Urara Kono

+1(267)-854-9497 urara27.k@gmail.com urarakono.github.io linkedin.com/urara-kono github.com/UraraKono Philadelphia, PA, 19104, the United States

Education

University of Pennsylvania

July 2021 - Aug 2024 (Expected)

Master of Science - Electrical Engineering (GPA: 3.88 / 4.00)

Philadelphia, PA

Interests: Robotics, Control Theory, Motion Planning, Optimization, State Estimation, Sensor Fusion, Machine Learning, AI

The University of Tokyo

Apr 2017 - Mar 2021

Bachelor of Engineering - Electrical and Electronic Engineering (GPA: 3.55 / 4.00)

Tokyo, Japan

Technical Skills

Programming: Python, MATLAB/Simulink, C/C++ OS: Linux Language: English, Japanese (Native) Software: ROS2, PyTorch, Git, PyChrono, Docker, Nerfstudio, OptiTrack, dSPACE, Eagle PCB, CAD Hardware: Arduino, NVIDIA Jetson, IMU, GNSS, Wheel Encoder, LiDAR, PCB Milling Machine, Laser Cut

Experience

xLab, University of Pennsylvania — Robotics Research Engineer

Oct 2023 - Present

- Constructed an off-road wheeled mobile robot equipped with Nvidia Jetson, camera, GNSS, LiDAR, and wheel encoders, enhancing autonomous navigation capabilities. Achieved GNSS-based pure-pursuit controller and 3D SLAM with LiDAR and IMU. Developing a sampling-based MPC controller. debugging, ROS2, ML [picture]
- Simulated MPC for autonomous vehicles on multi-friction surfaces in a vehicle simulator PyChrono and reduced the tracking error by 65%. [code]

Figueroa Robotics Lab, University of Pennsylvania — Robotics Research Engineer

May 2023 - Sep 2023

Analyzed the reachability of a robotic arm for collision avoidance in Python, improving operational safety.

ScalAR Lab, University of Pennsylvania — Robotics Research Engineer

July 2021 - Apr 2023

Calculated reachable sets of multi-agents and developed the time-optimal paths in flow field using Python,
 validated with experiments on micro autonomous surface vehicles using OptiTrack and ROS. [report] [code]

Hori-Fujimoto Laboratory, The University of Tokyo — *Robotics Research Assistant*

Feb 2020 - Mar 2021

• Developed a **localization** method for wheeled mobile robots on deformable terrain by estimating wheel slip from a wheel encoder and integrating the visual sensor, increasing the localization accuracy by 95% and publishing a research paper. - **Control Theory**, **MATLAB/Simulink**, **dSPACE** and **CAN**. [Research Paper]

Projects

Optimal Control and State Estimation on different robotic platforms

Sep 2022 - Dec 2023

- Developed controllers of a planar arm by LQR, iLQR, MPC, and Reinforcement Learning
- Designed SLAM of a humanoid robot with IMU and LIDAR by Particle Filter

Learning Local Ocean Flows Using Neural ODEs Neural Network, PyTorch [report]

Dec 2022

• Learned the dynamics of the time varying/invariant double gyre flow using Neural ODEs. - PyTorch, ML

Visual Inertial Odometry and Motion Planning of Quadcopter [report]

Jan 2022 - Apr 2022

- Estimated the pose of quadrotor with IMU and stereo camera pair using Error State Kalman Filter.
- Identified obstacle-free paths by implementing graph search algorithms such as **Dijkstra** and **A***.
- Realized smooth trajectory planning by implementing geometric controller and min-jerk trajectory generator.

A Rocket Launch for International Student Satellites (ARLISS) [poster] [article]

Apr 2019 - Oct 2019

• Designed and fabricated a PCB using Autodesk EAGLE for a casing deployed by a rocket at 4km height.

Publication

U. Kono, H. Fujimoto and Y. Hori "Localization of Wheeled Robots from Slip Ratio Estimation with Simple Model," IEEE International Conference on Mechatronics 2021, Mar 2021. [Research Paper]