The Bucket Box Intersection (BBI) Algorithm For

Fast Approximation Evaluation Of Diagonal Mixture Gaussians

J. Fritsch, I. Rogina

指導教授:陳嘉平

報告人:陳柏含

Introduction

- The BBI algorithm uses a pre-computed binary decision tree to dynamically determine M most significant Gaussians set in the mixture.
- The algorithm is found to be superior in time complexity to both the top-1 and top-all algorithms.
- Word accuracy is still higher than that achieved by restricting the mixture to the top-1 Gaussian.

Gaussian Boxing

• Log of a single multivariate Gaussian pdf with diagonal covariance

$$\log N(x, \mu, \sum) = -\frac{1}{2} \left[\log((2\pi)^K \prod_{j=1}^K \sigma_j^2) + \sum_{j=1}^K \frac{(x_i - \mu_j)^2}{\sigma_j^2} \right] > T$$

• This function which give higher logprobs than a absolute threshold T is a hyperellipsoid with axes parallel to the coordinate axes,

parallel to the coordinate axes.
$$\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \cdots + \frac{(x_K - \mu_K)^2}{\sigma_K^2} < -2[T + \frac{1}{2}\log((2\pi)^K \prod_{j=1}^K \sigma_j^2)]$$

Projection interval of coordinate j is given by:

$$[a_j, b_j] = \mu_j \pm \sqrt{-2\sigma_j^2 [T + \frac{1}{2}\log((2\pi)^K \prod_{j=1}^K \sigma_j^2)]}$$

Bucket Box Intersection Algorithm (1/2)

- Gaussian mixture computation:
 - -Replace the computation of all mixtures with computation of the mixture to Gaussians with boxes that contain the current feature vector
- Using $\it K\!$ -dimensional space partitioning tree ($\it K\!$ -d tree) to find the Gaussian boxes containing a vector $\it X$
- K-d tree
 - -Depth: d
 - —Disjoint rectangular regions (bucket): 2^d
 - —Non-terminal node: A hyperplane orthogonal to one of the K coordinate axes
 - -Leaf node: intersection Gaussian boxes

Bucket Box Intersection Algorithm (2/2)

- Localizing a given vector x in one of the buckets by d times scalar comparisons
- Restrict the Gaussian mixture computation to the evaluation of the Gaussians whose boxes are intersecting with the current bucket.

Fig. 2: Bucket Box Intersection (BBI)

Optimizing The Search Tree

Experiment

- German spontaneous scheduling task
- CDHMM system
 - -3300 mixtures
 - -1300 codebooks containing 50 vector
 - -16 LDA-transformed MFCC

Absolute threshold vs. Relative threshold

• By the observation, the maxima of Gaussians in codebooks differ by more than 7 orders of magnitude. Λ

Fig. 3: Absolute vs. Relative Gaussian boxing

Adopt relative threshold

depth	R	time (min)	storage (MBytes)
8	0.3	42	9.3
8	0.5	27	6.1
8	0.7	15	3.8
6	0.3	11	2.6
6	0.5	7	1.8
6	0.7	4	1.2
4	0.3	3	0.6
4	0.5	2	0.4
4	0.7	1	0.3

Fig. 4: K-d trees computation time and storage requirements

Recognition Accuracy of BBI algorithm compared to top-all 68 66 top-all (64.1 %) word accuracy [%] 64 62 60 tree depth=6 tree depth tree depth=8 tree depth⊨9 56 0.2 0.3 0.4 0.5 0.7 0.6 threshold R

Fig. 5: Speedup of proposed algorithm

Fig. 6: Word Accuracy on German Spontaneous Scheduling
Task