Started on	Thursday, 29 October 2020, 12:29 PM
State	Finished
Completed on	Thursday, 29 October 2020, 12:49 PM
Time taken	19 mins 54 secs

Grade 6.00 out of 10.00 (**60**%)

Question 1

Correct

Mark 1.00 out of 1.00

If $\{x_n\}$ is a sequence converging linearly to a value ξ , then the constant C in $\lim_{n \to \infty} \frac{\xi - x_{n+1}}{(\xi - x_n)^p} = C$ must satisfy

Select one:

- \bigcirc A. |C| > 1
- lacksquare B. |C| < 1

- igcup C. |C| = 1
- \bigcirc D. $|C|>rac{3}{2}$
- igcup E. C can be any real number

Your answer is correct.

The correct answer is: $\left|C\right|<1$

Question 2

Correct

Mark 2.00 out of 2.00

Let x and y be normalized floating-point machine numbers, where x>y>0. If $2^{-p}\leq 1-(\frac{y}{x})\leq 2^{-q}$ for some positive integers p and q, then the minimum number of bits of significance that are lost in the subtraction x-y is

Select one:

- A. p
- B. q
- \bigcirc C. p-q
- \bigcirc D. p+q
- E. pq

Your answer is correct.

The correct answer is: q

Question 3

Correct

Mark 1.00 out of 1.00

The iteration $x_{n+1}=2-(1+c)x_n+cx_n^3$ will converge to $\alpha=1$ for some value of c (provided x_0 is chosen sufficiently close to α). The value of c for which convergence occurs is

Select one:

- \bigcirc A. -1 < c < 1
- lacksquare B. -2 < c < 2
- C. 0 < c < 2
- \bigcirc D. -2 < c < 0

Your answer is correct.

The correct answer is: 0 < c < 1

Question 4

Correct

Mark 2.00 out of 2.00

The relation between the averaging operator μ and the central difference operator δ is

Select one:

- \bigcirc A. $\delta^2=1-rac{\mu^2}{4}$
- lacksquare B. $\mu=1+\delta$
- \odot C. $\mu^2=1+rac{\delta^2}{4}$

<

- \bigcirc D. $\delta^2=1+rac{\mu^2}{4}$
- \bigcirc E. $\mu^2=1-rac{\delta^2}{4}$

Your answer is correct.

The correct answer is: $\mu^2=1+rac{\delta^2}{4}$

Question 5

Incorrect

Mark -2.00 out of 2.00

The function $y=e^x$ is tabulated for $x=0\\(0.01)\\1.0$. Then the maximum error in linear interpolation is

Select one:

- $igcap A. \ 0.0125e$
- $igcap B. \ 0.125e$
- © C. 0.00125*e*

X

- \bigcirc D. 0.000125e
- E. 0.0000125e

Your answer is incorrect.

The correct answer is: 0.0000125e

Question 6

Correct

Mark 2.00 out of 2.00

Suppose a function g interpolates the function f at $x_0, x_1, \ldots, x_{n-1}$ and the function h interpolates the function f at x_1, x_2, \ldots, x_n , then which of the following functions interpolates f at x_0, x_1, \ldots, x_n

Select one:

$$\bigcirc$$
 A. $g(x)+rac{x_0-x}{x_n-x_0}[g(x)+h(x)]$

$$igcup ext{B. } h(x) + rac{x_0 - x}{x_n - x_0} [h(x) - g(x)]$$

$$igcup extsf{C.} \ g(x) + rac{x_0 - x}{x_n - x_0} [g(x) - h(x)]$$

$$\bigcirc$$
 D. $g(x)+rac{x-x_0}{x_n-x_0}[g(x)+h(x)]$

$$igcup = \operatorname{\mathsf{E}} . \ g(x) + rac{x-x_0}{x_n-x_0} [g(x)-h(x)]$$

Your answer is correct.

The correct answer is: $g(x) + rac{x_0 - x}{x_n - x_0} [g(x) - h(x)]$

■ Impartus

Jump to...

Quiz-II ▶