

Computer Based Engineering Mathematics Lab

Summer Semester 2019

Project 2: Regression Analysis

Project Coordinators

Universität Duisburg-Essen Prof. Dr. Johannes Gottschling Dr. Robert Martin Saad Alvi, M.Sc.

Group Members (Group 21)

Aleksandar Ivanov -----3072306 Md Shamsul Haque----3070938 Md Aminul Islam----3070939 A K M Rezaul Hoque----3077415

Description

First Model Function:

Function one: $k_f = x_6 e^{x1T}$. ϕ'^{x2+x5T} . ϕ^{x3} . e^{x44}

This function is not linear with respect to [x] and we must linearize it.

$$\ln k_f = \ln x_6 + x_1 T + \ln \phi'(x_2 + x_5 T) + \ln \phi \cdot x_3 + x_4 \phi = x_1 T + x_2 \ln \phi' + x_3 \ln \phi + x_4 \phi + x_5 T \ln \phi + \ln x_6$$

The last term $\ln x_6$ can simply be replaced by a constant for the calculations.

$$=>$$
ln $k_f = x_1T + x_2ln\phi' + x_3ln\phi + x_4\phi + x_5Tln\phi + x_6$

We now define the vector,
$$\mathbf{b_i} = \mathbf{lnk_{f1i}}^T = \begin{bmatrix} \mathbf{lnk_{f11}} \\ \vdots \\ \mathbf{lnk_{f1n}} \end{bmatrix}$$
, the vector $\mathbf{x} = [\mathbf{x_1} \ \mathbf{x_2} \ \mathbf{x_3} \ \mathbf{x_4} \ \mathbf{x_5} \ \mathbf{x_6}]$

The matrix
$$A = \begin{bmatrix} T_1 \ln \phi'_1 & \ln \phi_1 & \phi_1 & \ln \phi_1 & 1 \\ & \cdot & & \\ & \cdot & & \\ & \cdot & & \\ T_n \ln \phi'_n & \ln \phi_n & \phi_n & \ln \phi_n & 1 \end{bmatrix}$$

Where i and n are indicating how many measurements, we have. Then to find our x vector we simply need to solve: $A^T.A.x=A^Tb$

Second Model Function:

Function 2: We do the same procedure: $k_f = x_{10} e^{x_1 T}$. $φ'^{x_2 + x_5 T + x_6}$. $φ^{x_3 + x_1 T + x_8 φ'}$ $e^{x_4 φ + x_9 φ'}$ In $k_f = x_1 T + x_2 ln φ' + x_3 ln φ + x_4 φ + x_5 T ln φ' + x_6 ln φ'$. $φ + x_7 ln φ T + x_8 ln φ$. $φ' + x_9 φ' + ln x_{10}$

```
b = \begin{bmatrix} \ln k_{fi1} \\ \vdots \\ \ln k_{fin} \end{bmatrix}
A = \begin{bmatrix} T_1 \ln \phi_1' & \ln \phi_1 & \phi_1 & T_1 \ln \phi_1' & \ln \phi_1' \phi_1 & \ln \phi_1 T_1 \ln \phi_1 \phi_1' & \phi_1' & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ T_{n \ln \phi_n'} & \ln \phi_n & \phi_n & T_n \ln \phi_n' & \ln \phi_n' & \ln \phi_n T_n \ln \phi_n \phi_n' & \phi_n' & 1 \end{bmatrix}
```

 $A^{T}.A.x=A^{T}b$

• Calculation of R²:

To calculate R² in both cases we simply use the formula:

$$R^{2} = \frac{\sum_{i=1}^{n} (f(x,t_{i}) - y^{-})^{2}}{\sum_{i=1}^{n} (y_{i} - y^{-})^{2}}$$

Where $b(x_i, t_i)$ is our predicted value y_i is the measured value y_i^- is the mean of the measured values where,

$$\mathbf{y}^{-} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Getting our vectors of the parameters and R²:

For the first model

x06=6x1	
-0.0013	
0.0623	
0.1520	
-0.1681	
-0.0001	
7.1509	

x15=6x1	
-0.0009	
0.0520	
0.0987	
-0.0476	
-0.0001	
6.6426	

$$R^2_06 = 0.6145$$

$$R^2_15 = 0.4425$$

$$R^2_60 = 0.8981$$

For the Second model

z06=10x1	z15=10x1	z60=10x1
-0.0016	-0.0015	-0.0022
0.0820	0.0679	-0.0457
0.2586	0.3055	0.3557
-0.0297	0.0651	-0.5538
-0.0001	-0.0001	0.0001
-0.0521	-0.0119	0.0085
-0.0003	-0.0004	-0.0002
0.0008	0.0005	-0.0000
0.0010	-0.0003	0.0036
7.2278	6.8724	7.6979

$$R^2_06 = 0.6255$$

$$R^2_15 = 0.4754$$

$$R^2_60 = 0.9082$$

Best fitting curve for 100Cr6 using model function 1: y=1275.255681*e^(-0.001285*T)*phi_dot^(0.062255+-0.000105T)*phi^0.152007*e^(-0.168144phi)

Best fitting curve for C15 using model function 1: y=767.098096*e^(-

0.000945*T)*phi_dot^(0.052005+-

0.000090T)*phi^0.098706*e^(-0.047643phi)

Model function 1; C60; Kf with respect to phi_dot and T

Best fitting curve for C60 using model function 1: y=2336.604239*e^(-0.002137*T)*phi_dot^(0.011358+0.000087T)*phi

0.002137*1)*phi_dot^(0.011358+0.0000871)*phi ^0.291779*e^(-0.663931phi)

Best fitting curve for 100Cr6 using model function 2: y=1377.226561*e^(-

0.001593*T)*phi_dot^(0.082002+-0.000105T+-

0.052111phi)*phi^(0.258644+-

0.000258T+0.000830phi_dot)*e^(-

0.029658phi+0.000957phi_dot)

Best fitting curve for C15 using model function 2: y=965.231734*e^(-0.001481*T)*phi_dot^(0.067929+-0.000086T+-0.011947phi)*phi^(0.305504+-0.000428T+0.000504phi_dot)*e^(0.065144phi+-0.000311phi_dot)

Model function 2; C60; Kf with respect to phi_dot and T

Best fitting curve for C60 using model function 2: y=2203.671363*e^(-0.002240*T)*phi_dot^(-0.045741+0.000101T+0.008467phi)*phi^(0.355744+-0.000174T+-0.000021phi_dot)*e^(-0.553828phi+0.003597phi_dot)

Predicted Values Vs Measured Ones For Data Sheet

Comparison Between Two Models

- We know from the script that the R^2 measured always between 0 and 1, i.e. : $0 \le R^2 \le 1$. The closer R^2 is to one, the better the approximation of the measured data by the calculated fitting curve.
- We have already seen that the model 2 has a better R² but model one still fits some parts of the curve better.

Matlab Codes For Model Functions

%Model Function 1

```
function x = func1(C1)
A=[C1(:,4) C1(:,1) C1(:,2) C1(:,3) C1(:,1).*C1(:,4)
ones(size(C1(:,1)))];
b=C1(:,5);
x=A\b;
end
```

%Model Function 2

```
function z = func2(mdata)
A=[mdata(:,5) mdata(:,1) mdata(:,3) mdata(:,4)
mdata(:,1).*mdata(:,5) mdata(:,1).*mdata(:,4)
mdata(:,5).*mdata(:,3) mdata(:,2).*mdata(:,3)
mdata(:,2) ones(size(mdata(:,1)))];
b=mdata(:,6);
z=A\b;
end
```

Matlab Codes For R²

%Model Function 1

```
function R_2 = R_square_1(in,x)
f=[in(:,4) in(:,1) in(:,2) in(:,3) in(:,1).*in(:,4)
ones(size(in(:,1)))];
y=f*x;
y_av=mean(in(:,5));
sf=sum((y-y_av).^2);
mf=sum((in(:,5)-y_av).^2);
R_2=sf/mf;
end
```

%Model Function 2

```
function R2 = R_square_2(mdata,z)
f=[mdata(:,5) mdata(:,1) mdata(:,3) mdata(:,4)
mdata(:,1).*mdata(:,5) mdata(:,1).*mdata(:,4)
mdata(:,5).*mdata(:,3) mdata(:,2).*mdata(:,3)
mdata(:,2) ones(size(mdata(:,1)))];
y=f*z;
y_av=mean(mdata(:,6));
sf=sum((y-y_av).^2);
mf=sum((mdata(:,6)-y_av).^2);
R2=sf/mf;
end
```