תרגילים: רדוקציות

שאלה 1 נתונה השפה הבאה:

$$L_{\geq 3} = \left\{ \langle M \rangle \mid |L(M)| \geq 3 \right\}$$

מכילה 3 מכילה שמקבלות טיורינג שמקבלות מכונות מילים שונות. מכילה $L_{\geq 3}$ מכילה ע"י רדוקציה מ- $L_{\rm acc}$ ר ע"י רדוקציה ע"י רדוקציה ב- $L_{\geq 3}\notin R$

שאלה 2 נתונה השפה הבאה:

$$L = \{ \langle M_1, M_2, w \rangle \mid w \in L(M_1) \land w \notin L(M_2) \}.$$

 $ar{L}_{
m acc}$ -ם ע"י רדוקציה מL
otin RE הוכיחו כי

שאלה 3 תהיL השפה

 $L_{1a} = \{\langle M \rangle \mid a$ -ם מקבלת מילה אחת מילה מילה מקבלת $M\}$

- L_{1a} ל- $ar{L}_{
 m acc}$ מצאו פונקצית רדוקציה מ-
 - $L_{1a} \notin RE$ ב) הוכיחו כי
 - $L_{1a}
 otin R$ הוכיחו כי

שאלה 4 תהי $\,L\,$ השפה

 $L_{\geq 1a} = ig\{\langle M
angle \mid a$ - מקבלת לפחות מילה אחת מילה מילה $M ig\}$

- L_{1a} ל- $L_{
 m acc}$ מצאו פונקצית רדוקציה מ-
 - $L_{1a} \notin R$ בי הוכיחו כי

שאלה 5 תהי $\,L$ השפה

$$L_{M_1 \subset M_2 \subset M_3} = \left\{ \langle M_1, M_2, M_3 \rangle \mid L(M_1) \subset L(M_2) \subset L(M_3) \right\}$$

- $.L_{M_1\subset M_2\subset M_3}$ ל- $ar{L}_{
 m acc}$ מצאו פונקצית רדוקציה מ-
 - $L_{M_1\subset M_2\subset M_3}
 otin R$ ב) הוכיחו כי
 - $.L_{M_1\subset M_2\subset M_3}
 otin RE$ הוכיחו כי

:תהי השפה הבאה $L_{arepsilon}$ תהי

 $L_{arepsilon} = \left\{ \langle M
angle \; \middle| \; arepsilon$ עוצרת על מילת הריקה $M
ight\}$

- ?כריעה באם $L_{arepsilon}$
- ?האם $L_{arepsilon}$ קבילה (ב

תשובות

שאלה 1

פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{\emptyset} \rangle & x \neq \langle M, w \rangle \end{cases}$$

w על את M ועונה y מתעלמת מ- y ומריצה את M' היא מ"ט שעל כל קלט א היא מ"ט הדוחה כל קלט ו- M היא מ"ט שעל כל קלט איט שעל כל קלט אוועונה מ"ט הדוחה כל קלט ו- M

אבחנה:

$$L(M') = \begin{cases} \Sigma^* & w \in L(M) \\ \emptyset & w \notin L(M) \end{cases}$$

נכונות הרדוקציה:

נוכיח כי

$$x \in L_{\mathrm{acc}} \Leftrightarrow f(x) \in L_{\geq 3}$$
.

ולכן $L\left(M'
ight)=\Sigma^*$ ולכן $f(x)=\langle M'
angle$ \iff $w\in L(M)$ -1 $x=\langle M,w
angle$ \iff $x\in L_{\mathrm{acc}}$ אם $f(x)=\langle M'
angle$ \Leftrightarrow $f(x)\in L_{\geq 3}$ \iff $|L\left(M'
ight)|=\infty$

אם מקרים: $\Leftarrow x \notin L_{\mathrm{acc}}$

$$f(x)
otin L_{\geq 3} \quad \Leftarrow \quad |L\left(M_{\emptyset}
ight)| = 0 \quad \Leftarrow \quad f(x) = \langle M_{\emptyset}
angle \quad \Leftarrow \quad x
eq \langle M, w
angle \quad :1$$
 מקרה ב

$$|L\left(M'\right)| = 0 \quad \Leftarrow \quad L\left(M'\right) = \emptyset \quad \text{ idea in the proof of } f(x) = \langle M' \rangle \quad \Leftarrow \quad w \notin L(M) \text{ -1 } x \neq \langle M, w \rangle \quad \underbrace{:2}_{\geq 3} \Leftarrow \quad f(x) \notin L_{\geq 3} \Leftrightarrow C(M, w)$$

 $L_{\geq 3}
otin R$ מתקיים, $L_{
m acc}
otin R$, מרדוקציה, מכיוון ש- גולכן ממשפט ולכן ולכן ולכן תחקיים ולכן $L_{
m acc} \le L_{\geq 3}$

שאלה 2

פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M^*, M, w \rangle & x = \langle M, w \rangle \\ \langle M^*, M_{\emptyset}, \varepsilon \rangle & x \neq \langle M, w \rangle \end{cases}$$

כאשר

- היא מ"ט שמקבלת כל קלט M^* ullet
 - . היא מ"ט שדוחה כל קלט M_{\emptyset}

נכונת הרדוקציה:

ראשית, f חשיבה כי ניתן לבנות מ"ט שתבדוק האם $x=\langle M,w\rangle$ האם שתבדוק מ"ט שתבדוק מ"ט האיר קידוד קבוע $x=\langle M,w\rangle$ ואם כן, תחזיר קידוד $x=\langle M^*,M,w\rangle$.

נוכיח כי

$$x \in \bar{L}_{acc} \Leftrightarrow f(x) \in L$$
.

:שני מקרים $\Leftarrow x \in \bar{L}_{\mathrm{acc}}$

$$f(x) \in \bar{L} \quad \Leftarrow \quad arepsilon \notin L\left(M_{\emptyset}
ight)$$
 -1 $arepsilon \in L\left(M^{st}
ight)$ -1 $f(x) = \langle M^{st}, M_{\emptyset}, arepsilon
angle \quad \Leftrightarrow \quad x
eq \langle M, w
angle \quad :$ מקרה ב

$$w \notin L\left(M
ight)$$
 -ו $w \in L\left(M^*
ight)$ -ו $f(x) = \langle M^*, M, w \rangle \quad \Leftarrow \quad w \notin L(M)$ -ו $x = \langle M, w \rangle$:
$$f(x) \in L \quad \Leftarrow$$

$$w \notin L\left(M\right)$$
 -1 $w \in L\left(M^*\right)$ -1 $f(x) = \langle M^*, M, w \rangle \quad \Leftarrow \quad w \in L(M)$ -1 $x = \langle M, w \rangle \quad \Leftarrow \quad x \notin \bar{L}_{\mathrm{acc}}$ אם $f(x) \notin L \Leftarrow$

L
otin RE ממשפט הרדוקציה מתקיים, ומכיוון ש $ar{L}_{
m acc}
otin RE$ ממשפט הרדוקציה מתקיים, ומכיוון ש

שאלה 3

א) פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \{\text{"ab"}\} & x \neq \langle M, w \rangle \end{cases}$$

:כאשר M' המ"ט הבאה

y על כל קלט =M'

- .אם $\Leftarrow y = "ab"$ אם (1
- . על w ועונה כמוה M אחרת מריצה M

אבחנה:

$$L(M') = \begin{cases} \Sigma^* & w \in L(M) \\ \{ab\} & w \notin L(M) \end{cases}$$

הוכחת הנכונות:

:שני מקרים $\Leftarrow x \in ar{L}_{
m acc}$ אם

$$f(x) \in L_{1a} \quad \Leftarrow \quad f(x) = \{\text{"ab"}\} \quad \Leftarrow \quad x \neq \langle M, w \rangle \quad \exists a$$
מקרה ב

$$f(x) \in L_{1a} \quad \Leftarrow \quad L\left(M'
ight) = \{\text{``ab''}\}$$
 מקרה 2: לפי האבחנה $w
otin L(M) - 1$ ו $x = \langle M, w \rangle$

$$L\left(M'
ight)=\Sigma^*$$
 אם $f(x)=\langle M'
angle \iff w\in L(M)$ - $x=\langle M,w
angle \iff x\notin \bar{L}_{\mathrm{acc}}$ אם $\langle M'
angle \notin L_{1a} \iff a$ - מכילה יותר ממילה אחת המתחילה ב- $L\left(M'
ight) \iff f(x)\notin L_{1a} \iff f(x)\notin L_{1a}$

 $ar{L}_{
m acc} \leq L_{1a}$ לסיכום, הוכחנו רדוקציה

- $L_{1a}
 otin RE$ מכיוון ש- $ar{L}_{
 m acc}
 otin ar{L}_{
 m acc}$ ממשפט הרדוקציה מתקיים
 - $L_{1a}
 otin R$ מכיוון ש- $ar{L}_{
 m acc}
 otin R$ ממשפט מכיוון ש-

שאלה 4

:פונקצית הרדוקציה

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{\emptyset} \rangle & x \neq \langle M, w \rangle \end{cases}$$

:כאשר M' -המ"ט שדוחה כל קלט שדוחה מ"ט הבאה מ"ט היא מ"ט היא מ

y על כל קלט =M'

- . אם $y \neq "ab"$ אם (1
- .אחרת מריצה M על w ועונה כמוה (2

אבחנה:

$$L(M') = \begin{cases} \{\text{``ab''}\} & w \in L(M) \\ \emptyset & w \notin L(M) \end{cases}$$

הוכחת הנכונות:

$$L\left(M'
ight)=\{ ext{``ab''}\}$$
 ולפי האבחנה $f(x)=\langle M'
angle \quad \Leftarrow\quad w\in L(M)$ - ו $x=\langle M,w
angle \quad \Leftarrow\quad x\in L_{
m acc}$ אם $f(x)\in L_{\geq 1a} \quad \Leftarrow\quad \langle M'
angle \in L_{\geq 1a}$

אם מקרים: $\Leftarrow x \notin L_{\mathrm{acc}}$

$$L\left(M_{\emptyset}\right)=\emptyset$$
ר- פקרה בי הפתחילה בי המתחילה ב- המתחילה ב- בי המתחילה בי המתחילה ב- בי המתחילה בי

$$L\left(M_{\emptyset}
ight)
otin L_{1a} \;L\left(M'
ight)=\emptyset$$
 לפי האבחנה $w
otin L(M)$ -1 $x=\langle M,w \rangle$:2 מקרה $f(x)
otin L_{1a} \;\leftarrow$

 $L_{
m acc} \leq L_{\geq 1a}$ לסיכום, הוכחנו רדוקציה

 $L_{\geq 1a}
otin R$ מכיוון ש- ב $L_{
m acc}
otin A$ ממשפט הרדוקציה מתקיים

שאלה 5

א) פונקצית הרדוקציה:

$$f(x) = \begin{cases} \langle M_{\emptyset}, M', M^* \rangle & x = \langle M, w \rangle \\ \langle M_{\emptyset}, M_{\text{even}}, M^* \rangle & x \neq \langle M, w \rangle \end{cases}$$

כאשר

- ,היא מ"ט שדוחה כל קלט, $M_\emptyset ullet$
- ,טא מ"ט שמקבלת כל היא M^* •
- $|x| \mod 2 = 0$ עבורן $x \in \Sigma^*$ מילים רק שמקבלת מ"ט שמקבלת $M_{\mathrm{even}} \bullet$
 - :המ"ט הבאה M' ullet

y על כל קלט =M'

. אי-זוגי |y| אם אם (1

. על w ועונה כמוה M אחרת מריצה M

אבחנה:

$$L\left(M'\right) = \begin{cases} \Sigma^* & w \in L(M) \\ \{y \ : \ |y| \mod 2 = 0\} & w \notin L(M) \end{cases}$$

הוכחת הנכונות:

אם מקרים: $x \in ar{L}_{
m acc}$

מקרה 1:

$$x \neq \langle M, w \rangle$$

$$L\left(M_{\emptyset}\right) \subset L\left(M_{\mathrm{even}}\right) \subset L\left(M^{*}\right) \text{ -1 } f(x) = \langle M_{\emptyset}, M_{\mathrm{even}}, M^{*} \rangle \quad \Leftarrow \quad .f(x) \in L_{M_{1} \subset M_{2} \subset M_{3}} \quad \Leftarrow \quad .f(x) \in L_{M_{1} \subset M_{2} \subset M_{3}}$$

:2 מקרה

$$w
otin L(M') = \{y: |y| \mod 2 = 0\}$$
 ולפי האבחנה $f(x) = \langle M, w \rangle$ \Leftrightarrow $L(M') \subset L(M') \subset L(M^*) \Leftrightarrow$ $f(x) \in L_{M_1 \subset M_2 \subset M_3} \Leftrightarrow$

$$x\notin \bar{L}_{\mathrm{acc}}$$
 אם
$$w\in L(M)\text{ -1 }x=\langle M,w\rangle\quad \Leftarrow$$

$$L\left(M'\right)=\Sigma^*\text{ ולפי האבחנה }f(x)=\langle M_\emptyset,M',M^*\rangle\quad \Leftarrow$$

$$L\left(M'\right)\not\subset L\left(M^*\right)\quad \Leftarrow$$

$$L\left(M'\right)\not\subset L\left(M^*\right)\quad \Leftarrow$$

$$.f(x)\notin L_{M_1\subset M_2\subset M_3}\quad \Leftarrow$$

$$.\bar{L}_{\mathrm{acc}}\leq L_{M_1\subset M_2\subset M_3}\quad \text{ for all }x\in L_{\mathrm{acc}}$$

 $L_{\rm acc} \leq L_{M_1 \subset M_2 \subset M_3}$

- $L_{M_1\subset M_2\subset M_3}
 otin R$ מכיוון ש- ב $ar{L}_{
 m acc}
 otin ar{L}_{
 m acc}$ ממשפט הרדוקציה מתקיים
- $L_{M_1\subset M_2\subset M_3}
 otin RE$ ממשפט הרדוקציה מתקיים $ar{L}_{
 m acc}
 otin RE$ מכיוון ש-

 $:L_{
m acc}$ -ל ל- נבנה רדוקציה מ- נבנה נבנה נבנה ל

$$f(x) = \begin{cases} \langle M' \rangle & x = \langle M, w \rangle \\ \langle M_{\text{loop}} \rangle & x \neq \langle M, w \rangle \end{cases}$$

:כאשר M' -מ"ט שלא עוצרת על אף קלט שלא מ"ט מ"ט מ"ט מ

y על כל קלט =M'

- .arepsilon מריצה M על
- מקבלת. מקבלת $M' \Leftarrow M'$ מקבלת.
 - $M' \Leftarrow M$ מקבלת. (3

אבחנה:

$$L\left(M'
ight)=egin{cases} \Sigma^* & arepsilon & arepsilon \\ \emptyset & arepsilon & \omega \end{cases}$$
 עוצרת על M

הוכת הנכונות:

$$\langle M' \rangle \in L_{\mathrm{acc}} \quad \Leftarrow \quad L\left(M'\right) = \Sigma^* \quad \Leftarrow \quad \varepsilon$$
עוצרת על M -
ו $x = \langle M, w \rangle \quad \Leftarrow \quad x \in L_{\varepsilon}$. $f(x) \in L_{\mathrm{acc}} \quad \Leftarrow$

:שני מקרים $\Leftarrow x \notin L_{\varepsilon}$

$$f(x) \notin L_{
m acc} \quad \Leftarrow \quad f(x) = \langle M_{
m loop}
angle \quad \Leftarrow \quad x
eq \langle M, w
angle \quad :1$$
 מקרה ב

מקבלת M' ביים מילה אשר לא \Leftarrow $L\left(M'\right)=\emptyset$ \Leftrightarrow ε אוצרת על M -1 $x=\langle M,w\rangle$ מקבלת $x=\langle M,w\rangle$ מקבלת $\langle M'\rangle \notin L_{\rm acc}$