

Università degli Studi di Camerino

SCUOLA DI SCIENZE E TECNOLOGIE Corso di Laurea in Informatica (Classe L-31)

LS Genio Platform

Laureando Vincenzo Nucci		Relatore Dott. Rosario Culmone
Matricola 092861		
Laureando Matteo Tiberi		Correlatore Dott. Leonardo Vito
Matricola 092913		
	A.A. 2016/2017	
	A.A. 2010/2011	

Obiettivi

- Piattaforma REST indipendente da sorgenti dati
 - Autenticazione tramite token
 - ▶ Interfaccia web
- Servizio di sottoscrizione "subscribe"
 - Notifica dei messaggi PUSH
- Integrazione dei servizi con NAV
- Servizio di monitoraggio dei dati
 - Controllo valore oltre soglia

Architettura piattaforma

Struttura tabelle backend

tmvgenio		
*canplc	smallint(6) default '0'	
*numpez	double	
*oldpez	double	
*nocich	int(11), default '0'	
*ferma	smallint(6), default'0'	
*manaut	smallint(6)	
*allarm	smallint(6)	
*acceso	smallint(6)	
*valor1	double	
*valor2	double	
*valor3	double	
'valor4	double	
*valor5	double	
*valor6	double	
·lasttm	double	
*lastch	datetime, default '0000-00-00 00:00:00'	

tvatest		
*autoid	int(11) auto increment	
*rescod	int(11)	
*pcount	double	
*canplc	smallint(6)	
*sigava	char (4)	
*numava	int(11)	
*codcom	int(11)	
*codint	int(11)	
*profas	smallint(6)	
*manaut	smallint(6)	
*allarm	smallint(6)	
*statcg	smallint(6)	
*lasttm	double	
*datava	date	
*datora	datetime	

	tvavext
toid	int(11) auto_increment
scod	int(11)
ount	double
nplc	smallint(6)
gava	char (4)
mava	int(11)
	int(11)
	int(11)
	smallint(6)
	smallint(6)
	smallint(6)
	smallint(6)
	double
	date
tora	datetime

Pagina web per la richiesta di abilitazione

Pagina web catalogo Smart Object

Esempio di un servizio - getlastmeasure

```
@Path("getlastmeasure/{sensorId}/{annotation}/{enhanced}")
@GET
@Produces(MediaType.APPLICATION JSON)
public String getLastMeasure(@HeaderParam("token") String token, @PathParam("sensorId") int sensorId,
       @PathParam("annotation") boolean annotation, @PathParam("enhanced") boolean enhanced)
   try {
   if (!checkToken(token, "getLastMeasure"))
       throw new IllegalArgumentException("Token: "+token+" not valid/not authorized");
   Connection con:
   String query = "";
   Logger.debug("GET ["+token+"] last measure of sensor: " + sensorId);
   con = ((AbstractSQLConnection)conf.getProperty("mysql")).connect();
       if(annotation)
           if(enhanced)
               query = "select tymgenio.*.measann.idvalue, measann.descr. measann.type, measann.measurementuri."
                        + "measann.observationprocedure, measann.onturi from typlcset left join typlcfam using(famplc) "
                       + "left join tymgenio using (camplc) left join measann using (famplc) where (camplc="+sensorId+")";
            else
               query = "select tymgenio.*, measann.idvalue, measann.prefname meas, measann.prefprefix name "
                       + "from typicset left join typicfam using(fample) left join tymgenio using (canple) "
                       + "left ioin measann using (famplc) where (canplc="+sensorId+")";
       else
           query = "select * from tymgenio where (cample = "+sensorId+")":
       return (String)getDataFromDbToSensorList(con, query, new SensorData(), new SensorDataList(),getListContainer()
                ,annotation,enhanced,true);
    } catch (Exception e) {
       logger.error("Error found: " + e.getMessage());
       return new ExceptionMessageHandlerBuilder(e)
                .build().toString();
```

Valori di ritorno di getlastmeasure

```
127.0.0.1:8082/ls/iot/getlastmeasure/106/true/true
  GET V
Pretty
                  Preview
             "canplc": 106.
             "canplcannotation": null,
             "numpez": 1759,
             "numpezannotation": null.
             "oldpez": 1743,
 8
             "oldpezannotation": null.
 9
             "nocich": 0.
 10
             "nocichannotation": null,
             "ferma": 0.
             "fermaannotation": null.
             "manaut": 0.
 14
             "manautannotation": null,
15
             "allarm": 0.
             "allarmannotation": null.
 16
             "acceso": 0,
 18
             "accesoannotation": null.
 19
             "valor1": 130.
 20 +
             "valor1annotation": {
                  "id": "valor1106".
                  "description": "Extrusor Temperature",
                  "type": "Measurement",
 24
                  "phenomenonTime": "2018-02-20 16:56:54",
                  "observedProperty": "http://www.logicalsystem.it/it/onto/ExtrusorTemperature".
 26
                  "procedure": "http://www.logicalsystem.it/it/register/process/sensorGenio.xml",
                  "featureOfInterest": "canple 106",
 28
                  "resultTime": "2018-02-20 16:56:54",
 29 -
                  "result": {
 30
                      "value": "130.0",
                      "uom": "http://purl.obolibrary.org/obo/UO_0000027"
```

Subscribe Rule di una applicazione

```
∃{}JSON
  appName : "Sample Application"
       applp: "172.16.4.51"
       queueName: "messageQueue"
       topicName : ""
     ■ table : "tvmgenio"
       selectFields
            0 : "canpic"
            1: "numpez"
            2: "nocich"
          cron:"*****?"

☐ ( ) Is.iot.web.services.it.Condition

☐ { } formula

		☐ { } operation

                    Is.iot.web.services.it.SimpleOperation

☐ { } operation

☐ ( ) Is.iot.web.services.it.Operation

☐ { } Operand1

                                string: "valor1"

	☐ { } Operator

                                ■ Is.iot.web.services.it.ComparisonOperator: "gte"

☐ { } Operand2

                                double : 0.567
          formula : ""
```

Albero della condition

Class Diagram SubscribeRuleInterface

Class Diagram RetrievedDataInterface

Class Diagram AnnotationInterface

Class Diagram AbstractConnection

<<.lava Class>> (Main ls.iot.web.services.it pSconversionTypes: Map<String.Class<?>> oSBASE URI: String oSvalidator: InetAddressValidator oSf: File SoF HOST_IP: String SoF HOST_PORT: String SoF LOCAL DATABASE_PATH: String SoF BROKER IP: String Sof OVERWRITE: String Suff PLATFORM DATABASE PATH: String S PLATFORM DATABASE PORT: String S_FPLATFORM_DATABASE_USERNAME: String SAF PLATFORM DATABASE PASSWORD: String Sof PLATFORM_DATABASE_DATABASE: String oSstaticlocallpAddress: String oSstaticbrokerlpAddress: String oSstaticdbPath: String oSstatictoOverwrite: boolean pSexecutorService: ExecutorService StaticMysal: MySalConnection oSstaticSalite: SaliteConnection Main() StartServer():HttpServer ■SpopulateDatabase(Connection):void ■ populateServices(Connection):void

Schema Avro SensorData

```
"namespace": "ls.iot.web.services.it",
"name": "SensorDataList".
"type": "record".
"fields": [ ]
  { □
      "name": "SensorDataListContainer",
      "type": { 😑
         "name": "SensorDataListContainer".
         "type": "array".
         "namespace": "ls.iot.web.services.it",
         "items": {
            "type": "record",
            "name": "SensorData".
            "namespace": "ls.iot.web.services.it",
            "fields": [ -
                   "name": "canplc".
                   "type": "int".
                   "doc". "ID del canale PLC."
                   "name": "canplcannotation",
                   "type": [ =
                      "null".
                      "SensorDataAnnotation"
                   "doc": "Annotazione del campo."
```

```
"name": "numpez".
"type": [ 😑
  "null".
   "double"
"doc": "Contatore principale del macchinario."
"name": "numpezannotation".
"type": [ -
   "null".
   "SensorDataAnnotation"
"doc": "Annotazione del campo."
"name": "oldpez".
"type": [ =
   "nu11"
  "double"
"doc": "Valore precedente del Contatore principale del macchinario."
"name": "oldpezannotation",
"type":[ =
   "null".
  "SensorDataAnnotation"
"doc": "Annotazione del campo."
```

Schema Avro SensorDataAnnotation

```
{ □
   "type": "record",
   "name": "SensorDataAnnotationNotEnhanced".
   "namespace": "ls.iot.web.services.it".
   "fields": [ =
      { □
         "name": "prefname meas".
         "type": [ □
            "null",
            "strina"
         "doc": "Nome ontologia misurazione."
      },
         "name": "prefprefix name",
         "tvpe": [ =
            "null",
            "string"
         ],
         "doc": "Prefisso ontologia misurazione."
```

```
"type": "record".
"name": "SensorDataAnnotation".
"namespace": "ls.iot.web.services.it"
                                                "name": "resultTime".
"fields":[
                                               "type": "string"
      "name": "id".
      "type": "string",
                                                "name": "result".
                                                "type": { 🖯
                                                   "name": "Result".
                                                  "type": "record",
      "name": "description".
      "type": "string"
                                                  "fields": [ ]
                                                     { ⊟
                                                         "name": "value".
      "name": "type".
                                                         "type": [
                                                            "double".
      "type": "string"
                                                             "int".
                                                             "string"
      "name" - "phenomenonTime"
      "type": "string"
                                                         "name": "uom".
                                                         "type": "string"
      "name": "observedProperty".
     "type": "string"
      "name": "procedure".
      "type": "string"
      "name": "featureOfInterest".
      "type": "string"
```

Pagina web per il grafico

Codice Job Flink

```
@Override
public void run() {
    try {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStream<SensorData> messages = env.addSource(source);
        DataStream<Double> counts = messages
                .filter(new MyFilterFunction<SensorData>(canplc))
                .map(new MyMapFunction<SensorData, Double>(field))
                .timeWindowAll(Time.seconds(10), Time.seconds(5))
                .apply(new Avg())
                .filter(new MvAvgFilter<Double>(threshold));
        System.out.println("superati i filtri e mappature");
        counts.addSink(new MySinkFunction<Double>(canplc, field, threshold));
        System.out.println("aggiunto sink"):
        JobExecutionResult re = env.execute();
    } catch (Exception e) {
       System.out.println("Flink job terminated");
        e.printStackTrace();
```

Difficoltà incontrate

- Integrazione subscribe con NAV
 - Utilizzo Web Service SOAP

Tecnologie utilizzate

- Java
- Framework Jersey e Grizzly
- Apache Avro
- Apache ActiveMQ
- Framework ZK
- Apache Flink

Risultati raggiunti

- Piattaforma indipendente
 - Classi astratte e interfacce
 - Database SQLite per autenticazione token
- Servizio subscribe debolmente accoppiato
 - Tramite message broker
- Servizio monitoraggio dei dati
 - Grafico per visualizzare andamento
 - Apache Flink per controllo soglia

Obiettivi

- Interazione di Microsoft Dynamics NAV con la piattaforma LS-Genio Mashup e definizione di un "setup" per l'utente
- Realizzazione di un ontologia delle misurazioni e delle misure

Problematiche e risoluzioni

- Software Microsoft Dynamics NAV che possiede numerose limitazioni, ostacolando l'interazione con la piattaforma
 - Risolto mediante implementazione di un client C#, integrato poi su NAV
- Difficoltà nel trovare un modello ontologico relativo al case study
 - Risolto mediante adattamento allo standard ISO 19156:2011

Tecnologie e software utilizzati

- C#
- Apache Avro
- Microsoft Dynamics NAV e C/AL code
- Microsoft PowerBI
- Protégé
- MySQL

Class Diagram Client C# 1

+ Lasttmannotation { get; set; } : Object

+ Datava { get; set; } : String

slist A o +

Class Diagram Client C# 2

+Datavaannotation (get; set;): Object +Datara (get; set;): String +Dataraannotation (get; set;): Object +SensorHystoricalData() +getbyNumber(number: Int32): Object

hystList 10..+

ExceptionMessageH...

+ Level (get; set;) : String + Errcode (get; set;) : Str... (+ Desc {get; set; } : String + ExceptionMessageHandle...

SubscribeResult

+ Result { get; set; } : String + RuleId { get; set; } : Int32 + SubscribeResult()

area it

enumeration

GET = 0 POST = 1 PUT = 2 DELETE = 3

RestClient

+ EndPoint { get; set; } : String + Method { get; set; } : HttpVerb

+ ContentType { get; set; } : String + CustomhleaderName { get; set; } : String + CustomhleaderYalue { get; set; } : String

+ RestClent() + RestClent(endpoint: String) + RestClent(endpoint: String, method: Http//erb)

+ MakeRequest() : String + MakeRequest(parameters: String) : String

+ SendJoor(Ison: String) : String + SendJoor(IPPort(Ison: String, platformIP: String, platformPort: String) : String + createRequestCustom(canalePLC: Int32, table: String, valori: String, annotati. + createRequestCustom(Prort(canalePLC: Int32, table: String, valori: String, a... + setCustomFader(Readervalor String) : Vad

+ getAllPLC() : List<PLCData>

+ getAllPLCIPPort(platformIP: String, platformPort: String) : List<PLCData> + deserializeSensorData(json: String) : List<SensorData>

+ desenialesSenoro DatalAntotalonikoE(pon: String) : ExceptiondesenialesSenoro DataAnnotalonikoE(pon: String) : Senoro DataAnnotalonik. + desenialesSenoro DataAnnotaloni(pon: String) : Senoro DataAnnotalonik. + oreateRequestSenotale(pd: Int32, fromDate: DateTime, toDate: DateTime, a... + oreateRequestSenotale(pd: Int32, fromDate: DateTime, toDate: DateTime, toDateTime, a...

- creative particular services on VEZ, nonclate topes in the Courter topes in the courter of the C

• In a continue of the cont

+ CreateSubscribtionJson(PPort(nomeapp: String, table: String, fields: String, r... + unsubscribe(subid: InX32): String + unsubscribe(PPort(PlatformIP: String, PlatformPort: String, subid: InX32): St...

+ deserialzeSubscribeResult(|son: String) : SubscribeResult + deserialzeSensorHystoricalData(|son: String) : List<SensorHystoricalData>

+ deserializeSensorHystoricalData(ison: String) : List<SensorHystoricalData> + deserializePLCData(ison: String) : List<PLCData>

+ DeserializeSensorHystoricalDataExt(json: String) : List<SensorHystoricalData... + checkIF3sonError(json: String) : Boolean

 $+ \ dnangeStringOutputType(inputType: String): String\\$

+ GetLocal[PAddress() : String

PLCData

+ Canple { get; set; } : Int32 + Fample { get; set; } : Int32 + Impple { get; set; } : Stri... + Descriample { get; set; } : Stri... + Perferefix_name { get; set; } ... + Prefix neme, ness { get; set; } ... + Fampleidvalue { get; set; } ... + Canpleidvalue { get; set; } ... + Fiddisser; { get; set; } ...

SubscribeRule

+ AppName { get; set; } :... + AppD { get; set; } :... + QueunName { get; set; } :... + TopicName { get; set; } :... + Rule { get; set; } : RuleR... + SubscribeRule()

rule ¥ 0..1 RuleRecord2

+ Table { get; set; } : String + SelectFields { get; set; }... + Cron { get; set; } : String + Formula { get; set; } : St... + RuleRecord2()

Ambiente di sviluppo (C/SIDE) NAV

La pagina Machine Assignment List

La pagina Machine Reading List

Il report PowerBI nell'applicativo

Il report PowerBI esportato nel web

NAV servizi web

La pagina SubscriptionPage

OK -

Standard Observation and Measurement ISO 19156:2011

- Standard basato sul concetto di osservazione, con implementazioni in formato XML e JSON
 - Pensato per l'ambito geospaziale, il modello risulta astratto e applicabile nel case study
- Concetto di osservazione generico specializzato in base al risultato (es. Measurement)
 - Solo alcune specializzazioni sono utilizzate nel case study
- Al risultato di una osservazione specializzata viene poi associata un ontologia delle misure

Tabelle Backend Annotazioni

Esempio XML

```
▼<om:OM Observation xmlns:om="http://www.opengis.net/om/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:gml="http://www.opengis.net/gml/3.2" gml:id="valor1106"
 xsi:schemaLocation="http://www.opengis.net/om/2.0
 http://schemas.opengis.net/om/2.0/observation.xsd">
 ▼<gml:description>
    Valore della temperatura per l'estrusore Ext001 relativo al PLC 106
   </gml:description>
   <gml:name>valor1106
   <om:type xlink:href="http://www.opengis.net/def/observationType/OGC-OM/2.0/OM Measurement"/>
 ▼<om:phenomenonTime>
   ▼<gml:TimeInstant gml:id="ot1t">
      <gml:timePosition>2018-02-20 16:56:54/gml:timePosition>
    </gml:TimeInstant>
   </om:phenomenonTime>
   <om:resultTime xlink:href="#ot1t"/>
   <om:procedure xlink:href="http://www.logicalsystem.it/it/register/process/sensorGenio.xml"/>
   <!-- a notional URL identifying a procedure ... -->
   <!-- environmental conditions during measurement -->
   <om:observedProperty xlink:href="http://www.logicalsystem.it/it/onto/ExtrusorTemperature"/>
   <!-- a URN identifying the observed property -->
   <om:featureOfInterest>canplc106</om:featureOfInterest>
 ▼<!--
      a notional WFS call identifying the object regarding which the observation was made
   <om:result xlink:href="http://purl.obolibrary.org/obo/UO 0000027">130.0/om:result>
 ▼<!--
     The XML Schema type of the result is indicated using the value of the xsi:type attribute
   -->
 </om:OM Observation>
```

4 D F 4 D F 4 D F 4 D F F

Esempio JSON

```
"id": "valor1106".
"description": "Valore della temperatura per l'estrusore Ext001 relativo al PLC 106",
"type": "Measurement",
"phenomenonTime": "2018-02-20 16:56:54",
"observedProperty": {
   "href": "http://www.logicalsystem.it/it/onto/ExtrusorTemperature"
"procedure": {
   "href": "http://www.logicalsystem.it/it/register/process/sensorGenio.xml"
"featureOfInterest": "canplc 106",
"resultTime": "2018-02-20 16:56:54".
"result": {
   "value": 130.0,
   "uom": "http://purl.obolibrary.org/obo/UO_0000027"
```

Grafico misurazioni e misure

Pagina web ExtrusorTemperature

Ontologies Classes Object Properties Data Properties Annotation Properties Individuals Datatypes Clouds Individual: 'Extrusor Temperature'

Usage (1)

'Extrusor Measurement' skos:narrower 'Extrusor Temperature'

skos:definition

. "Measurement related to the temperature of the Extrusor" @en

skos:prefLabel

. "Extrusor Temperature"

uom

"degree celsius"

skos:broader

'Extrusor Measurement'

OWL HTML inside

Conclusioni

- L'integrazione tra NAV e la piattaforma ha avuto esito positivo tramite uso del client C#
 - ▶ Permettendo agli utenti un semplice utilizzo dei servizi
- L'ontologia delle misurazioni e delle misure è stata implementata
 - ▶ In modo da avere una descrizione dei dati ottenuti dai servizi