# **Applied Stochastic Analysis**

Bangyan Liao liaobangyan@westlake.edu.cn

Oct 2024



## **Outline**

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus
- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

## Outline

- Probability Space Formalism
   Probability Space
   Random Variable
   Lebesgue—Stieltjes Integral
- 2. Stochastic Process Formalism
- 3. Itô Calculus

- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

## Probability Space

**Probability Space Formalism** 

## Definition (Probability Space)

A probability space is defined as a 3-element tuple  $(\Omega, \mathcal{F}, \mathbb{P})$  where

- $ightharpoonup \Omega$  is the sample space, i.e. the set of possible outcomes. For example, for a coin toss  $\Omega = \{ {\sf Head}, {\sf Tails} \}$
- The  $\sigma$ -algebra  $\mathcal F$  represents the set of events we may want to consider. Continuing the coin toss example, we may have  $\Omega=\{\emptyset, \text{Head}, \text{Tails}, \{\text{Head}, \text{Tails}\}\}$
- A probability measure  $\mathbb{P}: \mathcal{F} \to [0,1]$  is a function which assigns a number in [0,1] to any set in the  $\sigma$ -algebra  $\mathcal{F}$ . The function  $\mathbb{P}$  must be  $\sigma$ -additive and  $\mathbb{P}(\Omega) = 1$

## $\sigma$ -algebra

**Probability Space Formalism** 

## Definition ( $\sigma$ -algebra)

A  $\sigma$ -algebra  $\mathcal F$  is a collection of sets satisfying the property

- $ightharpoonup \mathcal{F}$  contains  $\Omega: \Omega \in \mathcal{F}$ .
- ▶  $\mathcal{F}$  is closed under complements: if  $A \in \mathcal{F}$  then  $\Omega \setminus A \in \mathcal{F}$ .
- ▶  $\mathcal{F}$  is closed under countable union: if  $\forall i \ A_i \in \mathcal{F}$ , then  $\bigcup_i A_i \in \mathcal{F}$ .

We use the notation  $\mathcal{B}(\mathbb{R}^d)$  for the Borel  $\sigma$ -algebra of  $\mathbb{R}^d$ , which we can think of as the canonical  $\sigma$ -algebra for  $\mathbb{R}^d$  - it is the most compact representation of all measurable sets in  $\mathbb{R}^d$ .

## **Probability Measure**

**Probability Space Formalism** 

## Definition (Probability Measure)

A probability measure  $\mathbb{P}: \mathcal{F} \to [0,1]$  is a function which assigns a number in [0,1] to any set in the  $\sigma$ -algebra  $\mathcal{F}$ .

- ▶ For every  $A \in \mathcal{F}$ ,  $\mathbb{P}(A)$  is non-negative.
- $ightharpoonup \mathbb{P}(\Omega) = 1.$
- ▶ For all incompatible set  $A_n \in \mathcal{F}$ ,

$$\mathbb{P}\left(\bigcup_{n} A_{n}\right) = \sum_{n} \mathbb{P}(A_{n}) \tag{1}$$

### Random Variable

**Probability Space Formalism** 

## Definition (Random Variable)

For a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ , a real-valued random variable  $x(\omega)$  is a function  $x : \Omega \to \mathbb{R}^d$ , requiring that  $x(\omega)$  is a measurable function, meaning that the pre-image of  $x(\omega)$  lies within the  $\sigma$ -algebra  $\mathcal{F}$ :

$$\mathbf{x}^{-1}(B) = \{\omega : \mathbf{x}(\omega) \in B\} \in \mathcal{F}, \quad \forall B \in \mathcal{B}(\mathbb{R}^d)$$
 (2)

## Definition (Probability Distribution)

This allows us to assign a numerical representation to outcomes in  $\Omega$ . Then, we can ask questions such as what is the probability  $P: \mathbb{R}^d \to [0,1]$  that x is contained within a set  $B \subseteq \mathbb{R}^d$ 

$$P(\mathbf{x}(\omega) \in B) = \mathbb{P}\left(\{\omega : \mathbf{x}(\omega) \in B\}\right) \tag{3}$$

# Lebesgue-Stieltjes Integral

**Probability Space Formalism** 

## Definition (Lebesgue-Stieltjes Integral)

For a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ , a measurable function  $f : \Omega \to \mathbb{R}$  and a subset  $A \in \mathcal{F}$ , the Lebesgue–Stieltjes integral

$$\int_{A} f(x)d\mathbb{P}(x) \tag{4}$$

is a Lebesgue integral with respect to the probability measure  $\mathbb{P}$ .

If 
$$A = \Omega$$
, then  $\mathbb{E}_{\mathbb{P}}[f(x)] = \int_{\Omega} f(x) d\mathbb{P}(x)$ .  
Let  $f(x) = \mathbf{1}(x \in A)$ , then  $\mathbb{E}_{\mathbb{P}}[\mathbf{1}(x \in A)] = \int_{A} d\mathbb{P}(x) = \mathbb{P}(A)$ .

### Outline

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
  Stochastic Process
  Wiener Process
  Stochastic Differential Equation
- 3. Itô Calculus

- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

### Stochastic Process

**Stochastic Process Formalism** 

## Definition (Stochastic Process)

Given the probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ , a stochastic process is a collection of random variables  $X_t$  or  $x(\omega, t) : \Omega \times \mathcal{T} \to \mathbb{R}$  indexed by  $\mathcal{T}$ , which can be written as

$$\{x(\omega,t):t\in\mathcal{T}\}\tag{5}$$

### **Stochastic Process**

**Stochastic Process Formalism** 

## Definition (Filtration)

A filtration  $\mathfrak{F} = (\mathcal{F}_t)_{t \in \mathcal{T}}$  on the probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  is a sequence of indexed sub- $\sigma$ -algebra of  $\mathcal{F}$ :

$$\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}, \quad \forall s \le t$$
 (6)

We then call the space  $(\Omega, \mathcal{F}, \mathfrak{F}, \mathbb{P})$  an  $\mathfrak{F}$ -filtered probability space. This allows us to define processes that only depend on the past and present.

## Definition (Adapted Process)

A stochastic process x is  $\mathcal{F}_{t}$ -adapted if  $x(\omega, t)$  is  $\mathcal{F}_{t}$ -measurable:

$$\{\omega : x(\omega, t) \in B\} \in \mathcal{F}_t, \quad \forall t \in T, \forall B \in \mathcal{B}(\mathbb{R}^d)$$
 (7)

### Wiener Process

#### Stochastic Process Formalism

## Definition (Wiener Process)

An  $\mathcal{F}_{t}$ -adapted Wiener process (Brownian motion) is a stochastic process  $W_{t}$  with the following properties:

- $V_{t_0} = 0.$
- ▶ If  $[t_1, t_2] \cap [s_1, s_2] = \emptyset$ , then  $W_{t_2} W_{t_1}$  and  $W_{s_2} W_{s_1}$  are independent
- $igwedge W_{t_2} W_{t_1} \sim \mathcal{N}(0, t_2 t_1) \ ext{for} \ t_2 \geq t_1$



# **Stochastic Differential Equation**

**Stochastic Process Formalism** 

### Definition (Stochastic Differential Equation)

For  $\mathcal{F}_t$ -adapted stochastic processes  $\mu(t, X_t)$  and  $\sigma(t, X_t)$ , an Itô process  $X_t$  is defined as

$$X_{t} = X_{0} + \int_{0}^{t} \mu(s, X_{s}) ds + \int_{0}^{t} \sigma(s, X_{s}) dW_{s},$$
 (8)

which is often notationally simplified to

$$dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t.$$
(9)

## Outline

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus Itô Integral Itô Lemma

- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

Itô Calculus

Naively defining the integral with respect to Brownian motion as before is problematic, since the limit is no longer well-defined (unique) for this case:

$$\int_{a}^{b} X_{t} dW_{t} = \lim_{n \to \infty} \sum_{i=0}^{n-1} X_{t_{i}^{*}} \left( W_{t_{i+1}} - W_{t_{i}} \right), \tag{10}$$

where,  $t_1 = a < t_2 < ... < t_n = b, t_i^* \in [t_i, t_{i+1}]$ . For the above limit to exist, we require that the function  $W_{t_i}$  has a bounded total variation in t, which does not happen, since Brownian-motion paths do not have bounded total variation.

#### Itô Calculus

## Definition (Itô Integral)

If we fix the choice  $t_i^* = t_i$ , it can be shown that this limit will converge in the mean-square sense.

$$\int_{a}^{b} X_{t} dW_{t} = \lim_{n \to \infty} \sum_{i=0}^{n-1} X_{t_{i}} \left( W_{t_{i+1}} - W_{t_{i}} \right). \tag{11}$$

#### Remark.

The Itô integral is special because it is a martingale.

$$\mathbb{E}\left[\int_0^t Y_s \, dW_s |\mathfrak{F}_r\right] = \int_0^r Y_s \, dW_s, \quad r \le t \tag{12}$$

when  $\mathfrak{F}_r$  is the filtration generated by  $\{W_s, Y_s\}_{s \leq r}$ .

## Lemma (Quadratic Variation)

For a partition  $\Pi = \{t_0, t_1, ..., t_j\}$  of an interval [0, T], let  $|\Pi| = \max_i (t_{i+1} - t_i)$ . A Brownian motion  $W_t$  satisfies the following equation with probability 1:

$$\lim_{|\Pi| \to 0} \sum_{i} (W_{t_{i+1}} - W_{t_i})^2 = T \tag{13}$$

#### Remark.

To view it informally, we can say

$$(dW)^2 = dt (14)$$

which is a core transformation in the following proof of Itô Lemma.

### Theorem (Itô's lemma)

Let f(x) be a smooth function of two variables, and let  $X_t$  be a stochastic process satisfying  $dX_t = \mu_t dt + \sigma_t dW_t$  for a Brownian motion  $W_t$ . Then

$$df(t,X_t) = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{1}{2}\sigma_t^2 \frac{\partial^2 f}{\partial x^2}\right) dt + \frac{\partial f}{\partial x}\sigma_t dW_t.$$

#### Proof.

Following the Taylor expansion, we have

$$df(t, X_t) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} dX_t + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (dX_t)^2$$

$$= \left( \frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{1}{2} \sigma_t^2 \frac{\partial^2 f}{\partial x^2} \right) dt + \sigma_t \frac{\partial f}{\partial x} dW_t$$
(16)

(15)

### Itô Lemma

Itô Calculus

#### Remark.

For some more complicated SDE

$$dY_t = \mu(t, Y_t) dt + \sigma(t, Y_t) dB_t, \qquad (17)$$

we can define a function such that  $Y_t = f(t, X_t)$  and use Itô Lemma to identify the  $dY_t$ .

### Outline

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus

- 4. Kolmogorov Equations
  Kolmogorov Backward Equation
  Kolmogorov Forward Equation
  Some Corollaries
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

# **Kolmogorov Equations**

In probability theory, Kolmogorov equations, including Kolmogorov forward equations and Kolmogorov backward equations, characterize continuous-time Markov processes. In particular, they describe how the probability of a continuous-time Markov process in a certain state changes over time. — WikiPedia

For the case of a countable state space and denote the probability from state x at time s to state y at some later time t to be p(s, x; t, y). The Kolmogorov forward equations read

$$\frac{\partial p(s,x;t,y)}{\partial t} = \sum_{z} p(s,x;t,z) A_{zy}(t), \qquad (18)$$

while the Kolmogorov backward equations are

$$\frac{\partial p(s,x;t,y)}{\partial s} = -\sum_{z} p(s,z;t,y) A_{xz}(t), \tag{19}$$

where 
$$A(t)$$
 is the generator and  $A_{xy}(t) = \left[\frac{\partial p(s,x;t,y)}{\partial t}\right]_{t=s}$ ,  $\sum_{z} A_{yz}(t) = 0$ .

# Kolmogorov Backward Equation

**Kolmogorov Equations** 

## Theorem (Kolmogorov Backward Equation)

For a stochastic process following the form of  $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$ . The Kolmogorov Backward Equation has the form

$$\begin{cases} -\frac{\partial u(x,s)}{\partial s} = \mu(s,x) \frac{\partial u(x,s)}{\partial x} + \frac{1}{2}\sigma^2(s,x) \frac{\partial^2 u(x,s)}{\partial x^2}, & s < t \\ u(x,t) = f(x) \end{cases}$$
(20)

The solution is given by Feynman-Kac formula  $\mathbb{E}\left[f(X_T)|X_t=x\right]=u(t,x)$ . Then, if  $f(x)=\delta_y(x)$ , we can derive the transition probability density p(s,x;t,y) through the propagation of Kolmogorov Backward Equation.

$$\begin{cases}
-\frac{\partial p(s,x;t,y)}{\partial s} = \mu(s,x) \frac{\partial p(s,x;t,y)}{\partial x} + \frac{1}{2}\sigma^2(s,x) \frac{\partial^2 p(s,x;t,y)}{\partial x^2}, & s < t \\
p(t,x;t,y) = \delta_y(x)
\end{cases}$$
(21)

# **Proof of Kolmogorov Backward Equation**

**Kolmogorov Equations** 

#### Proof.

Let us recall the Itô Lemma

$$df(X_t) = \left(\mu_t \frac{\partial f}{\partial x} + \frac{1}{2} \sigma_t^2 \frac{\partial^2 f}{\partial x^2}\right) dt + \frac{\partial f}{\partial x} dW_t$$

$$= \mathcal{L}f(X_t) + \frac{\partial f}{\partial x} dW_t$$
(22)

Then, suppose u(t,x) solves the partial differential equation (PDE)

$$\partial_t u + \mathcal{L}u = 0$$
, for  $t \le T$  with  $u(T, x) = f(x)$  (23)

# **Proof of Kolmogorov Backward Equation**

**Kolmogorov Equations** 

### Proof.

By Ito with 
$$X_t = x$$

$$f(X_T) = u(T, X_T)$$

$$= u(t, x) + \int_t^T (\partial_t u(s, X_s) + \partial_{X_s} u(s, X_s)) ds$$

$$= u(t, x) + \int_t^T (\partial_t u(s, X_s) + \mathcal{L}u(s, X_s)) ds + \int_t^T \partial_x u(s, X_s) \sigma_s(X_s) dW_s$$

$$\mathbb{E}\left[f(X_T)|X_t=x\right]=u(t,x) \tag{22}$$

# Remarks of Kolmogorov Backward Equation

**Kolmogorov Equations** 

#### Remark.

The Kolmogorov Backward Equation can seen as the optimality condition of the "mean field dynamic programming" problem.

To demonstrate that, recall the expectation explaining  $u(x,s) = \mathbb{E}[f(X_t)|X_s = x]$ . The optimality condition states that

$$\mathbb{E}\left[f(X_t)|X_s=x\right] = \mathbb{E}\left[\mathbb{E}\left[f(X_t)|X_{s+\Delta}\right]|X_s=x\right] = \mathbb{E}\left[u(X_{s+\Delta},s+\Delta)|X_s=x\right] \quad (23)$$

Then, if we denote  $du(X_s,s)=\lim_{\Delta\to 0}u(X_{s+\Delta},s+\Delta)-u(X_s,s)$ , the optimality condition  $\mathbb{E}\left[du(X_s,s)|X_s=x\right]=0$  can be stated as

$$-\frac{\partial u(x,s)}{\partial s} = -\mathbb{E}\left[\frac{\partial u(X_s,s)}{\partial s}|X_s = x\right] = \mathbb{E}\left[\frac{\partial u(X_s,s)}{\partial X_s}|X_s = x\right]$$
(24)

# Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

## Theorem (Fokker-Planck (FPK) Equation)

For a stochastic process following the form of  $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$ . The Fokker-Planck (FPK) equation has the form

$$\begin{cases} \frac{\partial u(y,t)}{\partial t} = -\frac{\partial}{\partial y} \left( \mu(y,t) u(y,t) \right) + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left( \sigma^2(y,t) u(y,t) \right), & s < t \\ u(y,s) = p(y) \end{cases}$$
(25)

Then, if  $p(y) = \delta_x(y)$ , we can derive the transition probability density p(s, x; t, y) through the propagation of Fokker-Planck Equation.

$$\begin{cases}
\frac{\partial p(s,x;t,y)}{\partial t} = -\frac{\partial}{\partial y} \left( \mu(y,t) p(s,x;t,y) \right) + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left( \sigma^2(y,t) p(s,x;t,y) \right), & s < t \\
p(t,x;t,y) = \delta_x(y)
\end{cases} (26)$$

# Proof of Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

### Proof.

According to the definition

$$\frac{d}{dt}\mathbb{E}\left[u(X_{t})|X_{s}\right] = \lim_{\Delta \to 0} \frac{1}{\Delta}\mathbb{E}\left[u(X_{t+\Delta}) - u(X_{t})|X_{s}\right] 
= \lim_{\Delta \to 0} \frac{1}{\Delta}\mathbb{E}\left[\mathbb{E}\left[u(X_{t+\Delta}) - u(X_{t})|X_{t}\right]|X_{s}\right] 
= \mathbb{E}\left[\mathbb{E}\left[\frac{\partial u(X_{t}, t)}{\partial X_{t}}|X_{t} = x\right]|X_{s}\right] 
= \mathbb{E}\left[\mu(s, x)\frac{\partial}{\partial x}u(X_{t}, t) + \frac{1}{2}\sigma^{2}(X_{t}, t)\frac{\partial^{2}}{\partial x^{2}}u(X_{t}, t)|X_{s}\right]$$
(27)

# Proof of Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

Proof.

$$\frac{d}{dt}\mathbb{E}\left[u(X_t)|X_s=x\right] = \mathbb{E}\left[\mu(s,x)\frac{\partial}{\partial x}u(X_t,t) + \frac{1}{2}\sigma^2(X_t,t)\frac{\partial^2}{\partial x^2}u(X_t,t)|X_s=x\right]$$

$$\int u(y)\frac{\partial p(s,x;t,y)}{\partial t}dy = \int \left[\mu(y,t)\frac{\partial}{\partial y}u(y,t) + \frac{1}{2}\sigma^2(y,t)\frac{\partial^2}{\partial y^2}u(y,t)\right]p(s,x;t,y)dy$$

$$= \int u(y)\left[-\frac{\partial}{\partial y}(\mu(y,t)p(s,x;t,y)) + \frac{1}{2}\frac{\partial^2}{\partial y^2}(\sigma^2(y,t)p(s,x;t,y))\right]dy$$
(27)

which shows that

$$\frac{\partial p(s,x;t,y)}{\partial t} = -\frac{\partial}{\partial y}(\mu(y,t)p(s,x;t,y)) + \frac{1}{2}\frac{\partial^2}{\partial y^2}(\sigma^2(y,t)p(s,x;t,y))$$
(28)

# Corollary of Fokker-Planck (FPK) equation

Kolmogorov Equations - Kolmogorov Forward Equation

## Corollary (Master Equation.)

If  $X_0$  has density function  $p_0(x)$ , then the density function p(t,y) of  $X_t$  can be get by propagating the Fokker-Planck equation.

$$\begin{cases} \frac{\partial p(t,y)}{\partial t} = -\frac{\partial}{\partial y} \left( \mu(y,t) p(t,y) \right) + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left( \sigma^2(y,t) p(t,y) \right), & s < t \\ p(0,y) = p_0(y) \end{cases}$$
(29)

Proof.

$$\mathbb{E}(f(X_t)) = \mathbb{E}(\mathbb{E}[f(X_t)]|X_0)$$

$$= \int \left[ \int f(y)p(0,x;t,y)dy \right] p_0(x)dx$$

$$\int f(y)p(t,y)dy = \int f(y) \left[ \int p_0(x)p(0,x;t,y)dx \right] dy$$
(30)

### Reverse-time SDE

**Kolmogorov Equations - Some Corollaries** 

**Definition.** Given the stochastic process  $X(\cdot)$ : dX = F(X,t)dt + G(X,t)dW and the marginal probability density  $p_t(X(t))$  at time t, the reverse-time stochastic process is defined as

$$dX = -\left\{F(X,\tilde{t}) - \nabla \cdot \left[G(X,\tilde{t})G(X,\tilde{t})^{T}\right] - G(X,\tilde{t})G(X,\tilde{t})^{T}\nabla_{X}\log p_{\tilde{t}}(X)\right\}d\tilde{t} + G(X,\tilde{t})d\tilde{V}$$

when n=1 and G(X,t)=G(t)

$$dX = -\left[F(X,\tilde{t}) - G^2(\tilde{t})\nabla_X \log p_{\tilde{t}}(X)\right]d\tilde{t} + G(\tilde{t})d\tilde{W}$$

where  $\tilde{W}(\cdot)$  represents the standard Wiener process when time flows backwards, and  $d\tilde{t}$  is an infinitesimal negative timestep from T to 0.

### Reverse-time SDE

#### Kolmogorov Equations - Some Corollaries

**Proof.** For some stochastic process  $X(\cdot)$ : dX = F(X,t)dt + G(t)dW, the corresponding Fokker-Planck equation is defined as

$$\frac{\partial p_t(X)}{\partial t} = -\frac{\partial}{\partial x} \left[ F(X,t) p_t(X) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[ G^2(t) p_t(X) \right]$$

We also define the reverse-time stochastic process  $Y(\cdot)$ :  $dY = F(Y, \tilde{t})dt + G(\tilde{t})d\tilde{W}$ , and the corresponding  $q_t(Y)$  is defined as

$$\frac{\partial q_t(Y)}{\partial t} = -\frac{\partial p_{T-t}(X)}{\partial t} = \frac{\partial}{\partial x} \left[ F(X, T - t) p_{T-t}(X) \right] - \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[ G^2(T - t) p_{T-t}(X) \right] 
= \frac{\partial}{\partial x} \left[ \left( F(X, T - t) - G^2(T - t) \nabla_x \log p_{T-t}(x) \right) p_{T-t}(X) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[ G^2(T - t) p_{T-t}(X) \right] 
= \frac{\partial}{\partial y} \left[ \left( F(X, \tilde{t}) - G^2(\tilde{t}) \nabla_x \log p_{\tilde{t}}(x) \right) q_t(Y) \right] + \frac{1}{2} \frac{\partial^2}{\partial y^2} \left[ G^2(\tilde{t}) q_t(Y) \right]$$

then, according the FK equation, we have

$$F(Y, \tilde{t}) = -F(X, \tilde{t}) + G^{2}(\tilde{t})\nabla_{X} \log p_{\tilde{t}}(X), \quad G(t) = G(\tilde{t})$$

## **Probability ODE Flow**

Kolmogorov Equations - Some Corollaries

**Definition.** For each reverse-time stochastic process, the probabilistic flow ODE can be defined as followed whose trajectories share the marginal probability densities  $p_t(X(t))$ .

$$dX = -\left\{F(X,\tilde{t}) - \frac{1}{2}\nabla \cdot \left[G(X,\tilde{t})G(X,\tilde{t})^T\right] - \frac{1}{2}G(X,\tilde{t})G(X,\tilde{t})^T\nabla_X \log p_{\tilde{t}}(X)\right\}d\tilde{t}$$

when n = 1 and G(X, t) = G(t)

$$dX = -\left[F(X, \tilde{t}) - \frac{1}{2}G^{2}(\tilde{t})\nabla_{x}\log p_{\tilde{t}}(x)\right]d\tilde{t}$$

where  $d\tilde{t}$  is an infinitesimal negative timestep from T to 0.

# **Proof of Probability ODE Flow**

**Kolmogorov Equations - Some Corollaries** 

**Proof.** For some stochastic process  $X(\cdot)$ : dX = F(X,t)dt + G(t)dW, the corresponding Fokker-Planck equation is defined as

$$\frac{\partial p_t(X)}{\partial t} = -\frac{\partial}{\partial x} \left[ F(X, t) p_t(X) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[ G^2(t) p_t(X) \right]$$

We also define the reverse-time ode process  $Y(\cdot)$ :  $dY = F(Y, \tilde{t})d\tilde{t}$ , and the corresponding  $q_t(Y)$  is defined as

$$\frac{\partial q_t(Y)}{\partial t} = -\frac{\partial p_{T-t}(X)}{\partial t} = \frac{\partial}{\partial x} \left[ F(X, T - t) p_{T-t}(X) \right] - \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[ G^2(T - t) p_{T-t}(X) \right] 
= \frac{\partial}{\partial x} \left[ \left( F(X, T - t) - \frac{1}{2} G^2(T - t) \nabla_x \log p_{T-t}(x) \right) p_{T-t}(X) \right] 
= \frac{\partial}{\partial y} \left[ \left( F(X, \tilde{t}) - \frac{1}{2} G^2(\tilde{t}) \nabla_x \log p_{\tilde{t}}(x) \right) q_t(Y) \right]$$

then, according the continuity equation, we have

$$F(Y, \tilde{t}) = -F(X, \tilde{t}) + \frac{1}{2}G^2(\tilde{t})\nabla_X \log p_t(X)$$

## Outline

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus

- 4. Kolmogorov Equations
- Generator for Markov Process
   Generator
   Kolmogorov Forward Equation
   Kolmogorov Backward Equation
   KBE KFE
- 6. Radon-Nikodym Derivative
- 7. Other Theorems

## Theorem (Generator Definition)

$$\frac{d}{dh}\Big|_{h=0} \left\langle k_{t+h|t}, f \right\rangle(x) = \lim_{h \to 0} \frac{\left\langle k_{t+h|t}, f \right\rangle(x) - f(x)}{h} \stackrel{\text{def}}{=} \left[ \mathcal{L}_t f \right](x) \tag{31}$$

where function f is the integrable test function and  $k_{t+h|t}$  represents the transition kernel from time t to time t+h. We can define the linear action  $\langle \cdot, \cdot \rangle$  to be

$$\langle p_{t}, f \rangle \stackrel{\text{def}}{=} \int f(x) p_{t}(dx) = \mathbb{E}_{x \sim p_{t}} [f(x)]$$

$$\langle k_{t+h|t}, f \rangle (x) \stackrel{\text{def}}{=} \langle k_{t+h|t}(\cdot|x), f \rangle = \mathbb{E} [f(X_{t+h}) \mid X_{t} = x]$$
(32)

The tower property implies that  $\langle p_t, \langle k_{t+h|t}, f \rangle \rangle = \langle p_{t+h}, f \rangle$ .

## Corollary (Flow)

Given the ODE  $dX_t = u(X_t, t)dt$ , the generator is

$$[\mathcal{L}_t f](x) = \lim_{h \to 0} \frac{\mathbb{E}[f(X_t + hu_t(X_t) + o(h))|X_t = x] - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{h\nabla f(x)^T u_t(x) + o(h)}{h}$$

$$= \nabla f(x)^T u_t(x)$$
(33)

## **Generator Example**

**Generator** 

## Corollary (Diffusion)

Given the SDE  $dX_t = \sigma(X_t, t)dB$ , the generator is

$$[\mathcal{L}_t f](x) = \lim_{h \to 0} \frac{\mathbb{E}\left[f(X_t + h\sigma_t(X_t)\epsilon_t + o(h))|X_t = x\right] - f(x)}{h}$$

$$= \frac{1}{2}\sigma_t^2(x) \cdot \nabla^2 f(x)$$
(34)

## **Kolmogorov Forward Equation**

**Kolmogorov Forward Equation** 

## Theorem (Kolmogorov Forward Equation)

$$\partial_t \langle p_t, f \rangle = \frac{d}{dh} \bigg|_{h=0} \langle p_{t+h}, f \rangle = \left\langle p_t, \frac{d}{dh} \right|_{h=0} \left\langle k_{t+h|t}, f \right\rangle = \left\langle p_t, \mathcal{L}_t f \right\rangle \tag{35}$$

## **Adjoint KFE**

**Kolmogorov Forward Equation** 

## Theorem (Adjoint KFE)

Let us define the adjoint generator  $\mathcal{L}_t^*$  as

$$\langle p_t, \mathcal{L}_t f \rangle = \langle \mathcal{L}_t^* p_t, f \rangle \tag{36}$$

Then, we have this adjoint Kolmogorov Forward Equation

$$\partial_t p_t(x) = [\mathcal{L}_t^* p_t](x) \tag{37}$$

## **Proof of Adjoint KFE**

**Kolmogorov Forward Equation** 

## Proof of Adjoint KFE.

$$\partial_t \langle p_t, f \rangle = \partial_t \int f(x) p_t(dx)$$

$$= \int f(x) \partial_t p_t(dx)$$

$$= \langle p_t, \mathcal{L}_t f \rangle$$

$$= \langle \mathcal{L}_t^* p_t, f \rangle$$

$$= \int f(x) \mathcal{L}_t^* p_t(dx)$$

(38)

38 / 77

**Kolmogorov Forward Equation** 

#### Proof of Adjoint KFE.

We demonstrate that  $\mathcal{L}$  and  $\mathcal{L}^{\dagger}$  are adjoints by proving the identity  $\langle \mathcal{L}u, p \rangle = \langle u, \mathcal{L}^{\dagger}p \rangle$ , where the inner product  $\langle f, g \rangle = \int f(x)g(x) dx$ . For simplicity, we use the one-dimensional case where  $D(x,t) = \sigma^2(x,t)$ .

$$\langle \mathcal{L}u, p \rangle = \int_{-\infty}^{\infty} \left( \mu(x, t) \frac{\partial u}{\partial x} + \frac{1}{2} D(x, t) \frac{\partial^2 u}{\partial x^2} \right) p(x) \, dx$$

$$= \underbrace{\int_{-\infty}^{\infty} \left( \mu \frac{\partial u}{\partial x} \right) p \, dx}_{\text{Term 1 (Drift)}} + \underbrace{\int_{-\infty}^{\infty} \left( \frac{1}{2} D \frac{\partial^2 u}{\partial x^2} \right) p \, dx}_{\text{Term 2 (Diffusion)}}$$

We now integrate each term by parts.

**Kolmogorov Forward Equation** 

#### Proof of Adjoint KFE.

#### For the drift term:

$$\int_{-\infty}^{\infty} \left( \mu \frac{\partial u}{\partial x} \right) p \, dx = \left[ \mu u p \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} u \frac{\partial (\mu p)}{\partial x} \, dx$$
$$= - \int_{-\infty}^{\infty} u \frac{\partial (\mu p)}{\partial x} \, dx \quad \text{(assuming boundary terms vanish)}$$

**Kolmogorov Forward Equation** 

#### Proof of Adjoint KFE.

For the diffusion term (integrating by parts twice):

$$\int_{-\infty}^{\infty} \left(\frac{1}{2}D\frac{\partial^{2}u}{\partial x^{2}}\right) p \, dx = \left[\frac{1}{2}Dp\frac{\partial u}{\partial x}\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{1}{2}\frac{\partial(Dp)}{\partial x}\frac{\partial u}{\partial x} \, dx$$

$$= -\int_{-\infty}^{\infty} \frac{1}{2}\frac{\partial(Dp)}{\partial x}\frac{\partial u}{\partial x} \, dx$$

$$= -\left[\frac{1}{2}u\frac{\partial(Dp)}{\partial x}\right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} u\left(\frac{1}{2}\frac{\partial^{2}(Dp)}{\partial x^{2}}\right) \, dx$$

$$= \int_{-\infty}^{\infty} u\left(\frac{1}{2}\frac{\partial^{2}(Dp)}{\partial x^{2}}\right) \, dx$$

Kolmogorov Forward Equation

## Proof of Adjoint KFE.

Combining the results:

$$\langle \mathcal{L}u, p \rangle = \int_{-\infty}^{\infty} u \left( -\frac{\partial (\mu p)}{\partial x} + \frac{1}{2} \frac{\partial^2 (Dp)}{\partial x^2} \right) dx$$
$$= \int_{-\infty}^{\infty} u(\mathcal{L}^{\dagger} p) dx$$
$$= \langle u, \mathcal{L}^{\dagger} p \rangle$$

This completes the proof.

## Adjoint KFE example

**Kolmogorov Forward Equation** 

## Corollary (Flow)

The adjoint generator is  $\mathcal{L}_t^* p_t = -\nabla \cdot [u_t(x)p_t(x)]$ , which leads to the well-known continuity equation:

$$\partial_t p_t(x) = -\nabla \cdot [u_t(x)p_t(x)] \tag{39}$$

Proof.

$$\langle p_t, \mathcal{L}_t f \rangle = \mathbb{E}_{x \sim p_t} [\mathcal{L}_t f(x)] = \int \mathcal{L}_t f(x) p_t(x) \, dx = \int \nabla f(x)^T u_t(x) p_t(x) \, dx$$

$$= \int f(x) [-\nabla \cdot [u_t(x) p_t(x)]] \, dx$$

$$= \int f(x) [\mathcal{L}_t^* p_t](x) \, dx$$
(40)

## Adjoint KFE example

**Kolmogorov Forward Equation** 

## Corollary (Diffusion)

The adjoint generator is  $\mathcal{L}_t^* p_t = \frac{1}{2} \nabla^2 \cdot [\sigma_t^2(x) p_t(x)]$ , which leads to the well-known Fokker-Planck equation:

$$\partial_t p_t(x) = \frac{1}{2} \nabla^2 \cdot [\sigma_t^2(x) p_t(x)] \tag{41}$$

Proof.

$$\langle p_t, \mathcal{L}_t f \rangle = \mathbb{E}_{x \sim p_t} [\mathcal{L}_t f(x)] = \int \mathcal{L}_t f(x) p_t(x) \, dx = \frac{1}{2} \int \sigma_t^2(x) \cdot \nabla^2 f(x) p_t(x) \, dx$$

$$= \frac{1}{2} \int f(x) \nabla^2 \cdot [\sigma_t^2(x) p_t(x)] \, dx$$

$$= \int f(x) [\mathcal{L}_t^* p_t](x) \, dx$$
(42)

## Kolmogorov Backward Equation

**Kolmogorov Backward Equation** 

## Theorem (Kolmogorov Backward Equation)

The function  $u(x,s) = \langle k_{t|s}, f \rangle(x) = \mathbb{E}[f(X_t) \mid X_s = x]$  satisfies the following partial differential equation:

$$\frac{\partial}{\partial s} \left\langle k_{t|s}, f \right\rangle (x) = -\mathcal{L}_s \left\langle k_{t|s}, f \right\rangle (x) \tag{43}$$

## Proof of Kolmogorov Backward Equation

Kolmogorov Backward Equation

#### Proof of Kolmogorov Backward Equation.

Let us first expand the transition kernel from  $s \to t$  to  $s \to s + h \to t$ :

$$\langle k_{t|s}, f \rangle(x) = \langle k_{s+h|s}, \langle k_{t|s+h}, f \rangle \rangle(x)$$

$$\mathbb{E}\left[f(X_t) \mid X_s = x\right] = \mathbb{E}\left[\left\langle k_{t|s+h}, f \right\rangle (X_{s+h}) \mid X_s = x\right]$$
$$= \mathbb{E}\left[f(X_t) \mid X_s = x\right]$$

Then, take derivative on both side

$$\frac{d}{d}|_{t=0}\langle k_{t}|_{t}f\rangle(x)=$$

$$\frac{d}{dh}|_{h=0}\left\langle k_{t|s},f\right\rangle (x)=\frac{d}{dh}|_{h=0}\left\langle k_{s+h|s},\left\langle k_{t|s+h},f\right\rangle \right\rangle (x)$$

$$egin{aligned} 0 &= [\mathcal{L}_{s}\left\langle k_{t|s}, f 
ight
angle](x) + rac{d}{dh}|_{h=0}\left\langle k_{t|s+h}, f 
ight
angle(x) \ &= \mathcal{L}_{s}\left\langle k_{t|s}, f 
ight
angle(x) + rac{\partial}{\partial s}\left\langle k_{t|s}, f 
ight
angle(x) \end{aligned}$$

(44)

(45)

## **Proof of Kolmogorov Backward Equation**

**Kolmogorov Backward Equation** 

## Proof of Kolmogorov Backward Equation.

This concludes that

$$\frac{\partial}{\partial s} \left\langle k_{t|s}, f \right\rangle (x) = -\mathcal{L}_s \left\langle k_{t|s}, f \right\rangle (x) \tag{44}$$

Let 
$$u(x,s) = \mathbb{E}[f(X_t)|X_s = x]$$
, this is equivalent to the KBE in section 4.1.

## **KBE & KFE Conservation Law**

KBE & KFE

#### Theorem (Conservation Law)

Let p(x, t) be the probability density function satisfying the Fokker-Planck Equation:

$$\frac{\partial p}{\partial t} = \mathcal{L}^{\dagger} p, \quad \text{where} \quad \mathcal{L}^{\dagger} p = -\frac{\partial}{\partial v} (\mu p) + \frac{1}{2} \frac{\partial^2}{\partial v^2} (\sigma^2 p)$$
 (45)

Let V(x,t) be a value function satisfying the Backward Kolmogorov Equation:

$$\frac{\partial V}{\partial t} = -\mathcal{L}V, \quad \text{where} \quad \mathcal{L}V = \mu \frac{\partial V}{\partial x} + \frac{1}{2}\sigma^2 \frac{\partial^2 V}{\partial x^2}$$

The expected value of V(t) over the probability distribution p(t), defined as  $\mathbb{E}_{p(t)}[V(t)] = \int V(x,t)p(x,t) dx$ , is a conserved quantity. That is:

$$\frac{d}{dt}\mathbb{E}_{p(t)}[V(t)] = 0$$

(46)

## **KBE & KFE Conservation Law**

**KBE & KFE** 

#### Remark.

This conservation law is remarkably general. Its validity does not depend on the specific functional form of the initial probability distribution p(x,0). Rather, it hinges on the adjoint relationship between the forward  $(\mathcal{L}^{\dagger})$  and backward  $(\mathcal{L})$  operators, which is established through integration by parts. The proof requires that the resulting boundary terms vanish at infinity. This condition is satisfied for any "well-behaved" system, meaning any initial distribution p(x,0) that is properly normalized and decays sufficiently fast, and any value function V(x,t) that does not grow excessively fast as  $|x| \to \infty$ . In virtually all physically and financially relevant scenarios, these regularity conditions are naturally met.

# Proof of Conservation Law KBE & KFE

#### Proof of Conservation Law.

We differentiate the expectation with respect to time:

$$\begin{split} \frac{d}{dt} \mathbb{E}_{p(t)}[V(t)] &= \frac{d}{dt} \int V(x,t) p(x,t) \, dx \\ &= \int \frac{\partial}{\partial t} (Vp) \, dx \qquad \qquad \text{(Leibniz integral rule)} \\ &= \int \left( \frac{\partial V}{\partial t} p + V \frac{\partial p}{\partial t} \right) \, dx \qquad \qquad \text{(Product rule)} \end{split}$$

# Proof of Conservation Law KBE & KFE

#### Proof of Conservation Law.

Substituting the Backward Kolmogorov Equation for  $\frac{\partial V}{\partial t}$  and the Fokker-Planck Equation for  $\frac{\partial p}{\partial t}$ :

$$\frac{d}{dt}\mathbb{E}_{p(t)}[V(t)] = \int \left( (-\mathcal{L}V)p + V(\mathcal{L}^{\dagger}p) \right) dx$$

$$= \int \left( V(\mathcal{L}^{\dagger}p) - p(\mathcal{L}V) \right) dx$$

#### Proof of Conservation Law.

By the definition of adjoint operators, for functions vanishing at infinity, we have the identity:

$$\int V(\mathcal{L}^{\dagger}p)\,dx = \int (\mathcal{L}V)p\,dx$$

Substituting this into our derivation yields:

$$\frac{d}{dt}\mathbb{E}_{p(t)}[V(t)] = \int (\mathcal{L}V)p \, dx - \int (\mathcal{L}V)p \, dx$$
$$= 0$$

This shows that the expected value is constant in time.

## **Probability Transition View**

**KBE & KFE** 

#### Remark.

Let p(s, x; t, y) represents the probability transition from time s at x to time t at y. Then the Kolmogorov Forward and Backward Equation can be written as:

$$\frac{\partial}{\partial t}p(s,x;t,\cdot) = +\mathcal{L}_{t}^{*}p(s,x;t,\cdot) 
\frac{\partial}{\partial s}p(s,\cdot;t,y) = -\mathcal{L}_{s}p(s,\cdot;t,y)$$
(47)

## L<sub>2</sub> Adjoint Computation Rules

**KBE & KFE** 

- The operation of multiplication with a function f(x) is its own adjoint (i.e., the operator is self-adjoint).
- ▶ The operation of differentiation obeys  $\left(\frac{\partial}{\partial x}\right)^* = -\frac{\partial}{\partial x}$  and hence the second derivative operator is self-adjoint  $\left(\frac{\partial^2}{\partial x^2}\right)^* = \frac{\partial^2}{\partial x^2}$ .
- The adjoint of a sum is  $(A_1 + A_2)^* = A_1^* + A_2^*$  and the product of two operators is  $(A_1A_2)^* = A_2^*A_1^*$ .

#### **Outline**

- 1. Probability Space Formalism
- 2. Stochastic Process Formalism
- 3. Itô Calculus

- 4. Kolmogorov Equations
- Generator for Markov Process
- Radon-Nikodym Derivative
   Disintegration Theorem
   RN Derivative of Itô Process
- 7. Other Theorems

## Radon-Nikodym Derivative

#### Theorem (Radon-Nikodym Theorem)

Given probability measures  $\mathbb{P}$  and  $\mathbb{Q}$ , defined on the measurable space  $(\Omega, \mathcal{F})$ , there exists a measurable function  $\frac{d\mathbb{P}}{d\mathbb{O}}: \Omega \to [0, \infty)$ , and for any set  $A \subseteq \mathcal{F}$ :

$$\mathbb{P}(A) = \int_{A} \frac{d\mathbb{P}}{d\mathbb{Q}}(x) \, d\mathbb{Q}(x), \tag{48}$$

where the function  $\frac{d\mathbb{P}}{d\mathbb{O}}(x)$  is known as the RN-derivative.

A direct consequence of this result is

$$\int_{A} f(x) d\mathbb{P}(x) = \int_{A} f(x) \frac{d\mathbb{P}}{d\mathbb{Q}}(x) d\mathbb{Q}(x).$$
 (49)

## **Disintegration Theorem**

Radon-Nikodym Derivative - Disintegration Theorem

## Theorem (Disintegration Theorem)

Disintegration Theorem for continuous probability measures: For a probability space

 $Z, \mathcal{B}(Z), \mathbb{P}$  where Z is a product space:  $Z = Z_x \times Z_y$ , and

- $ightharpoonup Z_x \subseteq \mathbb{R}^d$ ,  $Z_y \subseteq \mathbb{R}^d$ ,
- $\pi_i: Z \to Z_i$  is a measurable function known as the canonical projection operator (i.e.,  $\pi_x(z_x, z_y) = z_x$  and  $\pi_x^{-1}(z_x) = \{y | \pi_x(z_x) = z\}$ ),

there exists a measure  $\mathbb{P}_{v|x}(\cdot|x)$ , such that

$$\int_{Z_x \times Z_y} f(x, y) d\mathbb{P}(y) = \int_{Z_x} \int_{Z_y} f(x, y) d\mathbb{P}_{y|x}(y|x) d\mathbb{P}(\pi_x^{-1}(x))$$
 (50)

where  $\mathbb{P}_{x}(\cdot) = \mathbb{P}(\pi^{-1}(\cdot))$  is a probability measure, typically referred to as a pullback measure, and corresponds to the marginal distribution.

## **Disintegration Theorem**

Radon-Nikodym Derivative - Disintegration Theorem

#### Corollary

The disintegration theorem implies a very interesting corollary as:

$$\frac{d\mathbb{P}}{d\mathbb{Q}}(x,y) = \frac{d\mathbb{P}_{y|x}}{d\mathbb{Q}_{y|x}}(y)\frac{d\mathbb{P}_x}{d\mathbb{Q}_x}(x)$$
 (51)

#### Remarks.

The disintegration theorem can be seen as the conditional probability on measure space.

#### Path Measure

Radon-Nikodym Derivative - RN Derivative of Itô Process

## Definition (Path Measure)

For an Itô process of the form  $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$  defined in [0, T], we call  $\mathbb P$  the path measure of the above process, with outcome space  $\Omega = C([0, T], \mathbb R^d)$ , if the distribution  $\mathbb P$  describes a weak solution to the above SDE.

## RN Derivative of Itô Process

Radon-Nikodym Derivative - RN Derivative of Itô Process

## Theorem (Girsanov Theorem)

Given two Itô processes with the same constant volatility:  $dX_t = \mu_1(t, X_t) dt + \sigma dW_t$  and  $dY_t = \mu_2(t, X_t) dt + \sigma dW_t$ , the RN derivative of their respective path measures  $\mathbb{P}, \mathbb{Q}$  is given by

$$\frac{d\mathbb{P}}{d\mathbb{Q}}(\cdot) = \exp\left(-\frac{1}{2\sigma^2} \int_0^t \|\mu_1(s,\cdot) - \mu_2(s,\cdot)\|^2 ds + \frac{1}{\sigma^2} \int_0^t (\mu_1(s,\cdot) - \mu_2(s,\cdot))^\top dW_s\right)$$
(52)

where the type signature of this RN derivative is  $\frac{d\mathbb{P}}{d\mathbb{O}}$ :  $C(T, \mathbb{R}^d) \to \mathbb{R}$ .

#### **Outline**

- 1. Probability Space Formalism
- Stochastic Process Formalism
- 3. Itô Calculus

- 4. Kolmogorov Equations
- 5. Generator for Markov Process
- 6. Radon-Nikodym Derivative
- 7. Other Theorems
  Feynman-Kac Formulation
  Nonlinear Feynman-Kac Lemma
  Doob's h-transform
  Nelson's Duality
  Expected Grad-Log-Prob Lemma
  Others

## Feynman-Kac Formulation (Discounting)

**Other Theorems** 

## Theorem (Feynman-Kac Formulation [Discounting])

For a stochastic process following the form of  $dX_t = \mu_1(t, X_t) dt + \sigma dW_t$ . If u(x, t) satisfies the form

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} + \mu(x,t) \frac{\partial u(x,t)}{\partial x} + \frac{1}{2} \sigma^2(x,t) \frac{\partial^2 u(x,t)}{\partial x^2} - q(x,t) u(x,t) = -g(x,t) \\ u(x,T) = f(x) \end{cases}$$
(53)

Then, Feynman-Kac Formulation tells us that

$$u(x,t) = \mathbb{E}\left[f(\xi_T)e^{-\int_t^T q(\theta,\xi_\theta)d\theta} + \int_t^T g(s,\xi_s)e^{-\int_t^s q(\theta,\xi_\theta)d\theta}ds | \xi_t = x\right]$$
(54)

## **Proof of Feynman-Kac Formulation**

Other Theorems

#### Proof.

Recall the Itô formula

$$du(\xi_{s}, s) = \left(\frac{\partial u(\xi_{s}, s)}{\partial s} + \mu(\xi_{s}, s)\frac{\partial u(\xi_{s}, s)}{\partial x} + \frac{1}{2}\sigma^{2}(\xi_{s}, s)\frac{\partial^{2} u(\xi_{s}, s)}{\partial x^{2}}\right)ds$$

$$+ \frac{\partial u(\xi_{s}, s)}{\partial x}\sigma(\xi_{s}, s)dW_{t}$$

$$= q(\xi_{s}, s)u(\xi_{s}, s)ds - g(\xi_{s}, s)ds + \frac{\partial u(\xi_{s}, s)}{\partial x}\sigma(\xi_{s}, s)dW_{s}$$
(55)

## **Proof of Feynman-Kac Formulation**

**Other Theorems** 

#### Proof.

multiplying both sides of the above equation by the integrating factor  $e^{-\int_t^s q(\xi_\theta, \theta) d\theta}$ , and using the Itô formula, we have

$$d\left(u(\xi_{s},s)e^{-\int_{t}^{s}q(\xi_{\theta},\theta)d\theta}\right) = -q(\xi_{s},s)e^{-\int_{t}^{s}q(x_{\theta},\theta)d\theta}u(\xi_{s},s)ds + e^{-\int_{t}^{s}q(\xi_{\theta},\theta)d\theta}du(\xi_{s},s)$$
$$= e^{-\int_{t}^{s}q(\xi_{\theta},\theta)d\theta}\left(-g(\xi_{s},s)ds + \frac{\partial u(\xi_{s},s)}{\partial x}\sigma(\xi_{s},s)dW_{s}\right)$$

Substituting the initial time t and terminal time T, we obtain

$$u(t,\xi_t) = f(\xi_T) e^{-\int_t^T q(\xi_\theta,\theta) d\theta} + \int_t^T e^{-\int_t^s q(\xi_\theta,\theta) d\theta} \left( g(\xi_s,s) ds - \frac{\partial u(\xi_s,s)}{\partial x} \sigma(\xi_s,s) dW_s \right).$$

Taking the expectation  $\mathbb{E}(\cdot \mid \xi_t = x)$  over Wiener process yields the desired result.

## Feynman-Kac Formulation (Non-Discounting)

**Other Theorems** 

## Theorem (Feynman-Kac Formulation [Non-Discounting])

For a stochastic process following the form of  $dX_t = \mu(t, X_t) dt + \sigma dW_t$ . If u(x, t) satisfies the form

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} + \mu(x,t) \frac{\partial u(x,t)}{\partial x} + \frac{1}{2} \sigma^2(x,t) \frac{\partial^2 u(x,t)}{\partial x^2} = -g(x,t) \\ u(x,T) = f(x) \end{cases}$$
(56)

Then, Feynman-Kac Formulation tells us that

$$u(x,t) = \mathbb{E}\left[f(\xi_T) + \int_t^T g(s,\xi_s)ds | \xi_t = x\right]$$
(57)

## **Proof of Feynman-Kac Formulation**

**Other Theorems** 

#### Proof.

Recall the Itô formula

$$du(\xi_{s}, s) = \left(\frac{\partial u(\xi_{s}, s)}{\partial s} + \mu(\xi_{s}, s)\frac{\partial u(\xi_{s}, s)}{\partial x} + \frac{1}{2}\sigma^{2}(\xi_{s}, s)\frac{\partial^{2} u(\xi_{s}, s)}{\partial x^{2}}\right)ds$$

$$+ \frac{\partial u(\xi_{s}, s)}{\partial x}\sigma(\xi_{s}, s)dW_{t}$$

$$= -g(\xi_{s}, s)ds + \frac{\partial u(\xi_{s}, s)}{\partial x}\sigma(\xi_{s}, s)dW_{s}$$
(58)

## **Proof of Feynman-Kac Formulation**

**Other Theorems** 

#### Proof.

Then, integrate the u(x,t) from time t at x to the terminal time T, we get

$$u(x,t) = \mathbb{E}\left[f(\xi_T) + \int_t^T g(s,\xi_s)ds | \xi_t = x\right]$$
 (58)

59 / 77

## Feynman-Kac Formulation (Boundary Value)

**Other Theorems** 

## Theorem (Feynman-Kac Formulation [Boundary Value])

For a stochastic process following the form of  $dX_t = \mu_1(t, X_t) dt + \sigma dW_t$ . If u(x, t) satisfies the form

$$\begin{cases}
\frac{\partial u(x,t)}{\partial t} + \mu(x,t) \frac{\partial u(x,t)}{\partial x} + \frac{1}{2}\sigma^{2}(x,t) \frac{\partial^{2} u(x,t)}{\partial x^{2}} - q(x,t)u(x,t) = -g(x,t) \\
u(x,T_{e}) = f(x), \quad x \in \partial\Omega
\end{cases}$$
(59)

Then, Feynman-Kac Formulation tells us that

$$u(x,t) = \mathbb{E}\left[f(\xi_T)e^{-\int_t^{T_e}q(\theta,\xi_\theta)d\theta} + \int_t^{T_e}g(s,\xi_s)e^{-\int_t^sq(\theta,\xi_\theta)d\theta}ds|\xi_t = x\right]$$
(60)

## Nonlinear Feynman-Kac Lemma

**Other Theorems** 

## Theorem (Nonlinear Feynman-Kac Lemma)

Given the non-linear extension of Feynman-Kac PDE

$$\begin{cases} \frac{\partial u(x,t)}{\partial t} + \mu(x,t) \frac{\partial u(x,t)}{\partial x} + \frac{1}{2}\sigma^{2}(x,t) \frac{\partial^{2} u(x,t)}{\partial x^{2}} = -g(x,t,u,\nabla u) \\ u(x,T) = f(x) \end{cases}$$
(61)

and the Forward-Backward Differential Equation

$$\begin{cases}
dX_t = \mu(t, X_t) dt + \sigma dW_t, X_0 = x_0 \\
dY_t = -g(x, t, u, \nabla u) dt + Z_t \cdot dW_t, Y_T = f(X_T)
\end{cases}$$
(62)

If the PDE has unique solution, then we have

$$u(X_t, t) = Y_t, \, \sigma \nabla u = Z_t \tag{63}$$

#### Doob's h-transform

**Other Theorems** 

Given a process  $X_t$  that solves  $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dW_t$  and assuming that we want to condition its solution to hit  $X_T$  at time t = T, then the h-transform provides us with the following SDE for the conditioned process:

$$dX = [\mu(t, X_t) + \sigma(t, X_t)Q\sigma(t, X_t)\nabla \log p(X_T \mid X_t)] dt + \sigma(t, X_t)dW_t,$$

## Doob's h-transform

### **Other Theorems**

Assume that an initial path measure P can be represented as an SDE, then the Doob h-transform theory implies that some modification of P at the terminal end point can also be expressed using an SDE. More precisely, let  $Q \in \mathcal{P}(C([0,1],\mathbb{R}^d))$  be a path measure associated with  $dX_t = b_t(X_t)dt + \sigma_t dB_t$  with  $b_t : \mathbb{R}^d \to \mathbb{R}^d$  and  $\sigma_t \geq 0$ . Next, given a potential function  $h_1 : \mathbb{R}^d \to \mathbb{R}_+$ , we define  $P \in \mathcal{P}(C([0,1],\mathbb{R}^d))$  such that for any  $\omega \in C([0,1],\mathbb{R}^d)$ 

$$(dP/dQ)(\omega) = h_1(\omega_1). \tag{64}$$

According to the equation, P can be thought as a twisted version of Q. We also define  $h_t(x_t) = \int_{\mathbb{R}^d} h_1(x_1)Q_{1|t}(dx_1,x_t)$ . Under mild assumptions on  $h_1$ , P is associated with  $dX_t = \{b_t(X_t) + \sigma_t^2 \nabla \log h_t(X_t)\}dt + \sigma_t dB_t$ .

## Doob's h-transform

#### Other Theorems

Let Q be a path measure associated with  $dX_t = b_t(X_t)dt + \sigma_t dB_t$ , P is associated with  $dX_t = \{b_t(X_t) + \sigma_t^2 \nabla \log h_t(X_t)\}dt + \sigma_t dB_t$ , then we have  $P_t = h_t Q_t$ .

$$\begin{cases}
\frac{\partial h(x,t)}{\partial t} = -b \cdot \nabla h_t(x) - \frac{\sigma^2}{2} \Delta h_t(x) \\
\frac{\partial q(x,t)}{\partial t} = -\nabla \cdot (h_t(x)b) + \frac{\sigma^2}{2} \Delta h_t(x) \\
P_t = h_t Q_t
\end{cases}$$
(65)

we have

$$\frac{\partial p(x,t)}{\partial t} = -\nabla \cdot \left[ p \left( b + \sigma_t^2 \nabla \log h_t(x) \right) \right] + \frac{\sigma^2}{2} \Delta h_t(x) \tag{66}$$

## Doob's h-transform

**Other Theorems** 

We can proof this via

$$\frac{\partial p(x,t)}{\partial t} = -\nabla \cdot \left[ p \left( b + \sigma_t^2 \nabla \log h_t(x) \right) \right] + \frac{\sigma^2}{2} \Delta h_t(x) 
= -\nabla \cdot (hqb) - \nabla \cdot (q\nabla h) + \frac{1}{2} \Delta hq + \frac{1}{2} \Delta qh + \nabla q\nabla h 
= -\nabla \cdot (qb)h - \nabla hqb - \nabla q \cdot \nabla h - q\Delta h + \frac{1}{2} \Delta hq + \frac{1}{2} \Delta qh + \nabla q\nabla h$$
(67)

and

$$h\frac{\partial q(x,t)}{\partial t} + q\frac{\partial h(x,t)}{\partial t} = -\nabla \cdot (qb)h + \frac{1}{2}\Delta qh - b\nabla hq - \frac{1}{2}\Delta hq$$
 (68)

### Doob's h-transform in text book

### **Other Theorems**

Let  $p(\mathbf{y}, t' \mid \mathbf{x}, t) \triangleq p(\mathbf{y}(t') \mid \mathbf{x}(t))$  denote a transition density of an SDE. Let a function  $h(t, \mathbf{x})$  be defined via the space-time regularity property

$$h(t,\mathbf{x}) = \int p(\mathbf{y}, t+s \mid \mathbf{x}, t) h(t+s, \mathbf{y}) d\mathbf{y}. \tag{7.73}$$

We can now define another Markov process with the transition kernel  $p^h(\mathbf{y}, t' \mid \mathbf{x}, t) \triangleq p(\mathbf{y}(t') \mid \mathbf{x}(t))$  via

$$p^{h}(\mathbf{y}, t+s \mid \mathbf{x}, t) = p(\mathbf{y}, t+s \mid \mathbf{x}, t) \frac{h(t+s, \mathbf{y})}{h(t, \mathbf{x})}.$$
 (7.74)

$$\int p^h(\mathbf{y}, t+s \mid \mathbf{x}, t) d\mathbf{y} = \int p(\mathbf{y}, t+s \mid \mathbf{x}, t) \frac{h(t+s, \mathbf{y})}{h(t, \mathbf{x})} d\mathbf{y}$$
$$= \frac{h(t, \mathbf{x})}{h(t, \mathbf{x})} = 1.$$

66 / 77

(7.75)

## **Nelson's Duality**

**Other Theorems** 

Let us define a forward process  $X_t$  that solves  $dX_t = \mu_+(t, X_t) dt + \sigma(t, X_t) dW_t$  and a backward process  $X_{\tilde{t}}$  that solves  $dX_{\tilde{t}} = \mu_-(\tilde{t}, X_{\tilde{t}}) d\tilde{t} + \sigma(\tilde{t}, X_{\tilde{t}}) dW_{\tilde{t}}$ . We can also define the corresponding probability measure as  $p_t(x)$  and  $p_{\tilde{t}}(x)$  respectively. Then, if  $p_{T-t}(x) = p_{\tilde{t}}(x)$ . The Nelson's Duality tells us that

$$\mu_{+}(t,x) + \mu_{-}(\tilde{t},x) = \sigma^{2} \nabla_{x} \log p_{\tilde{t}}(x) = \sigma^{2} \nabla_{x} \log p_{t}(x)$$
(69)

## **Equivalent Nelson's Duality**

**Other Theorems** 

Let us define a forward process  $X_t$  that solves  $dX_t = \mu_+(t, X_t) dt + \sigma(t, X_t) dW_t$  and a backward process  $X_{\tilde{t}}$  that solves  $dX_{\tilde{t}} = \mu_-(\tilde{t}, X_{\tilde{t}}) dt + \sigma(\tilde{t}, X_{\tilde{t}}) dW_{\tilde{t}}$ . We can also define the corresponding probability measure as  $p_t(x)$  and  $p_{\tilde{t}}(x)$  respectively. Then, if  $p_{T-t}(x) = p_{\tilde{t}}(x)$ . The Nelson's Duality tells us that

$$\mu_{+}(t,x) - \mu_{-}(\tilde{t},x) = \sigma^{2} \nabla_{x} \log p_{\tilde{t}}(x) = \sigma^{2} \nabla_{x} \log p_{t}(x)$$
(70)

## **Expected Grad-Log-Prob Lemma**

Other Theorems

Suppose that  $P_{\theta}$  is a parameterized probability distribution over a random variable x.

$$\mathbb{E}_{x \sim P_{\theta}}[\nabla_{\theta} \log P_{\theta}(x)] = 0 \tag{71}$$

Proof.

$$\nabla_{\theta} \int_{x} P_{\theta}(x) = \nabla_{\theta} 1 = 0$$

$$\int_{x} \nabla_{\theta} P_{\theta}(x) = 0$$

$$\int_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) = 0$$

$$\mathbb{E}_{x \sim P_{\theta}} [\nabla_{\theta} \log P_{\theta}(x)] = 0$$
(72)

## Others

**Other Theorems** 

For any point  $x \in \mathbb{R}^d$  such that  $p(x) \neq 0$ , it holds that

$$\frac{1}{p(x)} \Delta p(x) = \frac{1}{p(x)} \nabla \cdot \nabla p(x) = \frac{1}{p(x)} \nabla \cdot (p(x) \nabla \log p(x))$$

$$= \frac{1}{p(x)} (\nabla p(x) \cdot \nabla \log p(x) + p(x) \Delta \log p(x))$$

$$= \|\nabla \log p(x)\|^2 + \Delta \log p(x)$$
(73)

70 / 77

### **Others**

### **Other Theorems**

Under mild assumptions such that all distributions approach zero at a sufficient speed as  $||x|| \to \infty$ , and that all integrands are bounded, we have

$$\mathbb{E}_{x \sim p(x)} \left[ \Delta \log q(x) \right] = \mathbb{E}_{x \sim p(x)} \left[ \nabla \cdot \nabla \log q(x) \right] = \mathbb{E}_{x \sim p(x)} \left[ -\nabla \log p(x) \cdot \nabla \log q(x) \right]$$
(74)

where the second equality follows by integration by parts and reparameterization trick

$$\int p(x) \left( \nabla \cdot \nabla \log q(x) \right) dx = \int -\left( \nabla p(x) \cdot \nabla \log q(x) \right) dx$$

$$= \int -p(x) \left( \nabla \log p(x) \cdot \nabla \log q(x) \right) dx.$$
(75)

More generally, under the same regularity, it holds for a vector field  $Z:\mathbb{R}^d o \mathbb{R}^d$  that

$$\mathbb{E}_{x \sim p(x)} \left[ \nabla \cdot Z(x) \right] = \mathbb{E}_{x \sim p(x)} \left[ -\nabla \log p(x) \cdot Z(x) \right]. \tag{76}$$

## Jarzynski Equality

**Other Theorems** 

Using physical arguments, C. Jarzynski (1997) established a seminal identity. The context is a system following Langevin dynamics in a time-dependent potential  $U_t(Y_t)$ :

$$dY_t = -\nabla U_t(Y_t)dt + \sqrt{2D}dW_t \tag{77}$$

The standard Jarzynski equality relates the work done on the system,  $W = \int_0^T \frac{\partial U_t}{\partial t}(Y_t) dt$ , to the free energy difference,  $\Delta F = F_T - F_0 = \ln(Z_0/Z_T)$ , where  $Z_t$  is the partition function at time t. The identity is:

$$\mathbb{E}\left[\exp(-W)\right] = \exp(-\Delta F) \quad \text{or} \quad \mathbb{E}\left[\exp\left(-\int_0^T \frac{\partial U_t(Y_t)}{\partial t} dt\right)\right] = \frac{Z_T}{Z_0}$$
 (78)

(Note: The formula in the slide likely omits the exponential function for brevity.)

## Jarzynski Equality 2

**Other Theorems** 

Let  $(X_t, A_t)$  solve the coupled system of SDE/ODE

$$dX_t = -\varepsilon_t \nabla U_t(X_t) dt + \sqrt{2\varepsilon_t} dW_t, \quad X_0 \sim \rho_0,$$
 (79)

$$dA_t = -\partial_t U_t(X_t)dt, \quad A_0 = 0, \tag{80}$$

where  $\varepsilon_t \geq 0$  is a time-dependent diffusion coefficient and  $W_t \in \mathbb{R}^d$  is the Wiener process. Then for all  $t \in [0,1]$  and any test function  $h : \mathbb{R}^d \to \mathbb{R}$ , we have

$$\int_{\mathbb{R}^d} h(x) \rho_t(x) dx = \frac{\mathbb{E}[e^{A_t} h(X_t)]}{\mathbb{E}[e^{A_t}]}, \quad Z_t/Z_0 = e^{-F_t+F_0} = \mathbb{E}[e^{A_t}],$$

where the expectations are taken over the law of  $(X_t, A_t)$ 

### A Generalization of Crooks Fluctuation Theorem

Other Theorems

In 2008, Gavin E. Crooks' work led to generalized identities. A particularly useful form, often used for importance sampling, is:

$$\mathbb{E}_{Q}\left[f(Y_{T})\exp\left(\underbrace{-\int_{0}^{T}\frac{\partial U_{t}(Y_{t})}{\partial t}dt}_{\text{Work Functional, }W} + \underbrace{\ln Z_{0} - \ln Z_{T}}_{-\Delta F: \text{ Free Energy Delta}}\right)\right] = \mathbb{E}_{X \sim p_{\text{eq}, T}}[f(X)] \quad (81)$$

Here, the expectation  $\mathbb{E}_Q$  is over the non-equilibrium forward trajectories, while the expectation  $\mathbb{E}_{X\sim p_{\mathrm{eq},T}}$  is over the final canonical equilibrium distribution  $p_{\mathrm{eq},T}(x)\propto \exp(-U_T(x))$ .

# Controlled Crooks' fluctuation theorem and Jarzynski's equality Other Theorems

Define work and free energy as

$$W_T(\mathbf{Y}) := -\int_0^T \sigma^2 \partial_t \ln \hat{\pi}_t(\mathbf{Y}_t) dt, \quad F_t := -\sigma^2 \ln Z_t := \sigma^2 \ln (\hat{\pi}_t/\pi_t).$$

Then, we have the controlled Crooks' identity,

$$\left(\frac{d\vec{\mathbb{P}}_{\pi_0,\sigma^2\nabla\ln\pi+\nabla\phi}}{d\overleftarrow{\mathbb{P}}_{\pi_T,-\sigma^2\nabla\ln\pi_t+\nabla\phi}}\right)(\mathbf{Y}) = \exp\left(-\frac{1}{\sigma^2}(F_T - F_0) + \frac{1}{\sigma^2}W_T(\mathbf{Y}) + C_T^\phi(\mathbf{Y})\right),$$

where

$$C_T^\phi(\mathbf{Y}) := -\int_0^T 
abla \phi_t(\mathbf{Y}_t) \cdot 
abla \ln \pi_t(\mathbf{Y}_t) dt - \int_0^T \Delta \phi_t(\mathbf{Y}_t) dt.$$

By taking expectations and  $\phi = 0$ , this implies Jarzynski's equality

$$\mathbb{E}_{\vec{\mathbb{P}}_{\pi_0,\sigma^2\nabla\ln\pi}}\left[\exp\left(-\frac{1}{\sigma^2}W_T\right)\right] = Z_T/Z_0.$$

## Forward-Backward System

Other Theorems

### Reference

- ► Applied Stochastic Calculus
- ► Applied Stochastic Differential Equations
- ► Topics in Mathematics with Applications in Finance
- Machine-learning approaches for the empirical Schrodinger bridge problem
- ► AN INTRODUCTION TO STOCHASTIC DIFFERENTIAL EQUATIONS