Exercícios Computacionais $1-\mathrm{ECp}1$

Rodrigo Seiji Piubeli Hirao (186837)

16 de dezembro de 2021

Conteúdo

1	Questão 10	2				
2	Questão 11	2				
3 Questão 12						
	Questão 13 4.1 13.1 4.2 13.2	2 2 2				
5	Questão 14	3				
	Questãqo 15 6.1 a)	3				

1 Questão 10

Como temos que todas os casos são verdadeiros, temos uma tautologia.

p	q	\mathbf{r}	$p \lor q$	$\neg q \vee r$	$(p \lor q) \land (\neg q \lor r)$	$p \lor r$	$(p \lor q) \land (\neg q \lor r) \Rightarrow p \lor r$
F	F	F	F	V	F	F	V
\mathbf{F}	\mathbf{F}	V	F	V	\mathbf{F}	V	V
\mathbf{F}	V	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	F	V
\mathbf{F}	V	V	V	V	V	V	V
V	\mathbf{F}	\mathbf{F}	V	V	V	V	V
V	\mathbf{F}	V	V	V	V	V	V
V	V	\mathbf{F}	V	\mathbf{F}	F	V	V
V	V	V	V	V	V	V	V

2 Questão 11

O algoritmo A* depende da função f(n) = g(n) + h(n) tal que g(n) é o custo da raíz da árvore até o nó atual e h(n) é o custo estimado do nó atual até o nó de destino, de tal forma que a estimativa SEMPRE é menor que o custo real. O algoritmo, por ser exponencial, se torna intratável com uma árvore muito grande.

Vale notar que o algoritmo não é aplicável para árvores com arestas de custos negativos.

3 Questão 12

Cada nó da árvore será dividido de forma a maximizar o grau de pureza de seus filhos até que haja um nó que tenha apenas elementos de um conjunto de dados, uma folha.

A random forest se difere da árvore de decisão no ponto que ela não monta uma única árvore, mas faz amostragens dos dados (bootstrap) e para cada amostragem monta uma árvore com uma seleção de atributos, assim, sua predição passa por todas as árvores de decisão, e a resposta final é decidida pela média ou pelo voto majoritário das respostas obtidas.

4 Questão 13

4.1 13.1

O algoritmo de MCTS é dividido nas 4 etapas a seguir (será usado um tabuleiro de xadrez como exemplo):

- 1. **Seleção** Será decidido o caminho na árvore de modo a descobrir o melhor resultado (usando uma tree policy), até um ponto onde não se há mais política para escolha. (Uma abertura do xadrez, por exemplo)
- 2. Expansão A partir desse ponto é escolhido um nó aleatório (Mover qualquer peça que dê para mover)
- 3. **Simulação** Fazer simulações de possíveis jogos, podendo ser simulações puramente aleatórias, e juntando recompensas durante o jogo (Por exemplo, atribuir +1 para cada peça comida do adversário, -1 para cada peça perdida sua, +10 para um jogo ganho e -10 para um jogo perdido)
- 4. Backup Voltamos os nós para atualizar o valor do nó desconhecido com o valor acumulado da recompensa.

Esse processo é repetido quantas vezes for julgado necessário.

4.2 13.2

Deve ser encontrado um balanço entre exploração (a quantidade de nós que serão simulados) e exploitação (quantidade de simulações para cada nó).

Ou seja, muita exploração garante a simulação de muitos nós, mas poucas e razas simulações para cada. Já muita exploitação garante muitas simulações para nós com alta recompensa encontrada precocemente.

5 Questão 14

Dados

- $\bullet~\mathbf{x^*}$ uma estratégia mista ótima, ou seja, o vetor de probabilidades ótimo , do jogador 1
- y* uma estratégia mista ótima do jogador 2
- p(x*, y*) O pagamento ao primeiro jogador caso os 2 jogadores sigam a estratégia ótima
- \bullet $p(x, y^*)$ O pagamento ao primeiro jogador caso o mesmo saia da estratégia ótima
- \bullet $p(x^*, y)$ O pagamento ao primeiro jogador caso o segundo jogador saia da estratégia ótima

Pode ser visto pela equação 1 que se o primeiro jogador sair da estratégia ótima, este irá receber menos (fazendo o jogador 2 ganhar mais), o mesmo ocorre para o jogador 2, mas com o jogador 1 agora ganhando mais. O que significa que os jogadores não devem sair da estratégia ótima, senão irão perder menos, sua única esperança de ganhar mais é se o outro jogador sair da estratégia ótima.

$$p(x, y^*) \le (x^*, y^*) \le (x^*, y) \tag{1}$$

6 Questãqo 15

6.1 a)

$$Pr(S|A) = \frac{Pr(A|S)Pr(S)}{Pr(A|S)Pr(S) + Pr(A|NS)Pr(NS)} = \frac{p}{p + \frac{1-p}{m}} = \frac{mp}{p(m-1) + 1}$$

6.2 b)

- Mudar sua cidade, para assim ter acesso a um melhor salário
- Procurar melhorar sua escolaridade, que também melhorará o salário, mas também a classificação de crédito diretamente
- Prestar atenção no estado civil, o que trará o mesmo benefício dos outros