

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:SSPTADEG1625

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

NEWS 1	APR 04	Web Page for STN Seminar Schedule - N. America
NEWS 2	APR 04	STN AnaVist, Version 1, to be discontinued
NEWS 3	APR 15	WPIDS, WPINDEX, and WPIX enhanced with new predefined hit display formats
NEWS 4	APR 28	EMBASE Controlled Term thesaurus enhanced
NEWS 5	APR 28	IMSRESEARCH reloaded with enhancements
NEWS 6	MAY 30	INPAFAMDB now available on STN for patent family searching
NEWS 7	MAY 30	DGENE, PCTGEN, and USGENE enhanced with new homology sequence search option
NEWS 8	JUN 06	EPFULL enhanced with 260,000 English abstracts
NEWS 9	JUN 06	KOREAPAT updated with 41,000 documents
NEWS 10	JUN 13	USPATFULL and USPAT2 updated with 11-character patent numbers for U.S. applications
NEWS 11	JUN 19	CAS REGISTRY includes selected substances from web-based collections
NEWS 12	JUN 25	CA/Cplus and USPAT databases updated with IPC reclassification data
NEWS 13	JUN 30	AEROSPACE enhanced with more than 1 million U.S. patent records
NEWS 14	JUN 30	EMBASE, EMBAL, and LEMBASE updated with additional options to display authors and affiliated organizations
NEWS 15	JUN 30	STN on the Web enhanced with new STN AnaVist Assistant and BLAST plug-in
NEWS 16	JUN 30	STN AnaVist enhanced with database content from EPFULL
NEWS 17	JUL 28	CA/Cplus patent coverage enhanced
NEWS 18	JUL 28	EPFULL enhanced with additional legal status information from the epoline Register
NEWS 19	JUL 28	IFICDB, IFIPAT, and IFIUDB reloaded with enhancements
NEWS 20	JUL 28	STN Viewer performance improved
NEWS 21	AUG 01	INPADOCDB and INPAFAMDB coverage enhanced
NEWS 22	AUG 13	CA/Cplus enhanced with printed Chemical Abstracts page images from 1967-1998
NEWS 23	AUG 15	CAOLD to be discontinued on December 31, 2008
NEWS 24	AUG 15	Cplus currency for Korean patents enhanced
NEWS 25	AUG 25	CA/Cplus, CASREACT, and IFI and USPAT databases enhanced for more flexible patent number searching
NEWS 26	AUG 27	CAS definition of basic patents expanded to ensure comprehensive access to substance and sequence information

NEWS EXPRESS JUNE 27 08 CURRENT WINDOWS VERSION IS V8.3,
AND CURRENT DISCOVER FILE IS DATED 23 JUNE 2008.

NEWS HOURS STN Operating Hours Plus Help Desk Availability

NEWS LOGIN Welcome Banner and News Items
NEWS IPC8 For general information regarding STN implementation of IPC 8

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 17:29:59 ON 29 AUG 2008

=> s "organic hydroperoxide" and emulsion and (separation or isolation or concentration)

THIS COMMAND NOT AVAILABLE IN THE CURRENT FILE

Some commands only work in certain files. For example, the EXPAND command can only be used to look at the index in a file which has an index. Enter "HELP COMMANDS" at an arrow prompt (=>) for a list of commands which can be used in this file.

FILE 'CAPLUS' ENTERED AT 17:33:25 ON 29 AUG 2008
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 29 Aug 2008 VOL 149 ISS 10
FILE LAST UPDATED: 28 Aug 2008 (20080828/ED)

Caplus now includes complete International Patent Classification (IPC) reclassification data for the second quarter of 2008.

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

<http://www.cas.org/legal/infopolicy.html>

=> s "organic hydroperoxide" and emulsion and (separation or isolation or concentration)
420730 "ORGANIC"
4058 "ORGANICS"
423348 "ORGANIC"
("ORGANIC" OR "ORGANICS")

1092647 "ORG"
16948 "ORGS"
1098864 "ORG"
("ORG" OR "ORGS")
1218725 "ORGANIC"
("ORGANIC" OR "ORG")
34669 "HYDROPEROXIDE"
15828 "HYDROPEROXIDES"
41256 "HYDROPEROXIDE"
("HYDROPEROXIDE" OR "HYDROPEROXIDES")
1527 "ORGANIC HYDROPEROXIDE"
("ORGANIC" (W) "HYDROPEROXIDE")
215857 EMULSION
131688 EMULSIONS
261414 EMULSION
(EMULSION OR EMULSIONS)
228047 SEPARATION
8138 SEPARATIONS
234658 SEPARATION
(SEPARATION OR SEPARATIONS)
628040 SEPN
40555 SEPNS
648578 SEPN
(SEPN OR SEPNS)
720987 SEPARATION
(SEPARATION OR SEPN)
279109 ISOLATION
1359 ISOLATIONS
279973 ISOLATION
(ISOLATION OR ISOLATIONS)
178646 CONCENTRATION
75731 CONCENTRATIONS
251979 CONCENTRATION
(CONCENTRATION OR CONCENTRATIONS)
2073796 CONCN
1263946 CONCNS
2870329 CONCN
(CONCN OR CONCNS)
2926664 CONCENTRATION
(CONCENTRATION OR CONCN)
L1 5 "ORGANIC HYDROPEROXIDE" AND EMULSION AND (SEPARATION OR ISOLATION OR CONCENTRATION)

=> d l1 abs ibib

L1 ANSWER 1 OF 5 CAPLUS COPYRIGHT 2008 ACS on STN
AB Free-flowing granular vinyl chloride polymers which form sols having excellent water resistance, thermal stability, transparency, and blooming resistance are obtained in high yield by emulsion polymerization of CH₂:CHCl or its mixts. with other vinyl compds. in the presence of water-soluble catalysts or reductants, organic hydroperoxides, and maleic acid copolymer salt emulsifiers, followed by addition of water-insol. organic liqs. which do not dissolve or swell the polymer, and separation of the aqueous phase. Thus, 0.5 kg 30% PVC emulsion (average particle diameter 0.51 μ) and 500 mg (NH₄)₂S₂O₈ were mixed under N with 3 kg CH₂:CHCl at 50°, then cumene hydroperoxide and maleic anhydride-Me vinyl ether copolymer monopotassium salt (I) were added. After 16 h the resulting emulsion was diluted with H₂O and stirred with di-2-ethylhexyl phthalate (II), then the polymer was filtered out and dried at 30° for 15 h to give granular PVC in 99% yield. The granular product showed repose angle 34° and bulk d. 0.52 g/cm³; vs. 54° and 0.30 g/cm³ for powdered PVC obtained by spray drying the

emulsion. A sol of the granular PVC, II, and Ba/Zn stabilizers showed better fineness, blooming resistance, and thermal stability than a sol of the spray-dried PVC.

ACCESSION NUMBER: 1987:5951 CAPLUS
DOCUMENT NUMBER: 106:5951
ORIGINAL REFERENCE NO.: 106:1095a,1098a
TITLE: Manufacture of granular PVC for pastes
INVENTOR(S): Nishina, Masaaki; Nakano, Akira
PATENT ASSIGNEE(S): Nippon Zeon Co., Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 61188402	A	19860822	JP 1985-29823	19850218
JP 03067521	B	19911023		
PRIORITY APPLN. INFO.:			JP 1985-29823	19850218

=> d 11 2-5 abs ibib

L1 ANSWER 2 OF 5 CAPLUS COPYRIGHT 2008 ACS on STN
AB Free-flowing granular vinyl chloride polymers which form sols having excellent thermal stability, transparency, and water resistance are obtained in high yield by emulsion polymerization of CH₂:CHCl or its mixts. with other vinyl compds. in the presence of water-sol catalysts and/or reductants, organic hydroperoxides, and emulsifier compns. of sulfonates, organic sulfates, and/or C8-22 fatty acid esters, and salts of maleic acid copolymers, followed by addition of water-insol. organic liqs. that do not dissolve or swell the polymer, and separation of the aqueous phase. Thus, 0.5 kg 30% PVC emulsion (average particle diameter 0.5 μ), 1 g NaOH, and 4 g (NH₄)₂S₂O₈ were mixed under N and stirred with 3 kg CH₂:CHCl at 50° for 1 h, then an emulsifier mixture of Na polyoxyethylenlauryl sulfate 15, H₂O 600, and maleic anhydride-Me vinyl ether copolymer diammonium salt (I) 15 g was added at 40 mL/h. After 16 h the emulsion was filtered, diluted with H₂O, mixed with di-2-ethylhexyl phthalate (II) at 5 g/min for 1 h, then filtered out and dried at 30° for 15 h to obtain granular PVC in 98% yield. The granular product showed repose angle 33° and bulk d. 0.52 g/cm³; vs. 55° and 0.29 g/cm³ for powdered PVC obtained by spray drying an emulsion prepared without the I. A sol of the granular PVC, II, and Ba/Zn stabilizers showed better fineness and thermal stability than one prepared from the spray-dried PVC.

ACCESSION NUMBER: 1987:5949 CAPLUS
DOCUMENT NUMBER: 106:5949
ORIGINAL REFERENCE NO.: 106:1095a,1098a
TITLE: Manufacture of granular PVC for pastes
INVENTOR(S): Nishina, Masaaki; Nakano, Akira
PATENT ASSIGNEE(S): Nippon Zeon Co., Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	---	-----	-----	-----

JP 61188403	A	19860822	JP 1985-29824	19850218
JP 03067522	B	19911023		
PRIORITY APPLN. INFO.:			JP 1985-29824	19850218

L1 ANSWER 3 OF 5 CAPLUS COPYRIGHT 2008 ACS on STN
 AB The title compns. having high heat distortion temperature and gloss and good workability, mech. strength, and coloring property were prepared from (1) polybutadiene (in latex) grafted (degree of grafting 25-70%, backbone polymer: graft monomer 50-75:50-25) with 60-80:40-20 styrene-acrylonitrile in the presence of organic hydroperoxide -redox initiator system and (2) emulsion-polymerized 60-80:40-20 copolymer (relative viscosity 0.5-1.5, in DMF, concentration 1.0 g/l, 25.deg.) from aromatic vinyl monomers (styrene + 30-50% α -methylstyrene) and acrylonitrile; the composition contained 5-30% backbone polybutadiene. For example, 60 parts (solid) polybutadiene latex (particle diameter 0.3 μ , gel content 80%) was mixed with 200 parts water (including water in the latex) and 1.0 part disproportionated K rosinate, heated to 60.deg., treated with Na formaldehyde sulfoxylate 0.093, FeSO4 0.005, and EDTA di-Na salt 0.01 part followed by styrene 28, acrylonitrile 12, cumene hydroperoxide 0.1, and tert-dodecyl mercaptan 0.1 part over 70 min, and polymerized for 90 min. to give butadiene-styrene-acrylonitrile graft copolymer (I) [9003-56-9] (degree of grafting 38.9%). A mixture of water 200, disproportionated K rosinate 1.0, and α -methylstyrene 31.5 parts at 60.deg. was mixed with 0.5 part K2S2O8 for 15 min, and treated with a mixture of styrene 38.5, acrylonitrile 30.0, and the polymerization was

done

for 120 min to give styrene- α -methylstyrene-acrylonitrile copolymer (II) [9010-96-2] (relative viscosity 0.98). A I-II injection molding (polybutadiene backbone content 15%) containing 1 phr 3,5-di-tert-butyl-4-hydroxytoluene had tensile strength (yield strength) 540 kg/cm², Izod notched strength 18.3 kg-cm/cm, heat distortion temperature 97.7.deg., and melt viscosity (240.deg., 100 kg/cm² load) 1.80 .tim. 104 P.

ACCESSION NUMBER: 1973:406112 CAPLUS

DOCUMENT NUMBER: 79:6112

ORIGINAL REFERENCE NO.: 79:1027a,1030a

TITLE: Thermoplastic compositions containing butadiene graft polymers

INVENTOR(S): Ono, Tomoyoshi; Kimura, Shigekazu; Kobota, Hiroaki

PATENT ASSIGNEE(S): Teijin Ltd.

SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
JP 48004553	B4	19730120	JP 1971-35296	19710524

L1 ANSWER 4 OF 5 CAPLUS COPYRIGHT 2008 ACS on STN

AB Cyanoethylated amines (I) activate butadiene-acrylonitrile polymerization when K2S2O8 is used as initiator. A trace of Fe⁺⁺ ion enhances their effectiveness. More reactive amines are used at lower temps. I can also be used with organic hydroperoxide initiators, especially with dextrose as co-reducer. A study of varying the concentration of components of polymerization recipes indicates that an optimum concentration exists for each ingredient. The effect of various emulsifiers is discussed.

ACCESSION NUMBER: 1956:14560 CAPLUS

DOCUMENT NUMBER: 50:14560

ORIGINAL REFERENCE NO.: 50:3001i,3002a-b

TITLE: Amines as activators for polymerization of butadiene and acrylonitrile in emulsion
AUTHOR(S): Fordham, J. W. L.; Williams, H. Leverne
CORPORATE SOURCE: Polymer Corp. Ltd., Sarnia, Can.
SOURCE: Journal of Industrial and Engineering Chemistry
(Washington, D. C.) (1955), 47(No. 9;Pt. 1), 1714-24
CODEN: JIECAD; ISSN: 0095-9014
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

L1 ANSWER 5 OF 5 CAPLUS COPYRIGHT 2008 ACS on STN
AB A 50-fold increase of the rate of GR-S polymerization at 5°, necessary to make large-scale operation in a pipeline reactor possible, was achieved by the use of very active organic hydroperoxides in high concns. as catalysts and higher concns. of soap emulsifier and ferrous salt activator. Phenylcyclohexane hydroperoxide was the most active catalyst. tert-Butyl-isopropylbenzene hydroperoxide was almost as active. Ferrous pyrophosphate and ferrous silicate were the best activators. Na ethylenediaminetetraacetate in concns. of 1 part per 10,000 parts of monomers further increased the rate of polymerization. High rates were obtained with concns. of fat acid soap of the order of 7 parts per 100 parts of monomers, but double this concentration of rosin soap was not sufficient to give high rates unless 2-4 parts of fat acid soaps also were added.

ACCESSION NUMBER: 1954:58915 CAPLUS
DOCUMENT NUMBER: 48:58915
ORIGINAL REFERENCE NO.: 48:10370b-d
TITLE: Superfast GR-S polymerization at 41°F
AUTHOR(S): Miller, J. R.; Diem, H. E.
CORPORATE SOURCE: B. F. Goodrich Chem. Co., Akron, O.
SOURCE: Journal of Industrial and Engineering Chemistry
(Washington, D. C.) (1954), 46, 1065-73
CODEN: JIECAD; ISSN: 0095-9014
DOCUMENT TYPE: Journal
LANGUAGE: Unavailable

=> log off
ALL L# QUERIES AND ANSWER SETS ARE DELETED AT LOGOFF
LOGOFF? (Y)/N/HOLD:y
STN INTERNATIONAL LOGOFF AT 17:36:56 ON 29 AUG 2008