SPRINT DELIVERY – 4

TEAM ID	PNT2022TMID14367
Project Name	Smart Farmer - IOT Enabled Smart Farming Application

5.5 Receiving commands from IBM cloud using Python program import time import sys import ibmiotf.application

import ibmiotf.device import

random

#Provide your IBM Watson Device Credentials

organization = "157uf3" deviceType = "abcd" deviceId = "7654321" authMethod = "token" authToken = "87654321"

Initialize GPIO

def myCommandCallback(cmd): print("Command

received: %s" % cmd.data['command'])

status=cmd.data['command'] if

```
status=="motoron": print ("motor is on") elif
status == "motoroff": print ("motor is off")
    print ("please send proper command")
try:
 deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
   #.....
except Exception as e:
  print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud
as an event of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
```

Humid=random.randint(60,100)

Mois=random. Randint(20,120)

data = { 'temp' : temp, 'Humid':

Humid , 'Mois': Mois}

#print data def

myOnPublishCallback():

print ("Published Temperature = %s C" % temp, "Humidity = %s %%" % Humid, "Moisture = %s deg c" % Mois "to IBM Watson") success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0, on_publish=myOnPublishCallback) if not success: print("Not connected to IoTF")

time.sleep(10)

deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "157uf3"
deviceType = "abcd"
deviceId = "7654321"
authMethod = "token"
authToken = "87654321"
# Initialize GPIO
def myCommandCallback(cmd):
    print("Command received: %s" % cmd.data['command'])
     status=cmd.data['command']
     if status=="motoron":
    print ("motor is on")
elif status == "motoroff":
   print ("motor is off")
    else :
         print ("please send proper command")
try:
         deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMe
         deviceCli = ibmiotf.device.Client(deviceOptions)
          #..........
                                                                                                                       Ln: 22 Col: 21
```

```
File Edit Shell Debug Options Window Help
< C
          Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD6
          4)] on win32
          Type "copyright", "credits" or "license()" for more information.
---- RESTART: C:\Users\ELCOT\Downloads\ibmiotpublishsubscribe.py ---
          2022-11-07 20:01:24,074 ibmiotf.device.Client
lly: d:157uf3:abcd:7654321
                                                                                   INFO
                                                                                               Connected successfu
          Published Moisture = 90 deg C Temperature = 96 C Humidity = 76 % to IBM Watson Published Moisture = 102 deg C Temperature = 110 C Humidity = 68 % to IBM Watson Published Moisture = 45 deg C Temperature = 99 C Humidity = 100 % to IBM Watson
           Command received: motoron
          motor is on
          Published Moisture = 77 deg C Temperature = 91 C Humidity = 85 % to IBM Watson Published Moisture = 73 deg C Temperature = 94 C Humidity = 86 % to IBM Watson
           Command received: motoroff
          motor is off
           Published Moisture = 101 deg C Temperature = 104 C Humidity = 87 % to IBM Watson
```

6.Flow Chart

7. Observations & Results

8. Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

9.Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.

10.Bibliography

IBM cloud reference: https://cloud.ibm.com/

IoT simulator : https://watson-iot-sensor-simulator.mybluemix.net/

OpenWeather: https://openweathermap.org/