7 Cuestiones de TEORIA (6 puntos). Puntuación: BIEN:+0.86 puntos. MAL: -0.21 puntos. N.C.: 0

- 1. Dado el circuito de la figura, indique la afirmación CORRECTA.
- [A] Para una entrada de Ve > 0V, el diodo no conduce y la salida será Vs=Ve.
- [B] El diodo sólo conduce para tensiones de entrada Ve>=0.7V.
- [C] El diodo solo conduce para tensiones de entrada Ve<0.7V.
- [D] Si la entrada es Ve= -10V, el diodo conduce y la tensión de salida será Vs= -5V.

- 2. En el circuito siguiente, si los LED de la figura requieren el paso de 15mA en directo para conseguir una iluminación adecuada, indique la afirmación correcta.
- [A] Con una R=150 Ohm, se conseguirá una iluminación adecuada.
- [B] Con una R=100 Ohm, se conseguirá una iluminación adecuada.
- [C] Para cualquier valor de R inferior a 133.3 Ohm, se obtendrá una intensidad en los LED superior al valor necesario.
- [D] No hay tensión de alimentación suficiente para conseguir la intensidad requerida.

 $I = 15mA = (V_{CC} - 2*V_{LED(ON)} - V_{OL)}/R = 5V - 3V - 0.5V = /R$ R = 1,5V / 15mA = 0,1kΩ = 100Ω

Datos: V_{LED(ON)}=1.5V V_{CC}=5V V_{OL}=0.5V

- 3. A partir de las siguientes curvas características de un BJT NPN, indique la respuesta FALSA:
- [A] La β del transistor BJT NPN es 500
- [B] Para una $I_B = 50\mu A$, el transistor está en zona de saturación
- [C] A partir de una l_B < 10uA, el transistor ya se encontrará en zona de corte
- [D] La recta de carga puede corresponder a un circuito de emisor común con una $R_C = 333$ ohmios

El transistor se corta cuando la corriente de base l_B es nula. El resto son correctas:

$$B = I_C / I_B = 20mA / 40\mu A = 500$$

En la gráfica se observa que para una $I_B = 50\mu A$ el corte con la recta de carga es para tensiones muy pequeñas de V_{CE} (saturación).

De la recta de carga, cuando $I_{Cm\acute{a}x}$: $V_{CC} - R_C^*I_C = 0$ El punto de corte con el eje de abscisas nos indica que $V_{CC} = 5V$

 $R_C = V_{CC} / I_{Cm\acute{a}x} = 333\Omega$

4. Se diseña el siguiente circuito con BJT para encender un diodo LED. Indique la respuesta CORRECTA:

DATOS:

LED: V_{γ} = 1.2V, I_{LED} = 10mA para un brillo deseado;

BJT: $V_{BEON} = 0.7V$, $V_{CESAT} = 0.2V$, $\beta = 100$;

- [A] Es necesario que el BJT esté en saturación para que el LED brille adecuadamente.
- [B] Incluso con Vin = 5V no se alcanza la saturación del BJT.
- [C] Es una configuración de encendido a nivel bajo, por lo que Vin = "0" para encender el led.
- [D] A partir de Vin = 2,7V se alcanza el brillo deseado

Para Vin = 2,7V se tiene $I_B = (2,7V - 0,7V) / 20k\Omega = 0,1mA$

Si está en la zona activa se cumple: $I_C = \beta^*I_B = 100^*0,1 \text{mA} = 10 \text{mA}$

Comprobemos si está en activa:

 $5V - 1.2V - 0.2k\Omega*10mA = 5V - 1.2V - 2V = 1.8V > V_{CESAT}$

- 5. Dado el circuito de la figura, indique la zona de funcionamiento del MOSFET de canal P.
 - [A] Corte
 - [B] Saturación, porque la tensión de drenador es igual a la tensión de la puerta.
 - [C] Óhmica (o lineal)
 - [D] Conduce, pero faltan datos para saber si lo hace en zona óhmica o saturación.

Se trata de un PMOS, donde el terminal de drenador (el de abajo) está conectado al de puerta a través de la resistencia de 100K. Como no hay corriente de puerta, $V_{\rm DS}=V_{\rm GS}$

Si conduce, lo hace en saturación. Como V_{DD} , supera a $|V_T|$, el transistor estará saturado.

6. Indique los niveles de tensión mínima y máxima de la salida Vo en el inversor lógico de la figura si Vi es una onda cuadrada con valores mínimo y máximo de 0V y 5V. Suponga que en la zona óhmica se puede utilizar la expresión aproximada de la corriente siguiente: $I_{DS(ON)} \approx 2K(V_{GS}-V_T)$ V_{DS}

- [A] 0.08V y 5V
- [B] 0.05V y 5V
- [C] 0.01V y 5V
- [D] 0V y 4.5V

Cuando conduce, lo hace en zona óhmica por lo que basta con calcular el valor de Ron y plantear el divisor resistivo:

 $R_{ON} = V_{DS} / I_{DS(ON)} = 1 / 2K(V_{GS} - V_T) = 1 / 2*0, 2*(5V - 2,5V) = 1k\Omega$

 $Vo = V_{DD} * 1k\Omega / (60 k\Omega + 1 k\Omega) = 0,08V$

Cuando la entrada es 0V la salida es VDD

- 7. Acerca del transistor MOSFET se puede AFIRMAR
- [A] En la zona de saturación, la corriente los aumenta cuadráticamente con la tensión Vos (depende de Vos)
- [B] Los transistores MOSFET de canal P son más rápidos en conmutación que los de canal N debido a que los huecos tienen mayor movilidad que los electrones (es al revés)
- [C] En un transistor MOSFET podremos identificar el DRENADOR porque siempre es el terminal que se encuentra conectado al Substrato (es el terminal de fuente)
- [D] En la zona óhmica, la Ron equivalente es menor cuanto mayor sea V_{GS}

Basta obtener la expresión de la R_{ON} de la expresión correspondiente: $I_{DS(ON)} \approx 2K(V_{GS}-V_T)$ V_{DS} y despejar $R_{ON} = V_{DS} / I_{DS(ON)} = 1 / 2K (V_{GS}-V_T)$

Apellidos: Nombre:

PROBLEMA 1 (4 PTOS)

El circuito de la figura es una puerta lógica NMOS. Se pide:

Nota: En zona óhmica utilice la expresión aproximada $I_{DS} \approx 2K(V_{GS} - V_T) V_{DS}$, y en saturación $I_{DS} = K(V_{GS} - V_T)^2$

Nota: Las curvas representadas son para incrementos de IV de V_{GS} .

[A] (0.8p) Obtenga a partir de la curva de VGS=4V el valor de la transconductancia K y de V_T del transistor MOSFET. **Justifique la respuesta**.

Para VGS=4V el punto límite Saturación/Ohmica es para una VDS=2V VDS=VGS-VT se cumple en el punto límite 2V=4V-VT VT=2V

Para VGS=4V IDS=8mA en la zona plana (Saturación) IDS=K(VGS-VT)² en Saturación 8mA=K(4V-2V)² K=8mA/4V²=2mA/V²

[B] (0.4p) Dibuje, sobre las curvas características, la recta de carga. Justifique la respuesta.

Recta de Carga: VDD-IDS*RD-VDS=0, IDS=(VDD-VDS)/RD

Punto de corte con eje X: IDS=0, VDS=VDD=10V

Punto de corte con eje Y: VDS=0, IDS=VDD/RD=10V/1k=10mA

[C] (0.4p) Para una tensión Vi=4V indique, utilizando la recta de carga y las curvas características, el punto de trabajo del transistor y la zona de funcionamiento del mismo. **Justifique la respuesta**.

VGS=Vi=4V. En el punto de corte entre la recta de carga y la curva VGS=4V la proyección sobre el eje Y es IDS=8mA y la proyección sobre el eje X es VDS=2V. La zona de funcionamiento es el límite Saturación/Óhmica aquí se cumple que VDS=VGS-VT (2V=4V-2V).

VGS:	4	٧	IDS:	8	mA	VDS:	2	V	Zona Funcionamiento: Límite Saturación/Óhmica

[D] (0.8p) Si Vi = 5V, ¿Cuál habrá de ser RD para que la salida Vo sea de 0.5V?. Utilizar la Ron. Justifique la respuesta.

VGS=Vi=5V Por el divisor resistivo Vo=VDD*(Ron/Ron+RD)

R_{ON}=1/(2K(VGS-VT)) 0,5=10*(0,083/(0,083+RD))

Ron=1/(2*2*(5-2)) RD=(0.83-0.0415)/0.5

Ron=0,083k RD=1,577k

RD: 1,577 k

[E] (0.8p) Dibuje el circuito genérico de una puerta **NAND NMOS** de 2 entradas, y rellene la tabla de verdad adjunta.

V1	V2	M1 (OFF/ON)	M2 (OFF/ON)	Salida (Valor lógico)
0	0	OFF	OFF	1
0	1	OFF	ON	1
1	0	ON	OFF	1
1	1	ON	ON	0

[F] (0.8p) Calcule la tensión de salida de la puerta **NAND** de 2 entradas del apartado anterior cuando las entradas son V1=5V y V2=5V. Nota: utilice la resistencia equivalente R_{ON} del MOSFET calculada en el apartado D, y tómese la resistencia de drenador RD = 5k y la VDD=5V.

Por el divisor resistivo Vo=VDD*(2*R_{ON}/(2*R_{ON}+RD)) Vo=5*(2*0,083/(2*0,083+5)) Vo=0,161V

Vo: 0,161 V