Phase 2

Energy consumption for public transport optimization

Data Collection:

Gather historical data on bus or train arrivals, including timestamps, routes, stops, and real-time traffic conditions. Public APIs or historical data from transit agencies can be valuable sources

You can use APIs or import historical data from a CSV file

Import pandas as pd

Example using pandas to load data from a CSV file

Data = pd.read_csv('public_transport_data.csv')

Data Preprocessing:

Clean and preprocess the data. This may involve handling missing values, encoding categorical features, and normalizing numerical data.

Handle missing values (assuming 'df' is your DataFrame)

Df.dropna(inplace=True)

Encode categorical features (assuming 'categorical_columns' is a list of categorical column names)

Df = pd.get_dummies(df, columns=categorical_columns)

Normalize numerical data (e.g., using Min-Max scaling)

From sklearn.preprocessing import MinMaxScaler

Scaler = MinMaxScaler()

Df[numerical_columns] = scaler.fit_transform(df[numerical_columns])

Feature Engineering:

Extract relevant features that can impact arrival times, such as time of day, day of the week, weather conditions, and traffic congestion. Create a target variable (arrival time delay) by calculating the difference between scheduled and actual arrival times.

Calculate arrival time delay as the target variable

Df['arrival_time_delay'] = df['actual_arrival_time'] - df['scheduled_arrival_time']

Extract relevant features (e.g., time of day, day of the week)

Df['hour_of_day'] = df['timestamp'].dt.hour

Df['day_of_week'] = df['timestamp'].dt.dayofweek

Data Splitting

Divide the dataset into training and testing sets. Typically, you'd reserve a portion of the data for model evaluation.

From sklearn.model selection import train test split

```
X = df.drop(['arrival_time_delay'], axis=1) # Features
```

Y = df['arrival_time_delay'] # Target variable

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Choose Machine Learning Algorithms:

Select machine learning algorithms suitable for regression tasks. Common choices include Linear Regression, Decision Trees, Random Forests, or more advanced methods like Gradient Boosting or Neural Networks

Import the machine learning algorithm you want to use (e.g., Linear Regression)

From sklearn.linear_model import LinearRegression

Model Training:

Train the chosen models on the training dataset. Experiment with different algorithms and hyperparameters to find the best-performing model.

Create and train the chosen model (e.g., Linear Regression)

Model = LinearRegression()

Model.fit(X_train, y_train)

Model Evaluation

Evaluate model performance using metrics like Mean Absolute Error (MAE), Mean Squared Error (MSE), or Root Mean Squared Error (RMSE) on the testing dataset. Cross-validation can also be helpful for robust evaluation.

From sklearn.metrics import mean_absolute_error

Make predictions on the test data

Y_pred = model.predict(X_test)

Evaluate model performance using Mean Absolute Error (MAE)

Mae = mean_absolute_error(y_test, y_pred)

Print(f"Mean Absolute Error: {mae}")