Proyección Gauss-Krüger

Algoritmo para su cálculo

a) Conversión de coordenadas geodésicas ϕ y λ a proyección plana Gauss-Krüger (X,Y)

$$\phi$$
 Latitud (convención: latitudes S (Sur) negativas) (1)

$$\lambda$$
 Longitud (convención: longitudes W (Oeste) negativas) (2)

$$\lambda_0$$
 Longitud del meridiano central de la proyección (3)

$$a$$
 semieje mayor del elipsoide (ver Tabla 1) (4)

$$f$$
 aplanamiento del elipsoide (ver Tabla 1) (5)

$$b = a(1 - f)$$
 semieje menor del elipsoide (6)

$$k_0 = 1.0000$$
 valor para proyección Gauss-Krüger. Para UTM corresponde $k_0 = 0.9996$ (7)

$$t = tg \ \phi \tag{8}$$

$$l = \lambda - \lambda_0 \tag{9}$$

$$n = \frac{a-b}{a+b} = \frac{f}{2-f} \tag{10}$$

$$\alpha = \frac{a+b}{2}(1 + \frac{1}{4}n^2 + \frac{1}{64}n^4 + \dots) \tag{11}$$

$$\beta = -\frac{3}{2}n + \frac{9}{16}n^3 - \frac{3}{32}n^5 + \dots$$
 (12)

$$\gamma = \frac{15}{16}n^2 - \frac{15}{32}n^4 + \dots \tag{13}$$

$$\delta = -\frac{35}{48}n^3 + \frac{105}{256}n^4 - \dots \tag{14}$$

$$\eta^2 = \frac{a^2 - b^2}{b^2} \cos^2 \phi \tag{15}$$

$$B(\phi) = \alpha \ (\phi + \beta \ sen \ 2\phi + \gamma \ sen \ 4\phi + \delta \ sen \ 6\phi + \dots) \text{ arco de meridiano}$$
 (16)

$$N=k_0 \; {a^2 \over \sqrt{a^2 cos^2 \phi \; + b^2 sen^2 \phi}} \; {\rm radio \; de \; curvatura \; en \; el \; primer \; vertical}$$
 (17)

$$X = B(\phi) + \frac{1}{2}N\cos^2\phi \ tl^2 + \frac{1}{24}N\cos^4\phi \ t(5 - t^2 + 9\eta^2)l^4 + \dots$$
 (18)

$$Y = N \cos \phi \ l + \frac{1}{6} N \cos^3 \phi \ (1 - t^2 + \eta^2) l^3 + \frac{1}{120} N \cos^5 \phi \ (5 - 18t^2 + t^4) l^5 + \dots$$
 (19)

A las coordenadas X e Y obtenidas se les deberá sumar el *Falso Norte* y *Falso Este* respectivamente (ver Tabla 2):

Falso Norte = $B(\frac{\pi}{2})$

Falso Este = N° de faja \times 1000000 + 500000

b) Conversión de proyección plana Gauss-Krüger (X,Y) a coordenadas geodésicas ϕ y λ

El primer paso es restarle a X e Y el Falso Norte y Falso Este que correspondan. Luego:

$$e^2 = 2f - f^2 (20)$$

$$n = \frac{f}{2-f} = \frac{a-b}{a+b} \tag{21}$$

$$a_0 = 1 + \frac{n^2}{4} + \frac{n^4}{64} \tag{22}$$

$$a_2 = \frac{3}{2}(n - \frac{n^3}{8})\tag{23}$$

$$a_4 = \frac{15}{16}(n^2 - \frac{n^4}{4})\tag{24}$$

$$a_6 = \frac{35}{48}n^3 \tag{25}$$

$$a_8 = \frac{315}{512}n^4 \tag{26}$$

$$\phi_0 = \frac{X}{k_0} \frac{1+n}{aa_0} \tag{27}$$

$$\phi_1 = -a_2 \sin 2\phi_0 + a_4 \sin 4\phi_0 - a_6 \sin 6\phi_0 + a_8 \sin 8\phi_0 \tag{28}$$

Comienza aquí un proceso iterativo. Repetir hasta que los sucesivos valores de ϕ_p difieran no significativamente. Tres o cuatro iteraciones suelen ser suficientes, en general, no más de 6.

$$\phi_p = \phi_0 - \frac{\phi_1}{a_0} \tag{29}$$

$$\phi_2 = -a_2 \sin 2\phi_p + a_4 \sin 4\phi_p - a_6 \sin 6\phi_p + a_8 \sin 8\phi_p \tag{30}$$

$$\phi_p = \phi_0 - \frac{\phi_2}{a_0}$$

:

$$t = tg \ \phi_p \tag{31}$$

$$\eta^2 = \frac{e^2 \cos^2 \phi_p}{1 - e^2} \tag{32}$$

$$\eta^4 = (\eta^2)^2 \tag{33}$$

$$N = \frac{a}{\sqrt{1 - e^2 sen^2 \phi_p}} \tag{34}$$

$$L = \frac{Y}{Nk_0} \tag{35}$$

$$\phi_a = -\frac{t (1 + \eta^2) L^2}{2} \tag{36}$$

$$\phi_b = \frac{t \left(5 + 3t^2 + 6\eta^2 - 6\eta^2 t^2 - 3\eta^4 - 9t^2\eta^4\right) L^4}{24} \tag{37}$$

$$\phi_c = -\frac{t \left(61 + 90t^2 + 45t^4 + 107\eta^2 - 162t^2\eta^2 - 45t^4\eta^2\right) L^6}{720}$$
(38)

$$\lambda_a = \frac{L^3(1 + 2t^2 + \eta^2)}{6} \tag{39}$$

$$\lambda_b = \frac{L^5(5 + 28t^2 + 24t^4 + 6\eta^2 + 8t^2\eta^2)}{120} \tag{40}$$

$$\lambda = \frac{L - \lambda_a + \lambda_b}{\cos\phi_p} + \lambda_0 \tag{41}$$

$$\phi = \phi_p + \phi_a + \phi_b + \phi_c \tag{42}$$

Algunos valores de $Falso\ Norte\ y\ Falso\ Este$

Para el elipsoide Internacional de Hayford 1924, el valor del Falso Norte es 10002288.299 m

Para el elipsoide WGS84, el valor del Falso Norte es 10001965.729 m

Para el elipsoide GRS80 (utilizado en POSGAR07) el valor del *Falso Norte* es también 10001965.729 m. Difiere en una décima de mm respecto a WGS84.

La proyección UTM adopta como Falso Norte el valor convencional de 10000000 m.

El *Falso Este* depende de la faja G-K. Por ejemplo en faja 3 (meridiano central 66°W) será 3500000 m. En faja 2 (meridiano central 69°W) será 2500000 m (ver Tabla 2).

Implementación: Este algoritmo codificado en Javascript se encuentra operativo en los sitios

- http://earg.fcaglp.unlp.edu.ar/calc/kruger.htm
- http://www.earg.org/calc/kruger.htm.

Bibliografía: B.Hofmann-Wellenhof, H.Lichtenegger, J.Collins. Global Positioning System, Theory and Practice. Springer-Verlag Wien, 1992.

Tabla 1: Elipsoides más utilizados

Elipsoide	GRS80	WGS84	Internacional	
			Hayford 1924	
а	6378137 m	6378137 m	6378388 m	
1/f	298,2572221	298,2572236	297	
f	0,0033528107	0,0033528107	0,0033670034	

Tabla 2: Fajas Gauss-Krüger en la República Argentina

Faja	Meridiano	Falso Este		
,	Central			
1	72°W	1500000		
2	69°W	2500000		
3	66°W	3500000		
4	63°W	4500000		
5	60°W	5500000		
6	57°W	6500000		
7	54°W	7500000		

José Luis Hormaechea Río Grande, agosto de 2016

Ejemplos de cálculo

Geodésicas a cartográficas (planas)

G	М	S				unidades
-53	47	10	ϕ	1	-0,9387447307	radianes
-67	45	5	$\stackrel{'}{\lambda}$	2	-1,1824848089	radianes
-69			λ_0	3	-1,2042771839	radianes
			a	4	6378137	m
			f	5	0,0033528107	
			b	6	6356752,31414028	m
			k_0	7	1	
			t	8	-1,365632019	
			1	9	0,021792375	radianes
			n	10	0,0016792204	
			α	11	6367449,14577101	m
			β	12	-0,0025188279	
			γ	13	2,64354480663767E-06	
			δ	14	-3,44936772945235E-09	
			η^2	15	0,0023523953	
			$B(\phi)$	16	-5962109,55137398	m
			N	17	6392079,69314309	m
			Χ	18	-5962833,082	m
			Υ	19	82295,826	m
			$\pi/2$		1,5707963268	radianes
		$B(\pi/2)$	Falso Norte		10001965,7292304	m
			Falso Este		2500000	m
			Χ		4039132,6475	m
			Υ		2582295,8256	m

Cartográficas (planas) a Geodésicas

4039132,6475	10001965,7292	-5962833,0817	X	e^2	20	0,00669438	
2582295,8256	2500000	82295,8256	Υ	n	21	0,0016792204	
				a_0	22	1,0000007049	
				a_2	23	0,0025188297	
				a_4	24	2,64354294934186E-06	
				a_6	25	3,45262894973532E-09	
				a_8	26	4,89183042445367E-12	
				ϕ_0	27	-0,9364555484	radianes
				ϕ_1	28	0,0024062501	
				ϕ_p	29	-0,9388617968	radianes
				ϕ_2	30	0,0024026365	
				ϕ_p^-		-0,9388581832	radianes
				ϕ_3		0,0024026419	
				ϕ_p		-0,9388581886	radianes
				ϕ_4		0,0024026419	
				ϕ_p		-0,9388581886	radianes
				t	31	-1,3659571207	
				η^2	32	0,0023516663	
				η^4	33	5,53033457959533E-06	
				Ν	34	6392082,01740522	m
				L	35	0,0128746511	
				ϕ_a	36	0,0001134745	radianes
				ϕ_b	37	-1,65526052588414E-08	radianes
				ϕ_c	38	3,32434419949981E-12	radianes
				λ_a	39	1,68378292567705E-06	radianes
grados	G	М	S	λ_b	40	4,15181677790861E-10	radianes
-67,7513888885	-67	45	4,999999	λ	41	-1,1824848089	radianes
-53,7861111105	-53	47	9,999998	ϕ	42	-0,9387447307	radianes

José Luis Hormaechea Río Grande, agosto de 2016