

"SAPIENZA" UNIVERSITY OF ROME FACULTY OF INFORMATION ENGINEERING, INFORMATICS AND STATISTICS DEPARTMENT OF COMPUTER SCIENCE

Optimization

Lecture notes integrated with the book "Understanding and Using Linear Programming.", J. Matoušek, B. Gärtner

 $Author \\ Simone Bianco$

Contents

Information and Contacts				
1	Flov	w networks	2	
	1.1	Networks and flows	2	
	1.2	Residual graphs, flow increase and st-cuts	6	
	1.3	The Ford-Fulkerson algorithm	12	
		1.3.1 The Max-flow/Min-cut theorem	13	
	1.4	The Edmonds-Karp algorithm	14	
	1.5	Applications of the Max-flow/Min-cut theorem	18	
2	Line	ear programming	22	
	2.1	Introduction and interpretation	22	
	2.2	Linear programs and Standard form	26	
	2.3	Basic feasible solutions	29	
		2.3.1 Above bounded linear programs and BFS	33	
	2.4	Geometry behind linear programs	37	
		2.4.1 Convexity	37	
		2.4.2 Hyperplanes, Half-Spaces and Polytopes	43	
		2.4.3 Vertices and Basic Feasible Solutions	46	
	2.5	Solved exercises	48	
3	The	Simplex method	51	
	3.1	Intuition and example	51	
	3.2	Unboundedness	55	
	3.3	Infeasibility of the trivial basis	56	
	3.4	Degeneracy	60	
	3.5	Formalization of the simplex method	63	
	3.6	Pivot rules and Cycling tableaus	66	
		3.6.1 Bland's rule	69	
	3.7	Solved exercises	72	

4	Duality in linear programs			
	4.1	Idea and implications	73	
	4.2	Strong duality theorem	77	
	4.3	Implications of the strong duality theorem	80	
	4.4	Farkas' lemma	82	
	4.5	Geometry behind Farkas' lemma	85	
	4.6	Complimentary slackness	92	
	4.7	Solved exercises	95	
5	Oth	er ways to solve a linear program	97	
	5.1	Runtime of the simplex method	97	
		5.1.1 Bit size of a linear program	99	
	5.2	The Ellipsoid method	100	

Contents

Information and Contacts

Personal notes and summaries collected as part of the *Optimization* course offered by the degree in Computer Science of the University of Rome "La Sapienza".

Further information and notes can be found at the following link:

https://github.com/Exyss/university-notes. Anyone can feel free to report inaccuracies, improvements or requests through the Issue system provided by GitHub itself or by contacting the author privately:

• Email: bianco.simone@outlook.it

• LinkedIn: Simone Bianco

The notes are constantly being updated, so please check if the changes have already been made in the most recent version.

Suggested prerequisites:

Preventive learning of material related to the $Linear\ Algebra$ and $Algorithms\ 2$ course is recommended

Licence:

These documents are distributed under the **GNU Free Documentation License**, a form of copyleft intended for use on a manual, textbook or other documents. Material licensed under the current version of the license can be used for any purpose, as long as the use meets certain conditions:

- All previous authors of the work must be **attributed**.
- All changes to the work must be **logged**.
- All derivative works must be licensed under the same license.
- The full text of the license, unmodified invariant sections as defined by the author if any, and any other added warranty disclaimers (such as a general disclaimer alerting readers that the document may not be accurate for example) and copyright notices from previous versions must be maintained.
- Technical measures such as DRM may not be used to control or obstruct distribution or editing of the document.

Flow networks

1.1 Networks and flows

Definition 1: Graph

A **graph** is a mathematical structure G = (V, E), where V is the set of **vertices** in G and $E \subseteq V \times V$ is the set of **edges** that link two vertices in G.

We will assume that each graph is *simple*, meaning that there are no multiple edges between the same nodes and no loops (that being an edge from a vertex to itself).

From now on, we will assume that |V(G)| = n and |E(G)| = m.

A graph can be **directed** or **undirected**. In a directed graph we consider the edges $(u, v) \in E(G)$ and $(v, u) \in E(G)$ as two different edges, while in an undirected graph they represent the same edge.

Example:

Directed graph

Undirected graph

Definition 2: Network

A **network** is a mathematical structure N = (G, s, t, c) where:

- G = (V, E) is a directed graph
- s and t are two vertices of G $(s, t \in V(G))$, respectively called the **source** and the **sink**
- $c: E(G) \to \mathbb{R}^+$ is a weight function on the edges called **capacity**
- $(u,v) \in E(G) \implies (v,u) \in E(G)$

Example:

The numbers on the edges represent the capacities of the edges, while the nodes 1 and 4 are chosen respectively as the source and the sink of the network

Essentially, a network effectively describes a water system made up of pipes (the edges) that can transport a maximum amount of fluid inside them (the capacity of the edges). In fact, the last property of a network defines the idea of a bi-directional flow of water inside the pipes. In particular, we note that each pipe can have a different capacity based on the direction of the flow.

Definition 3: Flow

Given a network N=(G,s,t,c), a **flow** is a weight function $f:E(G)\to\mathbb{R}$ on the edges defined by the following properties:

- Skew-symmetric: $\forall (u,v) \in E(G)$ f(u,v) = -f(v,u), meaning that the incoming flow in an edge is the inverse of the outgoing flow in the corresponding opposite edge
- Capacity bounded: $\forall (u, v) \in E(G)$ $f(u, v) \leq c(u, v)$, meaning that the flow can't be greater than the supported capacity
- Conservation of flow: $\forall v \in V(G) \{s, t\}$ it holds that

$$\sum_{\substack{(u,v) \in E(G): \\ f(u,v) > 0}} f(u,v) = \sum_{\substack{(v,w) \in E(G): \\ f(v,w) > 0}} f(v,w)$$

meaning that the incoming flow in v is the same as the outgoing flow from v

Definition 4: Flow value

Given a network N = (G, s, t, c) and a flow f on N, we define the **value of** f, noted by val(f), as the sum of the flow outgoing from the source s or the sum of the flow incoming to the sink t:

$$val(f) := \sum_{(s,u) \in E(G)} f(s,u) = \sum_{(v,t) \in E(G)} f(v,t)$$

Example:

For each edge, the numbers in blue and red respectively represent its flow and its capacity. The flow value of the given flow is 5.

Observation 1: Nullification of flow for middle edges

Given a network N = (G, s, t, c) and a flow f defined on G, for each vertex different from s and t it holds that:

$$\sum_{\substack{(u,v) \in E(G): \\ f(u,v) > 0}} f(u,v) = \sum_{\substack{(v,w) \in E(G): \\ f(v,w) > 0}} f(v,w) \iff \sum_{\substack{(u,v) \in E(G)}} f(u,v) = 0$$

Proof.

Due to the conservation of flow and the skew-symmetric properties, for all nodes $v \neq s, t$ we know that:

$$\sum_{\substack{(u,v) \in E(G): \\ f(u,v) > 0}} f(u,v) = \sum_{\substack{(v,w) \in E(G): \\ f(v,w) > 0}} f(v,w) = \sum_{\substack{(v,w) \in E(G): \\ f(v,w) > 0}} -f(w,v)$$

which is possible if only if:

$$\sum_{\substack{(u,v) \in E(G): \\ f(u,v) > 0}} f(u,v) = -\sum_{\substack{(v,w) \in E(G): \\ f(v,w) > 0}} f(w,v) \iff$$

$$\sum_{\substack{(u,v) \in E(G): \\ f(u,v) > 0}} f(u,v) + \sum_{\substack{(v,w) \in E(G): \\ f(v,w) > 0}} f(w,v) = 0$$

Again, by the skew-symmetric property we get that:

$$\sum_{\substack{(u,v) \in E(G): \\ f(u,v) > 0}} f(u,v) + \sum_{\substack{(v,w) \in E(G): \\ f(v,w) > 0}} f(w,v) = 0 \iff$$

$$\sum_{\substack{(u,v) \in E(G): \\ f(v,v) \ge 0}} f(u,v) + \sum_{\substack{(w,v) \in E(G): \\ f(v,v) \ge 0}} f(w,v) = 0$$

Then, by adding each edge incoming in v that has no flow we conclude that:

$$\sum_{\substack{(u,v)\in E(G):\\f(u,v)>0}} f(u,v) + \sum_{\substack{(w,v)\in E(G):\\f(w,v)<0}} f(w,v) + \sum_{\substack{(x,v)\in E(G):\\f(x,v)=0}} f(x,v) = 0 \iff \sum_{\substack{(u,v)\in E(G)}} f(u,v) = 0$$

1.2 Residual graphs, flow increase and st-cuts

Consider the network shown in the last example of the previous section.

We notice that some *pipes* aren't completely "filled up", meaning that their capacity could support a bigger flow. In particular, due to conservation of flow, not all pipes can be filled to the maximum capacity. In fact, we know that flow outgoing from the source must still be equal to the incoming flow of the sink.

Thus, we can increase the flow value by 1 only by using the remaining capacities in the path $1 \to 2 \to 3 \to 4$

The flow value of the new flow is 6.

Definition 5: Residual capacity

Given a network N = (G, s, t, c) and a flow f on N, the **residual capacity** is a weight function $r : E(G) \to \mathbb{R}^+$ defined as:

$$r(u,v) = c(u,v) - f(u,v)$$

Observation 2

Given a network N = (G, s, t, c) and a flow f on N, we note that:

$$r(u,v) + r(v,u) = c(u,v) + c(v,u)$$

Definition 6: Residual graph

Given a network N = (G, s, t, c) and a flow f on N, we define $R \subseteq G$ as the **residual** graph of G if:

$$(u,v) \in E(R) \iff r(u,v) > 0$$

Example:

Consider the first graph previously shown with flow value 5. We now add the residual capacities obtained through that flow.

For each edge, the number in green represents its residual capacity

Thus, the residual graph is the following:

Proposition 1: Flow-augmenting path

Given a network N = (G, s, t, c) and a flow f on N, let $R \subseteq G$ be the residual graph of G on f and let P be a direct path $s \to t$ in R.

Given $\alpha := \min_{(u,v) \in E(P)} r(u,v)$, we define $f' : E(G) \to R$ as:

$$f'(u,v) = \begin{cases} f(u,v) + \alpha & \text{if } (u,v) \in E(P) \\ f(u,v) - \alpha & \text{if } (v,u) \in E(P) \\ f(u,v) & \text{otherwise} \end{cases}$$

The function f' is a flow for N such that $val(f') = val(f) + \alpha$.

Proof.

Suppose that $(u, v) \in E(P)$:

• By using the skew-symmetric property of f, we get that:

$$f'(u,v) = f(u,v) + \alpha \implies -f'(u,v) = -f(u,v) - \alpha = f(v,u) - \alpha$$

Also, since $(u, v) \in E(P)$, for (v, u) we get that

$$f'(v, u) = f(v, u) - \alpha = -f'(u, v)$$

• By assumption, we know that $f'(u,v) = f(u,v) + \alpha$. Thus, by definition of α we get that:

$$\alpha \le r(u,v) = c(u,v) - f(u,v) \implies$$

$$f'(u,v) = f(u,v) + \alpha \le f(u,v) + c(u,v) - f(u,v) = c(u,v)$$

If $(v, u) \in E(P)$, we can get the same result by repeating the same steps. Otherwise, the flow remains unchanged, meaning that the property is already satisfied. Thus, we conclude that f' is skew-symmetric and $capacity\ bounded$.

Given a vertex $x \in E(G)$, if $x \notin E(P)$ then the flows of its edges are unchanged. If $x \in E(P)$, we proceed by splitting the edges in G through P:

$$\sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0}} f'(u,x) = \sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0,\\(u,x)\in E(P)}} f'(u,x) + \sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0,\\(x,u)\in E(P)}} f'(u,x) = \sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0,\\f'(u,x)>0,\\f'(u,x)>0,\\}} [f(u,x) + \alpha] + \sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0,\\f'(u,x)>0,\\}} [f(u,x) - \alpha]$$

We notice that the amount of vertices in these sums is the same, implying that each time α gets summed in the first sum it also gets subtracted from the other sum:

$$\sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0,\\(u,x)\in E(P)}} [f(u,x)+\alpha] + \sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0,\\(x,u)\in E(P)}} [f(u,x)-\alpha] = \sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0,\\f'(u,x)>0,\\(x,u)\in E(P)}} f(u,x) + \sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0,\\(x,u)\in E(P)}} f(u,x) = \sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0\\(x,u)\in E(P)}} f(u,x)$$

By using the same argument, we get that:

$$\sum_{\substack{(x,w)\in E(G):\\f'(x,w)>0}} f'(x,w) = \sum_{\substack{(x,w)\in E(G):\\f'(x,w)>0}} f(x,w)$$

Finally, through the the conservation of flow of f, we conclude that f' also satisfies such property:

$$\sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0}} f'(u,x) = \sum_{\substack{(u,x)\in E(G):\\f'(u,x)>0}} f(u,x) = \sum_{\substack{(x,w)\in E(G):\\f'(x,w)>0}} f(x,w) = \sum_{\substack{(x,w)\in E(G):\\f'(x,w)>0}} f'(x,w)$$

Definition 7: st-cut

Given a network N = (G, s, t, c) and a flow f on N, we define a st-cut of G as a subset $\mathcal{U} \subseteq V(G)$ that makes a partition on V(G) such that $s \in \mathcal{U}, t \notin \mathcal{U}$.

Additionally, the vertices inside of \mathcal{U} are called the *s-part* of the cut, while the vertices outside of \mathcal{U} are called the *t-part* of the cut.

Proposition 2: Flow of an st-cut

Given a network N=(G,s,t,c), a flow f on N and an st-cut $\mathcal{U}\subseteq G$, we have that:

$$val(f) = \sum_{\substack{(u,v) \in E(G): \\ u \in \mathcal{U}, v \notin \mathcal{U}}} f(u,v)$$

Proof.

Consider the total sum of the flows of all the vertices in \mathcal{U} :

$$\sum_{x \in \mathcal{U}} \sum_{(u,v) \in E(G)} f(u,v)$$

By definition, we know that $s \in \mathcal{U}$. We can separate the flows outgoing from s from the rest of the flows:

$$\sum_{x \in \mathcal{U}} \sum_{(u,v) \in E(G)} f(u,v) = \sum_{(s,w) \in E(G)} f(s,w) + \sum_{x \in \mathcal{U} - \{s\}} \sum_{(u,v) \in E(G)} f(u,v)$$

Due to the Nullification of flow for middle edges, for all vertices $u, v \neq s$ we know that the total flow is qual to 0, implying that:

$$\sum_{(s,w)\in E(G)} f(s,w) + \sum_{x\in\mathcal{U}-\{s\}} \sum_{(u,v)\in E(G)} f(u,v) = \sum_{(s,w)\in E(G)} f(s,w) + 0 = \text{val}(f)$$

We now consider again the initial total sum. We notice that:

$$\sum_{x \in \mathcal{U}} \sum_{(u,v) \in E(G)} f(u,v) = \sum_{\substack{(u,v) \in E(G): \\ u \in \mathcal{U}}} f(u,v)$$

Additionally, for any (u, v) if $u, v \in \mathcal{U}$ then f(u, v) cancels out with f(v, u), implying that:

$$\sum_{\substack{(u,v) \in E(G): \\ u \in \mathcal{U}}} f(u,v) = \sum_{\substack{(u,v) \in E(G): \\ u \in \mathcal{U}, v \notin \mathcal{U}}} f(u,v)$$

By combining the shown equalities, we conclude the proof.

Definition 8: Capacity of an st-cut

Given a network N = (G, s, t, c), a flow f on N and an st-cut $\mathcal{U} \subseteq G$, we define the **capacity of an st**- **cut on** G, noted by $c(V(G)\backslash \mathcal{U})$, as the sum of the capacities of the edges outgoing from s-part to the t-part.

$$c(V(G)\backslash \mathcal{U}) := \sum_{\substack{(u,v) \in E(G): \\ x \in \mathcal{U}. u \notin \mathcal{U}}} c(u,v)$$

Lemma 1

Given a network N=(G,s,t,c), the maximum value of a flow on G at most the minimal capacity of an st-cut on G:

$$\max_{f : \text{flow on } G}(\text{val}(f)) \leq \min_{\mathcal{U} : st - \text{cut on } G}(c(V(G) \backslash \mathcal{U}))$$

Proof.

Let f be the flow on G that maximizes $\operatorname{val}(f)$ and let $\mathcal{U} \subseteq G$ be the st-cut on G that minimizes capacity. By the Flow of an st-cut and by the capacity bounded property of f, we get that:

$$\operatorname{val}(f) = \sum_{\substack{(u,v) \in E(G): \\ u \in \mathcal{U}, v \notin \mathcal{U}}} f(u,v) \le \sum_{\substack{(u,v) \in E(G): \\ u \in \mathcal{U}, v \notin \mathcal{U}}} c(u,v) = c(V(G) \setminus \mathcal{U})$$

1.3 The Ford-Fulkerson algorithm

Algorithm 1: The Ford-Fulkerson algorithm

```
Given a network N=(G,s,t,c), we define the following algorithm:  \begin{aligned} & \textbf{function} \ \text{FordFulkerson}(G) \\ & \text{Start with the trivial flow } f \ \text{with all 0s} \\ & \textbf{while} \ \text{True do} \\ & \text{Compute the residual graph } R \subseteq G \ \text{on flow } f \\ & \text{Find a path } P \ \text{in } R \ \text{from } s \to t \\ & \textbf{if } P \ \text{does not exist then} \\ & \text{Return } f \\ & \textbf{else} \\ & \text{Increase } f \ \text{through the value } \alpha \ \text{obtained by } P \\ & \textbf{end if} \\ & \textbf{end while} \\ & \textbf{end function} \end{aligned}
```

We note that the FordFulkerson(N) terminates only if the augment value eventually becomes 0, implying that there is no flow-augmenting path to be used. Thus, if the capacities defined by c are all integers, the algorithm always terminates.

Moreover, the flow-augmenting path of each iteration of FordFulkerson(N) can be found with a simple DFS search, requiring O(n+m), which is also the cost needed for computing the residual graph of each iteration. Thus, the **computational complexity** of the algorithm is O(k(n+m)), where k is the maximum number of iterations of the while loop.

It's easy to notice that this value k depends too much on the shape of the graph G. However, due to the *capacity bounded* property, in the worst case we have that k equals the maximum flow value. We also notice that, technically, the cost of this algorithm is **exponential**: the number of bits required to store k are $\log_2 k$, but the cost relies on $2^{\log_2 k} = k$ iterations.

Lemma 2

Given a network N=(G,s,t,c), if the algorithm $\mathsf{FordFulkerson}(N)$ terminates then it returns a flow f such that there exists an st-cut $\mathcal{U}\subseteq G$ for which we have that $\mathsf{val}(f)=c(V(G)\backslash\mathcal{U})$

Proof.

Let R be the residual graph of G on $f = \mathsf{FordFulkerson}(N)$ and let r be the residual capacity function obtained through f. We define $\mathcal{U} \subseteq G$ as:

$$\mathcal{U} = \{ x \in V(G) \mid \exists s \to x \text{ in } G' \}$$

Since the algorithm terminates when there is no path from $s \to t$, we know that $t \notin \mathcal{U}$, implying that \mathcal{U} is an st-cut of G. Thus, by the Flow of an st-cut, we have that:

$$\operatorname{val}(f) = \sum_{\substack{(x,v) \in E(G): \\ x \in \mathcal{U}, v \notin \mathcal{U}}} f(x,u)$$

By way of contradiction, we suppose that $\exists (x,v) \in E(G') \subseteq E(G)$ such that $x \in \mathcal{U}, v \notin \mathcal{U}$. By definition of \mathcal{U} , we know that $s \to x$ in G', so by adding (x,v) to the path we get that $s \to x \to y$, which contradicts $y \notin \mathcal{U}$.

Thus, such edge can't exists, implying that $\forall (x,v) \in E(G)$ such that $x \in \mathcal{U}, v \notin \mathcal{U}$ it holds that $(x,v) \notin E(G')$, which by definition of residue graph implies that:

$$\forall (x, v) \in E(G) \text{ s.t. } x \in \mathcal{U}, v \notin \mathcal{U} \text{ } f(x, v) = c(x, v)$$

concluding that:

$$\operatorname{val}(f) = \sum_{\substack{(x,v) \in E(G): \\ x \in \mathcal{U}, v \notin \mathcal{U}}} f(x,u) = \sum_{\substack{(x,v) \in E(G): \\ x \in \mathcal{U}, v \notin \mathcal{U}}} c(x,u) = c(V(G) \setminus \mathcal{U})$$

1.3.1 The Max-flow/Min-cut theorem

Theorem 1: Max-flow/Min-cut theorem

Given a network N = (G, s, t, c), the maximum value of a flow on G at most the minimal capacity of an st-cut on G:

$$\max_{f: \text{flow on } G} (\text{val}(f)) = \min_{\mathcal{U}: st-\text{cut on } G} (c(V(G) \setminus \mathcal{U}))$$

Proof.

By the Lemma 1, we already know that:

$$\max_{f: \text{flow on } G} (\text{val}(f)) \le \min_{\mathcal{U}: st-\text{cut on } G} (c(V(G) \setminus \mathcal{U}))$$

We now consider f' = FordFulkerson(N). By the Lemma 2, we know that there exists an st-cut $\mathcal{U}' \subseteq G$ such that $val(f') = c(V(G) \setminus \mathcal{U}')$.

Thus, it's easy to conclude that:

$$\max_{f: \text{flow on } G} (\text{val}(f)) \ge \text{val}(f') = c(V(G) \setminus \mathcal{U}) \ge \min_{\mathcal{U}: st-\text{cut on } G} (c(V(G) \setminus \mathcal{U}))$$

Corollary 1: Optimality of Ford-Fulkerson

The Ford-Fulkerson algorithm returns a flow with **maximum value**

Chapter 1. Flow networks

1.4 The Edmonds-Karp algorithm

Algorithm 2: The Edmonds-Karp algorithm

```
Given a network N=(G,s,t,c), we define the following algorithm:  \begin{aligned} & \textbf{function} \text{ EdmondsKarp}(N) \\ & \text{Start with the trivial flow } f \text{ with all 0s} \\ & \textbf{while} \text{ True } \textbf{do} \\ & \text{Compute the residual graph } R \subseteq G \text{ on flow } f \\ & \text{Find the } \underline{\textbf{shortest}} \text{ path } P \text{ in } R \text{ from } s \to t \\ & \textbf{if } P \text{ does not exist } \textbf{then} \\ & \text{Return } f \\ & \textbf{else} \\ & \text{Increase } f \text{ through the value } \alpha \text{ obtained by } P \\ & \textbf{end if} \\ & \textbf{end while} \\ & \textbf{end function} \end{aligned}
```

Lemma 3

```
Given a network N=(G,s,t,c), if the algorithm \mathsf{EdmondsKarp}(N) terminates then it returns a flow f such that there exists an st-cut \mathcal{U}\subseteq G for which we have that \mathsf{val}(f)=c(V(G)\backslash\mathcal{U}) (proof identical to Lemma 2)
```

Corollary 2: Optimality of Edmonds-Karp

The Edmonds-Karp algorithm returns a flow with **maximum value**

The Edmonds-Keep algorithm looks identical to the Ford-Fulkerson algorithm, except for the type of path searched at each iteration. The idea behind finding the shortest path instead of a random path is to **limit** the number of iterations made by the algorithm by making them rely on the number of nodes instead of the maximum flow value. Thus, the **computational complexity** of the algorithm effectively becomes O(mn(n+m)), meaning that it's not an exponential algorithm. The following statements will be necessary to justify this result.

Observation 3

Given a graph G and two vertices $x, y \in V(G)$, let P be the shortest path from $x \to y$. Then, for each node $z_i \in V(P)$ the path P contains the shortest path P_i from $x \to z_i$

Proof.

For each node $z_1, \ldots, z_k \in V(P)$ (x and y included), let P_i be the shortest path from $x \to z_i$. By way of contradiction, suppose that $P_i \not\subseteq P$.

Given an index i such that $1 \le i \le k$, let $P_x, P_y \subseteq P$ be the sub-paths that partition P by z_i , meaning that $x, z_1, \ldots, z_i \in V(P_x)$ and $z_{i+1}, \ldots, z_k, y \in V(P_y)$.

Since by assumption P_i is shorter that P_x , we get that the path $P_i \cup P_y$ is a path from $x \to y$ that is shorter than P, which is a contradiction. Thus, we conclude that for each node $z_1, \ldots, z_k \in V(P)$ it holds that $P_i \subseteq P$.

Proposition 3: Disappearing and appearing edges

Given a network N = (G, s, t, c) and the computation EdmondsKarp(N), let:

- f_0, \ldots, f_k be the series of flows computed, where f_0 is the trivial flow
- R_0, \ldots, R_k be the series of residue graphs computed, where R_0 is obtained with flow f_i
- P_0, \ldots, P_k be the series of shortest paths from $s \to t$ computed on R_i

Then, $\forall u \in V(G)$ and for each index i = 1, ..., k it holds that:

$$(u,v) \in E(R_i), (u,v) \notin E(R_{i+1}) \implies (u,v) \in E(P_i)$$

and that:

$$(u,v) \notin E(R_i), (u,v) \in E(R_{i+1}) \implies (v,u) \in E(P_i)$$

Proof.

If $(x, y) \in E(R_i)$ but $(x, y) \notin E(R_{i+1})$, the edge got removed by the flow-increase of path P_i . This can only happen only if $c(x, y) = f_{i+1}(x, y) = f_i(x, y) + \alpha_i$, where α_i is the flow increase obtained by P_i , meaning that $(x, y) \in P_i$.

Instead, if $(x, y) \notin E(R_i)$ but $(x, y) \in E(R_{i+1})$, the edge got added by the flow-increase of path P_i . This can happen only if $f_i(x, y) \ge f_{i+1}(y, x)$, which in turn can happen only if the flow of the opposite edge (x, y) got increased, meaning that $(y, x) \in E(P_i)$.

Lemma 4: Monotone increasing distance in Edmonds-Keep

Given a network N = (G, s, t, c) and the computation EdmondsKarp(N), let:

- f_0, \ldots, f_k be the series of flows computed, where f_0 is the trivial flow
- R_0, \ldots, R_k be the series of residue graphs computed, where R_0 is obtained with flow f_i
- P_i, \ldots, P_k be the series of shortest paths from $s \to t$ computed, where $P_i \subseteq R_i$

Then, $\forall u \in V(G)$ and for each index i = 1, ..., k it holds that:

$$\operatorname{dist}_{R_i}(s, u) \leq \operatorname{dist}_{R_{i+1}}(s, u)$$

Proof.

By way of contradiction, we assume that there exist some vertices for which the statement doesnt hold, meaning that $\exists u_1, \ldots, u_k \in V(G)$ such that $\operatorname{dist}_{R_i}(s, u_j) > \operatorname{dist}_{R_{i+1}}(s, u_j)$.

Let v be the vertex picked from u_1, \ldots, u_k with minimal distance from s in R_i , meaning that:

$$\operatorname{dist}_{R_i}(s, v) = \min_{j=1}^k \operatorname{dist}_{R_i}(s, u_j)$$

Consider the shortest path P in R_{i+1} from $s \to v$, that being the path with length $\operatorname{dist}_{R_{i+1}}(s,v)$. Let $u \in V(P)$ be the vertex that precedes v in P, meaning that $(u,v) \in E(P)$.

Since v is the vertex from u_1, \ldots, u_k with the shortest distance and since $\operatorname{dist}_{R_{i+1}}(s, u) = \operatorname{dist}_{R_{i+1}}(s, v) - 1$ due to it being the previous vertex of v in P, it must hold that $u \notin \{u_1, \ldots, u_k\}$ because otherwise u would be the one with the shortest distance.

Thus, we get that $\operatorname{dist}_{R_i}(s,u) \leq \operatorname{dist}_{R_{i+1}}(s,u)$, which implies that:

$$\operatorname{dist}_{R_{i}}(s, u) \le \operatorname{dist}_{R_{i+1}}(s, u) = \operatorname{dist}_{R_{i+1}}(s, v) - 1$$

Suppose now that $(u, v) \in E(R_i)$. Given the shortest path P' in $R_i i$ from $s \to u$ can be extended with (u, v), we get that $\operatorname{dist}_{R_i i}(s, v) \leq \operatorname{dist}_{R_i i}(s, u) + 1$. However, this would imply that:

$$\operatorname{dist}_{R_i}(s, v) \le \operatorname{dist}_{R_i}(s, u) + 1 \le \operatorname{dist}_{R_{i+1}}(s, u) + 1 \le \operatorname{dist}_{R_{i+1}}(s, v)$$

which contradicts the initial assumption. Thus, it can't be that $(u, v) \in E(R_i)$.

Moreover, since $(u, v) \in E(P) \subseteq E(R_{i+1})$ and $(u, v) \notin E(R_i)$, by Proposition 3 we know that:

$$(u,v) \notin E(R_i), (u,v) \in E(R_{i+1}) \implies (v,u) \in E(P_i)$$

Since P_i is the shortest path $s \to t$ in R_i and $u, v \in V(P_i)$, by Observation 3 we know that P_i also contains the shortest paths from $s \to u$ and $s \to v$ in R_i . In particular, the path from $s \to u$ also contains the path $s \to v$, so $\operatorname{dist}_{R_i}(s, v) = \operatorname{dist}_{R_i}(s, u) - 1$.

Combining this with the previous results and the initial assumption, we get that:

$$\operatorname{dist}_{R_i}(s,v) = \operatorname{dist}_{R_i}(s,u) - 1 \le \operatorname{dist}_{R_{i+1}}(s,u) - 1 = \operatorname{dist}_{R_{i+1}}(s,v) - 2 < \operatorname{dist}_{R_i}(s,v) - 2$$

implying that 0 < -2, which is impossible, meaning that such vertices u_1, \ldots, u_k can't exists.

Theorem 2: Total iterations of Edmonds-Karp

The total number of iterations done by the Edmonds-Karp algorithm is O(mn).

This also implies that the algorithm always terminates.

Proof.

Given a network N = (G, s, t, c) and the computation EdmondsKarp(N), let:

- f_0, \ldots, f_k be the series of flows computed, where f_0 is the trivial flow
- R_0, \ldots, R_k be the series of residue graphs computed, where R_0 is obtained with flow f_i
- P_i, \ldots, P_k be the series of shortest paths from $s \to t$ computed, where $P_i \subseteq R_i$

In the following steps, we define an edge (u, v) as *critical* for R_i if $(u, v) \in E(R_i)$ but $(u, v) \notin E(R_{i+1})$. In particular, by Proposition 3 we know that if an edge is critical for R_i then $(u, v) \in P_i$. Furthermore, for each shortest path P_i we know that there is at least one critical edge inside it, that being the edge which defines the flow augmentation value α_i for P_i .

Given an edge $(u, v) \in E(G)$, let $\pi(1), \ldots, \pi(\ell)$ be the indexes such that $1 \leq \pi(1) < \pi(2) < \ldots < \pi(\ell) \leq k$ and such that (u, v) is critical for each $\pi(i)$. By Observation 3, we know that for each index $i = 1, \ldots, k$ it holds that:

$$(u, v) \in E(P_{\pi(i)}) \implies \operatorname{dist}_{R_{\pi(i)}}(s, v) = \operatorname{dist}_{R_{\pi(i)+1}}(s, u) + 1$$

meaning that $(u, v) \in E(R_{\pi(i)+1})$.

If (u, v) is critical for both $R_{\pi(i)}$ and $R_{\pi(j)}$ (where i < j, meaning that (u, v) disappears both times), then there must be an index h such that $\pi(i) < h < \pi(j)$ where (u, v) reappears, meaning that $(u, v) \notin E(G_h)$ and $h \in E(G_{h+1})$.

Again, by Proposition 3, we know that:

$$(u,v) \notin E(G_h), h \in E(G_{h+1}) \implies (v,u) \in E(P_h) \implies \operatorname{dist}_{R_h}(s,u) = \operatorname{dist}_{R_h}(s,v) + 1$$

Then, since $\pi(i) < h < \pi(j)$, by the Monotone increasing distance in Edmonds-Keep we know that:

$$\operatorname{dist}_{R_{\pi(i)}}(s, u) \ge \operatorname{dist}_{R_h}(s, u) = \operatorname{dist}_{R_h}(s, v) + 1 \ge \operatorname{dist}_{R_{\pi(i)}}(s, u) + 2$$

Thus, between $R_{\pi(i)}$ and $R_{\pi(j)}$ the vertex u's distance increases by at least 2. Thus, since u's final distance can be at most n-1, meaning that $\operatorname{dist}_{R_k}(s,u) \leq n$, starting from 0 the distance can be increased by 2 at most $\frac{n}{2}$ times, meaning that $\ell = \frac{n}{2}$.

Since each flow-augmenting shortest path computed by the algorithm implies the existence of a critical path and since since the number of times each edge can be critical is at most $\ell = \frac{n}{2}$, the number of paths computable is at most $m \times \frac{n}{2}$, which is in O(mn).

1.5 Applications of the Max-flow/Min-cut theorem

Considering the previous definitions, it's easy to see that for each undirected graph there is an associated network with chosen capacities by simply "splitting" each undirected edge (u, v) into two directed edges (u, v), (v, u). Vice versa, by inverting this transformation process, we can associate an undirected graph to each network. In particular, given an undirected graph G, we denote with \overrightarrow{G} the directed graph underling the network $N = (\overrightarrow{G}, s, t, c)$ associated to G.

This natural association can be used to prove theorems on undirected graphs through the use of the Max-flow/Min-cut theorem. In particular, we'll consider the problem of finding the maximum number of pairwise edge-disjoint paths between two nodes in an undirected graph.

Lemma 5

Let G be an undirected graph and let $N = (\overrightarrow{G}, s, t, c)$ be the network associated to G such that all edges have capacity set to 1. If G has at most k pairwise edge-disjoint paths $s \to t$ then the maximum value of a flow f on N is k.

Proof.

Since G has at most k pairwise edge-disjoint paths $s \to t$, the associated graph \overrightarrow{G} will have k pairwise edge-disjoint paths $s \to t$ and k pairwise edge-disjoint paths $t \to s$ thanks to the "splitting" process.

Then, for each path $s \to t$ in \overrightarrow{G} we can set f(u,v) = 1 and f(v,u) = -1 for each edge (u,v) in the path. Since each path is disjoint, sending flow to one of them doesn't influence the other paths, implying that one unit of flow can be sent on each one of the k paths and thus that the maximum value of f is k.

Definition 9: Support of a flow

Given a network $N = (\overrightarrow{G}, s, t, c)$ and a flow f on N, we define the **support of** f as the subgraph $\overrightarrow{W} \subseteq \overrightarrow{G}$ such that:

$$E(\overrightarrow{W}) = \{(u, v) \in E(\overrightarrow{G}) \mid f(u, v) \neq 0\}$$

Lemma 6

Let G be an undirected graph and let $N = (\overrightarrow{G}, s, t, c)$ be the network associated to G such that all edges have capacity set to 1. If the maximum value of a flow f on N is k then the undirected graph W associated to the support graph \overrightarrow{W} of f has at most k pairwise edge-disjoint paths $s \to t$.

Proof.

Let f be a flow on N with maximum value, $\overrightarrow{W} \subseteq \overrightarrow{G}$ be the support graph of f and W the undirected graph associated to \overrightarrow{W} . By strong induction on the number m of edges in W, meaning that |E(W)| = m, we show that W has maximum k pairwise edge-disjoint paths $s \to t$.

If m = 0, then $\forall (u, v) \in E(G)$ it holds that f(u, v) = 0, implying that val f = 0 and that the number of pairwise edge-disjoint paths $s \to t$ in W is 0. We now assume by strong induction that the statement holds for all graphs whose support graph has at most m edges.

Suppose now that |E(W)| = m + 1. In \overrightarrow{W} , let $P \subseteq \overrightarrow{W}$ be the subgraph such that:

- $\bullet \ V(P) = \{v_0, \dots, v_h\}$
- $\bullet \ v_0 = s$
- For each index i = 0, ..., h 1 it holds that $(v_i, v_{i+1}) \in E(\overrightarrow{W})$
- For each index i = 0, ..., h-1 it holds that $(v_i, v_{i+1}) = 1$
- h is as big as possible

In particular, we observe that this subgraph describes the longest possible path starting from s in the whole graph. Such a subgraph can always be found since v_h can be equal to s, giving us the trivial zero-edged path $s \to s$.

In case $v_h = t$, the subgraph P corresponds to the longest path $s \to t$ in \overrightarrow{W} and thus the longest path in W. Then, considering f' such that:

$$f'(x,y) = \begin{cases} 0 & \text{if } (x,y) \in E(P) \text{ or } (x,y) \in E(P) \\ f(x,y) & \text{otherwise} \end{cases}$$

its easy to see that f' is a flow on the network $(\overrightarrow{W}, s, t, c)$.

Let $\overrightarrow{W'} \subseteq \overrightarrow{W}$ be the support graph of f'. By definition of f', we get that $\overrightarrow{W'} = \overrightarrow{W} - E(P)$. Since P contains an edge outgoing from s, in f' the flow value of that edge was set to 0, implying that val f' = val f - 1 = k - 1.

Since |E(W')| < |E(W)|, by inductive hypothesis the graph W' has at most val f' = k - 1 pairwise edge-disjoint paths $s \to t$. Furthermore, since $\overrightarrow{W'} = \overrightarrow{W} - E(P)$, the path P is disjoint from these k-1 paths, concluding that W has k pairwise edge-disjoint paths.

In case $v_h \neq t$, instead, since $f(v_{h-1}, v_h) = 1$, there must exists an edge $(u, v_h) \in E(\overrightarrow{W})$ with flow value $f(u, v_h) = -1$ in order to preserve the conservation of flow for v_h . Moreover, this also implies that $f(v_h, u) = 1$.

By way of contradiction, suppose that $u \notin V(P)$. Then, since $f(v_h, u) = 1$, we could extend this path P with (v_h, u) , which contradicts the fact that h was chosen as big as possible, meaning that the only possibility is that $u \in V(P)$. In particular, since by definition of P we have that $f(v_{h-1}, v_h) = 1$ and for u we have that $f(u, v_h) = -1$, we know that $u \neq v_{h-1}$.

Given for each index i = 0, ..., k - 2 such that $u = v_i$, let C be the directed cycle $v_i, ..., v_h, u$. Then, considering f'' such that:

$$f''(x,y) = \begin{cases} 0 & \text{if } (x,y) \in E(C) \text{ or } (x,y) \in E(C) \\ f(x,y) & \text{otherwise} \end{cases}$$

its easy to see that f'' is a flow on the network $(\overrightarrow{W}, s, t, c)$.

If $i \neq 0$ then $v_i \neq s$, implying that val f'' = val f = k. Otherwise, if i = 0, we have that $f''(s, v1) = f''(v_h, s) = 0$. Then, since previously we had f(s, v1) = 1 and $f(v_h, s) = -1$, the value of the flow hasn't changed, concluding that in both cases we have that val f'' = val f.

Finally, since |E(W'')| < |E(W)|, by inductive hypothesis the graph W'' has at most val f'' = k pairwise edge-disjoint paths $s \to t$, implying that also W has these paths, concluding that in all cases the statement holds for m+1.

Corollary 3

Let G be an undirected graph and let $N = (\overrightarrow{G}, s, t, c)$ be the network associated to G such that all edges have capacity set to 1. If the maximum value of a flow f on N is k then G has at most k pairwise edge-disjoint paths $s \to t$.

Proof.

By the previous lemma, we know that $W \subseteq G$ has k edge-disjoint paths. By way of contradiction, suppose that the number of pairwise edge-disjoint paths in G is greater than k. Then, there exists at least another disjoint path P from $s \to t$ in G that isn't in W.

Since P is not in W, by definition of support graph, each edge in P must have a flow equal to 0. Then, we could send another unit of flow in this path, contradicting the fact that f is the maximum flow in G. Thus, the only possibility is that such a path cannot exist.

Theorem 3: Menger's theorem

Let G be an undirected graph and let $N=(\overrightarrow{G},s,t,c)$ be the network associated to G such that all edges have capacity set to 1. The maximum value of a flow f on N is exactly equal to the maximum number of pairwise edge-disjoint paths $s \to t$ in G.

(follows from Lemma 5 and Corollary 3)

Chapter 1. Flow networks

Linear programming

2.1 Introduction and interpretation

Linear programming, also called *linear optimization*, is a method to achieve the **optimal outcome** (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by **linear inequalities**. In particular, the objective to be optimized is defined by an **objective function** on variables x_1, \ldots, x_n that must be *maximized* (or *minimized*).

For example, given two variables $x_1, x_2 \in \mathbb{R}$, we want to maximize the sum $x_1 + x_2$ while also respecting the following linear constraints:

$$x_1 + 6x_2 \le 15$$

$$4x_1 - x_2 \le 10$$

$$x_2 - x_1 \le 1$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

Since we have only two variables, these constraints can be interpreted as lines in a cartesian plane defined by x_1 and x_2 : given a constraint $\alpha x_1 + \beta y_1 \leq \gamma$ (or $\alpha x_1 + \beta y_1 \geq \gamma$), the plane gets partitioned by the line $\alpha x_1 + \beta y_1 = \gamma$ and we can consider only the part that **respects the constraint**.

By applying this process for each constraint, only one part of the graph will respect all the constraints. Any point in this area is a **feasible solution** to the problem. Furthermore, the area that contains the feasible solutions is called the **feasible region**.

In particular, we want to find a feasible solution that maximizes (or minimizes) the objective function. These solutions are called **optimal solutions**. We notice now that the objective function $x_1 + 2x_2$ can also be rewritten as a scalar product:

$$x_1 + x_2 = \begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Figure 2.1: The grey area is the feasible region defined by the constraints. The vector [1 1] shows the direction of the objective function to be maximized

Considering the line described by the vector $\begin{bmatrix} 1 & 1 \end{bmatrix}$, it's easy to see the optimal solution to the problem is given by the point **furthest from the origin**: the line *perpendicular* to the vector $\begin{bmatrix} 1 & 1 \end{bmatrix}$ that passes through such point is the optimal solution.

Figure 2.2: The optimal solution is given by the line $x_1 + x_2 = 5$, meaning that 5 is the optimal solution

In this problem, there is **only one optimal solution**, which is the vector $\begin{bmatrix} 3 & 2 \end{bmatrix}$. However, if vector that defines the direction of the objective function is *perpendicular* to a constraint, we get **infinite optimal solutions** (because in \mathbb{R} a segment has infinite points).

Figure 2.3: If the objective function is $\frac{1}{6}x_1 + x_2$, we get an infinite set of optimal solutions

Instead, if we reverse the directions of the inequalities of some of the constraints, we get that there is no feasible solution. Such programs are called **infeasible**.

Finally, in some situations there may be a feasible solution but no optimal solution. These cases arise when the direction of the objective function is unbounded, meaning that we can always find a solution with an higher (or lower) value. Such programs are called **feasible unbounded**.

Figure 2.4: If we remove some constraints, the program becomes feasible unbounded

Proposition 4: Possibilities in a linear program

For each linear program, only one of the following cases holds:

- 1. The program is **infeasible**, meaning that there is no feasible solution
- 2. The program is **feasible unbounded**, meaning that are infinite feasible solutions but no optimal solution
- 3. The program is **uniquely optimal**, meaning that there are infinite feasible solutions and only one optimal solution
- 4. The program is **infinitely optimal**, meaning that there are infinite optimal solutions

Throughout the following sections and chapters, we will give proper justifications to formalize this result. Optimization problems are hidden in everyday life. For example, we can resolve the following two problems with linear programming:

• Diet optimization:

Given n types of food, for each i such that $1 \leq n$ we define x_i and c_i respectively as the quantity and the cost of each food type i. Considering a set of nutritional constraints, such as minimum and maximum macro-nutrient intakes, we can define the following optimization problem in order to find the best combination of foods for our diet:

$$\min c_1 x_1 + \ldots + c_n x_n$$

$$a_{1,1} x_1 + \ldots + a_{1,n} x_n \le b_1$$

$$\vdots$$

$$a_{m,1} x_1 + \ldots + a_{m,n} x_n \le b_m$$

• Network flow:

Given a network N = (G, s, t, c) and a flow f on N, we can define a variable $x_{u,v}$ for all $(u,v) \in E(G)$ in order to formulate the max flow value problem as an optimization problem and find the optimal flow by setting $f(u,v) = x_{u,v}$. Trivially, each constraint of the network becomes a constraint of the problem.

2.2 Linear programs and Standard form

In this section we give a proper formal definition of the concepts previously shown. Hence, it is assumed that each interpretation is already well-known.

Definition 10: Linear function

Let $f: \mathbb{R}^n \to \mathbb{R}$. We say that f is a linear function if

$$\forall x, y \in \mathbb{R}^n, \forall \alpha, \beta \in \mathbb{R} \ f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

Definition 11: Linear program

A linear program, or linear optimization problem, is an optimization problem defined on an linear function $f: \mathbb{R}^n \to \mathbb{R}$ to be maximized, called **objective function**, and constraints on the input vector x:

$$\max f(x) = c_1 x_1 + \dots + c_n x_n$$

$$a_{1,1} x_1 + \dots + a_{1,n} x_n \le b_1$$

$$\vdots$$

$$a_{m,1} x_1 + \dots + a_{m,n} x_n \le b_m$$

Each vector x that respects the constraints is called a **feasible solution** and the set of feasible solutions is called **feasible region**. Each feasible solution that maximizes the objective function is called **optimal solution**.

In the previous section, we noticed how the objective function can also be rewritten as a scalar product:

$$f(x) = c_1 x_1 + \ldots + c_n x_n = \begin{bmatrix} c_1 & \ldots & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Thus, we can say that $f(x) = c^T x$, where $c^T = [c_1 \dots c_n]$ is the transpose of the **coefficient vector of** f. Likewise, we notice that each constraint of the problem corresponds to a row of the linear system $Ax \leq b$. Thus, we can define the following **general**

formulation of linear programs:

Proposition 5: Conversion of linear programs

Every linear program can be written as a maximization problem in the following general form:

$$\max_{Ax \le b} c^T x$$
$$x > 0$$

Through the following steps:

- 1. The optimal solution that minimizes $c^T x$ also maximizes $-c^T x$, so we can substitute min $c^T x$ with max $-c^T x$. Warning: even thought the solution is the same, the optimal value will have negated sign. This can be fixed by just inverting the negating optimal value.
- 2. Any constraint of the form $a_1x_1 + \ldots + a_nx_n \ge b$ is equivalent to the constraint $-a_1x_1 \ldots a_nx_n \le -b$, so we can substitute the first with the latter
- 3. Any component variable x_i such that x < 0 can be substituted with two non-negative variables $z_i, z_i' \ge 0$ such that $x_i = z_i z_i'$

Now, we would like to find a way to define the linear program in an **equational form**. In particular, consider the following linear program:

$$\max c_1 x_1 + \ldots + c_n x_n$$

$$a_{1,1} x_1 + \ldots + a_{1,n} x_n \le b_1$$

$$\vdots$$

$$a_{m,1} x_1 + \ldots + a_{m,n} x_n \le b_m$$

where A is the matrix formed by the constraints.

We define m variables s_1, \ldots, s_m , called **slack variables**, such that for each index $i = 1, \ldots, m$, we define $s_i := b_i - a_{1,1}x_1 + \ldots + a_{1,n}x_n$. By adding the slack variable s_i to the left side of the i-th inequality, each inequality becomes an equality.

Thus, at the cost of adding m variables to the problem, we can reformulate the problem as:

$$\max c_1 x_1 + \ldots + c_n x_n + 0 \cdot s_1 + \ldots + 0 \cdot s_m$$

$$a_{1,1} x_1 + \ldots + a_{1,n} x_n + s_1 = b_1$$

$$\vdots$$

$$a_{m,1} x_1 + \ldots + a_{m,n} x_n + s_m = b_m$$

Given the $m \times m$ identity matrix I_m , we get that:

$$\begin{bmatrix} A \mid I_m \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ s_1 \\ \vdots \\ s_m \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

Then, by setting $A' := [A \mid I_m]$ and $c' := [c_1 \ldots c_n \ 0 \ldots 0]$ we get the following linear program in equational form:

$$\max c'^T x$$
$$A'x = b$$
$$x \ge 0$$

Definition 12: Standard form

A linear program is said to be in **standard form** (or *equational form*) if it is formulated as:

$$\max c^T x$$
$$Ax = b$$
$$x \ge 0$$

where $c, x \in \mathbb{R}^n$, $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ and $b \in \mathbb{R}^m$.

Through linear algebra, we can find numerous results involving linear programs in standard form. In particular, a fundamental result is that the system Ax = b is **invariant under Gaussian row operations**. Thus, we can reduce the number of rows of A through row elimination in order to obtain the **minimal amount of constraints** that define the problem. For these reasons, we are going to assume that each removable row has already been removed, meaning that the **rows** (but always not the columns) of A are assumed to be **linearly independent**. Moreover, since we generally obtain a standard form linear program from a non-standard one and the transformation adds m variables to the problem, we're going to always assume that $m \le n$.

Observation 4: Assumptions on standard form LPs

Given a linear program in standard form Ax = b with $x \ge 0$, we assume that:

- $A \in \operatorname{Mat}_{m \times n}(\mathbb{R})$ and $m \leq n$
- \bullet The rows of the matrix A are always linearly independent
- The rank of A is rank(A) = colrank(A) = rowrank(A) = m

2.3 Basic feasible solutions

Among all the feasible solutions of a linear program, a privileged status is granted to so-called **basic feasible solutions**. First, we'll give a geometric intuition of these types of feasible solutions: a basic feasible solution is a *vertex* (or corner, spike) of the set of feasible solutions.

Figure 2.5: A set of feasible solutions

For example, in the set of feasible solutions shown above in grey, among p, q and r only the latter is basic. In particular, we notice that the solution r is set to zero on both the x_2 and x_3 axes. In fact, very roughly speaking, a basic feasible solution is a feasible solution with sufficiently many variables set to zero. This intuition will be justified later both informally and formally.

First of all, we will introduce some new notation: consider a linear program in standard form:

$$\max c^T x$$
$$Ax = b$$
$$x \ge 0$$

where $A \in \operatorname{Mat}_{m \times n}$ and we denote with $A = (A^1, \ldots, A^n)$ the column decomposition of A. Given a subset of indices $\mathcal{B} \subseteq \{1, \ldots, n\}$ called **basis**, we define the matrix $A_{\mathcal{B}}$ as the **matrix formed by the columns of** A whose index is inside \mathcal{B} , meaning that $A_{\mathcal{B}} = (A^{i_1}, \ldots, A^{i_k})$ where $i_1, \ldots, i_k \in \mathcal{B}$.

Example:

• Suppose that:

$$A = \begin{bmatrix} 1 & 6 & 3 & -3 & 4 \\ 0 & 1 & 3 & 2 & 4 \end{bmatrix}$$

If $\mathcal{B} = \{2, 4\}$, the matrix $A_{\mathcal{B}}$ is equal to:

$$A_{\mathcal{B}} = \begin{bmatrix} 6 & -3 \\ 1 & 2 \end{bmatrix}$$

Proposition 6

Given the matrix equation Ax = b and a subset of indices $\mathcal{B} \subseteq \{1, \ldots, n\}$, if $|\mathcal{B}| = m$ and $A_{\mathcal{B}}$ is non-singular, meaning that $\det(A_{\mathcal{B}}) \neq 0$, then there exists a solution $\overline{x} := (x_1, \ldots, x_n) \in \mathbb{R}^n$ such that $A\overline{x} = b$ and $\forall i \notin \mathcal{B}$ $x_i = 0$.

Proof.

If |B| = m and $\det(A_{\mathcal{B}}) \neq 0$ then $A_{\mathcal{B}}$ is a non-singular $m \times m$ matrix with rank m. Thus, through the *Rouché-Capelli theorem*, since $A_{\mathcal{B}}$ is also a minor of both A and $(A \mid b)$, we get that $\operatorname{rank}(A) = \operatorname{rank}(A \mid b) = m$, implying that subspace of solutions of Ax = b has rank n - m. Moreover, since the columns whose index isn't in \mathcal{B} are linearly dependent by the other columns, this subspace will always contain a solution such that $\forall i \notin \mathcal{B}$ $x_i = 0$.

Definition 13: Basic feasible solution

Given the equation Ax = b of a standard form linear program, we say that $\overline{x} \in \mathbb{R}^n$ is a **basic feasible solution (BFS)** if \overline{x} is a feasible solution for which there exists an index set $\mathcal{B} \subseteq \{1, \ldots, n\}$ such that:

- $A_{\mathcal{B}}$ is an $m \times m$ non-singular matrix
- $\forall i \notin \mathcal{B} \ \overline{x_i} = 0$

Moreover, we say that \mathcal{B} certifies \overline{x} and call basic variable each variable x_i such that $i \in \mathcal{B}$, while the other variables are called **non-basic variable**.

Example:

• Suppose that a standard form linear program is defined by:

$$A = \begin{bmatrix} 1 & 6 & 3 & -3 & 4 \\ 0 & 1 & 3 & 2 & 4 \end{bmatrix} \qquad b = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$$

If $\mathcal{B} = \{2, 4\}$, the matrix $A_{\mathcal{B}}$ is equal to:

$$A_{\mathcal{B}} = \begin{bmatrix} 6 & -3 \\ 1 & 2 \end{bmatrix}$$

Furthermore, since $\det(A_{\mathcal{B}}) = 15 \neq 0$ and $|\mathcal{B}| = 2$, we know that there exists a vector $\overline{x}^T = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}$ such that $A\overline{x} = b$. By solving the following equation

$$\begin{bmatrix} 6 & -3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$$

we get that $x_2 = 2$ and $x_4 = 2$. Finally, by setting all the other variables to 0, we get that the vector $\overline{x}^T = \begin{bmatrix} 0 & 2 & 0 & 2 & 0 \end{bmatrix}$ implies that \overline{x} is a BFS.

An important thing to notice is that \overline{x} is a BFS because it also respects the constraint of non-negative solutions since $\overline{x} \geq 0$, meaning that it is indeed a feasible solution. The method that was just shown doesn't always guarantee that the solution to the "reduced equation" is also a feasible solution.

For example, if we consider $\mathcal{B}' = \{1, 2\}$, we get that $\det(A_{\mathcal{B}'}) = -5 \neq 0$ and $|\mathcal{B}'| = 2$, so we know that there exists a vector $\overline{y}^T = \begin{bmatrix} y_1 & y_2 & y_3 & y_4 & y_5 \end{bmatrix}$ such that $A\overline{y} = b$. However, by solving the following equation

$$\begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$$

we get that $y_1 = -30$ and $y_2 = 6$, the vector $\overline{y}^T = \begin{bmatrix} -30 & 6 & 0 & 0 \end{bmatrix}$ doesn't respect the constraint $\overline{y} \ge 0$, meaning that it isn't a feasible solution and by consequence that it isn't a BFS.

Theorem 4

Given a feasible solution $\overline{x} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$ to a linear program, let $K = \{i \in \{1, \dots, n\} : x_i > 0\}$. It holds that:

 \overline{x} is a BFS \iff Columns of A_K are lin. ind.

Proof.

First implication. Suppose that \overline{x} is a BFS and let \mathcal{B} be the basis through which we obtain \overline{x} . Every non-basic variable of \overline{x} is set to 0, meaning that $\forall i \notin \mathcal{B}$ we have that $x_i = 0$. However, since for all the other basic variables x_j it holds that $x_j \geq 0$, these variables could also be set to 0.

Thus, generally we have that $K \subseteq \mathcal{B}$. Since $A_{\mathcal{B}}$ is non-singular, the columns of $A_{\mathcal{B}}$ are linearly independent. Then, since $i \in K \subseteq \mathcal{B}$, each column of the matrix A_K is also linearly independent.

Second implication. Suppose that the columns of A_K are linearly independent, implying that $\det(A_K) \neq 0$. If |K| = m then K certifies that \overline{x} is a BFS. If |K| < m, instead, we pick $\mathcal{B} \subseteq \{1, \ldots, n\}$ such that:

- $K \subset \mathcal{B}$
- $A_{\mathcal{B}}$ has linearly independent columns
- \mathcal{B} is as big as possible

Such set \mathcal{B} always exists since, eventually, $K = \mathcal{B}$ is allowed by definition.

Since the columns of $A_{\mathcal{B}}$ are also columns of A, since \mathcal{B} is as big as possible and since $A_{\mathcal{B}}$ is has linearly independent columns, it holds that $\operatorname{rank}(A_{\mathcal{B}}) = \operatorname{rank}(A) = m$, implying that $|\mathcal{B}| = m$ and thus that \mathcal{B} certifies that \overline{x} is a BFS.

Observation 5

A BFS can be certified by more than one basis

Example:

• Suppose that a standard form linear program is defined by:

$$A = \begin{bmatrix} 1 & 6 & 3 & -3 & 4 \\ 0 & 1 & 3 & 2 & 4 \end{bmatrix} \qquad b = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$$

By the previous theorem, the vector $\overline{x}^T = \begin{bmatrix} 0 & 0 & 2 & 0 & 0 \end{bmatrix}$ gives a BFS due to the fact that $K = \{3\}$ and the columns of A_K are clearly linearly independent since it is made of only one column. Moreover, we notice that we can expand the set K to two different basis $\mathcal{B} = \{1,3\}$ and $\mathcal{B}' = \{2,3\}$

Definition 14: Feasible basis

Given a basis \mathcal{B} of a linear program, we say that \mathcal{B} is **feasible** if it certifies a BFS

Observation 6

Given a feasible basis \mathcal{B} , there exists only one BFS \overline{x} certified by \mathcal{B}

Proof.

Let $\mathcal{B} = \{i_1, \dots, i_k\}$. Since \mathcal{B} is a feasible basis, the matrix $A_{\mathcal{B}}$ is made of linearly independent columns, implying that there must be only one solution to the equation

$$A_{\mathcal{B}} \cdot \begin{bmatrix} x_{i_1} \\ \vdots \\ x_{i_k} \end{bmatrix} = b$$

Proposition 7

A linear program in standard form has at most $\binom{n}{m}$ BFS

Proof.

Since each basis must have cardinality m and since A has n columns, the number of possible choises for a basis is $\binom{n}{m}$. Then, even if all the possible basis are feasible basis each one of them corresponds to only one BFS which could also be shared with another basis. Thus, even if no BFS is shared among more than one basis, there can be at most $\binom{n}{m}$ BFSs.

2.3.1 Above bounded linear programs and BFS

Definition 15: Above bounded linear program

Given a linear program in standard form, we say that it's objective function is **bounded** above if $\exists N \in \mathbb{R}$ such that for all feasible solutions y it holds that $c^T y \leq N$.

Theorem 5

Given a linear program in standard form, if the objective function has an upper bound then for each feasible solution y there exists a BFS z such that $c^Tz \ge c^Ty$.

Proof.

Let y be a feasible solution and let z be a feasible solution with the maximum amount of zero variables and such that $c^Tz \geq c^Ty$. Such a feasible solution z always exists since, eventually, y = z is allowed by definition.

By way of contradiction, suppose that z isn't a BFS and let $K = \{i \in \{1, ..., n\} \mid z_i > 0\}$. It's easy to see that the columns of A_K must be linearly dependent: if they weren't, by theorem Theorem 4 we would get that z is a BFS, which is impossible.

Since they are linearly dependent, we know that $\exists \alpha_{i_1}, \ldots, \alpha_{i_k} \neq 0$, where $K = \{i_1, \ldots, i_k\}$, such that

$$\alpha_{i_1} A_K^{i_1} + \ldots + \alpha_{i_k} A_K^{i_k} = 0 \iff A_K \cdot \begin{bmatrix} \alpha_{i_1} \\ \vdots \\ \alpha_{i_1} \end{bmatrix} = 0$$

Since the columns of A_K are also columns of A and since the coefficients $\alpha_{i_1}, \ldots, \alpha_{i_k}$ nullify the linear combination of the columns in A_K , by setting to 0 the coefficient of every other column of A we can nullify the linear combination of the columns of A.

Then, let w such vector of coefficients, formally defined as:

$$w_j = \begin{cases} a_j & \text{if } j \in K \\ 0 & \text{otherwise} \end{cases}$$

As we just said, we know that Aw = 0.

Claim: We can assume that the vector w satisfies the following two conditions:

- 1. $c^T w \ge 0$
- 2. $\exists j \in K \text{ such that } w_i < 0$

Proof of the claim.

First, we notice that Aw = 0, for all $\beta \in \mathbb{R}$ it also holds that $A(\beta w) = 0$.

If $c^T w = 0$ then $c^T w \ge 0$ trivially holds. Moreover, if the second condition doesn't hold for w, meaning that $\forall j \in K$ we have that $w_j \ge 0$, we can substitute w with the vector

-w, satisfying the second condition since $w \neq 0$. In particular, we notice that such substitution doesn't violate the first condition: if $c^T w = 0$, by linearity of the objective function it holds that $c^T(-w) = -(c^T w) = 0$.

If $c^T w \neq 0$, by picking w or -w we can satisfy the first condition since $c^T w > 0$ or $c^T (-w) > 0$ must hold. Without loss of generality, in the following statements we will assume that w was chosen.

By way of contradiction, suppose that the second condition doesn't hold, meaning that $\forall j \in K$ we have that $w_j \geq 0$.

Given $t \in \mathbb{R}$ such that $t \geq 0$, let z(t) := z + tw. We notice that z(0) = z and that

$$A \cdot z(t) = A(z + tw) = Az + tAw$$

Since z is a feasible solution, meaning that Az = b, and since Aw = 0, we get that $A \cdot z(t) = b$. Furthermore, since z is a feasible solution and since by assumption $\forall j \in K$ $w_j \geq 0$, for each index i we know that $z(t)_i = z_i + tw_i \geq 0$, concluding that $z(t) \geq 0$ and thus that it is indeed a feasible solution.

By linearity of the objective function, we also know that:

$$c^T \cdot z(t) = c^T (z + tw) = c^T z + tc^T w$$

Since $t \geq 0$ and since $c^T > w$, we also get that $tc^T w > 0$. However, this is valid $\forall t \in \mathbb{R}$, meaning that we can always choose a value t' bigger than the previous for which $c^{t'}w > c^t w$, contradicting the fact that the objective function has an upper bound. Thus, it must be true that $\exists j \in K$ such that $w_j < 0$.

Once this assumption is made, given $t \in \mathbb{R}$ we define again the vector z(t) := z + tw. As before, we notice that $A \cdot z(t) = b$. However, it is no longer always true that $z(t) \geq 0$ since we proved that $\exists j \in K$ such that $w_j < 0$ (that result was given by assuming the contrary). In fact, if $t > \frac{z_i}{-w_i}$ we get that $z(t)_i < 0$.

Claim: $\exists t' > 0$ such that z(t') is a feasible solution with more zeros than z

Proof of the claim. Since z is a feasible solution, we know that $z \geq 0$. Furthermore, we recall that K is defined as $K = \{i \in \{1, ..., n\} : z_i > 0\}$, implying that for each $j \notin K$ it must be true that $z_j = 0$.

Thus, since for $j \notin K$ we also know that $w_j = 0$, we get that:

$$z(t)_j = \begin{cases} z_j + tw_j & \text{if } j \in K \\ 0 & \text{otherwise} \end{cases}$$

Since $\exists h \in K$ such that $w_h < 0$, let $t' = \min_{h \in K: w_h < 0} \left(\frac{z_j}{-w_j}\right)$. In particular, notice that by the way t' is defined we get that:

• By choice of h, we know that $z_h > 0$ and $w_h < 0$, thus t' > 0

• If $z_i = 0$ then $i \notin K$, implying also that $z(t')_i = 0$. However, by choice of h, we know that $z_h > 0$

$$z(t')_h = z_h + t'w_h = z_h + \frac{z_j}{-w_j} \cdot w_j = 0$$

thus z(t') always has at least one more zero variable than z

• Since t' > 0, for each $j \in K$ such that $w_j < 0$ it holds that:

$$t' = \frac{z_h}{-w_h} \le \frac{z_j}{-w_h} \implies t'w_j \ge z_j$$

Given an index i, if $i \notin K$ then we already know that $z(t')_i = 0$. If $i \in K$, instead, by definition of K we get that $z_i > 0$. Thus, we get two additional subcases:

- If $w_i \ge 0$ then $z(t')_i = z_i + t'w_i \ge 0$
- If $w_i < 0$ then $t'w_i < 0$, but we also know that $t'w_i \ge z_i$, implying that $z(t')_i = z_i + t'w_i \ge 0$

Thus in all cases we get that $z(t') \ge 0$. Since it's also true that $A \cdot z(t') = b$, this concludes that z(t') is a feasible solution with more zeros than z

Finally, by linearity of the objective function and since we showed that $c^T w \geq 0$ and t' > 0, we get that

$$c^T \cdot z(t') = c^T(z + t'w) = c^Tz + t'c^Tw \ge c^Tz \ge c^Ty$$

Thus, we get that z(t') is a feasible solution with more zeros than z and such that $c^T \cdot z(t') \ge c^T y$, contradicting our initial assumption for which z was chosen with such characteristics. Thus, it must be impossible for z to not be a BFS.

Corollary 4: Feasible solution with maximum zeros

A BFS is a feasible solution with the **maximum amount of zero variables**. Thus, if there is at least one feasible solution, there also is at least one BFS.

(follows from the way we proved the previous theorem)

This corollary only partially justifies the previously mentioned geometric intuitions. In fact, we now know that a BFS has a sufficient amount of zero components. However, this isn't enough to justify that it is a tip of the set of feasible solutions: if we consider the image shown in Fig. 2.5, a point on the segment between the origin and r also has the components x_2 and x_3 set to zero. In the following sections, we will discuss how these points can't be a BFS due to not being a tip.

Theorem 6

Given a linear program in standard form, it holds that:

- 1. If there is at least one feasible solution and the objective function has an upper bound, there also is at least one **optimal solution**
- 2. If there is an optimal solution, there also is a BFS that is optimal

Proof.

1. Suppose that there is at least a feasible solution y and that the objective function has an upper bound. Through the previous theorem, we know that there is a BFS z such that $c^T z \ge c^T y$. Thus, there is at least one BFS.

Since there are at most $\binom{n}{m}$ BFSs, let \overline{x} be the BFS such that:

$$c^T \overline{x} = \max_{z \text{ BFS}} (c^T z)$$

By way of contradiction, suppose that \overline{x} isn't optimal, implying that there is at least another feasible solution \overline{z} such that $c^T\overline{z} > c^T\overline{x}$.

Again, through the previous theorem we know that there also exists a BFS \overline{y} such that $c^T \overline{y} \geq c^T \overline{z}$. However, this would also imply that $c^T \overline{y} \geq c^T \overline{z} > c^T \overline{x}$, which contradicts the fact that \overline{x} was chosen as the BFS with maximal objective function value. Thus, it must be true that \overline{x} is optimal and thus that there is at least one optimal solution.

2. Suppose that there is an optimal solution \overline{x} . Then, by the previous theorem, we know that there is a BFS \overline{y} such that $c^T \overline{y} \geq c^T \overline{x}$.

However, since \overline{x} is optimal, it's also true that $c^T \overline{x} \geq c^T \overline{y}$. Thus, $c^T \overline{x} = c^T \overline{y}$, concluding that \overline{x} must also be an optimal solution.

2.4 Geometry behind linear programs

2.4.1 Convexity

In this section we will formally define the geometric intuitions behind linear programs. These geometric concepts are fundamental to define methods and algorithms that can solve linear programs efficiently.

Definition 16: Convex set

Let $X \subseteq \mathbb{R}^n$. We say that X is **convex** if $\forall x_1, x_2 \in X$ it holds that all the points in the line segment from x_1 to x_2 are also in X.

Formally, this means that $\forall x_1, x_2 \in X$ and $\forall \alpha \in [0, 1] \subset \mathbb{R}^n$ it holds that the linear combination $\alpha x_1 + (1 - \alpha)x_2$ is also in X.

Proposition 8

The **feasible region** of every linear program is a **convex set**.

Proof.

Suppose that the following inequalities are the constraints of a linear program:

$$a_{1,1}x_1 + \ldots + a_{1,n}x_n \le b_1$$

 \vdots
 $a_{m,1}x_1 + \ldots + a_{m,n}x_n \le b_m$

Let X be the feasible region of the linear program. Let $\overline{x} := (\overline{x_1}, \dots, \overline{x_1})$ and $\overline{y} := (\overline{y_1}, \dots, \overline{y_1})$ be two feasible solutions, meaning that $\overline{x}, \overline{y} \in X$.

Given $\gamma \in [0,1] \subset \mathbb{R}^n$, we notice that:

$$\gamma(a_{1,1}\overline{x_1} + \ldots + a_{1,n}\overline{x_n}) \leq \gamma b_1 \qquad a_{1,1}(\gamma \overline{x_1}) + \ldots + a_{1,n}(\gamma \overline{x_n}) \leq \gamma b_1 \\
\vdots \qquad \qquad \vdots \qquad \vdots \\
\gamma(a_{m,1}\overline{x_1} + \ldots + a_{m,n}\overline{x_n}) \leq \gamma b_m \qquad a_{m,1}(\gamma \overline{x_1}) + \ldots + a_{m,n}(\gamma \overline{x_n}) \leq \gamma b_m$$

Likewise, we can show that:

$$a_{1,1}((1-\gamma)\overline{y_1}) + \ldots + a_{1,n}((1-\gamma)\overline{y_n}) \le (1-\gamma)b_1$$

$$\vdots$$

$$a_{m,1}((1-\gamma)\overline{y_1}) + \ldots + a_{m,n}((1-\gamma)\overline{y_n}) \le (1-\gamma)b_m$$

Thus, by summing the two systems of inequalities, we get that:

$$a_{1,1}(\gamma \overline{x_1} + (1 - \gamma)\overline{y_1}) + \ldots + a_{1,n}(\gamma \overline{x_n} + (1 - \gamma)\overline{y_n}) \le b_1$$

$$\vdots$$

$$a_{m,1}(\gamma \overline{x_1} + (1 - \gamma)\overline{y_1}) + \ldots + a_{m,n}(\gamma \overline{x_n} + (1 - \gamma)\overline{y_n}) \le b_m$$

concluding that $\gamma \overline{x} + (1 - \gamma) \overline{y}$ is also a feasible solution and thus that it's in X

Observation 7: Infinite optimal solutions

Given a linear program, if there are two distinct optimal solutions $\overline{x}, \overline{y}$ then there are infinite optimal solutions.

Proof.

Let β be the maximum value of the objective function f obtained with the optimal solutions $\overline{x}, \overline{y}$, meaning that $f(\overline{x}) = f(\overline{y}) = \beta$. For each $\alpha \in [0, 1] \subset \mathbb{R}^n$, we know that $\alpha \overline{x} + (1 - \alpha)\overline{y}$ is a feasible solution due to the feasible region being a convex set.

Furthermore, by linearity of f, we notice that:

$$f(\alpha \overline{x} + (1 - \alpha)\overline{y}) = \alpha f(\overline{x}) + (1 - \alpha)f(\overline{y}) = \alpha \beta + (1 - \alpha)\beta = \beta$$

concluding that $\forall \alpha \in [0,1] \subset \mathbb{R}^n$ we get that $\alpha \overline{x} + (1-\alpha)\overline{y}$ is also an optimal solution.

Observation 8: Intersection of convex sets

Given two convex sets $X, Y \subseteq \mathbb{R}^n$, the intersection $X \cap Y$ is also convex

Proof.

Given $u, v \in X \cap Y$, we know that each point in the segment between u and v is both in X and Y due to the convexity of X and Y, implying that the segment is also in $X \cap Y$.

Definition 17: Convex hull

Given $x_1, \ldots, x_n \in \mathbb{R}^n$, a **convex hull** of x_1, \ldots, x_n is the intersection of all the convex sets $X_1, X_2, \ldots \subseteq \mathbb{R}^n$ that contain x_1, \ldots, x_n .

By the previous observation, its obvious that the convex hull is also convex. Moreover, intuitively by definition we get that the convex hull is the minimal convex set that contains x_1, \ldots, x_n .

Figure 2.6: Example of convex hull

Even though this definition is intuitive enough, it isn't very constructive. In fact, we can also define the convex hull in terms of *convex combinations*, a generalization of the formal definition of a segment between two points.

Definition 18: Convex combination

Given $x_1, \ldots, x_n \in \mathbb{R}^n$, a **convex combination** of x_1, \ldots, x_n is a linear combination z with non-negative coefficients such that the sum of the coefficients equals one.

Formally, it corresponds to a vector z such that:

- $\bullet \ z = \sum_{i=1}^{n} a_i x_i$
- $\bullet \sum_{i=1}^{n} a_i = 1$
- $a_1, \ldots, a_n \ge 0$

Figure 2.7: The point P is a convex combination of x_1, x_2, x_3 , while Q is not

Proposition 9

Given $x_1, \ldots, x_n \in \mathbb{R}^n$, the convex hull of x_1, \ldots, x_n is equal to the set of convex combinations of x_1, \ldots, x_n

Proof.

Let C be the convex hull of x_1, \ldots, x_n and let \tilde{C} be the set of convex combinations, meaning that:

$$\tilde{C} = \left\{ \sum_{i=1}^{n} a_i x_i \middle| \sum_{i=1}^{n} a_i = 1 \text{ and } a_1, \dots, a_n \ge 0 \right\}$$

Given $u, v \in \tilde{C}$, we know that:

$$u = \sum_{i=1}^{n} a_i x_i \qquad v = \sum_{i=0}^{n} b_i x_i$$

where
$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_i = 1$$
 and $a_1, \dots, a_n, b_1, \dots, b_n \ge 0$.

Given $\gamma \in [0,1] \subseteq \mathbb{R}^n$, let $z := \gamma u + (1-\gamma)v$. We notice that:

$$z = \gamma u + (1 - \gamma)v$$

$$= \gamma \sum_{i=1}^{n} a_i x_i + (1 - \gamma) \sum_{i=1}^{n} b_i x_i$$

$$= \sum_{i=1}^{n} (\gamma a_i + (1 - \gamma)b_i)x_i$$

$$= \sum_{i=1}^{n} c_i x_i$$

where $c_i := \gamma a_i + (1 - \gamma)b_i$. Since for each index i we have that $\gamma, (1 - \gamma), a_i, b_i \ge 0$, it's also true that $c_i \ge 0$. Finally, we notice that:

$$\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} (\gamma a_i + (1 - \gamma)b_i)$$

$$= \gamma \sum_{i=1}^{n} a_i + (1 - \gamma) \sum_{i=1}^{n} b_i$$

$$= \gamma \cdot 1 + (1 - \gamma) \cdot 1$$

$$= 1$$

Thus, we conclude that \tilde{C} is convex. In particular, we notice that for each index i it holds that:

$$x_i = 0 \cdot x_1 + \dots 0 \cdot x_{i-1} + 1 \cdot x_i + 0 \cdot x_{i+1} + \dots 0 \cdot x_n$$

implying that $x_1, \ldots, x_n \in \tilde{C}$, meaning that \tilde{C} is a convex that contains x_1, \ldots, x_n . Then, by definition of convex hull, it must hold that $C \subseteq \tilde{C}$.

Vice versa, we know show that $\tilde{C} \subseteq C$. Given $z \in \tilde{C}$, we know that $z = \sum_{i=1}^{n} d_i x_i$ where

 $\sum_{i=1}^{n} d_i = 1$ and $d_1, \ldots, d_n \geq 0$. By induction, we show that for each $m \in \mathbb{N}$ such that $1 \leq m \leq n$, if the number of coefficients greater than 0 that compose z equals m then it holds that $z \in C$.

For the base case, it's easy to see that if m=1 then there is only one index i such that $d_i > 0$, while for every other index $j \neq i$ it holds that $d_j = 0$. Then, since the sum of all the coefficients must be equal to one, this can hold only if $d_i = 1$, meaning that $z = x_i$ and thus that $z \in C$ by definition of convex hull.

Assuming that the statement holds for each point in \tilde{C} with m-1 coefficients greater than zero, suppose that z has m coefficients i_1, \ldots, i_m such that $d_{i_1}, \ldots, d_{i_m} > 0$. Given $j \in \{i_1, \ldots, i_m\}$, we notice that:

$$\sum_{i=1}^{n} d_i = 1 \implies \sum_{\substack{i=1, \ i \neq j}}^{n} d_i = 1 - d_j \implies \sum_{\substack{i=1, \ i \neq j}}^{n} \frac{d_i}{1 - d_j} = 1$$

For each index i, we define k_i as:

$$k_i = \begin{cases} \frac{d_i}{1 - d_j} & \text{if } i \neq j \\ 0 & \text{otherwise} \end{cases}$$

Let $w = \sum_{i=0}^{n} k_i x_i$. We notice that, by definition of each k_i , it holds that

$$\sum_{i=0}^{n} k_i = k_j + \sum_{\substack{i=1,\\i \neq j}}^{n} \frac{d_i}{1 - d_j} = 1$$

Moreover, since $d_{i_1}, \ldots, d_{i_m} > 0$, by definition of each k_i we know that $k_{i_1}, \ldots, k_{j-1}, k_{j+1}, \ldots, k_{i_m} > 0$, meaning that w has m-1 coefficients greater than zero. Thus, by inductive hypothesis we know that $w \in C$.

Finally, we notice that:

$$z = \sum_{i=1}^{n} d_i x_i = d_j x_j + \sum_{\substack{i=1, \ i \neq j}}^{n} d_i x_i = d_j x_j + (1 - d_j) w$$

meaning that z is part of the segment between x_j and w. Thus, since C is convex and since $x_j, w \in C$, it must also be true that $z \in C$. Then, since we showed that this holds for each vector with any possible amount of coefficients with value greater than zero, this holds for all points in \tilde{C} , concluding that $\tilde{C} \subseteq C$.

After giving a proper definition of convex hull, we can give a clearer picture of what's going on: given $x_1, \ldots, x_n \in \mathbb{R}^n$, assuming that the vectors are *linearly independent*, we get that:

- If n=2 then the set of convex combinations corresponds to a segment between x_1 and x_2
- If n=3 then the set of convex combinations corresponds to a convex bounded polygon with vertices x_1, x_2 and x_3
- If n = 4 then the set of convex combinations corresponds to a convex bounded polyhedron with vertices x_1, x_2, x_3 and x_4

More generally, for n vectors we get a n dimensional **convex bounded** n-**polytope**, that being a generalization to n dimensions of the polygon and polyhedron. In fact, each of the listed examples correspond respectively to a 1, 2, 3 and 4.

<u>However</u>, in the following sections we will use **different definitions**: we will define any convex unbounded polytope as a *convex polyhedron*, while we will reserve the term *polytope* <u>only</u> for convex bounded polytopes (i.e: the previous figure would just be called a 3 dimensional polytope, even thought in reality it should be called a convex bounded polyhedron).

Convex 2-polyhedron

3-polytope

2.4.2 Hyperplanes, Half-Spaces and Polytopes

Definition 19: Hyperplane

An **hyperplane** of an n dimensional space is a subspace of dimension n-1.

In other words, given $a_1, \ldots, a_n \neq 0 \in \mathbb{R}$, an hyperplane is the set of all solutions to the equation $a_1x_1 + \ldots + a_1x_n = 0$

For example, in a plane (a 2 dimensional space) an hyperplane would correspond to a line passing through the origin of that plane (a 1 dimensional subspace). Likewise, in a 3D-space an hyperplane would correspond to a plane that intersects the origin. Formally, these hyperplanes would be described by the equations $a_1x_1 + a_2x_2 = 0$ (a line) and $b_1x_1 + b_2x_2 + b_3x_3 = 0$ (a plane).

Definition 20: Affine subspace

Let $W \subseteq V$ be a subspace of a space V. We say that $U \subseteq V$ is an **affine subspace** if $\exists v \in V$ such that:

$$U = \{v + w \mid w \in W\}$$

In other words, an affine subspace is a translation of a subspace. Moreover, the subspace W is called the **direction** of U.

Figure 2.8: P_2 is an affine subspace with P_1 as its direction

In particular, we notice that an affine subspace <u>is not</u> a subspace since it doesn't satisfy all properties (i.e. an affine subspace hasn't got a 0 vector since it got "translated").

Definition 21: Affine hyperplane

An **affine hyperplane** is an affine subspace of dimension n-1.

In other words, given $a_1, \ldots, a_n, b \neq 0$, an affine hyperplane is the set of all solutions to the equation $a_1x_1 + \ldots + a_nx_n = b$

Affine hyperplanes ofter get directly called *hyperplanes*. This is due to the fact that every affine hyperplane corresponds to what intend with such concept. For example, in the case of \mathbb{R}^n , the line $r: x_2 = x_1 + 6$ can also be rewritten as $r: x_2 - x_1 = 6$ showing that it is in fact an affine hyperplane with direction given by $r': x_2 - x_1 = 0$.

Definition 22: Half space

Given an euclidean space (such as \mathbb{R}^n), an **half space** is either of the two parts into which an affine hyperplane divides an affine space.

In particular, given the (affine) hyperplane $a_1x_1 + \ldots + a_nx_n = b$, the space gets split into the two following half spaces:

$$H_1 = \{ x \in \mathbb{R}^n \mid a_1 x_1 + \ldots + a_n x_n \le b \}$$

$$H_2 = \{ x \in \mathbb{R}^n \mid a_1 x_1 + \ldots + a_n x_n \ge b \}$$

Figure 2.9: The (affine) plane $x_1 + 2x_2 = 30$ splits the plane into two half spaces

Observation 9

An hyperplane and its half spaces are all **convex**

Proof.

The proof is the same as the proof of Proposition 8, except there is only one equation involved.

Definition 23: Convex polyhedron and Polytopes

A **convex polyhedron** is the intersection of finitely many half spaces. If the polyhedron is bounded it is called a **polytope**. The dimension of a convex polyhedron is the minimal dimension of the affine spaces that define it.

Given a linear program in standard form, it's easy to see that each equation of the system Ax = b defines an hyperplane that divides \mathbb{R}^n into half spaces. Since each feasible solution must satisfy each of the constraints, it must be in one of the two half spaces defined by each row. In particular, this tells us that the **feasible region** is in fact a **convex polyhedron** (or a *polytope* if it's bounded). This relation formally defines the very initial intuitions given in the first section of this chapter.

Figure 2.10: The feasible region (red) of a linear program as a polytope generated by the constraint matrix's hyperplanes (light blue)

2.4.3 Vertices and Basic Feasible Solutions

We have already mentioned how each basic feasible solution can be viewed as a *vertex* of the feasible region. After defining the geometrical concept of *convex polyhedron* and showing how the feasible region is in fact a convex polyhedra, we are now ready to formally justify this connection between vertices and basic feasible solutions.

Definition 24: Face

A k-dimensional face of a convex polyhedron P is a subspace $F \subset P$ of dimension k such that there is an (affine) hyperplane $H = \{x \in \mathbb{R}^n \mid c^T x = \beta\}$ for which:

- $F = P \cap H$
- For each $y \in P F$ it holds that $c^T y < \beta$

In other words, there is an (affine) hyperplane that touches the polyhedron exactly on F, where touch means that it doesn't divide it.

Given this definition, it's easy to see that a *vertex* corresponds to a 0-dimensional face, while an *edge* is a 1-dimensional face and what is commonly known as *face* is a 2-dimensional face. In particular, if F is a 0-dimensional face then there is only one point v such that $F = \{v\}$. Moreover, since $F = P \cap H$ we also get that v is the only point in P for which $c^T v = \beta$, while for all the other points $y \in P$ it holds that $c^T y < c^T v$.

Theorem 7: Vertices and BFSs

Let P be the feasible region of a linear program in standard form. Given $v \in P$, it holds that:

v is a vertex of $P \iff v$ is a BFS

Proof.

First implication.

Suppose that v is a vertex of P, meaning that there is an hyperplane $H = \{x \in \mathbb{R}^n \mid c^T x = \beta\}$ such that $\{v\} = P \cap H$ and $\forall y \in P - \{v\}$ it holds that $c^T y < \beta$.

Given the constraint matrix Ax = b of the original linear problem, we consider the following linear problem:

$$\max c^T x$$
$$Ax = b$$
$$x \ge 0$$

In particular, we notice that both problems share the same constraint matrix, they also share the same feasible region. However, since $\forall y \in P - \{v\}$ it holds that $c^T y < c^T v = \beta$, we get that v is an optimal solution to this new linear problem (not of the original problem).

As shown in Theorem 6, since v is an optimal solution there must also exist an optimal BFS v'. Thus, since $c^Tv = \beta = c^Tv'$ in order to both be optimal solutions and since v is the only point in P such that $c^Tv = \beta$, we get that v = v', meaning that v is an optimal BFS of this new problem.

Let \mathcal{B} be a basis that certifies that v is a BFS for the second problem. Since both problems share the same constraint matrix Ax = b, the basis \mathcal{B} certifies that v is also a BFS for the original problem (even though it is not optimal).

Second implication.

Suppose that v is a BFS with basis $\mathcal{B} \subseteq \{1, \ldots, n\}$. Let c be the vector defined as:

$$c_i = \begin{cases} 0 & \text{if } i \in \mathcal{B} \\ -1 & \text{if } i \notin \mathcal{B} \end{cases}$$

By definition of basis we have that $v_i > 0$ if $i \in B$ and $v_i = 0$ if $i \notin \mathcal{B}$, we get that $c^T v = 0$ since each component $c_i v_i$ gets nullified by the coefficient c_i or by the value v_i . Instead, for all other vectors $y \in P$, we get that $c^T y \leq 0$ since each component $c_j y_j$ such that $j \notin B$ gets negated.

Let $w \in P$ such that $c^T w = 0$. In order for this to be true, due to the way c is defined it must hold that $w_i = 0$ for each index $i \notin \mathcal{B}$ so we get that \mathcal{B} is also a basis for w, meaning that w is also a BFS. However, as shown in Observation 6, there can only be one BFS for each feasible basis, meaning that v = w must be true.

Thus, we conclude that v is the only point in P such that $c^Tv=0$, while for all $y \in P - \{v\}$ it holds that $c^Ty < 0$, implying that the hyperplane $H = \{x \in \mathbb{R}^n \mid c^Tx=0\}$ concludes that v is a vertex of P.

Corollary 5

The feasible region of a linear program is the **convex hull** of its vertices

2.5 Solved exercises

Problem 1

Consider the following linear program:

$$\max x_1 + 2x_2 - 3x_3 + 7x_5$$

$$x_1 + 2x_2 + 2x_3 + x_4 = 3$$

$$x_1 + 2x_2 + 7x_3 + x_5 = 3$$

$$2x_1 + 4x_2 + 7x_3 + x_6 = 6$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Determine and justify which of the following vectors is a basic feasible solution (BFS):

1.
$$a = (1, 1, 0, 0, 0, 0)$$

2.
$$b = (1, 0, 0, 2, 2, 4)$$

3.
$$c = (0, 0, 0, 3, 3, 6)$$

Solution:

First, we notice that all the proposed solutions are feasible. By definition, we know that a feasible solution \overline{x} is basic if there exists a basis \mathcal{B} such that $A_{\mathcal{B}}$ is a $m \times n$ non-singular matrix and $\forall i \notin \mathcal{B}$ it holds that $\overline{x_i} = 0$.

- 1. By way of contradiction, suppose that there is a basis \mathcal{B}_a that certifies a. Since $a_1, a_2 > 0$, we have that $\{1, 2\} \subseteq \mathcal{B}_a$. However, the columns A^1, A^2 are linearly dependent, meaning that $A_{\mathcal{B}_a}$ is singular, contradicting the fact that \mathcal{B}_a is a feasible basis. Thus, the feasible solution a cannot be basic.
- 2. By way of contradiction, suppose that there is a basis \mathcal{B}_b that certifies b. Since $b_1, b_4, b_5, b_6 > 0$, we have that $\{1, 4, 5, 6\} \subseteq \mathcal{B}_b$, implying that $|B_b| \ge 4$. In order for \mathcal{B}_b to be a feasible basis, $A_{\mathcal{B}_b}$ must be a $m \times n$ matrix, $|\mathcal{B}_b| = m$ must hold. Thus, since in this case we have that m = 3 and $|B_b| > 3$, we get a contradiction. Thus, the feasible solution b cannot be basic.
- 3. Let $\mathcal{B}_c = \{4, 5, 6\}$. We notice that $|\mathcal{B}_c| = 3$ and that $A_{\mathcal{B}_c} = I_m$, implying that it is a non-singular matrix. Thus, we get that \mathcal{B}_c certifies that c is a BFS.

Problem 2

Given a general linear program in equational form

$$\max_{A} c^{T} x$$
$$Ax = b$$
$$x > 0$$

let \overline{x} and \overline{y} be two optimal solutions to the problem. Prove or disprove the following statements:

- 1. Any convex combination of \overline{x} and \overline{y} is also an optimal solution to the linear program
- 2. There exists an optimal solution \overline{z} on the line through \overline{x} and \overline{y} which is also basic

Solution:

First, we recall that any convex combination of the points x_1, \ldots, x_n is a point \overline{z} such that

$$\overline{z} = \sum_{i=1}^{n} \alpha_i x_i$$

where $\sum_{i=1}^{n} \alpha_i = 1$. Thus, for two points \overline{x} and \overline{y} we have that $\overline{z} = \alpha \overline{x} + (1 - \alpha) \overline{y}$ for some value $\alpha \in [0, 1] \subseteq \mathbb{R}$. Let the constraints Ax = b be defined as

$$a_{1,1}x_1 + \ldots + a_{1,n}x_n = b_1$$

 \vdots
 $a_{m,1}x_1 + \ldots + a_{m,n}x_n = b_m$

Since \overline{x} and \overline{y} are feasible, we notice that:

$$a_{1,1}\overline{z}_1 + \ldots + a_{1,n}\overline{z}_n = a_{1,1}(\alpha \overline{x}_1 + (1-\alpha)\overline{y}_1) + \ldots + a_{1,n}(\alpha \overline{x}_n + (1-\alpha)\overline{y}_n)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m,1}\overline{z}_1 + \ldots + a_{m,n}\overline{z}_n = a_{m,1}(\alpha \overline{x}_1 + (1-\alpha)\overline{y}_1) + \ldots + a_{m,n}(\alpha \overline{x}_n + (1-\alpha)\overline{y}_n)$$

$$= \alpha(a_{1,1}\overline{x}_1 + \ldots + a_{1,n}\overline{x}_n) + (1-\alpha)(a_{1,1}\overline{y}_1 + \ldots + a_{1,n}\overline{y}_n) = \alpha b_1 + (1-\alpha)b_1 = b_1$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \vdots \qquad \vdots$$

$$= \alpha(a_{m,1}\overline{x}_1 + \ldots + a_{m,n}\overline{x}_n) + (1-\alpha)(a_{m,1}\overline{y}_1 + \ldots + a_{m,n}\overline{y}_n) = \alpha b_m + (1-\alpha)b_m = b_m$$

implying that \overline{z} indeed is a feasible solution. Moreover, by linearity of the objective function we have that:

$$c^T \overline{z} = c^T (\alpha \overline{x} + (1 - \alpha) \overline{y}) = \alpha c^T \overline{x} + (1 - \alpha) c^T \overline{y} = \alpha k + (1 - \alpha) k = k$$

where k is the optimal value of the linear program, concluding that any convex combination \overline{z} is an optimal solution.

To disprove the second point, we ignore the cases where \overline{x} (or \overline{y}) is a BFS, since it would obviously imply that the statement is true. Thus, suppose that \overline{x} and \overline{y} are two optimal solutions but none of them is a BFS. By way of contradiction, suppose that there exists an optimal BFS \overline{w} such that $\overline{w} = \alpha \overline{x} + (1 - \alpha)\overline{y}$, where $\alpha \in [0, 1] \subseteq \mathbb{R}$. We notice that $0 < \alpha < 1$, since otherwise we would have that $\overline{w} = \overline{x}$ or $\overline{z} = \overline{y}$, implying that \overline{x} or \overline{y} is an optimal BFS, which we assumed to not be true.

Since \overline{w} is a BFS if and only if it is a vertex of the polyhedron P of the feasible solutions, there must be an hyperplane $H = \{x \in \mathbb{R}^n \mid d^Tx = d^T\overline{w}\}$ such that $\{\overline{w}\} = P \cap H$ and $\forall y \in P - \{\overline{w}\}$ it holds that $d^Ty < d^T\overline{w}$, where $d \in \mathbb{R}^n$. In particular, we have that:

$$d^T \overline{w} = d^T (\alpha \overline{x} + (1 - \alpha) \overline{y}) = \alpha d^T (\overline{x} - \overline{y}) + d^T \overline{y}$$

However, we notice that this can be true only if $d^T \overline{x} < d^T \overline{w} < d^T \overline{y}$ or if $d^T \overline{y} < d^T \overline{w} < d^T \overline{x}$, implying that $\overline{y} \notin P$ or that $\overline{x} \notin P$ must hold and thus that \overline{y} or \overline{x} aren't feasible solution, which is absurd since they are optimal solutions. Thus, the only possibility is that \overline{w} cannot be a BFS, concluding that the statement is true only if \overline{x} or \overline{y} are a BFS.

To give a geometrical interpretation of the contradiction, we can imagine that the hyperplane splits in two parts the segment of optimal solutions given by the convex combinations of \overline{x} and \overline{y} , cutting off one of the two parts from the polyhedron.

The Simplex method

3.1 Intuition and example

After analyzing the algebraic and a geometrical properties of the concepts involving a linear program, we know that:

- The feasible region is a convex polyhedron
- The vertices of the feasible region correspond to the BFSs of the linear program
- There are at most $\binom{n}{m}$ BFSs in a linear program
- If there is an optimal solution then there is an optimal BFS

Given these results, a simple (*pun intended*) but effective idea is given by the **simplex method**, extensively researched by George Dantzig: since the number of BFS is finite, we can move from one vertex of the polyhedron to the other increasing the objective function value until we reach an optimal BFS (if there is an optimal solution).

Figure 3.1: Example of execution of the simplex algorithm

The term *simplex method* comes from the idea that the algorithm, when viewed in the geometry of the columns, is best described as a movement from one simplex to a neighboring one. In fact, a *simplex* is the *n*-dimensional generalization of the triangle and the tetrahedron and, just like in 2 and 3 dimensional spaces, each polyhedron can be described as a set of simplices.

We will now show an example of the application of the simplex method in order to give a general understanding. Consider the following linear program:

$$\max x_1 + x_2$$

$$-x_1 + x_2 \le 1$$

$$x_1 \le 3$$

$$x_2 \le 2$$

$$x_1, x_2 \ge 0$$

First, we convert this linear program in standard form by introducing the slack variables x_1, x_2 and x_3 :

$$\max x_1 + x_2$$

$$-x_1 + x_2 + x_3 = 1$$

$$x_1 + x_4 = 3$$

$$x_2 + x_5 = 2$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

We notice that the constraint matrix A associated with this program corresponds to:

$$A = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

As discussed, the simplex method moves from a BFS to another, increasing the value of the objective function. Since we added 3 slack variables, it's easy to see $\mathcal{B}_1 = \{3, 4, 5\}$ is a feasible basis since the columns A^3 , A^4 and A^5 are linearly independent. Now, we procede by writing the following tableau where the constraints of A are rewritten by solving for the basic variables in terms of the non-basic ones:

$$\begin{array}{rclrcr}
 x_3 & = & 1 & +x_1 & -x_2 \\
 x_4 & = & 3 & -x_1 \\
 \hline
 x_5 & = & 2 & & -x_2 \\
 \hline
 z & = & & +x_1 & +x_2
 \end{array}$$

where z is the current value of the objective function. From this tableau, it's easy to see that $s_1^T = \begin{bmatrix} 0 & 0 & 1 & 3 & 2 \end{bmatrix}$ is a valid BFS since each basic variable is independent by the others. In particular, this BFS has an objective function value equal to z = 0.

Now, we can increase the value of the objective function by picking a variable in the equation $z = x_1 + x_2$ with **positive coefficient**. Otherwise, if we picked a variable with negative coefficient, the value would decrease. The chosen variable is called **pivot**.

For our example, we will pick x_2 as the first pivot. We notice that the constraint $x_3 = 1 + x_1 - x_2$ tells us that we can increase x_2 by at most 1 before x_3 becomes negative (since x_1 will stay fixed to 0), violating the constraint $x_3 \ge 0$. Likewise, the constraint $x_5 = 2 - x_2$ tells us that we can increase x_2 by at most 2, while the constraint $x_4 = 3 - x_1$ tells us that we can increase x_2 as much as we please.

To ensure that every constraint is still satisfied, we must pick the most restrictive possible increase, so we increase x_2 by 1 giving us $x_2 = 1$, while x_1 stays fixed to $x_1 = 0$. Thus, we also get that:

- $x_3 = 1 + x_1 x_2 = 1 + 0 1 = 0$
- $x_4 = 3 x_1 = 3 0 = 3$
- $x_5 = 2 x_2 = 2 1 = 1$

These results give us a new feasible solution $s_2^T = \begin{bmatrix} 0 & 1 & 0 & 3 & 1 \end{bmatrix}$. Since now $x_2 > 0$ and $x_3 = 0$, we can effectively say that this method *pivoted* 2 into the basis while removing 3. In fact, the basis $\mathcal{B}_2 = \{2, 4, 5\}$ certifies that s_2 is in fact a BFS.

Now, we procede by writing a new tableau with the same logic as the previous one.

$$x_{2} = 1 + x_{1} - x_{3}$$

$$x_{4} = 3 - x_{1}$$

$$x_{5} = 1 - x_{1} + x_{3}$$

$$z = 1 + 2x_{1} - x_{3}$$

Note: we replaced x_2 with $1 + x_1 - x_3$ in the equations of x_4 and x_5 since the tableau must be written in terms of the non-basic variables.

We notice that the new BFS s_2 gives us the objective value z=1, meaning that it increased. Proceeding with the same method as before, we pick the next variable with non-negative coefficient. In this case, x_1 is the only possible variable and it can be increased by 1. Thus, we get the new BFS $s_3^T = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \end{bmatrix}$ with basis $\mathcal{B}_3 = \{1, 2, 4\}$, meaning that 5 got pivoted with 1.

Then, we write the new tableau:

$$x_1 = 1 + x_3 - x_5$$
 $x_2 = 2 - x_5$
 $x_4 = 2 - x_3 + x_5$
 $z = 3 + x_3 - 2x_5$

telling us that the value of the objective function is now equal to z = 3. As before, we now increase x_3 by 2, giving us the BFS $s_4^T = \begin{bmatrix} 3 & 2 & 2 & 0 & 0 \end{bmatrix}$ with basis $\mathcal{B}_4 = \{1, 2, 3\}$ and the following new tableau:

$$\begin{array}{rclrcr}
x_1 & = & 3 & -x_4 \\
x_2 & = & 2 & & -x_5 \\
x_3 & = & 2 & -x_4 & +x_5 \\
\hline
z & = & 5 & -x_4 & -x_5
\end{array}$$

with objective function value equal to z = 5. We now notice that all the coefficients in the z equation are negative, implying that we can't pick a new variable to be increased. Since this system of equalities is equivalent to the original one, each feasible solution of original problem must also satisfy this tableau, implying that the value of the objective function will always be at most 5.

Thus, we conclude that s_4 is in fact an **optimal BFS** with objective function value equal to 5. Since s_4 is an optimal solution of the standard form linear program, we can ignore the values of the slack variables x_3, x_4, x_5 inside of s_4 , telling us that $\begin{bmatrix} 3 & 2 \end{bmatrix}$ is in fact the optimal solution of the original linear program.

To give a geometrical interpretation of what we have done, consider the restriction to x_1, x_2 of the solutions s_1, s_2, s_3, s_4 . By plotting the feasible region of the linear program, we notice that these restrictions correspond to the vertices of the polytope described. In particular, we notice how we moved from one vertex to the other with each **pivot** step.

Figure 3.2: The simplex method in action

We also notice that we could've taken a "shorter route" by picking x_1 as the first pivot, concluding the algorithm in just two pivot steps.

3.2 Unboundedness

Consider the following linear program:

$$\max x_1 \\ x_1 - x_2 \le 2 \\ -x_1 + x_2 \le 1 \\ x_1, x_2 \ge 0$$

By plotting the constraints of this linear program, it's easy to see that the feasible region isn't a polytope, meaning that it's an unbounded convex polyhedron.

Since the problem is unbounded, we can always find a feasible solution with a greater objective function value, meaning that there is **no optimal solution**. Thus, in this case the simplex method won't output an optimal solution. However, it will return an affine space of infinite feasible solutions with no maximum value.

First, we procede by adjusting the problem to its standard form:

$$\max x_1 x_1 - x_2 + x_3 = 2 -x_1 + x_2 + x_4 = 1 x_1, x_2 \ge 0$$

It's easy to see that $\mathcal{B}_1 = \{3,4\}$ is a feasible basis, giving the BFS $s_1^T = \begin{bmatrix} 0 & 0 & 2 & 1 \end{bmatrix}$ and the following simplex tableau:

Now, we pivot x_3 with x_1 by setting $x_1 = 2$, giving us the basis $\mathcal{B}_2 = \{1, 4\}$ which certifies the BFS $s_2^T = \begin{bmatrix} 2 & 0 & 0 & 3 \end{bmatrix}$ and defines the following simplex tableau:

The next step of the simplex method requires that we pick x_2 as the next pivot. However, we notice that we can increase x_2 as much as we want since no constraint gets violated. This means that $\forall t \in \mathbb{R}^+$ by setting $x_2 = t$ we obtain a valid feasible solution with a larger and larger objective function value.

This result gives us a way to generate infinite feasible solutions: $\forall t \in \mathbb{R}^+$ it holds that $\begin{bmatrix} 1+t & t & 0 & 3 \end{bmatrix}^T$ is a feasible solution to the linear problem. In particular, this general solution defines the following affine subspace of feasible solutions:

$$X = \left\{ \begin{bmatrix} 1\\0\\0\\3 \end{bmatrix} + t \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \mid t \in \mathbb{R}^+ \right\}$$

Note: this affine subspace corresponds to the black bold line in the previous image

3.3 Infeasibility of the trivial basis

As previously discussed, in order to start the simplex method we need an **initial feasible basis** through which we can define the first simplex tableau. In the examples shown until now, in the constraint inequalities defined by $Ax \leq b$ we had that $b \geq 0$, giving us a **trivial initial feasible basis** by simply choosing the slack variables as the basic variables: if the linear program is in **non-standard form**, we add the slack variables x_{n+1}, \ldots, x_{n+m} automatically implying that A^{n+1}, \ldots, A^{n+m} are linearly independent and that $\mathcal{B} = \{n+1, \ldots, n+m\}$ is a basis. Thus, if $b \geq 0$, the equation $A_{\mathcal{B}}x = b$ gives the trivial BFS $s = \begin{bmatrix} 0 & \ldots & 0 & b_1 & \ldots & b_m \end{bmatrix}$.

Observation 10

Given a linear program in <u>non-standard form</u>, meaning that $Ax \leq b$, if $b \geq 0$ then there exists a **trivial BFS**

However, if the condition $b \ge 0$ is not true, the basis \mathcal{B} previously defined is not feasible. Thus, we need to find another method to get the initial BFS in non-trivial cases. The following propositions will give us a way to find such BFS.

Proposition 10: Feasibility equivalent to optimality

Checking wether a convex polyhedron $P = \{x \in \mathbb{R}^n \mid Ax = b\}$ is non-empty is **computationally equivalent** to optimizing a linear program defined as:

$$\max c^T x$$
$$x \in P$$

for some $c \in \mathbb{R}^n$

Proof. First, we show that deciding that $P \neq \emptyset$ is reducible to deciding if the following linear program has an optimal solution:

$$\max 0^T x$$
$$x \in P$$

By the own definition of the problem, if $P \neq \emptyset$ then there is a feasible solution. We notice that $0^T x \leq 0$ for all $x \in \mathbb{R}^n$ and in particular $0^T \overline{x} = 0$ for each feasible solution \overline{x} , implying that the objective function has an upper bound. Thus, by Theorem 6, we conclude that if $P \neq \emptyset$ then there is an optimal solution to the problem.

Moreover, again by definition of the problem, any feasible solution of the linear program must satisfy the condition $x \in P$. Thus, if there is an optimal solution (which obviously is also a feasible solution) then $P \neq \emptyset$, concluding that:

$$P \neq \varnothing \iff \frac{\max 0^T x}{x \in P}$$
 has an opt. sol

Now, we show that deciding if the following linear program has an optimal solution is reducible to deciding if $P \neq \emptyset$. Consider the following linear program:

$$\max c^T x$$
$$x \in P$$

where $c \in \mathbb{R}^n$.

Suppose that we have a subroutine that checks if a polyhedron is non-empty. For all $\alpha \in \mathbb{R}$, let $P_{\alpha} = \{x \in P \mid c^T x \geq \alpha\}$. We notice that if $P_{\alpha} \neq \emptyset$ then the optimal solution has an objective function value of at least α . Otherwise, if $P_{\alpha} = \emptyset$ then the optimal solution has an objective function value less than α .

Through the subroutine, we can use binary search to find the optimal solution: if $P_{\alpha} \neq \emptyset$ we double the value of α and call again the subroutine, otherwise we halve the value of α . Once this increment/halving can't be repeated anymore, we will have determined the value α corresponding to the value given by the optimal solution of P. Thus, for the final value α it holds that $P_{\alpha} = P$, implying that the last call of the subroutine determines if $P \neq \emptyset$. (Note: the last part of the proof is not very rigorous since we would have to show that the number of subroutine calls is bounded in terms of m, n and b).

Essentially, this proposition tells us that finding a feasible solution is as hard as finding an optimal solution. This results gives us a way to find a **non-trivial feasible basis** through the simplex method itself: instead of finding a valid BFS by a direct method, we can solve another *longer* linear program to get such BFS, keeping the computational complexity of the algorithm unchanged.

In particular, since a BFS is a feasible solution with the maximum amount of zero variables, we can define a **bounded auxiliary linear program** that always has a trivial feasible basis and that **minimizes the number of non-zero variables**. By definition, any optimal solution to this auxiliary program will give us a valid BFS to the original program. This auxiliary program can be defined through adding *another set of slack variables* and slightly altering the constraints.

Theorem 8: Constructing an initial BFS

Consider the following linear program in standard form:

$$\max_{a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1} a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1$$

$$\vdots$$

$$a_{m,1}x_1 + \dots + a_{m,n}x_n = b_m$$

and the following auxiliary linear program:

$$\max_{a_{1,1}x_1 + \dots + a_{1,n}x_n \bullet x_{n+1} = b_1} a_{1,1}x_1 + \dots + a_{1,n}x_n \bullet x_{n+1} = b_1$$

$$\vdots$$

$$a_{m,1}x_1 + \dots + a_{m,n}x_n \bullet x_{n+m} = b_m$$

where each \bullet is a + if $b_i \ge 0$ or a - if $b_i < 0$.

The auxiliary program always has a trivial initial feasible basis and an optimal BFS. Moreover, the restriction to x_1, \ldots, x_n of such BFS corresponds to a BFS of the original program.

Proof.

Let P and P' respectively be the convex polyhedrons defined by the original problem and the auxiliary problem. By definition of the latter, the trivial basis $\mathcal{B} = \{n+1, \ldots, n+m\}$ certifies the BFS $\overline{x} = [0, \ldots, 0, |b_1|, \ldots, |b_m|]$.

Since $\forall x \in \mathbb{R}^{n+m}$ it holds that $-x_{n+1} - \ldots - x_{n+m} \leq 0$, the objective function has an upper bound. Thus, since the objective function has an upper bound and since $\overline{x} \in P'$ implies that $P' \neq \emptyset$, by Theorem 6 we know that there is always an optimal BFS to the auxiliary program.

Let $y = \begin{bmatrix} y_1 & \dots & y_{n+m} \end{bmatrix}$ be an optimal BFS of the auxiliary linear program. Since for every optimal solution x of the linear program it must hold that $-x_{n+1} - \dots - x_{n+m} = 0$, we get that $y = \begin{bmatrix} y_1 & \dots & y_n & 0 & \dots & 0 \end{bmatrix}$.

Let \mathcal{B}' be a feasible basis that certifies that y is a BFS. Since $y_{n+1} = \ldots = y_{n+m} = 0$, in order for y to be a BFS it must hold that $\mathcal{B}' \subseteq \{1, \ldots, n\}$. Thus, the basis \mathcal{B}' also certifies a BFS for the original linear program and, in particular, such BFS is given by $\begin{bmatrix} y_1 & \ldots & y_n \end{bmatrix}$.

To better understand the previous theorem, we'll show an example. Consider the following linear program:

$$\max x_1 + 2x_2$$

$$x_1 - 3x_2 \le -2$$

$$x_1 - x_2 \le 1$$

$$x_1, x_2 > 0$$

and its corresponding standard form:

$$\max x_1 + 2x_2$$

$$x_1 - 3x_2 + x_3 = -2$$

$$x_1 - x_2 + x_4 = 1$$

$$x_1, x_2, x_3, x_4 \ge 0$$

We notice that the basis $\mathcal{B} = \{3,4\}$ doesn't give us a trivial BFS. Thus, we define the following auxiliary linear program:

$$\max -x_5 - x_6$$

$$x_1 - 3x_2 + x_3 - x_5 = -2$$

$$x_1 - x_2 + x_4 + x_6 = 1$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

It's easy to see that by definition of the program itself it holds that the objective function is bounded by 0 (obtained when $x_5, x_6 = 0$). Thus, applying the simplex method on this program always returns an optimal BFS. Moreover, this program has the trivial feasible basis $\mathcal{B}'_1 = \{5,6\}$, giving the BFS $s'_1 = \begin{bmatrix} 0 & 0 & 0 & 0 & 2 & 1 \end{bmatrix}$ and the following tableau:

Note: remember that the objective value z is expressed in terms of the non-basic variables

Now, we pivot x_2 with x_5 by setting $x_2 = \frac{2}{3}$, obtaining the feasible basis $\mathcal{B}'_2 = \{2, 6\}$ with the BFS $s_2'^T = \begin{bmatrix} 0 & \frac{2}{3} & 0 & 0 & \frac{5}{3} & 0 \end{bmatrix}$ and the following tableau:

Finally, we pivot x_1 with x_6 by setting $x_1 = \frac{15}{6}$, obtaining the feasible basis $\mathcal{B}_3' = \{1, 2\}$ with the BFS $s_3'^T = \begin{bmatrix} \frac{5}{2} & \frac{3}{2} & 0 & 0 & 0 \end{bmatrix}$ and the following tableau:

Since there are no more variables with positive coefficient, the BFS s_3' must be optimal. In fact, as we said, the optimal value for this problem is 0, which is given by s_3' . Moreover, by own definition of the auxiliary program, restricting s_3' to x_1, x_2, x_3, x_4 gives us a valid initial BFS $s_1 = \begin{bmatrix} \frac{5}{2} & \frac{3}{2} & 0 & 0 \end{bmatrix}$ for the original linear program. After finding such BFS, we can procede by applying the simplex method to the original program in order to find its optimal solution.

3.4 Degeneracy

Consider the following linear program:

$$\max x_2$$

$$-x_1 + x_2 \le 0$$

$$x_1 \le 2$$

$$x_1, x_2 \ge 0$$

By plotting the constraints of this linear program, it's easy to see that the optimal solution is given by $s = \begin{bmatrix} 2 & 2 \end{bmatrix}$.

As usual, we start by writing the program in standard form:

$$\max x_2 -x_1 + x_2 + x_3 = 0$$
$$x_1 + x_4 = 2$$
$$x_1, x_2, x_3, x_4 \ge 0$$

and procede by writing the first tableau using the trivial feasible basis $\mathcal{B}_1 = \{3, 4\}$:

The simplex method requires that we pivot x_2 with x_1 . However, we notice that the equations of the tableau impose that x_2 cannot be increased since otherwise the constraint $x_3 \geq 0$ would be violated. Thus, we have to make a **degenerate pivot step**, that being a step that doesn't increment the objective function value. In fact, we get the following new tableau:

We notice that the two basis $\mathcal{B}_1 = \{3, 4\}$ and $\mathcal{B}_2 = \{2, 4\}$ both certify the same BFS, that being $\overline{x} = \begin{bmatrix} 0 & 0 & 0 & 2 \end{bmatrix}$. Thus, a degenerate pivot step can be interpreted as **staying** on the same BFS during a pivot step (further justifying why the objective function value doesn't increase). However, even thought we made a zero-progress step, the next pivot step where x_4 leaves the basis and x_1 enters it does still yield the optimal solution:

Even thought in this case the simplex method still terminated by giving the optimal solution, this isn't always the case when we are in presence of degenerate pivot steps. Intuitively, since we have multiple basis for the same BFS, the algorithm could **infinitely cycle between the basis**, meaning that the simplex method would never terminate. Even thought this is rare, it's still a possibility. We will further discuss the topic of cycling in later sections. For now, we are just interested in formalizing the concept of degeneracy.

Definition 25: Degenerate Pivot Step

We say that a pivot step is **degenerate** if it doesn't increase the value of the objective function.

Definition 26: Degenerate BFS

Given a BFS \overline{x} of a linear program, let $K = \{i \in \{1, ..., n\} \mid x_i > 0\}$. We say that \overline{x} is **degenerate** if |K| < m.

Proposition 11: Non-unique certifying basis

If a BFS is certified by **more than one basis** then such BFS is a degenerate BFS and the basic variables that aren't shared among such basis must be **set to zero**.

Proof. Suppose that \overline{x} is certified by two basis \mathcal{B}_1 and \mathcal{B}_2 . By definition of basis, we have that $\forall i \notin \mathcal{B}_1$ and $\forall j \notin \mathcal{B}_2$ it must hold that $x_i = x_j = 0$. Thus, we get that $\forall k \notin \mathcal{B}_1 \cap \mathcal{B}_2$ it must hold that $x_k = 0$.

Let $K = \{i \in \{1, ..., n\} \mid x_i > 0\}$. It's easy to see that $K \subseteq \mathcal{B}_1 \cap \mathcal{B}_2$. Since $\mathcal{B}_1 \neq \mathcal{B}_2$, it holds that $\mathcal{B}_1 \cap \mathcal{B}_2 \neq \emptyset$. Then, since $|\mathcal{B}_1| = |\mathcal{B}_2| = m$, we conclude that $|K| \leq |\mathcal{B}_1 \cap \mathcal{B}_2| < m$ and thus that \overline{x} is degenerate.

Observation 11

A degenerate BFS doesn't always have more than one certifying basis

To give a **geometrical reasoning** behind degeneracy, consider again the picture shown in the previous example and the degenerate BFS $\overline{x} = \begin{bmatrix} 0 & 0 & 0 & 2 \end{bmatrix}$. We notice that the vertex $\begin{bmatrix} 0 & 0 \end{bmatrix}$ is the intersection of three constraints imposed by the linear program. We also notice that the two non-basic variables x_1, x_2 correspond to three of the original constraints, meaning that $x_1 \geq 0, x_2 \geq 0$ and $-x_1 + x_2 \leq 0$ are satisfied at equality. Moreover, each of these constraints define the vertex. This means that the vertex $\begin{bmatrix} 0 & 0 \end{bmatrix}$ is defined by more than one set of inequalities: the set $\{-x_1 + x_2 \leq 0, x_1 \geq 0\}$, the set $\{-x_1 + x_2 \leq 0, x_2 \geq 0\}$ and the set $\{x_1 \geq 0, x_2 \geq 0\}$.

Proposition 12: Geometry of degeneracy

A BFS \overline{x} to the standard form $(A \mid I_m)y = b$ given by the original program $Ax \leq b$ is **degenerate** if n non-basic variables correspond to the constraints in $Ax \leq b, x \geq 0$ defining the vertex of the polyhedron corresponding to \overline{x} .

Equivalently, the BFS \overline{x} is **degenerate** if there is an (n+1)-st constraint of $Ax \leq b, x \geq 0$ which is tight, meaning that in \mathbb{R}^n it intersects the vertex.

Both of these conditions imply that the vertex corresponding to \overline{x} isn't uniquely defined by a set of constraints of $Ax \leq b, x \geq 0$.

Note: since we're talking about original and standard form together, in this case n corresponds to the number of <u>original variables</u> and n + m is the number of variables of the standard form program

3.5 Formalization of the simplex method

Definition 27: Simplex Tableau

Given a feasible basis \mathcal{B} for a linear program, a **simplex tableau** $\mathcal{T}(\mathcal{B})$ is a system of m+1 equations on variables x_1, \ldots, x_m, z that has the same set of solutions as Ax = b with $z = c^T x$ and defined as:

where:

- $\mathcal{N} = \{1, \dots, n\} \mathcal{B}$
- $x_{\mathcal{B}} \in \mathbb{R}^m$ is the vector of basic variables
- $x_{\mathcal{N}} \in \mathbb{R}^{n-m}$ is the vector of non-basic variables
- $p \in \mathbb{R}^m$ is a vector of constants
- $Q \in \mathrm{Mat}_{m \times n m}(\mathbb{R})$ is a coefficient matrix
- $z_0 \in \mathbb{R}$ is a constant
- $r \in \mathbb{R}^{n-m}$ is the vector of coefficients of the objective

Lemma 7: Unique simplex tableau

Given a feasible basis \mathcal{B} , there is exactly one simplex tableau $\mathcal{T}(\mathcal{B})$ such that:

- $Q = A_{\mathcal{B}}^{-1} A_{\mathcal{N}}$
- $p = A_{\mathcal{B}}^{-1} b$
- $\bullet \ z_0 = c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} b$
- $\bullet \ r^T = c_{\mathcal{N}}^T c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} A_{\mathcal{N}}$

Proof.

Let x be the BFS certified by \mathcal{B} . First, we split the matrix Ax into two parts $Ax = A_{\mathcal{B}}x_{\mathcal{B}} + A_{\mathcal{N}}x_{\mathcal{N}}$. Then, since Ax = b is given by the linear program, we get that $b = A_{\mathcal{B}}x_{\mathcal{B}} + A_{\mathcal{N}}x_{\mathcal{N}}$.

Since \mathcal{B} is a feasible basis, the matrix $A_{\mathcal{B}}$ is non-singular, meaning that it is also always invertible. Thus, we get that

$$b = A_{\mathcal{B}} x_{\mathcal{B}} + A_{\mathcal{N}} x_{\mathcal{N}} \iff x_{\mathcal{B}} = A_{\mathcal{B}}^{-1} b - A_{\mathcal{B}}^{-1} A_{\mathcal{N}} x_{\mathcal{N}}$$

Since in a simplex tableau we must have that $x_{\mathcal{B}} = p + Qx_{\mathcal{N}}$, we can set $p := A_{\mathcal{B}}^{-1}b$ and $q := -A_{\mathcal{B}}^{-1}A_{\mathcal{N}}x_{\mathcal{N}}$ to satisfy this condition.

Now, let z be the value of the objective function for $\mathcal{T}(\mathcal{B})$, implying that $z = c^T x$. Again, we can split $c^T x$ into two parts, meaning that:

$$z = c^{T}x$$

$$= c_{\mathcal{B}}^{T}x_{\mathcal{B}} + c_{\mathcal{N}}^{T}x_{\mathcal{N}}$$

$$= c_{\mathcal{B}}^{T}(A_{\mathcal{B}}^{-1}b - A_{\mathcal{B}}^{-1}A_{\mathcal{N}}x_{\mathcal{N}}) + c_{\mathcal{N}}^{T}x_{\mathcal{N}}$$

$$= c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}b - c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}A_{\mathcal{N}}x_{\mathcal{N}} + c_{\mathcal{N}}^{T}x_{\mathcal{N}}$$

$$= c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}b + (c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}A_{\mathcal{N}} + c_{\mathcal{N}}^{T})x_{\mathcal{N}}$$

By setting $z_0 := c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} b$ and $r^T := c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} A_{\mathcal{N}} + c_{\mathcal{N}}^T$ we get that $z = z_0 + r^T x_{\mathcal{N}}$ as requested by the simplex tableau format.

Suppose now that there also exists p', Q', r'^T, z'_0 that determine a simplex tableau $\mathcal{T}'(\mathcal{B})$ for \mathcal{B} , implying that for each choice of $x_{\mathcal{N}}$ we have that $x_{\mathcal{B}} = p + Qx_{\mathcal{N}}$ and $x_{\mathcal{B}} = p' + Qx_{\mathcal{N}}$.

Since each $x_{\mathcal{N}}$ uniquely uniquely determines $x_{\mathcal{B}}$, for $x_{\mathcal{N}} = 0$ we get that:

$$p + Qx_{\mathcal{N}} = p' + Q'x_{\mathcal{N}} \iff p + Q \cdot 0 = p' + Q' \cdot 0 \iff p = p'$$

which also implies that Q = Q'. By proceeding in the same way, we can show that since $z = z_0 + r^T x_N$ and $z = z'_0 + r'^T x_N$ is only valid if $z_0 = z'_0$ and $r^T = r'^T$, concluding that these values are unique and thus that $\mathcal{T}(\mathcal{B}) = \mathcal{T}'(\mathcal{B})$.

The previous lemma is needed **only to formalize the concept of simplex tableau** and to show that it is indeed unique for each feasible basis. There is no actual advantage in memorizing the way it is formulated since it is a lot easier to obtain with the procedure shown in the previous sections.

Moreover, we already observed that if $\mathcal{T}(\mathcal{B})$ is a simplex tableau such that $r \leq 0$ then the corresponding BFS is **optimal**.

Proposition 13: Optimal solution and simplex tableaus

If $\mathcal{T}(\mathcal{B})$ is a simplex tableau such that $r_{\mathcal{N}} \leq 0$, then the corresponding BFS given by the tableau is **optimal** and the **maximal objective function value** is z_0

Obviously, the previous proposition also implies that during any iteration of the simplex method a non-basic variable x_e may enter the basis if and only if $r_e > 0$.

Once we know which variables can enter the basis during a pivot step, we must formally define which ones can leave the basis. Given a feasible basis $\mathcal{B} \subseteq \{1, \ldots, n\}$ and $\mathcal{N} = \{1, \ldots, n\} - \mathcal{B}$, consider the following tableau $\mathcal{T}(\mathcal{B})$.

$$\begin{array}{ccccc} x_{\mathcal{B}} & = & p & + & Qx_{\mathcal{N}} \\ \hline z & = & z_0 & + & r^T x_{\mathcal{N}} \end{array}$$

Without loss of generality, let $\mathcal{B} = \{k_1, \ldots, k_m\}$ and $\mathcal{N} = \{h_1, \ldots, h_{n-m}\}$, where $k_1 < \ldots < k_m$ and $h_1 < \ldots < h_{n-m}$. Then, the *i*-th equation of the tableau is given by:

$$x_{k_i} = p_i + \sum_{j=1}^{n-m} q_{ij} x_{h_j}$$

Let $x_{h_{\beta}}$ be the **entering variable**, where $1 \leq \beta \leq n - m$. Since all the other non-basic variables $x_{h_{j}}$ such that $j \neq \beta$ should remain equal to zero, for each row i the non-negativity constraint $x_{k_{i}} \geq 0$ limits the possible new values of $x_{h_{\beta}}$ by the inequality $-q_{i\beta}x_{h_{\beta}} \leq p_{i}$. In particular, if $q_{i\beta} \geq 0$ then this inequality doesn't restrict the possible value of $x_{h_{\beta}}$, while if $q_{i\beta} < 0$ it yields the restriction $x_{h_{\beta}} \leq -\frac{p_{i}}{q_{i\beta}}$.

Let $x_{k_{\alpha}}$ be the **leaving variable**, where $1 \leq \beta \leq m$. Since this variable must satisfy each possible restriction that we just described, for each row i it must hold that if $q_{i\beta} < 0$ then $x_{h_{\beta}} \leq -\frac{p_{\alpha}}{q_{\alpha\beta}}$. Thus, if we want to maximize the possible value of $x_{h_{\beta}}$ while also keeping these restrictions valid, the **leaving variable** $x_{k_{\alpha}}$ can be any variable such that

$$q_{\alpha\beta} < 0$$
 and $-\frac{p_{\alpha}}{q_{\alpha\beta}} = \min\left\{-\frac{p_i}{q_{i\beta}} : q_{i\beta} < 0, 1 \le i \le m\right\}$

Moreover, if there is no index α that satisfies these conditions, the linear program is **unbounded** since there are no restrictions on the possible value of $x_{h_{\beta}}$

Lemma 8: Criteria for possible pivot steps

Let \mathcal{B} be a feasible basis. If the entering variable x_e and the leaving variable x_ℓ have been selected according to the criteria previously described then $\mathcal{B}' = (\mathcal{B} - \{\ell\}) \cup \{e\}$ is another feasible basis that certifies a BFS with an objective function value greater than the previous BFS. If no x_ℓ satisfies the criterion for a leaving variable, the linear program is unbounded.

3.6 Pivot rules and Cycling tableaus

As discussed in the previous section, the criteria for possible pivot steps allow us to choose from different possible variables. Now, we will discuss common **pivot rules** used to choose which variables to swap from the possible ones. Each rule has a effectiveness-efficiency tradeoff.

Given the general simplex tableau:

where $\mathcal{B} = \{k_1, \ldots, k_m\}$ and $\mathcal{N} = \{h_1, \ldots, h_{n-m}\}$, we can use the following rules to pick the leaving variable $x_{k_{\alpha}}$ and entering variable $x_{h_{\beta}}$ from all possible choices given by the Criteria for possible pivot steps:

- 1. Largest coefficient rule: pick $x_{k_{\alpha}}$ such that for all indices k with $1 \leq k \leq n$ it holds that $r_{k_{\alpha}} \geq r_k$. Then, pick an arbitrary $x_{h_{\beta}}$ from the possible choices. This is the original rule suggested by Dantzig, the main researcher of the simplex method.
- 2. Largest increase rule: pick $x_{k_{\alpha}}, x_{h_{\beta}}$ such that the increase of the objective function value is maximized, meaning that:

$$-r_{\beta} \cdot \frac{p_{\alpha}}{q_{\alpha\beta}} = \max \left\{ r_{j} \cdot \min \left\{ -\frac{p_{i}}{q_{ij}} : q_{ij} < 0, 1 \leq i \leq m \right\} : 1 \leq j \leq n, r_{j} > 0 \right\}$$

or equivalently:

$$-r_{\beta} \cdot \frac{p_{\alpha}}{q_{\alpha\beta}} = \max \left\{ \min \left\{ -r_j \cdot \frac{p_i}{q_{ij}} : q_{ij} < 0, 1 \le i \le m \right\} : 1 \le j \le n, r_j > 0 \right\}$$

This rule is computationally more expensive than the previous rule, but it locally maximizes the progress.

3. Steepest edge rule: pick $x_{k_{\alpha}}, x_{h_{\beta}}$ such that the pivoting basis moves the current BFS in a direction closest to the direction of the vector c, meaning that it maximizes the following ratio:

$$\frac{c^T(x_{\mathbf{k}_{\alpha},\mathbf{h}_{\beta}} - x_{\text{curr}})}{\left\|x_{\mathbf{k}_{\alpha},\mathbf{h}_{\beta}} - x_{\text{curr}}\right\|}$$

where x_{curr} is the current BFS certified by the basis \mathcal{B} and $x_{k_{\alpha},h_{\beta}}$ is the BFS certified by the basis $\mathcal{B}_{k_{\alpha},h_{\beta}} = (\mathcal{B} - \{k_{\alpha}\}) \cup \{h_{\beta}\}$. The idea behind this rule is to take the "shortest path" from the initial BFS to the optimal one and it's usually faster than the previous rules. In fact, this is the rule that is usually used in practical implementations of the simplex method.

Observation 12: Non-cycle-proof rules

The previous pivot rules may cycle through degenerate pivots

Even thought it doesn't happen often, there is still a possibility for this observation to hold. We will first analyze what happens in the case of cycling tableaus and then proceed by formulating a rule that prevents cycling.

Definition 28: Fickle variables

Let $\mathcal{T}(\mathcal{B}_1) \to \ldots \to \mathcal{T}(\mathcal{B}_k) \to \mathcal{T}(\mathcal{B}_1)$ be a cycle of simplex tableaus of a linear program. We say that a variable x_h is **fickle** if there are two indices i, j such that $x_h \in \mathcal{B}_i$ and $x_h \notin \mathcal{B}_j$.

Note: this definition is equivalent to saying that a fickle variable enters and leaves the basis at least once per every cycle of tableaus

Lemma 9: Degenerate BFS given by cycling

Let $\mathcal{T}(\mathcal{B}_1) \to \ldots \to \mathcal{T}(\mathcal{B}_k) \to \mathcal{T}(\mathcal{B}_1)$ be a cycle of simplex tableaus of a linear program and let F be the set of fickle variables. There is a unique degenerate BFS \overline{x} certified by $\mathcal{B}_1, \ldots, \mathcal{B}_k$ and $\forall i \in F$ it holds that $x_i = 0$.

Proof.

Since each pivot step must keep the objective function value equal or increase it, it must hold that the objective function value is the same for $\mathcal{T}(\mathcal{B}_1), \ldots, \mathcal{T}(\mathcal{B}_k)$, implying that each pivot step of the cycle is degenerate.

Without loss of generality, let x^j be the BFS certified by the basis \mathcal{B}_j and let $\mathcal{N}_j = \{1, \ldots, n\} - \mathcal{B}_j$. The tableau $\mathcal{T}(\mathcal{B}_j)$ is given by:

$$\begin{array}{ccccc} x_{\mathcal{B}_j} & = & p^j & + & Q^j x_{\mathcal{N}_j} \\ \hline z & = & z_0 & + & (r^j)^T x_{\mathcal{N}_j} \end{array}$$

Let x_e be the entering variable and let x_ℓ be the leaving variable, meaning that $\mathcal{B}_{j+1} = (\mathcal{B}_j - \{\ell\} \cup \{e\}).$

Claim: for each $1 \le i \le n$, it holds that $x_i^j = x_i^{j+1}$

Proof of the claim.

Let $\mathcal{B}_j = \{k_1, \dots, k_m\}$ and let $\mathbb{N}_j = \{h_1, \dots, h_{n-m}\}$. We have the following four cases:

- 1. $i \in \mathcal{N}_j \{e\}$, meaning that x_i is a non-basic variable different from the entering one
- 2. $i \in \mathcal{B}_j \{\ell\}$, meaning that x_i is a basic variable different from the leaving one
- 3. i = e, meaning that x_i is the entering variable
- 4. $i = \ell$, meaning that x_i is the leaving variable

Proving that the claim holds for the first case is very easy: if $i \in \mathcal{N}_j - \{e\}$ then the variable x_i is non-basic for both \mathcal{B}_j and \mathcal{B}_{j+1} . Thus, we conclude that $x_i^j, x_i^{j+1} = 0$ and so that in this case we have $x_i^j = x_i^{j+1}$.

For the other cases, let $e = h_{\beta}$ and let $\ell = k_{\alpha}$. Since $x_{k_{\alpha}}$ is the leaving variable, in $\mathcal{T}(\mathcal{B}_{j+1})$ it holds that

$$x_{k_{\alpha}}^{j+1} = 0 + \sum_{t=1}^{n-m} q_{\alpha t}^{j+1} x_{h_t^{j+1}}$$

If $i \in \mathcal{B}_j - \{\ell\}$, in the tableau $\mathcal{T}(\mathcal{B}_j)$ we have that:

$$x_i^j = p_i^j + \sum_{t=1}^{n-m} q_{it}^j x_{h_t^j}$$

Since $h_1^j, \ldots, h_t^j \in \mathcal{N}_j$ all of these coefficients must be zero in the tableau $\mathcal{T}(\mathcal{B}_j)$, meaning that $x_i^{j+1} = p^j$. In the tableau $\mathcal{T}(\mathcal{B}_{j+1})$, we can obtain the equation for x_i^{j+1} by simply substituting $x_{k_{\alpha}}^j$ with $x_{k_{\alpha}}^{j+1}$.

$$\begin{split} x_i^{j+1} &= p_i^j + q_{i\alpha}^j x_{k_\alpha}^j + \sum_{\substack{t=1\\t \neq \alpha}}^{n-m} q_{it}^j x_{h_t^j} \\ &= p_i^j + q_{i\alpha}^j \left(0 + \sum_{t=1}^{n-m} q_{\alpha t}^{j+1} x_{h_t^{j+1}} \right) + \sum_{\substack{t=1\\t \neq \alpha}}^{n-m} q_{it}^j x_{h_t^j} \\ &= p_i^j + q_{i\alpha}^j \sum_{t=1}^{n-m} q_{\alpha t}^{j+1} x_{h_t^{j+1}} + \sum_{\substack{t=1\\t \neq \alpha}}^{n-m} q_{it}^j x_{h_t^j} \\ &= p_i^j + \sum_{t=1}^{n-m} q_{it}^j x_{h_t^j} \end{split}$$

Again, since $h_1^{j+1}, \ldots, h_t^{j+1} \in \mathcal{N}_{j+1}$, we get that $x_i^{j+1} = p_i$, concluding that $x_i^{j+1} = x_i^j$ holds in the second case.

Suppose now that $i = e = h_{\beta}$. Since $x_{h_{\beta}}$ is the entering variable, we know that $x_{h_{\beta}}^{j} = 0$ since it's non-basic for $\mathcal{T}(\mathcal{B}_{j})$. Moreover, we know that $x_{k_{\alpha}}^{j+1} = 0$ since $x_{k_{\alpha}}$ is the leaving variable. Thus, we can just solve the equation for $x_{k_{\alpha}}$ in $\mathcal{T}(\mathcal{B}_{j})$ for $x_{h_{\beta}}$, obtaining the equation of the latter in $\mathcal{T}(\mathcal{B}_{j+1})$.

Then, since the objective function value must remain the same and since $x_{h_{\beta}}^{j} = x_{k_{\alpha}}^{j+1}$, this implies that the equation solved for $x_{h_{\beta}}$ maintains the same constant term, meaning that $x_{h_{\beta}}^{j+1} = x_{k_{\alpha}}^{j+1} = 0$. Thus, we conclude that $x_{i}^{j} = x_{i}^{j+1}$ also holds in the third case.

Suppose that $i = \ell = k_{\alpha}$. Since $x_{h_{\beta}}$ is the entering variable, we know that $r_{\beta}^{j} > 0$ and $x_{h_{\beta}}^{j} = 0$ must hold. Then, since the pivot is degenerate, we know that the constraints impose that we can't increase the value of $x_{h_{\beta}}$, implying that $x_{h_{\beta}}^{j} = x_{h_{\beta}}^{j+1}$.

However, we also know that such increase depends on the choice of k_{α} . In particular, we should increase $x_{h_{\beta}}$ in a way that $x_{h_{\beta}}^{j+1} = -\frac{p_{\alpha}^{j}}{q_{\alpha\beta}^{j}}$. Then, we get that $p_{\alpha}^{j} = 0$ must hold in order for this equality to hold. Finally, since $x_{k_{\alpha}}$ is the leaving variable for $\mathcal{T}(\mathcal{B}_{j+1})$, we already know that $p_{\alpha}^{j+1} = 0$, concluding that $x_{k_{\alpha}}^{j}, x_{k_{\alpha}}^{j+1} = 0$ and this that $x_{i}^{j} = x_{i}^{j+1}$ also holds in the fourth case.

Since the claim holds for each $1 \leq i \leq n$, this directly implies that for each index $1 \leq j \leq k$ it holds that $x^j = x^{j+1}$ and thus that the basis $\mathcal{B}_1, \ldots, \mathcal{B}_k$ all certify the same BFS $\overline{x} = x^1 = \ldots = x^k$. Obviously, in this case the set of fickle variables F corresponds to the set of basic variables that aren't shared among all the basis. Thus, by Proposition 11, we conclude that \overline{x} is degenerate and that $\forall i \in F$ it holds that $x_i = 0$.

3.6.1 Bland's rule

Once we have discussed cycling tableaus all share the same degenerate BFS, we are now ready to define Bland's rule, a rule that **prevents cycling**.

Definition 29: Bland's rule

During a pivot step, choose the entering variable x_e and the leaving variable x_ℓ as the ones with the lowest possible indexes

The idea behind this rule is surprisingly simple, while also being a very inefficient way to select the next BFS since it doesn't try to optimize the increase of the objective function value, resulting in a rule slower than the previously shown ones. For this reason, Bland's rule is usually used only when a tableau cycle is detected using the other rules.

Theorem 9: Bland's rule is cycle-proof

The simplex method with Bland's rule prevents tableau cycles

Proof.

By way of contradiction, suppose that there is a tableau cycle $\mathcal{T}(\mathcal{B}_1) \to \ldots \to \mathcal{T}(\mathcal{B}_k) \to \mathcal{T}(\mathcal{B}_1)$ obtained by using Bland's rule. Let $F \subseteq \{1, \ldots n\}$ be the set of indices of the fickle variables in the cycle and let $\ell = \max(F)$.

Since x_{ℓ} is fickle, let i be the index such that $\ell \in \mathcal{B}_i$ and $\ell \notin \mathcal{B}_{i+1}$ and let j be the index such that $\ell \notin \mathcal{B}_j$ and $\ell \in \mathcal{B}_{j+1}$. Fix $\mathcal{B} = \mathcal{B}_i$ and fix $\mathcal{B}' = \mathcal{B}_j$.

By Lemma 9, we know that \mathcal{B} and \mathcal{B}' certify the same BFS \overline{x} , where $c^T \overline{x} = z_0$. Thus, they yield the following tableaus:

Suppose that $\mathcal{B} = \{k_1, \dots, k_m\}$, $\mathcal{B}' = \{k'_1, \dots, k'_m\}$ and that $\mathcal{N} = \{h_1, \dots, h_{n-m}\}$, $\mathcal{N}' = \{h'_1, \dots, h'_{n-m}\}$. By choice of ℓ , we have that $\ell = k'_{\alpha'} = h_{\beta}$ for some α', β . Since ℓ is the entering variable for $\mathcal{T}(\mathcal{B})$, we know that $r_{\alpha'} > 0$. Thus, since Bland's rule imposes that the entering variable x_{ℓ} is chosen with the lowest index from all possible candidates and since we picked ℓ to be the largest possible fickle index, we get that $\forall i \in F - \{\ell\}$ it must hold that $r_i \leq 0$.

We now look at what happens when $x_{\ell} = x_{k'_{\alpha'}}$ leaves $\mathcal{T}(\mathcal{B}')$. Let $x_e = x_{h'_{\beta'}}$ be the entering variable for \mathcal{B}' . By Lemma 8, we know that any index $k'_{d'}$ can leave the basis \mathcal{B}' if:

$$q'_{d'\beta'} < 0 \text{ and } -\frac{p_{d'}}{q_{d'\beta'}} = \min\left\{-\frac{p_{i'}}{q_{i'\beta'}} : q_{i'\beta'} < 0, 1 \le i' \le m\right\}$$

However, by Lemma 9 we know that for each $k'_{d'} \in B' \cap F$ in the BFS \overline{x} it holds that $x_{k'_{d'}} = 0$. Therefore, the index $k'_{\alpha'}$ must be the only one satisfying $q'_{\alpha'\beta'} < 0$ among all fickle variables.

Consider the following auxiliary linear program:

$$\max_{Ax = b} c^{T}x$$

$$Ax = b$$

$$x_{\ell} \le 0$$

$$x_{F - \{\ell\}} \ge 0$$

$$x_{\mathcal{N} - F} = 0$$

$$x_{\mathcal{B} - F} \in \mathbb{R}$$

Claim: The BFS \bar{x} of the original program is optimal for the auxiliary linear program

Proof of claim.

Since \overline{x} is a BFS of the original program, we know that it satisfies the constraints Ax = b. Moreover, we know that $\overline{x}_{\mathcal{N}} = 0$ since \mathcal{N} are non-basic variables and we also know that $\overline{x}_{F} = 0$ by Lemma 9. Thus, since we also know that $\ell \in F$, we conclude that \overline{x} is indeed a feasible solution of the auxiliary program.

For any feasible solution y of the original program, the objective function value $c^T y$ can be written as $c^T y = z_0 + r^T y_N$. Instead, for any feasible solution y' of the auxiliary program we have that:

$$y'_{h_d} \begin{cases} \geq 0 & \text{if } h_d \in F - \{\ell\} \\ = 0 & \text{if } h_d \in \mathcal{N} - F \\ \leq 0 & \text{if } h_d = h_\beta = \ell \end{cases}$$

We notice that this system of inequalities implies that for each $1 \le d \le n - m$ it holds that $r_d y'_{h_d} \le 0$:

- If $h_d \in \mathcal{N} F$ we know that $y'_{h_d} = 0$, so trivially we get $r_d y' h_d \leq 0$
- If $h_d \in F \{\ell\}$ we know that $y'_{h_d} \ge 0$. Moreover, we have previously shown that in this case $r_{h_d} \le 0$ holds. Thus, we get that $r_d y'_{h_d} \le 0$.
- If $h_d = h_\beta = \ell$ we know that $y'_{h_d} \ge 0$. Moreover, since $y'\ell$ is the leaving variable, we know that $r_d > 0$. Thus, we get that $r_d y'_{h_d} \le 0$.

Then, this means that $r^Ty' \leq 0$ for any feasible solution y' of the auxiliary program. Thus, since the two programs share the same objective function, we get that for each feasible solution of the auxiliary program it holds that $c^Ty = z_0 + r^Ty' \leq z_0 = c^T\overline{x}$, concluding that \overline{x} is optimal for the auxiliary program.

Claim 2: The auxiliary linear program is unbounded

Proof of claim 2.

Since both basis share the same BFS \overline{x} , we now work with the basis \mathcal{B}' . Remember that $x_e = x_{h'_{\mathcal{A}'}}$ is the variable in \mathcal{N}' that enters the basis when x_ℓ leaves \mathcal{B}' .

For any t > 0, we define $\overline{x}(t)$ as:

$$\overline{x}(t)_{h'_d} = \begin{cases} 0 & \text{if } h'_d \in \mathcal{N}' - \{e\} \\ t & \text{if } h'_d = h'_{\beta'} = e \end{cases}$$

Since x_{ℓ} left the basis, we have that $x_{\ell} = 0$. Thus, by construction we have that $\overline{x}(t)_{k'_{d'}} = \overline{x}_{k'_{d'}} + tq'_{d'\beta'}$. Furthermore, it's easy to see that $\overline{x}(t)$ satisfies Ax = b for each t > 0.

Since we have shown $k'_{\alpha'} = \ell$ is the only fickle variable such that $q'_{\alpha'\beta'} < 0$, we get that:

$$\overline{x}(t)_{k'_{d'}} = \overline{x}_{k'_{d'}} + tq'_{d'\beta'} \begin{cases} \geq 0 & \text{if } k'_{d'} \in F - \{\ell\} \\ 0 & \text{if } k'_{d'} \in \mathcal{N}' - F \\ \leq 0 & \text{if } k'_{d'} = k'_{\alpha'} = \ell \end{cases}$$

Meaning that $\overline{x}(t)$ also satisfies the remaining constraints for each t > 0, implying that it is a feasible solution. Moreover, since $x_e = x_{h'_{\beta'}}$ is the variable that enters the basis, we know that $(r')_{\beta'}^T > 0$ must hold. Thus, we conclude that:

$$c^{T}(\overline{x}(t)) = z'_{0} + (r')^{T}\overline{x}(t)_{\mathcal{N}'} = z'_{0} + tr'_{\beta'} \to +\infty$$

when $t \to +\infty$, concluding that the auxiliary program is unbounded.

Obviously, the two claims yield a contradiction since the auxiliary program can't have an optimal solution and be unbounded at the same time. Thus, the only possibility is for the cycle to not exist. \Box

3.7 Solved exercises

Problem 3

Solve the following linear program using the simplex method:

$$\max 2x_1 + x_2 - x_3$$

$$x_1 + 2x_2 + x_3 \le 8$$
$$-x_1 + x_2 - 2x_3 \le 4$$
$$x_1, x_2, x_3 \ge 0$$

Solution:

First, we convert the program in standard form:

$$\max 2x_1 + x_2 - x_3$$

$$x_1 + 2x_2 + x_3 + x_4 = 8$$
$$-x_1 + x_2 - 2x_3 + x_5 = 4$$
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

The trivial basis $\mathcal{B} = \{4, 5\}$ is feasible, so we start with the following tableau:

We notice that if we pivot x_2 with either x_4 or x_5 , both of the latter become 0 (since we would set $x_2 = 4$), implying that we would get a degenerate BFS, which could lead us to a cycle. Thus, we pivot x_1 with x_4 by setting $x_1 = 8$.

Since we cannot select another pivot, we conclude that $\begin{bmatrix} 8 & 0 & 0 & 0 & 12 \end{bmatrix}$ is an optimal BFS to the standard program, implying that $\begin{bmatrix} 8 & 0 & 0 \end{bmatrix}$ is the optimal solution to the original program with a value of 16.

4

Duality in linear programs

4.1 Idea and implications

In the previous chapters we have formalized the algebraic and geometrical concepts of linear programs, which culminated in the study of the simplex method algorithm. Now, we are ready to discuss one of the most important results regarding linear programs: the concept of **duality**.

To give an intuition, let's consider the following example:

$$\max 2x_1 + 3x_2
4x_1 + 8x_2 \le 12
2x_1 + x_2 \le 3
3x_1 + 2x_2 \le 4
x_1, x_2 \ge 0$$

In order to avoid uselessly applying the simplex method and eventually finding out, we want to know if there actually is an **optimal solution** to this problem. Finding an answer to this question is actually easy: we must find out of the objective function value is *bounded* or not.

By looking at the fist constraint, we notice that:

$$2x_1 + 3x_2 \le 4x_1 + 8x_2 \le 12$$

implying that the objective function is indeed bounded and thus that there is an optimal solution. However, this bound is obviously way to large compared to the objective function. In fact, we could halve the first constraint and still get the following bound:

$$2x_1 + 3x_2 \le 2x_1 + 4x_2 \le 6$$

which still gives some space, but is indeed more strict.

Following the same idea, we can sum the first and second constraint to get a perfect bound on the objective function value:

$$\begin{cases} 4x_1 + 8x_2 \le 12 \\ 2x_1 + x_2 \le 3 \end{cases} \implies 6x_1 + 9x_2 \le 15 \implies 2x_1 + 3x_2 \le 5$$

which indeed is the optimal value of the objective function (notice how the left hand side of the inequality matches the objective function).

In general, what we did was constructing a linear combination of the constraints in order to get a strict bound: given three non-negative coefficients y_1, y_2, y_3 we get that:

$$\begin{cases} 4x_1 + 8x_2 & \leq 12 \\ 2x_1 + x_2 & \leq 3 \\ 3x_1 + 2x_2 & \leq 4 \end{cases} \Longrightarrow \begin{cases} y_1(4x_1 + 8x_2) & \leq 12y_1 \\ y_2(2x_1 + x_2) & \leq 3y_2 & \Longrightarrow \\ y_3(3x_1 + 2x_2) & \leq 4y_3 \end{cases}$$
$$y_1(4x_1 + 8x_2) + y_2(2x_1 + x_2) + y_3(3x_1 + 2x_2) \leq 12y_1 + 3y_2 + 4y_3 \Longrightarrow$$
$$(4y_1 + 2y_2 + 3y_3)x_1 + (8y_1 + y_2 + 2y_3)x_2 \leq 12y_1 + 3y_2 + 4y_3$$

Now, if we impose that $4y_1+2y_2+3y_3 \ge 2$ and $8y_1+y_2+2y_3 \ge 3$, we finally get that:

$$2x_1 + 3x_2 \le (4y_1 + 2y_2 + 3y_3)x_1 + (8y_1 + y_2 + 2y_3)x_2 \le 12y_1 + 3y_2 + 4y_3$$

effectively obtaining a bound on the original objective function.

It's easy to see now that we just obtained a new linear program where we want to **minimize** the value $12y_1 + 3y_2 + 4y_3$ to get an upper bound on the original objective function as strict as possible.

$$\min 12y_1 + 3x_2 + 4y_3$$
$$4y_1 + 2y_2 + 3y_3 \ge 2$$
$$8y_1 + y_2 + 2y_3 \ge 3$$
$$y_1, y_2, y_3 \ge 0$$

We refer to this new linear program as the **dual program**, while the original program is referred to as the **primal program**. Moreover, by writing both programs in their matrix form, we notice that:

$$\max \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \min \begin{bmatrix} 12 & 3 & 4 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 8 \\ 2 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 12 \\ 3 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 4 & 2 & 3 \\ 8 & 1 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \ge \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$x_1, x_2 \ge 0 \qquad y_1, y_2, y_3 \ge 0$$

showing us that the dual program is just an "inversion" of the primal program: the constraint vector and the objective function vector got swapped, the constraint matrix

got transposed, the inequality signs have been inverted and the objective function is now a minimization problem.

Definition 30: Primal and Dual program

Let (P) be the following linear program:

$$\max c^T x$$
$$Ax \le b$$
$$x > 0$$

We define the **dual program** (D) of (P) as:

$$\min b^T y$$
$$A^T y \ge c$$
$$y \ge 0$$

Additionally, we say that (P) is the **primal program** of (D)

As we already discussed, by construction we have that the optimal solution of the dual program gives the most strict upper bound we can get on the objective function of the linear program. Thus, we get the following theorem for free:

Theorem 10: Weak duality theorem

Let (P) and (D) be a primal-dual pair of linear programs. For each feasible solution \overline{x} of (P) and each feasible solution \overline{y} of (D), we have that:

$$c^T\overline{x} \leq b^T\overline{y}$$

In other words, each feasible solution of the dual program is a bound on the objective function of the primal program. Thus, if it exists, the optimal value of (D) is the **most strict bound** on the optimal value of (P).

Observation 13

The dual of a dual program (D) is the primal program (P)

Proof. By Proposition 5, we know that (D) can also be rewritten as a general maximization problem:

$$\begin{array}{ll}
\min b^T x & \max -b^T x \\
A^T y \ge c & \Longrightarrow & -A^T y \le -c \\
y \ge 0 & y \ge 0
\end{array}$$

Now, the dual of (D) corresponds to:

$$\min_{-A^T z} -c^T z$$
$$-A^T z \ge -b$$
$$z \ge 0$$

Thus, by rewriting the dual of (D) in the same way as before we get exactly the primal program (P):

$$\begin{array}{ccc} \min & -c^T z & \max & c^T z \\ -A^T z \geq -b & \Longrightarrow & A^T z \leq b \\ z \geq 0 & z \geq 0 \end{array}$$

Every linear program has a dual program, even without having all the constraints being formulated in the canonical form $Ax \leq b$:

• If the *i*-th constraint has the sign \leq , we impose that $y_i \geq 0$

• If the *i*-th constraint has the sign \geq , we impose that $y_i \leq 0$

• If the *i*-th constraint has the sign =, we impose that $y_i \in \mathbb{R}$ (this constraint doesn't actually do anything)

It's easy to see that these mappings preserve the idea of the dual program. Likewise, each mapping on the constraints of the variables x_1, \ldots, x_n can be "preserved" since it is actually required to be "equal". To summarize, we get the following general mappings:

	Primal Program	Dual program
Variables	x_1,\ldots,x_n	y_m,\ldots,y_m
Constraint matrix	A	A^T
Constraint vector	b	c
Objective function	$\max c^T x$	$\min b^T x$
Row constraints	i -th constraint has \leq	$y_i \ge 0$
	i -th constraint has \geq	$y_i \le 0$
	i-th constraint has =	$y_i \in \mathbb{R}$
Variable constraints	$x_j \ge 0$	j -th constraint has \geq
	$x_j \leq 0$	j -th constraint has \leq
	$x_j \in \mathbb{R}$	j-th constraint has =

Note: to get the dual of a minimization problem, first convert it into a general maximization problem as described in Proposition 5

4.2 Strong duality theorem

The **weak duality theorem** that we just introduced in the previous section directly follows from the way dual programs are constructed. The term "weak" is used due to it directly implying a way stronger result: the **strong duality theorem**. To get to this stronger result, first we have to prove another theorem through the simplex method itself.

Theorem 11: Reciprocal boundedness

Given a primal-dual pair of linear programs (P) and (D), if (P) is feasible and bounded then (D) is also feasible and bounded and they **share the same optimal value**

Proof. Let the primal problem (P) be defined as:

$$\max c^T x$$
$$Ax \le b$$
$$x \ge 0$$

where $A \in \operatorname{Mat}_{n \times m}(\mathbb{R})$. We introduce the slack variables x_{n+1}, \ldots, x_{n+m} , obtaining the following standard program:

$$\max \ \overline{c}^T \overline{x}$$
$$A\overline{x} = b$$
$$\overline{x} > 0$$

where $\overline{c}^T = [c \mid 0 \dots 0]$, $\overline{A} = [A \mid I_m]$ and $\overline{x} \in \mathbb{R}^{n+m}$. Since (P) is feasible and bounded, from Theorem 6 we know that there is an optimal BFS \overline{x}^* . Moreover, we know that the simplex method with Bland's rule never cycles (Theorem 9), so it will always yield one of those optimal BFSs. Let \mathcal{B} be the basis that certifies \overline{x}^* . By Lemma 7, we know that there is an unique tableau:

$$\begin{array}{ccccc} \overline{x}_{\mathcal{B}}^* & = & \overline{p} & + & \overline{Q}\,\overline{x}_{\mathcal{N}}^* \\ \overline{z} & = & z_0 & + & \overline{r}^T \overline{x}_{\mathcal{N}}^* \end{array}$$

such that:

- $\overline{Q} = \overline{A}_{\mathcal{B}}^{-1} \overline{A}_{\mathcal{N}}$
- $\bullet \ \overline{p} = \overline{A}_{\mathcal{B}}^{-1}b$
- $z_0 = \overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} b$
- $\overline{r}^T = \overline{c}_{\mathcal{N}}^T \overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} \overline{A}_{\mathcal{N}}$

Since \mathcal{B} is an optimal basis, we know that $\overline{r} \leq 0$ must be true, otherwise the simplex method would continue, contradicting the assumption of \overline{x}^* being an optimal solution.

Let x^* be the restriction of \overline{x}^* to the first n original variables, meaning that x^* is an optimal solution of (P). Additionally, let $y^* = (\overline{c}_B^T \overline{A}_B^{-1})^T$.

Claim: The vector y^* is a feasible solution to the dual problem (D).

Proof of the claim.

To conclude that it's a feasible solution, we have to show that $A^Ty^* \ge c$ and that $y^* \ge 0$. First, we notice that:

$$y^* > 0 \iff y^* \cdot I_m > 0$$

so we can combine the two necessary conditions in the following way:

$$\overline{A}^T y^* = \left[\frac{A^T}{I_m}\right] y^* \ge \overline{c} = \begin{bmatrix} \frac{c}{0} \\ \vdots \\ 0 \end{bmatrix}$$

Note: remember that $\overline{A} = [A \mid I_m]$.

Since $\overline{c}_{\mathcal{B}}^T \in \operatorname{Mat}_{1 \times m}(\mathbb{R})$ and $\overline{A}_{\mathcal{B}}^{-1} \in \operatorname{Mat}_{m \times m}$, we get that $\overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} \in \operatorname{Mat}_{1 \times m}(\mathbb{R})$. Thus, since we also have that $\overline{A} \in \operatorname{Mat}_{m \times n+m}$, the following commutation is legal:

$$\overline{A}^T y^* = \overline{A}^T (\overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1})^T = (\overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} \overline{A})^T$$

Let $w = \overline{A}^T y^* = (\overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} \overline{A})^T$. We notice that:

$$w = (\overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} \overline{A})^T \implies w_{\mathcal{B}} = (\overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} \overline{A}_{\mathcal{B}})^T = \overline{c}_{\mathcal{B}}$$

Likewise, we also notice that:

$$w = (\overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} \overline{A})^T \implies w_{\mathcal{N}} = (\overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} \overline{A}_{\mathcal{N}})^T = \overline{c}_{\mathcal{N}} - \overline{r} \ge \overline{c}_{\mathcal{N}}$$

since we know that $\overline{r} = \overline{c}_{\mathcal{N}}^T - \overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} \overline{A}_{\mathcal{N}}$ and since $\overline{r} \leq 0$. Thus, since $w_{\mathcal{B}} = \overline{c}_{\mathcal{B}}$ and since $w_{\mathcal{N}} \geq \overline{c}_{\mathcal{N}}$, we conclude that $\overline{A}y^* = w \geq \overline{c}$ and thus that y^* is a feasible solution for (D).

Now, we notice that

$$c^T x^* = \overline{c}^T \overline{x}^* = z = \overline{c}_{\mathcal{B}}^T \overline{A}_{\mathcal{B}}^{-1} b = y^* b = b^T y^*$$

where the last commutation was possible since $y^* \in \operatorname{Mat}_{1 \times m}(\mathbb{R})$ and $b \in \operatorname{Mat}_{m \times 1}(\mathbb{R})$. Thus, we also conclude that $c^T x^* = b^T y^*$.

Finally, by the Weak duality theorem, since (P) is the dual of (D) we have that the optimal solution x^* bounds any optimal solution of (D), meaning that $b^Ty' \leq c^Tx^*$ for all optimal solutions y' of (D). Thus, since $b^Ty^* = c^Tx^*$, we conclude that y^* is indeed an optimal solution of (D).

Now, the weak duality theorem and the reciprocal boundedness theorem to directly imply the strong duality theorem simply by eliminating impossible cases.

Theorem 12: Strong duality theorem

Given a primal-dual pair of linear programs (P) and (D), exactly one of the following possibilities occur:

- 1. Both (P) and (D) are infeasible
- 2. (P) is feasible unbounded and (D) is infeasible
- 3. (D) is feasible unbounded and (P) is infeasible
- 4. Both (P) and (D) are feasible bounded and they share the same optimal value

Proof.

By the Weak duality theorem, any feasible solution of (P) sets a bound on any solution of (D), meaning that (D) can't be unbounded. Moreover, since (P) is the dual of (D), this statement also holds if we swap (P) and (D). Thus, we get that:

	(P) Feas. bounded	(P) Feas. unbounded	(P) Infeasible
(D) Feas. bounded	?	No	?
(D) Feas. unbounded	No	No	?
(D) Infeasible	?	?	?

From Theorem 11, instead, we know that if (P) is feasible bounded than (D) is also feasible bounded, so it can't be infeasible. As before, the statement also works if (P) and (D) are swapped, concluding that:

	(P) Feas. bounded	(P) Feas. unbounded	(P) Infeasible
(D) Feas. bounded	?	No	No
(D) Feas. unbounded	No	No	?
(D) Infeasible	No	?	?

The remaining cases are all legit since the none of the two theorems get violated. Moreover, in case both (P) and (D) are feasible bounded we also know that the optimum is shared. Thus, we conclude that:

	(P) Feas. bounded	(P) Feas. unbounded	(P) Infeasible
$\overline{(D)}$ Feas. bounded	Yes+	No	No
(D) Feas. unbounded	No	No	Yes
(D) Infeasible	No	Yes	Yes

4.3 Implications of the strong duality theorem

We saw in Proposition 10 that **testing feasibility** for a linear program is computationally equivalent to **optimizing** a linear program. However, we gave a *shallow* proof of how optimization can be reduced to checking feasibility. Now, we can use the strong duality theorem to give a better idea of how this can be achieved, without the use of the binary search approach shown earlier.

Suppose that we have a subroutine that checks if a program is feasible (meaning that it checks if its polyhedron is non-empty). Given a primal program (P) and its dual (D), if the subroutine returns true for both (P) and (D), meaning that both have a feasible solution, by the strong duality theorem we know that they both must be bounded and they share the same optimum, easily concluding that optimization for (P) can be reduced to testing feasibility for (P). However, we can obtain an **even stronger result** through the use of duality and a stronger subroutine.

Proposition 14

Finding a **feasible solution** is computationally equivalent to finding an **optimal solution**.

Proof.

Let (P) be the following primal program:

$$\max c^T x$$
$$Ax \le b$$
$$x \ge 0$$

Suppose that we have a subroutine that returns an optimal solution to a linear program. Since an optimal solution is also a feasible solution, we conclude that finding a feasible solution to (P) can easily be reduced to finding an optimal solution to (P).

Viceversa, suppose that we have subroutine that returns a feasible solution (if there is any). Let (D) be the dual program of (P):

$$\min b^T y$$
$$A^T y \ge c$$
$$y \ge 0$$

As before, we can check if the program (P) has an optimal solution by running this subroutine on both (P) and (D): if the subroutine returns a feasible solution for both (P) and (D) then we know that (P) must have an optimal solution.

Once we know that there is an optimal solution, we construct the following auxiliary linear program (A):

$$\begin{bmatrix} A \mid 0_m \end{bmatrix} z \le \begin{bmatrix} \frac{b}{0} \\ \vdots \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} \frac{0_n}{A^T} \end{bmatrix} z \ge \begin{bmatrix} 0 \\ \vdots \\ \frac{0}{c} \end{bmatrix}$$
$$\begin{bmatrix} c^T \mid 0 \end{bmatrix} z \ge \begin{bmatrix} 0 \mid b^T \end{bmatrix} z$$
$$z \in \mathbb{R}^{n+m}$$

where 0_m and 0_n are the zero matrices of order m and n. First, we observe that we omitted the objective function since it won't be relevant for our necessities (we could just assume that we want to maximize $0^T z$). For each $z \in \mathbb{R}^{n+m}$, let $z = [u \mid v]$, where $u \in \mathbb{R}^n$ and $v \in \mathbb{R}^m$. We notice that:

$$[A \mid 0_m] z \le \begin{bmatrix} \frac{b}{0} \\ \vdots \\ 0 \end{bmatrix} \implies Au \le b$$

and that:

$$\left[\frac{0_n}{A^T}\right]z \ge \begin{bmatrix} 0\\ \vdots\\ 0\\ c \end{bmatrix} \implies A^Tv \ge c$$

so u and v are feasible solutions to (P) and (D). Moreover, we have that:

$$\begin{bmatrix} c^T \mid 0 \end{bmatrix} z \ge \begin{bmatrix} 0 \mid b^T \end{bmatrix} z \implies c^T u \ge b^T v$$

implying that the solution to (P) bounds the solution to (D). Since by the weak duality theorem we know that any solution to (D) also bounds any solution to (P), we conclude that $c^T u = b^T v$, implying that u and v are optimal solutions to (P) and (D). Thus, we get that any feasible solution to (A) gives an optimal solution to (P), concluding that finding an optimal solution can be reduced to finding a feasible solution.

4.4 Farkas' lemma

Farkas' lemma is a solvability theorem for a finite system of linear inequalities, giving a key result that underpins the linear programming duality and that has played a central role in the development of mathematical optimization. In fact, Farkas' lemma can both be derived by the strong duality theorem and derive the latter, meaning that one holds if and only if the other holds.

Since we have already proved the strong duality theorem through the use of algebraic manipulation and the simplex method, we will give a proof of how the theorem implies the lemma to give an intuition on how the lemma also implies the theorem.

Theorem 13: Farkas' lemma

Given $A \in \operatorname{Mat}_{n \times m}(\mathbb{R})$ and $b \in \mathbb{R}^m$, exactly one of the following holds:

- 1. $\exists x \in \mathbb{R}^n$ such that Ax = b with $x \ge 0$
- 2. $\exists y \in \mathbb{R}^m$ such that $A^T y \geq 0$ with $b^T y < 0$

Proof.

Given $A \in \operatorname{Mat}_{n \times m}(\mathbb{R})$ and $b \in \mathbb{R}^m$, let (P) be the linear program defined by:

$$\max 0^T x$$
$$Ax = b$$
$$x > 0$$

and let (D) be its dual:

$$\min b^T y$$
$$A^T y \ge 0$$
$$y \in \mathbb{R}^m$$

We notice that (D) is always feasible since $\overline{y} = 0$ is a valid solution. Thus, since (D) is feasible, by the weak duality theorem (P) must be bounded. Then, by the strong duality theorem, exactly one of the two following possibilities must hold:

- \bullet (D) is feasible unbounded and (P) is infeasible
- Both (P) and (D) are feasible bounded and they share the same optimum

If (D) is feasible unbounded and (P) is infeasible, from the infeasibility of the latter we automatically get that $\nexists x \in \mathbb{R}^n$ such that Ax = b with $x \geq 0$, meaning that the first case statement of the lemma doesn't hold. Moreover, since (D) is unbounded we get that $\exists y \in \mathbb{R}^m$ such that $A^Ty \geq 0$ and $b^Ty < 0$, concluding that the second case of the lemma holds

Instead, if both (P) and (D) are feasible bounded and they share the same optimum, from the feasibility of (P) we automatically get that $\exists x \in \mathbb{R}^n$ such that Ax = b with

 $x \geq 0$, meaning that the first case of the lemma holds. Furthermore, since (P) and (D) share the same optimum and since the objective function of (P) is given by $0^T x$, we get that the shared optimal value of both (P) and (D) must be 0, implying that $\nexists y \in \mathbb{R}^m$ such that $A^T y \geq 0$ and $b^T y < 0$.

Observation 14: Variants of Farkas' lemma

The following statements are all **equivalent to Farkas' lemma**:

- $\exists x \in \mathbb{R}^n$ such that Ax = b with $x \ge 0$ if and only if $\forall y \in \mathbb{R}^m$ such that $A^T y \ge 0$ it holds that $b^T y \ge 0$
- $\exists x \in \mathbb{R}^n$ such that $Ax \leq b$ with $x \geq 0$ if and only if $\forall y \in \mathbb{R}^m$ such that $A^Ty \geq 0$ and $y \geq 0$ it holds that $b^Ty \geq 0$
- $\exists x \in \mathbb{R}^n$ such that $Ax \leq b$ if and only if $\forall y \in \mathbb{R}^m$ such that $A^Ty = 0$ and $y \geq 0$ it holds that $b^Ty \geq 0$

As we already mentioned, Farkas' lemma directly implies the strong duality theorem without using the simplex method. Like the previous proof we gave for the Strong Duality Theorem, every statement directly follows from the weak duality theorem and Theorem 11. Thus, we just have to show that Farkas' lemma implies Theorem 11.

Proof of Theorem 11 through Farkas' lemma.

Let (P) be the linear program defined by:

$$\max 0^T x$$
$$Ax = b$$
$$x \ge 0$$

and let (D) be its dual:

$$\min b^T y$$
$$A^T y \ge 0$$
$$y \in \mathbb{R}^m$$

Suppose that (P) is feasible and bounded. By Theorem 6, we know that (P) has an optimal solution x^* . Thus, let $\gamma = c^T x^*$ be the optimal value for (P). Consider the following system of inequalities:

$$Ax \le b$$
$$c^T x \ge \gamma$$
$$x > 0$$

Obviously, x^* is a feasible solution to this system.

Now, for each $\varepsilon \in \mathbb{R}$ we define the system:

$$Ax \le b$$
$$c^T x \ge \gamma + \varepsilon$$
$$x \ge 0$$

it's easy to see that if $\varepsilon > 0$, this system is infeasible since otherwise γ wouldn't be the optimal value for (P). Now, for each $\varepsilon \in \mathbb{R}$ such that $\varepsilon \geq 0$, let $\widehat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix}$ and let $\widehat{b_{\varepsilon}} = \begin{bmatrix} \frac{b}{-\gamma - \varepsilon} \end{bmatrix}$. From the previous observations we get that the system

$$\widehat{A}x \le \widehat{b_{\varepsilon}}$$
$$x > 0$$

is feasible if $\varepsilon = 0$ (since x^* is a feasible solution) and infeasible if $\varepsilon > 0$. Since when $\varepsilon > 0$ the system is infeasible, so by Farkas' lemma we have that $\exists \widehat{y} \in \mathbb{R}^{m+1}$ such that $\widehat{A}^T \widehat{y} \geq 0$ with $\widehat{b_{\varepsilon}}^T \widehat{y} < 0$, implying that $[A^T \mid -c] \widehat{y} \geq 0$.

Let $u \in \mathbb{R}^m$ and $z \in \mathbb{R}$ be such that $\widehat{y} = \begin{bmatrix} u \\ z \end{bmatrix}$. We get that

$$[A^T \mid -c] \widehat{y} \ge 0 \implies A^T u - cz \ge 0 \implies A^T u \ge cz$$

and that

$$\hat{b_{\varepsilon}}^T \hat{y} < 0 \implies b^T u + z(-\gamma - \varepsilon) < 0 \implies b^T u < z(\gamma + \varepsilon)$$

Likewise, since when $\varepsilon = 0$ the system $\widehat{A}x \leq \widehat{b_0}, x \geq 0$ has a solution, by Farkas' lemma we have that $\forall y \in \mathbb{R}^m$ such that $\widehat{A}^T y \geq 0$ and $y \geq 0$ it must hold that $\widehat{b_0}^T y \geq 0$. Since this also holds for \widehat{y} , we get that

$$\widehat{b_0}^T \widehat{y} \ge 0 \implies b^T u - z\gamma \ge 0 \implies b^T u \ge z\gamma$$

Now, we notice that z > 0, since otherwise $\widehat{y} \geq 0$ wouldn't be satisfied. Let $w = \frac{1}{z}u$. Since $A^T u \geq cz$ and $u \geq 0$, we have that $A^T w \geq c$ and $w \geq 0$, concluding that w is a feasible solution to (D). Finally, since we have that:

$$z\gamma \leq b^T u < z(\gamma + \varepsilon) \implies \gamma \leq b^T w < \gamma + \varepsilon$$

we conclude that (D) is also bounded. In particular, since this constraint holds for all $\varepsilon > 0$, we get that $b^T w = \gamma$ is the only possibility, concluding that that w is an optimal solution to (D) and that $c^T x^* = b^T w$.

4.5 Geometry behind Farkas' lemma

Once we have show how the Farkas' lemma holds if and only if the strong duality theorem holds, we can give a geometric understanding of the lemma itself. Then, we will show how the geometric version is effectively equivalent to the algebraic one that we have seen in the previous section.

Definition 31: Ball

Given a vector $x \in \mathbb{R}^n$ and a value $\varepsilon \in \mathbb{R}$ where $\varepsilon > 0$, the **open ball around** x **of radius** ε , denoted with $B_{\varepsilon}^n(x)$, is defined as:

$$B_{\varepsilon}^{n}(x) = \{ y \in \mathbb{R}^{n} \mid ||x - y|| < \varepsilon \}$$

Likewise, the **closed ball around** x **of radius** ε , denoted with $B_{\varepsilon}^{n}[x]$, is defined as:

$$B_{\varepsilon}^{n}[x] = \{ y \in \mathbb{R}^{n} \mid ||x - y|| \le \varepsilon \}$$

Given the definition, the following observation is trivial.

Observation 15: Ball boundedness

A linear program defined by n variables and a polyhedra P is **bounded** if and only if there is a large enough ball $B_{\varepsilon}^{n}[x]$ for some value $\varepsilon > 0$ and some vector $x \in \mathbb{R}^{n}$ that **contains** P, meaning that $P \subseteq B_{\varepsilon}^{n}[x]$.

Definition 32: Open set

A set $X \subseteq \mathbb{R}^n$ is **open** if $\forall x \in X$ it holds that $\exists \varepsilon \in \mathbb{R}$ such that $B_{\varepsilon}^n(x) \subseteq X$

Even thought the definition seems counterintuitive, one has to consider the fact that ε can be as small as we like.

Examples:

- The set $X = \{x \in \mathbb{R} \mid ||2 x|| < 1\}$ is closed since we can always pick a small enough ε such that the open ball of radius epsilon of each point in X is also contained in X. In fact, we notice that the set X corresponds to the open interval $(1,3) \subseteq \mathbb{R}$. Moreover, we also have that $X = B_1(2)$.
- The set $X = \{x \in \mathbb{R} \mid ||2 x|| \leq 1\}$ isn't open since for each $\varepsilon > 0$ we have that $B_{\varepsilon}(1) \not\subseteq X$ and $B_{\varepsilon}^{n}(1) \not\subseteq X$. In fact, we notice that the set X corresponds to the closed interval $[1,3] \subset \mathbb{R}$.
- The set $X = \{x \in \mathbb{R} \mid (x < 0 \land ||2 x|| < 1) \lor (x \ge 0 \land ||2 x|| \le 1)\}$ isn't open since for each $\varepsilon > 0$ we have that $B_{\varepsilon}^{n}(1) \not\subseteq X$. In fact, we notice that the set X corresponds to the semi-open interval $[1,3) \subseteq \mathbb{R}$.

Definition 33: Closed set

A set $X \subseteq \mathbb{R}^n$ is **closed** if $\mathbb{R}^n - X$ is open

Examples:

- The set $X = \{x \in \mathbb{R} \mid ||2 x|| \le 1\}$, is closed since $\mathbb{R} X$ is open. In fact, we have that X is equivalent to the closed interval $[1,3] \subseteq \mathbb{R}$ and $\mathbb{R} X$ is equivalent to the union of the open sets $(-\infty,1) \cup (2,+\infty)$
- The set $X = \{x \in \mathbb{R} \mid ||2 x|| \le 1\}$ isn't closed
- The set $X = \{x \in \mathbb{R} \mid (x < 0 \land ||2 x|| < 1) \lor (x \ge 0 \land ||2 x|| \le 1)\}$ isn't closed
- \bullet The set \varnothing is both open and closed

Proposition 15: Union of open sets

The union of an arbitrary amount (meaning that it can be finite or infinite) of open sets is also **open**

Proof.

Let $X_1, X_2, \ldots \subseteq \mathbb{R}^n$ be an arbitrary amount of open sets and let $I = \{1, 2, \ldots\}$ be the set of the indices of such sets. Additionally, let $X = \bigcup_{i \in I} X_i$. Given $x \in X$, by definition we have that $\exists i \in I$ such that $x \in X_i$. Thus, since X_i is open, we have that $\exists \varepsilon > 0$ such that $B_{\varepsilon}^n(x) \subseteq X_i \subseteq X$, concluding that X is also open.

Proposition 16: Union of closed sets

The union of a finite amount of closed sets is also **closed**

Proof.

Let $X_1, \ldots, X_n \subseteq \mathbb{R}^n$ a finite amount of closed sets and let $X = \bigcup_{i \in I} X_i$. By De Morgan's theorem, we have that:

$$\overline{X} = \overline{\left(\bigcup_{i=1}^{n} X_i\right)} = \bigcap_{i=1}^{n} \overline{X_i}$$

Thus, given $x \in X$ we have that for each X_i it holds that $x \in X_i$, implying that $\exists \varepsilon_i > 0$ such that $B^n_{\varepsilon_i}(x) \subseteq \overline{X_i}$. Let $\varepsilon = \min\{\varepsilon_1, \dots, \varepsilon_n\}$. For each index i, we have that $B^n_{\varepsilon}(x) \subseteq B^n_{\varepsilon_i}(x) \subseteq \overline{X_i}$ and thus $B^n_{\varepsilon} \subseteq \overline{X}$, implying that \overline{X} is open and thus that X is closed.

Note: the argument fails in case of an infinite amount of sets since we could have an infinite amount of ε_i , meaning that there is no minimum value (remember that $\varepsilon_1, \varepsilon_2, \ldots$ are real values, so there could always be a smaller value in the infinite set). In fact, the infinite union of all closed subsets of \mathbb{R}^n corresponds to \mathbb{R}^n itself, which isn't closed.

Definition 34: Convex cone

Given $a_1, \ldots, a_n \in \mathbb{R}^m$, the **convex cone** of a_1, \ldots, a_n is the set

$$C = \{t_1 a_1 + \ldots + t_n a_n \mid t_1, \ldots, t_n \ge 0\}$$

Obviously, it can be easily shown that a convex cone is convex (proof left for the reader as an exercise).

Figure 4.1: Example of a convex cone

Definition 35: Primitive convex cone

A convex cone C defined by $a_1, \ldots, a_n \in \mathbb{R}^m$ is **primitive** if a_1, \ldots, a_n are linearly independent

Observation 16

Every convex cone is the union of a finite amount of primitive cones

Proof.

Let C be a convex cone defined by $a_1, \ldots, a_n \in \mathbb{R}^m$ and let $\mathcal{I} = \{I \subseteq \{1, \ldots, k\} \mid i_1, \ldots, i_k \in I \text{ such that } a_{i_1}, \ldots, a_{i_k} \text{ are lin. ind.} \}$. Since \mathcal{I} potentially contains all subsets of $\{1, \ldots, n\}$, we have that $|\mathcal{I}| \leq 2^k$. For each $I \in \mathcal{I}$, let C_I be the convex cone defined by the vectors which indexes are in I. By definition, we have that $\forall I \in \mathcal{I}$ it holds that C_I is primitive.

Trivially, we have that $\forall I \in \mathcal{I}$ it holds that $C_I \subseteq C$ so we have that $\bigcup_{I \in \mathcal{I}} C_I \subseteq C$.

Instead, given $x \in C$, by definition we have that $x = \sum_{i=1}^k \alpha_i a_i$ where $\alpha_1, \ldots, \alpha_k \geq 0$.

If v_1, \ldots, v_n are linearly independent then $x \in C_{\{1,\ldots,k\}} = C$ concluding that C itself is the finite union of primitive cones. Otherwise, if they are linearly dependent, assume that $\alpha_1, \ldots, \alpha_k$ are picked to maximize the amount of zero scalars that make up the linear combination of x (this assumption is always valid since they are linearly dependent).

Let $J = \{i \in I \mid \alpha_i > 0\}$. We notice that since C is a convex cone, if $i \in I - J$ then $\alpha_i = 0$ and that |J| < |I| since at least a zero scalar exists in the combination.

By way of contradiction, suppose that the set of vertices whose index is in J is not linearly independent, meaning that $\exists \beta_1, \ldots, \beta_n \in \mathbb{R}$ such that $\sum_{j \in J} \beta_j a_j = 0$. Given $t \in \mathbb{R}$, consider $a_j - t\beta_j$ for some $j \in J$. Since $a_j > 0$ and $\beta_j \in \mathbb{R}$, we notice that

$$\alpha_j - t\beta_j \ge 0 \iff t \le \frac{|\alpha_j|}{|\beta_j|}$$

Thus, we get that if $t \to +\infty$ then $\alpha_j - t\beta_j \to -\infty$, while if $t \to -\infty$ then $\alpha_j - t\beta_j \to +\infty$. Furthermore, this also implies that $\exists t' \in \mathbb{R}$ such that $\alpha_j - tb_j \geq 0$ for all $j \in J$. In particular, for the index j that minimizes the value $\frac{|\alpha_j|}{|\beta_j|}$, we have that $t' = abs\alpha_j |\beta_j|$, implying that for some $j' \in J$ it holds that $\alpha_{j'} - t\beta_{j'} = 0$.

Finally, we get that:

$$\sum_{j \in J} (\alpha_j - t\beta_j) a_j = \sum_{j \in J} \alpha_j a_j - \sum_{j \in J} t\beta_j a_j$$
$$= \sum_{j \in J} \alpha_j a_j = \sum_{j \in J} \alpha_j a_j + \sum_{i \in I - J} \alpha_i a_i = \sum_{i \in I} \alpha_i a_i = x$$

concluding that $\sum_{j\in J} (\alpha_j - t\beta_j) a_j$ is a linear combination of x with strictly more zero scalars than $\sum_{i\in I} \alpha_i a_i$ (since $\alpha_{j'} - t\beta_{j'} = 0$), which is a contradiction.

Thus, we get that the set of vertices whose index is in J must be linearly independent, implying that $x \in C_J \subseteq \bigcup_{I \in \mathcal{I}} C_I$ and thus that $C \subseteq \bigcup_{I \in \mathcal{I}} C_I$.

Proposition 17: Closed primitive convex cones

Every primitive convex cone is **closed**

Proof.

Let $P \subseteq \mathbb{R}^m$ be the primitive convex cone generated by the linearly independent vectors $a_1, \ldots, a_n \in \mathbb{R}^m$, where $n \leq m$. Consider also the primitive convex cone $P_0 \subseteq \mathbb{R}^n$ generated by the linearly independent vectors e_1, \ldots, e_n of the standard basis of R^n . Since $P_0 = \{t_1e_1 + \ldots + t_ne_n \mid t_1, \ldots, t_k \geq 0\}$, it's easy to see that P_0 corresponds to the non-negative *orthant* (the *n*-dimensional generalization of a quadrant and an octant), which is obviously closed.

We define the linear mapping $f: \mathbb{R}^n \to \mathbb{R}^m : x \mapsto x_1a_1 + \dots x_na_n$. Since a_1, \dots, a_n are linearly independent, we have that $\ker(f) = \{0\}$, implying that f is injective and that $P = f(P_0)$, meaning that P is equal to the image of f on P_0 . Consider now the restriction $g: \mathbb{R}^n \to \operatorname{im}(f)$. Since f is injective, we have that g is also injective and that $|\mathbb{R}^n| = |\operatorname{im}(f)|$, concluding that g is an isomorphism from \mathbb{R}^n to $\operatorname{im}(f)$ and thus that there exists a inverse isomorphism f^{-1} .

We notice that $P = f(P_0) = (f^{-1})^{-1}(P_0)$, meaning that P is the pre-image of P_0 for the inverse map f^{-1} . Moreover \mathbb{R}^n and $\operatorname{im}(f) \subseteq \mathbb{R}^m$ are euclidean spaces, so the linear maps f and f^{-1} are must be continuous.

Since $P = (f^{-1})^{-1}(P_0)$ and f^{-1} is a continuous map, it must hold that P is also closed (otherwise f^{-1} wouldn't be continuous), concluding that P is closed as a subset of $\operatorname{im}(f)$. Moreover, since $\operatorname{im}(f)$ is closed as a subset of \mathbb{R}^m (due to it being a subspace), we get that P must also be closed as a subset of \mathbb{R}^m .

Corollary 6: Closed convex cones

Every convex cone is **closed**

(follows from Proposition 16, Observation 16 and Proposition 17)

Lemma 10: Closest point to a closed set

Given a closed set $X \subseteq \mathbb{R}^n$ and a point $b \in \mathbb{R}^n$, there exists a point $x \in X$ closest to b, meaning that ||x - b|| is minimal.

Proof.

Given $v \in X$, consider the closed ball $B^n_{\|v-b\|}[b]$ around b of radius $\|v-b\|$. Since X and B are closed, it holds that $X \cap B^n_{\|v-b\|}[b]$ is also closed. Moreover, since $B^n_{\|v-b\|}[b]$ is bounded, meaning that it doesn't have an infinite ray inside, $X \cap B^n_{\|v-b\|}[b]$ is also bounded.

We define the map $f: X \cap B_{\|v-b\|}[b] \to \mathbb{R}: y \mapsto \|y-b\|$, i.e. f(y) is the distance from $y \in X \cap B_{\|v-b\|}^n[b]$ to b. It's easy to see that f is a continuous function. Thus, since we also know that $X \cap B_{\|v-b\|}^n[b]$ is closed and bounded, by the Bolzano-Weierstrass theorem we have that f must have a minimum and a maximum value. Thus, we get that $\exists x \in X$ such that $f(x) = \|x-b\|$ is minimum.

Theorem 14: Farkas' lemma (Geometric version)

Given the vectors $a_1, \ldots, a_n, b \in \mathbb{R}^m$, exactly one of the following holds:

- 1. b is in the convex cone C defined by a_1, \ldots, a_n
- 2. There is a non-affine hyperplane $H = \{x \in \mathbb{R}^m \mid c^T x = 0\}$ for some $c \in \mathbb{R}^m$ such that $c^T b < 0$ and $\forall x \in C$ we have that $c^T x \geq 0$. In other words, the hyperplane H separates C and b.

Figure 4.2: Visualization of the first and second implications of Farkas' lemma

Proof.

The fist implication is true if $b \in C$, so we just need to proove that when $b \notin C$ the second implication holds. Thus, suppose that $b \notin C$. By Lemma 10, we know that $\exists z \in C$ closest to b. Let c = z - b. We notice that c must be orthogonal to z:

- If z = 0 then $c^T z = 0$, so they are orthogonal
- If $z \neq 0$ and they wouldn't be orthogonal, we would have that z wouldn't be the point in C closest to b

We notice that since $b \notin C$ and $0 \in C$, it holds that $c = z - b \neq 0$. Thus, since we know that $c^T z = 0$, we get that:

$$0 < ||c|| = c^T c = c^T (z - b) = c^T z - c^T b = -c^T b$$

concluding that $c^Tb < 0$. Instead, given $x \in C$, we know that the angle $\theta = \angle xzb$ must be at least 90° and at most 270°. Otherwise, there would be a point in C different from z closer to b, which is a contradiction.

Thus, since $c^T(x-z) = ||c|| \cdot ||x-z|| \cdot \cos(\theta)$ and $\cos(\theta) \le 0$, we get that $c^T(x-z) \le 0$, implying that:

$$0 \ge c^T(x - z) = c^T x - c^T z = c^T x$$

concluding that $\forall x \in \mathbb{C}$ it holds that $c^T x \geq 0$. Thus, the non-affine hyperplane $H = \{y \in \mathbb{R}^m \mid c^T y = 0\}$ separates C and b.

Figure 4.3: Visualization of proof's argument

Observation 17

The algebraic version and the geometrical version of Farkas' lemma are equivalent

Proof.

Given the vectors $a_1, \ldots, a_n, b \in \mathbb{R}^m$, let $A = [a_1 \mid \ldots \mid a_n]$ be the $n \times m$ matrix of such vectors. Let also C be the convex cone defined by a_1, \ldots, a_n . We notice that:

$$b \in C \iff \exists x \geq 0 \text{ such that } x_1 a_1 + \ldots + x_n a_n = b \iff Ax = b \text{ with } x \geq 0$$

concluding that the first implications of both versions are equivalent.

Viceversa, suppose that there is an hyperplane $H = \{x \in \mathbb{R}^n \mid y^Tx = 0\}$ that separates C from b. First, we notice that saying that C resides on a side of H is equivalent to saying that a_1, \ldots, a_n reside on that side (since a_1, \ldots, a_n define C). Thus, we get that $y^Tb < 0$ and $\forall x \in C$ $c^Ty \geq 0$ if and only if $y^Tb < 0$ and $y^Ta_1, \ldots, y^Ta_n \geq 0$. However, the latter can only if and only if $A^Ty \geq 0$, concluding that the second implications of both versions are equivalent.

4.6 Complimentary slackness

Definition 36: Slack and tight constraints

A constraint in the form $a_1x_1 + \ldots + a_nx_n \leq b$ is said to be:

- Slack for a solution x^* if it's a satisfied as a strict inequality, meaning that $a_1x_1^* + \ldots + a_nx_n^* < b$.
- **Tight** for a solution x^* if it's satisfied as an equality, meaning that $a_1x_1^* + \ldots + a_nx_n^* = b$.

The origin of these two definitions directly comes from the concept of *slack variables*: once we convert the constraint in standard form, the original constraint was strict if and only if the added slack variable is set to a value different from 0.

Through the concept of duality, we know that each variable of the primal problem is associated to a constraint of the dual program and that every variable of the latter is associated to a constraint of the primal program. In particular, the *i*-th constraint of (P) can be described as $A_i x_i \leq b_i$, where A_i denotes the *i*-th row of A, and the *j*-th constraint of (D) can be described as $A_j^T y_j \geq c_j$. Through the concept of constraint slackness and the duality theorems, we can the derive the following relations.

Theorem 15: Complementary slackness

Given a primal dual pair (P), (D), let x^* be an optimal solution to (P) and let y^* be an optimal solution to (D). The following relations hold:

- 1. If $x_i^* > 0$ then $A_i^T y_i^* = c_i$
- 2. If $A_i x_i^* < b_i$ then $y_i^* = 0$
- 3. If $y_j^* > 0$ then $A_j x_j^* = b_i$
- 4. If $A_i^T y_i^* > c_j$ then $x_i^* = 0$

Proof.

For any feasible solution x and y to (P) and (D), we know that $Ax \leq b$ and $A^Ty \geq c$ must hold. Thus, we get that:

$$Ax \le b \iff y^T Ax \le y^T b = b^T y$$

and that:

$$A^Ty \geq c \iff y^TA \geq c^T \iff y^TAx \geq c^Tx$$

concluding that $c^T x \leq y^T A x \leq b^T y$ (notice that this relation is effectively a proof of the weak duality theorem). In particular, by the strong duality theorem we know that $c^T x^* = b^T y^*$, implying that $c^T x^* = y^{*T} A x^* = b^T y^*$ holds.

Since $c^T x^* = y^{*T} A x^*$, we get that:

$$c^{T}x^{*} = y^{*T}Ax^{*} \iff (c^{T} - y^{*T}A)x^{*} = 0 \iff \sum_{i=1}^{n}(c_{i}^{T} - y_{i}^{*T}A_{i})x_{i}^{*} = 0$$

Now, for each index i, we get two cases:

- If $x_i^* > 0$ then $(c_i^T y_i^{*T} A_i) x_i^* = 0$ holds only if $c_i^T y_i^{*T} A_i = 0$, which implies that $c_i^T = y_i^{*T} A_i = A_i^T y_i^*$, giving the first relation of the theorem
- If $A_i^T y_i^* > c_i$ then we get that $0 > c_i A_i^T y_i^* = c_i^T y_i^{*T} A_i$, implying that $(c_i^T y_i^{*T} A_i) x_i^* = 0$ holds only if $x_i^* = 0$, giving the fourth relation of the theorem

Likewise, since $b^T y^* = y^{*T} A x^*$, we can derive the second and third relations.

Note: notice that if $x_i^* = 0$ we can't derive that $A_i^T y_i^* > c_i^T$ because the zero-product property allows $c_i^T - y_i^{*T} A_i$ to also be equal to zero. By the same reasoning, we can't conclude that $A_i^T y_i^* = c_i$ implies that $x_i^* > 0$.

The **complementary slackness theorem** gives us a very rapid way to find the optimal solution of the dual (or the primal) if we have an optimal solution of the primal (or the dual).

Suppose that x^* is an optimal solution of (P). For each index i such that $x_i^* > 0$, we know that the i-th constraint of (D) must be tight, meaning that $A_i^T y_i^* = c_i$ must hold. Moreover, for each index j such that $A_j x_j^* > 0$, we know that $y_j^* = 0$ must hold. By combining these equalities, we get a system of equations that directly gives us the values of the optimal solution y^* .

For example, consider the following primal program (on the left) and its dual program (on the right):

$$\max 2x_1 + 4x_2 + 3x_3 + x_4$$

$$3x_1 + x_2 + x_3 + 4x_4 \le 12$$

$$x_1 - 3x_2 + 2x_3 + 3x_4 \le 7$$

$$2x_1 + x_2 + 3x_3 - x_4 \le 10$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$\min 12y_1 + 7y_2 + 10y_3$$

$$3y_1 + y_2 + 2y_3 \ge 2$$

$$y_1 - 3y_2 + y_3 \ge 4$$

$$y_1 + 2y_2 + 3y_3 \ge 3$$

$$4y_1 + 3y_2 - y_3 \ge 1$$

$$y_1, y_2, y_3 \ge 0$$

Consider also the optimal solution $x^* = \begin{bmatrix} 0 & 10.4 & 0 & 0.4 \end{bmatrix}$ for the primal program. Since $x_2^*, x_4^* > 0$, by the complementary slackness theorem we know that for the optimal solution y^* it must hold that $y_1^* - 3y_2^* + y_3^* = 4$ and that $4y_1^* + 3y_2^* - y_3^* = 1$. Moreover, we notice that the second constraint of the primal is slack for x^* , meaning that $x_1^* - 3x_2^* + 2x_3^* + 3x_4^* < 7$, implying that $y_2^* = 0$ must hold.

Thus, we get the following system of equations:

$$\begin{cases} y_1^* - 3y_2^* + y_3^* = 4 \\ 4y_1^* + 3y_2^* - y_3^* = 1 \\ y_2^* = 0 \end{cases}$$

By solving the system, we get the dual optimal solution $y^* = \begin{bmatrix} 1 & 0 & 3 \end{bmatrix}$.

Complementary slackness can also be used to **check if a feasible solution is optimal** or not. For example, consider the following primal program (on the left) and its dual program (on the right):

$$\max 2x_1 + 16x_2 + 12x_3$$

$$2x_1 + x_2 - x_3 \le 3$$

$$-3x_1 + 8x_2 + 2x_3 \le 12$$

$$x_1, x_2, x_3 \ge 0$$

$$\min 3y_1 + 12y_2$$

$$2y_1 - 3y_2 \ge 2$$

$$y_1 + 8y_2 \ge 16$$

$$-y_1 + 2y_2 \ge 12$$

$$y_1, y_2 \ge 0$$

We wan't to check if the feasible solution $x^* = \begin{bmatrix} 6 & 0 & 12 \end{bmatrix}$ is also optimal. By assuming it is primal optimal, we can apply complementary slackness theorem to find the dual optimal solution y^* . In this particular example, we can find two solutions:

- 1. Since $2x_1^* + x_2^* x_3^* < 3$ and $-3x_1^* + 8x_2^* + 2x_3^* < 12$, we get that $y_1^*, y_2^* = 0$, giving us the dual optimal solution $y^* = \begin{bmatrix} 0 & 0 \end{bmatrix}$. However, we notice that that y^* is not dual feasible, which is impossible. Thus, we get that x^* cannot be an optimal solution.
- 2. Since $x_1^*, x_3^* > 0$, we get that $2y_1^* 3y_2^* = 2$ and $-y_1^* + 2y_2^* = 12$, resulting in the system:

$$\begin{cases} 2y_1^* - 3y_2^* = 2\\ -y_1^* + 2y_2^* = 12 \end{cases}$$

By solving the system, we get the dual optimal solution $y^* = \begin{bmatrix} 40 & 26 \end{bmatrix}$. However, we notice that:

$$2x_1^* + 16x_2^* + 12x_3^* = 156 \neq 432 = 3y_1^* + 12y_2^*$$

meaning that the two optimal solutions don't share the same value, which is impossible. Thus, we get that x^* cannot be an optimal solution.

4.7 Solved exercises

Problem 4: Self-duality

Consider the following primal program:

$$\min c^T x$$
$$Ax \ge b$$
$$x > 0$$

- 1. Form the dual program and state it as an equivalent minimization problem
- 2. Derive the conditions on A, b and c such that the dual is identical to the primal, meaning that the problem is self-dual
- 3. Give a concrete example of a primal program identical to its dual

Solution:

First, we notice that the given primal is a minimization problem. Thus, by Proposition 5 we convert it into a general maximization problem:

$$\begin{array}{ccc}
\min \ c^T x & \max \ -c^T x \\
Ax \ge b & \Longrightarrow & -Ax \le -b \\
x \ge 0 & x \ge 0
\end{array}$$

Now, its easy to see that its dual corresponds to:

$$\min_{-A^T y} -b^T y$$
$$-A^T y \ge -c$$
$$y > 0$$

Moreover, we also notice that if c = -b and $A = -A^T$, meaning that the matrix is skew-symmetric, the dual and the primal are identical. In fact, given the following primal program:

$$\min x_1 + x_2 + x_3 \qquad \min \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \\
x_2 + x_3 \ge -1 \\
-x_1 - x_3 \ge -1 \\
-x_1 - x_2 \ge -1 \\
x_1, x_2, x_3 \ge 0$$

$$\min \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \le \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} \\
x_1, x_2, x_3 \ge 0$$

by following the steps described above, we get that the dual corresponds to:

$$\min y_1 + y_2 + y_3 \qquad \min \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \\
y_2 + y_3 \ge -1 \\
-y_1 - y_3 \ge -1 \\
-y_1 - y_2 \ge -1 \\
y_1, y_2, y_3 \ge 0$$

$$\min \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \le \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} \\
y_1, y_2, y_3 \ge 0$$

Other ways to solve a linear program

5.1 Runtime of the simplex method

Once we have discussed everything regarding how the simplex method works and how to handle infeasibility, unboundedness, degeneracy and cycling, we can finally discuss the **efficiency** of the simplex method.

We have already discussed that a linear program has at most $\binom{n}{m}$ feasible bases. However, each pivot rule never goes through all the bases, so could there be a pivot rule that is efficient?

The **largest coefficient rule** originally suggested by Dantzig has been proven by Klee and Minty to actually be the least efficient rule. They formulated a way to construct an n-dimensional polyhedron in \mathbb{R}^n with at most 3n constraints that always takes $2^n - 1$ pivot steps using Dantzig's rule.

Figure 5.1: The Klee-Minty polyhedron in \mathbb{R}^2 and \mathbb{R}^3 and the respective paths of length 2^2-1 and 2^3-1

By squishing this polyhedron, which can be done by altering the coefficients of the constraints, Klee and Minty showed that the largest coefficient rule always takes these longest paths. Thus, the largest coefficient rule has a an exponential runtime, meaning that it's actually very inefficient.

Figure 5.2: Squished version Klee-Minty polyhedron that fools Dantzig's rule

In particular, the previous squished polyhedron is given by the following linear program:

$$\max 9x_1 + 3x_2 - x_3$$

$$x_1 \le 1$$

$$6x_1 + x_2 \le 9$$

$$18x_1 + 6x_2 - 2x_3 \le 81$$

$$x_1, x_2, x_3 \ge 0$$

Once Dantzig's rule was fooled by Klee and Minty, researchers started analyzing the runtime of other rules. In particular, it was shown that if you randomly order the n variables of the linear program and apply **Bland's rule**, the expected number of pivots is at most $e^{C\sqrt{n\ln n}}$, where C is a not too large constant. Thus, Bland's rule has a superpolynomial runtime, meaning that it's worse than any polynomial but better than any exponential, which is indeed better than Dantzig's rule, but still inefficient.

In fact, the lower bound is not know even for the yet undiscovered *clairvoyant rule*, i.e. a pivot rule capable of always taking the shortest path possible. **Hirsh's conjecture** suggests that any polyhedron in \mathbb{R}^n with at most cn constraints has a diameter of at most n^c , where the diameter of a polyhedron is the maximum length of any path between two vertices.

This conjecture directly gives a polynomial lower bound for the clairvoyant rule, which implies that the simplex method can in fact run efficiently. However, Hirsh's conjecture has been proven to be false by Leal in 2011, but this doesn't imply that the simplex method can't run in polynomial time.

Even though in theory it is very inefficient, in practice the simplex method usually terminates in a reasonable amount of time, giving the worst case only for very specifically crafted polyhedra.

5.1.1 Bit size of a linear program

Once we know that the simplex method currently requires at most a super-polynomial amount of pivot steps, we can properly discuss the **computational complexity** of the simplex method. In order to do so, we have to first define the computational measure of any algorithm that solves a linear program. This measure is based on the input **bit** size $\langle P \rangle$ of the given linear program, which is the amount of bits required to define it.

Any linear program is defined by the constraint matrix A and the two vectors b and c, so the bit size of the program corresponds to the sum of the bit sizes of these three elements, meaning that $\langle P \rangle = \langle A \rangle + \langle b \rangle + \langle c \rangle$.

Any integer α has a bit size equal to $\langle \alpha \rangle = \lceil \log \alpha + 1 \rceil + 1$, where $\lceil \log \alpha + 1 \rceil$ bits are used to expresses the absolute value of α and the last additional bit expresses the sign of α . Moreover, even thought the program is defined on \mathbb{R} , any real number must be approximated as a rational number, since we can't express an infinite amount of bits. Any rational number $\frac{\beta}{\gamma}$ is represented by the integers β, γ , meaning that it requires a bit size of $\left\langle \frac{\beta}{\gamma} \right\rangle = \langle \beta \rangle + \langle \gamma \rangle$. Thus, the sizes of the three elements are given by:

$$\langle A \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} \langle a_{i,j} \rangle$$
 $\langle b \rangle = \sum_{i=1}^{n} \langle b_{i} \rangle$ $\langle c \rangle = \sum_{i=1}^{n} \langle c_{i} \rangle$

where each of these numbers are an integer or a rational number (which is still represented by two integers). The discussed results of the runtime of the simplex method are based on the number of variables that define the problem. However, such number is defined by the three elements A, b, c. Thus, the current runtime of the simplex method is effectively $\sup -poly(\langle A \rangle + \langle b \rangle + \langle c \rangle)$.

5.2 The Ellipsoid method

We know that the simplex method doesn't always give us an optimal solution in an reasonable amount of time. However, other methods can effectively give such solution in an efficient way. In particular, we have shown in Proposition 14 that finding a feasible solution is computationally equivalent to finding an optimal solution. The latter problem can always be solved in $poly(\langle A \rangle + \langle b \rangle + \langle c \rangle)$ by the **Ellipsoid method**, allowing us to find an optimal solution efficiently with the method shown in Proposition 14.

Informally, an ellipsoid is the n dimensional generalization of an ellipse. It's easy to see that an ellipsoid is nothing more than an **affine transformation** of a ball which translates, squashes and stretches the ball.

Definition 37: Ellipsoid

An **ellipsoid** is an affine transformation of the closed ball of radius one centered in zero, $B_1^n[0]$:

$$E = \{ Mx + s \in R^n \mid x \in B_1^n[0] \}$$

where M is a non-singular matrix and $s \in \mathbb{R}^n$

For example, in the following image we have $B := B_1^2[0]$, $E = \left\{ \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} x \mid x \in B \right\}$ and $E' = \left\{ \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mid x \in B \right\}$

We notice that for every ellipsoid E it holds that:

$$E = \{Mx + s \in R^n \mid x \in B_1^n[0]\}$$

$$= \{y \in R^n \mid M^{-1}(y - s) \in B_1^n[0]\}$$

$$= \{y \in R^n \mid \|0 - M^{-1}(y - s)\| \le 1\}$$

$$= \{y \in R^n \mid (y - s)^T (M^{-1})^T M^{-1}(y - s) \le 1\}$$

$$= \{y \in R^n \mid (y - s)^T Q^{-1}(y - s) \le 1\}$$

where $Q := MM^T$ and $Q^{-1} = (M^{-1})^T M^{-1}$. This result implies that Q is a **positive definite matrix**, that being a symmetric square matrix such that $x^T Q x > 0$ for all vectors $x \in \mathbb{R}^n$ such that $x \geq 0$. Conversely, from matrix theory it is known that each positive definite matrix Q can be factored as $Q = MM^T$ for some non-singular square matrix M. Thus, we get the following theorem and its corollary.

Theorem 16

Q is a positive definite matrix if and only if there is a non-singular matrix M such that $Q = MM^T$

Corollary 7

 $E \subseteq \mathbb{R}^n$ is an ellipsoid with center $s \in \mathbb{R}^n$ if and only if there is a non-singular matrix M such that, given $Q = MM^T$, it holds that $E = \{y \in R^n \mid (y-s)^TQ^{-1}(y-s) \le 1\}$

Now that we have shown the main concepts involved, we can define the **Ellipsoid method**. Let $R, \varepsilon \in \mathbb{R}$ be two additional input values. Suppose that we have already verified that the polyhedron of feasible solutions $P = \{x \in \mathbb{R}^n \mid Ax \leq b, x \geq 0\}$ is contained inside a ball of radius R, meaning that $P \subseteq B_R^n[0]$.

The algorithm proceeds by finding a series of ellipsoids E_0, \ldots, E_t such that $\forall i \ P \subseteq E_i$ and either the center s_t of E_t is contained inside of P or the volume of E_t is less than a ball of radius ε (meaning that the input value ε is a threshold value). The first case happens when there is a feasible solution to the linear program, while the latter happens when such solution doesn't exist:

- 1. Let $E_0 = B_R^n[0]$ be the initial ellipsoid and set k = 0.
- 2. Suppose that $P \subseteq E_0, \ldots, E_k$. Let s_k be the center of the ellipsoid E_k , i.e. the last computed ellipsoid. If $s_k \in P$, then set t = k and **return** s_k .
- 3. Otherwise, let $A_i^T x \leq b_i$ be one of the constraints violated by s_k , where A_i denotes the *i*-th row of A. The hyperplane given by $A_i^T x \leq A_i^T s_k$ splits the ellipsoid E_k in two half-ellipsoids, where all of P lies inside the half-ellipsoid $H_k = \{x \in E_k \mid A_i^T x \leq A_i^T s_k\}$, meaning that $P \subseteq H_k$.
- 4. Let E_{k+1} be the ellipsoid with the smallest possible volume such that $H_k \subseteq E_{k+1}$. If the volume of E_{k+1} is smaller than the volume of the ball $B_{\varepsilon}^n(0)$, return **no solution**. Otherwise, increase k by 1 and repeat the process from step 2.

Figure 5.3: The k-th iteration of the Ellipsoid method

Claim 1: For each $k \geq 0$, the ellipsoid E_{k+1} is uniquely defined and given by following the equations:

$$s_{k+1} = s_k - \frac{1}{n+1} \cdot \frac{Q_k s_k}{\sqrt{s_k^T Q_k s_k}}$$
$$Q_{k+1} = \frac{n^2}{n^2 - 1} (Q_k - \frac{2}{n+1} \cdot \frac{Q_k s_k s_k^T Q_k}{s_k^T Q_k s_k})$$

where Q_0, \ldots, Q_{k+1} are the positive definite matrices that define the ellipsoids E_0, \ldots, E_{k+1} .

Moreover, it holds that:

$$\frac{\operatorname{Vol}(E_{k+1})}{\operatorname{Vol}(E_k)} \le e^{-\frac{1}{2n+2}}$$

Proof of the claim omitted.

In particular, we notice that $E_0 = B_R^n(0) = \{(R \cdot I_m)x \mid x \in B_1^n(0)\}$, meaning that $Q_0 = (R \cdot I_m)(R \cdot I_m)^T$. The two equations of each iteration given by the claim can be easily computed in polynomial time.

The claim also affirms that, since $e^{-\frac{1}{2n+2}} > 1$ is always true, the volume of the ellipses get smaller and smaller by each iteration. This ensures that, at some point, it will always hold that $\operatorname{Vol}(E_t) < \operatorname{Vol}(B_{\varepsilon}^n(0))$, meaning that the always algorithm terminates.

Claim 2: The Ellipsoid method terminates after $\left[n(2n+2)\ln\left(\frac{R}{\varepsilon}\right)\right]$ iterations.

Proof of the claim.

By the previous claim, we know that for each iteration k it holds that:

$$\operatorname{Vol}(E_k) \le \operatorname{Vol}(E_0) \cdot e^{-\frac{k}{2n+2}}$$

Since $E_0 = B_R^n(0)$, we know that $\operatorname{Vol}(E_0) = cR^n$ for some constant $c \in \mathbb{R}$ such that c > 1, implying that:

$$\operatorname{Vol}(E_k) \le cR^n \cdot e^{-\frac{k}{2n+2}}$$

If $k \ge n(2n+2) \ln \left(\frac{R}{\varepsilon}\right)$, assuming that $\varepsilon < 1$, we get that:

$$\operatorname{Vol}(E_k) \le cR^n \cdot e^{-\frac{k}{2n+2}} \le cR^n \cdot e^{-\frac{n(2n+2)\ln\left(\frac{R}{\varepsilon}\right)}{2n+2}} = \frac{cR^n}{e^{n\ln\left(\frac{R}{\varepsilon}\right)}} = c\varepsilon^n < \varepsilon$$

so the algorithm is guaranteed to terminate after $\left\lceil n(2n+2) \ln \left(\frac{R}{\varepsilon}\right) \right\rceil$ iterations.

Even though the idea behind the Ellipsoid method is simple and elegant, there are some **technicalities** to consider. The first technicality arises in Claim 1 since the two equations contain a square root term, which may be some value in \mathbb{R} . However, we are assuming to be working in \mathbb{Q} , so we have to introduce a *small approximation factor*, meaning that each computed ellipsoid is **slightly larger** than the smallest possible ellipsoid.

The second technicality is pretty obvious: we have to find two suitable values for R and ε . Let $\varphi = \langle A \rangle + \langle b \rangle$ and let $K = 2^{\varphi}$.

Claim 3: The system $Ax \leq b$ has a feasible solution if and only if the system

$$Ax \le b$$

$$-K \le x_1 \le K$$

$$\vdots$$

$$-K \le x_n \le K$$

has a feasible solution.

Proof of the claim.

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ and let $P' = \{x \in \mathbb{R}^n \mid Ax \leq b \text{ and } \forall i - K \leq x_i \leq -K\}$. If $P' \neq \emptyset$ we trivially get that $P \neq \emptyset$ since $P' \subseteq P$. Viceversa, if $P \neq \emptyset$ then there is a BFS x^* which allows us to solve $Ax \leq b$ for each basic variable in terms of A and b, implying that the amount of bits of each variable are bounded by:

$$0 \le \langle x_i \rangle \le \langle a_{1,1} \rangle + \ldots + \langle 1, n \rangle + \langle b_1 \rangle + \ldots + \langle b_m \rangle = \langle A \rangle + \langle b \rangle = \varphi$$

Hence, for each variable we have that $0 \le x_i \le 2^{\varphi} = K$, implying that $x^* \in P'$ and thus $P' \ne \emptyset$.

This claim doesn't conclude that both problems are equal. In fact, it may not be true. However, **any solution** to the *relaxed* problem is a solution to the original problem, meaning that we can apply the Ellipsoid method to the second problem and find a valid solution to the original problem.

In particular, it's easy to see that the polyhedron P' of the relaxed problem shown is contained inside an hypercube of side 2k. The vertices of this hypercube are given by $[\pm K \cdots \pm K]$. Thus, we can inscribe this hypercube (and by consequence the polyhedron) inside a n-dimensional ball of radius $||0 - [\pm K \cdots \pm K]|| = K\sqrt{n}$. By setting

 $R = K\sqrt{n}$, we always know that the ball $B_R^n[0]$ contains P', giving us an **initial ball** to start the Ellipsoid method.

The last technicality to take care of is the choice of the value ε . Let $\eta=2^{-5\varphi}$ and $\varepsilon=2^{-6\varphi}$.

Claim 4: Let $z = [\eta \cdots \eta]$. The system $Ax \leq b$ has a solution then $Ax \leq b + z$ has a solution. Moreover, the polyhedron of the latter system contains a ball of radius ε .

This claim directly implies that by setting $\varepsilon=2^{-6\varphi}$ we are guaranteed that the ball of radius ε used by the Ellipsoid method works.

In summary, by setting $R = 2^{\langle A \rangle + \langle b \rangle}$ and $\varepsilon = 2^{-6(\langle A \rangle + \langle b \rangle)}$ the simplex method is guaranteed to return a feasible solution (if there is any) after

$$\left[n(2n+2)\ln\left(\frac{R}{\varepsilon}\right) \right] = \left\lceil 7n(2n+2)(\langle A \rangle + \langle b \rangle) \right\rceil$$

iterations, implying that the complexity of the Ellipsoid method is $poly(\langle A \rangle + \langle b \rangle)$.

However, even thought the Ellipsoid method theoretically runs faster than the Simplex method, in the average case the latter performs better. To give a "fair" justification of this, consider that in order to find an optimal solution with the Ellipsoid method we have to:

- 1. Compute the dual problem
- 2. Check with the Ellipsoid method if both the primal and the dual have a feasible solution, which involves a lot of matrix multiplications (a very slow, but polynomial, calculation)
- 3. Construct the auxiliary program as shown in Proposition 14, which has double the size of the input
- 4. Compute the auxiliary program using the Ellipsoid method, which again involves a lot of matrix multiplications

Instead, the Simplex method just requires to compute a bunch of tableaus, which is a very simple task.