1.	Suppose there is a penalty for 1 for each gap and a penalty of	2
for	matching two different symbols in a column. What is the N	W
scc	ore of the strings AGTACG and ACATAG?	

- 1. 3
- 2. 4
- 3. 5
- 4. 6

A - GTCGACATA - G

(2) is the correct answer. We have an upperbound of 8 if we compute the NW score of the original strings. The strings are of the same length so they must have an even NW score because inserting a gap in one of the strings will require we insert a gap in the other. We will have at least one mismatch will we give us a lowerbound of 4.

- **2.** Let $X = x_1, x_2, \ldots, x_m$ and $Y = y_1, y_2, \ldots, y_n$ be two input strings, with each symbol x_i or y_j in $\{A, C, G, T\}$. How many relevant possibilities are there for the contents of the final column of an optimal alignment?
 - 1. 2
 - 2. 3
 - 3. 4
 - 4. $m \cdot n$

(2) is the correct answer. We choose for the x_m character to be a gap or the x_m character. We again can choose for the y_n character to be a gap or the y_n character. Making both x_m and y_n gaps would be redundant and we could have a better solution by having either x_m or y_n as a gap. Thus we have three options. x_m and y_m staying the same. x_m staying the same and matched with a gap. y_n staying the same and matched with a gap.

3. Suppose one of the two input strings is empty. What is the NW score of X and Y?

- 1. 0
- 2. $\alpha_{gap} \cdot (length \ of \ X)$

- $3. +\infty$
- 4. undefined
- (2) is the correct answer. We make Y the "gap" string. which would result in a penalty of the length of X.
- **4.** Consider the following two search trees that store objects with key 1, 2 and 3: and the search frequency 1:.8, 2:.1, 3:.1. What are the average search times in the two trees, respectively?
 - 1. 1.9 and 1.2
 - 2. 1.9 and 1.3
 - 3. 2 and 1
 - 4. 2 and 3

The average search time for the first tree is $\sum_{n \in N} p(n) \cdot [depth \ of \ n \ in \ tree + 1] = .8*2 + .1*1 + .1*3 = 1.9$. The average search time for the second tree is $\sum_{n \in N} p(n) \cdot [depth \ of \ n \ in \ tree + 1] = .8*1 + .1*2 + .1*3 = 1.2$. Hence (2) is the correct answer.

- **5.** Suppose an optimal binary search tree for the keys [1, 2, ..., n] and frequencies $p_1, p_2, ..., p_N$ has the key r as its root, with left subtree T_1 and right subtree T_2 : Of the following four statements, choose the strongest one that you suspect is true.
 - 1. Neither T_1 nor T_2 need be optimal for the keys it contains
 - 2. At least one of $T_{1,}T_{2}$ is optimal for the keys it contains
 - 3. Each of T_1, T_2 is optimal for the keys it contains.
 - 4. T_1 is an optimal binary search tree for the keys $\{1, 2, \ldots, r-1\}$ and T_2 for the keys $\{r+1, r+2, \ldots, n\}$.
- (4) A dynamic programming problem should satisfy the optimal substructure property therefore (1) and (2) are incorrect. (4) is stronger than (3) and is satisfied by the search tree property of a binary search tree.

- **6.** For the sequence alignment input in Quiz 17.1, what are the final array entries of the NW algorithm from section 17.1
- 7. The *Knapsack* algorithm from section 16.5 and the *NW* algorithm from section 17.1 both fill in a two-dimensional array using a double for loop. Suppose we reverse the order of the for loop-literally cutting and pasting the second loop in front of the first, without changing the pseduocode in any other way. Are the resulting algorithms well defined and correct?
 - 1. Neither algorithm remains well-defined and correct after reversing the order of the for loops
 - 2. Both algorithms remain well defined and correct after reversing the order of the for loop.
 - 3. The Knapsack algorithm remains well-defined and correct after reversing the order of the for loop, but the NW algorithm does not.
 - 4. The NW algorithm remains well-defined and correct after reversing the order of the for loops, but the Knapsack algorithm does not.
- 8. The following problems all take as input two strings X and Y, with lengths m and n, over some alphabet Σ . Which of them can be solved in $O(m \cdot n)$ time?
 - 1. Consider the variation of sequence alignment in which, instead of single gap-penalty α_{gap} , you are given two positive numbers a and b. The penalty for inserting k gaps in a row is now defined as ak+b rather than $k \cdot \alpha_{gap}$. The other penalties are defined as before. The goal is to compute the minimum-possible penalty of an alignment under this new cost model.
 - 2. Compute the length of a longest common subsequence of X and Y.
 - 3. Assumes that X and Y have the same length n. Determine whether there exists a permutation f, mapping each $i \in \{1, 2, ..., n\}$ to a distinct value $f(i) \in \{1, 2, 3, ..., n\}$ such that $X_i = y_{f(i)}$ for every i = 1, 2, ..., n.
 - 4. Compute the length of a longest common substring of X and Y.