Project Development Phase Model Performance Test

Date	18 May 2023
Team ID	NM2023TMID00069
Project Name	Project : COVID-19 Detection from Lung X-
	rays with Deep Learnings

Model Performance Testing:

Project team shall fill the following information in the model performance testing template.

S.No.	Parameter	Values	Screenshot
S.No. 1.	Parameter	Values The Xception model: It is a deep convolutional neural network (CNN) architecture designed for image classification tasks. It utilizes depth wise separable convolutions, which separate spatial and channel-wise filtering,	Screenshot C Norder X Nowey Coel Epusion X Subspective - ages Note X C C C C C C C C C
	Model Summary	reducing computational complexity. The model achieves state-of-the-art performance on various benchmark datasets. It consists of several blocks of separable convolutions with batch normalization and activation functions. The architecture features skip connections that facilitate	Total
		gradient flow and information propagation. Xception's building blocks are highly efficient and have a large receptive field. The model is trained end-to-end on large-scale image datasets. It has around 22 million trainable parameters. The Xception architecture has inspired subsequent neural network designs. It has been	To (All) Company Comp

	widely used and adapted in various computer vision applications.	
2. Accuracy	Training Accuracy – 95.56% Validation Accuracy -70.80%	C ○ carbonition consequence types have a first quantity and product and product of the consequence of the c