Teoría de Tipos intensional de Martin-Löf

Juan Pablo García Garland

18 de noviembre, 2016

Table of contents

- Marco Lógico
- 2 Tipos Funcionales
- 3 El tipo Set
- Construyendo Sets
 - bool
 - unit
 - empty
 - nat
 - prod
 - sum

Tipos

"A type is explained by saying what an object of the type is and what it means for two objects of the types to be identical" [NPS00].

Tipos

Se definen con:

- Reglas de Introduccción.
- Reglas de Igualdad.

Juicios

- A Type
- a ∈ A
- a = b ∈ A

Juicios

- A Type
- a ∈ A
- a = b ∈ A
- A = B

A Type	$a \in A$
A es un conjunto (Tipo)	a es un elemento del conjunto (Tipo) A

A Type	$a \in A$
A es un conjunto	a es un elemento del conjunto A
A es una proposición	a es una prueba de A

A Type	$a \in A$
A es un conjunto	a es un elemento del conjunto A
A es una proposición	a es una prueba de A
A es una especificación	a es un programa que satisface A

A Type	$a \in A$
A es un conjunto	a es un elemento del conjunto A
A es una proposición	a es una prueba de A
A es una especificación	a es un programa que satisface A
A es un problema	a es una solución para A

Sobre objetos:

Sobre objetos:

Reflexividad:

$$\frac{a \in A}{a = a \in A}$$

Sobre objetos:

Reflexividad:

$$a \in A$$

$$a = a \in A$$

Simetría:

$$a = b \in A$$
$$b = a \in A$$

Sobre objetos:

Reflexividad:

$$a \in A$$

$$a = a \in A$$

Simetría:

$$a = b \in A$$
$$b = a \in A$$

Transitividad:

$$a = b \in A \qquad b = c \in A$$
$$a = c \in A$$

Sobre objetos:

Reflexividad:

$$a \in A$$
$$a = a \in A$$

Simetría:

$$a = b \in A$$
$$b = a \in A$$

Transitividad:

$$a = b \in A \qquad b = c \in A$$
$$a = c \in A$$

Sobre Tipos:

• Reflexividad:

$$A = A$$

Simetría:

$$A = B$$
 $B = A$

• Transitividad:

$$\frac{A = B \qquad B = C}{A = C}$$

Más Reglas Generales

Reglas de igualdad de tipos:

$$a \in A$$
 $A = B$ $a \in B$

$$\frac{a = b \in A \qquad A = B}{a = b \in B}$$

En su forma más general los cuatro juicios pueden depender de algunas hipótesis.

En su forma más general los cuatro juicios pueden depender de algunas hipótesis. Se introduce la noción de contexto.

$$\Gamma := x_1 \in A_1, ..., x_n \in A_n$$

En su forma más general los cuatro juicios pueden depender de algunas hipótesis. Se introduce la noción de contexto.

$$\Gamma := x_1 \in A_1, ..., x_n \in A_n$$

Escribimos:

A type
$$[\Gamma]$$

$$a \in A[\Gamma]$$

$$A = A' [\Gamma]$$

$$a = b \in A [\Gamma]$$

Una de las formas primitivas de constuir nuevos tipos a partir de otros, será introduciendo tipos funcionales

Una de las formas primitivas de constuir nuevos tipos a partir de otros, será introduciendo tipos funcionales (dependientes).

Una de las formas primitivas de constuir nuevos tipos a partir de otros, será introduciendo tipos funcionales (dependientes). Dado un tipo A, y una familia de tipos B indizados por A, construimos el conjunto funcional (dependiente) $(x \in A)B$ de funciones de A a B.

Una de las formas primitivas de constuir nuevos tipos a partir de otros, será introduciendo tipos funcionales (dependientes). Dado un tipo A, y una familia de tipos B indizados por A, construimos el conjunto funcional (dependiente) ($x \in A$)B de funciones de A a B. Qué necesitamos?

Una de las formas primitivas de constuir nuevos tipos a partir de otros, será introduciendo tipos funcionales (dependientes). Dado un tipo A, y una familia de tipos B indizados por A, construimos el conjunto funcional (dependiente) ($x \in A$)B de funciones de A a B. Qué necesitamos?

- · · ·
 - Reglas de constucción
 - Reglas de igualdad

Tipo funcional:

$$\frac{A \text{ type} \quad B \text{ type } [x \in A]}{(x \in A)B \text{ type}}$$

Tipo funcional:

$$\frac{A \text{ type} \quad B \text{ type } [x \in A]}{(x \in A)B \text{ type}}$$

Igualdad de tipos funcionales:

$$\frac{A = A' \qquad B = B'[x \in A]}{(x \in A)B = (x \in A')B'}$$

• Escribimos (A)B para denotar $(x \in A)B$ cuando el producto no es dependiente (tipo flecha usual).

- Escribimos (A)B para denotar $(x \in A)B$ cuando el producto no es dependiente (tipo flecha usual).
- Escribimos $(x \in A, y \in B)C$ para denotar $(x \in A)((y \in B)C)$

- Escribimos (A)B para denotar $(x \in A)B$ cuando el producto no es dependiente (tipo flecha usual).
- Escribimos $(x \in A, y \in B)C$ para denotar $(x \in A)((y \in B)C)$
- Escribimos $(x, y \in A)C$ para denotar $(x \in A)((y \in A)C)$

Abstracción

Abstracción

Abstracción:

$$\frac{b \in B[x \in A]}{([x \in A]b) \in (x \in A)B}$$

Más Reglas

Reglas de Aplicación:

Más Reglas

Reglas de Aplicación:

$$\frac{c \in (x \in A)B \quad a \in A}{c(a) \in B[a/x]}$$

$$c \in (x \in A)B \qquad a = b \in A$$
$$c(a) = c(b) \in B[a/x]$$

Reglas sobre igualdad de funciones

Reglas sobre igualdad de funciones

Aplicación:

$$c = d \in (x \in A)B \quad a \in A$$
$$c(a) = d(a) \in B[a/x]$$

Reglas sobre igualdad de funciones

Aplicación:

$$\frac{c = d \in (x \in A)B \qquad a \in A}{c(a) = d(a) \in B[a/x]}$$

Extensionalidad:

$$c \in (x \in A)B \qquad d \in (x \in A)B \qquad c(x) = d(x) \in B[x \in A]$$
$$c = d \in (x \in A)B$$

• Escribimos $c(a_1, a_2, ...a_n)$ para denotar $c(a_1)(a_2)..(a_n)$

- Escribimos $c(a_1, a_2, ...a_n)$ para denotar $c(a_1)(a_2)..(a_n)$
- Escribimos $[x_1 \in A_1, x_2 \in A_2, ... x_n \in A_n]b$ para denotar $[x_1 \in A_1][x_2 \in A_2]..[x_n \in A_n]b$

• β -conversión:

$$\frac{a \in A \qquad b \in B[x \in A]}{([x \in A]b)(a) = b[a/x] \in B[a/x]}$$

• β -conversión:

$$\frac{a \in A \quad b \in B[x \in A]}{([x \in A]b)(a) = b[a/x] \in B[a/x]}$$

Las siguientes reglas se pueden probar a partr de las anteriores:

• β -conversión:

$$\frac{a \in A \quad b \in B[x \in A]}{([x \in A]b)(a) = b[a/x] \in B[a/x]}$$

Las siguientes reglas se pueden probar a partr de las anteriores:

η-conversión:

$$\frac{c \in (x \in A)B}{([x \in a]c(x)) = c \in (x \in A)B}$$

• β -conversión:

$$a \in A \qquad b \in B[x \in A]$$
$$([x \in A]b)(a) = b[a/x] \in B[a/x]$$

Las siguientes reglas se pueden probar a partr de las anteriores:

η-conversión:

$$\frac{c \in (x \in A)B}{([x \in a]c(x)) = c \in (x \in A)B}$$

ξ-rule:

$$b = d \in B[x \in A]$$
$$([x \in A]b = [x \in A]d \in (x \in A)B$$

La teoría de tipos intensional introduce un tipo particular, *Set*, cuyos objetos son los conjuntos definidos inductivamente.

La teoría de tipos intensional introduce un tipo particular, *Set*, cuyos objetos son los conjuntos definidos inductivamente. *Set* es un tipo, entonces..

La teoría de tipos intensional introduce un tipo particular, *Set*, cuyos objetos son los conjuntos definidos inductivamente. *Set* es un tipo, entonces..

Tenemos que definir qué significa ser un *Set* (reglas de construcción) y cuando dos objetos de *Set* son iguales (reglas de igualdad).

La teoría de tipos intensional introduce un tipo particular, *Set*, cuyos objetos son los conjuntos definidos inductivamente. *Set* es un tipo, entonces..

Tenemos que definir qué significa ser un *Set* (reglas de construcción) y cuando dos objetos de *Set* son iguales (reglas de igualdad).

Construyendo Sets

Se construyen mediante la introducción de constantes.

Construyendo Sets

Se construyen mediante la introducción de constantes. Los objetos canónicos de tipo *Set* son de la forma:

$$c(a_1,...,a_n) \in Set$$

en donde $c \in (x_1 \in A_1, ..., x_n \in A_n)$ Set es un constructor de conjuntos

Construyendo Sets

Ejemplos:

$$bool \in Set$$
 $nat \in Set$
 $prod \in (Set, Set)Set$

 $\Sigma \in (A:Set,(A)Set)Set$

Introducimos la siguiente reglas:

Introducimos la siguiente reglas:

Formación de Set:

Set type

Introducimos la siguiente reglas:

Formación de *Set*:

Set type

Para cada objeto A de Set se define un tipo El(A) cuyos objetos son los elementos del Set A.

Introducimos la siguiente reglas:

Formación de Set:

Set type

Para cada objeto A de Set se define un tipo El(A) cuyos objetos son los elementos del Set A.

Formación de El:

$$a \in Set$$
 $El(a)$ type

• El tipo Set tiene definición abierta.

• El tipo *Set* tiene definición abierta. i.e. puede extenderse con nuevas definiciones.

- El tipo Set tiene definición abierta. i.e. puede extenderse con nuevas definiciones.
- Los tipos El(a) son cerrados, dado que las nuevas definiciones en Set son inductivas.

• Escribimos a en lugar de El(a).

Escribimos a en lugar de El(a).
 El objeto a ∈ Set y el tipo El(a) siempre ocurren en contextos distintos, por lo que no hay ambigüedad.

• Un constructor de conjunto

$$C \in (\vec{x} \in \vec{A})$$
Set

• Un constructor de conjunto

$$C \in (\vec{x} \in \vec{A})$$
Set

• Constructores $c_1, c_2, ..., c_n$ que definen los objetos de tipo $EI(C(\vec{a}))$

• Un constructor de conjunto

$$C \in (\vec{x} \in \vec{A})$$
Set

- Constructores $c_1, c_2, ..., c_n$ que definen los objetos de tipo $El(C(\vec{a}))$
- Un destructor genérico d asociado a la familia C.

• Un constructor de conjunto

$$C \in (\vec{x} \in \vec{A})$$
Set

- Constructores $c_1, c_2, ..., c_n$ que definen los objetos de tipo $El(C(\vec{a}))$
- Un destructor genérico d asociado a la familia C.
- Reglas de igualdad que describen el comportamiento de d respecto de los constructores.

Marco Lógico Tipos Funcionales El tipo *Set* Construyendo Sets bool unit empty nat prod

Ejemplos de Sets

El conjunto de los valores booleanos

Definimos al set de los valores Booleanos.

El conjunto de los valores booleanos

Definimos al set de los valores Booleanos.

Es un ejemplo de conjunto enumerado (es trivialmente recursivo).

El conjunto de los valores booleanos

Definimos al set de los valores Booleanos.

Es un ejemplo de conjunto enumerado (es trivialmente recursivo).

Declárense las siguientes constantes:

Declárense las siguientes constantes:

El constructor del conjunto:

Declárense las siguientes constantes:

El constructor del conjunto:

$$bool \in Set$$

Declárense las siguientes constantes:

El constructor del conjunto:

 $bool \in Set$

Los constructores:

Declárense las siguientes constantes:

El constructor del conjunto:

 $bool \in Set$

Los constructores:

 $true \in bool$ $false \in bool$

Declárense las siguientes constantes:

El constructor del conjunto:

 $bool \in Set$

Los constructores:

$$true \in El(bool)$$

 $false \in El(bool)$

Marco Lógico Tipos Funcionales El tipo *Set* Construyendo Sets bool unit empty nat prod

Destructor de bool

La constante para la destrucción de los Booleanos:

La constante para la destrucción de los Booleanos:

$$boolrec \in (P \in (bool)Set, P(true), P(false), b \in bool)P(b)$$

La constante para la destrucción de los Booleanos:

$$boolrec \in (P \in (bool)Set, P(true), P(false), b \in bool)P(b)$$

Las reglas de igualdad:

$$boolrec(P, P_t, P_f, true) = P_t \in P(true)$$

 $boolrec(P, P_t, P_f, false) = P_f \in P(false)$

La constante para la destrucción de los Booleanos:

$$boolrec \in (P \in (El(bool))Set, El(P(true)), El(P(false)), b \in El(bool))El(P(b))$$

Las reglas de igualdad:

$$boolrec(P, P_t, P_f, true) = P_t \in P(true)$$

 $boolrec(P, P_t, P_f, false) = P_f \in P(false)$

$$\textit{boolelim} \in (\textit{P} \in \textit{Set}, \textit{P}, \textit{P}, \textit{bool}) \textit{P}$$

$$boolelim \in (P \in Set, P, P, bool)P$$

Se construye como:

$$boolelim := [P \in Set]boolrec([_ \in bool]P)$$

$$boolelim \in (P \in Set, P, P, bool)P$$

Se construye como:

$$boolelim := [P \in Set]boolrec([_ \in bool]P)$$

Corresponde a la primitiva if-then-else.

Definimos al set de un único habitante.

Definimos al set de un único habitante.

Declárense las siguientes constantes:

Declárense las siguientes constantes:

El constructor del conjunto:

Declárense las siguientes constantes:

El constructor del conjunto:

 $unit \in Set$

Declárense las siguientes constantes:

El constructor del conjunto:

 $unit \in Set$

La constante para el constructor:

Declárense las siguientes constantes:

El constructor del conjunto:

 $unit \in Set$

La constante para el constructor:

 $<>\in$ unit

La constante para la selección en unit (destructor):

La constante para la selección en unit (destructor):

$$unitrec \in (P \in (unit)Set, P(<>), u \in unit)P(u)$$

La constante para la selección en unit (destructor):

$$unitrec \in (P \in (unit)Set, P(<>), u \in unit)P(u)$$

La regla de igualdad::

$$unitrec(P,p,<>)=p\in P(<>)$$

$$\textit{unitelim} \in (\textit{P} \in \textit{Set}, \textit{P}, \textit{unit}) \textit{P}$$

$$unitelim \in (P \in Set, P, unit)P$$

Se construye como:

$$unitelim := [P \in Set]unitrec([_ \in unit]P)$$

$$unitelim \in (P \in Set, P, unit)P$$

Se construye como:

$$unitelim := [P \in Set]unitrec([_ \in unit]P)$$

Declárense las siguientes constantes:

Declárense las siguientes constantes:

El constructor del conjunto:

Declárense las siguientes constantes:

El constructor del conjunto:

 $\textit{empty} \in \textit{Set}$

Declárense las siguientes constantes:

El constructor del conjunto:

 $empty \in Set$

No hay constructores

Declárense las siguientes constantes:

El constructor del conjunto:

 $empty \in Set$

No hay constructores La constante para la destrucción:

Declárense las siguientes constantes:

El constructor del conjunto:

$$empty \in Set$$

No hay constructores La constante para la destrucción:

$$emptyrec \in (P \in (empty)Set, e \in empty)P(e)$$

Declárense las siguientes constantes:

El constructor del conjunto:

$$empty \in Set$$

No hay constructores La constante para la destrucción:

$$emptyrec \in (P \in (empty)Set, e \in empty)P(e)$$

No hay reglas de igualdad:

 $emptyelim \in (P \in Set, empty)P$

$$emptyelim \in (P \in Set, empty)P$$

Se construye como:

$$emptyelim := [P \in Set]emptyrec([_ \in empty]P)$$

$$emptyelim \in (P \in Set, empty)P$$

Se construye como:

$$emptyelim := [P \in Set]emptyrec([_ \in empty]P)$$

Corresponde a al principio ex falso quodlibet.

$$emptyelim \in (P \in Set, empty)P$$

Se construye como:

$$emptyelim := [P \in Set]emptyrec([_{-} \in empty]P)$$

Corresponde a al principio ex falso quodlibet.

El conjunto *empty* constituye una representación adecuada de la proposición absurda.

$$emptyelim \in (P \in Set, empty)P$$

Se construye como:

$$emptyelim := [P \in Set]emptyrec([_{-} \in empty]P)$$

Corresponde a al principio ex falso quodlibet.

El conjunto *empty* constituye una representación adecuada de la proposición absurda.

Así como unit de la trivial.

Declárense las siguientes constantes:

Declárense las siguientes constantes:

El constructor del conjunto:

$$nat \in Set$$

Declárense las siguientes constantes:

El constructor del conjunto:

$$nat \in Set$$

Los constructores:

$$0 \in nat$$

$$S \in (nat)nat$$

El destructor genérico:

$$natrec \in (P \in (nat)Set, P(0), (n \in nat, P(n))P(S(n)), n \in nat)P(n)$$

El destructor genérico:

$$natrec \in (P \in (nat)Set, P(0), (n \in nat, P(n))P(S(n)), n \in nat)P(n)$$

Las reglas de igualdad:

$$natrec(P, p_0, p_s, 0) = p_0 \in P(0)$$

 $natrec(P, p_0, p_s, S(n)) = p_s(n, natrec(P, p_0, p_s, n)) \in P(S(n))$

Eliminación no dependiente:

$$natelim \in (P \in Set, P, (nat, P)P, nat)P$$

 $natelim := [P \in Set]natrec([_ \in nat]P)$

Ejemplos de implementaciones:

Ejemplos de implementaciones:

ullet plus \in (nat, nat)nat

Ejemplos de implementaciones:

• $plus \in (nat, nat)nat$

$$plus := [x, y \in nat] natelim(nat, x, [_, z \in nat] S(z), y)$$

Ejemplos de implementaciones:

• plus ∈ (nat, nat)nat

$$plus := [x, y \in nat] natelim(nat, x, [_, z \in nat] S(z), y)$$

• $mult \in (nat, nat)nat$

Ejemplos de implementaciones:

plus ∈ (nat, nat)nat

$$plus := [x, y \in nat] natelim(nat, x, [_, z \in nat] S(z), y)$$

• $mult \in (nat, nat)nat$

$$mult := [x, y \in nat] natelim(nat, 0, [_, z \in nat] plus(z, x), y)$$

Ejemplos de implementaciones:

• plus ∈ (nat, nat)nat

$$plus := [x, y \in nat] natelim(nat, x, [_, z \in nat] S(z), y)$$

mult ∈ (nat, nat)nat

$$mult := [x, y \in nat] natelim(nat, 0, [_, z \in nat] plus(z, x), y)$$

• $pred \in (nat)nat$

Ejemplos de implementaciones:

• $plus \in (nat, nat)nat$

$$plus := [x, y \in nat] natelim(nat, x, [_, z \in nat] S(z), y)$$

mult ∈ (nat, nat)nat

$$mult := [x, y \in nat] natelim(nat, 0, [_, z \in nat] plus(z, x), y)$$

pred ∈ (nat)nat

$$\textit{pred} := [x \in \textit{nat}] \textit{natelim} (\textit{nat}, 0, [z, _ \in \textit{nat}] z, x)$$

Se considera la familia de conjuntos definida por:

Se considera la *familia* de conjuntos definida por: El constructor de conjuntos:

$$prod \in (A, B \in Set)Set$$

Se considera la *familia* de conjuntos definida por: El constructor de conjuntos:

$$prod \in (A, B \in Set)Set$$

El constructor:

$$pair \in (A, B \in Set, A, B)prod(A, B)$$

El destructor:

$$prodrec \in (A, B \in Set, P \in (A \times B)Set,$$

 $(a \in A, b \in B)P(pair(A, B, a, b)), p \in A \times B)P(p)$

El destructor:

$$prodrec \in (A, B \in Set, P \in (A \times B)Set,$$

 $(a \in A, b \in B)P(pair(A, B, a, b)), p \in A \times B)P(p)$

La regla de igualdad:

$$prodrec(A, B, P, f, pair(A, B, a, b)) = f(a, b) \in P(pair(A, B, a, b))$$

El destructor:

$$prodrec \in (A, B \in Set, P \in (A \times B)Set,$$

 $(a \in A, b \in B)P(pair(A, B, a, b)), p \in A \times B)P(p)$

La regla de igualdad:

$$prodrec(A, B, P, f, pair(A, B, a, b)) = f(a, b) \in P(pair(A, B, a, b))$$

Se pueden implementar fst, snd

Se considera la familia de conjuntos definida por:

Se considera la *familia* de conjuntos definida por: El constructor de conjuntos:

$$sum \in (A, B \in Set)Set$$

Se considera la *familia* de conjuntos definida por: El constructor de conjuntos:

$$sum \in (A, B \in Set)Set$$

Los constructores:

$$left \in (A, B \in Set, A)sum(A, B)$$

 $right \in (A, B \in Set, B)sum(A, B)$

bool unit empty nat prod sum

La suma directa sum

El destructor:

$$sumrec \in (A, B \in Set, P \in (A + B)Set,$$
 $(a \in A)P(leftA, B, a), (b \in B)P(right(A, B, b)),$
 $p \in A + B)P(p)$

El destructor:

$$sumrec \in (A, B \in Set, P \in (A + B)Set,$$

 $(a \in A)P(leftA, B, a), (b \in B)P(right(A, B, b)),$
 $p \in A + B)P(p)$

Las regla de igualdad:

$$sumrec(A, B, P, f, g, left(A, B, a)) = f(a) \in P(left(A, B, a))$$

$$sumrec(A, B, P, f, g, right(A, B, b)) = g(b) \in P(right(A, B, b))$$

El destructor:

$$sumrec \in (A, B \in Set, P \in (A + B)Set,$$

 $(a \in A)P(leftA, B, a), (b \in B)P(right(A, B, b)),$
 $p \in A + B)P(p)$

Las regla de igualdad:

$$sumrec(A, B, P, f, g, left(A, B, a)) = f(a) \in P(left(A, B, a))$$

$$sumrec(A, B, P, f, g, right(A, B, b)) = g(b) \in P(right(A, B, b))$$