MATH 502 Notes

Jiantong Liu

August 29, 2023

References:

- · Atiyah and MacDonald, Commutative Algebra.
- J.P. Serre, Local Algebra.
- · Zariski and Samuel, Commutative Algebra Volume 1 and 2.
- Matsumura, Commutative Algebra.
- · Bourbaki, Commutative Algebra.

We always assume a ring R has a multiplicative identity and is commutative.

0 Noetherian, Artinian, and Localization

Proposition 0.1. Let R be a (commutative) ring, and let M be an A-module, then the following are equivalent:

(i) Given an infinite increasing chain of submodules of M

$$M_1 \subseteq M_2 \subseteq \cdots \subseteq M_n \subseteq M_{n+1} \subseteq \cdots$$

then there exists some $N \in \mathbb{N}$ such that $M_N = M_{N+1} = \cdots$, i.e., for all $n \ge N$, $M_n = M_{n+1}$.

- (ii) Every non-empty family of submodules has a maximal element.
- (iii) Every submodule of M is finitely-generated.

Proof. $(i) \Rightarrow (ii)$: This is a direct result of Zorn's lemma.

- $(ii) \Rightarrow (i)$: Obvious.
- $(i), (ii) \Rightarrow (iii)$: Take any submodule N of M and take $x_1 \in N$. If $(x_1) \neq N$, then there exists $x_2 \in N \setminus (x_1)$, so $(x_1, x_2) \subseteq N$, now we proceed inductively, but by the given property we know this stops in finite number of steps, hence we have $N = (x_1, \ldots, x_n)$ for some $n \in \mathbb{N}$, thus N is finitely-generated.
- $(iii) \Rightarrow (i)$: Note that the property implies M is finitely-generated, but that means the chain of submodules must be finite.

Definition 0.2 (Noetherian Module). If any of the conditions in Proposition 0.1 holds, then M is said to be a Noetherian module. Alternatively, we say M satisfies the ascending chain condition.

Proposition 0.3. Let R be a (commutative) ring, and let M be an A-module, then the following are equivalent:

(i) Given an infinite decreasing chain of submodules of M

$$M_1 \supseteq M_2 \supseteq \cdots \supseteq M_n \supseteq M_{n+1} \supseteq \cdots$$

then there exists some $N \in \mathbb{N}$ such that $M_N = M_{N+1} = \cdots$, i.e., for all $n \ge N$, $M_n = M_{n+1}$.

(ii) Every non-empty family of submodules has a minimal element.

Proof. Again, Zorn's lemma.

Definition 0.4 (Artinian Module). If any of the conditions in Proposition 0.3 holds, then M is said to be a Artinian module. Alternatively, we say M satisfies the descending chain condition.

Example 0.5. • \mathbb{Z} is Noetherian.

- \mathbb{Q}/\mathbb{Z} is not Noetherian.
- Let p be a prime. Let $\mathbb{Z}(p^{\infty})$ be the union of chains (as direct limits)

$$\left\langle \frac{\bar{1}}{p} \right\rangle \subseteq \left\langle \frac{\bar{1}}{p^2} \right\rangle \subseteq \dots \subseteq \left\langle \frac{\bar{1}}{p^n} \right\rangle \subseteq \dots$$

then there is an embedding $\mathbb{Z}(p^{\infty}) \subseteq \mathbb{Q}/\mathbb{Z}$, where \bar{a} is the image of a in \mathbb{Q}/\mathbb{Z} . With this construction, $\mathbb{Z}(p^{\infty})$ is Artinian.

Exercise 0.6. Show that $\mathbb{Q}/\mathbb{Z} \cong \bigoplus_{p} \mathbb{Z}(p^{\infty})$ where p traverses through all the primes.

Proposition 0.7. Let N be a submodule of M. Suppose M satisfies ascending (respectively, descending) chain condition, then N and M/N also satisfy ascending (respectively, descending) chain condition. If, for some submodule N of M, we know N and M/N satisfy ascending (respectively, descending) chain condition, then M also satisfies ascending (respectively, descending) chain condition.

Proof. Suppose M satisfies ascending (respectively, descending) chain condition, and let N be a submodule of M. Let $\{N_i\}$ be an increasing (respectively, decreasing) sequence of submodules of N, then they can be regarded as submodules of M, therefore by the Noetherian (respectively, Artinian) condition, we know N satisfies ascending (respectively, descending) chain condition. Now let $\bar{M} = M/N$, and take $\{\bar{M}_i\}$ be an increasing (respectively, decreasing) sequence of \bar{M} . Let $\pi: M \to M/N$ be the quotient map, then the preimages give an increasing (respectively, decreasing) sequence $\{M_i\}$ of submodules of M, where $M_i = \pi^{-1}(\bar{M}_i)$, but by the Notherian (respectively, Artinian) condition, we know the sequence stops in finite steps, therefore the original sequence stops in finite steps as well, hence \bar{M} satisfies the ascending (respectively, descending) chain condition.

Suppose a submodule N of M is such that N and M/N both satisfy ascending chain condition. Take a submodule T of M, then we have a short exact sequence

$$0 \longrightarrow T \cap N \longrightarrow T \longrightarrow T/(T \cap N) \longrightarrow 0$$

Now $T \cap N$ is finitely-generated as N is finitely-generated, therefore we have an embedding $T/T \cap N \hookrightarrow M/N$, thus $T/T \cap N$ is finitely-generated, therefore T is also finitely-generated by a vector space argument.

Suppose we have a decreasing sequence $\{M_n\}$ of M, then we have a decreasing sequence $\{N\cap M_n\}$. Let M=M/N, then $\bar{M}_n:=(M_n+N)/N$ defines a decreasing sequence of submodules in \bar{M} , but N satisfies the descending chain condition, so the sequence $\{N\cap M_n\}$ stops in finite number of steps, say n_0 . Moreover, the sequence of \bar{M}_n 's also stops in finite number of steps, so by definition the sequence of $(M_n+N)/N$ stops in finite number of steps, say m_0 , but by the isomorphism theorem this shows that the sequence of $M_n/(N\cap M_n)$ stops in m_0 steps. Therefore, whenever $n\geqslant m_0,n_0$, then $N\cap M_n=N\cap M_{n+1}$, hence $M_n=M_{n+1}=\cdots$ for such n.

Remark 0.8. The final argument should also work in the Noetherian case.

Definition 0.9 (Simple Module). An A-module M is simple if the submodules of M are either 0 or M.

Exercise 0.10. Let A be a commutative ring, and M is an A-module, then M is simple if and only if $M \cong A/\mathfrak{m}$ for some maximal ideal \mathfrak{m} of A.

Definition 0.11 (Jordan-Hölder Chain). Let A be a commutative ring and M be an A-module. We say M has a Jordan-Hölder chain if there exists a decreasing chain of submodules $\{M_i\}$ such that

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{n-1} \supseteq M_n = 0$$

such that M_i/M_{i+1} is simple. In such a situation, we know n is the length of the Jordan-Hölder chain, and such n is unique. We say M is a module of finite length, and the length is $\ell_A(M) = n$.

Exercise 0.12. Let A be a commutative ring, and let M be an A-module, then M is of finite length if and only if M is both Noetherian and Artinian.

Theorem 0.13. Let A be a commutative ring, then A is Artinian if and only if A is Noetherian and every prime ideal of A is maximal.

Proof. (\Leftarrow) :

Lemma 0.14. Let A be Noetherian, then every ideal of A contains a product of prime ideals.

Subproof. Suppose, towards contradiction, that there exists some ideal I of A that does not contain a product of prime ideals. Let $\mathcal J$ be the set of such ideals of A, then $\mathcal J \neq \varnothing$, and we can take a maximal element of $\mathcal J$, namely $J^{,1}$ By definition, J is not prime, therefore there exists $a,b\in A$ such that $a\notin J$ and $b\notin J$, but $ab\in J$. Now $J\subsetneq J+Aa$ and $J\subsetneq J+Ab$, therefore J+Aa, $J+Ab\notin J$, therefore J+Aa and J+Ab both contain product of prime ideals. But now (J+Aa)(J+Ab) should also contain products of prime ideals, but by distribution this is just $J^2+Ja+Jb+Aab$, which is contained in J because every term is contained in J, so J contains a product of prime ideals as well, contradiction.

In particular, (0) contains a product of prime ideals, in particular (0) equals to this product, but every prime ideal is maximal, therefore (0) = $\mathfrak{m}_1 \cdots \mathfrak{m}_n$ becomes the product of maximal ideals (which may not necessarily be distinct), hence we have a descending chain of ideals

$$A \supseteq \mathfrak{m}_1 \supseteq \mathfrak{m}_1 \mathfrak{m}_2 \supseteq \cdots \supseteq \mathfrak{m}_1 \cdots \mathfrak{m}_n = (0),$$

and in particular $(\mathfrak{m}_1 \cdots \mathfrak{m}_{i-1})/(\mathfrak{m}_1 \cdots \mathfrak{m}_i)$ is a finite-dimensional since A is Noetherian, and it has a natural structure as a A/\mathfrak{m}_i -vector space. From the short exact sequence

$$0 \longrightarrow \mathfrak{m}_1 \cdots \mathfrak{m}_i \longrightarrow \mathfrak{m}_1 \cdots \mathfrak{m}_{i-1} \longrightarrow (\mathfrak{m}_1 \cdots \mathfrak{m}_{i-1})/(\mathfrak{m}_1 \cdots \mathfrak{m}_i) \longrightarrow 0$$

we know the two sides of the sequence are Artinian, hence the central term is Artinian. Proceeding inductively, we know that \mathfrak{m}_1 is Artinian, and R/\mathfrak{m}_1 would also be Artinian, hence A is Artinian.

 (\Rightarrow) : Now suppose A is Artinian, and we want to show that every prime ideal is maximal, and (0) is a product of maximal ideals. The result then follows from the argument above.

Lemma 0.15. Every Artinian domain is a field.

Subproof. Let $0 \neq a \in A$, then consider the chain

$$(a) \supseteq (a^2) \supseteq \cdots \supseteq (a^n) \supseteq \cdots$$

and by the Artinian property, for some large enough n the descending chain stops. Hence, we have $a^n = \lambda a^{n+1}$ for some large enough n and some $\lambda \in A$. Hence, $a^n(1-\lambda a)=0$, by the cancellation property of a domain, since $a\neq 0$, we must have $\lambda a=1$, therefore a is a unit, as desired.

Corollary 0.16. Let A be Artinian, then every prime ideal of A is maximal.

Finally, it suffices to show that $(0) = \mathfrak{m}_1 \cdots \mathfrak{m}_n$. Let \mathfrak{J} be the set of finite products of maximal ideals, then \mathfrak{J} has a minimal element, and it suffices to show that this element is (0). Suppose not, let $I \neq (0)$ be a minimal element of R. For any two ideals α , β of A, let $(\alpha : \beta) = \{a \in A \mid a\beta \subseteq \alpha\}$. Note that this has a natural structure as an ideal of A. Let J = ((0) : I), and suppose J = A, then I = 0, contradiction, so $J \neq A$ is a proper ideal of A, now consider A/J which is Artinian, then let \mathfrak{G} be the set of all non-zero ideals of A/J, so \mathfrak{G} has a minimal element as well, call it \overline{H} . Let $H = \pi^{-1}(\overline{H})$ where $\pi : A \to A/J$, so we have $J \subsetneq H$, thus let P = (J : H).

Claim 0.17. P is a prime ideal.

Subproof. Given $c, d \notin P$, we want to show that $cd \notin P$. Indeed, consider $J \subsetneq J + cH \subseteq H$, then since H is minimal, then J + cH = H, and similarly we have that J + dH = H. Therefore, we have that J + cdH = J + c(dH + J) = J + cH = H, hence we know $cd \notin P$, as desired.

¹The existence of this maximal element is the result of Zorn's lemma and ACC condition.

Now P = (J : H) and J = (0 : I), the by definition we have PHI = (0). Since P is a prime ideal, then P is maximal, and now

$$(0:PI) \supseteq H \supsetneq J = (0:I)$$

Therefore $PI \subseteq I$, where I is a minimal element, contradiction, hence (0) is a product of maximal ideals.

Definition 0.18 (Short Exact Sequence). Consider the sequence

$$0 \longrightarrow N \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} T \longrightarrow 0$$

This is called a short exact sequence if $\ker(f) = 0$, $\operatorname{im}(g) = T$, and $\ker(g) = \operatorname{im}(f)$. In particular, one slot of the sequence is said to be exact if the kernel of the previous map equals to the image of the subsequent map.

Definition 0.19 (Flat Module). Let M be an A-module, then we say M is a flat A-module if for every short exact sequence

$$0 \longrightarrow N_1 \longrightarrow N_2 \longrightarrow N_3 \longrightarrow 0$$

the tensored sequence

$$0 \longrightarrow M \otimes_A N_1 \longrightarrow M \otimes_A N_2 \longrightarrow M \otimes_A N_3 \longrightarrow 0$$

remains exact.

Remark 0.20. Recall that the properties of modules have the following implications: free \Rightarrow projective \Rightarrow flat \Rightarrow torsion-free, and in the case of finitely-generated modules, torsion-free \Rightarrow free.

Remark 0.21. We already know that the tensor functor is right exact, namely given the short exact sequence above, then

$$M \otimes_A N_1 \longrightarrow M \otimes_A N_2 \longrightarrow M \otimes_A N_3 \longrightarrow 0$$

is exact.

Exercise 0.22. Let M be an A-module, and if there exists a short exact sequence of A-modules

$$0 \longrightarrow N_1 \longrightarrow N_2 \longrightarrow N_3 \longrightarrow 0$$

where N_1 and N_2 are finitely-generated as A-modules, and such that tensoring M preserves the short exact sequence, then M is flat.

Definition 0.23 (Multiplicatively Closed Subset). Let A be a commutative ring and M be an A-module. Let $S \subseteq A$ be a subset. We say S is a multiplicatively closed subset of A if $1 \in S$, $0 \notin S$, and whenever $s_1, s_2 \in S$, then $s_1s_2 \in S$.

Definition 0.24 (Localization). Let $S \subseteq A$ be a multiplicatively closed subset, and let M be an A-module, then $S^{-1}M = (M \times S)/\sim$, where \sim is an equivalence relation defined by the following: $(m_1, s_1) \sim (m_2, s_2)$ if and only if there exists $t \in S$ such that $t(m_1s_2 - m_2s_1) = 0$. $S^{-1}M$ is said to be the localization of M at S.

Given $(m,s) \in M \times S$, we write $\overline{(m,s)}$ to be the equivalence class in $S^{-1}M$ represented by (m,s).

Exercise 0.25. Similarly, one can define the localization $S^{-1}A$ of A at S. In fact, $S^{-1}A$ inherits a ring structure from A, namely

- $\bullet \ \frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{a_1 s_2 + a_2 s_1}{s_1 s_2},$
- $\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a_1 a_2}{s_1 s_2}$,
- $\frac{1}{s} \cdot \frac{s}{1} = \frac{1}{1} = 1$.

Remark 0.26. Note that a ring structure does not guarantee every element to have a multiplicative inverse. The localization of A at S ensures that every element of S now becomes invertible in the new ring $S^{-1}A$. In particular, this induces a ring homomorphism

$$f: A \to S^{-1}A$$
$$a \mapsto \frac{a}{1}$$

This homomorphism is injective if A is a domain.

Remark 0.27. Let I be an ideal of A.

- Consider the ring homomorphism $f:A\to S^{-1}A$ above, then

$$S^{-1}I = IS^{-1}A = f(I)S^{-1}A.$$

In particular, $f^{-1}(IS^{-1}A) \supseteq I$.

- If $I \cap S \neq \emptyset$, then $IS^{-1}A = S^{-1}A$.
- If P is a prime ideal of A such that $P \cap S = \emptyset$, then $f^{-1}(PS^{-1}A) = P$.
- Let M be an A-module, then if $N \subseteq M$ is a submodule, then $S^{-1}N \subseteq S^{-1}M$. That is, given an exact sequence

$$0 \longrightarrow N \longrightarrow M$$

then we obtain an exact sequence

$$0 \longrightarrow S^{-1}N \longrightarrow S^{-1}M$$

Indeed, given $0 \to N \xrightarrow{f} M$, say we have it sending $\frac{n}{1} \mapsto \frac{f(n)}{1} = 0$, then there exists $s \in S$ such that sf(n) = 0, so f(sn) = 0, therefore sn = 0 by injection, hence $\frac{n}{1} = 0$ in $S^{-1}N$ as well.

Exercise 0.28. The localization functor is exact.

Lemma 0.29. Let A be a commutative ring and S be a multiplicatively closed subset of A, then $S^{-1}A \otimes_A M \cong S^{-1}M$. *Proof.* We define

$$\varphi: S^{-1}A \otimes_A M \to S^{-1}M$$
$$\frac{a}{s} \otimes m \mapsto \frac{am}{s}.$$

For any $\frac{m}{s} \in S^{-1}M$, we have $\varphi\left(\frac{1}{s} \otimes m\right) = \frac{m}{s}$, so the map is onto. Now suppose $\varphi\left(\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i\right) = 0$ (since this is a finite sum), then $\varphi\left(\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i\right) = \sum_{i=1}^{n} \frac{a_i m_i}{s_i} = 0$. We make $s = s_1 \cdots s_n$, so

$$\frac{a_i}{s_i} \otimes m_i = \frac{a_i s_1 \cdots s_{i-1} s_{i+1} \cdots s_n}{s} \otimes m_i =: \frac{b_i}{s} \otimes m_i,$$

then $\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i = \sum_{i=1}^{n} \frac{b_i}{s} \otimes m_i$, therefore

$$\varphi\left(\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i\right) = \varphi\left(\sum_{i=1}^{n} \frac{b_i}{s} \otimes m_i\right) = \frac{\sum_{i=1}^{n} b_i m_i}{s} = 0,$$

so there exists $t \in S$ such that $t \sum_{i=1}^{n} b_i m_i = 0$, now

$$\sum_{i=1}^{n} \frac{a_i}{s_i} \otimes m_i = \sum_{i=1}^{n} \frac{b_i}{s} \otimes m_i$$

$$= \sum_{i=1}^{n} \frac{1}{s} \otimes b_i m_i$$

$$= \frac{1}{s} \otimes \sum_{i=1}^{n} b_i m_i$$

$$= \frac{t}{ts} \otimes \sum_{i=1}^{n} b_i m_i$$

$$= \frac{1}{ts} \otimes t \sum_{i=1}^{n} b_i m_i$$

$$= \frac{1}{ts} \otimes 0$$

$$= 0.$$

Proposition 0.30. The map $A \to S^{-1}A$ is A-flat, i.e., $S^{-1}A$ is a flat A-module.

Proof. Consider

$$0 \longrightarrow N \longrightarrow M \longrightarrow T \longrightarrow 0$$

By Lemma 0.29 (since the isomorphism is functorial), it suffices to show the exactness of

$$0 \longrightarrow S^{-1}N \longrightarrow S^{-1}M \longrightarrow S^{-1}T \longrightarrow 0$$

and this follows from Exercise 0.28.

Definition 0.31. Let A be a commutative ring. We say A is quasi-local if A has exactly one maximal ideal. In particular, if A is also Noetherian, then we say A is a local ring.

Definition 0.32. Let A be a commutative ring and \mathfrak{p} be a prime ideal of A. Note that $S = A \setminus \mathfrak{p}$ is a multiplicatively closed subset, then we write $S^{-1}A = A_{\mathfrak{p}}$ (in general, we have $S^{-1}M = M_{\mathfrak{p}}$, where $M \otimes_A A_{\mathfrak{p}} \cong M_{\mathfrak{p}}$) to denote the localization of A away from the prime ideal \mathfrak{p} .

Exercise 0.33. $A_{\mathfrak{p}}$ is quasi-local with unique maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.

Remark 0.34. Take $x \in M$, then the following are equivalent:

- x = 0;
- $\frac{x}{1} = 0$ in $M_{\mathfrak{m}}$ for any maximal ideal \mathfrak{m} of A;
- $\frac{x}{1} = 0$ in $M_{\mathfrak{p}}$ for any prime ideal \mathfrak{p} of A.

Proof. We will prove the first two are equivalent. The (\Rightarrow) direction is obvious. Conversely, let $I=\{a\in A\mid ax=0\}$ to be the annihilator of x in A. Suppose, towards contradiction, that $I\neq A$, then I is contained in some maximal ideal \mathfrak{m} of A, then consider $M_{\mathfrak{m}}$. Since $\frac{x}{1}=0$ in \mathfrak{m} , then there exists $t\in A\backslash \mathfrak{m}$ such that tx=0, but $I\subseteq \mathfrak{m}$ and $t\notin \mathfrak{m}$, then we reach a contradiction, hence I=A, and obviously we are done.

Exercise 0.35. 1. Given the sequence

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} T \longrightarrow 0$$

the following are equivalent:

- the sequence is exact;
- the sequence

$$0 \longrightarrow M_{\mathfrak{m}} \xrightarrow{f_{\mathfrak{m}}} N_{\mathfrak{m}} \xrightarrow{g_{\mathfrak{m}}} T_{\mathfrak{m}} \longrightarrow 0$$

is exact for all maximal ideals \mathfrak{m} of A;

• the sequence

$$0 \longrightarrow M_{\mathfrak{p}} \xrightarrow{f_{\mathfrak{p}}} N_{\mathfrak{p}} \xrightarrow{g_{\mathfrak{p}}} T_{\mathfrak{p}} \longrightarrow 0$$

is exact for all prime ideals \mathfrak{p} of A.

To see this, apply Remark 0.34.

- 2. Let A be a commutative ring and M be an A-module, then the following are equivalent:
 - M is A-flat;
 - $M_{\mathfrak{m}}$ is $A_{\mathfrak{m}}$ -flat for all maximal ideals \mathfrak{m} of A;
 - $M_{\mathfrak{p}}$ is $A_{\mathfrak{p}}$ -flat for all prime ideals \mathfrak{p} of A;

Hence, exactness is a local property.

Exercise 0.36. Let A be a commutative ring, then A is Artinian if and only if A as an A-module is of finite length, i.e., $\ell_A(A) < \infty$. Indeed, note that $(0) = \mathfrak{m}_1 \cdots \mathfrak{m}_n$, and write down the Jordan-Hölder series.

1 Primary Decomposition Theorem

Throughout Section 1, the commutative ring A is always Noetherian. In Section 1.1, M is a finitely-generated A-module; in Section 1.2, we drop this assumption.

1.1

Definition 1.1. We say M is a coprimary module if for all $a \in A$, the left multiplication $m_a : M \to M$ is either injective or nilpotent (i.e., there exists n > 0 such that $a^n M = 0$).

Remark 1.2. (i) If M is coprimary, then N is coprimary for all $N \subseteq M$.

(ii) If M is coprimary, let $P = \{a \in A \mid a : M \to M \text{ is nilpotent}\}\$, then P is a prime ideal of A.

Proof. For $a, b \notin P$, $a, b : M \to M$ are injective maps, so $ab : M \to M$ is injective, hence $ab \notin P$.

Hence, we usually say M is P-coprimary.

(iii) Let M be P-coprimary, then there exists an injection (as M-linear map) $A/P \hookrightarrow M$.

Proof. Take any $x \neq 0$ in M, then consider

$$a_x: A \to M$$

 $1 \mapsto x$

Let $I = \ker(a_x)$, then we have

$$A/I \hookrightarrow M$$
$$\bar{1} \mapsto x$$

Now $I \subseteq P$ since I already kills x. Since A is Noetherian, P is finitely-generated, thus consider $P = (a_1, \ldots, a_r)$, then $a_i^{t_i} \cdot x = 0$ for all i and some t_i 's. Let $t = t_1 + \cdots + t_r$, then $P^t \cdot x = 0$ by binomial theorem, so $P^t \subseteq I \subseteq P$, hence there exists j such that $P^j \subseteq I \subseteq P^{j-1}$. Take $y \in P^{j-1} \setminus I$, so $\bar{y} \neq 0$ in A/P, taking the injection into M, then $\operatorname{Ann}_A(\bar{y}) = P$. We now have the composition

$$A/P \hookrightarrow A/I \hookrightarrow M$$
$$\bar{1} \mapsto \bar{y}$$

to be injective.

(iv) Suppose M is P-coprimary, and Q is a prime ideal such that $A/Q \hookrightarrow M$, then P=Q.

Proof. By definition of $P,Q\subseteq P$ is obvious: Q kills elements in M, therefore the mapping becomes nilpotent. The other direction is also easy.

Definition 1.3. Let $N \subseteq M$ be a submodule. We say N is a primary submodule of M if M/N is coprimary. If M/N is P-coprimary, we say N is P-primary.

Remark 1.4. Let \mathfrak{p} be a prime ideal of A. We claim that \mathfrak{p}^t is P-primary. Consider

$$m_x: A/\mathfrak{p}^t \to A/\mathfrak{p}^t$$

then $x^t = 0$ on A/\mathfrak{p}^t .

Example 1.5. Let $A = k[X, Y, Z]/(Z^2 - XY)$, let $\mathfrak{p} = (x, z)$ where $x = \operatorname{im}(X)$ and $z = \operatorname{im}(Z)$. Now $A/\mathfrak{p} = k[Y]$. \mathfrak{p}^2 is not P-primary. Indeed, note that $A/\mathfrak{p}^2 = k[X, Y, Z]/(z^2 - xy, x^2, z^2) \cong k[X, Y, Z]/(X^2, XY, Z^2, XZ)$. Now the mapping given by multiplication by y on this map is injective, so \mathfrak{p}^2 is not P-primary.

In particular, the represented surface is not smooth, since the origin (0,0,0) is a singularity.

Theorem 1.6 (Primary Decomposition Theorem). By assumption, A is Noetherian and M is finitely-generated. Let $N \subseteq M$ be a submodule, then there exists a decomposition

$$N = \bigcap_{i=1}^{r} N_i$$

where each N_i is P_i -primary, and such that

- 1. all P_i 's are distinct, and
- 2. this decomposition is irredundant, i.e., minimal. In particular, this means removing any of the N_i 's gives a different intersection, i.e., $\bigcap_{j \neq i} N_j \nsubseteq N_i$.

This is called a primary decomposition of N. Moreover, the primary decomposition is unique up to permutation of modules, that is, if there exists another primary decomposition, i.e., $N = \bigcap_{i=1}^{s} N_i'$ where N_i' 's are P_i' -primary, then r = s and $\{N_1, \ldots, N_r\} = \{N_1', \ldots, N_s'\}$.

1.2

- 2 FILTERED RINGS AND MODULES, COMPLETIONS
 - 3 Dimension Theory
 - 4 Integral Extensions
 - 5 Noether's Normalization Lemma
 - 6 Homological Algebra