Chapter 10. CPLD, FPGA

Modern Design Method

- Using CAD tools (like Xilinx) and programmable logic devices
 - Along with RAMs and ROMs
 - Complex Programmable Logic Devices (CPLDs)
 - Field Programmable Logic Devices (FPGAs)
- Xilinx XC9500 CPLD and XC4000 FPGA family
 - Can program wide range of combinational circuits
 - Can program wide range of sequential circuits
 - CAD tool automatically do (fitting/place-and-route) from our high level specification

PLD (Programmable Logic Device)

$$D_{1} = Q_{1}X + Q_{2}\overline{Q}_{1}Y$$

$$D_{2} = Q_{1}\overline{X} + \overline{Q}_{2}Q_{1}$$

$$Z = Q_{1}Q_{2}$$

General CPLD Architecture

= input/output block

- PLD
- Programmable Interconnect
- I/O block

Xilinx 9500-family architecture

Function Block

I/O Block

Switch Matrix

Programmable elements

- Many elements should be correctly programmed
 - FBs
 - Programmable AND array
 - Product term allocator
 - Programmable Mux in macrocells
 - I/O Blocks
 - Output enable selection for three-state driver output buffer
 - Switch matrix
 - Programmable connection between switch inputs (macrocell outputs and external inputs) to switch outputs (inputs to FB AND array)
- Fortunately, once we give a high-level design description (using schematic form and VHDL, etc), CAD's fitting software automatically find the solution

View of Fitted Design - XC9536-5-PC44 (elevator system controller)

General FPGA chip architecture

- Larger number of small blocks (compare with CPLD)
- 3 basic components
 - Configurable Logic Block (CLB) programmable logic
 - Input/Output Block (IOB) around chip, associated with I/O pins of the package
 - Programmable interconnects interconnect CLBs and IOBs for implementing larger functions

Configurable Logic Block (CLB)

3 Look Up Tables (G, F, H)

- Configured to implement any function of 4 (3 for H) inputs
- Universal Function Generator
 - How to build?
 - With SRAM

- •16x1 SRAM
- •Store truth table of the Function (2⁴ rows)
- •SRAM loaded at config time to make it work as a specific function

Example Function using F, G, H

• Parity of 9 inputs: H = 1 if odd, H=0 if even

Power of F, G, H

$$G = G(G1, G2, G3, G4)$$

 $F = F(F1, F2, F3, F4)$
 $H = H((F, H2), (G, H0), H1)$

- <u>Any</u> function of 4 inputs (F) + <u>Any</u> function of 4 inputs (G)
 + <u>Any</u> function of 3 inputs (H)
- Any function of 5 inputs (F+G+H) how?
- Any function of 4 inputs (F) + Some function of 6 inputs
- <u>Some</u> function of 9 inputs (F+G+H)

2 D f/fs

- D: F or G or H or DIN/H2 (Dx, Dy configured by M12, M7)
- CLK: K or K- (CLK_x, CLK_y configured by M14, M9)
- EN: 1 or EC (ENx, ENy configured by M15, M10)
- S/R control
 - set or reset at configuration
 - Respond to global set/reset signal (not shown) or S/R line

Outputs

- X = F or H
- XQ = M4 or Qx (Dx = F or G or H or DIN)
- Y = G or H
- YQ = M6 or Qy (Dy = F or G or H or DIN)

Example Configuration of CLBs

• Implementing 74x166 (8-bit parallel-in, serial-out shift register)

$$\begin{split} D_{A} &= \overline{EN} \cdot Q_{A} + EN \cdot \overline{LD} \cdot SER + EN \cdot LD \cdot A \\ D_{B} &= \overline{EN} \cdot Q_{B} + EN \cdot \overline{LD} \cdot Q_{A} + EN \cdot LD \cdot B \\ &\vdots \\ D_{H} &= \overline{EN} \cdot Q_{H} + EN \cdot \overline{LD} \cdot Q_{G} + EN \cdot LD \cdot H \end{split}$$

Can implement any 5 variable functions?

$$D_{A} = \overline{EN} \cdot Q_{A} + EN \cdot \overline{LD} \cdot SER + EN \cdot LD \cdot A$$

$$H1 = Q_A$$

$$G = D_A$$
 (when $H1 = 0$) = $EN \cdot \overline{LD} \cdot SER + EN \cdot LD \cdot A$

$$F = D_A \text{ (when } H1 = 1) = \overline{EN} + EN \cdot \overline{LD} \cdot SER + EN \cdot LD \cdot A$$

$$H = H1 \cdot G + H1 \cdot F$$

How many CLBs for implementing 8-bit shift register x166?

- only 8 f/fs \rightarrow 4 CLBs?
- But, all G, F, H in a CLB should be used for each D equation.

I/O Block (IOB)

- 1 per I/O pin
- 2 f/fs
- Open collector, tri-state output, registered or not
- Direct Input or Input through f/f (Synchronizer)

Programmable Interconnect

Detail Look

Programmable Switch Matrix (PSM)

- PSM make possible variety of difficult interconnections
 - Can lengthen segments
 - Can turn corners

Pretty Complex Interconnect

Implement huge combination of Interconnects using

- Direct wires direct connect to adjacent CLB
- Single wires one hop connect to adjacent CLB through a PSM
- Double wires travel past 2 CLBs before hitting a switch
- Long wires travel length of chip
- Programmable connections
- Programmable switch matrix (PSM)

Place and Routing

- Place (On which CLB, a specific function need to be implemented)
- Routing (How to interconnect CLBs?)
 - Avoid use of PSM as much as possible to reduce the delay
- Place and Routing is an inter-dependent complex problem
- Fortunately, CAD tool will do for us

Example

Find Place and Routing for 74x194

$$DA = \overline{S1S0QA} + \overline{S1S0RIN} + S1\overline{S0QB} + S1S0A$$

$$DB = \overline{S1S0QB} + \overline{S1S0QA} + S1\overline{S0QC} + S1S0B$$

$$DC = \overline{S1S0QC} + \overline{S1S0QB} + S1\overline{S0QD} + S1S0C$$

$$DD = \overline{S1S0QD} + \overline{S1S0QC} + \overline{S1S0DC} + S1\overline{S0DLIN} + S1S0D$$

QA

QB

QC

QD

Routing from inputs is not shown

IOB for S1

IOB for **QA**

View of Placed Design - XC2VP2-7-FG256 – (elevator system controller)

