Concevez une application au service de la santé publique

Projet 3 du cursus Data Scientist

Sommaire

- 1. Présentation du projet
- 2. Présentation de l'application
- 3. Opérations de nettoyage effectuées
- 4. Opérations de remplissage effectuées
- 5. Focus sur le traitement des doublons
- 6. Traitement des valeurs aberrantes
- 7. Focus sur les principales étapes du Machine Learning
- 8. Descriptions et Analyses univariées des différentes variables importantes
- 9. Analyse multivariée et les résultats statistiques associés
- 10. Analyse de la Variance (ANOVA)
- **11.** Analyse en Composante Principale (ACP)
- **12.** Conclusion

Présentation du projet

Objectif à atteindre

- Trouver des idées innovantes d'applications en lien avec l'alimentation
- Traiter le jeu de données mis à disposition afin de repérer des variables pertinentes
- Produire des visualisations afin de mieux comprendre les données

Moyens mis à disposition

• Le jeu de données **Open Food Fact**

Présentation de l'idée d'application

Aide les utilisateurs à choisir leurs produits alimentaires pour mieux manger

Aide les utilisateurs à reconnaitre les produits les plus sains et les plus dangereux pour leur santé

Base de données de milliers de produits alimentaires

Chaque produit est noté en fonction de son Nutriscore et affiche un code couleur en fonction de son appréciation nutritionnelle

Ne renseigne pas la base de donnée d'Open Food Fact

Présentation de l'idée d'application

Opérations de nettoyage effectuées

Nettoyage par Pays

➤ Produits vendus en France uniquement

Traitement des colonnes contenant des **dates**

- Convertissage des colonnes au format date
- ➤ Parsage des dates au format yyyymmdd

Nettoyage par features

- ➤ Suppression des colonnes inutiles
- ➤ Suppression des colonnes vides et peu renseignées

Nettoyage par produits

- ➤ Suppression des produits redondants
- ➤ Suppression des produits trop peu renseignés
- ➤ Traitement des données aberrantes
- ➤ Traitement des données manquantes

Opérations de nettoyage effectuées

1 371 727 (100%)	Nombre d'entrées dans data avant traitement
680 756 (49,6%)	Filtrage des produits vendus en France uniquement
608 234 (44,3%)	Suppression des doublons
520 128 (37,9%)	Suppression des produits sans valeur nutritionnelle renseignée
518 763 (37,8%)	Suppression des produits sans nom de produit renseigné
504 529 (36,8%)	Filtrage des valeurs aberrantes
210 192 (15,3%)	Suppression des produits non catégorisés dans la feature ' pnns_groups_1 '
	(100%) 680 756 (49,6%) 608 234 (44,3%) 520 128 (37,9%) 518 763 (37,8%) 504 529 (36,8%) 210 192

Suppression des doublons

Pour l'ensemble des étapes suivantes, lors d'une suppression de doublon, je conserve systématiquement les premières occurrences

Recherche et suppression des doublons en comparant l'ensemble des colonnes disponibles Recherche et suppression des doublons en comparant toutes les colonnes excepté : code,created_t et last_modified_t

Recherche des valeurs en doublon en comparant leurs noms (pas de suppression) Recherche et suppression des valeurs en doublon en comparant leurs noms et leurs valeurs nutritionnelles [*_100g]

et last_modified_

nt/mionnelles [__100g]

Filtrage des valeurs aberrantes

Suppression des produits avec des valeurs supérieures à 100 dans au moins l'une des colonnes [*_100g]

Suppression des produits avec carbohydrates_100g > sugars_100g Suppression des produits avec la valeur energy_100g anormalement élevée

Suppression des produits avec des valeurs négatives dans au moins l'une des colonnes [*_100g]

Suppression des produits avec saturated-fat_100g > fat_100g

Opérations de remplissage effectuées

Remplissage par la valeur moyenne en fonction de la catégorie du produit

➤ Utilisée pour remplir les features informant sur la valeur nutritionnelle pour 100g des produits

Appel aux techniques de Machine Learning

- ➤ <u>Algorithme de régression</u> : **KNN Regressor**
 - pour renseigner la colonne 'Nutriscore'
- ➤ <u>Algorithme de classification</u> : **KNN Classifier**
 - pour renseigner la colonne 'Nutrigrade'

Etapes principales de remplissage à l'aide du Machine Learning

Création des features 'X'

Création des labels 'y'

Création du train set et du test set

Test des différentes valeurs des **hyperparamètres** et **Cross-Validation**

Sauvegarde du modèle avec les **meilleurs paramètres**

Test de notre modèle sur les **données de test** Learning Curve
et de la
Confusion Matrix
(Algorithme de
classification
uniquement)

Utilisation du modèle entrainé pour renseigner les valeurs manquantes

Description et Analyse univariée des différentes variables importantes avec les visualisations associées.

Analyse univariée des nutriments

De nombreux outliers proviennent d'erreurs de saisie de la part des utilisateurs d'Open Food Fact

Les autres outliers sont légitimes et proviennent de divers aliments particulièrement riches pour un ou plusieurs nutriments

Analyse univariée des apports énergétiques

Des valeurs anormalement élevées dans l'apport énergétiques de certains aliments doivent être contrôlés avec attention pour juger de leur pertinence.

Distribution de la valeur nutritionnelle des protéines sur 100g de produit

La distribution des protéines est multimodale non centrée

Distribution de la valeur nutritionnelle des Sucres et Carbohydrates sur 100g de produit

La distribution du sucre est unimodale non centrée

La distribution du carbohydrates est bimodale non centrée

Analyses multivariées et les résultats statistiques associés, en lien avec l'idée d'application

HeatMap de Corrélation

Graphique PairPlot

Répartition des produits en fonction du nutrigrade

ANOVA (ANalysis Of VAriance) Analyse de la Variance

Peut-on prévoir la valeur 'nutrigrade' d'un produit à partir d'une de ses valeurs nutritionnelles?

Si oui, quelle est la valeur nutritionnelle qui explique le mieux la valeur du 'nutrigrade'?

ANOVA (ANalysis Of VAriance)

ANOVA (ANalysis Of VAriance)

Nutriments	Rapport de corrélation (eta squared)
saturated-fat_100g	0,277
energy_100g	0,238
energy-kcal_100g	0,238
fat_100g	0,179
sugars_100g	0,132
carbohydrates_100g	0,040
salt_100g	0,037
sodium_100g	0,037
fiber_100g	0,035
proteins_100g	0,026

Les valeurs nutritionnelles qui expliquent le mieux la valeur du 'nutrigrade'

- saturated-fat_100g
- energy_100g' et 'energy_100g'
- > fat_100g
- sugars_100g

Analyse en Composante Principale

Existe t'il
des groupes de variables
très corrélées entre elles
qui peuvent être regroupées
en de nouvelles
variables synthétiques?

Analyse en Composante Principale Eboulis des valeurs propres

Le graphique représentant l'éboulis des valeurs propres nous indique que 90% de l'inertie totale est associée aux 4 premiers axes d'inertie

Analyse en Composante Principale Cercle des corrélations

Modèle plus simple

Modèle plus rapide

Modèle plus performant

Analyse en Composante Principale Détail des 4 nouvelles variables F1 à F4

	energy-kcal_100g	energy_100g	fat_100g	saturated-fat_100g	carbohydrates_100g	sugars_100g	fiber_100g	proteins_100g	salt_100g	sodium_100g
F1	0.52916	0.52916	0.45499	0.39302	0.17684	0.14036	0.14141	0.08681	-0.00080	-0.00096
F2	-0.01679	-0.01679	0.18408	0.14981	-0.41450	-0.41146	-0.15399	0.33190	0.48422	0.48338
F3	0.03930	0.03930	-0.24608	-0.23759	0.45487	0.35595	0.26589	-0.03898	0.48644	0.48730
F4	0.01792	0.01792	-0.11687	-0.18799	0.01951	-0.31456	0.71757	0.54216	-0.14446	-0.14596

Synthèse des différentes conclusions sur la faisabilité du projet

- La 2^{ème} approche retenue :
 - Input: Informations Nutritionnelles
 - Output: Nutrigrade
- L 'application est réalisable car :
 - La base de données est suffisamment nettoyée et optimisée
 - Elle n'a pas besoin d'avoir le produit recherché dans sa base de données pour connaitre le nutrigrade
- Limitations connues :
 - La performance pour prédire les nutrigrades A et B est limitée
 - Pas de problème si les utilisateurs recherchent des produits dont le nutrigrade va de C à E
 - N'alimente pas la base de donnée d'Open Food Fact

