Examen¹ la algebră, anul I, sem. I, informatică (subiect de examen pentru studenții din anul I) 09.09.2020

Numele și prenumele	•••••	•••••
Grupa		

Problema 1. Fie $\sigma = (1 \ 3)(2 \ 4) \in S_4$.

- (1) Determinați soluțiile ecuației $x^2 = \sigma, x \in S_4$. (5 pct.)
- (2) Determinați soluțiile ecuației $x^3 = \sigma, x \in S_4$. (5 pct.)
- (3) Aflați numărul de elemente din $H = \langle \sigma \rangle$ (subgrupul generat de σ în S_4). (5 pct.)
- (4) Aflați indicele lui H în S_4 . (5 pct.)
- (5) Arătați că H nu este subgrup normal în S_4 . (5 pct.)
- (6) Determinați cel mai mic subgrup normal al lui S_4 care-l conține pe H. (5 pct.)

Problema 2. Fie $a, b \in \mathbb{Z}$ cu $a \neq b$. Fie includ $\mathbb{Z}[X]$ şi I submulţimea sa formată din toate polinoamele f cu proprietatea că f(a) = f(b) = 0.

- (1) Demonstrați că I este un ideal al lui $\mathbb{Z}[X]$. (5 p.)
- (2) Este I ideal principal? Justificați. (5 p.)
- (3) Determinați elementele nilpotente ale inelului $\mathbb{Z}[X]/I$. (5 p.)
- (4) Arătați că inelul $\mathbb{Z}[X]/I$ are idempotenți netriviali (adică diferiți de 0 și 1) dacă și numai dacă |a-b|=1. (10 p.)
- (5) Arătați că $(X a) + (X b) = \mathbb{Z}[X]$ dacă și numai dacă |a b| = 1. (5 **p.**)
- (6) Arătaţi că are loc izomorfismul de inele unitare $\mathbb{Z}[X]/I \simeq \mathbb{Z} \times \mathbb{Z}$ dacă şi numai dacă |a-b|=1. (5 **p.**)

Problema 3. Fie polinomul $P(X) = X^3 + nX - 2$, $n \in \mathbb{Z}$. Studiați ireductibilitatea lui P, în funcție de n, peste fiecare din corpurile $\mathbb{Q}, \mathbb{Z}_2, \mathbb{Z}_3$, iar în cazurile în care polinomul este reductibil descompuneți-l în factori ireductibili. Justificați răspunsurile. (30 pct.)

¹Toate subiectele sunt obligatorii. Se acordă 5 puncte din oficiu. Timp de lucru 3 ore. Succes!