برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

تاریخ در نگی: 12 مئی <u>2020</u>

عنوان

ix		ديباچه
1	عا كنّ	1 بنیادی<
1	ينيادى اكائياں	1.1
1	غيرستى	1.2
2	سمتير	1.3
3		1.4
3	1.4.1 كار تىبى محددى نظام	
5	1.4.2 نگلی محددی نظام	
7	سمتيررقبر	1.5
9	ر قبه عمودی تراش	1.6
10	برقی اور مقناطیسی میدان	1.7
10	1.7.1 برقی میدان اور برقی میدان کی شدت	
11	1.7.2 مقناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

11	سطحی اور تحجی کثاف ت	1.8	
11	1.8.1 سطی کثافت		
12	حجى ڭافت	1.9	
13	صلیبی خرب اور ضرب نقطه	1.10	
13	1.10.1 صلیبی ضرب		
15	1.10.2 نقطی ضرب		
18	تفرق اور جزوی تفرق	1.11	
18	خطی تکمل	1.12	
19	سطح تکمل	1.13	
20	دوری سمتیہ	1.14	
25) اد وار	مقناطيسو	2
2525	ماد وار مز احمت اور پیچکیا ہٹ	, <u>-</u>	2
25	····•	2.1	2
2526	مزاحمت اور نیکچابٹ	2.1	2
252628	مزاحمت اور نیچکیا پٹ	2.1	2
25 26 28 30	مزاحمت اور نیکچابث کثافت بر تی رواور برتی میدان کی شدت برتی ادوار متناطبیسی دور حصد اول	2.12.22.3	2
25 26 28 30 32	مزاحمت اور نیجگیا پت کثافت ِ برقی رواور برقی میدان کی شدت برقی ادوار متناطیسی دور حصه اول کثافت ِ مقناطیسی بهاواور مقناطیسی میدان کی شدت	2.1 2.2 2.3 2.4	2
25 26 28 30 32 34	مزاحمت اور آنچکوابت کثافت برقی رواور برقی میدان کی شدت برقی ادوار	2.1 2.2 2.3 2.4 2.5 2.6	2
25 26 28 30 32 34 38	مزاحمت اور نیجگیا په بل کثافت برتی رواور برتی میدان کی شدت برتی او وار متناطیسی دور حصه اول کثافت ِمتناطیسی بهاواور متناطیسی میدان کی شدت متناطیسی دور حصه دوم	2.1 2.2 2.3 2.4 2.5 2.6	2

عـــنوان

	1	ٹرانسفار	3
	ٹرانسفار مرکی اہمیت	3.1	
	ٹرانسفار مرکے اقسام	3.2	
	امالى برقى د باو	3.3	
	ميجان انگيز برقى رواور قالبى ضياع	3.4	
د خواص	تبادله برقی د باواور تبادله برقی روکے	3.5	
	ثانوى جانب بوجھ كاابتدائى جانباژ	3.6	
طلب	ٹرانسفار مرکی علامت پر نقطوں کام	3.7	
	ر کاوٹ کا تبادلہ	3.8	
	ٹرانسفار مر کاوولٹ-ایمپیئر	3.9	
	ٹرانسفار مر کے امالہ اور مساوی ادوار	3.10	
اس کی متعاملہ علیحدہ کرنا	3.10.1 کچھے کی مزاحمت اور ا		
	3.10.2 رِستالماليد		
ب کے اثرات	3.10.3 ثانوى برتى رواور قالى		
	3.10.4 ثانوى كچھے كالمالى برقى		
ت اور متعاملہ کے اثرات	3.10.5 ثانوی کچھے کی مزاحمت		
نوی جانب تبادله	3.10.6 ر كاوٹ كاابتدا كى ياثان		
ترین مساوی اد دار	3.10.7 ٹرانسفار مر کے سادہ		
	كطيے د ور معائنه اور كسر د ور معائنه	3.11	
	3.11.1 كىلادورمعائنە .		
	3.11.2 كسردور معائنه .		
	تین دوری ٹرانسفار مر	3.12	
لى بر قى رو كاگزر	ٹرانسفار مر جالو کرتے لمحہ زیادہ محر ک	3.13	

vi

ميكانى توانائى كا با بمى تبادله	برقی اور	4
مقناطيسي نظام ميں قوت اور قوت مروڑ	4.1	
تبادلية توانائي والاايك لچھے كانظام	4.2	
توانائی اور جم-توانائی	4.3	
متعدد کیجھوں کامقناطیسی نظام	4.4	
شین کے بنیاد کی اصول	گومتے'	5
قانون فيرالۈك	5.1	
معاصر مشين	5.2	
محرک برقی دیاو	5.3	
ت كييل كچھے اور سائن نمامقنا طيسي دياو	5.4	
5.4.1 بدلتارووالے مشین		
مقناطیسی د باو کی گھو متی امواج کی متی امواج کی متی امواج کی گھو متی امواج کی امواج کی متی امواج کی امواج کی امواج کی امواج کی متی امواج کی امواج	5.5	
5.5.1 ایک دورکی کپٹی مشین		
5.5.2 تين دورکي لپڻي مشين کا تحليلي تجربي		
5.5.3 تين دورکي لپڻي مشين کاتر سيمي تجربيه		
محرک برتی دباو	5.6	
5.6.1 بدلتاروبرتی جزیئر		
5.6.2 يک ست روبر قي جزيئر		
جموار قطب مشينول ميں قوت مروڑ	5.7	
5.7.1 ميكاني قوت مر ور بذريعه تركيب توانائي		
5.7.2 مكانى قوت م وژمذر لعه مقناطيسي بهاو		

vii

رار چالو معاصر مشين	6 كيسال حال، برقر
د دوری معاصر مشین	6.1 متعدد
ر مشین کے امالہ	6.2 معاص
.6 خوداماله	2.1
.6 مشتر كداماله	2.2
.6 معاصراماله	2.3
ر مشین کامساوی دوریار یاضی نمونه	6.3 معاص
ىاقت كى ^{ئىتق} ى	6.4 برتی,
) حال، بر قرار چالومشین کے خواص	6.5 كياد
معاصر جزیئر: برتی بو جھ بالمقابل I_m کے خط I_m معاصر جزیئر: برتی بو جھ بالمقابل I_m	5.1
I_a معاصر موٹر: I_a بالمقابل I_m کے خط I_m خط I_m معاصر موٹر: 6.	5.2
راور کمر دور معائنه	6.6 کھلادو
.6 کھلادورمعائنہ	6.1
.6 کسر دور معائنہ	6.2

211	امالی مشیرز	7
ساكن كىچھوں كى گھومتى مقناطىيى موج	7.1	
مشين كاسر كاواور گلومتى امواح پر تبعره	7.2	
ساكن كچھوں ميں امالى بر تى د باد	7.3	
ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیدا امالی ہرقی دباو	7.4	
گھومتے کچھوں کی گھومتے متناطبی دیاو کی موج کے علیہ موج کے اور کی موج کے اور کی موج کے اور کی موج کے اور کی موج	7.5	
گھومتے کچھوں کے مساوی فرضی ساکن کچھے ۔	7.6	
المالي موشر كا مساوى برقى دور	7.7	
مساوی بر تی و ورپه غور	7.8	
المالي موشر كا مساوى تقونن دوريارياضي نمونه	7.9	
ينچره نماامالي موٹر	7.10	
بے پوچھ موٹر اور جامد موٹر کے معائنہ	7.11	
7.11.1 كِ يُوجِهِ مُوثِرُكامِعاتُنَهُ		
7.11.2 جامد موثر کامعا تند		
درومثين	يك سمت	8
ميكاني ست كاركي بنيادى كاركر دگى	8.1	
8.1.1 ميكاني ست كاركي تفصيل		
يك ست جزيرً كابر تي دباد	8.2	
قوت مرور الله الله الله الله الله الله الله الل	8.3	
بير وني بيجان اور خود بيجان يك سمت جزير	8.4	
يک ست مشين کي کار کرد گي کے خط	8.5	
8.5.1 حاصل برقی د باوبالمقابل برقی بوجھ		
8.5.2 رفتار بالمقابل قوت مرور شد		
269	اُل	فرہنًا

عـــنوان

باب5

گھومتے مشین کے بنیادی اصول

اس باب میں مختلف گھومتے مشینوں کے بنیادی اصولوں پر غور کیا جائے گا۔ظاہری طور پر مختلف مشین ایک ہی قشم کے اصولوں پر کام کرتے ہیں جنہیں اس باب میں اکٹھا کیا گیا ہے۔

5.1 قانون فيرادُك

قانور فیراڈے 1 کے تحت جب بھی کسی کچھے کا ارتباط بہاو λ وقت کے ساتھ تبدیل ہو، اس کچھے میں برقی دباو پیدا ہو گا:

(5.1)
$$e = \frac{\partial \lambda}{\partial t} = N \frac{\partial \phi}{\partial t}$$

گومتے مثین میں ارتباط بہاو کی تبدیلی مختلف طریقوں سے پیدا کی جا سکتی ہے۔مثلاً کچھے کو ساکن مقناطیسی بہاو میں گھما کر یا ساکن کچھے میں مقناطیس گھما کر، وغیرہ وغیرہ۔

Faraday's law¹

ان برقی مثینوں میں کچھے مقناطیسی قالب² پر لییٹے جاتے ہیں۔ اس طرح کم سے کم مقناطیسی دباو سے زیادہ سے زیادہ سے زیادہ مقناطیسی بہاو ماصل کیا جاتا ہے اور کچھوں کے مابین مشتر کہ مقناطیسی بہاو بڑھایا جاتا ہے۔ مزید قالب کی شکل تبدیل کر کہ مقناطیسی بہاو کو ضرورت کے مقام پر پہنچایا جاتا ہے۔

ان مشینوں کے قالب میں مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے للذا قالب میں بھنور نما برقی رو³ پیدا ہوتا ہے۔ان بھنور نما برقی رو کو کم سے کم کرنے کی خاطر باریک لوہے کی پتری⁴ تہہ در تہہ رکھ قالب بنایا جاتا ہے۔ آپ کو یاد ہوگا، ٹرانسفار مرکا قالب بھی ای طرح بنایا جاتا ہے۔

5.2 معاصر مشين

شکل 5.1 میں معاصر برقی جزیئر کا ایک بنیادی شکل دکھایا گیا ہے جس کے قالب میں ایک مقناطیس ہے جو کہ گھوم سکتا ہے۔ میکانی زاویہ θ_m مقناطیس کا مقام دیتا ہے۔ افقی کیبر سے خلاف گھڑی زاویہ θ_m ناپا جاتا ہے۔

یہاں کچھ باتیں وضاحت طلب ہیں۔ اگر مقناطیں ایک مقررہ رفتار ہے، فی سینڈ n مکمل چکر کائنا ہو تب ہم کہتے ہیں کہ اس مقناطیں کے گھومنے کا تعدد n ہر ٹر ڈ ہے۔ اس بات کو یوں بھی بیان کیا جاتا ہے کہ مقناطیں 60n فی منٹ 6 کی رفتار سے گھوم رہا ہے۔ آپ جانتے ہیں کہ ایک چکر 360 زاویہ یا 2π ریڈ بیئ 7 پر مشتمل ہوتا ہے لمذا گھومنے کی اس رفتار کو $2\pi n$ ریڈ بیئ فی سینڈ بھی کہہ سکتے ہیں۔ یوں اگر مقناطیں f ہر ٹر کی رفتار سے گھوم رہا ہو تب یہ سے بیں۔ یوں اگر مقناطیں f ہر ٹر کی رفتار سے گھوم رہا ہو تب یہ $2\pi f$ ریڈ بیئ فی سینڈ کی رفتار سے گھومے گا جس کو ω سے ظاہر کیا جاتا ہے۔

$$(5.2) \omega = 2\pi f$$

اس کتاب میں گھومنے کی رفتار کو عموماً ریڈیٹن فی سینڈ میں بیان کیا جائے گا۔

شکل 5.1 میں مثین کے دو مقاطیسی قطب ہیں، اس لئے اس کو دو قطبی مثین کہتے ہیں۔ ساکن قالب میں، اندر کی جانب دو شگاف ہیں، جن میں N چکر کا لچھا موجود ہے۔ لیچھے کو a اور a' سے ظاہر کیا گیا ہے۔اس لیچھے کی بنا

magnetic core²
eddy currents³
laminations⁴
Hertz⁵

rounds per minute, rpm⁶ radians⁷

5.2 معاصر مشين

شکل 5.1: دوقطب، یک دوری معاصر جنریٹر۔

اس مشین کو ایک کچھے کا مشین بھی کہتے ہیں۔ چونکہ یہ کچھا جزیٹر کے ساکن حصہ پر پایا جاتا ہے للذا یہ کچھا بھی ساکن ہو گا جس کی بنا اسے ساکھے کچھا⁸ کہتے ہیں۔

مقناطیس کا مقناطیسی بہاو شالی قطب 9 N سے خارج ہو کر خلائی درز میں سے ہوتا ہوا، باہر گول قالب میں سے گزر کر، دوسرے خلائی درز میں سے ہوتا ہوا، مقناطیس کے جنوبی قطب 10 S میں داخل ہو گا۔ اس مقناطیسی بہاو کو ہلکی سیابی کے کمیروں سے دکھایا گیا ہے۔ یہ مقناطیسی بہاو، سارا کا سارا، ساکن کچھے میں سے بھی گزرتا ہے۔ شکل 5.1 میں مقناطیس سیدھی سلاخ کی مانند دکھایا گیا ہے۔

شکل 5.2 میں مقناطیس تقریباً گول ہے اور اس کے محور کا زاویہ θ_m صفر کے برابر ہے۔ مقناطیس اور ساکن قالب کے پچ صفر زاویہ، $0 = \theta$ ، پر خلائی درز کی لمبائی کم سے کم اور نوے زاویہ، $0 = |\theta|$ ، پر زیادہ سے زیادہ سے کم خلائی درز پر پچکچاہٹ کم ہو گی جبکہ زیادہ خلائی درز پر پچکچاہٹ زیادہ ہو گی للذا $0 = \theta$ پر خلائی درز سے زیادہ مقناطیسی بہاو گزرے گا۔خلائی درز کی لمبائی یوں تبدیل کی جاتی ہے کہ خلائی درز میں سائن نما مقناطیسی بہاو پیدا ہو۔ مقناطیسی بہاو مقناطیس سے قالب میں عمودی زاویہ پر داخل ہوتا ہے۔ اگر خلائی درز میں 0 = 0 سائن نما ہو

$$(5.3) B = B_0 \cos \theta_p$$

تب کثافت مقناطیسی بہاو B صفر زاویہ $\theta_p=0^\circ$ ، پر زیادہ سے زیادہ اور نوے زاویہ، $\theta_p=90^\circ$ ، پر صفر ہو گی اور خلائی درز میں مقناطیسی بہاو $\theta_p=0$ کے ساتھ تبدیل ہو گا۔ $\theta_p=0$ کو مقناطیس کے شالی قطب سے گھڑی کے مخالف

stator coil⁸ north pole⁹ south pole¹⁰

شكل 5.2: كثافت مقناطيسي بهاواور زاويه كاتبديلي_

رخ ناپا جاتا ہے۔ شکل 5.2 میں ساکن جے کے باہر نو کیلی لکیروں کی لمبائی سے کثافت مقناطیسی بہاو کی مطلق قیمت اور کلیروں کے رخ سے بہاو کا رخ دکھایا گیا ہے۔ اس شکل میں ہاکی سیابی سے $^{\circ}0$ - $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ باتی آ دھے میں مخالف کے مخالف ہے۔ یوں شکل 5.2 میں آ دھے خلائی درز میں کثافت مقناطیسی بہاو کا ترسیم سائن نما ہو گا۔ شکل 5.3 میں مقناطیس دوسرے زاویہ پر دکھایا گیا ہے۔ یاد رہے کثافت مقناطیسی بہاو کی مطلق قیمت مقناطیس کے شائی قطب پر زیادہ سے زیادہ ہو گی اور شائی قطب پر کثافت مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رہ والے $^{\circ}0$ وادر $^{\circ}0$ دکھائے گئے ہیں جہاں سے درج ذیل کھا جا سکتا ہے۔

(5.4)
$$B = B_0 \cos \theta_p$$
$$\theta_p = \theta - \theta_m$$

يوں درج ذيل ہو گا۔

$$(5.5) B = B_0 \cos(\theta - \theta_m)$$

شکل 5.3 میں مقناطیس اور اس کا سائن نما مقناطیسی دباو پیش کیا گیا ہے۔ جیسا شکل 5.4 میں دکھایا گیا ہے، ایسے مقناطیسی دباو کو عموماً ایک سمتیہ سے ظاہر کیا جاتا ہے جہاں سمتیہ کا طول مقناطیسی دباو کا حیطہ اور سمتیہ کا رخ مقناطیس کے شال کو ظاہر کرتا ہے۔ 5.2. معاصر مشين

شکل 5.5: چار قطب یک دوری معاصر جنریٹر۔

شکل 5.3 میں مقناطیس کو لمحہ t_1 ، زاویہ $\theta_m(t_1)$ پر دکھایا گیا ہے جہاں ساکن کچھے کا ارتباط بہاو $\theta_m(t_1)$ مقناطیس گھڑی کے مخالف رخ ایک مقررہ رفتار ω_0 سے گھوم رہا ہو تب ساکن کچھے میں اس لمحہ پر برقی دباو e(t) پیدا ہو گا:

(5.6)
$$e(t) = \frac{\mathrm{d}\lambda_{\theta}}{\mathrm{d}t}$$

آوھے چکر، π ریڈیئن گھومنے کے، بعد مقناطیسی قطبین آپس میں جگہیں تبدیل کرتے ہیں، کچھے میں مقناطیسی بہاو کا رخ الٹ ہو گا، کچھے میں ارتباط بہاو θ_0 اور اس میں امالی برقی دباو e(t) ہو گا۔ ایک مکمل چکر بعد مقناطیس دوبارہ ای مقام پر ہو گا جو شکل 5.3 میں دکھایا گیا ہے، ساکن کچھے کا ارتباط بہاو دوبارہ θ_0 اور اس میں امالی برقی دباو کی دباو کو گا۔ یوں جب بھی مقناطیس $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں دو سرے کے برابر تبدیلی رونما ہوگی لہذا دو قطب، ایک کچھے کی مثنین میں میکانی زاویہ θ_m اور برقی زاویہ θ_0 ایک دو سرے کے برابر ہوں گ

$$\theta_e = \theta_m$$

اس مشین میں میکانی زاویہ θ_m اور برقی زاویہ θ_e وقت کے ساتھ تبدیل ہونے کے باوجود آپس میں ایک تناسب رکھتے ہیں لہٰذا ایسے مشین کو معاصر مشین 0 کہتے ہیں۔ یہاں یہ تناسب ایک کے برابر ہے۔

frequency¹¹

Hertz¹²

synchronous machine¹³

5.2 معاصر مشين

شکل 5.5 میں چار قطب، یک دوری معاصر جزیٹر دکھایا گیا ہے۔ چھوٹے مشینوں میں عموماً مقناطیس جبکہ بڑے مشینوں میں برقی مقناطیس 14 استعال ہوتے ہیں۔ اس شکل میں برقی مقناطیس استعال کیے گئے ہیں۔ دو سے زائد قطبین والے مشینوں میں کسی ایک شالی قطب کو حوالہ قطب تصور کیا جاتا ہے۔ شکل میں اس حوالہ قطب کو θ_m پر دکھایا گیا ہے اور یوں دوسرا شالی قطب کو θ_m زاویہ پر ہے۔

حییا کہ نام سے واضح ہے، اس مشین میں مقناطیس کے چار قطبین ہیں۔ ہر ایک ثالی قطب کے بعد ایک جنوبی قطب آتا ہے۔ یک دوری آلات میں مقناطیسی قطبین کے جوڑوں کی تعداد اور ساکن کچھوں کی تعداد ایک دوسرے قطب آتا ہے۔ یک دوری آلات میں مثنا سے قطبین قطبین ہیں، للذا اس مشین کے ساکن حصہ پر کے برابر ہوتی ہے۔ شکل 5.5 میں مشین کے چار قطب یعنی دو جوڑی قطبین ہیں، للذا اس مشین کے ساکن حصہ پر دو ساکن کچھے ہوں ہیں۔ ایک کچھے کو واشح کیا گیا ہے اور دوسرے کو ہے ہے۔ کچھے کو قالب میں موجود دوشگان اور a_1 میں رکھا گیا ہے۔ ان وونوں کچھوں دوشگان اور a_2 میں رکھا گیا ہے۔ ان دونوں کچھوں میں یکسال برقی دباو پیدا ہوتا ہے۔ دونوں کچھوں کو سلسلہ وار 15 جوڑا جاتا ہے۔ اس طرح جزیڑ سے حاصل برقی دباو ایک کچھے میں پیدا برقی دباو کا دگنا ہو گا۔ یک دوری آلات میں قالب کو مقناطیس کے قطبین کی تعداد کے برابر حصوں میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا ایک کچھا میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا ایک کچھا نوے مکانی زاویہ کے اطاطے کو گھیرتا ہے۔

ساکن اور حرکی کیجھوں کی کار کردگی ایک دوسرے سے مختلف ہوتی ہے۔اس کی وضاحت کرتے ہیں۔

جیسا پہلے بھی ذکر کیا گیا چھوٹی گھومتی مشینوں میں مقناطیسی میدان ایک مقناطیس فراہم کرتا ہے جبکہ بڑی مشینوں میں برقی مقناطیس کو گھومتا حصہ دکھایا گیا ہے، حقیقت میں برقی مقناطیس کی مشین میں گومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والا لچھا مشین کے کل برقی طاقت میں مقناطیس کسی مشین میں گھومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والے اس کچھے کو میدانی لچھا¹⁶ کہتے ہیں۔اس کے چند فی صد برابر برقی طاقت استعال کرتا ہے۔میدان فراہم کرنے والے اس کچھے کو میدانی لچھا کہ ہیں۔اس کے برعکس مشین میں موجود دوسری نوعیت کے لچھے کو قومی لچھا¹⁷ کہتے ہیں۔برقی جزیر کے قوی کچھے سے برقی طاقت کے برعکس مشین میں موجود دوسری نوعیت کے لچھے میں چند فی صد برقی طاقت کے ضیاع کے علاوہ تمام برقی طاقت وی کچھے کو فراہم کی جاتی ہے۔

شکل 5.6 میں گھومتے اور ساکن حصہ کے بی خلائی درز میں شالی قطب سے مقناطیسی بہاو باہر نکل کر قالب میں داخل ہوتا ہے۔ شکل 5.6 میں داخل ہوتا ہے۔ شکل 5.6 میں

electromagnet¹⁴

series connected 15

field coil¹⁶

armature coil¹⁷

شكل 6.5: چار قطب، دولچھے مثین میں مقناطیسی بہاو۔

اس مقناطیسی بہاو کی کثافت کو دکھایا گیا ہے۔ یوں اگر ہم اس خلائی درز میں ایک گول چکر کا ٹیس تو مقناطیسی بہاو کا رخ دو مرتبہ باہر کی جانب اور دو مرتبہ اندر کی جانب ہو گا۔ ان مشینوں میں کوشش کی جاتی ہے کہ خلائی درز میں B سائن نما ہو۔ یہ کیسے کیا جاتا ہے، اس پر آگے خور کیا جائے گا۔ اگر تصور کر لیا جائے کہ B سائن نما ہے تب خلائی درز میں B کی مطلق قیت شکل 5.7 کی طرح ہو گی جہاں θ برتی زاویہ ہے۔

P قطبی مقناطیس کے معاصر مثین کے لئے لکھ درج ذیل ہو گا۔

$$\theta_e = \frac{P}{2}\theta_m$$

$$(5.8) f_e = \frac{P}{2} f_m$$

یہاں برقی اور میکانی تعدد کا تناسب 2 ہے۔

مثال 5.1: پاکستان میں گھریلو اور صنعتی صارفین کو $_{\rm Hz}$ کی برتی طاقت فراہم کی جاتی ہے۔یوں ہمارے ہاں $_{\rm fe}=50$

- اگر برقی طاقت دو قطبی جزیٹر سے حاصل کی جائے تب جزیٹر کی رفتار کتنی ہو گی؟۔
 - اگر جزیر کے بیں قطب ہوں تب جزیر کی رفار کتنی ہو گی؟

حل:

5.2 معاصر شين

شکل 5.8: دو قطب، تین دوری معاصر مثین ـ

- مساوات 5.8 تحت وو قطبی، P=2، جنریٹر کا میکانی رفتار $f_m=\frac{2}{2}(50)=50$ چکر نی سیکنڈ لیمن P=2، جنریٹر کا میکانی رفتار 18 جنریٹر کی منٹ 18 ہو گا۔
- بیں قطبی، P=20، جزیٹر کا میکانی رفتار $f_m=rac{2}{20}(50)=5$ چکر فی سینٹر لیعنی 300 چکر فی منٹ ہو گا۔

اب یہ فیصلہ کس طرح کیا جائے کہ جزیر کے قطب کتنے رکھے جائیں۔ در حقیقت پانی سے چلنے والے جزیر سست رفتار جبکہ ٹربائن سے چلنے والے جزیر تیزر فلار ہوتے ہیں، للذا پانی سے چلنے والے جزیر نریدہ قطب رکھتے ہیں جبکہ ٹربائن سے چلنے والے جزیر عموماً دو قطب کے ہوتے ہیں۔

a شکل 5.8 میں دو قطب تین دوری معاصر مشین دکھایا گیا ہے۔اس میں تین ساکن کچھے ہیں۔ان میں ایک کچھا a جو قالب میں شکاف a اور a میں رکھا گیا ہے۔ اگر اس شکل میں باقی دو کچھے نہ ہوتے تب یہ بالکل شکل a میں دیا گیا مشین ہی تھا۔البتہ دیے گئے شکل میں ایک کی بجائے تین ساکن کچھے ہیں۔

لچھے کا رخ درج ذیل طریقہ سے تعین کیا جاتا ہے۔

rpm, rounds per minute¹⁸

شكل 5.9: دوقطب تين دوري مشين ـ

• دائیں ہاتھ کی چار انگلیوں کو دونوں شکافوں میں برتی رو کے رخ کیلیٹیں۔ دائیں ہاتھ کا انگوٹھا کچھے کا رخ دے گ

شکل 5.8 میں کچھا a کا برقی رو شگاف a میں، کتاب کے صفحہ کو عمودی، باہر رخ جبکہ a' میں اس کے مخالف اندر رخ تصور کرتے ہوئے کچھا a کا رخ تیر دار لکیر سے دکھایا گیا ہے۔ اس رخ کو ہم صفر زاویہ تصور کرتے ہیں۔ یوں کچھا a صفر زاویہ پر لپیٹا گیا ہے، لیعنی a a ہے۔ باقی کچھوں کے زاویات کچھا a کے رخ سے، گھڑی کے مخالف رُخ نابے جاتے ہیں۔

شکل 5.8 میں کچھا b کو شگاف b اور b' میں رکھا گیا ہے اور کچھا c کو شگاف c اور c' میں رکھا گیا ہے۔ مزید کچھا d کو d و شگاف d کو d و d و شگاف d و d و ثرگاف d و شگاف و شگاف d و شگاف و

شکل 5.9 میں اگر لمحہ t_1 پر لچھا a کا ارتباط بہاو (t_1) ہو تب لمحہ t_2 بر، جب مقناطیس °120 زاویہ طے کر لے، لچھا d کا ارتباط بہاو (t_1) ہو گا۔ لمحہ t_2 بر مقناطیس اور لچھا d ایک دوسرے کے لحاظ سے بالکل ای طرح نظر آتے ہیں جیسے t_1 پر مقناطیس اور لچھا a ایک دوسرے کے لحاظ سے نظر آتے تھے۔ یوں لمحہ t_2 پر لچھا کا ارتباط بہاو تھا: اتنا ہی ہو گا جننا لمحہ t_1 پر t_2 لحجھا کا ارتباط بہاو تھا:

$$\lambda_b(t_2) = \lambda_a(t_1)$$

اسی طرح کھے t_3 پر، جب مقناطیس مزید °120 زاویہ طے کر لے، کچھا c کا ارتباط بہاو ($\lambda_c(t_3)$ ہو گا جو $\lambda_c(t_1)$ کے برابر ہو گا۔یوں درج ذیل لکھا جا سکتا ہے۔

$$\lambda_c(t_3) = \lambda_b(t_2) = \lambda_a(t_1)$$

5.2. معاصر مثين

ان کمحات پر کیجھوں کے امالی برقی دباو

(5.11)
$$e_a(t_1) = \frac{\mathrm{d}\lambda_a(t_1)}{\mathrm{d}t}$$

$$(5.12) e_b(t_2) = \frac{\mathrm{d}\lambda_b(t_2)}{\mathrm{d}t}$$

(5.13)
$$e_c(t_3) = \frac{\mathrm{d}\lambda_c(t_3)}{\mathrm{d}t}$$

ہوں گے۔ مساوات 5.10 کی روشنی میں درج ذیل ہو گا۔

(5.14)
$$e_a(t_1) = e_b(t_2) = e_c(t_3)$$

اگر شکل 5.9 میں صرف کچھا a پایا جاتا تب یہ بالکل شکل 5.1 کی طرح ہوتا اور اگر ایکی صورت میں مقناطیس گھڑی کے مخالف رخ ایک مقررہ رفتار a سے گھمایا جاتا تب، جیسے پہلے تذکرہ کیا گیا ہے، کچھا a میں سائن نما برقی دباو پیدا ہوتا۔ شکل 5.9 میں کسی ایک کچھے کو کسی دو سرے کچھے پر کوئی برتری حاصل نہیں ہے۔ یوں اگر شکل 5.9 میں مقناطیس ای طرح گھمایا جائے تب تینوں سائن کچھوں میں سائن نما برقی دباو پیدا ہو گا البتہ مساوات 5.14 کے تحت یہ برقی دباو آپس میں a دو سرے کھوں گے۔ ان امالی برقی دباو کو شکل 5.10 میں دکھایا گیا ہے۔ اگر لمحد تحت یہ برقی دباو آپس میں a وقت بھی ہوت بھی جوں درج ذیل a وار لمحد a کی چوٹی پائی جائے گی۔ یوں درج ذیل ہوں گے۔

$$\begin{split} e_a(t) &= E_0 \cos \omega_0 t \\ e_b(t) &= E_0 \cos \left(\omega_0 t - \frac{2}{3}\pi\right) \\ e_c(t) &= E_0 \cos \left(\omega_0 t - \frac{4}{3}\pi\right) = E_0 \cos \left(\omega_0 t + \frac{2}{3}\pi\right) \end{split}$$

شکل 5.11 میں چار قطب، تین دوری معاصر مشین دکھایا گیا ہے۔ گھومتے تھے پر شاکی اور جنوبی قطبین باری باری پائے جاتے ہیں اور °180 میکانی زاویہ میں شال اور قریبی جنوب قطب کی ایک جوڑی بائی جاتی ہے۔ یہی میکانی زاویہ علی 5.80 میں ساکن حصہ کے °360 برقی زاویہ کے احاطہ میں تین دوری کچھے نہیں جن کی اطراف کی ترتیب، گھڑی کے مخالف رخ چلتے ہوئے، ہم، 'b ، c ، a ، b ، c وری کچھوں کے اطراف کی ترتیب، گھڑی کے مخالف رخ چلتے ہوئے، میں بالکل اسی طرح تین دوری کچھوں کے اطراف دو قطبین کے احاطہ، °180 میکانی زاویہ (یا °360 برقی زاویہ)، میں بالکل اسی طرح تین دوری کچھوں کے اطراف کی ترتیب ہمان کو ماری کی ترتیب ہمان کو ماری کی ترتیب کی ترتیب اور '10 ہے۔ باقی دو قطبین کے احاطے میں بھی بالکل اسی طرح آپ کو 20 ، '22 کی ترتیب ہمان کی ترتیب ہمان کو ماری کی دو تطبین کے احاطے میں بھی بالکل اسی طرح آپ کو 20 ، '22 کی ترتیب ہمان کی ترتیب ہمان کی دو تو میں جس کی بالکل اسی طرح آپ کو دو تو میں ہمان کی ترتیب ہمان کی دور کی دو

شكل 5.10: تين دورى امالى برقى د باومين زاويائى فرق پاياجاتا ہے۔

شكل 5.11: چار قطب، تين دوري معاصر مشين ـ

5.3. محسر كب بر قي دباو

وری دوری نظر آئیں گے۔ کسی بھی کھے a1 اور a2 کیچھوں میں بالکل کیساں برقی دباو پیدا ہو گا۔ تین دوری دوری دوری کے دوری کے متال کی کی متال کی کی متال کی کی متال کی کی متال کی متال

5.3 محرك برقى دباو

قانون لورینز q^{20} کے تحت مقناطیسی میدان $m{B}$ میں سمتی رفتار $m{v}$ سے حرکت پذیر برقی بار q^{20} درج ذیل قوت $m{F}$ محسوس کرے گا۔

$$(5.15) F = q(\boldsymbol{v} \times \boldsymbol{B})$$

یہاں سمتی رفتار سے مراد برقی میدان کے لحاظ سے برقی بار کی سمتی رفتار ہے للذا F کو ساکن مقناطیسی میدان میں برقی بارکی سمتی رفتار سے معلوم کیا جاتا ہے۔ میں برقی بارکی سمتی رفتار تصور کیا جا سکتا ہے۔ اس قوت کا رخ دائیں ہاتھ کے قانون سے معلوم کیا جاتا ہے۔

متناطیسی میدان میں ابتدائی نقطہ سے اختیامی نقطہ تک، جن کے ﷺ ہٹاو $m{l}$ ہے، برقی بار q نتقل کرنے کے لئے درکار کام W ہو گا:

$$(5.16) W = \mathbf{F} \cdot \mathbf{l} = q(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

اکائی مثبت برتی بار کو ایک نقط سے دوسرے نقطہ منتقل کرنے کے لئے درکار کام کو ان دو نقطوں کے پیج برقی دباو²¹ کہتے ہیں جس کی اکائی وولٹے V ²² ہے۔یوں اس مساوات سے ان دو نقطوں کے پیچ درج ذیل برتی دباو ہو گا۔

(5.17)
$$e = \frac{W}{q} = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

حرکت کی مدد سے یوں حاصل برتی دباو کو محرکے برقے دباو²³ کہتے ہیں۔ روایق طور پر کسی بھی طریقہ سے حاصل برتی دباو کو محرک برتی دباو کہتے ہیں۔ یوں کیمیائی برتی سیل وغیرہ کا برتی دباو بھی محرک برتی دباو کہلائے گا۔

Lorentz law¹⁹

 $charge^{20}$

potential difference, voltage 21

 $volt^{22}$

electromotive force, emf^{23}

شکل5.12:ایک چکر کالچھامقناطیسی میدان میں گھوم رہاہے۔

شکل 5.12 میں گھڑی کے مخالف رخ گھومتے حصہ پر ایک چکر کا کچھا نسب ہے۔بائیں خلاء میں کچھا کی تارکے قطع پر غور کریں۔ مساوات 5.15 کے تحت بایاں قطع میں موجود مثبت برقی بار پر صفحہ کے عمودی باہر رخ قوت پیدا ہو گی۔مساوات 5.17 کے تحت اس قطع کا بالائی سرا مثبت اور نچلا سرا منفی برقی دباو پر ہو گا۔

ہم گھومتے حصہ کی محور پر نکلی محدد قائم کرتے ہیں۔ یوں جنوبی قطب کے سامنے خلاء میں B رداسی رخ جبکہ شالی قطب کے سامنے خلاء میں B رداس کے مخالف رخ ہو گا۔ جنوبی قطب کے سامنے شگاف میں برتی تار l_S کے ہم درج ذیل لکھ سکتے ہیں۔

(5.18)
$$egin{aligned} oldsymbol{v}_S &= v oldsymbol{a}_{ heta} &= \omega r oldsymbol{a}_{ heta} \ oldsymbol{B}_S &= B oldsymbol{a}_{ heta} \ oldsymbol{l}_S &= l oldsymbol{a}_{ heta} \end{aligned}$$

یوں جنوبی قطب کے سامنے تار کے قطع میں درج ذیل محرک برقی دباو پیدا ہو گا۔

(5.19)
$$e = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

$$= \omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z}$$

$$= \omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z}$$

$$= -\omega r B l$$

جنوبی مقناطیسی قطب کے سامنے شگاف میں برقی تارکی لمبائی کا رخ a_z لیا گیا۔اس مساوات میں برقی دباو منفی ہونے کا مطلب ہے کہ برقی تارکا مثبت سراتار پر $-a_z$ رخ ہے لیعنی تارکا نجلا سرا مثبت اور بالائی سرا منفی ہے۔ اگر اس تار میں روگزر سکے تو اس روکا رخ $-a_z$ لینی صفحہ کو عمودی اندر رخ ہوگا جے شکل 5.12 میں شگاف میں دائرہ کے اندر صلیبی نشان سے ظاہر کیا گیا ہے۔

5.3. محسر کے برقی دباو

اسی طرح شالی مقناطیسی قطب کے سامنے شگاف میں موجود برقی تار کے لئے ہم درج ذیل لکھ سکتے ہیں۔

(5.20)
$$\begin{aligned} \boldsymbol{v}_N &= v\boldsymbol{a}_\theta = \omega r\boldsymbol{a}_\theta \\ \boldsymbol{B}_N &= -B\boldsymbol{a}_{\mathrm{r}} \\ \boldsymbol{l}_N &= l\boldsymbol{a}_{\mathrm{z}} \end{aligned}$$

يول اس قطع مين درج ذيل دباو هو گا۔

(5.21)
$$e_{N} = (\mathbf{v}_{N} \times \mathbf{B}_{N}) \cdot \mathbf{l}_{N} \\ = -\omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z} \\ = -\omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z} \\ = \omega r B l$$

شالی مقناطیسی قطب کے سامنے شگاف میں برتی تارکی لمبائی کا رخ a_z لیا گیا ہے۔اس مساوات میں برتی دباو مثبت ہونے کا مطلب ہے کہ برتی تارکا مثبت سرا تارپر a_z رخ ہوگا لینی تارکا بالائی سرا مثبت اور نجلا سرا منفی ہوگا۔اگر اس تار میں رو گزر سکے تو اس کا رخ a_z لینی صفحہ کو عمودی باہر رخ ہوگا جے شکل 5.12 میں شگاف میں دائرہ کے اندر نقطہ کے نشان سے دکھایا گیا ہے۔

یہ دونوں تار مل کر ایک چکر کا لچھا بناتے ہیں۔ ان تاروں کے نچلے سر ایک دوسرے کے ساتھ سلسلہ وار بڑے ہیں جس کو شکل میں نہیں دکھایا گیا۔یوں اس کچھے کے بالائی، نظر آنے والے، سروں پر کل برقی دباو e ان دو برقی تاروں میں پیدا برقی دباو کا مجموعہ ہو گا:

(5.22)
$$e = 2rlB\omega$$
$$= AB\omega$$

یہاں کچھے کا رقبہ A=2rl ہے۔ اگر ایک چکر سے اتنا برقی دباو حاصل ہو تب N چکر کے کچھے سے درج ذیل دباو حاصل ہو گا جہاں $\phi=AB$ مقناطیسی بہاو ہے۔

(5.23)
$$e = \omega NAB$$
$$= 2\pi f NAB$$
$$= 2\pi f N\phi$$

گومتی مشینوں کی خلائی درز میں B اور v ہر لمحہ ایک دوسرے کے عمودی ہوتے ہیں۔مساوات 5.17 کے تحت مستقل زاویائی رفتار اور محوری لمبائی کی صورت میں پیدا کردہ برقی دباو ہر لمحہ B کا براہ راست متناسب ہو گا۔

خلائی درز میں زاویہ کے ساتھ تبدیل ہوتے ہوئے B کی صورت میں گھومتے کچھے میں پیدا برقی دباو بھی زاویہ کے

ساتھ تبدیل ہو گا۔یوں جس شکل کا برتی دباو درکار ہو اسی شکل کی کثافت مقناطیسی دباو خلائی درز میں پیدا کرنی ہو گی۔سائن نما برتی دباویدا کرنے کے لئے خلائی درز میں سائن نما کثافت مقناطیسی بہاو درکار ہو گی۔

اگلے جصے میں خلائی درز میں ضرورت کے تحت B پیدا کرنے کی ترکیب بتلائی جائے گا۔

5.4 تھیلے کچھے اور سائن نمامقناطیسی دیاو

ہم نے اب تک جتنے مثین دیکھے ان سب میں گچھ ²⁴ کچھ دکھائے گئے۔ مزید ان مثینوں میں گھومتے تھے پر موجود مقاطیس کے ابھرے قطبے²⁵ تھے۔ عموماً حقیقی مثینوں کے ہموار قطبے²⁶ اور چھیلے کچھ ²⁷ ہوتے ہیں جن کی بنا ساکن اور گھومتے حصوں کے بیچ خلائی درز میں سائن نما مقاطیسی دباو اور سائن نما کثافت مقناطیسی بہاو پیدا کرنا ممکن ہوتا ہے۔

شکل 5.13 میں ایک گیجھ کچھا دکھایا گیا ہے جہاں مثین کے گھومتے جھے کا عمودی تراش گول صورت کا ہے۔ متحرک اور ساکن قالب کا ϕ ہیدا کرتا ہے جس کو ہلکی متحرک اور ساکن قالب کا ϕ ہیدا کرتا ہے جس کو ہلکی متحرک اور ساکن قالب کا میں ہیدا کرتا ہے جس کو ہلکی متحرک اور ساکن قالب کا میں ہیدا کرتا ہے جس کو ہلکی متحرک اور ساکن قالب کا میں ہیدا کرتا ہے جس کو ہلکی متحرک اور ساکن قالب کا میں ہیدا کرتا ہے جس کو ہلکی متحرک اور ساکن قالب کا میں ہیدا کرتا ہے جس کو ہلکی متحرک اور ساکن قالب کا میں ہیدا کرتا ہے جس کو ہلکی میں میں ہیدا کرتا ہے جس کو ہلکی ہلکی ہیدا کرتا ہے جس کو ہلکی ہلکتا ہے جس کو ہلکی ہلکی ہیدا کرتا ہے جس کے ہلکی ہلکی ہلکتا ہے جس کے ہلکتا ہی ہلکتا ہے جس کے ہلکتا ہیں ہلکتا ہے جس کے ہلکتا ہیا ہے جس کے ہلکتا ہے ہلکتا ہے ہلکتا ہے جس کرتا ہے ہلکتا ہے جس کے ہلکتا ہلکتا ہے ہلکتا ہے جس کرتا ہے ہلکتا ہے جس کرتا ہے ہلکتا ہے ہلکتا ہلکتا ہے ہلکتا ہلکتا ہے ہلکتا ہلکتا ہے ہل

non-distributed coils²⁴

salient poles²⁵

non-salient poles²⁶

distributed winding 27

سیاہی کی کلیروں سے ظاہر کیا گیا ہے۔ مقناطیسی بہاو خلائی درز میں سے دو مرتبہ گزرتا ہوا کیھے کے گرد ایک چکر کاٹنا ہے للذا درج ذیل ہو گا۔

یوں ساکن کیھے کے مقناطیسی دیاو کا آدھا حصہ ایک خلائی درز اور آدھا حصہ دوسرے خلائی درز میں مقناطیسی بہاو پیدا کرتا ہے۔ مزید آدھیے خلائی درز میں مقناطیسی دیاو (اور مقناطیسی بہاو) رداسی رخ اور باقی خلائی درز میں رداس کے $-rac{\pi}{2}< heta<rac{\pi}{2}$ عنائف رخ ہے۔ ہم رداسی رخ کو مثبت نصور کرتے ہیں۔ چونکہ مقناطیسی بہاو (اور مقناطیسی دیاو کے در میان رواسی رخ ہے للمذا اسے مثبت تصور کیا جائے گا جبکہ ماتی حصہ پر مقناطیسی دیاو (اور مقناطیسی بہاو) رواس کے مخالف رخ سے لہٰذا اسے منفی تصور کیا جائے گا۔ شکل 5.14 میں خلائی درز میں مقناطیسی دیاو کو زاویہ کے ساتھ ترسیم کیا گیا ہے۔ وقفہ $rac{\pi}{2} < heta < rac{\pi}{2} < heta$ خلائی درز میں مقناطیسی دباو au کا آدھا ہے اور اس کا رخ مثبت ہے جبکہ وقفہ $rac{3\pi}{2} < heta < rac{\pi}{2}$ کے خلائی درز میں مقناطیسی دیاو کھھے کے مقناطیسی دیاو کا آدھا اور منفی رخ ہے۔ یاد رہے مقناطیسی دباو کا رخ رداسی رخ کے حوالہ سے تعین کیا جاتا ہے۔

5.4.1 بدلتار ووالے مشین

بدلتارو (اے سی) مشین بناتے وقت کوشش کی جاتی ہے کہ خلائی درز میں مقناطیسی دیاوسائن نما ہو۔سائن نما مقناطیسی، دیاو کے حصول کی خاطر کیچھوں کو ایک سے زیادہ شگافوں میں تقتیم کیا جاتا ہے۔ ایپا کرنے سے سائن نما مقناطیسی دیاو کسے حاصل ہوتا ہے، اس مات کی پہاں وضاحت کی حائے گا۔

فوریئر تسلسل 28 کے تحت ہم کسی بھی تفاعل
$$f(heta_p)^{-29}$$
 کو درج ذیل صورت میں لکھ سکتے ہیں۔ ∞

(5.25)
$$f(\theta_p) = \sum_{n=0}^{\infty} (a_n \cos n\theta_p + b_n \sin n\theta_p)$$

 T^{30} تفاعل کا دوری عرصہ T^{30} ہونے کی صورت میں فوریئر تسلسل کے عددی سر درج ذیل ہوں گے۔

(5.26)
$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(\theta_p) d\theta_p$$
$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \cos n\theta_p d\theta_p$$
$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \sin n\theta_p d\theta_p$$

مثال 5.2: شکل 5.14 میں دیے گئے مقناطیسی دباو کا

- فوريئر تسلسل حاصل كرين،
- تیسری موسیقائی جزو ³¹ اور بنیادی جزو³² کا تناسب معلوم کریں۔

حل:

• مساوات 5.26 کی مدد سے

$$a_0 = \frac{1}{2\pi} \left[\int_{-\pi}^{-\pi/2} \left(-\frac{Ni}{2} \right) d\theta_p + \int_{-\pi/2}^{\pi/2} \left(\frac{Ni}{2} \right) d\theta_p + \int_{\pi/2}^{\pi} \left(-\frac{Ni}{2} \right) d\theta_p \right]$$

$$= \frac{1}{2\pi} \left[\left(-\frac{Ni}{2} \right) \left(-\frac{\pi}{2} + \pi \right) + \left(\frac{Ni}{2} \right) \left(\frac{\pi}{2} + \frac{\pi}{2} \right) + \left(-\frac{Ni}{2} \right) \left(\pi - \frac{\pi}{2} \right) \right]$$

$$= 0$$

Fourier series²⁸

function²⁹

time period³⁰

third harmonic component³¹ fundamental component³²

اور درج ذیل حاصل ہوں گے۔

$$a_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\cos n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \cos n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\cos n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[-\frac{\sin n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} + \frac{\sin n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} - \frac{\sin n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= \frac{Ni}{2n\pi} \left[\sin \frac{n\pi}{2} + 2\sin \frac{n\pi}{2} + \sin \frac{n\pi}{2} \right]$$

$$= \left(\frac{4}{n\pi} \right) \left(\frac{Ni}{2} \right) \sin \frac{n\pi}{2}$$

اس مساوات میں ہوتا ہے۔ $a_1=\left(\frac{4}{\pi}\right)\left(\frac{Ni}{2}\right), \quad a_3=-\left(\frac{4}{3\pi}\right)\left(\frac{Ni}{2}\right), \quad a_5=\left(\frac{4}{5\pi}\right)\left(\frac{Ni}{2}\right)$ $a_2=a_4=a_6=0$

اسی طرح درج ذیل ہو گا۔

$$b_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\sin n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \sin n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\sin n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[\frac{\cos n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} - \frac{\cos n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} + \frac{\cos n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= 0$$

• ان نتائج کا یکجا کرتے ہیں:

$$\left| \frac{a_3}{a_1} \right| = \frac{\left(\frac{4}{3\pi}\right)\left(\frac{Ni}{2}\right)}{\left(\frac{4}{\pi}\right)\left(\frac{Ni}{2}\right)} = \frac{1}{3}$$

يول تيسرا موسيقائی جزو بنيادی جزو کا تيسرا حصه يعنی 33.33 فی صد ہو گا۔

مثال 5.2 میں حاصل کردہ a_1, a_2, \cdots استعمال کرتے ہوئے ہم خلائی درز میں مقناطیسی دباو τ کا فوریئر تسلسل کھتے ہیں۔

(5.27)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p - \frac{4}{3\pi} \frac{Ni}{2} \cos 3\theta_p + \frac{4}{5\pi} \frac{Ni}{2} \cos 5\theta_p + \cdots$$

شكل 5.15: تين دور لچھے۔

مثال 5.2 کے مقناطیسی دباو کے موسیقائی اجزاء کی قیمتیں اتنی کم نہیں کہ انہیں رد کیا جا سکے۔جیبا آپ اس باب میں آگے دیکھیں گے حقیقی مقناطیسی دباو کے موسیقائی اجزاء قابل نظر انداز ہوں گے اور ہمیں صرف بنیادی جزو سے غرض ہو گا۔ای حقیقت کو مد نظر رکھتے ہوئے ہم تسلسل کے موسیقائی اجزاء کو نظر انداز کرتے ہوئے مساوات حقیقت کو مد نظر رکھتے ہوئے ہم تسلسل کے موسیقائی اجزاء کو نظر انداز کرتے ہوئے مساوات حقیقت کو مد نظر رکھتے ہوئے ہم تسلسل کے موسیقائی اجزاء کو نظر انداز کرتے ہوئے مساوات کی حقیقت کو مد نظر رکھتے ہوئے ہم تسلسل کے موسیقائی اجزاء کو نظر انداز کرتے ہوئے مساوات کے حقیق مقائل اجزاء کو نظر انداز کرتے ہوئے مساوات کے موسیقائی اجزاء کو نظر انداز کرتے ہوئے مساوات کے دوران کی موسیقائی اجزاء کو نظر انداز کرتے ہوئے مساوات کے دوران کی موسیقائی اجزاء کو نظر انداز کرتے ہوئے مساوات کے دوران کی موسیقائی اجزاء کو نظر انداز کرتے ہوئے مساوات کے دوران کی دوران کے دوران کی دوران

(5.28)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p = \tau_0 \cos \theta_p$$

 au_0 درج ذیل ہے۔ au_0 درج ذیل ہے۔

(5.29)
$$\tau_0 = \frac{4}{\pi} \frac{Ni}{2}$$

خلائی درج میں τ ، H اور H ایک دوسرے کے برائے راست متناسب ہوتے ہیں۔ یوں مساوات 5.28 کے تحت شکل 5.13 کا کچھے اور شکل 5.2 میں صفر زاویہ پر سلاخ نما مقناطیس کیساں τ (اور H) دیں گے۔ اس طرح اگر شکل 5.13 کا کچھا زاویہ H پر ہوتا تب ہمیں شکل 5.3 میں موجود مقناطیس کے نتائج حاصل ہوتے۔

شکل 5.15 میں تین کچھے آپس میں °120 زاویہ پر دکھائے گئے ہیں۔ ہم مساوات 5.64 کی طرح اس شکل میں کچھا a کے لئے درج زبل لکھ سکتے ہیں۔

(5.30)
$$\begin{aligned} \tau_a &= \tau_0 \cos \theta_{p_a} \\ \theta_{p_a} &= \theta - \theta_{m_a} = \theta - 0^{\circ} \\ \tau_a &= \tau_0 \cos(\theta - \theta_m) = \tau_0 \cos \theta \end{aligned}$$

شكل 5.16: كيميلا لجهابه

اسی طرح کیجھا b اور c جو بالترتیب $heta_{m_b}=120^\circ$ اور $heta_{m_b}=240^\circ$ زاویہ پر ہیں کے لئے درج ذیل ہو گا۔

(5.31)
$$\begin{aligned} \tau_b &= \tau_0 \cos \theta_{p_b} \\ \theta_{p_b} &= \theta - \theta_{m_b} = \theta - 120^{\circ} \\ \tau_b &= \tau_0 \cos(\theta - \theta_{m_b}) = \tau_0 \cos(\theta - 120^{\circ}) \end{aligned}$$

$$\begin{aligned} \tau_c &= \tau_0 \cos \theta_{p_c} \\ (5.32) \qquad \theta_{p_c} &= \theta - \theta_{m_c} = \theta - 240^\circ \\ \tau_c &= \tau_0 \cos(\theta - \theta_{m_c}) = \tau_0 \cos(\theta - 240^\circ) = \tau_0 \cos(\theta + 120^\circ) \end{aligned}$$

ا گرچہ ظاہری طور پر خلائی درز میں مقاطیسی دباو سائن نما ہر گر نہیں لگتا لیکن مساوات 5.27 ہمیں بتلاتی ہے کہ یہ محض نظر کا دھوکا ہے۔ اس مقاطیسی دباو کا بیشتر حصہ سائن نما ہی ہے۔ اگر ہم کسی طرح مساوات 5.27 میں کہ یہ محض نظر کا دھوکا ہے۔ اس مقاطیسی دباو کا میشتر حصہ سائن نما مقاطیسی دباو حاصل ہو گا۔

شکل 5.13 کے N چکر کچھے کو تین چھوٹے کیساں کچھوں میں تقسیم کرتے ہوئے شکل 5.16 حاصل کیا گیا ہے جہاں ہر چھوٹا کچھا کچھ کو شکن کا ہے۔ ایسے چھوٹے کچھوں کو سلسلہ وار جوڑا 33 جاتا ہے لہذا ان میں ایک جیسا برتی رو 13 گزرے گا۔ ان تین کچھوں کو تین مختلف شگافوں میں رکھا گیا ہے۔ پہلے کچھے کو شگاف a_{45} ورکھا گیا ہے۔ دوسرے کچھے کو شگاف a_{135} ورکھا گیا ہے۔ دوسرے کچھے کو شگاف a_{135} ورکھا گیا ہے۔

series connected 33

شكل 5.17: تھيلے ليھے كاكل مقناطيسي دباو۔

شگافوں کے ایک جوڑا کو ایک ہی طرح کے نام دیے گئے ہیں، البتہ ایک شگاف کو a اور دوسرے کو a نام دیا گیا ہے۔یوں گیا ہے۔یوں شگافوں کا پہلے جوڑا a_{45} اور a_{45} اور a_{45} ہے۔ شگاف کا نام شگاف کے زاویہ کے لحاظ سے رکھا گیا ہے۔یوں شگاف a_{45} در حقیقت a_{45} زاویہ پر ہے، شگاف a_{90} نوے درجہ زاویہ پر اور شگاف a_{45} ایک سو پینیتس درجہ زاویہ پر ہے۔ای طرح a_{45} شگاف a_{45} کا جوڑا ہے۔

تمام کچھے کا جیر کے ہیں اور تمام کچھوں میں برتی روi ایک دوسرے جیسا ہے۔ شکل $\frac{N}{3}$ کچھے کا مقناطیسی دباو بالتقابل زاویہ کا ترسیم شکل 5.17 میں موٹی کلیر سے دکھایا گیا ہے۔ سب سے اوپر لچھا a_{45} کے مقناطیسی دباو کی ترسیم ہو شکل 5.14 کی ترسیم کی طرح لیکن صفر زاویہ سے -45 ہٹ کر ہے۔ دوسری ترسیم لچھا a_{30} کی ہے جو ہو بہو شکل a_{50} کی طرح ہے جبکہ تیسری ترسیم کچھا a_{135} کی ہے جو صفر زاویہ سے a_{50} ہٹ کر ہے۔ ان تینوں ترسیمات کا انفرادی طول a_{50} ہے۔

au رسیمات au ور au ور au ور au مقناطیسی د باو کی ترسیم au حاصل کرنا سیکھتے ہیں۔ شکل au مقناطیسی د باو کی ترسیم au حاصل کرنا سیکھتے ہیں۔ شکل au بیلی کلیر کی بائیں طرف خطہ کو "ا" کہا گیا ہے۔ اس خطہ میں ترسیمات au وہ au وہ ور au وادر کی قیت au وادر کی ترسیم کی تیس کی جو میں اور کی ترسیم کی ترسی

شكل 5.18: تھلے لیھے كامقناطیسی د باو۔

ہو گا۔ خطہ "ج" میں بالائی تینوں ترسیمات کی قیمتیں بالترتیب $\frac{Ni}{6}$ +، $\frac{Ni}{6}$ + اور $\frac{Ni}{6}$ - ہیں جن کا مجموعہ $\frac{Ni}{6}$ + کل مقناطیسی دباو ہو گا۔ اس طرح آپ بوری ترسیم تھینچ سکتے ہیں۔

شکل 5.17 کی ہو شکل 5.18 میں دوبارہ پیش گیا ہے۔ شکل 5.18 کچھے اور شکل 5.14 کچھے اور شکل 5.14 کچھے کچھے کے دباو کی ترسیمات ہیں۔ شکل 5.14 کے لحاظ سے شکل 5.18 کی صورت سائن نما کے زیادہ قریب ہے۔ فوریئر کسلسل حل کرنے سے بھی یمی بیتی بتیجہ حاصل ہوتا ہے۔ شگافوں کے مقامات اور ان میں کچھوں کے چکر یوں رکھے جا سکتے ہیں کہ ان کے پیدا کردہ مقاطیسی دباوکی ترسیم کی صورت سائن نماکی زیادہ سے زیادہ قریب ہو۔

کے کھیے کے مختلف حصے ایک ہی زاویہ پر مقناطیسی دباو نہیں بناتے للذا ان سے حاصل کل مقناطیسی دباو کا حیطہ (اشنے ہی چکر کے) ایک کچھ کچھ کے حیطہ سے کم ہوتا ہے۔ مساوات 5.29 میں اس اثر کو شامل کرنے کے لئے جزو k_w متعارف کیا جاتا ہے

(5.33)
$$\begin{aligned} \tau_0 &= k_w \frac{4}{\pi} \frac{Ni}{2} \\ \tau_a &= k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta \\ - &= k_w \frac{3}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta \end{aligned}$$
 $\tau_0 = \kappa_0 \sin \theta$

$$(5.34) 0 < k_w < 1$$

مثال k_w المثال 5.16 کے کھیلے کچھے کا k_w علاش کریں۔

winding factor³⁴

شكل 5.19: يھيلے لچھے كاجزو پھيلاو۔

 $au_n = rac{4}{\pi} rac{ni}{2}$ حلن شکل 5.19 سے رجوع کریں۔ شکل 5.16 کے تین چھوٹے کچھے ایک جیسا مقناطیسی دباو $n = rac{4}{\pi} rac{ni}{2}$ ہو گا۔ ہم تینوں مقناطیسی دباو پیدا کرتے ہیں البتہ ان کے رخ مختلف ہیں۔ یہاں ایک کچھا $rac{N}{3}$ چکر کا ہے لہذا $n = rac{N}{3}$ ہو گا۔ ہم تینوں مقناطیسی دباو au معلوم کرتے ہیں۔ کے دوری سمتیات کا مجموعہ لے کر مقناطیسی دباو au معلوم کرتے ہیں۔

$$\tau_a = \tau_n \cos 45^\circ + \tau_n + \tau_n \cos 45^\circ$$
$$= 2.4142\tau_n$$

يوں درج ذيل ہو گا

$$\tau_a = 2.4142 \frac{4}{\pi} \frac{ni}{2} = \frac{2.4142}{3} \frac{4}{\pi} \frac{Ni}{2} = 0.8047 \frac{4}{\pi} \frac{Ni}{2}$$

للذا 0.8047 کے برابر ہے۔

مثال 5.4: تین دوری، 50 ہرٹز، ستارہ جڑے جزیٹر کو 3000 چکر فی منٹ کی رفتار سے چلایا جاتا ہے۔ تیس چکر کے میدانی کچھے کا جزو پھیلاو 0.83 ہے۔ مثین کا کے میدانی کچھے کا جزو پھیلاو 0.833 ہے۔ مثین کا رداس 0.7495 میٹر اور لمبائی 2.828 ء میٹر ہے۔خلائی درز کی لمبائی $l_k=0.04$ میٹر ہے۔میدانی کچھے میں $l_k=0.04$ میٹر ہے۔ میدانی کچھے میں $l_k=0.04$ میٹر ہے۔ میدانی کچھے میں $l_k=0.04$ میٹر ہے۔ میدانی کھے میں میں درج ذیل تلاش کریں۔

- میدانی مقناطیسی دباو کی زیادہ سے زیادہ قیمت۔
 - خلائی درز میں کثافت مقناطیسی بہاو۔
 - ایک قطب پر مقناطیسی بہاو۔

• متحرک تاریر برقی دباو_

عل:

- $\tau_0 = k_{w,m} \frac{4}{\pi} \frac{N_m i_m}{2} = 0.9 \times \frac{4}{\pi} \times \frac{30 \times 1000}{2} = 17\,186\,\text{A} \cdot \text{turns/m}$
 - $B_0 = \mu_0 H_0 = \mu_0 \frac{\tau_0}{l_k} = 4\pi 10^{-7} \times \frac{17186}{0.04} = 0.54 \,\mathrm{T}$
 - $\phi_0 = 2B_0 lr = 2 \times 0.54 \times 2.828 \times 0.7495 = 2.28915 \,\text{Wb}$

 $E_{rms} = 4.44 f k_{w,q} N_q \phi_0$ = 4.44 × 50 × 0.833 × 15 × 2.28915 = 6349.85 V

یوں ستارہ جڑی جزیئر کی تار کا برقی دباو درج ذیل ہو گا۔

 $\sqrt{3} \times 6349.85 \approx 11000 \,\text{V}$

ہم سائن نما مقناطیسی دباو حاصل کرنا چاہتے ہیں۔ چھوٹے کچھوں کے چکر اور شگافوں کے مقامات یوں چنے جاتے ہیں کہ یہ مقصد پورا ہو۔ شکل 5.18 میں صفر زاویہ کے دونوں اطراف مقناطیسی دباو کی ترسیم ایک جیسے گھٹتی یا بڑھتی ہے۔ مثلاً جمع اور منفی پینتالیس زاویہ پر مقناطیسی دباو $\frac{Ni}{3}$ گھٹتا ہے۔ اسی طرح جمع اور منفی نوے زاویہ پر دباو مزید $\frac{Ni}{3}$ گھٹتا ہے، وغیرہ وغیرہ یہ ایک بنیادی اصول ہے جس کا خیال رکھنا ضروری ہے۔

جھوٹے کچھوں کے چکر اور شگافوں کے مقامات کا فیصلہ فور بیئر تسلسل کی مدد سے کیا جاتا ہے۔فور بیئر تسلسل میں موسیقائی جزو کم سے کم اور بنیادی جزو زیادہ سے زیادہ رکھا جاتا ہے۔

ساکن کچھوں کی طرح متحرک کچھوں کو بھی ایک سے زیادہ چھوٹے کچھوں میں تقتیم کیا جاتا ہے تا کہ سائن نما مقناطیسی دباو حاصل ہو۔

5.5 مقناطیسی د باو کی گھومتی امواج

گھومتے مشین کے لیجھوں کو برقی دباو فراہم کیا جاتا ہے جس سے اس کا گھومنے والا حصہ حرکت میں آتا ہے۔ یہاں ہم اس بات کا مطالعہ کرتے ہیں کہ گھومنے کی حرکت کیسے پیدا ہوتی ہے۔

5.5.1 ایک دورکی کپٹی مثین

مساوات 5.33 میں ایک کچھے کا مقناطیسی د باو

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta$$

دیا گیا ہے جو سائن نما برقی رو

$$(5.36) i_a = I_0 \cos \omega t$$

کی صورت میں

(5.37)
$$\tau_a = k_w \frac{4}{\pi} \frac{NI_0}{2} \cos \theta \cos \omega t = \tau_0 \cos \theta \cos \omega t$$

متناطیسی دباو دے گا جہاں au_0 درج ذیل ہے اور کچھا کے برقی رو کو au_a کہا گیا ہے۔

(5.38)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

مساوات 5.37 کہتی ہے کہ مقناطیسی دباو زاویہ <math> heta اور کھہ t کے ساتھ تبدیل ہوتا ہے۔ مساوات 5.37 کو کلیہ

(5.39)
$$\cos \alpha \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$$

کی مدد سے دو کلروں

(5.40)
$$\tau_a = \tau_0 \left[\frac{\cos(\theta + \omega t) + \cos(\theta - \omega t)}{2} \right] = \tau_a^- + \tau_a^+$$

میں تقسیم کیا جا سکتا ہے جہاں au_a^+ اور au_a^+ درج ذیل ہوں گے۔

(5.41)
$$\tau_a^- = \frac{\tau_0}{2}\cos(\theta + \omega t)$$

$$\tau_a^+ = \frac{\tau_0}{2}\cos(\theta - \omega t)$$

مساوات 5.40 کہتی ہے کہ مقناطیسی دباو دو آپس میں مخالف رخ گھومتے مقناطیسی دباو کی موجوں کا مجموعہ ہے۔ اس کا پہلا جزو τ_a^+ زاویہ θ گھٹنے کے رخ، یعنی گھڑی کے رخ، گھومتا ہے جبکہ اس کا دوسرا جزو τ_a^+ گھڑی کے مخالف رخ، زاویہ بڑھنے کے رخ، گھومتا ہے۔

ایک دورکی لپٹی مثینوں میں گھومتے مقناطیسی دباوکی امواج میں سے کسی ایک کو بالکل ختم یا کم سے کم کرنے کی کوشش کی جاتی ہے۔ اس طرح ایک ہی رخ مقناطیس کی مانند ہوگا۔ تین دوری مثینوں میں ایسا کرنا نہایت آسان ہوتا ہے لہذا انہیں پہلے سمجھ لینا زیادہ بہتر ہوگا۔

5.5.2 تين دور كي لپڻي مشين كاتحليلي تجزيه

شکل 5.20 میں تین دور کی لیٹی مثین دکھائی گئی ہے۔ مساوات 5.30 ، 5.31 اور 5.32 میں ایسے تین کچھوں کے فوریئر تسلسل کے بنیادی اجزاء دیے گئے ہیں جن میں جزو پھیلاو k_x شامل کر کے دوبارہ پیش کرتے ہیں۔

(5.43)
$$\tau_a = k_w \frac{4}{\pi} \frac{N_a i_a}{2} \cos \theta$$
$$\tau_b = k_w \frac{4}{\pi} \frac{N_b i_b}{2} \cos(\theta - 120^\circ)$$
$$\tau_c = k_w \frac{4}{\pi} \frac{N_c i_c}{2} \cos(\theta + 120^\circ)$$

ان کچھوں میں بالترتیب تین دوری برقی رو

(5.44)
$$i_a = I_0 \cos(\omega t + \alpha)$$
$$i_b = I_0 \cos(\omega t + \alpha - 120^\circ)$$
$$i_c = I_0 \cos(\omega t + \alpha + 120^\circ)$$

شكل 5.20: تين دوركي لپڻي مشين۔

لینے سے مساوات 5.43 درج ذیل صورت اختیار کرتی ہیں۔

(5.45)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{N_{a} I_{0}}{2} \cos \theta \cos(\omega t + \alpha)$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{N_{b} I_{0}}{2} \cos(\theta - 120^{\circ}) \cos(\omega t + \alpha - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{N_{c} I_{0}}{2} \cos(\theta + 120^{\circ}) \cos(\omega t + \alpha + 120^{\circ})$$

تینوں لیھوں کے چکر ایک دوسرے کے برابر

$$N_a = N_b = N_c = N$$

لیتے ہوئے مساوات 5.39 کی استعال سے

(5.46)
$$\tau_{a} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha) + \cos(\theta - \omega t - \alpha) \right]$$

$$\tau_{b} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha - 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

$$\tau_{c} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

(5.47)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

کل مقناطیسی دیاو au ان سب کا مجموعہ ہو گا۔ انہیں جمع کرنے سے پہلے ہم درج ذیل ثابت کرتے ہیں۔ $\cos\gamma + \cos(\gamma - 240^\circ) + \cos(\gamma + 240^\circ) = 0$

ہم کلیات

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$
$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$eta$$
اور $eta=240^\circ$ کے کر

$$\cos(\gamma + 240^{\circ}) = \cos\gamma\cos 240^{\circ} - \sin\gamma\sin 240^{\circ}$$
$$\cos(\gamma - 240^{\circ}) = \cos\gamma\cos 240^{\circ} + \sin\gamma\sin 240^{\circ}$$

حاصل کرتے ہیں جن میں جن میں حاصل ہو گا۔ $\cos 240^\circ = -\frac{\sqrt{3}}{2}$ ماصل کرتے ہیں جن میں جا ماصل ہو گا۔

$$\begin{aligned} \cos(\gamma + 240^\circ) &= -\frac{1}{2}\cos\gamma + \frac{\sqrt{3}}{2}\sin\gamma \\ \cos(\gamma - 240^\circ) &= -\frac{1}{2}\cos\gamma - \frac{\sqrt{3}}{2}\sin\gamma \end{aligned}$$

ان مساوات کو $\cos \gamma$ کے ساتھ جمع کرنے سے صفر حاصل ہو گا۔

$$\cos \gamma + \cos(\gamma + 240^{\circ}) + \cos(\gamma - 240^{\circ}) = 0$$

ے کے اس مساوات کو درج ذیل کھا جا سکتا ہے۔ $\gamma=\theta+\omega t+\alpha$

(5.48)
$$\cos(\theta + \omega t + \alpha) + \cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta + \omega t + \alpha - 240^{\circ}) = 0$$

اب مساوات 5.46 میں دیے au_b ، au_c اور au_c کو جمع کر کے مساوات 5.48 کا استعمال کرتے ہوئے درج ذیل حاصل ہو گا۔

(5.49)
$$\tau^{+} = \tau_a + \tau_b + \tau_c = \frac{3\tau_0}{2}\cos(\theta - \omega t - \alpha)$$

مساوات 5.49 کہتی ہے کہ کل مقناطیسی دباو کا حیطہ کسی ایک کچھے کے مقناطیسی دباو کے حیطہ کا $\frac{8}{2}$ گنا ہو گا۔ مزید مقناطیسی دباو کی موج گھڑی کے مخالف رخ گھوے گی۔ یول تین کچھوں کو °120 زاویہ پر رکھنے اور انہیں تین دوری برقی رو، جو آپس میں °120 پر ہوں، سے بیجان کرنے سے مقناطیسی دباو کی واحد ایک موج وجود میں آتی ہے۔ یہاں اس بات کا ذکر کرنا ضروری ہے کہ کسی دو برقی رو کو آپس میں تبدیل کرنے سے مقناطیسی موج کا رخ تبدیل ہوتا ہے۔

مساوات 5.49 ایک گھومتے موج کو ظاہر کرتی ہے جس میں ہم برتی روکا تعدد 15.49 اور اپنی آسانی کے لئے 0.49 مساوات 5.49 ایک آسانی کے لئے میں موج کی چوٹی کا تعین تفاعل 15.49 میں موج کی چوٹی کا تعین تفاعل 15.49 میں موج کی چوٹی کا تعین تفاعل 15.49 میں موج کی چوٹی اکائی ہے جو 15.49 میں بنظر رکھیں۔ تفاعل 15.49 میں کی چوٹی اکائی ہے جو 15.49 میں بنظر رکھیں۔ تفاعل 15.49

شكل 5.21: حركت كرتى موج_

ابتدائی کھے t=0 پر والے جالے حل کرتے $\cos(\theta-\omega t)$ پر ہوگی جس کو $\cos(\theta-\omega t)$ پر ہوگی جس کو ابتدائی کھے ہوگئی ہے۔

$$\theta - \omega t = 0$$
$$\theta - \omega \times 0 = 0$$
$$\theta = 0$$

یوں موج کی چوٹی صفر برتی زاویہ پر ہو گی جسے شکل 5.21 میں نقطہ دار ککیر سے ظاہر کیا گیا ہے۔ہم کچھ وقفہ، مثلاً t=0.001

$$\theta - \omega t = 0$$

$$\theta - 0.001\omega = 0$$

$$\theta = 0.001\omega$$

$$= 0.001 \times 2 \times \pi \times 50$$

$$= 0.3142 \,\text{rad}$$

اب یہ چوٹی 0.3142 یا $\frac{\pi}{10}$ برتی ریڈیئن یعنی 18° برتی زاویہ پر ہے جے شکل 5.21 میں باریک ٹھوس کیبر سے ظاہر کیا گیا ہے۔ آپ دیکھ سکتے ہیں کہ مقناطیسی دباوکی موج گھڑی کے مخالف رخ، یعنی زاویہ بڑھنے کے رخ، گھوم گئ $\theta - \omega t' = 0$ برچوٹی کا مقام t' = 0 کے درج ذیل حاصل ہوگا جے موٹی گھوس کیبر سے ظاہر کیا گیا ہے۔ سے درج ذیل حاصل ہوگا جے موٹی گھوس کیبر سے ظاہر کیا گیا ہے۔

$$(5.50) \theta = \omega t'$$

مساوات 5.50 کہتی ہے کہ چوٹی کا مقام تعین کرنے والا زاویہ وقت کے ساتھ بتدر تک بڑھتا ہے۔اس مساوات سے ایک مکمل 2π برقی زاویہ چکر کا دورانیہ T حاصل کرتے ہیں۔

$$(5.51) T = \frac{\theta}{\omega} = \frac{2\pi}{2\pi f} = \frac{1}{f}$$

یاد رہے f برقی رو کی تعدد ہے۔یوں 50 ہرٹز برقی رو کی صورت میں مقناطیسی دباو کی موج ہر $\frac{1}{50}=0.02$ سینڈ میں ایک مکمل برقی چکر للذا ایک سینڈ میں 50 برقی چکر مکمل کرے گی۔

دو قطبی مشینول میں مساوات 5.7

$$\theta_e = \frac{P}{2}\theta_m$$

ے تحت برقی زاویہ θ_e اور میکانی زاویہ θ_m ایک دوسرے کے برابر ہوں گے۔ یوں دو قطبی مشینوں کی بات کرتے ہوئے مساوات 05.51 کے تحت ایک سینڈ میں مقناطیسی دباو کی موج f برقی یا میکانی چکر کممل کرے گی جہاں f برقی روکی تعدد ہے۔ P قطبی مشینوں کے مقناطیسی دباو کی موج ایک سینڈ میں f مقناطیسی چکر یعنی f میکانی شکر کمل کرے گی۔

برتی رو کی تعدد کو f_e ، مقناطیسی دباو کی موج کی چوٹی کے برتی زاویہ کو θ_e ، میکانی زاویہ کو θ_m اور مقناطیسی دباو کی موج کی زاویائی رفتار کو ω_e یا ω_e سے ظاہر کرتے ہوئے درج ذیل ہوں گے۔

$$\omega_m = rac{2}{P}\omega_e \quad \mathrm{rad/s}$$
 (5.53)
$$f_m = rac{2}{P}f_e \quad \mathrm{Hz}$$
 $p = rac{120f_e}{P}$ چير في تينځ

مقناطیسی موج کی برقی معاصر زاویائی رفتار ω_e برقی زاویہ فی سینڈ اور میکانی معاصر زاویائی رفتار ω_m میکانی زاویہ فی سینڈ ہو گی۔ای طرح موج کی برقی معاصر رفتار f_e میکانی ہر ٹز ہو گی۔برقی معاصر رفتار f_e ہر ٹز ہونے سے مراد ہے کہ ایک سینڈ میں موج f_e برقی چکر کا فاصلہ طے کرتی ہے جو دو قطب کا لیعنی f_e میکانی زاویہ ہے۔ای طرح میکانی معاصر رفتار f_m ہر ٹز ہونے کا مطلب ہے کہ موج ایک سینڈ میں کی سینڈ میں کی سینڈ میں کا میکانی زاویہ ہے۔ای طرح میکانی معاصر رفتار f_m ہر ٹز ہونے کا مطلب ہے کہ موج ایک سینڈ

synchronous speed³⁵

میں f_m میکانی چکر کا فاصلہ طے کرے گی۔ایک میکانی چکر روز مرہ زندگی میں ایک چکر کو ہی کہتے ہیں۔ اس مساوات f_m میکانی چکر فی منھے 36 کو ظاہر کرتی ہے۔ مساوات 5.53 معاصر زقار کی مساوات ہے۔

یہاں اس بات کا ذکر کرنا ضروری ہے کہ q دور کی لیٹی مثین جس کے لیچھ ہوت بر تی زاویہ پر رکھے گئے ہوں اور جن میں برتی رو q دوری ہو میں، تین دوری مثین کی طرح، ایک ہی رخ گھومتے مقناطیسی دباو کی موج پیدا ہو $\omega_e=2\pi f$ کی موج کا جے گئے میں دباو کے حیطہ کا $\frac{q}{2}$ گیا ہو گا اور اس کی زاویائی رفتار $\omega_e=2\pi f$ برتی ریڈ بیئن فی سینڈ ہو گی۔ برتی ریڈ بیئن فی سینڈ ہو گی۔

5.5.3 تين دور کي لپڻي مثين کاتر سيمي تجزيه

شکل 5.22 میں تین دور کی لیٹی مثین دکھائی گئی ہے جس میں مثبت برتی رو کے رخ دکھائے گئے ہیں۔ یوں a شکاف میں برتی رو کا رخ صفحہ سے عمودی باہر کو ہے جسے نقط سے ظاہر کیا گیا ہے۔ اس طرح a' شگاف میں برتی رو کا رخ صفحہ میں عمودی اندر کو ہے اور جسے صلیب کے نشان سے ظاہر کیا گیا ہے۔ یوں شگاف a اور a' میں مثبت برتی رو کا مفاطیسی دباو a صفر زاویہ پر ہو گا جو عین لچھا a کا رخ ہے۔ لچھے میں برتی رو سے پیدا مقناطیسی دباو کا رخ دائیں ہاتھ کے قانون سے معلوم کیا جا سکتا ہے۔

a اب اگر کچھا a میں برتی رو منفی ہو تب برتی رو مثبت رخ کے مخالف ہو گا، لینی اب برتی رو کا رخ شگاف a میں صفحہ کے عمودی اندر اور شگاف a میں صفحہ کے عمودی باہر ہو گا۔ یوں منفی برتی رو سے پیدا مقناطیسی دباو بھی کچھا a کے رخ کا مخالف ہو گا۔ آپ نے دیکھا کہ برتی رو منفی ہونے سے مقناطیسی دباو کا رخ الٹ ہو جاتا ہے۔ شکل کچھوں کے برتی رو اور مقناطیسی دباو درج ذبل ہیں جبکہ ان کے مثبت رخ شکل میں دیے گئے ہیں۔ a

$$i_a = I_0 \cos \omega t$$

$$i_b = I_0 \cos(\omega t - 120^\circ)$$

$$i_c = I_0 \cos(\omega t + 120^\circ)$$

(5.55)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{Ni_{a}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos \omega t = \tau_{0} \cos \omega t$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{Ni_{b}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t - 120^{\circ}) = \tau_{0} \cos(\omega t - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{Ni_{c}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t + 120^{\circ}) = \tau_{0} \cos(\omega t + 120^{\circ})$$

 $\rm rpm, \ rounds \ per \ minute^{36}$

شکل 5.22: تین دورکی لیٹی مثین میں مثبت برقی رواوران سے حاصل مقناطیسی دیاوے رخ۔

ہم مختلف کھات پر ان کی قیمتوں تلاش کرتے ہیں اور ان کا مجموعی مقناطیسی دباو حاصل کرتے ہیں۔

t=0 کے t=0 ہو گا۔

(5.56)
$$\begin{aligned} i_a &= I_0 \cos 0 = I_0 \\ i_b &= I_0 \cos (0 - 120^\circ) = -0.5 I_0 \\ i_c &= I_0 \cos (0 + 120^\circ) = -0.5 I_0 \end{aligned}$$

(5.57)
$$\begin{aligned} \tau_a &= \tau_0 \cos 0 = \tau_0 \\ \tau_b &= \tau_0 \cos (0 - 120^\circ) = -0.5\tau_0 \\ \tau_c &= \tau_0 \cos (0 + 120^\circ) = -0.5\tau_0 \end{aligned}$$

یہاں رکھ کر ذرا غور کریں۔ لمحہ t=0 پر t=0 مثبت جبکہ i_c اور i_c منفی ہیں۔ یوں i_a کا رخ وہی ہو گا جسے شکل t=0 کی t=0 ورک میں نقطے اور صلیب سے دکھایا گیا ہیں جبکہ t=0 اور t=0 کی رخ شکل میں دیے گئے رخ کے خالف ہوں گے۔ لمحہ t=0 پر تینوں برقی رو کے درست رخ اور تینوں مقناطیسی دباو شکل t=0 میں دکھائے ہیں۔

کل مقناطیسی دباو با آسانی بذریعہ ترسیم (شکل 5.23)، مجموعہ سمتیات سے یا الجبرا کے ذریعہ حاصل کیا جا سکتا ہے۔

(5.58)
$$\begin{aligned} \boldsymbol{\tau}_{a} &= \tau_{0} \boldsymbol{a}_{\mathrm{X}} \\ \boldsymbol{\tau}_{b} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathrm{X}} - \sin(60^{\circ}) \boldsymbol{a}_{\mathrm{Y}} \right] \\ \boldsymbol{\tau}_{c} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathrm{X}} + \sin(60^{\circ}) \boldsymbol{a}_{\mathrm{Y}} \right] \end{aligned}$$

شكل 5.23: لمحه $t_0=0$ يربر قى رواور مقناطيسى د باوـ $t_0=0$

شكل 5.24: لمحه $t_1=30^\circ$ لمحه $t_1=30^\circ$ باو۔

ان کا مجموعہ درج ذیل ہو گا۔

$$\tau = \tau_a + \tau_b + \tau_c = \frac{3}{2}\tau_0 a_{\mathrm{X}}$$

لمحہ t=0 پر کل مقناطیسی دباو ایک کیچھے کے مقناطیسی دباو کا ڈیڑھ گنا اور صفر زاویہ پر ہے۔

اب ہم گھڑی کو چلنے دیتے ہیں اور کچھ وقفہ بعد لمحہ t_1 پر دوبارہ مقناطیسی دباو تلاش کرتے ہیں۔ مساوات 5.54 اور مساوات 5.55 میں متغیر t_1 کی بجائے t_2 کا استعال زیادہ آسان ہے المذا ہم لمحہ t_1 یوں منتخب کرتے ہیں کہ $t_1=30^\circ$ ہو۔ ایسا کرنے سے درج ذیل حاصل ہو گا جنہیں شکل 5.24 میں دکھایا گیا ہے۔ $t_1=30^\circ$

5.6. محسر ك_بر قي دباو

(5.60)
$$i_a = I_0 \cos 30^\circ = \frac{\sqrt{3}}{2} I_0$$
$$i_b = I_0 \cos(30^\circ - 120^\circ) = 0$$
$$i_c = I_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} I_0$$

(5.61)
$$\tau_a = \tau_0 \cos 30^\circ = \frac{\sqrt{3}}{2} \tau_0$$

$$\tau_b = \tau_0 \cos(30^\circ - 120^\circ) = 0$$

$$\tau_c = \tau_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} \tau_0$$

کل مقناطیسی دباو کا طول au اور زاویه تکون سے حاصل کرتے ہیں۔ $au = \sqrt{\tau_a^2 + \tau_c^2 - 2\tau_a \tau_c \cos 120^\circ} = \frac{3}{2}\tau_0$ (5.62)

تکون کے دو اطراف کی لمبائیاں ایک دوسرے کے برابر اور ان کے ﷺ زاویہ °60 ہے للذا مقناطیسی دباو کا زاویہ افتی کئیر سے °30 ہو گا۔

کل مقناطیسی دباو جو پہلے صفر زاویہ پر تھا اب گھڑی کے مخالف رخ گھوم کر °30 زاویہ پر ہے۔ اسی طرح لمحہ $\omega t=\theta^\circ$ پر حل کرنے سے زاویہ $\omega t=0$ پر حل کرنے سے زاویہ $\omega t=0$ پر کل مقناطیسی دباو $\omega t=0$ ہو، زاویہ $\omega t=0$ پر کل مقناطیسی دباو $\omega t=0$ پیدا کرتا ہے۔

5.6 محرك برقى دباو

یہاں محرک برقی دباو³⁷ کو ایک دوسرے نقطہ نظر سے پیش کرتے ہیں۔

5.6.1 بدلتاروبر قی جزیٹر

شکل 5.25 میں ایک بنیادی بدلتارو بخریر 38 دکھایا گیا ہے۔اس کا گھومتا برقی مقناطیس، خلائی درز میں سائن نما مقناطیسی د باو پیدا کرتا ہے جس سے درز میں سائن نما کثافت مقناطیسی بہاو B پیدا ہوتا ہے:

[۔] ³⁷ ہنداء میں حرکت سے پیدا برتی و باو کو محرک برتی و باو کہتے تئے۔اب روا تی طور پر کسی بھی طرح پیدا کردو برتی و باو کو تیز کے برتی و باو کہتے ہیں۔ ac generator³⁸

شكل 5.25: بنيادى بدلتار وجزيثر _

$$(5.63) B = B_0 \cos \theta_p$$

یہ مقناطیس ω زاویاتی رفتار سے گھوم رہا ہے۔ابتدائی کھہ t=0 پر اس مقناطیس کو کچھا a کے رخ، یعنی ہلکی سیاہی کی افقی کلیر پر تصور کریں۔ یول کھہ t پر بیہ گھوم کر زاویہ $\theta_m=\omega t$ پر ہو گا۔اس طرح درج بالا مساوات درج ذیل کھی جا سمتی ہے۔

(5.64)
$$B = B_0 \cos(\theta - \theta_m)$$
$$= B_0 \cos(\theta - \omega t)$$

شکل 5.26 میں B کو زاویہ θ اور θ_p کے ساتھ ترسیم کیا گیا ہے اور ساتھ ہی کچھا a دکھایا گیا ہے۔ کمہ b جب گھومتے برقی مقناطیس کا محور اور کچھا a کا محور ایک رخ ہیں، نقطہ دار کئیر سے B دکھایا گیا ہے جبکہ عمومی کمھ

5.6. محسر ك برقى دباد

t پر B کو ٹھوس کیبر سے دکھایا گیا ہے۔ چونکہ B کی چوٹی ہر صورت $\theta_p=0^\circ$ پر ہوگی لہذا ترسیم میں محور θ_p پر دکھائے گئے زاویات 0° واللہ 0° عمومی لمحہ t کے لئے درست ہیں ناکہ t والے کے لئے۔ لمحہ t بر دکھائے گئے زاویات t والے t والے محور کہ جمومی لمحہ t بر برتی مقناطیس کے محور اور کچھے کے محور کے t ور اور کچھے کے محور کے t ور اور پہنے مخاص میں اور اور پہنے کے محور کے t ور اور پہنے کے مخاص میں کے اللہ مخصر ہوگا۔

$$(5.65) \theta = \omega t$$

کوہ t=0 پر کچھا a میں مقناطیسی بہاو زیادہ سے زیادہ ہو گا۔ خلائی درز باریک ہونے کی بنا درز کا اندرونی اور بیرونی رداس تقریباً ایک دوسرے جیسا ہوں گے۔ برتی مقناطیس کے گھومنے کے محور سے خلائی درز تک کا اوسط رداسی فاصلہ ρ اور برتی مقناطیس کی محوری لمبائی ρ ہونے کی صورت میں کچھے میں مقناطیسی بہاو وہی ہو گا جو خلائی درز میں ρ اور برتی مقناطیس کی محوری لمبائی ρ بر کچھا ρ سے گزرتا بہاو تلاش کرتے ہیں۔

$$\phi_a(0) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_0 \cos \theta_p) (l\rho d\theta_p)$$

$$= B_0 l\rho \sin \theta_p \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= 2B_0 l\rho$$

$$= \phi_0$$

آخری قدم پر $\phi_a(0)$ کو $\phi_a(0)$ کہا گیا ہے۔ یہی حساب لمحہ t پر درج ذیل ہو گا جہاں آخری قدم پر $\phi_a(0)$ کہا گیا ہے۔

(5.67)
$$\phi_{a}(t) = \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} (B_{0} \cos \theta_{p}) (l\rho d\theta_{p})$$

$$= B_{0} l\rho \sin \theta_{p} \Big|_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta}$$

$$= 2B_{0} l\rho \cos \vartheta$$

$$= 2B_{0} l\rho \cos \omega t$$

axial length³⁹

اس بہاو کو درج ذیل طریقہ سے بھی حاصل کیا جا سکتا ہے۔

$$\phi_{a}(t) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_{0} \cos(\theta - \omega t))(l\rho d\theta)$$

$$= B_{0}l\rho \sin(\theta - \omega t)\Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= B_{0}l\rho \left[\sin\left(\frac{\pi}{2} - \omega t\right) - \sin\left(-\frac{\pi}{2} - \omega t\right)\right]$$

$$= 2B_{0}l\rho \cos \omega t$$

اس مرتبہ کمل زاویہ θ کے ساتھ کیا گیا ہے۔ مساوات 0.66 کی مدد سے $\phi_a(t)$ کو درج ذیل کھا جا سکتا ہے۔ $\phi_a(t) = 2B_0 l \rho \cos \omega t = \phi_0 \cos \omega t$ (5.69)

مساوات 5.68 کی طرح d اور c کچھوں کے مقناطیسی بہاو کی مساواتیں بھی حاصل کی جا سکتی ہیں۔ شکل c میں زاویہ c بیں خوارت نہور ہے گئے ہیں۔ شکل d معاوم کرنے کے لئے مساوات خوامی کی معاوم کرنے کے لئے مساوات خوامی کی معاوم کرنے کے لئے مساوات d کے میں کمل کے حد d کی معاوم کے خوامی کے

$$\phi_b(t) = \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{\pi}{6}}^{\frac{7\pi}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{7\pi}{6} - \omega t\right) - \sin\left(\frac{\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos\left(\omega t - \frac{2\pi}{3}\right)$$

5.6. محسر ك_بر قي دباو

اور

$$\phi_c(t) = \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{5\pi}{6}}^{\frac{11\pi}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{11\pi}{6} - \omega t\right) - \sin\left(\frac{5\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos\left(\omega t + \frac{2\pi}{3}\right)$$

ا کے لچھا کے N چکر تصور کرتے ہوئے تینوں کچھوں میں پیدا برقی دباہ معلوم کرتے ہیں۔ کچھوں میں ارتباط بہاہ درج ذمل ہو گا۔

(5.72)
$$\lambda_a = N\phi_a(t) = N\phi_0 \cos \omega t$$
$$\lambda_b = N\phi_b(t) = N\phi_0 \cos(\omega t - 120^\circ)$$
$$\lambda_c = N\phi_c(t) = N\phi_0 \cos(\omega t + 120^\circ)$$

ان مساوات میں $\frac{2\pi}{3}$ ریڈیئن کو °120 کھھا گیا ہے۔ کچھوں میں پیدا امالی برقی دباو درج ذیل ہو گا۔

(5.73)
$$e_a(t) = \frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = -\omega N\phi_0 \sin \omega t$$
$$e_b(t) = \frac{\mathrm{d}\lambda_b}{\mathrm{d}t} = -\omega N\phi_0 \sin(\omega t - 120^\circ)$$
$$e_c(t) = \frac{\mathrm{d}\lambda_c}{\mathrm{d}t} = -\omega N\phi_0 \sin(\omega t + 120^\circ)$$

ان مساوات کو

$$e_a(t) = \omega N \phi_0 \cos(\omega t + 90^\circ)$$

$$e_b(t) = \omega N \phi_0 \cos(\omega t - 30^\circ)$$

$$e_c(t) = \omega N \phi_0 \cos(\omega t + 210^\circ)$$

کھا جا سکتا ہے جو آپس میں °120 زاویہ پر تین دوری محرک برقی دباو کو ظاہر کرتی ہیں۔ ان سب کے حیطے E_0 ایک دوسرے جینے ہیں

$$(5.75) E_0 = \omega N \phi_0$$

للذا تينول برقى دباو كى موثر قيمت ⁴⁰ درج ذيل هو گي۔

(5.76)
$$E_{\dot{j}_{r}} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N \phi_0}{\sqrt{2}} = 4.44 f N \phi_0$$

چونکہ $\phi=BA$ ہوتا ہے لہذا مساوات 5.76 صفحہ 50 پر دی گئی مساوات $\phi=BA$ کی طرح ہے۔

مساوات 5.74 سائن نما برقی دباو کو ظاہر کرتی ہے۔ اگرچہ اسے یہ تصور کر کے حاصل کیا گیا کہ خلائی درز میں مقناطیسی بہاو صرف برقی مقناطیس کی وجہ سے ہے تاہم برقی دباو کا اس سے کوئی تعلق نہیں کہ خلائی درز میں مقناطیسی بہاو کس طرح وجود میں آیا اور یہ مساوات ان حالات کے لئے بھی درست ہے جہاں خلائی درز میں مقناطیسی بہاو جزیئر کے ساکن حصہ میں پیدا ہوئی ہویا ساکن اور حرکت پذیر دونوں حصوں میں پیدا ہوئی ہو۔

مساوات 5.76 ہمیں ایک گیھ کچھ میں پیدا برقی دباو دیتی ہے۔ اگر کچھا تقسیم شدہ ہو تب اس کے مختلف شگافوں میں موجود اس کچھ کے حصوں میں برقی دباو ہم قدم نہیں ہوں گے للذا ان سب کا مجموعی برقی دباو ان سب کا حاصل جمع نہیں ہو گا بلکہ اس سے کچھ کم ہو گا۔ یوں کھیلے کچھ کے لئے یہ مساوات درج ذیل صورت اختیار کرتی ہے۔

$$(5.77) E_{\dot{\tau}} = 4.44 k_w f N \phi_0$$

تین دوری برتی جزیٹر وں کے k_w کی قیمت 0.85 تا 0.95 ہوتی ہے۔ یہ مساوات جمیں یک دوری برتی دباو دیتی ہے۔ تین دوری برتی جزیٹر وں میں ایسے تین کچھوں کے جوڑے ہوتے ہیں اور ان کو Y یعنی سارہ یا Δ یعنی میکونی جوڑا جاتا ہے۔

5.6.2 يك سمت روبر قي جزير

ہر گھو منے والا برقی جزیٹر بنیادی طور پر بدلتا رو جزیٹر ہوتا ہے۔ البتہ جہاں یک سمت برقی دباو⁴¹ کی ضرورت ہو وہاں مختلف طریقوں سے بدلتا برقی دباو کو یک سمت برقی دباو میں تبدیل کیا جاتا ہے۔ جزیٹر کے باہر برقیاتی سمنے کار⁴² یا جزیٹر کے اندر میکانی سمنے کار⁴³ نسب کر کے بدلتا دباو سے یک سمت دباو حاصل کیا جا سکتا ہے۔ مساوات 5.73 جزیٹر کے اندر میکانی سمت برقی دباو میں تبدیل کرنے سے شکل 5.27 حاصل ہو گا۔

 $[\]rm rms^{40}$

DC voltage⁴¹

 $rectifier^{42}$

 $commutator^{43}$

شكل 5.27: يك دوري يك سمت برقى دباو_

مثال 5.5: شكل 5.27 مين يك سمت برقى دباو دكھايا گيا ہے۔اس يك سمت برقى دباوكى اوسط قيمت حاصل كريں۔

عل:

$$E_{\mathbf{L}} = \frac{1}{\pi} \int_0^{\pi} \omega N \phi_0 \sin \omega t \, \mathrm{d}(\omega t) = \frac{2\omega N \phi_0}{\pi}$$

یک سمت جزیٹر پر باب 8 میں غور کیا جائے گا۔

5.7 مهوار قطب مشينول مين قوت مرورا

اس حصہ میں کامل مشین میں قوضے مرور ⁴⁴ کے حصول کے دو تراکیب پر غور کیا جائے گا۔ ایک ترکیب میں مشین کو دو مقاطیس تصور کر کے ان مقاطیسوں کے نیچ قوت کشش، قوت دفع اور قوت مروڑ حاصل کیے جائیں گے جبکہ دوسری ترکیب میں مشین کے ساکن اور ہم-توانائی سے ان کر کیب میں مشین کے ساکن اور ہم-توانائی سے ان کا حساب لگایا جائے گا۔ پہلے توانائی کی ترکیب پر غور کرتے ہیں۔

شكل 5.28: ساكن اماليه اور گھومتااماليه۔

5.7.1 ميكاني قوت مرور بذريعه تركيب تواناكي

یہاں یک دوری مشین پر غور کیا جائے گا جس سے حاصل نتائج با آسانی زیادہ دور کی مشینوں پر لا گو کیے جا سکتے ہیں۔ شکل 5.28 میں یک دوری کامل مشین دکھائی گئی ہے۔ کسی بھی لمحہ اس مشین کے دو کچھوں کے بچ کوئی زاویہ ہو گا جے θ سے ظاہر کیا گیا ہے۔ خلائی درز ہر مقام پر کیساں ہے للذا ابھرے قطب کے اثرات کو نظر انداز کیا جاتا ہے۔ مزید قالب کا جزو مقاطیس مستقل لا متناہی $(\infty \to \mu_r)$ تصور کیا گیا ہے للذا کچھوں کا امالہ صرف خلائی درز کے مقاطیسی مستقل 0 ہو گا۔

 $L_{ar}(\theta)$ اس طرح ساکن کچھے کا امالہ L_{aa} اور گھوے کچھے کا امالہ L_{rr} مستقل ہوں گے جبکہ ان کا مشتر کہ امالہ ورسے لکھے سے زاویہ θ پر منحصر ہو گا۔ جس لمحہ $\theta=0$ یا $\theta=\pm2\pi$ یا $\theta=0$ ہو اس لمحہ ایک لحجھے کا سازا مقناطیسی بہاو دوسرے لکھے سے بھی گزرتا ہے اور ان کا مشتر کہ امالہ زیادہ سے زیادہ ہو گا جسے L_{ar0} سے ظاہر کیا جائے گا۔ جس لمحہ 180° ہو تا سے واس لمحہ دوبارہ ایک کچھے کا سازا مقناطیسی بہاو دوسرے لحجھے سے بھی گزرتا ہے لیکن اس باز اس کا رخ الٹ ہوتا ہو اس لمحہ دوبارہ ایک کا مشتر کہ امالہ منفی ہو گا، $-L_{ar0}$ ، جبکہ $\theta=\pm90$ پر ان کا مشتر کہ امالہ صفر ہو گا۔ خلائی درز میں مقناطیسی بہاو سائن نما

$$(5.78) L_{ar} = L_{ar0}\cos\theta$$

تصور کرتے ہوئے ساکن اور گھومتے لچھوں کے ارتباط بہاو درج ذیل ہوں گے۔

(5.79)
$$\lambda_{a} = L_{aa}i_{a} + L_{ar}(\theta)i_{r} = L_{aa}i_{a} + L_{ar0}\cos(\theta)i_{r}$$
$$\lambda_{r} = L_{ar}(\theta)i_{a} + L_{rr}i_{r} = L_{ar0}\cos(\theta)i_{a} + L_{rr}i_{r}$$

magnetic constant, permeability⁴⁵

ساکن کچھے کی مزاحمت R_a اور گھومتے کچھے کی مزاحمت R_r لیتے ہوئے ان کچھوں کے سروں پر قانون کرخوف سے برقی دباو درج ذیل ہوں گے۔

$$(5.80) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = i_a R_a + L_{aa} \frac{\mathrm{d}i_a}{\mathrm{d}t} + L_{ar0} \cos\theta \frac{\mathrm{d}i_r}{\mathrm{d}t} - L_{ar0}i_r \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

$$v_r = i_r R_r + \frac{\mathrm{d}\lambda_r}{\mathrm{d}t} = i_r R_r + L_{ar0} \cos\theta \frac{\mathrm{d}i_a}{\mathrm{d}t} - L_{ar0}i_a \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + L_{rr} \frac{\mathrm{d}i_r}{\mathrm{d}t}$$

یہاں θ برقی زاویہ ہے جس کی وقت کے ساتھ تبدیلی، ω دے گی۔

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega$$

میکانی قوت مروڑ بذریعہ ہم-توانائی حاصل کی جا سکتی ہے۔ ہم-توانائی صفحہ 126 پر مساوات 4.72 سے حاصل ہو گ۔ یہ مساوات موجودہ استعال کے لئے درج زیل صورت اختیار کرتی ہے۔

(5.82)
$$W'_{m} = \frac{1}{2}L_{aa}i_{a}^{2} + \frac{1}{2}L_{rr}i_{r}^{2} + L_{ar0}i_{a}i_{r}\cos\theta$$

اس سے میکانی قوت مروڑ T_m حاصل کرتے ہیں۔

(5.83)
$$T_{m} = \frac{\partial W'_{m}(\theta_{m}, i_{a}, i_{r})}{\partial \theta_{m}} = \frac{\partial W'_{m}(\theta, i_{a}, i_{r})}{\partial \theta} \frac{\partial \theta}{\partial \theta_{m}}$$

چونکہ P قطب مشینوں کے لئے درج ذیل ہوتا ہے

$$\theta = \frac{P}{2}\theta_m$$

للذا جمين مساوات 5.83 سے درج ذيل حاصل ہو گا۔

$$(5.85) T_m = -\frac{P}{2} L_{ar0} i_a i_r \sin\left(\frac{P}{2}\theta_m\right)$$

اس مساوات میں قوت مروڑ T_m کی علامت منفی ہے۔ یوں جس لمحہ پر ساکن اور گھومتے کچھوں کے مقناطیسی بہاو کو ایک نی زاویہ مثبت ہو، اس لمحہ پر ان کچھوں کے نی قوت مروڑ منفی ہو گا۔ قوت مروڑ دونوں مقناطیسی بہاو کو ایک رخ میں رکھنے کی کوشش کرتا ہے۔

شکل5.29: کیھوں کے قطبین۔

5.7.2 ميكاني قوت مروڙ بذريعه مقناطيسي بهاو

شکل 5.29-ا میں دو قطبی یک دوری مثین کے صرف گھومتے کچھے میں برقی رو پایا جاتا ہے۔ مثین کا گھومتا حصہ ایک مقناطیس کی مانند ہے جس کے شالی اور جنوبی قطبین دکھائے گئے ہیں۔ اس کچھے کا مقناطیسی بہاو تیر کے نشان سے دکھایا گیا ہے لہذا تیر اس مقناطیس کے محور کو ظاہر کرتا ہے۔

شکل 5.29-ب میں صرف ساکن کچھے میں برتی رو پایا جاتا ہے۔ ساکن حصہ سے مقناطیسی بہاو خارج ہو کر خلائی درز سے ہوتا ہوا گھومتے حصہ میں داخل ہوتا ہے لہذا یہی اس کا شالی قطب ہو گا۔ یہاں ساکن حصہ ایک مقناطیس مانند ہے جس کا محور تیر سے ظاہر کیا گیا ہے۔

اگرچہ شکل 5.29 میں گیجھ کچھے دکھائے گئے ہیں، در حقیقت دونوں کیجھوں کے مقناطیسی دباو سائن-نما ہیں اور تیر کے نشان ان مقناطیسی دباو کی امواج کی چوٹیوں کو ظاہر کرتے ہیں۔

شکل 5.30 میں دونوں لچھوں کو برتی رو فراہم کی گئی ہے۔ دونوں لچھوں کے مخالف قطبین کے آج قوت کشش پایا جائے گا جس کی بنا دونوں لچھے ایک ہی رخ ہونے کی کوشش کریں گے۔

واضح رہے کہ دونوں کیجے (مقناطیس) کوشش کریں گے کہ θ_{ar} صفر کے برابر ہو لینی ان کا میکانی قوت مروڑ θ_{ar} کے مخالف رخ ہو گا۔ یہی مساوات 5.85 کہتی ہے ۔ θ_{ar}

شكل5.30: خلا كي در زمين مجموعي مقناطيسي دباو_

لیجھوں کے مقناطیسی دباو کو مقناطیسی محور کے رخ τ_a اور τ_r سے ظاہر کیا گیا ہے جہاں τ_a اور τ_r سائن نما مقناطیسی دباو کی چوٹیوں کے برابر ہیں۔ خلائی درز میں کل مقناطیسی دباو τ_{ar} ان کا مجموعہ ہو گا جس کا طول τ_{ar} کلیہ کوسائن τ_{ar} طاسل ہو گا:

(5.86)
$$\tau_{ar}^{2} = \tau_{a}^{2} + \tau_{r}^{2} - 2\tau_{a}\tau_{r}\cos(180^{\circ} - \theta_{ar})$$
$$= \tau_{a}^{2} + \tau_{r}^{2} + 2\tau_{a}\tau_{r}\cos\theta_{ar}$$

خلائی درز میں کل مقناطیسی دباو au_{ar} درج ذیل مقناطیسی شدت H_{ar} پیدا کرے گا جہاں l_g کلائی درز کی لمبائی au_{ar}

$$\tau_{ar} = H_{ar}l_g$$

مقناطیسی شدت کی چوٹی کو ظاہر کرتا ہے۔ خلاء میں جس مقام پر مقناطیسی شدت H ہو وہاں مقناطیسی H_{ar} ہم حقنائی کی کثافت H^2 ہوتی ہے۔ خلائی درز میں اوسط ہم حقوانائی کی کثافت، درز میں H^2 کی اوسط کو H^2 ہے فرب کر کے حاصل ہوگا۔ کسی بھی سائن نما موج H^2 ہوتی ہیں: H^2 کا اوسط H^2 حاصل کرتے ہیں:

(5.88)
$$H_{\text{best}}^2 = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H^2 \, \mathrm{d}\theta = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H_0^2 \cos^2 \theta \, \mathrm{d}\theta$$
$$= \frac{H_0^2}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} \, \mathrm{d}\theta = \frac{H_0^2}{\pi} \left. \frac{\theta + \frac{\sin 2\theta}{2}}{2} \right|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} = \frac{H_0^2}{2}$$

cosine law⁴⁶

یوں خلائی درز میں اوسط ہم-توانائی کی کثافت $\frac{\mu_0}{2} \frac{H_{ar}^2}{2}$ ہو گی۔ خلائی درز میں اوسط ہم-توانائی کو خلاء کے حجم سے ضرب کر کے درز میں کل ہم-توانائی W'_m حاصل ہو گی:

(5.89)
$$W'_{m} = \frac{\mu_0}{2} \frac{H_{ar}^2}{2} 2\pi r l_g l = \frac{\mu_0 \pi r l}{2 l_g} \tau_{ar}^2$$

اس مساوات میں خلائی درز کی رداسی لمبائی l_g اور دھرے 47 کے رخ محوری لمبائی 48 ہے۔ محور سے خلائی درز کا اوسط رداسی فاصلہ $r \gg l_g$ مزید $r \gg l_g$ تصور کیا گیا ہے جس کی بنا درز میں رداسی رخ، کثافت مقناطیسی بہاو کی تبدیلی نظر انداز کی جا سکتی ہے۔ اس مساوات کو ہم مساوات کی مدد سے درج ذیل لکھ سکتے ہیں۔

(5.90)
$$W'_{m} = \frac{\mu_{0}\pi r l}{2l_{q}} \left(\tau_{a}^{2} + \tau_{r}^{2} + 2\tau_{a}\tau_{r}\cos\theta_{ar} \right)$$

یوں میکانی قوت مروڑ درج ذیل ہو گا۔

(5.91)
$$T_m = \frac{\partial W'_m}{\partial \theta_{ar}} = -\frac{\mu_0 \pi r l}{l_g} \tau_a \tau_r \sin \theta_{ar}$$

مساوات 5.91 میں قوت مروڑ دو قطبی مثین کے لئے حاصل کی گئے۔P قطبی مثین کے لئے یہ مساوات ہر جوڑی قطب کی میکانی قوت مروڑ دیتی ہے لہذا P قطبی مثین کی قوت مروڑ $\frac{P}{2}$ گنا ہو گی:

$$(5.92) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_r \sin \theta_{ar}$$

مساوات 5.92 ایک اہم مساوات ہے جس کے مطابق مشین کی میکانی قوت مروڑ، ساکن اور گھومتے کچھوں کے مقاطیسی دباو کی چوٹیوں اور دونوں کے بی برتی زاوبیہ θ_{ar} کے سائن کی راست متناسب ہو گی۔ منفی میکانی قوت مروڑ کا مطلب ہے کہ یہ زاوبیہ θ_{ar} کا مطلب ہے کہ یہ زاوبیہ θ_{ar} کا کا مطلب ہے کہ یہ زاوبیہ و کی کوشش کرے گیا۔ مشین کے ساکن اور گھومتے حصول پر ایک دوسرے کے برابر لیکن خالف رخ میکانی قوت مروڑ ہو گی البتہ ساکن گی۔ مشین کے وجود کے ذریعہ زمین تک منتقل ہو گی جبکہ گھومتے حصے کی میکانی قوت مروڑ اس حصہ کو متحرک کرتی ہے۔

چونکہ مقناطیسی دباو کچھے کے برقی رو کا راست متناسب ہے لہذا au_a اور i_a آپس میں راست متناسب ہوں گے جبکہ au_r اور i_a آپس میں راست متناسب ہوں گے۔ یوں ظاہر ہوتا ہے کہ مساوات 5.85 اور 5.92 ایک دوسرے جیسے ہیں۔ در حقیقت یہ ثابت کیا جا سکتا ہے کہ یہ دونوں بالکل ایک جیسے ہیں۔

axis4/

axial length⁴⁸

شکل 5.31: مقناطیسی بہاواوران کے زاویے۔

 ΔAEC شکل 5.31 میں دوبارہ ساکن اور گھومتے کچھوں کے مقناطیسی دباو دکھائے گئے ہیں۔ شکل -اکی تکون ΔAEC اور ΔBEC میں ΔCE مشترک ہے جو درج ذیل ہو گا۔

$$(5.93) CE = \tau_r \sin \theta_{ar} = \tau_{ar} \sin \theta_a$$

اس مساوات کی مدد سے مساوات 5.92 کو درج ذیل لکھا جا سکتا ہے۔

$$(5.94) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_q} \tau_a \tau_{ar} \sin \theta_a$$

اس طرح شکل WQ ہے جو درج ذیل ہو گا۔ ΔSWQ اور تکون ΔSWQ میں WQ مشترک ہے جو درج ذیل ہو گا۔

$$(5.95) WQ = \tau_a \sin \theta_{ar} = \tau_{ar} \sin \theta_r$$

اس مساوات کی مدر سے مساوات 5.92 کو درج ذیل لکھا جا سکتا ہے۔

$$(5.96) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_a} \tau_r \tau_{ar} \sin \theta_r$$

مهاوات 5.92، مساوات 5.94 اور مساوات 5.96 كو ايك ساته كلصة بين-

(5.97)
$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{r} \sin \theta_{ar}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{ar} \sin \theta_{a}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{r} \tau_{ar} \sin \theta_{r}$$

ان مساوات سے واضح ہے کہ میکانی قوت مروڑ کو دونوں کچھوں کے مقناطیسی دباو اور ان کے نیج زاویہ کی صورت میں، یا کسی ایک کی کے نیج زاویہ کی صورت میں کھا جا سکتا ہے۔

اس بات کو یوں بیان کیا جا سکتا ہے کہ میکانی قوت مروڑ دو مقناطیسی دباو کی آپس میں ردعمل کی وجہ سے پیدا اور مقناطیسی دباو کی چوٹیوں اور ان کے چھ زاویہ پر منحصر ہوتا ہے۔

مقناطیسی دباو، مقناطیسی شدت، کثافت مقناطیسی بهاو اور مقناطیسی بهاو آپس میں تعلق رکھتے ہیں جنہیں مختلف طریقوں سے لکھا جا سکتا ہے۔ مثلاً خلائی درز میں کل مقناطیسی دباو au_{ar} اور درز میں کثافت مقناطیسی بهاو au_{ar} کا تعلق

$$B_{ar} = \frac{\mu_0 \tau_{ar}}{l_g}$$

استعال کر کے مساوات 5.97 کے آخری جزو کو درج ذیل لکھا جا سکتا ہے۔

$$(5.99) T_m = -\frac{P}{2}\pi r l \tau_r B_{ar} \sin \theta_r$$

مقناطیسی مشینوں کی قالبی مقناطیسی مستقل μ کی محدود قیمت کی بنا قالب میں کثافت مقناطیسی بہاہ تقریباً ایک ٹسلا تک ہی بڑھائی جاسکتی ہے۔ مشین کی بناوٹ کے وقت اس حد کو مد نظر رکھنا ہو گا۔ اسی طرح گھومتے لچھے کا مقناطیسی دباہ اس کچھے میں برقی رو پر منحصر ہوتا ہے۔ اس برقی رو سے کچھے کی مزاحمت میں برقی توانائی ضائع ہوتی ہے جس سے لچھے کی مزاحمت میں برقی توانائی ضائع ہوتی ہے جس سے لچھا گرم ہوتا ہے۔ برقی رو کو اس حد تک بڑھایا جا سکتا ہے جہاں تک کچھے کو ٹھنڈا رکھنا ممکن ہو۔ یوں مقناطیسی دباہ کو ایک حد سے نیچے رکھنا ہو گا۔ مساوات B_{ar} اور T_r دونوں صریحاً موجود ہیں للذا مشین کی بناوٹ کے نقطہ نظر سے یہ ایک اہم مساوات ہے۔

مساوات 5.99 کی دوسری اہم صورت دیکھتے ہیں۔ قطب پر اوسط کثافت مقناطیسی بہاو $_{log}$ اور قطب کے رقبہ $_{A_{F}}$

(5.100)
$$B_{\text{be-yl}} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} B_0 \cos \theta \, d\theta = \frac{2B_0}{\pi}$$

$$(5.101) A_P = \frac{2\pi rl}{P}$$

کا حاصل ضرب قطب پر مقناطیسی بہاو ϕ_P ہوتا ہے للذا

$$\phi_P = \frac{2B_0}{\pi} \frac{2\pi rl}{P}$$

اور

$$(5.103) T_m = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_{ar} \tau_r \sin \theta_r$$

ہوں گے۔ مساوات 5.103 معاصر مشینوں کے لئے بہت کار آمد ہے۔

فرہنگ

earth, 95	ampere-turn, 33
eddy current loss, 62	armature coil, 135, 255
eddy currents, 61, 130	, ,
electric field	capacitor, 199
intensity, 10	carbon bush, 181
electrical rating, 59	cartesian system, 4
electromagnet, 135	charge, 10, 140
electromotive force, 61, 141	circuit breaker, 183
electronics	coercivity, 46
power, 211	coil
emf, 141	high voltage, 56
enamel, 62	low voltage, 56
energy, 44	primary, 55
co, 115	secondary, 55
Euler, 20	commutator, 168, 245
excitation current, 52, 60, 61	conductivity, 25
excitation voltage, 61	conservative field, 111
excite, 61	core, 55, 130
excited coil, 61	core loss, 62
	core loss component, 64
Faraday's law, 38, 129	Coulomb's law, 10
field coil, 135, 255	cross product, 13
flux, 30	cross section, 9
Fourier series, 63, 145	current
frequency, 134	transformation, 66
fundamental, 146	cylindrical coordinates, 5
fundamental component, 64	
	delta connected, 94
generator	differentiation, 18
ac, 163	dot product, 15
ground current, 95	
ground wire, 95	E,I, 62

ئنرہنگ 270

Ohm's law, 26	harmonic, 146	
open circuit test, 87	harmonic components, 64	
orthonormal, 3	Henry, 40	
	hunting, 182	
parallel connected, 258	hysteresis loop, 47	
permeability, 26	1,	
relative, 26	impedance transformation, 71	
phase current, 95	induced voltage, 38, 50, 61	
phase difference, 22	inductance, 40	
phase voltage, 95	leakage, 187	
phasor, 21	induction	
pole	motor, 211	
non-salient, 143	,	
salient, 143	Joule, 44	
power, 44		
power factor, 22	lagging, 22	
lagging, 22	laminations, 31, 62, 130	
leading, 22	leading, 22	
power factor angle, 22	leakage inductance, 79	
power-angle law, 192	leakage reactance, 79	
primary	line current, 95	
side, 55	line voltage, 95	
,	linear circuit, 230	
rating, 97, 98	load, 99	
rectifier, 168	Lorentz law, 140	
relative permeability, 26	Lorenz equation, 104	
relay, 103		
reluctance, 25	magnetic constant, 26	
residual magnetic flux, 46	magnetic core, 31	
resistance, 25	magnetic field	
rms, 19, 50, 168	intensity, 11, 33	
rotor, 37	magnetic flux	
rotor coil, 106	density, 33	
rpm, 159	leakage, 79	
	magnetizing current, 64	
saturation, 47	mmf, 30	
scalar, 1	model, 81, 211	
self excited, 255	mutual flux linkage, 43	
self flux linkage, 43	mutual inductance, 43	
self inductance, 43	•	
separately excited, 255	name plate, 98	
side	non-salient poles, 181	

المرابئات عرابئات عرابات المرابئات ا

transformer air core, 59 communication, 59 ideal, 65 oil, 77	secondary, 55 single phase, 23, 59 slip, 213 slip rings, 180, 233 squirrel cage, 236
transient state, 179	star connected, 94
unit vector, 2	stator, 37 stator coil, 106, 131
VA, 76 vector, 2 volt, 140 volt-ampere, 76 voltage, 140 DC, 168 transformation, 65	steady state, 179 step down transformer, 58 step up transformer, 58 surface density, 11 synchronous, 134 synchronous inductance, 188 synchronous speed, 159, 180
Watt, 44 Weber, 33 winding distributed, 143 winding factor, 151	Tesla, 33 theorem maximum power transfer, 233 Thevenin theorem, 230 three phase, 59, 93 time period, 101, 145 torque, 169, 213 pull out, 182

بھنور نمابر تی رو، 130	ابتدائی
بے بوجھ، 60	جانب، 55
•	لخماء 55
پترى،31،310	ارتباط بهاو، 39
پتریاں،62	اضافي
پیش زاویه،22	زاويا کی رفتار، 216
	اکائی سمتىيە، 2
تاخيري،80	اماليه، 40
تاخيريزاويه،22	رستا،187
تار کابر قي د باو، 95	امالی
تار کا بر تی رو، 95	برتی د باو، 50
تانبا،28	امالى برقى د باو، 38، 61
تبادله ر به -	ایک، تین پتریال، 62
ر کاوٹ، 71	اينمپيئر - چکر ، 33
تختی،98 ته 12.4	
تعدد،134 ت-ت	بر، 140
تعقب،182 تفرق،18	بر قرار چالو، 101، 179
هرن،18 جزوی،18	ېرق گيير،199
برون،18 تکونی جوڙ،94	برقیات
تونی بور،94 توانائی،44	ت وى،211
وانان،44 ہمہ،115	بر تی بار،10،140
ہمہ،113 تین دوری،93،59	بر تی د باو، 140،28
93,39,019,0	تبادله، 65،56
ٹرانسفار مر	محرك، 141
برتی د باووالا، 59	ىيجانى،189
بوجھ بردار،68	يك سمت، 168
نیل،77	بر تی رو، 28
خلائی قالب،59	بھنورنما،130
د باوبره هاتا، 58	تبادله، 66
د باو گھٹاتا،58	هیجان انگیز،52
ذرائع ابلاغ، 59	برقي سکت،59
رووالا،59	برقی میدان،10
كامل،65	شدت،10،28
ٹسلا،33	بش،181
ٹھنڈی تار،95	بناوٹ،87
	بنیادی جزو،64،646
ثانوی جانب،55	بوچه،99
	بھٹی،117
جاول،44	بچنور نما :
97.	بر قی رو، 61
ڪھيلاو، 151	ضياع،62

<u>ــــرہگ</u>ـــــ

زاویه جزوطاقت،22 زمین،95 زمینی برقی رو،95	جزوطاقت،22 چیش،22 تاخیری،22
ريىنى بەر 1950 زىينى تار، 95 ساكن حصە، 37	جزيئر بدلتارو،163
تان کی تصنیہ؟ ساکن کچھا،131،106 ستارہ نماجوڑ،94	جوڑ تکونی،94 ستاره نما،94
ىر كاو، 213 ىرك چىلى، 233،180 سطى ئۇلسەرە.	چکر فی منٹ،130 چوئی،215
سطى كىمل،185 سطى كثافت،11 سكت،98،97	حال
سلسله وار،149 سمت کار،245	عار ضى،179 كيساس،179
بر قباتی،168 میکانی،168 سمتیه،2	خطی برق دور، 230
 معتى ر فتار ،104	خودار تباط بهاو، 43 خود اماله، 43
سیرابیت،47 ضرب	داخلی بیجان سلسله وار ، 258 متوازی، 258
نقطه،15 ضرب صلیبی،13	مر کب،258 دور برام کب،258
طاقت،44 طاقت بالقابل زاويه،192 طول موج،18	دور شکن، 183 دوری سمتیه، 190،21 دوری عرصه، 145،101
عمودی تراش،9 رقبہ،9	رستا اماله، 79 متعامله، 79
غير سمتى،1 غير معاصر،182	رىتامىتعاملىت،221 رىتامىتعاملىت،221 رفتار اضافىزاويائى،216
فوريئر،254 فوريئر تشكسل،145،63 فيراد ك قانون،129،38	اضانی زاویان، 216 روغن، 62 روک ، 232 ریاضی نموننه، 211،81 ریلے ، 103
تاكب،130	زاديائي فرق،22

عنرہنگ

	52 8 1 1 1 1
محد د پر تنسه د	قالبي ضياع،62
كار تيبى،4 نكى،5	جزو،64 قانون
ى،د محرك برتى د باو، 61	قانون او ډم ،26
رک پر ۱۰۶۰ تا	کولمب،10
ريول لمائي،165	وسب،10 لورينز،140
مخلوط عدد ،196	قدامت پیند میدان ، 111 قدامت پیند میدان ، 111
مرکب جزیئر،258	قریب برامر کب، 258
مزاحت،25	ريب. در ب 200 قطب
مزاحت پيا، 241	ابھرے،181،143
مساوات لورينز،104	بموار، 181،143
مئلہ	قوت مر وڑ،213،169
تھونن،230	انتہائی، 182
زیادہ سے زیادہ طاقت کی منتقلی، 233	قوى برقيات، 245
مشتر كه ارتباط اماله ، 43	قوی <u>لچ</u> ے،255
مشتر که اماله، 43	
معاصر،134	كارين بش، 181
مشين،180	کار گزاری،204
معاصراماليه،188	کثاف ت ت
معاصرر فآر،159،180	برقی رو،28
معائنه کھلاد ور، 87 مقناطیس قناطیس	كثافت مقناطيسي بهاو
مقناطيس مقناطيس	بقاي، 46
ب. تى، 135	کسر دور ، 39
بيال كادائره، 47 چال كادائره، 47	05
غاتم شدت،46	گرم تار، 95 گ
مقناطیسی بر قی رو،64	گومتاحصه،37 گستال ۱۹۶۶
مقناطیسی بهاو،30	گھومتالچھا،106
سن به بین	ر .
ر بادر کثافت، 33	لچھا
مقناطيسي چال، 52	ابتدائی، 55 کار 143
مقناطیسی د باو، 30	<u>ئىل</u> ے، 143
رخ،145	ىيچپرار، 41 ثانوي، 55
مقناطیسی قالب، 55،31	رخ،137
مقناطیسی مستقل،170،26	ري. زياده بر تي د باو،56
معنا "بی سی مراد 1/0،26 جزو،31،26	ر ي ره بر ن 106٠
بروه،31،20 مقناطیسی میدان	ت قری،135 قری،135
سن به نامیدان شدت،33،11	کر بر تی د باو،56 کم بر تی د باو،56
مورر مورر	آب ن ا گومتا، 106
رو امالي، 211	ميداني،135
= V *	100 001

ئىرىنگ

پنجره نما،236	بيجان انگيز
وژ،19،19	بر تی د باو، 61
وثرقیت،168	بر تی رو، 61
ىوسىقاكى جزو،64،64	پیجان انگیز برتی رو، 60
وصليت،25	ييجاني برتي د باو، 189
ىيدانى ك <u>چ</u> ھے،255	•
·	يك دوري، 59،23
اك،44	يك دوري بر قي د باو، 95
ولث،140	یک دوری برقی رو، 95
ولٺ-ايمپيئر،76	یک سمت رو
ير، 33	ت مشین، 245
.يېر- چېر، 39	يولر مساوات، 20°
كِلِيابِث،30،25	
، چ.، 10،25،05 پيمان، 61	
بِعِنَ.01 بير وني،255	
- 7	
نود، 255	
لچھا، 61	