Dequeue-Side Semantics

Disclaimer: we assume familiarity with [MLF⁺23], adopt its notational conventions, and steal its definitions! Further, we work with a specific subset of *Rio*, denoted **Rio**, namely

$$\frac{c \in \mathsf{Class}}{\mathsf{edf}[c], \mathsf{fifo}[c] \in \mathsf{Rio}} \ \mathsf{set2stream} \\ \frac{n \in \mathbb{N} \qquad rs \in \mathsf{Rio}^n}{\mathsf{strict}[rs], \mathsf{rr}[rs] \in \mathsf{Rio}} \ \mathsf{stream2stream}$$

where **Class** is an opaque collection of *classes*.

1 Structure and Semantics of Rio Trees

Figure 1. Rio trees decorated by classes A, B, and C

Definition 1.1. For topology $t \in \textbf{Topo}$, the set **RioTree**(t) of *Rio trees* over t is defined by

$$\frac{\rho \in \mathsf{PIFO}(\mathsf{Pkt}) \qquad c \in \mathsf{Class}}{\mathsf{Leaf}(p,c) \in \mathsf{RioTree}(*)} \qquad \frac{ts \in \mathsf{Topo}^n \qquad \forall 1 \leq i \leq n. \ qs[i] \in \mathsf{RioTree}(ts[i])}{\mathsf{Internal}(qs) \in \mathsf{RioTree}(\mathsf{Node}(ts))}$$

These are trees with leaves decorated by both classes and PIFOs.

Definition 1.2. For topology $t \in \textbf{Topo}$, the set OrdTree(t) of ordered trees over t is defined by

$$ts \in \mathbf{Topo}^n \qquad rs \in \mathbf{Rk}^n$$

$$\forall 1 \leq i < j \leq n. \ rs[i] \neq rs[j] \qquad \forall 1 \leq i \leq n. \ os[i] \in \mathbf{OrdTree}(ts[i])$$

$$\mathsf{Internal}(rs, os) \in \mathbf{OrdTree}(\mathsf{Node}(ts))$$

These are trees with each internal node's child given a *unique* rank, thereby inducing a total ordering of children.

Let **flow**: $Pkt \rightarrow Class$ be an opaque mapping from packets to the class they belong to (flow inference).

Definition 1.3. For $t \in \textbf{Topo}$, define push : $\textbf{RioTree}(t) \times \textbf{Pkt} \times \textbf{Rk} \rightarrow \textbf{RioTree}(t)$ such that

$$\frac{\textbf{flow}(\mathsf{pkt}) = c \quad \mathsf{push}(p, \mathsf{pkt}, r) = p'}{\mathsf{push}(\mathsf{Leaf}(p, c), \mathsf{pkt}, r) = \mathsf{Leaf}(p', c)} \quad \frac{\forall 1 \leq i \leq |qs|. \; \mathsf{push}(qs[i], \mathsf{pkt}, r) = qs'[i]}{\mathsf{push}(\mathsf{Internal}(qs), \mathsf{pkt}, r) = \mathsf{Internal}(qs')} \quad \frac{\mathsf{flow}(\mathsf{pkt}) \neq c}{\mathsf{push}(\mathsf{Leaf}(p, c), \mathsf{pkt}, r) = \mathsf{Leaf}(p, c)}$$

Informally, we recursively push to all subtrees but only the PIFOs on leaves with the packet's flow are updated.

Definition 1.4. For $t \in \mathsf{Topo}$, define pop : $\mathsf{RioTree}(t) \times \mathsf{OrdTree}(t) \rightharpoonup \mathsf{Pkt} \times \mathsf{RioTree}(t)$ such that

$$\begin{aligned} & \operatorname{pop}(qs[i], os[i]) = (\operatorname{pkt}, q) \\ & \operatorname{pop}(\operatorname{pop}(\operatorname{pop}(p) = (\operatorname{pkt}, p')) \\ & \operatorname{pop}(\operatorname{Leaf}(p, c), \operatorname{Leaf}) = (\operatorname{pkt}, \operatorname{Leaf}(p', c)) \end{aligned} \qquad \begin{aligned} & \operatorname{pop}(qs[i], os[i]) = (\operatorname{pkt}', q') \implies rs[i] < rs[j] \\ & \operatorname{pop}(\operatorname{Internal}(qs), \operatorname{Internal}(rs, os)) = (\operatorname{pkt}, \operatorname{Internal}(qs[q/i])) \end{aligned}$$

Informally, we recursively pop the smallest ranked, poppable subtree.

2 Modelling Scheduling Algorithms

Like [MLF⁺23], we model scheduling algorithms through a *control*, a thin-layer over the tree policies run on. They keep track of

- (1) a state from a fixed collection St
- (2) an underlying tree of buffered packets
- (3) scheduling transactions that update state and construct auxillary structures to push or pop the tree

They come in two flavors: Rio & PIFO Controls. The former determines the order to forward packets at dequeue while latter does so at engueue.

2.1 Controls

$$\frac{\mathsf{z}_{\mathsf{pre-push}}(s,\mathsf{pkt}) = (r,s') \quad \mathsf{push}(q,\mathsf{pkt},r) = q'}{\mathsf{push}((s,q,\mathsf{z}_{\mathsf{pre-push}},\mathsf{z}_{\mathsf{pre-pop}},\mathsf{z}_{\mathsf{post-pop}}),\mathsf{pkt}) = (s',q',\mathsf{z}_{\mathsf{pre-push}},\mathsf{z}_{\mathsf{pre-pop}},\mathsf{z}_{\mathsf{post-pop}})} \, \mathsf{RioCtrl-Push}$$

$$\frac{\mathsf{z}_{\mathsf{pre-pop}}(s) = (o,s') \quad \mathsf{pop}(q,o) = (\mathsf{pkt},q') \quad \mathsf{z}_{\mathsf{post-pop}}(s',\mathsf{pkt}) = s''}{\mathsf{pop}((s,q,\mathsf{z}_{\mathsf{pre-push}},\mathsf{z}_{\mathsf{pre-pop}},\mathsf{z}_{\mathsf{post-pop}})) = (\mathsf{pkt},(s'',q',\mathsf{z}_{\mathsf{pre-push}},\mathsf{z}_{\mathsf{pre-pop}},\mathsf{z}_{\mathsf{post-pop}}))} \, \mathsf{RioCtrl-Pop}$$

$$\frac{\mathsf{z}_{\mathsf{pre-push}}(s,\mathsf{pkt}) = (pt,s') \quad \mathsf{push}(q,\mathsf{pkt},pt) = q'}{\mathsf{push}((s,q,\mathsf{z}_{\mathsf{pre-push}},\mathsf{z}_{\mathsf{post-pop}}),\mathsf{pkt}) = (s',q',\mathsf{z}_{\mathsf{pre-push}},\mathsf{z}_{\mathsf{post-pop}})} \, \mathsf{PIFOCtrl-Push}$$

$$\frac{\mathsf{pop}(q) = (\mathsf{pkt},q') \quad \mathsf{z}_{\mathsf{post-pop}}(s,\mathsf{pkt}) = s'}{\mathsf{pop}((s,q,\mathsf{z}_{\mathsf{pre-push}},\mathsf{z}_{\mathsf{post-pop}})) = (\mathsf{pkt},(s',q',\mathsf{z}_{\mathsf{pre-push}},\mathsf{z}_{\mathsf{post-pop}}))} \, \mathsf{PIFOCtrl-Pop}}$$

Figure 2. Pushing and Popping Controls

Definition 2.1. Let $t \in \textbf{Topo}$ and scheduling transactions $z_{pre-push}$ and $z_{post-pop}$ be partial functions

$$z_{\text{pre-push}}: \mathbf{St} \times \mathbf{Pkt}
ightharpoonup \mathbf{Path}(t) \times \mathbf{St}$$
 $z_{\text{post-pop}}: \mathbf{St} \times \mathbf{Pkt}
ightharpoonup \mathbf{St}$

Define $PIFOControl(t, z_{pre-push}, z_{post-pop})$ to be the set of quadruples

$$(s, q, z_{pre-push}, z_{post-pop})$$

where $s \in \mathbf{St}$ and well-formed $q \in \mathbf{PIFOTree}(t)$.

Definition 2.2. Let $t \in \textbf{Topo}$ and scheduling transactions $z_{pre-push}$, $z_{pre-pop}$, $z_{post-pop}$ be partial functions

$$\begin{split} & z_{\text{pre-push}} : \textbf{St} \times \textbf{Pkt} \, \rightharpoonup \, \textbf{Rk} \times \textbf{St} \\ & z_{\text{pre-pop}} : \textbf{St} \, \rightharpoonup \, \textbf{OrdTree}(t) \times \textbf{St} \\ & z_{\text{post-pop}} : \textbf{St} \times \textbf{Pkt} \, \rightharpoonup \, \textbf{St} \end{split}$$

Define **RioControl**(t, $z_{pre-push}$, $z_{pre-pop}$, $z_{post-pop}$) to be the set of quintuples

$$(s, q, Z_{pre-push}, Z_{pre-pop}, Z_{post-pop})$$

where $s \in \mathbf{St}$ and $q \in \mathbf{RioTree}(t)$.

Both controls admit push and pop operations:

```
push : PIFOControl(t, z_{pre-push}, z_{post-pop}) \times Pkt \rightharpoonup PIFOControl(t, z_{pre-push}, z_{post-pop})
pop : PIFOControl(t, z_{pre-push}, z_{post-pop}) \rightharpoonup Pkt \times PIFOControl(t, z_{pre-push}, z_{post-pop})
push : RioControl(t, z_{pre-push}, z_{pre-pop}, z_{post-pop}) \times Pkt \rightharpoonup RioControl(t, z_{pre-push}, z_{pre-pop}, z_{post-pop})
pop : RioControl(t, z_{pre-push}, z_{pre-pop}, z_{post-pop}) \rightharpoonup Pkt \times RioControl(t, z_{pre-push}, z_{pre-pop}, z_{post-pop})
```

Their semantics are written out in full in Figure 2.

2.2 Simulations

Definition 2.3. For $t \in \textbf{Topo}$, define $\text{empty}_t \in \textbf{PIFOTree}(t)$ such that

$$\frac{p \in \mathsf{PIFO}(\mathsf{Pkt}) \quad \mathsf{pop}(p) \text{ is undefined}}{\mathsf{empty}_* = \mathsf{Leaf}(p)} \\ \frac{ts \in \mathsf{Topo}^n \quad p \in \mathsf{PIFO}(\{1, \dots, n\})}{\mathsf{pop}(p) \text{ is undefined}} \\ \frac{\mathsf{pop}(p) \text{ is undefined}}{\mathsf{empty}_{\mathsf{Node}(ts)} = \mathsf{Internal}(p, qs)}$$

Informally, empty_t is a PIFO tree of topology t, with empty PIFOs at all nodes.

Definition 2.4. Define relation $\rightarrow \subseteq \mathsf{PIFOControl}(t, \mathsf{z}_{\mathsf{pre-push}}, \mathsf{z}_{\mathsf{post-pop}}) \times \mathsf{PIFOControl}(t, \mathsf{z}_{\mathsf{pre-push}}, \mathsf{z}_{\mathsf{post-pop}})$ by

$$\frac{\mathsf{pkt} \in \mathbf{Pkt} \qquad \mathsf{push}(c, \mathsf{pkt}) = c'}{c \to c'} \, \mathsf{Step-Push} \qquad \qquad \frac{\mathsf{pop}(c) = (\mathsf{pkt}, c')}{c \to c'} \, \mathsf{Step-Pop}$$

i.e. $c \to c'$ if c' is a push or pop from c. We write \to^* for the reflexive transitive closure of \to .

Definition 2.5. A partial function

$$f: \mathbf{PIFOControl}(t, \mathsf{z}_{\mathsf{pre-push}}, \mathsf{z}_{\mathsf{post-pop}}) \@ifnextchar`{}{
m PioControl}(t', \mathsf{z}'_{\mathsf{pre-push}}, \mathsf{z}'_{\mathsf{pre-pop}}, \mathsf{z}'_{\mathsf{post-pop}})$$

and control $c_{init} \in dom f$ form a simulation if the following conditions are satisfied:

- (1) The PIFO tree in c_{init} is empty, i.e. $c_{init} = (s, empty_t, z_{pre-push}, z_{post-pop})$.
- (2) When $c_{init} \rightarrow^* c_1$ and $f(c_1) = c_2$, we can guarantee the following:

(a)
$$pop(c_1)$$
 is undefined $\implies pop(c_2)$ is undefined

(b)
$$pop(c_1) = (pkt, c'_1) \implies pop(c_2) = (pkt, c'_2) \land f(c'_1) = c'_2$$

(c)
$$\operatorname{push}(c_1,\operatorname{pkt})=c_1' \implies \operatorname{push}(c_2,\operatorname{pkt})=c_2' \wedge f(c_1')=c_2'$$

Definition 2.6. For $t \in \mathsf{Topo}$, define the set $\mathsf{CTopo}(t)$ such that

$$\frac{c \in \mathbf{Class}}{c \in \mathbf{CTopo}(*)} \qquad \frac{\forall 1 \le i \le |ts|. \ \tau s[i] \in \mathbf{CTopo}(ts[i])}{\mathsf{Node}(\tau s) \in \mathbf{CTopo}(\mathsf{Node}(ts))}$$

These are topologies decorated with classes at the leaves.

As we usually use t to denote elements of **Topo**, we'll use τ for elements of **CTopo**.

Definition 2.7. For $t \in \mathsf{Topo}$, define $\mathsf{proj} : \mathsf{CTopo}(t) \times \mathsf{PIFOTree}(t) \to \mathsf{RioTree}(t)$ such that

$$\frac{\forall 1 \leq i \leq |qs|. \ \operatorname{proj}(\tau s[i], qs[i]) = qs'[i]}{\operatorname{proj}(\operatorname{Node}(\tau s), \operatorname{Internal}(p, qs)) = \operatorname{Internal}(qs')}$$

3 Example Controls & Simulations

For all further discussion, we make transparent our previously opaque collections:

 $\mathbf{St} = \{s \mid s \text{ is dictionary mapping string} \to \mathbf{float}\}$ $\mathbf{Rk} = \mathbf{Class} = \mathbb{N}$ $\mathrm{Im}(\mathbf{flow}) = [0, n-1]$ for some $n \in \mathbb{N}$.

3.1 Round-Robin

```
1 def z_pre-push(st, pkt):
                                            1 def z_pre-push(st, pkt):
   r = arrival_time(pkt)
                                            2 return arrival_time(pkt)
    f = flow(pkt)
                                            1 def z_pre-pop(st):
    rank_ptr = "r_" + str(f)
                                                turn = int(s["turn"])
    r_i = int(st[rank_ptr])
                                                 rs = []
     st["rank_ptr"] += float(n)
                                                for i in range(n):
                                            4
     return ((f, r_i) :: r, st)
                                                 # Python %, e.g. -2 % 3 == 1, not -2
                                            5
                                                    rs.append((i - turn) % n)
1 def z_post-pop(st, pkt):
    f = flow(pkt)
                                            7    return Internal(rs, [Leaf] * n)
    turn = int(s["turn"])
3
                                            1 def z_post-pop(st, pkt):
    i = turn
4
                                            f = flow(pkt)
     while i != f:
5
                                                st["turn"] = float((f + 1) % n)
       st["r_" + str(i)] += n
6
                                                return st
         i = (i + 1) \% n
   st["turn"] = float((f + 1) % n)
                                                         (b) Round-Robin Rio Control
   if turn >= st["turn"]:
9
10
     st["cycle"] += 1
11 return st
```

(a) Round-Robin PIFO Control

Figure 3. Scheduling Transactions

Let's put our theory to use by constructing PIFO and Rio controls for $\mathbf{rr}[(\mathbf{FIFO}[0], \mathbf{FIFO}[1], \dots, \mathbf{FIFO}[n-1])]$. Both controls use the same underlying topologies, namely

$$t = \mathsf{Node}(\underbrace{*,*,\ldots,*}_{n \text{ times}}) \in \mathbf{Topo}$$
 $\tau = \mathsf{Node}((*,0),(*,1),\ldots,(*,n-1)) \in \mathbf{CTopo}$

Figure 3 describes their scheduling transactions in pseudocode. Therefore, we have the materials to define

$$PIFOControl(t, z_{pre-push}, z_{post-pop})$$
 and $RioControl(t, z'_{pre-push}, z'_{pre-pop}, z'_{post-pop})$

I.e. the collection of PIFO and Rio controls for our program. Let's find a simulation between them!

Definition 3.1. Let
$$c_{RR} = (s, empty_t, z_{pre-push}, z_{post-pop}) \in \textbf{PIFOControl}(t, z_{pre-push}, z_{post-pop})$$
, where $s["turn"] = 0$ $s["cycle"] = 1$ $s["r_" + str(i)] = i$

for all 0 < i < n - 1

Definition 3.2. For set S, define ranks : $PIFO(S) \times S \rightarrow \mathcal{M}(Rk)^1$ such that

$$\frac{\mathsf{pop}(p') = (j, p) \quad m = \mathsf{min}(\mathsf{ranks}(p', j)) \quad i = j}{\mathsf{ranks}(p, i) = \mathsf{ranks}(p', i) - \{m\}} \qquad \frac{\mathsf{pop}(p') = (j, p) \quad i \neq j}{\mathsf{ranks}(p) = \mathsf{ranks}(p', i)}$$

$$\frac{\mathsf{push}(p', j, r) = p \quad i = j}{\mathsf{ranks}(p, i) = \mathsf{ranks}(p, i) + \{r\}} \qquad \frac{\mathsf{pop}(p) \text{ is undefined}}{\mathsf{ranks}(p, i) = \{\}} \qquad \frac{\mathsf{push}(p', j, r) = p \quad i \neq j}{\mathsf{ranks}(p, i) = \mathsf{ranks}(p', i)}$$

Informally, ranks(p, i) is the multiset of ranks with which i lives in PIFO p.

¹We use $\mathcal{M}(X)$ to denote the collection of multisets with entries in set X.

Lemma 3.3. If $c_{RR} \to^* c = (s, q, z_{pre-push}, z_{post-pop})$, then both $z_{pre-push}$ and $z_{post-pop}$ are defined on $\{pkt \in \mathbf{Pkt} \mid (s, pkt)\}$

Proof Sketch. This follows by induction on \rightarrow^* and the following observations:

- ullet $z_{pre-push}$ and $z_{post-pop}$ are only undefined if they access unbound keys in the state.
- ullet All keys in s accessed by $z_{pre-push}$ and $z_{post-pop}$ are defined in c_{RR} 's state.
- Neither z_{pre-push} nor z_{post-pop} unbind keys in the state, and, therefore, if

$$(s, q, Z_{\text{pre-push}}, Z_{\text{post-pop}}) \rightarrow (s', q', Z_{\text{pre-push}}, Z_{\text{post-pop}})$$

all keys bound in s are bound s'.

Lemma 3.4. If $c_{RR} \rightarrow^* c = (s, q, z_{pre-push}, z_{post-pop})$ and p is q's root PIFO, i.e. q = Internal(p, qs), then

$$\operatorname{ranks}(p,i) = \begin{cases} \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot s[\text{``cycle''}] \le x < s[\text{``r_''} + \operatorname{str}(i)] \right\} & i < s[\text{``turn''}] \\ \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot (s[\text{``cycle''}] - 1) \le x < s[\text{``r_''} + \operatorname{str}(i)] \right\} & i \ge s[\text{``turn''}] \end{cases}$$

for all 0 < i < n - 1.

Proof Sketch. This follows by induction on \rightarrow^* and careful analysis of lines 5-7 of $z_{post-pop}$ in Figure 3a. \Box See Section A for a complete proofs of these lemmas.

Theorem 3.5. Consider the function

 $f: \mathsf{PIFOControl}(t, \mathsf{z}_{\mathsf{pre-push}}, \mathsf{z}_{\mathsf{post-pop}}) \to \mathsf{RioControl}(t, \mathsf{z}'_{\mathsf{pre-push}}, \mathsf{z}'_{\mathsf{pre-pop}}, \mathsf{z}'_{\mathsf{post-pop}})$

such that $f(s, q, z_{\text{pre-push}}, z_{\text{post-pop}}) = (s', \text{proj}(\tau, q), z'_{\text{pre-push}}, z'_{\text{pre-pop}}, z'_{\text{post-pop}})$, where

$$s'[x] = \begin{cases} s[x] & x = \text{"turn"} \\ undefined & otherwise \end{cases}$$

Together f and c_{RR} form a simulation.

Proof. We'll verify each condition of Definition 2.5 one by one.

- (1) By Definition 3.1, the PIFO tree in c_{RR} is empty.
- (2) Let $c_{RR} \rightarrow^* c_1 = (s_1, q_1, z_{pre-push}, z_{pre-pop})$ and $f(c_1) = c_2 = (s_2, q_2, z_{pre-push}, z_{pre-pop}, z_{post-pop})$.
 - (a) Suppose $pop(c_1)$ is undefined. By Lemma 3.3, $z_{post-pop}$ is defined on (s_1, pkt) for all $pkt \in \mathbf{Pkt}$. Therefore, by rule PIFOCtrl-Pop in Figure 2, $pop(q_1)$ must be undefined. Since q_1 is well-formed, all PIFOs on it are empty. Similarly, all PIFOs on $q_2 = proj(\tau, q_1)$ are empty. Hence, $pop(q_2, o)$ is undefined for all $o \in \mathbf{OrdTree}(t)$, i.e. $pop(c_2)$ is undefined per rule RioCtrl-Pop in Figure 2.
 - (b)
 - (c) Suppose $\operatorname{push}(c_1,\operatorname{pkt})=c_1'$. By Lemma 3.3, $z_{\operatorname{pre-push}}'$ is defined on (s_2,pkt) for all $\operatorname{pkt}\in\operatorname{Pkt}$. From inspecting Definition 1.3, $\operatorname{push}(q,\operatorname{pkt},r)$ is defined for all $q\in\operatorname{RioTree}(t)$, $\operatorname{pkt}\in\operatorname{Pkt}$, and $r\in\operatorname{Rk}$. Therefore, by rule RioCtrl-Push in Figure 2, $\operatorname{push}(c_2,\operatorname{pkt})=c_2'$ is defined.

3.2 Strict

References

[MLF⁺23] Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen. Formal abstractions for packet scheduling,

A Proofs for Section 3

Lemma 3.4. If $c_{RR} \rightarrow^* c = (s, q, z_{pre-push}, z_{post-pop})$ and p is q's root PIFO, i.e. q = Internal(p, qs), then

$$\mathsf{ranks}(p,i) = \begin{cases} \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot s[\text{``cycle''}] \leq x < s[\text{``r_''} + \mathsf{str}(i)] \right\} & i < s[\text{``turn''}] \\ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot (s[\text{``cycle''}] - 1) \leq x < s[\text{``r_''} + \mathsf{str}(i)] \right\} & i \geq s[\text{``turn''}] \end{cases}$$

for all $0 \le i \le n-1$.

Proof. We'll proceed by induction on \rightarrow^* .

(Base Case) Let $c = c_{RR}$ and fix arbitrary $i \in [0, n-1]$.

Recall $q = \text{empty}_t$ by Definition 3.1. Therefore, pop(p) is undefined by Definition 2.3. Hence,

$$ranks(p, i) = \{\}$$

by Definition 3.2. Definition 3.1 also insists

$$s["turn"] = 0$$
 $s["cycle"] = 1$ $s["r_-" + str(i)] = i$

Hence, $i \ge s[$ "turn"] and

$$= \begin{cases} \left\{x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot s[\text{``cycle''}] \leq x < s[\text{``r_-''} + \operatorname{str}(i)] \right\} & i < s[\text{``turn''}] \\ \left\{x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot \left(s[\text{``cycle''}] - 1\right) \leq x < s[\text{``r_-''} + \operatorname{str}(i)] \right\} & i \geq s[\text{``turn''}] \end{cases}$$

$$= \left\{x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot \left(s[\text{``cycle''}] - 1\right) \leq x < s[\text{``r_-''} + \operatorname{str}(i)] \right\}$$

$$= \left\{x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land 0 \leq x < i\right\} = \{\}$$

Both sides of the desired equality are therefore the empty multiset {}.

(Inductive Step) Let $c' = (s', q', z_{\text{pre-push}}, z_{\text{post-pop}}) \rightarrow c$ and q' = Internal(p', qs'). We have two cases. (Step-Push) Suppose c = push(c', pkt) and f = flow(pkt). From inspecting $z_{\text{pre-push}}$ in Figure 3a,

$$\operatorname{push}\left(p',f,s'["r_"+\operatorname{str}(f)]\right)=p \qquad \qquad s[x]=\begin{cases} s'[x]+n & x="r_"+\operatorname{str}(f)\\ s'[x] & \text{otherwise} \end{cases}$$

Hence, by Definition 3.2 and the IH, for $i \neq f$,

 $= \operatorname{ranks}(p, i) = \operatorname{ranks}(p', i)$

$$= \begin{cases} \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \wedge n \cdot s'[\text{``cycle''}] \leq x < s'[\text{``r_-''} + \operatorname{str}(i)] \right\} & i < s'[\text{``turn''}] \\ \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \wedge n \cdot (s'[\text{``cycle''}] - 1) \leq x < s'[\text{``r_-''} + \operatorname{str}(i)] \right\} & i \geq s'[\text{``turn''}] \end{cases}$$

$$= \begin{cases} \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \wedge n \cdot s[\text{``cycle''}] \leq x < s[\text{``r_-''} + \operatorname{str}(i)] \right\} & i < s[\text{``turn''}] \\ \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \wedge n \cdot (s[\text{``cycle''}] - 1) \leq x < s[\text{``r_-''} + \operatorname{str}(i)] \right\} & i \geq s[\text{``turn''}] \end{cases}$$

Instead, for i = f, let $r = s'["r_" + str(i)]$. Definition 3.2 and the IH then once again show $= ranks(p, i) = ranks(p', i) + \{r\}$

$$= \begin{cases} \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot s'[\text{``cycle''}] \le x < s'[\text{``r_-''} + \operatorname{str}(i)] \right\} + \{r\} & i < s'[\text{``turn''}] \\ \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot (s'[\text{``cycle''}] - 1) \le x < s'[\text{``r_-''} + \operatorname{str}(i)] \right\} + \{r\} & i \ge s'[\text{``turn''}] \end{cases}$$

$$= \begin{cases} \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot s'[\text{``cycle''}] \le x < s'[\text{``r_-''} + \operatorname{str}(i)] + n \right\} & i < s'[\text{``turn''}] \\ \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot (s'[\text{``cycle''}] - 1) \le x < s'[\text{``r_-''} + \operatorname{str}(i)] + n \right\} & i \ge s'[\text{``turn''}] \end{cases}$$

$$= \begin{cases} \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot s[\text{``cycle''}] \le x < s[\text{``r_-''} + \operatorname{str}(i)] \right\} & i < s[\text{``turn''}] \\ \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot (s[\text{``cycle''}] - 1) \le x < s[\text{``r_-''} + \operatorname{str}(i)] \right\} & i \ge s[\text{``turn''}] \end{cases}$$

(Step-Pop) Suppose (pkt, c) = pop(c') and f = **flow**(pkt). From inspecting $z_{post-pop}$ in Figure 3a, pop(p') = (f, p) $s["cycle"] \in \{s'["cycle"], s'["cycle"] + 1\}$ Consider the case where s["cycle"] = s'["cycle"], i.e. $s'["turn"] \le f < f + 1 = s["turn"]$.

• For i < s' ["turn"] or $i \ge s$ ["turn"], lines 5-7 of $z_{post-pop}$ in Figure 3a show

$$s["r_" + str(i)] = s'["r_" + str(i)]$$

Therefore, by Definition 3.2 and the IH,

$$= \operatorname{ranks}(p, i) = \operatorname{ranks}(p', i)$$

$$= \begin{cases} \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \wedge n \cdot s'[\text{``cycle''}] \leq x < s'[\text{``r_''} + \operatorname{str}(i)] \right\} & i < s'[\text{``turn''}] \\ \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \wedge n \cdot (s'[\text{``cycle''}] - 1) \leq x < s'[\text{``r_''} + \operatorname{str}(i)] \right\} & i \geq s'[\text{``turn''}] \end{cases}$$

$$= \begin{cases} \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \wedge n \cdot s[\text{``cycle''}] \leq x < s[\text{``r_''} + \operatorname{str}(i)] \right\} & i < s[\text{``turn''}] \\ \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \wedge n \cdot (s[\text{``cycle''}] - 1) \leq x < s[\text{``r_''} + \operatorname{str}(i)] \right\} & i \geq s[\text{``turn''}] \end{cases}$$

• Suppose $s'["turn"] \le i < f$. By the IH,

$$\mathsf{ranks}(p',j) = \Big\{ x \in \mathbf{Rk} \mid x \equiv j \pmod{n} \land n \cdot (s'[\text{``cycle''}] - 1) \le x < s'[\text{``r_''} + \mathsf{str}(j)] \Big\}$$

Since popping p' returned f, it must be a minimally ranked element. However,

$$n \cdot (s'["cycle"] - 1) + i < n \cdot (s'["cycle"] - 1) + f$$

Therefore, ranks $(p', i) = \{\}$: i.e. there are no numbers congruent to $i \mod n$ in

$$n \cdot (s'["cycle"] - 1), s'["r_-" + str(i)]$$

The same is therefore true of

$$\left[n \cdot s'[\text{"cycle"}], s'[\text{"r_"} + \text{str}(i)] + n\right)$$

Since lines 5-7 of $z_{post-pop}$ in Figure 3a show $s["r_" + str(i)] = s'["r_" + str(i)] + n$,

(By Definition 3.2)
$$= \operatorname{ranks}(p, i) = \operatorname{ranks}(p', i)$$

$$= \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot (s'["cycle"] - 1) \le x < s'["r_" + \operatorname{str}(i)] \right\}$$

$$= \left\{ \}$$

$$= \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot s'["cycle"] \le x < s'["r_" + \operatorname{str}(i)] + n \right\}$$

$$= \left\{ x \in \mathbf{Rk} \mid x \equiv i \pmod{n} \land n \cdot s["cycle"] \le x < s["r_" + \operatorname{str}(i)] \right\}$$

• For i = f, lines 5-7 of $z_{post-pop}$ in Figure 3a yet again show

$$s["r_{-}" + str(i)] = s'["r_{-}" + str(i)]$$

Therefore, by Definition 3.2 and the IH,

$$= \operatorname{ranks}(p,i) = \operatorname{ranks}(p') - \left\{ n \cdot (s'[\text{"cycle"}] - 1) \right\}$$

$$= \left\{ x \in \operatorname{\mathbf{Rk}} \mid x \equiv i \pmod{n} \land n \cdot (s'[\text{"cycle"}] - 1) \le x < s'[\text{"}r_\text{"} + \operatorname{str}(i)] \right\} - \left\{ n \cdot (s'[\text{"cycle"}] - 1) \right\}$$

$$= \left\{ x \in \operatorname{\mathbf{Rk}} \mid x \equiv i \pmod{n} \land n \cdot s'[\text{"cycle"}] \le x < s'[\text{"}r_\text{"} + \operatorname{str}(i)] \right\}$$

$$= \left\{ x \in \operatorname{\mathbf{Rk}} \mid x \equiv i \pmod{n} \land n \cdot s[\text{"cycle"}] \le x < s[\text{"}r_\text{"} + \operatorname{str}(i)] \right\}$$

We leave the cases where s["cycle"] = s'["cycle"] + 1 as an exercise as they're much of the same:

- (i) $i \in [s["turn"], s'["turn"])$ (" r_- " + str(i) is unchanged)
- (ii) $i \in [s'["turn"], n] \cup [0, f)$ ("r_" + str(i) is incremented by n)

(iii)
$$i = f$$