Machine Listening for Music and Sound Analysis

Lecture 3 – Music Information Retrieval I

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://machinelistening.github.io

Overview

- Music Information Retrieval
- Music Tagging
- Music Similarity
- Tempo Estimation

Music Information Retrieval Examples

Examples:

Musical Instrument

AUD-1

AUD-2

Musical Genre / Tempo

AUD-3

AUD-4

Music Information Retrieval Motivation

- Large music collections
- Mobile device apps / instruments
- Music industry shifts almost completely to online products & services
- Growing market of music streaming services

Music Information Retrieval Typical Research Tasks

- What's that song again? Who's singing that?
 - Audio identification
- I want to learn that song on my instrument!
 - Automatic music transcription
- What songs are similar? How to generate a playlist?
 - Audio similarity search
- How to organize my music? Which genre / style?
 - Audio classification

Music Information Retrieval Research Landscape

- Interdisciplinary research community since 2000
- Conferences
 - ISMIR (International Society for Music Information Retrieval)
 - IEEE ICASSP, DAFx, AES, ICMC, SMC
- MIREX competition (Music Information Retrieval Evaluation eXchange)

Music Information Retrieval Research Landscape

- MIR @ Fraunhofer IDMT
 - Semantic music technologies (SMT) group
 - Staff + PhD / master / bachelor students + interns
- National / international research groups
 - International Audio Laboratories Erlangen, Germany
 - Centre for Digital Music, Queen Mary University, London, UK
 - Universitat Pompeu Fabra, Barcelona, Spain
 - Institute for music/acoustic research and coordination (IRCAM), Paris, France
 - USA, China, Taiwan, Japan, Korea, etc.

Music Information Retrieval Research Task Taxonomy

Music Information Retrieval Case Studies

- MIR 1 lecture
 - Music tagging / music similarity → general tasks
 - Tempo estimation → rhythm
- MIR 2 lecture
 - Pitch detection → pitch / tonality
 - Source separation & instrument recognition → timbre
- Teaching Concept

Music Tagging Introduction

- Tags
- Textual (objective / subjective) annotations of songs
- Examples
 - Instruments (drums, bass, guitar, vocals ...)
 - Genre (classical, electro, hip hop)
 - Mood (mellow, romantic, angry, happy)
 - Miscellaneous (noise, loud, ambient)
- Challenge
 - Music pieces change their characteristics over time
 - E.g.: trumpet plays only in the chorus (jazz)

Music Tagging Traditional Approach

- Audio feature engineering & music domain knowledge
- Standard classification methods (GMM, SVM, kNN)

- (a) Feature engineering (MFCC)
- (b) Low-level feature

- (c) Joint feature learning & classification (CNN)
- (d) End-to-end learning

- Joint representation learning & classification using CNNs
 - Input: spectrograms (2D) or audio samples (1D end-to-end)
- Integrate musical knowledge in network design (e.g., filter shapes)

- End-to-end Learning
 - Model input is low-level representation (audio waveform)
 - No pre-processing / assumptions required
 - Not restricted to spectral magnitudes → can model phase!
 - Requires large amounts of training data

- Transfer Learning
 - Pre-train model on source task (lot of data available)
 - Fine-tune model on target task (only little data available)

Fig. 5

■ Source model (CNN) \rightarrow Target model (embeddings + shallow classifier)

Music Similarity Introduction

- Music → inherently multi-dimensional
- Challenge
 - Large music databases
 - Incomplete / missing metadata

- mood

 genre

 Rock

 Fig. 7
- Query by example → general retrieval approach
 - Retrieval most similar song S given a query song Q

Music Similarity Introduction

- Retrieval tasks
 - Music fingerprinting (retrieve title, artist, e.g., Shazam app)
 - Cover song identification (similar text, chord progressions ...)
 - Music replacement (similar style, instrumentation)
- Specificity of different tasks

Music Similarity Traditional Approaches

- Different dimensions of music similarity
 - Melodic similarity (pitch contours)

Timbral similarity (instrumentation)

Structural / harmonic similarity (segments, chords)

Rhythmic similarity (patterns)

Music Similarity Novel Approaches

- Metric learning
 - Model (abstract) notion of similarity between data instances
 - Pair-wise distance between feature representations
- lacktriang Training ightarrow Preserve similarity in the feature space
 - Proximity between similar instances
 - Distance between dissimilar instances
- Distance measures (Euclidean, cosine)
- Query Q \rightarrow Ranked list of most similar items (S_i)

Music Similarity Novel Approaches

- Disentanglement learning
 - Similarity → multiple semantic concepts (e.g., genre, instrument, mood)
 - learnt jointly
 - remain separable in the embedding space
- Improves tagging (classification) and recommendation (similarity)

Music Similarity Novel Approaches

- Triplet-based Training
 - Conditional Similarity Networks (CSN) [Lee, 2020]

Tempo Detection

Introduction

- Tempo [beats / minute]
 - Frequency with which humans tap along the beat

- Beat tracking
 - Estimating precise beat positions

Tempo Detection

Introduction

- Note onsets → note beginning times
 - Clearly defined for plucked string and percussion instruments
 - Ambiguous for wind & brass instruments

Audio samples
Note envelope

- Onset detection
 - Onset detection function
 - Peak picking

Tempo Detection Traditional Methods

- Predominant local pulse (PLP)
 - Correlation with local (windowed) periodic patterns
- Tempogram [Grosche & Müller, 2009]
 - Local likelihood of different tempo candidates
 - Allows to follow tempo changes (classical music)

Tempo Detection Novel Methods

Approach [Böck et al., 2015]

(a) Input audio signal

- Signal representation
 - Stacking of 3 STFT magnitude spectrograms (N=1024, 2048, 4096)
 - Log-amplitude & log-frequency

(b) Input to the neural network

Tempo Detection Novel Methods

- Neural Network
 - Recurrent (bi-directional LSTM) layer
 - Outputs beat activation function
- Comb filter bank
 - Multiple comb filters → detect periodicities
- Estimate tempo from histogram maximum

(c) Neural network output (beat activation function)

(f) Weighted histogram with summed maxima

Tempo Detection Novel Methods

- Approach [Schreiber & Müller, 2018]
 - Sample rate ~ 11 kHz, 40-band mel spectrogram
- Tempo estimation → classification (256 classes: 30 – 285 bpm)
- Neural Network
 - 3 layers (short filters) → onsets
 - 4 multi-filter modules (parallel conv layers) → compress along frequency & find periodicities
 - Dense layers → tempo classification

Summary

- Music Information Retrieval
- Music Tagging
- Music Similarity
- Tempo Estimation
- Main trends
 - Adapt (data-driven) deep learning methods to music domain
 - Incorporate music domain knowledge

References

Böck, S., Krebs, F., & Widmer, G. (2015). Accurate tempo estimation based on recurrent neural networks and resonating comb filters. *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, 625–631.

Grosche, P., & Müller, M. (2009). A mid-level representation for capturing dominant tempo and pulse information in music recordings. *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, 189–194.

Lee, J., Bryan, N. J., Salamon, J., Jin, Z., & Nam, J. (2020). Disentangled Multidimensional Metric Learning for Music Similarity. *Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 6–10. Barcelona, Spain.

Lee, J., Bryan, N. J., Salamon, J., Jin, Z., & Nam, J. (2020). Metric learning vs classification for disentangled music representation learning. *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, 439–445. Montréal, Canada.

Müller, M. (2021). Fundamentals of Music Processing - Using Python and Jupyter Notebooks (2nd ed.). Springer.

Nam, J., Choi, K., Lee, J., Chou, S. Y., & Yang, Y. H. (2019). Deep Learning for Audio-Based Music Classification and Tagging: Teaching Computers to Distinguish Rock from Bach. *IEEE Signal Processing Magazine*, 36(1), 41–51.

Pons, J., Nieto, O., Prockup, M., Schmidt, E., Ehrmann, A., & Serra, X. (2018). End-to-End Learning for Music Audio Tagging at Scale. *Proceedings of the International Society for Music Information Retrieval (ISMIR)2*, 637–644. Paris, France.

References

Ribecky, S. (2021). Disentanglement Representation Learning for Music Annotation and Music Similarity. Technische Universität Ilmenau.

Schreiber, H., & Müller, M. (2018). A Single-Step Approach to Musical Tempo Estimation using a Convolutional Neural Network. *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, 98–105. Paris, France.

Won, M., Chun, S., Nieto, O., & Serra, X. (2020). Data-Driven Harmonic Filters for Audio Representation Learning. *Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, 536–540. Barcelona, Spain.

Images

```
Fig. 1: https://www.synchtank.com/wp-content/uploads/2018/06/1476277072027.jpg
Fig. 2: https://miro.medium.com/max/800/1*cC1KOdyzzt1nazak42cBdg.jpeg
Fig. 3: [Nam, 2019], p. 42, Fig. 1
Fig. 4: [Won, 2020], p. 537, Fig. 1a
Fig. 5: [Nam, 2019], p. 48, Fig. 4
Fig. 6: [Pons, 2018], p. 639, Fig. 2 (top left)
Fig. 7: [Lee, 2020, ICASSP], p. 1, Fig. 1
Fig. 8: [Ribecky, 2021], p. 26, Fig. 2.11
Fig. 9: [Lee, 2020, ISMIR], p. 1, Fig. 1
Fig. 10: [Lee, 2020, ICASSP], p. 2, Fig. 2
Fig. 11: [Müller, 2021], p. 309, chapter 6 (cover image)
Fig. 12: [Müller, 2021], p, 310, Fig. 6.1(b)
Fig. 13: [Müller, 2021], p. 311, Fig. 6.2
Fig. 14: [Müller, 2021], p. 313, Fig. 6.3(a)&(b)
```


Images

```
Fig. 15: [Grosche & Müller, 2009], p. 2, Fig. 1(e-g) & p. 3, Fig. 2 (a) Fig. 16: [Böck et al., 2015], p. 2, Fig. 1
Fig. 17: [Böck et al., 2015], p. 3, Fig. 2 (a) & (b) Fig. 18: [Böck et al., 2015], p. 3, Fig. 2 (c) & (f) Fig. 19: [Schreiber & Müller, 2018], p. 3, Fig. 2
```

Sounds

AUD-1: Mr Smith – Black Top (2021), https://freemusicarchive.org/music/mr-smith/studio-city/black-top

AUD-2: Crowander – Humbug (2021), https://freemusicarchive.org/music/crowander/from-the-piano-solo-piano/humbug

AUD-3: Bumy Goldson: Keep Walking (2021), https://freemusicarchive.org/music/bumy-goldson/parlor/keep-walking

AUD-4: Cloudjumper: Mocking the god (2016),

https://freemusicarchive.org/music/Cloudjumper/Memories_of_Snow/05_Cloudjumper_-_Mocking_the_gods

Thank you!

Any questions?

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://machinelistening.github.io

