A Dicey Problem – Solution

试题来源

ACM/ICPC World Finals 1999 C

简要题意

给定一个骰子地图以及骰子初始放置位置,可按照一定规则在地图中上下左右移动骰子,求一条路径使得骰子从起始位置开始移动最终回到起始位置。

考察算法

宽度优先搜索

题解

首先注意到根据骰子顶面和面向观察者的那面(不妨称为正面)写着的数字不同,骰子共有 24 种不同的状态。我们对这些状态进行编号如下:

编号	顶面	正面	
0	1	5	
1	1	4	
2	1	2	
3	1	3	
4	2	6	
5	2	3	
6	2	1	
7	2	4	
8	3	6	
9	3	5	
10	3	1	
11	3	2	
12	4	6	
13	4	2	
14	4	1	
15	4	5	
16	5	6	
17	5	4	
18	5	1	
19	5	3	
20	6	5	
21	6	3	
22	6	2	
23	6	4	

进而我们可以计算出每个状态在地图上向上、向右、向下以及向左移动得到的新状态。结果如下表:

编号	向上	向右	向下	向左
0	16	9	6	15
1	12	17	10	7
2	4	13	18	11
3	8	5	14	19
4	20	12	2	8
5	9	21	13	3
6	0	10	22	14
7	15	1	11	23
8	23	4	3	16
9	17	20	5	0
10	1	18	21	6
11	7	2	19	22
12	21	16	1	4
13	5	22	17	2
14	3	6	23	18
15	19	0	7	20
16	22	8	0	12
17	13	23	9	1
18	2	14	20	10
19	11	3	15	21
20	18	15	4	9
21	10	19	12	5
22	6	11	16	13
23	14	7	8	17

我们把每个格子 (x,y) 拆成 24 个点 (x,y,z),其中 z=0...23,表示骰子以 z 状态经过格子 (x,y)。设 (x,y,z) 向上下左右某个方向移动之后的状态为 (x',y',z') ,若 (x',y') 格子上写数与 z 状态下骰子顶面的数相同,或者 (x',y') 格子上画着星星图案,我们就建边 $(x,y,z) \rightarrow (x',y',z')$ 。

根据题目给出的初始状态下骰子顶面与正面的数,我们可以算出骰子的初始状态 z0 ,这样我们就确定了起点 S=(x0,y0,z0) ;最终我们需要骰子回到 (x0,y0) ,因此可行的终点集合为 $T=\{(x0,y0,z)\,|\,z=0\dots 23\}$ 。于是题目就转化为:求一条路径,起点为S,终点 $\in T$ 。我们从S开始对图进行 BFS 即可解决这个问题,时间复杂度和空间复杂度均为 $O(R\cdot C)$,常数略大。