Übungsblatt 1

Aufgabe 1: (0 Punkte) Lesen Sie Einheit 1!

Aufgabe 2: (3 Punkte) Es sei $\Omega = \{1, 2, 3, 4\}.$

- (a) Ist $\mathcal{F} = \{\emptyset, \{1\}, \{3,4\}, \Omega\}$ eine σ -Algebra über Ω ?
- (b) Ist $\mathcal{F} = \{\emptyset, \{1, 2, 3\}, \{4\}, \Omega\}$ eine σ -Algebra über Ω ?
- (c) Ist $\mathcal{F} = \{\emptyset, \{1\}, \{2,3\}, \{4\}, \Omega\}$ eine σ -Algebra über Ω ?

Begründen Sie Ihre Antwort!

Aufgabe 3: (2 Punkte) Es sei $\Omega = \{1, 2, 3, 4, 5\}$. Bestimmen Sie die kleinste σ -Algebra, welche $\{1, 2\}$ und $\{4, 5\}$ enthält.

Aufgabe 4: (4 Punkte) Es seien A, B, C Ereignisse und es gelte P(A) = 60%, P(B) = 30%, P(C) = 35%, $P(A \cap B) = 15\%$, $P(B \cap C) = 10\%$, $P(C \cap A) = 20\%$, $P(A \cap B \cap C) = 5\%$. Bestimmen Sie $P(A \cup B \cup C)$.

Aufgabe 5: (1 Punkt) Es seien Ω und Z nicht leere Mengen und es sei $X : \Omega \to Z$ eine beliebige Abbildung. Zeigen Sie, dass $X : (\Omega, \mathcal{P}(\Omega)) \to (Z, \mathcal{P}(Z))$ eine Zufallsvariable ist.

Aufgabe 6: (4 Punkte) Beschreiben Sie den zweifachen Wurf eines fairen Würfels: (Ω, \mathcal{F}, P) . Schreiben Sie die Ereignisse "Zumindest eine Augenzahl ist gerade" und "Die Augensumme beträgt höchstens 6" als Teilmengen von Ω . Bestimmen Sie die Wahrscheinlichkeiten dieser Ereignisse.

Abgabe am 29. April 2019.