Introduction to Deep Learning

by Dr. Rishikesh Yadav

September 10, 2025

Assistant Professor, School of Mathematical and Statistical Sciences, IIT Mandi, India

Table of Contents – Introduction to Deep Learning

- 1. What are AI, ML, and DL?
- 2. Applications of Deep Learning
- 3. Historical Development of Deep Learning
- 4. Required Tools to Learn DL
- 5. Our Plans for the Reading Group

What are AI, ML, and DL?

Relationship: AI, ML, and DL?

Relation between AI, ML, DL¹.

- Al = Broad goal: build intelligent systems.
- ML = A way to achieve AI using data-driven learning.
- DL = A modern ML technique using deep neural networks.
- Hierarchy: AI ⊃ ML ⊃ DL.

Mathematics is everywhere and plays a key role in building the theoretical foundation.

Mathematicians provide the backbone: optimization, probability, high-dimensional analysis.

¹WW Hseih (2022). Evolution of machine learning in environmental science—A perspective. Environmental Data Science

AI, ML, and DL Overview

- What is Artificial Intelligence (AI)?
 - Artificial Intelligence (AI) is the broad field of making machines "think and act like humans".
 - Includes: reasoning, problem-solving, learning, planning.
 - Al is the umbrella term that covers both Machine Learning (ML) and Deep Learning (DL).
- What is Machine Learning (ML)?
 - Machine Learning (ML) is a subset of Al.
 - Focuses on algorithms that learn patterns from data without being explicitly programmed.
 - Examples:
 - Supervised learning: classification, regression.
 - Unsupervised learning: clustering, dimensionality reduction.
 - Reinforcement learning: decision-making through rewards.
- What is Deep Learning (DL)?
 - Deep Learning (DL) is a subset of ML.
 - Uses artificial neural networks with many layers (depth) inspired by the structure of the human brain.
 - Good at handling high-dimensional data such as images, text, speech.

Why Deep Learning is Popular Today

- Availability of big data.
- Increase in computational power (GPUs, TPUs).
- Advances in algorithms (better training methods, optimizers).
- Success in real-world applications: computer vision, natural language processing, speech recognition and many more.

Number of publications in CS, worldwise 2013-23.

Number of publications by topics, 2013-23.

Applications of Deep Learning

Applications of Deep Learning

- Deep Learning is everywhere in our daily lives.
- Different neural network architectures are suited to different tasks.
- Applications span across science, industry, medicine, entertainment, and daily utilities.

Computer Vision Applications

- Image Classification & Recognition Face unlock on phones, airport screening.
 Algorithm: Convolutional Neural Networks (CNNs).
- Object Detection Self-driving cars recognizing pedestrians and vehicles.
 Algorithms: YOLO, Faster R-CNN.
- Medical Imaging Detecting tumors, X-ray analysis. CNNs, U-Net (segmentation).

Natural Language Processing (NLP)

- Machine Translation Google Translate. Algorithms: Recurrent Neural Networks (RNNs), Transformers.
- Chatbots & Assistants Siri, Alexa, ChatGPT. Transformers, Large Language Models (LLMs).
- Text Summarization & Sentiment Analysis. BERT, GPT-family models.

Other Applications of Deep Learning

Speech and Audio Applications

- Speech Recognition Voice typing, dictation apps. RNNs, LSTMs, Transformers (Wav2Vec).
- Voice Assistants Alexa, Google Assistant. End-to-End Speech Models.
- Music Generation Al composing songs. GANs, Sequence Models.

Healthcare and Life Sciences

- Disease Diagnosis Al detecting diabetic retinopathy, cancers.
 CNNs, Ensemble Models.
- Drug Discovery Predicting molecule properties. Graph Neural Networks (GNNs).
- Personalized Medicine. Deep Reinforcement Learning, Bayesian DL.

Science and Engineering Applications

- Climate Modeling & Weather Forecasting. Spatiotemporal DL Models.
- Physics Simulations Al accelerating fluid dynamics, particle simulations. Physics-Informed Neural Nets (PINNs).
- Astronomy Galaxy classification, exoplanet detection. CNNs, Autoencoders.

Deep Learning in Daily Life

- Recommendation Systems Netflix, YouTube, Amazon. DL + Collaborative Filtering, Embedding Models.
- Finance & Banking Fraud detection, credit scoring. RNNs, Autoencoders, Graph DL.
- Transportation Google Maps predicting traffic. Spatiotemporal Graph Networks.
- Social Media Instagram filters, auto-captioning. GANs, CNNs.

Historical Development of Deep

Learning

Early Origins of Neural Networks (1940s–1960s)

- McCulloch & Pitts (1943): First neuron model².
 - Inspired by biology: proposed neurons as simple binary threshold logic units.
 - Key idea: networks of such units can compute logical functions.
- Hebbian Learning (1949): "Neurons that fire together, wire together." 3
 - Core principle: connections between neurons strengthen when activated together.
 - Limitation: unsupervised and biologically inspired, but mathematically vague at the time.
- Rosenblatt's Perceptron (1958): First trainable neural network⁴.
 - Innovation: introduced a supervised learning rule for adjusting weights.

²W. McCulloch, W. Pitts, "A logical calculus of the ideas immanent in nervous activity," *Bull. Math. Biophys.*, 1943.

³D. Hebb, The Organization of Behavior, 1949.

⁴F. Rosenblatt, "The Perceptron, A probabilistic model for information storage and organization in the brain," *Psychological Review*, 1958.

First Al Winter (1970s)

- Minsky & Papert (1969): Limitations of Perceptrons⁵.
 - Contribution: provided mathematical analysis of perceptrons.
 - Key finding: single-layer perceptrons cannot solve non-linearly separable problems (e.g., XOR).
 - Long-term value: highlighted the need for multi-layer architectures.
- Consequence: Loss of funding and interest in neural networks.
 - Funding agencies (DARPA, NSF): reduced support for AI research due to unmet expectations.
 - Public perception: Al seen as overhyped and underdelivering.
 - Shift in focus: research moved toward symbolic AI (logic-based systems) during this period.
- Mathematics' Role: Formal proofs of limitations.
 - Provided clarity: precise theorems about linear separability and perceptron capabilities.
 - Influenced theory: laid groundwork for computational learning theory.
 - But: reinforced skepticism about neural networks' practical usefulness at the time.

⁵ M. Minsky, S. Papert, Perceptrons: An Introduction to Computational Geometry, 1969.

Backpropagation Revolution (1980s)

- Werbos (1974): Introduction of Backpropagation⁶.
 - Core idea: used the chain rule of calculus to efficiently compute gradients in multi-layer networks.
 - Importance: allowed training of deeper models compared to single-layer perceptrons.
 - Limitation: remained largely unnoticed in the 1970s, as computing power and datasets were limited.
- Rumelhart, Hinton & Williams (1986): Popularization of Backpropagation⁷.
 - Breakthrough: demonstrated successful training of multi-layer NNs.
 - Challenge: still slow to train on large, real-world datasets of the time.
- Enabled Multilayer Neural Networks
 - Overcame: limitations of single-layer perceptrons (e.g., XOR).
 - Led to: revival of neural networks research after the First Al Winter.
 - Issue: still vulnerable to vanishing gradients in very deep networks.

 $^{^6}$ P. Werbos, "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences," PhD thesis, Harvard, 1974.

⁷ D. Rumelhart, G. Hinton, R. Williams, "Learning Representations by Back-propagating Errors," Nature, 1986.

Second Al Winter (1987–1995)

- Neural Nets vs. Symbolic Al Debate
 - Symbolic Al: focused on logic, rules, and expert systems (knowledge-based reasoning).
 - Neural networks: emphasized learning from data via connectionist models.
 - Conflict: symbolic Al dominated research funding, while neural nets were still seen as limited.
- Hardware and Data Insufficient for Neural Nets
 - Computing power: CPUs of the era too slow for large-scale training.
 - Data availability: datasets were small and not representative of real-world complexity.
 - Result: neural nets struggled to scale beyond small toy problems.
- In this time, Neural networks were largely sidelined in favor of statistical approaches.

Resurgence via Statistical Learning (1990s–2000s)

- Vapnik: Support Vector Machines (SVMs)⁸.
 - Core idea: maximize the margin between classes for better generalization.
 - Kernel trick: enabled solving non-linear problems by mapping inputs into higher-dimensional feature spaces.
 - Limitation: computationally expensive for very large datasets; less effective with raw high-dimensional data (e.g., images).
- Pearl: Probabilistic Graphical Models⁹.
 - represented complex dependencies between variables using graphs (Bayesian networks, Markov networks).
- Jordan (1990s): Variational Methods and Bayesian Networks.
- Mathematics Foundations: Convex optimization, functional analysis, probability.
 - Convex optimization: ensured global minima for SVMs and related models.
 - Functional analysis: supported kernel methods and reproducing kernel Hilbert spaces (RKHS).

⁸V. Vapnik, *The Nature of Statistical Learning Theory*, 1995; Recent edition in 2013.

⁹ J. Pearl, Probabilistic Reasoning in Intelligent Systems, 1988; Recent edition in 2014.

Deep Learning Boom (2006–2015)

- Hinton et al. (2006): Deep Belief Networks (DBNs)¹⁰.
 - Core idea: stacked Restricted Boltzmann Machines trained layer-by-layer in an unsupervised manner. This reintroduced deep learning to the research community after the second Al winter.
- ImageNet Breakthrough (Krizhevsky, Sutskever, Hinton, 2012)¹¹.
 - AlexNet: deep convolutional neural network with ReLU activations, dropout, and GPU acceleration. Key Achievement: reduced ImageNet classification error by nearly half, a massive leap forward.
- Mikolov et al. (2013): Word2Vec Embeddings¹².
 - Innovation: represented words as dense vectors capturing semantic meaning. This revolutionized NLP, enabling analogies.
- Goodfellow et al. (2014): Generative Adversarial Networks (GANs)¹³.
 - Idea: generator vs. discriminator game to learn realistic data generation.

 $^{^{10}}$ G. Hinton, S. Osindero, Y. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, 2006.

¹¹ A. Krizhevsky, I. Sutskever, G. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," NIPS, 2012.

 $^{^{12}\}mathsf{T}.\ \mathsf{Mikolov}\ \mathsf{et}\ \mathsf{al.},\ \mathsf{"Efficient}\ \mathsf{Estimation}\ \mathsf{of}\ \mathsf{Word}\ \mathsf{Representations}\ \mathsf{in}\ \mathsf{Vector}\ \mathsf{Space}, \mathsf{"}\ \mathsf{arXiv:}1301.3781.$

¹³ I. Goodfellow et al., "Generative Adversarial Nets," NIPS, 2014.

Modern Era (2017–Present)

- Vaswani et al. (2017): Transformers¹⁴.
 - Key idea: replaced recurrence and convolutions with self-attention.
 Around 200k citations
 - Impact: enabled efficient parallel training and captured long-range dependencies.
- Large Language Models (LLMs): GPT, BERT.
 - Advances: pretraining on massive corpora with fine-tuning or in-context learning.
 - Impact: revolutionized NLP, coding, reasoning, and multimodal AI (e.g., GPT-4, Gemini, Claude).
- Multimodal & Reinforcement Learning Advances.
 - AlphaGo/AlphaZero (2016-2018): deep RL + search, breakthrough in strategic games.
 - Diffusion models (2020+): new generative paradigm for images (e.g., Stable Diffusion, DALL·E).
 - Multimodal Al: unifying vision, text, speech (e.g., CLIP, Flamingo, GPT-4V).

¹⁴A. Vaswani et al., "Attention is All You Need," NeurIPS, 2017.

The Big 3 Heroes of Deep Learning

(a) Yann LeCun – Chief Al Scientist at Meta, Prof. at NYU Pioneer of CNNs (Convolutional Neural Networks)^a

(b) Geoffrey Hinton –
Prof. Emeritus at
Toronto, Adviser at
Vector Inst.
Backpropagation, deep
belief networks^a
Received 2024 Nobel
Prize in Physics.

(c) Yoshua Bengio – Prof. at Université de Montréal, Mila Institute Foundations of deep learning, generative models

17

^aY. LeCun et al., "Gradient-based learning applied to document recognition," Proc. IEEE, 1998.

aRumelhart, Hinton, Williams, "Learning Representations by Back-Propagating Errors," Nature, 1986.

Other Ground-Breaking Contributors

- Jürgen Schmidhuber IDSIA, Switzerland Long Short-Term Memory (LSTM)¹⁵
- Sepp Hochreiter JKU Linz, Austria
 Co-inventor of LSTM, now driving AI in bioinformatics.
- Ian Goodfellow Apple, ex-OpenAl/Google
 Invented GANs (Generative Adversarial Networks)¹⁶
- Andrew Ng Stanford Univ., DeepLearning.Al Massive impact via online education and applied deep learning.

 $^{^{15}}$ S. Hochreiter, J. Schmidhuber, "Long Short-Term Memory," Neural Computation, 1997.

¹⁶Goodfellow et al., "Generative Adversarial Nets," NeurIPS, 2014.

Historical Foundations

- Frank Rosenblatt Inventor of the Perceptron (1958).
- Marvin Minsky & Seymour Papert Showed limitations of perceptrons (1969).
- Paul Werbos First described backpropagation (1974, PhD thesis).

Required Tools to Learn DL

Mathematical Tools

- Linear Algebra vectors, matrices, eigenvalues.
 - Neural nets = compositions of linear maps + nonlinearities.
 - Key ops: dot products, SVD, eigendecomposition.
- Probability & Statistics distributions, Bayesian methods.
 - Uncertainty modeling, Bayesian priors, likelihood.
 - Applications: dropout, variational inference.
- Calculus differentiation, gradients, optimization.
 - Backpropagation = repeated chain rule.
 - Gradient descent = discrete dynamical system.
- Optimization Theory convex analysis, gradient descent.
 - Convex optimization ensures global minima (e.g., SVMs).
 - Non-convex DL optimization studied via dynamical systems.

These are the mathematical backbone of Deep Learning. No doubt you all know much more than that.

Programming Foundations

- Programming Language: Python most widely used in AI/ML/DL. (we will use throughput)
 - Reason: clean syntax, huge ecosystem, numerical + scientific packages.
 - Alternative: R (good for statistics, but less popular for ML/DL).
- Mathematical Libraries: NumPy, SciPy, SymPy.
 - NumPy: linear algebra, tensors (good enough for basic use).
 - SciPy: optimization, special functions.
 - SymPy: symbolic algebra (useful for derivations).
- Data Handling: Pandas, SQL, basic wrangling.
 - Pandas: tabular data (like matrices for applied mathematicians).
 - SQL: structured data queries.

For documentation: Jupyter Notebooks (we will use throughput)

Deep Learning Frameworks

- TensorFlow (Google) scalable for research & production. (This is the one we will use throughout the reading group)
- PyTorch (Meta) flexible, Pythonic, favored by researchers.
- JAX (Google) high-performance, automatic differentiation.
- Keras: simple API for beginners.
- Why? Provide ready-made building blocks (autograd, layers, optimizers).

Computational Tools

- GPUs & TPUs parallel linear algebra operations.
 - NVIDIA CUDA GPUs dominate current DL.
 - TPUs (Google): specialized for tensor ops.
- Cloud Platforms:
 - Google Colab (This is the one we will use throughout the reading group)
 - AWS
 - Azure
 - Kaggle.
- Local Workstations: CUDA-enabled NVIDIA GPUs.
- Why? Training DL models without GPUs is prohibitively slow.

Dont worry! You will get all of this in your Google Colab, mostly for free, but for limited uses

Our Plans for the Reading Group

Resources and Code

• All slides, code, and reading material will be available on GitHub:

https://github.com/yadavrishikesh/Deep-Learning-Slides-Code

 This will include organized topics every week with structured notes, code, and references.