SEQUENCE LISTING

```
<110> Rosen, Craig A.
      Haseltine, William A.
<120> Albumin Fusion Proteins
<130> PF548
<140> Unassigned
<141> 2001-04-12
<150> 60/229,358
<151> 2000-04-12
<150> 60/256,931
<151> 2000-12-21
<150> 60/199,384
<151> 2000-04-25
<160> 72
<170> PatentIn Ver. 2.1
<210> 1
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer useful to clone human growth hormone cDNA
<400> 1
cccaagaatt cccttatcca ggc
                                                                    23
<210> 2
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer useful to clone human growth hormone cDNA
<400> 2
gggaagctta gaagccacag gatccctcca cag
                                                                    33
<210> 3
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA fragments
with non-cohesive ends.
```

```
<400> 3
       gataaagatt cccaac
                                                                             16
       <210> 4
       <211> 17
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> misc_structure
       <223> synthetic oligonucleotide used to join DNA fragments
       with non-cohesive ends.
       <400> 4
       aattgttggg aatcttt
                                                                             17
       <210> 5
       <211> 17
       <212> DNA
       <213> Artificial Sequence
IJ
       <220>
1.5.
       <221> misc_structure
ļ.L
       <223> synthetic oligonucleotide used to join DNA fragments
4.4
       with non-cohesive ends.
13
       <400> 5
       ttaggcttat tcccaac
                                                                             17
ļ. <u>.</u>2.
E III
       <210> 6
13
       <211> 18
1.1
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> misc_structure
       <223> synthetic oligonucleotide used to join DNA fragments
       with non-cohesive ends.
       <400> 6
       aattgttggg aataagcc
                                                                             18
       <210> 7
       <211> 24
       <212> PRT
       <213> Artificial Sequence
       <220>
       <221> SITE
       <222> 1)..(19)
       <223> invertase leader sequence
       <220>
```

<221> SITE <222> 20)..(24)

```
<223> first 5 amino acids of mature human serum albumin
 <400> 7
 Met Leu Leu Gln Ala Phe Leu Phe Leu Leu Ala Gly Phe Ala Ala Lys
 Ile Ser Ala Asp Ala His Lys Ser
              20
<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 8
gagatgcaca cctgagtgag g
                                                                    21
<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 9
gatcctgtgg cttcgatgca cacaaga
                                                                    27
<210> 10
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 10
ctcttgtgtg catcgaagcc acag
                                                                    24
<210> 11
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
```

ij

Ann Ann Ann

į, į

ļ.

į

4.3

1.5

100 Miles

ž, ž

```
મુશ્યા તુમાં મુશ્યા પાસ્તુ હતા.
પાસ્તા તામ માત્રી હતા. માર્ચ માર્ચી માર્ચી અનીક માર્ચીક માર્ચી માર્ચી માર્ચી હતા. માર્ચી માર્ચી હતા.
```

```
fragments with non-cohesive ends.
<400> 11
 tgtggaagag cctcagaatt tattcccaac
                                                                    30
<210> 12
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 12
aattgttggg aataaattct gaggctcttc c
                                                                    31
<210> 13
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 13
ttaggcttag gtggcggtgg atccggcggt ggtggatctt tcccaac
                                                                    47
<210> 14
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 14
aattgttggg aaagatccac caccgccgga tccaccgcca cctaagcc
                                                                    48
<210> 15
<211> 62
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 15
ttaggcttag gcggtggtgg atctggtggc ggcggatctg gtggcggtgg atccttccca 60
```

```
<210> 16
<211> 63
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_structure
<223> synthetic oligonucleotide used to join DNA
fragments with non-cohesive ends.
<400> 16
aattgttggg aaggatccac cgccaccaga tccgccgcca ccagatccac caccgcctaa 60
<210> 17
<211> 1782
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(1755)
<400> 17
gat gca cac aag agt gag gtt gct cat cgg ttt aaa gat ttg gga gaa
                                                                    48
Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu
                                                           15
gaa aat ttc aaa gcc ttg gtg ttg att gcc ttt gct cag tat ctt cag
                                                                    96
Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln
             20
                                                      30
cag tgt cca ttt gaa gat cat gta aaa tta gtg aat gaa gta act gaa
                                                                    144
Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu
         35
ttt gca aaa aca tgt gtt gct gat gag tca gct gaa aat tgt gac aaa
                                                                    192
Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys
     50
                         55
tca ctt cat acc ctt ttt gga gac aaa tta tgc aca gtt gca act ctt
                                                                    240
Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu
 65
                     70
cgt gaa acc tat ggt gaa atg gct gac tgc tgt gca aaa caa gaa cct
                                                                   288
Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro
                 85
                                                          95
gag aga aat gaa tgc ttc ttg caa cac aaa gat gac aac cca aac ctc
                                                                   336
Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu
            100
                                                     110
ccc cga ttg gtg aga cca gag gtt gat gtg atg tgc act gct ttt cat
                                                                   384
Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His
        115
                                                 125
```

gac Asp	aat Asn 130	Glu	gag Glu	aca Thr	ttt Phe	ttg Leu 135	aaa Lys	aaa Lys	tac Tyr	tta Leu	tat Tyr 140	gaa Glu	att Ile	gcc Ala	aga Arg	432
aga Arg 145	cat His	cct Pro	tac Tyr	ttt Phe	tat Tyr 150	gcc Ala	ccg Pro	gaa Glu	ctc Leu	ctt Leu 155	ttc Phe	ttt Phe	gct Ala	aaa Lys	agg Arg 160	480
tat Tyr	aaa Lys	gct Ala	gct Ala	ttt Phe 165	aca Thr	gaa Glu	tgt Cys	tgc Cys	caa Gln 170	gct Ala	gct Ala	gat Asp	aaa Lys	gct Ala 175	gcc Ala	528
tgc Cys	ctg Leu	ttg Leu	cca Pro 180	aag Lys	ctc Leu	gat Asp	gaa Glu	ctt Leu 185	cgg Arg	gat Asp	gaa Glu	Gly	aag Lys 190	gct Ala	tcg Ser	576
tct Ser	gcc Ala	aaa Lys 195	cag Gln	aga Arg	ctc Leu	aaa Lys	tgt Cys 200	gcc Ala	agt Ser	ctc Leu	caa Gln	aaa Lys 205	ttt Phe	gga Gly	gaa Glu	624
aga Arg	gct Ala 210	ttc Phe	aaa Lys	gca Ala	tgg Trp	gca Ala 215	gtg Val	gct Ala	cgc Arg	ctg Leu	agc Ser 220	cag Gln	aga Arg	ttt Phe	ccc Pro	672
aaa Lys 225	gct Ala	gag Glu	ttt Phe	gca Ala	gaa Glu 230	gtt Val	tcc Ser	aag Lys	tta Leu	gtg Val 235	aca Thr	gat Asp	ctt Leu	acc Thr	aaa Lys 240	720
gtc Val	cac His	acg Thr	gaa Glu	tgc Cys 245	tgc Cys	cat His	gga Gly	gat Asp	ctg Leu 250	ctt Leu	gaa Glu	tgt Cys	gct Ala	gat Asp 255	gac Asp	768
agg Arg	gcg Ala	gac Asp	ctt Leu 260	gcc Ala	aag Lys	tat Tyr	atc Ile	tgt Cys 265	gaa Glu	aat Asn	cag Gln	gat Asp	tcg Ser 270	atc Ile	tcc Ser	816
agt Ser	aaa Lys	ctg Leu 275	aag Lys	gaa Glu	tgc Cys	tgt Cys	gaa Glu 280	aaa Lys	cct Pro	ctg Leu	ttg Leu	gaa Glu 285	aaa Lys	tcc Ser	cac His	864
tgc Cys	att Ile 290	gcc Ala	gaa Glu	gtg Val	gaa Glu	aat Asn 295	gat Asp	gag Glu	atg Met	cct Pro	gct Ala 300	gac Asp	ttg Leu	cct Pro	tca Ser	912
tta Leu 305	gct Ala	gct Ala	gat Asp	ttt Phe	gtt Val 310	gaa Glu	agt Ser	aag Lys	gat Asp	gtt Val 315	tgc Cys	aaa Lys	aac Asn	tat Tyr	gct Ala 320	960
gag Glu	gca Ala	aag Lys	gat Asp	gtc Val 325	ttc Phe	ctg Leu	ggc Gly	atg Met	ttt Phe 330	ttg Leu	tat Tyr	gaa Glu	tat Tyr	gca Ala 335	aga Arg	1008
Arg	His	Pro	340	Tyr	Ser	Val	Val	Leu 345	Leu	ctg Leu	Arg	Leu	Ala 350	Lys	Thr	1056
tat Tyr	Glu	acc Thr 355	act Thr	cta Leu	gag Glu	aag Lys	tgc Cys 360	tgt Cys	gcc Ala	gct Ala	gca Ala	gat Asp 365	cct Pro	cat His	gaa Glu	1104

tgc Cys	tat Tyr 370	gcc Ala	aaa Lys	gtg Val	ttc Phe	gat Asp 375	gaa Glu	ttt Phe	aaa Lys	cct Pro	ctt Leu 380	gtg Val	gaa Glu	gag Glu	cct Pro	1152
cag Gln 385	aat Asn	tta Leu	atc Ile	aaa Lys	caa Gln 390	aac Asn	tgt Cys	gag Glu	ctt Leu	ttt Phe 395	gag Glu	cag Gln	ctt Leu	gga Gly	gag Glu 400	1200
tac Tyr	aaa Lys	ttc Phe	cag Gln	aat Asn 405	gcg Ala	cta Leu	tta Leu	gtt Val	cgt Arg 410	tac Tyr	acc Thr	aag Lys	aaa Lys	gta Val 415	ccc Pro	1248
caa Gln	gtg Val	tca Ser	act Thr 420	cca Pro	act Thr	ctt Leu	gta Val	gag Glu 425	gtc Val	tca Ser	aga Arg	aac Asn	cta Leu 430	gga Gly	aaa Lys	1296
gtg Val	ggc	agc Ser 435	aaa Lys	tgt Cys	tgt Cys	aaa Lys	cat His 440	cct Pro	gaa Glu	gca Ala	aaa Lys	aga Arg 445	atg Met	ccc Pro	tgt Cys	1344
gca Ala	gaa Glu 450	gac Asp	tat Tyr	cta Leu	tcc Ser	gtg Val 455	gtc Val	ctg Leu	aac Asn	cag Gln	tta Leu 460	tgt Cys	gtg Val	ttg Leu	cat His	1392
gag Glu 465	aaa Lys	acg Thr	cca Pro	gta Val	agt Ser 470	gac Asp	aga Arg	gtc Val	aca Thr	aaa Lys 475	tgc Cys	tgc Cys	aca Thr	gag Glu	tcc Ser 480	1440
ttg Leu	gtg Val	aac Asn	agg Arg	cga Arg 485	cca Pro	tgc Cys	ttt Phe	tca Ser	gct Ala 490	ctg Leu	gaa Glu	gtc Val	gat Asp	gaa Glu 495	aca Thr	1488
tac Tyr	gtt Val	ccc Pro	aaa Lys 500	gag Glu	ttt Phe	aat Asn	gct Ala	gaa Glu 505	aca Thr	ttc Phe	acc Thr	ttc Phe	cat His 510	gca Ala	gat Asp	1536
ata Ile	tgc Cys	aca Thr 515	ctt Leu	tct Ser	gag Glu	aag Lys	gag Glu 520	aga Arg	caa Gln	atc Ile	aag Lys	aaa Lys 525	caa Gln	act Thr	gca Ala	1584
ctt Leu	gtt Val 530	gag Glu	ctt Leu	gtg Val	aaa Lys	cac His 535	aag Lys	ccc Pro	aag Lys	gca Ala	aca Thr 540	aaa Lys	gag Glu	caa Gln	ctg Leu	1632
aaa Lys 545	gct Ala	gtt Val	atg Met	gat Asp	gat Asp 550	ttc Phe	gca Ala	gct Ala	ttt Phe	gta Val 555	gag Glu	aag Lys	tgc Cys	tgc Cys	aag Lys 560	1680
gct Ala	gac Asp	gat Asp	aag Lys	gag Glu 565	acc Thr	tgc Cys	ttt Phe	gcc Ala	gag Glu 570	gag Glu	ggt Gly	aaa Lys	aaa Lys	ctt Leu 575	gtt Val	1728
gct Ala	gca Ala	agt Ser	caa Gln 580	gct Ala	gcc Ala	tta Leu	Gly	tta Leu 585	taac	atct	ac a	ttta	aaag	rc at	ctcag	1782

<210> 18 <211> 585 <212> PRT <213> Homo Sapiens

Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln 20 25 30

Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu 35 40 45

Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys 50 55 60

Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu 65 70 75 80

Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro 85 90 95

Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu 100 105 110

Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His 115 120 125

Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130 135 140

Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg 145 150 155 160

Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165 170 175

Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Ala Ser 180 185 190

Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195 200 205

Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210 215 220

Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys 225 230 235 240

Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245 250 255

Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser 260 265 270

Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His 275 280 285

Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser 290 295 300

Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala 305 310 315 320

Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg 325 330 335

Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr 340 345 350

Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu 355 360 365

Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro 370 375 380

Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu 385 390 395 400

Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro 405 410 415

Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys 420 425 430

Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys 435 440 445

Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His 450 455 460

Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser 465 470 475 480

Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr 485 490 495

Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp 500 505 510

Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala 515 520 525

Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu 530 540

Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys 545 550 555 560

Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val 565 575

Ala Ala Ser Gln Ala Ala Leu Gly Leu 580 585

<210> 19

<211> 57

<212> DNA

```
that of the main and and and ada who will be seen to the seen that the seen that
```

```
<213> Artificial Sequence
 <220>
 <221> primer_bind
 <223> primer used to generate XhoI and ClaI
site in pPPC0006
<400> 19
gcctcgagaa aagagatgca cacaagagtg aggttgctca tcgatttaaa gatttgg
                                                                    57
<210> 20
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI
site in pPPC0006
<400> 20
aatcgatgag caacctcact cttgtgtgca tctcttttct cgaggctcct ggaataag
                                                                    58
<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI
site in pPPC0006
<400> 21
tacaaactta agagtccaat tagc
                                                                    24
<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> primer used in generation XhoI and ClaI
site in pPPC0006
<400> 22
cacttctcta gagtggtttc atatgtctt
                                                                    29
<210> 23
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> Misc_Structure
```

```
<223> Synthetic oligonucleotide used to alter restriction
sites in pPPC0007
<400> 23
aagctgcctt aggcttataa taaggcgcgc cggccggccg tttaaactaa gcttaattct 60
<210> 24
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<221> Misc_Structure
<223> Synthetic oligonucleotide used to alter restriction
sites in pPPC0007
<400> 24
agaattaagc ttagtttaaa cggccggccg gcgcgcctta ttataagcct aaggcagctt 60
<210> 25
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> forward primer useful for generation of albumin
fusion protein in which the albumin moiety is N-terminal
of the Therapeutic Protein
<220>
<221> misc feature
<222> (18)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (19)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (20)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (21)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (22)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (23)
```

ij

113

ЦJ

l.J

inger enger Nor inge

\$ 1**5**,

E E E

FIJ

```
<223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (24)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (25)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (26)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (27)
       <223> n equals a,t,g, or c
<220>
<221> misc feature
įij
       <222> (28)
ļ.i.
      <223> n equals a,t,g, or c
į.i.
į.
      <220>
      <221> misc feature
55
<222> (29)
      <223> n equals a,t,g, or c
1.1
      <220>
<221> misc feature
113
      <222> (30)
į.
      <223> n equals a,t,g, or c
      <220>
      <221> misc feature
      <222> (31)
      <223> n equals a,t,g, or c
      <220>
      <221> misc feature
      <222> (32)
      <223> n equals a,t,g, or c
      <400> 25
      aagctgcctt aggcttannn nnnnnnnnn nn
                                                                          32
      <210> 26
      <211> 51
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> primer_bind
      <223> reverse primer useful for generation of albumin
      fusion protein in which the albumin moiety is N-terminal
      of the Therapeutic Protein
```

```
<220>
       <221> misc feature
       <222> (37)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (38)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (39)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (40)
       <223> n equals a,t,g, or c
ing.
ij
       <220>
       <221> misc feature
       <222> (41)
į.
       <223> n equals a,t,g, or c
<u>.</u>
į, į
       <220>
ļ.s
       <221> misc feature
       <222> (42)
<223> n equals a,t,g, or c
       <220>
¥ : £
       <221> misc feature
<222> (43)
       <223> n equals a,t,g, or c
ļ.
       <220>
       <221> misc feature
       <222> (44)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (45)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (46)
      <223> n equals a,t,g, or c
      <220>
      <221> misc feature
      <222> (47)
      <223> n equals a,t,g, or c
      <220>
      <221> misc feature
      <222> (48)
```

<223> n equals a,t,g, or c

```
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
<223> n equals a,t,g, or c
<400> 26
gcgcgcgttt aaacggccgg ccggcgccc ttattannnn nnnnnnnnn n
<210> 27
<211> 33
<212> DNA
<213> Artificial Sequence
<223> forward primer useful for generation of albumin fusion
protein in which the albumin moiety is c-terminal of the
Therapeutic Protein
<220>
<221> misc feature
<222> (19)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (20)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (21)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (22)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (23)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (24)
<223> n equals a,t,g, or c
```

51

```
<220>
       <221> misc feature
       <222> (25)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (26)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (27)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (28)
       <223> n equals a,t,g, or c
13
       <220>
ĘŢ
       <221> misc feature
įij
       <222> (29)
       <223> n equals a,t,g, or c
Įij,
11
       <220>
Ē. (Ž.
       <221> misc feature
į.
       <222> (30)
1.4
      <223> n equals a,t,g, or c
<220>
       <221> misc feature
      <222> (31)
į.į
      <223> n equals a,t,g, or c
flj
6.3
      <220>
Į.£
      <221> misc feature
      <222> (32)
      <223> n equals a,t,g, or c
      <220>
      <221> misc feature
      <222> (33)
      <223> n equals a,t,g, or c
      <400> 27
      aggagcgtcg acaaaagann nnnnnnnnn nnn
                                                                            33
      <210> 28
      <211> 52
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> primer_bind
      <223> reverse primer useful for generation of albumin
      fusion protein in which the albumin moiety is c-terminal of
      the Therapeutic Protein
```

```
<220>
<221> misc feature
<222> (38)
 <223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (39)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (48)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
```

```
ij
14
1:5
1.3
ļ.i.
į, į
į.i.
=
į į
ij
į.
```

```
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (52)
<223> n equals a,t,g, or c
<400> 28
ctttaaatcg atgagcaacc tcactcttgt gtgcatcnnn nnnnnnnnn nn
<210> 29
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> signal peptide of natural human serum albumin protein
<400> 29
Met Lys Trp Val Ser Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala
Tyr Ser Arg Ser Leu Asp Lys Arg
<210> 30
<211> 114
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> forward primer useful for generation of PC4:HSA
albumin fusion VECTOR
<220>
<221> misc_feature
<222> (5)..(10)
<223> BamHI retsriction site
<220>
<221> misc_feature
<222> (11)..(16)
<223> Hind III retsriction site
<220>
<221> misc_feature
<222> (17)..(27)
<223> Kozak sequence
```

52

```
the first term for it for the first in the specimen from the first first first for the first fir
```

```
<220>
<221> misc_feature
<222> (25)..(97)
<223> cds natural signal sequence of human serum albumin
<220>
<221> misc_feature
<222> (75)..(81)
<223> XhoI restriction site
<220>
<221> misc_feature
<222> (98)..(114)
<223> cds first six amino acids of human serum albumin
tcagggatcc aagcttccgc caccatgaag tgggtaacct ttatttccct tcttttctc 60
tttagctcgg cttactcgag gggtgtgttt cgtcgagatg cacacaagag tgag
<210> 31
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> reverse primer useful for generation of
PC4:HSA albumin fusion VECTOR
<220>
<221> misc_feature
<222> (6)..(11)
<223> Asp718 restriction site
<220>
<221> misc_feature
<222> (12)..(17)
<223> EcoRI restriction site
<220>
<221> misc_feature
<222> (15)..(17)
<223> reverse complement of stop codon
<220>
<221> misc_feature
<222> (18)..(25)
<223> AscI restriction site
<220>
<221> misc_feature
<222> (18)..(43)
<223> reverse complement of DNA sequence encoding last 9 amino acids
gcagcggtac cgaattcggc gcgccttata agcctaaggc agc
                                                                   43
<210> 32
```

```
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<221> primer_bind
<223> forward primer useful for inserting Therapeutic
protein into pC4:HSA vector
<220>
<221> misc feature
<222> (29)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (30)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (31)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (32)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (33)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (34)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (35)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (36)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (37)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (38)
<223> n equals a,t,g, or c
<220>
```

```
<221> misc feature
       <222> (39)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (40)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (41)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
       <222> (42)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
1.7
       <222> (43)
       <223> n equals a,t,g, or c
Ļij
       <220>
ij
       <221> misc feature
1.5
       <222> (44)
į, į
       <223> n equals a,t,g, or c
ļ.ā
       <220>
13
       <221> misc feature
:#:
:#::#:
       <222> (45)
i i
       <223> n equals a,t,g, or c
fU
       <220>
       <221> misc feature
4.4
       <222> (46)
       <223> n equals a,t,g, or c
       <400> 32
       ccgccgctcg aggggtgtgt ttcgtcgann nnnnnnnn nnnnnn
       <210> 33
       <211> 55
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221> primer_bind
       <223> reverse primer useful for inserting Therapeutic
       protein into pC4:HSA vector
       <220>
       <221> misc feature
       <222> (38)
       <223> n equals a,t,g, or c
       <220>
       <221> misc feature
```

<222> (39)

46

```
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (40)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (41)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (42)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (43)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (44)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (45)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (46)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (47)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (48)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (49)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (50)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (51)
```

```
કુલ્લાકું કુલ્લાકું કુલ્લાકું કરાવાં કહ્યાં, હતું. અને કુલ્લાકું કુલ્લાકું કુલ્લાકું કુલ્લાકું કુલ્લાકું કુલ્લ
પાતાપ્ર તમાં પોતાની દારાત્રાપ્ત માતાની હતીલ સાથિત સાર્વીલ સી. લી.તાર્થ કી. સામીલ પીતાના ક્લામાં સાથેલ
```

```
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (52)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (53)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (54)
<223> n equals a,t,g, or c
<220>
<221> misc feature
<222> (55)
<223> n equals a,t,g, or c
<400> 33
agteceateg atgageaace teactettgt gtgeatennn nnnnnnnnn nnnnn
<210> 34
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> Stanniocalcin signal peptide
<400> 34
Met Leu Gln Asn Ser Ala Val Leu Leu Leu Val Ile Ser Ala Ser
  1
Ala
<210> 35
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<221> signal
<223> Synthetic signal peptide
<400> 35
Met Pro Thr Trp Ala Trp Trp Leu Phe Leu Val Leu Leu Leu Ala Leu
                  5
                                      10
Trp Ala Pro Ala Arg Gly
             20
<210> 36
<211> 23
<212> DNA
<213> Artificial Sequence
```

<220> <221>primer_bind <223>Degenerate VH forward primer useful amplifying human VH domains	l for	
<400> 36 caggtgcagc tggtgcagtc tgg		23
<210> 37 <211> 23 <212> DNA <213> Artificial Sequence		
<220> <221>primer_bind <223>Degenerate VH forward primer useful amplifying human VH domains	l for	
<400> 37 caggtcaact taagggagtc tgg		23
<210> 38 <211> 23 <212> DNA <213> Artificial Sequence		
<220> <221>primer_bind <223>Degenerate VH forward primer useful amplifying human VH domains	l for	
<400> 38 gaggtgcagc tggtggagtc tgg		23
<210> 39 <211> 23 <212> DNA <213> Artificial Sequence		
<220> <221>primer_bind <223>Degenerate VH forward primer useful amplifying human VH domains	l for	
<400> 39 caggtgcagc tgcaggagtc ggg		23
<210> 40 <211> 23 <212> DNA <213> Artificial Sequence		
<220> <221>primer_bind <223>Degenerate VH forward primer useful amplifying human VH domains	l for	

	<400> 40	
	gaggtgcagc tgttgcagtc tgc	23
	<210> 41	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate VH forward primer useful for	
	amplifying human VH domains	
	<400> 41	
	caggtacagc tgcagcagtc agg	23
	<210> 42	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
We have here had been how	<220>	
.IJ	<221>primer_bind	
.lj	<223>Degenerate JH reverse primer useful for	
Į.	amplifying human VH domains	
	ampulli in donaliis	
: iš	<400> 42	
	tgaggagacg gtgaccaggg tgcc	24
	<210> 43	
198	<211> 24	
<u>Š</u> .	<212> DNA	
There were the total the terms of the terms	<213> Artificial Sequence	
	<220>	
. £	<221>primer_bind	
	<223>Degenerate JH reverse primer useful for	
	amplifying human VH domains	
	<400> 43	
	tgaagagacg gtgaccattg tccc	24
	<210> 44	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<221>primer_bind	
	<223>Degenerate JH reverse primer useful for	
	amplifying human VH domains	
	<400> 44	
	tgaggagacg gtgaccaggg ttcc	24
	<210> 45	
	<211> 24 <212> DNA	
	<212> DNA <213> Artificial Sequence	
	SETON STRITTCIAL SEGUENCE	

<220> <221>primer_bind <223>Degenerate JH reverse primer useful for amplifying human VH domains	
<400> 45 tgaggagacg gtgaccgtgg tccc	24
<210> 46 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
<400> 46 gacatccaga tgacccagtc tcc	23
<210> 47 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
<400> 47 gatgttgtga tgactcagtc tcc	23
<210> 48 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
<400> 48 gatattgtga tgactcagtc tcc	23
<210> 49 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <221>primer_bind <223>Degenerate Vkappa forward primer useful for amplifying human VL domains	
<400> 49 gaaattgtgt tgacgcagtc tcc	23

```
<210> 50
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vkappa forward primer useful for
amplifying human VL domains
<400> 50
gacatcgtga tgacccagtc tcc
                                                                    23
<210> 51
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vkappa forward primer useful for
amplifying human VL domains
<400> 51
gaaacgacac tcacgcagtc tcc
                                                                    23
<210> 52
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vkappa forward primer useful for
amplifying human VL domains
<400> 52
gaaattgtgc tgactcagtc tcc
                                                                    23
<210> 53
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for
amplifying human VL domains
<400> 53
cagtctgtgt tgacgcagcc gcc
                                                                    23
<210> 54
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
```

amplifying human VL domains	
<400> 54 cagtctgccc tgactcagcc tgc	23
<210> 55 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
<400> 55 tcctatgtgc tgactcagcc acc	23
<210> 56 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
<400> 56 tcttctgagc tgactcagga ccc	23
<210> 57 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
<400> 57 cacgttatac tgactcaacc gcc	23
<210> 58 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <221>primer_bind <223>Degenerate Vlambda forward primer useful for amplifying human VL domains	
<400> 58 caggetgtgc tcactcagcc gtc	23
<210> 59 <211> 23	

```
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Vlambda forward primer useful for
amplifying human VL domains
<400> 59
aattttatgc tgactcagcc cca
                                                                    23
<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jkappa reverse primer useful for
amplifying human VL domains
<400> 60
acgtttgatt tccaccttgg tccc
                                                                    24
<210> 61
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jkappa reverse primer useful for
amplifying human VL domains
<400> 61
acgtttgatc tccagcttgg tccc
                                                                    24
<210> 62
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jkappa reverse primer useful for
amplifying human VL domains
<400> 62
acgtttgata tccactttgg tccc
                                                                    24
<210> 63
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<221>primer_bind
<223>Degenerate Jkappa reverse primer useful for
amplifying human VL domains
```

```
<220>
       <221>primer_bind
       <223>Degenerate Jlambda reverse primer useful for
       amplifying human VL domains
       <400> 68
                                                                           23
       tcttctgagc tgactcagga ccc
       <210> 69
       <211> 23
       <212> DNA
       <213> Artificial Sequence
       <220>
       <221>primer_bind
       <223>Degenerate Jlambda reverse primer useful for
       amplifying human VL domains
       <400> 69
       cacgttatac tgactcaacc gcc
                                                                           23
       <210> 70
<211> 23
113
       <212> DNA
       <213> Artificial Sequence
<220>
å.å
       <221>primer_bind
14
       <223>Degenerate Jlambda reverse primer useful for
i i
       amplifying human VL domains
13
       <400> 70
       caggetgtgc tcactcagcc gtc
                                                                           23
å .£
       <210> 71
       <211> 23
       <212> DNA
ļ. ā.
       <213> Artificial Sequence
       <220>
       <221>primer_bind
       <223>Degenerate Jlambda reverse primer useful for
       amplifying human VL domains
       <400> 71
                                                                           23
       aattttatgc tgactcagcc cca
       <210> 72
       <211> 15
       <212> PRT
       <213> Artificial Sequence
       <220>
       <221>turn
       <223>Linker peptide that may be used to join VH
       and VL domains in an scFv.
        <400> 72
       Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
                          5
                                              10
```