INTRODUÇÃO À PROGRAMAÇÃO EM MATLAB

Objetivos

- Apresentar a descrição da linguagem de programação do MATLAB;
- Apresentar as estruturas básicas de controle em MATLAB;
- Apresentar a forma de codificação em linguagem MATLAB;
- Apresentar padrões de mapeamento para a linguagem MATLAB.

Histórico

- 1978 primeira versão do MATLAB, em FORTRAN, por Cleve Moler;
- 1984 reescrito em C, é lançado pela MathWorks;
- 2000 lançamento da versão 6.

Descrição da linguagem

Alfabeto

Um programa em MATLAB poderá conter os seguintes caracteres :

- as vinte e seis (26) letras do alfabeto inglês:
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 a b c d e f g h i j k l m n o p q r s t u v w x y z
- os dez (10) algarismos : 0 1 2 3 4 5 6 7 8 9
- os símbolos :

<	menor	()	parênteses
>	maior	[]	colchete
	ponto	{}	chaves
,	vírgula	+	soma
:	dois pontos	-	subtração
,	ponto-e-vírgula	*	asterisco
=	igualdade	/	barra
!	exclamação	\	barra invertida
?	interrogação	#	sustenido
&	ampersete	"	aspas
	("e" comercial)		apóstrofo
٨	circunflexo	%	porcento
1	barra em pé	~	til

Pontuação

- Ponto-e-vírgula é usado para separar e inibir a exibição de comandos, a menos que outro separador seja necessário;
- Em alguns casos de operadores, convém o uso de espaços em branco antes, e depois.

Observação :

Em MATLAB utilizam-se, *obrigatoriamente*, as letras minúsculas para os comandos próprios da linguagem.

Tipos de dados

- Tipo básico matriz de números complexos
- Constantes
 - Constante inteira

```
Exemplos: 10, 532, -10567
```

Constante real

```
Exemplos: 10.465 -5.61 +265. 0.0 .731 .37e+2 -3.e-1
```

Observações:

A vírgula decimal é representada por ponto decimal.

Constante literal

```
Exemplos:
```

```
Caractere : '1', ' ', '*', 'A', 'a', '?'
Cadeia : 'BRANCO', 'CEU AZUL'
```

Caracteres predefinidos :

```
'\n' passa para a próxima linha
'\t' passa para a próxima coluna de tabulação (9,17, ...)
'\b' retorna o cursor uma coluna
```

'\\' barra invertida '\'' apóstrofo

• Declaração de constantes

```
Formas gerais :

const <tipo> <NOME> = <valor>;

Exemplos :
    E = 2.718;
```

- Variáveis
 - Nome de variável

```
a) O nome de uma variável tem tamanho determinado;
```

- b) O primeiro caractere é uma letra ou travessão (_);
- c) Outros caracteres podem ser letra, algarismo ou travessão (_).

```
Exemplos:
```

```
Nomes válidos : I, a, de, V9a, Lista_Notas
```

Nomes inválidos: x+, t.6, 43x, so 5

- Definição de variáveis
 - Variáveis simples

```
Forma geral :
  <nomes> = <valor>;

Exemplos :
  x = 10,
  y = 20;
```

- Variáveis agrupadas
 - Homogêneas

```
Forma geral :
    <nome> = [valor 1, valor 2, ..., valor N];

Exemplos :
    v = [ 1, 2, 3, 4, 5 ];
    m = [ [ 1 2 3 ]; [ 4 5 6 ] ];
    frutas = [ 'abacaxi'; 'banana '; 'caju ' ],
```

Observação:

O primeiro elemento tem índice igual a um.

Heterogêneas

```
Forma geral :
    <nome> {<campos>} = <valor>;

Exemplos :
    pessoa.nome = 'xxx';
    pessoa.idade = 99;
    pessoa.sexo = 'F';
```

- Tipos de operadores
 - Aritméticos

Observações

O operador \ (divisão) é semelhante à / (divisão): $2 \setminus 5 = 5 / 2 = 2.5000$.

Relacionais

Observação:

O resultado de uma comparação de dois valores pode ser 0 (falso) ou 1 (verdadeiro).

• Conectivos lógicos

Algoritmo	MATLAB
não	~
е	&
ou	

• Prioridade de operadores

Operador	Associação
() []	à esquerda à direita
* / \	à esquerda
+ —	à esquerda
< <= >= > == ~=	à esquerda
& ~	à esquerda

Principais funções intrínsecas

As regras usadas na formação dos nomes dessas funções intrínsecas são as mesmas utilizadas para os nomes das variáveis.

Exemplo:

$$a = \sin(b)$$

a - nome da variável que receberá o resultado da função;

sin - função (seno) predefinida do MATLAB;

b - nome da variável que vai ser o argumento da função.

Nome (argumento)	Tipo de argumento	Descrição
sin (X) cos (X) atan(X) sqrt(X) exp (X) abs (X) fabs(X) log (X)	double double double double int double double	seno (em radianos) cosseno (em radianos) arco tangente raiz quadrada exponencial de "e" valor absoluto inteiro valor absoluto real logaritmo neperiano logaritmo neperiano
mod (X,Y)	int, int	resto da divisão de X por Y

A linguagem MATLAB dispõe de uma significativa biblioteca básica, com diversas funções além das aritméticas citadas acima.

- Expressões
 - Aritmética

Exemplos:

Algoritmo	MATLAB
10 + 15	10 + 15
543.15/3	543.15/3
(x + y + z)*a/z	((x + y + z) * a)/z

Lógica

Exemplos:

Algoritmo MATLAB

$$A = 0$$
 $A = 0$ $a \neq 1$ $a \sim 1$
 $(A \ge 0) \& (a \le 1)$ $(A > 0) \& (a < 1)$

Observação:

Para efeito de clareza, ou para mudar a precedência de operadores, pode-se separar as proposições por parênteses.

MATLAB

Estrutura de programa

% definições locais

% comandos

separadamente;

% declarações de funções e procedimentos (OPCIONAL) function retorno = <nome> (de parâmetros>) % definições locais retorno = <valor>;

Comentários

Comentários são precedidos por %.

% Este programa nao faz nada - comentario

- Atribuição
 - Atribuição simples

```
Forma geral:
   <variável> = <expressão>;
Exemplo:
        = 0;
  Χ
        = 1.57;
  nome = 'Alameda';
```

- Descrição de entrada e saída
 - Entrada/Saída formatada (padrão C):

```
Forma geral :
    <variável> = input ( <formato> );
    fprintf ( <origem>, <formato>, <lista de itens> );
}
```

Especificação de formatos :

Forma geral:

%<sinais><<0><largura>>< . ><precisão><conversão>

onde:

<sinais> podem ser :
- alinha a esquerda a saída

'+' - conversão de sinal (+ ou -) - conversão de sinal (" " ou -)

'#' - começo com (0, 0x onde apropriado)

<0> <largura> <precisão>

- preenchimento com zeroslargura mínima do campo
- número máximo de caracteres
- ou número de dígitos fracionários (neste caso é precedida por < . >)

<conversão> - pode ser:

caractere	argumento	conversão
d	int	para decimal
0	int	para octal
X	int	para hexadecimal
u	int	para decimal, sem sinal
С	char/int	para um caractere
S	*char	para cadeia de caracteres
е	float	para real com expoente
f	float	para real sem expoente
g	float	para real
%		sinal %

Exemplos:

%5c	- X do tipo caractere e com valor igual a 'A'					Α
%5d	- X do tipo inteiro e com valor igual a 100			1	0	0
%5.2f	- X do tipo real e com valor igual a -1	-	1		0	0

Observação:

Se a largura (no exemplo, 5) não for suficiente para conter o número na sua forma de representação interna, o tamanho padrão para cada tipo será usado.

Caracteres com funções especiais em formatos :

caractere	função		
\0	fim da cadeia de	e caracteres	
\n	fim de linha	(LF)	
\t	tabulação		
\b	retrocesso	(BS)	
\\	barra invertida		

Exemplo completo de programa:

```
% Exemplo: X = 0; Y = 0; fprintf ('Exemplo: '); fprintf ('\n'); fprintf ('\n'); fprintf ('Fornecer um numero inteiro: '); Y = \text{input} (''); X = Y * 2 + 10; fprintf ('\n%s %d\n', 'Resultado: X = ', X); % fim Se fornecido o valor 5 para a variável Y, o resultado será: Resultado: X = 20
```

- Estruturas de controle
 - Sequência simples

Forma geral:

Algoritmo MATLAB

<comando> ; <comando> ; <comando> ;

Observação:

Em MATLAB, é sugerido separarem-se os comandos por ponto-e-vírgula.

- Estrutura alternativa
 - Alternativa simples

Forma geral:

Algoritmo MATLAB
se <condição> if <condição>
então % then
<comandos> ;

fim se end

Alternativa dupla

Forma geral:

Alternativa múltipla

Forma geral:

Algoritmo **MATLAB** switch <valor> escolher <valor> <opcão 1> : case 1. <comandos 1> <comandos 1>; case 2, <opção 2> : <comandos 2> <comandos 2>; <opção n-1> : **case** (n-1), <comandos N-1> <comandos N-1>; senão otherwise <comandos N> <comandos N> fim escolher end

Observações:

A variável de decisão deve ser de tipo escalar.

A indicação otherwise é opcional.

- Estrutura repetitiva
 - Repetição com teste no início

Forma geral:

Algoritmo MATLAB

repetir enquanto <condição> while <condição> <comandos> ; fim repetir end

Observação:

A condição para execução é sempre verdadeira.

• Repetição com teste no início e variação

Forma geral:

Algoritmo MATLAB

Observações:

A condição para execução é sempre verdadeira.

Em MATLAB, qualquer um dos elementos, ou mesmo todos, podem ser omitidos. Entretanto, se tal for preciso, recomenda-se o uso de outra estrutura mais apropriada.

Repetição com teste no fim

Forma geral:

Algoritmo MATLAB

Observação:

A condição para execução é sempre verdadeira.

Interrupções

Em MATLAB, as repetições podem ser interrompidas, em sua sequência normal de execução através dos comandos :

break; e continue;

O comando **break** serve para interromper completamente uma repetição, passando o controle ao próximo comando após a estrutura repetitiva.

O comando *continue* interrompe uma iteração, voltando ao início.