Первый курс, весенний семестр Практика по алгоритмам #15: Теория Чисел

Contents

Новые задачи

1. Числа

- а) За сколько можно посчитать $\varphi(m)$?
- b) Посчитайте $a_1^{a_3^{a_3^{\dots a_n}}} \mod m$.
- с) Зная, что простых чисел $p\leqslant n$ всего $\Theta(\frac{n}{\log n})$, оцените количество чисел вида $p^k\leqslant n$.

2. Решето Эратосфена

- а) Докажите оценку времени работы $\mathcal{O}(n \log \log n)$.
- b) Используя решето Эратосфена, найдите все простые числа от n^2 до n^2+n за $\mathcal{O}(n\log\log n)$.
- c) Найдите все простые от 1 до n за $\mathcal{O}(n \log \log n)$, используя \sqrt{n} памяти.

3. Применяем решето

Для каждого числа от 1 до n найти

- а) Количество различных простых делителей
- b) Количество делителей
- с) Сумму делителей
- d) Функцию Мёбиуса

4. **RSA**

RSA – криптосистема с открытым ключом. $n, d, e : de \equiv 1 \pmod{\varphi(n)}$.

(n,e) – открытый ключ. (n,d) – закрытый ключ.

Кодирование: $m \to m^e \pmod{n}$.

Декодирование: $m^e \equiv y \to y^d \equiv m \pmod{n}$.

- а) Пусть n простое, взломайте RSA.
- b) Пусть известно $\varphi(n)$, взломайте RSA.
- с) Пусть n = pq, известно $\varphi(n)$, разложите n на множители.
- d) Пусть у нас есть "волшебный" оракул. Для любого открытого ключа (n, e) оракул может взломать 1% из всех возможных зашифрованных сообщений. Придумайте алгоритм, который взламывает любое сообщение. Матожидание времени работы $\mathcal{O}(poly(\log n))$.

5. Расширенный Евклид

- а) Докажите, что в строке $ax_i + by_i = r_i$: $(x_i, y_i) = 1$
- b) Докажите, что max $|x_i| \leqslant |b|$ и max $|y_i| \leqslant |a|$
- с) Найдите класс решений диофантового уравнения $ax \equiv b \pmod{m}$
- d) Найдите $x, y \colon ax + by = c, |x| + |y| \to \min$

6. (*) Магия

Поймите, что делает код:

```
f[1] = 1;
for (int i = 2; i < p; i++)
f[i] = (p - f[p % i]) * (p / i) % p;
```

Домашнее задание

Обязательная часть

1. (3) Подсчёт p^{α} в лоб.

Пусть p[x] – минимальный простой делитель x, мы его уже насчитали за $\mathcal{O}(n)$, запустив решето Эратосфена. $\alpha[x]$ – степень вхождения p[x] в x. Докажите, что код 'for (x=2; x<=n; x++) alpha[x] = 0; for (y = x; p[y] == p[x]; y /= p[x]) alpha[x]++; ' так же работает за $\mathcal{O}(n)$.

2. (3) Взлом RSA при малой |p-q|.

Пусть известно, что $n=pq, |p-q|\leqslant 10^6$. Взломайте RSA-ключ (n,e).

3. (3) Взлом RSA при малом d.

Пусть известно, что $d \leq 10^6$, n произвольно. Взломайте RSA-ключ (n, e).

4. (3) $\varphi(n)$ на отрезке.

Для каждого $x \in [l..r]$ посчитать $\varphi(x)$ за $\mathcal{O}(r)$.

5. (3) $\varphi(n)$ на отрезке.

Для каждого $x \in [1..n]$ построить vector<int> divisors[x].

Оценить время работы решения, доказать оптимальность.

Существует простое решение в три строчки кода.

Дополнительная часть

1. (5) $\pi(n)$ для больших n.

 $\Phi(n,d)$ – количество чисел от 1 до n, все простые делители которых больше d. $\pi(n)$ – количество простых от 1 до n. С помощью решета Эратосфена мы умеем считать $\pi(n)$ за $\mathcal{O}(n)$. Можно быстрее. Эта задача даёт вам подсказку и предлагает придумать алгоритм. $\pi(n) = \Phi(n, \sqrt{n})$. p_i – i-е простое. $\Phi(n, p_{i+1}) = \Phi(n, p_i)$ – #{числа кратные p_i } = $\Phi(n, p_i)$ – $\Phi(\frac{n}{p_i}, p_i)$. Это реккурентная формула пересчёта. Осталось добавить правильную базу и доказательство. Баллы будут ставиться за любое решение за $\mathcal{O}(n^{1-\varepsilon})$. Существует решение за $\mathcal{O}(n^{2/3})$.

2. **(5)** $\binom{n}{k}$ mod m.

Рассмотрим алгоритм подсчёта $\binom{n}{k}$ mod m за $\mathcal{O}(n\log m) + \text{FACT}(m)$. Разложим $m = \prod_i p_i^{\alpha_i}$. $\binom{n}{k} = \frac{n!}{k!(n-k)!} \equiv \frac{f_p(n)}{f_p(k)f_p(n-k)} p^{cnt_p(n)-cnt_p(k)-cnt_p(n-k)}$ mod p^{α} . Далее используем КТО. Слабое место этого алгоритма – факторизация. Придумайте аналог за $\mathcal{O}(poly(n,\log m))$.