Code and Model Intelligence

Critical Systems Research Group

Reminder: Concrete and Abstract Syntax

- Question: How to capture models?
- Answer: graph-based structures!

• Today's Topic: Intelligent editing features for code and models

Machine Learning models

Statistical code intelligence

Code intelligence

AST + DOM based analysis

Call graph Refactoring, Simulation step Call Hierarchy Members calling 'fName' - in workspace ★ aetName() - junit.framework.TestCase ⊕ o runTest() - junit.framework.TestCase (4 matches) ■ setName(String) - junit.framework.TestCase ☐ o TestCase() - junit.framework.TestCase ☐ Q ActiveTestTest - junit.tests.extensions Type hierarchy Source code of program DOM: Document AST: Abstract Object Model syntax tree DOM DOM₁ Source code ← Transformation Source code₂

Machine learning based analysis

Code intelligence

AST + DOM based analysis

- Algorithms and computations on the parser/linking output
- Content assist,
 call hierarchy, refactoring, ...
- Can be systematically tested
- Limited ability to take natural language and common-sense knowledge into account

Machine learning based analysis

- Based on statistical analysis of a large corpus of examples
- Code completion, chat interfaces, agents, ...
- Provides only probabilistic guarantees
- Can take natural language input and rely on learned patterns

Machine Learning Applicationgs

ML apps: requirements + manual work → data + power

Machine learning tasks

Supervised learning

- Training input: labeled data $\{(x_i, y_i)\}_{i=1}^n$, output: $f: x \mapsto \hat{y}$ predictor
- Predict a discrete class label ⇒ classification
- Predict a continuous quantity ⇒ regression

Unsupervised learning

- Input: **unlabeled** data $\{x_i\}_{i=1}^n$, output: discovered **structure** of data
- Example: clustering, anomaly detection

Reinforcement learning

- Input: environment model or interactions, output: controller
- Learn to plan and optimize in complex environments

Machine learning models

- Classical machine learning and statistics
 - E.g., linear regression, decision trees, Support Vector Machines
 - Easy to interpret the modelLimited expressive power
 - ✓ Fast learning and inference

Machine learning models

Deep Neural Networks (DNNs)

- Leverages the computation power and modern GPUs and other hardware to build extremely large models
 - ✓ Very high expressive power
 ★ Hard to interpret models
 - ✓ Widely available tools

- High computational complexity

Figure: Falcini et al. (2017). Deep Learning in Automotive Software. In: IEEE Software

A note on models

- We are using the term "model" in two senses
 - A software model is a graph-like artifact with formal meaning

- A machine learning model contains parameters for a statistical technique

 Both are abstract descriptions an aspect of reality, but with different guarantees of correctness and accuracy

Text processing with machine learning

• **Tokenization:** turn the text into a sequence of numbers

- High-dimensional vectors are more efficient than single characters
 - e.g., each token can be one of ~100 000 values in the cl100k_base encoding used by GPT-4
- Types of tokens
 - Words and parts of words
 (~0.75 English words per token)
 - Common character combinations used in code
 - System tokens describing user interaction (e.g., < |endoftext|>)

Sequence modelling

- Input: sequence of tokens (context window)
- Output: probability distribution over the next token
- The sequence model encodes the structure of the language to predict the next token with high accuracy
 - Predicting multiple tokens: run the model iteratively (beam search)

Large Language Models

Foundation and chat models

Foundation models

- Supervised learning (parameter optimization) on a large corpus of text
 - E.g., the *Pile* dataset used in the training of opensource models is 825 GiB
 - Books, academic articles
 - Patents and law
 - Source code from GitHub and Stack Exchange
 - Proprietary datasets may be much larger
- Minimize perplexity (probability of failed prediction of the next token)
- Fixed context window size
 - Larger context windows required quadratically larger computational resources

Agents

Fine-tuning

Chat models

Foundation models

- Large Language Models: parameter counts measured in billions
 - Models downloadable at no cost, e.g., *Llama3.1:* 8B, 70B, 405B variants
 - *ChatGPT:* allegedly 1.8 trillion (1800B)
 - Each parameter is a 16-bit floating point number!
- Inference requires specialized hardware
 - For the smallest models: **neural accelerators** in laptops, phon
 - large amounts
 - Send an **API token** identifying the user - Models runna along with each query for authentication and billing purposes
 - The largest and mo numerous data comer GPUs and are only available as APIs with a per token cost

Agents

Fine-tuning

Chat models

Chat models

- Reinforcement Learning from Human Feedback (RLHF) to align the model to follow textual instructions
 - Requires costly, manual data annotation
- Turns the foundation model into a chatbot
- **System prompt:** general description of the chat system (e.g., "You are a helpful agent.")
- User prompt: instructions to be followed

Agents

Fine-tuning

Chat models

Fine-tuning

- Further supervised learning based on a corpus of specialized text
- Examples
 - Fine-tune on a set of natural language <-> SQL query pair for SQL query generation
 - Fine-tune of code from a specific project to incorporate project structure and API into the model
- May require a very large dataset
 - Possible solution: synthetic generation with another, larger LLM (knowledge distillation)
 - But still more efficient than training from scratch

Agents
Fine-tuning

Chat models

Agent systems

- Specific ways of calling the model with prompts and other input data and parsing the output
 - Often involves feedback loops, where output from the model is fed into another prompt
 - Allows combining ML with classical,
 AST and DOM based algorithms in the loop
- May use a fine-tuned or a base chat model
 - Can be an effective alternative to fine-tuning when only a low amount of data is available
 - Agent development is less computationally intensive than training or fine-tuning

Building code and modelling agents

Common architectures and patterns

Information Query LLM Output Tool execution

- Problem: a full source code repository does not fit into the context window of the language model
- Retrieval-Augmented Generation: augment the input query with relevant parts of the repository
 - Textual proximity: code around the requested edit point
 - Scope-based: definitions (or natural-language documentation!) of symbols available in the current scope
 - Vector search: use another model to estimate the similarity of code snippets, and return the most similar ones

Information Query LLM Output Tool retrieval composition inference parsing execution

- Prompt engineering: assembling the context and the request into an LLM prompt so that the answer is likely to be accurate
 - "More of an art than science," effective prompts depend on the specific training data and training process of the LLM
- Few-shot learning: include correct solutions to similar problems in the prompt so that the LLM is likely to answer with a similar solution
- Chain-of-Thought (CoT): include instructions like "Think step-by-step!" to make the LLM generate a longer, more detailed response
 - May improve accuracy even if all but the final output is discarded

Information Query Composition LLM Output parsing Tool execution

- Inference may happen on-device (neural accelerator or GPU) or by calling an LLM API (e.g., OpenAI, Claude)
 - API token provided for authentication and billing
 - Inference costs depend on the amount of tokens used and the selected LLM
 - Data confidentiality concerns when calling an external API
 - Providers offer enterprise agreements for confidential code bases

Information Query LLM Output Tool retrieval composition inference parsing execution

- Challenge: chat LLMs output natural language text by default
 - May be suitable for user-facing chat (e.g., Copilot Chat)
 - But hard to use in automated tools
- Use of few-shot learning to make the model more likely to conform to a prescribed template
 - Still need to repeat inference if parsing fails
- Some LLMs support constraining beam search with a context-free grammar
 - Easier to implement with local inference (modify the inference code)
 - But, e.g., OpenAl offers constraining output to valid JSON syntax
 - Still need to ensure that the output is semantically correct

Information Query LLM Output Tool execution

- Model output may be simply taken as generated code
- More complex actions can be automated with tools and function
 - The model generates JSON describing the action to take based on a few-shot prompt describing possible tools and their actions

Tools and functions must be sandboxed

to avoid accidentally generating and

performing destructive actions

- E.g., create new file, rename function, use tes
- The agent system **parses** the JSON, then **v**
- Function calling: feed back the output of
 - E.g., search for files matching a given pattern in the \ _____tory
 - Hallucinations about computations (e.g., 2 + 2 = 5) may be remediated by generating source code (e.g., Python) and executing it in a tool instead of obtain the answer

Building modeling agents from text

- Challenge: graphs cannot be directly fed to sequence models
- May use a textual notation (e.g., PlantUML) for the graph
 - Works best if this was already present in the training set
- Or turn the graph into natural language sentences (e.g., Eclipse Theia GLSP AI)
 - String templates and M2T generation
 - Tool use to create and edit graph model elements

Building modeling agents from text+image

- Multi-modal models can take input other than text
 - E.g., images, sound
 - Internally, other modality inputs are often turned into special tokens
- Possible use-case: image to model (via PlantUML output)

Conrady and Cabot (2024). From Image to UML: First Results of Image-Based UML Diagram Generation using LLMs

Modeling agents with reasoning capacity

ML applications:

- ✓ Fast learning and inference
- Limited expressive power
- Idea: mix ML applications with logic reasoning
 - ML application creates the design from requirements and best practices
 - Logic reasoning ensures that the design is valid and consistent

JAH López, M Földiák, D Varró: Text2VQL: Teaching a Model Query Language to Open-Source Language Models with ChatGPT. MODELS'24

Vision: Neuro-Symbolic Reasoning

Ethical and legal aspects

What to watch out for when using LLMs for automation

Hallucinations and incorrect output

- Language models only offer probabilistic guarantees of correctness
 - Most of the time, output looks statistically
- Hallucination: the LLM coming up with but incorrect output
- Simple case: the output uses a library that does not exist in reality
- Harder case: the output misses edge cases or error handling
- It is the duty of the model user to **verify** the output and avoid inadvertently introducing **serious errors** into the codebase

Lawyer cited 6 fake cases made up by ChatGPT; judge calls it "unprecedented"

Judge weighs punishment for lawyer who didn't bother to verify ChatGPT output.

Copyright and attribution

- LLMs were trained on large amounts of open source code
 - But provide no specific attribution of sources
 - No guidelines for complying with the licenses of the code
- Small amounts of code are usually not subject to copyright issues
- But for reproducing nontrivial portions from the training data, the duty for attribution and license compliance falls on the model user
 - Look up sources manually

The developers suing over GitHub Copilot got dealt a major blow in court

Illustration by Cath Virginia / The Verge | Photos from Getty Images

/ A California judge dismissed nearly all claims laid out in a lawsuit that accuses GitHub, Microsoft, and OpenAl of copying code from developers.

By Emma Roth, a news writer who covers the streaming wars, consumer tech crypto, social media, and much more. Previously, she was a writer and editor a MUO.

Jul 9, 2024, 10:09 PM UTC

Sustainability

- The largest language models require a disproportionate amount of energy and natural resources to run
- While further advances in inference hardware may reduce this in the future, we should be mindful of the efficiency of queries
- Often, code intelligence that does not involve natural language processing can be more effectively implemented with AST and DOM based method
 - Lower resource use
 - Stronger formal guarantees

