Содержание

1	Дополнение		3
	1.1	Идеалы	3
	1.2	Модули и проективные модули	3
Список источников			5

Глава 1

Дополнение

1.1 Идеалы

Определение 1.1.1. Идеалом кольца R называется произвольное подмножество $I \subseteq R$ такое, что

- 1. $I \neq \emptyset$;
- 2. Если $a, b \in I$, то $a + b \in I$ (замкнутость по сложению);
- 3. Если $a \in I, b \in R$, то $ab \in I$ (замкнутость по умножению на элементы кольца R).

Пример 1.1.1. Пусть R – кольцо. Подмножества $R, \{0\}$ – идеалы кольца R. Такие идеалы называются тривиальными.

 $\Pi pumep$ 1.1.2. Если $a \in R$, то множество

$$\langle a \rangle \coloneqq \{ab \mid b \in R\} \eqqcolon aR$$

— главный идеал R порожденный элементом a.

Пример 1.1.3. Пусть $R = \mathbb{Z}, m \in \mathbb{Z}$.

$$\langle m \rangle = m\mathbb{Z} = \{ mt \mid t \in \mathbb{Z} \}$$

Где $\langle m \rangle$ – идеал(притом главный) порожденный m.

1.2 Модули и проективные модули

Определение 1.2.1. Модуль P над кольцом R называется проективным, если для любого эпиморфизма $f: N \twoheadrightarrow M$ R-модулей и любого морфизма $g: P \longrightarrow M$ существует такой

морфизм $h: P \longrightarrow N$, что коммутативна диаграмма

$$P \xrightarrow{g} M^{N}$$

Теорема 1.2.2. Модуль проективен тогда и только тогда, когда он является прямым слагаемым некоторого свободного модуля.

Теорема 1.2.3. Проективный модуль над локальным кольцом свободен.

Теорема 1.2.4. Пусть R – коммутативное кольцо, \mathfrak{p} – простой идеал в R. Если M – проективный R-модуль, то $M_{\mathfrak{p}}$ – свободный $R_{\mathfrak{p}}$ -модуль.

Определение 1.2.5. Проективный модуль M над коммутативным кольцом R имеет ранг $r \in \mathbb{Z}_{\geqslant 0}$, если для любого простого идеала \mathfrak{p} кольца R свободный $R_{\mathfrak{p}}$ -модуль $M_{\mathfrak{p}}$ имеет (свободный) ранг r.

Лемма 1.2.6. Пусть $\phi: A \longrightarrow B$ – морфизм k-алгебр, $n \in \mathbb{Z}_{\geqslant 0}$, S, T – подмодули A-модуля $A^n, A^n = S \oplus T$. Тогда выполняются следующие утверждения:

1. Существует такой изоморфизм В-модулей

$$\psi: (B \otimes_A S) \oplus (B \otimes_A T) \longrightarrow B^n,$$

что для всех $b \in B$, $s \in S$, $t \in T$

$$(b \otimes_A s, b \otimes_A t) \stackrel{\psi}{\mapsto} b(s+t);$$

2.

$$\psi((B \otimes_A S) \times \{0\}) = S^B,$$

$$\psi(\{0\} \times (B \otimes_A B)) = T^B,$$

$$B^n = (A^n)^B = S^B \oplus T^B;$$

3. Ранг проективного B-модуля S^B равен рангу проективного A-модуля S. (1.2.5)

Список Источников

- 1. Волочков А.А. Схемы. // А.А.Волочков Пермь, 2023. 233 стр. 230.
- 2. Волочков А.А. Схемы. // А.А.Волочков Пермь, 2023. 233 стр. 126-127.