Curso 2017-18,

Segundo cuatrimestre

Teorema 1. Sea $f:]\alpha, \beta[\longrightarrow \mathbb{R}$ una función continua y sea $F:]\alpha, \beta[\longrightarrow \mathbb{R}$ dada por

$$F(x) := \int_{x_0}^x f(t) \ dt,$$

donde $x_0 \in]\alpha, \beta[$. Son equivalentes:

- 1. f es impropiamente integrable.
- 2. F tiene límite en α y en β .

Además, en tal caso, se tiene la identidad

$$\int_{\alpha}^{\beta} f = \lim_{x \to \beta} F(x) - \lim_{x \to \alpha} F(x).$$

Demostración:

 $(2)\Rightarrow(1)$. Para demostrar que f es impropiamente integrable, tomamos $\{a_n\}\to\alpha, \{b_n\}\to\beta$ dos sucesiones en $]\alpha,\beta[$, y lo que tenemos que demostrar es que la sucesión

$$\left\{ \int_{a_n}^{b_n} f \right\}$$

es convergente. Para ello, notemos que dado $n \in \mathbb{N}$, tenemos que

$$\int_{a_n}^{b_n} f = F(b_n) - F(a_n).$$

Ahora, por la hipótesis (2) y dado que $\{a_n\} \to \alpha$ deducimos que $\{F(a_n)\} \to \lim_{x \to \alpha} F(x)$. Análogamente $\{F(b_n)\} \to \lim_{x \to \beta} F(x)$. Como consecuencia del álgebra de límites tenemos que

$$\left\{ \int_{a_n}^{b_n} f \right\} = \left\{ F(b_n) - F(a_n) \right\} \to \lim_{x \to \beta} F(x) - \lim_{x \to \alpha} F(x).$$

Por la arbitrariedad de las sucesiones $\{a_n\}, \{b_n\}$ deducimos que f es impropiamente integrable en $]\alpha, \beta[$ y, además, se tiene la igualdad

$$\int_{\alpha}^{\beta} f = \lim_{x \to \beta} F(x) - \lim_{x \to \alpha} F(x).$$

 $(1)\Rightarrow(2)$. Probemos que F tiene límite en α , siendo la demostración para β totalmente análoga. Para ello tomamos $\{a_n\} \to \alpha$ una sucesión de puntos de $]\alpha, \beta[$. Es suficiente demostrar que $\{F(a_n)\}$ es convergente (¿por qué?), lo cual es equivalente a demostrar que dicha sucesión cumple la condición de Cauchy.

Para verlo, tomamos $\varepsilon > 0$ arbitrario. Por la caracterización de la integrabilidad impropia vista en clase tenemos que existen c < d puntos de $[\alpha, \beta]$ de forma que

$$\alpha < a < c < d < b < \beta \Rightarrow \left| \int_{\alpha}^{\beta} f - \int_{a}^{b} f \right| < \frac{\varepsilon}{2}.$$

Ahora fijamos $d < b < \beta$ y, como $\{a_n\} \to \alpha$, deducimos la existencia de $m \in \mathbb{N}$ de manera que

$$n \ge m \Rightarrow \alpha < a_n < a$$
.

Ahora, fijados $n, p \geq m$, tenemos que

$$|F(a_n) - F(a_q)| = \left| \int_{a_q}^{a_n} f \right|$$

$$= \left| \int_{a_q}^b f - \int_{a_p}^b f \right|$$

$$= \left| \int_{a_q}^b f - \int_{\alpha}^{\beta} f + \int_{\alpha}^{\beta} - \int_{a_p}^b f \right|$$

$$\leq \left| \int_{a_q}^b f - \int_{\alpha}^{\beta} f \right| + \left| \int_{\alpha}^{\beta} - \int_{a_p}^b f \right|$$

$$< \varepsilon$$

Recapitulando, dado $\varepsilon > 0$ fijo hemos encontrado un natural m de manera que si $n, p \ge m$ entonces $|F(a_n) - F(a_p)| < \varepsilon$. Esto muestra la condición de Cauchy y concluye el teorema por la discusión anterior.