模拟电子线路

课件资源:基于《电子技术基础模拟部分》(康华光主编第五版)以及模电组郝育闻、林秋华、巢明等教师的课件编写。

- 大连理工大学电信学部
- 创新园A-416 余隽
- 84706002-3416
- junyu@dlut.edu.cn

§ 5 场效应管放大电路

The Field-Effect Transistor and

Basic FET Amplifiers

- 5.1绝缘栅场效应管MOSFET 5.1.1 结构与原理
- 5.2 结型场效应管JFET
- 5.3 型号
- **5.4 FET放大电路**
- 5.5 小结与基本要求

- 5.1.2 符号与特性
- 5.1.3 主要参数

5.1.1 结构与原理

MOSFET: Metal Oxide Semiconductor Field Effect Transistor

S-源极source D-漏极drain G-栅极gate B-体body

基本状态:两个PN结均<u>不导通!</u>

5.1.1 结构与原理(增强型MOSFET)

 v_{DS} 逐渐增大, v_{GD} 逐渐减小,吸引少子较少,漏端沟道减小,沟道电阻增大。

当 v_{DS} 增大,使 v_{GD} 减小到 $v_{GD} = V_T$

当 v_{DS} 继续增大: $v_{GD} < V_{T}$ i_{D} 达到饱和,不再随 v_{DS} 增加。 $i_D = K_n (v_{GS} - V_T)^2$ $v_{\rm GS} > V_{\rm T}$ $= K_n V_T^2 (\frac{v_{GS}}{V_T} - 1)^2$ $i_{\rm D}$ 可 $=I_{DO}\left(\frac{v_{GS}}{V_{T}}-1\right)^{2}$ 变电 S 阻 $v_{GS2} > v_{GS1}$ X 沟道夹断 恒流区 空间电荷区 p-Si 承担增加的压降 v_{GS1} B

截止区

 v_{DS}

当 v_{DS} 继续增大:漏与衬底pn结击穿,漏电流迅速增大

放大区转移特性曲线

3) 恒流区(放大区)
$$v_{GD} < V_{T} < v_{GS}$$
 ($v_{DS} \ge v_{GS} - V_{T}$)
$$I_{D} = I_{DO}[V_{GS} / V_{T} - 1]^{2}$$

另: N沟道耗尽型MOSFET

(a) 结构和符号

增强型NMOS: $i_D = K_n (v_{GS} - V_T)^2$

$$I_{DO} = K_n V_T^2$$
$$(v_{GS} = 2V_T)$$

$$(v_{GS} = 2V_T)$$
 $K_n = \frac{1}{2}\mu_n C_{OX} \left(\frac{W}{L}\right)$
 $= I_{DO} \left(\frac{v_{GS}}{V_T} - 1\right)^2$
 $i_D \approx K_n V_P^2 = I_{DSS} (v_{GS} = 0)$

$$i_D = K_n (v_{GS} - V_T)^2$$

$$= K_n V_T^2 \left(\frac{v_{GS}}{V_T} - 1\right)^2 \qquad i_D \approx I_{DSS} \left(1 - \frac{v_{GS}}{V_P}\right)^2$$

$$=I_{DO}(\frac{v_{GS}}{V_T}-1)^2$$

(b) 转移特性曲线

耗尽型NMOS:

$$i_D \approx I_{DSS} (1 - \frac{v_{GS}}{V_P})^2$$

$$i_D \approx K_n V_P^2 = I_{DSS} (v_{GS} = 0)$$

5.1.2 符号与特性

D(Drain): 漏极

G(Gate): 栅极

S(Source):源极

B(Body): 衬底

(Substrate)

(类似PNP管)

箭头:

 $P \rightarrow N$

*Je箭头:

 $P \rightarrow N$

D相当于c

G相当于b

S 相当于e

特性曲线

I-V Characteristics

1、转移特性曲线

Transfer Characteristic

$$i_{\mathrm{D}} = f(v_{\mathrm{GS}}) \mid v_{\mathrm{DS}} = \mathrm{const}$$

占

特性曲线

I-V Characteristics

2、输出特性曲线

Drain Characteristics

$$i_{\mathrm{D}} = f(v_{\mathrm{DS}}) \mid v_{\mathrm{GS}} = \mathrm{const}$$

 i_{C} = $f(v_{CE})$ i_{B} =const

CCCS!

DUT VIME WOOD TO SERVICE TO SERVI

5.1.3 主要参数 (与MOS类型有关,以NMOS为例)

- (1) 直流参数
 - ① $V_{\rm T}$ ___开启电压(增强型)

$$V_{GS} \leq V_T$$
 时, $I_D \approx 0$

③ R_{GS} __直流输入电阻 约 $10^9 \sim 10^{15}\Omega$

- (2) 交流参数
- ① g_{m} ___低频跨导transconductance
- 反映 V_{GS} 对 I_{D} 的控制作用(VCCS)
- $g_{\rm m} = \Delta I_{\rm D} / \Delta V_{\rm GS} | V_{\rm DS} = {\rm const (mS)}$ (毫西门子) ¹

$$I_{\rm D}/{\rm mA}$$
 $V_{\rm DS}=10{\rm V}$
 $V_{\rm DS}=10{\rm V}$
 $V_{\rm DS}=10{\rm V}$
 $V_{\rm DS}=10{\rm V}$

$$g_m = 2K_n(v_{GS} - V_T)$$
 (5.1.18)

 g_{m} 可以在转移特性曲线上求取,即曲线的斜率

- (3) 安全参数 ①最大漏极电流 I_{DM}
 - ② $U_{
 m BRXX}$ 一反向击穿电压

XX: GS, DS

③ P_{DM} 最大漏极功耗 由 $P_{\text{DM}} = V_{\text{DS}} I_{\text{D}}$ 决定

5.2 结型场效应管JFET

Junction Field Effect Transistor

- 5.2.1 结构与符号
- 5.2.2 工作原理与特性曲线
- 5.2.3 主要参数

5. 2. 1 结构与符号

JFET分为: N沟道 P沟道

5.2.2 工作原理与特性曲线

- 一、工作原理
 - 1. v_{GS}控制沟道宽窄
 - 2. v_{DS}控制沟道形状
- 二、特性曲线

$$I_{\rm D} = I_{\rm DSS} [1 - (V_{\rm GS}/V_{\rm P})]^2$$

(a) 漏极输出特性曲线

(b) 转移特性曲线

1. v_{GS} 控制沟道宽窄(v_{DS} =0) \rightarrow PN结必须反偏!

2. v_{DS}控制沟道形状(v_{GS}=0)

预夹断临界点轨迹

5.2.3 主要参数

与MOSFET不同的参数

① V_{P} ___夹断(pinch off)电压 耗尽型FET的参数,当 $V_{GS}=V_{P}$ 时, $I_{D}=0$

② R_{GS} _输入电阻 R_{GS} 约大于 $10^7\Omega$

各种场效应管的转移特性和输出特性对比

作业:

P249: 5.1.1, 5.1.4

P251: 5.3.4

练习:

P249: 5.1.2

P251: 5.3.5

各种场效应管的转移特性和输出特性对比

5.3 型号(略)

双极型三极管和场效应型三极管的比较

	三极管	场 效 应 管
导电机制	双极性器件	单极性器件
导电方式	载流子的扩散与漂移	漂移
控制方式	电流控制	电压控制
类型	NPN 型、PNP 型	P、N 沟道,增强、耗尽型、结型
放大参数	β =30~100	$g_m=1\sim6mS$
输入电阻	$10^2 \sim 10^4 \Omega$	$10^7 \sim 10^{15} \Omega$
抗辐射能力	差	好
噪声	大 一	小
热稳定性	差	好
制造工艺	不宜大规模集成	小尺寸; 便于大规模集成
对称性	C、E不能互换	D、S可以互换
静电影响	不受静电影响	易受静电影响

场效应管放大电路 Field-Effect Transistors § 5

管子的输入阻抗:

电容(绝缘)

反偏pn结 $>10M\Omega$ 正偏pn结

 $k\Omega$

- **5.1 MOSFET**
- **5.2 JFET**
- 5.3 型号

NMOS

N沟道,电子导电, 低电平端为源极, 实际电流方向D→S

PMOS

P沟道,空穴导电, 高电平端为源极, 实际电流方向S→D

5.4 FET放大电路

- 5.4.1 Common-Source Amplifier (共源)
- 5.4.2 Common-Drain Amplifier (共漏)
- 5.4.3 Comparison of Three Basic Amplifier Configurations

(三种组态比较)

FET的小信号模型

增强型MOS

$$i_{\rm D} = K_{\rm N} (v_{\rm GS} - V_{\rm T})^2$$

$$g_{\rm m} = 2K_{\rm N}(V_{\rm GS} - V_{\rm T})$$

耗尽型MOS以及JFET

$$i_{\rm D} = I_{\rm DSS} [1 - (v_{\rm GS} / V_{\rm P})]^2$$
 $i_{\rm D} = K_{\rm P} (v_{\rm GS} - V_{\rm P})^2$
 $K_{\rm P} = I_{\rm DSS} / V_{\rm P}^2$
 $g_{\rm m} = 2 K_{\rm P} (V_{\rm GS} - V_{\rm P})$

5.4.1 共源放大电路(CS)

(例1) 某N-JFET共源极放大器

(1) 静态分析

 $(Q: V_{GS}, I_{D}, V_{DS})$

自偏压电路

Q计算:

$$\begin{cases} V_{\text{GS}} = V_{\text{G}} - V_{\text{S}} = 0 - I_{\text{D}}R = -I_{\text{D}}R \\ I_{\text{D}} = I_{\text{DSS}}[1 - (V_{\text{GS}}/V_{\text{P}})]^{2} \\ V_{\text{DS}} = V_{\text{DD}} - I_{\text{D}}(R_{\text{d}} + R) \end{cases}$$

DUT VAME VICE TANK VICE TA

(2) 交流分析

$$\dot{A}_{v} = \frac{V_{o}}{\dot{V}_{i}} = \frac{-g_{m}\dot{V}_{gs}(R_{d}//R_{L})}{\dot{V}_{gs} + g_{m}\dot{V}_{gs}R} = -\frac{g_{m}R'_{L}}{1 + g_{m}R}$$

① Small-signal voltage gain (Av)

$$\dot{A}_{v} = \frac{\dot{V}_{o}}{\dot{V}_{i}} = \frac{-g_{m}\dot{V}_{gs}(R_{d} / / R_{L})}{\dot{V}_{gs}} = -g_{m}R'_{L} R'_{L} = R_{d} / / R_{L}$$

② Input resistance
$$R_i = \frac{V_i}{I} = R_g$$

$$R_{o} = \frac{\dot{V}'_{o}}{\dot{I}'_{o}}\Big|_{R_{L}=\infty,\dot{V}_{s}=0} = R_{o}$$

(例) 某N-JFET共源极放大器

已知Vs和gm

静态分析 (Q点: V_{GS} , I_{D} , V_{DS})

$$I_{\rm D1} = {
m Vs} / {
m R}$$

$$V_{GS} = Vg - V_S = -V_S$$

$$V_{\rm D} = VDD - I_{\rm D1}R_{\rm d}$$

动态分析

$$A_{\rm v} = -g_{\rm m}R'_{\rm L}$$

$$A_{v} = -g_{\rm m}R'_{\rm L}$$
 $R'_{\rm L} = R_{\rm d} // R_{\rm L}$

$$R_i = R_{\rm g}$$

$$R_{\rm o} = R_{\rm d}$$

5.4.1 共源放大电路(CS)

(例2) 某增强型NMOS共源极放大器

NMOS: 低电平端为源级

大信号分析

$$V_{\rm GS} = \frac{V_{CC} R_{g2}}{R_{g1} + R_{g2}}$$

$$V_{\rm DS} = V_{\rm CC} - I_{\rm D} R_{\rm D}$$

$$I_{\mathrm{D}} = K_{\mathrm{N}} (V_{\mathrm{GS}} - V_{\mathrm{T}})^2$$

$$g_{\rm m}=2K_{\rm N}(V_{\rm GS}-V_{\rm T})$$

TANK VC22 THE VIOLE THE VIOLE

交流小信号分析

$$A_{v} = \frac{vo}{vi} = -g_{m}R_{d}$$

$$R_{i} = R_{g1} \| R_{g2}$$

$$R_{o} = R_{d}$$

$$R_i = R_{g1} \| R_{g2}$$

$$R_o = R_d$$

5.4.2 共漏放大电路(CD)

 $CD \iff CC$

(1) 静态分析

分压式偏置电路

(2) AC Analysis

1 Small-signal voltage gain

$$\dot{A}_{v} = \frac{\dot{V}_{o}}{\dot{V}_{i}} = \frac{g_{m}\dot{V}_{gs}(R//R_{L})}{\dot{V}_{gs} + g_{m}\dot{V}_{gs}(R//R_{L})} = \frac{g_{m}R'_{L}}{1 + g_{m}R'_{L}} \quad (R'_{L} = R//R_{L})$$

2 Input resistance

$$R_{\rm i} = R_{\rm g} + (R_{\rm g1} // R_{\rm g2})$$

Output resistance

$$R_{o} = \frac{\dot{V}'_{o}}{\dot{I}'_{o}} \Big|_{R_{L} = \infty, \dot{V}_{s} = 0}$$

$$\dot{\mathbf{I'}}_{o} = \frac{\mathbf{V'}_{o}}{\mathbf{R}} - \mathbf{g}_{m} \dot{\mathbf{V}}_{gs}$$

$$\dot{V}_{gs}$$
 $=$ 0 - \dot{V}_{s} $=$ - \dot{V}'_{o}

$$\dot{I}'_{o} = \frac{\dot{V}'_{o}}{R} + \frac{\dot{V}'_{o}}{\frac{1}{g_{m}}}$$

$$R_{\rm o} = \frac{\dot{V}'_{\rm o}}{\dot{I}'_{\rm o}} = R || \frac{1}{g_{\rm m}}$$

5.4.3 三种组态放大电路比较

BJT-FET

The small-signal characteristics

(交流指标)

$$\frac{\beta}{r_{be}} \Leftrightarrow g_{m}$$

DUT VERM VECT TO STANK VECT TO			
	CE / CC / CB	CS / CD / CG	
	$CE: \dot{A}_{v} = -\frac{\beta R'_{L}}{r}$		
	r_{be}	$CS: \dot{A}_{v} = -g_{m}R'_{L}$	
$\dot{\textbf{A}}_{\text{v}}$	CC: $\dot{A}_{v} = \frac{(1+\beta)R'_{L}}{r_{be} + (1+\beta)R'_{L}}$	$CD: \dot{A}_{v} = \frac{g_{m}R'_{L}}{1 + g_{m}R'_{L}}$	
	$CB : \dot{A}_{v} = + \frac{\beta R'_{L}}{r_{be}}$	$CG: \dot{A}_{v} = +g_{m}R'_{L}$	
R_{i}	CE: R_b / r_{be} CC: $R_b / [r_{be} + (1+\beta)R'_L]$ CB: $Re / [r_{be} / (1+\beta)]$	CS: $R_{g1} / / R_{g2}$ CD: $R_{g} + (R_{g1} / / R_{g2})$ CG: $R / / (1/g_{m})$	
$R_{\rm o}$	CE: R_c $CC: R_e // \frac{r_{be} + R_b // R_s}{1+\beta}$ CB: R_c	CS: R_d CD: $R//(1/g_m)$ CG: R_d	

5.5 Summary and Requirements

Summary: Devices and Circuits

*Devices: FET

- 1. Class (type):
- (1) Carrier involved (2) Physical structure (3) Operation

N-channel

MOSFET

Enhancement-mode

P-channel

JFET

Depletion-mode

2. I-V Characteristics

VCCS (Three regions)

3. Parameters:

$$\mathbf{g_m}$$
, $\mathbf{V_T}$ $(\mathbf{V_P})$

*Circuits: Three configurations, two biasing circuits
DC and AC analysis for CS and CD circuits

两级电压放大电路如下图所示。 T_1 的漏极电位 $V_D = 14V$,其 $g_m =$

- (1) 在T₁位置上画出合适的FET;
- (2) 求 T_1 的静态值 I_D 、 V_{DS} 、 V_{GS} ?
- (3) 求T2的静态值 I_B 、 I_C 、 V_{CE} ?
- (4) 画出微变等效电路,并求 A_V 、 R_i 、 R_o ;
- (5) 求C3引起的 f_L 。

作业:

P249: 5.1.1, 5.1.4

P251: 5.3.4

P251: 5.2.9

P254: 5.5.4 (multistage amplifier)