

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" Campus de Bauru

Disciplina:	Estruturas de Dados I – ED1	Aula Prática 06
Nome:		RA:

1. Suponha as chaves da tabela abaixo. Aplique a função Hashing divisão inteira para cada valor de M.

Chaves	7	15	23	29	31	33	44	47	5	53	61	67	87
M=3													
M =7													
M=13													
M=19	_												

2. Preencha o quadro abaixo, sabendo que estes números serão armazenados numa tabela de 98 posições. Aplique a função espalhamento solicitada para obter o índice válido. **Mostre os cálculos.**

Chaves	Enlaçamento Deslocado	Enlaçamento Limite	Dobra
1-745896-147852			
2-369852-30236			
12584-98745-1087			
012547-012569-0816			
32145-0146589-781			
7-897534-812673			
3-700123-30236			
721105-033099-0816			
72090-3653905-781			

3. Use o método Meio Quadrado para descobrir os índices para os tamanhos da tabela M

Chaves	\mathbf{X}^2	M=15	M=35	M=87	M=100
78	6084				
151	22801				
502	252004				
710	504100				
872	760384				
1028	1056784				

4. Usando o método de **Extração**, descubra os resultados da aplicação dessa função hashing para as chaves:

Chaves	$\mathbf{M} = 10$	$\mathbf{M} = 97$	$\mathbf{M} = 985$
978-85-74752-959-6			
10588-33021-704495			
7-896019-606226			
0941-0242-48664-6701-2013			
23792-11200-96225			
06000-566601-6913-7			
8468-00016-6081-7999			

Indique como foi feita a Extração do índice.

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" Campus de Bauru

5. Usando o método de **Transformação da raiz**, numa tabela de 100 posições, descubra os resultados da

aplicação para as chaves abaixo e bases sugeridas. Mostre o número convertido e o índice.												
Chaves	245	675	789	908	1075	2023	3570	4289	5412	6852	8541	9584
Base $= 3$												
índice												
$\mathbf{Base} = 5$												
índice												
$\mathbf{Base} = 7$												
índice												
Base = 9												
índice												

6. Tendo uma tabela de 17 posições, aplique a função hashing **Enlaçamento Limite** para as seguintes chaves:

75241, 734502, 137144, 91583, 678541, 457215, 25866, 958627, 743478, 91138.

Aplique uma única vez o método. Se ainda não for o resultado aceitável, aplique o método da divisão inteira para encerrar os cálculos.

7. Tendo uma tabela de 67 posições, aplique a função hashing

Extração na chave: 7-896018-6062-261 e

Enlaçamento Deslocado na chave: 978-85-7472-959-57.

Aplique uma única vez o método. Se ainda não for o resultado aceitável, aplique o método da divisão inteira para encerrar os cálculos.

8. Tendo uma tabela de 17 posições, aplique a função hashing **Dobra** para as seguintes chaves: 5241, 7302, 1374, 9153, 6541, 4215, 2866, 8627, 3478, 1139.

Aplique uma única vez o método. Se ainda não for o resultado aceitável, aplique o método da divisão inteira para encerrar os cálculos.