E.1 On considère la suite arithmétique $(u_n)_{n\in\mathbb{N}}$ de premier terme $\frac{3}{4}$ et de raison $\frac{1}{2}$.

- 1 Déterminer la valeur des cinq premiers termes de cette suite.
- 2 Donner la formule explicite de (u_n) donnant la valeur d'un terme en fonction de son rang.
- 3 Déterminer la valeur de la suite suivante: $S = u_5 + u_6 + \cdots + u_{12}$

E.2 En identifiant chacune des sommes comme une somme des termes d'une suites arithmétiques ou géométriques, déterminer chacune de leurs valeurs:

(a)
$$12 + 7 + 2 + (-3) + \cdots + (-28)$$

b
$$27+3+\frac{1}{3}+\cdots+\frac{1}{243}$$

$$\frac{2}{3} + \frac{8}{3} + \frac{14}{3} + \dots + \frac{62}{3}$$

E.3 Un coureur se lance un défi: il souhaite faire le tour de l'Europe.

Le premier jour, il parcourt $50\,km$. Par la fatigue, de jour en jour, sa distance parcourue quotidiennement se réduit de $1\,\%$.

On note u_n la longueur parcourue par le coureur le n-ième jour. En supposant ue le coureur poursuit indéfiniment sa course, on obtient une suite (u_n) définie pour tout entier naturel non-nul.

- 1 Déterminer la valeur des quatre permiers termes de la suite (u_n) .
- 2 a Quelle est la nature de la suite (u_n) ? Donner les élèments caractéristiques de la suite (u_n) .
 - (b) Exprimer le terme u_n en fonction du rang n.
 - © Quelle distance sera parcourue par le coureur le 100^e jour? On arrondira la valeur au dixième de kilomètre.
- 3 On note S la somme des n premiers termes de la suite (u_n) : $S_n = u_1 + u_2 + \cdots + u_n$
 - (a) Exprimer la somme S_n en fonction du rang n.
 - (b) Compléter le tableau suivant en arrondissant les valeurs au dixième de kilomètres:

v cu	valeurs au dixieme de knometres.												
n	10 100		500	750	1000								
S_n													

C Quelle conjecture peut-on faire sur la limite de la somme S_n quand la valeur de n devient de plus en plus grand?

E.4 Un globe-trotter a parié de parcourir $5\,000\,km$ à pied. Il peut, frais et dispos, parcourir $50\,km$ en une journée, mais chaque jour la fatigue s'accumule et donc sa performance diminue de $1\,\%$ tous les jours.

On notera d_n la distance parcourue durant le n-ième jour.

- 1 Calculer les distances d_1 , d_2 , d_3 parcourues durant les trois premiers jours.
- 2 Quelle est précisément la nature de la suite? Déterminer la valeur de d_n en fonction de n.

3 On note L_n la distance en kilomètres parcourus au bout de n jours.

$$L_n = d_1 + d_2 + \dots + d_n$$

- (a) Déterminer l'expression de L_n en fonction de n.
- b En déduire la limite de L_n lorsque n tend verse $+\infty$. Le globe-trotter peut-il gagner?
- C A l'aide de la calculatrice, déterminer le nombre minimal de jours N qui lui seraient nécessaires pour parcourir $4\,999\,km$

E.5 On considère la fonction f définie sur [-4;4] dont la courbe représentative \mathcal{C}_f est donnée ci-dessous:

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation : $u_0 = 2$; $u_{n+1} = f(u_n)$

- 1 Montrer que le terme u_1 est égal à -3.
- 2 Justifier les égalités suivantes:

(a)
$$u_2 = -0.5$$

(b)
$$u_3 = 2.5$$

3 Compléter le tableau suivant:

n	0	1	2	3	4	5	6	7	8	9
u_n										

- 4 Que peut-on dire de la limite des termes de la suite (u_n) ?
- E.6 On considère la suite (u_n) définie par la relation: $u_0 = 8$; $u_{n+1} = 0.95 \cdot u_n + 0.5$ pour tout $n \in \mathbb{N}$
- 1 On définit la suite (v_n) définie par la relation : $v_n = u_n 10$ pour tout $n \in \mathbb{N}$
 - (a) Justifier que la suite (v_n) est une suite géométrique de raison 0,95. On précisera la valeur de son premier terme
 - (b) Exprimer les termes de la suite (v_n) en fonction de n.
- 2 En déduire une expression de la suite (u_n) en fonction de n
- 3 Déterminer la limite des termes de la suite (u_n) lorsque n tend vers $+\infty$.
- E.7 On considère la suite (u_n) définie par la relation: $u_0 = -2$; $u_{n+1} = 2 \cdot u_n + 0.5$ pour tout $n \in \mathbb{N}$
- 1 On définit la suite (v_n) définie par la relation : $v_n = u_n + 0.5$ pour tout $n \in \mathbb{N}$

- (a) Justifier que la suite (v_n) est une suite géométrique dont on précisera les élèments caractéristiques
- (b) Exprimer les termes de la suite (v_n) en fonction de n.
- (2) En déduire une expression de la suite (u_n) en fonction
- (3) Déterminer la limite des termes de la suite (u_n) lorsque n tend vers $+\infty$.

E.8) On considère les deux suites (u_n) et (v_n) définies conjointement par les relations suivantes:

$$\begin{cases} u_0 = 5 \\ v_0 = 4 \end{cases}; \begin{cases} u_{n+1} = 2 \cdot u_n - v_n \\ v_{n+1} = -3 \cdot u_n + 4 \cdot v_n \end{cases} \text{ pour tout } n \in \mathbb{N}$$

- (1) On considère la suite (w_n) définie par la relation: $w_n = v_n - u_n$ pour tout $n \in \mathbb{N}$
 - (a) Etablir que la suite (w_n) est une suite géométrique de raison 5.
 - (b) En déduire que, pour tout entier naturel n, le terme de rang n s'exprime par: $w_n = -5^n$
- (2) On considère la suite (t_n) définie par: $t_n = 3 \cdot u_n + v_n$
 - (a) Montrer que: $t_0 = 19$
 - (b) Etablir que pour tout entier naturel, on a l'égalité: $t_{n+1} = t_n$ pour tout $n \in \mathbb{N}$

On admettra que, pour tout $n \in \mathbb{N}$, on a: $t_n = 19$

- (3) Déduire une expression des termes des suites (u_n) et (v_n) en fonction de n.
- (4) En déduire les limites des suites (u_n) et (v_n) .

E.9 On considère les deux suites (u_n) et (v_n) définies conjointement par les relations suivantes:

$$\begin{cases} u_0 = 3 \\ v_0 = -1 \end{cases}; \begin{cases} u_{n+1} = 3 \cdot u_n - 2 \cdot v_n \\ v_{n+1} = -u_n + 2 \cdot v_n \end{cases}$$

- 1 On considère la suite (w_n) définie par la relation: $w_n = v_n - u_n$ pour tout $n \in \mathbb{N}$
 - (a) Etablir que la suite (w_n) est une suite géométrique de raison 4.
 - (b) En déduire que, pour tout entier naturel n, le terme de rang n s'exprime par: $w_n = -4 \times 4^n$
- (2) On considère la suite (t_n) définie par: $t_n = 4 \cdot u_n + 8 \cdot v_n$ pour tout $n \in \mathbb{N}$
 - (a) Donner la valeur du terme t_0 .
 - (b) Etablir que pour tout entier naturel, on a l'égalité: $t_{n+1} = t_n$

On admettra que la suite (t_n) est constante.

- (3) Déduire une expression des termes des suites (u_n) et (v_n) en fonction de n.
- (4) En déduire les limites des suites (u_n) et (v_n) .

E.10 Soit (u_n) la suite définie par son premier terme $u_0 = 5$ et, pour tout entier naturel n par:

$$u_{n+1} = 0.5 \cdot u_n + 0.5 \cdot n - 1.5$$

(1) Soit (v_n) la suite définie pour tout entier naturel n par: $v_n = 0.1 \cdot u_n - 0.1 \cdot n + 0.5$

Démontrer que la suite (v_n) est géométrique de raison 0.5 et exprimer alors v_n en fonction de n.

- (2) En déduire que, pour tout entier naturel n: $u_n = 10 \times 0.5^n + n - 5$
- (3) Déterminer alors la limite de la suite (u_n)

E.11)On considère la suite (u_n) définie par: $u_0 = 6$; $u_{n+1} = 2 \cdot u_n - 3 \cdot n + 5$ pour tout $n \in \mathbb{N}$

- 1 Donner les trois premiers termes de la suite (u_n) .
- (2) On considère la suite (v_n) définie par: $v_n = u_n - 3 \cdot n + 2$
 - (a) Démontrer que la suite (v_n) est une suite géométrique de raison 2.
 - (b) En déduire une expression des termes de la suite (v_n) en fonction de leur rang.
- (3) (a) Justifier que pour tout entier naturel n, on a: $u_n = 8 \times 2^n + 3 \cdot n - 2$
 - (b) En déduire la limite de suite (u_n) .
- E.12 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\left\{ \begin{array}{ll} u_0 = 0 \\ u_1 = 1 \end{array} \right. ; \quad u_{n+1} = 7 \cdot u_n + 8 \cdot u_{n-1} \quad \text{pour tout } n \in \mathbb{N}$$

- 1 Déterminer la valeur des cinq premiers termes de la suite
- (2) Montrer que la suite $(s_n)_{n\in\mathbb{N}}$ définie par: $s_n = u_{n+1} + u_n$ pour tout $n \in \mathbb{N}$ est une suite géométrique dont on précisera la raison. En déduire s_n en fonction de n.
- (3) (a) On pose $v_n = (-1)^n \cdot u_n$ et on considère la suite $(t_n)_{n\in\mathbb{N}}$ définie par: $t_n=v_{n+1}-v_n$ pour tout $n\in\mathbb{N}$ Exprimer t_n en fonction de s_n .
 - (b) Quel est la nature de la suite (t_n) .
- (4) (a) Exprimer v_n , puis u_n , en fonction de n (on pourra calculer, de deux manières, la somme $t_0+\cdots+t_{n-1}$).

E.13 Déterminer les limites des suites (u_n) définies cidessous:

d
$$8^n - 3^n$$
 e $\frac{5^n - 2^n}{3^n + 2^n}$ f $\left(\frac{31}{7}\right)^n \cdot \left(\frac{2}{8}\right)^n$

E.14 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie, pour tout entier naturel n, par la relation explicite: $u_n = \frac{3n + (-1)^n}{2n-1}$

- 1 Déterminer les trois premiers termes de la suite (u_n) .
- (2) Etablir l'encadrement suivant:

Pour tout
$$n \in \mathbb{N}^*$$
: $\frac{3n-1}{2n-1} \leqslant u_n \leqslant \frac{3n+1}{2n-1}$

(3) En déduire la valeur de convergence de (u_n) .

E.15 Déterminer les limites des suites $(u_n)_{n\in\mathbb{N}}$ ci-dessous définies explicitement:

(a)
$$u_n = \frac{2n^2 - 3n + 1}{n + 1}$$
 (b) $u_n = \frac{n - 3}{n^2 + 1}$ (c) $u_n = \frac{2\sqrt{n} + 1}{\sqrt{n} + 1}$ (d) $u_n = 1 + n - 2n^2 + 3n^3$

$$b u_n = \frac{n-3}{n^2+1}$$