Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$t_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
$t_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	3
$\tau_1^{\#_1}\alpha\beta + ik \ \sigma_1^{\#_1}\alpha\beta == 0$		3
	$\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\chi\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{lpha\chieta}$	
$\sigma_{1+}^{\#1}\alpha\beta == \sigma_{1+}^{\#2}\alpha\beta$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} +$	3
	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} = =$	
	$3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha}$	
$\tau_{2+}^{\#1}\alpha\beta=0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} t^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} t^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$2 \eta^{lphaeta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} au_{\chi}^{\chi}$	
$\sigma_{2}^{\#1}\alpha\beta==0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} +$	5
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{X\delta} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{X\delta} +$	
	$3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \chi \beta} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \chi \alpha} \right)$	
Total constraints/gauge generators:	uge generators:	27

(No massless particles)

 $\mathcal{A}_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \mathcal{A}_{2^{-}\alpha\beta\chi}^{\#1}$

0

 $\tau_{0^{+}}^{\#1}$ $\tau_{0^{+}}^{\#2}$ $\sigma_{0^{-}}^{\#1}$

0

0

0

 $au_{0}^{\#1}$ †

 $\mathcal{A}_{2}^{\#1}$ † $^{lphaeta\chi}$

0

0

0

0

0 0 0 0

0 0 0 0

 $\begin{array}{c|c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$

0 0 0 0

0 0 0 0

 $\sigma_{1}^{#1} + \alpha$ $\sigma_{1}^{#2} + \alpha$ $\tau_{1}^{#1} + \alpha$ $\tau_{1}^{#2} + \alpha$

0

 $au_1^{\#1} \dagger^{lphaeta}$

0 0 0 0 0

0

 $f_{0+}^{#1}\dagger$

 α $t_1^{\#1}$

0

0

0

0

0

0

0 0 0 0

0 0

0 0 0 0

0 0 0 0

 $f_{1}^{#1} + \alpha \beta$ $\mathcal{A}_{1}^{#1} + \alpha$ $\mathcal{A}_{1}^{#2} + \alpha$ $f_{1}^{#2} + \alpha$ $f_{1}^{#2} + \alpha$

0

0

0

0

0

0

	S S S S S S S S S S
M	assive and massless spectra

	Massive particle	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pole residue:	$-\frac{1}{r_2} > 0$
	Polarisations:	1
	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$