Biq Mac Library - A collection of Max-Cut and quadratic 0-1 programming instances of medium size

Angelika Wiegele*

September 2007

Abstract

This is a collection of some Max-Cut and quadratic 0-1 programming instances of medium size (n = 20 up to n = 500, most of the instances having size n = 100).

1 Contents

In the subsequent sections Max-Cut and quadratic 0-1 programming instances, collected while developing the Biq Mac solver [1] (an SDP based Branch & Bound code [9]) are given. For each class of instances a table lists the problem names and the optimal solution values. For instances where the optimum is not known, we give some lower/upper bounds. (Note, that we do not claim, that these are the best known bounds.) Furthermore, the dimension n (which is the number of vertices in the case of Max-Cut problems and the number of variables in the case of quadratic 0-1 problems) and the density d is given for all instances.

Explanations how the data have been generated and details about parameters are given in seperate sections below.

The files containing the datasets in rudy-output format or sparse matrix format, respectively, can be obtained from [11].

2 Quadratic 0-1 Programming problems

The problem to be solved is the following:

$$\min\{y^T Q y: y \in \{0,1\}^n\},\$$

where Q is a symmetric matrix of order n.

2.1 Beasley instances

These data sets are due to [3] and can be obtained from the OR-Library [2] as well as from [11]. Note that in the OR-Library the problems are given as maximization problems!

^{*}Alpen-Adria-Universität Klagenfurt, Institut für Mathematik, Universitätsstr. 65-67, 9020 Klagenfurt, Austria, angelika.wiegele@uni-klu.ac.at

Problem			
name	solution		
n = 50, d =	n = 50, d = 0.1		
bqp50-1	-2098		
bqp50-2	-3702		
bqp50-3	-4626		
bqp50-4	-3544		
bqp50-5	-4012		
bqp50-6	-3693		
bqp50-7	-4520		
bqp50-8	-4216		
bqp50-9	-3780		
bqp50-10	-3507		
n = 100, d =	= 0.1		
bqp100-1	-7970		
bqp100-2	-11036		
bqp100-3	-12723		
bqp100-4	-10368		
bqp100-5	-9083		
bqp100-6	-10210		
bqp100-7	-10125		
bqp100-8	-11435		
bqp100-9	-11455		
bqp100-10	-12565		

Problem	
name	solution
n = 250, d =	= 0.1
bqp250-1	-45607
bqp250-2	-44810
bqp250-3	-49037
bqp250-4	-41274
bqp250-5	-47961
bqp250-6	-41014
bqp250-7	-46757
bqp250-8	-35726
bqp250-9	-48916
bqp250-10	-40442

Problem		
name	solution	lower bound
n = 500, d =	= 0.1	
bqp500-1	\leq -116586	-121588.41
bqp500-2	≤ -128223	-132216.45
bqp500-3	≤ -130812	-134214.12
bqp500-4	≤ -130097	-134781.02
bqp500-5	≤ -125487	-129572.87
bqp500-6	≤ -121772	-126429.50
bqp500-7	≤ -122201	-127136.37
bqp500-8	≤ -123559	-128574.61
bqp500-9	≤ -120798	-125821.63
bqp500-10	≤ -130619	-134352.34

Table 1: Beasley data. For details see Section 2.1 on page 1.

All problems have 10% density and all the coefficient elements have an integer uniform value in the [-100,100] interval. The sizes, optimal values or lower/upper bounds are given in Table 1 on page 2.

2.2 Glover, Kochenberger and Alidaee instances

These data sets are due to [5] and can be obtained from the OR-Library [2] as well as from [11]. Note that in the OR-Library the problems are given as maximization problems!

The sizes, densities and optimal solution values are given in Table 2 (page 4) and Table 3 (page 5). The parameters for generating the datasets using the Pardalos-Rodgers generators are given in Section 4.1 below.

integer uniform [-100,100]
integer uniform [-100,100]
integer uniform [-63,0]
integer uniform [0,100]
integer uniform [-100,100]
integer uniform [-50,50]
integer uniform [-75,75]
integer uniform [-50,50]
integer uniform [-100,100]
integer uniform $[-50,50]$
integer uniform [-75,75]
integer uniform $[-50,50]$

2.3 Billionnet and Elloumi instances

In [4] instances of size n=100,120,150,200 and different densities using the generator introduced in [8] (see also Section 4.1) are generated. For each class of problems, ten instances have been generated. The parameters are the following:

- diagonal coefficients in the range [-100, 100],
- off-diagonal coefficients in the range [-50, 50],
- seeds $1, 2, \dots, 10$.

We extended these instances by a set of 10 instances with n = 250, d = 0.1. The optimal solution values can be found in Tables 4 and 5 on pages 6 and 7, respectively.

3 Max-Cut instances

The problem to be solved is

$$\max\{x^T L x: \ x \in \{-1, 1\}^n\},\$$

where L is the Laplace matrix of the given graph of n vertices.

3.1 Max-Cut instances generated with rudy

Graphs of the following types have been generated using rudy [10]. The solution values are listed in Tables 6 to 8 on pages 9 to 11. The data can be downloaded [11] or generated by the rudy calls given in Section 4.2 below.

• $G_{0.5}$ g05_n.iunweighted graphs with edge probability 1/2. n=60,80,100

Problem			
name	n	density	solution
gka1a	50	0.1	-3414
gka2a	60	0.1	-6063
gka3a	70	0.1	-6037
gka4a	80	0.1	-8598
gka5a	50	0.2	-5737
gka6a	30	0.4	-3980
gka7a	30	0.5	-4541
gka8a	100	0.0625	-11109
gka1b	20	1	-133
gka2b	30	1	-121
gka3b	40	1	-118
gka4b	50	1	-129
gka5b	60	1	-150
gka6b	70	1	-146
gka7b	80	1	-160
gka8b	90	1	-145
gka9b	100	1	-137
gka10b	125	1	-154
gka1c	40	0.8	-5058
gka2c	50	0.6	-6213
gka3c	60	0.4	-6665
gka4c	70	0.3	-7398
gka5c	80	0.2	-7362
gka6c	90	0.1	-5824
gka7c	100	0.1	-7225

Table 2: [5] data. For details see Section 2.2 on page 2.

Problem			
name	n	density	solution
gka1d	100	0.1	-6333
gka2d	100	0.2	-6579
gka3d	100	0.3	-9261
gka4d	100	0.4	-10727
gka5d	100	0.5	-11626
gka6d	100	0.6	-14207
gka7d	100	0.7	-14476
gka8d	100	0.8	-16352
gka9d	100	0.9	-15656
gka10d	100	1	-19102
gka1e	200	0.1	-16464
gka2e	200	0.2	-23395
gka3e	200	0.3	-25243
gka4e	200	0.4	-35594
gka5e	200	0.5	-35154

Problem				
name	n	density	solution	lower bound
gka1f	500	0.1	\leq -61194	-63400.98
gka2f	500	0.25	\leq -100161	-104868.34
gka3f	500	0.5	\leq -138035	-145420.14
gka4f	500	0.75	≤ -172771	-181507.74
gka5f	500	1	≤ -190507	-201130.98

Table 3: [5] data. For details see Section 2.2 on page 2.

Problem		
name	solution	
n = 100, d = 1.0		
be100.1	-19412	
be100.2	-17290	
be100.3	-17565	
be100.4	-19125	
be100.5	-15868	
be100.6	-17368	
be100.7	-18629	
be100.8	-18649	
be100.9	-13294	
be100.10	-15352	
n = 120, d =		
be120.3.1	-13067	
be120.3.2	-13046	
be120.3.3	-12418	
be120.3.4	-13867	
be120.3.5	-11403	
be120.3.6	-12915	
be120.3.7	-14068	
be120.3.8	-14701	
be120.3.9	-10458	
be120.3.10	-12201	
n = 120, d =	= 0.8	
be120.8.1	-18691	
be120.8.2	-18827	
be120.8.3	-19302	
be120.8.4	-20765	
be120.8.5	-20417	
be120.8.6	-18482	
be120.8.7	-22194	
be120.8.8	-19534	
be120.8.9	-18195	
be120.8.10	-19049	

Problem			
name	solution		
n = 150, d =	n = 150, d = 0.3		
be150.3.1	-18889		
be150.3.2	-17816		
be150.3.3	-17314		
be150.3.4	-19884		
be150.3.5	-16817		
be150.3.6	-16780		
be150.3.7	-18001		
be150.3.8	-18303		
be150.3.9	-12838		
be150.3.10	-17963		
n = 150, d =	= 0.8		
be150.8.1	-27089		
be150.8.2	-26779		
be150.8.3	-29438		
be150.8.4	-26911		
be150.8.5	-28017		
be150.8.6	-29221		
be150.8.7	-31209		
be150.8.8	-29730		
be150.8.9	-25388		
be150.8.10	-28374		

Table 4: Instances from [4]. For details see Section 2.3 on page 3.

Problem	
name	solution
n = 200, d =	= 0.3
be200.3.1	-25453
be200.3.2	-25027
be200.3.3	-28023
be200.3.4	-27434
be200.3.5	-26355
be200.3.6	-26146
be200.3.7	-30483
be200.3.8	-27355
be200.3.9	-24683
be200.3.10	-23842
n = 200, d =	= 0.8
be200.8.1	-48534
be200.8.2	-40821
be200.8.3	-43207
be200.8.4	-43757
be200.8.5	-41482
be200.8.6	-49492
be200.8.7	-46828
be200.8.8	-44502
be200.8.9	-43241
be200.8.10	-42832

D 11	
Problem	
name	solution
n=250, a	l = 0.1
be250.1	-24076
be250.2	-22540
be250.3	-22923
be250.4	-24649
be250.5	-21057
be250.6	-22735
be250.7	-24095
be250.8	-23801
be250.9	-20051
be250.10	-23159

Table 5: Instances from [4]. For details see Section 2.3 on page 3.

• $G_{-1/0/1}$ pm1s_n.i, pm1d_n.i weighted graph with edge weights chosen uniformly from $\{-1,0,1\}$ and density 10% and 99% respectively. n=80.100

• $G_{[-10,10]}$ w $d_-n.i$ Graph with integer edge weights chosen from [-10,10] and density d=0.1,0.5,0.9,n=100

• $G_{[0,10]}$ pw $d_-n.i$ Graph with integer edge weights chosen from [-10,10] and density d=0.1,0.5,0.9,n=100

3.2 Ising instances: Max-Cut instances from applications in statistical physics

Ising instances of two kinds (one-dimensional Ising chains and toroidal grid graphs) are given in this section. The instances can be downloaded from [11], the dimensions and optimal values are given in Table 9 and Table 10 (pages 12, 13). For a detailled description of these instances the reader is referred to the dissertation of Frauke Liers [6] and to [7].

4 Problem generators

4.1 Pardalos-Rodgers

Pardalos and Rodgers [8] have proposed a test problem generator for quadratic 0-1 programming. Their routine generates symmetric integer matrices and has several parameters to control the characteristics of the problem, namely:

- n number of variables
- d density, i.e. the probability that a nonzero will occur for any off-diag coefficient
- c^- lower bound of the diagonal coefficients (q_{ii})
- c^+ upper bound of the diagonal coefficients (q_{ii})
- q^- lower bound of the off-diagonal coefficients (q_{ij})
- q^+ upper bound of the off-diagonal coefficients (q_{ij})
- s seed to initialize the random number generator
- $q_{ii} \sim \text{discrete uniform } (c^-, c^+), i = 1, \dots, n$
- $q_{ij} = q_{ji} \sim \text{discrete uniform } (q^-, q^+), 1 \leq i < j \leq n.$

The expected degree of each quadratic 0-1 programming instance is the expected number of quadratic nonzeros per variable. Therefore, the set of Pardalos problems have a fixed expected degree, i.e. (n-1)d.

The parameters are given in the following order:

n density seed OffDiagonalLower OffDiagonalUpper DiagonalLower DiagonalUpper

Problem namesolution $n = 60$ 536 $g05_60.0$ 536 $g05_60.1$ 532 $g05_60.2$ 529 $g05_60.3$ 538 $g05_60.4$ 527 $g05_60.5$ 533 $g05_60.6$ 531 $g05_60.8$ 530 $g05_60.9$ 533 $n = 80$ 929 $g05_80.0$ 929 $g05_80.1$ 941 $g05_80.2$ 934 $g05_80.3$ 923 $g05_80.4$ 932 $g05_80.5$ 926 $g05_80.6$ 929 $g05_80.7$ 929 $g05_80.8$ 925 $g05_80.9$ 923 $n = 100$ $905_100.1$ 1425 $g05_100.1$ 1425 $g05_100.2$ 1430 $g05_100.3$ 1424 $g05_100.4$ 1440 $g05_100.5$ 1436 $g05_100.6$ 1434 $g05_100.8$ 1432 $g05_100.9$ 1430		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Problem	
$g05_60.0$ 536 $g05_60.1$ 532 $g05_60.2$ 529 $g05_60.3$ 538 $g05_60.4$ 527 $g05_60.5$ 533 $g05_60.5$ 533 $g05_60.7$ 535 $g05_60.8$ 530 $g05_60.9$ 533 $n = 80$ 929 $g05_80.0$ 929 $g05_80.1$ 941 $g05_80.2$ 934 $g05_80.3$ 923 $g05_80.4$ 932 $g05_80.5$ 926 $g05_80.6$ 929 $g05_80.7$ 929 $g05_80.8$ 925 $g05_80.9$ 923 $n = 100$ $g05_100.0$ 1430 $g05_100.1$ 1425 $g05_100.2$ 1432 $g05_100.3$ 1424 $g05_100.6$ 1434 $g05_100.6$ 1434 $g05_100.8$ 1432		solution
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		533
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n = 80	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	g05_80.2	934
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$g05_{-}80.3$	923
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		932
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$g05_{-}80.5$	926
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		929
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	g05_80.7	929
$\begin{array}{c cccc} n = 100 \\ \hline & n = 100 \\ \hline & g05_100.0 & 1430 \\ & g05_100.1 & 1425 \\ & g05_100.2 & 1432 \\ & g05_100.3 & 1424 \\ & g05_100.4 & 1440 \\ & g05_100.5 & 1436 \\ & g05_100.6 & 1434 \\ & g05_100.7 & 1431 \\ & g05_100.8 & 1432 \\ \hline \end{array}$	g05_80.8	925
g05_100.0 1430 g05_100.1 1425 g05_100.2 1432 g05_100.3 1424 g05_100.4 1440 g05_100.5 1436 g05_100.6 1434 g05_100.7 1431 g05_100.8 1432	$g05_{-}80.9$	923
g05_100.1 1425 g05_100.2 1432 g05_100.3 1424 g05_100.4 1440 g05_100.5 1436 g05_100.6 1434 g05_100.7 1431 g05_100.8 1432	n = 100	
g05_100.2 1432 g05_100.3 1424 g05_100.4 1440 g05_100.5 1436 g05_100.6 1434 g05_100.7 1431 g05_100.8 1432	g05_100.0	1430
g05_100.3 1424 g05_100.4 1440 g05_100.5 1436 g05_100.6 1434 g05_100.7 1431 g05_100.8 1432	g05_100.1	1425
g05_100.4 1440 g05_100.5 1436 g05_100.6 1434 g05_100.7 1431 g05_100.8 1432		1432
g05_100.5 1436 g05_100.6 1434 g05_100.7 1431 g05_100.8 1432		1424
g05_100.6 1434 g05_100.7 1431 g05_100.8 1432		1440
g05_100.7 1431 g05_100.8 1432	g05_100.5	1436
g05_100.8 1432		1434
		1431
g05_100.9 1430	g05_100.8	1432
	g05_100.9	1430

Table 6: $G_{0.5}$ – unweighted graphs with edge probability 1/2. For details see Section 3.1 on page 3.

Problem	
name	solution
n = 80, d = 0	0.1
pm1s_80.0	79
$pm1s_80.1$	85
pm1s_80.2	82
$pm1s_80.3$	81
$pm1s_80.4$	70
$pm1s_80.5$	87
$pm1s_80.6$	73
$pm1s_80.7$	83
$pm1s_80.8$	81
$pm1s_80.9$	70
n = 100, d =	0.1
pm1s_100.0	127
pm1s_100.1	126
pm1s_100.2	125
pm1s_100.3	111
pm1s_100.4	128
$pm1s_{-}100.5$	128
pm1s_100.6	122
$pm1s_{-}100.7$	112
pm1s_100.8	120
pm1s_100.9	127

Problem		
name	solution	
n = 80, d = 0.99		
pm1d_80.0	227	
pm1d_80.1	245	
pm1d_80.2	284	
pm1d_80.3	291	
pm1d_80.4	251	
pm1d_80.5	242	
pm1d_80.6	205	
pm1d_80.7	249	
pm1d_80.8	293	
pm1d_80.9	258	
n = 100, d = 0.99		
pm1d_100.0	340	
pm1d_100.1	324	
pm1d_100.2	389	
pm1d_100.3	400	
pm1d_100.4	363	
pm1d_100.5	441	
pm1d_100.6	367	
pm1d_100.7	361	
pm1d_100.8	385	
pm1d_100.9	405	

Table 7: $G_{-1/0/1}$, density 10% and 99%. For details see Section 3.1 on page 3.

Problem		Problem	
name	solution	name	solution
n = 100, d	= 0.1	n = 100, d =	= 0.1
w01_100.0	651	pw01_100.0	2019
w01_100.1	719	pw01_100.1	2060
w01_100.2	676	pw01_100.2	2032
w01_100.3	813	pw01_100.3	2067
w01_100.4	668	pw01_100.4	2039
w01_100.5	643	pw01_100.5	2108
w01_100.6	654	pw01_100.6	2032
w01_100.7	725	$pw01_{-}100.7$	2074
w01_100.8	721	pw01_100.8	2022
w01_100.9	729	pw01_100.9	2005
n = 100, d	= 0.5	n = 100, d =	= 0.5
w05_100.0	1646	$pw05_{-}100.0$	8190
w05_100.1	1606	pw05_100.1	8045
w05_100.2	1902	pw05_100.2	8039
w05_100.3	1627	pw05_100.3	8139
w05_100.4	1546	pw05_100.4	8125
w05_100.5	1581	pw05_100.5	8169
w05_100.6	1479	pw05_100.6	8217
w05_100.7	1987	$pw05_{-}100.7$	8249
w05_100.8	1311	pw05_100.8	8199
w05_100.9	1752	pw05_100.9	8099
n = 100, d	= 0.9	n = 100, d =	= 0.9
w09_100.0	2121	pw09_100.0	13585
w09_100.1	2096	pw09_100.1	13417
w09_100.2	2738	pw09_100.2	13461
w09_100.3	1990	pw09_100.3	13656
w09_100.4	2033	pw09_100.4	13514
w09_100.5	2433	pw09_100.5	13574
w09_100.6	2220	pw09_100.6	13640
w09_100.7	2252	pw09_100.7	13501
w09_100.8	1843	pw09_100.8	13593
w09_100.9	2043	pw09_100.9	13658

Table 8: $G_{[-10,10]}$ (w) and $G_{[1,10]}$ (pw). For details see Section 3.1 on page 3.

Problem	
name	solution
n = 100	l
ising2.5-100_5555	2460049
ising2.5-100_6666	2031217
ising2.5-100_7777	3363230
ising3.0-100_5555	2448189
ising3.0-100_6666	1984099
ising3.0-100_7777	3335814
n = 150	
ising2.5-150_5555	4363532
ising2.5-150_6666	4057153
ising2.5-150_7777	4243269
ising3.0-150_5555	4279261
ising3.0-150_6666	3949317
ising3.0-150_7777	4211158
n = 200	
ising2.5-200_5555	6294701
ising2.5-200_6666	6795365
ising2.5-200_7777	5568272
ising3.0-200_5555	6215531
ising3.0-200_6666	6756263
ising3.0-200_7777	5560824
n = 250	
ising2.5-250_5555	7919449
ising2.5-250_6666	6925717
ising2.5-250_7777	6596797
ising3.0-250_5555	7823791
ising3.0-250_6666	6903351
ising3.0-250_7777	6418276
n = 300	
ising2.5-300_5555	8579363
ising2.5-300_6666	9102033
ising2.5-300_7777	8323804
ising3.0-300_5555	8493173
ising3.0-300_6666	8915110
ising3.0-300_7777	8242904

Table 9: Test runs on one-dimensional Ising chain instances from Frauke Liers. For details see Section 3.2 on page 8.

Problem		
name	solution	
2 dimensional		
$n = 10 \times 10$		
t2g10_5555	6049461	
t2g10_6666	5757868	
t2g10_7777	6509837	
$n = 15 \times 15$		
t2g15_5555	15051133	
t2g15_6666	15763716	
t2g15_7777	15269399	
$n = 20 \times 20$		
t2g20_5555	24838942	
t2g20_6666	29290570	
t2g20_7777	28349398	
3 dimension	al	
$n = 5 \times 5 \times$	5	
$t3g5_5555$	10933215	
$t3g5_{-}6666$	11582216	
t3g5_7777	11552046	
$n = 6 \times 6 \times$	6	
$t3g6_{-}5555$	17434469	
t3g6_6666	20217380	
t3g6_7777	19475011	
$n = 7 \times 7 \times$	7	
t3g7_5555	28302918	
t3g7_6666	33611981	
t3g7_7777	29118445	

Table 10: Torus graphs with Gaussian distributed weights from Frauke Liers. For details see Section 3.2 on page 8.

Parameters for generating the gka-instances

Set a.	Set b.	Set c.
50 0.1 10 -100 100 -100 100	20 1.0 10 0 63 -100 0	40 0.8 10 -100 100 -50 50
60 0.1 10 -100 100 -100 100	30 1.0 10 0 63 -100 0	50 0.6 70 -100 100 -50 50
70 0.1 10 -100 100 -100 100	40 1.0 10 0 63 -100 0	60 0.4 31 -100 100 -50 50
80 0.1 10 -100 100 -100 100	50 1.0 10 0 63 -100 0	70 0.3 34 -100 100 -50 50
50 0.2 10 -100 100 -100 100	60 1.0 10 0 63 -100 0	80 0.2 8 -100 100 -50 50
30 0.4 10 -100 100 -100 100	70 1.0 10 0 63 -100 0	90 0.1 80 -100 100 -50 50
30 0.5 10 -100 100 -100 100	80 1.0 10 0 63 -100 0	100 0.1 142 -100 100 -50 50
100 0.0625 10 -100 100 -100 100	90 1.0 10 0 63 -100 0	
	100 1.0 10 0 63 -100 0	
~	125 1.0 10 0 63 -100 0	~
Set d.	Set e.	Set f.
Set d. 100 0.1 31 -50 50 -75 75	Set e. 200 0.1 51 -50 50 -100 100	Set f. 500 0.10 137 -50 50 -100 100
		,
100 0.1 31 -50 50 -75 75	200 0.1 51 -50 50 -100 100	500 0.10 137 -50 50 -100 100
100 0.1 31 -50 50 -75 75 100 0.2 37 -50 50 -75 75	200 0.1 51 -50 50 -100 100 200 0.2 43 -50 50 -100 100	500 0.10 137 -50 50 -100 100 500 0.25 137 -50 50 -100 100
100 0.1 31 -50 50 -75 75 100 0.2 37 -50 50 -75 75 100 0.3 143 -50 50 -75 75	200 0.1 51 -50 50 -100 100 200 0.2 43 -50 50 -100 100 200 0.3 34 -50 50 -100 100	500 0.10 137 -50 50 -100 100 500 0.25 137 -50 50 -100 100 500 0.50 137 -50 50 -100 100
100 0.1 31 -50 50 -75 75 100 0.2 37 -50 50 -75 75 100 0.3 143 -50 50 -75 75 100 0.4 47 -50 50 -75 75	200 0.1 51 -50 50 -100 100 200 0.2 43 -50 50 -100 100 200 0.3 34 -50 50 -100 100 200 0.4 73 -50 50 -100 100	500 0.10 137 -50 50 -100 100 500 0.25 137 -50 50 -100 100 500 0.50 137 -50 50 -100 100 500 0.75 137 -50 50 -100 100
100 0.1 31 -50 50 -75 75 100 0.2 37 -50 50 -75 75 100 0.3 143 -50 50 -75 75 100 0.4 47 -50 50 -75 75 100 0.5 31 -50 50 -75 75 100 0.6 47 -50 50 -75 75 100 0.7 97 -50 50 -75 75	200 0.1 51 -50 50 -100 100 200 0.2 43 -50 50 -100 100 200 0.3 34 -50 50 -100 100 200 0.4 73 -50 50 -100 100	500 0.10 137 -50 50 -100 100 500 0.25 137 -50 50 -100 100 500 0.50 137 -50 50 -100 100 500 0.75 137 -50 50 -100 100
100 0.1 31 -50 50 -75 75 100 0.2 37 -50 50 -75 75 100 0.3 143 -50 50 -75 75 100 0.4 47 -50 50 -75 75 100 0.5 31 -50 50 -75 75 100 0.6 47 -50 50 -75 75	200 0.1 51 -50 50 -100 100 200 0.2 43 -50 50 -100 100 200 0.3 34 -50 50 -100 100 200 0.4 73 -50 50 -100 100	500 0.10 137 -50 50 -100 100 500 0.25 137 -50 50 -100 100 500 0.50 137 -50 50 -100 100 500 0.75 137 -50 50 -100 100
100 0.1 31 -50 50 -75 75 100 0.2 37 -50 50 -75 75 100 0.3 143 -50 50 -75 75 100 0.4 47 -50 50 -75 75 100 0.5 31 -50 50 -75 75 100 0.6 47 -50 50 -75 75 100 0.7 97 -50 50 -75 75	200 0.1 51 -50 50 -100 100 200 0.2 43 -50 50 -100 100 200 0.3 34 -50 50 -100 100 200 0.4 73 -50 50 -100 100	500 0.10 137 -50 50 -100 100 500 0.25 137 -50 50 -100 100 500 0.50 137 -50 50 -100 100 500 0.75 137 -50 50 -100 100

Parameters for generating the be-instances

```
100 1.0 1. -50 50 -100 100 100 1.0 2. -50 50 -100 100 100 1.0 3. -50 50 -100 100 100 1.0 4. -50 50 -100 100
                                                                     120 0.3 1. -50 50 -100 100
                                                                                                                                          200 0.3 1. -50 50 -100 100
                                                                     120 0.3 10. -50 50 -100 100
                                                                                                                                          200 0.3 10. -50 50 -100 100
100 1.0 5. -50 50 -100 100
100 1.0 6. -50 50 -100 100
                                                                     120 0.8 1. -50 50 -100 100
                                                                                                                                          200 0.8 1. -50 50 -100 100
100 1.0 6. -50 50 -100 100
100 1.0 7. -50 50 -100 100
100 1.0 8. -50 50 -100 100
100 1.0 9. -50 50 -100 100
100 1.0 10. -50 50 -100 100
                                                                     120 0.8 10. -50 50 -100 100
                                                                                                                                          200 0.8 10. -50 50 -100 100
                                                                     150 0.3 1. -50 50 -100 100
                                                                                                                                          250 0.1 1. -50 50 -100 100
                                                                     150 0.3 10. -50 50 -100 100
                                                                                                                                          250 0.1 10. -50 50 -100 100
                                                                     150 0.8 1. -50 50 -100 100
                                                                     150 0.8 10. -50 50 -100 100
```

4.2 Rudy

Most of the Max-Cut instances given in this paper are generated using rudy [10]. The commands are given below.

```
rudy -rnd_graph 60 50 6000 > g05_60.0 rudy -rnd_graph 60 50 6001 > g05_60.1
rudy -rnd_graph 60 50 6002 > g05_60.2
rudy -rnd_graph 60 50 6003 > g05_60.3
rudy -rnd_graph 60 50 6004 > g05_60.4
rudy -rnd_graph 60 50 6005 > g05_60.5
rudy -rnd_graph 60 50 6006 > g05_60.6
rudy -rnd_graph 60 50 6006 > g05_60.6
rudy -rnd_graph 60 50 6007 > g05_60.7
rudy -rnd_graph 60 50 6008 > g05_60.8
rudy -rnd_graph 60 50 6009 > g05_60.9
rudy -rnd_graph 80 50 8000 > g05_80.0
rudy -rnd_graph 80 50 8001 > g05_80.1
rudy -rnd_graph 80 50 8002 > g05_80.2
rudy -rnd_graph 80 50 8003 > g05_80.3
rudy -rnd_graph 80 50 8004 > g05_80.4
rudy -rnd_graph 80 50 8004 > g05_80.4
rudy -rnd_graph 80 50 8005 > g05_80.5
rudy -rnd_graph 80 50 8006 > g05_80.6
rudy -rnd_graph 80 50 8007 > g05_80.6
rudy -rnd_graph 80 50 8008 > g05_80.8
rudy -rnd_graph 80 50 8009 > g05_80.9
rudy -rnd_graph 100 50 10000 > g05_100.0
rudy -rnd_graph 100 50 10001 > g05_100.1
rudy -rnd_graph 100 50 10002 > g05_100.2
rudy -rnd_graph 100 50 10003 > g05_100.3
rudy -rnd_graph 100 50 10004 > g05_100.4
rudy -rnd_graph 100 50 10005 > g05_100.5
rudy -rnd_graph 100 50 10006 > g05_100.6
rudy -rnd_graph 100 50 10007 > g05_100.7
rudy -rnd_graph 100 50 10008 > g05_100.8
rudy -rnd_graph 100 50 10008 > g05_100.8
rudy -rnd_graph 80 10 800 -random 0 1 800 -times 2 -plus -1 > pm1s_80.0 rudy -rnd_graph 80 10 801 -random 0 1 801 -times 2 -plus -1 > pm1s_80.1
rudy -rnd_graph 80 10 802 -random 0 1 802 -times 2 -plus -1 > pm1s_80.2
```

```
rudy -rnd_graph 80 10 803 -random 0 1 803 -times 2 -plus -1 > pm1s_80.3
rudy -rnd_graph 80 10 804 -random 0 1 804 -times 2 -plus -1 > pm1s_80.4 rudy -rnd_graph 80 10 805 -random 0 1 805 -times 2 -plus -1 > pm1s_80.5
        -rnd_graph 80 10 806 -random 0 1 806 -times 2 -plus -1 > pm1s_80.6
rudy -rnd_graph 80 10 807 -random 0 1 807 -times 2 -plus -1 > pm1s_80.7
rudy -rnd_graph 80 10 808 -random 0 1 808 -times 2 -plus -1 > pm1s_80.8 rudy -rnd_graph 80 10 809 -random 0 1 809 -times 2 -plus -1 > pm1s_80.9
rudy -rnd_graph 100 10 1000 -random 0 1 1000 -times 2 -plus -1 > pm1s_100.0
rudy -rnd_graph 100 10 1001 -random 0 1 1001 -times 2 -plus -1 > pm1s_100.1 rudy -rnd_graph 100 10 1002 -random 0 1 1002 -times 2 -plus -1 > pm1s_100.2
rudy -rnd_graph 100 10 1002 -random 0 1 1002 -times 2 -plus -1 > pm1s_100.2 rudy -rnd_graph 100 10 1003 -random 0 1 1003 -times 2 -plus -1 > pm1s_100.3 rudy -rnd_graph 100 10 1004 -random 0 1 1004 -times 2 -plus -1 > pm1s_100.4 rudy -rnd_graph 100 10 1005 -random 0 1 1005 -times 2 -plus -1 > pm1s_100.5 rudy -rnd_graph 100 10 1006 -random 0 1 1005 -times 2 -plus -1 > pm1s_100.5 rudy -rnd_graph 100 10 1007 -random 0 1 1006 -times 2 -plus -1 > pm1s_100.7 rudy -rnd_graph 100 10 1007 -random 0 1 1007 -times 2 -plus -1 > pm1s_100.8 rudy -rnd_graph 100 10 1008 -random 0 1 1008 -times 2 -plus -1 > pm1s_100.8 rudy -rnd_graph 100 10 1009 -random 0 1 1009 -times 2 -plus -1 > pm1s_100.8
rudy -rnd_graph 80 99 800 -random 0 1 800 -times 2 -plus -1 > pm1d_80.0
         -rnd_graph 80 99 801 -random 0 1 801 -times 2 -plus -1 > pm1d_80.1
rudy -rnd_graph 80 99 802 -random 0 1 802 -times 2 -plus -1 > pm1d_80.2 rudy -rnd_graph 80 99 803 -random 0 1 803 -times 2 -plus -1 > pm1d_80.3
rudy -rnd_graph 80 99 804 -random 0 1 804 -times 2 -plus -1 > pm1d_80.4
rudy -rnd_graph 80 99 804 -random 0 1 804 -times 2 -plus -1 > pm1d_80.4 rudy -rnd_graph 80 99 805 -random 0 1 805 -times 2 -plus -1 > pm1d_80.5 rudy -rnd_graph 80 99 806 -random 0 1 806 -times 2 -plus -1 > pm1d_80.6 rudy -rnd_graph 80 99 807 -random 0 1 807 -times 2 -plus -1 > pm1d_80.7 rudy -rnd_graph 80 99 808 -random 0 1 807 -times 2 -plus -1 > pm1d_80.8 rudy -rnd_graph 80 99 808 -random 0 1 808 -times 2 -plus -1 > pm1d_80.8 rudy -rnd_graph 80 99 809 -random 0 1 809 -times 2 -plus -1 > pm1d_80.9
rudy -rnd_graph 100 99 1000 -random 0 1 1000 -times 2 -plus -1 > pm1d_100.0 rudy -rnd_graph 100 99 1001 -random 0 1 1001 -times 2 -plus -1 > pm1d_100.1 rudy -rnd_graph 100 99 1002 -random 0 1 1002 -times 2 -plus -1 > pm1d_100.2 rudy -rnd_graph 100 99 1003 -random 0 1 1003 -times 2 -plus -1 > pm1d_100.3
rudy -rnd_graph 100 99 1003 -random 0 1 1003 -times 2 -plus -1 > pm1d_100.3 rudy -rnd_graph 100 99 1004 -random 0 1 1004 -times 2 -plus -1 > pm1d_100.4 rudy -rnd_graph 100 99 1005 -random 0 1 1005 -times 2 -plus -1 > pm1d_100.5 rudy -rnd_graph 100 99 1006 -random 0 1 1006 -times 2 -plus -1 > pm1d_100.6 rudy -rnd_graph 100 99 1007 -random 0 1 1007 -times 2 -plus -1 > pm1d_100.7
rudy -rnd_graph 100 99 1008 -random 0 1 1008 -times 2 -plus -1 > pm1d_100.8 rudy -rnd_graph 100 99 1009 -random 0 1 1009 -times 2 -plus -1 > pm1d_100.9
rudy -rnd_graph 100 10 1000 -random -10 10 1000 > w01_100.0
rudy -rnd_graph 100 10 1001 -random -10 10 1001 > w01_100.1 rudy -rnd_graph 100 10 1002 -random -10 10 1002 > w01_100.2
rudy -rnd_graph 100 10 1003 -random -10 10 1003 > w01_100.3 rudy -rnd_graph 100 10 1004 -random -10 10 1004 > w01_100.4
 rudy -rnd_graph 100 10 1005 -random -10 10 1005 > w01_100.5
         -rnd_graph 100 10 1006 -random -10 10 1006 > w01_100.6
rudy -rnd_graph 100 10 1007 -random -10 10 1007 > w01_100.7
rudy -rnd_graph 100 10 1008 -random -10 10 1008 > w01_100.8
rudy -rnd_graph 100 10 1009 -random -10 10 1009 > w01_100.9
rudy -rnd graph 100 50 1000 -random -10 10 1000 > w05 100.0
rudy -rnd_graph 100 50 1001 -random -10 10 1001 > w05_100.1
rudy -rnd_graph 100 50 1002 -random -10 10 1002 > w05_100.2
           -rnd_graph 100 50 1003 -random -10 10 1003 > w05_100.3
rudy -rnd_graph 100 50 1004 -random -10 10 1004 > w05_100.4
rudy -rnd_graph 100 50 1005 -random -10 10 1005 > w05_100.5
rudy -rnd graph 100 50 1006 -random -10 10 1006 > w05 100.6
rudy -rnd_graph 100 50 1007 -random -10 10 1007 > w05_100.7 rudy -rnd_graph 100 50 1008 -random -10 10 1008 > w05_100.8
rudy -rnd_graph 100 50 1009 -random -10 10 1009 > w05_100.9
rudy -rnd_graph 100 90 1000 -random -10 10 1000 > w09 100.0
rudy -rnd_graph 100 90 1001 -random -10 10 1001 > w09_100.1
rudy -rnd_graph 100 90 1002 -random -10 10 1002 > w09_100.2
rudy -rnd_graph 100 90 1003 -random -10 10 1003 > w09_100.3
 rudy -rnd_graph 100 90 1004 -random -10 10 1004 > w09_100.4
         -rnd_graph 100 90 1005 -random -10 10 1005 > w09_100.5
rudv
rudy -rnd_graph 100 90 1006 -random -10 10 1006 > w09_100.6 rudy -rnd_graph 100 90 1007 -random -10 10 1007 > w09_100.7
 rudy -rnd_graph 100 90 1008 -random -10 10 1008 > w09_100.8
rudy -rnd_graph 100 90 1009 -random -10 10 1009 > w09_100.9
rudy -rnd_graph 100 10 1000 -random 1 10 1000 > pw01_100.0
rudy -rnd_graph 100 10 1001 -random 1 10 1001 > pw01_100.1 rudy -rnd_graph 100 10 1002 -random 1 10 1002 > pw01_100.2
 rudy -rnd_graph 100 10 1003 -random 1 10 1003 > pw01_100.3
rudy -rnd_graph 100 10 1004 -random 1 10 1004 > pw01_100.4
rudy -rnd_graph 100 10 1005 -random 1 10 1005 > pw01_100.5
         -rnd_graph 100 10 1006 -random 1 10 1006 > pw01_100.6
rudy -rnd_graph 100 10 1007 -random 1 10 1007 > pw01_100.8
rudy -rnd_graph 100 10 1008 -random 1 10 1008 > pw01_100.8
rudy -rnd_graph 100 10 1009 -random 1 10 1009 > pw01_100.9
rudy -rnd_graph 100 50 1000 -random 1 10 1000 > pw05_100.0
rudy -rnd_graph 100 50 1001 -random 1 10 1001 > pw05_100.1
rudy -rnd_graph 100 50 1002 -random 1 10 1002 > pw05_100.2
           -rnd_graph 100 50 1003 -random 1
rudy -rnd graph 100 50 1004 -random 1 10 1004 > pw05 100.4
         -rnd_graph 100 50 1005 -random 1 10 1005 > pw05_100.5
rudy -rnd_graph 100 50 1006 -random 1 10 1006 > pw05_100.6
         -rnd_graph 100 50 1007 -random 1 10 1007 > pw05_100.7
rudy -rnd graph 100 50 1008 -random 1 10 1008 > pw05 100.8
rudy -rnd_graph 100 50 1009 -random 1 10 1009 > pw05_100.9
```

```
rudy -rnd_graph 100 90 1000 -random 1 10 1000 > pw09_100.0 rudy -rnd_graph 100 90 1001 -random 1 10 1001 > pw09_100.1 rudy -rnd_graph 100 90 1002 -random 1 10 1002 > pw09_100.1 rudy -rnd_graph 100 90 1003 -random 1 10 1002 > pw09_100.3 rudy -rnd_graph 100 90 1004 -random 1 10 1003 > pw09_100.3 rudy -rnd_graph 100 90 1004 -random 1 10 1004 > pw09_100.4 rudy -rnd_graph 100 90 1005 -random 1 10 1005 > pw09_100.5 rudy -rnd_graph 100 90 1006 -random 1 10 1006 > pw09_100.5 rudy -rnd_graph 100 90 1007 -random 1 10 1006 > pw09_100.7 rudy -rnd_graph 100 90 1007 -random 1 10 1008 > pw09_100.8 rudy -rnd_graph 100 90 1008 -random 1 10 1008 > pw09_100.8 rudy -rnd_graph 100 90 1009 -random 1 10 1009 > pw09_100.8
```

References

- [1] Biq Mac solver a solver for binary quadratic and max-cut problems. http://BiqMac.uni-klu.ac.at/.
- [2] John E. Beasley. Or-library. http://people.brunel.ac.uk/~mastjjb/jeb/info.html, 1990.
- [3] John E. Beasley. Heuristic algorithms for the unconstrained binary quadratic programming problem. Technical report, The Management School, Imperial College, London SW7 2AZ, England, 1998.
- [4] Alain Billionnet and Sourour Elloumi. Using a mixed integer quadratic programming solver for the unconstrained quadratic 0-1 problem. *Math. Programming*, 109(1, Ser. A):55–68, 2007.
- [5] Fred Glover, Gary Kochenberger, and Bahram Alidaee. Adaptative memory tabu search for binary quadratic programs. *Management Sci.*, 44(3):336–345, 1998.
- [6] Frauke Liers. Contributions to Determining Exact Ground-States of Ising Spin-Glasses and to their Physics. PhD thesis, Universität zu Köln, 2004.
- [7] Frauke Liers, Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. Computing exact ground states of hard ising spin glass problems by branch-and-cut. In Alexander Hartmann and Heiko Rieger, editors, New Optimization Algorithms in Physics, pages 47–68. Wiley, 2004.
- [8] Panos M. Pardalos and Gregory P. Rodgers. Computational aspects of a branch and bound algorithm for quadratic zero-one programming. *Computing*, 45(2):131–144, 1990.
- [9] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxations. In Integer programming and combinatorial optimization, volume 4513 of Lecture Notes in Comput. Sci., pages 295–309. Springer, Berlin, 2007.
- [10] Giovanni Rinaldi. Rudy. http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz, 1998.
- [11] Angelika Wiegele. Biq Mac Library. http://biqmac.uni-klu.ac.at/biqmaclib. html, 2007.