

Revisão Lógica de Programação

Maurício Manoel mauriciomanoel@gmail.com https://github.com/mauriciomanoel/ete-webdesign 26 de março de 2018

Amanda é aluna da ETE Limoeiro.

Para ser aprovado, um aluno da **ETE Limoeiro** precisa obter nota maior ou igual a

6 e comparecer a mais de 75% das aulas.

Amanda compareceu a todas as aulas e obteve nota igual a 8.

Então, o que podemos concluir?

Sejam os seguintes fatos:

Todos os filhos de João são mais altos do que Maria.

Antônio é filho de João.

Então, o que podemos concluir logicamente?

Antônio é mais alto que Maria Maria é mais baixa que João Maria é a mais baixa de todos os filhos

Introdução

Lógica

Utilizamos a lógica de forma natural em nosso dia a dia, então...

O que é lógica?

Lógica

- Pode ser vista como a arte de pensar corretamente. A lógica visa a colocar ordem no pensamento (FARRER, 1999);
- Ciência que estuda as leis do raciocínio;
- Correção/validação do pensamento;
- Encadeamento/ordem de ideias;
- Arte de pensar bem.

Raciocínio Lógica

- Precisamos mais do que fórmulas, precisamos APRENDER A PENSAR!
- É preciso aprender a pensar sobre o problema, extraindo o máximo de informações sobre ele;
- > Lógica ensina a colocar ordem no pensamento.

Lógica de Programação

- Permite o APERFEIÇOAMENTO de nossa forma de pensar e raciocinar sobre um PROBLEMA computacional, afim de obter uma solução eficaz e/ou eficiente;
- A lógica de programação é NECESSÁRIA para pessoas que desejam trabalhar com desenvolvimento de sistemas e programas, ela permite definir a SEQUENCIA LÓGICA para o desenvolvimento.

Sequencia Lógica

- São passos executados até atingir um OBJETIVO ou SOLUÇÃO de um problema, Por exemplo: Preparar um Café:
- Sequencia de passos para a solução:
 - 1. Encher a chaleira com água
 - 2. Colocar a chaleira para ferver
 - 3. Colocar duas colheres de sopa de pó de café no coador
 - 4. Aguarde a água ferver
 - 5. Acrescente a água ao pó aos poucos
 - 6. Aguarde coar
 - 7. Adoce a gosto

Dúvidas

Algoritmos

Definição

- Formalmente é uma sequência FINITA DE PASSOS que levam à EXECUÇÃO DE UMA TAREFA. Pensar em algoritmo como uma receita, uma SEQUÊNCIA DE INSTRUÇÕES que busca atingir um OBJETIVO BEM DEFINIDO (FORBELLONE et al., 2005);
- Ao definir uma sequência de passos é necessário PENSAR ORDENADAMENTE, utilizar lógica;
- O objetivo fundamental de toda PROGRAMAÇÃO é construir ALGORITMOS;
- Ao criar um algoritmo, apenas APONTAMOS uma SEQUÊNCIA DE ATIVIDADES que levam à SOLUÇÃO DE UM PROBLEMA.

Algoritmos

Ajuda a resolver problemas...

Ensinar a maquina como resolver problemas...

Fases da Programação

Regras para Criação do Algoritmo

- Ter início e fim;
- Usar somente um verbo por frase;
- Imaginar que você está desenvolvendo um algoritmo para pessoas que não trabalham com informática;
- Usar frases curtas e simples;

Regras para Criação do Algoritmo

- Problema: Trocar uma lâmpada.
- Sequencia de passos para a solução:
 - 1. Pegue uma escada;
 - 2. Posicione a escada embaixo da lâmpada;
 - 3. Pegue uma lâmpada nova;
 - 4. Suba na escada;
 - 5. Retire a lâmpada velha;
 - 6. Coloque a lâmpada nova.

Revisão Constantes e Variáveis

Constantes

É um valor fixo, não muda durante a execução de um programa;

"São valores que não se alteram."

Constantes

Características

- São imutáveis;
- Não podem ser alteradas durante uma execução;
- Geralmente são representadas em CAIXA ALTA.
- PI = 3.14159265
- > VALOR_MAX = 100

Variáveis

- Um espaço reservado na memória do computador para armazenar algum tipo de dado;
- Valores modificáveis;
- Armazena um valor a cada instante;
- Devem ser declaradas antes de serem utilizadas: Geralmente no início do programa.
- Programadores geralmente escolhem nomes para variáveis que são significativos.
- > Eles documentam para o que a variável é usada.

Memória —→

Variáveis

Dados Cadastrais

Nome: João Guilherme

Idade: 30

Endereço: Rua João Pinho, 123

Peso: 85,5

Altura: 1,90

IMC: 23,7

Dúvidas

- Declarar uma variável significa definir o seu tipo e seu nome;
- Devem ser declaradas antes de seu uso no programa, geralmente no topo;
- Duas variáveis não devem ter o mesmo nome;

Declaração

Regras para Variáveis

- Nunca comece com números;
- Não é permitido o uso de espaços em branco, acentos ou caracteres especiais;
- Não é permitido utilizar palavras reservadas;
- Geralmente começam com um caractere alfabético;
- Geralmente são escritas em minúsculo;
- Só são permitidos caracteres alfanuméricos ou sublinhado (_).

Declaração

Regras para Constantes

Segue todas as regras para variáveis, exceto que são escritas em CAIXA ALTA.

- Podem ser basicamente de três tipos:
 - Numéricas;
 - Caracteres;
 - Lógicas.

Numéricas

- Podem ser divididos em dois conjuntos:
 - ► Inteiro → Podem ser positivos, negativos ou nulos, mas não possuem componente decimal:
 - > 5; -9; 0; 189; -800.
 - ▶ Ponto Flutuante → Podem ser positivos, negativos ou nulos, e possuem componente decimal:
 - > 5,89; -6,8978; 0; 7,986; -1458,252.

Caracteres ou Literais

- Composto por letras e números (alfanuméricos);
- Escrito entre aspas: A = "Texto"
- Não confundir A com "A"

A é a variável A

"A" é o literal A

A = "Minha Casa a Lua 37"

Lógicas

- Dados que assumem apenas dois valores:
 - Verdadeiro (True);
 - > Falso (**False**).

Estes valores também são chamados de booleanos.

Dados Cadastrais

Nome: João Guilherme

Idade: 30

Endereço: Rua João Pinho, 123

Peso: 85,5 Altura: 1,90 IMC: 23,7

Peso Ideal: () Sim () Não

IMC - Índice de Massa Corporal	HOMEM	MULHER
Obesidade Mórbida	+ de 43	+ de 39
Obesidade Moderada	30 a 39,9	29 a 38,9
Obesidade Leve	25 a 29,9	24 a 28,9
Normal	20 a 24,9	19 a 23,9
Abaixo do Normal	- de 20	- de 19

Em Java?

Atribuição

- É o processo de "colocar os dados nas caixas".
- É utilizado o operador de atribuição (=);
- O que está à esquerda do operador é o identificador;
- > O que está à direita do operador é o valor;
- VALOR_MAX = 100
- nome = "Luiz Augusto"

Atribuição

- Variável = expressão
- Exemplo:
 - > A = verdadeiro
 - \rightarrow B = 5 * 3
 - C = A e B
 - D = B * A 2 > 4
- > A atribuição é a operação que modifica o valor de uma variável.
- É importante notar que se atribui o resultado da expressão a variável e não a expressão em si.

Lógicos

Não (NOT) E (AND) Ou (OR)

- Operadores lógicos são utilizados para modificar valores como verdadeiro e falso, criando expressões lógicas;
- O resultado das operações é definido pelas chamadas tabelasverdade de cada operador;
- Expressão avaliada da esquerda para a direita

Lógicos

Operação	Resultado
a E b	VERDADEIRO se ambas as partes (a e b) forem verdadeiras
a OU b	VERDADEIRO se apenas uma das partes (a ou b) é verdadeira.
NAO a	Nega uma afirmação, invertendo o seu valor lógico: se a for VERDADEIRO retorna FALSO, se a for FALSO retorna VERDADEIRO.

Tabela Verdade

а	b	a E b	a OU b	NAO a	NAO b
V	V	V	V	F	F
V	F	F	V	F	V
F	V	F	V	V	F
F	F	F	F	V	V

Operadores

Tabela Verdade: Exercício

- Sendo A verdadeiro e B falso, resolva:
 - A) A E B
 - > B) B E NÃO A
 - > C) A OU B
 - > D) (A E B) ou NÃO B
 - > E) NÃO A
 - > F) NÃO B

Em Java?

Tipos de Dados


```
public class ExemploOperador {
    public static void main(String[] args)
        boolean a = true;
        boolean b = false:
        System.out.println(a && b);
        System.out.println(a && !b);
        System.out.println(a | | b);
        System.out.println((a && b) || !b);
        System.out.println(!a);
        System.out.println(!b);
```

Constantes e Variáveis

Material para Complementação

- > JAVA 006 Variáveis e Sintaxe: https://youtu.be/jLbnH968gtk
- JAVA 009 Constantes e Modificador final: https://youtu.be/lwLR8kDLXT0
- JAVA 007 Tipos Primitivos: https://youtu.be/1v0heZtQnll
- > JAVA 013 Operadores: https://youtu.be/1chFYRNRI71
- JAVA 016 Operadores Lógicos: https://youtu.be/CgtskFPE-RA
- JAVA 017 Operadores de Atribuição: https://youtu.be/EiWgZeVGrl0

Revisão Instruções de Decisão (Condicionais)

- Problemas reais, em sua maioria, exigem uma TOMADA DE DECISÃO no algoritmo;
- Geralmente, é possível seguir mais de um caminho.

Introdução

Algoritmo: Narrativa - Estrutura de Decisão

- Trocar uma Lâmpada
 - > 1. pegar uma escada
 - > 2. posicionar a escada embaixo da lâmpada
 - > 3. buscar uma lâmpada nova
 - > 4. acionar o interruptor
 - > 5. **SE** a lâmpada não acender, **ENTÃO**
 - > 5.1 subir na escada
 - > 5.2 retirar lâmpada queimada
 - > 5.3 colocar lâmpada nova

Quando Usar as Instruções de Decisão?

- Quando queremos que uma CONDIÇÃO SEJA ANALISADA;
- Caso esta CONDIÇÃO SEJA VERDADEIRA, UM COMANDO será executado;
- Caso esta CONDIÇÃO SEJA FALSA, OUTRO COMANDO será executado.
- Os principais comandos das estruturas condicionais (ou de seleção) são:
 - > if / If ... else
 - Switch/Case

Em Java?

Estrutura switch-case

Estrutura switch-case

```
break é opcional: seu uso faz
                                com que a execução pare no
                                     caso escolhido
switch( opção )
    case opção1:
            comandos para opção 1 seja escolhida
            break
    case opção2:
            comandos caso a opção 2 seja escolhida
    case opção3:
            comandos kaso a opção 3 seja escolhida
    default
            comandos caso nenhuma opção seja
escolhida
```


Estrutura switch-case

```
public class ExemploSwitch {
    public static void main(String[] args) {
        int diaDaSemana = 1:
        switch (diaDaSemana) {
            case 1:
                System.out.println("Domingo");
                break:
            case 2:
                System.out.println("Segunda-feira");
                break:
            case 3:
                System.out.println("Terca-feira");
                break:
```


Material para Complementação

> JAVA - 023 - if else: https://youtu.be/E4JZ8leWhkA

> JAVA - 024 - switch: https://youtu.be/NnsGEY2cnQ8

Revisão Estrutura de Repetição

Introdução

- Como fazer a leitura de 2 números e informar a média entre eles?
- Como fazer a leitura de 4 números e informar a média entre eles?
- Como fazer a leitura de 8 números e informar a média entre eles?
- Como fazer a leitura de n números e informar a média entre eles?

- Há situações em que temos que trabalhar com a mesma informação várias vezes, no mesmo algoritmo;
- Se uma ação se repete várias vezes, podemos, na maioria dos casos, utilizar uma estrutura de repetição, e poupar linhas e tempo.

Há três Principais

- Repetição com teste inicial: enquanto... faça
- Repetição com teste final: repita... ate
- Repetição controlada: para... ate... faça

Repetição com Teste Inicial

Repetição com Teste Final

Repetição Controlada


```
public class EstruturaRepeticao {
   public static void main(String[] args) {
        int i = 0;
       // Exemplo: Estrutura de Repetição - Teste Incial
        System.out.println("Estrutura de Repetição - Teste Inicial");
       while(i<10) {
            System.out.println(i);
            1++;
        System.out.println("Estrutura de Repetição - Teste Final");
        i = 0;
        do {
            System.out.println(i);
            1++;
        }while(i<10);
        System.out.println("Estrutura de Repetição - Repetição Controlada");
        for(i=0;i<10;i++) {
            System.out.println(i);
```

Estrutura de Repetição

Material para Complementação

- JAVA 027 foreach: https://youtu.be/jMV0yzy83-l
- > JAVA 028 while, do while: https://youtu.be/XfIXOm-5BXg
- > JAVA 026 for: https://youtu.be/fGXNBqP3RnM

Revisão Vetores

- Faça um programa para auxiliar a escrever "Parabéns!" nas melhores provas de uma disciplina com 3 alunos
 - Ler os nomes e as notas de 3 alunos
 - Calcular a média da turma
 - Listar os alunos que tiveram nota acima da média

Introdução


```
aluno1 = input ("Entre com o nome do Aluno 1: ")
aluno2 = input ("Entre com o nome do Aluno 2: ")
aluno3 = input("Entre com o nome do Aluno 3: ")
nota1 = float(input("Informe a nota de " + aluno1 + ": "))
nota2 = float(input("Informe a nota de " + aluno2 + ": "))
nota3 = float(input("Informe a nota de " + aluno3 + ": "))
media = (nota1+nota2+nota3)/3
print ("Media da turma foi ", media)
if (notal>media):
    print ("Parabéns ", aluno1)
if (nota2>media):
    print ("Parabéns ", aluno2)
if (nota3>media):
   print ("Parabéns ", aluno3)
```


Calcule agora para 40 pessoas

Vetores

- Variável composta unidimensional
 - Contém espaço para armazenar diversos valores
 - É acessada via um índice
- Ou seja, é um conjunto ordenado de informações, onde o índice do array começa com zero.


```
public class ExemploVetor {
   public static void main(String[] args) {
      double[] notas = {7, 5, 6, 7, 8, 8, 6, 5};

      System.out.println(notas[7]);
}
```

Estrutura de Repetição

Material para Complementação

> JAVA - 020 - Array: https://youtu.be/XRMQR0H8NJU

Universidade XTI:

https://www.youtube.com/playlist?list=PLxQNfKs8YwvGhXHbHtxtoB-tRRv6r3Rlr