1 Book 8.4: Resource Allocation

1.1 Mathematical Formulation

Given an input of n processes, $P = \{p_1, p_2, ..., p_n\}$, and a set of m resources, $R = \{r_1, r_2, ..., r_m\}$, each process requires a set of resources $R^*, R^* \subseteq R$. Each process in required active iff every resource $r \in R^*$ is allocated to it, however each resource can only be used once. Given a number k>0, determine if resources $\in R$ can be allocated so that at least k processes $\in P$ will be active. For the following cases, give a polynomial algorithm or proove it is NP-Complete.

- 1. General Case i.e. k>0
- 2. k = 2
- 3. Each resource can be allocated a maximum of 2 times

1.2 Solution

Important Confusing Data Structures:

• type **name**: explaination

The main functionality of

Algorithm 1 Method

procedure NAME(..,..,)

1.3 Correctness

Proposition 1.

propose

Proof.

Using the fact that

1.4 Analysis

For the following analysis, we will say that...

Proposition 2. The space complexity of this algorithm is O(...)

Proof.

This is due to the fact that all of our data is stored in data structures:

• <u>cause</u>: reason \implies complexity

Collaborators: Page 1 of ??

Giving us a space complexity of $\mathbf{O}(..)$

Proposition 3. The time complexity of this algorithm is O(..)

Proof. This is the case because our algorithm...

Giving us a time complexity of $\mathbf{O}(..)$

1.5 An Example

Page 2 of ??