Nw	mber Theory I
	Lo the study of integers.
kvis	
_	a divides b, a l b, if there is an integer h Such that a k = b.
	Such that ale2b.
eg	7-1 63 because 7.9=63.
ee'	Le perfect number
	- it equalled to the sum of its positive duisons,
	excluding itself
6.9	6 = 1 + 2 + 3
	28 = 1 + 2 + 4 + 7 + 14

t shalb and blc, then alc a drivides b, there exists an integer les, such that all = b b divides C, there exists on integer k2, Such that bk2 = C , then: ak1-k2=c This implies alc tifalb, then a lbc for all c. advirdes b, V ke such that ake=b a divides bc, 4 kz such that akz = bc ak, = b.c akz-akt-c [for all c]

+ if all and alc, then a libtec for all set alb, y ak1=b alc, 4 akz=c alsb+tc, y akz = sb+tc akz= s (akx)+ t (akz) ak3= p(sk1) + a(+k2) kz = (sk1) + (£ k2)

2 prine: 2 number p > 1 k p positive dansors
8 ther thoun 1 k itself.

comboxé: sand offer nomper > T

1 is considered & prime nor composite.

Turing's code				
one appr	boch!			
- repla	e each lete	of the	message	(two digits
ent	e each letter append a nu	=03 , et	2	, ku, C
	5=02			work)
	V I C	7 0	5 18 2	(mus)
	22 09 0	3 20 1	5 19 2	5 413
	\	~		
	220903	2015182	2513, 75 7	2 primo
100 - 110 Pr	ncotal muss			
	ncypled ma			
Before hard: 1	the sender k	receiver:	2 secret 1	ren 's para buse
Euchapped: 7	the sender e	waster in	n wherk	בייליים לה עו
	W,= W	N·10.		
Decidapion: 1	the recuver	decryos	m' by	computed
0,	m'	M-6 = 4	1	
	P	9	409 DP	
eg: the secre	1 way: 22 3	201492	T. "	EUR STOLES
the mo	sage m =	, Nictory	W = 750	3032015 Am3
	n' = m-P			
	n' = m-p	12192213	£ 2280176	ντ• <i>)</i>

The vivision algorithm
Let n and a be integers such that 20,
Then A 3 murdue box of empeders d any c
Such that has querond of the
Proof: n=qd+r holds for some r>0
ICU Le boxpus and the salven popy mon
q=0, $r=n$ $r=qder$ $r=qder$ $r=n$ $r=qder$ $r=n$
Furthurmore, I must be less than 1
osnoruse, b=(9+1).d+(5-2)
would be another solution 1/2 smaller
non negative remainder, conditactioning the chair

Breaking Turing's code.

m2' = m1. P 3 Note: after the Pis seconded
m2' = m2-p 3 then every message
can be read.

Modular Anthonetz

-s a is congruent to b modulo c if

c 1 (a-b), denoted a=b (mod c)

eg: 29 = 15 (mod 7) because 7 1(29-15)

congruent & remainders

two numbers are congruent modulo c

1 cand only of they have the same remainder

when divided by c.

eg: 19 and 32 once congruent modulo 13, because both have remainders of 6.

(a remc) = (b remc)

Proof a=b (modc)
(a remc) = (b remc)

By the division algorithm, there exist unique pairs
of mlegers 9252 K 9252

1 0= qc t r1 (0 \ r1 \c)
2 b= q2 c + r2 (0 \ r2 \c)

(a rome) = rz & (b remc) = rz substracting the second equation from the first

a-b = c(91-92) + 12-12 (- c < 11-12 < c)

a=b(mode) if and only if c devotes the left inte.
This is true if and only if c devotes the right field.
I which holds if and only if 12-12 is a maltiple of c

Circa the bounds on 12=12, this happens precisely when 12=12, which is equivalent to

Caren C)= (b rem c)

Note: Computer hardwood works 4 fixed-word orbestracily longe integers in orderony anithmetic ore produnatic A standard solution: - 2 compater of 64-pit internal registers typically does integer outhmetic modulo 2 bt. Thus an mestruction to add that contents of register AVS
ractuelly computes (A+B) rem 269.

Facts about rem k mod 17,1, a = 6 (modn) implies atc = 6+c (modn) 9=6 (mod n) meons n/(a-6) atc=btc(modn) moves n1 (a+c-b-w) Note: the difference between tradificanal vs modular anithmetrs.

ordinary a £ = b £ (mobbes a=5 (provided < #D)) 2. 3 = 4.3 (mod b) = False.

Learne 27. The following assertions hold for all n31: 1). If a 1 = p 1 (mod u) and a 2 = p (mod u) then at az = b1-b2 Cmed n). bush: 1 di-pt and 1/05-p5 wes: n/a2(a4-b)+b1(a2-b2) n/b and n/c n/a, 92- 9261 + 9261 - b, b2 for all sond t 7 a, a2 - p, p2 2). (a rem n) = a (mod n) aromn= 9-9n nla-ca-qn) a = 9n + [nla- (aremn) Note: n/2-(a remn) (a remn) = a (mod n) 3) (a1 ram n). (a2 ronn) --. (ak rem n) = 91-92-19K(med n)

```
Turing's code (2.0)
Encryption:
    The message m can be any integer in the set
     11,21. .. 9-13.
    The sender encrypts the message m to produce m'
           m'= mk rem p.
Decryption: The receiver decripts m' by finding
         2 message on to satisfy
                    m'=mk remp.
concellation Modulo a fine
   suppose & is a prime and k is not a multiple off.
               ak = bk (mody)
  then
                a=b (mod p).
froof if ak = Sk Cmode)
         P) (ak-bk)
          P ( k (a-b)
       So p divides either k or ca-b)
                               a=b (mod P)
          P (a-b) means
```

The relevance of ale = ble (modp)
0 = p (mox 4)
sme the messages ax 6 are down from the set $\{1, 2,1, 1\}$
this means a=b
4
two messages encrypt to the same thing only of they are themselves identical.
Note:
permutes the space of messages.
Corollary: suppose pis 2 prime & k is met 2 multiple sp
(0.k), remp, (1.k). remp, (2.k) remp, -((p-1).k) remp
is appearantation of the requires:
011,2, (e-1).
eg: 8=5 & k=3 (0.3) rem5 (1.3) rem5 (2.3) rem5 (3.3) ren3 (4) mi
20 =3 =4 =4. 2
0,3,1,4 B2 permetation of 0,1,2,3,4.

Multiplicating Inverses. The real numbers have a nice quality that the integers lack. non-zero real number t has a multiplicative metse to such that r. to 1. no integer can be multiplied by t to give t. When we work modulo 2 pome number, p. most integers do have multiplicative inverses , e.g. we're working modulo 11 , than the numberliable merse of Tisg. J-9=1 (mwd11) the only exceptions are multiples of the modulus p

of inverses in the same way as 0 lacks an inverse in the real numbers.

Caroll	ory30	٥,					
Le	t p	be a prin	Q. ij	KB	not am	mhyple o	f P .
14	hen :	there e	ulls o	on and	eger k-1	6 21.2	(P-4)
		K/T =	1 Cr	a pen).		
so te	deci	mpt .					
		Lew & =	m_i , 1	~ (v	nede)		
		=(mk r	em p).K" (m	(grow	
		= 10	nkk-	(mi	(46c		
				mode			
Her	n 40	compate	the	W~	Cthe w	un laptic	tre inverse).

Fermat's	Theorem.
	p is a prime and k is not a maltiple of p. RP-1 = 1 (mod P).
froof.	
1-2-3	(P-1) = k(remp). (xkremp). (3k remp). (lp-1).k.remp) (mod P) = (k.2k.3k(p-1)k (mod P)
	= (p-1)! kp-1 (med p).
	vie caricle (p-1)! as pis a prine k does not divide any of 1,2,(p-1).
Multiplezab	re Inverse
1	CP-2. K=1 (mod P).
Lº-	2 B a multiplicable more of K.
e	9:
Con	reporte: the multiplicates mease of 6 molds 1) Tom 17=3, so 3 13 the multiplicates
6	150W (1=> 120 D 1211 merse

indir	g mus	ere w/	fermet	theor	em.	
		kΞ.				
KP-2	is 2 n	nlhiptic	ate m	rene of	k.	
eg:		x, 6 3	1 (mod	192		
-	D fond	C1,2n	silgibles	white my		6 med
	Then	we he	d to con	noute	6 Trem	19
Succes	we squ	ianng.				
	15-	68.6	, 4. 62	6		
	62=	36 =	2			
	64-1	(67) =	4			
	160=	(6ª) =	16/	43)		
	=	16. 4.	2.0	-136		