Lecture Notes for

Neural Networks and Machine Learning

Transformers and Vision Transformers

Logistics and Agenda

- Logistics
 - Paper presentations
- Agenda
 - Transformers
- Next Time:
 - Vision Transformers
 - Paper Presentation
 - Self-supervised learning and other consistency losses

Transformers

Dr Simone Stumpf @DrSimoneS... · 13h ··· God grant me the confidence of an average machine learning expert.

Transformers Intuition

- Recurrent networks track state using an "updatable" state vector, but this takes lots of processing to across sequence
- Attention mechanism (in RNNs) already takes a weighted sum of state vectors to generate new token in a decoder
- ... so why not just use attention on a transformation of the embedding vectors? Do away with the recurrent state vector all together?

Attention is All You Need

Continued Motivation:

- RNNs are not inherently parallelized or efficient at remembering based on state vector
- CNNs are not resilient to long-term word relationships, limited by filter size

Transformer Solution:

- Build attention into model from the beginning
- Compare all words to each other through self-headed attention
- Define a notion of "position" in the sequence
- Should be resilient to long term relationships and be highly parallelized for GPU computing!!

Transformer

Transformer: in more detail

Input	Thinking	Machines	
Embedding	X ₁	X ₂	
	Outputs of Matrix Multiplications:		
Queries	q ₁	q ₂	
Keys	k ₁	k ₂	
Values			
Values	V1	V ₂	

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

Transformer: in more detail

Embedding

Oueries

Keys

Values

Score

Divide by 8 ($\sqrt{d_k}$) in visual, $d_k = 3$ Softmax

Softmax X Value

Sum

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

Professor Eric

Size of Q,K,V: $|\text{Seq Len}| \times d_v$

WQ,K: |Embed Size| $\times d_k$

Transformer: Multi-headed Attention

Transformer: Positional Encoding

- Objective: add notion of position to embedding
- Attempt in paper: add sin/cos to embedding
- But could be anything that encodes position

p: in sequenced_m: 0.5*max dim of embedi = position in embed

$$PE_{(p,i \in 0...d_m-1)} = \sin(p/10000^{i/d_m})$$

$$PE_{(p,i \in d_m...2d_m)} = \cos(p/10000^{(i-d_m)/d_m})$$

Hypothesis: Now the word proximity is encoded in the embedding matrix, with other pertinent information. Well, it does help... so it could be true that this is a good way to do it.

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

Positional Intuition, Geometrically

Transformer: Residual Connections

LN: prevents vanishing gradients from softmax in attention

Transformer: Putting it all together

Transformer: Putting it all together

Decoding time step: 1(2)3 4 5 6 OUTPUT Linear + Softmax Kencdec Vencdec **ENCODERS** DECODERS **EMBEDDING** WITH TIME SIGNAL **EMBEDDINGS** PREVIOUS étudiant suis le INPUT OUTPUTS

Results

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Implementations:

- Many open source Keras or Tensorflow Implementations Exist
 - https://www.tensorflow.org/text/tutorials/ transformer
- Many people like PyTorch for this
- HuggingFace has asme great implementations for free
 - https://huggingface.co/docs/transformers/ index

Pask	Dataset Variant	Hest Model
Teat Classification	GLUE	deberta-v3-small
Sentiment Analysis	SST-2 Binary classification	15-118
Semantic Textual Similarity	818 Beachmark	StructBERTRoBER ensemble
Natural Language Inference	MultENLI	T5-11B
Natural Language	RTE	PaLM 540B

Text Classification GLUE

General Language Understanding Evaluation (GLUE) benchmark is a collection of nine natural language understanding tasks, including single-sentence tasks CoLA and SST-2, similarity and paraphrasing tasks ...

Inference

IMD	b Classifications	Best Model
Text Classification	TMTh	ERNIE-Doo-Large
Sentiment Analysis	[MDb	XLNet
Sentiment Analysis	User and product information.	MA-BERT
SQL Parsing	TMT%	Seq2Seq with copying
Node Clustering	[MDb	MAGNN
Graph Similarity	LMDb	SimGNN
Link Prediction	ГМТЖ	Event2vec

MELVA Results (my lab)

- Measuring English Language Vocabulary Acquisition
- Or results from my lab:
 - Can students use science terms in a sentence?
 - Collect and transcribe student verbal responses regarding a scientific term
- Combine transcribed sentence and "good example"
- Collected about 6000 sentences
- Put through a language model (recurrent or transformer)
- Transfer learn based upon LM output
 - Without transformer LM: ~78%
 - With transformer LM: ~84%

Lots of Transformer Variants

Lecture Notes for

Neural Networks and Machine Learning

Transformers

Next Time:

SSL, Multi-Modal and Multi-Task

Reading: Keras F-API

