STANISLAS Exercices

Espaces vectoriels normés de dimension finie

PSI 2021-2022

Chapitre X

I. Normes

Indications pour l'exercice 1. Obtenir une région délimitée par 4 segments.

Indications pour l'exercice 2.

- 1. Pour l'égalité, étudier les variations de la fonction $t\mapsto x+ty$. Pour montrer que N est une norme, on pourra utiliser l'inégalité triangulaire sur \mathbb{R} .
- **2.** Pour déterminer $\alpha > 0$ tel que $N(u) \leq \alpha ||u||$, montrer que $x^2 \leq 2(x^2 + y^2)$ puis que $(x + y)^2 \leq 2(x^2 + y^2)$. Déterminer ensuite un point en lequel ces deux inégalités sont atteintes.

Pour déterminer $\beta > 0$ tel que $||u|| \leq \beta N(u)$, montrer que $x^2 + y^2 \leq N(u)^2 + 2N(u)(|x+y|+|x|)$. Déterminer ensuite un point en lequel cette inégalité est atteinte.

Indications pour l'exercice 3. Commencer par montrer que N est bien définie.

Pour l'inégalité triangulaire, utiliser l'inégalité triangulaire sur \mathbb{R} puis passer à la borne supérieure avec précaution.

Indications pour l'exercice 4.

- 1. Montrer que N est une norme euclidienne.
- **2.** Utiliser le théorème fondamental du calcul différentiel puis l'inégalité de Cauchy-Schwarz. On pourra montrer au passage que $|a+b| \le \sqrt{2}\sqrt{a^2+b^2}$.
- **3.** Considérer la suite de fonctions $f_n: x \mapsto x^n$.

Indications pour l'exercice 5. Raisonner par l'absurde en considérant $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.

Indications pour l'exercice 6.

- **1.** Remarquer que le résultat est trivial si x=y. Sinon, remarquer que $\frac{1}{\|x-y\|} \cdot (x-y)$ appartient à la boule unité.
- 2. Utiliser la caractérisation des bornes supérieures.
- 3. La première question permet d'obtenir une inégalité. Pour l'autre inégalité, montrer que pour tout $\varepsilon > 0, d(x,H) \leqslant \frac{|f(x)|}{\|f\| \varepsilon}$. \square

II. Topologie générale

Indications pour l'exercice 7.

- 1. Montrer que 1 appartient à l'adhérence de l'ensemble.
- **2.** Montrer que -1 appartient à l'adhérence de l'ensemble.
- 3. Montrer que 0 appartient à l'adhérence de l'ensemble.

Indications pour l'exercice 8.

1. Considérer $x \in \overline{A \cap B}$ puis utiliser la caractérisation séquentielle des éléments de l'adhérence.

Pour le contre-exemple, on pourra considérer A =]0,1[et B =]1,2[.

2. Pour l'inclusion directe, considérer $x \in \overline{A \cup B}$ puis utiliser la caractérisation séquentielle des éléments de l'adhérence.

Pour l'inclusion réciproque, on pourra montrer que, si $x \in \overline{A \cup B}$ et $x_n \to x$, en considérant les ensembles $I = \{n \in \mathbb{N} ; x_n \in A\}$ et $J = \{n \in \mathbb{N} ; x_n \in B\}$, l'un de ces ensembles est infini.

Indications pour l'exercice 9. Utiliser la continuité du produit matriciel.

Indications pour l'exercice 10. Considérer les suites $({}^t(A^{2k}))_{k\in\mathbb{N}}$ et $({}^t(A^{2k+1}))_{k\in\mathbb{N}}$ puis utiliser la continuité de la transposée.

Indications pour l'exercice 11.

- 1. Classique, repose sur les identités remarquables.
- ${\bf 2.}$ Montrer que E est un sous-espace vectoriel de l'ensemble des séries convergentes.

Chapitre 10 PSI

3.	Vérifier	que	φ	est	bien	définie	à	l'aide	de	la	question	1.	puis	les	pro-
pi	riétés des	pro	du	its	scalai	res.									

4. Écrire la définition de $||g((x_n)) - g((y_n))||$ puis réorganiser les termes et utiliser l'inégalité triangulaire de la norme précédente.

Indications pour l'exercice 12.

- 1. Utiliser la caractérisation séquentielle des fermés.
- **2.** Étudier $f = \mathbb{1}_{\mathbb{Q}}$.
- 3. Considérer $x_n = (\sqrt{2} 1)^n$.

Indications pour l'exercice 13.

- **1.** Montrer la contraposée, i.e. d(x,F)=0 si et seulement si $x\in F$. On pourra montrer la continuité de $d(\cdot,F)$ (qui est lipschitzienne) et utiliser la caractérisation séquentielle de la borne inférieure.
- **2.** Remarquer que, si Ω est ouvert, alors $\Omega = \bigcup_{k \in \mathbb{N}^*} \{x \in E \; ; \; d(x, \Omega) \geqslant 1/k\}.$

III. Avec Python

Indications pour l'exercice 14.

- 1. Il s'agit de vérifier l'inégalité pour chacune des lignes.
- 2. Penser à une rotation d'angle $\pi/4$.
- **3.** Trouver un contre-exemple en introduisant par exemple une rotation d'angle $\pi/8$.
- **4.** Écrire la ligne i_0 de la relation MX = 0 où i_0 est tel que $||X||_{\infty} = |x_{i_0}|$. Obtenir ensuite une contradiction.
- 5. Modifier légèrement le programme de la question 1.
- 6. Écrire DSP comme ligne de niveau d'une fonction continue. □