MASTERY QUIZ DAY 23

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

- (a) $S: \mathbb{R}^2 \to \mathbb{R}^2$ given by the standard matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- (b) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by the standard matrix $\begin{bmatrix} 2 & 3 & -1 & -2 \\ 0 & 1 & 3 & 1 \\ 2 & 1 & -7 & -4 \end{bmatrix}$

Solution:

- (a) RREF $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Since each column is a pivot column, S is injective. Since there is no zero row, S is surjective.
- (b) Since $\dim \mathbb{R}^4 > \dim \mathbb{R}^3$, T is not injective.

RREF
$$\left(\begin{bmatrix} 2 & 3 & -1 & -2 \\ 0 & 1 & 3 & 1 \\ 2 & 1 & -7 & -4 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & -5 & -\frac{5}{2} \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are only two pivot columns, T is not surjective.

A4. Let $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^3$ be the linear map given by $T\left(\begin{bmatrix} a & b \\ x & y \end{bmatrix}\right) = \begin{bmatrix} a+x \\ 0 \\ b+y \end{bmatrix}$. Compute a basis for the kernel and a basis for the image of T.

Solution: Rewrite as $T'\begin{pmatrix} \begin{bmatrix} a \\ b \\ x \\ y \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a+x \\ 0 \\ b+y \end{bmatrix}$.

$$RREF\left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Thus $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ is a basis for the image, and $\left\{ \begin{bmatrix} -1&0\\1&0 \end{bmatrix}, \begin{bmatrix} 0&-1\\0&1 \end{bmatrix} \right\}$ is a basis for the kernel.

A3:

A4: