

planetmath.org

Math for the people, by the people.

stable manifold theorem

Canonical name StableManifoldTheorem

Date of creation 2013-03-22 12:57:17 Last modified on 2013-03-22 12:57:17

Owner jarino (552) Last modified by jarino (552)

Numerical id 4

Author jarino (552) Entry type Theorem Classification msc 34C99 Let E be an open subset of \mathbb{R}^n containing the origin, let $f \in C^1(E)$, and let ϕ_t be the flow of the nonlinear system x' = f(x).

Suppose that $f(x_0) = 0$ and that $Df(x_0)$ has k eigenvalues with negative real part and n - k eigenvalues with positive real part. Then there exists a k-dimensional differentiable manifold S tangent to the stable subspace E^S of the linear system x' = Df(x)x at x_0 such that for all $t \geq 0$, $\phi_t(S) \subset S$ and for all $y \in S$,

$$\lim_{t \to \infty} \phi_t(y) = x_0$$

and there exists an n-k dimensional differentiable manifold U tangent to the unstable subspace E^U of x'=Df(x)x at x_0 such that for all $t\leq 0$, $\phi_t(U)\subset U$ and for all $y\in U$,

$$\lim_{t \to -\infty} \phi_t(y) = x_0.$$