Coding of bounded solutions of equation $u_{xx} - u + \eta(x)u^3 = 0$ with periodic piecewise constant function $\eta(x)$

M. E. Lebedev, G. L. Alfimov

MIET University, Zelenograd, Moscow, Russia

Consider a one-dimensional second-order differential equation

$$u_{xx} - u + \eta(x)u^3 = 0, (1)$$

where $\eta(x)$ is a periodic piecewise-constant function of period $L + \ell$,

$$\eta(x) = \begin{cases}
-1, & x \in [0; L]; \\
\xi, & x \in [L; L + \ell],
\end{cases}$$
(2)

where $\xi > 0$. Let us define two topological spaces.

At first, denote by S(b), $b \in \mathbb{R}$, a set of solutions for equation (1) such that |u(x)| < b on the whole real axis \mathbb{R} . Evidently, $b_1 < b_2$ implies $S(b_1) \subseteq S(b_2)$. One can define a metric ρ in S(b) as follows,

$$\rho(v,w) = \sqrt{(v(0) - w(0))^2 + (v_x(0) - w_x(0))^2}, \quad v(x), w(x) \in \mathcal{S}(b).$$
 (3)

This implies that S(b) can be regarded as topological space where neighbourhood $U_{\varepsilon}(u)$ of an element $u \in S(b)$ is defined as $U_{\varepsilon}(u) = \{v | \rho(u, v) < \varepsilon\}$.

At second, denote by Ω_n the set of bi-infinite sequences $\{\ldots, i_{-1}, i_0, i_1, \ldots\}$ where $i_k, \ k=0,\pm 1,\ldots$, is an integer, $-n \leq i_k \leq n$. Evidently that for $n_1 < n_2$ one has $\Omega_{n_1} \subset \Omega_{n_2}$. The set Ω_n can be regarded as topological space where neighbourhood $W_k(\omega^*)$ of an element $\omega^* = \{\ldots, i_{-1}^*, i_0^*, i_1^*, \ldots\} \in \Omega_n$ is defined as $W_k(\omega^*) = \{\omega \mid i_s^* = i_s, |s| < k\}$.

The main result of our study is the following theorem.

Theorem. For any N there exists a pair (L_0, ℓ_0) such that for any pair (L, ℓ) , $L > L_0$ and $0 < \ell < \ell_0$, there exist a sequence

$$b_0 < b_1 < \ldots < b_N,$$

and a homeomorphism T such that $TS(b_n) = \Omega_n$, n = 0, 1, ..., N.

The theorem can be illustrated by the following diagram:

The theorem is proved for ξ below a threshold ξ_0 that is a root of some transcendent equation.