Cheat sheet on mathematical notation & linear algebra

Greek Alphabet

Letter	Upper case	Lower case
Alpha	A	α
Beta	B	$oldsymbol{eta}$
Gamma	Γ	γ
Delta	Δ	δ
Epsilon	E	ϵ
Zeta	Z	ζ
Eta	H	η
Theta	Θ	θ
Iota	I	ι
Kappa	K	Κ
Lambda	Λ	λ
Mu	M	μ
Nu	N	ν
Xi	Ξ	ξ
O	O	0
Pi	Π	π
Rho	P	ho
Sigma	$oldsymbol{\Sigma}$	σ
Tau	T	au
Upsilon	Υ	υ
Phi	Φ	ϕ
Chi	X	X
Psi	Ψ	ψ
Omega	Ω	ω

Common Symbols and Notation

Symbol	Meaning
	Infinity
\mathbb{R}	Real numbers
\mathbb{R}^n	Set of all real-valued vectors of length n .
X	(bold lower case) x is a vector, or
X	(alternatively) x is a vector
X	(bold upper case) X is a matrix
$\mathbf{x_i}$	The i th element of vector \mathbf{x}
$X_{i,j}$	Element at row i and column j of matrix \mathbf{X}
$x \in [1, 10]$	x is a number between 1 and 10
≈	Approximately equal
e	Euler's number (≈ 2.718)
π	$Pi (\approx 3.142)$
$\forall x \in \mathbb{R}$	Condition holds for all real numbers
x	Absolute value of number x (e.g., $ x = -x $)
X	Cardinality of set <i>X</i> (e.g., $ \{a, b, c\} = 3$).
$P(X \mid Y)$	Conditional probability of <i>X</i> given <i>Y</i> .
$\Delta(X)$	Set of all probability distributions over set X .

Logical Connectives

Symbol	Meaning
$\neg A$	not A
$A \wedge B$	A AND B
$A \vee B$	$A ext{ OR } B$
$A \veebar B$	$A \times B$
$A \Rightarrow B$	A logically implies B

Operators

Addition

$$\sum_{n=1}^{4} n = 1 + 2 + 3 + 4 = 10$$

Multiplication

$$\prod_{n=1}^{4} n = 1 \times 2 \times 3 \times 4 = 24$$

Differentiation

$$\frac{\delta}{\delta x}x^3 = 3x^2$$

Argmax The value(s) of x for which f(x) takes its maximum value.

$$\underset{x \in \mathbb{R}}{\arg\max} \ x(10 - x) = 5$$

Logarithms

$$log_2(10) \approx 3.32$$

 $log_{10}(10) = 1$
 $ln(10) \approx 2.3$

Vector & Matrix Notation

- · vectors are written in bold lower-case x
- · matrices are written in bold upper-case A
- · use square brackets for vectors and matrices, e.g., $\mathbf{x} = [x_1, \dots, x_n]$ or

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

- · an $n \times m$ matrix **A** can be written as $A = [a_{ij}] \in \mathbb{R}^{n \times m}$, or shorter as: $A \in \mathbb{R}^{n \times m}$
- the **transpose** of a matrix or vector is written as A^{T} and x^{T}
- · we use row-first
 - · first index of a 2-D matrix is the row
 - indices for vectors give the row, so that vectors are column vectors
 - by convention, if the context is clear, we can write $\mathbf{x} = [x_1, \dots, x_n]$ to denote a column vector
 - it would be more precise to write $\mathbf{x} = [x_1, \dots, x_n]^{\mathsf{T}}$ or

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Matrix Product

• if $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $\mathbf{B} \in \mathbb{R}^{m \times o}$, the matrix product $AB = C \in \mathbb{R}^{n \times o}$ is defined via:

$$c_{ik} = \sum_{i} a_{ij} b_{jk}$$

· example:

$$\begin{bmatrix} 1 & -2 \\ 0 & 3 \\ -1 & 4 \end{bmatrix} \times \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 4+2 & 1-4 \\ 0-3 & 0+6 \\ -4-4 & -1+8 \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ -3 & 6 \\ -8 & 7 \end{bmatrix}$$

• think of matrix **A** with dimensions (n, m) as a **linear mapping** $f_{\mathbf{A}} : \mathbb{R}^n \to \mathbb{R}^m$ from vectors of length m to vectors for length n, so that with $\mathbf{x} = [x_1, \dots, x_m]$:

$$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

Dot Product & Vector Similarity

• the **dot product** between equal-length vectors **x** and **y** is:

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^{\mathsf{T}} \mathbf{y} = \sum_{i} x_{i} y_{i}$$

the dot-product similarity of vectors x and y is the dot product:

$$DotSim(x, y) = x \cdot y$$

• the **cosine similarity** of vectors **x** and **y** is the dot-product similarity adjusted for vector length:

$$CosineSim(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{||\mathbf{x}|| \ ||\mathbf{y}||}$$

where $\|\mathbf{x}\| = \sqrt{\sum_{i} x_{i}^{2}}$ is a measure of the length of vector \mathbf{x}

Further Vector & Matrix Operations

- vector concatenation of $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^m$ is written as $\mathbf{x} \oplus \mathbf{y} = [x_1, \dots, x_n, y_1, \dots, y_m]$
 - We can generalize this notation to many vectors: $\bigoplus_{i=1}^{n} \mathbf{x}_{i} = \mathbf{x}_{1} \oplus \cdots \oplus \mathbf{x}_{n}$
- · vector norms

$$\mathbf{v} = \{1, 2, 3\}$$
$$|\mathbf{v}| = 6$$
$$|\mathbf{v}|_2 = \sqrt{14}$$

· matrix negation

$$\mathbf{W} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad -\mathbf{W} = \begin{bmatrix} -1 & -2 & -3 \\ -4 & -5 & -6 \\ -7 & -8 & -9 \end{bmatrix}$$

· matrix addition

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} -2 & 7 \\ \frac{1}{7} & 1 \end{bmatrix} = \begin{bmatrix} -1 & 9 \\ \frac{22}{7} & 5 \end{bmatrix}$$

· scalar multiplication

$$a \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1a & 2a \\ 3a & 4a \end{bmatrix}$$

· matrix transposition

$$\mathbf{W} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \mathbf{W}^T = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

· matrix determinant

$$\mathbf{W} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, |\mathbf{W}| = det(\mathbf{W}) = -2$$

· matrix inversion

$$\mathbf{W} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \mathbf{W}^{-1} = \begin{bmatrix} -2 & 1 \\ 1.5 & -0.5 \end{bmatrix}$$