Basic Electrical and Electronics Engineering

LECTURE 5.1

Dr. Sonam Shrivastava/ Assistant Professor (Sr.) / SELECT

BEEE102L

Basic Electrical and Electronics Engineering

- 1. DC Circuits
- 2. AC Circuits
- 3. Magnetic Circuits
- 4. Electrical Machines
- 5. <u>Digital Systems</u>
- 6. Semiconductor Devices and Applications

Books

Text Book

[1] John Bird, 'Electrical circuit theory and technology', Newnes publications, 4th Edition, 2010.

Reference Book

- [2] Allan R. Hambley, 'Electrical Engineering Principles & Applications' Pearson Education, First Impression, 6/e, 2013.
- [3] Simon Haykin, 'Communication Systems', John Wiley & Sons, 5th Edition, 2009.
- [4] Charles K Alexander, Mathew N O Sadiku, 'Fundamentals of Electric Circuits', Tata Mc Graw Hill, 2012.
- [5] Batarseh, 'Power Electronics Circuits', Wiley, 2003.
- [6] W. H. Hayt, J. E. Kemmerly and S. M. Durbin, 'Engineering Circuit Analysis', 6/e, Tata McGraw Hill, New Delhi, 2011.
- [7] Fitzger ald, Higgabogan, Grabel, 'Basic Electrical Engineering', 5th ed, McGraw Hill, 2009.
- [8] S.L.Uppal, 'Electrical Wiring Estimating and Costing', Khannapublishers, NewDelhi, 2008.

5. Digital Systems

Digital Systems and Binary Numbers

Digital Systems and Binary Numbers

- Digital age and information age
- Digital computers
 - General purposes
 - Many scientific, industrial and commercial applications
- Digital systems
 - Telephone switching exchanges
 - Digital camera
 - Electronic calculators, PDA's
 - Digital TV
- Discrete information-processing systems
 - Manipulate discrete elements of information
 - For example, {1, 2, 3, ...} and {A, B, C, ...}...

Analog and Digital Signal

Analog system

 The physical quantities or signals may vary continuously over a specified range.

Digital system

 The physical quantities or signals can assume only discrete values.

Digital Signals

Digital Signals have two basic states:

```
1 (logic "high", or H, or "on")
0 (logic "low", or L, or "off")
```

 Digital values are in a binary format. Binary means 2 states.

A good example of binary is a light (only <u>on</u> or <u>off</u>)

Binary as a Voltage

Voltages are used to represent logic values:

A voltage present (called Vcc or Vdd) = 1

Zero Volts or ground (called gnd or Vss) = 0

A simple switch can provide a logic high or a logic low.

A Simple Switch

 Here is a simple switch used to provide a logic value:

There are other ways to connect a switch.

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

Quantities/Counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Quantities/Counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Quantities/Counting (3 of 3)

Decimal	Binary	Octal	Hexa- decimal
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17

Etc.

Binary Digital Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
 - Two level, or binary values are the most prevalent values.
- Binary values are represented abstractly by:
 - Digits 0 and 1
 - Words (symbols) False (F) and True (T)
 - Words (symbols) Low (L) and High (H)
 - And words On and Off
- Binary values are represented by values or ranges of values of physical quantities.

Binary digital signal

Decimal Number System

- Base (also called radix) = 10
 - 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

- Integer & fraction
- Digit Weight
 - Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Octal Number System

- Base = 8
 - 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }
- Weights
 - Weight = (Base) Position
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Binary Number System

- Base = 2
 - 2 digits { 0, 1 }, called binary digits or "bits"
- Weights
 - Weight = (Base) Position
- Magnitude
 - Sum of "Bit x Weight"
- Formal Notation
- Groups of bits

 $(101.01)_2$

1011

11000101

Hexadecimal Number System

- Base = 16
 - 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }

256

- Weights
 - Weight = $(Base)^{Position}$
- Magnitude
 - Sum of "Digit x Weight" $1*16^2+14*16^1+5*16^0+7*16^1+10*16^2$ =(485-4765625)...
- Formal Notation

```
1 E 5 7 A
2 1 0 -1 -2
4*16^{1}+5*16^{0}+7*16^{-1}+10*16^{-1}
=(485.4765625)_{10}
(1E5.7A)_{16}
```

The Power of 2

n	2 ⁿ
0	$2^0=1$
1	$2^1=2$
2	$2^2=4$
3	$2^3 = 8$
4	24=16
5	25=32
6	26=64
7	27=128

n	2 ⁿ
8	28=256
9	2 ⁹ =512
10	$2^{10} = \frac{1024}{1024}$
11	211=2048
12	212=4096
20	$2^{20} = 1M$
30	$2^{30} = 1G$
40	2 ⁴⁰ =1T

Kilo

Mega

Giga

Tera

Number Base Conversions

Decimal to Decimal (just for fun)

Next slide...

Binary to Decimal

Binary to Decimal

- Technique
 - Multiply each bit by 2^n , where n is the "weight" of the bit
 - The weight is the position of the bit, starting from
 0 on the right
 - Add the results

Example

Octal to Decimal

Octal to Decimal

- Technique
 - Multiply each bit by 8ⁿ, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from
 0 on the right
 - Add the results

Example

$$724_8 \Rightarrow 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

Hexadecimal to Decimal

Hexadecimal to Decimal

Technique

- Multiply each bit by 16ⁿ, where n is the "weight" of the bit
- The weight is the position of the bit, starting from
 0 on the right
- Add the results

Example

```
ABC<sub>16</sub> => C x 16^{0} = 12 x 1 = 12

B x 16^{1} = 11 x 16 = 176

A x 16^{2} = 10 x 256 = 2560

2748_{10}
```

Decimal to Binary

- Technique
 - Divide by two, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit 1
 - Etc.

Decimal (Integer) to Binary Conversion

- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

```
Example: (13)_{10} Quotient Remainder Coefficient 13/2 = 6 1 a_0 = 1 6 /2 = 3 0 a_1 = 0 3 /2 = 1 1 a_2 = 1 1 a_2 = 1 1 a_3 = 1 Answer: (13)_{10} = (a_3 a_2 a_1 a_0)_2 = (1101)_2
```

Decimal (*Fraction*) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Example: $(0.625)_{10}$

Answer:
$$(0.625)_{10} = (0.a_{-1} a_{-2} a_{-3})_2 = (0.101)_2$$

MSB LSB

Decimal to Octal Conversion

Example: $(175)_{10}$

Quotient Remainder Coefficient
$$175 \ / \ 8 = 21 \ 7 \ a_0 = 7$$
 $21 \ / \ 8 = 2 \ 5 \ a_1 = 5$ $2 \ / \ 8 = 0 \ 2 \ a_2 = 2$

Answer: $(175)_{10} = (a_2 a_1 a_0)_8 = (257)_8$

Example: $(0.3125)_{10}$

Answer: $(0.3125)_{10} = (0.a_{-1} a_{-2} a_{-3})_8 = (0.24)_8$

Binary – Octal Conve<u>rsion</u>

- $8 = 2^3$
- Each group of 3 bits represents an octal digit

Example:

Octal	Binary
0	0 0 0
1	0 0 1
2	010
3	0 1 1
4	100
5	101
6	110
7	111

Works both ways (Binary to Octal & Octal to Binary)

Binary – Hexadecimal Conversion

- $16 = 2^4$
- Each group of 4 bits represents a hexadecimal digit

Example:

	
Hex	Binary
0	0000
1	0001
2	0010
3	0 0 1 1
4	0100
5	0101
6	0110
7	0 1 1 1
8	1000
9	1001
A	1010
В	1011
C	1100
D	1 1 0 1
E	1110
F	1111

Works both ways (Binary to Hex & Hex to Binary)

Octal – Hexadecimal Conversion

• Convert to Binary as an intermediate step Example:

Works both ways (Octal to Hex & Hex to Octal)

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F