478 AUTOMATON

5.6 all_equal_peak

DESCRIPTION LINKS AUTOMATON

Origin Derived from peak and all_equal.

Constraint all_equal_peak(VARIABLES)

Argument VARIABLES : collection(var-dvar)

 ${\bf Restrictions} \qquad \qquad |{\tt VARIABLES}| > 0$

Purpose

required(VARIABLES, var)

A variable V_k (1 < k < m) of the sequence of variables VARIABLES $= V_1, \ldots, V_m$ is a peak if and only if there exists an i $(1 < i \le k)$ such that $V_{i-1} < V_i$ and $V_i = V_{i+1} = \cdots = V_k$ and $V_k > V_{k+1}$.

Enforce all the peaks of the sequence VARIABLES to be assigned the same value, i.e. to be located at the same altitude.

Example ((1, 5, 5, 4, 3, 5, 2, 7))

The all_equal_peak constraint holds since the two peaks, in bold, of the sequence $1.5\,5\,4\,3\,5\,2\,7$ are located at the same altitude 5. Figure 5.7 depicts the solution associated with the example.

Figure 5.7: Illustration of the **Example** slot: a sequence of eight variables V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 respectively fixed to values 1, 5, 5, 4, 3, 5, 2, 7 and its corresponding two peaks, in red, both located at altitude 5

Note that the all_equal_peak constraint does not enforce that the maximum value of the sequence VARIABLES corresponds to the altitude of its peaks since, as shown by the 20130107 479

example, the sequence can ends up with an increasing subsequence that go beyond the altitude of its peaks. It also does not enforce that the sequence VARIABLES contains at least one peak.

All solutions

Figure 5.8 gives all solutions to the following non ground instance of the all_equal_peak constraint: $V_1 \in \{0,5\}$, $V_2 \in [2,3]$, $V_3 = 2$, $V_4 \in [3,4]$, $V_5 = 1$, all_equal_peak($\langle V_1, V_2, V_3, V_4, V_5 \rangle$).

```
① (\langle 0, 2, 2, 3, 1 \rangle)
② (\langle 0, 2, 2, 4, 1 \rangle)
③ (\langle 0, 3, 2, 3, 1 \rangle)
④ (\langle 5, 2, 2, 3, 1 \rangle)
⑤ (\langle 5, 2, 2, 4, 1 \rangle)
⑥ (\langle 5, 3, 2, 3, 1 \rangle)
⑦ (\langle 5, 3, 2, 4, 1 \rangle)
```

Figure 5.8: All solutions corresponding to the non ground example of the all_equal_peak constraint of the **All solutions** slot where each peak is coloured in orange

Typical

```
\begin{aligned} |\text{VARIABLES}| &\geq 5 \\ \text{range}(\text{VARIABLES.var}) &> 1 \\ \text{peak}(\text{VARIABLES.var}) &\geq 2 \end{aligned}
```

Symmetries

- Items of VARIABLES can be reversed.
- One and the same constant can be added to the var attribute of all items of VARIABLES.

Arg. properties

- Prefix-contractible wrt. VARIABLES.
- Suffix-contractible wrt. VARIABLES.

Counting

Length (n)	2	3	4	5	6	7	8	9
Solutions	9	64	625	7330	93947	1267790	17908059	266201992

Number of solutions for all_equal_peak: domains 0..n

480 AUTOMATON

Solution density for all_equal_peak

Solution density for all_equal_peak

See also

implied by: all_equal_peak_max.

implies: decreasing_peak, increasing_peak.

20130107 481

```
related: all_equal_valley, peak.
```

Keywords characteristic of a constraint: automaton, automaton with counters,

automaton with same input symbol. combinatorial object: sequence.

constraint network structure: sliding cyclic(1) constraint network(2).

Cond. implications

```
• all_equal_peak(VARIABLES) with peak(VARIABLES.var) > 1 implies some_equal(VARIABLES).
```

• all_equal_peak(VARIABLES) with peak(VARIABLES.var) > 0 implies not_all_equal(VARIABLES).

482 AUTOMATON

Automaton

Figure 5.9 depicts the automaton associated with the all_equal_peak constraint. To each pair of consecutive variables (VAR $_i$, VAR $_{i+1}$) of the collection VARIABLES corresponds a signature variable S_i . The following signature constraint links VAR $_i$, VAR $_{i+1}$ and S_i : (VAR $_i$ < VAR $_{i+1}$ \Leftrightarrow S_i = 0) \wedge (VAR $_i$ = VAR $_{i+1}$ \Leftrightarrow S_i = 1) \wedge (VAR $_i$ > VAR $_{i+1}$ \Leftrightarrow S_i = 2).

STATES SEMANTICS : initial stationary or decreasing mode : increasing (before first potential peak) mode : decreasing (after a peak) mode : increasing (after a peak) mode $\{Altitude \leftarrow 0\}$ $\mathtt{VAR}_i < \mathtt{VAR}_{i+1}$ $\mathtt{VAR}_i \ge \mathtt{VAR}_{i+1}$ $\mathtt{VAR}_i \leq \mathtt{VAR}_{i+1}$ $\mathtt{VAR}_i > \mathtt{VAR}_{i+1},$ $\mathtt{VAR}_i > \mathtt{VAR}_{i+1},$ $\{Altitude \leftarrow VAR_i\}$ $\{Altitude = VAR_i\}$ $\mathtt{VAR}_i \leq \mathtt{VAR}_{i+1}$ ($\mathtt{VAR}_i \ge \mathtt{VAR}_{i+1}$ $\mathtt{VAR}_i < \mathtt{VAR}_{i+1}$

Figure 5.9: Automaton for the all_equal_peak constraint (note the conditional transition from state k to state j testing that the counter Altitude is equal to VAR_i for enforcing that all peaks are located at the same altitude)

Figure 5.10: Hypergraph of the reformulation corresponding to the automaton of the all_equal_peak constraint where A_i stands for the value of the counter Altitude (since all states of the automaton are accepting there is no restriction on the last variable Q_{n-1})

20130107 483