

E.g. Solve
$$6 \sinh x - 2 \cosh x = 7$$

 $6 \sinh x - 2 \cosh x = 7$
 $6 \left(\frac{e^{x} - e^{x}}{2}\right) - 2 \left(\frac{e^{x} + e^{-x}}{2}\right) = 7$
 $8 e^{x} - 3 e^{-x} - 1 e^{x} - 1 = 0$
 $1 e^{2x} - 7 e^{x} - 1 = 0$
 $1 e^{2x} - 1 = 0$

Eng. Solve
$$2\cosh^2 x = 5\sinh x = 5$$

 $2\cosh^2 x = -5\sinh x = 5$
 $2(1+\sinh^2 x) - 5\sinh x = 5$
 $2\sinh^2 x = -5\sinh x = 3 = 0$
 $(2\sinh x + 1)(\sinh x = 3) = 0$
 $\sinh x = -\frac{1}{2}$, $\sinh x = 3$
 $x = \arcsin(-\frac{1}{2})$, $\arcsin(3)$
 $= \ln(-\frac{1}{2} + \frac{15}{2})$, $\ln(3 + 10)$

Coordinate Sprems

• Equation: $\frac{x^2}{a^2} + \frac{x^2}{b^2} = 1$

· General Point: (acost, bsint)

· langent: aysin0 + boxcos0 = ab

· Normal : bycose = axsine + (b2-a2) cosesine

· Eccentricity: e <1 given by b2=a2(1-e2)

· Foci: (=ae, 0)

· Directrices: 2 = ± a

Hyperbola

* Equation: $\frac{2e^2}{\alpha^2} - \frac{y^2}{8e} = 1$

· General Pant: (a cosho, b sinho)

(a seco, bland)

· Tangent: ay sinh + ab = be cosh 0

· Normal : by + asin Doe = (a2+b2) tand

· Eccentricity: e > 1 given by b== a=(ez-1)

· Foci : (tae, O)

· Directrices: De = = = =

· Asymptotes: a = = + &

Eccentricity

distance to focus • Eccentricity is a constant for ratio astonic to director for any point $e = \frac{PF}{PD}$

- If 0 < e < 1 the point describes an ellipses
- If e=1 the point describes a parabola
- · If e>1 the point describes a hyperbola
- · For an ellipses the major axis containing the foci (a > b is xaxs, b > a is y axis)
- · Faci will be (tae, 0) or (0, tbe)
- · Corresponding directrices will be ze = ± a or y = ± &

5	mpson. Com			
Summary Property Standard Form Coordinates Eccentricity Foci Directricies	Ellipses $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(a \cos 0, b \sin 0)$ $b^2 = a^2(1 - e^2), e < 1$ $(\pm a e, 0)$ $2e = \pm \frac{a}{e}$	Parabola $y^{2} = 4\alpha x$ $(at^{2}, 2\alpha t)$ $e = 1$ $(a, 0)$ $x = -\alpha$	Hyperbola $x^{2} - y^{2}$ $a^{2} - b^{2} = 1$ (aseco, brand) $(tacosho, brand)$ $b^{2} = a^{2}(e^{2} - 1) e^{-1}$ $(\pm ae, 0)$ $x = \pm \frac{a}{e}$	Rectangular Hyperbole $xy = c^{2}$ $(ct, \frac{c}{t})$ $e = \sqrt{2}$ $(\pm \sqrt{2}c, \pm \sqrt{2}c)$ $xc + y = \pm \sqrt{2}c$
Asymptotes	Combrohy & Call of		= + B	>c=0, y=0
1= 44	The contract		A.P.	Aledosouth
(Onced 6	Carpent Language			
and (except and	and the	1 2	10	
sales ed plan	andrely 8 > 1 0	1 -		
4	T + The sandom (B)			
	purg of any		0	Eccordad
	D to seems for a		13 a constant for	

If ext the part discretion is happings

For we be (tage 0) or (0, the)

Corresponding directrices will be ac == = = or y= = = =

de (arecosse)

de (arctanze)

Differentiation

$$\frac{d}{dx} \left(Sinhxe \right) = Coshxe$$

$$\frac{d}{dx} \left(Coshxe \right) = Sinhxe$$

$$\frac{d}{dx} \left(Coshxe \right) = Sech^2xe$$

$$\frac{d}{dx} \left(Coshxe \right) = -cosech^2xe$$

$$\frac{d}{dx} \left(Cosechxe \right) = -cothxe cosechxe$$

$$\frac{d}{dx} \left(Sechxe \right) = -tanhxe sechxe$$

$$\frac{d}{dx} \left(Sechxe \right) = \sqrt{x^2 + 1}$$

e.g. Differentiate Sinhon
$$\frac{d}{dsc} \left(\frac{e^{x} - e^{-x}}{2} \right)$$

$$= \frac{e^{x} + e^{-x}}{2}$$

$$= \frac{e^{x} + e^{-x}}{2}$$

[e.g. Differentiate
$$x^3 \cosh 2x$$
]
$$\frac{d}{dx} \left(x^3 \cosh 2x\right) = \left(x^3\right) \left(2 \sinh 2x\right) + \left(3 x^2\right) \left(\cosh 2x\right)$$

$$= 2x^3 \sinh 2x + 3x^2 \cosh 2x$$

$$= x^2 \left(2x \sinh 2x + 3 \cosh 2x\right)$$

00000000	CHOPPENTS CO	4.0					
		FP3	Integration	0	عدما مد	Recon	
			V	20 =			
Sinh:	e de	=	Cosh œ				
J cosh a	e dæ		Sinh æ				4
Sech's	e doc	٥	tanh æ	A	1	101	-
∫ cosec	h²sc cbc	E	-cothe	1 = 2	b w	1	
J Sechoe	tanhoe doc		- Sechoe		5 Far	in l	0
∫ cosech	se cottoe doe	y	-cosechoc			-	
J 51-20	i de	3	arcsina	8-38-	F 1	.0.3	
J 1+x2	cbe	3	arctanse			*	
5 51+20	. doc	8	arsinhae	8 r ac8	- 100		
J 522-1	doe		arcoshæ	1-10 = 21	Stol		
			8-411 =	88-	Topic .		*.
Substit	ations				7		
$\int 1-\infty^2$	0	x= 3	nO .	@ 2e = to	anho		
1+222		ze=to	ηθ	@ 2c = S	inho		
J1+202		De = 31	nhO	1 x= to	ano		
J202-1			7.Sh0				1
· lry u	sing O first	, then	try 0 if it c	loes not u	work		
				C 1	1	100	
e.g.	use Substitutio	n ce=a	tand to Show	J 02+202	de = at	an-'(a) +c	
	x = atan0	ح الم	0 = tan'(2	5)	- 700		1
	do = a Sechio						4
	Jaztazlanzo a z i Sechzo t tanzo	sech e	00	1-500-00	£		
	= a / 3 = ch20 = a / 3 = ch20		1		-1		
	= a J 3ed=20 = a J 1 d0			SI- Vinter	-		
	$= \frac{1}{a} 0 + c$						
	= \(\frac{1}{a} \tan^{-1} \left(\frac{2}{a} \right)		13.7				
	- a un (a)	+6					1

Further Integration

Reduction Formula

e.g. Given In = Jenez de Show In = 20nez - n In-1
and find Joc4ez de.

 $u = x^{n}$ $v = e^{x}$ $u' = n x^{n+1}$ $\int x^{n} e^{x} dx = x^{n} e^{x} - \int n x^{n-1} e^{x} dx$ $= x^{n} e^{x} - n \int x^{n-1} e^{x} dx$ $= x^{n} e^{x} - n I$

 $\int x^{4} e^{x} dx = x^{4} e^{x} - 4 I_{3},$ $= x^{4} e^{x} - 4 x^{3} e^{x} + |2I_{2}|$ $= x^{4} e^{x} - 4 x^{3} e^{x} + |2x^{2} e^{x} - 24I,$ $= x^{4} e^{x} - 4 x^{3} e^{x} + |2x^{2} e^{x} - 24x e^{x} + 24e^{x} + c$

/

xa-xa 1 (2)

np (la)

- 1 x 1 + 1 x 1

· S = 21 6 x [2] 41

Vectors

Vector Product 0 = dx (6-3)

· Scalar product: a.b = |a||b||cos0

· Vector product: axb = lal bl sine à

 $a \times b = (a_2b_3) - a_3b_2 + (a_3b_1 - a_1b_3) + (a_1b_2 - a_2b_1) \times \\ = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \frac{1}{2} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_2 \end{vmatrix} + \frac{1}{2} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$

· Area of triangle ABC = 1/4B × ACI

· Area of parallelogram ABCD = | AB × AD |

· Triple Scalar Product: a. (bxc)

· Volume of parallelepiped = | a. (bxc)|

· Volume of tetrahedron = 1 & a . (bxc)

e.g. Find area of triangle ABC where position vectors of A, B and C are (4i-2j+16), (-12i+14j+16) and (-4i-2j+16)

 $\overrightarrow{AB} = -16\underline{i} + 16\underline{j}$ $\overrightarrow{AC} = -8\underline{i}$

 $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} -16 & 16 & 0 \\ -8 & 0 & 0 \end{vmatrix}$ $= \underbrace{i(16\times0 - 0\times0)}_{j} - \underbrace{j(-16\times0 - -8\times0)}_{j} + \underbrace{K(-16\times0 - -8\times16)}_{j}$ = |28K|

: area = $\frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |$ = $\frac{1}{2} | | | | | | | | | |$ = 64

Matrices

Iransposing a Matrix

Transposing a matrix means interchanging the rows and columns

The first row becomes the first column, second row becomes the

Second column, and so on

If A = A then the matrix is symetrical

e.g. Transposing
$$\begin{pmatrix} 3 & 2 & -3 \\ -6 & 4 & 0 \end{pmatrix}$$
 gives $\begin{pmatrix} 3 & 1 & 6 \\ 2 & 8 & 4 \end{pmatrix}$

· An mxn matrix becomes nxm when transposed

Determinant of a 3x3 Matrix The determinant of a 2×2 matrix (a b) is |a b| = ad-bc

The determinant of a 3×3 matrix (a b c) is

a |e f| - b |g i| + c |g b|

e.g. Find the determinant of
$$\begin{pmatrix} 1 & 2 & 1 \\ 4 & -7 & 2 \\ 2 & 3 & 0 \end{pmatrix}$$

(1) $\begin{vmatrix} -7 & 2 \\ 3 & 0 \end{vmatrix} - (2) \begin{vmatrix} 4 & 2 \\ -2 & 0 \end{vmatrix} + (1) \begin{vmatrix} 4 & -7 \\ -2 & 3 \end{vmatrix}$
= $(-7 \times 0) - (2 \times 3) - 2[4 \times 0) - (2 \times -2)] + (4 \times 3) - (-7 \times -2)$
= $-6 - 8 + 12 - 14$
= -16

Find the Minor of an Element

The minor of an element in a 3x3 matrix is the eleterminant of the remaining 2×2 matrix when the row and column of an element are crossed out

minor = (1)(7) - (3)(2)

Finding the Inverse of a 3x3 Matrix

There are five Steps to finding a 3x3 inverse matrix:

- O Find the determinant, det M
- @ Find the matrix of minors, Mm
- 1 Find the cofactor matrix of Mm by changing signs,
- 4 Find Transpose (
- (3) Write out the complete inverse, M' = detM

e.g. Find the inverse of
$$M = \begin{pmatrix} 12 & 1 & 3 \\ 6 & -6 & -16 \\ 3 & 14 & -22 \end{pmatrix}$$

$$\det M = 12 \begin{vmatrix} -6 & -18 \\ 14 & -22 \end{vmatrix} - \begin{vmatrix} 6 & -16 \\ 3 & -22 \end{vmatrix} + 3 \begin{vmatrix} 6 & -6 \\ 3 & 14 \end{vmatrix}$$

$$= 4992$$

$$M_{m} = \begin{pmatrix} 384 & -78 & 102 \\ -64 & -273 & 165 \\ 0 & -234 & -78 \end{pmatrix}$$

$$\begin{pmatrix} 384 & 78 & 102 \\ 64 & -273 & -165 \\ 0 & 234 & -78 \end{pmatrix}$$

$$\begin{pmatrix} 78 & -273 & 234 \\ 102 & -165 & -78 \end{pmatrix}$$

$$\therefore M^{-1} = \frac{1}{4992} \begin{pmatrix} 384 & 64 & 0 \\ 78 & -273 & 234 \\ 102 & -165 & -78 \end{pmatrix}$$

For the cofactor matrix you change signs in the following pattern:

Eigenvectors

- Eigenvector of mattix A Satisfies $Ax = \lambda x$
- · Lis eigenvalue (scalar)
 · Characteristic Equation: det (A-XI) = 0

e.g. Find the eigenvalues of
$$\begin{pmatrix} 2 & 5 \\ -1 & -4 \end{pmatrix}$$

$$A - \lambda I = \begin{pmatrix} **2 & 5 \\ -1 & -4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
$$= \begin{pmatrix} *2 - \lambda & 5 \\ -1 & -4 - \lambda \end{pmatrix}$$

$$\det (A - \lambda I) = (2 - \lambda)(-4 - \lambda) - (5)(-1)$$

$$= -8 + 2\lambda + \lambda^{2} + 5$$

$$= \lambda^{2} + 2\lambda - 3$$

$$\frac{\lambda^2 + 2\lambda - 3 = 0}{(\lambda - 1)(\lambda + 3) = 0}$$

: eigenvalues are 1 and -3

e.g. Find the eigenvector of
$$\begin{pmatrix} 2 & 5 \\ -1 & -4 \end{pmatrix}$$
 for eigenvalue of -3

$$\begin{pmatrix} 2 & 5 \\ -1 & -4 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = -3\begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 2x + 5y \\ -2e - 4y \end{pmatrix} = \begin{pmatrix} -3x \\ -3y \end{pmatrix}$$

$$2x + 5y = -3x$$
 : $y = -x$
 $-x - 4y = -3y$: $y = -x$
Let $x = 1$, then $y = 1$

	WWW. Cwthompson. Com
	Diagonal Matrix
	If MMT = I then M is an orthogonal matrix
	A. Mari
	Scalar product or any tim column years in matrix is a
	(a o) is 2.2 diament matri
	Scalar product of any two column vector in matrix is 0 (a o) is 2x2 diagonal matrix (a o o) is 3x3 diagonal matrix
	T - 1 3 Dx 3 diagonal mairix
٥	To reduce Symmetric matrix, A, to diagonal matrix, D:
	O Find normalised eigenvectors of A
	© Form matrix P, columns of normalised eigenvectors of A
	3 Find PT
	$ \bigoplus_{P} D = P^T A P $
6	PT = P' So PTAP = P'AP = D
	2+21+1==
	E-X2+2X-3
	0=8-42+4/
	0: (8+1)(-1)
	E- had an southwest of
1	
	eg Ful the eigeneer of (2 2) for eigeneline of 23
	(3) E- = (3) (4- 1-)
	(((((((((((((((((((
	2-2-2-2-20
	the second of th
	FU WAY 15 X AST
	(1)
-	i elgentector (s. 17)