Глава 1

Рассматривали ИППН, классификацию ИППН, классификация в основном по квадрантам. Рассматривали одно-квадрантные, двух-квадрантные, четырех-квадрантные.

Замечание: может стоять IGBT-транзистор, может стоять мосфет,

а может стоять обычный тиристор с углом искуственной коммутации:

Искусственная коммутация \cong принудительная коммутация \cong ёмкостная коммутация. Искусственная коммутация и принудительная комму-

тация – синонимы. - Кратковременно подключить, искус-

ственно включить, принудительно включить источник. Чаще всего таким источником является заряженный конденсатор.

Это делается в два этапа:

• запереть тиристор

ток

• отключить нагрузку

Можем использовать импульсный трансформатор.

Как отключить тиристор:

Латышко в 1970 году защищал кандидатскую диссертацию по автоматическому регулированию реактивной мощности. В спимке литературы было 270 работ, часть из которых обзоры. 96 патентов В 1970 году человечество было сконцентрировано на искусственной коммутации. Количество статей, посвященных искуственной коммутации измерялось четырехзначными цифрами.

Пример работы схемы:

Как по щучьему веленью. В первый раз открываем VS_k . В момент, когда я отпираю V_S :

Диод VD2 прекращает колебания. При включении включается V_{SK} . При этом конденсатор C проводит ток от U_Π в нагрузку и заряжается полярностью в кружке \bigcirc . Процесс заряда завершается, когда U_C сравняется с U_Π и откроется диод V_{D1} . В дальнейшемм при отпирании V_S и приложении в нагрузке U_Π начинает протекать ток по контуру колебательной цепи $V_S - L_K - V_{D2} - C$. Конденсатор разряжается и перезаряжается за одну полуволну резонансной частоты контура. Конденсатор оказывается заряжен нужной для U_K полярностью и величиной

напряжения близкой к U_{Π} . $\Big\backslash$ – иголка примерно равна U_{Π} .

Чем хороша – позволяет использовать обычные тиристоры. Плоха

 $\delta t > t_{\text{выкл}}$. Тиристоры нужны быстродействующие.

Условие $< U_{\Pi}$ – ерунда. I_{max} – это критично.

$$C \geqslant K \frac{t_{\text{выкл}} I_{max}}{U_C < U_{\Pi}}$$

K – коэффициент запаса > 1(1.2, 1.5, 2)

Выбирали на максимальный ток, а работаю при минимальной, ток X.X. Наклон \sim току

Схема может не работать при малых токах.

Надежность схемы снижается.

Последнее уточнение к схеме ... похожи на выпрямители. По аналигии с выпрямителями ИППН могут быть многофазными. Делаются для

уменьшения пульсаций. Подключаются а разным U_{Π}