પ્રશ્ન 1(અ) [3 ગુણ]

TIFR register દોરો અને તેનું પૂર્ં નામ લખો.

જવાબ:

TIFR Register ડાયાગ્રામ:

पूरं नाम: Timer/Counter Interrupt Flag Register

• TOV0: Timer0 Overflow Flag

• OCFO: Timer0 Output Compare Flag

• TOV1: Timer1 Overflow Flag

મેમરી ટ્રીક: "Timer Interrupts Flag Register"

પ્રશ્ન 1(બ) [4 ગુણ]

ATmega32 ની ડેટા મેમરીની ચર્ચા કરો.

જવાબ:

મેમરી પ્રકાર	SE	Address Range	હેતુ
General Purpose Registers	32 bytes	0x00-0x1F	R0-R31 registers
I/O Memory	64 bytes	0x20-0x5F	Control registers
Internal SRAM	2048 bytes	0x60-0x85F	Variable storage

- General Purpose Registers: અંકગણિત કામગીરી અને અસ્થાયી સંગ્રહ માટે વપરાય છે
- I/O Memory: પેરિફેરલ કંટ્રોલ અને સ્ટેટસ રજિસ્ટર્સ ધરાવે છે
- Internal SRAM: સ્ટેક, વેરિયેબલ્સ અને ડાયનેમિક મેમરી માટે વપરાય છે

મેમરી ટ્રીક: "General I/O SRAM Memory"

પ્રશ્ન 1(ક) [7 ગુણ]

એમ્બેડેડ સિસ્ટમનો જનરલ બ્લોક ડાયાગ્રામ દોરી સમજાવો.

જવાબ:

ยวร	รเช้	
Processor	સમગ્ર સિસ્ટમ ઓપરેશન કંટ્રોલ કરે છે	
Memory	પ્રોગ્રામ અને ડેટા સ્ટોર કરે છે	
Input Devices	સેન્સર, સ્વિય, કીબોર્ડ	
Output Devices	LEDs, ડિસ્પ્લે, મોટર	
Communication	UART, SPI, I2C ઇન્ટરફેસ	

- Real-time Operation: સિસ્ટમ નિર્ધારિત સમય મર્યાદામાં ઇનપુટ્સને પ્રતિસાદ આપે છે
- Dedicated Function: યોક્કસ એપ્લિકેશન માટે ડિઝાઇન કરવામાં આવે છે
- Resource Constraints: મર્યાદિત મેમરી, પાવર અને પ્રોસેસિંગ ક્ષમતા

મેમરી ટ્રીક: "Processor Memory Input Output Communication"

પ્રશ્ન 1(ક OR) [7 ગુણ]

રીયલ ટાઇમ ઓપરેટિંગ સિસ્ટમને વ્યાખ્યાયિત કરો અને તેની લાક્ષણિકતાઓ સમજાવો.

જવાબ:

વ્યાખ્યા: Real Time Operating System (RTOS) એ એવી ઓપરેટિંગ સિસ્ટમ છે જે મહત્વપૂર્ણ કાર્યો માટે નિર્દિષ્ટ સમય મર્યાદામાં પ્રતિસાદની ગેરેંટી આપે છે.

લાક્ષણિકતા	વર્ણન
Deterministic	અનુમાનિત પ્રતિસાદ સમય
Multitasking	બહુવિધ કાર્યોનું અમલીકરણ
Priority-based	ઉચ્ચ પ્રાથમિકતા કાર્યો પહેલા
Minimal Latency	ઝડપી ઇન્ટરપ્ટ પ્રતિસાદ

• Hard Real-time: ડેડલાઇન ચૂકવાથી સિસ્ટમ નિષ્ફળતા થાય છે

• Soft Real-time: ડેડલાઇન ચૂકવાથી પ્રદર્શન ઘટે છે

• Task Scheduling: Preemptive priority-based scheduling મહત્વપૂર્ણ કાર્યો પહેલા ચલાવવાની ખાતરી કરે છે

મેમરી ટ્રીક: "Deterministic Multitasking Priority Minimal"

પ્રશ્ન 2(અ) [3 ગુણ]

એમ્બેડેડ સિસ્ટમ માટે માઇક્રોકન્ટ્રોલર પસંદ કરવા માટેના માપદંડો લખો.

જવાબ:

માપદંડ	મહત્વ
Processing Speed	એપ્લિકેશન જરૂરિયાતો સાથે મેળ
Memory Size	પૂરતી ROM/RAM
I/O Pins	પર્યાપ્ત પેરિફેરલ ઇન્ટરફેસ
Power Consumption	બેટરી લાઇફ વિચારણા
Cost	બજેટ મર્યાદા
Development Tools	કમ્પાઇલર, ડીબગર ઉપલબ્ધતા

મેમરી ટ્રીક: "Speed Memory I/O Power Cost Tools"

પ્રશ્ન 2(બ) [4 ગુણ]

AVR માં હાર્વર્ડ આર્કિટેક્ચરની ચર્ચા કરો.

જવાબ:

હાવર્ટ આર્કિટેક્ચર લક્ષણો:

લક્ષણ	વર્ણન
Separate Buses	પ્રોગ્રામ અને ડેટાને સ્વતંત્ર બસ
Simultaneous Access	એકસાથે instruction fetch અને data access
Different Memory Types	પ્રોગ્રામ માટે Flash, કેટા માટે SRAM

- ફાયદો: સમાંતર એક્સેસને કારણે ઉચ્ચ પ્રદર્શન
- **16-bit Instructions**: મોટાભાગની instructions એક clock cycle માં execute થાય છે

મેમરી ટ્રીક: "Separate Simultaneous Different Performance"

પ્રશ્ન 2(ક) [7 ગુણ]

ક્લોક સોર્સને AVR સાથે જોડવાની વિવિદ્ય રીતોની ચર્ચા કરો.

જવાબ:

ક્લોક સોર્સ	ફિક્વન્સી રેન્જ	એપ્લિકેશન
External Crystal	1-16 MHz	ઉચ્ચ ચોકસાઈ એપ્લિકેશન
External RC	1-8 MHz	કિફાયતી સોલ્યુશન
Internal RC	1-8 MHz	ડિફોલ્ટ, બાહ્ય components નથી
External Clock	Up to 16 MHz	સિંક્રોનાઇઝ્ડ સિસ્ટમ્સ

Fuse Bits દ્વારા ક્લોક પસંદગી:

CKSEL3:0 bits determine clock source CKDIV8 bit divides clock by 8 SUT1:0 bits set startup time

• **Crystal Oscillator**: સૌથી સ્થિર, બાહ્ય crystal અને capacitors જરૂરી

• RC Oscillator: ઓછી ચોકસાઈ પરંતુ સસ્તી

• Internal Oscillator: ફેક્ટરી કેલિબ્રેટેડ, તાપમાન આધારિત

મેમરી ટ્રીક: "Crystal RC Internal External"

પ્રશ્ન 2(અ OR) [3 ગુણ]

ATmega32 માટે code ROM, SRAM અને EEPROM નું કદ તેમજ I/O pins, ADC અને Timers ની સંખ્યા લખો.

જવાબ:

સ્પેસિફિકેશન	ATmega32
Flash ROM	32 KB
SRAM	2 KB
EEPROM	1 KB
I/O Pins	32 pins
ADC Channels	8 channels
Timers	3 timers

મેમરી ટ્રીક: "32K Flash 2K SRAM 1K EEPROM 32 I/O 8 ADC 3 Timers"

પ્રશ્ન 2(બ OR) [4 ગુણ]

ATmega32 પિન ડાયાગ્રામ દોરો અને Vcc, AVcc અને Aref પિનનું કાર્ય લખો.

જવાબ:

પિન કાર્યો:

પિન	ธเช้	
Vcc	મુખ્ય પાવર સપ્લાય (+5V)	
AVcc	ADC માટે એનાલોગ પાવર સપ્લાય	
Aref	ADC રેફરન્સ વોલ્ટેજ	

• Vcc: ડિજિટલ સર્કિટ્સને પાવર સપ્લાય કરે છે

• AVcc: નોઇઝ ઘટાડવા માટે ADC માટે અલગ સપ્લાય

• Aref: ADC કન્વર્ઝન માટે બાહ્ય રેફરન્સ

મેમરી ટ્રીક: "Vcc Digital AVcc Analog Aref Reference"

પ્રશ્ન 2(ક OR) [7 ગુણ]

AVR સ્ટેટસ રજિસ્ટર વિગતવાર સમજાવો.

જવાબ:

SREG (Status Register) બિટ્સ:

બિટ	નામ	รเข้
7	I	Global Interrupt Enable
6	Т	Bit Copy Storage
5	Н	Half Carry Flag
4	S	Sign Flag
3	V	Overflow Flag
2	N	Negative Flag
1	Z	Zero Flag
0	С	Carry Flag

• I Flag: ગ્લોબલ ઇન્ટરપ્ટ enable/disable કંટ્રોલ કરે છે

• Arithmetic Flags: ALU ઓપરેશન પછી C, Z, N, V, S, H અપડેટ થાય છે

• **T Flag**: બિટ મેનિપ્યુલેશન માટે BLD અને BST instructions દ્વારા વપરાય છે

મેમરી ટ્રીક: "I Transfer Half Sign oVerflow Negative Zero Carry"

પ્રશ્ન 3(અ) [3 ગુણ]

AVR માઇક્રોકન્ટ્રોલર માટે RESET સર્કિટ સમજાવો.

જવાબ:

રીસેટ સોર્સ:

રીસેટ સોર્સ	વર્ણન
Power-on Reset	પાવર લાગુ કરવામાં આવે ત્યારે
External Reset	RESET pin દ્વારા
Brown-out Reset	વોલ્ટેજ ઘટે ત્યારે
Watchdog Reset	Watchdog timer overflow

• રીસેટ અવધિ: ઓછામાં ઓછા 2 clock cycles

• **રીસેટ વેક્ટર**: પ્રોગ્રામ address 0x0000 થી શરૂ થાય છે

મેમરી ટ્રીક: "Power External Brown-out Watchdog"

પ્રશ્ન 3(બ) [4 ગુણ]

EEPROM સાથે સંકળાયેલ I/O રજિસ્ટરની યાદી બનાવો. EEPROM પર data write કરવા માટેના પ્રોગ્રામિંગ સ્ટેપ્સ લખો.

જવાબ:

EEPROM રજિસ્ટર્સ:

રજિસ્ટર	รเช็	
EEAR	EEPROM Address Register	
EEDR	EEPROM Data Register	
EECR	EEPROM Control Register	

પ્રોગ્રામિંગ સ્ટેપ્સ:

- 1. પાછલી write પૂર્ણ થવાની રાહ જુઓ (EEWE bit ચેક કરો)
- 2. EEAR રજિસ્ટરમાં address સેટ કરો
- 3. EEDR રજિસ્ટરમાં data સેટ કરો
- 4. EECR માં EEMWE bit સેટ કરો
- 5. 4 clock cycles અંદર EEWE bit સેટ કરો

મેમરી ટ્રીક: "Wait Address Data Master-Write Enable-Write"

પ્રશ્ન 3(ક) [7 ગુણ]

TCCR0 રજિસ્ટર દોરી વિગતવાર સમજાવો.

જવાબ:

TCCR0 (Timer/Counter0 Control Register):

બિટ	નામ	รเข้
7	FOC0	Force Output Compare
6,3	WGM01,WGM00	Waveform Generation Mode
5,4	COM01,COM00	Compare Output Mode
2,1,0	CS02,CS01,CS00	Clock Select

4	+	+	.+	-+	-+	-+	-+	-+
	FOC0	WGM01	COM0 1	L COMO) WGM0	CS02	CS01	CS00
+	+	+	+	-+	-+	-+	-+	-++
	7	6	5	4	3	2	1	0

ક્લોક સિલેક્ટ વિકલ્પો:

• 000: કોઈ ક્લોક નહીં (Timer બંધ)

• 001: clk/1 (પ્રેસ્કેલિંગ નહીં)

• 010: clk/8, 011: clk/64

• 100: clk/256, 101: clk/1024

મેમરી ટ્રીક: "Force Waveform Compare Clock Select"

પ્રશ્ન 3(અ OR) [3 ગુણ]

Timer 1 સાથે સંકળાયેલા રજિસ્ટરોની યાદી બનાવો.

જવાબ:

Timer1 રજિસ્ટર્સ:

રજિસ્ટર	รเช้
TCCR1A	Timer1 Control Register A
TCCR1B	Timer1 Control Register B
TCNT1H/L	Timer1 Counter Register
OCR1AH/L	Output Compare Register A
OCR1BH/L	Output Compare Register B
ICR1H/L	Input Capture Register

મેમરી ટ્રીક: "Control Counter Output-Compare Input-Capture"

પ્રશ્ન 3(બ OR) [4 ગુણ]

EEPROM ના 0x005F લોકેશન પર 'G' સ્ટોર કરવા માટે AVR C પ્રોગ્રામ લખો.

જવાબ:

```
#include <avr/io.h>
#include <avr/eeprom.h>
void eeprom_write_byte_custom(uint16_t addr, uint8_t data)
   while(EECR & (1<<EEWE)); // Wait for previous write</pre>
                             // Set address
   EEAR = addr;
   EEDR = data;
                            // Set data
   EECR = (1 << EEMWE);
                          // Master write enable
                            // Write enable
   EECR = (1 < EEWE);
}
int main()
   eeprom write byte custom(0x005F, 'G');
   return 0;
}
```

પ્રોગ્રામ સ્ટેપ્સ:

- પૂર્ણતા માટે EEWE bit ચેક કરો
- EEAR માં address 0x005F લોડ કરો
- EEDR માં 'G' (ASCII 71) લોડ કરો
- Master write સક્ષમ કરો, પછી write enable કરો

ਮੇਮરੀ ਟੀਡ: "Wait Address Data Master Write"

પ્રશ્ન 3(ક OR) [7 ગુણ]

દર 70 µs પર માત્ર PORTB.4 બિટને ટૉગલ કરવા માટે C પ્રોગ્રામ લખો. Delay બનાવવા માટે Timer0નો 1:8 પ્રેસ્કેલર સાથે નોર્મલ મોડનો ઉપયોગ કરો. XTAL = 8 MHz.

જવાબ:

ગણતરી:

- ริตโร = 8MHz/8 = 1MHz
- 70µs भा2: Count = 70 cycles
- પ્રારંભિક મૂલ્ય = 256-70 = 186

મેમરી ટ્રીક: "Direction Control Count Wait Clear Toggle"

પ્રશ્ન 4(અ) [3 ગુણ]

Port C ના બિટ 5 ને મોનિટર કરવા માટેનો AVR C પ્રોગ્રામ લખો. જો તે HIGH હોય, તો Port B પર 55H મોકલો; અન્યથા, AAH Port B પર મોકલો.

જવાબ:

પ્રોગ્રામ લૉજિક:

- PC5 ને input તરીકે, Port B ને output તરીકે કૉન્ફિગર કરો
- સતત PC5 સ્થિતિ યેક કરો
- ઇનપુટના આધારે 0x55 અથવા 0xAA આઉટપુટ કરો

મેમરી ટ્રીક: "Direction Check Output"

પ્રશ્ન 4(બ) [4 ગુણ]

LM35 ને ATmega32 સાથે ઇન્ટરફેસિંગ દોરો અને સમજાવો.

જવાબ:

કનેક્શન ટેબલ:

LM35 પિન	ATmega32 પિન	รเช่
Vcc	+5V	પાવર સપ્લાય
Output	PA0 (ADC0)	એનાલોગ વોલ્ટેજ
GND	GND	ગ્રાઉન્ડ

• **તાપમાન કન્વર્ઝન**: 10mV/°C આઉટપુટ

• **ADC રિઝોલ્યુશન**: 10-bit (0-1023)

• **વોલ્ટેજ રેન્જ**: 0V થી 5V (0°C થી 500°C)

મેમરી ટ્રીક: "Power Output Ground Temperature"

પ્રશ્ન 4(ક) [7 ગુણ]

MAX7221 ને ATmega32 સાથે ઇન્ટરફેસિંગ દોરો અને સમજાવો.

જવાબ:

કનેક્શન ટેબલ:

MAX7221 นิ -	ATmega32 પિન	รเข้
DIN	MOSI (PB5)	સીરિયલ ડેટા ઇનપુટ
CLK	SCK (PB7)	સીરિયલ ક્લોક
LOAD	SS (PB4)	ચિપ સિલેક્ટ

લક્ષણો:

• SPI ઇન્ટરફેસ: સીરિયલ કમ્યુનિકેશન પ્રોટોકોલ

• 8-ડિજિટ ડિસ્પ્લે: 8 સેવન-સેગમેન્ટ ડિસ્પ્લે સુધી કંટ્રોલ કરે છે

• **બિલ્ટ-ઇન ડીકોડર**: BCD થી સેવન-સેગમેન્ટ કન્વર્ઝન

• બ્રા**ઇટનેસ કંટ્રોલ**: 16 ઇન્ટેન્સિટી લેવલ

પ્રોગ્રામિંગ સ્ટેપ્સ:

1. SPI ને master મોડમાં પ્રારંભ કરો

2. Address અને data bytes મોકલો

3. ડેટા latch કરવા માટે LOAD સિગ્નલ pulse કરો

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Serial Clock Load Display"

પ્રશ્ન 4(અ OR) [3 ગુણ]

Port B માંથી ડેટા બાઇટ મેળવી તેને Port C પર મોકલવા માટે AVR C પ્રોગ્રામ લખો.

જવાબ:

પ્રોગ્રામ કાર્ય:

• Port B ને input તરીકે, Port C ને output તરીકે કૉન્ફિંગર કરો

• સતત PINB માંથી વાંચો અને PORTC માં લખો

ਮੇਮરੀ ਟ੍ਰੀs: "Input Output Read Write"

પ્રશ્ન 4(બ OR) [4 ગુણ]

ULN2803 ને ATmega32 સાથે ઇન્ટરફેસિંગ દોરો અને સમજાવો.

જવાબ:

ULN2803 લક્ષણો:

લક્ષણ	นย์า
8 Darlington Arrays	હાઇ કરન્ટ સ્વિચિંગ
Input Current	500µA સામાન્ય
Output Current	500mA પ્રતિ ચેનલ
Built-in Flyback Diodes	ઇન્ડક્ટિવ લોડ પ્રોટેક્શન

• એપ્લિકેશન: રિલે, મોટર, સોલેનોઇડ ચલાવવા માટે

• **વોલ્ટેજ ડ્રોપ**: Darlington pair માં સામાન્ય 1.2V

• **એક્ટિવ લો આઉટપુટ**: ઇનપુટ high હોય ત્યારે આઉટપુટ low જાય છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Darlington Current Protection Drive"

પ્રશ્ન 4(ક OR) [7 ગુણ]

AVR માં SPI ને પ્રોગ્રામ કરવા માટે વપરાતા રજિસ્ટરોની ચર્ચા કરો.

જવાબ:

SPI રજિસ્ટર્સ:

રજિસ્ટર	બિર્સ	รเข้
SPCR	SPE, DORD, MSTR, CPOL	SPI Control Register
SPSR	SPIF, WCOL, SPI2X	SPI Status Register
SPDR	-	SPI Data Register

SPCR રજિસ્ટર બિટ્સ:

• SPE: SPI Enable

• DORD: Data Order (MSB/LSB first)

• MSTR: Master/Slave Select

• **CPOL**: Clock Polarity

• CPHA: Clock Phase

SPSR રજિસ્ટર બિટ્સ:

• SPIF: SPI Interrupt Flag

• WCOL: Write Collision Flag

• SPI2X: Double Speed Mode

પ્રોગ્રામિંગ સિક્વન્સ:

1. SPI pins ને input/output તરીકે કૉન્ફિંગર કરો

2. ઇચ્છિત મોડ માટે SPCR રજિસ્ટર સેટ કરો

3. SPDR માં ડેટા લખો

4. SPIF flag ની રાહ જુઓ

5. SPDR માંથી પ્રાપ્ત ડેટા વાંચો

મેમરી ટ્રીક: "Control Status Data Enable Order Master"

પ્રશ્ન 5(અ) [3 ગુણ]

L293D મોટર ડ્રાઇવર IC નો પિન ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

```
L293D
   +----+
       16|-Vcc1
1EN-|1
1A--|2
            15 | -4A
1Y--|3
           14 | -4Y
GND- | 4
           13 | -GND
GND- | 5
           12 | -GND
2Y-- | 6
           11 | -3Y
2A--|7
            10 | -3A
             9 | -2EN
Vcc2 8
```

પિન કાર્યો:

પિન	ธเช้
1A, 2A	મોટર 1 માટે ઇનપુટ સિગ્નલ
3A, 4A	મોટર 2 માટે ઇનપુટ સિગ્નલ
1Y, 2Y	મોટર 1 માટે આઉટપુટ
3Y, 4Y	મોટર 2 માટે આઉટપુટ
1EN, 2EN	મોટર માટે enable pins
Vcc1	લૉજિક સપ્લાય (+5V)
Vcc2	મોટર સપ્લાય (+12V)

ਮੇਮરੀ ਟ੍ਰੀs: "Input Output Enable Logic Motor Supply"

પ્રશ્ન 5(બ) [4 ગુણ]

ADMUX રજિસ્ટર દોરો અને સમજાવો.

જવાબ:

ADMUX (ADC Multiplexer Selection Register):

બિટ	નામ	รเข้
7,6	REFS1,REFS0	Reference Selection
5	ADLAR	ADC Left Adjust Result
4-0	MUX4-MUX0	Analog Channel Selection

	·	•		•	•	•	-++
	•	•		•	•		MUX0 -++
7	6	5	4	3	2	1	0

રેફરન્સ પસંદગી:

• 00: AREF pin

• 01: AVcc with external capacitor

• 11: Internal 2.56V reference

ચેનલ પસંદગી: MUX bits ADC0-ADC7 ચેનલ પસંદ કરે છે

भेभरी ट्रीड: "Reference Adjust Multiplexer Channel"

પ્રશ્ન 5(ક) [7 ગુણ]

GSM આધારિત સિક્યોરિટી સિસ્ટમ સમજાવો.

જવાબ:

સિસ્ટમ ઘટકો:

ยวร	รเช้
PIR Sensor	ગતિ શોધ
Door Sensor	પ્રવેશ શોધ
GSM Module	SMS/Call કમ્યુનિકેશન
Microcontroller	સિસ્ટમ કંટ્રોલ
Keypad	યુઝર ઇન્ટરફેસ
Display	સ્થિતિ સૂચન

કાર્યશીલ સિદ્ધાંત:

- 1. સેન્સર્સ આક્રમણ શોધે છે
- 2. માઇક્રોકન્ટ્રોલર સિગ્નલ પ્રોસેસ કરે છે
- 3. GSM મોક્યુલ SMS alert મોકલે છે
- 4. યુઝર નોટિફિકેશન મેળવે છે
- 5. સિસ્ટમ રિમોટલી arm/disarm કરી શકાય છે

લક્ષણો:

• **રિમોટ મોનિટરિંગ**: SMS નોટિફિકેશન

• **બહુવિધ સેન્સર્સ**: PIR, door, window સેન્સર્સ

• **યુઝર ઇન્ટરફેસ**: LCD ડિસ્પ્લે અને કીપેડ

• એમર્જન્સી રિસ્પોન્સ: ઓટોમેટિક એલર્ટ સિસ્ટમ

મેમરી ટ્રીક: "Sensors Process Communicate Alert Control"

પ્રશ્ન 5(અ OR) [3 ગુણ]

L293D મોટર ડ્રાઇવરનો ઉપયોગ કરી DC મોટરને ATmega32 સાથે ઇન્ટરફેસ કરવા માટે સર્કિટ ડાયાગ્રામ દોરો.

જવાબ:

કનેક્શન ટેબલ:

ATmega32	L293D	รเข้
PAO	1A (Pin 2)	દિશા નિયંત્રણ 1
PA1	2A (Pin 7)	દિશા નિયંત્રણ 2
PA2	1EN (Pin 1)	મોટર enable

મોટર કંટ્રોલ:

- PA0=1, PA1=0: ઘડિયાળની દિશામાં ફેરવો
- PA0=0, PA1=1: ઘડિયાળની વિરુદ્ધ દિશામાં ફેરવો
- PA2=0: મોટર બંધ

ਮੇਮਣੀ ਟ੍ਰੀs: "Direction Enable Control Stop"

પ્રશ્ન 5(બ OR) [4 ગુણ]

ADCSRA રજિસ્ટર દોરો અને સમજાવો.

જવાબ:

ADCSRA (ADC Control and Status Register A):

બિટ	નામ	ธเช้
7	ADEN	ADC Enable
6	ADSC	ADC Start Conversion
5	ADATE	ADC Auto Trigger Enable
4	ADIF	ADC Interrupt Flag
3	ADIE	ADC Interrupt Enable
2-0	ADPS2-ADPS0	ADC Prescaler Select

પ્રેસ્કેલર પસંદગી:

• 000: ડિવિઝન ફેક્ટર 2

• 001: ડિવિઝન ફેક્ટર 2

• 010: ડિવિઝન ફેક્ટર 4

• 011: ડિવિઝન ફેક્ટર 8

ADC ઓપરેશન સ્ટેપ્સ:

1. ADC સક્ષમ કરવા માટે ADEN સેટ કરો

2. કન્વર્ઝન શરૂ કરવા માટે ADSC સેટ કરો

3. ADIF flag ની રાહ જુઓ

4. ADCH:ADCL માંથી પરિણામ વાંચો

મેમરી ટ્રીક: "Enable Start Auto Interrupt Prescaler"

પ્રશ્ન 5(ક OR) [7 ગુણ]

વેદ્યર મોનિટરિંગ સિસ્ટમ સમજાવો.

જવાબ:

સિસ્ટમ ઘટકો:

સેન્સર	પેરામીટર	ઇન્ટરફેસ
LM35	તાપમાન	Analog (ADC)
DHT11	ભેજ	Digital
BMP180	દબાણ	I2C
Rain Sensor	વરસાદ	Digital

લક્ષણો:

• મલ્ટિ-પેરામીટર મોનિટરિંગ: તાપમાન, ભેજ, દબાણ, વરસાદ

• **ડેટા લૉગિંગ**: EEPROM/SD કાર્ડમાં રીડિંગ્સ સ્ટોર કરો

• **રીયલ-ટાઇમ ડિસ્પ્લે**: LCD વર્તમાન રીડિંગ્સ દર્શાવે છે

• **વાયરલેસ કમ્યુનિકેશન**: રિમોટ મોનિટરિંગ માટે WiFi/GSM

• એલર્ટ સિસ્ટમ: થ્રેશોલ્ડ-આધારિત ચેતવણીઓ

એપ્લિકેશન્સ:

• કૃષિ મોનિટરિંગ

• હવામાન આગાહી

• પર્યાવરણીય સંશોધન

• સ્માર્ટ હોમ ઓટોમેશન

સિસ્ટમ ફાયદા:

• ઓટોમેટેડ ડેટા કલેક્શન: સતત મોનિટરિંગ

• રિમોટ એક્સેસ: ગમે ત્યાંથી ડેટા જુઓ

- ઐતિહાસિક વિશ્લેષણ: ટ્રેન્ડ ઓળખ
- **પ્રારંભિક ચેતવણી**: આત્યંતિક હવામાન એલર્ટ્સ

મેમરી ટ્રીક: "Temperature Humidity Pressure Rain Display Log Wireless"

પરીક્ષાનું અંત

મહત્વપૂર્ણ સૂચનાઓ:

- આ સોલ્યુશન કમજોર વિદ્યાર્થીઓ માટે સરળ ભાષામાં તૈયાર કરવામાં આવ્યું છે
- દરેક જવાબમાં ટેબલ, ડાયાગ્રામ અને મેમરી ટ્રીક્સ શામેલ છે
- કોડ બ્લોક્સ સરળ અને સમજવામાં સહેલા રાખવામાં આવ્યા છે
- શબ્દ મર્યાદાનું કડક પાલન કરવામાં આવ્યું છે