Deep Learning Milestone Paper

Austin Bell Columbia University

alb2307@columbia.edu

Ziyin WangColumbia University

Malik Drabla

Columbia University zw2605@columbia.edu

Columbia University mad2275@columbia.edu

Abstract

This paper explores the use of Spatial Temporal Graph Neural Networks (STGNNs) as a means of node level energy load forecasting across energy grids. While a relatively novel technique, the adaptive ability of STGNNs to learn node level relationships may prove to be extremely beneficial to the energy forecasting needs of grid structures. To this end, we implement a standard STGNN on the RE-Europe dataset, which consists of 1,494 nodes and their transmission connections plus hourly demand and solar / wind values and solar / wind forecasts every 12 hours. Initial results from our STGNN model showed a mean squared error loss of 6.62e-5. We believe this less than stellar result was due in part to the graph convolution's compression of valuable node information within neighborhoods.

1 Introduction

Since the industrial revolution, our earth has been warming due to the release greenhouse gases from burning 'dirty' fuel sources. A recent surge in clean energy investment has led to more widespread adoption of renewable energy. However some key technical and logistical barriers to the adoption of renewable energy remain:

- Geographically, fossil fuel plants are built remotely and in centralized locations, whereas, renewable energy plants are decentralized and sometimes built in residential areas.
- The large scale storage of renewable energy remains a key challenge, due to the fact that these power plants are non-dispatchable, and their output have limited predictability.

While a wide net of solutions have been proposed and are currently being pursued, our project focuses on the use of neural networks to improve efficiency in the allocation of energy. We propose using spatial-temporal graph neural networks to accurately forecast load for each decentralized node. Through better predictions of energy demand, we can partially address each of these technical barriers

Spatial analysis enables us to better capture any geographic dependent features related demand (e.g., nodes providing electricity to cities are likely to be characterized by more extremes). Proximity of nodes in our graphical representation of the energy grid will likely affect demand. As one node reaches capacity they may divert the provision of energy to the nearest node that is below capacity.

Overall, by better understanding our exact energy needs, we will be able to better optimize power flow across decentralized plants, ensure supply more closely meets demand, and thereby, lessening our reliance on advanced storage solutions

2 Methodology

The goal of our project is to improve forecast prediction of load demand for each node (i.e. power provider) through leveraging our implementation of a Spatial Temporal Graph Neural Network

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

Figure 1: Normalized Load Demand at Hourly Level across three nodes

(STGNN). Our power provider nodes will represent our graph nodes and their transmission connections will represent the edges. Each node includes a variety of data at each timestamp such as hourly demand, wind / solar forecasts, and wind / solar realizations.

2.1 Spatial Temporal Graph Neural Networks

A spatial temporal graph neural network is a small expansion on the original graph neural networks. Where, traditionally, graph neural networks only consisted of a spatial component (i.e., graph convolutions on an adjacency matrix), a STGNN adds a temporal component. Currently, temporal models include RNNs, Transformers, as well as temporal convolutions. As of now, temporal convolutions are typically used in STGNNs due to their speed. We use these spatial and temporal convolutions at each time sequence (e.g., 24 hour historical load and solar data) to effectively forecast our time series.

Our baseline model will be an implementation of the spatial temporal graph convolution network ("STGCN") originally developed by Bing Yu and his team in 2018 [1]. Subsequent models will be selected based upon perceived weaknesses of the baseline STGCN. For example, would the model benefit from additional temporal layers or would the model benefit from additional spatial layers.

Once we are able to identify these 'problem areas', we will explore the current state of the art that best fits our problem. We currently are unaware of any other paper that uses graph networks to predict energy demand, which means we will likely need to evaluate the effectiveness of STGNNs ourselves.

2.2 Evaluation

Experiments are run to forecast day ahead demand. For each experiment, we evaluate the time series output using mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE).

3 RE-Europe Dataset

We utilize the recently developed RE-Europe dataset which consists of nodal load demand across mainland Europe and also includes a transmission network model, plus data regarding electric generation and demand from 2012-2014.[2] There are 1,494 different nodes with 2,156 transmission connections. Typically, load demand at the node level is highly confidential data, therefore, there are no other datasets including this granular of information.

Figure 1 displays hourly demand that has been normalized to fit between 0 and 1 across three similar nodes.

4 Summary of Progress

Our team has made significant progress in our project so far. The first milestone was aimed at setting our baseline and implementing a (hopefully) near state of the art solution. Whereas, the following half

of the project will be focused on implementing and expanding upon current state of the art techniques within STGNNs. Our achievments thus far include:

- Processed, standardized, and prepared the data for spatial temporal forecasting
- Developed a DGL Graph Convolution Network that ignores the longitudinal component
- Implemented the baseline Spatial Temporal Graph Convolution Network

4.1 Data Processing

Our first methodology involved taking the provided data and reformatting it to work with our spatial temporal GNN. Our initial baseline model just takes a graph and a tensor of our longitudinal features. Our features are represented via a 4D tensor with dimensions (batch number, number of nodes, historical timesteps, and number of longitudinal features).

Prior to any processing, we focused general feature engineering given our original data. This included identifying the day of the week (whether it was a weekend), identifying the month, identifying the season, and identifying whether or not a holiday occurred on that date. Figuring out whether a holiday occurred required slightly more work as our data is based across all of Europe, where each country has their own set of holidays.

There are a significant number of preprocessing methodologies that we could pursue, therefore initially, we focused on developing robust enough data processing code that enables us to rapidly experiment with a variety of input data. This includes using different methods to normalize our data, utilizing a different number of historical timesteps as our input, and including different sets of features in our model.

Finally, our baseline model is written in pure Pytorch and excludes Pytorch Geometric. This means that we are unable to pass a graph into the network and must instead utilize our graph's adjacency matrix. In order to effectively utilize our adjacency matrix, two processing steps were required:

1. Normalizing it with the formula

$$D^{-1/2}AD^{-1/2} (1)$$

where A is our adjacency matrix and D is our degree matrix

Adding self-loops to ensure that we include the current node and not just those in the neighbourhood.

4.2 DGL Graph Convolution Network

First of all, we use DGL library to build our GCN model. In this model, we use a basic graph convolution network architecture. Our goal with DGL was to determine whether any features were predictive of load irrespective of the temporal component. Therefore, we split our data and generate one graph for each time stamp. For each timestamp, we predict load using all other features.

For GCN model, we train for 100 epochs(with allowed early stopping), at a learning rate of 0.01 that decrease every 5 epochs if the model does not improve.

4.3 Spatial Temporal Graph Convolution

As mentioned our baseline model is based on the original STGCN. This model consists of a series stacked temporal and spatial layers. This includes two STGCN blocks, a final temporal convolution, and a output linear layer. Each STGCN block consists of a temporal convolution layer, a spatial graph convolution, and another temporal convolution layer. Temporal convolutions were selected over sequence or attention-based models due to their speed. Figure 2 shows this process.

For the baseline, we train for up to 200 epochs (with allowed early stopping) at a learning rate of .001 that decreases every 50 epochs if the model is not improving.

5 Evaluation

Our team evaluated across all available nodes in our dataset on the last three months in our data (October 1 st, 2014 through December 31 st, 2014).

Figure 2: STGCN Architecture

Source: Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting

5.1 DGL

As can be seen in Figure 3, validation MSE and training MSE do not decrease after 20 epochs and finalizes with very poor performance. This is unsurprising, because while our other features may assist in predicting load they are not the key predictors. This confirms our hypothesis that a temporal component is needed to predict demand and historical load information, must also be used.

Figure 3: Training MSE VS Validation MSE

5.2 STGCN

Table 1 compares our model across three metrics to the current state of the art using the RE-Europe dataset for load demand forecasting. We note that this is also the only paper that we have identified leveraging this dataset for spatial temporal prediction. Their model utilizes a muti-scalenetwork combined with a seq2seq network.[3]

	MAE	MSE	RMSE
STGCN	.0038	6.62e-5	8.1e-3
Multi-Scale + Seq2Seq	N/A	4.92e-7	N/A

Table 1: STGCN vs Multi-Scale Seq-to-Seq

As can be seen in Figures 4 5, our initial results are less than stellar. It appears that our model is learning to predict some nodes well, yet some nodes not at all.

Discussion Our current hypothesis for these poor results is that STGCNs are typically used for forecasting traffic, which does not have the same level of temporal dependencies as day ahead load

Figure 4: Node 1 random 24 hour load forecast

Figure 5: Node 100 random 24 hour load forecast

forecasting. Typically, load forecasting requires much longer historical timestep inputs and must also predict much longer forecasts. Therefore, we believe that the basic temporal convolution is not sufficient for our problem.

Therefore, our next step is to implement a spatial temporal graph neural network that includes a sequence model for the temporal component such as the one developed by Bai et al (2019) [4]. Their team combines the spatial temporal graph with a seq2seq architecture with attention to better model passenger demand for ride hailing services in China. We believe that this seq2seq architecture will rapidly improve our models' effectiveness.

Additionally, we believe that our current model is missing two key pieces of available data. The first is that we are excluding our solar and wind forecasts since we only include historical data at the moment. However, we expect that including weather indicators would signify whether people stay indoors and use more energy or go outdoors. The second piece is that we are excluding the historical and current day metadata. This includes whether the day is a holiday, which season, etc. We excluded this because it decreased our results when including as a traditional time series. However, past research shows that by incorporating metadata as cross-sectional data via a linear layer leads to improved results.

Finally, based on our recent experiments, it appears that tuning our hyper-parameters will be quite important. First, small changes in the learning rate has had big impacts on our model's outcome and finding the optimal rate has proved elusive. Our team will work on tuning the learning rate while also implementing a more sophisticated learning rate scheduler. Secondly, we trained our model for 200 epochs and the model was still improving slowly. The current state of the art trained for around 800 epochs. We will ultimately train for this long, but will wait until we have a more complete model.

6 Conclusion

Despite the poor original results, we are quite happy with the progress that our team has made so far. We have fleshed out our methodology, processed the data, and fully implemented then evaluated our two baseline models. Additionally, since this is a longer term project, we have implemented a robust framework that will now allow for rapid and efficient deep learning experimenting. We plan to efficiently use the next month to explore and, subsequently, surpass the current state of the art.

Acknowledgments

The authors would like to thank Tue V. Jensen and Pierre Pinson at the Technical University of Denmark whose efforts obtained the RE-Europe dataset. We would also like to thank Professor Drori who guided the initial efforts of this project.

References

- [1] Yu, B.; Yin, H.; and Zhu, Z. (2018). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. In IJCAI.
- [2]Jensen, T., Pinson, P. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system. Sci Data 4, 170175 2017.
- [3] Zhu H, Zhu Y, Wang H, et al. *Multi scale deep network based multistep prediction of high-dimensional time series from power transmission systems*. Trans Emerging Tel Tech. 2020; e3890. https://doi.org/10.1002/ett.3890
- [4] Bai, L.; Yao, L.; Kanhere, S.; Wang, X.; and Sheng, Q. 2019. *Stg2seq: Spatial-temporal graph to sequence model for multi-step passenger demand forecasting.* In IJCAI