UNIVERSIDAD SURCOLOMBIANA INGENIERÍA ELECTRÓNICA LABORATORIO ELECTRÓNICA DIGITAL

ABORATORIO ELECTRONICA DIGITA: PRE-INFORME PRÁCTICA # 5

CONVERTIDOR DE CÓDIGO USANDO CODIFICADOR Y DECODIFICADOR SUBGRUPO: 01 PUESTO: 08 26/04/2024

Nicolas Andrés Yate Vargas 20212201267 Valeria Trujillo Ángel 20212201160

PROCEDIMIENTO

1. Análisis teórico.

A.) Usando codificadores, decodificadores y la lógica adicional realizar los siguientes convertidores de código binario de 1 dígito. El código de entrada se debe aplicar al circuito mediante teclado o interruptores. La salida se debe visualizar en un display de ánodo común.

Convertidores de código propuestos:

Lunes 10 a 12, grupos pares: convertidor de código BCD a Aiken.

SOLUCIÓN:

Primero, comenzamos estableciendo una tabla que represente todas las posibles combinaciones de entradas y sus respectivas salidas esperadas en nuestro circuito. A partir de esta tabla, determinamos el método más eficiente para alcanzar el resultado deseado.

E	NTRADAS	S (BCD)	SALIDAS (AIKEN)							
D	С	В	Α	03	02	01	00			
0	0	0	0	0	0	0	0			
0	0	0	1	0	0	0	1			
0	0	1	0	0	0	1	0			
0	0	1	1	0	0	1	1			
0	1	0	0	0	1	0	0			
0	1	0	1	1	0	1	1			
0	1	1	0	1	1	0	0			
0	1	1	1	1	1	0	1			
1	0	0	0	1	1	1	0			
1	0	0	1	1	1	1	1			
1	0	1	0	X	X	Χ	X			
1	0	1	1	X	X	X	X			
1	1	0	0	X	X	X	X			
1	1	0	1	X	X	X	X			
1	1	1	0	X	X	X	X			
1	1	1	1	X	X	Χ	X			

Tabla 1. Tabla de verdad de BCD a AIKEN

De la tabla de verdad se desprende que las combinaciones del 0 al 4 se representan de la misma manera tanto en el código BCD como en el código AIKEN. Asimismo, las combinaciones del 5 al 9 en AIKEN coinciden con las representaciones BCD del 11 al 15. Para manejar esta conversión, se sugiere el uso de decodificadores 74LS138 de octal a binario en configuración en cascada para cubrir las 9 combinaciones posibles. Una vez que el BCD se convierte en decimal, se conectan estas salidas a un codificador en cascada, utilizando el 74LS148 de octal a binario. Dado que las combinaciones del 0 al 4 son idénticas en ambos códigos, se vinculan directamente las salidas correspondientes. Para las combinaciones del 5 al 9 que coinciden con BCD del 11 al 15, se conectan las salidas del decodificador a las entradas del codificador correspondientes. Posteriormente, se requiere lógica adicional para manejar las 6 salidas de los codificadores y obtener el código binario de 4 bits, utilizando una tabla adicional. Finalmente, el código AIKEN se conecta a un decodificador controlador de display, adaptando las salidas para un display de ánodo común. Las entradas del 5 al 9 mostrarán los caracteres especiales correspondientes del 11 al 15, ya que el decodificador recibe el código como si fuera BCD.

				<u></u>									
A _L '	B _L '	C _L '	GS _L '	EO _L '	A _M '	B _M '	B _M '	EO _M '	GS _M '	Α	В	С	D
1	1	1	0	0	1	1	1	0	1	0	0	0	0
0	1	1	0	1	1	1	1	0	1	1	0	0	0
1	0	1	0	1	1	1	1	0	1	0	1	0	0
0	0	1	0	1	1	1	1	0	1	1	1	0	0
1	1	0	0	1	1	1	1	0	1	0	0	1	0
0	1	0	0	1	1	1	1	0	1	1	0	1	0
1	0	0	0	1	1	1	1	0	1	0	1	1	0
0	0	0	0	1	1	1	1	0	1	1	1	1	0
1	1	1	1	0	1	1	1	1	0	0	0	0	1
1	1	1	1	0	0	1	1	1	0	1	0	0	1
1	1	1	1	0	1	0	1	1	0	0	1	0	1
1	1	1	1	0	0	0	1	1	0	1	1	0	1
1	1	1	1	0	1	1	0	1	0	0	0	1	1
1	1	1	1	0	0	1	0	1	0	1	0	1	1
1	1	1	1	0	1	0	0	1	0	0	1	1	1
1	1	1	1	0	0	0	0	1	0	1	1	1	1

Tabla 2. Tabla de verdad para el diseño de lógica adicional

Ilustración 1. Diseño para convertir 6 bits a 4 bits

B.) Escribir la tabla de verdad y de tensiones del convertidor de código propuesto designándolas Tablas 1 y 2.

Dado que se usaron tablas en el punto anterior las tablas del punto B se designarán como tabla 2 y 3.

															T.	ABLA DE \	/ERDAD							i I	
ENT	RAE	DAS	S	П	CODIFICADOR 1						CODIFIC	CADOR 2	DECODIFICADOR 1			DECODIFICADOR 2				AIKEN					
D	(CE	3 A	00	0	01	02	О3	04	05	06	07	08	09	02	01	Oo	EO	02	01	Oo	2	4	2	1
0	(0	0	0		1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	0	0
0	(0) 1	1		0	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	0	0	0	1
0	() 1	1 (1		1	0	1	1	1	1	1	1	1	1	0	1	0	1	1	1	0	0	1	0
0	() 1	1 1	1		1	1	0	1	1	1	1	1	1	1	0	0	0	1	1	1	0	0	1	1
0	1	L	0	1		1	1	1	0	1	1	1	1	1	0	1	1	0	1	1	1	0	1	0	0
0	1	L) 2	1		1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	0	1	0	1	1
0	1	1 1	1 (1		1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	0	0
0	1	L 1	1 1	1		1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	0	1	1	0	1
1	(0	0 (1		1	1	1	1	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	0
1	(0) 1	1		1	1	1	1	1	1	1	1	0	1	1	1	1	0	0	0	1	1	1	1
1	() 1	1 (1		1	1	1	1	1	1	1	1	1	1	1	1	X	X	X	X	X	X	X	X
1	() 1	1 1	1		1	1	1	1	1	1	1	1	1	1	1	1	X	X	X	X	X	X	X	X
1	1	L	0 0	1		1	1	1	1	1	1	1	1	1	1	1	1	X	X	X	X	X	X	X	X
1	1	L) 1	1		1	1	1	1	1	1	1	1	1	1	1	1	X	X	X	X	X	X	X	X
1	1	1 1	1 (1		1	1	1	1	1	1	1	1	1	1	1	1	X	X	X	X	X	X	X	X
1	1	1	1 1	1		1	1	1	1	1	1	1	1	1	1	1	1	X	X	X	X	X	X	X	X

Tabla 3. Tabla de verdad del convertidor de código

	_	_					_	_				TAR	LA DE TE	NICLOR	150						-	_		
								_				1	LA DE TE											
Е	NTR	ADA	S			CO	DIFIC	ADO	R 1			CODIFIC	CADOR 2	DECC	DIFIC	ADOR 1	[ECODIF	ICADOR	2	AIKEN			
D	С	В	Α	Oo	01	02	О3	04	05	06	07	08	09	02	01	00	EO	02	01	Oo	2	4	2	1
0.8	0.8	0.8	0.8	0,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	0,4	0,4	2,4	2,4	2,4	0,4	0,4	0,4	0,4
0.8	0.8	0.8	2	2,4	0,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	0,4	2,4	2,4	2,4	0,4	0,4	0,4	2,4
0.8	0.8	2	0.8	2,4	2,4	0,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	0,4	2,4	2,4	2,4	0,4	0,4	2,4	0,4
0.8	0.8	2	2	2,4	2,4	2,4	0,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	0,4	0,4	2,4	2,4	2,4	0,4	0,4	2,4	2,4
0.8	2	0.8	0.8	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	0,4	2,4	2,4	2,4	0,4	2,4	0,4	0,4
0.8	2	0.8	2	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	0,4	2,4	0,4	2,4	2,4
0.8	2	2	8.0	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	2,4	0,4	0,4
0.8	2	2	2	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	0,4	2,4	2,4	0,4	2,4
2	0.8	0.8	8.0	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	2,4	2,4	0,4	0,4	2,4	2,4	2,4	2,4	0,4
2	0.8	0.8	2	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	2,4	0,4	0,4	0,4	2,4	2,4	2,4	2,4
2	0.8	2	8.0	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	Х	X	X	X
2	0.8	2	2	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	X	X	X	X
2	2	0.8	0.8	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	Х	X	X	X
2	2	0.8	2	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	Х	X	X	X
2	2	2	0.8	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	Х	X	X	X
2	2	2	2	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	0,4	2,4	2,4	2,4	Х	X	X	X

Tabla 4. Tabla de tensiones del convertidor de código

Las salidas en "X" se ponen para indicar que dichas combinaciones no son válidas

C.) Calcular el valor y la potencia de las resistencias protectoras de los LEDS y de las resistencias conectadas a las entradas del convertidor de código y aproximarlo al valor comercial más cercano. Resumir esos resultados en una tabla designándola Tabla 3.

$$R = \frac{VCC - VOH - VLED}{ILED} = \frac{5V - 0.4V - 2V}{8mA} = 325\Omega$$

La característica de este integrado con colector abierto y resistencia Pull-up interna nos permite imponer una corriente de 8mA, necesaria para encender los LEDS

Se escoge una resistencia comercial menor, de 280Ω debido a razones de tolerancia de errores.

Potencia:

$$P = I^2 \times R = 80uA^2 \times 280 \Omega = 18 mW$$

Adicionalmente se calculó las resistencias de entrada:

Este codificador de la subfamilia 74LS tiene perfiles de corriente iguales a los de las compuertas de la misma subfamilia que hemos estado utilizando, el cálculo para la resistencia de entrada se realiza en base a su corriente máxima 20 µA en estado alto:

$$R = \frac{VCC - VIH}{I_{OH}} = \frac{5v - 2v}{40uA} = 50K\Omega$$

Resistencia	Calculada	Valor comercial
R _{pull-up}	50kΩ	47ΚΩ
R_{LED}	350Ω	280Ω

D.) Dibujar el diagrama en bloques del convertidor de código escribiendo el nombre de cada etapa.

E.) Explicar brevemente el funcionamiento de cada etapa.

Etapa 1: En esta etapa se usan decodificadores 74ls138 de binario a octal en cascada para decodificar el BCD de entrada a decimal para cada combinación posible de un dígito (del 0 al 9).

Etapa 2: Aquí se conectan las salidas del decodificador a las entradas del codificador que nos entregará el código AIKEN, para ello se tiene en cuenta el análisis realizado en el punto A y se conectan las salidas correspondientes del 5 al 9 en las entradas del 11 al 15

Etapa 3: en esta etapa se toman todas las salidas de los codificadores usados en el punto anterior (74ls148 de octal a binario en cascada) y mediante lógica adicional básica se obtienen los 4 bits del código AIKEN.

Etapa 4: En esta última etapa se toma el código Aiken de 4 bits y se ingresa a un decodificador 74ls47 controlador de display y las salidas de este se conectan a las entradas de un display de ánodo común.

F.) Dibujar el circuito lógico completo.:

