$\mathrm{Pro}etalphaeta\mathrm{ili}oldsymbol{ au}\mathrm{Y}\ \mathrm{Th}\epsilon\mathrm{ory}$

Contents

1 Dynkin systems	2
Appendices	3
A Background	3

1 Dynkin systems

Definition 1. A **Dynkin system** on a set Ω is a subset \mathcal{D} of the power set $\mathcal{P}(\Omega)$, with the following properties:

- 1. $\Omega \in \mathcal{D}$;
- 2. $A, B \in \mathcal{D}, A \subset B \implies B \setminus A \in \mathcal{D};$
- 3. $A_n \in \mathcal{D}, A_n \subset A_{n+1}, n \ge 1 \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{D}.$

Definition 2. Let Abe a subset of $\mathcal{P}(\Omega)$. The **Dynkin system generated** by A is the Dynkin system on Ω , denoted $\mathcal{D}(A)$, equal to the intersection of all Dynkin systems on Ω which contain A. i.e.,

$$\mathcal{D}(\Omega) := \{ \mathcal{D} \text{ Dynkin systems on } \Omega : \mathcal{A} \subset \mathcal{D} \}.$$

Definition 3. A σ -algebra on a set Ω is a subset \mathcal{F} of the power set $\mathcal{P}(\Omega)$ with the following properties:

- 1. $\Omega \in \mathcal{F}$;
- 2. $A \in \mathcal{F} \implies \Omega \setminus A =: A^c \in \mathcal{F}$;
- 3. $A_n \in \mathcal{F}, \ n \ge 1 \implies \bigcup_{i=1}^{\infty} A_n \in \mathcal{F}.$

Appendix A Background

Definition 4. A **set** is a well-defined collection of distinct mathematical objects.

Definition 5. Given two sets A and B, the **set difference** of A and B is defined: $B \setminus A := \{x \text{ in } B, x \text{ not in } A\}.$

Definition 6. The power set of a set Ω , denoted $\mathcal{P}(\Omega)$, is the set of all subsets of Ω . i.e.,

$$\mathcal{P}(\Omega) := \{ A \text{ subset of } \Omega \}.$$