UNCLASSIFIED

AD NUMBER ADB026512 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Specific authority; 21 Nov 1973. Other requests shall be referred to Commander, Army Armament Research and Development Command, Attn: DR-DAR-TSS, Dover, NJ, 07801. **AUTHORITY** AMSTA DA Form 1575, 5 Jul 2002

UNCLASSIFIED

AD NUMBER ADB026512 **NEW LIMITATION CHANGE** TO Distribution authorized to U.S. Gov't. agencies and their contractors; Specific authority; 21 Nov 1973. Other requests shall be referred to Commander, Army Armament Research and Development Command, Attn: DR-DAR-TSS, Dover, NJ, 07801. **FROM** Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; Nov 1973. Other requests shall be referred to ARRADCOM, Attn: DR-DAR-TSS, Dover, NJ, 07801. **AUTHORITY** AARDC, per DTIC Form 55

COPY NO.

TECHNICAL REPORT NO. 4584

DETONATION PROPAGATION TESTS ON AQUEOUS SLURRIES OF TNT. COMPOSITION B. M-9 AND M-10

GEORGE PETINO JR. -HAZARDS RESEARCH CORP.

DARL WESTOVER-PICATINNY ARSENAL

CONTRACT NO. DAAA21-73-C-0772

NOVEMBER 1973

AMCMS 4932.05.4114.1

PROJECT NO. 54114

Distribution limited to U.S. Government agencies only; (Test and Evaluation)2(November 1978). Other requests for this document must be referred to ARRADCOM, Alm: DR-DAR-TSS, Dover, NJ 07801

FACILITIES & PROTECTIVE TECHNOLOGY DIVISION
MANUFACTURING TECHNOLOGY DIRECTORATE
PICATINNY ARSENAL
DOVER, NEW JERSEY

Best Available Copy

FACILITIES & PROTECTIVE TECHNOLOGY DIVISION MANUFACTURING TECHNOLOGY DIRECTORATE

ACCESS100	fur
RIM	White Section [7]
968	Sett Seaton 3
RESTRACTED	
JUSTICICATI	01
9:573:847 5'c*	AVAIL AND AND SPECIAL
1	
י אר	
	. •

PICATINNY ARSENAL DOVER, NEW JERSEY

108 818

Best Available Copy

TABLE OF CONTENTS

		PAGE
LIST	OF TABLES	ii
LIST	OF FIGURES	iii
I.	INTRODUCTION	1
u.	SUMMARY	2
ш.	EXPERIMENTAL PROGRAM	3
	A. MATERIALS	3
	B. DESCRIPTION OF EXPERIMENTS	4
	C. DESCRIPTION OF TEST METHODS.	6
	D. TEST RESULTS	9
IV.	CONCLUSIONS	20
V.	RECOMMENDATIONS	22

LIST OF TABLES

TABLE NUMBER	TITLE	PAGE
I	Results of Detonation Propagation Tests on Aqueous, Gelled Slurries of M-9 Propellant	23
ī	Results of Detonation Propagation Tests on Aqueous, Gelled Slurries of M-10 Propellant	24
ш	Results of Detonation Propagation Tests on Aqueous, Gelled Slurries of TNT	25
IV	Results of Detonation Propagation Tests on Aqueous, Gelled Slurries of Composition B	26
v	Results of Detonation Propagation Tests on Aqueous, Settled Slurries of Composition B	27
vı	Results of Detonation Propagation Tests on Aqueous, Settled Slurries of TNT	28
νп	Results of Detonation Propagation Tests on Aqueous, Settled Slurries of M-9 Propellant	29
νш	Results of Detonation Propagation Tests on Aqueous, Settled Slurries of M-10 Propellant	30
ıx	Summary of Detonation Propagation Test Results	32

LIST OF FIGURES

FIGURE NUMBER	TITLE	PAGE
1	Horizontally Fired Detonation Propagation Test Set-Up	33
2	Details of Detonation Velocity Probe	34
3	Detonation Velocity Test System	35
4	Detonation Velocity Traces for Aqueous, Gelled Slurries of M-9 Propellant	36
5	Detonation Velocity Traces for Aqueous, Gelled Slurries of M-10 Propellant	40
6	Detonation Velocity Traces for Aqueous, Gelled Slurries of TNT	44
7	Detonation Velocity Traces for Aqueous, Gelled Slurries of Composition B	49
8	Detonation Velocity Traces for Aqueous, Settled Slurries of Composition B	53
9	Detonation Velocity Traces for Aqueous, Settled Slurries of TNT	58
10	Detonation Velocity Traces for Aqueous, Settled Slurries of M-9 Propellant	62
11	Detonation Velocity Traces for Aqueous,	66

I. INTRODUCTION

This report summarizes the results of a series of experiments performed by Hazards Research Corporation, Denville, New Jersey under the technical direction of the Facilities and Protective Technology Division, of the Manufacturing Technology Directorate located at Picatinny Arsenal, Dover, New Jersey.

The work was funded under Contract No. DAAA21-73-C-0772.

The objective of this program was to investigate the detonation propagation characteristics of aqueous slurries of TNT, Composition B, M-9 and M-10 in 2 inch, schedule 40, stainless steel pipes of various lengths. Two operational modes were studied; the dynamic or pumping mode and, the static, or settled slurry mode. The dynamic condition was simulated by adding an inert gelling agent to a homogeneous, aqueous, explosive slurry. Information generated by this program will be used in support of the United States Army's munitions manufacturing and loading facilities by supplying data to aid in the design and operation of the feed system for the propellant and explosive incinerators installed at various Army Ammunition Plants.

II. SUMMARY

A test program has been performed to establish the detonation propagation characteristics of aqueous slurries of TNT, Composition B, M-9 and M-10 in 2 inch, schedule 40, stainless steel pipes 24 and 40 inches long. The slurry concentrations tested were prepared on a weight percent basis. The following table summarizes the results of this program:

Summary of Detonation Propagation Test Results

Sample	Slurry	Concentration	Detonation	
Material	Type	No Propagation	Full Propagation	Class
TNT	Gelled	40	···· 60	High order
TNT	Settled	40	55	High order
Comp.B	Gelled	30	40	High order
Comp. B	Settled	35	45	High order
M-9	Gelled	40	50	High order
M- 9	Settled	40	50	High order
M- 10	Gelled	50	70	Low order
M-10	Settled	12.5	15	High order
M-10	Settled	-	65 ·	Low order

From the results of this program it is concluded that for the specific conditions tested, aqueous slurries of TNT and Composition B will not support a propagating detonation at concentrations of 30% or lower, in either the gelled or settled condition. M-9 propellant test results indicate that gelled slurries of 40% or lower concentration do not propagate a detonation while the settled slurries require further testing below the non-propagating concentration of 40%. In the gelled condition, slurry concentrations of 50% M-10 did not support propagation; but in the settled condition both high and low order detonations occurred at widely varying concentrations (15-65%) which indicates that further testing is required to identify the safe levels of operation.

III. EXPERIMENTAL PROGRAM

A. Materials

The following materials were supplied by Picatinny Arsenal for use in this test program:

- (1) TNT, Finely divided #60 mesh, 32.6% water, Lot KNK 3096
- (2) Composition B, Finely divided. #60 mesh, 30.5% water, Lot HOL-050-5414
- (3) M-9, Flake, Length nominal 0.007", Lot RAD. PE-178-7
- (4) M-10, Flake, Web nominal 0.023", Lot RAD 2-63 of 73

 Hazards Research Corporation furnished the following
 materials:
- (1) 2-inch schedule 40, seamless, 304 SST pipe
- (2) E-83 blasting caps
- (3) Tetryl boosters
- (4) Detonation Velocity Probes
- (5) CMC gelling powder, type 7H, by Hercules Inc.

Two 2-inch diameter by 1-inch long Tetryl pellets were used as a booster in each test. Each pellet weighed 80 grams.

In those tests that simulated a dynamic flow system condition, a gelling agent was used to suspend the explosives in a homogeneous mixture with water. The gelling agent used was Hercules Cellulose Gum Type 7H. It is 99.5% purified sodium carboxymethylcellulose (CMC) which is a water soluble polymer. When mixed

with water at a concentration of 1.5% by weight, it yields a gel with a viscosity of 6000 centipoises.

B. Description of Experiments

All tests performed during this program were conducted in the test set-up shown in Figure 1. The sample slurry was mixed thoroughly and carefully poured into the open end of an upright, 2-inch, schedule 40, stainless steel pipe. A plastic diaphragm taped to the bottom end provided a leak proof seal. After the pipe was filled, a second plastic diaphragm was taped over its open end. A detonation velocity probe was then inserted through the plastic diaphragm and into the slurry. The probediaphragm interface was sealed with a plastic sealing compound. Two probe lengths were used, 24 inches and 40 inches. These lengths were dictated by the length of pipe tested since they had to be of equal numerical value.

For the gelled slurry tests the loaded pipe was placed in the herizontal position, charged with a 160 gram Tetryl booster plus an E-83 cap, armed and fired. The resultant detonation velocity trace was displayed on an oscilloscope and recorded by a Polaroid camera.

Settled slurry tests followed the same basic procedure outlined above. The exception to the procedure was that after the velocity probe was positioned it was necessary to maintain

a mixed slurry up to the time when the pipe was placed in the horizontal firing position. Once placed, the test required that the solids in the aqueous slurry settle out into a fairly uniform layer.

In order to meet this requirement a series of preliminary screening tests were performed to establish the settling characteristics of each sample material. Sample aqueous slurries containing 30% Composition B, 40% TNT, 35% M-9 and 50% M-10 were prepared. A 48-inch long, 2-inch inside diameter, Pyrex tube was used to simulate the physical confines of the steel pipe. Each slurry was poured into the Pyrex tube, which was then vigorously shaken about its longitudinal axis. The tube was then placed on a horizontal surface and the settling pattern of its contents was observed. Results revealed that the M-9 and M-10 settled immediately upon cessation of pipe motion: The Composition B and TNT took 30 minutes to settle.

These preliminary settling tests resulted in the establishment of a technique for continuously oscillating the pipe prior to its placement on a level surface. Once placed, the solid contents of the pipe settled out in a fairly predictable and reproducibly uniform level. In addition, a standard settling time of 15 minutes was established for the M-9 and M-10 propellants while 30 minutes was allowed for the Composition B and TNT slurries.

C. Description of Test Methods

1. Preparation of Homogeneous, Gelled Slurries

The gelled slurries (consisting of the material to be tested, gelling agent and water) were made in two steps.

First, a 5-gallon batch of gelled water was prepared. This mixture contained 1.5% by weight of CMC polymer and 98.5% water. Next, the sample material was added to a predetermined quantity of gelled water to yield the required percentage called for in the test. After approximately 20 minutes of low speed agitation, the slurry was homogeneous and ready to be poured into a test fixture.

Once the slurry was prepared, it was constantly stirred at a low speed until it was poured into the test pipe. Total time elapsed between loading and detonating each pipe was never more than 17 minutes. This procedure reduced the probability of any significant settling of the sample in the pipe.

In all tests the percentage composition reported is the percentage of dry sample material contained in the total slurry weight of water, sample material, and gelling powder. The moisture content of the Composition B and TNT was taken into account in all calculations of explosive weight percent concentration. The M-9 and M-10 were received dry and did not require a correction for moisture content.

2. Preparation of Settled Slurries

The settled slurries were individually mixed by slowly adding the required quantity of explosive or propellant to a weighed amount of water. An air operated mixing motor provided the variable speed drive required for the mixing operation. The slurry was agitated in a plastic bucket by 3, vertically mounted, plastic impellers. Visual inspection provided the indication that all of the sample material was thoroughly wetted and ready for test.

3. Characterization of Detonation Propagation Phenomena

The distance that a booster-initiated, high or low order reaction propagated through the sturries was determined by two techniques; physical inspection of the pipes after a test and detonation velocity measurements.

(a) Physical Inspection

High order detonations produce a totally shrapnellized pipe. Low order, decaying type reactions, normally result in a peeling back of the pipe wall along its longitudinal axis beginning at the booster end and no physical damage to the remaining pipe section. In addition, unreacted slurry is expelled onto the surrounding area due to the impulse generated by the booster.

A reference point for evaluation of the physical damage is obtained by testing a pipe filled with water. This provides evidence of the damage caused by the booster charge. All other test results can compared to this datum point. On this program two datum points were obtained; one for water and a second for gelled water.

(b) Detonation Velocity Measurement

The detonation velocity of sample material was measured using the continuous velocity probe developed by the U. S. Bureau of Mines⁽¹⁾. This technique is a convenient method of determining the capability of a material to sustain a high-order reaction. The sample is placed in a steel pipe with a booster charge set against the base of the pipe. The booster is separated from the sample by a thin plastic diaphragm. Initiation of the booster triggers an oscilloscope which monitors the output of a constant-current power supply as a function of time. A detector circuit consisting of a fine skip-wound resistance wire passed through a thin aluminum tube is mounted on the major axis of the tube containing the sample. As the

⁽¹⁾ J. Ribovich, et al AIAA Journal, 6, 1260, (1968)

shock wave passes along the detector, the aluminum tube is crushed onto the resistance wire, shortening the circuit. Essentially all the resistance of the circuit is in the wire, which is uniform, so the power supply adjusts the voltage to maintain constant current. The voltage-time trace is readily convertible to detonation velocity. If no detonation occurred in the sample, the probe circuit registers the velocity of sound. Figures 2 and 3 show the details of the velocity probe and the system's operational concept respectively.

4. Verification of Limits of Propagation

The no propagation, decaying detonation, and full detonation weight concentrations were established for the four materials tested using 24-inch long pipes. A repeat test was then performed at the no propagation concentration to verify the original observation. This was followed by a repeat test at the detonation concentration using a 40-inch long pipe.

D. Test Results

A total of 70 detonation propagation tests were performed on this program, 31 on gelled slurries and 39 on settled slurries. Figures 4 through 11 contain the detonation velocity traces for the entire test program. The test data is

presented in Tables I through VIII. Table IX provides a summary of test program results.

1. Gelled, Aqueous Slurries

(a) M-9 Propellant

A series of 7 detonation propagation tests were performed on aqueous, gelled slurries of M-9 propellant. One additional test was performed on gelled water in order to establish the datum point for physical damage for the entire gelled series of tests.

Table I presents the tabulated test results and Figure 4 contains the 8 detonation velocity traces for this series. It can be seen that the gelled M-9 slurries did not propagate a detonation over the concentration range of 20-40%. A decaying detonation occurred at 45% concentration while a high order detonation (4850 m/sec.) occurred at the 50% concentration. The repeat test at 50% concentration, in a 40-inch long pipe, confirmed the high order detonation result (5400 m/sec.).

(b) M-10 Propellant

The limits of detonation propagation were characterized for aqueous, gelled M-10 slurries in 7 tests. Table II presents the tabulated results and Figure 5 contains the 7 detonation velocity traces. No propagation was evident

at the 50% concentration level. Over the 55-65% concentration range, the degree of propagation increased with increasing M-10 concentration. At 70% concentration (Run No. 10), a low order detonation occurred (3250 m/sec.) which completely shrapnellized the pipe. Run No. 12 was a repeat of the 70% concentration test and was performed in a 40-inch long pipe. Results were the same as those of Run No. 10, i.e., a low order (2900 m/sec.) detonation that completely shrapnellized the pipe. Run No. 15 was a repeat of the nonpropagating concentration level of 50%. The results duplicated that of Run No. 13 and confirmed that 50% was the non-propagating concentration.

(c) TNT

A series of 9 tests were performed on aqueous, gelled TNT slurries. Table III presents the tabulated test results and Figure 6 contains the 9 detonation velocity traces.

These tests established that over the weight concentration range of 30-40% there was no detonation propagation.

From 45 to 55% TNT the propagation increased with increasing concentration and at 60% high order detonations occurred. Duplicate tests at 40% and 60% TNT concentrations confirmed that these were the boundaries for no propagation and full propagation respectively.

(d) Composition B

Table IV and Figure 7 contain the tabulated results and detonation velocity traces respectively for this series of 7 tests. The results indicate that there is a difference of only 10% between the non-propagating concentration (30%) and the propagating concentration (40%). Two extra tests were performed (69 and 70) at the 40% concentration for high speed photography purposes.

2. Settled, Aqueous Slurries

(a) Composition B

A series of 8 detonation propagation tests were performed on aqueous, settled slurries of Composition B.

One additional test was performed on a pipe filled with water in order to establish the datum point for physical damage for this test series.

Table V presents the tabulated test results and Figure 8 contains detonation velocity traces for this series. It can be seen that there was no propagation at the 30-35% concentration, some propagation at 40%, and high order detonations at 45 and 50%. Repeat tests at the 35% and 45% concentrations (Runs 37 and 38) verified that these were the non-propagating and propagating concentrations respectively.

(b) <u>TNT</u>

Examination of the tabulated results for this series of 8 tests presented in Table VI and the detonation velocity traces of Figure 9 reveals that 40% TNT did not propagate a detonation. In addition, the 45-50% concentrations produced decaying reactions while high order detonations resulted at the 55 and 60% levels. Repeat tests performed at 40 and 55% concentrations confirmed that these were the limiting concentrations for non-propagating and full propagating reactions.

Reproductions of the detonation velocity traces for Tests 39 - 70 contain dual velocity traces. Sweep #1 is calibrated to yield 20 μ sec. per cm. on the x-axis and Sweep #2 is calibrated at 50 μ sec. per cm. This effect was achieved using a dual beam oscilloscope. It allows the event to be monitored over two time periods, namely, 200 μ sec. and 500 μ sec. The result is an increase in accuracy especially when a reaction starts out high order and is attenuated over a period of time which is greater than 200 μ seconds.

(c) M-9 Propellant

Table VII and Figure 10 contain the results and detonation velocity traces, respectively, for this series of 7 tests on

aqueous, settled slurries of M-9 propellant. A high order detonation occurred at the 50% concentration of M-9, decaying detonation at 45%, and no propagation at the 40 and 35% concentrations. Results were verified with repeat tests at the 50% and 40% concentrations.

It is worth noting the detonation velocity trace of Test No. 51. This was performed on a 50% concentration, aqueous, M-9 settled slurry in a 40-inch long pipe. The Sweep #1 trace clearly shows a change in the slope at the 60 μ sec. point in the test. The shock wave slows down for 28 μ sec. and then resumes its original speed. This phenomena indicates that there was an uneven layer of M-9 at the point where 60 μ sec. had elapsed. This is calculated to be at a distance of 16 inches from the booster end. The shallow layer was 3 inches long based on the 28 μ sec. time during which the shock velocity decreased.

The uneven layer of M-9 caused the shock wave to be attenuated and resulted in 1.5 inches of the pipe being recovered, 5.5 inches peeled and the remaining completely shrapnellized. A repeat of this test resulted in a high order detonation.

Test No. 51 provides a good example of the value of the continuous velocity probe in this type of test work. It

provides an instantaneous profile of the phenomena that is occurring during a detonation. Any inconsistencies in the reacting medium that can effect the energy input to the detonation are instantaneously recorded on the detonation velocity trace.

(d) M-10 Propellant

A series of 15 tests were performed on aqueous, settled slurries of M-10 propellant. Table VIII presents the results of these tests and Figure 11 contains the detonation velocity traces for each test. Results of this test series revealed that settled, aqueous slurries of M-10 propagate high order detonations at the low concentrations of 15-35%. Above these concentrations there is a partial propagation region (45-60%), and a low order detonation region (65% and above). No propagation occurred at 10 and 12.5% concentration of M-10 since the settled height was below the critical dimension for detonation.

Examination of the runs in the decaying detonation range (Runs 53, 54, 55 and 57), reveals that as the concentration of M-10 was increased the degree of attenuation increased. This is the reverse of what has been observed on all of the other tests on this program.

The existence of both high and low order detonations at the concentrations indicated can be readily explained if one considers the dependence of the heat of explosion, of an explosive, on density. For example, consider the following table taken from reference 2.

Heat of Explosion and Some Reaction Products for TNT as a Function of Density

Density	Heat of Explosion	Major Products (moles/kg)					
(g/cc)	(Kcal/g)	CO	CO2	H ₂ O	H2		
0.30	0.62	24. 3	0.5	1.4	5. 5		
0.80	0.79	16.2	3.3	2.6	1. 1		
0.95	0.87	12. 1	5.2	2.4	0.9		
1.11	0.98	8.5	6.6	2.5	0.2		
1. 27	1.07	4.5	8.3	1.9	0.1		
1.47	1. 13	1.8	9.5	1.3	-		
1.59	1. 16	1.0	10.0	1.0	-		
1.65	1. 17	0.6	10.0	0.8	-		

The standard for TNT is taken as 1.1 Kcal/g which is the heat of explosion when the density is 1.4 g/cc. The reaction is slightly more energetic at high densities, and is considerably lower as the bulk density decreases. The energy output for a given quantity of highly compressed TNT, density = 1.65, is almost twice that for an equal quantity of loosely packed powder having a density of 0.30 g/cc. The reason for this is that the equilibrium

⁽²⁾ The Science of High Explosives, Melvin A. Cook, pg. 286, American Chemical Society Monograph Series, Reinhold Publishing Corporation, New York (1958)

constants which control the distribution of the products, CO, CO₂ etc. are pressure dependent. At higher packing densities the detonation pressure is higher which favors the production of CO₂, at lower densities the lower detonation pressure favors the formation of CO. Since the energy produced in the formation of a CO₂ molecule is more than twice the energy produced in the formation of a CO molecule, the net effect, since the reaction is limited by the number of oxygen atoms, is the production of higher energies when the starting density is higher.

The range of density variation for the aqueous, settled slurries of M-10 tested is given in the following table:

Table of Bulk Loading and Settled Layer Densities
M-10 Aqueous Slurries

Bulk L	oading	Settled Layer			
Composition	Density	Composition	Density		
Wt. (%) M-10	(lb. /cu. ft.)	Wt. (%) M-10	(b. /cu. ft.)		
10	64. 4	40	80		
12.5	64. 9	40	80		
15	65. 4	40	80		
20	66. 5	40	80		
25	67.6	40	80		
35	70.0	40	80		
45	52.6	45	52.6		
50	49.2	50	49.2		
55	50.8	55	50.8		
60	44. 4	60	44. 4		
65	42.7	65	42.7		

Examination of the table reveals that for the weight concentrations from 10 to 35% the density of the settled M-10 layer and its composition were constant (40% M-10 at 80 lb. /cu. ft. density). The density of the settled layer for this range of concentrations was the highest in the test program. Therefore, this resulted in high order detonations for the 15 to 35% concentration ranges. Below the 15% M-10 concentration the settled layer thickness was below the critical dimension for propagation. All samples tested in the 10-35% range were true slurries, i. e., when they were agitated in a pipe and allowed to settle the composition and density of the settled layer were independent of the proportions of M-10 and water mixed. Above the 40% M-10 concentration, a true slurry did not exist. What existed was M-10 flakes wetted with water. At this point the bulk density is equal to the socalled settled layer density.

As the weight concentration of M-10 increased, the bulk density decreased. The spaces between the M-10 flakes became less filled with water. This resulted in a decrease in detonation propagation characteristics with increasing M-10 concentration. At the 65% M-10 level the density is almost half of that at the 35% concentration. A low

order detonation occurs at this level, indicating that there is sufficient energy available in the reacting M-10 to vaporize the small amount of water surrounding the M-10 flakes. However, the bulk density is not high enough to cause a high order reaction.

IV. CONCLUSIONS

As a result of the 70 detonation propagation tests performed on aqueous slurries containing either TNT, Composition B, M-9 or M-10, which are confined in horizontal, 2-inch diameter, schedule 40, stainless steel pipes up to 40 inches in length, it is possible to conclude the following:

- 1. Settled slurries containing 15-35% by weight of M-10 propellant propagate high order detonations while 65% -m-10 concentrations result in low order detonations. Concentrations of M-10 at and below 12.5% do not propagate a detonation. Partial propagation, which decreases in severity with increasing M-10 content, occurrs over the 45-60% range.
- Gelled M-10 slurries propagate low order detonations at the 70% M-10 concentration, partially propagate between 55 and 65% and do not propagate at 50% concentrations.
- 3. Gelled Composition B slurries propagate high order detonations at 40% Composition B concentrations, partially propagate at 35% and do not propagate at the 30% concentration.
- 4. Settled Composition B slurries propagate high order detonations at 45% Composition B concentration, partially propagate at 40% and do not propagate at 30 or 35% concentration.

- 5. Gelled M-9 propellant slurries propagate high order detonations at 50% M-9 concentrations, partially propagate at 45% and do not propagate over the 20 to 40% range tested.
- 6. Settled slurries of M-9 propellant propagate high order detonations at 50% concentrations of M-9, partially propagate at 45% and do not propagate over the 35-40% range.
- 7. Gelled slurries of TNT propagate high order detonations at 60% TNT concentrations, partially propagate over the 45-55% range and do not propagate over the 30-40% range.
- 8. Settled slurries of TNT propagate high order detonations at 55% TNT concentrations, partially propagate over the 45-50% range and do not propagate at the 40% concentration.
- M-10 propellant in settled slurry form is the most sensitive to propagation, it is followed in descending order by gelled Composition B, gelled or settled M-9 and settled TNT.
- 10. The high nitrocellulose content of M-10 propellant (98%), results in the absorption of large quantities of water at the lower settled slurry concentrations (15-35%) which produces a high settled slurry bulk density. This high density slurry, when initiated, results in a high order detonation. High concentrations of M-10 results in a 50% decrease in bulk loading density which produces a low order detonation upon initiation by a booster.

V. RECOMMENDATIONS

It is recommended that additional detonation attenuation tests be performed on M-9 propellant in the settled slurry mode over the ranges of 5 to 30% by weight concentration of M-9. In addition, further propagation tests should be performed on 15% M-10 settled slurries using boosters of decreasing size in order to ascertain the sensitivity to initiation of the slurry.

Consideration should be given to performing detonation propagation tests on any propellant that contains a high percentage of nitrocellulose and is considered a candidate for use in the saturated water slurry condition in munitions processing plants.

TABLES AND FIGURES

	Conclusion	Detonation did not propagate	Booster calibra- tion run.	Detonation	Detonation did not propagate	Detonation did not propagate	Decaying detonation	Detonation did not propagate	Detonation
	Physical Evidence	15 in. O. K., 9 in. peeled at booster end.	13 in O. K., 11 in. peeled at booster end.	Pipe Completely shrap- nellized	13 in. O.K., 11 in peeled at booster end.	13 in. O. K., 11 in peeled at booster end	6 in. O. K., 10 in peeled, 8 in. shrapnellized	14 in. O.K., 10 in. peeled at booster end	Pipe completely shrap- nellized
tion	Final	830	830	4850	160	750	160	*	5400
Measured Detonation	Velocity (m/sec.) Initial Midpoint Final	1571	2152	4850	2152	1827	3377	006	5400
Measur	Veloci Initial	4150	3850	4850	6200	4250	2900	*	5400
	Pipe Length	24 in.	24 in.	24 in.	24 in.	24 in.	24 in.	24 in.	40 in.
Slurry Composition	KI-9	281	0	808	540	627	715	540	1346
	Wt.	1122	1320	808	666	940	874	666	1346
	Wt. (%)	20	0	20	35	40	45	35	20
	Test		7	٣	4	ĸ	9	7	∞

*Velocity trace not legible at this point

Note: All tests were performed using a 160 gm. Tetryl booster and 2 inch, schedule 40, stainless steel pipe (Type 304).

TABLE II - Results of Detonation Propagation Tests on Aqueous, Gelled Slurries of M-10 Propellant

	Conclusion	Decaying Detona- tion	Detonation	Decaying Detona- tion	Detonation	Detonation did not propagate	Decaying Detona- tion	Detonation did not propagate
	Physical Evidence	7 in. O. K., 11 in. peeled, 6 in. shrapnellized	Pipe completely shrap- nellized	6 in. peeled, 18 in. shrapnellized	Pipe completely shrapnellized	13 in. O. K., 11 in. peeled	11 in. O. K., 13 in. peeled	13 in. O. K. , 11 in. peeled
ation	Final	400	3250	450	2900	520	420	520
Measured Detonation Velocity (m/sec.)	Initial Midpoint Final	1356	3250	3720	2900	523	443	515
Measu	Initial	4850	3250	3450	2900	0059	4150	5300
Pipe	Length	24 in.	24 in.	24 in.	40 in.	24 in.	24 in.	24 in.
ition	M-10	563	009	588	960	574	591	574
Composition Wt. (gms	H20	376	257	316	411	574	484	574
Slurry Wt. (%)	M-1 0	09	70	9	70	20	55	90
Test	Š	6	10	11	12	13	14	15

Note: All tests were performed using a 160 gm. Tetryl booster and 2 inch, schedule 40, stainless steel pipe (Type 304).

of TNT		Conclusion	Detonation did not propagate	Detonation did not propagate	Decaying detonation	Detonation	Detonation did not propagate	Decaying detonation	Detonation did not propagate
Results of Detonation Propagation Tests on Aqueous, Gelled Slurries of TNT		Physical Evidence	15 in. O. K., 9 in. peeled	14.5 in. O. K., 9.5 in. peeled	9 in. O. K., 8 in. peeled, 7 in. shrapnellized	Pipe completely shrap- nellized	13 in. O. K., 9 in. peeled, 2 in. shrapnellized	12 in. O. K., 9in. peeled, 3 in. shrapnellized	13 in. O. K., 9 in. peeled, 2 in. shrapnelliged
n Tests	tion c.)	Final	1350	1450	006	5950	1210	006	1070
ropagatio	Measured Detonation Velocity (m/sec.)	Initial Midpoint Final	803	1827	2284	5950	1225	934	
nation F	Measu	Initial	4500	5150	5450	5950	5450	5200	5300
ults of Det	Pipe	H	24 in.	24 in.	24 in.	24 in.	24 in.	24 in.	24 in.
	sition (gms)	H2O TNT	450	535	753	696	919	681	604
TABLE III -	Compo.	H20	1048	966	753	642	923	833	908
TA	Slurry Compositi	TNT	30	35	20	09	40	45	40
	Test	Š.	16	17	18	16	20	21	22

Note: All tests were performed using a 160 gm. Tetryl booster and 2 inch, schedule 40, stainless steel pipe (Type 304).

Decaying detonation

0.5 in. O. K., II.5 in. peeled, 12 in. shrap-nellized

780

5363

5500

24 in.

783

640

55

23

Detonation

Pipe completely shrapnellized

5700

5700

5700

40 iņ.

1100 1651

9

24

TABLE IV - Results of Detonation Propagation Tests on Aqueous, Gelled Slurries of Composition B

	Conclusion	Detonation did not propagate	Detonation	Decaying Detona- tion	Detonation did not propagate	Detonation '	Detonation	Detonation
	Physical Evidence	14. 5 in. O. K., 9. 5 in. peeled	Pipe completely	<pre>11.5 in. O. K., 8.5 in. peeled 4 in. shrap- nellized</pre>	13.5 in. O. K., 8.5 in. peeled 2 in. shrap-nellized	Pipe completely shrapnellized	Pipe completely shrapnellized	Pipe completely shrapnellized
ation	Final	*	4900	1100	970	5550	5360	5360
Measured Detonation Velocity (m/sec.)	Initial Midpoint Final	*	1000	1076	. 983	5550	5360	
Measu	Initial	*	1000	7850	5500	5550	5360	5360
Pipe		24 in.	24 in.	24 in.	24 in.	40 in.	40 in.	40 in.
ition	Comp. B	463	099	536	44	1036	1036	1036
Compo	H20	1081	989	966	1036	1553	1553	1553
Slurry Composition	Comp. B	30	40	35	30	4	40	40
Test	Š	52	92	22	28	53	69	02

*Velocity probe malfunctioned

Note: All tests were performed using a 160 gm. Tetryl booster and 2 inch, schedule 40, stainless steel pipe (Type 304).

Œ	1
5	١
•	į
	į
)
2	ì
. 8	i
6	į
C)
4	•
C)
•	į
9	•
į.	٠
=	į
0)
٦	,
_=	•
- #	
.0)
U,	,
- 5	
ō	į
9)
2	
ď	į
_	•
5	i
_	
1	,
60	
Ĕ	
`.	
Ö	
ž	
d	_
O.	١
ă	
O	
~	
144	;
Ğ	
.5	1
4	1
ž	1
2	
ö	
Ω	1
44	
0	
90	
===	i
2	
อ	į
2	1
ABLE V -	The same of the sa
>	1
(a)	ļ
3	-
B	
⋖	
ᆲ	1

position B		Conclusion	Booster calibra- tion test	Detonation did not propagate	Decaying detona- tion	Detonation	Detonation	Decaying detona- tion	Detonation did not propagate	Detonation did not propagate	Detonation	
Detonation Propagation lests on Aqueous, Settled Slurries of Composition B		Physical Evidence	14 in. O. K., 10 in. peeled	13 in. O. K., 9 in. peeled 2 in. shrap- nellized	7.5 in. O. K., 10 in. peeled, 6.5 in. shrap- nellized	Pipe completely shrap- nellized	Pipe completely shrap- nellized	7.0 in. O. K., 7.25 in. peeled, 9.75 in. shrap- nellized	l6 in. O. K. , 5 in. peeled, 3 in. shrap- nellized	10 in. O. K., 6 in. peeled, 8 in. shrap- nellized	Pipe completely shrap- nellized	
n Aqueo	Measured Detonation Velocity (m/sec.)	Final	701	1000	430	2650	5250	1000	059	520	5150	,
on lests		Midpoint	1500	1028	3979	2650	5250	3503	. 588	3157	9150	
ropagati	Measu	Initial	2650	6400	2600	5650	5250	4550	5180	6750	2150	
tonation F	Pipe	Length	24 in.	24 in.	24 in.	24 in.	24 in.	24 in.	.24 in.	24 in.	40 in.	,
IVDTE V - Nesults of Det	ition	Comp. B	o	463	099	822	122	099	536	536	1204	
	Compos Wt.	H20	1320	1081	686	822	883	686	966	966	1471	:
	Slurry Composition Wt. (%) Wt. (gms	Comp. B	0	30	40	20	45	40	35	35	45	
	Test	No.	30	31	32	33	34	35	36	37	38	

TABLE VI - Results of Detonation Propagation Tests on Aqueous, Settled Slurries of TNT

Conclusion	Detonation	Decaying detona- tion	Decaying detona- tion	Detonation did not propagate	Detonation	Detonation did not propagate. Results not logical. Booster may have moved.	Detonation did not propagate	Detonation
Physical Evidence	Pipe completely shrap- nellized	11 in. O. K., 7 in. peeled, 6 in. shrap- nellized	9.5 in. O. K., 6 in. peeled, 8.5 in. shrap-nellized	15 in. O. K., 6 in. peeled, 3 in. shrap- nellized	Pipe completely shrapnellized	27 in. O. K., 10 in. peeled, 3 in. shrap- nellized	14 in. O. K., 9 in. peeled, 1 in. shrap-nellized	Pipe completely shrapnellized
ion :.) Final	5880	165	610	100	5540	999	820	5500
Measured Detonation Velocity (m/sec.) nitial Midpoint Fin	5880	2457	2396	700	5540	657	874	5500
Measu Velo	5880	5084	6400	4965	5540	0069	4600	5500
Pipe Length	24 in.	24 in.	24 in.	24 in.	24 in.	40 in.	24 in.	40 in.
gms)	1068	753	681	919	783	1305	919	1305
Composition Wt. (gms)	712	753	833	923	640	1067	923	1067
Slurry Wt. (%)	09	90	45	40	55	55	40	50 50
Test	39	40	41	42	4 3	‡	45	89

Note: All tests were performed using a 160 gm. Tetryl booster and 2 inch, schedule 40, stainless steel pipe (Type 304).

of M-9 Propellant	•	Conclusion	Detonation did not propagate	Decaying detons- tion	Detonation	Detonation did not propagate	Detonation did not propagate	Decaying detonation probably due to un- even layer approxi- mately 16 inches away from booster end	Detonation	
of Detonation Propagation Tests on Aqueous, Settled Slurries of M-9 Propellant		Physical Evidence	13. 5 in. O. K., 4. 5 in. peeled, 6 in. shrap-nellized	8.5 in. O. K., 8 in. peeled, 7.5 in. shrap-nellized	Pipe completely shrapnellized	14 in. O.K., 4.5 in. peeled, 5.5 in. shrap- nellized	12 in. O. K., 8 in. peeled, 4 in. shrap- nellized	1,5 in.O.K.,5.5 in. peeled, 33 in. shrap- nellized	Pipe completely shrapnellized	re performed using a 160 gm. Tetryl booster and 2 inch, stainless steel pipe (Type 304).
ts on A	lon	Final	890	380	6120	666	571	1150	1509	Tetryl 4).
agation Tet	Measured Detonation Velocity (m/sec.)	Midpoint	1168	2924	6120	2483	1522	2318	6037	e performed using a 160 gm. T stainless steel pipe (Type 304)
ion Prop	Measur	Initial	0689	2900	6120	5319	5026	7350	6037	ned using
f Detonat	Pipe	Length	24 in.	24 in.	24 in.	24 in.	24 in.	40 in.	40 in.	e perforn stainless
	ition	M-9	540	715	808	627	627	1347	1347	All tests wereschedule 40.
VII - R	Composition	H20	666	874	808	940	940	1347	1347 1347	All te
TABLE VII - Results	Slurry (Wr. / W.)	M-9	35	45	20	40	40	20	20	Note:
•	• • • • • • • • • • • • • • • • • • •	No.	4	41	48	49	20	. 21	25	

TABLE VIII - Results of Detonation Propagation Tests on Aqueous, Settled Slurries of M-10 Propellant

:	Conclusion	Decaying detona- tion	Decaying detona- tion	Decaying detona- tion	Detonation	Decaying detona- tion	Decaying detona- tion	Detonation	Detonation
:	Physical Evidence	<pre>l in. O. K., 14 in. peeled, 9 in. shrap- nellized</pre>	7.5 in. O. K., 8 in. peeled, 8.5 in. shrap- nellized	<pre>11 in. O. K., 10 in. peeled, 3 in. shrap- nellized</pre>	Pipe completely shrap- nellized	2.5 in. O. K., 12 in. peeled, 9.5 in. shrap-nellized	0.5 in. O. K., 6 in. peeled, 17.5 in. shrap-nellized	0.5-1.0 in. wide frag. strips up to 17 in. long	0.5-18 in. long frag. strips
tion c.)	Final	609	300	356	2837	320	300	5275	5536
Measured Detonation Velocity (m/sec.)	Initial Midpoint Final	2050	1990	588	2837	4913	4913	527 5	5536
Measu Velo	Initial	4386	2100	6210	2837	9809	5020	5275	5536
Pipe	Length	24 in.	24 in.	24 in.	24 in.	24 in.	24 in.	24 in.	24 in.
ition gms)	M-10	520	591	563	588	573	200	518	358
lurry Composition (%) Wt. (gms)	H,0	520	484	376	316	573	613	396	1072
Slurry Wt. (%)	M-10	50	55	09	99	90	45	35	25
Test	ġ Z	53	54	55	99	57	8	59	09

Note: All tests were performed using a 160 gm. Tetryl booster and 2 inch, schedule 40, stainless steel pipe (Type 304).

TABLE VIII (Con't.) - Results of Detonation Propagation Tests on Aqueous, Settled Slurries of M-10 Propellant

	Conclusion	Detonation	Detonation	Detonation did not propagate	Detonation did not propagate	Detonation did not propagate	Detonation	Detonation
	Physical Evidence	l in. wide by 3 to 19 in. long frag. strips	5 peeled pieces, each 1-1.5 in. wide by 9 in. long	16.5 in. O. K., 6 in. peeled, 1.5 in. shrap- nellized	12.5 in. O. K., 11.5 in. peeled	15 in. O. K., 9 in. peeled	0.5-2 in. wide frag. strips up to 24 in. long	1-3 in. wide frag. strips up to 24 in. long
tion :.)	Final	5180	5259	*	1400	487	4861	5199
Measured Detonation Velocity (m/sec.)	Midpoint	5180	5259	*	1384	2128	4861	5199
Measu	Initial	5180	5259	*	2828	3883	4861	5199
Pipe	Longth	24 in.	24 in.	24 in.	24 in.	24 in.	40 in.	24 in.
sition (gms)	M-10	290	214	140	140	177	357	214
Slurry Composition	H20	1159	1212	1263	1263	1237	2020	1212** 214
Slurry Wt. (%)	M-10	20	15	10	10	12. 5	15	15
Test	ė	19	29	63	64	99	99	29

*Velocity probe malfunctioned **Water decanted off top of settled M-10 was 0.721 inches.

Note: All tests were performed using a 160 gm. Tetryl booster and 2 inch, schedule 40, stainless steel pipe (Type 304).

TABLE IX - Summary of Detonation Propagation Test Results

Sample Material	Slurry Type	Slurry Concent No Propagation	Slurry Concentration (Wt. %) for Propagation No Complete Partial Propagation Propagation	r Propagation Partial Propagation
TNT	Ge lled	30-40	60 ⁽¹⁾	45-55
TNT	Settled	40	55-60 ⁽¹⁾	45-50
Comp. "B"	Gelled	30	40 ⁽¹⁾	35
Comp. "B"	Settled	30-35	45-50 ⁽¹⁾	40
M-9	Gelled	20-40	50(1)	45
M-9	Settled	35-40	50(1)	45
M-10 M-10 M-10	Gelled Settled Settled	50 10-12. 5	70(2) 15-35(1) 65(2)	55-65 45-60

(1) High Order Detonation

(2) Low Order Detonation

The second of th

FIGURE 1. Horizontally Fired Detonation Propagation Test Set-Up

O To Constant Current Supply "Skip Wound" Nylon Insulated Resistance Wire 0.0076-cm Dlam. C. 058 cm

FIGURE 2 Details of Detonation Velocity Probe

FIGURE 3 Detonation Velocity Test System

1

2

FIGURE 4 Detonation Velocity Traces for Aqueous, Gelled Sturries of M-9 Propellant.

Time t div. 50 µ sec.

Time ← sec.

35

Time \leftarrow 1 div. = 50 μ sec.

FIGURE 4 Detonation Velocity Traces for Aqueous, Gelled Slurries of M-9 Propellant.

FIGURE 4 Detonation Velocity Traces for Aqueous, Gelled Slurries of M-9 Propellant.

Time 1 div. = 50 \(\mu \) sec.

50

7

Time

l div. = 50 µ sec.

Time t sec.

FIGURE 4 Detonation Velocity Traces for Aqueous, Gelled Slurries of M-9 Propellant.

Time sec.

FIGURE 5 Detonation Velocity Traces for Aqueous, Gelled Slurries of M-10 Propellant.

70

11

Time ← sec.

FIGURE 5 Detonation Velocity Traces for Aqueous, Gelled Slurries of M-10 Propellant.

- 41 -

Test No.

50

13

Time 1 div. = 50 μ sec.

55

14

Time \leftarrow 1 div. = 50 μ sec.

FIGURE 5 Detonation Velocity Traces for Aqueous, Gelled Slurries of M-10 Propellant.

15

Time - sec.

FIGURE 5 Detonation Velocity Traces for Aqueous, Gelled Slurries of M-10 Propellant.

16

Time sec.

35

17

FIGURE 6

Detonation Velocity Traces for Aqueous, Gelled Slurries of TNT.

60

18

19

Time - sec.

FIGURE 6 Detonation Velocity Traces for Aqueous, Gelled Slurries of TNT.

20

Time sec.

45

21

Time ← sec.

FIGURE 6 Detonation Velocity Traces for Aqueous, Gelled Slurries of TNT.

55

22

23

Time < − 1 div. = 50 µ sec.

FIGURE 6 Detonation Velocity Traces for Aqueous, Gelled Slurries of TNT.

Test No.

24

Time

I div. = 50

sec.

FIGURE 6 Detonation Velocity Traces for Aqueous, Gelled Slurries of TNT.

- 48 -

Best Available Copy

Test No.

25

26

30

FIGURE 7 Detonation Velocity Traces for Aqueous, Gelled Slurries of Composition B.

Time

1 div. = 50 µ sec.

FIGURE 7 Detonation Velocity Traces for Aqueous, Gelled Slurries of Composition B.

Time \leftarrow 1 div. = 50 μ sec.

69

Time -1 div. = 50 \u00ac sec.

40

Time ← Sweep #1 1 div. = 20 µ sec. Sweep #2 1 div. = 50 1 sec.

FIGURE 7 Detonation Velocity Traces for Aqueous, Gelled Slurries of Composition B.

FIGURE 7 Detonation Velocity Traces for Aqueous, Gelled Slurries of Composition B.

Wt. % Comp. B. Test No.

30

31

Λ

Time sec.

30

Time 1 div. = 20 μ sec.

FIGURE 8 Deton

Detonation Velocity Traces for Aqueous, Settled Slurries of Composition B.

32

Time → l div. = 20 µ sec.

50

33

Time ← 1 div. = 20 µ sec.

FIGURE 8 Detonation Velocity Traces for Aqueous, Settled Slurries of Composition B.

40

Test No.

34

Time sec.

35

Time 1 div. = 20 μ sec.

FIGURE 8 Detonation Velocity Traces for Aqueous, Settled Slurries of Composition B.

35

Test No.

36

Time I div. = 20 µ sec.

Time - 1 div. = 20 \(\mu\) sec.

FIGURE 8 Detonation Velocity Traces for Aqueous, Settled Slurries of Composition B.

Wt. % Comp. B. Test No.

45

38

1 div. = 50 \(\mu\) sec.

FIGURE 8 Detonation Velocity Traces for Aqueous, Settled Slurries of Composition B.

FIGURE 9 Detonation Velocity Traces for Aqueous, Settled Slurries of TNT.

40

41

Sweep #1

Sweep #2

Time Sweep #1 1 div. = 20 \(\mu\) sec.
Sweep #2 1 div. = 50 \(\mu\) sec.

42

Sweep #1

Sweep #2

FIGURE 9 Detonation Velocity Traces for Aqueous, Settled Slurries of TNT.

FIGURE 9 Detonation Velocity Traces for Aqueous, Settled Slurries of TNT.

55

45

Sweep #1

Sweep #2

68

Sweep #1

Sweep #2

Time Sweep #1 1 div. = 20 \(\mu\) sec.
Sweep #2 1 div. = 50 \(\mu\) sec.

Time Sweep #1 1 div. = 20 \(\mu \) sec.
Sweep #2 1 div. = 50 \(\mu \) sec.

FIGURE 9 Detonation Velocity Traces for Aqueous, Settled Slurries of TNT.

- 61 -

45

Test No.

46

Sweep #1

Sweep #2

47

Sweep #1

Sweep #2

Time Sweep #1 1 div. = 20 M sec.
Sweep #2 1 div. = 50 M sec.

Time ← Sweep #1 1 div. = 20 µ sec. Sweep #2 1 div. = 50 µ sec.

FIGURE 10 Detonation Velocity Traces for Aqueous, Settled Slurries of M-9 Propellant.

- 62 -

40

Test No.

48

Sweep #1

Sweep #2

49

Sweep #1

Sweep #2

Time ← Sweep #1 1 div. = 20 µ sec.
Sweep #2 1 div. = 50 µ sec.

FIGURE 10 Detonation Velocity Traces for Aqueous, Settled Slurries of M-9 Propellant.

Sweep #1 1 div. = 20 \(\mu\) sec. Sweep #2 1 div. = 50 \(\mu\). sec.

FIGURE 10 Detonation Velocity Traces for Aqueous, Settled Slurries of M-9 Propellant.

Wt. % M-9

Test No.

50

52

Sweep #1

Sweep #2

FIGURE 10 Detonation Velocity Traces for Aqeuous, Settled Slurries of M-9 Propellant.

FIGURE 11 Detonation Velocity Traces for Aqueous, Settled Slurries of M-10 Propellant.

60

65

55

Sweep #1

Sweep #2

56

Sweep #1

Sweep #2

Time Sweep #1 1 div. = 20 \(\mu\) sec.
Sweep #2 1 div. = 50 \(\mu\) sec.

FIGURE 11 Detonation Velocity Traces for Aqueous, Settled Slurries of M-10 Propellant.

- 67 -

Time Sweep #1 1 div. = 20 \(\mu\) sec.
Sweep #2 1 div. = 50 \(\mu\) sec.

Time Sweep #1 | 1 div. = 20 \(\mu \) sec. Sweep #2 | 1 div. = 50 \(\mu \) sec.

FIGURE 11 Detonation Velocity Traces for Aqueous, Settled Slurries of M-10 Propellant.

Wt. % M-10

35

25

Test No.

59

Sweep #1

Sweep #2

Time ◀

1 div. = 20 µ sec. 1 div. = 50 µ sec. Sweep #1 Sweep #2

60

Sweep #1

Sweep #2

Time ←

1 div. = 20 μ sec. 1 div. = 50 μ sec. Sweep #1 Sweep #2

FIGURE 11 Detonation Velocity Traces for Aqueous, Settled Slurries of M-10 Propellant.

20

15

Test No.

61

Sweep #1

Sweep #2

62

Sweep #1

Sweep #2

Time Sweep #1 1 div. = 20 µ sec.
Sweep #2 1 div. = 50 µ sec.

FIGURE 11 Detonation Velocity Traces for Aqueous, Settled Slurries of M-10 Propellant.

Test No.

63

10

10

Sweep #1

Sweep #2

Time ← Sweep #1 1 div. = 20 µ sec.
Sweep #2 1 div. = 50 µ sec.

64

Sweep #1

Sweep #2

Time Sweep #1 1 div. = 20 \(\mu\) sec.
Sweep #2 1 div. = 50 \(\mu\) sec.

FIGURE 11 Detonation Velocity Traces for Aqueous, Settled Slurries of M-10 Propellant.

- 71 -

No.

65

Sweep #1

12.5

Sweep #2

Time

Sweep #1 1 div. = 20 sec. Sweep #2 1 div. = 50 sec.

66

15

Sweep #1

Sweep #2

Time Sweep #1 1 div. = 20 M sec.
Sweep #2 1 div. = 50 M sec.

FIGURE 11 Detonation Velocity Traces for Aqueous, Settled Slurries of M-10 Propellant.

Best Available Copy

Wt. % M-10

15

Test No.

67

Sweep #1

Sweep #2

Sweep #1 1 div. = 20 μ sec. Sweep #2 1 div. = 50 μ sec.

FIGURE 11 Detonation Velocity Traces for Aqueous, Settled Slurries of M-10 Propellant

Security Classification								
DOCUMENT CONTROL DATA - R & D (Security classification of litte, body of abstract and industring annotation must be entered when the executi report is classified)								
1. GRIGHIATING ACTIVITY (Companies author)		M. REPORT SECURITY CLASSIFICATION						
Hazards Research Corporation		Unclassified						
Denville, New Jersey		28. GROUP						
2. REPORT TITLE		/ m>/m - C						
Detonation Propagation Tests on Aqueous Slurries of TNT, Composition "B", M-9 and M-10								
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)								
George Petino, Jr Hazards Research Corporation Darl E. Westover - Picatinny Arsenal								
6. REPORT DATE	76. TOTAL NO. 01	PAGES	76. NO. OF REFS					
November 1973	73		2					
DAAA21-73-C-0772	SE ORIGINATOR'S	REPORT NUMB	ER(S)					
& PROJECT NO.	Technical Report No. 4584							
4	95. OTHER REPORT NOISI (Any other numbers that may be easigned this report)							
4								
Distribution limited to U.S. Government agencies only; (Test and Evaluation) (November 21, 1973). Other requests for this document must be referred to ARRA) COMPANDED ARCORDANCE (NJ 0780)								
l "	l Bina	• • • • • • • • • • • • • • • • • • •	1					
N/A	Picatinny Arsenal Dover, New Jersey							
The objective of this program was characteristics of aqueous slurries of T 2 inch, schedule 40, stainless steel pipe modes were studied; the dynamic or pun slurry mode. The dynamic condition was agent to a homogeneous, aqueous, exploithis program will be used in support of facturing and loading facilities.	NT, Composes of various nping mode as simulated sive slurry. the United Si	sition B, l lengths. and, the si by adding Informa	M-9 and M-10 in Two operational tatic, or settled an inert gelling tion generated by					
DD 100 1473 REPLACES DO FORM 1472, 1 JAN 64, 1	MICH 15	linciae	- if: - 4					

Security Classification						
4. KEY WORDS	ROLE	K A	ROLE	K B	ROLE	x c
	1				2000	
Detonation						
Propagation	•					
TNT						
Composition B						
M-9 Propellant		•				
M-10 Propellant		1				
Dynamic						
Static		}				
Gelled Slurries			,			
Settled Slurries						
Homogeneous	1					
Aqueous			i			
•						
·						
	1					

Security Classification

Best Available Copy

REQUEST FOR/OR NOTIFICATION OF REGRADING ACTION

DATE 5 July 2002

FILE

For use of this form, see AR 380-5; the proponent agency is OACSI.

	READ INSTRUCTIONS ON REVERSE SA		RM					
TO: (Include ZIP Code)		FROM: (Include ZIP Code)						
	cal Informaiton Center	Chief, Information Research Center						
ATTN: DTIC-OMI	=	AMSTA-AR_WEL-TL, Bldg.						
	Kingman Road, Ste. 0944	Picatinny Arenal, NJ 0	7806-5000					
Ft. Belvoir, V	A 22060-6218							
THE DOCUMENT(S) DESCRIBED BELOW HAS/HAVE BEEN REVIEWED FOR REGRADING AND ACTION HAS BEEN TAKEN AS INDICATED. APPROPRIATE ACTION SHOULD BE TAKEN TO MARK YOUR COPIES AND NOTIFY ALL RECIPIENTS TO WHOM ADDITIONAL DISTRIBUTION WAS FURNISHED IN ACCORDANCE WITH AR 380-5. DOCUMENTS CONCERNING THIS SAME SUBJECT SHOULD BE REVIEWED FOR POSSIBLE REGRADING. REQUEST DOCUMENT(S) DESCRIBED BELOW BE REVIEWED TO DETERMINE WHETHER THEY CAN BE DOWNGRADED OR DECLASSIFIED AT THIS TIME. (Include justification in the "REMARKS" section of this form.) REQUEST APPROPRIATE CLASSIFICATION/REGRADING INSTRUCTIONS FOR DOCUMENTS DESCRIBED BELOW.								
DESCRIPTIO CONTROL NUMBER (TYPE, FILE REFERENCE, UNCLASSIFIE			CLASSIFI REGRADING II	CATION/ NSTRUCTIONS				
	INDORSEMENTS, INC		<u> </u>	NIEW/				
			OLD	NEW				
ADB026512	Detonation propagation tests of TNT, Composition B, M-9 a Nov., 1973 81 pages	U/1td	ט/ט					
		•						
PRINTED OR TYPED I	NAME AND TITLE OF OFFICER	SIGNATURE	L					
Suseela Chandrasekar C, Info Res Ctr, WEL-TL		Sincele Chandrashow						