Lec 7 函数连续性与无穷小(大)的比较

7.1 函数 y = f(x) 的连续性

设 x_0 是常数,

- (1) f(x) 在 x_0 处连续 $\Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0) = f(\lim_{x \to x_0} x)$. (2) f(x) 在 x_0 处间断 $\Leftrightarrow \lim_{x \to x_0} f(x) \neq f(x_0)$: 称 x_0 为 f(x) 的间断点.

f(x) 的间断点分类: $\begin{cases} (I) \ f(x_0-0), f(x_0+0) \ 均存在的间断点为第一类间断点; \\ (II) \ f(x_0-0), f(x_0+0) \ 至少有一个不存在的间断点为第二类间断点. \end{cases}$ 例 7.1 六类基本初等函数 (幂, 指数, 三角, 对数, 指数, 反三角, 双曲) 在其定义域内均连续. 如

 $f(x) = \tan x = \frac{\sin x}{\cos x}$ 在 $x \neq \frac{\pi}{2} + k\pi$ 时连续, 且从 $f(\frac{\pi}{2} - 0) = +\infty$, $f(\frac{\pi}{2} + 0) = -\infty$ 可知 f(x)在 $x = \frac{\pi}{2}$ 处第二类间断点.

又如
$$f(x) = sgn x =$$

$$\begin{cases} 1, & x > 0; \\ 0, & x = 0; 在 x = 0 处, f(0 - 0) = -1, f(0 + 0) = 1, f(0) = 0, 故 \\ -1, & x < 0. \end{cases}$$

f(x) 在 x = 0 处第一类间断点.(跳跃间断点)

定理 7.1

连续函数的和,差,积,商仍是连续函数.

例 7.2 设 $f_1(x), f_2(x), \dots, f_m(x)$ 在区间 I 上连续, 且 c_1, c_2, \dots, c_m 为常数, 则线性组合 $c_1 f_1(x) +$ $c_2f_2(x) + \cdots + c_mf_m(x)$ 在 I 上连续. 这表明连续函数具有线性性.

定理 7.2

连续的函数 y=f(x) 若有反函数 x=g(y) 或写为 y=g(x), 则反函数 y=g(x) 也是连续 函数. 理由: 函数与其反函数关于直线 y = x 对称.

例 7.3 $y = \sin x$ 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上连续且单调增,故有反函数 $x = \arcsin y$ 在 $\left[-1, 1\right]$ 上连续. $y = \cos x$ 在 $\left[0, \pi\right]$ 上连续且单调减,故有反函数 $x = \arccos y$ 在 $\left[-1, 1\right]$ 上连续且单调减. $y = \tan x$ 在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上连续且单调增, 故有反函数 $x = \arctan y$ 在 $\left(-\infty, +\infty\right)$ 上连续且 单调增.

注 六个反三角函数都是有界变量

例 7.4 e^x 在 $(-\infty, +\infty)$ 上连续且单调增, 故有反函数 $x = \ln y$ 在 $(0, +\infty)$ 上连续且单调增.

定理 7.3

连续函数的复合函数仍是连续函数.

证明 对于任意给定的正数 ε ,因为 f 在 u_0 连续,则存在一个正数 $\eta > 0$,使得当 $|u - u_0| < \eta$ 时,

$$|f(u) - f(u_0)| < \varepsilon.$$

对于上述 $\eta>0$,又因为 g 在 x_0 连续,所以下面存在一个正数 $\delta>0$,使得当 $|x-x_0|<\delta$ 时,

$$|g(x) - g(x_0)| = |u - u_0| < \eta.$$

于是, 当 $|x-x_0| < \delta$ 时, 从上面两个不等式得到

$$|f(g(x)) - f(g(x_0))| = |f(u) - f(u_0)| < \varepsilon,$$

即函数 f(g(x)) 在 x_0 连续。

该定理也可以表示为下面形式

$$\lim_{x \to x_0} f(g(x)) = f\left(\lim_{x \to x_0} g(x)\right).$$

由六种基本初等函数经过有限次四则运算,有限次符合运算的函数统称为初等函数.

定理 7.4

一切初等函数,包括一切基本初等函数,在其定义域内均连续.(注:初等函数的的定义域 中若存在孤立点 x_0 , 则 f(x) 在 x_0 处仍是连续的.)

7.2 无穷小量的比较

设 $x \to x_0$ 时, $\alpha(x) \to 0$, $\beta \to 0$ 且 $(\beta(x) = 0)$.

- 1. 若 $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 0$, 则称 $\alpha(x)$ 是 $\beta(x)$ 的高阶无穷小, 记为 $\alpha(x) = o(\beta(x))$; 例如 $\lim_{x\to 0} \frac{\tan^2 x}{x} = 0$ $0 \Rightarrow \tan^2 x = o(x)$.
- 2. 若 $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = A \neq 0$, 则称 $\alpha(x)$ 是 $\beta(x)$ 的等阶无穷小, 记为 $\alpha(x) = O(\beta(x))$; 例如 $\lim_{x \to 0} \frac{\sin x}{x} = 1 \Rightarrow \sin x = O(x).$
- 3. 若 $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = A \neq 0$, 则称 $\alpha(x)$ 是 $\beta(x)$ 的等价无穷小, 记为 $\alpha(x) \sim \beta(x)$; 例如 $\sin x \sim$ $x \sim \ln(1+x) \sim e^x - 1 \sim \tan x (x \to 0); 1 - \cos x \sim \frac{x^2}{2}, a^x - 1 \sim \ln a \cdot x, (1+x)^{\alpha} - 1 \sim 1$ $\alpha \cdot x(x \to 0)$.
- 4. 当 $x \to x_0$ 时, 若 $\exists k \in \mathbb{R}^+$, 使得 $\alpha(x) = O((x x_0)^k)$, 则称 $\alpha(x)$ 是 $(x x_0)$ 的 k 阶无穷小 例 7.5 当 $x \to 0$ 时, 证明: 无穷小量 $\tan x - \sin x$ 是 x 的三阶无穷小. 证明 $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x\to 0} \frac{\sin x}{x} \frac{1/\cos x - 1}{x^2} = \lim_{x\to 0} \frac{\sin x}{x} \frac{1 - \cos x}{x^2} = \frac{1}{2} \neq 0$. 故 $\tan x - \sin x = 0$

 $O(x^3)$.

7.3 无穷大量的比较

设 $x \to x_0$ 时, $\alpha(x) \to \infty$, $\beta \to \infty$ 且 $(\beta(x) = 0)$.

- 1. 若 $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 0$, 则称 $\beta(x)$ 是 $\alpha(x)$ 的高阶无穷大, 记为 $\alpha(x) = o(\beta(x))$; 例如 $\lim_{x\to\infty} \frac{n!}{n^n} = 0 \Rightarrow n! = o(n^n)$.
- 2. 若 $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = A \neq 0$, 则称 $\beta(x)$ 是 $\alpha(x)$ 的等阶无穷大, 记为 $\alpha(x) = O(\beta(x))$; 例如 $\lim_{x \to \infty} \frac{e^n}{n!} = 0 \Rightarrow e^n = o(n!).$

熟练掌握个别关系式:($\forall a > 1, \alpha > 0, m > 0$)

$$n^n >> n! >> a^n >> n^{\alpha} >> (\ln n)^m;$$

$$x^{x} >> a^{x} >> x^{\alpha} >> (\ln x)^{m};$$

命题 7.1 (等价代换)

在积与商的极限中, 无穷小(大)因子可用等价无穷小(大)代换, 而不影响原来的极限值.

证明 设 $x \to x_0$ 时, $\alpha(x) \sim \alpha_1(x)$, $\beta(x) \sim \beta_1(x)$, 则 $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\alpha_1(x)} \cdot \frac{\alpha_1(x)}{\beta_1(x)} \cdot \frac{\beta_1(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha_1(x)}{\beta_1(x)}.$

作业 ex1.3:16,17,18.