EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos 2000

1.ª Fase

1.a Chamada

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Deve indicar claramente na sua folha de respostas a versão da prova.

A ausência desta indicação implicará a anulação de toda a primeira parte da prova.

Primeira Parte

- As nove questões desta primeira parte são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- 1. Qual das afirmações seguintes é verdadeira?

(A)
$$\lim_{x \to +\infty} \operatorname{sen} x = 0$$

(B)
$$\lim_{x \to +\infty} \text{sen } x = +\infty$$

(C)
$$\lim_{x \to +\infty} \operatorname{sen} x = 1$$

(D) Não existe
$$\lim_{x\to +\infty} \operatorname{sen} x$$

2. Na figura ao lado está parte da representação gráfica de uma função g, de domínio $\mathbb{R}\setminus\{0\}$.

Qual das figuras seguintes poderá ser parte da representação gráfica da função g', **derivada** de g?

3. Na figura está parte da representação gráfica da função \mathbb{R}^+ , definida de domínio $f(x) = \log_8 x$

P é um ponto do gráfico de f, que tem ordenada $\frac{1}{3}$

Qual é a abcissa do ponto P?

(A)
$$\frac{8}{3}$$

(C)
$$\ln\left(\frac{8}{3}\right)$$

4. Um tanque tem a forma de um paralelepípedo rectângulo, com 7 mcomprimento, 5 m de largura e 4 m de altura.

Admita que o tanque está vazio. Num certo instante, é aberta uma torneira que verte água para o tanque, à taxa de $2 m^3$ por hora, até este ficar cheio.

Qual é a função que dá a **altura**, em metros, da água no tanque, t horas após a abertura da torneira?

(A)
$$h(t) = 4 - 2t$$
 , $t \in [0, 70]$

(A)
$$h(t) = 4 - 2t$$
, $t \in [0, 70]$ **(B)** $h(t) = \frac{2t}{35}$, $t \in [0, 70]$

(C)
$$h(t) = 4 - 2t$$
, $t \in [0, 140]$ **(D)** $h(t) = \frac{2t}{35}$, $t \in [0, 140]$

(D)
$$h(t) = \frac{2t}{35}$$
, $t \in [0, 140]$

5. Considere, num referencial o.n. xOy, uma elipse de eixo maior paralelo ao eixo Oy e cujo centro é o ponto de intersecção das rectas $\ x=-1$ e $\ y=2$. Qual das seguintes equações pode definir esta elipse?

(A)
$$(x-1)^2 + \frac{(y+2)^2}{9} = 1$$

(B)
$$\frac{(x+1)^2}{9} + (y-2)^2 = 1$$

(C)
$$(x+1)^2 + \frac{(y-2)^2}{9} = 1$$

(D)
$$(x+1)^2 - \frac{(y-2)^2}{9} = 1$$

- 6. Num referencial o.n. Oxyz, considere os pontos P(0,0,4) e Q(0,4,0). Qual dos seguintes pontos pertence ao plano mediador do segmento de recta [PQ]?
 - (A) A(1,0,0)
- **(B)** B(1,2,0) **(C)** C(2,1,0)
- **(D)** D(1,0,2)

- 7. Num referencial o.n. Oxyz, qual das seguintes rectas intersecta os três planos coordenados (xOy, xOz e yOz)?
 - **(A)** $(x,y,z) = (1,1,1) + k (1,0,0), k \in \mathbb{R}$
 - **(B)** $(x,y,z) = (1,1,1) + k (0,2,0), k \in \mathbb{R}$
 - (C) $(x,y,z) = (1,1,1) + k (1,2,0), k \in \mathbb{R}$
 - **(D)** $(x, y, z) = (1, 1, 1) + k (1, 2, 3), k \in \mathbb{R}$
- 8. Um dado equilibrado, com as faces numeradas de 1 a 6, é lançado três vezes. Qual é a probabilidade de saírem três números ímpares?
- (A) $\frac{1}{27}$ (B) $\frac{1}{8}$ (C) $\frac{1}{3}$
- 9. Uma turma de uma escola secundária tem nove rapazes e algumas raparigas. Escolhendo ao acaso um aluno da turma, a probabilidade de ele ser um rapaz é $\frac{1}{3}$ Quantas raparigas tem a turma?
 - **(A)** 27
- **(B)** 18
- **(C)** 15
- **(D)** 12

Segunda Parte

Nas questões desta segunda parte, apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

- 1. Considere a função f , de domínio \mathbb{R} , definida por $f(x) = e^x (x^2 + x)$ Recorrendo exclusivamente a processos analíticos (ou seja, sem utilização da calculadora), resolva as alíneas seguintes:
 - Verifique que $f'(x) = e^x (x^2 + 3x + 1)$ e determine uma equação da recta tangente ao gráfico de f, no ponto de abcissa 0.
 - 1.2. Estude f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.
 - **1.3.** Estude a função f quanto à existência de assimptotas verticais e horizontais do seu gráfico.

2. No presente ano civil, em Lisboa, o tempo que decorre entre o nascer e o pôr do Sol, no dia de ordem n do ano, é dado em horas, aproximadamente, por

$$f(n) = 12.2 + 2.64 \text{ sen } \frac{\pi (n-81)}{183}$$
 $n \in \{1, 2, 3, \dots, 366\}$

(o argumento da função seno está expresso em radianos).

Por exemplo: no dia 3 de Fevereiro, trigésimo quarto dia do ano, o tempo que decorreu entre o nascer e o pôr do Sol foi de $f(34) \approx 10,3$ horas.

2.1. No dia 24 de Março, Dia Nacional do Estudante, o Sol nasceu às seis e meia da manhã. Em que instante ocorreu o pôr do Sol? Apresente o resultado em horas e minutos (minutos arredondados às unidades).

Notas:

- Recorde que, no presente ano, o mês de Fevereiro teve 29 dias.
- Sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.
- **2.2.** Sem recorrer à calculadora, determine em quantos dias do ano é que o tempo que decorre entre o nascer e o pôr do Sol é de 12,2 horas.

- **3.** Na figura está representado um poliedro com doze faces, que pode ser decomposto num cubo e em duas pirâmides quadrangulares regulares.
 - **3.1.** Pretende-se numerar as doze faces do poliedro, com os números de 1 a 12 (um número diferente em cada face). Como se vê na figura, duas das faces do poliedro já estão numeradas, com os números 1 e 3.

- **3.1.1.** De quantas maneiras podemos numerar as outras dez faces, com os restantes dez números?
- **3.1.2.** De quantas maneiras podemos numerar as outras dez faces, com os restantes dez números, de forma a que, nas faces de uma das pirâmides, fiquem só números ímpares e, nas faces da outra pirâmide, fiquem só números pares?
- **3.2.** Considere agora o poliedro num referencial o. n. Oxyz. Sabe-se que:
 - o vértice O do poliedro é a origem do referencial;
 - o vértice E do poliedro tem coordenadas (2,2,2);
 - a altura de cada uma das pirâmides é igual ao comprimento da aresta do cubo.

- 3.2.1. Justifique que o ponto $\,F\,$ não pertence à superfície esférica de diâmetro $\,[PQ].$
- **3.2.2.** Mostre que a recta EG é perpendicular ao plano ADQ.
- **3.2.3.** Determine a área da secção definida no poliedro pelo plano ADQ.

COTAÇÕES

Cada resposta errada							
egunda Parte							
1. 39 1.1. 11 1.2. 14 1.3. 14 2. 22 2.1. 10 2.2. 12 3. 58 3.1. 7 3.1.2. 15 3.2. 36		Nota: Um to	otal negativo n	nesta parte da	prova vale 0 (ze	ero) pontos.	
1.1. 11 1.2. 14 1.3. 14 2. 22 2.1. 10 2.2. 12 3. 58 3.1. 22 3.1.1. 7 3.1.2. 15 3.2. 36	egund	a Parte					11
1.2. 14 1.3. 14 2. 22 2.1. 10 2.2. 12 3. 58 3.1. 22 3.1.1. 7 3.1.2. 15 3.2. 36		1					39
1.3. 14 2. 22 2.1. 10 2.2. 12 3. 58 3.1. 22 3.1.1. 7 3.1.2. 15 3.2. 36							
2.1. 10 2.2. 12 3. 58 3.1. 22 3.1.1. 7 3.1.2. 15 3.2. 36							
2.2. 12 3. 58 3.1. 22 3.1.1. 7 3.1.2. 15 3.2. 36							22
3.1.							
3.1.1.							58
3.2. 36		3.1	3.1.1		7		
		3.2				36	
		0.2.	3.2.1		12		
3.2.2. 12 3.2.3. 12							