MCA - 304

M.C.A. III Semester Examination, December 2014

Theory of Computation

Time: Three Hours

Maximum Marks: 70

Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.

ii) All parts of each question are to be attempted at one place.

iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.

iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

What is an automation?

(b) Differentiate between Kleene closure and transitive closure.

Design finite automata for the given expression 0+(0+1)*+1

Minimize the given automata:

Construct mealy machine equivalent to given moore machine

	COLL	Jet croc r	TICOL.	y 						. Ya
		Input	t			53*	0			
		0	1	output		20	94		1 6	_ *
	$\overline{q_0}$	q_1	q_2	0		4			12	
	$\mathbf{q}_{\mathbf{l}}$	q_0	q_3	1			20	0	22	
89	q_2	q_3	q_2	1.	**	7-2_	9-2			0
243	q_3	$\mathbf{q}_{\mathbf{i}}$	q_2	0	\$8 200	12		9	92	
					e e e e e e e e e e e e e e e e e e e	Unit - II	2-1	1	9	V
					6			•	122	t
	XX 71	ia am	hi omi	ty in oram	mar/			2		

What is ambiguity in grammar!

Define right most derivation and left most derivation.

Design CFG to accept the language $L(G) = \{0^{n/n} / n \ge 1\}$

Show that the given grammar is ambiguozy.

$$S \rightarrow SbS/a$$

Find the reduced grammar equivalent to the given CFG:

 $S \rightarrow aC/SB$

 $A \rightarrow bSCa$

 $B \rightarrow aSB/bBC$

 $C \rightarrow aBC/ad$

Unit-III

- a) Define PDAb) What is Greibach normal form.
- Explain the transitions mapping function of PDA.
- Design PDA to accept $\{ww^R/w \in (0, 1)^*\}$. Where w is a word and w^R is reverse of word.

Convert the given grammar to CNF?

$$S \rightarrow aAC, A \rightarrow aB/bAB, B \rightarrow b, C \rightarrow c$$

Unit-IV

Why Turing machine is known as acceptor?

- What is multi-dimensions Turing machine.
- Design Turing machine for the language.

$$L = \left\{ a^n b^n a^{n+m}; n \ge 1, m \ge 1 \right\}$$

d) Explain universal Turing machine.

OK.

Design Turing machine for the language:

$$L(G) = \left\{0^n 1^n / n \ge 1\right\}$$

Unit - V

a) What is undecidability?

b) What is recursively enumerable sets?

/c) Explain complexity theory.

Describe linear bounded automata and its applications.

Explain context sensitive grammar and their equivalence.
