Data Curation Techniques

Siddharth R

Data Normalization

- Also called as Data Standardization
- Raw data into Standard format

Normalization is particularly important when:

- Features have different units or magnitudes.
- Distance-based algorithms (e.g., KNN, K-means, SVM) are used.
- Data needs to be prepared for better convergence in deep learning models.

Why is Data Normalization Important

- 1. Features with larger values may disproportionately influence model training.
- 2. Scaled values help reduce the complexity of optimization algorithms.
- 3. Many machine learning algorithms (e.g., gradient descent-based models) work better with normalized data.
- 4. Standardized scales make comparisons easier.

Common Types:

- Min-Max Normalization
- 2. Z-score Normalization
- 3. Decimal Scaling
- 4. Robust Scaling

Min-Max Normalization

When to use

- When data has no outliers and a known/stable range
- When preserving relative distances between data points is critical

When to avoid:

$$x'' = 2\frac{x - \min x}{\max x - \min x} - 1$$

- Sensitive to Outliers
- Not Robust to Changes in Data: If new data points introduce a new min or max, you must recompute normalization.

Special Case: When the data is centered around zero. What would you do?

Z-Score Normalization

Observed value
$$z = \frac{x - \mu}{\sigma}$$
 Mean value
$$z = \frac{x - \mu}{\sigma}$$
 Standard deviation

Here instead of min and max, we are using the mean and standard deviation.

When to use:

- Z-score normalization is particularly useful when the data is approximately normally distributed.
- When mean and SD are meaningful

When not to use:

- When you are data is having skewed distributions / outlier
- When interpretability of original units is required
- Doesn't Bound Data

Decimal Scaling

Dividing each feature by a power of 10.

$$X'=X / 10^{j}$$

The value of j is determined by the maximum absolute value in the dataset:

When to use:

- For simplicity in preserving relative magnitudes without complex calculations
- When working with integer-heavy data

When to avoid:

Not robust to outliers

Robust Scaling

Median and IQR is used instead of mean and standard deviation

When to Use:

For outlier-rich datasets / skewed distributions

When to avoid:

When median/IQR misrepresents data (e.g., bimodal distributions)

Summary

Technique	echnique Outlier Handling		Ideal data type	
Min-Max	Poor	Yes	Bounded, no outlier	
Z-Score	Z-Score Moderate		Gaussian distributed	
Decimal Scaling	Decimal Scaling Poor		Integer- heavy	
Robust Scaling Excellent		Partial (uses IQR)	Skewed / outlier	

Handling Redundancy

- Redundancy vs Duplicates
- An attribute may be redundant if it can be "derived" from another attribute or set of attributes.
- Any examples?
- Identifiers: Attributes that uniquely identify an individual
- Quasi-Identifiers: Attributes that do not uniquely identify a person but, when combined, can lead to re-identification.
- Data type: continuous vs continuous, categorical vs categorical

Chi-Square Test

To determine whether there is a significant **association** between two **categorical** / **nominal** variables.

Steps:

- 1. Define Hypotheses:
 - a. Null Hypothesis (H₀): The two categorical variables are independent (no relationship).
 - b. Alternative Hypothesis (H₁): The two variables are dependent (have a relationship).
- 2. Create a Contingency Table :

Suppose A has c distinct values,namely a_1, a_2, a_c . B has r distinct values,namely b_1, b_2, b_r . The data tuples described by A and B can be shown as a contingency table

3. Calculate Expected Frequencies:

$$e_{ij} = \frac{count(A = a_i) \times count(B = b_j)}{n},$$

4. Calculate Chi-square:

$$\chi^2 = \sum_{i=1}^c \sum_{j=1}^r \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$
, O - Observed value E - Expected value

Example:

	Male	Female	Total
Fiction	250	200	450
Non-Fiction	50	1000	1050
Total	300	1200	1500

Step 1: Hypothesis for this problem?

Step 2: Calculate expected frequency

$$e_{11} = \frac{count(male) \times count(fiction)}{n} = \frac{300 \times 450}{1500} = 90,$$

Example (Contd.)

	male	female	Total 450	
fiction	250 (90)	200 (360)		
non_fiction	50 (210)	1000 (840)	1050	
Total	300	1200	1500	

Step 3: Calculate Chi-Square value

Step 4: Find degree of freedom => (R-1) * (C-1), where R is the number of rows and C is the number of columns

Step 5: Based on the alpha value, refer the chi-square distribution table to compare the critical value with the chi-square value.

Step 6: If chi-square value is greater than critical value, then reject null hypothesis, else we fail to reject the null hypothesis

Example (Contd.)

$$\chi^{2} = \frac{(250 - 90)^{2}}{90} + \frac{(50 - 210)^{2}}{210} + \frac{(200 - 360)^{2}}{360} + \frac{(1000 - 840)^{2}}{840}$$
$$= 284.44 + 121.90 + 71.11 + 30.48 = 507.93.$$

- Degree of freedom = (2-1) * (2-1) = 1
- For 1 degree of freedom, the value needed to reject the hypothesis at the 0.001 significance level is 10.828
- Since our computed value is above this, we can reject the hypothesis that gender and preferred reading are independent.
- Link to the table: https://www.di-mgt.com.au/chisquare-table.html

Exercise

	Program 1	Program 2	Current Program	Total
# Passed	112	94	130	336
# Failed	60	79	85	224
Total	172	173	215	560

Alpha value (p) = 0.05

Chi-Square Value = ?

			р			i
v	0.100	0.050	0.025	0.010	0.005	0.001
1	2.7055	3.8415	5.0239	6.6349	7.8794	10.8276
2	4.6052	5.9915	7.3778	9.2103	10.5966	13.8155
3	6.2514	7.8147	9.3484	11.3449	12.8382	16.2662
4	7.7794	9.4877	11.1433	13.2767	14.8603	18.4668
5	9.2364	11.0705	12.8325	15.0863	16.7496	20.5150
6	10.6446	12.5916	14.4494	16.8119	18.5476	22.4577
7	12.0170	14.0671	16.0128	18.4753	20.2777	24.3219
8	13.3616	15.5073	17.5345	20.0902	21.9550	26.1245
9	14.6837	16.9190	19.0228	21.6660	23.5893	27.8772
10	15.9872	18.3070	20.4832	23.2093	25.1882	29.5883

Thank You