Reti di calcolatori: Livello Data Link e reti locali

(Capitolo 5 Kurose-Ross)

Marco Roccetti 24Aprile 2024

(Capitolo 5 Kurose-Ross)

Reti di calcolatori e Internet: Un approccio top-down

3ª edizione Jim Kurose, Keith Ross Pearson Education Italia ©2005

Capitolo 5: Livello di collegamento e reti locali

Obiettivi:

- Comprendere i principi per implementare i servizi di trasmissione dati:
 - Rilevazione e correzione dell'errore
 - Condivisione di un canale broadcast: accesso multiplo
 - Indirizzamento a livello di link
 - Trasferimento affidabile dei dati, controllo del flusso
- □ Istanziazione e implementazione delle varie tecnologie a livello di link.

Capitolo 5: Livello di collegamento e reti locali

- 5.1 Livello di link: introduzione e servizi
- 5.2 Tecniche di rilevazione e correzione degli errori
- 5.3 Protocolli di accesso multiplo
- 5.4 Indirizzi a livello di link
- 5.5 Ethernet
- 5.6 Interconnessioni: hub e commutatori
- 5.7 PPP: protocollo punto-punto
- 5.8 Canali virtuali: una rete come un livello di link

Livello di link: introduzione

Alcuni termini utili:

- host e router sono i nodi
- i canali di comunicazione che collegano nodi adiacenti lungo un cammino sono i collegamenti (link)
 - collegamenti cablati
 - collegamenti wireless
 - O LAN
- Le unità di dati scambiate dai protocolli a livello di link sono chiamate frame.

I protocolli a livello di link si occupano del trasporto di datagrammi lungo un singolo canale di comunicazione.

Livello di link

- Un datagramma può essere gestito da diversi protocolli, su collegamenti differenti:
 - Es., un datagramma può essere gestito da Ethernet sul primo collegamento, da PPP sull'ultimo e da un protocollo WAN nel collegamento intermedio.
- Anche i servizi erogati dai protocolli del livello di link possono essere differenti:
 - Ad esempio, non tutti i protocolli forniscono un servizio di consegna affidabile.

Analogia con un tour operator:

- Un viaggio da Princeton a Losanna:
 - taxi: da Princeton all'aeroporto JFK
 - o aereo: dal JFK a Ginevra
 - o treno: da Ginevra a Losanna
- Turista = datagramma
- Ciascuna tratta del trasportocollegamento
- Tipologia del trasporto = protocollo di link
- Agente di viaggio = protocollo di routine

Servizi offerti dal livello di link

Framing:

- I protocolli incapsulano i datagrammi del livello di rete all'interno di un frame a livello di link.
- Il protocollo MAC controlla l'accesso al mezzo
- Per identificare origine e destinatario vengono utilizzati indirizzi "MAC"
 - Diversi rispetto agli indirizzi IP!

Consegna affidabile:

- O Come avviene, lo abbiamo già imparato nel Capitolo 3!
- È considerata non necessaria nei collegamenti che presentano un basso numero di errori sui bit (fibra ottica, cavo coassiale e doppino intrecciato)
- È spesso utilizzata nei collegamenti soggetti a elevati tassi di errori (es.: collegamenti wireless)

Servizi offerti dal livello di link

Controllo di flusso:

Evita che il nodo trasmittente saturi quello ricevente.

□ Rilevazione degli errori:

- Gli errori sono causati dall'attenuazione del segnale e da rumore elettromagnetico.
- Il nodo ricevente individua la presenza di errori
 - è possibile grazie all'inserimento, da parte del nodo trasmittente, di un bit di controllo di errore all'interno del frame.

Correzione degli errori:

 Il nodo ricevente determina anche il punto in cui si è verificato l'errore, e lo corregge.

☐ Half-duplex e full-duplex

 Nella trasmissione full-duplex gli estremi di un collegamento possono trasmettere contemporaneamente: non in quella half-duplex.

Adattatori

- Il protocollo a livello di link è realizzato da un adattatore (NIC, scheda di interfaccia di rete)
 - Adattatori Ethernet, adattatori PCMCI e adattatori 802.11
- Lato trasmittente:
 - Incapsula un datagramma in un frame.
 - Imposta il bit rilevazione degli errori, trasferimento dati affidabile, controllo di flusso, etc.

- Lato ricevente:
 - Individua gli errori, trasferimento dati affidabile, controllo di flusso, etc.
 - Estrae i datagrammi e li passa al nodo ricevente
- L'adattatore è un'unità semi-autonoma.
- Livello di link e fisico.

Link Layer: Implementazione

- □ Si realizza nell'adattatore (scheda di rete)
 - o e.g., PCMCIA card, scheda Ethernet
 - Scheda di rete: RAM, chip DSP, interfaccia bus verso il PC e interfaccia di rete verso il mezzo trasmissivo

Capitolo 5: Livello di collegamento e reti locali

- 5.1 Livello di link: introduzione e servizi
- 5.2 Tecniche di rilevazione e correzione degli errori
- 5.3 Protocolli di accesso multiplo
- 5.4 Indirizzi a livello di link
- 5.5 Ethernet
- 5.6 Interconnessioni: hub e commutatori
- 5.7 PPP: protocollo punto-punto
- 5.8 Canali virtuali: una rete come un livello di link

Tecniche di rilevazione degli errori

EDC= Error Detection and Correction

- D = Dati che devono essere protetti da errori e ai quali vengono aggiunti dei bit EDC.
- · La rilevazione degli errori non è attendibile al 100%!
 - · è possibile che ci siano errori non rilevati
 - · per ridurre la probabilità di questo evento, le tecniche più sofisticate prevedono un'elevata ridondanza

Controllo di parità

<u>Unico bit di parità:</u>

Si è verificato almeno un errore in un bit

Parità bidimensionale:

Individua e corregge il bit alterato

Internet checksum

Obiettivo: rilevare errori su bit in una sequenza di bit, ma si usa a livello 4 (trasporto)

<u>Mittente:</u>

- Considera la sequenza di bit come interi a 16 bit
- checksum: esegue la somma dei valori della sequenza complementati a uno
- □ Il valore finale della somma viene posto nel campo UDP checksum e spedito insieme ai bit

<u>Destinatario:</u>

- Calcola il checksum sui bit ricevuti
- Controlla se il valore ottenuto è uguale a quello indicato dal mittente
 - NO errore rilevato!
 - YES non si rilevano errori (ma potrebbero essercene comunque...)

Controllo a ridondanza ciclica

- Esamina i dati, D, come numeri binari.
- Origine e destinazione si sono accordati su una stringa di r+1 bit, conosciuta come generatore, 6.
- Obiettivi: scegliere r bit addizionali, R, in modo che:
 - \bigcirc <D,R> siano esattamente divisibili per G (aritm. modulo 2)
 - Il destinatario conosce G, e divide <D,R> per G. Se il resto è diverso da O si è verificato un errore!
 - CRC può rilevare errori a raffica inferiori a r+1 bit.
- □ Nella pratica è molto usato (ATM, HDCL).

Esempio di CRC

Vogliamo:

 $D.2^r$ XOR R = nG

Ovvero:

 $D.2^r = nG XOR R$

Quindi:

se dividiamo D·2^r per G, otteniamo come resto il valore R.

R = resto di
$$\left[\frac{D.2^r}{G}\right]$$

Capitolo 5: Livello di collegamento e reti locali

- 5.1 Livello di link: introduzione e servizi
- 5.2 Tecniche di rilevazione e correzione degli errori
- 5.3 Protocolli di accesso multiplo
- 5.4 Indirizzi a livello di link
- 5.5 Ethernet
- 5.6 Interconnessioni: hub e commutatori
- 5.7 PPP: protocollo punto-punto
- 5.8 Canali virtuali: una rete come un livello di link

Protocolli di accesso multiplo

Esistono due tipi di collegamenti di rete:

- Collegamento punto-punto (PPP)
 - o Impiegato per connessioni telefoniche.
 - Collegamenti punto-punto tra Ethernet e host.
- □ Collegamento broadcast (cavo o canale condiviso)
 - Ethernet tradizionale
 - HFC in upstream
 - Wireless LAN 802.11

Protocolli di accesso multiplo

- Connessione a un canale broadcast condiviso.
- □ Centinaia o anche migliaia di nodi possono comunicare direttamente su un canale broadcast:
 - Si genera una collisione quando i nodi ricevono due o più frame contemporaneamente.

Protocolli di accesso multiplo

- Protocolli che fissano le modalità con cui i nodi regolano le loro trasmissioni sul canale condiviso.
- La comunicazione relativa al canale condiviso deve utilizzare lo stesso canale!
 - o non c'è un canale "out-of-band" per la coordinazione

Protocolli di accesso multiplo ideali (sarebbe bello che!)

Canale broadcast con velocità di R bit al sec:

- 1. Quando un nodo deve inviare dati, questo dispone di un tasso trasmissivo pari a R bps.
- 2. Quando M nodi devono inviare dati, questi dispongono di un tasso trasmissivo pari a R/M bps.
- 3. Il protocollo è decentralizzato:
 - o non ci sono nodi master
 - o non c'è sincronizzazione dei clock
- 4. Il protocollo è semplice.

Protocolli di accesso multiplo

Si possono classificare in una di queste tre categorie:

- Protocolli a suddivisione del canale (channel partitioning)
 - Suddivide un canale in "parti più piccole" (slot di tempo, frequenza, codice).
- □ Protocolli ad accesso casuale (random access)
 - O I canali non vengono divisi e si può verificare una collisione.
 - o I nodi coinvolti ritrasmettono ripetutamente i pacchetti.
- Protocolli a rotazione ("taking-turn")
 - Ciascun nodo ha il suo turno di trasmissione, ma i nodi che hanno molto da trasmettere possono avere turni più lunghi.

Protocolli a suddivisione del canale: TDMA

TDMA: accesso multiplo a divisione di tempo.

- Suddivide il canale condiviso in intervalli di tempo.
- Gli slot non usati rimangono inattivi
- □ Esempio: gli slot 1, 3 e 4 hanno un pacchetto, 2, 5 e 6 sono inattivi.

Protocolli a suddivisione del canale: FDMA

FDMA: accesso multiplo a divisione di frequenza.

- Suddivide il canale in bande di frequenza.
- A ciascuna stazione è assegnata una banda di frequenza prefissata.
- □ Esempio: gli slot 1, 3 e 4 hanno un pacchetto, 2, 5 e 6 sono inattivi.

Protocolli ad accesso casuale

- Quando un nodo deve inviare un pacchetto:
 - trasmette sempre alla massima velocità consentita dal canale, cioè R bps
 - o non vi è coordinazione a priori tra i nodi
- Due o più nodi trasmittenti provocano "collisione"
- □ Il protocollo ad accesso casuale definisce:
 - Come rilevare un'eventuale collisione.
 - O Come ritrasmettere se si è verificata una collisione.
- □ Esempi di protocolli ad accesso casuale:
 - o slotted ALOHA
 - ALOHA
 - O CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

Assumiamo che:

- Tutti i pacchetti hanno la stessa dimensione.
- Il tempo è suddiviso in slot; ogni slot equivale al tempo di trasmissione di un pacchetto.
- I nodi iniziano la trasmissione dei pacchetti solo all'inizio degli slot.
- 🗖 I nodi sono sincronizzati.
- Se in uno slot due o più pacchetti collidono, i nodi coinvolti rilevano l'evento prima del termine dello slot.

Operazioni:

- Quando a un nodo arriva un nuovo pacchetto da spedire, il nodo attende fino all'inizio dello slot successivo.
- □ Se non si verifica una collisione: il nodo può trasmettere un nuovo pacchetto nello slot successivo.
- □ Se si verifica una collisione: il nodo la rileva prima della fine dello slot e ritrasmette con probabilità p il suo pacchetto durante gli slot successivi.

Slotted ALOHA

<u>Pro</u>

- Consente a un singolo nodo di trasmettere continuamente pacchetti alla massima velocità del canale.
- □ È fortemente decentralizzato, ciascun nodo rileva le collisioni e decide indipendentemente quando ritrasmettere.
- 🗖 È estremamente semplice.

Contro

- Una certa frazione degli slot presenterà collisioni e di conseguenza andrà "sprecata".
- Un'alta frazione degli slot rimane vuota, quindi inattiva.

L'efficienza di Slotted Aloha

L'efficienza è definita come la frazione di slot vincenti in presenza di un elevato numero di nodi attivi, che hanno sempre un elevato numero pacchetti da spedire.

- Supponiamo N nodi con pacchetti da spedire, ognuno trasmette i pacchetti in uno slot con probabilità p.
- La probabilità di successo di un dato nodo = p(1-p)^{N-1}
- La probabilità che un nodo arbitrario abbia successo
 Np(1-p)^{N-1}

- □ Per ottenere la massima efficienza con N nodi attivi, bisogna trovare il valore p* che massimizza Np(1-p)^{N-1}
- □ Per un elevato numero di nodi, ricaviamo il limite di Np*(1-p*)^{N-1} per N che tende all'infinito, e otterremo 1/e = 0,37

Nel caso migliore: solo il 37% degli slot compie lavoro utile.

ALOHA puro

- Aloha puro: più semplice, non sincronizzato.
- Quando arriva il primo pacchetto:
 - lo trasmette immediatamente e integralmente nel canale broadcast.
- Elevate probabilità di collisione:
 - O Il pacchetto trasmesso a t_0 si sovrappone con la trasmissione dell'altro pacchetto inviato in $[t_0-1,t_0+1]$.

L'efficienza di Aloha puro

P(trasmissione con successo da un dato nodo) = P(il nodo trasmette).

P(nessun altro nodo trasmette in $[p_0-1,p_0]$. P(nessun altro nodo trasmette in $[p_0-1,p_0]$ = $p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$ = $p \cdot (1-p)^{2(N-1)}$

... scegliendo p migliore e lasciando n -> infinito ...

$$= 1/(2e) = 0.18$$

Peggio di prima!

Accesso multiplo a rilevazione della portante (CSMA)

CSMA: si pone in ascolto prima di trasmettere:

- Se rileva che il canale è libero, trasmette l'intero pacchetto.
- Se il canale sta già trasmettendo, il nodo aspetta un altro intervallo di tempo.
- Analogia: se qualcun altro sta parlando, aspettate finché abbia concluso!

CSMA con trasmissioni in collisione

Le collisioni possono ancora verificarsi:

Il ritardo di propagazione fa sì che due nodi non rilevino la reciproca trasmissione

collisione:

Quando un nodo rileva una collisione, cessa immediatamente la trasmissione.

nota:

La distanza e il ritardo di propagazione giocano un ruolo importante nel determinare la probabilità di collisione.

Diagramma spazio tempo

CSMA/CD (rilevazione di collisione)

CSMA/CD: rilevamento della portante differito, come in CSMA:

- Rileva la collisione in poco tempo.
- Annulla la trasmissione non appena si accorge che c'è un'altra trasmissione in corso.
- □ Rilevazione della collisione:
 - facile nelle LAN cablate.
 - o difficile nelle LAN wireless.
- Analogia: un interlocutore educato.

CSMA/CD (rilevazione di collisione)

Protocolli a rotazione

Protocolli a suddivisione del canale:

- Condividono il canale equamente ed efficientemente con carichi elevati.
- Inefficienti con carichi non elevati.

Protocolli ad accesso casuale:

- Efficiente anche con carichi non elevati: un singolo nodo può utilizzare interamente il canale.
- Carichi elevati: eccesso di collisioni.

Protocolli a rotazione

Prendono il meglio dei due protocolli precedenti!

Protocolli a rotazione

Protocollo polling:

- Un nodo principale sonda "a turno" gli altri.
- □ In particolare:
 - o elimina le collisioni
 - elimina gli slot vuoti
 - o ritardo di polling

Protocollo token-passing:

- Un messaggio di controllo circola fra i nodi seguendo un ordine prefissato.
- Messaggio di controllo (token).
- In particolare:
 - decentralizzato
 - o altamente efficiente
 - il guasto di un nodo può mettere fuori uso l'intero canale

Protocolli: riepilogo

- Cosa si può fare con un canale condiviso?
 - Suddivisione del canale per: tempo, frequenza, codice.
 - · TDM, FDM.
 - Suddivisione casuale (dinamica).
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - Rilevamento della portante: facile in alcune tecnologie (cablate), difficile in altre (wireless)
 - CSMA/CD usato in Ethernet
 - CSMA/CA usato in 802.11
 - A rotazione.
 - Polling con un nodo principale; a passaggio di testimone.

Tecnologie LAN

Fin qui, il livello di link:

 servizi, rilevamento/correzione dell'errore, accesso multiplo

Andiamo avanti: tecnologie LAN

- o indirizzamento
- Ethernet
- o hub, switch
- PPP

Capitolo 5: Livello di collegamento e reti locali

- 5.1 Livello di link: introduzione e servizi
- 5.2 Tecniche di rilevazione e correzione degli errori
- 5.3 Protocolli di accesso multiplo
- 5.4 Indirizzi a livello di link
- 5.5 Ethernet
- 5.6 Interconnessioni: hub e commutatori
- 5.7 PPP: protocollo punto-punto
- 5.8 Canali virtuali: una rete come un livello di link

Indirizzi MAC e ARP

□ Indirizzo IP a 32 bit:

- Indirizzo a livello di rete.
- Analogo all'indirizzo postale di una persona: hanno una struttura gerarchica e devono esser aggiornati quando una persona cambia residenza.

□ Indirizzo MAC (o LAN o fisico o Ethernet):

- Analogo al numero di codice fiscale di una persona: ha una struttura orizzontale e non varia a seconda del luogo in cui la persona si trasferisce.
- Indirizzo a 48 bit (per la maggior parte delle LAN).

Indirizzi LAN e ARP

Ciascun adattatore di una LAN ha un indirizzo LAN univoco.

Indirizzi LAN

- □ La IEEE sovrintende alla gestione degli indirizzi MAC.
- Quando una società vuole costruire adattatori, compra un blocco di spazio di indirizzi (unicità degli indirizzi).
- Analogia:
 - (a) Indirizzo MAC: analogo al codice fiscale di una persona.
 - (b) Indirizzo IP: analogo all'indirizzo postale di una persona.
- □ Indirizzo orizzontale MAC = portabilità
 - È possibile spostare una scheda LAN da una LAN a un'altra.
- □ Gli indirizzi IP hanno una struttura gerarchica e devono essere aggiornati se spostati.
 - o dipendono dalla sottorete IP cui il nodo è collegato.

<u>Protocollo per la risoluzione</u> <u>degli indirizzi (ARP)</u>

Domanda: come si determina l'indirizzo MAC di B se si conosce solo l'indirizzo IP di B?

- Ogni nodo IP (host, router) nella LAN ha una tabella ARP.
- Tabella ARP: contiene la corrispondenza tra indirizzi IP e MAC.
- < Indirizzo IP; Indirizzo MAC; TTL>
 - TTL (tempo di vita): valore che indica quando bisognerà eliminare una data voce nella tabella (il tempo di vita tipico è di 20 min).

Protocollo ARP nella stessa sottorete

- A vuole inviare un datagramma a B, e l'indirizzo MAC di B non è nella tabella ARP di A.
- □ A trasmette in un pacchetto broadcast il messaggio di richiesta ARP, contenente l'indirizzo IP di B.
 - Indirizzo MAC del destinatario= FF-FF-FF-FF-FF
 - Tutte le macchine della LAN ricevono una richiesta ARP.
- B riceve il pacchetto ARP, e risponde ad A comunicandogli il proprio indirizzo MAC.
 - il frame viene inviato all'indirizzo MAC di A.

- □ Il messaggio di richiesta ARP è inviato in un pacchetto broadcast mentre il messaggio di risposta ARP è inviato in un pacchetto standard.
- □ ARP è "plug-and-play":
 - La tabella ARP di un nodo si costituisce automaticamente e non deve essere configurata dall'amministratore del sistema.

Invio verso un nodo esterno alla sottorete

Invio di un datagramma da A a B attraverso R, ipotizzando che A conosca l'indirizzo IP di B.

Due tabelle ARP nel router R, una per ciascuna rete IP (LAN).

- □ A crea un datagramma con origine A, e destinazione B.
- □ A usa ARP per ottenere l'indirizzo MAC di R.
- A crea un collegamento a livello di rete con l'indirizzo MAC di destinazione di R, il frame contiene il datagramma IP da A a B.
- L'adattatore di A invia il datagramma.
- L'adattatore di R riceve il datagramma.
- R rimuove il datagramma IP dal frame Ethernet, e vede che la sua destinazione è B.
- R usa ARP per ottenere l'indirizzo MAC di B.
- R crea un frame contenente il datagramma IP da A a B IP e lo invia a B.

Capitolo 5: Livello di collegamento e reti locali

- 5.1 Livello di link: introduzione e servizi
- 5.2 Tecniche di rilevazione e correzione degli errori
- 5.3 Protocolli di accesso multiplo
- 5.4 Indirizzi a livello di link
- 5.5 Ethernet
- 5.6 Interconnessioni: hub e commutatori
- 5.7 PPP: protocollo punto-punto
- 5.8 Canali virtuali: una rete come un livello di link

Ethernet

Detiene una posizione dominante nel mercato delle LAN cablate.

- DE stata la prima LAN ad alta velocità con vasta diffusione.
- □ Più semplice e meno costosa di token ring, FDDI e ATM.
- Sempre al passo dei tempi con il tasso trasmissivo.

Il progetto originale di Bob Metcalfe che portò allo standard Ethernet.

Topologia a stella

- 🗖 La topologia a bus era diffusa fino alla metà degli anni 90.
- Quasi tutte le odierne reti Ethernet sono progettate con topologia a stella.
- □ Al centro della stella è collocato un hub o commutatore (switch).

Struttura dei pacchetti Ethernet

L'adattatore trasmittente incapsula i datagrammi IP in un pacchetto Ethernet.

Preambolo:

- □ I pacchetti Ethernet iniziano con un campo di otto byte: sette hanno i bit 10101010 e l'ultimo è 10101011.
- Servono per "attivare" gli adattatori dei riceventi e sincronizzare i loro orologi con quello del trasmittente.

Campo dati: da 46° 1500 byte (MTU): frammentazione o stuffing

Struttura dei pacchetti Ethernet

- □ Indirizzi sorgente/destinazione: 6 byte
 - Quando un adattatore riceve un pacchetto contenente l'indirizzo di destinazione o con l'indirizzo broadcast (es.: un pacchetto ARP), trasferisce il contenuto del campo dati del pacchetto al livello di rete.
 - I pacchetti con altri indirizzi MAC vengono ignorati.
- Campo tipo: consente a Ethernet di supportare vari protocolli di rete (in gergo questa è la funzione di "multiplexare" i protocolli).
- □ Controllo CRC: consente all'adattatore ricevente di rilevare la presenza di un errore nei bit del pacchetto.

Servizio senza connessione non affidabile

- Senza connessione: non è prevista nessuna forma di handshake preventiva con il destinatario prima di inviare un pacchetto.
- Non affidabile: l'adattatore ricevente non invia un riscontro né se un pacchetto supera il controllo CRC né in caso contrario.
 - Il flusso dei datagrammi che attraversano il livello di rete può presentare delle lacune.
 - L'applicazione può rilevare le lacune se viene impiegato TCP.
 - Altrimenti, potrebbe accusare problemi a causa dell'incompletezza dei dati.

Ethernet utilizza il protocollo CSMA/CD

- Non utilizza slot.
- Non può trasmettere un pacchetto quando rileva che altri adattatori stanno trasmettendo: rilevazione della portante.
- Annulla la propria trasmissione non appena rileva che un altro adattatore sta trasmettendo: rilevazione di collisione.

Prima di ritrasmettere, l'adattatore resta in attesa per un lasso di tempo stabilito arbitrariamente.

Fasi operative del protocollo CSMA/CD

- 1. L'adattatore riceve un datagramma di rete dal nodo cui è collegato e prepara un pacchetto Ethernet.
- 2. Se il canale è inattivo, inizia la trasmissione. Se il canale risulta occupato, resta in attesa fino a quando non rileva più il segnale.
- 3. Verifica, durante la trasmissione, la presenza di eventuali segnali provenienti da altri adattatori. Se non ne rileva, considera il pacchetto spedito.

- 4. Se rileva segnali da altri adattatori, interrompe immediatamente la trasmissione del pacchetto e invia un segnale di disturbo (jam).
- 5. Ritrasmissione. L'adattore rimane in attesa. Quando riscontra l'*n*-esima collisione consecutiva, stabilisce un valore *k* tra {0,1,2,...,2ⁿ-1}. L'adattatore aspetta un tempo pari a *K* volte 512 bit e ritorna al Passo 2.

Protocollo CSMA/CD di Ethernet

- Segnale di disturbo (jam): la finalità è di avvisare della collisione tutti gli altri adattatori che sono in fase trasmissiva; 48 bit.
- Bit di tempo: corrisponde a 0,1 microsec per Ethernet a 10 Mbps; per K=1023, il tempo di attesa è di circa 50 msec.

Attesa esponenziale:

- Obiettivo: l'adattatore prova a stimare quanti siano gli adattatori coinvolti.
 - Se sono numerosi il tempo di attesa potrebbe essere lungo.
- □ Prima collisione: sceglie K tra {0,1}; il tempo di attesa è pari a K volte 512 bit.
- □ Dopo la seconda collisione: sceglie K tra {0,1,2,3}...
- Dopo dieci collisioni, sceglie K tra {0,1,2,3,4,...,1023}.

ATTENZIONE

- Per reti ad una data velocità (es 10 Mbit/s) e una data distanza massima (100/200 metri) tra due nodi, le frame devono avere dimensione minima (= 512 + 64 bit) per permettere ai due nodi più distanti di accorgersi che c'e' stata collisione.
- Se un nodo finisce di trasmettere la sua frame prima di rilevare la collisione crede di avere avuto successo nella trasmissione e non la ritrasmette più, commettendo un errore!!!

Efficienza di Ethernet

- □ T_{prop} = tempo massimo che occorre al segnale per propagarsi fra una coppia di adattatori.
- □ t_{trasm} = tempo necessario per trasmettere un pacchetto della maggior dimensione possibile.

efficienza =
$$\frac{1}{1 + 5t_{prop} / t_{trasm}}$$

- Si evince che quando t_{prop} tende a 0, l'efficienza tende a 1.
- □ Al crescere di t_{trasm}, l'efficienza tende a 1.
- Molto meglio di ALOHA, ma ancora decentralizzato, semplice, e poco costoso.

Tecnologie 10BaseT e 100BaseT

- Attualmente, molti adattatori Ethernet sono a 10/100 Mbps;
 possono quindi utilizzare sia 10BaseT sia 100BaseT
- □ La lettera T è l'iniziale di Twisted Pair (doppino intrecciato).
- Ogni nodo ha una diretta connessione con l'hub (topologia a stella); la massima distanza tra un adattatore e il centro stella è di 100m.

L'hub (ripetitore) è un dispositivo che opera sui singoli bit:

- o all'arrivo di un bit, l'hub lo riproduce incrementandone l'energia e lo trasmette attraverso tutte le sue altre interfacce.
- o non implementa la rilevazione della portante né CSMA/CD
- ripete il bit entrante su tutte le interfacce uscenti anche se su qualcuna di queste c'è un segnale
- o trasmette in broadcast, e quindi ciascun adattatore può sondare il canale per verificare se è libero e rilevare una collisione mentre trasmette
- o fornisce aspetti di gestione di rete (si accorgono se un adattatore è rotto).

Gigabit Ethernet

- Utilizza il formato del pacchetto standard di Ethernet.
- □ I canali punto-punto utilizzano commutatori, mentre i canali broadcast utilizzano hub.
- Utilizza CSMA/CD per i canali broadcast condivisi;
 è necessario limitare la distanza tra i nodi per ottenere un livello accettabile di efficienza.
- Gli hub sono definiti "distributori bufferizzati".
- Impiegando i canali punto-punto si può operare in full-duplex a 1000 mbps.
- Attualmente 10 Gbps!

Capitolo 5: Livello di collegamento e reti locali

- 5.1 Livello di link: introduzione e servizi
- 5.2 Tecniche di rilevazione e correzione degli errori
- 5.3 Protocolli di accesso multiplo
- 5.4 Indirizzi a livello di link
- 5.5 Ethernet
- 5.6 Interconnessioni: hub e commutatori
- 5.7 PPP: protocollo punto-punto
- 5.8 Canali virtuali: una rete come un livello di link

Interconnessioni: hub e commutatori

- Utilizzare hub è il modo più semplice per interconnettere le LAN.
- Permette di incrementare la distanza tra i nodi (Multitier).
- Quando un hub dipartimentale manifesta un funzionamento non conforme, l'hub della dorsale rileva il problema e lo disconnette dalla LAN.
- Impossibile interconnettere 10BaseT e 100BaseT.
- Attenzione: unico dominio di collisione!!!!

Switch

- Dispositivo del livello di link:
 - o Filtra e inoltra i pacchetti Ethernet.
 - Esamina l'indirizzo di destinazione e lo invia all'interfaccia corrispondente alla sua destinazione.
 - Quando un pacchetto è stato inoltrato nel segmento, usa CSMA/CD per accedere al segmento.
- Trasparente
 - Gli host sono inconsapevoli della presenza di switch.
- Plug-and-play (autoapprendimento)
 - Gli switch non hanno bisogno di essere configurati.

Inoltro (forwarding)

- Come si individua l'interfaccia verso cui un pacchetto deve essere diretto?
- · Sembra proprio un problema d'instradamento

Autoapprendimento

- Le operazioni sono eseguite mediante una tabella di commutazione.
- Lo switch archivia nelle proprie tabelle:
 - l'indirizzo MAC, l'interfaccia e il momento dell'arrivo.
 - Se lo switch non riceve pacchetti da un determinato indirizzo sorgente, lo cancella (tempo di invecchiamento, TTL = 60 min)
- □ Lo switch apprende quali nodi possono essere raggiunti attraverso determinate interfacce
 - quando riceve un pacchetto, lo switch "impara" l'indirizzo del mittente
 - registra la coppia mittente/indirizzo nella sua tabella di commutazione

Filtraggio e inoltro

Quando uno switch riceve un pacchetto:

```
(gli switch utilizzano indirizzi MAC)
if entry found for destination
    then{
    if dest on segment from which frame arrived
        then drop the frame
        else forward the frame on interface indicated
    }
    else flood
```

Lo inoltra a tutti tranne all'interfaccia dalla quale è arrivato il pacchetto

Switch: esempio

Supponiamo che C invii un pacchetto a D

- Lo switch riceve il pacchetto da C:
 - annota nella tabella di commutazione che C si trova nell'interfaccia 1.
 - Poiché D non è presente nella tabella, lo switch inoltra il pacchetto alle interfacce 2 e 3.
- Il pacchetto viene ricevuto da D.

Switch: esempio

Supponiamo che D risponda a C con l'invio di un pacchetto.

- Lo switch riceve il pacchetto da D:
 - annota nella tabella di commutazione che D si trova nell'interfaccia 2
 - poiché C si trova già nella tabella, lo switch inoltra il pacchetto solo all'interfaccia 1.
- Il pacchetto viene ricevuto da C.

Switch: accesso dedicato

- Switch con molte interfacce.
- Gli host hanno una connessione diretta con lo switch.
- Esclude qualsiasi possibilità di collisione; opera in modalità full duplex.

Commutazione: A-a-A' e B-a-B' simultaneamente, senza collisioni.

Ancora sugli switch

- □ Commutazione cut-through: lo switch inizia la trasmissione della parte iniziale del pacchetto anche se questo non è pervenuto integralmente.
- □ Lo switch cut-through riduce il ritardo solamente di un tempo compreso tra 0,12 e 1,2 ms, ed esclusivamente con carichi leggeri del collegamento in uscita. Un vantaggio piuttosto limitato

Esempio di rete di un'istituzione

Switch e router a confronto

- Entrambi sono dispositivi store-and-forward
 - o router: dispositivi a livello di rete
 - o switch: dispositivi a livello di link
- □ I router mantengono tabelle d'inoltro e implementano algoritmi d'instradamento
- Gli switch mantengono tabelle di commutazione e implementano il filtraggio e algoritmi di autoapprendimento

Sintesi delle caratteristiche

	<u>hub</u>	<u>router</u>	commutatore
Isolamento del traffico	no	sì	sì
Plug and play	sì	no	Sì
Instradamento ottimale	no	sì	no
Cut-through	sì	no	sì

Capitolo 5: Livello di collegamento e reti locali

- 5.1 Livello di link: introduzione e servizi
- 5.2 Tecniche di rilevazione e correzione degli errori
- 5.3 Protocolli di accesso multiplo
- 5.4 Indirizzi a livello di link
- 5.5 Ethernet
- 5.6 Interconnessioni: hub e commutatori
- 5.7 PPP: protocollo punto-punto
- 5.8 Canali virtuali: una rete come un livello di link

Protocollo punto-punto

- Un mittente, un destinatario, un collegamento: estremamente semplice.
 - o non c'è protocollo di accesso al mezzo (MAC)
 - o non occorre indirizzamento MAC esplicito
 - il collegamento potrebbe essere una linea telefonica commutata, un collegamento SONET/SDH, una connessione X.25 o un circuito ISDN, linea ISDN
- Protocolli punto-punto DLC più diffusi:
 - PPP (point-to-point protocol)
 - HDLC (high-level data link control)

Requisiti di IETF per il progetto PPP [RFC 1547]

- □ Framing dei pacchetti: il protocollo PPP del mittente incapsula un pacchetto a livello di rete all'interno del un pacchetto PPP a livello di link.
- □ Trasparenza: il protocollo PPP non deve porre alcuna restrizione ai dati che appaiono nel pacchetto a livello di rete.
- □ Rilevazione degli errori (ma non la correzione)
- Disponibilità della connessione: il protocollo deve rilevare la presenza di eventuali guasti a livello di link e segnalare l'errore al livello di rete.
- Negoziazione degli indirizzi di rete: PPP deve fornire un meccanismo ai livelli di rete comunicanti per ottenere o configurare gli indirizzi di rete.

Requisiti che PPP non deve implementare

- Correzione degli errori.
- Controllo di flusso.
- Sequenza (non deve necessariamente trasferire i pacchetti al ricevente mantenendo lo stesso ordine).
- Collegamento multipunto (es., polling).

Correzione degli errori, controllo di flusso, ri-ordinamento dei pacchetti sono delegati ai livelli superiori!

Formato dei pacchetti dati PPP

- □ Flag: ogni pacchetto inizia e termina con un byte con valore 01111110
- □ Indirizzo: unico valore (11111111)
- Controllo: unico valore; ulteriori valori potrebbero essere stabiliti in futuro
- Protocollo: indica al PPP del ricevente qual è il protocollo del livello superiore cui appartengono i dati incapsulati

1	1	1	1 or 2	variable length	2 or 4	1
01111110	11111111	00000011	protocol	info	check	01111110
flag	nddress	control				flag

Formato dei pacchetti dati PPP

- informazioni: incapsula il pacchetto trasmesso da un protocollo del livello superiore (come IP) sul collegamento PPP.
- checksum: utilizzato per rilevare gli errori nei bit contenuti in un pacchetto; utilizza un codice a ridondanza ciclica HDLC a due o a quattro byte.

1	1	1	1 or 2	variable length	2 or 4	1
01111110	11111111	00000011	protocol	info	check	01111110
flag	address	control				flag

Riempimento dei byte (Byte stuffing)

- □ Requisito di trasparenza: nel campo informazioni deve essere possibile inserire una stringa <01111110>
 - D: se compare <01111110> come fa il ricevente a rilevare in modo corretto la fine del frame PPP?
- Mittente: aggiunge ("stuff") un byte di controllo <01111110> prima di ogni byte di dati <01111110>
- □ Destinatario:
 - Due byte 01111110: scarta il primo e continua la ricezione dei dati.
 - Singolo 01111110: valore di flag

Byte stuffing

Protocollo di controllo del collegamento e protocolli di rete

Prima di avviare lo scambio di dati, i due peer devono configurare il collegamento:

- □ Configurazione (utilizzazione e interruzione) del collegamento PPP tramite protocollo LCP i cui pacchetti sono incapsulati in frame PPP (massima dimensione del pacchetto, autenticazione).
- Scambio dei pacchetti di controllo propri del livello di rete
 - per IP: viene utilizzato il protocollo di controllo IP (IPCP) e i dati IPCP sono inseriti in un pacchetto PPP (il cui campo protocollo contiene 8021) in modo analogo a quello in cui i dati LCP sono inseriti in un pacchetto PPP

Capitolo 5: Livello di collegamento e reti locali

- 5.1 Livello di link: introduzione e servizi
- 5.2 Tecniche di rilevazione e correzione degli errori
- 5.3 Protocolli di accesso multiplo
- 5.4 Indirizzi a livello di link
- 5.5 Ethernet
- 5.6 Interconnessioni: hub e commutatori
- 5.7 PPP: protocollo punto-punto
- 5.8 Canali virtuali: una rete come un livello di link

Virtualizzazione delle reti

- Virtualizzazione delle risorse: una potente astrazione nell'ingegneria dei sistemi
- Esempi nell'informatica: memoria virtuale, dispositivi virtuali
 - o macchine virtuali: es. Java
 - Sistema operativo IBM VM tra gli anni '60 e '70

ATM (e MPLS)

- ATM, MPLS utilizzano la commutazione a pacchetto e sono reti a circuito virtuale.
 - o hanno propri formati di pacchetto e propri metodi d'invio.
- Dal punto di vista di Internet sono al pari di un qualunque collegamento che interconnette dispositivi IP.
 - o come una rete telefonica e una Ethernet commutata
- □ ATM, MPSL: vedremo come queste reti forniscono connessione ai dispositivi IP

Trasferimento asincrono: ATM

- Gli standard per ATM cominciarono a essere sviluppati alla metà degli anni '80 dall'ATM Forum e dall'ITU; in pratica fu utilizzata principalmente all'interno di reti telefoniche e IP servendo, per esempio, come tecnologia dei collegamenti che connettono router IP.
- Obiettivo: progettare reti in grado di trasportare file audio e video in tempo reale, oltre a testo, e-mail e file di immagini
 - Rispondenza ai requisiti di tempo/QoS per voce e video (rispetto al modello best-effort di Internet)
 - Telefonia di ultima generazione
 - Commutazione di pacchetto usando circuiti virtuali

Architettura di ATM

- AAL (ATM adaptation layer) è presente solo nei dispositivi alla periferia della rete ATM:
 - Segmentazione e riassemblaggio dei pacchetti
 - Simile al livello di trasporto in Internet
- □ Livello ATM: "livello di rete"
 - Definisce la struttura della cella ATM e il significato dei suoi campi
- □ Livello fisico

ATM: network or link layer?

Vision: end-to-end transport: "ATM from desktop to desktop"

ATM is a network technology

Reality: used to connect IP backbone routers

- o "IP over ATM"
- ATM as switched link layer, connecting IP routers

AAL: ATM Adaptation Layer

- ATM Adaptation Layer (AAL): "adatta" i livelli superiori (IP o applicazioni ATM native) al sottostante livello ATM.
- □ AAL è presente solo nei sistemi terminali e non nei commutatori.
- Segmento di livello AAL frammentato su più celle ATM
 - Analogia: segmenti TCP in vari pacchetti IP.

AAL: ATM Adaptation Layer

Differenti versioni di livelli AAL, in base alla classe di servizio ATM:

- AAL1: per il servizio a tasso costante, CBR (Constant Bit Rate), es. emulazione di circuito.
- AAL2: per il servizio a tasso variabile, VBR (Variable Bit Rate), es. video MPEG.
- AAL5: per il servizio dati (es., datagrammi IP).

AAL5 - Simple And Efficient AL (SEAL)

- AAL5: low overhead AAL used to carry IP datagrams
 - 4 byte cyclic redundancy check
 - PAD ensures payload multiple of 48bytes
 - large AAL5 data unit to be fragmented into 48byte ATM cells

CPCS-PDU payload	PAD	Length	CRC	
0-65535	0-47	2	4	

Livello ATM

Servizio: trasporto di celle attraverso la rete ATM.

- Analogo al livello di rete IP.
- □ I servizi sono molto differenti dal livello di rete IP.

Α	rchitettura	Modello		Feedback				
della rete		di servizio	Larghezza di banda	Perdita	Ordine	Timing	congestione	
	Internet	best effort	nessuna	no	no	no	no (dedotta se c'è perdita)	
	ATM	CBR	Tasso costante	sì	sì	sì	non c'è congestione	
	ATM	VBR	Tasso garantito	sì	sì	sì	non c'è congestione	
	ATM	ABR	Minimo garantito	no	sì	no	sì	
	ATM	UBR	nessuna	no	sì	no	no	

Livello ATM: canale virtuale (VC)

- □ Canale virtuale: percorso che consiste in una sequenza di collegamenti fra sorgente e destinazione.
 - Impostazione della chiamata, prima di avviare la trasmissione dati
 - Ciascun pacchetto ha un identificatore del circuito virtuale (VCI)
- □ Canale virtuale permanente (PVC, permanent VC)
 - Per connessioni di lunga durata
 - Le celle ATM sono instradate dal punto d'ingresso a quello d'uscita
- □ Canale virtuale dinamico (SVC, switched VC):
 - Creato o cancellato dinamicamente, su richiesta

Canali virtuali ATM

□ Vantaggi:

 Prestazioni e QoS sono garantite (ampiezza di banda, ritardo/perdita, jitter)

Svantaggi:

- Inadeguato supporto al traffico dei pacchetti
- Un PVC tra ciascuna coppia sorgente/destinatario: problemi di scalabilità
- Eccesso di elaborazione per connessioni di breve durata

Livello ATM: cella ATM

- Intestazione: 5-byte
- Carico utile: 48-byte
 - Perché?: se il carico utile è piccolo -> piccolo ritardo per voce digitalizzata
 - A metà strada tra 32 e 64 (compromesso!)

Campi della cella ATM (intestazione)

- VCI: identificatore del canale virtuale.
 - Il VCI di una cella varia da collegamento a collegamento.
- PT: tipo di carico utile
 - Indica il tipo di carico che la cella contiene
- CLP: bit di priorità sulla perdita di cella.
 - CLP = questo bit può essere usato per scegliere le celle da scartare se si verifica una congestione.
- ☐ HEC: byte d'errore nell'intestazione.
 - I bit per il rilevamento e la correzione dell'errore che proteggono l'intestazione della cella.

Livello fisico ATM

Esistono due classi generali del livello fisico:

- Transmission Convergence Sublayer (TCS): adatta il livello ATM al livello PMD sottostante
- Physical Medium Dependent: dipende dal mezzo fisico utilizzato

TCS Functions:

- O Header checksum generation: 8 bits CRC
- Cell delineation
- With "unstructured" PMD sublayer, transmission of idle
 cells when no data cells to send

Livello fisico ATM

Alcuni possibili livelli fisici includono:

- SONET/SDH: (synchronous optical network/ synchronous digital hierarchy, reti ottiche sincrone/gerarchia digitale sincrona)
 - o sincronizzazione dei bit
 - o suddivisione di banda
 - o differenti velocità: OC3 = 155.52 Mbps; OC12 = 622.08 Mbps; OC48 = 2.45 Gbps, OC192 = 9.6 Gbps
- □ T1/T3: su fibra, microonde e cavo: 1.5 Mbps/ 45 Mbps
- Basati su cella senza frame. In questo caso, la temporizzazione al ricevente è derivata da un segnale trasmesso.

IP su ATM

Solo IP

- □ 3 "reti" (es., segmenti LAN).
- □ MAC (802.3) e indirizzi IP.

IP su ATM

- □ Sostituisce "le reti" (es., segmento LAN) con la rete ATM.
- □ Indirizzi ATM e indirizzi IP.

ARP in reti ATM?

- Una rete ATM ha bisogno di avere indirizzi ATM
 - Come Ethernet ha bisogno di indirizzi
 MAC
- □ Traduzione di indirizzi IP in ATM: ATM ARP (Address Resolution Protocol)
 - ARP server della rete ATM manda in broadcast una richiesta ATM ARP a tutti i dispositivi ATM connessi
 - Inoltre gli host ATM possono registrarsi presso il server specificando il loro indirizzo

IP su ATM

Issues:

- □ IP datagrams
 into ATM AAL5
 PDUs
- ☐ from IP addresses to ATM addresses
 - just like IP addresses to 802.3 MAC addresses!

Datagram Journey in IP-over-ATM Network

- at Source Host:
 - IP layer finds mapping between IP, ATM dest address (using ARP)
 - passes datagram to AAL5
 - AAL5 encapsulates data, segments to cells, passes to ATM layer
- □ ATM network: moves cell along VC to destination
- at Destination Host:
 - AAL5 reassembles cells into original datagram
 - o if CRC OK, datgram is passed to IP

Capitolo 5: riassunto

- Principi per implementare i servizi di trasmissione dati:
 - Rilevazione e correzione dell'errore
 - Condivisione di un canale broadcast: accesso multiplo
 - Indirizzamento a livello di link
- □ Implementazione di varie tecnologie al livello di link:
 - Ethernet
 - LAN commutate
 - PPP
 - O Reti virtuali: ATM (MPLS)