Final Design Presentation

Zen and the Art of Glitter Deposition

SEED TEAM 16

Anthony Vieriu, Emma Marston, Helen Wang, Jake Varakian

Introduction

Our Client

West Lebanon, New Hampshire

The Team

Anthony Vieriu

Jake Varakian

Emma Marston

Helen Wang

Our Mentor

Dr. Marshall

Problem Statement

Develop a module to be attached to an inkjet conveyor that will dispense a uniform coating of glitter on an adhesive with a way to recover excess glitter.

Customer Requirements

- 1. Clean workspace
- 2. Minimal waste
- 3. Easily controlled
- 4. Remove only excess glitter
- 5. Multiple colors
- 6. Fit within given parameters

Each Part Serves A Specific Function

Easily Controllable Deposition

Multiple to coatings prepared at once

Dusting not clumps

Rotation easily controlled

Creating an Air blade From a Compressor

Client Compatibility and Useability

Organizing the Solution to the Problem

Residence Resi			<u> </u>						
Method Result Chastifal			Engineering Specifications					Results	
International content of the designated achiesive removed from the substrate shall not be below a 4 will be designated achiesive verienced from the chamber and the image in the chamber and the chamber a	ID		Engineering Specification	Units	Notes			Status (Pass/Fail/N	Notes
on the designated adhesive visual scale Visual scale (0-5) 10-10 10-1	10	13%				Demonstration	roller deposits < 1		
Secondary Seco	20	14%		Visual scale		Test	removed from the chamber and the image remained un distorted. The		/
initialed the air source, glitter mixing halts almost immediately and large 2 and a second part of the part of th	30	8%	·	inch (in)		Demonstration	Current design is compatible with		/
Source S	40	9%		seconds (s)		Demonstration	the air source, glitter mixing halts almost immediately and		/
The chamber length shall be less than 7 inches The box shall have at least 1 side that can be seen through to visualize glitter flowfadhesion The pox shall have at least 1 side that can be seen through to visualize glitter flowfadhesion The quantity of escaped glitter shall not exceed a 2 on the designated glitter escape visual scale. The quantity of escaped glitter shall not exceed a 2 on the designated glitter escape visual scale. The quantity of escaped glitter shall not exceed a 2 on the designated glitter escape visual scale. The quantity of escaped glitter shall not exceed a 2 on the designated glitter escape visual scale. The quantity of escaped glitter shall not exceed a 2 on the designated glitter escape visual scale. The quantity of escaped glitter shall not exceed a 2 on the designated glitter escape visual scale. The quantity of escaped glitter shall not exceed a 2 on the designated glitter escape visual scale. The quantity of adhered glitter coating the substrate shall not be below a 4 on the designated glitter coating visual scale. The quantity of adhered glitter visual visual visual visual visual visual visual visual visua	50	14%		minute (min)		Test	Box ran continously, displacing glitter		/
flowadhesion 14% The quantity of escaped glitter shall not exceed a 2 on the designated glitter escape visual scale. 25	60	4%	The chamber length shall be less than 7 inches	inch (in)		Demonstration	Design is 5.5	Pass	
The quantity of escaped glitter shall not exceed a 2 on the designated glitter escape visual scale. Glitter escape visual scale. Shall not have any contact between any pieces of metal or electrical wires that can create heat, sparks, or shavings. Shall not have any contact between any pieces of metal or electrical wires that can create heat, sparks, or shavings. Glitter escape visual scale (0-5) Contact Points Demonstration The quantity of adhered glitter coating the substrate shall not be below a 4 on the designated glitter coating visual scale. Glitter coating visual scale. Glitter coating visual scale in the designated glitter coating visual scale. Glitter coating visual scale in the designated glitter coating visual scale. Glitter coating visual scale in the designated glitter coating visual scale. Glitter coating visual scale in the	70	8%		wall		Demonstration	sheet is present to visualize	Pass	
90 9% Shall not have any contact between any pieces of metal or electrical wires that can create heat, sparks, or shavings. Contact Points Demonstration There are currently no contact points between metal and no wires present inside of maintain this result. The quantity of adhered glitter coating visual scale. Glitter coating Visual Scale To the quantity of adhered glitter coating visual scale. Glitter coating Visual Scale To the quantity of adhered glitter coating visual scale. Glitter coating Visual Scale To the quantity of adhered glitter coating visual scale. There are currently no contact points between metal and no wires present inside of the maintain this result. Fast There are currently no contact points between metal and no wires present inside of the current design scored a 4 on the scale To the quantity of adhered glitter coating visual scale. Fast The current design scored a 4 on the scale To the quantity of adhered glitter coating visual scale.	80	14%		escape visual scale		Test	Current design scores 4 on average on the	Fail	flower and remeduthis in
The quantity of adhered glitter coating the substrate shall not be below a 4 on the designated glitter coating visual scale. Test The curent design scored a 4 on the scale To the curent design scored a 4 on the scale To the curent design scored a 4 on the scale To the curent design scored a 4 on the scale To the curent design scored a 4 on the scale	90	9%		Contact			There are currently no contact points between metal and no wires		implemented to automate de, osition, wire placement will need to be accounted for to
120		8%		coating		Test	The curent design scored a		/
130									
140 150									
150							-		
							-		
		100%					Relative Pass	86%	

Relative Pass:

86%

Focusing On What's Most Important

Containing The Particles: ID 80

Nonstop Printing Process: ID 50

One Minute Plus Easily

Printing Back-To-Back

Open issues (continuing development)

Total Spent \$789.56

Total Budget \$2,500.00

Total Leftover \$1,710.44

Successes and Failures

Implementing Feedback Into Design Iteration

Sprint 6 Testing

Feedback from Sprint 5

- Aquarium tubing that releases bubbles (can precisely speed up or down the air with valves)
- Consider flute (manifold tube with multiple ports)
- Can also pinch the tubes and control the pressure

Client Satisfaction

"Right on track with expectations.

Making good progress going into
the last leg of the course. Narrowed
several ideas down to a single more
viable one." – Sprint 6 Review

"The group has produced multiple designs over the course of the program, and we are happy to see them recognizing issues with past iterations and improving on them" – Sprint 4 Review

Sprint	Score					
	"The latest increment meets my expectations"	"I am satisfied with the overall progress of increments throughout the SEED program so far"				
1	4	4				
2	4	4				
3	4	4				
4	4	4				
5	4	4				
6	4	4				
7	4	4				

Lessons Learned

1. prototyping tolerance issues

Lessons Learned

2. communication between teammates and clients

Thank You