Determinants of Trace Class Operators - Lidskii's Theorem

April Herwig

11.07.2023

Definition 0.1 (Notation). We consider a separable Hilbert space X with inner product (\cdot, \cdot) . $A \in K(X)$ is a trace-class operator.

Let $\lambda_1, \lambda_2, \ldots$ (resp. s_1, s_2, \ldots) be the eigenvalues (resp. singular values) of A in descending order:

$$A v_j = \lambda_j v_j, \quad |\lambda_1| \ge |\lambda_2| \ge \dots, \quad s_1 \ge s_2 \ge \dots$$
 (1)

A can be decomposed as A = U|A| where U is unitary and |A| is positive and self-adjoint. $\{z_j\}_j$ is an orthonormal basis of $\overline{\text{Range } |A|}$. Writing $w_j = Uz_j$, we have

$$A = \sum_{j=1}^{\infty} s_j(\cdot, z_j) w_j.$$
 (2)

0.1 Lidskii's Theorem

Theorem 0.2 (Lidksii). Let X be a Hilbert space and $A \in L(X)$ be a trace-class operator with eigenvalues $\lambda_1, \lambda_2, \ldots$ Then

$$\operatorname{Tr} A = \sum_{n=1}^{\infty} \lambda_n \ . \tag{3}$$

0.2 Tools: Generalized Eigenspaces and a Singular Value Inequality

Lemma 0.3 (Generalized eigenspaces). Let $0 \neq \lambda \in \sigma(A)$. Then there exist subspaces $N = N(\lambda)$, $R = R(\lambda)$ of X with

- a) (finiteness) dim $N < \infty$,
- b) (splitting) $X = N \oplus R$,
- c) (invariance) $A(N) \subset N$, $A(R) \subset R$,
- d) (isolation) $\lambda \in \sigma(A|N)$, $\lambda \in \sigma(A|R)$.

Write $P_{\lambda}: X \twoheadrightarrow N$ for the orthogonal projection of X into N.

Lemma 0.4 (Lalesco-Schur-Weyl). For any $N \in \mathbb{N}, \ \prod_{j=1}^N |\lambda_j| \leq \prod_{j=1}^N s_j$. In particular we can conclude the eigenvalue - singular value inequality

$$\sum_{j=1}^{\infty} |\lambda_j| \le \sum_{j=1}^{\infty} s_j. \tag{4}$$

Lemma 0.5 (An infinite product formulation). Let $f:\mathbb{C}\circlearrowleft$ be an entire function with f(0)=1. Let $\{z_j\}_j$ be the zeros of f and assume $\sum_{j=1}^{\infty}|z_j|^{-1}<\infty$. Finally suppose the boundedness condition

$$\forall \epsilon > 0 \ \exists C > 0 : \ |f(z)| \le C \cdot e^{\epsilon|z|} \ \forall z \in \mathbb{C}.$$
 (5)

Then

$$f(z) = \prod_{j=1}^{\infty} (1 - \frac{z}{z_j}).$$
 (6)

0.3 (Antisymmetric) Tensor Products in Hilbert Spaces

Definition 0.6. For $x_1, x_2, \ldots, x_n \in X$, let $x_1 \otimes x_2 \otimes \ldots \otimes x_n$ be the multilinear map

$$(x_1 \otimes x_2 \otimes \ldots \otimes x_n) : X \times X \times \ldots \times X \to \mathbb{C}, \quad (y_1, y_2, \ldots, y_n) \mapsto \prod_{j=1}^n (x_j, y_j).$$
 (7)

The metric completion of the span of such $x_1 \otimes ... \otimes x_n$ (w.r.t. the natural inner product) forms a Hilbert space, denoted $X \otimes X \otimes ... \otimes X$.

If $\{e_j\}_j$ is an orthonormal basis of X, then $\{e_{\iota_1} \otimes e_{\iota_2} \otimes \ldots \otimes e_{\iota_n}\}_{\iota_1 < \iota_2 < \ldots < \iota_n}$ is an orthonormal basis of $X \otimes X \otimes \ldots \otimes X$.

Operators $A_1, A_2, \ldots, A_n \in L(X)$ induce a map $X \otimes \ldots \otimes X$ \circlearrowleft :

$$(A_1 \otimes A_2 \otimes \ldots \otimes A_n)(\ell) : (y_1, y_2, \ldots, y_n) \mapsto \ell(A_1^* y_1, A_2^* y_2, \ldots, A_n^* y_n)$$
 (8)

Denote the antisymmetrization of $x_1 \otimes \ldots \otimes x_n$ as

$$x_1 \wedge x_2 \wedge \ldots \wedge x_n = \frac{1}{\sqrt{n}} \sum_{\pi \in S_n} (-1)^{\pi} x_{\pi(1)} \otimes x_{\pi(2)} \otimes \ldots \otimes x_{\pi(n)}$$

$$\tag{9}$$

where S_n is the symmetric group with n elements, $(-1)^{\pi}$ is the sign of a permutation.

Denote by $\Lambda^n(X)$ the (Hilbert) span of such $x_1 \wedge x_2 \wedge \ldots \wedge x_n$, and $\Lambda^0(X) = \mathbb{C}$. The same statement about orthonormal bases can be made for $\Lambda^n(X)$.

0.4 Operator Determinants

Definition 0.7 (Fredholm's determinant).

$$\det(I + zA) = \sum_{k=0}^{\infty} z^k \cdot \operatorname{Tr} \Lambda^k(A). \tag{10}$$

The technique to prove Lidskii's Theorem 0.2 is to show that Lemma 0.5 applies. This shows that the preceding definition is equivalent to the following:

Definition 0.8 (Groh'berg-Krein's determinant).

$$\det(I + zA) = \prod_{j=1}^{\infty} (1 + \lambda_j z). \tag{11}$$