DATA ANALYTICS (Data Warehouse) Pentaho Data Integration

Luca Cinelli, PhD luca.cinelli@unical.it

Outline

Data Validation

Data Validation

- **Data Cleansing** is to correct mistakes and format for data to improve its quality.
- Data Validation is to ensure that the Data complies with the business rules

• Examples:

- Age field should contain integer type values
- Customer age should be more than 18 years
- Product ID in the sales table should be available in the Product table as well
- Credit Card number/email ID/ Phone number should have a predefined format

Data Validation: Customer data example

CustomerComplete

Age imported
as String
format
should be
integer and
>=0

1	Customer ID	Customer Name	Segment	Age	Country	City	State	Postal Code	Region
2	SO-20335 Sean O'Donnell Consumer 65 Unit		United States	Fort Lauderdale	Florida	33311	South		
3	BH-11710 Brosina Hoffman		Consumer	20	United States	Los Angeles	California	90032	West
4	AA-10480	Andrew Allen	Consumer	50	United States	Concord	North Carolina	28027	South
5	IM-15070	Irene Maddox	Consumer	66	United States	Seattle	Washington	98103	West
6	HP-14815	Harold Pawlan	Home Office	20	United States	Fort Worth	Texas	76106	Central
7	PK-19075	Pete Kriz	Consumer	46	United States	Madison	Wisconsin	53711	Central
8	AG-10270	Alejandro Grove	Consumer	18	United States	West Jordan	Utah	84084	West
9	ZD-21925	Zuschuss Donatelli	Consumer	66	United States	San Francisco	California	94109	West
10	KB-16585	Ken Black	Corporate	67	United States	Fremont	Nebraska	68025	Central
11	SF-20065	Sandra Flanagan	Consumer	41	United States	Philadelphia	Pennsylvania	19140	East
12	EB-13870	Emily Burns	Consumer	34	United States	Orem	Utah	84057	West
13	EH-13945	Eric Hoffmann	Consumer	21	United States	Los Angeles	California	90049	West
14	TB-21520	Tracy Blumstein	Consumer	48	United States	Philadelphia	Pennsylvania	19140	East
15	MA-17560	Matt Abelman	Home Office	19	United States	Houston	Texas	77095	Central
16	GH-14485	Gene Hale	Corporate	28	United States	Richardson	Texas	75080	Central
17	SN-20710	Steve Nguyen	Home Office	46	United States	Houston	Texas	77041	Central
18	LC-16930	Linda Cazamias	Corporate	31	United States	Naperville	Illinois	60540	Central
19	RA-19885	Ruben Ausman	Corporate	51	United States	Los Angeles	Cakifornia	90049	West
20	ES-14080	Erin Smith	Corporate	20	United States	Melbourne	Florida	32935	South
21	ON-18715	Odella Nelson	Corporate	27	United States	Eagan	Minnesota	55122	Central [
22	PO-18865	Patrick O'Donnell	Consumer	64	United States	Westland	Michigan	48185	Central
23	LH-16900	Lena Hernandez	Consumer	66	United States	#Dover	Delaware	19901	East

Data Validation: Customer data example

Data Validation: example - Sales refer to products

Data Validation: example - Sales refer to products

Evecution Results

LXC	Execution results											
EL	Logging 🕖 Execution History 📜 Step Metrics 🗠 Performance Graph 🔁 Metrics 👁 Preview data											
O F	○ First rows ○ Last rows ○ Off											
#	Order_Line	order_ID	Order_Date	Ship_Date	Ship_Mode	Customer_ID	Product_ID	Sales	Quantity	Discount	Profit	
1	1	CA-2014-103	21-06-20	25-06-2	Standard Class	DP-13000	OFF-PA-100001	16.4	2	20	5.5	
2	2	CA-2014-112	22-06-20	26-06-2	Standard Class	PO-19195	OFF-LA-10003223	11.8	3	20	4.3	
3	3	CA-2014-112	22-06-20	26-06-2	Standard Class	PO-19195	OFF-ST-10002743	272.7	3	20	-64.8	
4	4	CA-2014-112	22-06-20	26-06-2	Standard Class	PO-19195	OFF-BI-10004094	3.5	2	80	-5.5	
5	5	CA-2014-141	23-06-20	30-06-2	Standard Class	MB-18085	OFF-AR-10003	19.5	3	20	4.9	
6	6	CA-2014-130	24-06-20	26-06-2	Second Class	LS-17230	OFF-PA-100020	19.4	3	0	9.3	

Data Validation: examples on dates – sales data

the order day= the shipdate values

Data Validation: Common steps

Scenario	Step
Value must have a given data type such as	Select values
String or Date	
Value cannot be null	Filter rows
Numbers or dates should fall inside an	Filter rows (>, <, or = functions)
expected range	
Values must belong to list found in an external	Stream Lookup or Data base
source such as a file or a database	Lookup
Text should not contain certain terms or	Replace in string step
substrings	

Outline

Error Handling

Data Validation: Error Handling

- If some rows do not respect the data validation rules, those are the error rows.
- We need to properly handle error rows.
- Error can be handled in these four ways:
 - 1. Discarding the error rows
 - 2. Separating error rows, processing them and remerging them with the main stream
 - 3. Reporting the error rows to the log
 - 4. Writing the error rows in a file or a dedicated table for further revision

Data Validation: Error Handling – customer

data example

Separating error rows, processing them, and remerging them with the main stream

Data Validation: Error Handling – customer data example

Data Validation: Error Handling – customer data example

Data Validation: Error Handling — example - Sales refer to products

Data Validation: Error Handling – examples on dates – sales data

Logging ② Execution History 📜 Step Metrics 🗠 Performance Graph 🔁 Metrics 👁 Preview data 2020/11/14 22:06:52 - Write to log.0 - -----> Linenr 1-----> 2020/11/14 22:06:52 - Write to log.0 - Reference of product ID not found in Product Lookup 2020/11/14 22:06:52 - Write to log.0 -2020/11/14 22:06:52 - Write to log.0 - Order_Line = 8304 2020/11/14 22:06:52 - Write to log.0 - Order_ID = CA-2017-104024 2020/11/14 22:06:52 - Write to log.0 - Order_Date = 15-02-2020 2020/11/14 22:06:52 - Write to log.0 - Ship_Date = 20-02-2020 2020/11/14 22:06:52 - Write to log.0 - Ship_Mode = Second Class 2020/11/14 22:06:52 - Write to log.0 - Customer_ID = MD-17860 2020/11/14 22:06:52 - Write to log.0 - Product_ID = OFF-AR-11001972 2020/11/14 22:06:52 - Write to log.0 - Sales = 9.4 2020/11/14 22:06:52 - Write to log.0 - Quantity = 7 2020/11/14 22:06:52 - Write to log.0 - Discount = 20 2020/11/14 22:06:52 - Write to log.0 - Profit = 0.7

Outline

Transformation

Transformation: examples

- Concatenating data
- Data aggregation group by
- Normalization and denormalization
- Create number ranges

Transformation: Customer data example - Concatenating address field

• Goal: to combine the data contained in several address fields in one field address, such as city, state, country and postal code.

(CustomerTransformation_check5_ded clean_fuzzy_Validation_errorh_Tconcatenate.ktr)

Transformation: examples

- Concatenating data
- Data aggregation group by
- Normalization and denormalization
- Create number ranges

Transformation: Data aggregation - group by

Examples

- Total sales for each product
- Total money that each customer has paid
- The number of customers that belong to each State

Data aggregation can be done by using the group by step

- Two options:
 - simple group by. It need that the field on which we are grouping should be alphabetically sorted
 - memory group by. We can use it if the data is not sorted by the grouping field

Transformation: Data aggregation - group by - Sales example

• Total sales for each product (SalesTransformation_clean2_validation2_dates_errorH_Tgroupby.ktr)

Transformation: Data aggregation - group by – Customer example

• How many customers belong to each state distributed into the three different segment (CustomerTransformation_check5_ded clean_fuzzy_Validation_errorh_Tconcatenate_Tgb.ktr)

= For each state dividing by
segment, how many customers
are there?

Transformation: examples

- Concatenating data
- Data aggregation group by
- Normalization and denormalization
- Create number ranges

Transformation: Normalizing

Denormalization

Customer segment

States	Consumer	Corporate	Home Office
California	86	45	26
New York	44	24	19
Texas	42	25	7
Pennsylvania	23	18	9
Illinois	14	11	16
Ohio	24	9	5
Washington	27	9	2
North Carolina	17	9	4

States

A pivot table or a cross tabulation of two dimensions

State Segment Number of Customers California Consumer 86 California Corporate 45 California Home Office 26 **New York** Consumer 44 **New York** Corporate 24 **New York** Home Office 19 Texas Consumer 42 Texas Corporate 25 Home Office Texas Pennsylvania Consumer 23 Pennsylvania Corporate 18 Pennsylvania Home Office Illinois Consumer 14 Illinois Corporate 11 Illinois Home Office 16 Ohio Consumer 24 Ohio Corporate Ohio Home Office

Normalization: Convert columns in rows Transformation: Denormalization – Customer example

9 Florida 10 Georgia 11 Illinois 12 Indiana 13 Iowa 14 Kansas

<null>

 How many customers belong to each state distributed into the three different segment

(CustomerTransformation_check5_ded clean_fuzzy_Validation_errorh_Tconcatenat e_Tgb_norm.ktr)

Transformation: examples

- Concatenating data
- Data aggregation group by
- Normalization and denormalization
- Create number ranges

Transformation: Number Range – Customer data example

 Categorize customers on the basis of their age: young, middle aged, and senior citizen

(CustomerTransformation_check5_ded clean fuzzy Validation errorh Tnrange.ktr)

Outline

Fact and Dimension Tables

Facts and Dimensions

- A fact table stores numerical measurements/metrics of the business process as a quantity of anything that can be measured
 - Example: products sold, discounts, taxes, number of invoices
- These measurements are referred to as facts.
- Fact table holds the quantitative data
- Dimension tables contain the textual descriptors of the business. They helps us describe
 the attribute of the data which is contained in the fact
 - Typical dimensions are products, time, customers, and regions.
- Dimension table holds the qualitative information
- In our Example:
 - Sales table is a fact table. It contains information of total sales, number of units sold or profit
 - Customer and Product table are Dimension tables

Technical details: Keys in Dimension Table

- Primary key represent the record, this is the business key
 - Example: customer_ID
- A dimension table must have a technical key also known as a surrogate key.
 - Surrogate keys are always integers
 - The fact table references the surrogate key
- The business key will not available in the fact table but we can find only the surrogate key.
 - Improve storage performance
 - This help also in maintaining privacy for personal information: e.g. a tel num that is used as business key is replaced by a surrogate key
- Dimensions should have a special record for the unavailable data
 - i.e., if you get blank or invalid key, there should be a default value for all attributes
- The **business key/ reference key** is also stored to match the data in the dimension table with the data in the source database.

Technical details: Keys in Dimension Table

In Fact table we will refer to the surrogate key So, it will be a foreign key

Surrogate Key

Business Key

ID	Product ID Category		Sub-Category	Product Name			
1	FUR-BO-10001798	Furniture	Bookcases	Bush Somerset Collection Bookcase			
2	FUR-CH-10000454	Furniture	Chairs	Hon Deluxe Fabric Upholstered Stacking Chairs Rounded Back			
3	OFF-LA-10000240	Office Supplies	Labels	Self-Adhesive Address Labels for Typewriters by Universal			
4	FUR-TA-10000577	Furniture	Tables	Bretford CR4500 Series Slim Rectangular Table			
5	OFF-ST-10000760	Office Supplies	Storage	Eldon Fold N Roll Cart System			

Data Warehouse Data Storage schema

Star Schema vs Snowflake Schema

Star Schema

• A fact table is at the centre which is connected with several dimension tables

Star Schema

Snowflake Schema

 Dimension tables are further connected with sub-dimension tables

SnowFlake Schema

Star Schema vs Snowflake Schema

Star Schema

 A fact table is at the centre which is connected with several dimension tables

Snowflake Schema

 Dimension tables are further connected with sub-dimension tables

