- I.) Time Series Analysis Continuous Signals
 - A.) Complex Numbers (A Brief Review)
 - 1.) z = x + iy is a complex number where x and y are real numbers and $i = \sqrt{-1}$.
 - a.) x = Re(z) is the real part of z.
 - b.) y = Im(z) is the imaginary part of z.
 - 2.) Geometrical (polar) representation of complex numbers

z - plane (complex plane)

- a.) $r = \sqrt{x^2 + y^2}$ is the absolute value or modulus of z (i.e., r = mod(z) = |z|).
- b.) $\theta = \tan^{-1}(y/x)$ is the argument or phase modulus of z (i.e., $\theta = \arg(z)$). θ is positive in the counterclockwise direction with respect to the +x (positive real) axis.
- c.) From the geometry, the real and imaginary parts of z can be expressed as $x = r \cos \theta$ and $y = r \sin \theta$. Hence, $z = r (\cos \theta + i \sin \theta)$.
- 3.) Complex conjugate of z
 - a.) $\overline{z} = x iy$ is the complex conjugate of z = x + iy.
 - b.) $z \cdot \overline{z} = (x + iy)(x iy) = x^2 + y^2 = r^2$ (a real-valued quantity)

c.) Rationalizing the complex fraction (u/v) where u = a + ib and v = c + id:

$$\frac{u}{v} = \frac{a+ib}{c+id} = \frac{u\overline{v}}{v\overline{v}} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$$

This is the standard procedure for complex fractions.

Example:
$$\frac{2+i3}{1-i} = \frac{(2+i3)(1+i)}{(1-i)(1+i)} = \frac{(2\cdot 1+3\cdot (-1))+i(3\cdot 1+2\cdot (-1))}{1^2+(-1)^2} = \frac{-1+i5}{2}$$

- 4.) Complex exponential function
 - a.) $e^{i\theta} = \cos \theta + i \sin \theta$ where θ is a real number.
 - i.) $\left| e^{i\theta} \right| = 1$
 - ii.) $e^{in\pi} = (-1)^n$ for $n = 0, \pm 1, \pm 2, \pm 3, \cdots$
 - iii.) $e^{i\pi/2} = i$
 - iv.) $z = r e^{i\theta}$
 - v.) Combined with $e^{-i\theta} = \cos\theta i\sin\theta$, it can be shown that $\cos\theta = \left(e^{i\theta} + e^{-i\theta}\right)/2$ and $\sin\theta = \left(e^{i\theta} e^{-i\theta}\right)/2i$.
 - b.) For e^z where z is a complex number:

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$$

Example:
$$e^{\pi(1+i)} = e^{\pi}e^{i\pi} = e^{\pi}(\cos \pi + i\sin \pi) = -e^{\pi}$$

- B.) Spectral Analysis Fourier Series
 - 1.) Definition
 - a.) A Fourier series can be obtained for any periodic function g(t) that satisfies given conditions.
 - i.) g(t) is a periodic functions with period T if g(t) = g(t + nT) where $n = 0, \pm 1, \pm 2, \pm 3, \cdots$.

- ii.) g(t) has a finite number of extrema points and discontinuities over a single period.
- iii.) $\int_{-T/2}^{T/2} |g(t)| dt < \infty.$
- b.) The Fourier series of g(t) is a summation of harmonic function given by

$$g(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2\pi nt}{T}\right) + b_n \sin\left(\frac{2\pi nt}{T}\right) \right]$$

i.) $a_0/2$ is the DC bias term (corresponding to frequency f = 0).

- ii.) $\left[a_n \cos\left(\frac{2\pi\,n\,t}{T}\right) + b_n \sin\left(\frac{2\pi\,n\,t}{T}\right)\right]$ is the harmonic component corresponding to the frequency $f_n = n/T$ ($n = 1, 2, 3, \cdots$). The magnitude of this term is a measure of its relative information content about g(t).
- c.) Using a mathematical property called orthogonality, the coefficients of the Fourier series can be shown to be the following:

$$a_n = \frac{2}{T} \int_{d}^{d+T} g(t) \cos\left(\frac{2\pi nt}{T}\right) dt, \text{ with } a_0 = \frac{2}{T} \int_{d}^{d+T} g(t) dt$$
$$b_n = \frac{2}{T} \int_{d}^{d+T} g(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

d.) The Fourier series expansion converges to g(t) where g(t) is continuous and to the average of the right and left hand limits at the discontinuities.

Example: $g(t) = e^{-t}$, 0 < t < 3

$$a_0 = \frac{2}{T} \int_{d}^{d+T} g(t) dt = \frac{2}{3} \int_{0}^{3} e^{-t} dt \qquad \text{(using } \int e^{at} dt = e^{at} / a \text{ with } a = -1\text{)}$$

$$= \frac{2 e^{-t}}{-3} \Big|_{0}^{3} = 2 \left(1 - e^{-3}\right) / 3$$

$$a_n = \frac{2}{T} \int_{d}^{d+T} g(t) \cos\left(\frac{2\pi nt}{T}\right) dt = \frac{2}{3} \int_{0}^{3} e^{-t} \cos\left(\frac{2\pi nt}{3}\right) dt$$

(using $\int e^{at} \cos bt \ dt = \frac{e^{at} \left(a \cos bt + b \sin bt\right)}{a^2 + b^2}$ with a = -1 and $b = 2\pi n/3$)

$$= \frac{2}{3} \frac{e^{-t} \left[-\cos(2\pi nt/3) + (2\pi n/3)\sin(2\pi nt/3) \right]}{\left(-1 \right)^2 + \left(2\pi n/3 \right)^2} \bigg|_{0}^{3}$$

(sine term is zero and reverse limits)

$$= \frac{2}{3} \frac{9}{9 + 4\pi^2 n^2} \Big[1 - e^{-3} \cos(2\pi n) \Big]$$
 (using $\cos(2\pi n) = 1$)

$$=\frac{6\left(1-e^{-3}\right)}{9+4\pi^{2}n^{2}}$$

$$b_n = \frac{2}{T} \int_{d}^{d+T} g(t) \sin\left(\frac{2\pi nt}{T}\right) dt = \frac{2}{3} \int_{0}^{3} e^{-t} \sin\left(\frac{2\pi nt}{3}\right) dt$$

(using
$$\int e^{at} \sin bt \, dt = \frac{e^{at} \left(a \sin bt - b \cos bt \right)}{a^2 + b^2}$$
 with $a = -1$ and $b = 2\pi n/3$)
$$= \frac{2}{3} \frac{e^{-t} \left[-\sin(2\pi nt/3) - (2\pi n/3)\cos(2\pi nt/3) \right]}{(-1)^2 + (2\pi n/3)^2} \bigg|_{a}^{3}$$

(sine term is zero and reverse limits)

$$= \frac{2}{3} \frac{9}{9 + 4\pi^2 n^2} (2\pi n/3) \Big[1 - e^{-3} \cos(2\pi n) \Big] \qquad \text{(using } \cos(2\pi n) = 1)$$

$$= \frac{4\pi n (1 - e^{-3})}{9 + 4\pi^2 n^2}$$

$$\therefore g(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2\pi nt}{T}\right) + b_n \sin\left(\frac{2\pi nt}{T}\right) \right]$$

$$= \frac{\left(1 - e^{-3}\right)}{3} + \sum_{n=1}^{\infty} \left[\frac{6\left(1 - e^{-3}\right)}{9 + 4\pi^2 n^2} \cos\left(\frac{2\pi nt}{3}\right) + \frac{4\pi n\left(1 - e^{-3}\right)}{9 + 4\pi^2 n^2} \sin\left(\frac{2\pi nt}{3}\right) \right]$$

Plots of the harmonic components:

Fourier Series Terms

Fourier Series Terms

Plots of the partial summations:

Fourier Series Summations

(Note the formation of the Gibbs phenomenon at the discontinuities)

- 2.) Exponential Form of the Fourier Series
 - a.) Using $\cos(2\pi nt/T) = \left(e^{2\pi int/T} + e^{-2\pi int/T}\right)/2$ and $\sin(2\pi nt/T) = \left(e^{2\pi int/T} e^{-2\pi int/T}\right)/2i$, the Fourier Series defined above can be rewritten as

$$g(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\left(\frac{a_n - ib_n}{2} \right) e^{(2\pi i n t/T)} + \left(\frac{a_n + ib_n}{2} \right) e^{(-2\pi i n t/T)} \right]$$
$$= \sum_{n=-\infty}^{\infty} c_n e^{(2\pi i n t/T)}$$

where
$$c_0 = \frac{a_0}{2}$$
, $c_n = \frac{a_n - ib_n}{2}$ for $n \ge +1$ and $c_n = \frac{a_n + ib_n}{2}$ for $n \le -1$.

This is the exponential form of the Fourier series.

b.) It can be shown that the coefficients c_n can be defined as

$$c_n = \frac{1}{T} \int_{d}^{d+T} g(t) e^{-2\pi i n t/T} dt$$

- c.) For a real-valued time signal g(t), c_0 is real-valued and c_n ($n=\pm 1, \pm 2, \pm 3, \cdots$) are complex valued.
 - 1.) $Re(c_n)$ is an even sequence: $Re(c_n) = Re(c_n)$
 - 2.) $Im(c_n)$ is an odd sequence: $-Im(c_n) = Im(c_{-n})$

Example:
$$g(t) = e^{-t}$$
, $0 < t < 3$

$$c_n = \frac{1}{T} \int_{d}^{d+T} g(t) e^{-2\pi i n t/T} dt = \frac{1}{3} \int_{0}^{3} e^{-t} e^{-2\pi i n t/3} dt = \frac{1}{3} \int_{0}^{3} e^{-\left[1 + \left(2\pi i n/3\right)\right]t} dt$$

Using
$$\int e^{at} dt = e^{at}/a$$
 with $a = -[1+(2\pi i n/3)]$,

$$c_n = \frac{1}{3} \frac{e^{-\left[1 + (2\pi i \, n/3)\right]t}}{-\left[1 + (2\pi i \, n/3)\right]} \bigg|_0^3 = \frac{1}{3} \frac{1 - e^{-(3 + 2\pi i \, n)}}{\left[1 + (2\pi i \, n/3)\right]} = \frac{1}{3} \frac{1 - e^{-3} e^{-2\pi i \, n}}{\left[1 + (2\pi i \, n/3)\right]}$$

Using $e^{-2\pi i n} = 1$,

$$c_n = \frac{1}{3} \frac{1 - e^{-3}}{\left[1 + \left(2\pi i \, n/3\right)\right]} = \frac{\left(3 - 2\pi i \, n\right)\left(1 - e^{-3}\right)}{9 + 4\pi^2 n^2}$$

$$\therefore g(t) = \sum_{n=-\infty}^{\infty} c_n e^{(2\pi i n t/T)} = \sum_{n=-\infty}^{\infty} \frac{(3 - 2\pi i n)(1 - e^{-3})}{9 + 4\pi^2 n^2} e^{(2\pi i n t/3)}$$

- 3.) Amplitude and Phase Spectra
 - a.) The coefficients c_n represent the frequency spectrum of the periodic time signal g(t).
 - 1.) The amplitude spectrum A_n of g(t) is defined as

$$A_n = |c_n| = \sqrt{\lceil \text{Re}(c_n) \rceil^2 + \lceil \text{Im}(c_n) \rceil^2}$$

2.) The phase spectrum θ_n of g(t) is defined as

$$\theta_n = \arg(c_n) = \tan^{-1}[\operatorname{Im}(c_n)/\operatorname{Re}(c_n)]$$

- b.) It can be shown that for a real-valued time signal g(t):
 - 1.) The amplitude spectrum A_n is an even, non-negative function.
 - 2.) The phase spectrum θ_n is an odd function. (Note: $\theta_0 = 0$)
- c.) This is a discrete spectrum with harmonic components having frequencies $f_n = n/T$ ($n = 0, \pm 1, \pm 2, \pm 3, \cdots$).

9

d.) In general, $A_n \to 0$ as $n \to \pm \infty$.

Example: $g(t) = e^{-t}$, 0 < t < 3

$$c_n = \frac{(3 - 2\pi i n)(1 - e^{-3})}{9 + 4\pi^2 n^2} \Rightarrow \text{Re}(c_n) = \frac{3(1 - e^{-3})}{9 + 4\pi^2 n^2} \text{ and } \text{Im}(c_n) = \frac{-2\pi n(1 - e^{-3})}{9 + 4\pi^2 n^2}$$

$$A_{n} = \sqrt{\left[\frac{3(1 - e^{-3})}{9 + 4\pi^{2}n^{2}}\right]^{2} + \left[\frac{-2\pi n(1 - e^{-3})}{9 + 4\pi^{2}n^{2}}\right]^{2}} = \frac{(1 - e^{-3})}{9 + 4\pi^{2}n^{2}}\sqrt{9 + 4\pi^{2}n^{2}}$$

$$= \frac{(1 - e^{-3})}{\sqrt{9 + 4\pi^{2}n^{2}}}$$

$$\theta_n = \tan^{-1} \left[\frac{-2\pi n (1 - e^{-3}) / (9 + 4\pi^2 n^2)}{3(1 - e^{-3}) / (9 + 4\pi^2 n^2)} \right] = \tan^{-1} (-2\pi n / 3)$$

