Source-Target Similarity Modelings for Multi-Source Transfer Gaussian Process Regression

ICML2017 accepted paper

Pengfei Wei^{12} , Ramon Sagarna 12 , Yiping Ke^{12} , Yew-Soon Ong^{12} , Chi-Keong Goh^{32}

 1 School of Computer Science and Engineering, Nanyang Technological University 2 Rolls-Royce@Nanyang Technological University Corporate Lab 3 Rolls-Royce Advanced Technology Centre, Singapore

Presenter: M2 Tomohiro YONEZU

2018/07/30 (Mon)

- 1 Background
- 2 Existing method
 - \blacksquare GP- TC_{MS}
 - \blacksquare Stacking
 - $\blacksquare TC_{SS}Stack$
- 3 Proposed method
- 4 Experiments
- 5 Conclusions

Contribution

- Topic: Proposition of new multi-source transfer GP regression model: $TC_{MS}Stack$.
- lacksquare $TC_{MS}Stack$ can
 - (i) associates the similarity coefficient with the model importance.
 - (ii) reduces the computational cost by lowering the number o optimization variables.
- Show performance of existing method; GP- TC_{MC}

- 1 Background
- 2 Existing method
 - $\blacksquare GP\text{-}TC_{MS}$
 - Stacking
 - $TC_{SS}Stack$
- 3 Proposed method
- 4 Experiments
- 5 Conclusions

Introduction: Transfer Learning

- TL; Transfer Learning
 - The data from the Target domain (where we want to predict) is scarce.
 - But a good amount of data from another source domain is available.
 - Let's use source-data for predicting target!
- MSTL; Multi-source Transfer Learning
 - Multiple souce-domains are available.
 - A key issue is to capture the diverse Source-Target (S-T) similarities.

Figure: Idea of MSTL

Objective is Modeling to capture the diverse similarityes between different source-target domain pairs.

- 1 Background
- 2 Existing method
 - \blacksquare $GP\text{-}TC_{MS}$
 - \blacksquare Stacking
 - $\blacksquare TC_{SS}Stack$
- 3 Proposed method
- 4 Experiments
- 5 Conclusions

Problem Statement

- Definition
 - $lacksymbol{\mathbb{D}} = \mathcal{T} \cup \mathcal{S}$: Domain set
 - $S = \{S_i \mid 1 \le i \le N\}$: Set of source domains
 - lacksquare \mathcal{T} : The target domain
 - $m{x}(\mathcal{S}_i) \in \mathbb{R}^{n_{\mathcal{S}_i} imes d}, m{y}^{(\mathcal{S}_i)} \in \mathbb{R}^{n_{\mathcal{S}_i}}$: Data matrix and its labels in each \mathcal{S}_i
 - $m{X}^{(\mathcal{T}_l)} \in \mathbb{R}^{n_{\mathcal{T}_l} \times d}, m{y}^{(\mathcal{T}_l)} \in \mathbb{R}^{n_{\mathcal{T}_l}}$: Labeled target data matrix and its labels.
 - $X^{(\mathcal{T}_u)} \in \mathbb{R}^{n_{\mathcal{T}_u} \times d}$: Unlabeled target data matrix.
- We use the GP model for this regression task.
 - lacksquare GP model defines a Gaussian distribution over the functions, $\mathbf{f} \sim \mathcal{N}(\mu, \mathbf{K})$
 - \mathbf{K} is PSD (denoted as $\mathbf{K} \succeq \mathbf{0}$)

Figure: Datasets in Source-domain and Target-domain

MSTL regression Ideas1: GP- TC_{MS}

- Let $\mathbf{K}_{\mathcal{D}_i,\mathcal{D}_j}(\mathcal{D}_i\mathcal{D}_i\in\mathcal{D})$ denote a covariance matrix or points inf \mathcal{D}_i and \mathcal{D}_j .
- GP- TC_{MS} is GP model with kernel matrix specified by S-T similarity parameters λ_i .

$$k_*(\mathbf{x}, \mathbf{x}') = \begin{cases} \lambda_i k(\mathbf{x}, \mathbf{x}'), & \mathbf{x} \in \mathbf{X}^{(S_i)} \& \mathbf{x}' \in \mathbf{X}^{(T)} \\ or & \mathbf{x}' \in \mathbf{X}^{(S_i)} \& \mathbf{x} \in \mathbf{X}^{(T)} \\ k(\mathbf{x}, \mathbf{x}'), & otherwise \end{cases}$$

$$\mathbf{K}_{*} = \left[\begin{array}{cccc} \mathbf{K}_{\mathcal{S}_{1}} \mathcal{S}_{1} & \cdots & \mathbf{K}_{\mathcal{S}_{1}} \mathcal{S}_{N} & \lambda_{1} \mathbf{K}_{\mathcal{S}_{1}} \mathcal{T} \\ \cdots & \cdots & \cdots & \cdots \\ \mathbf{K}_{\mathcal{S}_{N}} \mathcal{S}_{1} & \cdots & \mathbf{K}_{\mathcal{S}_{N}} \mathcal{S}_{N} & \lambda_{N} \mathbf{K}_{\mathcal{S}_{N}} \mathcal{T} \\ \lambda_{1} \mathbf{K}_{\mathcal{T}} \mathcal{S}_{1} & \cdots & \lambda_{N} \mathbf{K}_{\mathcal{T}} \mathcal{S}_{N} & \mathbf{K}_{\mathcal{T}} \mathcal{T} \end{array} \right]$$

■ λ_i is expected to capture the different transfer strengths in different S-T domain pairs.

Figure: Idea of GP- TC_{MS}

Problem of GP- TC_{MS}

■ Kernel matrix must be *PSD*; positive-semidefinite

Theorem 1

 K_* is PSD for any covariance matrix $\mathbf K$ in the form

$$\mathbf{K} = \left[\begin{array}{cccc} \mathbf{K}_{\mathcal{S}_1 \mathcal{S}_1} & \cdots & \mathbf{K}_{\mathcal{S}_1 \mathcal{S}_N} & \mathbf{K}_{\mathcal{S}_1 \mathcal{T}} \\ \cdots & \cdots & \cdots & \cdots \\ \mathbf{K}_{\mathcal{S}_N \mathcal{S}_1} & \cdots & \mathbf{K}_{\mathcal{S}_N \mathcal{S}_N} & \mathbf{K}_{\mathcal{S}_N \mathcal{T}} \\ \mathbf{K}_{\mathcal{T} \mathcal{S}_1} & \cdots & \mathbf{K}_{\mathcal{T} \mathcal{S}_N} & \mathbf{K}_{\mathcal{T} \mathcal{T}} \end{array} \right]$$

if and only if $\lambda_1 = \ldots = \lambda_N$ and $|\lambda_i| \leq 1$

- This shows that $k_*(\cdot, \cdot)$ can give only one similarity coefficient for all S-T domain pairs.
- Such single similarity coefficient compromises the diverse similarities between different S-T domain pairs.
- Author also show that such single coefficient takes effects in every source on the final transfer performance.

Stacking

- "Stacking" is one of ensemble method.
- Preparation
 - $\mathbb{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$: Dataset
 - \mathfrak{L}_i : Some different learners
 - \bullet $\omega^{\top} = [\omega_1, \dots, \omega_N]$: weight parameters

step1 Make prediction and create new data set \mathcal{D}_{new} .

$$\begin{array}{rcl} f_{(i,j)} & = & \mathfrak{L}_{j}(\mathbf{x}_{i}) \\ \mathcal{D}_{new} & = & \{(\mathbf{z}_{i},y_{i})\}_{i=1}^{n}, \\ \mathbf{z}_{i}^{\top} & = & \left[f_{(i,1)},f_{(i,2)},\ldots,f_{(i,N)}\right] \end{array}$$

step2 Run least square method to \mathcal{D}_{new} and get ω^*

$$\boldsymbol{\omega}^* = \operatorname*{arg\ min}_{\boldsymbol{\omega}} \sum_{i=1}^n \left(y_i - \boldsymbol{\omega}^{ op} \mathbf{z}_i \right)^2$$

step3 Get final model as follows

$$f_*(\mathbf{x}) = \sum_{j=1}^N \omega_j^* \mathfrak{L}_j(\mathbf{x})$$

Figure: Idea of Stacking

MSTL regression Ideas2: $TC_{SS}Stack$

- "Stacking" method for Transfer learning. (Pardoe & Stone, 2010).
- Use GP-TC_{SS} (GP with single-source transfer covariance) as base-model.
- GP-TC_{SS} can capture S-T similarity and Stacking method addes flexibility to Multi-source TL model.

step1 Train multiple $GP\text{-}TC_{SS}$ models using each \mathcal{S}_i and $\mathcal{T}.$

$$\{f^{(\mathcal{S}_i,\mathcal{T})}\left(\cdot|\mathbf{\Omega}_i,\lambda_i\right)\}_{i=1}^N$$

step2 get final model by using Stacking method.

$$f(\mathbf{x}) = \sum_{i=1}^{N} \omega_i f^{(S_i, T)}(\mathbf{x} | \mathbf{\Omega}_i, \lambda_i), \ \sum_{i=1}^{N} \omega_i = 1$$

where, ω_i are coefficient learned by minimizing the least square error on the target labeled data.

Figure: Idea of $TC_{SS}Stack$

Problem of $TC_{SS}Stack$

- (i) Since each $f^{(\mathcal{S}_i,\mathcal{T})}$ is pretrained separately, inter-domain dependencies between different source domains into account aren't considered.
- (ii) Both λ_i and ω_i reflect the S-T domain similarity. However, $TC_{SS}Stack$ takes them as two different variables and learns them separately.
 - Intuitively, the model importance ω_i should be positively correlated with the similarity coefficient λ_i .

- 1 Background
- 2 Existing method
 - \blacksquare $GP\text{-}TC_{MS}$
 - \blacksquare Stacking
 - $\blacksquare TC_{SS}Stack$
- 3 Proposed method
- 4 Experiments
- 5 Conclusions

Proposal method: $TC_{MS}Stack$ [1/2]

 To overcome issues of TC_{SS}Stack, authors propose a new transfer stacking model as follows.

$$f(\mathbf{x}) = \sum_{i=1}^{N} \left(g(\lambda_i) / Z \right) f^{(S_i, T)} \left(\mathbf{x}, \mathbf{\Omega}_i, \lambda_i \right).$$

- $Z = \sum_{i=1}^{N} g(\lambda_i)$: Normalization term
- $g(\lambda_i)$: Any function preserving the monotonicity of $|\lambda_i|$
- This also reduces the search efforts by lowering the number of free parameters to fit. (ω_i)

Prediction !

Figure: Idea of $TC_{MS}Stack$

Proposal method: $TC_{MS}Stack$ [2/2]

- We can choose relative importance $g(\cdot)$. In this paper, a simple function $g(\lambda_i) = |\lambda_i|$ is used.
- However, $|\lambda|$ is not smooth at $\lambda = 0$, so approximation below is useful.

$$|\lambda_i| \approx \alpha \log_e \left(\frac{1}{2} e^{\frac{\lambda_i}{\alpha}} + \frac{1}{2} e^{-\frac{\lambda_i}{\alpha}}\right)$$

we get final model by minimizing the squared erros

$$\min_{\{\Omega_i, \lambda_i\}_{i=1}^N} \sum_{j=1}^{n_{\mathcal{T}_l}} \left(y_j^{(\mathcal{T}_l)} - f^*(\mathbf{x}_j^{(\mathcal{T}_l)}) \right)^2$$

■ This method jointly learned $f^{(S_i,T)}$ for all the source domains

Figure: approximate of $|\lambda|$ ($\alpha=0.1)$

- 1 Background
- 2 Existing method
 - $\blacksquare GP\text{-}TC_{MS}$
 - $\blacksquare \ Stacking$
 - $\blacksquare TC_{SS}Stack$
- 3 Proposed method
- 4 Experiments
- 5 Conclusions

Experiment1: Synthetic dataset

- Target-domain data:
 - $f(\mathbf{x}) = \mathbf{w}_0^{\top} \mathbf{x} + \epsilon$, $\mathbf{w}_0 \in \mathbb{R}^{100}$, $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma)$: Ture function
 - $n_{T_u} = 100$: 100 points from this function as target test data.
 - $n_{T_1} = 20$: 20 points from this function as target train data.
- Source-domain data:
 - $\mathbf{g}(\mathbf{x}) = (\mathbf{w}_0^\top + \delta \Delta \mathbf{w}) \mathbf{x} + \epsilon$: True funciton
 - $\Delta \mathbf{w}$ is random fluction vector
 - δ is controlling the similarith between f and g.
 - (higher δ indicates lower similarity)
 - 380 points for each source-data with different δ .

Experiment1: Result

- $GP\text{-}TC_{MS}$ can not capture different S-T similarities but $TC_{MS}Stack$ can. ($TC_{MS}Stack$ get the λ values which are strictly reverse-correlated with the δ .)
- \blacksquare In all problem, we can see a consistently lower RMSE for $TC_{MS}Stack$ than for $GP\text{-}TC_{MS}$.

Experiment2: Real-world dataset

Amazon dataset:

- categorize the products into 4 top categories.
- Products in the same category are conceptually similar.
- Each product is taken as a domain. (select one as target)
- label stars

UJIIndoorLoc dataset:

- The building location dataset.
- Target domain: 1st floor.
- Source domain: other floor.
- feature: signal strength from wire-less access points.
- label: location

Experiment2: Result

lacksquare Several MSTR approaches are compared.

- Figure above show the average RMSE.
- ullet $TC_{MS}Stack$ is the winner among all the baselines on the two datasets, improving the transfer performance across the different amounts of source domains.

- 1 Background
- 2 Existing method
 - $\blacksquare GP\text{-}TC_{MS}$
 - \blacksquare Stacking
 - $TC_{SS}Stack$
- 3 Proposed method
- 4 Experiments
- 5 Conclusions

Conclusions

- Prove that, GP- TC_{MS} , a Gaussian process with such a transfer covariance function can only capture the same similarity coefficient for all the sources.
- lacktriangleright Propose $TC_{MS}Stack$ that can aligns the S-T similarity coefficients with the model importance and jointly learns the base models.
- **E**xperimets show the superiority of $TC_{MS}Stack$ to other MSTR methods.