2.4 Hermite插值

Chapter 2 插值方法

Newton与Lagrange及分段线性插值: y=f(x),

其Newton,Lagrange及分段线性插值多项式 $P_n(x)$, $N_n(x)$, $S_1(x)$ 满足插值条件: $P_n(x_i) = N_n(x_i) = S_1(x_i) = f(x_i)$, $i=0,1,2,\dots n$

$$P_{n}(x) = \sum_{k=0}^{n} y_{k} I_{k}(x) \qquad I_{k}(x) = \frac{(x - x_{0}) \mathbf{L} (x - x_{k-1}) (x - x_{k+1}) \mathbf{L} (x - x_{n})}{(x_{k} - x_{0}) \mathbf{L} (x_{k} - x_{k+1}) (x_{k} - x_{k+1}) \mathbf{L} (x_{k} - x_{n})} = \prod_{j=0, j \neq k}^{n} \frac{x - x_{j}}{x_{k} - x_{j}}$$

$$R_{n}(x) = \frac{f^{(n+1)}(x)}{(n+1)!} W_{n}(x)$$

$$N_n(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0) \dots (x - x_{n-1}) \quad c_i = f[x_0, \dots, x_i]$$

$$R_n(x) = f[x, x_0, ..., x_n] W_n(x)$$

$$S_1(x) = y_i \frac{x - x_{i+1}}{x_i - x_{i+1}} + y_{i+1} \frac{x - x_i}{x_{i+1} - x_i} , x \in [x_i, x_{i+1}]$$

$$|f(x) - S_1(x)| \le \frac{1}{8}Mh^2, \ x \in [a,b], M = \max_{x \in [a,b]} |f''(x)|$$

AT HUST

2

2.4 Hermite插值

Chapter 2 插值方法

Newton与Lagrange及分段线性插值的不足:

Lagrange,Newton及分段线性插值多项式 $P_n(x)$, $N_n(x)$, $S_1(x)$ 满足插值条件: $P_n(x_i) = N_n(x_i) = S_1(x_i) = f(x_i)$,i=0,1,2,...n

Lagrange, Newton与分段线性插值多项式与y=f(x)在插值节点具有相同的函数值----"过点".

但在插值节点上y=f(x)与 $y=P_n(x)$ 等一般不"相切", $f'(x_i) \neq P_n'(x_i)$. ——光滑性较差

Hermite插值:

求与y=f(x)在插值节点 Xo, X1, ..., Xn 上有相同函数值及导数值 (甚至高阶导数值)的插值多项式.

Hermite插值

Chapter 2 插值方法

Problem2.5: 已知函数y=f(x)在插值节点 $a \le x_0 < x_1 < ... < x_n \le b$ 上的函数值 $f(x_i)$ 与导数值 $f'(x_i)$,i=0,1,2,...n. 求多项式H(x),使:

$$H(x_i)=f(x_i), H'(x_i)=f'(x_i) i=0,1,2,...n.$$

对于以上问题,可用两种方法求H(x).

方法一:待定系数法.

由2n+2个插值条件,可唯一确定一个次数不超过2n+1次的 多项式.

- (1) H(x)是2n+1次多项式;
- (2) \Rightarrow H(x)= $a_0+a_1x+...+a_{2n+1}x^{2n+1}$;
- (3)由2n+2个插值条件建立关于a₀,a₁,...a_{2n+1}的线性方程组. 解得H(x).

方法二:基函数法.

A HUST

4

Hermite插值

Chapter 2 插值方法

Problem: 己知 $f(x_i)$, $f'(x_i)$, i=0,1,...n. 求 $H_{2n+1}(x)$: $H_{2n+1}(x_i)=f(x_i)$, $H'_{2n+1}(x_i)=f'(x_i)$, i=0,1,2,...n.

基函数法:

- (1) 2n+2个已知量 $f(x_i)$, $f'(x_i)$, i=0,1,2,...n.
- (2) 构造2n+2个基函数a_i(x), β_i(x), i=0,1,2,...n.
- (3)使 $H_{2n+1}(x)$ 为2n+2个基函数的线性组合: $H_{2n+1}=a_0(x)f(x_0)+a_1(x)f(x_1)+...+a_n(x)f(x_n) \\ +\beta_0(x)f'(x_0)+\beta_1(x)f'(x_1)+...+\beta_n(x)f'(x_n).$

这些基函数有什么限制?如何求呢?

Chapter 2 插值方法

如果:
$$\alpha_i(x_j) = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

$$\alpha_i(x_j) = 0$$

$$\beta_i(x_j) = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

$$H_{2n+1}(x_{j}) = f(x_{0})a_{0}(x_{j}) + \dots + f(x_{j})a_{j}(x_{j}) + \dots + f(x_{n})a_{n}(x_{j})$$

$$+ f'(x_{0})b_{0}(x_{j}) + \dots + f'(x_{j})b_{j}(x_{j}) + \dots + f'(x_{n})b_{n}(x_{j})$$

$$= f(x_{j})$$

$$H'_{2n+1}(x_j) = f(x_0)a'_0(x_j) + \dots + f(x_j)a'_j(x_j) + \dots + f(x_n)a'_n(x_j)$$

$$+ f'(x_0)b'_0(x_j) + \dots + f'(x_j)b'_j(x_j) + \dots + f'(x_n)b'_n(x_j)$$

$$= f'(x_j)$$

AT HUST

Hermite插值基函数

Chapter 2 插值方法

$$\alpha_{i}(x_{j}) = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

$$\alpha'_{i}(x_{j}) = 0$$

$$l_{i}(x) = \widetilde{O}_{j i} \frac{(x - x_{j})}{(x_{i} - x_{j})}$$

$$l_i(x) = \widetilde{O}_{j^{\perp i}} \frac{(x - x_j)}{(x_i - x_j)}$$

$$a_{i}(x)$$
①degree=2n+1,②有根 x_{0} , x_{i-1} , x_{i+1} , ..., x_{n} 且都是2重根
$$\Rightarrow a_{i}(x) = (a_{1}x + b_{1})l_{i}^{2}(x)$$
 因 $a_{i}(x_{i}) = 1, a_{i}(x_{i}) = 0$

$$\Rightarrow \begin{cases} a_{1}x_{i} + b_{1} = 1 \\ a_{1}l_{i}^{2}(x_{i}) + (a_{1}x_{i} + b_{1}) \times 2l_{i}(x_{i})l_{i}^{i}(x_{i}) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} a_{1}x_{i} + b_{1} = 1 \\ a_{1} + 2l_{i}^{i}(x_{i}) = 0 \end{cases}$$

$$\alpha_{i}(x) = [1 - 2(x - x_{i}) \sum_{k=0}^{n} \frac{1}{x_{i} - x_{k}}]l_{i}^{2}(x)$$

Hermite插值基函数

Chapter 2 插值方法

$$\beta_{i}(x_{j}) = 0$$

$$\beta_{i}(x_{j}) = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$
(III)
$$b_{i}(x)$$
②有根 $x_{0}, ..., x_{i}, ..., x_{n}$

 \bigcirc degree=2n+1,

且除了x;都是2重根

$$\Rightarrow \mathbf{b}_{i}(x) = c(x - x_{i})l_{i}^{2}(x) \quad \boxtimes \mathbf{b}_{i}(x_{i}) = 1 \quad \Rightarrow c = 1$$

$$\Rightarrow \mathbf{b}_{i}(x) = (x - x_{i})l_{i}^{2}(x)$$

所求的Hermite插值多项式为

$$H_{2n+1}(x) = \sum_{i=0}^{n} \{f(x_i)[1 - 2(x - x_i)\sum_{\substack{k=0 \ k \neq i}}^{n} \frac{1}{x_i - x_k}]I_i^2(x) + f'(x_i)(x - x_i)I_i^2(x)\}$$

A HUST

Hermite插值多项式的唯一性

Chapter 2 插值方法

 $H_{2n+1}(x) = \sum_{i=0}^{n} \{f(x_i)[1-2(x-x_i)\sum_{k=0}^{n} \frac{1}{x_i-x_k}]I_i^2(x) + f'(x_i)(x-x_i)I_i^2(x)\}$

注: Hermite插值多项式是唯一的 (证: 若H_{2n+1}(x)与 G_{2n+1}(x) 都是所求的Hermite插值多项式,则F(x)= H_{2n+1}(x)- G_{2n+1}(x)有 n+1个二重根 $x_0, x_1, ..., x_n$, 又deg(F(x)) $\leq 2n+1$, 故F(x)= 0.)

9

回顾: lagrange插值余项

$$R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} w(x)$$

其中
$$W(x)=(x-x_0)(x-x_1)..(x-x_n)$$

 X_0 , X_1 , ..., X_n 为 $R_n(x)$ 的根, $R_n(x)$ 有n+1阶零点.

显然,它们是Hermite插值余项R2n+1(x)的二重根,

即R2n+1(x)有2n+2阶零点。

类似得
$$R_{2n+1}(x) = K(x)w^2(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!}w^2(x)$$

STHUST

10

Hermite插值余项 $R_{2n+1}(x)=f(x)-H_{2n+1}(x)$

hapter 2 插値方法

定理2.4 设区间[a,b]含有互异节点 $x_{0,}$ $x_{1,}$... $x_{n,}$ 而f(x)在[a,b]内存在直到2n+2阶导数,则满足插值条件:

$$H_{2n+1}(x_i)=f(x_i), H'_{2n+1}(x_i)=f'(x_i), i=0,1,...n$$

的Hermite插值多项式H2n+1(x)的余项

$$R_{2n+1}(x) = f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} w^{2}(x)$$

其中, $\xi \in [a, b]$ 且与x的位置有关, $W(x) = (x-x_0)(x-x_1)..(x-x_n)$ 证明:

由插值条件: H_{2n+1}(x_i)=f(x_i), H'_{2n+1}(x_i)=f'(x_i), i=0,1,...n,则

$$R_{2n+1}(x_i) = H_{2n+1}(x_i) - f(x_i) = 0; \quad R'_{2n+1}(x_i) = H'_{2n+1}(x_i) - f'(x_i) = 0,$$

则可令 $R_{2n+1}(x)=K(x)W^2(x)$,构造辅助函数并应用Rolle定理证明。

定理2.4的证明

Chapter 2 插值方法

- (1) 在插值节点x₀~x_n处,R_{2n+1}(x_i)=0,余项公式显然成立.
- (2) 对于[a,b]中异于插值节点x₀~x_n的x,考虑辅助函数

$$F(t) = f(t) - H_{2n+1}(t) - K(x)w^{2}(t) = R_{2n+1}(t) - K(x)w^{2}(t)$$

$$F(x_0) = F(x_1) = F(x_2) = ... = F(x_n) = F(x) = 0$$

由Rolle定理,存在 $\xi_0 \in (\mathbf{x}_0, \mathbf{x}_1)$,使 $\mathbf{F}'(\xi_0) = 0$

类似, 共有n+1个互异点 ξ_0 , ξ_1 , ..., ξ_n 使F'(t)=0

$$\frac{dw^{2}(t)}{dt} = 2w(t)w'(t) \quad \text{``} \quad F'(x_{0}) = F'(x_{1}) = F'(x_{2}) = ... = F'(x_{n}) = 0$$

F'(t)有2n+2个互异根 ξ_0 , ξ_1 ,..., ξ_n , x_0 , x_1 ,..., x_n ,由Rolle定理,

则存在 $\xi \in (a,b)$. 使: $F^{(2n+2)}(\xi) = f^{(2n+2)}(\xi) - K(x)(2n+2)! = 0$.

A HUST

2

Chapter 2 插值方法

注:当n=1时,满足插值条件

$$H_3(x_i)=f(x_i), H'_3(x_i)=f'(x_i), i=0,1$$

的插值公式:

$$a_0(x) = (1 + 2\frac{x - x_0}{x_1 - x_0})(\frac{x - x_1}{x_0 - x_1})^2, \quad a_1(x) = (1 + 2\frac{x - x_1}{x_0 - x_1})(\frac{x - x_0}{x_1 - x_0})^2,$$

$$\beta_0(x) = (x - x_0)(\frac{x - x_1}{x_0 - x_1})^2$$
, $\beta_1(x) = (x - x_1)(\frac{x - x_0}{x_1 - x_0})^2$,

$$H_3(x) = f(x_0)a_0(x) + f(x_1)a_1(x) + f'(x_0)\beta_0(x) + f'(x_1)\beta_1(x).$$

$$R_3(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi)}{4!} (x - x_0)^2 (x - x_1)^2, \ x_0 < \xi < x_1.$$

13

Chapter 2 插值方法

例题2.7 依据下列数据表构造插值多项式

解:

Χ	Υ	Y
0	0	3
1	1	9

$$H_3(x) = 0\alpha_0(x) + 1\alpha_1(x) + 3b_0(x) + 9b_1(x)$$

$$= (1 + 2\frac{x-1}{0-1})(\frac{x-0}{1-0})^2 + 3(x-0)(\frac{x-1}{0-1})^2 + 9(x-1)(\frac{x-0}{1-0})^2$$

$$= -2x^3 + 3x^2 + 3x(x^2 - 2x + 1) + 9x^2(x-1)$$

$$= 10x^3 - 12x^2 + 3x$$

$$R_3(x) = \frac{f^{(4)}(\xi)}{4!} (x - 0)^2 (x - 1)^2 ,$$

 $0 < \xi < 1$ and depending on x.

AT HUST

14

Chapter 2 插值方法

例:用 Hermite插值求满足下列条件的四次多项式H4(x)与余项。

 $H_4(0) = 0, H_4(1) = 1, H_4(2) = 1, H_4(0) = 0, H_4(1) = 1.$

分析: 考虑 $x_0=0$, $x_1=1$, $x_2=2$ 的插值问题。

解:基函数法

设 $H_4(x) = f(x_0)a_1(x) + f(x_1)a_2(x) + f(x_2)a_2(x) + f'(x_1)b_1(x) + f'(x_1)b_1(x)$

 $H_1(x) = a_1(x) + a_2(x) + b_1(x)$ 其中

$$\begin{cases} \mathbf{a}_{1}(0) = \mathbf{a}_{1}(2) = 0, \mathbf{a}_{1}(1) = 1 \\ \mathbf{a}_{1}(0) = \mathbf{a}_{1}(1) = 0 \end{cases} \begin{cases} \mathbf{a}_{2}(0) = \mathbf{a}_{2}(1) = 0, \mathbf{a}_{2}(2) = 1 \\ \mathbf{a}_{2}(0) = \mathbf{a}_{2}(1) = 0 \end{cases}$$

$$\int \mathbf{b}_1(0) = \mathbf{b}_1(1) = \mathbf{b}_1(2) = 0$$

$$b_1(0) = 0, b_1(1) = 1$$

$$a_1(x) = x^2(x-2)^2$$

 $a_1(x)$ $a_1(x) = (ax+b)(x-0)^2(x-2)$

 $\mathcal{R}: \mathbf{a}_1(1) = 1, \mathbf{a}_1(1) = 0 \Rightarrow a = 1, b = -2$

Chapter 2
持位方法

$$H_4(0) = 0, H_4(1) = 1, H_4(2) = 1, H_4(0) = 0, H_4(1) = 1.$$

$$\begin{cases} a_2(0) = a_2(1) = 0, a_2(2) = 1 \\ a_2(0) = a_2(1) = 0 \end{cases}$$

$$\begin{cases} b_1(0) = b_1(1) = b_1(2) = 0 \\ b_1(0) = 0, b_1(1) = 1 \end{cases}$$

$$a_2(x) \begin{vmatrix} a_2(x) & a_2(x) = c(x-0)^2(x-1)^2, a_2(2) = 1 \Rightarrow c = \frac{1}{4} \Rightarrow a_2(x) = \frac{1}{4}x^2(x-1)^2 \end{cases}$$

$$b_1(x) \begin{vmatrix} b_1(x) & b_1(x) = d(x-0)^2(x-1)(x-2) \\ b_1(1) & = 1 \Rightarrow d = -1 \end{cases}$$

$$\therefore H_4(x) = \frac{1}{4}x^4 - \frac{3}{2}x^3 + \frac{9}{4}x^2$$

$$R_4(x) = f(x) - H_4(x) = K(x)(x-x_0)^2(x-x_1)^2(x-x_2),$$

$$K(x) = \frac{f^{(5)}(x_x)}{5!}, 0 < x_x < 2$$

Chapter 2 插值方法 $H_4(0) = 0, H_4(1) = 1, H_4(2) = 1, H_4(0) = 0, H_4(1) = 1.$ 方法二(基于承袭性):

考虑 $x_0 = 0, x_1 = 1$ 的标准Hermite插值问题 $H_3(0) = 0, H_3(1) = 1, H_3(0) = 0, H_3(1) = 1 \Rightarrow H_3(x) = -x^3 + 2x^2$ if: $H_4(x) = H_3(x) + A(x - 0)^2(x - 1)^2$ and $H_4(2) = 1$ $\Rightarrow A = \frac{1}{4}$ 17

Chapter 2 插值方法

@ 求Hermite多项式的基本步骤:

- 写出相应于条件的a(x), b(x) 的组合式;
- , 对每一个 $\mathbf{a}(x)$, $\mathbf{b}(x)$ 找出尽可能多的条件给出的根;
- f 根据多项式的总次数和根的个数写出表达式;
- "根据尚未利用的条件解出表达式中的待定系数;
- ... 最后完整写出H(x)。

HW: p.53 #16, 23

AT HUST

18

分段三次(Hermite)插值

Chapter 2 插值方法

分段线性插值: 具有一致收敛性, 折线不光滑。

$$f(x) \approx S_1(x) = y_i \frac{x - x_{i+1}}{x_i - x_{i+1}} + y_{i+1} \frac{x - x_i}{x_{i+1} - x_i}, \quad x \in [x_i, x_{i+1}];$$

 $i = 0, 1, \mathbf{L}, n - 1.$

 $|f(x)-S_I(x)| \le Mh^2/8; \quad x \in [a,b]$

三次Hermite插值: 两条曲线在插值节点相切,光滑但不收敛

$$H_3(x) = f(x_0)a_0(x) + f(x_1)a_1(x) + f'(x_0)\beta_0(x) + f'(x_1)\beta_1(x).$$

$$a_0(x) = (1 + 2\frac{x - x_0}{x_1 - x_0})(\frac{x - x_1}{x_0 - x_1})^2, \quad a_1(x) = (1 + 2\frac{x - x_1}{x_0 - x_1})(\frac{x - x_0}{x_1 - x_0})^2,$$

$$\beta_0(x) = (x - x_0)(\frac{x - x_1}{x_0 - x_1})^2$$
, $\beta_1(x) = (x - x_1)(\frac{x - x_0}{x_1 - x_0})^2$,

$$R_3(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi)}{4!} (x - x_0)^2 (x - x_1)^2 . x_0 < \xi < x_1.$$

三次(Hermite)插值
$$a_{0}(x) = (1 + 2\frac{x - x_{0}}{x_{1} - x_{0}})(\frac{x - x_{1}}{x_{0} - x_{1}})^{2}, \quad a_{1}(x) = (1 + 2\frac{x - x_{1}}{x_{0} - x_{1}})(\frac{x - x_{0}}{x_{1} - x_{0}})^{2},$$

$$\beta_{0}(x) = (x - x_{0})(\frac{x - x_{1}}{x_{0} - x_{1}})^{2}, \qquad \beta_{1}(x) = (x - x_{1})(\frac{x - x_{0}}{x_{1} - x_{0}})^{2},$$

$$H_{3}(x) = f(x_{0})a_{0}(x) + f(x_{1})a_{1}(x) + f'(x_{0})\beta_{0}(x) + f'(x_{1})\beta_{1}(x).$$

$$y(x) = y(x_{0} + th) \quad D \quad y'(t) = y'(x) \times x'(t) = hy'$$

$$x = x_{0} + th, \quad h = x_{1} - x_{0}; \quad t \in [0, 1]$$

$$x = x_{0} \quad x_{1} \quad t = 0 \quad 1$$

$$y = y_{0} \quad y_{1} \quad y_{0} \quad y_{1}$$

$$y' = y_{0}' \quad y_{1}' \quad hy_{0}' \quad hy_{1}'$$

$$y' = y_{0}' \quad y_{1}' \quad hy_{0}' \quad hy_{1}'$$

$$H_{3}(x) = y_{0}a_{0}\frac{x}{c}\frac{x - x_{0}}{h}\frac{\ddot{o}}{\dot{\sigma}} + y_{1}a_{1}\frac{x}{c}\frac{x - x_{0}}{h}\frac{\ddot{o}}{\dot{\sigma}} + hy_{0}^{c}b_{0}\frac{x - x_{0}}{h}\frac{\ddot{o}}{\dot{\sigma}} + hy_{1}^{c}b_{1}\frac{x - x_{0}}{c}\frac{\ddot{o}}{h}\frac{\dot{\sigma}}{\dot{\sigma}}$$

$$m \approx \text{ m } \text{ $\%$} \text{ $\%$$$

分段三次(Hermite)插值

Chapter 2 插值方法

A HUST

 \bullet 已知划分D的每个节点 x_i 处对应的 y_i 和 y_i^C ,求作具有划分D的分段三次多项式 $S_3(x)$,满足:

$$S_3(x_i) = y_i, \quad S_3(x_i) = y_i^{c} \qquad i = 0,1,L,n$$

 $S_3(x)$ 在每个小区间 $[x_i, x_{i+1}]$ 上是一个三次 Hermite 插值多项式,且:

$$\begin{array}{ll}
\frac{1}{1}S_3^{[i]}(x_i) = y_i & \frac{1}{1}S_3^{[i]}(x_{i+1}) = y_{i+1} \\
\frac{1}{1}S_3^{[i]}(x_i) = y_i^{C} & \frac{1}{1}S_3^{[i]}(x_{i+1}) = y_{i+1}^{C}
\end{array}$$

分段三次(Hermite)括値(续)
$$H_{3}(x) = y_{0}a_{0}\frac{x^{2}-x_{0}}{\xi} + y_{1}a_{1}\frac{x^{2}-x_{0}}{\xi} + y_$$

 分段三次(Hermite)插值(续)
 Chapter 2 插位方法

 分段三次 Hermite 插值的插值余项:
 (4)(2)

$$|f(x) - S_3(x)|$$
£ $\frac{1}{384} h^4 \max_{a \in x \in b} |f^{(4)}(x)|$ $h = \max h_i$

- n h 足够小(例如小于1)时,分段三次 Hermite 插值的插值余项远小于分段线性插值的插值余项,因此前者的插值精度更高。
- n 分段三次 Hermite 插值的插值曲线比分段线性插值的曲线更光滑,但光滑度仍不够: $S_3(x)\hat{I}$ $\mathbb{C}^1[a,b]$.
- n 三次样条插值:在插值节点处连续,一阶与二阶导数 也连续,属于C²[a,b]函数类。

Review

Chapter 2 插值方法

Hermite插值: 已知函数y=f(x)在插值节点 $a \le x_0 < x_1 < ... < x_n \le b$ 上的函数值 $f(x_i)$ 与导数值 $f'(x_i)$,i=0,1,2,...n. 求多项式H(x),使:

$$H(x_i)=f(x_i), H'(x_i)=f'(x_i) i=0,1,2,...n.$$

基函数法: $H_{2n+1} = a_n(x)f(x_n) + a_1(x)f(x_n) + \dots + a_n(x)f(x_n) + \beta_n(x)f'(x_n) + \beta_1(x)f'(x_n) + \dots + \beta_n(x)f'(x_n)$.

$$H_{2n+1}(x) = \sum_{i=0}^{n} \{f(x_i)[1 - 2(x - x_i) \sum_{\substack{k=0 \\ k \neq i}}^{n} \frac{1}{x_i - x_k}] I_i^2(x) + f'(x_i)(x - x_i) I_i^2(x) \}$$

$$R_{2n+1}(x) = f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} w^{2}(x)$$

不规则Hermite插值:基函数法与基于承袭性法,余项估计与证明。

分段三次Hermite插值: $S_3(x)$ Î $\mathbb{C}^1[a,b]$ 了解

三次样条插值:分段三次式 S(x)Î $C^2[a,b]$ 了解

A HUST

2.6 三次样条插值

Chapter 2 插值方法

给定节点: a=x₀<x₁<...<x_n=b,

及函数值y_k=¦(x_k), k=0, 1, ..., n.

即n+1个点(x_i, y_i), i =0, 1, ..., n.

定义: 给定节点a=x₀<x₁<...<x_n=b, 及其上的函数值

y_k=¦(x_k), k=0, 1, ..., n. 如果函数S(x)满足:

- (1) S(x)是一个分段的三次多项式且 $S(x_k)=y_k$;
- (2) $S(x)\hat{I} C^2[a,b]$.

则称S(x)是区间[a,b]上的三次样条插值函数.

S(x)在区间 $[x_{i-1}, x_i]$ 上是三次多项式,

Chapter 2 插值方法

$$S(x)=a_{i}x^{3}+b_{i}x^{2}+c_{i}x+d_{i}$$

有4个待定系数, 要确定S(x)共需4n个待定系数.

为了得到唯一的三次样条函数,可在区间[a,b]的端点x₀=a,x_n=b 上各加一个条件,称为边界条件,常用的边界条件有

- (1) $Sc(x_0) = yc_0$, $Sc(x_0) = yc_0$;
- (2) $S\alpha(x_0) = y\alpha_0$, $S\alpha(x_n) = y\alpha_n$;
- (3) 假设:(x)是以b-a为周期的周期函数,这时要求

A HUST

求三次样条插值函数的三转角方程

Chapter 2

插值方法

$$S(x_0+0)=S(x_n-0)$$

$$Sc(x_0+0)=Sc(x_0-0)$$

S(x)为周期样条函数。

$$SC(x_0+0)=SC(x_n-0)$$

若假设Sc(x_i)=m_i, i=0,1,...,n,利用分段Hermi te插值多项式,

当xÎ [x_{i-1}, x_i]时,有

$$S(x) = \frac{1}{h_i^3} \left[\left(x_i + 2x - 3x_{i-1} \right) \left(x - x_i \right)^2 y_{i-1} + \left(3x_i - 2x - x_{i-1} \right) \left(x - x_{i-1} \right)^2 y_i \right]$$

$$+ \frac{1}{h_i^2} \left[\left(x - x_{i-1} \right) (x - x_i)^2 m_{i-1} + (x - x_{i-1})^2 (x - x_i) m_i \right]$$

其中 $h_i = x_i - x_{i-1}$. 为了确定S(x), 只需确定 m_i , i = 0, 1, ..., n.

可利用SC(x_i-0)=SC(x_i+0)来求出m_i.

当xî [x_{i-1},x_i]时,由于
$$S(x) = \frac{1}{h_i^3} \Big[(x_i + 2x - 3x_{i-1})(x - x_i)^2 \ y_{i-1} + (3x_i - 2x - x_{i-1})(x - x_{i-1})^2 \ y_i \Big]$$

$$+ \frac{1}{h_i^2} \Big[(x - x_{i-1})(x - x_i)^2 m_{i-1} + (x - x_{i-1})^2 (x - x_i) m_i \Big]$$
所以 $S'(x) = \frac{2}{h_i^3} \Big\{ \Big[(x - x_i)^2 + (x_i + 2x - 3x_{i-1})(x - x_i) \Big] \ y_{i-1} + \Big[(3x_i - 2x - x_{i-1})(x - x_{i-1}) - (x - x_{i-1})^2 \Big] \ y_i \Big\}$

$$+ \frac{1}{h_i^2} \Big\{ \Big[(x - x_i)^2 + 2(x - x_{i-1})(x - x_i) \Big] m_{i-1} + \Big[(x - x_{i-1})^2 + 2(x - x_{i-1})(x - x_i) \Big] m_i \Big\}$$

$$S''(x) = \frac{6}{h_i^3} (2x - x_{i-1} - x_i)(y_{i-1} - y_i) + \frac{2}{h_i^2} \Big[(3x - x_{i-1} - 2x_i) m_{i-1} + (3x - 2x_{i-1} - x_i) m_i \Big]$$

再结合不同的边界条件, 可得关于m; 的方程组.

插值方法

若边界条件为: $m_0 = y \zeta_0$, $m_n = y \zeta_0$, 代入(*)式可得

$$\begin{pmatrix} 2 & m_{1} & & & & \\ I_{2} & 2 & m_{2} & & & \\ & \mathbf{O} & \mathbf{O} & \mathbf{O} & & \\ & & \mathbf{O} & \mathbf{O} & \mathbf{O} & \\ & & I_{n-2} & 2 & m_{n-2} \\ & & & I_{n-1} & 2 \end{pmatrix} \begin{pmatrix} m_{1} \\ m_{2} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ m_{n-2} \\ m_{n-1} \end{pmatrix} = \begin{pmatrix} g_{1} - I_{1}y'_{0} \\ g_{2} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ g_{n-2} \\ g_{n-1} - \mathbf{m}_{n-1}y'_{n} \end{pmatrix}$$

若边界条件为: S¢(xn)=y¢n, S¢(xn)=y¢n, 则有

$$2m_0 + m_1 = 3f[x_0, x_1] - \frac{1}{2}h_1 y_0'' = g_0$$

$$m_{n-1} + 2m_n = 3f[x_{n-1}, x_n] + \frac{1}{2}h_n y_n'' = g_n$$

连同(*)式一起,可得

A HUST

Chapter 2 插值方法

$$\begin{pmatrix}
2 & 1 & & & & & & \\
I_2 & 2 & m_2 & & & & & \\
& \mathbf{O} & \mathbf{O} & \mathbf{O} & & & & \\
& & \mathbf{O} & \mathbf{O} & \mathbf{O} & & & \\
& & & I_{n-1} & 2 & m_{n-1} \\
& & & & 1 & 2
\end{pmatrix}
\begin{pmatrix}
m_0 \\
m_1 \\
\mathbf{M} \\
\mathbf{M} \\
\mathbf{M} \\
m_{n-1} \\
m_n
\end{pmatrix} = \begin{pmatrix}
g_0 \\
g_1 \\
\mathbf{M} \\
\mathbf{M} \\
g_{n-1} \\
g_n
\end{pmatrix}$$

若边界条件为周期性边界条件,

由S¢(
$$x_0+0$$
)=S¢(x_n-0),和 S¢(x_0+0)=S¢(x_n-0),有 $m_0=m_n$

$$1_{n}m_{n-1}+2m_{n}+m_{n}m_{1}=g_{n}$$

其中:

$$I_n = \frac{h_1}{h_1 + h_n}, \quad \mathbf{m}_n = 1 - I_n = \frac{h_n}{h_1 + h_n}, \quad g_n = 3(I_n f[x_0, x_1] + \mathbf{m}_n f[x_{n-1}, x_n])$$

于是有

Chapter 2 插值方法

$$\begin{pmatrix} 2 & \mathbf{m}_{1} & & & & I_{1} \\ I_{2} & 2 & \mathbf{m}_{2} & & & \\ & \mathbf{O} & \mathbf{O} & \mathbf{O} & & \\ & & \mathbf{O} & \mathbf{O} & \mathbf{O} & \\ & & & I_{n-1} & 2 & \mathbf{m}_{n-1} \\ \mathbf{m}_{n} & & & & I_{n} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{m}_{m-1} \\ \mathbf{m}_{n} \end{pmatrix} = \begin{pmatrix} g_{1} \\ g_{2} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{g}_{n-1} \\ g_{n} \end{pmatrix}$$

对应不同的边界条件,只要求出相应的线性方程组的解,便得到三次样条函数在各区间[x_{i-1},x_i]上的表达式.

由于三个方程组的系数矩阵都是严格对角占优矩阵,所以都有唯一解,前两个方程组均可用追赶法求解,第三个方程组可用LU分解法或Gauss消元法求解.

A HUST

<mark>解: 这里h₁=h₂=h₃=1, y¢₀=1, y¢₃=0, 计算参数有</mark>

$$l_1 = l_2 = m_1 = m_2 = 1/2$$
, $g_1 = -3$, $g_2 = 0$

于是有
$$\begin{pmatrix} 2 & \frac{1}{2} \\ \frac{1}{2} & 2 \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} = \begin{pmatrix} -\frac{7}{2} \\ 0 \end{pmatrix}$$
,解得 $m_1 = -\frac{28}{15}$, $m_2 = \frac{7}{15}$

故有

有

$$S(x) = \begin{cases} (x-1)\left(\frac{17}{15}x^2 - 2x - 1\right) & x \in [0,1] \\ (x-1)\left(\frac{3}{5}x^2 - \frac{14}{15}x - \frac{23}{15}\right) & x \in [1,2] \\ (x-3)^2\left(\frac{31}{15} - \frac{23}{15}x\right) & x \in [2,3] \end{cases}$$

S(x)可利用在节点处的二阶导数为参数来表示,

Chapter 2 插值方法

设S∝(x_i)=M_i, i=0, 1, ..., n, 则对xÎ [x_{i-1}, x_i]有

$$S''(x) = \frac{x - x_i}{x_{i-1} - x_i} M_{i-1} + \frac{x - x_{i-1}}{x_i - x_{i-1}} M_i$$

连续积分两次,并利用 $S(x_{i-1})=y_{i-1}$, $S(x_i)=y_i$, 确定积分常数, 可得

$$S(x) = \frac{1}{6h_i} \left[\left(x_i - x \right)^3 M_{i-1} + \left(x - x_{i-1} \right)^3 M_i \right]$$

$$+ \left(\frac{y_{i-1}}{h_i} - \frac{h_i M_{I-1}}{6} \right) \left(x_i - x \right) + \left(\frac{y_i}{h_i} - \frac{h_i M_i}{6} \right) \left(x - x_{i-1} \right)$$

其中 $h_i = X_i - X_{i-1}$.

为了确定S(x), 只需确定M_i, i = 0, 1, ..., n.

可利用S¢(x_i-0)=S¢(x_i+0)来求出M_i 对上式求导易得:

A HUST

● Chapter 2 插值方法

$$S'(x) = \frac{1}{2h_i} \left[(x - x_{i-1})^2 M_i - (x - x_i)^2 M_{i-1} \right] + f[x_{i-1}, x_i] + \frac{h_i}{6} (M_{i-1} - M_i)$$

于是有

$$S'(x_i - 0) = \frac{h_i}{6} (M_{i-1} + 2M_i) + f[x_{i-1}, x_i]$$

$$S'(x_i + 0) = -\frac{h_{i+1}}{6} (2M_i + M_{i+1}) + f[x_i, x_{i+1}]$$

因此

$$\frac{h_i}{6}M_{i-1} + \frac{h_i + h_{i+1}}{3}M_i + \frac{h_{i+1}}{6}M_{i+1} = f[x_i, x_{i+1}] - f[x_{i-1}, x_i]$$

若记
$$I_i = \frac{h_{i+1}}{h_i + h_{i+1}}$$
 , $\mathbf{m}_i = \frac{h_i}{h_i + h_{i+1}}$, $d_i = 6f[x_{i-1}, x_i, x_{i+1}]$

则有
$$m_i M_{i-1} + 2M_i + I_i M_{i+1} = d_i$$
 , $i = 1, 2, ..., n-1$.

再结合不同的边界条件,可得关于
$$M_i$$
的方程.

声描合不同的边界条件,可得关于 M_i 的方程.

 M_i 为 M_i 为 M_i M

2.7 曲线拟合的最小二乘法

Chapter 2 插值方法

在生产与科研中,常给出一组离散数据

 $(x_1,y_1),(x_2,y_2),....(x_N,y_N)$

要确定变量 x与 y的函数关系y=f(x), 从数据中学习模型。

近似方法一:构造插值多项式 $P_n(x)$, 使 $P_n(x_i) = y_i$ i=1-N

(过点)

近似方法二: 曲线拟合

Problem: 已知 N个观测数据 $(x_1, y_1), (x_2, y_2),(x_N, y_N)$

求一个多项式 P(x)能最好地反映这些点的总趋势。

(不过点)

AT HUST

直线拟合

Chapter 2 插值方法

假设数据点 (x_i,y_i) i=1~N大致成一条直线, 此时拟合曲线为一直线,它从这些点附近通过. 设此拟合直线为 $\overset{\circ}{V}$ =a+bx 显然 $\overset{\circ}{V}(x_i)=a+bx_i\neq y_i$

记 $e_i = y_i - \mathring{y}(x_i)$ 从而有 $e_1, e_2, \dots e_N$ 称之为残差 $e_1, e_2, \dots e_N$ 总体最小 $\bullet e = (e_1, e_2, \dots e_N)^\mathsf{T}$ 的长度最小

直线拟合

Chapter 2 插值方法

向量的长度 ||x|| (x∈ Rn)介绍如下

$$||x||_2 = (x_1^2 + x_2^2 + \dots + x_n^2)^{0.5}$$

$$||\mathbf{x}||_1 = \Sigma |\mathbf{x}_i|$$

$$||x||_{\infty} = \max |x_i|$$

Problem 2.9 已知N组数据 $(x_1,y_1), (x_2,y_2),, (x_N,y_N),$

求一条直线 y=a+bx (即求a, b), 使

$$Q(a,b) = ||e||_2^2 = e_1^2 + e_2^2 + \dots + e_N^2 = \sum_{i=1}^N [y_i - (a+bx_i)]^2 = \min$$

注: 这是一个优化问题,使Q(a,b)=min的a,b构成的直线y=a+bx称为Problem 2.9的最小二乘拟合直线。

A HUST

42

Chapter 2 插值方法

$$Q(a,b) = ||e||_2^2 = e_1^2 + e_2^2 + \dots + e_N^2 = \sum_{i=1}^N [y_i - (a+bx_i)]^2$$

求拟合直线关键是求 a,b,使Q(a,b)最小,即优化问题的解, 这可称之为最小二乘拟合。

由微积分学知, 求Q(a,b)的极小值点,可解

$$\begin{cases} \frac{\partial Q}{\partial a} = 0 \\ \frac{\partial Q}{\partial b} = 0 \end{cases} \Rightarrow \begin{cases} Na + b \sum_{i=1}^{N} x_i = \sum_{i=1}^{N} y_i \\ a \sum_{i=1}^{N} x_i + b \sum_{i=1}^{N} x_i^2 = \sum_{i=1}^{N} x_i y_i \end{cases}$$

称*为正规方程组。解*可得a,b,则ŷ=a+bx为所求。

说明: 正规方程组的解存在且唯一,且是最小二乘拟合问题的解。

Chapter 2 插值方法

$$\min_{a,b} Q(a,b) = \min_{a,b} \sum_{i=1}^{N} [y_i - (a+bx_i)]^2$$

用向量表示: $t = (a, b)^T$,则上述问题表示为 $\min Q(t)$

下降迭代法:

$$\begin{cases} t_0 \\ t_{k+1} = t_k + h_k d_k, \text{ s.t. } Q(t_{k+1}) < Q(t_k) \end{cases}$$

其中η_k称为步长因子, d_k称为下降方向向量。

最速下降法(梯度下降法): $d_k = -\nabla Q(t_k)$

$$\begin{cases} t_0 \\ t_{k+1} = t_k - \mathbf{h} \cdot \nabla Q(t_k) \end{cases}$$

A HUST

Chapter 2 插值方法

例 有数据表

- H xcharte							
i	1	2	3	4	5		
Xi	165	123	150	123	141		
y _i	187	126	172	125	148		

求其一次拟合曲线。

解: 因 $(x_1,y_1),...,(x_5,y_5)$ 近似于一直线, 固设其最小二乘 拟合直线为y=a+bx,则其正规方程组为

$$\begin{cases} 5a + 702b = 758 \\ 702a + 99864b = 108396 \end{cases}$$

$$\therefore a = -60.939227$$
 $b = 1.513812$

所求的最小二乘拟合直线为y=-60.939227+1.513812x

使用梯度下降法求解
$$Q(a,b) = \sum_{i=1}^{N} [y_i - (a+bx_i)]^2$$

$$\nabla Q = \begin{pmatrix} \frac{\partial Q}{\partial a} \\ \frac{\partial Q}{\partial b} \end{pmatrix} = \begin{pmatrix} -2\sum_{i=1}^{N} [y_i - (a+bx_i)] \\ -2\sum_{i=1}^{N} x_i [y_i - (a+bx_i)] \end{pmatrix} = \begin{pmatrix} -2(758 - Na - 702b) \\ -2(108396 - 702a - 99864b) \end{pmatrix}$$

$$\begin{cases} t_0 = \begin{pmatrix} a_0 \\ b_0 \end{pmatrix} \\ t_{k+1} = \begin{pmatrix} a_{k+1} \\ b_{k+1} \end{pmatrix} = \begin{pmatrix} a_k \\ b_k \end{pmatrix} + 2h \cdot \begin{pmatrix} 758 - Na_k - 702b_k \\ 108396 - 702a_k - 99864b_k \end{pmatrix}$$

多项式拟合插值方法

N个点 (x_i,y_i) ,从草图上直观判断它们近似于一条m次曲线。

Problem: 已知 $(x_1,y_1),.....(x_N,y_N)$,求作m 次多项式(m<<N),使其最好地反映这N个点的总趋势。

解: 令
$$y=a_0+a_1x+a_2x^2+.....+a_mx^m$$
, $(a_m\neq 0)$

即使
$$Q=Q(a_0,a_1,....a_m)=\Sigma[y_i-(a_0+a_1x_i+...a_m x_i^m)]^2$$
最小。

∴ 求拟合多项式 **ó** 求 Q 的极小值点 (a₀₁,a₁,.....a_m)

AT HUST

Chapter 2

Chapter 2 插值方法

两个问题:

- 1. 正规方程组是否有解?
- 2. 若有解 (an,a1,...am)T,该解是否使Q(an,a1,...am)最小?

定理: ①正规方程组的解存在且唯一,

②而且其解就是使 Q(an,a1,...am) 达到最小的点

一般的最小二乘拟合

Chapter 2 插值方法

Problem: 已知变量 x 与y 的N 个观测值

$$(x_1,y_1), (x_2,y_2), \ldots, (x_N,y_N)$$

由x与y 的物理意义或N 个点的草图判断拟合函数 $P(x) \in \Phi$ (Φ) 人因数类),且 $\Phi_0(x)$, $\Phi_1(x)$, $\Phi_1(x)$, $\Phi_1(x)$ $\Phi_1(x)$ $\Phi_2(x)$ $\Phi_3(x)$ Φ_3

则拟合函数 $y=p(x)=a_0 \Phi_0(x)+a_1 \Phi_1(x)+...+a_n \Phi_n(x)$,其残差 $Q(a_0,a_1,...a_n)=\mathbf{\Sigma}[p(x_i)-y_i]^2$

$$= \mathbf{\Sigma}[a_0 \oplus_0 (x_i) + a_1 \oplus_1 (x_i) + \dots + a_n \oplus_n (x_i) - y_i]^2$$

 \therefore 求 $a_0,a_1,...a_n$,使Q $(a_0,a_1,...a_n)$ = min

$$=> \frac{\partial Q}{\partial a_0} = 0, \frac{\partial Q}{\partial a_1} = 0, \mathbf{K}, \frac{\partial Q}{\partial a_n} = 0$$

大中
$$y = \begin{pmatrix} y_1 \\ y_2 \\ M \\ y_N \end{pmatrix}$$
 $\Phi_k = \begin{pmatrix} \Phi_k(x_1) \\ \Phi_k(x_2) \\ M \\ \Phi_k(x_N) \end{pmatrix}$ 由向量的内积得正规方程组为 $\Phi = b$
$$\Phi = \begin{pmatrix} (\Phi_0, \Phi_0) & (\Phi_0, \Phi_1) & \dots & (\Phi_0, \Phi_n) \\ (\Phi_1, \Phi_0) & (\Phi_1, \Phi_1) & \dots & (\Phi_1, \Phi_n) \\ M & & & & & & & & \\ (\Phi_n, \Phi_0) & (\Phi_n, \Phi_1) & \dots & (\Phi_n, \Phi_n) \end{pmatrix}$$
 $A = \begin{pmatrix} a_0 \\ a_1 \\ M \\ a_n \end{pmatrix}$, $A = \begin{pmatrix} a_0 \\ (\Phi_1, y) \\ M \\ (\Phi_1, y) \end{pmatrix}$

