EXHIBIT A

IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS MARSHALL DIVISION

TQ DELTA, LLC,

Plaintiff,

v.

COMMSCOPE HOLDING COMPANY, INC., COMMSCOPE INC., ARRIS INTERNATIONAL LIMITED, ARRIS GLOBAL LTD., ARRIS US HOLDINGS, INC., ARRIS SOLUTIONS, INC., ARRIS TECHNOLOGY, INC., and ARRIS ENTERPRISES, LLC,

Defendants.

C. A. No. 2:21-cv-310

Corrected Expert Report of Jonathan D. Putnam

JONATHAN D. PUTNAM

September 3, 2022

September 3, 2022

- 365. The identical chain of economic reasoning applies when these two claims appear in two different members of the same patent family: the values of the two members are not independent, but are perfectly negatively correlated.
- 366. Other scenarios may involve different types of interdependence among family members. For example, in the standard-essential patent context, patentees sometimes follow evolving language in the standard by filing new daughter applications that track the new language. Thus, it may be that only the latest member of the family is actually deemed essential to the standard. Again, under such circumstances, only the latest member has value.⁴⁶¹
- 367. Approaches that assign value to individual family members generally ignore all of these interdependencies, by treating each family member independently of other members, when it is not independent. In general, all of these interdependencies can (and should) be avoided, by treating the family, not the individual patent, as the unit of observation.

(2) Data generation

368. The value of DSL technology as a whole must be divided among the inventions that contributed to it. I extract from a database of U.S. patent families those

⁴⁶¹ This particular circumstance also complicates the use of patent citations as an indicator of value—a commonly recognized relationship. Generally if not invariably, the most frequently cited member of the family is the first member (or the patent issuing from the first disclosure); subsequent members, which share most or all of the same specification, may not disclose new information and so do not merit additional grounds for citation by an examiner. Thus, while the first member may be most highly cited, it is the last member that may offer all the value – value that is underestimated by the relatively infrequent number of citations it receives.

patent families that are potentially essential to DSL standards. ⁴⁶² In total, I calculate that there are approximately 11,166 potentially-essential DSL patent families owned by patentees that have made a declaration at the ITU.

369. To locate potentially-essential DSL patents, I begin by identifying patents that are subject to a "blanket declaration" at the ITU.⁴⁶³ Based on DSL-related keywords, I identified all U.S. issued patents containing a reference to DSL-related technology.⁴⁶⁴ Among those patents, I identified the subset owned by patentees having made a licensing commitment at the ITU.⁴⁶⁵

Finally, I removed patents expired before 1999, when DSL technology

⁴⁶² Under ETSI's IPR Policy, the disclosure of one member of a family as potentially essential implies the disclosure of all members. As is standard, I include patent families having at least one U.S. member.

⁴⁶³ "Blanket declaration" typically refers to a general statement, submitted by a company to a standard-setting body, indicating that the patentee owns intellectual properties it believes to be essential to a particular standard or set of standards, without reference to specific patent numbers.

⁴⁶⁴ Derwent Innovation, October 18, 2017.

Intellectual property rights (IPR) in ITU Recommendations. ITU. Available at http://www.itu.int/net4/ipr/search.aspx?sector=ITU-T&class=PS&country=-1&org=-1&ps_country=-1&opt=-1&field=anokwcvd. Last accessed August 29, 2022.

Included DSL recommendations are: ADSL2 (G.992.3), ADSL2+ (G.992.5), VDSL2 (G.993.2), G.vector (G.993.5), G.bond ATM (G.998.1), G.bond Ethernet (G.998.2), G.bond3(G.998.3), G.inp (G.998.4), G.hs (g.994.1), G.fast (G.9701).

became available in the U.S. 467 This left around 14,848 potentially-essential U.S. patents, within 11,166 patent families. 468

(3) Patent sampling and technical analysis

To obtain a sample of the most relevant patents.

372. To segment each group of patents, I further grouped them into nine subcategories, based on each patent's Derwent World Patents Index ("DWPI")

Classification. 469 These second-level groupings were based on Dr. Cooklev's recommendation of DWPI Classifications more or less likely to contain a DSL-essential patent. 470

371.

⁴⁶⁷ See Section VI.D.

⁴⁶⁸ To check whether this search is comprehensive, I compared the families of the asserted essential TQ Delta patents listed in Exhibit 6 (the only essential DSL patents which have been independently identified by number) with the families of the list of 14,848 potentially-essential DSL patents. All patent families appear in the "potentially-essential" list.

description different is a reputable source for patent information. It's proprietary DWPI classification system accounts for variation arising from different names used for the same invention, translation of applications into other languages and keywords being used in multiple contexts. Therefore, "a subject classification system is essential for effective patent searching." "Derwent World Patents Index® (DWPITM)," Clarivate Analytics, available at https://clarivate.com/derwent/wp-

content/uploads/sites/3/dlm_uploads/2019/08/DWPI-Classification-Guide-2020.pdf. ⁴⁷⁰ See Cooklev Report, § XII.D. For a list of DWPI Classifications and descriptions, see "Derwent World Patents Index® Classification Guide," Clarivate, available at

https://clarivate.com/derwent/wp-content/uploads/sites/3/dlm_uploads/2019/08/DWPI-Classification-2022.pdf; "Derwent World Patents Index® (DWPITM)," Clarivate Analytics, available at https://clarivate.com/derwent/wp-content/uploads/sites/3/dlm_uploads/2019/08/DWPI-Classification-Guide-2020.pdf.

I understand from Dr. Cooklev that the DWPI Classification most likely to contain essential DSL patents is W01, followed by (not in rank order) S01, S02, T01, T02, U21, U22, U23, W02 and W03. According to Dr. Cooklev, Chemical, General and Mechanical Engineering Classifications (A-Q) are least likely to include essential DSL patents; the Electrical Engineering Classifications not specifically named by Dr. Cooklev (S-X, excluding those listed above) are also unlikely to contain essential DSL patents, but with a slightly higher likelihood than the Chemical, General and Mechanical Engineering Classifications.

⁴⁷¹ See Exhibit 11, Schedule C. Results are significant at the 95% confidence level. Bartlett, Kotrlik and Higgins, "Organizational Research: Determining Appropriate Sample Size in Survey Research," *Information Technology, Learning, and Performance Journal* 19(1) (Spring 2001).

(4) Extrapolation from sample results

375. I incorporated Dr. Cooklev's essentiality determination for each of the sampled patents, relative to each DSL standard (ADSL, VDSL, G.vector, G.bond, G.inp and G.hs), as shown in Exhibit 11. I then extrapolated these determinations from the sample to the population to compute the expected number of actually-essential DSL families, with respect to each DSL standard.⁴⁷³

or about 0.6% of all potentially-essential DSL families. Mapping patent families onto standards, I calculate that these 71 families are expected to be actually essential to one of the DSL standards in a total of 205 instances.

(5) The role of patent quality

- 376. In general, the value of patents varies from patent to patent, potentially for several reasons. Given the facts and data of the present case, I capture that variation by assigning greater royalties to TQ Delta patent families that are essential to more DSL standards. This procedure is consistent with
 - (a) Georgia-Pacific factor 11, which considers the actual usage of the invention in this case, the greater usage associated with compliance with more standards;
 - (b) the inference that a patent that is essential to multiple standards has or may have broader claims;

⁴⁷³ I perform this extrapolation using weights equal to the inverse of the patent or family sampling rate within each "bucket."

Exhibit 11, Schedule A Sample size determination

	Popula	Population (N) patent groups		
	[1]	[2]	[3]	
Population (N)				
[a] N _{patents}	1,118	4,043	9,687	14,848
[b] N _{families}	807	2,982	7,377	11,166
Sample (n)				
[c] n _{patents - required}	286	351	369	1,006
[d] n _{patents - adjusted}	380	351	369	1,100
n _{families} - adjusted	277	264	285	826
[e] Sample rate	0.34	0.09	0.04	
[f] Sample weight	2.94	11.52	26.22	

Notes and sources:

- [a] Schedule B
- [b] Schedule B
- [c] Required sample size given a 95.0% confidence level requirement, 0.5 variance parameter (most conservative choice) and a 5.0% acceptable error margin (see Schedule C). I apply Cochran's correction formula to adjust the final sample size in proportion to the relevant population group. See Bartlett, Kotrlik and Higgins, *Organizational Research: Determining Appropriate Sample Size in Survey Research*, Information Technology, Learning, and Performance Journal, Vol. 19, No. 1, Spring 2001, p. 47.
- [d] I over-sample from Group 1 to achieve a sample-size of 1,100.
- [e] = [d] / [a]
- [f] = 1/[e]

"Knockout" keywords [a]	DWPI classifications [b]	Number of patents [c]	Number of families [d]	Sampling group [e]
No	[1]	1,118	807	1
No	[2]	2,795	2,055	2
No	[3]	1,248	928	2
No	[4]	85	63	3
No	[5]	441	328	3
No	[6]	432	342	3
No	[7]	106	73	3
No	[8]	228	165	3
No	[9]	18	13	3
Yes	[1]	1,270	1,003	3
Yes	[2]	3,880	2,973	3
Yes	[3]	998	734	3
Yes	[4]	156	124	3
Yes	[5]	583	426	3
Yes	[6]	546	441	3
Yes	[7]	264	205	3
Yes	[8]	652	466	3
Yes	[9]	28	21	3
		14,848	11,166	

Notes and sources:

- [a] See Schedule D. According to Dr. Cooklev, these "knockout" words are unlikely to be found in the claims of an essential DSL patent. I classify a patent as "knockout' keywords" = "Yes" if every independent claim of the patent contains at least one instance of a keyword identified by Dr. Cooklev.
- [b] Disjoint classification of patents within groups according to their Derwent World Patents Index ("DWPI") Classification. Patents are often placed by Derwent in more than one Classification. For a list of DWPI Classifications and descriptions, see "Derwent World Patents Index® Classification Guide," Thomson Reuters, August 2012, available at http://ips.clarivate.com/m/pdfs/DWPIClassificationManual2012.pdf; "Derwent World Patents Index® (DWPITM)," Clarivate Analytics, December 2016, available at http://ips.clarivate.com//m/pdfs/mc-revision-2017/DWPI Classification Manual 2017 website.pdf.
 - I understand from Dr. Cooklev that the DWPI Classification most likely to contain essential DSL patents is W01, followed by (not in rank order) S01, S02, T01, T02, U21, U22, U23, W02 and W03. According to Dr. Cooklev, Chemical, General and Mechanical Engineering Classifications (A-Q) are least likely to include essential DSL patents; the Electrical Engineering Classifications not specifically named by Dr. Cooklev (S-X, excluding those listed above) are also unlikely to contain essential DSL patents, but with a slightly higher likelihood than the Chemical, General and Mechanical Engineering Classifications. See Cooklev Report, Section XII.D.
- [b1] W01 only.
- [b2] W01 and any of (S01, S02, T01, T02, U21, U22, U23, W02 or W03), excluding other Classifications S-X and Classifications A-Q.
- [b3] (S01, S02, T01, T02, U21, U22, U23, W02 or W03) only.
- [b4] W01 and at least one other Classification S-X, excluding S01, S02, T01, T02, U21, U22, U23, W02 and W03 and Classifications A-Q.
- [b5] W01 and any of (S01, S02, T01, T02, U21, U22, U23, W02 or W03) as well as at least one other Classification S-X, excluding Classifications A-Q.
- [b6] (S01, S02, T01, T02, U21, U22, U23, W02 or W03) and at least one other Classification S-X, excluding W01 and Classifications A-Q.
- [b7] Any Classification S-X, excluding W01, S01, S02, T01, T02, U21, U22, U23, W02 and W03, and not including Classifications A-Q.
- [b8] Any Classification S-X if it also has a Classification A-Q; also includes patents with no DWPI Classification.
- [b9] Patents with Classifications A-Q only.
- [c] I generate a list of relevant DSL patents by first identifying all U.S. patents containing the acronym "[x]DSL" (allowing for variations of DSL: ADSL, VDSL, etc.) or the words "digital subscriber line" in the patent's title, claims, abstract or description (Derwent Innovation, October 18, 2017). To further restrict that list to patents potentially essential to ITU (International Telecommunication Union) DSL standards, I remove patents from the "DSL keyword" list that are not owned by patentees having made general declaration statements to the ITU. I also include any patents disclosed specifically to ITU DSL standards that did not result from the "DSL keyword" search. See "Intellectual property rights (IPR) in ITU Recommendations," International Telecommunication Union. Available at http://www.itu.int/net4/ipr/search.aspx?sector=ITU-T&class=PS&country=-1&ps_country=-1&pt=-1&field=anokword.

 To limit the list of potentially essential patents that were active at the time DSL standards were first adopted, I exclude any patents expired or lapsed prior to 1999 (see, for example, ADSL Introduction; "DSL Technology Evolution," Broadband Forum. Available at https://www.broadband-forum.org/downloads/About DSL.pdf).
- [d] Patents are grouped into families according to their INPADOC Identification Codes (Derwent Innovation, October 18, 2017). For families with patents falling into multiple groups, I divide the family evenly among the relevant groups, depending on the number of constituent patents within each group.
- [e] I divide patents into groups from which to sample, based on their general likelihood to include DSL-relevant patents.

Exhibit 11, Schedule C Sampling assumptions

Confidence level (C)	95.0%
p _C	0.025
Z_{ρ}	1.96
Margin of error	5.0%
Variance parameter	0.50

Notes and sources:

Bartlett, Kotrlik and Higgins, *Organizational Research: Determining Appropriate Sample Size in Survey Research*, Information Technology, Learning, and Performance Journal, Vol. 19, No. 1, Spring 2001.

acceleration	ceramic	funds	metals	pumping	switched
accelerators	chargers	furnaces	meteorology	pumps	switches
accessories	charging	fuses	metering	punches	switchgear
address	chemical	games	MHD	quantum	switching
addressed	cleaners	gas	microwave	racks	switchyards
addresses	cleaning	geophysics	military	radar	tape
addressing	CMOS	geothermal	missile	railways	telecontrol
advertising	coil	heaters	mobile	reactor	telemetry
aerials	coils	heating	mobile device	reactors	telephone call
AFC	coin	HEMT	mobile phone	readers	telephone calls
air	collision	HF	mobile signal	rectifiers	teletext
aircraft	collisions	HVDC	mobility	refrigerators	thermally
airport	colour	hygiene	motors	relay	thermistors
AND-gates	compression	ignition	mountings	relays	thermoelectric
antenna	conductive	image	movers	reproducing	thermometers
antennas	constructional	incandescent	multicast	reproduction	thick
antiphase	cookers	ink	multicasting	resonators	thin
arc	cooling	insulating	multimedia	ring	thyristors
arming	cordless	insulators	multipoint	rotary	ticket
astable	CRTs	irons	multipoints	routed	tomography
attendance	crystal	ISDN	musical	router	traction
audio	currency	jamming	node	routers	transducers
audio/video	damping	karaoke	nodes	routinely	transponders
audio-communication	de	key	non-electrical	routing	trolley
automotive	dielectric	keyed	non-electrochemical	safety	tubes
AV	diodes	keys	non-electrolytic	satellite	TV
aviation	disc	kilns	non-engine	satellites	T-W
			•		TWTs
baluns	discharge domestic	kitchen	non-fossil nuclear	screening	ultrasonic
base station		klystrons		secret	
base stations	dryers	lamps	optical	sensors	unipolar
batteries	drying	LAN	optoelectronic	server	vacuum
battery	dynamo-electric	laser	ore	servers	valves
BICMOS	echo	lasers	ovens	session	VDRs
bipolar	echoed	LED	packages	sessions	VDUs
bistable	echoes	LEDs	paging	sewing	vehicle
blood	educational	LF	panels	shapers	vehicles
boards	electro	lidar	paper	ship	velocity
brakes	electrochemical	lifting	particle	sighting	vending
braking	electroerosion	lifts	passive	simulators	veterinary
breakers	electrography	light	PCBs	smart	vibrating
broadcast	electroluminescent	lighting	PDM	solar	vibrations
broadcasting	electrolytic	limiters	PFM	soldering	virtual private network
broadcasts	electromechanical	liquid	photodetectors	solid	voice
burglar	electron	local area network	photoelectric	solvers	voiced
call	electrophotography	locking	photography	sonar	voices
calorimetry	electro-refining	loudspeaker	photometry	sound	voicing
camera	electrostatic	MAC	photovoltaic	spark	voltage
cameras	electrosurgical	machine	plain old telephone service	speech	volume
car	electrotherapy	machines	plants	sports	VPN
cars	EM	magnetic	plasma	spraying	wafer
CCD	facsimile	magnetically	point-of-sale	stage	washing
cell	fans	magneto-optical	polarisers	static	watches
cell phone	femto	magnetrons	portable	stereophonic	water
cell signal	femtocell	magnets	POS	stereoscopic	waveguides
cell signaling	ferroelectric	manufacture	POTS	still-picture	weapons
cell tower	FET	marine	PPM	studio	welding
cells	film	maser	press	substrate	wind
cellular	fire	masers	printed	superconducting	work
cellular base station	fittings	materials	printers	superconductive	xerography
cellular phone	flight	mechanical	projection	suspensions	X-radiation
cellular signal	franking	medical	projectors	switch	X-ray
cellular tower	fuel	medium access layer	propulsion	switchboards	,
			F. operation		

Exhibit 11, Schedule E
DSL patent classifications - update

DWPI classifications [a]	Number of patents [b]	Number of families [c]	Sampling group [d]
[1]	8	6	1
[2]	36	33	2
[3]	10	10	2
[4]	3	3	3
[5]	2	2	3
[6]	13	11	3
[7]	1	1	3
[8]	2	2	3
[9]	-	-	3
Total	75	67	

Notes and sources:

- See Schedule D. I conservatively do not perform a "knockout" word analysis on the patents found potentially essential to DSL as there were so few new patents.
- [a] Disjoint classification of patents within groups according to their Derwent World Patents Index ("DWPI") Classification. Patents are often placed by Derwent in more than one Classification. For a list of DWPI Classifications and descriptions, see "Derwent World Patents Index® DWPI Classification: Edition 10," Clarivate Analytics, 2020, available at https://clarivate.com/derwent/wp-content/uploads/sites/3/dlm_uploads/2019/08/DWPI-Classification-Guide-2020.pdf.
 - I understand from Dr. Cooklev that the DWPI Classification most likely to contain essential DSL patents is W01, followed by (not in rank order) S01, S02, T01, T02, U21, U22, U23, W02 and W03. According to Dr. Cooklev, Chemical, General and Mechanical Engineering Classifications (A-Q) are least likely to include essential DSL patents; the Electrical Engineering Classifications not specifically named by Dr. Cooklev (S-X, excluding those listed above) are also unlikely to contain essential DSL patents, but with a slightly higher likelihood than the Chemical, General and Mechanical Engineering Classifications. See Cooklev Report, Section XII.D.
- [a1] W01 only.
- [a2] W01 and any of (S01, S02, T01, T02, U21, U22, U23, W02 or W03), excluding other Classifications S-X and Classifications A-Q.
- [a3] (S01, S02, T01, T02, U21, U22, U23, W02 or W03) only.
- [a4] W01 and at least one other Classification S-X, excluding S01, S02, T01, T02, U21, U22, U23, W02 and W03 and Classifications A-Q.
- [a5] W01 and any of (S01, S02, T01, T02, U21, U22, U23, W02 or W03) as well as at least one other Classification S-X, excluding Classifications A-Q.
- [a6] (S01, S02, T01, T02, U21, U22, U23, W02 or W03) and at least one other Classification S-X, excluding W01 and Classifications A-Q.
- [a7] Any Classification S-X, excluding W01, S01, S02, T01, T02, U21, U22, U23, W02 and W03, and not including Classifications A-Q.
- [a8] Any Classification S-X if it also has a Classification A-Q; also includes patents with no DWPI Classification.
- [a9] Patents with Classifications A-Q only.
- [b] To update DSL essentiality since I last ran this analysis in October 2017, I generate a list of relevant DSL patents by first identifying all U.S. patents granted after October 11, 2017 with an earliest priority date of before June 11, 2010, containing the acronym "[x]DSL" (allowing for variations of DSL: ADSL, VDSL, etc.) or the words "digital subscriber line" in the patent's title, claims, abstract or description (Derwent Innovation, August 18, 2021). To further restrict that list to patents potentially essential to ITU (International Telecommunication Union) DSL standards, I remove patents from the "DSL keyword" list that are not owned by patentees having made general declaration statements to the ITU. I also include any patents disclosed specifically to ITU DSL standards that did not result from the "DSL keyword" search. See "Intellectual property rights (IPR) in ITU Recommendations," International Telecommunication Union. Available at http://www.itu.int/net4/ipr/search.aspx?sector=ITU-T&class=PS&country=-1&org=-1&ps_country=-1&opt=-1&field=anokwcvd. I then compared unique families to those I had already considered in prior running of this analysis and removed any duplicates so only truly new families were considered.
- [C] Patents are grouped into families according to their INPADOC Identification Codes (Derwent Innovation, October 18, 2017). For families with patents falling into multiple groups, I divide the family evenly among the relevant groups, depending on the number of constituent patents within each group.
- [d] I divide patents into groups from which to sample, based on their general likelihood to include DSL-relevant patents.

DSL Patent Sampling

See Exhibit 11, Schedule B