Les fonctions

Une **fonction** est une sorte de machine à laquelle on donne des nombres et qui en retourne d'autres.

Exemple de fonction

Considérons la fonction qui retourne 2x+7 lorsqu'on lui donne x.

Si on lui donne 3, elle retourne 13, car $2\times3+7=13$.

Si on lui donne 5, elle retourne 17, car $2\times5+7=17$.

Nommage et notation

Une **fonction** se nomme avec une lettre minuscule. On utilise généralement la lettre f.

Appelons f la fonction qui retourne 2x+7 lorsqu'on lui donne x.

On écrit f sous la forme $f: x \mapsto 2x+7$ ou f(x)=2x+7.

On note f(3)=13 ce qui se lit : " f de 3 égal 13".

On dit que 13 est l'**image** de 3 par f et 3 est un **antécédent** de 13 par f .

On note f(5)=17 ce qui se lit : " f de 5 égal 17".

On dit que 17 est l'image de 5 par f et 5 est un antécédent de 17 par f .

Attention!

L'**image** d'un nombre est toujours **unique**.

Si f(x)=2x+7, alors 13 est la seule image de 3 par f et 17 est la seule image de 5 par f.

Il est possible d'avoir **plusieurs antécédents**.

Si $f(x)=x^2$, alors le nombre 9 possède deux antécédents par f. Ce sont 3 et -3.

Un nombre peut aussi ne **pas** posséder **d'antécédent**.

Si $f(x)=x^2$, alors le nombre -16 ne possède pas d'antécédent.

Exercices

Ex 1: Quelle est l'image de 6 par la fonction $f: x \mapsto 7x - 9$?

Ex 2: Quelle est l'image de 7 par la fonction $f: x \mapsto 8x + 9$?

Ex 3 : Donné la fonction f(x) = -x - 10 . Écrire sous forme de fraction l'image de $\frac{1}{10}$ par f .

Ex 4: On considère la fonction $f: x \mapsto -9x - 3$. Combien fait f(7)?

Ex 5 : Trouver le nombre x qui a pour image 99 par la fonction $f: x \mapsto 10x - 1$.

Ex 6 : Trouver l'image de -4 par la fonction $f(x)=2x^2+3$.

Représentation graphique d'une fonction

Représentation graphique de la fonction $f: x \mapsto x^2$.

1. On dessine deux axes gradués perpendiculaires.

2. On choisit des valeurs de x comme on veut et on calcule les images f(x). Prenons les entiers de -2 à 2.

On a
$$f(-2)=4$$
 , $f(-1)=1$, $f(0)=0$, $f(1)=1$ et $f(2)=4$.

3. Pour chaque x choisi, on se positionne en x sur l'axe horizontal des abscisses et on place un point ou une croix à la hauteur f(x).

4. On relie les points obtenus de manière harmonieuse.

Attention! Si on on connaît la représentation graphique d'une fonction, on peut lire les images et les antécédents sur le graphique. Exemple :

L'image de 3 est 2. Les antécédents de 2 sont -2,4 et 3.

Exercices

Ex 1: La droite ci-dessous est la représentation graphique d'une fonction f. Quelle est l'image de -2 par f? Quel est l'antécédent de 1 par f?

Ex 2 : La courbe ci-dessous est la représentation graphique d'une fonction f . Quelle est l'image de 1 par f ? Quel est l'antécédent de 2 par f ?

Ex 3 : On souhaite tracer la représentation graphique de la fonction $f: x \mapsto -2x+1$. On commence par calculer f(1) et on place une petite croix sur le graphique. A quel endroit doit-on placer la croix? Tracer la représentation graphique de la fonction $f: x \mapsto -2x+1$.

