Illustrations for the Biological Sciences

Scientific illustrations are a great tool for keeping a record of your observations and helping you to remember the important features of an observed specimen because they require that you pay close attention to detail. Simply looking at specimens in a text – book or on a computer screen is less effective in terms of remembering and understanding what you observed.

Objectives: From this activity, you will demonstrate the proper use and handling of light microscopes, how to draw specimens for biological courses, and identify the key features of a specimen.

Directions: Go to http://microplants.zooniverse.org. Use this website and the images/prepared slides provided by your instructor to identify, sketch, and label the following structures: antheridia, archegonia, capsule, gametophyte, gemma, invulucre, median leaf, micro-leaf, protonema, rhizoid, seta/stalk, spores, sporophyte, stem, and thallus.

- 1. While carefully examining your specimen for important features, remember to only draw what you see and not what you think you should see.
- 2. Draw large, clear images only in pencil using distinct, single lines (no shading or sketching; only stippling).
- 3. All drawings must include the following:
 - Title that explains exactly what you are drawing (levels of classification TBD by instructor).
 - Kingdom: Plantae

Phylum: Marchantiophyta Class: Jungermanniopsida Order: Jungermanniales Family: Jubulaceae Genus: Frullania Species: pycnantha

- Labels are to the right of your drawing with straight lines that do not overlap.
- Indicate the magnification at which the specimen was observed.
- Include an annotation briefly describing what cannot be seen in the drawing, but was observed under the microscope (e.g. cells were stained blue).
- Scale bar indicating the length and/or width of your specimen.
- 4. No more than two drawings per page.

Once you have finished drawing and labeling your specimen(s), fill in the comparison chart on the next page. List and describe the similarities and differences between magnification, species, their structures and ideal environments. In the last

column, create your own feature to compare (life cycle, size, scale/measurement, arrangement, etc.)

Comparison Chart

Specimen	Habitat	Structure	Function	

Vocabulary Check
Alteration of generations
Antheridia
Archegonia
Capsule
Gametophyte
Gemma
Invulucre
Median leaf
Micro-leaf
Protonema
Rhizoid
Seta/Stalk
Spores
Sporophyte
Stem
Thallus

Scientific Draw	ings : Biolog	zical Illustrations
-----------------	---------------	---------------------

Student Name:	CATEGORY	45 -4-	40.
Charles Manage	Student Name:		
	Condendary No.		

CATEGORY	15 pts	10 pts	5 pts	0 pts
General Formatting	Unlined paper is used. The	Unlined paper is used. The	Unlined paper is used. The	Lined paper is used AND/O
	drawing is large enough to be	drawing is large enough to be	drawing is a little too large or	the drawing is much too sr
	clear (about 1/2 of a page of	clear (about 1/2 of a page of	a little too small. Student	or much too large.
	typing paper). Student name,	typing paper). Student name,	name, class, and date are in	
	class, and date are in the	class, and date are in the	the lower left corner.	
	lower left corner. There is a	lower left corner.		
	figure caption that describes			
Accuracy	95% or more of the assigned	94-85% of the assigned	94-85% of the assigned	Less than 85% of the assign
	structures are drawn	structures are drawn	structures are drawn	structures are drawn AND,
	accurately and are	accurately and are	accurately and are	labeled accurately.
	recognizable. All assigned	recognizable. All assigned	recognizable. 94-85% of the	
	structures are labeled	structures are labeled	assigned structures are	
	accurately.	accurately.	labeled accurately.	
Drawing - details	All assigned details have been	Almost all assigned details (at	Almost all assigned details (at	Fewer than 85% of the
	added. The details are clear	least 85%) have been added.	least 85%) have been added.	assigned details are prese
	and easy to identify.	The details are clear and easy	A few details are difficult to	OR most details are difficu
		to identify.	identify.	identify.
Drawing - general	Lines are clear and not	There are a few erasures,	There are a few erasures,	There are several erasure:
	smudged. There are almost	smudged lines or stray marks	smudged lines or stray marks	smudged lines or stray ma
	no erasures or stray marks on	on the paper, but they do not	on the paper, which detract	on the paper, which detra
	the paper. Color is used	greatly detract from the	from the drawing OR color is	from the drawing. Overall
	carefully to enhance the	drawing. Color is used	not used carefully. Overall,	quality of the drawing is p
	drawing. Stippling is used	carefully to enhance the	the quality of the drawing is	
	instead of shading. Overall,	drawing. Overall, the drawing	fair.	
Knowledge Gained	When asked about 10 items in	When asked about 10 items in	When asked about 10 items in	When asked about 10 iter
	an unlabeled drawing of the	an unlabeled drawing of the	an unlabeled drawing of the	an unlabeled drawing of t
	same plant or animal, the	same plant or animal, the	same plant or animal, the	same plant or animal, the
	student can identify all of	student can identify 8-9 of	student can identify 6-7 of	student can identify 5 or le
	them accurately.	them accurately.	them accurately.	of them accurately.
				,
		I	1	l

Unit 1: Cell Structure Function

Science + Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
1. What are the key features of an organism and why are they important to its survival? 2. Using visual aids, create a model to map out important features of an organism. 3. Develop a research - based writing strategy to investigates the similarities and differences between organisms. 4. Construct a representative model to explain and design solutions. 5. Engage in argument from evidence. 6. Obtain, evaluate, and communicate information.	LS1: From Molecules to Organisms: Structures and Processes LS1A: Structure and Function LS1.B: Growth and Development of Organisms LS1.D: Informational Processing HS-LS2 Ecosystems: Interactions, Energy, and Dynamics ETS2: Links Among Engineering, Technology, Science, and Society ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World	 Patterns Cause and effect: mechanism and explanation Scale, proportion, and quantity Systems and system models Energy and matter: flows, cycles, and conservation Structure and function Stability and change

NGSS - Content Skills

HS-LS1 From Molecules to Organisms: Structures and Processes

HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.

HS-LS1-4. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms

HS-LS2 Ecosystems: Interactions, Energy, And Dynamics

HS-LS2-1. Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.

HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.

HS-ETS1 Engineering Design

11A Know and apply the concepts, principles, and processes of scientific inquiry.

11B Know and apply the concepts, principles, and processes of technological design.

13A Know and apply accepted practices of science.

13B Know and apply concepts that describe the interaction between science, technology, and society.

CCSS Outcome Statements: Students will be able to ...

WHST.6-8.8 Ask questions to research relationships between species and structures

RST.6-8.7, MP.2 Develop and use models to demonstrate the size, structure, and functions of cells (be able to differentiate different types of cells)

RST.6-8.3, MP.5 Plan and carry out investigations using a microscope to observe, view, identify and classify various structures

RST.6-8.3, MP.5 Analyze and interpret data to reveal patterns in structures and functions of different types of cells (structure and function).

MP.5 Use mathematics and computational thinking to calculate the total magnifications of microscope lenses (scale, proportion, and quantity).

RST.6-8.7 Construct explanations in order to compare and contrast single cell organisms and multicellular organisms.

RST.6-8.1 Engage in argument from evidence to show that all living things are made up of cells.

RST.6-8.9 Obtain, evaluate, and communicate information to demonstrate an understanding that an organism is made up of many individual cells.

Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories.

Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows— within and between systems at different scales.

New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology.