目录

1	数学符号汇总!	2
2	行内公式	2
3	行间公式	2
4	自动编号公式 equation	3
5	不自动编号公式 equation*	3
6	定理环境	3
7	上标下标	3
8	希腊字母	3
9	数学函数	3
10	分式	3
11	多行公式	4
12	矩阵	4
13	复杂公式例子	5
14	和分	5

Math Type

Wilson79

2019年11月15日

$$f(x) = \frac{1}{\sqrt{2\pi\sigma x}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

1 数学符号汇总!

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \lim_{x \to 0+} x^2 + x$$

 \geq

 \leq

 \neq

 \sim

 ε

 \forall

 \exists

 \Rightarrow

|x|

||x||

 $\sin x$

{

d d

 \rightarrow

 $\sum_{i=1}^{n}$

 $=\! o+p+q+r+s$

=t+u+v+x+z

2 行内公式

我们来看公式 a+b=2

3 行间公式

$$a^2 = b^2 + c^2$$

$$a^2 = b^2 + c^2$$

$$a^2 = b^2 + c^2$$

4 自动编号公式 equation

$$c^2 = b^2 + d^2 (1)$$

详见公式 2

$$c^2 = b^2 + d^2 (2)$$

$$c^2 = b^2 + d^2 (*)$$

5 不自动编号公式 equation*

$$d^2 = a^2 + c^2$$

$$d^2 = a^2 + c^2$$

6 定理环境

证明. For simplicity, we use

$$E = mc^2$$

That's it.

7 上标下标

$$3x^{x_{20}+3} - x + 2 = 0$$

$$\beta_0, a_1, ..., a_{100}$$

8 希腊字母

$$\alpha \pi \beta \gamma$$
$$\beta^2 = 16$$

9 数学函数

$$\begin{split} \log \sin &\arccos x \, \ln x \\ \sin^2 x + \cos^2 x &= 1 \, \log_2 x \\ \sqrt{x^2 + y^2} \, \sqrt{2 + \sqrt[3]{9}} \end{split}$$

10 分式

大约是原体积的 3/4 大约是原体积的 $\frac{3}{4}$ $\frac{\sqrt{x-1}}{\sqrt{x+1}}$ $\sqrt{\frac{x}{x^{11}-x+3}}$

11 多行公式

$$a = b + c$$

$$= d + e$$

$$a + b + c + d + e + f + g + h + i$$

$$= j + k + l + m + n$$

$$= o + p + q + r + s$$
(3)

12 矩阵

$$a + b + c \quad \frac{1}{3} \begin{vmatrix} 2 \\ 3 \end{vmatrix} 4 \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & \dots & 5 \\ & \ddots & \vdots \\ 1 & & 2 \end{bmatrix}_{n \times n}$$

=t+u+v+x+z

复数 z = (x, y) 也可用矩阵 $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$

```
class Solution {
public:
    int numberOfSubarrays(vector<int>& nums, int k) {
        // use the prefix sum
        unordered_map <int, int> hash;

    int ans = 0, tot = 0;
    hash[0] = 1;
    for (auto x : nums) {
        if (x & 1) x = 1;
        else x = 0;
        tot += x;
        // add the number of prefixes that add up to tot - k
        ans += hash[tot - k];
```

```
hash[tot] ++;
}
return ans;
}
};
```

13 复杂公式例子

$$(25) \quad y = (x - a_1)^{a_1} (x - a_2)^{a_2} \cdots (x - a_n)^{a_n}$$

$$\lim_{x \to \infty} \frac{x^2 - 5}{x^2 - 1} = 1$$

$$\lim_{x \to \infty} f(x) + 2 = 1$$

$$\lim_{x \to \infty} 1 + \left(\frac{1}{1 - x^2}\right)^3 \quad \frac{\partial f}{\partial t}\Big|_{t=0}$$

$$(1 + x + x^2)^{-1} \leqslant (1 + x + x^2)^{\sin\frac{1}{x}} \geqslant (1 + x + x^2)^1$$

$$y = \ln\frac{(\sqrt{1 + x} - \sqrt{1 - x})^2}{2x} = \ln\frac{1 - \sqrt{1 - x^2}}{x}$$

$$= \ln(1 - \sqrt{1 - x^2}) - \ln x$$

$$(26)y' = \frac{1}{\sqrt{a^2 - b^2}} \frac{1}{\sqrt{1 - \left(\frac{a \sin x + b}{a + b \sin x}\right)^2}}$$

$$\times \frac{a \cos x(a + b \sin x) - b \cos x(a \sin x + b)}{(a + b \sin x)^2}$$

$$= \frac{1}{|a + b \sin x|\sqrt{a^2 - b^2}|\cos x|} = \frac{\cos x}{|a + b \sin x||\cos x|}$$

$$H(Y|X) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log\left(\frac{p(x)}{p(x, y)}\right)$$

$$\Gamma_{\epsilon}(x) = [1 - e^{-2\pi\epsilon}]^{1-x} \prod_{n=0}^{\infty} \frac{1 - \exp(-2\pi\epsilon(n + 1))}{1 - \exp(-2\pi\epsilon(x + n))}$$

$$a, b, c \neq \{a, b, c\}$$

14 积分

$$\lim_{n\to\infty}\int_E f_n(x)\mathrm{d}x=0$$

$$x^2\geq 0\qquad\text{for all }x\in\mathbb{R}$$

$$\sup_{\varphi\leq f}\left\{\int_E \varphi\mathrm{d}x\right\}$$

$$\int_{E} f(x)\chi_{\{x\in E: f(x)>N\}}(x)dx < \varepsilon$$

$$\sum_{n\geq 0} \int_{E_{n}} |f(x)|dx = \int_{\cup_{n\geq 0} E_{n}} |f(x)|dx = \int_{\mathbb{R}} |f(x)|dx < \infty$$

$$\{x\in [a,b]: f(x)\neq 0\} = \{x\in [a,b]: f(x)>0\} \cup \{x\in [a,b]: f(x)<0\}$$