Bayesian Real-time Dynamic Programming

Scott Sanner

Robby Goetschalckx

Kurt Driessens

Guy Shani

NICTA & ANU

K.U. Leuven

K.U. Leuven

MSR → Ben Gurion Univ.

- MDPs
 - Dynamic Programming (DP)
 - Real-time DP
- Caveats of RTDP and variants
 - Value of information to the rescue!
- Results

Running Example: Racetrack MDP

State:

- -(x,y) position
- -(x',y') velocity

Action:

-(x'',y'') acceleration

Objective:

 Least-cost path from start to finish

MDP Solution

• Find a policy $\pi = \pi^*$ that maximizes:

$$V^{\pi}(s) = E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \cdot r_t \middle| s = s_0 \right]$$

MDP Solution

• Find a policy $\pi = \pi^*$ that maximizes:

$$V^{\pi}(s) = E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \cdot r_t \middle| s = s_0 \right]$$

Solve via dynamic programming (DP)

Single DP Backup

Graphical view:

Current estimate

Synchronous DP Updates (VI)

Asynchronous DP Updates

Or... can update states in any order:

Still provably converges!

Question:

how to order updates to converge quickly?

Real-time Dynamic Programming

Reachability and drawbacks of synch. DP (VI)

- Better to think of *relevance* to optimal policy
- RTDP focuses async. updates on relevant states!

Drawback of RTDP

- Focus on states with highest value uncertainty
 - i.e., highest bound gapUnconvergedConverged

- RTDP may search where already converged

RTDP Improvements

- Labeled RTDP (Bonet & Geffner, 03)
 - label states when convergence detected
 - don't update converged states in future!
- Bounded RTDP (McMahon, Likhachev, Gordon, 05)
 - prioritize states with highest value uncertainty
 - "soft LRTDP"
 - "forward prioritized sweeping"

How to compute uncertainty?

Pollman error?

Value Uncertainty via Monotone Bounds

Initialize two value functions

- Do DP updates for $V_h^t(s)$ and $V_l^t(s)$
 - Provides strict value bounds at all stages!

Bounded RTDP

- Focus DP on least converged states
 - i.e., highest bound gap

Unconverged

Converged

- May search where value unlikely to change

Bayesian RTDP

Asychronous DP updates where they count!

Focusing Async. DP Updates

Examine Q(s,a)

$$-Q(s,a) = p_{1a}V(s_1) + ... + p_{ia}V(s_i) + ... + p_{ka}V(s_k) + R$$

- Plug in $V_{l}(s_{i})$ and $V_{h}(s_{i})$
 - Get: $[Q_{il}(s,a), Q_{ih}(s,a)]$
- Update state s_i?
 - No. Why?

Harder Cases

- Update state s_i?
 - Maybe.
 - Why?

- Here?
 - Probably.
 - Why?

Bayesian Formalization I

- Assume uniform belief distribution over bounds
- Calculate expected Q-values w.r.t. beliefs

$$E[Q_{a,s}|\vec{\theta}] = R(s,a) + \int_{\vec{v}} \prod_{s'} P(v_{s'}|\vec{\theta}) \left[\vec{\Gamma}_{a,s} \cdot \vec{v} \right] d\vec{v}$$
$$= R(s,a) + \vec{\Gamma}_{a,s} \cdot \frac{\vec{V}_h + \vec{V}_l}{2}$$

$$E[Q_{a,s}|\vec{\theta}, v_t^*] = R(s, a) + \int_{\vec{v}} \delta_{v_t^*}(v_t) \prod_{s' \neq t} P(v_{s'}|\vec{\theta}) \left[\vec{\Gamma}_{a,s} \cdot \vec{v} \right] d\vec{v}$$

$$= E[Q_{a,s}|\vec{\theta}] - T(s, a, t) \left(\frac{V_h(t) + V_l(t)}{2} \right) + \underbrace{T(s, a, t)}_{d_{(a,s,t)}} v_t^*$$

Bayesian Formalization II

What is gain of exactly knowing v_t*

$$Gain_{s,t,a,a*}(v_t^*) = \max \left(0, E[Q_{a,s}|\vec{\theta}, v_t^*] - E[Q_{a*,s}|\vec{\theta}, v_t^*]\right)$$

EVPI = expected gain of exactly knowing v_t*

$$VPI_{s,a^*}(t) = \max_{a \neq a^*} \int_{v_t^* = -\infty}^{\infty} P(v_t^* | \vec{\theta}) Gain_{s,t,a,a^*}(v_t^*) dv_t^*$$

$$= \frac{1}{V_h(t) - V_l(t)} \max_{a \neq a^*} \int_{v_t^* = V_l(t)}^{V_h(t)} Gain_{s,t,a,a^*}(v_t^*) dv_t^*$$

Expected VPI: Graphical View

What is potential gain of knowing v_t better?

Key Observations

VPI not only important for directing search

- Also important for early trial termination
 - terminate with some prob. if VPI < threshold</p>
- And efficient to compute
 - Complexity of Bellman backup to compute VPI for all successor states!

Empirical Evaluation

 Used modified Racetrack domains from (Barto, Bradtke, Singh, 1993; Smith, Simmons, 2006)

Racetrack Results

better anytime policy performance, fewer visited states

Scaling Performance

performance gap widens as problem size grows

Bayesian RTDP

= more bang, for your backup

Additional Slides

Use Empirical Value Distribution?

- Sketch of empirical distribution
 - Mixture of 3 normal distributions

- Distribution is changing over time
 - No single distribution seems to improve performance (I've spent a long time trying)

Drawback of *Bound Gap* Heuristic

• Bound gap: $V_h^0(s) - V_l^0(s)$ commonly used to prioritize search

 No point in reducing v_t uncertainty, from the perspective of s... it won't change the policy!

Aside

- MDPs don't work
 - Don't confuse model with the solution!

many irrelevant states in these problems

- What researchers mean to imply is that...
 - "Heuristic search methods often outperform value or policy iteration in specific domains (e.g. PPDDL)"
- Async. DP offer best of both worlds (RTDP, LAO*)
 - Convergence / optimality in limit!
 - Can apply search heuristics