第一可算公理と点列連続と連続

1

定義 1.1. X を集合とする. $\{\emptyset\} \cup \{U \subset X \mid U^c$ が可算集合 $\}$ なる位相を可算補集合位相という. ここでは \mathcal{O}_{cc} で表す.

次の事実が知られている. 証明はここには書かない.

命題 1.2. X を不可算集合とすると, (X, \mathcal{O}_{cc}) はハウスドルフ空間ではないし, 第一可算公理を満たさない.

定義 1.3. X,Y を位相空間, $f:X\to Y$ とする. $x\in X$ に収束する任意の点列 x_n に対して, Y の点列 $f(x_n)$ が f(x) に収束するとき, f は $x\in X$ で点列連続であるという.

命題 1.4. X を第一可算公理をみたす位相空間, $x \in X$ とする. x の可算基本近傍系 $\mathcal{N} = \{E_n\}$ で

$$E_1 \supset E_2 \supset E_3 \supset \cdots$$

を満たすものが存在する.

証明. 好きにxの可算基本近傍系 $\check{N} = \{\check{E}_n\}$ をとる.

$$E_1 := \check{E}_1, \quad E_2 := \check{E}_1 \cap \check{E}_2, \quad E_3 := \check{E}_1, \cap \check{E}_2 \cap \check{E}_3$$

てな感じでつくればよい.

命題 1.5. X,Y を位相空間, $f:X\to Y$ とする. X が第一可算公理をみたすとする. f は $x\in X$ で点列連続であるならば, $x\in X$ で連続である.

証明. x で連続でないと仮定する. f(x) の近傍 N_y で、逆像が x の近傍でないものをとる. x の可算基本近傍 系 $\{E_n\}$ で、 $E_1 \supset E_2 \supset E_3 \supset \cdots$ であるものをとっておく. 任意の n に対して

$$E_n \not\subset f^{-1}(N_u)$$

であるので, $x_n \in X$ で $x_n \in E_n, x_n \notin f^{-1}(N_y)$ である点列 $\{x_n\}$ がとれる. x の任意の開近傍 U_x に対して十分大きい N で

 $E_N \subset U_x$

となるものがとれることに注意すると, $x_n \to x$ である. 一方で $f(x_n) \notin N_y$ であるので, y に収束しない.

例 1.6. 始域には補集合有限位相を定めたユークリッド空間 $X=(\mathbb{R},\mathcal{O}_{cc})$, 終域には標準的な位相を定めたユークリッド空間 $Y=(\mathbb{R},\mathcal{O})$ を考える. ただの恒等写像

$$f(x) = x$$

を考える.

 $\underline{\text{claim:}}\ f$ は任意の点で不連続である.

(::) 連続な点が存在するとし、それを $x\in X$ とする。試しに $f(x)=x\in Y$ の近傍 [x-r,x+r) をとる。逆像は [x-r,x+r) なのであるが、これは補集合が有限でないので開集合を含むことはあり得ない。よって矛盾する。

また,

<u>claim</u>: x_n を X の点列とする. $x_n \to x \Rightarrow f(x_n) \to f(x)$

(::) $x_n \to x$ なので、試しに $U_x \coloneqq \mathbb{R} \setminus \{x_n \mid n \in \mathbb{N}\}$ という開集合を考えると、十分大きい $N \in \mathbb{N}$ で $n \geq N \Rightarrow x_n \in U_x$ となるものが取れる.従って $x_n = x$ ($\forall n \in \mathbb{N}$)である.であるので、 $f(x_n) = f(x)$ となる.

第一可算公理をみたさない場合,必ずしも点列連続性から連続性はいえない.