INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA LICENCIATURA EM ENGENHARIA INFORMÁTICA E DE COMPUTADORES MESTRADO EM ENGENHARIA INFORMÁTICA E DE COMPUTADORES PROCESSAMENTO DE IMAGEM E BIOMETRIA

Trabalho Prático 1

Semestre de verão 2016/2017 (23 de março de 2017) Data Limite de Entrega (Código e Relatório): 8 de maio de 2017

Objetivos:

- Realização de processamento digital de imagem.
- Aplicação dos conceitos de transformação de intensidade, filtragem espacial e filtragem na frequência.
- Manipulação de imagens monocromáticas, binárias e coloridas.
- Resolução de problemas comuns de processamento digital de imagem.

O código desenvolvido e o respetivo relatório deverão ser entregues em formato eletrónico no sistema Thoth, até 8 de maio de 2017.

- 1. Escreva as funções MATLAB cuja funcionalidade se descreve em seguida.
 - i) Função image_details.m. Sobre a imagem de entrada (binária, monocromática ou colorida), esta função imprime os seguintes indicadores na consola do MATLAB: resolução espacial; resolução em profundidade; valores mínimo, médio e máximo de intensidade; medida de contraste; entropia da imagem. A função deverá apresentar a imagem e o respetivo histograma. Apresente os resultados obtidos para uma imagem de cada tipo à sua escolha (binária, monocromática ou colorida), a partir do conjunto GenericImages.zip.
 - ii) Função generic_intensity_transform.m. Apresenta as imagens I e I_t , bem como os respetivos indicadores produzidos pela função image_details.m, com $I_t[m,n] = T[I[m,n]]$, sendo T uma transformação de intensidade genérica. A transformação T é realizada através de tabela de lookup. Apresente resultados experimentais que comprovem o correto funcionamento desta função, para imagens monocromáticas e coloridas do conjunto GenericImages.zip.
- 2. Considere o processamento de imagens médicas, de impressão digital e de faces. Neste contexto, escreva as funções MATLAB que se descrevem em seguida.
 - i) Função medical_image_enhancement.m. Para as imagens médicas no conjunto MedicalImages.zip, realiza transformações de intensidade adequadas para melhorar a legibilidade das mesmas. Apresente os resultados obtidos para cada imagem deste conjunto.
 - ii) Função fingerprint_enhancement.m. Para uma imagem de impressão digital produz uma versão binária da mesma, tentando separar as riscas do fundo. Apresente os resultados experimentais obtidos com as imagens do conjunto FingerprintImages.zip.
 - iii) Função face_detection.m. Para uma imagem de face, procura localizar os extremos da face e afixar um retângulo a delimitar a face. Apresente os resultados experimentais obtidos com as imagens do conjunto FaceImages.zip.

Para os restantes exercícios, poderá optar por um ambiente e linguagem de programação diferentes do MATLAB.

- 3. O ficheiro NoisyDistortionImages.zip contém um conjunto de imagens com diferentes problemas comuns no processamento de imagem. Para cada imagem deste conjunto:
 - a) identifique o(s) problema(s) na imagem e proponha uma técnica (ou mais) para a sua correção;
 - b) compare a imagem restaurada com a imagem original, através dos indicadores apresentados na segunda página deste enunciado; comente os resultados obtidos.
- 4. Escreva a função/método codeCardGenerator, a qual gera uma imagem colorida, contendo um cartão de códigos, com conteúdo aleatório, de forma matricial, tal como se apresenta na figura. Apresente cinco imagens diferentes geradas com o método proposto.

Α	1 3 <mark>2</mark> 1			4 987		
В	6 69	541	529	<mark>3</mark> 46	501	998
С	63 <mark>4</mark>	531	841	874	156	264
D	159	537	379	542	632	402

- 5. Considere as imagens binárias e monocromáticas presentes no ficheiro BinaryAndGrayscaleImages.zip. Para cada imagem deste conjunto:
 - a) realize coloração das imagens através das técnicas de *intensity slicing* e *intensity to RGB transform*; indique os critérios e as funções usadas para a atribuição de cores.
 - b) comente qual das técnicas aplicadas produz melhores resultados.

MEDIDAS DE AVALIAÇÃO E ANÁLISE DE UMA IMAGEM

Para uma imagem I com resolução espacial $M \times N$:

i) O **Brilho** de *I*, pode ser avaliado pelo seu valor médio de intensidade, definido como

$$m_I = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I[m, n].$$
 (1)

ii) O Contraste de I, pode ser avaliado através de

$$c_I = 20 \log_{10} \left(\frac{m_x + 1}{m_i + 1} \right),$$
 (2)

em que m_x e m_i , são o máximo e o mínimo valor de intensidade de I, respetivamente.

iii) A **Previsibilidade ou Incerteza** de *I*, pode ser avaliada através da **entropia**

$$H_I = -\sum_{i=0}^{L-1} p(x_i) \log_2(p(x_i)), \tag{3}$$

em que L é o número de níveis de cinzento distintos e $p(x_i)$ é a probabilidade de ocorrência de cada valor possível de pixel x_i . Tem-se $0 \le H_I \le \log_2(L)$, em que zero significa imagem constante (previsibilidade absoluta) e $\log_2(L)$ indica a máxima incerteza (histograma uniforme).

MEDIDAS DE COMPARAÇÃO DE IMAGENS (A APLICAR ENTRE DUAS IMAGENS I_1 E I_2)

i) A diferença em brilho, contraste e entropia, definidas como

$$\Delta_m(I_1, I_2) = m_{I_1} - m_{I_2}, \qquad \Delta_c(I_1, I_2) = c_{I_1} - c_{I_2}, \qquad e \qquad \Delta_H(I_1, I_2) = H_{I_1} - H_{I_2}.$$
 (4)

ii) O erro quadrático médio, Mean-Squared Error (MSE), definido através de

$$MSE(I_1, I_2) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (I_1[m, n] - I_2[m, n])^2.$$
 (5)

iii) O erro absoluto médio, Mean-Absolute Error (MAE), definido como

$$MAE(I_1, I_2) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} |I_1[m, n] - I_2[m, n]|.$$
 (6)