

Wi-Fi Security: Threats & Solutions

Bheemarjuna Reddy Tamma

IIT Hyderabad

Credits: Some slides and pics in this presentation are adapted from William Stallings textbook on Wireless Security, Kurose and Ross textbook on Computer Networking, slides of Mathy Vanhoef, a host of others and Internet sources

Outline

- □ Wi-Fi Architecture
- □ Why Wi-Fi Security is important?
- □ Wi-Fi Security Threats
- □ Wi-Fi Security Standards
- Uulnerabilities in Wi-Fi Security Stds
- □ What WPA3 offers?
- □ Wi-Fi Security: Best Practices to mitigate

802.11 WLAN (Wi-Fi) Architecture

Cell 2

- * Basic Service Set (BSS) (aka "cell")
 - Building block of IEEE802.11 WLAN
 - In infrastructure mode, a cell contains:
 - Wireless clients/stations
 - Access Point (AP)
- WLAN controller in enterprise deployments

Why Wi-Fi Security is IMP?

More than half of world's data is carried by Wi-Fi!

Source: Cisco VNI Global IP Traffic Forecast, 2017-2022

transmitting this frame

802.11 (Wi-Fi) Packet Format

How does a STA join Wi-Fi network?

Wi-Fi Security Threats

- 1) Eavesdropping
- Denial of Service (DoS) attacks
- 3) Man-in-the-middle (MITM) attacks
- Malicious association to rogue (AP) networks
- 5) AP configuration over HTTP

Hacking Wi-Fi Networks

- □ Tools of the trade
 - Wireshark/Tcpdump
 - AirCrack-NG
 - Kismet
 - WEPCrack/AirSnort
 - CoWPAtty
 - NetStumbler
 - WiFuzz
 - Pyrit, Fern
 - Cain & Able
 - AirXploit
 - so on...

Free/Paid, Public Wi-Fi is Open!

Threat-1: Eavesdropping on Open Wi-Fi Networks

Hacker's device

- Here AP is not malicious, just open (no encryption of link b/w AP and STA)
- □ Easy to intercept traffic, but almost impossible to detect ⊗
- Many tools available: Wireshark/Tcpdump/airdump-ng/...
- Affects Confidentiality of data exchanged

Free Wi-Fi led to spike in Cyber attacks!

Threat-2: Denial of Service (DoS) attacks

- Frequency jamming
 - Not very technical, but works very well
- Spoofed Deauthentication / Disassociation messages
 - Wi-Fi Control/Mgmt frames are not protected in 802.11i std
 - Can target one specific user or all connectd to AP or Wi-Fi network
- Evil Twin: Rogue APs on legitimate WLAN system
 - Only client-side authentication
- □ Black hole evil twin
- Battery exhaustion

https://aircrack-ng.org/

```
# -0 represents that it is DeAuth
# 500 is the number of times the DeAuth message has to be sent.
# mon0 is the interface on which monitor mode is on.

# Broadcast DeAuth with known SSID
$ sudo aireplay-ng -0 500 -e Victim mon0

# DeAuth particular client (E4:F8:9C:22:DB:39 here).
$ sudo aireplay-ng -0 500 -e Victim -c E4:F8:9C:22:DB:39 mon0

# Broadcast DeAuth with known AP MAC address (34:DE:1A:27:04:70 here).
$ sudo aireplay-ng -0 500 -a 34:DE:1A:27:04:70 mon0

# DeAuth particular client (E4:F8:9C:22:DB:39 here).
$ sudo aireplay-ng -0 500 -a 34:DE:1A:27:04:70 -c E4:F8:9C:22:DB mon0
```

aireplay-ng [Aircrack-ng]

Threat-3a: MITM attacks in Open Wi-Fi

Man-in-the-middle attack over WiFi

- Malicious Hotspots: Free, open networks that snoop into data sent/received
- □ Affects confidentiality and integrity of data exchanged

Threat-3b: MITM using Evil Twin Hotspot

□ Rogue APs on legitimate and protected Wi-Fi networks

 Attacker masquerades as a legitimate (secure) AP to inspect or modify data, or attempt social engineering attacks to obtain personal information

Threat-3c: Multi-Channel MITM Attack

- Attacker /w two Wi-Fi radios (by MAC ID spoofing and using DeAuth/CSA messages) tries to exploit a protocol or implementation weakness by relaying, suppressing, modifying, or injecting messages
 - 2014-acsac-body-raw.pdf (acm.org)
 - Operating Channel Validation: Preventing Multi-Channel Man-in-the-Middle Attacks Against Protected Wi-Fi Networks (mathyvanhoef.com)

Threat-3d: MITM using ARP Poisoning

- Address Resolution Protocol (ARP) requests are used to get MAC address associated with IP address of a device
- □ Trudy send gratuitous ARP messages to Alice giving her MAC address as that of Bob and vice versa
 - Run a Man-in-the-Middle attack on a WiFi hotspot (poly.edu) & arp-request reinjection [Aircrack-ng]

Demo of MITM Attack

Threat-4: Open AP configuration over HTTP

How to stay safe on public Wi-Fi?

$\sqrt{D0}$:

- Try VPN (Virtual Private Network) to make your public Wi-Fi connection private
- Only visit sites using

Turn OFF file sharing

Access content with a VPN

How to stay safe on public Wi-Fi?

× Don't:

- Allow your Wi-Fi to auto-connect to open networks
- Log into an App that contains sensitive info. Go to the website instead to verify it uses HTTPS before logging in
- Leave your Wi-Fi radio on if you are not using it
- Click unexpected links, attachments, or pop-ups
- Access websites that hold your sensitive information, such as bank or healthcare accounts and e-commerce sites

References

- □ IEEE 802.11 Std: https://doi.org/10.1109/IEEESTD.2022.9930960
- https://code.google.com/archive/p/wifuzz/wikis/WiFuzz.wiki
- http://www.secdev.org/projects/scapy/
- https://www.eetimes.com/document.asp?doc_id=1206324
- https://thebestvpn.uk/unsecured-wifi-network/
- https://witestlab.poly.edu/blog/conduct-a-simple-man-in-the-middle-attack-on-a-wifi-hotspot/
- https://wirelesslywired.com/2017/07/05/following-the-802-1x-aaa-process-with-packet-captures/
- https://whisperlab.org/introduction-to-hacking/lectures/wifiexploitation

Wi-Fi Security Standards

- □ 1997→Wired Equivalent Privacy (WEP)
- □ 2003→Wireless Protected Access (WPA)
- □ 2004→WPA2 (IEEE 802.11i)
- □ 2019→WPA3 (Wi-Fi 6/6E devices support it)

Wired Equivalent Privacy (WEP)

- Original solution offered by IEEE 802.11 std
- Uses RC4 encryption algo (stream cipher) with pre-shared keys (40-bit or 104-bit) and 24-bit Initialization Vectors (IV)

- □ Flawed design, easily broken
 - There's no key management
 - All users always share the same WEP key
 - Used for both authentication and encryption ⊗
 - IV is too small, sent in clear text and its reuse caused problems
 - Tools to break WEP are widely available (e.g., AirCrack-ng)

WPA2 and WAP3

- □ Wireless Protected Access 2 (WPA2)
 - WPA2 is Wi-Fi alliance name for 802.11i amendment
 - Two variants: WPA2-Enterprise and WPA2-Personal
 - WPA2-Enterprise uses 802.1X for access control
 - Uses Extensible Authentication Protocol (EAP) for authentication and key exchange, e.g., EAP-TLS, EAP-PEAP
 - Confidentiality and integrity protocol: AES-CCMP
- □ WPA3
 - WPA3-Personal, WPA3-Enterprise and Enhanced Open
 - Support for protected management frames and an optional enhanced crypto mode

802.1X Access Control in WPA2-Enterprise

WPA2/802.1X architecture

- Supplicant wants to access the wired network via the AP, so it sends Authentication credentials to Authentication Server (AS) with 802.1X (EAP)
- AS authenticates the supplicant and "tells" the AP whether access to controlled ports should be allowed or not
 - So, AP is simply a pass-through device during authentication process
- Authenticator (AP) then enables network access for the supplicant after successful authentication
- E.g., Enterprise Wi-Fi and Eduroam services

WPA2: Authentication and Key Management Architecture

WPA2: Key Hierarchy

(Password Based Key Derivation Function)

group i.e. broadcast key)

for session keys)

Two alternative ways to obtain keys:

- I. 802.1X
 authentication=
 WPA2-EAP =
 WPA2-Enterprise
 - Mutual auth of STA/AP
- II. Preshared key
 (PSK)
 authentication =
 WPA2-PSK =
 WPA2-Personal
 - Home/small business
 - > No AS in network
 - Only STA auth by AP

WPA2-Enterprise: Operational Phases

Authentication Overview

Example: EAP-TLS (1/2)

Example: EAP-TLS (2/2)

AS AP STA **AP-RADIUS Key** MasterKey = TLS-PRF(PreMasterKey, "master secret" || random₁ || random₂) 802.1X/EAP-Response(TLS **RADIUS Access Request/EAP**client_key_exchange || TLS || TLS Response certificate || TLS certificateVerify || TLS change_cipher_suite || TLS finished **RADIUS Access** 802.1X/EAP-Request(TLS **Challenge/EAP-Request** change_cipher_suite || TLS finished) **RADIUS Access Request/EAP-**802.1X/EAP-Response **Response Identity** PMK = TLS-PRF(MasterKey, "client EAP encryption" || random₂) **RADIUS Accept/EAP-**802.1X/EAP-Success

Success, PMK

Full WPA2 Authentication (EAP-TLS) & Key Exchange

WPA2-PSK/EAP: 4-Way Handshake

WPA2-PSK/EAP: 4-Way Handshake

Both WPA2-PSK & EAP make use of AES-CCMP to encrypt data

Encryption of 802.11 MAC Payloads

Both WPA2-PSK & EAP make use of AES-CCMP (Counter Mode-Cipher Block Chaining Message Authentication Code Protocol) to encrypt data (confidentiality, /w Counter Mode) and to offer integrity protection (/w MAC/MIC)

<u>CWSP - CCMP Encryption Method | mrn-cciew (mrncciew.com)</u>

IITH Wi-Fi

□ Cisco Aironet 3700 Series Access Points

- Dual-band 2.4 and 5 GHz with 802.11ac Wave 1 (draft std) support
- Servers 11a/b/g/n/ac STAs /w integrated radios
- Supports 20-, 40- and 80 MHz channels
- Max Tx Power of 23 dBm (200 mW)
- 4*4 MIMO with 3 spatial streams
- A-MSDU and A-MPDU aggregation, WMM (11e)
- 802.11 Dynamic Frequency Selection (DFS)
- PHY data rates up to 1.3 Gbps (80 MHz on 5 GHz)
- Data Sheet

□ Cisco 5508 WLAN Controller

- CAPWAP Architecture where APs are kept in light-weight (split-MAC) mode
 - CAPWAP: Control and Provisioning of Wireless Access Points, IETF std
 - Timing-dependent operations are generally managed locally on CAPWAP AP,
 while more complex, less time-dependent operations are managed on the WLC
 - Beacons, control and data frames, encryption by CAPWAP AP, rest by WLC
 - Central configuration, management of APs & two-way (UDP) tunneling of traffic b/w Controller and APs
 - Load-balancing, interference management (DFS), Uninterrupted network access when roaming, QoS, power control, etc
- Supports up to 500 APs and 7000 STAs
- □ Data Sheet

Secure Wireless Topology, EAP Message Flow, Credit: Cisco

PEAP

Cloud based Wi-Fi Mgmt

Attacks on WPA2!

- Eavesdropping (esp OPEN networks)
- WPA2-PSK: MITM attacks
 - Association with Evil Twin APs
- WPA2-PSK: Offline dictionary attacks
- WPA2-PSK/EAP: KRACK attacks
- AP configuration over HTTP
- Denial of Service (DoS) attacks

CRACKING WPA2-PSK PASSWORD WITH OFFLINE DICTIONARY ATTACK

Cracking wpa [Aircrack-ng]

WPA2: Key Hierarchy (recap)

PBKDF2=Password Based Key Derivation Function #2

PSK = PBKDF2(HMAC-SHA1, passphrase, SSID, 4096, 256)

HMAC-SHA1 is a hash based Message Authentication code using SHA1 with passphrase as key and SSID as salt

N_{AP}: Nonce of AP

Nonce: Numbed used once!

WPA2-PSK Offline Dictionary Attack

Demo of Cracking WPA2-PSK

https://www.youtube.com/watch?v=WfYxrLaqlN8 https://www.youtube.com/watch?v=Usw0IlGbkC4

KRACK: Key Reinstallation Attacks on WPA2

- □ Discovered by Mathy Vanhoef, KU Leuven in 2017
- □ Kind of weakness/ambiguity in .11i std, so effects varied across OS implementations
- □ So, many devices with Wi-Fi radio were affected
 - Linux and Android 6.0 or higher were highly vulnerable
 - All data from victim could be decrypted
- Main attack is against the 4-way handshake of the WPA2 protocol
 - Both WPA2-Personal and WPA2-Enterprise were vulnerable
- ☐ It does not recover passphrase of Wi-Fi network
 - Also does not recover (any parts of) the fresh encryption key (PTK) that is negotiated during the 4-way handshake.

Encryption of 802.11 MAC Payloads

→ Nonce reuse implies keystream reuse (in all WPA2 ciphers)

KRACK: MITM attack on 4-Way H/S

Reinstallation Attack

KRACK Attack: Demo

KRACK - Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2 - YouTube

KRACK Attack: Presentation

Release the Kraken: New KRACKs in the 802.11 Standard - YouTube

How to defend against KRACK?

- □ 802.11i std was amended as follows:
 - When an already-in-use key is being reinstalled, the standard now states that the associated transmit nonce and receive replay counter should not be reset!
 - But it does not prevent group key reinstallation attacks 🕾

WPA3: Must for Wi-Fi 6 & Beyond

- I. WPA3-Enterprise
- WPA3-Personal leverages Simultaneous
 Authentication of Equals (SAE) to protect users
 against offline dictionary attacks
- Enhanced Open for encryption without authentication in Open networks

WPA3-Enterprise

- Supports Management Frame Protection (MFP)
- Still leverages 802.1X/EAP for authentication like WPA2
- 3 modes of operation
 - WPA3-Enterprise Only
 - WPA3-Enterprise Transition
 - WPA3-Enterprise 192-bit (optional)
 - 256-bit GCMP/AES instead of 128-bit CCMP/AES
 - BIP-GMAC-256 for MFP instead of BIP-CMAC-128
 - EAP-TLS as the authentication protocol

WPA2-Personal vs WPA3-Personal

https://balramdot11b.com/2020/05/17/wpa3-and-dragonfly-sae/

WPA3-Personal: Dragonfly

- Dragonfly: Offline Dictionary Attack Resistance for PSK Passwords
 - Even when users choose weak passwords
 - IETF RFC 7664 and Section 12.4 (SAE) of IEEE 802.11 Std
 - Simultaneous Authentication of Equals (SAE)
- SAE is a variant of Diffie-Hellman key exchange to facilitate both encryption key generation & mutual AUTH
 - SAE handshake (commit and confirm msgs with password) to derive a fresh PMK at STA and AP after mutual AUTH
 - PMK is used to get PTK by doing 4-way handshake as usual
- □ Forward secrecy: Even if passphrase is leaked at a later point in time, it still cannot be used to decrypt the eavesdropped packets from the past unlike WPA2

WPA3: OWE

- OWE: Opportunistic Wireless Encryption for Open SSIDs
 - Meant for open/public APs
 - Encryption w/o authentication like securely reading <u>https://www.thehindu.com/</u> without login
 - Diffie-Hellman key exchange, does not require any certs
 - OWE handshake using Re(association) REQ/RES negotiates a new PMK b/w STA and AP
 - Not a replacement for any of existing auth methods
 - Does not offer AUTH (both client-side and AP-side)
 - Solution for client-side AUTH: Captive portal
 - No solution for server-side AUTH
 - Rogue APs (Evil Twins) can still be setup

Attacks on WPA3!

https://www.youtube.com/watch?v=MWaIhYaQuM8 https://www.youtube.com/watch?v=tRWMp3jXlRg https://www.youtube.com/watch?v=44I1wfgGT80

Announcements

- □ Quiz-2 paper distribution
 - April 1st
- □ Quiz-3
 - April 30th morning session
 - Topics: HTTPS, IPSEC, DNSSEC, Wi-Fi Security
- Secure-chat assignment evaluations
 - April 2nd week
 - Contact TAs for the slot assignment

References

- □ IEEE 802.11 Stds: http://standards.ieee.org/about/get/802/802.11.html
 - 802.11i and 802.11w
- □ https://code.google.com/archive/p/wifuzz/wikis/WiFuzz.wiki
- http://www.secdev.org/projects/scapy/
- □ https://www.eetimes.com/document.asp?doc_id=1206324
- https://www.krackattacks.com/
- https://www.aircrack-ng.org/
- https://thebestvpn.uk/unsecured-wifi-network/
- https://asecuritysite.com/encryption/
- https://networkwizkid.com/2019/11/16/capturing-eapol-and-radius-using-wireshark/
- https://witestlab.poly.edu/blog/conduct-a-simple-man-in-the-middle-attack-on-a-wifihotspot/
- https://wirelesslywired.com/2017/07/05/following-the-802-1x-aaa-process-with-packet-captures/
- https://whisperlab.org/introduction-to-hacking/lectures/wifi-exploitation
- https://mrncciew.com/2014/08/19/cwsp-ccmp-encryption-method/

WPA2 & WPA3 Attacks (Videos)

- □ KRACK (2017)
 - https://www.youtube.com/watch?v=Oh4WURZoR98
- □ YouTube Playlist on WPA2 Attacks
 - https://www.youtube.com/watch?v=f0gJswt7nAc
 - WPA2 Encryption Basics | Part 1 | WPA2 Key Installation KRACK Attacks - YouTube
- □ FragAttacks (2021)
 - https://www.fragattacks.com/
 - https://www.youtube.com/watch?v=88YZ4061tYw&t=11s
- Dragonblood
 - https://wpa3.mathyvanhoef.com/