补充知识: 计算机中信息的表示方法(数制与编码)

前言: 十进制规律: (1). 数码组成: 0 --- 9 (十个)

(2). 记数规则: 逢十进一

(3). 位权与数值: ... 10²10¹10⁰. 10⁻¹10⁻²...

例: 101.1=1*10²+1*10⁰+1*10⁻¹

位权展开法

一. 二进制

- 1. 二进制规律: (1). 数码组成: 0 --- 1 (二个)
 - (2). 记数规则: 逢二进一
 - (3). 位权与数值: ... 2²2¹2⁰.2⁻¹2⁻²... 例: (101.1)₂=1*2²+1*2⁰+1*2⁻¹=(5.5)₁₀

八进制 ()₈ , O 十进制 ()₁₀ , D

十六进制 ()₁₆ , H

2. 运算规则:

$$\begin{array}{r}
10111.011 \\
+ 11.01 \\
\hline
11010.101
\end{array}$$

3. 常用数对照表:	十进制	二进制	十六进制
	0	0000	0
	1	0001	1
	2	0010	2
	3	0011	3
	4	0100	4
	5	0101	5
	6	0110	6
	7	0111	7
	8	1000	8
	9	1001	9
	10	1010	\mathbf{A}
	11	1011	В
	12	1100	\mathbf{C}
	13	1101	D
	14	1110	${f E}$
	15	1111	\mathbf{F}

3. 二进制与十进制数转换

○二进制 → 十进制 : 位权展开法

如: $(1010.101)_2=8+2+0.5+0.125=(10.625)_{10}$

十进制 → 二进制:整数:除2取余法(倒取)

小 数:乘2取整法(正取)

$$(0.735)_{10} = (0.1011)_2$$

课后练习: (43.62)10=(101011.10011)2

- 4. 二进制的特点: (1). 机器容易表达: 传输速度快,且正确率高(工作可靠)
 - (2). 运算规则简单:运算速度快
 - (3). 易于逻辑运算

二. 十六进制(二进制的压缩码: 2^4)

- (1). 数码组成: 0 --- 9,A,B,C,D,E,F (十六个)
- (2). 记数规则: 逢十六进一

例: EF+5=?

1.(十六进制 → 十进制: 位权展开法

例:
$$(3D7.5)_{16}=3*16^2+13*16^1+7*16^0+5*16^1=()_{16}$$

└十进制→ 十六进制:除以 16 取余数

2. 十六进制 ↔ 二进制

三. 八进制 (二进制的压缩码: 2^3): 类同十六进制

课后练习: $(74.3)_8 = (111100.011)_2 = (3C.6)_{16} = (60.375)_{10}$

- 四. 术语
 - 1. 数据(Data)
 - 2. 指令 (Instruction)
 - 3. 地址 (Address)
 - 4. 存储容量的计量单位

比 特 (Bit): 计算机存储信息的最小单位,即一个二进制位; 字 节 (Byte): 计算机存储信息的基本单位,1 Byte = 8 Bits;

1KB=1024 Byte (2¹⁰B)

 $1MB=1024 KB (2^{20}B)$

 $1GB=1024 MB (2^{30}B)$

- 五. 数值的计算机表示(P40-P41)
 - 1. 计算机内部数据的组织形式: 二进制,数据存储长度固定(不足补0)

例:用 2Byte 存储十进制数 10 结果为 00000000 00001010 (16 位二进制)

2. 正数与负数的表示:最高位为符号位,"0"为正,"1"为负

例:用 2Byte 存储十进制数+10 和-10

- +10 结果为 00000000 00001010
- -10 结果为 10000000 00001010
- 3. 原码、反码和补码: 机器数的不同表示形式
 - 目的: <mark>机器数采用补码形式</mark>,以实现将数值及其符号位一起计算处理,并使得 减法运算能够归结为加法运算,从而简化计算机中运算器的电路设计。
 - 规则及计算方法: P40-P41
 - → 正数的原码、反码和补码三者相同,例:

[+10]原码=[+10]反码=[+10]补码= (000000000000001010) 2

→ 负数的原码、反码和补码求解方法,例:

[-10]原码=(10000000 00001010) 2 [-10]反码=(11111111 11110101) 2 [-10]补码=(11111111 11110110) 2

♣ 课后练习:

[+86]原码=[+86]反码=[+86]补码=(00000000 01010110)₂
[-86]原码=(10000000 01010110)₂
[-86]反码=(11111111 10101001)₂
[-86]补码=(11111111 10101010)₂

六.字符 ASCII 码 (7位二进制代码)

- 1. ASCII: 用一组(7位)统一的二进制码来表示特定的字符集合。
- 2. ASCII 表中包含 128 个 (2⁷) 常用字符, 其中:
 - 十进制数字符号 0~9;
 - 大小写英文字母;
 - 各类标点和运算符号;
 - 功能与控制符号等;

表 1.1

7位 ASCII 码表

低位	高 位								
1成 1以	000	001	010	011	100	101	110	111	
0000	NUL	DLE	SP	0	@	P		р	
0001	SOH	DC1	!	1	A	Q	a	q	
0010	STX	DC2	"	2	В	R	b	r	
0011	ETX	DC3	#	3	C	S	c	S	
0100	EOT	DC4	\$	4	D	T	d	t	
0101	ENQ	NAK	%	5	E	U	e	u	
0110	ACK	SYN	&	6	F	V	f	v	
0111	AEL	ETB	6	7	G	W	g	w	
1000	BS	CAN	(8	H	X	h	X	
1001	HT	EM)	9	I	Y	I	y	
1010	LF	SUB	*	••	J	Z	j	Z	
1011	VT	ESC	+	;	K	[k	{	
1100	FF	FS	,	\	L	\	1		
1101	CR	GS	-	II	M]	m	}	
1110	SO	RS	•	>	N	^	n	~	
1111	SI	US	/	?	0	_	0	DEL	

3. 特殊字符的 ASCII 码对照表

字 符	十进制	十六进制
•••	•••	•••
f + 1 g	49	31 H
9	57	39 H
•••	•••	•••
A Z	65	41 H
\mathbf{z}	90	5A H
•••	•••	•••
(a z	97	61 H
$\lfloor z \rfloor$	122	7A H
•••	•••	•••

练 习: 字符 'd' 的 ASCII 码为 _____。

基本 ASCII 码集: 最高位置 "0", 128 个; 扩展 ASCII 码集: 最高位置 "1", 128 个;

七. 汉字信息的编码

(汉字的外码:输入码,例如微软拼音、智能 ABC 等)

- 1. 汉字(机)内码:内部表示或存储码,每个汉字内码对应唯一的一组十六位二进制数
- 2. 汉字编码的国家标准: GB2312、GBK、GB18030(简繁一体, 27484 个汉字)
- 3. 国际化(多语种)编码: Unicode (2字节表示, 65535 个字符)