Master Thesis

Architecture Development to Replace Finite Element Methods with Deep Neural Networks

Examiners:

Prof. Dr. – Ing. Andreas Schwung & Prof. Dr. – Ing. Jens Oberrath

Advisor:

MSc. Johannes Pöppelbaum

Presented by:

Kaushal Narendra Tare (10062903)

Introduction

Computer Aided Engineering (CAE)

The use of computer software to simulate performance in order to -

- Improve product design
- Assist in resolution of engineering problems

Finite Element Method (FEM)

- FEM is a numerical method used to obtain the approximate solution in CAE
- Most systems can be mathematically represented by differential equations
- Analytical solution is easy to calculate for simple geometries and difficult for complex geometry

$$\begin{bmatrix} \kappa \end{bmatrix} \begin{Bmatrix} u \\ \frac{d}{dx^2} = -u x \end{Bmatrix}$$

$$\mathbf{u}(0) = 0$$

$$\frac{d\mathbf{u}}{dx} \Big|_{\mathbf{x} = L} = \frac{\mathbf{R}}{AE}$$

$$\begin{bmatrix} AE \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \\ u_4 \end{bmatrix} = \frac{a}{h} \begin{bmatrix} \left(\frac{x_2^3 - x_1^3}{3} - \frac{x_1(x_2^2 - x_1^2)}{2}\right) + \left(\frac{x_3(x_3^2 - x_2^2)}{2} - \frac{x_3^3 - x_2^3}{3}\right) \\ \left(\frac{x_3^3 - x_2^3}{3} - \frac{x_2(x_3^2 - x_2^2)}{2}\right) + \left(\frac{x_4(x_4^2 - x_3^2)}{2} - \frac{x_4^3 - x_3^3}{3}\right) \\ \left(\frac{x_4^3 - x_3^3}{3} - \frac{x_3(x_4^2 - x_3^2)}{2}\right) + \mathbf{R} \frac{h}{a} \end{bmatrix}$$

The FEA Procedure (Practical visualization)

Limitations of FEA

- Re-running the complete scenario for slightest change in the inputs (time consuming)
- Highly complex scenarios are computationally expensive

Machine Learning as a Solution

- ML model learns relation between inputs and outputs from historical simulation data
- Predicts the new simulation scenario based on learned relations

Deep Learning

Graph Neural Networks

- Data structure consisting of nodes and edges
- Structural analogy with discrete system in FEM
- A discrete system ca graph network

$$G = (V, E)$$

Discrete System

Elements

Nodes

Working of GNNs

- Gather locality information
- Aggregate and compute the information through multiple layers
- Obtain the final node embeddings

similarity (A, B) $\approx z_A^T z_B$

Case Study Scenario: Cantilever Beam

A rigid structural element supported at one end and free at other

Applications:

- Aesthetic roofs
- Cranes
- Span of bridges
- Aircraft wing

Fixed end

Free end

Building the DNN Model

- Model the discrete system to GNN
- Input node features as sequence of forces
- Graph computations through multiple GNN layers
- Pass the final node embeddings to MLP
- Obtain output deformation and stress

3D Deformation Plots

Experiment Results 3D Deformation Plots

Excellent deformation prediction

Deformation Error Visualization

- Deformation error varies between -1 to +1.5 mm
- Relative error is close to zero for higher deformation values at the free end

Stress Error Visualization

- Stress error varies between -40 to +40 MPa
- Relative stress error is close to zero for higher stress values

Time Analysis

FE Simulation time for 300 rows

112.5 hrs

DNN computation time for 300 rows

9 min

Conclusion

- Model with GCN architecture replicates the FEM results obtained from the simulation software, thus capable of replacing FEM based simulation
- Required computation time for DNN model is very less as compared to FE simulation software

Thank You!

Any questions?