

2. Probability and Statistical Inference

Physically Based Rendering

Shinyoung Yi (이신영)

Preview: a simple path tracing

Terminology and convention:

- Notation / actual light: $p_0 \rightarrow p_1 \rightarrow p_2$
- Computation: $p_2 \rightarrow p_1 \rightarrow p_0$
- # of bounces < depth < # of vertices

2

3

Notation:

$$\bullet \quad \widehat{\omega}_{p_0 p_1} \coloneqq \frac{p_1 - p_0}{\|p_1 - p_0\|}$$

$$I^{(i,j)} = \int_{\mathbb{S}} W_e^{(i,j)} (\hat{\omega}) L(p_2, \hat{\omega}) d\hat{\omega}$$

Notation:

$$\bullet \quad \widehat{\omega}_{p_0 p_1} \coloneqq \frac{p_1 - p_0}{\|p_1 - p_0\|}$$

$$I^{(i,j)} = \int_{\mathbb{S}} W_e^{(i,j)}(\hat{\omega}) L(p_2, \hat{\omega}) d\hat{\omega}$$

Notation:

- $\bullet \quad \widehat{\omega}_{p_0 p_1} \coloneqq \frac{p_1 p_0}{\|p_1 p_0\|}$
- $r: \mathbb{R}^3 \times \mathbb{S}^2 \to \mathbb{R}^3$
 - ray intersection

$$I^{(i,j)} = \int_{\mathbb{S}} W_e^{(i,j)} \left(\hat{\omega}\right) L\left(p_2, \hat{\omega}\right) d\hat{\omega}$$

$$L\left(p_2, \hat{\omega}\right) = L\left(p_1, \hat{\omega}\right)$$

$$p_1 = r\left(p_2, -\hat{\omega}\right)$$

Notation:

- $\bullet \quad \widehat{\omega}_{p_0 p_1} \coloneqq \frac{p_1 p_0}{\|p_1 p_0\|}$
- $r: \mathbb{R}^3 \times \mathbb{S}^2 \to \mathbb{R}^3$
 - ray intersection

$$I^{(i,j)} = \int_{\mathbb{S}} W_e^{(i,j)}(\hat{\omega}) L(p_1, \hat{\omega}) d\hat{\omega}$$

$$L(p_1, \hat{\omega}) = L_e(p_1, \hat{\omega}) + \int_{\mathbb{S}} L^{(\text{in})}(p_1, \hat{\omega}') \rho(p_1, \hat{\omega}', \hat{\omega}) |\hat{n} \cdot \hat{\omega}'| d\hat{\omega}'$$

Notation:

- $\bullet \quad \widehat{\omega}_{p_0 p_1} \coloneqq \frac{p_1 p_0}{\|p_1 p_0\|}$
- $r: \mathbb{R}^3 \times \mathbb{S}^2 \to \mathbb{R}^3$
 - ray intersection

$$I^{(i,j)} = \int_{\mathbb{S}} W_e^{(i,j)}(\hat{\omega}) L(p_1, \hat{\omega}) d\hat{\omega}$$

$$L(p_1, \hat{\omega}) = L_e(p_1, \hat{\omega}) + \int_{\mathbb{S}} L^{(\text{in})}(p_1, \hat{\omega}') \rho(p_1, \hat{\omega}', \hat{\omega}) |\hat{n} \cdot \hat{\omega}'| d\hat{\omega}'$$

$$L^{(\text{in})}(p_1, \hat{\omega}') = L(p_0 - \hat{\omega}')$$

Notation:

- $\bullet \quad \widehat{\omega}_{p_0 p_1} \coloneqq \frac{p_1 p_0}{\|p_1 p_0\|}$
- $r: \mathbb{R}^3 \times \mathbb{S}^2 \to \mathbb{R}^3$
 - · ray intersection

$$I^{(i,j)} = \int_{\mathbb{S}} W_e^{(i,j)}\left(\hat{\omega}\right) L\left(p_1,\hat{\omega}\right) d\hat{\omega}$$

$$L\left(p_1,\hat{\omega}\right) = L_e\left(p_1,\hat{\omega}\right) + \int_{\mathbb{S}} L^{(\mathrm{in})}\left(p_1,\hat{\omega}'\right) \rho\left(p_1,\hat{\omega}',\hat{\omega}\right) \left|\hat{n}\cdot\hat{\omega}'\right| d\hat{\omega}'$$

$$L\left(p_0,-\hat{\omega}'\right) = L_e\left(p_0,-\hat{\omega}'\right) + \int_{\mathbb{S}} L^{(\mathrm{in})}\left(p_0,\hat{\omega}''\right) \rho\left(p_0,\hat{\omega}'',-\hat{\omega}'\right) \left|\hat{n}\cdot\hat{\omega}''\right| d\hat{\omega}''$$

$$L\left(p_0,-\hat{\omega}'\right) = L_e\left(p_0,-\hat{\omega}'\right) + \int_{\mathbb{S}} L^{(\mathrm{in})}\left(p_0,\hat{\omega}''\right) \rho\left(p_0,\hat{\omega}'',-\hat{\omega}'\right) \left|\hat{n}\cdot\hat{\omega}''\right| d\hat{\omega}''$$

Notation:

- $\bullet \quad \widehat{\omega}_{p_0 p_1} \coloneqq \frac{p_1 p_0}{\|p_1 p_0\|}$
- $r: \mathbb{R}^3 \times \mathbb{S}^2 \to \mathbb{R}^3$
 - ray intersection

$$I^{(i,j)} = \int_{\mathbb{S}} W_e^{(i,j)}(\hat{\omega}) L(p_1,\hat{\omega}) d\hat{\omega}$$

$$L(p_1,\hat{\omega}) = L_e(p_1,\hat{\omega}) + \int_{\mathbb{S}} L^{(\text{in})}(p_1,\hat{\omega}') \rho(p_1,\hat{\omega}',\hat{\omega}) |\hat{n} \cdot \hat{\omega}'| d\hat{\omega}'$$

$$L(p_0,-\hat{\omega}') = L_e(p_0,-\hat{\omega}')$$

Notation:

- $\bullet \quad \widehat{\omega}_{p_0 p_1} \coloneqq \frac{p_1 p_0}{\|p_1 p_0\|}$
- $r: \mathbb{R}^3 \times \mathbb{S}^2 \to \mathbb{R}^3$
 - ray intersection

$$I^{(i,j)} = \int_{\mathbb{S}} W_e^{(i,j)}(\hat{\omega}) L(p_1, \hat{\omega}) d\hat{\omega}$$

$$L(p_1, \hat{\omega}) = L_e(p_1, \hat{\omega}) + \int_{\mathbb{S}} L_e(p_0, -\hat{\omega}') \rho(p_1, \hat{\omega}', \hat{\omega}) |\hat{n} \cdot \hat{\omega}'| d\hat{\omega}'$$

$$p_1 = r(p_2, -\hat{\omega})$$

$$p_0 = r(p_1, \hat{\omega}')$$

$$I^{(i,j)} = \int_{\mathbb{S}} W_e^{(i,j)}(\hat{\omega}) L(p_1, \hat{\omega}) d\hat{\omega}$$

$$L(p_1, \hat{\omega}) = L_e(p_1, \hat{\omega}) + \int_{\mathbb{S}} L_e(p_0, -\hat{\omega}') \rho(p_1, \hat{\omega}', \hat{\omega}) |\hat{n} \cdot \hat{\omega}'| d\hat{\omega}'$$

$$p_1 = r(p_2, -\hat{\omega})$$

$$p_0 = r(p_1, \hat{\omega}')$$

Basic Math: Sets and Functions

Sets and functions

Suppose A, B, X, \cdots are sets and f, g, \cdots are functions

- $f: X \to Y$, $A \subset X$ then $f(A) := \{f(x) | x \in A\}$ is the **image of** A **under** f
- $B \subset Y$ then $f^{-1}(B) := \{x | f(x) \in B\}$ is the **preimage of** B **under** f
 - Even if an inverse function does not exists, preimages are well defined.

Probability

What is probability?

random sample

probability

observation

distribution

random variable

Probability overview

- Sample space (probability space) Ω
- Event *E*
- Probability P

- Random variable X
- CDF of *X*
- PDF of *X*

Probability overview

- Sample space (probability space) Ω : a set of all things that the outcome can be.
- Event $E \subset \Omega$
- Probability $P(E) \in \mathbb{R}_{\geq 0}$

$$- P(E_1 \cup E_2) = P(E_1) + P(E_2) \text{ if } E_1 \cap E_2 = \phi$$

- $-P(\Omega)=1$
- Random variable $X: \Omega \to \mathbb{R}$ (codomain \mathbb{R}^n or \mathbb{S}^2 is also okay)
 - We can write an event in a way as $\{X \le x\} := X^{-1}(\{y \in \mathbb{R} | y \le x\})$
- CDF of $X: F_X(x) = P(\{X \le x\})$
- PDF of X: some function $p_X: \mathbb{R} \to \mathbb{R}_{\geq 0}$ s.t. $P(a \leq x \leq b) = \int_a^b p_X(x) dx$
 - $p_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}$ for continuous random variable

Probability overview: summary

Event
$$\subseteq \Omega$$
 sample space

Probability: $0 \le P(E) \le 1$

Random variable $X: \Omega \to \mathbb{R}$

Probability properties

- For a random variable $X: \Omega \to \mathbb{R}$
 - Expectation: $\mathbb{E}[X] := \int_{\mathbb{R}} x p_X(x) dx$
 - Variance: $Var(X) := \mathbb{E}[(X \mathbb{E}[X])^2] = \mathbb{E}[X^2] \mathbb{E}[X]^2$

- For a function $f: \mathbb{R} \to \mathbb{R}$
 - $f(X) = f \circ X$: Ω → \mathbb{R} is also a random variable

$$- p_{f(X)}(y) = \sum_{x \in f^{-1}(y)} \frac{p_{X(x)}}{|f'(x)|}$$

Probability properties

- Independence: definition
 - Events $A, B \subset \Omega$ are called independent if $P(A \cap B) = P(A)P(B)$
 - Random variables $X, Y: \Omega \to \mathbb{R}$ are call independent if for any $x, y \in \mathbb{R}$, $\{X \le x\}$ and $\{Y \le y\}$ are independent events

- Independence: properties
 - For independent random variables X and Y,

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$$

Why is probability so confusing?

Choice 1

Sample space: $\{h, t\}$

$$H = \{h\}, T = \{t\}$$

$$P[{h}] = \frac{1}{2}, P[{t}] = \frac{1}{2}$$

Choice 2

Sample space: $\{\theta | 0 \le \theta \le 2\pi\}$

$$H = \{\theta | 0 \le \theta \le \pi\}, T = \{\theta | \pi < \theta \le 2\pi\}$$

$$P[\{\theta | 0 \le \theta_1 < \theta \le \theta_2 \le 2\pi\}] = \frac{\theta_2 - \theta_1}{2\pi}$$

Event: *H*, *T*

Choice 3

Probability:
$$P[H] = \frac{1}{2}$$
, $P[T] = \frac{1}{2}$

Sample space: $\{\mathbf{R} | \mathbf{R} \in SO(3)\}$

$$H = \left\{ \mathbf{R} \middle| 0 \le \mathbf{R}\hat{z} \le \frac{\pi}{2} \right\}, T = \left\{ \mathbf{R}\hat{z} \middle| \frac{\pi}{2} < \mathbf{R}\hat{z} \le 1 \right\}$$

$$P[A \subset SO(3)] = \frac{1}{8\pi^2} \int_A \sin\beta \, d\alpha d\beta d\gamma$$

Choice 1

Sample space: $\{h, t\}$

$$H = \{h\}, T = \{t\}$$

$$P[{h}] = \frac{1}{2}, P[{t}] = \frac{1}{2}$$

Choice 1

Sample space: $\{h, t\}$

$$H = \{h\}, T = \{t\}$$

$$P[{h}] = \frac{1}{2}, P[{t}] = \frac{1}{2}$$

Choice 2

Sample space: $\{\theta | 0 \le \theta \le \pi\}$

$$H = \{\theta | 0 \le \theta \le \pi\}, T = \{\theta | \pi < \theta \le 2\pi\}$$

$$P[\{\theta | 0 \le \theta_1 < \theta \le \theta_2 \le 2\pi\}] = \frac{\theta_2 - \theta_1}{2\pi}$$

Choice 1

Sample space: $\{h, t\}$

$$H = \{h\}, T = \{t\}$$

$$P[{h}] = \frac{1}{2}, P[{t}] = \frac{1}{2}$$

Choice 2

Sample space: $\{\theta \mid 0 \le \theta \le \pi\}$

$$H = \{\theta | 0 \le \theta \le \pi\}, T = \{\theta | \pi < \theta \le 2\pi\}$$

$$P[\{\theta | 0 \le \theta_1 < \theta \le \theta_2 \le 2\pi\}] = \frac{\theta_2 - \theta_1}{2\pi}$$

sample space = SO(3)

Choice 3

Sample space: $\{\mathbf{R} | \mathbf{R} \in SO(3)\}$

$$H = \left\{ \mathbf{R} \middle| 0 \le \mathbf{R}\hat{z} \le \frac{\pi}{2} \right\}, T = \left\{ \mathbf{R}\hat{z} \middle| \frac{\pi}{2} < \mathbf{R}\hat{z} \le 1 \right\}$$

$$P[A \subset SO(3)] = \frac{1}{8\pi^2} \int_A \sin \beta \, d\alpha d\beta d\gamma$$

Event: each person

Probability: $\frac{1}{N}$

Event: each person

Probability: $\frac{1}{N}$

Event: each person

Probability: $\frac{1}{N}$

Two ways for viewing r.v. as a "function"

Event: each person

Probability: $\frac{1}{N}$

Underlying sample space is often implicit

Suppose there is a random variable $X \sim U([0,1])$.

...

We can consider the underlying sample space is

We have a r.v. X:

PDF change of variables

$$Y = f(X)$$

$$p_Y(y) = \frac{p_X(f^{-1}(y))}{f'(f^{-1}(y))}$$

PDF change of variables

$$Y = f(X)$$

$$p_Y(y) = \frac{p_X(f^{-1}(y))}{|f'(f^{-1}(y))|} \star$$

PDFs should be nonnegative!

HW2 – Problem 1(a): PDF change of variable on 1D

- $X \sim \mathcal{U}([0,1])$
- $Y = X^2$

$$Y = f(X)$$

$$p_Y(y) = \frac{p_X(f^{-1}(y))}{|f|/|f|} *$$

$$Y = f(X)$$

$$p_Y(y) = \frac{p_X(f^{-1}(y))}{|y|/|y|}$$

$$| D_f(x) \hat{u}_1 \times D_f(x) \hat{u}_2 |$$

$$= |\det D_f(x)| ||\hat{u}_1|| ||\hat{u}_2||$$

$$Y = f(X)$$

$$p_Y(y) = \frac{p_X(f^{-1}(y))}{|\det D_f(f^{-1}(y))|}^*$$

$$| D_f(x) \hat{u}_1 \times D_f(x) \hat{u}_2 |$$

$$= |\det D_f(x)| ||\hat{u}_1|| ||\hat{u}_2||$$

HW2 – Problem 1(c): PDF change of variable on 2D

- $X \sim \mathcal{U}([0,1]^2)$
- Y = f(X) where $f(x_1, x_2) = (x_1^3, \sqrt{x_2})$

 $r.v.Y_1$

Task: find equation of the PDF of *Y*

 $X:\Omega\to\mathbb{R}^2$

Y = f(X)

$$Y = f(X)$$

$$p_Y(y) = \frac{p_X(f^{-1}(y))}{|\det D_f(f^{-1}(y))|}^*$$

No determinant for 3×2 matrices

 $X:\Omega\to\mathbb{R}^2$

Y = f(X)

Proposition

$$Y = f(X)$$

$$p_Y(y) = \frac{p_X(f^{-1}(y))}{J_f(f^{-1}(y))}$$

$$\star J_f(x) = \sqrt{\det\left(D_f(x)^T D_f(x)\right)}$$

HW2 – Problem 1(c): PDF change of variable into \mathbb{S}^2

- $X \sim \mathcal{U}([0,1]^2)$
- Find f such that Y = f(X) follows the uniform distribution on \mathbb{S}^2

Numerical Integration

Integration

We have a function f on a domain \mathcal{X} .

Q. How can we compute $I = \int_{\mathcal{X}} f(x) dx$?

source: User 4C / Wikipedia CC BY-SA 3.0

[Adam Celarek]

1. Analytic (symbolic) integration

- We can integrate only few functions analytically.
- Hardly predict difficulty of given problem

Try analytic integration for:

$$\int e^{-x^2} dx$$

$$\int x e^{-x^2} dx$$

$$\int x^2 e^{-x^2} dx$$

$$\int x^3 e^{-x^2} dx$$

Integration

We have a function f on a domain X.

Q. How can we compute $I = \int_{\mathcal{X}} f(x) dx$?

source: User 4C / Wikipedia CC BY-SA 3.0

[Adam Celarek]

1. Analytic (symbolic) integration

- We can integrate only few functions analytically.
- Hardly predict difficulty of given problem

2. Numerical approximation by uniform grids

- For a fixed error level, we need $N^{\dim(\mathcal{X})}$ samples!
- Aliasing!

3. Monte Carlo estimation: for a random variable $X \sim \mathcal{U}(X)$

$$I \approx \hat{I} = \frac{|\mathcal{X}|}{N} \sum_{n=1}^{N} f(X_n)$$

Monte Carlo Integration

We have a function f on a domain X.

Q. How can we compute $I = \int_{\mathcal{X}} f(x) dx$?

for a random variable $X \sim \mathcal{U}(X)$

$$I \approx \hat{I} = \frac{|\mathcal{X}|}{N} \sum_{n=1}^{N} f(X_n)$$

$$Var(\hat{I}) \propto Var(\square)$$

Monte Carlo Integration: importance sampling

for a random variable X with PDF hopefully $\propto f$

We have a function f on a domain \mathcal{X} .

Q. How can we compute $I = \int_{\mathcal{X}} f(x) dx$?

$$I \approx \hat{I} = \frac{1}{N} \sum_{n=1}^{N} \frac{f(X_n)}{p_X(X_n)}$$

$$Var(\hat{I}) \propto Var(\square)$$

Monte Carlo Integration

When is the MC integration correct (unbiased)?

$$\int_{\mathcal{X}} f(x) dx = I = \mathbb{E} \left| \hat{I} = \frac{1}{N} \sum_{n=1}^{N} \frac{f(X_n)}{p_X(X_n)} \right|$$

For any $x \in \mathcal{X}$, if $f(x) \neq 0$ then $p_X(x) > 0$

Failure case

Language of Monte Carlo Integration

Sampling: generate a realization of a random variable
Which PDF do we choose?
How draw a sample of a r.v. with such PDF?

- "This sampling strategy is good for given integrand f."
- "In path tracing, BSDF sampling and emitter samplings are used."

Correct → unbiased (or consistent, at least)

Efficient -> low variance

HW2 - Problem 2.(a): Monte Carlo on 1D

random variable $X \sim \mathcal{U}(X)$

HW2 - Problem 2.(a): Monte Carlo on 1D

random variable X with PDF $\propto f$

Task: implement to draw *X* following such distribution

HW2 - Problem 2.(c): Not an optimal importance

random variable X_a PDF having more similar trend to f than the uniform distribution

Monte Carlo Integration

How is importance sampling useful in practice?

- Performing importance sampling with a PDF exactly $\propto f$ is as hard as the integration itself
 - However, using a PDF which roughly $\propto f$ and analytically integrable is still useful

• We have good importance sampling for f and g. How about $\int_{\mathcal{X}} f(x)g(x)dx$?

Multiple Importance Sampling

Multiple Importance Sampling (MIS)

- Many possible importance sampling strategies
- Which one should we use for a given integrand?
- MIS: *combine* strategies to preserve strengths of all of them
- *Balance heuristic* is (provably!) about as good as anything:

$$\frac{1}{N}\sum_{i=1}^{n}\sum_{j=1}^{n_i}\frac{f(x_{ij})}{\sum_{k}c_kp_k(x_{ij})}$$
 total # of samples fraction of samples taken w/ kth strategy

Still, several improvements possible (cutoff, power, max)—see Veach & Guibas.

Multiple Importance Sampling: in context of rendering

- Many possible importance sampling strategies
- Which one should we use for a given integrand?
- MIS: combine strategies to preserve strengths of all of them

rendering eq. (for direct illumination): BRDF * incident light (source emission)

generate random direction proportional to light source

Multiple Importance Sampling: statement

For integration problem

$$I = \int_{\mathcal{X}} f(x) \mathrm{d}x$$

We have 2N samples $X_{A,i} \sim p_A$ and $X_{B,i} \sim p_B$ with $i=1,\cdots,N$

$$\hat{I}_{\text{MIS}(A,B)} = \frac{1}{N} \sum_{S \in \{A,B\}} \sum_{i=1}^{N} w_{S}(X_{S,i}) \frac{f(X_{S,i})}{p_{S}(X_{S,i})}$$
, where

- $\sum_{S \in \{A,B\}} w_S(x) = 1$ whenever $f(x) \neq 0$,
- $w_s(x) = 0$ whenever $p_s(x) = 0$

A way to understand MIS

Multiple Importance Sampling: unbiasedness

When is the MIS correct (unbiased)?

For any $x \in \mathcal{X}$, if $f(x) \neq 0$ then either $p_A(x) > 0$ or $p_B(x) > 0$

But $\hat{I}_{MIS(A,B)}$ is a correct estimator

MIS strategies

Q. Then how can we compute such MIS weightes $w_A(x)$ and $w_B(x)$?

- 1. Very naively, just $w_A = w_B = \frac{1}{2}$
 - only works if both of each strategy A and B are unbiased.
 - Do not use in practice
- 2. Balance heuristic: $w_A(x) = \frac{p_A(x)}{p_A(x) + p_B(x)}, w_B(x) = \frac{p_B(x)}{p_A(x) + p_B(x)}$
 - A certain upper bound of difference between it and an optimum is known
 - [Veach 1997] Theotem 9.2
- 3. Power heuristic: $w_A(x) = \frac{p_A(x)^{\alpha}}{p_A(x)^{\alpha} + p_B(x)^{\alpha}}, w_B(x) = \frac{p_B(x)^{\alpha}}{p_A(x)^{\alpha} + p_B(x)^{\alpha}}$
 - Usually $\alpha = 2$

MIS strategies

Q. Then how can we compute such MIS weightes $w_A(x)$ and $w_B(x)$?

- 1. Very naively, just $w_A = w_B = \frac{1}{2}$
 - only works if both of each strategy A and B are unbiased.
 - Do not use in practice
- 2. Balance heuristic: $w_A(x) = \frac{p_A(x)}{p_A(x) + p_B(x)}, w_B(x) = \frac{p_B(x)}{p_A(x) + p_B(x)}$
 - A certain upper bound of difference between it and an optimum is known
 - [Veach 1997] Theorem 9.2

Theorem 9.2. Let f, n_i , and p_i be given, for i = 1, ..., n. Let F be any unbiased estimator of the form (9.4), and let \hat{F} be the estimator that uses the weighting functions \hat{w}_i (the balance heuristic). Then

$$V[\hat{F}] - V[F] \le \left(\frac{1}{\min_i n_i} - \frac{1}{\sum_i n_i}\right) \mu^2, \tag{9.9}$$

where $\mu=E[F]=E[\hat{F}]$ is the quantity to be estimated. (A proof is given in Appendix 9.A.)