Assignment 10

Adarsh Srivastava

The link to the solution is

https://github.com/Adarsh1310/EE5609

Abstract—This documents solves a problem based on fields.

1 Problem

Let \mathbb{F} be a set which contains exactly two elements,0 and 1.Define an addition and multiplication by tables.

$$\begin{array}{c|cccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

Verify that the set \mathbb{F} , together with these two operations, is a field.

2 Solution

To prove that $(\mathbb{F},+,\cdot)$ is a field we need to satisfy the following,

- 1) + and \cdot should be closed
 - For any a and b in \mathbb{F} , $a+b \in \mathbb{F}$ and $a \cdot b \in \mathbb{F}$. For example 0+0=0 and $0\cdot 0=0$.
- 2) + and \cdot should be commutative
 - For any a and b in \mathbb{F} , a+b=b+a and $a \cdot b=b \cdot a$. For example 0+1=1+0 and 0*1=1*0.
- 3) + and \cdot should be associative
 - For any a and b in \mathbb{F} , a+(b+c)=(a+b)+c and $a\cdot (b\cdot c)=(a\cdot b)\cdot c$. For example 0+(1+0)=(0+1)+0 and $0\cdot (1\cdot 0)=(0\cdot 1)\cdot 0$.
- 4) + and · operations should have an identity element
 - If we perform a + 0 then for any value of a from \mathbb{F} the result will be a itself. Hence 0

is an identity element of + operation. If we perform $a \cdot 1$ then for any value of a from \mathbb{F} the result will be a itself. Hence 1 is an identity element of \cdot operation.

- 5) \forall a \in \mathbb{F} there exists an additive inverse
 - For additive inverse to exist, \forall a in \mathbb{F} a+(-a)=0. For example. 1-1=0 and 0-0=0.
- 6) \forall a \in F such that a is non zero there exists a multiplicative inverse
- For multiplicative inverse to exist, ∀ a such that
 a is non zero in F, a·a⁻¹=1. For example 1·1⁻¹ =
 1.
- 7) + and \cdot should hold distributive property
 - For any a,b and c in \mathbb{F} the proberty $a \cdot (b+c) = a \cdot b + a \cdot c$ should always hold true. For example $0 \cdot (1+2) = 0 \cdot 1 + 0 \cdot 2$.

3 RESULT

Since the above properties are satisfied we can say that $(\mathbb{F},+,\cdot)$ is a field.