Computer Graphics Particle Fluids

Matthias Teschner

H can be seen as frame rate time step Smaller the time step, smoother the animation

Adverted = transported

Navier stokes - set of accelerations

Subdivide a great volum in smaller particles

Course Topics

- Rendering
 - What is visible at a sensor?
 - Ray casting
 - Rasterization / Depth test
 - Which color does it have?
 - Phong
- Modeling
 - Parametric polynomial curves
- Simulation
 - Particle fluids

Graphics

- Particle simulation Roy My From
- Particle motion
- Particle forces in a fluid
- Smoothed Particle Hydrodynamics SPH
- SPH for particle fluids
- Neighbor search
- Boundary handling
- Visualization
- Outlook

Particle Simulation

Fluid / Elastic object / Rigid object

Set of parcels

Positions and velocities of parcels *i* over time *t*

Fluid and Solid Parcels

Simulation

- Particle simulation
- Particle motion
- Particle forces in a fluid
- Smoothed Particle Hydrodynamics SPH
- SPH for particle fluids
- Neighbor search
- Boundary handling
- Visualization
- Outlook

Particle Quantities

$$m \in \mathbb{R}$$

$$oldsymbol{x} \in \mathbb{R}^3$$

$$oldsymbol{v} \in \mathbb{R}^3$$

Force

$$(\vec{F}) \in \mathbb{R}^3$$

Acceleration $\boldsymbol{a} = \frac{\boldsymbol{F}}{m} \in \mathbb{R}^3$

Time Discretization

- Quantities are considered at discrete time points t, t+h

- Particle simulations are concerned with the computation of unknown future particle quantities \boldsymbol{x}^{t+h} , \boldsymbol{v}^{t+h} from known current information \boldsymbol{x}^t , \boldsymbol{v}^t , \boldsymbol{a}^t
 - Where is the parcel? Which velocity does it have?

Governing Equations

Newton's Second Law, motion equation

$$rac{\mathrm{d}oldsymbol{v}^t}{\mathrm{d}t}=oldsymbol{a}^t=rac{oldsymbol{F}^t}{m}$$
 $rac{\mathrm{d}oldsymbol{x}^t}{\mathrm{d}t}=oldsymbol{v}^t$ Knowing a

- Ordinary differential equations ODE
- Describe the behavior of \boldsymbol{x}^t and \boldsymbol{v}^t in terms of their time derivative
- Numerical integration is employed to approximatively solve the ODEs, i.e. to approximate the unknown functions $m{x}^t$ and $m{v}^t$

Initial Value Problem

- Functions $oldsymbol{x}^t$ and $oldsymbol{v}^t$ represent the particle motion
- Initial values $oldsymbol{x}^t$ and $oldsymbol{v}^t$ are given
- First-order differential equations are given

$$rac{\mathrm{d}oldsymbol{x}^t}{\mathrm{d}t} = oldsymbol{v}^t \quad rac{\mathrm{d}oldsymbol{v}^t}{\mathrm{d}t} = oldsymbol{a}^t$$

- How to estimate \boldsymbol{x}^{t+h} and \boldsymbol{v}^{t+h} ?

Explicit Euler

Governing equations

$$rac{\mathrm{d}oldsymbol{x}^t}{\mathrm{d}t} = oldsymbol{v}^t \quad rac{\mathrm{d}oldsymbol{v}^t}{\mathrm{d}t} = oldsymbol{a}^t$$

- Initialization $m{x}^t = m{x}^{ ext{init}}$, $m{v}^t = m{v}^{ ext{init}}$, $m{a}^t$, h
- Explicit Euler update

$$\boldsymbol{x}^{t+h} = \boldsymbol{x}^t + h \frac{\mathrm{d}\boldsymbol{x}^t}{\mathrm{d}t} + O(h^2) = \boldsymbol{x}^t + h\boldsymbol{v}^t + O(h^2)$$

$$\boldsymbol{v}^{t+h} = \boldsymbol{v}^t + h \frac{\mathrm{d}\boldsymbol{v}^t}{\mathrm{d}t} + O(h^2) = \boldsymbol{v}^t + h\boldsymbol{a}^t + O(h^2)$$

Taylor approximation

Alternative Updates, e.g. Verlet

- Taylor approximations of
$$\boldsymbol{x}^{t+h}$$
 and \boldsymbol{x}^{t-h}
$$\boldsymbol{x}^{t+h} = \boldsymbol{x}^t + h\boldsymbol{v}^t + \frac{h^2}{2}\boldsymbol{a}^t + \frac{h^3}{6}\frac{\mathrm{d}^3\boldsymbol{x}^t}{\mathrm{d}t^3} + O(h^4)$$

$$\mathbf{x}^{t-h} = \mathbf{x}^t - h\mathbf{v}^t + \frac{h^2}{2}\mathbf{a}^t - \frac{h^3}{6}\frac{d^3\mathbf{x}^t}{dt^3} + O(h^4)$$

Adding both approximations leads to the position update

$$x^{t+h} = 2x^t - x^{t-h} + h^2 a^t + O(h^4)$$

Velocity update, e.g.

$$\mathbf{v}^{t+h} = \frac{\mathbf{x}^{t+h} - \mathbf{x}^t}{h} + O(h)$$

- Particle simulation
- Particle motion
- Particle forces in a fluid
- Smoothed Particle Hydrodynamics SPH
- SPH for particle fluids
- Neighbor search
- Boundary handling
- Visualization
- Outlook

Particle Quantities

$$-$$
 Mass $m \in \mathbb{R}$

- Position
$$\boldsymbol{x} \in \mathbb{R}^3$$

- Velocity
$$oldsymbol{v} \in \mathbb{R}^3$$

- Force
$$oldsymbol{F} \in \mathbb{R}^3$$

– Acceleration
$$oldsymbol{a} = rac{oldsymbol{F}}{m} \in \mathbb{R}^3$$

– Density
$$\rho \in \mathbb{R}$$

- Pressure
$$p \in \mathbb{R}$$

Governing Equations for a Fluid

- Particle positions \boldsymbol{x}_i^t and the respective attributes are advected with the local fluid velocity \boldsymbol{v}_i^t $\frac{\mathrm{d}\boldsymbol{x}_i^t}{\mathrm{d}t} = \boldsymbol{v}_i^t$
- Time rate of change of the velocity \boldsymbol{v}_i^t of an advected sample is governed by the Lagrange form of the Navier-Stokes equation

$$rac{\mathrm{d}oldsymbol{v}_i^t}{\mathrm{d}t} = -rac{1}{
ho_i^t}
abla p_i^t +
u
abla^2oldsymbol{v}_i^t +
oldsymbol{F_i^{t,\mathrm{other}}}{m_i}$$
Accelerations

Accelerations in a Fluid

- $-\frac{1}{\rho_i^t}\nabla p_i^t$: Acceleration due to <u>pressure</u> differences
 - Pressure is proportional to compression
 - Particle are accelerated from areas with high pressure / compression to areas with lower pressure / compression
 - Small and preferably constant density deviations / compressions are important for high-quality simulations

Accelerations in a Fluid

- $-\nu\nabla^2 v_i^t$: Acceleration due to <u>friction forces</u> between particles with different velocities
 - Minimizes the difference between a particle velocity and the average velocity of all adjacent particles
- $-\frac{{m F}_i^{t, {
 m other}}}{m_i}$: E.g., gravity

Acceleration Terms - 3D

Incompressibility

$$-\frac{1}{\rho}\nabla p = -\frac{1}{\rho}\begin{pmatrix} \frac{\partial p}{\partial x_x} \\ \frac{\partial p}{\partial x_y} \\ \frac{\partial p}{\partial x_z} \end{pmatrix} \qquad \text{for } p = -\frac{1}{\rho}\begin{pmatrix} \frac{\partial p}{\partial x_x} \\ \frac{\partial p}{\partial x_y} \\ \frac{\partial p}{\partial x_z} \end{pmatrix}$$

Viscosity

$$\nu \nabla^{2} \boldsymbol{v} = \nu \nabla \cdot (\nabla \boldsymbol{v}) = \nu \nabla \cdot \begin{pmatrix} \frac{\partial v_{x}}{\partial x_{x}} & \frac{\partial v_{x}}{\partial x_{y}} & \frac{\partial v_{x}}{\partial x_{z}} \\ \frac{\partial v_{y}}{\partial x_{x}} & \frac{\partial v_{y}}{\partial x_{y}} & \frac{\partial v_{y}}{\partial x_{z}} \\ \frac{\partial v_{z}}{\partial x_{x}} & \frac{\partial v_{z}}{\partial x_{y}} & \frac{\partial v_{z}}{\partial x_{z}} \end{pmatrix} = \nu \begin{pmatrix} \frac{\partial^{2} v_{x}}{\partial x_{x}^{2}} + \frac{\partial^{2} v_{x}}{\partial x_{y}^{2}} + \frac{\partial^{2} v_{x}}{\partial x_{z}^{2}} \\ \frac{\partial^{2} v_{y}}{\partial x_{x}^{2}} + \frac{\partial^{2} v_{y}}{\partial x_{y}^{2}} + \frac{\partial^{2} v_{y}}{\partial x_{z}^{2}} \end{pmatrix}$$

- Particle simulation
- Particle motion
- Particle forces in a fluid
- Smoothed Particle Hydrodynamics SPH
- SPH for particle fluids
- Neighbor search
- Boundary handling
- Visualization
- Outlook

Smoothed Particle Hydrodynamics SPH

- Interpolates quantities at arbitrary positions and approximates the spatial derivatives with a finite number of samples, i.e. adjacent particles
- SPH in a fluid simulation
 - Fluid is represented with particles
 - Particle positions and velocities are governed by $\frac{\mathrm{d} \boldsymbol{x}_i^t}{\mathrm{d} t} = \boldsymbol{v}_i^t$ and $\frac{\mathrm{d} \boldsymbol{v}_i^t}{\mathrm{d} t} = -\frac{1}{\rho_i^t} \nabla p_i^t + \nu \nabla^2 \boldsymbol{v}_i^t + \frac{\boldsymbol{F}_i^{t,\mathrm{other}}}{m_i}$
 - ρ_i^t , $-\frac{1}{\rho_i^t}\nabla p_i^t$, $\nu\nabla^2 \pmb{v}_i^t$ and $\frac{\pmb{F}_i^{t, ext{other}}}{m_i}$ are computed with SPH

SPH Interpolation

Consider a limited number of particles

– Quantity A_i at an arbitrary position x_i is approximately computed with a set of known quantities A_j at sample positions x_i :

$$A_i = \sum_j A_j \frac{m_j}{\rho_j} W_{ij}$$

- w_{ij} is a kernel function that weights the contributions of sample positions w_j their distance to w_i
- Spatial derivatives:

$$\nabla A_i = \sum_j A_j \frac{m_j}{\rho_j} \nabla W_{ij}$$

SPH Interpolation - Illustrations

$$W_{ij} = W(x_j - x_i) = \frac{1}{6h} \begin{cases} (2 - \frac{\|x_j - x_i\|}{h})^3 - 4(1 - \frac{\|x_j - x_i\|}{h})^3 & 0 \le \frac{\|x_j - x_i\|}{h} < 1 \\ (2 - \frac{\|x_j - x_i\|}{h})^3 & 1 \le \frac{\|x_j - x_i\|}{h} < 2 \\ 0 & \frac{\|x_j - x_i\|}{h} \ge 2 \end{cases}$$

- Particle simulation
- Particle motion
- Particle forces in a fluid
- Smoothed Particle Hydrodynamics SPH
- SPH for particle fluids

Useful for force computation

- Neighbor search
- Boundary handling
- Visualization
- Outlook

Density

Explicit SPH form

EXPIICIT SPH form
$$\rho_i = \sum_j \rho_j \frac{m_j}{\rho_i} W_{ij} = \sum_j m_j \widehat{W}_{ij} = \sum_j m_j \widehat{W}_{ij}$$
From the Wirther

Pressure

- Quantifies fluid compression
- Complish.
- E.g., state equation $p_i = \max(k(\frac{\rho_i}{\rho_0} 1), 0)$
- Pressure values in SPH implementations should always be non-negative.

- Rest density of the fluid ho_0
- User-defined stiffness k
- Pressure acceleration with SPH

$$- \boldsymbol{a}_{i}^{\mathrm{p}} = -\frac{1}{\rho_{i}} \nabla p_{i} = -\sum_{j} m_{j} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}} \right) \nabla W_{ij}$$

– Accelerates particles from high to low pressure, i.e. from high to low compression to minimize density deviation $\frac{\rho_i}{\rho_0}-1$

SPH Discretizations

Density computation

$$\rho_i = \sum_j m_j W_{ij}$$

- Pressure acceleration $-\frac{1}{\rho_i}\nabla p_i = -\sum_j m_j \left(\frac{p_i}{\rho_i^2} + \frac{p_j}{\rho_j^2}\right)\nabla W_{ij}$
- Viscosity acceleration $\nu \nabla^2 \mathbf{v}_i = 2\nu \sum_j \frac{m_j}{\rho_j} \frac{\mathbf{v}_{ij} \cdot \mathbf{x}_{ij}}{\mathbf{x}_{ij} \cdot \mathbf{x}_{ij} + 0.01h^2} \nabla W_{ij}$

Simple SPH Fluid Solver

for all particle i do

find neighbors j

for all particle i do

$$\rho_i = \sum_j m_j W_{ij}
p_i = k(\frac{\rho_i}{\rho_0} - 1)$$

for all particle i do

$$egin{aligned} oldsymbol{a}_i^{ ext{nonp}} &=
u
abla^2 oldsymbol{v}_i + oldsymbol{g} \ oldsymbol{a}_i^{ ext{p}} &= -rac{1}{
ho_i}
abla p_i \ oldsymbol{a}_i^t &= oldsymbol{a}_i^{ ext{nonp}} + oldsymbol{a}_i^{ ext{p}} \end{aligned}$$

for all particle i do

$$egin{aligned} oldsymbol{v}_i^{t+\dot{\Delta}t} &= oldsymbol{v}_i^t + \Delta t oldsymbol{a}_i^t \ oldsymbol{x}_i^{t+\Delta t} &= oldsymbol{x}_i^t + \Delta t oldsymbol{v}_i^{t+\Delta t} \end{aligned}$$

Compute adjacent particles for SPH sums

Compute density

Compute pressure

Compute non-pressure accelerations

Compute pressure acceleration

Explicit Euler for velocity update Implicit Euler for position update

Summary

- Fluid is subdivided into particles
- Navier-Stokes equation states particle accelerations
- SPH states how to approximate these accelerations using adjacent particles (space discretization)
- Fluid solver
 - Compute accelerations
 - Update positions and velocities (time discretization)
 - Accelerations require neighbor search for SPH approximations and density deviation for pressure acceleration

- Particle simulation
- Particle motion
- Particle forces in a fluid
- Smoothed Particle Hydrodynamics SPH
- SPH for particle fluids
- Neighbor search
- Boundary handling
- Visualization
- Outlook

Uniform Grid - Concept

- Particles are stored in cells
- In d-D, potential neighbors in 3d cells are queried to estimate actual neighbors
- Cell size equals the kernel support of a particle
 - Larger cells increase the number of tested particles
 - Smaller cells increase the number of tested cells

Uniform Grid - Implementation

- Compute unique cell identifier per particle
 - Space-filling curves
- Sort particles with respect to cell identifier
 - Particles in the same cell are close to each other
- Map cells to a hash table
 - No explicit representation of the uniform grid
 - Infinitely large grids can be handled
- See Simulation in Computer Graphics

- Particle simulation
- Particle motion
- Particle forces in a fluid
- Smoothed Particle Hydrodynamics SPH
- SPH for particle fluids
- Neighbor search
- Boundary handling
- Visualization
- Outlook

Particle based simulation

Colfina.

 Boundaries are sampled with particles that contribute to density, pressure and pressure acceleration

- Boundary handling: How to compute $\rho_i, p_i, p_{i_b}, \mathbf{F}_i^{\mathrm{p}}$?

Several Layers with Uniform Boundary Samples

Boundary particles are handled as static fluid samples

$$\rho_i = \sum_{i_f} m_{i_f} W_{ii_f} + \sum_{i_b} m_{i_b} W_{ii_b}$$

$$m_i = m_{i_f} = m_{i_b}$$

$$\rho_i = m_i \sum_{i_f} W_{ii_f} + m_i \sum_{i_b} W_{ii_b}$$

$$p_i = k(rac{
ho_i}{
ho_0} - 1)$$

Boundary neighbors contribute to the density

All samples have the same size, i.e. same mass and rest density

Pressure acceleration

$$\boldsymbol{a}_{i}^{\mathrm{p}} = -m_{i} \sum_{i_{f}} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{i_{f}}}{\rho_{i_{f}}^{2}} \right) \nabla W_{ii_{f}} - m_{i} \sum_{i_{b}} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{i_{b}}}{\rho_{i_{b}}^{2}} \right) \nabla W_{ii_{b}}$$

Contributions from fluid neighbors

Contributions from boundary neighbors

All samples have the same size, i.e. same mass and rest density

Pressure at Boundary Samples

- Pressure acceleration at boundaries requires pressure at boundary samples
- Various solutions, e.g. mirroring, extrapolation
- Mirroring
 - Formulation with unknown boundary pressure p_{i_b} $\boldsymbol{a}_i^{\mathrm{p}} = -m_i \sum_{i_f} \left(\frac{p_i}{\rho_i^2} + \frac{p_{i_f}}{\rho_{i_f}^2} \right) \nabla W_{ii_f} m_i \sum_{i_b} \left(\frac{p_i}{\rho_i^2} + \frac{p_{i_b}}{\rho_{i_b}^2} \right) \nabla W_{ii_b}$
 - Mirroring of pressure and density from fluid to boundary $p_{i_b}=p_i$

$$\boldsymbol{a}_{i}^{\mathrm{p}} = -m_{i} \sum_{i_{f}} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{i_{f}}}{\rho_{i_{f}}^{2}} \right) \nabla W_{ii_{f}} - m_{i} \sum_{i_{b}} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{i}}{\rho_{i}^{2}} \right) \nabla W_{ii_{b}}$$

- Particle simulation
- Particle motion
- Particle forces in a fluid
- Smoothed Particle Hydrodynamics SPH
- SPH for particle fluids
- Neighbor search
- Boundary handling
- Visualization
- Outlook

Concept

 Reconstruction and rendering of a triangulated iso-surface

Akinci et al., ACM Transactions on Graphics, 2012

Iso-Surface Reconstruction – Marching Cubes

Initialization

 Density computation at grid points using SPH

$$\begin{array}{cc} \rho_i = \sum_j \frac{m_j}{\rho_j} \rho_j W_{ij} = \sum_j m_j W_{ij} \\ \text{Grid} & \text{Particle} \\ \text{sample} & \text{samples} \end{array}$$

Classification

- Inside the fluid: $\rho_i \approx \rho^0$
- Outside: $\rho_i < \rho^0$
- Classification, e.g.

$$ho_i \leq 0.5
ho^0 \quad \Rightarrow \quad \text{out} \\
ho_i > 0.5
ho^0 \quad \Rightarrow \quad \text{in}$$

Iso-Surface Triangulation

 Generate triangles per cell, e.g.

- Particle simulation
- Particle motion
- Particle forces in a fluid
- Smoothed Particle Hydrodynamics SPH
- SPH for particle fluids
- Neighbor search
- Boundary handling
- Visualization
- Outlook

Outlook

- All materials can be simulated with SPH
 - Fluids
 - Viscous fluids
 - Elastic solids
 - Rigid bodies
- ... and their interactions

Gissler et al., ACM Transactions on Graphics, 2019