微机原理与接口技术

存储器组织结构

华中科技大学 左冬红

计算机系统多类型数据访问组织

64位微处理器支持访问8位、16位、32位、64位等不同位宽数据

计算机系统存储器以字节为最小存储单元

微处理器访问不同类型数据时,提供相应的控制信号 \overline{BE} (Byte Enable)

地址低三位	(000) ₂	$(001)_2$	(010) ₂	(011) ₂	(100) ₂	(101) ₂	(110) ₂	(111) ₂
$(A_2A_1A_0)$								
64位数据总线	$\overline{\mathrm{BE}}_{\mathrm{O}}$	$\overline{\mathrm{BE}}_1$	$\overline{\mathrm{BE}}_2$	BE ₃	$\overline{\mathrm{BE}}_{4}$	$\overline{\mathrm{BE}}_{5}$	BE ₆	BE ₇
32位数据总线	$\overline{\mathrm{BE}}_{\mathrm{O}}$	$\overline{\mathrm{BE}}_1$	$\overline{\mathrm{BE}}_2$	$\overline{\mathrm{BE}}_{3}$	$\overline{\mathrm{BE}}_{\mathrm{O}}$	$\overline{\mathrm{BE}}_1$	$\overline{\mathrm{BE}}_2$	$\overline{\mathrm{BE}}_{3}$
16位数据总线	$\overline{\mathrm{BE}}_{\mathrm{O}}$	$\overline{\mathrm{BE}}_1$	$\overline{\mathrm{BE}}_{\mathrm{O}}$	$\overline{\mathrm{BE}}_{1}$	$\overline{\mathrm{BE}}_{\mathrm{O}}$	$\overline{\mathrm{BE}}_1$	$\overline{\mathrm{BE}}_{\mathrm{O}}$	$\overline{\mathrm{BE}}_1$

存储器组织结构

字节使能信号译码原理

字节使能信号译码原理

	输入			输出					
指令	Op[5:0]	A ₁	A ₀	$\overline{\mathrm{BE}}_{\mathrm{O}}$	$\overline{\mathrm{BE}}_{1}$	$\overline{\mathrm{BE}}_2$	$\overline{\mathrm{BE}}_3$		
lw	(100011) ₂	Х	X	0	0	0	0		
sw	(101011) ₂								
lh	(1000 <mark>01</mark>) ₂	1	X	1	1	0	0		
lhu	(100101) ₂								
sh	(101001) ₂								
lh	(100001) ₂	0	Х	0	0	1	1		
lhu	(100101) ₂								
sh	(101001) ₂								
lb	(100000) ₂	0	0	0	1	1	1		
lbu	(100100) ₂								
sb	(101000) ₂								
lb	(100000) ₂	0	1	1	0	1	1		
lbu	(100100) ₂								
sb	(101000) ₂								
lb	(100000) ₂	1	0	1	1	0	1		
lbu	(100100) ₂								
sb	(101000) ₂								
lb	(100000) ₂	1	1	1	1	1	0		
lbu	(100100) ₂								
sb	(101000) ₂								

边界对齐访问

非边界对齐访问

一条指令不能输出两个不同的地址

软件设计应用示例

```
struct foo {
    char sm; /*1字 节*/
    short med; /*2 字 节*/
    char sm1; /*1字 节*/
    int lrg; /*4字 节*/
}
```

```
struct foo {
char sm; /*1字 节*/
char sm1; /*1字 节*/
short med; /*2 字 节*/
int lrg; /*4字 节*/
}
```

边界对齐存储映像

偏移地址	0	1	2	3	4	5	6	7	8	9	10	11
0×8000	sm		med	d	sm1				lrg			

浪费存储空间

非边界对齐紧凑存储映像

偏移地址	0	1	2	3	4	5	6	7
0x8000	sm	mec	l	sm1	lrg			

访问效率低

偏移地址	0	1	2	3	4	5	6	7
0x8000	sm	sm1	med		Irg			

多类型数据访问接口电路设计

地址信号

总线信号

数据信号

存储芯片接口信号

读信号

写信号

字节使能信号

多类型数据访问接口电路设计

加入字节使能信号之后各芯片可独立控制

字节使能信号与片选信号译码

每组芯片都 需要独立的 译码电路

未选中芯片低功耗

字节使能信号译码原理

	输入			输出					
指令	Op[5:0]	A_1	A _o	$\overline{\mathrm{BE}}_{\mathrm{O}}$	$\overline{\mathrm{BE}}_1$	$\overline{\mathrm{BE}}_2$	$\overline{\mathrm{BE}}_3$		
lw	(100011) ₂	×	×	0	0	0	0		
sw	(101011) ₂								
lh	(1000 <mark>01</mark>) ₂	1	x	1	1	0	0		
lhu	(100101) ₂								
sh	(101001) ₂								
lh	(100001) ₂	0	X	0	0	1	1		
lhu	(100101) ₂								
sh	(101001) ₂								
lb	(100000) ₂	0	0	0	1	1	1		
lbu	(100100) ₂								
sb	(101000) ₂								
lb	(100000) ₂	0	1	1	0	1	1		
lbu	(100100) ₂								
sb	(101000) ₂								
lb	(100000) ₂	1	0	1	1	0	1		
lbu	(100100) ₂								
sb	(101000) ₂								
lb	(100000) ₂	1	1	1	1	1	0		
lbu	(100100) ₂]							
sb	(101000) ₂								

字节使能信号对应不同 的字节地址

存储器组织结构

寻址单位为字节

字节使能信号个数n与低位地址偏移位数m关系: $m = \log_2 n$

示例

异步SRAM存储芯片CY62147G引脚结构如下图所示,它的容量为256K×16b。若要求基于该存储芯片设计一个容量为256K×32b的存储器,且要求支持字节、半字、字不同类型的数据访问,试设计该存储器的接口电路。

多字节数据空间映射示例

异步SRAM存储芯片62256设计一个64K×32b的存储器,该存储器可支持8位、16位、32位不同位宽的数据访问,并要求映射到逻辑存储空间范围为0x00000000~0xffffffff的计算机系统物理存储空间0x8000000~0x8003ffff,试设计该存储器的接口电路。

64K×32b=256KB 存储器使用地址A₁₇~A₀

剩余高位地址A31~A18 固定为(1000 0000 0000 00)₂

多字节数据空间映射示例

小结

- •存储器分块组织
- •多字节数据访问
 - •低位地址偏移