Electronic Structure and CO₂ Reactivity of Group IV/V/VI Tetraperoxometalates

Jacob Hirschi

Advisor: Prof. Tim Zuehlsdorff

August 18, 2024

1.5°C Warming Scenario

Direct Air Capture (DAC) Costs

Economies of scale

Present: $$600 - 1,000/t-CO_{2}$

DOE Target: \$**100**/t-CO₂

Engineering

Direct Air Capture (DAC) Costs

Economies of scale

Present: $$600 - 1,000/t-CO_{2}$

DOE Target: \$100/t-CO₂

Engineering

Tetraperoxometalates

Prof. May Nyman

Four O₂²⁻ ligands

d⁰ transition metal, M

Anionic, x-

[V(O₂)₄]³⁻ Tetraperoxovanadate

DAC with $(Cs/\underline{K}/Na)_3\underline{V}(O_2)_4$

> 1 month exposure

Experimental Characterization

IR/Raman Spectra

TGA-MS

CHN Analysis

 $Na_3[V(O_2)_4] + 4$ months exposure

SEM Images

DFT Modelling

Experiment

Simulation

VS

Cluster-model CAM-B3LYP LANL2DZ/6-31+G*

castep.org gaussian.com

DFT Modelling

Experiment

Solid $K_3V(O_2)_4$

Simulation

VS

castep.org gaussian.com

DAC with $K_3V(O_2)_4$

Solid-state Thermo.

Reaction	ΔG _{298 K} (kcal/mol)
$K_3V(O_2)_4 + CO_2 \rightarrow K_3VO(O_2)_2CO_3 + O_2$	-52.1
$K_3VO(O_2)_2CO_3 + CO_2 \rightarrow K_3VO_2(CO_3)_2 + O_2$	-29.5
$K_3V(O_2)_4 + 2CO_2 + H_2O \rightarrow KVO_3 + 2KHCO_3 + O_2$	-92.8
$K_3V(O_2)_4 + H_2O \rightarrow KVO_3 + 2KOH + 2O_2$	-58.2
$K_3VO(O_2)_2CO_3 \rightarrow K_3VO_4 + CO_2 + O_2$	-14.5

Can We Improve the Material?

 $K_3V(O_2)_4$ in vacuum

 $[M(O_2)_4]^{x-}$ in PCM:water

Metal Center, M =

Ti, V, Cr

Zr, Nb, Mo

Hf, Ta, W

Can We Improve the Material?

 $K_3V(O_2)_4$ in vacuum

 $[M(O_2)_4]^{x-}$ in PCM:water

Metal Center, M =

Ti, V, Cr

Zr, Nb, Mo

Hf, Ta, W

Reaction Mechanism

Reaction Mechanism

Rate-Determining (RD) Step

Oxygen atom transfer

Rate-Determining (RD) Step

RD Step Trends 1

RD Step Trends 1

Peroxycarbonate, CO₄²⁻

$$\pi^*(0-0)$$
 Orbital

$$E(HOMO) = -6.26 \text{ eV}$$

$$d_{O-O} = 1.456 \text{ Å}$$

$\pi^*(0-0)$ Orbital

free ligand

CO₄²⁻

-6.26 eV

1.456 Å

int2

RD Step Trends 2

RD Step Trends

Material Degradation

Material Degradation

Carbon Capture

VS

Decomposition

M	$\Delta G_{\mathrm{CO}_2 \text{ cap.}} \Delta G_{\mathrm{decomp.}}$		$\frac{\Delta G_{\mathrm{CO_2 \ cap.}}}{\Delta G_{\mathrm{decomp.}}}$
	(kcal/mol)	(kcal/mol)	
Ti	-69.9	-39.2	1.78
Zr	-54.3	-10.9	4.98
Hf	-53.6	-12.9	4.16
V	-73.2	-82.3	0.89
Nb	-58.6	-55.2	1.06
Ta	-56.2	-53.7	1.05
Cr	-62.8	-114.4	0.55
Mo	-61.1	-104.0	0.59
\mathbf{W}	-59.0	-102.4	0.58

Material Degradation

VS

Decomposition

M	$\Delta G_{ m CO_2\ cap.}$	$\Delta G_{ m decomp.}$	$\frac{\Delta G_{\mathrm{CO}_2 \text{ cap.}}}{\Delta G_{\mathrm{decomp.}}}$	
	(kcal/mol)	(kcal/mol)		
Ti	-69.9	-39.2	1.78	
Zr	-54.3	-10.9	4.98	> 1
Hf	-53.6	-12.9	4.16	
V	-73.2	-82.3	0.89	
Nb	-58.6	-55.2	1.06	~ 1
Ta	-56.2	-53.7	1.05	
Cr	-62.8	-114.4	0.55	
Mo	-61.1	-104.0	0.59	< 1
\mathbf{W}	-59.0	-102.4	0.58	

Conclusion

```
[Ti(O_2)_4]^{4-} is
```

- 1. Faster for DAC ✓
- 2. Stable √

Cost: V_2O_5 \$300/mole TiO_2 \$3/mole

 $_{\Delta G^{\neq}}^{\mathbf{M}}=$ (kcal/mol)

IV	V	VI
Ti 18.6	V 22.3	C r 31.2
Z r 22.8	Nb 26.5	Mo 33.1
Hf 22.7	Ta 26.7	W 34.2

Hirschi, J. S.; Nyman, M.; Zuehlsdorff, T. J. *Under Review JPC A.* **ChemRxiv**. DOI: 10.26434/chemrxiv-2024-blwjs

sigmaaldrich.com 24

Conclusion

 $[Ti(O_2)_4]^{4-}$ is

- 1. Faster for DAC ✓
- 2. Stable √

Cost: V_2O_5 \$300/mole TiO₂ \$3/mole

Hirschi, J. S.; Nyman, M.; Zuehlsdorff, T. J. *Under Review JPC A.* **ChemRxiv**. DOI: 10.26434/chemrxiv-2024-blwjs

sigmaaldrich.com 24

Acknowledgments

Zuehlsdorff Group Nyman Group MaD Lab

DOE Grant DE-SC0022278

Chemistry Department Summer Fellowship (2021)

Publications

- **1. Hirschi, J. S.**; Nyman, M.; Zuehlsdorff, T. J. Electronic Structure and CO₂ Reactivity of Group IV/V/VI Tetraperoxometalates. *Under Review*. *ChemRxiv*.
- 2. Ribó, E. G.; Mao, Z.; **Hirschi, J. S.**; Linsday, T.; Bach, K.; Walter, E. D.; Simons, C. R.; Zuehlsdorff, T. J.; Nyman, M. Implementing vanadium peroxides as Direct Air Carbon Capture Materials. <u>Chem. Sci.</u> 2024, 15, 1700-1713.

Appendix Slides

Functional Bechmarking

Table S3: Gibbs activation barrier of the rate-determining step, int2 — ts2, with various DFT functionals. Values are in units of kcal/mol.

M	PBE	PBE0	M06-2X	MN15	CAM-B3LYP	CAM-B3LYP-D3
Ti	2.9	15.3	25.9	20.1	18.6	18.6
Zr	6.9	19.4	30.3	24.3	22.8	22.7
Hf	6.5	19.3	29.7	23.6	22.7	22.8
V	3.3	17.9	31.2	24.1	22.3	22.4
Nb	6.9	22.7	33.8	27.5	26.5	26.5
Ta	8.2	23.0	33.8	27.6	26.7	26.8
Cr	10.2	27.0	40.3	32.8	31.2	30.9
Mo	8.9	28.5	40.5	34.6	33.1	33.1
W	12.4	30.4	40.8	35.6	34.2	34.2
**	12.7	50.4	10.0	33.0	J T. 2	34.2

Peroxide Orbitals

Figure S5: Qualitative molecular orbital diagram of the peroxide dianion, O_2^{2-} , showing two sets of occupied π and π^* orbitals.

Climate Outcomes

(a) Global surface temperature change relative to 1850–1900

Climate Outcomes

(a) Global surface temperature change relative to 1850–1900

Direct Air Capture (DAC)

carbon capture	_
decomp.	_

	Reaction	ΔG _{298 κ} (kcal/mol)
→	$K_3V(O_2)_4 + CO_2 \rightarrow K_3VO(O_2)_2CO_3 + O_2$	-52.1
	$K_3V(O_2)_4 + 2CO_2 + H_2O \rightarrow KVO_3 + 2KHCO_3 + O_2$	-92.8
	$K_3V(O_2)_4 + H_2O \rightarrow KVO_3 + 2KOH + 2O_2$	-58.2
	$K_3VO(O_2)_2CO_3 \rightarrow K_3VO_4 + CO_2 + O_2$	-14.5

$K_3V(O_2)_4 + CO_2$ Mechanism

Simplified Mechanism

$$CO_2 \rightarrow CO_4^{2-} \rightarrow CO_3^{2-}$$

$$\Delta G_{\mathrm{RD}}^{\neq} = 24.3 \text{ kcal/mol}$$

 $\Delta G_{\mathrm{rxn}} = -64.8 \text{ kcal/mol}$

DAC with Uranium?

Prof. May Nyman

DAC Commercialization

Alkali hydroxides

2NaOH
$$(aq)$$
 + CO₂ (g) \rightarrow Na₂CO₃ (aq) + H₂O (I)

Amine-functionalized solids

b)
$$H_2N$$
 NH_2
 NH_3
 NH_4

DAC Commercialization

Stratos, Late 2024 (planned)

500,000 t-CO₂/yr

Mammoth, May 2024

36,000 t-CO₂/yr

Title here

Text here