Date: 07/08/2024

Experiment 1.3

AIM

To convert NFA with ϵ transition to NFA without ϵ transition.

ALGORITHM

- 1. Start
- 2. Create utility functions for NFA data structure to read and write transitions.
- 3. Create a DFS function that finds epsilon closure of a state and stores in a boolean array as follows:
 - 1. If state is visited, terminate function call.
 - 2. Mark state as visited.
 - 3. For each transition from the given state via input alphabet ϵ :
 - 1. Recursively call the DFS function for the target state.
- 4. Read NFA input as follows:
 - 1. The first line contains the number of states (n), number of final states (f), number of input alphabets(m), and number of transitions(t).
 - 2. The next line contains f space separated integers denoting the final states.
 - 3. The next line contains the m input alphabets as a single string.
 - 4. The next t lines contain transitions as "qi qj c" representing a transition from qi to qj on input alphabet c. Here, the alphabet 'e' denotes epsilon.
- 5. For each state in the ε NFA, find the ε closure using DFS.
- 6. Create new NFA with same number of states as input NFA.
- 7. For each state s in the original NFA:
 - 1. For each state s' in the ε closure of s:
 - 1. For each transition from s to a state t via input symbol c such that $c! = \varepsilon$:
 - 1. For each state t' in the ε closure of t:
 - 1. Add transition from s to t' in the new NFA.
- 8. For each state s in the original NFA:
 - 1. For each state s' in the ε closure of s:

1. If s' is a final state in original NFA, mark s as a final state in the output NFA						
9. Print	t the new NFA	L.				
10. Stop						