Mesocosm experiment plots

Matthew Malishev
1* & David Civitello 1

¹ Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA, USA, 30322

Contents

Overview .		2
Install d	ependencies	2
Get dat	1	2
Load da	ta	2
Set plot	ing graphics	3
	e per tank	3
Snail di	meter (mm) distribution	4
	e over time (weeks)	5
	e over time (weeks) per tank	5
Snail siz	e over time (weeks) per tank (High resources)	б
Snail siz	e over time (weeks) per tank (Low resources)	б
	ails over time (weeks) per tank (High resources)	б
	ails over time (weeks) per tank (low resources)	б
Small sı	ails over time (weeks) per tank (High resources)	ô
Small sı	ails over time (weeks) per tank (low resources)	7
Body m	ass (mg) over time (weeks)	7
	e and number of cercariae produced	9
	ass and cercariae produced (mg)	O
Snail siz	e per tank	O
	e production over time	1
	cariae production over time per tank	2
	s distribution	4
N/P co	centration v egg mass	5
Phyto a	nd Peri Distribution	ŏ
	s over time v presence of schisto	ô
Size clas	s vs Egg mass (with schisto)	3
	s over time (weeks)	

Date: 2018-08-17 R version: 3.5.0

 $Corresponding\ author:\ matthew.malishev@gmail.com$

This document can be found at https://github.com/darwinanddavis/SchistoMesocosm

Follow instructions in code chunks labelled 'fileoutput' to toggle pdf of plots saved to directory on/off ('Size_per_tank_over_time.pdf')

TO DO

- How much of the population does the sampling effort capture?
- Scale diameter densities per tank over time to upper limit of each tank (set ylim to highest value for each tank)
- Scale diameter densities per tank over time to upper limit of all tanks (set ylim to highest value for all tanks)
- Split plots by line color code showing point where snails are reproductive viable (8 mm and above).
- Which tanks and conditions reach reproductive size?
- Replot by size class and resource combo e.g. low resources and small size class v low resources and large size class

Overview

This document uses the schisto mesocosm 2016 data to explore cercariae production from snail hosts of different body sizes (diameter in mm and mass in mg) over a 14 week period under high and low N/P nutrient conditions. Host reproduction (egg masses) is also calculated.

Install dependencies

Get data

```
wd <- params$dir # working dir is set in yaml header
setwd(paste0(wd,"/"))
f <- "meso1_.csv"
f2 <- "meso2_.csv"</pre>
```

Load data

```
'data.frame':
               720 obs. of 13 variables:
$ Tank
                      : int \ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ \dots
$ NP
                             "High" "Low" "Low" "High" ...
$ Size
                             "Small" "Intermediate" "Intermediate" "Small" ...
                      : chr
$ Schisto
                             "No" "Yes" "Yes" "Yes" ...
                      : chr
                      : int
$ Week
                             0 0 0 0 0 0 0 0 0 0 ...
$ Snail
                      : int
                             60 60 60 60 60 60 60 60 60 ...
$ Total_Biomass
                      : num
                             96 620.6 670.5 86.7 121.4 ...
$ Cercarial_production: int
                             0 0 0 0 0 0 0 0 0 0 ...
$ Infected_abundance : int
                            0000000000...
$ Sampling_Effort
                            NA NA NA NA NA NA NA NA NA . . .
                      : int
$ Eggs
                      : int
                             NA NA NA NA NA NA NA NA NA ...
$ Phyto F
                      : num
                             NA NA NA NA NA NA NA NA NA . . .
$ Peri_F
                      : num NA NA NA NA NA NA NA NA NA ...
```

Set plotting graphics

Set plotting parameters Get only infected snails

Mesocosm 1 data sheet

Snail size per tank

Shell diameter (mm) per tank

Shell diameter (mm) over 14 weeks

Welch Two Sample t-test

data: Diameter and Tank t = -292.67, df = 54609, p-value < 2.2e-16 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -19.45879 -19.19989 sample estimates: mean of x mean of y 5.821956 25.151292

Shel

xchar= 0.9529 ; (yextra,ychar)= -0.004785 0.004785
points2(29.8 29.8 , 0.1 0.09522 , pch= 20 20 , ...)

Snail size over time (weeks)

Shell diameter (mm) over time (weeks)

Shell diameter (mm) over 14 weeks

Shell diameter (mm) over 14 weeks (uninfected snails)

Shell diameter (mm) over (infected snails)

 \sim 1000 eggs inoculated at 0,2,4,6 weeks

Snail size over time (weeks) per tank

For all tanks (n = 48), see 'Size_per_tank_over_time.pdf' in /Users/malishev/Documents/Emory/research ~1000 eggs inoculated at 0,2,4,6 weeks

Select tank. Max 48

```
tank <- 12 # Select tank #. Max 48
paste0("Tank ",tank)
```

[1] "Tank 12"

Snail size over time (weeks) per tank (High resources)

See "Size_per_tank_over_time_HIGH.pdf" in /Users/malishev/Documents/Emory/research/mesocosm

Snail size over time (weeks) per tank (Low resources)

See "Size_per_tank_over_time_LOW.pdf" in /Users/malishev/Documents/Emory/research/mesocosm

Large snails over time (weeks) per tank (High resources)

See "Size_per_tank_over_time_HIGH_LARGE.pdf" in /Users/malishev/Documents/Emory/research/n

Large snails over time (weeks) per tank (low resources)

See "Size_per_tank_over_time_LOW_LARGE.pdf" in /Users/malishev/Documents/Emory/research/n

Small snails over time (weeks) per tank (High resources)

See "Size_per_tank_over_time_HIGH_SMALL.pdf" in /Users/malishev/Documents/Emory/research/n

Small snails over time (weeks) per tank (low resources)

See "Size_per_tank_over_time_LOW_SMALL.pdf" in /Users/malishev/Documents/Emory/research/m

Body mass (mg) over time (weeks)

(Soft tissue dry mass in mg = 0.0096 * Diameter [in mm]^3) $\sim\!\!1000$ eggs inoculated at 0,2,4,6 weeks

Body mass (mg) over 14 weeks

Body mass (mg) over 14 weeks (uninfected)

Body mass (mg) over 14 weeks (infected)

A tibble: 1 x 2
Biomass Cercariae
* <dbl> <int>
1 245. 0

Without max value of as.numeric(outer)[1]

Body mass (mg) over 14 weeks without outlier

Body mass (mg) over 14 weeks (infected)

Snail size and number of cercariae produced

Point size by cercariae number Number of cercarie for each snail length (mm)

Snail mass and cercariae produced (mg)

Number of cercariae for each log snail mass (mg)

Snail size per tank

Shell diameter (mm) Select tank. Max 48

[1] "Tank 24"

Shell diameter (mm) distribution for tank #24

Uninfected snails in tank #24

Infected snails in tank #24

Cercariae production over time

Cercariae shed over 90 mins per week ~ 1000 eggs inoculated at 0,2,4,6 weeks Snail abundance over time (weeks)

Cercariae production over 14 weeks

Tank cercariae production over time per tank

Select tank. Max 48

[1] "Tank 24"

[1] 2300

Cercariae production for tank 24 over 14 weeks

Mesocosm 2 data sheet

Egg mass distribution

Distribution of number of egg masses over 14 weeks

N/P concentration v egg mass

Number of egg masses for high and low N/P levels over 14 weeks

Infected snails **Uninfected snails** Number or egg masses 200 200 150 150 100 100 50 50 0 High High Low Low N/P level N/P level

Phyto and Peri Distribution

phyto = flourescence units peri = flourescence per 2 weeks / 3.5 inch^2 tile (gross productivity biomass rate)

Resource concentration over 14 weeks

Egg Mass over time v presence of schisto

 $\sim\!\!1000$ eggs inoculated at 0,2,4,6 weeks

Number of egg masses over 14 weeks

Size class vs Egg mass (with schisto)

Number of egg masses for each snail size class

xchar= 4.765 ; (yextra,ychar)= -0.001435 0.001435 points2(141.7 141.7 141.7 , 0.03072 0.02928 0.02785 , pch= 20 20 20 , ...)

Egg Mass over time (weeks)

 ~ 1000 eggs inoculated at 0,2,4,6 weeks

