Extração de características e classificação de sequências de RNAs

Fabrício M. Lopes e Matheus H. Pimenta-Zanon

fabricio@utfpr.edu.br e matheus.pimenta@outlook.com

UTFPR-CP

Grupo de Pesquisa em Bioinformática e Reconhecimento de Padrões bioinfo-cp@utfpr.edu.br

Escola Paranaense de Bioinformática (EPB) 08-AGO-2022

Organização

- Bioinformática
- Reconhecimento de Padrões
- Redes Complexas
- Aplicação: BASiNET

Bioinformática

Reconhecimento de Padrões Redes Complexas Aplicação: BASiNET Introdução Biologia Sistêmic

Bioinformática

Introdução - Bioinformática

Aplicação: BASINET

Introdução - Definição

- A bioinformática trata da compreensão de como a vida funciona, é uma ciência guiada por hipóteses;
- Está na interseção entre a ciência da computação e as ciências da vida;
- Trata da integração de temas biológicos com a ajuda de ferramentas informáticas, bases de dados biológicos e obtenção de novos conhecimentos a partir dessas informações.

Introdução - Características

- É uma área emergente de investigação altamente interdisciplinar;
- Trata da análise computacional de informações biológicas: genes. genomas, proteínas, células, sistemas ecológicos, informação médica, etc.;
- Trata do desenvolvimento e uso de sistemas computacionais para a análise, interpretação, simulação e predição de sistemas biológicos.

Aplicação: BASINET

Surgimento da Bioinformática

- A bioinformática surgiu com o propósito do estudo da biologia molecular e bioquímica, em larga escala;
- Em termos globais, em 1988 foi lançado o primeiro banco de dados público contendo sequências de DNA, o NCBI - National Center for Biotechnology Information;
- A bioinformática chegou ao Brasil em 1999, com o sequenciamento completo do DNA da bactéria Xylella fastidiosa, patógeno que gera prejuízos à cultura de cítricos.

Aplicação: BASINET

- Desde então, o surgimento de enormes bancos de dados internacionais com dados biológicos/moleculares tornaram os dados acessíveis e comparáveis:
- Desenvolvimento de algoritmos para o alinhamento de sequencias gênicas, para a predição de genes e proteínas, entre outras metodologias estatísticas e computacionais.

Aplicação: BASINET Crescimento da Bioinformática

From 1982 to the present, the number of bases in GenBank has doubled approximately every 18 months.¹

¹https://www.ncbi.nlm.nih.gov/genbank/release/current/

Aplicação: BASINET

Biologia Sistêmica

- Uma aplicação recente que tem recebido muita atenção pela comunidade de pesquisa é a biologia sistêmica (Systems Biology);
- Trata do desenvolvimento e uso de sistemas computacionais para a análise, interpretação, simulação e predição de sistemas biológicos;
- **Desafio**: investigar, identificar e descrever de que forma as componentes interagem como um sistema e, como esse sistema funciona.

Bioinformática Reconhecimento de Padrões Redes Complexas Aplicação: BASiNET

Classificação Características Generalização/Classificação

Introdução

Reconhecimento de Padrões

Bioinformática

Reconhecimento de Padrões

Redes Complexas

Introdução Classificação Características Generalização/Classificação

Origem dos dados

Como extrair informação dos dados ?

ATGTATCCAGGTAGTGGACGTTACACCTACAACAACGCTGGTGGTAATAATGGCTACCAA CGGCCCATGGCTCCTCCACCTAACCAGCAGTATGGACAGCAATATGGTCAGCAATATGAA CAGCAGGA ACAGGCA A AGGCACA APPA AGCA ACGGCPACA ACA APCCPA APGPA A ACGCA TCCAATATGTACGGTCCACCCCAGAATATGTCATTACCTCCACCTCAAACACAAACTATT CAAGGTACAGACCAACCTTATCAGTATTCTCAATGTACTGGGCGTAGAAAGGCTTTGATT A T C G G T A T A A C T A C A T A G G T T C A A A A A A T C A A C T G C G T G G T T G T A T C A A T G A T G C T C A T AACATCTTCAACTTTTTGACTAATGGGTACGGTTACAGTTCAGATGACATTGTCATATTA ACTGATGATCAGAACGATTTGGTCAGGGTTCCCACTAGGGCTAATATGATTAGGGCCATG CAATGGTTGGTCAAGGATGCGCAACCCAATGATTCTTTGTTCCTTCATTATTCTGGACAT GGTGGCCAAACTGAAGATTTGGATGGGGACGAAGAAGATGGGATGATGTTATATAT AAGCCCTTACAACAAGGTGTTAGACTAACAGCATTGTTTGACTCTTGTCATTCGGGTACA GTGTTGGATCTTCCATATACCTATTCTACTAAGGGTATTATTAAGGAGCCCAATATTTGG A A GGA TGTTGGCCA A GA TGGCCTGCA A GCA GCTA TTTCA TA TGCCA CA GGA A A CA GGGCT GCTTTGATTGGTTCTTTAGGTTCTATATTTCAAGACCGTTTAAGGGAAGGTATGGGCAATAAT GTGGATAGAGAACGCGTGAGACAGATCAAATTCTCAGCAGCAGATGTTGTTATGTTATCA GGTTCGAAGGATAATCAAACTTCTGCAGATGCTGTCGAAGATGGGCAAAATACAGGTGCA ATGTCCCACGCCTTCATCAAGGTTATGACTTTACAACCACAGCAATCATATTTATCTCTT PPACAGAACAPGAGGAAAGAAPPGGCPGGPAAGPAPPCPCAAAAACCACAAPPAPCAPCG**ФОДО СОСТАТИТЕЛЬНИЕ В В В РОТЕСТА В РЕГИТИТЕ В РОТЕСТА С**

Conhecimento sobre o domínio dos dados

Second letter

		U	С	Α	G	
First letter	U	UUU }Phe UUC }Leu UUG }Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	UCAG
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIn CAG GIn	CGU CGC CGA CGG	UCAG
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU Asn AAC Lys AAG Lys	AGU Ser AGC AGA AGA Arg	UCAG
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG GAG	GGU GGC GGA GGG	UCAG

²https://courses.lumenlearning.com/wm-biology1/chapter/reading-codons/

Conhecimento sobre o domínio da solução

Definição de Reconhecimento de Padrões:

- "É uma área de pesquisa que tem por objetivo a classificação de objetos (padrões) em um número de categorias ou classes", Theodoridis e Koutroumbas [Theodoridis and Koutroumbas, 2008].
- "O ato de observar os dados brutos e tomar uma ação baseada na categoria de um padrão", Duda et al., 2001].

Classificadores

- **Classificadores**: utilizados para classificar ou descrever padrões ou objetos a partir de um conjunto de propriedades ou características.
- Existem essencialmente dois casos particulares de reconhecimento de padrões:
 - Classificação supervisionada.
 - Classificação não supervisionada.

Classificação supervisionada

- Selecionam-se amostras representativas para cada uma das classes que se deseja classificar.
- Conhecemos o padrão e classes que estamos procurando.
- Também conhecido como Aprendizado supervisionado.

Classificação não supervisionada

- Não conhecemos o padrão, nem o número total de classes a serem encontradas durante a classificação.
- Também conhecido como aprendizado não supervisionado ou análise de agrupamentos (*clusters*).
- O conjunto de dados é particionado em grupos, baseados em características específicas, tais que os pontos dentro de um grupo (cluster) sejam mais similares do que os pontos de outros grupos.
- Pode ajudar compreender funções de muitos genes para os quais não há informações disponíveis, Jiang et al. [Jiang et al., 2004].

Etapas do Reconhecimento de Padrões

Características

- Característica ou Atributo: dado extraído de uma amostra por meio de medida e/ou processamento.

Introdução - Treinamento

Classificação (Generalização)

Bioinformática Reconhecimento de Padrões **Redes Complexas** Aplicação: BASINET

Introdução Medidas Modelos de rede

- "Pode-se descobrir se é ou não possível atravessar cada ponte exatamente uma vez"?
- Euler provou que o problema não tem solução, "Königsberg Bridge Problem" é considerada como o início da teoria das redes (1735) [Paoletti, 2011].

[Karimi, 2015]

- Uma rede é um grafo, com um conjunto de vértices interligados através de arestas.
- A teoria de redes complexas pode ser entendida como o estudo das redes (estrutura e função), i.e. das relações de seus vértices [Newman, 2003].

[Newman, 2003]

- Redes complexas possuem topologias distintas e propriedades bem definidas [Boccaletti et al., 2006, Costa et al., 2007].
- As redes complexas podem ser caracterizadas em termos de medidas específicas.

Medidas de Redes Complexas

- É possível extrair medidas que caracterizem a topologia da rede [Boccaletti et al., 2006, Costa et al., 2007], tais como:
 - Average Betweenness Centrality
 - Cluster Coefficient
 - Average Path Length
 - Assortativity
 - Average, maximum, minimum degree
 - Frequency of motifs with size 3 and 4, etc.

- Modelos teóricos de redes complexas podem ser considerados para a definição da topologia de redes biológicas [Lopes et al., 2011, Costa et al., 2008]:
 - small-world propostas por Watts e Strogatz (WS) [Watts and Strogatz, 1998];
 - scale-free propostas por Barabási-Albert (BA) [Barabási and Albert, 1999].

Redes BA - Aplicações

- O modelo de redes scale-free e suas propriedades têm sido utilizado para simular e descrever o comportamento de redes biológicas [Barabási, 2009].
- Muitas das redes biológicas conhecidas apresentam uma estrutura scale-free [Albert, 2005, Khanin and Wit, 2006, Costa et al., 2008, Lopes et al., 2014], implicando que a distribuição das relações entre os genes (k, grau) é irregular.

BASiNET - BiologicAl Sequences NETwork: a case study on coding and non-coding RNAs identification

BASiNET ← Integração de áreas ← Bioinformática

A THE AT COMMAND THAN CONTRACTORY OF THE AT COMMAND THE AT COMMAND THAN COMMAND THA

BASiNET—BiologicAl Sequences NETwork: a case study on coding and non-coding RNAs identification

Eric Augusto Ito, Isaque Katahira, Fábio Fernandes da Rocha Vicente, Luiz Filipe Protasio Pereira, Fabrício Martins Lopes

▼

Nucleic Acids Research, Volume 46, Issue 16, 19 September 2018, Page e96, https://doi.org/10.1093/nar/gky462

Published: 05 June 2018 Article history ▼

BASINET

- É um método [Ito et al., 2018] de extração de características para a classificação de sequências biológicas com base nas medidas de redes complexas:
 - Considera a vizinhança dos códons para a construção de uma rede que mapeia os padrões de vizinhança
 - Extrai medidas topológicas para a caracterização da rede e composição de vetor de caracteristicas
 - O vetor de características é usado na classificação das sequências

BASINET

 Explora padrões existentes nas sequências de entrada considerando três etapas principais

Mapping

Mapeamento da sequência em uma rede (grafo) com arestas ponderadas

Feature extraction

 Extração de características iterativo, considerando os pesos das arestas para a extração de medidas topológicas

Classification

 A classificação é realizada de forma independente a partir do vetor de características reescalado

BASINET: Classification of RNA Sequences using Complex Network Theory

Introdução Etapas Datasets Resultados

Pacote R

O BASiNET foi implementado em R e está disponível livremente para uso³

```
It makes the creation of networks from sequences of RNA, with this is done the abstraction of characteristics of these networks with a methodology of threshold for the
purpose of making a classification between the classes of the sequences. There are four data present in the "BASiNET" package, "sequences,", "
predict" and "sequences2-predict" with 11, 10, 11 and 11 sequences respectively. These sequences were taken from the data set used in the article (LL Aimin: ZHANG.
Junying: ZHOU, Zhongyin, 2014 <doi:10.1186/1471-2105-15-311>, these sequences are used to run examples. The BASINET was published on Nucleic Acids Research.
(ITO, Eric; KATAHIRA, Isague; VICENTE, Fábio; PEREIRA, Felipe; LOPES, Fabricio, 2018) <doi:10.1093/nar/gkv462>
Version:
                                        0.0.4
Depends:
                                         R (> 3.4.0)
Imports:
                                          igraph, Biostrings, RWeka, randomForest, rmcfs, grDevices, graphics, stats, rJava
                                         knitr, rmarkdown
Suggests:
Published
                                         2018-10-02
Author
                                         Eric Augusto Ito
Maintainer
                                         Eric Augusto Ito <ericaugustoito at hotmail.com>
Licenses
                                        GPL-3
NeedsCompilation: no
CRAN checks:
                                         BASINET results
Downloads:
Reference manual: BASiNET.pdf
Vignettes
                                        Classification of mRNA and IncRNA sequences
Package source: BASiNET 0.0.4.tar.gz
Windows binaries: r-devel: BASINET 0.0.4.zip, r-release: BASINET 0.0.4.zip, r-oldrel: BASINET 0.0.4.zip
macOS binaries: r.release (arm64): BASINET 0.0.4 tez. r.release (x86-64): BASINET 0.0.4 tez. r.oldrel: BASINET 0.0.4 tez.
Old sources
                                        BASINET archive
Linking
Please use the canonical form https://CRAN.R-project.org/package=BASINET to link to this page.
```

https://cran.r-project.org/web/packages/BASiNET/

Introdução Etapas Datasets Resultado

Sequências adotadas

Dois datasets foram adotados com diferentes espécies:

- Um composto por nove espécies de vertebrados, com duas classes mRNA e ncRNA, adotado pelo método PLEK [Li et al., 2014]
- Outro composto por seis espécies (quatro vertebrados, uma planta e um nematóide), com três classes: mRNA, sncRNA e lncRNA adotado pelo método CPC2 [Kang et al., 2017]

Resultados - Dataset PLEK

 Considerando o dataset (PLEK), os resultados foram superiores aos métodos concorrentes e com menor variação, mostrando assertividade e robustez do BASINET

Resultados - Dataset CPC2

 Considerando o dataset (CPC2), os resultados reforçam a superioridade com relação aos métodos concorrentes e a robustez do BASiNET

 As características extraídas que foram consideradas na classificação, foram analisadas considerando o dataset (PLEK).

 As características extraídas que foram consideradas na classificação, foram analisadas considerando o dataset (CPC2).

- Considerando os dois experimentos, algumas medidas topológicas se destacaram: ASPL, BET, DEG e ASS.
- Um caminho mínimo médio (ASPL) é a média dos caminhos mais curtos entre todos os pares de vértices (codons) da rede.

- O betweenness (BET) quantifica a relevância de um vértice em relação a todos os caminhos da rede, i.e. um vértice com uma conectividade.
- O DEG quantifica do grau médio da rede (quantidade média de conexões).
- O ASS quantifica a tendência dos vértice se ligarem a outros vértices semelhantes de alguma forma, tais como o grau do nó.

- ASPL e DEG estão diretamente associadas à conectividade (grau) e à distância (ASPL) entre os vértices da rede.
- BET e ASS estão associadas à presença de subestruturas, como a ligação de vértices semelhantes (ASS) e centralidade (BET).

Conclusão

- BASiNET é um método de extração de características para classificação de sequências biológicas (RNAs) baseado em redes complexas e suas medidas topológicas.
- As sequências são mapeadas e representadas por meio de redes complexas.
- As medidas formam um vetor de características que é utilizado para classificar as sequências.

Conclusão

- O método foi aplicado em dois conjuntos de dados apresentados nos métodos PLEK e CPC2. Os resultados do BASiNET foram comparados com os métodos CNCI[Sun et al., 2013], PLEK[Li et al., 2014] e CPC2[Kang et al., 2017].
- Os resultados de acurácia do BASiNET comparados aos outros métodos, mostraram que o BASiNET superou os outros em todos os conjuntos de dados e com menor variação (robustez).
- O BASiNET foi implementado em código aberto (linguagem R) e o programa está disponível livremente em

https://cran.r-project.org/package=BASiNET.

Introdução Etapas Datasets Resultados

bioinfo-news

https://groups.google.com/g/bioinfo-news

943 participantes!

Participe!

PPGBIOINFO - Mestrado

EDITAL DE SELEÇÃO 2022-2 - Mestrado

Inscrições abertas até 15/08/2022

http:

//www.utfpr.edu.br/cursos/coordenacoes/stricto-sensu/
ppgbioinfo/editais/edital-de-selecao-2022-2

PPGAB - Doutorado

EDITAL DE SELEÇÃO 2022 - Doutorado

Inscrições em fluxo contínuo!

http://www.utfpr.edu.br/cursos/coordenacoes/ stricto-sensu/ppgab/editais

Introdução Etapas Datasets Resultados

Obrigado!

fabricio@utfpr.edu.br e matheus.pimenta@outlook.com

Referências Bibliográficas I

- Albert, R. (2005).

 Scale-free networks in cell biology.

 J Cell Sci. 118, 4947–4957.
- Barabási, A.-L. (2009).
 Scale-Free Networks: A Decade and Beyond.
 Science 325, 412–413.
- Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science *286*, 509–512.

Referências Bibliográficas II

- Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports 424, 175–308.
- Costa, L. d. F., Rodrigues, F. A. and Cristino, A. S. (2008). Complex networks: the key to systems biology. Genetics and Molecular Biology *31*, 591–601.
- Costa, L. d. F., Rodrigues, F. A., Travieso, G. and Villas-Boas, P. R. (2007). Characterization of complex networks: a survey of measurements. Advances in Physics *56*, 167–242.

Referências Bibliográficas III

- Duda, R., Hart, P. and Stork, D. (2001).
 Pattern classification.
 Pattern Classification and Scene Analysis: Pattern Classification, 2nd edition, Wiley.
- Ito, E. A., Katahira, I., Vicente, F. F., Pereira, L. P. and Lopes, F. M. (2018). BASiNET BiologicAl Sequences NETwork: a case study on coding and non-coding RNAs identification.

 Nucleic Acids Research, gky462.
- Jiang, D., Tang, C. and Zhang, A. (2004). Cluster Analysis for Gene Expression Data: A Survey. IEEE TKDE *16*, 1370–1386.

Referências Bibliográficas IV

Kang, Y.-J., Yang, D.-C., Kong, L., Hou, M., Meng, Y.-Q., Wei, L. and Gao, G. (2017).

CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features.

Nucleic Acids Research 45, W12-W16.

- Karimi, F. (2015).
 Tightly Knit Spreading processes in empirical temporal networks.
 PhD thesis, Umeå University.
- Khanin, R. and Wit, E. (2006). How Scale-Free Are Biological Networks. Journal of Computational Biology 13, 810–818.

Referências Bibliográficas V

Li, A., Zhang, J. and Zhou, Z. (2014).

PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme.

BMC Bioinformatics 15, 311.

Lopes, F. M., Cesar-Jr, R. M. and Costa, L. d. F. (2011). Gene Expression Complex Networks: Synthesis, Identification, and Analysis. Journal of Computational Biology 18, 1353–1367.

Lopes, F. M., Jr., D. C. M., Barrera, J. and Jr., R. M. C. (2014).

A feature selection technique for inference of graphs from their known topological properties: Revealing scale-free gene regulatory networks. Information Sciences 272, 1–15.

Referências Bibliográficas VI

- Newman, M. E. J. (2003).
 The Structure and Function of Complex Networks.
 SIAM Review 45, 167–256.
- Paoletti, T. (2011).
 Leonard Euler's solution to the Konigsberg bridge problem.
 Convergence 1.
- Sun, L., Luo, H., Bu, D., Zhao, G., Yu, K., Zhang, C., Liu, Y., Chen, R. and Zhao, Y. (2013).
 Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts.

Nucleic Acids Research 41, e166-e166.

Referências Bibliográficas VII

Theodoridis, S. and Koutroumbas, K. (2008).
Pattern Recognition.
4th edition, Academic Press, USA.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature 393, 440–442.