Data Modeling and Probability Distributions

Dr. Ahmad S. Tarawneh

Outline

- Introduction
- Data Collection
- Probability Distributions
- Fit a Distribution on Data
- ExpertFit (Data modeling software)

Introduction

- What we have discussed so far is a set of problems in which the distribution is given
- But from where did we get this table
- If we know the model that fits our data we do not need to use such tables, practically.

Time between	
Arrivals (Minutes)	Probability
1	0.25
2	0.40
3	0.20
4	0.15

Queueing Sim.

Demand	Probability
0	0.10
1	0.25
2	0.35
3	0.21
4	0.09

Inventory Sim.

 Knowing the distribution will help us generate the values directly depending on the distribution of the data

Value	Probability	Generating Ran	dom Variat
1	0.5	best tribulas to a record construit of the control	
2	0.3		
3	0.1	Distribution Function	
4	0.1		PRNs

- There are several approaches to generate random variables (not numbers) given the distribution:
 - 1. Inverse Transform
 - 2. Composition
 - 3. Convolution
 - 4. Acceptance-Rejection
 - 5. Ratio of Uniforms
 - 6. Many more

 Inverse Transform is the simplest

Example

Random variables

- Inputs are independent variables in the system:
 - 1. Interarrival time, which is typically a continuous random variable
 - 2. Amount of demand is a discrete random variable

Data modeling

- Data model (prob distribution of the data) selection is very important for the simulation model, as all the simulation depends upon these models
 - Good data modeling means good simulation performance

Steps of data modeling

Data Collection

- The tool used for simulation should have several features to support building a good performing simulations
 - 1. Must have a good random number generator
 - 2. Should be able to create a probability distribution for each source of randomness of the system
 - Gives the ability to perform several, independent, runs of the simulation, using different random numbers, to validate the stability of the performance

- In simulation systems, typically, we try to find the best standard probability distribution that fits the source of randomness
 - If it can be found, then it should be used
- If a standard distribution cannot be found, then we can use an **empirical distribution**, **aka custom distribution or used defined distribution**.
 - This custom distribution is created based on the data
- Using standard distribution is always preferable over empirical distributions

- The data collected should be:
 - 1. Accurately collected
 - 2. Representative of the environment
 - 3. Analyzed correctly
- Otherwise, the simulation will give a misleading results or wrong conclusions

- When the system exists, the data is better to be collected from this system, real system
- If the system does not exist or no time to collect the data from existed system, an informed guess can be made, by the help of experts.

Standard Distributions

- Many standard theoretical distributions are there.
- Some of these distributions work for continuous data and some work for discrete
- Continuous Distributions include but are not limited to
 - 1. Uniform distribution
 - 2. Exponential distribution
 - 3. Gamma distribution
 - 4. Gaussian (Normal) distribution

Uniform Distribution

• a and b real numbers with a < b.

Solution steps

Density
$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{(x-a)}{b-a}=u$$

Distribution $F(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{x - a}{b - a} & \text{if } a \le x \le b \\ 1 & \text{if } b < x \end{cases}$

Multiply both sides by b-a

$$x - a = u(b - a)$$

Move *a* to the right side

F⁻¹(u) =
$$a + (b - a)u$$
 Generating Random Variates X' $x = u(b - a) + a$; $b - a \ne 0$

$$x = u(b-a) + a; \quad b-a$$

Exponential Distribution

• Scale parameter $\beta > 0$.

Density
$$f(x) = \begin{cases} \frac{1}{\beta} e^{-x/\beta} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
Distribution
$$F(x) = \begin{cases} 1 - e^{-x/\beta} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$F^{-1}(u) = -\beta \ln (1 - u)$$
 Generating Random Variates X's

Gamma Distribution

• Shape parameter $\alpha > 0$, Scale parameter $\beta > 0$.

$$f(x) = \begin{cases} \frac{\beta^{-\alpha} x^{\alpha - 1} e^{-x/\beta}}{\Gamma(\alpha)} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Graph Gamma

Normal Distribution

• Location parameter $\mu \in \mathbb{R}$, Scale parameter $\sigma > 0$.

Discrete Probability Distributions

- Discrete Uniform Distribution
- Geometric Distribution
- Poisson Distribution

Discrete Uniform Distribution

• i and j integers with $i \leq j$.

Mass
$$p(x) = \begin{cases} \frac{1}{j-i+1} & \text{if } x \in \{i, i+1, \dots, j\} \\ 0 & \text{otherwise} \end{cases}$$
Distribution
$$F(x) = \begin{cases} 0 & \text{if } x < i \\ \frac{\lfloor x \rfloor - i + 1}{j-i+1} & \text{if } i \le x \le j \\ 1 & \text{if } j < x \end{cases}$$

Geometric Distribution

Geometric Graph

•
$$p \in (0,1)$$
.

Mass
$$p(x) = \begin{cases} p(1-p)^x & \text{if } x \in \{0, 1, ...\} \\ 0 & \text{otherwise} \end{cases}$$

Distribution
$$F(x) = \begin{cases} 1 - (1-p)^{\lfloor x \rfloor + 1} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$F^{-1}(u) = \lfloor \ln u / \ln (1-p) \rfloor$$
. Generating Random Variates X's

Poisson Distribution

Poisson Graph 1

• $\lambda > 0$.

Poisson Graph 2

Checking the distribution

- After collecting the data and selecting the standard probability distribution, you need to check if the selected distribution is appropriate and gives good fit of your data.
- This can be doe either:
 - 1. Graphically using graph comparison
 - 2. Using statistical tests such as K-S test, Chi-square test, etc.

Selecting The Distribution

- But how to select the most appropriate theoretical, standard distribution for your data?
- There are several methods to use to select a standard distribution for your data:
 - 1. Summary Statistics
 - 2. Histograms
 - 3. Quantile-Quantile Plot
 - 4. Boxplot
 - 5. And other methods

Summary Statistics

Function	Sample estimate (summary statisti		ntinuous (C) liscrete (D)
Minimum, maximum	$X_{(1)}, X_{(n)}$		C, D
Mean μ	$\overline{X}(n)$		C, D
Median $x_{0.5}$	$\hat{x}_{0.5}(n) = \begin{cases} X_{((n+1)/2)} \\ [X_{(n/2)} + X_{((n/2)+1)}]/2 \end{cases}$	if n is odd if n is even	C, D
Variance σ^2	$S^{2}(n) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$		C, D

Function

Continuous (C) Sample estimate or discrete (D)

Coefficient of variation,
$$cv = \frac{\sqrt{\sigma^2}}{\mu}$$
 $\widehat{cv}(n) = \frac{\sqrt{S^2(n)}}{\overline{X}(n)}$

Lexis ratio,
$$\tau = \frac{\sigma^2}{\mu}$$

$$\hat{\tau}(n) = \frac{S^2(n)}{\overline{X}(n)}$$

Skewness,
$$\nu = \frac{E[(X - \mu)^3]}{(\sigma^2)^{3/2}} \hat{\nu}(n) = \frac{n^2}{(n-1)(n-2)} \frac{\sum_{i=1}^n [X_i - \overline{X}(n)]^3/n}{[S^2(n)]^{3/2}} \text{ C, D}$$

Skewness,
$$\nu = \frac{E[(X - \mu)^3]}{(\sigma^2)^{3/2}} \hat{\nu}(n) = \frac{n^2}{(n-1)(n-2)} \frac{\sum_{i=1}^n [X_i - \overline{X}(n)]^3/n}{[S^2(n)]^{3/2}} \text{ C, D}$$

Example

- If the median is equal or near equal to the mean, this indicates symmetric, (e.g., normal) distribution.
- If the coefficient of variation (cv) is close to 1 this indicates exponential distribution because its cv is 1.

Example

• A simulation model was developed for a drive-up banking facility, and data were collected on the arrival pattern for cars. Over a fixed 90-minute interval, 220 cars arrived, and we noted the (continuous) interarrival time X_i (in minutes) between cars i and i+1, for i=1,2,...,219.

n = 219 interarrival times (minutes) sorted into increasing order

0.01	0.06	0.12	0.23	0.38	0.53	0.88
0.01	0.07	0.12	0.23	0.38	0.53	0.88
0.01	0.07	0.12	0.24	0.38	0.54	0.90
0.01	0.07	0.13	0.25	0.39	0.54	0.93
0.01	0.07	0.13	0.25	0.40	0.55	0.93
0.01	0.07	0.14	0.25	0.40	0.55	0.95
0.01	0.07	0.14	0.25	0.41	0.56	0.97
0.01	0.07	0.14	0.25	0.41	0.57	1.03
0.02	0.07	0.14	0.26	0.43	0.57	1.05
0.02	0.07	0.15	0.26	0.43	0.60	1.05
0.03	0.07	0.15	0.26	0.43	0.61	1.06
0.03	0.08	0.15	0.26	0.44	0.61	1.09
0.03	0.08	0.15	0.26	0.45	0.63	1.10
0.04	0.08	0.15	0.27	0.45	0.63	1.11
0.04	0.08	0.15	0.28	0.46	0.64	1.12
0.04	0.09	0.17	0.28	0.47	0.65	1.17
0.04	0.09	0.18	0.29	0.47	0.65	1.18
0.04	0.10	0.19	0.29	0.47	0.65	1.24
0.04	0.10	0.19	0.30	0.48	0.69	1.24
0.05	0.10	0.19	0.31	0.49	0.69	1.28
0.05	0.10	0.20	0.31	0.49	0.70	1.33
0.05	0.10	0.21	0.32	0.49	0.72	1.38
0.05	0.10	0.21	0.35	0.49	0.72	1.44
0.05	0.10	0.21	0.35	0.50	0.72	1.51
0.05	0.10	0.21	0.35	0.50	0.74	1.72
0.05	0.10	0.21	0.36	0.50	0.75	1.83
0.05	0.11	0.22	0.36	0.51	0.76	1.96
0.05	0.11	0.22	0.36	0.51	0.77	
0.05	0.11	0.22	0.37	0.51	0.79	
0.06	0.11	0.23	0.37	0.52	0.84	
0.06	0.11	0.23	0.38	0.52	0.86	
0.06	0.12	0.23	0.38	0.53	0.87	

Summary statistics for the interarrival-time data

Summary statistic	Value
Minimum	0.010
Maximum	1.960
Mean	0.399
Median	0.270
Variance	0.144
Coefficient of variation	0.953
Skewness	1.478

Since:

 $\bar{X}(219) = 0.399 > 0.270 = \hat{x}_{0.5}(219)$ and $\hat{v}(219) = 1.478$, this suggests that the underlying distribution is skewed to the right, rather than symmetric.

Furthermore, $\widehat{cv}(219) = 0.953$, which is close to the theoretical value of 1 for the *exponential* distribution.

Summary statistics for the interarrival-time data

Summary statistic	Value
Minimum	0.010
Maximum	1.960
Mean	0.399
Median	0.270
Variance	0.144
Coefficient of variation	0.953
Skewness	1.478

Histograms

- To make a histogram, we break up the range of values covered by the data into k disjoint adjacent intervals $[b_0, b_1), [b_1, b_2), ..., [D_{k-1}, 1, b_k)$.
- All the intervals should be the same width Δb , which might necessitate throwing out a few extremely large or small X_i 's to avoid getting an unwieldy-looking histogram plot.

$$\Delta b = \frac{\max(x) - \min(x)}{k} \qquad \qquad k = \frac{\max(x) - \min(x)}{\Delta b}$$

• Selecting the best k or Δb is trial and error process, although there are some rules that helps to approximate the value of k

$$k = \lfloor 1 + \log_2 n \rfloor = \lfloor 1 + 3.322 \log_{10} n \rfloor$$

n = 219 interarrival times (minutes) sorted into increasing order

0.01	0.06	0.12	0.23	0.38	0.53	0.88
0.01	0.07	0.12	0.23	0.38	0.53	0.88
0.01	0.07	0.12	0.24	0.38	0.54	0.90
0.01	0.07	0.13	0.25	0.39	0.54	0.93
0.01	0.07	0.13	0.25	0.40	0.55	0.93
0.01	0.07	0.14	0.25	0.40	0.55	0.95
0.01	0.07	0.14	0.25	0.41	0.56	0.97
0.01	0.07	0.14	0.25	0.41	0.57	1.03
0.02	0.07	0.14	0.26	0.43	0.57	1.05
0.02	0.07	0.15	0.26	0.43	0.60	1.05
0.03	0.07	0.15	0.26	0.43	0.61	1.06
0.03	0.08	0.15	0.26	0.44	0.61	1.09
0.03	0.08	0.15	0.26	0.45	0.63	1.10
0.04	0.08	0.15	0.27	0.45	0.63	1.11
0.04	0.08	0.15	0.28	0.46	0.64	1.12
0.04	0.09	0.17	0.28	0.47	0.65	1.17
0.04	0.09	0.18	0.29	0.47	0.65	1.18
0.04	0.10	0.19	0.29	0.47	0.65	1.24
0.04	0.10	0.19	0.30	0.48	0.69	1.24
0.05	0.10	0.19	0.31	0.49	0.69	1.28
0.05	0.10	0.20	0.31	0.49	0.70	1.33
0.05	0.10	0.21	0.32	0.49	0.72	1.38
0.05	0.10	0.21	0.35	0.49	0.72	1.44
0.05	0.10	0.21	0.35	0.50	0.72	1.51
0.05	0.10	0.21	0.35	0.50	0.74	1.72
0.05	0.10	0.21	0.36	0.50	0.75	1.83
0.05	0.11	0.22	0.36	0.51	0.76	1.96
0.05	0.11	0.22	0.36	0.51	0.77	
0.05	0.11	0.22	0.37	0.51	0.79	
0.06	0.11	0.23	0.37	0.52	0.84	
0.06	0.11	0.23	0.38	0.52	0.86	
0.06	0.12	0.23	0.38	0.53	0.87	

• Let us use the previous formula to find k

$$k = \lfloor 1 + \log_2 n \rfloor = \lfloor 1 + 3.322 \log_{10} n \rfloor$$

 $k = \lfloor 1 + \log_2 219 \rfloor = 8$

$$\min X = 0.01 \approx 0$$
 , $\max X = 1.96 \approx 2$, $\Delta b = \frac{2-0}{8} = 0.25$ [0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1), [1, 1.25), [1.25, 1.5), [1.5, 1.75), [1.75, 2),

Example

ExpertFit

- There are several software that help in modeling a given data, making the selection of the appropriate distribution an easy task.
- ExpertFit is one of these software

https://www.averill-law.com/distribution-fitting/

92	0.22000	202	1.05000	Copy
93	0.22000	203	1.06000	Copy
94	0.23000	204	1.09000	Print
95	0.23000	205	1.10000	Help
96	0.23000	206	1.11000	10000
97	0.23000	207	1.12000	Done
98	0.23000	208	1.17000	
99	0.24000	209	1.18000	
100	0.25000	210	1.24000	
101	0.25000	211	1.24000	
102	0.25000	212	1.28000	
103	0.25000	213	1.33000	
104	0.25000	214	1.38000	
105	0.26000	215	1.44000	
106	0.26000	216	1.51000	
107	0.26000	217	1.72000	
108	0.26000	218	1.83000	
109	0.26000	219	1.96000	
110	0.27000			-

	of Model 1 - Beta	Сор
Jse:		Prin
beta(0.855247, 7.04852	25, 0.007073, 3.627949)	Help
		Don
lation-Software Repres	entation	
ation-sortware repres	Entation	
	/ H 114 D 1	_
Ressim Representation	on of Model 1 - Beta	_
Rexsim Representation	on of Model 1 - Beta	_
	500000 00 0000000 1 150000 y 00000 1	
Use:	500000 00 0000000 1 150000 y 00000 1	
Use: When using a pickli	st option:	
Use: When using a pickli Distribution	st option: Beta	
Use: When using a pickli Distribution Minimum	st option: Beta 0.007073	

Thank you!

Hope you Enjoyed the course