MA 101 (Mathematics - I) Tutorial Problems 5: (Differentiation 3,4,5a)

- 1. Find the following by using L'Hôpital's Rules, whenever needed. Do not forget to check the conditions needed for using L'Hôpital's Rules.
 - (i) $\lim_{x \to 0+} \left(\frac{1}{x} \frac{1}{\operatorname{Arctan} x} \right)$ (ii) $\lim_{x \to \infty} \frac{x + \ln x}{x \ln x}$ (iii) $\lim_{x \to 0+} (1 + 3/x)^x$ (iv) $\lim_{x \to \infty} x^{1/x}$

- 2. Let $f: \mathbb{R} \to \mathbb{R}$ have second derivative at $c \in \mathbb{R}$. Prove that $\lim_{h \to 0} \frac{f(c+h) 2f(c) + f(c-h)}{h^2} = f''(c)$. Give example of a function $f: \mathbb{R} \to \mathbb{R}$ and a point $c \in \mathbb{R}$ for which the above limit exists, but f''(c) does not exist.
- 3. For x > 0 show that $|(1+x)^{1/3} (1+\frac{1}{3}x-\frac{1}{9}x^2)| < (5/81)x^3$. Use this inequality to approximate $\sqrt[3]{1.2}$ and $\sqrt[3]{2}$, and find the bounds for errors in the estimations.
- 4. Find the Taylor series of $\sin x \cos 3x$ about 0. What is the domain of convergence?
- 5. (a) Show that for $n \ge 0$, $\lim_{x \to 0} \frac{e^{-1/x^2}}{r^n} = 0$.
 - (b) Use induction to prove Leibniz's rule for the *n*-th derivative of a product:

$$(fg)^{(n)}(x) = \sum_{k=0}^{n} f^{(n-k)}(x)g^{(k)}(x).$$

(c) Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-1/x^2}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Show that f is infinitely differentiable on \mathbb{R} and find $f^{(n)}(0)$ for $n \in \mathbb{N}$.

- (d) What is the Taylor series of f about 0, and on what interval is it defined?
- (e) Does the remainder term for f at 0 in Taylor's theorem converge to zero as $n \to \infty$?
- (f) On what set does the Taylor series converge to f?
- 6. Suppose $a_n \to a$, $b_n \to b$, and a < b. Suppose (c_n) is given by $c_{2n-1} = a_n$, $c_{2n} = b_n$ for $n \in \mathbb{N}$. What can you say about $\limsup c_n$ and $\liminf c_n$? Justify your claim. (Note that b can be ∞ and a can be $-\infty$.)