Seznam součástek

1x	AtMega328p-pu
1x	patice 28pin
1x	ACS712-5A
1x	ACS712-20A
4x	IRF530
1x	IRLZ44N
1x	2004 I ² C LCD
5x	tlačítka
4x	PC817 optočlen
1x	B0505S
1x	16MHz krystal
2x	22p keramický kondenzátor
2x	diody
2x	180k rezistor
2x	20k rezistor
8x	1k rezistor
4x	3V6 zener
1x	cívka 33uH
1x	tlumivka
3x	100nF keramický kondenzátor
1x	BC547
2x	8R 18W rezistor
1x	100uF 50V elektrolytický kondenzátor
1x	470uF 16V elektrolytický kondenzátor
1x	náhodná shotky dioda ze spínaného zdroje
1x	pojistka a patice na pojistku
-x	jumprová lišta samec i samice (konektory)
4x	chladič

Popis

Jde o nejpokročilejší způsob využití solární energie, kde MPPT (Maximum Power Point Tracking) kontrolér nabijí baterie ze solárního panelu za použití DC-DC měniče a algoritmů za účelem maximalizovat výkon.

Jako příklad můžu použít můj systém – 20W solární panel a 12V baterky. Za naprosto ideálních podmínek by panel produkoval asi 22V bez zátěže a asi 1,2A ve zkratu. Pokud bychom tento panel připojili přímo na baterie, napětí panelu by spadlo na 12V při 1,2A, tedy asi 14,5W – ztráta 5,5W. Pokud dáme mezi panel a baterie DC-DC měnič a nastavíme jej tak, aby napětí panelu zůstalo okolo 18V (podle výrobce ideální provozní napětí) při asi 1,1A což je skoro 20W, účinný měnič sníží napětí na 12V při 1.6A – o 38% víc energie.

Základní MPPT algoritmus zkouší změnit napětí panelů a přitom měří výkon, pokud se výkon zvyšuje, bude pokračovat v tom směru, dokud se výkon nesníží, poté změní směr hledání. Tento algoritmus jsem používal, ale moc dobře nefungoval při tak nízkých výkonech. Proto jsem napsal vlastní, který používám i v tomto výrobku. MPPT každou minutu projde všemi hodnotami střídy (AtMega328 má 8-bit PWM, takže 255 kroků) a při tom zaznamená nejvyšší výkon a hodnotu střídy při které byl dosažen. Tento způsob se zatím osvědčil, jen je zapotřebí zlepšit účinnost DC-DC konvertru (zvýšit frekvenci a vyladit cívku na správnou hodnotu + kondenzátory).

Na obrázku jde vidět, že panel se drží na nízkém napětí, protože měnič není moc účinný při vysokých napěťových rozdílech.

Pohled na hlavní desku MPPT. (obvod DC-DC měniče je nahoře)

