Maximum Likelihood Estimation

Prof. C. F. Jeff Wu

ISyE 8813

Section 1

Motivation

What is parameter estimation?

- A modeler proposes a model $M(\theta)$ for explaining some observed phenomenon
- θ are the parameters which dictate properties of such a model
- Parameter estimation is the process by which the modeler determines the best parameter choice θ given a set of training observations

Why parameter estimation?

- θ often encodes important and interpretable properties of the model M
 - e.g., calibration parameters in computer experiment models
- An estimate of θ (call this $\widehat{\theta}$) allows for:
 - Model validation: Checking whether the proposed model fits the observed data
 - Prediction: Forecasting future observations at untested settings

Simple example

- Suppose we **observe** a random sample X_1, X_2, \dots, X_n :
 - $X_i = 1$ if student i own a sports car,
 - $X_i = 0$ if student i does not own a sports car
- We then postulate the following model: $X_i \overset{i.i.d.}{\sim}$ Bernoulli(θ), i.e., X_i 's are i.i.d. Bernoulli random variables with the same (unknown) parameter θ
- We would like to estimate θ based on the observations X_1, X_2, \dots, X_n

Popular estimation techniques

- Maximum-likelihood estimation (MLE)
- Mnimax estimation
- Methods-of-moments (MOM)
- (Non-linear) Least-squares estimation

Popular estimation techniques

- Maximum-likelihood estimation (MLE)
- Mnimax estimation
- Methods-of-moments (MOM)
- (Non-linear) Least-squares estimation

We will focus on these two techniques in this lecture.

Section 2

Maximum likelihood estimation (MLE)

Likelihood function

- In words, MLE chooses the parameter setting which maximizes the likelihood of the observed sample
- But how do we define this likelihood as a function of θ ?

Definition

Let $f(\underline{x}|\theta)$ be the probability of observating the sample $\underline{x} = (x_1, \dots, x_n)$ from $M(\theta)$. The **likelihood function** is defined as:

$$L(\theta|\underline{x}) = f(\underline{x}|\theta)$$

 MLE tries to find the parameter setting which maximizes the probability of observing the data

Log-likelihood Function

- If $X_1, X_2, \dots, X_n \overset{i.i.d.}{\sim} f(\underline{x}|\theta)$, the likelihood function simplifies to $L(\theta|\underline{x}) = \prod_{i=1}^n f(x_i|\theta)$
- In this case, the likelihood can become very small, because we are multiplying many terms
- To fix this computational problem, the log-likelihood $l(\theta|\underline{x}) = log(L(\theta|\underline{x}))$ is often used instead
- For i.i.d observations, this becomes:

$$l(\theta|\underline{x}) = log(L(\theta|\underline{x})) = \sum_{i=1}^{n} log[f(x_i|\theta|\underline{x})]$$

Maximum likehood estimator

We can now formally define the estimator for MLE:

Definition

Given observed data \underline{x} , the **maximum likelihood estimator** (MLE) of θ is defined as:

$$\widehat{\theta} \in \mathsf{Argmax}\big[L(\theta|\underline{x})\big]$$

Equivalently, because the log-function is monotonic, we can instead solve for:

$$\widehat{\theta} \in \mathsf{Argmax}\big[l(\theta | \underline{x}) \big]$$

The latter is more numerically stable for optimization.

MLE: a simple example

- Suppose some count data is observed $X_i \in \mathbb{Z}_+$, and the following Poisson model is assumed $X_i \overset{i.i.d.}{\sim} Pois(\lambda)$
- The likelihood function can be shown to be

$$L(\lambda|\underline{x}) = \prod_{i=1}^{n} \left(\frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \right)$$

with log-likelihood function:

$$l(\lambda|\underline{x}) = log\left[\left(\prod_{i=1}^n \frac{\lambda^{x_i}}{x_i!} e^{-\lambda}\right)\right] = log(\lambda)\left(\sum_{i=1}^n x_i\right) - \sum_{i=1}^n log(x_i!) - n\lambda$$

MLE: a simple example

Since $l(\lambda|\underline{x})$ is differentiable, we can solve for its minimizer by:

• Differentiating the log-likelihood:

$$\frac{d[l(\lambda|\underline{x})]}{d\lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - n$$

• Setting it to 0, and solving for λ :

$$\widehat{\lambda} = \frac{\sum_{i=1}^{n} x_i}{n} = \overline{X}$$

• Checking the Hessian matrix is positive-definite:

$$\nabla_{\lambda}^2 l(\lambda | \underline{x}) \geq 0$$

What if a closed-form solution does not exist ©?

In most practical models, there are two computational difficulties:

- No closed-form solution exists for the MLE,
- Multiple locally optimal solutions or stationary points.

Standard **non-linear optimization** methods (Nocedal and Wright, 2006) are often used as a black-box technique for obtaining locally optimal solutions.

What if a closed-form solution does not exist ©?

We can do better if the model exhibits specific structure:

- If optimization program is convex, one can use some form of accelerated gradient descent (Nesterov, 1983)
- If non-convex but twice-differentiable, the limited-memory Broyden-Fletcher-Goldfard-Shanno (L-BFGS) method works quite well for local optimization
- If missing data is present, the EM algorithm (Dempster et al, 1977; Wu, 1983) can be employed

Section 3

Non-linear least-squares estimation

(Adapted from en.wikipedia.org/wiki/Non-linear_least_squares)

Problem statement

Consider a set of m data points, $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$, and a curve (model function) $y = f(x; \beta)$:

- Curve model depends on $\beta = (\beta_1, \beta_2, ..., \beta_n)$, with $m \ge n$
- Want to choose the parameters β so that the curve **best fits** the given data in the **least squares** sense, i.e., such that

$$S(\beta) = \sum_{i=1}^{m} r_i(\beta)^2$$

is minimized, where the residuals $r_i(\beta)$ are defined as $r_i(\beta) = y_i - f(x_i; \beta)$

Problem statement

The minimum value of S occurs when the gradient equals zero:

 Since the model contains n parameters, there are n gradient equations to solve:

$$\frac{\partial S}{\partial \beta_{j}} = 2 \sum_{i} r_{i} \frac{\partial r_{i}}{\partial \beta_{j}} = 0, \quad j = 1, \dots, n.$$

 In a nonlinear system, this system of equations typically do not have a closed-form solution ©

One way to solve for this system is:

- Set initial values for parameters
- Update parameters using the successive iterations:

$$\beta_{j}^{(k+1)} = \beta_{j}^{(k)} + \Delta \beta_{j}.$$

Here, k is the increment count, and $\Delta\beta$ is known as the **shift**

Deriving the normal equations

From first-order Taylor series expansion about β^k , we get:

$$f(x_i; \boldsymbol{\beta}) \approx f(x_i; \boldsymbol{\beta}^{(k)}) + \sum_i \frac{\partial f(x_i; \boldsymbol{\beta}^{(k)})}{\partial \beta_i} \left(\beta_j - \beta_j^{(k)}\right) \approx f(x_i; \boldsymbol{\beta}^{(k)}) + \sum_i J_{ij} \Delta \beta_j,$$

where J is the Jacobian matrix.

Deriving the normal equations

In terms of the linearized model:

$$J_{ij} = -\frac{\partial r_i}{\partial \beta_j},$$

with residuals given by:

$$r_i = (y_i - f(x_i; \beta^{(k)})) + (f(x_i; \beta^{(k)}) - f(x_i; \beta)) = \Delta y_i - \sum_{s=1}^{n} J_{is} \Delta \beta_s$$

where $\Delta y_i = y_i - f(x_i; \beta^{(k)})$. Substituting these into the gradient equations, we get:

$$-2\sum_{i=1}^{m}J_{ij}\left(\Delta y_{i}-\sum_{s=1}^{n}J_{is}\ \Delta \beta_{s}\right)=0$$

Deriving the normal equations

This system of equations is better known as the set of **normal equations**:

$$\sum_{i=1}^m \sum_{s=1}^n J_{ij} J_{is} \ \Delta \beta_s = \sum_{i=1}^m J_{ij} \ \Delta y_i \qquad j=1,\ldots,n.$$

In matrix form, this becomes:

$$(J^T J) \Delta \beta = J^T \Delta y$$

where $\Delta \mathbf{y} = (\Delta y_1, \dots, \Delta y_n)^T$.

Solving the normal equations

Several methods have been proposed to solve the set of normal equations:

- Gauss-Newton method
- Levenberg-Marquardt algorithm
- Gradient methods
 - Davidson-Fletcher-Powell
 - Steepest descent

Solving the normal equations

Several methods have been proposed to solve the set of normal equations:

- Gauss-Newton method
- Levenberg-Marquardt-Fletcher algorithm
- Gradient method
 - Davidson-Fletcher-Powell
 - Steepest descent

We will focus on two in this lecture.

Gauss-Newton method

Starting with an initial guess $\beta^{(0)}$ for the minimum, the **Gauss-Newton method** iteratively updates $\beta^{(k)}$ by solving for the shift vector $\Delta \beta$ in the normal equations:

$$\boldsymbol{\beta}^{(k+1)} = \boldsymbol{\beta}^{(k)} + \left(\boldsymbol{J}^{\mathsf{T}}\boldsymbol{J}\right)^{-1}\boldsymbol{J}^{\mathsf{T}}\boldsymbol{r}(\boldsymbol{\beta}^{(k)}).$$

This approach can encounter several problems:

- $(J^TJ)^{-1}$ is often ill-conditioned,
- When far from fixed-point solution, such an iterative map may not be contractive; the sequence $(\beta^{(k)})_{k=1}^{\infty}$ may diverge without reaching a limiting solution.

Levenberg-Marquardt-Fletcher algorithm

Historical perspective of the **Levenberg-Marquardt-Fletcher** (LMF) algorithm:

- The first form of LMF was first published in 1944 by Kenneth Levenberg, while working at the Frankford Army Arsenal,
- It was then rediscovered and improved upon by Donald Marquardt in 1963, who worked as a statistician at DuPont,
- A further modification was suggested by Roger Fletcher in 1971, which greatly improved the robustness of the algorithm.

Levenberg's contribution

To improve the numerical stability of the algorithm, Levenberg (1944) proposed the modified iterative updates:

$$\boldsymbol{\beta}^{(k+1)} = \boldsymbol{\beta}^{(k)} + \left(\boldsymbol{J}^{\mathsf{T}}\boldsymbol{J} + \boldsymbol{\lambda}\boldsymbol{I}\right)^{-1}\boldsymbol{J}^{\mathsf{T}}\boldsymbol{r}(\boldsymbol{\beta}^{(k)}),$$

where λ is a damping factor and I is the identity matrix.

- $\lambda \to 0^+$ gives the previous **Gauss-Newton** updates, which converges quickly but may diverge,
- λ → ∞ gives the steepest-descent updates, which converge slowly but is more stable.

Marquardt's contribution

How does one choose λ to control this **trade-off** between quick convergence and numerical stability? Marquardt (1963) proposes the improved iterative updates:

$$\boldsymbol{\beta}^{(k+1)} = \boldsymbol{\beta}^{(k)} + \left(\boldsymbol{J}^T\boldsymbol{J} + \boldsymbol{\lambda}^{(k)}\boldsymbol{I}\right)^{-1}\boldsymbol{J}^T\boldsymbol{r}(\boldsymbol{\beta}^{(k)}),$$

where the damping factor $\lambda^{(k)}$ can vary between iterations.

- When convergence is stable, the damping factor is iteratively decreased by $\lambda^{(k+1)} \leftarrow \lambda^{(k)}/\nu$ to exploit the accelerated Gauss-Newton rate,
- When divergence is observed, the damping factor is increased by $\lambda^{(k+1)} \leftarrow \lambda^{(k)} \nu$ to restore stability.

Fletcher's contribution

Fletcher (1971) proposes a further improvement of this algorithm through the following update scheme:

$$\boldsymbol{\beta}^{(k+1)} = \boldsymbol{\beta}^{(k)} + \left(\boldsymbol{J}^{\mathsf{T}}\boldsymbol{J} + \boldsymbol{\lambda} \operatorname{diag}\{\boldsymbol{J}^{\mathsf{T}}\boldsymbol{J}\}\right)^{-1} \boldsymbol{J}^{\mathsf{T}}\boldsymbol{r}(\boldsymbol{\beta}^{(k)}),$$

where $\text{diag}\{J^{\mathsf{T}}J\}$ is a diagonal matrix of the diagonal entries in $J^{\mathsf{T}}J.$

- Intuition: By scaling each gradient component by the curvature, greater movement is encouraged in directions where the gradient is smaller,
- Can be viewed as a pre-conditioning step for solving ill-conditioned problems,
- Similar approach is used in Tikhonov regularization for linear least-squares.

Summary

- Parameter estimation is an unavoidable step in model validation and prediction,
- MLE is a popular approach for parameter estimation,
- For the non-linear least-squares problem, the Levenberg-Marquardt-Fletcher algorithm provides a stable and efficient method for estimating coefficients.