CS 39: Theory of Computation

Winter '23

Mid-Term Exam 1 — 02/13/2023

Prof. Chakrabarti Student; Amittai Siavava

Credit Statement

All work on the mid-term is my own. I referred to class notes and the following books:

(i) Introduction to the Theory of Computation by Michael Sipser.

Problem 1.

Let $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be the alphabet of all decimal digits. A string $x \in D^*$ is said to be stable if, for each pair of adjacent digits in x, those two digits have a numerical difference of at most 1. For example:

Stable: 433321001012, 556677654, 7, 0000, ε .

Unstable: 6554667, 1213141516, 7890123.

Give a formal description of a DFA that recognizes $L_1 = \{x \in D^* : x \text{ is stable}\}$. Provide a high-level explanation of your design idea (no formal completeness and soundness proofs are required).

$$M = (Q, D, \delta, s, F), \text{ where}$$

$$Q = \{s, r\} \cup \{q_i : i \in D\}$$

$$\delta(q, x) = \begin{cases} q_x & \text{if } x \in D \text{ and } q \in \{s, q_{x-1}, q_x, q_{x+1}\}. \\ r & \text{otherwise.} \end{cases}$$

$$F = \{s\} \cup \{q_i : i \in D\} = Q \setminus \{r\}.$$

Design Idea:

We maintain a start state, a trapping reject state, and one state for each digit.

Here is how we handle transitions:

- If we are in the start state and read a digit, we transition to the corresponding digit state.
- If we are in a digit state q_x (for the digit x) and read a digit y, then:
 - if y = x, we loop to the same state q_x .
 - if $y = x \pm 1$, we transition to the corresponding digit state q_y .
 - if $y \neq x$ and $y \neq x \pm 1$, we transition to the reject state r.
- If we are in the reject state r and read any symbol, we stay in the reject state.

Finally, we accept if after processing a string we are still in the start state (meaning the string is empty) or in a digit state (meaning all the adjacent digits had a difference of at most 1).

Problem 2.

For each CFG G_i ;

- Describe $\mathcal{L}(G_i)$ using set notation, as simply as possible.
- Either *draw* an NFA that recognizes $\mathcal{L}(G_i)$ or *prove* that $\mathcal{L}(G_i)$ is not regular.
- (a) G_1

$$S \Rightarrow 0T0 \mid 1T1$$

$$T \Rightarrow 0T0 \mid 1T1 \mid X$$

$$X \Rightarrow AX \mid A$$

$$A \Rightarrow 0 \mid 1$$

- (i) $\mathcal{L}(G_1) = \{xwx^R : x, w \in \{0, 1\}^* \text{ and } |x| > 0, |w| > 0\}$
- (ii) Draw an NFA that recognizes $\mathcal{L}(G_1)$.

(b) G_2

$$S \Rightarrow 0X \mid 1Y$$

$$X \Rightarrow AXA \mid 0$$

$$Y \Rightarrow AYA \mid 1$$

$$A \Rightarrow 0 \mid 1$$

- (i) $\mathcal{L}(G_2) = \{aw : a \in \{0,1\}, w \in \{0,1\}^* \text{ and the middle symbol of } w \text{ is } a\}$
- (ii) *Prove* that $\mathcal{L}(G_2)$ is not regular or draw an NFA.

Claim 2.1. $L_2 = \mathcal{L}(G_2)$ is not regular.

Proof. Suppose L_2 is regular, and let p be the pumping length for L_2 . Take $s = 10^p 10^p$, then clearly $s \in L_2$. By the pumping lemma, there exists $u, v, w \in \{0, 1\}^*$ such that s = uvw and:

- $|uv| \le p$
- |v| > 0

This gives us two possibilities:

- If $u = \varepsilon$, then $v = 10^a$ for some $0 \le a \le p 1$, and $w = 0^{p-a} 10^p$.
- If $u \neq \varepsilon$, then $u = 10^a$, $v = 0^b$, and $w = 0^{p-a-b}10^p$, where $a + b \le p 1$.
- $uv^k w \in L_2$ for all $k \ge 0$

In the first case, pumping up the string tells us that $uv^2w = 10^b 10^b 0^{p-b} 10^p \in L_2$.

This implies that the middle symbol of $0^b 10^p 10^p$ is 1.

For this to happen, either:

- -b=2p+1. This contradicts the condition that $b=|v| \le p$ (which follows from PL1).
- -b+p+1=p. This implies that b=-1, which contradicts the fact that we cannot have negative-length strings.

Therefore, in the first case L_2 must not be regular.

In the second case, pumping down the string tells us that $uw = 10^a 0^{p-a-b} 10^p \in L_2$.

This implies that the middle symbol of $0^{p-b}10^p$ is 1.

For this to happen, we must have that p - b = p, meaning b = 0, contradicting rule PL2 which says that b = |v| > 0.

Therefore, in the second case \mathcal{L}_2 must also not be regular.

(c) G₃

$$S \Rightarrow AAT \mid BBT$$

$$T \Rightarrow AAT \mid BBT \mid A \mid B$$

$$A \Rightarrow 0$$

$$B \Rightarrow 1$$

Problem 3.

Give a simple CFG that generates the language $L_3 = \{x \in \{0,1\}^* : x \neq x^R\}$.

Formally prove that your CFG is sound and complete.

$$\begin{array}{l} \underline{G_3:} \\ S\Rightarrow 0S0\mid 0B1\mid 1B0\mid 1S1 \\ \\ B\Rightarrow 0B0\mid 0B1\mid 1B0\mid 1B1\mid 0\mid 1\mid \varepsilon \end{array}$$

Claim 3.1. $\mathcal{L}(G_3) = L_3$.

Proof. We need to show that G_3 is both complete $\mathcal{L}(G_3) \supseteq L_3$ and $\mathcal{L}(G_3) \subseteq L_3$.

Completeness:

Let $x \in L_3$, and write $x = x_1, x_2, \dots, x_n$ with each $x_i \in \{0, 1\}$.

By definition of L_3 , if $x \in L_3$ then $x \neq x^R$. Therefore, $x_1 x_2 \dots x_n \neq x_n x_{n-1} \dots x_1$, implying that $x_i \neq x_{n-i+1}$ for some $i \in \{1, 2, \dots, \lfloor n/2 \rfloor\}$. Therefore, the sequence $x_i, x_i + 1, \dots, x_{n-i}$ can be written as either 0y1 or 1y0, where $y \in \{0, 1\}^*$.

Back to our CFG, note that the rule ' $B \Rightarrow 0B0 \mid 0B1 \mid 1B0 \mid 1B1 \mid 0 \mid 1 \mid \varepsilon$ ' can derive *any* string in $\{0,1\}^*$. Therefore, if we can a string in L_3 as either 0B1 or 1B0 then we can yield it from B.

The starting symbol of G_3 is S, and the rules for S are $S \Rightarrow 0.50 \mid 0.081 \mid 1.081 \mid 1.$

- 0S0 or 1S1 if the two symbols at the ends of the string are the same. However, we may never yield a full string from only yielding a sequence of S's, since S does not have a rule that removes all symbols not in $\{0,1\}^*$ from the string.
- ullet 0B1 or 1B0 only if the two symbols at the ends of the string are different. By yielding B, we can eventually

Problem 4.

For each $x \in \{0,1\}^*$, define grow(x) to be the string obtained by replacing every occurrence of '0' in x with '00'. For example:

$$grow(10110) = 1001100$$
, $grow(000) = 000000$, $grow(\varepsilon) = \varepsilon$, $grow(11) = 11$.

Let $P = (Q, \{0, 1\}, \Gamma, \delta, q_0, F)$ be a PDA. Formally describe a PDA that recognizes $\{grow(x) : x \in \mathcal{L}(P)\}$. Do not assume anything about the design of P.

Give a high-level explanation of your construction (no formal completeness and soundness proofs are required).

Define a new PDA

$$P_2 = (Q_2, \{0,1\}, \Gamma, \delta_2, q_0, F)$$

where:

$$Q_2 = \bigcup_{q \in Q} \left\{ q, q' \right\}$$

$$\delta_2(q, x, \gamma) = \begin{cases} \delta(q, x, \gamma) & \text{if } q \in Q \text{ and } x \neq 0 \\ r' & \text{where } r = \delta(q, x, \gamma), \text{if } q \in Q \text{ and } x = 0 \end{cases}$$

$$r & \text{if } q = r' \text{ for some } r \in Q, \text{ and } x = 0, \gamma = \varepsilon$$

Main Idea:

- (i) P_2 starts at the same state as P. P_2 also uses the same accepting states as P.
- (ii) P_2 contains a duplicate state q' for each state $q \in Q$.
- (iii) Whenever there is an incoming transition $p \to q$ with a reading x = 0, P_2 instead transition to q'. q' then only transitions to q if the next symbol is a 0. The transition from p to q' pushes to or pops from the stack as it would if transitioning directly from p to q in the original PDA. However, the transition from q' to q does not push to or pop from the stack, thus ensuring the stack remains consistent with that of the original PDA on the original string (single 0 transition).
- (iv) All other transitions are handled the same way as in the original PDA.

Problem 5.

For a language L, define $unique(L) := \{x \in L : \nexists y \in L \text{ such that } |y| = |x|\}.$

In other words, UNIQUE (L) is the set of all strings $x \in L$ such that x is the only string in L that has length |x|.

Is the class of regular languages closed under the operation UNIQUE? Prove your answer.

Yes, regular languages are closed under UNIQUE.

For an arbitrary language L, let

$$M = (Q, \Sigma, \delta, q_0, F)$$

be a DFA that recognizes L, and let $L_2 = \text{UNIQUE}(L)$. Construct a new DFA as follows:

$$M_{2} = (Q_{2}, \Sigma, \delta_{2}, (q_{0}, \emptyset), F_{2}) \quad \text{where}$$

$$Q_{2} = \{(q, Q_{0}) : q \in Q, Q_{0} \in \mathcal{P}(Q)\}$$

$$\delta_{2}((q, Q_{0}), x) = (\delta(q, x), Q_{1}) \text{ where } Q_{1} = \{\delta(q, \sigma_{1}) : \sigma_{1} \in \Sigma \setminus \{x\}\} \cup \{\delta(q', \sigma_{2}) : q' \in Q_{0}, \sigma_{2} \in \Sigma\}$$

$$F_{2} = \{(q_{f}, Q_{f}) : q_{f} \in F, Q_{f} \cap F = \emptyset\}$$

Main Idea:

In M_2 , we keep track of the computational path of M (the original DFA) on the input string x by stepping through the transitions that M would make on x. In addition, we also track all other alternative computational paths of the same length as the current one. Each state in M_2 is a pair (q, Q_0) where $q \in Q$ is the state M would be in if it were following the current computational path, and Q_0 is the set of states M would be in if following computational paths on other strings different from the current one.

This is how we manage transitions:

- Initially, there is only a single computational path of length 0 so the start state is (q_0, \emptyset) .
- When we are at a state (q_i, Q_i) and we read a symbol x, we do the following:
 - Generate computational paths of M that branch from the current one that is, $Q_j = \{\delta(q_i, \sigma_1) : \sigma_1 \in \Sigma \setminus \{x\}\}$
 - Extend existing alternative computational paths of M of the given length.
 - That is, we generate the set $Q_k = \{\delta(q_k, \sigma_2) : q_k \in Q_i, \sigma_2 \in \Sigma\}.$
 - Finally, we extend the computational path of M (original DFA) on the current string to end at $\delta(q_i, x)$.

We therefore transition to $(\delta(q_i, x), Q_j \cup Q_k)$.

Finally, if a string s is in L then the computational path of M on s ends at a state $q_f \in F$. The corresponding state in M_2 is (q_f, Q_f) where Q_f is the set of all other computational paths of the same length as the computational path that takes M from q_0 to q_f on x.

In this case, a string s is in unique(L) if and only if none of the alternative computational paths of the same length end at an accepting state, i.e. $Q_f \cap F = \emptyset$.

We therefore define our accepting states to be $F_2 = \{(q_f, Q_f) : q_f \in F, Q_f \cap F = \emptyset\}.$

Problem 6.

Every language falls into into one of the following three categories:

- (i) regular
- (ii) context-free but not regular
- (iii) not context-free

Which of these categories is the following language in?

$$L_6 = \left\{ x \in \left\{ 0, 1 \right\}^* : \exists y, z \in \left\{ 0, 1 \right\}^* \text{ such that } x = yz, |y| = |z|, \text{ and } \beta(y) \equiv 0 \pmod{3} \right\}.$$

Reminder: For a string $x \in \{0,1\}^*$, $\beta(x)$ is the string x interpreted as a binary number. For instance, $\beta(11001) = 25$ and $\beta(0011) = 3$. We also define $\beta(\varepsilon) = 0$.