Szczegółowy opis zajęć (KARTA PRZEDMIOTU)

Nazwa zajęć: MODELOWANIE i SYMULACJA STOCHASTYCZNA

Kod zajęć: Mod

Przynależność do grupy zajęć: grupa zajęć nr 5 (Modelowanie i symulacja stochastyczna)

Rodzaj zajęć: kierunkowy obowiązkowy

Kierunek studiów: Matematyka

Poziom studiów: studia drugiego stopnia Profil studiów: ogólnoakademicki Forma studiów: stacjonarne

Specjalność (specjalizacja): wszystkie

Rok studiów: pierwszy Semestr studiów: I

Formy prowadzenia zajęć, wraz z liczbą godzin dydaktycznych:

wykłady – 30; ćwiczenia – 15; laboratorium - 15.

Język/i w którym/ch prowadzone są zajęcia: polski Liczba punktów ECTS (zgodnie z programem studiów): 5

- 1. Założenia przedmiotu: Celem przedmiotu jest zaznajomienie studentów z podstawowymi modelami stochastycznymi wykorzystywanymi w naukach technicznych, ekonomicznych i przyrodniczych, a także z podstawami symulacji stochastycznej.
- 2. Odniesienie kierunkowych efektów uczenia się do form prowadzenia zajęć oraz sposobów weryfikacji i oceny efektów uczenia się osiągniętych przez studenta:

symbol	zakładane efekty uczenia się student, który zaliczył zajęcia:	formy prowadzenia zajęć	sposoby weryfikacji i oceny efektu uczenia się	
Wiedza: zna i rozumie				
K2A_W07	E1: pojęcie procesu Poissona (prostego i złożonego) i jego najważniejsze własności, a także podstawy teorii odnowy	wykład, ćwiczenia, laboratorium	kolokwium pisemne	
K2A_W07	E2: podstawy teorii dyskretnych łańcuchów Markowa	wykład, ćwiczenia, laboratorium	kolokwium pisemne	
Umiejętności: potrafi				
K2A_U10 K2A_U11 K2A_U17	E3: w stopniu podstawowym stosować wybrane modele stochastyczne w praktycznych zagadnieniach technicznych, ekonomicznych lub przyrodniczych	wykład, ćwiczenia, laboratorium	kolokwium pisemne	
K2A_U10 K2A_U11 K2A_U17	E4: stosować w praktyce wybrane procedury generowania zmiennych losowych oraz symulacji stochastycznej	wykład, ćwiczenia, laboratorium	projekt	
K2A_U10 K2A_U11 K2A_U17	E5: wykorzystywać podstawowe możliwości wybranych pakietów oprogramowania w obliczeniach symbolicznych i statystycznej obróbce danych	laboratorium	projekt	

3. Treści programowe zapewniające uzyskanie efektów uczenia się (zgodnie z programem studiów):

Podstawy teorii procesów stochastycznych. Proces Poissona prosty, złożony i niejednorodny. Elementy teorii odnowy. Proces odnowy i równanie odnowy. Łańcuchy Markowa z czasem ciągłym i dyskretnym. Klasyfikacja stanów łańcucha Markowa. Rozkład ergodyczny. Proces gałązkowy Galtona-Watsona. Podstawy symulacji stochastycznej. Podstawowe metody symulacji zmiennych losowych oraz wybranych procesów stochastycznych.

4. Opis sposobu wyznaczania punktów ECTS:

Forma aktywności	Liczba godzin / punktów ECTS
Liczba godzin zajęć, niezależnie od formy ich prowadzenia	60 / 2
Praca własna studenta: przygotowanie do zajęć (w tym do kolokwiów)	30 / 1
Praca własna studenta: przygotowanie projektu i prezentacji	60 / 2
Suma godzin	150 / 5
Liczba punktów ECTS przypisana do zajęć	5

Objaśnienia:

- 5. Wskaźniki sumaryczne:
 - liczba godzin zajęć oraz liczba punktów ECTS na zajęciach z bezpośrednim udziałem nauczycieli akademickich lub innych osób prowadzących zajęcia i studentów: 60 godzin, 2 punkty ECTS
 - liczba godzin zajęć oraz liczba punktów ECTS na zajęciach związanych z prowadzoną w Politechnice Śląskiej działalnością naukową w dyscyplinie lub dyscyplinach, do których przyporządkowany jest kierunek studiów – w przypadku studiów o profilu ogólnoakademickim: 60 godzin, 5 punktów ECTS
 - liczba godzin zajęć oraz liczba punktów ECTS na zajęciach kształtujących umiejętności praktyczne w przypadku studiów o profilu praktycznym: nie dotyczy
 - liczba godzin zajęć prowadzonych przez nauczycieli akademickich zatrudnionych w Politechnice Śląskiej jako podstawowym miejscu pracy: 60 godzin
- 6. Osoby prowadzące poszczególne formy zajęć *(imię, nazwisko, stopień naukowy lub stopień w zakresie sztuki, tytuł profesora, służbowy adres e-mail)*:

Wykład, ćwiczenia i laboratorium: dr hab. inż. Wojciech Kempa, prof. PŚ, wojciech.kempa@polsl.pl

- 7. Szczegółowy opis form prowadzenia zajęć:
 - 1) wykłady:
 - szczegółowe treści programowe:

Podstawy teorii procesów stochastycznych. Proces Poissona prosty, złożony i niejednorodny. Elementy teorii odnowy. Proces odnowy i równanie odnowy. Łańcuchy Markowa z czasem ciągłym i dyskretnym. Klasyfikacja stanów łańcucha Markowa. Rozkład ergodyczny. Proces gałązkowy Galtona-Watsona. Podstawy symulacji stochastycznej. Podstawowe metody symulacji zmiennych losowych oraz wybranych procesów stochastycznych.

- stosowane metody kształcenia, w tym metody i techniki kształcenia na odległość:
 - Wykład prowadzony jest w formie zdalnej z wykorzystaniem Platformy Zdalnej Edukacji Politechniki Śląskiej oraz komunikatora internetowego Zoom i/lub MS Teams.
- forma i kryteria zaliczenia, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu:

W czasie trwania kursu student pracuje nad realizacją 5 efektów uczenia się wymienionych w karcie przedmiotu. Łącznie w czasie trwania kursu student może uzyskać maksymalnie 100 punktów w następujący sposób:

- 0-20 pkt. podczas kolokwium z tematyki ćwiczeń, weryfikującego efekt uczenia się E3;
- 0-5 pkt. za aktywność podczas ćwiczeń;
- 0-30 pkt. za projekt przygotowywany podczas zajęć laboratoryjnych, weryfikujący efekty uczenia się E4 i E5;

^{* –} praca własna studenta, należy wymienić formy aktywności, np. *przygotowanie do zajęć, interpretacja wyników, opracowanie raportu z zajęć, przygotowanie do egzaminu, zapoznanie się z literaturą, przygotowanie projektu, prezentacji, pracy pisemnej, sprawozdania itp.*

^{** –} inne np. dodatkowe godziny zajęć

0-5 pkt. za aktywność podczas zajęć laboratoryjnych.

Aby uzyskać zaliczenie na ocenę pozytywną student musi zdobyć co najmniej 41 punktów oraz uzyskać z każdego z efektów uczenia się co najmniej 30% przewidzianej dla niego liczby punktów. Dla osób, które po zakończeniu zajęć programowych nie uzyskają pozytywnej oceny, nie zaliczą co najmniej jednego z efektów uczenia się lub będą chciały poprawić uzyskaną ocenę, w czasie trwania sesji egzaminacyjnej zorganizowane zostanie jedno kolokwium poprawkowe, na którym będzie możliwość poprawy jednego z kolokwiów lub wybranego efektu/wybranych efektów uczenia się.

 organizacja zajęć oraz zasady udziału w zajęciach, ze wskazaniem czy obecność studenta na zajęciach jest obowiązkowa:

Obecność na wykładach nie jest obowiązkowa, ale może być kontrolowana.

2) opis pozostałych form prowadzenia zajęć:

Ćwiczenia oraz zajęcia laboratoryjne stanowić będą ilustrację zagadnień prezentowanych na wykładzie. W szczególności, podczas zajęć w laboratorium studenci wykorzystywać będą co najmniej jeden pakiet oprogramowania służący do obliczeń symbolicznych i co najmniej jeden program do statystycznej obróbki danych.

8. Opis sposobu ustalania oceny końcowej (zasady i kryteria przyznawania oceny, a także sposób obliczania oceny w przypadku zajęć, w skład których wchodzi więcej niż jedna forma prowadzenia zajęć, z uwzględnieniem wszystkich form prowadzenia zajęć oraz wszystkich terminów egzaminów i zaliczeń, w tym także poprawkowych):

Ocenę końcową z przedmiotu na podstawie ilości zdobytych punktów oblicza się w następujący sposób:

- 0-40 niedostateczna (2.0)
 41-55 dostateczna (3.0)
 56-70 plus dostateczna (3.5)
- 71-80 dobra (4.0)
 81-90 plus dobra (4.5)
 91-100 bardzo dobra (5.0)
- 9. Sposób i tryb uzupełniania zaległości powstałych wskutek:
 - nieobecności studenta na zajęciach: w przypadku usprawiedliwionej nieobecności studenta podczas kolokwium/kolokwiów lub zaplanowanej prezentacji projektu laboratoryjnego, student zobowiązany jest do zaliczenia w/w w trybie indywidualnym, konsultując się wcześniej z prowadzącym zajęcia.
 - różnic w programach studiów osób przenoszących się z innego kierunku studiów, z innej uczelni albo wznawiających studia na Politechnice Śląskiej: każdy tego typu przypadek będzie rozpatrywany indywidualnie przez prowadzącego przedmiot, który ustali tryb i sposób uzupełnienia zaległości.
- 10. Wymagania wstępne i dodatkowe, z uwzględnieniem sekwencyjności zajęć:

Znajomość zagadnień analizy matematycznej, algebry, rachunku prawdopodobieństwa i statystyki w zakresie studiów matematycznych I stopnia.

- 11. Zalecana literatura oraz pomoce naukowe:
 - (1) W. Niemiro, Symulacje stochastyczne i metody Monte Carlo. Uniwersytet Warszawski, 2013;
 - (2) S. M. Ross, *Introduction to probability models, 10th Edition.* Academic Press, 2010;
 - (3) R. Snopkowski, Symulacja stochastyczna. Wydawnictwo AGH, Kraków, 2007;
 - (4) H. M. Taylor, S. Karlin, *An introduction to stochastic modelling, 3rd Edition.* Academic Press, 1998;
 - (5) H.C. Tijms, A first course in stochastic models. Wiley, 2003.
- 12. Opis kompetencji prowadzących zajęcia *(np. publikacje, doświadczenie zawodowe, certyfikaty, szkolenia itp. związane z treściami programowymi realizowanymi w ramach zajęć)*:

Prowadzący zajęcia (wykład, ćwiczenia i zajęcia laboratoryjne) ma wieloletnie doświadczenie zawodowe w pracy dydaktycznej na wyższej uczelni, a także dorobek naukowy w dziedzinie związanej z tematyką zajęć.

13. Inne informacje:

Wykłady odbywać się będą w trybie zdalnym z wykorzystaniem Platformy Zdalnej Edukacji Politechniki Śląskiej oraz komunikatora internetowego Zoom i/lub MS Teams. Ćwiczenia i zajęcia laboratoryjne odbywać się będą w trybie kontaktowym lub zdalnym.