Discrete Mathematics HW3

20180617 You SeungWoo

September 25, 2023

Problem 1

- (a) Solution. Let total excution be T(n). Then $T(n) = \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1 = \sum_{i=1}^{n} \sum_{j=1}^{i} j = \sum_{i=1}^{n} \frac{i(i+1)}{2}$. Note that $\frac{i^2}{2} \leq \frac{i(i+1)}{2} = \frac{i^2+i}{2} \leq \frac{i^2+i^2}{2} = i^2$ for $\forall i \in \mathbb{N}$. This follows $\sum_{i=1}^{n} \frac{i^2}{2} \leq \sum_{i=1}^{n} \frac{i(i+1)}{2} = T(n) \leq \sum_{i=1}^{n} i^2$. Since $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$, $T(n) = \Theta(n^3)$.
- (b) Solution. Let total excution be T(n). Then $T(n) = n + \lfloor \frac{n}{3} \rfloor + \lfloor \frac{\lfloor \frac{n}{3} \rfloor}{3} \rfloor + \cdots + 1$.
 - i) If $n = 3^k$ for $k = 0, 1, \dots$, then $T(n) = 3^k + 3^{k-1} + \dots + 3 + 1 = \sum_{i=0}^k 3^i = \frac{3^{k+1} 1}{2} = \frac{3 \cdot 3^k 1}{2} = \frac{3n 1}{2}$. Therefore, $T(n) = \Theta(n)$.
 - ii) If $n = 3^k + C$ with $0 < C < 2 \cdot 3^k$ for $k = 1, 2, \dots$, then $\sum_{i=0}^k 3^i \le T(n) \le \sum_{i=0}^{k+1} 3^i$ from i). So we get $\frac{3n-1}{2} \le T(n) \le \frac{9n-1}{2}$, $T(n) = \Theta(n)$.

For any $n \in \mathbb{Z}^+$, we get $T(n) = \Theta(n)$.

(c) Solution. Let total excution be T(n) and I_j be the value of i at jth iteration. Then by the Archimedean Property, $\exists k$ such that $I_k < n \le I_{k+1}$. It means T(n) = k. Note that the recursive relation $I_{k+1} = I_k^2$. By solving this, we get $I_{k+1} = I_1^{2^k} = 2^{2^k}$. So $2^{2^{k-1}} < n \le 2^{2^k}$. From left inequality, $k < \lg(\lg n) + 1$. From right inequality, $\lg(\lg n) \le k$. Since T(n) = k, $T(n) = \Theta(\lg(\lg n))$.

Solution. Make any increasing functions f(n) and g(n) such that f(n) > g(n) and $g(n) \ge f(n)$ for infinitely many intervals. For example, define

$$f(n) = 2n, \quad g(n) = \begin{cases} n + 4k, & \text{if } n \in (4k, 4k + 2] \\ n + 4k + 4, & \text{if } n \in (4k + 2, 4k + 4] \end{cases}$$

for $k=0,1,\cdots$. Then f(n)>g(n) for $n\in(4k,4k+2],$ $g(n)\geq f(n)$ for $n\in(4k+2,4k+4].$ This gives the desired result.

Proof. Use the definition of Riemann integral for $f(t)=\frac{1}{t}$ between [1,x]. Let $P=\{t_0,t_1,\cdots,t_n\}$ be a uniform partition between $t_0=1$ and $t_n=x$. Let $\Delta t_i=t_i-t_{i-1}=\frac{x-1}{n}$ for $i=1,2,\cdots,n$. By the definition of Riemann integral, $\sum_{i=1}^n m_i \Delta t_i \leq \int_1^x \frac{1}{t} \, dt \leq \sum_{i=1}^n M_i \Delta t_i$ where $m_i=\inf_{t\in[t_{i-1},t_i]} f(t), \ M_i=\sup_{t\in[t_{i-1},t_i]} f(t)$. Since f(t) is continuous and strictly decreasing function, $m_i=\frac{1}{t_i}$ and $M_i=\frac{1}{t_{i-1}}$. Take x=n+1. Then $t_i=i+1, \Delta t_i=1$. It follows:

$$\sum_{i=1}^{n} \frac{1}{i+1} \le \int_{1}^{n+1} \frac{1}{t} dt = \ln(n+1) \le \sum_{i=1}^{n} \frac{1}{i}$$

$$\Rightarrow \ln(n+1) \le \sum_{i=1}^{n} \frac{1}{i} = \sum_{i=1}^{n} \frac{1}{i+1} + 1 - \frac{1}{n+1} \le \ln(n+1) + 1 + 0$$

$$\Rightarrow \sum_{i=1}^{n} \frac{1}{i} = \Theta(\lg n)$$

(a) Proof. Using the definition of limit and O notation.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
 \Rightarrow for given $\epsilon > 0$, $\exists N \in \mathbb{Z}^+$ such that $n \ge N \implies \left| \frac{f(n)}{g(n)} - 0 \right| \le \epsilon$ $\Rightarrow \exists N \in \mathbb{Z}^+$ such that $n \ge N \implies |f(n)| \le \epsilon |g(n)|$ for some(exactly, any) $\epsilon > 0$ $\Rightarrow f(n) = O(g(n))$

(b) *Proof.* Using the definition of *limit* and Θ notation.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \neq 0$$

$$\Rightarrow \text{ for given } \epsilon > 0,^{\exists} N \in \mathbb{Z}^+ \text{ such that } n \geq N \implies \left| \frac{f(n)}{g(n)} - c \right| \leq \epsilon$$

$$\Rightarrow^{\exists} N \in \mathbb{Z}^+ \text{ such that } n \geq N \implies (c - \epsilon) |g(n)| \leq |f(n)| \leq (c + \epsilon) |g(n)| \text{ for any } \epsilon > 0$$

$$\Rightarrow f(n) = \Theta(g(n))$$

Note that we can find $\epsilon > 0$ where $c - \epsilon > 0$ because of the Archimedean Property.

(a) Proof. Proof by induction. Let P(j) be the given statement. Consider j = 1. Then $\sum_{k=1}^{1} f_k^2 = f_1^2 = 1^2 = f_1 f_2$ is clearly true.

Suppose P(j) is true for j = n. Consider j = n + 1. Note that the recursive relation of Fibonacci Sequence: $f_n = f_{n-1} + f_{n-2}$.

$$\sum_{k=1}^{n+1} f_k^2 = \sum_{k=1}^n f_k^2 + f_{n+1}^2$$
$$= f_n f_{n+1} + f_{n+1}^2$$
$$= f_{n+1} (f_n + f_{n+1})$$
$$= f_{n+1} f_{n+2}$$

Therefore, P(j) is true for $\forall j \in \mathbb{N}$.

(b) Proof. Proof by induction. Note that the following:

 $f_n = \frac{f_{n-1} + \sqrt{5f_{n-1}^2 + 4(-1)^{n+1}}}{2}$ $\Leftrightarrow (2f_n - f_{n-1})^2 = 5f_{n-1}^2 + 4(-1)^{n+1}$ $\Leftrightarrow 4f_n^2 - 4f_n f_{n-1} + f_{n-1}^2 = 5f_{n-1}^2 + 4(-1)^{n+1}$ $\Leftrightarrow 4f_n^2 - 4f_n f_{n-1} = 4f_{n-1}^2 + 4(-1)^{n+1}$ $\Leftrightarrow f_n^2 - f_n f_{n-1} = f_{n-1}^2 + (-1)^{n+1}$ $\Leftrightarrow f_n^2 = f_n f_{n-1} + f_{n-1}^2 + (-1)^{n+1}$ $\Leftrightarrow f_n^2 = f_{n-1}(f_n + f_{n-1}) + (-1)^{n+1}$ $\Leftrightarrow f_n^2 = f_{n-1}f_{n+1} + (-1)^{n+1}$

Using this, let the last equation be P(j=n). Consider j=2. Then $f_2^2=1^2=0=1\cdot 2+(-1)^3=f_{2-1}f_{2+1}+(-1)^{2+1}$ is true. Suppose P(j=n) is true. Consider j=n+1.

$$f_{n+1}^{2} = f_{n+1}(f_n + f_{n-1})$$

$$= f_{n+1}f_n + f_{n+1}f_{n-1}$$

$$= f_{n+1}f_n + (f_n^2 - (-1)^{n+1})$$

$$= f_n(f_{n+1} + f_n) + (-1)^{n+2}$$

$$= f_nf_{n+2} + (-1)^{n+2}$$

Therefore, P(j) is true for $j \geq 2$.

(c) Proof. Proof by strong induction. Let P(j) be the given statement. Consider j=6. Then $f_6=8>\left(\frac{3}{2}\right)^{6-1}\simeq 7.59$ is clearly true.

Suppose P(j) is true for $j = 1, 2, \dots, n$. Consider j = n + 1.

$$f_{n+1} = f_n + f_{n-1}$$

$$> \left(\frac{3}{2}\right)^{n-1} + \left(\frac{3}{2}\right)^{n-2}$$

$$= \left(\frac{3}{2}\right)^{n-2} \left(\frac{3}{2} + 1\right) = \frac{5}{2} \left(\frac{3}{2}\right)^{n-2}$$

$$= \frac{10}{4} \left(\frac{3}{2}\right)^{n-2} > \frac{9}{4} \left(\frac{3}{2}\right)^{n-2}$$

$$= \left(\frac{3}{2}\right)^2 \left(\frac{3}{2}\right)^{n-2} = \left(\frac{3}{2}\right)^n$$

Therefore, P(j) is true for $j \geq 6$.

(d) Proof. First, claim that $\gcd(a,b) = \gcd(a+b,b)$. Let $\gcd(a,b) = d$. Then a = pd, b = qd, $\gcd(p,q) = 1$ for some $p,q \in \mathbb{N}$. This gives a+b = (p+q)d. If $\gcd(p+q,q) = 1$, then $\gcd(a+b,b) = d$. Assume, if not, $\gcd(p+q,q) = c \neq 1$. Then p+q = kc, q = tc, $\gcd(k,t) = 1$ for some $k,t \in \mathbb{N}$. This gives p = (k-t)c, so $\gcd(p,q) \geq c$. But it contradicts to $\gcd(p,q) = 1$. Therefore, $\gcd(a+b,b) = d$. Now, $\gcd(a,b) = d \implies \gcd(a+b,b)$ is proved. We can proof the reveresed direction($\gcd(a+b,b) = d \implies \gcd(a,b)$) similarly. Therefore, the claim is true.

Proof by induction. Let P(j) be the given statement. Consider j = 1. Then $gcd(f_1, f_2) = 1$ is clearly true.

Suppose P(j=n) is true. Consider j=n+1. Then by the claim, $\gcd(f_{n+1},f_{n+2})=\gcd(f_{n+1},f_n+f_{n+1})=\gcd(f_n,f_{n+1})=1$. Therefore, P(j) is true for $\forall j\in\mathbb{N}$.

Proof. (\Rightarrow) Using negation. Suppose $\gcd(m,n)=c\neq 1$. Note that $\operatorname{lcm}(m,n)=\frac{mn}{\gcd(m,n)}=\frac{mn}{c}$. Let $x_1=0$, $x_2=\frac{\operatorname{lcm}(m,n)}{n}=\frac{m}{c}$. Since $1\leq \operatorname{lcm}(m,n)< mn$, $1<\frac{\operatorname{lcm}(m,n)}{n}=x_2< m$. So $x_1\neq x_2$. But $f(x_1)=0$, $f(x_2)=n\frac{m}{c}\mod m=0$. Therefore, $f(x_1)=f(x_2)$, f is not one-to-one. (\Leftarrow) First, if m=1, then it is trivial. So consider m>1. Using negation. Suppose f is not one-to-one. This implies $\exists x_1,x_2$ such that $x_1\neq x_2$ but $f(x_1)=f(x_2)$. WOLG, $x_1>x_2$. Note that $x_1,x_2\in X$. i.e. $0\leq x_2< x_1\leq m-1$.

$$f(x_1) = nx_1 \mod m, \quad f(x_2) = nx_2 \mod m$$

$$\Rightarrow n(x_1 - x_2) \equiv 0 \mod m$$

$$\Rightarrow m \mid n \text{ or } m \mid (x_1 - x_2) \text{ but } m \nmid (x_1 - x_2)$$

$$\Rightarrow m \mid n$$

$$\Rightarrow gcd(m, n) = m > 1$$

Solution. Since 5, 6, 7 are relatively prime, by the CRT, $\exists ! x \in \mathbb{Z}_{5 \times 6 \times 7}$. Find $9(3 \times 3)$ values:

- a_i : dividend value
- M_i : product of divisors except the self divisor m_i . $M_i = \frac{m_1 m_2 \cdots m_n}{m_i}$
- y_i : multiplicative inverse of $M_i \mod m_i$

 $a_1=3,\ a_2=4,\ a_3=5,\ M_1=\frac{5\cdot 6\cdot 7}{5}=42,\ M_2=\frac{5\cdot 6\cdot 7}{6}=35,\ M_3=\frac{5\cdot 6\cdot 7}{7}=30.$ Find any y_i which satisfies $M_iy_i\equiv 1\mod m_i.\ y_1=3,\ y_2=5,\ y_3=4.$ Therefore, $x\equiv\sum_{i=1}^3 a_iM_iy_i=1678\equiv 208\mod 210.$

Proof. Let $x \in \mathbb{Z}_n$. i.e. we prove x = 1 or x = n - 1. If n = 2, then it is true by brute-force calculate. Consider n > 2. Note that the *Euclid's lemma*: if prime $p \mid ab$, then $p \mid a$ or $p \mid b$.

$$x^{2} \equiv 1 \mod n$$

$$\Rightarrow x^{2} - 1 \equiv 0 \mod n$$

$$\Rightarrow (x - 1)(x + 1) \equiv 0 \mod n$$

$$\Rightarrow n \mid (x - 1) \text{ or } n \mid (x + 1)$$

But n can divide only one of them, not both. If n can divide both, then $\gcd(x-1,x+1)=n>2$. However, $\gcd(x-1,x+1)\leq 2$. To prove this, let $\gcd(x-1,x+1)=d$. Then $d\mid (x-1)$ and $d\mid (x+1)$, so $x-1\equiv 0$ mod d and $x+1\equiv 0 \mod d$. This follows $(x-1)+(x+1)=2x\equiv 0 \mod d$ and $(x+1)-(x-1)=2\equiv 0 \mod d$. Therefore, $\gcd(2x,2)=d\leq 2$.

By the above statement, we have only 2 cases:

i) Suppose $n \mid (x-1)$.

$$n \mid (x-1)$$

$$\Rightarrow x - 1 \equiv 0 \mod n$$

$$\Rightarrow x \equiv 1 \mod n$$

Since $x \in \mathbb{Z}_n$, x = 1.

ii) Suppose $n \mid (x+1)$.

$$n \mid (x+1)$$

$$\Rightarrow x+1 \equiv 0 \mod n$$

$$\Rightarrow x \equiv -1 \mod n$$

Since $x \in \mathbb{Z}_n$, x = n - 1.