

Repasemos algunas instrucciones

PUSH B

Repasemos algunas instrucciones

POP B

Repasemos algunas instrucciones

POP B

En arquitecturas RISC, las direcciones de retorno de una subrutina se almacenan en un registro de enlace (RA), a diferencia del computador básico donde se guardan en el stack. Asimismo, estas arquitecturas no poseen PUSH/POP, sino que acceden al stack directamente con el stack pointer (SP). Deberá contestar las preguntas de esta sección a partir de este contexto y el siguiente diagrama:

A partir del diagrama de base adjunto, y asumiendo que se eliminan las instrucciones CALL, RET, PUSH y POP, realice las modificaciones de hardware necesarias e indique la combinación de señales completa para ejecutar las siguientes instrucciones en un ciclo:

- MOV A,(SP). Guarda en A el valor Mem[SP].
- MOV (SP), A. Guarda en Mem[SP] el valor A.
- ADD SP,Lit. Guarda en SP el valor SP + Lit. Lit puede ser negativo.
- MOV (SP), RA. Guarda en Mem[SP] el valor RA.
- JAL RA, label. Guarda PC+1 en RA y salta a la dirección asociada a label.
- JALR RA. Salta a la dirección almacenada en RA.

Instrucción	LA	L _B	L_{PC}	L _{SP}	L_{RA}	W	S_A	S _B	Sop	S_{Add}	S_{DIn}	S _{PC}
MOV A, (SP)	1	0	0	0	0	0	ZERO	DOUT	ADD	SP	-	-
MOV (SP), A	0	0	0	0	0	1	A	ZERO	ADD	SP	ALU	-
ADD SP, Lit	0	0	0	1	0	0	SP	LIT	ADD	-	-	-
MOV (SP), RA	0	0	0	0	0	1	-	-	-	SP	RA	-
JAL RA, label	0	0	1	0	1	0	-	-	-	-	-	LIT
JALR RA	0	0	1	0	0	0	-	-	-	-	-	RA

Pregunta 2: Diagrama de Señales

Dibujar las señales de salida:

Pregunta 2: Diagrama de Señales

Dibujar las señales de salida:

Pregunta 2: Diagrama de Señales

Dibujar las señales de salida:

Dibujar circuito:

Diseñe un contador secuencial de 2 bits que se decrementa con cada flanco de subida de la señal de control. Este contador, además debe recibir una señal de entrada B de un 1 bit, correspondiente al valor del botón del timer. si el valor de B es igual a 1 durante el flanco de subida de la señal de control (el botón está presionado), entonces el contador debe actualizar su valor a 3 en vez de decrementarse en una unidad

Pasos Recomendados a Seguir:

- Identificar conceptos importantes
- Crear tablas de verdad
- Deducir comportamiento salidas
- Dibujar el circuito

Conceptos Importantes

- Contador de 2 bits
- Decrementa en Flanco de Subida
- Señal B (1 bit) → RESET

Tabla de verdad:

Q_1^t	Q_0^t	Q_1^{t+1}	Q_0^{t+1}
1	1	1	0
1	0	0	1
0	1	0	0
0	0	1	1

Deducción Salidas

$$\bullet \ Q_0^{t+1} = NOT(Q_0^t)$$

•
$$Q_1^{t+1} = NOT(Q_1^t XOR Q_0^t)$$

Represenración numérica

Resta en formato IEE-754

