A. 網路連線

Problem ID: connection

AGC (Advanced Gaming Community) 是踢歐埃國數一數二盛大的電競平台,今年的全國初賽即將舉行,不過主辦方遇到了伺服器的設置問題。

AGC 總共建置了 N 台伺服器,編號為 1 至 N,在這 N 台伺服器間共有 M 個遠端通道,第 i 條連接 (u_i,v_i) 兩台伺服器 $(u_i < v_i)$,主辦方建立的遠端通道滿足下列兩個條件:

- 沒有連接兩個相同伺服器的遠端通道,也就是對所有的通道, $u_i \neq v_i$ 。
- 沒有兩個連接相同伺服器對的遠端通道,也就是對所有 i
 eq j 則 $(u_i, v_i)
 eq (u_i, v_j)$ 。

我們說兩個伺服器 a,b 可以**傳輸訊息**如果存在一系列的伺服器 p_0,p_1,\ldots,p_t 滿足 $p_0=a,p_t=b$ 且所有 p_i,p_{i+1} 都有遠端通道連接,換句話說,由伺服器作為點而遠端通道作為邊的圖上,兩個點是連通的。

顯而易見的,僅僅遵守主辦方的條件只能保證沒有建立重複無效的邊,而沒有保證任意兩個伺服器皆可以**傳輸訊息**,現在你身為 AGC 的工程顧問,你想要知道有多少種新增**剛好** k 個遠端通道的方法能夠使得任意兩個伺服器皆可以**傳輸訊息**。

所有方法都必須滿足原本主辦方的兩個條件,而兩個方法不同如果它們新增遠端通道的集合不同,例如方案 (a,b),(c,d) 與方案 (c,d),(b,a) 被視為相同。

- 輸入 -

輸入的第一行有三個整數 N,M,k,接著有 M 行,第 i 行有兩個整數 u_i,v_i 。

- 輸出 -

輸出有多少種新增**剛好** k 個遠端通道的方法滿足主辦方的兩個條件,而且任意兩個伺服器都能 傳輸訊息。

- 輸入限制 -

- $\begin{array}{ll} \bullet & 1 \leq N \leq 80000 \\ \bullet & 0 \leq M \leq \min\left(\frac{N(N-1)}{2}, 10^6\right) \end{array}$
- $1 \le k \le 2$
- $1 \le u_i < v_i \le N$
- $(u_i, v_i) \neq (u_j, v_j) \quad (i \neq j)$

- 子任務 -

編號	分數	額外限制
1	0	範例輸入輸出
2	17	k = 1
3	23	$N \le 20$
4	43	$N \le 160$
5	17	無額外限制

- 範例輸入 1 -

- 5 6 1
- 3 4
- 2 5
- 2 3
- 1 4
- 1 3
- 1 2

- 範例輸出 1 -

4

- 範例輸入 2 -

- 6 4 2
- 1 2
- 2 3
- 4 5
- 5 6

- 範例輸出 2 -

54

- 範例輸入 3 -

- 3 3 2
- 2 3
- 1 2
- 1 3

- 範例輸出 3 -

0