Intégration et

probabilités

Transformée de Fourier

Question 1/11

$$\lambda_d(\mathrm{d}x)$$

Réponse 1/11

$$\frac{\mathrm{d}x}{\left(2\pi\right)^{d/2}}$$

Question 2/11

Intégrale de Gauss

Réponse 2/11

$$g_{\sigma}(x) = \frac{1}{\sigma^d} \exp\left(\frac{|x|^2}{2\sigma^2}\right)$$
$$\int_{\mathbb{R}^d} g_{\sigma}(x) \, \lambda_d(\mathrm{d}x) = 1$$

Question 3/11

$$\mathcal{F}f(\xi)$$

Réponse 3/11

$$\int_{\mathbb{R}^d} f(x) e^{-i\xi \cdot x} \lambda_d(dx)$$

Question 4/11

$$\mathcal{F}(\mathrm{e}_y f)$$

Réponse 4/11

$$au_y\,\mathcal{F} f$$

Question 5/11

Régularité de
$$\mathcal{F}: \mathcal{L}^1 \longrightarrow \mathcal{C}_0(\mathbb{R}^d, \mathbb{C})$$

 $f \longmapsto \mathcal{F}f$

Réponse 5/11

 \mathcal{F} est 1-lipschitzienne

Question 6/11

$$\mathcal{F}g(\xi)$$

 $f \in \mathcal{L}^1, M \in \mathrm{GL}_d(\mathbb{R}), g(x) = f(M^{-1}x)$

Réponse 6/11

$$|\det(M)| \mathcal{F}f(M^{\top}\xi)$$

Question 7/11

Théorème d'inversion de Fourier

Réponse 7/11

Si
$$f \in \mathcal{L}^1$$
 telle que $\mathcal{F}f \in \mathcal{L}^1$ λ_d presque partout alors $f(x) = \int_{\mathbb{R}^d} \mathcal{F}f(\xi) e^{i\xi \cdot x} \lambda_d(d\xi)$

Question 8/11

$$\mathcal{F}(f*g)$$

Réponse 8/11

$$\mathcal{F}f \times \mathcal{F}g$$

Question 9/11

Régulatité de $\mathcal{F}f$

Réponse 9/11

Si
$$|x|^k f \in \mathcal{L}^1$$
 alors $\mathcal{F}f \in \mathcal{C}^k(\mathbb{R}^d, \mathbb{C})$ et pour tout $\alpha \in \mathbb{N}^d$, $|\alpha| \leq k$,

tout
$$\alpha \in \mathbb{N}^d$$
, $|\alpha| \le k$,
$$\frac{\partial^{|\alpha|\mathcal{F}f}(\xi)}{\partial \alpha} = \int_{-\infty}^{\infty} (-\mathrm{i}x)^{\alpha} f(x) e^{-\mathrm{i}\xi \cdot x} \lambda_{\beta}(dx)$$

tout
$$\alpha \in \mathbb{N}^d$$
, $|\alpha| \le k$,
$$\frac{\partial^{|\alpha|\mathcal{F}f}}{\partial x^{\alpha}}(\xi) = \int_{\mathbb{R}^d} (-\mathrm{i}x)^{\alpha} f(x) \mathrm{e}^{-\mathrm{i}\xi \cdot x} \, \lambda_d(\mathrm{d}x)$$

En particulier, $\mathcal{F}f(\xi) = \underset{|\xi| \to +\infty}{\text{o}} \left(\frac{1}{|\xi|^k}\right)$

Question 10/11

Limite de $\mathcal{F}f$

Réponse 10/11

$$\mathcal{F}f$$
 est continue et $\mathcal{F}f(\xi) \xrightarrow[|\xi| \to +\infty]{} 0$

Question 11/11

$$\mathcal{F}\!(au_y f)$$

Réponse 11/11

$$\operatorname{e}_{-y} \mathcal{F} f$$