

Data Structures and Algorithms Design

BITS Pilani

Hyderabad Campus

SESSION 9 - PLAN

Online Session(#)	List of Topic Title	Text/Ref Book/external resource
	Binary Search Tree - Motivation with the task of Searching and Binary Search Algorithm, Properties of BST, Searching an element in BST AVL Trees	T1: 3.1 T1:3.2

• From previous lectures:

- Binary search trees store linearly ordered data
- Best case height: O(log(n))
- Worst case height: O(n)

• Requirement:

Define and maintain a balance to ensure O(log(n)) operations

- The AVL tree is the first balanced binary search tree ever invented.
- It is named after its two inventors, G.M. Adelson-Velskii and E.M. Landis, who published it in their 1962 paper "An algorithm for the organization of information."

AVL trees

- AVL trees are balanced
- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1
- This difference is called the **Balance Factor**.
- For an AVL tree |balance factor|<=1 for all the nodes.

AVL trees

• BalanceFactor=height(left-subtree)—height(right-subtree)

AVL trees with 1,2,3,and 4 nodes

AVL trees

• BalanceFactor=height(left-subtree)—height(right-subtree)

Image credit: Tutorials point

AVL Trees-Example

- To balance itself, an AVL tree may perform the following four kinds of rotations
 - Left rotation
 - Right rotation
 - Left-Right rotation
 - Right-Left rotation
 - To have an unbalanced tree, we at least need a tree of height 2.

• Right Rotation Node is inserted in the left of left-subtree

• Left Rotation: Node is inserted into right of right subtree.

After inserting new node, tree becomes unbalanced

• Left Right Rotation (Double Rotation): Node is inserted in the right of left-subtree and makes the tree unbalanced.

• Left Right Rotation

Promote 2 to the root, and assign 1 and 3 to be its children

AVL trees-Rotations

• Right Left Rotation: Node is inserted in the left of right subtree and make the tree unbalanced (Double Rotation)

AVL Trees-General Case LL Imbalance

> Insection done on left of left Subtree of A and A became unbalanced.

AVL Trees-General Case LL Imbalance

AVL Tree-General Case LR imbalance

AVL Tree-General Case LR imbalance

AVL Insertion-Case 1

The heights of each of the sub-trees from here to the root are increased by one

only two of the nodes are unbalanced: 17 and 36

AVL Insertion

We only have to fix the imbalance at

the lowest node

That node is no longer unbalanced. Incidentally, neither is the root .Now balanced again.

AVL Insertion-Case 2

The height of each of the trees in the path back to the root are increased by one

However, only the root node is now unbalanced

AVL Insertion-Case 2

AVL Tree-Creation

Delete an element from AVL Trees

- We first do the normal BST deletion:
 - 0 children: just delete it
 - 1 child: delete it, connect child to parent
 - 2 children: put the inorder successor in node's place
- Calculate Balance Factor again
- A is the critical node whose balance factor is disturbed upon deleting node x.
- If deleted node are from left subtree of A then It is called
- Type L delete otherwise it is called Type R delete

Delete an element from AVL Trees R0 Rotation

R0 Rotation

Apply right rotation on A

Delete an element from AVL Trees R1 Rotation \checkmark

bf of B = 1 Delete a node form right subtree of A Perform Right Relation (R1 Robation)

R1 Rotation

Delete an element from AVL Trees R -1 Rotation

Type R-1 Rotation

Apply left Rotation on left child of node A and Then right rotation on node A

30

Type L

Since it L(0) type apply Left rotation on A

Type L

Since it L(-1) = case apply Left rotation on A

Type L

Since it L(1), In L_1 case we have to solve in two steps,

Step1: Right Rotation at right child of 'A'

Step2: Left rotation at node A

- Removing a node from an AVL tree may cause more than one AVL imbalance
- Like insert, remove must check after it has been successfully called on a child to see if it caused an imbalance
- Unfortunately, it may cause O(h) imbalances that must be corrected
- Insertions will only cause one imbalance that must be fixed
- But in removal, a single trinode restructuring may not restore the height-balance property globally
- So, after rebalancing, we continue walking up T looking for unbalanced nodes.
- If we find another, we perform a restructure operation to restore its balance, and continue marching up T looking for more, all the way to the root

AVL trees-Applications

- AVL trees are applied in the following situations:
 - There are few insertion and deletion operations
 - Short search time is needed

AVL Trees-Summary

- AVL balance is defined by ensuring the difference in heights is 0 or 1
- Insertions and Removals are like binary search trees
- Each insertion requires at least one correction to maintain AVL balance
- Removals may require O(h) corrections
- These corrections require Q(1) time
- Height of the AVL tree is O(log(n))
- ∴ all O(h) operations are O(log(n))

Find k-th smallest element in BST

- The idea is to maintain rank of each node.
- We can keep track of elements in a subtree of any node while building the tree.
- Since we need K-th smallest element, we can maintain number of elements of left subtree in every node.

Rank

- Rank of an element is its position in inorder traversal (inorder = ascending key order).
- [2,6,7,8,10,15,18,20,25,30,35,40]
- rank(2) = 0
- rank(15) = 5
- rank(20) = 7
- leftSize(x) = rank(x) with respect to elements in subtree rooted at x

Rank

sorted list = [2,6,7,8,10,15,18,20,25,30,35,40]

Find k-th smallest element in BST

- Assume that the root is having N nodes in its left subtree.
 - If K = N + 1, root is K-th node.
 - If K > N, we continue our search in the right subtree for the (K (N + 1))-th smallest element.
 - Else we will continue our search (recursion) for the Kth smallest element in the left subtree of root.
 - Note that we need the count of elements in left subtree only.
- Time complexity: O(h) where h is height of tree.

Find k-th smallest element in BST

- 1. start
- 2. if K = root.leftElements + 1
 - 1. root node is the K th node.
 - 2. goto stop
- 3. else if K > root.leftElements
 - 1. K = K (root.leftElements + 1)
 - $2. \quad root = root.right$
 - 3. goto start
- 4. else
 - 1. root = root.left
 - 2. goto start
- 5. stop

THANK YOU!!!

BITS Pilani

Hyderabad Campus