Thesis Meeting 9

kense, for the thesis

Outline - Timeline

- Are we on track?
 - Feb 12, Exams End
 - Feb 22, Next Semester
- Projected Dates?
 - o Dec?
 - ⊃ Jan, Paper writing

November							December								
S	M	T	W	Т	F	S	S	M	T	W	Т	F	S		
1	2	3	4	5	6	7	29	30	1	2	3	4	5		
8	9	10	11	12	13	14	6	7	8	9	10	11	12		
15	16	17	18	19	20	21	13	14	15	16	17	18	19		
22	23	24	25	26	27	28	20	21	22	23	24	25	26		
29	30	1	2	3	4	5	27	28	29	30	31	1	2		
6	7	8	9	10	11	12	3	4	5	6	7	8	9		
January							February								
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S		

	S	М	Т	W	Т	F	S	S		M	Т	W	Т	F	S
	27	28	29	30	31	1	2	3	1	1	2	3	4	5	6
	3	4	5	6	7	8	9	7	G.	8	9	10	11	12	13
	10	11	12	13	14	15	16	14	4	15	16	17	18	19	20
	17	18	19	20	21	22	23	2	1	22	23	24	25	26	27
	24	25	26	27	28	29	30	28	8	1	2	3	4	5	6
	31	1	2	3	4	5	6	7		8	9	10	11	12	13

Refreshers

- Until-N function $(\varphi U^{\leq N} \omega)$, a modified LTL expression.
- We utilize to find sub-conversations with variables c and I, which are the number of N violations, and the length of the sequence found.
- Finding good values, and tie-ins to similarity measure from before.
- Side-note: Full Abstraction.

LTL-N Sequence Discovery

- Starting with a one -> one label set, omitting labels such as x, misc (leaving nine total labels).
- Looking for properties:
 - 10 < length < 50
 - c < (length*0.5)</p>
- Generates a preliminary list for further consideration
 - Length 30?
 - o c < 20-40%?

LTL-N Sequence Discovery

- The one -> many label set will generate a lot of redundant entries, most likely dismissable as a method to find key values.
- Pick reasonable average length *I* for discovered sequences
- Pick lower percentage of c value compared to length I
- Can it improve clustering?

- Frequency based analysis, using the sequences of sub-conversations.
- Similar to "bag of activities" approach, but bypass the drawbacks (order doesn't matter, context doesn't matter).
- Use weighting on sub-conversations to create a metric, that we can use to modify levenshtein distance (adds on to similarity measure).

For a given trace T_i , from the event log E_i , where i is the number of traces:

 T_i is a sequence of labels a, \ldots, x where $a, x \in \ell$

Where each label x can be assigned a local weight w_{id} where id is the position of the label x in the sequence T_i .

Each label x can be part of a *sub-conversation* Sc, which is a sub-sequence of labels in T_i .

Each label \boldsymbol{a} in \boldsymbol{T}_i is assigned a Total Weight $\boldsymbol{Tw}_{id'}$ where $i\boldsymbol{d}$ is the position of the label in the sequence \boldsymbol{T}_i .

$$Tw_{id} = w_{id} + TF-IDF(a_{id})$$

TF-IDF is a variant based on the normal TF-IDF calculation such that:

TF corresponds to the number of sub-conversations in T_i that a_{id} belongs to, with the condition that $a \in \varphi$ or $a \in \omega$.

IDF = log(# of sub-convos/d), where d corresponds to the number of sub-conversations in T_i that a_{id} belongs to, where $a \notin \varphi$ and $a \notin \omega$.

- Applied as a variant of Levenshtein distance, we can modify the costs based on the weight Tw_{id} of each label a_{id} .
- Insertion/Deletion cost is the weight of the added label, Tw_{id+1}
- Substitution cost is the weight of both adding and removing, Tw_{id+1} Tw_{id}
- This results in another variant of the Levenshtein distance that focuses exclusively on weights with contributing factors from position in the conversation and contribution to sub-conversations.

Trace 2 aaabaadac 9

↓ Delete -Wi a Trace 1 5 & Sub + Wj - Wi C d

Clustering - Big Picture

- The context-trace clustering works as follows:
 - a. Given an event log **K** of **M** traces, and a clustering algorithm.
 - b. Cluster the **M** traces into **N** clusters.
 - c. Discover a process model for each cluster.
 - d. Evaluate the quality of the process model.
- For our uses, we have less interest (currently) on discovering a process model.
- More focused on how similarity measure/weighting can be used to produce "better" clusters.
- In this case, "better" clusters may require further consideration.

Clustering - Weighting + Similarity

- Implement Clustering algorithm
 - with similarity numbers alone (Case A)
 - with weighting alone (Case B)
 - with similarity and weighting (Case C)
- Compare Clustering results with expected results (i.e: traces from the same show get into the same cluster, etc)

Clustering - Results and Discussion

- Case A and Case B clustering both result in expected preliminary outputs.
 - Case A has more distance amongst comparisons, probably due to algorithm
 - Case B has closer distances, weights are more or less uniform
- Case C results are also expected, values without normalizing.
- Since we're only running on three trace event logs, the results are to be expected.
- Move onto automatic labeling for larger event log clustering?