UNCLASSIFIED AD 410212

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

BY DDC 410212

FORECASTING TRAFFICABILITY OF SOILS

AIRPHOTO APPROACH

TECHNICAL MEMORANDUM NO. 3-331

Report 6

Volume II

June 1963

MARCHANIA I

U. S. Army Engineer Waterways Experiment Station
CORPS OF ENGINEERS
Vicksburg, Mississippi

FORECASTING TRAFFICABILITY OF SOILS

AIRPHOTO APPROACH

TECHNICAL MEMORANDUM NO. 3-331

Report 6

Volume II

June 1963

U. S. Army Engineer Waterways Experiment Station CORPS OF ENGINEERS

Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS.

Table 1 Unified Soil Classification System

							NIFIED SOIL CLASSIng Identification		
Major Divisions		ons	Group Symbols	Typical Names	(Excluding	dentification Proparticles larger ractions on estimate	Information Required for Describing Soils		
1		2	3	4		5	6		
size.	fraction re size. equivalent	Clean Gravels (Lattle or no fines)	Œ₩	Well-graded gravels, gravel-sand mixtures, little or no fines.		ain sizes and su intermediate pa	For undisturbed soils add information on stratification, degree of compact-		
	half of motorial is larger than No. 200 isible to the naked eye. So course fraction Nore than half of the stere size. Is larger than No. asification, the 1/4-in. size may be us to the No. 4 sieve size) Clean Sands (Appreciable and fines) Clean Sands (Appreciable and the fines)		GР	Poorly graded gravels or gravel-sand mixtures, little or no fines.		e size or a rang ate sizes missin	ness, cementation, moisture conditions and drainage characteristics.		
ē.			GH.	Silty gravels, gravel-sand-silt mixture.		or fines with lation procedures	Give typical name; indicate approximate		
			GC	Clayey gravels, gravel-sand-clay mixtures.	Plastic fines (f see CL below).	or identificatio	n procedures	percentages of sand and gravel, maximum size; angularity, surface condition, and hardness of the coarse grains; local or geologic name and other pertinent descriptive informa-	
rial is			SW	Well-graded sands, gravelly sands, little or no fines.		ain size and sub diate particle s	tion; and symbol in parentheses.		
Cof mate			SP	Poorly graded sands or gravelly sands, little or no fines.		ne size or a rang ermedia e sizes m	Example:		
than hel: [cle visi]			SM	Silty sands, sand-silt mixtures.		or fines with leation procedures		Silty sand, gravelly; about 20% hard, ingular gravel particles 1/2-in. maximum size; rounded and subangular sand grains, coarse to fine; about 15% nomplestic fines with low dry strength	
	More than is small: (For visu	Sands with Fines (Appreciable amount of fines)	sc	Clayey sands, sand-clay mixtures.	Plastic fines (i see CL below).	or identification	n procedures	well compacted and moist in place; al- luvial sand; (SM).	
size.		<u> </u>				tification Proce			
200 sieve					Dry Strength (Crushing characteristics)	Dilatancy (Reaction to shaking)	Toughness (Consistency near PL)		
then No. 200 e size is el	1	0	MIL	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.	None to slight	Quick to slow	None	For undisturbed soils add information on structure, stratification, con- sistency in undisturbed and re-	
	s and Cl	Silts and Clays Liquid limit is less than 90		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.	Medium to high	None to very	Medium	molded states, moisture and drain- age conditions.	
1 - S	" '			Organic silts and organic silty clays of low plasticity.	Slight to medium	Slow	Slight	Give typical name; indicate degree and character of plasticity; amount and	
Flui f materit	than half of		MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.	Slight to medium	Slow to none	Slight to medium	maximum size of coarse grains; color in wet condition; odor, if any; local or geologic name and other pertinent legeriptive information; and symbol	
H			CH	Inorganic clays of high plasticity, fat clays.	High to very	None	High	in parentheses.	
More tha			OR	Organic clays of medium to high plasticity. organic silts.	Medium to high	None to very	Slight to medium	Example: Clayey silt, brown; slightly plastic; small percentage of fine sand;	
Highly Organic Soils		Pt	Peat and other highly organic soils.	Readily identified by color, odor, spongy feel and frequently by fibrous texture.			numerous vertical root holes; firm and dry in place; loess; (ML).		

(1) Boundary classifications: Soils possessing characteristics of two groups are designated by combinations of group symbols. For example GW-GC, well-graded gravel-sand mixture with

FIELD IDENTIFICATION PROCEDURES FOR FIRE-GRAINED SOILS OR FRACTIONS

These procedures are to be performed on the minus No. 40 sieve size particles, approximately 1/64 in. For field classif screening is not intended, simply remove by hand the coarse particles that interfere with the tests.

Dilatancy (reaction to shaking)

After removing particles larger than No. 40 sieve size, prepare a pat of moist soil with a volume of about one-half cubic inch. Add enough water if necessary to make the soil soft but not sticky.

Place the pat in the open pain of one hand and shake horizontally, striking vigorously against the other hand several times. A positive reaction consists of the appearance of water on the surface of the pat which changes to a livery consistency and becomes glossy. When the sample is squeezed between the fingers, the water and gloss disappear from the surface, the pat stiffens, and finally it crecks or crumbles. The rapidity of appearance of water during shaking and of its disappearance during squeezing assist in identifying the character of the fines in a soil.

Very fine clean sands give the quickest and most distinct reaction whereas a plastic clay has no reaction. Inorganic silts, such as a typical rock flour, show a moderately quick reaction.

Dry Strength (crushing characteristics)

After removing particles larger than No. 40 sieve size, mold a pat of soil to the consistency of putty, adding water if necessary. Allow the pat to dry completely by oven, sun, or air-drying, and then test its strength by breaking and crumbling between the fingers. This strength is a measure of the character and quantity of the colloidal fraction contained in the soil. The dry strength increases with

the colloidal fraction contained in the soil. The dry strength increases with increasing plasticity.

High dry strength is characteristic for clays of the CH group. A typical inorganic silt possesses only very slight dry strength. Silty fine sands and silts have about the same slight dry strength, but can be distinguished by the feel when powdering the dried specimen. Fine sand feels gritty whereas a typical silt has the smooth feel of flour.

Adopted by Corpo of Engineers and Bureau of Reclamation, January 1952.

Af

Af

B1

UNIFIED SOIL CLASSIFICATION (Including Identification and Description)

		(
	(Excluding	Identification Pr particles larger fractions on esti	than 3 in.	Information Required for Describing Soils		I	aboratory Classification Criteria			
		5		6			7		<u> </u>	
tures,	amounts of al	rain sizes and su l intermediate pa	rticle sizes.	For unuisturbed soils add information on stratification, degree of compact- ness, cementation, moisture conditions,		icurve. No. 200 Lows:	$c_{u} = \frac{D_{60}}{D_{10}} \text{ Greater than}$ $c_{c} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} \text{ Between}$	1 4		
mixtures,	Predominantly or some intermed:	ne size or a rang iate sizes missin	e of sizes with	and drainage characteristics.		In-stre	Not meeting all gradation requirements for GW			
ure.		s or fines with l		Give typical name; indicate approximate		from grassified assified symbols.	perg limits below "A" line PI less than 4	Above '' lin PI between are borderl	+ and 7 ine cases	
tures.	Plastic fines (: see CL below)	for identificatio	n procedures	percentages of sand and gravel, maxi- mum size; angularity, surface condi- tion, and hardness of the coarse grains; local or geologic name and			Atterberg limits above "A" line with PI greater than 7 requiring use of dual symbols.			
ittle or	Wide range in grain size and substantial amounts of all intermediate particle sizes. Predominantly one size or a range of sizes with some intermediate sizes missing. Nonplastic fines or fines with low plasticity (for identification procedures see ML below). Plastic fines (for identification procedures see CL below).			other pertinent descriptive informa- tion; and symbol in parentheses.		of gravel greated store greated store 5% = GW, G 12% = GW, G 12% = GW, G use	$C_{\rm u} = \frac{D_{60}}{D_{10}}$ Greater than 6			
ls, little				come intermediate sizes missing. Example:			<u> </u>	$C_{\rm c} = \frac{({\rm D}_{30})^2}{{\rm D}_{10} \times {\rm D}_{60}}$ Between 1 and 3 sting all gradation requirements f		
				Silty sand, gravelly; about 20% hard, angular gravel particles 1/2-in. maximum size; rounded and subangular sand grains, coarse to fine; about 15% nonplastic fines with low dry strength;	given under	ine percent fine fine fine fine fine fine fine fine	perg limits below "A" line PI less than 4	Above "A" ling PI between are borderly requiring us	4 and 7 ine cases	
				well compacted and moist in place; alluvial sand; (SM).	fractions as	of the state of th	perg limits above "A" line n PI greater than 7	symbols.		
		ntification Proce								
	Dry Strength (Crushing characteristics)	Dilatancy (Reaction to shaking)	Toughness (Consistency near PL)		fying the					
rock or y.	None to slight	Quick to slow	None	For undisturbed soils add information on structure, stratification, con- sistency in undisturbed and re-	in identifying	Toughness and	s at Equal Liquid Limit Dry Strength Increase Ing Plasticity Index			
sticity, clays,	Medium to high	None to very	Medium	molded states, moisture and drain- age conditions.	curve	40	The first tree is a second sec	CH A	Line	
rs of low	Slight to medium	Slow	Slight	Give typical name; indic degree and character of plasticity; amount and	grain-size	E 30				
aceous silts.	Slight to medium	Slow to none Slight to medium		maximum size of coarse grains; color in wet condition; odor, i? any; local or geologic name and other pertinent descriptive information; and symbol	Use go	30 &	CL OF			
fat clays.	High to very high	None	High	in parentheses.		10 7	ML & ME			
sticity,	Medium to high	edium to high None to very slight to medium		Example: Clayey silt, brown; slightly plastic; small percentage of fine sand;		0 10 20	20 30 40 50 60 LIQUID LIMIT		90 100	
	Readily identified by color, odor, spongy feel and frequently by fibrous texture.			numerous vertical root holes; firm and dry in place; loess; (ML).		For labo	PLASTICITY CHART	ne-grained soils	;	
				*						

are designated by combinations of group symbols. For example GW-GC, well-graded gravel-sand mixture with clay binder. (2) All sieve sizes on this chart are U. S. standard.

FIELD IDENTIFICATION PROCEDURES FOR FINE-GRAINED SOILS OR FRACTIONS
tes are to be performed on the minus No. 40 sieve size particles, approximately 1/64 in. For field classification purposes,
screening is not intended, simply remove by hand the coarse particles that interfere with the tests.

Dry Strength (crushing characteristics)

sts ery

and

After removing particles larger than No. 40 sieve size, mold a pat of soil to the consistency of putty, adding water if necessary. Allow the pat to dry completely by oven, sun, or air-drying, and then test its strength by breaking and crumbling between the fingers. This strength is a measure of the character and quantity of the colloidal fraction contained in the soil. The dry strength increases with increases makes the colloidal fraction contained in the soil.

the colloidal fraction contained in the soil. The dry strength increases with increasing plasticity.

High dry strength is characteristic for clays of the CH group. A typical inorganic silt possesses only very slight dry strength. Silty fine sanda and silts have about the same slight dry strength, but can be distinguished by the feel when powdering the dried specimen. Fine sand feels gritty whereas a typical silt has the smooth feel of flour.

Toughness (consistency near plastic limit)

After particles larger than the No. 40 sieve size are removed, a specimen of soil about one-half inch cube in size, is molded to the consistency of putty. If too dry, water must be added and if sticky, the specimen should be spread out in a thin layer and allowed to lose some moisture by evaporation. Then the specimen is rolled out by hand on a smooth surface or between the palms into a thread about one-eighth inch in diameter. The thread is then folded and rerolled repeatedly. During this mendpulation the moisture content is gradually reduced and the specimen stiffens, finally loses its plasticity, and crumbles when the plastic limit is reached.

is reached.

After the thread crumbles, the pieces should be lumped together and a slight kneading action continued until the lump crumbles.

The tougher the thread near the plastic limit and the stiffer the lump when it finally crumbles, the more potent is the colloidal clay fraction in the soil.

Weakness of the thread at the plastic limit and quick loss of coherence of the lump below the plastic limit indicate either inorganic clay of low plasticity, or materials such as kaolin-type clays and organic clays which occur below the A-line.

Highly organic clays have a very weak and spongy feel at the plastic limit.

Table 2 Frequency of USDA Soil Types Occurring as USCS Soil Types

Γ	_															UBC	S 80	11 T	уре													
l					Con	T 54 -	Grai	ned	Soil	s vi	th J	ines					7	ine-	Grai	ned	Soil					Or	gani	e 8c	ils		To	tal
<u> </u>	_		0	м	G	c_	SI	-834	В	ĸ	894	-BC	8	C	И	L	CI	-XL		Ĕ.	0	L		Ħ	0	L	0	Ħ.	P	ŧ	5	n
		8 \$	<u> </u>		ļ		47		50)	_	3						_	_	L		L.			<u> </u>	<u> </u>						100	
1		n	L	_	L	L	┖	21		22	_	1		_	L		_		L							L		L		L	L	144
		18 <u>\$</u>	ļ	_	L	L	L	<u> </u>	$^{\mathfrak{B}}$	_	L		2		L	_	L	_		L	_	_	L					L	L	L	100	
	Soils	n	_	_	<u> </u>	_	_	╙		56		_	L	1			L	<u> </u>		L	 _				_	L	<u> </u>			L		57
	So	SL+ S	*	_	1_	<u> </u>	_		(41)		8		14	L	19		4		L		9	<u> </u>	<u> </u>		2		2			<u></u>	100	
	Sendy	n		1			L	<u> </u>	L	85	L_	17		28	L.	40		9			L	18				5		4				207
	٠,	SCL 5		L	L	L	L	ļ. <u>.</u> .	11		3		25		7	L	L	<u> </u>	L		(54)	<u> </u>									100	
		n					L		L	3		1		7		2						15										28
		SC \$			L		L				L		50								50										100	
		n			L									1								1	L.									2
Type		Lt \$	*		*		<u> </u>								22		11		*		52		3		3		6			Π	100	
17		n		1		1		<u> </u>								36		19		1		87		5		5		10				165
USDA Soil		S1L.	L		L										36		10		3		45		5		2		2		Π		100	
8	Soils	n	L													172		47		16		215		12		9		10	Γ			481
П	80	81 \$	L												9						9								Π		100	
П	Losmy	n														10						1										11
П	pue	CL.													5				3		75		15				2		П		100	
П		n														α				1		30		6				1				40
	Clayey, Silty,	SiCL \$					Ĺ								1		1		1		67		27				3				100	
	ď,	n														1		1		1		51		8				5				76
	ē	Sic \$													5						왜		1								100	
		n														1						5		15								21
		c \$													3				10		13		66				8				100	
		n							Ш							1				4		5		25				3				38
	Organic Soil	Pt.																											133		100	
Ш	g.	n	Ĺ																											6		6

Total samples

I would state the second of th

Sample Interpretation

45% of all SiL samples were CL. The circle indicates that a greater number of SiL samples cocurred as CL than as any other USGS type. 215 samples were classified as SiL and CL.

n Number of samples.
* Less than 15.
† Prefixed with the term gravelly, cobbly, or stony for GM or GC soil types.

Table 3
Trafficability Characteristics of USCS Soils in Wet Season

Class	Soils	USCS Soil Type	Prob- able CI Range	Prob- able RI Range	Prob- able RCI Range	Slipperi- ness Effects	Sticki- ness Effects	Comments
A	Coarse-grained, cohesion- less sand and gravels	GW, GP, SW, SP	80 to 300	1	80 to 300	Slight to none	None	Will support continuous traffic of military vehicles with tracks or with high-flotation tires. Moist sands are good, dry sand only fair. Wheeled vehicles with standard tires may be immobilized in dry sands
В	Inorganic clays of high plasticity, fat clays	CH	55 to 165	0.75 to 1.35	65 to 140	Severe to slight	Severe to slight	Usually will support more than 50 passes of military vehi- cles. Going will be diffi- cult at times
С	Clayey gravels, gravel- sand-clay mixtures Clayey sand, sand-clay mixtures	gc sc	85 to 175	0.45 to 0.75	45 to 125	Severe to slight	Moderate to slight	Often will not support 40 to 50 passes of military vehicles, but usually will support limited traffic. Going will be difficult in most cases
	Gravelly clays, sandy clays, inorganic clays of low to medium plasticity, lean clays, silty clays	CL						
D	Silty gravels, gravel- sand-silt mixtures	GM.	85 to 180	0.25 to 0.85	25 to 120	Moderate to slight	Slight	Usually will not support 40 to 50 passes of military vehi- cles. Often will not permit
	Silty sands, sand-silt mixtures	SM				_		even a single pass. Going will be difficult in most cases
	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	ML and CL-ML						,
	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	MEI						
	Organic silts and organic silty clays of low plasticity	OL						
	Organic clays of medium to high plasticity, organic silts							
E	Peats and mucks	Pt	10 to 100	0.25 to 0.65	10 to 85	Slight to none	Moderate to slight	Often will not permit even a single pass. Going will be difficult to impossible

Note: Taken from Trafficability of Soils. A Summary of Trafficability Studies Through 1955, TM No. 3-240, 14th Supplement, December 1956.

- W. C. State Stat

Table 4 Classification and Implications of Drainage Pattern

		assific	netton .	Classification and Deplications of Draine Definitions and Diagnostic Features	Farent Materials and Other Implications
					Lates of Marcalists and Arbeit Implications
		systems		Systems which drain surface water away from a region	
		ental pa			
1.	In	tegrated		Hatural lakes, swamps, or marshes rare or absent	
	٠.	Dendri	tie	Channel directions random, but regional drainage direction consistent.	Flat-lying and weakly jointed stratified rocks, non- stratified rocks, and thick unconsolidated material without pronounced regional dip
	ъ.	Rectan	ngular	Channels subparallel in two directions at roughly right angles; channels outline roughly rectangular uplands	Strongly jo'nted or faulted rocks; may be either non- stratified or flat-lying stratified
	c.	Trelli	ia	Channels subparallel in two directions at roughly right angles; channels tend to outline elongate rectangular uplands; trunk channels strongly prefer one direction	Inclined stratified rocks; trunk channels follow weak beds, low-order tributaries drain sides of resistant ridges
	đ.	Finnet	;e	Channels subparallel but low-order tribu- taries join trunks at angles of less than 90	Deep, homogeneous, unconsolidated silts (loess); some flat-lying sandstones
	e.	Parall	Le1	Channels subparallel with one direction of flow dominant	Gently inclined stratified rocks, or unconsolidated materials with pronounced regional slope
	f.	Reticu	ılar	Channels divide and coalesce in random fashion; trunk channels commonly seem too large for drainage area	Fine- to coarse-grained unconsolidated material subject to tidal immdation
2.	No	nintegre	sted	Basins, lakes, swamps, or marshes common	
	٨.	Swallo	ow hole	Short, usually dendritic drainageways end abruptly in small, open holes or basins. Entire system commonly but not invariably within elongate or irregular basin	Flat-lying massive limestone
	ъ.	Glacia	al kettle	Short, usually dendritic or parallel drain- ageways end in round or irregularly shaped basins of widely variable size	Coarse-grained, unconsolidated; if basins are numerous, materials usually gravelly; if widely spaced, material usually sandy
	c.	Gramı]	ter subsidence	Short, usually parallel or dendritic drain- agerays end in broadly saucer-shaped basins	Coarse-grained, unconsolidated; usually quite thick
	đ.	Cresce	entic	Usually long, more or less arcuate lakes, marshes, or swamps; usually but not in- variably drained at one end by drainage- way trending in same direction as axis of lake. Includes "ox-bow" lakes	Materials widely variable; fine- to coarse-grained, un- consolidated; basin commonly but not invariably floore with organic silts or clays
	е.	Elongs	ated bay	Interrelated series of channels and oval lakes, swamps, or marshes. Iong axes of ovals essentially parallel. Some ovals not drained by surface channels. Where surface channels exist, they usually drain all bays in one area from same end	Unconsolidated, coarse-grained material on edges; materials in bays usually very soft, unconsolidated silt, peat, or other highly organic materials
	f.	Deran	ged	Patterns in which no preferred direction of drainage is immediately evident	
		(1) 1	Random	No consistent direction or alignment; chan- nels contorted; no consistent angle of junction; usually associated with areas of kettle drainage and dendritic drainage	Unconsolidated, widely variable, complex associations of gravel, sand, silt, and clay
		(2)	Aligned	Channels tend to be parallel, but direction of flow may be in either direction along alignment	Rock; may be inclined stratified or schistose with dif- ferences in erosional resistance, or nonstratified wit differences in joint spacing; channels follow weaker beds of zones
		(3)	Thermokarst	Channels form distinctly polygonal patterns with only slight traces of integration	Widely variable unconsolidated materials; pattern indica upset in thermal regime, commonly but not invariably i permarrost region
	g.	Drain	ageless	No perceptible channels	
	-	(1)	Channelless basins	Elongate to irregularly shaped basins with- out scour channels	Coarse-grained, unconsolidated, poorly graded, low-density
		(2)	Channelless plains	Undulating surface without scour channels	May be either rock or gravel; if rock, usually flat- lying stratified
3.	. Az	tificia	1	Developed as result of modification by man	
•		Ditch		•	Usually fine-grained, unconsolidated; water table high
	b.	Tile		Banically similar to ditch, but drainage- ways defined only by differences of soil color produced by process of laying tiles, or by differences in soil moisture as result of local internal drainage	Unconsolidated, fine-grained with varying admixtures of coarse-grained materials; water table commonly high
				(Continued)	

Cassification	Definitions and Resmostic Features	Parent Naterials and Other Sun Continue
3. Variations of fundamental pattern	•	-
1. Centrifugal	Channels diverge from a common center; variation of parallel type	If well developed, materials commonly interbedded volcamic ask, tuff, and/or laws; if poorly developed, no parent materials implication
2. Centripetal	Channels converge toward common center	Implication dependent upon degree of development. See below
a. Subparallel	Channels relatively streight, but converge toward common center	Very regular pattern; probably volcanie crater; materials interbedded volcanie ash, tuff, other ejecta including lave. Less regular patterns; if drainageways end in plays, mate- rials usually unconsolidated, fine-grained toward center of basin, coarser toward sources of drainageways. If drainageways end in kettle or subsidence basin, materials unconsolidated and coarse-grained
b. Dendritic	Individual drainage systems dendritic, but associated valleys trend toward common center	If drainageways end in swallow hole, materials are flat- lying massive limestones; if in kettle or subsidence basin, material is coarse-grained unconsolidated
3. Collinear	Channels curved, concentric; in some places not integrated by cross-connection. Variation of parallel type	Unconsolidated, commonly coarse-grained in interfluves, but may be fine-grained along drainageways
4. Annular	frunk channels radiate from common center, but major tributaries form concentric rings around common center. Variation of trellis, pinnate, or rectangular types	Stratified rock inclined in all directions every from (or more rarely, toward) a common center; rocks forming ridges more resistant than those forming valleys
5. Barbed	Tributary channels enter trunk channels at angles greater than 90°. Variation of dendritic, trellis, parallel, reotangu- lar, or pinnate types	Indicative of stream piracy; materials implication must be made from character of tributaries
6. Asymmetric	fributary channels entering opposite sides of trunk channel markedly different in type or spacing. Commonly variation of trellis, rectangular, or pinnate	Markedly different conditions on opposite sides of drain- ageous; commonly indicative of inclined stratified rocks, but other implications must be deduced from character of tributaries
7. Deflected	fributary channels approaching trunk chan- nel deflected parallel to valley wells, eventually join trunk well downstream from normal position. Variation of dendritic, rectangular, trallis, pinnate, or parallel types	Point at which deflection becomes apparent commonly marks beginning of unconsolidated materials
a. Anomalous	Tributaries enter valley of trunk stream at elevations greater than that of trunk	Materials between trunk and tributary are commonly uncon- solidated, coarse-grained
b. Такоо	Tributaries enter valley of trunk stream at elevations below that of trunk	Materials between trunk channel and tributary commonly un- consolidated, fine-grained, with admirture of sand, but other materials are not uncommon. However, materials along deflected tributary almost invariably fine-grained
8. Phanton	No distinct channels, but usually swales without scour channels connect to form integrated pattern. Usually variation of dendritte, but may also be parallel or pinnate	Unconsolidated permeable surface stratum overlying im- permeable subsurface stratum
II. Distribution systems	Systems which add water to a region	
A. Fan distributary	frunk channels break up into ever-smaller channels, each of which eventually - vanishes without obvious evidence of discharge. Superficial resemblance to parallel type of collection system	Unconsolidated but widely variable; commonly coarse- grained, but silt-sized materials not uncommon. Confined almost entirely to arid or semiarid climates
B. Delta	Trunk channels break up into ever-smaller channels, all of which eventually dis- charge into a water body	Unconsolidated but widely variable; if trunk stream has low gradient, materials tend to be fine-grained, with minor admixtures of fine sand; if trunk stream has steep gradient, materials tend to be coarse-grained
C. Canals	Channels mathematically straight or in abnormally smooth curves; control works common	Materials generally unconsolidated, usually fine-grained with various proportions of coarse-grained materials
III. Channel types	The shape of the water surface as seen on an aerial photograph	
A. Straight	Mathematically straight or in abnormally smooth curves	Canals and other artificial waterways; usually made in un- consolidated materials, but not necessarily so
B. Simous	Slightly irregular curves; slight dif- ferences in width	Usually implies steep gradient and low ratio of depth to width; bed materials course-grained; surrounding areas usually but not invariably rock. Generally associated with folded or faulted rocks
C. Meandering	Strongly curved or looping	Usually implies low gradient and high ratio of depth to width, especially in curves, if surrounding region is an undulating surface (floodplain), materials commonly but not invariably unconsolidated and fine-grained with various eministers of course-grained materials; commonly belts of relatively course-grained material (sitty sem) along each bank. Introubed manners not common; in such instances, surrounding material usually either monatratified rock, or flat-lying stratified rock
D. Braided	Channel interrupted by numerous islands	Depth-to-width ratio usually low; unterials usually either coarse-grained unconsolidated, or rock

Suble 5 Gully Characteristics

		Gully Cha	<u>recteristic</u>	<u> </u>
Symbol Used in Text	Generalised Shotch	Gradient"	Climate	Parent Materials
•		film.	dunid Arid	Unconsolidated: relatively homogeneous; course-grained; permeable; more common in noncohesive materials, but may also cocur in some cohesive materials; commonly as-ecciated with rill erosion. Most common material: sand. Consolidated: virtually all materials. Unconsolidated: almost entirely in monobesive materials. Consolidated: virtually all materials; sides and bottom generally very irregular.
7		Gentle	Mountid.	Unconsolidated: thick; relatively homogeneous; cohesive; fine-grained; permeability of soil some fair to good, but poor in subsoil; very common in thick losss. See fig. 90. Most common material: silt. Consolidated: rare; sometimes developed along joints in limestons.
•			Arid	Unconsolidated: thick; cohesive or even slightly cohesive; grain size immaterial.
	- Francisco	Steep	Ar1d	Consolidated: rare; sometimes develops in flat-lying shales; bottom commonly "stepped."
c		Gentle	Munid.	Unconsolidated: fine-grained; impermeable; cohesive; permeability in both soil some and subsoil poor; commonly associated with sheet erosion; in general, the broader the gully the more impermeable the materials. Most common materials: clay, silty clay.
		Compo	 	
7 7		Steep	Bunid	Unconsolidated: thin, impermeable, cohesive, fine- grained streum overlying coarse-grained, permeable, noncohesive stratum; vertical sides may develop in coarse-grained, permeable, noncohesive material if closely bound by root mat. Commodifiated: this, cohesive strata, grain size not sig- nificent overlying rook.
æ		Gentle	Mundd	Unconsolidated: very fine-grained (usually clay), cohesive, impermentals soil some overlying fine-grained (usually site), impermental, cohesive stratum. Consolidated: fine-grained, impermental, cohesive but unconsolidated surface stratum overlying rock; usually strongly angular in plan.

^{*} The gradient of a gully or valley is the attitude of the <u>longitudinal profile;</u> it is the angle at which the gully or valley bottom is inclined.

```
Eolian materials (stratified
 or nonstratified)
                                          stratified)
    Coarse-grained
      Sand
    Fine-grained
                                                Sand
      Silt (loess)
                                              Organic
                                                Sand
Glacial materials (mostly
  nonstratified)
    Coarse-grained
                                                Silt
      Gravel
                                                Clay
      Sand
                                              Organic
    Fine-grained
                                                Šilt
      Silt
                                                Clay
      Clay
Fluvial materials* (crudely
                                          stratified)
  stratified)
    Coarse-grained
      Nonorganic
        Gravels
                                                Sand
        Sand
      Organic
        Sand
                                                Silt
    Fine-grained
                                              Organic
      Nonorganic
                                                Silt
        Silt
        Clay
      Organic
        Silt
        Clav
```

Lacustrine materials (well
stratified)
Coarse-grained
Nonorganic
Sand
Organic
Sand
Fine-grained
Nonorganic
Silt
Clay
Organic
Silt
Clay
Unganic
Silt
Clay

Littoral deposits (crudely to well
stratified)
Coarse-grained
Nonorganic
Gravel
Sand
Fine-grained
Nonorganic
Silt
Organic
Silt
Volcanic deposits (well stratified)
Coarse-grained
Fine-grained

^{*} Fluvial materials, as used in this report, are many materials deposited from streams or streamlike water bodies. They thus include the so-called "glacial-fluvial" deposits, which are simply stream or flood deposits formed downgrade from an ice mass.

Table 7
Classification of Consolidated Parent Materials

Sedimentary rocks
Stratified*
Limestone
Dolomite
Shale
Sandstone
Evaporite
Nonstratified
Limestone
Dolomite
Shale
Sandstone
Evaporite

Igneous rocks
Stratified
Pyroclastics
Rhyolites
Basalt
Nonstratified
Granite-like
Gabbro-like

Metamorphic rocks
Stratified
Quartzite
Slate
Marble
Nonstratified
Quartzite
Marble
Gneiss
Schist

^{*} Stratification is used in this report in a sense applicable specifically to photo interpretation. In this context, a stratified material is one which exhibits traces of bedding within the region under examination. Thus, if the total relief of the area under examination is 150 ft, and the bedding planes of the rock are 200 ft apart, the rock may exhibit no trace of stratification in the area under examination. In this report, such rock is designated "nonstratified."

Table 8

Generalised Correlations of Landscape and Interpretive Elements (Vesetation and Cultural Practices Not Included)

Dreinere	Topography	Local Prosies	Parent Naterials	Interpretive Elements Soil Profile	Representative Landscape
	AVOTA BASE	Unconsolidate			THE PERSON NAME AND POST OF THE PERSON NAMED IN COLUMN 1
					B 44-14 Ban
Drainageless	Crested, rolling; many basins; uplands asym- metric; lee slope 360	Gullies absent; blow- outs, sand smears	Bolian sand	Rone	Dume fields, p. 59*
Regionally dendritic, locally pinnate	Rolling, blocky; relief less than 500 ft	7-type** gullies, flat grade	Molian eilt	1 to 2 ft thick; uni- form, fine-grained	Losss surfaces, p. 64
Dendritic	Undulating; relief less than 40 ft	Gullies C-type, flat grade; white fringe	Glacial till; mostly fine-grained	1 to 15 ft thick; most- ly fine-grained; or- ganic in lows in some places	Old ground moraines (Illinoian stage), p. 69
Dendritic, some kettle hole and deranged	Undulating; relief less than 50 ft	Gullies C-type, flat grade	Glacial till; mostly fine-grained, heterogeneous	2 to 5 ft thick; mostly fine-grained; or- gamic soils in lows	Young ground moraines (Wisconsin stage), p. 72
Dendritic or deranged .	Rolling or created; random; some basins; relief less than 200 ft	Oullies V-type, steep grade; saucer-shaped, flat grade	Glacial drift; heterogeneous	4 to 8 ft thick; heterogeneous	Ridge moraines, p. 75
Kettle hole or deranged; many small lakes	Rolling; basins numer- ous; random; relief less than 100 ft	Gullies rare; V-type, steep grade	Fluvially deposited glacial materials; coarse-grained, crudely stratified	1 to 3 ft thick; mostly coarse-grained; or- ganic soils in kettles	Kettle-kame moraines, p. 79
Berunged; commonly ditched	Uplands rolling, peral- lel, drop-shaped; lowlands undulating, random	Gullies rare, C-type	Glacial drift; uplands mostly clay; low- lands fine-grained	2 to 4 ft thick; fine- grained	Drumlin fields, p. 84
Usually drainageless	Crested; conical uplands	Gullies rare; V-type, steep grade	Fluvially deposited glacial material; coarse-grained, crudely stratified	1 to 3 ft thick; mostly coarse-grained	Kames, p. 86
Usually drainageless	Crested; simuous ridge	Gullies rare; V-type, steep grade	Fluvially deposited glacial materials; coarse-grained, crudely stratified	1 to 3 ft thick; mostly coarse-grained	Bakers, p. 86
Fan distributaries, radial parallel, parallel; channels braided	Blocky; regional slope 50 to 70	U-shaped, V-type; saucer-shaped gul- lies; colian erosion	Alluvial materials; coarse-grained near upper edge; fine- grained near lower; crudely stratified	None or very thin; desert pavement in some places; sand and gravel in washes	Alluvial fans and aprons, p. 88
Regionally crudely parallel; locally dendritic or kettle hole	Undulating; relief less than 50 ft	Oullies rare; V-type steep gradients; rare deflation basins	Fluvial materials; coarse-grained; crudely stratified	2 to 6 ft thick; coarse-grained in up- lands; fine-grained and organic in lowlands	Outwash surfaces (glacial-fluvial), p. 93
Collinear, arranged in concentric areas	Undulating; relief less than 15 ft	Gullies absent	Fluvial materials; coarse-grained in uplands, fine- grained in lowlands	Thin; coarser on up- lands; finer and organic on lowlands	Floodplain (ridge and swale), p. 96
Parallel or absent	Undulating or blocky; relief less than 20 ft	Gullies V-type, steep grade	Fluvial sand, silty sand	Thin; sandy silt and silty clay	Floodplain (natural levee), p. 96
Dendritic, reticulate, deranged; channels meandering, contorted, lakes common	Undulating, nearly plane	Gullies rare; C-type, flat grade	Fluvial and lacustrine silt, clay	Thin; organic, fine- grained, impermeable	Floodplain (backswamp), p. 96
Channels meandering, ox- bow lakes common		Gullies absent	Fluvial and lacustrine silt, clay	Thin; organic, fine- grained, impermeable	Floodplain (abandoned course), p. 97
Dendritic, crudely col- linear or parellel	Undulating, blocky; relief less than 30 ft	Gullies common; V- type, steep grade	Fluvial materials; sand, silt, clay	2 to 6 ft thick; vari- able; mostly fine- grained; organic	Floodplain (high-level floodplain), p. 97
Distributary; channels widely variable, re- sembles floodplain types	Undulating; resembles floodplain types	Gullies absent or rare	Fluvial materials; re- sembles floodplain types	Thickness variable; resembles floodplain types	Deltaic surfaces, p. 103
Brainageless; some swallow hole; anomalous	Undulating; small basins common; re- lief commonly less than 30 ft	Gullies rare; V-type, steep grade; F-type, moderate grades	Commonly coarse- grained; crudely stratified; fine- grained in some places	2 to 5 ft thick; mostly fine-grained; or- ganic in basins	Terraces, p. 107
Dendritic, some deranged and reticulate	Undulating; relief less than 10 ft	None	Fluvial silts and clays; stratified	Thick; organic and fine-grained; impermeable	Constal alluvial plains (constal swamps), p. 110
Regionally crudely paral- lel, locally dendritic	Undulating or blocky; relief less than 50 ft	Gullies rare; F-type, moderate grade; V- type, steep grade	Gravel, sand, silty clays; crudely stratified insed)	Thick; coarse- to fine-grained; com- monly includes hardpan	Constal alluvial plains (marine terraces), p. 111

^{*} Rusber denotes page in Part V or Part VI on which the specific landscape is described in detail. ** For illustration of different types of gullies, see table 5.

Dreinage	Landscape Elements	Local Procion	Parent Materials	Interpretive Elements Soil Profile	Aspresentative Landscape
	Topography				BRITISHES AND AND ADDRESS OF THE PARTY OF TH
		Unconsolidated Mate			
Dendritic	Undulating, rolling, or blocky; relief less than 100 ft	Gullies of all types common	Variable; partly to completely indurated in some places	Thick; commonly fine- grained; may include hardpan	Coastal alluvial plains (undifferentiated surfaces), p. 111
Ditched or tiled; major stream channels com- monly meandering	Undulating; relief less than 10 ft	Gullies C-type, flat grade; some sheet- wash	Incustrine materials; fine-grained, stratified	2 to 3 ft thick; fine- grained, impermeable; organic in places	Beds of perennial lakes, p. 116
Channelless	Undulating; relief less than 5 ft	Oullies absent; de- flation hollows rare	Incustrine materials; silt, clay, evapo- rites; stratified	Absent to thick; mostly fine-grained; evapo- rites in places	Playas, p. 120
Reticulate; channels meandering, contorted	Undulating; relief less than 5 ft	Ephemeral runoff channels	Littoral materials; sand, silt, silty sand	Thin or absent; organic sands or silts	Tidal flats, p. 124
Channelless basins; col- linear or parallel	Undulating; simious ridges; relief less than 30 ft	Qullies absent; defla- tion hollows common	Littoral materials; coarse-grained, crudely stratified	Absent to 5 ft thick; coarse-grained on uplands; fine- grained organic on lowlands	Beach ridges, p. 126
Parallel radial	Crested; relief up to several hundred feet	Gullies V-type, steep grades	Volcanic ejecta; ash, lapilli, cinders, blocks	Absent to very thick; coarse- to fine- grained, stratified	Pyroclastic cones, p. 130
		Consolidated	Materials		
Swallow hole; locally dendritic; rare through- flowing streams	Undulating or blocky; basins rare to com- mon; relief less than 50 ft	Gullies common; C-type or V-type	Limestone; strata horizontal	None to 15 ft thick; fine-grained, per- meable if undisturbed	Limestone plains, p. 135
Regionally dendritic; locally pinnate; chan- nels closely spaced	Rolling; slopes smoothly sigmoid; relief less than 400 ft; valley bottoms flat	Oullies common; C-type if relief low, V-type if relief high	Shale; strata horizontal	2 to 3 ft thick; fine- grained	Shale plains in humid areas, p. 138
Regionally dendritic or parallel; locally pinnate	Crested; slopes straight, up to 30°; relief less than 500 ft; vailey bottoms flat	Oullies incredibly numerous; V-type in arid regions, F- type in semiarid	Shale; strata horizontal	Absent or very thin; fine-grained	Shale plains in arid and semiarid regions, p. 138
Regionally dendritic; lo- cally rectangular or trellis	Rolling; valley bottoms slightly concave up- ward; relief less than 500 ft	Gullies rare; V-type, steep grade; rare deflation basins	Sandstone; strata horizontal	1 to 10 ft thick; mostly coarse- grained, permeable	Sandstone plains, p. 142
Regionally dendritic; slightly pinnate locally	Blocky; "scarplets" on valley sides; relief less than 500 ft; valley bottoms flat	Gullies have "stepped" profiles; V-type or C-type with C-type generally on upper topographic high surfaces	Shale and limestone; strata horizontal	2 to 6 ft thick; fine- grained	Limestone-shale plains, p. 145
Regionally dendritic; locally pinnate, rectangular	Blocky; "scarplets" on slopes; relief less than 500 ft	Gullies V-type; two- layered	Shale and sandstone; strata horizontal	2 to 6 ft thick; coarse- to fine- grained, relatively impermeable	Sandstone-shale plains, p. 147
Smallow hole on uplands; lowlands have through- flowing streams	Blocky, crested; basins common; relief ex- ceeds 500 ft; steep valley walls; valley floors flat	Oullies rare; C-type, rockfalls common	Limestone; strata horizontal	2 to 15 ft thick on uplands; fine- grained, permeable if undisturbed; thin or absent on valley side	Limestone plateaus, p. 153
Regionally dendritic; locally dendritic, rectangular, parallel	Blocky, crested; valley bottoms slightly con- cave upward; valley cross section usually opened U- or V-shaped	Gullies rare; V-type, steep grade	Sandstone; strata horizontal	3 to 5 ft thick; coarse- to fine- grained	Sandstone plateaus, p. 156
Regionally dendritic; locally dendritic, rectangular, parallel	Blocky, crested; "scarplets" on valley sides; slopes steep	Gullies V-type; steep grades; "stepped" profiles; sheet and rill erosion common	Interbedded shales and sandstone; strats horizontal	2 to 6 ft thick on uplands; coarse- grained; thin to absent on valley sides	Sandstone-shale plateaus, p. 159
Regionally trellis; lo- cally trellis, dendritic smallow hole, parallel	Rolling; small clongate, basins; ridges mostly asymmetric		Limestone; may in- clude thin shale or sandstone beds; strata inclined	Thin on uplands; thick on lowlands; fine- grained, permeable if undisturbed	Limestone hills (humid climate), p. 163
Regionally trellis; lo- cally trellis, den- dritic, parallel; channels braided	Crested; ridges steep, rough, "broken," mostly asymmetric	Oullies V-type, steep; "stepped" profiles; rockfalls common	Limestone; thin shale or sandstone beds; strate inclined	Thin or absent on uplands; stony	Limestone hills (arid climate), p. 163

Table 8 (Concluded)

	Camping Commits			Interpretive Lements	
Drainage	Typography	Local Prosion	Parent Materials	Soil Frofile	henresentative landscape
		Consolidated Nate	rials (Continued)		
Trellis; locally parallel	Rolling; ridges mostly asymmetric	Gullies rare; C-type; rockfalls common on steep slopes	Dolomite; interbedded shale or sandstone; strata inclined	Thin on uplands; stony; thick on lowlands, silty, clayey	Dolomite hills (humid climate), p. 166
Trellie	Rolling; ridges subdued	Gullies generally C-type; some broadly V-type	Shale; thin interbeds of sandstone or limestone; strata inclined	Thin on uplands; fine-grained; in- cludes shale chips; 2 to 5 ft thick on lowlands; fine- grained	Shale hills (humid climate), p. 167
Trellis	Created; slopes straight, less steep than limestone	Cullies generally C-type; some V- type, steep grade	Shale; thin interbeds of sandstone or limestone; strata inclined	Thin or absent; mostly shale chips	Shale hills (arid climate), p. 168
Regionally trellis; dendritic on valley floors	Crested; ridges mimitaly serrate at crest	Gullies rare; C-type shaped or broadly F-type; rockfalls common on steep slopes	Mostly sandatone in ridges; mostly shale in lowlands	Thin to thick; coarse- grained on uplands; fine-grained on lowlands	Sandstone-shale hills, p. 170
Trellis; dendritic on floors of large valleys	Rolling, crested; valley floors undulating	Gullies rare on uplands; V-type; profiles commonly "stepped"; rock- falls common on steep slopes; gullies on low- lands C-type	Ridges mostly lime- stone; valleys mostly shale	Thin on uplands; stony; 3 to 7 ft thick in lowlands; fine- grained	Limestone-shale hills, p. 173
Swallow hole, deranged; through-flowing streams deeply incised	Regionally blocky; locally rolling, many basins; surface rough, botryoidal; large valleys steep- sided; columnar jointing common	Gullies rare; V-type, grades moderate	Basalts, andesites, rarely rhyolites; strata horizontal	l to 10 ft thick; sand, sandy silt, silty clay	Basalt plains and plateaus, p. 176
Dendritic, rectangular; low-order channels "surround" uplands	Rolling, valley sides sigmoid; uplands randomly arranged	Oullies mostly com- pound; C-type near heads; V-type near mouths; sheet ero- sion common	Granite and granite- like rocks; nonstratified	6 to 10 ft thick; silty sand; clayey sand; finer grained in lowlands	Granite hills, p. 180
Dendritic; trellis	Rolling, created; valley floors flat	Gullies C-type on gentle slopes; F-type on steep slopes	Slates, phyllites; strate horizontal	2 to 4 ft thick; fine-grained; relatively impermeable	Slate hills, p. 183
Dendritic; strongly resembles pattern typical of granitic areas; "enclosed" areas oval, rectangular	Rolling; walley sides sigmoid; tendency toward preferred orientation	Gullies compound; C-type near heads; F-type near mouths	Gneiss and gneiss- like rocks; nonstratified	8 to 15 ft thick; silty, sand; finer grained in lowlands	Gmeiss bills, p. 185
Regionally dendritic; locally rectangular, dendritic, trellis	Rolling where relief is low; created where relief is high; uplands tend to be angular	Gullies V-type	Schistose rocks; non- stratified; chlo- rite, talc, horn- blede schists if uplands rounded and subdued; quartose schists if uplands angular	6 to 12 ft thick; coarse to fine- grained; finer grained in lowlands	Schist hills, p. 187

Table 9

Classification of Landscape Types Formed Chiefly of Unconsolidated Materials

Landscapes formed in unconsolidated materials deposited by:

```
Eolian processes (stratified or nonstratified)
   59 (Dune fields)*
   64 (Loess surfaces)
Glacial processes (nonstratified or very crudely stratified)
   69 (Ground moraines)
   75 (Ridge moraines)
   79 (Kettle-kame moraines)
   84 (Drumlin fields)
   86 (Eskers and kames)
Fluvial processes (crudely to well stratified)
   88 (Alluvial fans and aprons)
   93 (Outwash surfaces)
   96 (Floodplains)
  103 (Deltaic surfaces)
  107 (Terraces)
  110 (Coastal alluvial plains)
Lacustrine processes (well stratified)
  116 (Beds of perennial lakes)
  120 (Beds of ephemeral lakes)
Littoral processes (crudely to well stratified)
  124 (Tidal flats)
  126 (Beach ridges)
Volcanic processes (well stratified)
  130 (Pyroclastic cones)
```

^{*} Terms in parentheses are the titles of landscapes as described in Part V, and numbers preceding parentheses denote page on which the specific landscape is described in detail. The listed examples do not include all possible types.

Table 10

Classification of Landscape Types Formed Chiefly of Consolidated Materials

Landscapes formed in consolidated materials of the following rock types:

```
Sedimentary rocks
  Stratified
    Bed horizontal or nearly so
      Plains
        135 (Limestone)*
138 (Shale)
        142 (Sandstone)
        145 (Limestone-shale)
        147 (Sandstone-shale)
        150 (Sandstone-shale-limestone)
      Plateaus
        153 (Limestone)
156 (Sandstone)
        159 (Sandstone-shale)
    Beds inclined
      Hills or mountains
        162 (Limestone)
165 (Dolomite)
        167 (Shale)
        170 (Sandstone-shale)
        173 (Limestone-shale)
Igneous rocks
  Stratified
        176 (Basalt)
  Nonstratified
    Hills or mountains
        180 (Granitic)
Metamorphic
  Stratified
    Hills
         183 (Slate)
  Nonstratified
    Hills
         185 (Gneiss)
         187 (Schist)
```

^{*} Terms in parentheses are the titles of landscapes as described in Part VI, and numbers preceding parentheses denote page on which the specific landscape is described in detail. The listed examples do not include all possible types.

Table 11

Procedure for Airphoto Analysis

Step 1: Select study area and define purpose of study Step 2: Assemble photomosaic Step 3: Tabulate general background data a. Geological and geomorphic b. Climatic c. Vegetation d. Soils e. Cultural Land use Step 4: Inspect for photo quality a. Make estimate of potential reliability b. Determine photo factors likely to make interpretation difficult Step 5: Inspect mosaic for regional patterns a. Classify regional drainage type b. Delineate regions of similar land use and vegetation patterns c. Delineate regions of similar cultural activity Step 6: Delineate homogeneous areas, and define as regions Step 7: Select specific areas for detailed study Step 8: Study specific areas stereoscopically, and refine regional boundaries a. Classify regional drainage types and channel types b. Classify surface configuration c. Classify gully types d. Describe vegetation types e. Describe cultural activities, both land use and construction Step 9: Erect new regions if needed, or combine regions if appropriate Step 10: Tabulate physical characteristics of each region Step 11: Classify the landscape type of each region Step 12: Identify parent materials and soil types Step 13: Tabulate probable minor characteristics of soil and landscape types Step 14: Examine each region in detail for presence of minor characteristics Step 15: Refine boundaries or regional definitions, if necessary Step 16: Estimate soil trafficability characteristics of each region Step 17: Examine stereoscopically for evidence of obstacle factors a. Vegetation b. Microrelief features c. Construction features d. Hydrographic features Step 18: Tabulate obstacle factors in each region Step 19: Subdivide regions on basis of obstacle factors, if necessary

Step 20: Tabulate terrain trafficability characteristics of each region

Step 21: Construct final terrain trafficability map

Terrain Trafficability Characteristics of Part of Hart County, Kentucky

	Hydro- graphic Character- istics## 2 2 2 2 2 2 1 1 2 2 2 2 2 2 3 3
	Shrubst C C C C C C C C C
	Treestt D C C C C C C
	"Stepped" Surface c c d d d b b b
	Traverset 1n 1n 0.4 0.5 0.3 0.4 0.3 0.4 0.4 0.7
	Gullies d d d d d d b c c d e
	Surface Characteristics** faxi- Cut and Fill mum Ditches Banks Gullies 50 b b d 100 c c d 60 b b d 60 c c c 60 c c c 60 d d d 60 d d d 60 b b b 60 b b b 15 a a e
	Surface Ditches c c c d d d a
	Slopes, Charac. 1 teristic
Jug	Cone Indext Topo- Topo- Graphic Graphic Highs Lows 125 125 120 120 120 140 140 145 140 140 140 140 140 140 140 140 140 140
Rat	Cone 170 Propose 125 125 125 126 140 140 140 140 300 300 4
	Region 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

The RCI given is the minimum probable value during the wet season. These features must, in general, include slopes greater than I ft in height and steeper than 60%.

The scale of values is

as follows:

Common.

Mumerous.

Present but not common.

Rare. ä

Absent.

Mean distance in miles between gullies, ditches, or cut and fill banks along a random straight line. #

Dense; passable, but path tortuous.

Moderately dense; passable, but path length substantially extended. Patches and rows; path length slightly extended.

Rare or absent; no appreciable effect on path length. values for shrub density is: The scale of

Dense; visibility seriously inhibited; path selection difficult. Moderately dense; visibility somewhat inhibited; path selection not seriously inhibited. Rare or absent; visibility not appreciably affected; path selection easy. The scale of values for hydrographic features is: *

Small ponds, easily bypassed. Surface water absent.

Unfordable water barrier subdivides region.

\$ Curbs, terraces, walls, etc.

Fig. 1. USDA soil textural classification

Fig. 2. Difference in tone. The dark horizontal lines are caused by tillage operations. La Porte County, Indiana, 27 May 1953

a. Stereopair of 12-in. focal length photos at scale of 1:30,000

b. Stereopair of 12-in. focal length photos at scale of 1:2400

Fig. 3. Variation of photo images and photo texture with change in scale (U. S. Air Force photos)

a. 18 May 1954

b. 7 October 1953

c. 18 May 1954

Fig. 4. Illustrations of tone and texture, La Porte County, Indiana

Fig. 5. Illustrations of tone and texture, Tipton County, Indiana

Gully erosion and foliage differences. Winter appearance, Gibson County, Indiana, December 1952 Fig. 6.

Gully erosion and foliage differences. Summer appearance, Gibson County, Indiana, June 1953

a. Stereopair of 6-in. focal length photos

b. Stereopair of 12-in. focal length photos

Fig. 8. Effect on apparent relief of change in focal length of camera (U. S. Air Force photos)

Diagram A

Diagram B

Photograph: Warren County, Mississippi, 30 December 1956

Drainage pattern: Pinnate, slightly asymmetric

Parent materials: Deep, homogeneous, unconsolidated silt (loess)

Diagram A: stream order

Streams are ordered from the headwaters downstream. The first clear scour channel is order 1; the junction of two order 1 channels produces an order 2 stream, and so on. Thus, on the diagram: a dotted line indicates an order 1 (first order) stream; a thin solid line indicates an order 2 (second order) stream; a heavy solid line indicates an order 3 (third order) stream. Note that the junction of a first order and a second order stream does not produce a third order stream.

Diagram B: tracing of drainage pattern from photograph.

Fig. 10. Drainage pattern terminology

250.0 mm

PHOTO 1

FIND:
$$h_{AB} = \frac{H(\Delta p)}{b_A + \Delta p}$$

GIVEN: ALTITUDE IN FEET, H MEASURE: DIFFERENCE IN PARALLAX, Δp Photo base, b_Δ

PROCEDURE:

- LOCATE PRINCIPAL POINTS OF PHOTOS
 1 AND 2 BY INTERSECTION OF FIDUCIAL
 AYES
- 2. STEREOSCOPICALLY TRANSFER THE PRINCIPAL POINT OF PHOTO 1 TO PHOTO 2 AND THE PRINCIPAL POINT OF PHOTO 2 TO PHOTO 1.
- 3. OVERLAP THE TWO PHOTOGRAPHS SO THAT COMMON PHOTO IMAGES ARE SUPERIMPOSED. MEASURE TO NEAREST 1/100 IN. THE DISTANCE BETWEEN LEFT FIDUCIAL MARK OF PHOTO 1 AND LEFT FIDUCIAL MARK OF PHOTO 2. THIS DISTANCE IS THE PHOTO BASE **b**_A.
- 4. SEPARATE THE PHOTOS ALONG LINE OF FLIGHT SUFFICIENT DISTANCE TO OBSERVE ALL IMAGES, AND MAINTAIN A STRAIGHT ALIGNMENT OF THE FOUR POINTS OF STEPS 1 AND 2.
- 5. A MORE EXACT MEASUREMENT OF THE PHOTO BASE b_A MAY BE MADE BY MEASUREMENT OF p_1p_2 AND $\sigma_1\sigma_2$ WHERE $b_A=p_1p_2-\sigma_1\sigma_2$.
- 6. THE DIFFERENCE IN PARALLAX Δp
 = a₁a₂ b₁b₂. If the difference in
 PARALLAX IS POSITIVE THE DIFFERENCE IN ELEVATION IS ABOVE POINT A,
 AND IF NEGATIVE THE DIFFERENCE IN
 ELEVATION IS BELOW POINT A.
- 7. THE FORMULA IS EXACT FOR TRULY VERTICAL STEREOSCOPIC PHOTO-GRAPHS EXPOSED FROM THE SAME ALTITUDE. THESE IDEAL CONDITIONS ARE SELDOM, IF EVER, REALIZED IN PRACTICE. HOWEVER, FOR LOW TILTS (3° OR LESS) FAIRLY GOOD RESULTS ARE OBTAINABLE FOR TRAFFICABILITY STUDIES.

Fig. 11. Photogrammetric relations

PHOTO 2

a. Undulating and basined: Hinds County, Mississippi, 30 December 1956

b. Undulating and basined: Walworth County, Wisconsin, 2 October 1956

c. Rolling and basined: Hart County, Kentucky, 28 August 1958

Fig. 12. Examples of surface configurations, scale 1:20,000

Sheet 1 of 3 sheets

d. Rolling and valleyed: Sequatchie County, Tennessee, 23 April 1959

e. Crested: Hart County, Kentucky, 28 August 1958

f. Crested and valleyed: Sequatchie County, Tennessee, 23 April 1959

Fig. 12. Examples of surface configurations, scale 1:20,000

Sheet 2 of 3 sheets

g. Crested and valleyed: Warren County, Mississippi, 30 December 1956

h. Blocky and valleyed: Warren County, Mississippi, 30 December 1956

i. Blocky and valleyed: Hart County, Kentucky, 28 August 1958

Fig. 12. Examples of surface configurations, scale 1:20,000

13 October 1953

Fig. 14. Record of daily soil moisture for a clay soil, Mound, Louisiana (climate D-2; see Appendix B)

Fig. 15. Dune field, La Porte County, Indiana (climate C-2)

Fig. 16. Dune field, Fremont County, Idaho (climate C-3)

Fig. 17. Dune field, Lincoln County, Nebraska (climate C-2)

Fig. 18. Dune field, Porter County, Indiana (climate C-2)

Fig. 19. Loess surface, Woodbury County, Iowa (climate C-2)

Fig. 20. Loess surface, Buffalo County, Nebraska (climate C-2)

Fig. 21. Old ground moraine (Illinoian stage), southern Indiana (climate D-2)

Fig. 22. Young ground moraine (Wisconsin stage), Champaign County, Illinois (climate D-2)

Fig. 23. Young ground moraine (Wisconsin stage), Benson County, North Dakota (climate C-3)

Fig. 24. Ridge moraine, Crawford County, Michigan (climate C-2)

Fig. 25. Kettle-kame moraine, Barry County, Michigan (climate C-2)

Fig. 26. Drumlin field, Dane County, Wisconsin (climate C-2)

Fig. 27. Eskers (opposite marginal arrows) with poorly developed kames in upper left corner, Walworth County, Wisconsin, 2 October 1956, scale 1:20,000

Fig. 28. Alluvial fan and alluvial apron, Death Valley, California (climate D-4)

Fig. 29. Outwash surface, Portage County, Wisconsin (climate C-2)

a. Ridge and swale, Hinds County, Mississippi (climate D-2)

b. Natural levee, southern Louisiana (climate D-1)

Fig. 30. Floodplains

a. Natural levee and swamp, southern Louisiana (climate D-2)

 Natural levee and swamp, southern Louisiana (climate D-2)

c. Deltaic plain, Walworth County, Wisconsin (climate C-2)

Fig. 31. Deltaic surfaces

Fig. 32. Terrace, Burleigh County, North Dakota (climate C-3)

Fig. 33. Coastal alluvial plain, Pender County, North Carolina (climate D-2)

Fig. 34. Coastal alluvial plain, Wayne County, North Carolina (climate D-2)

Fig. 35. Bed of a perennial lake (lacustrine surface), Lucas County, Ohio (climate C-2)

a. Salina type

Fig. 36. Examples of playa surfaces, Death Valley, California (climate D-4)

Fig. 37. Beach ridges, Wilkin County, Minnesota (climate C-2)

Fig. 38. Pyroclastic cone, Jefferson County, Idaho (climate D-2)

a. Lawrence County, Indiana (climate D-2)

b. Hart County, Kentucky (climate D-2)

Fig. 39. Limestone plains

Fig. 40. Shale plain, Yolo County, California (climate D-3)

Fig. 41. Sandstone plain, Brown County, Indiana (climate D-2)

Fig. 42. Limestone-shale plain, Dearborn County, Indiana (climate D-2)

Fig. 43. Sandstone-shale plain, Pike County, Indiana (climate D-2)

Fig. 44. Sandstone-shale-limestone plain, Martin County, Indiana (climate D-2)

Fig. 45. Sandstone plateau, Mesa County, Colorado (climate C-3)

Fig. 46. Sandstone-shale plateau, Sheridan County, Wyoming (climate C-3)

Fig. 47. Limestone hills, Maury County, Tennessee (climate D-2)

Fig. 48. Shale hills, Berks County, Pennsylvania (climate D-2)

Fig. 49. Sandstone-shale hills, Jefferson County, Alabama (climate D-2)

Fig. 50. Limestone-shale hills, Floyd County, Georgia (climate D-2)

Fig. 51. Basalt plain, Spokane, Washington (climate D-3)

Fig. 52. Granite hills, DeKalb County, Georgia (climate D-2)

Fig. 53. Slate hills, Talladega County, Alabama (climate D-2)

Fig. 54. Gneiss hills, York County, South Carolina (climate D-2)

Fig. 55. Schist hills, Carroll County, Georgia (climate D-2)

Fig. 56. Overlay of study area, Hart County, Kentucky (climate D-2) (in envelope attached to the inside of the back cover of Volume II)

Fig. 57. Photomosaic, Hart County, Kentucky, approximate scale 1:95,000

Fig. 58. Overlay of study area A, Hart County, Kentucky (in envelope attached to the inside of the back cover of Volume II)

Fig. 59. Area A, Hart County, Kentucky, scale 1:20,000

Fig. 60. Overlay of study area B, Hart County, Kentucky (in envelope attached to the inside of the back cover of Volume II)

Fig. 61. Area B, Hart County, Kentucky, scale 1:20,000

Fig. 62. Overlay of study area C, Hart County, Kentucky (in envelope attached to the inside of the back cover of Volume II)

Fig. 63. Area C, Hart County, Kentucky, scale 1:20,000

Fig. 64. Overlay of study area A, Hart County, Kentucky (in envelope attached to the inside of the back cover of Volume II)

Fig. 65. Overlay of study area B, Hart County, Kentucky (in envelope attached to the inside of the back cover of Volume II)

Fig. 66. Overlay of study area C, Hart County, Kentucky (in envelope attached to the inside of the back cover of Volume II)

Approximate scale, 1:95,000 For meaning of symbols, see table 12

Fig. 67. Overlay of terrain trafficability map, Hart County, Kentucky (in envelope attached to the inside of the back cover of Volume II)

APPENDIX A: INDEX TO GEOGRAPHIC LOCATION OF ALL TRAFFICABILITY TEST AREAS

1. Appendix A is an index of the soil test areas used in this study arranged alphabetically by states. Under each state the areas are designated by the nearest town and the county in which they were located, and are listed in the order in which the tests were conducted. Fig. Al shows the approximate location. The number on the map corresponds to the area number given in the following tabulation.

Area No.	Town	County	Climate*								
	Alabama										
1	Alaflora	Escambia	D-2								
1 2	Oneonta	Blount	D-2								
	Wadley	Chambers	D-2								
3 4 5 6	Leeds	Jefferson	D-2 D-2								
5	Bessemer	Jefferson	D-2								
6	Lincoln	Talladega	D-2								
7	Talladega	Talladega	D-2								
7 8	Sylacauga	Talladega	D-2								
	Arka	nsas									
		·									
1	Little Rock	Pulaski	D-2								
2	Newport	Jackson	D-2								
	Calif	ornia									
1	Ogilby	Imperial	D-4								
1 2 3 4 5 6	Tracy	San Joaquin	D-3								
3	Los Banos	Merced	D-4								
4	Corcoran	Kings	D-4								
5	Mendota	Fresno	D-3, D-4								
	Soda Lake (Dry)	San Luis Obispo	D-2								
7 8	Muroc (Edwards AFB)	Kern	D-14								
	McKittrick	Kern	D-4								
9	Conner	Kern	D-4								
10	Palmdale	Los Angeles	D-2								
	Colo	rado									
1	Golden	Jefferson	C-3								
	(Cont	inued)									

^{*} Climate code numbers are defined in Appendix B.

Area No.	Town	County	<u>Climate</u>
	<u> 1</u>	Florida	
ı	Chattahoochee	Co do su	
2	Genoa	Gadson Hamilton	D-5
			D-2
	<u>(</u>	Georgia	
1	Cussetta	Chattahoochee	D-2
2	Pecan City	Dougherty	D-2
3 4	Albany	Dougherty	D-2
4	Colon	Clinch	D-2
5 6	Roopville	Carroll	D-2
	Stone Mountain	DeKalb	D-2
7 8	Crystal Springs	Floyd	D - 2
	Shannon	Floyd	D - 2
9	Silvertown	Upson	D-2
		Idaho	
7			
1	Burley	Cassia	C-3
2 3 4	Twin Falls	Twin Falls	C-4
3 1.	St. Anthony	Fremont	C-3
4	Roberts	Jefferson	C-3
	<u>I1</u> :	linois	
1	Ch. 1.1.		
2	Sheldon	Iroquois	C-2
	Champaign	Champaign	D-2
3 4	Galena	Jo Daviess	C-2
5	Galena	Jo Daviess	C-2
2	Galena	Jo Daviess	C-2
	<u>Ir</u>	diana	
1	Johnson	Gibson	
2	Michigantown	Clinton	D-2
3	Evansville	Vanderburg	D - 2
4	Medaryville	Pulaski	D-2
5	Perth	Clay	C-2
6	Marco	Greene	D-2
7	Thayer		D-2
3 5 6 7 8	Fort Wayne	Newton Allen	C-2
9	Lafayette		C-2
10	New Harmony	Tippecanoe	D-2
11	Evansville	Posey	D-2
12.	Patoka	Vanderburg	D-2
13	West Lafayette	Gibson	D-2
14	Buckskin	Tippecanoe	D-2
- ·	DUCKBATH	Gibson	D-2
	(Cont	timued)	

Area No.	Town	County	Climate	
	Indiana (Con	tinued)		
15 16 17 18 19 20 21 22 23 24	Stringtown Washington Dunes State Park Nashville Aurora-Guilford Celestine Mitchell Shoals Bloomington Stendal	Vanderburg Daviess Porter Brown Dearborn Dubois Lawrence Martin Monroe Pike	D-2 D-2 C-2 D-2 D-2 D-2 D-2 D-2	
	Iowa			
1 2 3 4 5	Mason City Waterloo Des Moines Council Bluffs Sioux City	Cerro Gordo Blackhawk Polk Pottawattamie Woodbury	C-2 C-2 C-2 C-2 C-2	
	Kansas			
1 2 3	Wathena McAllister Olathe	Doniphan Logan Johnson	C-2, D-2 D-3 D-2	
	Kentuck	<u>y</u>		
1 2 3	West Point Garrett Morganfield	Hardin Meade Union	D-2 D-2 D-2	
	Louisia	<u>ina</u>		
1 2 3	Mound Monroe Lafayette	Madison Ouachita Lafayette	D-2 D-2 D-2	
	Marylar	<u>nd</u>		
1 2 3 4	Gaithersburg Collington Easton Easton	Montgomery Prince Georges Talbot Talbot	D-2 D-2 D-2 D-2	

Area No.	Town	County	Climate
		Michigan	
1 2 3 4 5 6 7 8 9	Coldwater Roscommon Grayling Frederic Manistee Hastings Houghton Lake Petoskey Mason	Branch Roscommon Crawford Crawford Manistee Barry Roscommon Emmet Ingham	C-2 C-2 C-2 C-2 C-2 C-2 C-2 C-2
		<u>Minnesota</u>	
1 2 3 4 5 6 7 8	Bemidji Waskish Strawberry Lake Zimmerman Minneapolis Ogema Detroit Lakes Breckenridge	Beltrami Beltrami Becker Sherburne Dekota Becker Becker	C-2 C-2 C-2 C-2 C-2 C-2
	<u>M</u>	lississippi	
1 2 3 4 5 6 7	Cleveland Elizabeth Vicksburg Hebron Hollandale Shaw Ellisville	Bolivar Washington Warren Jones Washington Bolivar Jones	D-2 D-2 D-2 D-2 D-2 D-2 D-2
	1	Missouri	
1 2 3 4 5 6 7	Essex Sikeston Charleston Charleston Marshall Tarkio Springfield	Stoddard Scott Mississippi Mississippi Saline Atchison Greene	D-2 D-2 D-2 D-2 D-2 C-2 D-2
	<u>]</u>	<u>Nebraska</u>	
1 2 3	Kearney Minden North Platte	Buffalo Kearney Lincoln Continued)	C-2 C-2 C-2

Area No.	Town	County	Climate
	Nebraska (Con	ntinued)	
4	North Platte	Lincoln	C-2 C-2
5	Norfolk	Madison	0 2
	<u>Nevad</u>	<u>a</u>	
1	Winnemucca Lake (Dry)	Washoe	D-4 D-4
2	Gerlack	Washoe Lyon	D-4
3	Fernley	цуон	
	New Yo	<u>ork</u>	
1	Elba	Genessee	C-2
	North Car	olina	
7	Asheboro	Randolph	D-2
1	Goldsboro	Wayne	D-2
2 3 4	Wilmington	Pender	D - 2
4	Elizabeth City	Pasquotank	D-2
	North Da	akota	
1		Benson and Nelson	C-3
1 2	Michigan	Nelson	C-3
3	Minot	Ward	C-3
3 4 5 6 7 8 9	Grand Forks	Grand Forks	. C-2
5	Grand Forks	Grand Forks	C-2
6	Fargo	Cass	C-2
7	Bismarck	Burleigh	C-3
8	Bismarck	Burleigh	C-3
	Bismarck	Burleigh	C-3 C-3
10	Minot	Ward	C-3
11	Sanborn	Barnes	C-3
12	Michigan	Nelson	C-3
13 14	Leeds Minot	Benson Ward	C-3
14	Ohi Ohi		
	<u> </u>	<u>-</u>	
1	Johnstown	Licking	D-2
	Delta	Fulton	C-2
2 3 4 5 6	Alton	Franklin	D-2 C-2
4		Fulton and Lucas	D-2
5	Tipp City	Miami	D-2 D-2
	Gahanna	Franklin	D-2
7	Zanesville	Muskingum	ש-ב
	(Conti	nued)	

Area No.	Town	County	Climate		
	Ohio (C	continued)			
8 9 10	Bono Richfield Center Monclova	Lucas Lucas Lucas	C-2 C-2 C-2		
	<u>Or</u>	egon			
1 2 3 4 5	Pendleton Umatilla North Bend Fort Klamath Harper Dallas	Umatilla Umatilla Coos Klamath Malheur Polk	C-3, D-3 D-3, D-4 D-1 D-3 C-3 D-2		
	Penns	ylvania			
1 2 3	Shoemakersville Waynesburg Kittanning	Berks Greene Armstrong	D-2 D-2 C-2		
	South	Carolina			
1 2 3 4 5 6	Belton Filbert Conway Lake City Columbia McColl	Anderson York Horry Florence Richland Marlboro	D-2 D-2 D-2 D-2 D-2 D-2		
	South	Dakota			
1 2	Aberdeen Aberdeen	Brown Brown	C-2 C-2		
	<u>Ten</u>	nessee			
1 2 3	Lawrenceburg Columbia White House	Lawrence Maury Robertson	D-2 D-2 D-2		
	<u>U</u>	<u>tah</u>			
1 2	Wendover Brigham	Tooele Box Elder	C-4 C-3		

Area No.	Town	County	Climate
	<u>v</u>	irginia	
1 2 3 4 5	Waynesboro Danville Suffolk Fairfax Amelia	Augusta Pittsylvania Nansemond Fairfax Amelia	D-2 D-2 D-2 D-2 D-2
	<u>Wa</u>	shington	
1 2 3 4	Pullman Ritzville Moses Lake Medical Lake	Whitman Adams Grant Spokane	D-2, D-3 D-3 C-4 D-3
		t Virginia	
1	Inwood	Berkeley	D-2
	<u>W</u>	isconsin	
1 2 3 4 5 6	Janesville Redgranite Plover Glenbeulah New Richmond Marshall	Rock Waushara Portage Sheboygan St. Croix Dane	C-2 C-2 C-2 C-2 C-2
		Wyoming	
1 2	Lovell Veross	Big Horn Sheridan	C-3 C-3

Fig. Al. Locations of test areas

APPENDIX B: SUMMARY OF SOIL AND SITE DATA

- 1. Appendix B contains a summary tabulation of the soil and site data collected from the 550 sites tested. The soil data for fine-grained soils are average values for the 6- to 12-in. layer, and soil data for clean sands (SP) are average values for the 0- to 6-in. layer. The tabulation is divided into two parts based upon the classification of landscape types formed chiefly of unconsolidated or consolidated materials. The next order of subdivision for the unconsolidated and consolidated materials is based upon method of deposition and rock type, respectively.
- 2. Some of the soil strength data collected for this report were collected prior to the development of the remolding test. In order to convert the cone index readings to rating cone index an average remolding index was used for that specific soil type and topographic position. The average remolding index was obtained from TM No. 3-240, 16th Supplement, which presents ranges and means determined from over 1100 sets of data of all pertinent soil property data for each soil type for several topographic positions and wetness conditions.
- 3. Definitions of column headings and symbols used in the tabulation are as follows:
 - <u>a.</u> The side headings of the various sections are the names of the landscape types described in Parts V and VI of main text. The page number in parentheses denotes the page on which the detailed description begins.
 - b. Column headings are as follows:
 - (1) <u>Climate.</u> The climatic regime of each landscape type is described in general terms according to the following code:

		Temperature	Precipitation			
Α.	Very cold	Tundra	1.	>60 in., very humid		
в.	Cold	5000 1	2.	20-60 in., humid		
c.	Cool	5000 degree-days 250 degree-days (24-in.	3•	10-20 in., transitional		
D.	Warm	frost depth)	4.	<10 in., arid		

E. Hot

See fig. Al in Appendix A for generalized boundaries of these regions.

- (2) <u>Site.</u> The generalized physiographic position of the samples employed to determine numerical data is designated:
 - H. Crest or side slope of uplands
 - L. Valley or depression floor
- (3) STC. Soil trafficability class, as per table 3 of the main text.
- (4) <u>USCS</u>. Soil group according to the Unified Soil Classification System. See table 1, main text.
- (5) <u>USDA</u>. Soil texture according to the United States Department of Agriculture system. See fig. 1, main text.
- (6) RCI (Min). The minimum rating cone index exhibited by the soil. Numbers without parentheses are measured values; numbers in parentheses are estimated values.
- (7) RCI (Mean). The mean rating cone index of all samples of the soil type. Both measured and estimated values were employed, and where the majority of the data used in determining averages was estimated, these averages are given in parentheses.
- (8) N. The number of samples available in each soil type.
- (9) VC. The vehicle category having the highest RCI requirements that can traverse the soil. Vehicle category is evaluated on the basis of RCI (Min). See tabulation on page 13 of main report.

	Lands	capes	in Uncor	nsolidat	ted Material	.s		
Climate	Site	STC	USCS	USDA	RCI (Min)	RCI (Mean)	_ <u>N</u>	VC
			Eo	Lian				
Dune fields (pag	e <u>59)</u>							
C-2	H H L L	A D A D	SP SP-SM SP SM	S S S LS	38 108 55	(97) (242) (135) 138	5 1 3 2	7 7
C-3	Н Н Н	A D D	SP SP-SM SM	s s sl		(96) 300+ 300+	1 1 1	7 7
C-4	H L	D D	SP-SM ML	S S i L		235 300+	1 1	7 7
D-1	H L L	A A D	SP SP SP-SM	S S	76 	(94) (75) 300+	2 1 1	 7

Lar Climate	ndscapes Site	in Un	consolid USCS	ated Mat USDA	cerials (Con RCI (Min)	tinued) RCI (Mean)	N	VC
	<u> </u>	<u> </u>			101 (1111)			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
D-14	H	A	SP	S	16	(59)	3	
	H L	D A	SM SP	SL S		(224) (233)	1 1	6
	r r	D	SM	SL		300+	ì	7
	_					3 *	 26	
Loess surfaces	(page 64	.)					20	
C-2	Н	В	CH	SiC		(205)	1	7
	H	C	\mathtt{CL}	\mathtt{SiL}	132	180	4	7
	H	D	ML	{SiL {Si	 94	(128) 127	1 2	7
	L	С	CL	SiL	9 4 89	118	2	7 7
	Γ	D	ML	SiL		261	ī	
	L	D	OL	SiL		73	1	7 5 5
	L	D	OH	\mathtt{SiL}		(76)	1	5
C-3	H	D	ML	Si		(141)	l	7
	L	C	GM			(146)	1	7
C-4	H	C	\mathtt{CL}	Si		300+	1	7
	H	D	ML	S i L		(200)	1	7
	L	C	$_{ m CL}$	Si		(182)	1	7
D-2	Н	C	CL	{SiL Si	71 	102 (116)	<u>ዛ</u> ጔ	7 7
	H	D	ML	Si		(175)	1	7
	${f L}$	C	CL	SiL	(80)	(122)	4	7
	L	D	ML	{SiL {Si		145 (113)	l l	7 7
	L	D	ОН			50	l	3
D-3	Н	C	CL	SiL		(179)	1	7
	H	D	ML	{SiL Si	 186	(209) 186	1 1	7 7
	L	D	ML	SiL Si Si		300+ 300+	1	7
	L	D	CL-ML	SiL		300+	1 1	7 7
	Ĺ	D	OL	Si		49	ī	2
D-4	H	D	ML	Si		214+	2	7
							40	
							40	

		in Un	consoli	dated Mat	cerials (Con			
Climate	Site	STC	USCS	USDA	RCI (Min)	RCI (Mean)	_N	VC
			G	lacial				
Old amound morned	000							
Old ground morain (Illinoian stage		69)						
D-2	H	C	CL	\mathtt{SiL}	(92)	(100)	2	7
	ŗ	D	$\mathbf{M}_{\mathbf{L}}$	\mathtt{SiL}	(87)	(92)	2 2 1	7 6
	L	D	OL	SiL		(60)	1	4
							5	
Young ground more	aines							
(Wisconsin stage		72)						
C-2	H	D	ОН	L		(82)	1	6
	H L	D D	ML OH	SiL SiL		(90) (47)	l l	6
	L	D	OL	SL	(64)	(88)	2	2 4
	\mathbf{L}	E	Pt			(52)	1	3
				(L		(149)	1	7
C-3	H	C	$\mathtt{C}\mathtt{\Gamma}$	C	(81)	(129)	1	
	H	D	ML	(SL SL	(OT)	(114) (128)	3 1	7 7 7
	H	D	OL	\mathtt{SL}		(115)	1	7
	H	В	CH	SiL		(102)	1	7
	L	C	CL	(C	46	(34) (59)	1	7 2 3 4
	L	D	ОН	{	(58)	(60)	3 2	4
D - 2	TT	T	O.T.	(CL		(66)	1	4
D=2	H	B	CH	(SiL	 (oo)	(123)	1	7
	H	C	\mathtt{CL}	$\left\{egin{array}{l} \mathrm{L} \\ \mathrm{SiL} \end{array} ight.$	(93) (73)	(100) (106)	1 7	7 7
	H	D	ML	\mathtt{SiL}	(88)	(108)	7 4	7 7 6 3
	$ ilde{ extbf{r}}$	B	CH	SiL	(86)	(87)	2	6
	${f L}$	C	CL	SiL (SI	(58)	(55) (63)	1	
	${f L}$	D	ML	{ SL SiL		(63) (79) (60)	1	5
	L	D	OL	$\mathtt{S}\mathbf{i}\mathrm{L}$	(45)	(60)	4	7
	L	D	OH	$\left\{egin{array}{l} ext{L} \ ext{SiL} \end{array} ight.$	(30)	(72) (55)	2 1 4 1 6	4 7 5 3
				((34)	1771	_	J
							51	

Land	lscapes	in Un	consolida	ated Mat	erials (Con			
Climate	<u>Site</u>	STC	USCS	USDA	RCI (Min)	RCI (Mean)	_ <u>N</u>	VC
Ridge moraines (
<u>Michigan, N</u>				<u>sin</u>				
C-2	H	A	SP	S		156	1	
	H H	C	CL SC	C SL		(162) (236)	1 1	7 7
				(S		300+	i	7
	H	D	SM	{sl	(135)	(174)	2 6 2 1	7 7 7 5
	H	D	SP-SM	S	(124) 62	(228)	6	7
	H L	D A	SM-SC SP	SL S	02	73 45	1)
	L	Ĉ	SC	SL		(252)	ī	7
	L	D	ML	(L		(127)	l	7
	1.3		1.11	(SiL	 (144)	(45)	1	2
	L	D	SM	{SL {LS	32	(156) 125+	1 3 3 1 3	7 2 7 7 4
	L	D	OH	SiL		(69)	ĭ	4
	\mathbf{L}	D	SP-SM	S	(188)	(237+)	3	7
	L	D	SM-SC	\mathtt{SL}		(108)	1	7
Indiana						4 0		
C-2	Н	C	\mathtt{CL}	{SiCL SiL	(140)	(228) (142)	1 2	7
	L	В	CH	L L		(173)	1	7 7
	_			(SL	,	(159)	1	7 7
	L	C	\mathtt{CL}	{ SiL C	(127)	(156)	2 1	7
				(C		(141)		7
							37	
Kettle-kame more	aines (p	age 7	<u>9)</u>					
C-2	H	D	SM	[LS		25	1	ı
	Н	D	MH	(s SiL	283	290+ (155)	2 1	7 7
		C	CL	(L		(179)	l	7
	L			(SiL	(02)	(59)	1 2 2 1	3 2 3 1
	L L	D D	OL OH	SiL L	(23) (53)	(33) (5h)	2	2
	L	E	Pt			(59) (33) (54) (27)	1	i
a •	**	~	ΩT	т.	(101)		0	~
C - 3	H H	C D	CL SM-SC	L SL	(131)	(135) (184)	2 1 3	7 7 5
	L	D	OH	L	18	(78)	3	5
						-	—	
							17	

	Site	STC	USCS	USDA	erials (Con RCI (Min)	RCI (Mean)	N	VC
rumlin fields	(page 81	+)						
C-2	H L L L	C D B D	CL SM CH MH Pt	CL LS SiC SiL	 (64)	(129) 300+ (196) (104) (72)	1 1 1 2	7 7 7 7 5
kers and kame	es (page	86)						
C-2	H	D	SP-SM	S		300+	1 1	7
			<u>F1</u> :	uvial				
lluvial fans a		. 881						
D-2	L	D	ML	SiL		256	ı	7
D - 3	L	C	CL	SiL		81	1	6
D-4	L	C	CL	SL		60	1	4
							3	
luvial fans a		ige 88)				3	
luvial fans a prons (unirria D-2		nge 88 B D D	CH ML SM	C SiL LS		85 178 300+	1 1 1	6 7 7
orons (unirria	gated)(pa L L	B D	CH ML	\mathtt{SiL}	 	178	1 1	7
orons (unirrig D-2	gated)(pa L L L L	B D D	CH ML SM SM-SC	SiL LS SL SiC SiL	 (90)	178 300+ 94 38 51 223 (94)	1 1 1 1 1	7 7 6 2 3
D-2 D-3	gated)(pa L L L L H	B D D C	CH ML SM SM-SC CL	SiL LS SL SiC SiL SL SiL SiL		178 300+ 94 38 51 223 (94) 14 66	1 1 1 1 1 2 1	77 623 7614
D-2 D-3	gated)(pa L L L L H L	B D D C	CH ML SM SM-SC CL	SiL LS SL SiC SiL L SiL SiL SL LS	 (90) 124	178 300+ 94 38 51 223 (94) 14 66 231 300+	1 1 1 1 1 2 1 3 1	77 623 761477
D-2 D-3	gated)(pa L L L H L	B D D C	CH ML SM SM-SC CL CL	SiL LS SL SiC SiL L SiL SiL SL SL		178 300+ 94 38 51 223 (94) 14 66 231	1 1 1 1 1 2 1	77 623 7614

					erials (Con			
Climate	Site	STC	USCS	USDA	RCI (Min)	RCI (Mean)	<u>N</u>	VC
Outwash surface	s (page	<u>93)</u>						
C-2	H	C	SC	\mathtt{SL}		(250)	1	7
	H	C	\mathtt{CL}	\mathtt{SiL}		(133)	1	7
	H	D	SP-SM	S		(118)	1	7
	L	D	\mathtt{SM}	\mathtt{SiL}		(174)	1	7 7 6
	L	D	ML	\mathtt{SiL}		(114)	1	7
	L L	D	OH	\mathtt{SiL}		(91)	1	
	L	E	Pt			(11)	1	1
	06)						7	
Floodplains (pa				(C		(131)	1	7
D - 2	H	C	$_{ m CL}$	(SiL	(61)	(100)	4	7 6
	H	D	ML	{Si SiL	(128)	(128) (144)	1 3 1	7
	H	D	CL-ML	\mathtt{SL}		(95)	1	6
	H	D	MH	SiL	(84)	(100)	2 3 1	7
	Γ	В	CH	C	(85)	(119)	3	Ϊ.
	L	C	\mathtt{CL}	SL SiL	(52)	(72) (86)		776775634273
	L	D	\mathbf{ML}	{SiL Si	(55) (34)	(58) (61)	9 2 4	3
	\mathbf{L}	D	MH	SiL		(45)	1	2
	\mathbf{L}	D	OL	\mathtt{SiL}		(116)	1	7
	L	D	OH	SiL	(41)	(50)	2	3
D-4	\mathbf{L}	В	CH	C		106	1	7
	${f L}$	D	OH	\mathtt{CL}		47	1	2
							37	
Deltaic surface								
C - 3	L L	D D	SM OL	SL L		70 36	1 1	1 2
D - 2	H	A	SP	S		(126) (54)	1 1	
	${f L}$	C	\mathtt{CL}	\mathtt{SiL}		(54)		3
							4	
Terraces (page	107)							
C-2	L	D	OL	\mathtt{SiL}		(76)	1	5
V 11	_	_		 -		(1-)	_	

Landscapes in Unconsolidated Materials (Continued)									
Climate	Site	STC	USCS	USDA	RCI (Min)	RCI (Mean)	N	VC	
C-3	Н	D	SM	SL		(212)	1	7	
• •	L	B	CH	L		(90)	1	7 6	
	$\overline{ ext{L}}$	D	SM	SL	(111)	(111)	2	7	
					` ,				
D-2	H H	A C	SW SC	S SL		(300+) (142)	1 1	7	
	п	C	JG	rsiL		(166)	1	7 7	
	H	C	CL	SL L	(62) (145)	(114) (184)	2	7	
	H	D	\mathtt{SM}	SL	(212)	(219)	2	7 7 5 7 6	
	H	D	MH	SiL	/	(74)	ī	5	
	H	D	OL	L		(130)	ī	7	
	H	D	OH	L	(79)	(80)	3	6	
	L	В	CH	C	(83)	(96)	3 2	6	
	L	С	\mathtt{CL}	∫L C.T	(05)	(67)	1	4	
	L	С	CL	(SiL SiL	(25) 67	(48) (72)	3 2	2 6	
	L	D	SM	$\operatorname{\mathtt{SL}}$	111	(114)	2	7	
	${f L}$	D	ML	$\left\{ egin{array}{l} { t C} \\ { t SiL} \end{array} ight.$	(56)	(51) (74)	1 2	3 5	
	${f L}$	D	MH	\mathtt{SiL}		(75)	1	5	
	L	D	ОН	$\left\{ egin{array}{l} ext{SL} \ ext{L} \end{array} ight.$	(54) (18)	(56) (50)	2 10	7 3 5 5 3 2	
E- 2	H	С	CL	\mathtt{SiL}		(131)	1	7	
	H	D	SM	${ t SL}$		(237)	1	7	
							47		
Coastal alluvia	l mloind	(maga	. 110)						
Coastal swa		/ pag	<u>e 110)</u>						
D - 2	${f L}$	D	OH	$_{ m L}$		(60)	1	4	
	\mathbf{L}	D	SM-SC	\mathtt{SL}		71	1	5 4	
	${f L}$	E	Pt			(67)	1	4	
							_		
							3		
Marine ter	races an	ıđ							
undifferen			es						
D-2	Н	A	SP	S	(105)	(157)	5		
	H	A	SW-SM	\mathtt{SL}		(188)	l	7	
	H	C	CL	\mathtt{SiL}	126	(140)	2		
	H	C	SC	LS	(140)	(172)	2 4	7 7 4	
	H	D	\mathtt{ML}	\mathtt{SiL}	(19)	(66)	3 1		
	H	D	ML-CL	\mathtt{SiL}		300+	1	7	

					erials (Con			
Climate	Site	STC	USCS	USDA	RCI (Min)	RCI (Mean)	N	VC
D-2	H L L L L	D A C C D D D	SM SP-SM SP CL SC ML CL-ML SM MH	SL S SiL LS SiL SiL SiL SiL	(139) (45) (44) (81) (43) (49) (42) (33)	(208) (300+) (75) (84) (109) (66) (69) 68 (130) (94)	5 1 4 9 3 4 2 2 6 1 5 3	7 7 -6 7 4 4 7 6
			Lacus	strine				
Beds of perennic (lacustrine sur		age 1	16)					
C-2	H	В	CH	C		(119)	1	7
	H	C	CL	{L {SiL	(82)	(127) (128)	1 9	7 7
	H	C	SC	IS		(141)	1	7
	H	D	SM	{SL LS	(178)	(212) (195)	1 2	7 7
	H	D	SP-SM	S	(245)	(250)	2	7
	H	D	OL	SiL	(169)	(182) (68)	2 1	7 4
	H	D	OH	{L SiL L	(114)	(128) (1 1 8)	2 1	7 7
	Н	В	CH	SiL SiCL	(102)	(150) (130) (126)	1 4 1	7 7 7
	н	C	CL	SiL	(64)	(104)	5 2	7
	H	C	SC	SL	(122)	(132)	2	7
	H	D	ML	{SiL {SL	(23)	(36) (37)	3 1	2 2
	H	D	ML-MH	SiL		(54) (67) (185)	1 3	3 4
	H	D	SM CD CM	LS	(44)	(67) (185)	3	
	L	D	SP-SM	S (SL	(87)	(99)	7	6
	L	D	OL	{L (SiL	(89) (80)	(96) (88)	1 2 3 2 3 4	766652
	L	D	OH	{ L	(16)	(74)	3	5
	L	\mathbf{E}	Pt		(26)	(38)	4	2
C-3	Н	С	CL	SIL SIL		(131) (131)	1	7 7

Landscapes in Unconsolidated Materials (Continued)								
Climate	Site	STC	USCS	USDA	RCI (Min)	RCI (Mean)	N	VC
D - 2	H H L L	C D D B	CL OL OH CH SC	SiL SiL L C CL SiCL SL	(74) (140)	(152) (106) (151) (128) (105) (124) (158)	1 3 2 1 1 1	7 7 7 7 7
	ŗ	D	ML	SiL	(42)	(80)	2	6
	L	D	OH	{SiL L	(28)	(57) (32)	1 2	7 6 3 2 7
	Ŀ	D	MH	SiL	(ì07)	(ìĭo)	2	7
							78	
Beds of ephemeral lakes (playas) (p		<u>20)</u>						
C-4	L L	C C	GP Salt CL	A C		300+ 300+ (192)	1 1 1	 7 7
D-2	L	D	SM	SL		300+	1	7
D-ħ	L L L	B D D C D	CH ML MH CL SM OH	C CL LS C	18 300+ 158	193 (32) 18 50 300+ 229+ 242	1 1 2 10 2 1 	7 2 3 7 7
			<u>Lit</u>	toral				
Beach ridges (pag	e 126)	<u>_</u>						
C-2	н н н	B C D	CH SC SM	SiL S SL IS		(184) (156) (212)	1 1 1	7 7 7 7 7 4 3 7 6 2
	H	D	SP-SM	lis s		(203) 300+	l l	7
	L	C	SC	SL (SL		(64) (57)	1 1	4
	L L	D	SM OH	(IS SiL		(111) (81)	1 1	7
	L	E	Pt	מדדו		(43)	1	2

Landscapes in Unconsolidated Materials (Continued)								
Climate	Site	STC	USCS	USDA	RCI (Min)	RCI (Mean)	<u> N</u>	<u>vc</u>
C-3	L	D	SM	SL	lent and cut	300+	1.	7
C- 1	H	D	SM	SL		300+	2	7
D- 2	L	D	SM	SL		300+	1	7
							14	
			<u>Vol</u>	canic				
Pyroclastic cones	(page	130)						
C-3	H	D	SM	LS	(113)	206+ 9 ¹ 4	2 1	7 6
	L	D	SM	LS		94	1	6
							3	
	Tand	Iscanes	s in Con	solidate	d Materials	ı		
Climate	Site	STC	USCS	USDA	RCI (Min)	RCI (Mean)	N	VC
			Sedi	mentary				
Limestone plains	(page	135)						
D-2	Н	C	CL	SiL		124	1	7
	H L	D C	ML CL	SiL SiL	158 (125)	212 (132)	2 2	7 7
	_				(>)	(-5 /	_ 5	•
a 21 1.1	,	11:01						
Sandstone plains			M	Car	63	64	0	4
D - 2	H	D	ML	SiL	63	04	2 -	4
							2	
Limestone-shale	plains	(page	145)					
D-2	H H	B C	CH CL	C SiL	66	(126) 99	1 2	7 6
	H	D	ML	SiL		99 64	1	6 4
	L L	C D	CL OH	SiL L	(86) 	111 53	2 1	7
	-	-				, ,		_
							7	

Landscapes in Consolidated Materials (Continued)									
Climate	Site	STC	USCS	USDA	RCI (Min)	RCI (Mean)	N	V C	
Sandstone-shale plains (page 147)									
D-2	H	C	CL	SiL		82	1	6	
	L	D	ML	SiL		26	1	1	
							2		
Sandstone-shale-	_								
limestone plains (page 150)									
D-2	H	C	CL	SiL		(85)	ı	6	
	H L	D	ML CL	SiL SiL	148	(152) (1 1 2)	5	7 7	
	'n	C	CL	отп	59	(112)	_	ſ	
							5		
Limestone plates	us (pag	e 153)						
D-2	H	C	CL	SiL	74	(122)	5	7	
	L	C	CL	SiL	84	(138)	5 5	7 7	
							10		
Sandstone plateaus_(page 156)									
C-3	H H	C 20	CL CL	SiL		(300+)	1	7	
~ 5	L	D	SM	SL		300+	ì	7	
D-2	Н	С	CL	SiL		170	1	7	
-	L	č	CL	SiL		123	ī	7	
							4		
							7		
Sandstone-shale									
C-2	H	C	\mathtt{CL}	SiL	(116)	(208+)	2	7	
c-3	H	C	CL	SiL		(152)	1	7	
D- 2	Н	С	\mathtt{CL}	SiL	(190)	245+	2	7	
	H	D	ML	\mathtt{SiL}		81	2	7 6	
	L L	A C	SP CL	S SiL		10fr 118	1	7	
	Ĺ	Ď	ML	SiL	83	118 104 (111)	2	 7 7	
							10		
							TO		

Landscapes in Consolidated Materials (Continued)								
Climate	Site S	T.C	USCS	USDA	RCI (Min)	RCI (Mean)	N	<u>VC</u>
Limestone hills or mountains (p								
D-2		В	CH	C		300+	1	7
		C C	C T C T	SiL SiL	212	300+ 256+	1 2	7 7
	, ц	O	Ű L	OIL	مداعق _م ینا	2,0	4	r
Dolomite hills mountains (page								
D-2		C	CL	SiL	148	(149)	2	7
	L (С	CL	SiL	72	(100)	4	7
Shale hills or	mountains	(pa	ge 1 67)					
D- 2		C	CL	L		(82)	ļ	6
		D D	ML SM	SiL SL		(58) 300+	l 1	3 7 7 5
	L	D	SM-SC	\mathtt{SL}		197	1 2	7
	L	C	CL	SiL	(69)	(72)	$\frac{2}{6}$	5
Sandstone-shale or mountains (
D- 2		D	SM	SL		(146)	1	7
		C	SM-SC CL	SL SiL		175 61	1 1	7 4
		Ď	ML	SiL		107	1	7
							4	
Limestone-shal	e hills page 173)							
D-5		C	CL	SiL		197	1	7
		D D	SM CL-ML	SL SL		118 300+	1 1	7
	L	C	\mathtt{CL}	\mathtt{SiL}		192	1	7 7 7 7
	L	D	CL-ML	SL		(111)	1	7
							5	

(Continued)

Landscapes in Consolidated Materials (Continued)								
Climate	Site	STC	USCS	USDA	RCI (Min)	RCI (Mean)	N	VC
			<u>I</u>	gneous				
Basalt plains a	nd plate	aus (page 176	5)				
C-3	L	C	CL	SiL		(152)	1	7
C-4	L	C	CL	SiL		300+	1	7
D-3	L	D	OL	SiL		(73)	1	5 .
							3	
Granite hills o	r mounta	ins (page 18	<u>0)</u>				
D-2	H L	D D	SM SM	SL SL		(300+) 155	1 1 —	7 7
							2	
			Met	amorphic				
Slate hills or	mountain	s (pa	ge 183)	_				
D-2	H L	C D	CL ML	SiL SiL		20 1 30	1 1	1 7
							2	
Gneiss hills or	r mountai	ns (p	age 185)				
D-2	Н	В	CH	C		300+	1	7
	L	C	\mathtt{CL}	\mathtt{SiL}		83	1	7 6
							2	
Schist hills or mountains (page 187)								
D-2	Н	D	SM	_ SL		(134)	1	7
	L	C	\mathtt{CL}	\mathtt{SiL}		300+	1	7
							2	

APPENDIX C: GENERALIZED LANDSCAPE-PARENT MATERIAL MAPS

- 1. The generalized landscape-parent material maps which comprise Appendix C have been prepared to assist in the evaluation of trafficability from airphotos. Evaluation procedures are facilitated by a prior knowledge of the landscapes or process and structure that one will find in a region.
- 2. There are nine landscape-parent material maps, showing worldwide geographic occurrence in each case. Similar landscapes may be on the same figure as in the case of fig. C4, coastal plains, lacustrine plains, and playa plains. The scale of the maps precludes precise landscape boundaries and limits the occurrences to those of sufficient size to be drawn without an excessive exaggeration in areal coverage. The maps are intended only as generalized guides to assist in interpretation.
- 3. In places overlapping of landscape-parent material areas occurs because many units are intimately associated with one another. In such instances, it is of assistance for the interpreter to be aware of the complex nature of the area. An example may be found by comparing figs. Cl, C2, and C3, sand dunes, loess plains, and glacial moraines, respectively. Wind action in glaciated areas often results in the development of wind-blown deposits, and the development of soils in such areas is dependent upon all three landscape types. In some areas it is impossible to differentiate between rock types at the scale of the maps, and in such instances there will also be some duplication of coverage. For example, compare the metamorphic shields and granitic shields in figs. C7 and C8. From such repetition of coverage in an area the interpreter may expect either rock type and may indeed find it difficult to impossible to subdivide the materials even with the aid of photographs.
- 4. The following sources were used in the compilation of the maps: Balzak, S. S., Vazyutin, V. F., and Feigin, Y. G., Economic Geography of the U.S.S.R., C. D. Harris, ed. The Macmillan Company, New York, N. Y., 1949.

Charlesworth, J. K., The Quaternary Era. Edward Arnold and Company, Ltd., London, 1957. In two volumes.

Cleland, H. R., Geology - Physical and Historical. American Book Company, New York, N. Y., 1916.

Coleman, A. P., <u>Ice Ages, Recent and Ancient.</u> The Macmillan Company, New York, N. Y., 1929.

- Department of the Army, Geology and Its Military Application. Technical Manual 5-545, August 1952.
- Eardley, A. J., Structural Geology of North America. Harper and Brothers, New York, N. Y., 1951.
- Fenneman, N. M., Physiography of Western United States. McGraw-Hill Book Company, Inc., New York, N. Y., 1931.
- , Physiography of Eastern United States. McGraw-Hill Book Company, Inc., New York, N. Y., 1938.
- Flint, R. F., Glacial and Pleistocene Geology. John Wiley and Sons, Inc., New York, N. Y., 1957.
- Gamow, G., Biography of the Earth; Its Past, Present and Future. Viking Press, Inc., New York, N. Y., 1941.
- Gignoux, M., Stratigraphic Geology, translated by G. G. Woodford. W. H. Freeman and Company, San Francisco, Calif., 1955.
- Hobbs, W. H., Earth Features and Their Meaning. The Macmillan Company, New York, N. Y., 1935.
- Jenks, W. F., ed., <u>Handbook of South American Geology</u>; An Explanation of the Geologic Map of South America. Geological Society of America Memoir 65, 1956.
- Lobeck, A. K., Physiographic Diagram of Europe. Geographical Press, 1923.
- , Geomorphology; An Introduction to the Study of Landscapes.
 McGraw-Hill Book Company, Inc., 1939.
- , Physiographic Diagram of Asia. Geographical Press, 1945.
- , Physiographic Diagram of Africa. Geographical Press, 1946.
- , Physiographic Diagram of North America. Geographical Press, 1950.
- Marr, J. E., <u>Deposition of the Sedimentary Rocks</u>. Cambridge University Press, Cambridge, England, 1929.
- Moore, R. C., <u>Introduction to Historical Geology</u>, 2d ed. McGraw-Hill Book Company, Inc., New York, N. Y., 1958.
- Schuchert, Charles, and Dunbar, Carl O., <u>Outlines of Historical Geology</u>, 4th ed. John Wiley and Sons, Inc., New York, N. Y., 1941.
- Smith, G. H., Physiographic Diagram of South America. Geographical Press, 1935.
- Thornbury, W. D., <u>Principles of Geomorphology</u>. John Wiley and Sons, Inc., New York, N. Y., 1954.
- Twenhofel, W. H., Principles of Sedimentation, 2d ed. McGraw-Hill Book Company, Inc., New York, N. Y., 1950.
- Wadia, D. N., Geology of India, 3d ed. The Macmillan Company, New York, N. Y., 1953.
- Weeks, L. G., "Highlights on developments in foreign petroleum fields."

American Association of Petroleum Geologists Bulletin, vol 31, No. 7 (July 1947), pp 1135-1193.

Weeks, L. G., "Geologic architecture of Circum-Pacific." American Association of Petroleum Geologists Bulletin, vol 43, No. 2 (February 1959), pp 350-380.

Wright, W. B., The Quaternary Ice Age. The Macmillan Company, New York, N. Y., 1937.

Fig. Cl. Sand dunes

Fig. C2. Loess plains

Glacial ground moraines, ridge moraines, kames, outwash plains, drumlins, and eskers Fig. C3.

Fig. C4. Coastal plains, lacustrine plains, and playa plains

Fig. C5. Alluvial aprons, alluvial fans, floodplains, terraces, deltaic surfaces, and arroyos

Fig. C6. Sedimentary anticlines and synclines, sedimentary plateaus, and sedimentary plains

Fig. C7. Metamorphic hills

Fig. C8. Granitic shields and granitic mountains

Lava plateaus, lava coulees, lava cones, cinder cones, and volcanic mountains Fig. C9.

Fig. 42

Fig. 56. Overlay of study area, Hart County, Kentucky (climate D-2)

Fig. 58. Area A, Hart County, Kentucky

Fig. 60. Area B, Hart County, Kentucky

Fig. 62. Area C, Hart County, Kentucky

SLOPES EXCEEDING 60%

Fig. 64. Area A, Hart County, Kentucky

---- BOUNDARIES OF TERRAIN TRAFFICABILITY UNITS

SLOPES EXCEEDING 60%

Fig. 65. Area B, Hart County, Kentucky

BOUNDARIES OF TERRAIN TRAFFICABILITY UNITS

SLOPES EXCEEDING 60%

******** WATER BARRIER AND BANKS EXCEEDING 60%

Fig. 66. Area C, Hart County, Kentucky

Г

For meaning of symbols, see table 12

Fig. 67. Terrain trafficability map, Hart County, Kentucky