

Official Documentation

Berlin Experimental and Educational Ground Station

Document: SatCom-21-Doc-WP400

Version: 0.1 Date: August 11, 2021

Technische Universität Berlin
Department of Aeronautics and Astronautics
Chair of Space Technology
Office F 6
Marchstraße 12–14
10587 Berlin

Tel.: 030 / 314-21305 Fax: 030 / 314-21306

Document: SatCom-21-Doc-WP400
Version: 0.1
Date: August 11, 2021
Page: 2 / 10
Author: SatCom 2021

Technical Note

Version History

Version	Date	Changes	Processor
0.1	2021-07-05	Document creation	Alexis Cabana-Loriaux

Contents

40 0	Portable Rotator Concept
	Abstract
	400.1Introduction
	400.2Project Planning
	400.3Project Work
	400.3.1 Electronics
	400.3.1.1 choice of electronics
	400.3.1.2 how to connect, pinout
	400.3.1.3 Electronic Design
	400.3.1.4 fabrication and rework
	400.3.2 Code
	400.3.2.1 Quick Start
	400.3.2.2 Raspberry Pi Setup
	400.3.2.3 code structure
	400.3.2.4 possible weak points
	400.4Conclusion

Document: SatCom-21-Doc-WP400
Version: 0.1
Date: August 11, 2021
Page: 1 / 10
Author: SatCom 2021

400 Portable Rotator Concept

Abstract

Put a short description of the content of this report here.

400.1 Introduction

Bla Bla Bla

400.2 Project Planning

hmmmmmmmmm

400.3 Project Work

Document: SatCom-21-Doc-WP400
Version: 0.1
Date: August 11, 2021
Page: 2 / 10
Author: SatCom 2021

400.3.1 Electronics

The custom rotator is controlled by a raspberry pi, extended by a custom raspberry pi hat. The hat provides functionallity to read the safty swiches, communicate to two independet magnetic encoder, drive both motors, as well as monitor the motors speed with a quadrature encoder. The Hat also features a EEPROM, which is specified by the raspberry pi foundation, to call it an 'offical' pi hat. The pi and both motors are powered through an of the shelf power over ethernet (poe) adapter.

400.3.1.1 choice of electronics

We had a working prototype within the first couple of weeks, which enabled us to test lots of feature early on. In the beginning, we needed three cables to power the raspberry pi, the motors, as well as to provide a data cable for communication. The power over ethernet adapter allowed us to only have one cable and simplify the design. To move away from our orignal breadboard design connected to some of the shelfs components, we also designed our own raspberry pi hat.

400.3.1.2 how to connect, pinout

Figure 400.1: Raspberry pi hat pinout

Document: SatCom-21-Doc-WP400
Version: 0.1
Date: August 11, 2021
Page: 3 / 10
Author: SatCom 2021

Figure 400.2: Raspberry pi HAT blockdiagramm

400.3.1.3 Electronic Design

400.3.1.4 fabrication and rework

Document: SatCom-21-Doc-WP400
Version: 0.1
Date: August 11, 2021
Page: 4 / 10
Author: SatCom 2021

Figure 400.3: Schematic of Raspberry Pi hat

 Document:
 SatCom-21-Doc-WP400

 Version:
 0.1

 Date:
 August 11, 2021

 Page:
 5 / 10

 Author:
 SatCom 2021

Figure 400.4: PCB of Raspberry Pi hat

 Document:
 SatCom-21-Doc-WP400

 Version:
 0.1

 Date:
 August 11, 2021

 Page:
 6 / 10

 Author:
 SatCom 2021

Figure 400.5: Raspberry pi manufacturing

Document: SatCom-21-Doc-WP400
Version: 0.1
Date: August 11, 2021
Page: 7 / 10
Author: SatCom 2021

400.3.2 Code

400.3.2.1 Quick Start

what is rotctl? how to start it

400.3.2.2 Raspberry Pi Setup

how to configure the raspberry pi and connect to it

400.3.2.3 code structure

Main features: - Rotctl - Multithreading - Sensors: magnetic encoder, quadrature encoder, switches - Separate driver modules: h-bridge, i2c multiplexer etc. - Position monitoring how is it threadsafe? how does it work? where to configure the location?

Figure 400.6: Raspberry pi HAT blockdiagramm

400.3.2.4 possible weak points

- untested stuff -

Document: SatCom-21-Doc-WP400
Version: 0.1
Date: August 11, 2021
Page: 8 / 10
Author: SatCom 2021

Figure 400.7: Code structure

Document: SatCom-21-Doc-WP400 Version: 0.1 Date: August 11, 2021 Page: 9 / 10 Author: SatCom 2021

400.4 Conclusion

Summarize your project work here.

List of Figures

400.1Raspberry pi hat pinout
400.2Raspberry pi HAT blockdiagramm
400.3Schematic of Raspberry Pi hat
400.4PCB of Raspberry Pi hat
400.5Raspberry pi manufacturing
400.6Raspberry pi HAT blockdiagramm
400.7Code structure