EDEXCEL MECHANICS M2 (6678) – JUNE 2002

PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks	
1.	(a)	Differentiating: $\mathbf{a} = 3 \mathbf{i} - 5 \mathbf{j}$ (sufficient)	M1A1	(2)
	(b)	Integrating: $\mathbf{r} = (\frac{3}{2}t^2 - 2t)\mathbf{i} - \frac{5}{2}t^2\mathbf{j} \ (+C)$	M1A1	
		Using initial conditions to find C (3i); $\mathbf{r}(t=2) = 5\mathbf{i} - 10\mathbf{j}$	M1; A1	
		Distance = $\sqrt{\{5^2 + (10)^2\}}$; = $5\sqrt{5}$ or 11.2 or 11.18 (m)	M1; A1	6)
			(6 ma	rks)
2.	(a)	$0 \le t \le 3$ $v = 2 t^2 - \frac{1}{3} t^3 (+C)$ Evidence of integration for M1	M1 A1	
		$t = 3 \implies v = 9 \text{ m s}^{-1}$	A1	(3)
	(b)	$t \ge 3 \qquad \qquad v = -\frac{27}{t} \ \ (+C)$	B1	
		Using $t = 3$ and candidates' $v = 9$ to find C ; $C = 18$	M1; A1 ft	
		Substituting $t = 6$ in expression for v ; $v = 13.5$ m s ⁻¹	M1; A1	(5)
			(8 ma	rks)
3.	(a)	Change in KE: $\frac{1}{2} \times 80 \times (8^2 - 5^2)$ [loss: 2560 – 1000 = 1560 J]	B1	
		Change in PE: $80 \times g \times (20 - 12)$ [loss: $15680 - 9408 = 6272 \text{ J}$]	B1	
		WD by cyclist = 20×500 – (loss in K.E. + P.E.)	M1 A1 ft	
		= 2168 Nm (allow 2170 and 2200)	A1	(5)
	(<i>b</i>)	Equation of motion: $F - 20 = 80 \times 0.5$ [M1 requires three terms]	M1 A1	
		Power = $F_c \times 5$; = 300 W	M1 A1	
			(9 marks)	

(ft = follow through mark)

Question Number		Scheme	Marks	
4.	(a)	Shape Square Semi-circle Lamina L Relative masses 100 $12\frac{1}{2}\pi(39.3)$ $100 - 12\frac{1}{2}\pi(60.7)$	M1 A1	
		Centre of mass from AB 5 $\frac{20}{3\pi}$ (2.12) $\frac{1}{x}$	B1 B1	
		Moments about AB: $100 \times 5 - 12\frac{1}{2}\pi \times \frac{20}{3\pi} = (100 - 12\frac{1}{2}\pi)^{-\frac{1}{2}}$	M1 A1	
		Answer: 6.86 cm	A1 (cao) (7)	
	(b)	D_{θ} Correct angle, diagram sufficient	M1	
		Method to find θ [or $(90 - \theta)$] $10 - \overline{x}$ C $10 - \overline{x}$	M1	
		$\int_{G} 10 - \overline{x} \qquad C \qquad \tan \theta = \frac{10 - \overline{x}_{c}}{5}$	A1 ft	
		Answer: 32.1°	A1 (cao) (4)	
			(11 marks)	
5.	(a)	$x = u \cos \alpha t$; $y = u \sin \alpha t - \frac{1}{2}gt^2$	B1; B1	
		Eliminating t : $y = u \sin \alpha \frac{x}{u \cos \alpha} - \frac{1}{2} g \frac{x^2}{(u \cos \alpha)^2}$	M1	
		$y = x \tan \alpha - \frac{gx^2}{2u^2 \cos^2 \theta}$	M1	
		$y = x \tan \alpha - \frac{gx^2}{2u^2} (1 + \tan^2 \alpha) *$	A1 (5)	
	(b)	$-2 = x \tan 45^{\circ} - \frac{9.8 \times x^{2}}{2 \times 14^{2}} (1 + \tan^{2} 45^{\circ})$	M1 A1	
		Simplifying "correctly" to quadratic of form $ax^2 + bx + c = 0$ (may be implied, e.g. $x^2 - 20x - 40 = 0$; $-0.05x^2 + x + 2 = 0$; $4.9x^2 - 98x - 196 = 0$)	M1	
		Solving for t (2.205 s), $x = 14 \cos 45^{\circ} t$, $x = 21.8 \text{ m}$	M1 A1 (5)	
	(c)	$21.8_{c} = 14\cos 45^{\circ} t \; ; \; t = 2.2 \text{ s}$	M1 A1 (cao) (2)	
			(12 marks)	

(ft = follow through mark; cao = correct answer only; cso = correct solution only; * indicates answer is given on the examination paper)

PROVISIONAL MARK SCHEME

Question Number		Scheme	Mark	S
6.	(a)	$ \begin{array}{cccc} \leftarrow v_1 & \rightarrow v_2 & \text{CoM:} & mu = -mv_1 + 3 mv_2 \\ \rightarrow u & 0 & \\ A \bigcirc & B \bigcirc & \\ m & 3m & \text{NEL:} & e u = v_2 + v_1 \end{array} $	M1 A1	
		Solving: $v_1 = \frac{1}{4}(3e - 1)u$ $v_2 = \frac{1}{4}(1 + e)u$	M1 A1 A1	(7)
		Speed of B after hitting wall = $\pm \frac{3}{16}(1+e)u$ (v_2^*)	B1 ft	
		For second collision $v_2^* > v_1$; $\frac{3}{16} (1+e)u > \frac{1}{4} (3e-1)u$	M1	
		Solving, $e < \frac{7}{9}$	M1 A1	
		Finding lower bound using $v_1 > 0$; $e > \frac{1}{3}$	M1	
		Complete range: $\frac{1}{3} < e < \frac{7}{9}$	A1 (cso)	(6)
			(13 ma	arks)
7.	(a)	F = 0.6R (seen anywhere)	M1	
		Moments about B: $R \times 2a \cos \alpha + F \times 2a \sin \alpha = W \times a \cos \alpha$	M1 A1	
		Using $\cos \alpha = \frac{12}{13}$ and $\sin \alpha = \frac{5}{13}$ Solving for R	M1	
		$\frac{24}{13}R + \frac{6}{13}R = \frac{12}{13} W \Rightarrow 30R = 12$	M1	
		$\Rightarrow R = \frac{2}{5} W^*$	A1	(6)
	(b)	Resolve \leftrightarrow : $T \cos \beta = F$; $= 0.6 R = \frac{6}{25} W$	M1 A1	
		Resolve \updownarrow : $T \sin \beta + R = W$ $T \sin \beta = \frac{3}{5} W$	M1 A1	
		Complete method for β [e.g tan $\beta = 2.5$]; $\beta = 68.2^{\circ}$	M1; A1	(6)
		Complete method for T: substitute for β or $\sqrt{\{(0.6 \text{ W})^2 + (0.24 \text{ W})^2\}}$	M1	(2)
		$T = 0.646W \implies k = 0.65 \text{ or } 0.646$	A1 (14 ma	(2) arks)
			(17 111	41 M3)