Generative Learning vs Discriminative Learning
Linear Discriminant Analysis
Quadratic Discriminant Analysis
GLAD and QDA, Another point of view
Naive Bayes
Lecture Summary

Statistical Pattern Recognition Lecture4 Bayesian Learning

Dr Zohreh Azimifar

School of Electrical and Computer Engineering

Shiraz University

Fall2014

Table of contents

- Introduction
- Quantity of the contract of
 - Generative Learning and Discriminative Learning
- 3 Linear Discriminant Analysis
 - Gaussian Linear Discriminant Analysis
 - Boundary Decision for GLDA
 - Analysis of GLDA
- Quadratic Discriminant Analysis
 - Quadratic Discriminant Analysis
 - Analysis of QDA
- 5 GLAD and QDA, Another point of view
 - GLAD and QDA, Another point of view
- 6 Naive Bayes
 - Naive Bayes
 - Naive Bayes: An Example
- 1 Lecture Summary
 - Summary

Introduction

Classification based on the theory Bayesian Learning

$$P(y = 0|\mathbf{X}) \geqslant_{v=1}^{y=0} P(y = 1|\mathbf{X})$$

• Classification involves determining $P(y|\mathbf{X})$, from different perspectives.

Generative Learning and Discriminative Learning

- Discriminative Learning:
 - Direct learning of $P(y|\mathbf{X})$.
 - Modelling of decision boundary, to which side a new sample is assigned.
 - Logistic and softmax regression are called discriminative learners.
- Generative Learning
 - Explicit modelling of each class separately.
 - Compare new sample with each class probability, based on Bayesian rule:

$$P(y|\mathbf{X}) = \frac{\overbrace{P(\mathbf{X}|y)}^{P(\mathbf{X}|y)}\overbrace{P(y)}^{P(\mathbf{Y})}}{\underbrace{P(\mathbf{X})}_{normalizing factor}}$$

• Model P(y) and P(X|y) for each class y:

$$P(y) = \phi_1^{1\{y=1\}} \phi_2^{1\{y=2\}} \cdots \phi_c^{1\{y=c\}}$$

$$P(\mathbf{X}|y=i) = \frac{1}{(\sqrt{2\pi})^n |\Sigma|^{\frac{1}{2}}} \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \Sigma^{-1}(\mathbf{X} - \boldsymbol{\mu}_i))$$

• Parameter set: $\theta = \{\phi_1, \phi_2, ..., \phi_c, \mu_1, \mu_2, ..., \mu_c, \Sigma\}$

• Estimate parameters: $\theta = \{\phi_1, \phi_2, ..., \phi_c, \mu_1, \mu_2, ..., \mu_c, \Sigma\}$

$$I(\boldsymbol{\theta}) = \log \prod_{j=1}^{m} P(\mathbf{X}^{(j)}, y^{(j)}) = \log \prod_{j=1}^{m} P(\mathbf{X}^{(j)} | P(y^{(j)})) P(y^{(j)})$$

• Estimate parameters: $\theta = \{\phi_1, \phi_2, ..., \phi_c, \mu_1, \mu_2, ..., \mu_c, \Sigma\}$

$$I(\boldsymbol{\theta}) = \log \prod_{j=1}^{m} P(\mathbf{X}^{(j)}, y^{(j)}) = \log \prod_{j=1}^{m} P(\mathbf{X}^{(j)} | P(y^{(j)})) P(y^{(j)})$$

• Take partial derivative in terms of each individual parameter:

$$\phi_i^{MLE} = \frac{\sum_{j=1}^{m} 1\{y^{(j)} = i\}}{m}$$

• Estimate parameters: $\theta = \{\phi_1, \phi_2, ..., \phi_c, \mu_1, \mu_2, ..., \mu_c, \Sigma\}$

$$I(\boldsymbol{\theta}) = \log \prod_{j=1}^{m} P(\mathbf{X}^{(j)}, y^{(j)}) = \log \prod_{j=1}^{m} P(\mathbf{X}^{(j)} | P(y^{(j)})) P(y^{(j)})$$

• Take partial derivative in terms of each individual parameter:

$$\phi_i^{MLE} = \frac{\sum_{j=1}^{m} 1\{y^{(j)} = i\}}{m}$$

$$\mu_i^{MLE} = \frac{\sum_{j=1}^m 1\{y^{(j)} = i\} \mathbf{X}^{(j)}}{\sum_{j=1}^m 1\{y^{(j)} = i\}}$$

• Estimate parameters: $\theta = \{\phi_1, \phi_2, ..., \phi_c, \mu_1, \mu_2, ..., \mu_c, \Sigma\}$

$$I(\boldsymbol{\theta}) = \log \prod_{j=1}^{m} P(\mathbf{X}^{(j)}, y^{(j)}) = \log \prod_{j=1}^{m} P(\mathbf{X}^{(j)} | P(y^{(j)})) P(y^{(j)})$$

• Take partial derivative in terms of each individual parameter:

$$\phi_i^{MLE} = \frac{\sum_{j=1}^m 1\{y^{(j)} = i\}}{m}$$

$$\mu_i^{MLE} = \frac{\sum_{j=1}^{m} 1\{y^{(j)} = i\} \mathbf{X}^{(j)}}{\sum_{i=1}^{m} 1\{y^{(j)} = i\}}$$

$$\Sigma^{MLE} = rac{1}{m} \sum_{i=1}^{m} (\mathbf{X}^{(j)} - oldsymbol{\mu}_{y^{(j)}}) (\mathbf{X}^{(j)} - oldsymbol{\mu}_{y^{(j)}})^T$$

• Determine class label of a new sample **X**^{new}:

$$y^{new} = argmax_y \ P(y|\mathbf{X})$$
 $= argmax_y \ \frac{P(\mathbf{X}|y)P(y)}{P(X)}$
 $= argmax_y \ P(\mathbf{X}|y)P(y)$

• Note that $P(\mathbf{X}|y)$ is a class dependent density.

Decision boundary is a line, a plane, or a hyper-plane. Why?

$$\frac{P(y=i|\mathbf{X}) = P(y=j|\mathbf{X})}{P(\mathbf{X}|y=i)P(y=i)} = \frac{P(\mathbf{X}|y=j)P(y=j)}{P(\mathbf{X})}$$

Decision boundary is a line, a plane, or a hyper-plane. Why?

$$\frac{P(y=i|\mathbf{X}) = P(y=j|\mathbf{X})}{P(\mathbf{X}|y=i)P(y=i)} = \frac{P(\mathbf{X}|y=j)P(y=j)}{P(\mathbf{X})}$$

$$P(X|y = i)P(y = i) = P(X|y = j)P(y = j)$$

Decision boundary is a line, a plane, or a hyper-plane. Why?

$$\frac{P(y=i|\mathbf{X}) = P(y=j|\mathbf{X})}{P(\mathbf{X}|y=i)P(y=i)} = \frac{P(\mathbf{X}|y=j)P(y=j)}{P(\mathbf{X})}$$

$$P(\mathbf{X}|y=i)P(y=i) = P(\mathbf{X}|y=j)P(y=j)$$

$$\begin{split} &\frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \; exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \Sigma^{-1}(\mathbf{X} - \boldsymbol{\mu}_i)) P(y = i) \\ &= \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \; exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_j)^T \Sigma^{-1}(\mathbf{X} - \boldsymbol{\mu}_j)) P(y = j) \end{split}$$

$$\exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_i)) P(y = i) = \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_j)) P(y = j)$$

$$\exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_i)) P(y = i) = \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_j)) P(y = j)$$

$$\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \Sigma^{-1}(\mathbf{X} - \boldsymbol{\mu}_i) + \log P(y = i) = \frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_j)^T \Sigma^{-1}(\mathbf{X} - \boldsymbol{\mu}_j) + \log P(y = j)$$

$$\begin{split} \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_i)) P(y = i) &= \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_j)) P(y = j) \\ \frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_i) + \log P(y = i) &= \frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_j) + \log P(y = j) \\ &\Rightarrow \log \frac{P(y = i)}{P(y = j)} - \frac{1}{2}[\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \mathbf{X} - 2\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i + \boldsymbol{\mu}_i^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i] \\ &+ \frac{1}{2}[\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \mathbf{X} - 2\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_j + \boldsymbol{\mu}_j^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_j] = 0 \end{split}$$

$$\exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_i)) P(y = i) = \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_j)) P(y = j)$$

$$\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_i) + \log P(y = i) = \frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}^{-1}(\mathbf{X} - \boldsymbol{\mu}_j) + \log P(y = j)$$

$$\Rightarrow \log \frac{P(y = i)}{P(y = j)} - \frac{1}{2}[\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \mathbf{X} - 2\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i + \boldsymbol{\mu}_i^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i]$$

$$+ \frac{1}{2}[\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \mathbf{X} - 2\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_j + \boldsymbol{\mu}_j^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_j] = 0$$

$$\Rightarrow \underline{\mathbf{X}^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)}_{a\mathbf{X}} + \underline{\frac{1}{2}} \underline{\boldsymbol{\mu}_i^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \underline{\boldsymbol{\mu}_j^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_j + \log \frac{P(y = i)}{P(y = j)}} = 0$$

Analysis of GLDA when $\Sigma = \sigma^2 I$

- Classes are of identical distribution, but different means.
- Cross-section of classes distribution is spherical.
- Decision boundary is linear.
- Called classifier with nearest Euclidean distance to the class mean, when?

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Analysis of GLDA when Σ is not identity

- Classes are of identical distribution, but different means.
- Cross-section of classes distribution is ellipsoidal.
- Decision boundary is linear.

$$\Sigma = \begin{bmatrix} 0.5 & 0 \\ 0 & 1.5 \end{bmatrix}$$

Analysis of GLDA with arbitrary Σ

- Classes are of identical distribution, but different means.
- Cross-section of classes distribution is ellipsoidal. Linear decision boundary.
- Classes are aligned with direction of covariance eigenvectors.

$$\Sigma = \begin{bmatrix} 0.5 & 0.2 \\ 0.2 & 1.5 \end{bmatrix}$$

Analysis of GLDA with arbitrary Σ

- Classes are of identical distribution, but different means.
- Cross-section of classes distribution is ellipsoidal. Linear decision boundary.
- Classes are aligned with direction of covariance eigenvectors.

$$\Sigma = \begin{bmatrix} 0.5 & 0.2 \\ 0.2 & 1.5 \end{bmatrix}$$

• Called classifier with nearest Mahalanobis distance to the class mean, when? $Dist(\mathbf{X}, \mu_i) = (\mathbf{X} - \mu_i)^T \Sigma^{-1} (\mathbf{X} - \mu_i)$

- Another generative learning model; a Bayesian classifier
- Here, classes are of multinomial distribution, and likelihoods are multivariate Gaussian with separate covariance Σ_i .
- Decision boundary becomes non-linear, Why?

$$P(\mathbf{X}|y=i) = \frac{1}{(\sqrt{2\pi})^n |\Sigma_i|^{\frac{1}{2}}} \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\mathbf{X} - \boldsymbol{\mu}_i))$$

Decision boundary is parabolic:

$$P(y = i|\mathbf{X}) = P(y = j|\mathbf{X})$$

$$\frac{P(\mathbf{X}|y = i)P(y = i)}{P(\mathbf{X})} = \frac{P(\mathbf{X}|y = j)P(y = j)}{P(\mathbf{X})}$$

$$P(\mathbf{X}|y = i)P(y = i) = P(\mathbf{X}|y = j)P(y = j)$$

Decision boundary is parabolic:

$$P(y = i|\mathbf{X}) = P(y = j|\mathbf{X})$$

$$\frac{P(\mathbf{X}|y = i)P(y = i)}{P(\mathbf{X})} = \frac{P(\mathbf{X}|y = j)P(y = j)}{P(\mathbf{X})}$$

$$P(\mathbf{X}|y = i)P(y = i) = P(\mathbf{X}|y = j)P(y = j)$$

$$\begin{split} &\frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma_{i}|^{\frac{1}{2}}} \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1}(\mathbf{X} - \boldsymbol{\mu}_{i})) P(y = i) \\ &= \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma_{j}|^{\frac{1}{2}}} \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_{j})^{T} \Sigma_{j}^{-1}(\mathbf{X} - \boldsymbol{\mu}_{j})) P(y = j) \end{split}$$

$$\begin{split} &\frac{1}{|\Sigma_i|^{\frac{1}{2}}} \exp(\frac{-1}{2} (\mathbf{X} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{X} - \boldsymbol{\mu}_i)) P(y = i) \\ &= \frac{1}{|\Sigma_j|^{\frac{1}{2}}} \exp(\frac{-1}{2} (\mathbf{X} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}_j^{-1} (\mathbf{X} - \boldsymbol{\mu}_j)) P(y = j) \end{split}$$

$$\begin{split} \frac{1}{|\Sigma_i|^{\frac{1}{2}}} \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1}(\mathbf{X} - \boldsymbol{\mu}_i)) P(y = i) \\ &= \frac{1}{|\Sigma_j|^{\frac{1}{2}}} \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_j)^T \Sigma_j^{-1}(\mathbf{X} - \boldsymbol{\mu}_j)) P(y = j) \\ \frac{-1}{2} \log|\Sigma_i| &- \frac{1}{2} (\mathbf{X} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1}(\mathbf{X} - \boldsymbol{\mu}_i) + \log P(y = i) \\ &= \frac{-1}{2} \log|\Sigma_j| &- \frac{1}{2} (\mathbf{X} - \boldsymbol{\mu}_j)^T \Sigma_j^{-1}(\mathbf{X} - \boldsymbol{\mu}_j) + \log P(y = j) \end{split}$$

$$\begin{split} \frac{1}{|\Sigma_i|^{\frac{1}{2}}} \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\mathbf{X} - \boldsymbol{\mu}_i)) P(y = i) \\ &= \frac{1}{|\Sigma_j|^{\frac{1}{2}}} \exp(\frac{-1}{2}(\mathbf{X} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}_j^{-1}(\mathbf{X} - \boldsymbol{\mu}_j)) P(y = j) \\ \frac{-1}{2} log |\Sigma_i| &- \frac{1}{2} (\mathbf{X} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\mathbf{X} - \boldsymbol{\mu}_i) + log P(y = i) \\ &= \frac{-1}{2} log |\Sigma_j| &- \frac{1}{2} (\mathbf{X} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}_j^{-1}(\mathbf{X} - \boldsymbol{\mu}_j) + log P(y = j) \\ \Rightarrow &log \frac{P(y = i)}{P(y = j)} - \frac{1}{2} log \frac{|\Sigma_i|}{|\Sigma_j|} - \frac{1}{2} [\mathbf{X}^T \boldsymbol{\Sigma}_i^{-1} \mathbf{X} + \boldsymbol{\mu}_i^T \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i - 2\mathbf{X}^T \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i - \mathbf{X}^T \boldsymbol{\Sigma}_j^{-1} \mathbf{X} - \boldsymbol{\mu}_j^T \boldsymbol{\Sigma}_j^{-1} \boldsymbol{\mu}_j + 2\mathbf{X}^T \boldsymbol{\Sigma}_j^{-1} \boldsymbol{\mu}_j] = 0 \end{split}$$

$$log \frac{P(y=i)}{P(y=j)} - \frac{1}{2}log \frac{\left|\Sigma_{i}\right|}{\left|\Sigma_{j}\right|} - \frac{1}{2}[\mathbf{X}^{T}(\Sigma_{i}^{-1} - \Sigma_{j}^{-1})\mathbf{X} + \boldsymbol{\mu}_{i}^{T}\Sigma_{i}^{-1}\boldsymbol{\mu}_{i}$$
$$-\boldsymbol{\mu}_{j}^{T}\Sigma_{j}^{-1}\boldsymbol{\mu}_{j} - 2\mathbf{X}^{T}(\Sigma_{i}^{-1}\boldsymbol{\mu}_{i} - \Sigma_{j}^{-1}\boldsymbol{\mu}_{j})] = 0$$

$$log \frac{P(y=i)}{P(y=j)} - \frac{1}{2}log \frac{\left|\Sigma_{i}\right|}{\left|\Sigma_{j}\right|} - \frac{1}{2}[\mathbf{X}^{T}(\Sigma_{i}^{-1} - \Sigma_{j}^{-1})\mathbf{X} + \boldsymbol{\mu}_{i}^{T}\Sigma_{i}^{-1}\boldsymbol{\mu}_{i}$$
$$-\boldsymbol{\mu}_{j}^{T}\Sigma_{j}^{-1}\boldsymbol{\mu}_{j} - 2\mathbf{X}^{T}(\Sigma_{i}^{-1}\boldsymbol{\mu}_{i} - \Sigma_{j}^{-1}\boldsymbol{\mu}_{j})] = 0$$

$$\Rightarrow \mathbf{X}^T a \mathbf{X} + b^T \mathbf{X} + c = 0$$

Analysis of QDA when $\Sigma = \sigma_i^2 I$

- Classes are of different distributions and different means.
- Cross-sections of classes distribution are spherical but of different sizes.

$$\Sigma_1 = \begin{bmatrix} 1.5 & 0 \\ 0 & 1.5 \end{bmatrix}, \ \Sigma_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \ \Sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Analysis of QDA with arbitrary $\Sigma_i \neq \Sigma_j$

- Classes are of different distributions and different means.
- Cross-sections of classes distribution are ellipsoidal and of different sizes.

$$\Sigma_1 = \begin{bmatrix} 1.5 & 0.1 \\ 0.1 & 0.5 \end{bmatrix}, \ \Sigma_2 = \begin{bmatrix} 1 & -0.2 \\ -0.2 & 2 \end{bmatrix}, \ \Sigma_3 = \begin{bmatrix} 2 & -0.25 \\ -0.25 & 1.5 \end{bmatrix}$$

GLAD and QDA, Another point of view

- _
- •
- •

Introduction
Lenerative Learning vs Discriminative Learning
Linear Discriminant Analysis
Quadratic Discriminant Analysis
GLAD and QDA, Another point of view
Naive Bayes
Lecture Summary

Naive Bayes

Naive Bayes

•

۵

4

Naive Bayes: An Example

enerative Learning vs Discriminative Learning Linear Discriminant Analysis Quadratic Discriminant Analysis GLAD and QDA, Another point of view Naive Bayes Lecture Summary

Summary

Summary

•

•