Formulario di Optoelettronica

Lorenzo Rossi - lgorenzo
14.rossi@mail.polimi.it ${\rm AA}\ 2020/2021$

Email: lorenzo 14. rossi@mail.polimi.it

 $GitHub: \ https://github.com/lorossi$

Quest'opera è distribuita con Licenza Creative Commons Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet \bullet }$ Versione aggiornata al 17/05/2021

Indice

1	Riguardo al formulario	1		
2	Richiami di base			
3	Onde elettromagnetiche e pacchetti d'onda 3.1 Leggi di Snell			
4	Riflettore di Bragg			
5	Cavità di Fabry-Perot	5		
6	Guida d'onda			
7	Fibra ottica 7.1 Fibra step index	7 7 7		
8	Laser 8.1 Effetto Doppler	8		
9	Semiconduttori	9		
10	LED 10.1 Efficienza	9		

1 Riguardo al formulario

Quest'opera è distribuita con Licenza Creative Commons - Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet}(\textcircled{\bullet})$

Questo formulario verrà espanso (ed, eventualmente, corretto) periodicamente fino a fine corso (o finché non verrà ritenuto completo).

Link repository di GitHub: https://github.com/lorossi/formulario-optoelettronica L'ultima versione può essere scaricata direttamente cliccando su questo link.

In questo formulario ho cercato prima di tutto di mettere le formule importanti per la risoluzione degli esercizi, preferendole a quelle utili alla comprensione della materia.

2 Richiami di base

• Angolo solido:

— Assume valori nell'intervallo $[0,4\pi]$

– Elemento infinitesimo $d\Omega = 2\pi \sin(\theta) d\theta$

– Integrale
$$\Omega = \int_0^{2\pi} = 2\pi \left[1 - \cos(\theta)\right]$$

- Unità di misura steradiante

• Spettro di luce visibile:

Colore	Lunghezza d'onda [nm]	Frequenza Thz
Viola	380 - 450	670 - 790
Blu	450 - 485	620 - 670
Ciano	485 - 500	600 - 620
Verde	500 - 565	530 - 600
Giallo	565 - 590	510 - 530
Arancione	590 - 625	480 - 510
Rosso	625 - 700	400 - 480

3 Onde elettromagnetiche e pacchetti d'onda

• Velocità di gruppo
$$v=\frac{\partial \omega}{\partial k}=\frac{c}{N_q}$$

• Velocità di fase
$$v_f = \frac{\omega}{k} = \frac{c}{n}$$

• Indice di gruppo
$$N_g = n - \lambda_0 \frac{\partial n}{\partial \lambda_0}$$

• Variazione della lunghezza d'onda
$$\Delta \lambda = \frac{c}{\nu^2} |\Delta \nu|$$

3.1 Leggi di Snell

– Fascio incidente
$$\theta_i$$

– Fascio riflesso
$$\theta_r$$

– Fascio trasmesso
$$\theta_t$$

• Prima legge
$$\theta_i = \theta_r$$

• Seconda legge
$$n_1 \sin(\theta_i) = n_2 \sin(\theta_t)$$

• Total internal reflection
$$\theta_c = \arcsin \frac{n_2}{n_1}$$

3.2 Riflessione e trasmissione

• Coefficiente di riflessione
$$R = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

• Coefficiente di trasmissione
$$T = \left(\frac{2n_2}{n_2 + n_1}\right)^2$$

– Spessore
$$d = \frac{\lambda_0}{4n_2} = \frac{\lambda}{4}$$

– Indice di riflessione
$$n_2 = \sqrt{n_1 n_3}$$

- Riflettività
$$\left(\frac{n_0n_1-n_2}{n_0n_1+n_2}\right)^2$$

3.3 Tunneling ottico

• Campo evanescente
$$\vec{E} \propto \exp\{-\alpha_2 z\} \exp\{i\omega t\}$$

• Coefficiente di attenuazione
$$\alpha = \frac{2\pi n}{\lambda} \sqrt{\left(\frac{n_1}{n_2}\right)^2 \sin(\theta_i) - 1}$$

3

• Penetrazione
$$\delta = \frac{1}{\alpha}$$

3.4 Sfasamento

- Dovuto alla riflessione interna $\phi = 0$
- Dovuto alla riflessione esterna $\phi=\pi$
- Dovuto all'attraversamento di un mezzo $\partial \phi = \partial \frac{2\pi n}{\lambda_0}$
- Della componente riflessa all'interfaccia:

- Coefficiente perpendicolare
$$r_{\perp} = \frac{\cos(\theta_i) - \sqrt{(n_2/n_1)^2 - \sin^2(\theta_i)}}{\cos(\theta_i) + \sqrt{(n_2/n_1)^2 - \sin^2(\theta_i)}}$$

- Sfasamento perpendicolare
$$\Phi_{\perp} = 2 \arctan \left[\frac{\sqrt{\sin^2(\theta_i) - (n_2/n_1)^2}}{\cos(\theta_i)} \right]$$

– Relazione degli sfasamenti tan
$$\left(\frac{1}{2}\Phi_{\perp}+\frac{\pi}{2}\right)=\frac{1}{n^2}\tan\left(\frac{1}{2}\Phi_{\perp}\right)$$

3.5 Coerenza

- Spaziale $l_c = c \cdot \Delta \nu$
- Temporale $t_c = \frac{1}{\Delta \nu}$

3.6 Interferenza

- Campo totale $\vec{E} = \vec{E}_1 + \vec{E}_2$
- Modulo quadro $|\vec{E}|^2 = |\vec{E}_1|^2 + |\vec{E}_2|^2 + 2\vec{E}_1 \times \vec{E}_2$
- Intensità $I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\delta) \cos \delta = k(r_2 r_1) + \phi_2 \phi_1$

4

- Interferenza costruttiva $\delta=2m\pi,\;I=4I_1=4I_2$ in fase
- Interferenza distruttiva $\delta = 2(m+1)\pi, I = 0$ in quadratura
- Interferomero di Young:
 - Picchi di interferenza costruttiva $y = \frac{L}{S} \lambda m$
 - Intensità dei picchi $I = I_0 \left[1 + \cos \left(k \frac{S}{L} y \right) \right]$
 - Figure di interferenza:

* Massimi
$$k = \frac{S}{L}y = 2m\pi$$

* Minimi
$$k = \frac{\overline{S}}{L}y = 2(m+1)\pi$$

4 Riflettore di Bragg

• Riflettanza di un riflettore a N strati
$$R=\left(\frac{n_1^{2N}-n_0/n_3}{n_1^{2N}+n_0/n_3}\frac{n_2^{2N}}{n_2^{2N}}\right)^2$$

• FWHM
$$\frac{\Delta \lambda}{\lambda_0} = \frac{4}{\pi} \arcsin\left(\frac{n_1 - n_2}{n_1 + n_2}\right)$$

5 Cavità di Fabry-Perot

- Frequenze ammesse $\nu=m\frac{c}{2L},\,m$ numero intero positivo
- Free spectral range $\Delta \nu = \nu_m \nu_{m-1} = \frac{c}{2L}$
- Campo elettrico totale $\vec{E} = \frac{A_0}{1 R \cdot e^{j2kl}}$
- Intensità totale $I=|E|^2=\frac{A_0^2}{(1-R)^2+4R\sin(kL)^2}$
- Massima ampiezza $I_{max} = \frac{I_0}{(1-R)^2}$
- Full width half maximum (FWHM) dell'intensità $\sin(kL) = \frac{1-R}{2\sqrt{R}}$
- Finezza spettrale $F = \frac{\pi\sqrt{R}}{1-R}$
- Full width half maximum (FWHM) della frequenza $\Delta \nu = \frac{\frac{C}{2L}}{\frac{\pi \sqrt{R}}{1-r}}$
- $\Delta \nu_{\rm FWHM} = \frac{C}{2n_s L}$
- Fattore qualità $Q = \frac{\nu_m}{\Delta \nu} = mF$

6 Guida d'onda

- Angolo caratteristico del modo $\theta_m = \sqrt{1 \left(\frac{n_2}{n_1}\right)^2}$
- Condizione di guida d'onda $\frac{2\pi n_1(2a)}{\lambda}\cos(\theta_m) \Phi_m = m\pi$
- Componenti del modo
 - Componente viaggiante $\beta_m = k_1 \sin(\theta_m)$
 - Componente stazionaria $\kappa_m = k_1 \cos(\theta_m)$
- Numero di modi
 - V-number $V = \frac{2\pi a n_1}{\lambda} \sqrt{1 \left(\frac{n_2}{n_1}\right)^2}$
 - Numero di modi $m < \frac{2V \Phi_m}{\pi}$
 - Numero totale di modi $int\left(\frac{2V}{\pi}\right)+1$
 - Propagazione monomodale $V < \frac{\pi}{2}$
 - Lunghezza di cut-off $\lambda_c=4a\sqrt{n_1^2-n_2^2}$
- Dispersione
 - Intermodale
 - * Stima della dispersione intermodale $\Delta \tau = \frac{Ln_1}{c} \frac{Ln_2}{c}$
 - * Dispersione per unità di lunghezza $\frac{\Delta \tau}{L} = \frac{n_1 n_2}{c}$
 - Intramodale
 - * In presenza di un solo modo ($\omega < \omega_{cutoff}$) il pacchetto di distribuisce su un range di frequenze angolari
 - $* \Delta\omega = \frac{2\pi}{\Delta\tau}$
 - Di materiale
 - $\ast\,$ Prescinde dalla propagazione in guida e discende dalla dipendenza di n dalla lunghezza d'onda
 - $* D_m = \frac{\Delta t}{L\Delta \lambda} = \left| -\frac{\lambda}{c} \frac{\partial^2}{\partial \lambda^2} \right|$

7 Fibra ottica

7.1 Fibra step index

- Differenza di indice relativa $\Delta = \frac{n_1 n_2}{n_1}$
- Numero di modi $M \approx \frac{V^2}{2}$
- Attenuazione in fibra $\alpha = -\frac{1}{P}\frac{dP}{dx} \to P = P_0 e^{-\alpha L}, E = E_0 e^{-\alpha L/2}$
- Dispersione

– Intermodale
$$\frac{\Delta \tau}{L} \approx \frac{n_1 - n_2}{c} = \frac{n_1 \Delta}{c}$$

– Di materiale
$$\frac{\Delta \tau}{L} = |D_m| \Delta \lambda$$
 con $D_m = -\frac{\lambda}{c} \frac{d^2 n}{d\lambda^2}$

– Di guida/cromatica
$$\frac{\Delta \tau}{L} = |D_w| \Delta \lambda$$

– Sommando
$$D_m$$
 e D_w si ottiene la dispersione cromatica $\frac{\Delta \tau}{L} = |D_m + D_w| \Delta \lambda = |D_{Cr}| \Delta \lambda$

• Apertura numerica (NA)

$$- NA = \sqrt{n_1^2 - n_2^2}$$

– Angolo di accettazione massimo
$$\alpha = \arcsin\left(\frac{NA}{n_0}\right)$$

– V-Number
$$V = \frac{2\pi a}{\lambda}$$
NA

$$-$$
 Per $V<2.405\ \mathrm{ho}$ fibra monomodale.

7.2 Fibra GRIN

• $n\sin(\theta) = \cos t$ in tutta la sezione di fibra

8 Laser

• Guadagno $g = \frac{c^2}{8\pi\nu^2c^2\tau_{sp}\Delta\nu}(N_2 - N_1)$

• Condizione di soglia $e^{2lg}=e^{2\alpha_s}\frac{1}{R_1R_2}$

• Guadagno di soglia $g_t h = \frac{1}{2L} \ln \left(\frac{1}{R_1 R_2} \right) + \alpha_s$

• Guadagno del laser (sopra soglia) $g = \frac{c^2}{8\pi \nu^2 n^2 \tau_{sp} \Delta \nu} (N_2 - N_1)$

• Potenza di uscita $P_{out}=\frac{N_{ph}}{2}\frac{c}{n}h\nu(1-R_1)A,\,A$ area della superficie del laser

– In funzione del flusso fotonico $P_{out} = \frac{1}{2} \Phi_{ph} A h \nu_0 (1-R_2)$

• Tempo di spegnimento del laser $\tau_{ph} = \frac{n}{c}\alpha_t$

8.1 Effetto Doppler

• Periodo apparente $T' = T\left(1 + \frac{v_x}{c}\right)$

• Frequenza apparente $\nu' \approx \nu \left(1 - \frac{v_x}{c}\right)$

• Allargamento Doppler $\Delta \nu_{FWHM} = 2\nu_0 \sqrt{\frac{2KT\log(2)}{mc^2}}$ solo per i laser a gas

9 Semiconduttori

• Legge dell'azione di massa $n=p=n_i^2=N_cN_v\exp\frac{E_g}{kT}$

• Corrente di deriva $J = qF(n\mu_n + p\mu_p)$

• Corrente di diffusione $J = qD_n \frac{\partial n}{\partial x} - qD_p \frac{\partial p}{\partial x}$

10 LED

• Legge di Varshni $E_G(T) = E_G(0) - \frac{AT^2}{B+T}$

- Brillanza $\Phi_V = P_{\rm out} \cdot 683 \; ^{lm}\!/\!_W \cdot V(\lambda)$

10.1 Efficienza

• Quantica interna $\eta_{\text{iqe}} = \frac{\text{tasso ricombinazione radiativa}}{\text{tasso ricombinazione}} = \frac{1/\tau_r}{1/\tau_r + 1/\tau_{nr}} = \frac{\Phi_{ph}}{I/q} = \frac{P_{\text{in}}/h\nu}{I/q}$

• Quantica esterna $\eta_{\rm eqe} = \frac{P_{\rm out}/h\nu}{I/q}$

• Di estrazione $\eta_{\rm ee} = \eta_{\rm eqe}/\eta_{\rm iqe} \le 1$

• Di conversione di potenza $\eta_{\rm pce}=\frac{P_{\rm out}}{VI}=\eta_{\rm eqe}\cdot\frac{h\nu}{qV}$

• Luminosa $\eta_{\text{le}} = \frac{\Phi_v}{VI}$