

#### **Frames of Reference**

Pitch Angle,  $\theta$ 

Flight Path Angle, y

#### Inertial Frames

- Earth-Relative
- Wind-Relative (Constant Wind)

#### Non-Inertial Frames

- Body-Relative
- Wind-Relative (Varying Wind)



# Pitch Angle and Normal Velocity Frequency Response to Axial Wind

- Pitch angle resonance at phugoid natural frequency
- Normal velocity (~ angle of attack) resonance at phugoid and short period natural frequencies



### Pitch Angle and Normal Velocity Frequency Response to Vertical Wind

- Pitch angle resonance at phugoid and short period natural frequencies
- Normal velocity (~ angle of attack) resonance at short period natural frequency



MacRuer, Ashkenas, and Graham, 1973

### Sideslip and Roll Angle Frequency Response to Vortical Wind



- Sideslip angle resonance at Dutch roll natural frequency
- Roll angle is integral of vortical wind input



### Sideslip and Roll Angle Frequency Response to Side Wind

Sideslip and roll angle resonance at Dutch roll natural frequency



MacRuer, Ashkenas, and Graham, 1973

#### **Microbursts**





Ring vortex forms in outlow





### **The Insidious Nature of Microburst Encounter**



The wavelength of the phugoid mode and the disturbance input are comparable



### Importance of Proper Response to Microburst Encounter



- Stormy evening July 2, 1994
- USAir Flight 1016, Douglas DC-9, Charlotte
- Windshear alert issued as 1016 began descent along glideslope
- DC-9 encountered 61-kt windshear, executed missed approach
- Plane continued to descend, striking trees and telephone poles before impact
- Go-around procedure was begun correctly -- aircraft's nose rotated up -- but power was not advanced
- That, together with increasing tailwind, caused the aircraft to stall
- Crew <u>lowered nose to eliminate stal</u>l, but descent rate increased, causing ground impact



## Optimal Flight Path Through Worst *JAWS* Profile

- Graduate research of Mark Psiaki
- Joint Aviation Weather Study (JAWS)
  measurements of microbursts (Colorado
  High Plains, 1983)
- Negligible deviation from intended path using available controllability
- Aircraft has sufficient performance margins to stay on the flight path







#### Optimal and 15° Pitch Angle Recovery during Microburst Encounter

- Graduate Research of Sandeep Mulgund
  - Altitude vs. Time



FAA Windshear Training Aid, 1987, addresses proper operating procedures for suspected windshear

#### Airspeed vs. Time



Angle of Attack vs. Time





#### **Wind Rotors**





# Aircraft Encounters with a Wind Rotor



 Tangential velocity vs. radius for Lamb-Oseen Vortex



### **Geometry and Flight Condition of Jet Transport Encounters with Wind Rotor**

- Graduate research of *Darin Spilman*
- Flight Condition
  - True Airspeed = 160 kt
  - Altitude = 1000 ft AGL
  - Flight Path Angle = -3°
  - Weight = 76,000 lb
  - Flaps = 30°
  - Open-Loop Control
- Wind Rotor
  - Maximum Tangential Velocity = 125 ft/s
  - Core Radius = 200 ft





# **Typical Flight Paths in Wind Rotor Encounter**













### Linear-Quadratic/Proportional-Integral Filter (LQ/PIF) Regulator





### **LQ/PIF** Regulation of **Wind Rotor Encounter**

#### • from Spilman







#### **Wake Vortices**





C-5A Wing Tip Vortex Flight Test <a href="http://www.dfrc.nasa.gov/gallery/movie/C-5A/480x/EM-0085-01.mov">http://www.dfrc.nasa.gov/gallery/movie/C-5A/480x/EM-0085-01.mov</a>

L-1011 Wing Tip Vortex Flight Test

http://www.dfrc.nasa.gov/gallery/movie/L-1011/480x/EM-0085-01.mov



# Models of Single and Dual Wake Vortices



# Wake Vortex Descent and Downwash





## Wake Vortex Descent and Effect of Crosswind

• from FAA Wake Turbulence Training Aid, 1995



## Magnitude and Decay of B-757 Wake Vortex



• from Richard Page et al, FAA Technical Center



### NTSB Simulation of US Air 427 and FAA Wake Vortex Flight Test



USAir Flight 427 Aliquippa, PA September 8, 1994 Boeing 737-300



- B-737 behind B-727 in FAA flight test
- Control actions subsequent to wake vortex encounter may be problematical
- US427 rudder known to be hard-over from DFDR



# NTSB Simulation of American Flight 587

Flight simulation derived from digital flight data recorder (DFDR) tape







#### Digital Flight Data Recorder Data for American 587



#### **Causes of Clear Air Turbulence**

#### • from **Bedard**



(D) GRAVITY-SHEAR WAVES



#### **DC-10 Encounter with Vortex-Induced Clear Air Turbulence**

• from Parks, Bach, Wingrove, and Mehta





### DC-8 and B-52H Encounters with Clear Air Turbulence

QORES.

- DC-8: One engine and 12 ft of wing missing after CAT encounter over Rockies
- B-52 specially instrumented for air turbulence research after some operational B-52s were lost
- Vertical tail lost after a severe and sustained burst (+5 sec) of clear air turbulence violently buffeted the aircraft
- The Boeing test crew flew aircraft to Blytheville AFB, Arkansas and landed safely







#### **Conclusions**

- Critical role of decision-making, alerting, and intelligence
- Reliance on human factors and counterintuitive strategies
- Need to review certification procedures
- Opportunity to reduce hazard through flight control system design
  - Disturbance rejection
  - Failure Accommodation
- Importance of Eternal vigilance

### Supplemental Material



# **Alternative Reference Frames** for Translational Dynamics

- Earth-relative velocity in earthfixed polar coordinates:
- Earth-relative velocity in aircraft-fixed polar coordinates (zero wind):
- Body-frame air-mass-relative velocity:
- Airspeed, sideslip angle, angle of attack

$$\mathbf{v}_{E} = \begin{bmatrix} V_{E} \\ \gamma \\ \xi \end{bmatrix}$$

$$\mathbf{v}_E = \begin{bmatrix} V_E \\ \beta_E \\ \alpha_E \end{bmatrix}$$

$$\mathbf{v}_{A} = \begin{bmatrix} (u - u_{w}) \\ (v - v_{w}) \\ (w - w_{w}) \end{bmatrix} = \begin{bmatrix} u_{A} \\ v_{A} \\ w_{A} \end{bmatrix}$$

$$\begin{bmatrix} V_A \\ \beta_A \\ \alpha_A \end{bmatrix} = \begin{bmatrix} \sqrt{u_A^2 + v_A^2 + w_A^2} \\ \sin^{-1}(v_A / V_A) \\ \tan^{-1}(w_A / V_A) \end{bmatrix}$$

### **Rigid-Body Equations of Motion**



$$\dot{\mathbf{r}}_I = \mathbf{H}_B^I \mathbf{v}_B$$

Rate of change of Angular Position

$$\dot{\mathbf{\Theta}} = \mathbf{L}_B^I \mathbf{\omega}_B$$

- Aerodynamic forces and moments depend on air-relative velocity vector, not the earth-relative velocity vector
- Rate of change of Translational Velocity

$$\dot{\mathbf{v}}_B = \frac{1}{m} \mathbf{F}_B \left( \mathbf{v}_A \right) + \mathbf{H}_I^B \mathbf{g}_I - \tilde{\boldsymbol{\omega}}_B \mathbf{v}_B$$

 Rate of change of Angular Velocity

$$\dot{\boldsymbol{\omega}}_{B} = \boldsymbol{I}_{B}^{-1} \left[ \mathbf{M}_{B} \left( \mathbf{v}_{A} \right) - \tilde{\boldsymbol{\omega}}_{B} \boldsymbol{I}_{B} \boldsymbol{\omega}_{B} \right]$$



## Wind Shear Distributions Exert Moments on Aircraft Through Damping Derivatives

 3-dimensional wind field changes in space and time

$$\mathbf{w}_{E}(\mathbf{x},t) = \begin{bmatrix} w_{x}(x,y,z,t) \\ w_{y}(x,y,z,t) \\ w_{z}(x,y,z,t) \end{bmatrix}_{E}$$

- Gradient of wind produces different relative airspeeds over the surface of an aircraft
- $\mathbf{W}_{E} = \begin{bmatrix} \partial w_{x}/\partial x & \partial w_{x}/\partial y & \partial w_{x}/\partial z \\ \partial w_{y}/\partial x & \partial w_{y}/\partial y & \partial w_{y}/\partial z \\ \partial w_{z}/\partial x & \partial w_{z}/\partial y & \partial w_{z}/\partial z \end{bmatrix}$
- Wind gradient expressed in body axes

$$\mathbf{W}_{B} = \mathbf{H}_{E}^{B} \mathbf{W}_{E} \mathbf{H}_{B}^{E}$$

$$\Delta C_{l_{shear}} \approx C_{l_{p_{wing}}} \frac{\partial w}{\partial y} - C_{l_{p_{fin}}} \frac{\partial v}{\partial x}$$

$$\Delta C_{m_{shear}} \approx C_{m_{q_{wing}, body, stab}} \frac{\partial w}{\partial x}$$

$$\Delta C_{n_{shear}} \approx C_{n_{r_{fin}, body}} \frac{\partial v}{\partial x}$$



∂w/∂x

#### **Aircraft Modes of Motion**

Longitudinal Motions

$$\Delta_{Lon}(s) = \left(s^2 + 2\zeta\omega_n s + \omega_n^2\right)_{Ph} \left(s^2 + 2\zeta\omega_n s + \omega_n^2\right)_{SP}$$

Lateral-Directional Motions

$$\Delta_{LD}(s) = (s - \lambda_s)(s - \lambda_R)(s^2 + 2\zeta\omega_n s + \omega_n^2)_{DR}$$

 Wind inputs that resonate with modes of motion are especially hazardous **Natural frequency:**  $\omega_n$ , rad / s

**Natural Period:**  $T_n = \frac{2\pi}{\omega}$ , sec

**Natural Wavelength:**  $L_n = V_N T_p, m$ 

### **Nonlinear-Inverse-Dynamic Control**

Nonlinear system with additive control:

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t)] + \mathbf{G}[\mathbf{x}(t)]\mathbf{u}(t)$$

Output vector:

$$\mathbf{y}(t) = \mathbf{h}[\mathbf{x}(t)]$$

 Differentiate output until control appears in each element of the derivative output:

$$\mathbf{y}^{(d)}(t) = \mathbf{f} * [\mathbf{x}(t)] + \mathbf{G} * [\mathbf{x}(t)] \mathbf{u}(t) \triangleq \mathbf{v}(t)$$

• Inverting control law:

$$\mathbf{u}(t) = \mathbf{G} * [\mathbf{x}(t)] [\mathbf{v}_{command} - \mathbf{f} * [\mathbf{x}(t)]]$$



#### Landing Abort using Nonlinear-Inverse-Dynamic Control



### **Wind Shear Safety Advisor**

- Graduate research of Alexander Stratton
- LISP-based expert system



#### **Estimating the Probability of Hazardous Microburst Encounter**

- Bayesian Belief Network
  - Infer probability of hazardous encounter from
    - pilot/control tower reports
    - measurements
    - location
    - time of day



#### **Aircraft as Wake Vortex Generators and Receivers**

Vorticity, Γ, generated by lift in 1-g flight

$$\Gamma = \frac{K_{generator}W}{\rho V_N b}$$

$$K_{generator} \simeq \frac{4}{\pi}$$

$$K_{generator} \simeq \frac{4}{\pi}$$

 Rolling acceleration response to vortex aligned with the aircraft's longitudinal axis

$$\dot{p} = \frac{K_{receiver} \frac{1}{2} \rho V_N^2 Sb}{I_{xx}} \Gamma$$

$$K_{receiver} \approx \frac{C_{L_a}}{2\pi V_N b}$$

$$K_{receiver} \simeq \frac{C_{L_{\alpha}}}{2\pi V_{N} b}$$

# **Rolling Response vs. Vortex- Generating Strength for 125 Aircraft**

Undergraduate summer project of James Nichols

