Predicting Diabetes Re-hospitalizations

By Maxim Belov

Diabetes in the US

- 34.2 million Americans (about 10%) have diabetes.
- \$237 billion were spent in 2017 on direct care.
- \$102 billion of that is related to direct hospital admissions.
- Patients with diabetes are more likely to be re-admitted following a hospitalization.
- What can we do to allow early identification and intervention for high-risk patients?

Agenda

Data Overview

Exploratory Data Analysis

Exploratory Data Analysis

*Train-Test Split = 85/15

Base ML Models

Logistic Regression

Accuracy: 0.63

Precision: 0.63

Recall: 0.62

F1: 0.62

Random Forest Classifier

Accuracy: 0.64

Precision: 0.63

Recall: 0.62

F1: 0.62

Gradient Boosting Classifier

Accuracy: 0.65

Precision: 0.64

Recall: 0.63

F1: 0.63

ROC Curves - Base

Logistic Regression

Random Forest

Gradient Boosting

Optimized ML Models

Logistic Regression

Accuracy: 0.63

Precision: 0.63

Recall: 0.62

F1: 0.62

Random Forest

Accuracy: 0.64

Precision: 0.63

Recall: 0.63

F1: 0.63

Gradient Boosting

Accuracy: 0.65

Precision: 0.64

Recall: 0.64

F1: 0.64

ROC Curves - Optimized

Logistic Regression

Random Forest

Gradient Boosting

Conclusion

Performance

- -All 3 models performed poorly out-of-the box.
- -Minor improvements after optimizing hyper-parameters.
- -Not ready for real world data.

Next steps

- -Review the data to see how it can be better organized.
- -Remove certain features.
- -Redefine target classes.
- -Try different models.