Random Variables (rv)

Functions of a Random Variable [Ross S4.4] Say we have a random variable X. Let Y = g(X) for some function g(.).

Then:

- - $\Rightarrow Y$ is a function of the outcome $s \in S$

• Y is a function of X

- $\Rightarrow Y$ is a random variable.
- Y has a PMF $p_Y(y)$. We can find it from $p_X(x)$.

P[X = -1] = 0.1, P[X = 0] = 0.3,P[X = 1] = 0.6.

Example 10.1: Let X be a random variable such that

Let
$$Y = X^2$$
. What are $E[X]$ and $E[Y]$?

Solution:

 $E[X] = -1 \times 0.1 + 0 \times 0.3 + 1 \times 0.6$

= 0.5

= 0.3

$$P[Y = 0] = P[X^2 = 0]$$

= $P[X = 0]$

$$P[Y = 1] = P[X^{2} = 1]$$

$$= P[\{X = 1\} \cup \{X = -1\}]$$

$$= 0.1 + 0.6$$

$$E[g(X)] = \sum_{i>1} g(x_i) p_X(x_i)$$

Let $\mathcal{Y} = \{y_1, y_2, \ldots\}$ be all possible values of Y. $\sum_{i \ge 1} g(x_i) p_X(x_i) = \sum_{j \ge 1} \sum_{i: g(x_i) = y_j} g(x_i) p_X(x_i)$

$$= \sum_{j\geq 1} \sum_{i:g(x_i)=y_j} y_j p_X(x_i)$$

 $= \sum_{j\geq 1} y_j \sum_{i:g(x_i)=y_j} p_X(x_i)$ $= \sum_{j>1} y_j P[g(X) = y_j]$

Why is this true? Let Y = g(X).

$$=\sum_{j\geq 1}y_{j}P[Y=y_{j}]$$

$$=E[Y]$$

$$=E[g(X)]$$
 Example 10.2: In Example 10.1,
$$E[X^{2}]=\sum_{i}x_{i}^{2}p_{X}(x_{i})$$

$$=(-1)^{2}\times p_{X}(-1)+0^{2}\times p_{X}(0)+1^{2}\times p_{X}(1)$$

$$=1\times 0.1+0\times 0.3+1\times 0.6$$

$$=0.7$$
 Corollary 10.1 If a and b are constants, then $E[aX+b]=aE[X]+b$.

= aE[X] + b

 $= a \sum_{x \in \mathcal{X}} x p_X(x) + b \sum_{x \in \mathcal{X}} p_X(x)$

 $E[aX + b] = \sum_{x \in \mathcal{X}} (ax + b)p_X(x)$

Note: E[X] is called **mean** of X. $E[X^n]$ is called the n-th **moment** of X.

Example 10.3: Say E[X] = 3. Then $E[10X + 4] = 10 \times 3 + 4 = 34$.

Given
$$X$$
, it is useful to summarize some essential properties of X . $E[X]$ tells us about the "center" of how X is distributed.
Example 10.4: Let
$$P[W=0]=1$$

$$P[Y=1]=P[Y=-1]=\frac{1}{2}$$

 $P[Z=100] = P[Z=-100] = \frac{1}{2}$

 $Var[X] = E[(X - E[X])^2]$ $= E[(X - \mu_X)^2]$

We often write
$$\sigma_X^2 = Var[X]$$
.

Note: Since $(X - \mu_X)^2 \ge 0$, then $Var[X] \ge 0$.

Also $Var[X] = E[(X - \mu_X)^2]$

$$= \sum_{x \in \mathcal{X}} (x - \mu_X)^2 p_X(x)$$

 $= \sum_{x \in X} (x^2 - 2\mu_X x + \mu_X^2) p_X(x)$

(*)

 $(\mu_X = E[X])$

(10.1)

(10.2)

(10.3)

 $= \sum_{x \in \mathcal{X}} x^2 p_X(x) - 2\mu_X \underbrace{\sum_{x \in \mathcal{X}} x p_X(x)}_{\mu_X} + \mu_X^2 \sum_{x \in \mathcal{X}} p_X(x)$ $= E[X^2] - 2\mu_X^2 + \mu_X^2$

and, if E[X] > 0, then

 $=E[X^2]-(E[X])^2$

Definition 10.1: The **variance** of X is

Also, combinining
$$(*)$$
 with (10.1), we get
$$E[X^2] \geq (E[X])^2$$

 $\frac{E[X^2]}{E[X]} \ge E[X]$

Example 10.5: Let X be the outcome of a dice roll. What is Var[X]?

 $E[(X - E[X])^2] = \left(1 - \frac{7}{2}\right)^2 \times \frac{1}{6} + \left(2 - \frac{7}{2}\right)^2 \times \frac{1}{6} + \dots + \left(6 - \frac{7}{2}\right)^2 \times \frac{1}{6}$

 $E[X] = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{7}{2}$ $E[X^2] = 1 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + \dots + 6^2 \times \frac{1}{6} = \frac{91}{6}$

$$Var[X] = E[X^2] - (E[X])^2 = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}$$

the wind is not good (probability 0.3), the speed is
$$V=600$$
 km/h. What is the average flight time?
Solution: If the wind is good, the flight time $T=4200/700=6$ hours.

 $P[T=6] = 0.7, \qquad P[T=7] = 0.3$ and $E[T] = 6 \times 0.7 + 7 \times 0.3 = 6.3$ hours

If the wind is not good, then T = 4200/600 = 7 hours.

Note, that this is not the same as computing the average speed $E[V] = 700 \times 0.7 + 600 \times 0.3 = 670 \text{ km/h},$

and then computing $4200/670 \approx 6.27$ hours. In other words, even though $T = \frac{4200}{V}$, $E[T] \neq \frac{4200}{E[V]}$.

• X is a function of the outcome $s \in S$

So $E[X^2] = E[Y] = 0 \times 0.3 + 1 \times 0.7$

Note: $(E[X])^2 = (0.5)^2 \neq 0.7 = E[X^2]$. So $E[g(X)] \neq g(E[X])$ in general. **Proposition 10.1** If X is a rv with possible values $\mathcal{X} = \{x_1, x_2, \ldots\}$ then

Why?

Often write $\mu_X = E[X]$. Variance [Ross S4.5]

Then E[W] = 0 = E[Y] = E[Z], but these are not equally spread...

So,

Also:

Solution:

Example 10.6: The distance from Vancouver to Boston is 4200km. If the wind is good (with probability 0.7), the speed of a plane is V = 700 km/h. If

So,