Estimativas de projeto

Engenharia de Software 2017.1 - Desenvolvimento de um jogo

Igor Pires dos Santos, Jorão Gomes Junior, Lucas Carvalho Ribeiro, Pedro Henrique Gasparetto Lugão

11 de maio de 2017 - UFJF

Métricas orientadas à função

- Concentram-se nas funcionalidades pedidas
- Independente da linguagem ou tecnologia utilizada
- Medem o software através da visão do usuário final
- Exemplos: Pontos por função, pontos por caso de uso

Métrica escolhida : Pontos por caso de uso

- Criado em 1993, inspirada na análise de pontos por função, com uma abordagem mais focada em OO
- Ao invés de focar nas funções, busca medir como as entidades se relacionam dentro de um caso de uso
- Atribui pontos aos casos de uso, resultando em uma estimativa que analisa os requisitos e os atores com uma visão ainda de alto nível
- Pode ser executado na fase da análise de casos de uso.
 Para uma melhor análise do caso de uso, é recomendado o uso dos diagramas de sequência

Aplicação

- Jogo com funções limitadas ao protótipo definido no cronograma
- Documentos gerados:
 - Diagrama de casos de uso
 - Diagrama de classes
 - Diagramas de sequência

Passo 1: Cálculo do UAW

 Unadjusted Actor Weight: classifica os atores em níveis de complexidades, e soma os pesos dos atores identificados

Complexidade	Peso	Descrição	
Simples	1	Ambiente externo acessado por API	
Médio	2	Sistema externo acessado por protocolo de comunicação	
Complexo	3	Interage com o sistema através de uma interface gráfica	

Passo 1: Cálculo do UAW - Aplicação

Atores identificados: Sistema e Usuário

Peso	Quantidade	Peso total
1	1	1
2	0	0
3	1	3

$$UAW = 4$$

Passo 2: Cálculo do UUCW

 Unadjusted Use Case Weight: classifica os casos de uso em níveis de complexidade, atribuindo pesos e realizando um somatório no fim

Complexidade	Peso	Descrição
Simples	5	Possui 3 ou menos transações entre entidades
Médio	10	Possui de 4 a 7 transações entre entidades
Complexo	15	Possui mais de 7 transações entre entidades

Passo 2: Cálculo do UUCW - Aplicação

 Foram utilizados os diagramas de sequência para o cálculo de complexidades. Segue exemplo do caso de uso "Contar moedas":

5 transações Complexidade Média

Passo 2: Cálculo do UUCW - Aplicação

• Realizamos a mesma análise com os outros 12 casos de uso identificados, e chegamos na seguinte contagem:

Peso	Quantidade	Peso total
5	9	45
10	3	30
15	1	15

UUCW = 90

Passo 3: Cálculo do UUCP

- Unadjusted Use Case Point : é simplesmente a soma dos valores encontrados anteriormente. A partir daqui veremos como ajustar o valor
- UUCP = UAW + UUCW = 94

Passo 4: Cálculo do TCF

- Technical Complexity Factor: analisa fatores técnicos que podem influenciar no desenvolvimento, gerando um fator de ajuste
- Para cada fator listado na tabela, deve ser identificado um valor de 0 a 5 que determina sua influência no sistema
- É obtido então o valor Tfactor, que é o somatório dos valores de influência multiplicados pelos seus pesos
- O TCF é então obtido pela fórmula: TCF = 0.6 + (0.01 * Tfactor)

Passo 4: Cálculo do TCF - Aplicação

Fator	Requisito	Peso	Influência	Resultado	
T1	Sistema distribuído	2	0	0	
T2	Tempo de resposta	2	5	10	
T3	Eficiência	1	4	4	Tfactor $=32$.
T4	Processamento complexo	1	1	1	
T5	Código reusável	1	3	3	
Т6	Facilidade de instalação	0.5	1	0.5	TCF =0.925
T7	Facilidade de uso	0.5	4	2	101 =0.923
T8	Portabilidade	2	4	8	
Т9	Facilidade de mudança	1	2	2	
T10	Concorrência	1	0	0	
T11	Recursos de segurança	1	2	2	
T12	Acessível por terceiros	1	0	0	
T13	Requer treinamento especial	1	0	0	

Passo 5: Cálculo do ECF

- Environmental Complexity Factor: analisa fatores externos que podem influenciar no desenvolvimento, gerando um fator de ajuste
- Para cada fator listado na tabela, deve ser identificado um valor de 0 a 5 que determina sua influência no sistema
- É obtido então o valor Efactor, que é o somatório dos valores de influência multiplicados pelos seus pesos
- O ECF é então obtido pela fórmula: ECF = 1.4 (0.03 * Efactor)

Passo 5: Cálculo do ECF - Aplicação

Fator	Descrição	Peso	Influência	Resultado	
E1	Familiaridade com RUP ou outro processo formal	1.5	2	3	
E2	Experiência com a aplicação em desenvolvimento	0.5	2	1	Efactor =15
E3	Experiência em Orientação a Objetos	1	4	4	ECF =0.95
E4	Presença de analista experiente	0.5	0	0	
E5	Motivação	1	4	4	
E6	Requisitos estáveis	2	5	10	
E7	Desenvolvedores em meio-expediente	-1	5	-5	
E8	Linguagem de programação difícil	-1	2	-2	

Passo 6: Cálculo do UCP

- Use Case Points: Finalmente chegamos no valor final da métrica multiplicando os 3 últimos valores obtidos
- UCP = UUCP * TCF * ECF = 82.6025
- Com isso, podemos gerar algumas estimativas

Estimativas

Temos que o UCP do sistema vale 82.6025

- Gustav Karner, o criador da métrica, sugere que 1 ponto do UCP equivale a 20 horas/homem de trabalho
- Ajustaremos esse valor para 8 horas/homem, com base na nossa análise empírica de alguns casos de uso
- Estimativa (Tempo) = UCP * 8 = 660.82
- Vale notar que a partir daí podemos também obter um valor de custo, com um valor estimado da hora paga a um funcionário

Referências

- https://en.wikipedia.org/wiki/Use_Case_Points
- http:// www.csi.uneb.br/engenharia_de_software/anexos/Artigo-MetricasdeSoftware.pdf
- www.facom.ufu.br/~
 bacala/MDS/Metricas%20Ucases.ppt
- https://pt.wikipedia.org/wiki/M%C3%A9trica_de_softwar e#M.C3.A9tricas_Orientadas_. C3.A0_Fun.C3.A7.C3.A3o