

- Particle overview
- Particle system
- Forces
- Constraints
- Second order motion analysis

Particle system

- Particles are objects that have mass, position, and velocity, but without spatial extent
- Particles are the easiest objects to simulate but they can be made to exhibit a wide range of objects

Particle animation

- Each particle has a position, mass, and velocity
 - maybe color, age, temperature
- Seeded randomly at start
 - maybe some created each frame
- Move each frame according to physics
- Eventually die when some condition met

Sparks from a campfire

- Add 2-3 particles at each frame
 - initialize position and temperature randomly
- Move in specified turbulent smoke flow and decrease temperature as evolving
- Render as a glowing dot
- Kill when too cold to glow visibly

Rendering

- Simplest rendering: color dots
- Animated sprites
- Deformable blobs
- Transparent spheres
- Shadows

A Newtonian particle

- First order motion is sufficient, if
 - a particle state only contains position
 - no inertia
 - · particles are extremely light
- Most likely particles have inertia and are affected by gravity and other forces
- This puts us in the realm of second order motion

Second-order ODE

What is the differential equation that describes the behavior of a mass point?

$$f = ma$$

What does **f** depend on?

$$\ddot{\mathbf{x}}(t) = \frac{\mathbf{f}(\mathbf{x}(t), \dot{\mathbf{x}}(t))}{m}$$

Second-order ODE

$$\ddot{\mathbf{x}}(t) = \frac{\mathbf{f}(\mathbf{x}(t), \dot{\mathbf{x}}(t))}{m} = f(\mathbf{x}, \dot{\mathbf{x}})$$

This is not a first oder ODE because it has second derivatives

Add a new variable, $\mathbf{v}(t)$, to get a pair of coupled first order equations

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{f}/m \end{cases}$$

- Particle overview
- Particle system
- Forces
- Constraints
- Second order motion analysis

Phase space

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Concatenate position and velocity to form a 6-vector: position in phase space

$$\left[egin{array}{c} \dot{\mathbf{x}} \ \dot{\mathbf{v}} \end{array}
ight] = \left[egin{array}{c} \mathbf{v} \ rac{\mathbf{f}}{m} \end{array}
ight]$$

 $\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \frac{\mathbf{f}}{m} \end{bmatrix}$ First order differential equation: velocity in the phase space

Particle structure

Particle

Particle overview
Particle system
Forces
Constraints
Second order motion analysis

Forces

- Constant
 - gravity
- Position/time dependent
 - force fields, springs
- · Velocity dependent
 - drag

Force structure

- Unlike particles, forces are heterogeneous (type-dependent)
- Each force object "knows"
 - which particles it influences
 - how much contribution it adds to the force accumulator

ODE solver

Euler's method: $\mathbf{x}(t_0 + h) = \mathbf{x}(t_0) + hf(\mathbf{x}, t)$

 $\mathbf{x}_{t+1} = \mathbf{x}_t + h\dot{\mathbf{x}}_t$ $\mathbf{v}_{t+1} = \mathbf{v}_t + h\dot{\mathbf{v}}_t$

- Particle overview
- Particle system
- Forces
- Constraints
- Second order motion analysis

Particle Interaction

- We will revisit collision when we talk about rigid body simulation
- For now, just simple point-plane collisions

Collision detection

Normal and tangential components

$$\mathbf{v}_N = (\mathbf{N} \cdot \mathbf{v})\mathbf{N}$$

$$\mathbf{v}_T = \mathbf{v} - \mathbf{v}_N$$

Collision detection

Particle is on the legal side if

$$(\mathbf{x} - \mathbf{p}) \cdot \mathbf{N} \ge 0$$

Particle is within ϵ of the wall if

(x - p)
$$\cdot$$
 N $< \epsilon$

Particle is heading in if

$$\mathbf{v} \cdot \mathbf{N} < 0$$

Collision response

Before collision

After collision

coefficient of restitution:

 $0 \le k_{\Gamma} < 1$

Contact

Conditions for resting contact:

- 1. particle is on the collision surface
- 2. zero normal velocity

If a particle is pushed into the contact plane a contact force \mathbf{f}_c is exerted to cancel the normal component of \mathbf{f}

- Particle overview
- Particle system
- Forces
- Constraints
- Second order motion analysis

Linear analysis

• Linearly approximate acceleration

$$\mathbf{a}(\mathbf{x}, \mathbf{v}) \approx \mathbf{a}_0 - \mathbf{K}\mathbf{x} - \mathbf{D}\mathbf{v}$$

- Split up analysis into different cases
 - constant acceleration
 - linear acceleration

Constant acceleration

• Solution is

$$v(t) = v_0 + a_0 t$$

$$x(t) = x_0 + v_0 t + \frac{1}{2} a_0 t^2$$

• $\mathbf{v}(t)$ only needs 1st order accuracy, but $\mathbf{x}(t)$ demands 2nd order accuracy

Linear acceleration

• When K (or D) dominates ODE, what type of motion does it correspond to?

$$\mathbf{a}(\mathbf{x}, \mathbf{v}) = -\mathbf{K}\mathbf{x} - \mathbf{D}\mathbf{v}$$

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{K} & -\mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix}$$

• Need to compute the eigenvalues of A

Linear acceleration

Assume α is an eigenvalue of \mathbf{A} , $\begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}$ is the corresponding eigenvector

$$\left[\begin{array}{cc} \mathbf{0} & \mathbf{I} \\ -\mathbf{K} & -\mathbf{D} \end{array}\right] \left[\begin{array}{c} \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}\right] = \alpha \left[\begin{array}{c} \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}\right]$$

The eigenvector of A has the form $\begin{bmatrix} \mathbf{u} \\ \alpha \mathbf{u} \end{bmatrix}$

Often, D is linear combination of K and I (Rayleigh damping)

That means \boldsymbol{K} and \boldsymbol{D} have the same eigenvectors

Linear acceleration

For any \mathbf{u} , if $\begin{bmatrix} \mathbf{u} \\ \alpha \mathbf{u} \end{bmatrix}$ is an eigenvector of A, following must be true

$$\begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{K} & -\mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \alpha \mathbf{u} \end{bmatrix} = \alpha \begin{bmatrix} \mathbf{u} \\ \alpha \mathbf{u} \end{bmatrix}$$

Now assume **u** is an eigenvector for both **K** and **D**

$$-\lambda_k \mathbf{u} - \alpha \lambda_d \mathbf{u} = \alpha^2 \mathbf{u}$$

$$\alpha = -\frac{1}{2}\lambda_d \pm \sqrt{(\frac{1}{2}\lambda_d)^2 - \lambda_k}$$

Eigenvalue approximation

If D dominates

$$\alpha \approx -\lambda_d$$
, 0

- exponential decay
- If **K** dominates

$$\alpha \approx \pm \sqrt{-1}\sqrt{\lambda_k}$$

oscillation

Analysis

- Constant acceleration (e.g. gravity)
 - demands 2nd order accuracy for position
- Position dependence (e.g. spring force)
 - · demands stability but low or zero damping
 - looks at imaginary axis
- Velocity dependence (e.g. damping)
 - demands stability, exponential decay
 - looks at negative real axis

Explicit methods

- First-order explicit Euler method
 - constant acceleration: bad (1st order)
 - position dependence: very bad (unstable)
 - velocity dependence: ok (conditionally stable)
- RK3 and RK4
 - constant acceleration: great (high order)
 - position dependence: ok (conditionally stable)
 - velocity dependence: ok (conditionally stable)

Implicit methods

- Implicit Euler method
- constant acceleration: bad (1st order)
- position dependence: ok (stable but damped)
- velocity dependence: great (monotone)
- Trapezoidal rule
- constant acceleration: great (2nd order)
- position dependence: great (stable and no damp)
- velocity dependence: good (stable, not monotone)