SEMAINE DU 22/01

1 Cours

Endomorphismes d'un espace euclidien

Adjoint d'un endomorphisme d'un espace euclidien Théorème de Riesz : représentation des formes linéaires d'un espace euclidien. Adjoint d'un endomorphisme d'un espace euclidien. Propriétés de l'adjonction : linéarité, adjoint d'une composée, involutivité. Si u est un endomorphisme d'un espace euclidien de base **orthornomée** \mathcal{B} , alors $\text{mat}_{\mathcal{B}}(u^*) = \text{mat}_{\mathcal{B}}(u)^{\mathsf{T}}$. Si F est un sous-espace stable par un endomorphisme u, alors F^{\perp} est stable par u^* .

Matrices orthogonales Une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est dite orthogonale si $M^TM = I_n$. Une matrice est orthogonale si et seulement si la famille de ses lignes ou de ses colonnes est orthonormée pour le produit canonique. Groupe orthogonal $O_n(\mathbb{R})$. Matrices orthogonales positives et négatives. Groupe spécial orthogonal $SO_n(\mathbb{R})$.

Isométries vectorielles Un endomorphisme d'un espace euclidien est une isométrie vectorielle s'il conserve la norme. Caractérisations des isométries parmi les endomorphismes d'un espace euclidien : conservation du produit scalaire, l'image d'une base orthonormée est une base orthonormée est une base orthonormée, l'adjoint est égal à l'inverse. Groupe orthogonal O(E). Isométries vectorielles directes et indirectes. Groupe spécial orthogonal SO(E).

Réduction des isométries Orientation d'un \mathbb{R} -espace vectoriel de dimension finie. Les matrices de $SO_2(\mathbb{R})$ sont les matrices de la

$$\text{forme } R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \text{. Les matrices de } O_2(\mathbb{R}) \setminus SO_2(\mathbb{R}) \text{ sont les matrices de la forme } S(\theta) = \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \text{.}$$
 L'application $\theta \mapsto R(\theta)$ est un morphisme surjectif de $(\mathbb{R},+)$ dans $(SO_2(\mathbb{R}),\times)$ de noyau $2\pi\mathbb{Z}$. Rotation d'un plan euclidien. Les

L'application $\theta \mapsto R(\theta)$ est un morphisme surjectif de $(\mathbb{R},+)$ dans $(SO_2(\mathbb{R}),\times)$ de noyau $2\pi\mathbb{Z}$. Rotation d'un plan euclidien. Les isométries directes d'un plan euclidien sont les rotations. Les isométries indirectes d'un plan euclien sont les réflexions. Si un sous-espace vectoriel est stable par une isométrie, son orthogonal l'est également. Réduction d'une isométrie d'un espace euclidien : si $u \in O(E)$, il existe une base orthonormée de E dans laquelle la matrice de u est diagonale par blocs de la forme $\begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} -1 \end{pmatrix}$ ou $R(\theta)$. Rotation d'un espace euclidien de dimension 3. Les isométries directes d'un espace euclidien de dimension 3 sont les rotations.

Endomorphismes auto-adjoints et matrices symétriques Définition d'un endomorphisme auto-adjoint. Espace vectoriel $\mathcal{S}(E)$ des endomorphismes auto-adjoints d'un espace euclidien E. Si F est un sous-espace vectoriel d'un espace euclidien E stable par $u \in \mathcal{S}(E)$, alors F^{\perp} est stable par u. Un endomorphisme est auto-adjoint si et seulement si sa matrice dans une base **orthonormée** est symétrique. Les projecteurs auto-adjoints sont les projecteurs orthogonaux. Théorème spectral pour les endomorphismes auto-adjoints et interprétation matricielle. Endomorphismes auto-adjoints (définis) positifs. Caractérisation spectrale : $u \in \mathcal{S}(E)$ est positif (resp. défini positif) si et seulement si $Sp(u) \subset \mathbb{R}_+$ (resp. $Sp(u) \subset \mathbb{R}_+$). Matrices symétriques (définies) positives. Caractérisation spectrale : $M \in \mathcal{S}_n(\mathbb{R})$ est positive (resp. définie positive) si et seulement si $Sp(M) \subset \mathbb{R}_+$ (resp. $Sp(M) \subset \mathbb{R}_+^*$).

Séries entières

Rayon de convergence Définition. Lemme d'Abel. Rayon de convergence. Disque ouvert de convergence. Intervalle ouvert de convergence. Si $\sum a_n z^n$ est une série entière de rayon de convergence R, elle converge absolument lorsque |z| < R et elle diverge grossièrement lorsque |z| > R. Utilisation de la règle de d'Alembert. Comparaisons de séries entières $(|a_n| \le |b_n| \implies R_a \ge R_b, a_n = \mathcal{O}(b_n) \implies R_a \ge R_b, |a_n| \sim |b_n| \implies R_a = R_b)$. Pour tout $\alpha \in \mathbb{R}$, les séries entières $\sum a_n z^n$ et $\sum n^\alpha a_n z^n$ ont même rayon de convergence.

Opérations Rayon de convergence d'une somme de deux séries entières. Produit de Cauchy de deux séries entières : rayon de convergence et somme.

2 Méthodes à maîtriser

- Connaître les différentes caractérisations des isométries vectorielles : adjoint, conservation du produit scalaire, conservation de la norme
- Utiliser le lien entre adjonction et transposition.
- Utiliser de préférence des bases orthonormées par défaut.
- Calculer la matrice d'un projecteur orthogonal ou d'une symétrie orthogonale.
- Déterminer si un endomorphisme est une isométrie directe/indirecte via sa matrice dans une base orthonormée; préciser le cas échéant ses éléments caractéristiques.
- Diagonaliser un endomorphisme auto-adjoint dans une base orthonormée de vecteurs propres.
- Utiliser le fait qu'une matrice symétrique est orthogonalement semblable à une matrice diagonale.
- Déterminer un rayon de convergence :

- utiliser la définition;
- utiliser la règle de d'Alembert;
- utiliser les règles de comparaison pour majorer/minorer le rayon de convergence ;
- si (a_n) est bornée, le rayon de convergence de la série entière $\sum a_n x^n$ est supérieur ou égal à 1;
- si (a_n) ne converge pas vers 0, le rayon de convergence de la série entière $\sum a_n x^n$ est inférieur ou égal à 1.

3 Questions de cours

Banque CCP Exercices 20, 21, 66, 68