TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
FB, 07 jul 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] A expressão

Prof. Nelson Luís Dias

$$\mathcal{T}_m = \oint_{\mathcal{S}} \epsilon_{lim} r_l n_k T_{ki} \, dA = \oint_{\mathcal{S}} (\boldsymbol{n} \cdot \boldsymbol{v}) \, dA,$$

onde \mathscr{S} é uma superfície fechada que limita uma região \mathscr{C} do \mathbb{R}^3 , e $n = n_k e_k$ é o vetor unitário normal a \mathscr{S} apontando para fora em cada ponto, é um escalar.

- a) [15] Identifique o vetor v. Escreva-o da forma mais simples que você conseguir.
- b) [10] Agora aplique o teorema da divergência à expressão acima. Não é necessário calcular a divergência que vai aparecer.

SOLUÇÃO DA QUESTÃO:

a)

$$\boldsymbol{v} = \epsilon_{lim} r_l T_{ki} \boldsymbol{e}_k.$$

b)

$$\mathcal{T}_{m} = \oint_{\mathscr{S}} \epsilon_{lim} r_{l} n_{k} T_{ki} \, dA$$

$$= \int_{\mathscr{S}} \frac{\partial}{\partial x_{k}} \left(\epsilon_{lim} r_{l} T_{ki} \right) \, dV \, \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = 3x.$$

SOLUÇÃO DA QUESTÃO:

$$y = uv;$$

$$\frac{d(uv)}{dx} + \frac{uv}{x} = 3x;$$

$$u\frac{dv}{dx} + v\frac{du}{dx} + \frac{uv}{x} = 3x;$$

$$u\left[\frac{dv}{dx} + \frac{v}{x}\right] + v\frac{du}{dx} = 3x.$$

$$\frac{dv}{dx} + \frac{v}{x} = 0;$$

$$\frac{dv}{dx} = -\frac{v}{x};$$

$$\frac{dv}{v} + \frac{dx}{x} = 0;$$

$$\ln|v| + \ln|x| = c_1;$$

$$\ln|vx| = e^{c_1};$$

$$vx = \pm e^{c_1} = v_0;$$

$$v = \frac{v_0}{x}.$$

$$\frac{du}{dx} = \frac{3}{v_0}x^2;$$

$$u(x) = \frac{x^3}{v_0} + u_0;$$

$$y(x) = \left[\frac{x^3}{v_0} + u_0\right] \frac{v_0}{x};$$

$$y(x) = x^2 + \frac{C}{x}$$

3 [25] Usando obrigatoriamente variáveis complexas, integração de contorno e o teorema dos resíduos, calcule

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{2 - \sin\theta}.$$

Sugestão: faça a transformação de variável $z = e^{i\theta}$ e transforme a integral acima em uma integral sobre o círculo unitário no plano complexo envolvendo um polo.

SOLUÇÃO DA QUESTÃO:

Fazendo a substituição sugerida, se $z = e^{i\theta}$, quando θ vai de 0 a 2π , z percorre o círculo unitário C no plano complexo; então:

$$z = e^{i\theta},$$
$$dz = ie^{i\theta},$$
$$\frac{dz}{iz} = d\theta$$

e

$$z - \frac{1}{z} = e^{i\theta} - e^{-i\theta}$$
$$= 2i \operatorname{sen} \theta \Longrightarrow$$
$$\operatorname{sen} \theta = \frac{z^2 - 1}{2iz}.$$

Retornando à integral,

$$\int_0^{2\pi} \frac{d\theta}{2 - \sin \theta} = \oint_C \frac{1}{2 - \frac{z^2 - 1}{2iz}} \frac{dz}{iz}$$
$$= \oint_C \frac{-2dz}{z^2 - 4iz - 1}$$

O integrando possui dois polos, $z_1 = (2 - \sqrt{3})i$ e $z_2 = (2 + \sqrt{3})i$, mas apenas z_1 está dentro do círculo unitário. Portanto,

$$\oint_C f(z) dz = 2\pi i c_{-1}$$

$$= 2\pi i \lim_{z \to z_1} \left[(z - z_1) \frac{-2}{(z - z_1)(z - z_2)} \right]$$

$$= 2\pi i \frac{-2}{z - z_2} = \frac{2\pi}{\sqrt{3}}. \blacksquare$$

$$y^{\prime\prime} - x^3 y = 0$$

em torno de x=0 na forma $y_{1,2}(x)=\sum_{n=0}^{\infty}a_nx^n$. Para cada uma das duas soluções encontre obrigatoriamente os 4 primeiros termos. Note que x=0 é um ponto regular, e que não se trata de aplicar o método de Frobenius.

SOLUÇÃO DA QUESTÃO:

Compare com

$$y'' + p(x)y' + q(x)y = 0$$
:

Em x = 0, xp(x) = 0, é uma função analítica, e $x^2q(x) = x^5$ também. O ponto x = 0 é um ponto regular. Não se trata, portanto, de aplicar o método de Frobenius, mas sim de procurar uma solução em série simples,

$$y = \sum_{n=0}^{\infty} a_n x^n,$$

$$y' = \sum_{n=0}^{\infty} n a_n x^{n-1},$$

$$y'' = \sum_{n=0}^{\infty} (n-1) n a_n x^{n-2}.$$

Substituindo,

$$\sum_{n=0}^{\infty} (n-1)na_n x^{n-2} - \sum_{n=0}^{\infty} a_n x^{n+3} = 0.$$

Tente

$$m-2 = n+3 \Rightarrow m = n+5; n = 0 \Rightarrow m = 5:$$

$$\sum_{m=0}^{\infty} (m-1)ma_m x^{m-2} - \sum_{m=5}^{\infty} a_{m-5} x^{m-2} = 0,$$

$$\sum_{m=2}^{\infty} (m-1)ma_m x^{m-2} - \sum_{m=5}^{\infty} a_{m-5} x^{m-2} = 0,$$

$$2a_2 = 0 \Rightarrow a_2 = 0,$$

$$6a_3 x = 0 \Rightarrow a_3 = 0,$$

$$12a_4 x^2 = 0 \Rightarrow a_4 = 0,$$

$$\sum_{m=5}^{\infty} [(m-1)ma_m - a_{m-5}] x^{m-2} = 0.$$

Claramente, as constantes arbitrárias da solução geral são a_0 e a_1 . A relação de recorrência é

$$a_{m} = \frac{a_{m-5}}{(m-1)m} :$$

$$a_{5} = \frac{a_{0}}{20},$$

$$a_{10} = \frac{a_{0}}{1800},$$

$$a_{11} = \frac{a_{1}}{3300}$$

$$a_{15} = \frac{a_{0}}{378000},$$

$$a_{20} = \frac{a_{0}}{14364000},$$

$$a_{21} = \frac{a_{1}}{332640000}$$

A solução geral é

$$y(x) = a_0 \left[1 + x^5/20 + x^{10}/1800 + x^{15}/378000 + x^{20}/14364000 + \dots \right]$$

+ $a_1 \left[x + x^6/30 + x^{11}/3300 + x^{16}/792000 + x^{21}/332640000 + \dots \right]$