1 Functions of Several Variables

Functions of Two Variables

Definition

A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D (domain subset of \mathbb{R}^2) of f(x, y) (range subset of \mathbb{R}).

FIGURE 2

Domain of
$$f(x, y) = \frac{\sqrt{x + y + 1}}{x - 1}$$

EXAMPLE.

Evaluate f(3,2), find and sketch the domain of $f(x,y) = \ln(y^2 - x)$.

$$f(3,2) = 3\ln(2^2 - 3) = 3\ln 1 = 0$$

The domain of f is $D = \{(x, y) \mid x < y^2\}.$

Graph

The graph of f(x,y) is the set of all points (x,y,z) in \mathbb{R}^3 .

FIGURE 5

EXAMPLE. Sketch the graph of f(x, y) = 6 - 3x - 2y.

A linear function...

1

The equation of the graph is 3x + 2 + z = 6, which represents a plane. To graph it, find the *intercepts* by setting 2 of the 3 variables to 0.

EXAMPLE. Sketch the graph of $g(x,y) = \sqrt{9 - x^2 - y^2}$.

FIGURE 7 Graph of $g(x, y) = \sqrt{9 - x^2 - y^2}$

Square both sides of this equation to obtain $x^2 + y^2 + z^2 = 9$. Since $z \ge 0$, this is the upper part of a sphere whose center the origin and radius 3.

Computer programs can graph functions f(x,y). Traces in the vertical planes x=k and y=k are drawn for equally spaced values of k and parts of the graph are eliminated using hidden line removal.

Level Curves

Beside arrow diagrams and graphs, we visualize a function using level curves, or contour lines, formed by a contour map on which points of constant elevation are joined.

Another example of the temperature functions, the level curves are ${\bf isothermals}.$

For some purpuses, a contour map is more useful than a graph.

Functions of Three or More Variables

It's hard to visualize f(x, y, z) by its graph (four-dimensional space). We examine its **level surfaces**, which are the surfaces of f(x, y, z) = k.

EXAMPLE. Find the level surfaces of $f(x, y, z) = x^2 + y^2 + z^2$.

The level surfaces are $x^2+y^2+z^2=k\geq 0$, which forms a family of concentric spheres with radius \sqrt{k} .

FIGURE 20

Definition

A function of n variables is a rule that assigns a number $z = f(x_1, x_2, \dots, x_n)$ to an n-tuple (x_1, x_2, \dots, x_n) . The set of all n-tuples is \mathbb{R}^n . We can look at it as a function of

- n real variables x_1, x_2, \cdots, x_n .
- A single point (x_1, x_2, \dots, x_n) .
- A single vector $\mathbf{x} = \langle x_1, x_2, \cdots, x_n \rangle$

2 Limits and Continuity

Let's compare 2 functions as (x, y) approach the origin.

$$f(x,y) = \frac{\sin x^2 + y^2}{x^2 + y^2}$$
 and $g(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$

TABLE 1 Values of f(x, y)

x y	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.455	0.759	0.829	0.841	0.829	0.759	0.455
-0.5	0.759	0.959	0.986	0.990	0.986	0.959	0.759
-0.2	0.829	0.986	0.999	1.000	0.999	0.986	0.829
0	0.841	0.990	1.000		1.000	0.990	0.841
0.2	0.829	0.986	0.999	1.000	0.999	0.986	0.829
0.5	0.759	0.959	0.986	0.990	0.986	0.959	0.759
1.0	0.455	0.759	0.829	0.841	0.829	0.759	0.455

TABLE 2 Values of g(x, y)

x y	-1.0	-0.5	-0.2	0	0.2	0.5	1.0
-1.0	0.000	0.600	0.923	1.000	0.923	0.600	0.000
-0.5	-0.600	0.000	0.724	1.000	0.724	0.000	-0.600
-0.2	-0.923	-0.724	0.000	1.000	0.000	-0.724	-0.923
0	-1.000	-1.000	-1.000		-1.000	-1.000	-1.000
0.2	-0.923	-0.724	0.000	1.000	0.000	-0.724	-0.923
0.5	-0.600	0.000	0.724	1.000	0.724	0.000	-0.600
1.0	0.000	0.600	0.923	1.000	0.923	0.600	0.000

It appears that f(x,y) are approaching 1 whereas g(x,y) aren't approaching any number.

Definition: Limit

The domain D includes points arbitrarily close to (a,b). The **limit of** f(x,y) **as** (x,y) **approaches** (a,b) is L.

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for $\forall \varepsilon > 0$, there is a corresponding $\delta > 0$ such that

if
$$(x,y) \in D$$
 and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $f(x,y) - L| < \varepsilon$

Note. |f(x,y) - L| is the distance between f(x,y) and L.

 $\sqrt{(x-a)^2+(y-b)^2}$ is the distance between the point (x,y) and (a,b) .

If $(L - \varepsilon, L + \varepsilon)$ is given, we can find a disk D_{δ} with a center (a, b) and radius $\delta > 0$ such that f maps all the points in D_{δ} (except possibly (a, b)) into $(L - \varepsilon, L + \varepsilon)$.

 $L + \varepsilon$ $L - \varepsilon$ S (a,b)

1 FIGURE 2

1 variable. Recall that for f(x), there are only 2 directions of approach, from the left or from the right. And if $\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$, then $\lim_{x\to a} f(x)$ does not exist.

2 variables. We can't just let (x, y) approach (a, b) from an infinite number of directions. But if the limit exists, the f(x, y) must approach the **same limit** no matter how.

If $f(x,y) \to L_1$ as $(x,y) \to (a,b)$ along a path C_1 and $f(x,y) \to L_2$ as $(x,y) \to (a,b)$ along a path C_2 , where $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.

EXAMPLE. Show that this does not exist

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$$

4

FIGURE 4

Let $f(x,y) = (x^2 - y^2)/(x^2 + y^2)$.

 \square First, let approach (0,0) along the x-axis.

Then y = 0 gives $f(x,0) = x^2/x^2 = 1$ for $\forall x \neq 0$.

 $f(x,y) \to 1$ as $(x,y) \to (0,0)$ along the x-axis

 \square Now, approach along the y-axis by putting x = 0.

Then $f(0,y) = -y^2/y^2 = -1$ for $\forall y \neq 0$.

$$f(x,y) \to -1$$
 as $(x,y) \to (0,0)$ along the y-axis

Since f has 2 different limits along 2 different lines, the given limit does not exist.

EXAMPLE. Does this limit exist?

$$\lim_{(x,y)\to(0,0)} f(x,y) = xy/(x^2 + y^2)$$

FIGURE 5

 \Box If y = 0, then $f(x, 0) = 0/x^2$

 $f(x,y) \to 0$ as $(x,y) \to (0,0)$ along the x-axis

 \Box If x = 0, then $f(0, y) = -/y^2 = 0$, so

 $f(x,y) \to 0$ as $(x,y) \to (0,0)$ along the y-axis

Although we have obtained identical limits along the axes, that does not show the answer is 0. \Box Let's approach (0,0) along another line, say y=x. For all $x\neq 0$,

$$f(x,x) = \frac{x^2}{x^2 + x^2} = \frac{1}{2}$$

Therefore $f(x,y) \to \frac{1}{2}$ as $(x,y) \to (0,0)$ along y=x. The given limit **does not exist**.

The ridge that occurs above the line y=x correspond to the fact that $f(x,y)=\frac{1}{2}$ for all points (x,y) on that line **except the origin**.

TEC In Visual 14.2 a rotating line on the surface in Figure 6 shows different limits at the origin from different directions.

EXAMPLE. Find the limit.

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4}$$

Let's approach along any nonvertical line through the origin. Then y = mx, where m is the slope, then

$$f(x,y) = f(x,mx) = \frac{x(mx)^2}{x^2 + (mx)^4} = \frac{m^2x^3}{x^2 + m^4x^4} = \frac{m^2x}{1 + m^4x^2}$$

So $f(x,y) \to 0$ as $(x,y) \to (0,0)$ along y = mx.

Thus f has the same limiting value along every nonvertical line through the origin. But that does not show that the answer is 0, if we now let $(x, y) \to (0, 0)$ along the parabola $x = y^2$, we have

$$f(x,y) = f(y^2,y) = \frac{y^2 \cdot y^2}{(y^2)^2 + y^4} = \frac{y^4}{2y^4} = \frac{1}{2}$$

Hence, the limit does not exist.

What limits that do exist then?

The limit of a sum the sum of the limits, so does a product. These equations are true.

$$\lim_{(x,y)\to(a,b)} x = a$$

$$\lim_{(x,y)\to(a,b)} y = b$$

$$\lim_{(x,y)\to(a,b)} c = \epsilon$$

The Squeeze Theorem also holds.

EXAMPLE. Find the limit.

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$$

 \square As the previous example, we see that the limit along any line through the origin is 0. Plus, the limits along the parabolas $y=x^2$ and $x=y^2$ are also 0, so we suspect the limit exist and equal to 0.

 \square Let $\varepsilon > 0$. We want to find $\delta > 0$ such that

if
$$0 < \sqrt{x^2 + y^2} < \delta$$
 then $\left| \frac{3x^2y}{x^2 + y^2} - 0 \right| < \varepsilon$

That is,

$$\text{if} \quad 0 < \sqrt{x^2 + y^2} < \delta \quad \text{ then } \quad \frac{3x^2|y|}{x^2 + y^2} < \varepsilon$$

Since $x^2 \le x^2 + y^2$, so $x^2/(x^2 + y^2) \le 1$ and therefore

$$\frac{3x^2|y|}{x^2+y^2} \le 3|y| = 3\sqrt{y^2} \le 3\sqrt{x^2+y^2} < 3\delta$$

Thus we choose $\delta = \varepsilon/3$ and let $0 < \sqrt{x^2 + y^2} < \delta$, then

$$\frac{3x^2|y|}{x^2+y^2} \le 3\sqrt{x^2+y^2} < 3\delta = 3\left(\frac{\varepsilon}{3}\right) = \varepsilon$$

Hence, by the **Definition: Limit**

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$$

Continuity

Limits of *continuous* functions is easy evaluated by direct substitution.

Definition: Continuity

A function f is **continuous at** (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

We say f is **continuous on** D if f is continuous at *every* point (a,b) in D.

A polynomial function of 2 variables is a sum of terms cx^my^n , and a rational function is a ratio of polynomials. For instance,

$$f(x,y) = x^4 + 5x^3y^2 + 6xy^4 - 7y + 6$$

is a polynomial, whereas

$$g(x,y) = \frac{2xy+1}{x^2+y^2}$$

is a rational function. A rational function is *continuous* on its domain because it's a quotient of continuous functions (polynomial).

EXAMPLE.

$$\lim_{(x,y)\to(1,2)} (x^2y^3 - x^3y^2 + 3x + 2y) = 1^2 \cdot 2^3 - 1^3 \cdot 2^2 + 3 \cdot 1 + 2 \cdot 2 = 11$$

EXAMPLE. Let

$$g(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if} \quad (x,y) \neq (0,0) \\ 0 & \text{if} \quad (x,y) = (0,0) \end{cases}$$

Here g is defined at (0,0) but still discontinuous because $\lim_{(x,y)\to(0,0)} g(x,y)$ does not exist.

Composition. If f(x,y) is continuous, and so is g(x), then the composite function $h=g\circ f$, defined by h(x,y)=g(f(x,y)) is continuous.

FIGURE 9 The function $h(x, y) = \arctan(y/x)$ is discontinuous where x = 0.

EXAMPLE. Where is the function $h(x, y) = \arctan(y/x)$ continuous?

The function f(x,y) = y/x is a rational function, and therefore continuous except on the line x = 0. The function $g(t) = \arctan t$ is continuous everywhere. So the composite function g(f(x,y)) is continuous except where x = 0.

Functions of Three or More Variables

It's just the same. For every number $\varepsilon > 0$, there is a corresponding number $\delta > 0$ such that

if
$$(x,y,z)$$
 is in the domain of f and $0<\sqrt{(x-a)^2+(y-b)^2+(z-c)^2}<\delta$ then $|f(x,y,z)-L|<\varepsilon$

The function f is **continuous** at (a, b, c) if

$$\lim_{(x,y,z)\to(a,b,c)} f(x,y,z) = f(a,b,c)$$

EXAMPLE. The function

$$f(x, y, z) = \frac{1}{x^2 + y^2 + z^2 - 1}$$

is a rational function, so it's continuous at every point of \mathbb{R}^3 except where $x^2 + y^2 + z^2 = 1$. In other words, it's discontinuous on the sphere with center the origin and radius 1.

Definition: Limit in \mathbb{R}^n

If $\lim_{x\to a} f(\mathbf{x}) = L$, then it means that for every number $\varepsilon > 0$ there is a corresponding $\delta > 0$ such that

$$\text{if} \quad x \in D \quad \text{and} \quad 0 < |\mathbf{x} - \mathbf{a}| < \delta \quad \text{then} \quad |f(\mathbf{x}) - L| < \varepsilon$$