6.3 高阶线性微分方程

- 6.3.1 高阶线性微分方程解的结构
- 6.3.2 常系数奇次线性微分方程
- 6.3.3 常系数非奇次线性微分方程
- 6.3.4 欧拉方程

6.3.2、 n 阶常系数齐次线性微分方程

n 阶常系数线性微分方程的标准形式

$$y^{(n)} + P_1 y^{(n-1)} + \dots + P_{n-1} y' + P_n y = f(x)$$

二阶常系数齐次线性方程的标准形式

$$y'' + py' + qy = 0$$

二阶常系数非齐次线性方程的标准形式

$$y'' + py' + qy = f(x)$$

一、二阶常系数齐次线性微分方程:

$$y'' + p y' + q y = 0$$
 (p, q**为常数**) ①

因为,为常数时 函数 e^{rx} 和它的导数只差常数因子,所以令①的解为 $y = e^{rx}$ (r 为待定常 代入①得 $(r^2 + pr + q)e^{r}$ 数= 0

$$r^2 + pr + q = 0 \quad 2$$

称②为微分方程①的特征方程,其根称为特征根.

1. 当 $p^2 - 4q > 0$ 时,② 有两个相异实根点 点,则微分方程有两个线性无关的特解:点 = $e^{r_1 x}$,点 = $e^{r_2 x}$,因此方程的通解为 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

2. 当 $p^2 - 4q = 0$ 时,特征方程有两个相等实根 = 1/2 $=-\frac{1}{2}$,则微分方程有一个特解 $y_1=e^{\frac{\pi}{2}}$.

设另一特解 $\Gamma_{\varepsilon} = \Gamma_{H}(x) = e^{-x}_{H}(x) (u(x)$ 待定)

代入方程

得: $e^{r_1 x} [(u'' + 2r_1 u' + r_1^2 u) + p(u' + r_1 u) + q u] = 0$ $u'' + (2r_1 + p)u' + (r_1^2 + pr_1 + q)u = 0$ 注意,是特征方程的重根 u'' = 0

u = x,则 $y_2 = x e^{r_1 x}$,因此原方程的通解为 得 $v = (C_1 + C_2 x) e^{r_1 x}$

3. 当 $p^2 - 4q < 0$ 时,特征方程有一对共轭复根 $y_1 = \alpha + i\beta$ 、 $y_2 = \alpha - i\beta$

这时原方程有两个复数

解:
$$y_1 = e^{(\alpha+i\beta)x} = e^{\alpha x} (\cos \beta x + i \sin \beta x)$$

$$y_2 = e^{(\alpha-i\beta)x} = e^{\alpha x} (\cos \beta x - i \sin \beta x)$$

利用解的叠加原理 , 得原方程的线性无关特

$$\overline{y_1} = \frac{1}{2}(y_1 + y_2) = e^{\alpha x} \cos \beta x$$

$$\overline{y_2} = \frac{1}{2i}(y_1 - y_2) = e^{\alpha x} \sin \beta x$$

因此原方程的通解为

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

综上所述,求二阶常系数齐次线性微分方程

$$y'' + p y' + q y = 0$$
 (p, q为常数)

的通解的步骤如下:

第一步 写出微分方程的特征方程 $r^2 + pr + q = 0$,

第二步 求出特征方程的两个根 r_1 , r_2 ,

第三步 根据下表写出通解:

特征根的情况	通解的表达式
实根 $r_1 \neq r_2$	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
实根 $r_1 = r_2$	$y = (C_1 + C_2 x)e^{r_2 x}$
	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

例 1 求方程 y'' + 4y' + 4y = 0 的通解.

解 特征方程为 $r^2+4r+4=0$,

解得 $r_1 = r_2 = -2$,

故所求通解为 $y = (C_1 + C_2 x)e^{-2x}$.

例 2 求方程 y'' + 2y' + 5y = 0 的通解.

解 特征方程为 $r^2 + 2r + 5 = 0$,

解得 $r_{1,2} = -1 \pm 2i$,

故所求通解为

$$y = e^{-x} (C_1 \cos 2x + C_2 \sin 2x).$$

例 3 求微分方程 y'' - 2y' - 3y=0 的通解。

 \mathbf{R} 特征方程为 $r^2-2r-3=0$,

其根 $r_1 = -1$, $r_2 = 3$ 是两个不相等的实根,因此 所求通解为= $C_1e^{-x}+C_2e^{3x}$.

例 4 已知 $y = xe^x$ 是某二阶常系数齐次线性微分 方程的一个解,求此微分方程。

解:由题设知 r=1 是特征方程的二重根,

所以特征方程为
$$(r-1)^2$$
 r^2-2r 所求的微分方程为 $y''-2y'+v=0$

二、n 阶常系数齐次线性方程解法

$$y^{(n)} + P_1 y^{(n-1)} + \dots + P_{n-1} y' + P_n y = 0$$

特征方程为 $r^n + P_1 r^{n-1} + \dots + P_{n-1} r + P_n = 0$

特征方程的根

微分方程通解中的对应项

(i) 单实根 r

给出一项: e^{rx}

(ii) 一对单复根 $r_{1,2}$

给出两项:

 $=\alpha \pm i\beta$

 $e^{\alpha x}\cos\beta x, e^{\alpha x}\sin\beta x$

(iii)k 重实根 r

给出 k 项:

 $e^{rx}, xe^{rx}, x^{2}e^{rx}, \dots, x^{k-1}e^{rx}$

(iv) 一对 k 重根 $r_{1,2}$ = $\alpha \pm i\beta$ 给出 2k 项:

 $e^{\alpha x}\cos\beta x, xe^{\alpha x}\cos\beta x, \dots, x^{k-1}e^{\alpha x}\cos\beta x$

 $e^{\alpha x} \sin \beta x, x e^{\alpha x} \sin \beta x, \dots, x^{k-1} e^{\alpha x} \sin \beta x$

例 5 求方程

$$y^{(5)} + y^{(4)} + 2y^{(3)} + 2y'' + y' + y = 0$$
 的通解.

解 特征方程为 $r^5 + r^4 + 2r^3 + 2r^2 + r + 1 = 0$,

$$(r+1)(r^2+1)^2=0,$$

特征根为 $r_1 = -1$, $r_2 = r_3 = i$, $r_4 = r_5 = -i$,

故所求通解为

$$y = C_1 e^{-x} + (C_2 + C_3 x) \cos x + (C_4 + C_5 x) \sin x.$$

6.3.3、常系数非齐次线性微分方程

二阶常系数线性非齐次微分方程:

$$y'' + py' + qy = f(x)$$
 (p,q为常数)

根据解的结构定理 , 其通解为

$$y = Y + y^*$$

齐次方程通解 非齐次方程特解

求特解的方法 一 待定系数法

根据 f(x) 的特殊形 **给出特解**。"*的待定形式,式入,原方程比较两端表达式以确定待定系数 .

$$f(x) = e^{\lambda x} P_m(x)$$
型

特例: $\lambda=0$ 时, $f(x)=P_m(x)$ 多项式型 m=0时, $f(x)=Ae^{\lambda x}$ 指数函数型

设非齐方程特解为 $y^* = Q(x)e^{\lambda x}$

$$y^{*'} = e^{\lambda x} [\lambda Q(x) + Q'(x)]$$

$$y^{*''} = e^{\lambda x} [\lambda^2 Q(x) + 2\lambda Q'(x) + Q''(x)]$$

代入原方程

$$Q''(x) + (2\lambda + p)Q'(x) + (\lambda^{2} + p\lambda + q)Q(x) = P_{m}(x)$$

(1) 若 λ 不是特征方程的根, $\lambda^2 + p\lambda + q \neq 0$, 可设 $Q(x) = Q_m(x)$, $y^* = Q_m(x)e^{\lambda x}$;

(2) 若λ是特征方程的单根,

$$\lambda^{2} + p\lambda + q = 0, \qquad 2\lambda + p \neq 0,$$

可设 $Q(x) = xQ_{m}(x), \qquad y^{*} = xQ_{m}(x)e^{\lambda x};$

(3) 若λ是特征方程的重根,

$$\lambda^{2} + p\lambda + q = 0, 2\lambda + p = 0,$$
可设 $Q(x) = x^{2}Q_{m}(x), \quad y^{*} = x^{2}Q_{m}(x)e^{\lambda x}.$
综上讨论
设 $y^{*} = x^{k}e^{\lambda x}Q_{m}(x), \quad k = \begin{cases} 0 & \lambda \text{不是根} \\ 1 & \lambda \text{是单根}, \\ 2 & \lambda \text{是重根} \end{cases}$

注意 上述结论可推广到 n 阶常系数非齐次线性微分方程(k 是重根次数).

$$Q''(x) + (2\lambda + p)Q'(x) + (\lambda^{2} + p\lambda + q)Q(x) = P_{m}(x)$$

求方程 $y'' - 3y' + 2y = xe^{2x}$ 的通解. 例 1

特征方程 $r^2 - 3r + 2 = 0$, 特征根 $r_1 = 1$, $r_2 = 2$,

对应齐次方程通解 $Y = C_1 e^x + C_2 e^{2x}$,

原方程通解为 $y = C_1 e^x + C_2 e^{2x} + x(\frac{1}{2}x - 1)e^{2x}.$

例2 求
$$y'' - 2y' + y = 4xe^x$$
的通解

解: 特征方程为
$$r^2 - 2r + 1 = 0$$

$$r^2 - 2r + 1 = 0$$

特征根

$$r_1 = r_2 = 1$$

齐次方程的通解
$$Y = (C_1 + C_2 x)e^x$$

 $P_{m}(x)=4x$ 是一次多项式, $\lambda=1$ 是特征方程的二重根, $y^* = x^2 (Ax + B)e^x$

代入方程并约去 e^x 可得 6Ax + 2B = 4x

比较系数可得
$$\begin{cases} 6A = 4 \\ 2B = 0 \\ 2 \end{cases}$$
 即
$$\begin{cases} A = \frac{2}{3} \\ B = 0 \end{cases}$$

所以

$$y^* = \frac{2B}{3}x^3e^x$$

方程的通解为 $y = (C_1 + C_2 x)e^x + \frac{\lambda}{2}x^3 e^x$

例3 求 $y'' + y' = 2x^2 - 3$ 在初始条件 y(0) = 0, y'(0) = 0下的特解

解:特征方程为 $r^2+r=0$ 特征根 $r_1=0$, (单实根) $r_2=-1$ 齐次方程的通解 $Y=C_1+C_2e^{-x}$ 设 $y^*=x(Ax^2+Bx+C)$

代入方程可得 $3Ax^2 + (6A + 2B)x + 2B + C = 2x^2 - 3$ 解得: $A = \frac{2}{3}$, B = -2, C = 1

方程的通解为 $y = C_1 + C_2 e^{-x} + \frac{2}{3} x^3 - 2x^2 + x$

代入初始条件得 $C_1=-1$, $C_2=1$

特解为 $y = -1 + e^{-x} + \frac{2}{3}x^3 - 2x^2 + x$

例 4 写出下列方程的通解形式

(1)
$$y'' - y = (2x^2 - 3)e^x$$

(2)
$$y'' - y' = 2x - 1 - 3e^x$$

解 (1) 特征方程
$$r^2-1=0$$
, $r=\pm 1$

特解形式:
$$y^* = x(Ax^2 + Bx + C)e^x$$

通解形式:
$$y = C_1 e^{-x} + C_2 e^x + x(Ax^2 + Bx + C)e^x$$

(2) 特征方程
$$r^2-r=0$$
, $r=0,1$

对于
$$y'' - y' = 2x - 1$$
, $y_1^* = x(Ax + B)$

对于
$$y'' - y' = -3e^x$$
, $y_2^* = Cxe^x$

通解形式:
$$y = C_1 + C_2 e^x + x(Ax + B) + Cx e^x$$

二、
$$f(x) = e^{\lambda x} [P_{l}(x)\cos\omega x + P_{n}(x)\sin\omega x]$$
型

$$y^* = x^k e^{\lambda x} [R_m^{(1)}(x) \cos \omega x + R_m^{(2)}(x) \sin \omega x],$$

其中 $R_m^{(1)}(x)$, $R_m^{(2)}(x)$ 是m次多项式, $m = \max\{l,n\}$

$$k = \begin{cases} 0 & \lambda \pm i\omega \text{ 不是根} \\ 1 & \lambda \pm i\omega \text{ 是单根} \end{cases}$$

注意

上述结论可推广到n阶常系数非齐次线性微分方程.

例5 求微分方程 $y'' + y = x \cos 2x$ 的一个特解

解: 所给方程是二阶常系数非齐次线性方程,且 f(x) 属于 $e^{\lambda x}[P_l(x)\cos \omega x + P_n(x)\sin \omega x]$ 型

(其中
$$\lambda=0$$
 , $\omega=2$, $P_l(x)=x$, $P_n(x)=0$) 。
它的特征方程为 $r^2+1=0$

由于这里 $\lambda+i\omega=2i$ 不是特征方程的根,所以应设特解为

$$y^* = (ax + b)\cos 2x + (cx + d)\sin 2x$$
.

把它代入所给方程,得

$$(-3ax - 3b + 4c)\cos 2x - (3cx + 3d + 4a)\sin 2x = x\cos 2x$$

$$(-3ax - 3b + 4c)\cos 2x - (3cx + 3d + 4a)\sin 2x = x\cos 2x$$

比较两端同类项的系数,得

$$\begin{cases}
-3a = 1 \\
-3b + 4c = 0 \\
-3c = 0, \\
-3d - 4a = 0,
\end{cases}$$

由此解得
$$a = -\frac{1}{3}, b = 0, c = 0, d = \frac{4}{9}$$

于是求得一个特解为

$$y^* = -\frac{1}{3}x\cos 2x + \frac{4}{9}\sin 2x.$$

例6 求微分方程 $y'' + 4y = \cos 2x$ 的通解

解:对应的齐次方程为 y'' + 4y = 0

特征方程为 $r^2+4=0$

$$r^2 + 4 = 0$$

特征根

$$r_{1,2} = \pm 2i$$

齐次方程的通解
$$Y=C_1\cos 2x+C_2\sin 2x$$

 $\lambda \pm \omega i = \pm 2i$ 是特征根,所以特解形式为

$$y^* = x[a\cos 2x + b\sin 2x]$$

代入原方程并化简可得

$$4b\cos 2x - 4a\sin 2x = \cos 2x$$

比较系数可得 a=0, $b=\frac{1}{4}$

所以
$$y^* = \frac{x}{4} \sin 2x$$

原方程的通解为 $y = C_1^4 \cos 2x + C_2 \sin 2x + \frac{x}{2} \sin 2x$

例6 求微分方程 $y'' + 4y = 2 \sin^2 x$ 的通解

解:
$$Y = C_1 \cos 2x + C_2 \sin 2x$$

 $f(x) = 2\sin^2 x = 1 - \cos 2x$

对应于
$$f_1(x)=1$$
 ,可令 $y_1*=A$, 易求 $A=\frac{1}{4}=y_1*$ 得

对应于
$$f_2(x) = -\cos 2x$$
,由上例可知 $y^* = -\frac{x}{4}\sin 2x$

所以
$$y^* = \frac{1}{4} - \frac{x}{4} \sin 2x$$

$$y = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{4} - \frac{x}{4} \sin 2x$$

例 7 求 y'' +4y=2 $\sin^2 x$ 的满足初始条件 $y|_{y=0}$ =0 , y' |

$$y = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{4} - \frac{x}{4} \sin 2x$$

$$y' = -2C_1 \sin 2x + 2C_2 \cos 2x - \frac{1}{4} \sin 2x - \frac{x}{2} \cos 2x$$

由初始条件可得 $\begin{cases} 0 = C_1 + \frac{1}{4} & \text{即有} \\ 1 = 2C_2 \end{cases} C_1 = -\frac{1}{4}$

所求特解为

$$y = -\frac{1}{4}\cos 2x + \frac{1}{2}\sin 2x + \frac{1}{4} - \frac{x}{4}\sin 2x$$

6.3.4、欧拉方程

形如

$$x^{n}y^{(n)} + p_{1}x^{n-1}y^{(n-1)} + \dots + p_{n-1}xy' + p_{n}y = f(x)$$

的方程(其中 p_1 , p_2 , …, p_n 为常数),叫做欧拉方程。

作变换
$$x=e^t$$
 或 $t=\ln x$

将自变量 x 换成 t ,我们有 $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{1}{x} \frac{dy}{dt}$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{1}{x}\frac{dy}{dt}\right) = \frac{x\left[\frac{d}{dx}\left(\frac{dy}{dt}\right)\right] - \frac{dy}{dt}}{x^2}$$

$$= \frac{x \left[\frac{d^2 y}{dt^2} \frac{dt}{dx}\right] - \frac{dy}{dt}}{x^2} = \frac{1}{x^2} \left(\frac{d^2 y}{dt^2} - \frac{dy}{dt}\right)$$

$$\frac{d^{3}y}{dx^{3}} = \frac{1}{x^{3}} \left(\frac{d^{3}y}{dt^{3}} - 3\frac{d^{2}y}{dt^{2}} + 2\frac{dy}{dt} \right).$$

$$tn = 2 \text{ High Part } + 2 \text{ Hig$$

如果采用记号D表示对t求导的运算。

那末上述运算结果可以写成 xy' = D y,

$$x^{2}y'' = \frac{d^{2}y}{dt^{2}} - \frac{dy}{dt} = \left(\frac{d^{2}}{dt^{2}} - \frac{d}{dt}\right)y$$

$$x^{3}y''' = \frac{d^{3}y}{dt^{3}} - 3\frac{d^{2}y}{dt^{2}} + 2\frac{dy}{dt}$$

$$= (D^{2} - D)y = D(D - 1)y,$$

$$x^{3}y''' = \frac{d^{3}y}{dt^{3}} - 3\frac{d^{2}y}{dt^{2}} + 2\frac{dy}{dt}$$

$$= (D^3 - 3D^2 + 2D)y = D(D-1)(D-2)y,$$

一般地,有

$$x^k y^{(k)} = D(D - 1)...(D -$$

把在代入欧拉方程,便得一个以 t 为自变量的常系数

例 1. 求方程 $x^{1}y'' - 2xy' + 2y = \ln^{1}x - 2\ln x$ 的通解.

解:令x=e',则 $t=\ln x$,记 $D=\frac{d}{dt}$,则原方程化为

$$D(D-1)y - 2D y + 2y = t^2 - 2t$$

$$(D^2 - 3D + 2)y = t^2 - 2t$$

亦即 $\frac{d^2 y}{d t^2} - 3 \frac{d y}{d t} + 2 y = t^2 - 2 t$ ①

特征方程 $_{\Gamma_{1}}^{1} - 3_{\Gamma_{1}} + 2 = 0$, 其根 $_{\Gamma_{1}}^{1} = 1$, $_{\Gamma_{2}}^{1} = 2$, 则①对应的齐次方程的通解为

$$Y = C_1 e^t + C_2 e^{2t}$$

设特解: $y^* = At^2 + Bt + C$

代入①确定系数、得

$$y'' = \frac{1}{2}t^2 + \frac{1}{2}t + \frac{1}{4}$$
① 的通解

$$y = C_1 e^t + C_2 e^{2t} + \frac{1}{2}t^2 + \frac{1}{2}t + \frac{1}{4}$$

换回原变量,得原方程通解为

$$y = C_1 x + C_2 x^2 + \frac{1}{2} \ln^2 x + \frac{1}{2} \ln x + \frac{1}{4}$$

$$\frac{d^2 y}{d f^2} - 3 \frac{d y}{d f} + 2 y = f^2 - 2 f$$
 (1)

例 2. 求方程
$$y'' - \frac{y'}{2} + \frac{y}{2} = \frac{2}{2}$$
 的通解.

今
$$x = e'$$
,记 $D = \frac{d}{dt}$ 则方程化为

$$|D(D-1)-D+1||y=2e^{t}$$

$$(D^2 - 2D + 1)y = 2e' \quad ②$$

特征根: / = / = 1,

设特解: $y = At^2 e^t$ 代入 ② 解得 A = m求通解为 $y = (C_1 + C_2 t) e^t + t^2 e^t$ $= (C_1 + C_2 \ln x) x + x \ln^2 x$

内容小结

1、掌握二阶常系数齐次线性方程的求解

$$y'' + py' + qy = 0$$

特征方程为 $r^2 + pr + q = 0$

	特	征	根	的	情	况	通解的表达式
实	根	<i>t</i> 1	‡	1 2			$y = C_{1} e^{r_{1} x} + C_{2} e^{r_{1} x}$
实	根	<i>r</i> ₁	=	1 2			$y = (C_1 + C_2 x) e^{r_1 x}$
复	根	<i>t</i> ₁ ,	2 =	= α	<u> </u>	: i ß	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$
		,					

2、掌握 n 阶常系数齐次线性方程解法

3、掌握二阶常系数非齐次线性微分方程解法

$$y'' + py' + qy = f(x)$$
 通解 $y = Y + y^*$
(1) $f(x) = e^{\lambda x} P_m(x)$ 型
 $\partial y^* = x^k e^{\lambda x} Q_m(x)$, $k = \begin{cases} 0 & \lambda \text{不是根} \\ 1 & \lambda \text{是单根} \\ 2 & \lambda \text{是重根} \end{cases}$

(2)
$$f(x) = e^{\lambda x} [P_l(x) \cos \omega x + P_n(x) \sin \omega x]$$
 型 设 $y^* = x^k e^{\lambda x} [R_m^{(1)}(x) \cos \omega x + R_m^{(2)}(x) \sin \omega x],$ 其中 $R_m^{(1)}(x), R_m^{(2)}(x)$ 是m次多项式, $m = \max\{l, n\}$

5、掌握欧拉方程的求解

从而化为以t为自变量,以y为未知函数的n阶常系数线性微分方程