Note that the symmetry of the bilinear form a played a crucial role. Also, the inequalities

$$a(u, v - u) \ge h(v - u)$$
 for all $v \in U$

are sometimes called variational inequalities.

Definition 49.5. A bilinear form $a: V \times V \to \mathbb{R}$ such that there is some real $\alpha > 0$ such that

$$a(v, v) \ge \alpha \|v\|^2$$
 for all $v \in V$

is said to be coercive.

Theorem 49.4 is the special case of Stampacchia's theorem and the Lax–Milgram theorem when U = V, and where a is a symmetric bilinear form. To prove Stampacchia's theorem in general, we need to recall the *contraction mapping theorem*.

Definition 49.6. Let (E,d) be a metric space. A map $f: E \to E$ is a contraction (or a contraction mapping) if there is some real number k such that $0 \le k < 1$ and

$$d(f(u), f(v)) \le kd(u, v)$$
 for all $u, v \in E$.

The number k is often called a *Lipschitz constant*.

The following theorem is proven in Section 37.10; see Theorem 37.54. A proof can be also found in Apostol [4], Dixmier [51], or Schwartz [150], among many sources. For the reader's convenience we restate this theorem.

Theorem 49.5. (Contraction Mapping Theorem) Let (E, d) be a complete metric space. Every contraction $f: E \to E$ has a unique fixed point (that is, an element $u \in E$ such that f(u) = u).

The contraction mapping theorem is also known as the Banach fixed point theorem.

Theorem 49.6. (Lions–Stampacchia) Given a Hilbert space V, let $a: V \times V \to \mathbb{R}$ be a continuous bilinear form (not necessarily symmetric), let $h \in V'$ be a continuous linear form, and let J be given by

$$J(v) = \frac{1}{2}a(v,v) - h(v), \quad v \in V.$$

If a is coercive, then for every nonempty, closed, convex subset U of V, there is a unique $u \in U$ such that

$$a(u, v - u) \ge h(v - u)$$
 for all $v \in U$. (*)

If a is symmetric, then $u \in U$ is the unique element of U such that

$$J(u) = \inf_{v \in U} J(v).$$