排序

快速排序:比较次数

时间究竟是什么 假使人家不问我,我像很明了 假使要我解释起来,我就茫无头绪 邓俊辉 deng@tsinghua.edu.cn

递推分析(1/2)

k G

- **◇ 记期望的比较次数为** T(n) : T(1) = 0, T(2) = 1, ...

$$T(n) = (n-1) + \frac{1}{n} \cdot \sum_{k=0}^{n-1} [T(k) + T(n-k-1)] = (n-1) + \frac{2}{n} \cdot \sum_{k=0}^{n-1} T(k)$$

$$n \cdot T(n) = n \cdot (n-1) + 2 \times \sum_{k=0}^{n-1} T(k)$$

$$(n-1) \cdot T(n-1) = (n-1) \cdot (n-2) + 2 \times \sum_{k=0}^{n-2} T(k)$$

递推分析(2/2)

. k

$$n \cdot T(n) - (n-1) \cdot T(n-1) = 2 \cdot (n-1) + 2 \times T(n-1)$$

$$n \cdot T(n) - (n+1) \cdot T(n-1) = 2 \cdot (n-1)$$

$$\frac{T(n)}{n+1} - \frac{T(n-1)}{n} = \frac{4}{n+1} - \frac{2}{n}$$

$$\frac{T(n)}{n+1} = \frac{T(n)}{n+1} - \frac{T(1)}{2} = 4 \cdot \sum_{k=2}^{n} \frac{1}{k+1} - 2 \cdot \sum_{k=2}^{n} \frac{1}{k} = 2 \cdot \sum_{k=1}^{n+1} \frac{1}{k} + \frac{2}{n+1} - 4 \approx 2 \cdot \ln n$$

$$T(n) \approx 2 \cdot n \cdot \ln n = (2 \cdot \ln 2) \cdot n \log n \approx 1.386 \cdot n \log n$$

后向分析

- **◇** 设经排序后得到的输出序列为: $\{a_0, a_1, a_2, \ldots, a_i, \ldots, a_j, \ldots, a_{n-1}\}$ 这一输出结果与具体使用何种算法无关,故可使用Backward Analysis
- $m{\circ}$ 比较操作的期望次数,应等于 $T(n) = \sum_{i=1}^{n-1} \sum_{i=0}^{j-1} Pr(i,j)$ 每一对元素 $\langle a_i, a_j \rangle$ 在排序过程中接受比较之概率的总和:
- ❖ quickSort()的计算过程及实质结果,可理解为:按某种次序,逐个将各元素确认为pivot
 - 1. 若 $k \in [0,i) \cup (j,n)$,则 a_k 早于或晚于 a_i 和 a_j 成为pivot ,与Pr(i,j) 无关
 - 2. 实际上: $\langle a_i, a_j \rangle$ 接受比较, 当且仅当

在 $\{a_i, a_{i+1}, a_{i+2}, \ldots, a_{j-2}, a_{j-1}, a_j\}$ 中, a_i 或 a_j 率先被确认

$$T(n) = \sum_{j=1}^{n-1} \sum_{i=0}^{j-1} Pr(i,j) = \sum_{j=1}^{n-1} \sum_{d=1}^{j} \frac{2}{d+1} \approx \sum_{j=1}^{n-1} 2 \cdot (\ln j - 1) \le 2 \cdot n \cdot \ln n$$

对比

	#compare	#move (对实际性能影响更大)
Quicksort	平均 Ø (1.386*nlogn) 且高概率接近	平均不超过 Ø (1.386*nlogn) 且实际更少
Mergesort	严格 6 (1.00*nlogn)	严格 6 (1.00*nlogn) 实际往往加倍