

Geospatial Deep Learning:

Winning Strategies for Segmenting Kelp Forests from Satellite Imagery

Michał Wierzbiński Lead ML Engineer, Spyrosoft

Agenda

- 1. Case study: Kelp Wanted Competition
- 2. Data Processing
- 3. Modelling
- 4. Prediction Post-Processing
- 5. What Did Not Work?
- 6. Next Steps?
- 7. Summary

Repo with code

Who am I?

- Lead ML Engineer @Spyrosoft
- 7 years of experience
- Started as a Cloud Developer
- Specializing in Deep Learning solutions for the Geospatial Industry
- Specialty coffee enthusiast

Areas of expertise: Geospatial, Remote Sensing, Earth Observation, Satellite Imagery, Computer Vision, Deep Learning, ML & Al, MLOps, Cloud

spyrosoft

Case study: Kelp Wanted: Segmenting Kelp Forests

2nd place solution

- Competition platform: <u>DrivenData</u>
- Labels from: <u>Kelpwatch.org</u>
- Goal: Help researchers estimate the extent of Giant Kelp Forests by segmenting Landsat imagery
- Task: semantic segmentation
- 350 x 350 pixel "tiles" of Landsat satellite imagery with 7 channels
- 30m / pixel spatial resolution
- Target metric:

What does the Kelp look like on satellite imagery?

Source: ESA – Sentinel 2 L2A via Microsoft Planetary Computer

What does the Kelp look like on satellite imagery?

Source: ESA – Sentinel 2 L2A via Microsoft Planetary Computer

What does the Kelp look like on satellite imagery?

Source: ESA – Sentinel 2 L2A via Microsoft Planetary Computer

Data overview

Input Bands:

- SWIR (Shortwave Infrared)
- NIR (Near-Infrared)
- Red
- Green
- Blue
- Quality Mask (NaN values, defective/saturated pixels, cloud cover)
- Digital Elevation Model

EDA

- Visual inspection of the images using composites:
 - True color
 - False color
 - Shortwave Infrared
- DEM, QA and Mask band visualization
- Descriptive Statistics:
 - Images per Splits
 - Distribution of images per AOI
 - DEM NaN pixels distribution
 - Distribution of images with and without Kelp
 - Kelp Pixels Distribution
 - High Kelp Pixels distribution (>40% of image)
 - QA corrupted pixels percentage
 - Water pixels distribution (DEM == 0 or NANs)
- Per Band Stats: min, max, median, mean, std, q01, q99

Data issues

- 3 tiles had corrupted masks
- Misaligned DEM layer
- Over 2/5 images had no Kelp pixels (all land or open water images)
- 91 images with over 70% corrupted or missing pixels
- 768 images with over 98% water pixels
- Landsat itself has various issues:
 - Saturated and Cloudy pixels
 - Striping artifacts
 - Missing values (NaNs)

Deduplication

- Multiple "similar looking" images detected via manual inspection
- Grouped Areas of Interest (AOIs) via cosine similarity of embeddings generated by pre-trained ResNet-50
- Used DEM layer as input
- Similarity threshold = 0.97
- Results: 3313 unique AOI groups

Train-val-test splits

- Train & validation sets: stratified Grouped 10-Fold split
- Avoids evaluating on similar AOIs (data leakage)
- Keeps proportion of labels similar across the splits
- Test data provided by competition host

Baseline

- segmentation-models-pytorch
- pytorch-lightning
- UNet with ResNet-50 encoder
- Random split
- Z-score normalization
- Inputs: SWIR, NIR, R, G, B, QA, DEM & NDVI
- Batch size = 32
- Adam optimizer
- Constant learning rate schedule 3e-4
- Cross entropy loss
- 10 epochs
- LB Score = **0.6569**

Experiment tracking - MLFlow

- Log everything
- Model hyperparameters
- Experiment config
- Training & validation curves
- DICE, IOU, Accuracy, Precision, Recall, F1
- Learning rate schedule
- Model inputs: as composites and individual bands
- Model predictions on few batches every epoch
- Use Parallel Coordinate plot for hyperparameter optimization

Data sampling

- Weighted Random Sampler
- Per-image weight
- Determine the optimal per-image weight:
 - has_kelp a flag indicating if the image has kelp in it
 - kelp_pixels_pct percentage of all pixels marked as kelp
 - dem_nan_pixels_pct percentage of all DEM pixels marked as NaN
 - dem_zero_pixels_pct percentage of all DEM pixels with value=zero
 - o almost_all_water a flag indicating that over 98% of the DEM layer pixels are water
 - o ga ok a flag indicating that no pixels are corrupted in the QA band
 - qa_corrupted_pixels_pct percentage of corrupted pixels in the QA band
- Weights calculated using hyperparameter search

Samples per epoch	has_kelp	kelp_pixels_pct	qa_ok	qa_corrupted_pixels_pc t	almost_all_water	dem_nan_pixels_pc t	dem_zero_pixels_pct	val/dice
10240	3	0.5	-1	0	-1	0.25	0	0.845

Augmentation strategies

- Used basic augmentations:
 - Vertical & Horizontal Flips
 - Rotations [-90 90 deg.]
 - Pad to 352x352 (needed by UNet)
 - Append Spectral Indices

- Adding more advanced augmentations did not improve performance
- Avoid destructive operations:
 - Random crop-resize
 - Gaussian noise
 - Hue & Saturation
 - Contrast
- Keep spectral characteristics intact when working with Multispectral Imagery
- Augmentations on multi-channel tensors are expensive to compute on CPU
- Use GPU to apply them on whole batch at the time <u>kornia</u> library

Image source: http://dx.doi.org/10.3390/rs12030417

Feature Engineering

- Append spectral indices to help the model
- Use <u>Spectral Index DB</u> to see what's available for your sensor
- Extra indices:
 - DEMWM,
 - NDVI,
 - ATSAVI,
 - o AVI,
 - o Cl
 - ClGreen,
 - o GBNDVI,
 - GVMI,
 - o IPVI,

- KIVU,
- MCARI,
- MVI,
- NormNIR,
- PNDVI,
- SABI,
- WDRVI,
- mCRIG

Data Normalization

- Data was already pre-processed by competition organizers
- Calculate per-band statistics to be used for normalization
- Ignore NaNs and corrupted pixels
- Start with z-score
- Min-max only if outliers are removed e.g., clip
 (0; 20,000)
- Best results were obtained with quantile normalization (q01q99)
- Add some domain knowledge mask values with QA mask and Land mask – use stats for water pixels only

Model Hyperparameters

- Use hparam tuning lib: <u>RayTune</u>, <u>Optuna</u>, <u>HyperOpt</u>
- Grid:
 - Architecture: Unet, Unet++, LinkNet, DeepLab, DeepLabv3+, EfficientUnet++, ResUnet etc.
 - Encoder: ResNet, EfficientNet, VGG, VIT etc.
 - o Learning rate: 1e-5 − 1e-1
 - Learning rate scheduler: Constant, StepLR, OneCycleLR, etc.
 - o Optimizer: Adam, SGD, AdamW etc.
 - Loss functions: Cross Entropy, DICE, Tversky, Jaccard, Lovasz, Focal etc.
 - o Epochs: 5 − 50
 - Samples per epoch: 5120 10240
 - Apply Land Masking Yes/No
 - Pre-trained Yes/No
 - o Bands to use: R, G, B, SWIR, NIR, QA, DEM
 - Band order
 - Spectral indices to append: DEMWM, NDVI, ATSAVI, AVI, CI, ClGreen etc.
- Keep batch size and precision constant maximize GPU utilization
- Use FP16 mixed precision if possible

Scaling the compute - Azure ML

- Hparam search does not scale well locally
- Use cloud or HPC if available to speed up the computation
- Use spot instances if possible
- Azure ML offers hosted MLFlow out-of-the-box
- If your dataset is small download it directly to your compute – don't stream from blob storage
- Make sure your data is in the same region as your compute
- Make sure your remote environment matches your local one – use lock-files!
- Saturate your GPUs!

Model architecture

- ResUnet++ often results in NaN loss.
- Unet and Unet++ often were the best.
- Unet++ training was not deterministic even though pl.seed_everything() was used
- Bigger models often resulted in OOM errors during training:
 - Reduce batch size
 - Apply gradient accumulation
- Some models expected the input image to be divisible by 8, 24,
 128 etc.
 - Adjust training config on the fly to allow for training those models.
- In general, bigger models worked better, but overfitted quicker
- ConvNext and SWIN Transformer models not supported
- Used DICE instead of cross entropy
- The best combo was UNet & EfficientNet-B5

encoder	architecture	val/dice
tu-efficientnet_b5	unet	0.85854
tu-seresnext101_32x4d	unet	0.85807
tu-resnest50d_4s2x40d	unet	0.85787
tu-rexnetr_300	unet	0.85749
tu-seresnext26d_32x4d	unet	0.85728

Learning Rate Scheduling

- Best LR Schedule was <u>OneCycleLR</u>
- Proposed in <u>Super-Convergence paper</u>
- Allows to achieve identical performance in less epochs
- Avoids local minima by allowing the model to explore the loss landscape for longer

Prediction post-processing

Morphological Operations:

- Erosion and Dilation to remove noise
- Opening and Closing for shape refinement

Test Time augmentations (TTA):

- Apply augmentations (e.g., flips, rotations) during inference
- Average predictions from augmented inputs for improved accuracy
- Did not improve model performance for kelp segmentation

Label Smoothing:

- Apply spatial smoothing to reduce noise
- Ensure smoother transitions between segments

Ensemble Methods:

- Combine multiple models' predictions for robust output
- Average or vote-based fusion techniques
- Can be used with soft-labels (probabilities instead of labels)
- Adds a lot of complexity and increases prediction times – not suitable for production use unless you have very good use-case for it

Contour Detection:

- Use edge detection algorithms to refine segment borders
- Improve alignment of segmentation boundaries

Class-Specific Post-Processing:

- Apply targeted techniques for different classes
- Customize processing based on object characteristics

• Threshold Adjustment:

- Fine-tune threshold values for binary segmentation maps
- Balance between precision and recall
- Using 0.45 instead of the classic 0.5 as decision threshold improved the performance slightly

What did not work?

Stochastic Weights Averaging (SWA)

- SWA performs an equal average of the weights traversed by SGD with a modified learning rate schedule
- SWA solutions end up in the center of a wide flat region of loss
- SWA performs an equal average of the weights traversed by SGD with a modified learning rate schedule
- SWA solutions end up in the center of a wide flat region of loss
- While SGD tends to converge to the boundary of the low-loss region

- This makes SGD susceptible to the shift between train and test error surfaces
- Standard decaying schedule is used for the first 75% of the training and then a constant value is used for the remaining 25%.
- The SWA averages are formed during the last 25% of training.

What did not work?

XGBoost

- XGBoost on pixel-level with all spectral indices
- Very long training times on CPU use GPU when possible
- Hparam search did not improve results compared to CNN
- Segmentation mask often "jagged" with missing pixels
- Public LB score: 0.5125
- Abandoned since improvement of 20 p.p. was unrealistic to achieve
- Feature importance proves the importance of extra spectral indices

What did not work?

SAHI

- Slicing Aided Hyper Inference utilizes inference on image slices and prediction merging.
- Slower than running inference on full image
- Usually ends up having better performance, especially for smaller features

The idea was simple:

- Generate sliced dataset of small 128x128 non-overlapping tiles from the bigger 350x350 input images
- Use this dataset to train new model
- During training resize the crops to e.g., 320x320 resolution and train on those
- When running inference generate overlapping tiles, inference on those tiles, and merge the predicted masks by averaging the predictions in the overlapping areas
- Profit?
- LB score of 0.6848

Next steps?

Data:

- Revisit kelp labels and re-annotate with agreement between annotators
- Explore sensor fusion and harmonization with Sentinel 2

Models:

- Prithvi-100M trained on Harmonized Landsat Sentinel 2 (HLS) data
- The Pretrained Remote Sensing Transformer (Presto) requires additional data and was not directly trained on Landsat - Sentinel 2 as the main data source
- Transformer based models such as <u>Swin transformer</u> or <u>SegFormer</u>

Summary

- Spend a lot of time on EDA
- Identify as much issues with the data as possible
- Make sure there is no data leakage
- Have a reasonable baseline ready fast
- Log everything
- Ensure reproducibility
- When choosing between tweaking inputs
 (image weights, normalization, augmentations
 etc.) and model hyperparameters choose
 inputs
- Avoid ensembles

Method	Public LB score	Score increase
Baseline UNet + ResNet-50 encoder	0.6569	N/A
+ AOI grouping with cosine similarity and more robust CV strategy	0.6648	1 0.0079
+ Dice loss instead of Cross Entropy	0.6824	0.0176
+ Weighted sampler	0.6940	0.0116
+ Appending 17 extra spectral indices + using water mask to mask land	0.7083	0.0143
+ EfficientNet-B5 instead of ResNet-50	0.7101	0.0018
+ Decision threshold optimization + bf16- mixed inference	0.7132	10.0031
+ 10-fold model ensemble	0.7169	0.0037
+ Training for 50 epochs + weighted average + soft labels	0.7210	0.0041

Thank you!

We encourage you to ask questions and to rate this session.

FEEDBACK

Geospatial Deep Learning: Winning Strategies for Segmenting Kelp Forests from Satellite Imagery

Michał Wierzbiński

