Calcul matriciel

Opérations sur les matrices

Exercice 1 [01247] [Correction]

Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note $\sigma(A)$ la somme des termes de A. On pose

$$J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & (1) & \vdots \\ 1 & \cdots & 1 \end{pmatrix}.$$

Vérifier $J.A.J = \sigma(A).J$.

Exercice 2 [00403] [Correction]

Soit

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$

avec $0 \le d \le c \le b \le a$ et $b + c \le a + d$.

Pour tout $n \geq 2$, on note

$$M^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}.$$

Démontrer que, pour tout $n \geq 2$,

$$b_n + c_n \le a_n + d_n.$$

Exercice 3 [00702] [Correction]

Résoudre l'équation $X^2 = A$ où

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 16 \end{pmatrix}.$$

Exercice 4 [03976] [Correction]

Soit $A \in \mathrm{GL}_n(\mathbb{R})$ vérifiant

$$A + A^{-1} = \mathbf{I}_n.$$

Pour $k \in \mathbb{N}$, calculer $A^k + A^{-k}$.

Problèmes de commutation

Exercice 5 [01249] [Correction]

Soient $\lambda_1, \ldots, \lambda_n$ des éléments de \mathbb{K} deux à deux distincts et $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec D.

Exercice 6 [01250] [Correction]

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$. Montrer que

$$\forall B \in \mathcal{M}_n(\mathbb{K}), AB = BA \iff \exists \lambda \in \mathbb{K}, A = \lambda . I_n.$$

Exercice 7 [02687] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ où B est nilpotente et commute avec A. Montrer que A et A + B sont simultanément inversibles.

Exercice 8 [00697] [Correction]

On suppose que $A, B \in \mathcal{M}_n(\mathbb{K})$ commutent et que A est inversible. Justifier que les matrices A^{-1} et B commutent.

Exercice 9 [00709] [Correction]

- (a) Quelles sont les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec toutes les matrices de $\mathcal{M}_n(\mathbb{K})$?
- (b) Même question avec les matrices commutant avec toutes celles de $GL_n(\mathbb{K})$.

Exercice 10 [02689] [Correction]

Soient $n \in \mathbb{N}^*$, $\alpha_1, \ldots, \alpha_n$ des complexes distincts, $A = \operatorname{diag}(\alpha_1, \ldots, \alpha_n)$ et

$$C(A) = \{ M \in \mathcal{M}_n(\mathbb{C}), AM = MA \}.$$

Montrer que $(A^k)_{0 \le k \le n-1}$ est une base de C(A).

Exercice 11 [03144] [Correction]

Soit $n \in \mathbb{N}$ avec $n \geq 2$.

(a) Montrer que

$$\{A \in \mathcal{M}_n(\mathbb{R}) \mid \forall M \in GL_n(\mathbb{R}), AM = MA\} = \{\lambda I_n \mid \lambda \in \mathbb{R}\}.$$

(b) Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose que

$$\forall M, N \in \mathcal{M}_n(\mathbb{R}), A = MN \implies A = NM.$$

Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $A = \lambda I_n$

Exercice 12 [03164] [Correction]

Soit $T \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire supérieure.

Montrer que T commute avec sa transposée si, et seulement si, la matrice T est diagonale.

Exercice 13 [03166] [Correction]

Soit $n \geq 2$. Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec toutes les matrices symétriques.

Exercice 14 [03167] [Correction]

Soit $n \geq 2$. Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec toutes les matrices antisymétriques.

Exercice 15 [00712] [Correction]

Soient $D = \operatorname{diag}(a_1, \ldots, a_n) \in \mathcal{M}_n(\mathbb{K})$ et

$$\varphi \colon M \in \mathcal{M}_n(\mathbb{K}) \mapsto DM - MD$$

- (a) Déterminer noyau et image de l'endomorphisme φ .
- (b) Préciser ces espaces quand D est à coefficients diagonaux distincts.

Calcul des puissances d'une matrice carrée

Exercice 16 [01252] [Correction]

On considère la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

et on pose B = A - I.

Calculer B^n pour $n \in \mathbb{N}$ et en déduire l'expression de A^n .

Exercice 17 [01253] [Correction]

Calculer A^n pour

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

de deux manières différentes.

Exercice 18 [01254] [Correction]

On considère la matrice

$$A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}.$$

- (a) Calculer $A^2 3A + 2I$. En déduire que A est inversible et calculer son inverse.
- (b) Pour $n \ge 2$, déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- (c) En déduire l'expression de la matrice A^n .

Exercice 19 [02929] [Correction]

Soit

$$A = \begin{pmatrix} 1 & \cdots & \cdots & 1 \\ 0 & 1 & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- (a) Soit $k \in \mathbb{N}^*$. Majorer les coefficients de A^k .
- (b) Calculer A^{-1} .
- (c) Calculer $(A^{-1})^k$ pour $k \in \mathbb{N}$.

Matrices carrées inversibles

Exercice 20 [01255] [Correction]

Soit

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K}).$$

Observer que

$$A^{2} - (a+d)A + (ad - bc)I = 0.$$

À quelle condition A est-elle inversible? Déterminer alors A^{-1} .

Exercice 21 [01256] [Correction]

Calculer l'inverse des matrices carrées suivantes :

(a)
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -3 \\ -1 & 0 & 2 \end{pmatrix}$$

(c)
$$C = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$

Exercice 22 [01257] [Correction]

Justifier que

$$A = \begin{pmatrix} 1 & & (-1) \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

est inversible et déterminer A^{-1} .

Exercice 23 [01259] [Correction]

Soient $n \in \mathbb{N} \setminus \{0,1\}$ et $\omega = \exp(\frac{2i\pi}{n})$. On pose

$$A = \left(\omega^{(k-1)(\ell-1)}\right)_{1 \le k, \ell \le n} \in \mathcal{M}_n(\mathbb{C}).$$

Calculer $A\overline{A}$. En déduire que A est inversible et calculer A^{-1} .

Exercice 24 [01260] [Correction]

Soit

$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}.$$

- (a) Calculer $(A+I)^3$.
- (b) En déduire que A est inversible.

Exercice 25 [01261] [Correction]

Soit $A = (1 - \delta_{i,j}) \in \mathcal{M}_n(\mathbb{R})$

- (a) Calculer A^2 .
- (b) Montrer que A est inversible et exprimer A^{-1} .

Exercice 26 [01262] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que la matrice I + A soit inversible. On pose $B = (I - A)(I + A)^{-1}$.

Exercice 27 [03420] [Correction]

Soient $A, B, C \in \mathcal{M}_n(\mathbb{K}) (n \geq 2)$ non nulles vérifiant

$$ABC = O_n$$
.

Montrer qu'au moins deux des matrices A, B, C ne sont pas inversibles.

Exercice 28 [02575] [Correction]

Montrer que la matrice

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

est inversible et calculer son inverse.

Exercice 29 [01291] [Correction]

Montrer que les matrices carrées d'ordre $n \ge 2$ suivantes sont inversibles, et déterminer leur inverse par la méthode de Gauss :

(a)
$$A = \begin{pmatrix} 1 & -a & (0) \\ & \ddots & \ddots \\ & & \ddots & -a \\ (0) & & 1 \end{pmatrix}$$
 (c) $C = \begin{pmatrix} 1 & 2 & \cdots & n \\ & \ddots & \ddots & \vdots \\ & & \ddots & 2 \\ (0) & & 1 \end{pmatrix}$

(b)
$$B = \begin{pmatrix} 1 & & (1) \\ & \ddots & \\ (0) & & 1 \end{pmatrix}$$

Symétrie matricielle

Exercice 30 [01263] [Correction]

Déterminer une condition nécessaire et suffisante pour que le produit de deux matrices symétriques soit encore une matrice symétrique.

Exercice 31 [01264] [Correction]

Montrer que $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont des sous-espaces vectoriels supplémentaires de $\mathcal{M}_n(\mathbb{R})$.

Exercice 32 [04968] [Correction]

Montrer que toute matrice de $\mathcal{M}_n(\mathbb{R})$ peut s'écrire comme la somme d'une matrice symétrique et d'une matrice nilpotente.

Structures formées par un ensemble de matrices

Exercice 33 [01266] [Correction]

Soit E l'ensemble des matrices de la forme

$$M(a,b,c) = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$$

avec $a, b, c \in \mathbb{R}$.

Notre objectif est d'établir que l'inverse d'une matrice inversible de E appartient encore à E, sans pour autant calculer cet inverse.

- (a) Montrer que (E, +, .) est un \mathbb{R} -espace vectoriel dont on précisera la dimension.
- (b) Montrer que $(E, +, \times)$ est un anneau commutatif.
- (c) À quelle condition sur $(a, b, c) \in \mathbb{R}^3$, la matrice A = M(a, b, c) est-elle inversible dans $\mathcal{M}_3(\mathbb{R})$? On suppose cette condition vérifiée. En considérant l'application $f \colon E \to E$ définie par f(X) = AX, montrer que $A^{-1} \in E$.

Exercice 34 [01267] [Correction]

(Matrices de permutation) Soit $n \in \mathbb{N} \setminus \{0,1\}$. Pour $\sigma \in \mathcal{S}_n$, on note

$$P(\sigma) = (\delta_{i,\sigma(j)})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$$

appelée matrice de permutation associée à σ .

(a) Montrer que

$$\forall (\sigma, \sigma') \in \mathcal{S}_n^2, P(\sigma \circ \sigma') = P(\sigma)P(\sigma').$$

- (b) En déduire que $E = \{P(\sigma) \mid \sigma \in \mathcal{S}_n\}$ est un sous-groupe de $GL_n(\mathbb{R})$ isomorphe à \mathcal{S}_n .
- (c) Vérifier que

$$^{t}(P(\sigma)) = P(\sigma^{-1}).$$

Exercice 35 [01268] [Correction]

Soit E l'ensemble des matrices de $\mathcal{M}_2(\mathbb{K})$ de la forme

$$A = \begin{pmatrix} a+b & b \\ -b & a-b \end{pmatrix}$$
 avec $(a,b) \in \mathbb{K}^2$.

- (a) Montrer que E est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{K})$, en donner une base.
- (b) Montrer que E est un sous-anneau commutatif de $\mathcal{M}_2(\mathbb{K})$.
- (c) Déterminer les inversibles de E.
- (d) Déterminer les diviseurs de zéro de E c'est-à-dire les matrices A et $B \in E$ vérifiant $AB = O_2$ avec $A, B \neq O_2$.

Exercice 36 [01563] [Correction]

On dit qu'une matrice $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ est centro-symétrique si

$$\forall (i,j) \in [[1;n]]^2, a_{n+1-i,n+1-j} = a_{i,j}.$$

- (a) Montrer que le sous-ensemble C de $\mathcal{M}_n(\mathbb{K})$ formé des matrices centro-symétriques est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.
- (b) Montrer que le produit de deux matrices centro-symétriques de $\mathcal{M}_n(\mathbb{K})$ est aussi centro-symétrique.
- (c) Soit A centro-symétrique de $\mathcal{M}_n(\mathbb{K})$ et inversible. En considérant l'application $X \mapsto AX$ de C vers C, montrer que A^{-1} est centro-symétrique.

Matrice d'une application linéaires

Exercice 37 [01269] [Correction]

Déterminer la matrice relative aux bases canoniques des applications linéaires f suivantes :

(a)
$$f: \begin{cases} \mathbb{R}^3 \to \mathbb{R}^2 \\ (x, y, z) \mapsto (x + y, y - 2x + z) \end{cases}$$
 (c)
$$f: \begin{cases} \mathbb{R}_3[X] \to \mathbb{R}_3[X] \\ P \mapsto P(X + 1) \end{cases}$$

(a)
$$f \colon \begin{cases} \mathbb{R}^3 \to \mathbb{R}^2 \\ (x,y,z) \mapsto (x+y,y-2x+z) \end{cases}$$
 (c)
$$f \colon \begin{cases} \mathbb{R}_3[X] \to \mathbb{R}_3[X] \\ P \mapsto P(X+1) \end{cases}$$
 Soient $a \in \mathbb{C}^*$ et $f \colon \mathbb{C} \to \mathbb{C}$ définie par (a) Former la matrice de l'endomorph (1, i).
$$f \colon \begin{cases} \mathbb{R}^3 \to \mathbb{R}^3 \\ (x,y,z) \mapsto (y+z,z+x,x+y) \end{cases}$$

$$f \colon \begin{cases} \mathbb{R}_3[X] \to \mathbb{R}^4 \\ P \mapsto (P(1),P(2),P(3),P(4)) \end{cases}$$
 (b) Déterminer image et noyau de f .

Exercice 38 [01270] [Correction]

On considère les sous-espaces vectoriels supplémentaires de \mathbb{R}^3 suivants :

$$P = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y - z = 0\}$$
 et $D = \text{Vect}(w)$ où $w = (1, 0, -1)$.

On note $\mathcal{B} = (i, j, k)$ la base canonique de \mathbb{R}^3 .

On note p la projection vectorielle sur P parallèlement à D, q celle sur Dparallèlement à P, et enfin, s la symétrie vectorielle par rapport à P et parallèlement à D.

- (a) Former la matrice de p dans \mathcal{B} .
- (b) En déduire les matrices, dans \mathcal{B} , de q et de s.

Exercice 39 [01271] [Correction]

Soit φ l'endomorphisme de $\mathbb{R}_n[X]$ défini par $\varphi(P) = P(X+1)$.

- (a) Écrire la matrice A de φ dans la base canonique \mathcal{B} de $\mathbb{R}_n[X]$.
- (b) Justifier que A est inversible et calculer A^{-1} .

Exercice 40 [00714] [Correction]

Soit $A = (a_{i,j})_{1 \le i,j \le n+1} \in \mathcal{M}_{n+1}(\mathbb{R})$ la matrice dont le coefficient général est donné par un coefficient binomial:

$$a_{i,j} = \binom{j-1}{i-1}.$$

Soit $\varphi \in \mathcal{L}(\mathbb{R}_n[X])$ l'endomorphisme représenté par la matrice A dans la base canonique $(1, X, \dots, X^n)$.

- (a) Exprimer simplement $\varphi(P)$ pour tout $P \in \mathbb{R}_n[X]$.
- (b) Calculer A^m pour tout $m \in \mathbb{N}$.
- (c) Calculer A^{-1} .

Soient $a \in \mathbb{C}^*$ et $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = z + a\overline{z}$.

- (a) Former la matrice de l'endomorphisme f du \mathbb{R} -espace vectoriel \mathbb{C} dans la base

Matrice d'un endomorphisme dans une base bien choisie

Exercice 42 [01273] [Correction]

Soit E un K-espace vectoriel de dimension 3 et $f \in \mathcal{L}(E)$ tel que $f^2 \neq 0$ et $f^3 = 0$. Montrer qu'il existe une base de E dans laquelle la matrice de f est

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Exercice 43 [01275] [Correction]

Soit f un endomorphisme d'un K-espace vectoriel E de dimension $n \in \mathbb{N}^*$ vérifiant

$$f^n = 0 \text{ et } f^{n-1} \neq 0.$$

- (a) Justifier qu'il existe un vecteur $x \in E$ tel que la famille $\mathcal{B} = (x, f(x), f^2(x), \dots, f^{n-1}(x))$ forme une base de E.
- (b) Déterminer les matrices de f, f^2, \ldots, f^{n-1} dans cette base.
- (c) En déduire que

$$\{g \in \mathcal{L}(E) \mid g \circ f = f \circ g\} = \text{Vect}(\text{Id}, f, f^2, \dots, f^{n-1})$$

Exercice 44 [01277] [Correction]

Soit E un K-espace vectoriel muni d'une base $\mathcal{B} = (i, j, k)$. Soit f l'endomorphisme de E dont la matrice dans \mathcal{B} est

$$A = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}.$$

(a) Calculer A^2 . Qu'en déduire sur f?

- (b) Déterminer une base de $\operatorname{Im} f$ et $\operatorname{Ker} f$.
- (c) Quelle est la matrice de f relativement à une base adaptée à la supplémentarité de ${\rm Im}\, f$ et ${\rm Ker}\, f$?

Exercice 45 [01278] [Correction]

Soit

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans \mathcal{B} est A.

- (a) Déterminer Ker f et Im f. Démontrer que ces sous-espaces sont supplémentaires dans \mathbb{R}^3 .
- (b) Déterminer une base adaptée à cette supplémentarité et écrire la matrice de f dans cette base.
- (c) Décrire f comme composée de transformations vectorielles élémentaires.

Exercice 46 [00719] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$ tel que $f^n = 0$ et $f^{n-1} \neq 0$.

Montrer qu'il existe une base \mathcal{B} de E pour laquelle :

$$\operatorname{Mat}_{\mathcal{B}}(f) = egin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0 \end{pmatrix}.$$

Exercice 47 [04154] [Correction]

Soit f un endomorphisme non nul d'un \mathbb{R} -espace vectoriel E de dimension 3 vérifiant $f^3+f=0$.

- (a) Soit $x \in E$. Démontrer que si x = y + z avec $y \in \text{Ker } f$ et $z \in \text{Ker}(f^2 + \text{Id})$ alors $y = x + f^2(x)$ et $z = -f^2(x)$.
- (b) Montrer que

$$E = \operatorname{Ker} f \oplus \operatorname{Ker} (f^2 + \operatorname{Id}).$$

(c) Prouver dim $\operatorname{Ker}(f^2 + \operatorname{Id}) \geq 1$. Montrer que, si $x \in \operatorname{Ker}(f^2 + \operatorname{Id}) \setminus \{0\}$ alors (x, f(x)) est une famille libre de $\operatorname{Ker}(f^2 + \operatorname{Id})$.

- (d) Que vaut $\det(-\mathrm{Id})$? En déduire $\dim \mathrm{Ker}(f^2 + \mathrm{Id}) = 2$.
- (e) Déterminer une base de E dans laquelle la matrice de f est

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Changement de bases

Exercice 48 [01276] [Correction] Soit

$$A = \begin{pmatrix} 3 & 1 & -3 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans \mathcal{B} est A.

On pose $\varepsilon_1 = (1, 1, 1), \varepsilon_2 = (1, -1, 0), \varepsilon_3 = (1, 0, 1)$ et $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$.

- (a) Montrer que \mathcal{B}' constitue une base de \mathbb{R}^3 .
- (b) Écrire la matrice de f dans cette base.
- (c) Déterminer une base de $\operatorname{Ker} f$ et de $\operatorname{Im} f$.

Exercice 49 [00716] [Correction]

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ représenté dans la base canonique \mathcal{B} par :

$$\begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}.$$

- (a) Soit $C = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ avec $\varepsilon_1 = (1, 0, 1), \varepsilon_2 = (-1, 1, 0), \varepsilon_3 = (1, 1, 1).$ Montrer que C est une base.
- (b) Déterminer la matrice de f dans C.
- (c) Calculer la matrice de f^n dans \mathcal{B} pour tout $n \in \mathbb{N}$.

Exercice 50 [01282] [Correction]

Soit E un \mathbb{K} -espace vectoriel muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$. Soit f l'endomorphisme de E dont la matrice dans \mathcal{B} est

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}.$$

Soit $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ la famille définie par

$$\begin{cases} \varepsilon_1 = e_1 + e_2 - e_3 \\ \varepsilon_2 = e_1 - e_3 \\ \varepsilon_3 = e_1 - e_2. \end{cases}$$

- (a) Montrer que \mathcal{B}' est une base de E et former la matrice D de f dans \mathcal{B}' .
- (b) Exprimer la matrice de passage P de \mathcal{B} à \mathcal{B}' et calculer P^{-1} .
- (c) Quelle relation lie les matrices A, D, P et P^{-1} ?
- (d) Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 51 [01284] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension 3 et $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. On considère les matrices

$$A = \begin{pmatrix} 4 & -2 & -2 \\ 1 & 0 & -1 \\ 3 & -2 & -1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Soit f l'endomorphisme de E dont la matrice dans la base \mathcal{B} est A.

- (a) Montrer qu'il existe une base $C = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de E telle que la matrice de f dans C soit D.
- (b) Déterminer la matrice P de $GL_3(\mathbb{R})$ telle que $A = PDP^{-1}$. Calculer P^{-1} .
- (c) Calculer A^n pour tout $n \in \mathbb{N}$.
- (d) En déduire le terme général des suites $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par :

$$\begin{cases} x_0 = 1 \\ y_0 = 0 \text{ et } \forall n \in \mathbb{N}, \\ z_0 = 0 \end{cases} \begin{cases} x_{n+1} = 4x_n - 2(y_n + z_n) \\ y_{n+1} = x_n - z_n \\ z_{n+1} = 3x_n - 2y_n - z_n. \end{cases}$$

Exercice 52 [03212] [Correction]

Soient b = (i, j) et B = (I, J) deux bases d'un \mathbb{R} -espace vectoriel de dimension 2 et P la matrice de passage de b à B.

Pour $x \in E$, notons

$$v = \operatorname{Mat}_b x$$
 et $V = \operatorname{Mat}_B x$.

- (a) Retrouver la relation entre v et V.
- (b) Soient $f \in \mathcal{L}(E)$ et

$$m = \operatorname{Mat}_b f$$
 et $M = \operatorname{Mat}_B f$.

Retrouver la relation entre m et M.

(c) Par quelle méthode peut-on calculer m^n lors qu'on connaît deux vecteurs propres non colinéaires de f.

Exercice 53 [00717] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension 3 muni d'une base $e = (e_1, e_2, e_3)$. Soit $f \in \mathcal{L}(E)$ dont la matrice dans la base e est

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 1 & 2 \end{pmatrix}.$$

On pose $e'_1 = e_1 + e_3$, $e'_2 = e_1 + e_2$ et $e'_3 = e_1 + e_2 + e_3$.

- (a) Montrer que la famille $e'=(e'_1,e'_2,e'_3)$ forme une base de E et déterminer la matrice B de f dans e'.
- (b) Calculer A^n .

Exercice 54 [00718] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension 3 muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$. Soit $f \in \mathcal{L}(E)$ dont la matrice dans la base \mathcal{B} est

$$A = \begin{pmatrix} 0 & 2 & 1 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

On pose $\varepsilon_1 = e_1 + e_3$, $\varepsilon_2 = e_1 + e_2$ et $\varepsilon_3 = e_1 + e_2 + e_3$.

- (a) Montrer que $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ forme une base de E et déterminer la matrice de f dans \mathcal{B}' .
- (b) Calculer A^n .

Exercice 55 [01283] [Correction]

Soit E un \mathbb{K} -espace vectoriel muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$. Soit f l'endomorphisme de E dont la matrice dans \mathcal{B} est

$$A = \begin{pmatrix} 3 & -2 & 2 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

- (a) Montrer qu'il existe une base $C = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ de E dans laquelle la matrice représentative de f est une matrice diagonale D de coefficients diagonaux : 1, 2 et 3.
- (b) Déterminer la matrice de passage P de \mathcal{B} à \mathcal{C} . Calculer P^{-1} .
- (c) Quelle relation lie les matrices A, D, P et P^{-1} ?
- (d) Calculer A^n pour tout $n \in \mathbb{N}$.

Rang d'une matrice

Exercice 56 [01285] [Correction]

Calculer le rang de familles de vecteurs suivantes de \mathbb{R}^3 :

- (a) (x_1, x_2, x_3) avec $x_1 = (1, 1, 0), x_2 = (1, 0, 1)$ et $x_3 = (0, 1, 1)$
- (b) (x_1, x_2, x_3) avec $x_1 = (2, 1, 1), x_2 = (1, 2, 1)$ et $x_3 = (1, 1, 2)$
- (c) (x_1, x_2, x_3) avec $x_1 = (1, 2, 1), x_2 = (1, 0, 3)$ et $x_3 = (1, 1, 2)$.

Exercice 57 [01286] [Correction]

Calculer le rang des applications linéaires suivantes :

(a) $f : \mathbb{K}^3 \to \mathbb{K}^3$ définie par

$$f(x, y, z) = (-x + y + z, x - y + z, x + y - z).$$

(b) $f: \mathbb{K}^3 \to \mathbb{K}^3$ définie par

$$f(x,y,z) = (x-y,y-z,z-x)$$

(c) $f: \mathbb{K}^4 \to \mathbb{K}^4$ définie par

$$f(x, y, z, t) = (x + y - t, x + z + 2t, 2x + y - z + t, -x + 2y + z).$$

Exercice 58 [01287] [Correction]

Calculer le rang des matrices suivantes en fonction des paramètres :

(a)
$$\begin{pmatrix} 1 & 1 & 1 \\ b+c & c+a & a+b \\ bc & ca & ab \end{pmatrix}$$
(b)
$$\begin{pmatrix} 1 & \cos\theta & \cos 2\theta \\ \cos\theta & \cos 2\theta & \cos 3\theta \\ \cos 2\theta & \cos 3\theta & \cos 4\theta \end{pmatrix}$$
(c)
$$\begin{pmatrix} a & b & (0) \\ \vdots & \vdots & \vdots \\ (0) & \vdots & b \\ b & (0) & a \end{pmatrix}$$

Exercice 59 [01288] [Correction]

Soient $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{R})$ définie par

$$M = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

- (a) Donner le rang de M et la dimension de son noyau.
- (b) Préciser noyau et image de M.
- (c) Calculer M^n .

Exercice 60 [01289] [Correction]

Soit A et B deux matrices carrées d'ordre 3 telles que $AB = O_3$. Montrer que l'une au moins de ces matrices est de rang inférieur ou égal à 1.

Exercice 61 [00698] [Correction]

Soient $A \in \mathcal{M}_{3,2}(\mathbb{R})$ et $B \in \mathcal{M}_{2,3}(\mathbb{R})$ telles que

$$AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (a) Déterminer les rangs de A et B.
- (b) Calculer BA en observant $(AB)^2 = AB$.

Exercice 62 [00699] [Correction]

Soient $A \in \mathcal{M}_{3,2}(\mathbb{R})$ et $B \in \mathcal{M}_{2,3}(\mathbb{R})$ matrices de rang 2 vérifiant $(AB)^2 = AB$. Montrer $BA = I_2$.

Exercice 63 [00710] [Correction]

Soit G un groupe multiplicatif formé d'éléments de $\mathcal{M}_n(\mathbb{R})$. Montrer que les éléments de G ont tous le même rang.

Systèmes d'équations linéaires

Exercice 64 [01292] [Correction]

Discuter, selon m paramètre réel, la dimension des sous-espaces vectoriels de \mathbb{R}^3 suivants :

(a)
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid \begin{cases} x + my + z = 0 \\ mx + y + mz = 0 \end{cases}$$

(b)
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid \begin{cases} x + y + mz = 0 \\ x + my + z = 0 \\ mx + y + z = 0 \end{cases}$$

Exercice 65 [01293] [Correction]

On considère, pour m paramètre réel, les sous-espaces vectoriels de \mathbb{R}^3 :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + my + z = 0 \text{ et } mx + y - mz = 0\}$$

 $_{
m et}$

$$G = \{(x, y, z) \in \mathbb{R}^3 \mid x - my + z = 0\}.$$

- (a) Déterminer la dimension de F et G.
- (b) Discuter, selon la valeur de m, la dimension du sous-espace vectoriel $F \cap G$.

Exercice 66 [01294] [Correction]

Résoudre en fonction du paramètre $m \in \mathbb{C}$, les systèmes suivants d'inconnues complexes:

(a)
$$\begin{cases} x - y + z = m \\ x + my - z = 1 \\ x - y - z = 1 \end{cases}$$

(b)
$$\begin{cases} mx + y + z = 1\\ x + my + z = m\\ x + y + mz = m \end{cases}$$

(a)
$$\begin{cases} x - y + z = m \\ x + my - z = 1 \\ x - y - z = 1 \end{cases}$$
(b)
$$\begin{cases} mx + y + z = 1 \\ x + my + z = m \\ x + y + mz = m^2 \end{cases}$$
(c)
$$\begin{cases} mx + y + z + t = 1 \\ x + my + z + t = m \\ x + y + mz + t = m + 1 \end{cases}$$

Exercice 67 [01295] [Correction]

Soient $a, b \in \mathbb{C}$. Résoudre le système :

$$\begin{cases} ax + by + z = 1\\ x + aby + z = b\\ x + by + az = 1. \end{cases}$$

Exercice 68 [01296] [Correction]

Résoudre le système d'équations suivant d'inconnues complexes :

$$\begin{cases} x_1 + x_2 + x_3 + \dots + x_n = 1 \\ x_1 + 2x_2 + 2x_3 + \dots + 2x_n = 1 \\ x_1 + 2x_2 + 3x_3 + \dots + 3x_n = 1 \\ & \vdots \\ x_1 + 2x_2 + 3x_3 + \dots + nx_n = 1. \end{cases}$$

Exercice 69 [01297] [Correction]

Résoudre le système d'équations suivant d'inconnues complexes :

$$\begin{cases} x_1 + x_2 & = 0 \\ x_1 + x_2 + x_3 & = 0 \\ x_2 + x_3 + x_4 & = 0 \end{cases}$$

$$\vdots$$

$$x_{n-2} + x_{n-1} + x_n = 0$$

$$x_{n-1} + x_n = 0.$$

Exercice 70 [01298] [Correction]

Soient a_1, \ldots, a_n des points du plan complexe.

Déterminer à quelle(s) condition(s) il existe au moins un polygone à n sommets z_1,\ldots,z_n tel que :

 a_i est le milieu de $[z_i; z_{i+1}]$ et a_n est le milieu de $[z_n; z_1]$.

Exercice 71 [02560] [Correction]

Discuter suivant a et b et résoudre

$$\begin{cases} ax + 2by + 2z = 1\\ 2x + aby + 2z = b\\ 2x + 2by + az = 1. \end{cases}$$

Exercice 72 [02579] [Correction]

Résoudre, en discutant selon $a, b \in \mathbb{R}$ le système

$$\begin{cases} ax + y + z + t = 1 \\ x + ay + z + t = b \\ x + y + az + t = b^{2} \\ x + y + z + at = b^{3}. \end{cases}$$

Matrices équivalentes

Exercice 73 [00703] [Correction]

(a) Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est non inversible si, et seulement si, elle est équivalente à une matrice nilpotente.

(b) Soit $f: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ une application vérifiant : $f(O_n) = 0$, $f(I_n) \neq 0$ et pour tout $A, B \in \mathcal{M}_n(\mathbb{K})$,

$$f(AB) = f(A)f(B).$$

Montrer que $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si, et seulement si, $f(A) \neq 0$.

Exercice 74 [01602] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$.

(a) Justifier qu'il existe $U, V \in GL_n(\mathbb{K})$ tels que

$$rg(UA + BV) = min(n, rg A + rg B)$$

(b) On suppose $\operatorname{rg} A + \operatorname{rg} B \geq n$. Montrer qu'il existe $U, V \in \operatorname{GL}_n(\mathbb{K})$ tels que

$$UA + BV \in \mathrm{GL}_n(\mathbb{R}).$$

Exercice 75 [04963] [Correction]

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Existe-t-il une matrice $M \in \mathcal{M}_{p,n}(\mathbb{R})$ vérifiant A = AMA?

Matrices de rang 1

Exercice 76 [00700] [Correction]

Soit A une matrice carrée de rang 1. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $A^2 = \lambda A$.

Exercice 77 [03460] [Correction]

Soit $H \in \mathcal{M}_n(\mathbb{C})$ une matrice de rang 1.

- (a) Montrer qu'il existe des matrices $U, V \in \mathcal{M}_{n,1}(\mathbb{K})$ telles que $H = U^t V$.
- (b) En déduire

$$H^2 = \operatorname{tr}(H)H$$
.

(c) On suppose $\operatorname{tr} H \neq -1$. Montrer que $I_n + H$ est inversible et

$$(I_n + H)^{-1} = I_n - \frac{1}{1 + \operatorname{tr} H} H.$$

(d) Soient $A \in GL_n(\mathbb{K})$ telle que $tr(HA^{-1}) \neq -1$. Montrer que A + H est inversible et

$$(A+H)^{-1} = A^{-1} - \frac{1}{1 + \operatorname{tr}(HA^{-1})} A^{-1} H A^{-1}.$$

Exercice 78 [04974] [Correction]

Soient (X_1, \ldots, X_n) et (Y_1, \ldots, Y_n) deux familles libres d'éléments de $\mathcal{M}_{n,1}(\mathbb{R})$. Établir que la famille $(X_i{}^tY_j)_{1 \leq i,j \leq n}$ est une base de $\mathcal{M}_n(\mathbb{R})$ constituée de matrices de rang 1.

Rang d'une matrice par blocs

Exercice 79 [03134] [Correction]

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$.

(a) On note $(A \ B) \in \mathcal{M}_{n,2n}(\mathbb{K})$ la matrice obtenue en accolant les colonnes de B à droite de celles de A.

Montrer

$$\operatorname{rg}(A \ B) = \operatorname{rg} A \iff \exists U \in \mathcal{M}_n(\mathbb{K}), B = AU.$$

(b) On note $\binom{A}{C} \in \mathcal{M}_{2n,n}(\mathbb{K})$ la matrice obtenue en accolant les lignes de C en dessous de celles de A.

Montrer

$$\operatorname{rg}\left(\frac{A}{C}\right) = \operatorname{rg} A \iff \exists V \in \mathcal{M}_n(\mathbb{K}), C = VA.$$

(c) En déduire

$$\operatorname{rg}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \operatorname{rg} A \iff \exists U, V \in \mathcal{M}_n(\mathbb{K}), \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & AU \\ VA & VAU \end{pmatrix}.$$

Exercice 80 [01604] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{K})$, $B \in \mathcal{M}_n(\mathbb{K})$ et M la matrice

$$M = \begin{pmatrix} A & O_{n,p} \\ O_{p,n} & B \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbb{K}).$$

Établir

$$\operatorname{rg} M = \operatorname{rg} A + \operatorname{rg} B.$$

Exercice 81 [01649] [Correction]

Soient $B \in \mathcal{M}_{n,p}(\mathbb{K})$ et $C \in \mathcal{M}_p(\mathbb{K})$.

Montrer

$$\operatorname{rg}\begin{pmatrix} I_n & B \\ O_{p,n} & C \end{pmatrix} = n + \operatorname{rg} C.$$

Exercice 82 [02335] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{K}), B \in \mathcal{M}_p(\mathbb{K}), C \in \mathcal{M}_{n,p}(\mathbb{K})$ et

$$M = \begin{pmatrix} A & C \\ O_{p,n} & B \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbb{K}).$$

On suppose B inversible. Établir

$$\operatorname{rg} M = p \iff A = O_n$$
.

Exercice 83 [03101] [Correction]

Soient $A \in GL_p(\mathbb{R}), B \in \mathcal{M}_{p,q}(\mathbb{R}), C \in \mathcal{M}_q(\mathbb{R})$ et

$$M = \begin{pmatrix} A & B \\ O_{q,p} & C \end{pmatrix} \in \mathcal{M}_{p+q}(\mathbb{R}).$$

Déterminer le rang de M en fonction de celui de C.

Calcul par blocs

Exercice 84 [03264] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et

$$B = \begin{pmatrix} O_n & A \\ I_n & O_n \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K}).$$

- (a) Montrer que A est inversible si, et seulement si, B l'est.
- (b) Calculer B^p pour tout $p \in \mathbb{N}$.

Exercice 85 [03137] [Correction]

Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{K})$ et

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K}).$$

On suppose que les matrices A, D et M sont inversibles. Exprimer M^{-1} . Exercice 86 [03702] [Correction]

Soit

$$A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Calculer A^n pour tout $n \in \mathbb{Z}$.

Exercice 87 [04952] [Correction] Soit $A, B \in \mathcal{M}_n(\mathbb{K})$.

(a) Exprimer le rang de

$$M = \begin{pmatrix} A & A \\ A & B \end{pmatrix}.$$

(b) Calculer l'inverse de M lorsque cela est possible.

Trace

Exercice 88 [03258] [Correction]

Existe-t-il des matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ vérifiant

$$AB - BA = I_n$$
?

Exercice 89 [00729] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ de rang 1. Montrer

$$f^2 = \operatorname{tr}(f)f.$$

À quelle condition un endomorphisme de rang 1 est-il un projecteur?

Exercice 90 [03029] [Correction]

Soient $A \in \mathcal{M}_n(\mathbb{R})$ et φ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par

$$\varphi(M) = MA$$
.

Exprimer la trace de φ en fonction de celle de A.

Exercice 91 [00730] [Correction]

Soit M une matrice carrée de taille n à coefficients dans \mathbb{K} sous-corps de \mathbb{C} . Montrer que si $\operatorname{tr} M = 0$, il existe deux matrices A et B telles que

$$M = AB - BA$$
.

Exercice 92 [00731] [Correction]

Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$. Montrer qu'il existe $A \in \mathcal{M}_n(\mathbb{K})$ tel que pour tout $M \in \mathcal{M}_n(\mathbb{K})$, $\varphi(M) = \operatorname{tr}(AM)$.

Exercice 93 [00733] [Correction]

On note tr la forme linéaire trace sur $E = \mathcal{M}_n(\mathbb{K})$. Établir

$$Ker(tr) = Vect\{[A, B] \mid A, B \in E\}$$

où l'on note [A, B] = AB - BA.

Exercice 94 [03261] [Correction]

- (a) Dans un espace de dimension finie, pourquoi le rang d'un projecteur est-il égal à sa trace?
- (b) Soit $A \in \mathcal{M}_n(\mathbb{K})$ vérifiant $A^q = I_n$. Montrer

$$\dim \operatorname{Ker}(A - I_n) = \frac{1}{q} \sum_{k=0}^{q-1} \operatorname{tr}(A^k).$$

Exercice 95 [02388] [Correction]

Soient $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et H une partie non vide et finie de $GL_n(\mathbb{K})$ stable par multiplication.

(a) Soit $M \in H$. Montrer que $k \in \mathbb{N}^* \mapsto M^k \in H$ n'est pas injective. En déduire que H est un sous-groupe de $\mathrm{GL}_n(\mathbb{K})$. Soient

$$q = |H| \text{ et } P = \frac{1}{q} \sum_{M \in H} M.$$

(b) Montrer, si $M \in H$, que MP = PM = P. En déduire $P^2 = P$.

(c) Trouver un supplémentaire, dans $\mathcal{M}_{n,1}(\mathbb{K})$, stable par tous les éléments de H, de

$$\bigcap_{M\in H} \operatorname{Ker}(M-I_n).$$

(d) Montrer que

$$\sum_{M\in H}\operatorname{tr} M\in q\mathbb{N}.$$

Que dire si cette somme est nulle?

Exercice 96 [02651] [Correction]

- (a) Soit G un sous-groupe fini de $GL_n(\mathbb{R})$ tel que $\sum_{g \in G} \operatorname{tr} g = 0$. Montrer que $\sum_{g \in G} g = 0$.
- (b) Soit G un sous-groupe fini de $GL_n(\mathbb{R})$, V un sous-espace vectoriel de \mathbb{R}^n stable par les éléments de G. Montrer qu'il existe un supplémentaire de V dans \mathbb{R}^n stable par tous les éléments de G.

Exercice 97 [02616] [Correction]

Soit f une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), f(AB) = f(BA).$$

Montrer que f est proportionnelle à la trace.

Exercice 98 [02686] [Correction]

(a) Soit f une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), f(AB) = f(BA)$$

montrer que f est proportionnelle à la trace.

(b) Soit q un endomorphisme de l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ vérifiant

$$g(AB) = g(BA)$$

pour toutes $A, B \in \mathcal{M}_n(\mathbb{R})$ et $g(I_n) = I_n$. Montrer que g conserve la trace.

Exercice 99 [03419] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Calculer la trace de l'endomorphisme $f \in \mathcal{M}_n(\mathbb{R})$ donné par

$$f(M) = AM + MA.$$

Exercice 100 [02563] [Correction]

Pour A et B fixées dans $\mathcal{M}_n(\mathbb{R})$, résoudre dans $\mathcal{M}_n(\mathbb{R})$ l'équation

$$X = \operatorname{tr}(X)A + B.$$

Exercice 101 [02547] [Correction]

Soit E un \mathbb{R} -espace vectoriel de dimension finie n > 1.

Montrer que $f \in \mathcal{L}(E)$ de rang 1 n'est pas forcément un projecteur.

Montrer que $f \in \mathcal{L}(E)$ de rang 1 et de trace 1 est un projecteur.

Trouver une base de $\mathcal{L}(E)$ constituée de projecteurs.

Exercice 102 [03864] [Correction]

Soient $A_1, \ldots, A_k \in \mathcal{M}_n(\mathbb{R})$ vérifiant

$$A_1 + \dots + A_k = I_n$$
 et $\forall 1 \le i \le k, A_i^2 = A_i$.

Montrer

$$\forall 1 \le i \ne j \le k, A_i A_j = \mathcal{O}_n.$$

Exercice 103 [04163] [Correction]

Soit E et F deux \mathbb{R} -espaces vectoriels de dimension finie, $n=\dim E, p=\dim F$. Soit $f\in\mathcal{L}(E,F)$. On note

$$H = \{ g \in \mathcal{L}(F, E), f \circ g \circ f = 0 \}.$$

- (a) Si f est bijectif, montrer $H = \{0\}$.
- (b) Montrer que dim $H = np r^2$ avec $r = \operatorname{rg} f$.
- (c) On suppose que E=F et on définit l'application $\varphi\colon g\mapsto f\circ g\circ f$. Montrer

$$\operatorname{tr} \varphi = (\operatorname{tr} f)^2$$
.

Exercice 104 [04942] [Correction]

Soit f un endomorphisme non nul de \mathbb{R}^3 vérifiant $f^3 + f = 0$.

- (a) Montrer que f n'est pas surjectif.
- (b) Montrer que f n'est pas diagonalisable et que $\mathbb{R}^3 = \operatorname{Im} f \oplus \operatorname{Ker} f$.
- (c) Montrer que, pour tout $x \in E \setminus \text{Ker } f$, la famille $(f(x), f^2(x))$ est une base de Im f et calculer la trace de f.

Exercice 105 [04976] [Correction]

À quelle condition existe-t-il des matrices $A, B \in \mathcal{M}_n(\mathbb{R})$ vérifiant $(AB - BA)^2 = I_n$?

Application des matrices à l'étude d'applications linéaires

Exercice 106 [02679] [Correction]

Soient $f, g \in \mathcal{L}(\mathbb{R}^2)$ tel que $f^2 = g^2 = 0$ et $f \circ g = g \circ f$. Calculer $f \circ g$.

Exercice 107 [02688] [Correction]

Soit ω une racine primitive n-ième de 1. On pose

$$F_{\omega}(P) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} P(\omega^k) X^k$$

pour tout $P \in \mathbb{C}_{n-1}[X]$.

Montrer que F_{ω} est un automorphisme de $\mathbb{C}_{n-1}[X]$ et exprimer son inverse.

Exercice 108 [03160] [Correction]

Soit E un espace vectoriel réel de dimension finie $n \geq 2$.

- (a) Indiquer des endomorphismes de E dont la représentation matricielle est la même dans toutes les bases de E.
- (b) Soit (e_1, \ldots, e_n) une base de E. Montrer que pour tout $i \in \{2, \ldots, n\}$, la famille $(e_1 + e_i, e_2, \ldots, e_n)$ est une base de E.
- (c) Déterminer tous les endomorphismes de E dont la représentation matricielle est diagonale dans toutes les bases de E.
- (d) Quels sont les endomorphismes de E dont la représentation matricielle est la même dans toutes les bases de E?

Exercice 109 [02596] [Correction]

Soit f un élément non nul de $\mathcal{L}(\mathbb{R}^3)$ vérifiant

$$f^3 + f = 0.$$

Montrer que $\mathbb{R}^3=\operatorname{Ker} f\oplus\operatorname{Im} f$ et que l'on peut trouver une base dans laquelle f a pour matrice

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$$

Exercice 110 [02533] [Correction]

Soient $u, v : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ définies par

$$u(P) = P(X+1)$$
 et $v(P) = P(X-1)$.

- (a) Calculer rg(u-v) en utilisant sa matrice.
- (b) Retrouver ce résultat d'une autre manière.

Exercice 111 [02380] [Correction]

Quels sont les $f \in \mathcal{L}(\mathbb{R}^n)$ telles que $f(\mathbb{Z}^n) = \mathbb{Z}^n$?

Corrections

Exercice 1 : [énoncé]

Notons

$$A = (a_{i,i}) \in \mathcal{M}_n(\mathbb{K})$$

On a

$$\sigma(A) = \sum_{k=1}^{n} \sum_{\ell=1}^{n} a_{k,\ell}.$$

Par produit $B = A.J = (b_{i,j})$ avec $b_{i,j} = \sum_{\ell=1}^{n} a_{i,\ell}.1$ et $C = J.A.J = J.B = (c_{i,j})$ avec

$$c_{i,j} = \sum_{k=1}^{n} 1.b_{k,j} = \sum_{k=1}^{n} \sum_{\ell=1}^{n} a_{k,\ell} = \sigma(A).$$

Ainsi $C = \sigma(A).J.$

Exercice 2: [énoncé]

Pour $n \ge 1$, en exploitant $M^{n+1} = M \times M^n$, on a

$$\begin{cases} a_{n+1} = aa_n + bc_n \\ b_{n+1} = ab_n + bd_n \\ c_{n+1} = ca_n + dc_n \\ d_{n+1} = cb_n + dd_n. \end{cases}$$

Par suite

$$a_{n+1} + d_{n+1} - (b_{n+1} + c_{n+1}) = (a-c)(a_n - b_n) + (b-d)(c_n - d_n).$$

Sachant $a \ge c$ et $b \ge d$, il suffit d'établir $a_n \ge b_n$ et $c_n \ge d_n$ pour conclure. Dans le cas n = 1, la propriété est vérifiée.

Dans le cas $n \geq 2$, exploitons la relation $M^n = M^{n-1} \times M$

$$\begin{cases} a_n = a_{n-1}a + b_{n-1}c \\ b_n = a_{n-1}b + b_{n-1}d \\ c_n = c_{n-1}a + d_{n-1}c \\ d_n = c_{n-1}b + d_{n-1}d. \end{cases}$$

On a alors

$$a_n - b_n = a_{n-1}(a-b) + b_{n-1}(c-d)$$
 et $c_n - d_n = c_{n-1}(a-b) + d_{n-1}(c-d)$.

Puisqu'il est évident que $a_{n-1}, b_{n-1}, c_{n-1}, d_{n-1} \ge 0$ (cela se montre par récurrence), on obtient sachant $a-b \ge 0$ et $c-d \ge 0$ les inégalités permettant de conclure.

Notons que l'hypothèse $b+c \le a+d$ ne nous a pas été utile.

Exercice 3 : [énoncé]

Une matrice X solution commute avec A.

En étudiant l'équation AX = XA coefficients par coefficients, on observe que X est de la forme

$$\begin{pmatrix} a & 0 & x \\ 0 & b & y \\ 0 & 0 & c \end{pmatrix}.$$

Pour une telle matrice, l'équation $X^2 = A$ équivaut au système :

$$\begin{cases} a^2 = 1 \\ b^2 = 4 \\ c^2 = 16 \\ (a+c)x = 1 \\ (b+c)y = 2. \end{cases}$$

Les solutions sont donc $\begin{pmatrix} 1 & 0 & 1/5 \\ 0 & 2 & 1/3 \\ 0 & 0 & 4 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 & 1/3 \\ 0 & 2 & 1/3 \\ 0 & 0 & 4 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & 1/5 \\ 0 & -2 & 1 \\ 0 & 0 & 4 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 & 1/3 \\ 0 & -2 & 1 \\ 0 & 0 & 4 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 2 & -1 \\ 0 & 0 & -4 \end{pmatrix}$ etc...

Exercice 4: [énoncé]

Posons $B_k = A^k + A^{-k}$. On vérifie

$$(A^{k} + A^{-k})(A + A^{-1}) = A^{k+1} + A^{-(k+1)} + A^{k-1} + A^{-(k-1)}$$

et donc

$$B_k = B_{k+1} + B_{k-1}.$$

Sachant $B_0 = 2I_n$ et $B_1 = I_n$, on a par récurrence $B_k = \lambda_k I_n$ avec (λ_k) la suite récurrente linéaire double déterminée par

$$\begin{cases} \lambda_0 = 2, \lambda_1 = 1\\ \lambda_{k+1} = \lambda_k - \lambda_{k-1}. \end{cases}$$

L'équation caractéristique a pour racines

$$-j = e^{i\pi/2}$$
 et $-\bar{j}$

et le terme λ_k s'exprime

$$\lambda_k = \alpha \cos\left(\frac{k\pi}{3}\right) + \beta \sin\left(\frac{k\pi}{3}\right)$$

Après résolution connaissant $\lambda_0 = 2$ et $\lambda_1 = 1$, on obtient

$$\lambda_k = 2\cos\left(\frac{k\pi}{3}\right).$$

Exercice 5: [énoncé]

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$.

 $B = AD = (b_{i,j})$ avec $b_{i,j} = a_{i,j}\lambda_j$ et $C = DA = (c_{i,j})$ avec $c_{i,j} = \lambda_i a_{i,j}$. On a AD = DA si, et seulement si,

$$\forall 1 \leq i, j \leq n, a_{i,j} \lambda_i = a_{i,j} \lambda_j$$

soit

$$\forall 1 \le i, j \le n, a_{i,j}(\lambda_i - \lambda_j) = 0.$$

Les $\lambda_1, \ldots, \lambda_n$ étant deux à deux distincts, AD = DA si, et seulement si,

$$\forall 1 \le i \ne j \le n, a_{i,j} = 0$$

ce qui signifier que A est diagonale.

Exercice 6: [énoncé]

Si A est solution alors $AE_{i,j}=E_{i,j}A$ implique $a_{i,i}=a_{j,j}$ et $a_{i,k}=0$ pour $k\neq i$ donc $A=\lambda.I_n$.

La réciproque est immédiate.

Exercice 7: [énoncé]

Supposons A inversible. Puisque A et B commutent, A^{-1} et B aussi. Comme B est nilpotente, $-A^{-1}B$ l'est aussi. Or il est classique d'observer que si N est nilpotente, I-N est inversible d'inverse $I+N+\cdots+N^{p-1}$ avec p l'ordre de nilpotence de N. Ainsi $I+A^{-1}B$ est inversible et $A+B=A(I+A^{-1}B)$ aussi. Supposons A+B inversible, puisque -B est nilpotente et commute avec A+B, A=A+B-B est inversible.

Exercice 8: [énoncé]

Il suffit d'écrire

$$A^{-1}B = A^{-1}(BA)A^{-1} = A^{-1}(AB)A^{-1} = BA^{-1}.$$

Exercice 9 : [énoncé]

- (a) Soit $M \in \mathcal{M}_n(\mathbb{K})$ commutant avec toute matrice de $\mathcal{M}_n(\mathbb{K})$. Pour $i \neq j$, on a $E_{i,j}M = ME_{i,j}$. L'égalité des coefficients d'indice (i,i) donne $m_{j,i} = 0$. L'égalité des coefficients d'indice (i,j) donne $m_{j,j} = m_{i,i}$. Par suite la matrice M est scalaire. La réciproque est immédiate.
- (b) On reprend l'étude ci-dessus en étudiant la commutation de M avec $I_n + E_{i,j}$ qui conduit à nouveau à l'égalité $E_{i,j}M = ME_{i,j}$. On obtient la même conclusion.

Exercice 10: [énoncé]

En étudiant l'égalité AM = MA, on justifie $C(A) = D_n(\mathbb{C})$. C(A) est donc un sous-espace vectoriel de dimension n. De plus il contient évidemment les éléments A^k pour $k \in \{0, \ldots, n-1\}$ (et, plus généralement, tout polynôme en A). Supposons

$$\lambda_0 I + \lambda_1 A + \dots + \lambda_{n-1} A^{n-1} = 0.$$

Le polynôme $P = \lambda_0 + \lambda_1 X + \cdots + \lambda_{n-1} X^{n-1}$ est annulateur de A, donc les $\alpha_1, \ldots, \alpha_n$ qui sont valeurs propres de A sont aussi racines de P qui possède alors plus de racines que son degré. On peut alors affirmer P = 0 puis $\lambda_0 = \ldots = \lambda_{n-1} = 0$.

La famille $(A^k)_{0 \le k \le n-1}$ est une famille libre à n éléments de C(A), c'en est donc une base

Exercice 11: [énoncé]

(a) L'inclusion ⊃ est immédiate.

Inversement, soit $A \in \mathcal{M}_n(\mathbb{R})$ commutant avec toute matrice $M \in GL_n(\mathbb{R})$. Soient $i, j \in \{1, ..., n\}$ avec $i \neq j$.

Pour $M = I_n + E_{i,j}$, la relation AM = MA donne

$$AE_{i,j} = E_{i,j}A.$$

L'identification des coefficients d'indices (i, j) et (j, j) donnent respectivement

$$a_{i,i} = a_{i,j}$$
 et $a_{i,i} = 0$.

On en déduit que la matrice A est diagonale et que ses coefficients diagonaux sont égaux, autrement dit, A est une matrice scalaire.

(b) Soit $B \in GL_n(\mathbb{K})$. On peut écrire

$$A = (AB^{-1})B$$

et donc

$$A = B(AB^{-1}).$$

On en déduit

$$AB = BA$$

et ainsi la matrice A commute avec toute matrice inversible. On peut alors conclure que A est une matrice scalaire.

Exercice 12: [énoncé]

Par récurrence sur $n \geq 1$.

La propriété est immédiate pour n = 1.

Supposons la propriété vraie au rang $n \ge 1$.

Soit $T \in \mathcal{M}_{n+1}(\mathbb{K})$ triangulaire supérieure commutant avec sa transposée. On peut écrire

$$T = \begin{pmatrix} \alpha & {}^{t}X \\ O_{n,1} & S \end{pmatrix}$$

avec $\alpha \in \mathbb{K}$, $X \in \mathcal{M}_{n,1}(\mathbb{K})$ et $S \in \mathcal{M}_n(\mathbb{K})$ triangulaire supérieure. L'identification du coefficient d'indice (1,1) dans la relation ${}^tTT = T^tT$ donne

$$\alpha^2 = \alpha^2 + {}^t X X.$$

On en déduit $X = O_{n,1}$ et l'égalité ${}^tTT = T^tT$ donne alors ${}^tSS = S^tS$. Par hypothèse de récurrence, la matrice S est diagonale et par conséquent la matrice T l'est aussi.

Récurrence établie.

Exercice 13: [énoncé]

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ une matrice commutant avec toutes les matrices symétriques.

Soient $i < j \in \{1, ..., n\}$.

La matrice A commute avec la matrice symétrique $E_{i,j} + E_{j,i}$ ce qui permet d'écrire

$$A(E_{i,j} + E_{j,i}) = (E_{i,j} + E_{j,i})A.$$

L'égalité des coefficients d'indice (i, j) donne

$$a_{i,i} = a_{i,j}$$
.

La matrice A commute avec la matrice symétrique $E_{i,i}$ ce qui permet d'écrire

$$AE_{i,i} = E_{i,i}A$$
.

L'égalité des coefficients d'indice (i, j) donne

$$a_{i,j} = 0.$$

On en déduit que la matrice A est de la forme λI_n avec $\lambda \in \mathbb{K}$. La réciproque est immédiate.

Exercice 14: [énoncé]

Cas n = 2

Les matrices antisymétriques sont colinéaires à la matrice

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
.

En étudiant la commutation d'une matrice de $\mathcal{M}_2(\mathbb{R})$ avec cette dernière, on obtient que les matrices de $\mathcal{M}_2(\mathbb{R})$ commutant avec les matrices antisymétriques sont de la forme

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
.

Cas $n \ge 3$

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ une matrice commutant avec toutes les matrices antisymétriques.

Soient $i < j \in \{1, ..., n\}$ et $k \in \{1, ..., n\}$ avec $k \neq i, j$.

La matrice A commute avec la matrice antisymétrique $E_{i,j} - E_{j,i}$ ce qui permet d'écrire

$$A(E_{i,j} - E_{j,i}) = (E_{i,j} - E_{j,i})A.$$

L'égalité des coefficients d'indice (i, j) et (k, j) donne

$$a_{i,i} = a_{j,j}$$
 et $a_{k,i} = 0$.

On en déduit que la matrice A est de la forme λI_n avec $\lambda \in \mathbb{K}$. La réciproque est immédiate.

Exercice 15: [énoncé]

(a) $DE_{i,j} = a_i E_{i,j}$ et $E_{i,j} D = a_j E_{i,j}$ donc

$$\varphi(E_{i,j}) = (a_i - a_j)E_{i,j}.$$

Posons $I = \{(i, j) \in [1; n]^2 \mid a_i \neq a_j \}$ et $J = \{(i, j) \in [1; n]^2 \mid a_i = a_j \} = [1; n]^2 \setminus I$.

Pour $(i,j) \in I$, $E_{i,j} \in \operatorname{Im} \varphi$ et pour $(i,j) \in J$, $E_{i,j} \in \operatorname{Ker} \varphi$.

Ainsi

$$\operatorname{Vect}\{E_{i,j} \mid (i,j) \in I\} \subset \operatorname{Im} \varphi \text{ et } \operatorname{Vect}\{E_{i,j} \mid (i,j) \in J\} \subset \operatorname{Ker} \varphi.$$

Or

 $\dim \operatorname{Vect} \big\{ E_{i,j} \big| (i,j) \in I \big\} + \dim \operatorname{Vect} \big\{ E_{i,j} \big| (i,j) \in J \big\} = n^2 = \dim \operatorname{Im} \varphi + \dim \operatorname{Ker} \varphi$

donc

$$\dim \operatorname{Vect} \{ E_{i,j} \mid (i,j) \in I \} = \dim \operatorname{Im} \varphi$$

 $_{
m et}$

$$\dim \operatorname{Vect} \{ E_{i,j} \mid (i,j) \in J \} = \dim \operatorname{Ker} \varphi$$

puis

$$\operatorname{Vect}\{E_{i,j} \mid (i,j) \in I\} = \operatorname{Im} \varphi \text{ et } \operatorname{Vect}\{E_{i,j} \mid (i,j) \in J\} = \operatorname{Ker} \varphi.$$

(b) Si D est à coefficients diagonaux distincts alors

$$I = \{(i, j) \in [1; n]^2 \mid i \neq j\} \text{ et } J = \{(i, i) \mid i \in [1; n]\}.$$

Par suite $\operatorname{Im} \varphi$ est l'espace des matrices de diagonale nulle tandis que $\operatorname{Ker} \varphi$ est l'espace des matrices diagonales.

Exercice 16: [énoncé]

$$B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, B^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

et $B^n = O_3$ pour $n \ge 3$.

Comme B et I commutent, la formule du binôme donne

$$A^{n} = (I+B)^{n} = I + nB + \frac{n(n-1)}{2}B^{2}$$

et donc

$$A^n = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$

Exercice 17: [énoncé]

(a) Par récurrence

$$A^n = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$

(b) $A = I_3 + B$ avec

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Puisque I_3 et B commutent, la formule du binôme donne

$$A^{n} = I + nB + \frac{n(n-1)}{2}B^{2}$$

 $\operatorname{car} B^k = O_3 \text{ pour } k \ge 3$

Exercice 18: [énoncé]

(a) $A^2 - 3A + 2I = 0$. Comme $A(-\frac{1}{2}A + \frac{3}{2}I) = I$, on a

$$A^{-1} = -\frac{1}{2}A + \frac{3}{2}I = \begin{pmatrix} 2 & 1 \\ -3/2 & -1/2 \end{pmatrix}.$$

(b) $X^2 - 3X + 2 = (X - 1)(X - 2)$. Sachant que le reste de la division euclidienne considérée est de la forme aX + b, en évaluant en 1 et 2, on détermine a et b et on obtient :

$$X^{n} = (X^{2} - 3X + 2)Q(X) + (2^{n} - 1)X + 2 - 2^{n}.$$

(c) On peut remplacer X par A dans le calcul qui précède et on obtient :

$$A^{n} = (A^{2} - 3A + 2I)Q(A) + (2^{n} - 1)A + (2 - 2^{n})I = (2^{n} - 1)A + (2 - 2^{n})I$$

et donc

$$A^{n} = \begin{pmatrix} 3 - 2^{n+1} & 2 - 2^{n+1} \\ 3 \cdot 2^{n} - 3 & 3 \cdot 2^{n} - 2 \end{pmatrix}.$$

Exercice 19: [énoncé]

(a) Si M_k majore les coefficients de A^k alors nM_k majore les coefficients de A^{k+1} . On en déduit que les coefficients de A^k sont majorés par

$$n^{k-1}$$
.

On peut sans doute proposer plus fin.

(b) Posons T la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont nuls sauf ceux de coefficients (i, i+1) qui valent 1. On remarque

$$A = I_n + T + \dots + T^{n-1}.$$

On en déduit

$$(I-T)A = I_n - T^n$$

et puisque $T^n = O_n$, on obtient

$$A^{-1} = I - T.$$

(c) Le calcul des puissances de A^{-1} est immédiat

$$(A^{-1})^k = \sum_{j=0}^k (-1)^j \binom{k}{j} T^j$$

et donc le coefficient d'indice (i, j) de $(A^{-1})^k$ est

$$a_{i,j}^{-k} = (-1)^{j-i} {k \choose j-i} = (-1)^{j-i} \frac{k(k-1)\dots(k-j+i+1)}{(j-i)(j-i-1)\dots 1}.$$

Cette formule laisse présumer que le coefficient d'indice (i, j) de A^k est

$$a_{i,j}^k = (-1)^{j-i} \frac{(-k)(-k-1)\dots(-k-j+i+1)}{(j-i)(j-i-1)\dots 1} = \binom{k+j-i-1}{j-i}$$

ce que l'on démontre en raisonnant par récurrence.

Exercice 20 : [énoncé]

La relation $A^2 - (a+d)A + (ad-bc)I = 0$ est immédiate

Si $ad - bc \neq 0$ alors A est inversible et

$$A^{-1} = \frac{1}{ad-bc}((a+d)I - A) = \frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Si ad - bc = 0 alors $A^2 - (a + d)A = 0$.

Par l'absurde, si A est inversible, A est régulière donc A=(a+d)I puis A=O. Absurde.

Exercice 21 : [énoncé]

(a) Par la méthode du pivot, on opère sur les lignes d'une matrice de blocs A et I_n pour transformer A en I_n . On sait qu'alors le bloc I_n sera transformé en A^{-1} .

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 2 & 1 & -3 & 0 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 0 & 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & -1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}.$$

On conclut

$$A^{-1} = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

(b) Par la méthode du pivot

$$\left(\begin{array}{ccc|cccc}
1 & 0 & 1 & 1 & 0 & 0 \\
2 & -1 & 1 & 0 & 1 & 0 \\
-1 & 1 & -1 & 0 & 0 & 1
\end{array}\right).$$

$$\left(\begin{array}{ccc|ccc|c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & -1 & -2 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right).$$

$$\left(\begin{array}{ccc|ccc|c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & -1 & -2 & 1 & 0 \\ 0 & 0 & -1 & -1 & 1 & 1 \end{array}\right).$$

$$\left(\begin{array}{ccc|ccc|c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 & -1 & -1 \end{array}\right).$$

$$\left(\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & -1 & -1 \end{array}\right).$$

On conclut

$$B^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix}.$$

(c) Par la méthode du pivot

$$\begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 \\ 2 & 1 & -1 & 0 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & -2 & 3 & -2 & 1 & 0 \\ 0 & -1 & 1 & -2 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & -2 & 0 & 1 \\ 0 & -2 & 3 & -2 & 1 & 0 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & -2 & 0 & 1 \\ 0 & -2 & 3 & -2 & 1 & 0 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 2 & 1 & -2 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 4 & 1 & -3 \\ 0 & 0 & 1 & 2 & 1 & -2 \end{pmatrix}.$$

On conclut

$$C^{-1} = \begin{pmatrix} -1 & 0 & 1\\ 4 & 1 & -3\\ 2 & 1 & -2 \end{pmatrix}.$$

Exercice 22 : [énoncé]

A est inversible car triangulaire supérieure à coefficients diagonaux non nuls. Soient $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$. L'équation Y = AX équivaut à $X = A^{-1}Y$ or

$$\begin{cases} x_1 - (x_2 + \dots + x_n) = y_1 \\ \vdots \\ x_{n-1} - x_n = y_{n-1} \\ x_n = y_n \end{cases} \iff \begin{cases} x_1 = y_1 + y_2 + 2y_3 + \dots + 2^{n-2}y_n \\ \vdots \\ x_{n-2} = y_{n-2} + y_{n-1} + 2y_n \\ x_{n-1} = y_{n-1} + y_n \\ x_n = y_n \end{cases}$$

donc

$$A^{-1} = \begin{pmatrix} 1 & 1 & 2 & \cdots & 2^{n-2} \\ & \ddots & \ddots & & \vdots \\ & & \ddots & \ddots & 2 \\ & 0 & & \ddots & 1 \\ & & & 1 \end{pmatrix}.$$

Exercice 23 : [énoncé]

 $A = (a_{k,\ell})$ avec $a_{k,\ell} = \omega^{(k-1)(\ell-1)}$. $\overline{A} = (b_{k,\ell})$ avec $b_{k,\ell} = \overline{a}_{k,\ell} = \overline{\omega}^{(k-1)(\ell-1)} = \omega^{-(k-1)(\ell-1)}$. $A\overline{A} = (c_{k,\ell})$ avec

$$c_{k,\ell} = \sum_{m=1}^{n} a_{k,m} b_{m,\ell} = \sum_{m=1}^{n} \omega^{(k-1)(m-1)} \omega^{-(m-1)(\ell-1)} = \sum_{m=0}^{n-1} (\omega^{k-\ell})^{m}.$$

Si $k = \ell$ alors $\omega^{k-\ell} = 1$ et

$$c_{k,k} = n$$
.

Si $k \neq \ell$ alors $\omega^{k-\ell} \neq 1$ et

$$c_{k,\ell} = \frac{1 - (\omega^{k-\ell})^n}{1 - \omega^{k-\ell}} = 0.$$

Ainsi $A\overline{A} = nI_n$. On en déduit que A est inversible et que

$$A^{-1} = \frac{1}{n}\overline{A}.$$

Exercice 24 : [énoncé]

- (a) $(A+I)^3 = O_3$.
- (b) $A^3 + 3A^2 + 3A + I = O$ donc A est inversible et $A^{-1} = -(A^2 + 3A + 3I)$.

Exercice 25 : [énoncé]

- (a) $A = J I_n$ avec $J^2 = nJ$ donc $A^2 = (n-2)J + I_n = (n-2)A + (n-1)I_n$.
- (b) $AB = I_n$ pour $B = \frac{1}{n-1}(A (n-2)I_n)$ donc A est inversible et $B = A^{-1}$.

Exercice 26 : [énoncé]

(a) Comme (I+A)(I-A) = (I-A)(I+A), on a, en multipliant à droite et à gauche par $(I+A)^{-1}$, la relation

$$(I-A)(I+A)^{-1} = (I+A)^{-1}(I-A)$$

(b) On a

$$(I+A)(I+B) = (I+A) + (I-A) = 2I$$

donc I + B est inversible et

$$(I+B)^{-1} = \frac{1}{2}(I+A)$$

puis

$$(I-B)(I+B)^{-1} = \frac{1}{2}(I+A-(I-A)) = A.$$

Exercice 27: [énoncé]

Supposons A et B inversibles. En multipliant à gauche par A^{-1} et B^{-1} on obtient $C = \mathcal{O}_n$ ce qui est exclu.

En raisonnant de façon analogue, on exclut les autres cas où deux des trois matrices sont inversibles.

Exercice 28 : [énoncé]

On a $A^2 = 3I + 2A$ donc

$$A^{-1} = \frac{1}{3}(A - 2I).$$

Exercice 29: [énoncé]

(a) En effectuant successivement les opérations élémentaires : $C_2 \leftarrow C_2 + aC_1, C_3 \leftarrow C_3 + aC_2, \dots, C_n \leftarrow C_n + aC_{n-1}$ on obtient :

$$A^{-1} = \begin{pmatrix} 1 & a & a^2 & \dots & a^{n-1} \\ 0 & 1 & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a^2 \\ \vdots & & \ddots & 1 & a \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}.$$

(b) En effectuant successivement les opérations élémentaires : $C_n \leftarrow C_n - C_{n-1}, C_{n-1} \leftarrow C_{n-1} - C_{n-2}, \dots, C_2 \leftarrow C_2 - C_1$, on obtient :

$$A^{-1} = \begin{pmatrix} 1 & -1 & & (0) \\ & \ddots & \ddots & \\ & & \ddots & -1 \\ (0) & & & 1 \end{pmatrix}.$$

(c) En effectuant successivement les opérations élémentaires : $C_n \leftarrow C_n - C_{n-1}, C_{n-1} \leftarrow C_{n-1} - C_{n-2}, \dots, C_2 \leftarrow C_2 - C_1,$ puis encore $C_n \leftarrow C_n - C_{n-1}, C_{n-1} \leftarrow C_{n-1} - C_{n-2}, \dots, C_2 \leftarrow C_2 - C_1,$ on obtient :

$$A^{-1} = \begin{pmatrix} 1 & -2 & 1 & & (0) \\ & 1 & \ddots & \ddots & \\ & & \ddots & \ddots & 1 \\ & & & 1 & -2 \\ (0) & & & 1 \end{pmatrix}.$$

Exercice 30: [énoncé]

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Sachant

$$^{t}(AB) = {}^{t}B^{t}A$$

on a

$$^{t}(AB) = AB \iff BA = AB.$$

Le produit de deux matrices symétriques est une matrice symétrique si, et seulement si, les deux matrices commutent.

Exercice 31 : [énoncé]

On peut procéder de manière élémentaire, en observant l'écriture

$$M = \frac{1}{2}(M + {}^{t}M) + \frac{1}{2}(M - {}^{t}M)$$

avec $\frac{1}{2}(M+{}^tM) \in \mathcal{S}_n(\mathbb{R})$ et $\frac{1}{2}(M-{}^tM) \in \mathcal{A}_n(\mathbb{R})$ On peut aussi exploiter que l'application $T \colon \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définie par $T(A) = {}^tA$ est un endomorphisme involutif donc une symétrie vectorielle ce qui assure que les espaces $\operatorname{Ker}(T-\operatorname{Id}) = \mathcal{S}_n(\mathbb{R})$ et $\operatorname{Ker}(T+\operatorname{Id}) = \mathcal{A}_n(\mathbb{R})$ sont supplémentaires.

Exercice 32: [énoncé]

 $Les\ matrices\ triangulaires\ sup\'erieures\ strictes\ sont\ nil potentes.$

Commençons par étudier le cas n=3.

Soit A une matrice de $\mathcal{M}_3(\mathbb{R})$. Introduisons ses coefficients :

$$A = \begin{pmatrix} a & d & e \\ g & b & f \\ h & i & c \end{pmatrix}.$$

Soit T une matrice triangulaire supérieure stricte de taille 3:

$$T = \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}.$$

La différence S = A - T est

$$S = \begin{pmatrix} a & d-x & e-y \\ g & b & f-z \\ h & i & c \end{pmatrix}.$$

Cette matrice est symétrique si, et seulement si,

$$\begin{cases} g = d - x \\ h = e - y \\ u = f - z \end{cases}$$
 soit
$$\begin{cases} x = d - g \\ y = e - h \\ z = f - u. \end{cases}$$

Pour ces valeurs, on obtient l'écriture A = S + T avec S symétrique et T nilpotente puisque triangulaire supérieure stricte.

Cette résolution se généralise en taille n: pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$, on peut écrire A = S + T avec $S = (s_{i,j})$ matrice symétrique et $T = (t_{i,j})$ matrice triangulaire supérieure stricte données par

$$s_{i,j} = \begin{cases} a_{i,j} & \text{si } i \ge j \\ a_{j,i} & \text{sinon} \end{cases} \quad \text{et} \quad t_{i,j} = \begin{cases} 0 & \text{si } i \ge j \\ a_{i,j} - a_{j,i} & \text{sinon.} \end{cases}$$

Exercice 33: [énoncé]

(a) M(a, b, c) = a.I + b.J + c.K avec

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \text{ et } K = J^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

On observe que : E = Vect(I, J, K). Par suite E un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

De plus la famille (I, J, K) est libre, c'est donc une base de E et par suite dim E = 3.

(b) De plus $I \in E$, $M(a,b,c) - M(a',b',c') = M(a-a',b-b',c-c') \in E$ et $M(a,b,c)M(a',b',c') = (aI+bJ+cK)(a'I+b'J+c'K) = aa'I + (ab'+a'b)J + (ac'+bb'+ca')K \in E$.

Donc E est un sous-anneau de $\mathcal{M}_3(\mathbb{R})$.

De plus M(a,b,c)M(a',b',c')=M(a',b',c')M(a,b,c), donc E est un anneau commutatif.

(c) A est inversible si, et seulement si, $a \neq 0$ (ici A est triangulaire supérieure) $f(\lambda . X + \mu . Y) = A(\lambda . X + \mu . Y) = \lambda . AX + \mu . AY = \lambda . f(X) + \mu . f(Y)$. f est un endomorphisme de E.

Soit $X \in E$, si $X \in \text{Ker } f$ alors AX = O puis $A^{-1}AX = O$ d'où X = O. Par suite $\text{Ker } f = \{0\}$

f est un endomorphisme injectif d'un \mathbb{K} -espace vectoriel de dimension finie, c'est donc un automorphisme. Par suite il existe $B \in E$ telle que f(B) = AB = I.

En multipliant par A^{-1} , on conclut $A^{-1} = B \in E$.

Exercice 34 : [énoncé]

(a) $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n .

Notons f_{σ} l'endomorphisme canoniquement associé à $P(\sigma)$.

Pour tout $1 \le j \le n$, on a $f_{\sigma}(e_j) = e_{\sigma(j)}$.

Par suite $(f_{\sigma} \circ f_{\sigma'})(e_i) = f_{\sigma \circ \sigma'}(e_i)$ puis $P(\sigma \circ \sigma') = P(\sigma)P(\sigma')$

(b) $I_n = P(\mathrm{Id}) \in E$. $P(\sigma)P(\sigma') = P(\sigma \circ \sigma') \in E$ et $P(\sigma)P(\sigma^{-1}) = P(\sigma \circ \sigma^{-1}) = P(\mathrm{Id}) = I_n \text{ donc } P(\sigma) \in \mathrm{GL}_n(\mathbb{R})$ et $P(\sigma)^{-1} = P(\sigma^{-1}) \in E$.

On peut alors conclure que E est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$.

L'application $P \colon \mathcal{S}_n \to E$ qui à σ associe $P(\sigma)$ est un morphisme de groupe surjectif.

Soit $\sigma \in \text{Ker } P$, on a $P(\sigma) = I_n \text{ donc } \forall 1 \leq j \leq n, \sigma(j) = j \text{ soit } \sigma = \text{Id.}$

(c)
$${}^{t}P(\sigma) = (\delta_{j,\sigma(i)})_{i,j} = (\delta_{\sigma^{-1}(j),i})_{i,j} = (\delta_{i,\sigma^{-1}(j)})_{i,j} = P(\sigma^{-1})$$

Exercice 35 : [énoncé]

(a) E = Vect(I, J) avec

$$J = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}.$$

La famille (I, J) forme une base de E car cette famille est évidemment libre.

- (b) $E \subset \mathcal{M}_2(\mathbb{K})$, $I \in E$. Soient $A = aI + bJ \in E$ et $B = cI + dJ \in E$. $A B = (a c)I + (b d)J \in E$ et AB = (ac)I + (ac + bd)J car $J^2 = O$. Ainsi E est un sous-anneau de $\mathcal{M}_2(\mathbb{K})$. De plus AB = BA donc E commutatif.
- (c) Avec les notations précédentes AB = I si, et seulement si,

$$\begin{cases} ac = 1\\ ad + bc = 0. \end{cases}$$

Par suite A est inversible si, et seulement si, $a \neq 0$.

(d) Avec les notations précédentes $AB = O_2$ si et seulement si

$$\begin{cases} ac = 0 \\ ad + bc = 0. \end{cases}$$

Les diviseurs de zéros sont donc les matrices

$$\begin{pmatrix} b & b \\ -b & -b \end{pmatrix} \text{ avec } b \in \mathbb{K}.$$

Exercice 36: [énoncé]

(a) $C \subset \mathcal{M}_n(\mathbb{K})$ et $O_n \in C$. Soient $\lambda, \mu \in \mathbb{K}$ et $A, B \in C$. Pour tout $(i, j) \in [1, n]^2$,

$$(\lambda A + \mu B)_{n+1-i}, n+1-i = \lambda A_{n+1-i}, n+1-i + \mu B_{n+1-i}, n+1-i = \lambda A_{i}, n+1-i = \lambda$$

et donc

$$(\lambda A + \mu B)_{n+1-i,n+1-j} = (\lambda A + \mu B)_{i,j}$$
.

On en déduit $\lambda A + \mu B \in C$.

Ainsi C est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.

(b) Soient $A, B \in C$. Pour tout $(i, j) \in [1; n]^2$,

$$(AB)_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$

donc

$$(AB)_{n+1-i,n+1-j} = \sum_{k=1}^{n} a_{n+1-i,k} b_{k,n+1-j}.$$

Par le changement d'indice $\ell = n + 1 - k$

$$(AB)_{n+1-i,n+1-j} = \sum_{\ell=1}^{n} a_{n+1-i,n+1-\ell} b_{n+1-\ell,n+1-j}$$

et puisque A et B sont centro-symétriques

$$(AB)_{n+1-i,n+1-j} = \sum_{\ell=1}^{n} a_{i,\ell} b_{\ell,j} = (AB)_{i,j}.$$

Ainsi $AB \in C$.

(c) L'application φ: X ∈ C → AX est linéaire et c'est évidemment un endomorphisme de C car C est stable par produit. Soit X ∈ Ker φ. On a AX = O_n donc A⁻¹(AX) = O_n puis X = O_n. On en déduit que l'endomorphisme φ est injectif, or C est un espace vectoriel de dimension finie, donc φ est un automorphisme de C.

Puisque la matrice I_n est centro-symétrique, par surjectivité de φ , il existe $B \in C$ vérifiant $AB = I_n$. Or $A^{-1}(AB) = A^{-1}$ donc $B = A^{-1}$ puis $A^{-1} \in C$.

Exercice 37: [énoncé]

On note A la représentation matricielle cherchée.

- (a) $A = \begin{pmatrix} 1 & 1 & 0 \\ -2 & 1 & 1 \end{pmatrix}.$
- (b) $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$
- (c) $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$
- (d) $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{pmatrix}.$

Exercice 38: [énoncé]

(a) Pour u=(x,y,z) calculons p(u)=(x',y',z'). Comme $p(u)-u\in D$, il existe $\lambda\in\mathbb{K}$ tel que $p(u)=u+\lambda.w$. Comme $p(u)\in P$ on a x'+2y'-z'=0 ce qui donne

$$\lambda = -(x + 2y - z)/2$$

et donc

$$p(u) = ((x - 2y + z)/2, y, (x + 2y + z)/2)$$

Par suite

$$\operatorname{Mat}_{\mathcal{B}}(p) = \begin{pmatrix} 1/2 & -1 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 1 & 1/2 \end{pmatrix}.$$

(b) Comme q = I - p et s = 2p - I,

$$\operatorname{Mat}_{\mathcal{B}}(q) = \begin{pmatrix} 1/2 & 1 & -1/2 \\ 0 & 0 & 0 \\ -1/2 & -1 & 1/2 \end{pmatrix} \text{ et } \operatorname{Mat}_{\mathcal{B}}(s) = \begin{pmatrix} 0 & -2 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{pmatrix}.$$

Exercice 39 : [énoncé]

(a) Les colonnes de A sont formées des coefficients de

$$\varphi(X^j) = (X+1)^j = \sum_{i=0}^j \binom{j}{i} X^i.$$

Ainsi $A = (a_{i,i})_{1 \le i, i \le n+1} \in \mathcal{M}_{n+1}(\mathbb{R})$ avec

$$a_{i,j} = {j-1 \choose i-1}$$
 si $i \le j$ et $a_{i,j} = 0$ sinon.

(b) L'endomorphisme φ est inversible avec

$$\varphi^{-1}(P) = P(X - 1).$$

On en déduit $\varphi^{-1}(X^j) = (X-1)^j$ d'où

$$A^{-1} = ((-1)^{j-i} a_{i,j})_{1 \le i,j \le n+1}.$$

Exercice 40 : [énoncé]

(a) Pour $0 \le k \le n$,

$$\varphi(X^k) = \sum_{i=0}^n \binom{k}{i} X^i = \sum_{i=0}^k \binom{k}{i} X^i + \sum_{i=k+1}^n \underbrace{\binom{k}{i}}_{=0} X^i = (X+1)^k.$$

On en déduit

$$\varphi(P) = P(X+1).$$

(b) $\varphi^m(P) = P(X+m)$ donc

$$\varphi^{m}(X^{k}) = (X+m)^{k} = \sum_{i=0}^{k} {k \choose i} m^{k-i} X^{i} = \sum_{i=0}^{n} {k \choose i} m^{k-i} X^{i}$$

d'où

$$A^m = (m^{j-i}a_{i,j})_{1 \le i,j \le n+1}$$

(c) $\varphi^{-1}(P) = P(X - 1)$ donc

$$\varphi^{-1}(X^k) = (X-1)^k$$

d'où

$$A^{-1} = ((-1)^{j-i} a_{i,j})_{1 \le i,j \le n+1}.$$

Exercice 41 : [énoncé]

(a) Posons x = Re(a) et y = Im(a). f(1) = 1 + x + iy et f(i) = i - ai = y + i(1 - x). La matrice de f dans la base (1, i) est donc

$$\begin{pmatrix} 1+x & y \\ y & 1-x \end{pmatrix}$$
.

(b) Si $|a| \neq 1$ alors det $f \neq 0$. Im $f = \mathbb{C}$ et Ker $f = \{0\}$. Si |a| = 1 alors det f = 0 et $f \neq 0$. f est un endomorphisme de rang 1. On a $f(e^{i\theta/2}) = 2e^{i\theta/2}$ et $f(e^{i(\theta+\pi)/2}) = 0$ donc

$$\operatorname{Im} f = \operatorname{Vect}\{e^{i\theta/2}\}$$
 et $\operatorname{Ker} f = i\operatorname{Im} f$.

Exercice 42: [énoncé]

Comme $f^2 \neq 0$, il existe $x \in E$ tel que $f^2(x) \neq 0$. Posons

$$e_1 = x, e_2 = f(x), e_3 = f^2(x).$$

Si $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 = 0$ alors

$$\lambda_1 x + \lambda_2 f(x) + \lambda_3 f^2(x) = 0.$$

En appliquant f^2 à cette relation, on a $\lambda_1 f^2(x) = 0$ car on sait $f^3 = 0$. Puisque $f^2(x) \neq 0$, on a $\lambda_1 = 0$ et sans plus de difficultés on montre aussi $\lambda_2 = 0$ et $\lambda_3 = 0$.

La famille $\mathcal{B} = (e_1, e_2, e_3)$ est libre en dimension 3, c'est donc une base de E. La matrice de f dans celle-ci est comme voulue.

Exercice 43: [énoncé]

- (a) Comme $f^{n-1} \neq 0$, $\exists x \in E, f^{n-1}(x) \neq 0$. Si $\lambda_0 x + \lambda_1 f(x) + \dots + \lambda_{n-1} f^{n-1}(x) = 0$ alors: en composant avec f^{n-1} , on obtient $\lambda_0 f^{n-1}(x) = 0$ d'où $\lambda_0 = 0$. en composant successivement avec f^{n-2}, \dots, f, I , on obtient successivement $\lambda_1 = 0, \dots, \lambda_{n-2} = 0, \lambda_{n-1} = 0$ Par suite $\mathcal{B} = (x, f(x), f^2(x), \dots, f^{n-1}(x))$ est libre et forme donc une base de E.
- (b) On a

$$\operatorname{Mat}_B f = \begin{pmatrix} 0 & & & (0) \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ (0) & & 1 & 0 \end{pmatrix} = A$$

puis

$$\operatorname{Mat}_{\mathcal{B}}(f^2) = A^2 = \begin{pmatrix} 0 & & & (0) \\ 0 & \ddots & & \\ 1 & \ddots & \ddots & \\ (0) & 1 & 0 & 0 \end{pmatrix}, \dots, \dots$$

$$\operatorname{Mat}_{\mathcal{B}}(f^{n-1}) = A^{n-1} = \begin{pmatrix} 0 & & & (0) \\ 0 & \ddots & & \\ & \ddots & \ddots & \\ 1 & & 0 & 0 \end{pmatrix}.$$

(c) Notons $C(f) = \{g \in \mathcal{L}(E) \mid g \circ f = f \circ g\}$. Il est clair que $\text{Vect}(I, f, f^2, \dots, f^{n-1}) \subset C(f)$. Inversement, soit $g \in C(f)$, notons a_0, \dots, a_{n-1} les composantes de g(x) dans \mathcal{B} . On a

$$\begin{cases} g(x) = a_0 x + a_1 f(x) + \dots + a_{n-1} f^{n-1}(x) \\ g(f(x)) = f(g(x)) = a_0 f(x) + \dots + a_{n-2} f^{n-1}(x) \\ & \vdots \\ g(f^{n-1}(x)) = f^{n-1}(g(x)) = a_0 f^{n-1}(x). \end{cases}$$

Par suite

$$\operatorname{Mat}_{\mathcal{B}} g = \begin{pmatrix} a_0 & & & & & & \\ a_1 & & \ddots & & & & \\ \vdots & \ddots & \ddots & & & \\ a_{n-1} & \cdots & a_1 & a_0 \end{pmatrix} = a_0 I + a_1 A + \cdots + a_{n-1} A^{n-1}.$$

Donc $g = a_0 I + a_1 f + \dots + a_{n-1} f^{n-1} \in \text{Vect}(I, f, \dots, f^{n-1}).$ Ainsi $C(f) = \text{Vect}(I, f, f^2, \dots, f^{n-1}).$

Exercice 44: [énoncé]

(a)

$$A^2 = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} = A$$

 $\operatorname{donc} f$ est une projection vectorielle.

- (b) En résolvant les équations f(x) = x et f(x) = 0 on obtient que (u, v) forme une base de Im f et (w) forme une base de Ker f avec u = i + j, v = i + k et w = i + j + k.
- (c)

$$\operatorname{Mat}_{(u,v,w)} f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercice 45: [énoncé]

(a) Ker f = Vect(u) avec u = (1, 1, 1). Im f = Vect(v, w) avec v = (2, -1, -1), w = (-1, 2, -1). Comme $\mathcal{C} = (u, v, w)$ est libre on peut conclure que Ker f et Im f sont supplémentaires dans \mathbb{R}^3 .

(b) \mathcal{C} est une base adaptée à la supplémentarité de Ker f et Imf.

$$\operatorname{Mat}_{\mathcal{C}} f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

(c) f est la composée, commutative, de l'homothétie vectorielle de rapport 3 avec la projection vectorielle sur Im f parallèlement à Ker f.

Exercice 46: [énoncé]

Soit $x \notin \operatorname{Ker} f^{n-1}$. Un tel x existe puisque $f^{n-1} \neq 0$. Considérons la famille $\mathcal{B} = (f^{n-1}(x), \dots, f(x), x)$. Supposons

$$\lambda_{n-1}f^{n-1}(x) + \dots + \lambda_1f(x) + \lambda_0x = 0_E.$$

En y appliquant successivement f^{n-1}, \ldots, f , Id on obtient $\lambda_0 = 0, \ldots, \lambda_{n-2} = 0$ puis $\lambda_{n-1} = 0$ car $f^{n-1}(x) \neq 0_E$.

 \mathcal{B} est une famille libre formée de $n = \dim E$ vecteurs, c'est donc une base de E. De plus $\operatorname{Mat}_{\mathcal{B}}(f)$ est de la forme convenable.

Exercice 47: [énoncé]

(a) Par hypothèse f(y) = 0 et $f^2(z) = -z$. En composant l'identité x = y + z avec f^2 , on obtient

$$f^2(x) = 0 + f^2(z) = -z$$

et il en découle

$$y = x - z = x + f^2(x).$$

(b) Ce qui précède assure l'unicité de la décomposition d'un vecteur x de E et donc le caractère direct de la somme.

De plus, pour $x \in E$, en posant $y = x + f^2(x)$ et $z = -f^2(x)$, on vérifie x = y + z et

$$f(y) = f(x) + f^{3}(x) = (f^{3} + f)(x) = 0$$
$$(f^{2} + \mathrm{Id})(x) = -f^{4}(x) - f^{2}(x) = -(f^{3} + f)(f(x)) = 0.$$

On peut donc affirmer que E est la somme directe de Ker f et Ker $(f^2 + \mathrm{Id})$.

(c) On a $(f^2 + \mathrm{Id}) \circ f = 0$ donc $\mathrm{Im} f \subset \mathrm{Ker}(f^2 + \mathrm{Id})$. Or $f \neq 0$ donc $\mathrm{dim} \, \mathrm{Im} f \geq 1$ puis $\mathrm{dim} \, \mathrm{Ker}(f^2 + \mathrm{Id}) > 1$.

Soit x un vecteur non nul de $Ker(f^2 + Id)$. Supposons

$$\lambda x + \mu f(x) = 0. (1)$$

En composant avec f on obtient $\lambda f(x) + \mu f^2(x) = 0$ puis

$$\lambda f(x) - \mu x = 0. (2)$$

La combinaison $\lambda \times (??) - \mu \times (??)$ donne $(\lambda^2 + \mu^2)x = 0$. Sachant $x \neq 0$, on obtient $\lambda^2 + \mu^2 = 0$ puis $\lambda = \mu = 0$ car λ et μ sont réels. La famille (x, f(x)) est donc libre.

(d) En dimension impaire $\det(-\mathrm{Id}) = -1$. Si l'endomorphisme f est inversible, la relation $f^3 + f = 0$ peut être simplifiée en $f^2 + \mathrm{Id} = 0$. Ceci donne $\det(f^2) = \det(-\mathrm{Id}) = -1$ ce qui est incompatible avec $\det(f^2) = (\det f)^2 \ge 0$. On en déduit que f n'est pas inversible : $\dim \ker f \ge 1$. La conjonction des résultats qui précèdent donne

$$\dim \operatorname{Ker} f = 1 \operatorname{et} \operatorname{dim} \operatorname{Ker} (f^2 + \operatorname{Id}) = 2.$$

(e) Soit y un vecteur non nul de Ker f et x un vecteur non nul de Ker $(f^2 + \mathrm{Id})$. La famille (y) est base de Ker f et la famille (x, f(x)) est base de Ker $(f^2 + \mathrm{Id})$. Ces deux espaces étant supplémentaires dans E, la famille (y, x, f(x)) est base de E. La matrice de f dans celle-ci est de la forme voulue.

Exercice 48: [énoncé]

- (a) On vérifie que la famille \mathcal{B}' est libre, puis c'est une base car formée de trois vecteurs en dimension 3.
- (b) Par calcul matriciel

$$f(\varepsilon_1) = \varepsilon_1, f(\varepsilon_2) = 2\varepsilon_2, f(\varepsilon_3) = 0$$

et donc

$$\operatorname{Mat}_{\mathcal{B}'} f = egin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

(c) On observe que $\varepsilon_3 \in \operatorname{Ker} f$ et $\varepsilon_1, \varepsilon_2 \in \operatorname{Im} f$. Le théorème du rang permet de conclure : (ε_3) est une base de $\operatorname{Ker} f$ et $(\varepsilon_1, \varepsilon_2)$ est une base de $\operatorname{Im} f$.

Exercice 49: [énoncé]

- (a) On vérifie aisément que famille \mathcal{C} est libre et c'est donc une base de \mathbb{R}^3 .
- (b) $f(\varepsilon_1) = \varepsilon_1$, $f(\varepsilon_2) = \varepsilon_2$ et $f(\varepsilon_3) = \varepsilon_1 + \varepsilon_3$ donc

$$\operatorname{Mat}_{\mathcal{C}} f = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(c) Par récurrence :

$$\operatorname{Mat}_{\mathcal{C}}(f^n) = \begin{pmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Par changement de bases avec

$$P = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

on obtient

$$\operatorname{Mat}_{\mathcal{B}}(f^n) = \begin{pmatrix} n+1 & n & -n \\ 0 & 1 & 0 \\ n & n & 1-n \end{pmatrix}.$$

Exercice 50 : [énoncé]

- (a) \mathcal{B}' est libre et formée de trois vecteurs en dimension 3, c'est une base de E. $f(\varepsilon_1) = \varepsilon_1, f(\varepsilon_2) = 2\varepsilon_2, f(\varepsilon_3) = 3\varepsilon_3$ donc D = diag(1, 2, 3).
- (b)

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}, P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}.$$

(c) Par formule de changement base

$$A = PDP^{-1}.$$

(d) Puisqu'il est facile de calculer D^n

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix} + 2^{n} \begin{pmatrix} -1 & -1 & -2 \\ 0 & 0 & 0 \\ 1 & 1 & 2 \end{pmatrix} + 3^{n} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercice 51: [énoncé]

(a) En résolvant les équations : f(u) = 0, f(u) = u et f(u) = 2u on trouve que $\varepsilon_1 = e_1 + e_2 + e_3$, $\varepsilon_2 = e_2 - e_3$ et $\varepsilon_3 = e_1 + e_3$ sont des vecteurs tels que $f(\varepsilon_1) = 0$, $f(\varepsilon_2) = \varepsilon_2$, $f(\varepsilon_3) = 2\varepsilon_3$.

On vérifie aisément que la famille \mathcal{C} est libre et c'est donc une base de E, celle-ci convient.

(b) On a

$$P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}, P^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 2 & -1 & -1 \end{pmatrix}.$$

(c) Par changement de base

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 2^{n+1} & -2^{n} & -2^{n} \\ 1 & 0 & -1 \\ 2^{n+1} - 1 & -2^{n} & 1 - 2^{n} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{pmatrix} + 2^{n} \begin{pmatrix} 2 & -1 & -1 \\ 0 & 0 & 0 \\ 2 & -1 & -1 \end{pmatrix}$$

(d) Posons $X_n = {}^t(x_n \quad y_n \quad z_n)$. On observe $X_{n+1} = AX_n$. Par récurrence $X_n = A^nX_0$.

Avec $X_0 = {}^t \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$ on obtient

$$\begin{cases} x_n = 2^{n+1} \\ y_n = 1 \\ z_n = 2^{n+1} - 1. \end{cases}$$

Exercice 52 : [énoncé]

(a) P est la matrice de l'application Id_E dans les bases B au départ et b à l'arrivée.

La relation $x = \mathrm{Id}_E(x)$ donne matriciellement v = PV.

- (b) La relation $f = \operatorname{Id}_E^{-1} \circ f \circ \operatorname{Id}_E$ donne matriciellement $M = P^{-1}mP$.
- (c) Dans une base de vecteurs propres, la matrice de f est diagonale et ses puissances sont alors faciles à calculer. Par changement de base, on en déduit m^n .

Exercice 53: [énoncé]

(a) On vérifie aisément que la famille e' est libre et c'est donc une base de E. $f(e'_1) = e'_1, f(e'_2) = e'_2, f(e'_3) = e'_3 + e'_1$ donc

$$B = \operatorname{Mat}_{e'} f = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(b) Par récurrence

$$B^n = \begin{pmatrix} 1 & 0 & n \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

puis $A^n = PB^nP^{-1}$ avec

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 1 & 1 \end{pmatrix}$$

d'où

$$A^n = \begin{pmatrix} 1 - n & n & n \\ 0 & 1 & 0 \\ -n & n & n+1 \end{pmatrix}.$$

Exercice 54 : [énoncé]

(a) On vérifie aisément que la famille \mathcal{B}' est libre et c'est donc une base de E. $f(\varepsilon_1) = \varepsilon_1, f(\varepsilon_2) = \varepsilon_1 + \varepsilon_2, f(\varepsilon_3) = \varepsilon_1 + \varepsilon_2 + \varepsilon_3$ donc

$$\operatorname{Mat}_{\mathcal{B}'} f = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = B.$$

(b) $B = I_3 + J$ avec

$$J = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, J^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Puisque I_3 et J commutent la formule du binôme donne

$$B^{n} = I_{3} + nJ + \frac{n(n-1)}{2}J^{2}$$

 $\operatorname{car} J^k = O_3 \operatorname{pour} k \geq 3.$

Par formule de changement de base, on obtient

$$A^{n} = \begin{pmatrix} 1 - \frac{n(n+1)}{2} & \frac{n(n+3)}{2} & \frac{n(n+1)}{2} \\ -n & n+1 & n \\ -\frac{n(n-1)}{2} & \frac{n(n+1)}{2} & 1 + \frac{n(n-1)}{2} \end{pmatrix}.$$

Exercice 55: [énoncé]

- (a) En recherchant des vecteurs tels que f(x) = x, f(x) = 2x et f(x) = 3x on observe que $\varepsilon_1 = (-1, 1, 2)$, $\varepsilon_2 = (0, 1, 1)$ et $\varepsilon_3 = (1, 1, 1)$ conviennent. De plus ces trois vecteurs forment une famille libre et donc une base de \mathbb{R}^3 .
- (b)

$$P = \begin{pmatrix} -1 & 0 & 1\\ 1 & 1 & 1\\ 2 & 1 & 1 \end{pmatrix} \text{ et } P^{-1} = \begin{pmatrix} 0 & -1 & 1\\ -1 & 3 & -2\\ 1 & -1 & 1 \end{pmatrix}.$$

(c) Par changement base

$$A = PDP^{-1}.$$

(d) Sachant calculer D^n on obtient

$$A^{n} = \begin{pmatrix} 3^{n} & 1 - 3^{n} & -1 + 3^{n} \\ -2^{n} + 3^{n} & -1 + 3 \cdot 2^{n} - 3^{n} & 1 - 2 \cdot 2^{n} + 3^{n} \\ -2^{n} + 3^{n} & -2 + 3 \cdot 2^{n} - 3^{n} & 2 - 2 \cdot 2^{n} + 3^{n} \end{pmatrix}$$

qu'on peut encore écrire

$$A^{n} = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ 0 & -2 & 2 \end{pmatrix} + 2^{n} \begin{pmatrix} 0 & 0 & 0 \\ -1 & 3 & -2 \\ -1 & 3 & -2 \end{pmatrix} + 3^{n} \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

Exercice 56: [énoncé]

(a) $rg(x_1, x_2, x_3) = 3$ b) $rg(x_1, x_2, x_3) = 3$ c) $rg(x_1, x_2, x_3) = 2$

Exercice 57: [énoncé]

- (a) rg(f) = 3
- (b) rg(f) = 2
- (c) rg(f) = 4.

Exercice 58 : [énoncé]

(a) Notons $A = \begin{pmatrix} 1 & 1 & 1 \\ b+c & c+a & a+b \\ bc & ca & ab \end{pmatrix}$,

$$rg(A) = rg\begin{pmatrix} 1 & 1 & 1 \\ 0 & a-b & a-c \\ 0 & c(a-b) & b(a-c) \end{pmatrix} = rg\begin{pmatrix} 1 & 1 & 1 \\ 0 & a-b & a-c \\ 0 & 0 & (b-c)(a-c) \end{pmatrix}.$$

En discutant les 5 cas possibles : $rg(A) = Card\{a, b, c\}$

(b) Notons
$$A = \begin{pmatrix} 1 & \cos \theta & \cos 2\theta \\ \cos \theta & \cos 2\theta & \cos 3\theta \\ \cos 2\theta & \cos 3\theta & \cos 4\theta \end{pmatrix}$$
.

$$rg(A) = rg \begin{pmatrix} 1 & 0 & 0\\ \cos \theta & \sin^2 \theta & \sin \theta \sin 2\theta\\ \cos 2\theta & \sin \theta \sin 2\theta & \sin^2 2\theta \end{pmatrix}.$$

Si $\sin \theta = 0$ alors $\operatorname{rg}(A) = 1$.

Si $\sin \theta \neq 0$ alors

$$\operatorname{rg}(A) = \operatorname{rg} \begin{pmatrix} 1 & 0 & 0 \\ \cos \theta & \sin^2 \theta & 2 \cos \theta \times \sin^2 \theta \\ \cos 2\theta & \sin \theta \sin 2\theta & 2 \cos \theta \times \sin \theta \sin 2\theta \end{pmatrix} = \operatorname{rg} \begin{pmatrix} 1 & 0 \\ \cos \theta & \sin^2 \theta \\ \cos 2\theta & \sin \theta \sin 2\theta \end{pmatrix} \begin{pmatrix} \text{(b) } \operatorname{Cas: } n \text{ impair. C'est imm\'ediat.} \\ = 2 \cdot \operatorname{Cas: } n \text{ pair. Ker } M = \operatorname{Vect}^t (1 - 1 \cdots 1 - 1) \text{ et } \\ \operatorname{Im} M : x_1 - x_2 + x_3 + \ldots + x_{n-1} - x_n = 0. \end{pmatrix}$$

Résumons : Si $\theta \neq 0$ $[\pi]$, rg(A) = 2, sinon rg(A) = 1.

(c) Notons A la matrice étudiée.

Cas a = b = 0 alors rg(A) = 0 car la matrice A est nulle.

Cas a = 0 et $b \neq 0$ alors rg(A) = n car les n colonnes de A sont indépendantes.

Cas $a \neq 0$:

En effectuant successivement:

 $C_2 \leftarrow aC_2 - bC_1, C_3 \leftarrow a^2C_3 - bC_2, \dots, C_n \leftarrow a^{n-1}C_n - bC_{n-1}$ on obtient:

$$rg(A) = \begin{pmatrix} a & & & \\ & \ddots & & \\ & & a & \\ & & & a^n - (-1)^n b^n \end{pmatrix}$$

(il y a conservation du rang car $a \neq 0$).

Donc si $a^n = (-b)^n$ alors rg(A) = n - 1, sinon rg(A) = n.

Exercice 59: [énoncé]

(a) En retirant la première ligne à la dernière

$$\operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 0 & -1 & \cdots & 0 & 1 \end{pmatrix}$$

puis en ajoutant la deuxième ligne à la dernière etc.

$$\operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 0 & 0 & \cdots & 0 & 1 - (-1)^n \end{pmatrix}.$$

Si n est pair alors $\operatorname{rg} M = n - 1$, sinon $\operatorname{rg} M = n$.

(c) M = I + N avec la matrice de permutation

$$N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

On en déduit

$$M^{n} = \sum_{k=0}^{n} \binom{n}{k} N^{k} = \begin{pmatrix} 2C_{n}^{0} & C_{n}^{1} & C_{n}^{2} & \cdots & C_{n}^{n-1} \\ C_{n}^{n-1} & 2C_{n}^{0} & C_{n}^{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & C_{n}^{2} \\ C_{n}^{2} & \ddots & \ddots & C_{n}^{1} \\ C_{n}^{1} & C_{n}^{2} & \cdots & C_{n}^{n-1} & 2C_{n}^{0} \end{pmatrix}$$

en notant $C_n^k = \binom{n}{k}$

Exercice 60 : [énoncé]

Soit u et v les endomorphismes de \mathbb{R}^3 canoniquement associés à A et B. Comme $u \circ v = 0$, on a Im $v \subset \text{Ker } u$, puis $\text{rg}(v) = 3 - \dim \text{Ker } v < \dim \text{Ker } u$. Par suite dim Ker $u + \dim \operatorname{Ker} v > 3$, puis dim Ker u > 2 ou dim Ker v > 2. On a alors respectivement $rg(u) = rg(A) \le 1$ ou $rg(v) = rg(B) \le 1$.

Exercice 61: [énoncé]

(a) De part leurs tailles, on sait déjà

$$\operatorname{rg} A \leq 2 \text{ et } \operatorname{rg} B \leq 2.$$

Aussi

$$rg(AB) = 2 \text{ et } rg(AB) \le min(rg A, rg B).$$

On en déduit

$$rg(A) = rg(B) = 2.$$

(b) On a ABAB = AB donc $A(BA - I_2)B = O_3$. On en déduit $\operatorname{Im}((BA - I_2)B) \subset \operatorname{Ker} A = \{0\}$ donc $(BA - I_2)B = O_{2,3}$. Par suite $\operatorname{Im} B \subset \operatorname{Ker}(BA - I_2)$ or B est surjective donc $BA - I_2 = O_2$ puis

$$BA = I_2$$
.

Exercice 62: [énoncé]

On a $A(BA - I_2)B = 0$.

Or puisque A est de rang 2, Ker $A = \{0\}$ et donc $(BA - I_2)B = 0$. De plus, puisque B est de rang 2, Im $B = \mathcal{M}_2(\mathbb{R})$ et donc $BA - I_2 = 0$.

Exercice 63: [énoncé]

Commençons par noter que le neutre multiplicatif de G n'est pas nécessairement I_n . Par exemple, $G = \{O_n\}$ est un groupe multiplicatif formé d'éléments de $\mathcal{M}_n(\mathbb{R})$.

Notons J le neutre du groupe G. Soit $A \in G$.

D'une part JA = A donc $rg(A) = rg(JA) \le rg(J)$.

D'autre part, il existe $B \in M_n(\mathbb{R})$ tel que AB = J donc $\operatorname{rg}(J) = \operatorname{rg}(AB) \leq \operatorname{rg}(A)$. Finalement,

$$\forall A \in G, \operatorname{rg}(A) = \operatorname{rg}(J).$$

On peut même être plus précis et constater que les matrices de A ont toutes la même image.

Exercice 64: [énoncé]

(a)
$$\operatorname{rg}\begin{pmatrix} 1 & m & 1 \\ m & 1 & m \end{pmatrix} = \begin{cases} 1 & \operatorname{si} m = \pm 1 \\ 2 & \operatorname{sinon} \end{cases}$$
, donc $\operatorname{dim} F = \begin{cases} 2 & \operatorname{si} m = \pm 1 \\ 1 & \operatorname{sinon} \end{cases}$.

(b)
$$\operatorname{rg} \begin{pmatrix} 1 & 1 & m \\ 1 & m & 1 \\ m & 1 & 1 \end{pmatrix} = \begin{cases} 1 & \text{si } m = 1 \\ 2 & \text{si } m = -2, \text{ donc } \dim F = \begin{cases} 2 & \text{si } m = 1 \\ 1 & \text{si } m = -2. \\ 0 & \text{sinon} \end{cases}$$

Exercice 65: [énoncé]

- (a) $\operatorname{rg}\begin{pmatrix} 1 & m & 1 \\ m & 1 & -m \end{pmatrix} = 2 \operatorname{donc} \operatorname{dim} F = 1 \operatorname{et} \operatorname{rg} \begin{pmatrix} 1 & -m & 1 \end{pmatrix} = 1 \operatorname{donc} \operatorname{dim} G = 2.$
- (b) $\operatorname{rg} \begin{pmatrix} 1 & m & 1 \\ m & 1 & -m \\ 1 & -m & 1 \end{pmatrix} = \begin{cases} 2 & \text{si } m = 0 \\ 3 & \text{sinon} \end{cases}$ donc

$$\dim F \cap G = \begin{cases} 1 & \text{si } m = 0 \\ 0 & \text{sinon.} \end{cases}$$

Exercice 66: [énoncé]

(a) Si m = -1 alors

$$\mathcal{S} = \{ (y, y, -1) \mid y \in \mathbb{C} \}.$$

Si $m \neq -1$ alors

$$\mathcal{S} = \left\{ \left(\frac{m+1}{2}, 0, \frac{m-1}{2} \right) \right\}.$$

(b) On a

$$\operatorname{rg} \begin{pmatrix} m & 1 & 1 \\ 1 & m & 1 \\ 1 & 1 & m \end{pmatrix} = \begin{cases} 1 & \text{si } m = 1 \\ 2 & \text{si } m = -2 \\ 3 & \text{sinon.} \end{cases}$$

Si $m \neq 1$ et $m \neq -2$ alors

$$S = \left\{ \left(-\frac{1+m}{2+m}, \frac{1}{2+m}, \frac{(1+m)^2}{2+m} \right) \right\}.$$

Si m=1 alors

$$\mathcal{S} = \{(x, y, 1 - x - y) \mid x, y \in \mathbb{C}\}.$$

Si m = -2 alors système incompatible

$$S = \emptyset$$
.

(c) Si m = 1: système incompatible

$$S = \emptyset$$
.

Si $m \neq 1$.

$$\begin{cases} mx + y + z + t = 1 \\ x + my + z + t = m \\ x + y + mz + t = m + 1 \end{cases} \iff \begin{cases} x + y + mz + t = m + 1 \\ (1 - m)y + (m - 1)z = 1 \\ (m + 2)z + t = \frac{m(m + 1)}{m - 1} \end{cases}$$
 Si $b \neq -2$ alors $S = \emptyset$. Si $b = -2$ alors

et donc

$$S=\left\{\left(z-\frac{m}{m-1},y=z-\frac{1}{m-1},z,\frac{m(m+1)}{m-1}-(m+2)z\right)\,\Big|\,z\in\mathbb{C}\right\}.$$

Exercice 67: [énoncé]

$$\begin{cases} ax + by + z = 1 \\ x + aby + z = b \\ x + by + az = 1. \end{cases}$$

$$\begin{cases} x + by + az = 1 \\ b(1 - a)y + (1 - a^2)z = 1 - a \\ b(a - 1)y + (1 - a)z = b - 1 \end{cases}$$

$$\begin{cases} x + by + az = 1 \\ b(1 - a)y + (1 - a^2)z = 1 - a \\ (1 - a)(2 + a)z = b - a. \end{cases}$$

Cas $a \neq 1$, $a \neq -2$ et $b \neq 0$:

$$x = \frac{a-b}{(a-1)(a+2)}, y = \frac{ab-2+b}{(a-1)(a+2)b}, z = \frac{a-b}{(a-1)(a+2)}.$$

Cas $a \neq 1$, $a \neq -2$ et b = 0:

On doit avoir simultanément

$$(1-a^2)z = 1 - a$$
 et $(1-a)(2+a)z = -a$

ce qui est incompatible : $S = \emptyset$.

Cas a = 1 alors

$$\begin{cases} x + by + z = 1\\ 0 = 0\\ 0 = b - 1 \end{cases}$$

Si $b \neq 1$ alors $S = \emptyset$.

Si b = 1 alors S: x + y + z = 1.

Cas a = -2 alors

$$\begin{cases} x + by - 2z = 1\\ 3by - 3z = 3\\ 0 = b + 2. \end{cases}$$

$$\begin{cases} x = -1 - 2y \\ z = -1 - 2y. \end{cases}$$

Exercice 68 : [énoncé]

Par les opérations élémentaires : $L_n \leftarrow L_n - L_{n-1}, \dots, L_2 \leftarrow L_2 - L_1$ on obtient le système équivalent :

$$\begin{cases} x_1 + x_2 + \dots + x_n = 1 \\ x_2 + \dots + x_n = 0 \\ \vdots \\ x_{n-1} + x_n = 0 \\ x_n = 0. \end{cases}$$

Donc

$$S = \{(1, 0, \dots, 0)\}.$$

Exercice 69 : [énoncé]

Donc si $n \neq 2$ [3] alors

$$\mathcal{S} = \left\{ (0, 0, 0) \right\}$$

et si n=2 [3] alors

$$S = \{(x, -x, 0, x, -x, 0, \dots, x, -x) \mid x \in \mathbb{C}\}.$$

Exercice 70: [énoncé]

Le problème revient à résoudre le système

$$\begin{cases} z_1 + z_2 = 2a_1 \\ \vdots \\ z_{n-1} + z_n = 2a_{n-1} \\ z_n + z_1 = 2a_n \end{cases}$$

 $(n) \leftarrow (n) - (1)$ donne

$$\begin{cases} z_1 + z_2 = 2a_1 \\ \vdots \\ z_{n-1} + z_n = 2a_{n-1} \\ z_n - z_2 = 2a_n - 2a_1 \end{cases}$$

 $(n) \leftarrow (n) + (2)$ donne

$$\begin{cases} z_1 + z_2 = 2a_1 \\ \vdots \\ z_{n-1} + z_n = 2a_{n-1} \\ z_n + z_3 = 2(a_n - a_1 + a_2) \end{cases}$$

etc.

On obtient au final

$$\begin{cases} z_1 + z_2 = 2a_1 \\ \vdots \\ z_{n-1} + z_n = 2a_{n-1} \\ (1 - (-1)^n)z_n = 2(a_n - a_1 + a_2 + \dots + (-1)^n a_{n-1}). \end{cases}$$

On peut alors conclure:

- Si n est impair, le système est de Cramer et donc possède une solution unique.
- Si n est pair alors le système possède une solution si, et seulement si,

$$a_1 - a_2 + \dots + a_{n-1} - a_n = 0.$$

Exercice 71 : [énoncé]

$$\begin{cases} ax + 2by + 2z = 1 \\ 2x + aby + 2z = b \\ 2x + 2by + az = 1 \end{cases} \iff \begin{cases} 2x + 2by + az = 1 \\ b(a-2)y + (2-a)z = b - 1 \\ (a-2)x + (2-a)z = 0. \end{cases}$$

Si a=2, on parvient au système

$$\begin{cases} 2x + 2by + 2z = 1\\ 0 = b - 1 \end{cases}$$

Dans le cas $b \neq 1$, le système est incompatible.

Dans le cas b=1, on parvient à l'équation 2x+2y+2z=1.

Si $a \neq 2$, on parvient au système

$$\begin{cases} 2x + 2by + az = 1\\ by - z = \frac{b-1}{a-2}\\ x - z = 0 \end{cases}$$

puis

$$\begin{cases} (a+4)z = \frac{a-2b}{a-2} \\ by = z + \frac{b-1}{a-2} \\ x = z. \end{cases}$$

Dans le cas a=-4, le système n'est compatible que si b=-2 et on parvient au système

$$\begin{cases} x = z \\ -4y = 2z + 1. \end{cases}$$

Dans le cas b = 0, le système est incompatible.

Dans le cas général restant, on parvient à

$$x = z = \frac{a - 2b}{(a - 2)(a + 4)}, y = \frac{ab + 2b - 4}{b(a - 2)(a + 4)}$$

Exercice 72 : [énoncé]

Le déterminant de ce système carré est $(a-1)^3(a+3)$.

 $\operatorname{Cas} a = 1$:

Le système est compatible si, et seulement si, b=1 et ses solutions sont les quadruplets (x,y,z,t) vérifiant

$$x + y + z + t = 1.$$

$$Cas a = -3$$
:

En sommant les quatre équations, on obtient l'équation de compatibilité $0=1+b+b^2+b^3$.

Si $b \notin \{i, -1, -i\}$ alors le système est incompatible.

Si $b \in \{i, -1, -i\}$ alors le système équivaut à

$$\begin{cases} x - 3y + z + t = b \\ x + y - 3z + t = b^2 \\ x + y + z - 3t = b^3. \end{cases}$$

$$\begin{cases} x - 3y + z + t = b \\ 4y - 4z = b^2 - b \\ 4y - 4t = b^3 - b. \end{cases}$$

$$\begin{cases} x = y + \frac{1}{2}b + \frac{1}{4}b^2 + \frac{1}{4}b^3 \\ z = y + \frac{1}{4}(b - b^2) \\ t = y + \frac{1}{4}(b - b^3) \end{cases}$$

ce qui permet d'exprimer la droite des solutions.

Cas $a \notin \{1, -3\}$:

C'est un système de Cramer...

Sa solution est

$$x = \frac{2+a-b-b^2-b^3}{2a-3+a^2}, y = \frac{ab-1+2b-b^2-b^3}{2a-3+a^2},.$$

$$z = \frac{ab^2 - 1 - b + 2b^2 - b^3}{2a - 3 + a^2}, t = \frac{ab^3 - 1 - b - b^2 + 2b^3}{2a - 3 + a^2}.$$

Exercice 73: [énoncé]

- (a) Si A n'est pas inversible alors $\operatorname{rg} A < n$. Or il est possible de construire une matrice nilpotente de rang égal à $\operatorname{rg} A$. Deux matrices étant équivalentes si, et seulement si, elles ont le même rang, on peut conclure que A est équivalente à une matrice nilpotente. La réciproque est immédiate.
- (b) Si A est inversible alors $f(A)f(A^{-1}) = f(I_n) = 1$ donc $f(A) \neq 0$. Si A n'est pas inversible alors A est équivalente à une matrice nilpotente B. Pour celle-ci, on a f(B) = 0 car $f(B^n) = f(B)^n$. Puisqu'on peut écrire A = PBQ avec P et Q inversibles, on peut conclure f(A) = 0.

Exercice 74: [énoncé]

(a) Posons $r = \operatorname{rg} A$ et $s = \operatorname{rg} B$. Les matrices A et B sont respectivement équivalentes aux matrices

$$J_r = \begin{pmatrix} I_r & O_{r,n-r} \\ O_{n-r,t} & O_{n-r} \end{pmatrix} \text{ et } J_s' = \begin{pmatrix} O_{n-s} & O_{n-s,s} \\ O_{s,n-s} & I_s \end{pmatrix}.$$

Il existe donc $P, Q, R, S \in \mathrm{GL}_n(\mathbb{R})$ telles que

$$PAQ = J_r$$
 et $RBS = J_s'$

et alors

$$PAQ + RBS = J_r + J_s'$$

qui est une matrice de rang min(n, r + s).

On peut aussi écrire

$$(R^{-1}P)A + B(SQ^{-1}) = R^{-1}(J_r + J_s')Q^{-1}$$

et en posant $U = R^{-1}P$ et $V = SQ^{-1}$, on obtient $U, V \in \mathrm{GL}_n(\mathbb{R})$ telles que

$$rg(UA + BV) = min(n, r + s).$$

(b) Si $r+s\geq n$ alors $\min(n,r+s)=n$ et ce qui précède conduit à une matrice inversible.

Exercice 75 : [énoncé]

Soit r = rg(A). On peut écrire $A = QJ_rP$ avec P,Q inversibles et J_r matrice canonique de rang r de type (n,p). Considérons alors $M = P^{-1}J'_rQ^{-1}$ avec J'_r matrice canonique de rang r de type (p,n). Puisque $J_rJ'_rJ_r = J_r$, on obtient par simple calcul AMA = A.

Exercice 76: [énoncé]

Il existe une colonne X telle que $AX \neq 0$ et alors $\operatorname{Im} A = \operatorname{Vect}(AX)$.

 $A^2X \in \operatorname{Im} A$ donc il existe $\lambda \in \mathbb{K}$ tel que $A^2X = \lambda AX$.

De plus pour $Y \in \text{Ker } A$, $A^2Y = 0 = \lambda AY$.

Enfin Ker A et Vect(X) sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{K})$ donc $A^2 = \lambda A$.

Exercice 77: [énoncé]

(a) Soit U une colonne non nulle de l'image de H. Pour tout $1 \leq j \leq p$, la colonne C_j de H peut s'écrire $C_j = \lambda_j U$ avec $\lambda_j \in \mathbb{K}$. La matrice colonne $V = {}^t(\lambda_1, \ldots, \lambda_n)$ vérifie alors $H = U^t V$.

- (b) On a alors $H^2 = U({}^tVU){}^tV$ avec $\lambda = {}^tVU$ un scalaire donc $H^2 = \lambda H$ et $\lambda = {}^tVU = \operatorname{tr}({}^tVU) = \operatorname{tr}(U{}^tV) = \operatorname{tr} H.$
- (c) En développant

$$(I_n + H)\left(I_n - \frac{1}{1 + \operatorname{tr} H}H\right) = I_n + H - \frac{1}{1 + \operatorname{tr} H}H - \frac{1}{1 + \operatorname{tr} H}H^2 = I_n.$$

Par le théorème d'inversibilité des matrices, on obtient $I_n + H$ est inversible et

$$(I_n + H)^{-1} = I_n - \frac{1}{1 + \operatorname{tr} H} H.$$

(d) On a $rg(HA^{-1}) = rg H = 1$ car on ne modifie pas le rang en multipliant par une matrice inversible.

On en déduit que $I_n + HA^{-1}$ est inversible et

$$(I_n + HA^{-1})^{-1} = I_n - \frac{1}{1 + \operatorname{tr}(HA^{-1})} HA^{-1}.$$

En multipliant par la matrice inversible A, on obtient $A + H = (I_n + HA^{-1})A$ inversible et

$$(A+H)^{-1} = A^{-1}(I_n + HA^{-1})^{-1} = A_n^{-1} - \frac{1}{1 + \operatorname{tr}(HA^{-1})}A^{-1}HA^{-1}.$$

Exercice 78: [énoncé]

Le produit d'une colonne de hauteur n par une matrice ligne de longueur n est possible et définit une matrice carrée de taille n:

$$X^{t}Y = \begin{pmatrix} x_{1}y_{1} & \cdots & x_{1}y_{n} \\ \vdots & & \vdots \\ x_{n}y_{1} & \cdots & x_{n}y_{n} \end{pmatrix} \quad \text{pour} \quad X = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \text{ et } Y = \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}.$$

De plus, si les colonnes X et Y sont non nulles, le produit X^tY n'est pas nul¹. Au surplus, les colonnes d'une telle matrice sont colinéaires et il s'agit donc d'une matrice de rang 1.

Les colonnes X_i et Y_j n'étant pas nulles car éléments d'une famille libre, les produits $X_i^t Y_j$ sont bien définis et sont des matrices de rang 1 éléments de $\mathcal{M}_n(\mathbb{R})$.

Supposons

$$\sum_{i,j=1}^{n} \lambda_{i,j} X_i^{t} Y_j = \mathcal{O}_n \quad \text{avec} \quad \lambda_{i,j} \in \mathbb{R}.$$

On interprète cette égalité de matrices carrées colonne par colonne afin d'employer la liberté de la famille (X_1, \ldots, X_n) .

En organisant le calcul de la somme, on écrit

$$\sum_{i=1}^{n} X_i L_i = \mathcal{O}_n \quad \text{avec} \quad L_i = \sum_{j=1}^{n} \lambda_{i,j}^{\ t} Y_j = \begin{pmatrix} a_{i,1} & \cdots & a_{i,n} \end{pmatrix}.$$

Pour $k \in [1; n]$, l'égalité des colonnes d'indice k donne

$$\sum_{i=1}^{n} a_{i,k} X_i = \mathcal{O}_{n,1}.$$

Par liberté de la famille (X_1, \ldots, X_n) , les $a_{i,k}$ sont tous nuls et donc les lignes L_i le sont aussi. Par transposition, on obtient

$$\sum_{j=1}^{n} \lambda_{i,j} Y_j = {}^{t}L_i = \mathcal{O}_{n,1} \quad \text{pour tout } i = 1, \dots, n.$$

Par liberté de la famille (Y_1, \ldots, Y_n) , on conclut que les $\lambda_{i,j}$ sont tous nuls. Finalement, la famille $(X_i{}^tY_j)_{1 \leq i,j \leq n}$ est une famille libre constituée de $n^2 = \dim \mathcal{M}_n(\mathbb{R})$ matrices de rang 1 de $\mathcal{M}_n(\mathbb{R})$, c'est donc une base de cet espace telle que voulue.

Exercice 79 : [énoncé]

(a) (\Longrightarrow) Supposons

$$\operatorname{rg}(A \quad B) = \operatorname{rg}A = r.$$

Rappelons que le rang d'une matrice est le rang de la famille de ses colonnes. Puisque rg A = r, la matrice A possède r colonnes indépendantes.

Puisque rg (A B) = r, les colonnes de (A B) sont toutes combinaisons linéaires des colonnes précédentes.

En particulier les colonnes de B sont combinaisons linéaires des colonnes de A. Ceci permet de former $U \in \mathcal{M}_n(\mathbb{K})$ vérifiant B = AU.

 (\Leftarrow) Supposons B = AU.

Les colonnes de B sont combinaisons linéaires des colonnes de A et donc par opérations sur les colonnes

$$\operatorname{rg}(A \quad B) = \operatorname{rg}(A \quad O_n) = \operatorname{rg}A.$$

^{1.} Si les coefficients d'indice i de X et j de Y sont non nuls, le coefficient d'indice (i,j) de X^tY n'est pas nul.

- (b) Il suffit de transposer le raisonnement qui précède en raisonnant sur les lignes et en exploitant que le rang d'une matrice est aussi le rang de la famille des ses lignes.
- (c) Supposons

$$\operatorname{rg}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \operatorname{rg} A.$$

Puisque

$$\operatorname{rg} A \le \operatorname{rg} (A \quad B) \le \operatorname{rg} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \operatorname{rg} A$$

on a

$$\operatorname{rg} A = \operatorname{rg} \begin{pmatrix} A & B \end{pmatrix} \quad \operatorname{et} \quad \operatorname{rg} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \operatorname{rg} \begin{pmatrix} A & B \end{pmatrix}.$$

En vertu de a) il existe une matrice $U \in \mathcal{M}_n(\mathbb{K})$ telle que

$$B = AU$$
.

En raisonnant comme en b), il existe une matrice $V \in \mathcal{M}_n(\mathbb{K})$ telle que

$$(C \quad D) = (VA \quad VB).$$

On en déduit

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & AU \\ VA & VAU \end{pmatrix}.$$

Inversement, supposons

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & AU \\ VA & VAU \end{pmatrix}.$$

Les n dernières lignes étant combinaisons linéaires des n premières, on a

$$\operatorname{rg}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & AU \\ O_n & O_n \end{pmatrix} = \operatorname{rg}(A \quad AU)$$

puis

$$\operatorname{rg}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & AU \\ O_n & O_n \end{pmatrix} = \operatorname{rg} A.$$

Exercice 80 : [énoncé]

Posons $r = \operatorname{rg} A$ et $s = \operatorname{rg} B$. Les matrices A et B sont respectivement équivalentes aux matrices

$$J_r = \begin{pmatrix} I_r & O_{r,n-r} \\ O_{n-r,t} & O_{n-r} \end{pmatrix} \text{ et } J_s = \begin{pmatrix} I_s & O_{s,p-s} \\ O_{p-s,t} & O_{p-s} \end{pmatrix}.$$

Il existe donc $P, Q \in GL_n(\mathbb{K})$ et $R, S \in GL_p(\mathbb{K})$ telles que

$$PAQ = J_r$$
 et $RBS = J_s$.

En opérant par blocs, on a alors

$$\begin{pmatrix} P & O \\ O & R \end{pmatrix} \begin{pmatrix} A & O \\ O & B \end{pmatrix} \begin{pmatrix} Q & O \\ O & S \end{pmatrix} = \begin{pmatrix} J_r & O \\ O & J_s \end{pmatrix}$$

avec les facteurs

$$\begin{pmatrix} P & O \\ O & R \end{pmatrix} \text{ et } \begin{pmatrix} Q & O \\ O & S \end{pmatrix}$$

inversibles.

On en déduit

$$\operatorname{rg} M = \operatorname{rg} \begin{pmatrix} J_r & O \\ O & J_s \end{pmatrix} = r + s.$$

Exercice 81: [énoncé]

En multipliant par la matrice inversible

$$\begin{pmatrix} I_n & -B \\ O_{p,n} & I_p \end{pmatrix}$$

on obtient

$$\operatorname{rg}\begin{pmatrix} I_n & B \\ O_{p,n} & C \end{pmatrix} = \operatorname{rg}\begin{pmatrix} I_n & O_{n,p} \\ O_{p,n} & C \end{pmatrix}.$$

En posant $r = \operatorname{rg} C$, on peut écrire $PCQ = J_r$ avec

$$P, Q \in \mathrm{GL}_p(\mathbb{K}) \text{ et } J_r = \begin{pmatrix} I_r & O_{r,p-r} \\ O_{p-r,r} & O_{p-r} \end{pmatrix}.$$

En multipliant à gauche et à droite par les matrices inversibles

$$\begin{pmatrix} I_n & O_{n,p} \\ O_{p,n} & P \end{pmatrix} \text{ et } \begin{pmatrix} I_n & O_{n,p} \\ O_{p,n} & Q \end{pmatrix}$$

on obtient

$$\operatorname{rg}\begin{pmatrix} I_n & B \\ O_{p,n} & C \end{pmatrix} = \operatorname{rg}\begin{pmatrix} I_n & O_{n,p} \\ O_{p,n} & J_r \end{pmatrix} = n + r.$$

Exercice 82: [énoncé]

L'implication (\iff) est immédiate car rg B = p.

Inversement, supposons $\operatorname{rg} M = p$.

Puisque B est inversible, les p dernières lignes de M sont indépendantes et donc les autres lignes de M sont combinaisons linéaires de celles-ci puisque rg M=p. Puisque les n premières lignes de M sont combinaisons linéaires des p dernières lignes de M, on a

$$A = O_n$$
.

Exercice 83: [énoncé]

Introduisons la matrice inversible

$$M' = \begin{pmatrix} A^{-1} & O_{p,q} \\ O_{q,p} & I_q \end{pmatrix}.$$

On a $\operatorname{rg} M = \operatorname{rg}(MM')$ avec

$$MM' = \begin{pmatrix} I_p & B \\ O_{q,p} & C \end{pmatrix}.$$

Par opérations élémentaires sur les colonnes, la matrice MM^\prime a le rang de la matrice

$$\begin{pmatrix} I_p & O_{p,q} \\ O_{q,p} & C \end{pmatrix}.$$

Enfin, les opérations élémentaires déterminant le rang de C se transposent à la matrice en cours afin d'en donner le rang. Au final

$$\operatorname{rg} M = p + \operatorname{rg} C.$$

Exercice 84: [énoncé]

(a) Si A est inversible alors en posant

$$C = \begin{pmatrix} O_n & I_n \\ A^{-1} & O_n \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$$

on obtient $BC = I_{2n}$ et on en déduit que B est inversible et que C est son inversible en vertu du théorème d'inversibilité.

Si A n'est pas inversible alors les lignes de A sont liées et les n premières lignes de B sont aussi liées par la même relation linéaire. On en déduit que B n'est pas inversible.

(b) On obtient

$$B^{2p} = \begin{pmatrix} A^p & O_n \\ O_n & A^p \end{pmatrix} \text{ et } B^{2p+1} = \begin{pmatrix} O_n & A^{p+1} \\ A^p & O_n \end{pmatrix}.$$

Exercice 85 : [énoncé]

On peut écrire la matrice M^{-1} sous la forme

$$M^{-1} = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}.$$

La relation $MM^{-1} = I_{2n}$ donne alors le système

$$\begin{cases} AA' + BC' = I_n \\ CA' + DC' = O_n \\ AB' + BD' = O_n \\ CB' + DD' = I_n \end{cases}$$

qui entraîne

$$\begin{cases} (A - BD^{-1}C)A' = I_n \\ C' = -D^{-1}CA' \\ B' = -A^{-1}BD' \\ (D - CA^{-1}B)D' = I_n. \end{cases}$$

On en déduit que les matrices $A - BD^{-1}C$ et $D - CA^{-1}B$ sont nécessairement inversible et A' et D' sont leurs inverses respectifs. Au final

$$M^{-1} = \begin{pmatrix} (A - BD^{-1}C)^{-1} & A^{-1}B(CA^{-1}B - D)^{-1} \\ D^{-1}C(BD^{-1}C - A)^{-1} & (D - CA^{-1}B)^{-1} \end{pmatrix}.$$

Exercice 86 : [énoncé]

Par blocs, on a

$$A = \begin{pmatrix} M & O_2 \\ O_2 & -M \end{pmatrix}$$
 avec $M = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

Par récurrence, on obtient

$$\forall n \in \mathbb{N}, M^n = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix}$$

et on en déduit

$$\forall n \in \mathbb{N}, A^n = \begin{pmatrix} 1 & -n & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & (-1)^n & (-1)^{n+1} n \\ 0 & 0 & 0 & (-1)^n \end{pmatrix}.$$

On vérifie que cette relation est encore valable pour $n \in \mathbb{Z}$ en constatant que cette expression satisfait

$$A^n \times A^{-n} = I_4.$$

Exercice 87: [énoncé]

(a) Par opérations par blocs

$$\operatorname{rg}(M) = \operatorname{rg}\begin{pmatrix} A & A \\ A & B \end{pmatrix} = \operatorname{rg}\begin{pmatrix} A & A \\ \mathcal{O}_n & B-A \end{pmatrix} = \operatorname{rg}\begin{pmatrix} A & \mathcal{O}_n \\ \mathcal{O}_n & B-A \end{pmatrix}.$$

On en déduit l'égalité

$$rg(M) = rg(A) + rg(B - A).$$

(b) La matrice M est inversible si, et seulement si, A et B-A le sont. Supposons que ce soit le cas et recherchons l'inverse de M de la forme

$$N = \begin{pmatrix} C & D \\ D & E \end{pmatrix}$$
 avec $C, D, E \in \mathcal{M}_n(\mathbb{K})$.

L'égalité $MN = I_{2n}$ se traduit par le système

$$\begin{cases} AC + AD = I_n \\ AD + AE = O_n \\ AC + BD = O_n \\ AD + BE = I_n. \end{cases}$$

La deuxième équation et l'inversibilité de A donne D=-E auquel cas la dernière équation produit $D = (A - B)^{-1}$ puis, par la troisième, il vient

$$C = A^{-1}B(B - A)^{-1}$$
.

On observe alors que la première équation est vérifiée et, finalement,

$$M^{-1} = \begin{pmatrix} A^{-1}B(B-A)^{-1} & (A-B)^{-1} \\ (A-B)^{-1} & (B-A)^{-1} \end{pmatrix}.$$

Exercice 88 : [énoncé]

De telles matrices n'existent pas car

$$tr(AB) = tr(BA)$$

et donc

$$tr(AB - BA) = 0 \neq tr(I_n).$$

Exercice 89 : [énoncé]

Soit (e_1, \ldots, e_n) une base de E avec $e_1, \ldots, e_{n-1} \in \text{Ker}(f)$ et $e_n \notin \text{Ker}(f)$ (ce qui est possible car Ker(f) est de dimension n-1 en vertu de la formule du rang). La matrice de f dans cette base est de la forme

$$M = \begin{pmatrix} 0 & \cdots & 0 & a_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & a_n \end{pmatrix} \quad \text{avec} \quad a_n = \text{tr}(f)$$

On remarque $M^2 = a_n M$ et donc $f^2 = \operatorname{tr}(f) f$.

Aussi, pour f de rang 1, f est un projecteur si, et seulement si, tr(f) = 1.

Exercice 90 : [énoncé]

Calculons les coefficients diagonaux de la représentation matricielle de φ dans la base canonique formée des matrices élémentaires $E_{i,j}$.

On a $\varphi(E_{i,j}) = E_{i,j}A$. Or $A = \sum_{k=1}^{n} \sum_{\ell=1}^{n} a_{k,\ell} E_{k,\ell} \operatorname{donc} \varphi(E_{i,j}) = \sum_{\ell=1}^{n} a_{j,\ell} E_{i,\ell} \operatorname{car} E_{i,j} E_{k,\ell} = \delta_{j,k} E_{i,\ell}$.

La composante de $\varphi(E_{i,j})$ selon $E_{i,j}$ vaut $a_{j,j}$. Par suite la trace de φ vaut $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{j,j} = n \operatorname{tr} A$.

Exercice 91 : [énoncé]

Supposons que M soit semblable à une matrice M' via une matrice inversible Pi.e.

$$M' = P^{-1}MP.$$

Si on peut écrire M' = A'B' - B'A' alors M = AB - BA avec $A = PA'P^{-1}$ et $B = PB'P^{-1}$.

On peut ainsi transformer la matrice M en une matrice semblable sans changer la problématique.

Établissons maintenant le résultat demandé en raisonnant par récurrence sur la taille de la matrice M.

Si M est taille 1 : ok

Supposons la propriété établie au rang $n \in \mathbb{N}^*$.

Soit M une matrice carrée d'ordre n+1 de trace nulle.

Montrons que M est semblable à une matrice de la forme

$$\begin{pmatrix} 0 & * \\ * & * \end{pmatrix}$$
.

Si M est matrice d'une homothétie alors tr M=0 permet de conclure $M=O_n$.

Sinon, il existe des vecteurs qui ne sont pas vecteurs propres de l'endomorphisme associé à M.

Soit x, un tel vecteur. En introduisant une base dont x et f(x) sont les deux premiers vecteurs, on obtient que la matrice M est semblable à celle voulue. Compte tenu de la remarque préliminaire, on suppose désormais que la matrice M est de la forme

$$\begin{pmatrix} 0 & L \\ C & M' \end{pmatrix}$$

avec $\operatorname{tr} M' = 0$.

Par l'hypothèse de récurrence on peut écrire

$$M' = A'B' - B'A'.$$

Soit $\lambda \in \mathbb{K}$ qui n'est par valeur propre de la matrice B'. En posant

$$A = \left(\frac{1}{(\lambda I - B')^{-1}C} \frac{L(B' - \lambda I)^{-1}}{A'}\right)$$

 $_{
m et}$

$$B = \begin{pmatrix} 0 \\ 0 & B' \end{pmatrix}$$

on obtient

$$M = AB - BA$$
.

Récurrence établie.

Exercice 92 : [énoncé]

Posons $a_{j,i} = \varphi(E_{i,j})$. $\varphi(M) = \sum_{1 \le i,j \le n} a_{j,i} m_{i,j} = \operatorname{tr}(AM)$ avec $A = (a_{i,j})$.

Exercice 93: [énoncé]

Puisque $\operatorname{tr}(AB)=\operatorname{tr}(BA),$ on a $\operatorname{tr}[A\,;B]=0.$ Ker(tr) est donc un sous-espace vectoriel contenant $\{[A\,;B]\,|\,A,B\in E\}$ donc

$$Vect\{[A, B] \mid A, B \in E\} \subset Ker(tr).$$

De plus, tr étant une forme linéaire non nulle, Ker(tr) est un hyperplan. Montrons qu'il en en est de même de $Vect\{[A, B] \mid A, B \in E\}$. Pour $i \neq j$.

$$E_{i,i} = [E_{i,i}, E_{i,i}]$$

et pour $i \neq n$,

$$E_{i,i} - E_{n,n} = [E_{i,n}, E_{n,i}]$$

Par suite Vect $\{[A, B] \mid A, B \in E\}$ contient la famille libre à $n^2 - 1$ éléments formée par les $E_{i,j}$, $i \neq j$ et les $E_{i,i} - E_{n,n}$, $i \neq n$. Il en découle que Vect $\{[A, B] \mid A, B \in E\}$ est de dimension supérieure ou égale à $n^2 - 1$. Par inclusion et un argument de dimension, on peut conclure

$$Ker(tr) = Vect\{[A, B] \mid A, B \in E\}.$$

Exercice 94 : [énoncé]

(a) Soit p un projecteur de E espace de dimension n. En posant $F = \operatorname{Im} p$ et $G = \operatorname{Ker} p$, la matrice de p dans une base adaptée à la décomposition $E = F \oplus G$ est de la forme

$$\begin{pmatrix} I_r & O_{p,r-p} \\ O_{r-p,p} & O_{r-p} \end{pmatrix}.$$

On y lit

$$\operatorname{rg} p = r = \operatorname{tr} p$$
.

(b) Posons

$$B = \frac{1}{q} \sum_{k=0}^{q-1} A^k.$$

Puisque $A^q = I_n$, on a AB = B et plus généralement $A^k B = B$ pour tout $k \in \mathbb{N}$.

On en déduit

$$B^{2} = \frac{1}{q} \sum_{k=0}^{q-1} A^{k} B = \frac{1}{q} \sum_{k=0}^{q-1} B = B$$

et donc B est la matrice d'un projecteur. Par suite

$$\operatorname{rg} B = \operatorname{tr} B = \frac{1}{q} \sum_{k=0}^{q-1} \operatorname{tr}(A^k).$$

Pour $X \in \text{Ker}(A - I_n)$, on a AX = X donc BX = X et ainsi $\text{Ker}(A - I_n) \subset \text{Im } B$.

Inversement, si $Y \in \text{Im } B$, il existe $X \in \mathcal{M}_{n,1}(\mathbb{K})$ tel que Y = BX et alors

$$(A - I_n)Y = ABX - BX = BX - BX = 0$$

donc $\operatorname{Im} B \subset \operatorname{Ker}(A - I_n)$ puis $\operatorname{Im} B = \operatorname{Ker}(A - I_n)$. On peut alors conclure

$$\dim \operatorname{Ker}(A - I_n) = \operatorname{rg} B = \frac{1}{q} \sum_{k=0}^{q-1} \operatorname{tr}(A^k).$$

Exercice 95: [énoncé]

- (a) L'application considérée est au départ d'un ensemble infini et à valeurs dans un ensemble fini, elle ne peut donc être injective et il existe $k < \ell \in \mathbb{N}$, $M^k = M^\ell$ ce qui fournit $M^p = I_n$ avec $p = \ell k$ car M est inversible. On en déduit que $I_n \in H$ et que $M^{-1} = M^{p-1} \in H$. Cela suffit pour conclure que H est un sous-groupe de $\mathrm{GL}_n(\mathbb{K})$.
- (b) Si $M \in H$ alors $N \mapsto MN$ et $N \mapsto NM$ sont des permutations de H. On en déduit que MP = PM = P car pour chaque terme les sommes portent sur les mêmes éléments.

$$P^{2} = \frac{1}{q} \sum_{M \in H} MP = \frac{1}{q} \sum_{M \in H} P = P.$$

(c) Puisque $P^2 = P$, Im $P = \text{Ker}(P - I_n)$ et Ker P sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{K})$.

Si $X \in \text{Ker } P$ alors PX = 0 et pour tout $M \in H$, PMX = PX = 0 donc $MX \in \text{Ker } P$. Ainsi Ker P est stable par H.

Si $X \in \bigcap_{M \in H} \operatorname{Ker}(M - I_n)$ alors pour tout $M \in H$, MX = X donc PX = X puis $X \in \operatorname{Ker}(P - I_n)$.

Inversement, si $X \in \text{Ker}(P - I_n)$ alors PX = X et pour tout $M \in H$, X = PX = MPX = MX et donc $X \in \bigcap_{M \in H} \text{Ker}(M - I_n)$. Ainsi

$$\bigcap_{M \in H} \operatorname{Ker}(M - I_n) = \operatorname{Ker}(P - I_n)$$

et Ker P est solution du problème posé.

(d) P est une projection donc $\operatorname{tr} P = \operatorname{rg} P \in \mathbb{N}$ et donc $\sum_{M \in H} \operatorname{tr} M = q \operatorname{tr} P \in q \mathbb{N}$. Si $\sum_{M \in H} \operatorname{tr} M = 0$ alors P = 0. Par suite $\bigcap_{M \in H} \operatorname{Ker}(M - I_n) = \{0\}$ et il n'y a donc pas de vecteur non nul invariant pour tous les éléments de H et inversement.

Exercice 96: [énoncé]

(a) Posons $p = \sum_{g \in G} g$. $p^2 = \sum_{g \in G} \sum_{h \in G} gh$. Or pour $g \in G$, l'application $h \mapsto gh$ est une permutation du groupe G donc $\sum_{h \in G} gh = p$ et par suite $p^2 = \operatorname{Card} G.p$.

Par suite $\frac{1}{\operatorname{Card} G}p$ est une projection vectorielle et puisque son rang égale sa trace, rg p=0. Ainsi p=0.

(b) Considérons $\varphi(x,y) = \sum_{g \in G} (g(x) | g(y))$. φ est un produit scalaire sur \mathbb{R}^n pour lequel on a $\forall h \in G, h^* = h^{-1}$. Pour ce produit scalaire, V^{\perp} est un supplémentaire de V stable pour tout h^{-1} avec h élément de G donc stable pour tout élément de G.

Exercice 97 : [énoncé]

 $f(E_{i,i}) = f(E_{i,j}E_{j,i}) = f(E_{j,i}E_{i,j}) = f(E_{j,j})$ et si $i \neq j$, $f(E_{i,j}) = f(E_{i,j}E_{j,j}) = f(E_{j,j}E_{i,j}) = f(0) = 0$. Ainsi

$$f(A) = f(\sum a_{i,j}E_{i,j}) = \lambda \operatorname{tr} A$$

en notant λ la valeur commune des $f(E_{i,i})$.

Exercice 98: [énoncé]

(a) Notons $E_{i,j}$ les matrices élémentaires de $\mathcal{M}_n(\mathbb{R})$. Puisque

$$E_{i,i} = E_{i,j}E_{j,i} \text{ et } E_{j,j} = E_{j,i}E_{i,j}$$

l'hypothèse de travail donne

$$f(E_{i,i}) = f(E_{i,j}E_{j,i}) = f(E_{j,i}E_{i,j}) = f(E_{j,j}).$$

De plus, pour $i \neq j$, on a

$$E_{i,j} = E_{i,j}E_{j,j}$$
 et $O_n = E_{j,j}E_{i,j}$

donc

$$f(E_{i,j}) = f(E_{i,j}E_{j,j}) = f(E_{j,j}E_{i,j}) = f(O_n) = 0.$$

Ainsi

$$f(A) = f(\sum a_{i,j}E_{i,j}) = \lambda \operatorname{tr} A$$

en notant λ la valeur commune des $f(E_{i,i})$.

(b) Posons $f = \text{tr} \circ g$. L'application f est une forme linéaire vérifiant

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), f(AB) = f(BA).$$

Ainsi
$$f = \lambda \operatorname{tr}$$
.
Or $f(I_n) = \operatorname{tr}(g(I_n)) = \operatorname{tr} I_n \operatorname{donc} \lambda = 1$. Ainsi $f = \operatorname{tr} \operatorname{et}$
 $\forall M \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr}(g(M)) = f(M) = \operatorname{tr}(M)$.

Exercice 99: [énoncé]

La trace de f est la somme des coefficients diagonaux de la matrice représentative de f dans la base de $\mathcal{M}_n(\mathbb{R})$ formée des matrices élémentaires $E_{i,j}$. Puisque le coefficient d'indice (i,j) de la matrice $f(E_{i,j})$ est $a_{i,i} + a_{j,j}$ on obtient

$$\operatorname{tr} f = \sum_{1 \le i, j \le n} (a_{i,i} + a_{j,j}) = 2n \operatorname{tr} A.$$

Exercice 100: [énoncé]

Si X est solution alors

$$tr(X) = tr(X) tr(A) + tr(B)$$

et donc

$$\operatorname{tr}(X)(1 - \operatorname{tr}(A)) = \operatorname{tr}(B).$$

Cas $\operatorname{tr} A \neq 1$.

On obtient

$$\operatorname{tr}(X) = \frac{\operatorname{tr}(B)}{1 - \operatorname{tr}(A)}$$

puis

$$X = \frac{\operatorname{tr}(B)}{1 - \operatorname{tr}(A)} A + B.$$

Inversement, cette matrice est bien solution.

 $\operatorname{Cas} \operatorname{tr} A = 1.$

Sous cas $\operatorname{tr} B \neq 0$.

L'équation tr(X)(1 - tr(A)) = tr(B) est incompatible, il n'y a pas de solution. Sous cas tr(B) = 0.

La solution X est de la forme $\lambda A + B$ avec $\lambda \in \mathbb{R}$ et inversement de telles matrices sont solutions.

Exercice 101: [énoncé]

Soit (e_1, \ldots, e_n) une base de E avec $e_1, \ldots, e_{n-1} \in \operatorname{Ker} f$.

La matrice de f dans cette base est de la forme

$$A = \begin{pmatrix} 0 & \cdots & 0 & \lambda_1 \\ \vdots & & \vdots & \vdots \\ \vdots & & \vdots & \lambda_{n-1} \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

avec $\lambda_n = \operatorname{tr} f$.

On observe alors que $A^2 = \lambda_n A$.

Ainsi si tr f = 1 alors $A^2 = A$ donc $f^2 = f$ puis f est un projecteur.

Par l'isomorphisme de représentation matricielle dans une base donnée de E, on peut retraduire le problème matriciellement.

En considérant les éléments $E_{i,i}$ et $E_{i,i} + E_{i,j}$ pour $1 \le i \ne j \le n$ on forme une base de $\mathcal{M}_n(\mathbb{R})$ telle que souhaitée.

Exercice 102: [énoncé]

Les matrices A_i sont des matrices de projection et donc

$$\operatorname{tr} A_i = \operatorname{rg} A_i$$
.

On en déduit

$$\sum_{i=1}^{k} \operatorname{rg} A_i = \sum_{i=1}^{k} \operatorname{tr} A_i = \operatorname{tr} I_n = n.$$

Or

$$\mathbb{R}^n = \operatorname{Im} \sum_{i=1}^k A_i \subset \sum_{i=1}^k \operatorname{Im} A_i \subset \mathbb{R}^n.$$

Ainsi

$$\sum_{i=1}^{k} \operatorname{Im} A_i = \mathbb{R}^n$$

et la relation sur les rangs donne

$$\sum_{i=1}^{k} \dim(\operatorname{Im} A_i) = \dim \mathbb{R}^n.$$

Les espaces $\operatorname{Im} A_i$ sont donc en somme directe

$$\bigoplus_{i=1}^k \operatorname{Im} A_k = \mathbb{R}^n.$$

Pour tout $x \in \mathbb{R}^n$, on peut écrire

$$x = A_1 x + \dots + A_k x.$$

En particulier, pour le vecteur $A_j x$, on obtient

$$A_i x = A_1 A_i x + \dots + A_i x + \dots + A_k A_i x.$$

La somme directe précédente donne alors par unicité d'écriture

$$\forall 1 \leq i \neq j \leq k, A_i A_j x = 0$$

et peut alors conclure.

Exercice 103: [énoncé]

(a) Si f est bijectif (nécessairement n=p), il suffit de composer de part et d'autre par f^{-1} pour écrire

$$f \circ g \circ g = 0 \iff f \circ g = 0$$

 $\iff g = 0.$

(b) Dans des bases adaptées, l'application linéaire f peut être figurée par la matrice J_r canonique de rang r de type (n,p). Par représentation matricielle, l'espace H est alors isomorphe à

$$\{M \in \mathcal{M}_{p,n}(\mathbb{R}) \mid J_r M J_r = O_n\}.$$

Un calcul par blocs, montre que les matrices solutions sont celles de la forme

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 avec $A = O_r$.

La dimension de H s'en déduit.

(c) Soit (e_1, \ldots, e_n) une base de E et $u_{i,j}$ l'endomorphisme de E envoyant e_i sur e_j et les autres vecteurs de bases sur 0_E $(u_{i,j}$ est l'endomorphisme figuré par la matrice élémentaire $E_{i,j}$).

On peut écrire

$$f = \sum_{k,\ell=1}^{n} a_{k,\ell} u_{k,\ell}$$

avec $A = (a_{k,\ell})$ la matrice figurant f dans la base (e_1, \ldots, e_n) . Sachant $u_{i,j} \circ u_{k,\ell} = \delta_{j,k} u_{i,\ell}$, il vient

$$u_{i,j} \circ f = \sum_{\ell=1}^{n} a_{j,\ell} u_{i,\ell}$$

puis

$$f \circ u_{i,j} \circ f = \sum_{k=1}^{n} \sum_{\ell=1}^{n} a_{k,i} a_{j,\ell} u_{k,\ell}.$$

La coordonnée selon $u_{i,j}$ de $\varphi(u_{i,j})$ est donc $a_{i,i}a_{j,j}$. On en déduit

$$\operatorname{tr}(\varphi) = \sum_{i,j=1}^{n} a_{i,i} a_{j,j} = \left(\sum_{i=1}^{n} a_{i,i}\right) \left(\sum_{j=1}^{n} a_{j,j}\right) = (\operatorname{tr} f)^{2}.$$

Exercice 104 : [énoncé]

(a) En dimension finie, il suffit d'établir $\det f = 0$ pour conclure. Or

$$\det f = \det(-f^3) = (-1)^3 (\det f)^3.$$

Ainsi, det f est un réel solution de l'équation $x = -x^3$ et donc det f = 0.

(b) 0 est la seule racine réelle du polynôme annulateur $X^3 + X$ et c'est donc la seule valeur propre de f (0 est valeur propre car f n'est pas injectif). Si f est diagonalisable, c'est l'endomorphisme nul ce que le sujet exclut.

Soit $x \in \text{Im } f \cap \text{Ker } f$. On peut écrire x = f(a) et on a alors

$$x = x + f^{2}(x) = f(a) + f^{3}(a) = 0$$

Les espaces $\operatorname{Im} f$ et $\operatorname{Ker} f$ sont donc en somme directe et par conséquent supplémentaires car la formule du rang donne dim $\operatorname{Im} f + \dim \operatorname{Ker} f = \dim \mathbb{R}^3$.

(c) Soit $x \in E \setminus \text{Ker } f$. Les vecteurs f(x) et $f^2(x)$ appartiennent à Im f. Soit $(\lambda, \mu) \in \mathbb{R}^2$ tel que

$$\lambda f(x) + \mu f^2(x) = 0. \tag{3}$$

En appliquant f aux deux membres

$$\lambda f^2(x) - \mu f(x) = 0. \tag{4}$$

La combinaison $\lambda \times (??) - \mu \times (??)$, donne

$$(\lambda^2 + \mu^2)f(x) = 0.$$

Puisque $f(x) \neq 0$, on obtient $\lambda^2 + \mu^2 = 0$ et donc $(\lambda, \mu) = (0, 0)$.

La famille $(f(x), f^2(x))$ est donc libre et constitue une base de Im f qui est de dimension inférieure à 2 car f n'est pas surjectif.

Enfin, en complétant cette famille d'un vecteur non nul de Ker f, on forme une base de \mathbb{R}^3 dans laquelle la matrice de f est

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

On conclut $\operatorname{tr} f = 0$.

Exercice 105: [énoncé]

Supposons que de telles matrices existent et posons M = AB - BA. D'une part

$$tr(M) = tr(AB) - tr(BA) = 0$$

et d'autre part $M^2 = I_n$ et M est donc la matrice d'une symétrie, semblable à

$$\begin{pmatrix} \mathbf{I}_p & 0 \\ 0 & \mathbf{I}_q \end{pmatrix} \quad \text{avec} \quad p = \dim \operatorname{Ker}(M - \mathbf{I}_n) \text{ et } q = \dim \operatorname{Ker}(M + \mathbf{I}_s).$$

On a donc

$$p - q = 0$$

et l'entier n = p + q est nécessairement pair.

Inversement, si n est pair, on écrit n=2p et les matrices A et B suivantes sont solutions

$$A = \begin{pmatrix} 0 & \mathbf{I}_p \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 0 & 0 \\ \mathbf{I}_p & 0 \end{pmatrix}.$$

En résumé, de telles matrices A et B existent si, et seulement si, n est un entier pair.

Exercice 106: [énoncé]

Si f = 0 alors $f \circ g = 0$.

Sinon il existe une base de \mathbb{R}^2 dans laquelle la matrice de f est

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

La matrice de g commutant avec f est de la forme

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$

et puisque $g^2 = 0$, a = 0.

Par suite la matrice de $f \circ g$ est nulle.

Exercice 107: [énoncé]

 F_{ω} est clairement un endomorphisme de $\mathbb{C}_{n-1}[X]$. Sa matrice dans la base $(1,X,\dots,X^{n-1})$ est $A=(a_{i,j})_{0\leq i,j\leq n-1}$ avec $a_{i,j}=\frac{1}{\sqrt{n}}\omega^{ij}$. On remarque que $\overline{A}A=I_n$ car $\frac{1}{n}\sum_{k=0}^{n-1}\omega^{(j-i)k}=\delta_{i,j}$. Par suite F_{ω} est un automorphisme et F_{ω}^{-1} étant représenté par $\overline{A},\,F_{\omega}^{-1}(P)=\frac{1}{\sqrt{n}}\sum_{k=0}^{n-1}P(\omega^{-k})X^k$.

Exercice 108: [énoncé]

(a) Les endomorphismes $\lambda \operatorname{Id}_E$ ont la propriété voulue.

- (b) Les familles (e_1, \ldots, e_n) et $(e_1 + e_i, e_2, \ldots, e_n)$ engendrent le même espace vectoriel. Étant toutes deux formées de n vecteurs, si l'une est libre, l'autre aussi.
- (c) Soit u un endomorphisme de E dont la matrice est diagonale dans toutes les bases de E.

La matrice de u dans la base (e_1, \ldots, e_n) est de la forme diag $(\lambda_1, \lambda_2, \ldots, \lambda_n)$. Puisque la matrice de u dans la base $(e_1 + e_i, e_2, \ldots, e_n)$ est aussi diagonale, il existe $\alpha \in \mathbb{R}$ tel que

$$u(e_1 + e_i) = \alpha(e_1 + e_i)$$

Or par linéarité

$$u(e_1 + e_i) = u(e_1) + u(e_i) = \lambda_1 e_1 + \lambda_i e_i$$
.

Par liberté de la famille (e_1, e_i) on identifie les scalaires et on peut affirmer

$$\lambda_1 = \alpha = \lambda_i$$

Ainsi, si un endomorphisme à une représentation matricielle diagonale dans toutes les bases de E, sa matrice est de la forme λI_n et donc cet endomorphisme est de la forme $\lambda \mathrm{Id}_E$.

(d) Soit u un tel endomorphisme. Si $A = (a_{i,j})$ est sa matrice dans une base (e_1, \ldots, e_n) alors sa matrice dans la base $(e_1, 2e_2, \ldots, ne_n)$ a pour coefficient général

$$\frac{j}{i}a_{i,j}$$

et comme cette matrice doit être égale à la précédente, on obtient

$$\forall i, j \in \{1, \dots, n\}, i \neq i \implies a_{i,j} = 0.$$

Ainsi, cet endomorphisme a une matrice diagonale dans toute base de E et en vertu de ce qui précède, il est de la forme $\lambda \operatorname{Id}_E$ avec $\lambda \in \mathbb{R}$.

Exercice 109: [énoncé]

Soit $x \in \text{Ker } f \cap \text{Im } f$. Il existe $a \in \mathbb{R}^3$ tel que x = f(a) et alors

$$x = -f^{3}(a) = -f^{2}(x) = -f(f(x)) = -f(0) = 0.$$

Ainsi Ker $f \cap \text{Im } f = \{0\}$ puis, par le théorème du rang, on peut affirmer

$$\mathbb{R}^3 = \operatorname{Ker} f \oplus \operatorname{Im} f$$
.

Si $f^2 + Id = \tilde{0}$ alors $f^2 = -Id$ puis $(\det f)^2 = \det(-Id) = -1$. C'est impossible.

On en déduit que $f^2 + \operatorname{Id} \neq \tilde{0}$ et puisque $f \circ (f^2 + \operatorname{Id}) = \tilde{0}$, on a $\operatorname{Ker} f \neq \{0\}$. Soit $e_1 \in \operatorname{Ker} f$ non nul.

Puisque par hypothèse f n'est pas l'application nulle, considérons $e_2 = f(a) \in \text{Im } f$ vecteur non nul. Posons $e_3 = -f(e_2) \in \text{Im } f$. On vérifie

$$f(e_3) = -f^2(e_2) = -f^3(a) = f(a) = e_2.$$

De plus les vecteurs e_2 et e_3 ne sont pas colinéaires.

En effet si $e_3 = \lambda e_2$, on obtient en composant par f, $e_2 = -\lambda e_3$ et on en déduit $e_2 = -\lambda^2 e_2$. Sachant $e_2 \neq 0$, on obtient $\lambda^2 = -1$ ce qui est impossible avec $\lambda \in \mathbb{R}$. Puisque (e_2, e_3) est une famille libre de Im f et puisque (e_1) est une famille libre de Ker f, on peut affirmer que (e_1, e_2, e_3) est une base de \mathbb{R}^3 . Dans celle-ci, la matrice de f est égale à A.

Exercice 110: [énoncé]

(a) Dans la base canonique, la matrice de u-v est de la forme

$$\begin{pmatrix} 0 & 2 & & * \\ & 0 & \ddots & \\ & & \ddots & 2n \\ 0 & & & 0 \end{pmatrix}$$

donc

$$rg(u - v) = (n + 1) - 1 = n.$$

(b) On peut aussi étudier le noyau de u-v et par un argument de périodicité justifier que seuls les polynômes constants sont éléments de ce noyau.

Exercice 111: [énoncé]

Soit f solution. La matrice de f relative à la base canonique est à coefficients entiers. De plus f est un automorphisme car les vecteurs de la base canonique sont des valeurs prises par f et comme $f^{-1}(\mathbb{Z}^n) = \mathbb{Z}^n$, la matrice de f^{-1} relative à la base canonique est à coefficients entiers. Inversement, si f est un automorphisme telle que f et f^{-1} soient représentés par des matrices à coefficients entiers dans la base canonique, il est immédiat que $f(\mathbb{Z}^n) \subset \mathbb{Z}^n$ et que $f^{-1}(\mathbb{Z}^n) \subset \mathbb{Z}^n$ donc que $\mathbb{Z}^n \subset f(\mathbb{Z}^n)$ et finalement $f(\mathbb{Z}^n) = \mathbb{Z}^n$. Notons que les endomorphismes solutions peuvent aussi se décrire comme étant les endomorphismes canoniquement représentés par une matrice à coefficients entiers et qui sont de déterminant égal à 1 ou -1.