Utilizing Phonetic Information for Textual NLP Tasks

Kenan Tang
June 2nd

- Motivating examples*
- Definition of phonetic units and features
- Conversion systems and challenges
- Applications in NLP

* Consider other languages?

- Motivating examples*
- Definition of phonetic units and features
- Conversion systems and challenges
- Applications in NLP

Motivating Examples*

- User-generated content (UGC) normalization
 - This is 2 difficult 4 me.
- Spelling correction
 - discreet math
- Historical text normalization
 - canuaise, likelyhode, resberyes
- Named entity recognition (NER)
 - shikago シカゴ

Motivating Examples

- Distance
 - Meaning: low
 - Spelling: high
 - Pronunciation: low
- Pipeline?
 - Spelling → pronunciation

- Motivating examples*
- Definition of phonetic units and features
- Conversion systems and challenges
- Applications in NLP

Phonemes and Phones*

• One example:

- peak /pik/ [phik]
- speak /spik/ [spik]

Another example:

- fight /fart/ [fart]
- write /_ait/ [_ait]

Articulatory Features

- Illustration (from SLP3)
 - Left: consonants; Right: vowel, schematic

Articulatory Features Quantification

- Vector form
 - ± nasal
 - ± labial
 - ± high
 - ± low
 - etc.
- Distance calculation

- Motivating examples*
- Definition of phonetic units and features
- Conversion systems and challenges
- Applications in NLP

G2P Conversion Systems

Pipeline: Grapheme → Phoneme → Articulatory Features

- Two challenges
 - Context dependency
 - OOV words

Context Dependency

- Example*
 - I see an *object* in the distance.
 - Sustainability groups and some New York state lawmakers *object* to the practice because of the environmental impact.
- Solution
 - Sentence-level datasets
 - Ignore stress and tones

OOV words

- Example*
 - path
 - pothole
- Solution
 - Letter-level transduction models
 - Ignore ambiguity

- Motivating examples*
- Definition of phonetic units and features
- Conversion systems and challenges
- Applications in NLP

Application 1: UGC Normalization

• Jahjah et al. (2016)

- Rule-based signature generation
 - Simplified IPA symbol
 - Examples: $ks \rightarrow X$, as in the alternative spelling *axent* of *accent*
 - About 100 rules and 200 exceptions for 78,000 word-IPA pairs
- (Heuristic) similarity matching by signature

Application 2: Spelling Correction

• Zhang et al. (2021)

- MLM-phonetics
- Linear combination

MLM-phonetics

Intuition*: misspellings with close pronunciation

Figure 3: An example of the different replacement strategy for MLM-base and MLM-phonetics.

Linear Combination

- Detection module
 - p_{err} from only x_w
- Weighted combination

•
$$e_m = (1 - p_{err}) \cdot e_w + p_{err} \cdot e_p$$

Application 3: Historical Text Normalization

• Jurish (2010)

- Equivalent when pronounced the same
 - likelyhode / lykelyhood → likelihood
- Much faster than rewriting rules
- Improves recall when used together with rewriting rules

Application 4: NER

• Bharadwaj et al. (2016)

- Character LSTM for OOV words
- Feature vector as input to character LSTM

Figure 3: Use of Epitran and PanPhon to enable transfer across orthographies

Summary

- Possible improvements
 - Language-specific considerations*
 - Awareness of downstream tasks

• Full paper available at https://github.com/KenanTang/ttic-31210-survey/blob/main/phonetic.pdf

Q & A