Proyecto Integrador de Arquitectura y Ensamblador: Semáforo

Ariel Arévalo Alvarado*, Cheryl Bryden Watson†,
Génesis Herrera Knyght‡ y Yendry Jiménez Quesada§

E.C.C.I., Universidad de Costa Rica
San José, Costa Rica
*ariel.arevalo@ucr.ac.cr, †cheryl.bryden@ucr.ac.cr,
‡genesis.herreraknyght@ucr.ac.cr, §yendry.jimenezquesada@ucr.ac.cr

I. Introducción

En este proyecto se realizará la simulación de la funcionalidad de los semáforos en un cruce de calles con pasos peatonales. Este semáforo controlará el flujo de los vehículos que se dirigen a cuatro direcciones distintas, con giros a la izquierda para dos carriles y además el flujo de peatones para que estos puedan atravesar las calles de una forma segura. En Costa Rica, actualmente se tienen semáforos para controlar los cruces vehiculares donde la cantidad de vehículos es alta, y se incluyen semáforos peatonales, si al igual que con los vehículos, el flujo de peatones también es alto. Los semáforos modernos tienden a presentar lógica digital a nivel tanto de su control, así como dentro de los semáforos como tal.

II. Especificación

Semáforo:

Un semáforo es un dispositivo de control y seguridad utilizado para la señalización en

carreteras, permitiendo la regulación del paso de vehículos, bicicletas y transeúntes al intentar cruzar una carretera. Dependiendo del mecanismo de control de cada semáforo, la intención con la que fue colocado y el lugar de su colocación, pueden clasificarse en:

- 1. Semáforos para tránsito de vehículos
- 2. Semáforos para paso peatonal
- 3. Semáforos especiales

Para una intersección completa entre dos vías, con carril de giro a la izquierda en cada entrada a la intersección, se requiere un total de ocho semáforos de tránsito vehicular. En el caso de haber cruce peatonal en cada esquina, y en cada dirección, se requieren ocho semáforos peatonales. Estos semáforos reciben coordinación de un coordinador central para establecer un flujo razonable de peatones y vehículos que prevenga la colisión entre los mismos, asegurándose de alertar con antelación razonable a los conductores y peatones de sus cambios [1]. Además, el coordinador puede

recibir señal de botones en las esquinas para priorizar una fase que permita el paso peatonal.

Requerimientos funcionales:

- Al determinar las fases dentro de un ciclo semafórico se debe intentar que su número sea el menor posible, para así reducir los tiempos perdidos en cada ciclo, así como que asegurar que el número de movimientos simultáneos –sin conflictos comunes– sea el máximo posible [2].
- Los semáforos deben ser capaces de mostrar al menos una fase que permita cada tipo de movimiento posible desde cualquiera de las cuatro entradas a la intersección durante un ciclo.
- 3. El coordinador debe de conocer el orden preestablecido de las fases de tránsito vehicular, así como debe ser lo suficientemente flexible para incorporar una fase de paso peatonal y vehicular simultáneo y seguro en su ciclo cuando un peatón lo solicite por botón en las esquinas. Además debe ser capaz de mantener cada fase por 30 segundos. Estas fases consisten en un patrón de cuáles luces deben estar en verde en una parte determinada del ciclo completo de tránsito.
- Cada esquina debe tener dos botones, uno para cada dirección de cruce desde la misma. Esto resulta en ocho botones, que representan los cuatro cruces de vía

diferentes.

- 5. A nivel de intersección, se debe evitar que ocurra la misma fase peatonal dos veces seguidas. Cabe destacar que es preferible que esta lógica se implemente a nivel del bus para los botones, ya que permite evitar fases "robadas" peatonales por sobre-escritura.
- 6. Cualquier semáforo en la intersección debe ser capaz de cumplir con un ciclo completo de cada una de sus luces, así como de cambiar a amarillo (o parpadear, en el caso de los peatonales) por tres segundos únicamente cuando es sujeto a cambio en la siguiente fase.
- 7. El coordinador debe ser capaz de comunicarse con cada semáforo de la intersección, y deberá ser capaz de comunicarle a cada semáforo que es momento de cambiar de luz.

Requerimientos de arquitectura:

 Para el diseño del hardware se usará la herramienta Logisim y la implementación se simulará utilizando programación híbrida: un lenguaje de alto nivel (C/C++) y lenguaje ensamblador. Se simulará la interconexión del hardware y se trabajará la interfaz en el lenguaje C++. Se trabajarán los problemas que los componentes del hardware abordan con código en lenguaje ensamblado.

- La funcionalidad de los botones para solicitar el paso de los peatones, así como la validación de la fase peatonal se programará en lenguaje ensamblador.
- 3. El manejo y almacenamiento de las fases, así como el cronometraje entre cada fase por parte del coordinador se programará en lenguaje ensamblador. Las fases se almacenan como una serie de enteros binarios de tres bits.
- La lógica para controlar el estado del ciclo de luces individual que cada semáforo contiene será programada en lenguaje ensamblador.
- 5. La visualización en interfaz de los cambios de luces y de vías habilitadas, se trabajará en C++. Se espera poder llevar a cabo este proceso de forma simultánea con el del código en lenguaje ensamblador de forma nativa, pero en el caso donde esto no sea posible, se separará en dos secciones el código del coordinador para permitir la actualización de la interfaz, posibilitando así la simulación.
- 6. Como mecanismo de comunicación entre los botones y el coordinador existe un codificador 4 a 2, que traduce las cuatro direcciones de paso peatonal a un código de dos bits. Entre el coordinador y los semáforos existe un codificador 3 a 8, el cual convierte cada número entero representante de una fase (en binario) a una

- señal asincrónica, la cual pasa por un enrutador para aquellos de los 16 semáforos que deban cambiar sus luces para cada fase.
- 7. En práctica, se podría asumir el código del coordinador corriendo sobre un procesador con acceso a pines GPIO mapeados a direcciones en memoria, tomando como modelo el UP Board, con un chip Intel Atom y hasta 14 pines GPIO disponibles para uso general [3]. Sin embargo, como la implementación real de los semáforos revela, la lógica para coordinar un semáforo es lo suficientemente simple para ser implementada en un PLC a la medida [4].

Referencias

- [1] C. Mcshane, "The origins and globalization of Traffic Control Signals," *Journal of Urban History*, vol. 25, no. 3, pp. 379–404, Mar. 1999.
- [2] P. Koonce, "Traffic Signal Timing Manual", U.S. Department of Transportation Federal Highway Administration, Portland, OR, FHWA-HOP-08-024, Mar, 2008.
- [3] "UP Board Series," UP Bridge the Gap, 2022. [Online]. Available: https://up-board.org/up/specifications/. [Accessed: 18-Apr-2022].
- [4] "Traffic Signals 101", Office of Traffic, Safety & Technology, St. Paul, MN: Minnesota Dept. of Transportation, Jan. 2018.

