MARS PATHFINDER BATTERY PERFORMANCE

B. OTZINGER, D. PERRONE, S. DAWSON, T. VALDEZ S. SURAMPUDI, R. EWELL, M. SHIRBACHEH,

> NASA BATTERY WORKSHOP HUNTSVILLE, ALABAMA NOVEMBER 18-20, 1997

358962

OUTLINE

- MISSION REQUIREMENTS
- BATTERY DESIGN FEATURES
- BATTERY OPERATIONAL OVERVIEW
- BATTERY PERFORMANCE
 - PRELAUNCH
 - CRUISE
 - EDL
 - MARS OPERATIONS
- SUMMARY AND CONCLUSIONS

ABDIAL ABDIINTA9 SAAM

MISSION REQUIREMENTS

•	PRE	LA	UNCH
---	-----	----	------

4 MONTH ACTIVE INVERTED STORAGE

LAUNCH

INVERTED BATTERY LAUNCH

CRUISE

7 MONTH ACTIVE STORAGE

• EDL

40 AH, 1080 WH

MARS OPR. CYCLES

30 CYCLES(1CYCLE/DAY, 8 HOUR CHARGE 16 HOUR DISCHARGE) 50% DOD

15 KG

WEIGHT

9.8" x 7.4" x 7.4"

DIMENSIONS

MPF BATTERY SPECIFICATIONS

VOLTAGE

27 V

CAPACITY

40 Ah

RATE CAPABILITY

1-5 A

PULSE CAPABILITY

40 A FOR 40 MSEC

CYCLE LIFE

40

WET LIFE

14 MONTHS

WEIGHT

15 KG

DIMENSIONS

9.8" x 7.4" x 7.4"

ELECTROCHEMICAL TECHNOLOGIES GROUP

KEY CELL DESIGN FEATURES

- Robust separator system 5 layers of cellophane and 2 layers of polymer membrane.
 To achieve long calendar and cycle life
- Triple redundant case-to-cover seal including basic ultrasonic seal.
 To prevent electrolyte leakage
 To improve safety
- Large cell plate area approximately 200 square inches.
 Low temperature operation
 For enhanced pyro-firing
- Unique leak-free cell vent valves.
 For inverted battery operation allow gas venting under off-limit operation
- Minimal free electrolyte
 For inverted battery operation

KEY BATTERY DESIGN & PROCESS FEATURES

- Titanium fabricated battery case with sealable cover and gasket.
 Light weight construction
 gas and electrolyte containment
- Battery vent valve and pressurization port.
 Redundant valve to protect cells from electrolyte loss
- Battery heater and two temperature sensors.
 Thermal management for charge control
- Over-pot of cells, surface conformal coating, connector back side potting and electrolyte absorption system.

Prevent ionic conductive paths Improve safety

•Cell Matching and selection Extend cycle life

PL.

KEY BATTERY OPERATING STRATEGIES

- Battery was mounted inverted and maintained at 12 C during pre-launch and launch Phases
- •Battery was partially discharged to 80% SOC and on open circuit stand, at -5 to 0 degrees C, during 7 Month cruise period.
- Battery was charged at end of cruise through 1.2 Ohm resistor to 0.2 A cut-off and 1.95 V / cell Ave.
- Battery was heated to 15 to 20 degrees C prior to all charges.
- Battery was charged during Mars operations without resistor to a selective shunt limiter controlled maximum voltage. Six voltage settings were available with 1.95 V / cell Ave.., the nominal full charge selection.
- Battery was taper charged to a constant shunt limiter voltage, 1.95 V / cell Ave.. well below the 2 V. limit employed in constant current charging with same full charge result.

BATTERY CAPACITY VS CHARGE VOLTAGE

MARS PATHFINDER -- 16 BST Ag-Zn CELLS WITH 2+5 SEPARATOR SYSTEM CONSTANT VOLTAGE CHARGE CHARACTERISTIC FOR NEW CELLS WITH 4.5 AMPERE INRUSH AT

MARS Pathfinder Power System Configuration Relays

MPF BATTERY PRELAUNCH DISCHARGE

MPF BATTERY PRELAUNCH CHARGE

Mars Pathfinder -- BST 18 Cell, 40 Ampere-Hour, Ag-Zn, Flight Battery JPL Charge #2 AT 1.960 Volts Per Cell To A 0.2A Cut Off At 25°C - With 1.14 Ohm Resistor

94

04

Z# 184= # 184 **-**

- Battery Voltage

- Battery Current

Day of Mission

90

TEMPERATURE DURING CRUISE

GNA 30ATJOV YASTTA8 39M

gg

09

99

01-

G-

0

G

10

Degrees Celsius

Nickel-Hydrogen Session

32

MPF BATTERY PERFORMANCE-EDL/SOL1

ELECTROCHEMICAL TECHNOLOGIES GROUP

MPF BATTERY PERFORMANCE- SOL25

Flight Battery Sol 25 data

MPF BATTERY PERFORMANCE SOL-25

SOL #25 CHARGE

MPF BATTERY PERFORMANCE-SOL 25

ELECTROCHEMICAL TECHNOLOGIES GROUP

MPF BATTERY PERFORMANCE-SOL 68

SOL 68 DISCHARGE

SUMMARY AND CONCLUSIONS

- The first use of a silver-zinc battery in a spacecraft application that called for extensive rechargeable operation after 12 months of active stand hasproven to be very successful.
- BST has developed a silver-zinc battery with unique design features for the Mars Pathfinder mission.
- JPL has developed battery management strategies to meet the Mars Pathfinder mission requirements.
 - Partial SOC at low temperature and open circuit stand was found to be the most effective method for insuring extensive cycle life following a long period of active storage
 - Silver-zinc battery charging at a reduced constant voltage was shown to provide full charge and a capability of supporting a large number of cycles.
 - Launch of an inverted silver-zinc battery was shown to be possible when a leak free cell vent valve is employed.
 - The use of a silver-zinc battery and shunt limiter in a direct energy transfer power system resulted in a very energy efficient design approach.

ACKNOWLEDGMENT

The work described here was carried out at the Jet Propulsion Laboratory,

California Institute of Technology, under contract with the

National Aeronautics and Space Administration.