AMERICAN UNIVERSITY OF ARMENIA

College of Science and Engineering

CS 120 Introduction to Object-Oriented Programming

MIDTERM EXAM

Date / Time:

Friday, March 17 2017 at 17:30

Duration:

2 hours

Attention:

ANY TYPE OF COMMUNICATION IS STRICTLY PROHIBITED Write down your section, name and ID# at the top of all used pages

Participation:

Problem 1: Consider below a C++ function float kahan(float num1, float num2, float& compensation) that implements the Kahan Summation Algorithm for high-precision compensated summation of two float arguments float num1 and float num2:

float kahan (float num1, float num2, float &compensation)

float result; num2 -= compensation; result = num1 + num2; compensation = (result - num1) - num2; return result;

Using this function, write a C++ function float pi(int n) that computes the value π by the following

$$\pi = 16\sum_{k=0}^{n} \frac{(-1)^{k}}{(2k+1)5^{2k+1}} - 4\sum_{k=0}^{n} \frac{(-1)^{k}}{(2k+1)239^{2k+1}} = \left(\frac{16}{1*5} - \frac{4}{1*239}\right) - \left(\frac{16}{3*5^{3}} - \frac{4}{3*239^{3}}\right) + \left(\frac{16}{5*5^{5}} - \frac{4}{5*239^{5}}\right) - \cdots$$

The initial value of float compensation is 0.0.

Box (int K=0; K. <=nk; K++) of

to Got (int k=0; k. <= ng; k++1 of

(so a (int k=0; k. <= ng; k++1) ow (5, (2*(+1))), (pow(-1, k+1))

(so a land (pow (-1, k)) (2k+1) * pow (5, (2*(k+1)+)), component

BE 185 ((2*(k+1)+1) * pow(5, (2*(k+1)+)), composition) 4. Kohon pour half?

Use the backside, if needed

100P.MT. 1703/7. LOJE

Problem 1 of 4

Section.	Name	and	ID#
Section.	Name	21 11 11	I Diff

Problem 2: Write a Java method public static double[] expReg(double[] data) that takes as its argument an array of data points double[] data, and returns a two-element array - the first element being the exponent of an exponential regression and the second element being the amplitude. The exponential regression approximates the data points by a formula

 $y = a e^{mx}$ where the exponent m and the amplitude a are computed as Ameans powlbirst, second)

$$m = \frac{\overline{xy} - \overline{x} \, \overline{y}}{\overline{x^2} - \overline{x}^2}, a = \overline{y} - m \, \overline{x} \qquad 3 \land 2 \stackrel{?}{=} 9.$$

Here \bar{x} is the mean of the x coordinates, \bar{y} is the mean of the natural logarithm of y coordinates, \bar{x}^2 is the mean of the squares of the x coordinates, and \overline{xy} is the mean of the products of the x and natural logarithm of y coordinates. Use the element indices of the array double[] data as x coordinates and the element values as y coordinates. For natural logarithm, use the method double Math.log().

Both result elements are zeros, if at least one data element is non-positive.

double x mean = x23/2; double y meanlog = ylog 3/2; double xproylog mean = (xprox + ylog 3)/2; double m = (xproy log mean - x mean x y meanlog)/ C- X2mean - (x mean 2)); double or = y meanlog - m* x mean; double[] result; result = men double[2];). Do result[0] = m; result[i] = a; return result; This if statement must be in the box loop above. if (olata [i] * <0) { torult[0] =0; result[i]=0; return result; }.

Use the backside, if needed

Problem 2 of 4

DOP MT. 120311. LOJ6.

Problem 3: Write a Java function *public static boolean isInside(double]]* vertex, double x, double y) that takes as its argument a 2-by-n array of a convex polygon's vertex coordinates double[][] vertex – the x coordinates in the first row and y coordinates in the second row, and double x and double y coordinates of a point. It checks, if the point is inside the polygon.

Assume and use a method boolean to Left (double x1, double y1, double x2, double y2, double x0, double y0) that takes as its arguments coordinates of three points and returns true, if the third point (x0, y0) is in the left-hand side, when moving from the first point (x1, y1) to the second one (x2, y2); and false, if it is in the right-hand side.

public static boolson is Insule.

Society int 2=0; i della lingth; inf

bor (int 2=0, a constex. lingth; and)

illy (tolebli, j, a, 2, x, y) of ill (9=1) i return true;

illy (tolebli, j, a, 2, x, y) of ill (9=2) return true;

illy (!tolebli, j, a, 2, x, y) of ill (9=2) return true;

illy (!tolebli, j, a, 2, x, y) of ill (9=2) return true;

illy (!tolebli, j, a, 2, x, y) of ill (9=2) return true;

or all decess need dol