1. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 39.555. This means i = 9. We know n = 10. Determine the percentile ℓ .

$$\ell = \frac{9}{10}$$

$$\ell = 0.9$$

So, the percentile rank is $\boxed{0.9}$, or 90th percentile.

(b) We are given ℓ = 0.1. We can use algebra to solve for i.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n \cdot (\ell) = n \cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (10)(0.1)$$

$$i = 1$$

Determine the x associated with i = 1.

- (c) The mean: $\bar{x} = \frac{375.628}{10} = 37.563$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=10 and so n is even.

$$\text{median} = \frac{x_5 + x_6}{2} = \frac{37.952 + 38.171}{2}$$

So, median = 38.0615

2. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 10.631. This means i = 22. We know n = 70. Determine the percentile ℓ .

$$\ell = \frac{22}{70}$$

$$\ell = 0.314$$

So, the percentile rank is 0.314, or 31.4th percentile.

(b) We are given $\ell = 0.786$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n\cdot (\ell)=n\cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (70)(0.786)$$

$$i = 55$$

Determine the x associated with i = 55.

- (c) The mean: $\bar{x} = \frac{796.947}{70} = 11.385$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=70 and so n is even.

median =
$$\frac{x_{35} + x_{36}}{2} = \frac{11.45 + 11.543}{2}$$

So, median = 11.4965