CS-208:Artificial Intelligence Topic -14 Mathematical Logic

Revisiting Basics of Predicate Logic

Predicates are function that map object arguments into True or False.

Terms are only things that appear as arguments to predicate.

- Domain's Objects are Terms
- Variables ranging over a domain's object are Terms
- Functions are Terms. (The arguments to functions and the value returned are objects)

Atomic Formula (individual predicates together with arguments)

Examples: On(x, tables); loyalto(x, Ruler(Rome))

Literals are atomic formula and negated atomic formula

Universal Quantifier: (for all) ∀

Existential Quantifier: (there exist) \exists

Well Formed Formulas abbreviated by WFFs are defined recursively as follows:

- Literals are WFF.
- WFF connected together by connectives $(\vee, \wedge, \neg \text{ and} \rightarrow)$ are WFF.
- WFF surrounded by quantifiers (\forall and \exists) are also WFF.

A \wedge B is called Conjunction

tonjuncts

 $\mathsf{A} \vee \mathsf{B}$ is called Disjunction

Disjuncts

Modus Ponens: If there is an axiom of the form $A \rightarrow B$ and another axiom of the form A then B logically follows.

Modus Tolens: If there is an axiom of the form $A \rightarrow B$ and another axiom of the form $\neg A$ then $\neg B$ logically follows.

Resolution: *If there is. an axiom of the form* $A \lor B$ *and another axiom of the form* $\neg B \lor C$ *then* $A \lor C$ *logically follows.*

The expression $A \lor C$ is called the **resolvent** of $A \lor B$ and $\neg B \lor C$