System de décision

Trois approches pour résoudre le problème d'INV-NCS

Ariane Dalens

Magali Morin

Lucas Sor

01. Introduction

- **02.** Explications théoriques
 - a. Algorithme de programmation linéaire
 - b. SAT Solver
 - c. MaxSAT Sovler
- 03. Performances
- **04.** Conclusion

Introduction

Situation

Un nouveau jury d'un programme d'éducation de haut niveau doit décider de l'admission de ses étudiants selon leurs notes dans 4 cours différents : mathématiques, physiques, littérature et histoire. Ils disposent des notes et des status d'admission des élèves de l'année dernière, comment doivent-il procéder ?

Résoudre le problème Inv-NCS a été prouvé NP-difficile_[6]. Pour résoudre ce problème, nous avons implémenté trois approches : Mixed-Integer Linear programming_[7], SAT_[5] and Max-SAT_[9].

01. Introduction

02. Explications théoriques

- a. Algorithme de programmation linéaire
- b. SAT Solver
- c. MaxSAT Sovler
- 03. Performances
- 04. Conclusion

Mixed-Integer Linear Programming (MILP) with MaxSum optimum

Le vecteur de poids w et le seuil λ sont décrits par :

L'étudiant s valide-t-il le cours i ?

Si oui, on ajoute le poids du cours

Et on définit la marge de l'étudiant

$$w_i \in [0,1]$$

 $\lambda \in [0,1]$

SAT Solver : Deux classes/mentions (accepté et refusé).

$$\forall k' > k, \quad \alpha_{ki} \Rightarrow \alpha_{k'i} \text{ i.e. } \neg \alpha_{ki} \lor \alpha_{k'i}$$

$$\forall C \subset C', \quad \beta_C \Rightarrow \beta_{C'} \text{ i.e. } \neg \beta_C \vee \beta_{C'}$$

$$\forall C \subset \mathcal{N}, \quad \bigwedge_{i \in C} \alpha_{ki} \Rightarrow \neg \beta_C \text{ i.e. } \bigvee_{i \in C} \neg \alpha_{ki} \vee \neg \beta_C$$

$$orall C \subset \mathcal{N}, \quad igwedge_{i \in C}
eg lpha_{ki} \Rightarrow eta_{\mathcal{N} \setminus C} ext{ i.e. } \bigvee_{i \in C} lpha_{ki} ee eta_{\mathcal{N} \setminus C}$$

Croissance des notes

Majorité des coalitions

Étudiants acceptés

Étudiants refusés

SAT Solver: Nombre arbitraire de mentions/classes H.

$$\forall k' > k, \quad \alpha_{ki} \Rightarrow \alpha_{k'i} \text{ i.e. } \neg \alpha_{ki} \lor \alpha_{k'i}$$

$$\forall C \subset C', \quad \beta_C \Rightarrow \beta_{C'} \text{ i.e. } \neg \beta_C \vee \beta_{C'}$$

$$orall C \subset \mathcal{N}, \quad orall h \in H, \quad igvee_{i \in C} lpha_{a_i i h} ee eta_{\mathcal{N} \setminus C}$$

$$orall C \subset \mathcal{N}, \quad orall h \in H, \quad \bigvee_{i \in C}
eg lpha_{u_iih} ee
eg eta_C$$

$$\forall h' > h, \quad \neg \alpha_{kih} \Rightarrow \neg \alpha_{kih'} \text{ i.e. } \alpha_{kih} \vee \neg \alpha_{kih'}$$

Croissance des notes

Majorité des coalitions

Comparaison des alternatives avec la frontière inférieure

Comparaison des alternatives avec la frontière supérieure

Hiérarchie des mentions/classes

MaxSAT Solver: Nous formulons le problème d'optimisation relaxé consistant à trouver le sousensemble d'exemples d'apprentissage correctement restaurés de cardinalité maximale avec une approche de contrainte souple, en utilisant la formulation de weighted-MaxSAT [9].

$\forall k'>k,$	$lpha_{ki} \Rightarrow lpha_{k'i}$	i.e. $\neg \alpha_{ki} \lor \alpha_{k'i}$	W
$\forall C \subset C',$	$\beta_C \Rightarrow \beta_C$	C' i.e. $\neg \beta_C \vee \beta_{C'}$	W
$orall C\subset \mathcal{N},$	$\forall h \in H,$	$igvee_{i \in C} lpha_{a_i i h} ee eta_{\mathcal{N} \setminus C}$	W
$\forall C \subset \mathcal{N},$	$orall h \in H,$	$\bigvee_{i \in C} eg lpha_{u_i i h} ee eg eta_C$	W
$\forall h'>h,$	$ eg lpha_{kih} \Rightarrow eg$	$ eg lpha_{kih'} ext{ i.e. } lpha_{kih} ee eg lpha_{kih'}$	W

- **01.** Introduction
- 02. Explications théoriques
 - a. Algorithme de programmation linéaire
 - b. SAT Solver
 - c. MaxSAT Sovler

03. Performances

04. Conclusion

Benchmark Learning set de test

MacOS X 12.1 - Intel Core i5 CPU @3.1 GHz

8Go de RAM

Gophersat v1.3

Python3.8

decision-system-project

Nos trois implémentations marchent parfaitement sur les trois jeu de données d'exemple donnés.

- 6 critères
- 2 classes
- 50 à 100 exemples

Les données restent facilement exploitables avec ce volume là.

Method	Learning set	accuracy	f1-score	time (s)
	data6crit50e	100%	100%	0.81
MILP	data6crit75ex	100%	100%	1.15
	data6crit100ex	100%	100%	1.19
SAT	data6crit50e	100%	100%	0.06
	data6crit75ex	100%	100%	0.08
	data6crit100ex	100%	100%	0.05
MaxSAT	data6crit50e	100%	100%	0.09
	data6crit75ex	100%	100%	0.06
	data6crit100ex	100%	100%	0.05

Performances Capacité d'apprentissage

MacOS X 12.1 - Intel Core i5 CPU @3.1 GHz

8Go de RAM

Gophersat v1.3

Python3.8

decision-system-project

Résultats pour une classe:

Accuracy evolution depending on the number of criteria with 100 examples, 25 iterations

Formulations SAT/MaxSAT exactes MILP approché

Résultats en multi-classe:

Accurary & f1-score evolution depending on the number of categories with 250 exemples, 3 criteria, 25 iterations

Formulations SAT/MaxSAT exactes en multiclass

Performances Temps de calcul

MacOS X 12.1 - Intel Core i5 CPU @3.1 GHz

BGo de RAM

Gophersat v1.3

Python3.8

decision-system-project

Résultats en fonction du nombre de critères:

Time evolution depending on the number of criteria with 100 exemples, 25 iterations

MILP explose en runtime avec l'augmentation des paramètres

Résultats en fonction de la taille du learning set:

Time evolution depending on the size of the learning set with 3 criteria, 25 iterations

Formulation SAT reste la plus rapide

Performances Adaptation à des données bruitées

- MacOS X 12.1 Intel Core i5 CPU @3.1 GHz
- Python3.8
- decision-system-project

La formulation MaxSAT est celle qui permet de s'adapter au mieux au données bruitées afin de trouver un modèle NCS qui soit le plus proche de la réalité possible.

Avec des données bruités, la durée du MaxSAT augmente un peu mais reste inférieure à celle du MILP

- 01. Introduction
- 02. Explications théoriques
 - a. Algorithme de programmation linéaire
 - b. SAT Solver
 - c. MaxSAT Sovler
- 03. Performances
- 04. Conclusion

Conclusion

MILP	SAT	MaxSAT
 Facilement interprétable Prend en compte les données bruitées Garde de bonnes performances 	 Plus complexe dans la formulation Le plus rapide Score parfait (si jeu de données parfait) 	 Score parfait (si jeu de données parfait) Prend en compte les données bruités Garde de très bonnes performances
• Lent		

- Approché
- Non implémenté en multi-classe

Ne converge pas s'il y a du bruit • Un peu plus lent que le SAT

Références

- [1] D. Bouyssou, T. Marchant, An axiomatic approach to noncompensatory sorting methods in MCDM, I: The case of two categories, <u>European Journal of Operational Research</u>, 178(1):217–245,(2007).
- [2] D. Bouyssou, T. Marchant, An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories, <u>European Journal of Operational Research</u>, 178(1):246–276, (2007).
- [3] Eda Ersek Uyanik, Vincent Mousseau, Marc Pirlot, and Olivier Sobrie. Enumerating and categorizing positive boolean functions separable by a k-additive capacity. <u>Discrete Applied Mathematics</u>, 229:17-30, (2017).
- [4] Agnes Leroy, Vincent Mousseau, and Marc Pirlot. Learning the parameters of a multiple criteria sorting method. Algorithmic Decision Theory, 219-233, (2011).
- [5] Belahcene K., Labreuche C., Maudet N., Mousseau V., and Ouerdane, W. An efficient SAT formulation for learning multiple criteria non-compensatory sorting rules from examples, Computers & Operations Research, 97, 58–71, (2018).
- [6] K. Belahcene, C. Labreuche, N. Maudet, V. Mousseau, W. Ouerdane, and Y. Chevaleyre, 'Accountable approval sorting', in Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), (2018).
- [7] A. Leroy, V. Mousseau, and M. Pirlot, 'Learning the parameters of a multiple criteria sorting method', in <u>International Conference on Algorithmic Decision Theo</u>ry, pp. 219–233. Springer, (2011).
- [8] J. Berg, M. Järvisalo, R. Martins, Advances in Maximum Satisfiability, ECAl'20 Online, September 4, 2020.
- [9] A. Tlili, K. Belahcène, O. Khaled, V. Mousseau, W. Ouerdane, Learning Non-Compensatory Sorting models using efficient SAT/MaxSAT formulations, <u>European Journal of Operational Research</u>, August 2021

Appendix

Glossaire

NCS: Non compensatory sorting, The DM expresses preferences from which a specific NCS model is inferred

Inv-NCS: Inverse Non-Compensatory Sorting problem takes as input a set of assignment examples, and computes (whenever it exists) an NCS model which is consistent with this preference information.

MR-Sort: Majority Rule Sorting

MILP: Mixed-integer linear programming

SAT: solve the <u>Boolean satisfiability problem</u>

MaxSAT: Maxium Satisfiability