Funktionalanalysis Hausaufgaben Blatt 2

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 29, 2024)

Problem 1. Let V be a \mathbb{K} -valued vector space. A seminorm on V is a homogeneous map $p:V\to [0,\infty)$ satisfying the triangle inequality, i.e.

$$p(v+w) \le p(v) + p(w)$$

and

$$p(\lambda v) = |\lambda| p(v)$$

for any two vectors $v, w \in V$ and every scalar $\lambda \in \mathbb{K}$.

(a) Show that the kernel of a seminorm p is a subspace of V.

Given a seminorm p, we say that two vectors $v, w \in V$ are equivalent if there is a vector $u \in \ker p$ such that w = v + u. Make yourself clear that this yields an equivalence relation on V.

- (b) Show that the quotient space $V/\ker\,p:=V/\sim$ carries a canonical linear structure.
- (c) Show that the map

$$\overline{p}: V/\ker p \ni [v] \mapsto p(v)$$

yields a well-defined norm on the quotient space.

Proof. (a) Clear by definition

(b) Also clear

Problem 2. Let M be a topological space. Show that the space $(C_b(M), \|\cdot\|_{\infty})$ of continuous and bounded \mathbb{K} -valued functions endowed with the supremum norm is complete.

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Problem 3. In this exercise we weaken the conditions of Homework 2 by considering functions that are only essentially bounded. The goal is to find a suitable seminorm on this function space such that the corresponding quotient becomes a Banach space. But first, we shall settle the term "essentially bounded". To this end, we need the following definitions:

Let X be a set and $\mathfrak{a} \in 2^X$. We call \mathfrak{a} a σ -algebra if

- $\varnothing \in \mathfrak{n}$,
- $X \setminus A \in \mathfrak{a}$ for every $A \in \mathfrak{a}$ and
- $\bigcup_{n\in\mathbb{N}} A_n \in \mathfrak{a}$ for every sequence $(A_n)_{n\in\mathbb{N}} \subset \mathfrak{a}$

The pair (X, \mathfrak{a}) is called a measurable space. One can check that for every $A \in \mathfrak{a}$ one obtains a new σ -algebra $a|_{X \setminus A} \subseteq 2^{X \setminus A}$, where $B \in \mathfrak{a}_{X \setminus A}$ iff there is some $C \in \mathfrak{a}$ such that $B = C \setminus A$.

A function $f:(X,\mathfrak{a})\to\mathbb{K}$ if $f^{-1}(B_r(z))\subseteq\mathfrak{a}$ for every $z\in\mathbb{K}$ and r>0. We denote the set of measurable \mathbb{K} -valued functions by $\mathcal{M}(X,a)$. Clearly, the restriction of a measurable function $f\in\mathcal{M}(X,a)$ to $X\setminus A$ yields a measurable function $f|_{X\setminus A}\in\mathcal{M}(X\setminus A,\mathfrak{a}|_{X\setminus A})$.

Finally, a subset $\mathfrak{n} \subseteq \mathfrak{a}$ is called a σ -ideal if

- $\varnothing \in \mathfrak{n}$,
- $\bigcup_{n\in\mathbb{N}} A_n \in \mathfrak{a}$ for every sequence $(A_n)_{n\in\mathbb{N}} \subset \mathfrak{n}$ and
- for all $A \in \mathfrak{n}$ and $B \in \mathfrak{a}$ one has the implication $B \subseteq A \implies B \in \mathfrak{n}$.
- (a) For $f \in \mathcal{M}(X, \mathfrak{a})$ we define the essential range

ess range
$$(f) := \{ z \in \mathbb{K} : f^{-1}(B_r(z)) \notin \mathfrak{n} \text{ for all } r > 0 \}$$

and the essential supremum

$$\mathrm{ess}\ \mathrm{sup}(f) := \mathrm{sup}\{|z| : z \in \mathrm{ess}\ \mathrm{range}(f)\}.$$

Show that ess range $(f) \subseteq \mathbb{K}$ is closed and $f^{-1}(\mathbb{K} \setminus \text{ess range}(f)) \in \mathfrak{n}$.

(b) Show that two functions $f, g \in \mathcal{M}(X, \mathfrak{a})$ have the same essential range if the essential range of f - g contains only 0.

(c) The set of essentially bounded functions on X is defined as

$$\mathcal{L}^{\infty}(X, \mathfrak{a}, \mathfrak{n}) := \{ f \in \mathcal{M}(X, a) : ||f||_{\text{ess sup}} := \text{ess sup}(f) < \infty \}.$$

Show that $\|\cdot\|_{\text{ess sup}}$ defines a seminorm on $\mathcal{L}^{\infty}(X, \mathfrak{a}, \mathfrak{n})$ and compute its kernel. Moreover, show that the essential supremum of $f \in \mathcal{L}^{\infty}(X, \mathfrak{a}, \mathfrak{n})$ is given by

ess
$$\sup(f) = C_f := \inf\{C > 0 : |f|^{-1}([C, \infty)) \in \mathfrak{n}\}.$$

Hint: You can use that $\mathcal{M}(X,\mathfrak{a})$ and $\mathcal{L}^{\infty}(X,\mathfrak{a},\mathfrak{n})$ are \mathbb{K} -vector spaces without proof.

(d) Show that $L^{\infty}(X, \mathfrak{a}, \mathfrak{n}) := \mathcal{L}^{\infty}(X, \mathfrak{a}, \mathfrak{n})/\ker \| \cdot \|_{esssup}$ is a Banach space, i.e. a complete normed space.

Hint: Consider the sequence $(f_n)_n$ on a suitable subset of X and copy your proof of Homework 2. You can use that a pointwise limit of a sequence of measurable functions is again measurable without proof.