V27 - Der Zeeman-Effekt

Michael Gutnikov michael.gutnikov@udo.edu Lasse Sternemann lasse.sternemann@udo.edu

Abgegeben am 10.12.2021

Inhaltsverzeichnis

1	Ziel									3
2	Theoretische Grundlagen									3
	2.1 Gamma-Strahlen-Quellen .	 								3

1 Ziel

Ziel dieses Versuches ist es die elementspezifische räumliche Zusammensetzung eines Objektes zu bestimmen. Dazu wird die Methodik der Gamma-Tomographie genutzt. Bei dieser werden entlang mehrerer räumlicher Achsen des Objekts Absorptionsmessungen mit Gamma-Strahlung durchgeführt, die in Kombination auf die gesuchte elementspezifische räumliche Zusammensetzung schließen lassen. verschiedener räumlicher

2 Theoretische Grundlagen

2.1 Gamma-Strahlen-Quellen

Für die notwendigen Absorptionsmessungen muss zunächst Gamma-Strahlung erzeugt werden. Gamma-Strahlung beschreibt Photonen mit einer Energie über 200 keV und kann auch verschiedenen Wegen entstehen. Hier soll die Entstehung bei radioaktiven Zerfällen betrachtet werden. Explizit werden die β^- -Zerfälle von 137 Cs und 60 Co betrachtet. Diese Elemente zerfallen zunächst in angeregte Zustände eines weiteren Elements und gehen dann unter Aussendung eines Photons in dessen Grundzustand über. Wie in Abbildung ... zu sehen, kann 137 Cs nur in einen angeregten Zustand von 137 Ba zerfallen. Bei dessen Übergang in den Grundzustand 137 Ba* \rightarrow 137 Ba + γ wird ein Photon der Energie 661,7 keV ausgesendet. Demnach strahlt eine ein 137 Cs mit einer maximalen Intensität bei der angegebenen Energie von 661,7 keV.

Abbildung 1: Die möglichen β^- -Zerfälle von 137 Cs in 137 Ba sowie dessen angeregten Zustand 137 Ba* und anschließender Übergang in den Grundzustand von 137 Ba unter Aussendung eines Photons. Bearbeitet aus

Für den in Abbildung ... skizzierten Zerfall von 60 Co sind Übergänge in zwei verschiedene angeregte Zustände von 60 Ni möglich. Der energetisch höhere Zustand liegt bei 2505,7 keV

und der niedrigere bei 1332,5 keV. Der energetisch niedrigere Zustand geht direkt in den Grundzustand über und es wird ein Photon mit einer Energie von 1332,5 keV ausgesendet. Die Relaxation des energetisch höheren Zustands findet in zwei Schritten statt. Zunächst geht dieser Zustand in den niederenergetischen angeregten Zustand über, wobei ein Photon mit der Energie 1173,2 keV ausgesendet wird. Anschließend geht es in den Grundzustand des 60 Ni über. Aufgrund der zwei angeregten Endzustände des β^- -Zerfalls strahlt eine 60 Co-Quzelle mit zwei charakteristischen Energien.

Abbildung 2: Die möglichen β^- -Zerfälle von 60 Co in die angeregten Zustände von 60 Ni und anschließende Übergänge in den Grundzustand von 60 Ba unter Aussendung zwei Photonen verschiedener Energien. Bearbeitet aus