				PROPERTY.			_	 		
personal frequencies of the contract	4.10	in the same			A STATE OF	County Live				
D. AT-		100000							San San San	1
Reg. No.				1000					2000	
0						1				

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Sixth Semester

18CSE454T - HIGH PERFORMANCE COMPUTING

(For the candidates admitted from the academic year 2020-2021 & 2021-2022)

(i)	C	over	to hall invigilator at the end	of 40 th minute		et shoul	d be	han	ded
(ii)	I	Part	- B & Part - C should be an	nswered in ans	wer booklet.				
Time:	3 hc	ours				Max. N	Mark	cs: 1	00
			PART – A ($20 \times 1 = 20 \text{ N}$	Aarks)	Marks	BL	СО	PO
				ALL Questic	그는 그들이 살아왔다면 하는 것이 없는 것이 없다면				
1	l. T	he			ll the arguments of an operation	1 1	1	1	1
			vailable is known as						
	(.	A)	Masking	(B)	Chaining				
	(C)	Vectorizing	(D)	Pipelining				
2	2. P	oipe!	line bubbles are			1	1	1	1
		A)	Stall cycles	(B)	Multi-track pipeline				
	,	C)	Cache mapping	(D)	Data dependencies				
2	} T ₁	nter	leaving loon iterations in	order to mee	et latency requirements is	1	1	1	1
		A)			Software pipelining				
	,	C)	Wind-up phase		Wind-down phase				
	-)	-,	1 1						
	1	of lo	is a Boolean register op iterations.	with vector l	ength, allows selective execution	1 ¹	1	1	1
			Mask memory	(B)	Cache memory				
			Mask register	(D)	Cache register				
				0 011			1	2	1
5			e instrumentation techniq			138	1	2	1
	,	,	Basic blocks		Functions				
	(C)	Lines	(D)	Subroutines				
(5. I		of a code is the alation.	amount of n	nemory it uses in the course of a	a 1	1	2	1
		A)	Basic block	(B)	Functions				
		C)	Working set	(D)	Code instrumentation				
	(<i>C</i>)	Working Set	(D)	Code monumentation				
	7. b	oody	is an optimization to of the caller	echnique that	t replaces a function call by the	e 1	1	2	1
		(A)	Sampling	(B)	Line profiling				
		C)	Function profiling	(D)	Function in lining				
8			nes can only have a posi ern of an application	tive effect o	n performance if the data acces	s ¹	1	2	1
			Cache reuse ratio	(B)	Streaming patterns				

(D) Locality of reference

(C) Cache lines

Note:

9.	Wh	ich one of these statements are tr	ue?		1	1	3	1
	(A)	Von Neumann architecture is	(B)	Vector processors can handle				
		not suitable for realizing SIMD		data level parallelism				
	(C)	Vector processors contain only	(D)	Cache memory and constant				
		vector register		memory are unified for all				
				streaming multiprocessor			,	
10.	Whi	ich of the following is not true at	out s	uperscalar execution?	1	1	3	1
	(A)	Multiple instructions may be	(B)	The same stage of multiple				
		issued together		instructions may execute together				
	(C)	Hardware logic for various	(D)	Data dependency issues are				
		stages is replicated to a large		resolved to a large extent				
		extent						
11	3371 '	1 64 641	0					
11.		ch of the following is not a reaso			1	1	3	1
	(A) (C)	Bottlenecks Startup overhead	(B)					
	(C)	Startup overhead	(D)	Application speedup				
12.	In s	witched network, the maximum	nun	nber of hops required to connect	1	1	3	1
		arbitrary devices is called						
	(A)	Bandwidth	(B)	Bisection bandwidth				
	(C)	Diameter	(D)	Crossbar				
13.	MPI	_CART_CREATE() function	suppo	ort the creation and handling of	1	1	4	1
	(A)	Virtual topologies	(D)	Des to a location				
	(C)	Star topologies	100	Bus topologies Mesh topologies				
	(0)	Star topologies	(D)	Mesh topologies				
14.	MPI	_FINALIZE() is used to	the 1	parallel program in MPI.	1	1	4	1
		Finalize		End				
	(C)	Exit	(D)	Shutdown				
15	W/hi	ch programming model dedicate		mounts there I to I am II - MIDI - II	1	1	4	1
15.	whil	e other thread execute user code?	s a se	parate thread to handle MPI calls	1	1	7	. 1
		OpenMP programming		MPI programming				
	(C)	~~		Integrated programming				
	. ,	, , ,	(-)	and programming				
16.	The	specifies that the iteration	ons of	f the for loop should be executed	1	1	4	1
		rallel by multiple threads?						
			(B)	Single construct				
	(C)	For pragma	(D)	Parallel construct				
17.		function returns the number	of th	nreads that are currently active in	1	1	5	1
		arallel section region.	01 11	reads that are earrently delive in				
		omp_get_num_procs()	(B)	omp get num threads()				
	(C)	omp_get_thread_num()	(D)	omp set num threads()				
18.					1	1	_	
10.		causes no synchronization of data fits in cache.	erne	ad and can maintain data locality	1	1	5	1
		Guided	(R)	Auto				
		Runtime	(D)					
	(-)			Statio				

	19.	Which of the following command determines the rank of calling process in the communicate?	1	1	5	1
		(A) MPI_COMM_WORLD (B) MPI_COMM_SIZE (C) MPI_COMM_RANK (D) MPI_COMM_GROUP				
	20.	Programs that can maintain a constant efficiency without increasing the problem size are sometimes said to be	1	1	5	1
		(A) Scalable(B) Strongly scalable(C) Weakly scalable(D) Not scalable				
		PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions	Marks	BL	СО	PO
	21.	List any four performance metrics of processors and explain it with the vector trial benchmark.	4	1.	1	1
	22.	Mention and explain any two common sense guidelines for performance optimization in a serial code.	4	1	2	2
	23.	How cache coherence is applied in ccNUMA shared memory systems?	4	1	3	1
	24.	Describe the scalability metrics for achieving parallel scalability.	4	1	2	1
	25.	Illustrate how schedule clause is used for loop work sharing.	4	2	. 4	2
	26.	List out the chain of events for the standard MPI Ping-Pong on shared memory systems.	4	1	5	1
	27.	Describe any four events that can be monitored by hardware performance counters.	4	1	1	2
		PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	CO	PO
28.	a.i.	Elaborate the design principles of vector processors.	6	1	1	1
	ii.	Illustrate how the branching instructions are vectored on a vector processors.	6	2	1	1
	b.i.	(OR) Bring out the advantages and disadvantages of multi-core processors.	4	1	1	2
	ii.	How pre-fetching of instructions avoids the latency penalties for a vector norm loop? Illustrate with a timing diagram.	8	1	1	1
29	9. a.	Apply the various steps available to improve the performance of the code by optimizing the loops using suitable examples.	12	2	2	2

b.	Investigate the role of compilers in optimization of code.	12	2	2	1
30. a.i.	Illustrate how, the basic communication models are used for possible refinements performance models.	8	2	3	2
ii.	State any two scalability laws for parallelism.	4	1	3	3
b.i.	(OR) With a neat sketch, explain how cache coherence protocols are implemented in shared memory computers.	6	1	3	1
ii.	Illustrate a UMA system with two single-core processors and two dual-core processors.	6	2	3	2
31. a.i.	With a snippet of code illustrate how, the synchronization is achieved with the help of critical region directive in open MP.	8	2	4	1
ii.	Explain the different ways to create PRIVATE variables in open MP with a code snippet.	4	1	4	2
b.	(OR) Privatization should be given priority over synchronization. Justify this statement with respect to open MP serialization.	12	2	4	1
32. a.	Analyze various constructs in MPI that are used in point-to-point communication with a suitable program fragment.	12	2	5	1
	(OR)				
b.	Identify and describe the mapping issues and aggregating messages to be followed in order to reduce the communication overhead by using MPI.	12	2	5	1

* * * * *