

SC2001/CE2101/CZ2101: Algorithm Design and Analysis

Introduction to Sorting

Instructor: Assoc. Prof. ZHANG Hanwang

Courtesy of Dr. Ke Yiping, Kelly's slides

Learning Objectives

At the end of this lecture, students should be able to:

- Define what sorting is
- Explain why we learn sorting
- Analyze the objective and evaluation of sorting algorithms

Definition (sorting in ascending order):

Given a set of records r₁, r₂, ..., r_n with key values k₁, k₂,..., k_n, arrange records in order s such that records r_{s1}, r_{s2},..., r_{sn} have keys with property k_{s1} ≤ k_{s2} ≤ ... ≤ k_{sn}.

Definition (sorting in ascending order):

Given a set of records r₁, r₂, ..., rn with key values k₁, k₂,..., kn, arrange records in order s such that records rs1, rs2,..., rsn have keys with property ks1 ≤ ks2 ≤ ... ≤ ksn.

Definition (sorting in ascending order):

Given a set of records r₁, r₂, ..., r_n with key values k₁, k₂,..., k_n, arrange records in order s such that records r_{s1}, r_{s2},..., r_{sn} have keys with property k_{s1} ≤ k_{s2} ≤ ... ≤ k_{sn}.

Definition (sorting in ascending order):

Given a set of records r₁, r₂, ..., r_n with key values k₁, k₂,..., k_n, arrange records in order s such that records r_{s1}, r_{s2},..., r_{sn} have keys with property k_{s1} ≤ k_{s2} ≤ ... ≤ k_{sn}.

Definition (sorting in ascending order):

Given a set of records r₁, r₂, ..., r_n with key values k₁, k₂,..., k_n, arrange records in order s such that records r_{s1}, r_{s2},..., r_{sn} have keys with property k_{s1} ≤ k_{s2} ≤ ... ≤ k_{sn}.

Definition (sorting in ascending order):

Given a set of records r₁, r₂, ..., r_n with key values k₁, k₂,..., k_n, arrange records in order s such that records r_{s1}, r_{s2},..., r_{sn} have keys with property k_{s1} ≤ k_{s2} ≤ ... ≤ k_{sn}.

Definition (sorting in ascending order):

Given a set of records r₁, r₂, ..., r_n with key values k₁, k₂,..., k_n, arrange records in order s such that records r_{s1}, r_{s2},..., r_{sn} have keys with property k_{s1} ≤ k_{s2} ≤ ... ≤ k_{sn}.

Things must be kept in some order if we want to find them quickly.

- Things must be kept in some order if we want to find them quickly.
- How to arrange things in order? Sorting algorithms.
- Sorting is a basic building block for many algorithms.

Reference: T. (2015, April 19). Binary search in a sorted array. Retrieved May 18, 2016, from https://commons.wikimedia.org/wiki/File:Binary_search_into_array.png.

Things must be kept in some order if we want to find them quickly.

- How to arrange things in order? Sorting algorithms.
- Sorting is a basic building block for many algorithms.

- Most thoroughly studied problem in Computer Science.
- To learn ideas in Algorithm Design derived from techniques in sorting.

Example: Disjoint Sets

Problem:

Determine whether two sets (both of size *n*) are disjoint.

Example: Disjoint Sets

Problem:

Determine whether two sets (both of size n) are disjoint.

 Solution 1: Compare each element of the 1st set with each element of the 2nd set. That is, n² comparisons.

Example: Disjoint Sets

Problem:

Determine whether two sets (both of size *n*) are disjoint.

- **Solution 1:** Compare each element of the 1st set with each element of the 2nd set. That is, n^2 comparisons.
- Solution 2:

Step 1: We first sort the first set into ascending order. This takes $O(n \lg n)$ effort using Mergesort or Heapsort.

Step 2: For each element in the 2nd set, we use Binary Search to find it in the 1st set. This takes $O(n \lg n)$ time.

Solution 1: $O(n^2)$

Solution 2: $O(n \lg n)$

Savings:

n	=	64	128	256	512
n ²	=	4,096	16,384	65,536	262,144
<i>n</i> lg <i>n</i>	=	384	896	2,048	4,608

The data items to be sorted:

- Given a (very large) list of records.
- Each record has the following form: key; rest info of record:

```
class ALIST {
    KeyType key;
    DataType data;
};
```

- Key domain is an ordered set.
- Objective: To arrange records in 'ascending' or 'descending' order.

The data items to be sorted:

- Given a (very large) list of records.
- Each record has the following form: key; rest of record:

```
class ALIST {
    KeyType key;
    DataType data;
};
```

- Key domain is an ordered set.
- Objective: To arrange records in 'ascending' or 'descending' order.

- Sorting can be classified into internal sorting and external sorting.
 - We focus on internal sorting only,
 i.e., all records are in (high speed) main memory during sorting.
- Sorting involves two basic actions:
 - 1) key comparisons between two records
 - 2) swapping records around
- Goal: Use minimum working space and do as few key comparisons as possible.

Summary

- Sorting is to arrange a set of records so that their key values are in ascending or descending order.
- It is important to learn sorting, because:
 - Sorting has important applications
 - Ideas of sorting can be used for other algorithms
- Objective is to design sorting algorithms with:
 - Minimum usage of memory
 - Minimum number of key comparisons or swaps