Компьютерная математика

Лабораторная работа №3

	Определить нижнюю и верхнюю границу кольца, внутри которого расположены все корни инома (Python)
	Определить верхнюю границу положительных действительных корней полинома по методу ранжа (Python)
	Определение верхней границы положительных действительных корней полинома по методу отона (MatLab + Python)
4.	Реализовать деление полинома на полином произвольной степени (MatLab + Python)3
5.	Определить количество действительных корней по методу Штурма (MatLab)4
	Отделить корни полинома с помощью метода Штурма и вычислить их по одному из методов, пизованных в предыдущих лабораторных (MatLab)

Возможно, при реализации некоторых методов использование классических матриц окажется затруднительным, или неудобным. В MatLab для хранения разнородных данных есть ещё один тип массивов — ячеистый массив (cell array). Создание такого массива происходит "на лету" при использовании специального вида скобок.

```
c = {\text{"a string", rand(2, 2), [1 2 3], [3; 2; 1], {56, -54}}}
```

 $d\{:,2\} = []$

Индексация данных с круглыми скобками подразумевает получение подмассива типа cell array. С фигурными – получение значений ячеек.

```
c{1}
c(2)
c{3:4}
c(end)
c{6} = 0.465
d = reshape(c,2,3)
d{2,2}
d(2,2)
d(:,4) = d(:,1)
d\{:,2\} = d\{:,3\}
                     %результаты разных типов, присваивание невозможно
d{1,4} = []
d(1,4) = []
                     %несоответствие типов
d(:,4) = []
d\{:,2\} = \{[]\}
```

%несоответствие типов

1. Определить нижнюю и верхнюю границу кольца, внутри которого расположены все корни полинома (Python)

(Демидович и Марон 1966) Глава 5, §1, стр. 159-160.

Предварительно необходимо сократить полином на нулевые корни при их наличии.

Входные данные (полином):	Выходные данные (нижняя граница, верхняя граница):	
[1, -4, -42,104,361, -420]	0.538	421.000
[-1, -2, -2, -5, 0, -3, -4, 2, -5, 0]	0.5	6.0
[1,1.4, -13.85,1.842,6.264]	0.31142	14.85000

2. Определить верхнюю границу положительных действительных корней полинома по методу Лагранжа (Python)

(Демидович и Марон 1966) Глава 5, §2, стр. 164-165.

Входные данные (полином):	Выходные данные (верхняя граница):
[1,4,1,-14,-20,-8]	3.7144
[-1, -2, -2, -5, 0, -3, -4, 2, -5, 0]	2.1041
[1,1.4, -13.85,1.842,6.264]	4.7216

3. Определение верхней границы положительных действительных корней полинома по методу Ньютона (MatLab + Python)

(Демидович и Марон 1966) Глава 5, §4, стр. 167-169.

Поиск верхней границы требуется осуществлять итерационно с шагом 1. Первый коэффициент полинома должен быть больше нуля.

Входные данные (полином):	Выходные данные (верхняя граница):
[1,4,1,-14,-20,-8]	2
[-1, -2, -2, -5, 0, -3, -4, 2, -5, 0]	1
[1,1.4, -13.85,1.842,6.264]	3

4. Реализовать деление полинома на полином произвольной степени (MatLab + Python)

(Синтетическое деление полиномов 2019) https://planetcalc.ru/8091/

Входные данные (делимое, делитель):	Выходные данные (частное, остаток):	
[-1, -2, -2, -5, 0, -3, -4, 2, -5, 0]	[-1,2,-9,15,-43]	[60,85, -372, -745, -344]
[1,4,1,-14,-20,-8]		
[1,4,1,-14,-20,-8]	[1,1,-2,-8,4]	[-20]
[1,3]		
[1,0,0,-1]	[1, -1]	[0,0]
[1,1,1]		

5. Определить количество действительных корней по методу Штурма (MatLab)

(Демидович и Марон 1966) Глава 5, §5, стр. 169-171.

Входные данные (полином):	Выходные данные (количество корней):
[1, -4, -42,104,361, -420]	5
[-1, -2, -2, -5, 0, -3, -4, 2, -5, 0]	3
[1,1.4, -13.85,1.842,6.264]	4
[1,0,1]	0

6. Отделить корни полинома с помощью метода Штурма и вычислить их по одному из методов, реализованных в предыдущих лабораторных (MatLab)

(Демидович и Марон 1966) Глава 5, §5, стр. 169-171.

Сначала устанавливаются верхняя и нижняя границы корней (задание 4 ЛР №1). Далее, начиная с правой границы, на каждом единичном интервале проверяется количество корней. Если корней — нет, проверяется следующий единичный интервал. Если корень один, он находится любым из методов. Если корней несколько — интервал дробится пополам, и проверяется каждый из них. Проверки заканчиваются, когда будет достигнута левая граница.

В ответе выводится вектор-столбец корней, а массив интервалов выводится вторым аргументом, в виде матрицы размерности $n \times 2$ где первый столбец содержит нижнюю границу интервала, а второй — верхнюю.

Входные данные (полином):			
[1, -4, -42, 104, 361, -420]			
[-1, -2, -2, -5, 0, -3, -4, 2, -5, 0]			
[1,1.4, -13.85,1.842,6.264]			
[1, -2.18, -20.156,88.1304, -121.0277,49.4916,7.8382]			
Выходные данные (корни, интервалы):			
[7; 4; 1; -3; -5]	[6,7;3,4;0,1;-4,-3;-6,-5]		
[-0.0000; -1.1605; -2.1573]	[-1,0;-2,-1;-3,-2]		
[2.9; 0.8; -0.6; -4.5]	[2,3;0,1;-1,0;-5,-4]		
[2.8; 1.8; 1.6; 1.5; -0.12; -5.4]	[2,3; 1.75,2; 1.5625,1.625; 1.5,1.5625; -1,0; -6, -5]		

Ссылки

Демидович, Борис Павлович, и Исаак Абрамович Марон. *Основы вычислительной математики*. Москва: Наука, 1966.

Синтетическое деление полиномов. б.д. https://planetcalc.ru/8091/ (дата обращения: 25 03 2020 г.).