第5章

線形写像の像と核

線形写像と逆問題

 $m{y} = Am{x}$ という形の式は、 $m{x}$ と $m{y}$ の次元が同じならば、連立一次方程式として捉えることができた

$$egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} = egin{pmatrix} a_{11} & \cdots & a_{1n} \ dots & \ddots & dots \ a_{n1} & \cdots & a_{nn} \end{pmatrix} egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$$

そして、このような形の連立方程式を解くことは、「 $m{y}$ から $m{x}$ を推定する」という逆問題を解くことに相当する

- 一方、 $\boldsymbol{u} = A\boldsymbol{x}$ という式は、線形写像を表す式とみることもできる
- 一般に、線形写像 $\mathbf{y} = A\mathbf{x}$ の表現行列 A は $m \times n$ 行列であり、 \mathbf{y} は m 次元ベクトル、 \mathbf{x} は n 次元ベクトルである

ここでは、 $oldsymbol{x}$ と $oldsymbol{y}$ の次元が異なる場合の、 $\lceil oldsymbol{y}$ から $oldsymbol{x}$ を推定する」という逆問題を考えてみることにする

手がかりが足りない場合

手がかりとなる情報を **y** とし、知りたい情報を **x** とする

まずは、 $m{y}$ の方が $m{x}$ より次元が小さい、すなわち $m{m}$ < $m{n}$ の場合を考えるこのとき、表現行列 $m{A}$ は横長の行列となる

$$egin{pmatrix} y_1 \ dots \ y_m \end{pmatrix} = egin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \ dots & \ddots & dots & dots \ a_{m1} & \cdots & \cdots & a_{mn} \end{pmatrix} egin{pmatrix} x_1 \ dots \ dots \ x_n \end{pmatrix}$$

m < n の場合は、「知りたい量が n 個もあるのに、手がかりはたった m 個しかない」という状況になっている

見方を変えると、*A* を作用させたことによって「情報の一部が欠落してしまった」ともい える

m < n の場合の線形写像の写し方

m < n のとき、A は、元より次元の低い空間に写す線形写像を表すそのため、 \mathbf{x} はこの線形写像によって「潰される」ことになる

「潰される」とはどのようなことかというと、空間を張る **x** それぞれの居場所を、写す先では全員分用意することができないので、

複数の \boldsymbol{x} を同じ \boldsymbol{y} に写すしかない

ということである

複数の \boldsymbol{x} が同じ \boldsymbol{y} に写ってしまうと、結果 \boldsymbol{y} から元の \boldsymbol{x} を特定することはできなくなる (つまり、情報が失われている)

線形写像の核

次の図は、 1×3 行列 A による線形写像を表している

同じ平面上の点がすべて同じ点に写されることで、平面の集まりである立体(3次元)が、点の集まりである直線(1次元)へと「潰されている」ことがわかる

このとき、 $A \mathbf{x} = \mathbf{o}$ に写ってくるような \mathbf{x} の集合を、 \mathbf{A} の核あるいは $\mathbf{h} - \mathbf{h}$ といい、 $\mathbf{Ker} \mathbf{A}$ と表す

Ker A の次元

上の図では、零ベクトル o (写り先の 1 次元空間の原点) に潰されている青い平面が Ker A に相当する

平面なので、この Ker A は 2 次元である

もしも m < n でない場合、つまり潰れない写像の場合は、 $A \mathbf{x} = \mathbf{o}$ に写る \mathbf{x} は零ベクトル \mathbf{o} だけなので、 $\operatorname{Ker} A$ は 0 次元となる

Ker A に平行な方向の成分

「Todo 1: book: プログラミングのための線形代数 p114]

Ker f の定義

A が線形写像 f の表現行列であるとすると、Ker f を次のように定義できる

★ def - 線形写像の核

線形写像 $f: V \to W$ に対して、f による $\{o\}$ の逆像 $f^{-1}(\{o\})$ を、線形写像 f の核や核空間、あるいはカーネルといい、 $\operatorname{Ker}(f)$ と表記する

$$\operatorname{Ker}(f) = f^{-1}(\{\boldsymbol{o}\}) = \{\boldsymbol{v} \in V \mid f(\boldsymbol{v}) = \boldsymbol{o}\} \subset V$$

今度は、 $m{y}$ の方が $m{x}$ より次元が大きい、すなわち m>n の場合を考えるこのとき、表現行列 A は縦長の行列となる

$$egin{pmatrix} y_1 \ dots \ y_m \end{pmatrix} = egin{pmatrix} a_{11} & \cdots & a_{1n} \ dots & \ddots & dots \ dots & \ddots & dots \ a_{m1} & \cdots & a_{mn} \end{pmatrix} egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix}$$

m>n の場合は、「知りたい量はたった n 個しかないのに、手がかりが m 個もある」という状況になっている

この場合、手がかりどうしが矛盾することもある

m > n の場合の線形写像の写し方

m>n のとき、A は、元より次元の高い空間に写す線形写像を表す そのため、写り先の空間すべてをカバーすることはできない

はみ出した **u** については、

そこに写ってきてくれる 変 が存在しない

ことになる

現実の応用では、ノイズがのることで、はみ出した $m{y}$ が観測されることがある そうなると、「手がかり $m{y}_1,\dots,m{y}_m$ すべてに符号する $m{x}$ は存在しない」ということになっ てしまう

与えられた A に対して、 \boldsymbol{x} をいろいろ動かしたときに A で写り得る $\boldsymbol{y} = A\boldsymbol{x}$ の集合を A の像といい、 $\operatorname{Im} A$ で表す

別の言い方をすると、 $\operatorname{Im} A$ は、元の空間全体を A で写した領域である $\operatorname{Im} A$ 上にない \boldsymbol{y} については、 $\boldsymbol{y} = A\boldsymbol{x}$ となるような \boldsymbol{x} は存在しない

Im *f* の定義

A が線形写像 f の表現行列であるとすると、 $\operatorname{Im} f$ を次のように定義できる

★ def - 線形写像の像

線形写像 $f: V \to W$ に対して、f による V の像 f(V) を、線形写像 f の像や像空間といい、 $\operatorname{Im}(f)$ と表記する

$$Im(f) = f(V) = \{ f(\boldsymbol{v}) \in W \mid \boldsymbol{v} \in V \} \subset W$$

単射と全射

ここまで、y = Ax という関係について、次の 2 つの観点で議論してきた

- i. 同じ結果 **y** が出るような原因 **x** は唯一か
- ii. どんな結果 y にも、それが出るような原因 x が存在するか

 $m{y} = Am{x}$ を方程式と捉えると、(i) は解の一意性、(ii) は解の存在に対応する

単射

- (i) は、次のようにも言い換えられる
 - i. 異なる原因 \boldsymbol{x} , \boldsymbol{x}' が、A で同じ結果に写ることがないか
- (i) の条件が成り立つとき、「線形写像 y = Ax は単射である」という

全射

(ii) は、次のようにも言い換えられる

- ii. 元の空間全体(定義域)を A で写した領域 Im A が、行き先の空間全体(値域) に一 致するか
- (ii) の条件が成り立つとき、「線形写像 y = Ax は全射である」という

全単射

(i) と (ii) の両方が成り立つときは、「線形写像 y = Ax は全単射である」という

零ベクトルと単射性

零写像と射影を除けば、f によってベクトルが「つぶれない」という性質は、次のように表せる

$$\boldsymbol{v} \neq 0 \Longrightarrow f(\boldsymbol{v}) \neq \boldsymbol{o}$$

[Todo 2: book: 行列と行列式の基礎 p55 例 2.1.15]

この条件は、実は線形写像が単射であることを意味している

対偶をとって、次のように表現できる

♣ theorem 5.1 - 零ベクトルへの写像による単射性の判定

線形写像 ƒ が単射であることと次は同値である

$$f(\mathbf{v}) = \mathbf{o} \Longrightarrow \mathbf{v} = \mathbf{o}$$

- i. *f* が単射
- ii. $f(\boldsymbol{v}) = \boldsymbol{o} \Longrightarrow \boldsymbol{v} = \boldsymbol{o}$
- $(i) \Longrightarrow (ii)$

零ベクトルの像は零ベクトルであることから、 $f(\boldsymbol{v}) = \boldsymbol{o}$ は、

$$f(\boldsymbol{v}) = f(\boldsymbol{o})$$

と書き換えられる

f の単射性により、この式から、

$$v = o$$

がしたがう

$(ii) \Longrightarrow (i)$

 $f(\boldsymbol{v}_1) = f(\boldsymbol{v}_2)$ を満たす $\boldsymbol{v}_1, \boldsymbol{v}_2 \in \mathbb{R}^n$ を考えるこのとき、f の線形性から、

$$f(\boldsymbol{v}_1 - \boldsymbol{v}_2) = f(\boldsymbol{v}_1) - f(\boldsymbol{v}_2)$$

となる

仮定 (ii) より、

$$f(\boldsymbol{v}_1 - \boldsymbol{v}_2) = \boldsymbol{o} \Longrightarrow \boldsymbol{v}_1 - \boldsymbol{v}_2 = \boldsymbol{o}$$

がいえるので、 $\boldsymbol{v}_1 = \boldsymbol{v}_2$ が成り立つ

 $f(oldsymbol{v}_1)=f(oldsymbol{v}_2)$ から $oldsymbol{v}_1=oldsymbol{v}_2$ が導かれたことで、f は単射であることが示された

核・像と単射・全射

先ほどの定理で、線形写像 f によって「潰れない」という条件が、単射性と同値であることが示された

つまり、線形写像 f の核 Ker f が、f の単射性と関係しそうである

また、線形写像 f の像 $\operatorname{Im} f$ が値域と一致するかどうかが、f の全射性と関係する

単射となるときの核

線形写像 f が単射であるとは、「潰れない」ということなので、次のような状況である

つまり、 $\operatorname{Ker} f$ が零ベクトル o のみを含む状態であればよい

\$ theorem 5.2 - 線形写像の単射性と核の関係 *f* を線形写像とするとき、

$$f$$
 が単射 \iff Ker $f = \{o\}$

証明

Ker f の定義は

$$\operatorname{Ker} f = \{ \boldsymbol{v} \in V \mid f(\boldsymbol{v}) = \boldsymbol{o} \}$$

これを踏まえて、次の2つが同値であることを示す

i.
$$f(\boldsymbol{v}) = \boldsymbol{o} \Longrightarrow \boldsymbol{v} = \boldsymbol{o}$$

ii. Ker
$$f = \{o\}$$

$(i) \Longrightarrow (ii)$

このとき、 $f(\boldsymbol{v}) = \boldsymbol{o}$ が $\boldsymbol{v} = \boldsymbol{o}$ を意味するので、 $\operatorname{Ker} f$ の元は零ベクトルのみになる

よって、
$$Ker f = \{o\}$$
 が成り立つ

$$(ii) \Longrightarrow (i)$$

 $\operatorname{Ker} f = \{o\}$ であれば、 $\operatorname{Ker} f$ の元は零ベクトルのみである よって、 $f(\boldsymbol{v}) = o$ が成り立つとき、 $\boldsymbol{v} = o$ が成り立つことになる すなわち、 $f(\boldsymbol{v}) = o \Longrightarrow \boldsymbol{v} = o$ が成り立つ

全射となるときの像

線形写像 f が全射であるとは、 $\operatorname{Im} f$ が行き先の空間全体を埋め尽くす状態である このような状態であれば、たしかに $f(\boldsymbol{x})$ が $\operatorname{Im} f$ からはみ出してしまうことはない

この状況を式で表すと、線形写像 $f: V \rightarrow W$ が全射であるとは、

$$\mathrm{Im}\, f = \mathcal{W}$$

という条件と同値である。

ここでは直感的な説明からこの条件を導いたが、実際この条件は 全射 (def A.2) の定義そのものである。

♣ theorem 5.3 - 線形写像の全射性と像の関係

 $f: V \to W$ を線形写像とするとき、

$$f$$
 が全射 \iff Im $f = W$

単射・全射との離れ具合

 $\operatorname{Ker} f$ が零ベクトルの集合に一致するなら f は単射であり、 $\operatorname{Im} f$ が写り先全体に一致するなら f は全射である

このことから、 $\operatorname{Ker} f$ と $\operatorname{Im} f$ は、それぞれ単射・全射と「どれくらいかけ離れているか」 を測る尺度とも捉えられる

線形写像の像と線型独立性

♣ theorem - 線形写像と線形独立性

 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像、 $\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n \in \mathbb{R}^n$ とするベクトル $\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n$ の f による像

$$f(\boldsymbol{v}_1), f(\boldsymbol{v}_2), \ldots, f(\boldsymbol{v}_n)$$

が線型独立であるとき、 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ も線型独立である

証明 証明

 \boldsymbol{v}_1 , \boldsymbol{v}_2 , . . . , \boldsymbol{v}_n の線形結合

$$c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\cdots+c_n\boldsymbol{v}_n=\mathbf{0}$$

を考える

この両辺を f で写すと、f の線形性と零ベクトルの像 $f(\mathbf{0}) = \mathbf{0}$ を使って

$$c_1 f(\boldsymbol{v}_1) + c_2 f(\boldsymbol{v}_2) + \cdots + c_n f(\boldsymbol{v}_n) = f(\boldsymbol{0}) = \boldsymbol{0}$$

仮定より $f(\boldsymbol{v}_1)$, $f(\boldsymbol{v}_2)$, . . . , $f(\boldsymbol{v}_n)$ は線型独立なので、 $c_1=c_2=\cdots=c_n=0$ である

よって、

$$c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\cdots+c_n\boldsymbol{v}_n=\mathbf{0}$$

を満たす c_1, c_2, \ldots, c_n は 0 しかないので、 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\}$ は線型独立である

次の定理は、平行なベクトルを線型写像で写した結果、平行でなくなったりはしないという ことを述べている

我 theorem - 線形写像と線形従属性

 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像、 $m{v}_1, m{v}_2, \ldots, m{v}_n \in \mathbb{R}^n$ とする $\{m{v}_1, \ldots, m{v}_n\}$ が線形従属ならば、 $\{f(m{v}_1), \ldots, f(m{v}_n)\}$ は線形従属である

証明

 $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_n\}$ が線形従属であるとは、少なくとも 1 つは 0 でないある定数 k_1,k_2,\ldots,k_n が存在して

$$k_1\boldsymbol{v}_1 + k_2\boldsymbol{v}_2 + \cdots + k_n\boldsymbol{v}_n = \mathbf{0}$$

が成り立つことを意味する

この両辺を f で写すと、線形性より

$$k_1 f(\boldsymbol{v}_1) + k_2 f(\boldsymbol{v}_2) + \cdots + k_n f(\boldsymbol{v}_n) = f(\mathbf{0}) = \mathbf{0}$$

が成り立つ

よって、 $\{f(\boldsymbol{v}_1), f(\boldsymbol{v}_2), \ldots, f(\boldsymbol{v}_n)\}$ も線形従属である

たとえば平行四辺形の像が線分や 1 点になったりしないことなどは、「 $\{m{v}_1,m{v}_2,\ldots,m{v}_n\}$ が線型独立ならば、 $\{f(m{v}_1),f(m{v}_2),\ldots,f(m{v}_n)\}$ も線型独立である」と表現できる

♣ theorem 5.4 - 単射な線型写像は線型独立性を保つ

線型写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ が単射であるとき、 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\}$ が線型独立ならば、 $\{f(\boldsymbol{v}_1), f(\boldsymbol{v}_2), \ldots, f(\boldsymbol{v}_n)\}$ も線型独立である

証明

 $f(\boldsymbol{v}_1)$, $f(\boldsymbol{v}_2)$, . . . , $f(\boldsymbol{v}_n)$ の線形結合

$$c_1 f(\boldsymbol{v}_1) + c_2 f(\boldsymbol{v}_2) + \cdots + c_n f(\boldsymbol{v}_n) = \mathbf{0}$$

を考える

f の線形性と零ベクトルの像 $f(\mathbf{0}) = \mathbf{0}$ より、次のように書き換えられる

$$f(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n) = \mathbf{0} = f(\mathbf{0})$$

f は単射だから、上式より

$$c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\cdots+c_n\boldsymbol{v}_n=\mathbf{0}$$

が成り立つ

ここで、 $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n$ は線型独立なので、 $c_1 = c_2 = \cdots = c_n = 0$ であるよって、 $f(\boldsymbol{v}_1), f(\boldsymbol{v}_2), \ldots, f(\boldsymbol{v}_n)$ は線型独立である

Zebra Notes

Type Number todo 2