Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (previously presented) A copper alloy consisting essentially of 58 to 62.8 wt% of copper, 0.3 to 0.5 wt% of tin, 0.03 to 0.5 wt% of silicon, at least one of 0.3 to 3.5 wt% of lead and 0.3 to 3.0 wt% of bismuth, at least one of 0.02 to 0.15 wt% of phosphorus, 0.02 to 3.0 wt% of nickel and 0.02 to 0.6 wt% of iron, the total amount of phosphorus, nickel and iron being in the range of from 0.02 to 3.0 wt%, and the balance being zinc and unavoidable impurities, which has a hardness Hv of 80.2 to 103.1,

wherein a proportion of an alpha phase is 90 vol\$ or more, and

wherein an apparent content B' of zinc in said copper alloy is in the range of from 34 to 39 wt $^{\circ}$, said apparent content B' of zinc being expressed by the following expression:

$$B' = [(B + t_1q_1 + t_2q_2 + t_3q_3 + t_4q_4) / (A + B + t_1q_1 + t_2q_2 + t_3q_3 + t_4q_4)] \times 100$$

wherein A denotes the content (wt%) of copper and B denotes the content (wt%) of zinc, t_1 , t_2 , t_3 and t_4 denoting zinc equivalents of tin, silicon, nickel and iron, respectively ($t_1 = 2.0$, $t_2 = 10.0$, $t_3 = -1.3$, $t_4 = 0.9$), and q_1 , q_2 , q_3 and q_4 denoting the contents (wt%) of tin, silicon, nickel and iron, respectively.

2-10. (cancelled).

- 11. (previously presented) A copper alloy as set forth in claim 1, wherein the content of copper is in the range of from 60 to 62 wt%.
- 12. (previously presented) A copper alloy consisting essentially of 58 to 62.8 wt% of copper, 0.3 to 0.5 wt% of tin, 0.03 to 0.5 wt% of silicon, at least one of 0.3 to 3.5 wt% of lead and 0.3 to 3.0 wt% of bismuth, at least one of 0.02 to 0.15 wt% of phosphorus, 0.02 to 3.0 wt% of nickel and 0.02 to 0.6 wt% of iron, the total amount of phosphorus, nickel and iron being in the range of from 0.02 to 3.0 wt%, and the balance being zinc and unavoidable impurities, which has a hardness Hv of 80.2 to 103.1.

wherein an apparent content B' of zinc in said copper alloy is in the range of from 34 to 39 wt%, said apparent content B' of zinc being expressed by the following expression:

$$B' = [(B + t_1q_1 + t_2q_2 + t_3q_3 + t_4q_6) / (A + B + t_1q_1 + t_2q_2 + t_3q_3 + t_4q_6)] \times 100$$

wherein A denotes the content (wt%) of copper and B denotes the content (wt%) of zinc, t_1 , t_2 , t_3 and t_4 denoting zinc equivalents of tin, silicon, nickel and iron, respectively ($t_1 = 2.0$, $t_2 = 10.0$, $t_3 = -1.3$, $t_4 = 0.9$), and q_1 , q_2 , q_3 and q_4 denoting the contents (wt%) of tin, silicon, nickel and iron, respectively.

13. (previously presented) A copper alloy as set forth in claim 12, wherein the content of copper is in the range of from 60 to 62 wt%.

- 14. (new) A copper alloy as set forth in claim 1, wherein the maximum dezincing depth of the copper alloy, which is observed on the basis of ISO 6509, is 100 μm or less after the copper alloy is dipped in a solution containing 12.7 g/L of CuCL₂ . $2H_2O$ at a temperature of 75 ± 3 °C for 24 hours.
- 15. (new) A copper alloy as set forth in claim 1, wherein no cracks are produced after 15 hours or more if the copper alloy is held in a desiccator including 14% NH₃ while a stress being 50% of the proof stress is applied to the copper alloy by the two-point load method based on JIS H8711.
- 16. (new) A copper alloy as set forth in claim 12, wherein the maximum dezincing depth of the copper alloy, which is observed on the basis of ISO 6509, is 100 μ m or less after the copper alloy is dipped in a solution containing 12.7 g/L of CuCL₂ . 2H₂O at a temperature of 75±3°C for 24 hours.
- 17. (new) A copper alloy as set forth in claim 12, wherein no cracks are produced after 15 hours or more if the copper alloy is held in a desiccator including 14% NH₃ while a stress being 50% of the proof stress is applied to the copper alloy by the two-point load method based on JIS H8711.