Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 10: Teorema di Linearizzazione e di Lyapunov

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020

Nella scorsa lezione

▶ Traiettorie di stato di un sistema

▶ Punti di equilibrio di un sistema (con e senza ingressi)

▶ Linearizzazione di sistemi non lineari

In questa lezione

▶ Teorema di linearizzazione

▶ Funzioni energia e stabilità di sistemi non lineari

▶ Funzioni di Lyapunov

▶ Teorema di stabilità di Lyapunov

Teorema di linearizzazione (t.c.)

 $\dot{x}(t) = f(x(t))$: sistema non lineare con punto di equilibrio $ar{x}$

Teorema: Sia $\dot{z}(t) = Fz(t)$ il sistema linearizzato di $\dot{x}(t) = f(x(t))$ attorno a \bar{x} e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di F. Allora:

- 1. Se il sistema linearizzato è asintoticamente stabile ($\Re[\lambda_i] < 0$, $\forall i$), allora \bar{x} è un punto di equilibrio (localmente) asintoticamente stabile per il sistema non lineare.
- 2. Se il sistema linearizzato ha un autovalore con parte reale positiva $(\exists i: \Re[\lambda_i] > 0)$, allora \bar{x} è un punto di equilibrio (localmente) instabile per il sistema non lineare.

Caso critico: $\Re[\lambda_i] \leq 0$, $\forall i$, $e \exists i$: $\Re[\lambda_i] = 0$

Teorema di linearizzazione (t.c.): esempi

1.
$$\dot{x} = \sin x$$
 $\ddot{x} = 0$ \Rightarrow $\ddot{x} = 0$ instabile $\ddot{x} = \pi$ stabile

2.
$$\begin{cases} \dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2) \end{cases} \quad \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \bar{x} \text{ instabile}$$

3.
$$\dot{x} = \alpha x^3$$
. $\alpha \in \mathbb{R}$. $\bar{x} = 0$ \Longrightarrow caso critico

Teorema di linearizzazione (t.d.)

$$x(t+1) = f(x(t))$$
: sistema non lineare con punto di equilibrio \bar{x}

Teorema: Sia z(t+1) = Fz(t) il sistema linearizzato di x(t+1) = f(x(t)) attorno a \bar{x} e siano $\lambda_1, \ldots, \lambda_k$ gli autovalori di F. Allora:

- **1.** Se il sistema linearizzato è asintoticamente stabile ($|\lambda_i| < 1, \forall i$), allora \bar{x} è un punto di equilibrio (localmente) asintoticamente stabile per il sistema non lineare.
- **2.** Se il sistema linearizzato ha un autovalore con modulo maggiore di uno $(\exists i: |\lambda_i| >$
- 1), allora \bar{x} è un punto di equilibrio (localmente) instabile per il sistema non lineare.

Caso critico: $|\lambda_i| \leq 0$, $\forall i$, e $\exists i$: $|\lambda_i| = 1$

Teorema di linearizzazione (t.d.): esempi

1. Dato il sistema

$$\begin{cases} x_1(t+1) = ax_2(t) + (1-a)x_2^3(t) \\ x_2(t+1) = -ax_1(t) + (a-1)x_1^3(t) \end{cases}$$

Studiare la stabilita di $\bar{x}=0$ al variare di $a\in\mathbb{R}$ utilizzando la linearizzazione.

$$\bar{x}=0$$
 as intoticamente stabile per $a \neq \pm 1$

$$a=\pm 1$$
: caso critico!

Funzioni energia e stabilità: l'oscillatore armonico

$$egin{aligned} x_1(t) &= x(t), \ x_2(t) &= \dot{x}(t) \ igg[\dot{x}_1(t)]{\dot{x}_2(t)} &= igg[0 & 1 \ -rac{k}{m} & 0 igg] igg[x_1(t) \ x_2(t) igg] \end{aligned} \ egin{aligned} E_{
m pot}(t) &= rac{1}{2}kx_1^2(t), \quad E_{
m cin}(t) &= rac{1}{2}mx_2^2(t) \ E_{
m tot}(t) &= E_{
m m}(t) &= E_{
m pot}(t) + E_{
m cin}(t) \ &= rac{1}{2}kx_1^2(t) + rac{1}{2}mx_2^2(t) \end{aligned}$$

$$E_{\mathsf{m}}(t) = E(x_1(t), x_2(t)) = \mathsf{costante}, \ orall t$$

Funzioni energia e stabilità: l'oscillatore armonico smorzato

$$egin{aligned} x_1(t) &= x(t), \ x_2(t) &= \dot{x}(t) \ & \left[\dot{x}_1(t)
ight] = \left[egin{aligned} 0 & 1 \ -rac{k}{m} & -rac{
u}{m} \end{aligned}
ight] \left[x_1(t)
ight] \ & E_{
m pot}(t) &= rac{1}{2} k x_1^2(t), \quad E_{
m cin}(t) &= rac{1}{2} m x_2^2(t) \ & E_{
m tot}(t) &= E_{
m m}(t) + E_{
m attr}(t) &= E_{
m pot}(t) + E_{
m cin}(t) + E_{
m attr}(t) \end{aligned}$$

$$E_{\mathsf{m}}(t_2) \leq E_{\mathsf{m}}(t_1), \quad \forall t_1, t_2, \ t_1 \leq t_2$$

10 / 25

 $=\frac{1}{2}kx_1^2(t)+\frac{1}{2}mx_2^2(t)+E_{\text{attr}}(t)$

Funzioni energia e stabilità: il pendolo semplice

$$\begin{aligned} x_1(t) &= \theta(t), \ x_2(t) = \dot{\theta}(t) \\ \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{g}{\ell} \sin x_1(t) \\ E_{\text{pot}}(t) &= mg\ell(1 - \cos x_1(t)), \quad E_{\text{cin}}(t) = \frac{1}{2}m\ell^2 x_2^2(t) \\ E_{\text{tot}}(t) &= E_{\text{m}}(t) = E_{\text{pot}}(t) + E_{\text{cin}}(t) \\ &= mg\ell(1 - \cos x_1(t)) + \frac{1}{2}m\ell^2 x_2^2(t) \end{aligned}$$

$$E_{\mathsf{m}}(t) = E(x_1(t), x_2(t)) = \mathsf{costante}, \ orall t$$

11 / 25

Funzioni energia e stabilità: il pendolo semplice con attrito

$$\begin{split} x_1(t) &= \theta(t), \ x_2(t) = \dot{\theta}(t) \\ \begin{cases} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{g}{\ell} \sin x_1(t) - \frac{\nu}{m\ell^2} x_2(t) \end{cases} \\ E_{\text{pot}}(t) &= mg\ell(1 - \cos x_1(t)), \quad E_{\text{cin}}(t) = \frac{1}{2}m\ell^2 x_2^2(t) \\ E_{\text{tot}}(t) &= E_{\text{m}}(t) + E_{\text{attr}}(t) = E_{\text{pot}}(t) + E_{\text{cin}}(t) + E_{\text{attr}}(t) \\ &= mg\ell(1 - \cos x_1(t)) + \frac{1}{2}m\ell^2 x_2^2(t) + E_{\text{attr}}(t) \end{split}$$

$$E_{\rm m}(t_2) \leq E_{\rm m}(t_1), \quad \forall t_1, t_2, \ t_1 \leq t_2$$

12 / 25

Funzioni (semi)definite positive, negative, indefinite

Definizione: Una funzione $V: \mathbb{R}^n \to \mathbb{R}$ si dice (semi)definita positiva in un intorno di \bar{x} se esiste un intorno \mathcal{I} dell'origine tale che:

$$V(x) > (\geq) 0$$
, $\forall x \in \mathcal{I}$, $x \neq \bar{x}$, e $V(\bar{x}) = 0$.

Definizione: Una funzione $V: \mathbb{R}^n \to \mathbb{R}$ si dice (semi)definita negativa in un intorno di \bar{x} se esiste un intorno \mathcal{I} dell'origine tale che:

$$V(x) < (\leq) 0, \ \forall x \in \mathcal{I}, \ x \neq \bar{x}, \ \ \text{e} \ V(\bar{x}) = 0.$$

Definizione: Una funzione $V: \mathbb{R}^n \to \mathbb{R}$ si dice indefinita in un intorno \bar{x} se non è né semidefinita positiva né semidefinita negativa in un intorno \bar{x} .

Funzioni (semi)definite positive, negative, indefinite: esempi

1.
$$V(x_1, x_2) = x_1^2 + x_2^2$$
 \implies V definita positiva in un intorno di $\bar{x} = 0$

2.
$$V(x_1, x_2) = x_1^2$$
 $\Longrightarrow V$ semidefinita positiva in un intorno di $\bar{x} = 0$

3.
$$V(x_1, x_2) = -\frac{x_1^2 + x_2^2}{1 + x^2}$$
 \implies V definita negativa in un intorno di $\bar{x} = 0$

4.
$$V(x_1, x_2) = x_1 x_2$$
 \implies V indefinita in un intorno di $\bar{x} = 0$

Funzioni di Lyapunov (t.c.)

$$\dot{x}(t) = f(x(t)), \quad \bar{x}$$
 punto di equilibrio

Definizione: Una funzione $V: \mathbb{R}^n \to \mathbb{R}$ si dice funzione di Lyapunov del sistema $\dot{x} = f(x)$ rispetto al punto di equilibrio \bar{x} se:

- 1. V(x(t)) è definita positiva in un intorno \mathcal{I} di \bar{x} ,
- 2. $\dot{V}(x(t))$ è semidefinita negativa in un intorno \mathcal{I} di \bar{x} .

Funzioni di Lyapunov (t.c.): esempi

1. Oscillatore armonico smorzato ($\bar{x} = 0$):

2. Pendolo semplice con attrito ($\bar{x} = 0$):

$$\begin{cases} \dot{x}_1(t) = x_2(t) & V(x_1, x_2) = mg\ell(1 - \cos x_1) + \frac{1}{2}m\ell^2 x_2^2 > 0, \\ \dot{x}_2(t) = -\frac{g}{\ell}\sin x_1(t) - \frac{\nu}{m\ell^2} x_2(t) & \dot{V}(x_1, x_2) = -\nu\ell x_2^2 \leq 0, \ \forall x_1, x_2 \end{cases}$$

Giacomo Baggio IMC-TdS-1920: Lez. 10

Funzioni di Lyapunov (t.d.)

$$x(t+1) = f(x(t)), \quad \bar{x}$$
 punto di equilibrio

Definizione: Una funzione $V: \mathbb{R}^n \to \mathbb{R}$ si dice funzione di Lyapunov del sistema x(t+1) = f(x(t)) rispetto al punto di equilibrio \bar{x} se:

- 1. V(x(t)) è definita positiva in un intorno \mathcal{I} di \bar{x} ,
- 2. $\Delta V(x(t)) = V(x(t+1)) V(x(t))$ è semidefinita negativa in un intorno \mathcal{I} di \bar{x} .

Giacomo Baggio IMC-TdS-1920: Lez 10 November 4 2019

Funzioni di Lyapunov: osservazioni

1. Funzioni di Lyapunov = funzioni energia "generalizzate" !!!

- 2. Non esiste un algoritmo generale per costruire funzioni di Lyapunov. Esse devono essere ricavate per tentativi, tipicamente partendo da considerazioni di tipo "energetico" (nel caso di sistemi fisici).

3. Calcolo di
$$\dot{V}(x)$$
:
$$\dot{V}(x) = \begin{bmatrix} \frac{\partial V(x)}{\partial x_1} & \cdots & \frac{\partial V(x)}{\partial x_n} \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} \frac{\partial V(x)}{\partial x_1} & \cdots & \frac{\partial V(x)}{\partial x_n} \end{bmatrix} \begin{bmatrix} f_1(x) \\ \vdots \\ f_n(x) \end{bmatrix} = \nabla V(x) f(x)$$

Teorema di stabilità di Lyapunov (t.c.)

Teorema: Dato un sistema $\dot{x} = f(x)$ con punto di equilibrio \bar{x} :

- 1. Se esiste una funzione di Lyapunov V(x) allora \bar{x} è semplicemente stabile.
- **2.** Se inoltre si ha che $\dot{V}(x)$ è definita negativa allora \bar{x} è asintoticamente stabile.

1. Oscillatore armonico (m = k = 1):

$$egin{bmatrix} \dot{x}_1(t) \ \dot{x}_2(t) \end{bmatrix} = egin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix} egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix}, \quad ar{x} = 0$$

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

 $\dot{V}(x_1, x_2) = 0$, semidef. neg.

 $\bar{x} = 0$ semplicemente stabile

2. Oscillatore armonico smorzato ($m = k = \nu = 1$):

$$egin{bmatrix} \dot{x}_1(t) \ \dot{x}_2(t) \end{bmatrix} = egin{bmatrix} 0 & 1 \ -1 & -1 \end{bmatrix} egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix}, \quad ar{x} = 0$$

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$

$$\dot{V}(x_1, x_2) = -x_2^2$$
, semidef. neg.

$$\bar{x} = 0$$
 semplicemente stabile

$$V(x_1, x_2) = x_1^2 + \frac{1}{2} ((x_2 + x_1)^2 + x_2^2)$$

$$\dot{V}(x_1, x_2) = -(x_1^2 + x_2^2)$$
, def. neg.

 $\bar{x} = 0$ as intoticamente stabile!!

3. Pendolo semplice ($m = \ell = 1$):

$$egin{cases} \dot{x}_1(t) = x_2(t) \ \dot{x}_2(t) = -g \sin x_1(t) \end{cases} ar{x} = 0$$

$$V(x_1, x_2) = g(1 - \cos x_1) + \frac{1}{2}x_2^2$$

 $\dot{V}(x_1, x_2) = 0$, semidef. neg.

 $\bar{x} = 0$ semplicemente stabile!

4. Pendolo semplice con attrito ($m = \ell = \nu = 1$):

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -g\sin x_1(t) - x_2(t) \end{cases} \qquad \bar{x} = 0$$

$$V(x_1, x_2) = g(1 - \cos x_1) + \frac{1}{2}x_2^2$$

$$\dot{V}(x_1,x_2)=-x_2^2$$
, semidef. neg.

$$\bar{x}=0$$
 semplicemente stabile

$$V(x_1,x_2) = 2g(1-\cos x_1) + \frac{1}{2}((x_1+x_2)^2 + x_2^2)$$

 $\dot{V}(x_1, x_2) = -x_2^2 - gx_1 \sin x_1$, def. neg.

$$\bar{x}=0$$
 asintoticamente stabile !!

Giacomo Baggio IMC-TdS-1920: Lez. 10

Teorema di stabilità di Lyapunov (t.d.)

Teorema: Dato un sistema x(t+1) = f(x) con punto di equilibrio \bar{x} :

- 1. Se esiste una funzione di Lyapunov V(x) allora \bar{x} è semplicemente stabile.
- 2. Se inoltre si ha che $\Delta V(x(t))$ è definita negativa allora \bar{x} è asintoticamente stabile.

1. Dato il sistema

$$\begin{cases} x_1(t+1) = -x_2(t) + 2x_2^3(t) \\ x_2(t+1) = x_1(t) - 2x_1^3(t) \end{cases}$$

Studiare la stabilità di $\bar{x} = 0$ utilizzando $V(x_1, x_2) = x_1^2 + x_2^2$.

$$\Delta V(x_1, x_2) = -4x_1^4(1-x_1^2) - 4x_2^4(1-x_2^2)$$
, negativa definita attorno a \bar{x}

$$\implies \bar{x} = 0$$
 as into ticamente stabile