Matrix Computations

Fall 2020

Lecture 1: Basic Concepts

Lecturer: Prof. Yue Qiu & Prof Ziping Zhao Scribe: Chenguang Zhang&Zhicheng Wang.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1 Vector Space

Definition 1. A subset S of \mathbb{R}^m (\mathbb{C}^m) is said to be a **subspace** if and only if

1. $x, y \in S \Longrightarrow x + y \in S$ closure property for vector addition

2. $x \in \mathcal{S} \Longrightarrow \alpha x \in \mathcal{S}$ for $\forall \alpha \in \mathbb{R}^n$ (\mathbb{C}^n) closure property for scalar multiplication

Definition 2. The inner product of two vectors $x, y \in \mathbb{R}^n$ is defined as

$$\langle oldsymbol{x}, oldsymbol{y}
angle = \sum_{i=1}^n y_i x_i = oldsymbol{y}^T oldsymbol{x}.$$

- x, y are said to be **orthogonal** to each other if $\langle x, y \rangle = 0$;
- x, y are said to be **parallel** if $x = \alpha y$ for some α .

Definition 3. For a set of vectors $S = \{v_1, v_2, \dots, v_r\}$, the subspace

$$span(S) = \{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_r \mathbf{v}_r\},\$$

generated by forming all linear combinations of vectors from S is called the **space spanned** by S.

Definition 4. If \mathcal{X} and \mathcal{Y} are subspaces of a vector space V, define the sum of two subspaces by

$$\mathcal{X} + \mathcal{Y} = \{ \mathbf{x} + \mathbf{y} | \mathbf{x} \in \mathcal{X} \text{ and } \mathbf{y} \in \mathcal{Y} \},$$

and if $X \cap Y = 0$, X + Y = Z, we define the **direct sum** $Z = X \oplus Y$.

Exercise:

- 1. For a vector space \mathcal{V} , and for \mathcal{X} , $\mathcal{Y} \subseteq \mathcal{V}$, explain why $span(\mathcal{X} \cup \mathcal{Y}) = span(\mathcal{X}) + span(\mathcal{Y})$.
- 2. Let \mathcal{X} and \mathcal{Y} be two subspace of a vector space \mathcal{V} .
 - (a) Prove that the intersection $\mathcal{X} \cap \mathcal{Y}$ is also a subspace of \mathcal{V} .
 - (b) Show that union $\mathcal{X} \cup \mathcal{Y}$ is only a subspace if $\mathcal{X} \subseteq \mathcal{Y}$ or $\mathcal{Y} \subseteq \mathcal{X}$.
- 3. For a set of vectors $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, prove that $\operatorname{span}(S)$ is the intersection of all subspaces that contain S, i.e., prove that $\operatorname{span}(S) = \mathcal{M}$ where $\mathcal{M} := \cap_{s \subseteq \mathcal{V}} \mathcal{V}$ is the intersection of all subspaces that contain S and V denotes the subspace containing S.

Solutions:

- 1. For $\forall \mathbf{u} \in span(\mathcal{X}) + span(\mathcal{Y}) \iff \exists \alpha, \beta, \ s.t.\mathbf{u} = \alpha_1 \mathbf{x}_1 + \ldots + \alpha_m \mathbf{x}_m + \beta_1 \mathbf{y}_1 + \ldots + \beta_n \mathbf{y}_n = \gamma_1 \mathbf{x}_1 + \ldots + \gamma_m \mathbf{x}_m + \gamma_{m+1} \mathbf{y}_1 + \ldots + \gamma_{m+n} \mathbf{y}_n \iff \mathbf{u} \in span(\mathcal{X} \cup \mathcal{Y}).$
- 2. (a) $\forall u, v \in \mathcal{X} \cap \mathcal{Y}$, since \mathcal{X} and \mathcal{Y} are subspace, $\alpha u \in \mathcal{X}$ and $\alpha u \in \mathcal{Y}$, $\alpha u \in \mathcal{X} \cap \mathcal{Y}$, similarly we have $u + v \in \mathcal{X} \cap \mathcal{Y}$. Therefore, $\mathcal{X} \cap \mathcal{Y}$ is a subspace.
 - (b) Suppose $\mathcal{X} \not\subseteq \mathcal{Y}$ and $\mathcal{Y} \not\subseteq \mathcal{X}$, $\exists u \in \mathcal{X} \mathcal{Y}$, $v \in \mathcal{Y} \mathcal{X}$. $u + v \notin \mathcal{X}$, $u + v \notin \mathcal{Y}$ and $u + v \in \mathcal{X} \cup \mathcal{Y}$, a contradiction.
- 3. The proof consists of two parts:
 - First we prove that $\operatorname{span}(\mathcal{S}) \subset \mathcal{M}$. For any $\mathbf{x} \in \operatorname{span}(\mathcal{S})$, then \mathbf{x} can be linearly represented by \mathcal{S} , i.e., $\mathbf{x} = \sum_i \alpha_i \mathbf{v}_i$. For any subspace \mathcal{V} containing \mathcal{S} , we must have $\mathbf{x} \in \mathcal{V}$ since subspace \mathcal{V} is closed under addition. Therefore, we have $\mathbf{x} \in \cap_{s \subseteq \mathcal{V}} \mathcal{V} = \mathcal{M}$. To sum up, $\forall \mathbf{x} \in \operatorname{span}(\mathcal{S}) \Rightarrow \mathbf{x} \in \mathcal{M} \Rightarrow \operatorname{span}(\mathcal{S}) \subset \mathcal{M}$.
 - Then we try to prove that $\mathcal{M} \subset \operatorname{span}(\mathcal{S})$. By definition, \mathcal{M} is contained in every subspace which contains \mathcal{S} . (The intersection of subspaces is also a subspace.) And since $\operatorname{span}(\mathcal{S})$ is also a subspace, then we have $\mathcal{M} \subset \operatorname{span}(\mathcal{S})$.

Therefore span(\mathcal{S}) = \mathcal{M} .

2 Linear Independence

Definition 5. A collection of vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^m$ is said to be **linearly independent** if $\sum_{i=1}^n \alpha_i \mathbf{a}_i \neq \mathbf{0}$, for all $\alpha_i \in \mathbb{R}$ with $\alpha_i \neq 0$; and linearly dependent otherwise.

- 1. If $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}\subset \mathcal{R}^m$ is linearly independent, then any \mathbf{a}_j cannot be a linear combination of the other \mathbf{a}_i 's; i.e., $\mathbf{a}_j\neq \sum_{i\neq j}\alpha_i\mathbf{a}_i$ for any α_i 's.
- 2. If $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\} \subset \mathcal{R}^m$ is linearly dependent, then there exists an \mathbf{a}_j such that \mathbf{a}_j is a linear combination of the other \mathbf{a}_i 's; i.e., $\mathbf{a}_j = \sum_{i \neq j} \alpha_i \mathbf{a}_i$ for some α_i 's.
- 3. If $\{\mathbf{a}_1, \dots, \mathbf{a}_n\} \subset \mathcal{R}^m$ is linearly independent, then $m \geq n$ must hold.
- 4. Let $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\} \subset \mathcal{R}^m$ be a linearly independent vector set. Suppose $\mathbf{y} \in span\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$, then the coefficient α for the representation $\mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{a}_i$ is unique; i.e., there does not exist a $\beta \in \mathcal{R}^n$, $\beta \neq \alpha$, such that $\mathbf{y} = \sum_{i=1}^n \beta_i \mathbf{a}_i$.

Definition 6. A vector subset $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ is called a **maximal linear independent subset** of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$ if:

- 1. $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ is linearly independent;
- 2. $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ is **not contained** by any other linearly independent subset of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

Definition 7. Let $S \subseteq \mathbb{R}^m$ be a subspace with $S \neq \{0\}$. A vector set $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\} \subset \mathbb{R}^m$ is called a basis for S if $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\} \subset \mathbb{R}^m$ is a linearly independent and $S = span\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$.

Definition 8. The dimension of a nontrivial subspace S is the number of elements of a basis for S. The dimension of the trivial subspace $\{0\}$ is defined as 0.

Theorem 1. For a nonempty set of vectors $S = \{u_1, \dots u_n\}$ in a space V, the following statements are true.

- If S contains a linearly dependent subset, then S itself must be linearly dependent.
- If S is linearly dependent, then every subset of S is also linearly independent.
- If S is linearly dependent and if $\mathbf{v} \in \mathcal{V}$, then the **extension set** $S_{ext} = S \cup \{\mathbf{v}\}$ is linearly independent if and only if $\mathbf{v} \notin span(S)$.
- If $S \subseteq \mathbb{R}^m$ and if n > m, the S must be linearly dependent.

Theorem 2. All bases for S have the same number of elements; i.e., if $\{u_1, \ldots, u_n\}$ and $\{v_1, \ldots, v_m\}$ are basis for S then m = n.

Proof. Suppose $n \neq m$, without loss of generality n > m, $\mathbf{u}_i = a_{i1}\mathbf{v}_1 + \ldots + a_{im}\mathbf{v}_m$, $\mathbf{0} = b_1\mathbf{u}_1 + \ldots + b_n\mathbf{u}_n = \sum_{i=1}^n b_i\mathbf{u}_i = \sum_{j=1}^m \sum_{i=1}^n b_ia_{ij}\mathbf{v}_j = \sum_{j=1}^m c_j\mathbf{v}_j$, $A_{i,j} = a_{ij}$, then $A[b_1, \ldots, b_n]^T = [c_1, \ldots, c_m]^T$. Since n > m, $\exists \mathbf{b} \neq \mathbf{0}$, s.t. $A\mathbf{b} = \mathbf{0}$ and $b_1\mathbf{u}_1 + \ldots + b_n\mathbf{u}_n = \mathbf{0}$, a contradiction. \square

Theorem 3. For vector spaces \mathcal{M} and \mathcal{N} such that $\mathcal{M} \subseteq \mathcal{N}$, the following statements are true.

- 1. $\dim \mathcal{M} \leq \dim \mathcal{N}$.
- 2. If dim $\mathcal{M} = \dim \mathcal{N}$, then $\mathcal{M} = \mathcal{N}$

Proof. Let dim $\mathcal{M}=m$ and dim $\mathcal{N}=n$, and use an indirect argument to prove 1. If it were the case that m>n, then there would exist a linearly independent subset of \mathcal{N} (namely, a basis for \mathcal{M}) containing more than n vectors. But this is impossible because dim \mathcal{N} is the size of a maximal independent subset of \mathcal{N} . Thus $m \leq n$. Now prove (1). If m=n but $\mathcal{M} \neq \mathcal{N}$, then there exists a vector \mathbf{x} such that $\mathbf{x} \in \mathcal{N}$ but $\mathbf{x} \notin \mathcal{M}$. If \mathcal{B} is a basis for \mathcal{M} , then $\mathbf{x} \notin span(\mathcal{B})$, and the extension set $\mathcal{E} = \mathcal{B} \cup \{\mathbf{x}\}$ s a linearly independent subset of \mathcal{N} . But \mathcal{E} contains m+1=n+1 vectors, which is impossible because dim $\mathcal{N}=n$ is the size of a maximal independent subset of \mathcal{N} . Hence $\mathcal{M} = \mathcal{N}$.

Theorem 4. If \mathcal{X} and \mathcal{Y} are subspaces of a vector space \mathcal{V} , then

$$\dim(\mathcal{X} + \mathcal{Y}) = \dim \mathcal{X} + \dim \mathcal{Y} - \dim(\mathcal{X} \cap \mathcal{Y}).$$

Proof. The strategy is to construct a basis for $\mathcal{X} + \mathcal{Y}$ and ount the number of vectors it contains. Let $\mathcal{S} = \mathbf{z}_1, \dots, \mathbf{z}_t$ be a basis for $\mathcal{X} \cap \mathcal{Y}$. Since $\mathcal{S} \subseteq \mathcal{X}$ and $\mathcal{S} \subseteq \mathcal{Y}$, there must exist extension vectors $\mathbf{z}_1, \dots, \mathbf{z}_m$ and $\mathbf{y}_1, \dots, \mathbf{y}_n$ such that

$$\mathcal{B}_x = \mathbf{z}_1, \dots, \mathbf{z}_t, \mathbf{z}_1, \dots, \mathbf{z}_m = \text{a basis for } \mathcal{X},$$

and

$$\mathcal{B}_x = \mathbf{z}_1, \dots, \mathbf{z}_t, \mathbf{y}_1, \dots, \mathbf{y}_n = \text{a basis for } \mathcal{Y}.$$

We know from exercise 1 that $\mathcal{B} = \mathcal{B}_x \cup \mathcal{B}_y$ spans $\mathcal{X} + \mathcal{Y}$, and we wish show that \mathbb{B} is linearly independent. If

$$\sum_{i=1}^{t} \alpha_i \mathbf{z}_i + \sum_{i=1}^{m} \beta_j \mathbf{x}_j + \sum_{k=1}^{n} \gamma_k \mathbf{y}_k = \mathbf{0},$$

then

$$\sum_{k=1}^{n} \gamma_k \boldsymbol{y}_k = -(\sum_{i=1}^{t} \alpha_i \mathbf{z}_i + \sum_{j=1}^{m} \beta_j \boldsymbol{x}_j) \in \mathcal{X}.$$

Since it is also true that $\sum_{k=1}^{n} \gamma_k \mathbf{y}_k \in \mathcal{Y}$, we have that $\sum_{k=1}^{n} \gamma_k \mathbf{y}_k \in \mathcal{X} \cap \mathcal{Y}$, and hence there must exist scalars δ_i such that

$$\sum_{k=1}^{n} \gamma_k \boldsymbol{y}_k = \sum_{i=1}^{t} \delta_i \mathbf{z}_i \quad \text{or, equivalently,} \quad \sum_{k=1}^{n} \gamma_k \boldsymbol{y}_k - \sum_{i=1}^{t} \delta_i \mathbf{z}_i = 0.$$

Since \mathcal{B} is an independent set, it follows that all of the γ_k 's (as well as all δ_i 's) are zero. But \mathcal{B}_x s also an independent set, so the only way this can hold is for all of the α_i 's as well as all of the β_j 's to be zero. Therefore, the only possible solution for the α 's, β 's and γ 's in the homogeneous equation is the trivial solution, and thus \mathcal{B} is linearly independent. Since \mathcal{B} is an independent spanning set, it is a basis for $\mathcal{X} + \mathcal{Y}$ and, consequently,

$$\dim(\mathcal{X} + \mathcal{Y}) = t + m + n = (t + m) + (t + n) - t = \dim\mathcal{X} + \dim\mathcal{Y} + \dim(\mathcal{X} \cap \mathcal{Y}).$$

Theorem 5. Every subspace of V is part of a direct sum equal to V:

Suppose V is finite-dimensional and U is a subspace of V. Then there is a subspace W of V such that $V = V \oplus W$.

Proof. Proof Because \mathcal{V} is finite-dimensional, so is \mathcal{U} . Thus there is a basis $u_1, ..., u_m$ of \mathcal{U} . Of course $u_1, ..., u_m$ is a linearly independent list of vectors in \mathcal{V} . Hence this list can be extended to a basis $u_1, ..., u_m, w_1, ..., w_n$ of \mathcal{V} . Let $\mathcal{W} = span(w_1, ..., w_n)$. To prove that $\mathcal{V} = \mathcal{V} \oplus \mathcal{W}$ by Def. 4 we need only show that

$$\mathcal{U} \cap \mathcal{W} = \mathbf{0}$$
 and $\mathcal{U} + \mathcal{W} = \mathcal{V}$

To prove the first equation above, suppose $v \in \mathcal{V}$. Then, because the list $u_1, ..., u_m, w_1, ..., w_n$ spans \mathcal{V} , there exist $a_1, ..., a_m, b_1, ..., b_n \in R$ such that

$$v = a_1 u_1 + \dots + a_m u_m + b_1 w_1 + \dots + b_m w_n$$

In other words, we have v = u+w where $u \in \mathcal{U}$ and $w \in \mathcal{W}$ are defined as above. Thus $v \in \mathcal{U} \oplus \mathcal{W}$, completing the proof that $\mathcal{V} = \mathcal{U} \cap \mathcal{W}$. To show that $\mathcal{U} + \mathcal{W} = \mathcal{V}$, suppose $v \in \mathcal{U} \oplus \mathcal{W}$. Then there exist scalars $a_1, ..., a_m, b_1, ..., b_n \in R$ such that

$$v = a_1 u_1 + \dots + a_m u_m = b_1 w_1 + \dots + b_m w_n.$$

Thus

$$a_1u_1 + \dots + a_mu_m - b_1w_1 - \dots - b_mw_n = 0$$

Because $u_1, ..., u_m, w_1, ..., w_n$ is linearly independent, this implies that $a_1 = ... = a_m = b_1 = ... = b_n = 0$. Thus v = 0, completing the proof that $\mathcal{U} \cap \mathcal{W} = \mathbf{0}$

Fundamental Subspaces—Dimension and Bases

For an $m \times n$ matrix of real numbers such that $rank(\mathbf{A}) = r$,

- $\dim R(\mathbf{A}) = r$,
- $\dim N(\mathbf{A}) = n r$,
- dim $R(\mathbf{A}^T) = r$,
- dim $N(\mathbf{A}^T) = m r$,

Exercise:

1. If $S_r = \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is a linearly independent subset of an n-dimensional space \mathcal{V} , where r < n, explain why it must be possible to find extension vectors $\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$ from \mathcal{V} such that

$$S_n = \{\mathbf{v}_1, \dots, \mathbf{v}_r, \mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$$

is a basis for \mathcal{V} .

Solutions:

1. r < n means that $span(S_r) \neq \mathcal{V}$, and hence there exists a vector $\mathbf{v}_{r+1} \in \mathcal{V}$ such that $\mathbf{v}_{r+1} \notin S_r$. The extension set $S_{r+1} = S_r \cup \{\mathbf{v}_{r+1}\}$ is an independent subset of \mathcal{V} containing r+1 vectors. Repeating this process generates independent subsets S_{r+2}, S_{r+3}, \ldots , and eventually leads to a maximal independent subset $S_n \subset \mathcal{V}$ containing n vectors.

3 Linear System

Definition 9. The range of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined to be the subspace $R(\mathbf{A})$ of \mathbb{R}^m that is generated by the range of $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$. That is,

$$R(\mathbf{A}) = {\mathbf{A} \mathbf{x} | \mathbf{x} \in \mathcal{R}^n} \subseteq \mathcal{R}^m.$$

Similarly, the range of \mathbf{A}^T is the subspace of \mathbb{R}^n defined by

$$R(\mathbf{A}^T) = {\mathbf{A}^T \mathbf{y} | \mathbf{y} \in \mathcal{R}^m} \subseteq \mathcal{R}^n.$$

Because $R(\mathbf{A})$ is the set of all "images" of vectors $\mathbf{x} \in \mathcal{R}^m$ under transformation by \mathbf{A} some people call $R(\mathbf{A})$ the **image space** of \mathbf{A} .

- 1. $R(\mathbf{A})$ is the space spanned by the columns of \mathbf{A} (column space).
- 2. $R(\mathbf{A}^T)$ is the space spanned by the rows of \mathbf{A} (row space).
- 3. $\mathbf{b} \in R(\mathbf{A}) \iff \mathbf{b} = \mathbf{A}\mathbf{x} \text{ for some } \mathbf{x}.$
- 4. $\mathbf{a} \in R(\mathbf{A}^T) \iff \mathbf{a}^T = \mathbf{y}^T \mathbf{A} \text{ for some } \mathbf{y}^T$.

Definition 10. The null space (nullspace) or kernel space of $A \in \mathbb{R}^{m \times n}$ is defined as

$$N(\mathbf{A}) = \{ \boldsymbol{x} \in \mathcal{R}^n | \mathbf{A} \boldsymbol{x} = \mathbf{0} \}.$$

Definition 11. The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted by $rank(\mathbf{A})$, is defined as the number of of elements of a maximal linearly independent subset of $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$.

Definition 12. $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to have

• full column rank if the columns of A are linearly independent (more precisely, the collection of all columns of A is linearly independent)

A being of full column rank
$$\iff m \ge n$$
, rank(**A**) = n;

• full row rank full row rank A are linearly independent

A being of full row rank
$$\iff$$
 $m \le n$, rank(**A**) = m;

- full rank if $rank(\mathbf{A}) = \min\{m, n\}$; i.e., it has either full column rank or full row rank;
- $rank \ deficient \ if \ rank(\mathbf{A}) < \min\{m, n\}$

Theorem 6. dim $R(\mathbf{A})$ + dim $N(\mathbf{A}) = n$, for all $m \times n$ matrices.

Theorem 7. If **A** is an $m \times n$ matrix then

- 1. $N(\mathbf{A}) = \{\mathbf{0}\}$ if and only if $rank(\mathbf{A}) = n$;
- 2. $N(\mathbf{A}^T) = \{\mathbf{0}\}$ if and only if $rank(\mathbf{A}) = m$;

Exercise:

1. Determine spanning sets for $R(\mathbf{A})$ and $N(\mathbf{A})$, where

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{bmatrix} .$$

- 2. If **A** is $m \times n$ and **B** is $n \times p$ then,
 - (a) $rank(\mathbf{AB}) \leq \min\{rank(\mathbf{A}), rank(\mathbf{B})\},\$
 - (b) $rank(\mathbf{A}) + rank(\mathbf{B}) n \le rank(\mathbf{AB}).$

Solution:

1. Reducing **A** to any row echelon form **U** provides the solution—the basic columns in **A** correspond to the pivotal positions in **U**, and the nonzero rows of **U** span the row space of **A**.

$$\begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 2 & 3 \\ 0 & 0 & -3 & -3 \\ 0 & 0 & -5 & -5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 2 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Therefore,
$$R(\mathbf{A}) = span\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\1\\1 \end{pmatrix} \right\}$$
 and $N(\mathbf{A}) = span\left\{ \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\-2 \end{pmatrix} \right\}$

- 2. (a) Let $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_p], \mathbf{B} = [\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p].$
 - Let $\mathbf{AB} = [A\mathbf{b}_1, \mathbf{Ab}_2, \dots, \mathbf{Ab}_p]$. $\forall j \in [p], A\mathbf{b}_j$ is a linear combination of $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$, so $\mathbf{Ab}_j \in \mathsf{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, i.e., $\{\mathbf{Ab}_1, \mathbf{Ab}_2, \dots, \mathbf{Ab}_p\} \subset \mathsf{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, $\mathsf{span}(\mathbf{Ab}_1, \mathbf{Ab}_2, \dots, \mathbf{Ab}_p) \subset \mathsf{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, we then get $\mathsf{rank}(\mathbf{AB}) \leq \mathsf{rank}(\mathbf{A})$.
 - Since $rank(\mathbf{AB}) = rank(\mathbf{B}^T \mathbf{A}^T)$, applying the same strategy, we can get $rank(\mathbf{B}^T \mathbf{A}^T) \le rank(\mathbf{B}^T) = rank(\mathbf{B})$.

Therefore, $rank(\mathbf{AB}) \leq \min\{rank(\mathbf{A}), rank(\mathbf{B})\}.$

(b)
$$\begin{bmatrix} \mathbf{A} & \mathbf{A}\mathbf{B} \\ \mathbf{E}_n & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{E}_n & \mathbf{B} \\ \mathbf{0} & \mathbf{E}_p \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{E}_n & \mathbf{B} \end{bmatrix}$$
, since $\begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{E}_n & \mathbf{B} \end{bmatrix}$ is invertible, then $rank(\mathbf{A}) + rank(\mathbf{B}) \le rank(\begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{E}_n & \mathbf{B} \end{bmatrix}) = rank(\begin{bmatrix} \mathbf{A} & \mathbf{A}\mathbf{B} \\ \mathbf{E}_n & \mathbf{0} \end{bmatrix}) = rank(\begin{bmatrix} \mathbf{0} & \mathbf{A}\mathbf{B} \\ \mathbf{E}_n & \mathbf{0} \end{bmatrix}) = rank(\mathbf{A}\mathbf{B}) + rank(\mathbf{E}_n) = rank(\mathbf{A}\mathbf{B}) + n$. Therefore, $rank(\mathbf{A}\mathbf{B}) - n \le rank(\mathbf{A}\mathbf{B})$.

4 Orthogonal Complements and Projections

Theorem 8. Direct sum of a subspace and its orthogonal complement: Suppose U is a finite-dimensional subspace of V. Then

$$V=U\oplus U^\perp$$

Definition 13. Suppose U is a finite-dimensional subspace of V. The orthogonal projection of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as follows:

For $v \in V$, write v = u + w, where $u \in U$ and $w \in U$. Then $P_U(v) = u$.

Theorem 9. Minimizing the distance to a subspace: Suppose U is a finite-dimensional subspace of V, $v \in V$, and $u \in U$. Then

$$||v - P_U(v)|| \le ||v - u||.$$

Furthermore, the inequality above is an equality if and only if $u = P_U(v)$.

Proof.

$$||v - P_U(v)||^2 \le ||v - P_U(v)||^2 + ||P_U(v) - u||^2$$

$$= ||(v - P_U(v)) + (P_U(v) - u)||^2$$

$$= ||v - u||^2,$$

where the first line above holds because $||v - P_U(v)||^2 \ge 0$, the second line above comes from the Pythagorean Theorem $[v - P_U(v) \perp u, P_U(v)]$, and the third line above holds by simple algebra. Taking square roots gives the desired inequality. Our inequality above is an equality if and only if $||v - P_U(v)|| = 0$, which happens if and only if $||v - P_U(v)|| = 0$.

 $P_{U}v$ is the closest point in U to v.

References

- [1] Horn, Roger A., and Charles R. Johnson. Matrix analysis. Cambridge university press, 2012.
- [2] Meyer, Carl D. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000.
- [3] Axler, Sheldon. Linear algebra done right. springer, 2015.