Decision Tree

- Graphical representation of all the possible solutions to a decision
- Decisions are based on some conditions
- Decision made can be easily explained

SUB

Decision Tree Algorithm is a supervised learning method used for both classification and regression

Decision Tree Terminology

Issues

- Given some training examples, what decision tree should be generated?
- One proposal: prefer the <u>smallest tree</u> that is consistent with the data (<u>Bias</u>)

- Possible method:
 - search the space of decision trees for the smallest decision tree that fits the data

Example Data

Training Examples:

	Action	Author	Thread	Length	Where
e1	skips	known	new	long	Home
e2	reads	unknown	new	short	Work
е3	skips	unknown	old	long	Work
e4	skips	known	old	long	home
e5	reads	known	new	short	home
e6	skips	known	old	long	work

New Examples:

e7	???	known	new	short	work	
e8	???	unknown	new	short	work	

Possible splits

Two Example DTs

- Attributes and their values:
 - Outlook: Sunny, Overcast, Rain
 - Humidity: High, Normal
 - Wind: Strong, Weak
 - Temperature: Hot, Mild, Cool
- Target concept Play Tennis: Yes, No

Outlook Temperature Humidity Wind PlayTennis High Weak Sunny Hot Outlook Overcast Sunny Rain Wind Humidity Yes High Weak Normal Strong No Yes Yes No

Decision Tree

decision trees represent disjunctions of conjunctions

(Outlook=Sunny \times Humidity=Normal)

- √ (Outlook=Overcast)
- ∨ (Outlook=Rain ∧ Wind=Weak)

Searching for a good tree

- The space of decision trees is too big for systematic search.
- Stop and
 - return the a value for the target feature or
 - a distribution over target feature values
- Choose a test (e.g. an input feature) to split on.
 - For each value of the test, build a subtree for those examples with this value for the test.

Top-Down Induction of Decision Trees ID3

- 1. A ← the "best" decision attribute for next node
- 2. Assign A as decision attribute for *node*
- For each value of A create new descendant
- Sort training examples to leaf node according to the attribute value of the branch
- If all training examples are perfectly classified (same value of target attribute) stop, else iterate over new leaf nodes.

Top-Down Induction of Decision Trees ID3

1. Which node to proceed with?

- 1. A ← the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A create new descendant
- Sort training examples to leaf node according to the attribute value of the branch
- 5. If all training examples are perfectly classified (same value of target attribute) stop, else iterate over new leaf nodes.
 2. When to stop?

Choices

When to stop

- no more input features
- all examples are classified the same
- too few examples to make an informative split

Which test to split on

- split gives smallest error.
- With multi-valued features
 - split on all values or
 - · split values into half.

Which Attribute is "best"?

Principled Criterion

- Selection of an attribute to test at each node choosing the most useful attribute for classifying examples.
- information gain
 - measures how well a given attribute separates the training examples according to their target classification
 - This measure is used to select among the candidate attributes at each step while growing the tree
 - Gain is measure of how much we can reduce uncertainty (Value lies between 0,1)

Entropy

- A measure for
 - uncertainty
 - purity
 - information content
- Information theory: optimal length code assigns ($-\log_2 p$) bits to message having probability p
- S is a sample of training examples
 - $-p_{+}$ is the proportion of positive examples in S
 - $-p_{-}$ is the proportion of negative examples in S
- Entropy of S: average optimal number of bits to encode information about certainty/uncertainty about S

$$Entropy(S) = p_{+}(-\log_2 p_{+}) + p_{-}(-\log_2 p_{-}) = -p_{+}\log_2 p_{+} - p_{-}\log_2 p_{-}$$

Impurity = 0

Entropy

- S is a sample of training examples
- p₊ is the proportion of positive examples
- p₋ is the proportion of negative examples
- Entropy measures the impurity of S $\operatorname{Entropy}(\mathsf{S}) = -p_+ \log_2 p_+ - p_- \log_2 p_-$

Entropy

- The entropy is 0 if the outcome is ``certain".
- The entropy is maximum if we have no knowledge of the system (or any outcome is equally possible).
- S is a sample of training examples
- p₊ is the proportion of positive examples
- p₋ is the proportion of negative examples
- Entropy measures the impurity of S Entropy(S) = $-p_+\log_2 p_+ - p_-\log_2 p_-$

Information Gain

Gain(S,A): expected reduction in entropy due to partitioning S on attribute A

Gain(S,A)=Entropy(S)
$$-\sum_{v \in values(A)} |S_v|/|S|$$
 Entropy(S_v)

Entropy([29+,35-]) = $-29/64 \log_2 29/64 - 35/64 \log_2 35/64$ = 0.99

Information Gain

Gain(S,A): expected reduction in entropy due to partitioning S on attribute A

Gain(S,A)=Entropy(S)
$$-\sum_{v \in values(A)} |S_v|/|S|$$
 Entropy(S_v)

Entropy([29+,35-]) = -29/64
$$\log_2 29/64 - 35/64 \log_2 35/64$$

= $\Omega.99$

Information Gain

```
Entropy([21+,5-]) = 0.71

Entropy([8+,30-]) = 0.74

Gain(S,A<sub>1</sub>)=Entropy(S)

-26/64*Entropy([21+,5-])

-38/64*Entropy([8+,30-])

=0.27
```

```
Entropy([18+,33-]) = 0.94

Entropy([8+,30-]) = 0.62

Gain(S,A<sub>2</sub>)=Entropy(S)

-51/64*Entropy([18+,33-])

-13/64*Entropy([11+,2-])

=0.12
```

Training Examples

Day	Outlook	Temp	Humidity	Wind	Tennis?
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Selecting the Next Attribute

Humidity provides greater info. gain than Wind, w.r.t target classification.

=0.151

=0.048

Selecting the Next Attribute

Selecting the Next Attribute

The information gain values for the 4 attributes are:

- Gain(S,Outlook) = 0.247
- Gain(S, Humidity) = 0.151
- Gain(S,Wind) =0.048
- Gain(S,Temperature) = 0.029

where S denotes the collection of training examples

ID3 Algorithm

 $\begin{aligned} & \mathsf{Gain}(\mathsf{S}_{\mathsf{sunny}}, \mathsf{Humidity}) = 0.970 - (3/5)0.0 - 2/5(0.0) = 0.970 \\ & \mathsf{Gain}(\mathsf{S}_{\mathsf{sunny}}, \mathsf{Temp.}) = 0.970 - (2/5)0.0 - 2/5(1.0) - (1/5)0.0 = 0.570 \\ & \mathsf{Gain}(\mathsf{S}_{\mathsf{sunny}}, \mathsf{Wind}) = 0.970 = -(2/5)1.0 - 3/5(0.918) = 0.019 \end{aligned}$

Splitting Rule: GINI Index

- GINIIndex
 - Measure of node impurity

$$GINI_{node}(Node) = 1 - \sum_{c \in classes} [p(c)]^{2}$$

$$GINI_{split}(A) = \sum_{v \in Values(A)} \frac{|S_{v}|}{|S|} GINI(N_{v})$$

How Does A Tree Decide Where To Split?

Gini Index

The measure of impurity (or purity) used in building decision tree in CART is Gini Index

Chi Square

It is an algorithm to find out the statistical significance between the differences between sub-nodes and parent node

Information Gain

The information gain is the decrease in entropy after a dataset is split on the basis of an attribute. Constructing a decision tree is all about finding attribute that returns the highest information gain

Reduction in Variance

Reduction in variance is an algorithm used for continuous target variables (regression problems). The split with lower variance is selected as the criteria to split the population

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Continuous Attribute – Binary Split

- For continuous attribute
 - Partition the continuous value of attribute A into a discrete set of intervals
 - Create a new boolean attribute A_c, looking for a threshold c,

$$A_c = egin{cases} true & ext{if } A_c < c \\ false & ext{otherwise} \end{cases}$$

How to choose c?

consider all possible splits and finds the best cut

Random Forest

- Builds multiple decision trees and merges them together
- More accurate and stable prediction
- Random decision forests correct for decision trees' habit of overfitting to their training set
- Trained with the "bagging" method