Cache-in-the-Middle (CITM) Attacks:

Manipulating Sensitive Data in Isolated Execution Environments

Jie Wang^{1,2,3}, Kun Sun², Lingguang Lei^{1,3}, Shengye Wan^{2,4}, Yuewu Wang^{1,3}, and Jiwu Jing⁵

¹SKLOIS, Institute of Information Engineering, CAS, China

²Department of Information Sciences and Technology, CSIS, George Mason University

³School of Cyber Security, University of Chinese Academy of Sciences, China

⁴Department of Computer Science, College of William and Mary

⁵School of Computer Science and Technology, University of Chinese Academy of Sciences

ACM CCS, November 2020

ARM-based Trusted Execution Environment (TEE)

- ➤ Increased trusted computing base (TCB) in Secure World.
- Manufacturers prefer to only install their own applications with strict assessment.

Isolated Execution Environment (IEE)

TrustICE (DSN 2015), SANCTUARY (NDSS 2019), Ginseng (NDSS 2019),

Introducing a new design: Isolated Execution Environment

Isolated Execution Environment (IEE)

- > Creating Isolated Execution Environments (called IEEs) in the normal world.
- Using the IEE monitor in the secure world to ensure the security of IEEs.

Isolated Execution Environment (IEE)

- Improving the limitation of TEE systems
- ➤ Minimize the TCB of the secure world by only installing an IEE Monitor.
- More third-party applications can be imported for the enhanced security protection.

Cache-in-the-Middle (CITM) Attacks

Cache-in-the-Middle (CITM) Attacks

Some existing systems ignore the security of data in the cache.

Cache-in-the-Middle (CITM) Attacks

Some existing systems ignore the security of data in the cache.

Attackers can manipulate the cache to influence the protection of IEE systems.

IEE systems are protected ① when they are running concurrently with untrusted procedures,

② when they are suspended or finished and ③ when they are resumed or started.

Core-isolated storage

The core-isolated storage can only be accessed by the core executing security-sensitive applications and is inaccessible to the other cores.

IEE systems are protected 1 when they are running concurrently with untrusted procedures,

2 when they are suspended or finished and 3 when they are resumed or started.

Enforcing security measures during the context switching processes.

Preventing sensitive data leakage during switching out.

Restoring the sensitive data during switching in.

- Core-isolated storage
 - Attack I: Manipulating data of core-isolated memory.

- Security measures during the context switching processes
 - Attack II: Bypassing security measures.
 - Attack III: Misusing incomplete security measures.

- Core-isolated storage
 - Attack I: Manipulating data of core-isolated memory.

- Security measures during the context switching processes
 - Attack II: Bypassing security measures.
 - Attack III: Misusing incomplete security measures.

Attack I: Manipulating Data of Core-isolated Memory

Configuration of core-isolated storage. (e.g., SANCTUARY)

- Configuring core-isolated memory.
- > Excluding the L2 shared cache.

Attack I: Manipulating Data of Core-isolated Memory

Utilizing the shareability attribute of L1 cache.

- ➤ Value coherency of L1 data cache.
- Manipulating L1 data cache to get data of core-isolated memory.

- Core-isolated storage
 - Attack I: Manipulating data of core-isolated memory.

- Security measures during the context switching processes
 - Attack II: Bypassing security measures.
 - Attack III: Misusing incomplete security measures.

Attack II: Bypassing Security Measures

Accessing secure memory to trigger security measures when switching

out (e.g., Ginseng)

Attack II: Bypassing Security Measures

Analyzing the security measures with cache

Attack II: Bypassing Security Measures

Bypassing the security measures

- Core-isolated storage
 - Attack I: Manipulating data of core-isolated memory.

- Security measures during the context switching processes
 - Attack II: Bypassing security measures.
 - Attack III: Misusing incomplete security measures.

Configuring memory during the context switching processes (e.g., TrustICE)

Security-sensitive Applications (Suspended) Access Access IEE Memory

> The switching out process configures the memory as secure.

Configuring memory during the context switching processes (e.g., TrustICE)

- > The switching out process configures the memory as secure.
- The switching in process configures the memory as non-secure and suspends the untrusted rich OS.

Memory configuration doesn't influence the security of cache

Switching Out

Memory configuration doesn't influence the security of cache

Switching Out

➤ Manipulating IEE cache when untrusted rich OS is running.

Memory configuration doesn't influence the security of cache

- ➤ Manipulating IEE cache when untrusted rich OS is running
- > Reading polluted IEE cache when security-sensitive applications are running

Countermeasure

- Secure cache attributes
 - (e.g., write-through, non-shareable)
- Cache cleaning operation
- Enforcing secure cache attributes
 - Interposing all page table update operations

Conclusions

We must realize the importance of considering memory and cache together when designing IEE systems.

Thank you!

Questions?