第五套

一、单项	选择题			
A B	列说法正确的有(《 A.时序数据和横截面数 B.对总体回归模型的显 C.总体回归方程与样本	数据没有差异 显著性检验没有		
Б	\mathbf{R}^2 不可以,	用于衡量拟合位	忧度	
2、所	谓异方差是指(A)		
	$A.Var(u_i) \neq \sigma^2$ $C.Var(u_i) = \sigma^2$	$B.Var(x_i)$ $D.Var(x_i)$		
3、在	给定的显著性水平之	下,若DW统记	计量的下和上临界值分别为d _L 和d	l_U ,
则当 $d_L < d$	$l < d_U$ 时,可认为随机	几误差项(D)	
	A.存在一阶正自相关 C.不存在序列相关	Ė	B.存在一阶负相关 D.存在序列相关与否不能断定	
	利用月度数据构建计 5模式,则应该引入。		,如果一年里的 1、3、5、9 四个, 为(A)	月
Α.	4 B.3	C.11	D.6	
	如联立方程模型中, 量和全部的前定变量)		包含了模型中的全部变量(即全部 程是(D)	祁
			C.过度识别 D.不可识别 值的方差不能正确估计的原因:	是
F	$A.E(u_i^2) \neq \sigma^2$	В.	$.E(u_iu_j)\neq 0 (i\neq j)$	
($C.E(x_i u_i) \neq 0$	D.	$E(u_i) \neq 0$	
7、右	王模型 $Y_t = \beta_1 + \beta_2 X_{2t} + \beta_2 X_{2t}$	$+\beta_{3t}X_{3t}+u_t$ 的国	回归分析结果报告中,有	
F = 26348	89.23, F 的 p 值 = 0.00	00000,则表明	(C)	

A.解释变量 X_{2t} 对 Y_{t} 的影响是显著的

- B.解释变量 X_3 , 对 Y, 的影响是显著的 C.解释变量 X_2 和 X_3 对 Y 的联合影响是显著的 D.解释变量 X_3 , 和 X_3 , 对 Y, 的联合影响均不显著 8、用模型描述现实经济系统的原则是(B) A、模型规模大小要适度,结构尽可能复杂 B、以理论分析作先导,模型规模大小要适度 C、模型规模越大越好;这样更切合实际情况 D、以理论分析作先导,解释变量应包括所有解释变量 9、如果回归模型违背了同方差假定,最小二乘估计是(A) A. 无偏的, 非有效的 B. 有偏的, 非有效的 C. 无偏的,有效的 D. 有偏的,有效的 10、设线性回归模型为 $y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i$, 下列表明变量之间具有完 全多重共线性的是(A) A. $0 * x_1 + 2 * x_2 + 0.2 * x_3 = 0$ B. $0 * x_1 + 2 * x_2 + 0.2 * x_3 + v = 0$ C. $0*x_1+0*x_2+0*x_3=0$ D. $0*x_1+0*x_2+0*x_3+\nu=0$ 其中v为随机误差项 11、对于有限分布滞后模型,解释变量的滞后长度每增加一期,可利用的样 本数据就会(**B**) B. 减少1个 C. 增加2个 D. 减少2个 A. 增加1个 12、关于自适应预期模型和局部调整模型,下列说法错误的有(D) A.它们都是由某种期望模型演变形成的 B.它们最终都是一阶自回归模型 C.它们的经济背景不同 D. 都满足古典线性回归模型的所有假设,故可直接用 OLS 方法进行估
 - 13、在检验异方差的方法中,不正确的是(**D**)
 - A. Goldfeld-Quandt 方法 B. ARCH 检验法
 - C. White 检验法

计

- D. DW 检验法
- 14、边际成本函数为 $C = \alpha_0 + \alpha_1 Q + \alpha_2 Q^2 + \mu$ (C 表示边际成本,Q 表示产 量),则下列说法正确的有(C)
 - A. 模型为非线性模型
- B. 模型为线性模型
- C. 模型中可能存在多重共线性 D. 模型中不应包括 O^2 作为解释变量

- 15、对自回归模型进行估计时,假定原始模型的随机扰动项 u.满足古典线性 回归模型的所有假设,则估计量是一致估计量的模型有(B)

 - A. 库伊克模型 B. 局部调整模型

 - C. 自适应预期模型 D. 自适应预期和局部调整混合模型
 - 16、在 DW 检验中, 当 d 统计量为 0 时, 表明 (A)
 - A.存在完全的正自相关 B.存在完全的负自相关
- - C.不存在自相关
- D.不能判定
- 17、在下列产生序列自相关的原因中,不正确的是(**D**)
 - A.经济变量的惯性作用 B.经济行为的滞后作用

- C.设定偏误
- D.解释变量的共线性
- 18、简化式模型就是把结构式模型中的内生变量表示为(B)
 - A.外生变量和内生变量的函数关系
 - B.前定变量和随机误差项的函数所构成的模型
 - C.滞后变量和随机误差项的函数所构成的模型
 - D.外生变量和随机误差项的函数模型所构成的模型
- 19、加权最小二乘法是(C)的一个特例

 - A.广义差分法 B.普通最小二乘法

 - C.广义最小二乘法 D.两阶段最小二乘法
- 20、回归分析中定义的(**B**)
 - A. 解释变量和被解释变量都是随机变量
 - B. 解释变量为非随机变量,被解释变量为随机变量
 - C. 解释变量和被解释变量都为非随机变量
 - D. 解释变量为随机变量,被解释变量为非随机变量

二、多项选择题

1、关于衣着消费支出模型为: $Y_i = \alpha_1 + \alpha_2 D_{2i} + \alpha_{3i} D_{3i} + \alpha_4 (D_{2i} D_{3i}) + \beta X_i + u_i$, 其中Yi为衣着方面的年度支出; Xi为收入,

$$D_{2i} = \begin{cases} 1 & \text{女性} \\ 0 & \text{男性} \end{cases}$$
, $D_{3i} = \begin{cases} 1 & \text{大学毕业及以上} \\ 0 & \text{其他} \end{cases}$

则关于模型中的参数下列说法正确的是(ABCE)

- A. α ,表示在保持其他条件不变时,女性比男性在衣着消费支出方面多支出 (或少支出)差额
- B. 表示在保持其他条件不变时,大学文凭及以上比其他学历者在衣着消费 支出方面多支出(或少支出)差额
- C. α_4 表示在保持其他条件不变时,女性大学及以上文凭者比男性大学以下 文凭者在衣着消费支出方面多支出(或少支出)差额
- D. α_{α} 表示在保持其他条件不变时,女性比男性大学以下文凭者在衣着消费 支出方面多支出(或少支出)差额
 - E. α_4 表示性别和学历两种属性变量对衣着消费支出的交互影响
 - 2、如果模型中解释变量之间存在共线性,则会引起如下后果(**BCD**)
 - A.参数估计值确定

- B.参数估计值不确定
- C.参数估计值的方差趋于无限大 D.参数的经济意义不正确
- E.DW 统计量落在了不能判定的区域
- 3、应用 DW 检验方法时应满足该方法的假定条件,下列是其假定条件的有 $(\mathbf{A}\mathbf{B}\mathbf{C}\mathbf{D}\mathbf{E})$
 - A.解释变量为非随机的 B.截距离项不为零
- - C.随机误差项服从一阶自回归 D.数据无缺失项
 - E.线性回归模型中不能含有滞后内生变量
 - 4、利用普通最小二乘法求得的样本回归直线 $\hat{Y}_i = \hat{\beta}_i + \hat{\beta}_i X_i$ 具有如下性质

(ACD)

- A. 样本回归线必然通过点 (\bar{X},\bar{Y})
- B. 可能通过点 (\bar{X},\bar{Y})
- C. 残差 e_i 的均值为常数
- D. Y 的平均值与Y 的平均值相等
- E. 残差 e_i 与解释变量 X_i 之间有一定的相关性
- 5、当结构方程为恰好识别时,可选择的估计方法是(CDE)
- A. 最小二乘法 B. 广义差分法 C.间接最小二乘法
- D. 二阶段最小二乘法 E. 有限信息最大似然估计法

- 三、判断题(判断下列命题正误,并说明理由)
- 1、双变量模型中,对样本回归函数整体的显著性检验与斜率系数的显著性 检验是一致的;

正确

最好能够写出一元线性回归模型; F 统计量与 T 统计量的关系,即 $F = t^2$ 的来历; 或者说明一元线性回归仅有一个解释变量,因此对斜率系数的 t 检验等价于对方程的整体性检验。

2、多重共线性问题是随机扰动项违背古典假定引起的。

错误

应该是解释变量之间高度相关引起的。

3、在模型 $Y_t = \beta_1 + \beta_2 X_{2t} + \beta_{3t} X_{3t} + u_t$ 的回归分析结果报告中,有

F = 263489.23 , F的p值 = 0.000000 , 则表明解释变量 X_{2t} 对 Y_{t} 的影响是显著的。

错误

解释变量 X_2 和 X_3 对 Y 的联合影响是显著的

4、结构型模型中的每一个方程都称为结构式方程,结构方程中,解释变量 只可以是前定变量。

错误

结构方程中,解释变量可以是前定变量,也可以是内生变量。

5、通过虚拟变量将属性因素引入计量经济模型,引入虚拟变量的个数与模型有无截距项无关。

错误

模型有截距项时,如果被考察的定性因素有m个相互排斥属性,则模型中引入m-1个虚拟变量,否则会陷入"虚拟变量陷阱";

模型无截距项时,若被考察的定性因素有 m 个相互排斥属性,可以引入 m 个虚拟变量,这时不会出现多重共线性。

四、计算题

1、已知某公司的广告费用(X)与销售额(Y)的统计数据如下表所示:

X(万元)	40	25	20	30	40	40	25	20	50	20	50	20
Y(万元)	490	395	420	475	385	525	480	400	560	365	510	540

- (1) 估计销售额关于广告费用的一元线性回归模型
- (2) 说明参数的经济意义
- (3) 在的显著水平下对参数的显著性进行 t 检验。

解: (1)利用 OLS 法估计样本回归直线为: $\hat{Y}_i = 319.086 + 4.185X_i$

(2)参数的经济意义: 当广告费用每增加1万元, 公司的销售额平均增加4.185万元。

(3)
$$t = \frac{\hat{\beta}_1}{\sqrt{Var(\hat{\beta}_1)}} = 3.79 > t_{0.025}(10)$$
, 广告费用对销售额的影响是显著的。

2、设某商品的需求模型为 $Y_t = \beta_0 + \beta_1 X_{t+1}^* + u_t$,式中,Y 是商品的需求量, X_{t+1}^* 是人们对未来价格水平的预期,在自适应预期假设 $X_{t+1}^* - X_t^* = r(X_t - X_t^*)$ 下,通过适当变换,使模型中变量 X_{t+1}^* 成为可观测的变量。

解:将自适应预期假设写成 $X_{t+1}^* - (1-r)X_t^* = rX_t$

原模型
$$Y_t = \beta_0 + \beta_1 X_{t+1}^* + u_t$$
 ①

将①滞后一期并乘以(1-r),有

$$(1-r)Y_{t-1} = \beta_0(1-r) + \beta_1(1-r)X_t^* + (1-r)u_{t-1}$$

①式减去②式,整理后得到

$$Y_{t} = r\beta_{0} + r\beta_{1}X_{t} + (1-r)Y_{t-1} + v_{t}$$

式中: $V_t = U_t - (1-r)U_{t-1}$

3、根据某城市 1978——1998 年人均储蓄与人均收入的数据资料建立了如下 回归模型:

$$\hat{y} = -2187.521 + 1.6843x$$

se= (340.0103) (0.0622)
 $R^2 = 0.9748, S.E. = 1065.425, DW = 0.2934, F = 733.6066$

试求解以下问题:

(1) 取时间段 1978——1985 和 1991——1998, 分别建立两个模型。

模型 1:
$$\hat{y} = -145.4415 + 0.3971x$$

 $t = (-8.7302) (25.4269)$
 $R^2 = 0.9908, \sum e_1^2 = 1372.202$

模型 2:
$$\hat{y} = -4602.365 + 1.9525x$$

 $t = (-5.0660) (18.4094)$
 $R^2 = 0.9826, \sum e_2^2 = 5811189$

计算 F 统计量,即 $F = \sum e_2^2 / \sum e_1^2 = 5811189 / 1372.202 = 4334.9370$,给定 $\alpha = 0.05$,查 F 分布表,得临界值 $F_{0.05}(6,6) = 4.28$ 。请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么?

(2) 利用 y 对 x 回归所得的残差平方构造一个辅助回归函数:

$$\hat{\sigma}_{t}^{2} = 242407.2 + 1.2299 \hat{\sigma}_{t-1}^{2} - 1.4090 \hat{\sigma}_{t-2}^{2} + 1.0188 \hat{\sigma}_{t-3}^{2}$$

$$R^2 = 0.5659$$
, H $\text{\'{g}}$ $(n-p)R^2 = 18*0.5659 = 10.1862$

给定显著性水平 $\alpha=0.05$,查 χ^2 分布表,得临界值 $\chi_{0.05}(3)=7.81$,其中 p=3,自由度。请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么?

- (3) 试比较(1) 和(2) 两种方法,给出简要评价。
- 解: (1) 这是异方差检验,使用的是样本分段拟和(Goldfeld-Quant),F = 4334.937 > 4.28,因此拒绝原假设,表明模型中存在异方差。
- (2) 这是异方差 **ARCH** 检验, $(n-p)R^2 = 18*0.5659 = 10.1862 > 7.81$,所以拒绝原假设,表明模型中存在异方差。
- (3)这两种方法都是用于检验异方差。但二者适用条件不同:A、 Goldfeld-Quandt 要求大样本; 扰动项正态分布; 可用于截面数据和时间序列数据。B、ARCH 检验仅适宜于时间序列数据,检验统计量的极限分布为 χ^2 -分布。