UNCLASSIFIED

AD NUMBER

AD312322

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; SEP 1959. Other requests shall be referred to National Aeronautics and Space Administration, Washington, DC.

AUTHORITY

NASA-19 dtd 26 May 1965 and NASA Bulletion No. 65-19 dtd 1 Oct 1965; NASATR Server Website

UNCLASSIFIED

AD 312322

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA. VIRGINIA

CLASSIFICATION CHANGED TO UNCLASSIFIED FROM CONFIDENTIAL PER AUTHORITY LISTED IN

Bul. no. 65-19

1 Oct. 1965

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

"NOTICE: When Government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated furnished, or in any way supplied the said drawings, specifications or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto

NASA TM X-116

FILE COPY

Fetrin 2

ASTIA

ARLINGTON HALL STATION

ARLINGTON 12, DIPOTRIA

Attn: 71505

N. I.S.A.

TECHNICAL MEMORANDUM

EFFECT OF FOREBODY STRAKES ON THE
AERODYNAMIC CHARACTERISTICS IN PITCH AND SIDESLIP
OF A HYPERSONIC AIRPLANE CONFIGURATION AT MACH
NUMBERS OF 1.41, 2.01, AND 6.86

By Cornelius Driver

Langley Research Center Langley Field, Va.

FC

Classified Document - Title unclassified

This meterial contains information affecting the national defence of the United Desce wif is the prejude of the explanage laws, Title 18, U.S.C., Sees. 765 and 784, the transmission or revalation of which in any measure to an unsufferiord pursue to private the contained of the

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON
September 1959

NATIONAL AERONAUTICS AND SPACE AIMINISTRATION

TECHNICAL MEMORANDUM X-116

EFFECT OF FOREBODY STRAKES ON THE

AERODYNAMIC CHARACTERISTICS IN PITCH AND SIDESLIP

OF A HYPERSONIC AIRPLANE CONFIGURATION AT MACH

NUMBERS OF 1.41, 2.01, AND 6.86*

By Cornelius Driver

SUMMARY

An investigation has been made to determine the effect of forebody strakes on the aerodynamic characteristics in pitch and sideslip of a hypersonic airplane configuration. The investigation was conducted in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.41 and 2.01 and in the Langley 11-inch hypersonic tunnel at a Mach number of 6.86. Three strake configurations were investigated through an angle-of-attack range from -4° to 28° at various sideslip angles from 0° to 21°.

The results indicated that the short, small-span strake, which had been found suitable from a directional-stability standpoint for the low-speed landing condition, had only a negligible effect on the longitudinal stability at all supersonic speeds. The presence of the strakes at Mach numbers of 1.41 and 2.01, although resulting in some increase in the level of directional stability in the higher angle-of-attack range, did not increase the angle of attack at which neutral stability occurred. In addition, the strakes provided an increase in positive dihedral effect at Mach numbers of 1.41 and 2.01. The strakes had no measurable effect on the sideslip derivatives at a Mach number of 6.86.

INTRODUCTION

The use of forebody strakes to improve the directional-stability level at angle of attack of various generalized sirplane configurations has been reported in references 1, 2, and 3. Reference 3, in particular,

^{*}Title, Unclassified.

presents details of the effects of strakes at supersonic speeds. Recent tests at low speeds (unpublished) of the present hypersonic airplane configuration have shown the desirability of using forebody strakes as a means of increasing the subsonic directional-stability level at angles of attack corresponding to the landing condition.

The present tests were made to evaluate the strake characteristics at supersonic and hypersonic speeds and to develop a strake configuration which would be satisfactory throughout the aircraft speed range.

SYMBOLS

The results are presented as force and moment coefficients with lift, drag, and pitching-moment coefficients referred to the stability-axis system and rolling-moment, yawing-moment, and side-force coefficients referred to the body-axis system. The reference center of moments was located on the body center line at 20 percent of the wing mean aero-dynamic chord.

c_L	lift coefficient, Lift/qS
c_D	drag coefficient, Drag/qS
C _m	pitching-moment coefficient, Pitching moment/qSc
c_{i}	rolling-moment coefficient, Rolling moment/qSb
C _n	yawing-moment coefficient, Yawing moment/qSb
C _Y	side-force coefficient, Side force/qS
q	free-stream dynamic pressure, lb/sq ft
S	wing area, sq ft
ъ	wing span, in.
ō	wing mean aerodynamic chord, in.
М	Mach number
x	longitudinal distance measured from wing leading edge
У	vertical distance measured from plane of symmetry of wing
	COMPTENDITAL

L/D	lift-drag ratio
a	angle of attack, deg
β	angle of sideslip, deg
$^{\mathrm{C}}\mathbf{n}_{\mathbf{\beta}}$	directional-stability parameter, $\partial C_{\rm n}/\partial \beta$
$c_{l_{\beta}}$	effective-dihedral parameter, $\partial C_l/\partial \beta$
$^{\mathrm{C}}\mathbf{Y}_{\mathbf{\beta}}$	side-force parameter, $\partial C_{Y}/\partial \beta$

MODELS

A three-view drawing of the complete model is presented in figure 1 and geometric characteristics are given in table I. The model is of conventional tail-rearward design, having an ogival nose and a cylindrical fuselage with side fairings. The cylindrical portion of the model is slightly boattailed at the base. The model has a trapezoidal wing with 25.64° sweep of the quarter-chord line. The horizontal tail is swept 45° at the quarter-chord line and has 15° of negative dihedral. Both the wing and the horizontal tail have modified NACA 66(006)-005 airfoil sections; the ordinates are present 1 in table. II. The model is provided with nearly symmetrical upper and lower vertical tail surfaces having 5° semi-angle wedge airfoil sections.

Details of the three strake configurations tested on the model are shown in figure 2. On the long-strake configuration the strakes extended rearward from body station 0.36 to the fairings along the sides of the fuselage (body station 2.64). On the short-strake configuration the strakes were attached at the same body station but extended rearward only about half the distance of the long strake (body station 1.11). The short, small-span strake had the same length as the short strake but had only one-half the exposed span. The short, small-span strake configuration was determined from unpublished low-speed tests to be the minimum strake that would provide a substantial increment in the directional-stability level at low speeds without an adverse effect on the longitudinal stability.

TESTS AND APPARATUS

The tests at M = 1.41 and 2.01 were made in the Langley 4- by 4-foot supersonic pressure tunnel. This tunnel is a closed throat, single-return, variable-density type and is further described in reference 4.

The tests at M = 6.80 were made in the Langley 11-inch hypersonic tunnel described in reference 5. This tunnel is an intermittent-flow type employing a single-step, two-dimensional, Invar nozzle. Running periods of about 80 seconds are possible. The stagnation temperature was maintained at about 675° F to prevent air liquefaction in the test section. The Reynolds numbers of the tests (based on the wing mean aerodynamic chord of 2.465 inches) were as follows:

Mach number	Reynolds number
1.41	710,000
2. 0 1	456,000
6.86	640,000

Forces and moments were measured through the use of a six-component internal strain-gage balance system. For the tests at Mach numbers of 1.41 and 2.01, the model was mounted on a remote-controlled rotary sting which allowed testing at combined angles of attack and sideslip. The angles of attack and sideslip were corrected for deflection under load. For the tests at a Mach number of 6.86, the model was mounted on an offset sting and the sideslip-derivative data were obtained at a constant sideslip angle through the angle-of-attack range. The angles of attack were determined by using a lens prism imbedded in the model surface to reflect and focus a spot from a light source on a previously calibrated screen. By using this method the true angles of attack were obtained directly.

DISCUSSION

Characteristics in Pitch

The effect of the strakes on the aerodynamic characteristics in pitch of the model at Mach numbers of 1.41, 2.01, and 6.86 is presented in figure 3. The presence of the strakes caused no significant effect on lift or drag at any of the Mach numbers of the tests. The strakes that ed little or no effect on the longitudinal stability at low lift coefficients, but at higher lift coefficients a tendency toward reduced

stability was indicated that increased as the strake size increased. Even for the largest strake, however, the reduction in stability was of little consequence because of the initially high stability level. The short, small-span strake, which low-speed tests (unpublished) indicated would provide adequate values of $C_{n_{\beta}}$ at angles of attack corresponding to the landing condition, had a negligible effect on the pitching moment at supersonic speeds.

Characteristics in Sideslip

The effect of the strakes on the aerodynamic characteristics in sideslip of the model with the upper vertical tail on or off at Mach numbers of 1.41 and 2.01 is presented in figures 4 to 7. The effect of the strakes on sideslip derivatives for small sideslip angles is summarized in figures 8(a), 8(b), and 8(c) for Mach numbers of 1.41, 2.01, and 6.86, respectively. The presence of the strakes at Mach numbers of 1.41 and 2.01 resulted in some increase in the directional-stability level in the angle-of-attack range above $\alpha = 8^{\circ}$ to 12° (fig. 8) but provided no increase in the angle of attack at which the directional stability became zero. The strake effectiveness appeared to decrease with an increase in Mach number (1.41 to 2.01). A similar result for a 42° swept-wing configuration has been reported in reference 6 for Mach numbers from 1.60 to 2.50. At Mach numbers of 1.41 and 2.01, the strakes provided an increase in the effective-dihedral parameter $\begin{pmatrix} -C_{l_{\beta}} \end{pmatrix}$

at high angles of attack, apparently because of the localized strake lift and the wake effect on the leeward wing panel. The effect on the lateral derivatives in sideslip is in proportion to the strake size, with the short, small-span strake, which had been found suitable for the low-speed landing condition, providing the smallest effect at the low supersonic speeds (fig. 8(b)).

No basic data for the tests at M = 6.86 are shown since the data were obtained through the angle-of-attack range at sideslip angles of 0° and 4° . The presence of the strakes on the configuration, with the upper vertical tail either on or off, had no measurable effect on the sideslip derivatives at M = 6.86.

CONCLUDING REMARKS

The results of an investigation of various forebody strake configurations on a model of a hypersonic airplane at Mach numbers of 1.41, 2.01, and 6.86 indicated that the short, small-span strake, which had been found switable from a directional stability standpoint at angles of attack corresponding to the landing condition, would have only a

CONFIDENTIAL

L 265

negligible effect on the longitudinal stability at supersonic speeds. The presence of the strakes at Mach numbers of 1.41 and 2.01, although resulting in some increase in the level of directional stability in the higher angle-of-attack range, did not increase the angle of attack at which neutral stability occurred. In addition, the strakes provided an increase in positive dihedral effect at Mach numbers of 1.41 and 2.01. The strakes had no measurable effect on the sideslip derivatives at a Mach number of 6.86.

Langley Research Center, National Aeronautics and Space Administration, Langley Field, Va., June 2, 1959.

REFERENCES

- 1. Paulson, John W., and Boisseau, Peter C.: Low-Speed Investigation of the Effect of Small Canard Surfaces on the Directional Stability of a Sweptback-Wing Fighter-Airplane Model. NACA RM L56F19a, 1956.
- 2. Sleeman, William C., Jr.: Investigation at High Subsonic Speeds of the Effects of Various Horizontal Fuselage Forebody Fins on the Directional and Longitudinal Stability of a Complete Model Having a 45° Sweptback Wing. NACA RM L56J25, 1957.
- 3. Driver, Cornelius: Wind-Tunnel Investigation at a Mach Number of 2.01 of Forebody Strakes for Improving Directional Stability of Supersonic Aircraft. NACA RM L58C11, 1958.
- 4. Robinson, Ross B., and Driver, Cornelius: Aerodynamic Characteristics at Supersonic Speeds of a Series of Wing-Body Combinations Having Cambered Wings With an Aspect Ratio of 3.5 and a Taper Ratio of 0.2 Effects of Sweep Angle and Thickness Ratio on the Aerodynamic Characteristics in Pitch at M = 1.60. NACA RM L51K16a, 1952.
- 5. McLellan, Charles H., Williams, Thomas W., and Beckwith, Ivan E.: Investigation of the Flow Through a Single-Stage Two-Dimensional Nozzle in the Langley 11-Inch Hypersonic Tunnel. NACA TN 2223, 1950.
- 6. Church, James D.: Effects of Components and Various Modifications on the Drag and the Static Stability and Control Characteristics of a 42° Swept-Wing Fighter-Airplane Model at Mach Numbers of 1.60 to 2.50. NACA RM L57KOl, 1957. (Reprinted 1959.)

TABLE I .- GEOMETRIC CHARACTERISTICS OF MODEL

Wing:		
Area, total, sq in	<i> </i>	1.520
Area, exposed, sq in		5.050
		3.366
		2.500
		5.578
		2.640
		0.716
		2.465
Sweepback angles, deg -		
Leading edge		56.75
25-percent-chord line		25.04
Trailing edge		17.74
		200
		0.00
	· · · · · · · · · · · · · · · · · · ·	0.00
	nter line Modified MACA 66(006	
Airioil section, parallel to inschage ter	neer time	,-w)
77 4 4 . 2 4 . 12		
Horizontal tail:		
		5.643
		2.300
		.339
Aspect ratio	<i></i>	2.833
		.206
		1.685
		0.505
		1.201
Sweepback angles, deg -		.A KO
		0.58
		5.00
		19.28
		15.00
Airfoil section, parallel to fuselage cer	nter line Modified NACA 66(006	-005
Upper vertical tail:		_
Area, exposed, sq in		2.356
Span, in		1.099
Aspect ratio	, , , , , , , , , , , , , , , , , , ,	0.516
_ ~		741
Taper ratio		/ · / ¬ ±
Root chord, in		2.450
Root chord, in		2.450 1.815
Root chord, in		2.450
Root chord, in		2.450 1.815 2.148
Root chord, in		2.450 1.815 2.148
Root chord, in		2.450 1.815 2.148 50.00 23.41
Root chord, in		2.450 1.815 2.148 50.00 25.41 0.00
Root chord, in	nter line	2.450 1.815 2.148 50.00 23.41 0.00 redge
Root chord, in. Tip chord, in. Hean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, perallel to fuselage ce Leading-edge radius, in.	nter line	2.450 1.815 2.148 50.00 23.41 0.00 redge
Root chord, in	nter line	2.450 L.815 2.148 50.00 23.41 0.00 redge 0.010 L.420
Root chord, in	nter line	2.450 1.815 2.148 50.00 23.41 0.00 redge
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage ce Leading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in.	nter line 10° full	2.450 L.815 2.148 50.00 23.41 0.00 redge 0.010 L.420
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage ce Leading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in.	nter line 10° full	2.450 1.815 2.148 30.00 25.41 0.00 redge 0.010 1.420 2.248
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage ce Leading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in.	nter line 10° full	2.450 1.815 2.148 30.00 25.41 0.00 redge 0.010 1.420 2.248
Root chord, in. Tip chord, in. Wean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage celleading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in. Mean aerodynamic chord, in. Lower vertical tail:	nter line	2.450 1.815 2.148 30.00 25.41 0.00 redge 0.010 1.420 2.248
Root chord, in. Tip chord, in. Wean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage ce Leading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in. Mean aerodynamic chord, in. Lower vertical tail: Area, sq in.	nter line 10° full	2.450 1.815 2.148 50.00 25.41 0.00 redge 0.010 1.420 2.248 2.039
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage ce Leading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in. Mean aerodynamic chord, in. Lower vertical tail: Area, sq in. Span, in.	nter line 10° full	2.450 1.815 2.148 30.00 25.41 0.00 redge 0.010 1.420 2.248 2.039
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage ce Leading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in. Mean aerodynamic chord, in. Lower vertical tail: Area, sq in. Span, in. Aspect ratio	nter line 10° full	2.450 1.815 2.148 50.00 25.41 0.00 redge 0.010 1.420 2.248 2.039 1.982 0.920 0.429
Root chord, in. Tip chord, in. Hean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line	2.450 1.815 2.148 50.00 25.41 0.00 redge 0.010 1.420 2.248 2.059 1.982 0.920 0.429 0.429 0.785
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage celeading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in. Mean aerodynamic chord, in. Lower vertical tail: Area, sq in. Span, in. Aspect ratio Taper ratio Root chord, in.	nter line	2.450 1.815 2.148 50.00 25.41 0.00 redge 0.010 1.420 2.248 2.059 1.982 0.920 0.429 0.429 0.429 0.429 0.429 0.429
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage ce Leading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in. Mean aerodynamic chord, in. Lower vertical tail: Area, sq in. Span, in. Aspect ratio Taper ratio Root chord, in. Tip chord, in.	nter line 10° full	2.450 1.815 2.148 50.00 50.00 redge 0.010 1.420 2.248 2.248 2.248 2.248 2.2450 1.982 1
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° full	2.450 1.815 2.148 50.00 25.41 0.00 redge 0.010 1.420 2.248 2.059 1.982 0.920 0.429 0.429 0.429 0.429 0.429 0.429
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° full	2.450 1.815 2.148 50.00 25.41 0.00 2.248 2.039 1.982 0.920 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage ce Leading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in. Mean aerodynamic chord, in. Lower vertical tail: Area, sq in. Span, in. Aspect ratio Taper ratio Root chord, in. Tip chord, in. Nean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line	2.450 1.815 2.148 50.00 23.41 0.00 2.248 2.039 1.982 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage ce Leading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in. Mean aerodynamic chord, in. Lower vertical tail: Ares, sq in. Span, in. Aspect ratio Taper ratio Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line	nter line 10° full	2.450 1.815 2.148 50.00 25.41 0.00 redge 0.010 1.420 2.248 2.059 1.982 0.920 0.429 0.785 2.450 1.919 2.245 0.920 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° full	2.450 L.815 2.148 50.00 25.41 0.00 2.249 2.059 1.982 0.920 0.429 0.785 2.450 1.982 0.920 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° full	2.450 1.815 2.148 50.00 25.41 0.00 2.420 2.248 2.039 1.982 0.920 0.429 0.785 2.450 1.919 2.450 1.919 2.410 0.00 2.410 0.00 2.410 0.00 2.410 0.00
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° full	2.450 1.815 2.148 50.00 23.41 0.00 2.248 2.039 1.982 0.982 0.982 0.982 0.982 0.429 0.420 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage celeading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in. Mean aerodynamic chord, in. Lower vertical tail: Area, sq in. Span, in. Aspect ratio Taper ratio Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage celeading-edge radius, in. Area, stabilizer, sq in.	nter line 10° full	2.450 L.815 2.148 50.00 23.41 0.00 2.248 2.039 L.982 0.920 0.783 2.450 L.919 2.250 0.00 2.248 2.039 0.783 2.450 0.00 2.248 2.039 0.783
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage celeading-edge radius, in. Area, stabilizer, sq in. Root chord, stabilizer, in. Mean aerodynamic chord, in. Lower vertical tail: Area, sq in. Span, in. Aspect ratio Taper ratio Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge 25-percent-chord line Trailing edge Airfoil section, parallel to fuselage celeading-edge radius, in. Area, stabilizer, sq in.	nter line 10° full	2.450 1.815 2.148 50.00 23.41 0.00 2.248 2.039 1.982 0.982 0.982 0.982 0.982 0.429 0.420 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° full	2.450 L.815 2.148 50.00 23.41 0.00 2.248 2.039 L.982 0.920 0.783 2.450 L.919 2.250 0.00 2.248 2.039 0.783 2.450 0.00 2.248 2.039 0.783
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° full	2.450 L.815 2.148 30.00 25.41 0.00 redge 0.010 L.420 2.428 2.039 L.982 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° full	2.450 L.815 2.148 30.00 25.41 0.00 redge 0.010 L.420 2.428 2.039 L.982 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° full	2.450 L.815 2.148 30.00 25.41 0.00 redge 0.010 L.420 2.428 2.039 L.982 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° full	2.450 L.815 2.148 50.00 25.41 0.00 redge 0.010 L.420 2.488 2.039 1.982 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° rull	2.450 L.815 2.148 50.00 25.41 0.00 2.248 2.059 1.982 0.920 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° rull	2.450 1.815 2.148 50.00 25.41 0.00 2.248 2.039 1.982 0.920 0.429 0.4
Root chord, in. Tip chord, in. Mean aerodynamic chord, in. Sweepback angles, deg - Leading edge	nter line 10° rull	2.450 L.815 2.148 50.00 25.41 0.00 2.248 2.059 1.982 0.920 0.429 0.4

(a) Wing

x, percent	y, perce	ent chord
chord	Root	Tip
0 1.25 2.5 5.0 7.5 10 15 20 25 30 35 40 45 50 65 67 100	0 .358 .533 .854 1.137 1.382 1.759 2.001 2.182 2.318 2.416 2.476 2.500 2.487 2.437 2.346 2.176 2.085 .500	0 1.048 1.123 1.263 1.395 1.523 1.769 2.001 2.182 2.318 2.416 2.476 2.476 2.476 2.476 2.176 2.176 2.176 2.176 2.176

L. E. radius: 0.008-inch constant, tangent to leading edge.

Basic airfoil modified for linear taper between root and tip forward of 17-percent-chord line and modified to straight side rearward of 67-percent-chord line to 1-percent-thick trailing edge.

(b) Horizontal tail

x, percent chord Root Tip O O O O O O O O O O O O O O O O O O			
0 0 0 0 0 .1 .269 .348 .25 .408 .538 .5 .531 .728 .75 .590 .846 .1.25 .650 .969 .2.50 .791 1.052 .5.00 1.048 1.206 .7.5 1.270 1.353 10 1.460 1.495 15 1.766 1.768 .20 .2.001 .2.001 .25 .2.182 .2.182 .30 .2.318 .2.318 .35 .2.416 .2.416 .2.476 .2.476 .2.476 .2.476 .2.476 .2.476 .2.476 .2.476 .2.487 .2.487 .2.487 .2.437		y, perce	ent chord
.1 .269 .348 .25 .408 .538 .5 .531 .728 .75 .590 .846 1.25 .650 .969 2.50 .791 1.052 5.00 1.048 1.206 7.5 1.270 1.353 10 1.460 1.495 15 1.766 1.768 20 2.001 2.001 25 2.182 2.182 30 2.318 2.318 35 2.416 2.476 2.476 2.476 2.476 45 2.500 2.500 50 2.487 2.487 2.437 2.437 2.437 60 2.346 2.346 75 1.653 1.653 90 .961 .961	chord	Root	Tip
1 .500 .500	.1 .25 .75 1.25 2.50 5.00 7.5 10 15 20 25 30 35 40 45 50 55 60 75	.269 .408 .531 .590 .650 .791 1.048 1.270 1.460 1.766 2.001 2.182 2.318 2.476 2.476 2.476 2.476 2.437 2.437 2.437 2.437	.348 .538 .728 .846 .969 1.052 1.206 1.353 1.495 1.768 2.001 2.182 2.318 2.416 2.476 2.476 2.476 2.437 2.437 2.437

L. E. radius: 0.005-inch constant, tangent to leading edge.

Basic airfoil modified for linear taper between root and tip forward of 5-percent-chord line at root and 15-percent-chord line at tip.

Figure 1.- Details of the model. (All dimensions are in inches.)

Figure 2.- Strake details. (All dimensions are in inches.)

(a) M = 1.41.

Figure 3.- Effect of strakes on aerodynamic characteristics in pitch of complete model.

(a) M = 1.41. Concluded.

Figure 3.- Continued.

Figure 3.- Continued.

CONFIDENTIAL

(b) M = 2.01. Concluded.
Figure 3.- Continued.

Figure 3.- Continued.

(c) M = 6.86. Concluded.

Figure 3.- Concluded.

Figure 4.- Effect of strakes on aerodynamic characteristics in sideslip of complete model. M = 1.41.

(b) $\alpha \approx 4.3^{\circ}$.

Figure 4.- Continued.

(c) $\alpha \approx 8.7^{\circ}$.

Figure 4.- Continued.

(d) $a \approx 13.1^{\circ}$.

Figure 4.- Continued.

(e) $\alpha \approx 17^{\circ}$.

Figure 4.- Continued.

(f) $\alpha \approx 21.3^{\circ}$.

Figure 4.- Continued.

Figure 4.- Concluded.

Figure 5.- Effect of strakes on aerodynamic characteristics in sideslip of complete model. M = 2.01.

(b) $\alpha \approx 4.3^{\circ}$.

Figure 5.- Continued.

igure 5.- Continued.

(d) $\alpha \approx 12.7^{\circ}$.

Figure 5.- Continued.

Figure 5.- Continued.

(f) $\alpha \approx 21.2^{\circ}$.

Figure 5.- Continued.

(g) $\alpha \approx 25.5^{\circ}$.

Figure 5.- Concluded.

Figure 6.- Effect of strakes on aerodynamic characteristics in sideslip of model with upper vertical tail off. M=1.41.

Figure 6.- Continued.

(c) $\alpha \approx 8.7^{\circ}$.

Figure 6.- Continued.

(d) $\alpha \approx 13.1^{\circ}$.

Figure 6.- Continued.

(e) $\alpha \approx 17.5^{\circ}$.

Figure 6.- Continued.

(f) $\alpha \approx 21.3^{\circ}$.

Figure 6.- Continued.

(g) $\alpha \approx 25.5^{\circ}$.

Figure 6.- Concluded.

Figure 7.- Effect of strakes on aerodynamic characteristics in sideslip of model with upper vertical tail off. M = 2.01.

(b) $\alpha \approx 4.3^{\circ}$.

Figure 7.- Continued.

(c) $\alpha \approx 8.4^{\circ}$.

Figure 7.- Continued.

Figure 7.- Continued.

(e) $\alpha \approx 16.9^{\circ}$.

Figure 7.- Continued.

(f) $\alpha \approx 21.2^{\circ}$.

Figure 7 .- Continued.

(g) $\alpha \approx 25.5^{\circ}$.

Figure 7.- Concluded.

Figure 8.- Effect of strakes on sideslip derivatives of model with upper vertical tail on and off.

(b) M = 2.01.

Figure 8.- Continued.

Fire Comment