Exercises.

Solution to Question 1.

(a) Because

$$\det(A - \lambda I) = (1 - \lambda)^2,$$

so eigenvalues of A are $\lambda_1 = \lambda_2 = 1$. The eigenvector corresponds to $\lambda = 1$ is $e = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

(b) A is diagnolizable if and only if the space spanned by eigenvectors is the whole space. But in this case, the whole space is 2-dimensional, while the space spanned by eigenvectors is 1-dimensional.

2

Solution to Question 2.

(a) Because

$$det(A - \lambda I) = \lambda^2 + 1$$

so eigenvalues of A are $\lambda_1=\sqrt{-1}$ and $\lambda_2=-\sqrt{-1}.$

The eigenvector corresponds to $\lambda_1 = \sqrt{-1}$ is $e_1 = \begin{pmatrix} \sqrt{-1} \\ 1 \end{pmatrix}$.

The one corresponds to $\lambda_2 = -\sqrt{-1}$ is $e_2 = \begin{pmatrix} \sqrt{-1} \\ -1 \end{pmatrix}$

(b) Let $P = \begin{bmatrix} e_1 & e_2 \end{bmatrix}$ be the matrix with columns being e_1 and e_2 . Then

$$P^{-1}AP = \begin{bmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{bmatrix}.$$

So A is diagonalizable over \mathbb{C} .

However, A is not diagonalizable over \mathbb{R} , because not all of its eigenvalues are in \mathbb{R} .

Solution to Question 3.

(a) We may check that

$$f(z) = (z - \lambda)(z - \bar{\lambda}) = z^2 - (\lambda + \bar{\lambda})z + \lambda \bar{\lambda},$$

so f(z) is a quadratic polynomial. Both $(\lambda + \bar{\lambda}) = 2a$ and $\lambda \bar{\lambda} = a^2 + b^2$ are real numbers.

(b) If we can write a quadratic polynomial $f(z) = \alpha z^2 + \beta z + \gamma$ as a product of 2 polynomials $f(z) = \alpha(z - \lambda_1)(z - \lambda_2)$, then λ_1 and λ_2 must be the roots of f(z). The roots are real if and only if the discriminant $\Delta = \beta^2 - 4\alpha\gamma \ge 0$. In our case, $\alpha = 1$, $\beta = -2\alpha$ and $\gamma = \alpha^2 + b^2$. Remember that we assume b > 0 here, so

$$\Delta = 4a^2 - 4(a^2 + b^2) < 0,$$

which means f(z) is irreducible.

(c) By the fundamental theorem of algebra, f(z) has a factorization of the form

$$f(z) = \alpha(z - c_1) \dots (z - c_n),$$

where $c_1, ..., c_n \in \mathbb{C}$. By reordering the factors, we can always assume that $c_1, ..., c_r \in \mathbb{R}$ for some non-negative integer r, and the rest c_i 's are not in \mathbb{R} .

Notice that if c satisfies f(c) = 0, then $f(\bar{c}) = 0$, too. This is because the coefficients of f(z) are in \mathbb{R} . Therefore, if $c \notin \mathbb{R}$ and (z-c)|f(z), then $(z-c)(z-\bar{c})|f(z)$. So by reordering the factors, we may assume

$$(z-c_{r+1})\dots(z-c_n) = (z-c_{i_1})(z-\bar{c}_{i_1})\dots(z-c_{i_s})(z-\bar{c}_{i_s})$$

= $(z^2-p_1z+q_1)\dots(z^2-p_sz+q_s),$

where $p_j = c_j + \bar{c}_j$ and $q_j = c_j \bar{c}_j$ for j = 1, ..., s. All of the p_j 's and q_j 's are real numbers.

We need to show that this factorization is unique up to reordering the factors.

We define an order \leq on \mathbb{R}^2 by $(\mathfrak{p},\mathfrak{q}) \leq (\mathfrak{p}',\mathfrak{q}')$ if $\mathfrak{p} < \mathfrak{p}'$, or if $\mathfrak{p} = \mathfrak{p}'$ and $\mathfrak{q} \leq \mathfrak{q}'$. This is an total order on \mathbb{R}^2 . Then by reordering the factors, we may always assume $c_1 \leq c_2 \leq \cdots \leq c_r$ and $(\mathfrak{p}_1,\mathfrak{q}_1) \leq \cdots \leq (\mathfrak{p}_s,\mathfrak{q}_s)$.

Now assume there is another factorization

$$f(z) = (z - b_1) \dots (z - b_{r'})(z^2 - d_1z + e_1) \dots (z^2 - d_{s'}z + e_{s'}),$$

where $b_1 \leq \cdots \leq b_{r'}$ and $(d_1,e_1) \leq \cdots \leq (d_{s'},e_{s'}).$

First of all, notice that all the quadratic factors are irreducible. Therefore,

$$(z-b_1)...(z-b_{r'})=(z-c_1)...(z-c_r)$$

and

$$(z^2 - p_1 z + q_1) \dots (z^2 - p_s z + q_s) = (z^2 - d_1 z + e_1) \dots (z^2 - d_{s'} z + e_{s'}).$$

In particular, by comparing the degrees, we can see r = r' and s = s'.

Now, if there exist a number i such that $c_i \neq b_i$, then let

$$k := \min\{i \mid c_i \neq b_i\}.$$

So we have

$$(z - c_k) \dots (z - c_r) = (z - b_k) \dots (z - b_r).$$

WLOG, assume $c_k < b_k$. Then $c_k < b_j$ for all j = k, ..., r. But

$$(c_k - b_k) \dots (c_k - b_r) = 0,$$

which is a contradiction. Hence $c_i = b_i$ for all i = 1, ..., r. Similarly, if there exist a number i such that $(p_i, q_i) \neq (d_i, e_i)$, then let

$$k := \min\{i \mid c_i \neq b_i\}.$$

So we have

$$(z^2 - p_k z + q_k) \dots (z^2 - p_r z + q_r) = (z^2 - d_k z + e_k) \dots (z^2 - d_r z + e_r).$$

WLOG, assume $(p_k,q_k)<(d_k,e_k)$. Then $(p_k,q_k)<(d_j,e_j)$ for all $j=k,\ldots,r$. However, if $w\in\mathbb{C}$ is a root of $(z^2-p_kz+q_k)$, then $(w^2-d_jw+e_j)\neq 0$ for all $j=k,\ldots,r$. So

$$(w^2 - d_k w + e_k) \dots (w^2 - d_s w + e_s) \neq 0,$$

which is a contradiction. Hence $(p_k, q_k) = (d_k, e_k)$ for all k = 1, ..., r.

Solution to Question 4. Assume that

$$f(x) = \sum_{i=0}^{n} c_i x^i.$$

Because

$$A^{k}v = A^{k-1}(Av) = \lambda A^{k-1}v = \cdots = \lambda^{k}v,$$

so

$$f(A)\nu=(\sum_{i=0}^nc_iA^i)\nu=\sum_{i=0}^nc_iA^i\nu=(\sum_{i=0}^nc_i\lambda^i)\nu.$$

Therefore, ν is also an eigenvector of f(A). Its corresponding eigenvalue is $f(\lambda)$.

6

Solution to Question 5.

(a) This is because

$$D(f(t)e^{rt}) = f'(t)e^{rt} + rf(t)e^{rt}.$$

(b) Claim: $(e^{2t}, te^{2t}, t^2e^{2t})$ is a basis for $ker(D - 2I)^3$. Reason: By repeatedly applying part (a), we can see that

$$(D - rI)^{n}(f(t)e^{rt}) = f^{(n)}(t)e^{rt}.$$

So e^{2t} , te^{2t} , $t^2e^{2t} \in \ker(D-2I)^3$ and they are linearly independent. Because $\dim \ker(D-2I)^3 = 3$, so we know $(e^{2t}, te^{2t}, t^2e^{2t})$ is a basis for $\ker(D-2I)^3$.

- (c) Claim: (e^t, e^{2t}, te^{2t}) is a basis for $ker(D-I)(D-2I)^2$. Reason: Because $(D-I)(D-2I)^2=(D-2I)^2(D-I)$, so $e^t\in ker(D-I)\subset ker(D-I)(D-2I)^2$ and $e^{2t}, te^{2t}\in ker(D-2I)^2\subset ker(D-I)(D-2I)^2$. It is easy to check (e^t, e^{2t}, te^{2t}) is linearly independent.
- (d) The solution set of y(t) satisfying

$$y''' + y'' - y' + y = 0$$

equals $ker(D^3 + D^2 - D + I)$.

Let $f(x) = x^3 + x^2 - x + 1$. Because gcd(f(x), f'(x)) = 1, so there is no multiple root of f(x). Assume the roots of f(x) are λ_1, λ_2 and λ_3 . Then

$$(e^{\lambda_1 t}, e^{\lambda_1 t}, e^{\lambda_1 t})$$

is a basis for $ker(D^3 + D^2 - D + I)$.

(d') The solution set of y(t) satisfying

$$y''' - y'' - y' + y = 0$$

equals $ker(D+I)(D-I)^2$. And (e^{-t},e^t,te^t) is a basis of $ker(D+I)(D-I)^2$.

Solution to Question 6.

(a) If A is the diagonal matrix $diag(\lambda_1, \lambda_2, \dots, \lambda_n)$, then

$$A^k = diag(\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k).$$

So

$$\begin{split} e^A &= \sum_{k=0}^{\infty} \frac{A^k}{k!} \\ &= \sum_{k=0}^{\infty} \frac{1}{k!} diag(\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k) \\ &= diag(e^{\lambda_1}, \dots, e^{\lambda_n}). \end{split}$$

(b) Notice that

$$A^2 = -I$$
.

Therefore,

$$e^{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

where

$$\alpha=d=1-\frac{1}{2!}+\frac{1}{4!}+\dots$$

and

$$b = -c = \frac{1}{1!} - \frac{1}{3!} + \frac{1}{5!} + \dots$$

Recall that

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

and

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}.$$

So $a = d = \cos 1$ and $b = -c = \sin 1$.

(c) Let $R = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then

$$A = I + R$$
.

Notice that $R^2 = 0$. So

$$A^k = I^k + kRI^{k-1} = I + kR.$$

Therefore

$$e^{A} = \sum_{k=0}^{\infty} \frac{1}{k!} (I + kR)$$
$$= \begin{bmatrix} e & e \\ 0 & e \end{bmatrix}.$$

(d) First of all notice that if

$$B = Q^{-1}AQ,$$

then

$$B^k = Q^{-1}A^kQ$$

for all $k = 1, 2, \ldots$ Hence,

$$\begin{split} e^B &= \sum_{k=0}^\infty \frac{1}{k!} Q^{-1} A^k Q \\ &= Q^{-1} (\sum_{k=0}^\infty \frac{1}{k!} A^k) Q \\ &= Q^{-1} e^A Q. \end{split}$$