

Machine Learning

Assignment 1

Author: Kasra Amani Student No. 98101171

Instructor: Prof. Ali Sharifi Zarchi

Date Last Edited: October 19, 2022

Problem 1

Problem 1.1

Theorem 1: Let y = Ax where y and x are n-element vectors and A is an $n \times n$ matrix; then: $A = \frac{\partial y}{\partial x}$.

The proof is trivial when we look at the definition of y.

Theorem 2: Let the scalar α be as follows: $\alpha = y^T A x$ where A, x and y have similar features to theorem 1, we can derive that $\frac{\partial \alpha}{\partial x} = y^T A$ and $\frac{\partial \alpha}{\partial y} = x^T A^T$.

Proof: z (a transposition of a $n \times 1$ vector) is defined as: $z = y^T A$ (therefore $\alpha = zx$); utilizing theorem 1 we can derive that: $\frac{\partial \alpha}{\partial x} = z = y^T A$; also since α is an scalar, the following is true: $\alpha = \alpha^T = x^T A^T y$ and applying theorem 1 again gives us: $\frac{\partial \alpha}{\partial y} = x^T A^T$.

Theorem 3: Let α be of quadratic form $\alpha = x^T A x$, then: $\frac{\partial \alpha}{\partial x} = x^T (A + A^T)$.

Proof: By the definition of α we have: $\alpha = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_i x_j$; differentiating according to the kth

element of \mathbf{x} we get: $\frac{\partial \alpha}{\partial x_k} = \sum_{j=1}^n a_{kj} x_j + \sum_{i=1}^n a_{ik} x_i$ which holds true for all k in [1,n] we obtain: $\frac{\partial \alpha}{\partial x} = x^T A^T + x^T A = x^T (A^T + A)$.

\mathbf{a}

This theorem only holds if A is symmetric; we define the scalar α as follows: $\alpha = x^T A x$. Then by applying theorem 3 in a special case, we can derive $\frac{\partial \alpha}{\partial x} = 2x^T A$.

b

Since $\alpha = x^T A x$ is a scalar, its trace is α itself and from there on, it is the identical theorem to theorem 3

Problem 1.2

\mathbf{a}

Consider the characteristic polynomial: $p(\lambda) = |\lambda I - A| = \lambda^n + c_{n-1}\lambda^{n-1} + ... + c_1\lambda + c_0$. Since the eigenvalues are the roots of this polynomial, it can be rewritten as $(\lambda - \lambda_1)...(\lambda - \lambda_n)$. Consider $p(0) = c_0$, this can be calculated in two ways:

1.
$$p(0) = (0 - \lambda_1)...(0 - \lambda_n) = (-1)^n \lambda_1...\lambda_n$$

2.
$$p(0) = |0I - 1| = |-A| = (-1)^n |A|$$

So we have shown that the product of eigenvalues is equal to the determinant.

b

Similar to the previous part, we will use two methods to calculate c_{n-1} ;

First, we expand $p(\lambda) = (\lambda - \lambda_1)...(\lambda - \lambda_n)$; this will give us $c_{n-1} = -(\lambda_1 + ... + \lambda_n)$.

Second, it can be calculated by obtaining the determinant $|\lambda I - A|$:

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \dots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \dots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \dots & \lambda - a_{nn} \end{vmatrix}$$

One major part of the determinant is the product of all elements on the main diagonal $((\lambda - a_{11})...(\lambda - a_{nn}))$. It is clear that the remaining part has products that contain at most n-2 elements of the main diagonal(and therefore n-2 lambdas(λ)). The second part has no effect on the value of c_{n-1} and thus, this value can be calculated by finding the coefficient of λ^{n-1} in the first polynomial $((\lambda - a_{11})...(\lambda - a_{nn}))$ and we obtain $c_{n-1} = -(a_{11} + ... + a_{nn})$.

So we have $c_{n-1} = -(a_{11} + ... + a_{nn}) = -(\lambda_1 + ... + \lambda_n)$ and since the first part is trace(A), we obtain that if we add all eigenvalues, the result is the trace of that matrix.

Problem 1.3

Problem 1.4
$$||A||_{1} = \max_{j} (\sum_{i=1}^{n} |a_{ij}|)$$

$$||A||_{2} = \sqrt{\lambda_{max}(A^{*}A)}$$

$$||A||_{\infty} = \max_{i} (\sum_{j=1}^{n} |a_{ij}|)$$

$$A = \begin{bmatrix} 5 & -4 & 2 \\ -1 & 2 & 3 \\ -2 & 1 & 0 \end{bmatrix} \implies ||A||_{1} = 8, ||A||_{2} = \sqrt{51.089} = 7.147, ||A||_{\infty} = 11$$

Problem 2

Problem 2.1

Problem 2.2

Problem 2.3

Similar matrices: A and B are similar if the invertible matrix P exists such that: $B = P^{-1}AP$ so essentially, similar matrices represent the same map under different bases where P does the basis change and because of this, they have identical eigenvalues. Thus all we have to do, is show that M and N are similar where $N = P^{-1}MP$; consider the matrix P^{-1} (which is invertible); we know that: $P^{-1^{-1}}NP^{-1} = PP^{-1}MPP^{-1} = M$ and we conclude that M and N are similar and thus, have the same set of eigenvalues.