

新型パワーデバイスを用いた パルス電源の低損失化とエネルギー回生

熊本大学 パルスパワー科学研究所 パルスパワー基盤部門 (パルスパワー発生制御分野) 教授 佐久川 貴志

技術背景(パルスパワーとは?)

※ここで、パルス電源は半導体パルスパワー発生装置を指します。

技術背景(半導体パルスパワー)

最も簡単な従来型パルスパワー発生回路

産業化への課題

- オンは高速だが オフが出来ない
- 電極消耗で経年 で劣化が早い
- ▶ 寿命が短い (10⁸パルス程度)
- > 安定性が低い

パワーデバイスの進展

磁気回路の実用化

- ▶ オン/オフ制御性に優れる
- > 劣化が無い
- ▶ 長寿命 (10¹²パルス以上)
- > 高安定動作

高速サイリスタの開発GTOサイリスタの改良

産業化成功

半導体製造のフォトリソグラフィー光源エキシマレーザの励起パルス電源

実用化(アプリケーション)への技術動向

Kumamoto University

光源・ビーム・プラズマプロセス

- ✓ フォトリソグラフィー用エキシマレーザ
- ✓ TFT液晶アニールレーザ
- ✓ 大気圧パルスプラズマ発生
- ✓ オゾナイザ

水処理•環境改善

- ✓ 水処理装置(衝撃波利用アオコ処理)
- ✓ 殺菌処理
- ✓ プラスチック-金属分離リサイクル
- ✓ 水中放電利用化学活性種生成

Photo-voltaic cells Photo-vol

医療・バイオ

- ✓ 視力矯正角膜除去エキシマレーザ
- ✓ 顕微鏡組み込み細胞パルス印加装置
- ✓ X線CT用高電圧パルス発生装置

任意波形パルスパワーモジュ レータで細胞応答制御

パルス**電界印加** (こよるCa²⁺増加

従来技術(半導体パルス電源装置)

3つのモジュールから構成

- コントローラ
- 2. 充電器
- 3. パルスパワーモジュレータ

システム構成例

小型パルスパワーシステム外観

従来技術(小型磁気パルス圧縮回路)

基本的にエネルギー はC-C転送

 $C_0 \rightarrow C_1 \rightarrow C_2 \rightarrow (C_p + Load)$

2段磁気パルス圧縮回路

 LC共振回路による電流 パルス圧縮

余剰エネルギーは 回路内で消費される

熱となる!

従来開発技術(大型磁気パルス圧縮回路)

多段磁気パルス圧縮回路

エネルギー回生動作電圧波形

- ✓ IGBTスイッチを使用
- ✓ トランスに3次巻き線
- ✓ 高速ダイオードを利用
- ✓ サージ電圧対策は必要

磁気パルス圧縮を用いた EUV光源

開発背景(次世代半導体:SiC)

半導体材料の物理特性

1 43 11 10 11 40 100 - 13 1-					_
Material	Si	SiC (4H)	GaN	Diamond	
Band gap [eV]	1.12	3.26	3.39	5.47	→ スイッチング電圧
Electron mobility μ_e [cm ² /Vs]	1400	1000	900	2200	→ オン抵抗(損失)
Breakdown strength E_c [kV/cm]	300	2500	3300	10000	→絶縁破壊電圧
Thermal conductivity λ [W/cmK]	1.5	4.9	1.3	20	→冷却
Relative permittivity ε_r	11.8	9.7	9	5.5	→オン抵抗(損失)
Saturated drift velocity v_{sat} [cm/s]	1.0 x10 ⁷	2.2 x10 ⁷	2.7 x10 ⁷	2.7 x10 ⁷	→スイッチング速度

絶縁破壊電圧:
$$V_{bd}$$

$$V_{bd} = \frac{\varepsilon}{2eN_d} E_c^2$$

オン抵抗: $_{2}R_{on}$ $R_{on} = \frac{4V_{bd}}{\mu \varepsilon A E_{c}^{3}}$

開発背景(次世代半導体:SiC-MOSFET)

パワーデバイスのスイッチング容量と動作周波数

低損失評価(SiC-MOSFET vs IGBT)

比較評価デバイスの仕様値

Switch Device SiC-MOSFET IGBT C2M0025120D IRGPS60B120KDP **Device Model** (CREE) (IR) 1200 V 1200 V **Switching Voltage** 250 A x6p 240 A Pulse current ×6p Storage 2500 nF 2500 nF capacitance

Storage energy: 1 [J/module] at V_0 =900V

評価モジュールによる性能比較

低損失評価(SiC-MOSFET vs IGBT)

評価パラメータの定義

入力エネルギー [J]
$$=$$
 $\frac{1}{2}C_0V^2$

スイッチング損失 [J] =
$$\int_0^T V(t) I(t) dt$$

低損失評価(SiC-MOSFET vs IGBT)

ターンオフサージ(通常方式)

C0:初段コンデンサ, C1:2次側コンデンサ

SW:半導体スイッチ, D:逆並列ダイオード

ST:可飽和トランス, FRD:高速逆回復ダイオード

Ds:スナバダイオード, Cs:スナバコンデンサ

Rs:スナバ抵抗

スナバを付加したパルス発生基本回路

ターンオフサージ電圧波形 (オフタイミング考慮無し)

エネルギー回生の流れ

※高速ゲートターンオフのタイミング制御が重要!

現状技術

トリガ信号(TTL)10 μs 時の各電圧電流波形

ターンオフサージ低減とエネルギー回生

トリガ信号(TTL)3 μ s(Id の反転タイミング)時の各電圧電流波形

高耐圧(3kV)テストモジュール開発

高耐圧テストモジュール外観

開発状況(次世代半導体:SiC)

縦型構造のMOSFET (VMOS) 内蔵のボディーダイオードを利用

シンプルな回路構成!

(a) エネルギー回生機能を持つパルス発生回路

スナバレス高機能パルス発生回路

高耐圧(3kV)SiC-MOSFET試験

トリガ信号(TTL)1μs高速ターンオフ時の各電圧電流波形

まとめと将来展望

- ディスクリート型SiC-MOSFETを用いて3000Vの高速 スイッチング(高di/dt化)を達成。
- > IGBTに比べ損失率半減 (1700V動作時)。
- ターンオフタイミングの最適化でエネルギー回生を実現。
- スナバレスでターンオフサージ電圧フリーを達成。
- > SiCデバイスの導入により、パルスパワー電源の高性能化が加速、理想的なスイッチングの実現に近づく。

想定される用途

エキシマレーザーの励起装置(フォトリソグラフィ、液晶アニール、視力矯正用など)

・パルスプラズマ発生装置

・ 高繰り返しパルス電源装置

• 蓄電機器のエネルギー回生回路

• 移動体のモバイル蓄電装置のエネルギ-回生の可能性

企業への期待

- パルスレーザ、パルスプラズマ、パワーエレクトロニクスの技術を持つ、企業との共同研究を希望。
- ・また、電気自動車などのモバイル蓄電機器を開発中の企業、高機能電気エネルギー応用分野への展開を考えている企業には、本技術の導入が有効と思われる。
- エキシマレーザには即導入が可能な技術である。

本技術に関する知的財産権

・ 発明の名称 :スナバレスターンオフサージ抑制回路、

エネルギー回収方法及びプログラム

出願番号:特願2019-115930

• 出願人 : 国立大学法人熊本大学

• 発明者 : 佐久川 貴志

お問い合わせ先

熊本大学 熊本創生推進機構
 主任リサーチ・アドミニストレーター
 和田 翼
 TEL 096-342-3247
 FAX 096-342-3300
 e-mail liaison@jimu.kumamoto-u.ac.jp