Sujet IMT-4

I - Lois de de Morgan

Les règles de la logique intuitionniste :

Axiome	Affaiblissement
$\overline{\Gamma,A\vdash A}$ (Ax)	$\frac{\Gamma \vdash A}{\Gamma, B \vdash A} \text{ (Aff)}$

Symbole	Règle d'introduction	Règle d'élimination
Т/⊥	$\overline{\Gamma \vdash \top}$ \top_i	$rac{\Gamma dash \bot}{\Gamma dash arphi} \perp_{f \epsilon}$
Г	$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \ \neg_{i}$	$\frac{\Gamma \vdash \varphi \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} \neg_{\acute{e}}$
^	$\frac{\Gamma \vdash \varphi_1 \qquad \Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \land \varphi_2} \land_{i}$	$ \frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_1} \land_{\acute{e},d} \frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_2} \land_{\acute{e},g} $
V	$\frac{\Gamma \vdash \varphi_1}{\Gamma \vdash \varphi_1 \lor \varphi_2} \lor_{i,g} \qquad \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \lor \varphi_2} \lor_{i,d}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
→	$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \to_{i}$	$\frac{\Gamma \vdash \varphi \to \psi \Gamma \vdash \varphi}{\Gamma \vdash \psi} \to_{\acute{e}}$

- 1. Deriver le séquent suivant à l'aide des règles de la logique intuitionniste (ci-dessus).
 - $\neg (A \lor \neg A) \vdash \neg A$
- 2. Montrer que la regle RAA, permet de dériver le séquent du Tiers-exclu : $\vdash A \lor \neg A$

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A}(\mathsf{RAA})$$

On ajoute à la logique intuitionniste l'axiome du Tiers-exclu:

$$\frac{}{\vdash A \vee \neg A}(\mathsf{TE})$$

3. Montrer que $\neg(A \land B) \vdash \neg A \lor \neg B$ est dérivable.

Penser à tourner la feuille...

II - Langages

Définition: Soit L un langage sur Σ , on définit la racine carrée de L, $\sqrt{L}=\{u\in\Sigma^*|u.u\in L\}$ On définit l'automate A_0 suivant :

0. Donner $\sqrt{\mathcal{L}(A_0)}$.

Définition: Soit $A=(Q,\Sigma,q_0,F,\delta)^1$ un automate fini déterministe complet. On définit $\forall q\in Q$, les automates finis A_q tels que:

- les états de A_q sont les couples $\left(q_i,q_j\right)\in Q^2$
- l'état initial de A_q est (q_0,q)
- les états terminaux de A_q sont les $\left(q,q_f\right), \forall q_f \in F$
- On a pour tout les A_q , la même fonction de transition $\delta_2:\left(\left(q_i,q_j\right),a\right) o \left(\delta(q_i,a),\delta\left(q_j,a\right)\right)$
- 1. Caractériser simplement $\mathcal{L}\big(A_q\big)$ (quels sont les mots appartenant à $\mathcal{L}\big(A_q\big)$?).
- 2. Montrer que la racine carré d'un langage rationnel est rationnelle.

Pour $q, q' \in Q$ et $a \in \Sigma$, on rappelle que :

$$\delta(q, a) = q' \Leftrightarrow q \stackrel{a}{\rightarrow} q'$$

De plus pour $w=w_1...w_n\in \Sigma^*$ un mot fini quelconque (dont w_i sont les lettres):

$$\delta^*(q, w) = q' \Leftrightarrow q \left(\stackrel{*}{\rightarrow}\right)^w q'$$

$$\Leftrightarrow \exists (q_1,q_{n-1}) \in Q^n, q \overset{w_1}{\rightarrow} q_1 \overset{w_2}{\rightarrow} q_2...q_{n-1} \overset{w_n}{\rightarrow} q'$$

IMT-4 2 of 2

¹Rappel: Fonction de transition δ .