UNIVERSIDAD SANTO TOMAS SECCIONAL TUNJA

Electrónica Básica II y Laboratorio

Profesor: Ricardo Casallas G. jose.casallas@usantoto.edu.co

Laboratorio # 5: Amplificador diferencial BJT.

Objetivo

Se espera que al final de este laboratorio el estudiante sea capaz de explicar el funcionamiento de un amplificador diferencial en sus tres modos de operación.

Elementos indispensables para el laboratorio

Recuerde: si no traen todos los implementos no se puede presentar el laboratorio; y por norma de la Facultad es obligatorio el uso de la bata blanca en el laboratorio.

1. Instrumentos

- a. Fuente DC
- b. Osciloscopio con sondas para los dos canales
- c. Generador de señales con sonda de conexión
- d. Multímetro digital
- e. Protoboard
- f. Caimanes y cables de conexión tipo banana-caimán
- g. Herramienta pequeña de mano (pinzas, pelacables)

2. Componentes

Ítem	Descripción	Referencia	Cantidad
a.	2N2222A	2N2222A	4
b.	Resistencia	3.9 KΩ ½ w	4
C.	Resistencia	3.3 KΩ ½ w	2
d.	Resistencia	100 KΩ ½ w	2
e.	Condensador +	47 uF/25V	3

Descripción

Para realizar el laboratorio ud. debe:

1. Implementar los circuito

UNIVERSIDAD SANTO TOMAS SECCIONAL TUNJA

Electrónica Básica II y Laboratorio

Profesor: Ricardo Casallas G. jose.casallas@usantoto.edu.co

Figura 1. Amplificador Diferencial 1

- 2. Aplicar una señal de 50 mVp en la entrada de V1 y 0 V en la entrada de V2; medir la señales de salida en los puntos indicados por los marcadores; invertir las señales y medir nuevamente.
- 3. Aplicar señales de 50 mVp en cada entrada; medir la señales de salida en los puntos indicados por los marcadores.
- 4. Aplicar una señal de 50 mVp en la entrada de V1 y 75 mVp en la entrada de V2; medir la señales de salida en los puntos indicados por los marcadores; invertir las señales y medir nuevamente.
- 5. Comparar los resultados con el desarrollo teórico y la simulación en PSpice.
- 6. Como conclusión, describa el funcionamiento de un amplificador diferencial BJT contestando las preguntas adjuntas de acuerdo con la práctica.

UNIVERSIDAD SANTO TOMAS SECCIONAL TUNJA

Electrónica Básica II y Laboratorio

Profesor: Ricardo Casallas G. jose.casallas@usantoto.edu.co

Resultado

Ud. debe entregar las respuestas a los puntos 2, 3, 4, 5 y 6 en el formato adjunto utilizando el espacio asignado para tal fin.