NAME	Signature:
545/2	
Chemistry	
Paper 2	
2 Hours	

Uganda Certificate of Education Chemistry Paper 2 2 Hours

INSTRUCTIONS

Section A consists of 10 structured questions. Answer all questions in this section.

Answers to these questions must be written in the spaces provided.

Section **B** consists of 4 semi – structured questions. Answer any **two** questions from this section. Answers to the questions **must** be written in the answer sheets provided.

In both sections, all working **must** be clearly shown and must be in blue or black ink.

Any work done in pencil will not be marked except drawings.

Mathematical tables and silent non – programmable calculators may be used.

		1973		19.7	1	FOR	EX	AMI.	NERS	s' Us	SE O	NLY		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
	100	. 100				196	- 1			100		Mary :	11/3/	TOTAL SELECTION

SECTION A: (50 MARKS)

Attempt **all** questions in this section

 Name the method that can be used to separate the following mixtures. (a) Iron pieces and sand 	(01mark)
(b) Solid sodium chloride and glass pieces	(01mark)
(c) Water and ink	(01mark)
(d) Sodium chloride and potassium nitrate	(01mark)
(e) Petrol and diesel	(01mark)
2. M is the ion of an element T. M contains 11 proton, electrons.(a) (i) What is the nucleon number of M?	
ii) Write the electronic structure of M	(½ mark)
(b) Write the formula of the; (i) Oxide of T	(½ mark)
(ii) Hydride of T	(1 ½ mark)
(c) State the type of bond that exists in the oxide of ${f T}$	(½ mark)

	element 7	s a compound with;		(01mark)
٠.,				
	20位第			
• • •	•••••			
a	hydrogen			(01mark)
• • •				
• •		••••••		
• •				
٠.				
(i) Which or	of the compounds	in (d) when dissolved	in water conduc
	electric curr		iii (a) when dissolved	(½ mark)
	receive earr	Circ.		Cheste at the Continue
		am fam reason amorron in	(e)(1)	11/2 mark (f)
)	Give a reas	on for your answer in	(C)(1)	(72 marks)
)	Give a reas	on for your answer in	(C)(1)	(72 marks)
			on about five elements,	
				(½ mark) A to E
	he table1 ,			
	he table1 ,	below gives information	on about five elements,	
	he <i>table1</i> , Table 1 Element	below gives information Melting point (°c)	on about five elements, Boiling point (°c)	
	he table1 , Table 1 Element A	below gives information Melting point (°c) -189	Boiling point (°c)	
•••	he table 1, Table 1 Element A B	Melting point (°c) -189 -144	Boiling point (°c) -186 37	
T	he table 1, Table 1 Element A B C D	Melting point (°c) -189 -144 17 29 660	Boiling point (°c) -186 37 118 222 2450	
T	he table 1, Table 1 Element A B C D	Melting point (°c) -189 -144 17 29 660	Boiling point (°c) -186 37 118 222 2450	A to E
т	he table 1, Table 1 Element A B C D	Melting point (°c) -189 -144 17 29 660 aperature (30°c), whice	Boiling point (°c) -186 37 118 222 2450	
T	he table 1, Table 1 Element A B C D E At room tem Solid(s)	Melting point (°c) -189 -144 17 29 660 aperature (30°c), whice?	Boiling point (°c) -186 37 118 222 2450 h element(s) is/are;	(01mark)
т	he table 1, Table 1 Element A B C D E At room tem Solid(s)	Melting point (°c) -189 -144 17 29 660 aperature (30°c), whice?	Boiling point (°c) -186 37 118 222 2450	(01mark)
T (1)	he table 1, Table 1 Element A B C D E At room tem Solid(s)	Melting point (°c) -189 -144 17 29 660 aperature (30°c), whice?	Boiling point (°c) -186 37 118 222 2450 h element(s) is/are;	A to E (01mark)
т	he table 1, Table 1 Element A B C D E At room tem Solid(s)	Melting point (°c) -189 -144 17 29 660 aperature (30°c), whice?	Boiling point (°c) -186 37 118 222 2450 h element(s) is/are;	(01mark)
T (1)	he table 1, Table 1 Element A B C D E At room tem Solid(s)	Melting point (°c) -189 -144 17 29 660 aperature (30°c), whice?	Boiling point (°c) -186 37 118 222 2450 h element(s) is/are;	A to E (01mark)
T (1)	he table 1, Table 1 Element A B C D E At room tem Solid(s)	Melting point (°c) -189 -144 17 29 660 aperature (30°c), whice?	Boiling point (°c) -186 37 118 222 2450 h element(s) is/are;	(01mark)

(b) (i) Which element will turn into a liquid only on a warm d	ay (37ºc)? ½ mark)
(ii) Which other element will change state only on a warm da	y(37ºc)? (½ mark)
(c) Which element is a volatile liquid?	(½ mark)
(d) Which element will turn from a liquid to solid when placed (temperature 4°c)?	in a refrigerator (½ mark)
(e) Which element is likely to be a metal at room temperature?	(½ mark)
4. (a) (i) What is meant by the term corrosion of iron?	(01mark)
(ii) Write down the chemical name and the formula of rust	(01mark)
(b) A clean sample of steel wool was placed in a test tube contain the test tube inverted in the trough of water. After three days the in the test tube changed from 20cm ³ to 16cm ³	ning some and volume of air
(i) State what was observed on the steel wool after three days	(01mark)
(ii) Calculate the percentage decrease in the volume of air in the to	(01mark)
	•••••

(c) Sta	ate;	
(i) on	method of preventing rust formation	(½ mark)
(ii) one	disadvantage of rusting	(½ mark)
	······································	
5. Ga (a) N	as ${f X}$ constitutes the largest proportion of air in the atmosph Jame gas ${f X}$	ere. (½ mark)
••••••		
(p) V	lame the method which can be used to collect a dry sample	of gas X (½ mark)
	······································	
(c) (i)	On an industrial scale, gas X combines with hydrogen to form Identify gas W	m gas W . (½ mark)
••••••		
(ii) Sta	ate the process by which $old W$ is produced on an industrial sca	le (½ mark)
(d) [(i)	Ory hydrogen was passed over strongly heated lead(II) oxide State what was observed	(01mark)
(ii)	Write an equation for the reaction that took place	(1 ½ marks)
6. (a)	Calcium oxide, a hygroscopic substance, can be obtained fimestone .	
(i)	What is a hygroscopic substance?	(01mark)
(ii)	Write an equation to show how and the state of the state	
(**)	Write an equation to show how calcium oxide is obtained limestone	from (1 ½ marks)

	(iii)	State one practical application of the hygroscopic nature o oxide.	(½ mark)
	 (iv)	Name one other oxide which hygroscopic in nature	(1 ½ mark)
	(b) W	Vrite an equation for the reaction that can take place when am oxide and silicon(iv) oxide is heated	a mixture of (1 ½ marks)
7.		phite and diamond are the two allotropes of carbon. What is meant by the term allotropy?	(01mark)
	(b) 1	Explain the electrical conductivity of the two allotropes	(02marks)
	(c) I	n the space below, draw the structure of graphite.	
	(d) (Give one use of each of the two allotropes	01mark)
8.	(a)	Differentiate between hard water and soft water (01mark)
 (b)	Nam	e two ions responsible for water hardness.	02marks)
			••••••

c) Give one advantage of;	
i) soft water	(½ mark)
ii) hard water	(½ mark)
d) Soap solution was added to a sample of hard water fowhat was observed	r a long time. State (½ mark)
9. (a) Balance the following equations (i) $H_2O_{2(aq)} \longrightarrow H_2O_{(1)} + O_{2(g)}$	(½ mark)
(ii) $Fe_{(s)} + H_2O_{(g)} \longrightarrow Fe_3O_{4(s)} + H_{2(g)}$	(½ mark)
(iii) $H_2S_{(g)} + O_{2(g)} \rightarrow H_2O_{(i)} + SO_{2(g)}$	(½ mark)
(iv) $NH_{3(g)} + O_{2(g)} \rightarrow H_2O_{(1)} + NO_{(g)}$	(½ mark)
o) Copy and complete the following equations;	
i) Pb(NO ₃) _{2(s)} heat	(01mark)
i) Mg(s) + HCl(aq)	(01mark)
(ii) Mg ₃ N _{2(s)} + H ₂ O _(l)	(01mark)

10. (a cata (i)	a) Nitrogen can react with hydrogen in the presence of alyst to form ammonia in the Haber process. State the catalyst used in the reaction	(½ mark)
(ii)	Why is the catalyst finely divided?	(½ mark)
(iii)	State two other factors which can affect the yield of ar Haber process.	nmonia in the
(b) The	e set – up below shows the preparation of ammonia gas Ammonia	
	oniumchloride ium hydroxide	
(i)	Heat Calcium oxide Write the equation for the reaction that takes place in	(1 ½ marks)
(ii)	What is the purpose of the calcium oxide?	(½ mark)
(iii)	Explain the method used to collect ammonia gas	(01mark)

SECTION B (30marks)

Answer any **two** questions from this section

Any additional question(s) answered will not be marked

11.(a) (i) Differentiate between simple and fractional distillation

(02marks)

- (ii) State one advantage of fractional distillation over the simple distillation (01mark)
- (b) State one method that can be used to purify the sea water and draw a diagram for the set-up of apparatus that can be used during the process. (04marks)
- The table 2, shows temperature variation with time when a solution of ethanol and water undergoes fractional distillation

Table 2

Tuble 2							
Time (minutes)	0	1.4	2.1	3.7	4.4	5.1	6.3
Temperature(°c)	45	66	78	78	89	100	100
Temperature(°C)	40	00	, ,				

Draw a graph of temperature against time (i)

(04marks)

Explain the shape of the graph (ii)

(04marks)

- 12. (a) (i) Name the three sub atomic particles in an atom (1 ½ marks)
 - (ii) Draw a labelled diagram to show the location of these sub atomic particles (02marks) in an atom.
 - (b) The full symbol of atoms **X** and **Y** are represented by $^{39}_{19}X$ and $^{35}_{17}Y$ respectively.
 - (i) Write the electronic configuration of X and Y

(01mark)

- (ii) What name is given to elements belonging to the same group as Y? (1/2 mark)
- (c) Name the type of chemical bond that would be formed between;
- (i) an atom of X and Y

(½ mark)

(ii) an atom of Y and an atom of carbon (atomic number of carbon is 6)

(1/2 mark)

- (d) With the aid of "dot and cross" diagrams, describe how the bonds you have (05marks) named in (c) are formed.
- (e) With the aid of a labeled diagram, describe an experiment to prove that the compound formed between ${\bf X}$ and ${\bf Y}$ can conduct electricity in molten state but not in the solid state.

13.(a) (i) Draw a labelled diagram of the set – up of apparatus that prepare a dry sample of hydrogen in laboratory.	can be used to (3 ½ marks)
(ii) Write an equation for the reaction leading to the formation of hydrogen	(1 ½ marks)
(iii) Name the catalyst that can be used in this reaction (½ n	nark)
(b) Hydrogen burns in air to form liquid $\bf Q$. (i) Identify liquid $\bf Q$ (½ n	nark)
(ii) Name the reagent that can be used to test for liquid ${\bf Q}$ and st be observed if ${\bf Q}$ was treated with the reagent you have named	tate what would (02marks)
(iii) Write the equation for the reaction leading to the formation of liquid ${f Q}$	f (01mark)
(c) Hydrogen gas was passed over copper(II) oxide.	
(i) State the condition(s) for this reaction	(01mark)
(ii) State what was observed	(1 ½ marks)
(iii) Write the equation for the reaction that took place	(1 ½ marks)
(d) Name one reagent that can be used to test for hydrogen in and state what would be observed if this reagent is used. (01mark)	the laboratory
(e) State one industrial use of hydrogen	(01mark)
14. Explain the following observations and in each write equation(s) to your answer where necessary	illustrate
(a) When solid sodium hydroxide was exposed to air, a colourle formed and later a white crystalline solid developed.	ss solution was (3 ½ marks)
(b) Solid sodium chloride does not conduct electricity while molte chloride conducts electricity	n sodium (2 ½ marks)
(c) Diamond does not conduct electricity while graphite does (d) Water from limestone areas reacts with soap to form white cur	(06marks)
	(3marks)

END BY TR. GUIDE N.H.S