

Análise de Peso Corporal através de Hábitos Alimentares e Condições Físicas

1. Introdução

Este projeto propõe o desenvolvimento de modelos de Machine Learning para classificar níveis de obesidade com base em informações sobre hábitos alimentares e condições físicas.

Os dados utilizados neste estudo são provenientes do dataset "ObesityDataSet", disponível no Kaggle. Ele inclui informações de indivíduos de países como México, Peru e Colômbia, com um total de 2111 registros e 17 atributos. A variável alvo, NObesity (nível_obesidade), permite classificar os registros em categorias:

- Abaixo do Peso
- Peso Normal
- Excesso de Peso Nível I
- Excesso de Peso Nível II
- Obesidade Tipo I
- Obesidade Tipo II
- Obesidade Tipo III

Os dados presentes nesse dataset foram balanceados utilizando a técnica **SMOTE (Synthetic Minority Oversampling Technique)**, garantindo um maior equilíbrio entre as classes e melhorando a representatividade das categorias menos frequentes.

Disponível em: https://www.kaggle.com/datasets/aravindpcoder/obesity-or-cvd-risk-classifyregressorcluster/data

Este projeto propõe a implementação de um comitê de avaliação de modelos de Inteligência Artificial, composto pelos seguintes modelos:

- 1. Regressão Logística
- 2. Árvore de Decisão
- 3. Rede Neural Artificial (RNA)
- 4. Comitê de Avaliação

Os modelos serão treinados individualmente e comparados para identificar aquele com maior eficácia na classificação de níveis de obesidade.

2. Objetivo

Desenvolver um sistema de avaliação que:

1. Treine e avalie modelos de IA em um conjunto de dados contendo informações relacionadas a obesidade.

- 2. Compare o desempenho dos modelos utilizando métricas apropriadas (e.g., acurácia, precisão, recall, curva AUC ROC, F1-score).
- 3. Identifique o modelo mais eficiente para classificação dos níveis de obesidade.

3. Escopo do Projeto

3.1. Escopo Funcional

 Input: Dataset "ObesityDataSet", os dados estão estruturados conforme tabela abaixo.

Questões	Respostas Possíveis	
Qual é o seu gênero?	Feminino	
	Masculino	
Qual é a sua idade?	Valor numérico	
Qual é a sua altura?	Valor numérico em	
Quai e a sua aitura.	metros	
Qual é o seu peso?	Valor numérico em quilogramas	
Algum membro da família sofreu ou sofre de excesso de	Sim	
peso?	Não	
•	Sim	
Você come alimentos altamente calóricos com frequência?	Não	
	Nunca	
Você costuma comer vegetais nas suas refeições?	Ás vezes	
1000 costaina comer regetais has suas fereições:	Sempre	
	Entre 1 e 2	
Quantas refeições principais você faz diariamente?	Três	
Quantas rereições principais voce laz diariamente:	Mais de três	
	Não	
	Ás vezes	
Você come alguma coisa entre as refeições?	Frequentemente	
	Sempre Sim	
Você fuma?	Não	
	Menos de um litro	
Oventa é ma vecê bebe dissismenta?		
Quanta água você bebe diariamente?	Entre 1 e 2 L Mais de 2 L	
Você monitora as calorias que ingere diariamente?	Sim Não	
	Não realizo	
Com que frequência você pratica atividade física?	1 ou 2 dias	
	2 ou 4 dias	
	4 ou 5 dias	
Quanto tempo você usa dispositivos tecnológicos como	o-2 horas	
celular, videogame, televisão, computador e outros?	3-5 horas	
	Mais de 5 horas	
	Eu não bebo	
Com que frequência você bebe álcool?	Ás vezes	
400 moderne 1000 0000 moon!	Frequentemente	
	Sempre	
	Automóvel	
	Motocicleta	
Qual meio de transporte você costuma usar?	Bicicleta	
	Transporte público	
	Andando	

Processamento:

- Pré-processamento dos dados (limpeza, normalização, tratamento de variáveis categóricas).
- Normalização da variável target "nível_obesidade" utilizando SMOTE.
- Treinamento individual de três modelos:
 - Regressão Logística.
 - Árvore de Decisão.
 - Rede Neural Artificial.
 - Comitê.
- o Avaliação dos modelos com base em métricas de classificação.
- Armazenamentos dos modelos em extensão ".pkl" para avaliação do comitê posteriormente
- Output: Modelo com melhor desempenho e relatório com análise comparativa.

3.2. Escopo Não Funcional

- O sistema deve ser desenvolvido em Python, utilizando bibliotecas como Pandas, Numpy, Seaborn, MatPlotLib, Scikit-learn, Joblib
- Garantir reprodutibilidade dos experimentos utilizando métodos de seeds em buscas de amostragem aleatória.
- Eficiência Computacional: O sistema deve otimizar o uso de recursos computacionais, garantindo execução eficiente em hardware comum, como notebooks com capacidade média de processamento.

4. Metodologia

4.1. Modelos de IA

- 1. **Regressão Logística**: Modelo estatístico clássico para classificação binária ou multiclasse.
- 2. **Árvore de Decisão**: Algoritmo baseado em regras de decisão para classificação.
- 3. **Rede Neural Artificial**: Arquitetura com múltiplas camadas para aprendizado não linear.
- 4. **Comitê de Avaliação**: Abordagem que combina os três modelos, avaliando-os com base em métricas de desempenho para selecionar o mais eficaz na classificação dos níveis de obesidade.

4.2. Avaliação e Comparação

- Regressão Logística:
 - o Gráfico Matriz de Confusão:

	nivel_obesidade	precision	recall	f1-score	support	
	1	0.81	0.95	0.87	100	
	2	0.81	0.64	0.72	98	
	3	0.77	0.77	0.77	106	
	4	0.73	0.68	0.70	105	
	0	0.79	0.79	0.79	107	
	5	0.94	0.99	0.97	126	
	6	0.98	1.00	0.99	96	
	accuracy			0.83	738	
	macro avg	0.83	0.83	0.83	738	
W	eighted avg	0.83	0.83	0.83	738	

Legenda:

- Abaixo do Peso: 0
- Peso Normal: 1
- Excesso de Peso Nível I: 2
- Excesso de Peso Nível II: 3
- Obesidade Tipo I: 4
- Obesidade Tipo II: 5
- Obesidade Tipo III: 6

AUC-ROC = 97.44%

F1-score Minor Class = 87.16%

- Árvore de Decisão:
 - o Gráfico Matriz de Confusão:

	nivel_obesidade	e precision	recall	f1-score	support
	0	0.91	0.97	0.94	97
	1	0.86	0.86	0.86	117
	2	0.88	0.85	0.86	107
	3	0.91	0.88	0.89	105
	4	0.93	0.92	0.93	101
	5	0.96	0.98	0.97	105
	6	1.00	1.00	1.00	106
	accuracy			0.92	738
	macro avg	0.92	0.92	0.92	738
we	ighted avg	0.92	0.92	0.92	738

Legenda:

- Abaixo do Peso: 0
- Peso Normal: 1
- Excesso de Peso Nível I: 2
- Excesso de Peso Nível II: 3
- Obesidade Tipo I: 4
- Obesidade Tipo II: 5
- Obesidade Tipo III: 6

AUC-ROC = 95,49%

F1-score Minor Class = 94%

Rede Neural Artificial:

Gráfico Matriz de Confusão:

nivel_obesidad	e precision	recall	f1-score	support
0	0.83	0.95	0.89	86
1	0.71	0.61	0.66	93
2	0.69	0.66	0.67	88
3	0.61	0.75	0.67	79
4	0.94	0.75	0.83	102
5	0.92	0.99	0.95	88
6	0.99	1.00	0.99	98
accuracy			0.82	634
macro avg	0.81	0.82	0.81	634
weighted avg	0.82	0.82	0.81	634

Legenda:

• Abaixo do Peso: 0

• Peso Normal: 1

Excesso de Peso Nível I: 2Excesso de Peso Nível II: 3

Obesidade Tipo I: 4Obesidade Tipo II: 5Obesidade Tipo III: 6

AUC-ROC = 97%

F1-score Minor Class = 99,49%

5. Avaliação do Comitê: O comitê de avaliação proposto neste projeto tem como objetivo comparar os três modelos principais de Machine Learning para identificar o mais eficaz na classificação dos níveis de obesidade. Além de avaliar o desempenho individual de cada modelo, o comitê busca compreender como cada técnica se comporta.

o Gráfico Matriz de Confusão:

nivel_obes	sidade precision	n recall	f1-score	support
0	0.89	0.96	0.92	97
1	0.86	0.83	0.84	117
2	0.88	0.84	0.86	107
3	0.88	0.88	0.88	105
4	0.92	0.93	0.93	101
5	0.97	0.98	0.98	105
6	1.00	1.00	1.00	106
accuracy			0.91	738
macro avg	0.91	0.92	0.92	738
weighted avg	0.91	0.91	0.91	738

Legenda:

• Abaixo do Peso: 0

Peso Normal: 1

Excesso de Peso Nível I: 2Excesso de Peso Nível II: 3

Obesidade Tipo I: 4Obesidade Tipo II: 5Obesidade Tipo III: 6

Resultados Comparativos entre Modelos:

	AUC-ROC	F1-score Minor Class	Peso Aplicado
Regressão Logística	97,04%	88,68%	33,46
Árvore de Decisão	95,40%	94%	32,85
Rede Neural	97,83%	89,62%	33,69
Comitê	97,04%	99,49%	

8. Conclusão

Este projeto mostrou como técnicas de Machine Learning podem ser aplicadas para classificar níveis de obesidade a partir de dados sobre hábitos alimentares e condições físicas. Com o uso de modelos como Regressão Logística, Árvore de Decisão e Rede Neural, foi possível avaliar o desempenho de diferentes abordagens e identificar a mais eficiente para esse tipo de problema.

A implementação do comitê de avaliação foi essencial para comparar as estratégias de aprendizado e entender melhor como cada modelo se comporta diante de dados balanceados e multiclasses. Isso trouxe mais clareza sobre qual método é mais adequado em termos de precisão e confiabilidade.

Os resultados destacam a importância de uma análise cuidadosa, desde o préprocessamento até a validação final, reforçando que não existe uma solução única, mas sim escolhas que dependem do contexto e dos objetivos.

Integrantes do Projeto:

Gustavo Rodrigues – RA 822125117 Juan Souza – RA 822138724 João Pedro Silva – RA 822153960 Marcio Faria – RA 824219962

Professores:

José Carmino Gomes Junior Bruno Silveira de Lima Honda