

EP3260: Machine Learning Over Networks

Lecture 5: Distributed ML

Hossein S. Ghadikolaei

Division of Network and Systems Engineering School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Stockholm, Sweden https://sites.google.com/view/mlons2023/home

February 2023

Learning outcomes

- Recap of centralized solution approaches (convex & nonconvex)
- Distributed optimizations in primal domains
- Dual ascent and dual decomposition
- Distributed optimizations in the dual domains
- Topology-dependent convergence rate

Outline

1. Motivating examples

2. Master-worker architecture (single hop networks)

3. Multihop networks

Recap of convex and nonconvex solvers

Our main optimization problem: minimize $\frac{1}{N}\sum_{i\in[N]}f_i(\boldsymbol{w})$

Convex setting

Existence of global optimality and efficient solvers

GD and SGD family for smooth problems

Subgradient and proximal methods for non-smooth functions

Nonconvex setting

Importance of structure

GD, SGD, and perturbed GD for smooth problems

Successive convex approximation, coordinate descent, and BSUM

Finding 1oN and 2oN points in non-convex setting

Outline

1. Motivating examples

Master-worker architecture (single hop networks)

Multihop networks

Motivating examples

- Private dataset \mathcal{D}_i at worker i (or private function f_i)

$$f_i(\boldsymbol{w}) = \frac{1}{|\mathcal{D}_i|} \sum_{(\boldsymbol{x}, y) \in \mathcal{D}_i} (y - \boldsymbol{w}^T \boldsymbol{x})^2$$

GD:
$$oldsymbol{w}_{k+1} = oldsymbol{w}_k - rac{lpha_k}{N} \sum_{i \in [N]}
abla f_i(oldsymbol{w}_k)$$

Algorithm 1: Decentralized gradient descen

```
Initialize w_1
```

for
$$k = 1, 2,$$
 do

Master node broadcasts $oldsymbol{w}_k$

All workers compute in parallel their gradient $\{
abla f_i(oldsymbol{w}_k) \}$

Master node collects $\{
abla f_i(oldsymbol{w}_k)\}_i$ and computes $oldsymbol{w}_{k+1}$

Motivating examples

- Private dataset \mathcal{D}_i at worker i (or private function f_i)

$$f_i(\boldsymbol{w}) = \frac{1}{|\mathcal{D}_i|} \sum_{(\boldsymbol{x}, y) \in \mathcal{D}_i} (y - \boldsymbol{w}^T \boldsymbol{x})^2$$

GD:
$$oldsymbol{w}_{k+1} = oldsymbol{w}_k - rac{lpha_k}{N} \sum_{i \in [N]}
abla f_i(oldsymbol{w}_k)$$

Algorithm 1: Decentralized gradient descent

Initialize w_1

for k = 1, 2, ..., do

Master node broadcasts w_k

All workers compute in parallel their gradient $\{\nabla f_i(\boldsymbol{w}_k)\}$

Master node collects $\{\nabla f_i(\boldsymbol{w}_k)\}_i$ and computes \boldsymbol{w}_{k+1}

end for

A more complicated scenario

Lack of a master node to collect global information, e.g., $\{\nabla f_i\}_{i\in[N]}$

How to converge to w^\star using only local information exchange (among neighbors)

Warm-up

No coupling variables

minimize
$$f_1(w_1) + f_2(w_2)$$

Well, we can use Algorithm 1

But why not solving in parallel minimize $f_1({m w}_1)$ and minimize $f_2({m w}_2)$

Coupling variables

minimize
$$f_1(\boldsymbol{w}_1, \boldsymbol{v}) + f_2(\boldsymbol{w}_2, \boldsymbol{v})$$

Primal space: Combine ideas from coordinate descent and Algorithm 1

Dual space: replace a local version of coupling variable and add a consensus constraint

See the board!

Warm-up

Algorithm 2: Primal decomposition

```
Initialize m{v}_1 for k=1,2,\ldots, do  \text{Master node broadcasts } m{v}_k  Solve in parallel  m{w}_{1,k+1} \in \arg\min_{m{w}_1} \ f_1(m{w}_1,m{v}_k)   m{w}_{2,k+1} \in \arg\min_{m{w}_2} \ f_2(m{w}_2,m{v}_k)  Find subgradient m{g}_i(m{v}_k) of \min_{m{w}_i} f_i(m{w}_i,m{v}_k) for i\in\{1,2\} Master node collects \{m{g}_i(m{v}_k)\}_i and computes
```

$$\boldsymbol{v}_{k+1} = \boldsymbol{v}_k - \alpha_k \left(\boldsymbol{g}_1(\boldsymbol{v}_k) + \boldsymbol{g}_2(\boldsymbol{v}_k) \right)$$

end for

Feasible primal variables (in the case of convex constraint)

Warm-up

Algorithm 3: Dual decomposition

for
$$k = 1, 2, ..., do$$

Master node broadcasts λ_k

Solve in parallel dual subproblems

$$(w_{1,k+1}, v_{1,k+1}) \in \operatorname{arginf}_{w_1, v_1} f_1(w_1, v_1) + \lambda_k^T v_1$$

 $(w_{2,k+1}, v_{2,k+1}) \in \operatorname{arginf}_{w_2, v_2} f_2(w_2, v_2) - \lambda_k^T v_2$

Master node collects $oldsymbol{v}_{1,k+1}$ and $oldsymbol{v}_{2,k+1}$ and computes

$$\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k - \alpha_k \left(\boldsymbol{v}_{2,k+1} - \boldsymbol{v}_{1,k+1} \right)$$

end for

Usually infeasible iterates, i.e., $oldsymbol{v}_1
eq oldsymbol{v}_2$

Projection onto feasible set by letting $\bar{m{v}}_k = (m{v}_{1,k} + m{v}_{2,k})/2$

 $oldsymbol{v}_{1,k+1} - oldsymbol{v}_{2,k+1}$ is a subgradient of dual objective

Master node determines prices λ

Outline

1. Motivating examples

2. Master-worker architecture (single hop networks)

3. Multihop networks

Lagrange dual problem and dual ascent

Consider

minimize
$$f(w)$$
 s.t. $Aw = b$

Lagrange dual function: $g(\lambda) = \inf_{w} L(w, \lambda) := f(w) + \lambda^{T} (Aw - b)$

Lagrange dual problem: $\text{maximize}_{\pmb{\lambda}} \ g(\pmb{\lambda}) = -f^*(-\pmb{A}^T\pmb{\lambda}) - \pmb{\lambda}^T\pmb{b}$

HW 3.1: Show that for convex and closed f: $Aw - b \in \partial g(\lambda)$ where ∂ is the set of subgradients

Dual ascent algorithm (gradient ascent for the Lagrange dual problem)

step 1 (primal variable update): $w_{k+1} \in \arg\min_{w} L(w, \lambda_k)$ step 2 (dual variable update): $\lambda_{k+1} = \lambda_k + \alpha_k (Aw_{k+1} - b)$

HW 3.2: Analyze the convergence of dual ascent for L-smooth and μ -strongly convex f. Is the solution primal feasible?

Dual decomposition with equality constraints

Consider

minimize
$$f({\pmb w}) = \sum\nolimits_{i \in [N]} f_i({\pmb w}_i)$$
 s.t.
$$\sum\nolimits_{i \in [N]} {\pmb A}_i {\pmb w}_i = {\pmb b}$$

$$L(\boldsymbol{w}, \boldsymbol{\lambda}) = \sum_{i \in [N]} L_i(\boldsymbol{w}_i, \boldsymbol{\lambda}) = \sum_{i \in [N]} f_i(\boldsymbol{w}_i) + \boldsymbol{\lambda}^T \boldsymbol{A}_i \boldsymbol{w}_i - \frac{1}{N} \boldsymbol{\lambda}^T \boldsymbol{b}$$

Lagrangian is separable in $w\Rightarrow$ parallel processing in step 1

Master node gathers residual contributions $m{A}_im{w}_{i,k}$ to run step 2

Very useful for large-scale optimization problems, but often slow

Dual decomposition

step 1 (primal update): $\boldsymbol{w}_{i,k+1} \in \arg\min_{\boldsymbol{w}_i} L_i(\boldsymbol{w}_i, \boldsymbol{\lambda}_k), \ i=1,\dots,N$ step 2 (dual update): $\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + \alpha_k \left(\sum_{i \in [N]} \boldsymbol{A}_i \boldsymbol{w}_{i,k+1} - \boldsymbol{b} \right)$

Dual decomposition with inequality constraints

Consider

$$\begin{aligned} \text{minimize} \quad & f(\pmb{w}) = \sum\nolimits_{i \in [N]} f_i(\pmb{w}_i) \\ \text{s.t.} \quad & \sum\nolimits_{i \in [N]} \pmb{A}_i \pmb{w}_i \leq \pmb{b} \end{aligned}$$

Same as before expect projection of λ onto positive orthant ($\lambda \geq 0$)

Price interpretation of λ_{k+1}

increase the price if resources are over-utilized $(\sum_{i \in [N]} {m{A}}_i {m{w}}_{i,k} - {m{b}} > 0)$

decrease the price if resources are under-utilized $(\sum_{i \in [N]} m{A}_i m{w}_{i,k} - m{b} \leq 0)$

Compatible only with star communication topology (master-worker)

step 1 (primal update): $\boldsymbol{w}_{i,k+1} \in \arg\min_{\boldsymbol{w}_i} L_i(\boldsymbol{w}_i, \boldsymbol{\lambda}_k), \ i=1,\dots,N$ step 2 (dual update): $\boldsymbol{\lambda}_{k+1} = \left[\boldsymbol{\lambda}_k + \alpha_k \left(\sum_{i \in [N]} \boldsymbol{A}_i \boldsymbol{w}_{i,k} - \boldsymbol{b}\right)\right]_+$

Outline

1. Motivating examples

Master-worker architecture (single hop networks)

3. Multihop networks

Some definitions

(Row)-stochastic matrix $A \in \mathbb{R}^{d \times d}$: $a_{ij} \geq 0, \forall i, j \text{ and } A1 = 1$

Doubly stochastic matrix A: $a_{ij} \geq 0, \forall i, j$, $A\mathbf{1} = \mathbf{1}$ and $A^T\mathbf{1} = \mathbf{1}$

Doubly stochastic matrix A defines an undirected graph $\mathcal{G}_A(\mathcal{E},\mathcal{V})$ with vertex set \mathcal{V} and edge set \mathcal{E}

 $(i,j) \in \mathcal{E}$ iff $(j,i) \in \mathcal{E}$ and $a_{ij} \geq \eta$ for some small positive η

Set of neighbors of vertex $i: \mathcal{N}_i = \{j \in \mathcal{V} \mid (i,j) \in \mathcal{E}\} \cup \{i\}$

Degree of a vertex $d_i = |\mathcal{N}_i|$

Distributed learning setup

Consider minimize $\frac{1}{N}\sum_{i\in[N]}f_i({m w})$

Consensus constraint reformulation

$$(\text{P1}): \mbox{ minimize } \frac{1}{N}\sum_{i\in[N]}f_i(\pmb{w}_i)$$
 s.t. $\pmb{w}_i=\pmb{w}_j, \mbox{ for all } j\in[N]$

Now we can run dual decomposition to parallelize computations in (P1)

What if we are restricted to a communication graph G?

What about

$$\text{(P2)}: \ \text{minimize} \ \ \frac{1}{N}\sum_{i\in[N]}f_i(\pmb{w}_i)$$
 s.t. $\pmb{w}_i=\pmb{w}_j, \ \ \text{for all} \ j\in\mathcal{N}_i$

For connected G, (P1) and (P2) are equivalent

Average consensus problem

minimize
$$0$$
 s.t. $oldsymbol{w}_i = oldsymbol{w}_j, \quad \text{for all } j \in \mathcal{N}_i$

Write equivalently as

minimize
$$0$$

s.t.
$$a_{ij}(\boldsymbol{w}_i - \boldsymbol{w}_j) = 0$$
, for all $j \in \mathcal{N}_i$

for some doubly stochastic matrix $oldsymbol{A} = [a_{ij}]$ compatible with $oldsymbol{\mathcal{G}}$

Iterations $oldsymbol{w}_{k+1} = oldsymbol{A} oldsymbol{w}_k$ yield

$$\left\| \boldsymbol{w}_k - \frac{\sum_{i=1}^N \boldsymbol{w}_{i,0}}{N} \mathbf{1} \right\|_2 \le (\sigma_2(\boldsymbol{A}))^k \left\| \boldsymbol{w}_0 - \frac{\sum_{i=1}^N \boldsymbol{w}_{i,0}}{N} \mathbf{1} \right\|_2$$

Linear convergence when $\sigma_2(\mathbf{A}) < 1$

Average consensus problem

minimize
$$0$$
 s.t. $a_{ij}({m w}_i-{m w}_j)=0, \quad \text{for all } j\in\mathcal{N}_i$

Special case of
$$m{w}_{k+1} = m{A}m{w}_k$$
: $m{w}_{i,k+1} = rac{1}{|\mathcal{N}_i|}\sum_{j\in\mathcal{N}_i}m{w}_{i,k} = rac{1}{d_i}\sum_{j\in\mathcal{N}_i}m{w}_{i,k}$

Gossip algorithm: at every iteration pick a random subset of neighbors $\mathcal{S} = \{j \mid j \in \mathcal{N}_i\}$ and update $w_{i,k+1} = \frac{1}{|\mathcal{S}|} \sum_{j \in \mathcal{S}} w_{j,k}$

linear convergence (in expectation under some technical conditions)

Lazy Metropolis iteration:
$$m{w}_{i,k+1} = m{w}_{i,k} + \sum_{j \in \mathcal{N}_i} rac{1}{2\max(d_i,d_j)} (m{w}_{j,k} - m{w}_{i,k})$$

linear convergence (under some technical conditions)

Average consensus problem

- Topology-dependent convergence rate

path graph: $\mathcal{O}(N^2 \log \epsilon^{-1})$

2D grid: $\mathcal{O}(N \log N \log \epsilon^{-1})$

star graph: $\mathcal{O}(N^2 \log \epsilon^{-1})$, two-star graph: $\mathcal{O}(N^2 \log \epsilon^{-1})$

geometric random graph: $\mathcal{O}(N \log N \log \epsilon^{-1})$

any connected undirected graph: $\mathcal{O}(N^2 \log \epsilon^{-1})$

complete graph: $\mathcal{O}(1)$

Distributed learning over undirected graph

$$\text{(P2)}: \ \text{minimize} \ \ \frac{1}{N}\sum_{i\in[N]}f_i(\pmb{w}_i)$$
 s.t. $\pmb{w}_i=\pmb{w}_j, \ \ \text{for all} \ j\in\mathcal{N}_i$

Decentralized subgradient method (primal method), v1:

step 1 (consensus):
$$\overline{\boldsymbol{w}}_{i,k} = \sum\nolimits_{i \in \mathcal{N}_i} a_{ij} \boldsymbol{w}_{j,k}$$
 step 2 (subgradient descent):
$$\boldsymbol{w}_{i,k+1} = \overline{\boldsymbol{w}}_{i,k} - \alpha_k \boldsymbol{g}_i(\overline{\boldsymbol{w}}_{i,k})$$

Push toward consensus (blue) vs push toward the minimizer (red)

For static graphs, time-invariant push in blue vs time-dependent push in red Similar diffusion (mixing) time as of average consensus

Distributed learning over undirected graph

$$\text{(P2)}: \ \text{minimize} \ \ \frac{1}{N}\sum_{i\in[N]}f_i(\pmb{w}_i)$$
 s.t. $\pmb{w}_i=\pmb{w}_j, \ \ \text{for all} \ j\in\mathcal{N}_i$

Decentralized subgradient method (primal method), v2:

$$\mathbf{w}_{i,k+1} = a_{ii}\mathbf{w}_{i,k} - \alpha_k \mathbf{g}_i(\mathbf{w}_{i,k}) + \sum_{i \in \mathcal{N}_i \setminus \{i\}} a_{ij}\mathbf{w}_{j,k}$$
$$= \sum_{i \in \mathcal{N}_i} a_{ij}\mathbf{w}_{j,k} - \alpha_k \mathbf{g}_i(\mathbf{w}_{i,k})$$

Push toward consensus (blue) vs push toward the minimizer (red)

For static graphs, time-invariant push in blue vs time-dependent push in red Similar diffusion (mixing) time as of average consensus

Distributed learning over undirected graph

$$\text{(P2)}: \ \text{minimize} \ \ \frac{1}{N} \sum_{i \in [N]} f_i(\pmb{w}_i)$$
 s.t. $\pmb{w}_i = \pmb{w}_j, \quad \text{for all } j \in \mathcal{N}_i$

Decentralized dual decomposition (dual method):

HW 3.3: extend the dual decomposition of Slide 6-12 to solve (P2).

Compare it to the primal method (analytically or numerically) in terms of total communication cost and convergence rate on a random geometric communication graph.

Further discussions

- Another dual approach: alternating direction method of multipliers (ADMM), better convergence using augmented Lagrangian (adding $\rho \| Aw b \|^2$) dual decomposition + augmented Lagrangian + coordinate descent ADMM over networks
- Directed communication graph
- Latency in communication links
- Faulty communication links
- Nonconvex optimization over network

CA4: Sensitivity to outliers

Split "MNIST" dataset to 10 random disjoint subsets, each for one worker, and consider SVM classifier in the form of $\min_{\pmb{w}} \frac{1}{N} \sum_{i \in [N]} f_i(\pmb{w})$ with N=10. Consider the following outlier model: each worker i at every iteration independently and randomly with probability p adds a zero-mean Gaussian noise with a large variance R to the information it shares, i.e., ∇f_i and $\pmb{w}_{j,k}$ in the cases of Algorithm 1 and decentralized subgradient method respectively.

- Run decentralized gradient descent (Algorithm 1) with 10 workers.
 - Characterize the convergence against p and R.
 - Propose an efficient approach to improve the robustness of Algorithm 1 and characterize its convergence against $\it p$ and $\it R$.
- Consider a two-star topology with communication graph (1,2,3,4)-5-6-(7,8,9,10) and run decentralized subgradient method.
 - Characterize the convergence against p and R.
 - Propose an efficient approach to improve the robustness to outliers and characterize its convergence against p and R.
- Assume that we can protect only three workers in the sense that they would always send the true information. Which workers you protect in Algorithm 1 and which in the two-star topology, running decentralized subgradient method?

Some references

- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," FoT in Machine learning, 2011.
- A. Nedic, A. Olshevsky, and M. G. Rabbat, "Network topology and communication-computation tradeoffs in decentralized optimization," Proceedings of the IEEE, 2018.