MU5IN075 Network Analysis and Mining 4. Random Graph Models I

Esteban Bautista-Ruiz, Lionel Tabourier

LIP6 - CNRS and Sorbonne Université

first_name.last_name@lip6.fr

October 5, 2021

Motivation

Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Outline

- Motivation
- Graphs with given density: Erdős-Rényi graphs
- Watts-Strogatz small-world model
- Barabási-Albert scale-free model

Motivatio

Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Random graphs – Motivation

1: understand the structure

Are the observed properties normal?

Answer: compare to a synthetic random graph

Draw randomly (uniform probability) in the set of graphs

- → observe common properties to the large majority of graphs
- → they are the expected properties

2: simulate processes

Motivati

Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model Barabási-Albert scale-free model

Random graphs – Motivation

1: understand the structure

Are the observed properties normal?

Answer: compare to a synthetic random graph

Draw randomly (uniform probability) in the set of graphs

- \rightarrow observe common properties to the large majority of graphs
- \rightarrow they are the expected properties
- 2: simulate processes

3/30

Motivation

Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Random graphs - Motivation

1: understand the structure

Are the observed properties normal?

Answer: compare to a synthetic random graph

Draw randomly (uniform probability) in the set of graphs

- ightarrow observe common properties to the large majority of graphs
- → they are the expected properties
- 2: simulate processes

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Outline

- Motivation
- 2 Graphs with given density: Erdős-Rényi graphs
- Watts-Strogatz small-world model
- Barabási-Albert scale-free mode

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model

Erdős-Rényi model

version 1: $G_{n,n}$

- n nodes
- any edge exists with a given probability p

Exercise: write a pseudocode to generate $G_{n,p}$

Complexity: $\mathcal{O}(n^2)$

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Erdős-Rényi model

version 1: $G_{n,p}$

- n nodes
- any edge exists with a given probability p

Exercise: write a pseudocode to generate $G_{n,p}$

Complexity: $\mathcal{O}(n^2)$

5/30

Erdős-Rényi model

version 2: $G_{n,m}$

- n nodes
- m edges chosen uniformly at random

Exercise: write a pseudocode to generate $G_{n,m}$

Complexity: $\mathcal{O}(m)$

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Erdős-Rényi model

version 2: $G_{n,m}$

- n nodes
- *m* edges chosen uniformly at random

Exercise: write a pseudocode to generate $G_{n,m}$

Complexity: $\mathcal{O}(m)$

Motivation
Graphs with given density: Erdős-Rémyi graphs
Watts-Strogatz small-world model

Erdős-Rényi model

version 2: $G_{n,m}$

- n nodes
- *m* edges chosen uniformly at random

Exercise: write a pseudocode to generate $G_{n,m}$

Complexity: $\mathcal{O}(m)$

What about multiple edges and self-loops?

Motivation Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model Barabási-Albert scale-free model

Equivalence between $G_{n,p}$ and $G_{n,m}$

In a $G_{n,p}$ ER graph, probability p is the density (δ)

$$p = \frac{2m}{n(n-1)} = 6$$

 $G_{n,m}$ and $G_{n,p}$ are similar if p and m verify this relationship

(note: strictly speaking, the 2 models are not equivalent)

N (6)

$$p = \frac{2m}{n(n-1)} = \delta$$

 $G_{n,m}$ and $G_{n,p}$ are similar if p and m verify this relationship (note: strictly speaking, the 2 models are not equivalent)

Motivation Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model

Degree distributions of ER graphs

Quiz: what is the expected degree distribution?

• probability of having exactly degree *k* for one node?

$$\mathcal{P}(k) = \binom{n-1}{k} p^k \cdot (1-p)^{n-1-k} \rightarrow \text{ binomial law}$$

• average number of neighbors $\langle k \rangle$?

$$\langle k \rangle = \sum_{k=0}^{n-1} \mathcal{P}(k).k = \dots = (n-1)p$$

• standard deviation σ_k of the degree distribution?

$$\sigma_k = \sqrt{\langle k^2 \rangle - \langle k \rangle^2} = \ldots = \sqrt{\langle k \rangle}$$

Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world mode
Barabási-Albert scale-free mode

Degree distributions of ER graphs

Quiz: what is the expected degree distribution?

• probability of having exactly degree k for one node?

$$\mathcal{P}(k) = \binom{n-1}{k} p^k \cdot (1-p)^{n-1-k} \rightarrow \text{ binomial law}$$

• average number of neighbors $\langle k \rangle$?

$$\langle k \rangle = \sum_{k=0}^{n-1} \mathcal{P}(k).k = \ldots = (n-1)p$$

• standard deviation σ_k of the degree distribution?

$$\sigma_k = \sqrt{\langle k^2 \rangle - \langle k \rangle^2} = \dots = \sqrt{\langle k \rangle}$$

Motivatior
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world mode
Barabási-Albert scale-free mode

Degree distributions of ER graphs

Quiz: what is the expected degree distribution?

• probability of having exactly degree *k* for one node?

$$\mathcal{P}(k) = {n-1 \choose k} p^k \cdot (1-p)^{n-1-k} \rightarrow \text{ binomial law}$$

• average number of neighbors $\langle k \rangle$?

$$\langle k \rangle = \sum_{k=0}^{n-1} \mathcal{P}(k).k = \ldots = (n-1)p$$

• standard deviation σ_k of the degree distribution?

$$\sigma_k = \sqrt{\langle k^2 \rangle - \langle k \rangle^2} = \ldots = \sqrt{\langle k \rangle}$$

Graphs with given density: Erdős-Rényi graphs

Barabási-Albert scale-free mod

Degree distributions of ER graphs

Quiz: what is the expected degree distribution?

• probability of having exactly degree k for one node?

$$\mathcal{P}(k) = \binom{n-1}{k} p^k \cdot (1-p)^{n-1-k} \rightarrow \text{ binomial law}$$

• average number of neighbors $\langle k \rangle$?

$$\langle k \rangle = \sum_{k=0}^{n-1} \mathcal{P}(k).k = \ldots = (n-1)p$$

• standard deviation σ_k of the degree distribution?

$$\sigma_{k} = \sqrt{\langle k^{2} \rangle - \langle k \rangle^{2}} = \ldots = \sqrt{\langle k \rangle}$$

Barabási-Albert scale-free mode

Graphs with given density: Erdős-Rényi graphs

Notion of expected property

Example: Erdős-Rényi random graph $G_{n,m}$, n=m=4950

Result: clique of 100 nodes and other 4850 nodes degree 0

Surprising?

Graphs with given density: Erdős-Rényi graphs

Notion of expected property

Example: Erdős-Rényi random graph $G_{n,m}$, n=m=4950

Result: clique of 100 nodes and other 4850 nodes degree 0

Surprising?

Probability to have degree 0: $\mathcal{P}(k=0) = (1-p)^m \sim 0.135$.

Graphs with given density: Erdős-Rényi graphs

Notion of expected property

Example: Erdős-Rényi random graph $G_{n,m}$, n=m=4950

Result: clique of 100 nodes and other 4850 nodes degree 0

Surprising?

Probability to have degree 0: $\mathcal{P}(k=0) = (1-p)^m \sim 0.135$.

⇒ Expected number of degree 0 nodes: $\mathcal{P}(k=0) \cdot n \sim 670$ to be compared with 4850...

Notion of expected property

Example: Erdős-Rényi random graph $G_{n,m}$, n=m=4950

Result: clique of 100 nodes and other 4850 nodes degree 0

Surprising?

Probability to have degree 0: $\mathcal{P}(k=0) = (1-p)^m \sim 0.135$.

⇒ Expected number of degree 0 nodes:

 $\mathcal{P}(k=0) \cdot n \sim 670$ to be compared with 4850...

→ seems very unlikely

how unlikely? statistical tests, out of NAM scope (\rightarrow NDA)

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Connectedness of ER graphs

Do ER graphs exhibit a giant component?

Experimental approach: the percolation phenomenon

https://www.complexity-explorables.org/explorables/the-blob/

9/30

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model

Connectedness of ER graphs

Do ER graphs exhibit a giant component?

Experimental approach: the percolation phenomenon

https://www.complexity-explorables.org/explorables/the-blob/

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Connectedness of ER graphs

Do ER graphs exhibit a giant component?

Experimental approach: the percolation phenomenon

https://www.complexity-explorables.org/explorables/the-blob/

Some real graphs:

- Internet AS level (CAIDA data): $\langle k \rangle \simeq 4.03$
- US power grid (T. Opsahl data): $\langle k \rangle \simeq 2.67$
- Scientific collaborations (GaTech data): $\langle k \rangle \simeq 3.75$
- Yeast metabolic network (Y. Moreno data): $\langle k \rangle \simeq$ 2.44
- \bullet Actor collaborations (Notre-Dame data): $\langle \textit{k} \rangle \simeq$ 173.3

⇒ Existence of a giant component explained by density alone

Connectedness of ER graphs

Do ER graphs exhibit a giant component?

Experimental approach: the percolation phenomenon

https://www.complexity-explorables.org/explorables/the-blob/

Some real graphs:

- Internet AS level (CAIDA data): $\langle k \rangle \simeq 4.03$
- US power grid (T. Opsahl data): $\langle k \rangle \simeq 2.67$
- Scientific collaborations (GaTech data): $\langle k \rangle \simeq 3.75$
- Yeast metabolic network (Y. Moreno data): $\langle k \rangle \simeq 2.44$
- Actor collaborations (Notre-Dame data): $\langle k \rangle \simeq 173.3$

⇒ Existence of a giant component explained by density alone

Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barahási-Albert scale-free model

Clustering of ER graphs

Quiz: What clustering coefficient do you expect for ER graphs?

clue: think of the probabilistic interpretation of the co

10/3

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Clustering of ER graphs

Quiz: What clustering coefficient do you expect for ER graphs? *clue:* think of the probabilistic interpretation of the cc

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Distances in ER graphs

Rough hypothesis: no cycles...

credits image: V.Gauthier

⇒ Short distances explained by density alone

Graphs with given density: Erdős-Rényi graphs

Summary of ER graphs properties

- Density
- Connectedness
- Average distance, diameter

Graphs with given density: Erdős-Rényi graphs

Summary of ER graphs properties

- Density set by operator
- Connectedness giant component, size $\mathcal{O}(n)$ (if $m \ge n$)
- Average distance, diameter $\sim \log(n)$ (if $m \ge n$)

Graphs with given density: Erdős-Rényi graphs

Summary of ER graphs properties

- Degree distribution
- Clustering coefficient
- Communities

Summary of ER graphs properties

- Degree distribution homogeneous
- Communities no

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-vorid model

Summary of ER graphs properties

	real	ER
density	low	?
connectedness	giant comp.	?
distances	low	?
degree distrib.	heterogeneous	?
clustering	high	?
communities	yes	?

Motivation

Graphs with given density: Erdős-Rényi graphs

Watts-Strogatz small-world model

Summary of ER graphs properties

	real	ER
density	low	low
connectedness	giant comp.	giant comp.
distances	low	low
degree distrib.	heterogeneous	homogeneous
clustering	high	low
communities	yes	no

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Conclusion on Erdős-Rényi graphs

Real-world complex networks are very different from random Erdős-Rényi graphs

Consequences

- Resemblances (connectedness, distances) can be explained with this simple model
- In general, not a good model for simulations, proofs . . .

→ Other models?

400

Outline

- Motivation
- 2 Graphs with given density: Erdős-Rényi graphs
- Watts-Strogatz small-world model
- Barabási-Albert scale-free model

Graphs with given density: Erdős-Rényi graphs

Watts-Strogatz small-world model

Barabási-Albert scale-free model

General idea of the Small-World model

Reminder: Milgram's Small-World experiment

Small-world: small average distance, high clustering

From a regular network, random reconnections of edges with probability p:

Watts et Strogatz - Nature, 1998

16/3

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barahási Albert szale-free model

General idea of the Small-World model

Reminder: Milgram's Small-World experiment

Small-world: small average distance, high clustering

From a regular network, random reconnections of edges with

probability p:

Watts et Strogatz - Nature, 1998

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Degree distributions of SW graphs

Quiz: what is the expected degree distribution?

- regular graph?
- random graph?
- intermediary case?

16/30

Degree distributions of SW graphs

Quiz: what is the expected degree distribution?

- regular graph? all nodes have the same degree
- random graph?
- intermediary case?

Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model Barabási-Albert scale-free model

Degree distributions of SW graphs

Quiz: what is the expected degree distribution?

- regular graph? all nodes have the same degree
- random graph? Erdős-Rényi case: binomial
- intermediary case?

7/30

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model

Degree distributions of SW graphs

Quiz: what is the expected degree distribution?

- regular graph? all nodes have the same degree
- random graph? Erdős-Rényi case: binomial
- intermediary case? somewhere inbetween

 \Rightarrow homogeneous

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Clustering in SW graphs

Quiz: what is expected for the average clustering coefficient?

- regular graph?
- random graph?
- intermediary case?

17/30

Clustering in SW graphs

Quiz: what is expected for the average clustering coefficient?

- regular graph? neighbors are connected: 1
- random graph?
- intermediary case?

Graphs with given density: Erdős-Rényi graphs

Watts-Strogatz small-world model

Barabási-Albert scale-free model

Clustering in SW graphs

Quiz: what is expected for the average clustering coefficient?

- regular graph? neighbors are connected: 1
- random graph? Erdős-Rényi case: low (like density)
- intermediary case?

18/30

Graphs with given density: Erdős-Rényi graphs

Watts-Strogatz small-world model

Barabási-Albert scale-free model

Clustering in SW graphs

Quiz: what is expected for the average clustering coefficient?

- regular graph? neighbors are connected: 1
- random graph? Erdős-Rényi case: low (like density)
- intermediary case? somewhere inbetween

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Paths length in SW graphs

Quiz: what is the expected for the path length?

- regular graph?
- random graph?
- intermediary case?

18/

18/30

Paths length in SW graphs

Quiz: what is the expected for the path length?

- regular graph? some nodes are far away
- random graph?
- intermediary case?

Graphs with given density: Erdős-Rényi graphs

Watts-Strogatz small-world model

Barabási-Albert scale-free model

Paths length in SW graphs

Quiz: what is the expected for the path length?

- regular graph? some nodes are far away
- random graph? Erdős-Rényi case $\sim log(n)$, short
- intermediary case?

9/30

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model

Paths length in SW graphs

Quiz: what is the expected for the path length?

- regular graph? some nodes are far away
- ullet random graph? Erdős-Rényi case $\sim log(n)$, short
- intermediary case? somewhere inbetween

Motivation Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model Barabási-Albert scale-free model

Trade-off clustering/path length in SW graphs

https://mathinsight.org/applet/small_world_network

9/30

Motivation Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model

Small-World model implementation

```
Algorithm 1: WS generation
Parameters: p (rewiring proba); G = (V, E): k-regular graph
foreach u = (i, j) in E do
    * i' \leftarrow i; j' \leftarrow j
    r_i random float \in [0; 1]
   if r_i < p then
        draw a random node n_i \in V \setminus \{i\}
       i' \leftarrow n_i
    end
    r_i random float \in [0; 1]
   if r_i < p then
        draw a random node n_i \in V \setminus \{j\}
       j' \leftarrow n_i
   end
   if no loop and no multi-edge then u \leftarrow (i', j') else go to *
end
```

Graphs with given density: Erdős-Rényi graphs

Watts-Strogatz small-world model

Barabási-Albert scale-free model

Summary of SW graphs properties

	real	small-world
density	low	?
connectedness	giant comp.	?
distances	low	?
degree distrib.	heterogeneous	?
clustering	high	?
communities	yes	?

Motivation Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model

Summary of SW graphs properties

	real	small-world
density	low	low
connectedness	giant comp.	giant comp.
distances	low	low
degree distrib.	heterogeneous	homogeneous
clustering	high	high
communities	yes	no

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Outline

- Motivation
- 2 Graphs with given density: Erdős-Rényi graphs
- Watts-Strogatz small-world model
- 4 Barabási-Albert scale-free model

22/30

Meaning of scale-free

fr: sans échelle ou invariant d'échelle

Reminder: degree distribution follows a power-law:

$$\mathcal{P}(\mathbf{k}) = \mathbf{A} \cdot \mathbf{k}^{\alpha} + \mathbf{B}$$

In practice for real networks:

$$\mathcal{P}(k) \propto k^{-\gamma}$$
 with $2 \leq \gamma \leq 3$

 \Rightarrow degree distrib. in log-scale is a line with slope $(-\gamma)$

24/3

Motivation Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model Barabási-Albert scale-free model

Scale-Free model

fr: modèle sans échelle
Barabási and Albert - Science, 1999

Graph built according to the **preferential attachment** law:

probability for a node i to be connected to a new comer proportional to degree k_i

Motivation: this process leads to a power-law degree distribution (not proved here)

Ad hoc justification: generative process in agreement with the *"rich gets richer"* rule (or Merton's *"Matthew's effect"*)

Motivatior
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world mode
Barabási-Albert scale-free mode

Meaning of scale-free

fr: sans échelle ou invariant d'échelle

Reminder: degree distribution follows a power-law:

$$\mathcal{P}(\mathbf{k}) = \mathbf{A} \cdot \mathbf{k}^{\alpha} + \mathbf{B}$$

In practice for real networks:

$$\mathcal{P}(k) \propto k^{-\gamma}$$
 with $2 \leq \gamma \leq 3$

 \Rightarrow degree distrib. in log-scale is a line with slope $(-\gamma)$

2=//

Watts-Strogatz small-world model Barabási-Albert scale-free model

Graphs with given density: Erdős-Rényi graphs

Scale-Free model

fr: modèle sans échelle Barabási and Albert - Science, 1999

Graph built according to the preferential attachment law:

probability for a node i to be connected to a new comer proportional to degree k_i

Motivation: this process leads to a power-law degree distribution (not proved here)

Ad hoc justification: generative process in agreement with the *"rich gets richer"* rule (or Merton's *"Matthew's effect"*)

25/30

Scale-Free model

fr: modèle sans échelle Barabási and Albert - Science, 1999

Graph built according to the preferential attachment law:

probability for a node i to be connected to a new comer proportional to degree k_i

Motivation: this process leads to a power-law degree distribution (not proved here)

Ad hoc justification: generative process in agreement with the *"rich gets richer"* rule (or Merton's *"Matthew's effect"*)

Motivation Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model Barabási-Albert scale-free model

Barabási-Albert scale-free model

```
Algorithm 2: BA generation (n \text{ nodes}, (n-n_0)\alpha+m_0 \text{ edges})

Parameters: n, G, \alpha (degree arriving node)

with G connected graph with n_0 nodes and m_0 edges,

for i from (n_0+1) to n do

add node i to G

num = 0 \qquad // num: number of links of i

while num < \alpha do

\text{draw } j \in \llbracket 0; i-1 \rrbracket \text{ with probability } \mathcal{P}(j) = \frac{k_j}{\sum\limits_{q=0}^{j-1} k_q}

if (i,j) \notin G then
\text{add edge } (i,j) \text{ in } G
\text{num}++
end
end
```

25/30

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Degree distributions of BA graphs: influence of the parameters

For $\alpha = 1, 3, 5$:

Slope independent of m Theoretical slope: $\gamma \simeq 3$

Motivatior Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world mode Barabási-Albert scale-free mode

Visual comparison to ER graphs

credits image: V.Gauthier

Clustering of SW graphs

Quiz: what is the clustering coefficient in the $\alpha = 1$ case? other cases?

→ clustering is very low, even nul

Motivation Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model Barabási-Albert scale-free model

Clustering of SW graphs

Quiz: what is the clustering coefficient in the $\alpha = 1$ case? other cases?

→ clustering is very low, even null

29/30

Motivation
Graphs with given density: Erdős-Rényi graphs
Watts-Strogatz small-world model
Barabási-Albert scale-free model

Clustering of SW graphs

Quiz: spreading experiment: what do you expect comparing spreading on a real network and on a BA model?

→ clustering (local density) tends to slow down spreading

Motivation Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model Barabási-Albert scale-free model

Clustering of SW graphs

Quiz: spreading experiment: what do you expect comparing spreading on a real network and on a BA model?

→ clustering (local density) tends to slow down spreading

29/30

Properties of the Scale-Free model

	real	scale-free
density	low	?
connectedness	giant comp.	?
distances	low	?
degree distrib.	heterogeneous	?
clustering	high	?
communities	yes	?

Motivation Graphs with given density: Erdős-Rényi graphs Watts-Strogatz small-world model Barabási-Albert scale-free model

Properties of the Scale-Free model

	real	scale-free
density	low	low
connectedness	giant comp.	giant comp.
distances	low	low
degree distrib.	heterogeneous	scale-free
clustering	high	low, even 0
communities	yes	no

30/30