CLAIMS

1	1. A method for avoiding livelock among two or more input/output (I/O) devices
2	of a symmetrical multiprocessor computer system comprising a plurality of intercon-
3	nected processors, one or more shared memories coupled to the processors, and at least
4	one I/O bridge in communicating relationship with the two or more I/O devices, the proc
5	essors and the one or more shared memories, the method comprising the steps of:
6	providing at least one coherent buffer and at least one non-coherent buffer at the
7	I/O bridge, the non-coherent buffer coupled to the at least one coherent buffer and to at
8	least one of the I/O devices;
9	receiving a request from a first I/O device coupled to the I/O bridge for informa-
10	tion;
11	storing the device requested information in the coherent buffer of the I/O bridge;
12	receiving a system message at the I/O bridge requesting the information stored in
13	the coherent buffer, the system message originating from other than the first I/O device;
14	copying at least a portion of the stored information to the non-coherent buffer;
15	invalidating the stored information within the coherent buffer; and
16	supplying to the first I/O device at least some of the stored information copied
17	into the non-coherent buffer.
1	2. The method of claim 1 wherein
2	the first I/O device is coupled to the non-coherent buffer by an I/O bus having a
3	bus cycle specifying a predetermined number of bits per I/O bus cycle, and
4	the stored information supplied to the first I/O device from the non-coherent

3. The method of claim 2 further comprising the steps of:

buffer is the predetermined number of bits of one bus cycle.

5

1

- receiving a second request at the I/O bridge from the first I/O device requesting information;
- determining whether the information of the second request is stored in the coherent buffer; and

if the information of the second request is stored in the coherent buffer, supplying 6 at least some of the information to the first I/O device. 7 4. The method of claim 3 further comprising the steps of: 1 if the information of the second request is not stored in the coherent buffer, de-2 termining whether the information of the second request is stored in the non-coherent 3 buffer; and if the information of the second request is stored in the non-coherent buffer, sup-5 plying the predetermined number of bits of one bus cycle of the information to the first I/O device. 7 5. The method of claim 4 further comprising the steps of: ı granting the I/O bridge exclusive ownership relative to the plurality of processors 2 and the other I/O bridges of the computer system over the information stored by the I/O 3 bridge; and following the step of invalidating, generating an acknowledgement confirming 5 that the stored information has been invalidated by the I/O bridge. 6. The method of claim 5 further comprising the steps of: 1

- organizing information stored in the one or more shared memories of the computer system into respective cache lines; and
- providing one or more cache coherency directories, the one or more cache coherency directories configured to store an ownership status for each cache line,
- 6 wherein

7

8

- the system message requesting information originates from one or more of the directories and the acknowledgement is sent to one or more of the directories.
- 7. An input/output (I/O) bridge for use in a distributed shared memory computer system comprising a plurality of interconnected processors and one or more shared memories that are coupled to the processors, the I/O bridge configured to provide inter-

4	communication between one or more I/O devices and the plurality of processors or
5	shared memories, the I/O bridge comprising:
6	at least one coherent buffer configured to store information requested by a first
7	I/O device coupled to the I/O bridge;
8	at least one non-coherent buffer coupled to the coherent buffer and to the one or
9	more I/O devices; and
0	a controller coupled to the coherent buffer and the non-coherent buffer, the con-
1	troller configured to:
2	store at least a portion of the information stored in the coherent buffer in
.3	the non-coherent buffer in response to receiving a system message originating
4	from other than the first I/O device requesting the information stored in the coher-
5	ent buffer,
6	invalidate the information within the coherent buffer, and
7	supply to the first I/O device at least some of the information copied into
18	the non-coherent buffer.
1	8. The I/O bridge of claim 7 further wherein
2	the first I/O device is coupled to the non-coherent buffer by an I/O bus having a
3	bus cycle specifying a predetermined number of bits per I/O bus cycle, and
4	the information supplied to the first I/O device from the non-coherent buffer is the
5	predetermined number of bits of one bus cycle.