

厚德、弘毅、求是、笃行

点云配准加速硬件设计与实现

——毕业论文答辩——

B20030119 汪宇翔

2024年6月6号

目录

01

选题背景及意义

求知若渴,朝夕不倦

02

研究过程与方法

旁稽博采, 格物致知

03

实验结果

知行合一, 行以致远

总结与展望

寒木春华, 理想可期

O1
PART ONE

选题背景及意义

求知若竭, 朝夕不倦

选题背景

在点云的各种应用中,点云配准 正在发挥着重要的作用

3D点云标注示意图

点云配准示意图

选题背景

点云配准的各项应用

(a) 三维重建示意图。通过 点云恢复原始3D物体信息

(b) 三维定位示意图。将局部点 云定位到全局点云中并进行配准

(c) 姿态估计示意图。通 过点云估计智能体姿态信息

选题背景及意义

选题背景

点云配准问题定义 (传统ICP配准)

ICP配准算法流程图

· 方法: 基于优化的点云配准方法、基于特征学习的点云配准 方法: 及端到端学习的配准方法

- ICP配准流程: 给定两个输入点云, 迭代估计两帧点云之间的对应关系和变换矩阵。
 - 对应点搜索是在目标点云中找到源点云中每一个点的对应点。
 - 变换矩阵估计是利用对应点关系估算变换矩阵,包括旋转矩阵和平移矩阵。
 - 这两个阶段将反复进行,以找到最佳变换

选题意义

低延迟: 与现实场景进行

实时交互

Low Latency

高准确性: 满足自动驾驶

等场景的严格要求

低功耗: 常常部署在边缘

设备中

实验结果

选题意义

挑战一: 如何高效地处理大规模点云数据

- ・更多的计算单元
- 难题?
- ・ 更多的 数据搬运
- ·更长的响应时间

选题意义

挑战二: 如何高效的进行近邻搜索

对应点搜索是在目标点云中找到源点云中每一个点的对应点,在ICP的算法过程中,将目标点云中距离原点云最近的点视为其对应点。

点云数据是非结构化的,不能像2D图像数据那样按照下标轻 松找到近邻点

O2

研究过程与方法

旁稽博采, 格物致知

动机

选题背景及意义

点云规模大?

通过 下采样 的方式

降低点云规模

"对应点搜索 □变换估计

bunny数据集 (40007个数据点)

对应点搜索步骤花费时间长?

设计专用加速模块

加速对应点搜索步骤

整体架构——点云配准加速器

设计思路 —— 将采样/对应点搜索模块映射到一个加速模块中

核心观察: 最远点采样和对应点搜索都是基于 距离比较 实现的

最远点采样:

对应点搜索:

采样/对应点搜索模块设计

采样数据流动

实验结果

对应点搜索数据流动

O3

实验结果

知行合一, 行叫致远

实验设置

比较 CPU 与 FPGA 加速 设计的 **时延** 与 **能耗**

操作系统	Windows 11 64位操作系统				
CPU 型号	Inter 10 th Gen Core [™] i5-10210U @ 1.60GHz				
内存大小	8GB				
CPU 频率	1.60GHz				
编程语言	Python				

运行传统ICP配准算法

软件	Xinlinx vicado2019.2 模拟器				
FPFA型号	Zynq xczu7ev-ffvf1517-2LV-e				
时钟频率	50MHz				
编程语言	HLS				

通过仿真平台在FPGA上实现加速设计

实验设置

数据集

- Stanford Bunny数据集。该数据集是斯坦福 大学1994年创建计算机图形学领域最著名的 三维模型数据集。
- · ModelNet40数据集。ModelNet40数据集是 一个用于三维物体识别和分类的常用数据集。

算法效果

点云采样示意图 (原始点云有40097个点)

可以看出最远点采样可以很好的**保留点云的整体特征**,同时左图显示随着采样点的增加,采样的时间**显著增加**

算法效果

Bunny 数据集配准效果

ModelNet40 数据集配准效果

得到了较好的配准效果!

功能验证

· 在vivado HLS平台,并进行C仿真、C综合以及C/RTL 联合仿真,获得波形图

Vivado验证波形图:验证结果正确性

选题背景及意义

性能分析

加速效果

不同采样系数下的加速效果

- (1) 当采样点很少时,在CPU平台上运行的时间可能优于实现的点云配准加速器。可能的原因是CPU通常有大量的缓存和预取机制,可以加速内存访问。
- (2)当ICP配准算法运行在CPU平台时,运行时间会随着点云采样数目的增多而显著增加,这是因为最远点采样和对应点搜索的时间复杂度都是 $O(N^2)$ 的,运行时间会随着数据量规模的增加呈指数上升
- (3) 当使用FPGA加速点云配准时,随着点云采样数目的增多,运行时间几乎不变。原因可能是通过资源的叠加,让程序可以并行执行,并不影响程序运行的关键路径。
- (4)可以看出,随着点云采样规模的增多,使用FPGA加速所需要的运行时间远小于CPU平台运行点云配准所需要的时间,加速效果越明显。

性能分析

资源消耗

	BRAM	DSP	FF	LUT
5%	15	105	33476	96689
10%	15	105	32987	97730
20%	15	105	33795	101465
50%	15	105	36392	112697
可用量	624	1728	460800	230400
最高占比	2%	6%	7%	48%

- (1) 从硬件消耗的占比来看,查找表(LUT, Look-Up Table) 使用率最高
- (2) 如左表所示,当点云采样数量逐渐增加时,查找表的使用量也显著增多,这也验证了上一页中关于加速效果的猜想,正是因为硬件资源的增加,才能有机会让ICP配准时间不变

04

PART FOUR

总结与展望

寒木春华, 理想可期

实验结果

本课题的主要工作

- (1) 通过具体的数据集,探究了不同的数据规模对点云配准过程的影响,以及不同优化算法对对应点搜索时间的改变,深入分析了点云配准算法的瓶颈与特点。 发现 最远点采样 和 对应点搜索 是影响点云配准时间的 主要瓶颈。
- (2) 本文提出了一种 **架构**,将 **最远点采样和对应点搜索映射到一个模块**中,通过该模块加速对原始点云的采样之后,在ICP配准过程中,仍可以利用该模块加速对应点搜索的过程,有效 **减少了运行时间** 并 **降低了资源利用率**。
- (3) 通过 **高层次综合设计** 的方式将点云配准加速器在 **FPGA** 上模拟 **实现**, 并与 **Intel Core i5 @ 2.60GHz** 平台实现的点云配准算法进行对比,当采样点的规模较大时,实现的点云配准加速器能达到 **4.5倍** 的加速效果。

展望

- (1) 传统的ICP算法实现过程中,不需要经历点云采样的步骤,但在本课题的实现过程中,对原始点云进行了下采样,这 **势必对点云配准效果产生影响**,本课题实验中只是对配准直观效果进行了分析,并没有对配准效果的 **具体指标** 进行计算,因此可以通过 **定量** 计算给出 **采样对点云配准效果的具体影响**。
- (2) 在最近的研究中,研究者们提出了将点云数据结构化的思路,用来改善点云近邻搜索的消耗。在本课题未来的工作中,可以考虑通过将点云数据结构化加速对应点搜索的过程。通过调整参数,在误差允许的情况下,加速点云配准的过程。

— 谢谢! —

恳请各位指导老师批评指正!

B2003119 汪宇翔

2024年6月6号