Analyse IV

Transcript du cours du Pr. Michel Cibils

Robin Mamié

Printemps 2018

Table des matières

Tra	ansformées de Fourier			
1.1	Introduction	1	2	
	1.1.1 Défir	nitions et résultats préliminaires	2	
	1.1.2 Moti	vation	3	
	1.1.3 Raise	onnement heuristique	3	
1.2	Transformée	e de Fourier d'une fonction	5	
	1.2.1 Défin	nition	5	
	1.2.2 Exer	nples	5	
1.3	Transformée	e de Fourier inverse	7	
	1.3.1 Défin	nition	7	
	1.3.2 Théo	orème de réciprocité (formule d'inversion)	7	
	1.3.3 Exer	nple d'utilisation	7	
1.4	Propriétés d	e la transformée de Fourier	8	
	1.4.1 Cont	inuité et linéarité	8	
	1.4.2 Tran	sformée de Fourier du produit de convolution	8	
	1.4.3 Tran	sformée de Fourier de la dérivée d'une fonction	9	
	1.4.4 Déca	lage	9	
	1.4.5 Ident	tité de Plancherel	9	
	1.4.6 Tran	sformée de Fourier en sinus et cosinus	9	
1.5	Esquisse de	démonstrations de quelques propriétés	10	
	1.5.1 Tran	sformée de Fourier de la dérivée d'une fonction	10	
	1.5.2 Tran	sformée de Fourier du produit de convolution	11	
	1.5.3 Ident	tité de Plancherel	11	
1.6	Exemples d'	utilisation de la transformée de Fourier	12	
Fon	ctions holo	morphes et équations de Cauchy-Riemann	15	
2.1	Introduction	1	15	
	2.1.1 Moti	vation	15	
	2.1.2 Rapp	pel sur les nombres complexes	15	
2.2	Fonctions co	omplexes	16	
			16	
	2.2.2 Exer	nples	16	
2.3	Limites, con	tinuité, dérivabilité	18	
	1.1 1.2 1.3 1.4 1.5 1.6 Fon 2.1 2.2	1.1 Introduction 1.1.1 Défir 1.1.2 Moti 1.1.3 Raise 1.2 Transformée 1.2.1 Défir 1.2.2 Exen 1.3 Transformée 1.3.1 Défir 1.3.2 Thée 1.3.3 Exen 1.4 Propriétés d 1.4.1 Cont 1.4.2 Tran 1.4.3 Tran 1.4.4 Déca 1.4.5 Ident 1.4.6 Tran 1.5 Esquisse de 1.5.1 Tran 1.5.2 Tran 1.5.2 Tran 1.5.3 Ident 1.5.3 Ident 1.6 Exemples d' Fonctions holor 2.1 Introduction 2.1.1 Moti 2.1.2 Rapp 2.2 Fonctions co 2.2.1 Défir 2.2.2 Exen	1.1.1 Définitions et résultats préliminaires 1.1.2 Motivation 1.1.3 Raisonnement heuristique 1.2 Transformée de Fourier d'une fonction 1.2.1 Définition 1.2.2 Exemples 1.3 Transformée de Fourier inverse 1.3.1 Définition 1.3.2 Théorème de réciprocité (formule d'inversion) 1.3.3 Exemple d'utilisation 1.4 Propriétés de la transformée de Fourier 1.4.1 Continuité et linéarité 1.4.2 Transformée de Fourier du produit de convolution 1.4.3 Transformée de Fourier de la dérivée d'une fonction 1.4.4 Décalage 1.4.5 Identité de Plancherel 1.4.6 Transformée de Fourier en sinus et cosinus 1.5 Esquisse de démonstrations de quelques propriétés 1.5.1 Transformée de Fourier de la dérivée d'une fonction 1.5.2 Transformée de Fourier de la dérivée d'une fonction 1.5.3 Identité de Plancherel 1.6 Exemples d'utilisation de la transformée de Fourier Fonctions holomorphes et équations de Cauchy-Riemann 2.1 Introduction 2.1.1 Motivation 2.1.2 Rappel sur les nombres complexes 2.2.1 Définitions 2.2.2 Exemples	

		2.3.1	Définitions	8			
		2.3.2	Équations de Cauchy-Riemann	8			
		2.3.3	Exemples	9			
		2.3.4	Démonstration des équations de Cauchy-Riemann	1			
3	Thé	orème	et formule intégrale de Cauchy 23	3			
	3.1	3.1 Intégration complexe					
		3.1.1	Définitions et notations	3			
		3.1.2	Exemples	4			
	3.2	Théor	ème de Cauchy	4			
		3.2.1	Théorème	4			
		3.2.2	Exemples	5			
		3.2.3	Démonstration du théorème de Cauchy	6			
		3.2.4	Corollaire du Théorème de Cauchy	7			
	3.3	Formu	le intégrale de Cauchy	8			
		3.3.1	Énoncé	8			
		3.3.2	Exemples d'utilisation	8			
		3.3.3	Démonstration de la formule intégrale de Cauchy	0			
	3.4	Coroll	aire de la formule intégrale de Cauchy	0			
		3.4.1	Énoncé	0			
		3.4.2	Exemples d'utilisation	1			
	Séries de Laurent, pôles et résidus						
	4.1	Polyná	ôme et série de Taylor d'une fonction holomorphe $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	3			
		4.1.1	Définitions et résultats	3			
		4.1.2	Exemples	4			

Chapitre 1

Transformées de Fourier

1.1 Introduction

1.1.1 Définitions et résultats préliminaires

Définition. Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite **T-périodique** s'il existe T > 0 tel que $f(x+T) = f(x) \ \forall x \in \mathbb{R}$.

L'intervalle [0,T] caractérise complètement la fonction.

Définition (14.1.i, p.103). Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite **continue par morceaux** sur l'intervalle [a,b] s'il existe des points $\{x\}_{i=0}^{n+1} \subset [a,b]$ avec $a=x_0 < x_1 < \cdots < x_n < x_{n+1} = b$ tels que pour $i=0,1,\ldots,n$ on ait :

- 1. f est continue sur chaque intervalle ouvert $]x_i, x_{i+1}[$
- 2. la limite à droite $f(x_i+0) := \lim_{\substack{t \to x_i \\ t > x_i}} f(t)$ et la limite à gauche $f(x_{i+1}-0) := \lim_{\substack{t \to x_i \\ t < x_i}} f(t)$ existent et sont finies.

Terminologie. On dit qu'une fonction T-périodique est continue par morceaux si elle l'est sur l'intervalle [0, T] qui la caractérise.

Définition (14.2, p.104). Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction T-périodique continue par morceaux. Pour $N \in \mathbb{N}$, la série de Fourier partielle d'ordre \mathbf{N} de f est :

$$F_N f(x) = \sum_{n=-N}^{N} c_n e^{i\frac{2\pi n}{T}x}$$

où les coefficients de Fourier c_n sont des nombres complexes donnés par :

$$c_n = \frac{1}{T} \int_0^T f(x) e^{-i\frac{2\pi n}{T}x} \mathrm{d}x$$

On appelle série de Fourier de f (en notation complexe) la limite lorsque $N \longrightarrow \infty$ de la série de $F_N f(x)$. On écrit :

$$Ff(x) := \lim_{N \to +\infty} F_N f(x) = \sum_{-\infty}^{\infty} c_n e^{i\frac{2\pi n}{T}x}$$

Théorème (de Dirichlet – Résultat de convergence; 14.3, p.104). Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction T-périodique telle que f et f' soient continues par morceaux. Alors $\forall x \in \mathbb{R}$:

$$Ff(x) = \lim_{N \to \infty} F_N f(x)$$
 existe et $Ff(x) = \frac{f(x+0) + f(x-0)}{2}$

En particulier, si f est continue en x, alors f(x+0) = f(x-0) = f(x) et on a Ff(x) = f(x).

Note. Utilisation de la formule d'Euler $e^{ix} = \cos x + i \sin x$ (cf. ex. 1-2, série 1).

1.1.2 Motivation

Série de Fourier développement des fonctions *périodiques* comme somme infinie de fonctions trigonométriques.

Transformée de Fourier étude de fonctions non périodiques.

Idée. Soit T > 0 et f_T une fonction T-périodique définie par

$$f_T(x) = \begin{cases} 0 & \text{si} \quad x \in] - \frac{T}{2}, -1[\\ 1 & \text{si} \quad x \in [-1, 1]\\ 0 & \text{si} \quad x \in]1, \frac{T}{2}[\end{cases}$$

Lorsque la période $T \to \infty$, on a :

$$\lim_{T \to \infty} f_T(x) = f(x) = \begin{cases} 1 & \text{si } x \in [-1, 1] \\ 0 & \text{si } x \notin [-1, 1] \end{cases}$$

qui n'est plus une fonction périodique.

Idée. considérer des fonctions comme limites de fonctions périodiques dont la période T tend vers $+\infty$.

1.1.3 Raisonnement heuristique

Soit $f_T : \mathbb{R} \to \mathbb{R}$ une fonction *continue*, T-périodique telle que f_T' soit continue par morceaux. Alors la série de Fourier de f_T est :

$$Ff_T(y) = \sum_{-\infty}^{+\infty} c_n e^{i\frac{2\pi n}{T}y}$$

pour $y \in \mathbb{R}$, où

$$c_n = \frac{1}{T} \int_0^T f_T(x) e^{-i\frac{2\pi n}{T}x} dx = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(x) e^{-i\frac{2\pi n}{T}x} dx$$

En écrivant $\Delta \alpha = \frac{2\pi}{T}$ et $\alpha_n = n \cdot \Delta \alpha$, on a $\frac{1}{T} = \frac{\Delta \alpha}{2\pi}$.

$$c_n = \frac{\Delta \alpha}{2\pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(x) e^{-i\alpha_n x} dx$$

$$\Rightarrow F f_T(y) = \sum_{-\infty}^{+\infty} \left[\frac{\Delta \alpha}{2\pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(x) e^{-i\alpha_n x} dx \right] e^{i\alpha_n y}$$

Échange de la somme infinie et de l'intégrale :

$$Ff_T(y) = \frac{1}{2\pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(x) \left[\Delta \alpha \sum_{-\infty}^{+\infty} e^{-i\alpha_n(x-y)} \right] dx$$

On découvre une somme de Riemann qui permet de définir une intégrale. En effet :

$$\Delta \alpha \sum_{-\infty}^{+\infty} e^{-i\alpha_n(x-y)} \underbrace{=}_{\Delta \alpha = \alpha_n - \alpha_{n-1}} \sum_{-\infty}^{+\infty} e^{-i\alpha_n(x-y)} (\alpha_n - \alpha_{n-1})$$
$$= \int_{-\infty}^{+\infty} e^{-i\alpha(x-y)} d\alpha$$

Donc on obtient:

$$Ff_T(y) = \frac{1}{2\pi} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(x) \left[\int_{-\infty}^{+\infty} e^{-i\alpha(x-y)} d\alpha \right] dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left[\frac{1}{\sqrt{2\pi}} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(x) e^{-i\alpha x} dx \right] e^{i\alpha y} d\alpha$$

Comme f_T est continue, alors on a $f_T(y) = Ff_T(y)$ et donc lorsque T tend vers $+\infty$, on a $\lim_{T \to +\infty} f_T(y) = \lim_{T \to +\infty} Ff_T(y) \iff f(y) = \lim_{T \to +\infty} Ff_T(y)$.

$$\iff f(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \underbrace{\left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-i\alpha x} \mathrm{d}x \right]}_{\text{Nouvelle fonction qui dépend de la variable α, qui est appelée la transformée de Fourier de f et notée $\mathbb{3}(f)$ ou \hat{f}}$$

On écrit:

$$\mathfrak{F}(f)(\alpha) = \hat{f}(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-i\alpha x} dx$$

Remarque. On a que:

$$f(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\alpha) e^{i\alpha y} d\alpha$$

1.2 Transformée de Fourier d'une fonction

1.2.1 Définition

Définition (15.1, p.113). Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue par morceaux et telle que $\int_{-\infty}^{+\infty} |f(x)| dx < \infty$.

La **transformée de Fourier** de f est la fonction notée $\mathfrak{F}(f)$ ou $\hat{f}:\mathbb{R}\to\mathbb{C}$ définie par :

$$\alpha \longmapsto \mathfrak{F}(f)(\alpha) = \hat{f}(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-i\alpha x} dx$$

1.2.2 Exemples

Exemple. Calculer la transformée de Fourier de la fonction :

$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}_+^* \\ f: & x & \mapsto & f(x) = e^{-|x|} = \left\{ \begin{array}{ccc} e^{-x} & \text{si} & x \ge 0 \\ e^x & \text{si} & x < 0 \end{array} \right.$$

$$\begin{split} \hat{f}(\alpha) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-i\alpha x} \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-|x|} e^{-i\alpha x} \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi}} \left[\int_{-\infty}^{0} e^{x} e^{-i\alpha x} \mathrm{d}x + \int_{0}^{+\infty} e^{-x} e^{-i\alpha x} \mathrm{d}x \right] \\ &= \frac{1}{\sqrt{2\pi}} \left[\int_{-\infty}^{0} e^{(1-i\alpha)x} \mathrm{d}x + \int_{0}^{+\infty} e^{-(1+i\alpha)x} \mathrm{d}x \right] \\ &= \frac{1}{\sqrt{2\pi}} \left[\frac{e^{(1-i\alpha)x}}{1-i\alpha} \Big|_{-\infty}^{0} - \frac{e^{-(1+i\alpha)x}}{1+i\alpha} \Big|_{0}^{+\infty} \right] \\ &= \frac{1}{\sqrt{2\pi}} \left[\frac{1}{1-i\alpha} \left(1 - \lim_{x \to -\infty} e^{(1-i\alpha)x} \right) - \frac{1}{1+i\alpha} \left(\lim_{x \to +\infty} e^{-(1+i\alpha)x} - 1 \right) \right] \\ &= \frac{1}{\sqrt{2\pi}} \left(\frac{1}{1-i\alpha} + \frac{1}{1+i\alpha} \right) \\ &= \frac{1}{\sqrt{2\pi}} \frac{1+i\alpha+1-i\alpha}{(1-i\alpha)(1+i\alpha)} = \frac{1}{\sqrt{2\pi}} \frac{2}{1+\alpha^2} \end{split}$$

Résultat :

$$\hat{f}: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}_+^* \\ \alpha & \mapsto & \hat{f}(\alpha) = \sqrt{\frac{2}{\pi}} \frac{1}{1+\alpha^2} \end{array}$$

Remarque. Pour calculer $\lim_{x\to-\infty}e^{(1-i\alpha)x}$:

$$\left| e^{(1-i\alpha)x} \right| = \left| e^{-i\alpha x} e^x \right| = \underbrace{\left| e^{-i\alpha x} \right|}_{=1} |e^x| = e^x$$

$$\Rightarrow \lim_{x \to -\infty} \left| e^{(1-i\alpha)x} \right| = \lim_{x \to -\infty} e^x = 0$$

$$\Rightarrow \lim_{x \to -\infty} e^{(1-i\alpha)x} = 0 + i0 = 0$$

On a aussi $\lim_{x\to+\infty} e^{-(1+i\alpha)x} = 0.$

Exemple. Soit la fonction

$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ f: & x & \mapsto & f(x) = \left\{ \begin{array}{ccc} 1 & \text{si} & x \in [-1, 1] \\ 0 & \text{sinon} \end{array} \right.$$

Calcul de la transformée de Fourier de f.

$$\begin{split} \hat{f}(\alpha) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-i\alpha x} \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-i\alpha x} \mathrm{d}x \\ &\stackrel{\alpha \neq 0}{=} -\frac{1}{\sqrt{2\pi}} \left. \frac{e^{-i\alpha x}}{i\alpha} \right|_{-1}^{1} = \frac{1}{\sqrt{2\pi}} \frac{e^{i\alpha} - e^{-i\alpha}}{i\alpha} \\ &= \frac{2}{\sqrt{2\pi}} \frac{1}{\alpha} \frac{e^{i\alpha} - e^{-i\alpha}}{2i} = \sqrt{\frac{2}{\pi}} \frac{\sin \alpha}{\alpha} \quad \text{si } \alpha \neq 0 \end{split}$$

Pour $\alpha = 0$:

$$\hat{f}(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-i0x} dx = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} dx = \frac{1}{\sqrt{2\pi}} x \Big|_{-1}^{1} = \sqrt{\frac{2}{\pi}}$$

Résultat:

$$\hat{f}: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ \hat{f}: & & \\ \alpha & \mapsto & \hat{f}(\alpha) = \begin{cases} \sqrt{\frac{2}{\pi}} \frac{\sin \alpha}{\alpha} & \text{si} & \alpha \neq 0 \\ \sqrt{\frac{2}{\pi}} & \text{si} & \alpha = 0 \end{cases}$$

On remarque que $\lim_{\alpha \to 0} \hat{f}(\alpha) = \lim_{\alpha \to 0} \sqrt{\frac{2}{\pi}} \frac{\sin \alpha}{\alpha} = \sqrt{\frac{2}{\pi}} = \hat{f}(0).$

 $\implies \hat{f}$ est aussi continue en $\alpha = 0$.

Autres exemples : ex. 3-4, série 1

1.3 Transformée de Fourier inverse

1.3.1 Définition

Définition. Soit $g: \mathbb{R} \to \mathbb{C}$ une fonction continue par morceaux telle que $\int_{-\infty}^{+\infty} |g(t)| dt < \infty$. La **transformée de Fourier inverse** de g est notée :

$$\mathfrak{F}^{-1}(g): \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ x & \to & \mathfrak{F}^{-1}(g)(x) \end{array}, \text{ où } \mathfrak{F}^{-1}(g)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(t) e^{itx} \mathrm{d}t.$$

1.3.2 Théorème de réciprocité (formule d'inversion)

Théorème (15.3.i, p.115). Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que f et f' soient continues par morceaux avec $\int_{-\infty}^{+\infty} |f(x)| dx < \infty$ et $\int_{-\infty}^{+\infty} |\hat{f}(\alpha)| d\alpha < \infty$. Alors $\forall x \in \mathbb{R}$, on a:

$$\mathfrak{F}^{-1}(\hat{f})(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\alpha) e^{i\alpha x} d\alpha = \frac{f(x+0) + f(x-0)}{2}$$

En particulier si f est continue en x, on a $\frac{1}{2}[f(x+0)+f(x-0)]=f(x)$ et alors :

$$f(x) = \mathfrak{F}^{-1}(\hat{f})(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\alpha) e^{i\alpha x} d\alpha$$

Autrement dit, on a $\mathfrak{F}^{-1}(\mathfrak{F}(f)) = f$. La transformée de Fourier peut être vue comme une « transformation \mathfrak{F} » inversible (une bijection) qui « agit » sur la fonction f:

$$f \xrightarrow{\mathfrak{F}} \hat{f} \xrightarrow{\mathfrak{F}^{-1}} f$$

1.3.3 Exemple d'utilisation

Exemple. Soit $f: x \mapsto f(x) = e^{-|x|} = \begin{cases} e^{-x} & \text{si } x \ge 0 \\ e^{x} & \text{si } x < 0 \end{cases}$.

La transformée de Fourier de f est (exemple 1, §1.2.2)

$$\hat{f}: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}_+^* \\ \alpha & \mapsto & \hat{f}(\alpha) = \sqrt{\frac{2}{\pi}} \frac{1}{1+\alpha^2} \end{array}$$

On remarque que $f'(x) = \begin{cases} -e^{-x} & \text{si } x \ge 0 \\ e^x & \text{si } x < 0 \end{cases}$ est continue par morceaux car :

$$\lim_{\substack{x \to 0 \\ x > 0}} f'(x) = -1 \text{ et } \lim_{\substack{x \to 0 \\ x < 0}} f'(x) = 1$$

De plus, $\int_{-\infty}^{+\infty} |\hat{f}| dx = \sqrt{\frac{2}{\pi}} \int_{-\infty}^{+\infty} \frac{d\alpha}{1+\alpha^2} d\alpha < \infty$. f est continue $\forall x \in \mathbb{R} \implies$ en appliquant le théorème de réciprocité, on a que $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\alpha) e^{i\alpha x}$, i.e. :

$$e^{-|x|} = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{2}{\pi}} \int_{-\infty}^{+\infty} \frac{e^{i\alpha x}}{1+\alpha^2} d\alpha \quad \forall x \in \mathbb{R}$$

En particulier, lorsque x = 0, on trouve :

$$1 = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{d\alpha}{1 + \alpha^2} \implies \int_{-\infty}^{+\infty} \frac{d\alpha}{1 + \alpha^2} = \pi.$$

En particulier, lorsque x = 1, on trouve :

$$e^{-1} = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{e^{i\alpha}}{1+\alpha^2} d\alpha = \frac{1}{\pi} \left[\int_{-\infty}^{+\infty} \frac{\cos \alpha}{1+\alpha^2} d\alpha + i \underbrace{\int_{-\infty}^{+\infty} \frac{\sin \alpha}{1+\alpha^2} d\alpha}_{\text{integrée sur tout l'axe}} \right]$$

$$\implies \int_{-\infty}^{+\infty} \frac{\cos \alpha}{1+\alpha^2} d\alpha = \frac{\pi}{e}$$

Conclusion : Le théorème de réciprocité permet de calculer la valeur d'intégrales généralisées.

Autre exemple : ex. 1, série 2

1.4 Propriétés de la transformée de Fourier

On considère f et $g: \mathbb{R} \to \mathbb{R}$ continues par morceaux telles que $\int_{-\infty}^{+\infty} |f(x)| \mathrm{d}x < \infty$ et $\int_{-\infty}^{+\infty} |g(x)| \mathrm{d}x < \infty$. On note indifféremment $\mathfrak{F}(f) \doteq \hat{f}$ et $\mathfrak{F}(g) \doteq \hat{g}$ les transformées de Fourier de f et de g.

Note. Les prochains résultats sont décrits dans les **théorèmes 15.2 et 15.3** aux pages 113 à 115 du livre du cours.

1.4.1 Continuité et linéarité

- $\mathfrak{F}(f)$ est continue $\forall \alpha \in \mathbb{R}$ et $\lim_{\alpha \to \pm \infty} |\mathfrak{F}(f)(\alpha)| = 0$.
- \mathfrak{F} linéaire : $\mathfrak{F}(af + bg) = a\,\mathfrak{F}(f) + b\,\mathfrak{F}(g) \quad \forall a,b \in \mathbb{R}.$

1.4.2 Transformée de Fourier du produit de convolution

Définition. Le **produit de convolution** de deux fonctions f et g est la fonction notée $f * g : \mathbb{R} \to \mathbb{R}$ définie par :

$$(f * g)(x) := \int_{-\infty}^{+\infty} f(x - t)g(t)dt$$

Remarque. On peut aussi écrire $(f*g)(x) := \int_{-\infty}^{+\infty} f(t')g(x-t')dt'$, via un changement de variable.

Résultat : on a que $\mathfrak{F}(f*g) = \sqrt{2\pi} \ \mathfrak{F}(f) \cdot \mathfrak{F}(g)$.

La transformée de Fourier du produit de convolution de deux fonctions est égale au **produit** des transformées de Fourier de chaque fonction.

Exemples : ex. 2-3, série 2

1.4.3 Transformée de Fourier de la dérivée d'une fonction

Si de plus $f \in C^1(\mathbb{R})$ et $\int_{-\infty}^{+\infty} |f'(x)| dx < \infty$, alors on a :

$$\mathfrak{F}(f')(\alpha) = i\alpha \ \mathfrak{F}(f)(\alpha) \quad \forall \alpha \in \mathbb{R}$$

On écrit aussi $\hat{f}'(\alpha) = i\alpha \ \hat{f}(\alpha)$.

La transformée de Fourier de la dérivée de f s'obtient en **multipliant par** $i\alpha$ la transformée de Fourier de f.

Plus généralement, si $f \in C^n(\mathbb{R})$ et $\int_{-\infty}^{+\infty} |f^{(k)}(x)| dx < \infty$ pour $k = 1, 2, \dots, n$, alors on a :

$$\mathfrak{F}(f^{(k)})(\alpha) = (i\alpha)^k \ \mathfrak{F}(f)(\alpha) \quad \forall \alpha \in \mathbb{R}, k = 1, 2, \dots, n$$

On écrit aussi $\widehat{f^{(k)}}(\alpha) = (i\alpha)^k \ \hat{f}(\alpha).$

Exemple: ex.3, série 2

1.4.4 Décalage

Si $a \in \mathbb{R}^*, b \in \mathbb{R}$ et $h(x) = e^{-ibx} f(ax)$, alors :

$$\mathfrak{F}(h)(\alpha) = \frac{1}{|a|}\mathfrak{F}(f)\left(\frac{\alpha+b}{a}\right)$$

1.4.5 Identité de Plancherel

Si de plus $\int_{-\infty}^{+\infty} [f(x)]^2 dx < \infty$, alors on a :

$$\int_{-\infty}^{+\infty} [f(x)]^2 dx = \int_{-\infty}^{+\infty} |\mathfrak{F}(f)(\alpha)|^2 d\alpha$$

1.4.6 Transformée de Fourier en sinus et cosinus

Si la fonction f est paire (i.e. $f(-x) = f(x) \ \forall x \in \mathbb{R}$), alors on a :

$$\mathfrak{F}(f)(\alpha) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(x) \cos(\alpha x) dx$$

qui est la transformée de Fourier en cosinus de f.

Si la fonction f est impaire (i.e. $f(-x) = -f(x) \ \forall x \in \mathbb{R}$), alors on a :

$$\mathfrak{F}(f)(\alpha) = -i\sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(x) \sin(\alpha x) dx$$

qui est la transformée de Fourier en sinus de f.

Exemples : ex.4, série 2 et ex.1, série 3

Remarque. Si de plus f' est continue par morceaux et $\int_{-\infty}^{+\infty} |\hat{f}(\alpha)| d\alpha < \infty$, alors, d'après le théorème de réciprocité, on a :

$$f(x) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} \hat{f}(\alpha) \cos(\alpha x) d\alpha \quad \text{lorsque } f \text{ est paire}$$

$$f(x) = i\sqrt{\frac{2}{\pi}} \int_0^{+\infty} \hat{f}(\alpha) \sin(\alpha x) d\alpha \quad \text{lorsque } f \text{ est impaire}$$

1.5 Esquisse de démonstrations de quelques propriétés

1.5.1 Transformée de Fourier de la dérivée d'une fonction

Démonstration. On a

$$\mathfrak{F}(f')(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x)e^{-i\alpha x} dx$$

On intègre par parties, avec $u'=f'\to u=f$ et $v=e^{-i\alpha x}\to v'=-i\alpha e^{-i\alpha x}$.

$$\implies \frac{1}{\sqrt{2\pi}} \left[f(x)e^{-i\alpha x} \Big|_{-\infty}^{+\infty} + i\alpha \int_{-\infty}^{+\infty} f(x)e^{-i\alpha x} dx \right]$$

Or, $\lim_{x \to \pm \infty} \left| f(x) e^{-i\alpha x} \right| = \lim_{x \to \pm \infty} |f(x)| = 0 \text{ car } \left| e^{-i\alpha x} \right| = 1 \quad \forall x \in \mathbb{R} \text{ et } \int_{-\infty}^{+\infty} |f(x)| \mathrm{d}x < \infty \text{ (f est sommable)}.$

$$\implies \mathfrak{F}(f')(\alpha) = i\alpha \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-i\alpha x} \mathrm{d}x = i\alpha \, \mathfrak{F}(f)(\alpha)$$

Remarque. Formule pour la dérivée de la transformée de Fourier d'une fonction :

$$\mathfrak{F}'(f)(\alpha) = (\hat{f})'(\alpha) = -i\,\mathfrak{F}\left(xf(x)\right)(\alpha)$$

Cf. ex. 2, série 3

1.5.2 Transformée de Fourier du produit de convolution

Démonstration. On a

$$\mathfrak{F}(f*g)(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (f*g)(x)e^{-i\alpha x} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(x-t)g(t) dt \right] e^{-i\alpha x} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(x-t)e^{-i\alpha x} dx \right] g(t) dt$$

$$\stackrel{\text{cdv}}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(y)e^{-i\alpha(y+t)} dy \right] g(t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(y)e^{-i\alpha y} dy \int_{-\infty}^{+\infty} g(t)e^{-i\alpha t} dt$$

$$= \sqrt{2\pi} \, \mathfrak{F}(f)(\alpha) \cdot \mathfrak{F}(g)(\alpha)$$

1.5.3 Identité de Plancherel

Démonstration. Soit $t \in \mathbb{R}$. On remarque que

$$\int_{-\infty}^{+\infty} f(x)g(x+t)dx = \int_{-\infty}^{+\infty} f(x) \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \mathfrak{F}(g)(\alpha) e^{i\alpha(x+t)} d\alpha \right] dx$$

$$= \int_{-\infty}^{+\infty} \mathfrak{F}(g)(\alpha) \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{i\alpha x} dx \right] e^{i\alpha t} d\alpha$$

$$= \int_{-\infty}^{+\infty} \mathfrak{F}(g)(\alpha) \overline{\mathfrak{F}(f)(\alpha)} e^{i\alpha t} d\alpha$$

En posant t = 0 et en choisissant g = f, on obtient :

$$\int_{-\infty}^{+\infty} [f(\alpha)]^2 dx = \int_{-\infty}^{+\infty} |\mathfrak{F}(f)(\alpha)|^2 d\alpha$$

1. Par le théorème de réciprocité, §1.3.2

1.6 Exemples d'utilisation de la transformée de Fourier

a) Trouver une solution particulière y(x) d'une équation différentielle du type :

$$\lambda y''(x) + \omega y(x) = f(x) \quad \forall x \in \mathbb{R} \quad \lambda, \omega \in \mathbb{R} \quad f : \mathbb{R} \to \mathbb{R}$$

qui est l'équation de l'oscillateur forcé (f est une fonction donnée).

Méthode : on écrit la transformée de Fourier de l'équation différentielle :

$$\mathfrak{F}(\lambda y'' + \omega y)(\alpha) = \mathfrak{F}(f)(\alpha)$$

$$\iff \lambda \, \mathfrak{F}(y'')(\alpha) + \omega \, \mathfrak{F}(y)(\alpha) = \mathfrak{F}(f)(\alpha)$$

$$\iff \lambda \, \left(-\alpha^2\right) \, \mathfrak{F}(y)(\alpha) + \omega \, \mathfrak{F}(y)(\alpha) = \mathfrak{F}(f)(\alpha)$$

$$\iff \left(\omega - \lambda \alpha^2\right) \, \mathfrak{F}(y)(\alpha) = \mathfrak{F}(f)(\alpha)$$

$$\iff \mathfrak{F}(y)(\alpha) = \frac{\mathfrak{F}(f)(\alpha)}{\omega - \lambda \alpha^2}$$

On utilise le **théorème de réciprocité** (§1.3.2) : la solution particulière y(x) s'obtient en calculant la transformée de Fourier inverse de la fonction de la variable α définie par $\frac{\mathfrak{F}(f)(\alpha)}{\omega - \lambda \alpha^2}$.

- b) On utilise la transformée de Fourier pour résoudre des équations intégrales du type produit de convolution (cf. ex. 2 et 3, série 3).
- c) Problèmes statistiques avec loi normale.

fonction gaussienne $f(x) = e^{-\frac{x^2}{2}} \quad \forall x \in \mathbb{R}$

Ex. 4, série 1: $\hat{f}(\alpha) = e^{-\frac{\alpha^2}{2}}$ est aussi une fonction gaussienne.

d) Mécanique quantique

f(x): position de la particule quantique

 $\tilde{f}(p)$: impulsion de la particule quantique

e) Résolution de l'équation de la chaleur pour une barre conductrice de longueur **infinie**.

Rappel: cas d'une barre de longueur finie

Soit une barre de longueur $0 < L < \infty$. On note u(x,t) la fonction qui décrit la température de la barre au point x et à l'instant t.

L'évolution de la température u(x,t) le long de la barre est modélisée par l'équation de la chaleur donnée par :

$$\frac{\partial}{\partial t}u(x,t) = a^2 \frac{\partial^2}{\partial x^2}u(x,t)$$
 pour $x \in]0, L[$ et $t > 0, \quad a \neq 0$

où a est un coefficient thermique. On impose :

— **deux** conditions limites $u(0,t) = u(L,t) = 0 \quad \forall t > 0$,

— une condition initiale u(x,0) = f(x) pour $x \in]0, L[.^2]$

Problème : trouver une solution u(x,t) satisfaisant ces conditions.

Cas d'une barre de longueur infinie

Il n'y a plus de conditions aux limites concernant les extrémités de la barre. Le problème est :

$$\left\{ \begin{array}{rcl} \frac{\partial}{\partial t} u(x,t) & = & a^2 \frac{\partial^2}{\partial x^2} u(x,t) \\ u(x,0) & = & f(x) \end{array} \right.$$

Pour $x \in \mathbb{R}$ et t > 0, avec **une** condition initiale, valable $\forall x \in \mathbb{R}$ où $f : \mathbb{R} \to \mathbb{R}$ est C^1 telle que f et la transformée de Fourier de f soient sommables.

Résolution

 1^{re} étape : on écrit la transformée de Fourier de l'équation de la chaleur en considérant u(x,t) comme fonction de la variable x (t joue le rôle d'un paramètre). On obtient :

$$\mathfrak{F}\left(\frac{\partial u}{\partial t}\right)(\alpha, t) = a^2 \mathfrak{F}\left(\frac{\partial^2 u}{\partial x^2}\right)(\alpha, t) \text{ avec } \mathfrak{F}(u)(\alpha, 0) = \mathfrak{F}(f)(\alpha)$$

Avec la notation:

$$v(\alpha, t) = (\mathfrak{F}u)(\alpha, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u(x, t)e^{-i\alpha x} dx$$

On obtient à gauche:

$$\mathfrak{F}\left(\frac{\partial u}{\partial t}\right)(\alpha, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{\partial u}{\partial t}(x, t) e^{-i\alpha x} \mathrm{d}x$$
$$= \frac{\partial}{\partial t} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} u(x, t) e^{-i\alpha x} \mathrm{d}x \right]$$
$$= \frac{\partial}{\partial t} v(\alpha, t)$$

^{2.} Dans le milieu de l'ingénierie, on sous-entend souvent qu'une condition **limite** l'est aux positions, et qu'une condition **initiale** l'est au temps

Et à droite :

$$\mathfrak{F}\left(\frac{\partial^2 u}{\partial x^2}\right)(\alpha, t) \stackrel{3}{=} (i\alpha)^2 \mathfrak{F}(u)(\alpha, t)$$
$$= -\alpha^2 v(\alpha, t)$$

L'équation devient :

$$\frac{\partial}{\partial t}v(\alpha,t) = -a^2\alpha^2v(\alpha,t)$$

C'est une équation différentielle du **premier ordre** pour la fonction $v(\alpha,t)$ par rapport à la variable t (α joue le rôle de paramètre). La solution est :

$$v(\alpha, t) = v(\alpha, 0)e^{-a^2\alpha^2t} = \mathfrak{F}(f)(\alpha)e^{-a^2\alpha^2t}$$

2º étape : pour obtenir la solution u(x,t), on calcule la transformée de Fourier inverse de $v(\alpha,t)$ en considérant t comme paramètre. On obtient :

$$u(x,t) = \mathfrak{F}^{-1}(v)(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} v(\alpha,t)e^{i\alpha x} d\alpha$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \mathfrak{F}(f)(\alpha)e^{-a^2\alpha^2 t}e^{i\alpha x} d\alpha$$

comme solution de l'équation de la chaleur pour une barre de longueur infinie. $Exemple: ex. \ 3, \ série \ 3$

^{3.} Par la propriété du §1.4.3, concernant la transformée de Fourier de la dérivée d'une fonction

Chapitre 2

Fonctions holomorphes et équations de Cauchy-Riemann

2.1 Introduction

2.1.1 Motivation

But : étendre l'étude de fonctions réelles (du type $f: \mathbb{R} \to \mathbb{R}$) à des fonctions qui dépendent d'**une** variable complexe qui sont à valeurs complexes (du type $f: \mathbb{C} \to \mathbb{C}$ où \mathbb{C} est l'ensemble des nombres complexes).

Rôle : établir les notions de limite, de continuité, de dérivabilité et d'intégration dans \mathbb{C} .

Intérêt : méthodes puissantes qui permettent de calculer facilement des intégrales réelles compliquées.

Cf. ex. 4, série 3

2.1.2 Rappel sur les nombres complexes

- C désigne l'ensemble des nombres complexes
- $-z \in \mathbb{C} \iff z = x + iy \text{ avec } x = \text{Re } z \in \mathbb{R} \text{ et } y = \text{Im } z \in \mathbb{R} \text{ et } i^2 = -1$
- $\mathbb{C}^* = \mathbb{C} \setminus \{0\} \text{ où } 0 = 0 + i0$
- complexe conjugué de $z = \overline{z} = x iy$
- module de $z \in \mathbb{C}$ $|z| = \sqrt{x^2 + y^2} \in \mathbb{R}_+$
- représentation polaire de $z \in \mathbb{C}^*$ $z = |z| e^{i\theta} = |z| (\cos \theta + i \sin \theta)$
- θ est appelé l'argument de z et est noté arg z

Remarque. Pour $z \in \mathbb{C}^*$:

- L'argument de z est défini à $2k\pi$ près avec $k \in \mathbb{Z}$
- Par convention, la **valeur (détermination) principale** de l'argument de z est l'unique angle $\theta \in]-\pi;\pi]$ tel que $\frac{z}{|z|}=\cos\theta+i\sin\theta$

2.2 Fonctions complexes

2.2.1 Définitions

Définition. Une fonction d'une variable complexe à valeur dans $\mathbb C$ s'écrit :

$$f: \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z = x + iy & \longmapsto & f(z) = u(x,y) + iv(x,y) \end{array}$$

οù

$$u: \begin{array}{cccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} & & \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & u(x,y) & & (x,y) & \longmapsto & v(x,y) \end{array}$$

sont deux fonctions à valeurs réelles qui s'appellent respectivement la partie réelle de f (on note $u = \operatorname{Re} f$) et la partie imaginaire de f (on note $v = \operatorname{Im} f$).

Remarque. Les variables $x \in \mathbb{R}$ et $y \in \mathbb{R}$ des fonctions u et v sont les parties réelles et imaginaires de la variable $z \in \mathbb{C}$ de la fonction f.

2.2.2 Exemples

Exemple.

1)

$$f: \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z = x + iy & \longmapsto & f(z) = \overline{z} = x - iy \end{array}$$

On a u(x, y) = x et v(x, y) = -y.

2)

$$f: \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z = x + iy & \longmapsto & f(z) = z^2 = (x + iy)^2 = x^2 - y^2 + 2ixy \end{array}$$

On a $u(x, y) = x^2 - y^2$ et v(x, y) = 2xy.

3)

$$f: z = x + iy \longmapsto f(z) = \frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{(x + iy)(x - iy)} = \frac{x - iy}{x^2 + y^2}$$

On a $u(x,y) = \frac{x}{x^2 + y^2}$ et $v(x,y) = -\frac{y}{x^2 + y^2}$.

4) Pour $z=x+iy\in\mathbb{C},$ la fonction exponentielle est définie par :

$$e^z = e^{x+iy} := e^x(\cos y + i\sin y) \in \mathbb{C}^*$$

On a $u(x,y) = e^x \cos y$ et $v(x,y) = e^x \sin y$.

Remarque. Contrairement au cas réel, e^z n'est pas bijective sur \mathbb{C} car $e^{z+2ik\pi}=e^z$ $\forall z\in\mathbb{Z}\ (ex.4,\ série\ 3)$. En choisissant y tel que $-\pi< y\leq \pi$, la fonction e^z est bijective sur l'ensemble $\{z\in\mathbb{C}: \operatorname{Im} z\in]-\pi;\pi]\}$. Avec cette convention, c'est la « restriction bijective de l'exponentielle complexe ».

5) Pour $z \in \mathbb{C}^*$, la fonction logarithme est définie par :

$$\log z := \ln|z| + i \arg z$$

avec le choix de la valeur principale arg $z \in]-\pi;\pi[$. Avec cette convention, c'est la « détermination principale du logarithme complexe » (correspond à la fonction réciproque de la restriction bijective de l'exponentielle).

En écrivant z = x + iy, on a $u(x,y) = \ln|x + iy| = \ln\sqrt{x^2 + y^2}$ et v(x,y) =arg(x+iy).

Remarque.

a) Les formules valables en analyse réelle ne sont pas nécessairement valables en analyse complexe. Par exemple, en général, on a $\log(z_1z_2) \neq \log z_1 + \log z_2$. En effet, pour $z_1 = -1$ et $z_2 = -1$:

$$\log[(-1)(-1)] = \log(1) := \ln|1| + i\arg(1) = 0 + i0 = 0$$

mais

$$\log(-1) + \log(-1) = 2\log(-1) := 2[\ln|-1| + i\arg(-1)] = 2i\pi \neq 0$$

b) La fonction $\log z$ n'est pas continue sur le demi-axe réel négatif. En effet, par exemple pour z = -1, on considère t > 0:

$$z_t^+ = -1 + it$$
 et $z_t^- = -1 - it$

On a $\lim_{t\to 0^+} z_t^+ = -1$ et $\lim_{t\to 0^+} z_t^- = -1$. Note. Pour z=x+iy, on a la valeur principale :

$$\arg z = \begin{cases} \pi + \operatorname{Arctg} \frac{y}{x} & \text{si} \quad x < 0, y > 0 \\ -\pi + \operatorname{Arctg} \frac{y}{x} & \text{si} \quad x < 0, y < 0 \end{cases}$$

Avec la définition du logarithme, on a :

$$\lim_{t \to 0^{+}} \log(z_{t}^{+}) = \lim_{t \to 0^{+}} \ln|-1 + it| + i \lim_{t \to 0^{+}} \arg(-1 + it)$$

$$= \lim_{t \to 0^{+}} \ln \sqrt{1 + t^{2}} + i \lim_{t \to 0^{+}} [\pi + \operatorname{Arctg}(-t)]$$

$$= \ln(1) + i\pi = 0 + i\pi = i\pi$$

$$\begin{split} \lim_{t \to 0^+} \log(z_t^-) &= \lim_{t \to 0^+} \ln|-1 - it| + i \lim_{t \to 0^+} \arg(-1 - it) \\ &= \lim_{t \to 0^+} \ln\sqrt{1 + t^2} + i \lim_{t \to 0^+} \left[-\pi + \operatorname{Arctg}(t) \right] \\ &= \ln(1) - i\pi = 0 - i\pi = -i\pi \end{split}$$

Conclusion : $\lim_{t\to 0^+}\log(z_t^+)\neq \lim_{t\to 0^+}\log(z_t^-)\Longrightarrow$ la fonction $\log z$ n'est pas continue en z=-1. De façon analogue, on obtient le même résultat $\forall z\in]-\infty;0[.\log z$ n'est pas continue pour $z\in]-\infty;0[$

Résultat final : En excluant le demi-axe réel négatif, on a que la fonction $\log z$ est continue sur l'ensemble :

$$V=\mathbb{C} \ \setminus \]-\infty;0]=\mathbb{C} \setminus \{z\in\mathbb{C}: \operatorname{Im} z=0, \operatorname{Re} z\leq 0\}$$

C'est la « restriction continue du logarithme complexe ».

6) Pour $z \in \mathbb{C}$, on définit les fonctions trigonométriques et hyperboliques :

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\cosh z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sinh z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\sinh z = \frac{e^{iz} - e^{-iz}}{2}$$

Cf. ex. 1, série 4

2.3 Limites, continuité, dérivabilité

2.3.1 Définitions

Définition (9.1, p.67). Les notions de topologie (ouverts, fermés, etc.), de limite, de continuité et de dérivabilité sont analogues à celles de l'analyse réelle. Soit $f: \mathbb{C} \to \mathbb{C}$, alors :

- 1) f possède une limite $l \in \mathbb{C}$ en $z_0 \in \mathbb{C}$ (notation $\lim_{z \to z_0} f(z) = l$) si : $\forall \, \epsilon > 0 \, \exists \, \delta > 0 : \, 0 < |z z_0| < \delta \implies |f(z) l| < \epsilon$
- 2) f est continue en $z_0 \in \mathbb{C}$ si $\lim_{z \to z_0} f(z) = f(z_0)$
- 3) f est dérivable en $z_0 \in \mathbb{C}$ si $\lim_{z \to z_0} \frac{f(z) f(z_0)}{z z_0}$ existe et est finie. La limite s'appelle la dérivée de f en z_0 et est notée $f'(z_0)$. Les règles de dérivation établies dans \mathbb{R} sont valables dans \mathbb{C} .
- 4) Étant donné un ouvert $V \subset \mathbb{C}$, on dit que la fonction $f: V \to \mathbb{C}$ est **holomorphe** (ou analytique complexe) dans V si f est définie et dérivable $\forall z \in V$.

2.3.2 Équations de Cauchy-Riemann

Remarque (sur un abus de notation). Étant donné un ouvert $V \subset \mathbb{C}$, on l'identifie souvent au sous-ensemble correspondant de \mathbb{R}^2 , i.e. on écrit indifféremment $z = x + iy \in V (\in \mathbb{C})$ ou $(x, y) \in V (\in \mathbb{R}^2)$ de façon abusive.

Théorème (de Cauchy-Riemann; 9.2, p.67). Soit $V \in \mathbb{C}$ un ouvert et soit une fonction $f: V \to \mathbb{C}$, où $u: V \to \mathbb{R}$ et $v: V \to \mathbb{R}$ sont respectivement les parties réelles et imaginaires de f. Alors les deux affirmations suivantes sont équivalentes :

- 1) f est holomorphe dans V
- 2) Les fonctions $u, v \in C^1(V)$ et satisfont les équations de Cauchy-Riemann :

$$\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y) \quad , \quad \frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y)$$

En particulier, si f est holomorphe dans V, alors on a:

$$f'(z) = \frac{\partial u}{\partial x}(x, y) + i\frac{\partial v}{\partial x}(x, y) = \frac{\partial v}{\partial y}(x, y) - i\frac{\partial u}{\partial y}(x, y) \quad \forall z = x + iy \in V$$

Remarque.

- 1) Démonstration du Théorème : voir §2.3.4 (fin du chapitre)
- 2) Les équations de Cauchy-Riemann sont une condition nécessaire pour que f soit holomorphe mais elles ne sont pas une condition suffisante. Si u et v sont continûment dérivables $(u, v \in C^1(V))$, alors elles deviennent une condition suffisante.
- 3) Utilité du Théorème : pour qu'une fonction f soit holomorphe dans un ouvert V, il suffit de vérifier que les équations de Cauchy-Riemann pour $u = \text{Re } f \in C^1(V)$ et $v = \text{Im } f \in C^1(V)$ sont satisfaites dans V. Si les équations de Cauchy-Riemann ne sont pas vérifiées en $(x_0, y_0) \in V$, alors $f(z_0)$ n'est pas holomorphe en $z_0 = x_0 + iy_0$.
- 4) Pour alléger la notation, on écrit :

$$u_x = \frac{\partial u}{\partial x}, \quad u_y = \frac{\partial u}{\partial y}, \quad v_x = \frac{\partial v}{\partial x}, \quad v_y = \frac{\partial v}{\partial y}$$

Équations de Cauchy-Riemann:

$$u_x = v_y$$
 , $u_y = -v_x$

Exemples : ex. 1 à 4, série 4

2.3.3 Exemples

Exemple (1).

$$f(z) = z^2$$
 définie pour $z = x + iy \in \mathbb{C}$.

$$f(z) = (x + iy)^2 = x^2 - y^2 + i2xy$$
.

$$\implies u(x,y) = x^2 - y^2, \quad v(x,y) = 2xy$$

$$\begin{array}{ll} u_x(x,y) = 2x & u_y(x,y) = -2y \\ v_x(x,y) = 2y & v_y(x,y) = 2x \end{array} \right\} \implies \begin{array}{ll} u_x = v_y \\ u_y = -v_x \end{array} \forall (x,y) \in \mathbb{C}$$

CR (Cauchy-Riemann) satisfaites $\forall z \in \mathbb{C} \implies f$ holomorphe dans \mathbb{C} . De plus : $f'(z) = u_x(x,y) + iv_x(x,y) = 2x + 2iy = 2(x+iy) = 2z$.

Exemple (2).

$$f(z) = \overline{z}$$
 définie pour $z = x + iy \in \mathbb{C}$.

$$f(z) = \overline{x + iy} = x - iy.$$

$$\implies u(x,y) = x, \quad v(x,y) = -y$$

$$\begin{array}{ll} u_x(x,y) = 1 & u_y(x,y) = 0 \\ v_x(x,y) = 0 & v_y(x,y) = -1 \end{array} \right\} \implies \begin{array}{ll} u_x \neq v_y \\ u_y = -v_x \end{array}$$

CR non satisfaites \implies f n'est pas holomorphe dans \mathbb{C} .

Exemple (3).

$$f(z) = e^z$$
 définie pour $z = x + iy \in \mathbb{C}$.

$$f(z) = e^x(\cos y + i\sin y) = e^x\cos y + ie^x\sin y$$

$$\implies u(x,y) = e^x \cos y, \quad v(x,y) = e^x \sin y$$

$$\begin{aligned} u_x(x,y) &= e^x \cos y & u_y(x,y) &= -e^x \sin y \\ v_x(x,y) &= e^x \sin y & v_y(x,y) &= e^x \cos y \end{aligned} \right\} \implies \begin{aligned} u_x &= v_y \\ u_y &= -v_x \end{aligned}$$

CR satisfaites \implies f holomorphe dans \mathbb{C}

$$f'(z) = u_x(x,y) + iv_x(x,y) = e^x \cos y + ie^x \sin y := e^z$$

Exemple (4).

 $f(z) = \log z = \ln |z| + i \arg z$ avec la détermination principale définie pour V = $\mathbb{C}\setminus]-\infty;0]=\mathbb{C}\setminus \{z\in\mathbb{C}: \operatorname{Im} z=0, \operatorname{Re} z\leq 0\}. \log z \text{ est holomorphe dans } V \text{ et on a : }$

$$f'(z) = \frac{1}{z} \ \forall z \in V$$

En effet : preuve pour le demi-plan $D = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$. Pour z = x + iy avec x > 0 et $y \in \mathbb{R}$. On a : $|z| = \sqrt{x^2 + y^2}$ et arg $z = \operatorname{Arctg} \frac{y}{x}$. Donc $\log z := \ln \sqrt{x^2 + y^2} + i \operatorname{Arctg} \frac{y}{x}$.

$$\implies u(x,y) = \ln \sqrt{x^2 + y^2}, \quad v(x,y) = \operatorname{Arctg} \frac{y}{x}$$

$$u_x(x,y) = \frac{\frac{1}{2} \frac{2x}{\sqrt{x^2 + y^2}}}{\frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}} = \frac{x}{x^2 + y^2} \quad u_y(x,y) = \frac{\frac{1}{2} \frac{2y}{\sqrt{x^2 + y^2}}}{\frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}} = \frac{y}{x^2 + y^2}$$

$$v_x(x,y) = \frac{\frac{y}{x^2}}{\frac{y}{x^2}} = -\frac{y}{x^2 + y^2} \quad v_y(x,y) = \frac{\frac{1}{2} \frac{2y}{\sqrt{x^2 + y^2}}}{\frac{1}{x^2}} = \frac{y}{x^2 + y^2}$$

$$u_y = -v_x$$

CR satisfaites $\implies f$ holomorphe dans D.

De plus:

$$f'(z) = u_x(x,y) + iv_x(x,y) = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$$
$$= \frac{x - iy}{x^2 + y^2} = \frac{x - iy}{(x + iy)(x - iy)} = \frac{1}{x + iy} = \frac{1}{z}$$

Cf. ex. 1, série 5

2.3.4 Démonstration des équations de Cauchy-Riemann

 $D\'{e}monstration.$ ' \Longrightarrow '

Soient $z_0 = x_0 + iy_0 \in V$ et $z = (x_0 + \alpha) + i(y_0 + \beta) \in V$ avec $\alpha, \beta \in \mathbb{R}$. Puisque f est holomorphe dans V, alors $f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ existe $\forall z_0 \in V$ On a :

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{[u(x_0 + \alpha, y_0 + \beta) + iv(x_0 + \alpha, y_0 + \beta)] - [u(x_0, y_0) + iv(x_0, y_0)]}{\alpha + i\beta}$$

a) En posant $\beta = 0$, on obtient :

$$f'(z_0) = \lim_{\alpha \to 0} \frac{[u(x_0 + \alpha, y_0) + iv(x_0 + \alpha, y_0)] - [u(x_0, y_0) + iv(x_0, y_0)]}{\alpha}$$

$$= \lim_{\alpha \to 0} \frac{u(x_0 + \alpha, y_0) - u(x_0, y_0)}{\alpha} + i \lim_{\alpha \to 0} \frac{v(x_0 + \alpha, y_0) - v(x_0, y_0)}{\alpha}$$

$$= u_x(x_0, y_0) + iv_x(x_0, y_0)$$

b) En posant $\alpha = 0$, on obtient :

$$f'(z_0) = \lim_{\beta \to 0} \frac{u(x_0, y_0 + \beta) - u(x_0, y_0)}{i\beta} + i \lim_{\beta \to 0} \frac{v(x_0, y_0 + \beta) - v(x_0, y_0)}{i\beta}$$
$$= \frac{1}{i} u_y(x_0, y_0) + v_y(x_0, y_0) = v_y(x_0, y_0) - i u_y(x_0, y_0)$$

Les deux limites existent et sont identiques.

$$\implies u_x(x_0, y_0) = v_y(x_0, y_0), \quad u_y(x_0, y_0) = -v_x(x_0, y_0) \quad \text{(équations de CR)}$$

' \Leftarrow ' On utilise les développements de Taylor au 1er ordre de u(x,y) et v(x,y) pour montrer que $f'(z_0)$ existe.

Cf. ex. 5, série 4 et ex. 2-4, série 5
$$\Box$$

Remarque (finale). Affirmer que $f: \mathbb{C} \to \mathbb{C}$ est dérivable en z = x + iy n'est pas équivalent au fait que le champ vectoriel $\tilde{f}: \mathbb{R}^2 \to \mathbb{R}^2$ est continûment dérivable dans

le contexte usuel de \mathbb{R}^2 (i.e matrice jacobienne $\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$ de \tilde{f} existe avec u_x, u_y, v_x, v_y

Par exemple, $f(z) = \overline{z}$ n'est pas holomorphe dans \mathbb{C} : si $z_0 = x_0 + iy_0$ et z = $(x_0 + \alpha) + i(y_0 + \beta)$, alors on a:

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{(x_0 + \alpha) - i(y_0 + \beta) - x_0 + iy_0}{(x_0 + \alpha) + i(y_0 + \beta) - x_0 - iy_0} = \frac{\alpha - i\beta}{\alpha + i\beta} = \begin{cases} -1 & \text{si } \alpha = 0\\ 1 & \text{si } \beta = 0 \end{cases}$$

$$\lim_{\alpha \to 0} \frac{f(z) - f(z_0)}{z - z_0} = -1, \quad \lim_{\beta \to 0} \frac{f(z) - f(z_0)}{z - z_0} = 1$$

Mais
$$\tilde{f}: \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (u(x,y),v(x,y)) = (x,-y) \end{array}$$

$$\begin{split} &\Longrightarrow f'(z_0) \text{ n'existe pas.} \\ \text{Mais } \tilde{f}: & \mathbb{R}^2 &\longrightarrow \mathbb{R}^2 \\ \text{($x,y)$} &\longmapsto & (u(x,y),v(x,y)) = (x,-y) \\ &\Longrightarrow & \text{Matrice jacobienne} \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ existe } \forall (x,y) \in \mathbb{R}^2 \end{split}$$

Chapitre 3

Théorème et formule intégrale de Cauchy

3.1 Intégration complexe

3.1.1 Définitions et notations

Définition (10.1, p.73).

- 1) $\Gamma \subset \mathbb{C}$ est une **courbe simple régulière** s'il existe un intervalle $[a,b] \subset \mathbb{R}$ et une fonction $\gamma : \begin{bmatrix} [a,b] & \longrightarrow & \mathbb{C} \\ t & \longmapsto & \gamma(t) = \gamma_1(t) + i\gamma_2(t) \end{bmatrix}$ telle que :
 - $\Gamma = \gamma([a, b])$, la courbe Γ est l'image de γ
 - $-\gamma(t_1) = \gamma(t_2) \implies t_1 = t_2 \ \forall t_1, t_2 \in [a, b]$
 - $-\gamma \in C^1([a,b])$
 - $--|\gamma'(t)| = \left[\gamma_1'(t)^2 + \gamma_2'(t)^2\right]^{\frac{1}{2}} \neq 0 \ \forall t \in [a,b]$

 γ s'appelle une paramétrisation de Γ décrite par $t \in [a, b]$.

- 2) $\Gamma \subset \mathbb{C}$ est une courbe simple régulière **fermée** si de plus $\gamma(\alpha) = \gamma(\beta)$.
- 3) $\Gamma \subset \mathbb{C}$ est une courbe simple régulière **par morceaux** si $\exists \Gamma_1, \Gamma_2, \dots, \Gamma_k$ des courbes simples régulières telles que $\Gamma = \bigcup_{j=1}^k \Gamma_j$.

Note (Abus de langage et de notation). En analyse complexe, on identifie souvent la courbe Γ à sa paramétrisation γ . On dit « soit γ une courbe... » au lieu de « soit Γ une courbe... »

4) Si $\Gamma \subset \mathbb{C}$ est une courbe simple fermée régulière (par morceaux) de paramétrisation γ , on note **l'intérieur** int Γ (ou aussi int γ) l'ensemble ouvert et borné $V \in \mathbb{C}$ dont le bord est Γ (i.e. tel que $\partial V = \Gamma$).

Pour l'adhérence de V, on écrit $\overline{\operatorname{int} \gamma} = \operatorname{int} \gamma \cup \partial V$.

Note. γ est dite orientée **positivement** si le sens de parcours laisse l'intérieur int γ à gauche.

5) Soit $\Gamma \subset \mathbb{C}$ une courbe simple régulière de paramétrisation $\gamma : [a, b] \to \mathbb{C}$ et soit $f : \Gamma \to \mathbb{C}$ une fonction continue. L'**intégrale** de f le long de Γ est définie par :

$$\int_{\Gamma} f(z) dz = \int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

6) Si la courbe $\Gamma = \bigcup_{j=1}^k \Gamma_j$ est simple régulière par morceaux, alors :

$$\int_{\Gamma} f(z) dz = \sum_{j=1}^{k} \int_{\Gamma_k} f(z) dz$$

3.1.2 Exemples

Exemple. Calculer $\int_{\gamma} f(z) dz$ pour $f(z) = z^2$ et γ le demi-cercle unité de rayon 1 centré à l'origine.

$$\gamma: \begin{array}{ccc} [0;\pi] & \longrightarrow & \mathbb{C} \\ \theta & \longmapsto & \gamma(\theta) = e^{i\theta} = \cos\theta + i\sin\theta \end{array}$$
$$\gamma'(\theta) = -\sin\theta + i\cos\theta = i(\cos\theta + i\sin\theta) = ie^{i\theta}$$

$$\implies \int_{\gamma} f(z) dz = \int_{0}^{\pi} f(\gamma(\theta)) \gamma'(\theta) d\theta = \int_{0}^{\pi} \left(e^{i\theta} \right)^{2} i e^{i\theta} d\theta$$
$$= i \int_{0}^{\pi} e^{3i\theta} d\theta = \frac{1}{3} e^{3i\theta} \Big|_{0}^{\pi} = \frac{1}{3} \left[e^{3i\pi} - e^{i0} \right]$$
$$= \frac{1}{3} (-1 - 1) = -\frac{2}{3}$$

Autres exemples : ex.5, série 5

3.2 Théorème de Cauchy

3.2.1 Théorème

Théorème (10.2, p.73). Soient $D \subset \mathbb{C}$ un domaine simplement connexe, $f: D \to \mathbb{C}$ une fonction holomorphe dans D et γ une courbe simple régulière fermée contenue dans D. Alors :

$$\int_{\gamma} f(z) \mathrm{d}z = 0$$

Cf. ex. 6, série 5

Terminologie. On appelle domaine simplement connexe un ensemble ouvert $D \subset \mathbb{C}$ qui « n'a pas de trous ».

3.2.2 Exemples

Exemple (1). $D = \mathbb{C}$, $f(z) = z^2$ holomorphe dans D et γ une courbe simple fermée régulière (par morceaux) quelconque dans D, alors :

Thm. de Cauchy
$$\implies \int_{\gamma} z^2 dz = 0$$

Par exemple, si $\gamma(\theta) = e^{i\theta}$ avec $\theta \in [0, 2\pi[$ (cercle unité centré à l'origine), on a bien :

$$\int_{\gamma} z^2 dz = \int_0^{2\pi} \left| e^{i\theta} \right|^2 i e^{i\theta} d\theta = i \int_0^{2\pi} e^{3i\theta} d\theta = \frac{1}{3} e^{3i\theta} \Big|_0^{2\pi} = \frac{1}{3} \left[e^{6i\pi} - 1 \right] = \frac{1}{3} \left[1 - 1 \right] = 0$$

Exemple (2). $f(z) = \frac{1}{z}$

a) $D = \mathbb{C}$ Le Thm. de Cauchy ne s'applique pas car f n'est pas holomorphe en t = 0. $D = \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ Le Thm. de Cauchy ne s'applique pas non plus car D n'est pas simplement connexe. Par exemple, si γ le cercle unité centré en z = 0, alors :

$$\int_{\gamma} f(z) dz = \int_{\gamma} \frac{1}{z} dz = \dots = 2i\pi \neq 0$$

b) $D = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ Le Thm. de Cauchy s'applique car D est simplement connexe et f est holomorphe dans D.

Thm. de Cauchy
$$\implies \int_{\gamma} \frac{1}{z} dz = 0$$

pour $\gamma\subset D$ courbe simple fermée régulière quelconque. Par exemple, si γ est le cercle unité centré en z=2, alors :

$$\int_{\gamma} \frac{1}{z} \mathrm{d}z = \dots = 0$$

Cf. ex.4, série 6, application avec variantes de $\gamma(\theta)=e^{i\theta}$

3.2.3 Démonstration du théorème de Cauchy

Démonstration. Soient $\gamma \subset D$ une courbe simple régulière fermée

$$\gamma: \begin{array}{ccc} [a,b] & \longrightarrow & \mathbb{C} \\ t & \longmapsto & \gamma(t) = \alpha(t) + i\beta(t) \end{array}$$

et f une fonction holomorphe dans D définie par f(x+iy)=u(x,y)+iv(x,y). On a :

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

$$= \int_{a}^{b} \left[u(\alpha(t), \beta(t)) + iv(\alpha(t), \beta(t)) \right] \cdot \left[\alpha'(t) + i\beta'(t) \right] dt$$

$$= \int_{a}^{b} \left[u(\alpha(t), \beta(t)) \alpha'(t) - v(\alpha(t), \beta(t)) \beta'(t) \right] dt$$

$$+ i \int_{a}^{b} \left[u(\alpha(t), \beta(t)) \beta'(t) + v(\alpha(t), \beta(t)) \alpha'(t) \right] dt$$

$$= \underbrace{\int_{a}^{b} \left(u(\alpha(t), \beta(t)) - v(\alpha(t), \beta(t)) \alpha'(t) \right)}_{I_{1}} dt$$

$$+ i \underbrace{\int_{a}^{b} \left(v(\alpha(t), \beta(t)) - v(\alpha(t), \beta(t)) - v(\alpha(t), \beta(t)) \right)}_{I_{2}} dt$$

$$+ i \underbrace{\int_{a}^{b} \left(v(\alpha(t), \beta(t)) - v(\alpha(t), \beta(t)) - v(\alpha(t), \beta(t)) \right)}_{I_{2}} dt$$

On a que $I_1 = \int_{\gamma} F \cdot d\ell$ est l'intervalle curviligne le long de γ du champ vectoriel $F: \mathbb{R}^2 \to \mathbb{R}^2$ défini par F(x,y) = (u(x,y), -v(x,y)). En appliquant le Thm. de Green, on obtient :

$$I_1 = \iint_{\text{int }\gamma} \operatorname{rot} F(x, y) \, dx dy = \iint_{\text{int }\gamma} \left[-v_x(x, y) - u_y(x, y) \right] dx dy$$

f holomorphe dans D et $\gamma \subset D \xrightarrow{\text{Thm}} v_x(x,y) + u_y(x,y) = 0 \ \forall (x,y) \in \text{int } \gamma \implies I_1 = 0$

On a que $I_2 = \int_{\gamma} G \cdot d\ell$ est l'intervalle curviligne le long de γ du champ vectoriel $G: \mathbb{R}^2 \to \mathbb{R}^2$ défini par G(x,y) = (v(x,y), u(x,y)). En appliquant le Thm. de Green, on obtient :

$$I_2 = \iint_{\text{int }\gamma} \operatorname{rot} G(x, y) \, \mathrm{d}x \mathrm{d}y = \iint_{\text{int }\gamma} \left[u_x(x, y) - v_y(x, y) \right] \, \mathrm{d}x \mathrm{d}y$$

f holomorphe dans D et $\gamma \subset D \xrightarrow{\text{Thm}} u_x(x,y) - v_y(x,y) = 0 \ \forall (x,y) \in \text{int } \gamma \implies I_2 = 0$

Conclusion:

$$\int_{\gamma} f(z) dz = I_1 + iI_2 = 0 + i0 = 0$$

3.2.4 Corollaire du Théorème de Cauchy

Corollaire. Soient $D_0, D_1, D_2, \dots, D_m \subset \mathbb{C}$ des domaines simplement connexes tels que :

- 1) $\overline{int D_j} \subset D_0 \quad \forall j = 1, \dots, m$
- 2) $\overline{int D_j} \cap \overline{int D_k} = \emptyset \quad \forall j, k = 1, \dots, m; \ j \neq k \ (domaines \ disjoints)$
- 3) $\partial D_j = \gamma_j$ pour j = 0, 1, ..., m sont des courbes simples fermées régulières (par morceaux)

Soit $f: D = \overline{int D_0} \setminus \bigcup_{j=1}^m D_j \to \mathbb{C}$ une fonction holomorphe dans D. Alors:

$$\int_{\gamma_0} f(z) dz = \sum_{i=1}^m \int_{\gamma_j} f(z) dz$$

où toutes les courbes γ_j sont orientées positivement.

Justification heuristique du corollaire

Figure 3.1 – Illustration de la justification heuristique

$$D = \overline{\operatorname{int} D_0} \setminus (D_1 \cup D_2) = \overline{\operatorname{int} C_1} \cup \overline{\operatorname{int} C_2}$$

Les bords de γ_0, γ_1 et γ_2 de D_0, D_1 et D_2 appartiennent à D.

— D'une part, f holomorphe dans $\overline{\operatorname{int} C_1}$ et $\overline{\operatorname{int} C_2}$, C_1 et C_2 sont fermés $\xrightarrow{\operatorname{Thm.}}$ Cauchy

$$\int_{C_1} f(z) dz = 0 \text{ et } \int_{C_2} f(z) dz = 0$$

— D'autre part, avec C_1 et C_2 orientés positivement, on a :

$$\int_{C_1} f(z) dz + \int_{C_2} f(z) dz = \int_{\gamma_0} f(z) dz + \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz$$

où γ_0 est orientée positivement (D_0 à gauche), mais γ_1 et γ_2 orientées négativement (D_1 et D_2 à droite).

Donc:

$$\begin{split} \int_{\gamma_0} f(z) \mathrm{d}z + \int_{\gamma_1} f(z) \mathrm{d}z + \int_{\gamma_2} f(z) \mathrm{d}z &= 0 \\ \Longrightarrow \int_{\gamma_0} f(z) \mathrm{d}z = - \int_{\gamma_1} f(z) \mathrm{d}z - \int_{\gamma_2} f(z) \mathrm{d}z \quad \text{orientation négative (dessin)} \\ &= \int_{\gamma_1} f(z) \mathrm{d}z + \int_{\gamma_2} f(z) \mathrm{d}z \quad \text{orientation positive (énoncé)} \end{split}$$

3.3 Formule intégrale de Cauchy

3.3.1 Énoncé

Théorème. Soient $D \subset \mathbb{C}$ un domaine simplement connexe, $f: D \to \mathbb{C}$ une fonction holomorphe dans D et γ une courbe simple fermée régulière (par morceaux) orientée positivement contenue dans D. Alors :

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi \quad \forall z \in int \gamma$$

Illustration. $D = \mathbb{C}$

Si f est une fonction holomorphe dans \mathbb{C} , la valeur de la fonction f en un point $z \in \mathbb{C}$ s'obtient en intégrant $\frac{f(\xi)}{\xi-z}$ le long de n'importe quelle courbe γ (orientée positivement) telle que $z \in \operatorname{int} \gamma$.

3.3.2 Exemples d'utilisation

Exemple (1). Soit γ une courbe simple fermée régulière. Discuter en fonction de γ la valeur de l'intégrale :

$$\int_{\gamma} \frac{\cos 2z}{z} \mathrm{d}z$$

Constatation : la fonction $g(z)=\frac{\cos 2z}{z}$ n'est pas définie en z=0. Distinction de différents cas :

 ${f 1^{er}}$ cas $0 \in \gamma$ L'intégrale n'est pas définie puisque $g(z) = \frac{\cos 2z}{z}$ n'est pas continue sur γ .

2e cas $0 \notin \overline{\operatorname{int} \gamma}$ La fonction $g(z) = \frac{\cos 2z}{z}$ est holomorphe dans un domaine D simplement connexe tel que $\overline{\operatorname{int} \gamma} \subset D$. Comme $\gamma \subset \overline{\operatorname{int} \gamma} \subset D$, alors le Thm. de Cauchy s'applique à la fonction g et on trouve :

$$\int_{\gamma} \frac{\cos 2z}{z} \mathrm{d}z = 0$$

 $\forall \gamma \text{ de ce type (i.e. } 0 \notin \overline{\text{int } \gamma}).$

3º cas $0 \in \operatorname{int} \gamma$ La fonction $f(\xi) = \cos 2\xi$ est holomorphe dans \mathbb{C} . Comme $\gamma \subset \mathbb{C}$, en lui appliquant la formule intégrale de Cauchy pour z = 0 (avec $D = \mathbb{C}$), on trouve :

$$f(0) = \frac{1}{2\pi i} \int_{\gamma} \frac{\cos 2\xi}{\xi - 0} d\xi \implies \int_{\gamma} \frac{\cos 2\xi}{\xi} d\xi = 2\pi i f(0) = 2\pi i \cos 0 = 2\pi i$$

Conclusion: $\int_{\gamma} \frac{\cos 2z}{z} dz = 2\pi i \quad \forall \gamma \text{ de ce type.}$

Remarque. Pour le cercle unité de rayon 1, on a $\gamma(\theta)=e^{i\theta}$ avec $\theta\in[0,2\pi[$, il faudrait calculer :

$$\int_{\gamma} \frac{\cos 2z}{z} dz = \int_{0}^{2\pi} \frac{\cos \left(2e^{i\theta}\right)}{e^{i\theta}} ie^{i\theta} d\theta = i \int_{0}^{2\pi} \cos \left(2e^{i\theta}\right) d\theta$$

Exemple (2). Calculer

$$\int_{\gamma} \frac{e^{z^2}}{z + i\pi} \mathrm{d}z$$

où γ est le cercle de rayon 4 centré en z=1.

Utilisation de la formule de Cauchy, constatations :

- 1) La fonction $g(z) = \frac{e^{z^2}}{z+i\pi}$ n'est pas définie en $z=-i\pi$
- 2) $-i\pi \in \operatorname{int} \gamma$

On considère γ orientée positivement et $f(\xi) = e^{\xi^2}$ qui est holomorphe dans \mathbb{C} . Formule intégrale de Cauchy pour $z = -i\pi$ (avec $D = \mathbb{C}$) donne :

$$f(-i\pi) = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{\xi^2}}{\xi + i\pi} d\xi \implies \int_{\gamma} \frac{e^{\xi^2}}{\xi + i\pi} d\xi = 2\pi i f(-i\pi)$$

Mais $f(-i\pi) = e^{(-i\pi)^2} = e^{-\pi^2}$, donc :

$$\int_{\gamma} \frac{e^{z^2}}{z + i\pi} dz = 2\pi i e^{-\pi^2}$$

Autres exemples : ex. 1-4, série 6

3.3.3 Démonstration de la formule intégrale de Cauchy

Démonstration. Soit f holomorphe dans D et γ une courbe simple fermée régulière orientée positivement et contenue dans D. Soient $z \in \operatorname{int} \gamma$ et C un cercle de rayon r centré en z orienté positivement tel que $C \subset \operatorname{int} \gamma$. On note $V = \overline{\operatorname{int} \gamma} \setminus \operatorname{int} C$.

Corollaire du Thm. de Cauchy (§3.2.4) appliqué à la fonction $g(\xi) = \frac{f(\xi)}{\xi - z}$ holomorphe pour $\xi \in V$

$$\implies \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi \xrightarrow{\text{Cor.}}_{\text{Thm. Cauchy}} \int_{C} \frac{f(\xi)}{\xi - z} d\xi \stackrel{*}{=} \int_{0}^{2\pi} \frac{f(z + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta$$
$$= i \int_{0}^{2\pi} f(z + re^{i\theta}) d\theta$$

$$^*\xi(\theta) = z + re^{i\theta}, \quad \theta \in [0, 2\pi[, \xi'(\theta) = ire^{i\theta}]$$

D'une part, on a:

$$\lim_{r\to 0} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi \text{ (grandeur indépendante de } r)$$

D'autre part, on a :

$$\lim_{r \to 0} \int_0^{2\pi} f(z + re^{i\theta}) d\theta = \int_0^{2\pi} \lim_{r \to 0} \left[f(z + re^{i\theta}) \right] d\theta \stackrel{f \text{ continue}}{=} \int_0^{2\pi} f(z) d\theta$$
$$= f(z) \int_0^{2\pi} d\theta = 2\pi f(z)$$

Égalité des limites :

$$\implies \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = 2\pi i f(z)$$

3.4 Corollaire de la formule intégrale de Cauchy

3.4.1 Énoncé

Avec les mêmes hypothèses du §3.3 ($D \subset \mathbb{C}$ domaine simplement connexe, $f: D \to \mathbb{C}$ holomorphe dans $D, \gamma \subset D$ courbe fermée régulière orientée positivement), on a :

1) f est infiniment dérivable dans D

2)

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$
 pour $n \in \mathbb{N}, \ \forall z \in \text{int } \gamma$

Commentaires

1) Pour n = 0, le corollaire redonne la formule intégrale de Cauchy :

$$f(z) = f^{(0)}(z) = \frac{0!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

2) Résultat remarquable : le corollaire affirme qu'une fonction holomorphe dans D (i.e. dérivable $\forall z \in D$) est en fait infiniment dérivable et que sa n-ième dérivée se calcule en dérivant n fois par rapport à z sous l'intégrale de la formule de Cauchy. En effet : $' = \frac{\mathrm{d}}{\mathrm{d}z}$

$$f^{(1)}(z) = \frac{1}{2\pi i} \int_{\gamma} f(\xi) \left[\frac{1}{\xi - z} \right]' d\xi = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z)^2} d\xi = \frac{1!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z)^2} d\xi$$

$$f^{(2)}(z) = \frac{1}{2\pi i} \int_{\gamma} f(\xi) \left[\frac{1}{(\xi - z)^2} \right]' d\xi = \frac{2}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z)^3} d\xi = \frac{2!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z)^3} d\xi$$

$$f^{(3)}(z) = \frac{2}{2\pi i} \int_{\gamma} f(\xi) \left[\frac{1}{(\xi - z)^3} \right]' d\xi = \frac{2 \cdot 3}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z)^4} d\xi = \frac{3!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z)^4} d\xi$$

Récurrence sur n:

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\mathcal{L}} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

3.4.2 Exemples d'utilisation

Exemple (1). Calculer:

$$\int_{\gamma} \frac{ze^{3z+5}}{(z+1)^3} dz \quad \text{où} \quad \gamma = \left\{ z \in \mathbb{C} : |z-i| = 2 \right\}$$

Constatations:

- 1) la fonction $g(z) = \frac{ze^{3z+5}}{(z+1)^3}$ n'est pas définie en z=-1
- 2) γ est le cercle de rayon 2 centré en $z_0 = i$ et $-1 \in \text{int } \gamma$. On considère γ orientée positivement et la fonction $f(\xi) = \xi e^{3\xi+5}$ qui est holomorphe dans \mathbb{C} .

En appliquant à f le corollaire de la formule de Cauchy pour z=-1 et n=2 (avec $D=\mathbb{C}$), on obtient :

$$f''(-1) = \frac{2!}{2\pi i} \int_{\gamma} \frac{\xi e^{3\xi+5}}{(\xi+1)^3} d\xi$$

mais
$$f'(\xi) = (\xi e^{3\xi+5})' = e^{3\xi+5} + 3\xi e^{3\xi+5}$$
 et $f''(\xi) = 3e^{3\xi+5} + 3e^{3\xi+5} + 9\xi e^{3\xi+5}$
 $\implies f''(-1) = -3e^2$

Donc:

$$\int_{\gamma} \frac{\xi e^{3\xi+5}}{(\xi+1)^3} \mathrm{d}\xi = -3\pi i e^2$$

Exemple (2). Soit γ une courbe simple fermée régulière. Discuter en fonction de γ la valeur de l'intégrale :

$$\int_{\gamma} \frac{z^2 \sin z}{2(z - \frac{\pi}{2})^2} \mathrm{d}z$$

La fonction $g(z)=\frac{z^2\sin z}{2(z-\frac{\pi}{2})^2}$ n'est pas définie pour $z=\frac{\pi}{2}$ \Longrightarrow distinction de plusieurs cas.

- $\mathbf{1^{er}}$ cas $\frac{\pi}{2} \in \gamma$ L'intégrale n'est pas définie puisque $g(z) = \frac{z^2 \sin z}{2(z - \frac{\pi}{2})^2}$ n'est pas continue en $z = \frac{\pi}{2}$
- $\mathbf{2}^{\mathbf{e}}$ cas $\frac{\pi}{2} \notin \overline{\operatorname{int} \gamma}$ La fonction $g(z) = \frac{z^2 \sin z}{2(z - \frac{\pi}{2})^2}$ est holomorphe dans un domaine simplement connexe D tel que $\overline{\operatorname{int} \gamma} \subset D$. Comme $\gamma \subset \overline{\operatorname{int} \gamma} \subset D$, alors le Théorème de Cauchy s'applique à g et on trouve :

$$\int_{\gamma} \frac{z^2 \sin z}{2(z - \frac{\pi}{2})^2} dz = 0 \quad \forall \gamma \text{ de ce type}$$

— $\mathbf{3}^{\mathbf{e}} \operatorname{\mathbf{cas}} \frac{\pi}{2} \in \operatorname{int} \gamma$

La fonction $f(\xi) = \frac{\xi^2}{2} \sin \xi$ est holomorphe dans \mathbb{C} . Comme $\gamma \subset \mathbb{C}$, en lui appliquant le corollaire de la formule de Cauchy pour $z = \frac{\pi}{2}$ et n = 1 (avec $D = \mathbb{C}$), on obtient :

$$f'\left(\frac{\pi}{2}\right) = \frac{1!}{2\pi i} \int_{\gamma} \frac{\frac{\xi^2}{2} \sin \xi}{(\xi - \frac{\pi}{2})^2} d\xi$$

mais $f'(\xi) = \left(\frac{\xi^2}{2}\sin\xi\right)' = \frac{2\xi}{2}\sin\xi + \frac{\xi^2}{2}\cos\xi$

$$\implies f'\left(\frac{\pi}{2}\right) = \frac{\pi}{2} + 0 = \frac{\pi}{2}$$

Conclusion:

$$\int_{\gamma} \frac{z^2 \sin z}{2(z - \frac{\pi}{2})^2} dz = 2\pi i \frac{\pi}{2} = \pi^2 i$$

Autres exemples : ex. 1-4, série 7

Chapitre 4

Séries de Laurent, pôles et résidus

4.1 Polynôme et série de Taylor d'une fonction holomorphe

4.1.1 Définitions et résultats

Hypothèses. Soit un ouvert $D \subset \mathbb{C}$ et $f: D \longrightarrow \mathbb{C}$ une fonction holomorphe dans D et $z_0 \in D$.

Définition. Pour $N \in \mathbb{N}$, le **polynôme de Taylor** de f de degré N en z_0 est :

$$T_N f(z) = \sum_{n=0}^{N} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Résultat (séries de Taylor). Soit R > 0 et $D_R(z_0) = \{z \in \mathbb{C} : |z - z_0| < R\}$ le plus grand disque de rayon R centré en z_0 contenu dans D.

Convention : si $D = \mathbb{C} \implies R = +\infty$ et $D_R(z_0) = \mathbb{C}$ Alors :

1)

$$Tf(z) = \lim_{N \to +\infty} T_N f(z) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

existe et est finie $\forall z \in D_R(z_0)$. L'expression Tf(z) s'appelle la série de Taylor de f en z_0 .

- 2) De plus, on a $f(z) = Tf(z) \quad \forall z \in D_R(z_0)$ R est appelé **le rayon de convergence** de la série de Taylor.
- 3) Les coefficients de la série de Taylor sont reliés à la formule de Cauchy par le corollaire du §3.4. On a :

$$\frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

où $\gamma \subset D_R(z_0)$ est une courbe simple fermée régulière orientée positivement telle que $z_0 \in \operatorname{int} \gamma$.

4.1.2 Exemples

Exemple (1).

$$f(z) = e^z$$

est holomorphe dans \mathbb{C} . On a $f^{(n)}(z)=e^z$ et $f^{(n)}(0)=1 \quad \forall n \in \mathbb{N}$. Donc :

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!} \quad \forall z \in \mathbb{C}$$

Exemple (2).

$$f(z) = \frac{1}{1-z}$$

est holomorphe dans $D = \mathbb{C} \setminus \{1\}.$

Le plus grand disque centré en $z_0=0$ contenu dans D est $D_1(0)=\{z\in\mathbb{C}:|z|<1\}$. On a $f^{(n)}(z)=\frac{n!}{(1-z)^{n+1}}$ et $f^{(n)}(0)=n!$ $\forall n\in\mathbb{N}$.

$$\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n \quad \forall z \in \mathbb{C}, |z| < 1$$

« Série géométrique » avec rayon de convergence R=1.

Exemple (3).

$$f(z) = \frac{1}{1+z^2}$$

est holomorphe dans $D = \mathbb{C} \setminus \{-i; i\}$.

Le plus grand disque centré en $z_0=0$ et contenu dans D est $D_1(0)=\{z\in\mathbb{C}:|z|<1\}$.

On a:

$$\frac{1}{1+z^2} = \frac{1}{1-(-z^2)} \stackrel{\text{Ex. 2}}{=} \sum_{n=0}^{+\infty} (-z^2)^n = \sum_{n=0}^{+\infty} (-1)^n z^{2n} \quad \forall z \in \mathbb{C}, |z| < 1$$

Le rayon de convergence R=1

Autre exemple : ex. 5, série 7

Bibliographie

[1] Bernard Dacogna et Chiara Tanteri. Analyse avancée pour ingénieurs. PPUR, 2017. Toutes les références (numéro de théorème, définition, etc.) sont faites à ce livre.

Contributeurs

- Robin Mamie (IN)
- Eric Jollès (SC)
- Yves Zumbach (IN)