Alcatel·Lucent

UNIVERSITY

内容

- LTE下行物理层基础
- LTE下行控制信道概述

Alcatel·Lucent

UNIVERSITY

LTE下行物理层基础

LTE下行无线技术-OFDM 基本原理

- OFDM: Orthogonal Frequency Division Multiplexing
- 正交频分复用

OFDM和多载波传输

正交频分复用OFDM的秘诀:

一利用IFFT(反向快速傅立叶变换)进行频域->时域的转换进行信号的叠加处理 时域 频域

子载波 f_1

子载波 f_2

子载波 f_3

子载波 f_4

LTE下行无线技术-OFDM 基本原理

■OFDM(正交频分复用)的基本原理是将高速的数据流分解为N个并行的低速数据流,在N个子载波上同时进行传输。这些在N子载波上同时传输的数据符号,最终叠加构成一个OFDM符号

UMTS LTE 子载波间隔

- 子载波间隔:两种选择
- Δf = 15KHz
 OFDM 符号间隔 = 66.67μs
 用于除 MBMS外的 UL & DL 传输 频率偏移敏感度小于短子载波间隔
- Δf = 7.5KHz
 OFDM符号间隔 = 133 μs
 仅用于 MBMS-专用小区传输 频率偏移敏感度高

注: MBMS是多媒体多播业务,有利于移动网络提供高清无线广播电视服务

LTE下行链路帧格式

- 子帧长度为1ms,包含30720 Ts(采样点)
 - 由两个0.5ms的时隙组成
- 每个0.5ms的时隙有7个OFDM符号 → 每个1ms子帧有14个OFDM符号

LTE 无线帧结构

•TDD帧结构

- 仅适用于TDD(时分双工)
- 帧长T_f=307200*T_s=10ms,含两个5ms的半帧
- 每帧含1或2个特殊子帧,特殊子帧数目与UL/DL比例相关
- 特殊子帧由三部分组成: DwPTS, GP, UpPTS
- DwPTS, GP, UpPTS的长度可变

• UL/DL比例可变			C	onfiguration	Sw	Switch-point		Subframe number						
						ре	eriodicity	0	1 2	3 4	5	6 7	8	9
					0		5 ms	D	SU	JU	D	SL	JU	U
					1		5 ms	D	SU	JD	D	SL	JU	D
					2		5 ms	D	SUI) D	D	S	Ŋ	D
					3		10 ms	D	SU	JU	D	DE	D	D
One radio fram	ne, $T_{\rm f}=3$	$07200T_{\rm g} = 10 \text{ms}$			4		10 ms	D	SU	JD	D	DE	D	D
One half-frame, 153600T _s =	5 ms		1		5		10 ms	D	SUI	D C	D	DE) D	D
-	•				6		5 ms	D	SU	JU	D	SL	JU	D
	-	***********		*****************										
One slot, $T_{\text{slot}}=15360T_{\text{s}}$ 30.	720T _s	-												
A SOL 133041s		→	-		_					*******				
Subframe #0		Subframe #	2. Subframe #3	Subframe #4	Subframe #5		Subframe	#7	Subfrar	ne:#8		Sub	frame:	#9
One subframe, 30720T _s	1	1				<i>1</i>	1							
DwPTS	GP	UpPTS			DwPTS	GP	UpPT	S						

TDD帧格式

- DwPTS为动态长度,可支持 3/9/10/11/12个符号
 - 可传送下行信令和业务信道(PCFICH/PHICH/PDCCH/PDSCH)
 - 承载下行同步信息(P-SCH)
- UpPTS配置灵活,可支持1或2个符号。
 - 可传送短 RACH,降低开销
 - 或传送Sounding RS获得TDD信道环境信息,支持Beamforming
- 灵活的GP 设置,可以最小化GP的开销,同时支持不同的覆盖半径
 - 1~10个 OFDM符号大小的GP,最大可以支持100Km的覆盖半径
- 灵活的上下行时隙配比,可以支持非对称业务和其它业务应用等
 - 7 个DL/UL配置比例: 3/1, 2/2, 1/3, 6/3, 7/2, 8/1, 4/5

TDL特殊子帧配置-3GPP TS36.211

• specialSubframePatterns 特殊子帧配置类型(0-8)

特殊子帧	Normal CP			
配置	DwPTS	GP	UpPTS	1ms
0	3	10	1	3:9:2 - 以避免远距离
1	9	4	1	同频干扰或某些TD- S配置引起的干扰为 ()
2	10	3	1	目的
3	11	2	1	DwPTS GP UpPTS
4	12	1	1	
5	3	9	2	1ms
6	9	3	2	10:2:2 – 以 提升下行吞
. 7	10	2	2	吐量为目的 / / /
8	11	1	2	DwPTS GP UpPTS

LTE下行链路:信道结构和术语

LTE下行链路:资源块的最大数目

Alcatel·Lucent UNIVERSITY

LTE下行信道概述

LTE下行链路:逻辑、传输和物理信道的映射

LTE大量使用共享信道 → PDSCH上承载了 公共控制、寻呼和部分广播信息 PCCH: 寻呼控制信道 BCCH: 广播控制信道 CCCH: 公共控制信道 **PCCH BCCH** CCCH **DCCH** DTCH **MCCH** MTCH Downlink DCCH: 专用控制信道 Logical channels DTCH: 专用业务信道 PCH: 寻呼信道 BCH: 广播信道 Downlink DL-SCH: DL共享信道 Transport channels PCH **BCH** DL-SCH MCH

PHICH

PDSCH

PDCCH

PMCH

PBCH

PCFICH

Physical Channels

Downlink

DL-RS

SCH

支持LTE下行链路的物理信道(单播)

LTE下行链路:公共参考信号(RS)结构

$$r_{l,n_s}(m) = \frac{1}{\sqrt{2}} (1 - 2 \cdot c(2m)) + j \frac{1}{\sqrt{2}} (1 - 2 \cdot c(2m+1)), \quad m = 0,1,...,2N_{RB}^{\text{max,DL}} - 1$$

物理资源块 (PRB)

参考符号

- 参考信号交错于时频平面中; 移动插值以便获得信道的2-D图片
- 序列通过以上公式生成

LTE下行链路:用于1、2和4天线端口的公共RS结构

2 · 18

LTE下行链路:虚拟天线的公共RS结构

- 虚拟单天线端口 5 (TD-LTE实现波束赋形技术-8根物 理天线)
 - 区分不同智能天线
 - 不能支持多天线复用

- 虚拟单天线端口 4 (MBMS 使用)
 - 实现Physical Mulicast channels (PMCH) 和PDSCH 的隔离

LTE扰码应用

- LTE采用扰码是为了更好的实现不同小区的同频通信
- 下行扰码应用:
 - 1. 无扰码:同步信道 (SCH)
 - 2. 小区特征扰码:物理广播信道 (PBCH)、物理控制格式指示信道 (PCFICH)、物理下行链路控制信道 (PDCCH)和物理HARQ指示信道 (PHICH)
 - 3. 小区及手机分配号特征扰码: 物理下行链路共享信道 (PDSCH)

开机、连接到数据传输过程

LTE下行链路: 时域和频域中PBCH、SCH的位置-FDD

LTE下行链路:时域和频域中PBCH、SCH的位置-TDD

- TD-LTE的P-SCH在每5ms半帧对应的DwPTS的位置,即子帧1、6的第三个 OFDM符号;
- TD-LTE的S-SCH在子帧0、5的最后一个OFDM符号位置;
- 其他完全一样

2 . 23

小区扰码同步

- 同步信号向UE提供小区id。
- LTE支持504种不同的小区标识。
 - 其分为168个小区id组,每个组有3个小区id。
- 小区id = 3*小区组id + 组中的小区id
 ↑
 ↑
 ○到167由SSS提供
 ○到2由PSS提供

2 · 24

小区搜索

- 共有504个物理层小区ID,采用二阶同步识别,分成168组,每组包括3个ID
- 1. 终端搜索主同步信道P-SCH获得频率和时间信息
 - 捕获5ms 定时, 在系统带宽的核心72个子载波; 有3种可能的序列;
 - 每个序列对应每组的一个ID编号

主同步

2. 一旦捕获P-SCH, 关联位置的辅同步信道S-SCH就确定了, S-SCH 的加扰采用本小区的P-SCH序列。

- 捕获10ms定时, S-SCH内容即168个组号;
- P-SCH (ID号) + S-SCH (组号) 得到小区物理层ID;

知道了频率及时间同步信息,再加上所计算出的小区的ID, 可以知道小区专属参考信号的位置

参考信号

4. 一旦正常检测到小区专属参考信号,终端可以用小区ID对 **L** 的扰码解调广播信道PBCH,获取MIB信息

继续检测PDSCH信道的系统消息,直到获得足够信息

PDSCH

2 · 25

LTE下行信道:系统信息广播

- 广播控制信道(BCCH)用于广播系统信息
 - 整个小区覆盖区域都需要侦听
- BCCH传送称作系统信息(SI)的RRC消息
 - **系统信息块**(SIB)承载大部分系统信息,即RACH信息、重选、功率控制信息等,SIB内容很多,目前定义了12类,需要通过PDSCH发送
 - 主导信息块(MIB)承载了PDCCH解码所需的最小数量的信息,只有1类,在PBCH传送

■ BCCH分为主要和动态部分

主要广播

承载MIB; 提供到PDCCH解码 所需最小数量的信息的**快速** 接入

映射到BCH → PBCH

动态广播

提供SIB, 其信息在一个较长的时间 周期内有效;

映射到DL-SCH → PDSCH

下行信道: PBCH

- •物理广播信道
 - 周期40ms
 - 子帧 #0, 时隙#1, 符号 #0,1,2,3 4个可自解调数据块
 - - 72 个子载波,占据频带中间6RB,1.08Mhz
- 天线端口号
 1/2/4 天线端口通过不同的CRC掩码可知
 多天线时采用发射分集方式发送

- 携带MIB消息,共24 bits
 - 带宽信息
 - PHICH 配置信息
 - 系统帧号 (SFN)

DL: 控制信道结构-资源单元组(REG)

- 1 REG: 4个连续可用RE
- PCFICH、PHICH和PDCCH的资源映射中使用了REG的概念。

LTE下行链路: PCFICH传输

- 物理控制格式指示信道(PCFICH)指示了用于发射L1/L2控制(PDCCH、PHICH)的 OFDM符号的数量(1、2、3 or 4)
 - CFI = {1, 2, 3, 4} (4保留为将来使用),编码为32比特
 - 使用QPSK调制
 - CFI用于指示当前子帧中控制区域占用的OFDM符号数目(1个, 2个, 3个)
- PCFICH使用4个REG(=16个RE)并且映射到固定位置的第一个OFDM符号
 - 为了分集, 4个REG均匀分布于系统带宽
 - 起始位根据小区ID进行移动

在ALU解决方案中使用SFBC(间隔频率块码)发射PCFICH

LTE下行链路: PHICH传输

- 物理HARQ指示信道(PHICH)承载下行链路中的ACK/NACK,以便支持上行链路 HARQ
- 多个PHICH映射到一个相同的REG集合,并且称为一个PHICH组
 - PHICH组占有3个REG(=12个RE)并且使用BPSK调制
 - PHICH组支持8个PHICH(即8个ACK/NACK),由正交序列隔离
 - PHICH根据上行用户数量分配PHICH组数量
- PHICH中的REG在频域和时域上是均匀分配的

ALU允许PHICH组的编号可配置:7 用于10 MHz

在ALU解决方案中,使用SFBC发射 PHICH

LTE下行链路: PDCCH传输

- 一个控制信道单元(CCE)定义为9个资源单元组(REG)的集合,此处一个REG对应于 4个连续的可用RE A → 所以一个CCE中含有36个RE
- PDCCH传输映射到一个1、2、4或者8个CCE的集合
 - 高级别聚合用于较差无线条件中的UE,并且能够支持有效载荷更大的DCI格式
 - CCE到REG的映射允许干扰随机性和多样化
 - CCE交织、小区特定加扰和偏移
- 两个CCE搜索空间:
 - 公共(聚合等级4和8) 设定公共信息如寻呼、系统信息的搜索范围
 - UE特定(聚合等级1、2、4、8)设定专用信息如分配信息的搜索范围

All Rights Reserved © Alcatel-Lucent 2011

2 . 31

PDCCH(物理下行链路控制信道)内容

- PDCCH承载用于调度授权和上行链路功率控制的下行链路控制信息(DCI)
 - DCI使用R=1/3的QPSK卷积码
 - 附加了16比特的CRC, 其与UE ID(C-RNTI、RA-RNTI、P-RNTI、SI-RNTI)混合在一起

格式	目的	描述
0	UL PUSCH授权	RB分配、MCS、跳频标志、NDI、DM-RS的循环移位、CQI请求和2比特PUSCH TPC命令
1	用于单个码字的 DL PDSCH 授权	资源分配、信息头部、RB分配、MCS、HARQ PID、NDI、RV和2 比特PUCCH TPC命令
1A	用于单个码字的紧凑型DL PDSCH授权	与格式1相同,但是RB分配的灵活性减小(即PRB必须是连续的)。应该用于DL信号。
1B	带有预编码信息的紧凑型DL PDSCH 授权	与格式1A相同,带有为预编码发送的PMI信息
1C	非常紧凑的DL PDSCH授权	为增大覆盖减少了有效载荷;在相关PDSCH上总是使用QPSK,限制RB分配和TBS,无HARQ信息
1D	带有预编码和功率偏移信息的紧凑型 DL PDSCH授权	与格式1A相同,为预编码、DL功率偏移发射PMI信息
2	CL MIMO DL授权	与格式1相同,但是MCS/NDI/RV服务于每个码字,并且对于每个码字包括了所选层上的信息和预编码矩阵编号。用于CL-MIMO模式中。
2A	OL MIMO DL授权	与格式2相同,没有预编码矩阵编号。用于OL-MIMO模式中。
3	2比特UL功率控制	用于14个UE的TPC命令加了16比特的CRC
3A	1比特UL功率控制	用于28个UE的TPC命令加了16比特的CRC

用于PDCCH的CCE映射

- 每个PDCCH使用一个或多个CCE进行传输
- 1 CCE = 9 x REG = 9 x 4 REs = 36 Res
- 一个PDCCH可以映射到1、2、4或8个 CCE(关联于参数设置和无线环境)
- ■例如:每个PDCCH格式中的CCE数量(在10MHZ带宽情况下):

PDCCH格式	CCE数量	REG数量	PDCCH比特数量		
0	1	9	72		
1	2	18	144		
2	4	36	288		
3	8	72	576		

- CCE的汇聚: 1、2、4、8个CCE的树状汇聚

 - 2-CCE从二倍数的CCE位置开始(i=0,2,4,6,...)
 - 4-CCE从四倍数的CCE位置开始(i=0, 4, 8, ...) 8-CCE从八倍数的CCE位置开始(i=0, 8, ...)

PDCCH搜索空间

- L是汇**聚级别**,代表了L个连续的CCE
- PDCCH传输可以映射到1、2、4、或8个CCE上
- M(L)是在汇聚级别L的PDCCH候选数量
 - •如: L=2且M(L)=3: 系统带宽在汇聚级别2有3个可用的PDCCH候选

- 搜索空间是一组连续的CCE,用于限制每个UE的PDCCH放置的CCE集合
- 每个UE必须监视如下信息:
 - 公共搜索空间,对应CCE0到CCE15。 由小区中的所有UE进行监视。 可能与UE专用搜索空间重合
 - UE专用搜索空间,任何的在公共搜索空间内未预留的PDCCH都可以使用。用于UE专用的其他PDCCH

LTE下行链路: PDCCH盲检测

- PDCCH盲检测-UE根据特征号搜索对应CCE的DCI格式
 - 利用"搜索空间"进行搜索
 - 。 一个**搜索空间**是一个位于特定聚合等级的连续CCE集
 - 。 用于搜索空间的起始CCE编号是子帧号和分配给UE的C-RNTI的函数
 - 。 在一个给定子帧中,UE监督器的候选控制信道的数量取决于所选的CCE聚合等级
 - · CCE聚合等级=1或2时(UE特定),最大搜索6次
 - · CCE聚合等级=4或8时(UE特定),最大搜索2次
 - · CCE聚合等级=4时(公共),最大搜索4次
 - CCE聚合等级=8时(公共),最大搜索2次
 - UE进行PDCCH盲检的总次数不超过44次
- 每个子帧可用的CCE数(其决定了可用调度授权的总数)取决于系统带宽、CFI配置和 PHICH资源

	可用CCE的数量						
BW	PRB数	1 符号配置 (CFI=1)	2 符号配置 (CFI=2)	3 符号配置 (CFI=3)			
5MHz	25	3	12	20			
10 MHz	50	8	25	41			

LTE下行链路: 寻呼信道

- LTE寻呼不使用专用物理信道
- 寻呼信道(PCH)使用下行链路共享信道结构
 - 寻呼指示位于PDCCH上(承载P-RNTI,也就是寻呼组ID)
 - 寻呼消息位于PDSCH上(承载实际UE ID); 仅使用QPSK
- 寻呼时刻分布于时间轴,周期进行

下行信道: PDSCH

- 加扰
 - 小区ID, 码字, 用户ID, 子帧
- ●调制
 - QPSK / 16QAM / 64QAM
- 层映射
 - 1个码字: 1 层 / 1 码字, 2 层 / 1码字, 4 层/1码字
 - 2个码字: 2 层 / 2 码字, 2 层 / 2码字, 4 层 / 2码字2
- 预编码
 - TxD, OL-MIMO, CL-MIMO, MU-MIMO

LTE下行链路: 信道总结

传输信道	编码机制	物理信道	调制
DL-SCH	Turbo R=1/3	PDSCH	QPSK, 16-QAM, 64-QAM
ВСН	卷积码 R=1/3	PBCH	QPSK
PCH	Turbo R=1/3	PDSCH	QPSK

控制信息	编码机制	物理信道	调制
CFI	块码 R=1/16	PCFICH	QPSK
HI	重复 R=1/3	PHICH	BPSK
DCI	卷积码 R=1/3 其重复/删余取决于CCE聚合等级	PDCCH	QPSK

