Eventually almost periodic locally bounded functions are sublinear

ho boon suan

October 27, 2020

Given a function $f: [0, \infty) \to \mathbf{R}$ that is *eventually almost periodic* in the sense that $\lim_{x\to\infty} (f(x+1)-f(x))=0$ and *locally bounded* on every interval [n,n+1], we prove that

$$\lim_{x \to \infty} \frac{f(x)}{r} = 0.$$

Let $\epsilon > 0$, and choose N with $|f(x+1) - f(x)| < \epsilon$ whenever $x \ge N$. Let M_n be a bound for f on the interval [n,n+1] chosen such that $M_n > n\epsilon$. We have $|f(x)| < M_N$ on [N,N+1] by definition, and $|f(x)| < M_N + \epsilon$ on [N+1,N+2] with the triangle inequality. Thus $|f(x)| < M_N/N$ on [N,N+1] and $|f(x)| < \frac{M_N+\epsilon}{N+1}$ on [N+1,N+2]. Continuing in this fashion, we see that

$$|f(x)| < M_N + k\epsilon$$
 and $\left| \frac{f(x)}{x} \right| < \frac{M_N + k\epsilon}{N + k}$

on [N+k, N+k+1] with $k \ge 0$. Now

$$\lim_{x \to \infty} \left| \frac{f(x)}{x} \right| \le \lim_{k \to \infty} \frac{M_N + k\epsilon}{N + k}$$

$$= \lim_{k \to \infty} \frac{\frac{M_N}{k} + \epsilon}{\frac{N}{k} + 1}$$

$$= \epsilon,$$

and so the result follows as ϵ was arbitrary.