1 Concepts

- Set
- Element
- Subset
- Superset

2 Special sets

- Universal set: U
- \bullet Empty set: \emptyset
- \bullet Natural numbers: $\mathbb N$
- Integer: \mathbb{Z}
- \bullet Rational numbers: $\mathbb Q$
- \bullet Real numbers: $\mathbb R$
- ullet Complex numbers: ${\mathbb C}$

3 Set operations

3.1 Union and interception

3.1.1 Union

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

3.1.2 Interception

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Properties:

- $A \cap B \subseteq A, A \cap B \subseteq B$
- $\bullet \ A \subseteq A \cup B, B \subseteq A \cup B$

Theorem 1.3: For any sets A and B, we have:

$$A \cap B \subseteq A \subseteq A \cup B$$
$$A \cap B \subseteq B \subseteq A \cup B$$

Theorem 1.4: The followings are equivalent:

$$A \subseteq B, A \cap B = A, A \cup B = B$$

3.2 Complement

3.2.1 Absolute complement

$$A^c = \{ x \mid x \in \mathcal{U}, x \notin A \}$$

3.2.2 Relative Complement

The relative complement of A and B, do noted by $A \setminus B$, is:

$$A \setminus B = \{x \mid x \in A, x \not\in B\}$$

3.2.3 Symmetric difference

Symmetric difference of sets A and B, denoted by $A \oplus B$, is:

$$A \oplus B = \{x \mid (x \in A \land x \not\in B) \lor (x \in B \land x \not\in A)\}$$

That is:

$$A \oplus B = (A \cup B) \setminus (A \cap B)$$
$$A \oplus B = (A \setminus B) \cup (B \setminus A)$$

3.3 Fundamental products

Consider n distinct sets A_1, A_2, \cdots, A_n , a fundammental product is a set of form

$$A_1^* \cap A_2^* \cap \dots \cap A_n^* (A_i^* = A_i \vee A_i^* = A_i^c)$$

4 Algebra of sets, duality

Theorem 1.5: Sets satisfy the laws in table:

5 Venn diagrams

Table 1: Laws of the algebra of sets

Idempotent laws	$A \cup A = A$	$A \cap A = A$
Associative laws	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Commutative laws	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity laws	$A \cup \emptyset = A$	$A \cap \mathbf{U} = A$
	$A \cup U = U$	$A \cap \emptyset = \emptyset$
Involution laws	$(A^c)^c = A$	
Complement laws	$A \cup A^c = \mathbf{U}$	$A \cap A^c = \emptyset$
	$\mathbf{U}^c = \emptyset$	$\emptyset^c = \mathbf{U}$
DeMorgan's laws	$(A \cup B)^c = A^c \cap B^c$	$(A \cap B)^c = A^c \cap B^c$