离散数学

Discrete Mathematics

吴梅红

厦门大学计算机科学系

E-mail: wmh@xmu.edu.cn

6.4 群的直积与同态

■ 群的积代数就是群的直积。

定义 6.11 设<
$$G_1$$
, *>, < G_2 , °>是群, 在 $G_1 \times G_2$ 上定义 运算·如下: \forall < a_1 , b_1 >, < a_2 , b_2 > \in $G_1 \times G_2$,
< a_1 , b_1 >·< a_2 , b_2 > $=$ < a_1 * a_2 , b_1 ° b_2 >,
则 $G_1 \times G_2$ 关于·运算构成群, 称为 $G_1 \times G_2$ 的直积。
例 6.20 设 G_1 = < Z_6 , \oplus >, G_2 = < Z , +>,
则 $G_1 \times G_2$ = < $Z_6 \times Z$, *>, 且有 << A_1 , A_2 = < A_2 = < A_3 = < A_4 = < A_4 = < A_5 > * < A_5 = < A_4 = < A_4 = < A_5 > * < A_5 = < A_4 = < A_5 > * < A_5 = < A_5

定义 6.12 设< G_1 , *>, < G_2 , °>是群, $f: G_1 \to G_2$,

如果 $\forall a, b \in G_1$, 都有

$$f(a * b) = f(a) \circ f(b)$$

成立,则称f是G1到G2的同态映射,简称同态。

- 如果同态映射f 是单射, 称为单同态;
- 如果是满射,则称为满同态;
- 如果是双射,则称为同构。

例 6.21 (1) 设 $G = \langle Z, + \rangle$, $f : Z \rightarrow Z$, f(x) = kx, 其中k为整数, 那么 \forall a, b \in Z, 有 f(a + b) = k(a + b) = ka + kb = f(a) + f(b), 因此, f为G的自同态。

- 当k = 0时, f 将所有元素映射到单位元, 称为零同态;
- 当k = ±1时, f 为双射, 是同构;
- 而对于其他的整数k, f 是单同态。■

例 6.21(2)设G = $\langle Z_n, \oplus \rangle$, $\oplus \rangle$ 模n加法, $f_p: Z_n \to Z_n$, $f_{p}(x) = (px) \mod n, p = 0, 1, ..., n-1, 则 <math>\forall a, b \in Z_{n}, 有$ $f_p(a \oplus b) = (p(a \oplus b)) \mod n = (pa \oplus pb)) \mod n$ = (pa) mod n \oplus (pb) mod n = $f_p(a) \oplus f_p(b)$. f 为自同态。例如n = 6, $G = \langle Z_n, \Theta \rangle$ 有6个自同态如下: $f_0 = \{<0, 0>, <1, 0>, <2, 0>, <3, 0>, <4, 0>, <5, 0>\};$ $f_1 = \{<0, 0>, <1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>\};$ $f_2 = \{<0, 0>, <1, 2>, <2, 4>, <3, 0>, <4, 2>, <5, 4>\};$ $f_3 = \{<0, 0>, <1, 3>, <2, 0>, <3, 3>, <4, 0>, <5, 3>\};$ $f_4 = \{<0, 0>, <1, 4>, <2, 2>, <3, 0>, <4, 4>, <5, 2>\};$ $\mathbf{f}_5 = \{<0, 0>, <1, 5>, <2, 4>, <3, 3>, <4, 2>, <5, 1>\} \underline{\mathscr{Q}} \ \mathbf{f}_1 \ .$

例 6.21(3) 设 $G_1 = \langle Z, + \rangle, G_2 = \langle Z_n, \oplus \rangle, f: Z \to Z_n$ $f(x) = (x) \mod n$, 则 $\forall a, b \in Z$, 有 $f(a + b) = (a \oplus b) \mod n$ = (a) mod n \oplus (b) mod n $= \mathbf{f}(\mathbf{a}) \oplus \mathbf{f}(\mathbf{b})$. f是G1到G,的满同态。 例 6.21(4) 设 $G_1 = \langle R, + \rangle, G_2 = \langle R^*, \cdot \rangle, f: R \rightarrow R^*,$ $f(x) = e^x$, 则 $\forall a, b \in R$, 有 $\mathbf{f}(\mathbf{a} + \mathbf{b}) = \mathbf{e}^{\mathbf{a} + \mathbf{b}} = \mathbf{e}^{\mathbf{a}} \cdot \mathbf{e}^{\mathbf{b}}$ $= \mathbf{f}(\mathbf{a}) \cdot \mathbf{f}(\mathbf{b})$

f 为 G_1 到 G_2 的单同态。 ■

定理 6.10 设f 是群G1 到G2 的同态映射,则

(1) $f(e_1) = e_2$, 其中 e_1 和 e_2 分别是 G_1 和 G_2 的单位元。

证明(1) $f(e_1)f(e_1) = f(e_1e_1) = f(e_1) = f(e_1)e_2$, 由消去律得 $f(e_1) = e_2$ 。

(2) $\forall x \in G_1, f(x^{-1}) = f(x)^{-1}$.

证明(2) $f(x) f(x^{-1}) = f(xx^{-1}) = f(e_1) = e_2$, $f(x^{-1})f(x) = f(x^{-1}x) = f(e_1) = e_2$ 。故 $f(x^{-1}) = f(x)^{-1}$ 。

(3) 设 $H \leq G_1$, 那么 $f(H) \leq G_2$ 。

证 $e_2 \in f(H)$, f(H)非空。 $\forall a, b \in f(H)$, \exists 对应的 $x, y \in H$, 使得 f(x) = a, f(y) = b, $xy^{-1} \in H$, 从而有 $ab^{-1} = f(x)f(y^{-1}) = f(xy^{-1}) \in f(H)$, 即 $f(H) \leq G_2$ 。

例 6.22 设 $G_1 = \langle Q^*, \bullet \rangle$, $G_2 = \langle Q, + \rangle$,

则不存在 G_1 到 G_2 的同构。 其中 $Q^* = Q - \{0\}$ 。

证 假设 存在同构, $f: Q^* \rightarrow Q$,

则 f(1) = 0。

由此得 f(-1) + f(-1) = f((-1)(-1)) = f(1) = 0。

于是有 2f(-1) = 0, f(-1) = 0

与f是双射矛盾。