some title

January 4, 2018

Regression

Correlation

The most crucial part in defining correlation geometrically is defining the dot product as it enables to compute the length of a vecotr:

$$|\vec{a}| = \sqrt{\langle \vec{a}, \vec{a} \rangle}$$

and the angle between any two vectors:

$$\cos(\vec{a}, \vec{b}) = \frac{\langle \vec{a}, \vec{a} \rangle}{|\vec{a}||\vec{b}|}$$

Now we define scalar product of two random vectors as covariation between them:

$$\langle X, Y \rangle = \text{Cov}(X, Y)$$

The main characteristics of a random vector are its length and direction. So, we introduce the length

$$\sqrt{\operatorname{Cov} X, X} = \sqrt{\operatorname{Var}(X)} = \sigma_X$$

and the angle between two random vectors

$$\cos(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X)\,\mathrm{Var}(Y)}} = \mathrm{Corr}(X,Y)$$

Note that from the definition of the angle it follows that correlation can range from -1 to 1.

Another important geometrical tool is projection. Recall that for any two vectors the scalar product $\langle \vec{a}, \vec{b} \rangle$ can be interpreted as the length of projected \vec{b} multuplied by the length of \vec{a} . The projection itself is $cos(\vec{a}, \vec{b})\vec{b}$. Same holds for random vectors. The projection of a random vector Y onto $\{cX|c\in\mathbb{R}\}$ is $\hat{Y}=\mathrm{Corr}(X,Y)\cdot Y$.

The most widespread definition of correlation is

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X) Var(Y)}}$$

Figure 1: Random vector X of length σ_X and random vector Y of length σ_Y , $\cos \varphi$ is the angle between X and Y.

Figure 2: Random vector Y projected onto random vector X.

Looking at Figure , we can interpret the square of correlation coefficient. Using the fact that $\cos^2\varphi$ is the squared ratio of the leg adjacent to φ to hypotenuse, we can write

$$\operatorname{Corr}^2(X,Y) = \frac{\operatorname{Var}(\hat{Y})}{\operatorname{Var}(Y)}$$

as the variance of a random vecor is associated with the square of its length. Thus, the correlation coefficient squared shows the fraction of variance in Y which can be explained with the most similar random variable proportional to X.

Sample correlation coefficient in simple linear regression

Theorem 1. A linear regression model with one explanatory variable and constant term has the property

$$sCorr(y, \hat{y}) = sign(\hat{\beta}_2) sCorr(y, x)$$

Proof. Firstly, we consider the case when $\hat{\beta}_2>0$ so the main picuture is of the form depicted in Figure . It has been shown earlier that the correlation coefficient squared represents the angle betweem two random vectors.

Assuming the underlying relationship between x and y to be

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i \quad i = 1, \dots, n$$

where ε_i is an error term the following holds

$$\begin{split} \text{sCorr}(y, \hat{y}) &= \frac{\text{sCov}(y) \, \text{sCov}(\hat{y})}{\sqrt{\text{sVar}(y) \, \text{sVar}(\hat{y})}} \\ &= \frac{\text{sCov}(y) \, \text{sCov}(\hat{\beta}_1 + \hat{\beta}_2 x)}{\sqrt{\text{sVar}(y) \, \text{sVar}(\hat{\beta}_1 + \hat{\beta}_2 x)}} \end{split}$$

Figure 3: Vectors
$$Cov(\hat{\beta}_2 x)$$

$$\sqrt{sVar(y) sVar(\hat{\beta}_2 x)}$$

$$= \frac{\hat{\beta}_2 sCov(y) sCov(x)}{|\hat{\beta}_2| \sqrt{sVar(y) sVar(x)}}$$

$$= sign(\hat{\beta}_2) \frac{sCov(y) sCov(x)}{\sqrt{sVar(y) sVar(x)}}$$

However, it seems to be difficult to compare the angles in the three dimensional space. That is why we start with projecting both x and y onto the space perpendicular to the vector of all ones 1 as shown in Figure 4(a). We denote this space as $Lin^{\perp}(1)$. The resulting vectors are $x - \bar{x} \cdot 1$ and $y - \bar{y} \cdot 1$ respectively since projection of any vector \vec{a} on the line given by a vector of all ones yields the vector of averages \vec{a} .

In order to get the angle between y and \hat{y} we should start with regressing y on $Lin(x,\mathbf{1})$. Then the only thing thing left is to project \hat{y} onto $Lin^{\perp}\mathbf{1}$ since the y vector has already been projected. The result of this step is shown in Figure 4(b).

todo: whole picture, $\beta_2 < 0$

Figure 4: (a): 'Centred' x and y, i.e., projected onto $Lin^{\perp}(1)$; (b): 'Centred' \hat{y} , i.e., projected onto $Lin^{\perp}(1)$.

Regression line and point of averages

Theorem 2. The point of averages lies on the estimated regression line.

Proof. For the geometrical proof it suffices to show that \hat{y} is a linear combination of the regressors, which is true by construction, and that $\frac{1}{n}\sum_{i=1}^n \hat{y}_i = \frac{1}{n}\sum_{i=1}^n y$. In order for the pictures to be more clear the proof will be presented for the case of two regressors.

The first step is regressing y on Lin(1,x). As shown in Figure 5(a), we obtain \hat{y} as a linear combination of 1 and x. The next step is to regress both y and \hat{y} on 1 which results in \bar{y} and \hat{y} correspondingly. By the theorem of three perpendiculars, $\bar{y} = \bar{y}$ which is shown in Figure 5(b).

Frisch-Waugh-Lovell theorem

Theorem 3. Consider regression

$$y = X_1 \beta_1 + X_2 \beta_2 + u \tag{1}$$

where $X_{n \times k} = [X_1 X_2]$, i.e. X_1 consists of first k_1 columns of X and X_2 consists of remaining k_2 columns of X, β_1 and β_2 are comfortable, i.e. $k_1 \times 1$ and $k_2 \times 1$ vectors. Consider another regression

$$M_1 y = M_1 X_2 \beta_2 + M_1 u \tag{2}$$

If the regression contains the intercept, the following equation holds:

$$\hat{y} = X\hat{\beta} = X(X^TX)^{-1}X^Ty$$
$$= X(X^TX)^{-1}X^TX\beta + X(X^TX)^{-1}X^T\varepsilon$$

Premultiplying both sides by X^T , we obtain:

$$X^{T}\hat{y} = X^{T}X(X^{T}X)^{-1}X^{T}X\beta$$
$$+ X^{T}X(X^{T}X)^{-1}X^{T}\varepsilon$$
$$= X^{T}X\beta + X^{T}\varepsilon$$

This is a system of equations. The first row of X^T is 1 vector, so we can write out the first equation:

$$\sum_{i=1}^{n} \hat{y}_i = \sum_{i=1}^{n} \sum_{j=1}^{k} x_{ij} \beta_j$$

From the first equation in the system

$$X^T \hat{y} = X^T y$$

we obtain

$$\sum_{i=1}^{n} \hat{y}_i = \sum_{i=1}^{n} y$$

And this finishes the proof

$$\frac{1}{n}\sum_{i=1}^{n} y = \frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{k} x_{ij}\beta_{j}$$

From regresison 2 we get the following

$$\hat{\beta}_2 = ((M_1 X_2)^T M_1 X_2)^{-1} (M_1 X_2)^T M_1 y$$

$$= (X_2^T M_1^T M_1 X_2)^{-1} X_2^T M_1^T M_1 y$$

$$= (X_2^T M_1 X_2)^{-1} X_2^T M_1 y$$

As for regresison 1, let us note that due to

Figure 5: (a): Regression of y on $Lin(\mathbb{1}, x)$; (b): Regression of y and \hat{y} on $\mathbb{1}$.

where $M_1 = I - P_1$ projects onto the orthogonal complement of the column space of X_1 and $P_1 = X_1(X_1^TX_1)^{-1}X_1^T$ is the projection onto the column space of X_1 . Then the estimate of β_2 from regression 1 will be the same as the estimate from regression 2.

Proof. Geometrical proof will be presented for the following model:

$$y_i = \beta_1 x_i + \beta_2 z_i + u_i \tag{3}$$

We start with regression 'all-at-once' and will distinct its coefficients with index (1). The only step in obtaining $\beta_1^{(1)}$ is regressing y on Lin(x,z) and then expanding \hat{y} as a linear combination of basis vectors x and z, which is shown in Figure 6(a). Figure 6(b) depicts Lin(x,z).

Figure 6: (a): Regression of y on Lin(x, z); (b): Lin(x, z).

As for the model 2, where several regressions are performed consecutively, we start with regressing y on z, resulting in \tilde{y} , which we will refer to as "cleansed" y.

$$y = \alpha z + \varepsilon$$

$$\hat{\alpha} = \frac{y^T z}{z^T z}$$

$$\tilde{y} = \hat{\varepsilon} = y - \frac{y^T z}{z^T z} z$$
(4)

Following that, x is regressed on z, resulting in \tilde{x} – "cleansed" x.

$$x = \gamma z + \nu$$

$$\hat{\gamma} = \frac{x^T z}{z^T z}$$

$$\tilde{x} = \hat{\nu} = x - \frac{x^T z}{z^T z} z$$
(5)

Geometric results of these two steps are presented in 7(a).

Finally, 'cleansed' y must be regressed on 'cleansed' x. However, it cannot be performed immediately as \tilde{y} and \tilde{x} are skew lines. So at first, we fix this problem by translation and after taht obtain $\hat{\beta}_1^{(2)}\tilde{x}$ (see Figure 7(b)).

Figure 7: (a): Regression of y on z and of x on z; (b): Translation of \tilde{x} .

Now, let us picture all the results in one figure and mark some main points.

Figure 8: (a): Point A stands for the origin, $\mathbf{B}-\hat{\gamma}z, \mathbf{C}-x, \mathbf{D}-\hat{\alpha}z, \mathbf{E}-\text{intersection of}$ vector x and line parallel to $\tilde{x}, \mathbf{F}-\hat{\beta}_1^{(1)}x, \mathbf{G}-\hat{\beta}_1^{(2)}\tilde{x};$ (b): Lin(x,z).

In Figure 8(b) segments AF and BH = DG stand for $\hat{\beta}_1^{(1)}x$ and $\hat{\beta}_1^{(2)}\tilde{x}$ respectively, while segments AC and BC represent x and \tilde{x} . Having two congruent angles, triangles ABC and FHC are simillar. Then, it follows:

$$\frac{AF}{AC} = \frac{BH}{BC} \Leftrightarrow \frac{\hat{\beta}_1^{(1)}x}{x} = \frac{\hat{\beta}_1^{(2)}\tilde{x}}{\tilde{x}} \Leftrightarrow \hat{\beta}_1^{(1)} = \hat{\beta}_1^{(2)}$$