 and u(x,0) = 4x(1-x).
 - (a) Show that 0 < u(x,t) < 1 for all t > 0 and 0 < x < 1.
 - (b) Show that u(x,t) = u(1-x,t) for all $t \ge 0$ and $0 \le x \le 1$.
 - (c) Use the energy method to show that $\int_0^1 u^2(x,t) dx$ is a strictly decreasing function of t.
- 4. Prove the comparison principle for the heat equation on $0 \le x \le L$: If u and v are two solutions, and $u \le v$ for t = 0, x = 0 and x = L, then $u \le v$ for all time.