Examenul de bacalaureat național 2017 Proba E. c)

Matematică M_mate-info

Clasa a XII-a

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\frac{2+i}{2-i} + \frac{2-i}{2+i} = \frac{6}{5}$, unde $i^2 = -1$.
- **5p** 2. Se consideră x_1 și x_2 soluțiile ecuației $x^2 (2m+3)x + m^2 + 3m + 2 = 0$. Arătați că $(x_1 x_2)^2 = 1$, pentru orice număr real m.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x-3} = 5 x$.
- **5p 4.** Determinați câte numere naturale de trei cifre distincte se pot forma doar cu cifre pare.
- **5p 5.** Se consideră triunghiul \overrightarrow{ABC} și punctele M, N și P, mijloacele laturilor \overrightarrow{AB} , \overrightarrow{BC} , respectiv \overrightarrow{AC} . Demonstrați că $\overrightarrow{BM} + \overrightarrow{BN} = \overrightarrow{BP}$.
- **5p 6.** Determinați numerele reale x, știind că $\sin 2x = \cos x$ și $x \in \left[\frac{\pi}{2}, \pi\right]$.

SUBIECTUL al II-lea (30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & a & 3 \\ 1 & 3 & a \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x+y+z=1 \\ x+ay+3z=2 \text{, unde } a \text{ este } \\ x+3y+az=2 \end{cases}$

număr real.

- **5p** a) Arătați că $\det(A(a)) = (a+1)(a-3)$, pentru orice număr real a.
- **5p b**) Determinați numerele reale m pentru care A(m)A(2-m)=A(2-m)A(m).
- **5p c**) Determinați numerele întregi a pentru care sistemul are soluție unică (x_0, y_0, z_0) , iar x_0, y_0 și z_0 sunt numere întregi.
 - 2. Pe multimea numerelor reale se definește legea de compoziție x * y = -5xy + 10x + 10y 18.
- **5p** a) Arătați că x * y = 2 5(x 2)(y 2), pentru orice numere reale x și y.
- **5p b**) Determinați numerele naturale n, știind că (n*n)*n = n.
- **5p** c) Arătați că, dacă a*a=b și b*b=a, atunci a=b=2 sau $a=b=\frac{9}{5}$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{\sqrt{x^2 + 2x + 2}}$
- **5p** a) Determinați intervalele de monotonie a funcției f.
- **5p b)** Arătați că $\lim_{x \to +\infty} (f(x))^{2x} = \frac{1}{e^2}$.
- **5p** c) Demonstrați că pentru orice număr real a, $a \in (-\sqrt{2}, -1)$, ecuația f(x) = a are exact două soluții reale distincte.

- 2. Se consideră funcția $f:(-1,+\infty)\to\mathbb{R}$, $f(x)=\frac{1}{\sqrt{x+1}}$ și, pentru fiecare număr natural nenul n, se
- consideră numărul $I_n = \int_0^1 x^n f(x) dx$. a) Arătați că $\int_0^1 f(x) dx = 2(\sqrt{2} 1)$.
- b) Demonstrați că $I_n \le \frac{1}{n+1}$, pentru orice număr natural nenul n. c) Demonstrați că $(2n+1)I_n = 2\sqrt{2} 2nI_{n-1}$, pentru orice număr natural n, $n \ge 2$.