Practical Application III: Comparing Classifiers

Overview: In this practical application, your goal is to compare the performance of the classifiers we encountered in this section, namely K Nearest Neighbor, Logistic Regression, Decision Trees, and Support Vector Machines. We will utilize a dataset related to marketing bank products over the telephone.

Getting Started

Our dataset comes from the UCI Machine Learning repository link (https://archive.ics.uci.edu/ml/datasets/bank+marketing). The data is from a Portugese banking institution and is a collection of the results of multiple marketing campaigns. We will make use of the article accompanying the dataset here (CRISP-DM-BANK,pdf) for more information on the data and features.

Problem 1: Understanding the Data

To gain a better understanding of the data, please read the information provided in the UCI link above, and examine the Materials and Methods section of the paper. How many marketing campaigns does this data represent?

In total 17 campaigns were carried out between May 2008 and November 2010, corresponding to a total of 79354 contacts. During these phone campaigns, an attractive long-term deposit application, with good interest rates, was offered.

Problem 2: Read in the Data

Use pandas to read in the dataset bank-additional-full.csv and assign to a meaningful variable name.

```
In [1]: import pandas as pd
        import numpy as np
        import plotly.express as px
        import plotly.graph objects as go
        from collections import defaultdict
        import plotly.graph objects as go
        import matplotlib.pyplot as plt
        from sklearn import svm
        from sklearn.preprocessing import StandardScaler
        from sklearn.model selection import train test split, cross val score
        import seaborn as sns
        import plotly.subplots as sp
        from calendar import month abbr
        from sklearn.neighbors import KNeighborsRegressor,KNeighborsClassifier
        from sklearn.impute import KNNImputer
        from imblearn.over sampling import SMOTE
        # preprocessing
        from sklearn.preprocessing import MinMaxScaler
        # calculate the MSE score
        from sklearn.metrics import mean squared error, confusion matrix
        from sklearn.metrics import roc auc score, precision score, recall score, accuracy score, fl score, balanced accuracy score
        # cross validation
        from sklearn.model selection import GridSearchCV, StratifiedKFold, RandomizedSearchCV
        # modeling
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.linear model import LogisticRegression
        from sklearn.linear model import RidgeClassifier
        # model evaluation
        from sklearn.metrics import classification report, plot roc curve
        from sklearn.metrics import classification report, plot confusion matrix, ConfusionMatrixDisplay
        from sklearn.dummy import DummyClassifier
        from sklearn.inspection import permutation importance
        import random
        import warnings
        import time
        warnings.filterwarnings("ignore")
```

```
In [3]: df.head()
Out[3]:
                        job marital education default housing loan contact month day_of_week ... campaign pdays previous poutcome emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed y
             age
              56
                                                                                                                999
                  housemaid married
                                      basic.4y
                                                                 no telephone
                                                                                                                           0 nonexistent
                                                                                                                                                1.1
                                                                                                                                                          93.994
                                                                                                                                                                        -36.4
                                                                                                                                                                                  4.857
                                                                                                                                                                                             5191.0 no
                                                                               may
                                                                                            mon ...
             57
                    services married high.school unknown
                                                                                                                999
                                                                                                                           0 nonexistent
                                                                                                                                                1.1
                                                                                                                                                          93.994
                                                                                                                                                                        -36.4
                                                                                                                                                                                  4.857
                                                                                                                                                                                             5191.0 no
                                                                 no
                                                                    telephone
                                                                                may
                                                                                            mon ...
                                                                                                                999
                                                                                                                                                          93.994
                                                                                                                                                                                            5191.0 no
           2 37
                    services married high.school
                                                                 no telephone
                                                                               may
                                                                                            mon ...
                                                                                                                           0 nonexistent
                                                                                                                                                1.1
                                                                                                                                                                        -36.4
                                                                                                                                                                                 4.857
                     admin. married
                                                                                            mon ...
                                                                                                                999
                                                                                                                           0 nonexistent
                                                                                                                                                1.1
                                                                                                                                                          93.994
                                                                                                                                                                        -36.4
                                                                                                                                                                                  4.857
                                                                                                                                                                                            5191.0 no
                                                                                                                999
                                                                                                                           0 nonexistent
                                                                                                                                                1.1
                                                                                                                                                          93.994
                                                                                                                                                                        -36.4
                                                                                                                                                                                  4.857
                                                                                                                                                                                            5191.0 no
                    services married high.school
                                                                yes telephone
                                                                               may
                                                                                            mon ...
          5 rows × 21 columns
In [4]: |y = list(df['y'])
          instances_per_class = {'yes' : y.count('yes'), 'no' : y.count('no')}
          fig = go.Figure(data=[go.Bar(x=list(instances_per_class.keys()), y=list(instances_per_class.values()),
```

print(f"Class Labels : {list(instances_per_class.keys())}\nNo. of Inst. : {list(instances_per_class.values())}\n\nTotal number of features : {len(df.columns)-1}")

Class Imbalance Check

fig.show()

In [2]: df = pd.read_csv('data/bank-additional-full.csv', sep = ';')

marker=dict(color='green'))])

fig.update_layout(title='Class Imbalance Check', xaxis_title='Class', yaxis_title='No. of Instances',

xaxis=dict(tickmode='array', tickvals=[0,1], ticktext=['Subscribed', 'Not Subscribed']))

```
Class Labels : ['yes', 'no']
No. of Inst. : [4640, 36548]
Total number of features : 20
```

Given our data is imbalanced with the majority not subscribing a term deposit, we might want to do re-sampling to adjust the proportion while training.

Problem 3: Understanding the Features

Examine the data description below, and determine if any of the features are missing values or need to be coerced to a different data type.

```
Input variables:
# bank client data:
1 - age (numeric)
2 - job : type of job (categorical: 'admin.', 'blue-collar', 'entrepreneur', 'housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemplo
yed', 'unknown')
3 - marital: marital status (categorical: 'divorced', 'married', 'single', 'unknown'; note: 'divorced' means divorced or widowed)
4 - education (categorical: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown')
5 - default: has credit in default? (categorical: 'no', 'yes', 'unknown')
6 - housing: has housing loan? (categorical: 'no','yes','unknown')
7 - loan: has personal loan? (categorical: 'no', 'yes', 'unknown')
# related with the last contact of the current campaign:
8 - contact: contact communication type (categorical: 'cellular', 'telephone')
9 - month: last contact month of year (categorical: 'jan', 'feb', 'mar', ..., 'nov', 'dec')
10 - day_of_week: last contact day of the week (categorical: 'mon','tue','wed','thu','fri')
11 - duration: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the
duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes
and should be discarded if the intention is to have a realistic predictive model.
# other attributes:
12 - campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
13 - pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
14 - previous: number of contacts performed before this campaign and for this client (numeric)
15 - poutcome: outcome of the previous marketing campaign (categorical: 'failure', 'nonexistent', 'success')
# social and economic context attributes
16 - emp.var.rate: employment variation rate - quarterly indicator (numeric)
17 - cons.price.idx: consumer price index - monthly indicator (numeric)
18 - cons.conf.idx: consumer confidence index - monthly indicator (numeric)
19 - euribor3m: euribor 3 month rate - daily indicator (numeric)
20 - nr.employed: number of employees - quarterly indicator (numeric)
Output variable (desired target):
21 - y - has the client subscribed a term deposit? (binary: 'yes','no')
```

3.1) Describe Data

```
In [5]: df.describe()
```

Out[5]:

	age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000
mean	40.02406	258.285010	2.567593	962.475454	0.172963	0.081886	93.575664	-40.502600	3.621291	5167.035911
std	10.42125	259.279249	2.770014	186.910907	0.494901	1.570960	0.578840	4.628198	1.734447	72.251528
min	17.00000	0.000000	1.000000	0.000000	0.000000	-3.400000	92.201000	-50.800000	0.634000	4963.600000
25%	32.00000	102.000000	1.000000	999.000000	0.000000	-1.800000	93.075000	-42.700000	1.344000	5099.100000
50%	38.00000	180.000000	2.000000	999.000000	0.000000	1.100000	93.749000	-41.800000	4.857000	5191.000000
75%	47.00000	319.000000	3.000000	999.000000	0.000000	1.400000	93.994000	-36.400000	4.961000	5228.100000
max	98.00000	4918.000000	56.000000	999.000000	7.000000	1.400000	94.767000	-26.900000	5.045000	5228.100000

3.2) Data Types

```
In [6]: df.dtypes
```

Out[6]: age

age	int64
job	object
marital	object
education	object
default	object
housing	object
loan	object
contact	object
month	object
day_of_week	object
duration	int64
campaign	int64
pdays	int64
previous	int64
poutcome	object
emp.var.rate	float64
cons.price.idx	float64
cons.conf.idx	float64
euribor3m	float64
nr.employed	float64
У	object
dtype: object	

3.3) Data Dimensions

```
In [7]: df.shape
```

Out[7]: (41188, 21)

3.4) Data Collection - Check NA

In [8]: df.isnull().sum()

```
Out[8]: age
                             0
                             0
          job
          marital
          education
          default
                             0
                             0
          housing
          loan
                             0
          contact
                             0
          month
          day_of_week
                             0
          duration
                             0
          campaign
                             0
                             0
          pdays
          previous
          poutcome
          emp.var.rate
          cons.price.idx
                             0
          cons.conf.idx
                             0
          euribor3m
                             0
          nr.employed
                             0
          У
                             0
          dtype: int64
          3.5) Numerical and Categorical Attributes
 In [9]: num_attributes = df.select_dtypes(include=['int64', 'float64'] )
          cat_attributes = df.select_dtypes(exclude=['int64', 'float64', 'datetime64[ns]'] )
          num_attributes.sample()
 Out[9]:
                age duration campaign pdays previous emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed
          35663
                37
                        442
                                      999
                                                         -1.8
                                                                   92.893
                                                                               -46.2
                                                                                        1.244
                                                                                                  5099.1
In [10]: cat_attributes.sample()
Out[10]:
                   job marital education default housing loan contact month day_of_week poutcome y
          27792 student single high.school
                                                 yes yes cellular
                                                                              tue nonexistent no
```

3.6) Clean Dataset by dropping columns

```
In [11]: mapping_yn = {'no': 0, 'yes': 1}
    df['y'] = df['y'].map(mapping_yn)
    df = df.drop(['emp.var.rate','cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed'], axis = 1)
In [12]: df_raw = df.copy()
```

```
In [13]: X = df_raw.drop('y', axis=1)
         y = df_raw['y']
         unique_val_count = {}
         cat = list(X.columns)
         cat.remove('age')
         cat.remove('duration')
         cat.remove('pdays')
         cat.remove('campaign')
         cat.remove('previous')
         for col in X.columns:
             if col not in cat:
                 continue
             unique_values = np.unique(X[col])
             temp = defaultdict(int)
             for val in X[col]:
                 temp[val] += 1
             unique_val_count[col] = temp
         print(f"Number of Categorical columns : {len(unique_val_count.keys())}")
         for col, attr in unique_val_count.items():
             map_val = {}
             count = 0
             for key in attr.keys():
                 map_val[key] = count
                 count += 1
             X[col] = X[col].map(map_val)
         X.head(10)
```

Number of Categorical columns : 10

Out[13]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	duration	campaign	pdays	previous	poutcome
0	56	0	0	0	0	0	0	0	0	0	261	1	999	0	0
1	57	1	0	1	1	0	0	0	0	0	149	1	999	0	0
2	37	1	0	1	0	1	0	0	0	0	226	1	999	0	0
3	40	2	0	2	0	0	0	0	0	0	151	1	999	0	0
4	56	1	0	1	0	0	1	0	0	0	307	1	999	0	0
5	45	1	0	3	1	0	0	0	0	0	198	1	999	0	0
6	59	2	0	4	0	0	0	0	0	0	139	1	999	0	0
7	41	3	0	5	1	0	0	0	0	0	217	1	999	0	0
8	24	4	1	4	0	1	0	0	0	0	380	1	999	0	0
9	25	1	1	1	0	1	0	0	0	0	50	1	999	0	0

3.7) Data Analysis

```
for dfl in cross tables:
             dfl.rename(columns=mapping_yn, inplace=True)
In [16]: unique val count
Out[16]: {'job': defaultdict(int,
                       {'housemaid': 1060,
                        'services': 3969,
                        'admin.': 10422,
                        'blue-collar': 9254,
                        'technician': 6743,
                        'retired': 1720,
                        'management': 2924,
                        'unemployed': 1014,
                        'self-employed': 1421,
                        'unknown': 330,
                        'entrepreneur': 1456,
                        'student': 875}),
           'marital': defaultdict(int,
                       {'married': 24928,
                        'single': 11568,
                        'divorced': 4612,
                        'unknown': 80}),
           'education': defaultdict(int,
                       {'basic.4y': 4176,
                        'high.school': 9515,
                        'basic.6y': 2292,
                        'basic.9y': 6045,
                        'professional.course': 5243,
                        'unknown': 1731,
                        'university.degree': 12168,
                        'illiterate': 18}),
           'default': defaultdict(int, { 'no': 32588, 'unknown': 8597, 'yes': 3}),
           'housing': defaultdict(int, {'no': 18622, 'yes': 21576, 'unknown': 990}),
           'loan': defaultdict(int, {'no': 33950, 'yes': 6248, 'unknown': 990}),
           'contact': defaultdict(int, { 'telephone': 15044, 'cellular': 26144}),
           'month': defaultdict(int,
                       {'may': 13769,
                        'jun': 5318,
                        'jul': 7174,
                        'aug': 6178,
                        'oct': 718,
                        'nov': 4101,
                        'dec': 182,
                        'mar': 546,
                        'apr': 2632,
                        'sep': 570}),
           'day of week': defaultdict(int,
                       {'mon': 8514,
                        'tue': 8090,
                        'wed': 8134,
                        'thu': 8623,
                        'fri': 7827}),
           'poutcome': defaultdict(int,
                       {'nonexistent': 35563, 'failure': 4252, 'success': 1373})}
```

In [15]: mapping_yn = {0:'no',1:'yes'}

- 1) There're some binary variables such as 'default', 'housing', 'loan'. We might want to transform it for better predicting.
- 2) Although no NULL is detected, there are many 'unknown' values, which we should deal with when preprocessing.
- 3) There are a large percentage of unknown previous outcomes, which is not surprising because many customers don't have previous contacts (previous=0).

```
In [17]: width = 0.25
    fig = go.Figure()
    fig.add_trace(go.Bar(x=list(unique_val_count['marital'].keys()), y=cross_tables[1]['no'],marker=dict(color='blue'), width=width, name='Not Subscribed'))
    fig.add_trace(go.Bar(x=list(unique_val_count['marital'].keys()), y=cross_tables[1]['yes'],marker=dict(color='green'), width=width, name='Not Subscribed'))
    fig.add_trace(go.Bar(x=list(unique_val_count['marital'].keys()), y=cross_tables[1]['yes'],marker=dict(color='blue'), width=width, name='Not Subscribed'))
    fig.add_trace(go.Bar(x=list(unique_val_count['marital'].keys()), y=cross_tables[1]['yes'],marker=
```

Marital Status vs Subscription Status

Contacts who are married are subscribed more compared to those that are single and divorced. The total number of those unsubscribed far exceeds those that are subscribed.

3.7.2) Comparing Defaulter with Subscription Status

Defaulter Status vs Subscription Status

From the above, we see that number of defaulters are almost none compared to those unknown or with value yes. Those who have not defaulted, have subscribed more compared to those who have defaulted or to those who have no information.

3.7.3) Comparing Loan status with Subscription Status

Loan Status vs Subscription Status

From the above, we see that those without any loans are subscribed more compared to those who have loans.

3.7.4) Comparing Day of the week with Subscription Status

Day of the week vs Subscription Status

Monday is the day where most people subscribed and unsubscribed compared to the other days of the week.

3.7.5) Comparing Previous Campaign with Subscription Status

Outcome vs Subscription Status

From the above, we can see that those with non-exsistent outcomes have more subscriptions compared to those that are failure or sucess.

3.7.6) Comparing Job type with Subscription Status

Job Type vs Subscription Status

Those with admin, blue-collar and techinician subscribe more compared to other job types.

3.7.7) Comparing Education with Subscription Status

Education vs Subscription Status

From the above, we can see that high school and university degree subscribe more compared to other education levels.

3.7.8) Comparing Housing Status with Subscription Status

Housing vs Subscription Status

As you can see from the above, we can see that there is not much difference between those with housing, and those without housing. However, those with housing seem to have subscribed more compared to those without housing.

3.7.9) Comparing Contact Type with Subscription Status

Contact Type vs Subscription Status

From the above, we see that those with cellular contact type subscribe more compared to those with telephone contact type.

3.7.10) Comparing Month with Subscription Status

Month vs Subscription Status

From the above, we can see that August month had more number of subscriptions compared to other months.

3.7.11) Subscriptions by Age

From the above, we can see that majority is <= 60 years. Among those with age <= 60, the younger the clients are most likely to subscribe

3.7.12) Subscriptions by Duration

Duration Histogram


```
In [29]: df_duration_ranged = df[df['duration'] /60 <= 15]</pre>
```

Duration vs Subscriptions

From the above, we can see that Client with longer last contact duration are more likely to subscribe.

3.7.13) Subscriptions by Campaign

Campaign Histogram

As 'campaign' > 13 don't have enough samples, we just take those <= 13 for deep diving

Campaign vs Subscriptions

From the above, we can see that the clients being contacted more are less likely to subscribe.

3.7.14) Correlation

```
In [33]: # Create a subplot with 1 row and 1 column
         fig = sp.make_subplots(rows=1, cols=1, specs=[[{}]],
                               subplot_titles=('Correlation Heatmap',))
         # Compute the correlation matrix
         corr = df.dropna().corr()
         mask = np.triu(df.corr())
         # Add heatmap trace
         fig.add_trace(go.Heatmap(z=corr, x=corr.columns, y=corr.columns,
                                  colorscale='Viridis', showscale=True,
                                  colorbar=dict(title='Correlation', titleside='top', tickmode='array',
                                                tickvals=[-1, -0.5, 0, 0.5, 1], ticktext=['-1', '-0.5', '0', '0.5', '1']),
                                  zmin=-1, zmax=1,
                                  hoverongaps=False
                                  ))
         # Update layout
         fig.update_layout(title='Correlation Heatmap',
                           xaxis=dict(title='Features'),
                           yaxis=dict(title='Features'))
         fig.show()
```

Correlation Heatmap

From the above, we see that pdays & previous are correlated, while the rest are not considered correlated with each other.

Problem 4: Understanding the Task

After examining the description and data, your goal now is to clearly state the Business Objective of the task. State the objective below.

```
In [34]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 16 columns):
# Column
             Non-Null Count Dtype
0 age 41188 non-null int64
1 job 41188 non-null object
2 marital 41188 non-null object
    education 41188 non-null object
3
    default 41188 non-null object
housing 41188 non-null object
4
5
    loan 41188 non-null object
6
7
    contact 41188 non-null object
    month 41188 non-null object
8
9
    day_of_week 41188 non-null object
10 duration 41188 non-null int64
11 campaign 41188 non-null int64
12 pdays 41188 non-null int64
13 previous 41188 non-null int64
14 poutcome 41188 non-null object
15 y
                41188 non-null int64
dtypes: int64(6), object(10)
memory usage: 5.0+ MB
```

Business Objective

The goal was to increase efficiency of directed campaigns for long-term deposit subscriptions by reducing the number of contacts to do. For this, we need to develop a predictive model using real-world data from a Portuguese marketing campaign for bank deposit subscriptions to increase campaign efficiency by identifying key factors that influence success and optimize resource allocation and target customer selection.

Problem 5: Engineering Features

Now that you understand your business objective, we will build a basic model to get started. Before we can do this, we must work to encode the data. Using just the bank information features (columns 1 - 7), prepare the features and target column for modeling with appropriate encoding and transformations.

5.1) Encoding

```
In [35]: df_engg = df.copy()
```

```
Out[37]:
                              job marital
                                                             default housing loan
                                                                                    contact month day_of_week duration campaign
                                                  education
                                                                                                                                    pdays previous
                                                                                                                                                     poutcome y
                   age
                0 56
                        housemaid
                                  married
                                                    basic.4y
                                                                               no telephone
                                                                                                                     261
                                                                                                                                       999
                                                                                                                                                    nonexistent 0
                                                                          no
                                                                                                            mon
                   57
                                                                                                                                      999
                          services married
                                                 high.school
                                                            unknown
                                                                          no
                                                                               no telephone
                                                                                               may
                                                                                                            mon
                                                                                                                     149
                                                                                                                                                  0 nonexistent 0
                                                 high.school
                                                                                                                                      999
                   37
                                                                                                                     226
                                                                                                                                                    nonexistent 0
                2
                          services
                                  married
                                                                               no telephone
                                                                                               may
                                                                 no
                                                                         ves
                                                                                                            mon
                    40
                           admin. married
                                                    basic.6y
                                                                 no
                                                                                no telephone
                                                                                               may
                                                                                                            mon
                                                                                                                     151
                                                                                                                                      999
                                                                                                                                                  0 nonexistent 0
                                                                                                                     307
                                                                                                                                      999
                                                                                                                                                  0 nonexistent 0
                    56
                          services married
                                                 high.school
                                                                 no
                                                                          no
                                                                              ves telephone
                                                                                               may
                                                                                                            mon
                                                                                                                     334
                                                                                                                                      999
             41183
                    73
                            retired married professional.course
                                                                 no
                                                                         yes
                                                                                      cellular
                                                                                                nov
                                                                                                              fri
                                                                                                                                                  0 nonexistent 1
                    46
                        blue-collar married professional.course
                                                                                      cellular
                                                                                                              fri
                                                                                                                     383
                                                                                                                                      999
                                                                                                                                                  0 nonexistent 0
             41184
                                                                 no
                                                                          nο
                                                                               nο
                                                                                                nov
                                                                                      cellular
             41185
                    56
                            retired
                                  married
                                             university.degree
                                                                 no
                                                                               no
                                                                                                nov
                                                                                                              fri
                                                                                                                      189
                                                                                                                                 2
                                                                                                                                      999
                                                                                                                                                    nonexistent 0
                    44
                         technician
                                  married professional.course
                                                                                                              fri
                                                                                                                     442
                                                                                                                                      999
                                                                                                                                                    nonexistent 1
             41186
                                                                 no
                                                                               no
                                                                                      cellular
                                                                                                nov
                                                                                                                                                  Ω
             41187
                   74
                            retired married professional.course
                                                                                      cellular
                                                                                                              fri
                                                                                                                     239
                                                                                                                                                         failure 0
                                                                 no
                                                                                               nov
                                                                               no
            41188 rows × 16 columns
In [38]: cols dumm = ['job', 'marital']
           df_engg = pd.get_dummies(df_engg, columns=cols_dumm)
In [39]: # Remove the columns corresponding to unknown value
           cols_onehot_unknown = [col for col in df_engg.columns if 'unknown' in col]
           df_engg = df_engg.drop(cols_onehot_unknown, axis=1)
In [40]: # Check current data set
           pd.set option('display.max columns', None)
           df engg
Out[40]:
                                                                                                                                                           job_blue-
                   age
                               education
                                           default housing loan
                                                                  contact month day_of_week duration campaign pdays previous poutcome y job_admin.
                                                                                                                                                                     job_entrepreneur job_housemaid job_management job_retired
                                                                                                                                                               collar
                0 56
                                 basic.4y
                                                                            may
                                                                                                  261
                                                                                                                    999
                                                                                                                               0 nonexistent 0
                                                                                                                                                        0
                                                                                                                                                                  0
                                                                                                                                                                                   0
                                                                                                                                                                                                 1
                                                                                                                                                                                                                  0
                                                                                                                                                                                                                             0
                                                             no
                                                                telephone
                                               no
                                                       no
                                                                                         mon
                1 57
                              high.school
                                         unknown
                                                       no
                                                             no
                                                                telephone
                                                                            may
                                                                                         mon
                                                                                                   149
                                                                                                                    999
                                                                                                                               0 nonexistent 0
                                                                                                                                                        0
                                                                                                                                                                                   0
                                                                                                                                                                                                 0
                                                                                                                                                                                                                  0
                                                                                                                                                                                                                             0
                2 37
                               high.school
                                                                                                   226
                                                                                                                    999
                                                                                                                               0 nonexistent 0
                                                                                                                                                        n
                                                                                                                                                                                   n
                                                                                                                                                                                                 0
                                                                                                                                                                                                                  n
                                                                                                                                                                                                                             0
                                               no
                                                       yes
                                                             no
                                                                telephone
                                                                            may
                                                                                         mon
                                                                                                               1
                3
                   40
                                 basic.6y
                                                                                                   151
                                                                                                                    999
                                                                                                                               0 nonexistent 0
                                                                                                                                                                                   0
                                                                telephone
                                               no
                                                       no
                                                             no
                                                                            mav
                                                                                         mon
                                                                                                                                                        0
                                                                                                                                                                                                 0
                                                                                                                                                                                                                  0
                    56
                               high.school
                                               no
                                                                 telephone
                                                                             may
                                                                                          mon
                                                                                                   307
                                                                                                                    999
                                                                                                                               0 nonexistent 0
                                                                                                                                                                  Ω
                                                                                                                                                                                   0
                                                                                                                                                                                                                             0
             41183
                    73 professional.course
                                               no
                                                       yes
                                                             no
                                                                   cellular
                                                                             nov
                                                                                           fri
                                                                                                   334
                                                                                                                    999
                                                                                                                               0 nonexistent 1
                                                                                                                                                        0
                                                                                                                                                                  0
                                                                                                                                                                                   0
                                                                                                                                                                                                 0
                                                                                                                                                                                                                  0
                                                                                                   383
                                                                                                                    999
                                                                                                                                                        n
                                                                                                                                                                                   n
                                                                                                                                                                                                 0
                                                                                                                                                                                                                  n
                                                                                                                                                                                                                             n
             41184
                    46
                       professional.course
                                               no
                                                        no
                                                             no
                                                                   cellular
                                                                             nov
                                                                                           fri
                                                                                                                               0 nonexistent 0
                    56
                          university.degree
                                                                   cellular
                                                                                           fri
                                                                                                   189
                                                                                                               2
                                                                                                                    999
                                                                                                                               0 nonexistent 0
                                                                                                                                                                                   0
                                                                                                                                                                                                 0
             41185
                                                             no
                                               no
                                                       ves
                                                                             nov
                    44 professional.course
                                                                   cellular
                                                                                           fri
                                                                                                   442
                                                                                                                    999
                                                                                                                               0 nonexistent 1
                                                                                                                                                        0
                                                                                                                                                                  n
                                                                                                                                                                                   0
                                                                                                                                                                                                 0
                                                                                                                                                                                                                  0
                                                                                                                                                                                                                             0
                                               no
                                                                                                                    999
                                                                                                                                                                                   0
                                                                                                                                                                                                                  0
                   74 professional.course
                                                                                           fri
                                                                                                   239
                                                                                                               3
                                                                                                                                      failure 0
             41187
                                               no
                                                       ves
                                                             no
                                                                   cellular
                                                                             nov
            41188 rows × 28 columns
```

In [37]: df_engg

```
In [41]: mapping month = dict((month.lower(), number) for number, month in enumerate(month abbr))
         df engg['month'] = df engg['month'].map(mapping month)
In [42]: | edu map = {\'unknown':0, 'basic.4y':1, 'basic.6y':2, 'basic.9y':3, 'high.school': 4, 'illiterate':5, 'professional.course':6, 'university.degree':7}
         df_engg['education'] = df_engg.education.map(edu_map).astype('int')
In [43]: boolean map = {'unknown':0, 'no':1, 'yes': 1}
         df engg['default'] = df engg.default.map(boolean map).astype('int')
         df engg['housing'] = df engg.housing.map(boolean map).astype('int')
         df engg['loan'] = df engg.loan.map(boolean map).astype('int')
In [44]: day map = {'mon': 0, 'tue': 1, 'wed':2, 'thu':3, 'fri':4}
         df engg['day of week'] = df engg.day of week.map(day map).astype('int')
In [45]: contact map = {'cellular': 0, 'telephone': 1}
         df engg['contact'] = df engg.contact.map(contact map).astype(int)
In [46]: poutcome_map = {'failure': 0, 'success': 1, 'nonexistent':2}
         df engg['poutcome'] = df engg.poutcome.map(poutcome map).astype(int)
         Problem 6: Train/Test Split
         With your data prepared, split it into a train and test set.
         6.1) Imputing Education using KNN
In [47]: # Train KNN imputer using data with known education
         knn imputer = KNNImputer(n neighbors=2, missing values=0)
         # fit the imputer on the dataset
```

```
In [47]: # Train XNN imputer using data with known education
knn_imputer = KNNImputer(n_neighbors=2,missing_values=0)
# fit the imputer on the dataset
knn_imputer.fit(df_engf[('education','default', 'housing','loan']])
# use the imputer to fill in missing values
imputed_df = knn_imputer.transform(df_engf[['education','default', 'housing','loan']])

In [48]: # calculate the MSE score
mse = mean_squared_error(df_engf[['education','default', 'housing','loan']], imputed_df)
print("MSE score:', mse)

MSE score: 0.13149990522961696

In [49]: # Transform the training set
imputed_data = knn_imputer.transform(df_engf[['education','default', 'housing','loan']])

In [50]: df_engf[('education','default', 'housing','loan')] = imputed_data

In [51]: df_encoded = df_engg.drop(['contact','month','day_of_week','duration','campaign','pdays','previous','poutcome'], axis=1)
```

```
In [52]: X = df_encoded.drop('y', axis = 1)
         y = df_encoded['y']
In [53]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state = 52)
In [54]: print(f"Train size : {len(X train)}\tValidation size : {len(X test)}")
                                 Validation size: 8238
         Train size: 32950
         6.2) Standardization
```

```
In [55]: scaler = MinMaxScaler()
         # Standarding (for algorithms that can apply balanced class weights)
         X train scaled = scaler.fit transform(X train)
         X_test_scaled = scaler.transform(X_test)
```

6.3) Oversampling

```
In [56]: sm = SMOTE(random state=52)
         # Only oversampling (for decision-tree-based algorithms and cannot apply balanced class weights)
         X_train_sm, y_train_sm = sm.fit_resample(X_train, y_train)
         # Stardardized + Oversampling (for algorithms cannot apply balanced class weights)
         X train scaled sm, y train scaled sm = sm.fit resample(X train scaled, y train)
```

Problem 7: A Baseline Model

Before we build our first model, we want to establish a baseline. What is the baseline performance that our classifier should aim to beat?

Before we begin lets define some helper functions that we will use to output the scores. We will be using this to determine the best model.

Helper Functions

```
In [57]: r seed = 52
         def GenerateOutput(model_name,y_train,y_train_pred,x_test,y_test, y_pred,model):
             # Accuracy - Precision - Recall - F1 Score - Kappa Metrics - Confusion Matrix
             print(classification_report( y_test, y_pred, digits=2) )
             #confusion matrix display
             lr_matrix = ConfusionMatrixDisplay.from_predictions(y_test,y_pred, display_labels=['yes', 'no'])
             # ====== Balanced Dataframe Metrics ========
             #train Accuracy
             lr_train_acc = accuracy_score(y_train,y_train_pred)
             # Accuracy
             lr_acc = accuracy_score( y_test, y_pred)
             print( 'Accuracy: {}'.format(lr_acc))
             # ====== Unbalanced Dataframe Metrics ========
             # Weighted F1-Score
             flscore = fl_score( y_test, y_pred, average='weighted' )
             print( 'Weighted F1-Score: {}'.format( f1score ) )
             # Balanced Accuracy Score
             balanced_acc = balanced_accuracy_score( y_test, y_pred )
             print( 'Balanced Accuracy Score: {}'.format( balanced_acc))
             if(model name == "Baseline model"):
                 model = DummyClassifier(random_state=r_seed)
             start_time = time.time()
             model.fit(X_train, y_train)
             fit_time = time.time() - start_time
             y_pred_proba = model.predict_proba(x_test)[:, 1]
             # Calculate the AUC-ROC score
             auc = roc_auc_score(y_test, y_pred_proba)
             print("AUC-ROC:", auc)
             df_score = CalculateScores(model_name,lr_train_acc,lr_acc,flscore,balanced_acc,auc, fit_time)
             return df score
         def CalculateScores(model_name, train_accuracy,accuracy, f1_score, balanced_accuracy, roc_auc,fit_time):
             return pd.DataFrame( { 'Model Name': model name,
                                    'Train Time': fit time,
                                    'Train Accuracy': train_accuracy,
                                    'Test accuracy': accuracy,
                                    'f1 score': f1 score,
                                    'balanced_accuracy': balanced_accuracy,
                                    'roc_auc score': roc_auc }, index=[0] )
         def CrossVal_model(modelName, x_train, y_train):
             #As discussed above, we will be using stratified Kfold to deal with imbalanced data.
             fold = 5
             kfold = StratifiedKFold(n_splits=fold, shuffle=True,random_state=r_seed)
             trainacc_list = []
             accuracy_list = []
             balanced acc list = []
             weighted_f1_score_list = []
             auc_score_list = []
             iter = 1
             for train_index, test_index in kfold.split(x_train, y_train):
                 X_train_f, X_test_f = x_train.iloc[train_index], x_train.iloc[test_index]
                 y_train_f, y_test_f = y_train.iloc[train_index], y_train.iloc[test_index]
                 if(modelName == "Logistic Regression"):
                     #define a Logistic Regression model
                     model = LogisticRegression(random_state=r_seed)
                 if(modelName == "SVM"):
                     model = svm.SVC(random_state=r_seed, probability=True)
                 if(modelName == "DecisionTree"):
                     model = DecisionTreeClassifier(random_state=r_seed)
                 if(modelName == "KNN"):
                     model = KNeighborsClassifier(random_state=r_seed)
```

```
#fit the model
    start time = time.time()
   model.fit(X train f, y train f)
   fit time = time.time() - start time
    #prediction
   y_f_pred = model.predict(X_test_f)
   y_t_pred = model.predict(X_train_f)
    #Train Accuracy,
   train acc = accuracy score(y train f, y t pred)
   trainacc list.append(train acc)
    #Accuracy
   acc = accuracy_score(y_test_f, y_f_pred)
   accuracy_list.append(acc)
    # Balanced Accuracy
   balanced acc = balanced accuracy score( y test f, y f pred )
   balanced acc list.append( balanced acc )
    # Weighted F1-Score
   weighted_f1_score = f1_score( y_test_f, y_f_pred, average='weighted')
   weighted_f1_score_list.append( weighted_f1_score )
   #auc score
   y pred proba = model.predict proba(X test f)[:, 1]
    # Calculate the AUC-ROC score
   auc = roc_auc_score(y_test_f, y_pred_proba)
   auc_score_list.append(auc)
   iter += 1
print( 'Avg Balanced Accuracy: {}'.format( np.mean( balanced acc list ) ) )
print( 'Avg Weighted F1-Score: {}'.format( np.mean( weighted f1 score list ) ) )
print( 'Avg AUC-ROC Score: {}'.format( np.mean( auc_score_list ) ) )
modelName = modelName + " - Cross Validation"
return CalculateScores(modelName,np.mean(trainacc list),np.mean(accuracy list),
                        np.mean( balanced acc list ), np.mean( weighted f1 score list), np.mean( auc score list), fit time)
```

```
In [59]:
```

df_score_base = GenerateOutput("Baseline model",y_train,y_train_pred,X_test_scaled,y_test, y_pred, DummyClassifier())
df_score_base

	precision	recall	f1-score	support
0	0.89	0.88	0.88	7298
1	0.11	0.11	0.11	940
accuracy			0.79	8238
macro avg	0.50	0.50	0.50	8238
weighted avg	0.80	0.79	0.80	8238

Accuracy: 0.7946103423160962

Weighted F1-Score: 0.7959200127076458 Balanced Accuracy Score: 0.4985265563867688

AUC-ROC: 0.5

Out[59]:

Problem 8: A Simple Model

Use Logistic Regression to build a basic model on your data.

In [60]: #model definition mlm_lr = LogisticRegression(random_state=r_seed) #fit the model mlm_lr.fit(X_train_scaled, y_train)

Out[60]: LogisticRegression(random_state=52)

Problem 9: Score the Model

What is the accuracy of your model?

```
In [61]: y_pred = mlm_lr.predict(X_test_scaled)
    y_train_pred = mlm_lr.predict(X_train_scaled)
```

	precision	recall	f1-score	support
0	0.00	1 00	0.04	7200
0	0.89	1.00	0.94	7298
1	0.00	0.00	0.00	940
accuracy			0.89	8238
macro avg	0.44	0.50	0.47	8238
weighted avg	0.78	0.89	0.83	8238

Accuracy: 0.8858946346200534

Weighted F1-Score: 0.8322939036376351

Balanced Accuracy Score: 0.5 AUC-ROC: 0.6173354110423724

Out[62]:

Problem 10: Model Comparisons

Now, we aim to compare the performance of the Logistic Regression model to our KNN algorithm, Decision Tree, and SVM models. Using the default settings for each of the models, fit and score each. Also, be sure to compare the fit time of each of the models. Present your findings in a DataFrame similar to that below:

Model Train Time Train Accuracy Test Accuracy

10.1) KNN

K-Nearest Neighbors (KNN) is a simple and popular machine learning algorithm that can be used for both classification and regression.

In the case of KNN classification, the algorithm works by finding the K nearest neighbors of a given data point and using their class labels to predict the class label of the data point. For example, if the K nearest neighbors of a data point are all labeled as "positive," the data point is predicted to be positive as well.

On the other hand, KNN regression works by finding the K nearest neighbors of a given data point and using their values to predict the value of the data point. For example, if the K nearest neighbors of a data point have values of 1, 2, and 3, the predicted value for the data point might be 2 (the average of the values of the nearest neighbors).

```
In [63]: # model definition
   model_knn = KNeighborsClassifier(n_neighbors=2)
   # train model
   model_knn.fit(X_train_scaled,y_train)
   y_pred = model_knn.predict(X_test_scaled)
   y_train_pred = model_knn.predict(X_train_scaled)
   df_scorel = GenerateOutput('KNN',y_train,y_train_pred,X_test_scaled,y_test, y_pred, model_knn)
   df scorel
```

	precision	recall	f1-score	support
0	0.89 0.26	0.99	0.93 0.07	7298 940
1	0.20	0.04	0.07	940
accuracy			0.88	8238
macro avg	0.57	0.51	0.50	8238
weighted avg	0.82	0.88	0.84	8238

Accuracy: 0.8781257586792911

Weighted F1-Score: 0.8355834412503123

Balanced Accuracy Score: 0.5118343410902433

AUC-ROC: 0.5

Out[63]:

10.2) Support Vector Machines

The main idea behind SVMs is to find the line (or hyperplane) that maximally separates the data points of different classes. This line is called the "maximum margin hyperplane." The points that lie closest to this line are called "support vectors." Once the support vectors are found, the algorithm uses them to construct the maximum margin hyperplane. However, SVMs can be sensitive to the choice of hyperparameters and can be computationally expensive to train, especially for large datasets. They also do not work well with noisy or highly imbalanced data, and they may not be suitable for tasks that require probability estimates.

```
In [64]: # model definition
    model_svm = svm.SVC(random_state=r_seed,probability=True)
    # model training
    model_svm.fit( X_train_scaled, y_train )
    y_pred = model_svm.predict(X_test_scaled)
    y_train_pred = model_svm.predict(X_train_scaled)
    df_score2 = GenerateOutput('SVM',y_train,y_train_pred,X_test_scaled,y_test, y_pred, model_svm)
    df_score2
```

	precision	recall	f1-score	support
0 1	0.89 0.00	1.00	0.94 0.00	7298 940
accuracy macro avg weighted avg	0.44 0.78	0.50 0.89	0.89 0.47 0.83	8238 8238 8238

Accuracy: 0.8858946346200534

Weighted F1-Score: 0.8322939036376351

Balanced Accuracy Score: 0.5 AUC-ROC: 0.470892928986665

Out[64]:

10.3) Decision Trees

```
In [65]: # model definition
    model_clf = DecisionTreeClassifier()
    # model training
    model_clf.fit( X_train_scaled, y_train )
```

Out[65]: DecisionTreeClassifier()

```
In [66]: #prediction
    y_pred = model_clf.predict(X_test_scaled)
    y_train_pred = model_clf.predict(X_train_scaled)
    df_score3 = GenerateOutput('SVM',y_train, y_train_pred, X_test_scaled, y_test, y_pred, model_clf)
    df_score3
```

	precision	recall	f1-score	support
0	0.89	0.98	0.93	7298
1	0.33	0.06	0.11	940
accuracy			0.88	8238
macro avg	0.61	0.52	0.52	8238
weighted avg	0.83	0.88	0.84	8238

Accuracy: 0.8783685360524399

Weighted F1-Score: 0.8404588387000516

Balanced Accuracy Score: 0.5240198422185034

AUC-ROC: 0.545889284735544

Out[66]:

Problem 11: Improving the Model

Now that we have some basic models on the board, we want to try to improve these. Below, we list a few things to explore in this pursuit.

- More feature engineering and exploration. For example, should we keep the gender feature? Why or why not?
- Hyperparameter tuning and grid search. All of our models have additional hyperparameters to tune and explore. For example the number of neighbors in KNN or the maximum depth of a Decision Tree.
- · Adjust your performance metric

11.1) Feature Importance

Permutation importance is a technique used to determine the importance of individual features in a machine learning model. It works by randomly shuffling the values of a single feature and evaluating the effect on the model's performance. The idea is that if a feature is important, then shuffling its values should result in a significant decrease in model performance.

```
In [67]: #Let us perform permutation importance in order to determine the features.
         X = df engg.drop('y', axis = 1)
         y = df_engg['y']
         X train, X test, y train, y test = train test split(X, y, test size=0.2, random state = 52)
         print(f"Train size : {len(X train)}\tValidation size : {len(X test)}")
         # Create a list of feature names
         feature names = ['Feature ' + str(i) for i in range(X.shape[1])]
         # train a model
         # model definition
         model = DecisionTreeClassifier()
         # model training
         model.fit( X train, y train )
         # calculate the permutation importance of each feature
         result = permutation importance(model, X test, y test, n repeats=10, random state=0)
         # extract the importance scores
         importance scores = result.importances mean
         # create a dictionary mapping feature names to importance scores
         feature importance = dict(zip(X test.columns, importance scores))
         # sort the features by importance
         sorted features = sorted(feature importance.items(), key=lambda x: x[1], reverse=True)
         Train size: 32950
                                  Validation size: 8238
In [68]: sorted features
Out[68]: [('duration', 0.04304442825928623),
          ('month', 0.04294731731002669),
          ('contact', 0.021376547705753823),
          ('pdays', 0.014955086185967447),
          ('age', 0.006360767176499161),
          ('poutcome', 0.005948045642146127),
          ('previous', 0.004236465161446967),
          ('education', 0.0035809662539451393),
          ('job student', 0.0011774702597717624),
           ('job blue-collar', 0.0011410536537994399),
           ('day of week', 0.0007161932507890323),
           ('job housemaid', 0.0006676377761592467),
           ('job unemployed', 0.0004976936149550748),
           ('marital_married', 0.0003277494537509029),
          ('job retired', 0.00027919397912113953),
          ('campaign', 0.00023063850449138722),
          ('job services', 0.00010924981791696765),
          ('job entrepreneur', 4.8555474629763394e-05),
          ('marital divorced', 1.2138868657440849e-05),
          ('default', 0.0),
          ('housing', 0.0),
          ('loan', 0.0),
          ('job admin.', -0.00013352755523186045),
          ('job technician', -0.00026705511046369866),
          ('job_self-employed', -0.0003034717164360212),
          ('job_management', -0.0007768875940762143),
          ('marital single', -0.0011167759164845581)]
         Based on the feature importance, we see that the month and duration are two features that have a higher feature importance compared to other features. We will add these two features to the dataframe.
```

```
In [69]: df perm imp = df engg.drop(['contact', 'day of week', 'campaign', 'pdays', 'previous', 'poutcome'], axis=1)
```

```
In [70]: X = df_perm_imp.drop('y', axis = 1)
y = df_perm_imp['y']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state = 52)
```

11.1) Logistic Regression - Cross Validation

StratifiedKFold is a type of cross-validation technique used to evaluate the performance of machine learning models. It is a variant of KFold, which divides the data into a specified number of folds (or "splits") and iteratively trains and evaluates the model on each fold. The key difference between StratifiedKFold and KFold is that StratifiedKFold ensures that the proportion of samples belonging to each class is approximately the same across all the folds. This is particularly useful when the data is imbalanced, meaning that one class is significantly more prevalent than the others.

```
In [71]: df_score4 = CrossVal_model("Logistic Regression", X_train, y_train)
df_score4

Avg Balanced Accuracy: 0.5836696696697
Avg Weighted F1-Score: 0.8682089274899699
Avg AUC-ROC Score: 0.8429837144837145

Out[71]:

Model Name Train Time Train Accuracy Test accuracy f1_score balanced_accuracy roc_auc score
```

0 Logistic Regression - Cross Validation 0.296021 0.89409 0.893748 0.58367 0.868209 0.842984

11.2) N-neighbors fine tuning

```
In [72]: balanced_acc_list = []
for i in range( 1, 15 ):
    # model definition
    model_knn = KNeighborsClassifier(n_neighbors=i, n_jobs=-1 )
    # train model
    model_knn.fit(X_train, y_train )
    # prediction
    y_pred = model_knn.predict( X_test )
    # Balanced Accuracy Score
    balanced_acc_list.append( balanced_accuracy_score( y_test, y_pred))
```


From the above, it is clear that balanced accuracy is greater for K values 1 and 3. We will be using K-Value of 1 for fine tuning the results

In [74]: # model definition model_knn = KNeighborsClassifier(n_neighbors=1, n_jobs=-1) # train model model_knn.fit(X_train, y_train) # prediction y_train_pred = model_knn.predict(X_train) y_pred = model_knn.predict(X_test) #score calculation df_score5 = GenerateOutput('KNN',y_train,y_train_pred,X_test,y_test, y_pred, model_knn) df_score5

	precision	ecision recall		support
	0.01	0.00		7000
0	0.91	0.92	0.92	7298
1	0.35	0.32	0.33	940
accuracy			0.85	8238
macro avg	0.63	0.62	0.63	8238
weighted avg	0.85	0.85	0.85	8238

Accuracy: 0.8542121874241321

Weighted F1-Score: 0.8514071413607764 Balanced Accuracy Score: 0.6211392803624427

AUC-ROC: 0.6211392803624426

Out[74]:

11.3) SVM - Cross Validation

```
In [75]: df_score6 = CrossVal_model("SVM", X_train, y_train) df_score6

Avg Balanced Accuracy: 0.5825592515592515
Avg Weighted F1-Score: 0.8680776556426398
```

Out[75]:

Model Name	Train Time	Train Accuracy	Test accuracy	f1_score	balanced_accuracy	roc_auc score
0 SVM - Cross Validation	101.120975	0.894105	0.894082	0.582559	0.868078	0.69732

11.4) DecisionTreeClassifier - Cross Validation

Avg AUC-ROC Score: 0.6973198198198197

```
In [76]: df_score7 = CrossVal_model("DecisionTree", X_train, y_train)
df_score7
```

Avg Balanced Accuracy: 0.6576417186417186 Avg Weighted F1-Score: 0.8610096934307316 Avg AUC-ROC Score: 0.6577968583968585

Out[76]:

	Model Name	Train Time	Train Accuracy	Test accuracy	f1_score	balanced_accuracy	roc_auc score
0	DecisionTree - Cross Validation	0.066258	0.999643	0.859727	0.657642	0.86101	0.657797

Hyperparameter Tuning

11.5) Logistic Regression - GridSearchCV

```
In [77]: # Define the logistic regression model
         logreg = LogisticRegression()
         # Define the parameter grid
         param grid = {
              'C': [0.1, 1, 10, 100],
             'penalty': ['11', '12']
         # Create the GridSearchCV object
         grid_search = GridSearchCV(estimator=logreg, param_grid=param_grid, cv=5, scoring='accuracy')
         # Fit the model
         grid_search.fit(X_train, y_train)
         #prediction
         y_pred = grid_search.predict(X_test)
         #Print the best params
         best_params = grid_search.best_params_
         best_score = grid_search.best_score_
         print(best params)
         print(best_score)
         # Use the best hyperparameters to fit the final model
         logreg_best = LogisticRegression(**best_params)
         logreg_best.fit(X_train, y_train)
         # Make predictions on the test set
         predictions = logreg_best.predict(X_test)
         y train pred = logreg best.predict(X train)
         df_score8 = GenerateOutput('LogisticRegression-GridSearchCV', y_train, y_train_pred,X_test,y_test, predictions, logreg_best)
         df_score8
         {'C': 100, 'penalty': '12'}
         0.8938088012139606
                                    recall f1-score
                       precision
                                                       support
                    0
                            0.90
                                      0.99
                                                0.94
                                                          7298
                    1
                            0.61
                                      0.17
                                                0.26
                                                           940
                                                0.89
                                                          8238
             accuracy
            macro avg
                            0.76
                                      0.58
                                                0.60
                                                          8238
```

weighted avg 0.87 0.89 0.86 8238 Accuracy: 0.8928137897547949

Weighted F1-Score: 0.8647633463092386 Balanced Accuracy Score: 0.5771228491629884

AUC-ROC: 0.8348812411444697

Out[77]:

	Model Name	Train Time	Train Accuracy	Test accuracy	f1_score	balanced_accuracy	roc_auc score
0	LogisticRegression-GridSearchCV	0.489536	0.894021	0.892814	0.864763	0.577123	0.834881

11.6) KNN - RandomSearchCV

The param_dist dictionary specifies the hyperparameters to search over and the possible values for each. The n_iter parameter specifies the number of random combinations to try. The cv parameter specifies the number of folds to use in cross-validatio

```
In [78]: # Set up the parameter distribution for the KNN hyperparameters
         param_dist = {'n_neighbors': [1, 3, 5, 7, 9],
                       'weights': ['uniform', 'distance'],
                       'metric': ['euclidean', 'manhattan']}
         # Initialize the KNN model
         knn = KNeighborsClassifier()
         # Initialize the randomized search
         random search = RandomizedSearchCV(estimator=knn, param distributions=param dist, cv=5, n iter=10)
         # Fit the randomized search to the data
         random search.fit(X train, y train)
         # Print the best hyperparameters
         print(random search.best params )
         # Print the best cross-validation score
         print(random search.best score )
         # Predict on the test set
         y_pred = random_search.predict(X_test)
         y train pred = random search.predict(X train)
         df_score9 = GenerateOutput('KNN-RandomSearchCV',y_train,y_train_pred,X_test,y_test, y_pred, random_search)
         df score9
         {'weights': 'uniform', 'n neighbors': 9, 'metric': 'euclidean'}
         0.891350531107739
                       precision recall f1-score support
                            0.91
                                      0.97
                                                0.94
                                                          7298
                    1
                            0.54
                                      0.24
                                                0.33
                                                          940
                                                0.89
                                                          8238
             accuracy
                                      0.61
                                                0.64
                                                          8238
            macro avg
                            0.72
         weighted avg
                            0.87
                                      0.89
                                                0.87
                                                          8238
```

Accuracy: 0.8896576839038601

Weighted F1-Score: 0.8707224876119846

Balanced Accuracy Score: 0.6077797472930503

AUC-ROC: 0.7942707270426758

Out[78]:

	Model Name	Train Time	Train Accuracy	Test accuracy	f1_score	balanced_accuracy	roc_auc score
0	KNN-RandomSearchCV	132.429425	0.904036	0.889658	0.870722	0.60778	0.794271

11.7) DecisionTrees - RandomizedSearchCV

```
In [81]: # Set up the parameter distribution for the decision tree hyperparameters
         param dist = \{ \max depth' : [1,3,5,7,9], \}
                       'min_samples_split': [2,4,6,8,10,12,14,16],
                       'min samples leaf': [1,3,5,7,9,13,15,17]}
         # Initialize the decision tree model
         tree = DecisionTreeClassifier()
         # Initialize the randomized search
         random search = RandomizedSearchCV(estimator=tree, param distributions=param dist, cv=5, n iter=10)
         # Fit the randomized search to the data
         random search.fit(X train, y train)
         # Print the best hyperparameters
         print(random search.best params )
         # Print the best cross-validation score
         print(random search.best score )
         # Predict on the test set
         y pred = random search.predict(X test)
         y train pred = random search.predict(X train)
         #performance
         df_score10 = GenerateOutput('DecisonTree-RandomSearchCV',y_train, y_train_pred,X_test,y_test, y_pred,random_search)
         df score10
         {'min_samples_split': 8, 'min_samples_leaf': 5, 'max_depth': 5}
         0.8971775417298937
                       precision recall f1-score support
                    0
                            0.91
                                      0.98
                                                0.94
                                                          7298
                    1
                            0.57
                                      0.26
                                                0.35
                                                           940
             accuracy
                                                0.89
                                                          8238
            macro avg
                            0.74
                                      0.62
                                                0.65
                                                          8238
         weighted avg
                            0.87
                                      0.89
                                                0.87
                                                          8238
```

Accuracy: 0.8931779558145181

Weighted F1-Score: 0.874695061218517

Balanced Accuracy Score: 0.6157908316472598

AUC-ROC: 0.8416102050692988

Out[81]:

	Model Name	Train Time	Train Accuracy	Test accuracy	f1_score	balanced_accuracy	roc_auc score
0	DecisonTree-RandomSearchCV	1.255225	0.90088	0.893178	0.874695	0.615791	0.84161

12) Evaluation

With some modeling accomplished, we aim to reflect on what we identify as a high quality model and what we are able to learn from this. We should review our business objective and explore how well we can provide meaningful insight on drivers of used car prices. Your goal now is to distill your findings and determine whether the earlier phases need revisitation and adjustment or if you have information of value to bring back to your client.

12.1) Metric Evaluation

12.1.1) Identification of Evaluation Metric

The following are evaulation metrics used for this particular binary classification.

Accuracy: This is the percentage of correct predictions made by the classifier. It is calculated as (true positives + true negatives) / total samples.

Precision: This is the percentage of positive predictions that were correct. It is calculated as true positives / (true positives + false positives).

F1 score: This is a weighted average of precision and recall, with a higher score indicating better performance. It is calculated as 2 * (precision * recall) / (precision + recall).

AUC (Area Under the Curve): This is a metric used to evaluate the performance of a binary classifier using an ROC (Receiver Operating Characteristic) curve. The ROC curve plots the true positive rate against the false positive rate at different classification thresholds, and the AUC is the area under this curve. AUC provides a single measure of the classifier's performance.

Balanced accuracy: This is a metric used to evaluate the performance of a classifier when the classes are imbalanced. It is defined as the average of the class-specific accuracies, where the class-specific accuracy for a class is the number of true positives for that class divided by the sum of the true positives and false negatives for that class.

Out[82]:

	Model Name	Train Time	Train Accuracy	Test accuracy	f1_score	balanced_accuracy	roc_auc score
0	SVM	113.990209	0.887709	0.885895	0.832294	0.500000	0.470893
0	SVM	0.040731	0.898877	0.878369	0.840459	0.524020	0.545889
0	Logistic Regression	0.263456	0.887709	0.885895	0.832294	0.500000	0.617335
0	KNN	0.001981	0.999575	0.854212	0.851407	0.621139	0.621139
0	DecisionTree - Cross Validation	0.066258	0.999643	0.859727	0.657642	0.861010	0.657797
0	SVM - Cross Validation	101.120975	0.894105	0.894082	0.582559	0.868078	0.697320
0	KNN-RandomSearchCV	132.429425	0.904036	0.889658	0.870722	0.607780	0.794271
0	LogisticRegression-GridSearchCV	0.489536	0.894021	0.892814	0.864763	0.577123	0.834881
0	DecisonTree-RandomSearchCV	1.255225	0.900880	0.893178	0.874695	0.615791	0.841610
0	Logistic Regression - Cross Validation	0.296021	0.894090	0.893748	0.583670	0.868209	0.842984

From the above, it is prety clear that Logistic Regression with Cross Validation performed much better compared to other models.

13) Findings

Details findings are located here (https://github.com/spalakollu/Bank Products Marketing/blob/main/BankMarketingFindings.pdf)

14) Next Steps and Recommendations

Further classification can be performed in a variety of ways. For example, a bank can use a customer's past transaction history, demographics, and other data to make personalized product recommendations, such as credit cards or loans, that are likely to be of interest to the customer. These recommendations can be made through email campaigns, in-app notifications, or through the bank's website or mobile app. Additionally, Al/ML can also be used to predict which customers are most likely to churn, so the bank can proactively reach out to those customers to try to retain them.

In []: