

INTRODUCTION À NUMPY (ET MATPLOTLIB+PANDAS)

Vincent Guigue vincent.guigue@agroparistech.fr

Intelligence Artificielle, Machine Learning et Programmation

Input (X)	Output (Y)	Application	
email ->>	spam? (0/1)	spam filtering	/1
audio	text transcript	speech recognition	
English	Chinese	machine translation	
ad, user info>	click? (0/1)	online advertising	
image, radar info 🛶	position of other cars	self-driving car	
image of phone -	defect? (0/1)	visual inspection	

IA: programmes informatiques qui s'adonnent à des tâches qui sont, pour l'instant, accomplies de façon plus satisfaisante par des êtres humains car elles demandent des processus mentaux de haut niveau.

Marvin Lee Minsky, 1956

N-AI (Narrow Artificial Intelligence), dédiée à une tâche

≠ G-AI (General AI) qui remplace l'humain dans des systèmes complexes. Andrew Ng, 2015 Introduction ○ ● ○ ○ Organisation

Ingrédients de l'Intelligence Artificielle

Enseignement de l'IA

- Différents niveaux d'accès
- Différentes branches : types d'outils, application thématiques, ...

Organisation

Programmation orientée données

- **Python** : langage unificateur (codage *vs* wrapper)
 - Calcul scientifique : numpy
 - Machine-learning : scikit-learn, pandas, matplotlib
 - Deep-learning : pytorch
 - Environnement de développement : Visual Studio Code / jupyter-notebook

Où se trouve les leviers de performance?

Dans les modèles...

Mais surtout dans les chaînes de traitements!

Organisation

Programmation orientée données

- **Python** : langage unificateur (codage *vs* wrapper)
 - Calcul scientifique : numpy
 - *Machine-learning* : scikit-learn, pandas, matplotlib
 - Deep-learning : pytorch
 - Environnement de développement : Visual Studio Code / jupyter-notebook

Programmation orientée données

- **Python** : langage unificateur (codage *vs* wrapper)
 - Calcul scientifique : numpy
 - *Machine-learning* : scikit-learn, pandas, matplotlib
 - Deep-learning : pytorch
 - Environnement de développement : Visual Studio Code / jupyter-notebook

ORGANISATION

Organisation

- 2 séances Numpy (=2x3h)
 - Mise à niveau en python, numpy, matplotlib
 - Naïve Bayes (à la main)
- 4 séances Scikit-Learn (=4x3h)
 - Classifieurs Scikit-Learn : syntaxe, possibilités offertes
 - Evalaution
 - Chaine de traitements, grid-search
 - Visualisation & post-traitements

_

Jupyter Notebook

- Du code dans un navigateur web????
 - Principe de textes à trous
 - Bel outil pédagogique...
 - ... avec des risques (contemplation)

et des limites (organisation de code sous-optimale)

Introduction

Organisation

Conclusion : passer à un nouveau langage...

■ Cout faible

■ une fois que vous avez compris la logique générale

■ Cout non négligeable :

- Comprendre les forces et les faiblesses du langage
 - ... Et des environnements de développement
- Adapter sa manière de programmer (e.g. calculer un décile)
- Reprendre les bons reflexes (=aller vite)
- ⇒ Devenir data-scientist n'a jamais été aussi facile... Mais il reste quelques savoir-faire et quelques pièges à éviter!