M 2160 (Elementary Linear Algebra) Course web Instructor: Dr. John S. Zheng Cengage

§5.1 Length and Dot Product in \mathbb{R}^n

Definition. The **length**, or **norm**, of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n is $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$. The length of a vector is also called its **magnitude**. If $\|\mathbf{v}\| = 1$, then the vector \mathbf{v} is a **unit vector**.

Example 1. (a) In R^5 , the length of $\mathbf{v} = (0, -2, 1, 4, -2)$ is $\|\mathbf{v}\| = 5$.

Theorem 5.1. Let **v** be a vector in \mathbb{R}^n and let c be a scalar. Then $||c\mathbf{v}|| = |c|||\mathbf{v}||$, where |c| is the absolute value of c.

Theorem 5.2. If **v** is a nonzero vector in \mathbb{R}^n , then the vector $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ has length 1 and has the same direction as **v**. This vector **u** is the **unit vector in the direction of v**.

Example 2. Find the unit vector in the direction of $\mathbf{v} = (3, -1, 2)$, and verify that this vector has length 1.

Definition. The distance between two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$.

Example 3. (c) The distance between $\mathbf{u} = (3, -1, 0, -3)$ and $\mathbf{v} = (4, 0, 1, 2)$ is $2\sqrt{7}$.

Definition. The **dot product** of $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is the scalar quantity $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$.

Example 4. The dot product of $\mathbf{u} = (1, 2, 0, -3)$ and $\mathbf{v} = (3, -2, 4, 2)$ is -7.

Theorem 5.3. If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n and c is a scalar, then the properties listed below are true.

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ 3. $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$ 4. $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$ 5. $\mathbf{v} \cdot \mathbf{v} \ge 0$, and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$.

Example 6. Consider two vectors \mathbf{u} and \mathbf{v} in R^n such that $\mathbf{u} \cdot \mathbf{u} = 39$, $\mathbf{u} \cdot \mathbf{v} = -3$, and $\mathbf{v} \cdot \mathbf{v} = 79$. Evaluate $(\mathbf{u} + 2\mathbf{v}) \cdot (3\mathbf{u} + \mathbf{v})$.

Definition. The **angle** θ between two nonzero vectors in \mathbb{R}^n can be found using $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$, $0 \le \theta \le \pi$.

Example 8. The angle between $\mathbf{u} = (-4, 0, 2, -2)$ and $\mathbf{v} = (2, 0, -1, 1)$ is π .

Definition. Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** when $\mathbf{u} \cdot \mathbf{v} = 0$.

Example 9. (b) The vectors $\mathbf{u} = (3, 2, -1, 4)$ and $\mathbf{v} = (1, -1, 1, 0)$ are orthogonal.

Ex. # 41 Find the angle between two vectors.

$$\mathbf{u} = \left(\cos\frac{\pi}{6}, \sin\frac{\pi}{6}\right)$$
$$\mathbf{v} = \left(\cos\frac{3\pi}{4}, \sin\frac{3\pi}{4}\right)$$

Ex. # 45 Find the angle between two vectors.

$$\mathbf{u} = (0, 1, 0, 1)$$

 $\mathbf{v} = (3, 3, 3, 3)$

§5.2 Inner Product Spaces

Definition. Let **u** and **v** be vectors in an inner product space V, such that $\mathbf{v} \neq \mathbf{0}$. Then the **orthogonal projection** of **u** onto **v** is $\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\mathbf{v}$.

Goal:

- (1) Determine whether a function defines an inner product, and find the inner product of two vectors in \mathbb{R}^n , M_{mn} , C[a, b].
- (2) Find an orthogonal projection of a vector onto another vector in an inner product space.

Example 10. Use the Euclidean inner product in \mathbb{R}^3 to find the orthogonal projection of $\mathbf{u} = (6, 2, 4)$ onto $\mathbf{v} = (1, 2, 0)$.

§5.3* Orthonormal Bases: Gram-Schmidt Process

Definition. A set S of vectors in an inner product space V is **orthogonal** when every pair of vectors in S is orthogonal. If, in addition, each vector in the set is a unit vector, then S is **orthonormal**.

0.1. Find the angle using inner product.

(1)
$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|} \Rightarrow \begin{cases} > 0 & \text{if } \theta \text{ is acute} \\ = 0 & \text{if } \theta \text{ is right angle} \\ < 0 & \text{if } \theta \text{ is obtuse} \end{cases}$$

0.2. Projection formula with inner product.

(2)
$$proj_{\mathbf{v}}\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}.$$

- 0.3. **Gram-Schmidt orthonomalization*.** Ex. # 3. (a) Determine whether the set of vectors in \mathbb{R}^2 is orthogonal;
- (b) if the set is orthogonal, then determine whether it is also orthonormal, and
- (c) determine whether the set is a basis for R^2 .

$$\{(\frac{3}{5}, \frac{4}{5}), (-\frac{4}{5}, \frac{3}{5})\}$$

Example 7*. Apply the Gram-Schmidt orthonormalization process to the basis B for \mathbb{R}^3 .

(4)
$$B = \{(1,1,0), (1,2,0), (0,1,2)\}$$

Solution. Applying the Gram-Schmidt orthonormalization process produces

$$w_1 = v_1 = (1, 1, 0)$$

$$w_2 = v_2 - \frac{v_2 \cdot w_1}{w_1 \cdot w_1} w_1 = (-\frac{1}{2}, \frac{1}{2}, 0)$$

$$w_3 = v_3 - \frac{v_3 \cdot w_1}{w_1 \cdot w_1} w_1 - \frac{v_3 \cdot w_2}{w_2 \cdot w_2} w_2 = (0, 0, 2)$$

The set $\tilde{B} = \{w_1, w_2, w_3\}$ is an orthogonal basis for \mathbb{R}^3 . Normalizing each vector in B' produces the following orthonormal basis

$$u_1 = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0)$$

$$u_2 = (-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0)$$

$$u_3 = (0, 0, 1)$$