Revision Session - DS22

Inceptez

Definitions:

- Descriptive Statistics procedures used to organize and present data in a convenient, usable and communicable form
- ◆ **Mean** Average value of a sample or population

Weighted mean - Sum of a set of observations multiplied by their respective weights, divided by the sum of the weights

$$\overline{x}_{w} = \frac{\sum_{i=1}^{n} (w_{i}x_{i})}{\sum_{i=1}^{n} (w_{i})}$$

where as

 $\overline{\boldsymbol{x}}_{\boldsymbol{w}}$ is the weighted mean variable

 \boldsymbol{w}_{i} is the allocated weighted vlue

 $\boldsymbol{\mathcal{I}}_{\boldsymbol{z}}$ is the obsrved values

- ◆ Median Value at the centre
- ◆ Mode Value that occurs most

$$\sigma^2 = \sum_i (X_i - \bar{X})^2 / N$$

$$\sigma^2 = \text{variance}$$

 X_i = the value of the ith element

 \bar{X} = the mean of X

N = the number of elements

◆ Standard Deviation - Square root of the variance

$$ext{SD} = \sqrt{rac{\sum |x - ar{x}|^2}{n}}$$

Interpreting σ :

The measure of symmentry:

Skewness is the asymmetry of a distribution. A positively skewed distribution has a "tail" pulled in the positive direction. A negatively skewed distribution has a "tail" pulled in the negative direction. Most stock market returns are negatively skewed.

Box-and-whisker plot: A graphic that summarizes the data using the median and quartiles, and displays outliers. Good for comparing several groups of data.

Correlation:

When there is some relationship between two things

- ◆ Correlation always take values between-1 and 1
 - -1 is a perfect negative correlation, which means as one thing gets bigger the other thing gets smaller
 0 is no correlation at all, basically is no relationship between these things
 - 1 is a perfect positive correlation, which means that when one thing gets bigger so does the other
- * The closer the correlation value is -1 to 1, the tighter (more <u>linear</u>) the relationship will be on a scatter plot (see below on Pearson's <u>coefficient</u>)

Probabilities... (Chance):

How likely something (an event) is to happen

Statistics

Kind of Probabilities:

- * Conditional Probabilities Probability of an event happening based on whether or not something else happened
- Joint Probabilities Probability of two events happening at the same time
- Unconditional Probabilities Are just the summation of all probabilities

Kind of Events:

- ◆ Mutually Exclusive Events that can't happen at same time
- ◆ Non-Mutually Exclusive Events that can happen at the same time
- Independent When an event's probability isn't affected by anything else happening or not happening(e.g. a coin toss isn't affected by previous coin toss)
- Dependent Events whose probabilities change based on each other happening or not happening

Cumulative Distribution Function

$$F_X(x) = \mathbb{P}(X \le x)$$

Cumulative Distribution Function

$$F_X(x) = \int_{-\infty}^{\infty} f_X(t) dt$$

$$\int_{-\infty}^{\infty} f_X(t) dt = 1$$

$$f_X(x) = \frac{d}{t} F_X(x)$$

Probability Distributions:

Statistics

Poisson Distribution :

notation	Poisson (λ)
cdf	$e^{-\lambda} \sum_{i=0}^{k} \frac{\lambda^{i}}{i!}$
pmf	$\frac{\lambda^k}{k!} \cdot e^{-\lambda} \text{ for } k \in \mathbb{N}$
expectation	λ
variance	λ
ngf	$\exp\left(\lambda\left(e^{t}-1\right)\right)$
ind. sum	$\sum_{i=1}^n X_i \sim Poisson\left(\sum_{i=1}^n \lambda_i\right)$

Story - the probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event

Normal Distribution :

$$\begin{array}{ll} \text{notation} & N\left(\mu,\sigma^2\right) \\ \text{pdf} & \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/\left(2\sigma^2\right)} \\ \text{expectation} & \mu \\ \text{variance} & \sigma^2 \\ \text{mgf} & \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right) \\ \text{ind. sum} & \sum_{i=1}^n X_i \sim N\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right) \end{array}$$

Binomial Distribution

$$\begin{array}{ll} \text{notation} & N(0,1) \\ \\ \text{cdf} & \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt \\ \\ \text{pdf} & \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \\ \\ \text{expectation} & \frac{1}{\lambda} \\ \\ \text{variance} & \frac{1}{\lambda^2} \\ \\ \text{mgf} & \exp\left(\frac{t^2}{2}\right) \end{array}$$

story: normal distribution with $\mu = 0$ and $\sigma = 1$.

Story - the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p

Standard Normal Distribtion :

notation
$$N\left(0,1\right)$$

$$\operatorname{cdf} \qquad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

$$\operatorname{pdf} \qquad \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

$$\operatorname{expectation} \qquad \frac{1}{\lambda}$$

$$\operatorname{variance} \qquad \frac{1}{\lambda^2}$$

$$\operatorname{exp}\left(\frac{t^2}{2}\right)$$

$$\operatorname{story: normal distribution with } \mu = 0 \text{ and }$$

 $\sigma = 1$.

Story - describes data that cluster around the mean

Story - normal distribution with $\mu = 0$ and $\sigma = 1$

Tests

- 1. Tests for mean
 - a. Z-Test
 - b. T-Test
- 2. Tests for Variance
 - a. Chi-Square
 - b. F-Test

	ALGORITHM	DESCRIPTION	APPLICATIONS	ADVANTAGES	DISADVANTAGES
Linear Models	Linear Regression	A simple algorithm that models a linear relationship between inputs and a continuous numerical output variable	USE CASES 1. Stock price prediction 2. Predicting housing prices 3. Predicting customer lifetime value	Explainable method Interpretable results by its output coefficients Faster to train than other machine learning models	Assumes linearity between inputs and output Sensitive to outliers Can underfit with small, high-dimensional data
	Logistic Regression	A simple algorithm that models a linear relationship between inputs and a categorical output (1 or 0)	USE CASES 1. Credit risk score prediction 2. Customer churn prediction	I. Interpretable and explainable Less prone to overfitting when using regularization Applicable for multi-class predictions	Assumes linearity between inputs and outputs Can overfit with small, high-dimensional data
	Ridge Regression	Part of the regression family — it penalizes features that have low predictive outcomes by shrinking their coefficients closer to zero. Can be used for classification or regression	USE CASES 1. Predictive maintenance for automobiles 2. Sales revenue prediction	Less prone to overfitting Best suited where data suffer from multicollinearity Explainable & interpretable	All the predictors are kept in the final model Doesn't perform feature selection
	Lasso Regression	Part of the regression family — it penalizes features that have low predictive outcomes by shrinking their coefficients to zero. Can be used for classification or regression	use cases 1. Predicting housing prices 2. Predicting clinical outcomes based on health data	Less prone to overfitting Can handle high-dimensional data No need for feature selection	Can lead to poor interpretability as it can keep highly correlated variables
Supervised Learning Tree-Based Models	Decision Tree	Decision Tree models make decision rules on the features to produce predictions. It can be used for classification or regression	USE CASES 1. Customer churn prediction 2. Credit score modeling 3. Disease prediction	Explainable and interpretable Can handle missing values	Prone to overfitting Sensitive to outliers
	Random Forests	An ensemble learning method that combines the output of multiple decision trees	USE CASES 1. Credit score modeling 2. Predicting housing prices	Reduces overfitting Higher accuracy compared to other models	Training complexity can be high Not very interpretable
	Gradient Boosting Regression	Gradient Boosting Regression employs boosting to make predictive models from an ensemble of weak predictive learners	USE CASES 1. Predicting car emissions 2. Predicting ride hailing fare amount	Better accuracy compared to other regression models It can handle multicollinearity It can handle non-linear relationships	Sensitive to outliers and can therefore cause overfitting Computationally expensive and has high complexity
	XGBoost	Gradient Boosting algorithm that is efficient & flexible. Can be used for both classification and regression tasks	USE CASES 1. Churn prediction 2. Claims processing in insurance	Provides accurate results Captures non linear relationships	Hyperparameter tuning can be complex Does not perform well on sparse datasets
	LightGBM Regressor	A gradient boosting framework that is designed to be more efficient than other implementations	use cases 1. Predicting flight time for airlines 2. Predicting cholesterol levels based on begin data.	Can handle large amounts of data Computational efficient & fast training speed Low memory usage	Can overfit due to leaf-wise splitting and high sensitivity Hyperparameter tuning can be complex

ML