Stochastic Processes

Eklavya Sharma

Definition 1 (Stochastic Process). Let $\mathcal{T} \subseteq \mathbb{R}$. For any $t \in \mathcal{T}$, let X_t (or X(t)) be a random variable with support D. Then $X := \{X_t : t \in \mathcal{T}\}$ is called a stochastic process on state-space D and time \mathcal{T} . Usually, \mathcal{T} is either $\mathbb{Z}_{\geq 0}$ (discrete-time) or $\mathbb{R}_{\geq 0}$ (continuous-time).

1 Discrete-Time Markov Chains

Definition 2 (Markov Chain). Let $X := [X_0, X_1, \ldots]$ be a stochastic process on state-space D and time $\mathbb{Z}_{\geq 0}$. X is called a discrete-time markov chain if $\Pr(X_{t+1} = d \mid X_t, X_{t-1}, \ldots, X_0) = \Pr(X_{t+1} = d \mid X_t)$. If $\Pr(X_{t+1} = v \mid X_t = u) = \Pr(X_1 = v \mid X_0 = u)$ for all t, u, v, then X is called time-homogeneous.

Definition 3 (Transition function). Let X be a markov chain on state space D. Define $P^{(k)}: D \times D \mapsto [0,1]$ as $P^{(k)}(i,j) = \Pr(X_k = j \mid X_0 = i)$. Then $P^{(k)}$ is called the k-step transition function of X. For k = 1, we simply write P instead of $P^{(1)}$. For a finite state space, we can represent P as a matrix.

Lemma 1 (Chapman-Kolmogorov Equation). $P^{(m+n)}(i,j) = \sum_k P^{(m)}(i,k) P^{(n)}(k,j)$.

1.1 Classification of States, Recurrence, Limiting Probabilities

Definition 4. Let $f_{i,j} := \Pr\left(\bigvee_{t \geq 1} (X_t = j) \mid X_0 = i\right)$. Then $f_{i,j}$ is called the eventual transition probability from i to j. If i = j, then we write $f_{i,i}$ as f_i , and call it the recurrence probability of state i.

Definition 5. For a state i, let N_i be the random variable that counts the number of times we are in state i, i.e., $N_i := \sum_{t=0}^{\infty} \mathbf{1}(X_t = i)$. Then N_i is called the visit-count of i.

Definition 6. A state i of a markov chain is recurrent iff (the following are equivalent):

- the recurrence probability (f_i) of i is 1.
- i is visited infinitely often, i.e., $\Pr(N_i = \infty \mid X_0 = i) = 1$.
- i is visited infinitely often in expectation, i.e., $E(N_i \mid X_0 = i) = \infty$.

A non-recurrent state is called a transient state.

Lemma 2.
$$\Pr(N_i = k \mid X_0 = i) = f_i^{k-1}(1 - f_i).$$

Lemma 3.
$$E(N_i \mid X_0 = i) = 1/(1 - f_i) = \sum_{t=0}^{\infty} P^{(t)}(i, i)$$
.

Definition 7. State j is accessible from state i if $P^{(t)}(i,j) > 0$ for some t. States i and j communicate (denoted as $i \leftrightarrow j$) if i and j are both accessible from each other.

Lemma 4. Accessibility is reflexive and transitive. Communication is an equivalence relation. The equivalence classes of communicability are called state classes. A markov chain is irreducible if it has just one state class.

Definition 8. Let T_i be the time when a markov chain moves to state i, i.e., $T_i := \min_{t \geq 1}(X_t = i)$. When conditioned on $X_0 = i$, T_i is called the recurrence time of i. State i is called positive recurrent if $E(T_i \mid X_0 = i)$ is finite, otherwise it is null recurrent.

Lemma 5. Recurrence and positive recurrence are class properties, i.e., they are same for all states in a class.

Lemma 6. In a finite-state markov chain, all recurrent states are positive recurrent, and there is at least one recurrent state.

Definition 9 (Periodicity). For a state i, its period is defined as $gcd(\{t : Pr(T_i = t \mid X_0 = i) > 0\})$. A state is aperiodic if its period is 1.

Lemma 7. Periodicity is a class property.

Definition 10 (Ergodicity). A state is ergodic if it is positive recurrent and aperiodic. A markov chain is ergodic if all its states are ergodic.

Lemma 8. In an irreducible ergodic markov chain, for every state j, $\lim_{t\to\infty} P^{(t)}(j,i) = \pi_i$ for a unique real number π_i . π_i is called the limiting probability of state i. Furthermore, π_i is the unique solution to this system of equations: $\pi_i = \sum_j \pi_j P(j,i)$ for all i ($\pi = P^T \pi$ in matrix form) and $\sum_i \pi_i = 1$.

Lemma 9. In an irreducible ergodic markov chain, $E(T_i \mid X_0 = i) = 1/\pi_i$.

Corollary 9.1. A state i is null recurrent iff $\pi_i = 0$.

Theorem 10. If the transition function of markov chain X is doubly-stochastic (i.e., each row and each column sums to 1), then the limiting probability of each state is 1/n, where n is the number of states.

1.2 Time-Reversibility

Definition 11. For an irreducible ergodic markov chain X with limiting probabilities π . Let Y be a markov chain whose transition function is $Q(i,j) = P(j,i)(\pi_j/\pi_i)$. Then Y is called the time-reversed markov chain of X. X is called time-reversible if Q = P.

Theorem 11. Let X be a time-reversible markov chain with limiting probabilities π . Then π is the unique solution to this system of equations: $x_j P(j,i) = x_i P(i,j)$ for all states i and j, and $\sum_i x_i = 1$.

Theorem 12. If the transition function of markov chain X is symmetric, then X is time-reversible.

2 Counting Process

Definition 12 (Counting Process). Let N be a stochastic process on state space $\mathbb{Z}_{\geq 0}$ and time $\mathbb{R}_{\geq 0}$. Then N is called a counting process if N(0) = 0 and N(t) is monotone in t, i.e., $t_1 < t_2 \implies N(t_1) \leq N(t_2)$.

Definition 13 (Independent increments). A counting process N has independent increments iff for any two disjoint intervals $(u_1, v_1]$ and $(u_2, v_2]$ in $\mathbb{R}_{\geq 0}$, the random variables $N(v_1) - N(u_1)$ and $N(v_2) - N(u_2)$ are independent.

Definition 14 (Stationary increments). A counting process N has stationary increments iff for any $u \leq v$, the random variables N(v) - N(u) and N(v - u) have the same distribution.

Definition 15 (Arrival and interarrival times). For a counting process N, for $i \in \mathbb{Z}_{\geq 0}$, define the i^{th} arrival time $S_i := \min_{t \geq 0} (N(t) = i)$. For $i \in \mathbb{Z}_{\geq 1}$, define the i^{th} interarrival time $T_i := S_i - S_{i-1}$.

Lemma 13. For a counting process N with arrival times $S, N(t) \ge n \iff S_n \le t$.

3 Poisson Process

Definition 16 (Poisson process). A counting process N is a Poisson process with rate function $\lambda : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}_{\geq 0}$ if N has independent increments and $N(t_2) - N(t_1) \sim \text{Poisson}(\mu)$, where $\mu := \int_{t_1}^{t_2} \lambda(t) dt$. N is called homogeneous if $\lambda(t) = \lambda(0)$ for all t, otherwise it is called inhomogeneous. For a homogeneous process, we denote $\lambda(0)$ by λ .

Lemma 14. A Poisson process N is homogeneous iff it has stationary increments.

Theorem 15 (Alternative definition of Poisson process). A counting process N is a Poisson process with continuous rate function λ iff N has independent and stationary increments and $\Pr(N(t+h)-N(t)=1)=\lambda(t)h+o(h)$ and $\Pr(N(t+h)-N(t)\geq 2)=o(h)$.

Proof sketch for homogeneous. Let $g(u,t) := \mathrm{MGF}_u(N(t)) = \mathrm{E}(e^{uN(t)})$. Show $g(u,t) = 1 + \lambda t(e^u - 1) + o(t)$ straightforwardly. Use calculus to show that $g(u,t) = \exp(e^{\lambda t}(e^u - 1))$ (find derivative w.r.t t by computing $\lim_{h\to 0} (g(u,t+h) - g(u,t))/h$; this gets rid of o(h)). Conclude that $N(t) \sim \mathrm{Poisson}(\lambda t)$ since g(u,t) is MGF of $\mathrm{Poisson}(\lambda t)$.

Lemma 16. For a homogeneous Poisson process N,

$$\Pr(N(s) = a \mid N(s+t) = a+b) = \binom{a+b}{a} \left(\frac{s}{s+t}\right)^a \left(\frac{t}{s+t}\right)^b.$$

Theorem 17. Let N be a counting process. Then N is a homogeneous Poisson process with rate λ iff all interarrival times are independent and distributed $\text{Expo}(\lambda)$.

Theorem 18 (Decomposition theorem 1). Let K be a finite set, and let $\{N_i : i \in K\}$ be independent Poisson processes, where N_i has rate function λ_i . Let $N := \sum_{i \in K} N_i$. Then N is a Poisson process with rate function $\sum_{i \in K} \lambda_i$.

Theorem 19 (Decomposition theorem 2). Let N be a Poisson process with rate function λ . Let K be a finite set (called set of labels). Suppose the j^{th} event receives label $L_j \in K$, where $\Pr(L_j = i) = p_i(S_j)$ for some function $p_i : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}_{\geq 0}$, and $\{N, L_1, L_2, \ldots\}$ are independent. For $i \in K$, let $N_i(t)$ be the number of events having label i, i.e, $N_i(t) = \sum_{j=1}^{N(t)} \mathbf{1}(L_j = i)$. Then N_i is a Poisson process with rate function $p_i\lambda$. Furthermore, all N_i are independent and if all p_i are constant, then $N_i(t) \mid N(t) \sim \text{Binom}(N(t), p_i)$.

Lemma 20. Let $N^{(1)}$ and $N^{(2)}$ be independent homogeneous Poisson processes with rates λ_1 and λ_2 . Then

$$\Pr(S_n^{(1)} < S_m^{(2)}) = \sum_{i=n}^{n+m-1} \binom{n+m-1}{i} \frac{\lambda_1^i \lambda_2^{n+m-1-i}}{(\lambda_1 + \lambda_2)^{n+m-1}}.$$

Proof sketch. Model as a continuous markov chain with state space (n_1, n_2) , where n_i is the number of events of $N^{(i)}$ that have occurred.

Theorem 21 (arrival times distributed as order statistics). Let $X = [X_1, X_2, ..., X_n]$ be IID uniform variables over [0,t]. Let U = sorted(X). Let $S = [S_1, S_2, ..., S_n]$. Then conditioned on N(t) = n, the distribution of S and U are identical.

4 Continuous-Time Markov Chain

Definition 17 (CTMC). Let $X := \{X(t) : t \in \mathbb{R}_{\geq 0}\}$ be a stochastic process on discrete state-space D. X is called a continuous-time markov chain (CTMC) if $\Pr(X(t+s) = d \mid \{X(u) : 0 \leq u \leq s\}) = \Pr(X(t+s) = d \mid X(s))$ for all $s, t \in \mathbb{R}_{\geq 0}$. If $\Pr(X(t+s) = v \mid X(s) = u) = \Pr(X(t) = v \mid X(0) = u)$ for all u, v, s, t, then X is called time-homogeneous (TH) or stationary.

Theorem 22. Let X be a THCTMC. Let $T_u := \min_{t \geq 0} (X(t) \neq u)$. Then $(T_u \mid X(0) = u) \sim \operatorname{Expo}(\lambda)$ for some λ .

Theorem 23 (Chapman-Kolmogorov DiffEqs). For a TH CTMC X, let ν_i be the transition rate out of state i, let $p_{i,j}$ be the probability of going from state i to j, and $q_{i,j}$ be the transition rate from state i to j. (Then $\nu_i = \sum_j q_{i,j}$ and $p_{i,j} = q_{i,j}/v_i$.) Let $P_{i,j}(t) := \Pr(X(t) = j \mid X(0) = i)$. Then

• Backward DiffEqs:
$$\frac{dP_{i,j}(t)}{dt} = \sum_{k \neq i} q_{i,k} P_{k,j}(t) - \nu_i P_{i,j}(t).$$

• Forward DiffEqs:
$$\frac{dP_{i,j}(t)}{dt} = \sum_{k \neq j} P_{i,k}(t) q_{k,j} - P_{i,j}(t) \nu_j.$$

Lemma 24 (Limiting probability). In an irreducible ergodic TH CTMC X, for every state j, $\lim_{t\to\infty} P_{j,i}(t) = P_i$ for a unique real number P_i . P_i is called the limiting probability of state i. Furthermore, P_i is the unique solution to CK forward equations and $\sum_i P_i = 1$.

Lemma 25 (Limiting probability of embedded chain). Let X be an irreducible ergodic TH CTMC. Let Y be the sequence of states visited by X. Then Y is a discrete MC. Let P and π be the limiting probabilities of X and Y, respectively. Then $P_i = (\pi_i/\nu_i)/(\sum_j \pi_j/\nu_j)$ and $\pi_i = P_i\nu_i/(\sum_j P_j\nu_j)$.