AA 279 C – SPACECRAFT ADCS: LECTURE 1

Prof. Simone D'Amico Stanford's Space Rendezvous Laboratory (SLAB)

Table of Contents

- Course introduction
- Mission classification
- System engineering aspects
- Attitude and orbit control
- Sensors and actuators

- Reading for this week (lectures 1 and 2)
 - Wertz 1, 15, 16.1-16.2

Mission Classification: Orbit and Payload

- Low Earth Orbit (LEO)
- Highly Elliptical Orbit (HEO)
- Medium Earth Orbit (MEO)
- Geostationary Orbit (GEO)
- Interplanetary Orbit

GNSS

Nasa's Earth science

JPL's exploration history

Subject of Study: Spacecraft Motion

- The motion of a rigid spacecraft is specified by
 - Translation of center of mass (orbit)
 - Rotation about the center of mass (attitude)
- Orbit and attitude are interdependent, but in the majority of the cases one aspect can be studied by assuming a-priori knowledge of the other
- Historically, orbit and attitude problems have been developed differently
 - Orbit motion of celestial bodies is one of the oldest sciences
 - Attitude motion has advanced mainly since the launch of Sputnik in 1957
 - No science is without antecedents. Newton knew that the Moon was probably "gravity-gradient stabilized"

Attitude and Orbit Control Process

Typical Attitude Control Tasks (1)

Three-axis
 Earth or inertial pointing

Typical Attitude Control Tasks (2)

Typical Orbit Control Tasks

rendezvou

AOCS System Design: Process

Step#, Description		Inputs	Outputs
1	Define / derive functional and performance requirements	Spacecraft system specification	Functional and performance requirement for GNC system
2	Quantify disturbance environment	Spacecraft geometry, mass properties, orbit and mission profile, solar and magnetic models	Values and profiles for external forces and torque, and internal disturbances (e.g. fuel sloshing, magnetic disturbances, etc.)
3	System Design: Select type and define architecture of GNC system	Spacecraft system specification (interfaces with other subsystems), payload needs, mission requirements, disturbance environment	Navigation system type (attitude and orbit), control system type (attitude and orbit), degree of autonomy
4	System Design: Select and size hardware	Spacecraft system specification (geometry), mission requirements, GNC functional and performance requirements	Sensor and actuator equipment, on-board computer, requirement for other computers on board and on ground
5	Define GNC algorithms, implement and test	All of above	Algorithms, design and analysis results, [software]
6	Iterate and document	All of above	GNC system description [and software]

AOCS System Design: Requirements

- Functional requirements
 - Well defined modes
 - Acquisition
 - Nominal
 - Safe
 - Orbit
 - Special
- Performance requirements
 - Determination vs control
 - Accuracy and Range
 - Steady state vs transient
 - Constraints

AOCS of BIRD (Bi-spectral and Infrared Remote Detection) Satellite

Block Diagram of AOCS/GNC System

Disturbance: Forces and Torques

- Aerodynamics
 - From planetary atmospheres ($e^{-\alpha R}$), Earth: altitude <500 km
- Gravity gradient
 - From planetary gravity fields (1/R3), Earth: altitude 500-35000 km
- Magnetic
 - From planetary magnetic fields ($1/R^3$), Earth: altitude 500-35000 km
- Solar radiation
 - In the inner solar system $(1/r^2)$, Earth: altitude >600 km
- Micrometeorites and debris
 - · At all altitudes, higher concentration in some regions, often negligible
- Spacecraft generated
 - Mass movements at all latitudes, important with flexible spacecraft

R: distance from central body *r*: distance from Sun

Disturbance: Magnitude of Torques

Disturbance: Typical Effect of Forces

Contribution	LEO (1 rev)	LEO (1 day)	GEO (1 day)
Earth gravity; terms >J _{2,0}	600 m	5000 m	670 m
Earth gravity; terms >J _{2,2}	220 m	3000 m	2 m
Earth gravity; terms >J _{4,4}	150 m	1900 m	0 m
Earth gravity; terms >J _{10,10}	23 m	460 m	0 m
Third body solar gravity	3 m	34 m	3100 m
Third body lunar gravity	6 m	66 m	5100 m
Solar radiation pressure	1 m	14 m	415 m
Atmospheric drag	1 m	100 m	0 m

Block Diagram of AOCS/GNC System

Attitude Sensors: Overview

Reference vectors

Centrifugal

Туре	Application	Accur.	Price
Sun Sensors			
Solar cell	Sun acquisition	5°	\$
V-slit	Sun maintenance	0.1°	\$\$\$
Digital	Sun maintenance	0.05°	\$\$\$
Earth Sensors			
Static	Earth acquisition	5°	\$
Horizon crossing Earth maintenance		0.1°	\$\$\$
Star Sensors	Precise pointing	0.01°	\$\$\$(\$)
Magnetometers	Coarse attitude control, damping	3°	\$
GNSS	Experimental	1°	\$\$
Gyros			
Spinning	Eclipse transits, rate damping, slews	0.01°	\$\$\$
Ring laser	Eclipse transits, rate damping, slews	0.005°	\$\$\$

Attitude Sensors: Pros and Cons

Туре	Advantages	Disadvantages
Sun Sensor	Low costLow mass and power	 Does not work on night side Limited accuracy (0.5°) due to apparent diameter of Sun
Earth Sensor	RobustAvailable for all orbits	 Limited resolution (0.1°) Sensitive to blinding Scan motion to sense horizon
Star Sensor	High accuracyOrbit independent	 Sensitive to blinding / stray light Limited attitude change rate Potentially high mass & power Often requires initial attitude
Magnetometer	Modest costLow mass and powerRobust	 Low accuracy (0.5°) Works only at low altitude Magnetic cleanliness needs
Gyroscope	Orbit independentHigh accuracy achievable	 Senses only attitude changes Sensor drift Moving parts (except fiber optical)

Block Diagram of AOCS/GNC System

Methods of Passive Attitude Control

Туре	Advantages	Disadvantages	
Spin Huygens Titan Probe (2005)	 Simple and effective Applicable anywhere Maintain inertial orientation 	 Structural stability and rigidity Constrains sensor pointing Nutation and drift if not balanced 	
Gravity-gradient DODGE (1967)	 Maintain orientation relative to central body Not subject to decay or drift 	 Limited orientations Low altitude, boom required Low accuracy (1°) 	
Solar radiation Nanosail (2011)	 Convenient for power generation 	High altitudeLimited orientationsLarge surfaces required	
Aerodynamic or Magnetic	 Special purpose methods, his structure 	Special purpose methods, highly dependent on mission and structure	

Methods of Active Attitude Control

Туре	Advantages	Disadvantages	
Gas thrusters	Flexible and fastHigh accuracyAny environment	Uses limited fuel (consumable)Plumbing subject to failure	
Magnetic	Low powerNo consumables through solar power	 Slow and near earth only Applicability limited by external magnetic field direction Low accuracy (degrees) 	
Reaction/Mome ntum wheels	Flexible and fastHigh accuracyAny environment	 Requires rapidly moving parts Second control system required to control angular momentum due to cumulative perturbations 	
lon or electric thrusters, other active methods	 Special purpose methods, is technology readiness level 	cial purpose methods, highly dependent on mission, low nology readiness level	

Orbit Sensors: Overview

Туре	Principle	Accuracy	Notes
Angle Measurements Monopulse radar Interferometry	 Measure line-of-sight direction Difference of two offset horns 	10-300"	No uplink
Doppler Tracking One-way Two-way Three-/Four-way	 Received freq given by range-rate Sensitive to clock errors Requires transponder Require multiple receive stations \[\frac{\Delta f}{f} = -\frac{1}{c} \frac{d\rho}{dt} \]	<1mm/s	Uplink
Distance Measurements Tone-/PRN-code ranging Satellite laser ranging GNSS	■ Measure turn-around travel time Phase shift causes ambiguity Transmitted PN code Received PN code Phase shift	10m-5cm <5cm 10m-5cm	Uplink Autonomous

Orbit Sensors: Spaceborne GPS Receivers

	MosaicGNSS (Astrium)	Phoenix (DLR)	IGOR (Broadreach/JPL)
Туре	8 channels L1	12 channels L1	16 x 3 channels L1/L2
Raw data accuracy	C/A 5 m L1 3 mm	C/A 0.4 m L1 1 mm	C/A, P(Y) 0.2 m L1, L2 1 mm
Power	10 W	1 W	15 W
Radiation tolerance	35 krad	14 krad	12 krad
Cost (ROM)	150 k€	10 k€	500 k€

