Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-2210. Вариант 29

- 1. Пусть $z=2+2\sqrt{3}i$. Вычислить значение $\sqrt[5]{z^2}$, для которого число $\frac{\sqrt[5]{z^2}}{2-2\sqrt{3}i}$ имеет аргумент $\frac{5\pi}{3}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(5-11i) + y(-3-14i) = 156 - 227i \\ x(-12-11i) + y(-6-6i) = -29 - 311i \end{cases}$$

- 3. Найти корни многочлена $x^6+3x^5+4x^4-56x^3-177x^2-379x-260$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=-1-2i, x_2=-2+3i, x_3=4.$
- 4. Даны 3 комплексных числа: -26+27i, 3-29i, 15+16i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\sqrt{3} + i$, $z_2 = -\sqrt{3} i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+4-4i| < 2\\ |arg(z-i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-7, -2, 0), b = (-8, -3, 0), c = (7, 7, -1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(2,-10,-12) и плоскость P:-22x-32y+4z+534=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-1,-10,10), $M_1(-3,-6,-5)$, $M_2(4,1,-5)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -11x - 2y + 7z - 116 = 0 \\ 7x - 12y + 13z - 188 = 0 \end{cases} \qquad L_2: \begin{cases} -18x + 10y - 6z + 2832 = 0 \\ 7x + 2y - 19z + 340 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.