# Causal Inference for Asset Pricing

Valentin Haddad

Zhiguo He Paul Huebner Peter Kondor Erik Loualiche

UCLA, Stanford, SSE, LSE, Minnesota

November 2024

# Causal Inference for Asset Pricing

# Growing use of causal inference methods

- e.g. use IV/diff-in-diff to estimate the demand for financial assets
  - If the stock price of Tesla drops by 1%, how do you change your position?
  - If a group of investors starts buying GameStop, how does its price change?

# Causal Inference for Asset Pricing

# Growing use of causal inference methods

- e.g. use IV/diff-in-diff to estimate the demand for financial assets
  - If the stock price of Tesla drops by 1%, how do you change your position?
  - If a group of investors starts buying GameStop, how does its price change?

"This is not how we do asset pricing"

# Causal Inference vs Asset Pricing

# Key difference: substitution and spillovers between assets

- Natural substitution: assets are alternative ways to transfer wealth across time and states
- Equilibrium: all asset prices are jointly determined (CAPM, SDF, ...)

- Distinct from canonical causal inference
  - independent treatment, control, and excluded assets (SUTVA)

# Causal Inference vs Asset Pricing

# Key difference: substitution and spillovers between assets

- Natural substitution: assets are alternative ways to transfer wealth across time and states
- Equilibrium: all asset prices are jointly determined (CAPM, SDF, ...)

- Distinct from canonical causal inference
  - independent treatment, control, and excluded assets (SUTVA)

ightarrow our answer: a large family of substitution patterns that make inference possible

- 1. Flexible estimation using cross-sectional data
  - Exogeneity + relevance + ...

# 1. Flexible estimation using cross-sectional data

- Exogeneity + relevance + ...
- Simple conditions on substitution for valid inference conditional on observables
  - homogeneous substitution between assets
  - constant relative elasticity

# 1. Flexible estimation using cross-sectional data

- Exogeneity + relevance + ...
- Simple conditions on substitution for valid inference conditional on observables
  - homogeneous substitution between assets
  - constant relative elasticity
  - ightarrow Design sample and experiments to satisfy these conditions
  - $\rightarrow$  Natural interpretation in standard asset pricing
    - Markowitz finance: covariance between assets determine substitutability

# 1. Flexible estimation using cross-sectional data

- Exogeneity + relevance + ...
- Simple conditions on substitution for valid inference conditional on observables
  - homogeneous substitution between assets
  - constant relative elasticity
  - ightarrow Design sample and experiments to satisfy these conditions
  - → Natural interpretation in standard asset pricing
    - Markowitz finance: covariance between assets determine substitutability
- **Cross-section** only identifies **relative elasticity**:
  - If the price of the treatment changes relative to the control, how does my demand for the treatment changes relative to that for the control?
  - Difference between own-price and cross-price elasticity
  - ightarrow direct answer to micro-level counterfactuals (e.g. QE in one bond vs another)

# 2. Aggregate and group-level effects

■ Difference between own-price and cross-price elasticity not enough, need to separate

# 2. Aggregate and group-level effects

- Difference between own-price and cross-price elasticity not enough, need to separate
- Must rely on time series exogenous variation for more aggregated questions
  - "Missing intercepts" in the cross-section
  - Ex: Aggregate elasticity: QE in all bonds
  - Ex: QE in a group of bonds, e.g. long-maturity bonds

# 2. Aggregate and group-level effects

- Difference between own-price and cross-price elasticity not enough, need to separate
- Must rely on time series exogenous variation for more aggregated questions
  - "Missing intercepts" in the cross-section
  - Ex: Aggregate elasticity: QE in all bonds
  - Ex: QE in a group of bonds, e.g. long-maturity bonds
- Need to consider jointly all dimensions of substitution
  - Aggregate + all observables driving substitution
  - In practice: which substitution patterns matter for your research question? Incorporate those!

# 2. Aggregate and group-level effects

- Difference between own-price and cross-price elasticity not enough, need to separate
- Must rely on time series exogenous variation for more aggregated questions
  - "Missing intercepts" in the cross-section
  - Ex: Aggregate elasticity: QE in all bonds
  - Ex: QE in a group of bonds, e.g. long-maturity bonds
- Need to consider jointly all dimensions of substitution
  - Aggregate + all observables driving substitution
  - In practice: which substitution patterns matter for your research question? Incorporate those!
  - Alternative: using models for aggregation (CARA preferences, Logit, ...)

# TAKEAWAY

# A guide for causal inference in asset pricing

- Precise and flexible formal conditions for identification with asset prices and quantities
- A lot (but not all) of what's already been done is reasonable

# Related Literature

## Diff-in-diff

Shleifer (1986); Coval, Stafford (2007), Lou (2012); Chang, Hong, Liskovich (2014); Da, Larrain, Sialm, Tessada (2018); Pavlova, Sikorskaya (2023); Ben-David, Li, Rossi, Song (2023); Lu, Wu (2023); Selgrad (2024); ...

# Demand systems

Koijen, Yogo (2019, 2024); Koijen, Richmond, Yogo (2024); Gabaix, Koijen (2024);
 Bretscher, Schmid, Sen, Sharma (2024); Davis (2024); Oh, Noh, Song (2023); Chaudhry (2023), van der Beck (2024); Li, Lin (2024); Jansen, Li, Schmid (2024); ...

# ■ What we don't do:

- Strategic responses (Haddad, Huebner, Loualiche, 2024)
- Dynamics (Huebner, 2024; Haddad, Moreira, Muir, 2024)

DIFFERENCE BETWEEN CAUSAL INFERENCE

AND ASSET PRICING

All else equal, if the stock price of Tesla drops by 1%, how much do you increase your position?

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + \epsilon_i$$

All else equal, if the stock price of Tesla drops by 1%, how much do you increase your position?

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + \epsilon_i$$

 $\blacksquare$  Compare how your demand changes when one stock moved by 1% and not another one

ightarrow coefficient  $\widehat{\mathcal{E}}$ 

All else equal, if the stock price of Tesla drops by 1%, how much do you increase your position?

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + \epsilon_i$$

- lacktriangle Compare how your demand changes when one stock moved by 1% and not another one o coefficient  $\widehat{\mathcal{E}}$
- Basic identification concern: changes in prices are correlated with shifts in your demand curve  $cov(\Delta P_i, \epsilon_i) \neq 0$

All else equal, if the stock price of Tesla drops by 1%, how much do you increase your position?

$$\Delta D_i = \hat{\mathcal{E}} \Delta P_i + \theta' X_i + \epsilon_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

- Compare how your demand changes when one stock moved by 1% and not another one  $\rightarrow$  coefficient  $\widehat{\mathcal{E}}$
- Basic identification concern: changes in prices are correlated with shifts in your demand curve  $cov(\Delta P_i, \epsilon_i) \neq 0$ 
  - ightarrow use an instrument  $Z_i$  for prices
    - e.g. shocks to the demand of others
    - exclusion restriction: instrument orthogonal to your demand shocks,  $Z_i \perp \epsilon_i | X_i$

# EXAMPLES

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + \epsilon_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

- Koijen and Yogo (2019)
  - Estimate the demand curve of each institution (e.g. AQR)
  - $Z_i \approx$  how many institutions hold stock i
  - $-X_i$ : stock characteristics (book value, profitability, investment, beta)
  - Cross-section estimation in levels not differences

# EXAMPLES

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + \epsilon_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

- Koijen and Yogo (2019)
  - Estimate the demand curve of each institution (e.g. AQR)
  - $-Z_i \approx$  how many institutions hold stock i
  - $-X_i$ : stock characteristics (book value, profitability, investment, beta)
  - Cross-section estimation in levels not differences
- Selgrad (2024)
  - Estimate bond mutual fund response to shifts in price of treasuries
  - $Z_i$ : unexpected Fed purchase of specific treasury in QE auction

# "Asset Pricing is Different"

**Markowitz and Samuelson**: assets are just alternative means of transferring money across time and states of the world  $\rightarrow$  close substitutes

# "Asset Pricing is Different"

**Markowitz and Samuelson**: assets are just alternative means of transferring money across time and states of the world  $\rightarrow$  close substitutes

■ Mean-variance demand:

$$\begin{pmatrix} D_1 \\ \vdots \\ D_n \end{pmatrix} = \frac{1}{\gamma} \mathbf{\Sigma}^{-1} (\boldsymbol{\mu} - \begin{pmatrix} P_1 \\ \vdots \\ P_n \end{pmatrix})$$

→ All prices matter for all demands

# ASSET PRICING VS CAUSAL INFERENCE

General asset pricing demand: matrix of elasticity  ${\mathcal E}$ 

$$\Delta D_i = \mathcal{E}_{ii} \Delta P_i + \sum_{k \neq j} \mathcal{E}_{ik} \Delta P_k + \epsilon_i$$

- $\blacksquare$  mean-variance:  $\mathcal{E} = -\gamma^{-1} \Sigma^{-1}$
- $\mathcal{E}_{ik}$ : capture substitution across assets

# ASSET PRICING VS CAUSAL INFERENCE

General asset pricing demand: matrix of elasticity  ${\mathcal E}$ 

$$\Delta D_i = \mathcal{E}_{ii} \Delta P_i + \sum_{k \neq j} \mathcal{E}_{ik} \Delta P_k + \epsilon_i$$

- $\blacksquare$  mean-variance:  $\mathcal{E} = -\gamma^{-1} \Sigma^{-1}$
- $\mathcal{E}_{ik}$ : capture substitution across assets

Causal inference: univariate coefficient  $\widehat{\mathcal{E}}$ 

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + \epsilon_i$$

# ASSET PRICING VS CAUSAL INFERENCE

General asset pricing demand: matrix of elasticity  ${\mathcal E}$ 

$$\Delta D_i = \mathcal{E}_{ii} \Delta P_i + \sum_{k \neq j} \mathcal{E}_{ik} \Delta P_k + \epsilon_i$$

- $\blacksquare$  mean-variance:  $\mathcal{E} = -\gamma^{-1} \Sigma^{-1}$
- $\mathcal{E}_{ik}$ : capture substitution across assets

Causal inference: univariate coefficient  $\widehat{\mathcal{E}}$ 

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + \epsilon_i$$

# Misspecified estimation: violation of SUTVA

- Because all prices are connected in equilibrium, shocking one price naturally shocks the other prices
- Even if you could only treat one asset, its price will affect demand for the control

- Setup:
  - 2 assets in estimation sample S: Tesla, GM
  - 1 omitted asset: Nvidia
  - No shifts in demand curves  $\epsilon_i$  or observables  $X_i$
  - Exogenous supply shock  $Z_{Tesla}=1$  affects prices ( $Z_{GM}=Z_{Nvidia}=0$ )

- Setup:
  - 2 assets in estimation sample S: Tesla, GM
  - 1 omitted asset: Nvidia
  - No shifts in demand curves  $\epsilon_i$  or observables  $X_i$
  - Exogenous supply shock  $Z_{Tesla} = 1$  affects prices ( $Z_{GM} = Z_{Nvidia} = 0$ )
- The IV estimator identifies:

$$\hat{\mathcal{E}} = \frac{\Delta D_{Tesla} - \Delta D_{GM}}{\Delta P_{Tesla} - \Delta P_{GM}}$$

- Setup:
  - 2 assets in estimation sample S: Tesla, GM
  - 1 omitted asset: Nvidia
  - No shifts in demand curves  $\epsilon_i$  or observables  $X_i$
  - Exogenous supply shock  $Z_{Tesla} = 1$  affects prices ( $Z_{GM} = Z_{Nvidia} = 0$ )
- The IV estimator identifies:

$$\hat{\mathcal{E}} = \frac{\Delta D_{Tesla} - \Delta D_{GM}}{\Delta P_{Tesla} - \Delta P_{GM}}$$

- Tesla & Nvidia more closely related than GM & Nvidia (different substitution)
- lacksquare Supply shock to Tesla affects price of GM and Nvidia (equilibrium spillovers of  $Z_{Tesla}=1$ )

- Setup:
  - 2 assets in estimation sample S: Tesla, GM
  - 1 omitted asset: Nvidia
  - No shifts in demand curves  $\epsilon_i$  or observables  $X_i$
  - Exogenous supply shock  $Z_{Tesla} = 1$  affects prices ( $Z_{GM} = Z_{Nvidia} = 0$ )
- The IV estimator identifies:

$$\hat{\mathcal{E}} = \frac{\Delta D_{Tesla} - \Delta D_{GM}}{\Delta P_{Tesla} - \Delta P_{GM}}$$

- Tesla & Nvidia more closely related than GM & Nvidia (different substitution)
- lacktriangle Supply shock to Tesla affects price of GM and Nvidia (equilibrium spillovers of  $Z_{Tesla}=1$ )

Numerator of 
$$\hat{\mathcal{E}}$$
 polluted by  $(\mathcal{E}_{Tesla,Nvidia} - \mathcal{E}_{GM,Nvidia}) \Delta P_{Nvidia} \neq 0$ 

- Setup:
  - 2 assets in estimation sample S: Tesla, GM
  - 1 omitted asset: Nvidia
  - No shifts in demand curves  $\epsilon_i$  or observables  $X_i$
  - Exogenous supply shock  $Z_{Tesla} = 1$  affects prices ( $Z_{GM} = Z_{Nvidia} = 0$ )
- The IV estimator identifies:

$$\hat{\mathcal{E}} = \frac{\Delta D_{Tesla} - \Delta D_{GM}}{\Delta P_{Tesla} - \Delta P_{GM}}$$

- Tesla & Nvidia more closely related than GM & Nvidia (different substitution)
- lacktriangle Supply shock to Tesla affects price of GM and Nvidia (equilibrium spillovers of  $Z_{Tesla}=1$ )

Numerator of 
$$\hat{\mathcal{E}}$$
 polluted by  $(\mathcal{E}_{Tesla,Nvidia} - \mathcal{E}_{GM,Nvidia}) \Delta P_{Nvidia} \neq 0$ 

- lacktriangleq For large N: many asymmetric substitutes generally do not cancel out
  - ightarrow may add up to have a large effect on  $\hat{\mathcal{E}}$  (Chaudhary, Fu, Li, 2023)

# Conditions for valid causal inference

# Making Causal Inference Work

- lacktriangle Data-generating process: matrix of elasticities  ${\cal E}$
- lacksquare Empirical estimation with IV/diff-in-diff for some sample of assets  ${\cal S}$

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + \epsilon_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

Conditions on the elasticity matrix  $\mathcal E$  such that  $\widehat{\mathcal E}$  is a meaningful estimate?

# ELASTICITY IDENTIFICATION THEOREM

# A1. Homogenous substitution between assets

→ Two assets with same observables substitute the same with any third asset

$$\forall i,j \in \mathcal{S}, l \neq i,j, \quad X_i = X_j \Rightarrow \mathcal{E}_{il} = \mathcal{E}_{jl} = \mathcal{E}_{\text{cross}}(X_i,X_l) = X_i'\mathcal{E}_S X_l$$

- $X_i$  is a  $K \times 1$  vector of observables
- $\mathcal{E}_S$  is a K imes K matrix

# A2. Constant relative elasticity

ightarrow Assets in the estimation sample with the same observables have the same relative elasticities

$$\forall i, j \in \mathcal{S}, \quad \mathcal{E}_{ii} - \mathcal{E}_{cross}(X_i, X_i) = \mathcal{E}_{jj} - \mathcal{E}_{cross}(X_j, X_j) = \widehat{\mathcal{E}}$$

# ELASTICITY IDENTIFICATION THEOREM

# A1. Homogenous substitution between assets

→ Two assets with same observables substitute the same with any third asset

$$\forall i,j \in \mathcal{S}, l \neq i,j, \quad X_i = X_j \Rightarrow \mathcal{E}_{il} = \mathcal{E}_{jl} = \mathcal{E}_{\text{cross}}(X_i,X_l) = X_i'\mathcal{E}_S X_l$$

- $X_i$  is a  $K \times 1$  vector of observables
- $\mathcal{E}_S$  is a  $K \times K$  matrix

# A2. Constant relative elasticity

ightarrow Assets in the estimation sample with the same observables have the same relative elasticities

$$\forall i, j \in \mathcal{S}, \quad \mathcal{E}_{ii} - \mathcal{E}_{\text{cross}}(X_i, X_i) = \mathcal{E}_{jj} - \mathcal{E}_{\text{cross}}(X_j, X_j) = \widehat{\mathcal{E}}$$

**Proposition 1.** Under A1, A2, and the usual exclusion and relevance restrictions, the two-stage least square estimator, controlling for observables, identifies the **relative elasticity**  $\widehat{\mathcal{E}}$ .

#### ELASTICITY IDENTIFICATION THEOREM

#### A1. Homogenous substitution between assets

→ Two assets with same observables substitute the same with any third asset

$$\forall i,j \in \mathcal{S}, l \neq i,j, \quad X_i = X_j \Rightarrow \mathcal{E}_{il} = \mathcal{E}_{jl} = \mathcal{E}_{\text{cross}}(X_i,X_l) = X_i'\mathcal{E}_S X_l$$

- $X_i$  is a  $K \times 1$  vector of observables
- $\mathcal{E}_S$  is a  $K \times K$  matrix

#### A2. Constant relative elasticity

ightarrow Assets in the estimation sample with the same observables have the same relative elasticities

$$\forall i, j \in \mathcal{S}, \quad \mathcal{E}_{ii} - \mathcal{E}_{\text{cross}}(X_i, X_i) = \mathcal{E}_{jj} - \mathcal{E}_{\text{cross}}(X_j, X_j) = \widehat{\mathcal{E}}$$

**Proposition 1.** Under A1, A2, and the usual exclusion and relevance restrictions, the two-stage least square estimator, controlling for observables, identifies the **relative elasticity**  $\widehat{\mathcal{E}}$ .

■ Take 2 assets with same characteristics,  $X_1 = X_2$ 

#### First difference

$$\Delta D_1 = \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \ge 3} \mathcal{E}_{1k} \Delta P_k$$

$$\Delta D_2 = \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \ge 3} \mathcal{E}_{2k} \Delta P_k$$

lacksquare Take 2 assets with same characteristics,  $X_1=X_2$ 

#### First difference

$$\begin{split} \Delta D_1 &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k \\ &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{\mathsf{cross}}(X_1, X_2) \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k \\ \Delta D_2 &= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{2k} \Delta P_k \end{split}$$

lacksquare Take 2 assets with same characteristics,  $X_1=X_2$ 

#### First difference

$$\Delta D_1 = \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k$$

$$= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{\mathsf{cross}}(X_2, X_2) \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k$$

$$\Delta D_2 = \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{2k} \Delta P_k$$

lacksquare Take 2 assets with same characteristics,  $X_1=X_2$ 

#### First difference

$$\begin{split} \Delta D_1 &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k \\ &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{\mathsf{cross}}(X_2, X_2) \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k \\ \Delta D_2 &= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{2k} \Delta P_k \\ &= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{\mathsf{cross}}(X_1, X_1) \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k \end{split}$$

■ Take 2 assets with same characteristics,  $X_1 = X_2$ 

#### First difference

$$\begin{split} \Delta D_1 &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k \\ &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{\mathsf{cross}}(X_2, X_2) \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k \\ \Delta D_2 &= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{2k} \Delta P_k \\ &= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{\mathsf{cross}}(X_1, X_1) \Delta P_1 + \sum \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k \end{split}$$

$$\Delta D_1 - \Delta D_2 = \underbrace{(\mathcal{E}_{11} - \mathcal{E}_{\mathsf{cross}}(X_1, X_1))}_{\widehat{\mathcal{E}}} \Delta P_1 - \underbrace{(\mathcal{E}_{22} - \mathcal{E}_{\mathsf{cross}}(X_2, X_2))}_{\widehat{\mathcal{E}}} \Delta P_2$$
$$= \widehat{\mathcal{E}} (\Delta P_1 - \Delta P_2)$$

# IDENTIFICATION-FRIENDLY SUBSTITUTION UNDER SYMMETRY



# IDENTIFICATION-FRIENDLY SUBSTITUTION UNDER SYMMETRY

#### A1. Homogenous substitution

→ Substitution from excluded assets (unobserved interactions) can be differenced out



# IDENTIFICATION-FRIENDLY SUBSTITUTION UNDER SYMMETRY

#### A1. Homogenous substitution

→ Substitution from excluded assets (unobserved interactions) can be differenced out

## A2. Homogeneity in estimation sample

→ Assets in the estimation sample have the same relative elasticities



# When Are A1 + A2 + SYMMETRY reasonable assumptions?

■ Markowitz: assets are special type of goods  $\to$  restrictions on  $\mathcal E$  are equivalent to restrictions on  $\Sigma$ 

# When Are A1 + A2 + SYMMETRY REASONABLE ASSUMPTIONS?

- Markowitz: assets are special type of goods  $\to$  restrictions on  $\mathcal E$  are equivalent to restrictions on  $\Sigma$
- If estimation sample  $\mathcal{S}$  includes all assets: common variance and covariance,  $\hat{\mathcal{E}} = (\sigma^2(1-\rho))^{-1}$

$$\Sigma = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix}$$

## When Are A1 + A2 + SYMMETRY reasonable assumptions?

- Markowitz: assets are special type of goods  $\to$  restrictions on  $\mathcal E$  are equivalent to restrictions on  $\Sigma$
- If estimation sample  $\mathcal{S}$  includes all assets: common variance and covariance,  $\hat{\mathcal{E}} = (\sigma^2(1-\rho))^{-1}$

$$\Sigma = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix}$$

- Subset of assets with common variance and covariance + identical covariance with outside assets
  - Ex.: Stocks in a narrowly defined industry
  - Ex. Corporate bonds with same rating and duration
  - Useful diagnostic: balance on covariance with some broad factors

## When Are A1 + A2 + SYMMETRY reasonable assumptions?

- Markowitz: assets are special type of goods  $\to$  restrictions on  $\mathcal E$  are equivalent to restrictions on  $\Sigma$
- If estimation sample  $\mathcal{S}$  includes all assets: common variance and covariance,  $\hat{\mathcal{E}} = (\sigma^2(1-\rho))^{-1}$

$$\Sigma = \sigma^2 \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix}$$

- Subset of assets with common variance and covariance + *identical covariance with* outside assets
  - Ex.: Stocks in a narrowly defined industry
  - Ex. Corporate bonds with same rating and duration
  - Useful diagnostic: balance on covariance with some broad factors
- Logit (Koijen, Yogo, 2019):  $\mathcal{E} = \alpha(I \mathbf{1}w')$ ,  $\hat{\mathcal{E}} = \alpha$

General A1: Homogeneous substitution conditional on observables:  $\mathcal{E}_{cross}(X_i,X_j)=X_i'\mathcal{E}_SX_j$ 

General A1: Homogeneous substitution conditional on observables:  $\mathcal{E}_{cross}(X_i,X_j)=X_i'\mathcal{E}_SX_j$ 

- To estimate  $\widehat{\mathcal{E}}$ , control for observables  $X_i$  in a cross-sectional regression
  - No need to "know"  $\mathcal{E}_S$  to estimate relative elasticities
  - For repeated cross-sections: control for observables  $X_i$  interacted with time fixed effects

General A1: Homogeneous substitution conditional on observables:  $\mathcal{E}_{cross}(X_i, X_j) = X_i' \mathcal{E}_S X_j$ 

- To estimate  $\widehat{\mathcal{E}}$ , control for observables  $X_i$  in a cross-sectional regression
  - No need to "know"  $\mathcal{E}_S$  to estimate relative elasticities
  - For repeated cross-sections: control for observables  $X_i$  interacted with time fixed effects
- **Example:** Homogeneity within groups  $\rightarrow$  observables  $X_i$  are group dummies
  - Pool all bonds but add narrowly defined credit & duration FEs (Chaudhary, Fu, Li, 2023)

General A1: Homogeneous substitution conditional on observables:  $\mathcal{E}_{cross}(X_i, X_j) = X_i' \mathcal{E}_S X_j$ 

- lacktriangle To estimate  $\widehat{\mathcal{E}}$ , control for observables  $X_i$  in a cross-sectional regression
  - No need to "know"  $\mathcal{E}_S$  to estimate relative elasticities
  - For repeated cross-sections: control for observables  $X_i$  interacted with time fixed effects
- lacktriangle Example: **Homogeneity within groups** o observables  $X_i$  are group dummies
  - Pool all bonds but add narrowly defined credit & duration FEs (Chaudhary, Fu, Li, 2023)
- Example: Factor models  $X_i = \beta_i \Rightarrow \mathcal{E}_{cross}(X_i, X_j) = \beta_i' \mathcal{E}_\beta \beta_j$ 
  - Factor model with eta standard exposure (Koijen, Yogo, 2019)
- Example: Characteristics
  - Substitution based on balancing a characteristic (e.g. average ESG score)

General A1: Homogeneous substitution conditional on observables:  $\mathcal{E}_{cross}(X_i, X_j) = X_i' \mathcal{E}_S X_j$ 

- lacktriangle To estimate  $\widehat{\mathcal{E}}$ , control for observables  $X_i$  in a cross-sectional regression
  - No need to "know"  $\mathcal{E}_S$  to estimate relative elasticities
  - For repeated cross-sections: control for observables  $X_i$  interacted with time fixed effects
- **Example:** Homogeneity within groups  $\rightarrow$  observables  $X_i$  are group dummies
  - Pool all bonds but add narrowly defined credit & duration FEs (Chaudhary, Fu, Li, 2023)
- Example: Factor models  $X_i = \beta_i \Rightarrow \mathcal{E}_{cross}(X_i, X_j) = \beta_i' \mathcal{E}_{\beta} \beta_j$ 
  - Factor model with eta standard exposure (Koijen, Yogo, 2019)
- Example: **Characteristics** 
  - Substitution based on balancing a characteristic (e.g. average ESG score)
- **Warning:** fixed effects or coefficient on  $X_i$  do not identify anything about  $\mathcal{E}$ 
  - Cannot disentangle substitution from demand for characteristics

#### Average Treatment Effect

lacktriangledown Heterogeneity independent of the instrument o local average of relative elasticity

$$\widehat{\mathcal{E}} = \frac{\mathbf{E}_i \left\{ \lambda_i (\mathcal{E}_{ii} - \mathbf{E}_j (\mathcal{E}_{ji})) \right\}}{\mathbf{E}_i (\lambda_i)}$$

Overweigh assets where instrument has large price impact

- Setup: Representative agent + log utility
- Payoffs of 3 assets (rows) in 3 states (cols)

|       | green state         | red state           | state 2             |
|-------|---------------------|---------------------|---------------------|
|       | $p_g = \frac{1}{4}$ | $p_r = \frac{1}{4}$ | $p_2 = \frac{1}{2}$ |
| green | $1+\varepsilon$     | $1-\varepsilon$     | 0                   |
| red   | $1-\varepsilon$     | $1+\varepsilon$     | 0                   |
| 2     | 0                   | 0                   | 1                   |

 $\blacksquare$  Impact of supply shock  $\psi$  to green asset?

# Example: Fuchs, Fukuda, Neuhann (2024)

- Setup: Representative agent + log utility
- Payoffs of 3 assets (rows) in 3 states (cols)

|       | green state         | red state           | state 2             |  |
|-------|---------------------|---------------------|---------------------|--|
|       | $p_g = \frac{1}{4}$ | $p_r = \frac{1}{4}$ | $p_2 = \frac{1}{2}$ |  |
| green | $1+\varepsilon$     | $1-\varepsilon$     | 0                   |  |
| red   | $1-\varepsilon$     | $1+\varepsilon$     | 0                   |  |
| 2     | 0                   | 0                   | 1                   |  |

- $\blacksquare$  Impact of supply shock  $\psi$  to green asset?
- Does regression of  $\Delta D_g$  on  $\Delta P_g$  identify  $\mathcal{E}_{own}$ ?

- Setup: Representative agent + log utility
- Payoffs of 3 assets (rows) in 3 states (cols)

|       | green state         | red state           | state 2             |
|-------|---------------------|---------------------|---------------------|
|       | $p_g = \frac{1}{4}$ | $p_r = \frac{1}{4}$ | $p_2 = \frac{1}{2}$ |
| green | $1+\varepsilon$     | $1-\varepsilon$     | 0                   |
| red   | $1-\varepsilon$     | $1+\varepsilon$     | 0                   |
| 2     | 0                   | 0                   | 1                   |

- lacksquare Impact of supply shock  $\psi$  to green asset?
- Does regression of  $\Delta D_g$  on  $\Delta P_g$  identify  $\mathcal{E}_{own}$ ? No.



- Setup: Representative agent + log utility
- Payoffs of 3 assets (rows) in 3 states (cols)

|       | green state         | red state           | state 2             |
|-------|---------------------|---------------------|---------------------|
|       | $p_g = \frac{1}{4}$ | $p_r = \frac{1}{4}$ | $p_2 = \frac{1}{2}$ |
| green | $1+\varepsilon$     | $1-\varepsilon$     | 0                   |
| red   | $1-\varepsilon$     | $1+\varepsilon$     | 0                   |
| 2     | 0                   | 0                   | 1                   |

- lacksquare Impact of supply shock  $\psi$  to green asset?
- Does regression of  $\Delta D_g$  on  $\Delta P_g$  identify  $\mathcal{E}_{own}$ ? No.
- Does relative regression of  $\Delta(D_g D_r)$  on  $\Delta(P_g P_r)$  identify  $\mathcal{E}_{own} \mathcal{E}_{cross}$ ?



- Setup: Representative agent + log utility
- Payoffs of 3 assets (rows) in 3 states (cols)

|       | green state red state |                     | state 2             |
|-------|-----------------------|---------------------|---------------------|
|       | $p_g = \frac{1}{4}$   | $p_r = \frac{1}{4}$ | $p_2 = \frac{1}{2}$ |
| green | $1+\varepsilon$       | $1-\varepsilon$     | 0                   |
| red   | $1-\varepsilon$       | $1+\varepsilon$     | 0                   |
| 2     | 0                     | 0                   | 1                   |

- $\blacksquare$  Impact of supply shock  $\psi$  to green asset?
- Does regression of  $\Delta D_g$  on  $\Delta P_g$  identify  $\mathcal{E}_{own}$ ? No.
- Does relative regression of  $\Delta(D_g D_r)$  on  $\Delta(P_g P_r)$  identify  $\mathcal{E}_{own} \mathcal{E}_{cross}$ ? Yes!



- Setup: Representative agent + log utility
- Payoffs of 3 assets (rows) in 3 states (cols)

|       | green state red state |                     | state 2             |
|-------|-----------------------|---------------------|---------------------|
|       | $p_g = \frac{1}{4}$   | $p_r = \frac{1}{4}$ | $p_2 = \frac{1}{2}$ |
| green | $1+\varepsilon$       | $1-\varepsilon$     | 0                   |
| red   | $1-\varepsilon$       | $1+\varepsilon$     | 0                   |
| 2     | 0                     | 0                   | 1                   |

- lacksquare Impact of supply shock  $\psi$  to green asset?
- Does regression of  $\Delta D_g$  on  $\Delta P_g$  identify  $\mathcal{E}_{own}$ ? No.
- Does relative regression of  $\Delta(D_g D_r)$  on  $\Delta(P_g P_r)$  identify  $\mathcal{E}_{own} \mathcal{E}_{cross}$ ? Yes!
- Empirical literature (mostly) measures relative elasticities ✓



#### WHAT CAN WE DO WITH THESE ESTIMATES?

#### Useful for micro counterfactuals

- lacksquare Only recover relative elasticities  $\mathcal{E}_{own} \mathcal{E}_{cross}$
- Change the supply of one asset: how much does its price changes relative to another asset
- E.g.: price dispersion, effect of passive investing on individual stocks (Haddad, Huebner, Loualiche, 2024), ...
- lacktriangleright For aggregate questions: relative elasticities not enough, need to separate  $\mathcal{E}_{own}$  and  $\mathcal{E}_{cross}$

# PRICE IMPACT REGRESSIONS

ESTIMATING MULTIPLIERS:

#### MULTIPLIER VS ELASTICITY

#### If demand for various assets shift, how do prices respond?

- Market clearing condition with aggregate demand: D(P) = S
  - $-\Delta D$ : shift in the demand curve
  - Prices adjust so that aggregate demand does not move

$$0 = \underbrace{\Delta D}_{\text{shifts in demand}} + \underbrace{\mathcal{E}\Delta P}_{\text{move along demand curve}}$$

## Multiplier vs Elasticity

#### If demand for various assets shift, how do prices respond?

- $\blacksquare$  Market clearing condition with aggregate demand: D(P) = S
  - $-\Delta D$ : shift in the demand curve
  - Prices adjust so that aggregate demand does not move

$$0 = \underbrace{\Delta D}_{\text{shifts in demand}} + \underbrace{\mathcal{E}\Delta P}_{\text{move along demand curve}}$$
 
$$\Leftrightarrow \Delta P = -\mathcal{E}^{-1}\Delta D$$

## Multiplier vs Elasticity

#### If demand for various assets shift, how do prices respond?

- $\blacksquare$  Market clearing condition with aggregate demand: D(P) = S
  - $-\Delta D$ : shift in the demand curve
  - Prices adjust so that aggregate demand does not move

$$0 = \underbrace{\Delta D}_{\text{shifts in demand}} + \underbrace{\mathcal{E}\Delta P}_{\text{move along demand curve}}$$
 
$$\Leftrightarrow \Delta P = -\mathcal{E}^{-1}\Delta D$$

Multiplier matrix:

$$\mathcal{M} = -\mathcal{E}^{-1}$$

#### MULTIPLIER VS ELASTICITY

#### If demand for various assets shift, how do prices respond?

- Market clearing condition with aggregate demand: D(P) = S
  - $-\Delta D$ : shift in the demand curve
  - Prices adjust so that aggregate demand does not move

$$0 = \underbrace{\Delta D}_{\text{shifts in demand}} + \underbrace{\mathcal{E}\Delta P}_{\text{move along demand curve}}$$
 
$$\Leftrightarrow \Delta P = -\mathcal{E}^{-1}\Delta D$$

Multiplier matrix:

$$\mathcal{M} = -\mathcal{E}^{-1}$$

■ Notion of exogenous demand shock  $Z_i$ :

$$\Delta D = Z + u$$
$$Z \perp u$$

#### PRICE IMPACT REGRESSIONS

#### Univariate price impact regression:

$$\Delta P_i = \widehat{\mathcal{M}} Z_i + \epsilon_i$$

- Basic identification concern: changes in realized demand are correlated with shifts in the aggregate demand curve
  - identification restriction:  $Z_i \perp$  all other demand shifts, no first stage
  - e.g. Fed purchases some securities but not others

#### PRICE IMPACT REGRESSIONS

#### Univariate price impact regression:

$$\Delta P_i = \widehat{\mathcal{M}} Z_i + \epsilon_i$$

- Basic identification concern: changes in realized demand are correlated with shifts in the aggregate demand curve
  - identification restriction:  $Z_i \perp$  all other demand shifts, no first stage
  - e.g. Fed purchases some securities but not others

**Proposition.** If  $\mathcal{M}$  satisfies A1, A2, and the demand shock is exogenous, estimator of  $\widehat{\mathcal{M}}$  identifies the **relative multiplier**:

$$\widehat{\mathcal{M}} = \mathcal{M}_{own} - \mathcal{M}_{cross}$$

## EXAMPLE: CORPORATE BOND RELATIVE MULTIPLIER

- Group investment-grade corporate bonds in 5 buckets based on duration
- $Z_{it}$ : flow-induced demand: fund flow in mutual funds × portfolio composition (Coval Stafford 2007, Lou 2012)
- $X_i$ : average duration of each bucket of corporate bonds

## EXAMPLE: CORPORATE BOND RELATIVE MULTIPLIER

- Group investment-grade corporate bonds in 5 buckets based on duration
- $Z_{it}$ : flow-induced demand: fund flow in mutual funds × portfolio composition (Coval Stafford 2007, Lou 2012)
- $\blacksquare$   $X_i$ : average duration of each bucket of corporate bonds
- lacksquare  $Z_{it}^{idio}$ : residual of instrument regressed on a date fixed effect and  $X_i imes$  date fixed effect

# EXAMPLE: CORPORATE BONDS

Relative multiplier  $\widehat{\mathcal{M}}=1.232$ 

|                                                    |                   |                  | Price $\Delta P_i$ | t                    |                      |
|----------------------------------------------------|-------------------|------------------|--------------------|----------------------|----------------------|
|                                                    | (1)               | (2)              | (3)                | (4)                  | (5)                  |
| $Z_{it}$                                           | 4.051*<br>(1.990) | 0.995<br>(1.399) | 1.232<br>(1.048)   |                      |                      |
| $Z_{it}^{idio}$                                    | ,                 | , ,              | , ,                | <b>1.232</b> (1.048) | <b>1.232</b> (1.046) |
| Date Fixed Effects $X_i \times Date$ Fixed Effects |                   | Yes              | Yes<br>Yes         | Yes<br>Yes           | Yes                  |
| $\frac{N}{R^2}$                                    | 230<br>0.064      | 230<br>0.724     | 230<br>0.981       | 230<br>0.981         | 230<br>0.724         |

## AN INVERSION RESULT

■  $\mathcal{E}$  satisfies A1-A2  $\Leftrightarrow \mathcal{M}$  satisfies A1-A2

## AN INVERSION RESULT

■  $\mathcal{E}$  satisfies A1-A2  $\Leftrightarrow \mathcal{M}$  satisfies A1-A2

■ Under A1-A2, relative multiplier is the inverse of relative elasticity

$$\hat{\mathcal{M}} = -\hat{\mathcal{E}}^{-1}$$

## AN INVERSION RESULT

 $\blacksquare$   $\mathcal{E}$  satisfies A1-A2  $\Leftrightarrow \mathcal{M}$  satisfies A1-A2

■ Under A1-A2, relative multiplier is the inverse of relative elasticity

$$\begin{split} \hat{\mathcal{M}} &= -\hat{\mathcal{E}}^{-1} \\ \mathcal{M}_{\text{own}} &\neq -\mathcal{E}_{\text{own}}^{-1} \\ \mathcal{M}_{\text{cross}} &\neq -\mathcal{E}_{\text{cross}}^{-1} \end{split}$$

# ESTIMATING SUBSTITUTION PATTERNS

#### AGGREGATE SUBSTITUTION

## Moving to aggregate effects

- E.g.: the Fed decides to purchase all corporate bonds
- E.g.: the Fed decides to purchase all corporate bonds with long duration
- Change the supply of all assets or a large group of assets
  - ightarrow need to figure out individually  $\mathcal{E}_{own}$  and  $\mathcal{E}_{cross}$  and other substitutions

## Aggregation under Homogenous Substitution

■ Fully symmetric case with constant  $\mathcal{E}_{own}$  and  $\mathcal{E}_{cross}$ :

Relative elasticity 
$$\hat{\mathcal{E}} = \mathcal{E}_{\sf own} - \mathcal{E}_{\sf cross}$$
  
Aggregate elasticity  $\bar{\mathcal{E}} = \mathcal{E}_{\sf own} + (N-1)\mathcal{E}_{\sf cross}$ 

- If assets substitute o more inelastic at aggregate level, relative elasticity is an upper bound

■ Fully symmetric case with constant  $\mathcal{E}_{own}$  and  $\mathcal{E}_{cross}$ :

Relative elasticity 
$$\hat{\mathcal{E}} = \mathcal{E}_{\sf own} - \mathcal{E}_{\sf cross}$$
  
Aggregate elasticity  $\bar{\mathcal{E}} = \mathcal{E}_{\sf own} + (N-1)\mathcal{E}_{\sf cross}$ 

- If assets substitute ightarrow more inelastic at aggregate level, relative elasticity is an upper bound
- **Separation** of relative and aggregate demand well-defined:

$$\Delta P_{agg} = \frac{1}{N} \sum_{j} \Delta P_{j}; \quad \Delta D_{agg} = \frac{1}{N} \sum_{j} \Delta D_{j}$$

■ Fully symmetric case with constant  $\mathcal{E}_{own}$  and  $\mathcal{E}_{cross}$ :

Relative elasticity 
$$\hat{\mathcal{E}} = \mathcal{E}_{\sf own} - \mathcal{E}_{\sf cross}$$
  
Aggregate elasticity  $\bar{\mathcal{E}} = \mathcal{E}_{\sf own} + (N-1)\mathcal{E}_{\sf cross}$ 

- If assets substitute ightarrow more inelastic at aggregate level, relative elasticity is an upper bound
- **Separation** of relative and aggregate demand well-defined:

$$\Delta P_{agg} = \frac{1}{N} \sum_{j} \Delta P_{j}; \quad \Delta D_{agg} = \frac{1}{N} \sum_{j} \Delta D_{j}$$
$$\Delta D_{agg} = \bar{\mathcal{E}} \Delta P_{agg}$$
$$\Delta D_{i} - \Delta D_{agg} = \hat{\mathcal{E}} (\Delta P_{i} - \Delta P_{agg})$$

■ Fully symmetric case with constant  $\mathcal{E}_{own}$  and  $\mathcal{E}_{cross}$ :

Relative elasticity 
$$\hat{\mathcal{E}} = \mathcal{E}_{\sf own} - \mathcal{E}_{\sf cross}$$
  
Aggregate elasticity  $\bar{\mathcal{E}} = \mathcal{E}_{\sf own} + (N-1)\mathcal{E}_{\sf cross}$ 

- If assets substitute ightarrow more inelastic at aggregate level, relative elasticity is an upper bound
- **Separation** of relative and aggregate demand well-defined:

$$\Delta P_{agg} = \frac{1}{N} \sum_{j} \Delta P_{j}; \quad \Delta D_{agg} = \frac{1}{N} \sum_{j} \Delta D_{j}$$

$$\Delta D_{agg} = \bar{\mathcal{E}} \Delta P_{agg}$$

$$\Delta D_{i} - \Delta D_{agg} = \hat{\mathcal{E}} (\Delta P_{i} - \Delta P_{agg})$$

■ Fully symmetric case with constant  $\mathcal{E}_{own}$  and  $\mathcal{E}_{cross}$ :

Relative elasticity 
$$\hat{\mathcal{E}} = \mathcal{E}_{\sf own} - \mathcal{E}_{\sf cross}$$
  
Aggregate elasticity  $\bar{\mathcal{E}} = \mathcal{E}_{\sf own} + (N-1)\mathcal{E}_{\sf cross}$ 

- If assets substitute ightarrow more inelastic at aggregate level, relative elasticity is an upper bound
- **Separation** of relative and aggregate demand well-defined:

$$\Delta P_{agg} = \frac{1}{N} \sum_{j} \Delta P_{j}; \quad \Delta D_{agg} = \frac{1}{N} \sum_{j} \Delta D_{j}$$
$$\Delta D_{agg} = \bar{\mathcal{E}} \Delta P_{agg}$$
$$\Delta D_{i} - \Delta D_{agg} = \hat{\mathcal{E}} (\Delta P_{i} - \Delta P_{agg})$$

Symmetric is a special case leading to equal-weighted

## ESTIMATING THE AGGREGATE ELASTICITY

#### How can we estimate $\bar{\mathcal{E}}$ ?

- Time series instrument for  $\Delta P_{aqq}$ , and run a single time series regression
  - Identify shocks exogenous to my demand that make the price of all assets higher or lower
  - Example: Granular IV = idiosyncratic shocks to large institutions (Gabaix and Koijen, 2024)
  - Alternatively use large event at high frequency: Fed introduces QE
  - Any panel approach is mechanically equivalent to the single time series regression
    - $\rightarrow$  missing intercept problem: c-s does not contain information about the aggregate

## ESTIMATING THE AGGREGATE ELASTICITY

#### How can we estimate $\bar{\mathcal{E}}$ ?

- Time series instrument for  $\Delta P_{aqq}$ , and run a single time series regression
  - Identify shocks exogenous to my demand that make the price of all assets higher or lower
  - Example: Granular IV = idiosyncratic shocks to large institutions (Gabaix and Koijen, 2024)
  - Alternatively use large event at high frequency: Fed introduces QE
  - Any panel approach is mechanically equivalent to the single time series regression
    - ightarrow missing intercept problem: c-s does not contain information about the aggregate

#### ■ Use models:

- Mean variance: ratio  $\bar{\mathcal{E}}/\hat{\mathcal{E}}$  increases with correlation, and linearly in number of assets, decreases with segmentation
- Logit:  $\bar{\mathcal{E}}=1-\alpha\omega_0$ , if no outside assets,  $\bar{\mathcal{E}}=1$  (not driven by the data at all)

# Example: Corporate Bond Aggregate Multiplier

Relative multiplier:  $\widehat{\mathcal{M}}=1.232$  Aggregate multiplier:  $\bar{\mathcal{M}}=5.314$ 

|                                                       | Price $\Delta P_{it}$ |                      | Aggregate Price $\Delta P_t^{agg}$ |
|-------------------------------------------------------|-----------------------|----------------------|------------------------------------|
|                                                       | (1)                   | (2)                  | (3)                                |
| $Z_{it}^{idio} \equiv Z_{it} - Z_t^{agg} - X_i Z_t^X$ | 1.232<br>(1.046)      | 1.232<br>(1.048)     |                                    |
| $Z_t^{agg} \equiv \frac{1}{N} \sum_{i=1}^{N} Z_{it}$  |                       | <b>5.314</b> (2.901) | <b>5.314</b> (2.921)               |
| N                                                     | 230                   | 230                  | 46                                 |
| $R^2$                                                 | 0.001                 | 0.078                | 0.107                              |

- Observable-based substitution: additional "aggregate" components:
  - Does duration affect substitution?
  - Would an "operation twist" shock shift aggregate bond prices?

$$\Delta P_{agg} = \frac{1}{N} \sum_{i} \Delta P_{i}; \quad \Delta P_{X} = \sum_{i} X_{i} \Delta P_{i}$$

- Observable-based substitution: additional "aggregate" components:
  - Does duration affect substitution?
  - Would an "operation twist" shock shift aggregate bond prices?

$$\Delta P_{agg} = \frac{1}{N} \sum_{i} \Delta P_{i}; \quad \Delta P_{X} = \sum_{i} X_{i} \Delta P_{i}$$

- Observable-based substitution: additional "aggregate" components:
  - Does duration affect substitution?
  - Would an "operation twist" shock shift aggregate bond prices?

$$\Delta P_{agg} = \frac{1}{N} \sum_{i} \Delta P_{i}; \quad \Delta P_{X} = \sum_{i} X_{i} \Delta P_{i}$$

$$\Delta D_{agg} = \bar{\mathcal{E}}_{1,1} \Delta P_{agg} + \bar{\mathcal{E}}_{1,2} \Delta P_{X}$$

$$\Delta D_{X} = \bar{\mathcal{E}}_{2,1} \Delta P_{agg} + \bar{\mathcal{E}}_{2,2} \Delta P_{X}$$

$$\Delta D_{i} - \Delta D_{agg} - X_{i} \Delta D_{X} = \hat{\mathcal{E}} (\Delta P_{i} - \Delta P_{agg} - X_{i} \Delta P_{X})$$

- Observable-based substitution: additional "aggregate" components:
  - Does duration affect substitution?
  - Would an "operation twist" shock shift aggregate bond prices?

$$\Delta P_{agg} = \frac{1}{N} \sum_{i} \Delta P_{i}; \quad \Delta P_{X} = \sum_{i} X_{i} \Delta P_{i}$$

$$\Delta D_{agg} = \bar{\mathcal{E}}_{1,1} \Delta P_{agg} + \bar{\mathcal{E}}_{1,2} \Delta P_{X}$$

$$\Delta D_{X} = \bar{\mathcal{E}}_{2,1} \Delta P_{agg} + \bar{\mathcal{E}}_{2,2} \Delta P_{X}$$

$$\Delta D_{i} - \Delta D_{agg} - X_{i} \Delta D_{X} = \hat{\mathcal{E}} (\Delta P_{i} - \Delta P_{agg} - X_{i} \Delta P_{X})$$

- Observable-based substitution: additional "aggregate" components:
  - Does duration affect substitution?
  - Would an "operation twist" shock shift aggregate bond prices?

$$\Delta P_{agg} = \frac{1}{N} \sum_{i} \Delta P_{i}; \quad \Delta P_{X} = \sum_{i} X_{i} \Delta P_{i}$$

$$\Delta D_{agg} = \bar{\mathcal{E}}_{1,1} \Delta P_{agg} + \bar{\mathcal{E}}_{1,2} \Delta P_{X}$$

$$\Delta D_{X} = \bar{\mathcal{E}}_{2,1} \Delta P_{agg} + \bar{\mathcal{E}}_{2,2} \Delta P_{X}$$

$$\Delta D_{i} - \Delta D_{agg} - X_{i} \Delta D_{X} = \hat{\mathcal{E}} (\Delta P_{i} - \Delta P_{agg} - X_{i} \Delta P_{X})$$

- Observable-based substitution: additional "aggregate" components:
  - Does duration affect substitution?
  - Would an "operation twist" shock shift aggregate bond prices?

$$\Delta P_{agg} = \frac{1}{N} \sum_{i} \Delta P_{i}; \quad \Delta P_{X} = \sum_{i} X_{i} \Delta P_{i}$$

$$\Delta D_{agg} = \bar{\mathcal{E}}_{1,1} \Delta P_{agg} + \bar{\mathcal{E}}_{1,2} \Delta P_{X}$$

$$\Delta D_{X} = \bar{\mathcal{E}}_{2,1} \Delta P_{agg} + \bar{\mathcal{E}}_{2,2} \Delta P_{X}$$

$$\Delta D_{i} - \Delta D_{agg} - X_{i} \Delta D_{X} = \hat{\mathcal{E}} (\Delta P_{i} - \Delta P_{agg} - X_{i} \Delta P_{X})$$

- Additional missing intercepts: c-s again does not help with observable-based substitution
- lacktriangle Unlike for  $\widehat{\mathcal{E}}$ , the aggregate  $\overline{\mathcal{E}}$  requires assumptions on which X drive substitution
  - Warning: omitting drivers of substitution may lead to omitted variable bias
- In practice:
  - For  $\Delta P_{agg}$ : check at the disaggregated level that  $\Delta P_i$  are "parallel", don't line up with  $X_i$
  - Incorporate substitution among observables plausibly relevant for your research question

# EXAMPLE: CORPORATE BOND MULTIPLIERS

|                        | Price $\Delta P_{it}$       |                             | Aggregate Price $\Delta P_t^{agg}$ | Factor Price $\Delta P_t^X$ |
|------------------------|-----------------------------|-----------------------------|------------------------------------|-----------------------------|
|                        | (1)                         | (2)                         | (3)                                | (4)                         |
| $Z_{it}^{idio}$        | 1.232                       | 1.232                       |                                    |                             |
| $X_i$                  | (1.053)<br>0.005<br>(0.005) | (1.058)<br>0.007<br>(0.005) |                                    |                             |
| $Z_t^{agg}$            | 5.640*                      | 5.640*                      | 5.640                              | 8.154*                      |
| $Z_t^X$                | (2.768)<br>0.886<br>(3.666) | (2.780)<br>0.886<br>(3.682) | (2.807)<br>0.886<br>(3.717)        | (3.135)<br>4.690<br>(3.751) |
| $Z_t^{agg} \times X_i$ | ( = = = = )                 | 8.154*<br>(3.105)           | (=,                                | (3.3.2.)                    |
| $Z_t^X \times X_i$     |                             | 4.690<br>(3.716)            |                                    |                             |
| N                      | 230                         | 230                         | 46                                 | 46                          |
| $R^2$                  | 0.085                       | 0.116                       | 0.109                              | 0.120                       |

## NONPARAMETRIC VERSION

■ Allow each bond to respond to each aggregate shock



- Can we go fully nonparametric: each bond on each demand shock? No!
  - Need to assume all instruments are orthogonal to all prices
  - Instruments are correlated  $\Rightarrow$  multicolinearity problem...

## CONCLUSION

■ Key challenge for causal methods in asset pricing: substitution across assets

#### CONCLUSION

- Key challenge for causal methods in asset pricing: substitution across assets
- Simple conditions on substitution for valid inference, conditional on observables
  - A1. homogenous substitution between assets (within and outside the estimation sample)
  - A2. constant relative elasticity for assets (within the estimation sample)
- Standard cross-sectional causal inference method identifies relative elasticity or its inverse, relative multiplier
  - Guidance on designing settings such that assumptions are plausible
  - Compatible with usual covariance matrix assumptions
- Aggregation well-defined but
  - Creates "missing intercepts": use time-series variation
  - Need to consider all dimensions of substitution jointly
    - ightarrow Decide which type of substitution patterns are relevant for your question, and assess them