

Numpy Tutorial

Katharina Breininger, Mingxuan Gu, Noah Maul, Zhaoya Pan, Luca Reeb, Florian Thamm, Sulaiman Vesal, Tobias Würfl, Zijin Yang
Pattern Recognition Lab, Friedrich-Alexander University of Erlangen-Nürnberg

Organisation

Tentative Schedule for Exercise 0, 1 and 2

Week	Task
18.1024.10.	Presentation Exercise 0: Numpy Tutorial
28.1001.11.	Presentation Exercise 1: Fully Connected
11.1115.11.	Deadline Exercise 0 and 1
18.1122.11.	Presentation Exercise 2: Convolution

Submission

- Group submission possible pairs of two
- · Personal submission only
- Unit tests must pass
- Explain your code

No Plagariasm!

- · Plagariasm is strictly forbidden
- We will check that with plagiarsm software!

Verteilung - Exercise 4: AlexNet and ResNet in TF / AlexNet and ResNet

Gruppierte Übereinstimmungen (90% - 100%)

Contact

Don't mind asking

- During your assigned exercise
- In the studon forum
- Via E-Mail \rightarrow cs5-deep-tutors@lists.fau.de

Cipmap

- Go to https://cipmap.cs.fau.de/huber
- On the left side click lecturemode the hand
 - $\rightarrow \text{Colored computers represent open requests}$
- Click Request Tutor to open a request
- Click the button again to pull back the request as soon as you get served by a tutor
- More information: https://cipmap.cs.fau.de/media/howto/

Exercise Setup

First part:

Build a neural network from scratch

- No skeletons
- Every function and structure is built as a layer
 - \rightarrow As own class in its own file
 - → Mandatory functions __init__(), forward(), backward()
- We provide unit tests
 - ightarrow Tested and debugged with python3

Second part:

Build some common neural networks with PyTorch

- Some functionality provided
- No unit tests

Python Overview

About Python...

- Programming language with good readabilty
- Interpreted scripting language
 - ightarrow Relies on the call of libraries written in lower-level programming languages
 - → Basic programming semantics exist but are very inefficient
- Huge amount of libraries for all sorts of applications

About Numpy...

- Essential python package
- Central object: Numpy array
 - → Acts like a matrix/vector
 - \rightarrow Enables all sorts of mathematical operations
 - → Optimised for speed
- A cheat sheet with handy functions for this exercise can be found in the studon group

About Scipy...

- Python package closely linked to numpy
- Provides additional functionality
 - → Signal processing
 - \rightarrow Statistical operations

Recommendations

Package Manager (not needed in CIPs)

We recommend Anaconda (Windows)

- Open source
- One click installation
- Also installs python
- Easy handling of virtual environments

IDE

We recommend PyCharm

- Open source
- Easy package handling
- Debugging possibilities

Version Control

We recommend using Gitlab!

- Please use the university's gitlab server: https://gitlab.cs.fau.de/
- · Perfect for co-working
- Compare your code with old versions
- Please use private projects! You can add your study partner as additional developer.

Today's Exercise

Tasks

Use basic numpy functions to create:

- A binary checkerboard pattern
- A RGB color spectrum
- · A binary circle
- Image generator class that enables data augmentation

Figure: Example image generator output.

Get Started

- Open the IDE of your choice
- If you want to use PyCharm in the CIP:
 type module load pycharm-community into the console and open it by
 typing pycharm
- · Follow the instructions of the exercise sheet
- Implement the tasks

Thanks for listening.

Any questions?