

FT64F0AX

TIM2_CAPTURE Application note

目录

1.	通用定时	†器 TIM2	3
	1.1.	特性	3
	1.2.	Timer2 相关寄存器汇总	4
	1.3.	功能描述	. 11
2.	基本定时	t器 TIM4	. 15
	2.1.	特性	. 15
	2.2.	TIM4 相关寄存器汇总	. 15
	2.3.	TIM4 时钟源	. 17
	2.4.	预分频器	. 17
	2.5.	TIM4 中断	. 17
3.	应用范例	J	. 18
联系	《信息		. 26

FT64F0Ax TIM2_CAPTURE 应用

1. 通用定时器 TIM2

1.1. 特性

Timer2 的功能除捕捉比较通道数量不同以外,其他相同:

- 16bit 的向上计数,支持自动重载;
- 计数时钟预分频;
- 支持 1/2 个独立的捕捉比较通道,通道可支持:
 - 输入捕捉
 - 输出比较
 - PWM 产生
- 中断事件:
 - 更新事件: 计数器溢出, 计数器初始化
 - 输入捕捉事件
 - 输出比较事件

图 1-1 TIM2 原理框图

- 3 -

1.2. Timer2 相关寄存器汇总

名称	地址	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	复位值
PCKEN	0x9A	UART2EN	I2CEN	UART1EN	SPIEN	TIM4EN	TIM2EN	TIM1EN	ADCEN	0000 0000
CKOCON	0x95	SYSON	CCORDY	DTY	SEL	CCOSEL[2:0]		1	CCOEN	0010 0000
TIM2CR1	0x30C	T2ARPE	-	_	-	T2OPM	T2URS	T2UDIS	T2CEN	0 0000
TIM2IER	0x30D	_	_	_	_	T2CC3IE	T2CC2IE	T2CC1IE	T2UIE	0000
TIM2SR1	0x30E	_	-	_	-	T2CC3IF	T2CC2IF	T2CC1IF	T2UIF	0000
TIM2SR2	0x30F	_	_	_	_	T2CC3OF	T2CC2OF	T2CC1OF	_	000-
TIM2EGR	0x310	-	_	_	_	T2CC3G	T2CC2G	T2CC1G	T2UG	0000
TIM2CCMR1 (output mode)	0v211	_	- T2OC1M[2:0]				_	T2CC1S	[1:0]	-000 0-00
TIM2CCMR1 (input mode)	0x311		T2IC1F[3:0]				C[1:0]	T2CC1S	6[1:0]	0000 0000
TIM2CCMR2 (output mode)	0x312	- T2OC2M[2:0]				T2OC2PE	-	T2CC2S	S[1:0]	-000 0-00
TIM2CCMR2 (input mode)	0.012		T2IC2F	[3:0]		T2IC2PSC[1:0]		T2CC2S[1:0]		0000 0000
TIM2CCMR3 (output mode)	0x313	-	Т	2OC3M[2:0]		OC3PE -		T2CC3S[1:0]		-000 0-00
TIM2_CCMR3 (input mode)	0.515		T2IC3F	[3:0]		T2IC3PS	T2IC3PSC[1:0]		T2CC3S[1:0]	
TIM2CCER1	0x314	_	-	T2CC2P	T2CC2E	-	-	T2CC1P	T2CC1E	0000
TIM2CCER2	0x315	_	-	_	_	-	-	T2CC3P	T2CC3E	00
TIM2CNTRH	0x316				T2C	NT[15:8]				0000 0000
TIM2CNTRL	0x317				T20	CNT[7:0]				0000 0000
TIM2PSCR	0x318	_	_	_	_		T2PSC[[3:0]		0000
TIM2ARRH	0x319				T2A	RR[15:8]				1111 1111
TIM2ARRL	0x31A				T2/	ARR[7:0]				1111 1111
TIM2CCR1H	0x31B				T2C	CR1[15:8]				0000 0000
TIM2CCR1L	0x31C	T2CCR1[7:0]							0000 0000	
TIM2CCR2H	0x31D	T2CCR2[15:8]							0000 0000	
TIM2CCR2L	0x31E	T2CCR2[7:0]							0000 0000	
TIM2CCR3H	0x29E	T2CCR3[15:8]							0000 0000	
TIM2CCR3L	0x29F				T2C	CR3[7:0]				0000 0000

表 1-1 Timer2 相关用户寄存器汇总

- 4 -

2021-09-07

名称	状态		寄存器	地址	复位值
T2CNT	TIM2 计数值	高8位	TIM2CNTRH[7:0]	0x316	RW-0000 0000
120111	I IIVIZ N 奴 ഥ	低8位	TIM2CNTRL[7:0]	0x317	RW-0000 0000
T2PSC	TIM2 预分频器		TIM2PSCR[3:0]	0x318	RW-0000
T2ARR	输出比较模式: PWM 周期的自动重装 载寄存器(预装载值)	高8位	TIM2ARRH[7:0]	0x319	RW-1111 1111
12/4/4/	注:此值为0时,计数器不工作;	低8位	TIM2ARRL[7:0]	0x31A	RW-1111 1111
	输出比较模式: 装入当前捕获/比较 1	高8位	TIM2CCR1H[7:0]	0x31B	RW-0000 0000
T2CCR1	寄存器的值(预装载值)	低8位	TIM2CCR1L[7:0]	0x31C	RW-0000 0000
IZCCKI	输入捕获模式: 上一次捕获事件(IC1)	高8位	TIM2CCR1H[7:0]	0x31B	RO-0000 0000
	捕获的计数值	低8位	TIM2CCR1L[7:0]	0x31C	RO-0000 0000
	输出比较模式: 装入当前捕获/比较 2	高8位	TIM2CCR2H[7:0]	0x31D	RW-0000 0000
T2CCR2	寄存器的值(预装载值)	低8位	TIM2CCR2L[7:0]	0x31E	RW-0000 0000
1200112	输入捕获模式: 上一次捕获事件(IC2)	高8位	TIM2CCR2H[7:0]	0x31D	RO-0000 0000
	捕获的计数值	低8位	TIM2CCR2L[7:0]	0x31E	RO-0000 0000
	输出比较模式: 装入当前捕获/比较 3	高8位	TIM2CCR3H[7:0]	0x29E	RW-0000 0000
T2CCR3	寄存器的值(预装载值)	低8位	TIM2CCR3L[7:0]	0x29F	RW-0000 0000
120003	输入捕获模式: 上一次捕获事件(IC3)	高8位	TIM2CCR3H[7:0]	0x29E	RO-0000 0000
	捕获的计数值	低8位	TIM2CCR3L[7:0]	0x29F	RO-0000 0000

表 1-2 Timer2 周期相关寄存器

- 5 -

名称	状态		寄存器	地址	复位值
TIM2EN	TIM2 模块时钟	1 = 使能 0 = <u>关闭</u>	PCKEN[2]	0x9A	RW-0
SYSON	睡眠模式下,系统时钟控制	1 = 使能 0 = <u>关闭</u>	CKOCON[7]	0x95	RW-0
	Timer2 时钟源	(Fmaster)			
	000 = <u>Sysclk</u> 100	= 2x (XT or EC) (*)			
	001 = HIRC 101				
T2CKSRC	$010 = XT \text{ or EC}^{(*)}$ 110	= LP or EC ^(*)	TCKSRC[6:4]	0x31F	RW-000
	011 = 2x HIRC 111	= 2x (LP or EC) (*)			
	^(*) FOSC 应相应配置成 LP/〉 INTOSCIO 模式,否则振荡				
	TIM1/TIM2 倍频时钟占空比访	周节位_			
DTYSEL	00 = 2ns 延迟 1 01 = 3ns 延迟 1		CKOCON[5:4]	0x95	RW-10
	PWM 周期的自动预装载				
T2ARPE	1 = 使能		TIM2CR1[7]		RW-0
IZANEL	(T2ARR 预装载值在更新	f事件到来时被加载)	TIIVIZOITI[I]		1700-0
	0 = <u>禁止</u> (T2ARR 立即被加载	散)			
	单脉冲模式				
T2OPM	1 = 使能 (下一次更新事件到 计数器停止)	来时, T2CEN 自动清零,	TIM2CR1[3]		RW-0
	0 = <u>关闭</u> (发生更新事件时,	计数器不停止)		0x30C	
T2URS	当 T2UDIS=0 时,更新事件	中断源	TIM2CR1[2]		RW-0
12010	1/0= 计数器上溢/下溢		11111201(1[2]		1100 0
	产生更新事件控制				
T2UDIS	1= 禁止		TIM2CR1[1]		RW-0
	0 = <u>允许</u>				
T2CEN	TIM2 计数器	1 = 使能 0 = <u>关闭</u>	TIM2CR1[0]		RW-0

表 1-3 Timer2 相关用户控制寄存器

名称	地址	bit7	bit6	bit5	bit4	bit3	bit2	bit1	Bit0	复位值
TIM2CCMR1	0x311		T2IC1I	-[3:0]		T2IC1PSC[1:0]		T2CC1S[1:0]		RW-0000 0000
TIM2CCMR2	0x312		T2IC2I	[3:0]		T2IC2PS	SC[1:0]	T2CC2	S[1:0]	RW-0000 0000
TIM2CCMR3	0x313		T2IC3I	[3:0]		T2IC3PSC[1:0]		T2CC3	S[1:0]	RW-0000 0000

名称		状	<u></u> 态	寄存器	地址	复位值
	通道 x 输.	入捕获采样频率	和数字滤波器长度			
	Value	采样频率	数字滤波器长度(N)			
	Value	(f _{SAMPLING})	双了//心/又相 K/又(II)			
	0000	Fmaster /2	<u>0</u>			
	0001	Fmaster	2			
	0010	Fmaster	4			
	0011	Fmaster	8			
	0100	Fmaster / 2	6			
	0101	Fmaster / 2	8	TIM2CCMRx[7:4]		
T2ICxF	0110	Fmaster / 4	6	x = 1, 2, 3		RW-0000
	0111	Fmaster / 4	8	X - 1, 2, 3		
	1000	Fmaster / 8	6	0x311/		
	1001	Fmaster / 8	8		0x312/	
	1010	Fmaster / 16	5		0x313	
	1011	Fmaster / 16	6			
	1100	Fmaster / 16	8			
	1101	Fmaster / 32	5			
	1110	Fmaster / 32	6			
	1111	Fmaster / 32	8			
	通道x输	入捕获预分频器	(几个事件触发一次捕获)			
	00 = <u>1 个</u>					
T2ICxPSC	01 = 2 个			TIM2CCMRx[3:2]		RW-00
1210XI 00	10 = 4 个			111012001011 (X[0.2]		1444 00
	11 = 8 个					
	注: 当 T2	CCxE = 0 时,i				
		00 = <u>输出</u>				
T2CC1S ¹	通道1模:	式 01 = 输入,	输入脚映射在 TI1FP1	TIM2CCMR1[1:0]	0x311	RW-00
120010	<u>选择</u>	10 = 输入,	输入脚映射在 TI2FP1	1 11V12 O O IVII (1 [1 . 0]	UNUTT	100
		11 = 保留				

¹ 仅在通道 x 关闭时(即 T2CCxE = 0)可写, x = 1, 2, 3。

- 7 - 2021-09-07

名称		状态	寄存器	地址	复位值
T2CC2S ²	通道2模式 选择	00 = <u>输出</u> 01 = 输入, 输入脚映射在 TI2FP2 10 = 输入, 输入脚映射在 TI1FP2 11 = 保留	TIM2CCMR2[1:0]	0x312	RW-00
T2CC3S ²	通道3模式 选择	00 = <u>输出</u> 01 = 输入, 输入脚映射在 TI3FP3 1x = 保留	TIM2CCMR3[1:0]	0x313	RW-00

表 1-4 TIM2CCMRx 作为输入配置寄存器

名称	地址	bit7	bit6	bit5	bit4	bit3	bit2	bit1	Bit0	复位值
TIM2CCMR1	0x311	_	T2	T2OC1M[2:0]		T2OC1PE	-	T2CC1S[1:0]		RW000 0-00
TIM2CCMR2	0x312	_	T2	OC2M[2:0]		T2OC2PE	-	T2CC2S[1:0]		RW000 0-00
TIM2CCMR3	0x313	-	T2OC3M[2:0]		T2OC3M[2:0]		-	T2CC3	BS[1:0]	RW000 0-00

T2OCxM		输出模式描述	OCxREF (输出参考信 号)
000		冻结 (不比较)	<u>禁止</u>
001		当 TIM2_CNT = CCRx_SHAD 时	1
010		当 TIM2_CNT = CCRx_SHAD 时	0
011		当 TIM2_CNT = CCRx_SHAD 时	电平翻转
100		强制为无效电平	0
101		强制为有效电平	1
110	PWM 模式 1	TIM2_CNT < CCRx_SHAD	1
110	PVVIVI (关式、I	TIM2_CNT > CCRx_SHAD	0
111	PWM 模式 2	TIM2_CNT < CCRx_SHAD	0
'''	FVVIVI 快八.Z	TIM2_CNT > CCRx_SHAD	1

^{1.} OCxREF 与 T2CCxP 共同决定输出引脚 OCx 的值;

表 1-5 T2OCxM 配置为输出比较模式

_

^{2.} PWM 模式下比较结果改变时,或输出比较模式下从冻结模式切换到 PWM 模式时, OCxREF 电平才会改变;

² 仅在通道 x 关闭时(即 T2CCxE = 0)可写, x = 1, 2, 3。

名称		状态	寄存器	地址	复位值
	通道 x 输出比较占	空比的自动预装载	TIM2CCMRx[3]	0x311/	
T2OCxPE	1 = 使能 (T2CCR	x 预装载值在更新事件到来时被加载)	x = 1, 2, 3	0x312/	RW-0
	0 = <u>禁止</u> (T2CCR	x 立即被加载)	X = 1, 2, 0	0x313	
		00 = <u>输出</u>			
T2CC1S 3	<u>通道 1</u>	01 = 输入, 输入脚映射在 TI1FP1	TIM2CCMR1[1:0]	0x311	RW-00
120010	模式选择	10 = 输入, 输入脚映射在 TI2FP1	11102001011 (1[1:0]	OXOTT	1000
		11 = 保留			
		00 = <u>输出</u>			
T2CC2S 3	通道 2	01 = 输入, 输入脚映射在 TI2FP2	TIM2CCMR2[1:0]	0x312	RW-00
120020	模式选择	10 = 输入, 输入脚映射在 TI1FP2	1111/2001/11 (Z[1.0]	0.012	100 00
		11 = 保留			
	通道 3	00 = <u>输出</u>			
T2CC3S ³	煙足 5 模式选择	01 = 输入, 输入脚映射在 TI3FP3	TIM2CCMR3[1:0]	0x313	RW-00
	大人心上	1x = 保留			

表 1-6 TIM2CCMRx 作为输出配置寄存器

名称	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	地址	复位值
TIM2CCER1	-	-	T2CC2P	T2CC2E	-	-	T2CC1P	T2CC1E	0x314	RW0000
TIM2CCER2	-	-	-	-	-	-	T1CC3P	T1CC3E	0x315	RW00

名称	功能	输出比较模式	输入捕获/触发模式
T2CCxP	通道 x 引脚 输出极性选择	1 = OCx 低电平有效 0 = <u>OCx 高电平有效</u>	1 = 捕获 / 触发发生在 TIxF 低电平或下降沿
T2CCxE	通道 x 引脚 使能	1 = 使能 (OCx 输出到对应的引脚) 0 = <u>禁止</u>	1 = 使能 (捕获计数器的值到 TIM2CCRx 寄存器中) 0 = <u>禁止</u>
注:通道输出	电平由 T2OISx 和	T2CCxE 位的值共同决定	

表 1-7 Timer2 通道输出和极性选择

名称	状态	寄存器	地址	复位值	
TIM2 通道 1 管脚功能重映射 TIM2 CH1		AFP0[4]	0x19E	RW-0	
111012_0111	1 = PB0 $0 = PA5$	AI I 0[4]	UXTSL	1700-0	
TIM2_CH3	TIM2 通道 3 管脚功能重映射	AFP0[3]	0x19E	RW-0	
T IIVIZ_CI IS	1 = PA3 0 = <u>PB5</u>	AI FU[3]	UXIBL	1700-0	

表 1-8 Timer2 通道管脚功能重映射

_

 $^{^{3}}$ 仅在通道 x 关闭时(即 T2CCxE = 0)可写, x = 1, 2, 3。

名称	状态	2	寄存器	地址	复位值
GIE	<u>全局中断</u> 1 = 使能 (PEIE, T2CCxIE, T2C 0 = <u>全局关闭</u> (唤醒不受影	•	INTCON[7]	Bank 首地址	RW-0
PEIE	<u>外设总中断</u> 1 = 使能 (T2CCxIE, T2C0 0 = <u>关闭</u> (无唤醒)	INTCON[6]	+0x0B	RW-0	
T2CC3IE	通道 3 捕获/比较中断		TIM2IER[3]		RW-0
T2CC2IE	通道2捕获或比较中断		TIM2IER[2]	0x30D	RW-0
T2CC1IE	通道1捕获或比较中断	1 = 使能	TIM2IER[1]		RW-0
T2CC3G ⁴	通道3捕获/比较软件中断	0 = <u>关闭</u>	TIM2EGR[3]		WO-0
T2CC2G 4	通道2捕获/比较软件中断		TIM2EGR[2]	0x310	WO-0
T2CC1G 4	通道 1 捕获/比较软件中断		TIM2EGR[1]		WO-0
T2CC3IF ⁵	通道 x 匹配/捕获中断标志(• 输出模式:		TIM2SR1[3]		R_W1C-0
T2CC2IF ⁵	1 = CNT 值与 T2CCRx 值	匹配	TIM2SR1[2]	0x30E	R_W1C-0
T2CC1IF ⁵	1 = 计数值已被捕获至 TIN 0 = <u>无捕获产生</u> 注: 软件清 0 或读 TIM2CC		TIM2SR1[1]		R_W1C-0
T2CC3OF ⁵	通道 x 重复捕获中断标志位 1 = 发生重复捕获 (计数器)	_	TIM2SR2[3]		R_W1C-0
T2CC2OF ⁵	寄存器时,T2CCxIF 的		TIM2SR2[2]	0x30F	R_W1C-0
T2CC1OF ⁵	0 = <u>无重复捕获</u> 注:仅通道配置位捕获输入	TIM2SR2[1]	-	R_W1C-0	
T2UIE	允许更新中断	1 = 使能	TIM2IER[0]	0x30D	RW-0
T2UG ⁴	<u>允许更新软件中断</u>	0 = 关闭	TIM2EGR[0]	0x310	WO-0
T2UIF ⁵	<u>更新中断标志位</u> 1 = 更新事件等待响应 0 = <u>无更新事件</u>		TIM2SR1[0]	0x30E	R_W1C-0

表 1-9 Timer2 中断使能和状态位

- 10 - 2021-09-07

⁴ 软件置 1, 硬件自动清 0。

 $^{^5}$ 写 1 清 0,写 0 无效。建议只使用 STR、MOVWI 指令进行写操作,而不要用 BSR 或 IOR 指令。

1.3. 功能描述

整个 TIM2 可以分为两个大的功能部分: 计数基本单元和捕捉比较通道。计数基本单元分为向上计数器、自动加载寄存器、预分频器; 捕捉比较通道分为捕捉输入通道, 输出比较通道和输出控制。

1.3.1. 计数基本单元

图 1-2 计数基本单元框图

计数基本单元包括:

- 16 位向上计数器
- 16 位自动重加载寄存器
- 4位可编程预分频器

TIM2 没有重复计数器

1.3.1.1. 时钟源选择

时钟源可由 TCKSRC 寄存器进行配置:

- T2CKSRC[2:0] = 000 时,系统时钟/主时钟为 TIM2 时钟
- T2CKSRC[2:0] = 001 时, HIRC 为 TIM2 时钟
- T2CKSRC[2:0] = 010 时, XT 时钟/外部时钟为 TIM2 时钟
- T2CKSRC[2:0] = 011 时, HIRC 的 2 倍频为 TIM2 时钟
- T2CKSRC[2:0] = 100 时, XT 时钟/外部时钟的 2 倍频为 TIM2 时钟
- T2CKSRC[2:0] = 101 时, LIRC 为 TIM2 时钟
- T2CKSRC[2:0] = 110 时, LP 时钟/外部时钟为 TIM2 时钟
- T2CKSRC[2:0] = 111 时, LP 时钟/外部时钟的 2 倍频为 TIM2 时钟

1.3.1.2. 向上计数器

图 1-3 向上计数器

TIM2 计数器只能向上计数。计数器从 0 开始计数向上计数,计到 TIM1_ARR 寄存器所设数值。然后重新从 0 开始计数并产生一个计数器上溢事件;如果 T2UDIS 设为 0,那么还会产生一个更新事件 UEV。

1.3.1.3. 预分频器

计数时钟可以进行 4bit 的时钟预分频:

 $f_{CK_CNT} = f_{CK_PSC}/2^{(PSCR[3:0])}$

预分频支持分频自动更新,即在更新事件发生后,能够自动改变预分频值。当 T2CEN 为 0 时,写入预分频寄存器的值也能直接加载实际应用的预分频寄存器中。

1.3.2. 捕捉比较通道

TIM2CCMRx 寄存器是复用寄存器。

当作为输出比较通道时,TIM2CCMRx 寄存器作为输出配置寄存器,并且第7位和第2位禁止配置,保持为默认值:

当作为输入捕捉通道时, TIM2CCMRx 寄存器作为输入配置寄存器;

1.3.2.1. 捕捉输入通道

图 1-4 输入通道框图

1.3.2.2. 输出比较通道

图 1-5 输出通道框图

TIM2 的输出没有死区功能,没有互补输出功能,也没有刹车功能。

1.3.3. TIM2 中断

TIM2 有以下 4 个中断请求源:

- 捕捉/比较 3 中断
- 捕捉/比较2中断
- 捕捉/比较1中断
- 更新中断

在用这些中断之前需要提前打开 TIM2IER 寄存器中的中断使能位 (T2CCxIE 和 T2UIE)。

不同的中断源还可以配置通过 TIM2EGR 寄存器来产生 (软件产生中断)

2. 基本定时器 TIM4

2.1. 特性

- 8bit 自动重载向上计数器
- 计数时钟可编程预分频
- 计数器溢出中断

图 2-1 TIM4 原理框图

2.2. TIM4 相关寄存器汇总

名称	地址	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	复位值
PCKEN	0x9A	UART2EN	I2CEN	UART1EN	SPIEN	TIM4EN	TIM2EN	TIM1EN	ADCEN	0000 0000
CKOCON	0x95	SYSON	CCORDY	DTYSEL		CCOSEL[2:0]		CCOEN	0010 0000	
TIM4CR1	0x111	T4ARPE	_	T4CKS[1:0]	T4OPM	T4URS	T4UDIS	T4CEN	0-00 0000
TIM4IER	0x112	_	_	-	-	-	-	-	T4UIE	0
TIM4SR	0x113	_	_	-	_	-	-	-	T4UIF	0
TIM4EGR	0x114	-	_	-	-	-	-	-	T4UG	0
TIM4CNTR	0x115	T4CNT[7:0]						0000 0000		
TIM4PSCR	0x116	T4PSC[2:0]					000			
TIM4ARR	0x117	T4ARR[7:0]					1111 1111			

表 2-1 Timer4 相关用户寄存器汇总

- 15 - 2021-09-07

名称	状态	寄存器	地址	复位值	
TIM4EN	TIM4 模块时钟	1 = <u>使能</u> 0 = 关闭	PCKEN[3]	0x9A	RW-0
SYSON	睡眠模式下,系统时钟控制	1 = 使能 0 = <u>关闭</u>	CKOCON[7]	0x95	RW-0
	<u>周期的自动预装载</u>				
T4ARPE	1 = 使能 (T4ARR 预装载值在 载)	更新事件到来时被加	TIM4CR1[7]		RW-0
	0 = 禁止 (T4ARR 立即被加载)				
	Timer4 时钟	源			
	00 = <u>Sysclk</u>	10 = LP ^(*)			
T4CKS	01 = HIRC	11 = XT ^(*)	TIM4CR1[5:4]		RW-00
	^(*) FOSC 应相应配置成 LP/XT 模式,否则振荡器将不会运行		0x111		
	<u>单脉冲模式</u>	TIM4CR1[3]			
T4OPM	1= 使能 (下一次更新事件到来			RW-0	
	0 = 关闭 (发生更新事件时,计	数器不停止)			
	<u>当 T4UDIS = 0 时,更新事件中</u>	TIM4CR1[2]			
T4URS	1= 计数器上溢			RW-0	
	0 = 软件设置 T4UG 位或计数器	上溢		i	
	产生更新事件控制				
T4UDIS	1= 禁止		TIM4CR1[1]		RW-0
	0 = <u>允许</u>				
T4CEN	 <u>TIM4 计数器</u>	1 = 使能	TIM4CR1[0]		RW-0
	····· 71 20 HH	0 = <u>关闭</u>			
	<u>Timer4 预分</u> 频				
	000 = <u>1</u>	100 = 16			
	001 = 2	101 = 32			
T4PSC	010 = 4	110 = 64	TIM4PSCR[2:0]	0x116	RW-000
	011 = 8	111 = 128			
	注:必须产生更新事件或 T4C 频值才生效	EN=0,更新的预分			
T4CNT	Timer4 计数值		TIM4CNTR[7:0]	0x115	RW-00000000
T4ARR	周期的自动重装载寄存器(预装载注:此值为 0 时,计数器不工作		TIM4ARR[7:0]	0x117	RW-1111 1111

表 2-2 Timer4 相关用户控制寄存器

名称		寄存器	地址	复位值	
GIE	<u>全局中断</u> 1 = 使能 (PEIE, T4UIE, T4UG 适用) 0 = <u>全局关闭</u> (唤醒不受影响)		INTCON[7]	Bank 首地址	RW-0
PEIE	外设总中断	1 = 使能 (T4UIE, T4UG 适用) 0 = <u>关闭</u> (无唤醒)	INTCON[6]	+0x0B	RW-0
T4UIE	允许更新中断	1= 使能	TIM4IER[0]	0x112	RW-0
T4UG ⁶	允许更新软件中断	0 = <u>关闭</u>	TIM4EGR[0]	0x114	WO-0
T4UIF ⁷	更新中断标志位	1 = 更新事件等待响应 0 = <u>无更新事件</u>	TIM4SR[0]	0x113	R_W1C-0

表 2-3 Timer4 中断使能和状态位

2.3. TIM4 时钟源

TIM4 有 4 种时钟源可选,由寄存器位 T4CKS 设置。在 TIM4 的被使能 (PCKEN.TIM4EN=1)的情况下,所选择的时钟源被自动使能。

注意:

- 1. 如果要选择 LP 晶体时钟,系统时钟配置寄存器位 FOSC 必须选择 LP 模式,否则对应的时钟源将不被使能;
- 2. 同理,如果要选择 XT 晶体时钟,系统时钟配置寄存器位 FOSC 必须选择 XT 模式,否则对应的时钟源将不被使能;

SLEEP 模式下, 如果 SYSON 为 1, 且 TIM4EN=1, 则所选择的时钟源将保持振荡, TIM4 将继续工作; 否则, 所选的时钟源取决于其他模块的设置情况。

2.4. 预分频器

计数时钟可以进行 3bit 的时钟预分频:

$$f_{CK CNT} = f_{CK PSC}/2^{(PSCR[2:0])}$$

预分频支持分频自动更新,即在更新事件发生后,能够自动改变预分频值。当 T4CEN 为 0 时,写入预分频寄存器的值也能直接加载实际应用的预分频寄存器中。

2.5. TIM4 中断

TIM4 只有一个中断请求源:

● 更新中断 (计数器上溢或计数器初始化)

在用这些中断之前需要提前打开 TIM4IER 寄存器中的中断使能位 (T4UIE)。

不同的中断源还可以配置通过 TIM4EGR 寄存器来产生 (软件产生中断 T4UG)

_

⁶ 软件置 1, 硬件自动清 0。

 $^{^7}$ 写 1 清 0,写 0 无效。建议只使用 STR、MOVWI 指令进行写操作,而不要用 BSR 或 IOR 指令。

3. 应用范例

```
/* 文件名: ASM 64F0Ax TIM2 CAPTURE.ASM
* 功能:
      FT64F0Ax TIM2 CAPTURE 功能演示
* IC:
      FT64F0A5
               TSSOP20
* 内部:
      16M/2T
* 说明:
      例程通过 TIM2 的捕获通道 1 测量 TIM4 输出到 PB3 的波形的周期(4K)
      TIM2 计数器捕获的数据放在 CDATA_H,CDATA_L 里面。
        FT64F0A5 TSSOP20
* TIM2 CH1----|1(PA5)
               (PA4)20|----NC
* NC-----|2(PA6)
               (PA3)19|----NC
* NC-----|3(PA7)
               (PA2)18|----NC
* NC-----|4(PC0)
              (PA1)17|----NC
* NC-----|5(PC1)
               (PA0)16|----NC
* NC-----|6(PB7)
               (PB0)15|----NC
* GND-----|7(GND)
              (PB1)14|----NC
* NC-----|8(PB6)
               (PB2)13|----NC
* VDD-----|9(VDD)
               (PB3)12|--DemoPortOut
* NC-----|10(PB5)
              (PB4)11|----NC
*/
#INCLUDE <FT64F0AX.INC>:
;RAM DEFINE
_______
CDATA H
            EQU
                    0X23
CDATA L
            EQU
                    0X24
W TMP
            EQU
                    0X70
S TMP
                    0X71
            EQU
CONSTANT DEFINE
INTCON DEF
            EQU
                    B'01000000'
                              :使能外设中断
OSCCON_DEF
            EQU
                    B'01110001'
                              ;16MHz,1:1
WPUA DEF
                    B'00000000'
                              ;弱上拉的开关, 0-关, 1-开
            EQU
WPUB DEF
            EQU
                    B'00000000'
WPUC DEF
                    B'00000000'
            EQU
WPDA_DEF
                              ;弱下拉的开关, 0-关, 1-开
            EQU
                    B'00000000'
```


WPDB_DEF WPDC_DEF	EQU EQU	B'00000000' B'000000000'	
TRISA_DEF TRISB_DEF TRISC_DEF	EQU EQU EQU	B'00000000' B'000000000'	;输入输出设置,0-输出,1-输入 ;PB3-OUT
PSRC0_DEF PSRC1_DEF PSRC2_DEF	EQU EQU EQU	B'11111111' B'111111111' B'00001111'	;源电流设置最大
PSINK0_DEF PSINK1_DEF PSINK2_DEF	EQU EQU EQU	B'11111111' B'111111111' B'00000011'	;灌电流设置最大
ANSELA_DEF	EQU	B'00000000'	;设置对应的 IO 为数字 IO
PCKEN_DEF CKOCON_DEF ;Timer2 倍频时钟占空		B'00000100' B'00100000' : 延沢	;使能 Timer2 时钟模块
TCKSRC_DEF	EQU	B'00110000'	;Timer2 时钟源为 HIRC 的 2 倍频
TIM2CR1_DEF	EQU	B'10000101'	;允许自动装载,使能计数器
TIM2IER_DEF	EQU	B'00000010'	;允许捕获/比较 1 中断
TIM2SR1_DEF TIM2SR2_DEF	EQU EQU	B'00000000'	
TIM2EGR_DEF	EQU	B'00000000'	
TIM2CCMR1_DEF ;将通道 1 配置为输入		B'00000001' TI1FP1上	
TIM2CCER1_DEF 上升沿	EQU	B'00000001'	;通道 1 使能捕获,捕捉发生在 TI1F 的高电平或
TIM2CNTRH_DEF TIM2CNTRL_DEF TIM2PSCR_DEF TIM4CR1_DEF TIM4IER_DEF TIM4SR_DEF TIM4EGR_DEF	EQU EQU EQU EQU EQU EQU	B'00000000' B'00000000' B'10000001' B'00000000' B'00000000'	;不分频 ;允许自动装载,使能计数器 ;允许更新中断

TIM4CNTR DEF EQU 0x00

TIM4PSCR_DEF EQU B'00000100' ;预分频器的值 TIM4ARR DEF EQU 124 ;自动装载值

:CONSTANT DEFINE

#DEFINE DemoPortOut PORTB,3

:PROGRAM START

ORG 0x0000
LJUMP RESTART
ORG 0x0004
STR W_TMP
SWAPR STATUS,W
STR S TMP

LJUMP INT PROGRAM

;SYSTEM START

RESTART:

LCALL INITIAL

LCALL TIMER2_INITIAL LCALL TIMER4 INITIAL

BANKSEL INTCON

BSR INTCON,GIE ;使能全局中断 BSR INTCON,PEIE ;使能外设中断

BANKSEL TIM2IER

BSR TIM2IER,T2UIE ;允许 TIM2 中断

MAIN:

NOP NOP

LJUMP MAIN

;中断处理程序

INT PROGRAM:

BANKSEL TIM2SR1

BTSC TIM2SR1,T2CC1IF ;当捕获事件发生时进入 TIM2 中断程序

LJUMP TIM2 Interrupt

BANKSEL TIM4SR

BTSC TIM4SR,T4UIF LJUMP TIM4_Interrupt

LJUMP INT_RET

TIM2 Interrupt:

BSR TIM2SR1,T2CC1IF ;写 1 清 0

BANKSEL TIM2CNTRH
CLRF TIM2CNTRH
CLRF TIM2CNTRL

BANKSEL PORTB LDWI 10H

XORWR PORTB,F ;取反 PB4

BANKSEL TIM2CCR1H LDR TIM2CCR1H,0 BANKSEL CDATA H

;TIM2 计数器捕获的数据存放在 CDATA H,CDATA L

STR CDATA_H
BANKSEL TIM2CCR1L
LDR TIM2CCR1L,0
BANKSEL CDATA_L
STR CDATA_L

LJUMP INT_RET

TIM4_Interrupt:

BANKSEL TIM4SR

BSR TIM4SR,T4UIF ;写 1 清 0

BANKSEL PORTB LDWI 08H

XORWR PORTB,F ;取反 PB3

LJUMP INT RET

INT_RET:

SWAPR S_TMP,0
STR STATUS
SWAPR W_TMP,1
SWAPR W TMP,0

RETI

;SYSTEM INITIAL

INITIAL:

BANKSEL OSCCON
LDWI OSCCON_DEF
STR OSCCON

BANKSEL INTCON

LDWI INTCON DEF

STR INTCON

BANKSEL PORTA
LDWI 0X00
STR PORTA
STR PORTB
STR PORTC

BANKSEL TRISA

LDWI TRISA_DEF

STR TRISA

LDWI TRISB DEF

STR TRISB

LDWI TRISC_DEF

STR TRISC

BANKSEL WPUA

LDWI WPUA DEF

STR WPUA

LDWI WPUB_DEF

STR WPUB

LDWI WPUC DEF

STR WPUC

BANKSEL WPDA

LDWI WPDA_DEF

STR WPDA

LDWI WPDB_DEF

STR WPDB

LDWI WPDC_DEF

STR WPDC

BANKSEL PSRC0

LDWI PSRC0 DEF

STR PSRC0

LDWI PSRC1_DEF

STR PSRC1

LDWI PSRC2 DEF

STR PSRC2

BANKSEL PSINK0

- 22 - 2021-09-07

LDWI PSINK0_DEF STR PSINK0 **LDWI** PSINK1 DEF STR PSINK1 **LDWI** PSINK2 DEF **STR** PSINK2 **BANKSEL ANSELA LDWI** ANSELA DEF STR **ANSELA** BANKSEL **PORTA LDWI** 0X00 STR FSR0H CLEAR_RAM_BANK0: **LDWI** 20H STR FSR0L CLEAR RAM BANKO LOOP: **CLRR** INDF0 **INCR** FSR0L,F **LDWI** H08 **XORWR** FSR0L,W **BTSS** STATUS,Z **LJUMP** CLEAR RAM BANKO LOOP CLEAR RAM BANK1: **LDWI** 0A0H STR FSR0L CLEAR RAM BANK1 LOOP: **CLRR** INDF0 **INCR** FSR0L,F **LDWI** 00H **XORWR** FSR0L,W **BTSS** STATUS,Z **LJUMP** CLEAR_RAM_BANK1_LOOP **INCR** FSR0H,F CLEAR_RAM_LOOP: **LDWI** 10 **SUBWR** FSR0H,W **BTSS** STATUS,0 **LJUMP** CLEAR RAM BANKO RET ;TIMER2INITIAL

- 23 - 2021-09-07

TIMER2_INITIAL:

BANKSEL PCKEN

LDWI PCKEN_DEF

STR PCKEN

BANKSEL CKOCON

LDWI CKOCON DEF

STR CKOCON

BANKSEL TCKSRC

LDWI TCKSRC_DEF

STR TCKSRC

BANKSEL TIM2CR1

LDWI TIM2CR1 DEF

STR TIM2CR1

LDWI TIM2IER_DEF

STR TIM2IER

LDWI TIM2SR1_DEF

STR TIM2SR1

LDWI TIM2SR2_DEF

STR TIM2SR2

LDWI TIM2EGR_DEF

STR TIM2EGR

LDWI TIM2CCMR1_DEF

STR TIM2CCMR1

LDWI TIM2CCER1_DEF

STR TIM2CCER1

LDWI TIM2PSCR DEF

STR TIM2PSCR

LDWI TIM2CNTRH DEF

STR TIM2CNTRH

LDWI TIM2CNTRL_DEF

STR TIM2CNTRL

BSR TIM2CR1,T2CEN

RET

;TIMER4INITIAL

TIMER4 INITIAL:

BANKSEL PCKEN

BSR PCKEN,TIM4EN

BANKSEL TIM4CR1

LDWI TIM4CR1_DEF

STR TIM4CR1

LDWI TIM4IER_DEF

STR TIM4IER

LDWI TIM4SR DEF

STR TIM4SR

LDWI TIM4EGR_DEF

STR TIM4EGR

LDWI TIM4CNTR_DEF

STR TIM4CNTR

LDWI TIM4PSCR_DEF

STR TIM4PSCR LDWI TIM4ARR_DEF

STR TIM4ARR

RET

END

联系信息

Fremont Micro Devices (SZ) Corporation

#5-8, 10/F, Changhong Building Ke-Ji Nan 12 Road, Nanshan District, Shenzhen, Guangdong, PRC 518057

Tel: (+86 755) 8611 7811 Fax: (+86 755) 8611 7810

Fremont Micro Devices (HK) Corporation

#16, 16/F, Block B, Veristrong Industrial Centre, 34–36 Au Pui Wan Street, Fotan, Shatin, Hong Kong SAR

Tel: (+852) 2781 1186 Fax: (+852) 2781 1144

http://www.fremontmicro.com/

- 26 -

2021-09-07

^{*} Information furnished is believed to be accurate and reliable. However, Fremont Micro Devices (SZ) Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents of other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent rights of Fremont Micro Devices (SZ) Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. Fremont Micro Devices (SZ) Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of Fremont Micro Devices (SZ) Corporation. The FMD logo is a registered trademark of Fremont Micro Devices (SZ) Corporation. All other names are the property of their respective owners.