B.E.(CSE) Ass I ---CS6301 Machine Learning

Date: 24th NOV 2021 Marks: 50 Time: 1 ½ HR

Answer All Questions

Part A (Answer Any 5)

5 X2 =10

- 1. What is Machine Learning.? How is it different from Traditional Programming?
- 2. What is consistent hypothesis and version space?
- 3. What is bias and variance? Give its impact in choosing the best model.
- 4. Create a MLP network that solves the XOR function.
- 5. Compare LDA and PCA.
- 6. Consider (13, 14) is the location of a house and (25,20) is the location of the Market. Find the Euclidean distance and City-Block distance between the house and the Market.

Part B (Answer any 5)

5 x 8= 40

- 1. Explain the use of machine learning for an application of your choice by specifying
 - A. The Type of machine learning is needed to solve the problem.
 - B. The Input and the expected output
 - C. The Features to be used
 - D. The possible machine learning algorithm to be used to solve the problem.
 - E. The evaluation strategy to be used
- 2. Explain the various steps in the design of learning system and also discuss the design issues.
- 3. Compare and Contrast Supervised learning, Unsupervised learning, Semi supervised learning and Reinforcement learning. Give an example for each of learning.
- 4. Explain the concept behind RBF network and also with example explain how it is used for classification applications
- 5. Consider the following 2D data- (x,y):: (2.5 2.4) (0.5 0.7) (2.2 2.9) (1.9 2.2) (3.1 3.0) (2.3 2.7) (2 1.6) (1 1.1) (1.5 1.6) (1.1 0.9). Apply PCA or LDA to reduce the dimensions of the data.
- 6. Give the interpretation of Bayes rule. Find the class using naïve bayes classifier for the following data.

Example	Colour	Toughness	Fungus	Appearance	Poisonous
1	Green	Hard	N	Smooth	N
2	Green	Hard	Y	Smooth	N
3	Brown	Soft	N	Wrinkled	N
4	Orange	Hard	N	Wrinkled	Y
5	Green	Soft	Y	Smooth	Y
6	Green	Hard	Y	Wrinkled	Y
7	Orange	Hard	N	Wrinkled	Y
8	Green	Soft	Y	Wrinkled	- 7

CS6301 MACHINE LEARNING

3.12.2021 Tutorial-1 Marks : 10 Duration : 50 mins

1. Consider this training data set. Apply k-Means Clustering to this data set for k=2, i.e., you will produce two data clusters. Suppose you are given initial assignment cluster center as {cluster1: #1}, {cluster2: #10} – the first data point is used as the first cluster center and the 10-th as the second cluster center. Simulate the k-means (k=2) algorithm for ONE iteration. What cluster assignments after ONE iteration? Assume k-means uses Euclidean distance. What are the cluster assignments until convergence?

Data #	Х	у
1	1.90	0.97
2	1.76	0.84
3	2.32	1.63
4	2.31	2.09
5	1.14	2.11
6	5.02	3.02
7	5.74	3.84
8	2.25	3.47
9	4.71	3.60
10	3.17	4.96

- Consider the dataset below to learn a decision tree which predicts if people pass machine learning (Yes or No), based on their previous GPA (High, Medium, or Low) and whether or not they studied.
 - a. What is the entropy H(Passed)?
 - b. What is the entropy H(Passed / GPA)?
 - c. What is the entropy H(Passed / Studied)?
 - d. Draw the full decision tree that would be learned for this dataset.

GPA	Studied	Passed
L	F	F
L	${ m T}$	${ m T}$
M	F	\mathbf{F}
M	T	${ m T}$
Н	F	T
Н	T	T