EE 127AT/227AT 9/12/2018

Instructors: L. El Ghaoui, A. Bayen

GSI: P. Hidalgo-Gonzalez

Discussion # 3

Exercise 1 (Maximum singular value) Prove $\max_{\|u\|_2=1} \|Au\|_2 = \sigma_1(A)$, where $\sigma_1(A)$ is the maximum singular value of A.

Exercise 2 (Frobenius norm and Least Squares) Let $A \in \mathbb{R}^{m \times n}$, consider the optimization problem given by $\min_X \|AX - I_m\|_F$, where the variable is $X \in \mathbb{R}^{n \times m}$, I_m is the $m \times m$ identity matrix, and $\|\cdot\|_F$ is the Frobenius norm.

- 1. Show that the problem can be reduced to a number of ordinary least squares problems. How do you recover X?
- 2. Show that when A is full column rank, then the optimal solution is unique, and given by $X^* = (A^T A)^{-1} A^T$.

Exercise 3 (Null space) Let $A \in \mathbb{R}^{n \times m}$, prove that $N(AA^T) = N(A^T)$.

Exercise 4 (Frobenius norm and trace) Let $A \in \mathbb{S}^n_+$, be a symmetric, positive semidefinite matrix. Show that trace A and Frobenius norm, $||A||_F$, depend only on its eigenvalues, and express both in terms of the vector of eigenvalues.