Київський національний університет імені Тараса Шевченка

Факультет комп'ютерних наук та кібернетики

ЗВІТ ДО ЛАБОРАТОРНОЇ РОБОТИ №4

З дисципліни "Чисельні методи"

Тема: Інтерполяційні методи

Виконав студент 3-го курсу групи ТТП-31 Рісенгін Владислав

1 Постановка задачі

Реалізувати алгоритми інтерполяції з вашого варіанту для табличної функції, отриманої з вашої аналітичної функції. Для вашої аналітичної функції на проміжку обрати не менше 15 точок, за якими побудувати табличну функцію. У звіті навести всі можливі графіки.

Варіант 1. А) Метод Ньютона. Б) Задача оберненої інтерполяції (розв'язати рівняння для таблично заданої функції, у якості самостійно обрати якесь число з внутрішності області значень вашої аналітичної функції на проміжку, яке при цьому не міститься в таблиці). tg(x), x in [-0.5, 0.5]

2 Вступ

Інтерполяція є ключовим методом у чисельних методах для наближення значень функцій у невідомих точках на основі відомих даних.

У цій лабораторній роботі розглядаються два підходи: метод Ньютона, який використовує поліноми на основі розділених різниць, і обернена інтерполяція.

Мета роботи — реалізувати ці методи для функції tan(x) та проаналізувати результати через графіки та числові значення, підтверджуючи ефективність обраних алгоритмів.

3 Деталі реалізації

Лабораторна робота виконана використовуючи мову програмування Python, а також бібліотеку numpy i pandas.

4 Теоретичний опис методів

4.1 Метод Ньютона

Розділеною різницею першого порядку називається величина:

$$f(x_i, x_j) = \frac{f(x_j) - f(x_i)}{x_j - x_i};$$

другого порядку:

$$f(x_{i-1}, x_i, x_{i+1}) = \frac{f(x_i, x_{i+1}) - f(x_{i-1}, x_i)}{x_{i+1} - x_{i-1}};$$

(k+1) порядку:

$$f(x_i, ..., x_{i+k+1}) = \frac{f(x_{i+1}, ..., x_{i+k+1}) - f(x_i, ..., x_{i+k})}{x_{i+k+1} - x_i}.$$

Таблиця розділених ріниць має вигляд:

На підставі цієї таблиці, використовучи перший її рядок, можемо записати *інтерполянт Ньютона вперед*:

$$P_n(x) = f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1) + \dots + f(x_0, x_1, \dots, x_n)(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1}),$$
 чи скориставшись останнім рядком, дістанемо *інтерполя- ційну формулу Ньютона назад*:

$$P_n(x) = f(x_n) + f(x_{n-1}; x_n)(x - x_n) + \cdots$$

$$\cdots + f(x_0; x_1; \dots; x_n)(x - x_n)(x - x_{n-1}) \cdots (x - x_1).$$

Обирають ту чи іншу формули Ньютона, в залежності від того, де знаходиться точка x (в якій потрібно обчислити значення функції). Якщо ближче до точки x_0 , то інтерполяційну формулу Ньютона вперед. Якщо ближче до x_n , то інтерполяційну формулу Ньютона назад.

Для практичного застосування найчастише використовують інтерполяційні поліноми Ньютона, оскільки для його обчислення можна застосовувати схему Горнера.

За точністю зручно слідкувати таким чином: якщо доданки $f(x_o; x_1; \ldots; x_k)(x-x_0)(x-x_1)\cdots(x-x_{k-1})$ в інтерполяційній формулі спадають достатньо швидко, то можна очікувати на

гарну точність.

Вузли інтерполяції називаються *рівновіддаленими*, якщо $x_i - x_{i-1} = h = const$, $x_i = x_0 + ih$, $i = \overline{0, n}$.

Нехай $f(x_i) = y_i$. Величина $\Delta y_i = y_{i+1} - y_i$ називається скінченою різницею першого порядку.

Величина $\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$ називається *скінченою різницею другого порядку*.

Величина $\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$ називається *скінче-* ною *різницею* k-го порядку.

Таблиця скінчених різниць:

Має місце рівність: $\Delta^k y_i = k! h^k f(x_i; \dots; x_k)$.

Покладемо $x = x_0 + th$, $t = \frac{x - x_0}{h}$. Тоді *інтерполяційні* формули Ньютона для рівновіддалених вузлів набувають вигляду:

$$P_n(t) = y_0 + \frac{\Delta y_0}{1!} t + \frac{\Delta^2 y_0}{2!} t(t-1) \cdots + \frac{\Delta^n y_0}{n!} t(t-1) \cdots (t-n+1),$$

$$P_n(t) = y_0 + \frac{\Delta y_{n-1}}{1!} t + \frac{\Delta^2 y_{n-2}}{2!} t(t+1) \cdots + \frac{\Delta^n y_0}{n!} t(t+1) \cdots (t+n-1).$$

4.2 Обернена інтерполяція

Нехай функція $y=f(x)\in C[a,b]$, що задана таблично $(x_i,y_i),\ i=\overline{0,n}$, монотонна. Для знаходження x^* застосовуємо такий алгоритм:

Будуємо за таблицею (x_i, y_i) , $i = \overline{0, n}$ таку таблицю: (y_i, x_i) , $i = \overline{0, n}$. На підставі останньої таблиці інтерполянт набуває вигляду:

$$L_n(y) = \sum_{i=0}^{n} x_i \frac{\omega_{n+1}(y)}{(y - y_i)\omega'_{n+1}(y_i)},$$

де $\omega_{n+1}(y) = (y-y_0)(y-y_1)\cdots(y-y_n)$ та $L(y^*) \approx x^*$. Залишковий член в цьому випадку утворюється із залишкового члена формули Ньютона, якщо в останньому поміняти місцями x та y, а похідну f'(x) замінити на похідну від оберненої функції. Похибка інтерполяції має вигляд:

$$|x - x^*| \le \frac{\widetilde{M}_{n+1}}{(n+1)!} |\omega(y^*)|; \quad \widetilde{M}_{n+1} = \max_{y} \left| \frac{d^{n+1}}{dy^{n+1}} x(y) \right|.$$

Зауваження. За допомогою інтерполяції можна знаходити корені нелінійних рівнянь, для цього знаходять x^* при $y^* = 0$.

5 Результати роботи програми

Лабораторна робота реалізує інтерполяційні методи для табличної функції, отриманої з аналітичної функції tan(x) на проміжку [-0.5, 0.5].

Для цього було обрано 29 рівномірно розподілених точок на вказаному проміжку.

5.1 Таблиця розділених різниць

Під час реалізації методу Ньютона було сформовано таблицю розділених різниць, представлена нижче:

i	x	$f(x_0,\ldots,x_0)$	$f(x_0,\ldots,x_1)$	$f(x_0,\ldots,x_2)$	$f(x_0,\ldots,x_3)$	 $f(x_0,\ldots,x_{29})$
0	-0.500000	-0.546302	1.274935	-0.629790	0.696756	 78.002403
1	-0.465517	-0.502339	1.231501	-0.557712	0.628951	 0.000000
2	-0.431034	-0.459874	1.193038	-0.492648	0.571533	 0.000000
3	-0.396552	-0.418734	1.159062	-0.433524	0.522926	 0.000000
4	-0.362069	-0.378767	1.129164	-0.379428	0.481860	 0.000000
29	0.500000	0.546302	0.000000	0.000000	0.000000	 0.000000

Табл. 1: Зменшена таблиця розділених різниць для функції tan(x)

Дивитись повну таблицю.

Π оліном :

```
\begin{array}{l} 1.2749 * x^{1} + -0.6298 * x^{2} + 0.6968 * x^{3} + -0.4916 * x^{4} + 0.4368 * x^{5} + -0.3200 \\ * x^{6} + 0.2554 * x^{7} + -0.1834 * x^{8} + 0.1363 * x^{9} + -0.0943 * x^{10} + 0.0661 * x^{11} \\ + -0.0439 * x^{12} + 0.0291 * x^{13} + -0.0179 * x^{14} + 0.0094 * x^{15} + 0.0007 * x^{16} + -0.0194 * x^{17} + 0.0628 * x^{18} + -0.1646 * x^{19} + 0.3880 * x^{20} + -0.8354 * x^{21} + 1.6345 * x^{22} + -2.8578 * x^{23} + 4.3016 * x^{24} + -5.0420 * x^{25} + 2.7506 * x^{26} + 7.0514 * x^{27} + -31.2570 * x^{28} + 78.0024 * x^{29} \end{array}
```


5.2 Обернена інтерполяція

Для оберненої інтерполяції було вибрано значення y = 0.18.

Так як функція tan(x) монотонна на всьому проміжку. Поміняємо x і f(x) у табличній функції місцями.

Після цього застосуємо алгоритм інтерполяції.

i	x	$f(x_0,\ldots,x_0)$	$f(x_0,\ldots,x_1)$	$f(x_0,\ldots,x_2)$	$f(x_0,\ldots,x_3)$	 $f(x_0,\ldots,x_{29})$
0	-0.546302	-0.500000	0.784354	0.320071	-0.054428	 -21.879061
1	-0.502339	-0.465517	0.812017	0.313128	-0.082483	 0.000000
2	-0.459874	-0.431034	0.838196	0.302935	-0.111744	 0.000000
3	-0.418734	-0.396552	0.862767	0.289521	-0.141602	 0.000000
4	-0.378767	-0.362069	0.885611	0.272962	-0.171403	 0.000000
29	0.546302	0.500000	0.000000	0.000000	0.000000	 0.000000

Табл. 2: Зменшена таблиця розділених різниць для функції $\arctan(x)$

Дивитись повну таблицю.

Розв'язок рівняння дає:

Значення x для y = 0.18: 0.17809283896009326

Перевірка:

f(0.17809283896009326) = 0.17999989751251377

6 Таблиці розділених різниць tan(x)

	X	$f(x0, \cdots, x0)$	$f(x0, \cdots, x1)$	$f(x0, \cdots, x2)$	$f(x0, \cdots, x3)$	$f(x0, \cdots, x4)$	$f(x0, \cdots, x5)$
0	-0.500000	-0.546302	1.274935	-0.629790	0.696756	-0.491586	0.436757
1	-0.465517	-0.502339	1.231501	-0.557712	0.628951	-0.416283	0.370543
2	-0.431034	-0.459874	1.193038	-0.492648	0.571533	-0.352396	0.317084
3	-0.396552	-0.418734	1.159062	-0.433524	0.522926	-0.297727	0.273854
4	-0.362069	-0.378767	1.129164	-0.379428	0.481860	-0.250510	0.238909
5	-0.327586	-0.339830	1.102996	-0.329580	0.447307	-0.209319	0.210748
6	-0.293103	-0.301796	1.080267	-0.283307	0.418436	-0.172983	0.188211
7	-0.258621	-0.264545	1.060728	-0.240021	0.394576	-0.140533	0.170407
8	-0.224138	-0.227968	1.044175	-0.199203	0.375192	-0.111153	0.156653
9	-0.189655	-0.191962	1.030437	-0.160390	0.359861	-0.084144	0.146437
10	-0.155172	-0.156430	1.019376	-0.123163	0.348255	-0.058896	0.139390
11	-0.120690	-0.121279	1.010882	-0.087136	0.340131	-0.034863	0.135258
12	-0.086207	-0.086421	1.004872	-0.051950	0.335322	-0.011543	0.133897
13	-0.051724	-0.051770	1.001290	-0.017262	0.333730	0.011543	0.135258
14	-0.017241	-0.017243	1.000099	0.017262	0.335322	0.034863	0.139390
15	0.017241	0.017243	1.001290	0.051950	0.340131	0.058896	0.146437
16	0.051724	0.051770	1.004872	0.087136	0.348255	0.084144	0.156653
17	0.086207	0.086421	1.010882	0.123163	0.359861	0.111153	0.170407
18	0.120690	0.121279	1.019376	0.160390	0.375192	0.140533	0.188211
19	0.155172	0.156430	1.030437	0.199203	0.394576	0.172983	0.210748
20	0.189655	0.191962	1.044175	0.240021	0.418436	0.209319	0.238909
21	0.224138	0.227968	1.060728	0.283307	0.447307	0.250510	0.273854
22	0.258621	0.264545	1.080267	0.329580	0.481860	0.297727	0.317084
23	0.293103	0.301796	1.102996	0.379428	0.522926	0.352396	0.370543
24	0.327586	0.339830	1.129164	0.433524	0.571533	0.416283	0.436757
25	0.362069	0.378767	1.159062	0.492648	0.628951	0.491586	0.000000
26	0.396552	0.418734	1.193038	0.557712	0.696756	0.000000	0.000000
27	0.431034	0.459874	1.231501	0.629790	0.000000	0.000000	0.000000
28	0.465517	0.502339	1.274935	0.000000	0.000000	0.000000	0.000000
29	0.500000	0.546302	0.000000	0.000000	0.000000	0.000000	0.000000

	$f(x0, \cdots, x6)$	$f(x0, \cdots, x7)$	$f(x0,\cdots,x8)$	$f(x0, \cdots, x9)$	$f(x0, \cdots, x10)$	$f(x0, \cdots, x11)$	$f(x0, \cdots, x12)$
0	-0.320034	0.255409	-0.183400	0.136253	-0.094289	0.066146	-0.043855
1	-0.258383	0.204816	-0.141115	0.103739	-0.069200	0.047999	-0.030800
2	-0.208945	0.165888	-0.108920	0.079877	-0.050993	0.035254	-0.021624
3	-0.168903	0.135841	-0.084131	0.062293	-0.037621	0.026307	-0.015271
4	-0.136114	0.112633	-0.064798	0.049321	-0.027642	0.019987	-0.010642
5	-0.108927	0.094757	-0.049492	0.039789	-0.020061	0.015584	-0.007288
6	-0.086054	0.081104	-0.037144	0.032871	-0.014150	0.012568	-0.004707
7	-0.066477	0.070858	-0.026942	0.027992	-0.009383	0.010620	-0.002638
8	-0.049374	0.063426	-0.018255	0.024756	-0.005354	0.009529	-0.000856
9	-0.034064	0.058390	-0.010572	0.022910	-0.001740	0.009174	0.000856
10	-0.019970	0.055473	-0.003462	0.022310	0.001740	0.009529	0.002638
11	-0.006580	0.054518	0.003462	0.022910	0.005354	0.010620	0.004708
12	0.006580	0.055473	0.010572	0.024756	0.009383	0.012568	0.007285
13	0.019970	0.058390	0.018255	0.027992	0.014150	0.015583	0.010652
14	0.034064	0.063426	0.026942	0.032871	0.020061	0.019991	0.015249
15	0.049374	0.070858	0.037144	0.039789	0.027643	0.026301	0.021657
16	0.066477	0.081104	0.049492	0.049321	0.037619	0.035262	0.030761
17	0.086054	0.094757	0.064798	0.062293	0.050995	0.047991	0.043888
18	0.108927	0.112633	0.084130	0.079877	0.069198	0.066151	0.000000
19	0.136114	0.135841	0.108920	0.103739	0.094290	0.000000	0.000000
20	0.168903	0.165888	0.141115	0.136253	0.000000	0.000000	0.000000
21	0.208945	0.204816	0.183400	0.000000	0.000000	0.000000	0.000000
22	0.258383	0.255409	0.000000	0.000000	0.000000	0.000000	0.000000
23	0.320034	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
24	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
29	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

	$f(x0, \cdots, x13)$	$f(x0, \cdots, x14)$	$f(x0, \cdots, x15)$	$f(x0, \cdots, x16)$	$f(x0, \cdots, x17)$	$f(x0, \cdots, x18)$
0	0.029123	-0.017925	0.009427	0.000747	-0.019357	0.062848
1	0.020470	-0.013049	0.009838	-0.010600	0.019652	-0.044984
2	0.014170	-0.007960	0.003990	0.000920	-0.008269	0.022516
3	0.010327	-0.005896	0.004497	-0.003927	0.005706	-0.007990
4	0.007481	-0.003570	0.002331	-0.000582	0.000747	-0.004124
5	0.005757	-0.002365	0.002009	-0.000144	-0.001813	0.009604
6	0.004616	-0.001325	0.001930	-0.001207	0.004149	-0.009983
7	0.003976	-0.000327	0.001264	0.001225	-0.002048	0.006159
8	0.003818	0.000327	0.001940	0.000025	0.001775	0.001061
9	0.003976	0.001330	0.001954	0.001065	0.002433	-0.004375
10	0.004618	0.002341	0.002541	0.002492	-0.000282	0.007494
11	0.005748	0.003655	0.003916	0.002326	0.004369	-0.000710
12	0.007512	0.005681	0.005200	0.004887	0.003929	0.000000
13	0.010255	0.008370	0.007896	0.007191	0.000000	0.000000
14	0.014295	0.012454	0.011863	0.000000	0.000000	0.000000
15	0.020308	0.018590	0.000000	0.000000	0.000000	0.000000
16	0.029282	0.000000	0.000000	0.000000	0.000000	0.000000
17	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
29	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

	$f(x0, \cdots, x19)$	$f(x0, \cdots, x20)$	$f(x0, \cdots, x21)$	$f(x0, \cdots, x22)$	$f(x0, \cdots, x23)$	$f(x0, \cdots, x24)$
0	-0.164586	0.388038	-0.835393	1.634511	-2.857839	4.301598
1	0.103026	-0.216902	0.404580	-0.632051	0.702104	-0.044981
2	-0.046561	0.076070	-0.074907	-0.075210	0.664879	-2.265659
3	0.005900	0.021827	-0.131962	0.452108	-1.210150	2.713680
4	0.020954	-0.073732	0.211016	-0.507666	1.035654	-1.749374
5	-0.029896	0.079073	-0.174110	0.313715	-0.412103	0.180233
6	0.024637	-0.047006	0.063881	-0.013126	-0.262945	0.000000
7	-0.007781	-0.000748	0.053923	-0.221668	0.000000	0.000000
8	-0.008297	0.038300	-0.114239	0.000000	0.000000	0.000000
9	0.018117	-0.044425	0.000000	0.000000	0.000000	0.000000
10	-0.012522	0.000000	0.000000	0.000000	0.000000	0.000000
11	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
29	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

	$f(x0, \cdots, x25)$	$f(x0, \cdots, x26)$	$f(x0, \cdots, x27)$	$f(x0,\cdots,x28)$	$f(x0, \cdots, x29)$
0	-5.042031	2.750588	7.051433	-31.256995	78.002403
1	-2.575987	9.315715	-23.127735	46.745408	0.000000
2	5.776034	-12.217004	22.005762	0.000000	0.000000
3	-5.177142	8.271119	0.000000	0.000000	0.000000
4	2.238344	0.000000	0.000000	0.000000	0.000000
5	0.000000	0.000000	0.000000	0.000000	0.000000
	0.000000	0.000000	0.000000	0.000000	0.000000
29	0.000000	0.000000	0.000000	0.000000	0.000000

7 Таблиці розділених різниць $\arctan(x)$

	х	$f(x0,\cdots,x0)$	$f(x0, \cdots, x1)$	$f(x0,\cdots,x2)$	$f(x0,\cdots,x3)$	$f(x0,\cdots,x4)$	$f(x0,\cdots,x5)$
0	-0.546302	-0.500000	0.784354	0.320071	-0.054428	-0.167454	-0.061042
1	-0.502339	-0.465517	0.812017	0.313128	-0.082483	-0.180057	-0.044000
2	-0.459874	-0.431034	0.838196	0.302935	-0.111744	-0.188881	-0.022488
3	-0.418734	-0.396552	0.862767	0.289521	-0.141602	-0.193274	0.002837
4	-0.378767	-0.362069	0.885611	0.272962	-0.171403	-0.192733	0.031021
5	-0.339830	-0.327586	0.906621	0.253385	-0.200466	-0.186938	0.060857
6	-0.301796	-0.293103	0.925697	0.230960	-0.228109	-0.175777	0.090952
7	-0.264545	-0.258621	0.942748	0.205906	-0.253660	-0.159358	0.119813
8	-0.227968	-0.224138	0.957694	0.178482	-0.276491	-0.138017	0.145944
9	-0.191962	-0.189655	0.970462	0.148983	-0.296027	-0.112302	0.167943
10	-0.156430	-0.155172	0.980993	0.117740	-0.311771	-0.082959	0.184601
11	-0.121279	-0.120690	0.989235	0.085110	-0.323318	-0.050899	0.194988
12	-0.086421	-0.086207	0.995151	0.051473	-0.330368	-0.017156	0.198517
13	-0.051770	-0.051724	0.998712	0.017226	-0.332739	0.017156	0.194988
14	-0.017243	-0.017241	0.999901	-0.017226	-0.330368	0.050899	0.184601
15	0.017243	0.017241	0.998712	-0.051473	-0.323318	0.082959	0.167943
16	0.051770	0.051724	0.995151	-0.085110	-0.311771	0.112302	0.145944
17	0.086421	0.086207	0.989235	-0.117740	-0.296027	0.138017	0.119813
18	0.121279	0.120690	0.980993	-0.148983	-0.276491	0.159358	0.090952
19	0.156430	0.155172	0.970462	-0.178482	-0.253660	0.175777	0.060857
20	0.191962	0.189655	0.957694	-0.205906	-0.228109	0.186938	0.031021
21	0.227968	0.224138	0.942748	-0.230960	-0.200466	0.192733	0.002837
22	0.264545	0.258621	0.925697	-0.253385	-0.171403	0.193274	-0.022488
23	0.301796	0.293103	0.906621	-0.272962	-0.141602	0.188881	-0.044000
24	0.339830	0.327586	0.885611	-0.289521	-0.111744	0.180057	-0.061042
25	0.378767	0.362069	0.862767	-0.302935	-0.082483	0.167454	0.000000
26	0.418734	0.396552	0.838196	-0.313128	-0.054428	0.000000	0.000000
27	0.459874	0.431034	0.812017	-0.320071	0.000000	0.000000	0.000000
28	0.502339	0.465517	0.784354	0.000000	0.000000	0.000000	0.000000
29	0.546302	0.500000	0.000000	0.000000	0.000000	0.000000	0.000000

	$f(x0,\cdots,x6)$	$f(x0,\cdots,x7)$	$f(x0,\cdots,x8)$	$f(x0,\cdots,x9)$	$f(x0,\cdots,x10)$	$f(x0,\cdots,x11)$	$f(x0,\cdots,x12)$
0	0.069699	0.073707	-0.016985	-0.061394	-0.007466	0.047075	0.016512
1	0.090466	0.068300	-0.038739	-0.064304	0.012542	0.054669	-0.001710
2	0.109206	0.056276	-0.060983	-0.059525	0.035280	0.053898	-0.024171
3	0.124283	0.037772	-0.081138	-0.046350	0.057276	0.043200	-0.046221
4	0.134191	0.013637	-0.096540	-0.025331	0.074620	0.023048	-0.062692
5	0.137702	-0.014586	-0.104823	0.001646	0.083748	-0.003943	-0.068921
6	0.134006	-0.044782	-0.104292	0.031550	0.082204	-0.033321	-0.062399
7	0.122809	-0.074458	-0.094227	0.060614	0.069268	-0.059720	-0.043480
8	0.104395	-0.101010	-0.075054	0.084925	0.046226	-0.078025	-0.015581
9	0.079627	-0.122006	-0.048354	0.101069	0.016234	-0.084567	0.015581
10	0.049890	-0.135467	-0.016695	0.106725	-0.016234	-0.078025	0.043480
11	0.016992	-0.140103	0.016695	0.101069	-0.046226	-0.059720	0.062399
12	-0.016992	-0.135467	0.048354	0.084925	-0.069268	-0.033321	0.068923
13	-0.049890	-0.122006	0.075054	0.060614	-0.082204	-0.003943	0.062687
14	-0.079627	-0.101010	0.094227	0.031550	-0.083748	0.023047	0.046231
15	-0.104395	-0.074458	0.104292	0.001646	-0.074621	0.043202	0.024157
16	-0.122809	-0.044782	0.104823	-0.025331	-0.057276	0.053895	0.001724
17	-0.134006	-0.014586	0.096540	-0.046349	-0.035281	0.054672	-0.016523
18	-0.137702	0.013637	0.081138	-0.059525	-0.012542	0.047073	0.000000
19	-0.134191	0.037772	0.060983	-0.064304	0.007466	0.000000	0.000000
20	-0.124283	0.056276	0.038739	-0.061394	0.000000	0.000000	0.000000
21	-0.109206	0.068300	0.016985	0.000000	0.000000	0.000000	0.000000
22	-0.090466	0.073707	0.000000	0.000000	0.000000	0.000000	0.000000
23	-0.069699	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
24	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
29	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

	$f(x0, \cdots, x13)$	$f(x0, \cdots, x14)$	$f(x0, \cdots, x15)$	$f(x0, \cdots, x16)$	$f(x0, \cdots, x17)$	$f(x0, \cdots, x18)$
0	-0.036848	-0.017869	0.032002	0.012097	-0.021821	-0.027276
1	-0.046302	0.000165	0.039237	-0.001710	-0.040030	0.026176
2	-0.046216	0.021907	0.038230	-0.026674	-0.022786	0.019922
3	-0.035007	0.042792	0.022728	-0.040717	-0.009800	0.041119
4	-0.013391	0.055065	-0.000690	-0.046701	0.016792	0.034041
5	0.014144	0.054696	-0.027344	-0.036513	0.038691	0.007476
6	0.041288	0.040154	-0.048076	-0.013129	0.043488	-0.007316
7	0.061114	0.014685	-0.055511	0.013120	0.038794	-0.034864
8	0.068347	-0.014685	-0.048081	0.036566	0.016365	-0.038493
9	0.061114	-0.040157	-0.027319	0.046495	-0.008529	-0.026222
10	0.041287	-0.054684	-0.000782	0.041287	-0.025621	-0.014488
11	0.014149	-0.055103	0.022964	0.025496	-0.035166	0.010215
12	-0.013405	-0.042702	0.037782	0.003566	-0.028346	0.000000
13	-0.034976	-0.022062	0.039881	-0.014369	0.000000	0.000000
14	-0.046264	0.000037	0.031288	0.000000	0.000000	0.000000
15	-0.046245	0.017669	0.000000	0.000000	0.000000	0.000000
16	-0.036897	0.000000	0.000000	0.000000	0.000000	0.000000
17	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
29	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

	$f(x0, \cdots, x19)$	$f(x0, \cdots, x20)$	$f(x0, \cdots, x21)$	$f(x0, \cdots, x22)$	$f(x0, \cdots, x23)$	$f(x0, \cdots, x24)$
0	0.076063	-0.115231	0.219253	-0.449498	0.775748	-1.051185
1	-0.009008	0.054530	-0.145221	0.208412	-0.155742	-0.182753
2	0.030816	-0.056838	0.022370	0.077251	-0.316767	0.897381
3	-0.010358	-0.039799	0.084148	-0.188402	0.471680	-1.022249
4	-0.039034	0.024033	-0.066103	0.206615	-0.426476	0.651990
5	-0.021764	-0.026042	0.098672	-0.151046	0.147996	-0.005595
6	-0.040478	0.048807	-0.022119	-0.026408	0.143039	0.000000
7	-0.005311	0.031960	-0.043355	0.094903	0.000000	0.000000
8	0.017841	-0.001289	0.033597	0.000000	0.000000	0.000000
9	0.016900	0.024725	0.000000	0.000000	0.000000	0.000000
10	0.035153	0.000000	0.000000	0.000000	0.000000	0.000000
11	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
29	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

	$f(x0,\cdots,x25)$	$f(x0, \cdots, x26)$	$f(x0,\cdots,x27)$	$f(x0,\cdots,x28)$	$f(x0,\cdots,x29)$
0	0.938776	0.242389	-3.607939	10.508142	-21.879061
1	1.172690	-3.387834	7.411337	-13.397028	0.000000
2	-2.087127	4.058177	-6.637346	0.000000	0.000000
3	1.817703	-2.620162	0.000000	0.000000	0.000000
4	-0.710849	0.000000	0.000000	0.000000	0.000000
5	0.000000	0.000000	0.000000	0.000000	0.000000
	0.000000	0.000000	0.000000	0.000000	0.000000
29	0.000000	0.000000	0.000000	0.000000	0.000000

8 Висновок

У результаті виконання лабораторної роботи було реалізовано інтерполяційні методи, зокрема метод Ньютона та обернена інтерполяція, для функції tan(x) на проміжку [-0.5, 0.5].

З отриманих результатів видно, що метод Ньютона достатньо точний.

У процесі оберненої інтерполяції вдалося знайти значення x для заданого y=0.18. Загалом, результати роботи свідчать про ефективність використаних алгоритмів для інтерполяції функцій.