

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 239/00

A2

DE

(11) Internationale Veröffentlichungsnummer:

(43) Internationales

Veröffentlichungsdatum:

14. Mai 1999 (14.05.99)

WO 99/23078

(21) Internationales Aktenzeichen:

PCT/EP98/06571

(22) Internationales Anmeldedatum: 16. Oktober 1998 (16.10.98)

(30) Prioritätsdaten:

197 48 238.4 31. Oktober 1997 (31.10.97) 197 52 904.6 198 09 376.4

28. November 1997 (28.11.97)

DE 5. März 1998 (05.03.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): AMBERG, Wilhelm [DE/DE]; Schälzigweg 79, D-68723 Schwetzingen (DE). JANSEN, Rolf [DE/DE]; C 2.20, D-68159 Mannheim (DE). HERGENRÖDER, Stefan [DE/DE]; Hans-Böckler-Strasse 108, D-55128 Mainz (DE). RASCHACK, Manfred [DIFDE]; Donnersbergstrasse 7, D-67256 Weisenheim (DE). UNGER, Liliane [DE/DE]; Wollstrasse 129, D-67065 Ludwigshafen (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MK, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: NEW CARBOXYLIC ACID DERIVATIVES, CARRYING AMIDO SIDE-CHAINS; PRODUCTION AND USE AS ENDOTHELIN RECEPTOR ANTAGONISTS
- (54) Bezeichnung: NEUE CARBONSÄUREDERIVATE, DIE AMIDSEITENKETTEN TRAGEN, IHRE HERSTELLUNG UND VER-WENDUNG ALS ENDOTHELIN-REZEPTORANTAGÓNISTEN

(57) Abstract

The invention relates to carboxylic acid derivatives of formula (I), wherein the substituents have the meaning as commented in the description. It also relates to the production and use of same as endothelin receptor antagonists.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Carbonsäurederivate der Formel (I), wobei die Substituenten die in der Beschreibung erläuterte Bedeutung haben, die Herstellung und Verwendung als Endothelinrezeptorantagonisten.

LEDIGIJCH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Słowakci
AT	Östeneich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschau	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldan	TG	Togo
838	Barbados	GH	Ghana	MG	13 lagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehem dige jugoslawische	TM	Turkmenistan
1345	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
B,J	Benia	Œ	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	H.	Israel	MR	Mauretanien	UG	Uganda
BY	Belanis	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	FT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ.	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Victoan
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	2.38	Zimbabwe
CM	Kamerun		Korea	PL,	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
Cı.	Kuba	KZ	Kasachstan	RO	Rumänien		
0.2	Tschechische Republik	1.C	St. Lucia	RÜ	Russische Föderation		
DE:	Deutschland	1.1	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Neue Carbonsäurederivate, die Amidseitenketten tragen, ihre Herstellung und Verwendung als Endothelin-Rezeptorantagonisten

5 Beschreibung

Die vorliegende Erfindung betrifft neue Carbonsäuredrivate, deren Herstellung und Verwendung.

- 10 Endothelin ist ein aus 21 Aminosäuren aufgebautes Peptid, das von vaskulärem Endothel synthetisiert und freigesetzt wird.
 Endothelin existiert in drei Isoformen, ET-1, ET-2 und ET-3. Im Folgenden bezeichnet "Endothelin" oder "ET" eine oder alle Isoformen von Endothelin. Endothelin ist ein potenter Vasokonstrik-
- 15 tor und hat einen starken Effekt auf den Gefäßtonus. Es ist bekannt, daß diese Vasokonstriktion von der Bindung von Endothelin an seinen Rezeptor verursacht wird (Nature, 332, 411-415, 1988; FEBS Letters, 231, 440-444, 1988 und Biochem. Biophys. Res. Commun., 154, 868-875, 1988).

20

- Erhöhte oder abnormale Freisetzung von Endothelin verursacht eine anhaltende Gefäßkontraktion in peripheren, renalen und zerebralen Blutgefäßen, die zu Krankheiten führen kann. Wie in der Literatur berichtet, ist Endothelin in einer Reihe von Krankheiten invol-
- 25 viert. Dazu zählen: Hypertonie, akuter Myokardinfarkt, pulmonäre Hypertonie, Raynaud-Syndrom, zerebrale Vasospasmen, Schlaganfall, benigne Prostatahypertrophie, Atherosklerose und Asthma (J. Vascular Med. Biology 2, 207 (1990), J. Am. Med. Association 264, 2868 (1990), Nature 344, 114 (1990), N. Engl. J. Med. 322, 205
- **30** (1989), N. Engl. J. Med. <u>328</u>, 1732 (1993), Nephron <u>66</u>, 373 (1994), Stroke <u>25</u>, 904 (1994), Nature <u>365</u>, 759 (1993), J. Mol. Ce³1. Cardiol. <u>27</u>, A234 (1995); Cancer Research <u>56</u>, 663 (1996)).

Mindestens zwei Endothelinrezeptorsubtypen, ET_A - und ET_B -Rezeptor, 35 werden zur Zeit in der Literatur beschrieben (Nature 348, 730 (1990), Nature 348, 732 (1990)). Demnach sollten Substanzen, die die Bindung von Endothelin an die beiden Rezeptoren inhibieren, physiologische Effekte von Endothelin antagonisieren und daher wertvolle Pharmaka darstellen.

40

R⁶ und W herzustellen.

In der Patentanmeldung DE 19636046.3 wurden gemischte ET_A/ET_B-Rezeptorantagonisten beschrieben. Wichtig für diese Verbindungen ist der Spacer Q (Siehe Formel II), der in seiner Länge einer C₂-C₄-Alkylkette entspricht, und die Funktion hat, in den Verbindungen der Formel II einen definierten Abstand zwischen

BNSDOCID: <WO__9923078A2_I_>

Weiterhin sind in der Patentanmeldung WO 97/38980 folgende Verbindungen der Formel VII als Endothelinrezeptorantagonisten 10 beschrieben:

20 Als Vorteil dieser Verbindungen wird die niedrige Plasmabidung genannt.

Überraschenderweise wurde gefunden, daß mittels des Spacers $Q = R^6CR^7R^8$ (siehe Formel I) in Abhängigkeit von $R^6 = Amid$ die 25 Rezeptoraffin: ": und -selektivität beeinflußt werden kann. Somit können entweder ET_A -selektive, ET_B -selektive oder aber gemischte Reptorantogonisten hergestellt werden.

Als $\mathrm{ET_A}$ ($\mathrm{ET_B}$)-spezifische Antagonisten bezeichnen wir hier solche 30 Antagonisten, deren Affinität zum $\mathrm{ET_A}$ ($\mathrm{ET_B}$)-Rezeptor mindestens zehnfach höher ist als ihre Affinität zum $\mathrm{ET_B}$ ($\mathrm{ET_A}$)-Rezeptor. Bevorzugt sind solche Verbindungen, deren Affinitätsunterschied zu den beiden Rezeptoren mindestens zwanzig beträgt.

35 Gemischte Endothelinrezeptorantagonisten sind solche Verbindungen, die mit ungefähr gleicher Affinität an den ET_A und den ET_B Rezeptor binden. Ungefähr gleiche Affinität zu den Rezeptoren besteht, wenn der Quotient der Affinitäten größer 0,05 (bevorzugt 0,1) und kleiner 20 (bevorzugt 10) ist.

Es bestand nun die Aufg 'e Verbindungen zu identifizieren, die zu einer der drei Selektivitä Egruppen gehören.

45

PCT/EP98/06571

Gegenstand der Erfindung sind Carbonsäurederivate der Formel I

10 R1 steht für Tetrazol oder für eine Gruppe

in der R folgende Bedeutung hat:

15

a) ein Rest OR9, worin R9 bedeutet:

Wasserstoff, das Kation eines Alkalimetalls, das Kation eines Erdalkalimetalls, ein physiologisch verträgliches organisches Ammoniumion wie tertiäres C_1 - C_4 -Alkylammonium oder das Ammoniumion;

C₃-C₈-Cycloalkyl, C₁-C₈-Alkyl, CH₂-Phenyl, die durch einen oder mehrere der folgenden Reste substituiert sein können:
Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
Hydroxy, C₁-C₄-Alkoxy, Mercapto, C₁-C₄-Alkylthio, Amino,
NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂;

Eine $C_3-C_6-Alkenyl$ - oder eine $C_3-C_6-Alkinylgruppe$, wobei diese Gruppen ihrerseits ein bis fünf Halogenatome tragen können;

R⁹ kann weiterhin ein Phenylrest sein, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, Hydroxy, C_1 - C_4 -Alkoxy, Mercapto, C_1 - C_4 -Alkylthio, Amino, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂;

b) ein über ein Stickstoffatom verknüpfter 5-gliedriger Hetero-aromat wie Pyrrolyl, Pyrazolyl, Imidazolyl und Triazolyl, welcher ein bis zwei Halogenatome, oder eins bis zwei C_1 - C_4 -Alkyl oder eins bis zwei C_1 - C_4 -Alkoxygruppen tragen kann.

c) eine Gruppe

$$\begin{array}{c} (O)_{k} \\ \parallel \\ -O - (CH_{2})_{p} - S - R^{10} \end{array}$$

in der k die Werte 0, 1 und 2, p die Werte 1, 2, 3 und 4 annehmen und R^{10} für

10

 $C_1-C_4-Alkyl$, $C_3-C_8-Cycloalkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$ oder Phenyl steht, das durch einen oder mehrere, z.B. ein bis drei der folgenden Reste substituiert sein kann:

- Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, Hydroxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Mercapto, Amino, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂.
 - d) ein Rest

20

25

30

worin R11 bedeutet:

 $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$ $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$, $C_3-C_8-Cycloalkyl$, wobei diese Reste einen $C_1-C_4-Alkoxy-$, $C_1-C_4-Alkylthio-und/oder$ einen Phenylrest wie unter c) genannt tragen können;

Phy /l, das durch ein bis drei der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl,

C₁-C₄-Halogenalkyl, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio,

Mercapto, Amino, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂

Die übrigen Substituenten haben die folgende Bedeutung:

40 R Wasserstoff, Hydroxy, NH_2 , $NH(C_1-C_4-Alkyl)$, $N(C_1-C_4-Alkyl)_2$, Halogen, $C_1-C_4-Alkyl$, $C_2-C_4-Alkenyl$, $C_2-C_4-Alkinyl$, $C_1-C_4-Hydroxyalkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$ oder $C_1-C_4-Alkylthio$, oder CR^2 ist mit CR^{10} wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft.

- X Stickstoff oder Methin.
- Y Stickstoff oder Methin.
- Stickstoff oder CR^{12} , worin R^{12} Wasserstoff, Halogen oder C_1 - C_4 -Alkyl, bedeutet oder CR^{12} bildet zusammen mit CR^2 oder CR^3 einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring, der durch eine oder zwei C_1 - C_4 -Alkylgruppen substituiert sein kann und worin jeweils eine oder mehrere Methylengruppen
- durch Sauerstoff, Schwefel, -NH oder $N(C_1-C_4-Alkyl)$ ersetzt sein können.

Mindestens eines der Ringglieder X, Y oder Z ist Stickstoff.

- 15 R³ Wasserstoff, Hydroxy, NH_2 , $NH(C_1-C_4-Alkyl)$, $N(C_1-C_4-Alkyl)_2$, Halogen, $C_1-C_4-Alkyl$, $C_2-C_4-Alkenyl$, $C_2-C_4-Alkinyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, $C_1-C_4-Hydroxyalkyl$, $C_1-C_4-Alkylthio$, oder CR^3 ist mit CR^{12} wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft.
 - R⁴ und R⁵ (die gleich oder verschieden sein können):
- Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyono, Hydroxy, Mercapto, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Phenoxy, Carboxy, C₁-C₄ !Ialogenalkoxy, C₁-C₄-Alkylthio, Amino, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂ oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkyl, chio; oder
- Phenyl oder Naphthyl, die orthoständig über eine direkte Bin-35 dung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO₂-, NH- oder N-Alkyl-Gruppe miteinander verbunden sind;

 $C_3-C_8-Cycloalkyl.$

R6 eine Gruppe

45
$$R^{14} N - C - oder$$
 $R^{16} N - C - R^{21}$

 R^{13} und R^{14} (die gleich oder verschieden sein können):

Wasserstoff mit der Maßgabe, daß ${\rm R}^{13}$ und ${\rm R}^{14}$ nicht gleichzeitig Wasserstoff sein dürfen,

5

 $\label{eq:continuous_continuous$

 $\begin{array}{lll} \textbf{C}_3-\textbf{C}_6-\textbf{Alkinyloxy}, & \textbf{C}_1-\textbf{C}_4-\textbf{Alkylthio}, & \textbf{C}_1-\textbf{C}_4-\textbf{Halogenalkoxy}, \\ \textbf{C}_1-\textbf{C}_4-\textbf{Alkylcarbonyl}, & \textbf{C}_1-\textbf{C}_4-\textbf{Alkoxycarbonyl}, & \textbf{C}_3-\textbf{C}_8-\textbf{Alkyl-carbonylalkyl}, & \textbf{C}_3-\textbf{C}_8-\textbf{Cycloalkyl}, & \textbf{Indan-1-yl}, & \textbf{Indan-2-yl}, \\ \textbf{Tetrahydronaphthalin-1-yl}, & \textbf{Tetrahydronaphthalin-2-yl}, & \textbf{NH}(\textbf{C}_1-\textbf{C}_4-\textbf{Alkyl}), & \textbf{N}(\textbf{C}_1-\textbf{C}_4-\textbf{Alkyl})_2, & \textbf{Phenoxy oder Phenyl}, & \textbf{wobei} \\ \end{array}$

die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Amino, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl), oder C_1 - C_4 -Alkylthio;

20

 $\label{eq:c3-C8-Cycloalkyl, wobci diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, <math>C_1$ - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogen-alkoxy;

25 alkoxy;

Phenyl oder Naphthyl, die jeweils durch einen ode mehrere der folgenden Reste substituiert sein können: Halejen, Nitro, Carboxamid, Mercapto, Carboxy, Cyano, Hydroxy, Amino, R¹⁵,

30 C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₃-C₆-Alkenyloxy, C₁-C₄-Halogenalkyl, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthi, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Dioxomethylen, Dioxoeth, len oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio;

oder R¹³ und R¹⁴ bilden ge...insam eine zu einem Ring geschlossene C₃-C₇-Alkylenkette, die ein- oder mehrfach substituiert
sein kann mit C₁-C₄-Alkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkoxy,
C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, und in der eine
Alkylengruppe durch Sauerstoff, Schwefel, Stickstoff oder
N(C₁-C₄-Alkyl), ersetzt sein kann, wie -(CH₂)₄-, -(CH₂)₅-,
-(CH₂)₆-, -(CH₂)₇-, -(CH₂)₂-O-(CH₂)₂-, -(CH₂)₂-S-(CH₂)₂-,
-(CH₂)₂-NH-(CH₂)₂-, -(CH₂)₃-, -(CH₂)₂-N(CH₃)-(CH₂)₂-;

WO 99/23078 PCT/EP98/06571

oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene C_3 - C_7 -Alkylenkette oder C_4 - C_7 -Alkenylenkette, die jeweils ein- bis dreifach mit C_1 - C_4 -Alkyl substituiert sein kann, und an die jeweils ein Phenylring annelliert ist, der ein- oder mehrfach substituiert sein kann durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylthio, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkoxy, Hydroxy, Carboxy, Amino, Carboxamid.

 R^7 und R^8 (die gleich oder verschieden sein können):

Wasserstoff, $C_1-C_4-Alkyl$.

R¹⁵ $C_1-C_4-Alkyl$, $C_1-C_4-Alkyl$ thio, $C_1-C_4-Alkoxy$, die einen der folgenden Reste tragen: Hydroxy, Carboxy, Amino, NH($C_1-C_4-Alkyl$), N($C_1-C_4-Alkyl$)₂, Carboxamid oder CON($C_1-C_4-Alkyl$)₂.

R¹⁸ Wasserstoff;

C₁-C₈-Alkyl, C₃-C₈-Alkenyl oder C₃-C₈-Alkinyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Carboxy, Cycno, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₃-C₈-Cycloalkyl, Amino, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifar durch Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl, N(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, oder C₁-C₄-Alkylthio;

30

5

10

 $C_3-C_8-Cycloalkyl$, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, $C_1-C_4-Alkyl$;

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Mercapto, Carboxy, Cyano, Hydroxy, Amino, R 15 , C $_1$ -C $_4$ -Alkyl, C $_2$ -C $_4$ -Alkenyl, C $_2$ -C $_4$ -Alkinyl, C $_1$ -C $_4$ -Halogenalkyl, C $_1$ -C $_4$ -Alkoxycarbonyl, C $_1$ -C $_4$ -Alkoxy, C $_1$ -C $_4$ -Halogenalkoxy, Phenoxy, C $_1$ -C $_4$ -Alkylthio, NH(C $_1$ -C $_4$ -Alkyl),

N(C_1 - C_4 -Alkyl)₂, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio;

- $C_3-C_8-Cycloalkyl$, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, $C_1-C_4-Alkyl$, $C_1-C_4-Halogen-alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, Amino,
- NH(C_1-C_4 -Alkyl), N(C_1-C_4 -Alkyl)₂, oder C_1-C_4 -Alkylthio;

Benzyloxycarbonyl, C_3 - C_8 -Cycloalkylcarbonyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, C_1 - C_4 -Alkyl;

15

Phenylcarbonyl oder Naphthylcarbonyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Mercapto, Carboxy, Cyano, Hydroxy, Amino, R¹⁵, $C_1-C_4-Alkyl$, $C_2-C_4-Alkenyl$, $C_2-C_4-Alkinyl$, $C_3-C_6-Alkenyloxy$,

- C₁-C₄-Halogenalkyl, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen,
- Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio;

 $C_1-C_8-Alkylsulfonyl$, $C_3-C_8-Alk-vlsulfonyl$ oder $C_3-C_8-Alkinylsulfonyl$, wobei diese Reste je vils ein- oder mehrfach substituiert sein können durch: malogen, $C_1-C_4-Alkoxy$, Phenyl, wobei der genannte Arylrest seinerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, $C_1-C_4-Alkyl$, $C_1-C_4-Alkyl$, $C_1-C_4-Alkyl$, $C_1-C_4-Alkyl$, $C_1-C_4-Alkyl$), $N(C_1-C_4-Alkyl)_2$, oder $C_1-C_4-Alkyl$ thio;

35

30

C₃-C₈-Cycloalkylsulfonyl;

Phenylsulfonyl oder Naphthylsulfonyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können:

40 Halogen, Cyano, Hydroxy, Amino, R^{15} , C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, C_3 - C_6 -Alkenyloxy, C_1 - C_4 -Halogen-alkyl, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy,

R²⁰ Wasserstoff;

C₁-C₄-Alkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto,
Carboxy, Amino, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogen-

- Carboxy, Amino, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogen-alkoxy, C_1 - C_4 -Alkoxycarbonyl, C_3 - C_8 -Cycloalkyl, $NH(C_1$ - C_4 -Alkyl), $N(C_1$ - C_4 -Alkyl) $_2$, Indolyl, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein bis dreifach
- durch Halogen, Hydroxy, Mercapto, Carboxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Amino, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂ oder C_1 - C_4 -Alkylthio.

 R^{21} Wasserstoff, C_1 - C_4 -Alkyl.

15

W Schwefel oder Sauerstoff.

Hierbei und im weiteren gelten folgende Definitionen:

20 Ein Alkalimetall ist z.B. Lithium, Natrium, Kalium;

Ein Erdalkalimetall ist z.B. Calcium, Magnesium, Barium;

 C_3 - C_8 -Cycloalkyl ist z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, 25 Cyclohexyl, Cycloheptyl oder Cyclooctyl;

 C_1 - C_4 -Halogenalkyl kann linear oder verzweigt sein wie z.B. Fluormethyl, Difluormethyl, Trifluormethyl, Chlordifluormethyl, Dichlorfluormethyl, Trichlormethyl, 1-Fluorethyl, 2-Fluorethyl,

- 30 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2,2-difluorethyl,
 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl oder Pentafluorethyl;
- C₁-C₄-Halogenalkoxy kann linear oder verzweigt sein wie z.B.
 35 Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, 1-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy, 2-Fluorethoxy oder
 Pentafluorethoxy;
- 40 C₁-C₄-Alkyl kann linear oder verzweigt sein wie z.B. Methyl, Ethyl, 1-Propyl, 2-Propyl, 2-Methyl-2-propyl, 2-Methyl-1-propyl, 1-Butyl oder 2-Butyl;

 C_2 - C_4 -Alkenyl kann linear oder verzweigt sein wie z.B. Ethenyl,

45 1-Propen-3-yl, 1-Propen-2-yl, 1-Propen-1-yl, 2-Methyl-1-propenyl, 1-Butenyl oder 2-Butenyl;

10

C₂-C₄-Alkinyl kann linear oder verzweigt sein wie z.B. Ethinyl, 1-Propin-1-yl, 1-Propin-3-yl, 1-Butin-4-yl oder 2-Butin-4-yl;

 C_1 - C_4 -Alkoxy kann linear oder verzweigt sein wie z.B. Methoxy, 5 Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1,1-Dimethylethoxy;

 C_3 - C_6 -Alkenyloxy kann linear oder verzweigt sein wie z.B. Allyloxy, 2-Buten-1-yloxy oder 3-Buten-2-yloxy;

10

 $C_3-C_6-Alkinyloxy$ kann linear oder verzweigt sein wie z.B. 2-Propin-1-yloxy, 2-Butin-1-yloxy oder 3-Butin-2-yloxy;

C₁-C₄-Alkylthio kann linear oder verzweigt sein wie z.B. Methyl-15 thio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio oder 1,1-Dimethylethylthio;

 C_1-C_4 -Alkylcarbonyl kann linear oder verzweigt sein wie z.B. 20 Acetyl, Ethylcarbonyl oder 2-Propylcarbonyl, 1-Propylcarbonyl, 1-Butylcarbonyl;

C₁-C₄-Alkoxycarbonyl kann linear oder verzweigt sein wie z.B.
Metoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, i-Propoxycar25 bonyl oder n-Butoxycarbonyl;

 $C_3-C_8-Alkylcarbonylalkyl$ kann linear oder verzweigt sein, z.B. 2-Oxo-prop-1-yl, 3-Oxo-but-1-yl oder 3-Oxo-but-2-yl

30 C_1 - C_8 -Alkyl kann linear oder verzweigt sein wie z.B. C_1 - C_4 -Alkyl, Pentyl, Hexyl, Hexyl oder Octyl;

 C_1-C_8 -Alkylcarbonyl kann linear oder verzweigt sein wie z.B. C_1-C_4 -Alkylcarbonyl, 1-Perhylcarbonyl, 1-Hexylcarbonyl, 1-Heptyl-35 carbonyl oder 1-Octylcarbonyl;

C₂-C₈-Alkenylcarbonyl kann linear oder verzweigt sein wie z.B. Ethenylcarbonyl, 1-Propen-3-ylcarbonyl, 1-Propen-2-y :rbonyl, 1-Propen-1-ylcarbonyl, 2-Methyl-1-propenylcarbonyl, 1-Buten-1-yl-40 carbonyl, 1-Penten-1-ylcarbonyl, 1-Octen-1-ylcarbonyl;

 $\label{eq:c2-C8-Alkinylcarbonyl kann linear oder verzweigt sein wie z.B. \\ Ethinylcarbonyl, 1-Propin-3-ylcarbonyl, 1-Propin-1-ylcarbonyl, \\ 1-Butin-1-ylcarbonyl, 1-Pentin-1-ylcarbonyl, 1-Octin-1-yl-$

45 carbonyl;

 $C_3-C_8-Cycloalkylcarbonyl$, Cyclopropylcarbonyl, Cyclobutylcarbonyl, Cyclopentylcarbonyl, Cyclohexylcarbonyl, 4-Methylcyclohex-1-yl-carbonyl Cycloheptylcarbonyl oder Cyclooctylcarbonyl;

- 5 C_1 - C_4 -Alkylsulfonyl kann linear oder verzweigt sein wie z.B. Methylsulfonyl, Ethylsulfonyl oder 2-Propylsulfonyl, 1-Propylsulfonyl, 2-Methyl-1-propylsulfonyl, 1-Butylsulfonyl;
- C_1-C_8 -Alkylsulfonyl kann linear oder verzweigt sein wie z.B. 10 C_1-C_4 -Alkylsulfonyl, 1-Pentylsulfonyl, 1-Hexylsulfonyl, 1-Heptylsulfonyl oder 1-Octylsulfonyl;

 C_3-C_8 -Alkenylsulfonyl kann linear oder verzweigt sein wie z.B. 1-Propen-3-ylsulfonyl, 1-Propen-2-ylsulfonyl, 1-Propen-1-ylsulfonyl, 1-Buten-1-ylsulfonyl, 1-Penten-1-ylsulfonyl, 1-Octen-1-ylsulfonyl

C₃-C₈-Alkinylsulfonyl kann linear oder verzweigt sein wie z.B. 1-Propin-3-ylsulfonyl, 1-Propin-1-ylsulfonyl, 1-Butin-1-ylsulfo-20 nyl, 1-Pentin-1-ylsulfonyl, 1-Octin-1-ylsulfonyl

 $C_3-C_8-Cycloalkylsulfonyl$ ist z.B. Cyclopropylsulfonyl, Cyclobutylsulfonyl, Cyclopentylsulfonyl, Cyclohexylsulfonyl, 4-Methylcyclohex-1-ylsulfonyl Cycloheptylsulfonyl oder Cyclooctylsulfonyl;

25
Halogen ist z.B. Fluor, Chlor, Brom, Jod.

Ein weiterer Gegenstand der Erfindung sind solche Verbindungen, aus denen sich die Verbindungen der Formel I freisetzen lassen 30 (sog. Prodrugs).

Bevorzugt sind solche Prodrugs, bei denen die Freisetzung unter solchen Bedingungen abläuft, wie sie in bestimmten Körperkompartimenten, z.B. im Magen, Darm, Blutkreislauf, Leber, vorherr- 35 schen.

Die Verbindungen I und auch die Zwischenprodukte zu ihrer Herstellung, wie z.B. III, IV und V, können ein oder mehrere asymmetrisch substituierte Kohlenstoffatome besitzen. Solche

- 40 Verbindungen können als reine Enantiomere bzw. reine Diastereomere oder als deren Mischung vorliegen. Bevorzugt ist die Verwendung einer enantiomerenreinen Verbindung als Wirkstoff.
- Gegenstand der Erfindung ist weiter die Verwendung der oben genannten Carbonsäurederivate zur Herstellung von Arzneimitteln, insbesondere zur Herstellung von Hemmstoffen für ET_A und ET_B Rezeptoren. Die erfindungsgemäßen Verbindungen eignen sich als

selektive und als gemischte Antagonisten, wie sie eingangs definiert wurden.

Die Herstellung der Verbindungen mit der allgemeinen Formel V, in 5 denen W Schwefel oder Sauerstoff ist, kann wie in WO 96/11914 be-- schrieben, erfolgen.

Verbindungen der Formel V können in enantionmerenreiner Form er-15 halten werden, indem man von enantiomerenreinen Verbindungen der Formel III ausgeht und sie wie in WO 96/11914 beschrieben mit Verbindungen der Formel IV umsetzt.

Weiterhin kann man enantiomere Verbindungen der Formel V erhal-20 ten, indem man mit racemischen bzw. diastereomeren Verbindungen der Formel V eine klassische Racematspaltung mit geeigneten enantiomerenreinen Basen durchführt. Als solche Basen eigenen sich z.B. 4-Chlorphenylethylamin und die Basen, die in WO 96/11914 genannt werden.

25

Darüberhinaus kann man enantiomerenreine Verbindungen der Forr 'V über eine sauer katalysierte Umetherung erhalten, wie dies in DE 19636046.3 beschrieben wurde.

30 Die Herstellung von Verbindungen der allgemeinen Formel III wurde in W. 96/11914 beschrieben, während Verbindungen der allgemeinen Formel IVa ($R^6 = Amid$) bzw. IVb ($R^6 = Sulfonamid / Amid$) entweder bekannt sind oder durch allgemein bekannte Methoden synthetisiert werden können wie z.B:

35

40

15 Die erfindungsgemäßen Verbindungen, in denen die Substituenten die unter der allgemeinen Formel I angegebenen Bedeutung haben, können beispielsweise derart hergestellt werden, daß man die Carbonsäurederivate der allgemeinen Formel V, in denen die Substituenten die angegebene Bedeutung haben, mit Verbindungen der allgemeinen Formel VI zur Reaktion bringt.

In Formel VI bedeutet R¹⁶ Halogen oder R¹⁷-SO₂-, wobei R¹⁷
30 C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder Phenyl sein kann. Ferner ist mindestens eines der Ringglieder X oder Y oder Z Stickstoff. Die Reaktion findet bevorzugt in einem inerten Lösungs- oder Verdünnungsmittel unter Zusatz einer geeigneten Base, d.h. einer Base, die eine Deprotonierung des Zwischenproduktes V bewirkt, in einem 35 Temperaturbereich von Raumtemperatur bis zum Siedepun¹ des Lösungsmittels statt.

Verbindungen des Typs I mit $R^1 = COOH$ lassen sich sich auf diese Weise direkt erhalten, wenn man das Zwischenprodukt V, in dem

- 40 R¹ COOH bedeutet, mit zwei Equivalenten einer geeigneten Base deprotoniert und mit Verbindungen der allgemeinen Formel V zur Reaktion bringt. Auch hier findet die Reaktion in einem inerten Lösungsmittel und in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittels statt.
- 45 Beispiele für solche Lösungsmittel beziehungsweise Verdünnungsmittel sind aliphatische, alicyclische und aromatische Kohlenwasserstoffe, die jeweils gegebenenfalls chloriert sein können,

wie zum Beispiel Hexan, Cyclohexan, Petrolether, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Chloroform, Kohlenstofftetrachlorid, Ethylchlorid und Trichlorethylen, Ether, wie zum Beispiel Diisopropylether, Dibutylether, Methyl-tert.-Butylether, Propylenoxid, Dioxan und Tetrahydrofuran, Nitrile, wie zum Beispiel Acetonitril und Propionitril, Säureamide, wie zum Beispiel

Dimethylformamid, Dimethylacetamid und N-Methylpyrrolidon, Sulfoxide und Sulfone, wie zum Beispiel Dimethylsulfoxid und Sulfolan.

10

Verbindungen der Formel VI sind bekannt, teilweise käuflich oder können nach allgemein bekannter Weise hergestellt werden.

Als Base kann ein Alkal! - oder Erdalkalimetallhydrid wie Natrium15 hydrid, Kaliumhydrid oder Calciumhydrid, ein Carbonat wie Alkalimetallcarbonat, z.B. Natrium- oder Kaliumcarbonat, ein Alkalioder Erdalkalimetallhydroxid wie Natrium- oder Kaliumhydroxid,
eine metallorganische Verbindung wie Butyllithium oder ein Alkaliamid wie Lithiumdiisopropylamid oder Lithiumamid dienen.

20

Verbindungen der Formel I können auch dadurch hergestellt werden, indem man von den entsprechenden Carbonsäuren, d. h. Verbindungen der Formel I, in denen R¹ COOH bedeutet, ausgeht und diese zunächst auf übliche Weise in eine aktivierte Form wie ein Säure25 halogenid, ein Anhydrid oder Imidazolid überführt und dieses dann mit einer entsprechenden Hydroxylverbindung HOR9 umsetzt. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und erfordert oft die Zugabe einer Base, wobei die oben genannten in Betracht kon n. Diese beiden Schritte lassen sich beispiels30 weise auch dadurch vereinfachen, daß man die Carbonsäure in Gegenwart eines wasserabspaltenden Mittels wie eines Carbodiimids auf die Hydroxylverbindung einwirken läßt.

Außerdem können Verbindungen der Formel I auch dadurch hergeellt werden, indem man von den Salzen der entsprechenden
Carbonsäuren ausgeht, d. h. von Verbindungen der Formel I, in denen R¹ für eine Gruppe COU.1 stehen, wobei M ein Alkalimetallkation
oder das Equivalent eines Erdalkalimetallkations sein kann. Diese
Salze lassen sich mit vielen Verbindungen der Formel R-A zur Re40 aktion bringen, wobei A eine übliche nucleofuge Abgangsgruppe bedeutet, beispielsweise Halogen wie Chlor, Brom, Tod oder gegebenenfalls durch Halogen, Alkyl oder Halogenalkyl substituiertes
Aryl- oder Alkylsulfonyl wie z.B. Toluolsulfonyl und Methylsulfonyl oder eine andere äquivalente Abgangsgruppe. Verbindungen
45 der Formel R-A mit einem reaktionsfähigen Substituenten A sind
beimnt oder mit dem allgemeinen Fachwissen leicht zu erhalten.
Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durch-

führen und wird vorteilhaft unter Zugabe einer Base, wobei die oben genannten in Betracht kommen, vorgenommen.

In einigen Fällen ist zur Herstellung der erfindungsgemäßen

5 Verbindungen I die Anwendung allgemein bekannter Schutzgruppentechniken erforderlich. Soll beispielsweise R¹³ = 4-Hydroxyphenyl bedeuten, so kann die Hydroxygruppe zunächst als Benzylether geschützt sein, der dann auf einer geeigneten Stufe in der Reaktionssequenz gespalten wird.

10

Verbindungen der Formel I, in denen R^1 Tetrazol bedeutet, können wie in WO 96/11914 beschrieben, hergestellt werden.

Im Hinblick auf die biologische Wirkung sind Carbonsäurederivate
15 der allgemeinen Formel I - sowohl als reine Enantiomere bzw.
reine Diastereomere oder als deren Mischung - bevorzugt, in denen
die Substituenten folgende Bedeutung haben:

- R² Wasserstoff, Hydroxy, Halogen, $N(C_1-C_4-Alky1)_2$, $C_1-C_4-Alky1$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alky1thio$, $C_1-C_4-Halogenalky1$, $C_1-C_4-Halogenalkoxy$, $C_1-C_4-Hydroxyalky1$, oder CR^2 ist mit CR^{12} wie unter 2 angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
- 25 X Stickstoff oder Methin;
 - Y Stickstoff oder Methin;
- Stickstoff oder CR¹², worin R¹² Wasserstoff, Fluor oder C₁-C₄-Alkyl bedeutet oder CR¹² bildet zusammen mit CR² oder CR³ einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring, der durch eine oder zwei Methylgruppen substituiert sein kann, und worin jeweils eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt sein kann wie -CH₂-CH₂-O-, -CH₂-CH₂-O-, -CH=CH-O-, -CH=CH-CH₂O-, -CH(CH₃)-CH(CH₃)-O-, -CH=C(CH₃)-O-, -C(CH₃)=C(CH₃)-O-, oder -C(CH₃)=C(CH₃)-S;

Mindestens eines der Ringglieder X, Y oder Z ist Stickstoff.

- 40 R³ Wasserstoff, Hydroxy, Halogen, $N(C_1-C_4-Alkyl)_2$, $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkyl$ thio, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Hydroxyalkyl$, $C_1-C_4-Halogenalkoxy$, oder CR³ ist mit CR¹⁰ wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
- R^4 und R^5 (die gleich oder verschieden sein können):

Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Cyano, Hydroxy, Mercapto, Amino, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Phenoxy, C_1 - C_4 -Alkylthio,

- NH(C_1 - C_4 -Alkyl) oder N(C_1 - C_4 -Alkyl)₂ oder Phenyl, das einoder mehrfach substituiert sein kann, z.B. einobis dreifach durch Halogen, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio; oder
- Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO_2 -, NH- oder N-Alkyl-Gruppe miteinander verbunden sind
- 15 $C_3-C_8-Cycloalky1;$

R6 eine Gruppe

 $\begin{array}{c|c}
R^{14} & 0 \\
\hline
R^{13} & N-C \end{array} \quad \text{oder} \qquad \begin{array}{c|c}
R^{16} & R^{21} \\
\hline
R^{19} & N-C \end{array}$

wobei das Molgewicht der Gruppen R^{13} und R^{14} zusammengenommen mindestens 60 betragen muß.

 R^{13} und R^{14} (die gleich oder verschieden sein können):

Wasserstoff, C_1 - C_8 -Alkyl, C_3 - C_8 -Alkenyl oder C_3 - C_8 -Alkinyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Amino, Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxycarbonyl, C_3 - C_8 -Cycloalkyl,

NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂, Phenoxy oder Phenyl, wobei die g unnten Arylreste ihrerseits ein- bis dreifach substituiert sein können durch Halogen, Hydroxy, Carboxy, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkyl)₂, oder C_1 - C_4 -Alkylthio;

40 $C_3-C_8-Cycloalkyl, \ wobei \ diese \ Reste jeweils \ ein- \ oder \ mehrfach substituicht sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Cyano, <math>C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkyl$ thio, $C_1-C_4-Halogenalkoxy$;

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Carboxy, Hydroxy, Amino, R 15 , C $_1$ -C $_4$ -Alkyl, C $_1$ -C $_4$ -Alkylthio, C $_1$ -C $_4$ -Halogenalkyl, C $_1$ -C $_4$ -Alkylcarbonyl,

10

oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene C_3 - C_7 -Alkylenkette, die ein- oder mehrfach substituiert sein kann mit C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, und in der eine Alkylengruppe durch Sauerstoff oder Schwefel, ersetzt sein

15 kann, $w^2 \in -(CH_2)_3-$, $-(CH_2)_4-$, $-(CH_2)_5-$, $-(CH_2)_6-$, $-(CH_2)_7-$, $-(CH_2)_2-O-(CH_2)_2-$, $-(CH_2)_2-S-(CH_2)_2-$;

oder R¹³ und R¹⁴ bilden gemeinsam eine zu einem Ring geschlossene C₃-C₇-Alkylenkette oder C₄-C₇-Alkenylenkette, an die ein Phenylring anneliert ist, wie 7-aza-bi-cyclo[4.2.0]-octa-1,3,5-trien, 2,3-Dihydroindol, Indol, 1,3-Dihydroisoindol, 1,2,3,4-Tetrahydrochinolin, 1,2,3,4-Tetrahydroisochinolin, wobei jeweils der Phenylring ein- bis dreifach substituiert sein kann durch Halogen,

25 $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Halogenalkoxy$, Hydroxy, Carboxy.

Das Molgewicht der Gruppen ${\bf R}^{13}$ und ${\bf R}^{14}$ zusammengenommen muß mindestens 46 sein.

30

R⁷ und R⁸ (die gleich oder verschieden sein können):

Wasserstoff, $C_1-C_4-\lambda lkyl$.

35 R^{15} $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, die einen der folgenden Reste tragen: Hydroxy, Carboxy, Amino, $NH(C_1-C_4-Alkyl)$, $N(C_1-C_4-Alkyl)_2$, Carboxamid oder $CON(C_1-C_4-Alkyl)_2$.

R¹⁸ Wasserstoff;

40

45

 $C_1-C_4-\Lambda lkyl$, $C_3-C_4-\Lambda lkenyl$ oder $C_3-C_4-\Lambda lkinyl$, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, $C_1-C_4-\Lambda lkoxy$, $C_1-C_4-\Lambda lkylthio$, $C_1-C_4-Halogen-alkoxy$, $C_3-C_8-Cycloalkyl$, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, Hydroxy,

5

25

 $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$ oder $C_1-C_4-Alkyl-thio$;

 $C_3-C_8-Cycloalkyl$, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: $C_1-C_4-Alkyl$;

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Hydroxy, R 15 , C $_1$ -C $_4$ -Alkyl, C $_1$ -C $_4$ -Alkoxycarbonyl, C $_1$ -C $_4$ -Alkoxy, C $_1$ -C $_4$ -Alkylthio, Dioxomethylen, Dioxoethylen oder Phenyl, das

- C₁-C₄-Alkylthio, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, C_1 -C₄-Alkyl, C_1 -C₄-Halogenalkyl, C_1 -C₄-Alkoxy;
- 15 R¹⁹ C₁-C₄-Alkylcarbonyl, C₂-C₄-Alkenylcarbonyl oder C₂-C₄-Alkinylcarbonyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, C₁-C₄-Alkoxy, C₃-C₈-Cycloalkyl, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Alkylthio;

 $C_3-C_8-Cycloalkylcarbonyl$, wobei diese Reste jeweils ein- oder mehrfach subs ituiert sein können durch: $C_1-C_4-Alkyl$;

Phenylcarbonyl oder Naphthylcarbonyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Cyano, Hydroxy, R^{15} , C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalbyl, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkoxy, Phenoxy, C_1 - C_4 -Alkylthio, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, oder C_1 - C_4 -Alkylthio;

- C₁-C₄-Alkylsulfonyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, C_1 -C₄-Alkoxy, Phenyl, wobei der genannte Arylrest seinerseits ein- bis dreifach substituiert sein kann, durch Halogen, C_1 -C₄-Alkyl, C_1 -C₄-Halogenalkyl, C_1 -C₄-Alkoxy oder C_1 -C₄-Alkylthio;
- C₃ C₈-Cycloalkylsulfonyl;
 Phenylsulfonyl oder Naph Claulfonyl, die jeweils durch einen oder mehrere der folgend. Reste substituiert sein können:
 Halogen, Cyano, R¹⁵, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Dioxomethylen,
 Dioxoethylen oder Phenyl, das ein- bis dreifach substituiert sein kann durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,

 $C_1-C_4-Alkoxy$ oder $C_1-C_4-Alkylthio$;

R²⁰ Wasserstoff;

- $C_1-C_4-Alkyl$, wobei diese Reste jeweils einfach substituiert sein können durch: Hydroxy, Mercapto, Carboxy, Amino, $C_3-C_8-Cycloalkyl$, Indolyl, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- bis dreifach substituiert sein können durch Halogen, Hydroxy, Mercapto, Carboxy,
- 10 $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, Amino oder $C_1-C_4-Alkylthio$.
 - R^{21} Wasserstoff, C_1 - C_4 -Alkyl.
 - W Schwefel oder Sauerstoff;

15

Besonders bevorzugt sind Verbindungen der Formel I - sowohl als reine Enantiomere bzw. reine Diastereomere oder als deren Mischung - in denen die Substituenten folgende Bedeutung haben:

- 20 R² Trifluormethyl, $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, Hydroxymethyl, oder CR^2 ist mit CR^{12} wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
 - X Stickstoff oder Methin;

25

- Y Stickstoff oder Methin;
- Z Stickstoff oder CR¹², worin R¹² Wasserstoff, Fluor oder C₁-C₄-Alkyl bedeuten oder CR¹² bildet zusammen mit CR² oder CR³ einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring, der durch eine oder zwei Methylgruppen substituiert sein kann, und worin jeweils eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt sein kann wie -CH₂-CH₂-O-, -CH=CH-O-, -CH(CH₃)-CH(CH₃)-O-, -C(CH₃)=C(CH₃)-O-;

35

Mindestens eines der Ringglieder X, Y oder Z ist Stickstoff

- R³ Trifluormethyl, C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Hydroxymethyl, oder CR³ ist mit CR¹² wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
 - R⁴ und R⁵ (die gleich oder verschieden sein können):
- Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Hydroxy, $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkyl$), $N(C_1-C_4-Alkyl)_2$, Phenoxy oder Phenyl,

das ein- bis dreifach substituiert sein kann durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy; oder

- Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO_2 -, NH- oder N-Alkyl-Gruppe miteinander verbunden sind
- 10 $C_5-C_7-Cycloalkyl;$
 - R6 eine Gruppe

$$\begin{array}{c|c}
R^{14} & 0 \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\$$

wobei das Molgewicht der Gruppen R^{13} und R^{14} zusammengenommen mindestens 60 sein muß.

 R^{13} und R^{14} (die gleich oder verschieden sein können):

Wasserstoff, C_1 - C_5 -Alkyl, C_3 - C_5 -Alkenyl oder C_3 - C_5 -Alkinyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Carboxy, Amino, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_5 - C_6 -Cycloalkyl, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl), Phenoxy oder Phenyl, wobei die genannten

Arylreste ihrerseits ein- bis dreifach substituiert sein können durch Halogen, Hydroxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, $N(C_1$ - C_4 -Alkyl)₂; C_3 - C_8 -Cycloalkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Carboxy, C_1 - C_4 -Alkyl,

25 $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$; Phenyl, das ein- bis dreifach substituiert sein kann durch: Halogen, Carboxy, Hydroxy, Amino, R^{15} , $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkyl$ thio, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$,

NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- bis dreifach substituiert sein kann durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Alkylthio; oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene C_3 - C_7 -Alkylenketto, die ein- oder mehrfach substituiert

sein kann mit C_1 - C_4 -Alkyl und in der eine Alkylengruppe durch Sauerstoff oder Schwefel, ersetzt sein kann, w'e - $(CH_2)_3$ -, - $(CH_2)_4$ -, - $(CH_2)_5$ -, - $(CH_2)_6$ -, - $(CH_2)_7$ -, - $(CH_2)_2$ -O- $(CH_2)_2$ -,

-(CH₂)₂-S-(CH₂)₂-;

oder R¹³ und R¹⁴ bilden gemeinsam eine zu einem Ring geschlossene C₃-C₇-Alkylenkette an die Phenylring anneliert ist wie 2,3-Dihydroindol, Indol, 1,3-Dihydroisoindol, 1,2,3,4-Tetrahydrochinolin, 1,2,3,4-Tetrahydroisochinolin, wobei der Phenylring jeweils ein- bis dreifach substituiert sein kann durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Hydroxy, Carboxy.

10

Die Gruppen R^{13} und R^{14} zusammengenommen müssen mindestens 5 Kohlenstoffatome enthalten.

R⁷ und R⁸ (die gleich oder verschieden sein können):

15

Wasserstoff, C_1-C_4 -Alkyl.

 R^{15} $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, die einen der folgenden Reste tragen: Hydroxy, NH($C_1-C_4-Alkyl$), N($C_1-C_4-Alkyl$)₂, Carboxamid oder CON($C_1-C_4-Alkyl$)₂.

R¹⁸ Wasserstoff;

 $C_1-C_4-Alkyl$, wobei diese Reste jeweils ein- bis dreifach substituiert sein können durch: Halogen, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, $C_3-C_8-Cycloalkyl$, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseins ein- bis dreifach substituiert sein können durch: Halogen, $C_1-C_4-Alkyl$ oder $C_1-C_4-Alkoxy$;

3 0

 $C_3-C_8-Cycloalkyl;$

Phenyl, der ein- bis dreifach substituiert sein kann durch: Halogen, Hydroxy, R¹⁵, C₁-C₄-Alkyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxy, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- bis dreifach substituiert sein kann durch: Halogen, C₁-C₄-Alkyl, Trifluormethyl, C₁-C₄-Alkoxy;

- R^{19} C_1-C_4 -Alkylcarbonyl, wobei diese Reste jeweils ein- bis dreifach substituiert sein können durch: Halogen, C_1-C_4 -Alkoxy, C_3-C_8 -Cycloalkyl, Phenyl, das seinerseits ein- bis dreifach substituiert sein kann durch: Halogen, C_1-C_4 -Alkyl oder C_1-C_4 -Alkoxy;
- 45 C₃-C₈-Cycloalkylcarbonyl;

Phenylcarbonyl oder Naphthylcarbonyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, R^{15} , C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, Phenoxy, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- bis dreifach substituiert sein kann durch: Halogen, C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy;

 C_1-C_4 -Alkylsulfonyl, wobei diese Reste jeweils ein- bis dreifach substituiert sein kann durch: Halogen, C_1-C_4 -Alkoxy, Phenyl, der seinerseits ein- bis dreifach substituiert sein kann durch: Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy oder, C_1-C_4 -Alkylthio;

C₃-C₈-Cycloalkylsulfonyl;

15

10

5

Phenylsulfonyl oder Naphthylsulfonyl, wobei diese Reste jeweils ein- bis dreifach substituiert sein kann durch: Halogen, R^{15} , C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, Dioxomethylen, Dioxoethylen oder Phenyl;

20

 R^{20} Wasserstoff; C_1 - C_4 -Alkyl.

 R^{21} Wasserstoff, C_1 - C_4 -Alkyl.

25 W Schwefel oder Sauerstoff;

Die Verbindungen der vorliegenden Erfindung bieten ein neues therapeutisches Potential für die Behandlung von Hypertonie, pulmonalem Hochdruck, Myokardinfarkt, Angina Pectoris, Arrhythmie,

- 30 akutem/chronischem Nierenversagen, chronischer Herzinsuffizienz, Niereninsuffizienz, zerebralen Vasospasmen, zerebraler Ischämie, Subarachnoidalblutungen, Migräne, Asthma, Atherosklerose, endotoxischem Schock, Endotoxin-induziertem Organversagen, intravaskulärer Koagulation, Restenose nach Angioplastie und by-pass
- 35 Operationen, benigne Prostata-Hyperplasie, ischämisches und durch Intoxikation verursachtes Nierenversagen bzw. Hypertonie, Metastasierung und Wachstum mesenchymaler Tumoren, Kontrastmittel-induziertes Nierenversagen, Pankreatitis, gastrointestinale Ulcera
- 40 Ein weiterer Gegenstand der Erfindung sind Kombinationen aus Endothelinrezeptorantagonisten der Formel I und Inhibitoren des Renin-Angiotensin Systems. Inhibitoren des Renin-Angiotensin-Systems sind Reninhemmer, Angiotensin-II-Antagonisten und Angiotensin-Converting-Enzyme (m)-Hemmer. Bevorzugt sind Kombinationen
- 45 aus Endothelinrezeptorantagonisten der Formel I und ACE-Hemmern. Ein weiterer Gegenstand der Erfindung sind Kombinationen aus Endothelinrezeptorantagonisten der Formel I und Beta-Blockern.

Ein weiterer Gegenstand der Erfindung sind Kombinationen aus Endothelinrezeptorantagonisten der Formel I und Diuretika.

Ein weiterer Gegenstand der Erfindung sind Kombinationen aus Endothelinrezeptorantagonisten der Formel I und Substanzen, die die

- 5 Wirkung von VEGF (vascular endothelial growth factor) blockieren.
 solche Substanzen sind Beispielsweise gegen VEGF gerichtete Antikörper oder spezifische Bindeproteine oder auch niedermolekulare
 Substanzen, die VEGF Freisetzung oder Rezeptorbindung spezifisch
 Hemmen können.
- 10 Die vorstehend genannten Kombinationen können gleichzeitig oder nacheinander zeitlich abgestuft verabreicht werden. Sie können sowohl in einer einzigen galenischen Formulierung oder auch in getrennten Formulierungen eingesetzt werden. Die Applikationsform kann auch unterschiedlich sein, beispielsweise können die Endo-
- 15 thelinrezeptorantagonisten oral und VEGF- Hemmer parenteral verabreicht werden.

Diese Kombinationspräparate eignen sich vor allem zur Behandlung und Verhütung von Hypertension und deren Folgeerkrankungen, sowie zur Behandlung von Herzinsuffizienz.

20 Die gute Wirkung der Verbindungen läßt sich in folgenden Versuchen zeigen:

Ein weiterer Gegenstand der Erfindung ist ein strukturelles Fragment der Formel

25

30

worin die Reste \mathbb{R}^1 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^7 , \mathbb{R}^8 und \mathbb{W} die oben genannte Bedeutung haben.

35 Solche strukturellen Fragmente eignen sich als strukturelle Bestandteile von Endothelin-Rezeptorantagonisten.

Ein weiterer Gegenstand der Erfindung sind Endothelin-Rezeptorantagonisten, bestehend aus einem strukturellen Fragment der Formel

40

worin die Reste R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , R^8 , W, X, Y und Z die oben genannte Bedeutung haben, kovalent verknüpft mit einer Gruppe, die ein Molekulargewicht von mindestens 30, bevorzugt 40, aufweist.

5

- Ein weiterer Gegenstand der Erfindung sind

Endothelin-Rezeptorantagonisten, bestehend aus einem strukturellen Fragment der Formel

10

15

worin die Reste R¹, R², R³, R⁴, R⁵, R⁷, R⁸, R²⁰, R²¹, W, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben, über ein N-Atom 20 kovalent verknüpft mit einer Gruppe, die ein Molekulargewicht von mindestens 58 aufweist.

Ein weiterer Gegenstand der Erfindung sind Verbindungen der Formel Ia

25

30

worin die Reste R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , R^8 , R^{20} , R^{21} , W. X, Y und Z die in Anspruch 1 angegebene Bedeutung haben.

35 Rezeptorbindungsstudien

Für Bindungsstudien wurden klonierte humane ET_A oder $\text{ET}_B\text{-Rezeptor-exprimierende CHO-Zellen}$ eingesetzt.

40 Membranpräparation

Die ET_A- oder ET_B-Rezeptor-exprimierenden CHO-Zellen wurden in DMEM_NUT MIX F₁₂-Medium (Gibco, Nr. 21331-020) mit 10 % fötalem Kälberserum (PAA Laboratories GmbH, Linz, Nr. A15-022), 1 mM 45 Glutamin (Gibco Nr. 25030-024), 100 E/ml Penicillin und 100 μg/ml Streptomycin (Gibco, Sigma Nr P-0781) vermehrt. Nach 48 Stunden wurden die Zellen mit PBS gewaschen und mit 0,05 % trypsin-halti-

ger PBS 5 Minuten bei 37°C inkubiert. Danach wurde mit Medium neutralisiert und die Zellen durch Zentrifugation bei $300 \times \text{g}$ gesammelt.

5 Für die Membranpräparation wurden die Zellen auf eine Konzentration von 10⁸ Zellen/ml Puffer (50 mM Tris HCL Puffer, pH 7.4) eingestellt und danach durch Ultraschall desintegriert Branson Sonifier 250, 40-70 Sekunden/constant/output 20).

10 Bindungstests

Für den ET $_A$ - und ET $_B$ -Rezeptorbindungstest wurden die Membranen in Inkubationspuffer (50 mM Tris-HCl, pH 7,4 mit 5 mM MnCl $_2$, 40 mg/ml Bacitracin und 0,2 % BSA) in einer Konzentration von 50 μg

- 15 Protein pro Testansatz suspendiert und bei 25°C mit 25 pM [125J]-ET $_1$ (ET $_A$ -Rezeptortest) oder 25 pM [125J]-ET $_3$ (ET $_B$ -Rezeptortest) in Anwesenheit und Abwesenheit von Test-substanz inkubiert. Die unspezifische Bindung wurde mit 10 $^{-7}$ M ET $_1$ bestimmt. Nach 30 min wurde der freie und der gebundene Radioligand durch Filtra-
- 20 tion über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-Zellsammler (Skatron, Lier, Norwegen) getrennt und die Filter mit eiskaltem Tris-HCl-Puffer, pH 7,4 mit 0,2 % BSA gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 2200 CA Flüssigkeits-zintillationszähler quantifiziert.

Testung der ET-Antagonisten in vivo:

Männliche 250 - 300 g schwere SD-Ratten wurden mit Amobarbital 30 nackotisiert, künstlich beatmet, vagotomisiert und despinalisiert. Die Arteria carotis und Vena jugularis wurden kathetisiert.

In Kontrolltieren führt die intravenöse Gabe von 1 $\mu g/kg$ ET1 zu 35 einem deutlichen Blutdruckanstieg, der über einen längeren Zeitraum anhält.

Den Testtieren wurde 30 min vor der ET1 Gabe die Testverbindungen i.v. injiziert (1 ml/kg). Zur Bestimmung der ET-antagonistischen 40 Eigenschaften wurden die Blutdruckänderungen in den Testtieren mit denen in den Kontrolltieren verglichen.

- p.o. Testung der gemischten ETA- und ETB-Antagonisten:
- 45 Männliche 250-350g schwere normotone Ratten (Sprague ' wley, Janvier) werden mit den Testsubstanzen oral vorbehandelt. 80 Minuten später werden die Tiere mit Urethan narkotisiert und die A.

carotis (für Blutdruckmessung) sowie die V. jugularis (Applikation von big Endothelin/Endothelin 1) katheterisiert.

Nach einer Stabilisierungsphase wird big Endothelin (20 µg/kg, 5 Appl. Vol. 0.5 ml/kg) bzw. ET1 (0.3 µg/kg, Appl. Vol. 0.5 ml/kg) intravenös gegeben. Blutdruck und Herzfrequenz werden kontinuierlich über 30 Minuten registriert. Die deutlichen und langanhaltenden Blutdruckänderungen werden als Fläche unter der Kurve (AUC) berechnet. Zur Bestimmung der antagonistischen Wirkung der Testsubstanzen wird die AUC der Substanzbehandelten Tiere mit der

Die erfindungsgemäßen Verbindungen können in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperitoneal) verabfolgt werden. Die Applikation kann auch mit Dämpfen

oder Sprays durch den Nasen-Rachenraum erfolgen.

Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägli20 che Wirkstoffdosis zwischen etwa 0,5 und 50 mg/kg Körpergewicht bei oraler Gabe und zwischen etwa 0,1 und 10 mg/kg Körpergewicht bei parenteraler Gabe.

Die neuen Verbindungen können in den gebräuchlichen galenischen

25 Applikationsformen fest oder flüssig angewendet werden, z.B. als
Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees,
Suppositorien, Lösungen, Salben, Cremes oder Sprays. Diese werden
in üblicher Weise hergestellt. Die Wirkstoffe können dabei mit
den üblichen galenischen Hilfsmitteln wie Tablettenbindern, Füll
30 stoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließreguliermitteln, Weichmachern, Netzmitteln, Dispergiermitteln,
Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien
und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al.:
Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1991). Die

35 so erhaltenen Applikationsformen enthalten den Wirkstoff
normalerweise in einer Menge von 0,1 bis 90 Gew.-%.

Synthesebeispiele

40 Beispiel 1:

2-Benzyloxyessigsäure-di-n-butylamid

AUC der Kontrolltiere verglichen.

Bei -10°C wurden 5 g 2-Benzyloxyessigsäure in 50 ml THF vorgelegt und nacheinander 3 g N-Methylmorpholin und 4 g Chloram iensäureisobutylester zugetropft. Es wurde 10 Minuten nachgerührt und dann wurden 5 ml di-n-Butylamin und weitere 3 g N-Methylmorpholin

zugegeben. Nach einer Stunde wurde der Ansatz aut 500 mt Wasser gegeben und mehrmals mit Ether extrahiert. Die gesammelten organischen Phasen wurden über Magnesiumsulfat getrocknet und nach dem Abdestillieren des Lösungsmittels wurden 7 g eines Öls isoliert, welches gleich weiter eingesetzt wurde.

Beispiel 2:

2-Hydroxyessigsäure-di-n-butylamid

10

In 50 ml Ethanol wurden 4 g 2-Benzyloxyessigsäure-di-n-butylamid gelöst und eine Spatelspitze Pd/Kohle zugegeben. Der Ansatz wurde 16 Stunden unter Wasserstoffatmosphäre gerührt, anschliessend der Katalysator abfiltriert und das Lösungsmittel abdestilliert. Es wurden 3 g eines Öls isoliert, welches direkt weiter umgesetzt wurden.

Beispiel 3:

20 2-Hydroxy-3-(N,N-di-n-butyl-carbamoyl-methoxy)-3,3-diphenyl-propionsäuremethylester

Es wurden in 30 ml Methylenchlorid 1,3 g des 2-Hydroxy-essigsäure-di-n-butylamids und 1,8 g des 2,3-Epoxy-3,3-diphenylpro25 pionsäuremethylesters gelöst und bei Eiskühlung eine katalytische
Menge p-Toluolsulfonsäure zugegeben. Nach 24 Stunden rühren bei
Raumtemperatur wurde der Ansatz auf Natriumhydrogencarbonatlösung
gegeben, die abgetrennte organische Phase über Magnesiumsulfat
getrocknet und das Lösungsmittel abdestilliert. Der Rückstand
30 wurde mittels Chromatographie gereinigt und es wurden 1,4 g eines
Öls isoliert, welches direkt weiter umgesetzt wurden.

Beispiel 4:

35 2-Hydroxy-3-(N,N-dibutyl-carbamoyl-methoxy)-3,3-diphenylpropion-säure

Es wurden 1,42 g des 2-Hydroxy-3-(N,N-dibutyl-carbamoyl-me-thoxy)-3,3-diphenylpropionsäuremethylester in 10 ml Dioxan und 4,8 ml 1 N Natronlauge gelöst und drei Stunden bei Raumtemperatur gerührt. Anschliessend wurde der Ansatz mit Wasser versetzt und die wässrige Phase mit Ether extrahiert. Die wässrige Phase wurde mit Salzsäure angesäuert, mit Essigester extrahiert und die organische Phase über Magnesiumsulfat getrocknet. Nach dem Ab-

45 destillieren des Lösungsmittels wurden 1,1 g Öl i oliert, welches direkt weiter eingesetzt wurde.

Beispiel 5:

2-(4,6-Dimerhyl-pyrimidin-2-yloxy)-3-(N,N-dibutyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-347)

5

In THF wurden 560 mg der 2-Hydroxy-3-(N,N-dibutyl-carbamoyl-me-thoxy)-3,3-diphenylpropionsäure vorgelegt und 63 mg Lithiumamid und 10 Minuten später 256 mg 2-Methylsulfon-4,6-dimethylpyrimidin zugegeben. Das Gemisch wurde 5 Stunden bei 50°C gerührt und dann

10 mit Wasser versetzt. Mit Zitronensäure wurde die wässrige Phase angesäuert und mit Essigester wurde extrahiert. Die organische Phase wurde getrocknet, das Lösunsmittel abdestilliert und der Rückstand chromatographisch gereinigt. Das isolierte Produkt wurde aus Ether/n-Hexan auskristallisiert.

15

¹H-NMR (200 MHz): 7,30-7,20 ppm (10 H, m), 6,75 (1 H, s), 6,15 (1 H, s), 4,50 (1 H, d), 4,20 (1 H, d),3,30 (2 H, dd), 2,95 (2 H, dd) 2,35 (6 H, s), 1,55-1,00 (8 H, m), 0,95 (3 H, tr), 0,80 (3 H, tr).

20

 $ESI-MS: M^{+} = 533$

Beispiel 6:

25 N-Propyl-N-(2-hydroxy-ethyl)-benzolsulfonamid

Bei 0°C wurden 5,16 g (50 mmol) N-Propylethanolamin in 70 ml Methylenchlorid vorgelegt und nacheinander 9,7 g (55 mmol) Bezzolsulfonsäurechlorid und 7,6 g (75 mmol) Triethylamin zugegeben.

- 30 Nach 2 Stunden Rühren bei 0°C, ließ man auf Raumtemperatur aufwärmen, rührte eine weitere Stunde, extrahierte dann mit 1M Salzsäure und anschließend mit 2M Natronlauge. Die organische Phase wurde über Na₂SO₄ getrocknet, filtriert, eingeengt und der so erhaltene Rückstand (13,2 g) an Kieselgel chromatographiert (Me-35 thylenchlorid/Methanol 19:1). Aust ute: 7,4 g als Öl, das direkt
- 35 thylenchlorid/Methanol 19:1). Aust ute: 7,4 g als Öl, das direkt weiter umgesetzt wurde.

Beispiel 7:

40 2-Hydroxy-3-(2-(N-propyl-N-benzolsulfonylamino)-ethoxy)-3,3-diphenylpropionsäuremethylester

In 40 ml Methylenchlorid wurden 7,3 g (30 mmol) N-Propyl-N-(2-hydroxy-ethyl)-benzolsulfonamid und 7,6 g (30 mmol)

45 2,3-Epoxy-3,3-diphenylpropionsäuremethylesters gelöst und bei Eiskühlung 0.57 g (3 mmol) p-Toluolsulfonsäure zugegeben. Nach 24 Stunden rühren bei Raumtemperatur wurde der Ansatz mit Methylen-

chlorid Verdünnt, mit 2M Natronlauge extrahiert, die abgetrennte

organische Phase über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand (12,0 g eines Öls) wurde direkt weiter umgesetzt.

5

Beispiel 8:

2-Hydroxy-3-(2-(N-propyl-N-benzolsulfonyl-amino)-ethoxy)-3,3-diphenylpropionsäure

10

In 70 ml Dioxan wurden 6,0 g 2-Hydroxy-3-(2-(N-propoyl-N-benzolsulfonyl-amino)-ethoxy)-3,3-diphenylpropionsäure-methylester (aus Beispiel 7) gelöst mit 36 ml 1M KOH versetzt und über Nacht bei Raumtemperatur gerührt. Anschliessend wurde der Ansatz mit Wasser 15 versetzt und die wässrige Phase mit Ether extrahiert. Die wässrige Phase wurde mit Salzsäure angesäuert, mit Ether extrahiert, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand (3,3 g) wurde an Kieselgel (Methylenchlorid/Methanol 9:1) chromatographiert wobei 20 2,6 g Produkt erhalten wurden.

Smp: 144-146°C (aus Ether)

Beispiel 9:

25

2-(4-Methyl-6-methoxy-pyrimidin-2-yloxy)-3-(2-(N-propyl-N-benzsulfonyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-2)

In 5 ml Dimethylformamid wurden 135 mg (5,6 mmol) Lithiumamid 30 (95%) suspendiert, auf 0°C abgekühlt, mit 0,9 g (1,9 mmol) 2-Hydroxy-3-(2-(: propoyl-N-benzolsulfonyl-amino)-ethoxy)-3,3-diphenylpropionsäure, gelöst in 4 ml Dimethylformamid, versetzt und 30 min bei 0°C gerührt. Dann wurden 0,56 g (2,8 mmol) thylsulfon-4-methyl-6-methoxy-pyrimidin zugegeben, über Nacht bei 35 Raumtemperatur gerührt und dann mit Wasser versetzt. Die wässrige Phase wurde mit Ether extrahiert, die so erhaltene organische Phase verworfen, die wäßrige Phase mit Salzsäure auf pHl eingestellt und mit Ether extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet, das Lösunsmittel abdestilliert und der 40 Rückstand (1,26 g) in Ether/Heptan ausgerührt. Ausbeute 0,9 g weißer Feststoff.

ESI-MS: 606 (M+H)+

30

```
^{1}H-NMR (270 MHz, CDCl<sub>3</sub>): 7,70-7,85 ppm (2 H, m); 7,20-7,55 (13 H, m); 6,25 (1 H, s); 6,15 (1 H, s); 3,9 (3 H, s); 3,50-3,75 (2 H, m); 3,20-3,50 (2 H, m); 3,00-3,15 (2 H, m); 2,30 (3 H, s); 1,35-1,55 (2 H, m); 0,75 (3 H, tr).
```

5

. Beispiel 10:

2-Hydroxy-3-(2-benzyloxycarbonylamino-ethoxy)-3,3-diphenyl-propionsäuremethylester

10

In 80 ml Methylenchlorid wurden 9,8 g (50 mmol) (2-hydroxy-ethyl)-carbaminsäure-benzylester und 12,7 g (50 mmol) 2,3-Epoxy-3,3-diphenylpropionsäuremethylester gelöst und unter Eiskühlung 0.95 g (5 mmol) p-Toluolsulfonsäure zugegeben. Nach 24 Stunden rühren bei Raumtemperatur wurde der Ansatz mit Methylenchlorid verdünnt, mit 2M Natronlauge extrahiert, die abgetrennte organische Phase über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand (22,2 g Öl) wurde direkt weiter umgesetzt.

20

Beispiel 11:

2-Hydroxy-3-(2-benzyloxycarbonylamino-ethoxy)-3,3-diphenylpropionsäure

25

In 300 ml Dioxan wurden 22,2 g 2-Hydroxy-3-(2-benzyloxy-carbony-lamino-ethoxy)-3,3-diphenylpropionsäuremethylester (aus Beispiel 10) gelöst mit 148 ml 1M KOH versetzt und über Nacht bei Raumtemperatur gerührt. Anschliessend wurde der Ansatz mit Wasser

30 versetzt und die wässrige Phase mit Ether extrahiert. Die wässrige Phase wurde mit Salzsäure angesäuert, mit Ether extrahiert, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand (17,5 g) wurde direkt weiter eingesetzt.

35

Beispiel 12:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-benzyloxycarbonylamino-ethoxy)-3,3-diphenylpropionsäure (II-32)

40

In 60 ml Dimethylformamid wurden 2,5 g (103 mmol) Lithiumamid (95%) suspendiert, auf 0°C abgekühlt, mit 15 g (34,4 mmol) 2-Hydroxy-3-(2-benzyloxycarbonylamino-ethoxy)-3,3-diphenylpropionsäure, gelöst in 60 ml Dimethylformamid, versetzt und 30 min bei

45 0°C gerührt. Dann wurden 8,34 g (44,7 mmol) 2-Methylsulfon-4-methyl-6-methoxy-pyrimidin in 30 ml Dimethylformamid zugegeben, 3 Tage bei Raumtemperatur gerührt und dann mit Wasser versetzt. Die wäßrige Phase wurde mit Ether extraniert, die so erhaltene organische Phase verworfen, dann die wäßrige Phase mit Salzsäure auf pH 1 eingestellt und mit Ether extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet, das Lösuns5 mittel abdestilliert und der Rückstand an Kieselgel chromatographiert(Methylenchlorid/Methanol 9:1). Ausbeute 14,0 g weißer Schaum.

¹H-NMR (270 MHz, DMSO): 12,0-13,0 ppm (1H, br); 7,10-7,45 (16 H, **10** m); 6,95 (1 H, s); 6,20 (1 H, s); 5,0 (2 H, s); 3,80-3,95 (2 H, m); 3,55-3,70 (2 H, m); 3,20-3,40 (2 H, m); 2,30 (6 H, s).

Beispiel 13:

15 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-amino-ethoxy)-3,3-diphenylpropionsäure

Eine Lösung von 13,1 g (24,2 mmol) 2-(4,6-Dimethyl-pyrimi-din-2-yloxy)-3-(2-benzyloxycarbonylamino-ethoxy)-3,3-diphenyl-

- 20 propionsäure in 200 ml Methanol wurde unter Verwendung von 800 mg Palladium auf Aktivkohle (10%) mit Wasserstoff unter Normaldruck bei Raumtemperatur über Nacht. Der Ansatz wurde mit Methanol verdünnt, um ausgefallenes Produkt zu lösen, filtriert und eingengt. Ausbeute 9,6 g weißer Feststoff.
- 25

 1H-NMR (270 MHz, DMSO): 7,10-7,40 ppm (10 H, m); 6,90 (1 H, s);
 6,00 (1 H, s); 3 10-3,75 (2 H, m); 2,90-3,00 (2 H, m); 2,25 (6 H, s).
- 30 Beispiel 14:
 - 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,4-dimethoxybenzoyl-amino)-ethoxy)-3,3-diphenylpropiousäure (II-62)
- 35 Eine Lösung von 1,0 g (2,5 mmol) 2-(4,6-Dimethyl-pyrimidin-2-yl-oxy)-3-(2-amino-ethoxy)-3,3-diphenyl-propionsäure in 10 ml Methylenchlorid worde bei Raumtemperatur nacheinander versetzt mit 0,35 g (2,7 mmol) N-Ethyldiisopropylamin, 0,03 g (0,2 mmol) Dimethyl-aminopyridin und 0,54 g (2,7 mmol) 3,4-Dimethoxy-ben-
- 40 zoylchlorid. Nach 4 Tagen rühren bei Raumtemperatur wurde mit Diethylether verdünnt, mit 1M Salzsäure und 1M Natronlauge extrahiert, die vereinigten alkalischen Phasen sauer gestellt und mit Ether extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet, das Lösunsmittel abdestilliert und der Rückstand
- **45** (0,9g) an Kieselgel chromatographiert (Methylen-chlorid/Methanol 9:1). Ausbeute 280 mg weißer Schaum.

ESI-MS: 571 (M+H)+

¹H-NMR (360 MHz, DMSO): 7,10-7,55 ppm (12 H, m); 7,00 (1 H, d); 6,90 (1 H, s); 6,20 (1 H, s); 3,65-4,00 (2 H, m); 3,80 (3 H, s); 5 3,75 (3 H, s); 3,45-3,55 (2 H, m); 2,30 (6 H, s).

Beispiel 15:

(S)-5,5-Diphenyl-2-oxo-1,4-dioxan-6-carbonsäurebenzylester

10

Es wurden 38 g (100 mmol) des (S)-2-Hydroxy-3-methoxy-3,3-diphenylpropionsäurebenzylesters mit 9,8 g (130 mmol) der Glycolsäure zusammengegeben und mit 300 mg wasserfreier para-Toluolsulfonsäure 20 Minuten unter Vakuum bei 70°C am Rotationsverdampfer ge-

15 rührt. Der Kolbeninhalt wurde in Dichlormethan aufgenommen, die Säure mit Natriumhydrogensulfat-Lösung abgetrennt, die organische Phase abgetrennt, getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wurde aus Ether umkristallisiert und es wurden 21 g (54 mmol) Produkt isoliert.

20

 $[\alpha]_D = +283$ bei 20°C in Ethanol

Beispiel 16:

25 (S)-(1,1-Diphenyl-2-hydroxy-2-benzyloxycarbonyl-ethoxy)-essigsäure

Es wurden 14 g (36 mmol) (S)-5,5-Diphenyl-2-oxo-1,4-dioxan-6-carbonsäurebenzylester in 50 ml DMF gelöst und bei Eiskühlung 43 ml 30 l N NaOH-Lösung zugegeben. Nach zehn Minuten wurde mit 300 ml Wasser verdünnt, mit 43 ml l N Salzsäure neutralisiert und mit Ether die wässrige Phase extrahiert. Die Etherphase wurde getrocknet, das Lösungsmittel abdestilliert und der Rückstand (8,8 g, 21 mmol eines Öls) direkt weiter umgesetzt.

35

Beispiel 17:

(S)-(1,1-Diphenyl-2-(4,6-dimethyl-pyrimidin-2-yloxy)-2-benzyloxy-carbonyl-ethoxy)-essigsäure

40

Es wurden 6,6 g (15 mmol) (S)-(1,1-Diphenyl-2-hydroxy-2-benzylo-xycarbonyl-ethoxy)-essigsäure in 75 ml DMF vorgelegt und 1,4 g NaH (30 mmol, 50% Suspension) portionsweise bei Eiskühlung zugegeben. Anschliessend wurden 3,6 g (19,5 mmol) 4,6-Dimethyl-2-me-

45 thylsulfonpyrimidin zugegeben, eine Viertelstunde gerührt und dann auf Raumtemperatur erwärmt. Nach 45 Minuten war die Umsetzung vollständig und die Reaktionslösung wurde auf 500 ml Eiswas-

ser gegossen. Die wässrige Phase wurde mit Essigester extrahiert, die gesammelten organischen Phasen wurden getrocknet und das Lösungsmittel abdestilliert. Der ölige Rückstand wurde mit Ether/Hexan verrührt und es konnten 6,4 g Kristalle isoliert werden.

5

Beispiel 18:

(S)-2-(4,6-dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(3-methyl-phenyl)-carbamoyl-methoxy-3,3-diphenylpropionsäure-benzylester

10

Unter Schutzgas wurden bei -10° C 512 mg (1 mmol) S-(1,1-Diphenyl-2-(4,6-dimethyl-pyrimidin-2-yloxy)-2-benzyloxy-carbonyl-ethoxy)essigsäure in 20 ml Dichlormethan gelöst und nacheinander 121 mg (1 mmol) N-(3-Methylphenyl)-N-methylamin,

- 15 92 ml (1 mmol) Ethyldiisopropylamin und 191 mg (1 mmol) N-(3-Dimethylamino-propyl)-N-ethylcarbodiimid zugegeben. Nach einer Stunde wurde auf Raumtemperatur erwärmt und weitere 16 Stunden gerührt. Anschliessend wurde mit Dichlormethan auf 100 ml verdünntund mit Zitronensäure und Wasser gewaschen. Die organische
- 20 Phase wurde getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wurde zur weiteren Reinigung einer Flashchromatographie unterzogen (Essigester/Cyclohexan 1/1) und es wurden 290 mg Produkt isoliert, welche gleich weiter eingesetzt wurden.

25 Beispiel 19:

(S)-2-(4,6-dimethyl-pyrimidin-2-ylovy)-3-(N-methyl-N-(3-methyl-phenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

30 In Essigester wurden 260 mg S-2-(4,6-dimethyl-pyrimidin-2-yl-oxy)-3-(N-methyl-N-(3-methylphenyl)-carbamoyl-methoxy-3,3-diphenylpropionsäurebenzylester in 50 ml Essigester gelöst und eine Spatelspitz Pd/C zugegeben. Das Gemisch wurde 2 Stunden unter einer Wasserstoffatmosphäre gerührt. Anschliessend wurde das Pd/C abfiltriert und der Essigester abdestilliert. Der Rückstand wurde mit Ether/Hexan verührt und es konnten 127 mg Kristalle isoliert werden.

 $[\alpha]_{D}$ = + 90 bei 20°C in Ethanol

40

 $^{1}\text{H-NMR}$ (200 MHz): 7,40-7,00 ppm (14 H, m), 6,75 (1 H, s:), 6,05 (1 H, s), 4,15 (1 H, d), 3,75 (1 H, d), 3,25 (3 H, s), 2,40 (6 H, s), 2,20 (3 H, s).

45 ESI-MS: $M^+ = 525$.

34

Die folgenden Verbindungen wurden analog zu den oben genannten Beispielen hergestellt

Beispiel 20:

5

2-(4-Methyl-6-methoxy-pyrimidin-2-yloxy)-3-(N,N-dibutyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-349)

1H-NMR (200 MHz): 7,30-7,20 ppm (10 H, m), 6,25 (1 H, s), 6,00 (1
10 H, s), 4,50 (1 H, d), 4,25 (1 H, d), 3,95 (3 H, s), 3,30 (2 H, dd), 2,95 (2 H, dd) 2,25 (3 H, s), 1,55-1,00 (8 H, m), 0,95 (3 H, tr), 0,80 (3 H, tr).

 $ESI-MS: M^+ = 549$

15

Beispiel 21:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-phenyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-109)

20

 $ESI-MS: M^{+} = 511$

¹H-NMR (200 MHz): 7,40-7,20 ppm (15 H, m), 6,80 (1 H, s), 6,15 (1 H, s), 4,15 (1 H, d), 3,8 (1 H, d),3,30 (3 H, s), 2,35 (6 H, s).

25

Beispiel 22:

2-(4-Methyl-6-methoxy-pyrimidin-2-yloxy)-3-(N-methyl-N-phenyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-111)

30

¹H-NMR (200 MHz): 7,40-7,20 ppm (15 H, m), 6,30 (1 H, s), 6,00 (1 H, s), 4,20 (1 H, d), 3,80 (3 H, s), 3,75 (1 H, d),3,25 (3 H, s), 2,30 (3 H, s).

35 ESI-MS: $M^+ = 527$

Beispiel 23:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-oxo-2-(1,2,3,4-tetra-hy-40 droisochinolin-2-yl)-ethoxy)-3,3-diphenylpropionsäure (T-307)

 1 H-NMR (200 MHz): 7,40-7,10 ppm (14 H, m), 6,60 (1 H, s), 6,05 (1 H, s), 4,75-4,25 (4 H, m), 3,85 (1 H, m), 3,50-3,25 (1 H, m), 3,00-2,75 (2 H, m), 2,25 (3 H, s), 2,10 (3 H, s).

45

 $ESI-MS: M^{+} = 537$

Beispiel 24:

2-(4-Methyl-6-methoxy-pyrimidin-2-yloxy)-3-(2-oxo-2-(1,2,3,4-tetrahydroisochinolin-2-yl)-ethoxy)-3,3-diphenylpropionsäure **5** (I-309)

 1 H-NMR (200 MHz): 7,40-7,10 ppm (14 H, m), 6,20 (1 H, s), 6,00 (1 H, s), 4,75-4,25 (4 H, m), 3,85 (1 H, m), 3,75 (3 H, s), 3,40 (1 H, m), 3,00-2,75 (2 H, m), 2,10 (3 H, s).

10

ESI-MS: $M^{+} = 553$

Beispiel 25:

15 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-ethoxymethylen-N-(2,6-diethylphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-325)

 $^{1}\text{H-NMR}$ (200 MHz): 7,40-7,10 ppm (13 H, m), 6,75 (1 H, s), 6,15 (1 **20** H, s), 5,10 (1 H, d), 4,90 (1 H, d), 4,00-3,70 (4 H, m), 2,70-2,30 (4 H, m), 2,40 (6 H, s), 1,25 (6 H, m), 1,10 (3 H, tr).

ESI-MS: $M^{+} = 611$.

25 Beispiel 26:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-isopropyl-N-phenyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-271)

30 ¹H-NMR (20. MHz): 7,30-7,10 ppm (15 H, m), 6,70 (1 H, s), 6,10 (1 H, s), 5,10 (1 H, m), 4,00 (1 H, d), 3,60 (1 H, d),2,30 (6 H, s), 1,10 (6 H, m).

ESI-MS: $M^+ = 539$.

35

Beispiel 27:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methoxymethylen-N-(2,6-diisopropylphenyl)-carbamoyl-methoxy)-3,3-diphenyl-pro-pionsäure (I-334)

¹H-NMR (200 MHz): 7,40-7,10 ppm (13 H, m), 6,75 (1 H, s), 6,15 (1 H, s), 5,10 (1 H, d), 4,90 (1 H, d), 4,10 (1 H, d), 3,75 (1 H, d), 3,50 (3 H, s), 3,30 (1 H, m), 2,9 (1 H, m), 2,30 (6 H, s), 45 1,20 (9 H, m), 0,6 (3 H, d).

ESI-MS: $M^+ = 625$.

Beispiel 28:

2-(4,6-Dimethylpyrimidin-2-yloxy)-3-(2-(N-propyl-N-benzol-sulfo-nyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-48)

5 . ESI-MS: 590 (M+H)+

¹H-NMR (270 MHz, CDCl₃): 7,75-7,85 ppm (2 H, m); 7,20-7,55 (13 H, m); 6,70 (1 H, s); 6,25 (1 H, s); 3,55-3,75 (2 H, m); 3,20-3,50 (2 H, m); 3,00-3,15 (2 H, m); 2,35 (6 H, s); 1,35-1,50 (2 H, m); 0,75 (3 H, tr).

Beispiel 29:

15 2-(4,6-Dimethylpyrimidin-2-yloxy)-3-(2-(N-butyl-N-benzol-sulfo-nyl-amino)-ethoxy)-3,3-diphonylpropionsäure (II-20)

ESI-MS: 604 (M+H)+

- 20 ¹H-NMR (200 MHz, CDCl₃): 7,75-7,85 ppm (2 H, m); 7,20-7,55 (13 H, m); 6,70 (1 H, s); 6,20 (1 H, s); 3,20-3,75 (4 H, m); 3,00-3,15 (2 H, m); 2,35 (6 H, s); 1,35-1,50 (2 H, m); 1,10-1,30 (2 H, m); 0,75 (3 H, tr).
- 25 Beispiel 30:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(4-methoxyphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-37)

30 ¹H-NMR (200 MHz, DMSO): 9,75 ppm (NH),7,50-7,10 (12 H, m), 6,90 (1 H, s), 6,80 (2 H, d), 6,10 (1 H, s), 4,25 (1 H, d), 4,10 (1 H, d), 3,75 (3 H, s), 2,25 (6 H, s).

 $ESI-MS: M^+ = 527$

35

Beispiel 31:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-phenyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-19)

40

1H-NMR (200 MHz, DMSO): 9,90 ppm (NH),7,70-7,20 (14 H, m), 7,10 (1 H, tr), 6,80 (1 H, s), 6,20 (1 H, s), 4,30 (1 H, d), 4,20 (1 H, d), 2,30 (6 H, s).

45 ESI-MS: $M^+ = 497$

Beispiel 32:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(4-methylphenyl)- carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-28)

5

1 H-NMR (200 MHz, DMSO): 9,80 ppm (NH),7,50-7,20 (12 H, m), 7,10 (2 H, d), 6,80 (1 H, s), 6,10 (1 H, s), 4,25 (1 H, d), 4,05 (1 H, d), 2,30 (6 H, s), 2,20 (3 H, s).

10 ESI-MS: $M^+ = 511$

Beispiel 33:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-butyl-N-phenyl-carba-15 moyl-methoxy)-3,3-diphenylpropionsäure (I-190)

 1 H-NMR (200 MHz): 7,25-7,10 ppm (15 H, m), 6,70 (1 H, s), 6,10 (1 H, s), 4,20 (1 H, d), 3,7 (2 H, m), 2,25 (6 H, s), 1,5-1,1 (4 h, m), 0.8 (3 H, tr).

20

 $ESI-MS: M^+ = 553$

Beispiel 34:

25 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-oxo-2-(6,7-dimeth-oxy-1,2,3,4-tetrahydroisochinolin-2-yl)-ethoxy)-3,3-diphenylpropionsäure

 $ESI-MS: M^+ = 597$

30

Smp.: 145-148°C

Beispiel 35:

35 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-oxo-2-(4,4-dimethyl-1,2,3,4-tetrahydroisochinolin-2-yl)-ethoxy)-3,3-diphenyl-propionsäure

ESI-MS: $M^+ = 565$

40

Smp.: 185-187°C

Beispiel 36:

(S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(3-methylphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

5

- ¹H-NMR (200 MHz): 9,10 ppm (NH),7,50-7,25 (12 H, m), 7,10 (1 H, tr), 6,80 (1 H, d), 6,60 (1 H, s), 6,20 (1 H, s), 4,10 (1 H, d), 3,80 (1 H, d), 2,30 (6 H, s), 2,25 (3 H, s).

10 ESI-MS: $M^+ = 511$

Beispiel 37:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2-naphth-2-yl-15 ethyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

1H-NMR (200 MHz): 8,20 ppm (1 H, m), 7,90-7,70 (3 H, m), 7,50-7,15
(14 H, m), 6,60/6,65 (1 H, s, Rotamere), 6,20/6,15 (1 H, s, Rotamere), 4,50 (1 H, d, Rotamere), 4,25 (1 H, d, Rotamere), 3,9 (1
20 H, m), 3,50-3,20 (3 H, m), 3,05/2,70 (3 H, s, Rotamere) 2,30/2,25
(6 H, s, Rotamere).

ESI-MS: $M^+ = 589$

25 Beispiel 38:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2-(4-methoxy-phenyl)-butyl)-carbamoyl-methoxy)-3,3-diphenyl-propionsäure

30 ¹H-NMR (200 MHz): 7,56-7,05 (12 H, m), 6,95-6,60 (3 H, m), 6,05 (1 H, s, Rotamere), 4,50-4,00 (2 H, m, Rotamere), 3,75 (3 H, d, Rotamere), 3,2-2,8 (3 H, m, Rotamere), 2,9 (3 H, s, Rotamere), 2,30 (6 H, s, Rotamere), 1,70-1,50 (2 H, m), 0,70-0,60 (3 H, m, Rotamere).

35

 $ESI-MS: M^{+} = 597$

Beispiel 39:

40 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2-iso-propyl-2-(3,4-dimethoxyphenyl)-3-methyl-butyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäurc

¹H-NMR (200 MHz): 7,30-7,20 (10 H, m), 6,95-6,60 (4 H, m), 6,20 (1 **45** H, s), 4,40 (2 H, m), 4,05 (1 H, d) 3,85 (7 H, m), 2,5 (3 H, s), 2,3 (6 H, s), 2,30-2,20 (2 H, m), 1,00-0,70 (12 H).

 $ESI-MS: M^{+} = 683$

Beispiel 40:

5 (S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-benzyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure

¹H-NMR (200 MHz): 7,30-7,10 ppm (15 H, m), 6,75 (1 H, s), 6,20 (1 H, s), 4,75-4,20 (4 H, m, Rotamere), 3,00/2,60 (3 H, s, Rota
10 mere), 2,35/2,30 (6 H, s, Rotamere).

ESI-MS: $M^+ = 525$

Beispiel 41:

15

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(2,6-diethylphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure (1-82)

¹H-NMR (200 MHz): 8,30 ppm (NH), 7,50-7,00 (13 H, m), 6,75 (1 H, **20** s), 6,25 (1 H, s), 4,25 (1 H, d), 3,90 (1 H, d), 2,60 (4 H, q), 2,30 (6 H, s), 1,20 (6 H, tr).

 $ESI-MS: M^+ = 533$

25 Beispiel 42:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(4-chlorphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-46)

30 ¹H-NMR (200 MHz): 10,00 ppm (NH), 7,70 (2 H, d), 7,50-7,10 (12 H, m), 6,75 (1 H, s), 6,20 (1 H, s), 4,20 (1 H, d), 3,80 (1 H, d), 2,30 (6 H, s).

 $ESI-MS: M^+ = 531$

35

Beispiel 43:

2-(4,6-Diethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-phenyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure

40

 $^{1}\text{H-NMR}$ (200 MHz): 7,50-7,10 ppm (15 H, m), 6,80 (1 H, s), 6,10 (1 H, s), 4,20 (1 H, d), 3,30 (1 H, s), 2,70 (4 H, q), 1,20 (6 H, tr).

45 ESI-MS: $M^+ = 539$

Beispiel 44:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(3-methoxyphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

5

- ¹H-NMR (200 MHz): 9,80 ppm (NH), 7,50-7,10 (13 H, m), 6,75 (1 H, s), 6,60 (1 H, dtr), 6,20 (1 H, s), 4,10 (1 H, d), 3,80 (1 H, d), 3,75 (3 H, s), 2,30 (6 H, s).

10 ESI-MS: $M^+ = 527$

Beispiel 45:

(S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-benzyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure

¹H-NMR (200 MHz): 7,50-7,10 ppm (15 H, m), 6,75 (1 H, s), 6,20 (1 H, s), 4,45 (1 H, dd), 4,40 (1 H, dd), 4,10 (1 H, d), 3,90 (1 H, d), 2,40 (6 H, s).

20

ESI-MS: $M^+ = 511$

Beispiel 46:

25 (S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(4-methoxybenzyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

 1 H-NMR (200 MHz): 7,50-7,10 ppm (13 H, m), 6,75 (3 H, m, Rotamere), 6,20 (1 H, s, Rotamere), 4,70-4,00 (4 H, m, Rotamere),

30 3,75 (3 H, s), 3,00/2,70 (3 H, s, Rotamere), 2,40/2,35 (6 H, s, Rotamere).

ESI-MS: $M^+ = 555$

35 Beispiel 47:

(S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-ethyl-N-benzyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure

40 ¹H-NMR (200 MHz): 7,50-7,20 ppm (15 H, m), 6,70 (1 H, s), 6,20 (1 H, s, Rotamere), 4,75-4,10 (4 H, m, Rotamere), 3,70/3,30/3,00 (2 H, m, Rotamere), 2,35/2,30 (6 H, s, Rotamere), 1,10/1,00 (3 H, tr, Rotamere).

45 ESI-MJ: $M^+ = 539$

Beispiel 48:

(S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2,6-dichlorbenzyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure
5 ESI-MS: M+ = 593

Smp.: 105-110°C

Beispiel 49:

10

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2-phenyl-ethyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

1H-NMR (200 MHz): 7,50-7,20 ppm (14 H, m), 6,75 (1 H, m), 6,70 (1
15 H, s, Rotamere), 6,15/6,10 (1 H, s, Rotamere), 4,50-4,00 (2 H, d, Rotamere), 3,70 (1 H, m), 3,50 (1 H, m), 3,20/2,70 (5 H, m, Rotamere), 2,35/2,30 (6 H, s, Rotamere).

 $ESI-MS: M^{+} = 539$

20

Beispiel 50:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

25

 $^{1}\text{H-NMR}$ (200 MHz): 7,50-7,25 ppm (10 H, m), 6,80-6,70 (3 H, m), 6,35 (1 H, m), 4,50-4,00 (2 H, m, Rotamere), 3,75 (3 H, s, Rotamere), 3,50-2,70 (5 H, m, Rotamere), 2,30/2,25 (6 H, s, Rotamere).

30

 $ESI-MS: M^{+} = 599$

Beispiel 51:

35 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,4-dimethoxybenzoyl-N-methyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-78)

¹H-NMR (200 MHz): 7,30-7,00 ppm (10 H, m), 7,00-6,80 (3 H, m), 6,60 (1 H, s), 6,20 (1 H, s), 3,90 (6 H, s), 3,90-3,50 (4 H, m), 40 3,10 (3 H, s), 2,30 (6 H, s).

 $ESI-MS: M^{+} = 585$

```
Beispiel 52:
   2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(2,6-dimethoxybenzoyl-
   N-methyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-88)
 5
 - ^{1}H-NMR (200 MHz): 7,50-7,00 ppm (10 H, m), 6,70-6,40 (4 H, m),
   6,30/6,20 (1 H, s, Rotamere), 4,10-3,30 (4 H, m),
   3,80/3,75/3,65/3,60 (6 H, s, Rotamere), 3,10/2,80 (3 H, s),
   2,35/2,30 (6 H, s).
10
   ESI-MS: M^{+} = 585
   Beispiel 53:
15 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,4-dichlorbenzoyl-
   amino)-ethoxy)-3,3-diphenylpropionsäure (II-115)
   ESI-MS: 580 (M+H)+
20 ^{1}H-NMR (270 MHz, DMSO): 12,0-13,0 ppm (1 H, br); 8,80 (1 H, t);
   7,15-7,65 (13 H, m); 6,95 (1 H, s); 6,20 (1 H, s); 3,85 (1 H, m);
   3,65-3,80 (1 H, m); 3,45-3,60 (2 H, m); 2,30 (6 H, s).
   Beispiel 54:
25
   2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(2,6-dimethoxybenzoyl-
   amino)-ethoxy)-3,3-diphenylpropionsäure (II-122)
   ESI-MS: 572 (M+H)+
30
   ^{1}\text{H-NMR} (270 Mm., CDCl<sub>3</sub>): 7,45-7,55 ppm (2 H, m); 7,20-7,40 (10 H,
   m); 6,65 (1 H, s); 6,55 (1 H, d); 6,35 (1 H, t); 6,25 (1 H, s);
   3,60-3,90 (4 H, m); 3,80 (6 H, s); 2,35 (6 H, s).
35 Beispiel 55
   2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(2,4,6-trimethylbenzoyl-
   amino)-ethoxy)-3,3-diphenylpropionsäure (II-169)
40 EST-MS: 554 (M+H)+
   <sup>1</sup>H-NMR (270 MHz, CDCl<sub>3</sub>): 7,15-7,55 ppm (10 H, m); 6,90 (1 H, s);
   6,80 (1 H, s); 6,70 (1 H, s); 6,60 (1 H, tr); 6,25 (1 H, s);
   3,60-3,80 (2 H, m); 2,30 (6 H, s); 2,20 (6 H, s); 2,15 (3 H, s).
45
```

Beispiel 56:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(2,3-dimethylberizoyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-190)

5

ESI-MS: 540 (M+H)+

¹H-NMR (200 MHz, DMSO): 8,30 ppm (1 H, t); 7,10-7,55 ppm (13 H, m); 6,95 (1 H, s); 6,15 (1 H, s); 3,85-4,00 (1 H, m); 3,65-3,80 (1 H, m); 3,45-3,60 (2 H, m); 2,35 (6 H, s); 2,30 (3 H, s); 2,25 (3 H, s)..

Beispiel 57:

15 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,5-dichlorbenzoyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-205)

ESI-MS: 580 (M+H) +

- 20 ¹H-NMR (200 MHz, DMSO): 12,4-13,0 ppm (1 H, br); 8,80 (1 H, tr); 7,80 (2 H, m); 7,75 (1 H, m); 7,10-7,45 (10 H, m); 6,90 (1 H, s); 6,15 (1 H, s); 3,80-4,00 (1 H, m); 3,60-3,80 (1 H, m); 3,45-3,60 (2 H, m); 2,30 (6 H, s).
- 25 Beispiel 58:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(1-naphthoyl-amino)-ethoxy)-3,3-diphenyloropionsäure (II-210)

30 ESI-MS: 562 (M+H)+

¹H-NMR (200 MHz, DMSO): 12,4-13,0 ppm (1 H, br); 8,70 (1 H, tr); 8,20-8,30 (1 H, m); 7,85-8,80 (2 H, m); 7,10-7,60 (14 H, m); 6,90 (1 H, s); 6,15 (1 H, s); 3,80-4,00 (1 H, m); 3,65-3,80 (1 H, m); 3,50-3,60 (2 H, m); 2,30 (3 H, s).

Analog oder wie im allgemeinen Teil beschrieben lassen sich die Verbindungen in der Tabelle I herstellen.

40

ж
<u> </u>
-π-Ω-π π-Ω-π π-π
R ²² G

_	т-	<u> </u>	4.4	1	Τ_	Т	т	т-	Τ		T	т	т	Т	T -
3	0	S	0	0	0	0	0	S	0	0	s	0	0	0	0
<u>></u>	z	z	z	z	z	z	z	z.	z	z	z	z	z	z	z
×	z	z	z	z	Z,	z	Z.	Z.	z	z	z	z	z	z	z
7	E	CH	CH	CH	CH2-CH2-CH2-C	O-CH2-CH2-C	СН	E	НЭ	НЭ	CH	СН	СН	CH2-CH2-CH2-C	O-CH2-CH2-C
R³	Me	OMe	Mc	Me	CH2-CI	О-СН	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH2-CI	H)-O
R ²	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	CH ₂ OH	OMe	OMe
RS	Me	Н	Н	Н	H	Н	Н	Н	Н	H	H	Н	Н	Н	Н
R7	Me	H	Н	Н	Н	H	王	H	工	E	Me	I	Butyl	I	H
R5 R22	yl Me ₂ N	yl Me ₂ N	y) Me ₂ N	yl Me ₂ N	yl MegN	yl Mey N	yl Me ₂ N	yl Mc2N	yl Mey N	yl Butyl-HN	yl Butyl-HN	NH-lyll Butyl-HN	yl Butyl-HN	yl Butyl-HN	yl Butyl-HN
R4, R5	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl
\mathbb{R}^{1}	СООН	СООН	СООН	НООЭ	COOMe	СООН	нооэ	нооэ	СООН	СООН	СООН	СООН	НООЭ	соон	СООН
Nr.	<u> -</u>	1-2	<u>T</u>	4	I-5	9-1	l-1	I–8	(- -I	0:	11-1	1-12	I-13	I-14	

Tabelle I

		r	r		т—-	_	т			-	-		4	_							_	Γ-			,	
*	0	S	0	0	S	0	0	0	0	S	0	0	0	0	0	0	0	0	S	0	0	0	S	0	0	0
<u>×</u>	Z	z	z	z	z	z	z	Z	z	z	Z	z	z	z	z	z	z	z	z	z	z	Z.	Z,	z	z	z
×	z	z	z	z	z	z	z	z	z	z	Z.	z	z	Z.	z	z	z	z	z	z	z	z	z	z	z	Z.
Z	СН	СН	НЭ	CH	НЭ	HO	СН	CH2-CH2-CH2-C	O-CH2-CH2-C	СН	СН	СН	СН	CH	СН	СН	CH2-CH2-CH2-C	0-сн2-сн2-с	СН	СН	CH	СН	СН	СН	CH	CH2-CH2-CH2-C
R3	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH2-CI	O-CH	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH2-CI	0-CH	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH2-CI
R ²	Ethyl	CF3	OMe	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF3	OMe	Me	OMe	OMe	CH ₂ OH	OMe
S. 67.	I	н	H	H	H	Н	H	Me	Н	H	H	Н	H	H	Н	н	Н	Me	Н	Н	Н	Н	Н	Н	Н	Н
R7								Me							F	1	1	Me	1	1	r (ł	Ĭ	1	Н	1
-	H	H	H	H	耳	프	五	_	H	H	H	H	田	H	H	H	Н	<u> </u>	H	H	H	H	H	H	1	H
R ²²	Butyl-HN	Butyl-HN	Butyl-F-Y	Phenyl-HN	Phenyl-HN	Phenyl-HN	Phenyl-HN	Phenyl-HN	Phenyl-HN	Phenyl-HN	Phenyl-HN	Phenyl-HN	(4-Methylphenyl)-HN	(4-Methylphenyl)-HN	(4-Methylphenyl)-HN	(4-Methylphenyl)-HN	(4-Methylphenyl)-HN	(4-Methylphenyl)-HN	(4-Mcthylphenyl)-HN	(4-Methylphenyl)-HN	(4-Methylphenyl)-HN	(4-Methoxylphenyl)- :	(4-Methoxylphcnyl)-HN	(4-Methoxylphenyl)-FfN	(4-Methoxylphenyl)-HN	(4-1/2-thoxylphenyl)—HN
R4, R5	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	4-F-Phenyl	4-F-Phenyl	Phenyl	Phenyi	4-F-Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl						
R ¹	СООН	НООЭ	СООН	Н000	Н000	СООН	СООН	Н000	Н000	СООН	H000	СООН	С00Н	C00:	Н00Э	СООМе	КООН	H000	К000	H000	H000	COOH	COC	HOOD	СООН	H000
Nr.	1-16	[-17	[-18	1-19	1-20	1-21	1–22	1–23	1-24	1-25	1-26	1–27	I-28	1-29	1-30	[7]	1-32	1.33		1-35	I-36	1-37	1-38	1-30	<u>1</u> -3	141

	~				r			т				 -	4		-		· · · ·				·				r	
*	S	0	0	0	0	0	0	s	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0	0
λ	z	z.	z	Z.	z	z	z	z	z	z	Z.	z	Z.	z.	z	z.	z	z	Z.	z	z	z	z	z	Z	z
×	z	Z,	z	z	z	z	z.	z	z	z	z	z	z	z	Z.	z	z	z	z	z	z	z	z	z	z	z
7	O-CH₂-CH₂-C	СН	НЭ	H)	НЭ	СН	СН	CH	CH2-CH2-C	O-CH ₂ -CH ₂ -C	НЭ	Ж	CH	HJ	СН	СН	CH	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	НЭ	СН	НЭ	СН	СН
R3	OCH	Ethyl	Me	CF ₃	Me	0Me	Me	Me	CH2-CF	O-CH ₂	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH2-CF	O-CH ₂	Ethyl	Me	CF ₃	Me	OMe	Me	Me
R ²	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	CH ₂ OH
R8	H	H	H	I	Н	H	H	I	H	王	工	H	I	X	H	I	H	H	Me	H	Me	工	工	H	工	Н
R7	Н	Н	Н	Ethyl	Н	Н	Me	Н	Н	Н	Н	Н	Н	н	Н	Н	Н	Н	Me	Н	Me	Н	Н	Н	Me	Н
R ²²	(4-Methoxylphenyl)-HN	(4-Methoxylphenyl)-HN	(4-Methoxylphenyl)-HN	(4–Methoxylphenyl)–'∵	(4-Chlorphenyl)-HN	(4-Chlorphenyl)-HN	(4-Chlorphenyl)-HN	(4-Chlorphenyl)-HN	(4-Chlorphcayl)-HN	(4-Chlorphenyl)-HN	(4-Chlorphenyl)-HN	(4-Chlorphenyl)-!:\X		(3,4-Dichlorphenyl)-HN	(3,4-Dichlorphenyl)-HN	(3,4-Dich : phenyl)-HN	(3,4-Dichlor	1 (3,4—Dichlorphenyl)—F.:	(3,4-Dichictyhenyl)-HN	(3,4-Dichlorphenyl)-HN	(3,4-Dichlorphenyl)-HN	(3,4-Dichlorphenyl)-FiN	(3,4–Dimethoxypher; ,–HN	(3,4-Dimethoxyphenyl)-HN	(3,4-Dimethoxyphenyl)-HN	(3 . Dimethoxyphenyl)–HN
R4, R5	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyi	Phenyl	4-F-Thenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phe	Pheny	Phenyi	Phenyl	Phenyl
R¹	К000	Н000	КООЭ	Н00Э	СООН	Н00Э	.00Н	НООЭ	С00Н	COOMe	СООН	НООЭ	Н000	СООН	СООН	СООН	COOH	СООН	СООН	СООН	СООН	СООН	К00Э	Н000	Н000	НООЭ
Nr.	77	143	1-44	<u>+</u>	97	147	148	9	1-50	1-51	1-52	1-53	1-54	1–55	95-1	1-37	1-53	1-59	1 - 60	9	1-62	[6]		1–65	I-66	1-67

R1	R4, R5	R ² 2	R7	\mathbb{R}^8	R ²	R ³	Z	×	7	*
<u>E</u>	Phenyl	(3,4-Dimethoxyphenyl)-HN	Н	Н	OMe	CH2-CH2-CH2-C	2-CH2-C	z	z	0
4	4-F-Phenyl	(3,4-Dimethoxyphenyl)-HN	Н	н	OMe	O-CH ₂ -CH ₂ -C	CH ₂ -C	z	z	S
-	Phenyl	(3,4-Dimethoxyphenyl)-HN	H	王	Ethyl	Ethyl	CH	z	z	0
	Phenyl	(3,4-Dimethoxyphenyl)-HN	Н	H	CF ₃	Me	CH	z	z	0
-	Phenyl	(3,4-Dimethoxyphenyl)-HN	н	н	ОМе	CF ₃	СН	z	z	0
	Phenyl	(3,4—Dimethoxyphenyl)—HN	Ħ	H	Me	Me	СН	z	z	0
	Phenyl	(2,6-Dimethoxyphenyl)-HN	Mc	Me	OMe	OMe	CH	z	z	0
	Phenyl	(2,6-Dimethoxyphenyl)-HN	н	H	0Me	Me	CH	z	z	0
۱	4-F-Phenyl	(2,6-Dimethoxyphenyl)-HN	Н	H	СН2ОН	Me	СН	z	z	0
1	Phenyl	(2,6-Dimethoxyphenyl)-HN	工	н	OMe	CH2-CH2-CH2-C	CH2-C	Z	z	S
- 1	Phenyl	(2,6–Dimethoxyphenyl)–HN	Н	н	OMe	O-CH ₂ -CH ₂ -C	CH ₂ -C	z	z	0
1	Phenyl	(2,6-Dimethoxyphenyl)-HN	Н	Н	Ethyl	Ethyl	СН	z	Z	0
ŀ	Phenyl	(2,6-Dimethoxyphenyl)-HN	Н	Н	CF_3	Me	CH	z	z	0
ŀ	Phenyl	(2,6-Dimethoxyphenyl)-HN	Н	Н	0:Me	CF3	СН	Z.	z	S
1	Phenyl	(2,6-Diethylphenyl)-HN	н	Н	Me	Me	СН	z	z	0
	Phenyl	(2,6-Diethylphenyl)-HN	Н	Н	OMe	ОМе	СН	z	z	0
- 1	4-Fhenyl	(2,6-Diethylphenyl)-HN	Н	Н	ОМе	Me	СН	Z	z	0
	Phenyl	(2,6-Diethylphenyl)-HN	Me	Me	СН2ОН	Me	СН	Z	z	0
,	Phenyl	(2,6-Diethylphenyl)-HN	Н	Н	OMe	CH2-CH2-CH2-C	2-CH2-C	Z	z	0
	Phenyl	(2,6-Diethylphenyl)-HN	Н	Н	оМе	O-CH ₂ -CH ₂ -C	CH ₂ -C	z	z	0
	Phenyl	(2,6-Diethylphenyl)-HN	Et	н	Ethyl	Ethyl	СН	z	Z.	0
1	Phenyl	(2,6-Diethylphenyl)-HN	Н	н	CF3	Me	СН	z	Z.	0
,	Phenyl	(2,6-Diethylphenyl)-HN	Н	Н	ОМе	CF_3	СН	z	z	0
ı	Phenyl	(2,6-Diisopropydphenyl)-HN	н	Н	Me	Ме	СН	Z	z	0
- 1	4-F-Phenyl	(2,6-Diisopropylphenyl)-HN	Н	Н	OMe	OMe	СН	z	Z.	0
1	Phenyl	(2,6-Diisopropylphenyl)-HN	н	Н	э)(0	Me	CH	Z	z	0

											<u> </u>		4									<u> </u>		Γ	Γ	Γ
*	0	0	S	0	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	S	0	0	0	0	0
7	z	z	Z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z.	z	z	z	z	z	Z.	Z	Z
×	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	Z.	z	z	z	z	z	z	z	z	z	Z	Z
Z	СН	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	СН	СН	СН	СН	СН	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	СН	СН	СН	СН	СН	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	СН	СН	CH
R3	Me	CH2-CI	HO-CH	Ethyl	Me	CF3	Me	OMe	Me	Me	CH ₂ -CI	0-CH	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH2-CI	0-CH	Ethyl	Me	CF3	Me	OMe
R ²	CH ₂ OH	OMc	0.Me	Ethyl	CF ₃	ОМе	Me	ОМе	ОМе	CH ₂ OH	ОМе	OMe	Ethyl	CF3	OMe	Me	OMe	OMe	СН2ОН	OMe	OMe	Ethyl	CF3	OMe	Me	OMe
R8	Н	н	Н	Н	н	Me	I	Н	H	H	Æ	Н	H	H	I	Ή	工	H	H	Н	н	Н	н	王	H	Н
R7	I	Ē	Н	Н	Н	Mc	Н	Н	н	Н	Butyl	Н	ж	н	Н	Н	Н	Н	Ethyl	Н	Н	Etthyl	Н	Н	Н	H
R ¹²	(2,6-Diisoprer inhenyl)-HN	(2,6-Diisopropyipacnyl)-HN	(2,6-Diisopropylphenyl)-HN	(2,6-Diisopro	(2,6-Diisopropylphenyl)-HN	(2,6-Diisopropylphenyl)-HN	(N-Butyl-N-Me)-N	(N-Butyl-N-Me)-N		(N-::/-N-Me)-N	(N-Butyl-N-Me)-N	(N-Buryl-N-Me)-N	(N-Butyl-N-Me)>		(N-Butyl-N-Me)-N	(N-Phenyl-N-Me)-N	(N-Phenyl-N-Me)-N	(N-Phenyl-N-Me)-N		_	(N-Phenyl-N-Me)-N	(N-Phenyl-N-Me)-N	(N-Phenyl-N-Me)-N	(N-Phenyl-N-Mc)-N	(N-4-Methylphenyl-N-Methyl)-N	(N-4-Methylpt::jyl-N-Methyl)-N
R4, R5	Phenyl	Phenyl	Phonyl	'.cnyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyi	Phenyl
R¹	COOH	Н000	СООМе	Н000	Н000	Н000	С00Н	Н000	Н000	C00H	COOH	Н000	Н000	С00Н	С00Н	Н000	Н000	С00Н	H000	СООН	Н000	СООН	С00Н	Н000	Н000	СООН
7.	1-94	1-95	1-96	1-97	86-1	66	1-100	1-101	1-102	1-103	1-104	1–105	1-106	1-107	1-108	I-109	1-110	1-11-1	1-115	1-13	1-114	115	1-116	I-117	1-118	1-119

	1		r—		ı —		,	ı —	r		r		4	9			Γ	Γ					 -	,		, -,
*	S	0	0	0	0	0	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	S	0	0	0	0
7	z	z	z	z	z	Z	z	z	z	z	z	z	z	z	Z.	z	z	z	z	z	z	z	Z.	z	z	z
×	Z	z	z	Z.	z	z	z	z	z	z	z	z	z	Z	z	z	z	z	Z	z	z	Z.	z	z	Z.	Z.
7	СН	СН	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	CH	СН	СН	CH	СН	СН	СН	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	СН	СН	СН	СН	СН	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	СН	СН
R ³	Me	Me	CH ₂ -CH	0-CH ₂	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH ₂ -CH	O-CH ₂	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH ₂ -CH	O-CH ₂	Ethyl	Me	CF ₃	Me
R ²	ОМе	СН2ОН	OMe	OMe	Ethy!	CF ₃	OMe	Ve	OMe	OMe	СН2ОН	ОМе	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	СН2ОН	OMe	ОМе	Ethyl	CF3	OMe	Me
R8	Н	Me	H	H	Н	Н	H	Н	Н	H	Me	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	H	Н	н	H	Н
R.7	Н	Me	Ξ	Н	Н	Н	H	н	н	Н	Me	н	Н	н	н	Н	Н	Butyl	Н	Н	H	Н	Н	н	Н	Н
R ² 2	(N-4-Methylphenyl-N-Methyl)-N	(N-4-Methylphenyl-N-Methyl)-N	(N-4-Methylphenyl-N-Methyl)-N	(N-4-Methylphenyl-N-Methyl)-N	(N-4-Methylphenyl-N-Methyl)-N	(N-4-Methylphenyl-N-Methyl)-N	(N-4-Methylph-nyl-N-Methyl)-N	(N-4-:Methoxy1p::enyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N	(N-3,4-Dimethoxylphenyl-N-Me)-N	(N-3,4-Dimethoxylphenyl-N-Me)-N	(N-3,4-Dimethoxylphenyl-N-Me)-N	(N-3,4-Dimethoxy!phenyl-N-Me)-N	(N~3,4~Dimethoxylphenyl-N-Me)-N	(N-3,4-Dimethoxylphenyl-N-Me)-N	(N-3,4-Dimethoxy!phenyl-N-Me)-N	(N-3,4-Dimethoxylphenyl-N-Me)-N	(N-3,4-Dimethoxylphenyl-N-Mc)-N	(N-3,4-Dichlorphenyl-N-Me)-N
R4, R5	Phenyl	Pinenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl
\mathbb{R}^1	СООН	COOH	СООН	СООН	COOMe	СООН	Н000	СООН	Н000	H000	СООН	СООН	C00H	СООН	СООН	СООН	COOMe	СООН	СООН	СООН	СООН	СООН	COOMe	COOH	Н000	СООН
Nr.	1-120	1-121	1-122	1-123	1-124	1–125	1–126	1-127	1-128	1-129	I-130	1-131	I-132	I-133	1-134	I-135	I-136	137	I-138	1-139	1-140	1-141	[-142	[-143	1-144	1-145

<u></u>		<u> </u>	<u> </u>			Γ			Γ		<u> </u>		5			Γ_								<u> </u>		
≥	0	0	0	0	0	S	0	0	0	S	0	0	0	0	0	0	0	S	0	0	0	0	S	0	0	0
X	z	z	z	z	z	z	Z.	z	z	Z.	z	z	z	z	Z	z	Z	Z	Z.	Z	z	z	Z	z	z	z
×	Z	Z.	Z	z	z	z	z	z	z	z	z	z	Z	z	Z	Z	z	Z	z	z	z	z	z	z	z	Z.
Z	СН	СН	СН	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	НЭ	СН	СН	СН	СН	СН	СН	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	СН	CH	СН	СН	СН	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	HJ
R ³	OMe	Me	Me	CH2-CI	O-CH.	Ethyl	Me	CF3	Me	OMe	Me	Me	CH2-CF	O-CH.	Ethyl	Me	CF3	Me	OMe	Me	Me	CH ₂ -CI	H)-0	Ethyl	Me	CF3
1.82	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF ₃	0.Me	Me	OMe	OMe	CH ₂ OH	OMe	ОМе	Ethyl	CF ₃	OMc	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF ₃	OMe
\mathbb{R}^8	Н	Me	H	H	I	Me	H	H	H	Н	H	H	н	Н	Н	Me	Н	Н	Н	Н	Н	Н	Н	H	Н	Ħ
R7	Н	Me	н	н	H	Me	H	Н	Ethyl	н	Н	Ethyl	H	н	Н	Me	Н	Н	Н	Me	Н	н	Н	;i.'	Н	Н
R ² '	(N-3,4-Dichlorphenyl-N-Me)-N	(N-3,4-Dichlorphenyl-N-Me)-N	(N-3,4-Dichlorphenyl-N-Me)-N	(N-3,4-Dichlorphenyl-N-Me)-N	(N-3,4-Dichlorphenyl-N-Me)-N	(N-3,4-Dichlorphenyl-N-Me)-N	(N-3,Dichlorphenyl-N-Me):	(N-3,4-Di. Torphenyl-N-Me)-N	(N-4-Chlorphenyl-N-Me)-N	(N-4-Chlorphenyl-N-Me)-N	-4-Chlorphenyl-N-Me)-N	(N-4-Chlorphenyl-N-Me)-N	(N-4-Chlorphenyl-N-Me)-N	(N-4-Chlorphenyl-N-Me)-N	(N-4-Chlorphenyl-N-Me)-N	(N-4-Chlorphenyl-N-Me)-N	(N-4-Chlorphenyl-N-Me)-N	(N-2,6-Dimethoxylphenyl-N-Me)-N	(N-2,6-Dimethoxylphenyl-N-Me)-N	(N-2,6-Dimethoxylphenyl-N- (e)-N	(N-2,6-Dimethoxylphenyl-N-Me)-N	(N-2,6-Dimethoxylphenyl-N-Me)-N	(N-2,6-Dimethoxylphenyl-N-Me)-N	(N-2,6-Dimethoxylphenyl-N-Me)-N	(N-2,6-Dimethoxylphenyl-N-Me)-N	(N-2,6-Dimethoxylphenyl-N-Me)-N
R ⁴ , R ⁵	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Pher.	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Pr : 4
\mathbb{R}^{1}	СООН	С00Н	С00Н	С00Н	СООН	СООН	С00Н	С00Н	СООН	С00Н	С00Н	Н000	C00H	СООН	C00H	СООН	С00Н	СООН	СООН	СООН	СООН	СООН	СООН	СООН	СООН	Коол
Nr.	1-146	1-147	I-148	1-149	1-150	1-151	1-152	1-153	I-154	I-155	1-156	1-157	1-158	1-159	I-160	1-161	1-162	1-163	1–164	1-165	J-166	[−167	8011	1–169	1-170	1-171

·	Т		Г	T-	т-	Τ-		т—	T-	_	Т	γ	τ –	T		_		т	T		т	Τ		т	т	т
*	S	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	S	0	0	0	0	0	0	S	0	0	0
>	z	Z,	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z.	z	z	z	z	z
×	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	z	z	z	z	z	z	z	z
2	СН	СН	СН	СН	-CH2-C	CH2-C	СН	CH	СН	CH	СН	СН	CH	-CH ₂ -C	CH ₂ -C	CH	CH	CH	CH	CH	СН	СН	CH2-C	CH2-C	СН	H
R ³	Me	OMe	Me	Me	CH2-CH2-CH2-C	0-CH2-CH2-C	Ethyl	Me	CF3	Me	0Me	Me	Me	CH2-CH2-CH2-C	0-CH ₂ -CH ₂ -C	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH2-CH2-CH2-C	O-CH2-CH2-C	Ethyl	Me
R ²	Me	OMe	ОМе	СН2ОН	OMe	OMe	F	CF3	OMe	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF ₃	OMe	Me	0.Me	OMe	CH ₂ OH	ОМе	OMe	Ethyl	CF ₃
R8	王	Н	n;	工	H	H	н	Н	Ξ	Н	H	Н	н	H	Mc	н	工	Н	Н	工	H	Me	五	Н	Н	T
R7	工	Ħ	Н	Н	Ethyl	Н	Н	Н	Н	Н	Н	Н	H	I	Me	Н	Н	н	Н	H	Н	Me	н	H	Н	Me
R ²²	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Mc)-N	(N-2,6-Dicthylphenyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Diisopropy/phenyl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diisopropy!phenyl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diisopropy! 2. myl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-Phenyl-N-Butyl)-N	(N-Phenyl-N-Butyl)-N	(N-Phenyl-N-Butyl)-N	(N-Phenyl-N-Butyl)-N	(N-Phenyl-N-Butyl)-N	(N-Phcnyl-N-Butyl)-N	(N-Phenyl-N-3atyl)-N	(N-Phenyl-N-Butyl)-N
R ⁴ , R ⁵	Phenyl	4-F-Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl						
\mathbb{R}^1	COOMe	Н000	Н000	C0013	Н000	Н000	СООН	Н00Л	Н000	Н000	Н000	СООН	COOMe	Н000	СООН	СООН	К00Н	СООН	С00Н	C00H	C00H	Н000	Н000	Н000	Н000	СООН
N.	1–172	1-173	1-174	1-175	1-176	I-177	1-178	1-179	I-180	1-181	1-182	1-183	1-184	I-185	1–186	1-187	I-188	1-189	1-190	1-191	1-192	1-193	1-194	I-195	1-196	1-197

	T	1-	Т	Τ	T	Τ-	т	Τ	Т		T	_		- -		Τ	_		r	т	1	_	T		Γ-	
3	0	0	0	0	0	0	0	.0	0	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0
Y	z	Z.	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	z	z	Z.	Z	z	z
×	z	Z	z	z	z	Z	z	z	z	z	z	z	z	z	z	z	Z	z	z	z	z	z	z	z	z	z
7.	CH.	H	CH	CH	СН	CH2-CH2-CH2-C	O-CH2-CH2-C	СН	СН	CH	CH	СН	СН	CH	CH2-CH2-CH2-C	O-CH2-CH2-C	СН	СН	CH	CH	СН	СН	СН	CH2-CH2-CH2-C	O-CH2-CH2-C	CH
R³	CF ₃	Me	ОМе	Me	Me	CH2-CI	O-CH.	Ethyl	Me	CF3	Me	ОМе	Me	Me	CH2-CF	O-CH ₂	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH2-CF	OCH ₂	Ethyl
R ²	OMe	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF3	ОМе	Me	ОМе	OMe	СН2ОН	OMe	OMe	Ethyl	CF ₃	OMe	Me	OMe	ОМе	CH ₂ OH	OMe	OMe	Ethyl
RS	I	E	H	H	H	I	н	н	Me	H	Н	Me	H	H	Н	æ:	Н	Н	Н	н	H	II.	H	五	工	Н
R7	Н	Н	Me	Н	H	H	Н	Н	Me	Н	Н	Me	Н	н	Me	Н	Н	Н	Bu	Н	Propyl	Н	Н	Н	Н	Н
R ² 2	(N-Phenyl-N-3utyl)-N	(N-4-Methylphenyl-N-Butyl)-N	(N-4-Methylphenyl-N-Butyl)-N	(N-4-Methylphenyl-N-Butyl)-N	(N-4-Methylphenyl-N-Butyl)-N		(N-4-Methylphenyl-N-Butyl)-N	(N-4-Methylphcmyl-N-Butyl)-N	(N-4-Methylphenyl-N-7-utyl)-N	(N-4-Methylphenyl-N-Butyl)-N	(N-4-Methoxyphenyl-N-Butyl)-N	(N-4-Methoxyphenyl-N-Butyl)-N			(N-4-Methoxyphenyl-N-Butyl)-N	(N-4-Methoxyphenyl-N-Butyl)-N	(N-4-Methoxyphenyl-N-Butyl)-N	(N-4-Methoxyphenyl-N-Butyl)-N	(N-4-Methoxyphenyl-N-Butyl)-N	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	(N-3,4-Dimerhoxyphenyl-N-Butyl)-N	(N-3,4-Dimethoxyp!. "tyl-N-Butyl)-N		1 (N-3,4-Dimethoxyphenyl-N-Butyl)-N	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	1 (N-3,4-Dimethoxyphenyl-N-Butyl)-N
R ⁴ , R ⁵	henyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyi	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyi	Phenyl	4-F-Phenyl	Phenyl	4-F-Phenyl
Rl	СООН	С00Н	СООН	COOMe	СООН	Н00Э	C00H	COOH	COOH	СООН	СООН	Н000	C00H	СООН	H000	С00Н	H000	H000	СООН	H000	Н000	С00Н	КООН	C00H	СООН	CCJH
Z.	1-198	I-199	1-200	1-201	1-202	1-203	I-2:04	1–205	1-206	1-207	1-208	1-209	1-210	1-211	1-212	1-213	1-214	i-215	1-216	1-217	1-218	1-219	1-220	1–221	1-222	1–223

	T	T	Γ	T	Π	Τ	Τ	Π	Г			Π	5	Ī-	Γ	Γ		Ι	Γ	T	T		T	Τ		T
>	S	0	0	0	0	S	0	0	0	0	0	0	0	0	S	0	0	0	0	0	0	S	0	0	0	0
<u>></u>	z	z	Z	Z.	z	Z.	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
×	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z.	z	z	z	z	Z,	Z.	z	Z.
Z	СН	СН	СН	НЭ	СН	CH	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	CH	CH	CH	CH	CH	HS	CH2-CH2-CH2-C	O-CH2-CH2-C	CH	CH	CH	НЭ	HO	HJ	НЭ	CH2-CH2-CH2-C	O-CH,-CH,-C
R3	Me	CF3	Me	OMe	Me	Me	CH2-CI	H)-O	Ethyl	Me	CF ₃	Me	ОМе	Me	Me	CH2-CI	E CE	Ethyl	Me	CF ₃	Me	ОМе	Me	Me	CH2-CI	O-CH
R ²	CF3	ОМе	Me	ОМе	ОМе	СН2ОН	OMe	OMe	Ethyl	CF ₃	ОМе	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	CH ₂ OH	OMe	OMe
R8	I	工	I	Me	E	工	H.	H	H	H	н	H	н	Me	H	H	Н	н	Н	H	Ŧ	H	H	H	Н	H
R7	Н	Н	н	Me	н	Н	H	H	н	Н	Propyl	H	H	Me	Н	H	н	Н	Н	Н	H	Butyl	Н	Н	Н	Butyl
R ²²	(N-3,4-Dimethoxypheny:-N-Butyl)-N	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	.i-3,4-Dichlorphenyl-N-Butyl)-N	(N-3,4-Dichlorphenyl-N-Butyl)-N	(N-3,4-Dichlorphenyl-N-Butyl)-N	(N-3.4-Dichlorphenyl-N-Buryl)-N	(N-3,4-Dichlorphenyl-N-Butyl)-N	(N-3,4-Dichlorphenyl-N-Butyl)N	(N-3,4-Dichlorphenyl-N-Butyl)-N	(N-3,4-Dichlorphenyl-: vl)-N	(N-3,4-Dichlorphenyl-N-Butyl)-N	(N-4-Chlorphenyl-N-Butyl)-N	(N-4-Chlorphenyl-N-Butyl)-N	(N-4-Chlorphenyl-N-Butyl)-N	(N-4-Chlorphenyl-N-Butyl)-N	(N-4-Chlorphenyl-N-Butyl)-N	(N-4-Chlorphenyl-N-Butyl)-N	(N-4-Chlorphenyl-N-: ;yl)-N	(N-4-Chlorphenyl-N-Butyl)-N	(N-4-Chlorphenyl-N-Butyl)-N	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	(N-2,6-Dimethoxyllaienyl-N-Butyl)-N	N-2,6-Dimethoxylphenyl-N-P.:tyl)-N	(N-2,6-Dimethoxylphenyl-N-Buryl)-N	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	(N-2,6-Dimethoxylphenyl-N-Butyl)-N
R ⁴ , R ⁵	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Pheny:	Phenyi	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	F 1yl	4-F-Phenyl	Phenyl	Phenyl	Phenyl
R¹	НОС	HO07	::)00 ::	HOOO	Н000	Н000	Н000	СООН	COOMe	Н000	С.00Н	H0C:	C00H	С00Н	Н000	СООН	СООН	СООН	СООН	НООЭ	К00Н	Н000	СООН	СООН	Н000	СООН
Nr.	1-224	1-225	1-226	1-227	1-228	1-229	1-230	[-231	1-232	1-233	I-234	1-235	1-236	1-237	1-238	1-239	1-240	[-24]	1-242	1-243	1-244	1-245	1-246	1-247	1-248	1-249

		Π	Γ	Ι'''	Π	Т	T	Γ	T		Ι	Т	Γ	Γ		Γ-	Ι_	Г	Г	T	Ī	Г	Τ	T	Γ	Γ
≥	0	0	0	0	0	0	0	0	0	0	0	0	S	0	0	0	0	S	0	0	0	0	0	0	0	C
>	z	Z.	Z	z	z	z	Z.	z	z.	z	z	z	z	z	z.	z	z	z	z	z	z	z	z	z	z	2
×	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z.	z	z	Z.	z	z	z	Z
Z	СН	СН	СН	СН	СН	CH	СН	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	CH	CH	CH	CH	E	CH	CH2-CH2-CH2-C	CH ₂ -C	CH	CH	CH	CH	CH	СН	CH	-CH3-C
R3	Ethyl	Me	CF ₃	Me	ОМе	Me	Me	CH2-CH	0-CH ₂ -	Ethyl	Me	CF ₃	Me	OMe	Me	Me	СН2-СН	O-CH ₂ -CH ₂ -C	Ethyl	Me	CF_3	Me	ΩМе	Me	Me	CH,-CH,-CH,-C
R ²	Ethyl	CF3	OMe	Me	OMe	OMe	СН2ОН	ОМе	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	CH ₂ OH	ОМе	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	CH ₂ OH	OMe
R8	H	工	H	工	H	Me	Н	王	Н	Н	Н	Н	Н	Н	H	H	H	Н	Н	Н	Н	Н	Н	H	Me	H
R7	Н	Н	н	Н	Н	Me	н	Н	Ethyl	Н	н	Н	Н	Н	н	H	н	Н	Н	Н	Butyl	н	Н	Н	Me	Н
R ²²	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	(N-2,6-Dimerhoxylphenyl-N-Butyl)-N	(N-2,6-Diethylphenyl-N-Butyl)-N	(N-2,6-Diethylphenyl-N-7 :!)-N	(N-2,6-Diethylphenyl-N-buryl)-N	(N-2,6-Diethylphenyl-N-Butyl)-N	(N-2,6-Diethylphenyl-N-Butyl)-N	(N-2,6-i:thylphenyl-N-Butyl)-N	(N-2,6-Diethylphenyl-N-Putyl)-N	(N-2,6-Diethylphenyl-N-butyl)-N	(N-2,6-Diethylphenyl-N-Butyl)-N	(N-2,6-Diisopropylphenyl-N-Butyl)-N	(N-2,6-Diisopropylphenyl-N-Butyl)-N	(N-2,6-Diisopropylphen 1. N-Butyl)-N	(N-2,6-Eisopropyle': myl-N-Butyl)-N		(N-2,6-Diisopropylphenyl-N-Butyl)-N	(N-2,6-Diisopropylphenyl-N-Butyl)-N	(N-2,6-Diisopropylphenyl-N-Butyl)-N	(N-2,6-Diisopropylphenyl-N-Butyl)-N	(N-Phenyl-N-Isopropyl)-N	(N-Phenyl-N-Isopropyl)-N	(N-Phenyl-N-Isopropyl)-N	(N-Phenyl-N-Isopropyl)-N	(N-Phenyl-N-Isopropyl)-N
R4, R5	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl
R1	Н000	Н000	К00Н	СООН	СООН	C.JH	Н000	Н000	Н000	Н000	С00Н	СООН	Н000	COOMe	Н000	К00Н	Н000	H000	СООН	Н00Л	Н000	К00Э	Н000	Н000	СООН	H000
Ŋ.	1-250	1-251	1-252	1–253	1-254	1-255	1–256	1-257	1-258	1-259	1-260	1-261	1–262	1–263	1-264	1-265	1-266	1-267	1-268	1–269	1-270	1-271	1–272	1-273	1–274	1-275

_					,	r—		-				· -	5	5						,						
*	0	S	0	0	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	S	0	0	0	0	S	0
<u>×</u>	z	Z	z	z	z	z	Z	z	z	z	z	z	z	z	z	z	z	Z	z	Z	Z.	z	z	z	z	z
×	Z	z	z	Z.	z	z	Z.	z	z	z	z	Z	z	z	Z.	z	z	z	z	z	z	Z	z	z	z	z
7	O-CH2-CH2-C	СН	СН	CH	СН	СН	СН	СН	CH2-CH2-CH2-C	0-CH ₂ -CH ₂ -C	СН	CH	СН	СН	CH	HO	KH	CH2-CH2-CH2-C	0-CH ₂ -CH ₂ -C	СН	CH	НЭ	СН	СН	СН	СН
R3	157	Ethyl	Me	CF3	Me	OMe	Me	Me	CH ₂ -C	20	Ethyl	Me	CF ₃	Me	ОМе	Me	Me	CH2-C	0-CH	Ethyl	Me	CF ₃	Me	ОМе	Me	Me
R ²	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	СН,ОН	ОМе	ОМе	Ethyl	CF ₃	OMe	Me	OMe	OMe	СН2ОН	OMe	OMe	Ethyl	CF3	ОМе	Me	OMe	ОМе	CH ₂ OH
R8	王	H	王	王	H	田田	H	工	王	エ	н	H	Me	H	H	Н	Н	H	Н	田	H	I	工	H	Н	Н
R7	H	Н	Н	Н	Н	Н	Н	H	Propyl	н	Н	Н	Me	H	Н	Н	Н	Н	Н	Me	Н	H	Н	Н	Н	Н
R ² 2	(N-Phenyl-N-Isopropyl)-N	(N-Phenyl-N-Isopropyl)-N	(N-Phenyl-N-Isopropyl)-N	(N-Phenyl-N-Isopropyl)-N	(-CH2-CH2-CH2-CH2-);	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -)N	$(-CH_2-CH_2-CH_2-CH_2-)N$	(-CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -)N	(-CH2-CH2-CH2-CH2-)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH2-CH2-CH2-CH2-)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	$(-CH_2-CH_2-CH_2-CH_2-)N$	(-CH2-CH2-CH2-CH2-)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH2-CH2-CH2-CH2-CH2-)N	(-CH2-CH2-CH2-CH2-C:CH2-)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH2-CH2-CH2-CH2-CH2-)N
R4, R5	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Pt. nyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyi	Phenyl	Phenyl	Phenyl	4-F-Phenyl
R1	НООЭ	СООН	Н000	H000	Н000	. H000	C00H	H000	C00H	H000	СООН	HOC ?	COOH	C00H	СООН	СООН	CUOH	СООН	C00H	СООН	H000	C00H	C00H	H000	Н000	H000
Nr.	1-276	1-277	1-278	1-279	1-280	1-281			1-284		1-286	1-287	1-288	1–289	1–290			1-293	1-294	1-295	1–2%	1-297	1-298			1–301

	T -	_	Ţ	-				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	_	·	
W	0	0	0	0	S	0	0	0	S	0	0	0	0	0
7	Z.	z	z	z	Z.	Z -	z	z	Z	z	z	z	z	z
×	z	z	z	z	z	z.	z	Z	z	z	z.	z	z	z
Z	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	CH	СН	СН	СН	СН	CH ₂ -CH ₂ -CH ₂ -C	0-сн ₂ -сн ₂ -с	СН	СН	СН
R ³	CH2-CI	H)-O-CH	Ethyl	Me	CF ₃	Me	ОМе	Me	Me	CH2-CF	O-CH ₂	Ethyl	Me	CF ₃
R2	OMe	OMe	Ethyl	CF3	ОМе	Me	OMe	OMe	СН2ОН	OMe	OMc	Ethyl	CF;	OMe
R8	Н	I	工	Н	H	H	I	H	H	H	Me	H	Н	H
R7	Н	Propyl	Н	Н	Н	エ	н	工	エ	н	Mc	II	H	H
R ² 2	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -Ci)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH2-CH2-CH2-CH2-CH2-)N	<u></u>							1	<u> </u>
R ⁴ , R ⁵	Phenyl	Phenyl	Phenyl	Phen.	Phc.,,	Phenyi	Phenyl	Phenyl	Phenyl	4–F–Phenyl	Phenyl	Phenyl	Phenyl	Phenyl
R1	Н000	СООН	С00Н			СООН	СООН	СООН	СООН	СООН	СООН	СООН	НООЭ	соон
N.	1-302	1-303	1-304	1-305	1-306	1–307	1-308	1-300	1-310	1-311	1-312	1–313	I-314	1-315

	T	т	T	T		<u> </u>	T	Τ		т	_		т-	1	_
3	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0
7	z	Z.	z	z	z	z	Z,	z.	z	Z	z	z	Z	z	z
×	z	z	z	z	z	z	z	Z	Z	z	z	z	z	Z.	z
2	СН	СН	CH	НЭ	СН2-СН2-СН2-С	0-сн ₂ -сн ₂ -с	СН	СН	СН	СН	ЮН	СН	H	CH2-CH2-CH2-C	0-сн2-сн2-с
R3	Me	ОМе	Me	Me	CH2-C	0-CH	Ethyl	Me	CF3	Me	OMe	Me	Me	CH2-CF	O-CH ₂
R ²	Me	OMe	ОМе	СН2ОН	ОМе	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	CH ₂ OH	OMe	ОМе
RS	II	Н	H	H	I	I	H	工	H	H	H	H	H	H	Н
R7	Н	Н	Н	Ethyl	ш	II.	I	н	H	H	H	Н	Н	Н	Н
R ²²							1		\\\\	(N-2,6-L: ethylphenyl-N-Ethoxymethylen)-N	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N	(N-2,6-Dicthylphenyl-N-Ethoxymethylen)-N	(N-2,6-Diethylp* myl-N-Ethoxymethylen)-N	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N
R4, R5	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl
\mathbb{R}^1	СООН	СООН	нооэ	СООН	СООН	СООН	СООН	СООН	СООН	СООН	СООН	НООЭ	Н000	Н000	СООН
Nr.	1–316	1-317	1-318	1-319	1-320	[-32]	1-322	1-323	I-324	1-325		1-327			[-330

_	T-	т-	т				1		38		·		,		
*	S	0	0	0	0	0	S	0	0	0	0	0	0	0	S
>	Z.	z	z	Z.	z	z	z	z	z	z	z	Z	z	Z.	z
×	Z	z	z	Z.	z	z	z	Z	Z	z	z	z	z	z	z
2	СН	СН	CH	СН	HJ	СН	СН	сн,-сн,-сн,-с	0-сн ₂ -сн ₂ -с	СН	СН	СН	СН	СН	СН
R3	Ethyl	Me	CF ₃	Me	ОМе	Me	Me	CH2-CH	0-CH ₂	Ethyl	Me	Me	ОМе	Me	Me
R ²	Ethyl	CF ₃	OMe	Me	OMe	ОМс	СН2ОН	0.Me	OMe	Ethyl	CF ₃	Me	ОМе	ОМе	СН2ОН
R8	Н	Н	Н	E	H	Me	Н	Ξ	H	I	II .	I	I	н	H
R7	Н	H	Н	I	н	Me	工	н	н	II.	H	н	王	I	н
R ²²	(N-2,6-Diethylphenyl-N Ethoxymethylen)-N	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N	(N-2,6-Diisopropylphenyl-N-Methoxymethy-len)-N	(N-2,6-Diisopropylphenyl-N-Methoxymethy-len)-N	(N-2,6-Diisopropylphenyl-N-Methoxymethy-len)-N	(N-2,6-Diisopropylphenyl-N-Methoxymethy-len)-N	(N-2,6-Diisopropylphe., N-Methoxymethy- len)-N	(N-2,6-Diisopropylphenyl-N-Methox, methylen)-N	(N-2,6-Diisopropylphenyl-N-Methoxymethy- len)-N	(N-2,6-Diisopropylphenyl-N-Methoxymethy-len)-N				
R4, R5	4-F-Phenyi	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl
R1	Н000	Н000	. нооэ	СООН	СООН	СООН	нос^	СООН	С00Н	СООН	СООН	СООН	СООН	СООН	СООН
Nr.	1-331	1-332	1-333	1-334 45.	:35	1–336	1-337	I-338	1–339	1–340	1-341	1–342	1-343	1-344	1-345

_				·			_	,				,		,	·		
*	0	0	S	0	0	0	0	0	S	0	S	0	0	0	0	0	S
7	z	z	Z.	Z.	z	z	z	Z.	z	z	Z	z	z	z	Z.	z	Z
×	z	z	z	z	z	z	z	z	z	z	z	z	Z.	z	Z	z	z
7	CH ₂ CH ₂ C	CH	CH	CH	CH	CH2-CH2-CH2-C	0-CH2-CH2-C	СН	СН	СН	Ю	СН	СН	CH2-CH2-CH2-C	0-сн ₂ -сн ₂ -с	СН	СН
R ³	CH ₂ -CH	Me	OMe	Me	Me	CH ₂ -CH	O-CH ₂	Ethyl	Me	Me	ОМе	Me	Me	СН2-СН	0-CH ₂	Ethyl	Me
R ²	ОМе	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF ₃	Me	ОМе	ОМе	СН2ОН	O:Me	ОМе	Ethyl	CF ₃
R8	I	Н	H	H	H	Н	Н	Н	H	Me	Ħ	H	H	H	æ	H	Н
R7	エ	ᅲ	Me	Н	Butyl	Н	н	Н	Н	Me	Н	王	H	H	Н	I	Н
R ² 1		Bu ₂ N	Bu ₂ N	Bu ₂ N	Bu ₂ N	Bu ₂ N	Bu ₂ N	Bu ₂ N	Bu ₂ N	. Me ₂ N	Phenyl-1:1N		(N-Phenyl-N-Me)-N	(4–Chlorphenyl)–HN	(2,6–Dimethoxyphenyl)–HN	(2,6-Diethylphenyl)-HN	<u>‡</u>
R ⁴ , R ⁵	Phenyl	Phenyl	Phenyl	Primyl	Phenyl	Phenyl	Phenyl	Pheny:	4-F-Phenyl	Phenyl, 4 Cl- Phenyl	4-Cl-Phe- nyl, 4-F- Phenyl	4-F-Phenyl, Phenyl	4-Me-Phen- yl, Naphthyl	2–F–Phenyl, Phenyl	2-F-Phenyl, 4-Me-Phen- yl	Naphthyl, Phenyl	Phenyl, 4 Cl Phenyl
R¹	СООН	COOH	СООН	С00Н	НООЭ	НООЭ	Н000	C00H	С00Н	СООН	СООН	СООН	СООН	COOMe	СООН	СООН	СООН
Nr.	1-346	1-347	I-348	1-349	I-350	1-351	1-352	1-353	1-354	1-355	I-356	1-357	1-358	1-359	I-360	1–361	1–362

>	0				
	1	0			0
\\ \triangle \\ \t	z. z.	Z	z	Z.	2.
×	z	z	Z	z	z
7	СН	СН	СН	СН	СН
R³	CF3	Me	ОМе	Me	Me
	ОМе	Me	ОМе	ОМе	Me
1	H	Me	工	н	н
R7	I	Me	H	Н	H
R ²²		MegN	Phenyl-HN	1, (N-Butyl-N-Me)-N	1, Bu ₂ N
R4, R5	4-Cl-Phe- nyl, 4-F- Phenyl	Naphthyl, Naphthyl	Naphthyl, Naphthyl	4—F—Phenyl, 4 Cl Phenyl	4-F-Phenyl, Phenyl
\mathbb{R}^1	I-363 СООН	1-364 СООН	1-365 СООН	I-, 56 COOH	1-367 СООН
Nr.	1-363	1-364	1–365	1-, 26	1-367

Tabelle II

Nr.	<u>۲</u>	R ² , R ³	Ro	R7	R ₈	R ⁷ R ⁸ R ² R ³	R ³	7	×	M A X	≥
1[-1	СООН	Phenyl	(N-(2-OMe-PhenylCO)-N-Propyl)-N-CH2-	Н	H	Me	Me	CH	z	Z Z	c
11-2	H000	Phenyl	(N-PhenylSO,-N-Propyl)-N-CH,-	H	i	OMe		HJ	Z)
,					- 1				3		>
~; 	LCOOH	Pbenyl	$(N-PhenyISO_2-N-PropyI)-N-CH_2-$	H	三	OMe	OMe	CF	Z.	0 Z	0
7	COOMe Phenyl	Phemyl	(N-PhenyISO2-N-Me)-N-CH3-	I	H	OMe	CHILCH	CHI-CHI-CHI-C	2	2	c
							7.75	7777		, ,	>
(- <u>1</u>	СООН	Phenyl	(N-PhenyISO2-N-Me)-N-CH2-	二	H H OMe	OMe	0-CH;-	O-CH,-CH,-C	Z	z	0
									_	_	

_	1	т				1	,	7		Υ		01	_	т	_		,				,	,		
*	0	S	0	0	0	S	0.	0	0	S	0	0	S	0	0	S	0	0	0	0	S	0	0	0
<u>×</u>	z	z	Z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	z	z
×	z	z	z	z	z	z	z	z	z	Z.	z	Z	Z	z	Z	z	Z,	z	z	z	z	z	z	HJ
7	CH	CH	НЭ	СН	СН	НЭ	CH	CH	CH2-CH2-CH2-C	СН	O-CH2-CH2-C	HJ	СН	CH	СН	СН	CH	CH	CH2-CH2-CH2-C	O-CH2-CH2-C	СН	CH	CH	Z
R.3	Ethyl	Me	CF3	Me	Me	OMe	Me	Me	CH ₂ -CF	OMe	O-CH ₂	Ethyl	Me	CF;	Me	OMe	Me	Me	CH2-CF	O-CH ₂	Ethyl	Me	CF ₃	Me
R ²	Ethyl	CF3	OMe	Me	Me	OMe	OMe	CH ₂ OH	OMe	OMe	OMe	Ethy1	CF3	OMe	Me	OMe	OMc	CH ₂ OH	ОМе	OMe	Ethy!	CF ₃	ОМе	Me
R8	H	H	H	Me	Н	H	H	H	H	H	H	王	H	H	Ħ	H	H	Н	Me	H	田	H	H	Н
R7	H	H	H	Me	Н	Me	H	Butyl	Н	Н	H	H	Н	H	Н	Н	Н	Н	Me	Н	Н	Н	Н	Н
R6	(N-PhenyISO ₂ -N-Me)-N-CH ₂ -	(N-PhenylSO ₂ -N-Me)-N-CH ₂ -	(N-PhenylSO ₂ -N-Me)-N-CH ₂ -	(MeCO-N-Me)-N-CH ₂ -	(N-PhenylCO-N-Butyl)-N-CH2-	(N-PhenyICO-N-PropyI)N-CH2-	(N-PhenylCO-N-Propyl)-N-CH2-	(N-PhenylCO-N-Me)-N-CH ₂ -	(N- :nyICO-N-Me)-N-CH ₂ -	(N–Pneny1SO ₂ –N–Me)–N–CH ₂ –	(N-PhenylCO-N-Me)-N-CF.	(N-PhenyICO-N-Me)-N-CH ₂ -	(N-, - OMe-PhenyICO)-N-ButyI)-N-CH ₂ -	(N-(3/e-PhenylCO)-N-Propyl)-N-CH ₂ -	(N-PhenyiSO ₂ -N-Butyl)-N-CH ₂ -	(N-(3,4-Di-OMe-PhenyICO)-N-Me)-N-CH ₂ -	(N-(3,4-Di-OMe-PhenyICO)-N-Me)-N-CH2-	(N-(3,4-Di-OMe-PhenyICO)-N-Me)-N-CH2-	(N-(3,4-L),-JMe-PhanylCO)-N-Me)-N-CH2-	(N-(3,4-Di-OMc-PhenylCO)-N-Me)-N-CH2-	(N-(2,6-Di-OMe-PhenylCO)-N-Me)-N-CH2-	(N-(2,6-Di-OMe-PhenylCO)-N-Me)-N-CH ₂ -	(N-(2,6-Di-OMe-PhenyICO)-N-Me)-N-CH2-	(N-(2,6-Di-OMe-PhenyICO)-N-Me)-N-CH2-
R4, R5	Phenyl	Phenyl	Phenyl	Phenyl, 4 Cl Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-Cl-Phenyl, 4-F-Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	4-F-Phenyl	4-F-Phenyl	Phenyl
R1	H000	C00H	СООН	Н000	НООЭ	С00Н	СООН	Н000	Н000	СООН	СООН	СООН	Н000	СООН	H000	Н000	H000	H000	H000	Н000	Н000Н	Н000	C00H	H000
Nr.	9-11	11-7	8-11	6-11	II-10	II-11	11-12	11-13	11-14	11-15	11-16	11-17	11-18	11-19	11-20	11-21	11-22	11-23	11-24	11-25	11-26	11-27	11-28	II-29

R1	R4, R5		R7	Rg	R ²	R ³	7	×	٨	*
СООН	Phenyl	(N-(2,6-Di-OMe-PhenyICO)-N-Me)-N-CH2-	H	I	OMe	OMe	CF	z	z	0
СООН	Phenyl	(N-(2,6-Di-OMe-PhenyICO)-N-Me)-N-CH2-	H	田田	OMe	Me	СН	z	z	0
СООН	Phenyl	Phenyl-CH2-O-CO-HN-CH2-	H	H	Me	Me	СН	z	z	0
СООН	4-F-Phenyl, Phenyl	(N-(3-OMe-PhenylCO)-N-Propyl)-N-CH2-	王	Н	OMe	Me	СН	z	Z,	0
СООМе	Phenyl	2,6-Di-OMe-PhenylCO-HN-CH ₂ -	H	王	СН2ОН	Me	СН	z	z	0
СООН	Phenyl	2,6-Di-OMe-PhenylCO-HN-CH2-	Н	Н	OMe	CH ₂ -CH	CH2-CH2-CH2-C	Z,	z	0
СООН	Phenyl	2,6-Di-OMe-PhenylCO-HN-CH ₂ -	Me	Me	OMe	O-CH2	O-CH2-CH2-C	z	z	0
СООН	Phenyl	2,6-Di-OMe-PhenyICO-HN-C	H	H	Ethyl	Ethyl	СН	z	z	S
СООН	Phenyl	2,5-Di-OMe-PhenyICO-HN-CH2-	н	Н	CF3	Me	СН	z	z	0
СООН	4-F-Phenyl	2,4-Di-OMe-PhenylCO-HN-CH(Me)-	Н	H	O:Me	CF,	СН	z	z	0
C00H	Phenyl	2,3-Di-Me-PhenylCO-HN-CH2-	田	H	Me	Me	CF	z	z	0
СООН	Phenyl	2,3-Di-Me-Pheny: CO-HN-CH2-	H	H	ОМе	OMe	CH	z	z	S
СООН	4-Mc-Phenyl, Naphthyl	(N-PhenylCO-N-Butyl)-N-(工	工	СН2ОН	Me	СН	z	z	0
СООН	Phenyl	3,4-Di-Me-PhenylCO-HN-CH ₂ -	H	H	OMe	Me	СН	z	z	0
C00H	4-F-Phenyl	3,5-Di-OMe-PhenylCO-HN-CH2-	H	н	СН2ОН	Me	СН	z	z	0
СООН	Phenyl	3,4-D:: Vie-PhenylCO-HN-CH ₂ -	H	H	OMe	CH2-CH	CH2-CH2-CH2-C	z	z	0
СООН	Phenyl	(N-PhenylSO ₂ -N-Propyl)-N-CH ₂ -	н	H	ОМе	O-CH;	O-CH ₂ -CH ₂ -C	z	z	S
C00H	Phenyl	(N-PhenylSO ₂ -N-Propy!)-N-CH ₂ -	Н	I	Ethyl	Ethyl	СН	z	z	0
СООН	Phenyl	(N-PhenylSO2-N-Propyl)-N-CH2-	王	王	Me	Me	CH	z	z	0
COOH	Phenyl	(N-Phct. J:ISO2-N-Propy!)-N-CH2-	н	H	CF3	Me	СН	z	z	0
С00Н	Phenyl	(N-PhenyISO ₂ -N-EthyI)-N-CH ₂ -	Ethyl	工	ОМе	CF ₃	CH	z	Z	0
СООН	Phenyl	(N-PhenylSO ₂ -N-Ethyl)-N-CH ₂ -	Н	Ξ	Me	Me	CH	Z	z	0
СООН	Phenyl	(N-PhenyISO ₂ -N-EthyI)-N-CH ₂ -	Н	Н	Н	OMe	СН	z	z	0
C00H	Phenyl	(N-PhenyISO2-N-EthyI)-N-CH(Me)-	Me	H	OMe	Me	СН	z	z	0

	T		Γ		Τ		T	Π	Γ	Γ	Τ	Γ	6	<u> </u>	Τ_	Γ	Γ	Γ	Γ	Ι	Τ	Γ	T-		Τ
*	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	S	0	0
٨	z	Z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	z	z	Z.	Z	Z	z	z	z	z
×	z	z	z	z	z	z	z	z	z	z	z	z	z	z	H	z	z	z	z	z	z	z	z	Z.	z
Z	CH	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	НЭ	СН	НЭ	CH	СН	C-Me	CH2-CH2-CH2-C	O-CH2-CH2-C	CH ₂ -CH ₂ -CH ₂ -C	z	НЭ	СН	СН	СН	CH	C-Me	CH2-CH2-CH2-C	0-CH ₂ -CH ₂ -C	СН	СН
R3	Me	CH ₂ -C	H)-O-CH	Ethyl	Me	CF ₃	Me	OMe	Me	Me	Me	CH2-CI	HOGH	CH ₂ -C	Ethyl	Me	CF ₃	Me	OMe	Me	ОМе	CH2-CI	HO-CH	Ethyl	Me
R ²	CH2F	OMe	OMe	Ethy1	CF3	OMe	Me	OMe	Me	OMe	H	OMe	ОМе	OMe	Ethyl	CF3	OMe	Me	OMc	ОМе	H	ОМе	OMe	Ethyl	Me
R8	H	H	н	H	H	H	エ	I	H	王	H	H	Me	工	工	Me	Ξ	Н	Н	H	工	H	王	H	H
R7	I	I	H	工	H	Н	H	H	H	H	E	H	Me	エ	I	Me	Н	H	Н	Me	H	Н	Н	Н	H
R6	(N-PhenylSO ₂ -N-Ethyl)-N-CH ₂ -	(N-(3-OMe-4-Me-PhenyISO ₂)-N-EthyI)-N-CH ₂ -	(N-(3-Cl-4-Me-PhcnylSO ₂)-N-Ethyl)-N-CH ₂ -	(N-(3-OMe-4-Mc-PhenyISO ₂)-N-EthyI)-N-CH ₂ -	(N-(3-OMe-4-Me-PhenyISO ₂)-N-EthyI)-N-CH ₂ -	(N-(3-CI-4-Me-PhenyISO2)-N-Ethy1)-N-CH2-	(N-(3-Cl-+-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ -	(N-(3,4-Di-Cl-PhenyISO ₂)-N-Ethyt)-N-CH ₂ -	3,4-Di-OMe-PhenyICO-HN-CH2-	(N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ -	(N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ -	(N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ -	(N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ -	$(N-(3-C1-4-Me-PhenylSO_2)-N-Ethyl)-N-CH_2-$	(N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ -	(N-(3-0Me-4-Mc-PhenyISO ₂)-N-Me)-N-CH ₂ -	(N-(3-C1-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ -	(N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ -	(N-(3-OMe-4-Me-PhenyiSO ₂)-N-Me)-N-CH ₂ -	(N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ -	(N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ -	(N-(3,4-Di-CI-PhenyISO ₂)-N-Me)-N-CH ₂ -	(N-(3,4-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ -	(N-(2,6-Di-OMe-PhenyISO ₂)-N-Me)-N-CH ₂ -	(N-(3,4-Di-OMe-Phenyl-CO)-N-Me)-N-CH2-
R ⁴ , R ⁵	Pit.tayl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	2-F-Phenyl,	[A: 34]	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyi	4-F-Phenyl	Phenyl	Phenyl
R1	СООН	КООН	COOMe	СООН	СООН	СООН	СООН	Н00.Э	СООН	СООН	COOH	СООН	СООН	COOMfe	СООН	С00Н	C00H	C00H	СООН	СООН	C00H	300H	СООН	СООН	C00H
Nr.	11-54	11-55	11-56	11-57	11–58	11-59	09-11	φ =	11-62	11-63	11 \$	11-65	99-11	11-67	11-68	69-11	:	11-71	11-72	11-73	11-74	11-75	11–76	11-77	11-78

OME CF3 CH Me Me CH OME OME CH OME O-CH2-CH2-C OME Me CH H OME C-OME OME CH2-CH2-C OME CH2-CH2-C OME CH2-CH2-C			M M M M M M M M M M M M M M M M M M M	CF3 CH Me CH OMe CH OMe C-OMe OMe C-OMe CH2-CH2-CH2-C O-CH2-CH2-C Me CH Ethyl CH Me CH CF3 CH	CF3 CH Me CH OMe CH OMe CH OMe C-OMe CH2-CH2-C C OMe C-OMe CH2-CH2-C C O-CH2-CH2-C C Me CH CF3 CH Me CH CF3 CH Me CH Me CH Me CH Me CH	CF3 CH Me CH OMe CH O-CH2-CH2-C C-OMe OMe C-OMe CH2-CH2-C C O-CH2-CH2-C C Me CH CF3 CH Me CH CF3 CH OMe CH	CF3 CH Me CH OMe CH O-CH2-CH2-C CH OMe C-OMe CH2-CH2-C CH O-CH2-CH2-C CH Me CH CF3 CH OMe CH OMe CH OMe CH Me CH OMe CH Me CH Me CH OMe CH Me CH	CF3 CH Me CH OMe CH OMe C-OMe OMe C-OMe CH2-CH2-C C Me CH CF3 CH OMe CH OMe CH OMe CH OMe CH Me CH Me CH Me CH Me CH CH CH	F ₃ СН е СН ме СН о-СН ₂ -СН ₂ -С о-СН ₂ -СН ₂ -С о-СН ₂ -СН ₂ -С е СН кме СН е СН	F3 CH 4e CH 0Me CH 4e CH 0Me C-OMe CH2-CH2-CH2-C CH 4e CH thyl CH 4e CH CH2-CH2-CH2-C CH2-CH2-CH2-C thyl CH	F3 CH Ie CH Me CH O-CH2-CH2-C C-OMe CH2-CH2-C CH Ie CH Inyl CH O-CH2-CH2-CH2-C CH2-CH2-CH3-C	F ₃ CH Me CH O-CH ₂ -CH ₂ -C E CH E CH	CF ₃ CH Me CH OME CH O-CH ₂ -CH ₂ -C Me CH Me CH Me CH Me CH Me CH OME CH OME CH Ethyl CH Me CH CH Me CH CH Me CH
			W Eff W O W C	CF3	CF3 Me OMe OMe OMe CH2 CH2 Me Me CH2 CH2 Me Me CH3 Me Me Me Me Me Me Me Me Me M	CF ₃ Me OMe OMe CH ₂ CH ₂ Me CF ₃ Me	CF3 Me OMe OMe OMe CH2 WA CH2 MA MA MA MA MA MA MA MA MA M	CH ₂ O-O O-O OH CH ₂ CH ₂ OH OH OH OH OH OH OH OH OH O	CH ₂ = 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	15.15.3 Me 46 GH2 O O O O O O O O O O O O O O O O O O O	Me le	hyd	15
		[5 5 5 5 5 5 5 5	Fig. 12 Miles	Me ome of the owner of the owner of the owner of the owner o	Me M	Me M							
e Me H H H H H H H H H H H H H H H H H H	e Me H H H H H H H H H H H H H H H H H H	e	e Me H H H H H H H H H H H H H H H H H H	e Me H H H H H H H H H H H H H H H H H H	е — — — — — — — — — — — — — — — — — — —	H H H H H H H H H H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H	e	e Me H H H H H H H H H H H H H H H H H H	e Me H H H H H H H H H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H	e Me H H H H H H H H H H H H H H H H H H	е е е е е е е е е е е е е е е е е е е
yl PhenylSO2-HN-CH2- PhenylSO2-HN-CH2- PhenylSO2-HN-CH2- PhenylSO2-HN-CH2- PhenylSO2-HN-CH2- PhenylSO2-HN-CH2- PhenylSO2-HN-CH2- PhenylSO2-N-Me)-N-CH2- H	3-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ -HP PhenylSO ₂ -HN-CH ₂ -HP PhenylSO ₂ -HN-CH ₂ -HP PhenylSO ₂ -HN-CH ₂ -HP (N-ButylSO ₂ -HN-CH ₂ -HP (N-ButylSO ₂ -N-Me)-N-CH ₂ -HP (N-Ch ₂ -HP)-CH ₂ -HP (N-Ch ₂ -HP)-CH ₂ -HP (N-Ch ₂ -HP)-CH ₂ -HP (N-Ch ₂ -HP)-N-CH ₂ -HP (N-Ch ₂ -HP	3-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - RhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - H	3-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-C3,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - H (N-ButylSO ₂ -N-Me)-N-CH ₂ - H	3-H00CCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - H PhenylSO ₂ -HN-CH ₂ - H PhenylSO ₂ -HN-CH ₂ - H PhenylSO ₂ -HN-CH ₂ - H (N-BurylSO ₂ -HN-CH ₂ - H (N-BurylSO ₂ -N-Me)-N-CH ₂ - H (N-MeSO ₂ -N-Mes)-N-CH ₂ - H (N-Meso ₂ -N-Meso ₂ -N	3-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	A-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - H PhenylSO ₂ -HN-CH ₂ - H (N-BurylSO ₂ -N-Me)-N-CH ₂ - H (N-MeSO ₂ -N-Me)-N-CH ₂ - H	3-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	3-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-BurylSO ₂ -HN-CH ₂ - (N-BurylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	3-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	3-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	3-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Ethyl)-N-CH ₂ -	3-HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Ethyl)-N-CH ₂ -	3HOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Ethyl)-N-CH ₂ -
enyl	lenyl	enyl	enyl	enyl	enyl	enyl	enyl	enyl	enyl	1/2	12/12/12/12/12/12/12/12/12/12/12/12/12/1	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	12/ 12/ 12/ 12/ 12/ 12/ 12/ 12/ 12/ 12/
tenyl PhenylSO ₂ –HN-CH ₂ – PhenylSO ₂ –HN-CH ₂ – (N-ButylSO ₂ –N-Me)–N-CH ₂ –	lenyl PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-C2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ -	lenyl PhenylSO ₂ –HN-CH ₂ – PhenylSO ₂ –HN-CH ₂ – (N-ButylSO ₂ –N-Me)–N-CH ₂ – (N-(2,6-Di-OMe-Phenyl-CO)–N-Me)–N-CH ₂ – (N-ButylSO ₂ –N-Me)–N-CH ₂ –	lenyl PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Mé)-N-CH ₂ - (N-(2,6-Di-OMe-Phenyl-CO)-N-Mé)-N-CH ₂ - (N-ButylSO ₂ -N-Mé)-N-CH ₂ - (N-ButylSO ₂ -N-Mé)-N-CH ₂ -	lenyl PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	lenyl PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	lenyl PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	lenyl PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-C2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	lenyl PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	lenyl PhenylSO ₂ -HN-CH ₂ - N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	yl PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-He)-N-CH ₂ - (N-MeSO ₂ -N-Ethyl)-N-CH ₂ -	yl PhenylSO ₂ –HN-CH ₂ – PhenylSO ₂ –HN-CH ₂ – (N-ButylSO ₂ –N-Me)–N-CH ₂ – (N-MeSO ₂ –N-Ethyl)–N-CH ₂ –	yl PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Ethyl)-N-CH ₂ -	lenyl PhenylSO ₂ -HN-CH ₂ - PhenylSO ₂ -HN-CH ₂ - (N-ButylSO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Ethyl)-N-CH ₂ -
PhenyISO ₂ -HN-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ -	PhenylSO ₂ -HN-CH ₂ -	PhenyISO ₂ -HN-CH ₂ - H	PhenyISO2-HN-CH2-	PhenyISO ₂ -HN-CH ₂ - H	PhenyISO2-HN-CH2-	PhenyISO2-HN-CH2-	PhenyISO2-HN-CH2-	PhenyISO2-HN-CH2-	PhenyISO2-HN-CH2-	PhenyISO2_HN_CH2- (N_ButyISO2_HN_CH2- (N_ButyISO2_N-Me)-N-CH2- (N_ButyISO2_N-Me)-N-CH2- (N_ButyISO2_N-Me)-N-CH2- (N_ButyISO2_N-Me)-N-CH2- (N-MeSO2_N-Me)-N-CH2- (N-MeSO2_N-Me)-N-CH2-	PhenyISO2-HN-CH2- (N-ButyISO2-HN-CH2- (N-(-C)-Di-OMe-PhenyI-CO)-N-Me)-N-CH2- (N-ButyISO2-N-Me)-N-CH2- (N-ButyISO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2-	PhenyISO2_HN_CH2- (N_ButyISO2_HN_CH2- (N_ButyISO2_N-Me)-N-CH2- (N_ButyISO2_N-Me)-N-CH2- (N_ButyISO2_N-Me)-N-CH2- (N_ButyISO2_N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Ethyl)-N-CH2- (N-MeSO2-N-Ethyl)-N-CH2- (N-MeSO2-N-Ethyl)-N-CH2- (N-MeSO2-N-Ethyl)-N-CH2- (N-MeSO2-N-Ethyl)-N-CH2- (N-MeSO2-N-Ethyl)-N-CH2- (N-MeSO2-N-Ethyl)-N-CH2- (N-MeSO2-N-Ethyl)-N-CH2- (N-MeSO2-N-Ethyl)-N-CH2-	PhenyISO2-HN-CH2- (N-ButyISO2-HN-CH2- (N-C1,6-Di-OMe-PhenyI-CO)-N-Me)-N-CH2- (N-ButyISO2-N-Me)-N-CH2- (N-ButyISO2-N-Me)-N-CH2- (N-ButyISO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-Me)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2- (N-MeSO2-N-EthyI)-N-CH2-
H	(N-Buty1SO ₂ -N-Me)-N-CH ₂ - (N-(2, 6-Di-OMe-Pheny1-CO)-N-Me)-N-CH ₂ -	(N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ -	(N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-(2,6-Di-OMe-PhenyI-CO)-N-Me)-N-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ - H	(N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ - H	(N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ - ∴N-MeSO ₂ -N-Me)-N-CH ₂ - ⊢ (N-MeSO ₂ -N-Me)-N-CH ₂ -	(N-ButyISO ₂ -N-Me)-N-CH ₂ - H	(N-ButyISO2-N-M6)-N-CH2- H (N-(2,6-Di-OMe-Phenyl-CO)-N-M6)-N-CH2- H (N-ButyISO2-N-M6)-N-CH2- H (N-ButyISO2-N-M6)-N-CH2- H (N-MeSO2-N-M6)-N-CH2- H (N-MeSO2-N-M6)-N-CH2- H (N-MeSO2-N-M6)-N-CH2- H (N-MeSO2-N-M6)-N-CH2- H (N-MeSO2-N-M6)-N-CH2- H	(N-ButyISO ₂ -N-Me)-N-CH ₂ - H	(N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-ButyISO ₂ -N-Me)-N-CH ₂ - (N-MeSO ₂ -N-Me)-N-CH ₂ -	(N-ButyISO ₂ -N-Me)-N-CH ₂ - H	(N-ButyISO2-N-Me)-N-CH2-	(N-ButyISO ₂ -N-Me)-N-CH ₂ - H	(N-ButyISO2-N-Me)-N-CH2-
	Η	(N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - H (N-ButylSO ₂ -N-Me)-N-CH ₂ - H	(N-(2,(6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - H (N-ButylSO ₂ -N-Me)-N-CH ₂ - H (N-ButylSO ₂ -N-Mc)-N-CH ₂ - H	(N-(2,(6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - H (N-ButylSO ₂ -N-Me)-N-CH ₂ - H (N-ButylSO ₂ -N-Me)-N-CH ₂ - H	(N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - H (N-ButylSO ₂ -N-Me)-N-CH ₂ - H (N-ButylSO ₂ -N-Me)-N-CH ₂ - H (N-MeSO ₂ -N-Me)-N-CH ₂ - H (N-MeSO ₂ -N-Me)-N-CH ₂ - H	(N-(2,(6-Di-OMe-Phenyl-CO)-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H · (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H	(N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - H	(N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH(iso-Propyl)- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H	(N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- Me (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Ethyl)-N-CH2- H	(N-(2,(6-Di-OMe-Phenyl-CO)-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Ethyl)-N-CH2- H (N-MeSO2-N-Ethyl)-N-CH2- H 2,3-Di-Me-PhenylCO-HN-CH2- H	(N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H 2,3-Di-Me-PhenylCO-HN-CH2- H (N-MeSO2-N-Ethyl)-N-CH2- H	(N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-ButylSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Ethyl)-N-CH2- H (N-MeSO2-N-Ethyl)-N-CH2- H (N-MeSO2-N-Ethyl)-N-CH2- H	(N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH2- H (N-ButyISO2-N-Me)-N-CH2- H (N-ButyISO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Me)-N-CH2- H (N-MeSO2-N-Ethyl)-N-CH2- H 2,3-Di-Me-PhenylCO-HN-CH2- H (N-MeSO2-N-Ethyl)-N-CH2- Et (N-MeSO2-N-Ethyl)-N-CH2- Et (N-MeSO2-N-Ethyl)-N-CH2- Et

H H Me Me CH ₂ -CH ₂ -C N H H OMe CH ₂ -CH ₂ -C N H H OMe CH ₂ -CH ₂ -CH ₂ -C N H H CH ₃ Ethyl CH H H CF ₃ Me CH N Me Me OMe CF ₄ CH	H H Me Me CH2-CH2-C N Et H OMe CH2-CH2-CH2-C N Et H OMe CH2-CH2-CH2-C N H H OME CH2-CH2-CH2-C N H H C Ethyl Ethyl CH N Me Me OMe CF3 CH N H H Me Me OMe CF3 CH N	H Me Me CH N H H Me Me CH ₂ -CH ₂ -C N H H OMe CH ₂ -CH ₂ -C N Et H OMe CH ₂ -CH ₂ -C N H H Ethyl Ethyl N H H Ethyl Ethyl CH N Me OMe CF ₃ CH N H H Me OMe CH N H H OMe OMe CH N H H OMe OMe CH N	H Me CF N H Me CH2-CH2-CH2-C N H OMe CH2-CH2-CH2-C N H OMe O-CH2-CH2-C N H OMe O-CH2-CH2-C N H CH3 Me N Ethyl Ethyl CH N E Me CH N H Me CH N H OMe OMe CH N H OMe OMe CH N H OMe OMe CH N	H Me Me CF N H OMe CH ₂ -CH ₂ -C N H CF ₃ Me CH N H OMe CF ₃ CH N H OMe OMe	OME ME CH N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N CF3 ME CH N OME CF3 CH N OME CF3 CH N OME OME CH N OME ME CH N Me Me CH N Me Me CH N H OME CH N	H Me Me CH N H Me CH2-CH2-CH2-C N H OMe CH N H OMe CH N H OMe CH N H Me CH N H Me CH N H H OMe CH N H OMe CH2-CH2-CH2-CH2-C N	OME NE CH N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N Ethyl Ethyl CH N CF3 Me CH N Me Me CH N OME OME CH N Me Me CH N Me Me CH N OME CH2-CH2-CH2-C N Me Me CH N Me Me CH N Me Me CH2-CH2-CH2-CH2-C N	OME NE CH N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME O-CH2-CH2-C N Ethyl Ethyl CH N CF3 Me CH N Me Me CH N Me Me CH N Me Me CH N Me Me CHe N Me Me CH2-CH2-CH2-C N Me Me CH N Me Me CH N Me Me CH N Me Me CH2-CH2-CH2-C N Me Me CH N Me Me CH N Me Me CH N Me Me CH N Me Me N N	OME CH N Me Me CF N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N Ethyl Ethyl CH N CF3 Me CH N Me Me CH N OME CH N N Me Me CH N OME CH2 N N OME CH2-CH2-CH2 N Me Me CH N OME CH2 N N OME CH2-CH2-CH2-C N N OME CH2-CH2-CH2-CH3-C <th>OME ME CH N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH3-CH2-CH2-C N OME CF3 CH N OME CF3 CH N OME CM-CH2-CH2-C N ME ME CH N OME CH2-CH2-CH2-C N CF3 ME CH N <t< th=""><th>OME NE CH N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N Ethyl Ethyl CH N CF3 Me CH N Me Me CH N OME CH N N Me Me CH N OME CH2 CH N OME CH2 N N Me Me CH N OME CH2-CH2-CH2-CH2 N OME CH2-CH2-CH2-CH3-C N OME CH2-CH2-CH2-CH3-C N OME CH2-CH2-CH2-CH3-C N OME CH2-CH2-CH2-CH3-C N CF3 Me CH N CF3 Me CH N Me Me CH N CF3</th></t<></th>	OME ME CH N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH3-CH2-CH2-C N OME CF3 CH N OME CF3 CH N OME CM-CH2-CH2-C N ME ME CH N OME CH2-CH2-CH2-C N CF3 ME CH N <t< th=""><th>OME NE CH N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N Ethyl Ethyl CH N CF3 Me CH N Me Me CH N OME CH N N Me Me CH N OME CH2 CH N OME CH2 N N Me Me CH N OME CH2-CH2-CH2-CH2 N OME CH2-CH2-CH2-CH3-C N OME CH2-CH2-CH2-CH3-C N OME CH2-CH2-CH2-CH3-C N OME CH2-CH2-CH2-CH3-C N CF3 Me CH N CF3 Me CH N Me Me CH N CF3</th></t<>	OME NE CH N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N OME CH2-CH2-CH2-C N Ethyl Ethyl CH N CF3 Me CH N Me Me CH N OME CH N N Me Me CH N OME CH2 CH N OME CH2 N N Me Me CH N OME CH2-CH2-CH2-CH2 N OME CH2-CH2-CH2-CH3-C N OME CH2-CH2-CH2-CH3-C N OME CH2-CH2-CH2-CH3-C N OME CH2-CH2-CH2-CH3-C N CF3 Me CH N CF3 Me CH N Me Me CH N CF3
H H Me M H H Me M Et H OMe H H Ethyl Eu Me Me OMe CF	H H Me M H H OMe M Et H OMe H H Ethyl Eth Me Me OMe CF	H H Me M H H OMe M Et H OMe H H Ethyl Eu H H CF ₃ M Me Me OMe CF H H Me Me	H Me M H OMe M H OMe Ethyl Eth H CF3 M e Me OMe CF H Me Mi H OMe ON	H Me M H OMe M H OMe H H CF ₃ M Me OMe CF H OMe OM H OME MA	Me M Me M OMe OMe CF3 M CF3 M Me Me	H Me M H OMe M H OMe H H Ethyl Eu H OMe CF H OMe ON H OMe M H Me M H OMe ON H OMe ON H OMe ON H OMe ON H OMe ON	OMe M Me M Me M Me M Me Me	OMe M Me M OMe CF OMe OMe	OME M Me M OME OME CF ₃ M ₁ CF ₃ M ₄ Me M ₆ OMe ON Ethyl Etl	OMe MA MAC MAC MAC MAC MAC MAC MAC MAC MAC	OME M Me M OME OME CF ₃ Me M M M M M M M M M M M M M
H H Me Me M H H OMe H H OME H H Ethyl Eu H H CF ₃ M	H H Me M H H OMe H H OMe H H Ethyl Ethyl H CF3 M Me Me OMe CF	H H Me M H H OMe Etr H OMe H Etryl Etr H CF3 Mr Me Me CF H Me Me CF H Me	H Me M H OMe H OMe H Ethyl Et H CF ₃ M e Me OMe CF H Me M H OMe ON	H Me Me H Me H OMe H OMe H OMe H CF3 MM Me OME CF H OME H OME H OME H OME H OME MM H OME MM H OME MM H OME MM	Me M OMe O	H Me Me M H OMe H OMe H Ethyl Eu H CF3 M H OMe CF H OMe ON H Me MI H OME MI H OME MI H OME ON H OME MI	Me Me Me Me Me Me Me Me	Me Me Me Me Me Me Me Me	Me Me Mode OMe OMe OMe CF3 Mode OMe MODE OME OME OME OME OME OME OME OME OME OM	Me Mo OMe	Me Me OMe OMe OMe OMe CF3 M Me Me OMe OMe OMe OMe OMe OMe OMe OMe OMe OMe OMe OMe CF3 Me Me Me Me Me OMe OMe CF3 Me Me Me
же ж	H H H H Me Me Me	H H H H H H H H H H H H H H H H H H H	н н ж н н н н	H H H H H H	<u>u</u>	H H H K K	J.	u u	a de la constant de l		u u
ж	H H H H H H H H H H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H	U U						'\T'T'T'T\T\T\\\\\\\\\\\\\\\\\\\\\\\\\		
						30t) H H H H Ke	H H H H H H H H	1	e e litti	e e la	e e
		CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-									
(N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N	(N-(3-4-Di-OMe-PhenylCO)-N-Ethyl)-N-Cl (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-Cl (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-Cl (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-Cl	(N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -	(N-(3-H ₂ NCOCH ₂ -PhenyICO)-N-EthyI)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -PhenyICO)-N-EthyI)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -PhenyICO)-N-Me)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -4-Me-Phe-nyICO)-N-Me)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -4-Me-Phe-nyICO)-N-Me)-N-(N-(3-H ₂ NCOCH ₂ -4-Me-Phe-nyICO)-N-Me)-N-(N-(3-H ₂ NCOCH ₂ -4-Me-Phe-nyICO)-N-(N-(3-H ₂ NCO	(N-(3-4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -(N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -(N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -4-Me-Phe-nylCO)-N-Me)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -4-Me-Phe-nylCO)-N-Me)-N-C-(N-(3-H ₂ NCOCH ₂ -4-Me-Phe-nylCO)-N-Me	(N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Ethyl)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Ethyl)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Ethyl)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -4-Me-Phe-nylCO)-N-Me)-N-CH ₂ -(N-(3-H ₂ NCOCH ₂ -4-Me-Phe-nylCO)-N	(N-(3-H ₂)NCOCH ₂ -HenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3-H ₂)NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂)NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂)NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-(-2- (N-(3-H ₂)NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-(-12- (N-(3-H ₂)NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-OMe-Phe- nylCO)-N-Me)-N-CH ₂ -	(N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-(-2- (N-(3-H ₂ NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-CH ₂ -	(N-(3-H ₂)NCOCH ₂ -PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3-H ₂)NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂)NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂)NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-C-1- (N-(3-H ₂)NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-OMe-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-OMe-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-OMe-Phe- nylCO)-N-Me)-N-CH ₂ - Ne-CH=CH-CO-HN-CH ₂ - Ne-CH=CH-CO-HN-CH ₂ - nylCO)-N-Me)-N-CH ₂ -	(N-(3-4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-(-2- (N-(3-H ₂ NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-OMe-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-OMe-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-OMe-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-OMe- nylCO)-N-Me)-N-CH ₂ -	(N-(3-H ₂)NCCH ₂ -PhenylCO)-N-Ethyl)-N-CH ₂ -(N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -(N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -(N-(3-H ₂)NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -(N-(3-H ₂)NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -(N-(3-H ₂)NCOCH ₂ -4-Me-Phe-nylCO)-N-Me)-N-C-1-(N-(3-H ₂)NCOCH ₂ -4-Me-Phe-nylCO)-N-Me)-N-C-1-(N-(3-H ₂)NCOCH ₂ -4-Me-Phe-nylCO)-N-Me)-N-C-1-(N-(3-HOOCCH ₂ -4-OMe-Phe-nylCO)-N-Me)-N-C-1-(N-(3-HOOCCH ₂ -4-OMe-Phe-nylCO)-N-Me)-N-C-1-(N-(3-HOOCCH ₂ -4-Cl-Phe-nylCO)-N-Me)-N-C-1-(N-(3-HOOCCH ₂ -4-Cl-Phe-nylCO)-N-(N-(3-HOOCCH ₂ -4-Cl	(N-(3-4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - (N-(3-H ₂ NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-C-1- (N-(3-H ₂ NCOCH ₂ -4-Me-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-OMe-Phe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-OMe- nylCO)-N-Me)-N-CH ₂ - (N-(3-HOOCCH ₂ -4-Cl-Phe- nylCO)-N-Me)-N-CH ₂ -
			enyl	enyl	enyl	enyl	enyl	enyl	enyl	enyl	enyl
			Phenyl ∴ (3,4-Di-0 Phenyl (N-(3,4-Di-0 Phenyl (N-(3-H₂NCC Phenyl (N-(3-H₂NCC 4-∴-Phenyl (N-(3-H₂NCC nylCO)-N-Mc	enyl (enyl (C		lenyl C	enyl (enyl C C C C C C C C C C C C C C C C C C C	enyl C C C C C C C C C C C C C C C C C C C
			enyl (enyl	Cenyl C	cenyd (C	cenyl (C	enyl C C C C C C C C C C C C C C C C C C C		enyl (C	C C C C C C C C C C
			lenyl	ienyl	enyl	enyl	enyl	ienyl	enyl	enyl	enyl

N.	\mathbb{R}^1	R ⁴ , R ⁵	R6	R7	R8	R ²	R³	7	×	λ	N N
11–124	СООН	Phenyl	3-HOOCCH2-4-CI-PhenyICO-HN-CH2-	Н	王	Me	Me	CH	Z.	z	0
11-125	EDO2	Phenyl	3-HOOCCH2-4-CI-PhenyICO-HN-CH2-	圧	王	OMe	OMe	СН	z	z	0
11-126	СООН	Phenyl	3-HOOCCH2O-4-OMe-PhenylCO-HN-CH2-	H	工	ОМе	Me	CH	z	Z.	0
11-127	СООН	Phenyl	3-HOOCCH2O-4-OMe-PhenyICO-HN-CH2-	Ethyl	H	H	OMe	СН	z	z	0
11-128	СООН	4-F-Phenyl	3-3100CCH20-4-OMe-PhenylCO-HN-CH2-	H	工	ОМе	CH2-CH	CH2-CH2-CH2-C	z	z	0
11-129	СООН	Phenyl	(N-MeCO-N-(4-ONIC-3-Me-Phenyl))-N-CH2-	H	H	Me	Me	CH	z	z	0
11-130	СООН	Phenyl	3-HOOCCH2O-4-OMe-PhenyICO-HN-CH2-	H	Н	0.Me	O-CH ₂	O-CH ₂ -CH ₂ -C	z	z	S
11-131	СООН	Naphthyl, Naphthyl	2,6-DiethylphenylCO-HN-CH ₂ -	Me	Me	Me	Me	СН	Z.	z	0
11-132	НООЭ	Phenyl	31100CCH20-4-OMe-PhenyICO-HN-CH2-	Ethyl	H	Ethyl	Ethyl	СН	z	z	0
11-133	НООЭ	Phenyl	3-MeOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ -	Н	H	CF ₃	Me	CH	z	Z	0
11-134	СООН	Phenyl	3-McOOCCH2O-4-OMc-PhenylCO-HN-CH2-	Н	Н	ОМе	CF ₃	СН	z	z	0
11-135	СООН	Phenyl	3-MeOOCCH2O-4-OMe-PhenylCO-HN-CH2-	Н	Н	e, le	Me	CH	z	z	0
11-136	СООН	Phenyl	Me-CH=CH-CO-HN-CH2-	Н	Н	OMe	CF ₃	СН	z	z	0
11-137	СООН	Phenyl	4-MeOOCCH2O-3-OMe-PhenyICO-HN-CH2-	Н	Н	OMe	OMe	СН	z	z	
11-138	COOH	Phenyl	4-MeOOCCH2O-3-OMe-PhenylCO-HN-CH2-	Н	Н	OMe	Me	СН	z	Z.	S
11-139	СООН	Phenyl	4-MeOOCCH2O-3-OMe-PhenyICO-HN-CH2-	Me	Me	Ethyl	Me	z	CH	z	0
11-140	СООН	Phenyl	(N-(4-OMe-Phenyl-CH ₂ -CO)-N-Butyl)-N-CH ₂ -	Н	Н	OMe	CH2-CH2-CH2-C	2-CH2-C	z	z	0
11-141	СООН	Phenyl	(N-EthylCO-N-(4-OMe-Phenyl))-N-CH2-	Н	H	OMe	CF ₃	СН	z	z	0
11-142	СООН	Phenyl	$(N-(3-OMe-Phenyl-CH_2-(1-N-Pro-Pyyl)-N-CH_2-$	Н	王	OMe	0-CH ₂ -	0-CH ₂ -CH ₂ -C	Z.	z	0
11-143	COOMe	4–F–Phenyl	$ N-(2-OMe-Phenyl-CH_2-CO)-N-Pro- pyl-N-CH_2-CO $	Н	Ħ	Ethyl	Ethyl	СН	z.	z	0
11-144	С00Н	Pheny1	(N-(3,4-Di-OMe-Phe- nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	н	田	CF3	Me	СН	z	z	0
11-145	С00Н	Phenyl	(N-(3,4-Di-OMe-Phe- nyl-CH2-CO)- \ -Me)-N-CH2-	Н	Н	ОМе	CF ₃	СН	z	Z	0

Nr.	\mathbb{R}^{1}	R4, R5	R6	R7	R8	R ²	R³	2	X	\ <u>\</u>	*
11-146	СООН	Phenri	(N-(3,4-Di-OMe-Phe- nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	д	I	Me	Me	СН	z	z	0
11–147	СООН	Phenyl	(√√3,4-Di-OMe-Phe- nyi-CH2-CO)-N-Me)-N-CH2-	工	工	OMe	OMe	СН	z	z	0
11-148	нсоэ	Phenyl	(N-(3,4-Di-OMe-Phe- nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	н	д	OMe	Me	СН	Z.	z	0
11–149	СООН	Phenyl	(N-(2,6-Di-OMe-Phe-nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	Me	Me	СН,ОН	Me	СН	z	z	0
11-150	C00::	4-F-Phenyi	(N-(2,6-Di-OMe-Phe- nyl-CH2-CO)-N-Me)-N-CH2-	Н	Н	ОМе	CH2-CH2-CH2-C	-CH ₂ -C	z	z.	0
11-151	H000	Phenyl	$(N-MeCO-N-(4-Cl-Phenyl))-N-CH_2-$	Н	Н	CF3	Me	CH	z	z	0
ļ	СООН	Phenyl	(N-(2,5-Di-OMe-Phe- nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	I	Н	OMe	0-СН2-СН2-С	CH ₂ -C	z	z	S
1	Н000	Phenyl	(N-(2,6-Di-OMe-Phe- nyl-CH2-CO)-N-Me)-N-CH2-	H	H	Ethyl	Ethyl	CH	z	Z.	0
11–154	С00Н	4-F-Phenyl	(N-(2,6-Di-OMe-Phe- nyl-CH ₂ -CO)-N-Mc)-N-CH ₂ -	H	II	CF3	Me	СН	Z	z	0
	С00Н	Phenyl	(N-(2,6-Di-OMe-Phe- nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	H	II	ОМе	CF3	СН	z	z	0
11-156	COOMe	Phenyl	(N-(3,4-Di-OMe-PhenyICO)-N-BenzyI)-N-CH ₂ -	Н	王	Me	Me	СН	z	z	0
11-157	СООН	Phenyl	Iso-PropyICO-HN-CH ₂ -	Н	н	CF ₃	Me	СН	z	z	0
11-158	С00Н	Phenyl	1.N-(3,4-Di-OMe-PhenylCO)-N-Benzyl)-N-CH2-	Butyl	н	OMe	ОМе	СН	Z	z	0
11-159	Н000	Phenyl	(N-(3,4-Di-OMe-PhenyICO)-N-BenzyI)-N-CH2-	Н	Н	ОМе	Me	CH	z	z	0
11-160	СООН	Phen;	(N-(3,4-Di-OMe-PhenylCO)-N-Benzyl)-N-CH2-	Н	Н	Н	OMe	CiMe	z	z	0
191-11	C00H	Phenyl	(N-(3,4-Dt-OMe-PhenyICO)-N-BenzyI)-N-CH2-	Н	Н	OMe	CH2-CH2-CH2-C	-CH ₂ -C	z	z	0
II-162	H000	4-F-Phenyl	(N-McCO-N-(4-OMe-Phenyl))-N-CH ₂ -	Н	Н	Ethyl	Ethyl	CH	z	z	S
11-163	СООН	Phenyl	(N-(2,6-Di-OMe-Phenyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	н	Н	OMe	0-СН2-СН2-С	CH ₂ -C	z	z	S

Nr.	RI	R4, R5	Ré	R7	R8	R ²	R³	2	X	Y	×
11-164	соон	Naphthyl, Naphthyl	(N-(3-CI-4-Me-PhenyISO ₂)-N-Me)-N-CH ₂ -	H	工	OMe	OMe	СН	Z	Z	S
11–165	COOMe	Phenyl	(N-(2,6-Di-OMe-Phenyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	Н	H	Ethyl	Ethyl	СН	Z	z	0
11–166	СООН	4-F-Phenyl	(N-(2,6-Di-OMe-Phenyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	H	H	CF3	Me	ЮН	z	Z.	0
il–167	СООН	Phenyl	(N-(2,6-Di-O:Me-Phenyl-C:12-CO)-N- Ethyl)-N-CH2-	Ħ	H	ОМе	CF ₃	СН	z	z	0
11–168	СООН	Phenyl	(N-(2,6-Di-OMe-Phenyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	H	工	Me	Me	СН	z	z	0
-169	СООН	Phenyl	2,4,6-Tri-Me-PhenylCO-HN-CH ₂ -	Н	H	Me	Me	СН	z	z	0
li-170	С00Н	Phenyl	(N-(2,6-Di-OMe-Phenyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	H	II	ОМе	OMe	СН	z	z	0
11-171	С00Н	Phenyl	(N-(2-Me-3-CI-4-OMe-Phe-nyICO)-N-Me)-N-CH ₂ -	Me	Me	ОМе	Me	СН	z	z	0
11-172	С00Н	Phenyl	(N-(3-Me-2-CI-4-ONic-Phc- nyICO)-N-Me)-N-CH ₂ -	田	工	工	Me	C-Me	z	z	0
11-173	С00Н	Phenyl	(N-(3-Me-4-CI-5-ONfe-Phe-nyICO)-N-Me)-N-CH ₂ -	工	r	OMe	CH ₂ -CH ₂ -C	2−CH2−C	z	z	0
11-174	С00Н	Phenyl	(N-(3-Me-4-CI-5-OMe-Pine- nyICO)-N-Me)-N-CH ₂ -	工	I	0.Me	0-CH ₂ -	0-сн ₂ -сн ₂ -с	z	z	0
1-175	С00Н	4-F-Phenyl	(N-(3,5-Di-Me-4)Mc-Phe- nyICO)-N-Me)->:- UH ₂ -	Me	Me	Ethyl	Ethyl	СН	z	z.	S
11-176	С00Н	Phenyl	(N-(3,5-Di-Me-4-OMe-Phe-nyICO)-N-Me)-N-CH ₂ -	Ξ	H	CF ₃	Me	СН	z	Z.	0
11-177	С00Н	Phenyl	(N-(3,5-Di-Me-4-OMe-Pheny:ICO)-N-Me)-N-CE;-	E	H	OMe	CF ₃	СН	z	z	0
11-178	H000	Phenyl	(N-PhanylCO-N-McOMe)-N-CH2-	Ethyl	H	Me	Me	СН	z	z	0
11-179	К000	Phenyl	(N-PhenylCO-N-MeOMe)-N-CH2-	H	王	ОМе	OMe	СН	Z.	z	S

R4, R5	R6	R7	Rg	R2	R³	7	×	<u>×</u>	*
henyi	(N-(4-OMe-PhenylCO)-N-McOBuryl)-N-CH2-	H	H	ОМе	Me	CH	z	z	0
4-F-Phenyl	(N-(3-OMe-PhenylCO)-N-MeOEthyl)-N-CH2-	Ethyl	H	H	OMe	CH	Z	z	0
4- S-Phenyl, 4 C: Denyl	(N-PhenylCO-N-Me)-N-CH ₂ -	H	H	ОМе	Me	CH	z	z	0
Phenyl	(N-(2-OMe-PhenylCO)-N-MeOMe)-N-CH2-	H	I	OMe	CH2-CH	2-CH2-C	z	Z.	0
Phenyl	(N-MeCO-N-Phenyl)N-CH2-	Me	Me	OMe	0-CH ₂	CH2-C	z	z	0
Phenyl	(N-(3,4-Di-OM::he-nylCO)-N-MeOMe)-N-CH ₂ -	н	H	OMe	0-CH ₂ -	-CH ₂ -C	z	z	0
4-F-Phenyl	(N-(3,4-Di-OMe-PhenyICO)-N-MeOE- lbyl)-N-CH ₂ -	エ	H	Ethyl	Ethyl	НЭ	z	z	0
Phenyl	(N-(3,4-D. JMe-PhenylCO)-N-MeOBu- tyl)-N-CH ₂ -	Me	Me	CF ₃	Me	НЭ	z	z	0
Phenyl	(N-(3,4-Di-OMe-Phe-nylCO)-N-MeOMe)-N-CH ₂ -	H	H	0Me	CF ₃	СН	z	Z.	0
Phenyl	(N-(3,4-Di-OMe-Phe-nyiCO)-N-MeOMe)-N-CH ₂ -	H	I	Me	Me	СН	Z.	z	S
Phenyl	2,3-Di-Me-PhenylCO-HN-CH ₂ -	田	王	Me	N'e	CH	z	z	0
4-F-Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl-CH2))-N-CH2-	H	H	OMe	ОМе	СН	z	z	0
Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl-CH2))-N-CH2-	Me	E	OMe	Me	CH	z	z	0
Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl-CH2))-N-CH2-	H	I	CH ₂ OH	Me	CH	z	z	0
4-F-Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl-CH2))-N-CH2-	H	王	OMe	CH ₂ -CH	2-CH2-C	z	z	0
4-F-Phenyl	PropvICO-HN-CH2-	王	H	Ethyl	Ethyl	СН	Z	z	S
, Phenyl	(N-i :: .:, ICO-N-(3-OMe-Phenyl-CH2))-N-CH2-	Н	H	OMe	O-CH ₂ -	CH ₂ -C	z	z	S
Phenyl	(N-PhenylCO-N-(2-OMe-Phenyl-CH ₂))-N-CH ₂ -	Н	工	Ethyl	Ethyl	CH	z	Z.	0
Phenyl	(N-PhenylCO-N-(3-Me-Phenyl-CH ₂))-N-CH ₂ -	Н	ĸ	CF ₃	Me	CH	z	Z,	0
Phenyl	(N-PhenylCO-N-(4-Mc-Phenyl-CH ₂))-N-CH ₂ -	Н	Н	OMe	CF_3	СН	z	z	0
Phenyl	(N-EthylCO-N-Me)-N-CH2-	王	Н	OMe	CH2-CH	2-CH2-C	Z.	z	0
	R4, R5 Phenyl 4-F-Phenyl 4-F-Phenyl C: \text{Senyl} Phenyl	tenyl tenyl tenyl tenyl tenyl tenyl tenyl	R6	R6	R6	R6	R6	R6	No. R\$ R\$ R\$ R\$ R\$ R\$ R\$ R

<u>}</u>			_										7									Γ			
	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	S	0	0	
<u>></u>	Z	2	z	Z	Z	Z	z	z	z	Z	z	z	z	z	Z	Z	Z	z	Z	z	z	z	z	z	2
×	z	z	z	z	z	z	z	z	z	Z.	z	z	z	z	Z.	z	Z	z	Z.	z	z	z	z	z	2
7	СН	CH	СН	C-Me	CH	CH2-CH2-CH2-C	CH2-CH2-CH2-C	O-CH2-CH2-C	СН	СН	СН	O-CH ₂ -CH ₂ -C	СН	СН	СН	CH2-CH2-CH2-C	СН	СН	СН	CH2-CH2-CH2-C	O-CH2-CH2-C	НЭ	СН	Н	HU
R³	Me	ОМе	Me	OMe	Me	CH2-CF	CH2-CF	O-CH ₂	Ethyl	Me	Me	O-CH ₂	CF_3	Me	ОМе	CH ₂ -CF	Me	Me	Me	CH2-CF	O-CH ₂	Ethyl	Me	CF ₃	Me
R ²	Me	OMe	ОМе	н	Me	OMe	OMe	OMe	Ethyl	Me	CF ₃	OMe	OMe	Me	OMe	OMe	OMe	Me	СН,ОН	OMe	OMc	Ethyl	CF ₃	OMe	Me
\mathbb{R}^8	H	田	H	H	H	工	H	Н	H	H	H	Me	Н	Н	H	H	H	H	H	H	Me	田	н	H	I
\mathbb{R}^7	H	H	H	Н	H	Ethyl	Н	Н	Н	Н	Н	a)	Н	Н	H	Н	H	н	H	H	Me	Н	Н	Н	H
¹ R6	(N-PhenylCO-N-(4-OMe-Phenyl))-N-CH2-	(N-PhenyICO-N-(4-OMe-PhenyI))-N-CH2-	(N-PhenylCO-N-(4-OMe-Phenyl))-N-CH ₂ -	(N-PhenyICO-N-(4-OMe-PhenyI))-N-CH2-	3,5-Di-Cl-PhenylCO-HN-CH2-	(N-PhenylCO-N-(3-OMe-Phenyl))-N-CH2-	MeCO-HN-CH ₂ -	(N-PhenyICO-N-(2-OMe-PhenyI))-N-CH ₂ -	(N-Pheny1CO-N-(3-Me-Pheny1)-N-CH2-	Naphthyl-1-CO-HN-CH ₂ -	(N-PhenylCO-N-(4-Me-Phenyl)-N-CH2-	CyclohexyICO-HN-CH ₂ -	(N-2,6-DiethylphenylCO-N-Me)-N-CH ₂ -	(N-2,6-DiisopropylphenylCO-N-Me)-N-CH ₂ -	(N-2,6-DiisopropylphenylCO-N-Me)-N-CH ₂ -	(N-MeCO-N-Me)-N-CH ₂ -	(N-2,6-DiethylphenylCO-N-Mc)-N-CH2-	2,4,6-Tri-M: PhenylCO-HN-CH2-	(N-2,6-DiethylphenylCO-N-Me)-N-CH2-	2,6-DiethylphenylCO-HN-CH2-	2,6-DiethylphenylCO-HN-CH2-	2,6-DiethylphenylCO-HN-CH2-	2,6-DiethylphanylCO-HN-CH2-	2,6-DinethylphenylCO-HN-CH2-	2.6-DimethylphenylCO-HN-CH3-
R ⁴ , R ⁵	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl, Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl
R1	COOMe	Н000	СООН	СООН	СООН	С00Н	СООН	Н000	1000	COOH	СООН	СООН	СООН	СООН	К00Э	C00H	Н000	С00Н	COOMe	СООН	СООН	СООН	 (2)	СООН	СООН
Nr.	11-201	11-202	11–203	11-204	11–205	11-206	11-207	11-208	11-209	II-210	11-211	11-212	11-213	11-214	11-215	11-216	-11-	11-218	11-219	11-220	11-221	11-222	11–223	11–224	11-225

Beispiel 59:

Gemäß dem oben beschriebenen Bindungstest wurden für die nachfolgend aufgeführten Verbindungen Rezeptorbindungsdaten gemessen.

Die Ergebnisse sind in Tabelle 3 dargestellt.

Tabelle 3

10

Rezeptorbindungsdaten (K_i -Werte)

	Verbindung	ET _A [nH/l]	ET _B [nM/l]
15			
	I-109	0,4	142
	I-111	0,3	109
	I-347	3,8	155
	I-349	3,0	142
20	I-307	1,6	10
	I-309	1	12

25

30

35

40

Patentansprüche

1. Carbonsäurederivate der Formel I

10

5

wobei R1 Tetrazol oder eine Gruppe

I

15

in der R folgende Bedeutung hat:

20 a) ein Rest OR9, worin R9 bedeutet:

Wasserstoff, das Kation eines Alkalimetalls, das Kation eines Erdalkalimetalls oder ein physiologisch verträgliches organisches Ammoniumion;

25

$$C_3-C_8-Cycloalkyl, C_1-C_8-Alkyl,$$

CH2-Phenyl gegebenenfalls substituiert,

30 C_3 - C_6 -Alkenyl- oder eine C_3 - C_6 -Alkinylgruppe gegebenfalls substituiert oder

Phenyl gegebenfalls substituiert.

- 35 b) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat.
 - c) eine Gruppe

40

$$-O - (CH2)p - S - R10$$

in der k die Werte 0, 1 und 2, p die Werte 1, 2, 3 und 4 annehmen kann und R^{10} für

- C_1 - C_4 -Alkyl, C_3 - C_8 -Cycloalkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder gegebenenfalls substituiertes Phenyl steht.
 - d) ein Rest

10

worin R¹¹ bedeutet:

 C_1 - C_4 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_3 - C_8 -Cyclo-alkyl, wobei diese Reste einen C_1 - C_4 -Alkoxy-, C_1 - C_4 -Alkyl-thio-und/oder einen Phenylrest tragen können;

20

Phenyl, gegebenenfalls substituiert.

- R² Wasserstoff, Hydroxy, NH₂, NH(C₁-C₄-Alkyl),
 N(C₁-C₄-Alkyl)₂, Halogen, C₁-C₄-Alkyl, C₂-C₄-Alkenyl,
 C₂-C₄-Alkinyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy,
 C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio, oder CR² ist mit
 CR¹² wie unter Z angegeben zu einem 5- oder 6-gliedrigen
 Ring verknüpft;
- 30 X Stickstoff oder Methin;
 - Y Stickstoff oder Methin;
- Stickstoff oder CR^{12} , worin R^{12} Wasserstoff, Halogen oder C_1 - C_4 -Alkyl bedeutet oder CR^{12} zusammen mit CR^2 oder CR^3 einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring bildet, der gegebenfalls substituiert sein kann, und worin jeweils eine oder mehrere Methylengruppen durch Sauerstoff, Schwefel, -NH oder -N(C_1 - C_4 -Alkyl), ersetzt sein können;
 - R^3 Wasserstoff, Hydroxy, NH_2 , $NH(C_1-C_4-Alkyl)$, $N(C_1-C_4-Alkyl)_2$, Halogen, $C_1-C_4-Alkyl$, $C_2-C_4-Alkenyl$, $C_2-C_4-Alkinyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkyl$

wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring
verknüpft;

 R^4 und R^5 (die gleich oder verschieden sein können):

5

30

35

40

Phenyl oder Naphthyl, gegebenenfalls substituiert, oder

Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO₂-, NH- oder N-Alkyl-Gruppe miteinander verbunden sind,

C₃-C₈-Cycloalkyl gegebenfalls substituiert;

15 R⁶ eine Gruppe

wobei R^{13} und R^{14} gleich oder verschieden sein können und folgende Bedeutung haben:

Wasserstoff mit der Maßgabe, daß R^{13} und R^{14} nicht gleichzeitig Wasserstoff sein dürfen,

 C_1 - C_8 -Alkyl, C_3 - C_8 -Cycloalkyl, C_3 - C_8 -Alkenyl, C_3 - C_8 -Alkinyl, Benzyl, Phenyl, Naphthyl, jeweils gegebenenfalls substituiert,

oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene, gegebenenfalls substituierte C_3 - C_7 -Alkylenkette, in der eine Alkylengruppe durch Sauerstoff, Schwefel oder Stickstoff ersetzt sein kann,

oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene, gegebenenfal's substituierte C_3 - C_7 -Alkylenkette oder C_3 - C_7 -Alkenylenkette, an die ein gegebenfalls substituierter Phenylring annelliert ist;

 R^7 und R^8 (die gleich oder verschieden seit können): Wasserstoff, $C_1-C_4-Alkyl$;

45 R¹⁸ Wasserstoff;

75

 C_1 - C_8 -Alkyl, C_3 - C_8 -Alkenyl oder C_3 - C_8 -Alkinyl, Phenyl, Naphthyl, C_3 - C_8 -Cycloalkyl wobei diese Reste gegebenenfalls substituiert sein können;

- 5 R¹⁹ C_1 - C_8 -Alkylcarbonyl, C_2 - C_8 -Alkenylcarbonyl, C_2 - C_8 -Alkinylcarbonyl, Benzyloxycarbonyl, C_3 - C_8 -Cycloalkylcarbonyl, Phenylcarbonyl oder Naphthylcarbonyl wobei die genannten Reste gegebenenfalls substituiert sein können;
- C₁-C₈-Alkylsulfonyl, C₃-C₈-Alkenylsulfonyl oder C_3 -C₈-Alkinylsulfonyl, Phenylsulfonyl oder Naphthylsulfonyl jeweils gegebenenfalls substituiert; C_3 -C₈-Cycloalkylsulfonyl;
- 15 R^{20} Wasserstoff, C_1 - C_4 Alkyl gegebenfalls substituiert.
 - R^{21} Wasserstoff, C_1-C_4 Alkyl.
 - W Schwefel oder Sauerstoff.

- bedeuten, sowie die physiologisch verträglichen Salze und die enantiomerenreinen sowie diastereomerenreinen Formen.
- Arzneimittelzubereitungen zur peroralen, parenteralen Anwen dung, enthaltend pro Einzeldosis, neben den üblichen Arznei mittelhilfsstoffen, mindestens ein Carbonsäurederivat I gemäß
 Anspruch 1.
- Verwendung der Carbonsäurederivate gemäß Anspruch 1 zur Be handlung von Krankheiten.
 - 4. Verwendung der Verbindungen I gemäß Anspruch 1 als Endothelin-Rezeptorantagonisten.
- 35 5. Verwendung der Carbonsäurederivate I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten, bei denen erhöhte Endothelinspiegel auftreten.
- 6. Verwendung der Carbonsäurederivate I gemäß Anspruch 1 zur 40 Herstellung von Arzneimitteln zur Behandlung von Krankheiten, bei denen Endothelin zur Entstehung und/oder Progression beiträgt.
- 7. Verwendung der Carbonsäurederivate I gemäß Anspruch 1 zur Be-45 handlung von chronischer Herzinsuffizienz, Restenose, Bluthochdruck, pulmonalem Hochdruck, akutem/chronischen Nieren-

versagen, zerebraler Ischämie, benigne Prostatahyperplasie und Prostatakrebs.

- 8. Kombinationen aus Carbonsäurederivaten der Formel I gemäß Anspruch 1 und einem oder mehreren Wirkstoffen, ausgewählt aus Inhibitoren des Renin-Angiotensin Systems wie Reninhemmer, Angiotensin-II-Antagonisten, Angiotensin-Converting-Enzyme (ACE)-Hemmer, gemischten ACE/Neutrale Endopeptidase (NEP)-Hemmern, ß-Blockern, Diuretika, Calciumantagonisten und VEGF-blockierenden Substanzen.
 - 9. Verwendung von Verbindungen der Formel V

- worin die Reste R^1 , R^4 , R^5 , R^6 , R^7 , R^8 und W die in Anspruch 1 angegebene Bedeutung haben, als Ausgangsmaterial zur Synthese von Endothelin-Rezeptorantagonisten.
 - 10. Ein strukturelles Fragment der Formel

angegebene Bedeutung haben.

worin die Reste \mathbb{R}^1 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^7 , \mathbb{R}^8 und \mathbb{W} die in Anspruch 1

- 35 11. Verwendung eines strukturellen Fragments gemäß Anspruch 10 als struktureller Bestandteil eines Endorthelin-Rezeptoranhagenisten
- 12. Endothelin-Rezeptorantagonist, bestehend aus einem struktu-40 rellen Fragment der Formel

25

5

15

20

worin die Reste R¹, R², R³, R⁴, R⁵, R⁷, R⁸, W, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben, kovalent verknüpft mit einer Gruppe, die ein Molekulargewicht von mindestens 30 aufweist.

13. Endothelin-Rezeptorantagonist, bestehend aus einem strukturellen Fragment der Formel

worin die Reste R¹, R², R³, R⁴, R⁵, R⁷, R⁸, R²⁰, R²¹, W, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben, über ein N-Atom kovalent verknüpft mit einer Gruppe, die ein Molekulargewicht von mindestens 58 aufweist.

14. Verbindungen der Formel Ia

worin die Reste R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , R^8 , R^{20} , R^{21} , W, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben.

40

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

(51) Internationale Patentklassifikation 6:

C07D 239/52, 239/36, 239/60, 401/12, A61K 31/505

A3

DE

WO 99/23078 (11) Internationale Veröffentlichungsnummer:

(43) Internationales

14. Mai 1999 (14.05.99) Veröffentlichungsdatum:

(21) Internationales Aktenzeichen:

PCT/EP98/06571

(22) Internationales Anmeldedatum: 16. Oktober 1998 (16.10.98)

(30) Prioritätsdaten:

31. Oktober 1997 (31.10.97) 197 48 238.4 197 52 904.6 198 09 376.4

DE 28. November 1997 (28.11.97) 5. März 1998 (05.03.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): AMBERG, Wilhelm [DE/DE]; Schälzigweg 79, D-68723 Schwetzingen (DE). JANSEN, Rolf [DE/DE]; C 2.20, D-68159 Mannheim (DE). HERGENRÖDER, Stefan [DE/DE]; Hans-Böckler-Strasse 108, D-55128 Mainz (DE). RASCHACK, Manfred [DE/DE]; Donnersbergstrasse 7, D-67256 Weisenheim (DE). UNGER, Liliane [DE/DE]; Wollstrasse 129, D-67065 Ludwigshafen (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MK, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(88) Veröffentlichungsdatum des internationalen Recherchenbe-10. September 1999 (10.09.99) richts:

- (54) Title: NEW CARBOXYLIC ACID DERIVATIVES, CARRYING AMIDO SIDE-CHAINS; PRODUCTION AND USE AS ENDOTHELIN RECEPTOR ANTAGONISTS
- (54) Bezeichnung: NEUE CARBONSÄUREDERIVATE, DIE AMIDSEITENKETTEN TRAGEN, IHRE HERSTELLUNG UND VER-WENDUNG ALS ENDOTHELIN-REZEPTORANTAGONISTEN

(57) Abstract

The invention relates to carboxylic acid derivatives of formula (1), wherein R^6 represents a group (a) or (b), R^{13} and R^{14} being the same or different and having the following meaning: hydrogen; on the condition that R¹³ and R¹⁴ are not hydrogen at the same time, C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₃-C₈-alkenyl, C₃-C₈-alkinyl, benzyl, phenyl, naphthyl, optionally substituted; or R¹³ and R¹⁴ together form an optionally substituted C3-C7-alkylene chain which is closed in a ring and in which an alkylene group ... be replaced by oxygen, sulphur or nitrogen; or R13 and R14 together form an optionally substituted C1-7-alkylene chain or C3-C7-alkenylene chain which is closed in a ring and to which an optionally substituted phenyl ring is anellated. The other substituents have the meanings given in the description. The invention also relates to the production of the novel carboxylic acid derivatives and to their use as endothelin receptor antagonists.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Carbonsäurederivate der Formel (I), wobei R⁶ eine Gruppe (a) oder (b) wobei R¹³ und R¹⁴ gleich oder verschieden sein können und folgende Bedeutung haben; Wasserstoff mit der Maßgabe, daß R¹³ und R¹⁴ nicht gleichzeitig Wasserstoff sein dürten, C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, Benzyl, Phenyl, Naphthyl, jeweils gegebenenfalls substituiert, oder R¹³ und R¹⁴ bilden gemeinsam eine zu einem Ring geschlossene, gegebenenfalls substituierte C₃-C₇-Alkylenkette, in der eine Alkylengruppe durch Sauerstoff, Schwefel oder Stickstoff ersetzt sein kann, oder R¹³ und R¹⁴ bilden gemeinsam eine zu einem Ring geschlossene, gegebenenfalls substituierte C₃-C₇-Alkylenkette oder C₃-C₇-Alkenylenkette, an die ein gegebenfalls substituierter Phenylring annelliert ist; und wobei die anderen Substituenten die in der Beschreibung erläuterte Bedeutung haben, die Herstellung von Verwendung als Endothelinrezeptorantagonisten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL.	Albanien	ES	Spanien	LŞ	Lesotho	SI	Slowenien
AM	Amtenien	Ft	Finnland	LT	Litauen	SK	Słowakei
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΛU	Australien	GA	Gabun	LV	F.ettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MĐ	Republik Moldau	TG	Togo
BB	Barbados	GII	Ghana	MO	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	A.	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	M1.	Mali	TJ.	Trinidad und Tobago
ВJ	Benin	1E	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL.	Israel	MR	Mauretanien	UC	Uganda
BY	Belarus	18	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	16.	Japan	NE	Niger	UZ.	Usbekistan
CG	Kongo	KE	Kenia	NL.	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ.	Neusceland	\mathbf{z} w	Zimbabwe
CM	Kamerun		Korea	P1.	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
cu	Kuba	KZ.	Kasachstan	RO	Rumânien		
CZ	Tschechische Republik	LC	St. I ucia	RU	Russische Föderation		
DE	Deutschland	1.1	Liechtenstein	SD	Sudan		
DK	Dånemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		