Driving Forces for Chemical Reactions

Formation of an insoluble compound (precipitate)
Formation of a gas
Formation of a weak or non-electrolyte

Solubility of Ionic Compounds

Compounds Containing the Following Ions Are Generally Soluble	Exceptions
Li', Na*, K', and NH ₄ "	None
NO ₃ and C ₂ H ₃ O ₂	None
CI ⁻ , Br ⁻ , and I ⁻	When these ions pair with Ag*, Hg22", or Pb2* the resulting compounds are insoluble.
50,2	When SO ₄ 2 ⁻ pairs with S ²¹ , Ba ^{2†} , Pb ²¹ , Ag ¹ , or Ca ^{2†} , the resulting compound is insoluble.
Compounds Containing the Following lons Are Generally Insoluble	Exceptions
OH and S ²	When these ions pair with Li*, Na*, K*, or Ni*l,*, the resulting compounds are soluble.
	When \$2 ⁻ pairs with Ca ²⁺ , \$r ²⁺ , or Ba ²⁺ , the resulting compound is soluble.
	When OH " pairs with Ca ²⁺ , Sr ²⁺ , or Ba ²⁺ , the resulting compound is slightly soluble.
CO ₂ 2 and PO ₂ 3	When these ions pair with Li*, Na*, K*, or NH ₄ *, the resulting compounds are soluble.

Precipitation Reactions

$$Pb(NO_3)_2$$
 (aq) +2 KI (aq) \rightarrow 2 K $NO_3(\alpha q)$ + $PbI_2(S)$

Predict the products

Write products based on ions exchanging places with each other.

If a reaction takes place, one of the products must be a solid, gas or weak/non-electrolyte.

Representing Aqueous Reactions

$$Pb(NO_3)_2$$
 (aq) + KI (aq) \rightarrow

Molecular Equation

Pb(NO3)2(0q)+2K1(0q) -> 2KNO3(0q)+Pb12(5)

Complete (or Total) Ionic Equation

Pb2+(aq) +2 NO3 (aq) +2 K+(aq) +21"(aq) -> 2K+(aq) +2NO3 (aq) +Pb12 (s)

Net Ionic Equation

Pb2+(09) + 21 (09) -> Pb12 (5)

Representing Aqueous Reactions

$$CuCl_2$$
 (aq) + NaOH (aq) \rightarrow

Molecular Equation

CuCl2(aq)+2NaOH(aq) -> 2NaCl(aq)+ Cu(OH)2(5)

Complete (or Total) Ionic Equation

Cu2+(aq) +2Cl (aq) +2Na+(aq) +2OH (aq) → 2Na+(aq)+2Cl (aq) +(U(OH)2(S)

Net Ionic Equation

(02 (0q) + 20H (aq) → Cu(OH)2(5)

Representing Aqueous Reactions

NaBr (aq) + RbCl (aq) \rightarrow

Molecular Equation

NaBr (aq) + RbCl (aq) -> NaCl (aq) + RbBr (aq)

Complete (or Total) Ionic Equation

No+(6q) + Br (aq) + Rb'(aq) + Cl'(aq) -> Na' (aq) + Cl'(aq) + Rb'(aq) + Br (aq)

Net Ionic Equation

None

Representing Aqueous Reactions

*
$$HNO_3$$
 (aq) + NaOH (aq) \rightarrow

Molecular Equation

HNO3 (ag) + NOOH (ag) -> NONO3 (ag) + H2O(2)

Complete (or Total) Ionic Equation

H(aq)+NO3 (aq)+Nc+(aq)+OH(aq) -> Nc+(aq)+NO3 (aq)+H2O(1)

Net Ionic Equation

H+(aq)+OH(aq) -> H2O(1)

*HNO₃ ionizes completely in water