Roll No.

Total No. of Pages: 02

Total No. of Questions: 18

B.Tech. (CSE) (Sem.-5)

FORMAL LANGUAGE & AUTOMATA THEORY

Subject Code: BTCS-502-18

M.Code: 78321

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

Answer briefly:

- 1) If $A=\{a, b\}$ and $B=\{a, c\}$, Find A* U B*.
- 2) State Kleene's Theorem.
- 3) Find Regular Expression over {a,b} having set of all string containing exactly two a's.
- 4) Differentiate between type1 and type2 grammar.
- 5) State Arden's Theorem.
- 6) Describe PDA.
- 7) Differentiate between Injective and Surjective functions in a set.
- 8) Write the steps needed for proving that a given set is not regular.
- 9) Define Derivation Tree.
- 10) State Ambiguous grammar with example.

SECTION-B

- 11) Describe pumping lemma for regular set with the help of an example.
- 12) Prove that string represented by following transition system is

(a + a(b + aa)*b)* a(b + aa)*a.

13) Find a reduced grammar equivalent to the given grammar.

 $S \rightarrow AB$

 $A \rightarrow a$

 $B \rightarrow b$

 $B \rightarrow C$

 $E \rightarrow c$

- 14) What are the different types of Grammars and Languages associated with it.
- 15) Discuss the Universality of Cellular Automata.

SECTION-C

16) Find a grammar in GNF equivalent to the grammar.

 $E \rightarrow E + T \mid T$

 $T \rightarrow T * F \mid F$

 $F \rightarrow (E) \mid a$

- 17) Discuss the various representations of Turing Machine.
- 18) Design PDA for $\{wcw^T \mid w = \{a,b\}^*\}$

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.