Universidade Federal do Rio Grande do Sul Escola de Engenharia

ENG04010 Teoria Eletromagnética e Ondas

Trabalho Complementar Resolução de Problemas de Valor de Contorno

Pedro Lubaszewski Lima (00341810)

Turma U

Sumário

1.1	Enunciado do Problema	2
2.1	Resolução Analítica do Problema	3
	Resolução Numérica do Problema	4
	3.1.1 Comportamento Numérico da Solução	4
	3.1.2 Simulação em Software	4
4.1	Exemplos	5

1.1 Enunciado do Problema

Com o intuito de exercitar os conhecimentos ensinados sobre Problemas de Valores de Contorno (PVC) em Eletrostática, foi proposto o seguinte exercício a ser resolvido:

Considere um cubo oco de dimensões laterais a, composto de faces condutoras ideais, conforme a figura abaixo. Suponha que exista uma pequena separação entre cada face. As faces laterais, em tom mais claro, são mantidas em um potêncial nulo. A face superior (0 < x < a, 0 < y < a, z = a) é mantida em potencial contante e uniforme V_0 .

Figura 1: Cubo Condutor de Dimensões Laterais a.

Com isso em mente, faça o que se pede:

- 1. Determine uma equação para o potencial no interior do cubo de forma analítica, utilizando o Método da Separação de Variáveis.
- 2. Esboce o potencial, na forma de um "mapa de calor", para a região central do cubo (fixando $x=\frac{a}{2}$ ou $y=\frac{a}{2}$ e variando as outras duas variáveis), utilizando resultados obtidos numericamente.

2.1 Resolução Analítica do Problema

Para modelar o comportamento de V(x,y,z) analiticamente, partir-se-á da Equação de Laplace com as condições de contorno fornecidas no problema:

$$\begin{cases} \nabla^2 V = 0 \\ x : V(0, y, z) = 0, \ V(a, y, z) = 0 \\ y : V(x, 0, z) = 0, \ V(x, a, z) = 0 \\ z : V(x, y, 0) = 0, \ V(x, y, a) = V_0 \end{cases}$$
(1)

A partir dela, tem-se, em coordenadas cartesianas, que:

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

E, pelo Método da Separação de Variáveis, assume-se que, para coordenadas cartesianas:

$$V(x, y, z) = X(x)Y(y)Z(z)$$

Portanto, a partir daí, tem-se que:

$$\begin{split} \Rightarrow \frac{\partial^2 V}{\partial x^2} &= Y(y)Z(z)\frac{\partial^2}{\partial x^2}X(x) \\ \Rightarrow \frac{\partial^2 V}{\partial y^2} &= X(x)Z(z)\frac{\partial^2}{\partial y^2}Y(y) \\ \Rightarrow \frac{\partial^2 V}{\partial z^2} &= X(x)Y(y)\frac{\partial^2}{\partial z^2}Z(z) \\ \Rightarrow \nabla^2 V &= Y(y)Z(z)\frac{\partial^2}{\partial x^2}X(x) + X(x)Z(z)\frac{\partial^2}{\partial y^2}Y(y) + X(x)Y(y)\frac{\partial^2}{\partial z^2}Z(z) = 0 \end{split}$$

Agora, assumindo que $X(x) \neq 0$, $Y(y) \neq 0$ e $Z(z) \neq 0$, na região de interesse, pode-se dividir a equação acima por X(x)Y(y)Z(z):

$$\Rightarrow \frac{1}{X(x)}\frac{\partial^2 X(x)}{\partial x^2} + \frac{1}{Y(y)}\frac{\partial^2 Y(y)}{\partial y^2} + \frac{1}{Z(z)}\frac{\partial^2 Z(z)}{\partial z^2} = 0$$

Porém, a única forma dessa equação resultar em zero para todos os valores de X(x), Y(y) e Z(z) se dá quando cada uma das parcelas somadas na equação é uma constante. Em outras palavras:

$$\begin{cases} \frac{1}{X(x)} \frac{\partial^2 X(x)}{\partial x^2} = -K_x^2 \\ \frac{1}{Y(y)} \frac{\partial^2 Y(y)}{\partial y^2} = -K_y^2 & \Rightarrow K_x^2 + K_y^2 + K_z^2 = 0 \\ \frac{1}{Z(z)} \frac{\partial^2 Z(z)}{\partial z^2} = -K_z^2 \end{cases}$$
 (2)

Essa escolha de constantes foi feita para facilitar a dedução do resto do problema, visto que as constantes podem ser complexas.

Multiplicando cada uma das equações de 2 pelas suas respectivas funções dependentes apenas de uma coordenada e somando a constante dos dois lados das equações obtém-se o seguinte sistema de Equações Diferenciais Ordinárias (EDOs):

$$\begin{cases} \frac{d^2X(x)}{dx^2} + X(x)K_x^2 = 0\\ \frac{d^2Y(y)}{dy^2} + Y(y)K_y^2 = 0\\ \frac{d^2Z(z)}{dz^2} + Z(z)K_z^2 = 0\\ K_x^2 + K_y^2 + K_z^2 = 0 \end{cases}$$
(3)

- 3.1 Resolução Numérica do Problema
- 3.1.1 Comportamento Numérico da Solução
- 3.1.2 Simulação em Software

4.1 Exemplos

- $N_1 = 3;$
- $N_2 = 4;$
- $N_3 = 1$;
- $N_4 = 8;$
- $N_5 = 1;$
- $N_6 = 0$.

$$a_{11} = a'_{11}a''_{11} + a'_{12}a''_{21} a_{12} = a'_{11}a''_{12} + a'_{12}a''_{22}$$

$$a_{21} = a'_{21}a''_{11} + a'_{22}a''_{21} a_{22} = a'_{21}a''_{12} + a'_{22}a''_{22}$$

$$(4)$$