Die TOP500-Liste

- 1. Vergleich von Rechnersystemen
- 2. Die TOP500-Liste
- 3. Beispielsysteme
- 4. Historische Sicht

1. Vergleich von Rechnersystemen

Komplexe Fragestellung

- Erster Ansatz: FLOPS (auch Flop/s)
 floating point operations per second
- Theoretisches Maximum ergibt sich aus der Anzahl der Zyklen pro Gleitkommaoperation

Bewertung durch sogenannte Benchmark-Programme

- Synthetische Benchmarks (meist Assembler)
- CPU-Benchmark (meist numerische Programme)
- I/O-Benchmark

Zum Vergleich: Prozessoren

Beispiele der GFLOP-Werte an einigen CPUs[10]

LINPACK 1kx1k (DP) +	Höchstleistung (in GFLOPS) \$	Durchschnittsleistung (in GFLOPS)	Effizienz (in %)
Cell, 1 SPU, 3,2 GHz	1,83	1,45	79,23
Cell, 8 SPUs, 3,2 GHz	14,63	9,46	64,66
Pentium 4, 3,2 GHz	6,4	3,1	48,44
Pentium 4 + SSE3, 3,6 GHz	14,4	7,2	50,00
Core i7, 3,2 GHz, 4 Kerne	51,2	33,0 (HT enabled) [11]	64,45
Core i7, 3,47 GHz, 6 Kerne	83,2		
Core i7 Sandy-Bridge, 3,4 GHz, 4 Kerne	102,5	92,3	90,05
Itanium, 1,6 GHz	6,4	5,95	92,97

Xeon E5 v3 Haswell-EP Performance – Linpack (September 8, 2014 by Donald Kinghorn)

A good approximation of theoretical peak for Haswell looks like this:

CPU GHz * number of cores * SIMD vector ops (AVX) * special instructions effect (FMA3)

For the dual Xeon E5-2687W v3 @ 3.10GHz system theoretical peak would be

3.1 * 20 * 8 * 2 = 992 GFLOPS

What did I get? 788 GFLOPS approx. 80% of theoretical peak

Zum Vergleich: Anwendungen

- Rechnersystem Mistral am DKRZ 2016
 - 3.000 TFLOPS LINPACK-Leistung
 - Bei ca. 100.000 Prozessorkernen macht das ca.
 30 GFLOPS/Prozessorkern (gemittelt Haswell/Broadwell)
- Rechnersystem Blizzard am DKRZ 2010
 - 110 TFLOPS LINPACK-Leistung
 - Bei ca. 8.500 Prozessorkernen macht das ca.
 13 GFLOPS/Prozessorkern
- Klimaberechnung IPCC AR5 auf Blizzard
 - Geschätzter Bedarf: 30 Millionen Prozessorkernstunden
 - DKRZ stellte 60 Millionen pro Jahr mit Power6/IBM bereit
 - Ca. 50 TFLOP pro Prozessorkernstunde
 - Entspricht 50.000.000.000.000 FLOP pro Prozessorkernstunde

Vergleich von Rechnersystemen...

Der parallele LINPACK-Benchmark

- Entwickelt von Jack Dongarra (Knoxville, TN)
- Ist gleichzeitig eine vollwertige Bibliothek für lineare Algebra
- Benchmark: dicht besetztes Gleichungssystem
- R_{max} ist maximale Leistung bei Problemgröße N_{max}
- R_{neak} ist die theoretische Maximalleistung

Bezeichnet als HPL – High Performance Linpack

Vergleich von Rechnersystemen...

Kritik

- HPL läuft zu lange
 - Z.B. eine Woche den Rechner dafür benutzen bei 260 Wochen Standzeit des Rechners und 100 M€ Vollkosten kostet somit 380 T€ für den Linpack
- HPL am DKRZ 2017
 - Unerwünscht wegen Stromverbrauchsspitze
- HPL repräsentiert nur wenige parallele Programme
- Manche Rechnern werden auf guten LINPACK hin entworfen
- In der Praxis deshalb Anwendungsbenchmarks

2. Die TOP500-Liste

Website www.top500.org

- Hans Meuer (†) (Universität Mannheim)
- Jack Dongarra (Univ. Tennessee, Knoxville)
- Erich Strohmeier (NERSC/LBNL)
- Horst Simon (NERSC/LBNL)

Zwei Aktualisierungen pro Jahr

- Juni: International Supercomputing Conference Deutschland
- November: Supercomputing Conference USA

Basiert auf dem LINPACK-Benchmark

1	Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
	1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
	2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
	3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2,200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
Nov	4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
2016	5	DOE/SC/LBNL/NERSC United States	Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect Cray Inc.	622,336	14,014.7	27,880.7	3,939
	6	Joint Center for Advanced High Performance Computing Japan	Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path Fujitsu	556,104	13,554.6	24,913.5	2,719
	7	RIKEN Advanced Institute for Computational Science [AICS] Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
17.10.2017	8	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 Cray Inc.	206,720	9,779.0	15,988.0	1,312

	Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
	14	HLRS - Höchstleistungsrechenzentrum Stuttgart Germany	Hazel Hen - Cray XC40, Xeon E5-2680v3 12C 2.5GHz, Aries interconnect Cray Inc.	185,088	5,640.2	7,403.5	3,615
	19	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	458,752	5,008.9	5,872.0	2,301
	34	DKRZ - Deutsches Klimarechenzentrum Germany	Mistral - bullx DLC 720, Xeon E5-2680v3 12C 2.5GHz/E5-2695V4 18C 2.1GHz, Infiniband FDR Bull, Atos Group	99,072	3,010.7	3,962.9	1,276
Nov	36	Leibniz-Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR IBM/Lenovo	147,456	2,897.0	3,185.1	3,422.7
2016	37	Leibniz-Rechenzentrum Germany	SuperMUC Phase 2 - NeXtScale nx360M5, Xeon E5-2697v3 14C 2.6GHz, Infiniband FDR14 Lenovo/IBM	86,016	2,813.6	3,578.3	1,480.8
D	69	Forschungszentrum Juelich (FZJ) Germany	JURECA - T-Platforms V-Class, Xeon E5-2680v3 12C 2.5GHz, Infiniband EDR/ParTec ParaStation ClusterSuite, NVIDIA Tesla K80/K40 T-Platforms	49,476	1,424.7	1.693.4	828.6
31 Einträge	78	Max-Planck-Gesellschaft MPI/IPP Germany	iDataPlex DX360M4, Intel Xeon E5-2680v2 10C 2.800GHz, Infiniband FDR Lenovo/IBM	65,320	1,283.3	1,463.2	1,260
17.10.2017	107	TU Dresden, ZIH Germany	Taurus – bullx DLC 720, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR Bull, Atos Group	34,656	1,029.9	1,386.2	582

Ranking des DKRZ

Highlights of the 44th TOP500 List

112

REPLACEMENT RATE

500

ANNUAL PERFORMANCE INCREASE OF THE TOP500

RANK AT WHICH HALF OF TOTAL PERFORMANCE IS ACCUMULATED

ACCELERATORS

PERFORMANCE OF ACCELERATORS

PERFORMANCE SHARE OF ACCELERATORS

CORES PER SOCKET

Leistungsentwicklung bis November 2014

Moore's Law "Verdopplung der Transistorzahl alle 18 Monate" (entspricht evtl. Leistungsverdopplung)

Jun93-Nov14: 21,5 Jahre = 14,3x18 Monate etwa Faktor 2¹⁴=16384

Leistung Summe: 1 TFlop/s - 309.000 TFlop/s (x 309k) Leistung #1: 60 GFlop/s - 34.000 TFlop/s (x 570k) Leistung #500: 0,4 GFlop/s - 153.000 GFlop/s (x 382k)

3. Beispielsysteme

- NECs Earth Simulator (Yokohama, Japan)
- Fujitsu K Computer (Kobe, Japan)
- Mare Nostrum (Barcelona, Spanien)

NECs Earth Simulator (6/2002-11/2008)

- 640 Knoten
- Zu je 8 Vektorprozess.
- 5120 Prozessoren
- 0,15 mikron Kupfer
- 200 MioUSD Rechner
- 200 MioUSD Gebäude und Kraftwerk
- Zum Zwecke der Klimaforschung etc.

- 36 TFLOPS
- 10 TByte Hauptspeicher
- 700 TByte Festplatten
- 1,6 PByte Bandspeicher
- 83.000 Kupferkabel
- 2.800 km/220 t Kabel
- > 3250qm
- Erdbebensicher

Fujitsu K Computer

 RIKEN Advanced Institute for Computational Science (AICS), Japan

- 68.544 SPARC64 VIIIfx CPUs (2,0 GHz) mit je 8 Prozessorkernen in 672 Schränken
- November 2012: 864 Schränke und 10 PFLOPS

MareNostrum, Barcelona (11/2004)

Copyright 2005. Barcelona Supercompu ting Center - BSC

4. Historische Sicht

- Die TOP500 im Juni 1993
- Deutschland in der TOP500 im Juni 1993

1	Rank	Manufacturer Computer/Procs	R _{max} R _{peak}	Installation Site Country/Year	Inst. type Installation Area	Nmax Nhalf	Computer Family Computer Type
	1	TMC CM-5/1024/ 1024	59.70 131.00	os Alamos National Laboratory JSA/	Research Energy	52224 24064	TMC CM5 CM5
	2	TMC CM-5/1024/ 1024	59.70 131.00	National Security Agency USA/	Classified	52224 24064	TMC CM5 CM5
	3	TMC CM-5/544/ 544	3 0.40 70.00	Minnesota Supercomputer Center USA/	Industry	36864 16384	TMC CM5 CM5
	4	TMC CM-5/512/ 512	30.40 66.00	NCSA USA/	Academic	36864 16384	TMC CM5 CM5
	5	NEC SX-3/44R/ 4	23.20 26.00	NEC Fuchu Plant Japan/1990	Vendor	6400 830	NEC Vector SX3
	6	NEC SX-3/44/ 4	20.00 22.00	Atmospheric Environment Service (AES) Canada/1991	Research Weather	6144 832	NEC Vector SX3
Jun	7	TMC CM-5/256/ 256	15.10 33.00	Naval Research Laboratory (NRL) USA/1992	Research	26112 12032	TMC CM5 CM5
1993	8	Intel Delta/ 512	13.90 20.48	Caltech USA/	Academic		intel Paragon Paragon
1993	9	Cray/SGI Y-MP C916/16256/ 16	13.70 15.24	Cray Research USA/	Vendor	10000 650	Cray Vector C90
	10	Cray/SGI Y-MP C916/16256/ 16	13.70 15.24	DOE/Bettis Atomic Power Laboratory USA/1993	Research	10000 650	Cray Vector C90
	11	Cray/SGI Y-MP C916/16256/ 16	13.70 15.24	DOE/Knolls Atomic Power Laboratory USA/1993	Research	10000 650	Cray Vector C90
	12	Cray/SGI Y-MP C916/16128/ 16		ECMWF UK/1993	Research Weather	10000 650	Cray Vector C90
	13	Cray/SGI Y-MP C916/161024/ 16	13.70 15.24	Government USA/1992	Classified	10000 650	Cray Vector C90
17.10.201	14	Cray/SGI Y-MP C916/161024/ 16	13.70 15.24	Government USA/1992	Classified	10000 650	Cray Vector C90

	Rank	Manufacturer Computer/Procs	R _{max} R _{peak}	Installation Site Country/Year	Inst. type Installation Area	Nmax Nhalf	Computer Family Computer Type
	56	Fujitsu 8600/20/ 1	4.01 5.00	Universitaet Aachen Germany/1991	Academic		Fujitsu VP VP2000
	57	Fujitsu \$600/20/1	4.01 5.00	Universitaet Karlsruhe Germany/1990	Academic		Fujitsu VP VP2000
	60	TMC CM-5/64/ 64	3.80 8.19	GMD Germany/1993	Research	13056 6016	TMC CM5 CM5
	65	Fujitsu \$400/40/ 2	3.62 5.00	Universitaet Darmstadt Germany/1991	Academic		Fujitsu VP VP2000
	66	Fujitsu \$400/40/ 2	3.62 5.00	Universitaet Hannover / RRZN Germany/1991	Academic		Fujitsu VP VP2000
	76	TMC CM-2/32k/ 1024	2.60 7.00	AMK Germany/1990	Classified		TMC CM2 CM2
Jun	98	Cray/SGI Y-MP8/832/8	2.14	Forschungszentrum Juelich (FZJ) Germany/1989	Research		Cray Vector
1993	102	Cray/SGI Y-MP8/864/8	2.14	Leibniz Rechenzentrum Germany/1992	Academic		Cray Vector YMP
1993	142	TMC CM-5/32/ 32	1.90 4.10	Universitaet Wuppertal Germany/1992	Academic	9216 4096	TMC CM5 CM5
D	149	Intel XP/S5/ 66	1.90 3.30	Forschungszentrum Juelich (FZJ) Germany/1992	Research		intel Paragon Paragon
	155	Intel XP/S5-32/ 66	1.90 3.30	Universitaet Stuttgart Germany/1992	Academic		intel Paragon Paragon
	190	Cray/SGI CRAY-2s/4-128/ 4		DKRZ Germany/1988	Research Weather		Cray2/3 Cray 2
	206	Cray/SGI CRAY-2/4-256/ 4	1.41	Universitaet Stuttgart Germany/1986	Academic		Cray2/3 Cray 2
	218	TMC CM-2/16k/ 512	1.30 3.50	GMD Germany/1990	Research		TMC CM2 CM2
17.10.201	223	NEC SX-3/11/1	1.30	Universitaet Koeln Germany/1990	Academic	2816 192	NEC Vector SX3

Die TOP500-Liste

Zusammenfassung

- Die Rechnerleistung wird mit einem numerischen Benchmark-Programm (LINPACK) evaluiert
- Die TOP500-Liste verzeichnet halbjährig die schnellsten Rechner weltweit
- Die schnellsten Rechner haben die 100-Petaflops-Grenze durchbrochen
- Wir erwarten für ca. 2020/21 den ersten Exaflops-Rechner
- Aktuelles Problem: Energiebedarf

Die TOP500-Liste Die wichtigsten Fragen

- In welcher Maßeinheit wird die Rechnerleistung angegeben?
- Wie wird die Leistung evaluiert?
- Welche Zielsetzung verfolgt das TOP500-Projekt?
- In welchen Größenordnung der Rechnerleistung und des Stromverbrauchs liegen die größten Systeme?
- Wie verhält sich die beobachtete Leistungssteigerung zu Moore's Law?
- Welche Leistung brachten Systeme 1993?