Scalable System Operations

About This Talk

- Set of principles
- Operations Engineering
- Tumblr project
- Server management
- Massively automated

- Software
- Techniques
- Example code
- Best practices
- Open source

About Me

About Me

- 1995: CompUSA
 Intro to The Internet
- 2000: Guru Labs
 Sun, Cisco, Red Hat
- 2002: Red Hat
 Sys admin courseware

About Me

- 2004: Fortress Systems
 Anti-spam/malware
- 2005: Red Hat Virtualization cert Remote learning Defined "cloud"
- 2011: Tumblr
 Lead Systems Eng

The Problem

Deploying new servers is very repetitive and slow. (and we hate that)

The Job We Don't Want

The Solution

Automation

Automation

- Install OS
- Configure OS
- Install software
- Configure software
- ☐ Add to DNS
- Add to monitoring
- Add to trending

- Firmware
- Configure BIOS
- Set up BMC
- Inventory
- Stress testing
- Network config

The Goal Is Clear

Automation

Time To Strategize

Time To Strategize

Use open source?
Which?
Buy software?
Which?
Write software?
Mix and match?

The Choice Principle

The time to make a decision is a function of the possible choices.

Rapid Software Research

Rapid Software Research

- 1. Define
- 2. Gather
- 3. Disqualify
- 4. Rank

Rank

Rank

- Modularity
- Compliance
- Novelty
- Disruption

My Requirements

- Asset inventory
- State management
- Robust API
- Event triggers

My Requirements

- Modular
- Flexible
- Extensible
- Fast

My Requirements

Manage physical hardware as easily as virtual machines.

The Usual Suspects

- Cobbler
- Foreman
- Satellite
- Orchestra
- Racktables
- Clusto

But Wait!

Data Entry

"Just import the data supplied by the hardware vendor..."

Missing Requirements

- Firmware
- Configure BIOS
- ☐ Set up BMC
- Inventory
- Stress testing
- Network config
- Add to monitoring
- Add to trending

We have to write software!

We have to write software!

- Delivery Schedule
- Scope Creep
- Maintenance
- Documentation

Tumbir Management Stack

The Glue Principle

Unix Rule of Parsimony: Write a big program only when it is clear by demonstration that nothing else will do.

The Standards Principle

The nice thing about standards is that you have so many to choose from.

-Andrew Tanenbaum

The Simplicity Principle

Unix Rule of Simplicity: Design for simplicity; add complexity only where you must.

The 3:00 AM Principle

It must be obvious to someone woken up from a sound sleep at 3:00 am.

The Don't Break The OS Principle

The software should NOT prevent the OS from working as expected.

The Amnesia Principle

Given enough time, you WILL forget why you did that.

Tumblr Management Stack

- iPXE
- Invisible Touch
- Collins
- Phil
- Kickstart
- Puppet

Why not pxelinux?

Why not pxelinux?

- TFTP
- Flat files

iPXE

IPXE

- HTTP, FTP, iSCSI
- Scriptable
- Variables
- Dynamic

ISC DHCP For iPXE

```
# subnet for the provisioning vlan
subnet <%= subnet %> netmask <%= netmask %> {
  option domain-name "<%= option_domain_name %>";
  option domain-name-servers <%= option_dns_servers.map{|i| "#{i}"}.join(", ") -%>;
  option subnet-mask <%= option_subnet_mask %>;
  default-lease-time 21600;
  max-lease-time 43200;
            <%= range_start %> <%= range_end %>;
  range
  # If a pxe request comes in from ipxe send the config url
  if exists user-class and option user-class = "iPXE" {
      filename "<%= ipxe_config_url %>"; # http://foo.example.com/ipxe/${net0/mac}
  # For all other pxe requests send ipxe
  } else {
      next-server <%= next_server %>; # tftp server
      filename "<%= filename %>";  # path to ipxe binary on tftp server
```

Fedora LiveCD Tools

```
lang en_US.UTF-8
keyboard us
timezone US/Eastern
auth --useshadow --enablemd5
selinux --enforcing
firewall --disabled
repo --name=centos
                     --baseurl=http://127.0.0.1/pub/repo/centos/os/6.2
                     --baseurl=http://127.0.0.1/pub/repo/infra/6.2
repo --name=infra
                     --baseurl=http://127.0.0.1/repo/epel/6/x86_64/
repo --name=epel
%packages --excludedocs
@core
dracut
dracut-kernel
device-mapper
device-mapper-event
%end
```

Invisible Touch Kickstart

```
# Invisible Touch Live OS image
%include centos-6.2-livecd-minimal.ks
%packages --excludedocs
it
%end
%post
cat > /etc/issue <<EoF
Invisible Touch Live OS v0.0.4
Kernel \r
EoF
# set ipmi to start at boot up
/sbin/chkconfig ipmi on
# configure rsyslog
cat >> /etc/rsyslog.conf <<EoF
# invisible touch
local0.*
                                                          /var/log/it.log
local0.*
                                                          /dev/tty7
EoF
%end
```

Invisible Touch Utilities

- Ishw
- IIdpd
- Breakin
- ipmitool
- Bash scripts

Ishw

```
<node id="disk:1" claimed="true" class="disk" handle="SCSI:04:00:01:00">
  <description>ATA Disk</description>
  oduct>ST91000640NS
  <vendor>Seagate</vendor>
 <physid>0.1.0</physid>
 <businfo>scsi@4:0.1.0
 <logicalname>/dev/sdf</logicalname>
 <dev>8:80</dev>
 <version>n/a</version>
  <serial>9XG0ETB8</serial>
 <size units="bytes">1000204886016</size>
 <configuration>
   <setting id="ansiversion" value="5" />
   <setting id="signature" value="000e1763" />
  </configuration>
  <capabilities>
   <capability id="partitioned">Partitioned disk</capability>
   <capability id="partitioned:dos">MS-DOS partition table/capability>
 </capabilities>
</node>
```

Ishw generates hardware info XML

lldpd

```
<interface label="Interface" name="eth0" via="LLDP" rid="1" age="0 day, 00:01:03">
<chassis label="Chassis">
 <id label="ChassisID" type="mac">78:19:f7:88:60:c0</id>
 <name label="SysName">core01.dfw01
  <descr label="SysDescr">Juniper Networks, Inc. ex4500-40f/descr>
  <capability label="Capability" type="Bridge" enabled="on" />
 <capability label="Capability" type="Router" enabled="on" />
</chassis>
 <port label="Port">
 <id label="PortID" type="local">608</id>
  <descr label="PortDescr">ge-0/0/3.0</descr>
  <mfs label="MFS">1514</mfs>
  <auto-negotiation label="PMD autoneg" supported="no" enabled="yes">
  <advertised label="Adv" type="10Base-T" hd="no" fd="yes" />
  <current label="MAU oper type">unknown</current>
 </auto-negotiation>
</port>
<vlan label="VLAN" vlan-id="666" pvid="yes">DFW01-PROVISIONING</vlan>
<lldp-med label="LLDP-MED">
 <device-type label="Device Type">Network Connectivity Device</device-type>
 <capability label="Capability" type="Capabilities" />
</11dp-med>
</interface>
```

Ildpctl outputs network info in XML

Breakin

```
_Advanced Clustering Breakin Version: 2.31
CPU usage
          Мем Usage
          48%
 Темрѕ
          Not supported
              Pass Fail
                                      Last message
     Test
                0 0 0
 ecc
                    0
0
0
hp1
Mcelog
 badblocks
00h 00m 02s: Staring hardware setup
00h 00m 02s: Finished hardware setup
00h 00m 02s: Running memory performance benchmark
00h 00m 05s: Running disk benchmark on sda
[F2] = hardware info [F3] = dump log to usb [F8] = quit
                                                      00h 00m 05s
```

Stress testing framework

Breakin

- Standard tools
- LINPACK
- Extensible
- Bash scripts

Invisible Touch

- Firmware
- Configure BIOS
- Set up BMC
- Inventory
- Stress testing
- Network config

Collins

- Asset management system in Scala
- REST API
- Client libraries in Ruby, Python and Bash
- Shell tool for scripting and automation
- Callback system for hooking into events
- Granular permissions model
- Flexible web and API based provisioning
- Remote power management
- IP Address allocation and management
- Distributed mode for spanning data centers

Collins Docs

Collins

Asset management for engineers

About

Collins started as a system to manage all of the physical servers, switches, racks, etc in Tumblr production environments. As we started to inventory hardware, IP addresses, software, and so on, we found the API and data gave us an excellent way to drive automation processes. Today Collins can do push button cluster (HBase, Hadoop, web, etc) deployment, drive configuration generation when hardware cluster topologies change, drive infrastructure updates when software configuration changes, and help manage software deploys.

Because of the loosely coupled design of Collins, consistently applied conventions are a system requirement. This document serves as a guide to those conventions as well as the basic core concepts of the collins system. If you're just interested in the basic howto or screenshots, click here.

Approach

Collins is extremely dumb. It knows about assets, their meta-data and asset logs. You can think of collins as a key/value store where each asset has its own set of key/value pairs. There are no relationships between assets other than the ones you, through convention, derive. The API makes it trivial to create and manage the tags (meta-data, key/value pairs) associated with an asset, and to query based on those tags.

Collins is intentionally dumb. It worries about basic authentication, clean API interactions, and data persistence. If you start thinking, "Hey, I should build X into Collins", you probably shouldn't. Collins supports both a plugins architecture (for things that actually in some way change the behavior of collins) as well as a very usable API (including clients in Python, Ruby and Bash). Nearly everything you might want to do can be accomplished via the API and anything that can't is doable as a plugin.

Pages

Introduction

Basic Concepts

Collins Functions

Provisioning, logging, cancelling, reboots, searching

Integration Points

Systems that Integrate with Collins

The Collins API

RESTful interaction with your assets

The Asset API

Manipulating and querying assets

The Asset Management API

Managing assets

The Asset Log API

Create and query log data

The Asset Tag API

Query all tags

The IP Management API

Manage and query IP addresses

Tag Usage and Conventions

What tags are in use for what purposes

Callbacks

Callback Mechanism in Collins

Configuration

Configuration Options in Collins

Collins Search

	Manag	er				Search	Logging	Create =	Logout
Asset Sea	rch								
Asset Tag					Tumbir Asset Tag				
Created Between	Start Auset was	and		t date a	nd below End date				
Updated Between	Start. Annet was	and last up		r Sheft d	ate and before End date				
IP Address					IP Address of Asset.				
Hostname					Hostrame				
Primary Role				2	Primary role of host or asset				
Pool				#	Pool				
Nodeclass				\$	Puppet Noda Class				
CPU Speed					CPU Speed in GHz				
Secondary Role					Secondary role of asset				
Memory Total				#	Total amount of available mem	ory in bytes			
NIC Speed	(0	Speed of nic, stored as bits pe	rsecond			
Inferred disk type				\$	Informed disk type: SCSI, IDE or	FLASH			
Total disk storage					Total amount of available stora	01			
MAC Address					MAC Address of NIC				
LLDP Switch Part					Port Description reported by	ldpot			
Asset Status				÷	Asset Status (New, Incomplete	effc)			
Asset Type				9	Type of Assat (Server Charsis,	Server Noc	ie, etc)		
IPMI Address					IPMI Address				
Remote Search	□ Search	for itse	ata in otne	r data-o	onteos				

Collins Asset Details

Collins Provisioning

Greated On	2012-04-0	18:33:00		
Last Updated	2012-04-0	18:46:07		
Chassis Tag	Provision a Serv	or	×	
Rack Position	Provision a Serv	er	101	
Total disk storage	warning Provisioning a this. The provisioner will	server is a destructive process. Be cert	ain that you want to do	
User Notes	SSH into the machin			
Chow 25 I en	 Reboot it into kicks Come back online v 	tart mode vithout old data on disks		
Date No data available in t	If that all sounds good, notification	pick an appropriate profile below and pro-	ovide your hipchat for	
Date	Profile	DHCP/iPXE Server ‡		
Showing 0 to 0 of 0 an	Primary Role	INFRA		sam Next
Hardware Sum	Pool	☐ Custom Pool		
CPU		Pool is required		
Total CPUs	Secondary Role	Custom Secondary Role		
Total CFU Core	6146-918-118-118-118-118-118-118-118-118-118			
Total CPU Three		Secondary Role is optional		
Hyperthreading	Hipchat User	oshu		
Mainory				
Total Vernory				
Total Memory B			Y	
Used Memory F		Go back to browsing turns	Provision Server	
Unused Memor			4	
Diaka				
Disks			ä	
SGS Storage			465.76 GB	

Phil

- iPXE dispatcher
- Kickstart generator
- Light Ruby app
- Collins API client

Server Intake Workflow

- 1. Rack and stack
- 2. Power on
- 3. Enter physical data

Server Intake Process

- 1. Server boots iPXE via DHCP/PXE
- 2. iPXE gets config from Phil
- 3. Phil sends Invisible Touch
- 4. IT updates firmware (if needed)
- 5. IT configures BIOS
- 6. IT configures BMC
- 7. IT uploads inventory data to Collins
- 8. IT starts stress tests
- 9. IT powers down server

Provisioning Workflow

- 1. Search Collins
- 2. Choose Profile, Role, Pool
- 3. Click button

Provisioning Process

- 1. Server boots iPXE via DHCP/PXE
- 2. iPXE gets config from Phil
- 3. Phil sends install image
- 4. Install image gets Kickstart from Phil
- 5. Install runs Puppet in %post
- 6. End of %post calls back to Collins
- 7. Collins triggers vlan update
- 8. Collins triggers monitoring/trending
- 9. Added to production if "all green"

Result

Fast, scalable, no hassle provisioning!

Hurdles

Hurdles

- □ PXE kickstart w/ multiple NICs
- □ Network set up in %post
- □ Virident SSD set up in %post

PXE Kickstart / Multiple NICs

Phil iPXE config

```
initrd <%= os_install_url %>/images/initrd.img
kernel <%= os_install_url %>/images/vmlinuz ip=dhcp ksdevice=${mac}
```

Phil kickstart snippet

```
# network
network --bootproto=dhcp
```


%post Network Set Up

Phil kickstart snippet

```
# Bond Interface: <%= bond.name %>
cat > /etc/sysconfig/network-scripts/ifcfg-<%= bond.name %> <<EoF
DEVICE=<%= bond.name %>
BONDING_OPTS="<%= bond.options %>"
BOOTPROTO=static
IPADDR=<%= bond.address %>
NETMASK=<%= bond.netmask %>
GATEWAY=<%= bond.gateway %>
EoF
```


%post Virident SSD Set Up

```
# Start the virident daemon
/etc/init.d/vgcd start
# create a device node
mknod /dev/vgca0 b 252 0
# create a mount point
mkdir -p /var/lib/mysql
# create partitions
parted -s /dev/vgca0 mklabel msdos
parted -s /dev/vgca0 unit s mkpart primary ext2 2048 100%
# make another device node
mknod /dev/vgca0p1 b 252 1
# make the filesystem
/sbin/mkfs.xfs -f -d su=64k,sw=3 -l size=32m,su=16k /dev/vgca0p1
# create fstab entry
echo "/dev/vgca0p1
                        /var/lib/mysql
                                                             0 0" >>/etc/fstab
                                          xfs
                                                  noauto
# create virident config
cat > /etc/sysconfig/vgcd.conf << EoF</pre>
RESCAN_MD=1
RESCAN_LVM=1
MOUNT_POINTS="/var/lib/mysql"
RESCAN_MOUNT=1
EoF
# mount the virident
mount /var/lib/mysql
```

Lessons Learned

- Modularity is very important
- Hardware always has issues at scale
- Use modern Bash syntax
- 4 hour burn-in is not enough

Yes, we're hiring!

Joshua Hoffman joshua@tumblr.com tumblr.com/jobs

