2023~2024 学年第 <u> </u> 学期 课程代码 <u> </u>	送学 学分 2.0 课程性质: 必修5、选修5、、股修5 考试形式: 开卷5、用4 1021-04-23 命題教师 是文明 系 (所成教研究)主任审批签名 录光
一、 填空題(每空 2 分,共 20 分)	(024-04-23 即
1. 一个图形作弹性运动可使之与另一个图形重合,称这两个图形是。	1. 下列关于线框模型说法正确的是(
2. 多边形表面模型中存储几何数据的一个有效方法是建立三张表: 顶点表、边表	(A) 可以表示球体 (B) 可以线消隐
和。	(C) 可以面消隐 (D) 数据结构简单
3. OpenSCAD 建模软件采用的主要建模技术是。	2. 下列自由曲线能表示双曲线的是(())
计算机图形学中"用离散量表示连续量而引起的失真"叫做 第一个	(A) Bezier 曲线 (B) B 样条曲线
5. 直线段的裁剪算法主要有 Cohen-Sutherland 裁剪算法、中点分割算法和	(C) NURBS 曲线 (D)都可以表示
,后者也是中国人的算法第一次出现在所有图形学教材中。	3. 下列关于中点 Bresenham 算法和 DDA 算法说法错误的是 ()
6 投影变换分为平面几何投影和观察投影,其中平面几何投影主要分为平行投影	(A) DDA 算法采用了增量计算
和。	(B) 中点 Bresenham 算法比 DDA 算法效率更高
7) 1991 年颁布的关于工业产品数据交换的 STEP 国际标准中,把作为定义	(C) DDA 算法能够避免浮点数运算
工业产品几何形状的唯一数学方法。	(D) 中点 Bresenham 算法能够避免浮点数运算
. 均匀 B 样条的基函数呈现出	4. 采用 x-扫描线算法,图中 a, b, c 处的交点数分别是(人)
)三次 Bezier 曲线的四个控制点依次为 (0, 0), (1, 1), (2, 1), (4, 0), 则	(A) 0, 1, 2 (B) 2, 1, 0
曲线的起点处的一阶导数为。	(C) 0, 1, 0 (D) 2, 1, 2
. 恒定光强的多边形绘制产生效应,肉眼感觉到的亮度变化比实际的亮度	
化更大。	5. 下列关于局部光照模型说法错误的是人
	(A) 照射在物体上的环境光射向各个方向
	(B) 照射在物体上的漫反射光射向各个方向

试 卷 (A) 肥工业大学

专业班级 (教学班) 计算机 21-1、21-2、21-3、21-4、21-5 班 2. 用中点 Bresenham 算法绘制直线,起点和终点分别为: (3, 2) 和 (9, 6)。请

四、 简答题 (共20分)

- 1. 分别描述 8-连通边界填充算法和 8-连通泛填充算法。(6分)
- 2. 分别写出三次 Bezier 曲线和 Hermite 曲线的表达式并指出基函数。(8分)
- 3. 分别描述 Gouraud 明暗处理 Phong 明暗处理的算法步骤。(6 分)

五、 应用题(保留必要的解答过程, 共20分)

1. 己知矩形 ABCD 的四个项点分别为 A(2, 2)、B(4, 2)、C(4, 4)、D(2, 4),如下 图所示, 现将矩形 ABCD 变换为矩形 A'B'C'D', 其中旋转角度为 30 度, A'(3, 3), |A'B'|=2|AB|, |B'C'|=1.5|BC|。写出矩形 ABCD 到矩形 A'B'C'D'的具体变换步骤以 及每个步骤对应的变换矩阵,不需要计算出最后的合成矩阵。(12分)

序号	x (坐标值)	y(坐标值)	D (判别式值)
1			
2			
3			
4			
5			
6			
7			
8			

金题教师注意事项:1、主考教师必须于考试一周前将"试卷 A"、"试卷 B"经教研室主任^{审批签字}5进教务科印刷。 2、请金题教师用黑色水笔工整地书写题目或用 A4 纸模式打印贴在试卷板芯中。