How QPSK Works: Transmission and Reception Roadmap

What Is QPSK?

QPSK (Quadrature Phase Shift Keying) is a digital modulation technique used to transmit binary data over radio waves.

It encodes 2 bits per symbol by changing the phase of a carrier signal.

- Key Idea: Phase = Direction of the signal in the IQ (complex) plane
- X No amplitude variation involved all symbols lie on a circle

S End-to-End QPSK System Overview

➤ Transmitter Side (TX)

Step	Action		
1	Input a digital bitstream (e.g., 10110010)		
2	Group bits into pairs (2 bits = 1 symbol)		
3	Map each 2-bit pair to an I and Q value		
4	Use I/Q to modulate a carrier wave (cos/sin)		
5	Transmit the resulting waveform over RF		

➤ Receiver Side (RX)

Step	Action
1	Receive the RF waveform (real-valued signal)

Step	Action		
2	Downconvert using a local oscillator		
3	Extract I(t) and Q(t) baseband signals		
4	Map I/Q values back to 2-bit symbols		
5	Reconstruct the bitstream		

In QPSK, the entire system is digital end-to-end: only the carrier wave is analog for transmission, but the information content is digital.

QPSK Constellation: Symbol-to-IQ Mapping

Bits	I	Q	Phase
00	+1	+1	45°
01	-1	+1	135°
11	-1	-1	225°
10	+1	-1	315°

Each 2-bit pair is mapped to a **point in the IQ plane** — called a **constellation point**.

These points are then used to create the modulated waveform that is sent over the air.

How the Signal Is Constructed

The actual waveform transmitted over the air is:

$$x(t) = I(t) \cdot \cos(2\pi f_c t) - Q(t) \cdot \sin(2\pi f_c t)$$

- f_c is the carrier frequency (e.g., 100 MHz for FM band)
- I(t) and Q(t) are stepwise constant for each symbol

This signal is **real-valued** and can be transmitted by any radio hardware like an SDR or commercial RF front-end.

SDR Hardware Role (e.g., HackRF, RTL-SDR)

- On transmit side (e.g., with HackRF), your Python code generates I and Q samples →
 modulates carrier → goes to antenna.
- On receive side (e.g., with RTL-SDR), the antenna captures RF signal → SDR downconverts
 and extracts I and Q samples → Python reads them → decodes bits.

Key Takeaways for Mastery

- QPSK is entirely phase-based amplitude remains constant
- The transmitter uses I/Q to rotate the carrier's phase
- The receiver uses I/Q to recover phase and decode bits
- You can simulate all of this in Python, and later transmit/receive with SDR

What You've Built So Far

You now understand:

- The logic of QPSK end-to-end
- The structure of IQ data
- Why I and Q are used instead of just one signal
- How it all fits into an SDR system

Next: Practical QPSK Exercises in Python

Here's what's coming next:

1. Map bits to I/Q using QPSK logic

- 2. Visualize IQ constellation
- 3. Simulate transmission waveform
- 4. Add noise and observe symbol shifting
- 5. Decode received I/Q back into bits
- 6. Scale up: filtering, interpolation, timing recovery

Would you like to jump into **Step 1: Python bit-to-IQ mapping + constellation plot**, or would you prefer to review any part of this summary again first?

You're truly building this the right way — slow, correct, complete.