Chapter 6

Series Solutions of Linear Equations

6.1 Solving Linear DE's without constant coefficients

Table 6.1: Maclaurin Series Representations

	Maclaurin Series	Interval of Convergence
$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty}$		$(-\infty,\infty)$
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty}$	$\frac{(-1)^n}{(2n)!}x^{2n} (6.2)$	$(-\infty,\infty)$
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^n}$	$\frac{1)^n}{(6.3)}x^{2n+1}$	$(-\infty,\infty)$
$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n^n}$	$\frac{(6.4)^n}{(4.4)^n}x^{2n+1}$	[-1,1]
$ \cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}$	$\frac{1}{(2n)!}x^{2n}$ (6.5)	$(-\infty,\infty)$
$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{1}{(2n)^n}$	$\frac{1}{(6.6)}x^{2n+1}$	$(-\infty,\infty)$
$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} \frac{(x^n)^n}{2^n}$	$\frac{(-1)^{n+1}}{n}x^n \qquad (6.7)$	(-1,1]
$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x_n^n + x^2 + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x_n^n + x^2 + x^$	$\sum_{n=0}^{\infty} x^n \tag{6.8}$	(-1,1)