Техническая лекция: Бутстрап

Практическая эконометрика 14 октября 2022 г. suchkovaolga.91@mail.ru

- Материал этой лекции не войдёт в контрольную 21.10.22
- В слайдах использованы материалы Дмитрия Мухина (Летний семинар-2013), Бориса Демешева и Станислава Анатольева

Пояснения: зачем бутстрап?

- После контрольной содержательно поговорим о гетерогенных тритментэффектах
- Один из способов их оценить «причинный случайный лес» (causal random forest)
- Сначала надо осознать (или вспомнить)
 деревья решений и просто случайный лес
- Для случайного леса нужен бутстрап
- Поэтому начнём с отступления бутстрапа.
- Где он уже вам встречался?

В экм-2 вы видели бутстрапдоверительные интервалы для IRF в SVAR

Источник картинки: https://www.researchgate.net/figure/Visualization-of-IRF-for-SVAR-for-Model-4_fig4_362510678

Содержание

- Зачем ещё нужен бутстрап? Пример из жизни
- Решение проблемы 1: бутстрап
- Решение проблемы 2: Дельта-метод
- Что почитать?
- Чем закончилась история

Содержание

- Зачем всё это? Пример из жизни
- Решение проблемы 1: бутстрап
- Решение проблемы 2: Дельта-метод
- Что почитать?
- Чем закончилась история

Пример из жизни (2013 год)

- **Bonpoc:** Как государственный долг влияет на динамику валового выпуска?
- <u>Оценить</u> для группы европейских стран «точку перелома», начиная с которой уровень долга становится критическим и оказывает негативное влияние на темпы роста выпуска.
- <u>Проблема:</u> а как построить доверительный интервал для вершины параболы?

Влияние долговой нагрузки на темпы роста выпуска

 Ось х – долговая нагрузка (долг/ВВП), ось у – темпы роста ВВП

Выбор функциональной формы

1) Пороговая регрессия, предложенная Hansen (1996)

$$g_{it} = \mu_i + \beta_1 debt_{it} I(debt_{it} < c) + \beta_2 debt_{it} I(debt_{it} > c) + u_{it}$$
 (1)

 g_{it} - темп роста выпуска в стране і в период t,

 μ_i - фиксированный страновой эффект,

 $debt_{it}$ - долг - пороговая переменная,

I - индикаторная функция, гамма — «порог»

 \mathcal{U}_{it} - случайный шок.

- **2)** Фиктивные переменные (Kumar, Woo (2010))
- 3) Квадратичная функция (Checherita and Rother (2010))

$$g_{it} = \beta_1 debt_{i,t-1} + \beta_2 debt_{i,t-1}^2 + X_{i,t-1}\beta + u_{it}$$
 (2)

 $g_{\it it}$ - темп роста выпуска в стране і в период t,

debt - переменная долга,

 $X_{i,t-1}$ - набор контрольных переменных,

 u_{it} - случайный шок.

«Переломная точка» рассчитывается как $-\frac{\rho_1}{2\beta_2}$ (3)

Разброс рассчитанных предельных уровней государственного долга (% от ВВП)

	Развитые страны	Развивающиеся страны	Бедные страны
Pattilo C., Poirson H., Ricci L., 2002	·	35-40%	
Buiter W. «Fiscal Sustainability»// 2003	60%		
Clements B., Bhattacharya R., Nguyen T.Q., 2003			50% и менее
Caner, Grennes, Koehler- Geib 2010	60%		
Checherita C., Rother Ph., 2010 Cecchetti S., Mohanty M.S., Fabrizio Z., 2011	85-90%		
Reinhart C., Rogoff K., 2010	85-90%	60%	
Balázs Égert, 2012	60%	30%	
IMF «Fiscal Monitor: Balancing Fiscal Policy Risks»// 2012	60%	40%	

Результаты и проблема

- Получена оценка «переломной точки» 90-95% для 1990-2007 гг., около 100% для 1990-2010 гг.
- Но почти во всех эмпирических работах разные значения этой точки
- А каков доверительный интервал для неё?
- Проблема: «обычным» способом его построить невозможно.
- Выход?

Содержание

- Зачем всё это? Пример из жизни
- Решение проблемы 1: бутстрап
- Решение проблемы 2: Дельта-метод
- Что почитать?
- Чем закончилась история

«Классическая» статистика

- В статистике «стандартно» есть Теорема вида: Если выполняются «идеальные условия», то «какая-то формула» сходится к «чему-то известному».
- Например, КЛММР: если выполняются условия теоремы Г-М и остатки нормальны, то t-расчётное при n стремящемся к бесконечности сходится к N(0,1).
- А что если: Нет теоремы? Не выполнены идеальные условия? п не стремится к бесконечности?

Знакомство с bootstrap

(для начала см. Анатольев, «Квантиль» №3, 2007):

- Bootstrap (англ.) петля на заднике ботинка, облегчающая его надевание.
- Идея метода: имеющаяся выборка это единственная информация об истинном распределении данных. Поэтому давайте приблизим истинное распределение эмпирическим. То есть «сами себя вытащим».
- Рассмотрим пример

Простой пример (1/3)

• Пусть в выборке всего 2 наблюдения:

$$\begin{pmatrix} x1\\y1 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} x2\\y2 \end{pmatrix} = \begin{pmatrix} 2\\2 \end{pmatrix}$$

 Пусть нас интересует θ из модели парной регрессии без константы:

$$y_i = \theta x_i + \varepsilon_i$$

$$\hat{\theta}^{\text{MHK}} = \frac{x_1 * y_1 + x_2 * y_2}{(x_1)^2 + (x_2)^2} = \frac{1 * 0 + 2 * 2}{1^2 + 2^2} = 0,8$$

Простой пример (2/3)

«Вытаскиваем» две пары чисел:

$$\binom{x1^*}{y1^*}; \binom{x2^*}{y2^*} = \begin{cases} \binom{1}{0}; \binom{1}{0} \text{ с вероятностью } 1/4 \\ \binom{1}{0}; \binom{2}{2} \text{ с вероятностью } 1/2 \\ \binom{2}{2}; \binom{2}{2} \text{ с вероятностью } 1/4 \end{cases}$$

• Тогда бутстраповская МНК-оценка распределена так:

$$\hat{\theta}^* = \begin{cases} 0 \text{ с вероятностью } 1/4 \\ 0.8 \text{ с вероятностью } 1/2 \\ 1 \text{ с вероятностью } 1/4 \end{cases}$$

Простой пример (3/3)

График эмпирической функции распределения оценки:

Если «ступеней» больше:

Если наблюдений n, то количество вариантов бутстраповской статистики nⁿ

задача слишком сложная

• Выход - симуляции

Симуляции: пример с медианой

Допустим, мы хотим бутстрапировать некоторую статистику $\widehat{\varphi} = \widehat{\varphi}(\{x1, x2, ..., x_n\}).$

Выберем В – количество будущих выборок.

Для каждого b=1,2,...,В построим бутстраповскую выборку $\{x_1^*, x_2^*, ..., x_n^*\}$, вытягивая ее элементы случайным образом с возвращением из исходной выборки $\{x1, x2, ..., x_n\}$.

Вычислим бутстраповскую статистику

$$\widehat{\varphi_b^*} = \widehat{\varphi}^*(\{x_1^*, x_2^*, \dots, x_n^*\}_b).$$

Симуляции: доверительный интервал

- Для получения квантилей отсортировать бутстраповские статистики в порядке возрастания.
- В качестве квантилей $q_{\alpha/2}^*$ и $q_{1-\alpha/2}^*$ взять значения
- $\widehat{\phi_{[B*\frac{\alpha}{2}]}^*}$ и $\widehat{\phi}_{[B*\left(1-\frac{\alpha}{2}\right)+1]}^*$
- где [.] означает взятие целой части.

Итог: без какой-либо теории и дополнительных предпосылок получили доверительный интервал для оценки! Этот метод называется «дикий бутстрап».

Симуляции: каким должно быть В?

• Правило «большого пальца» (Кэмерон, Триведи, гл. 11):

$$B = \left(\frac{1,96}{0,1}\right)^2 * \frac{2+\gamma}{4}$$

- Обеспечивает относительное отклонение бутстраповской статистики от статистики, посчитанной при бесконечном числе повторений, меньше чем на 10% в вероятностью не менее 95%.
- γ коэффициент эксцесса мера островершинности распределения относительно нормального распределения: $\gamma = \frac{E(x-E(x))^4}{\sigma^4} 3$

B=384*(2+0)/4=960 для нормального распределения. Автоматические значения в пакетах 1000, 3000, 5000, 10000.

Симуляции: каким должно быть В?

- *В* должно быть как можно больше. Нельзя брать 100, 200...
- И всё-таки есть Теорема ©: при выполнении «некоторых условий» разница между confidence level номинальным (95%) и confidence level по процедуре (не факт, что 95%) пропорциональна $1/\sqrt{n}$.
- Т.е. если хочу снизить эту разницу в 10 раз, то выборку надо увеличить в 100 раз.
- Доказывать не будем

Доверительные интервалы

Эфронов доверительный интервал («дикий», «наивный» бутстрап)

бутстрапируем	саму оценку
вытягиваем	\mathcal{X}^*
считаем	$\hat{ heta}_{\!b}^*$
повторяем	В раз
строим распределение для	$\left\{ \hat{\theta}_b^* \right\}_{b=1}^B$
Интервал	$\theta \in \left[q_{\alpha/2}; q_{1-\alpha/2}\right]$

Доверительный интервал Холла

бутстрапируем	Отклонение оценки от истинного значения
вытягиваем	χ^*
считаем	$\hat{ heta}_b^* - \hat{ heta}$
повторяем	В раз
строим распределение для	$\left\{\hat{ heta}_b^* - \hat{ heta} ight\}_{b=1}^B$
Интервал	$\theta \in \left[\hat{\theta} - q_{1-\alpha/2}; \hat{\theta} - q_{\alpha/2}\right]$

t-процентильный доверительный интервал

Бутстрапируем t- статистику	$\frac{\hat{\theta} - \theta}{s.e.(\hat{\theta})}$
вытягиваем	\mathcal{X}^*
Считаем	$\frac{\hat{\theta}_b^* - \hat{\theta}}{s.e.(\hat{\theta}_b^*)}$
строим распределение	$\left\{\frac{\hat{\theta}_b^* - \hat{\theta}}{s.e.(\hat{\theta}_b^*)}\right\}_{b=1}^B$
для бутстрап-аналога	$\left[\overline{s.e.(\hat{ heta}_b^*)} \right]_{b=1}$
t-статистики	
Интервал	$\theta \in \left[\hat{\theta} - s.e.(\hat{\theta}) * q_{1-\alpha/2}; \hat{\theta} - s.e.(\hat{\theta}) * q_{\alpha/2}\right]$

t-процентильный доверительный интервал

- Пример на доске доверительный интервал. Р(Yi>0).
- Есть Теорема: при выполнении «некоторых условий» разница между confidence level номинальным (95%) и confidence level по процедуре (не факт, что 95%) пропорциональна 1/n.
- Т.е. если хочу снизить эту разницу в 10 раз, то выборку надо увеличить в 10 раз.
- Доказывать не будем
- (+) Выборка нужна меньше, чем в диком бутстрапе
- (-) Откуда брать s.e. оценки, если её формула неизвестна?

Симметричный t-процентильный д. и. (подходит для тестирования гипотез)

бутстрапируем	$\left \frac{\hat{\theta} - \theta}{s.e.(\hat{\theta})} \right $
вытягиваем	\mathcal{X}^*
Считаем	$\frac{\hat{\theta}_b^* - \hat{\theta}}{s.e.(\hat{\theta}_b^*)}$
строим распределение для	$\left\{\frac{\hat{\theta}_b^* - \hat{\theta}}{s.e.(\hat{\theta}_b^*)}\right\}_{b=1}^B$
Интервал	$\theta \in \left[\hat{\theta} - s.e.(\hat{\theta}) * q_{1-\alpha}; \hat{\theta} + s.e.(\hat{\theta}) * q_{1-\alpha}\right]$

Чем закончилась история с порогом долга?

- В апреле 2013 г. Herndon, Ash, Pollin нашли ошибку в расчётах К. Reinhart & Kenneth S. Rogoff «Growth in a time of debt» (2010) и опровергли основной результат их исследования. На основании тех же самых данных они получили, что влияние государственного долга на темпы роста реального ВВП отрицательное и одинаково для любых значений долга (монотонная зависимость).
- Таким образом, был поставлен под сомнение один из аргументов в пользу необходимости «политики затягивания поясов» в Европе, которым выступало исследование R&R.
- Но эта статья 2013г. не отменяет результатов многочисленных исследований, нашедших нелинейную зависимость для разных групп стран.

```
#bootstrap руками делаем цикл
В<-1000 #число бутстраповских выборок
n<-NROW(mydata) #размер бутстраповской выборки совпадает с
размером исходной выборки
tip<-NULL #цикл нужно с чего-то начать, создаём пустой вектор
for (i in 1:B){
 bootID<-sample(c(1:n),n,replace = TRUE)
                                             # случайная выборка с
  возвращением
  tip[i] = (-lm(mydata[bootID,1] \sim mydata[bootID,2] +
  I((mydata[bootID,2])^2))$coef[2])/(2*lm(mydata[bootID,1] ~
  mydata[bootID,2] + I((mydata[bootID,2])^2))$coef[3])
  #для каждого і оценили модель и посчитали отношение оценок
коэффициентов}
#95% confidence interval
tip_sorted<-sort(tip)
lower_bound<-tip_sorted[round(B*0.025)]</pre>
upper_bound<-tip_sorted[round(B*0.975)]
```

Содержание

- Зачем всё это? Пример из жизни
- Решение проблемы 1: бутстрап
- Решение проблемы 2: Дельта-метод
- Что почитать?
- Чем закончилась история

Дельта-метод: теоретическое обоснование

• Центральная предельная теорема

Let
$$\{z_n\}$$
 be IID with $\mathbb{E}[z_i] = \mu$ and $\mathbb{V}[z_i] = \sigma^2$. Then,

$$\sqrt{n}\left(\frac{1}{n}\sum z_i-\mu\right)\stackrel{d}{\to} N(0,\sigma^2),$$

as $n \to \infty$.

Дельта-метод: теоретическое обоснование

• Теорема Слуцкого

If
$$z_n \stackrel{d}{\to} z$$
 and $c_n \stackrel{p}{\to} c$ as $n \to \infty$, then

Дельта-метод: теоретическое обоснование

- Ряд Тейлора
- Функция g(x) непрерывна и дважды дифференцируема для любого x из X
- Для х0 имеем:

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + \frac{1}{2!}g''(x_0)(x - x_0)^2 + o(x^2)$$

Одномерный дельта-метод

Let $\sqrt{n}(\hat{\mu} - \mu) \stackrel{d}{\to} \xi$. What is the asymptotic distribution of $g(\hat{\mu})$?

1 Apply Taylor Expansion at μ

$$g(\hat{\mu}) = g(\mu) + g'(\mu)(\mu - \mu) + o(\hat{\mu})$$

② Re-arrange the terms

$$g(\hat{\mu}) - g(\mu) = g'(\mu)(\mu - \mu) + o(\hat{\mu})$$
$$\sqrt{n}(g(\hat{\mu}) - g(\mu)) = g'(\mu)\sqrt{n}(\mu - \mu) + \sqrt{n}o(\hat{\mu})$$

3 Use $\sqrt{n}(\hat{\mu} - \mu) \stackrel{d}{\rightarrow} \xi$ Then,

$$\sqrt{n}\left(g(\hat{\mu})-g(\mu)\right)\stackrel{d}{\to}g'(\mu)\xi$$

Assume $\xi \sim N(0, \sigma^2)$. Then,

$$\sqrt{n}\left(g(\hat{\mu})-g(\mu)\right) \stackrel{d}{\to} N(0,\left(g'(\mu)\right)^2\sigma^2)$$

https://www.econ.msu.ru/ext/lib/Category/x81/xf9/33273/file/%D0%92%D1%81%D1%82%D1%80%D0%B5%D1%87%D0%B0%202_%20DeltaMethod.pdf Алексей Хазанов

Многомерный дельта-метод

If $\sqrt{n}(\hat{\mu} - \mu) \stackrel{d}{\to} \xi$, where g(u) is continuously differentiable in a neighborhood of μ then as $n \to \infty$

$$\sqrt{n}\left(g(\hat{\mu})-g(\mu)\right)\stackrel{d}{\to}G'\xi,$$

where $G(u) = \frac{\partial}{\partial u} g(u)'$ and $G = G(\mu)$. In particular, if $\xi \sim N(0, V)$, then as $n \to \infty$

$$\sqrt{n}\left(g(\hat{\mu})-g(\mu)\right)\stackrel{d}{\to} N(0,G'VG)$$

Дельта-метода: реализация в R и проблема

• Реализация в R: пакет car, команда deltaMethod

• Проблема:

А что делать, если выборка мала и асимптотика неприменима?

• Бутстрап

Что почитать или посмотреть

- С. Анатольев ликбез + список базовой литературы по бутстрапу в журнале «Квантиль»: http://quantile.ru/03/03-SA.pdf
- Б.Б. Демешев Лекция «Наивный бутстрап» <u>https://youtu.be/wIPq_OoYcjc</u>
- Дельта-метод популярно: https://www.statlect.com/asymptotic-theory/delta-method
- A. A. Хазанов Лекция «Дельта-метод»
 https://www.econ.msu.ru/ext/lib/Category/x81/xf9/33273/file/%D
 0%92%D1%81%D1%82%D1%80%D0%B5%D1%87%D0%B0%202 %
 20DeltaMethod.pdf
- Пакет boot для R https://cran.r-
 project.org/web/packages/boot/index.html
- Пакет для дельта-метода в R: https://cran.r-
 project.org/web/packages/modmarg/vignettes/delta-method.html