Title

Alexander Uhlmann* Advisor: Prof. Dr. Peter Hintz

 $July\ 14,\ 2022$

Abstract

((TODO))

^{*}auhlmann@ethz.ch

Introduction

1.1 Main Results

((Introduce Notation etc.))

Theorem 1.1.1 (Interior Reconstruction). Let (M_j, g_j) , j = 1, 2 be two open globally hyperbolic, time-oriented Lorentzian manifolds. For $p_j^- \ll p_j^+$ two points in M_j we denote $K_j = J(p_j^-, p_j^+) \setminus I^-(p_j^+)$, the closed and compact backwards light cone from p_j^+ cut off at the intersection with the forwards light cone of p_j^- . We assume that there exists a conformal diffeomorphism $\Phi: K_1 \to K_2$ and that none of the past null geodesics starting at p_j^+ have a cut point in K_j .

Now let $V_j \subset \text{int } J(p_j^-, p_j^+)$ be open sets. We assume that no null geodesic starting in V_j has a null conjugate point on K_j .

Then, if

$$\widetilde{\Phi}(\mathcal{P}_{K_1}(V_1)) = \mathcal{P}_{K_2}(V_2)$$

there exists a conformal diffeomorphism $\Phi: V_1 \to V_2$ that preserves causality.

Theorem 1.1.2 (Boundary Reconstruction). Let (M_j, g_j) , j = 1, 2 be two open globally hyperbolic, time-oriented Lorentzian manifolds. For $p_j^- \ll p_j^+$ two points in M_j we denote $K_j = J(p_j^-, p_j^+) \setminus I^-(p_j^+)$, the closed and compact backwards light cone from p_j^+ cut off at the intersection with the forwards light cone of p_j^- . We assume that there exists a conformal diffeomorphism $\Phi: K_1 \to K_2$ and that none of the past null geodesics starting at p_j^+ have a cut point in K_j .

Now let $V_j \subset J(p_j^-, p_j^+) \setminus p_j^+$ be open sets. We assume that no null geodesic starting in V_j has a null conjugate point on K_j .

Then, if

$$\widetilde{\Phi}(\mathcal{P}_{K_1}(V_1)) = \mathcal{P}_{K_2}(V_2)$$

there exists a conformal diffeomorphism $\Phi: V_1 \to V_2$ that preserves causality.

Geometric Preliminaries

2.1 Null Conjugate Points

((Leave this here?))

Definition 2.1.1 (Null Conjugate Point). Let $\gamma_{q,w}:[0,b]\to M$ be a null geodesic. We then call $p=\gamma_{q,w}(b)$ a null conjugate point if there exists a nontrivial variation $\mathbf{x}:[0,b]\times(-\varepsilon,\varepsilon)\to M$ of $\gamma_{q,w}$ through null geodesics such that $\mathbf{x}_v(b,0)=0$.

We have the following useful characterization:

Proposition 2.1.2. Let $\gamma_{q,w}:[0,b]\to M$ be a null geodesic. Then $p=\gamma_{q,w}(b)$ is a null conjugate point if and only if $\exp_q:L_qM\to M$ is singular at bw, i.e. if there exists a nonzero $\xi\in T_{bw}(L_qM)$ such that $d\exp_q(\xi)=0$.

Null conjugate points are also conformal invariants:

Proposition 2.1.3. Let $\Phi:(M,g) \to (N,h)$ be a conformal diffeomorphism and $\gamma:[0,b] \to M$ a null geodesic. Then $\gamma(b)$ is a null conjugate point of γ if and only if $\Psi(\gamma(b))$ is a null conjugate point of $\Psi \circ \gamma$.

2.2 Geometry of the Light Cone Observations

From now on $(M, g), K, V, p^+, p^-$ be as in theorem 1.1.1 (we suppress the indices to simplify notation). ((More explanation))

2.2.1 Parameterization of Observations

Lemma 2.2.1. We have:

(1)
$$(J^{-}(p^{+}) \setminus I^{-}(p^{+})) \cap K = \mathcal{L}_{p^{+}}^{-} \cap K \text{ and thus } K = \mathcal{L}_{p^{+}}^{-} \cap J^{+}(p^{-}).$$

(2) There exists a surjective smooth map $\Theta: S^{n-1} \times [0,1] \to K$ such that the curves $\mu_a := t \mapsto \Theta(a,t), a \in S^n$ are null geodesics,

$$\Theta(S^{n-1} \times \{1\}) = \{p^+\}, \quad R := \Theta(S^{n-1} \times \{0\}) = (J^-(p^+) \setminus I^-(p^+)) \cap J^+(p^-)$$

and $\Theta : S^{n-1} \times [0,1) \to K \setminus p^+$ is a diffeomorphism.

(3)
$$\mathcal{L}_{p^+}^- \cap J(p^-, p^+)^{\circ} = \emptyset$$
 and $\mathcal{L}_p^- \cap J(p^-, p^+)^{\circ} = \emptyset$ $\forall p \in R$.

Note that this implies that K is a smooth n-dimensional submanifold of M at any point away from its boundary. We will often treat K itself as a submanifold when it is clear that we are working away from the boundary. This is often the case as by (3) no null geodesic originating from the interior of $J(p^-, p^+)$ can reach p^+ or R, i.e. the boundary of K.

2.2.2 Geometry of Light Observation Sets

Lemma 2.2.2. For any $q \in \overline{V}$ the restriction of the exponential map to null vectors $\exp_q : L_q^+ M \to M$ is transverse to K, i.e. for all $w \in L_q^+ M$ such that $\gamma_{q,w}(1) = p \in K$ we have $\gamma'_{q,w}(1) \notin T_p K$.

Lemma 2.2.3. For $q \in \overline{V}$ and $w \in L_q^+M$ there exists exactly one $t \in (0, \infty)$ such that $\gamma_{q,w}(t) \in K$.

Lemma 2.2.4 (Direction Reconstruction). ((Iso = Bijection)) Let $p \in K$ then there exists an isomorphism Φ between the space S of spacelike hyperplanes $S \subset T_pK$ and the space V of rays $\mathbb{R}_+V \subset T_pM$ along future-directed outward facing null vectors, given by the mapping $S \in S$ to the unique future-directed outward pointing null ray $\Phi(S)$ contained in S^{\perp} . The inverse map is given by $V \ni \mathbb{R}_+V \mapsto T_pK \cap V^{\perp} \in S$.

Moreover there exists an isomorphism between S and the space N of linear null hypersurfaces $N \subset T_pM$ which contain a future-directed outward pointing null vector given by $S \mapsto S \oplus \operatorname{span} \Phi(S) \in \mathcal{N}$.

Definition 2.2.5 (Observation Preimage). For any $q \in J(p^-, p^+)^{\circ}$ with light observation set $\mathcal{P}_K(q) \subset K$ we define the *observation preimage* $L_q^K M$ to be the preimage of K under the exponential map restricted to $L_q^+ M$, i.e.

$$L_q^K M := (\exp_q|_{L_q^+ M})^{-1}(K) \subset L_q^+ M$$

Lemma 2.2.6. For any $q \in J(p^-, p^+)^{\circ}$, the observation preimage $L_q^K M$ is a n-1-dimensional submanifold of $T_p M$.

Furthermore, for any $w \in L_q^K M$ there exist a relatively open neighborhood $\mathcal{W} \subset L_q^K M$ such that $\exp_q : \mathcal{W} \to \exp_q(\mathcal{W}) \subset \mathcal{P}_K(q)$ is a diffeomorphism.

Lemma 2.2.7. Let $q \in J(p^-, p^+)^{\circ}$ and $p \in \mathcal{P}_K(q)$ then there exist only finitely many $v_1, \ldots, v_n \in L_q^K M$ such that $\exp_q(v_i) = p$. Furthermore for any neighborhood $W \subset L_q^K M$ of v_1, \ldots, v_n , there exists a neighborhood $U \subset \mathcal{P}_K(q)$ of p such that $\exp_q^{-1}(U) \cap L_q^+ M \subset W$.

We can immediately put these lemmas to use and prove this proposition characterizing the light observation set.

Proposition 2.2.8. Let $q \in J(p^-, p^+)^\circ$ and $p \in \mathcal{P}_K(q)$. There exists a neighborhood \mathcal{O} of p, a positive integer N and N pairwise transversal, spacelike, codimension 1 submanifolds $\mathcal{V}_i \subset K$ such that $\mathcal{P}_K(q) \cap \mathcal{O} = \bigcup_{i=1}^N \mathcal{V}_i$ and $p \in \mathcal{V}_i$ for i = 1, ..., N.

Definition 2.2.9 (Regular Point). We call a point $p \in \mathcal{P}_K(q)$ regular if there exists an open neighborhood $\mathcal{O} \subset M$ of p such that $\mathcal{O} \cap \mathcal{P}_K(q)$ is a submanifold.

Corollary 2.2.10. The subset of regular points is open and dense in $\mathcal{P}_K(q)$.

2.2.3 Observation Time Functions

Definition 2.2.11 (Observation Time Function). For $a \in S^{n-1}$ the observation time function is defined as

$$f_a: J(p^-, p^+) \to [0, 1]$$

 $q \mapsto \inf(\{s \in [0, 1] \mid \mu_a(s) \in J^+(q)\} \cup \{1\}).$

Moreover, let $\mathcal{E}_a(q) := \mu_a(f_a(q)) \in M$ be the earliest point where μ_a sees light from q.

Lemma 2.2.12. Let $a \in S^{n-1}$ and $q \in J(p^-, p^+)^{\circ}$. Then

- (1) It holds that $f_a(q) \in (0,1)$.
- (2) We have $\mathcal{E}_a(q) \in J^+(q)$ and $\tau(q, \mathcal{E}_a(q)) = 0$. Moreover the function $s \mapsto \tau(q, \mu_a(s))$ is continuous, non-decreasing on [0, 1] and strictly increasing on $[f_a(q), 1]$.
- (3) Let $p \in K$. Then $p = \mathcal{E}_a(q)$ with some $a \in \mathcal{A}$ if and only if $p \in \mathcal{P}_K(q)$ and $\tau(p,q) = 0$. Furthermore, these are equivalent to the fact that there are $v \in L_q^+M$ and $t \in [0, \rho(q, v)]$ such that $p = \gamma_{q,v}(t)$.

By (3) of the above lemma, for any $q \in \overline{V}$ and $a \in \mathcal{A}$ we have $\mathcal{E}_a(q) \in \mathcal{P}_K(q)$. Since $\mathcal{P}_K(q) \subset J^+(q)$, we can see using definition 2.2.11 that the set of earliest observations $\mathcal{P}_K(q)$ and the path μ_a completely determine the functions

$$f_a(q) = \min\{s \in [-1, 1] \mid \mu_a(s) \in \mathcal{P}_U(q)\}, \quad \mathcal{E}_a(q) = \mu_a(f_a(q))$$
 (2.1)

Lemma 2.2.13. Let $a \in S^{n-1}$. Then the function $q \mapsto f_a(q)$ is continuous on $J(p^-, p^+)^{\circ}$.

Lemma 2.2.14. Let $q \in J(p^-, p^+)^{\circ}$. Then the function $a \mapsto f_a(q)$ is continuous on S^{n-1} .

Corollary 2.2.15. The map $f: J(p^-, p^+)^{\circ} \times S^{n-1} \to \mathbb{R}; (q, a) \mapsto f_a(q)$ is continuous.

Proposition 2.2.16. If $q_n \to q_0 \in J(p^-, p^+)^{\circ}$ as $n \to \infty$ and we denote $F_q : S^{n-1} \to \mathbb{R}; a \mapsto f_a(q)$. Then $F_{q_n} \to F_{q_0}$ uniformly over S^{n-1} as $n \to \infty$.

Proposition 2.2.17. Let $q, q' \in V$ such that $F_q = F_{q'}$. Then q = q'.

Proposition 2.2.18. Let $(q_n)_{n=1}^{\infty}$ be a sequence in V and $q_0 \in V$ such that $F_{q_n} \to F_{q_0}$ uniformly then $q_n \to q_0$ as $n \to \infty$.

2.2.4 Set of earliest observations

Definition 2.2.19 (Set of earliest observations). For $q \in \overline{V}$ we define

$$\mathcal{D}_{K}(q) = \{(p, v) \in L^{+}M \mid (p, v) = (\gamma_{q, w}(t), \gamma'_{q, w}(t))$$
where $p \in K, w \in L_{q}^{+}M, 0 \le t \le \rho(q, w)\},$

$$\mathcal{D}_{K}^{reg}(q) = \{(p, v) \in L^{+}M \mid (p, v) = (\gamma_{q, w}(t), \gamma'_{q, w}(t))$$
where $p \in K, w \in L_{q}^{+}M, 0 < t < \rho(q, w)\},$

We say that $\mathcal{D}_K(q)$ is the direction set of q and $\mathcal{D}_K^{reg}(q)$ is the regular direction set of q.

Let $\mathcal{E}_K(q) = \pi(\mathcal{D}_K(q))$ and $\mathcal{E}_K^{reg}(q) = \pi(\mathcal{D}_K^{reg}(q))$, where $\pi: TM \to M$ is the canonical projection. We say that $\mathcal{E}_K(q)$ is the set of earliest observations and $\mathcal{E}_K^{reg}(q)$ is the set of earliest regular observations of q in K. We denote the collection of earliest observation sets by $\mathcal{E}_K(V) = \{\mathcal{E}_K(q) \mid q \in V\}$.

Note that $\mathcal{E}_K(q) = \{\mathcal{E}_a(q) \mid a \in S^{n-1}\}.$

Proposition 2.2.20. For any $q \in V$ it holds that

- (1) $\mathcal{E}_{K}^{reg}(q)$ is a n-1-dimensional nonempty spacelike submanifold of K which is open relative to $\mathcal{P}_{K}(q)$ and has $\overline{\mathcal{E}_{K}^{reg}(q)} = \mathcal{E}_{K}(q)$ and,
- (2) $\mathcal{E}_K(q)$ fails to be a submanifold exactly at cut points,
- (3) \mathcal{D}_K^{reg} is a nonempty open n-dimensional submanifold of $\overrightarrow{K} := \pi^{-1}(K)$.

Note that since $\mathcal{E}_K^{reg}(q)$ is exactly $\mathcal{E}_K(q)$ without the cut points, it is also the collection of all points where $\mathcal{E}_K(q)$ is locally a submanifold.

Proposition 2.2.21. For any $q \in \overline{V}$, $\mathcal{E}reg_K(q) \subset K$ and $\mathcal{D}_K^{reg}(q) \subset TU$ are smooth submanifolds of dimension n-1 ((D has dim n)).

Finally in this section we will prove

Proposition 2.2.22. Let $q \in V$, then

$$\mathcal{E}_K(q) = \{ p \in \mathcal{P}_K(q) \mid \text{there are no } p' \in \mathcal{P}_K(q) \text{ such that } p'$$

Thus $\mathcal{E}_K(q)$ truly deserves to be called the "set of earliest observations".

Proposition 2.2.23. ((Given data)) The light observations $\mathcal{P}_K(q)$ uniquely determines the light direction observation set $\mathcal{D}_K(q)$ and the set of earliest observations $\mathcal{E}_K(q)$.

Proposition 2.2.24. ((Given data)) Given the light direction observation set $\mathcal{P}_K(q)$ and the set of earliest observations $\mathcal{E}_K(q)$, we can determine the sets $\mathcal{E}_K^{reg}(q)$, $\mathcal{D}_K(q)$ and $\mathcal{D}_K^{reg}(q)$.

Interior Reconstruction

3.1 Topology Reconstruction

Lemma 3.1.1. Thing with dir set reconstruction Also intersection is spacelike somewhere

Construction of V as a topological manifold

((Intro))

Next we aim to reconstruct the topological and differential data of V. To that end we define the following functions.

For $q \in V$ we define the function $F_q: S^{n-1} \to \mathbb{R}$ by $a \mapsto f_a(q)$. We can then define the function

$$\mathcal{F}: V \to (C(S^{n-1}), d_{\infty})$$

$$q \mapsto F_q$$

mapping a $q \in V$ to the function $F_q: S^{n-1} \to \mathbb{R}$. $(C(S^{n-1}), d_{\infty})$ is the space of continuous functions from S^{n-1} to \mathbb{R} , together with the metric $d_{\infty}(f,g) = \max_{a \in S^{n-1}} |f(a) - g(a)|$.

The following proposition establishes that the canonical topological structure on $\mathcal{F}(V)$, i.e. the topology obtained by taking the subspace topology wrt. the topology induced by d_{∞} on $C(S^{n-1})$, is the same as the pushforward under \mathcal{F} of the topology on V, making \mathcal{F} a homeomorphism.

Lemma 3.1.2. The map $\mathcal{F}: V \to \mathcal{F}(V)$ is a homeomorphism.

3.2 Smooth Reconstruction

Having established the topological structure of V we next aim to establish coordinates on $\mathcal{F}(V)$ near any $\mathcal{F}(q)$ that make $\mathcal{F}(V)$ diffeomorphic to V.

3.2.1 Preliminaries

Definition 3.2.1 (Coordinates on V). We first define

$$\mathcal{Z} = \{ (q, p) \in V \times K \mid p \in \mathcal{E}_{U}^{reg}(q) \}.$$

Then for every $(q, p) \in \mathcal{Z}$ there is a unique $w \in L_q^+M$ such that $\gamma_{q,w}(1) = p$ and $\rho(q, w) > 1$. Existence follows from lemma 2.2.12 while uniqueness follows from the fact that $p \in \mathcal{E}_U^{reg}(q)$ and thus cannot be a cut point. We can then define the map

$$\Omega: \mathcal{Z} \mapsto L^+ V$$
$$(q, p) \mapsto (q, w)$$

Note that this map is injective. Below we will $W_{\varepsilon}(q_0, w_0) \subset TM$ be a ε -neighborhood of (q_0, w_0) with respect to the Sasaki-metric induced on TM by g^+ .

Lemma 3.2.2. ((Move to appendix?)) The function

$$T_+: L^+J(p^-, p^+) \to \mathbb{R}$$

 $(q, w) \mapsto \sup\{t \ge 0 \mid \gamma_{q,w}(t) \in J^-(p^+)\}$

is finite and upper semicontinuous.

Corollary 3.2.3. Let (q_n, w_n) be a sequence in $L^+J(p^-, p^+)$ such that $X(q_n, w_n) = (q_n, p_n) \to (q_0, p_0)$ as $n \to \infty$ then $||w_n||_{g^+}$ is bounded for any riemannian metric on M.

Lemma 3.2.4. Let $(q_0, p_0) \in \mathcal{Z}$ and $(q_0, w_0) = \Omega(q_0, p_0)$. When $\varepsilon > 0$ is small enough the map

$$X: \mathcal{W}_{\varepsilon}(q_0, w_0) \to M \times M$$

 $(q, w) \mapsto (q, \exp_q(w))$

is open and defines a diffeomorphism $X: \mathcal{W}_{\varepsilon}(q_0, w_0) \to \mathcal{U}_{\varepsilon}(q_0, p_0) := X(\mathcal{W}_{\varepsilon}(q_0, w_0)).$ When ε is small enough, Ω coincides in $\mathcal{Z} \cap \mathcal{U}_{\varepsilon}(q_0, p_0)$ with the inverse map of X. Moreover \mathcal{Z} is a (2n-1)-dimensional manifold and the map $\Omega: \mathcal{Z} \to L^+M$ is smooth.

((Explain what we're doing now))

Proposition 3.2.5. Let $q \in V$ and $(q_0, p_j) \in \mathcal{Z}, j = 1, ..., n$ and $w_j \in L_{q_0}^+ M$ such that $\gamma_{q_0, w_j}(1) = p_j$. Assume that $w_j, j = 1, ..., n$ are linearly independent. Then, if $a_j \in A$ and $\overrightarrow{a} = (a_j)_{j=1}^n$ are such that $p_j \in \mu_{a_j}$, there is a neighborhood $V_1 \subset M$ of q_0 such that the corresponding observation time functions

$$\mathbf{f}_{\overrightarrow{a}}(q) = (f_{a_j}(q))_{j=1}^n$$

define smooth coordinates on V_1 . Moreover $\nabla f_{a_j}|_{q_0}$, i.e. gradient of f_{a_j} with respect to q at q_0 , satisfies $\nabla f_{a_i}|_{q_0} = c_i w_i$ for some $c_i \neq 0$.

3.2.2 Reconstruction

Definition 3.2.6 (Observation Coordinates). Let $\widehat{q} = \mathcal{F}(q) \in \widehat{V}$ and $\overrightarrow{d} = (a_j)_{j=1}^n \subset \mathcal{A}^n$ with $p_j = \mathcal{E}_{a_j}(q)$ such that $p_j \in \mathcal{E}_U^{reg}(q)$ for all $j = 1, \ldots, n$. Let $s_{a_j} = f_{a_j} \circ \mathcal{F}^{-1}$ and $\mathbf{s}_{\overrightarrow{d}} = \mathbf{f}_{\overrightarrow{d}} \circ \mathcal{F}^{-1}$. Let $W \subset \widehat{V}$ be an open neighborhood of \widehat{q} . We say that $(W, \mathbf{s}_{\overrightarrow{d}})$ are C^0 -observation coordinates around \widehat{q} if the map $\mathbf{s}_{\overrightarrow{d}} : W \to \mathbb{R}^n$ is open and injective. Also we say that $(W, \mathbf{s}_{\overrightarrow{d}})$ are C^{∞} -observation coordinates around \widehat{q} if $\mathbf{s}_{\overrightarrow{d}} \circ \mathcal{F} : \mathcal{F}^{-1}(W) \to \mathbb{R}^n$ are smooth local coordinates on $V \subset M$.

Note that by the invariance of domain theorem, the above $\mathbf{s}_{\overrightarrow{d}}: W \to \mathbb{R}^n$ is open if it is injective. Although for a given $\overrightarrow{d} \in \mathcal{A}^n$ there might be several sets W for which $(W, \mathbf{s}_{\overrightarrow{d}})$ form C^0 -observation coordinates to clarify the notation we will sometimes denote the coordinates $(W, \mathbf{s}_{\overrightarrow{d}})$ as $(W_{\overrightarrow{d}}, \mathbf{s}_{\overrightarrow{d}})$.

We will consider $\mathcal{F}(V)$ a topological space and denote $\mathcal{F}(V) = \widehat{V}$. We denote the points of this manifold by $\widehat{q} = \mathcal{F}(q)$. Next we construct a differentiable structure on \widehat{V} that is compatible with that of V and makes \mathcal{F} a diffeomorphism.

Proposition 3.2.7. Let $\widehat{q} \in \widehat{V}$. Then there exist C^{∞} -observation coordinates $(W_{\overrightarrow{q}}, \mathbf{s}_{\overrightarrow{q}})$ around \widehat{q} .

Furthermore, given the data from ?? we can determine all C^0 -observation coordinates around \widehat{q} .

Finally given any C^0 -observation coordinates $(W_{\overrightarrow{a}}, \mathbf{s}_{\overrightarrow{a}})$ around \widehat{q} , the data ??, allows us to determine whether they are C^{∞} -observation coordinates around \widehat{q} .

Construction of the conformal type of the metric

We will denote by $\widehat{g} = \mathcal{F}_* g$ the metric on $\widehat{V} = \mathcal{F}$ that makes $\mathcal{F} : V \to \widehat{V}$ an isometry. Next we will show that the set $\mathcal{F}(V)$, the paths μ_a and the conformal class of the metric on U determine the conformal class of \widehat{g} on \widehat{V} .

Lemma 3.2.8. The data given in ?? determine a metric G on $\widehat{V} = \mathcal{F}(V)$ that is conformal to \widehat{g} and a time orientation on \widehat{V} that makes $\mathcal{F}: V \to \widehat{V}$ a causality preserving map.

Boundary Reconstruction

4.1 Setting

In this section we will examine how we can extend our reconstruction result to the case where the observed set V is no longer contained within the interior of $J(p^-, p^+)$ but is now allowed to extend up to the boundary. In other words we want to recover the conformal structure of $J(p^-, p^+)$ from light cone observations made on the future null boundary $K = J(p^-, p^+) \setminus I^-(p^+)$.

This setting is complicated by the fact that as $q \in J(p^-, p^+)$ approaches the boundary, the light observation $\mathcal{P}_K(q)$ get increasingly warped and is degenerate if q is in the boundary.

Theorem 4.1.1 (Boundary Reconstruction). Let (M_j, g_j) , j = 1, 2 be two open globally hyperbolic, time-oriented Lorentzian manifolds. For $p_j^- \ll p_j^+$ two points in M_j we denote $K_j = J(p_j^-, p_j^+) \setminus I^-(p_j^+)$, the closed and compact backwards light cone from p_j^+ cut off at the intersection with the forwards light cone of p_j^- . We assume that there exist a conformal diffeomorphism $\Phi: K_1 \to K_2$ and that none of the past null geodesics starting at p_j^+ have a cut point in K_j .

Now let $V_j \subset J(p_j^-, p_j^+)$. We assume that no null geodesic starting in V_j has a conjugate point on K_j .

Then, if

$$\widetilde{\Phi}(\mathcal{P}_{K_1}(V_1)) = \mathcal{P}_{K_2}(V_2)$$

there exists a homeomorphism $\Phi: V_1 \to V_2.((conformal\ diffeomorphism\ \Phi: V_1 \to V_2\ that\ preserves\ causality))$

Remark 4.1.2. ((Move this to intro)) We will again prove the previous theorem by working on just one globally hyperbolic Lorentzian manifold (M, g) with p^{\pm}, V, K as above. We show that given the following data we can reconstruct the topology of V:

- (1) The smooth manifold (with edge) K,
- (2) the conformal class of $g|_K$,
- (3) the set $\mathcal{P}_K(V)$.

4.2 Preliminaries

To extend the reconstruction up to the edge of $J(p^-, p^+)$ we need to introduce some new concepts.

Definition 4.2.1 (Unique minimum domain). We define the *unique minimum* domain $D \subset J(p^-, p^+)$ to be

$$D := \{ q \in J(p^-, p^+) \mid F_q \text{ has a unique minimum} \}. \tag{4.1}$$

Lemma 4.2.2. Let A be a first-countable topological space and $P: A \to \{false, true\}$ a property defined for all points $a \in A$. Suppose now that for any converging sequence $a_n \to a_0 \in A$ there exists a $N \in N$ such that $P(a_n)$ is true for all $n \geq N$.

Then there exists an open neighborhood $O \in A$ of a_0 such that P(a) is true for all $a \in O$.

Lemma 4.2.3. Let $(A, d_A), (B, d_B), (C, d_C)$ be metric spaces with A, B compact. Let $f: A \times B \to C$ be a continuous functions and denote $f_a: B \to C; b \mapsto f_a(b) := f(a,b)$ for $a \in A$. Let $a_n \to a_0 \in A$ as $n \to \infty$ be a convergent sequence.

Then $f_{a_n} \to f_{a_0}$ uniformly as $n \to \infty$.

Bibliography

- [Bee81] Easley Beem Ehrlich. Global Lorenzian Geometry. Pure and Applied Mathematics, 1981.
- [Hal08] Rodney G Halburd. "Partial Differential Equations in General Relativity". In: Journal of Physics A: Mathematical and Theoretical 41.47 (2008), p. 479003.
- [KLU17] Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann. *Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations*. 2017. arXiv: 1405.3386 [math.DG].
- [One83] Barrett O'neill. Semi-Riemannian geometry with applications to relativity. Academic press, 1983.