Einführung in Geographische Informationssysteme

Einführungsvorlesung zur Ausbildung "Anwendung geographischer Informationssysteme in Ökologie und Umweltschutz"

Universität Ulm, WS 1995/1996 Wolf-Fritz Riekert, FAW Ulm

Geographische Informationssysteme

Geoinformation

- Arten (thematisch, geometrisch / topologisch, kartographisch)
- Rasterdaten / Vektordaten
- ◆ Geoobjekte
- Objektarten
- ◆ Datenrepräsentation (z.B. in Datenbank)

Inhalt

- Geoinformation / Geodaten
- Geoinformationssysteme (GIS)
- Verfahren
- Anwendungen

Geographische Informationssysteme

- 2

Definitionen: Geoinformation / Geodaten

Geoinformation =
Information mit Raumbezug
(und Zeitbezug)

Geodaten =
Sachdaten + Geometriedaten
(+ Chronometriedaten)

Information vs. Daten

Daten

- alles, was auf dem Computer gespeichert werden kann
- können (müssen) interpretiert werden

Information

- besitzt Bedeutung für Menschen ("interpretierte Daten")
- hat Nutzungsaspekt für Menschen

Geographische Informationssysteme

Raumbezug (2)

- Erde als
 - Kugel
 - Rotationsellipsoid
 - Geoid
- Darstellbar durch Koordinaten
 - Geographische Koordinaten (Länge / Breite)
 - Ebene Koordinaten ("Gauß-Krüger")
 - Geozentrische Koordinaten (globales System)

Raumbezug (1)

- Geodaten / Geoinformationen beziehen. sich auf Orte oder Bereiche der Erde
- Erde als zweidimensionales oder dreidimensionales Gebilde (Erdoberfläche bzw. Erdkörper)
- Raumbezug durch Koordinaten
- oder symbolisch durch Namen, Nummern (z.B. Postleitzahlen)

Geographische Informationssysteme

Dimensionalität von Geodaten

- Erdkörper als dreidimensionales 3D: Objekt
- Erdoberfläche als zweidimensionales 2D. Objekt
- 2.5D: Erdoberfläche als zweidim. Objekt + Höhe für jeden Punkt auf Erdoberfläche (Höhe wird zum Sachdatum)

Geodaten

Geodaten = Sachdaten + Geometriedaten (+ Chronometriedaten)

Math. Funktion: Sachdaten = f(Ort, Zeit)

Beispiel:

Temperatur(Feldberg, 21.Jan.) = - 10 Grad

Geographische Informationssysteme

- 9 -

Was ist das Kernproblem der Geodatenverarbeitung?

Frage:

"Warum bereiten Geodaten besondere Probleme für die Informationstechnik?"

Viel gehörte Antwort:

"Weil Geodaten mehrdimensional sind."

Stimmt die Antwort?

Tabellenmetapher für Geodaten

Sachdaten

Geometriedaten

Höhe	Landnutzung	Gemeinde	х	Y
400	Wald	Ulm	400	900
390	Grünland	Ulm	420	910
350	Baggersee	Neu-Ulm	450	880
				

Geographische Informationssysteme

- 10

Das Kernproblem der Geodatenverarbeitung

Es gibt unendlich viele Orte (und Zeitpunkte)!

Jeder dieser unendlich vielen Orte kann prinzipiell unterschiedliche Merkmale tragen

Lösungen des Kernproblems

- Vergröberung des Raumbezugs:
 - ⇒ Rasterdaten
- Vergröberung (Klassifizierung) der Sachinformation:
 - ⇒ Vektordaten

Geographische Informationssysteme

- 13 -

Rasterdaten (1)

- Matrix aus Merkmalswerten
- Jeder Merkmalswert ist einer Rasterzelle zugeordnet
- Raumbezug wird vergröbert auf die Rastergröße
- + Feine Auflösung der Merkmalswerte möglich

Geographische Informationssysteme

- 14

Rasterdaten (2)

0	20	20	40	40	0	0	0
0	20	10	40	40	40	40	0
20	20	10	40	20	10	10	0
20	10	10	20	20	10	10	0
0	10	10	10	10	10	10	0
0	0	0	0	10	10	0	0

Interpretation z.B.:

- Bilddaten
- Temperatur
- Höhe
- Lärm
- Verschmutzung
- Landnutzung
- Eigentümer
- •..

Rasterdaten (3)

Verschiedene Arten von Rasterdaten

- Kontinuierliche Werte (z.B. Höhen, Grauwertbilder)
- Diskrete Werte (z.B. Klassifikationsergebnisse)
- Binäre Rasterdaten (nur 0 oder 1 als Werte)

Rasterdaten (4)

Geographische Informationssysteme

- 17 -

Rasterdaten: Datenstrukturen

- ◆ triviale Matrix-Darstellung
- Lauflängenkodierung (Run Length Code)
- Quadtree

Rasterdaten: Anwendung

- Bilddaten, Sensordaten
 - Satellitenbilddaten, Luftbilder
 - gescannte gedruckte Karten
- ◆ Umwelt, natürliche Phänomene
- Gut geeignet für kontinuierliche Verläufe von Merkmalen
- ◆ Aber: Nur Merkmale, keine Objekte

Geographische Informationssysteme

- 18

Rasterdaten: Datenaustauschformate

- GIF (Compuserve, Unix, WWW)
- ◆ GRID (Arc/Info)
- ◆ TIFF (MacIntosh)
- ◆ PCX, BMP (PC)
- ◆ JPEG (WWW)
- ◆ Photo CD (Kodak)
- XWD (X Window System)
- andere

Geoobjekte

Objekt- ID	Höhe	Landnutzung	Gemeinde	Geometrie (Vektordaten)
1	400	Wald	Ulm	1
2	390	Grünland	Ulm	2
3	350	Baggersee	Neu-Ulm	
				3

Geographische Informationssysteme

- 21 -

Objektbildung

- Merkmale werden vergröbert (klassifiziert)
- Bereiche mit homogenen Merkmalswerten (ggf. nach Klassifizierung)
 - ⇒ Geoobjekte
- ◆ Räumliche Ausdehnung der Bereiche
 - ⇒ Vektordaten
- Beispiele: Satellitenbildklassifikation, Höhenlinien

Geographische Informationssysteme

- 22

Vektordaten

- definieren Geometrieelemente:
 Punkt (0D), Linien (1D), Regionen (2D),
 Volumina (3D)
- werden benötigt zur Darstellung der Geometrie von Geoobjekten
- sehr genauer Raumbezug möglich
- ◆ "Topologie" kann repräsentiert werden
- aber: Vergröberung der Merkmalswerte

Geometrieelemente

sind definiert durch

- Koordinaten (x, y, z)
- Beziehungen zu anderen Geometrieelementen (Topologie):
 - Linie enthält Punkt
 - Region ist begrenzt durch Linie
 - usw.

Vektordaten: Datenstrukturen

- Triviale Darstellung: "Spaghettidaten"
- Arc/Node-Repräsentation
- ◆ Hierarchisch

Geographische Informationssysteme

- 25 -

Vektordaten: "Spaghettidaten" (2)

- Sehr einfache Darstellung: Koordinatenlisten
- Gut geeignet als Datenaustauschformat
- Nachteil: Keine topologische Information vorhanden, Topologieaufbau erforderlich

- 27 -

◆ Problem: Inselflächen

Vektordaten: "Spaghettidaten" (1)

- Triviale Darstellung
- Geometrieelemente definiert durch Koordinaten(listen)

Punkt P: 1|4

Linie b: 1|4, 1|1, 4|1, 4|5

Region F: 2|3, 3|2, 3|4

Region G: 1|4, 1|1, 4|1, 4|5

usw.

Geographische Informationssysteme

- 26

Vektordaten: Hierarchische Darstellung (1)

Geographische Informationssysteme

Geographische Informationssysteme

- 28 -

Vektordaten: Hierarchische Darstellung (2)

- Geometrieelemente sind definiert durch Koordinaten und Bestandteile
- Topologie repräsentiert über Bestandteilhierarchie
- redundanzfreie Darstellung
- ◆ Beispiel GIS SICAD open

Geographische Informationssysteme

- 29 -

Vektordaten: Arc-Node-Repräsentation (2)

- spezialisiert auf "Netztopologien" (d.h. an jedem Ort gibt es maximal ein Geometrieelement
- Topologie explizit dargestellt in Tabelle ("Arc Table")
- redundanzfreie Darstellung
- ◆ Beispiel: GIS Arc/Info

Vektordaten: Arc-Node-Repräsentation (1)

Arc	Table
\neg	i abic

Arc	Left	Right	Start	End
а	F	G	R	R
b	G	_	Р	Q
С	G	Н	Q	Р
d	Н	_	Q	Р

- Eine Arc Table definiert die Topologie: Sie enthält Linien (Arcs) sowie anliegende Knotenpunkte (Nodes) und Regionen (Polygons)
- Weitere Datenstrukturen enthalten die Koordinaten

Geographische Informationssysteme

- 30 -

Vektordaten: Anwendung

- ◆Gut anwendbar für Artefakte (d.h. von Menschen gemachte oder erdachte Objekte:
 - Topographie (z.B. Straßen, Gewässer, Gebäude)
- Versorgung (z.B. Elektrizitätsleitungen)
- Grundbesitz (Flurkarten)
- ◆Schwieriger anwendbar für Umweltobjekte:
- kontinuierliche Verläufe
- Objektbildungsregeln oft unklar
- Geometrien oft unscharf

Geoobjekte

- ◆ gehören einer Objektart an (z.B. Biotop)
- haben eindeutige ID (Name oder Nummer)
- besitzen eine Geometrie, dargestellt durch Geometrielement (Region, Linie, Punkt)
- ♦ besitzen Attribute (z.B. Schutzklasse = 2)
- stehen in Beziehung zu anderen Geoobjekten (z.B. Landkreis = Alb-Donau)

Geographische Informationssysteme

- 33 -

Objektart

- auch Objektklasse, Objekttyp genannt
- Objektartenkatalog enthält Beschreibungen aller Objektarten
- Durch Objektart sind mögliche Attribute und Beziehungen zu anderen Objekten gegeben
- Objektart legt Typ der Geometrie des Geoobjekts fest: Punkt, Linie, Region...

Geographische Informationssysteme

- 34

Geoinformationssysteme (GIS)

- anderer Name: Raumbezogene Informationssysteme
- Aufgabe: Erfassung, Verwaltung, Analyse und Präsentation ("EVAP") von raumbezogener Information
- sind mehr als nur Graphiksysteme
- können mehr als nur Kartographie

GIS-Historie

- Graphiksysteme zur Kartenproduktion (ab 70er Jahre)
- Anfügung von Sachdaten an Graphikelemente
- Objektmodelle für Geodaten (ab 80er Jahre)
- Integration mit relationalen Datenbanken (ab 90er Jahre)
- ◆ Objektorientierte Techniken

GIS-Architektur

- Datenhaltung
- Verarbeitungsteil
 - Grundsystem
 - Fachschalen
- Benutzeroberfläche

Geographische Informationssysteme

- 37

Geodatenhaltung

- Proprietäre Datenhaltung
 - Ablage der Geodaten im Dateisystem
 - Spezielle Ablagestrukturen und Zugriffstechniken
- Marktgängige Datenbanksysteme
 - Problem: Nicht für Geodaten konzipiert
 - Vorteil: GIS-Entwickler brauchen sich nicht um Probleme der Datenhaltung kümmern

Geographische Informationssysteme

- 38 -

Datenbanken

- persistente Speicherung von Daten (über Programmende hinaus)
- Abfragesprache für Daten
- Mehrbenutzerbetrieb ("Transaktionen")
- Wiederanlauf bei Systemabstürzen

Transaktionen

- ermöglichen Mehrbenutzerbetrieb
- sorgen für ununterbrochene Ausführung zusammengehöriger Operationen
- ◆ Beispiel Flugreservierung:

"Wenn Sitzplatz vorhanden (1), dann reserviere Sitzplatz (2)"

Überprüfung (1) darf nicht von Reservierung (2) getrennt werden

Datenbanksysteme

- "Auslaufmodelle":
 - Hierarchische Datenbanken
 - Netzwerkdatenbanken
- Stand der Technik:
 - Relationale Datenbanksysteme
- ◆ Künftig (?):
 - Objektorientierte Datenbanksysteme

Geographische Informationssysteme

- 41 -

SQL

SQL (Structured Query Language): Abfragesprache für relationale Datenbanksysteme

Wichtigste Elemente:

- ◆ Selektion = Auswahl bestimmter Zeilen
- ◆ Projektion = Auswahl bestimmter Spalten
- → Join = Zusammenfügung von Tabellen

Relationale Datenbanksysteme

Flüsse			Arten			Vorkom	men
FlussID	Name	Wasser-	ArtID	Name	Schutz-	FlussID	ArtID
		qualität			stufe	2	40
1	Donau	3	20	Eisvogel	1	3	20
2	Iller	2	30	F-Reiher	2	1	30
3	Blau	2	40	Forelle	2	2	30

- Information wird in Tabellen dargestellt
- Normalisierung: Separate Tabellen für
 - mehrfach auftretende Information (Beispiel: Tabelle Arten)
 - n:n-Beziehungen (Beispiel: Tabelle Vorkommen)

Geographische Informationssysteme

- 42 -

SQL: Selektion, Projektion

Flüsse			Arten			Vorkom	men
FlussID	Name	Wasser-	ArtID	Name	Schutz-	FlussID	ArtID
		qualität			stufe	2	40
1	Donau	3	20	Eisvogel	1	3	20
2	Iller	2	30	F-Reiher	2	1	30
3	Blau	2	40	Forelle	2	2	30

- 44 -

Gesucht sind FlussID und Name (*Projektion*) aller Flüsse mit Wasserqualität < 3:

SELECT FlussID, Name

FROM Flüsse

WHERE Wasserqualität < 3

FlussID Name
2 Iller
3 Blau

Ergebnis

SQL: Join

Flüsse		
FlussID	Name	Wasser-
		qualität
1	Donau	3
2	Iller	2
3	Blau	2

Arten		
ArtID	Name	Schutz-
		stufe
20	Eisvogel	1
30	F-Reiher	2
40	Forelle	2

Vorkom	men
FlussID	ArtID
2	40
3	20
1	30
2	30

Gesucht sind die Flüsse mit den in ihnen vorkommenden Arten mit Schutzstufe =2:

SELECT Flüsse.Name, Arten.Name FROM Flüsse, Arten, Vorkommen

WHERE Flüsse.FlussID = Vorkommen.FlussID
AND Arten.ArtID = Vorkommen.ArtID

AND Schutzstufe = 2

tzetufo – 2

Geographische Informationssysteme - 45 -

Ergebnis

Flüsse.	Arten.
Name	Name
Donau	F-Reiher
Iller	F-Reiher
Iller	Forelle

Relationale Datenbank als "GIS"

- Geodaten werden in Tabellen abgelegt
- Gut geeignet für Sachdatenteil
- Gut geeignet für Topologie (Arc-Node-Modell)
- Probleme bei Geodaten: Datentyp "Liste (von Koordinaten)" fehlt.
- Moderne GIS-Architekturen erweitern relationale Datenbank zur vollständigen GIS-Funktionalität

Geographische Informationssysteme

- 46 -

Verfahren

- Erfassung
- Verwaltung
- Analyse
- Präsentation / Kartographie

Erfassung von Vektordaten

- Erfassung vor Ort ("in situ")
 - Feldvermessung
 - Global Positioning System (GPS)
- Häusliche Digitalisierung aus Landkarten und Luftbildern
 - Digitalisiertisch, -tablett
 - Photogrammetrische Auswertegeräte

Feldvermessung

- Winkelmessung
 - Theodolit
 - Tachymeter (auch für Streckenmessung)
- Streckenmessung
 - mechanisch
 - optisch
 - elektrisch

Geographische Informationssysteme

- 49

Global Positioning System

- ◆ 18 Satelliten in 20000 km Höhe
- Umlaufzeit ca. 12 Std.
- stets 4 Satelliten über Horizont
- strahlen Signale aus
- Empfänger vergleicht Laufzeiten
- Microcomputer berechnet Position

Geographische Informationssysteme

- 50

Digitalisiertisch, Digitalisiertablett

- ◆ Ausrüstung
 - Tisch bzw. Tablett
 - Lupe (eine Art Maus mit Fadenkreuz)
 - Ortungseinrichtung für Lupe
 - Serielle Computerschnittstelle
- Klick auf Lupe überträgt Koordinaten des Fadenkreuzes an Computer
- Koordinatenumrechnung durch Paßpunktentzerrung

Erfassung von Rasterdaten

- Scanner (für Landkarten und Luftbilder)
- Satellitensensoren (Fernerkundung)

Geokodierung (Entzerrung) (1)

- Transformation der erfaßten Koordinaten auf Koordinatensystem des zugrundeliegenden GIS
- i.d.R. erforderlich für Rasterdaten und digitalisierte Vektordaten
- Lösungsansatz durch Abbildungsgleichung
- Bestimmung der Abbildungsparameter über Paßpunktkoordinaten

Geographische Informationssysteme

- 53 -

Erfassung aus Luftbildern

- Quelle: Schwarz-weiss, Farb- oder Infrarotbilder
- ◆ Orthophoto: Verzerrungseffekte durch unterschiedliche Geländehöhen werden (vom Computer) elimiert. (Erfordert Kenntnis des Höhenmodells.)
- Stereophotogrammetrie: Es wird 3D mit Hilfe eines Stereobetrachters gemessen,
- ◆ Zusätzlich Entzerrung mit Paßpunkten.

Geokodierung (Entzerrung) (2)

Beispiel: Affine Abbildung

$$y_1 = a_{11}X_1 + a_{12}X_1 + a_1$$

 $y_2 = a_{21}X_1 + a_{22}X_1 + a_2$

Paßpunktpaare $(x_1|x_2, y_1|y_2)$ (mind. 6 erforderlich)

einsetzen in Gleichung und Gleichung auflösen nach a₁₁, a₁₂, a₂₁, a₂₂, a₁, a₂

Anschließend Abbildungsgleichung auf erfaßte Daten anwenden.

Geographische Informationssysteme

- 54

Einfache Kartierungen (z.B. Biotopkartierung)

- Orthophoto als Erfassungshilfe (vom Landesvermessungsamt)
- Begehung des Gebiets
- Einzeichnen der Objekte auf Orthophoto ("Filzstift")
- häusliche Digitalisierung, Entzerrung

Erfassung über Scanner

- Vorteil: kein Digitalisiertablett etc. erforderlich, aber: Rasterdaten
- Digitalisierung auf dem Bildschirm ("digitizing on screen")
- oder Mustererkennungstechniken
 - Erkennung von Schriften, Linien, Signaturen auf Landkarten, anschließend manuelle Nachbearbeitung der Geodaten
 - Spektralklassifikation (wie bei Satellitenbildern)

Geographische Informationssysteme

- 57 -

Klassifikation von Satellitenbilddaten

- Unüberwachte Klassifizierung
 - Automatische Bildung von Merkmalsklassen ("Clusteranalyse")
 - Bedeutung der Klassen muß durch Experten analysiert werden
- ♦ Überwachte Klassifizierung
 - Experte gibt Trainingsgebiete an für gewünschte Zielklassen
 - Automatische Klassifikation der Bildpunkte nach diesen Klassen

Erfassung aus Satellitenbilddaten

- Geokodierung ähnlich wie Luftbilder
- Klassifikation der Bilddaten = Vergröberungen der Merkmale im Rasterbild
- Objektbildung
 (Objekte = zusammenhängende, homogene Bereiche im klassifizierten Bild
- Raster/Vektor-Wandlung zur Erzeugung der Vektorgeometrien

Geographische Informationssysteme

- 58

Klassifikation von Satellitenbilddaten

Analyse von Vektordaten

- ◆ Räumliche Abfragen
 - Verwendung räumlicher Prädikate
 - Räumliche SQL-Erweiterungen
- Generatoren
 - Verschneidung
 - Pufferbildung

Geographische Informationssysteme

Klassischer Equi-Join

			•						
Knr	Kunde	Stadt	Teile	enr N	/lenge	Kund	ennr	Datur	— n
1	Maier	Ulm	2	205	2	2		01.08.9	—)4
2	Müller	Augsburg	3	302	1	4		07.09.9) 4
3	Huber	Ulm		10	5	2		09.09.9) 4
4	Schmidt	Stuttgart		•				•	
Join Kundennr									
Kr	r Kunde	Stadt	Teilenr	Men	ge Ku	ındenn	r Da	atum	
2	Müller	Augsburg	205	2		2	01.	08.94	
2	Müller	Augsburg	10	5		2	09.	09.94	
l 4	Schmid	It Stuttgart	302	l 1		4	07	09 94 l	

- 63 -

Räumliche Abfragen

- räumliche Prädikate zur Selektion
 - INTERSECTS(X,Y)
 - CONTAINS(X,Y)
 - DISTANCE(X,Y) < D
- ◆ Erweiterung der SQL-Syntax in WHERE-Klausel, z.B.:

WHERE DISTANCE(Flüsse.Lage, 5000|4000) < 120

Geographische Informationssysteme

- 62 -

Spatial Join

Geographische Informationssysteme

- 64 -

Pufferzonenbildung (Buffering)

- Pufferzone Buffer(F,d)
- schließt alle Punkte um das Geometrieelement F im Abstand d mit ein

- Anschließende Verschneidung liefert Objekt(teil)e im Abstand d
- Interpretation: Einflussgebiete,
 z.B. Lärmausbreitung, Verschmutzung

Geographische Informationssysteme

- 65 -

Vektorverschneidung

Analyse von Rasterdaten

- Klassifizierung
- Umklassifizierung
- Verschneidung
- Umgebungsoperatoren
- Resampling (Übergang auf andere Rastergröße)
- Koordinatentransformation (z.B. Entzerung)

Umklassifizierung

Die Werte der Rastermatrix werden gemäß Zuordnungstabelle ersetzt

Rasterverschneidung

0	20	20	<i>4</i> ∩	40	<u> </u>	٥	0							0		20	40	n	٥	0	Λ		
0	20	20 10	TU	40	40	40	0			0	1	2		0	0	10	40	0	20	20	0		
20	20	10	40	20	10	10	0		0	0	0	0		0	0	10	40	0	10	10	0		
20	10	10	20	20	10	10	0		10 20	0	10 20	10		0	0	10	20	0	10	10	0		
0	10	10	10	10	10	10	0		40	0	40	20		0	0	10	10	0	10	10	0		
0	0 0 0 0 1010 0 0														0	0	0	0	10	0	0		
0	0	1	1	0	2	2	0																
0	0	1	1	0	2	2	0																
0	0	1	1	0	2	2	0		Verschneidung zweier														
0	0	1	1	0	2	2	0		Rastermatrizen über Verknüpfungstabelle														
0	0	1	1	0	2	2	0																
0	0	1	1	0	2	2	0																

Geographische Informationssysteme

- 69 -

Umgebungsoperatoren

Wert eines Rasterelements bestimmt sich aus dem Wert seiner Nachbarn (z.B. 3 x 3-Umgebung, 5 x 5-Umgebung)

- Mittelwertbildung zur "Glättung" der Werte
- Konturbildung durch Differenzenbildung
- Expansion und Kontraktion
- **♦** ...

Geographische Informationssysteme

- 70

Beispiele für Umgebungsoperatoren Expansion und Kontraktion

Ausgangsdaten

Expansion (Dilatation)

Kontraktion

Kontraktion (Erosion)

Expansion

Präsentation

- ◆ Graphische Darstellung von Geodaten
- ◆ Eng verknüpft mit Kartographie
- aber graphische Ausgestaltung änderbar
 - Einblenden / Ausblenden von "thematischen Ebenen" ("Folien, Layers")
 - Änderung von Symbolen, Farben, Strichstärken etc.
 - Hervorhebung einer Selektionsmenge (z.B. Ergebnis einer Anfrage)

Karten

Eine Karte besteht aus:

- Kartenrahmen, Koordinatengitter
- Legende
- eigentlicher Karteninhalt

Geographische Informationssysteme

- 73 -

Darstellungselemente

- Was man auf einer Karte sieht, sind graphische Darstellungen von Geoobjekten (nicht die Geoobjekte selbst)
- Darstellungselemente werden einem "Signaturkatalog" entnommen
- Verwendete Signaturen werden in Legende dokumentiert
- Die Darstellung ist gegenüber der Realität "generalisiert" (d.h. vergröbert)

Geographische Informationssysteme

- 74 -

Signaturen

- ◆ Punktsignaturen (z.B. für Kirche, Schloß)
 - Symbol, Farbe, Größe
- ◆ Liniensignaturen (z.B. Eisenbahn, Straße)
 - Linienart, Farbe, Breite
- ◆ Flächensignaturen (z.B. Wald, Gewässer)
 - Füllung (Farbe, Symbole), Umrandung wie Liniensignatur
- ◆ Textsignaturen (z.B. geogr. Namen)
 - Textfont, Grösse, Attribute (z.B. kursiv)

Generalisierung

- ◆ Generalisierung
 - Ausgedehnte Objekte als Punkte oder Linien darstellen
 - Konturen "glätten", bei Strassen etc. Kurven auslassen
 - Verdrängung von Objekten, z.B. Gebäude links der Straße
- Doppelte Bedeutung des Maßstabs:
 - als Abbildungsmaßstab
 - als Maß für die angewandte Generalisierung

Anwendungen

- ◆ Topographie
- ◆ Geologie
- ◆ Biotopkartierung
- Versorgung

♦

Geographische Informationssysteme

- 77 -