Week 5 스터디 발표

Feature selection using SHAP

SHAP vs Feature importance

(1) SHAP values

(2) Feature importance

How to calculate feature importance in Scikit-learn

Step 1. Calculate node importance

$$ni_j = w_j C_j - w_{left(j)} C_{left(j)} - w_{right(j)} C_{right(j)}$$

- ni_j: node j 의 importance
- w: weighted number of samples reaching node j
- C: impurity value(불순도) of node j (Gini-index)

Step 2. Feature importance

$$fi_i = \frac{\sum_{j:node\ j\ splits\ on\ feature\ i} ni_j}{\sum_{k \in all\ nodes} ni_k}$$

불순도 (Impurity) 측도

물순도 (Impurity) 즉도 $\left(\frac{R}{R}\hat{p}_{mk}=1\right)$ $-\left(200^{\circ}\right)\hat{P}_{mk}$: region R_m 에서 class k가 차지하는 비율 $\left(\hat{P}_{mk(m)}: \text{ region } R_m$ 에서 \hat{P}_{mk} 의 최대값)

-	Gini Index	$I_G(R_m) = \sum_{m=1}^{K} \hat{P}_{mk} (1 - \hat{P}_{mk}) = 1 - \sum_{m=1}^{K} \hat{P}_{mk}^{\dagger}$	(K: class의 총 개수)
	⊕ Cross Entropy	$I_{\mathcal{C}}(R_m) = -\sum_{m=1}^{K} \hat{P}_{mk} \log_2(\hat{P}_{mk})$	
3	Misclassification Error	$I_{E}(R_{m})=1-P_{mk(m)}$	

Information Gain

- Classification Tree에서 분할 (split) 변수 (x_i) 및 node 선택의 기준
- 상위 cell R에서 두 개의 영역 R_l (왼쪽)과 R_r (오른쪽)로 나누어질 때, N, N_{R_l} , N_{R_r} 을 각각 R, R_l , R_r 에 포함된 관측치의 개수라고 하면 $(N = N_{R_s} + N_{R_s})$,

$$IG(R, x_j) = I(R) - \frac{N_R}{N_R}I(R_l) - \frac{N_{R_r}}{N_R}I(R_r)$$

IG(R,x_i)가 최대가 되도록 분할변수 (x_i)와 node를 선택

Why SHAP is better?

- 1. Feature importance: 범주형 변수 중 high cardinality 특징을 가진 변수의 중요도를 더 높게 측정하는 경향이 있음
- 2. SHAP is consistent: consistency 속성은 모델이 변경되어도 특성값의 marginal contribution이 (다른 특성에 관계없이) 증가하거나 동일하게 유지되는 경우 shaply value도 증가하거나 동일하게 유지된다.
 - → 그러나 Feature importance는 모델에 따라서 바뀜