

METABOLISM Laboratory Investigation of the Liver and Biliary System 2

Dr Astrid Oscos Snowball

marja.oscossnowball@unimelb.edu.au

VETS30017 / VETS90125

Learning outcomes

- Understand the principles of the total serum bile acids assay
- Understand the principles and interpretation of the ammonia test
- List the key lab findings associated with chronic liver disease and liver failure

Lecture Outline

- Introduction
- Assessing hepatic function
- Detecting liver dysfunction
 - Routine biochemistry clues
 - Haematology clues
 - Urinalysis clues
 - Coagulation disorders
 - Special tests
 - Bile acids
 - Ammonia

Introduction

- Liver has a marked reserve capacity and ability to regenerate
- Liver failure/insufficiency occurs when more than 70-80% of functional mass is lost:

- liver fails to synthesise substances normally produced
- liver fails to clear blood of substances normally eliminated or recycled by the liver

Assessing hepatic function

- Urea synthesis
- Cholesterol synthesis
- Albumin synthesis
- Glucose synthesis
- Bilirubin conjugation
- Bile acids uptake and excretion
- Ammonia uptake and metabolism

Assessing hepatic function

- Enzyme changes suggest the presence of hepatocellular damage and/or cholestasis but don't assess function
- Failure of liver function is identified when more than 70-80% of functional mass is lost:
 - liver fails to synthesise substances normally produced:
 - urea, cholesterol, albumin, glucose, coagulation factors
 - liver fails to clear blood of substances normally eliminated or recycled by the liver:
 - bilirubin, bile acids, ammonia

Assessing hepatic function

Tests that indicate hepatic insufficiency (hepatic

failure) do not indicate

- Cause of liver dysfunction
- Prognosis for recovery

(i.e. is it reversible or irreversible)

Detecting Liver Dysfunction

Other (non-specific) factors which can help evaluate hepatic insufficiency, especially chronic liver disease:

- Serum biochemistry
- CBC and erythrocyte morphology
- Urinalysis
- Coagulation proteins

I am sorry, your liver is stuffed

Routine biochemistry clues

Reduced synthesis of:

- Albumin
 - but long half life (8d dogs, 19d horses)
- Urea
 - $-\downarrow$ conversion from ammonia
- Cholesterol
 - but may also be normal or increased, as cholestasis can result in hypercholesterolaemia
- Glucose
 - $-\downarrow$ glycogen stores and \downarrow gluconeogenesis

Haematology clues

- Mild non regenerative anaemia
 e.g. anaemia of chronic disease
- Mild microcytosis
 may be seen with PSS
- Inflammatory leukogram e.g. cholangiohepatitis, cholecystitis
- Icteric plasma
 hyperbilirubinaemia in cats and dogs
- Hypoproteinaemia
 e.g. reduced albumin synthesis

Urinalysis clues

- Hyposthenuria (and PU/PD)
 low urea and reduced medullary tonicity
- Bilirubinuria

orange urine, bilirubin crystals and positive urine dipstick indicating hyperbilirubinaemia

Ammonium biurate crystals
 may be seen with PSS, hepatic dysfunction, Dalmatians and
 Bulldogs

Coagulation Disorders

- Coagulation abnormalities are common in liver disease
 - prolonged APTT/PT times
- Causes include:
 - \$\square\$ synthesis of coagulation factors, platelet dysfunction and DIC
 - cholestasis results in reduced absorption of fat soluble Vit K

 Coagulation screening recommended prior to liver FNA/biopsy

Bile acids

- Produced in the liver from cholesterol and stored in the gall bladder (if present)
- Undergo an efficient enterohepatic circulation
 - released into the intestine
 - re-absorbed into portal system
 - extracted by hepatocytes

Enterohepatic circulation of bile acids

- Following food intake, bile acids are released into the duodenum.
- About 95% of the bile acids are reabsorbed in the ileum and are released into the portal vein and redirected to the liver.
- Approximately 5% of the bile acids is lost through fecal output.
- Only a small portion escapes the enterohepatic circulation and reaches the systemic circulation.

Bile acid assay

Causes of increased serum bile acids:

Decreased functional hepatic mass

(impaired extraction of sBA from the portal blood)

Portosystemic vascular malformations (MVD, PSVA/PSS)

portal blood by-passes the liver and thus reduces extraction

(esp. post prandially)

 Cholestasis (retention and reflux of sBA back into circulation after bile stasis)

Bile acid assay

 Sensitive and specific test of hepatic function (in the absence of cholestasis)

e.g. PSS, steroid hepatopathy, neoplasia

- Not useful to assess liver function in animals known to be cholestatic (e.g. hyperbilirubinemia)
- Abnormal results do not determine aetiology, severity or prognosis indicates the need for diagnostic imaging, hepatic biopsy

Bile acid assay

- Single sBA used in horses, camelids
- Dynamic sBA used in dogs and cats:
 - two samples (pre and 2 hours postprandial)
 - increases sensitivity by challenging the liver capacity for BA extraction
 after gallbladder contraction
- Insensitive test in ruminants

Bile acids test protocol

- Fast the patient for 12 hours
- Collect the first blood sample and label the tube with patient name and "pre" or time zero sample
- Feed a small amount (2-4 tablespoons) of canned maintenance-type diet (high-fat diet is NOT necessary)
- Two hours after feeding, collect the second sample and label with patient name and "2 hr"
 - Post-prandial bile acid concentrations >31 umol/L (dogs) are suggestive of hepatobiliary disease

Microvascular dysplasia

Small breed dogs (Terrier-type)

- high sBA may reflect either portosystemic shunt (PSS) or microvascular dysplasia (MVD)
 - puppies with large shunts often require surgery
 - whereas MVD is not a surgical problem
- ammonia levels may help further evaluate liver function
- Protein C values >70% are expected with MVD, whereas a low value would support hepatic insufficiency (e.g. PSS)

Ammonia

- Ammonia concentration can be useful in further evaluating liver function
 - produced from exogenous or endogenous amino acids
 - taken up by the liver where most is converted to urea
 - urea enters circulation and is then excreted into the urine (and GIT system)
- Measurement is problematic as it is very unstable
 - heparin anticoagulant preferred
 - separate plasma and analyse ASAP
 - must be kept chilled

Urea cycle

Ammonia

- Elevated blood ammonia levels seen with:
 - Incorrect sample handling
 - Portosystemic shunt
 - Hepatic insufficiency (>70% hepatic function lost)
 - Overgrowth urease-producing bacteria
 - Urea toxicosis in ruminants

Reaching a Final Diagnosis

Lab tests help confirm presence of liver disease, but seldom provide an aetiological diagnosis. For this we need:

Ultrasound

Cytology

Useful to Dx sepsis, vacuolar change, metastatic neoplasia. Less useful for Dx hepatitis, cirrhosis, hepatocellular tumours

Biopsy for histopathology

Often required for a definitive diagnosis as allows evaluation of architecture

Hepatic lymphoma: Cytology - malignant neoplasia of intermediate to large lymphocytes (arrow). With cluster of normal hepatocytes below.

Thank you!

