

FCC PART 15.407 TEST REPORT

For

Guangdong Midea Kitchen Appliances Manufacturing Co.,Ltd.

No.6, Yong An Road, Beijiao, Shunde, Foshan, Guangdong, China

FCC ID: VG8IOT10MP1

Report Type: **Product Type:** Original Report Wi-Fi&BLE MODULE Report Number: RSZ190930551-00C **Report Date:** 2019-11-14 Kieronlus Kieron Luo Reviewed By: RF Engineer **Prepared By:** Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	14
§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	16
APPLICABLE STANDARD	
RESULT	
FCC §15.203 – ANTENNA REQUIREMENT	17
APPLICABLE STANDARD	
Antenna Connector Construction	17
FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS	18
APPLICABLE STANDARD	18
EUT Setup	
EMI Test Receiver Setup	
TEST PROCEDURE	
TEST RESULTS SUMMARY TEST DATA	
§15.205 & §15.209 & §15.407(B) (1), (4), (6), (7) – UNDESIRABLE EMISSION	
APPLICABLE STANDARD	
EUT SETUP.	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	23
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	24
TEST DATA	
FCC §15.407(a) (1) (5), (e) – 26 dB & 6dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC §15.407(a) (1) (3) – CONDUCTED TRANSMITTER OUTPUT POWER	49

APPLICABLE STANDARD	49
TEST PROCEDURE	49
TEST DATA	50
FCC §15.407(a) (1) (3) - POWER SPECTRAL DENSITY	52
APPLICABLE STANDARD	52
TEST PROCEDURE	52
Test Data	53

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Wi-Fi&BLE MODULE
Tested Model	Midea_IOT10M_P1
Frequency Range	5G Wi-Fi: 5150-5250 MHz, 5725-5850 MHz
Transmit Power	5150-5250 MHz 14.30dBm (802.11a), 12.17dBm(802.11n20), 12.06 dBm(802.11n40) 5725-5850 MHz 14.29dBm (802.11a), 12.08dBm(802.11n20), 12.27 dBm(802.11n40)
Modulation Technique	Wi-Fi: OFDM
Antenna Specification	3.0 dBi
Voltage Range	DC 5V
Date of Test	2019/10/21 to 2019/11/13
Sample serial number	190930551 (Assigned by BACL, Shenzhen)
Received date	2019/09/30
Sample/EUT Status	Good Condition

Report No.: RSZ190930551-00C

Objective

This type approval report is prepared on behalf of *Guangdong Midea Kitchen Appliances Manufacturing Co.,Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DSS&DTS submissions with FCC ID: VG8IOT10MP1.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.407 Page 4 of 63

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	±5%
RF Output Power	with Power meter	±0.73dB
RF conducted test with spectrum		±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	±4.88dB
Temperature		±1℃
Humidity		±6%
Supply	voltages	±0.4%

Report No.: RSZ190930551-00C

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 15.407 Page 5 of 63

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which was provided by manufacturer.

Report No.: RSZ190930551-00C

The device support 802.11a/n20/n40 modes.

For 5150-5250MHz Band, 6 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
38	5190	46	5230
40	5200	48	5240

For 5725-5850MHz Band, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	159	5795
151	5755	161	5805
153	5765	165	5825
157	5785	/	/

FCC Part 15.407 Page 6 of 63

EUT Exercise Software

Exercise software "QATool_Dbg_Ram.exe" was used.

Test frequencies and power level were configured as below:

U-NII	Mode	Channel Number	Frequency (MHz)	Rate (Mbps)	Power level
		CH36	5180	6	14.5
	802.11 a	CH40	5200	6	12.5
		CH48	5240	6	12.5
5150 – 5250MHz		CH36	5180	MCS0	11.0
3130 – 3230MHZ	802.11 n20	CH40	5200	MCS0	10.5
	802.11 n40	CH48	5240	MCS0	10.5
		CH38	5190	MCS0	11.5
		CH46	5230	MCS0	11.5
	802.11 a	CH149	5745	6	13.0
		CH157	5785	6	13.5
		CH165	5825	6	13.0
5725 – 5850MHz		CH149	5745	MCS0	11.0
	802.11 n20	CH157	5785	MCS0	11.0
		CH165	5825	MCS0	12.0
	802.11 n40	CH151	5755	MCS0	12.0
	002.11 1140	CH159	5795	MCS0	12.0

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 7 of 63

Duty cycle: 5150-5250 MHz

802.11a mode

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:09:06

802.11n20 mode

Date: 31.OCT.2019 09:10:26

FCC Part 15.407 Page 8 of 63

802.11n40 mode

Date: 31.OCT.2019 09:11:13

Band	Duty Cycle (%)	T(ms)	1/T(kHz)	VBW Setting	10log(1/x)
802.11a	100	-	-	10Hz	-
802.11n20	100	-	-	10Hz	-
802.11n40	100	-	-	10Hz	-

FCC Part 15.407 Page 9 of 63

5725 - 5850MHz

802.11a mode

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 10:25:55

802.11n20 mode

Date: 31.OCT.2019 10:27:12

FCC Part 15.407 Page 10 of 63

Date: 31.OCT.2019 10:27:55

Band	Duty Cycle (%)	T(ms)	1/T(kHz)	VBW Setting	10log(1/x)
802.11a	100	-	-	10Hz	-
802.11n20	100	-	-	10Hz	-
802.11n40	100	-	-	10Hz	-

Equipment Modifications

No modification was made to the EUT tested.

FCC Part 15.407 Page 11 of 63

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Toshiba	Laptop	Satellite C600	PSCZNQ-00G006
Toshiba	AC/DC Adapter	PA3715E-1AC3	T0311043001798DA
N/A	Testing Jig#2	N/A	N/A
N/A	Testing Jig#1	N/A	N/A

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-Shielding Detachable AC Cable	2.0	LISN	Adapter
Un-Shielding Detachable DC Cable	2.0	Adapter	Laptop

Block Diagram of Test Setup

For conducted emission:

FCC Part 15.407 Page 12 of 63

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307 (b) (1) & §2.1091	Maximum Permissible exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(6) & §15.207(a)	Conducted Emissions	Compliance
§15.205 & §15.209 &§15.407(b) (1), (4),(7)	Undesirable Emission& Restricted Bands	Compliance
§15.407(a) (1), (5),(e)	26 dB Emission Bandwidth & 6dB Bandwidth	Compliance
§15.407(a)(1),(3)	Conducted Transmitter Output Power	Compliance
§15.407 (a)(1),(3)	Power Spectral Density	Compliance

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 13 of 63

TEST EQUIPMENT LIST

Manufacturer	Description	ription Model Serial Number		Calibration Date	Calibration Due Date
	A	C Line Conduct	ed test		
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2019-07-11	2020-07-11
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2019-01-25	2020-01-25
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2019-03-02	2020-03-02
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR
Un-known	Conducted Emission Cable	78652	UF A210B-1- 0720-504504	2018-11-12	2019-11-12
	R	adiated Emissio	n Test		
A.H. System	Horn Antenna	SAS-200/571	135	2018-09-01	2021-08-31
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2019-07-22	2020-07-21
Agilent	Spectrum Analyzer	8564E	3943A01781	2019-03-02	2020-03-01
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21
COM-POWER	Pre-amplifier	PA-122	181919	2018-11-12	2019-11-12
COM-POWER	Pre-amplifier	PA-122	181919	2019-11-12	2020-11-12
Sonoma Instrument	Amplifier	310N	186238	2018-11-12	2019-11-12
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2019-07-09	2020-07-08
Ducommun technologies	RF Cable	UFA147A- 2362-100100	MFR64639 231029- 003	2018-11-12	2019-11-12
Ducommun technologies	RF Cable	104PEA	218124002	2018-11-12	2019-11-12

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 14 of 63

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	F	Radiated Emission	ı Test		
Ducommun technologies	RF Cable	RG-214	1	2018-11-12	2019-11-12
Ducommun technologies	RF Cable	RG-214	1	2019-11-12	2020-11-12
Ducommun technologies	RF Cable	RG-214	2	2018-11-12	2019-11-12
Ducommun technologies	RF Cable	RG-214	2	2019-11-12	2020-11-12
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-04	2017-12-29	2020-12-28
Ducommun Technologies	Horn Antenna	ARH-2823-02	1007726-03	2016-11-18	2019-11-18
Heatsink Required	Amplifier	QLW- 18405536-J0	15964001002	2018-11-12	2019-11-12
Heatsink Required	Amplifier	QLW- 18405536-J0	15964001002	2019-11-12	2020-11-12
Sinoscite Technology	Band Reject Filter	BSF5150- 5850MN-0899- 004	Unknown	2018-11-12	2019-11-12
Sinoscite Technology	Band Reject Filter	BSF5150- 5850MN-0899- 004	Unknown	2019-11-12	2020-11-12
		RF Conducted T	Γest		
Rohde & Schwarz	Spectrum Analyzer	FSU26	200120	2019-03-02	2020-03-01
Agilent	USB wideband power meter	U2021XA	MY54250003	2019-07-10	2020-07-09
Ducommun technologies	RF Cable	RG-214	3	Each	Time
WEINSCHEL	3dB Attenuator	6231	666	Each	Time

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.407 Page 15 of 63

§1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Report No.: RSZ190930551-00C

	Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)					
0.3-1.34	614	1.63	*(100)	30					
1.34-30	824/f	2.19/f	$*(180/f^2)$	30					
30-300	27.5	0.073	0.2	30					
300-1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For worst case:

Frequency	Antenna Gain		Conducted Tune up Power		Evaluation Distance	Power Density	MPE Limit	
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)	
5150-5250	3	2	14.5	28.18	20	0.01	1.0	
5725-5850	3	2	14.5	28.18	20	0.01	1.0	

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

FCC Part 15.407 Page 16 of 63

^{* =} Plane-wave equivalent power density

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSZ190930551-00C

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.407 (a), if the transmitting antennas of directional gain greater than 6dBi are used, the transmit power and power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one integral antenna arrangement for Wi-Fi, which was permanently attached and the antenna gain is 3.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.407 Page 17 of 63

FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207, §15.407(b) (6)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.407 Page 18 of 63

Test Results Summary

According to the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Haiguo Li on 2019-10-21.

EUT operation mode: Transmitting (worst case is 802.11a mode 5745 MHz)

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 19 of 63

AC 120V/60 Hz, Line:

Report No.: RSZ190930551-00C

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.150000	51.9	19.8	66.0	14.1	QP
0.165500	49.6	19.9	65.2	15.6	QP
0.884710	36.4	19.8	56.0	19.6	QP
0.991150	35.7	19.9	56.0	20.3	QP
1.022670	37.1	19.9	56.0	18.9	QP
1.152690	33.7	19.8	56.0	22.3	QP
0.150000	37.3	19.8	56.0	18.7	Ave.
0.165500	31.0	19.9	55.2	24.2	Ave.
0.884710	28.5	19.8	46.0	17.5	Ave.
0.991150	29.2	19.9	46.0	16.8	Ave.
1.022670	31.8	19.9	46.0	14.2	Ave.
1.152690	26.3	19.8	46.0	19.7	Ave.

FCC Part 15.407 Page 20 of 63

AC120V, 60 Hz, Neutral:

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.150000	49.9	19.8	66.0	16.1	QP
0.169500	44.6	19.8	65.0	20.4	QP
0.298500	38.1	19.7	60.3	22.2	QP
0.892650	34.5	19.7	56.0	21.5	QP
0.920350	34.5	19.8	56.0	21.5	QP
1.026670	35.3	19.8	56.0	20.7	QP
0.294000	30.9	19.7	50.4	19.5	Ave.
0.338000	29.7	19.8	49.3	19.6	Ave.
0.354000	29.2	19.9	48.9	19.7	Ave.
0.894000	27.6	19.7	46.0	18.4	Ave.
0.998000	29.9	19.8	46.0	16.1	Ave.
1.022000	30.5	19.8	46.0	15.5	Ave.

- 1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
- 2) Corrected Amplitude = Reading + Correction Factor
 3) Margin = Limit Corrected Amplitude

FCC Part 15.407 Page 21 of 63

§15.205 & §15.209 & §15.407(B) (1), (4), (6), (7) – UNDESIRABLE EMISSION

Report No.: RSZ190930551-00C

Applicable Standard

FCC §15.407 (b) (1), (4), (6), (7); §15.209; §15.205;

- (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

KDB 789033 D02 General UNII Test Procedures New Rules v02r01, clause G),

 $E[dB\mu V/m] = EIRP[dBm] - 20 \log (d[m]) + 104.77$, where E = field strength and d = distance at which field strength limit is specified.

For FCC §15.407 (b) (1), (2), (3), (4), d=1m, non-Restricted bands limit=-27-20*log(1)+104.77=77.7 dBμV/m

EUT Setup

Below 1 GHz:

FCC Part 15.407 Page 22 of 63

Above 1 GHz:

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
	1MHz	10 Hz Note 1	/	Average
	1MHz	>1/T Note 2	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Radiated Spurious Emission

During the radiated emission test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all the installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

FCC Part 15.407 Page 23 of 63

According to ANSI C63.10-2013: For field strength measurements made at other than the distance at which the applicable limit is specified, extrapolate the measured field strength to the field strength at the distance specified by the limit using an inverse distance correction factor (20 dB/decade of distance). In some cases, a different distance correction factor may be required;

Report No.: RSZ190930551-00C

$$E_{\text{SpecLimit}} = E_{\text{Meas}} + 20 \log \left(\frac{d_{\text{Meas}}}{d_{\text{SpecLimit}}} \right)$$

where

E_{SpecLimit} is the field strength of the emission at the distance specified by the limit, in

 $dB\mu V/m$

 E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m

 $d_{
m Meas}$ is the measurement distance, in m $d_{
m SnecLimit}$ is the distance specified by the limit, in m

So the extrapolation factor of 1m is $20*\log(1/3) = -9.5$ dB

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart E, section 15.205, 15.209 and 15.407 rules.</u>

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Zero Yan on 2019-10-29 for below 1GHz and Curry Xiang on 2019-10-30 and 2019-11-13 for above 1GHz.

EUT operation mode: Transmitting

FCC Part 15.407 Page 24 of 63

30 MHz – 1 GHz: (worst case is 802.11a mode 5745 MHz)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
138.594000	16.69	190.0	Н	217.0	-14.2	43.50	26.81
191.210500	23.80	177.0	Н	92.0	-15.0	43.50	19.70
230.218250	18.83	126.0	Н	247.0	-14.0	46.00	27.17
682.837750	20.22	231.0	Н	21.0	-2.0	46.00	25.78
839.212500	28.46	188.0	V	0.0	5.9	46.00	17.54
959.986250	29.82	340.0	Н	92.0	9.2	46.00	16.18

FCC Part 15.407 Page 25 of 63

30 MHz ~ 40 GHz:

5150-5250 MHz:

		eceiver	Turntable	Rx Ante	enna	Corrected	Corrected	FCC 1 15.407/2				
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H / V)		Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
	802.11a											
5180 MHz												
5112.25	32.15	PK	10	1.4	V	38.26	70.41	83.5	13.09			
5112.25	17.21	Ave.	10	1.4	V	38.26	55.47	63.5	8.03			
5387.49	31.49	PK	76	2.3	V	39.19	70.68	83.5	12.82			
5387.49	16.87	Ave.	76	2.3	V	39.19	56.06	63.5	7.44			
10360.00	41.59	PK	233	2.1	V	17.42	59.01	77.7	18.69			
1010000			• • •		MHz			1	10.16			
10400.00	41.72	PK	284	1.2	V	17.52	59.24	77.7	18.46			
5112.64	20.60	DIZ	202		MHz	20.26	60.04	02.5	14.46			
5113.64	30.68	PK	293	2.3	V	38.36	69.04	83.5	14.46			
5113.64	16.02	Ave.	293	2.3	V	38.36	54.38	63.5	9.12			
5396.88	30.53	PK	238	1.9	V	39.19	69.72	83.5	13.78			
5396.88	15.89	Ave.	238	1.9	V	39.19	55.08	63.5	8.42			
10480.00	41.26	PK	150	2.0	•	17.25	58.51	77.7	19.19			
					MHz							
5123.11	31.77	PK	125	1.1	V	38.36	70.13	83.5	13.37			
5123.11	16.54		125	1.1	V	38.36	54.90	63.5	8.60			
5453.71	31.48	Ave. PK	214	1.1	V	39.37	70.85	83.5	12.65			
5453.71	16.33	Ave.	214	1.8	V	39.37	55.70	63.5	7.80			
10360.00	41.57	PK	342	1.5	V	17.42	58.99	77.7	18.71			
10300.00	71.57	1 K	372		MHz	17.72	36.77	77.7	10.71			
10400.00	41.67	PK	127	1.1	V	17.52	59.19	77.7	18.51			
10100.00	11.07	110	127		MHz	17.52	37.17	77.7	10.51			
5106.54	31.70	PK	51	2.2	V	38.26	69.96	83.5	13.54			
5106.54	16.62	Ave.	51	2.2	V	38.26	54.88	63.5	8.62			
5370.77	31.35	PK	164	1.6	V	39.09	70.44	83.5	13.06			
5370.77	16.44	Ave.	164	1.6	V	39.09	55.53	63.5	7.97			
10480.00	41.12	PK	243	2.4	V	17.25	58.37	77.7	19.33			
			-		11n40	-						
					MHz							
5103.94	31.03	PK	119	1.8	V	38.26	69.29	83.5	14.21			
5103.94	16.25	Ave.	119	1.8	V	38.26	54.51	63.5	8.99			
5359.15	31.63	PK	161	1.6	V	39.09	70.72	83.5	12.78			
5359.15	16.87	Ave.	161	1.6	V	39.09	55.96	63.5	7.54			
10380.00	41.48	PK	272	2.1	V	17.42	58.90	77.7	18.80			
				5230	MHz							
5127.17	31.09	PK	160	2.5	V	38.36	69.45	83.5	14.05			
5127.17	16.14	Ave.	160	2.5	V	38.36	54.50	63.5	9.00			
5459.40	30.98	PK	68	2.3	V	39.37	70.35	83.5	13.15			
5459.40	16.03	Ave.	68	2.3	V	39.37	55.40	63.5	8.10			
10460.00	41.46	PK	316	2.3	V	17.15	58.61	77.7	19.09			

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 26 of 63

5725-5850 MHz:

Frequency (MHz)	Receiver			Rx Antenna		Corrected	Corrected	FCC Part 15.407/205/209		
	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude	Limit (dBµV/m)	Margin (dB)	
	802.11a									
5745 MHz										
5683.90	32.55	PK	350	2.4	Н	39.49	72.04	102.79	30.75	
5718.13	32.47	PK	350	2.4	Н	39.49	71.96	119.78	47.82	
5724.70	37.14	PK	218	1.4	Н	39.49	76.63	131.02	54.39	
11490.00	50.30	PK	101	1.3	Н	17.47	67.77	83.5	15.73	
11490.00	35.71	Ave.	101	1.3	Н	17.47	53.18	63.5	10.32	
	5785 MHz									
11570.00	49.29	PK	258	1.6	Н	17.51	66.80	83.5	16.70	
11570.00	34.60	Ave.	258	1.6	Н	17.51	52.11	63.5	11.39	
	5825 MHz									
5850.44	33.67	PK	47	1.1	Н	39.87	73.54	130.7	57.16	
5869.08	33.01	PK	47	1.1	Н	39.87	72.88	116.36	43.48	
5913.31	32.14	PK	197	2.4	Н	39.87	72.01	86.35	14.34	
11650.00	49.82	PK	24	2.2	Н	16.18	66.00	83.5	17.50	
11650.00	34.53	Ave.	24	2.2	Н	16.18	50.71	63.5	12.79	
				802.11n	20					
				5745 M	Hz					
5692.22	32.65	PK	298	1.7	Н	39.49	72.14	108.94	36.80	
5700.18	32.79	PK	298	1.7	Н	39.49	72.28	114.75	42.47	
5724.67	34.53	PK	225	2.3	Н	39.49	74.02	130.95	56.93	
11490.00	49.27	PK	308	1.8	Н	17.47	66.74	83.5	16.76	
11490.00	34.01	Ave.	308	1.8	Н	17.47	51.48	63.5	12.02	
5785 MHz										
11570.00	51.38	PK	93	1.8	Н	17.51	68.89	83.5	14.61	
11570.00	35.50	Ave.	93	1.8	Н	17.51	53.01	63.5	10.49	
5825 MHz										
5852.81	33.32	PK	356	1.6	Н	39.87	73.19	125.29	52.10	
5871.15	32.81	PK	356	1.6	Н	39.87	72.68	115.78	43.10	
5906.07	32.45	PK	346	1.8	Н	39.87	72.32	91.71	19.39	
11650.00	49.01	PK	250	2.2	Н	16.18	65.19	83.5	18.31	
11650.00	34.12	Ave.	250	2.2	Н	16.18	50.30	63.5	13.20	

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 27 of 63

Frequency (MHz)	Receiver			Rx Antenna		Corrected	Corrected	FCC Part 15.407/205/209	
	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
	802.11n40								
5755 MHz									
5696.20	32.18	PK	351	2.2	Н	39.49	71.67	111.89	40.22
5719.23	33.32	PK	351	2.2	Н	39.49	72.81	120.08	47.27
5723.02	36.08	PK	177	2.1	Н	39.49	75.57	127.19	51.62
11510.00	48.30	PK	26	1.7	Н	17.47	65.77	83.5	17.73
11510.00	33.37	Ave.	26	1.7	Н	17.47	50.84	63.5	12.66
5795 MHz									
5851.36	33.66	PK	7	1.6	Н	39.87	73.53	126.8	53.27
5863.23	32.52	PK	7	1.6	Н	39.87	72.39	118	45.61
5900.21	31.92	PK	349	1.2	Н	39.87	71.79	96.04	24.25
11590.00	46.82	PK	209	2.1	Н	17.51	64.33	83.5	19.17
11590.00	31.01	Ave.	209	2.1	Н	17.51	48.52	63.5	14.98

Note:

Corrected Amplitude = Corrected Factor + Reading Corrected Factor=Antenna factor (RX) + Cable Loss - Amplifier Factor

Margin = Limit- Corr. Amplitude
All other spurious emissions are 20 dB below the limit or are on the system noise floor level.

Test at 1m distance for above 1GHz.

FCC Part 15.407 Page 28 of 63

Pre-scan with 802.11a 5745MHz for Peak

Report No.: RSZ190930551-00C

Horizontal

Date: 30.0CT.2019 20:41:11

Date: 13.NOV.2019 21:50:49

FCC Part 15.407 Page 29 of 63

Vertical

Report No.: RSZ190930551-00C

Date: 30.0CT.2019 20:31:56

Date: 13.NOV.2019 21:56:14

FCC Part 15.407 Page 30 of 63

Horizontal

Date: 30.0CT.2019 20:44:47

Date: 13.NOV.2019 21:53:09

FCC Part 15.407 Page 31 of 63

Date: 30.0CT.2019 20:54:00

Vertical

Date: 30.0CT.2019 20:35:46

FCC Part 15.407 Page 32 of 63

Date: 13.NOV.2019 21:59:39

Date: 30.0CT.2019 20:49:44

FCC Part 15.407 Page 33 of 63

FCC §15.407(a) (1) (5), (e) – 26 dB & 6dB EMISSION BANDWIDTH

Applicable Standard

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Report No.: RSZ190930551-00C

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure

1. Emission Bandwidth (EBW)

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

FCC Part 15.407 Page 34 of 63

Test Data

Environmental Conditions

Temperature:	25 ℃		
Relative Humidity:	52 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Leo Huang on 2019-10-31.

EUT operation mode: Transmitting

Test Result: Pass; please refer to the following tables and plots.

5150 MHz - 5250 MHz:

Frequency (MHz)	26 dB Bandwidth (MHz)	99% Bandwidth (MHz)	Remark			
5180	26.76	17.18				
5200	28.29	17.24				
5240	24.90	17.11	l			
	802.11n20					
5180	22.33	17.88	in the 99% bandwidth extends into the U-			
5200	21.88	17.95	NII-2A band			
5240	21.86	17.88				
5190	40.90	36.15				
5230	40.54	36.15				

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 35 of 63

802.11a mode, 26 dB Emissions & 99% Occupied Bandwidth, 5180 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 08:39:26

802.11a mode, 26 dB Emissions & 99% Occupied Bandwidth, 5200 MHz

Date: 31.OCT.2019 08:42:46

FCC Part 15.407 Page 36 of 63

802.11a mode, 26 dB Emissions & 99% Occupied Bandwidth, 5240 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 08:44:48

802.11n20 mode, 26 dB Emissions & 99% Occupied Bandwidth, 5180 MHz

Date: 31.OCT.2019 08:07:57

FCC Part 15.407 Page 37 of 63

802.11n20 mode, 26 dB Emissions & 99% Occupied Bandwidth, 5200 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 08:04:08

802.11n20 mode, 26 dB Emissions & 99% Occupied Bandwidth, 5240 MHz

Date: 31.OCT.2019 08:01:01

FCC Part 15.407 Page 38 of 63

802.11n40 mode, 26 dB Emissions & 99% Occupied Bandwidth, 5190 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 08:54:55

802.11n40 mode, 26 dB Emissions & 99% Occupied Bandwidth, 5230 MHz

Date: 31.OCT.2019 08:56:31

FCC Part 15.407 Page 39 of 63

5725 MHz – 5850 MHz:

Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (MHz)	Remark
802.11a				
5745	16.36	16.86	0.5	
5785	16.36	16.79	0.5	
5825	16.38	16.99	0.5	
	802.	11n20		No transmitted signal in the
5745	17.54	17.88	0.5	99% bandwidth
5785	17.47	17.76	0.5	extends into the U-NII-2C band
5825	17.60	17.76	0.5	
802.11n40				
5755	36.10	36.15	0.5	
5795	35.96	36.15	0.5	

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 40 of 63

802.11a mode, 6dB Emission Bandwidth, 5745 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:23:51

802.11a mode, 6dB Emission Bandwidth, 5785 MHz

Date: 31.0CT.2019 09:39:46

FCC Part 15.407 Page 41 of 63

802.11a mode, 6dB Emission Bandwidth, 5825 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:41:08

802.11n20 mode, 6dB Emission Bandwidth, 5745 MHz

Date: 31.OCT.2019 09:48:16

FCC Part 15.407 Page 42 of 63

802.11n20 mode, 6dB Emission Bandwidth, 5785 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:46:17

802.11n20 mode, 6dB Emission Bandwidth, 5825 MHz

Date: 31.OCT.2019 09:44:37

FCC Part 15.407 Page 43 of 63

802.11n40 mode, 6dB Emission Bandwidth, 5755 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:51:59

802.11n40 mode, 6dB Emission Bandwidth, 5795 MHz

Date: 31.OCT.2019 09:53:29

FCC Part 15.407 Page 44 of 63

802.11a mode, 99% Occupied Bandwidth, 5745 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 10:00:55

802.11a mode, 99% Occupied Bandwidth, 5785 MHz

Date: 31.OCT.2019 10:00:02

FCC Part 15.407 Page 45 of 63

802.11a mode, 99% Occupied Bandwidth, 5825 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:58:48

802.11n20 mode, 99% Occupied Bandwidth, 5745 MHz

Date: 31.OCT.2019 09:56:30

FCC Part 15.407 Page 46 of 63

802.11n20 mode, 99% Occupied Bandwidth, 5785 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:57:23

802.11n20 mode, 99% Occupied Bandwidth, 5825 MHz

Date: 31.OCT.2019 09:58:06

FCC Part 15.407 Page 47 of 63

802.11n40 mode, 99% Occupied Bandwidth, 5755 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:55:22

802.11n40 mode, 99% Occupied Bandwidth, 5795 MHz

Date: 31.OCT.2019 09:54:27

FCC Part 15.407 Page 48 of 63

FCC §15.407(a) (1) (3) – CONDUCTED TRANSMITTER OUTPUT POWER

Report No.: RSZ190930551-00C

Applicable Standard

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

FCC Part 15.407 Page 49 of 63

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Leo Huang on 2019-10-30.

EUT operation mode: Transmitting

Test Result: Pass

Please refer to the following tables.

5150 MHz - 5250 MHz

Frequency (MHz)	Output Power (dBm)	Limit (dBm)
	802.11a	
5180	14.28	
5200	14.09	24
5240	14.30	
	802.11n20	
5180	12.17	
5200	12.02	24
5240	12.13	
802.11n40		
5190	12.06	24
5230	12.05	24

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 50 of 63

5725 MHz - 5825 MHz:

Frequency (MHz)	Output Power (dBm)	Limit (dBm)
	802.11a	
5745	14.29	
5785	14.08	30
5825	14.20	
	802.11n20	
5745	12.08	
5785	12.03	30
5825	12.05	1
	802.11n40	
5755	12.01	30
5795	12.27	30

Note:

This product is an client device, which was declared by manufacturer. The maximum antenna gain is 3dBi.

FCC Part 15.407 Page 51 of 63

FCC §15.407(a) (1) (3) - POWER SPECTRAL DENSITY

Applicable Standard

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: RSZ190930551-00C

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or < 500 kHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW $\geq 1/T$, where T is defined in section II.B.l.a).
- b) Set VBW \geq 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

FCC Part 15.407 Page 52 of 63

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Leo Huang on 2019-10-31.

EUT operation mode: Transmitting

Test Result: Pass

Please refer to the following tables and plots.

Note:

This product is an client device, which was declared by manufacturer. The maximum antenna gain is 3dBi.

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 53 of 63

5150 MHz - 5250 MHz

Frequency (MHz)	Power Spectral Density(dBm/MHz)	Limit (dBm/MHz)
	802.11a	
5180	2.91	
5200	0.97	11
5240	0.54	
	802.11n20	
5180	-0.75	
5200	-1.02	11
5240	-2.52	
802.11n40		
5190	-3.65	11
5230	-4.86	11

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 54 of 63

802.11a mode, Power Spectral Density, 5180 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:18:07

802.11a mode, Power Spectral Density, 5200 MHz

Date: 31.OCT.2019 09:18:38

FCC Part 15.407 Page 55 of 63

802.11a mode, Power Spectral Density, 5240 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:19:07

802.11n20 mode, Power Spectral Density, 5180 MHz

Date: 31.OCT.2019 09:16:29

FCC Part 15.407 Page 56 of 63

802.11n20 mode, Power Spectral Density, 5200 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:15:41

802.11n20 mode, Power Spectral Density, 5240 MHz

Date: 31.0CT.2019 09:15:09

FCC Part 15.407 Page 57 of 63

802.11n40 mode, Power Spectral Density, 5190 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 09:13:02

802.11n40 mode, Power Spectral Density, 5230 MHz

Date: 31.OCT.2019 09:13:49

FCC Part 15.407 Page 58 of 63

5725 MHz – 5825 MHz:

Frequency (MHz)	Power Spectral Density (dBm/500kHz)	Limit (dBm/500kHz)
	802.11a	
5745	0.20	
5785	0.39	30
5825	-1.22	
	802.11n20	
5745	-2.31	
5785	-1.61	30
5825	-2.44	
	802.11n40	
5755	-4.96	20
5795	-6.09	30

Report No.: RSZ190930551-00C

FCC Part 15.407 Page 59 of 63

802.11a mode, Power Spectral Density, 5745 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 10:18:52

802.11a mode, Power Spectral Density, 5785 MHz

Date: 31.OCT.2019 10:21:53

FCC Part 15.407 Page 60 of 63

802.11a mode, Power Spectral Density, 5825 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 10:18:11

802.11n20 mode, Power Spectral Density, 5745 MHz

Date: 31.OCT.2019 10:12:22

FCC Part 15.407 Page 61 of 63

802.11n20 mode, Power Spectral Density, 5785 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 10:16:46

802.11n20 mode, Power Spectral Density, 5825 MHz

Date: 31.OCT.2019 10:17:20

FCC Part 15.407 Page 62 of 63

802.11n40 mode, Power Spectral Density, 5755 MHz

Report No.: RSZ190930551-00C

Date: 31.OCT.2019 10:11:33

802.11n40 mode, Power Spectral Density, 5795 MHz

Date: 31.OCT.2019 10:10:38

***** END OF REPORT *****

FCC Part 15.407 Page 63 of 63