

dHvA 3D Analysis 使用手册 发行 1.1.0

刘冠章

目录

第一章 介绍	4
第二章 目录与重要文件	5
第三章 安装	6
3.1 在 MACOS 上安装	
1. 测试所用环境	
第四章 输入文件	7
4.1 输入文件格式	7
第五章 使用 DHVA 3D ANALYSIS	8
5.1 打开软件	8
5.1.1 Mac 系统	8
5.2 导入文件	9
5.2.1 导入 bxsf 文件	<u>G</u>
5.2.2 <i>导入 results 文件</i>	
5.3.2 一次性导入所有文件	
5.3 极致选取可视化	
5.3.1 可视化	10
5.3.2 保存数据格式	11
5.4 极致轨道截面可视化	11
5.4.1 可视化	11
5.4.2 保存数据格式	12
5.5 Mode	12
5.6 Interpol ratio	12
5.7 FERMI ENERGY	12
5.8 Brilliou Zone	12
5.9 Show slice	13
5.10 BZ NUMBER	13
5.11 Rotate	14
5.11.1 获取目前摄像头位置信息	
5.11.2 更新摄像头位置	
5.12 Line	15
5.13 Line color	15
5.14 Line width	15
5.15 Inner-outer	15

5.16 Trait	15
5.17 FULL TRAIT	16
5.18 AXES	16
5.19 FULL FS FULL TRAIT	17
5.20 More	17
5.20.1 FS Opacity	17
5.20.2 Line Opacity	17
5.20.3 Trait Opacity	17
5.20.4 Slice Opacity	17
5.20.5 Background Color	17
5.20.6 Slice Color	17
5.20.7 Magnetic Field	
5.21 计算	18
5.21.1 Normal Calculation	
5.21.2 导入计算结果	
5.21.3 保存计算结果	
5.22 群速度功能	19
5.22.1 计算群速度	
5.22.2 显示群速度	
5.23 磁场方向	20
5.24 SLICE	21
5.24.1 导入费米面文件	22
5.24.2 导入轨道文件	22
5.24.3 Bxsf files	22
5.24.4 orbits	22
5.24.5 BZ	22
5.24.6 Theta	22
5.24.7 Phi	22
5.24.8 line	22
5.24.9 FE	22
5.24.10 滑块	22
5.24.11 同步显示截面位置	

第一章 介绍

本手册为 dHvA 量子振荡第一性原理计算与可视化分析软件 dHvA 3D Analysis 的使用手册。dHvA 3D Analysis 基于 skeaf 算法对材料费米面进行计算并可视化极值轨道位置、极值轨道截面、极值选取过程等,同时加入使用不同颜色区分不同 pocket,绘制群速度等功能。

第二章 目录与重要文件

- mayavi_show.py: 费米面绘制核心功能实现文件
- matplot_show.py: 轨道截面及选取可视化绘制核心功能实现文件
- ds_files/: pyqt 界面功能实现文件
- ui_py_files/: pyqt 界面文件
- ui_py_files/ui_files/: pyqt的ui文件
- share.py: 共用函数与参数文件
- comboCheckbox.py: 多选可拉框部件设计文件
- calc/: 计算程序与缓存位置
- main.py: 程序运行文件

第三章 安装

3.1 在 macOS 上安装

1. 测试所用环境

- 1. Python 3.8.13
- 2. PyQt5 5.15.4
- 3. traits 6.3.2
- 4. traitsui 7.3.1
- 5. pyface 7.4.1
- 6. mayavi 4.7.4
- 7. numpy 1.23.0
- 8. pandas 1.4.3
- 9. scipy 1.8.1
- 10. scikit-image 0.19.3
- 11. hdbscan 0.8.28
- 12. matplotlib 3.2.2

2. 安装与配置环境

- \$ conda activate dHvA
- \$ conda install mayavi
- \$ conda install pandas
- \$ conda install scikit-image
- \$ conda install hdbscan
- \$ conda install matplotlib

第四章 输入文件

4.1 输入文件格式

输入费米面文件格式为 BXSF 文件格式,输入的 results_long. out、results_orbitoutlines_invAng. out 文件为本程序提供 skeaf 源码计算得到的标准输出文件。

第五章 使用 dHvA 3D Analysis

5.1 打开软件

5.1.1 Mac 系统

通过调用终端,利用以下程序开启软件:

```
$ conda activate dHvA
$ cd <path_to_dHvA_3D_Analysis_directory>
$ python main.py
```

然后将得到以下界面,菜单栏为 File、Calc、View、More:

5.2 导入文件

5.2.1 导入 bxsf 文件

点击 File -> Import bxsf file,选择所要导入的费米面文件,并选择 Open,点击之后会有 5-10s 左右的加载时间,期间请不要关闭程序。

5.2.2 导入 results 文件

点击 File -> Import skeaf file, 选择所需要导入的 results_long.out, results_orbitoutlin es invau.out 或 results orbitoutlines invAng.out 文件。

注意所导入的 orbit 文件必须与 long 文件相匹配,否则程序会报错。

5.3.2 一次性导入所有文件

点击 File -> Import skeaf file -> Import all results file, 出现以下界面:

分别点击任一按钮选择相应文件进行输入,文件的绝对路径将显示在按钮下端以便确认。当所有文件已确定好路径后,点击 Import。程序会根据计算结果加载一段时间,期间请不要关闭程序,导入结束后,请关闭该对话框。

如果需要重新导入文件,**建议可以重新打开程序**,也可以重新导入所有文件,程序会根据导入文件的优先级进行更新,但可能会有 bug。

导入成功后将得到以下界面:

5.3 极致选取可视化

5.3.1 可视化

如果导入了由软件计算得到的标准输出文件 result_long.out 文件后,通过点击计算结果选取区域中相应的频率,则在 extreme value 会显示选取的过程,即沿磁场方向切片轨道的面积变化曲线,如下图所示:

其中横坐标为切片的第几片,纵坐标为频率,单位为kT。

5.3.2 保存数据格式

点击 Save Data, 选择保存位置,得到所保存的数据文件,可用于进一步绘图,文件为csv 格式,名称为 Ext_XXX.csv,其中 XXX 为频率,文件内容如下所示:

第一列为切片序号, 第二列为频率。

5.4 极致轨道截面可视化

5.4.1 可视化

如果导入了由软件计算得到的标准输出文件 results_orbitoutlines_invau.out 或 results_orbitoutlines_invAng.out 文件后,通过点击计算结果选取区域中相应的频率,则在 orbit outline 会显示截面形状,如下图所示:

5.4.2 保存数据格式

点击 Save Data, 选择保存位置,得到所保存的数据文件,可用于进一步绘图,文件为csv 格式,名称为 Orb XXX.csv,其中 XXX 为频率,文件内容如下所示:

```
## Orbit data file generated by Skeaf_demo
## Freq 1.2181
## x,y

4.478030812557851070e-02,-1.977014914729296191e-01
4.601291321735462292e-02,-1.975747795017281372e-01
4.724302376840115725e-02,-1.974227912512758476e-01
...

4.231055732239641376e-02,-1.978827922299140618e-01
4.354607360540842936e-02,-1.978038915525861530e-01
4.478030812557849683e-02,-1.977014914729296469e-01
```

对应为截面边界的 xy 坐标,该截面已经过高斯平滑。

5.5 Mode

mode 分为 Simple 和 Separate 两种,只能二选一。Simple 为简单的显示模式,Separate 为基于 dbscan 算法对三维空间的闭合区域进行分类的模式,可用于显示特定频率的轨道所在 pocket,具有更强的可视性,一般适用于费米面中包含有多个 pocket 的情况。

5.6 Interpol ratio

插值精度功能,默认为 1.0,建议输入 0.5-2.0 之间的数字进行调整,输入完后点击键盘回车键,费米面会重新计算并可视化,会加载一段时间。

5.7 fermi energy

费米能输入,在读取 bxsf 文件后,会自动填充 bxsf 文件的费米能,可进行修改,若使用显示轨道功能,则会优先填充 skeaf 程序计算时的费米能。每次修改后请点击 Update 进行更新。

5.8 Brilliou Zone

Brillou Zone 模式分为 First BZ(第一布里渊区)和 Primitive BZ(初基元宝)显示模式,二者择一,如下图所示:

5.9 Show slice

开启显示切片位置功能,仅在选择显示轨道位置时、打开 slice 窗口的 sync 功能以及输入 section-v 时有用,该勾选框为功能预选,具体实现如下图所示:

5.10 BZ number

扩胞,可输入三个方向的扩胞数目,并点击 Update 进行显示,加载时间会变长,如下图所示:

该功能可以配合其他所有功能一起使用。

5.11 Rotate

5.11.1 获取目前摄像头位置信息

显示当前可视化摄像头位置,便于统一图片的视角、大小。若需获取当前鼠标拖拽后得到的摄像头位置,可以点击可视化区域工具栏的空白区域(其他空白区域不可以),Rotate 的三个空白格将填充三个数字,操作如图所示:

5.11.2 更新摄像头位置

在 Rotate 输入摄像头位置信息,可视化区域即会更新。

5.12 Line

勾选是否显示费米面边界线。

5.13 Line color

选择费米面边界线条颜色, 默认为黑色。

5.14 Line width

选择费米面边界线条粗细, 默认为 1.0。

5.15 Inner-outer

显示区分费米面内外颜色,可通过 Inner color 和 Outer color 进行选择,值得注意的是,内外面是通过费米能与小于费米能 0.0001Ryd 进行颜色区分,因此对于 electron 型费米面,外表面为 outer 而对于 hole 型费米面,外表面为 inner。

5.16 Trait

如果导入 skeaf 计算的标准输出文件 results_orbitoutlines_invau.out 或 results_orbitoutlin es_invAng.out 文件,则 Trait 模式可以打开,通过点击选择拉选框中的频率在可视化区域进行显示。通过 Trait width 调整轨道显示的粗细,Trait color 选择轨道颜色,如果此时 Show slice 已勾选,会在可视化区域显示轨道的截面,如下图所示:

若显示模式为 Separate,则会显示相应轨道所在 pocket,如下图所示:

5.17 Full trait

由于并非所有费米面都会在第一布里渊区形成闭合面,或者轨道并非全在第一布里渊区中,因此勾选 Full trait 会显示轨道的完整形状(包括不在第一布里渊区中的情况),如下图所示(左图为未勾选,右图为勾选):

5.18 Axes

显示轴,默认为不显示。

5.19 Full fs full trait

如果想一次性观察轨道在完整费米面中的完整形状,可勾选该选项,勾选过后将会加载一段时间,最终程序将自动扩胞选择最优显示,如下图所示:

5.20 More

点击 Full fs full trait 旁的...可显示更多调整参数,包括:

5.20.1 FS Opacity

费米面在 Simple 模式下的透明度,默认为 1.0 (不透明),可通过调整滑块或输入 0-1 的小数进行调整。

5.20.2 Line Opacity

边界线的不透明度,同样默认为1.0,可通过调整滑块或输入0-1的小数进行调整。

5.20.3 Trait Opacity

轨道线的不透明度,同样默认为1.0,可通过调整滑块或输入0-1的小数进行调整。

5.20.4 Slice Opacity

切片的不透明度,默认为 0.4,可通过调整滑块或输入 0-1 的小数进行调整,只有在开启 Show slice 模式下才可以调整。

5.20.5 Background Color

调整可视化区域的背景颜色。

5.20.6 Slice Color

调整切片颜色。

5.20.7 Magnetic Field

显示磁场方向,显示的位置是随机的,因此仅用作测试或者验证用。

5.21 计算

5.21.1 Normal Calculation

点击菜单栏中 Calc -> Normal Calculation -> Setting parameters, 弹出如下界面:

左侧为参数设置区域,右侧为计算过程显示。

具体步骤为:

- 1) 点击 **BXSF** file,选择计算好的费米面文件,注意长度单位为 Bohr,能量单位为 Ryd,且只包含一条能打;
- 2) 确认 Fermi energy, 一般导入 BXSF file 后会自动填充 BXSF 文件中的费米 能,也可自行修改;
- 3) 输入 Interpolation, 默认为 120, 不超过 150;
- 4) 输入 Theta 和 Phi, 两个参数可通过 B direction 窗口进行确定, 定义了磁场的方向;
- 5) 输入 Filter 中第一个参数, 代表极值间差距多少被认为为同一个极值轨道, 默认为 0.01kT;
- 6) 输入 Filter 中第二个参数,代表两个轨道之间的频率最大差异为多少时被认为是同一个轨道,默认为 0.01(百分数);
- 7) 输入 Filter 中第三个参数, 代表相邻切片之间两个轨道坐标相差多少被认为 是同一个轨道, 默认为 0.8;
- 8) 点击 Start! 按钮开始运算, 会加载一段时间。

值得注意的是,所有文件格式有错误的报错都会在右侧窗口显示,请根据右侧窗口提示对文件/参数进行检查与修改。

5.21.2 导入计算结果

计算结束且顺利完成后,会弹出如下对话框:

询问是否导入计算结果,点击 Yes 则会导入结果到分析软件中,No 则不导入,同样导入过程中会加载一段时间,最好预先观察计算结果是否合理,输出轨道数是否合理,再选择导入,否则程序容易崩溃而退出。

5.21.3 保存计算结果

点击 Calc -> Save results 可以保存最近一次的结算结果文件,因此请在计算结束后务必先保存文件。

5.22 群速度功能

如果已经导入了费米面文件,则该功能将会开启。

5.22.1 计算群速度

点击菜单栏 View -> Group Velocity -> calculate 软件将计算当前费米面的群速度。在显示群速度之前请先确定已经 calculate 过,若出现其他 bug 都可通过再 calculate 进行重置计算。

5.22.2 显示群速度

点击 View -> Group Velocity -> vector,则显示为群速度的向量模式,如图所示:

点击 View -> Group Velocity -> mag,则显示为群速度的标量模式,如图所示:

两个模式是可以同时显示的。

点击 View -> Group Velocity -> avg,会显示平均群速度,但计算精度存在问题,数量级是基本准确的,所显示的颜色为白色,请将背景颜色设置为黑色进行读取(也建议设成黑色,因为群速度下背景为黑更好辨认),如下图所示:

5.23 磁场方向

点击菜单栏 View -> B direction,则会出现以下界面:

通过设置 Theta(磁场方向投影到 xy 平面与 x 轴的夹角,单位为度),Phi(磁场方向与 z 轴的夹角,单位为度),或者设置 b1、b2、b3 对应基矢的倍数加和确定的磁场方向。设置结束后点击 Update B direction 即可在可视化区域中看到蓝色箭头代表所设置磁场方向,如图所示:

关闭窗口后, 蓝色箭头也会消失。

5.24 Slice

点击菜单栏 More -> Slice,则会弹出以下窗口:

该窗口为独立窗口,运行时与主窗口可分开使用。

5.24.1 导入费米面文件

点击菜单栏 files -> import bxsf files,选择导入的费米面,可以选择多次导入多个费米面文件。

5.24.2 导入轨道文件

如果相对应导入 XX 号费米面后想导入 XX 号费米面计算的轨道,则需要在进行 5.24.1 后导入轨道文件,再选择别的费米面导入,从而在 orbits 窗口括号内才会准确出现 轨道所对应的费米面号。

5.24.3 Bxsf files

该为多选框,往下拉可以选择显示截面的费米面号。

5.24.4 orbits

改为单选框,选择显示对应轨道所在切片的情况。

5.24.5 BZ

扩胞功能, 扩胞后请点击 BZ 按钮进行更新, 否则扩胞不会起效。

5.24.6 Theta

设置磁场方向的 Theta, 若输入了轨道文件则会自动填充, 后面也可修改。

5.24.7 Phi

设置磁场方向的 Phi, 若输入轨道文件则会自动填充, 后面也可修改。

5.24.8 line

勾选则显示边界。

5.24.9 FE

费米能,若输入费米面文件则会自动填充,后面可修改。

5.24.10 滑块

可利用滑块显示沿磁场方向从最底到最顶的截面情况(与 orbits 单选只有一个可激活使用)。

设置结束后显示如图所示:

5.24.11 同步显示截面位置

点击菜单栏 More -> sync, 勾选成功后,将会显示当前截面在三维空间中的具体位置,使用此功能前请确保主窗口与 slice 窗口的费米面是相同(或至少有一个是相同的),如图所示:

