Squared loss

Squared loss is a loss function that can be used in the learning setting in which we are predicting a real-valued variable y given an input variable x.

That is, we are given the following scenario: Let $S := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ be our training data where $x_i \in X$ are the instances (X is the space of possible instances) and $y_i \in \mathbb{R}$ is a numeric value corresponding to each instance. Let h be a hypothesis (i.e. a statistical model) where $h : X \to \mathbb{R}$. In this setting, the squared loss for a given item in our training data, (y, x), is given by

$$\ell_{\text{squared}}(x, y, h) := (y - h(x))^2$$

(Definition 1).

Definition 1 Given a set of possible instances X, an instance $x \in X$, an associated variable $y \in \mathbb{R}$, and a hypothesis function $h : X \to \mathbb{R}$, the **squared loss** of h on (x, y) is given by

$$\ell_{squared}(x, y, h) := (y - h(x))^2$$

.

The empirical risk function over the training data is then the mean of the individual losses:

$$L_S(h) := \frac{1}{|S|} \sum_{i=1}^{|S|} \ell_{\text{squared}}(x_i, y_i, h)$$

The empirical risk of the squared error is illustrated geometrically in Figure 1. An empirical risk minimization (ERM) algorithm will then seek an h that minimizes the average area of the squares.

Intuition

Maximum likelihood estimation under an implicit Gaussian model

Applying an ERM algorithm over a hypothesis space \mathcal{H} using the least squared loss function is equivalent to finding the maximum likelihood estimate under an implicitly assumed probabilistic model: given an item's value of x, it's value of y is determined by adding Gaussian noise to a deterministic function of x. That is, we assume there exists a "true" function $f \in \mathcal{H}$ such that

$$y_i = f(x_i) + \varepsilon_i$$

Figure 1: (a) A plot of training set S where $X := \mathbb{R}$. (b) Fitting the data with a linear hypothesis h. The empirical risk is the average size of the blue squares.

where ε_i is Gaussian noise we add to $f(x_i)$. That is,

$$\varepsilon_i \sim \text{Normal}(0, \sigma^2)$$

Stated equivalently, y_i is the outcome of a random variable

$$Y_i \sim \text{Normal}(f(x_i), \sigma^2)$$

This is proven in Theorem 1.

Theorem 1 Given a joint distribution over

$$Y_1, Y_2, \ldots, Y_n \mid x_1, x_2, \ldots, x_n$$

where

$$Y_i \mid x_i \sim Normal(h(x_i), \sigma^2)$$

and

$$x_i \in X$$

for a hypothesis $h: X \to \mathbb{R}$ in a hypothesis space \mathcal{H} , the maximum likelihood estimate of h over the training data $S := \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ (where y_i is the realization of Y_i) is equal to the ERM estimate using squared loss over S.

Proof:

$$h_{MLE} := \underset{h \in \mathcal{H}}{\operatorname{argmax}} p(S; h)$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmax}} \prod_{i=1}^{|S|} p(y_i, x_i; h)$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmax}} \prod_{i=1}^{|S|} p(y_i \mid x_i; h) p(x_i)$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmax}} \prod_{i=1}^{|S|} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i - h(x_i))^2}$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmax}} \sum_{i=1}^{|S|} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i - h(x_i))^2} \right) \quad \text{log is monotonic}$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmax}} \sum_{i=1}^{|S|} \left[\log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i - h(x_i))^2} \right) \right]$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmax}} \sum_{i=1}^{|S|} \left[-\frac{1}{2\sigma^2} (y_i - h(x_i))^2 \right]$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{|S|} (y_i - h(x_i))^2$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{|S|} (y_i - h(x_i))^2$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmin}} L_S(h)$$

© Matthew Bernstein 2017