HANDBOOK OF MAGMA FUNCTIONS

Volume 1

Language and Data Structures

John Cannon Wieb Bosma

Claus Fieker Allan Steel

Editors

Version 2.22
Sydney

June 9, 2016

HANDBOOK OF MAGMA FUNCTIONS

Editors:

John Cannon

Wieb Bosma

Claus Fieker

Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf, Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher, Volker Gebhardt, Sergei Haller, Michael Harrison, Florian Hess, Derek Holt, David Howden, Al Kasprzyk, Markus Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans, Paulette Lieby, Graham Matthews, Scott Murray, Eamonn O'Brien, Dan Roozemond, Ben Smith, Bernd Souvignier, William Stein, Allan Steel, Damien Stehlé, Nicole Sutherland, Don Taylor, Bill Unger, Alexa van der Waall, Paul van Wamelen, Helena Verrill, John Voight, Mark Watkins, Greg White

Production Editors:

Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production:

Claus Fieker Allan Steel

PREFACE

The computer algebra system Magma is designed to provide a software environment for computing with the structures which arise in areas such as algebra, number theory, algebraic geometry and (algebraic) combinatorics. Magma enables users to define and to compute with structures such as groups, rings, fields, modules, algebras, schemes, curves, graphs, designs, codes and many others. The main features of Magma include:

- Algebraic Design Philosophy: The design principles underpinning both the user language and system architecture are based on ideas from universal algebra and category theory. The language attempts to approximate as closely as possible the usual mathematical modes of thought and notation. In particular, the principal constructs in the user language are set, (algebraic) structure and morphism.
- Explicit Typing: The user is required to explicitly define most of the algebraic structures in which calculations are to take place. Each object arising in the computation is then defined in terms of these structures.
- Integration: The facilities for each area are designed in a similar manner using generic constructors wherever possible. The uniform design makes it a simple matter to program calculations that span different classes of mathematical structures or which involve the interaction of structures.
- Relationships: Magma provides a mechanism that manages "relationships" between complex bodies of information. For example, when substructures and quotient structures are created by the system, the natural homomorphisms that arise are always stored. These are then used to support automatic coercion between parent and child structures.
- Mathematical Databases: Magma has access to a large number of databases containing information that may be used in searches for interesting examples or which form an integral part of certain algorithms. Examples of current databases include factorizations of integers of the form $p^n \pm 1$, p a prime; modular equations; strongly regular graphs; maximal subgroups of simple groups; integral lattices; K3 surfaces; best known linear codes and many others.
- Performance: The intention is that Magma provide the best possible performance both in terms of the algorithms used and their implementation. The design philosophy permits the kernel implementor to choose optimal data structures at the machine level. Most of the major algorithms currently installed in the Magma kernel are state-of-theart and give performance similar to, or better than, specialized programs.

The theoretical basis for the design of Magma is founded on the concepts and methodology of modern algebra. The central notion is that of an algebraic structure. Every object created during the course of a computation is associated with a unique parent algebraic structure. The type of an object is then simply its parent structure.

vi PREFACE

Algebraic structures are first classified by variety: a variety being a class of structures having the same set of defining operators and satisfying a common set of axioms. Thus, the collection of all rings forms a variety. Within a variety, structures are partitioned into categories. Informally, a family of algebraic structures forms a category if its members all share a common representation. All varieties possess an abstract category of structures (the finitely presented structures). However, categories based on a concrete representation are as least as important as the abstract category in most varieties. For example, within the variety of algebras, the family of finitely presented algebras constitutes an abstract category, while the family of matrix algebras constitutes a concrete category.

Magma comprises a novel user programming language based on the principles outlined above together with program code and databases designed to support computational research in those areas of mathematics which are algebraic in nature. The major areas represented in Magma V2.22 include group theory, ring theory, commutative algebra, arithmetic fields and their completions, module theory and lattice theory, finite dimensional algebras, Lie theory, representation theory, homological algebra, general schemes and curve schemes, modular forms and modular curves, *L*-functions, finite incidence structures, linear codes and much else.

This set of volumes (known as the Handbook) constitutes the main reference work on Magma. It aims to provide a comprehensive description of the Magma language and the mathematical facilities of the system, In particular, it documents every function and operator available to the user. Our aim (not yet achieved) is to list not only the functionality of the Magma system but also to show how the tools may be used to solve problems in the various areas that fall within the scope of the system. This is attempted through the inclusion of tutorials and sophisticated examples. Finally, starting with the edition corresponding to release V2.8, this work aims to provide some information about the algorithms and techniques employed in performing sophisticated or time-consuming operations. It will take some time before this goal is fully realised.

We give a brief overview of the organization of the Handbook.

- Volume 1 contains a terse summary of the language together with a description of the central datatypes: sets, sequences, tuples, mappings, etc. An index of all intrinsics appears at the end of the volume.
- Volume 2 deals with basic rings and linear algebra. The rings include the integers, the rationals, finite fields, univariate and multivariate polynomial rings as well as real and complex fields. The linear algebra section covers matrices and vector spaces.
- Volume 3 covers global arithmetic fields. The major topics are number fields, their orders and function fields. More specialised topics include quadratic fields, cyclotomic fields and algebraically closed fields.
- Volume 4 is concerned with local arithmetic fields. This covers *p*-adic rings and their extension and power series rings including Laurent and Puiseux series rings,

PREFACE vii

- Volume 5 describes the facilities for finite groups and, in particular, discusses permutation groups, matrix groups and finite soluble groups defined by a power-conjugate presentation. A chapter is devoted to databases of groups.
- Volume 6 describes the machinery provided for finitely presented groups. Included are abelian groups, general finitely presented groups, polycyclic groups, braid groups and automatic groups. This volume gives a description of the machinery provided for computing with finitely presented semigroups and monoids.
- Volume 7 is devoted to aspects of Lie theory and module theory. The Lie theory includes root systems, root data, Coxeter groups, reflection groups and Lie groups.
- Volume 8 covers algebras and representation theory. Associative algebras include structure-constant algebras, matrix algebras, basic algebras and quaternion algebras. Following an account of Lie algebras there is a chapter on quantum groups and another on universal enveloping algebras. The representation theory includes group algebras, K[G]-modules, character theory, representations of the symmetric group and representations of Lie groups.
- Volume 9 covers commutative algebra and algebraic geometry. The commutative algebra material includes constructive ideal theory, affine algebras and their modules, invariant rings and differential rings. In algebraic geometry the main topics are schemes, sheaves and toric varieties. Also included are chapters describing specialised machinery for curves and surfaces.
- Volume 10 describes the machinery pertaining to arithmetic geometry. The main topics include the arithmetic properties of low genus curves such as conics, elliptic curves and hyperelliptic curves. The volume concludes with a chapter on L-series.
- Volume 11 is concerned with modular forms.
- Volume 12 covers various aspects of geometry and combinatorial theory. The geometry section includes finite planes, finite incidence geometry and convex polytopes. The combinatorial theory topics comprise enumeration, designs, Hadamard matrices, graphs and networks.
- Volume 13 is primarily concerned with coding theory. Linear codes over both fields and finite rings are considered at length. Further chapters discuss machinery for AGcodes, LDPC codes, additive codes and quantum error-correcting codes. The volume concludes with short chapters on pseudo-random sequences and on linear programming.

Although the Handbook has been compiled with care, it is possible that the semantics of some facilities have not been described adequately. We regret any inconvenience that this may cause, and we would be most grateful for any comments and suggestions for improvement. We would like to thank users for numerous helpful suggestions for improvement and for pointing out misprints in previous versions.

viii PREFACE

The development of Magma has only been possible through the dedication and enthusiasm of a group of very talented mathematicians and computer scientists. Since 1990, the principal members of the Magma group have included: Geoff Bailey, Mark Bofinger, Wieb Bosma, Gavin Brown, John Brownie, Herbert Brückner, Nils Bruin, Steve Collins, Scott Contini, Bruce Cox, Brendan Creutz, Steve Donnelly, Willem de Graaf, Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher, Alexandra Flynn, Volker Gebhardt, Katharina Geißler, Sergei Haller, Michael Harrison, Emanuel Herrmann, Florian Heß, David Howden, Al Kasprzyk, David Kohel, Paulette Lieby, Graham Matthews, Scott Murray, Anne O'Kane, Catherine Playoust, Richard Rannard, Colva Roney-Dougal, Dan Roozemond, Andrew Solomon, Bernd Souvignier, Ben Smith, Allan Steel, Damien Stehlé, Nicole Sutherland, Don Taylor, Bill Unger, John Voight, Alexa van der Waall, Mark Watkins and Greg White.

John Cannon Sydney, May 2016

ACKNOWLEDGEMENTS

The Magma Development Team

Current Members

Geoff Bailey, BSc (Hons) (Sydney), [1995-]: Main interests include elliptic curves (especially those defined over the rationals), virtual machines and computer language design. Has implemented part of the elliptic curve facilities especially the calculation of Mordell-Weil groups. Other main areas of contribution include combinatorics, local fields and the Magma system internals.

John Cannon, Ph.D. (Sydney), [1971-]: Research interests include computational methods in algebra, geometry, number theory and combinatorics; the design of mathematical programming languages and the integration of databases with Computer Algebra systems. Contributions include overall concept and planning, language design, specific design for many categories, numerous algorithms (especially in group theory) and general management.

Steve Donnelly, Ph.D. (Athens, Ga) [2005-]: Research interests are in arithmetic geometry, particularly elliptic curves and modular forms. Contributions include: many routines for elliptic curves over Q and number fields, including descent methods, Cassels-Tate pairings and integral points; Hilbert modular forms and fast algorithms for definite quaternion algebras; also developed a new implementation of the general class group algorithm. Currently continuing to work on class groups, elliptic curves and surfaces.

Andreas-Stephan Elsenhans, Ph.D. (Göttingen) [2012-]: Main research interests are in the areas of arithmetic and algebraic geometry, particularly cubic and K3 surfaces. Main contributions focus on cubic surfaces from the arithmetic and algebraic points of view. Currently working on the computation of invariants.

Michael Harrison, Ph.D. (Cambridge) [2003-]: Research interests are in number theory, arithmetic and algebraic geometry. Implemented the *p*-adic methods for counting points on hyperelliptic curves and their Jacobians over finite fields including Kedlaya's algorithm and the modular parameter method of Mestre. Currently working on machinery for general surfaces and cohomology for projective varieties.

Allan Steel, Ph.D. (Sydney), [1989-]: Has developed many of the fundamental data structures and algorithms in Magma for multiprecision integers, finite fields, matrices and modules, polynomials and Gröbner bases, aggregates, memory management, environmental features, and the package system, and has also worked on the Magma language interpreter. In collaboration, he has developed the code for lattice theory (with Bernd Souvignier), invariant theory (with Gregor Kemper) and module theory (with Jon Carlson and Derek Holt).

Nicole Sutherland, Ph.D. (Sydney), [1999-]: Works in the areas of arithmetic fields and algebraic geometry. Developed the machinery for Newton polygons and lazy power series and contributed to the code for local fields, number fields, modules over Dedekind domains, function fields, schemes and has worked on aspects of algebras.

Don Taylor, D.Phil. (Oxford), [2010-] Research interests are in reflection groups, finite group theory, and geometry. Implemented algorithms for complex reflection groups and complex root data. Contributed to the packages for Chevalley groups and groups of Lie type. Currently developing algorithms for classical groups of isometries, Clifford algebras and spin groups.

Bill Unger, Ph.D. (Sydney), [1998-]: Main area of interest is computational group theory, with particular emphasis on algorithms for permutation and matrix groups. Implemented many of the current permutation and matrix group algorithms for MAGMA, in particular BSGS verification, solvable radical and chief series algorithms. Recently discovered a new method for computing the character table of a finite group.

Mark Watkins, Ph.D. (Athens, Ga), [2003, 2004-2005, 2008-]: Works in the area of number theory, particularly analytic methods for arithmetic objects. Implemented a range of analytic tools for the study of elliptic curves including analytic rank, modular degree, Heegner points and (general) point searching methods. Also deals with conics, lattices, modular forms, and descent machinery over the rationals.

Former Members

Wieb Bosma, [1989-1996]: Responsible for the initial development of number theory in Magma and the coordination of work on commutative rings. Also has continuing involvement with the design of Magma.

Gavin Brown, [1998-2001]: Developed code in basic algebraic geometry, applications of Gröbner bases, number field and function field kernel operations; applications of Hilbert series to lists of varieties.

Herbert Brückner, [1998–1999]: Developed code for constructing the ordinary irreducible representations of a finite soluble group and the maximal finite soluble quotient of a finitely presented group.

Nils Bruin, [2002–2003]: Contributions include Selmer groups of elliptic curves and hyperelliptic Jacobians over arbitrary number fields, local solubility testing for arbitrary projective varieties and curves, Chabauty-type computations on Weil-restrictions of elliptic curves and some algorithms for, and partial design of, the differential rings module.

Bruce Cox, [1990–1998]: A member of the team that worked on the design of the MAGMA language. Responsible for implementing much of the first generation MAGMA machinery for permutation and matrix groups.

Brendan Creutz, [2011-2013]: Primary research interests are in arithmetic geometry. Main contributions focus on descent obstructions to the existence of rational points on curves and torsors under their Jacobians.

Claus Fieker, [2000-2011]: Formerly a member of the KANT project. Research interests are in constructive algebraic number theory and, especially, relative extensions and computational class field theory. Main contributions are the development of explicit algorithmic class field theory in the case of both number and function fields and the computation of Galois groups.

Damien Fisher, [2002-2006]: Implemented a package for *p*-adic rings and their extensions and undertook a number of extensions to the MAGMA language.

Alexandra Flynn, [1995–1998]: Incorporated various Pari modules into MAGMA, and developed much of the machinery for designs and finite planes.

Volker Gebhardt, [1999–2003]: Author of the Magma categories for infinite polycyclic groups and for braid groups. Other contributions include machinery for general finitely presented groups.

Katharina Geißler, [1999–2001]: Developed the code for computing Galois groups of number fields and function fields.

Willem de Graaf, [2004-2005]: Contributed functions for computing with finite-dimensional Lie algebras, finitely-presented Lie algebras, universal enveloping algebras and quantum groups.

Sergei Haller, [2004, 2006-2007]: Developed code for many aspects of Lie Theory. Of particular note was his work on the construction of twisted groups of Lie type and the determination of conjugacy classes of elements in the classical groups (jointly with Scott Murray (MAGMA)).

Emanuel Herrmann, [1999]: Contributed code for finding S-integral points on genus 1 curves (not elliptic curves).

Florian Heß, [1999–2001]: Developed a substantial part of the algebraic function field module in MAGMA including algorithms for the computation of Riemann-Roch spaces and class groups. His most recent contribution (2005) is a package for computing all isomorphisms between a pair of function fields.

David Howden, Ph.D. (Warwick) [2012-2014]: Primary research interests are in computational group theory. Main contributions focus on computing automorphism groups and isomorphism testing for soluble groups.

Alexander Kasprzyk, [2009-2010]: Developed the toric geometry and polyhedra packages (along with Gavin Brown and Jaroslaw Buczynski).

David Kohel, [1999–2002]: Contributions include a model for schemes (with G Brown); algorithms for curves of low genus; implementation of elliptic curves, binary quadratic forms, quaternion algebras, Brandt modules, spinor genera and genera of lattices, modular curves, conics (with P Lieby), modules of supersingular points (with W Stein), Witt rings.

Paulette Lieby, [1999–2003]: Contributed to the development of algorithms for algebraic geometry, abelian groups and incidence structures. Developed datastructures for multigraphs and implemented algorithms for planarity, triconnectivity and network flows.

Graham Matthews, [1989–1993]: Involved in the design of the MAGMA semantics, user interface, and internal organisation.

Scott Murray, [2001-2002, 2004-2010]: Implemented algorithms for element operations in split groups of Lie type, representations of split groups of Lie type, split Cartan subalgebras of modular Lie algebras, and Lang's Theorem in finite reductive groups. More recently implemented solutions to conjugacy problems in the classical groups (with S. Haller and D. Taylor).

Catherine Playoust, [1989–1996]: Wrote extensive documentation and implemented an early help system. Contributed to system-wide consistency of design and functionality. Also pioneered the use of Magma for teaching undergraduates.

Richard Rannard, [1997–1998]: Contributed to the code for elliptic curves over finite fields including a first version of the SEA algorithm.

Colva M. Roney-Dougal, [2001–2003]: Completed the classification of primitive permutation groups up to degree 999 (with Bill Unger). Also undertook a constructive classification of the maximal subgroups of the classical simple groups.

Dan Roozemond, [2010-2012]: Research focused on the computational aspects of Lie theory. Ported algorithms for the Weight Multisets from LiE to MAGMA and developed a

number of algorithms for reductive Lie algebras, particularly over fields of small characteristic.

Michael Slattery, [1987–2006]: Contributed a large part of the machinery for finite soluble groups including subgroup lattice and automorphism group.

Ben Smith, [2000–2003]: Contributed to an implementation of the Number Field Sieve and a package for integer linear programming.

Bernd Souvignier, [1996–1997]: Contributed to the development of algorithms and code for lattices, local fields, finite dimensional algebras and permutation groups.

Damien Stehlé, [2006, 2008-2010]: Implemented the proveably correct floating-point LLL algorithm together with a number of fast non-rigorous variants. Also developed a fast method for enumerating short vectors.

John Voight, [2005-2006]: Implemented algorithms for quaternion algebras over number fields, associative orders (with Nicole Sutherland), and Shimura curves.

Alexa van der Waall, [2003]: Implemented the module for differential Galois theory.

Paul B. van Wamelen, [2002–2003]: Implemented analytic Jacobians of hyperelliptic curves in MAGMA.

Greg White, [2000-2006]: Contributions include fast minimum weight determination, linear codes over Z/mZ, additive codes, LDPC codes, quantum error-correcting codes, and a database of best known linear codes (with Cannon and Grassl).

External Contributors

The Magma system has benefited enormously from contributions made by many members of the mathematical community. We list below those persons and research groups who have given the project substantial assistance either by allowing us to adapt their software for inclusion within Magma or through general advice and criticism. We wish to express our gratitude both to the people listed here and to all those others who participated in some aspect of the Magma development.

Algebraic Geometry

A major package for algebraic surfaces providing formal desingularization, the calculation of adjoints, and rational parameterization was developed by **Tobias Beck** (RICAM, Linz). He also implemented a package for computing with algebraic power series. This work was done while he was a student of **Josef Schicho**.

A package for working with divisors on varieties has been developed by Martin Bright (American University of Beirut), Gavin Brown (Loughborough), Mike Harrison (Magma) and Andrew Wilson (Edinburgh). The functionality includes decomposition into irreducible components, Riemann-Roch spaces, canonical divisors and (surface) intersection numbers.

Machinery for working with Hilbert series of polarised varieties and the associated databases of K3 surfaces and Fano 3-folds has been constructed by **Gavin Brown** (Warwick).

Jaroslaw Buczynski (Texas A&M), along with Gavin Brown (Loughborough) and Alexander Kasprzyk (Imperial College), developed the toric geometry and polyhedra packages.

Functions for computing Shioda invariants for genus 3 hyperelliptic curves, reconstructing models for a curve from such invariants and computing geometric automorphism groups have been contributed by **Reynald Lercier** (DGA, Rennes) and **Christophe Ritzenthaler** (Luminy).

Jana Pilnikova (Univerzita Komenskeho, Bratislava) (while a student of Josef Schicho in Linz) contributed code for the parameterization of degree 8 and 9 Del Pezzo surfaces, jointly written with Willem de Graaf (Trento).

Miles Reid (Warwick) has been heavily involved in the design and development of a database of K3 surfaces within MAGMA.

Josef Schicho (RICAM, Linz) has played a major role in the design and implementation of the algebraic surfaces package. In particular, Josef has also implemented several of the modules for rational surface parameterization.

A function that finds the intersection multiplicities for all intersection points of two plane curves was adapted into MAGMA from code provided by **Chris Smyth** (Edinburgh).

Andrew Wilson (Edinburgh) has contributed a package to compute the log canonical threshold for singular points on a curve.

Arithmetic Geometry Over Characteristic 0 Fields

The method of Chabauty for finding points on elliptic curves was originally implemented by **Nils Bruin** in 2003 while a member of the Magma group. In 2009 Nils improved it considerably by combining it with *Mordell-Weil sieving*.

Two-cover-descent has been implemented by **Nils Bruin** (Simon Fraser) for hyperelliptic curves. Given the Jacobian of a genus 2 curve, Nils has also provided code to compute all (2, 2)-isogenous abelian surfaces.

The Magma facility for determining the Mordell-Weil group of an elliptic curve over the rational field is based on the MWRANK programs of **John Cremona** (Nottingham).

John Cremona (Nottingham) has contributed his code implementing Tate's algorithm for computing local minimal models for elliptic curves defined over number fields.

The widely-used database of all elliptic curves over Q having conductor up to 300,000 constructed by **John Cremona** (Warwick) is also included.

John Cremona (Warwick) has contributed his code implementing the Cremona-Prickett-Siksek height bounds.

Tim Dokchitser (Durham) wrote code for computing root numbers of elliptic curves over number fields.

Andreas-Stephan Elsenhans (Bayreuth) has provided routines for performing minimisation and reduction for Del Pezzo surfaces of degrees 3 and 4.

Code for determining isomorphism of cubic surfaces has been contributed by **Andreas-Stephan Elsenhans** (Bayreuth).

A collection of tools that calculate information about the Picard rank of a surface has been developed by **Andreas-Stephan Elsenhans** (Bayreuth).

Code for calculating the invariants, covariants and contravariants of a cubic surface has been developed by **Andreas-Stephan Elsenhans** (Bayreuth).

A package contributed by **Tom Fisher** (Cambridge) deals with curves of genus 1 given by models of a special kind (genus one normal curves) having degree 2, 3, 4 and 5.

The implementation of 3-descent on elliptic curves was mainly written by **Tom Fisher** (Cambridge). An earlier version as well as part of the current version were developed by **Michael Stoll** (Bremen).

The algorithms and implementations of 6— and 12-descent are due to **Tom Fisher** (Cambridge). The new alorithm/implementation of 8-descent is likewise by Tom Fisher; this partly incorporates and partly replaces the earlier one by **Sebastian Stamminger**.

Martine Girard (Sydney) has contributed her fast code for determining the heights of a point on an elliptic curve defined over a number field or a function field.

David Kohel (Singapore–NUS, MAGMA) has provided implementations of division polynomials and isogeny structures for elliptic curves.

Full and partial descents on cyclic covers of the projective line were implemented by **Michael Mourao** (Warwick).

A package for computing canonical heights on hyperelliptic curves has been contributed by **Steffan Müller** (Bayreuth).

David Roberts (Nottingham) contributed some descent machinery for elliptic curves over function fields.

David Roberts and **John Cremona** (Nottingham) implemented the Cremona-van Hoeij algorithm for parametrization of conics over rational function fields.

Jasper Scholten (Leuven) has developed much of the code for computing with elliptic curves over function fields.

Much of the initial development of the package for computing with hyperelliptic curves is due to **Michael Stoll** (Bayreuth). He also contributed many of the high level routines involving curves over the rationals and their Jacobians, such as Chabauty's method.

A database of 136, 924, 520 elliptic curves with conductors up to 10⁸ has been provided by **William Stein** (Harvard) and **Mark Watkins** (Penn State).

For elliptic curves defined over finite fields of characteristic 2, Kedlaya's algorithm for point counting has been implemented by **Frederick Vercauteren** (Leuven).

Tom Womack (Nottingham) contributed code for performing four-descent, from which the current implementation was adapted.

Arithmetic Geometry Over Finite Fields

Various point-counting algorithms for hyperelliptic curves have been implemented by **Pierrick Gaudry** (Ecole Polytechnique, Paris). These include an implementation of the Schoof algorithm for genus 2 curves.

An implementation of GHS Weil descent for ordinary elliptic curves in characteristic 2 has been provided by **Florian Heß** (TU, Berlin).

A Magma package for calculating Igusa and other invariants for genus 2 hyperelliptic curves was written by **Everett Howe** (CCR, San Diego) and is based on **gp** routines developed by **Fernando Rodriguez–Villegas** (Texas) as part of the Computational Number Theory project funded by a TARP grant.

Reynard Lercier (Rennes) provided much advice and assistance to the MAGMA group concerning the implementation of the SEA point counting algorithm for elliptic curves.

Reynard Lercier (Rennes) and Christophe Ritzenthaler provided extensions to the machinery for genus 2 curves defined over finite fields. These include the reconstruction of a curve from invariants which applies to every characteristic p (previously p > 5), the geometric automorphism group and the calculation of all twists (not just quadratic).

Frederik Vercauteren (Leuven) has produced efficient implementations of the Tate, Eta and Ate pairings in MAGMA.

Class fields over local fields and the multiplicative structure of local fields are computed using new algorithms and implementations due to **Sebastian Pauli** (TU Berlin).

The module for Lazy Power Series is based on the ideas of **Josef Schicho** (Linz).

Associative Algebras

Fast algorithms for computing the Jacobson radical and unit group of a matrix algebra over a finite field were designed and implemented by **Peter Brooksbank** (Bucknell) and **Eamonn O'Brien** (Auckland).

A package for computing with algebras equipped with an involution (*-algebras) has been contributed by **Peter Brooksbank** (Bucknell) and **James Wilson**.

An algorithm designed and implemented by **Jon Carlson** and **Graham Matthews** (Athens, Ga.) provides an efficient means for constructing presentations for matrix algebras.

For matrix algebras defined over a finite field, **Jon Carlson** (Athens, Ga.) designed and implemented algorithms for the Jacobson radical and unit group which are faster than the Brooksbank-O'Brien algorithms for larger examples.

A substantial package for working with substructures and homomorphisms of basic algebras, developed by **Jon Carlson** (Athens, Ga.), was released as part of V2.19. Among other things, the package can compute the automorphism group of a basic algebra and test pairs of basic algebras for isomorphism.

Markus Kirschmer (Aachen) has written a number of optimized routines for definite quaternion algebras over number fields.

Markus Kirschmer has also contributed a package for quaternion algebras defined over the function fields $F_q[t]$, for q odd. The package includes calculation of the normaliser of an order and an efficient algorithm for computing the two-sided ideal classes of an order in a definite quaternion algebra (over \mathbf{Z} or $\mathbf{F}_q[t]$).

Quaternion algebras over the rational field Q were originally implemented by **David Kohel** (Singapore-NUS, MAGMA).

The vector enumeration program of **Steve Linton** (St. Andrews) provides an alternative to the use of Gröbner basis for constructing a matrix representation of a finitely presented associative algebra.

John Voight (Vermont) produced the package for quaternion algebras over number fields.

Coding Theory

A package for constructing linear codes associated with lattice points in a convex polytope has been contributed by **Gavin Brown** (Loughborough) and **Al Kasprzyk** (Imperial).

The PERM package developed by **Jeff Leon** (UIC) is used to determine automorphism groups of codes, designs and matrices.

The development of machinery for linear codes benefited greatly from the active involvement of **Markus Grassl** (Karlsruhe) over a long period. Of particular note is his contribution to the development of improved algorithms for computing the minimum weight and for the enumeration of codewords.

Routines implementing many different constructions for linear codes over finite fields were contributed by Markus Grassl (Karlsruhe).

Markus Grassl (Karlsruhe) played a key role in the design of Magma packages for Additive Codes and Quantum Error-Correcting Codes. The packages were implemented by Greg White (Magma).

The construction of a database of Best Known Linear Codes over GF(2) was a joint project with Markus Grassl (Karlsruhe, NUS). Other contributors to this project include: Andries Brouwer, Zhi Chen, Stephan Grosse, Aaron Gulliver, Ray Hill, David Jaffe, Simon Litsyn, James B. Shearer and Henk van Tilborg.

The databases of Best Known Linear Codes over GF(3), GF(4), GF(5), GF(7), GF(8) and GF(9) were constructed by **Markus Grassl** (IAKS, Karlsruhe).

A substantial collection of intrinsics for constructing and computing properties of Z_4 codes has been contributed by **Jaume Pernas**, **Jaume Pujol** and **Merc Villanueva** (Universitat Autònoma de Barcelona).

Combinatorics

Michel Berkelaar (Eindhoven) gave us permission to incorporate his LP_SOLVE package for linear programming.

The first stage of the Magma database of Hadamard and skew-Hadamard matrices was prepared with the assistance of **Stelios Georgiou** (Athens), **Ilias Kotsireas** (Wilfrid Laurier) and **Christos Koukouvinos** (Athens). In particular, they made available their tables of Hadamard matrices of orders 32, 36, 44, 48 and 52. Further Hadamard matrices were contributed by Dragomir Djokovic.

The Magma machinery for symmetric functions is based on the Symmetrica package developed by **Abalbert Kerber** (Bayreuth) and colleagues. The Magma version was implemented by **Axel Kohnert** of the Bayreuth group.

The PERM package developed by **Jeff Leon** (UIC) is used to determine automorphism groups of designs and also to determine isomorphism of pairs of designs.

Automorphism groups and isomorphism of Hadamard matrices are determined by converting to a similar problem for graphs and then applying **Brendan McKay's** (ANU) program NAUTY. The adaption was undertaken by **Paulette Lieby** and **Geoff Bailey**.

The calculation of the automorphism groups of graphs and the determination of graph isomorphism is performed using **Brendan McKay's** (ANU) program NAUTY (version 2.2). Databases of graphs and machinery for generating such databases have also been made available by Brendan. He has also collaborated in the design of the sparse graph machinery.

The code to perform the regular expression matching in the regexp intrinsic function comes from the V8 regexp package written by **Henry Spencer** (Toronto).

Commutative Algebra

Gregor Kemper (TU München) has contributed most of the major algorithms of the Invariant Theory module of Magma, together with many other helpful suggestions in the area of Commutative Algebra.

Alexa van der Waall (Simon Fraser) has implemented the module for differential Galois theory.

Galois Groups

Jürgen Klüners (Kassel) has made major contributions to the Galois theory machinery for function fields and number fields. In particular, he implemented functions for constructing the subfield lattice and automorphism group of a field and also the subfield lattice of the normal closure of a field. In joint work with Claus Fieker (MAGMA), Jürgen has recently developed a new method for determining the Galois group of a polynomial of arbitary high degree.

Jürgen Klüners (Kassel) and **Gunter Malle** (Kassel) made available their extensive tables of polynomials realising all Galois groups over Q up to degree 15.

Galois Representations

Jeremy Le Borgne (Rennes) contributed his package for working with mod p Galois representations.

Code for constructing Artin representations of the Galois group of the absolute extension of a number field was developed by **Tim Dokchitser** (Cambridge).

Jared Weinstein (UCLA) wrote the package on admissible representations of $GL_2(\mathbf{Q}_p)$.

Geometry

The Magma code for computing with incidence geometries has been developed by **Dimitri** Leemans (Brussels).

Algorithms for testing whether two convex polytopes embedded in a lattice are isomorphic or equivalent have been implemented by **Al Kasprzyk** (Imperial College). Of particular note is Al's implementation of the PALP normal form algorithm.

Global Arithmetic Fields

Jean-Francois Biasse (Calgary) implemented a quadratic sieve for computing the class group of a quadratic field. He also developed a generalisation of the sieve for number fields having degree greater than 2.

Florian Heß (TU Berlin) has contributed a major package for determining all isomorphisms between a pair of algebraic function fields.

David Kohel (Singapore–NUS, MAGMA) has contributed to the machinery for binary quadratic forms and has implemented rings of Witt vectors.

Jürgen Klüners (Düsseldorf) and Sebastian Pauli (UNC Greensboro) have developed algorithms for computing the Picard group of non-maximal orders and for embedding the unit group of non-maximal orders into the unit group of the field.

The facilities for general number fields and global function fields in Magma are based on the Kant V4 package developed by **Michael Pohst** and collaborators, first at Düsseldorf and then at TU Berlin. This package provides extensive machinery for computing with maximal orders of number fields and their ideals, Galois groups and function fields. Particularly noteworthy are functions for computing the class and unit group, and for solving Diophantine equations.

The fast algorithm of Bosma and Stevenhagen for computing the 2-part of the ideal class group of a quadratic field has been implemented by **Mark Watkins** (Bristol).

Group Theory: Finitely-Presented Groups

See also the subsection Group Theory: Soluble Groups.

A new algorithm for computing all normal subgroups of a finitely presented group up to a specified index has been designed and implemented by **David Firth** and **Derek Holt** (Warwick).

The function for determining whether a given finite permutation group is a homomorphic image of a finitely presented group has been implemented in C by Volker Gebhardt (Magma) from a Magma language prototype developed by **Derek Holt** (Warwick). A variant developed by Derek allows one to determine whether a small soluble group is a homomorphic image.

A small package for working with subgroups of free groups has been developed by **Derek Holt** (Warwick). He has also provided code for computing the automorphism group of a free group.

Versions of Magma from V2.8 onwards employ the Advanced Coset Enumerator designed by **George Havas** (UQ) and implemented by **Colin Ramsay** (UQ). George has also contributed to the design of the machinery for finitely presented groups.

Derek Holt (Warwick) developed a modified version of his program, KBMAG, for inclusion within MAGMA. The MAGMA facilities for groups and monoids defined by confluent rewrite systems, as well as automatic groups, are supported by this code.

Derek Holt (Warwick) has provided a MAGMA implementation of his algorithm for testing whether two finitely presented groups are isomorphic.

An improved version of the Plesken-Fabianska algorithm for finding L2-quotients of a finitely presented group has been developed and implemented by **Sebastian Jambor** (Aachen).

The low index subgroup function is implemented by code that is based on a Pascal program written by **Charlie Sims** (Rutgers).

Group Theory: Finite Groups

A variation of the Product Replacement Algorithm for generating random elements of a group due to **Henrik Bäärnhielm** and **Charles Leedham-Green** has been coded with their assistance.

A Small Groups database containing all groups having order at most 2000, excluding order 1024 has been made available by **Hans Ulrich Besche** (Aachen), **Bettina Eick** (Braunschweig), and **Eamonn O'Brien** (Auckland). This library incorporates "directly" the libraries of 2-groups of order dividing 256 and the 3-groups of order dividing 729, which were prepared and distributed at various intervals by **Mike Newman** (ANU) and **Eamonn O'Brien** and various assistants, the first release dating from 1987.

Michael Downward and Eamonn O'Brien (Auckland) provided functions to access much of the data in the on-line Atlas of Finite Simple Groups for the sporadic groups. A function to select "good" base points for sporadic groups was provided by Eamonn and Robert Wilson (QMUL).

The Small Groups database was augmented in V2.14 by code that can enumerate all groups of any square-free order. This code was developed by **Bettina Eick** (Braunschweig) and **Eamonn O'Brien** (Auckland).

The calculation of automorphism groups (for permutation and matrix groups) and determining group isomorphism is performed by code written by **Derek Holt** (Warwick).

Lifting-style algorithms have been developed by **Derek Holt** (Warwick) for computing structural information in groups given in terms of the Composition Tree data structure. The operations include centralisers, conjugacy classes, normalizers, subgroup conjugacy and maximal subgroups.

Magma includes a database of almost-simple groups defined on standard generators. The database was originally conceived by **Derek Holt** (Warwick) with a major extension by **Volker Gebhardt** (Magma) and sporadic additions by **Bill Unger** (Magma).

The routine for computing the subgroup lattice of a group (as distinct from the list of all conjugacy classes of subgroups) is based on code written by **Dimitri Leemans** (Brussels).

Csaba Schneider (Lisbon) has implemented code which allows the user to write an arbitrary element of a classical group as an SLP in terms of its standard generators.

Robert Wilson (QMUL) has made available the data contained in the on-line ATLAS of Finite Group Representations for use in a MAGMA database of permutation and matrix representations for finite simple groups. See http://brauer.maths.qmul.ac.uk/Atlas/.

Group Theory: Matrix Groups

The Composition Tree (CT) package developed by **Henrik Bäärnhielm** (Auckland), **Derek Holt** (Warwick), **Charles Leedham-Green** (QMUL) and **Eamonn O'Brien** (Auckland), working with numerous collaborators, was first released in V2.17. This package is designed for computing structural information for large matrix groups defined over a finite field.

Constructive recognition of quasi-simple groups belonging to the Suzuki and two Ree families have been implemented by **Hendrik Bäärnhielm** (QMUL). The package includes code for constructing their Sylow p-subgroups and maximal subgroups.

The maximal subgroups of all classical groups having degree not exceeding 12 have been constructed and implemented in Magma by **John Bray** (QMUL), **Derek Holt** (Warwick) and **Colva Roney-Dougal** (St Andrews).

Peter Brooksbank (Bucknell) implemented a Magma version of his algorithm for performing constructive black-box recognition of low-dimensional symplectic and unitary groups. He also gave the Magma group permission to base its implementation of the Kantor-Seress algorithm for black-box recognition of linear groups on his GAP implementation.

Code which computes the normaliser of a linear group defined over a finite field, using a theorem of Aschbacher rather than backtrack search, has been provided by **Hannah Coutts** (St Andrews).

A package, "Infinite", has been developed by **Alla Detinko** (Galway), **Dane Flannery** (Galway) and **Eamonn O'Brien** (Auckland) for computing with groups defined over number fields, or (rational) function fields in zero or positive characteristic.

An algorithm for determining the conjugacy of any pair of matrices in $GL(2, \mathbb{Z})$ was developed and implemented by **D. Husert** (University of Paderborn). In particular, this allows the conjugacy of elements having infinite order to be determined.

Markus Kirschmer (RWTH, Aachen) has provided a package for computing with finite subgroups of $GL(n, \mathbf{Z})$. A MAGMA database of the maximal finite irreducible subgroups of $Sp_{2n}(\mathbf{Q})$ for $1 \leq i \leq 11$ has also been made available by Markus.

A much improved algorithm for computing the normaliser or centraliser of a finite subgroup of GL(n, Z) has been implemented by **Markus Kirschmer** (Aachen). Markus has also implemented an algorithm that tests finite subgroups for conjugacy.

Procedures to list irreducible (soluble) subgroups of GL(2,q) and GL(3,q) for arbitrary q have been provided by **Dane Flannery** (Galway) and **Eamonn O'Brien** (Auckland).

A Monte-Carlo algorithm to determine the defining characteristic of a quasisimple group of Lie type has been contributed by **Martin Liebeck** (Imperial) and **Eamonn O'Brien** (Auckland).

A Monte-Carlo algorithm for non-constructive recognition of simple groups has been contributed by **Gunter Malle** (Kaiserslautern) and **Eamonn O'Brien** (Auckland). This procedure includes an algorithm of Babai et al which identifies a quasisimple group of Lie type.

MAGMA incorporates a database of the maximal finite rational subgroups of $GL(n, \mathbf{Q})$ up to dimension 31. This database as constructed by **Gabriele Nebe** (Aachen) and **Wilhelm Plesken** (Aachen). A database of quaternionic matrix groups constructed by Gabriele is also included.

A function that determines whether a matrix group G (defined over a finite field) is the normaliser of an extraspecial group in the case where the degree of G is an odd prime uses the new Monte-Carlo algorithm of **Alice Niemeyer** (Perth) and has been implemented in Magma by **Eamonn O'Brien** (Auckland).

The package for recognizing large degree classical groups over finite fields was designed and implemented by **Alice Niemeyer** (Perth) and **Cheryl Praeger** (Perth). It has been extended to include 2-dimensional linear groups by **Eamonn O'Brien** (Auckland).

Eamonn O'Brien (Auckland) has contributed a MAGMA implementation of algorithms for determining the Aschbacher category of a subgroup of GL(n, q).

Eamonn O'Brien (Auckland) has provided implementations of constructive recognition algorithms for the matrix groups (P)SL(2, q) and (P)SL(3, q).

A fast algorithm for determining subgroup conjugacy based on Aschbacher's theorem classifying the maximal subgroups of a linear group has been designed and implemented by Colva Roney-Dougal (St Andrews).

A package for constructing the Sylow p-subgroups of the classical groups has been implemented by **Mark Stather** (Warwick).

Generators in the natural representation of a finite group of Lie type were constructed and implemented by **Don Taylor** (Sydney) with some assistance from **Leanne Rylands** (Western Sydney).

Group Theory: Soluble Groups

The soluble quotient algorithm in Magma was designed and implemented by **Herbert Brückner** (Aachen).

Code producing descriptions of the groups of order p^4 , p^5 , p^6 , p^7 for p > 3 was contributed by Boris Girnat, Robert McKibbin, Mike Newman, Eamonn O'Brien, and Mike Vaughan-Lee.

A new approach to the more efficient calculation of the automorphism group of a finite soluble group has been developed and implemented **David Howden** (Warwick). A slight variation of the algorithm is used to test isomorphism.

Most of the algorithms for p-groups and many of the algorithms implemented in Magma for finite soluble groups are largely due to **Charles Leedham–Green** (QMUL, London).

The NQ program of **Werner Nickel** (Darmstadt) is used to compute nilpotent quotients of finitely presented groups. Version 2.2 of NQ was installed in MAGMA V2.14 by **Bill Unger** (Magma) and **Michael Vaughan-Lee** (Oxford).

The p-quotient program, developed by **Eamonn O'Brien** (Auckland) based on earlier work by **George Havas** and **Mike Newman** (ANU), provides a key facility for studying p-groups in Magma. Eamonn's extensions in Magma of this package for generating p-groups, computing automorphism groups of p-groups, and deciding isomorphism of p-groups are also included. He has contributed software to count certain classes of p-groups and to construct central extensions of soluble groups.

The package for classifying metacyclic *p*-groups has been developed by **Eamonn O'Brien** (Auckland) and **Mike Vaughan-Lee** (Oxford).

Group Theory: Permutation Groups

Derek Holt (Warwick) has implemented the MAGMA version of the Bratus/Pak algorithm for black-box recognition of the symmetric and alternating groups.

Alexander Hulpke (Colorado State) has made available his database of all transitive permutation groups of degree up to 30. This incorporates the earlier database of **Greg Butler** (Concordia) and **John McKay** (Concordia) containing all transitive groups of degree up to 15.

The PERM package developed by **Jeff Leon** (UIC) for efficient backtrack searching in permutation groups is used for most of the permutation group constructions that employ backtrack search.

A table containing all primitive groups having degree less than 2,500 has been provided by Colva Roney-Dougal (St Andrews). The groups of degree up to 1,000 were done jointly with Bill Unger (MAGMA).

A table containing all primitive groups having degrees in the range 2,500 to 4,095 has been provided by **Hannah Coutts**, **Martyn Quick** and **Colva Roney-Dougal** (all at St Andrews).

Colva Roney-Dougal (St Andrews) has implemented the Beals et al algorithm for performing black-box recognition on the symmetric and alternating groups.

Derek Holt (Warwick) has constructed a table of irreducible representations of quasisimple groups (up to degree 100). Some representations were contributed by **Allan Steel**, **Volker Gebhardt** and **Bill Unger** (all MAGMA).

A Magma database has been constructed from the permutation and matrix representations contained in the on-line Atlas of Finite Simple Groups with the assistance of its author **Robert Wilson** (QMUL).

Homological Algebra

The packages for chain complexes and basic algebras have been developed by **Jon F.** Carlson (Athens, GA).

Sergei Haller developed Magma code for computing the first cohomology group of a finite group with coefficients in a finite (not necessarily abelian) group. This formed the basis of a package for computing Galois cohomology of linear algebra groups.

Machinery for computing group cohomology and for producing group extensions has been developed by **Derek Holt** (Warwick). There are two parts to this machinery. The first part comprises Derek's older C-language package for permutation groups while the second part comprises a recent Magma language package for group cohomology.

In 2011, **Derek Holt** (Warwick) implemented an alternative algorithm for finding the dimension of the cohomology group $H^n(G, K)$, for G a finite group, and K a finite field. In this approach the dimension is found using projective covers and dimension shifting.

The code for computing A_{∞} -structures in group cohomology was developed by **Mikael Vejdemo Johansson** (Jena).

L-Functions

Tim Dokchitser (Cambridge) has implemented efficient computation of many kinds of *L*-functions, including those attached to Dirichlet characters, number fields, Artin representations, elliptic curves and hyperelliptic curves. **Vladimir Dokchitser** (Cambridge) has contributed theoretical ideas.

Anton Mellit has contributed code for computing symmetric powers and tensor products of *L*-functions.

Lattices and Quadratic Forms

The construction of the sublattice of an integral lattice is performed by code developed by Markus Kirschmer (Aachen).

A collection of lattices derived from the on-line tables of lattices prepared by **Neil Sloane** (AT&T Research) and **Gabriele Nebe** (Aachen) is included in MAGMA.

The original functions for computing automorphism groups and isometries of integral lattices are based on the AUTO and ISOM programs of **Bernd Souvignier** (Nijmegen). In V2.16 they are replaced by much faster versions developed by **Bill Unger** (MAGMA).

Coppersmith's method (based on LLL) for finding small roots of univariate polynomials modulo an integer has been implemented by **Damien Stehlé** (ENS Lyon).

Given a quadratic form F in an arbitrary number of variables, **Mark Watkins** (Bristol) has used Denis Simon's ideas as the basis of an algorithm he has implemented in Magma for finding a large (totally) isotropic subspace of F.

Gael Collinet (Strasbourg) has contributed the basis of the package for lattices over number fields.

Lie Theory

The major structural machinery for Lie algebras has been implemented for MAGMA by Willem de Graaf (Utrecht) and is based on his ELIAS package written in GAP. He has also implemented a separate package for finitely presented Lie rings.

A database of soluble Lie algebras of dimensions 2, 3 and 4 over all fields has been implemented by **Willem de Graaf** (Trento). Willem has also provided a database of all nilpotent Lie algebras of dimension up to 6 over all base fields (except characteristic 2 when the dimension is 6).

More recent extensions to the Lie algebra package developed by Willem de Graaf (Trento) include quantum groups, universal enveloping algebras, the semisimple subalgebras of a simple Lie algebra and nilpotent orbits for simple Lie algebras.

A fast algorithm for multiplying the elements of Coxeter groups based on their automatic structure has been designed and implemented by **Bob Howlett** (Sydney). Bob has also contributed Magma code for computing the growth function of a Coxeter group.

Machinery for computing the W-graphs for Lie types A_n , E_6 , E_7 and E_8 has been supplied by **Bob Howlett** (Sydney). Subsequently, Bob supplied code for working with directed W-graphs.

The original version of the code for root systems and permutation Coxeter groups was modelled, in part, on the Chevie package of GAP and implemented by **Don Taylor** (Sydney) with the assistance of **Frank Lübeck** (Aachen).

Functions that construct any finite irreducible unitary reflection group in \mathbb{C}^n have been implemented by **Don Taylor** (Sydney). Extension to the infinite case was implemented by **Scott Murray** (Sydney).

The current version of Lie groups in Magma has been implemented by **Scott Murray** (Sydney) and **Sergei Haller** with some assistance from **Don Taylor** (Sydney).

An extensive package for computing the combinatorial properties of highest weight representations of a Lie algebra has been written by **Dan Roozemond** (Eindhoven). This code is based in the LiE package with permission of the authors.

Code has been contributed by **Robert Zeier** (Technical University of Munich) for determining the irreducible simple subalgebras of the Lie algebra su(k).

Linear Algebra and Module Theory

Parts of the ATLAS (Automatically Tuned Linear Algebra Software) created by **R. Clint** Whaley et al. (UTSA) are used for some fundamental matrix algorithms over finite fields GF(p), where p is about the size of a machine integer.

Local Arithmetic Fields

Sebastian Pauli (TU Berlin) has implemented his algorithm for factoring polynomials over local fields within MAGMA. This algorithm may also be used for the factorization of ideals, the computation of completions of global fields, and for splitting extensions of local fields into towers of unramified and totally ramified extensions.

Modular Forms

Kevin Buzzard (Imperial College) made available his code for computing modular forms of weight one. The MAGMA implementation was developed using this as a starting point.

Lassina Dembélé (Warwick) wrote part of the code implementing his algorithm for computing Hilbert modular forms.

Enrique González-Jiménez (Madrid) contributed a package to compute curves over \mathbf{Q} , of genus at least 2, which are images of $X_1(N)$ for a given level N.

Matthew Greenberg (Calgary) and John Voight (Vermont) developed and implemented an algorithm for computing Hilbert modular forms using Shimura curves.

A new implementation (V2.19) of Brandt modules associated to definite quaternion orders, over **Z** and over function fields $\mathbf{F}_q[t]$, has been developed by **Markus Kirschmer** (Aachen) and **Steve Donnelly** (Magma).

David Kohel (Singapore-NUS, MAGMA) has provided implementations of division polynomials and isogeny structures for Brandt modules and modular curves. Jointly with **William Stein** (Harvard), he implemented the module of supersingular points.

Allan Lauder (Oxford) has contributed code for computing the characteristic polynomial of a Hecke operator acting on spaces of overconvergent modular forms.

Magma routines for constructing building blocks of modular abelian varieties were contributed by **Jordi Quer** (Cataluna).

A package for computing with modular symbols (known as HECKE) has been developed by **William Stein** (Harvard). William has also provided much of the package for modular forms.

In 2003–2004, William Stein (Harvard) developed extensive machinery for computing with modular abelian varieties within MAGMA.

A package for computing with congruence subgroups of the group $PSL(2, \mathbf{R})$ has been developed by **Helena Verrill** (LSU).

John Voight (Vermont) produced the package for Shimura curves and arithmetic Fuchsian groups.

Dan Yasaki (UNC) produced the package for Bianchi modular forms.

Primality and Factorisation

The factorisation of integers of the form $p^n \pm 1$, for small primes p, makes use of tables compiled by **Richard Brent** that extend tables developed by the Cunningham project. In addition Magma uses Richard's intelligent factorization code Factor.

One of the main integer factorization tools available in MAGMA is due to **Arjen K. Lenstra** (EPFL) and his collaborators: a multiple polynomial quadratic sieve developed by Arjen from his "factoring by email" MPQS during visits to Sydney in 1995 and 1998.

The primality of integers is proven using the ECPP (Elliptic Curves and Primality Proving) package written by **François Morain** (Ecole Polytechnique and INRIA). The ECPP program in turn uses the BigNum package developed jointly by **INRIA** and **Digital PRL**.

MAGMA uses the **GMP-ECM** implementation of the Elliptic Curve Method (ECM) for integer factorisation. This was developed by **Pierrick Gaudry**, **Jim Fougeron**, **Laurent Fousse**, **Alexander Kruppa**, **Dave Newman**, and **Paul Zimmermann**. See http://gforge.inria.fr/projects/ecm/.

Real and Complex Arithmetic

The complex arithmetic in MAGMA uses the **MPC** package which is being developed by **Andreas Enge**, **Philippe Théveny** and **Paul Zimmermann**. (For more information see www.multiprecision.org/mpc/).

Xavier Gourdon (INRIA, Paris) made available his C implementation of A. Schönhage's splitting-circle algorithm for the fast computation of the roots of a polynomial to a specified precision. Xavier also assisted with the adaptation of his code for the Magma kernel.

Some portions of the **GNU GMP** multiprecision integer library (http://gmplib.org) are used for integer multiplication.

Most real arithmetic in MAGMA is based on the **MPFR** package which is developed by **Paul Zimmermann** (Nancy) and associates. (See www.mpfr.org).

Representation Theory

The algorithm of John Dixon for constructing the ordinary irreducible representation of a finite group from its character has been implemented by **Derek Holt** (Warwick).

Derek Holt (Warwick) has made a number of important contributions to the design of the module theory algorithms employed in Magma.

An algorithm of Sam Conlon for determining the degrees of the ordinary irreducible characters of a soluble group (without determining the full character table) has been implemented by **Derek Holt** (Warwick).

In 2011, **Derek Holt** (Warwick) and **John Cannon** (Magma) developed a package for computing the projective indecomposable KG-modules for a finite group G.

The algorithms used in Magma for finding the lattice of submodules and the endomorphism ring of a KG-module (K a finite field) were developed by **Charles Leedham-Green** (QMW, London) and **Allan Steel** (Magma).

Topology

A basic module for defining and computing with simplicial complexes was developed by **Mikael Johansson** (Jena).

Nathan Dunfield (Cornell) and William Thurston (Cornell) made available their database of the fundamental groups of the 10,986 small-volume closed hyperbolic manifolds in the Hodgson-Weeks census.

Handbook Contributors

Introduction

The Handbook of Magma Functions is the work of many individuals. It was based on a similar Handbook written for Cayley in 1990. Up until 1997 the Handbook was mainly written by Wieb Bosma, John Cannon and Allan Steel but in more recent times, as MAGMA expanded into new areas of mathematics, additional people became involved. It is not uncommon for some chapters to comprise contributions from 8 to 10 people. Because of the complexity and dynamic nature of chapter authorship, rather than ascribe chapter authors, in the table below we attempt to list those people who have made *significant* contributions to chapters.

We distinguish between:

- **Principal Author**, i.e. one who primarily conceived the core element(s) of a chapter and who was also responsible for the writing of a large part of its current content, and
- Contributing Author, i.e. one who has written a significant amount of content but who has not had primary responsibility for chapter design and overall content.

It should be noted that attribution of a person as an author of a chapter carries no implications about the authorship of the associated computer code: for some chapters it will be true that the author(s) listed for a chapter are also the authors of the corresponding code, but in many chapters this is either not the case or only partly true. Some information about code authorship may be found in the sections Magma Development Team and External Contributors.

The attributions given below reflect the authorship of the material comprising the V2.22 edition. Since many of the authors have since moved on to other careers, we have not been able to check that all of the attributions below are completely correct. We would appreciate hearing of any omissions.

In the chapter listing that follows, for each chapter the start of the list of principal authors (if any) is denoted by • while the start of the list of contributing authors is denoted by •.

People who have made minor contributions to one or more chapters are listed in a general acknowledgement following the chapter listing.

The Chapters

- 1 Statements and Expressions W. Bosma, A. Steel
- 2 Functions, Procedures and Packages W. Bosma, A. Steel
- 3 Input and Output W. Bosma, A. Steel
- 4 Environment and Options A. Steel W. Bosma
- 5 Magma Semantics G. Matthews
- 6 The Magma Profiler D. Fisher
- 7 Debugging Magma Code D. Fisher
- 8 Introduction to Aggregates W. Bosma
- 9 Sets W. Bosma, J. Cannon A. Steel
- 10 Sequences W. Bosma, J. Cannon
- 11 Tuples and Cartesian Products W. Bosma
- 12 Lists W. Bosma
- 13 Associative Arrays A. Steel
- 14 Coproducts A. Steel
- 15 Records W. Bosma
- 16 Mappings W. Bosma
- 17 Introduction to Rings W. Bosma
- 18 Ring of Integers W. Bosma, A. Steel S. Contini, B. Smith
- 19 Integer Residue Class Rings W. Bosma S. Donnelly, W. Stein
- 20 Rational Field W. Bosma
- 21 Finite Fields W. Bosma, A. Steel
- 22 Nearfields D. Taylor
- 23 Univariate Polynomial Rings A. Steel
- 24 Multivariate Polynomial Rings A. Steel
- 25 Real and Complex Fields W. Bosma
- 26 Matrices A. Steel
- 27 Sparse Matrices A. Steel
- 28 Vector Spaces J. Cannon, A. Steel
- 29 Polar Spaces D. Taylor
- 30 Lattices A. Steel, D. Stehlé
- 31 Lattices over Number Fields M. Watkins
- 32 Lattices With Group Action B. Souvignier M. Kirschmer
- 33 Quadratic Forms S. Donnelly
- 34 Binary Quadratic Forms D. Kohel
- 35 Number Fields C. Fieker W. Bosma, N. Sutherland
- 36 Quadratic Fields W. Bosma
- 37 Cyclotomic Fields W. Bosma, C. Fieker
- 38 Number Fields and Orders C. Fieker W. Bosma, N. Sutherland

- 39 Galois Groups and Automorphisms C. Fieker o J. Klüners, K. Geißler
- 40 Class Field Theory C. Fieker
- 41 Dirichlet and Hecke Characters M. Watkins
- 42 Algebraically Closed Fields A. Steel
- 43 Rational Function Fields A. Steel A. van der Waall
- 44 Algebraic Function Fields F. Heß C. Fieker, N. Sutherland
- 45 Class Field Theory For Global Function Fields C. Fieker
- 46 Artin Representations T. Dokchitser
- 47 p-adic Rings and their Extensions D. Fisher, B. Souvignier N. Sutherland
- 48 General p-adic Extensions N. Sutherland
- 49 Power, Laurent and Puiseux Series A. Steel
- 50 Lazy Power Series Rings N. Sutherland
- 51 Algebraic Power Series Rings T. Beck, M. Harrison
- 52 Valuation Rings W. Bosma
- 53 Galois Rings A. Steel
- 54 Newton Polygons G. Brown, N. Sutherland
- 55 Series Rings over p-adic Rings M. Watkins
- 56 Local Galois Representations T. Dokchitser
- 57 Introduction to Modules J. Cannon
- 58 Free Modules J. Cannon, A. Steel
- 59 Modules over Dedekind Domains C. Fieker, N. Sutherland
- 60 Chain Complexes J. Carlson
- 61 Multilinear Algebra J. Maglione, J. Wilson
- 62 Groups J. Cannon W. Unger
- 63 Permutation Groups J. Cannon B. Cox, W. Unger
- 64 Matrix Groups over General Rings J. Cannon B. Cox, E.A. O'Brien, A. Steel
- 65 Matrix Groups over Finite Fields E.A. O'Brien
- 66 Matrix Groups over Infinite Fields E.A. O'Brien
- 67 Matrix Groups over Q and Z M. Kirschmer, B. Souvignier
- 68 Finite Soluble Groups J. Cannon, M. Slattery E.A. O'Brien
- 69 Black-box Groups W. Unger
- 70 Almost Simple Groups o H. Bäärnhielm, J. Cannon, D. Holt, M. Stather
- 71 Databases of Groups W. Unger V. Gebhardt
- 72 Automorphism Groups D. Holt W. Unger
- 73 Cohomology and Extensions \bullet *D. Holt* \circ *S. Haller*
- 74 Abelian Groups J. Cannon \circ P. Lieby
- 75 Finitely Presented Groups J. Cannon V. Gebhardt, E.A. O'Brien, M. Vaughan-Lee
 - 76 Finitely Presented Groups: Advanced H. Brückner, V. Gebhardt E.A. O'Brien

- 77 Polycyclic Groups V. Gebhardt
- 78 Braid Groups V. Gebhardt
- 79 Groups Defined by Rewrite Systems D. Holt G. Matthews
- 80 Automatic Groups D. Holt G. Matthews
- 81 Groups of Straight-line Programs J. Cannon
- 82 Finitely Presented Semigroups J. Cannon
- 83 Monoids Given by Rewrite Systems D. Holt G. Matthews
- 84 Algebras J. Cannon, B. Souvignier
- 85 Structure Constant Algebras J. Cannon, B. Souvignier
- 86 Associative Algebras o J. Cannon, S. Donnelly, N. Sutherland, B. Souvignier, J. Voight
- 87 Finitely Presented Algebras A. Steel, S. Linton
- 88 Matrix Algebras J. Cannon, A. Steel J. Carlson
- 89 Group Algebras J. Cannon, B. Souvignier
- 90 Basic Algebras J. Carlson \circ M. Vejdemo-Johansson
- 91 Quaternion Algebras D. Kohel, J. Voight S. Donnelly, M. Kirschmer
- 92 Algebras With Involution P. Brooksbank, J. Wilson
- 93 Clifford Algebras D. Taylor
- 94 Non-associative Algebras J. Maglione, J. Wilson
- 95 Modules over An Algebra J. Cannon, A. Steel
- 96 K[G]-Modules and Group Representations J. Cannon, A. Steel
- 97 Characters of Finite Groups W. Bosma, J. Cannon
- 98 Representations of Symmetric Groups A. Kohnert
- 99 Mod P Galois Representations J. Le Borgne
- 100 Introduction to Lie Theory S. Murray D. Taylor
- 101 Coxeter Systems S. Murray D. Taylor
- 102 Root Systems S. Murray S. Haller, D. Taylor
- 103 Root Data S. Haller, S. Murray D. Taylor
- 104 Coxeter Groups S. Murray D. Taylor
- 105 Reflection Groups S. Murray D. Taylor
- 106 Lie Algebras W. de Graaf, D. Roozemond S. Haller, S. Murray
- 107 Kac-moody Lie Algebras D. Roozemond
- 108 Quantum Groups W. de Graaf
- 109 Groups of Lie Type S. Murray S. Haller, D. Taylor
- 110 Representations of Lie Groups and Algebras D. Roozemond S. Murray
- 111 Gröbner Bases A. Steel M. Harrison
- 112 Polynomial Ring Ideal Operations A. Steel M. Harrison
- 113 Local Polynomial Rings A. Steel
- 114 Affine Algebras A. Steel
- 115 Modules over Multivariate Rings A. Steel M. Harrison

- 116 Invariant Theory \bullet A. Steel
- 117 Differential Rings A. van der Waall
- 118 Schemes G. Brown J. Cannon, M. Harrison, N. Sutherland
- 119 Coherent Sheaves M. Harrison
- 120 Algebraic Curves G. Brown N. Bruin, J. Cannon, M. Harrison, A. Wilson
- 121 Resolution Graphs and Splice Diagrams G. Brown
- 122 Algebraic Surfaces T. Beck, M. Harrison
- 123 Hilbert Series of Polarised Varieties G. Brown
- 124 Toric Varieties G. Brown, A. Kasprzyk
- 125 Rational Curves and Conics D. Kohel, P. Lieby S. Donnelly, M. Watkins
- 126 Elliptic Curves G. Bailey S. Donnelly, D. Kohel
- 127 Elliptic Curves over Finite Fields M. Harrison P. Lieby
- 128 Elliptic Curves over \mathbf{Q} and Number Fields \circ G. Bailey, N. Bruin, B. Creutz, S. Donnelly, D. Kohel, M. Watkins
- 129 Elliptic Curves over Function Fields J. Scholten S. Donnelly
- 130 Models of Genus One Curves T. Fisher, S. Donnelly
- 131 Hyperelliptic Curves \circ N. Bruin, B. Creutz, S. Donnelly, M. Harrison, D. Kohel, P. van Wamelen
- 132 Hypergeometric Motives M. Watkins
- 133 L-functions $T. Dokchitser \circ M. Watkins$
- 134 Modular Curves D. Kohel M. Harrison, E. González-Jiménez
- 135 Small Modular Curves M. Harrison
- 136 Congruence Subgroups of $PSL_2(\mathbf{R}) \bullet H.$ Verrill
- 137 Arithmetic Fuchsian Groups and Shimura Curves J. Voight
- 138 Modular Forms W. Stein K. Buzzard, S. Donnelly
- 139 Modular Symbols W. Stein K. Buzzard
- 140 Brandt Modules D. Kohel
- 141 Supersingular Divisors on Modular Curves D. Kohel, W. Stein
- 142 Modular Abelian Varieties W. Stein J. Quer
- 143 Hilbert Modular Forms S. Donnelly
- 144 Modular Forms over Imaginary Quadratic Fields D. Yasaki S. Donnelly
- 145 Admissible Representations of $GL_2(\mathbf{Q}_n) \bullet J$. Weinstein $\circ S$. Donnelly
- 146 Simplicial Homology M. Vejdemo-Johansson
- 147 Finite Planes J. Cannon
- 148 Incidence Geometry D. Leemans
- 149 Convex Polytopes and Polyhedra G. Brown, A. Kasprzyk
- 150 Enumerative Combinatorics \bullet G. Bailey \circ G. White
- 151 Partitions, Words and Young Tableaux G. White
- 152 Symmetric Functions A. Kohnert

- 153 Incidence Structures and Designs J. Cannon
- 154 Hadamard Matrices G. Bailey
- 155 Graphs J. Cannon, P. Lieby G. Bailey
- 156 Multigraphs J. Cannon, P. Lieby
- 157 Networks P. Lieby
- 158 Linear Codes over Finite Fields J. Cannon, A. Steel G. White
- 159 Algebraic-geometric Codes J. Cannon, G. White
- 160 Low Density Parity Check Codes G. White
- 161 Linear Codes over Finite Rings A. Steel G. White
- 162 Linear Codes over the Integer Residue Ring $\mathbb{Z}_4 \bullet A.$ Steel $\circ G.$ White, M. Villanueva
- 163 Additive Codes G. White
- 164 Quantum Codes G. White
- 165 Pseudo-random Bit Sequences S. Contini
- 166 Linear Programming B. Smith

General Acknowledgements

In addition to the contributors listed above, we gratefully acknowledge the contributions to the Handbook made by the following people:

- J. Brownie (group theory)
- K. Geißler (Galois groups)
- A. Flynn (algebras and designs)
- E. Herrmann (elliptic curves)
- E. Howe (Igusa invariants)
- B. McKay (graph theory)
- S. Pauli (local fields)
- C. Playoust (data structures, rings)
- C. Roney-Dougal (groups)
- T. Womack (elliptic curves)

USING THE HANDBOOK

Most sections within a chapter of this Handbook consist of a brief introduction and explanation of the notation, followed by a list of Magma functions, procedures and operators.

Each entry in this list consists of an expression in a box, and an indented explanation of use and effects. The typewriter typefont is used for commands that can be used literally; however, one should be aware that most functions operate on variables that must have values assigned to them beforehand, and return values that should be assigned to variables (or the first value should be used in an expression). Thus the entry:

```
Xgcd(a, b)
```

The extended gcd; returns integers d, l and m such that d is the greatest common divisor of the integers a and b, and d = l * a + m * b.

indicates that this function could be called in MAGMA as follows:

$$g, a, b := Xgcd(23, 28);$$

If the function has optional named *parameters*, a line like the following will be found in the description:

Proof BOOLELT Default: true

The first word will be the name of the parameter, the second word will be the type which its value should have, and the rest of the line will indicate the default for the parameter, if there is one. Parameters for a function call are specified by appending a colon to the last argument, followed by a comma-separated list of assignments (using :=) for each parameter. For example, the function call IsPrime(n: Proof := false) calls the function IsPrime with argument n but also with the value for the parameter Proof set to false.

Whenever the symbol # precedes a function name in a box, it indicates that the particular function is not yet available but should be in the future.

An index is provided at the end of each volume which contains all the intrinsics in the Handbook.

Running the Examples

All examples presented in this Handbook are available to Magma users. If your Magma environment has been set up correctly, you can load the source for an example by using the name of the example as printed in boldface at the top (the name has the form HmEn, where m is the Chapter number and n is the Example number). So, to run the first example in the Chapter 28, type:

load "H28E1";

VOLUME 1: OVERVIEW

1	THE MAGMA LANGUAGE	1
1	STATEMENTS AND EXPRESSIONS	3
2	FUNCTIONS, PROCEDURES AND PACKAGES	33
3	INPUT AND OUTPUT	65
4	ENVIRONMENT AND OPTIONS	95
5	MAGMA SEMANTICS	117
6	THE MAGMA PROFILER	137
7	DEBUGGING MAGMA CODE	147
\mathbf{II}	SETS, SEQUENCES, AND MAPPINGS	. 153
8	INTRODUCTION TO AGGREGATES	155
9	SETS	165
10	SEQUENCES	193
11	TUPLES AND CARTESIAN PRODUCTS	215
12	LISTS	223
13	ASSOCIATIVE ARRAYS	229
14	COPRODUCTS	235
15	RECORDS	241
16	MAPPINGS	247

VOLUME 2: OVERVIEW

111	BASIC RINGS	257
17	INTRODUCTION TO RINGS	259
18	RING OF INTEGERS	279
19	INTEGER RESIDUE CLASS RINGS	333
20	RATIONAL FIELD	353
21	FINITE FIELDS	365
22	NEARFIELDS	393
23	UNIVARIATE POLYNOMIAL RINGS	411
24	MULTIVARIATE POLYNOMIAL RINGS	445
25	REAL AND COMPLEX FIELDS	473
IV	MATRICES AND LINEAR ALGEBRA	521
26	MATRICES	523
27	SPARSE MATRICES	571
28	VECTOR SPACES	597
29	POLAR SPACES	621

VOLUME 3: OVERVIEW

V	LATTICES AND QUADRATIC FORMS	. 655
30	LATTICES	657
31	LATTICES OVER NUMBER FIELDS	735
32	LATTICES WITH GROUP ACTION	759
33	QUADRATIC FORMS	783
34	BINARY QUADRATIC FORMS	791
VI	GLOBAL ARITHMETIC FIELDS	. 805
35	NUMBER FIELDS	807
36	QUADRATIC FIELDS	849
37	CYCLOTOMIC FIELDS	863
38	NUMBER FIELDS AND ORDERS	871
39	GALOIS GROUPS AND AUTOMORPHISMS	975
40	CLASS FIELD THEORY	1013
41	DIRICHLET AND HECKE CHARACTERS	1051
42	ALGEBRAICALLY CLOSED FIELDS	1075
43	RATIONAL FUNCTION FIELDS	1097
44	ALGEBRAIC FUNCTION FIELDS	1119
45	CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS	1229
46	ARTIN REPRESENTATIONS	1257

VOLUME 4: OVERVIEW

VII	LOCAL ARITHMETIC FIELDS	1267
47	p-ADIC RINGS AND THEIR EXTENSIONS	1269
48	GENERAL p -ADIC EXTENSIONS	1323
49	POWER, LAURENT AND PUISEUX SERIES	1337
50	LAZY POWER SERIES RINGS	1365
51	ALGEBRAIC POWER SERIES RINGS	1381
52	VALUATION RINGS	1395
53	GALOIS RINGS	1401
54	NEWTON POLYGONS	1409
55	SERIES RINGS OVER p -ADIC RINGS	1437
56	LOCAL GALOIS REPRESENTATIONS	1455
VIII	MODULES	1491
57	INTRODUCTION TO MODULES	1493
58	FREE MODULES	1497
59	MODULES OVER DEDEKIND DOMAINS	1521
60	CHAIN COMPLEXES	1543
61	MULTILINEAR ALGEBRA	1559

VOLUME 5: OVERVIEW

IX	FINITE GROUPS	1617
62	GROUPS	1619
63	PERMUTATION GROUPS	1679
64	MATRIX GROUPS OVER GENERAL RINGS	1803
65	MATRIX GROUPS OVER FINITE FIELDS	1883
66	MATRIX GROUPS OVER INFINITE FIELDS	1939
67	MATRIX GROUPS OVER Q AND Z	1963
68	FINITE SOLUBLE GROUPS	1973
69	BLACK-BOX GROUPS	2053
70	ALMOST SIMPLE GROUPS	2059
71	DATABASES OF GROUPS	2121
72	AUTOMORPHISM GROUPS	2179
73	COHOMOLOGY AND EXTENSIONS	2197

VOLUME 6: OVERVIEW

\mathbf{X}	FINITELY-PRESENTED GROUPS	. . 2225
74	ABELIAN GROUPS	2227
75	FINITELY PRESENTED GROUPS	2265
76	FINITELY PRESENTED GROUPS: ADVANCED	2397
77	POLYCYCLIC GROUPS	2443
78	BRAID GROUPS	2485
79	GROUPS DEFINED BY REWRITE SYSTEMS	2535
80	AUTOMATIC GROUPS	2553
81	GROUPS OF STRAIGHT-LINE PROGRAMS	2573
82	FINITELY PRESENTED SEMIGROUPS	2583
83	MONOIDS GIVEN BY REWRITE SYSTEMS	2595

VOLUME 7: OVERVIEW

XI	ALGEBRAS	$. \qquad 2613$
84	ALGEBRAS	2615
85	STRUCTURE CONSTANT ALGEBRAS	2627
86	ASSOCIATIVE ALGEBRAS	2637
87	FINITELY PRESENTED ALGEBRAS	2667
88	MATRIX ALGEBRAS	2705
89	GROUP ALGEBRAS	2745
90	BASIC ALGEBRAS	2759
91	QUATERNION ALGEBRAS	2823
92	ALGEBRAS WITH INVOLUTION	2867
93	CLIFFORD ALGEBRAS	2883
94	NON-ASSOCIATIVE ALGEBRAS	2897
XII	REPRESENTATION THEORY	. 2905
95	MODULES OVER AN ALGEBRA	2907
96	K[G]-MODULES AND GROUP REPRESENTATIONS	2945
97	CHARACTERS OF FINITE GROUPS	2981
98	REPRESENTATIONS OF SYMMETRIC GROUPS	3015
99	MOD P GALOIS REPRESENTATIONS	3023

VOLUME 8: OVERVIEW

XIII	LIE THEORY	. 3031
100	INTRODUCTION TO LIE THEORY	3033
101	COXETER SYSTEMS	3039
102	ROOT SYSTEMS	3063
103	ROOT DATA	3085
104	COXETER GROUPS	3137
105	REFLECTION GROUPS	3177
106	LIE ALGEBRAS	3209
107	KAC-MOODY LIE ALGEBRAS	3297
108	QUANTUM GROUPS	3307
109	GROUPS OF LIE TYPE	3333
110	REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS	3373

VOLUME 9: OVERVIEW

XIV	COMMUTATIVE ALGEBRA	3413
111	GRÖBNER BASES	3415
112	POLYNOMIAL RING IDEAL OPERATIONS	3461
113	LOCAL POLYNOMIAL RINGS	3509
114	AFFINE ALGEBRAS	3525
115	MODULES OVER MULTIVARIATE RINGS	3541
116	INVARIANT THEORY	3593
117	DIFFERENTIAL RINGS	3639
XV	ALGEBRAIC GEOMETRY	3707
XV 118	ALGEBRAIC GEOMETRY	3707 3709
118	SCHEMES	3709
118 119	SCHEMES COHERENT SHEAVES	3709 3859
118 119 120	SCHEMES COHERENT SHEAVES ALGEBRAIC CURVES	3709 3859 3891
118 119 120 121	SCHEMES COHERENT SHEAVES ALGEBRAIC CURVES RESOLUTION GRAPHS AND SPLICE DIAGRAMS	3709 3859 3891 3999

VOLUME 10: OVERVIEW

XVI	ARITHMETIC GEOMETRY	4209
125	RATIONAL CURVES AND CONICS	4211
126	ELLIPTIC CURVES	4235
127	ELLIPTIC CURVES OVER FINITE FIELDS	4277
128	ELLIPTIC CURVES OVER ${f Q}$ AND NUMBER FIELDS	4301
129	ELLIPTIC CURVES OVER FUNCTION FIELDS	4385
130	MODELS OF GENUS ONE CURVES	4403
131	HYPERELLIPTIC CURVES	4421
132	HYPERGEOMETRIC MOTIVES	4527
133	L-FUNCTIONS	4555

VOLUME 11: OVERVIEW

XVII	MODULAR ARITHMETIC GEOMETRY	4613
134	MODULAR CURVES	4615
135	SMALL MODULAR CURVES	4635
136	CONGRUENCE SUBGROUPS OF $PSL_2(\mathbf{R})$	4659
137	ARITHMETIC FUCHSIAN GROUPS AND SHIMURA CURVES	4685
138	MODULAR FORMS	4709
139	MODULAR SYMBOLS	4753
140	BRANDT MODULES	4809
141	SUPERSINGULAR DIVISORS ON MODULAR CURVES	4823
142	MODULAR ABELIAN VARIETIES	4839
143	HILBERT MODULAR FORMS	4977
144	MODULAR FORMS OVER IMAGINARY QUADRATIC FIELDS	4997
145	ADMISSIBLE REPRESENTATIONS OF $\mathrm{GL}_2(\mathbf{Q}_p)$	5007

VOLUME 12: OVERVIEW

TOPOLOGY	5019
SIMPLICIAL HOMOLOGY	5021
GEOMETRY	5041
FINITE PLANES	5043
INCIDENCE GEOMETRY	5079
CONVEX POLYTOPES AND POLYHEDRA	5107
COMBINATORICS	5153
ENUMERATIVE COMBINATORICS	5155
PARTITIONS, WORDS AND YOUNG TABLEAUX	5161
SYMMETRIC FUNCTIONS	5195
INCIDENCE STRUCTURES AND DESIGNS	5221
HADAMARD MATRICES	5257
GRAPHS	5267
MULTIGRAPHS	5349
NETWORKS	5397
	SIMPLICIAL HOMOLOGY GEOMETRY

VOLUME 13: OVERVIEW

XXI	CODING THEORY	5417
158	LINEAR CODES OVER FINITE FIELDS	5419
159	ALGEBRAIC-GEOMETRIC CODES	5499
160	LOW DENSITY PARITY CHECK CODES	5509
161	LINEAR CODES OVER FINITE RINGS	5521
162	LINEAR CODES OVER THE INTEGER RESIDUE RING \mathbf{Z}_4	5543
163	ADDITIVE CODES	5585
164	QUANTUM CODES	5611
XXII	CRYPTOGRAPHY	564 9
165	PSEUDO-RANDOM BIT SEQUENCES	5651
XXIII	OPTIMIZATION	5659
166	LINEAR PROGRAMMING	5661

Ι	THE	MAGMA LANGUAGE	1
1	STAT	EMENTS AND EXPRESSIONS	. 3
	1.1	Introduction	5
	1.2	Starting, Interrupting and Terminating	5
	1.3	Identifiers	5
	1.4	Assignment	6
	1.4.1	Simple Assignment	6
	1.4.2	Indexed Assignment	7
	1.4.3	Generator Assignment	8
	1.4.4	Mutation Assignment	9
	1.4.5	Deletion of Values	10
	1.5	Boolean Values	10
	1.5.1	Creation of Booleans	11
	1.5.2	Boolean Operators	11
	1.5.3	Equality Operators	11
	1.5.4	Iteration	12
	1.6	Coercion	13
	1.7	The where is Construction	14
	1.8	Conditional Statements and Expressions	16
	1.8.1	The Simple Conditional Statement	16
	1.8.2	The Simple Conditional Expression	17
	1.8.3	The Case Statement	18
	1.8.4	The Case Expression	18
	1.9	Error Handling Statements	19
	1.9.1	The Error Objects	19
	1.9.2	Error Checking and Assertions	19
	1.9.3	Catching Errors	20
	1.10	Iterative Statements	21
	1.10.1	Definite Iteration	21
	1.10.2	Indefinite Iteration	22
	1.10.3	Early Exit from Iterative Statements	23
	1.11	Runtime Evaluation: the eval Expression	24
	1.12	Comments and Continuation	26
	1.13	Timing	26
	1.14	Types, Category Names, and Structures	28
	1.15	Random Object Generation	30
	1.16	Miscellaneous	32
	1 17	Bibliography	32

2	FUN	CTIONS, PROCEDURES AND PACKAGES	. 33
	2.1	Introduction	35
	2.2	Functions and Procedures	35
	2.2.1	Functions	35
	2.2.2	Procedures	39
	2.2.3	The forward Declaration	41
	2.3	Packages	42
	2.3.1	Introduction	42
	2.3.2	Intrinsics	43
	2.3.3	Resolving Calls to Intrinsics	45
	2.3.4	Attaching and Detaching Package Files	46
	$2.3.5 \\ 2.3.6$	Related Files	$47 \\ 47$
	2.3.0 $2.3.7$	Importing Constants Argument Checking	48
	$\frac{2.3.7}{2.3.8}$	Package Specification Files	49
	2.3.9	User Startup Specification Files	50
	$\frac{2.6.6}{2.4}$	Attributes	51
	2.4.1	Predefined System Attributes	51
	2.4.2	User-defined Attributes	52
	2.4.3	Accessing Attributes	52
	2.5	User-defined Verbose Flags	53
	2.5.1	Examples	53
	2.6	User-Defined Types	5ϵ
	2.6.1	Declaring User-Defined Types	56
	2.6.2	Creating an Object	57
	2.6.3	Special Intrinsics Provided by the User	57
	2.6.4	Examples	59
3	INPU	JT AND OUTPUT	. 65
	3.1	Introduction	67
	3.2	Character Strings	67
	3.2.1	Representation of Strings	67
	3.2.2	Creation of Strings	68
	3.2.3	Integer-Valued Functions	69
	3.2.4	Character Conversion	69
	3.2.5	Boolean Functions	70
	3.2.6	Parsing Strings	73 -
	3.3	Printing	74
	3.3.1	The print-Statement	74
	$3.3.2 \\ 3.3.3$	The printf and fprintf Statements	75 77
	3.3.4	Verbose Printing (vprint, vprintf) Automatic Printing	77 78
	3.3.5	Indentation	80
	3.3.6	Printing to a File	81
	3.3.7	Printing to a String	81
	3.3.8	Redirecting Output	82
	3.4	End of File Marker	82
	3.5	External Files	83
	3.5.1	Opening Files	83
	3.5.2	Operations on File Objects	83
	3.5.3	Reading a Complete File	85
	3.6	Pipes	86
	3.6.1	Pipe Creation	86
	3.6.2	Operations on Pipes	87

	$3.7.1 \\ 3.7.2$	Socket Creation Socket Properties	88 89
	3.7.3	Socket Predicates	89
	3.7.4	Socket I/O	89
	3.8	Interactive Input	91
	3.9	Loading a Program File	92
	3.10	Saving and Restoring Workspaces	92
	3.11	Logging a Session	93
	3.12	Memory Usage	93
	3.13	System Calls	94
	3.14	Creating Names	94
4	ENV	IRONMENT AND OPTIONS	. 95
	4.1	Introduction	97
	4.2	Command Line Options	97
	4.3	Environment Variables	99
	4.4	Set and Get	100
	4.5	Verbose Levels	105
	4.6	Other Information Procedures	106
	4.7	History	107
	4.8	The Magma Line Editor	108
	4.8.1	Key Bindings (Emacs and VI mode)	109
	4.8.2	Key Bindings in Emacs mode only	111
	4.8.3	Key Bindings in VI mode only	111
	4.9	The Magma Help System	114
	4.9.1	Internal Help Browser	116
5	MAG	MA SEMANTICS	117
	5.1	Introduction	119
	5.2	Terminology	119
	5.3	Assignment	120
	5.4	Uninitialized Identifiers	120
	5.5	Evaluation in Magma	121
	5.5.1	Call by Value Evaluation	121
	5.5.2	Magma's Evaluation Process	122
	5.5.3	Function Expressions	123
	5.5.4	Function Values Assigned to Identifiers	124
	5.5.5	Recursion and Mutual Recursion	124
	5.5.6	Function Application	125
	5.5.7	The Initial Context	126
	5.6	Scope	126
	5.6.1	Local Declarations The 'first use' Rule	127
	$5.6.2 \\ 5.6.3$	Identifier Classes	$\frac{127}{128}$
	5.6.4	The Evaluation Process Revisited	128
	5.6.4 $5.6.5$	The 'single use' Rule	$120 \\ 129$
	5.7	Procedure Expressions	129
	5.8	Reference Arguments	131
	5.9	Dynamic Typing	131
	$5.9 \\ 5.10$	· · · · · · · · · · · · · · · · · · ·	$\frac{132}{133}$
	5.10 $5.10.1$	Traps for Young Players Trap 1	133
	5.10.1 $5.10.2$	Trap 2	133
	5.10.2 5.11	Appendix A: Precedence	135
	0.11	11ppondin 11, 1 1000001100	100

VOI	UME	1: (CON	ITEN	TS

lv

	5.12	Appendix B: Reserved Words	136
6	THE	MAGMA PROFILER	137
	6.1	Introduction	139
	6.2	Profiler Basics	139
	6.3	Exploring the Call Graph	143
	6.3.1	Internal Reports	141
	6.3.2	HTML Reports	143
	6.4	Recursion and the Profiler	143
7	DEB	UGGING MAGMA CODE	147
	7.1	Introduction	149
	7.2	Using the Debugger	149

II	SETS,	SEQUENCES, AND MAPPINGS	153
8	INTRO	DUCTION TO AGGREGATES	155
	8.1	Introduction	157
	8.2	Restrictions on Sets and Sequences	157
	8.2.1	Universe of a Set or Sequence	158
	8.2.2	Modifying the Universe of a Set or Sequence	159
	8.2.3	Parents of Sets and Sequences	161
	8.3	Nested Aggregates	162
	8.3.1	Multi-indexing	162
9	SETS		165
	9.1	Introduction	167
	9.1.1	Enumerated Sets	167
	9.1.2	Formal Sets	167
	9.1.3	Indexed Sets	167
	9.1.4	Multisets	167
	9.1.5	Compatibility	168
	9.1.6	Notation	168
	9.2	Creating Sets	168
	9.2.1	The Formal Set Constructor	168
	9.2.2	The Enumerated Set Constructor	169
	9.2.3	The Indexed Set Constructor	171
	9.2.4	The Multiset Constructor	172
	9.2.5	The Arithmetic Progression Constructors	174
	9.3	Power Sets	175
	9.3.1	The Cartesian Product Constructors	177
	9.4	Sets from Structures	177
	9.5	Accessing and Modifying Sets	178
	9.5.1	Accessing Sets and their Associated Structures	178
	9.5.2	Selecting Elements of Sets	179
	9.5.3	Modifying Sets	182
	9.6	Operations on Sets	185
	9.6.1	Boolean Functions and Operators	185
	9.6.2	Binary Set Operators	186
	9.6.3	Other Set Operations	187
	9.7	Quantifiers	188
	9.8	Reduction and Iteration over Sets	191
10	SEQUI	ENCES	193
	10.1	Introduction	195
	10.1.1	Enumerated Sequences	195
	10.1.2	Formal Sequences	195
	10.1.3	Compatibility	196
	10.2	Creating Sequences	196
	10.2.1	The Formal Sequence Constructor	196
	10.2.2	The Enumerated Sequence Constructor	197
	10.2.3	The Arithmetic Progression Constructors	198
	10.2.4	Literal Sequences	199
	10.3	Power Sequences	199
	10.4	Operators on Sequences	200
	10.4.1	Access Functions	200
	10.4.2	Selection Operators on Enumerated Sequences	201

10.4.3 Modifying Enumerated Sequences 200 10.4.4 Creating New Enumerated Sequences from Existing Ones 207 10.5 Predicates on Sequences 210 10.5.1 Membership Testing 210 10.5.2 Testing Order Relations 211 10.6 Recursion, Reduction, and Iteration 212 10.6.1 Recursion 213 10.7 Reration 213 10.8 Bibliography 214 11 TUPLES AND CARTESIAN PRODUCTS 215 11.1 Introduction 217 11.2 Cartesian Product Constructor and Functions 217 11.3 Creating and Modifying Tuples 228 11.4 Tuple Access Functions 220 11.5 Equality 220 11.6 Other Operations 221 12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 14.1 Introduction 231 15.2 Creation of Coproducts 237 14.2 Creation of Coproducts 237 14.1 Introduction 231 14.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244 15.4 Access and Modification Functions 245 15.4 Access and Modification Functions 245 15.5 Creating a Record 244 15.4 Access and Modification Functions 245 15.5 Access and Modification Functions 245 15.4 Access and Modification Functions 245 15.5 Access and Modification Functions 245 15.4 Access and Modification Functions 245 15.5 Access and Modification Functions 245 15.5 Access and Modification Functions 245 15.4 Access and Modification Functions 245 15.5 Access and Modification Functions 245 15.5 Access and Modification Functions 245 15.6 Access and Modification Functions 245 15.			VOLUME 1: CONTENTS	lvii
10.4.4 Creating New Enumerated Sequences from Existing Ones 207 10.5 Predicates on Sequences 210 10.5.1 Membership Testing 210 10.5.2 Testing Order Relations 211 10.6 Recursion, Reduction, and Iteration 212 10.6.1 Recursion 213 10.6.2 Reduction 213 10.8 Bibliography 214 214 215 216 215 215 215 216		10.4.2	Modifying Enumerated Sequences	202
10.5 Predicates on Sequences 210 10.5.1 Membership Testing 210 10.5.2 Testing Order Relations 211 10.6 Recursion, Reduction, and Iteration 212 10.6.1 Recursion 213 10.7 Iteration 213 10.8 Bibliography 214 11 TUPLES AND CARTESIAN PRODUCTS 215 11.1 Introduction 217 11.2 Cartesian Product Constructor and Functions 217 11.3 Creating and Modifying Tuples 218 11.4 Tuple Access Functions 220 11.5 Equality 220 11.6 Other Operations 221 12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14.1 Coproduct Sign 231 14.2 Creation of Coproduct Elements 237 14.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 244 15.3 Creating a Record 244 245 244 246 247 246 247 247 248 248 249 248 244 249 244 240 244 241 241 242 241 242 244 242 244 243 244 244 245 244 245 246 246 247 247 248 248 248 248 249 249 249 240 240 240 240 240 240 241 242 244 241 242 244 242 244 244 245 245 246 246 247 247 248 248 249 248 249 249 240 240 240 240 240 241 242 244 242 244 244 245 245 246 246 246 246 246 247 247 248 247 248 247 249 240 240 240 240 240 241 241 241 242 242 244 243 244 244 245 245 246 246 246 247 247 248 247 248 247 249				
10.5.1 Membership Testing 210 10.5.2 Testing Order Relations 211 10.6 Recursion, Reduction, and Iteration 212 10.6.1 Recursion 213 10.7 Iteration 213 10.8 Bibliography 214 11 TUPLES AND CARTESIAN PRODUCTS 215 11.1 Introduction 217 11.2 Cartesian Product Constructor and Functions 217 11.3 Creating and Modifying Tuples 218 11.4 Tuple Access Functions 220 11.5 Equality 220 11.6 Other Operations 221 12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14.1 Introduction 231 14.2 Creation Functions 235 14.1 Introduction 237 14.2 Creation of Coproducts 237 14.2 Creation of Coproducts 237 14.2 Creation of Coproducts 237 14.2 Creation of Coproduct Elements 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 244 15.3 Creating a Record 244 244 244 245 244 246 247 247 248 248 249 248 249 249 240 240 241 241 241 241 242 242 243 244 245 245 246 246 247 247 248 248 249 248 249 249 240 240 241 241 241 241 242 241 242 242 244 243 244 244 245 244 245 245 246 246 246 246 247 247 248 248 249 248 249 249 240 240 240 240 240 241 242 241 242 242 244 243 244 244 245 245 246 246 247 247 248 248 249 249 240 240 240 240 240 241 242 242 242 243 244 244 245 245 245 246 246 247 247 248 24		10.5		
10.6 Recursion, Reduction, and Iteration 212 10.6.1 Recursion 213 10.7 Iteration 213 10.8 Bibliography 214 11 TUPLES AND CARTESIAN PRODUCTS 215 11.1 Introduction 217 11.2 Cartesian Product Constructor and Functions 217 11.3 Creating and Modifying Tuples 218 11.4 Tuple Access Functions 220 11.5 Equality 220 11.6 Other Operations 221 12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14.1 Introduction 231 13.2 Creation of Coproducts 237 14.1 Introduction 237 14.2 Creation of Coproducts 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244 245 Creating a Record 244 246 243 247 248 248 249 248 249 248 249 249 249 240 249 241 241 242 Creating a Record 244 243 245 245 Creating a Record 244 246 Creating a Record 244 247 248 248 249 248 249 249 249 240 249 240 240 241 241 242 Creating a Record 244 245 245 246 246 246 247 248 248 249 248 249 249 249 240 240 241 242 242 243 243 244 244 245 245 246 246 246 247 247 248 248 248 249 249 249 240 240 241 242 242 244 243 244 244 245 245 246 246 246 247 247 248 248 249 249 240 240 240 240 241 242 242 243 243 244 244 245 245 246 246 246 247 247 248 248 248 248		10.5.1	Membership Testing	210
10.6.1 Recursion 212 10.6.2 Reduction 213 10.7 Iteration 213 10.8 Bibliography 214 11 TUPLES AND CARTESIAN PRODUCTS 215 11.1 Introduction 217 11.2 Cartesian Product Constructor and Functions 217 11.3 Creating and Modifying Tuples 218 11.4 Tuple Access Functions 220 11.5 Equality 220 11.6 Other Operations 221 11.6 Other Operations 221 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 13.2 Operations 231 14.2 Creation of Coproducts 237 14.2 Creation Functions 237 14.2 Creation functions 237 14.2 Creation functions 237 14.2 Creation functions 238 14.5 Flattening 239 14.6 Universal Map 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244 243 15.3 Creating a Record 244 245				
10.6.2 Reduction 213 10.7 Iteration 213 10.8 Bibliography 214				
10.7				
10.8 Bibliography 214				
11.1 Introduction 217 11.2 Cartesian Product Constructor and Functions 217 11.3 Creating and Modifying Tuples 218 11.4 Tuple Access Functions 220 11.5 Equality 220 11.6 Other Operations 221 11.6 Other Operations 221 12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14.2 Creation Functions 231 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.2.2 Creation of Coproduct Elements 238 14.4 Retrieve 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 14.6 Universal Map 239 14.6 Universal Map 239 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244			Bibliography	
11.2 Cartesian Product Constructor and Functions 217 11.3 Creating and Modifying Tuples 218 11.4 Tuple Access Functions 220 11.5 Equality 220 11.6 Other Operations 221 12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15	11	TUPI	LES AND CARTESIAN PRODUCTS	215
11.3 Creating and Modifying Tuples 218 11.4 Tuple Access Functions 220 11.5 Equality 220 11.6 Other Operations 221 12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS <		11.1	Introduction	217
11.4 Tuple Access Functions 220 11.5 Equality 220 11.6 Other Operations 221 12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 <		11.2	Cartesian Product Constructor and Functions	217
11.5 Equality 11.6 220 21.6 Other Operations 221 12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 24		11.3	Creating and Modifying Tuples	218
11.6 Other Operations 221 12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244				
12 LISTS 223 12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244				_
12.1 Introduction 225 12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2.1 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244		11.6	Other Operations	221
12.2 Construction of Lists 225 12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244	12	LISTS	S	223
12.3 Creation of New Lists 225 12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244		12.1	Introduction	225
12.4 Access Functions 226 12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244		12.2	Construction of Lists	225
12.5 Assignment Operator 227 13 ASSOCIATIVE ARRAYS 229 13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244				
13 ASSOCIATIVE ARRAYS				
13.1 Introduction 231 13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244		12.5	Assignment Operator	227
13.2 Operations 231 14 COPRODUCTS 235 14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244	13	ASSO	OCIATIVE ARRAYS	229
14 COPRODUCTS 235 14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244		13.1	Introduction	231
14.1 Introduction 237 14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 238 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 241 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244		13.2	Operations	231
14.2 Creation Functions 237 14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS	14	COPI	RODUCTS	235
14.2.1 Creation of Coproducts 237 14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS		14.1	Introduction	237
14.2.2 Creation of Coproduct Elements 237 14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS				
14.3 Accessing Functions 238 14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS				
14.4 Retrieve 238 14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS				
14.5 Flattening 239 14.6 Universal Map 239 15 RECORDS 15.1 Introduction 243 15.2 The Record Format Constructor 243 15.3 Creating a Record 244				
14.6 Universal Map 239 15 RECORDS				
15.1Introduction24315.2The Record Format Constructor24315.3Creating a Record244				
15.2 The Record Format Constructor 243 15.3 Creating a Record 244	15	RECO	ORDS	241
15.2 The Record Format Constructor 243 15.3 Creating a Record 244		15.1	Introduction	243
15.3 Creating a Record 244				
		15.4	Access and Modification Functions	245

16	MAP	PINGS	247
	16.1	Introduction	249
	16.1.1	The Map Constructors	249
	16.1.2	The Graph of a Map	250
	16.1.3	Rules for Maps	250
	16.1.4	Homomorphisms	250
	16.1.5	Checking of Maps	250
	16.2	Creation Functions	251
	16.2.1	Creation of Maps	251
	16.2.2	Creation of Partial Maps	252
	16.2.3	Creation of Homomorphisms	252
	16.2.4	Coercion Maps	253
	16.3	Operations on Mappings	253
	16.3.1	Composition	253
	16.3.2	(Co)Domain and (Co)Kernel	254
	16.3.3	Înverse	254
	16.3.4	Function	254
	16.4	Images and Preimages	255
	16.5	Parents of Maps	256

III	BASI	C RINGS	257
17	INTR	ODUCTION TO RINGS	. 259
	17.1	Overview	261
	17.2	The World of Rings	262
	17.2.1	New Rings from Existing Ones	262
	17.3	Coercion	263
	17.3.1	Automatic Coercion	264
	17.3.2	Forced Coercion	266
	17.4	Generic Ring Functions	268
	17.4.1	Related Structures	268
	17.4.2	Numerical Invariants	268
	17.4.3	Predicates and Boolean Operations	269
	17.5	Generic Element Functions	270
	17.5.1	Parent and Category	270
	17.5.2	Creation of Elements	271
	17.5.3	Arithmetic Operations	271
	17.5.4	Equality and Membership	272
	17.5.5	Predicates on Ring Elements	273
	17.5.6	Comparison of Ring Elements	274
	17.6	Ideals and Quotient Rings	275
	17.6.1	Defining Ideals and Quotient Rings	275
	17.6.2	Arithmetic Operations on Ideals	276
	17.6.3	Boolean Operators on Ideals	276
	17.7	Other Ring Constructions	277
	17.7.1	Residue Class Fields	$\frac{-1}{277}$
	17.7.2	Localization	277
	17.7.3	Completion	277
	17.7.4	Transcendental Extension	277
18	RING	OF INTEGERS	. 279
	18.1	Introduction	283
	18.1.1	Representation	283
	18.1.2	Coercion	283
	18.1.3	Homomorphisms	283
	18.2	Creation Functions	284
	18.2.1	Creation of Structures	284
	18.2.2	Creation of Elements	284
	18.2.3	Printing of Elements	285
	18.2.4	Element Conversions	286
	18.3	Structure Operations	287
	18.3.1	Related Structures	287
	18.3.2	Numerical Invariants	288
	18.3.3	Ring Predicates and Booleans	288
	18.4	Element Operations	288
	18.4.1	Arithmetic Operations	288
	18.4.2	Bit Operations	289
	18.4.3	Bitwise Operations	289

	18.4.4	Equality and Membership	290
	18.4.5	Parent and Category	290
	18.4.6	Predicates on Ring Elements	290
	18.4.7	Comparison of Ring Elements	292
	18.4.8	Conjugates, Norm and Trace	292
	18.4.9	Other Elementary Functions	292
	18.5	Random Numbers	294
	18.6	GCD and LCM	295
	18.7	Arithmetic Functions	296
	18.8	Combinatorial Functions	299
	18.9	Primes and Primality Testing	300
	18.9.1	Primality	301
	18.9.2	Other Functions Relating to Primes	303
	18.10	Factorization	305
	18.10.1	General Factorization	305
	18.10.2	Storing Potential Factors	307
	18.10.3	Specific Factorization Algorithms	308
	18.10.4	Factorization Related Functions	312
	18.11	Factorization Sequences	313
	18.11.1	Creation and Conversion	314
	18.11.2 $18.11.3$	Arithmetic Divisors	$314 \\ 314$
	18.11.4	Predicates	$314 \\ 315$
	18.12	Modular Arithmetic	315
	18.12.1	Arithmetic Operations	$\frac{315}{315}$
	18.12.1 $18.12.2$	The Solution of Modular Equations	316
	18.13	Infinities	317
	18.13.1	Creation	317
	18.13.2	Arithmetic	318
	18.13.3	Comparison	318
	18.13.4	Miscellaneous	318
	18.14	Advanced Factorization Techniques: The Number Field Sieve	319
	18.14.1	The MAGMA Number Field Sieve Implementation	319
	18.14.2	Naive NFS	320
	18.14.3	Factoring with NFS Processes	320
	18.14.4	Data Files	325
	18.14.5	Distributing NFS Factorizations	326
	18.14.6	MAGMA and CWI NFS Interoperability	327
	18.14.7	Tools for Finding a Suitable Polynomial	328
	18.15	Bibliography	330
19	INTE	GER RESIDUE CLASS RINGS	. 333
	19.1	Introduction	335
	19.2	Ideals of ${f Z}$	335
	19.3	Z as a Number Field Order	336
	19.4	Residue Class Rings	337
	19.4.1	Creation	337
	19.4.2	Coercion	338
	19.4.3	Elementary Invariants	339
	19.4.4	Structure Operations	339
	19.4.5	Ring Predicates and Booleans	340
	19.4.6	Homomorphisms	340
	19.5	Elements of Residue Class Rings	340
	19.5.1 $19.5.2$	Creation Arithmetic Operators	$\frac{340}{341}$
	13.0.2	Antimical Operators	341

	19.5.3	Equality and Membership	341
	19.5.3 $19.5.4$	Parent and Category	341
	19.5.4 $19.5.5$	Predicates on Ring Elements	341
	19.5.6	Solving Equations over $\mathbf{Z}/m\mathbf{Z}$	341
	19.6	Ideal Operations	343
	19.7	The Unit Group	344
	19.8	Dirichlet Characters	345
	19.8.1	Creation	346
	19.8.2	Element Creation	346
	19.8.3	Attributes of Dirichlet Groups	347
	19.8.4	Attributes of Elements	348
	19.8.5	Evaluation	349
	19.8.6	Arithmetic	350
	19.8.7	Example	350
20	RATIO	ONAL FIELD	353
	20.1	Introduction	355
	20.1.1	Representation	355
	20.1.2	Coercion	355
	20.1.3	Homomorphisms	356
	20.2	Creation Functions	357
	20.2.1	Creation of Structures	357
	20.2.2	Creation of Elements	357
	20.3	Structure Operations	358
	20.3.1	Related Structures	358
	20.3.2	Numerical Invariants	360
	20.3.3	Ring Predicates and Booleans	360
	20.4	Element Operations	361
	20.4.1	Parent and Category	361
	20.4.2	Arithmetic Operators	361
	20.4.3	Numerator and Denominator	361
	20.4.4	Equality and Membership	361
	20.4.5	Predicates on Ring Elements	362
	20.4.6	Comparison	362
	20.4.7	Conjugates, Norm and Trace	362
	20.4.8	Absolute Value and Sign	363
	20.4.9	Rounding and Truncating	363
	20.4.10	Rational Reconstruction	364
	20.4.11	Valuation	364
	20.4.12	Sequence Conversions	364

lxi

	20.0.0	Ting I redicates and booleans	500
	20.4	Element Operations	361
	20.4.1	Parent and Category	361
	20.4.2	Arithmetic Operators	361
	20.4.3	Numerator and Denominator	361
	20.4.4	Equality and Membership	361
	20.4.5	Predicates on Ring Elements	362
	20.4.6	Comparison	362
	20.4.7	Conjugates, Norm and Trace	362
	20.4.8	Absolute Value and Sign	363
	20.4.9	Rounding and Truncating	363
	20.4.10	Rational Reconstruction	364
	20.4.11	Valuation	364
	20.4.12	Sequence Conversions	364
21	FINIT	E FIELDS	365
	21.1	Introduction	367
	21.1.1	Representation of Finite Fields	367
	21.1.2	Conway Polynomials	367
	21.1.3	Ground Field and Relationships	368
	21.2	Creation Functions	368
	21.2.1	Creation of Structures	368
	21.2.2	Creating Relations	372
	21.2.3	Special Options	372
	21.2.4	Homomorphisms	374
	21.2.5	Creation of Elements	374
	21.2.6	Special Elements	375
	21.2.7	Sequence Conversions	376
	21.3	Structure Operations	376

	21.3.1	Related Structures	377
	21.3.2	Numerical Invariants	379
	21.3.3	Defining Polynomial	379
	21.3.4	Ring Predicates and Booleans	379
	21.3.5	Roots	380
	21.4	Element Operations	381
	$21.4.1 \\ 21.4.2$	Arithmetic Operators Equality and Mambarship	381 381
	21.4.2 $21.4.3$	Equality and Membership Parent and Category	381
	21.4.3 $21.4.4$	Predicates on Ring Elements	$\frac{381}{382}$
	21.4.5	Minimal and Characteristic Polynomial	382
	21.4.6	Norm, Trace and Frobenius	383
	21.4.7	Order and Roots	384
	21.5	Polynomials for Finite Fields	386
	21.6	Discrete Logarithms	387
	21.7	Permutation Polynomials	390
	21.8	Bibliography	391
22	NEAI	RFIELDS	. 393
	22.1	Introduction	395
	22.2	Nearfield Properties	395
	22.2.1	Sharply Doubly Transitive Groups	396
	22.3	Constructing Nearfields	397
	22.3.1	Dickson Nearfields	397
	22.3.2	Zassenhaus Nearfields	400
	22.4	Operations on Elements	401
	22.4.1	Nearfield Arithmetic	401
	22.4.2	Equality and Membership	401
	22.4.3	Parent and Category	401
	22.4.4	Predicates on Nearfield Elements	401
	22.5	Operations on Nearfields	403
	22.6	The Group of Units	404
	22.7	Automorphisms	405
	22.8	Nearfield Planes	406
	22.8.1	Hughes Planes	407
	22.9	Bibliography	408
23	UNIV	VARIATE POLYNOMIAL RINGS	. 411
	23.1	Introduction	415
	23.1.1	Representation	415
	23.2	Creation Functions	415
	23.2.1	Creation of Structures	415
	$23.2.2 \\ 23.2.3$	Print Options Creation of Elements	$416 \\ 417$
	23.2.3 23.3		
	23.3 23.3.1	Structure Operations Related Structures	419 419
	23.3.1 $23.3.2$	Changing Rings	419
	23.3.3	Numerical Invariants	420
	23.3.4	Ring Predicates and Booleans	420
	23.3.5	Homomorphisms	420
	23.4	Element Operations	421
	23.4.1	Parent and Category	421
	23.4.2	Arithmetic Operators	421
	23.4.3	Equality and Membership	421

	23.4.4	Predicates on Ring Elements	422
	23.4.5	Coefficients and Terms	422
	23.4.6	Degree	423
	23.4.7 $23.4.8$	Roots Derivative, Integral	424 426
	23.4.6 $23.4.9$	Evaluation, Interpolation	$\frac{420}{426}$
	23.4.10	Quotient and Remainder	426
	23.4.11	Modular Arithmetic	428
	23.4.12	Other Operations	428
	23.5	Common Divisors and Common Multiples	428
	23.5.1	Common Divisors and Common Multiples	429
	23.5.2	Content and Primitive Part	430
	23.6	Polynomials over the Integers	431
	23.7	Polynomials over Finite Fields	431
	23.8	Factorization	432
	23.8.1	Factorization and Irreducibility	432
	23.8.2	Resultant and Discriminant	436
	23.8.3	Hensel Lifting	437
	23.9	Ideals and Quotient Rings	438
	23.9.1	Creation of Ideals and Quotients	438
	23.9.2	Ideal Arithmetic	438
	23.9.3	Other Functions on Ideals	439
	23.9.4	Other Functions on Quotients	440
	23.10	Special Families of Polynomials	440
	23.10.1	Orthogonal Polynomials	440
	23.10.2	Permutation Polynomials	441
	23.10.3	The Bernoulli Polynomial	442
	23.10.4 23.11	Swinnerton-Dyer Polynomials Bibliography	$442 \\ 442$
24		TIVARIATE POLYNOMIAL RINGS	445
	24.1	Introduction	447
	24.1.1	Representation	447
	24.2	Polynomial Rings and Polynomials	448
	24.2.1	Creation of Polynomial Rings	448
	24.2.2	Print Names	450
	$24.2.3 \\ 24.2.4$	Graded Polynomial Rings	450
	24.2.4 24.3	Creation of Polynomials Structure Operations	451 451
	$24.3 \\ 24.3.1$	Structure Operations Related Structures	$451 \\ 451$
	24.3.1 $24.3.2$	Numerical Invariants	451
	24.3.3	Ring Predicates and Booleans	452
	24.3.4	Changing Coefficient Ring	452
	24.3.5	Homomorphisms	452
	24.4	Element Operations	453
	24.4.1	Arithmetic Operators	453
	24.4.2	Equality and Membership	453
	24.4.3	Predicates on Ring Elements	454
	24.4.4	Coefficients, Monomials and Terms	454
	24.4.5	Degrees	460
	24.4.6	Univariate Polynomials	460
	24.4.7	Derivative, Integral	462
	24.4.8	Evaluation, Interpolation	462
	24.4.9	Quotient and Reductum	464
	24.4.10	Diagonalizing a Polynomial of Degree 2	464
	24.5	Greatest Common Divisors	465

lxiii

	$24.5.1 \\ 24.5.2$	Common Divisors and Common Multiples Content and Primitive Part	$\frac{465}{467}$
	24.6	Factorization and Irreducibility	467
	24.0 24.7	Resultants and Discriminants	471
	24.7	Polynomials over the Integers	472
	24.8	Bibliography	472
25	REAL	AND COMPLEX FIELDS	473
	25.1	Introduction	477
	25.1.1	Overview of Real Numbers in Magma	477
	25.1.2	Coercion	478
	$25.1.3 \\ 25.1.4$	Homomorphisms Special Options	$479 \\ 479$
	25.1.4 $25.1.5$	Special Options Version Functions	480
	25.1.5 25.2	Creation Functions	480
	$\frac{25.2}{25.2.1}$	Creation of Structures	480
	25.2.1 $25.2.2$	Creation of Elements	480
	25.2.2 25.3	Structure Operations	483
	25.3 $25.3.1$	Related Structures	483
	25.3.1 $25.3.2$	Numerical Invariants	483
	25.3.2 $25.3.3$	Ring Predicates and Booleans	484
	25.3.4	Other Structure Functions	484
	25.4	Element Operations	484
	25.4.1	Generic Element Functions and Predicates	484
	25.4.2	Comparison of and Membership	485
	25.4.3	Other Predicates	485
	25.4.4	Arithmetic	485
	25.4.5	Conversions	485
	25.4.6	Rounding	486
	25.4.7	Precision	487
	25.4.8	Constants	487
	25.4.9	Simple Element Functions	488
	25.4.10	Roots	489
	25.4.11	Continued Fractions	494
	25.4.12	Linear and Algebraic Dependencies	495
	25.5	Transcendental Functions	497
	25.5.1	Exponential, Logarithmic and Polylogarithmic Functions	497
	25.5.2	Trigonometric Functions	499
	25.5.3	Inverse Trigonometric Functions	501
	25.5.4	Hyperbolic Functions	502
	25.5.5	Inverse Hyperbolic Functions	503
	25.6	Elliptic and Modular Functions	505
	25.6.1	Eisenstein Series	505
	25.6.2	Weierstrass Series	507
	25.6.3	The Jacobi θ and Dedekind η -functions	507
	25.6.4	The <i>j</i> -Invariant and the Discriminant	508
	25.6.5	Weber's Functions	509
	25.7	Theta Functions	511
	25.8	Gamma, Bessel and Associated Functions	511
	25.9	The Hypergeometric Function	514
	25.10	Other Special Functions	514
	25.11	Numerical Functions	516
	25.11.1	Summation of Infinite Series	516
	25.11.2	Integration	517
	25.11.3	Numerical Derivatives	518
	25.12	Bibliography	518

IV	MAT	RICES AND LINEAR ALGEBRA	521
26	MATI	RICES	523
	26.1	Introduction	527
	26.2	Creation of Matrices	527
	26.2.1	General Matrix Construction	527
	26.2.2	Shortcuts	529
	26.2.3	Construction of Structured Matrices	531
	26.2.4	Construction of Random Matrices	534
	26.2.5	Creating Vectors	535
	26.3	Elementary Properties	535
	26.4	Accessing or Modifying Entries	536
	26.4.1	Indexing	536
	26.4.2	Extracting and Inserting Blocks	537
	26.4.3	Row and Column Operations	540
	26.5	Building Block Matrices	543
	26.6	Changing Ring	544
	26.7	Elementary Arithmetic	545
	26.8	Nullspaces and Solutions of Systems	546
	26.9	Predicates	549
	26.10	Determinant and Other Properties	550
	26.11	Minimal and Characteristic Polynomials and Eigenvalues	552
	26.12	Canonical Forms	554
	26.12.1	Canonical Forms over General Rings	554
	26.12.2	Canonical Forms over Fields	554
	26.12.3	Canonical Forms over Euclidean Domains	557
	26.13	Orders of Invertible Matrices	560
	26.14	Numerical Linear Algebra	561
	26.14.1	Rank, Kernel, Solution, and Pseudoinverse	563
	26.14.2	Eigenvalues and the Singular Value Decomposition	566
	26.15	Miscellaneous Operations on Matrices	569
	26.16	Bibliography	569
27	SPAR	SE MATRICES	571
	27.1	Introduction	573
	27.2	Creation of Sparse Matrices	573
	27.2.1	Construction of Initialized Sparse Matrices	573
	27.2.2	Construction of Trivial Sparse Matrices	574
	27.2.3	Construction of Structured Matrices	576
	27.2.4	Parents of Sparse Matrices	576
	27.3	Accessing Sparse Matrices	577
	27.3.1	Elementary Properties	577
	27.3.2	Weights	578
	$27.4 \\ 27.4.1$	Accessing or Modifying Entries	578 580
	$27.4.1 \\ 27.4.2$	Extracting and Inserting Blocks Row and Column Operations	580 582
	27.5		583
	$\frac{27.5}{27.6}$	Building Block Matrices Conversion to and from Dense Matrices	584
	$\frac{27.0}{27.7}$		
		Changing Ring	584
	27.8	Predicates Elementows Arithmetic	585
	27.9	Elementary Arithmetic	586
	27.10	Multiplying Vectors or Matrices by Sparse Matrices	587
	27.11	Non-trivial Properties	587

	27.11.1	Nullspace and Rowspace	587
	27.11.2	Rank	588
	27.12	Determinant and Other Properties	588
	27.12.1	Elementary Divisors (Smith Form)	589
	27.12.2	Verbosity	589
	27.13	Linear Systems (Structured Gaussian Elimination)	589
	27.14	Bibliography	596
28	VECT	COR SPACES	597
	28.1	Introduction	599
	28.1.1	Vector Space Categories	599
	28.1.2	The Construction of a Vector Space	599
	28.2	Creation of Vector Spaces and Arithmetic with Vectors	600
	28.2.1	Construction of a Vector Space	600
	28.2.2	Construction of a Vector Space with Inner Product Matrix	601
	28.2.3	Construction of a Vector	601
	28.2.4	Deconstruction of a Vector	603
	28.2.5	Arithmetic with Vectors	603
	28.2.6	Indexing Vectors and Matrices	606
	28.3	Subspaces, Quotient Spaces and Homomorphisms	608
	28.3.1	Construction of Subspaces	608
	28.3.2	Construction of Quotient Vector Spaces	610
	28.4	Changing the Coefficient Field	612
	28.5	Basic Operations	613
	28.5.1	Accessing Vector Space Invariants	613
	28.5.2	Membership and Equality	614
	28.5.3	Operations on Subspaces	615
	28.6	Reducing Vectors Relative to a Subspace	616
	28.7	Bases	616
	28.8	Operations with Linear Transformations	619
29	POLA	R SPACES	621
	29.1	Introduction	623
	29.2	Reflexive Forms	623
	29.2.1	Quadratic Forms	624
	29.3	Inner Products	625
	29.3.1	Orthogonality	627
	29.4	Isotropic and Singular Vectors and Subspaces	628
	29.5	The Standard Forms	631
	29.6	Constructing Polar Spaces	634
	29.6.1	Symplectic Spaces	634
	29.6.2	Unitary Spaces	635
	29.6.3	Quadratic Spaces	636
	29.7	Isometries and Similarities	639
	29.7.1	Isometries	639
	29.7.2	Similarities	642
	29.8	Classical Groups	644
	29.9	Lie Algebras and Bilinear Forms	645
	29.10	Wall Forms	647
	29.11	Invariant Forms	648
	29.11.1	Semi-invariant Forms	651
	29.12	Bibliography	653

\mathbf{V}	LATT	TICES AND QUADRATIC FORMS	655
30	LATT	ICES	657
	30.1	Introduction	661
	30.2	Presentation of Lattices	662
	30.3	Creation of Lattices	663
	30.3.1	Elementary Creation of Lattices	663
	30.3.2	Lattices from Linear Codes	667
	30.3.3	Lattices from Algebraic Number Fields	668
	30.3.4	Special Lattices	670
	30.4	Lattice Elements	671
	30.4.1	Creation of Lattice Elements	671
	30.4.2	Operations on Lattice Elements	671
	30.4.3	Predicates and Boolean Operations	673
	30.4.4	Access Operations	673
	30.5	Properties of Lattices	675
	30.5.1	Associated Structures	675
	30.5.2	Attributes of Lattices	676
	30.5.3	Predicates and Booleans on Lattices	677
	30.5.4	Base Ring and Base Change	678
	30.6	Construction of New Lattices	678
	30.6.1	Sub- and Superlattices and Quotients	678
	30.6.2	Standard Constructions of New Lattices	680
	30.7	Reduction of Matrices and Lattices	683
	30.7.1	LLL Reduction	683
	30.7.2	Pair Reduction	693
	30.7.3	Seysen Reduction	694
	30.7.4	HKZ Reduction	695
	30.7.5	BKZ Reduction	698
	30.7.6	Recovering a Short Basis from Short Lattice Vectors	698
	30.8	Minima and Element Enumeration	699
	30.8.1	Minimum, Density and Kissing Number	700
	30.8.2	Shortest and Closest Vectors	702
	30.8.3	Short and Close Vectors	704
	30.8.4	Short and Close Vector Processes	710
	30.8.5	Successive Minima and Theta Series	711
	30.8.6	Lattice Enumeration Utilities	712
	30.9	Theta Series as Modular Forms	714
	30.10	Voronoi Cells, Holes and Covering Radius	715
	30.11	Orthogonalization	718
	30.12	Testing Matrices for Definiteness	720
	30.13	Genera and Spinor Genera	721
	30.13.1	Genus Constructions	721
	30.13.2	Invariants of Genera and Spinor Genera	721
	30.13.3	Invariants of p -adic Genera	723
	30.13.4	Neighbour Relations and Graphs	723
	30.14	Attributes of Lattices	727
	30.15	Database of Lattices	727
	30.15.1	Creating the Database	728

	30.15.2	Database Information	728
	30.15.3	Accessing the Database	729
	30.15.4	Hermitian Lattices	731
	30.16	Bibliography	733
31	LATT	ICES OVER NUMBER FIELDS	735
	31.1	Introduction	737
	31.2	Number Field Lattices	737
	31.2.1	Creation of Number Field Lattices	737
	31.2.2	Attributes of Number Field Lattices	742
	31.2.3	Predicates on Number Field Lattices	744
	31.2.4	Totally Positive Definite Lattices	745
	31.3	Number Field Lattice Elements	746
	31.3.1	Creation	746
	31.3.2	Parent and Element Relations	747
	$31.3.3 \\ 31.3.4$	Arithmetic Access Functions	747 749
	31.3.4 31.4		750
	$\frac{31.4}{31.5}$	Examples Lorentzian Lattices	
	31.5.1	Special Intrinsics	756 756
	31.6	Bibliography	758
	51.0	Dibliography	190
32	LATT	ICES WITH GROUP ACTION	759
	32.1	Introduction	761
	32.2	Automorphism Group and Isometry Testing	761
	32.2.1	Automorphism Group and Isometry Testing over $\mathbf{F}_q[t]$	767
	32.3	Lattices from Matrix Groups	769
	32.3.1	Creation of G -Lattices	770
	32.3.2	Operations on G -Lattices	770
	32.3.3	Invariant Forms	771
	32.3.4	Endomorphisms	772
	32.3.5	G-invariant Sublattices	773
	32.3.6	Lattice of Sublattices	777
	32.4	Bibliography	782
33	QUAL	DRATIC FORMS	783
	33.1	Introduction	785
	33.2	Constructions and Conversions	785
	33.3	Local Invariants	786
	33.4	Isotropic Subspaces	787
	33.5	Bibliography	790
34	BINA	RY QUADRATIC FORMS	791
	34.1	Introduction	793
	34.2	Creation Functions	793
	34.2.1	Creation of Structures	793
	34.2.2	Creation of Forms	794
	34.3	Basic Invariants	794
	34.4	Operations on Forms	795
	34.4.1	Arithmetic	795
	34.4.2	Matrix Action	796

	VOLUME 3: CONTENTS	lxix
34.4.3	Reduction	796
34.4.4	Attribute Access	796
34.4.5	Boolean Operations	797
34.4.6	Maps of Forms	797
34.4.7	Related Structures	798
34.5	Reduced Forms	798
34.6	Class Groups	798
34.7	Discrete Logarithms	801
34.8	Elliptic and Modular Invariants	802
34.9	Class Invariants	803
34.10	Bibliography	803

VI	GLOI	BAL ARITHMETIC FIELDS	805
35	NUMI	BER FIELDS	807
	35.1	Introduction	811
	35.2	Acknowledgement	812
	35.3	Creation Functions	812
	35.3.1	Creation of Number Fields	812
	35.3.2	Maximal Orders	819
	35.3.3	Creation of Elements	820
	35.3.4	Creation of Homomorphisms	821
	35.4	Structure Operations	822
	35.4.1	General Functions	822
	35.4.2	Related Structures	822
	35.4.3	Representing Fields as Vector Spaces	826
	35.4.4	Invariants	828
	35.4.5	Basis Representation	830
	$35.4.6 \\ 35.4.7$	Ring Predicates Field Predicates	832 833
	$35.5 \\ 35.5.1$	Element Operations Parent and Category	<i>833</i> 833
	35.5.1 $35.5.2$	Parent and Category Arithmetic	834
	35.5.3	Equality and Membership	834
	35.5.4	Predicates on Elements	835
	35.5.5	Field Generators	835
	35.5.6	Real and Complex Embeddings	836
	35.5.7	Heights	836
	35.5.8	Norm, Trace, and Minimal Polynomial	836
	35.5.9	Other Functions	838
	35.6	Class Group and Unit Group	839
	35.7	Galois Theory	839
	35.8	Solving Norm Equations	840
	35.9	Places and Divisors	841
	35.9.1	Creation of Structures	841
	35.9.2	Operations on Structures	841
	35.9.3	Creation of Elements	841
	35.9.4	Arithmetic with Places and Divisors	842
	35.9.5	Other Functions for Places and Divisors	842
	35.10	Number Field Database	845
	35.10.1	Creation	845
	35.10.2	Access	846
	35.11	Bibliography	848
36	QUAL	DRATIC FIELDS	849
	36.1	Introduction	851
	36.1.1	Representation	851
	36.2	Creation of Structures	852
	36.3	Operations on Structures	853
	36.3.1	Ideal Class Group	854
	36.3.2	Norm Equations	857
	36.4	Special Element Operations	858
	36.4.1	Division Algorithm	858
	36.4.2	Factorization	859
	36.4.3	Conjugates	859
	36.4.4	Other Element Functions	859

	$36.5 \\ 36.6$	Special Functions for Ideals Bibliography	861 861
	30.0	210110610471.)	001
37	CYCI	LOTOMIC FIELDS	. 863
	37.1	Introduction	865
	37.2	Creation Functions	865
	37.2.1	Creation of Cyclotomic Fields	865
	37.2.2	Creation of Elements	866
	37.3	Structure Operations	867
	37.3.1	Invariants	868
	$37.4 \\ 37.4.1$	Element Operations Predicates on Elements	868 868
	37.4.2	Conjugates Conjugates	868
38	NUM	BER FIELDS AND ORDERS	. 871
	38.1	Introduction	877
	38.1.1	Types	877
	38.2	Acknowledgement	878
	38.3	Creation Functions	878
	38.3.1	Creation of Algebraic Fields	878
	38.3.2	Creation of Orders and Fields from Orders	882
	38.3.3	Maximal Orders	887
	$38.3.4 \\ 38.3.5$	Creation of Elements	892 894
		Creation of Homomorphisms	
	$\frac{38.4}{38.5}$	Printing Book Provision	896
	38.6	Real Precision	898
	38.6.1	Structure Operations General Functions	898 898
	38.6.2	Related Structures	899
	38.6.3	Representing Fields as Vector Spaces	906
	38.6.4	Invariants	908
	38.6.5	Basis Representation	911
	38.6.6	Ring Predicates	916
	38.6.7	Order Predicates	917
	38.6.8	Field Predicates	918
	38.6.9	Setting Properties of Orders	919
	38.7	Element Operations	919
	38.7.1	Parent and Category	919
	38.7.2	Arithmetic	919
	38.7.3	Equality and Membership	920
	38.7.4	Predicates on Elements Field Generators	921
	$38.7.5 \\ 38.7.6$	Real and Complex Embeddings	$922 \\ 922$
	38.7.7	Heights	924
	38.7.8	Norm, Trace, and Minimal Polynomial	926
	38.7.9	Other Functions	928
	38.8	Ideal Class Groups	929
	38.8.1	Class Group Internals	932
	38.8.2	Setting the Class Group Bounds	935
	38.8.3	Class Group Map Caching	935
	38.9	Unit Groups	936
	38.10	Diophantine Equations	939
	38.10.1	Norm Equations	939
	38.10.2	Thue Equations	943

lxxi

	$38.10.3 \\ 38.10.4$	Unit Equations Index Form Equations	945 945
	38.11	Ideals and Quotients	946
	38.11.1	Creation of Ideals in Orders	947
	38.11.2	Invariants	948
	38.11.3	Basis Representation	951
	38.11.4	Two–Element Presentations	952
	38.11.5	Predicates on Ideals	953
	38.11.6	Ideal Arithmetic	956
	38.11.7	Roots of Ideals	959
	38.11.8	Factorization and Primes	959
	38.11.9	Other Ideal Operations	961
	38.11.10	Quotient Rings	966
	38.12	Places and Divisors	969
	38.12.1	Creation of Structures	970
	38.12.2	Operations on Structures	970
	38.12.3	Creation of Elements	970
	38.12.4	Arithmetic with Places and Divisors	971
	38.12.5	Other Functions for Places and Divisors	971
	38.13	Bibliography	973
39	GALO	IS GROUPS AND AUTOMORPHISMS	. 975
	39.1	Automorphism Groups	978
	39.2	Galois Groups	985
	39.2.1	Straight-line Polynomials	990
	39.2.2	Invariants	992
	39.2.3	Subfields and Subfield Towers	994
	39.2.4	Solvability by Radicals	1001
	39.2.5	Linear Relations	1003
	39.2.6	Other	1006
	39.3	Subfields	1006
	39.3.1	The Subfield Lattice	1007
	39.4	Galois Cohomology	1009
	39.5	Bibliography	1010
40	CLASS	S FIELD THEORY	. 1013
	40.1	Introduction	1015
	40.1.1	Overview	1015
	40.1.2	MAGMA	1016
	40.2	Creation	1019
	40.2.1	Ray Class Groups	1019
	40.2.2	Selmer Groups	1022
	40.2.3	Maps	1024
	40.2.4	Abelian Extensions	1025
	40.2.5	Binary Operations	1030
	40.3	Galois Module Structure	1030
	40.3.1	Predicates	1031
	40.3.2	Constructions Constructions	1031
	40.4	Conversion to Number Fields	1032
	40.4.1	Character Theory	1033
	40.5	Invariants	1035
	40.6	Automorphisms	1037
	40.7	Norm Equations	1039
	40.8	Attributes	1042

		VOLUME 3: CONTENTS	lxxiii
	10.01		1010
	40.8.1	Orders Abelian Extensions	1042
	40.8.2		1045
	$40.9 \\ 40.9.1$	Group Theoretic Functions Generic Groups	1049 1049
	40.10	Bibliography	1049
41	DIRIO	CHLET AND HECKE CHARACTERS	1051
	41.1	Introduction	1053
	41.1.1	Creation Functions	1053
	41.1.2	Functions on Groups and Group Elements	1054
	41.1.3	Predicates on Group Elements	1057
	41.1.4	Passing between Dirichlet and Hecke Characters	1057
	41.1.5	L-functions of Hecke Characters	1063
	41.1.6	Hecke Grössencharacters and their L-functions	1063
	41.1.7	Local Root Numbers	1071
	41.1.8	Grössencharacters and Elliptic Curves	1073
	41.2	Bibliography	1074
42	ALGI	EBRAICALLY CLOSED FIELDS	1075
	42.1	Introduction	1077
	42.2	Representation	1077
	42.3	Creation of Structures	1078
	42.4	Creation of Elements	1079
	42.4.1	Coercion	1079
	42.4.2	Roots	1079
	42.4.3	Variables	1080
	42.5	Related Structures	1085
	42.6	Properties	1085
	42.7	Ring Predicates and Properties	1086
	42.8	Element Operations	1086
	42.8.1	Arithmetic Operators	1087
	42.8.2	Equality and Membership	1087
	42.8.3	Parent and Category	1087
	42.8.4	Predicates on Ring Elements	1087
	42.8.5	Minimal Polynomial, Norm and Trace	1088
	42.9	Simplification	1090
	42.10	Absolute Field	1091
	42.11	Bibliography	1095
43	RATI	ONAL FUNCTION FIELDS	1097
	43.1	Introduction	1099
	43.2	Creation Functions	1099
	43.2.1	Creation of Structures	1099
	43.2.2	Names	1100
	43.2.3	Creation of Elements	1101
	43.3	Structure Operations	1101
	43.3.1	Related Structures	1101
	43.3.2	Invariants	1102
	43.3.3	Ring Predicates and Booleans	1102
	43.3.4	Homomorphisms	1102
	43.4	Element Operations	1103
	43.4.1	Arithmetic	1103
	43.4.2	Equality and Membership	1103

	43.4.3 $43.4.4$	Numerator, Denominator and Degree Predicates on Ring Elements	1104 1104
	43.4.5	Evaluation	1105
	43.4.6	Derivative	1105
	43.4.7	Partial Fraction Decomposition	1106
	43.5	Padé-Hermite Approximants	1108
	43.5.1	Introduction	1108
	43.5.2	Ordering of Sequences	1109
	43.5.3	Approximants	1112
	43.6	Bibliography	1118
44	ALGE	BRAIC FUNCTION FIELDS	. 1119
	44.1	Introduction	1127
	44.1.1	Representations of Fields	1127
	44.2	Creation of Algebraic Function Fields and their Orders	1128
	44.2.1	Creation of Algebraic Function Fields	1128
	44.2.2	Creation of Orders of Algebraic Function Fields	1131
	44.2.3	Orders and Ideals	1136
	44.3	Related Structures	1137
	44.3.1	Parent and Category	1137
	44.3.2	Other Related Structures	1137
	44.4	General Structure Invariants	1141
	44.5	Galois Groups	1146
	44.6	Subfields	1150
	44.7	Automorphism Group	1152
	44.7.1	Automorphisms over the Base Field	1152
	44.7.2	General Automorphisms	1154
	44.7.3	Field Morphisms	1156
	44.8	Global Function Fields	1159
	44.8.1	Functions relative to the Exact Constant Field	1159
	44.8.2	Functions Relative to the Constant Field	1161
	44.8.3	Functions related to Class Group	1162
	44.9	Structure Predicates	1166
	44.10	Homomorphisms	1167
	44.11	Elements	1168
	44.11.1	Creation of Elements	1169
	44.11.2	Parent and Category	1170
	44.11.3	Sequence Conversions	1171
	44.11.4	Arithmetic Operators	1172
	44.11.5	Equality and Membership	1172
	44.11.6	Predicates on Elements	1172
	44.11.7	Functions related to Norm and Trace	1173
	44.11.8	Functions related to Orders and Integrality	1175
	44.11.9	Functions related to Places and Divisors	1176
	44.11.10	Other Operations on Elements	1179
	44.12	Ideals	1182
	44.12.1	Creation of Ideals	1182
	$44.12.2 \\ 44.12.3$	Parent and Category	1182 1183
	44.12.3 $44.12.4$	Arithmetic Operators Roots of Ideals	1183
	44.12.4 $44.12.5$	Equality and Membership	1185
	44.12.6	Predicates on Ideals	1185
	44.12.7	Further Ideal Operations	1187
	44.13	Places	1193
	44.13.1	Creation of Structures	1193

	44.13.2	Creation of Elements	1193
	44.13.3	Related Structures	1195
	44.13.4	Structure Invariants	1196
	44.13.5	Structure Predicates	1197
	44.13.6	Element Operations	1197
	44.13.7	Completion at Places	1199
	44.14	Divisors	1200
	44.14.1	Creation of Structures	1200
	44.14.2	Creation of Elements	1200
	44.14.3	Related Structures	1200
	44.14.4	Structure Invariants	1201
	44.14.5	Structure Predicates	1201
	44.14.6	Element Operations	1201
	44.14.7	Functions related to Divisor Class Groups of Global Function Fields	1211
	44.15	Differentials	1217
	44.15.1	Creation of Structures	1217
	44.15.2	Creation of Elements	1217
	44.15.3	Related Structures	1217
	44.15.4	Subspaces	1217
	44.15.5	Structure Predicates	1219
	44.15.6	Operations on Elements	1219
	44.16	Weil Descent	1223
	44.17	Function Field Database	1225
	44.17.1	Creation	1226
	44.17.2	Access	1226
	44.18	Bibliography	1227
45	CLASS	FIELD THEORY FOR GLOBAL FUNCTION FIELDS	1229
	45.1	Ray Class Groups	1231
	45.2	Creation of Class Fields	1234
	45.3	Properties of Class Fields	1237
	45.4	The Ring of Witt Vectors of Finite Length	1240
	45.5	The Ring of Twisted Polynomials	1242
	45.5.1	Creation of Twisted Polynomial Rings	1243
	45.5.2	Operations with the Ring of Twisted Polynomials	1243
	45.5.3	Creation of Twisted Polynomials	1244
	45.5.4	Operations with Twisted Polynomials	1245
	45.6	Analytic Theory	1247
	45.7	Related Functions	1253
	45.8	Enumeration of Places	1255
	45.9	Bibliography	1256
46	ΔΡΤΙΝ	REPRESENTATIONS	. 1257
40			
	46.1	Overview	1259
	46.2	Constructing Artin Representations	1259
	46.3	Basic Invariants	1261
	46.4	Arithmetic	1265
	46.5	Implementation Notes	1266
	46.6	Bibliography	1266

lxxv

VII	LOCA	AL ARITHMETIC FIELDS	1267
47	p-ADI	C RINGS AND THEIR EXTENSIONS	1269
	47.1	Introduction	1273
	47.2	Background	1273
	47.3	Overview of the p-adics in MAGMA	1274
	47.3.1	p-adic Rings	1274
	47.3.2	p-adic Fields	1274
	47.3.3	Free Precision Rings and Fields	1275
	47.3.4	Precision of Extensions	1275
	47.4	Creation of Local Rings and Fields	1275
	47.4.1	Creation Functions for the p -adics	1275
	47.4.2	Creation of Unramified Extensions	1277
	47.4.3	Creation of Totally Ramified Extensions	1279
	47.4.4	Creation of Unbounded Precision Extensions	1280
	47.4.5	Creation of Related Rings	1281
	47.4.6	Other Elementary Constructions	1282
	47.4.7	Attributes of Local Rings and Fields	1282
	47.5	Elementary Invariants	1282
	47.6	Operations on Structures	1287
	47.6.1	Ramification Predicates	1289
	47.7	Element Constructions and Conversions	1290
	$47.7.1 \\ 47.7.2$	Constructions Element Decomposers	1290 1293
	47.1.2	Element Decomposers Operations on Elements	1293 1294
	47.8.1	Arithmetic	1294 1294
	47.8.2	Equality and Membership	1294 1295
	47.8.3	Properties	1297
	47.8.4	Precision and Valuation	1297
	47.8.5	Logarithms and Exponentials	1299
	47.8.6	Norm and Trace	1300
	47.8.7	Teichmüller Lifts	1302
	47.9	Linear Algebra	1302
	47.10	Roots of Elements	1302
	47.11	Polynomials	1303
	47.11.1	Operations for Polynomials	1303
	47.11.2	Roots of Polynomials	1305
	47.11.3	Factorization	1308
	47.12	Automorphisms of Local Rings and Fields	1313
	47.13	Completions	1315
	47.14	Class Field Theory	1317
	47.14.1	Unit Group	1317
	47.14.2	Norm Group	1318
	47.14.3	Class Fields	1319
	47.15	Extensions	1319
	47.16	Bibliography	1321

48	GENE	ERAL p -ADIC EXTENSIONS	1323
	48.1	Introduction	1325
	48.2	Constructions	1325
	48.3	Operations with Fields	1327
	48.3.1	Predicates on Fields	1329
	48.4	Maximal Order	1330
	48.5	Homomorphisms	1330
	48.6	Automorphisms and Galois Theory	1331
	48.7	Elements Operations	1332
	48.7.1	Arithmetic	1332
	48.7.2	Predicates on Elements	1332
	48.7.3	Other Operations on Elements	1333
	48.8	Polynomial Factorization	1334
49	POW	ER, LAURENT AND PUISEUX SERIES	1337
	49.1	Introduction	1339
	49.1.1	Kinds of Series	1339
	49.1.2	Puiseux Series	1339
	49.1.3	Representation of Series	1340
	49.1.4	Precision	1340
	49.1.5	Free and Fixed Precision	1340
	49.1.6	Equality	1341
	49.1.7	Polynomials over Series Rings	1341
	49.2	Creation Functions	1341
	49.2.1	Creation of Structures	1341
	49.2.2	Special Options	1343
	49.2.3	Creation of Elements	1344
	49.3	Structure Operations	1345
	49.3.1	Related Structures	1345
	49.3.2	Invariants	1346
	49.3.3	Ring Predicates and Booleans	1346
	49.4	Basic Element Operations	1346
	49.4.1	Parent and Category	1346
	49.4.2 $49.4.3$	Arithmetic Operators Equality and Mombarship	$1346 \\ 1347$
	49.4.4	Equality and Membership Predicates on Ring Elements	1347 1347
	49.4.5	Precision	1347
	49.4.6	Coefficients and Degree	1348
	49.4.7	Evaluation and Derivative	1349
	49.4.8	Square Root	1350
	49.4.9	Composition and Reversion	1350
	49.5	Transcendental Functions	1352
	49.5.1	Exponential and Logarithmic Functions	1352
	49.5.2	Trigonometric Functions and their Inverses	1354
	49.5.3	Hyperbolic Functions and their Inverses	1354
	49.6	The Hypergeometric Series	1355
	49.7	Polynomials over Series Rings	1355
	49.8	Extensions of Series Rings	1358
	49.8.1	Constructions of Extensions	1358
	49.8.2	Operations on Extensions	1359
	49.8.3	Elements of Extensions	1362
	49.8.4	Optimized Representation	1363
	49.9	Bibliography	1364

50	LAZY	Y POWER SERIES RINGS	1365		
	50.1	Introduction	1367		
	50.2	Creation of Lazy Series Rings	1368		
	50.3	Functions on Lazy Series Rings	1368		
	50.4	Elements	1369		
	50.4.1	Creation of Finite Lazy Series	1369		
	50.4.2	Arithmetic with Lazy Series	1372		
	50.4.3	Finding Coefficients of Lazy Series	1373		
	50.4.4 $50.4.5$	Predicates on Lazy Series Other Functions on Lazy Series	1376 1377		
	00.4.0	Other Functions on Pazy Series	1011		
51	ALGI	EBRAIC POWER SERIES RINGS	1381		
	51.1	Introduction	1383		
	51.2	Basics	1383		
	51.2.1	Data Structures	1383		
	51.2.2	Verbose Output	1384		
	51.3	Constructors	1384		
	51.3.1	Rational Puiseux Expansions	1385		
	51.4	Accessors and Expansion	1389		
	51.5	Arithmetic	1390		
	51.6	Predicates	1391		
	51.7	Modifiers	1392		
	51.8	Bibliography	1393		
52	VALUATION RINGS				
	52.1	Introduction	1397		
	52.2	Creation Functions	1397		
	52.2.1	Creation of Structures	1397		
	52.2.2	Creation of Elements	1397		
	52.3	Structure Operations	1398		
	52.3.1	Related Structures	1398		
	52.3.2	Numerical Invariants	1398		
	$52.4 \\ 52.4.1$	Element Operations	1398		
	52.4.1 $52.4.2$	Arithmetic Operations Equality and Membership	1398 1398		
	52.4.2 $52.4.3$	Parent and Category	1398		
	52.4.4	Predicates on Ring Elements	1399		
	52.4.5	Other Element Functions	1399		
53	GALO	OIS RINGS	1401		
	53.1	Introduction	1403		
	53.2	Creation Functions	1403		
	53.2.1	Creation of Structures	1403		
	53.2.2	Names	1404		
	53.2.3	Creation of Elements	1405		
	53.2.4	Sequence Conversions	1405		
	53.3	Structure Operations	1406		
	53.3.1	Related Structures	1406		
	53.3.2	Numerical Invariants	1407		
	53.3.3	Ring Predicates and Booleans	1407		
	$53.4 \\ 53.4.1$	Element Operations Arithmetic Operators	$\frac{1407}{1407}$		
	JJ.4.1	ATTUMITED OPERATORS	1407		

	53.4.2	Euclidean Operations	1408
	53.4.3	Equality and Membership	1408
	53.4.4	Parent and Category	1408
	53.4.5	Predicates on Ring Elements	1408
54	NEW'	TON POLYGONS	1409
	54.1	Introduction	1411
	54.2	Newton Polygons	1413
	54.2.1	Creation of Newton Polygons	1413
	54.2.2	Vertices and Faces of Polygons	1415
	54.2.3	Tests for Points and Faces	1419
	54.3	Polynomials Associated with Newton Polygons	1420
	54.4	Finding Valuations of Roots of Polynomials from Newton Polygons	1421
	54.5	Using Newton Polygons to Find Roots of Polynomials over Series Rings	1421
	54.5.1 $54.5.2$	Operations not associated with Duval's Algorithm	1422 1427
	54.5.2 $54.5.3$	Operations associated with Duval's algorithm Roots of Polynomials	1434
	54.6	Bibliography	1436
	04.0	Dionography	1400
55	SERII	ES RINGS OVER p -ADIC RINGS	1437
	55.1	Introduction	1439
	55.1.1	Background	1439
	55.1.2	Basic Operations	1440
	55.1.3	Element Operations	1441
	55.1.4	Euclidean Algorithm	1443
	55.2	Matrices and Modules	1446
	55.2.1	Matrices	1446
	55.2.2 55.3	Modules Bibliography	1449 1453
E C			
56			1455
	$56.1 \\ 56.1.1$	Overview	1457
	56.1.1 $56.1.2$	Notation and Printing Conventions	1457 1459
	56.1.3	Implementation Notes	1460
	56.2	Creating Galois Representations	1460
	56.2.1	Representations from Finite Extensions	1464
	56.2.2	Local Representations of Global Objects	1466
	56.3	Basic Invariants	1472
	56.3.1	Ramification	1476
	56.3.2	Semisimplicity and Irreducibles	1480
	56.4	Arithmetic	1481
	56.5	Changing Precision	1484
	56.6	Changing Fields	1484
	56.7	Advanced Examples	1487
	56.7.1	Example: Local and Global Epsilon Factors for Dirichlet Characters	1487
	56.7.2	Example: Reconstructing a Galois Representation from its Euler Factors	1488
	56.8	Bibliography	1489

lxxix

VIII	MOD	DULES	1491
57	INTR	RODUCTION TO MODULES	1493
	57.1	Overview	1495
	57.2	General Modules	1495
	57.3	The Presentation of Submodules	1496
58	FREI	E MODULES	1497
30			
	$58.1 \\ 58.1.1$	Introduction Free Modules	1499 1499
	58.1.1	Module Categories	1499
	58.1.3	Presentation of Submodules	1500
	58.1.4	Notation	1500
	58.2	Definition of a Module	1500
	58.2.1	Construction of Modules of <i>n</i> -tuples	1500
	58.2.2	Construction of Modules of $m \times n$ Matrices	1501
	58.2.3	Construction of a Module with Specified Basis	1501
	58.3	Accessing Module Information	1501
	58.4	Standard Constructions	1502
	58.4.1	Changing the Coefficient Ring	1502
	58.4.2	Direct Sums	1502
	58.5	Construction of Elements	1503
	58.5.1	Deconstruction of Elements	1504
	58.5.2	Operations on Module Elements	1504
	58.5.3	Properties of Vectors	1506
	58.5.4	Inner Products	1506
	58.6	Bases	1507
	$58.7 \\ 58.7.1$	Submodules Construction of Submodules	1507
	58.7.1	Operations on Submodules	1507 1508
	58.7.3	Membership and Equality	1508
	58.7.4	Operations on Submodules	1509
	58.8	Quotient Modules	1509
	58.8.1	Construction of Quotient Modules	1509
	58.9	Homomorphisms	1510
	58.9.1	$\operatorname{Hom}_R(M,N)$ for R-modules	1510
	58.9.2	$\operatorname{Hom}_R(M,N)$ for Matrix Modules	1511
	58.9.3	Modules $\operatorname{Hom}_R(M,N)$ with Given Basis	1513
	58.9.4	The Endomorphsim Ring	1513
	58.9.5	The Reduced Form of a Matrix Module	1514
	58.9.6	Construction of a Matrix	1517
	58.9.7	Element Operations	1518
59	MOD	ULES OVER DEDEKIND DOMAINS	1521
	59.1	Introduction	1523
	59.2	Creation of Modules	1524
	59.3	Elementary Functions	1528
	59.4	Predicates on Modules	1530
	59.5	Arithmetic with Modules	1531
	59.6	Basis of a Module	1533
	59.7	Other Functions on Modules	1533
	59.8	Homomorphisms between Modules	1536

	59.9	Elements of Modules	1538		
	59.9.1	Creation of Elements	1538		
	59.9.2	Arithmetic with Elements	1539		
	59.9.3	Other Functions on Elements	1539		
	59.10	Pseudo Matrices	1540		
	59.10.1 $59.10.2$	Construction of a Pseudo Matrix Elementary Functions	1540 1540		
	59.10.2	Basis of a Pseudo Matrix	1540		
	59.10.3 $59.10.4$	Predicates	1541		
	59.10.5	Operations with Pseudo Matrices	1541		
60	CHAI	N COMPLEXES	. 1543		
	60.1	Complexes of Modules	1548		
	60.1.1	Creation	1545		
	60.1.2	Subcomplexes and Quotient Complexes	1546		
	60.1.3	Access Functions	1546		
	60.1.4 $60.1.5$	Elementary Operations Extensions	1547		
	60.1.6	Predicates	1548 1549		
	60.2	Chain Maps	1543		
	60.2.1	Creation	1552		
	60.2.2	Access Functions	1552		
	60.2.3	Elementary Operations	1553		
	60.2.4	Predicates	1553		
	60.2.5	Maps on Homology	1556		
61	MULT	MULTILINEAR ALGEBRA			
	61.1	Introduction	1561		
	61.1.1	Overview	1561		
	61.2	Tensors	1562		
	61.2.1	Creating Tensors	1562		
	61.2.2	Bilinear Tensors	1564		
	61.2.3	Operations with Tensors	1569		
	61.2.4	Invariants of Tensors	1581		
	61.3	Exporting Tensors	1588		
	$61.4 \\ 61.4.1$	Tensor Spaces Constructions of Tensor and Cotensor Spaces	1586		
	61.4.1 $61.4.2$	Operations on Tensor Spaces Operations on Tensor Spaces	1586 1594		
	61.4.2	Tensor Categories	1599		
	61.5.1	Creating Tensor Categories	1600		
	61.5.2	Operations on Tensor Categories	1601		
	61.5.3	Categorical Operations	1602		
	61.5.4	Categorical Operations on Tensors	1602		
	61.5.5	Categorical Operations on Tensor Spaces	1605		
	61.5.6	Homotopisms	1606		
	61.6	Some Extended Examples	1610		
	61.6.1	Distinguishing Groups	1611		
	61.6.2	Simplifying Automorphism Group Computations	1613		
	61.7	Bibliography	1618		

lxxxi

\mathbf{IX}	FINIT	ΓE GROUPS	1617
62	GROUPS		1619
	62.1	Introduction	1623
	62.1.1	The Categories of Finite Groups	1623
	62.2	Construction of Elements	1624
	62.2.1	Construction of an Element	1624
	62.2.2	Coercion	1624
	62.2.3	Homomorphisms	1624
	62.2.4	Arithmetic with Elements	1626
	62.3	Construction of a General Group	1628
	62.3.1	The General Group Constructors	1628
	62.3.2	Construction of Subgroups	1632
	62.3.3	Construction of Quotient Groups	1633
	62.4	Standard Groups and Extensions	1635
	62.4.1	Construction of a Standard Group	1635
	62.4.2	Construction of Extensions	1637
	62.5	Transfer Functions Between Group Categories	1638
	62.6	Basic Operations	1641
	62.6.1	Accessing Group Information	1642
	62.6.2	Names of Finite Groups	1643
	62.7	Operations on the Set of Elements	1645
	62.7.1	Order and Index Functions	1646
	62.7.2	Membership and Equality	1647
	62.7.3	Set Operations	1648
	62.7.4	Random Elements	1649
	62.7.5	Action on a Coset Space	1652
	62.8	Standard Subgroup Constructions	1653
	62.8.1	Abstract Group Predicates	1654
	62.9	Characteristic Subgroups and Normal Structure	1657
	62.9.1	Characteristic Subgroups and Subgroup Series	1657
	62.9.2	The Abstract Structure of a Group	1659
	62.10	Conjugacy Classes of Elements	1660
	62.11	Conjugacy Classes of Subgroups	1664
	62.11.1	Conjugacy Classes of Subgroups	1664
	62.11.2	The Poset of Subgroup Classes	1668
	62.12	Cohomology	1673
	62.13	Characters and Representations	1674
	62.13.1	Character Theory	1674
	62.13.2	Representation Theory	1675
	62.14	Databases of Groups	1677
	62.15	Bibliography	1678

63	PERM	MUTATION GROUPS	1679
	63.1	Introduction	1685
	63.1.1	Terminology	1685
	63.1.2	The Category of Permutation Groups	1685
	63.1.3	The Construction of a Permutation Group	1685
	63.2	Creation of a Permutation Group	1686
	63.2.1	Construction of the Symmetric Group	1686
	63.2.2	Construction of a Permutation	1687
	63.2.3	Construction of a General Permutation Group	1689
	63.3	Elementary Properties of a Group	1690
	63.3.1	Accessing Group Information	1690
	63.3.2	Group Order	1692
	63.3.3	Abstract Properties of a Group	1692
	63.4	Homomorphisms	1693
	63.5	Building Permutation Groups	1696
	63.5.1	Some Standard Permutation Groups	1696
	63.5.2	Direct Products and Wreath Products	1698
	63.6	Permutations	1700
	63.6.1	Coercion	1700
	63.6.2	Arithmetic with Permutations	1700
	63.6.3	Properties of Permutations	1701
	63.6.4	Predicates for Permutations	1702
	63.6.5	Set Operations	1703
	63.7	Conjugacy	1705
	63.8	Subgroups	1712
	63.8.1	Construction of a Subgroup	1712
	63.8.2	Membership and Equality	1714
	63.8.3	Elementary Properties of a Subgroup	1715
	63.8.4	Standard Subgroups	1716
	63.8.5	Maximal Subgroups	1719
	63.8.6	Conjugacy Classes of Subgroups	1721
	63.8.7	Classes of Subgroups Satisfying a Condition	1726
	63.9	Quotient Groups	1727
	63.9.1	Construction of Quotient Groups	1728
	63.9.2	Abelian, Nilpotent and Soluble Quotients	1729
	63.10	Permutation Group Actions	1730
	63.10.1	$G ext{-Sets}$	1730
	63.10.2	Creating a G -Set	1731
	63.10.3	Images, Orbits and Stabilizers	1733
	63.10.4	Action on a G-Space	1738
	63.10.5	Action on Orbits	1739
	63.10.6	Action on a G-invariant Partition	1741
	63.10.7	Action on a Coset Space	1747
	63.10.8	Reduced Permutation Actions	1747
	63.10.9	The Jellyfish Algorithm	1748
	63.11	Normal and Subnormal Subgroups	1750
	63.11.1 $63.11.2$	Characteristic Subgroups and Normal Series	1750
		Maximal and Minimal Normal Subgroups	1753
	63.11.3 $63.11.4$	Lattice of Normal Subgroups Composition and Chief Series	1753 1754
	63.11.4 $63.11.5$	Composition and Chief Series The Socle	1754 1757
	63.11.6	The Soluble Radical and its Quotient	1757 1761
	63.11.0 $63.11.7$	Complements and Supplements	1763
	63.11.8	Abelian Normal Subgroups	1765
	63.12	Cosets and Transversals	1766
	00.12 69 19 1	Cosets and Transversals	1700

	63.12.2	Transversals	1768
	63.13	Presentations	1768
	63.13.1	Generators and Relations	1769
	63.13.2	Permutations as Words	1770
	63.14	Automorphism Groups	1770
	63.15	Cohomology	1772
	63.16	Representation Theory	1775
	63.17	Identification	1777
	63.17.1	Identification as an Abstract Group	1777
	63.17.2	Identification as a Permutation Group	1777
	63.18	Base and Strong Generating Set	1782
	63.18.1	Construction of a Base and Strong Generating Set	1783
	63.18.2	Defining Values for Attributes	1785
	63.18.3	Accessing the Base and Strong Generating Set	1786
	63.18.4	Working with a Base and Strong Generating Set	1788
	63.18.5	Modifying a Base and Strong Generating Set	1789
	63.19	Permutation Representations of Linear Groups	1789
	63.20	Permutation Group Databases	1796
	63.21	Ordered Partition Stacks	1796
	63.21.1	Construction of Ordered Partition Stacks	1797
	63.21.2	Properties of Ordered Partition Stacks	1797
	63.21.3	Operations on Ordered Partition Stacks	1798
	63.22	Bibliography	1800
64	MATF 64.1	RIX GROUPS OVER GENERAL RINGS	1803
	64.1.1	Introduction Introduction to Matrix Groups	1807
	64.1.2	The Support	1807
	64.1.3	The Category of Matrix Groups	1808
	64.1.4	The Construction of a Matrix Group	1808
	64.2	Creation of a Matrix Group	1808
	64.2.1	Construction of the General Linear Group	1808
	64.2.2	Construction of a Matrix Group Element	1809
	64.2.3	Construction of a General Matrix Group	1811
	64.2.4	Changing Rings	1812
	64.2.5	Coercion between Matrix Structures	1813
	64.2.6	Accessing Associated Structures	1813
	64.3	Homomorphisms	1814
	64.3.1	Construction of Extensions	1816
	64.4	Operations on Matrices	1818
	64.4.1	Arithmetic with Matrices	1818
	64.4.2	Predicates for Matrices	1820
	64.4.3	Matrix Invariants	1820
	64.5	Global Properties	1823
	64.5.1	Group Order	1824
	64.5.2	Membership and Equality	1825
	64.5.3	Set Operations	1826
	64.6	Abstract Group Predicates	1828
	64.7	Conjugacy	1830
	64.7.1	Conjugacy in Classical Groups	1834
	64.8	Subgroups	1840
	64.8.1	Construction of Subgroups	1840
	64.8.2	Elementary Properties of Subgroups	1841
	64.8.3	Standard Subgroups	1842
	64.8.4	Low Index Subgroups	1843

	64.8.5	Conjugacy Classes of Subgroups	1845
	64.9	Quotient Groups	1848
	64.9.1	Construction of Quotient Groups	1848
	64.9.2	Abelian, Nilpotent and Soluble Quotients	1849
	64.10	Matrix Group Actions	1851
	64.10.1	Orbits and Stabilizers	1851
	64.10.2	Orbit and Stabilizer Functions for Large Groups	1853
	64.10.3	Action on Orbits	1859
	64.10.4	Action on a Coset Space	1861
	64.10.5	Action on the Natural G-Module	1862
	64.11	Normal and Subnormal Subgroups	1863
	64.11.1 $64.11.2$	Characteristic Subgroups and Subgroup Series The Solvible Padical and its Outsignt	1863
	64.11.2 $64.11.3$	The Soluble Radical and its Quotient Composition and Chief Factors	1865
			1866
	64.12	Coset Tables and Transversals	1868
	64.13	Presentations	1868
	64.13.1	Presentations	1868
	64.13.2	Matrices as Words	1869
	64.14	Automorphism Groups	1869
	64.15	Representation Theory	1872
	64.16	Base and Strong Generating Set	1875
	64.16.1	Introduction	1875
	64.16.2	Controlling Selection of a Base	1875
	64.16.3	Construction of a Base and Strong Generating Set	1876
	64.16.4	Defining Values for Attributes	1878
	64.16.5	Accessing the Base and Strong Generating Set	1878
	64.17	Soluble Matrix Groups	1879
	64.17.1	Conversion to a PC-Group	1879
	64.17.2	Soluble Group Functions	1880
	64.17.3	p-group Functions	1880
	64.17.4	Abelian Group Functions	1880
	64.18	Bibliography	1881
65	MATE	RIX GROUPS OVER FINITE FIELDS	. 1883
	65.1	Introduction	1885
	65.2	Finding Elements with Prescribed Properties	1885
	65.3	Monte Carlo Algorithms for Subgroups	1886
	65.4	Aschbacher Reduction	1889
	65.4.1	Introduction	1889
	65.4.2	Primitivity	1890
	65.4.3	Semilinearity	1892
	65.4.4	Tensor Products	1894
	65.4.5	Tensor-induced Groups	1896
	65.4.6	Normalisers of Extraspecial r -groups and Symplectic 2-groups	1898
	65.4.7	Writing Representations over Subfields	1900
	65.4.8	Decompositions with Respect to a Normal Subgroup	1903
	65.5	Constructive Recognition for Simple Groups	1907
	65.6	Composition Trees for Matrix Groups	1913
	65.7	The LMG functions	1925
	65.8	Unipotent Matrix Groups	1934
	65.9	Bibliography	1937
	-	O 1 V	

lxxxv

66	MATI	RIX GROUPS OVER INFINITE FIELDS	. 1939
	66.1	Overview	1941
	66.2	Construction of Congruence Homomorphisms	1942
	66.3	Testing Finiteness	1943
	66.4	Deciding Virtual Properties of Linear Groups	1945
	66.5	Hirsch Number and Prüfer Rank	1948
	66.6	Other Properties of Linear Groups	1948
	66.7	Other Functions for Nilpotent Matrix Groups	1950
	66.8	Examples	1951
	66.9	Bibliography	1961
67	MATI	RIX GROUPS OVER Q AND Z	. 1963
	67.1	Overview	1965
	67.2	Invariant Forms	1965
	67.3	Endomorphisms	1966
	67.4	New Groups From Others	1967
	67.5	Perfect Forms and Normalizers	1967
	67.6	Conjugacy	1968
	67.7	Conjugacy Tests for Matrices	1969
	67.8	Examples	1969
	67.9	Bibliography	1971
68	FINIT	ΓΕ SOLUBLE GROUPS	. 1973
	68.1	Introduction	1977
	68.1.1	Power-Conjugate Presentations	1977
	68.2	Creation of a Group	1978
	68.2.1	Construction Functions	1978
	68.2.2	Definition by Presentation	1979
	68.2.3	Possibly Inconsistent Presentations	1982
	68.3	Basic Group Properties	1983
	68.3.1	Infrastructure	1983
	68.3.2	Numerical Invariants	1984
	68.3.3	Predicates	1984
	68.4	Homomorphisms	1985
	68.5	New Groups from Existing	1988
	68.6	Elements	1992
	68.6.1	Definition of Elements	1992
	68.6.2	Arithmetic Operations on Elements	1994
	68.6.3	Properties of Elements	1995
	68.6.4	Predicates for Elements	1995
	68.6.5	Set Operations	1996
	68.7	Conjugacy	1999
	68.8	Subgroups	2001
	68.8.1	Definition of Subgroups by Generators	2001
	68.8.2	Membership and Coercion	2002
	68.8.3	Inclusion and Equality	2004
	68.8.4	Standard Subgroup Constructions	2005
	68.8.5	Properties of Subgroups	2006
	$68.8.6 \\ 68.8.7$	Predicates for Subgroups Hell a Subgroups and Subgroups	2007
	68.8.8	Hall π -Subgroups and Sylow Systems Conjugacy Classes of Subgroups	2009 2010
	68.9	Quotient Groups	$\frac{2010}{2014}$
	00.9	Quonem Groups	2014

	68.9.1	Construction of Quotient Groups	2014	
	68.9.2	Abelian and p -Quotients	2015	
	68.10	Normal Subgroups and Subgroup Series	2016	
	68.10.1	Characteristic Subgroups	2016	
	68.10.2	Subgroup Series	2017	
	68.10.3	Series for p-groups	2019	
	68.10.4	Normal Subgroups and Complements	2020	
	68.11	Cosets	2021	
	68.11.1	Coset Tables and Transversals	2021	
	68.11.2	Action on a Coset Space	2022	
	68.12	Automorphism Group	2022	
	68.12.1	General Soluble Group	2022	
	68.12.2	p-group	2027	
	68.12.3	Isomorphism and Standard Presentations	2028	
	68.13	Generating p-groups	2032	
	68.14	Representation Theory	2036	
	68.15	Central Extensions	2039	
	68.16	Transfer Between Group Categories	2042	
	68.16.1	Transfer to GrpPC	2042	
	68.16.2	Transfer from GrpPC	2043	
	68.17	More About Presentations	2045	
	68.17.1	Conditioned Presentations	2045	
	68.17.2	Special Presentations	2046	
	68.17.3	CompactPresentation	2049	
	68.18	Optimizing Magma Code	2050	
	68.18.1	PowerGroup	2050	
	68.19	Bibliography	2051	
69	BLAC	BLACK-BOX GROUPS		
	69.1	Introduction	2055	
	69.2	Construction of an SLP-Group and its Elements	2055	
	69.2.1	Structure Constructors	$\frac{2055}{2055}$	
	69.2.2	Construction of an Element	2055	
	69.3	Arithmetic with Elements	2055	
	69.3.1	Accessing the Defining Generators	2056	
	69.4	Operations on Elements	2056	
	69.4.1	Equality and Comparison	2056	
	69.4.2	Attributes of Elements	2056	
	69.5	Set-Theoretic Operations	2057	
	69.5.1	Membership and Equality	2057	
	69.5.2	Set Operations	2058	
	69.5.3	Coercions Between Related Groups	2058	
70	A T N.C	OST SIMPLE GROUPS	2059	
70	ALMC	OSI SIMPLE GROUPS	2009	
	70.1	Introduction	2063	
	70.1.1	Overview	2063	
	70.2	Creating Finite Groups of Lie Type	2064	
	70.2.1	Generic Creation Function	2064	
	70.2.2	The Orders of the Chevalley Groups	2065	
	70.2.3	Classical Groups	2066	
	70.2.4	Exceptional Groups	2073	
	70.3	Group Recognition	2076	
	70.3.1	Constructive Recognition of Alternating Groups	2076	
	70.3.2	Determining the Type of a Finite Group of Lie Type	2080	

lxxxvii

	70.3.3	Classical Forms	2083
	70.3.4	Recognizing Classical Groups in their Natural Representation	2087
	70.3.5	Constructive Recognition of Linear Groups	2089
	70.3.6	Constructive Recognition of Symplectic Groups	2093
	70.3.7	Constructive Recognition of Unitary Groups	2093
	70.3.8	Constructive Recognition Of Classical Groups in Low Degree	2094
	70.3.9	Constructive Recognition of Suzuki Groups	2095
	70.3.10	Constructive Recognition of Small Ree Groups	2101
	70.3.11	Constructive Recognition of Large Ree Groups	2104
	70.4	Properties of Finite Groups Of Lie Type	2106
	70.4.1	Maximal Subgroups of the Classical Groups	2106
	70.4.2	Maximal Subgroups of the Exceptional Groups	2107
	70.4.3	Sylow Subgroups of the Classical Groups	2108
	70.4.4	Sylow Subgroups of Exceptional Groups	2109
	70.4.5	Conjugacy of Subgroups of the Classical Groups	2112
	$70.4.6 \\ 70.4.7$	Conjugacy of Elements of the Exceptional Groups	2113 2113
		Irreducible Subgroups of the General Linear Group	
	70.5	Atlas Data for the Sporadic Groups	2114
	70.6	Bibliography	2117
71	DATA	BASES OF GROUPS	. 2121
	71.1	Introduction	2125
	71.2	Database of Small Groups	2126
	71.2.1	Basic Small Group Functions	2127
	71.2.2	Processes	2132
	71.2.3	Small Group Identification	2133
	71.2.4	Accessing Internal Data	2134
	71.3	The p-groups of Order Dividing p^7	2136
	71.4	Metacyclic p-groups	2137
	71.5	Database of Perfect Groups	2139
	71.5.1	Specifying an Entry of the Database	2140
	71.5.2	Creating the Database	2140
	71.5.3	Accessing the Database	2140
	71.5.4	Finding Legal Keys	2142
	71.6	Database of Almost-Simple Groups	2144
	71.6.1	The Record Fields	2144
	71.6.2	Creating the Database	2145
	71.6.3	Accessing the Database	2146
	71.7	Database of Transitive Groups	2148
	71.7.1	Accessing the Databases	2148
	71.7.2	Processes The still a Consequent Light Continue	2151
	71.7.3	Transitive Group Identification	2152
	71.8	Database of Primitive Groups	2153
	71.8.1 $71.8.2$	Accessing the Databases Processes	2153 2155
	71.8.2 $71.8.3$	Primitive Group Identification	$\frac{2155}{2157}$
	71.9	Database of Rational Maximal Finite Matrix Groups	2157
	71.10	Database of Integral Maximal Finite Matrix Groups	2159
	71.11	Database of Finite Quaternionic Matrix Groups	2161
	71.12	Database of Finite Symplectic Matrix Groups	2162
	71.13	Database of Irreducible Matrix Groups	2164
	71.13.1	Accessing the Database	2164
	71.14	Database of Quasisimple Matrix Groups	2165
	71.15	Database of Soluble Irreducible Groups	2166
	71 15 1	Basic Functions	2166

		VOLUME 5: CONTENTS	lxxxix
	71.15.0		0160
	71.15.2 $71.15.3$	Searching with Predicates Associated Functions	2168 2169
	71.15.3 $71.15.4$	Associated functions Processes	2169
	71.16.4 71.16	Database of ATLAS Groups	2171
	71.16.1	Accessing the Database	2172
	71.16.2	Accessing the ATLAS Groups	2172
	71.16.3	Representations of the ATLAS Groups	2173
	71.17	Fundamental Groups of 3-Manifolds	2174
	71.17.1	Basic Functions	2175
	71.17.2	Accessing the Data	2175
	71.18	Bibliography	2177
72	AUTO	OMORPHISM GROUPS	. 2179
	72.1	Introduction	2181
	72.2	Creation of Automorphism Groups	2182
	72.3	Access Functions	2184
	72.4	Order Functions	2185
	72.5	Representations of an Automorphism Group	2187
	72.6	Automorphisms	2189
	72.7	Stored Attributes of an Automorphism Group	2192
	72.8	Holomorphs	2195
	72.9	Bibliography	2196
73	СОНС	OMOLOGY AND EXTENSIONS	. 2197
	73.1	Introduction	2199
	73.2	Creation of a Cohomology Module	2200
	73.3	Accessing Properties of the Cohomology Module	2201
	73.4	Calculating Cohomology	2202
	73.5	Cocycles	2204
	73.6	The Restriction to a Subgroup	2207
	73.7	Other Operations on Cohomology Modules	2208
	73.8	Constructing Extensions	2209
	73.9	Constructing Distinct Extensions	2212
	73.10	Finite Group Cohomology	2216
	73.10.1	Creation of Gamma-groups	2217
	73.10.2	Accessing Information	2218
	73.10.3	One Cocycles	2219
	73.10.4	Group Cohomology	2220
	73.11	Bibliography	2223

\mathbf{X}	FINIT	TELY-PRESENTED GROUPS	2225
74	ABELIAN GROUPS		. 2227
	74.1	Introduction	2231
	74.2	Construction of a Finitely Presented Abelian Group and its Elements	2231
	74.2.1	The Free Abelian Group	2231
	74.2.2	Relations	2232
	74.2.3	Specification of a Presentation	2233
	74.2.4	Accessing the Defining Generators and Relations	2234
	74.3	Construction of a Generic Abelian Group	2235
	74.3.1	Specification of a Generic Abelian Group	2235
	74.3.2	Accessing Generators	2238
	74.3.3	Computing Abelian Group Structure	2238
	74.4	Elements	2240
	74.4.1	Construction of Elements	2240
	74.4.2	Representation of an Element	2241
	74.4.3	Arithmetic with Elements	2242
	74.5	Construction of Subgroups and Quotient Groups	2243
	74.5.1	Construction of Subgroups	2243
	74.5.2	Construction of Quotient Groups	2245
	74.6	Standard Constructions and Conversions	2245
	74.7	Operations on Elements	2247
	74.7.1	Order of an Element	2247
	74.7.2	Discrete Logarithm	2249
	74.7.3	Equality and Comparison	2250
	74.8	Invariants of an Abelian Group	2250
	74.9	Canonical Decomposition	2251
	74.10	Set-Theoretic Operations	2251
	74.10.1	Functions Relating to Group Order	2251
	74.10.2	Membership and Equality	2252
	74.10.3	Set Operations	2253
	74.11	Coset Spaces	2254
	74.11.1	Coercions Between Groups and Subgroups	2254
	74.12	Subgroup Constructions	2254
	74.13	Subgroup Chains	2256
	74.14	General Group Properties	2257
	74.14.1	Properties of Subgroups	2257
	74.14.2	Enumeration of Subgroups	2258
	74.15	Representation Theory	2259
	74.16	The Hom Functor	2260
	74.17	Automorphism Groups	2261
	74.18	Cohomology	2262
	74.19	Homomorphisms	2262
	74.20	Bibliography	2264

75.1 Introduction 2269 75.1.2 The Construction of Finitely Presented Groups 2269 75.2 Free Groups and Words 2270 75.2.1 Construction of a Free Group 2271 75.2.2 Construction of Words 2271 75.2.3 Access Functions for Words 2273 75.2.4 Arithmetic Operators for Words 2273 75.2.5 Comparison of Words 2274 75.2.6 Relations 2275 75.3.1 The Quotient Group Constructor 2277 75.3.2 The FP-Group 2279 75.3.3 Construction of a Finite Permutation or Matrix Group 2280 75.3.4 Construction of the Standard Presentation for a Coxeter Group 2283 75.3.6 Construction of a Standard Group 2284 75.3.7 Construction of Extensions 2288 75.3.8 Accessing the Defining Generators and Relations 2288 75.4.1 General Remarks 2288 75.4.1 General Remarks 2289 75.4.2 Construc	75	FINIT	TELY PRESENTED GROUPS	2265
75.12 The Construction of Finitely Presented Groups 2269 75.2 Free Groups and Words 2271 75.2.1 Construction of Words 2271 75.2.2 Construction of Words 2271 75.2.4 Arithmetic Operators for Words 2273 75.2.5 Comparison of Words 2274 75.2.6 Relations 2275 75.3.1 The Quotient Group Constructor 2277 75.3.1 The FP-Group Constructor 2277 75.3.2 The FP-Group Constructor 2279 75.3.3 Construction of the Standard Group 2280 75.3.4 Construction of a Special Form of FP-Group 2283 75.3.5 Construction of a Standard Group 2284 75.3.6 Construction of Extensions 2286 75.3.7 Construction of Extensions 2288 75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms to Finite Groups		75.1	Introduction	2269
75.2 Free Groups and Words 2270 75.2.1 Construction of a Free Group 2271 75.2.2 Construction of Words 2271 75.2.3 Access Functions for Words 2273 75.2.5 Comparison of Words 2273 75.2.6 Relations 2275 75.3 Construction of an FP-Group 2277 75.3.1 The Quotient Group Constructor 2277 75.3.2 The FP-Group Constructor 2277 75.3.3 Construction of the Standard Presentation for a Coxeter Group 2280 75.3.4 Construction of a Standard Group 2283 75.3.5 Construction of a Standard Group 2284 75.3.7 Construction of Extensions 2284 75.3.8 Accessing the Defining Generators and Relations 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms to Finite Groups 2289 75.4.5 The L2-Quotient Algorithm 2290 75.4.6 <		75.1.1	Overview of Facilities	2269
75.2.1 Construction of Words 2271 75.2.2 Construction of Words 2271 75.2.4 Arithmetic Operators for Words 2273 75.2.5 Comparison of Words 2274 75.2.6 Relations 2275 75.2.6 Relations 2277 75.3.1 The Quotient Group Constructor 2277 75.3.2 The FP-Group Constructor 2279 75.3.3 Construction of the Standard Presentation for a Coxeter Group 2280 75.3.4 Construction of a Standard Group 2283 75.3.5 Construction of a Standard Group 2284 75.3.7 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.5 The L ₂ -Quotient Algorithm 2292 75.4.5 Inflaite L2 Quotient Algori		75.1.2	The Construction of Finitely Presented Groups	2269
75.2.1 Construction of Free Group 2270 75.2.2 Construction of Words 2271 75.2.4 Arithmetic Operators for Words 2273 75.2.5 Comparison of Words 2274 75.2.6 Relations 2275 75.3.1 The Quotient Group Constructor 2277 75.3.1 The PP-Group Constructor 2277 75.3.2 The FP-Group Constructor 2279 75.3.3 Construction of the Standard Presentation for a Coxeter Group 2280 75.3.4 Construction of a Standard Group 2283 75.3.5 Construction of a Standard Group 2284 75.3.7 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.5 The La Usa Quotient Algorithm 2292 75.4.5 Infinite L2 Quoti		75.2	Free Groups and Words	2270
75.2.2 Construction of Words 2271 75.2.4 Arithmetic Operators for Words 2273 75.2.5 Comparison of Words 2274 75.2.6 Relations 2275 75.3 Construction of an FP-Group 2277 75.3.1 The Quotient Group Constructor 2279 75.3.2 The FP-Group Constructor 2279 75.3.3 Construction from a Finite Permutation or Matrix Group 2280 75.3.4 Construction of the Standard Presentation for a Coxeter Group 2282 75.3.5 Conversion from a Special Form of FP-Group 2283 75.3.6 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2289 75.4.5 The Ly-Quotient Algorithm 231 <td< td=""><td></td><td>75.2.1</td><td></td><td>2270</td></td<>		75.2.1		2270
75.2.4 Arithmetic Operators for Words 2274 75.2.6 Relations 2274 75.2.6 Relations 2275 75.3 Construction of an FP-Group 2277 75.3.1 The Quotient Group Constructor 2279 75.3.2 The FP-Group Constructor 2279 75.3.3 Construction from a Finite Permutation or Matrix Group 2280 75.3.4 Construction of a Standard Presentation for a Coxeter Group 2281 75.3.5 Conversion from a Special Form of FP-Group 2283 75.3.6 Construction of Extensions 2286 75.3.7 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The La-Quotient Algorithm 2311 75.4 Behain, Nilpotent And Soluble Quotient 2318		75.2.2		2271
75.2.6 Comparison of Words 2274 75.2.6 Relations 2275 75.3 Construction of an FP-Group 2277 75.3.1 The Quotient Group Constructor 2277 75.3.2 The FP-Group Constructor 2279 75.3.3 Construction of the Standard Presentation for a Coxeter Group 228 75.3.4 Construction of a Standard Presentation for a Coxeter Group 228 75.3.5 Construction of Extensions 228 75.3.6 Construction of Extensions 228 75.3.7 Construction of Extensions 2288 75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The Ly Quotient Algorithm 231 75.4.6 Infaire L2 Quotient Algorithm 231 75.4.7 The Ly Quotient Algorithm 231 75.5.1 Abelian (N		75.2.3	Access Functions for Words	2271
75.26 Relations 2275 75.3 Construction of an FP-Group 2277 75.3.1 The Quotient Group Constructor 2277 75.3.2 The FP-Group Constructor 2279 75.3.3 Construction from a Finite Permutation or Matrix Group 2280 75.3.4 Construction of the Standard Presentation for a Coxeter Group 2282 75.3.5 Conversion from a Special Form of FP-Group 2283 75.3.6 Construction of Extensions 2286 75.3.7 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The L2-Quotient Algorithm 231 75.4 The L2-Quotient Algorithm 231 75.4 Bodilan, Nilpotent and Soluble Quotient 2315 <t< td=""><td></td><td>75.2.4</td><td>Arithmetic Operators for Words</td><td>2273</td></t<>		75.2.4	Arithmetic Operators for Words	2273
75.3 Construction of an FP-Group 2277 75.3.1 The Quotient Group Constructor 2279 75.3.2 The FP-Group Constructor 2279 75.3.3 Construction from a Finite Permutation or Matrix Group 2282 75.3.4 Construction of Estandard Presentation for a Coxeter Group 2283 75.3.5 Conversion from a Special Form of FP-Group 2283 75.3.6 Construction of a Standard Group 2284 75.3.7 Construction of Estandard Group 2284 75.3.8 Accessing the Defining Generators and Relations 2288 75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The L2-Quotient Algorithm 2292 75.4.6 Infinite L2 Quotient 2308 75.4.7 The L3-U3-Quotient Algorithm 2311 75.5.1 Abelian, Nilpotent and Soluble Quotient <		75.2.5	Comparison of Words	2274
75.3.1 The Quotient Group Constructor 2277 75.3.2 The FP-Group Constructor 2279 75.3.3 Construction from a Finite Permutation or Matrix Group 2280 75.3.4 Construction of the Standard Presentation for a Coxeter Group 2283 75.3.5 Construction of a Standard Group 2284 75.3.7 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The L2-Quotient Algorithm 2299 75.4.6 Infinite L2 Quotients 230 75.4.7 The L3-U3-Quotient Algorithm 2311 75.4.8 Searching for Isomorphisms 2315 75.5.1 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2318		75.2.6	Relations	
75.3.2 The FP-Group Constructor 2279 75.3.3 Construction form a Finite Permutation or Matrix Group 2280 75.3.4 Construction of the Standard Presentation for a Coxeter Group 2282 75.3.5 Conversion from a Special Form of FP-Group 2284 75.3.6 Construction of Extensions 2286 75.3.7 Construction of Extensions 2288 75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms to Finite Groups 2289 75.4.4 Computing Homomorphisms to Finite Groups 2299 75.4.5 The L2 Quotient Algorithm 2308 75.4.7 The L3U3-Quotient Algorithm 2311 75.5.1 Abelian, Nilpotent and Soluble Quotient 2318 75.5.2 p-Quotient 2321 75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2331 75.5.5 Soluble Quotient 2324		75.3	Construction of an FP-Group	2277
75.3.3 Construction from a Finite Permutation or Matrix Group 2280 75.3.4 Construction of the Standard Presentation for a Coxeter Group 2282 75.3.5 Conversion from a Special Form of FP-Group 2283 75.3.6 Construction of a Standard Group 2286 75.3.7 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The L2-Quotient Algorithm 2299 75.4.6 Infinite L2 Quotients 2308 75.4.7 The L3/3-Quotient Algorithm 2311 75.5.8 Searching for Isomorphisms 2315 75.5.1 Abelian, Nilpotent and Soluble Quotient 2318 75.5.2 p-Quotient 2318 75.5.3 The Construction of a P-Quotient 2321 75.5.4 Nilpotent Quotient 233		75.3.1	The Quotient Group Constructor	2277
75.3.4 Construction of the Standard Presentation for a Coxeter Group 2282 75.3.5 Conversion from a Special Form of FP-Group 2283 75.3.6 Construction of a Standard Group 2284 75.3.7 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2299 75.4.5 The L2-Quotient Algorithm 2299 75.4.6 Infinite L2 Quotient Algorithm 2311 75.4.7 The L3-Quotient Algorithm 2311 75.5.1 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2318 75.5.2 P-Quotient 2321 75.5.3 The Construction of a P-Quotient 2321 75.5.4 Nilpotent Quotient 233 75.6.1 Specification of a Subgroup 233		75.3.2	The FP-Group Constructor	2279
75.3.5 Conversion from a Special Form of FP-Group 2284 75.3.6 Construction of a Standard Group 2286 75.3.7 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The L2-Quotient Algorithm 2299 75.4.6 Infinite L2 Quotients 2308 75.4.7 The L3U3-Quotient Algorithm 2311 75.5 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2318 75.5.2 p-Quotient 2321 75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2331 75.6.1 Specification of a Subgroup 233 75.6.2 Index of a Subgroup: The Tod		75.3.3	Construction from a Finite Permutation or Matrix Group	2280
75.3.6 Construction of Extensions 2284 75.3.7 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4.1 General Remarks 2288 75.4.1 General Remarks 2289 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The L ₂ -Quotient Algorithm 2299 75.4.6 Infinite L2 Quotients 2308 75.4.7 The L ₃ U ₃ -Quotient Algorithm 2311 75.4.8 Searching for Isomorphisms 2315 75.5.1 Abelian Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2318 75.5.2 p-Quotient 2324 75.5.3 The Construction of a P-Quotient 2321 75.5.4 Nilpotent Quotient 233 75.6.1 Specification of a Subgroup 2333 75.6.1 Specification of the Todd-Coxeter Algor		75.3.4	Construction of the Standard Presentation for a Coxeter Group	2282
75.3.7 Construction of Extensions 2286 75.3.8 Accessing the Defining Generators and Relations 2288 75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The L2-Quotient Algorithm 2308 75.4.7 The L3 U3-Quotient Algorithm 2311 75.4.8 Searching for Isomorphisms 2315 75.5.1 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian, Nilpotent and Soluble Quotient 2321 75.5.2 p-Quotient 2321 75.5.3 The Construction of a P-Quotient 2321 75.5.4 Nilpotent Quotient 2333 75.6.1 Subgroups 2333 75.6.2 Index of a Subgroup 2333 75.6.3 Specification of a Subgroup 2331 75.6.3 Implicit Invocation of the Todd-Coxeter Al			Conversion from a Special Form of FP-Group	
75.3.8 Accessing the Defining Generators and Relations 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms to Finite Groups 2289 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The L2-Quotient Algorithm 2299 75.4.6 Infinite L2 Quotients 2308 75.4.7 The L3U3-Quotient Algorithm 2311 75.4.8 Searching for Isomorphisms 2315 75.5 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient and Soluble Quotient 2321 75.5.2 p-Quotient 2321 75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2330 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2335 75.7.1 Low Index Subgroups 2345 <td< td=""><td></td><td></td><td>Construction of a Standard Group</td><td>2284</td></td<>			Construction of a Standard Group	2284
75.4 Homomorphisms 2288 75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms to Finite Groups 2299 75.4.4 Computing Homomorphisms to Finite Groups 2299 75.4.5 The L2-Quotient Algorithm 2308 75.4.7 The L3 U3-Quotient Algorithm 2311 75.4.8 Searching for Isomorphisms 2315 75.5 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2318 75.5.2 p-Quotient 2321 75.5.3 The Construction of a P-Quotient 2321 75.5.4 Nilpotent Quotient 2332 75.5.5 Soluble Quotient 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2333 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2334 75.7.1 Low Index Subgroup: The Todd-Coxeter Algorithm 2345 75.7.2		75.3.7	Construction of Extensions	2286
75.4.1 General Remarks 2288 75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms to Finite Groups 2292 75.4.4 Computing Homomorphisms to Finite Groups 2292 75.4.5 The L2-Quotient Algorithm 2308 75.4.6 Infinite L2 Quotient Algorithm 2311 75.4.8 Searching for Isomorphisms 2315 75.5 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2318 75.5.2 p-Quotient 2321 75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2331 75.5.5 Soluble Quotient 2333 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2334 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2335 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 L		75.3.8	Accessing the Defining Generators and Relations	2288
75.4.2 Construction of Homomorphisms 2289 75.4.3 Accessing Homomorphisms to Finite Groups 2292 75.4.5 The L2-Quotient Algorithm 2299 75.4.6 Infinite L2 Quotient Algorithm 2318 75.4.7 The L3-U3-Quotient Algorithm 2311 75.4.8 Searching for Isomorphisms 2315 75.5 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2321 75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2321 75.5.5 Soluble Quotient 2330 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2330 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Construction 2354 75.8.1 <t< td=""><td></td><td>75.4</td><td></td><td>2288</td></t<>		75.4		2288
75.4.3 Accessing Homomorphisms 2289 75.4.4 Computing Homomorphisms to Finite Groups 2299 75.4.5 The L2-Quotient Algorithm 2308 75.4.7 The L3-Quotient Algorithm 2311 75.4.8 Searching for Isomorphisms 2315 75.5 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2321 75.5.2 p-Quotient 2321 75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2331 75.6.5 Soluble Quotient 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2345 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Construction 235 75.8 Coset Spaces: Group and Subgroups 235 75.8.1 Coset		75.4.1	General Remarks	2288
$75.4.4$ Computing Homomorphisms to Finite Groups 2292 $75.4.5$ The L_2 -Quotient Algorithm 2208 $75.4.6$ Infinite L2 Quotients 2308 $75.4.7$ The L_3 U3-Quotient Algorithm 2311 $75.4.8$ Searching for Isomorphisms 2315 75.5 Abelian, Nilpotent and Soluble Quotient 2318 $75.5.1$ Abelian Quotient 2318 $75.5.2$ p -Quotient 2321 $75.5.3$ The Construction of a p -Quotient 2321 $75.5.5$ Soluble Quotient 233 75.6 Subgroups 233 $75.6.1$ Specification of a Subgroup 233 $75.6.2$ Index of a Subgroup: The Todd-Coxeter Algorithm 233 $75.6.3$ Implicit Invocation of the Todd-Coxeter Algorithm 233 $75.6.4$ Constructing a Presentation for a Subgroup 234 75.7 Subgroups of Finite Index 234 $75.7.1$ Low Index Subgroups 234 $75.7.2$ Subgroup Constructions 235 $75.8.8$ Coset Spaces and Tables 236 $75.8.8$ Coset Spaces: Construction 236 $75.8.4$ Accessing Information 236 $75.8.5$ Coset Spaces: Elementary Operations 236 $75.8.7$ Coset Spaces: Selection of Cosets 237 $75.8.7$ Coset Spaces: Induced Homomorphism 237 $75.9.1$ Reducing Generating Sets 2376 $75.9.2$ Tietze Transformations 237		75.4.2	Construction of Homomorphisms	2289
75.4.5 The L2-Quotient Algorithm 2299 $75.4.6$ Infinite L2 Quotients 2308 $75.4.7$ The L3U3-Quotient Algorithm 2311 $75.4.8$ Searching for Isomorphisms 2315 75.5 Abelian, Nilpotent and Soluble Quotient 2318 $75.5.1$ Abelian Quotient 2321 $75.5.3$ The Construction of a p -Quotient 2321 $75.5.4$ Nilpotent Quotient 233 $75.6.5$ Soluble Quotient 233 $75.6.5$ Solubgroups 2333 $75.6.1$ Specification of a Subgroup 2333 $75.6.2$ Index of a Subgroup: The Todd-Coxeter Algorithm 2335 $75.6.2$ Index of a Subgroup: The Todd-Coxeter Algorithm 2340 $75.6.3$ Implicit Invocation of the Todd-Coxeter Algorithm 2340 $75.6.4$ Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 $75.7.1$ Low Index Subgroups 2359 $75.8.2$ Subgroups of Group and Subgroups 2359 <td></td> <td>75.4.3</td> <td>Accessing Homomorphisms</td> <td>2289</td>		75.4.3	Accessing Homomorphisms	2289
75.4.6 Infinite L2 Quotients 2308 75.4.7 The L3U3-Quotient Algorithm 2311 75.4.8 Searching for Isomorphisms 2315 75.5 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2321 75.5.2 p-Quotient 2321 75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2330 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces: Construction 2366 75.8.1 Coset Spaces: Construction 2366 75.8.2 Coset Spaces: Elementary		75.4.4	Computing Homomorphisms to Finite Groups	2292
75.4.7 The L_3U_3 -Quotient Algorithm 2311 75.4.8 Searching for Isomorphisms 2315 75.5 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2318 75.5.2 p -Quotient 2321 75.5.3 The Construction of a p -Quotient 2321 75.5.4 Nilpotent Quotient 2330 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup 2333 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2354 75.8.1 Coset Spaces and Tables 2363 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Co		75.4.5	The L_2 -Quotient Algorithm	2299
75.4.8 Searching for Isomorphisms 2315 75.5 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2318 75.5.2 p-Quotient 2321 75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2324 75.5.5 Soluble Quotient 2330 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2345 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8.1 Coset Spaces and Tables 2363 75.8.2 Coset Spaces: Construction 2364 75.8.3 Coset Spaces: Elementary Operati		75.4.6	Infinite L2 Quotients	2308
75.5 Abelian, Nilpotent and Soluble Quotient 2318 75.5.1 Abelian Quotient 2318 75.5.2 p-Quotient 2321 75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2330 75.5.5 Soluble Quotient 2330 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Spaces: Construction 2364 75.8.2 Coset Spaces: Construction 2366 75.8.4 Accessing Information 2366 75.8.5 Double Coset Spaces: Construction		75.4.7	The L_3U_3 -Quotient Algorithm	2311
75.5.1 Abelian Quotient 2318 $75.5.2$ p -Quotient 2321 $75.5.3$ The Construction of a p -Quotient 2321 $75.5.4$ Nilpotent Quotient 2334 $75.5.5$ Soluble Quotient 2330 75.6 Subgroups 2333 $75.6.1$ Specification of a Subgroup 2333 $75.6.2$ Index of a Subgroup: The Todd-Coxeter Algorithm 2335 $75.6.3$ Implicit Invocation of the Todd-Coxeter Algorithm 2340 $75.6.4$ Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 $75.7.1$ Low Index Subgroups 2345 $75.7.2$ Subgroup Constructions 2354 $75.7.2$ Subgroup Constructions 2354 $75.7.2$ Subgroup Construction 2354 $75.8.1$ Coset Spaces and Tables 2363 $75.8.2$ Coset Spaces: Construction 2364 $75.8.3$ Coset Spaces: Construction 2366 $75.8.4$ Accessing Information 2367 $75.8.5$ Double Coset Space		75.4.8	Searching for Isomorphisms	2315
75.5.2 p-Quotient 2321 75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2324 75.5.5 Soluble Quotient 2330 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Spaces: Construction 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection		75.5	Abelian, Nilpotent and Soluble Quotient	2318
75.5.3 The Construction of a p-Quotient 2321 75.5.4 Nilpotent Quotient 2324 75.5.5 Soluble Quotient 2330 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Spaces Construction 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.7 Coset Spaces: Selection of Cosets 2372 75.8.7 C		75.5.1	Abelian Quotient	2318
75.5.4 Nilpotent Quotient 2324 75.5.5 Soluble Quotient 2330 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Spaces and Tables 2364 75.8.2 Coset Spaces: Construction 2364 75.8.3 Coset Spaces: Construction 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9.1 Reducing G		75.5.2	p-Quotient	2321
75.5.5 Soluble Quotient 2330 75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2345 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze		75.5.3	The Construction of a p-Quotient	2321
75.6 Subgroups 2333 75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.5.4	Nilpotent Quotient	2324
75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.5.5	Soluble Quotient	2330
75.6.1 Specification of a Subgroup 2333 75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.6	Subgroups	2333
75.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm 2335 75.6.3 Implicit Invocation of the Todd-Coxeter Algorithm 2340 75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.6.1		2333
75.6.4 Constructing a Presentation for a Subgroup 2341 75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9 Simplification 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.6.2		2335
75.7 Subgroups of Finite Index 2345 75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.6.3		2340
75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.6.4	Constructing a Presentation for a Subgroup	2341
75.7.1 Low Index Subgroups 2345 75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.7	Subgroups of Finite Index	2345
75.7.2 Subgroup Constructions 2354 75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2367 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.7.1		2345
75.7.3 Properties of Group and Subgroups 2359 75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.7.2		2354
75.8 Coset Spaces and Tables 2363 75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9 Simplification 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.7.3		2359
75.8.1 Coset Tables 2364 75.8.2 Coset Spaces: Construction 2366 75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9 Simplification 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.8		2363
75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9 Simplification 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377				
75.8.3 Coset Spaces: Elementary Operations 2366 75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9 Simplification 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377			Coset Spaces: Construction	
75.8.4 Accessing Information 2367 75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9 Simplification 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377				
75.8.5 Double Coset Spaces: Construction 2371 75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9 Simplification 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377		75.8.4		2367
75.8.6 Coset Spaces: Selection of Cosets 2372 75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9 Simplification 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377				
75.8.7 Coset Spaces: Induced Homomorphism 2374 75.9 Simplification 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377				
75.9 Simplification 2376 75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377				
75.9.1 Reducing Generating Sets 2376 75.9.2 Tietze Transformations 2377				
75.9.2 Tietze Transformations 2377				
			Representation Theory	

	75.11	Small Group Identification	2392
	75.11.1	Concrete Representations of Small Groups	2393
	75.12	Finitely Generated Subgroups of Free Groups	2394
	75.13	Bibliography	2395
76	FINIT	TELY PRESENTED GROUPS: ADVANCED	. 2397
	76.1	Introduction	2399
	76.2	Low Level Operations on Presentations and Words	2399
	76.2.1	Modifying Presentations	2400
	76.2.2	Low Level Operations on Words	2402
	76.3	Interactive Coset Enumeration	2404
	$76.3.1 \\ 76.3.2$	Introduction Constructing and Madifying a Coast Enumeration Process	$2404 \\ 2405$
	76.3.3	Constructing and Modifying a Coset Enumeration Process Starting and Restarting an Enumeration	$\frac{2405}{2410}$
	76.3.4	Accessing Information	$\frac{2410}{2412}$
	76.3.4 $76.3.5$	Induced Permutation Representations	2412 2421
	76.3.6	Coset Spaces and Transversals	2422
	76.4	p-Quotients (Process Version)	2425
	76.4.1	The p-Quotient Process	2425
	76.4.2	Using p -Quotient Interactively	2426
	76.5	Soluble Quotients	2435
	76.5.1	Introduction	2435
	76.5.2	Construction	2435
	76.5.3	Calculating the Relevant Primes	2437
	76.5.4	The Functions	2437
	76.6	Bibliography	2441
77	POLY	CYCLIC GROUPS	. 2443
	77.1	Introduction	2447
	77.2	Polycyclic Groups and Polycyclic Presentations	2447
	77.2.1	Introduction	2447
	77.2.2	Specification of Elements	2448
	77.2.3	Access Functions for Elements	2448
	77.2.4	Arithmetic Operations on Elements	2449
	77.2.5	Operators for Elements	2450
	$77.2.6 \\ 77.2.7$	Comparison Operators for Elements	2451 2451
	77.2.8	Specification of a Polycyclic Presentation Properties of a Polycyclic Presentation	$\frac{2451}{2455}$
	77.3	Subgroups, Quotient Groups, Homomorphisms and Extensions	2455
	77.3.1	Construction of Subgroups	2455 2455
	77.3.2	Coercions Between Groups and Subgroups	2456
	77.3.3	Construction of Quotient Groups	2457
	77.3.4	Homomorphisms	2457
	77.3.5	Construction of Extensions	2458
	77.3.6	Construction of Standard Groups	2458
	77.4	Conversion between Categories	2461
	77.5	Access Functions for Groups	2462
	77.6	Set-Theoretic Operations in a Group	2463
	77.6.1	Functions Relating to Group Order	2463
	77.6.2	Membership and Equality	2463
	77.6.3	Set Operations	2464
	77.7	Coset Spaces	2465
	77.8	The Subgroup Structure	2468
	77.8.1	General Subgroup Constructions	2468

	77.8.2	Subgroup Constructions Requiring a Nilpotent Covering Group	2468
	77.9	General Group Properties	2469
	77.9.1	General Properties of Subgroups	2470
	77.9.2	Properties of Subgroups Requiring a Nilpotent Covering Group	2470
	77.10	Normal Structure and Characteristic Subgroups	2472
	77.10.1	Characteristic Subgroups and Subgroup Series	2472
	77.10.2	The Abelian Quotient Structure of a Group	2476
	77.11	Conjugacy	2476
	77.12	Representation Theory	2477
	77.13	Power Groups	2483
	77.14	Bibliography	2484
78	BRAI	D GROUPS	. 2485
	78.1	Introduction	2487
	78.1.1	Lattice Structure and Simple Elements	2488
	78.1.2	Representing Elements of a Braid Group	2489
	78.1.3	Normal Form for Elements of a Braid Group	2490
	78.1.4	Mixed Canonical Form and Lattice Operations	2491
	78.1.5	Conjugacy Testing and Conjugacy Search	2492
	78.2	Constructing and Accessing Braid Groups	2494
	78.3	Creating Elements of a Braid Group	2495
	78.4	Working with Elements of a Braid Group	2501
	78.4.1 $78.4.2$	Accessing Information Computing Normal Forms of Florents	2501
	78.4.3	Computing Normal Forms of Elements Arithmetic Operators and Functions for Elements	$\frac{2504}{2507}$
	78.4.4	Boolean Predicates for Elements	2511
	78.4.5	Lattice Operations	2515
	78.4.6	Invariants of Conjugacy Classes	2519
	78.5	Homomorphisms	2528
	78.5.1	General Remarks	2528
	78.5.2	Constructing Homomorphisms	2528
	78.5.3	Accessing Homomorphisms	2529
	78.5.4	Representations of Braid Groups	2532
	78.6	Bibliography	2534
79	GROU	JPS DEFINED BY REWRITE SYSTEMS	. 2535
	79.1	Introduction	2537
	79.1.1	Terminology	2537
	79.1.2	The Category of Rewrite Groups	2537
	79.1.3	The Construction of a Rewrite Group	2537
	79.2	Constructing Confluent Presentations	2538
	79.2.1	The Knuth-Bendix Procedure	2538
	79.2.2	Defining Orderings	2539
	79.2.3	Setting Limits	2541
	79.2.4	Accessing Group Information	2543
	79.3	Properties of a Rewrite Group	2548
	79.4	Arithmetic with Words	2546
	79.4.1	Construction of a Word	2546
	79.4.2	Element Operations	2547
	79.5	Operations on the Set of Group Elements	2549
	79.6	Homomorphisms	2551

General Remarks

 ${\bf Construction\ of\ Homomorphisms}$

Conversion to a Finitely Presented Group

79.6.1 79.6.2

79.7

VOLUME 6: CONTENTS

xciii

2551

2551

2552

	79.8	Bibliography	2552
80	AUTO	OMATIC GROUPS	. 2553
	80.1	Introduction	2555
	80.1.1	Terminology	2555
	80.1.2	The Category of Automatic Groups	2555
	80.1.3	The Construction of an Automatic Group	2555
	80.2	Creation of Automatic Groups	2556
	80.2.1	Construction of an Automatic Group	2556
	80.2.2	Modifying Limits	2557
	80.2.3	Accessing Group Information	2561
	80.3	Properties of an Automatic Group	2562
	80.4	Arithmetic with Words	2564
	80.4.1	Construction of a Word	2564
	80.4.2	Operations on Elements	2565
	80.5	Homomorphisms	2567
	80.5.1	General Remarks	2567
	80.5.2	Construction of Homomorphisms	2568
	80.6	Set Operations	2568
	80.7	The Growth Function	2570
	80.8	Bibliography	2571
81	GRO	UPS OF STRAIGHT-LINE PROGRAMS	. 2573
	81.1	Introduction	2575
	81.2	Construction of an SLP-Group and its Elements	2575
	81.2.1	Structure Constructors	2575
	81.2.2	Construction of an Element	2576
	81.3	Arithmetic with Elements	2576
	81.3.1	Accessing the Defining Generators and Relations	2576
	81.4	Addition of Extra Generators	2577
	81.5	Creating Homomorphisms	2577
	81.6	Operations on Elements	2579
	81.6.1	Equality and Comparison	2579
	81.7	Set-Theoretic Operations	2579
	81.7.1	Membership and Equality	2579
	81.7.2	Set Operations	2580
	81.7.3	Coercions Between Related Groups	2581
	81.8	Bibliography	2581
82	FINIT	ΓELY PRESENTED SEMIGROUPS	. 2583
	82.1	Introduction	2585
	82.2	The Construction of Free Semigroups and their Elements	2585
	82.2.1	Structure Constructors	2585
	82.2.2	Element Constructors	2586
	82.3	Elementary Operators for Words	2586
	82.3.1	Multiplication and Exponentiation	2586
	82.3.2	The Length of a Word	2586
	82.3.3	Equality and Comparison	2587
	82.4	Specification of a Presentation	2588
	82.4.1	Relations	2588
	82.4.2	Presentations	2588
	82.4.3	Accessing the Defining Generators and Relations	2589

	82.5	Subsemigroups, Ideals and Quotients	2590
	82.5.1	Subsemigroups and Ideals	2590
	82.5.2	Quotients	2591
	82.6	Extensions	2591
	82.7	Elementary Tietze Transformations	2591
	82.8	String Operations on Words	2593
83	MON	OIDS GIVEN BY REWRITE SYSTEMS	. 2595
50	MON	OIDS GIVEN DI REWRITE SISTEMS	. 2595
	83.1	Introduction	2597
	83.1.1	Terminology	2597
	83.1.2	The Category of Rewrite Monoids	2597
	83.1.3	The Construction of a Rewrite Monoid	2597
	83.2	Construction of a Rewrite Monoid	2598
	83.3	Basic Operations	2603
	83.3.1	Accessing Monoid Information	2603
	83.3.2	Properties of a Rewrite Monoid	2604
	83.3.3	Construction of a Word	2606
	83.3.4	Arithmetic with Words	2606
	83.4	Homomorphisms	2608
	83.4.1	General Remarks	2608
	83.4.2	Construction of Homomorphisms	2608
	83.5	Set Operations	2608
	83.6	Conversion to a Finitely Presented Monoid	2610
	83.7	Bibliography	2611

xcv

XI	ALG	EBRAS	2613
84	ALGI	EBRAS	2615
	84.1	Introduction	2617
	84.1.1	The Categories of Algebras	2617
	84.2	Construction of General Algebras and their Elements	2617
	84.2.1	Construction of a General Algebra	2618
	84.2.2	Construction of an Element of a General Algebra	2619
	84.3	Construction of Subalgebras, Ideals and Quotient Algebras	2619
	84.3.1	Subalgebras and Ideals	2619
	84.3.2	Quotient Algebras	2620
	84.4	Operations on Algebras and Subalgebras	2620
	84.4.1	Invariants of an Algebra	2620
	84.4.2	Changing Rings	2621
	84.4.3	Bases	2621
	84.4.4	Decomposition of an Algebra	2622
	84.4.5	Operations on Subalgebras	2624
	84.5	Operations on Elements of an Algebra	2625
	84.5.1	Operations on Elements	2625
	84.5.2	Comparisons and Membership	2626
	84.5.3	Predicates on Elements	2626
85	STRU	UCTURE CONSTANT ALGEBRAS	2627
	85.1	Introduction	2629
	85.2	Construction of Structure Constant Algebras and Elements	2629
	85.2.1	Construction of a Structure Constant Algebra	2629
	85.2.2	Construction of Elements of a Structure Constant Algebra	2630
	85.3	Operations on Structure Constant Algebras and Elements	2631
	85.3.1	Operations on Structure Constant Algebras	2631
	85.3.2	Indexing Elements	2632
	85.3.3	The Module Structure of a Structure Constant Algebra	2633
	85.3.4	Homomorphisms	2633
86	ASSO	OCIATIVE ALGEBRAS	2637
	86.1	Introduction	2639
	86.2	Construction of Associative Algebras	2639
	86.2.1	Construction of an Associative Structure Constant Algebra	2639
	86.2.2	Associative Structure Constant Algebras from other Algebras	2640
	86.3	Operations on Algebras and their Elements	2641
	86.3.1	Operations on Algebras	2641
	86.3.2	Operations on Elements	2645
	86.3.3	Representations	2645
	86.3.4	Decomposition of an Algebra	2646
	86.4	Orders	2648
	86.4.1	Construction of Orders	2648
	86.4.2	Attributes	2654
	86.4.3	Bases of Orders	2655

	86.4.4	Predicates	2657
	86.4.5	Operations with Orders	2657
	$86.5 \\ 86.5.1$	Elements of Orders Construction of Elements	$2658 \\ 2658$
	86.5.2	Arithmetic of Elements	2659
	86.5.3	Predicates on Elements	2659
	86.5.4	Other Operations with Elements	2660
	86.6	Ideals of Orders	2661
	86.6.1	Construction of Ideals	2661
	86.6.2	Attributes of Ideals	2661
	86.6.3	Bases of Ideals	2662
	86.6.4	Arithmetic for Ideals	2663
	86.6.5	Predicates on Ideals	2663
	86.6.6	Other Operations on Ideals	2664
	86.7	Bibliography	2666
87	FINIT	TELY PRESENTED ALGEBRAS	2667
	87.1	Introduction	2669
	87.2	Representation and Monomial Orders	2669
	87.3	Exterior Algebras	2670
	87.4	Creation of Free Algebras and Elements	2670
	87.4.1	Creation of Free Algebras	2670
	87.4.2	Print Names	2670
	87.4.3	Creation of Polynomials	2671
	87.5	Structure Operations	2671
	87.5.1	Related Structures	2671
	87.5.2	Numerical Invariants	2671
	87.5.3	Homomorphisms	2672
	87.6	Element Operations	2673
	87.6.1	Arithmetic Operators	2673
	87.6.2	Equality and Membership	2673
	87.6.3	Predicates on Algebra Elements Coefficients Managinals Terms and Degree	2673
	87.6.4	Coefficients, Monomials, Terms and Degree Evaluation	2674 2676
	$87.6.5 \\ 87.7$		
	87.7.1	Ideals and Gröbner Bases Creation of Ideals	$2677 \\ 2677$
	87.7.2	Gröbner Bases	2678
	87.7.3	Verbosity	2679
	87.7.4	Related Functions	2680
	87.8	Basic Operations on Ideals	2682
	87.8.1	Construction of New Ideals	2683
	87.8.2	Ideal Predicates	2683
	87.8.3	Operations on Elements of Ideals	2684
	87.9	Changing Coefficient Ring	2685
	87.10	Finitely Presented Algebras	2685
	87.11	Creation of FP-Algebras	2685
	87.12	Operations on FP-Algebras	2687
	87.13	Finite Dimensional FP-Algebras	2688
	87.14	Vector Enumeration	2692
	87.14.1	Finitely Presented Modules	2692
	87.14.2	S-algebras	2692
	87.14.3	Finitely Presented Algebras	2693
	87.14.4	Vector Enumeration	2693
	87.14.5	The Isomorphism	2694
	87.14.6	Sketch of the Algorithm	2695

VOLUME 7: CONTENTS

xcvii

	87.14.7	Weights	2695
	87.14.8	Setup Functions	2696
	87.14.9	The Quotient Module Function	2696
	87.14.10	Structuring Presentations	2696
	87.14.11	Options and Controls	2697
	87.14.12	Weights	2697
	87.14.13	Limits	2698
	87.14.14	Logging	2699
	87.14.15	Miscellaneous	2700
	87.15	Bibliography	2703
88	MATR	AIX ALGEBRAS	. 2705
	88.1	Introduction	2709
	88.2	Construction of Matrix Algebras and their Elements	2709
	88.2.1	Construction of the Complete Matrix Algebra	2709
	88.2.2	Construction of a Matrix	2709
	88.2.3	Constructing a General Matrix Algebra	2711
	88.2.4	The Invariants of a Matrix Algebra	2712
	88.3	Construction of Subalgebras, Ideals and Quotient Rings	2713
	88.4	The Construction of Extensions and their Elements	2715
	88.4.1	The Construction of Direct Sums and Tensor Products	2715
	88.4.2	Construction of Direct Sums and Tensor Products of Elements	2717
	88.5	Operations on Matrix Algebras	2718
	88.6	Changing Rings	2718
	88.7	Elementary Operations on Elements	2718
	88.7.1	Arithmetic	2718
	88.7.2	Predicates	2719
	88.8	Elements of M_n as Homomorphisms	2723
	88.9	Elementary Operations on Subalgebras and Ideals	2724
	88.9.1	Bases	2724
	88.9.2	Intersection of Subalgebras	2724
	88.9.3	Membership and Equality	2724
	88.10	Accessing and Modifying a Matrix	2725
	88.10.1	Indexing	2725
	88.10.2	Extracting and Inserting Blocks	2726
	88.10.3	Joining Matrices	2726
	88.10.4	Row and Column Operations	2727
	88.11	Canonical Forms	2727
	88.11.1 88.11.2	Canonical Forms for Matrices over Euclidean Domains Canonical Forms for Matrices over a Field	2727 2729
	88.12	Diagonalising Commutative Algebras over a Field	2732
	88.13	Solutions of Systems of Linear Equations	2734
	88.14	Presentations for Matrix Algebras	2735
	88.14.1 88.14.2	Quotients and Idempotents	2735
		Generators and Presentations Solving the Word Problem	2738
	88.14.3 88.15	Solving the Word Problem	2742
	00.10	Bibliography	2744

89	GROU	P ALGEBRAS	2745
	89.1	Introduction	2747
	89.2	Construction of Group Algebras and their Elements	2747
	89.2.1	Construction of a Group Algebra	2747
	89.2.2	Construction of a Group Algebra Element	2749
	89.3	Construction of Subalgebras, Ideals and Quotient Algebras	2750
	89.4	Operations on Group Algebras and their Subalgebras	2752
	89.4.1	Operations on Group Algebras	2752
	89.4.2	Operations on Subalgebras of Group Algebras	2753
	89.5	Operations on Elements	2755
90	BASIC	ALGEBRAS	2759
	90.1	Introduction	2763
	90.2	Basic Algebras	2763
	90.2.1	Creation	2763
	90.2.2	Special Basic Algebras	2764
	90.2.3	A Database of Basic Algebras	2770
	90.2.4	Access Functions	2771
	90.2.5	Elementary Operations	2773
	90.2.6	Boolean Functions	2776
	90.3	Homomorphisms	2777
	90.4	Subalgebras and Quotient Algebras	2778
	90.4.1	Subalgebras and their Constructions	2778
	90.4.2	Ideals and their Construction	2779
	90.4.3	Quotient Algebras	2780
	90.4.4	Units	2780
	90.5	Minimal Forms and Gradings	2781
	90.6	Automorphisms and Isomorphisms	2783
	90.7	Quiver and Relations	2785
	90.8	Modules over Basic Algebras	2787
	90.8.1	Indecomposable Projective Modules	2787
	90.8.2	Creation	2788
	90.8.3	Access Functions	2789
	90.8.4	Predicates	2791
	90.8.5	Elementary Operations	2792
	90.9	Homomorphisms of Modules	2794
	90.9.1	Creation	2794
	90.9.2 $90.9.3$	Access Functions Prejective Covers and Recolutions	2795
		Projective Covers and Resolutions	2796
	90.10 $90.10.1$	Duals and Injectives Injective Modules	2800 2801
			2804
	90.11 $90.11.1$	Cohomology Ext-Algebras	2809 2809
	90.12 $90.12.1$	Group Algebras of p-groups Access Functions	2811 2812
	90.12.1	Access Functions Projective Resolutions	2812 2812
	90.12.2 $90.12.3$	Cohomology Generators	2812 2813
	90.12.3	Cohomology Rings	2814
	90.12.4 $90.12.5$	Restrictions and Inflations	2814
	90.13	A-infinity Algebra Structures on Group Cohomology	2818
	90.13.1	Homological Algebra Toolkit	2820
	90.14	Bibliography	2822
	U U . I I		

91	QUAT	ERNION ALGEBRAS	2823
	91.1	Introduction	2825
	91.2	Creation of Quaternion Algebras	2826
	91.3	Creation of Quaternion Orders	2830
	91.3.1	Creation of Orders from Elements	2831
	91.3.2	Creation of Maximal Orders	2832
	91.3.3	Creation of Orders with given Discriminant	2834
	91.3.4	Creation of Orders with given Discriminant over the Integers	2835
	91.4	Elements of Quaternion Algebras	2836
	91.4.1	Creation of Elements	2836
	91.4.2	Arithmetic of Elements	2837
	91.5	Attributes of Quaternion Algebras	2839
	91.6	Hilbert Symbols and Embeddings	2840
	91.7	Predicates on Algebras	2843
	91.8	Recognition Functions	2844
	91.9	Attributes of Orders	2846
	91.10	Predicates of Orders	2847
	91.11	Operations with Orders	2848
	91.12	Ideal Theory of Orders	2849
	91.12.1	Creation and Access Functions	2849
	91.12.2	Enumeration of Ideal Classes	2852
	91.12.3	Operations on Ideals	2855
	91.13	Norm Spaces and Basis Reduction	2856
	91.14	Isomorphisms	2858
	91.14.1	Isomorphisms of Algebras	2858
	91.14.2	Isomorphisms of Orders	2859
	91.14.3	Isomorphisms of Ideals	2859
	91.14.4	Examples	2861
	91.15	Units and Unit Groups	2863
	91.16	Bibliography	2865
92	ALGE	EBRAS WITH INVOLUTION	2867
	92.1	Introduction	2869
	92.2	Algebras with Involution	2869
	92.2.1	Reflexive Forms	2870
	92.2.2	Systems of Reflexive Forms	2870
	92.2.3	Basic Attributes of *-Algebras	2871
	92.2.4 $92.2.5$	Adjoint Algebras Group Algebras	2872 2873
	92.2.6		2874
	92.2.0	Simple *-Algebras Decompositions of *-Algebras	2875 2875
	92.3 92.4	Recognition of *-Algebras	
	92.4 $92.4.1$	Recognition of *-Algebras Recognition of Simple *-Algebras	2876 2877
	92.4.1 $92.4.2$	Recognition of Arbitrary *-Algebras	2878 2878
	92.4.2 92.5	Intersections of Classical Groups	2880
	$92.5 \\ 92.6$	Bibliography	2882 2882
	$\partial Z.U$	Dibilography	2002

93	CLIF	FORD ALGEBRAS	2883
	93.1	Introduction	2885
	93.2	Clifford Algebras	2885
	93.2.1	Print Names for Generators	2886
	93.2.2	Elements of a Clifford Algebra	2887
	93.3	The Main Involutions	2889
	93.4	Clifford Algebra Structure	2889
	93.5	Vector and Spin Representations	2892
	93.5.1	The Clifford Group	2892
	93.5.2	Siegel Transformations and Spin Groups	2893
	93.5.3	Spin Representations	2894
	93.6	Bibliography	2896
94	NON-	-ASSOCIATIVE ALGEBRAS	2897
	94.1	Composition Algebras	2899
	94.2	Jordan Algebras	2900
	94.3	Invariants	2901
	94.4	Generic Operations	2903
	94.4.1	Nonassociative Algebras with Involutions	2903
	94.4.2	Operations on Power Associative Algebras	2903
	94.5	Bibliography	2904

XII	REPF	RESENTATION THEORY	2905
95	MODU	ULES OVER AN ALGEBRA	2907
	95.1	Introduction	2909
	95.2	Modules over a Matrix Algebra	2910
	95.2.1	Construction of an A-Module	2910
	95.2.2	Accessing Module Information	2911
	95.2.3	Standard Constructions	2913
	95.2.4	Element Construction and Operations	2914
	95.2.5	Submodules	2916
	95.2.6	Quotient Modules	2919
	95.2.7	Structure of a Module	2920
	95.2.8	Decomposability and Complements	2926
	95.2.9	Lattice of Submodules	2928
	95.2.10	Homomorphisms	2933
	95.3	Modules over a General Algebra	2938
	95.3.1	Introduction	2938
	95.3.2	Construction of Algebra Modules	2939
	95.3.3	The Action of an Algebra Element	2939
	95.3.4	Related Structures of an Algebra Module	2940
	95.3.5	Properties of an Algebra Module	2940
	95.3.6	Creation of Algebra Modules from other Algebra Modules	2940
	95.3.7	Cyclic Algebras and their Modules	2942
	95.4	Bibliography	2943
96	K[G]-1	MODULES AND GROUP REPRESENTATIONS	2945
	96.1	Introduction	2947
	96.2	Construction of $K[G]$ -Modules	2947
	96.2.1	General $K[G]$ -Modules	2947
	96.2.2	Natural $K[G]$ -Modules	2949
	96.2.3	Action on an Elementary Abelian Section	2950
	96.2.4	Permutation Modules	2951
	96.2.5	Action on a Polynomial Ring	2953
	96.3	The Representation Afforded by a $K[G]$ -module	2954
	96.4	Standard Constructions	2956
	96.4.1	Changing the Coefficient Ring	2956
	96.4.2	Writing a Module over a Smaller Field	2957
	96.4.3	Direct Sum	2961
	96.4.4	Tensor Products of $K[G]$ -Modules	2961
	96.4.5	Induction and Restriction	2962
	96.4.6	The Fixed-point Space of a Module	2963
	96.4.7	Changing Basis	2963
	96.5	Properties of Modules	2964
	96.6	The Construction of all Irreducible Modules	2964
	96.6.1	Generic Functions for Finding Irreducible Modules	2965
	96.6.2	The Burnside Algorithm	2967
	96.6.3	The Schur Algorithm for Soluble Groups	2969
	96.6.4	The Rational Algorithm	2971
	96.7	Extensions of Modules	2975
	96.8	The Construction of Projective Indecomposable Modules	2976

97	CHAF	RACTERS OF FINITE GROUPS	. 2981
	97.1	Creation Functions	2983
	97.1.1	Structure Creation	2983
	97.1.2	Element Creation	2984
	97.1.3	The Table of Irreducible Characters	2984
	97.2	Character Ring Operations	2989
	97.2.1	Related Structures	2989
	97.3	Element Operations	2990
	97.3.1	Arithmetic	2990
	97.3.2	Predicates and Booleans	2990
	97.3.3	Accessing Class Functions	2992
	97.3.4	Conjugation of Class Functions	2992
	97.3.5	Functions Returning a Scalar	2993
	97.3.6	The Schur Index	2994
	97.3.7	Attribute	2997
	97.3.8	Induction, Restriction and Lifting	2997
	97.3.9	Symmetrization	2998
	97.3.10	Permutation Character	3002
	97.3.11	Composition and Decomposition	3002
	97.3.12	Finding Irreducibles	3003
	97.3.13	Brauer Characters	3006
	97.4	Database of Character Tables	3007
	97.5	Bibliography	3012
98	REPR	ESENTATIONS OF SYMMETRIC GROUPS	. 3015
	98.1	Introduction	3017
	98.2	Representations of the Symmetric Group	3017
	98.2.1	Integral Representations	3017
	98.2.2	The Seminormal and Orthogonal Representations	3018
	98.3	Characters of the Symmetric Group	3019
	98.3.1	Single Values	3019
	98.3.2	Irreducible Characters	3019
	98.3.3	Character Table	3019
	98.4	Representations of the Alternating Group	3019
	98.5	Characters of the Alternating Group	3020
	98.5.1	Single Values	3020
	98.5.2	Irreducible Characters	3020
	98.5.3	Character Table	3020
	98.6	Bibliography	3021
99	MOD	P GALOIS REPRESENTATIONS	. 3023
	99.1	Introduction	3025
	99.1.1	Motivation	3025
	99.1.2	Definitions	3025
	99.1.3	Classification of φ -modules	3026
	99.1.4	Connection with Galois Representations	3026
	99.2	φ -modules and Galois Representations in MAGMA	3026
	99.2.1	φ -modules φ -modules	3027
	99.2.2	Semisimple Galois Representations	3028
	99.3	Examples	3029
	00.0		5020

XIII	LIE T	THEORY	3031
100	INTRODUCTION TO LIE THEORY		3033
	100.1	Descriptions of Coxeter Groups	3035
	100.2	Root Systems and Root Data	3036
	100.3	Coxeter and Reflection Groups	3036
	100.4	Lie Algebras and Groups of Lie Type	3037
	100.5	Highest Weight Representations	3037
	100.6	Universal Enveloping Algebras and Quantum Groups	3037
	100.7	Bibliography	3038
101	COXE	ETER SYSTEMS	3039
	101.1	Introduction	3041
	101.2	Coxeter Matrices	3041
	101.3	Coxeter Graphs	3043
	101.4	Cartan Matrices	3045
	101.5	Dynkin Digraphs	3048
	101.6	Finite and Affine Coxeter Groups	3050
	101.7	Hyperbolic Groups	3058
	101.8	Related Structures	3059
	101.9	Bibliography	3061
102	ROOT	Γ SYSTEMS	3063
	102.1	Introduction	3065
	102.1.1	Reflections	3065
	102.1.2	Definition of a Root System	3065
	102.1.3	Simple and Positive Roots	3066
	102.1.4	The Coxeter Group	3066
	102.1.5 102.2	Nonreduced Root Systems	3067
	102.2 102.3	Constructing Root Systems Operators on Root Systems	3067 3071
	102.3 102.4	Properties of Root Systems	3071 3073
	102.4 102.5	Roots and Coroots	3073 3074
	102.5 $102.5.1$	Accessing Roots and Coroots	3074 3074
	102.5.1 $102.5.2$	Reflections	3074
	102.5.2 $102.5.3$	Operations and Properties for Roots and Coroot Indices	3079
	102.6	Building Root Systems	3082
	102.7	Related Structures	3084
	102.8	Bibliography	3084

103	ROOT	T DATA	. 3085
	103.1	Introduction	3089
	103.1.1	Reflections	3089
	103.1.2	Definition of a Split Root Datum	3090
	103.1.3	Simple and Positive Roots	3090
	103.1.4	The Coxeter Group	3090
	103.1.5	Nonreduced Root Data	3091
	103.1.6	Isogeny of Split Reduced Root Data	3091
	103.1.7 103.2	Extended Root Data	3092
	103.2 $103.2.1$	Constructing Root Data Constructing Sparse Root Data	3092
			3098
	103.3	Operations on Root Data	3100
	103.4	Properties of Root Data	3107
	103.5	Roots, Coroots and Weights	3110 3110
	$103.5.1 \\ 103.5.2$	Accessing Roots and Coroots Reflections	3110 3117
	103.5.2 $103.5.3$	Operations and Properties for Root and Coroot Indices	3117
	103.5.3 $103.5.4$	Weights	3119 3122
	103.6	Building Root Data	3124
	103.7	Morphisms of Root Data	3130
	103.7	Constants Associated with Root Data	3132
	103.9	Related Structures	3134
	103.10	Bibliography	3135
104	COXETER GROUPS		
	104.1	Introduction	3139
	104.1.1	The Normal Form for Words	3140
	104.2	Constructing Coxeter Groups	3140
	104.3	Converting Between Types of Coxeter Group	3143
	104.4	Operations on Coxeter Groups	3146
	104.5	Properties of Coxeter Groups	3150
	104.6	Operations on Elements	3152
	104.7	Roots, Coroots and Reflections	3154
	104.7.1	Accessing Roots and Coroots	3154
	104.7.2	Operations and Properties for Root and Coroot Indices	3157
	104.7.3	Weights	3159
	104.8	Reflections	3160
	104.9	Reflection Subgroups	3162
	104.10	Root Actions	3166
	104.11	Standard Action	3167
	104.12	Braid Groups	3168
	104.13	W-graphs	3169
	104.14	Related Structures	3174
	104.15	Bibliography	3174

105	REFL	ECTION GROUPS	. 3177
	105.1	Introduction	3179
	105.2	Construction of Pseudo-reflections	3179
	105.2.1	Pseudo-reflections Preserving Reflexive Forms	3182
	105.3	Construction of Reflection Groups	3184
	105.4	Construction of Real Reflection Groups	3185
	105.5	Construction of Finite Complex Reflection Groups	3188
	105.6	Operations on Reflection Groups	3196
	105.7	Properties of Reflection Groups	3200
	105.8	Roots, Coroots and Reflections	3202
	105.8.1	Accessing Roots and Coroots	3202
	105.8.2	Reflections	3205
	105.8.3	Weights	3206
	105.9	Related Structures	3208
	105.10	Bibliography	3208
106	LIE A	LGEBRAS	. 3209
	106.1	Introduction	3213
	106.1.1	Guide for the Reader	3213
	106.2	Constructors for Lie Algebras	3214
	106.3	Finitely Presented Lie Algebras	3217
	106.3.1	Construction of the Free Lie Algebra	3218
	106.3.2	Properties of the Free Lie Algebra	3218
	106.3.3	Operations on Elements of the Free Lie Algebra	3219
	106.3.4	Construction of a Finitely-Presented Lie Algebra	3220
	106.3.5	Homomorphisms of the Free Lie Algebra	3224
	106.4	Lie Algebras Generated by Extremal Elements	3225
	106.4.1	Constructing Lie Algebras Generated by Extremal Elements	3226
	106.4.2	Properties of Lie Algebras Generated by Extremal Elements	3227
	106.4.3	Instances of Lie Algebras Generated by Extremal Elements	3231
	106.4.4	Studying the Parameter Space	3233
	106.5	Families of Lie Algebras	3236
	106.5.1	Almost Reductive Lie Algebras	3236
	106.5.2	Cartan-Type Lie Algebras	3239
	106.5.3	Melikian Lie Algebras	3244
	106.6	Construction of Elements	3245
	106.6.1	Construction of Elements of Structure Constant Algebras	3246
	106.6.2	Construction of Matrix Elements	3246
	106.7	Construction of Subalgebras, Ideals and Quotients	3247
	106.8	Operations on Lie Algebras	3249
	106.8.1	Basic Invariants	3252
	106.8.2	Changing Base Rings	3253
	106.8.3	Bases	3253
	106.8.4	Operations for Semisimple and Reductive Lie Algebras	3254
	106.9	Operations on Subalgebras and Ideals	3261
	$106.9.1 \\ 106.9.2$	Standard Ideals and Subalgebras Cartan and Toral Subalgebras	3262 3263
	106.9.2 $106.9.3$	Standard Series	$\frac{3265}{3265}$
	106.9.3 $106.9.4$	The Lie Algebra of Derivations	$\frac{3265}{3267}$
	106.3.4 106.10	Properties of Lie Algebras and Ideals	3268
	106.10 106.11	Operations on Elements	3270
	106.11 $106.11.1$	Indexing	3270 3271
	106.11.1 106.12	The Natural Module	$\frac{3271}{3272}$
	106.13	Operations for Matrix Lie Algebras	3273

	106.14	Homomorphisms	3273
	106.15	Automorphisms of Classical-type Reductive Algebras	3274
	106.16	Restrictable Lie Algebras	3278
	106.17	Universal Enveloping Algebras	3277
	106.17.1	Background	3277
	106.17.2	Construction of Universal Enveloping Algebras	3278
	106.17.3	Related Structures	3279
	106.17.4	Elements of Universal Enveloping Algebras	3279
	106.18	Solvable and Nilpotent Lie Algebras Classification	3282
	106.18.1	The List of Solvable Lie Algebras	3282
	$106.18.2 \\ 106.18.3$	Comments on the Classification over Finite Fields	3283
	100.18.3 $106.18.4$	The List of Nilpotent Lie Algebras Intrinsics for Working with the Classifications	$\frac{3284}{3285}$
	106.19.4	Semisimple Subalgebras of Simple Lie Algebras	3289
	106.19 106.20	Nilpotent Orbits in Simple Lie Algebras	$\frac{3268}{3291}$
	106.20 106.21		$\frac{3291}{3295}$
	100.21	Bibliography	3298
107	KAC-I	MOODY LIE ALGEBRAS	. 3297
	107.1	Introduction	3299
	107.2	Generalized Cartan Matrices	3300
	107.3	Affine Kac-Moody Lie Algebras	3301
	107.3.1	Constructing Affine Kac-Moody Lie Algebras	3301
	107.3.2	Properties of Affine Kac-Moody Lie Algebras	3302
	107.3.3	Constructing Elements of Affine Kac-Moody Lie Algebras	3303
	107.3.4	Properties of Elements of Affine Kac-Moody Lie Algebras	3304
	107.4	Bibliography	3305
108	QUAN	TUM GROUPS	. 3307
	108.1	Introduction	3309
	108.2	Background	3309
	108.2.1	Gaussian Binomials	3309
	108.2.2	Quantized Enveloping Algebras	3310
	108.2.3	Representations of $U_q(L)$	3311
	108.2.4	PBW-type Bases	3311
	108.2.5	The Z -form of $U_q(L)$	3312
	108.2.6	The Canonical Basis The Both Model	3313 3314
	108.2.7 108.3	The Path Model Gauss Numbers	3315
	108.3 108.4	Construction	3316
	108.4 108.5	Related Structures	3317
	108.6		3318
		Operations on Elements	
	108.7	Representations	3320
	108.8	Hopf Algebra Structure	3323
	108.9	Automorphisms Kashiyana On anatana	3324
	108.10	Kashiwara Operators	3326
	108.11	The Path Model	3326
	108.12	Elements of the Canonical Basis	3329
	108.13	Homomorphisms to the Universal Enveloping Algebra	3331
	108.14	Bibliography	3332

109	GROU	PS OF LIE TYPE	. 3333
	109.1	Introduction	3337
	109.1.1	The Steinberg Presentation	3337
	109.1.2	Bruhat Normalisation	3337
	109.1.3	Twisted Groups of Lie type	3338
	109.2	Constructing Groups of Lie Type	3338
	109.2.1	Split Groups	3338
	109.2.2	Galois Cohomology	3341
	109.2.3	Twisted Groups	3345
	109.3	Operations on Groups of Lie Type	3347
	109.4	Properties of Groups of Lie Type	3351
	109.5	Constructing Elements	3352
	109.6	Operations on Elements	3354
	109.6.1	Basic Operations	3354
	109.6.2	Decompositions	3355
	109.6.3	Conjugacy and Cohomology	3356
	109.7	Properties of Elements	3357
	109.8	Roots, Coroots and Weights	3357
	109.8.1	Accessing Roots and Coroots	3357
	109.8.2	Reflections	3360
	109.8.3	Operations and Properties for Root and Coroot Indices	3360 3361
	109.8.4	Weights Duilding Chause of Lie Thus	
	109.9	Building Groups of Lie Type	3361
	109.10 $109.10.1$	Automorphisms	3363 3363
	109.10.1 $109.10.2$	Basic Functionality Constructing Special Automorphisms	3364
	109.10.2 $109.10.3$	Operations and Properties of Automorphisms	3365
	109.11	Algebraic Homomorphisms	3366
	109.11 109.12	Twisted Tori	3366
	109.12	Sylow Subgroups	3368
	109.13 109.14	Representations	3369
	109.14 109.15	Bibliography	3371
110	REPR.	ESENTATIONS OF LIE GROUPS AND ALGEBRAS .	. 3373
	110.1	Introduction	3375
	110.1.1	Highest Weight Modules	3375
	110.1.2	Toral Elements	3376
	110.1.3	Other Highest Weight Representations	3376
	110.2	Constructing Weight Multisets	3377
	110.3	Constructing Representations	3378
	110.3.1	Lie Algebras	3378
	110.3.2	Groups of Lie Type	3382
	110.4	Operations on Weight Multisets	3384
	110.4.1	Basic Operations	3384
	110.4.2	Conversion Functions	3387
	110.4.3	Calculating with Representations	3388
	110.5	Operations on Representations	3398
	110.5.1	Lie Algebras	3398
	110.5.2	Groups of Lie Type	3402
	110.6	Other Functions for Representation Decompositions	3403
	110.6.1	Operations Related to the Symmetric Group	3407
	110.6.2	FusionRules Subgroups of Small Park	3408
	110.7	Subgroups of Small Rank	3409
	110.8	Subalgebras of $\operatorname{su}(d)$	3410
	110.9	Bibliography	3412

XIV	COM	MUTATIVE ALGEBRA	3413
111	GRÖE	BNER BASES	. 3415
	111.1	Introduction	3417
	111.2	Representation and Monomial Orders	3417
	111.2.1	Lexicographical: lex	3418
	111.2.2	Graded Lexicographical: glex	3418
	111.2.3	Graded Reverse Lexicographical: grevlex	3418
	111.2.4	Graded Reverse Lexicographical (Weighted): grevlexw	3419
	111.2.5	Elimination (k): elim	3419
	111.2.6	Elimination List: elim	3419
	111.2.7	Inverse Block: invblock	3420
	111.2.8	Univariate: univ	3420
	111.2.9	Weight: weight	3420
	111.3	Polynomial Rings and Ideals	3421
	111.3.1	Creation of Polynomial Rings and Accessing their Monomial Orders	3421
	111.3.2	Creation of Graded Polynomial Rings	3423
	111.3.3	Element Operations Using the Grading	3424
	111.3.4	Creation of Ideals and Accessing their Bases	3427
	111.4	Gröbner Bases	3428
	111.4.1	Gröbner Bases over Fields	3428
	111.4.2	Gröbner Bases over Euclidean Rings	3428
	111.4.3	Construction of Gröbner Bases	3430
	111.4.4 $111.4.5$	The Dense Variant of the F_4 algorithm Related Functions	3435
	111.4.5 $111.4.6$	Gröbner Bases of Boolean Polynomial Rings	3436 3439
	111.4.7	Verbosity	3440
	111.4.8	Degree-d Gröbner Bases	3452
	111.5	Changing Coefficient Ring	3454
	111.6	Changing Monomial Order	3454
	111.0 111.7	Hilbert-driven Gröbner Basis Construction	3456
	111.7	SAT solver	3450 3458
	111.9	Bibliography	3459
112	POLY	NOMIAL RING IDEAL OPERATIONS	. 3461
	112.1	Introduction	3463
	112.2	Creation of Polynomial Rings and their Ideals	3464
	112.3	First Operations on Ideals	3464
	112.3.1	Simple Ideal Constructions	3464
	112.3.2	Basic Commutative Algebra Operations	3464
	112.3.3	Ideal Predicates	3467
	112.3.4	Element Operations with Ideals	3469
	112.4	Computation of Varieties	3471
	112.5	Multiplicities	3473
	112.6	Elimination	3474
	112.6.1	Construction of Elimination Ideals	3474
	112.6.2	Univariate Elimination Ideal Generators	3476
	112.6.3	Relation Ideals	3479

	112.7	Variable Extension of Ideals	3480
	112.8	Homogenization of Ideals	3481
	112.9	Extension and Contraction of Ideals	3482
	112.10	Dimension of Ideals	3483
	112.11	Radical and Decomposition of Ideals	3483
	112.11.1	Radical	3483
	112.11.2	Primary Decomposition	3484
	112.11.3	Triangular Decomposition	3490
	112.11.4	Equidimensional Decomposition	3493
	112.12	Normalisation and Noether Normalisation	3494
	112.12.1	Noether Normalisation	3494
	112.12.2	Normalisation	3495
	112.13	Hilbert Series and Hilbert Polynomial	3498
	112.14	Syzygies	3501
	112.15	Maps between Rings	3502
	112.16	Symmetric Polynomials	3503
	112.17	Functions for Polynomial Algebra and Module Generators	3504
	112.18	Bibliography	3507
113	LOCA	L POLYNOMIAL RINGS	3509
	113.1	Introduction	3511
	113.2	Elements and Local Monomial Orders	3511
	113.2.1	Local Lexicographical: 1lex	3512
	113.2.2	Local Graded Lexicographical: lglex	3512
	113.2.3	Local Graded Reverse Lexicographical: lgrevlex	3512
	113.3	Local Polynomial Rings and Ideals	3513
	113.3.1	Creation of Local Polynomial Rings and Accessing their Monomia	
	113.3.2	Creation of Ideals and Accessing their Bases	3514
	113.4	Standard Bases	3516
	113.4.1	Construction of Standard Bases	3516
	113.5	Operations on Ideals	3519
	113.5.1	Basic Operations	3519
	113.5.2	Ideal Predicates	3520
	113.5.3	Operations on Elements of Ideals	3521
	113.6	Changing Coefficient Ring	3522
	113.7	Changing Monomial Order	3522
	113.8	Dimension of Ideals	3523
	113.9	Bibliography	3523
114	AFFIN	NE ALGEBRAS	3525
	114.1	Introduction	3527
	114.2	Creation of Affine Algebras	3527
	114.3	Operations on Affine Algebras	3529
	114.4	Maps between Affine Algebras	3532
	114.5	Finite Dimensional Affine Algebras	3532
	114.6	Affine Algebras which are Fields	3534
	114.7	Rings and Fields of Fractions of Affine Algebras	3536

115	MODU	JLES OVER MULTIVARIATE RINGS	3541
	115.1	Introduction	3543
	115.2	Module Basics: Embedded and Reduced Modules	3543
	115.3	Monomial Orders	3545
	115.3.1	Term Over Position: TOP	3546
	115.3.2	Term Over Position (Weighted): TOPW	3546
	115.3.3	Position Over Term: POT	3546
	115.3.4	Position Over Term (Permutation): POTPERM	3547
	115.3.5	Block TOP-TOP: TOPTOP Block TOP-POT: TOPPOT	3547
	115.3.6 115.4	Basic Creation and Access	3547 3547
	115.4 $115.4.1$	Creation of Ambient Embedded Modules	3547
	115.4.1 $115.4.2$	Creation of Reduced Modules	3548
	115.4.3	Localization	3548
	115.4.4	Basic Invariants	3549
	115.4.5	Creation of Module Elements	3550
	115.4.6	Element Operations	3551
	115.5	The Homomorphism Type	3555
	115.6	Submodules and Quotient Modules	3558
	115.6.1	Creation	3558
	115.6.2	Module Bases	3559
	115.7	Basic Module Constructions	3562
	115.8	Predicates	3563
	115.9	Module Operations	3564
	115.10	Changing Ring	3566
	115.11	Hilbert Series	3566
	115.12	Free Resolutions	3568
	115.12.1	Constructing Free Resolutions	3568
	115.12.2	Betti Numbers and Related Invariants	3572
	115.13	The Hom Module and Ext	3582
	115.14	Tensor Products and Tor	3585
	115.15	Cohomology Of Coherent Sheaves	3587
	115.16	Bibliography	3591
116	INVAF	RIANT THEORY	3593
	116.1	Introduction	3595
	116.2	Invariant Rings of Finite Groups	359ϵ
		Creation	3596
	116.2.2	Access	3596
	116.3	Group Actions on Polynomials	3597
	116.4	Permutation Group Actions on Polynomials	3597
	116.5	Matrix Group Actions on Polynomials	3598
	116.6	Algebraic Group Actions on Polynomials	3599
	116.7	Verbosity	3599
	116.8	Construction of Invariants of Specified Degree	3599
	116.9	Construction of G-modules	3603
	116.10	Molien Series	3604
	116.11	Primary Invariants	3605
	116.12	Secondary Invariants	3606
	116.13	Fundamental Invariants	3608
	116.14	The Module of an Invariant Ring	<i>3613</i>
	116.15	The Algebra of an Invariant Ring and Algebraic Relations	3614
	116.16	Properties of Invariant Rings	3618

	116.17	Steenrod Operations	3619
	116.18	Minimalization and Homogeneous Module Testing	3620
	116.19	Attributes of Invariant Rings and Fields	3623
	116.20	Invariant Rings of Linear Algebraic Groups	3625
	116.20.1	Creation	3626
	116.20.2	Access	3626
	116.20.3	Functions	3626
	116.21	Invariant Fields	3632
	116.21.1	Creation	3632
	116.21.2	Access	3633
	116.21.3	Functions for Invariant Fields	3633
	116.22	Invariants of the Symmetric Group	3636
	116.23	Bibliography	3638
117	DIFFE	ERENTIAL RINGS	. 3639
	117.1	Introduction	3643
	117.2	Differential Rings and Fields	3644
	117.2.1	Creation	3644
	117.2.2	Creation of Differential Ring Elements	3646
	117.3	Structure Operations on Differential Rings	3647
	117.3.1	Category and Parent	3647
	117.3.2	Related Structures	3647
	117.3.3	Derivation and Differential	3649
	117.3.4	Numerical Invariants	3649
	117.3.5	Predicates and Booleans	3650
	117.3.6	Precision	3651
	117.4	Element Operations on Differential Ring Elements	3653
	117.4.1	Category and Parent	3653
	117.4.2	Arithmetic	3653
	117.4.3	Predicates and Booleans	3654
	117.4.4	Coefficients and Terms	3655
	117.4.5	Conjugates, Norm and Trace	3656
	117.4.6	Derivatives and Differentials	3657
	117.5	Changing Related Structures	3657
	117.6	Ring and Field Extensions	3661
	117.7	Ideals and Quotient Rings	3666
	117.7.1	Defining Ideals and Quotient Rings	3666
	117.7.2	Boolean Operations on Ideals	3667
	117.8	Wronskian Matrix	3667
	117.9	Differential Operator Rings	3668
	117.9.1	Creation	3668
	117.9.2	Creation of Differential Operators	3669
	117.10	Structure Operations on Differential Operator Rings	3670
	117.10.1	Category and Parent	3670
	117.10.2	Related Structures	3670
	117.10.3	Derivation and Differential	3670
	117.10.4	Predicates and Booleans	3671
	117.10.5	Precision	3672
	117.11	Element Operations on Differential Operators	3673
	117.11.1	Category and Parent	3673
	117.11.2	Arithmetic	3673
	117.11.3	Predicates and Booleans	3674
	117.11.4	Coefficients and Terms	3674
	117.11.5	Order and Degree	3675
	117.11.6	Related Differential Operators	3676

117.11.7	Application of Operators	3677
117.12	Related Maps	3678
117.13	Changing Related Structures	3679
117.14	Euclidean Algorithms, GCDs and LCMs	3683
117.14.1	Euclidean Right and Left Division	3683
117.14.2	Greatest Common Right and Left Divisors	3684
117.14.3	Least Common Left Multiples	3685
117.15	Related Matrices	3686
117.16	Singular Places and Indicial Polynomials	3687
117.16.1	Singular Places	3687
117.16.2	Indicial Polynomials	3689
117.17	Rational Solutions	3690
117.18	Newton Polygons	3691
117.19	Symmetric Powers	3693
117.20	Differential Operators of Algebraic Functions	3694
117.21	Factorisation of Operators over Differential Laurent Series Rings	3694
117.21.1	Slope Valuation of an Operator	3695
117.21.2	Coprime Index 1 and LCLM Factorisation	3696
117.21.3	Right Hand Factors of Operators	3701
117.22	Bibliography	3706

cxiii

XV	ALGE	EBRAIC GEOMETRY	3707
118	SCHE	MES	3709
	118.1	Introduction and First Examples	3715
	118.1.1	Ambient Spaces	3716
	118.1.2	Schemes	3717
	118.1.3	Rational Points	3718
	118.1.4	Projective Closure	3720
	118.1.5	Maps	3721
	118.1.6	Linear Systems	3723
	118.1.7	Aside: Types of Schemes	3724
	118.2	Ambients	3725
	118.2.1	Affine and Projective Spaces	3725
	118.2.2	Scrolls and Products	3727
	118.2.3	Functions and Homogeneity on Ambient Spaces	3730
	118.2.4	Prelude to Points	3731
	118.3	Constructing Schemes	3734
	118.4	Different Types of Scheme	3739
	118.5	Basic Attributes of Schemes	3741
	118.5.1	Functions of the Ambient Space	3741
	118.5.2	Functions of the Equations	3742
	118.6	Function Fields and their Elements	3744
	118.7	Rational Points and Point Sets	3747
	118.8	Zero-dimensional Schemes	3751
	118.9	Local Geometry of Schemes	3753
	118.9.1	Point Conditions	3754
	118.9.2	Point Computations	3754
	118.9.3	Analytically Hypersurface Singularities	3754
	118.10	Classification and Normal Forms of Singularities	3757
	118.11	Global Geometry of Schemes	3766
	118.12	Base Change for Schemes	3770
	118.13	Affine Patches and Projective Closure	3773
	118.14	Arithmetic Properties of Schemes and Points	3778
	118.14.1	Height	3778
	118.14.2	Restriction of Scalars	3778
	118.14.3	Local Solubility	3779
	118.14.4	Searching for Points	3782
	118.14.5	Reduction Mod p	3783
	118.15	Maps between Schemes	3785
	118.15.1	Creation of Maps	3786
	118.15.2	Basic Attributes	3795
	$118.15.3 \\ 118.15.4$	Maps and Points Maps and Schemes	3797 3799
	118.15.4 $118.15.5$	Maps and Closure	3802
	118.15.6	Automorphisms	3804
	118.15.7	Scheme Graph Maps	3814
	118.16	Tangent and Secant Varieties and Isomorphic Projections	3818
	118.16.1	Tangent Varieties	3818
	118.16.2	Secant Varieties	3819
	118.16.3	Isomorphic Projection to Subspaces	3820
	118.17	Linear Systems	3822
	118.17.1	Creation of Linear Systems	3823
	118.17.2	Basic Algebra of Linear Systems	3829
	118.17.3	Linear Systems and Maps	3834
	118 18	Divisors	3834

	118.18.1	Divisor Groups	3835
	118.18.2	Creation Of Divisors	3835
	118.18.3	Ideals and Factorisations	3837
	118.18.4	Basic Divisor Predicates	3840
	118.18.5	Arithmetic of Divisors	3841
	118.18.6	Further Divisor Properties	3841
	118.18.7	Riemann-Roch Spaces	3844
	118.19	Isolated Points on Schemes	3845
	118.20	Advanced Examples	3853
	118.20.1	A Pair of Twisted Cubics	3853
	118.20.2	Curves in Space	3856
	118.21	Bibliography	3857
119	COHE	RENT SHEAVES	. 3859
	119.1	Introduction	3861
	119.2	Creation Functions	3862
	119.3	Accessor Functions	3865
	119.4	Basic Constructions	3867
	119.5	Sheaf Homomorphisms	3869
	119.6	Divisor Maps and Riemann-Roch Spaces	3870
	119.7	Predicates	3874
	119.8	Miscellaneous	3877
	119.9	Examples	3878
	119.10	Bibliography	3889
120	ALGE	BRAIC CURVES	. 3891
	120.1	First Examples	3897
	120.1.1	Ambients	3897
	120.1.2	Curves	3898
	120.1.3	Projective Closure	3899
	120.1.4	Points	3900
	120.1.5	Choosing Coordinates	3901
	120.1.6	Function Fields and Divisors	3902
	120.2	Ambient Spaces	3905
	120.3	Algebraic Curves	3907
	120.3.1	Creation	3907
	120.3.2	Base Change	3909
	120.3.3	Basic Attributes	3911
	$120.3.4 \\ 120.3.5$	Basic Invariants Random Curves	3913 3913
	120.3.6 $120.3.6$	Ordinary Plane Curves	3915
	120.3.0 120.4	Local Geometry	3919
	120.4 $120.4.1$	Creation of Points on Curves	3919
	120.4.1 $120.4.2$	Operations at a Point	3920
	120.4.3	Singularity Analysis	3921
	120.4.4	Resolution of Singularities	3922
	120.4.5	Log Canonical Thresholds	3924
	120.4.6	Local Intersection Theory	3927
	120.5	Global Geometry	3929
	120.5.1	Genus and Singularities	3929
	120.5.2	Projective Closure and Affine Patches	3931
	120.5.3	Special Forms of Curves	3932
	120.6	Maps and Curves	3934
	120.6.1	Elementary Maps	3934

	120.6.2	Maps Induced by Morphisms	3936
	120.7	Automorphism Groups of Curves	3938
	120.7.1	Group Creation Functions	3938
	120.7.2	Automorphisms	3939
	120.7.3	Automorphism Group Operations	3941
	120.7.4	Pullbacks and Pushforwards	3942
	120.7.5	Quotients of Curves	3945
	120.8	Function Fields	3949
	120.8.1	Function Fields	3950
	120.8.2	Representations of the Function Field	3955
	120.8.3	Differentials	3956
	120.9	Divisors	3960
	120.9.1	Places	3961
	120.9.2	Divisor Group	3966
	120.9.3	Creation of Divisors	3966
	120.9.4	Arithmetic of Divisors	3970
	120.9.5	Other Operations on Divisors	3972
	120.10	Linear Equivalence of Divisors	3973
	120.10.1	Linear Equivalence and Class Group	3973
	120.10.2	Riemann–Roch Spaces	3975
	120.10.3	Index Calculus	3978
	120.11	Advanced Examples	3981
	120.11.1	Trigonal Curves	3981
	120.11.2	Algebraic Geometric Codes	3983
	120.12	Curves over Global Fields	3985
	120.12.1	Finding Rational Points	3985
	120.12.2	Regular Models of Arithmetic Surfaces	3986
	120.12.3	Minimization and Reduction	3987
	120.13	Minimal Degree Functions and Plane Models	3989
	120.13.1	General Functions and Clifford Index One	3989
	120.13.2	Small Genus Functions	3991
	120.13.3	Small Genus Plane Models	3995
	120.14	Bibliography	3998
121	RESO	LUTION GRAPHS AND SPLICE DIAGRAMS	. 3999
	121.1	Introduction	4001
	121.2	Resolution Graphs	4001
	121.2.1	Graphs, Vertices and Printing	4002
	121.2.2	Creation from Curve Singularities	4004
	121.2.3	Creation from Pencils	4006
	121.2.4	Creation by Hand	4007
	121.2.5	Modifying Resolution Graphs	4008
	121.2.6	Numerical Data Associated to a Graph	4009
	121.3	Splice Diagrams	4010
	121.3.1	Creation of Splice Diagrams	4010
	121.3.2	Numerical Functions of Splice Diagrams	4012
	121.4	Translation Between Graphs	4013
	121.4.1	Splice Diagrams from Resolution Graphs	4013
	121.5	Bibliography	4014

122	ALGE	BRAIC SURFACES	4015
	122.1	Introduction	4017
	122.2	Generalities	4018
	122.2.1	Ambients	4018
	122.2.2	Surfaces	4018
	122.2.3	Singularity	4020
	122.2.4	Maps and Points	4021
	122.2.5	Sheaves and Divisors	4022
	122.3	General Surfaces	4022
	122.3.1	Introduction	4022
	122.3.2	Creation Functions	4022
	122.3.3	Invariants	4026
	122.3.4	Singularity Properties	4029
	122.3.5	Kodaira-Enriques Classification	4031
	122.3.6	Minimal Models	4033
	122.3.7	Special Surfaces in Projective 4-space	4042
	122.4	Desingularisation by Blow Up	4044
	122.4.1	Introduction	4044
	122.4.2	Accessor Functions	4047
	$122.4.3 \\ 122.4.4$	Multiplicities, Intersections and Restricted Linear Systems	4050
	122.4.4 $122.4.5$	Canonical Divisor Functionality Extended Examples	4052 4054
	122.4.5 122.5	Surfaces in \mathbf{P}^3	4068
	122.5 $122.5.1$	Introduction	4068
	122.5.1 $122.5.2$	Embedded Formal Desingularization of Curves	4069
	122.5.2 $122.5.3$	Formal Desingularization of Surfaces	4072
	122.5.4	Adjoint Systems and Birational Invariants	4076
	122.5.5	Classification and Parameterization of Rational Surfaces	4079
	122.5.6	Reduction to Special Models	4080
	122.5.7	Parametrization of Rational Surfaces	4083
	122.5.8	Parametrization of Special Surfaces	4088
	122.6	Del Pezzo Surfaces	4091
	122.6.1	Introduction	4091
	122.6.2	Creation of General Del Pezzos	4091
	122.6.3	Parametrization of Del Pezzo Surfaces	4092
	122.6.4	Minimization and Reduction of Surfaces	4101
	122.6.5	Cubic Surfaces over Finite Fields	4104
	122.6.6	Construction of Cubic Surfaces	4105
	122.6.7	Invariant Theory of Cubic Surfaces	4106
	122.6.8	The Pentahedron of a Cubic Surface	4109
	122.7	Bibliography	4110
123	HILBI	ERT SERIES OF POLARISED VARIETIES	4113
	123.1	Introduction	4115
	123.1.1	Key Warning and Disclaimer	4115
	123.1.2	Overview of the Chapter	4117
	123.2	Hilbert Series and Graded Rings	4118
	123.2.1	Hilbert Series and Hilbert Polynomials	4118
	123.2.2	Interpreting the Hilbert Numerator	4120
	123.3	Baskets of Singularities	4123
	123.3.1	Point Singularities	4124
	123.3.2	Curve Singularities	4126
	123.3.3	Baskets of Singularities	4128
	123.3.4	Curves and Dissident Points	4130
	123.4	Generic Polarised Varieties	4130

	123.4.1	Accessing the Data	4131
	123.4.2	Generic Creation, Checking, Changing	4132
	123.5	Subcanonical Curves	4133
	123.5.1	Creation of Subcanonical Curves	4133
	123.5.2	Catalogue of Subcanonical Curves	4134
	123.6	K3 Surfaces	4134
	123.6.1	Creating and Comparing K3 Surfaces	4134
	123.6.2	Accessing the Key Data	4135
	123.6.3	Modifying K3 Surfaces	4135
	123.7	Weil Polynomials	413ϵ
	123.8	Point Counting on Degree Two K3 Surfaces	4139
	123.9	The K3 Database	4140
	123.9.1	Searching the K3 Database	4141
	123.9.2	Working with the K3 Database	4144
	123.10	Fano 3-folds	4148
	123.10.1	Creation: $f = 1, 2 \text{ or } \geq 3$	4145
	123.10.2	A Preliminary Fano Database	4146
	123.11	Calabi–Yau 3-folds	4147
	123.12	Building Databases	4147
	123.12.1	The K3 Database	4147
	123.12.2	Making New Databases	4149
	123.13	Bibliography	4150
124	TORIO	C VARIETIES	4151
	124.1	Introduction and First Examples	4155
	124.1.1	The Projective Plane as a Toric Variety	4155
	124.1.2	Resolution of a Nonprojective Toric Variety	4157
	124.1.3	The Cox Ring of a Toric Variety	4160
	124.2	Fans in Toric Lattices	4162
	124.2.1	Construction of Fans	4163
	124.2.2	Components of Fans	4167
	124.2.3	Properties of Fans	4171
	124.2.4	Maps of Fans	4172
	124.3	Geometrical Properties of Cones and Polyhedra	4173
	124.4	Toric Varieties	4176
	124.4.1	Constructors for Toric Varieties	4176
	124.4.2	Toric Varieties and their Fans	4178
	124.4.3	Properties of Toric Varieties	4179
	124.4.4	Affine Patches on Toric Varieties	4180
	124.5	Cox Rings	4180
	124.5.1	The Cox Ring of a Toric Variety	4180
	124.5.2	Cox Rings in Their Own Right	4182
	124.5.3	Recovering a Toric Variety From a Cox Ring	4183
	124.6	Invariant Divisors and Riemann-Roch Spaces	4186
	124.6.1	Divisor Group	4186
	124.6.2	Constructing Invariant Divisors	4186
	124.6.3	Properties of Divisors	4189
	124.6.4	Linear Equivalence of Divisors	4191
	124.6.5	Riemann–Roch Spaces of Invariant Divisors	4192
	124.7	Maps of Toric Varieties	4195
	124.7.1	Maps from Lattice Maps	4195
	124.7.2	Properties of Toric Maps	4196
	124.8	The Geometry of Toric Varieties	4197
	124.8.1	Resolution of Singularities and Linear Systems	4197
	124.8.2	Mori Theory of Toric Varieties	4197

	VOLUME 9: CONTENTS	
124.8.3	Decomposition of Toric Morphisms	4202
124.9	Schemes in Toric Varieties	4205
124.9.1	Construction of Subschemes	4205
124.10	Bibliography	4207

XVI	ARIT	THMETIC GEOMETRY	4209
125	RATIO	ONAL CURVES AND CONICS	. 4211
	125.1	Introduction	4213
	125.2	Rational Curves and Conics	4214
	125.2.1	Rational Curve and Conic Creation	4214
	125.2.2	Access Functions	4215
	125.2.3	Rational Curve and Conic Examples	4216
	125.3	Conics	4219
	125.3.1	Elementary Invariants	4219
	125.3.2	Alternative Defining Polynomials	4219
	125.3.3	Alternative Models	4220
	125.3.4	Other Functions on Conics	4220
	125.4	Local-Global Correspondence	4221
	125.4.1	Local Conditions for Conics	4221
	125.4.2	Local Solubility	4221
	125.4.3	Norm Residue Symbol	4221
	125.5	Rational Points on Conics	4223
	125.5.1	Finding Points	4223
	125.5.2	Point Reduction	4225
	125.6	Isomorphisms	4227
	125.6.1	Isomorphisms with Standard Models	4228
	125.7	Automorphisms	4231
	125.7.1	Automorphisms of Rational Curves	4231
	125.7.2	Automorphisms of Conics	4232
	125.8	Bibliography	4234
126	ELLIF	PTIC CURVES	. 4235
	126.1	Introduction	4239
	126.2	Creation Functions	4240
	126.2.1	Creation of an Elliptic Curve	4240
	126.2.2	Creation Predicates	4243
	126.2.3	Changing the Base Ring	4244
	126.2.4	Alternative Models	4245
	126.2.5	Predicates on Curve Models	4246
	126.2.6	Twists of Elliptic Curves	4247
	126.3	Operations on Curves	4250
	126.3.1	Elementary Invariants	4250
	126.3.2	Associated Structures	4253
	126.3.3	Predicates on Elliptic Curves	4253
	126.4	Polynomials	4254
	126.5	Subgroup Schemes	4255
	126.5.1	Creation of Subgroup Schemes	4255
	126.5.2	Associated Structures	4256
	126.5.3	Predicates on Subgroup Schemes	4256
	126.5.4	Points of Subgroup Schemes	4256
	126.6	The Formal Group	4257
	126.7	Operations on Point Sets	4258

	126.7.1	Creation of Point Sets	4258
	126.7.2	Associated Structures	4259
	126.7.3	Predicates on Point Sets	4259
	126.8	Morphisms	4260
	126.8.1	Creation Functions	4260
	126.8.2	Predicates on Isogenies	4265
	126.8.3	Structure Operations	4265
	126.8.4	Endomorphisms	4266
	126.8.5	Automorphisms	4267
	126.9	Operations on Points	4267
	126.9.1	Creation of Points	4268
	126.9.2	Creation Predicates	4269
	126.9.3	Access Operations	4269
	126.9.4	Associated Structures	4270
	126.9.5	Arithmetic	4270
	126.9.6	Division Points	4271
	126.9.7	Point Order	4273
	126.9.8	Predicates on Points	4274
	126.9.9	Weil Pairing	4275
	126.10	Bibliography	4276
127	ELLIF	PTIC CURVES OVER FINITE FIELDS	4277
	127.1	Supersingular Curves	4279
	127.2	The Order of the Group of Points	4280
	127.2.1	Point Counting	4280
	127.2.2	Zeta Functions	4286
	127.2.3	Cryptographic Elliptic Curve Domains	4287
	127.3	Enumeration of Points	4288
	127.4	Abelian Group Structure	4289
	127.5	Pairings on Elliptic Curves	4290
	127.5.1	Weil Pairing	4290
	127.5.2	Tate Pairing	4290
	127.5.3	Eta Pairing	4291
	127.5.4	Ate Pairing	4292
	127.6	Weil Descent in Characteristic Two	4296
	127.7	Discrete Logarithms	4298
	127.8	Bibliography	4299
128	ELLIF	PTIC CURVES OVER ${f Q}$ AND NUMBER FIELDS	4301
	128.1	Introduction	4305
	128.2	Curves over the Rationals	4305
	128.2.1	Local Invariants	4305
	128.2.2	Kodaira Symbols	4307
	128.2.3	Complex Multiplication	4308
	128.2.4	Isogenous Curves	4308
	128.2.5	Heights and Height Pairing	4309
	128.2.6	Heegner Points	4315
	128.2.7	Analytic Information	4322
	128.2.8	Integral and S -integral Points	4328
	128.2.9	Elliptic Curve Database	4332
	128.3	Curves over Number Fields	4335
	128.3.1	Local Invariants	4336
	128.3.2	Complex Multiplication	4337
	128.3.3	Heights	4337

cxxi

	128.3.4	Integral Points	4338
	128.3.5	Elliptic Curve Chabauty	4338
	128.3.6	Auxiliary Functions for Etale Algebras	4342
	128.3.7	Analytic Information	4343
	128.3.8	Elliptic Curves of Given Conductor	4344
	128.4	Curves over p-adic Fields	4346
	128.4.1	Local Invariants	4346
	128.5	Mordell-Weil Groups and Descent Methods	4346
	128.5.1	Torsion	4347
	128.5.2	Mordell-Weil Group and Rank	4348
	128.5.3	Two-Descent	4353
	128.5.4	Selmer Groups	4357
	128.5.5	The Cassels-Tate Pairing	4362
	128.5.6	Four-Descent	4364
	128.5.7	Eight-Descent	4368
	128.5.8	Three-Descent and Five-Descent	4369
	128.5.9	Six and Twelve Descent	4375
	128.5.10	Nine-Descent	4376
	128.5.11	Higher 2-power Isogeny Descents	4377
	128.5.12	p-Isogeny Descent	4378
	128.6	Bibliography	4382
129	ELLIP	TIC CURVES OVER FUNCTION FIELDS	4385
	129.1	An Overview of Relevant Theory	4387
	129.2	Local Computations	4389
	129.3	Elliptic Curves of Given Conductor	4390
	129.4	Heights	4391
	129.5	The Torsion Subgroup	4392
	129.6	The Mordell–Weil Group	4392
	129.7	Two Descent	4394
	129.8	The L-function and Counting Points	4395
	129.9	Action of Frobenius	4398
	129.10	Extended Examples	4398
	129.11	Bibliography	4401
130	MODE	ELS OF GENUS ONE CURVES	4403
	130.1	Introduction	4405
	130.2	Creation of Genus One Models	4406
	130.3	Attributes of Genus One Models	4409
	130.4	Transformations between Genus One Models	4410
	130.4 130.5	Equivalence of Genus One Models	4412
	130.6	Minimisation and Reduction	4412
	130.7	Local Solubility	4414
	130.8	Genus One Models as Coverings	4415
	130.9	Families of Elliptic Curves with Prescribed n-Torsion	4416
	130.10	Invariants for Genus One Models	4416
	130.11	Covariants and Contravariants for Genus One Models	4417
	130.12	Examples	4418
	130.13	Bibliography	4420

131	HYPE	RELLIPTIC CURVES	4421
	131.1	Introduction	4425
	131.2	Creation Functions	4425
	131.2.1	Creation of a Hyperelliptic Curve	4425
	131.2.2	Creation Predicates	4426
	131.2.3	Changing the Base Ring	4427
	131.2.4	Models	4428
	131.2.5	Predicates on Models	4430
	131.2.6	Twisting Hyperelliptic Curves	4431
	131.2.7	Type Change Predicates	4433
	131.3	Operations on Curves	4433
	131.3.1	Elementary Invariants	4434
	131.3.2	Igusa Invariants	4436
	131.3.3	Shioda Invariants	4440
	131.3.4	Base Ring	4442
	131.4	Creation from Invariants	4442
	131.5	Function Field	4444
	131.5.1	Function Field and Polynomial Ring	4444
	131.6	Points	4445
	131.6.1	Creation of Points	4445
	131.6.2	Random Points	4446
	131.6.3	Predicates on Points	4446
	131.6.4	Access Operations	4447
	131.6.5	Arithmetic of Points	4447
	131.6.6	Enumeration and Counting Points	4447
	131.6.7	Frobenius	4449
	131.7	Isomorphisms and Transformations	4449
	131.7.1	Creation of Isomorphisms	4450
	131.7.2	Arithmetic with Isomorphisms	4451
	131.7.3	Invariants of Isomorphisms	4452
	131.7.4	Automorphism Group and Isomorphism Testing	4452
	131.8	Jacobians	4457
	131.8.1	Creation of a Jacobian	4457
	131.8.2	Access Operations	4457
	131.8.3	Base Ring	4457
	131.8.4	Changing the Base Ring	4458
	131.9	Richelot Isogenies	4458
	131.10	Points on the Jacobian	4461
	131.10.1	Creation of Points	4462
	131.10.2	Random Points	4465
	131.10.3	Booleans and Predicates for Points	4465
	131.10.4	Access Operations	4466
	131.10.5	Arithmetic of Points	4466
	$131.10.6 \\ 131.10.7$	Order of Points on the Jacobian Frobenius	$4467 \\ 4467$
	131.10.7	Weil Pairing	$\frac{4407}{4468}$
	131.11.8	The state of the s	4469
	131.11 $131.11.1$	Rational Points and Group Structure over Finite Fields Enumeration of Points	4469 4469
	131.11.1 $131.11.2$	Counting Points on the Jacobian	4469
	131.11.2	Deformation Point Counting	4409 4474
	131.11.3 $131.11.4$	Abelian Group Structure	$4474 \\ 4475$
	131.11.4 131.12	Jacobians over Number Fields or \mathbf{Q}	4476
	131.12 $131.12.1$	Searching For Points	$\frac{4476}{4476}$
	131.12.1 $131.12.2$	Torsion	$\frac{4476}{4476}$
	131.12.2 $131.12.3$	Heights and Regulator	$\frac{4470}{4478}$
	131.12.3 $131.12.4$	Saturation	4483

	131.12.5	The 2-Selmer Group	4483
	131.13	Two-Selmer Set of a Curve	4491
	131.14	Chabauty's Method	4494
	131.15	Cyclic Covers of \mathbf{P}^1	4499
	131.15.1	Points	4499
	131.15.2	Descent	4500
	131.15.3	Descent on the Jacobian	4501
	131.15.4	Partial Descent	4505
	131.16	Kummer Surfaces	4508
	131.16.1	Creation of a Kummer Surface	4508
	131.16.2	Structure Operations	4508
	131.16.3	Base Ring	4508
	131.16.4	Changing the Base Ring	4508
	131.17	Points on the Kummer Surface	4509
	131.17.1	Creation of Points	4509
	131.17.2	Access Operations	4509
	131.17.3	Predicates on Points	4510
	131.17.4	Arithmetic of Points	4510
	131.17.5	Rational Points on the Kummer Surface	4510
	131.17.6	Pullback to the Jacobian	4511
	131.18	Analytic Jacobians of Hyperelliptic Curves	4511
	131.18.1	Creation and Access Functions	4513
	131.18.2	Maps between Jacobians	4514
	131.18.3	From Period Matrix to Curve	4521
	131.18.4	Voronoi Cells	4523
	131.19	Bibliography	4524
132	НҮРЕ	RGEOMETRIC MOTIVES	. 4527
	132.1	Introduction	4529
	132.1 132.2	Functionality	4523 4531
	132.2.1	Creation Functions	4531
	132.2.2	Access Functions	4531
	132.2.3	Functionality with L -series and Euler Factors	4533
	132.2.4	Associated Schemes and Curves	4536
	132.2.5	Utility Functions	4537
	132.3	Examples	4537
	132.4	Jacobi Motives	4546
	132.4.1	Background	4546
	132.4.1 $132.4.2$	Kummer and Tate Twists	4547
	132.5	Jacobi Motive Functionality	4547
	132.5.1	Creation Functions	4547
	132.5.1 $132.5.2$	Operations	4548
	132.5.2 $132.5.3$	Attributes	4548
	132.5.4	L-function	4549
	132.6	Jacobi Motive Examples	4549
	132.7	Bibliography	4554
	104.1	Dionographiy	4004

133	L-FUN	ICTIONS	4555
	133.1	Overview	455
	133.2	Built-in L-series	4558
	133.3	Computing L-values	457
	133.4	General L-series	4573
	133.4.1	Terminology	4574
	133.4.2	Constructing a General L-Series	4575
	133.4.3	Setting the Coefficients	4579
	133.4.4	Specifying the Coefficients Later	4580
	133.4.5	Generating the Coefficients from Local Factors	4583
	133.5	Accessing the Invariants	458
	133.6	Modifying the L-function	4584
	133.7	Precision	4580
	133.7.1	L-series with Unusual Coefficient Growth	4586
	133.7.2	Computing $L(s)$ when $Im(s)$ is Large (ImS Parameter)	458'
	133.7.3	Implementation of L-series Computations (Asymptotics Parameter)	458'
	133.8	Verbose Printing	458°
	133.9	Arithmetic with L-series	4588
	133.9.1	Hodge Structure	4589
	133.9.2	Tensor Products	4591
	133.9.3	Symmetric Powers	4595
	133.10	Advanced Examples	460.
	133.10.1	Handmade L -series of an Elliptic Curve	4604
	133.10.2	Self-made Dedekind Zeta Function	4604
	133.10.3	Handmade L-series of a hyperelliptic curve	4605
	133.10.4	Experimental Mathematics for Small Conductor	4606
	133.10.5	Tensor Product of L -series Coming from l -adic Representations	4608
	133.10.6	Non-abelian Twist of an Elliptic Curve	4609
	133.11	Bibliography	4610

XVII	MOD	ULAR ARITHMETIC GEOMETRY	4613
134	MODU	ULAR CURVES	. 4615
	134.1	Introduction	4617
	134.2	Creation Functions	4617
	134.2.1	Creation of a Modular Curve	4617
	134.2.2	Creation of Points	4617
	134.3	Invariants	4618
	134.4	Modular Polynomial Databases	4619
	134.5	Parametrized Structures	4621
	134.6	Associated Structures	4624
	134.7	Automorphisms	4625
	134.8	Class Polynomials	4625
	134.9	Modular Curves and Quotients (Canonical Embeddings)	4626
	134.10	Modular Curves of Given Level and Genus	4628
	134.11	Bibliography	4633
135	SMAL	LL MODULAR CURVES	. 4635
	135.1	Introduction	4637
	135.2	Small Modular Curve Models	4637
	135.3	Projection Maps	4639
	135.4	Automorphisms	4641
	135.5	Cusps and Rational Points	4645
	135.6	Standard Functions and Forms	4647
	135.7	Parametrized Structures	4649
	135.8	Modular Generators and q-Expansions	4651
	135.9	Extended Example	4656
	135.10	Bibliography	4658
136	CONC	GRUENCE SUBGROUPS OF $PSL_2(\mathbf{R})$. 4659
	136.1	Introduction	4661
	136.2	Congruence Subgroups	4662
	136.2.1	Creation of Subgroups of $PSL_2(\mathbf{R})$	4663
	136.2.2	Relations	4664
	136.2.3	Basic Attributes	4664
	136.3	Structure of Congruence Subgroups	4665
	136.3.1	Cusps and Elliptic Points of Congruence Subgroups	4666
	136.4	Elements of $\mathrm{PSL}_2(\mathbf{R})$	4668
	136.4.1	Creation Manufacture of Equality That is a	4668
	136.4.2	Membership and Equality Testing Basic Functions	4668 4668
	136.4.3	The Upper Half Plane	4668
	$136.5 \\ 136.5.1$	The Upper Hair Plane Creation	4669 4669
	136.5.1 $136.5.2$	Basic Attributes	4670
	136.6	Action of PSL ₂ (R) on the Upper Half Plane	4671

	136.6.1 136.6.2	Arithmetic Distances, Angles and Geodesics	4672 4672
	136.7	Farey Symbols and Fundamental Domains	4673
	136.8	Points and Geodesics	4675
	136.9	Graphical Output	4675
	136.10	Bibliography	4683
137	ARITI	HMETIC FUCHSIAN GROUPS AND SHIMURA CURVES	4685
	137.1	Arithmetic Fuchsian Groups	4687
	137.1.1	Creation	4687
	137.1.2	Quaternionic Functions	4689
	137.1.3 $137.1.4$	Basic Invariants Group Structure	4692 4693
	137.1.4 137.2	Unit Disc	4695
	137.2 $137.2.1$	Creation	4695
	137.2.1 $137.2.2$	Basic Operations	4696
	137.2.3	Access Operations	4696
	137.2.4	Distance and Angles	4698
	137.2.5	Structural Operations	4699
	137.3	Fundamental Domains	4701
	137.4	Triangle Groups	4703
	137.4.1	Creation of Triangle Groups	4704
	137.4.2	Fundamental Domain	4704
	137.4.3	CM Points	4704
	137.5	Bibliography	4707
138	MODU	JLAR FORMS	4709
	138.1	Introduction	4711
	138.1.1	Modular Forms	4711
	138.1.2	About the Package	4712
	138.1.3	Categories	4713
	138.1.4	Verbose Output	4713
	138.1.5	An Illustrative Overview	4714
	138.2	Creation Functions	4717
	138.2.1	Ambient Spaces	4717
	138.2.2	Base Extension	4720
	138.2.3	Elements	4721
	138.3	Bases	4723
	138.4	q-Expansions	4724
	138.5	Arithmetic	4726
	138.6	Predicates	4728
	138.7	Properties	4730
	138.8	Subspaces	4732
	138.9	Operators	4734
	138.10	Eisenstein Series	4736
	138.11	Weight Half Forms	4738
	138.12	Weight One Forms	4738
	138.13	Newforms	4738
	138.13.1	Labels	4741
	138.14	Reductions and Embeddings	4743
	138.15	Congruences	4744
	138.16	Overconvergent Modular Forms	4746
	138.17	Algebraic Relations	4748

cxxvii

	138.18	Elliptic Curves	4749
	138.19	Modular Symbols	4750
	138.20	Bibliography	4751
139	MODU	JLAR SYMBOLS	. 4753
	139.1	Introduction	4755
	139.1.1	Modular Symbols	4755
	139.2	Basics	4756
	139.2.1	Verbose Output	4756
	139.2.2	Categories	4756
	139.3	Creation Functions	4757
	139.3.1	Ambient Spaces	4757
	139.3.2	Labels	4761
	139.3.3	Creation of Elements	4762
	139.4	Bases	4765
	139.5	Associated Vector Space	4768
	139.6	Degeneracy Maps	4769
	139.7	Decomposition	477
	139.8	Subspaces	4775
	139.9	Twists	4777
	139.10	Operators	4778
	139.11	The Hecke Algebra	4783
	139.12	The Intersection Pairing	4784
	139.13	q-Expansions	4785
	139.14	Special Values of L-functions	4788
	139.14.1	Winding Elements	4790
	139.15	The Associated Complex Torus	4791
	139.15.1	The Period Map	4796
	139.15.2	Projection Mappings	4796
	139.16	Modular Abelian Varieties	4798
	139.16.1	Modular Degree and Torsion	4798
	139.16.2	Tamagawa Numbers and Orders of Component Groups	4800
	139.17	Elliptic Curves	4803
	139.18	Dimension Formulas	4805
	139.19	Bibliography	4806
140	BRAN	TDT MODULES	. 4809
	140.1	Introduction	4811
	140.2	Brandt Module Creation	4811
	140.2.1	Creation of Elements	4813
	140.2.2	Operations on Elements	4813
	140.2.3	Categories and Parent	4814
	140.2.4	Elementary Invariants	4814
	140.2.5	Associated Structures	4815
	140.2.6	Verbose Output	4816
	140.3	Subspaces and Decomposition	4817
	140.3.1	Boolean Tests on Subspaces	4818
	140.4	Hecke Operators	4819
	140.5	q-Expansions	4820
	140.6	Dimensions of Spaces	4820
	140.7	Brandt Modules Over $F_q[t]$	4821
	140.8	Bibliography	4821

141	SUPE	RSINGULAR DIVISORS ON MODULAR CURVES	. 4823
	141.1	Introduction	4825
	141.1.1	Categories	4826
	141.1.2	Verbose Output	4826
	141.2	Creation Functions	4826
	141.2.1	Ambient Spaces	4826
	141.2.2	Elements	4827
	141.2.3	Subspaces	4828
	141.3	Basis	4829
	141.4	Properties	4830
	141.5	Associated Spaces	4831
	141.6	Predicates	4832
	141.7	Arithmetic	4833
	141.8	Operators	4835
	141.9	The Monodromy Pairing	4836
	141.10	Bibliography	4837
142	MODU	JLAR ABELIAN VARIETIES	. 4839
	142.1	Introduction	4845
	142.1.1	Categories	4846
	142.1.2	Verbose Output	4846
	142.2	Creation and Basic Functions	4847
	142.2.1	Creating the Modular Jacobian $J_0(N)$	4847
	142.2.2	Creating the Modular Jacobians $J_1(N)$ and $J_H(N)$	4848
	142.2.3	Abelian Varieties Attached to Modular Forms	4850
	142.2.4	Abelian Varieties Attached to Modular Symbols	4852
	142.2.5	Creation of Abelian Subvarieties	4853
	142.2.6	Creation Using a Label	4854
	142.2.7	Invariants	4855
	142.2.8	Conductor	4858
	$142.2.9 \\ 142.2.10$	Number of Points	4858 4859
	142.2.10 $142.2.11$	Inner Twists and Complex Multiplication Predicates	4862
	142.2.11 $142.2.12$	Equality and Inclusion Testing	4867
	142.2.13	Modular Embedding and Parameterization	4868
	142.2.14	Coercion	4869
	142.2.15	Modular Symbols to Homology	4872
	142.2.16	Embeddings	4873
	142.2.17	Base Change	4875
	142.2.18	Additional Examples	4876
	142.3	Homology	4879
	142.3.1	Creation	4879
	142.3.2	Invariants	4880
	142.3.3	Functors to Categories of Lattices and Vector Spaces	4880
	142.3.4	Modular Structure	4882
	142.3.5	Additional Examples	4883
	142.4	Homomorphisms	4884
	142.4.1	Creation	4885
	142.4.2	Restriction, Evaluation, and Other Manipulations	4886
	142.4.3	Kernels	4890
	142.4.4	Images	4891
	142.4.5	Cokernels	4893
	142.4.6	Matrix Structure	4894
	$142.4.7 \\ 142.4.8$	Arithmetic Polynomials	4896 4899
	144.4.0	1 01/11011111615	4099

142.4.9 142.4.10	Invariants Predicates	4900 4901
142.5	Endomorphism Algebras and Hom Spaces	4904
142.5.1	Creation	4904
142.5.2	Subgroups and Subrings	4905
142.5.3	Pullback and Pushforward of Hom Spaces	4908
142.5.4	Arithmetic	4908
142.5.5	Quotients	4909
142.5.6	Invariants	4910
142.5.7	Structural Invariants	4912
142.5.8	Matrix and Module Structure	4913
142.5.9	Predicates	4915
142.5.10	Elements	4917
142.6	Arithmetic of Abelian Varieties	4918
142.6.1	Direct Sum	4918
142.6.2	Sum in an Ambient Variety	4920
142.6.3	Intersections	4921
142.6.4	Quotients	4923
142.7	Decomposing and Factoring Abelian Varieties	4924
142.7.1	Decomposition Decomposition	4924
142.7.1	Factorization	4925
142.7.2		4926
142.7.4	Additional Examples	4926
142.8	Building Blocks	4928
142.8.1		4928
	Background and Notation	
142.9	Orthogonal Complements	4932
142.9.1	Complements	4932
142.9.2	Dual Abelian Variety	4933
142.9.3	Intersection Pairing	4935
142.9.4	Projections	4936
142.9.5	Left and Right Inverses	4937
142.9.6	Congruence Computations	4939
142.10	New and Old Subvarieties and Natural Maps	4940
142.10.1	Natural Maps	4940
142.10.2	New Subvarieties and Quotients	4942
142.10.3	Old Subvarieties and Quotients	4943
142.11	Elements of Modular Abelian Varieties	4944
142.11.1	Arithmetic	4945
142.11.2	Invariants	4946
142.11.3	Predicates	4947
142.11.4	Homomorphisms	4949
142.11.5	Representation of Torsion Points	4950
142.12	Subgroups of Modular Abelian Varieties	4951
142.12.1	Creation	4951
142.12.2	Elements	4953
142.12.3	Arithmetic	4954
142.12.4	Underlying Abelian Group and Lattice	4956
142.12.5	Invariants	4957
142.12.6	Predicates and Comparisons	4958
142.13	Rational Torsion Subgroups	4960
142.13.1	Cuspidal Subgroup	4960
142.13.2	Upper and Lower Bounds	4962
142.13.3	Torsion Subgroup	4963
142.14	Hecke and Atkin-Lehner Operators	4963
142.14.1	Creation	4963
142.14.2	Invariants	4965
142.15	L-series	4966

	142.15.1	Creation	4966
	142.15.2	Invariants	4967
	142.15.3	Characteristic Polynomials of Frobenius Elements	4968
	142.15.4	Values at Integers in the Critical Strip	4969
	142.15.5	Leading Coefficient	4971
	142.16	Complex Period Lattice	4972
	142.16.1	Period Map	4972
	142.16.2	Period Lattice	4972
	142.17	Tamagawa Numbers and Component Groups of Neron Models	4972
	142.17.1	Component Groups	4972
	142.17.2	Tamagawa Numbers	4973
	142.18	Elliptic Curves	4974
	142.18.1	Creation	4974
	142.18.2	Invariants	4975
	142.19	Bibliography	4976
143	HILBE	ERT MODULAR FORMS	4977
	143.1	Introduction	4979
	143.1.1	Definitions and Background	4979
	143.1.2	Algorithms and the Jacquet-Langlands Correspondence	4980
	143.1.3	Algorithm I (Using Definite Quaternion Orders)	4981
	143.1.4	Algorithm II (Using Indefinite Quaternion Orders)	4981
	143.1.5	Categories	4981
	143.1.6	Verbose Output	4981
	143.2	Creation of Full Cuspidal Spaces	4981
	143.3	Caching Spaces of Modular Forms	4983
	143.4	Basic Properties	4983
	143.5	Elements	4985
	143.6	Operators	4986
	143.7	Creation of Subspaces	4988
	143.8	Eigenspace Decomposition and Eigenforms	4990
	143.9	Further Examples	4993
	143.9 143.10	Bibliography	4995
144	MODU	JLAR FORMS OVER IMAGINARY QUADRATIC FIF	ELDS 4997
	144.1	Introduction	4999
	144.1.1	Algorithms	4999
	144.1.2	Categories	5000
	144.1.3	Verbose Output	5001
	144.2	Creation	5001
	144.3	Attributes	5001
	144.4	Hecke Operators	5003
	144.4 144.5	New Spaces and Newforms	5004
	144.5 144.6	Ribliography	5004 5004
	144 []	LILLIUS LAUTIV	, , , , , , , , , , , , , , , , , , , ,

cxxxi

145	ADMIS	SSIBLE REPRESENTATIONS OF $\mathrm{GL}_2(\mathbf{Q}_p)$	5007
	145.1	Introduction	5009
	145.1.1	Motivation	5009
	145.1.2	Definitions	5009
	145.1.3	The Principal Series	5010
	145.1.4	Supercuspidal Representations	5010
	145.1.5	The Local Langlands Correspondence	5011
	145.1.6	Connection with Modular Forms	5011
	145.1.7	Category	5011
	145.1.8	Verbose Output	5011
	145.2	Creation of Admissible Representations	5012
	145.3	Attributes of Admissible Representations	5012
	145.4	Structure of Admissible Representations	5013
	145.5	Local Galois Representations	5014
	145.6	Examples	5014
	145.7	Bibliography	5017

XVIII	TOPO	DLOGY	5019
146	SIMPI	LICIAL HOMOLOGY	. 5021
	146.1	Introduction	5023
	146.2	Simplicial Complexes	5023
	146.2.1	Standard Topological Objects	5034
	146.3	Homology Computation	5035
	146.4	Bibliography	5039

XIX	GEON	METRY	5041
147	FINIT	E PLANES	. 5043
	147.1	Introduction	5045
	147.1.1	Planes in Magma	5045
	147.2	Construction of a Plane	5045
	147.3	The Point-Set and Line-Set of a Plane	5048
	147.3.1	Introduction	5048
	147.3.2	Creating Point-Sets and Line-Sets	5048
	147.3.3	Using the Point-Set and Line-Set to Create Points and Lines	5048
	147.3.4	Retrieving the Plane from Points, Lines, Point-Sets and Line-Sets	5052
	147.4	The Set of Points and Set of Lines	5052
	147.5	The Defining Points of a Plane	5053
	147.6	Subplanes	5054
	147.7	Structures Associated with a Plane	5055
	147.8	Numerical Invariants of a Plane	5056
	147.9	Properties of Planes	5057
	147.10	Identity and Isomorphism	5057
	147.11	The Connection between Projective and Affine Planes	5058
	147.12	Operations on Points and Lines	5059
	147.12.1	Elementary Operations	5059
	147.12.2	Deconstruction Functions	5060
	147.12.3	Other Point and Line Functions	5063
	147.13	Arcs	5064
	147.14	Unitals	5067
	147.15	The Collineation Group of a Plane	5068
	147.15.1	The Collineation Group Function	5069
	147.15.2	General Action of Collineations	5070
	147.15.3	Central Collineations	5074
	147.15.4	Transitivity Properties	5075
	147.16	Translation Planes	5076
	147.17	Planes and Designs	5076
	147.18	Planes, Graphs and Codes	5077
148	INCID	ENCE GEOMETRY	. 5079
	148.1	Introduction	5081
	148.2	Construction of Incidence and Coset Geometries	5082
	148.2.1	Construction of an Incidence Geometry	5082
	148.2.2	Construction of a Coset Geometry	5086
	148.3	Elementary Invariants	5089
	148.4	Conversion Functions	5091
	148.5	Residues	5092
	148.6	Truncations	5093
	148.7	Shadows	5093
	148.8	Shadow Spaces	5093
	148.9	Automorphism Group and Correlation Group	5094
	148.10	Properties of Incidence Geometries and Coset Geometries	5094
	148.11	Intersection Properties of Coset Geometries	5095
	148.12	Primitivity Properties on Coset Geometries	5096
	148.13	Diagram of an Incidence Geometry	5097
	148.14	C-Groups	5100
	148.15	C^+ -Groups	5103
	148.16	Bibliography	5105
		~ · ·	

149	CONV	EX POLYTOPES AND POLYHEDRA	. 5107
	149.1	Introduction and First Examples	5111
	149.2	Polytopes, Cones and Polyhedra	5116
	149.2.1	Polytopes	5116
	149.2.2	Cones	5117
	149.2.3	Polyhedra	5119
	149.2.4	Arithmetic Operations on Polyhedra	5121
	149.3	Basic Combinatorics of Polytopes and Polyhedra	5122
	149.3.1	Vertices and Inequalities	5122
	149.3.2	Facets and Faces	5124
	149.4	The Combinatorics of Polytopes	5126
	149.4.1	Points in Polytopes and Polyhedra	5126
	149.4.2	Ehrhart Theory of Polytopes	5127
	149.4.3	Isomorphism Testing and Normal Forms for Polytopes	5128
	149.4.4	Automorphisms of a Polytope	5131
	149.4.5	Operations on Polytopes	5132
	149.5	Cones and Polyhedra	5132
	149.5.1	Generators of Cones	5132
	149.5.2	Properties of Polyhedra	5135
	149.5.3	Attributes of Polyhedra	5139
	149.5.4	Combinatorics of Polyhedral Complexes	5142
	149.6	Toric Lattices	5143
	149.6.1	Toric Lattices	5143
	149.6.2	Points of Toric Lattices	5145
	149.6.3	Operations on Toric Lattices	5147
	149.6.4	Maps of Toric Lattices	5149
	149.7	Bibliography	5152

XX	COM	BINATORICS	5153
150	ENUM	IERATIVE COMBINATORICS	5155
	150.1	Introduction	5157
	150.2	Combinatorial Functions	5157
	150.3	Subsets of a Finite Set	5159
151	PART	ITIONS, WORDS AND YOUNG TABLEAUX	5161
	151.1	Introduction	5163
	151.2	Partitions	5163
	151.3	Words	5166
	151.3.1	Ordered Monoids	5166
	151.3.2	Plactic Monoids	5169
	151.4	Tableaux	5172
	151.4.1	Tableau Monoids	5172
	151.4.2	Creation of Tableaux	5174
	151.4.3	Enumeration of Tableaux	5177
	151.4.4	Random Tableaux	5179
	151.4.5	Basic Access Functions	5180
	151.4.6	Properties	5183
	151.4.7	Operations The Politic of the Alexander of the Control of the Cont	5185
	151.4.8	The Robinson-Schensted-Knuth Correspondence	5188
	151.4.9	Counting Tableaux	5192
	151.5	Bibliography	5194
152	SYMN	IETRIC FUNCTIONS	5195
	152.1	Introduction	5197
	152.2	Creation	5199
	152.2.1	Creation of Symmetric Function Algebras	5199
	152.2.2	Creation of Symmetric Functions	5201
	152.3	Structure Operations	5204
	152.3.1	Related Structures	5204
	152.3.2	Ring Predicates and Booleans	5205
	152.3.3	Predicates on Basis Types	5205
	152.4	Element Operations	5205
	152.4.1	Parent and Category	5205
	152.4.2	Print Styles	5206
	152.4.3	Additive Arithmetic Operators	5206
	152.4.4	Multiplication	5207
	152.4.5	Plethysm	5208
	152.4.6	Boolean Operators	5208
	152.4.7	Accessing Elements	5209
	152.4.8	Multivariate Polynomials	5210
	152.4.9	Frobenius Homomorphism	5211
	152.4.10	Inner Product	5212
	152.4.11	Combinatorial Objects	5212
	152.4.12	Symmetric Group Character Restrictions	5212
	152.4.13		5213
	152.5	Transition Matrices Transition Matrices from Sahun Basis	5214
	152.5.1	Transition Matrices from Schur Basis Transition Matrices from Monomial Basis	5214 5216
	$152.5.2 \\ 152.5.3$		5216 5217
	152.5.3 $152.5.4$	Transition Matrices from Homogeneous Basis Transition Matrices from Power Sum Basis	5217 5218
	104.0.4	Transition Matrices from Lower Sum Dasis	5216

	152.5.5 152.6	Transition Matrices from Elementary Basis Bibliography	5219 5220
153	INCID	ENCE STRUCTURES AND DESIGNS	5221
	153.1	Introduction	5223
	153.1 153.2	Construction of Incidence Structures and Designs	5223
	153.2 153.3	The Point-Set and Block-Set of an Incidence Structure	5224
	153.3.1	Introduction	5228
	153.3.2	Creating Point-Sets and Block-Sets	5229
	153.3.3	Creating Points and Blocks	5229
	153.4	General Design Constructions	5231
	153.4.1	The Construction of Related Structures	5231
	153.4.2	The Witt Designs	5234
	153.4.3	Difference Sets and their Development	5234
	153.5	Elementary Invariants of an Incidence Structure	5236
	153.6	Elementary Invariants of a Design	5237
	153.7	Operations on Points and Blocks	5239
	153.8	Elementary Properties of Incidence Structures and Designs	5241
	153.9	Resolutions, Parallelisms and Parallel Classes	5243
	153.10	Conversion Functions	5246
	153.11	Identity and Isomorphism	5247
	153.12	The Automorphism Group of an Incidence Structure	5248
	153.12.1	Construction of Automorphism Groups	5248
	153.12.2	Action of Automorphisms	5251
	153.13	Incidence Structures, Graphs and Codes	5253
	153.14	Automorphisms of Matrices	5254
	153.15	Bibliography	5255
154	HADA	MARD MATRICES	5257
	154.1	Introduction	5259
	154.2	Equivalence Testing	5259
	154.3	Associated 3–Designs	5261
	154.4	Automorphism Group	5262
	154.5	Databases	5262
	154.5.1	Updating the Databases	5263
155	GRAP	HS	5267
	155.1	Introduction	5271
	155.2	Construction of Graphs and Digraphs	5272
	155.2.1	Bounds on the Graph Order	5272
	155.2.2	Construction of a Ĝeneral Graph	5273
	155.2.3	Construction of a General Digraph	5276
	155.2.4	Operations on the Support	5278
	155.2.5	Construction of a Standard Graph	5279
	155.2.6	Construction of a Standard Digraph	5281
	155.3	Graphs with a Sparse Representation	5282
	155.4	The Vertex–Set and Edge–Set of a Graph	5284
	155.4.1	Introduction	5284
	155.4.2	Creating Edges and Vertices	5284
	155.4.3	Operations on Vertex-Sets and Edge-Sets	5286
	155.4.4	Operations on Edges and Vertices	5287
	155.5	Labelled, Capacitated and Weighted Graphs	5288

cxxxvii

	155.6 155.6.1 155.6.2 155.6.3 155.7 155.8 155.9 155.9.1 155.9.2 155.9.3	Standard Constructions for Graphs Subgraphs and Quotient Graphs Incremental Construction of Graphs Constructing Complements, Line Graphs; Contraction, Switching Unions and Products of Graphs Converting between Graphs and Digraphs Construction from Groups, Codes and Designs Graphs Constructed from Groups Graphs Constructed from Designs Miscellaneous Graph Constructions	5288 5288 5290 5293 5295 5297 5297 5297 5299 5300
	155.3.5	Elementary Invariants of a Graph	5300
	155.10 155.11	Elementary Graph Predicates	5301
	155.11 155.12	Adjacency and Degree	5303
	155.12 $155.12.1$	Adjacency and Degree Functions for a Graph	5303
	155.12.1 $155.12.2$	Adjacency and Degree Functions for a Digraph	5304
	155.13	Connectedness	5304
	155.13.1	Connectedness in a Graph	5306
	155.13.2	Connectedness in a Digraph	5307
	155.13.3	Graph Triconnectivity	5307
	155.13.4	Maximum Matching in Bipartite Graphs	5309
	155.13.5	General Vertex and Edge Connectivity in Graphs and Digraphs	5310
	155.14	Distances, Paths and Circuits in a Graph	5313
	155.14.1	Distances, Paths and Circuits in a Possibly Weighted Graph	5313
	155.14.2	Distances, Paths and Circuits in a Non-Weighted Graph	5313
	155.15	Maximum Flow, Minimum Cut, and Shortest Paths	5314
	155.16	Matrices and Vector Spaces Associated with a Graph or Digraph	5315
	155.17	Spanning Trees of a Graph or Digraph	5315
	155.18	Directed Trees	5316
	155.19	Colourings	5317
	155.20	Cliques, Independent Sets	5318
	155.21	Planar Graphs	5323
	155.22	Automorphism Group of a Graph or Digraph	5326
	155.22.1	The Automorphism Group Function	5326
	155.22.2	nauty Invariants	5327
	155.22.3	Graph Colouring and Automorphism Group	5329
	155.22.4	Variants of Automorphism Group	5330
	155.22.5	Action of Automorphisms	5334
	155.23	Symmetry and Regularity Properties of Graphs	5337
	155.24	Graph Databases and Graph Generation	5339
	155.24.1	Strongly Regular Graphs	5339
	155.24.2	Small Graphs	5341
	155.24.3	Generating Graphs	5342
	155.24.4	A General Facility	5345
	155.25	Bibliography	5347
156	MULTI	GRAPHS	5349
	156.1	Introduction	5353
	156.2	Construction of Multigraphs	5354
	156.2.1	Construction of a General Multigraph	5354
	156.2.2	Construction of a General Multidigraph	5355
	156.2.3	Printing of a Multi(di)graph	5356
	156.2.4	Operations on the Support	5357
	156.3	The Vertex–Set and Edge–Set of Multigraphs	5358
	156.4	Vertex and Edge Decorations	5361
	156.4.1	Vertex Decorations: Labels	5361

	156.4.2	Edge Decorations	5362
	156.4.3	Unlabelled, or Uncapacitated, or Unweighted Graphs	5365
	156.5	Standard Construction for Multigraphs	5368
	156.5.1	Subgraphs	5368
	156.5.2	Incremental Construction of Multigraphs	5370
	156.5.3	Vertex Insertion, Contraction	5374
	156.5.4	Unions of Multigraphs	5375
	156.6	Conversion Functions	5376
	156.6.1	Orientated Graphs	5377
	156.6.2	Converse	5377
	156.6.3	Converting between Simple Graphs and Multigraphs	5377
	156.7	Elementary Invariants and Predicates for Multigraphs	5378
	156.8	Adjacency and Degree	5380
	156.8.1	Adjacency and Degree Functions for Multigraphs	5381
	156.8.2	Adjacency and Degree Functions for Multidigraphs	5382
	156.9	Connectedness	5383
	156.9.1	Connectedness in a Multigraph	5384
	156.9.2	Connectedness in a Multidigraph	5384
	156.9.3	Triconnectivity for Multigraphs	5385
	156.9.4	Maximum Matching in Bipartite Multigraphs	5385
	156.9.5	General Vertex and Edge Connectivity in Multigraphs and Multidigraphs	s 5385
	156.10	Spanning Trees	5387
	156.11	Planar Graphs	5388
	156.12	Distances, Shortest Paths and Minimum Weight Trees	5392
	156.13	Bibliography	5396
157	NETV	VORKS	5397
	157.1	Introduction	5399
	157.2	Construction of Networks	5399
	157.2.1	Magma Output: Printing of a Network	5401
	157.3	Standard Construction for Networks	5403
	157.3.1	Subgraphs	5403
	157.3.2	Incremental Construction: Adding Edges	5407
	157.3.3	Union of Networks	5408
	157.4	Maximum Flow and Minimum Cut	5409

157.5

Bibliography

VOLUME 12: CONTENTS

cxxxix

5415

XXI	CODI	NG THEORY	5417
158	LINEA	AR CODES OVER FINITE FIELDS	5419
	158.1	Introduction	5423
	158.2	Construction of Codes	5424
	158.2.1	Construction of General Linear Codes	5424
	158.2.2	Some Trivial Linear Codes	5426
	158.2.3	Some Basic Families of Codes	5427
	158.3	Invariants of a Code	5429
	158.3.1	Basic Numerical Invariants	5429
	158.3.2	The Ambient Space and Alphabet	5430
	158.3.3	The Code Space	5430
	158.3.4	The Dual Space	5431
	158.3.5	The Information Space and Information Sets	5432
	158.3.6	The Syndrome Space	5433
	158.3.7	The Generator Polynomial	5433
	158.4	Operations on Codewords	5434
	158.4.1	Construction of a Codeword	5434
	158.4.2	Arithmetic Operations on Codewords	5435
	158.4.3	Distance and Weight	5435
	158.4.4	Vector Space and Related Operations	5436
	158.4.5	Predicates for Codewords	5437
	158.4.6	Accessing Components of a Codeword	5437
	158.5	Coset Leaders	5438
	158.6	Subcodes	5439
	158.6.1	The Subcode Constructor	5439
	158.6.2	Sum, Intersection and Dual	5441
	158.6.3	Membership and Equality	5442
	158.7	Properties of Codes	5443
	158.8	The Weight Distribution	5445
	158.8.1	The Minimum Weight	5445
	158.8.2	The Weight Distribution	5450
	158.8.3	The Weight Enumerator	5451
	158.8.4	The MacWilliams Transform	5452
	158.8.5	Words	5453
	158.8.6	Covering Radius and Diameter	5455
	158.9	Families of Linear Codes	5456
	158.9.1	Cyclic and Quasicyclic Codes	5456
	158.9.2	BCH Codes and their Generalizations	5458
	158.9.3	Quadratic Residue Codes and their Generalizations	5461
	158.9.4	Reed-Solomon and Justesen Codes	5463
	158.9.5	Maximum Distance Separable Codes	5464
	158.10	New Codes from Existing	5464
	158.10.1	Standard Constructions	5464
	158.10.2	Changing the Alphabet of a Code	5467
	158.10.3	Combining Codes	5468
	158.11	Coding Theory and Cryptography	5472
	158.11.1	Standard Attacks	5473
	158.11.2	Generalized Attacks	5474

	158.12	Bounds	5475
	158.12.1	Best Known Bounds for Linear Codes	5475
	158.12.2	Bounds on the Cardinality of a Largest Code	5476
	158.12.3	Bounds on the Minimum Distance	5478
	158.12.4	Asymptotic Bounds on the Information Rate	5478
	158.12.5	Other Bounds	5478
	158.13	Best Known Linear Codes	5479
	158.14	Decoding	5485
	158.14.1	Syndrome Decoding	5485
	158.14.2	Euclidean Decoding	5486
	158.14.3	Permutation Decoding	5487
	158.15	Transforms	5491
	158.15.1	Mattson-Solomon Transforms	5491
	158.15.2	Krawchouk Polynomials	5492
	158.16	Automorphism Groups	5492
	158.16.1	Introduction	5492
	158.16.2	Group Actions	5493
	158.16.3 $158.16.4$	Automorphism Group	5494
	158.17	Equivalence and Isomorphism of Codes	5497 5497
	196.17	Bibliography	0497
159	ALGE	BRAIC-GEOMETRIC CODES	5499
	159.1	Introduction	5501
	159.2	Creation of an Algebraic Geometric Code	5502
	159.3	Properties of AG-Codes	5504
	159.4	Access Functions	5505
	159.5	Decoding AG Codes	5505
	159.6	Toric Codes	5506
	159.7	Bibliography	5507
160	LOW	DENSITY PARITY CHECK CODES	5509
	160.1	Introduction	5511
	160.1.1	Constructing LDPC Codes	5511
	160.1.2	Access Functions	5512
	160.1.3	LDPC Decoding and Simulation	5514
	160.1.4	Density Evolution	5516
161	LINE	AR CODES OVER FINITE RINGS	5521
	161.1	Introduction	5523
	161.2	Constructions	5523
	161.2.1	General Linear Codes	5523
	161.2.1 $161.2.2$	Simple Linear Codes	5526

161.2.3

161.3

161.4

161.5

161.6

161.6.1

161.6.2

161.7

161.7.1

161.7.2

161.4.1

General Cyclic Codes

The Subcode Constructor

Sum, Intersection and Dual

Standard Constructions

Invariants

Subcodes

Boolean Predicates

New Codes from Old

Codeword Operations

Construction

Operations

VOLUME 13: CONTENTS

cxli

5527

5529

5530

5530

5531

5533

5533

5534

5536

5536

5537

	161.7.3 161.8	Accessing Components of a Codeword Weight Distributions	5539 5539
	161.8.1	Hamming Weight	5540
	161.9	Weight Enumerators	5541
	161.10	Bibliography	5541
	101.10	Dibliography	5542
162	LINE	AR CODES OVER THE INTEGER RESIDUE RING \mathbf{Z}_4	. 5543
	162.1	Introduction	5545
	162.2	Constructions for \mathbf{Z}_4 Codes	5545
	162.2.1	The Gray Map	5546
	162.2.2	Families of Codes over \mathbf{Z}_4	5548
	162.2.3	Derived Binary Codes	5553
	162.2.4	New Codes from Old	5555
	162.3	Invariants	5557
	162.3.1	The Standard Form	5558
	162.3.2	Structures Associated with the Gray Map	5559
	162.3.3	Coset Representatives	5560
	162.3.4	Information Space and Information Sets	5561
	$162.3.5 \\ 162.3.6$	Syndrome Space and Coset Leaders Miscellaneous Functions	5563 5564
	162.3.0 162.4	Weight Distributions	
	162.4 $162.4.1$		<i>5565</i> 5565
	162.4.1 $162.4.2$	Hamming Weight Lee Weight	5566
	162.4.2 $162.4.3$	Euclidean Weight	5567
	162.4.5	Weight Enumerators	5569
	162.6	Decoding	5571
	162.6.1	Coset Decoding	5571
	162.6.2	Syndrome Decoding	5573
	162.6.3	Lifted Decoding	5574
	162.6.4	Permutation Decoding	5576
	162.7	Automorphism Groups	5582
	162.8	Bibliography	5584
163	ADDI'	TIVE CODES	. 5585
	163.1	Introduction	5587
	163.2	Construction of Additive Codes	5588
	163.2.1	Construction of General Additive Codes	5588
	163.2.2	Some Trivial Additive Codes	5590
	163.3	Invariants of an Additive Code	5591
	163.3.1	The Ambient Space and Alphabet	5591
	163.3.2	Basic Numerical Invariants	5592
	163.3.3	The Code Space	5593
	163.3.4	The Dual Space	5593
	163.4	Operations on Codewords	5594
	163.4.1	Construction of a Codeword	5594
	163.4.2	Arithmetic Operations on Codewords	5594
	163.4.3	Distance and Weight	5595
	163.4.4	Vector Space and Related Operations	5595
	163.4.5	Predicates for Codewords	5596
	163.4.6	Accessing Components of a Codeword	5596
	163.5	Subcodes The Subcode Constructor	5596
	163.5.1	The Subcode Constructor	5596
	$163.5.2 \\ 163.5.3$	Sum, Intersection and Dual Membership and Equality	5598 5599
	109.9.9	membership and Equanty	5599

	163.6	Properties of Codes	5599
	163.7	The Weight Distribution	5600
	163.7.1	The Minimum Weight	5600
	163.7.2	The Weight Distribution	5603
	163.7.3	The Weight Enumerator	5603
	163.7.4	The MacWilliams Transform	5604
	163.7.5	Words	5604
	163.8	Families of Linear Codes	5605
	163.8.1	Cyclic Codes	5605
	163.8.2	Quasicyclic Codes	5606
	163.9	New Codes from Old	5607
	163.9.1	Standard Constructions	5607
	163.9.2	Combining Codes	5608
	163.10	Automorphism Group	5609
164	QUAN	TUM CODES	5611
	164.1	Introduction	5613
	164.2	Constructing Quantum Codes	5615
	164.2.1	Construction of General Quantum Codes	5615
	164.2.2	Construction of Special Quantum Codes	5620
	164.2.3	CSS Codes	5620
	164.2.4	Cyclic Quantum Codes	5621
	164.2.5	Quasi-Cyclic Quantum Codes	5624
	164.3	Access Functions	5625
	164.3.1	Quantum Error Group	5626
	164.4	Inner Products and Duals	5628
	164.5	Weight Distribution and Minimum Weight	5630
	164.6	New Codes From Old	5633
	164.7	Best Known Quantum Codes	5634
	164.8	Best Known Bounds	5637
	164.9	Automorphism Group	5638
	164.10	Hilbert Spaces	5640
	164.10.1	Creation of Quantum States	5641
	164.10.2	Manipulation of Quantum States	5643
	164.10.3	Inner Product and Probabilities of Quantum States	5644
	164.10.4	Unitary Transformations on Quantum States	5647
	164.11	Bibliography	5648

cxliii

XXII	CRYPTOGRAPHY		5649
165	PSEUDO-RANDOM BIT SEQUENCES		. 5651
	165.1	Introduction	5653
	165.2	Linear Feedback Shift Registers	5653
	165.3	Number Theoretic Bit Generators	5654
	165.4	Correlation Functions	5656
	165.5	Decimation	5657

XXIII	OPTI	MIZATION	5659
166	LINE	AR PROGRAMMING	. 5661
	166.1 166.2 166.3 166.4 166.5	Introduction Explicit LP Solving Functions Creation of LP objects Operations on LP objects Bibliography	5663 5664 5666 5666 5669

VOLUME 13: CONTENTS

 cxlv

PART I THE MAGMA LANGUAGE

1	STATEMENTS AND EXPRESSIONS	3
2	FUNCTIONS, PROCEDURES AND PACKAGES	33
3	INPUT AND OUTPUT	65
4	ENVIRONMENT AND OPTIONS	95
5	MAGMA SEMANTICS	117
6	THE MAGMA PROFILER	137
7	DEBUGGING MAGMA CODE	147

1 STATEMENTS AND EXPRESSIONS

1.1 Introduction 5	<pre>IsCoercible(S, x)</pre>	13
1.2 Starting, Interrupting and Termi-	1.7 The where is Construction .	14
nating 5	e_1 where id is e_2	14
<ctrl>-C 5</ctrl>	e_1 where $id := e_2$	14
quit; 5	1.8 Conditional Statements and	
<ctrl>-D 5</ctrl>	Expressions	16
<ctrl>-\ 5</ctrl>	_	
1.3 Identifiers 5	1.8.1 The Simple Conditional Statement	. 10
1.5 Identifiers	1.8.2 The Simple Conditional Expression	. 17
1.4 Assignment 6	$bool$ select e_1 else e_2	17
$1.4.1 Simple \ Assignment 6$	1.8.3 The Case Statement	. 18
x := e; 6	1.8.4 The Case Expression	18
$x_1, x_2, \ldots, x_n := e;$ 6	1.0.4 The Case Expression	. 10
_ := e; 6	1.9 Error Handling Statements	19
assigned 6	1.9.1 The Error Objects	
1.4.2 Indexed Assignment 7	-	
$x[e_1][e_2][e_n] := e;$ 7	Error(x) e'Position	19 19
$x[e_1, e_2, \dots, e_n] := e;$ 7	e'Traceback	19
1.4.3 Generator Assignment 8	e'Object	19
$E < x_1, \; x_2, \; \ldots x_n > := e; \qquad \qquad 8$	e'Type	19
E<[x]> := e;	1.9.2 Error Checking and Assertions	10
AssignNames(\sim S, [s ₁ , s _n]) 9		19
1.4.4 Mutation Assignment 9	error e,, e; error if bool, e,, e;	19
	assert bool;	20
· ·,	assert2 bool;	20
1.4.5 Deletion of Values	assert3 bool;	20
delete 10	1.9.3 Catching Errors	. 20
1.5 Boolean Values 10		
1.5.1 Creation of Booleans	1.10 Iterative Statements	21
	$1.10.1$ Definite Iteration $\dots \dots \dots$. 21
Booleans() 11 # 11	1.10.2 Indefinite Iteration	90
true 11	1.10.2 Indennite iteration	. 22
false 11	1.10.3 Early Exit from Iterative Statements	. 23
Random(B) 11	continue;	23
1.5.2 Boolean Operators	continue $id;$	23
and 11	break;	23
or 11	break id;	23
xor 11	1.11 Runtime Evaluation: the eval Ex	x-
not 11	pression	24
1.5.3 Equality Operators	$eval\ expression$	24
eq 11	1.12 Comments and Continuation	26
ne 12	//	26
cmpeq 12	// /* */	26
cmpne 12	\	26
1.5.4 Iteration	·	
100	1.13 Timing	2 6
1.6 Coercion	<pre>Cputime()</pre>	26
! 13	<pre>Cputime(t)</pre>	26

Realtime()	26	<pre>ElementType(S)</pre>	29
Realtime(t)	27	CoveringStructure(S, T)	29
ClockCycles()	27	ExistsCoveringStructure(S, T)	29
time statement;	27	1157 1 011 1 0	
vtime flag: statement;	27	1.15 Random Object Generation	30
vtime flag, n: statement:	27	SetSeed(s, c)	33
SetShowRealTime(v)	27	SetSeed(s)	33
GetShowRealTime()	27	<pre>GetSeed()</pre>	33
1.14 Types, Category Names, and		Random(S)	33
Structures	28	Random(a, b)	33
	_	Random(b)	3
Type(x)	28		
Category(x)	28	1.16 Miscellaneous	32
ExtendedType(x)	28	<pre>IsIntrinsic(S)</pre>	32
ExtendedCategory(x)	28	1511101111010(0)	-
ISA(T, U)	29	1.17 Bibliography	32
MakeType(S)	29		

Chapter 1 STATEMENTS AND EXPRESSIONS

1.1 Introduction

This chapter contains a very terse overview of the basic elements of the MAGMA language.

1.2 Starting, Interrupting and Terminating

If MAGMA has been installed correctly, it may be activated by typing 'magma'.

<Ctrl>-C

Interrupt Magma while it is performing some task (that is, while the user does not have a 'prompt') to obtain a new prompt. Magma will try to interrupt at a convenient point (this may take some time). If <Ctrl>-C is typed twice within half a second, Magma will exit completely immediately.

quit;

Terminate the current Magma-session.

<Ctrl>-\

Immediately quit MAGMA (send the signal SIGQUIT to the MAGMA process on Unix machines). This is occasionally useful when <Ctrl>-C does not seem to work.

1.3 Identifiers

Identifiers (names for user variables, functions etc.) must begin with a letter, and this letter may be followed by any combination of letters or digits, provided that the name is not a reserved word (see the chapter on reserved words a complete list). In this definition the underscore _ is treated as a letter; but note that a single underscore is a reserved word. Identifier names are case-sensitive; that is, they are distinguished from one another by lower and upper case.

Intrinsic MAGMA functions usually have names beginning with capital letters (current exceptions are pCore, pQuotient and the like, where the p indicates a prime). Note that these identifiers are not reserved words; that is, one may use names of intrinsic functions for variables.

1.4 Assignment

In this section the basic forms of assignment of values to identifiers are described.

1.4.1 Simple Assignment

```
x := expression;
```

Given an identifier x and an expression expression, assign the value of expression to x.

Example H1E1_

```
> x := 13;
> y := x^2-2;
> x, y;
13 167
```

Intrinsic function names are identifiers just like the x and y above. Therefore it is possible to reassign them to your own variable.

```
> f := PreviousPrime;
> f(y);
163
```

In fact, the same can also be done with the infix operators, except that it is necessary to enclose their names in quotes. Thus it is possible to define your own function Plus to be the function taking the arguments of the intrinsic + operator.

```
> Plus := '+';
> Plus(1/2, 2);
5/2
```

Note that redefining the infix operator will not change the corresponding mutation assignment operator (in this case +:=).

```
x_1, x_2, \ldots, x_n := expression;
```

Assignment of $n \ge 1$ values, returned by the expression on the right hand side. Here the \mathbf{x}_i are identifiers, and the right hand side expression must return $m \ge n$ values; the first n of these will be assigned to \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_n respectively.

```
_ := expression;
```

Ignore the value(s) returned by the expression on the right hand side.

```
assigned x
```

An expression which yields the value true if the 'local' identifier x has a value currently assigned to it and false otherwise. Note that the assigned-expression will return false for intrinsic function names, since they are not 'local' variables (the identifiers can be assigned to something else, hiding the intrinsic function).

Example H1E2_

The extended greatest common divisor function \mathtt{Xgcd} returns 3 values: the $\gcd d$ of the arguments m and n, as well as multipliers x and y such that d=xm+yn. If one is only interested in the \gcd of the integers m=12 and n=15, say, one could use:

```
> d := Xgcd(12, 15);
```

To obtain the multipliers as well, type

```
> d, x, y := Xgcd(12, 15);
```

while the following offers ways to retrieve two of the three return values.

```
> d, x := Xgcd(12, 15);
> d, _, y := Xgcd(12, 15);
> _, x, y := Xgcd(12, 15);
```

1.4.2 Indexed Assignment

```
x[expression_1][expression_2]...[expression_n] := expression;
x[expression_1, expression_2, ..., expression_n] := expression;
```

If the argument on the left hand side allows *indexing* at least n levels deep, and if this indexing can be used to modify the argument, this offers two equivalent ways of accessing and modifying the entry indicated by the expressions $expr_i$. The most important case is that of (nested) sequences.

Example H1E3_

Left hand side indexing can be used (as is explained in more detail in the chapter on sequences) to modify existing entries.

1.4.3 Generator Assignment

Because of the importance of naming the generators in the case of finitely presented magmas, special forms of assignment allow names to be assigned at the time the magma itself is assigned.

```
E < x_1, x_2, \dots x_n > := expression;
```

If the right hand side expression returns a structure that allows naming of 'generators', such as finitely generated groups or algebras, polynomial rings, this assigns the first n names to the variables $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$. Naming of generators usually has two aspects; firstly, the *strings* $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are used for printing of the generators, and secondly, to the *identifiers* $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are assigned the values of the generators. Thus, except for this side effect regarding printing, the above assignment is equivalent to the n+1 assignments:

```
E := expression;

x_1 := E.1; x_2 := E.2; ... x_n := E.n;
```

```
E<[x]> := expression;
```

If the right hand side expression returns a structure S that allows naming of 'generators', this assigns the names of S to be those formed by appending the numbers 1, 2, etc. in order enclosed in square brackets to x (considered as a string) and assigns x to the sequence of the names of S.

Example H1E4.

We demonstrate the sequence method of generator naming.

```
> P<[X]> := PolynomialRing(RationalField(), 5);
> P;
Polynomial ring of rank 5 over Rational Field
Lexicographical Order
Variables: X[1], X[2], X[3], X[4], X[5]
> X;
Ε
   X[1],
   X[2],
   X[3],
   X[4],
   X[5]
]
> &+X;
X[1] + X[2] + X[3] + X[4] + X[5]
> (&+X)^2;
X[1]^2 + 2*X[1]*X[2] + 2*X[1]*X[3] + 2*X[1]*X[4] +
    2*X[1]*X[5] + X[2]^2 + 2*X[2]*X[3] + 2*X[2]*X[4] +
    2*X[2]*X[5] + X[3]^2 + 2*X[3]*X[4] + 2*X[3]*X[5] +
   X[4]^2 + 2*X[4]*X[5] + X[5]^2
```

```
AssignNames(\simS, [s_1, ... s_n] )
```

If S is a structure that allows naming of 'generators' (see the Index for a complete list), this procedure assigns the names specified by the strings to these generators. The number of generators has to match the length of the sequence. This will result in the creation of a new structure.

Example H1E5_

```
> G < a, b > := Group < a, b | a^2 = b^3 = a^b * b^2 >;
> w := a * b;
> w;
a * b
> AssignNames(~G, ["c", "d"]);
Finitely presented group G on 2 generators
Relations
    c^2 = d^{-1} * c * d^3
    d^3 = d^{-1} * c * d^3
> w;
a * b
> Parent(w);
Finitely presented group on 2 generators
Relations
    a^2 = b^-1 * a * b^3
    b^3 = b^{-1} * a * b^3
> G eq Parent(w);
true
```

1.4.4 Mutation Assignment

```
x o := expression;
```

This is the *mutation assignment*: the expression is evaluated and the operator o is applied on the result and the current value of x, and assigned to x again. Thus the result is equivalent to (but an optimized version of): $x := x \circ expression$;. The operator may be any of the operations join, meet, diff, sdiff, cat, *, +, -, /, ^, div, mod, and, or, xor provided that the operation is legal on its arguments of course.

Example H1E6_

The following simple program to produce a set consisting of the first 10 powers of 2 involves the use of two different mutation assignments.

```
> x := 1;
> S := { };
> for i := 1 to 10 do
>          S join:= { x };
>          x *:= 2;
> end for;
> S;
{ 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 }
```

1.4.5 Deletion of Values

delete x

(Statement.) Delete the current value of the identifier x. The memory occupied is freed, unless other variables still refer to it. If x is the name of an intrinsic MAGMA function that has been reassigned to, the identifier will after deletion again refer to that intrinsic function. Intrinsic functions cannot be deleted.

1.5 Boolean Values

This section deals with logical values ("Booleans").

Booleans are primarily of importance as (return) values for (intrinsic) predicates. It is important to know that the truth-value of the operators and and or is always evaluated $left\ to\ right$, that is, the left-most clause is evaluated first, and if that determines the value of the operator evaluation is aborted; if not, the next clause is evaluated, etc. So, for example, if x is a boolean, it is safe (albeit silly) to type:

```
> if x eq true or x eq false or x/0 eq 1 then
>    "fine";
> else
>    "error";
> end if;
```

even though x/0 would cause an error ("Bad arguments", not "Division by zero"!) upon evaluation, because the truth value will have been determined before the evaluation of $\mathbf{x}/0$ takes place.

1.5.1 Creation of Booleans

Booleans()

The Boolean structure.

#B

Cardinality of Boolean structure (2).

true false

The Boolean elements.

Random(B)

Return a random Boolean.

1.5.2 Boolean Operators

x and y

Returns true if both x and y are true, false otherwise. If x is false, the expression for y is not evaluated.

x or y

Returns true if x or y is true (or both are true), false otherwise. If x is true, the expression for y is not evaluated.

x xor y

Returns true if either x or y is true (but not both), false otherwise.

not x

Negate the truth value of x.

1.5.3 Equality Operators

MAGMA provides two equality operators: eq for strong (comparable) equality testing, and cmpeq for weak equality testing. The operators depend on the concept of *comparability*. Objects x and y in MAGMA are said to be *comparable* if both of the following points hold:

- (a) x and y are both elements of a structure S or there is a structure S such x and y will be coerced into S by automatic coercion;
- (b) There is an equality test for elements of S defined within MAGMA.

The possible automatic coercions are listed in the descriptions of the various Magma modules. For instance, the table in the introductory chapter on rings shows that integers can be coerced automatically into the rational field so an integer and a rational are comparable.

x eq y

If x and y are comparable, return true x equals y (which will always work by the second rule above). If x and y are not comparable, an error results.

x ne y

If x and y are comparable, return true if x does not equal y. If x and y are not comparable, an error results.

x cmpeq y

If x and y are comparable, return whether x equals y. Otherwise, return false. Thus this operator always returns a value and an error never results. It is useful when comparing two objects of completely different types where it is desired that no error can happen. However, it is strongly recommended that eq is usually used to allow Magma to pick up common unintentional type errors.

x cmpne y

If x and y are comparable, return whether x does not equal y. Otherwise, return true. Thus this operator always returns a value and an error never results. It is useful when comparing two objects of completely different types where it is desired that no error can happen. However, it is strongly recommended that ne is usually used to allow MAGMA to pick up common unintentional type errors.

Example H1E7_

We illustrate the different semantics of eq and cmpeq.

```
> 1 eq 2/2;
true
> 1 cmpeq 2/2;
true
> 1 eq "x";
Runtime error in 'eq': Bad argument types
> 1 cmpeq "x";
false
> [1] eq ["x"];
Runtime error in 'eq': Incompatible sequences
> [1] cmpeq ["x"];
false
```

1.5.4 Iteration

A Boolean structure B may be used for enumeration: for x in B do, and x in B in set and sequence constructors.

Example H1E8_

The following program checks that the functions ne and xor coincide.

```
> P := Booleans();
> for x, y in P do
>          (x ne y) eq (x xor y);
> end for;
true
true
true
true
```

Similarly, we can test whether for any pair of Booleans x, y it is true that

```
x = y \iff (x \land y) \lor (\neg x \land \neg y).
```

```
> equal := true;
> for x, y in P do
>         if (x eq y) and not ((x and y) or (not x and not y)) then
>            equal := false;
>         end if;
> end for;
> equal;
true
```

1.6 Coercion

Coercion is a fundamental concept in Magma. Given a structures A and B, there is often a natural mathematical mapping from A to B (e.g., embedding, projection), which allows one to transfer elements of A to corresponding elements of B. This is known as coercion. Natural and obvious coercions are supported in Magma as much as possible; see the relevant chapters for the coercions possible between various structures.

```
S!x
```

Given a structure S and an object x, attempt to coerce x into S and return the result if successful. If the attempt fails, an error ensues.

```
IsCoercible(S, x)
```

Given a structure S and an object x, attempt to coerce x into S; if successful, return true and the result of the coercion, otherwise return false.

1.7 The where ... is Construction

By the use of the where ... is construction, one can within an expression temporarily assign an identifier to a sub-expression. This allows for compact code and efficient re-use of common sub-expressions.

```
expression<sub>1</sub> where identifier is expression<sub>2</sub>

expression<sub>1</sub> where identifier := expression<sub>2</sub>
```

This construction is an expression that temporarily assigns the identifier to the second expression and then yields the value of the first expression. The identifier may be referred to in the first expression and it will equal the value of the second expression. The token := can be used as a synonym for is. The scope of the identifier is the where ... is construction alone except for when the construction is part of an expression list — see below.

The where operator is left-associative. This means that there can be multiple uses of where ... is constructions and each expression can refer to variables bound in the enclosing constructions.

Another important feature is found in a set or sequence constructor. If there are where ... is constructions in the predicate, then any variables bound in them may be referred to in the expression at the beginning of the constructor. If the whole predicate is placed in parentheses, then any variables bound in the predicate do not extend to the expression at the beginning of the constructor.

The where operator also extends left in expression lists. That is, if there is an expression E in a expression list which is a where construction (or chain of where constructions), the identifiers bound in that where construction (or chain) will be defined in all expressions in the list which are to the left of E. Expression lists commonly arise as argument lists to functions or procedures, return arguments, print statements (with or without the word 'print') etc. A where construction also overrides (hides) any where construction to the right of it in the same list. Using parentheses around a where expression ensures that the identifiers bound within it are not seen outside it.

Example H1E9_

The following examples illustrate simple uses of where ... is.

```
> x := 1;
> x where x is 10;
10
> x;
1
> Order(G) + Degree(G) where G is Sym(3);
```

Since where is left-associative we may have multiple uses of it. The use of parentheses, of course, can override the usual associativity.

```
> x := 1;
```

```
> y := 2;
> x + y where x is 5 where y is 6;
> (x + y where x is 5) where y is 6; // the same
> x + y where x is (5 where y is 6);
> x + y where x is y where y is 6;
> (x + y where x is y) where y is 6; // the same
> x + y where x is (y where y is 6);
We now illustrate how the left expression in a set or sequence constructor can reference the
identifiers of where constructions in the predicate.
> { a: i in [1 .. 10] | IsPrime(a) where a is 3*i + 1 };
{ 7, 13, 19, 31 }
> [<x, y>: i in [1 .. 10] | IsPrime(x) and IsPrime(y)
> where x is y + 2 where y is 2 * i + 1;
[ <5, 3>, <7, 5>, <13, 11>, <19, 17> ]
We next demonstrate the semantics of where constructions inside expression lists.
> // A simple use:
> [a, a where a is 1];
[1,1]
> // An error: where does not extend right
> print [a where a is 1, a];
User error: Identifier 'a' has not been declared
> // Use of parentheses:
> [a, (a where a is 1)] where a is 2;
[2, 1]
> // Another use of parentheses:
> print [a, (a where a is 1)];
User error: Identifier 'a' has not been declared
> // Use of a chain of where expressions:
> [<a, b>, <b, a> where a is 1 where b is 2];
[ <1, 2>, <2, 1> ]
> // One where overriding another to the right of it:
> [a, a where a is 2, a where a is 3];
[2, 2, 3]
```

1.8 Conditional Statements and Expressions

The conditional statement has the usual form if ... then ... else ... end if;. It has several variants. Within the statement, a special prompt will appear, indicating that the statement has yet to be closed. Conditional statements may be nested.

The conditional expression, select ... else, is used for in-line conditionals.

1.8.1 The Simple Conditional Statement

```
\begin{array}{c} \text{if } Boolean \ expression \ \text{then} \\ statements_1 \\ \text{else} \\ statements_2 \\ \text{end if;} \end{array}
```

if Boolean expression then
 statements
end if;

The standard conditional statement: the value of the Boolean expression is evaluated. If the result is **true**, the first block of statements is executed, if the result is **false** the second block of statements is executed. If no action is desired in the latter case, the construction may be abbreviated to the second form above.

```
if Boolean expression1 then
    statements1
elif Boolean expression2 then
    statements2
else
    statements3
end if;
```

Since nested conditions occur frequently, elif provides a convenient abbreviation for else if, which also restricts the 'level':

```
if Boolean expression then
    statements1
elif Boolean expression2 then
    statements2
else
    statements3
end if;
is equivalent to
if Boolean expression1 then
    statements1
else
    if Boolean expression2 then
```

```
statements_2 else statements_3 end if; end if;
```

Example H1E10__

1.8.2 The Simple Conditional Expression

Boolean expression select expression₁ else expression₂

This is an expression, of which the value is that of $expression_1$ or $expression_2$, depending on whether *Boolean expression* is true or false.

Example H1E11_

Using the select \dots else construction, we wish to assign the sign of y to the variable s.

```
> y := 11;
> s := (y gt 0) select 1 else -1;
> s;
1
```

This is not quite right (when y=0), but fortunately we can nest select ... else constructions:

```
> y := -3;
> s := (y gt 0) select 1 else (y eq 0 select 0 else -1);
> s;
-1
> y := 0;
> s := (y gt 0) select 1 else (y eq 0 select 0 else -1);
> s;
0
```

The select ... else construction is particularly important in building sets and sequences, because it enables in-line if constructions. Here is a sequence containing the first 100 entries of the Fibonacci sequence:

```
> f := [ i gt 2 select Self(i-1)+Self(i-2) else 1 : i in [1..100] ];
```

1.8.3 The Case Statement

```
case expression :
    when expression, ..., expression:
        statements
        :
    when expression, ..., expression:
        statements
    end case;
```

The expression following case is evaluated. The statements following the first expression whose value equals this value are executed, and then the case statement has finished. If none of the values of the expressions equal the value of the case expression, then the statements following else are executed. If no action is desired in the latter case, the construction may be abbreviated to the second form above.

Example H1E12.

```
> x := 73;
> case Sign(x):
> when 1:
> x, "is positive";
> when 0:
> x, "is zero";
> when -1:
> x, "is negative";
> end case;
73 is positive
```

1.8.4 The Case Expression

```
 \begin{array}{cccc} {\sf case<} & {\it expression} \mid \\ & & {\it expression}_{{\rm left},1} : & {\it expression}_{{\rm right},1} \text{,} \\ & & \vdots \\ & & & {\it expression}_{{\rm left},n} : & {\it expression}_{{\rm right},n} \text{,} \\ & & & {\it default} : & {\it expression}_{{\rm def}} > \\ \end{array}
```

This is the expression form of case. The expression is evaluated to the value v. Then each of the left-hand expressions $expression_{{\rm left},i}$ is evaluated until one is found whose value equals v; if this happens the value of the corresponding right-hand expression $expression_{{\rm right},i}$ is returned. If no left-hand expression with value v is found the value of the default expression $expression_{{\rm def}}$ is returned.

The default case cannot be omitted, and must come last.

1.9 Error Handling Statements

MAGMA has facilities for both reporting and handling errors. Errors can arise in a variety of circumstances within MAGMA's internal code (due to, for instance, incorrect usage of a function, or the unexpected failure of an algorithm). MAGMA allows the user to raise errors in their own code, as well as catch many kinds of errors.

1.9.1 The Error Objects

All errors in Magma are of type Err. Error objects not only include a description of the error, but also information relating to the location at which the error was raised, and whether the error was a user error, or a system error.

Error(x)

Constructs an error object with user information given by x, which can be of any type. The object x is stored in the Object attributed of the constructed error object, and the Type attribute of the object is set to "ErrUser". The remaining attributes are uninitialized until the error is raised by an error statement; at that point they are initialized with the appropriate positional information.

e'Position

Stores the position at which the error object e was raised. If the error object has not yet been raised, the attribute is undefined.

e'Traceback

Stores the stack traceback giving the position at which the error object e was raised. If the error object has not yet been raised, the attribute is undefined.

e'Object

Stores the user defined error information for the error. If the error is a system error, then this will be a string giving a textual description of the error.

e'Type

Stores the type of the error. Currently, there are only two types of errors in Magma: "Err" denotes a system error, and "ErrUser" denotes an error raised by the user.

1.9.2 Error Checking and Assertions

```
error expression, ..., expression;
```

Raises an error, with the error information being the printed value of the expressions. This statement is useful, for example, when an illegal value of an argument is passed to a function.

```
error if Boolean expression, expression, ..., expression;
```

If the given boolean expression evaluates to **true**, then raises an error, with the error information being the printed value of the expressions. This statement is designed for checking that certain conditions must be met, etc.

```
assert Boolean expression;
assert2 Boolean expression;
assert3 Boolean expression;
```

These assertion statements are useful to check that certain conditions are satisfied. There is an underlying Assertions flag, which is set to 1 by default.

For each statement, if the Assertions flag is less than the level specified by the statement (respectively 1, 2, 3 for the above statements), then nothing is done. Otherwise, the given boolean expression is evaluated and if the result is false, an error is raised, with the error information being an appropriate message.

It is recommended that when developing package code, assert is used for important tests (always to be tested in any mode), while assert2 is used for more expensive tests, only to be checked in the debug mode, while assert3 is be used for extremely stringent tests which are very expensive.

Thus the Assertions flag can be set to 0 for no checking at all, 1 for normal checks, 2 for debug checks and 3 for extremely stringent checking.

1.9.3 Catching Errors

```
try \\ statements_1 \\ catch e \\ statements_2 \\ end try;
```

The try/catch statement lets users handle raised errors. The semantics of a try/catch statement are as follows: the block of statements $statements_1$ is executed. If no error is raised during its execution, then the block of statements $statements_2$ is not executed; if an error is raised at any point in $statements_1$, execution immediately transfers to $statements_2$ (the remainder of $statements_1$ is not executed). When transfer is controlled to the catch block, the variable named e is initialized to the error that was raised by $statements_1$; this variable remains in scope until the end of the catch block, and can be both read from and written to. The catch block can, if necessary, reraise e, or any other error object, using an error statement.

Example H1E13

The following example demonstrates the use of error objects, and try/catch statements.

```
> procedure always_fails(x)
>         error Error(x);
> end procedure;
> 
> try
> always_fails(1);
```

```
> always_fails(2); // we never get here
> catch e
> print "In catch handler";
> error "Error calling procedure with parameter: ", e'Object;
> end try;
In catch handler
Error calling procedure with parameter: 1
```

1.10 Iterative Statements

Three types of iterative statement are provided in Magma: the for-statement providing definite iteration and the while- and repeat-statements providing indefinite iteration.

Iteration may be performed over an arithmetic progression of integers or over any finite enumerated structure. Iterative statements may be nested. If nested iterations occur over the same enumerated structure, abbreviations such as for x, y in X do may be used; the leftmost identifier will correspond to the outermost loop, etc. (For nested iteration in sequence constructors, see Chapter 10.)

Early termination of the body of loop may be specified through use of the 'jump' commands break and continue.

1.10.1 Definite Iteration

```
for i := expression<sub>1</sub> to expression<sub>2</sub> by expression<sub>3</sub> do
    statements
end for;
```

The expressions in this for loop must return integer values, say b, e and s (for 'begin', 'end' and 'step') respectively. The loop is ignored if either s>0 and b>e, or s<0 and b<e. If s=0 an error occurs. In the remaining cases, the value $b+k\cdot s$ will be assigned to i, and the statements executed, for $k=0,1,2,\ldots$ in succession, as long as $b+k\cdot s\leq e$ (for e>0) or $b+k\cdot s\geq e$ (for e<0).

If the required step size is 1, the above may be abbreviated to:

```
for i := expression<sub>1</sub> to expression<sub>2</sub> do
    statements
end for;
```

```
for x in S do
    statements
end for;
```

Each of the elements of the finite enumerated structure S will be assigned to x in succession, and each time the statements will be executed. It is possible to nest several of these for loops compactly as follows.

```
for \mathbf{x}_{11}, ..., \mathbf{x}_{1n_1} in \mathbf{S}_1, ..., \mathbf{x}_{m1}, ..., \mathbf{x}_{mn_m} in \mathbf{S}_m do statements end for;
```

1.10.2 Indefinite Iteration

```
while Boolean expression do statements end while;
```

Check whether or not the Boolean expression has the value true; if it has, execute the statements. Repeat this until the expression assumes the value false, in which case statements following the end while; will be executed.

Example H1E14_

The following short program implements a run of the famous 3x + 1 problem on a random integer between 1 and 100.

```
> x := Random(1, 100);
> while x gt 1 do
> x;
      if IsEven(x) then
        x div := 2;
      else
         x := 3*x+1;
      end if;
> end while;
13
40
20
10
5
16
8
4
2
```

```
repeat
statements
until Boolean expression;
```

Execute the statements, then check whether or not the Boolean expression has the value true. Repeat this until the expression assumes the value false, in which case the loop is exited, and statements following it will be executed.

Example H1E15_

This example is similar to the previous one, except that it only prints x and the number of steps taken before x becomes 1. We use a repeat loop, and show that the use of a break statement sometimes makes it unnecessary that the Boolean expression following the until ever evaluates to true. Similarly, a while true statement may be used if the user makes sure the loop will be exited using break.

```
> x := Random(1, 1000);
> x;
172
> i := 0;
> repeat
      while IsEven(x) do
>
          i +:= 1;
>
          x div := 2;
>
      end while;
      if x eq 1 then
>
>
          break;
      end if;
      x := 3*x+1;
      i +:= 1;
> until false;
> i;
31
```

1.10.3 Early Exit from Iterative Statements

continue;

The **continue** statement can be used to jump to the end of the innermost enclosing loop: the termination condition for the loop is checked immediately.

continue identifier;

As in the case of break, this allows jumps out of nested for loops: the termination condition of the loop with loop variable identifier is checked immediately after continue identifier is encountered.

break;

A break inside a loop causes immediate exit from the innermost enclosing loop.

break identifier;

In nested for loops, this allows breaking out of several loops at once: this will cause an immediate exit from the loop with loop variable *identifier*.

Example H1E16_

```
> p := 10037;
> for x in [1 .. 100] do
>    for y in [1 .. 100] do
>        if x^2 + y^2 eq p then
>            x, y;
>        break x;
>        end if;
> end for;
> end for;
46 89
```

Note that break instead of break x would have broken only out of the inner loop; the output in that case would have been:

46 89 89 46

1.11 Runtime Evaluation: the eval Expression

Sometimes it is convenient to able to evaluate expressions that are dynamically constructed at runtime. For instance, consider the problem of implementing a database of mathematical objects in Magma. Suppose that these mathematical objects are very large, but can be constructed in only a few lines of Magma code (a good example of this would be Magma's database of best known linear codes). It would be very inefficient to store these objects in a file for later retrieval; a better solution would be to instead store a string giving the code necessary to construct each object. Magma's eval feature can then be used to dynamically parse and execute this code on demand.

```
eval expression
```

The eval expression works as follows: first, it evaluates the given expression, which must evaluate to a string. This string is then treated as a piece of MAGMA code which yields a result (that is, the code must be an expression, not a statement), and this result becomes the result of the eval expression.

The string that is evaluated can be of two forms: it can be a MAGMA expression, e.g., "1+2", "Random(x)", or it can be a sequence of MAGMA statements. In the first case, the string does not have to be terminated with a semicolon, and the result of the expression given in the string will be the result of the eval expression. In the second case, the last statement given in the string should be a return statement; it is easiest to think of this case as defining the body of a function.

The string that is used in the eval expression can refer to any variable that is in scope during the evaluation of the eval expression. However, it is not possible for the expression to *modify* any of these variables.

Example H1E17____

In this example we demonstrate the basic usage of the eval keyword.

User error: Imported environment value 'x' cannot be used as a local

Example H1E18_

In this example we demonstrate how eval can be used to construct Magma objects specified with code only available at runtime.

1.12 Comments and Continuation

//

One-line comment: any text following the double slash on the same line will be ignored by MAGMA.

/* */

Multi-line comment: any text between /* and */ is ignored by MAGMA.

\

Line continuation character: this symbol and the <return> immediately following is ignored by Magma. Evaluation will continue on the next line without interruption. This is useful for long input lines.

Example H1E19_

```
> // The following produces an error:
> x := 12
> 34;
User error: bad syntax
> /* but this is correct
> and reads two lines: */
> x := 12\
> 34;
> x;
1234
```

1.13 Timing

Cputime()

Return the CPU time (as a real number of default precision) used since the beginning of the MAGMA session. Note that for the MSDOS version, this is the real time used since the beginning of the session (necessarily, since process CPU time is not available).

Cputime(t)

Return the CPU time (as a real number of default precision) used since time t. Time starts at 0.0 at the beginning of a MAGMA session.

Realtime()

Return the absolute real time (as a real number of default precision), which is the number of seconds since 00:00:00 GMT, January 1, 1970. For the MSDOS version, this is the real time used since the beginning of the session.

Realtime(t)

Return the real time (as a real number of default precision) elapsed since time t.

ClockCycles()

Return the number of clock cycles of the CPU since MAGMA's startup. Note that this matches the real time (i.e., not process user/system time). If the operation is not supported on the current processor, zero is returned.

time statement;

Execute the statement and print the time taken when the statement is completed.

```
vtime flag: statement;

vtime flag, n: statement:
```

If the verbose flag flag (see the function SetVerbose) has a level greater than or equal to n, execute the statement and print the time taken when the statement is completed. If the flag has level 0 (i.e., is not turned on), still execute the statement, but do not print the timing. In the first form of this statement, where a specific level is not given, n is taken to be 1. This statement is useful in MAGMA code found in packages where one wants to print the timing of some sub-algorithm if and only if an appropriate verbose flag is turned on.

SetShowRealTime(v)

Sets whether or not to print real time as well as CPU time when a time or vtime statement is executed. By default this flag is false, meaning that only the CPU time is printed.

GetShowRealTime()

Returns the current value of the flag that determines if real time is additionally printed by the time and vtime statements.

Example H1E20_

The time command can be used to time a single statement.

```
> n := 2^109-1;
> time Factorization(n);
[<745988807, 1>, <870035986098720987332873, 1>]
Time: 0.149
```

Alternatively, we can extract the current time t and use Cputime. This method can be used to time the execution of several statements.

```
> m := 2^111-1;
> n := 2^113-1;
> t := Cputime();
> Factorization(m);
[<7, 1>, <223, 1>, <321679, 1>, <26295457, 1>, <319020217, 1>, <616318177, 1>]
```

> Factorization(n);

```
[<3391, 1>, <23279, 1>, <65993, 1>, <1868569, 1>, <1066818132868207, 1>]
> Cputime(t);
0.121
We illustrate a simple use of vtime with vprint within a function.
> function MyFunc(G)
     vprint User1: "Computing order...";
     vtime User1: o := #G;
>
     return o;
> end function;
> SetVerbose("User1", 0);
> MyFunc(Sym(4));
24
> SetVerbose("User1", 1);
> MyFunc(Sym(4));
Computing order...
Time: 0.000
24
```

1.14 Types, Category Names, and Structures

The following functions deal with types or category names and general structures. Magma has two levels of granularity when referring to types. In most cases, the coarser grained types (of type Cat) are used. Examples of these kinds of types are "polynomial rings" (RngUPol) and "finite fields" (FldFin). However, sometimes more specific typing information is sometimes useful. For instance, the algorithm used to factorize polynomials differs significantly, depending on the coefficient ring. Hence, we might wish to implement a specialized factorization algorithm polynomials over some particular ring type. Due to this need, Magma also supports extended types.

An extended type (of type ECat) can be thought of as a type taking a parameter. Using extended types, we can talk about "polynomial rings over the integers" (RngUPol[RngInt]), or "maps from the integers to the rationals" (Map[RngInt, FldRat]). Extended types can interact with normal types in all ways, and thus generally only need to be used when the extra level of information is required.

```
Type(x)
Category(x)
```

Given any object x, return the type (or category name) of x.

```
ExtendedType(x)

ExtendedCategory(x)
```

Given any object x, return the extended type (or category name) of x.

ISA(T, U)

Given types (or extended types) T and U, return whether T ISA U, i.e., whether objects of type T inherit properties of type U. For example, ISA(RngInt, Rng) is true, because the ring of integers \mathbf{Z} is a ring.

MakeType(S)

Given a string S specifying a type return the actual type corresponding to S. This is useful when some intrinsic name hides the symbol which normally refers to the actual type.

ElementType(S)

Given any structure S, return the type of the elements of S. For example, the element type of the ring of integers \mathbf{Z} is RngIntElt since that is the type of the integers which lie in \mathbf{Z} .

CoveringStructure(S, T)

Given structures S and T, return a covering structure C for S and T, so that S and T both embed into C. An error results if no such covering structure exists.

ExistsCoveringStructure(S, T)

Given structures S and T, return whether a covering structure C for S and T exists, and if so, return such a C, so that S and T both embed into C.

Example H1E21.

We demonstrate the type and structure functions.

```
> Type(3);
RngIntElt
> t := MakeType("RngIntElt");
> t;
RngIntElt
> Type(3) eq t;
true
> Z := IntegerRing();
> Type(Z);
RngInt
> ElementType(Z);
RngIntElt
> ISA(RngIntElt, RngElt);
true
> ISA(RngIntElt, GrpElt);
false
> ISA(FldRat, Fld);
```

true

```
The following give examples of when covering structures exist or do not exist.
> Q := RationalField();
> CoveringStructure(Z, Q);
Rational Field
> ExistsCoveringStructure(Z, DihedralGroup(3));
> ExistsCoveringStructure(Z, CyclotomicField(5));
true Cyclotomic Field of order 5 and degree 4
> ExistsCoveringStructure(CyclotomicField(3), CyclotomicField(5));
true Cyclotomic Field of order 15 and degree 8
> ExistsCoveringStructure(GF(2), GF(3));
false
> ExistsCoveringStructure(GF(2^6), GF(2, 15));
true Finite field of size 2~30
Our last example demonstrates the use of extended types:
> R<x> := PolynomialRing(Integers());
> ExtendedType(R);
RngUPol[RngInt]
> ISA(RngUPol[RngInt], RngUPol);
true
> f := x + 1;
> ExtendedType(f);
RngUPolElt[RngInt]
> ISA(RngUPolElt[RngInt], RngUPolElt);
true
```

1.15 Random Object Generation

Pseudo-random quantities are used in several MAGMA algorithms, and may also be generated explicitly by some intrinsics. Throughout the Handbook, the word 'random' is used for 'pseudo-random'.

Since V2.7 (June 2000), Magma contains an implementation of the *Monster* random number generator of G. Marsaglia [Mar00]. The period of this generator is $2^{29430} - 2^{27382}$ (approximately 10^{8859}), and passes all of the stringent tests in Marsaglia's *Diehard* test suite [Mar95]. Since V2.13 (July 2006), this generator is combined with the MD5 hash function to produce a higher-quality result.

Because the generator uses an internal array of machine integers, one 'seed' variable does not express the whole state, so the method for setting or getting the generator state is by way of a pair of values: (1) the seed for initializing the array, and (2) the number of steps performed since the initialization.

SetSeed(s, c)

SetSeed(s)

(Procedure.) Reset the random number generator to have initial seed s ($0 \le s < 2^{32}$), and advance to step c ($0 \le c < 2^{64}$). If c is not given, it is taken to be 0. Passing -Sn to MAGMA at startup is equivalent to typing SetSeed(n); after startup.

GetSeed()

Return the initial seed s used to initialize the random-number generator and also the current step c. This is the complement to the SetSeed function.

Random(S)

Given a finite set or structure S, return a random element of S.

Random(a, b)

Return a random integer lying in the interval [a, b], where $a \leq b$.

Random(b)

Return a random integer lying in the interval [0, b], where b is a non-negative integer. Because of the good properties of the underlying Monster generator, calling Random(1) is a good safe way to produce a sequence of random bits.

Example H1E22_

We demonstrate how one can return to a previous random state by the use of GetSeed and SetSeed. We begin with initial seed 1 at step 0 and create a multi-set of 100,000 random integers in the range [1..4].

```
> SetSeed(1);
> GetSeed();
1 0
> time S := {* Random(1, 4): i in [1..100000] *};
Time: 0.490
> S;
{* 1^24911, 2^24893, 3^25139, 4^25057 *}
We note the current state by GetSeed, and then print 10 random integers in the range [1..100].
> GetSeed();
1 100000
> [Random(1, 100): i in [1 .. 10]];
[ 85, 41, 43, 69, 66, 61, 63, 31, 84, 11 ]
> GetSeed();
1 100014
```

We now restart with a different initial seed 23 (again at step 0), and do the same as before, noting the different random integers produced.

```
> SetSeed(23);
```

```
> GetSeed();
23 0
> time S := {* Random(1, 4): i in [1..100000] *};
Time: 0.500
> S;
{* 1^24962, 2^24923, 3^24948, 4^25167 *}
> GetSeed();
23 100000
> [Random(1, 100): i in [1 .. 10]];
[ 3, 93, 11, 62, 6, 73, 46, 52, 100, 30 ]
> GetSeed();
23 100013
```

Finally, we restore the random generator state to what it was after the creation of the multi-set for the first seed. We then print the 10 random integers in the range [1..100], and note that they are the same as before.

```
> SetSeed(1, 100000);
> [Random(1, 100): i in [1 .. 10]];
[ 85, 41, 43, 69, 66, 61, 63, 31, 84, 11 ]
> GetSeed();
1 100014
```

1.16 Miscellaneous

IsIntrinsic(S)

Given a string S, return true if and only an intrinsic with the name S exists in the current version of MAGMA. If the result is true, return also the actual intrinsic.

Example H1E23

We demonstrate the function IsIntrinsic.

```
> IsIntrinsic("ABCD");
false
> 1, a := IsIntrinsic("Abs");
> 1;
true
> a(-3);
3
```

1.17 Bibliography

[Mar95] G. Marsaglia. DIEHARD: a battery of tests of randomness. URL:http://stat.fsu.edu/pub/diehard/, 1995.

[Mar00] G. Marsaglia. The Monster, a random number generator with period over 10^{2857} times as long as the previously touted longest-period one. Preprint, 2000.

2 FUNCTIONS, PROCEDURES AND PACKAGES

2.1 Introduction	2.3.9 User Startup Specification Files 50
2.2 Functions and Procedures 35	2.4 Attributes 51
2.2.1 Functions	2.4.1 Predefined System Attributes 5
$f := func < x_1,, x_n : - e >;$ 36	2.4.2 User-defined Attributes 5.
$f := func < x_1,, x_n,: - e>; 36$	AddAttribute(C, F) 55
2.2.2 Procedures	declare attributes C : F_1, \ldots, F_n ;
p := proc< x_1 ,, x_n : - e>; 40 p := proc< x_1 ,, x_n ,: - e>: 40	2.4.3 Accessing Attributes 5
	S'fieldname 5:
2.2.3 The forward Declaration 41	S''N 52
$ \text{forward} \qquad \qquad 41$	assigned 55
2.3 Packages 42	assigned 52
_	S'fieldname := e; 5:
2.3.1 Introduction 42	S''N := e; 5: delete S'fieldname; 5:
2.3.2 Intrinsics 43	delete S''N;
intrinsic 43	GetAttributes(C) 50
2.3.3 Resolving Calls to Intrinsics 45	ListAttributes(C) 55
2.5.5 Itesofving Cans to Intrinsics 45	2.5 User-defined Verbose Flags 53
2.3.4 Attaching and Detaching Package Files46	_
Attach(F) 47	declare verbose F , m ;
Detach(F) 47	2.5.1 Examples 5
freeze; 47	o c Han Dagard Than
2.3.5 Related Files 47	2.6 User-Defined Types 56
2.3.6 Importing Constants	2.6.1 Declaring User-Defined Types 50
1 0	declare type T ; 50
import "filename": ident_list; 47	declare type $T: P_1, \ldots, P_n$; 50
2.3.7 Argument Checking 48	declare type $T[E]$; 50
require condition: print_args; 48	declare type $T[E]: P_1, \ldots, P_n;$ 50
requirerange v, L, U; 48	2.6.2 Creating an Object 5
requirege v, L; 48	New(T) 5'
2.3.8 Package Specification Files 49	2.6.3 Special Intrinsics Provided by the User 5
AttachSpec(S) 49	2.6.4 Examples 5
DetachSpec(S) 49	2.0.4 Diampies

Chapter 2

FUNCTIONS, PROCEDURES AND PACKAGES

2.1 Introduction

Functions are one of the most fundamental elements of the MAGMA language. The first section describes the various ways in which a standard function may be defined while the second section describes the definition of a procedure (i.e. a function which doesn't return a value). The second half of the chapter is concerned with user-defined *intrinsic* functions and procedures.

2.2 Functions and Procedures

There are two slightly different syntactic forms provided for the definition of a user function (as opposed to an intrinsic function). For the case of a function whose definition can be expressed as a single expression, an abbreviated form is provided. The syntax for the definition of user procedures is similar. Names for functions and procedures are ordinary identifiers and so obey the rules as given in Chapter 1 for other variables.

2.2.1 Functions

```
f := function(x_1, ..., x_n: parameters)
statements
end function;
```

```
function f(x_1, ..., x_n): parameters)

statements
end function;
```

This creates a function taking $n \geq 0$ arguments, and assigns it to f. The statements may comprise any number of valid MAGMA statements, but at least one of them must be of the form return expression;. The value of that expression (possibly dependent on the values of the arguments x_1, \ldots, x_n) will be the return value for the function; failure to return a value will lead to a run-time error when the function is invoked. (In fact, a return statement is also required for every additional 'branch' of the function that has been created using an if ... then ... else ... construction.)

The function may return multiple values. Usually one uses the form return expression, ..., expression;. If one wishes to make the last return value(s) undefined (so that the number of return values for the function is the same in all 'branches' of

the function) the underscore symbol (_) may be used. (The undefined symbol may only be used for final values of the list.) This construct allows behaviour similar to the intrinsic function IsSquare, say, which returns true and the square root of its argument if that exists, and false and the undefined value otherwise. See also the example below.

If there are parameters given, they must consist of a comma-separated list of clauses each of the form identifier := value. The identifier gives the name of the parameter, which can then be treated as a normal value argument within the statements. The value gives a default value for the parameter, and may depend on any of the arguments or preceding parameters; if, when the function is called, the parameter is not assigned a value, this default value will be assigned to the parameter. Thus parameters are always initialized. If no parameters are desired, the colon following the last argument, together with parameters, may be omitted.

The only difference between the two forms of function declaration lies in recursion. Functions may invoke themselves recursively since their name is part of the syntax; if the first of the above declarations is used, the identifier f cannot be used inside the definition of f (and $\$ will have to be used to refer to f itself instead), while the second form makes it possible to refer to f within its definition.

An invocation of the user function f takes the form $f(m_1, \ldots, m_n)$, where m_1, \ldots, m_n are the actual arguments.

```
f := function(x_1, ..., x_n, ...: parameters)
statements
end function;
```

```
function f(x_1, \ldots, x_n, \ldots) parameters) statements end function;
```

This creates a variadic function, which can take n or more arguments. The semantics are identical to the standard function definition described above, with the exception of function invocation. An invocation of a variadic function f takes the form $f(y_1, \ldots, y_m)$, where y_1, \ldots, y_m are the arguments to the function, and $m \ge n$. These arguments get bound to the parameters as follows: for i < n, the argument y_i is bound to the parameter x_i . For $i \ge n$, the arguments y_i are bound to the last parameter x_n as a list $[*y_n, \ldots, y_m*]$.

```
f := func < x_1, ..., x_n: parameters | expression>;
```

This is a short form of the function constructor designed for the situation in which the value of the function can be defined by a single expression. A function f is created which returns the value of the expression (possibly involving the function arguments x_1, \ldots, x_n). Optional parameters are permitted as in the standard function constructor.

```
f := func < x_1, ..., x_n, ...: parameters | expression>;
```

This is a short form of the function constructor for *variadic functions*, otherwise identical to the short form describe above.

Example H2E1_

This example illustrates recursive functions.

```
> fibonacci := function(n)
   if n le 2 then
>
       return 1;
    else
       return $(n-1) + $(n-2);
   end if;
> end function;
> fibonacci(10)+fibonacci(12);
> function Lucas(n)
>
   if n eq 1 then
       return 1;
    elif n eq 2 then
       return 3;
>
>
    else
       return Lucas(n-1)+Lucas(n-2);
    end if;
> end function;
> Lucas(11);
199
> fibo := func< n | n le 2 select 1 else (n-1) + (n-2) >;
> fibo(10)+fibo(12);
199
```

Example H2E2_

This example illustrates the use of parameters.

```
> f := function(x, y: Proof := true, Al := "Simple")
>    return <x, y, Proof, Al>;
> end function;
>
> f(1, 2);
<1, 2, true, Simple>
> f(1, 2: Proof := false);
<1, 2, false, Simple>
> f(1, 2: Al := "abc", Proof := false);
<1, 2, false, abc>
```

Example H2E3_

This example illustrates the returning of undefined values.

```
> f := function(x)
   if IsOdd(x) then
        return true, x;
>
  else
>
        return false, _;
    end if;
> end function;
> f(1);
true 1
> f(2);
false
> a, b := f(1);
> a;
true
> b;
> a, b := f(2);
> a;
false
> // The following produces an error:
> b;
>> b;
```

User error: Identifier 'b' has not been assigned

Example H2E4__

This example illustrates the use of variadic functions.

```
> f := function(x, y, ...)
>    print "x: ", x;
>    print "y: ", y;
>    return [x + z : z in y];
> end function;
>
> f(1, 2);
x: 1
y: [* 2*]
[ 3 ]
> f(1, 2, 3);
x: 1
y: [* 2, 3*]
[ 3, 4 ]
> f(1, 2, 3, 4);
```

```
x: 1
y: [* 2, 3, 4*]
[ 3, 4, 5 ]
```

2.2.2 Procedures

```
p := procedure(x<sub>1</sub>, ..., x<sub>n</sub>: parameters)
    statements
end procedure;

procedure p(x<sub>1</sub>, ..., x<sub>n</sub>: parameters)
    statements
end procedure;
```

The procedure, taking $n \geq 0$ arguments and defined by the statements is created and assigned to p. Each of the arguments may be either a variable (y_i) or a referenced variable $(\sim y_i)$. Inside the procedure only referenced variables (and local variables) may be (re-)assigned to. The procedure p is invoked by typing $p(x_1, \ldots, x_n)$, where the same succession of variables and referenced variables is used (see the example below). Procedures cannot return values.

If there are parameters given, they must consist of a comma-separated list of clauses each of the form identifier := value. The identifier gives the name of the parameter, which can then be treated as a normal value argument within the statements. The value gives a default value for the parameter, and may depend on any of the arguments or preceding parameters; if, when the function is called, the parameter is not assigned a value, this default value will be assigned to the parameter. Thus parameters are always initialized. If no parameters are desired, the colon following the last argument, together with parameters, may be omitted.

As in the case of function, the only difference between the two declarations lies in the fact that the second version allows recursive calls to the procedure within itself using the identifier (p in this case).

```
p := procedure(x_1, ..., x_n, ...: parameters)
statements
end procedure;

procedure(x_1, ..., x_n, ...: parameters)
statements
end procedure;

end procedure;
```

Creates and assigns a new variadic procedure to p. The use of a variadic procedure is identical to that of a variadic function, described previously.

```
p := proc < x_1, ..., x_n: parameters | expression>;
```

This is a short form of the procedure constructor designed for the situation in which the action of the procedure may be accomplished by a single statement. A procedure p is defined which calls the procedure given by the expression. This expression must be a simple procedure call (possibly involving the procedure arguments x_1, \ldots, x_n). Optional parameters are permitted as in the main procedure constructor.

```
p := proc < x_1, ..., x_n, ...: parameters | expression>;
```

This is a short form of the procedure constructor for variadic procedures.

Example H2E5

By way of simple example, the following (rather silly) procedure assigns a Boolean to the variable holds, according to whether or not the first three arguments x, y, z satisfy $x^2 + y^2 = z^2$. Note that the fourth argument is referenced, and hence can be assigned to; the first three arguments cannot be changed inside the procedure.

```
> procedure CheckPythagoras(x, y, z, ~h)
      if x^2+y^2 eq z^2 then
>
>
          h := true;
>
      else
          h := false;
      end if;
> end procedure;
We use this to find some Pythagorean triples (in a particularly inefficient way):
> for x, y, z in { 1..15 } do
      CheckPythagoras(x, y, z, ~h);
>
>
      if h then
        "Yes, Pythagorean triple!", x, y, z;
>
>
      end if;
> end for;
Yes, Pythagorean triple! 3 4 5
Yes, Pythagorean triple! 4 3 5
Yes, Pythagorean triple! 5 12 13
Yes, Pythagorean triple! 6 8 10
Yes, Pythagorean triple! 8 6 10
Yes, Pythagorean triple! 9 12 15
Yes, Pythagorean triple! 12 5 13
Yes, Pythagorean triple! 12 9 15
```

2.2.3 The forward Declaration

forward f;

The forward declaration of a function or procedure f; although the assignment of a value to f is deferred, f may be called from within another function or procedure already.

The forward statement must occur on the 'main' level, that is, outside other functions or procedures. (See also Chapter 5.)

Example H2E6_

We give an example of mutual recursion using the forward declaration. In this example we define a primality testing function which uses the factorization of n-1, where n is the number to be tested. To obtain the complete factorization we need to test whether or not factors found are prime. Thus the prime divisor function and the primality tester call each other.

First we define a simple function that proves primality of n by finding an integer of multiplicative order n-1 modulo n.

```
> function strongTest(primdiv, n)
> return exists{ x : x in [2..n-1] | \
> Modexp(x, n-1, n) eq 1 and
> forall{ p : p in primdiv | Modexp(x, (n-1) div p, n) ne 1 }
> };
> end function;
```

Next we define a rather crude **isPrime** function: for odd n > 3 it first checks for a few (3) random values of a that $a^{n-1} \equiv 1 \mod n$, and if so, it applies the above primality prover. For that we need the not yet defined function for finding the prime divisors of an integer.

```
> forward primeDivisors;
> function isPrime(n)
     if n in { 2, 3 } or
>
        IsOdd(n) and
        forall{ a : a in { Random(2, n-2): i in [1..3] } |
           Modexp(a, n-1, n) eq 1 } and
>
           strongTest( primeDivisors(n-1), n )
>
>
     then
>
        return true;
>
     else
>
        return false;
     end if;
>
> end function;
```

Finally, we define a function that finds the prime divisors. Note that it calls the isPrime function. Note also that this function is recursive, and that it calls a function upon its definition, in the form func< ..> (..).

```
> primeDivisors := function(n)
>    if isPrime(n) then
>    return { n };
```

```
> else
> return func< d | primeDivisors(d) join primeDivisors(n div d) >
> (rep{ d : d in [2..Isqrt(n)] | n mod d eq 0 });
> end if;
> end function;
> isPrime(1087);
true;
```

2.3 Packages

2.3.1 Introduction

For brevity, in this section we shall use the term function to include both functions and procedures.

The term intrinsic function or intrinsic refers to a function whose signature is stored in the system table of signatures. In terms of their origin, there are two kinds of intrinsics, system intrinsics (or standard functions) and user intrinsics, but they are indistinguishable in their use. A system intrinsic is an intrinsic that is part of the definition of the MAGMA system, whereas a user intrinsic is an informal addition to MAGMA, created by a user of the system. While most of the standard functions in MAGMA are implemented in C, a growing number are implemented in the MAGMA language. User intrinsics are defined in the MAGMA language using a package mechanism (the same syntax, in fact, as that used by developers to write standard functions in the MAGMA language).

This section explains the construction of user intrinsics by means of packages. From now on, *intrinsic* will be used as an abbreviation for *user intrinsic*.

It is useful to summarize the properties possessed by an intrinsic function that are not possessed by an ordinary user-defined function. Firstly, the signature of every intrinsic function is stored in the system's table of signatures. In particular, such functions will appear when signatures are listed and printing the function's name will produce a summary of the behaviour of the function. Secondly, intrinsic functions are compiled into the MAGMA internal pseudo-code. Thus, once an intrinsic function has been debugged, it does not have to be compiled every time it is needed. If the definition of the function involves a large body of code, this can save a significant amount of time when the function definition has to be loaded.

An intrinsic function is defined in a special type of file known as a package. In general terms a package is a MAGMA source file that defines constants, one or more intrinsic functions, and optionally, some ordinary functions. The definition of an intrinsic function may involve MAGMA standard functions, functions imported from other packages and functions whose definition is part of the package. It should be noted that constants and functions (other than intrinsic functions) defined in a package will not be visible outside the package, unless they are explicitly imported.

The syntax for the definition of an intrinsic function is similar to that of an ordinary function except that the function header must define the function's signature together with

text summarizing the semantics of the function. As noted above, an intrinsic function definition must reside in a package file. It is necessary for MAGMA to know the location of all necessary package files. A package may be attached or detached through use of the Attach or Detach procedures. More generally, a family of packages residing in a directory tree may be specified through provision of a spec file which specifies the locations of a collection of packages relative to the position of the spec file. Automatic attaching of the packages in a spec file may be set by means of an environment variable (MAGMA_SYSTEM_SPEC for the MAGMA system packages and MAGMA_USER_SPEC for a users personal packages).

So that the user does not have to worry about explicitly compiling packages, MAGMA has an auto-compile facility that will automatically recompile and reload any package that has been modified since the last compilation. It does this by comparing the time stamp on the source file (as specified in an Attach procedure call or spec file) with the time stamp on the compiled code. To avoid the possible inefficiency caused by MAGMA checking whether the file is up to date every time an intrinsic function is referenced, the user can indicate that the package is stable by including the freeze; directive at the top of the package containing the function definition.

A constant value or function defined in the body of a package may be accessed in a context outside of its package through use of the import statement. The arguments for an intrinsic function may be checked through use of the require statement and its variants. These statements have the effect of generating an error message at the level of the caller rather than in the called intrinsic function.

See also the section on user-defined attributes for the declare attributes directive to declare user-defined attributes used by the package and related packages.

2.3.2 Intrinsics

Besides the definition of *constants* at the top, a package file just consists of *intrinsics*. There is only one way a intrinsic can be referred to (whether from within or without the package). When a package is *attached*, its intrinsics are incorporated into MAGMA. Thus intrinsics are 'global' — they affect the global MAGMA state and there is only one set of MAGMA intrinsics at any time. There are no 'local' intrinsics.

A package may contain undefined references to identifiers. These are presumed to be intrinsics from other packages which will be attached subsequent to the loading of this package.

```
intrinsic name(arg-list [, ...]) [ -> ret-list ]
{comment-text}
    statements
end intrinsic;
```

The syntax of a intrinsic declaration is as above, where *name* is the name of the intrinsic (any identifier; use single quotes for non-alphanumeric names like '+'); arg-list is the argument list (optionally including parameters preceded by a colon); optionally there is an arrow and return type list ret-list; the comment text is any text within the braces (use \} to get a right brace within the text, and use " to repeat the comment from the immediately preceding intrinsic); and statements is a list of

statements making up the body. arg-list is a list of comma-separated arguments of the form

```
name::type ~name::type ~name
```

where *name* is the name of the argument (any identifier), and *type* designates the type, which can be either a simple category name, an extended type, or one of the following:

•	Any type
[]	Sequence type
{ }	Set type
{[]}	Set or Sequence type
{@ @}	Iset type
<pre>{* *}</pre>	Multiset type
< >	Tuple type

or a *composite type*:

[type]	Sequences over type
$\{type\}$	Sets over type
{ [type] }	Sets or sequences over type
$\{@type@\}$	Indexed sets over type
$\{*type*\}$	Multisets over type

where *type* is either a simple or extended type. The reference form *type* ~name requires that the input argument must be initialized to an object of that type. The reference form ~name is a plain reference argument — it need not be initialized. Parameters may also be specified—these are just as in functions and procedures (preceded by a colon). If *arg-list* is followed by "..." then the intrinsic is variadic, with semantics similar to that of a variadic function, described previously.

ret-list is a list of comma-separated simple types. If there is an arrow and the return list, the intrinsic is assumed to be functional; otherwise it is assumed to be procedural.

The body of *statements* should return the correct number and types of arguments if the intrinsic is functional, while the body should return nothing if the intrinsic is procedural.

Example H2E7_

A functional intrinsic for greatest common divisors taking two integers and returning another:

```
intrinsic myGCD(x::RngIntElt, y::RngIntElt) -> RngIntElt
{ Return the GCD of x and y}
  return ...;
```

```
end intrinsic;
```

A procedural intrinsic for Append taking a reference to a sequence Q and any object then modifying Q:

2.3.3 Resolving Calls to Intrinsics

It is often the case that many intrinsics share the same name. For instance, the intrinsic Factorization has many implementations for various object types. We will call such intrinsics overloaded intrinsics, or refer to each of the participating intrinsics as an overload. When the user calls such an overloaded intrinsic, MAGMA must choose the "best possible" overload.

MAGMA's overload resolution process is quite simple. Suppose the user is calling an intrinsic of arity r, with a list of parameters $\langle p_1, \ldots, p_r \rangle$. Let the tuple of the types of these parameters be $\langle t_1, \ldots, t_r \rangle$, and let S be the set of all relevant overloads (that is, overloads with the appropriate name and of arity r). We will represent overloads as r-tuples of types.

To pick the "best possible" overload, for each parameter $p \in \{p_1, \ldots, p_r\}$, Magma finds the set $S_i \subseteq S$ of participating intrinsics which are the best matches for that parameter. More specifically, an intrinsic $s = \langle u_1, \ldots, u_r \rangle$ is included in S_i if and only if t_i is a u_i , and no participating intrinsic $s' = \langle v_1, \ldots, v_r \rangle$ exists such that t_i is a v_i and v_i is a u_i . Once the sets S_i are computed, Magma finds their intersection. If this intersection is empty, then there is no match. If this intersection has cardinality greater than one, then the match is ambiguous. Otherwise, Magma calls the overload thus obtained.

An example at this point will make the above process clearer:

Example H2E8_

We demonstrate Magma's lookup mechanism with the following example. Suppose we have the following overloaded intrinsics:

```
intrinsic overloaded(x::RngUPolElt, y::RngUPolElt) -> RngIntElt
{ Overload 1 }
  return 1;
end intrinsic;
intrinsic overloaded(x::RngUPolElt[RngInt], y::RngUPolElt) -> RngIntElt
```

```
{ Overload 2 }
      return 2;
   end intrinsic;
   intrinsic overloaded(x::RngUPolElt, y::RngUPolElt[RngInt]) -> RngIntElt
   { Overload 3 }
      return 3;
   end intrinsic;
   intrinsic overloaded(x::RngUPolElt[RngInt], y::RngUPolElt[RngInt]) -> RngIntElt
   { Overload 4 }
      return 4;
   end intrinsic;
The following Magma session illustrates how the lookup mechanism operates for the intrinsic
overloaded:
> R1<x> := PolynomialRing(Integers());
> R2<y> := PolynomialRing(Rationals());
> f1 := x + 1;
> f2 := y + 1;
> overloaded(f2, f2);
> overloaded(f1, f2);
```

2.3.4 Attaching and Detaching Package Files

> overloaded(f2, f1);

> overloaded(f1, f1);

The procedures Attach and Detach are provided to attach or detach package files. Once a file is attached, all intrinsics within it are included in Magma. If the file is modified, it is automatically recompiled just after the user hits return and just before the next statement is executed. So there is no need to re-attach the file (or 're-load' it). If the recompilation of a package file fails (syntax errors, etc.), all of the intrinsics of the package file are removed from the Magma session and none of the intrinsics of the package file are included again until the package file is successfully recompiled. When errors occur during compilation of a package, the appropriate messages are printed with the string '[PC]' at the beginning of the line, indicating that the errors are detected by the Magma package compiler.

If a package file contains the single directive freeze; at the top then the package file becomes frozen — it will not be automatically recompiled after each statement is entered into MAGMA. A frozen package is recompiled if need be, however, when it is attached (thus allowing fixes to be updated) — the main point of freezing a package which is 'stable' is to stop MAGMA looking at it between every statement entered into MAGMA interactively.

When a package file is complete and tested, it is usually installed in a spec file so it is automatically attached when the spec file is attached. Thus Attach and Detach are generally only used when one is developing a single package file containing new intrinsics.

Attach(F)

Procedure to attach the package file F.

Detach(F)

Procedure to detach the package file F.

freeze;

Freeze the package file in which this appears at the top.

2.3.5 Related Files

There are two files related to any package source file file.m:

file.sig sig file containing signature information;

file.lck lock file.

The lock file exists while a package file is being compiled. If someone else tries to compile the file, it will just sit there till the lock file disappears. In various circumstances (system down, Magma crash) .1ck files may be left around; this will mean that the next time Magma attempts to compile the associated source file it will just sit there indefinitely waiting for the .1ck file to disappear. In this case the user should search for .1ck files that should be removed.

2.3.6 Importing Constants

```
import "filename": ident_list;
```

This is the general form of the import statement, where "filename" is a string and ident_list is a list of identifiers.

The import statement is a normal statement and can in fact be used anywhere in Magma, but it is recommended that it only be used to import common constants and functions/procedures shared between a collection of package files. It has the following semantics: for each identifier I in the list $ident_list$, that identifier is declared just like a normal identifier within Magma. Within the package file referenced by filename, there should be an assignment of the same identifier I to some object O. When the identifier I is then used as an expression after the import statement, the value yielded is the object O.

The file that is named in the import statement must already have been attached by the time the identifiers are needed. The best way to achieve this in practice is to place this file in the spec file, along with the package files, so that all the files can be attached together.

Thus the only way objects (whether they be normal objects, procedures or functions) assigned within packages can be referenced from outside the package is by an explicit import with the 'import' statement.

Example H2E9_

Suppose we have a spec file that lists several package files. Included in the spec file is the file defs.m containing:

```
MY_LIMIT := 10000;
function fred(x)
return 1/x;
end function;
```

Then other package files (in the same directory) listed in the spec file which wish to use these definitions would have the line

```
import "defs.m": MY_LIMIT, fred;
```

at the top. These could then be used inside any intrinsics of such package files. (If the package files are not in the same directory, the pathname of defs.m will have to be given appropriately in the import statement.)

2.3.7 Argument Checking

Using 'require' etc. one can do argument checking easily within intrinsics. If a necessary condition on the argument fails to hold, then the relevant error message is printed and the error pointer refers to the caller of the intrinsic. This feature allows user-defined intrinsics to treat errors in actual arguments in exactly the same way as they are treated by the Magma standard functions.

```
require condition: print_args;
```

The expression condition may be any yielding a Boolean value. If the value is false, then print_args is printed and execution aborts with the error pointer pointing to the caller. The print arguments print_args can consist of any expressions (depending on arguments or variables already defined in the intrinsic).

```
requirerange v, L, U;
```

The argument variable v must be the name of one of the argument variables (including parameters) and must be of integer type. The bounds L and U may be any expressions each yielding an integer value. If v is not in the range $[L, \ldots, U]$, then an appropriate error message is printed and execution aborts with the error pointer pointing to the caller.

```
requirege v, L;
```

The argument variable v must be the name of one of the argument variables (including parameters) and must be of integer type. The bound L must yield an integer value. If v is not greater than or equal to L, then an appropriate error message is printed and execution aborts with the error pointer pointing to the caller.

Example H2E10

```
A trivial version of Binomial(n, k) which checks that n ≥ 0 and 0 ≤ k ≤ n.
intrinsic Binomial(n::RngIntElt, k::RngIntElt) → RngIntElt
{ Return n choose k }
    requirege n, 0;
    requirerange k, 0, n;
    return Factorial(n) div Factorial(n - k) div Factorial(k);
end intrinsic;

A simple function to find a random p-element of a group G.
intrinsic pElement(G::Grp, p::RngIntElt) → GrpElt
{ Return p-element of group G }
    require IsPrime(p): "Argument 2 is not prime";
    x := random{x: x in G | Order(x) mod p eq 0};
    return x^(Order(x) div p);
end intrinsic;
```

2.3.8 Package Specification Files

A spec file (short for 'specification file') lists a complete tree of MAGMA package files. This makes it easy to collect many package files together and attach them simultaneously.

The specification file consists of a list of tokens which are just space-separated words. The tokens describe a list of package files and directories containing other packages. The list is described as follows. The files that are to be attached in the directory indicated by S are listed enclosed in $\{$ and $\}$ characters. A directory may be listed there as well, if it is followed by a list of files from that directory (enclosed in braces again); arbitrary nesting is allowed this way. A filename of the form +spec is interpreted as another specification file whose contents will be recursively attached when AttachSpec (below) is called. The files are taken relative to the directory that contains the specification file. See also the example below.

AttachSpec(S)

If S is a string indicating the name of a spec file, this command attaches all the files listed in S. The format of the spec file is given above.

DetachSpec(S)

If S is a string indicating the name of a spec file, this command detaches all the files listed in S. The format of the spec file is given above.

Example H2E11_

```
Suppose we have a spec file /home/user/spec consisting of the following lines:
```

```
{
    Group
    {
        chiefseries.m
        socle.m
    }
    Ring
    {
        funcs.m
        Field
        {
            galois.m
        }
    }
}
```

Then there should be the files

```
/home/user/spec/Group/chiefseries.m
/home/user/spec/Group/socle.m
/home/user/spec/Ring/funcs.m
/home/user/spec/Ring/Field/galois.m
```

and if one typed within MAGMA

```
AttachSpec("/home/user/spec");
```

then each of the above files would be attached. If instead of the filename galois.m we have +galspec, then the file /home/user/spec/Ring/Field/galspec would be a specification file itself whose contents would be recursively attached.

2.3.9 User Startup Specification Files

The user may specify a list of spec files to be attached automatically when MAGMA starts up. This is done by setting the environment variable MAGMA_USER_SPEC to a colon separated list of spec files.

Example H2E12_

One could have

```
setenv MAGMA_USER_SPEC "$HOME/Magma/spec:/home/friend/Magma/spec"
```

in one's .cshrc . Then when Magma starts up, it will attach all packages listed in the spec files \$HOME/Magma/spec and /home/friend/Magma/spec.

2.4 Attributes

This section is placed beside the section on packages because the use of attributes is most common within packages.

For any structure within MAGMA, it is possible to have *attributes* associated with it. These are simply values stored within the structure and are referred to by named fields in exactly the same manner as MAGMA records.

There are two kinds of structure attributes: predefined system attributes and user-defined attributes. Both kinds are discussed in the following subsections. A description of how attributes are accessed and assigned then follows.

2.4.1 Predefined System Attributes

The valid fields of predefined system attributes are automatically defined at the startup of Magma. These fields now replace the old method of using the procedure AssertAttribute and the function HasAttribute (which will still work for some time to preserve backwards compatibility). For each name which is a valid first argument for AssertAttribute and HasAttribute, that name is a valid attribute field for structures of the appropriate category. Thus the backquote method for accessing attributes described in detail below should now be used instead of the old method. For such attributes, the code:

```
> S'Name := x;
is completely equivalent to the code:
> AssertAttribute(S, "Name", x);
```

(note that the function AssertAttribute takes a string for its second argument so the name must be enclosed in double quotes). Similarly, the code:

```
> if assigned S'Name then
> x := S'Name;
> // do something with x...
> end if;
is completely equivalent to the code:
> 1, x := HasAttribute(S, "Name");
> if 1 then
> // do something with x...
> end if;
```

(note again that the function HasAttribute takes a string for its second argument so the name must be enclosed in double quotes).

Note also that if a system attribute is not set, referring to it in an expression (using the backquote operator) will *not* trigger the calculation of it (while the corresponding intrinsic function will if it exists); rather an error will ensue. Use the assigned operator to test whether an attribute is actually set.

2.4.2 User-defined Attributes

For any category C, the user can stipulate valid attribute fields for structures of C. After this is done, any structure of category C may have attributes assigned to it and accessed from it.

There are two ways of adding new valid attributes to a category C: by the procedure AddAttribute or by the declare attributes package declaration. The former should be used outside of packages (e.g. in interactive usage), while the latter must be used within packages to declare attribute fields used by the package and related packages.

AddAttribute(C, F)

(Procedure.) Given a category C, and a string F, append the field name F to the list of valid attribute field names for structures belonging to category C. This procedure should not be used within packages but during interactive use. Previous fields for C are still valid – this just adds another valid one.

```
declare attributes C: F_1, \ldots, F_n;
```

Given a category C, and a comma-separated list of identifiers F_1, \ldots, F_n append the field names specified by the identifiers to the list of valid attribute field names for structures belonging to category C. This declaration directive must be used within (and only within) packages to declare attribute fields used by the package and packages related to it which use the same fields. It is *not* a statement but a directive which is stored with the other information of the package when it is compiled and subsequently attached – *not* when any code is actually executed.

2.4.3 Accessing Attributes

Attributes of structures are accessed in the same way that records are: using the backquote (') operator. The double backquote operator ('') can also be used if the field name is a string.

```
S'fieldname
```

Given a structure S and a field name, return the current value for the given field in S. If the value is not assigned, an error results. The field name must be valid for the category of S. In the S 'N form, N is a string giving the field name.

```
assigned S'fieldname
```

Given a structure S and a field name, return whether the given field in S currently has a value. The field name must be valid for the category of S. In the S''N form, N is a string giving the field name.

```
S'fieldname := expression;
```

```
S''N := expression;
```

Given a structure S and a field name, assign the given field of S to be the value of the expression (any old value is first discarded). The field name must be valid for the category of S. In the S''N form, N is a string giving the field name.

```
delete S'fieldname;
delete S'N;
```

Given a structure S and a field name, delete the given field of S. The field then becomes unassigned in S. The field name must be valid for the category of S and the field must be currently assigned in S. This statement is not allowed for predefined system attributes. In the S 'N form, N is a string giving the field name.

GetAttributes(C)

Given a category C, return the valid attribute field names for structures belonging to category C as a sorted sequence of strings.

ListAttributes(C)

(Procedure.) Given a category C, list the valid attribute field names for structures belonging to category C.

2.5 User-defined Verbose Flags

Verbose flags may be defined by users within packages.

```
declare verbose F, m;
```

Given a verbose flag name F (without quotes), and a literal integer m, create the verbose flag F, with the maximal allowable level for the flag set to m. This directive may only be used within package files.

2.5.1 Examples

In this subsection we give examples which illustrate all of the above features.

Example H2E13_

We illustrate how the predefined system attributes may be used. Note that the valid arguments for AssertAttribute and HasAttribute documented elsewhere now also work as system attributes so see the documentation for these functions for details as to the valid system attribute field names.

```
> // Create group G.
> G := PSL(3, 2);
> // Check whether order known.
> assigned G'Order;
false
> // Attempt to access order -- error since not assigned.
> G'Order;
```

```
>> G'Order;
Runtime error in ': Attribute 'Order' for this structure
is valid but not assigned
> // Force computation of order by intrinsic Order.
> Order(G);
168
> // Check Order field again.
> assigned G'Order;
> G'Order;
168
> G''"Order"; // String form for field
> o := "Order";
> G''o;
168
> // Create code C and set its minimum weight.
> C := QRCode(GF(2), 31);
> C'MinimumWeight := 7;
> C;
[31, 16, 7] Quadratic Residue code over GF(2)
```

Example H2E14_

We illustrate how user attributes may be defined and used in an interactive session. This situation would arise rarely – more commonly, attributes would be used within packages.

```
> // Add attribute field MyStuff for matrix groups.
> AddAttribute(GrpMat, "MyStuff");
> // Create group G.
> G := GL(2, 3);
> // Try illegal field.
> G'silly;
>> G'silly;
Runtime error in ': Invalid attribute 'silly' for this structure
> // Try legal but unassigned field.
> G'MyStuff;
>> G'MyStuff;
Runtime error in ': Attribute 'MyStuff' for this structure is valid but not
assigned
> // Assign field and notice value.
> G'MyStuff := [1, 2];
> G'MyStuff;
```

[1,2]

Example H2E15_

We illustrate how user attributes may be used in packages. This is the most common usage of such attributes. We first give some (rather naive) Magma code to compute and store a permutation representation of a matrix group. Suppose the following code is stored in the file permrep.m.

```
declare attributes GrpMat: PermRep, PermRepMap;
intrinsic PermutationRepresentation(G::GrpMat) -> GrpPerm
{A permutation group representation P of G, with homomorphism f: G -> P};
    // Only compute rep if not already stored.
    if not assigned G'PermRep then
        G'PermRepMap, G'PermRep := CosetAction(G, sub<G|>);
    end if;
    return G'PermRep, G'PermRepMap;
end intrinsic;
```

Note that the information stored will be reused in subsequent calls of the intrinsic. Then the package can be attached within a Magma session and the intrinsic PermutationRepresentation called like in the following code (assumed to be run in the same directory).

```
> Attach("permrep.m");
> G := GL(2, 2);
> P, f := PermutationRepresentation(G);
> P;
Permutation group P acting on a set of cardinality 6
     (1, 2)(3, 5)(4, 6)
     (1, 3)(2, 4)(5, 6)
> f;
Mapping from: GrpMat: G to GrpPerm: P
```

Suppose the following line were also in the package file:

```
declare verbose MyAlgorithm, 3;
```

Then there would be a new verbose flag MyAlgorithm for use anywhere within Magma, with the maximum 3 for the level.

2.6 User-Defined Types

Since Magma V2.19, types may be defined by users within packages. This facility allows the user to declare new type names and create objects with such types and then supply some basic primitives and intrinsic functions for such objects.

The new types are known as user-defined types. The way these are typically used is that after declaring such a type T, the user supplies package intrinsics to: (1) create objects of type T and set relevant attributes to define the objects; (2) perform some basic primitives which are common to all objects in Magma; (3) perform non-trivial computations on objects of type T.

2.6.1 Declaring User-Defined Types

The following declarations are used to declare user-defined types. They may only be placed in package files, i.e., files that are included either by using Attach or a spec file (see above). Declarations may appear in any package file and at any place within the file at the top level (not in a function, etc.). In particular, it is not required that the declaration of a type appears before package code which refers to the type (as long as the type is declared before running the code). Examples below will illustrate how the basic declarations are used.

declare type T;

Declare the given type name T (without quotes) to be a user-defined type.

```
declare type T:P_1,\ldots,P_n;
```

Declare the given type name T (without quotes) to be a user-defined type, and also declare T to inherit from the user types P_1, \ldots, P_n (which must be declared separately). As a result, ISA (T, P_i) will be true for each i and when intrinsic signatures are scanned at a function call, an object of type T will match an argument of a signature with type P_i for any i.

NB: currently one may not inherit from existing MAGMA internal types or virtual types (categories). It is hoped that this restriction will be removed in the future.

${\tt declare\ type\ } T[E];$

Declare the given type names T and E (both without quotes) to be user-defined types. This form also specifies that E is the *element type* corresponding to T; i.e., if an object x has an element of type T for its parent, then x must have type E. This relationship is needed for the construction of sets and sequences which have objects of type T as a universe. The type E may also be declared separately, but this is not necessary.

```
declare type T[E]: P_1, \ldots, P_n;
```

This is a combination of the previous kinds two declarations: T and E are declared as user-defined types while E is also declared to be the element type of T, and T is declared to inherit from user-defined types P_1, \ldots, P_n .

2.6.2 Creating an Object

```
New(T)
```

Create an empty object of type T, where T is a user-defined type. Typically, after setting X to the result of this function, the user should set attributes in X to define relevant properties of the object which are characteristic of objects of type T.

2.6.3 Special Intrinsics Provided by the User

Let T be a user-defined type. Besides the declaration of T, the following special intrinsics are mostly required to be defined for type T (the requirements are specified for each kind of intrinsic). These intrinsics allow the internal Magma functions to perform some fundamental operations on objects of type T. Note that the special intrinsics need not be in one file or in the same file as the declaration.

```
intrinsic Print(X::T)
{Print X}
    // Code: Print X with no new line, via printf
end intrinsic;

intrinsic Print(X::T, L::MonStgElt)
{Print X at level L}
    // Code: Print X at level L with no new line, via printf
end intrinsic;
```

Exactly one of these intrinsics must be provided by the user for type T. Each is a procedure rather than a function (i.e., nothing is returned), and should contain one or more print statements. The procedure is called automatically by MAGMA whenever the object X of type T is to be printed. A new line should not occur at the end of the last (or only) line of printing: one should use printf (see examples below).

When the second form of the intrinsic is provided, it allows X to be printed differently depending on the print level L, which is a string equal to one of "Default", "Minimal", "Maximal", "Magma".

```
intrinsic Parent(X::T) -> .
{Parent of X}
    // Code: Return the parent of X
end intrinsic;
```

This intrinsic is only needed when T is an element type, so objects of type T have parents. It should be a user-provided package function, which takes an object X of type T (user-defined), and returns the parent of X, assuming it has one. In such a case, typically the attribute Parent will be defined for X and so X Parent should simply be returned.

```
intrinsic 'in'(e::., X::T) -> BoolElt
{Return whether e is in X}
    // Code: Return whether e is in X
end intrinsic;
```

This intrinsic is only needed when objects of type T (user-defined) have elements, and should be a user-provided package function, which takes any object e and an object X of type T (user-defined), and returns whether e is an element of X.

```
intrinsic IsCoercible(X::T, y::.) -> BoolElt, .
{Return whether y is coercible into X and the result if so}
    // Code: do tests on the type of y to see whether coercible
    // On failure, do:
    // return false, "Illegal coercion"; // Or more particular message
    // Assumed coercible now; set x to result of coercion into X
    return true, x;
end intrinsic;
```

Assuming that objects of type T (user-defined) have elements (and so coercion into such objects makes sense), this must be a user-provided package function, which takes an object X of type T (user-defined) and an object Y of any type. If Y is coercible into X, the function should return true and the result of the coercion (whose parent should be X). Otherwise, the function should return false and a string giving the reason for failure. If this package intrinsic is provided, then the coercion operation X!y will also automatically work for an object X of type T (i.e., the internal coercion code in MAGMA will automatically call this function).

```
intrinsic SubConstructor(X::T, t::.) -> T
{Return the substructure of X generated by elements of the tuple t}
    // This corresponds to the constructor call sub<X | r1, r2, ..., rn>
    // t is ALWAYS a tuple of the form <r1, r2, ..., rn>
    // Code: do tests on the elements in t to see whether valid and then
    // set S to the substructure of T generated by r1, r2, ..., rn
    // Use standard require statements for error checking
    // Possibly use "t := Flat(t);" to make it easy to loop over t if
    // any of the ri are sequences
    return S;
end intrinsic;
```

Assuming that objects of type T (user-defined) have elements, this must be a user-provided package function, which takes an object X of type T (user-defined) and a tuple t. The user call $sub < X \mid r1, r2, \ldots, rn >$ (where X has type T) will cause this intrinsic

to be called with X and the tuple $t = \langle \mathtt{r1}, ..., \mathtt{rn} \rangle$. The function should create the substructure S of X generated by $\mathtt{r1}, ..., \mathtt{rn}$ and return S alone (the inclusion map from X to S is automatically handled by MAGMA via coercion).

```
intrinsic Hash(X::T) -> RngIntElt
{Return a hash value for the object x (should be between 0 and 2^31-1)}
   // Code: determine a hash value for the given object
   // NOTE: Objects X and Y of type T for which X eq Y is true
   // MUST have the same hash value
   return hash;
end intrinsic;
```

Providing this intrinsic can greatly speed the checking of equality of objects of type T, and in particular if you wish to work with sets of reasonable cardinality (more than 1000 elements) it should be made available. The requirement is that if X and Y are equal, then their hashes should be the same, regardless of their internal representation.

2.6.4 Examples

Some basic examples illustrating the general use of user-defined types are given here. Non-trivial examples can also be found in much of the standard MAGMA package code (one can search for "declare type" in the package .m files to see several typical uses).

Example H2E16.

In this first simple example, we create a user-defined type MyRat which is used for a primitive representation of rational numbers. Of course, a serious version would keep the numerators & denominators always reduced, but for simplicity we skip such details. We define the operations + and * here; one would typically add other operations like -, eq and IsZero, etc.

```
declare type MyRat;
declare attributes MyRat: Numer, Denom;

intrinsic MyRational(n::RngIntElt, d::RngIntElt) -> MyRat
{Create n/d}
    require d ne 0: "Denominator must be non-zero";
    r := New(MyRat);
    r'Numer := n;
    r'Denom := d;
    return r;
end intrinsic;

intrinsic Print(r::MyRat)
{Print r}
    n := r'Numer;
    d := r'Denom;
    g := GCD(n, d);
```

```
if d lt 0 then g := -g; end if;
   printf "%o/%o", n div g, d div g; // NOTE: no newline!
end intrinsic;
intrinsic '+'(r::MyRat, s::MyRat) -> MyRat
{Return r + s}
   rn := r'Numer;
   rd := r'Denom;
   sn := s'Numer;
   sd := s'Denom;
   return MyRational(rn*sd + sn*rd, rd*sd);
end intrinsic;
intrinsic '*'(r::MyRat, s::MyRat) -> MyRat
\{Return r * s\}
   rn := r'Numer;
   rd := r'Denom;
    sn := s'Numer;
    sd := s'Denom;
   return MyRational(rn*sn, rd*sd);
end intrinsic;
```

Assuming the above code is placed in a file MyRat.m, one could attach it in Magma and then do some simple operations, as follows.

```
> Attach("myrat.m");
> r := MyRational(3, -9);
> r;
-1/3
> s := MyRational(4, 7);
> s;
> r+s;
5/21
> r*s;
-4/21
```

Example H2E17_

In this example, we define a type <code>DirProd</code> for direct products of rings, and a corresponding element type <code>DirProdElt</code> for their elements. Objects of type <code>DirProd</code> contain a tuple <code>Rings</code> with the rings making up the direct product, while objects of type <code>DirProdElt</code> contain a tuple <code>Element</code> with the elements of the corresponding rings, and also a reference to the parent direct product object.

```
/* Declare types and attributes */
// Note that we declare DirProdElt as element type of DirProd:
declare type DirProd[DirProdElt];
declare attributes DirProd: Rings;
declare attributes DirProdElt: Elements, Parent;
```

```
/* Special intrinsics for DirProd */
intrinsic DirectProduct(Rings::Tup) -> DirProd
{Create the direct product of given rings (a tuple)}
    require forall{R: R in Rings | ISA(Type(R), Rng)}:
        "Tuple entries are not all rings";
   D := New(DirProd);
   D'Rings := Rings;
   return D;
end intrinsic;
intrinsic Print(D::DirProd)
{Print D}
   Rings := D'Rings;
   printf "Direct product of %o", Rings; // NOTE: no newline!
end intrinsic;
function CreateElement(D, Elements)
    // Create DirProdElt with parent D and given Elements
   x := New(DirProdElt);
   x'Elements := Elements;
   x'Parent := D;
   return x;
end function;
intrinsic IsCoercible(D::DirProd, x::.) -> BoolElt, .
{Return whether x is coercible into D and the result if so}
   Rings := D'Rings;
   n := #Rings;
    if Type(x) ne Tup then
        return false, "Coercion RHS must be a tuple";
    end if;
    if #x ne n then
        return false, "Wrong length of tuple for coercion";
    end if;
   Elements := <>;
    for i := 1 to n do
        1, t := IsCoercible(Rings[i], x[i]);
        if not 1 then
            return false, Sprintf("Tuple entry %o not coercible", i);
        end if;
        Append(~Elements, t);
    end for;
    y := CreateElement(D, Elements);
   return true, y;
end intrinsic;
/* Special intrinsics for DirProdElt */
```

```
intrinsic Print(x::DirProdElt)
{Print x}
   printf "%o", x'Elements; // NOTE: no newline!
end intrinsic;
intrinsic Parent(x::DirProdElt) -> DirProd
{Parent of x}
   return x'Parent;
end intrinsic;
intrinsic '+'(x::DirProdElt, y::DirProdElt) -> DirProdElt
\{\text{Return } x + y\}
   D := Parent(x);
   require D cmpeq Parent(y): "Incompatible arguments";
   Ex := x'Elements;
   Ey := y'Elements;
   return CreateElement(D, <Ex[i] + Ey[i]: i in [1 .. #Ex]>);
end intrinsic;
intrinsic '*'(x::DirProdElt, y::DirProdElt) -> DirProdElt
\{Return x * y\}
   D := Parent(x);
   require D cmpeq Parent(y): "Incompatible arguments";
   Ex := x'Elements;
   Ey := y'Elements;
   return CreateElement(D, <Ex[i] * Ey[i]: i in [1 .. #Ex]>);
end intrinsic;
```

A sample Magma session using the above package is as follows. We create elements x, y of a direct product D and do simple operations on x, y. One would of course add other intrinsic functions for basic operations on the elements.

```
> Attach("DirProd.m");
> Z := IntegerRing();
> Q := RationalField();
> F8<a> := GF(2^3);
> F9<b> := GF(3^2);
> D := DirectProduct(<Z, Q, F8, F9>);
> x := D!<1, 2/3, a, b>;
y := D!<2, 3/4, a+1, b+1>;
> x;
<1, 2/3, a, b>
> Parent(x);
Direct product of <Integer Ring, Rational Field, Finite field of
size 2^3, Finite field of size 3^2>
> y;
<2, 3/4, a<sup>3</sup>, b<sup>2</sup>>
> x+y;
```

3 INPUT AND OUTPUT

3.1 Introduction	67	1 , , ,	74 74
3.2 Character Strings	67	3.3.2 The printf and fprintf Statements	75
3.2.1 Representation of Strings	. 67		75
3.2.2 Creation of Strings	. 68	-	76
"abc"	68	3.3.3 Verbose Printing (vprint, vprintf)	77
BinaryString(s)	68	· -	77
BString(s)	68	1 0 1 1	77
cat	68	1 0, , ,	77
*	68	1 0 , , ,	77
cat:=	68	•	78
*:=	68		
&cat s	68		78
&* s	68		78
•	68		78 79
s[i]	68		79
s[i]	69		
ElementToSequence(s)	69	3.3.5 Indentation	80
Eltseq(s)	69	<pre>IndentPush()</pre>	80
ElementToSequence(s)	69	<pre>IndentPush(C)</pre>	80
Eltseq(s)	69	• "	80
Substring(s, n, k)	69	<pre>IndentPop(C)</pre>	80
3.2.3 Integer-Valued Functions		3.3.6 Printing to a File	81
#	69	<pre>PrintFile(F, x)</pre>	81
Index(s, t)	69		81
Position(s, t)	69		81
3.2.4 Character Conversion	. 69		81
StringToCode(s)	69		81
CodeToString(n)	69		81
StringToInteger(s)	70	3.3.7 Printing to a String	81
StringToInteger(s, b)	70	Sprint(x)	81
StringToIntegerSequence(s)	70		81
<pre>IntegerToString(n)</pre>	70	Sprintf(F,)	82
<pre>IntegerToString(n, b)</pre>	70	3.3.8 Redirecting Output	82
3.2.5 Boolean Functions	. 70	O I	
eq	70		82 82
ne	70	-	82
in	70	nasoucputrile()	02
notin	71	3.4 End of File Marker	82
1t	71		82
le	71		82
gt	71		82
ge	71		
3.2.6 Parsing Strings	. 73	3.5 External Files	83
		3.5.1 Opening Files	83
Split(S, D)	73 72	Open(S, T)	83
Split(S)	73		
Regexp(R, S)	73	•	
3.3 Printing	74		83
3.3.1 The print-Statement	74		83
-		the state of the s	83
print e:	74	Rewind(F)	83

Put(F, S)	83	<pre>WriteBytes(S, Q)</pre>	90
Puts(F, S)	83	WaitForIO(S : -)	90
Getc(F)	84	9.0 Totangeting Instal	01
Gets(F)	84	3.8 Interactive Input	91
Ungetc(F, c)	84	read $id;$	91
3.5.3 Reading a Complete File	85	<pre>read id, prompt; readi id;</pre>	91 92
Read(F)	85	readi id, prompt;	$92 \\ 92$
ReadBinary(F)	85	readi id, prompt,	32
·	86	3.9 Loading a Program File	92
•		<pre>load "filename";</pre>	92
3.6.1 Pipe Creation	86	<pre>iload "filename";</pre>	92
POpen(C, T) Pipe(C, S)	86 86	3.10 Saving and Restoring Workspaces	92
_		save "filename";	92
3.6.2 Operations on Pipes	87	restore "filename";	92
Read(P : -)	87	Tobolic memame ,	
ReadBytes(P : -)	87	3.11 Logging a Session	93
<pre>ReadBytes(P, n)</pre>	87	SetLogFile(F)	93
Write(P, s)	87	UnsetLogFile()	93
WriteBytes(P, Q)	87	SetEchoInput(b)	93
3.7 Sockets	88	3.12 Memory Usage	93
3.7.1 Socket Creation	88	GetMemoryUsage()	93
Socket(H, P : -)	88	GetMaximumMemoryUsage()	93
Socket(:-)	89	ResetMaximumMemoryUsage()	93
WaitForConnection(S)	89	• •	
,		3.13 System Calls	94
		Alarm(s)	94
SocketInformation(S)	89	ChangeDirectory(s)	94
3.7.3 Socket Predicates	89	GetCurrentDirectory()	94
<pre>IsServerSocket(S)</pre>	89	<pre>Getpid() Getuid()</pre>	94 94
3.7.4 Socket I/O	89	System(C)	9^{4}
Read(S : -)	90	%! shell-command	94
ReadBytes(S : -)	90		
ReadBytes(S, n)	90	3.14 Creating Names	94
Write(S, s)	90	Tempname(P)	94

Chapter 3 INPUT AND OUTPUT

3.1 Introduction

This chapter is concerned with the various facilities provided for communication between Magma and its environment. The first section describes character strings and their operations. Following this, the various forms of the print-statement are presented. Next the file type is introduced and its operations summarized. The chapter concludes with a section listing system calls. These include facilities that allow the user to execute an operating system command from within Magma or to run an external process.

3.2 Character Strings

Strings of characters play a central role in input/output so that the operations provided for strings to some extent reflect this. However, if one wishes, a more general set of operations are available if the string is first converted into a sequence. We will give some examples of this below.

MAGMA provides two kinds of strings: normal character strings, and binary strings. Character strings are an inappropriate choice for manipulating data that includes non-printable characters. If this is required, a better choice is the binary string type. This type is similar semantically to a sequence of integers, in which each character is represented by its ASCII value between 0 and 255. The difference between a binary string and a sequence of integers is that a binary string is stored internally as an array of bytes, which is a more space-efficient representation.

3.2.1 Representation of Strings

Character strings may consist of all ordinary characters appearing on your keyboard, including the blank (space). Two symbols have a special meaning: the double-quote " and the backslash \. The double-quote is used to delimit a character string, and hence cannot be used inside a string; to be able to use a double-quote in strings the backslash is designed to be an escape character and is used to indicate that the next symbol has to be taken literally; thus, by using \" inside a string one indicates that the symbol " has to be taken literally and is not to be interpreted as the end-of-string delimiter. Thus:

```
> "\"Print this line in quotes\"";
"Print this line in quotes"
```

To obtain a literal backslash, one simply types two backslashes; for characters other than double-quotes and backslash it does not make a difference when a backslash precedes them

inside a string, with the exception of n, r and t. Any occurrence of \n or \r inside a string is converted into a <new-line> while \t is converted into a <tab>. For example:

```
> "The first line,\nthe second line, and then\ran\tindented line";
The first line,
the second line, and then
an indented line
```

Note that a backslash followed by a return allows one to conveniently continue the current construction on the next line; so \<return> inside a string will be ignored, except that input will continue on a new line on your screen.

Binary strings, on the hand, can consist of any character, whether printable or non-printable. Binary strings cannot be constructed using literals, but must be constructed either from a character string, or during a read operation from a file.

3.2.2 Creation of Strings

```
"abc"
```

Create a string from a succession of keyboard characters (a, b, c) enclosed in double quotes " ".

```
BinaryString(s)

BString(s)
```

Create a binary string from the character string s.

```
s cat t
```

Concatenate the strings s and t.

```
s cat:= t
s *:= t
```

Modification-concatenation of the string s with t: concatenate s and t and put the result in s.

```
&cat s
```

Given an enumerated sequence s of strings, return the concatenation of these strings.

```
s în
```

Form the *n*-fold concatenation of the string s, for $n \ge 0$. If n = 0 this is the empty string, if n = 1 it equals s, etc.

```
s[i]
```

Returns the substring of s consisting of the i-th character.

s[i]

Returns the numeric value representing the i-th character of s.

ElementToSequence(s)

Eltseq(s)

Returns the sequence of characters of s (as length 1 strings).

ElementToSequence(s)

Eltseq(s)

Returns the sequence of numeric values representing the characters of s.

Substring(s, n, k)

Return the substring of s of length k starting at position n.

3.2.3 Integer-Valued Functions

#s

The length of the string s.

Index(s, t)

Position(s, t)

This function returns the position (an integer p with 0) in the string <math>s where the beginning of a contiguous substring t occurs. It returns 0 if t is not a substring of s. (If t is the empty string, position 1 will always be returned, even if s is empty as well.)

3.2.4 Character Conversion

To perform more sophisticated operations, one may convert the string into a sequence and use the extensive facilities for sequences described in the next part of this manual; see the examples at the end of this chapter for details.

StringToCode(s)

Returns the code number of the first character of string s. This code depends on the computer system that is used; it is ASCII on most UNIX machines.

CodeToString(n)

Returns a character (string of length 1) corresponding to the code number n, where the code is system dependent (see previous entry).

StringToInteger(s)

Returns the integer corresponding to the string of decimal digits s. All non-space characters in the string s must be digits $(0,1,\ldots,9)$, except the first character, which is also allowed to be + or -. An error results if any other combination of characters occurs. Leading zeros are omitted.

StringToInteger(s, b)

Returns the integer corresponding to the string of digits s, all assumed to be written in base b. All non-space characters in the string s must be digits less than b (if b is greater than 10, 'A' is used for 10, 'B' for 11, etc.), except the first character, which is also allowed to be + or -. An error results if any other combination of characters occurs.

StringToIntegerSequence(s)

Returns the sequence of integers corresponding to the string s of space-separated decimal numbers. All non-space characters in the string s must be digits (0, 1, ..., 9), except the first character after each space, which is also allowed to be + or -. An error results if any other combination of characters occurs. Leading zeros are omitted. Each number can begin with a sign (+ or -) without a space.

IntegerToString(n)

Convert the integer n into a string of decimal digits; if n is negative the first character of the string will be -. (Note that leading zeros and a + sign are ignored when Magma builds an integer, so the resulting string will never begin with + or 0 characters.)

IntegerToString(n, b)

Convert the integer n into a string of digits with the given base (which must be in the range [2...36]); if n is negative the first character of the string will be -.

3.2.5 Boolean Functions

s eq t

Returns true if and only if the strings s and t are identical. Note that blanks are significant.

s ne t

Returns true if and only if the strings s and t are distinct. Note that blanks are significant.

s in t

Returns true if and only if s appears as a contiguous substring of t. Note that the empty string is contained in every string.

s notin t

Returns true if and only if s does not appear as a contiguous substring of t. Note that the empty string is contained in every string.

s lt t

Returns true if s is lexicographically less than t, false otherwise. Here the ordering on characters imposed by their ASCII code number is used.

s le t

Returns true if s is lexicographically less than or equal to t, false otherwise. Here the ordering on characters imposed by their ASCII code number is used.

s gt t

Returns true if s is lexicographically greater than t, false otherwise. Here the ordering on characters imposed by their ASCII code number is used.

s ge t

Returns true if s is lexicographically greater than or equal to t, false otherwise. Here the ordering on characters imposed by their ASCII code number is used.

Example H3E1_

```
> "Mag" cat "ma";
Magma
```

Omitting double-quotes usually has undesired effects:

```
> "Mag cat ma";
Mag cat ma
```

And note that there are two different equalities involved in the following!

```
> "73" * "9" * "42" eq "7" * "3942";
true
> 73 * 9 * 42 eq 7 * 3942;
true
```

The next line shows how strings can be concatenated quickly, and also that strings of blanks can be used for formatting:

```
> s := ("Mag" cat "ma? ")^2;
> s, " "^30, s[4]^12, "!";
Magma? Magma? mmmmmmmmmm !
```

Here is a way to list (in a sequence) the first occurrence of each of the ten digits in the decimal expansion of π , using IntegerToString and Position.

```
> pi := Pi(RealField(1001));
> dec1000 := Round(10^1000*(pi-3));
> I := IntegerToString(dec1000);
> [ Position(I, IntegerToString(i)) : i in [0..9] ];
```

```
[ 32, 1, 6, 9, 2, 4, 7, 13, 11, 5 ]
```

Using the length # and string indexing [] it is also easy to count the number of occurrences of each digit in the string containing the first 1000 digits.

```
> [ #[i : i in [1..#I] | I[i] eq IntegerToString(j)] : j in [0..9] ]; [ 93, 116, 103, 102, 93, 97, 94, 95, 101, 106 ]
```

We would like to test if the ASCII-encoding of the string 'Magma' appears. This could be done as follows, using StringToCode and in, or alternatively, Position. To reduce the typing, we first abbreviate IntegerToString to its and StringToCode to sc.

```
> sc := StringToCode;
> its := IntegerToString;
> M := its(sc("M")) * its(sc("a")) * its(sc("g")) * its(sc("m")) * its(sc("a"));
> M;
779710310997
> M in I;
false
> Position(I, M);
```

So 'Magma' does not appear this way. However, we could be satisfied if the letters appear somewhere in the right order. To do more sophisticated operations (like this) on strings, it is necessary to convert the string into a sequence, because sequences constitute a more versatile data type, allowing many more advanced operations than strings.

```
> Iseq := [ I[i] : i in [1..#I] ];
> Mseq := [ M[i] : i in [1..#M] ];
> IsSubsequence(Mseq, Iseq);
false
> IsSubsequence(Mseq, Iseq: Kind := "Sequential");
true
Finally, we find that the string 'magma' lies in between 'Pi' and 'pi':
> "Pi" le "magma";
true
> "magma" lt "pi";
true
```

3.2.6 Parsing Strings

```
Split(S, D)
Split(S)
```

Given a string S, together with a string D describing a list of separator characters, return the sequence of strings obtained by splitting S at any of the characters contained in D. That is, S is considered as a sequence of fields, with any character in D taken to be a delimiter separating the fields. If D is omitted, it is taken to be the string consisting of the newline character alone (so S is split into the lines found in it). If S is desired to be split into space-separated words, the argument " \t^n should be given for D.

Example H3E2

We demonstrate elementary uses of Split.

```
> Split("a b c d", " ");
[ a, b, c, d ]
> // Note that an empty field is included if the
> // string starts with the separator:
> Split(" a b c d", " ");
[ , a, b, c, d ]
> Split("abxcdyefzab", "xyz");
[ ab, cd, ef, ab ]
> // Note that no splitting happens if the delimiter
> // is empty:
> Split("abcd", "");
[ abcd ]
```

Regexp(R, S)

Given a string R specifying a regular expression, together with a string S, return whether S matches R. If so, return also the matched substring of S, together with the sequence of matched substrings of S corresponding to the parenthesized expressions of R. This function is based on the freely distributable reimplementation of the V8 regexp package by Henry Spencer. The syntax and interpretation of the characters $|, *, +, ?, ^, *, [],$ is the same as in the UNIX command egrep. The parenthesized expressions are numbered in left-to-right order of their opening parentheses. Note that the parentheses should not have an initial backslash before them as the UNIX commands grep and ed require.

Example H3E3_

We demonstrate some elementary uses of Regexp.

```
> Regexp("b.*d", "abcde");
true bcd []
> Regexp("b(.*)d", "abcde");
true bcd [ c ]
> Regexp("b.*d", "xyz");
false
> date := "Mon Jun 17 10:27:27 EST 1996";
> _, _, f := Regexp("([0-9][0-9]):([0-9][0-9]):([0-9][0-9])", date);
> f;
[ 10, 27, 27 ]
> h, m, s := Explode(f);
> h, m, s;
```

3.3 Printing

3.3.1 The print-Statement

```
print expression;

print expression, ..., expression;

print expression: parameters;
```

Print the value of the expression. Some limited ways of formatting output are described in the section on strings. Four levels of printing (that may in specific cases coincide) exist, and may be indicated after the colon: Default (which is the same as the level obtained if no level is indicated), Minimal, Maximal, and Magma. The last of these produces output representing the value of the identifier as valid Magma-input (when possible).

3.3.2 The printf and fprintf Statements

```
printf format, expression, ..., expression;
```

Print values of the expressions under control of format. The first argument, the format string, must be a string which contains two types of objects: plain characters, which are simply printed, and conversion specifications (indicated by the % character), each of which causes conversion and printing of zero or more of the expressions. (Use %% to get a literal percent character.) Currently, the only conversion specifications allowed are: %o and %0, which stand for "object", %m, which stands for "magma", and %h, which stands for "hexadecimal".

The hexadecimal conversion specification will print its argument in hexadecimal; currently, it only supports integer arguments. The object and magma conversion specifications each print the corresponding argument; they differ only in the printing mode used. The %o form uses the default printing mode, while the %O form uses the printing mode specified by the next argument (as a string). The "magma" conversion specification uses a printing mode of Magma. It is thus equivalent to (but shorter than) using %O and an extra argument of "Magma".

For each of these conversion specifications, the object can be printed in a field of a particular width by placing extra characters immediately after the % character: digits describing a positive integer, specifying a field with width equal to that number and with right-justification; digits describing a negative integer, specifying a field with width equal to the absolute value of the number and with left-justification; or the character * specifying a field width given by the next appropriate expression argument (with justification determined by the sign of the number). This statement is thus like the C language function printf(), except that % (and %0 and %m) covers all kinds of objects — it is not necessary to have different conversion specifications for the different types of MAGMA objects. Note also that this statement does not print a newline character after its arguments while the print statement does (a \n character should be placed in the format string if this is desired). A newline character will be printed just before the next prompt, though, if there is an incomplete line at that point.

Example H3E4

The following statements demonstrate simple uses of *printf*.

```
> for i := 1 to 150 by 33 do printf "[%3o]\n", i; end for;
[ 1]
[ 34]
[ 67]
[100]
[133]
> for i := 1 to 150 by 33 do printf "[%-3o]\n", i; end for;
[1 ]
[34 ]
[67 ]
```

```
[100]
[133]
> for w := 1 to 5 do printf "[%*o]", w, 1; end for;
[1][ 1][ 1][ 1] [ 1]
```

Example H3E5_

Some further uses of the printf statement are illustrated below.

```
> x := 3;
> y := 4;
> printf "x = %o, y = %o\n", x, y;
x = 3, y = 4
> printf "G'"; printf "day";
G'day
> p := 53.211;
> x := 123.2;
> printf "%.3o%% of %.2o is %.3o\n", p, x, p/100.0 * x;
53.211% of 123.20 is 65.556
> Zx<x> := PolynomialRing(Integers());
> printf "%O\n", x, "Magma";
Polynomial(\[0, 1])
```

fprintf file, format, expression, ..., expression;

Print values of the expressions under control of *format* into the file given by *file*. The first argument *file* must be either a string specifying a file which can be opened for appending (tilde expansion is performed on the filename), or a file object (see the section below on external files) opened for writing. The rest of the arguments are exactly as in the **printf** statement. In the string (filename) case, the file is opened for appending, the string obtained from the formatted printing of the other arguments is appended to the file, and the file is closed. In the file object case, the string obtained from the formatted printing of the other arguments is simply appended to the file. Note that this statement, like **printf**, does *not* print a newline character after its arguments (a \n character should be placed in the format string if this is desired).

Example H3E6_

The following statements demonstrate a (rather contrived) use of fprintf with a file pipe.

```
> delete F;

37107316853453566312041115519 (2^109 mod p)

70602400912917605986812821219 (2^102 mod p)

74214633706907132624082231038 (2^110 mod p)

129638414606681695789005139447 (2^106 mod p)

141204801825835211973625642438 (2^103 mod p)

259276829213363391578010278894 (2^107 mod p)

267650600228229401496703205319 (2^100 mod p)

282409603651670423947251284876 (2^104 mod p)

518553658426726783156020557788 (2^108 mod p)

535301200456458802993406410638 (2^101 mod p)

564819207303340847894502569752 (2^105 mod p)
```

3.3.3 Verbose Printing (vprint, vprintf)

The following statements allow convenient printing of information conditioned by whether an appropriate verbose flag is turned on.

```
vprint flag: expression, ..., expression;

vprint flag, n: expression, ..., expression;
```

If the verbose flag flag (see the function SetVerbose) has a level greater than or equal to n, print the expressions to the right of the colon exactly as in the print statement. If the flag has level 0 (i.e. is not turned on), do nothing. In the first form of this statement, where a specific level is not given, n is taken to be 1. This statement is useful in Magma code found in packages where one wants to print verbose information if an appropriate verbose flag is turned on.

```
vprintf flag: format, expression, ..., expression;
vprintf flag, n: format, expression, ..., expression;
```

If the verbose flag flag (see the function SetVerbose) has a level greater than or equal to n, print using the format and the expressions to the right of the colon exactly as in the printf statement. If the flag has level 0 (i.e. is not turned on), do nothing. In the first form of this statement, where a specific level is not given, n is taken to be 1. This statement is useful in MAGMA code found in packages where one wants to print verbose information if an appropriate verbose flag is turned on.

3.3.4 Automatic Printing

MAGMA allows automatic printing of expressions: basically, a statement consisting of an expression (or list of expressions) alone is taken as a shorthand for the print-statement.

Some subtleties are involved in understanding the precise behaviour of MAGMA in interpreting lone expressions as statements. The rules MAGMA follows are outlined here. In the following, a *call-form* means any expression of the form f(arguments); that is, anything which could be a procedure call or a function call.

- (a) Any single expression followed by a semicolon which is not a call-form is printed, just as if you had 'print' in front of it.
- (b) For a single call-form followed by a semicolon (which could be a function call or procedure call), the first signature which matches the input arguments is taken and if that is procedural, the whole call is taken as a procedure call, otherwise it is taken as function call and the results are printed.
- (c) A comma-separated list of any expressions is printed, just as if you had 'print' in front of it. Here any call-form is taken as a function call only so procedure calls are impossible.
- (d) A print level modifier is allowed after an expression list (whether the list has length 1 or more). Again any call-form is taken as a function call only so procedure calls are impossible.
- (e) Any list of objects printed, whether by any of the above rules or by the 'print' statement, is placed in the previous value buffer. \$1 gives the last printed list, \$2 the one before, etc. Note that multi-return values stay as a list of values in the previous value buffer. The only way to get at the individual values of such a list is by assignment to a list of identifiers, or by where (this is of course the only way to get the second result out of Quotrem, etc.). In other places, a \$1 expression is evaluated with principal value semantics.

MAGMA also provides procedures to manipulate the previous value buffer in which \$1, etc. are stored.

ShowPrevious()

Show all the previous values stored. This does *not* change the contents of the previous value buffer.

ShowPrevious(i)

Show the i-th previous value stored. This does not change the contents of the previous value buffer.

ClearPrevious()

Clear all the previous values stored. This is useful for ensuring that no more memory is used than that referred to by the current identifiers.

SetPreviousSize(n)

Set the size of the previous value buffer (this is not how many values are defined in it at the moment, but the maximum number that will be stored). The default size is 3.

GetPreviousSize()

Return the size of the previous value buffer.

Example H3E7_

```
Examples which illustrate point (a):
> 1;
> x := 3;
> x;
Examples which illustrate point (b):
> 1 + 1;
                    // really function call '+'(1, 1)
2
> Q := [ 0 ];
> Append(~Q, 1); // first (in fact only) match is procedure call
> Append(Q, 1);
                    // first (in fact only) match is function call
[0,1,1]
> // Assuming fp is assigned to a procedure or function:
                     // whichever fp is at runtime
> SetVerbose("Meataxe", true); // simple procedure call
Examples which illustrate point (c):
> 1, 2;
1 2
> // Assuming f assigned:
                                        // f only can be a function
> f(x), 1;
> SetVerbose("Meataxe", true), 1;
                                        // type error in 'SetVerbose'
                                        // (since no function form)
Examples which illustrate point (d):
> 1: Magma;
1
> Sym(3), []: Maximal;
Symmetric group acting on a set of cardinality 3
Order = 6 = 2 * 3
> SetVerbose("Meataxe", true): Magma; // type error as above
Examples which illustrate point (e):
> 1;
```

```
1
> $1;
1
> 2, 3;
2 3
> $1;
2 3
> Quotrem(124124, 123);
1009 17
> $1;
1009 17
> a, b := $1;
> a;
1009
```

3.3.5 Indentation

MAGMA has an indentation level which determines how many initial spaces should be printed before each line. The level can be increased or decreased. Each time the top level of Magma is reached (i.e. a prompt is printed), the level is reset to 0. The level is usually changed in verbose output of recursive functions and procedures. The functions SetIndent and GetIndent are used to control and examine the number of spaces used for each indentation level (default 4).

IndentPush()

Increase (push) the indentation level by 1. Thus the beginning of a line will have s more spaces than before, where s is the current number of indentation spaces.

IndentPush(C)

Increases the indentation level by C.

IndentPop()

Decrease (pop) the indentation level by 1. Thus the beginning of a line will have s fewer spaces than before, where s is the current number of indentation spaces. If the current level is already 0, an error occurs.

IndentPop(C)

Decreases the indent level by C.

3.3.6 Printing to a File

PrintFile(F, x)
Write(F, x)

Overwrite BOOLELT Default: false

Print x to the file specified by the string F. If this file already exists, the output will be appended, unless the optional parameter Overwrite is set to true, in which case the file is overwritten.

WriteBinary(F, s)

Overwrite Booleit Default: false

Write the binary string s to the file specified by the string F. If this file already exists, the output will be appended, unless the optional parameter Overwrite is set to true, in which case the file is overwritten.

PrintFile(F, x, L)
Write(F, x, L)

Overwrite Booleit Default: false

Print x in format defined by the string L to the file specified by the string F. If this file already exists, the output will be appended unless the optional parameter Overwrite is set to true, in which case the file is overwritten. The level L can be any of the print levels on the print command above (i.e., it must be one of the strings "Default", "Minimal", "Maximal", or "Magma").

PrintFileMagma(F, x)

Overwrite BOOLELT Default: false

Print x in Magma format to the file specified by the string F. If this file already exists, the output will be appended, unless the optional parameter Overwrite is set to true, in which case the file is overwritten.

3.3.7 Printing to a String

MAGMA allows the user to obtain the string corresponding to the output obtained when printing an object by means of the Sprint function. The Sprintf function allows formatted printing like the printf statement.

Sprint(x)
Sprint(x, L)

Given any Magma object x, this function returns a string containing the output obtained when x is printed. If a print level L is given also (a string), the printing is done according to that level (see the **print** statement for the possible printing levels).

Sprintf(F, ...)

Given a format string F, together with appropriate extra arguments corresponding to F, return the string resulting from the formatted printing of F and the arguments. The format string F and arguments should be exactly as for the printf statement – see that statement for details.

Example H3E8.

We demonstrate elementary uses of Sprintf.

```
> Q := [Sprintf("{%4o<->%-4o}", x, x): x in [1,10,100,1000]];
> Q;
[ { 1<->1 }, { 10<->10 }, { 100<->100} ]
```

3.3.8 Redirecting Output

SetOutputFile(F)

Overwrite BOOLELT Default: false

Redirect all MAGMA output to the file specified by the string F. By using SetOutputFile(F: Overwrite := true) the file F is emptied before output is written onto it.

UnsetOutputFile()

Close the output file, so that output will be directed to standard output again.

HasOutputFile()

If MAGMA currently has an output or log file F, return true and F; otherwise return false.

3.4 End of File Marker

The I/O types below all need some way of indicating when a read request fails due to no more data being available. This is achieved by returning a special "end of file" (shortened to "EOF") string that is not equal to any normal string.

```
Eof()
```

Creates the special EOF string.

```
IsEof(S)
```

Given a string S, return whether S is the special EOF string.

AtEof(I)

Given an I/O object I, returns whether all data is known to have been read from I (and thus that further reads will return the special EOF string). Note that if this function returns false then it may still be the case that the next read returns EOF; typically AtEof only returns true when a previous read has already returned EOF.

3.5 External Files

MAGMA provides a special *file* type for the reading and writing of external files. Most of the standard C library functions can be applied to such files to manipulate them.

3.5.1 Opening Files

Open(S, T)

Given a filename (string) S, together with a type indicator T, open the file named by S and return a Magma file object associated with it. Tilde expansion is performed on S. The standard C library function fopen() is used, so the possible characters allowed in T are the same as those allowed for that function in the current operating system, and have the same interpretation. Thus one should give the value "r" for T to open the file for reading, and give the value "w" for T to open the file for writing, etc. (Note that in the PC version of Magma, the character "b" should also be included in T if the file is desired to be opened in binary mode.) Once a file object is created, various I/O operations can be performed on it — see below. A file is closed by deleting it (i.e. by use of the delete statement or by reassigning the variable associated with the file); there is no Fclose function. This ensures that the file is not closed while there are still multiple references to it. (The function is called Open instead of Fopen to follow Perl-style conventions. The following functions also follow such conventions where possible.)

3.5.2 Operations on File Objects

Flush(F)

Given a file F, flush the buffer of F.

Tell(F)

Given a file F, return the offset in bytes of the file pointer within F.

Perform fseek(F, o, p); i.e. move the file pointer of F to offset o (relative to p: 0 means beginning, 1 means current, 2 means end).

Rewind(F)

Perform rewind(F); i.e. move the file pointer of F to the beginning.

Put(F, S)

Put (write) the characters of the string S to the file F.

Puts(F, S)

Put (write) the characters of the string S, followed by a newline character, to the file F.

Getc(F)

Given a file F, get and return one more character from file F as a string. If F is at end of file, a special EOF marker string is returned; the function IsEof should be applied to the character to test for end of file. (Thus the only way to loop over a file character by character is to get each character and test whether it is the EOF marker before processing it.)

Gets(F)

Given a file F, get and return one more line from file F as a string. The newline character is removed before the string is returned. If F is at end of file, a special EOF marker string is returned; the function IsEof should be applied to the string to test for end of file.

Ungetc(F, c)

Given a character (length one string) C, together with a file F, perform ungetc(C, F); i.e. push the character C back into the input buffer of F.

Example H3E9_

We write a function to count the number of lines in a file. Note the method of looping over the characters of the file: we must get the line and then test whether it is the special EOF marker.

```
> function LineCount(F)
      FP := Open(F, "r");
>
>
      c := 0;
      while true do
          s := Gets(FP);
          if IsEof(s) then
              break;
          end if;
>
          c + := 1;
>
      end while;
      return c;
> end function;
> LineCount("/etc/passwd");
59
```

3.5.3 Reading a Complete File

Read(F)

Function that returns the contents of the text-file with name indicated by the string F. Here F may be an expression returning a string.

ReadBinary(F)

Function that returns the contents of the text-file with name indicated by the string F as a binary string.

Example H3E10_

In this example we show how Read can be used to import the complete output from a separate C program into a Magma session. We assume that a file mystery.c (of which the contents are shown below) is present in the current directory. We first compile it, from within Magma, and then use it to produce output for the Magma version of our mystery function.

```
> Read("mystery.c");
#include <stdio.h>
main(argc, argv)
int
        argc;
char
        **argv;
{
    int n, i;
   n = atoi(argv[1]);
   for (i = 1; i <= n; i++)
        printf("%d\n", i * i);
   return 0;
}
> System("cc mystery.c -o mystery");
> mysteryMagma := function(n)
     System("./mystery " cat IntegerToString(n) cat " >outfile");
     output := Read("outfile");
     return StringToIntegerSequence(output);
> end function;
> mysteryMagma(5);
[ 1, 4, 9, 16, 25 ]
```

3.6 Pipes

Pipes are used to communicate with newly-created processes. Currently pipes are only available on UNIX systems.

The Magma I/O module is currently undergoing revision, and the current pipe facilities are a mix of the old and new methods. A more uniform model will be available in future releases.

3.6.1 Pipe Creation

POpen(C, T)

Given a shell command line C, together with a type indicator T, open a pipe between the Magma process and the command to be executed. The standard C library function popen() is used, so the possible characters allowed in T are the same as those allowed for that function in the current operating system, and have the same interpretation. Thus one should give the value "r" for T so that Magma can read the output from the command, and give the value "w" for T so that Magma can write into the input of the command. See the Pipe intrinsic for a method for sending input to, and receiving output from, a single command.

Important: this function returns a File object, and the I/O functions for files described previously must be used rather than those described in the following.

Pipe(C, S)

Given a shell command C and an input string S, create a pipe to the command C, send S into the standard input of C, and return the output of C as a string. Note that for many commands, S should finish with a new line character if it consists of only one line.

Example H3E11

We write a function which returns the current time as 3 values: hour, minutes, seconds. The function opens a pipe to the UNIX command "date" and applies regular expression matching to the output to extract the relevant fields.

3.6.2 Operations on Pipes

When a read request is made on a pipe, the available data is returned. If no data is currently available, then the process waits until some does becomes available, and returns that. (It will also return if the pipe has been closed and hence no more data can be transmitted.) It does not continue trying to read more data, as it cannot tell whether or not there is some "on the way".

The upshot of all this is that care must be exercised as reads may return less data than is expected.

Read(P : parameters)

Max RNGINTELT Default: 0

Waits for data to become available for reading from P and then returns it as a string. If the parameter Max is set to a positive value then at most that many characters will be read. Note that fewer than Max characters may be returned, depending on the amount of currently available data.

If the pipe has been closed then the special EOF marker string is returned.

ReadBytes(P : parameters)

Max RNGINTELT Default: 0

Waits for data to become available for reading from P and then returns it as a sequence of bytes (integers in the range 0...255). If the parameter Max is set to a positive value then at most that many bytes will be read. Note that fewer than Max bytes may be returned, depending on the amount of currently available data.

If the pipe has been closed then the empty sequence is returned.

ReadBytes(P, n)

Keeps reading from P, waiting for data as necessary, until either n bytes have been read or an end of file condition is encountered. The data read is returned as a sequence of bytes (integers in the range 0...255). Note that fewer than n bytes may be returned if the end of file condition is encountered.

Write(P, s)

Writes the characters of the string s to the pipe P.

WriteBytes(P, Q)

Writes the bytes in the byte sequence Q to the pipe P. Each byte must be an integer in the range 0...255.

3.7 Sockets

Sockets may be used to establish communication channels between machines on the same network. Once established, they can be read from or written to in much the same ways as more familiar I/O constructs like files. One major difference is that the data is not instantly available, so the I/O operations take much longer than with files. Currently sockets are only available on UNIX systems.

Strictly speaking, a *socket* is a communication endpoint whose defining information consists of a network address and a port number. (Even more strictly speaking, the communication protocol is also part of the socket. Magma only uses TCP sockets, however, so we ignore this point from now on.)

The network address selects on which of the available network interfaces communication will take place; it is a string identifying the machine on that network, in either domain name or dotted-decimal format. For example, both "localhost" and "127.0.0.1" identify the machine on the loopback interface (which is only accessible from the machine itself), whereas "foo.bar.com" or "10.0.0.3" might identify the machine in a local network, accessible from other machines on that network.

The port number is just an integer that identifies the socket on a particular network interface. It must be less than 65 536. A value of 0 will indicate that the port number should be chosen by the operating system.

There are two types of sockets, which we will call client sockets and server sockets. The purpose of a client socket is to initiate a connection to a server socket, and the purpose of a server socket is to wait for clients to initiate connections to it. (Thus the server socket needs to be created before the client can connect to it.) Once a server socket accepts a connection from a client socket, a communication channel is established and the distinction between the two becomes irrelevant, as they are merely each side of a communication channel.

In the following descriptions, the network address will often be referred to as the host. So a socket is identified by a (host, port) pair, and an established communication channel consists of two of these pairs: (local-host, local-port), (remote-host, remote-port).

3.7.1 Socket Creation

Socket(H, P : parameters)

LocalHost MonStgElt Default : none LocalPort RngIntElt Default : 0

Attempts to create a (client) socket connected to port P of host H. Note: these are the remote values; usually it does not matter which local values are used for client sockets, but for those rare occasions where it does they may be specified using the parameters LocalHost and LocalPort. If these parameters are not set then suitable values will be chosen by the operating system. Also note that port numbers below $1\,024$ are usually reserved for system use, and may require special privileges to be used as the local port number.

Socket(: parameters)

LocalHost MonStgElt Default : none LocalPort RngIntElt Default : 0

Attempts to create a server socket on the current machine, that can be used to accept connections. The parameters LocalHost and LocalPort may be used to specify which network interface and port the socket will accept connections on; if either of these are not set then their values will be determined by the operating system. Note that port numbers below 1024 are usually reserved for system use, and may require special privileges to be used as the local port number.

WaitForConnection(S)

This may only be used on server sockets. It waits for a connection attempt to be made, and then creates a new socket to handle the resulting communication channel. Thus S may continue to be used to accept connection attempts, while the new socket is used for communication with whatever entity just connected. Note: this new socket is not a server socket.

3.7.2 Socket Properties

SocketInformation(S)

This routine returns the identifying information for the socket as a pair of tuples. Each tuple is a <host, port> pair — the first tuple gives the local information and the second gives the remote information. Note that this second tuple will be undefined for server sockets.

3.7.3 Socket Predicates

IsServerSocket(S)

Returns whether S is a server socket or not.

3.7.4 Socket I/O

Due to the nature of the network, it takes significant time to transmit data from one machine to another. Thus when a read request is begun it may take some time to complete, usually because the data to be read has not yet arrived. Also, data written to a socket may be broken up into smaller pieces for transmission, each of which may take different amounts of time to arrive. Thus, unlike files, there is no easy way to tell if there is still more data to be read; the current lack of data is no indicator as to whether more might arrive.

When a read request is made on a socket, the available data is returned. If no data is currently available, then the process waits until some does becomes available, and returns that. (It will also return if the socket has been closed and hence no more data can be transmitted.) It does not continue trying to read more data, as it cannot tell whether or not there is some "on the way".

The upshot of all this is that care must be exercised as reads may return less data than is expected.

Read(S : parameters)

Max RNGINTELT Default: 0

Waits for data to become available for reading from S and then returns it as a string. If the parameter Max is set to a positive value then at most that many characters will be read. Note that fewer than Max characters may be returned, depending on the amount of currently available data.

If the socket has been closed then the special EOF marker string is returned.

ReadBytes(S : parameters)

Max RNGINTELT Default: 0

Waits for data to become available for reading from S and then returns it as a sequence of bytes (integers in the range 0...255). If the parameter Max is set to a positive value then at most that many bytes will be read. Note that fewer than Max bytes may be returned, depending on the amount of currently available data.

If the socket has been closed then the empty sequence is returned.

ReadBytes(S, n)

Keeps reading from S, waiting for data as necessary, until either n bytes have been read or an end of file condition is encountered. The data read is returned as a sequence of bytes (integers in the range 0...255). Note that fewer than n bytes may be returned if the end of file condition is encountered.

Write(S, s)

Writes the characters of the string s to the socket S.

WriteBytes(S, Q)

Writes the bytes in the byte sequence Q to the socket S. Each byte must be an integer in the range 0...255.

WaitForIO(S : parameters)

TimeLimit RNGINTELT Default: ∞

Given a sequence S of I/O objects, returns the sequence of those elements of S which are ready for I/O. If no elements of S are ready (and S is not empty) then this function will wait until one does become ready, or until the specified time limit has elapsed, whichever comes first. Note that in the case of server sockets, "ready for I/O" means that a connection attempt has been made and a call to WaitForConnection will return without delay.

Example H3E12_

Ch. 3

Here is a trivial use of sockets to send a message from one Magma process to another running on the same machine. The first Magma process sets up a server socket and waits for another Magma to contact it.

```
> // First Magma process
> server := Socket(: LocalHost := "localhost");
> SocketInformation(server);
<localhost, 32794>
> S1 := WaitForConnection(server);
```

The second Magma process establishes a client socket connection to the first, writes a greeting message to it, and closes the socket.

```
> // Second Magma process
> S2 := Socket("localhost", 32794);
> SocketInformation(S2);
<localhost, 32795> <localhost, 32794>
> Write(S2, "Hello, other world!");
> delete S2:
```

The first Magma process is now able to continue; it reads and displays all data sent to it until the socket is closed.

3.8 Interactive Input

```
read identifier;
read identifier, prompt;
```

This statement will cause MAGMA to assign to the given identifier the string of characters appearing (at run-time) on the following line. This allows the user to provide an input string at run-time. If the optional prompt is given (a string), that is printed first.

readi identifier;

readi identifier, prompt;

This statement will cause MAGMA to assign to the given identifier the literal integer appearing (at run-time) on the following line. This allows the user to specify integer input at run-time. If the optional prompt is given (a string), that is printed first.

3.9 Loading a Program File

load "filename";

Input the file with the name specified by the string. The file will be read in, and the text will be treated as MAGMA input. Tilde expansion of file names is allowed.

iload "filename";

(Interactive load.) Input the file with the name specified by the string. The file will be read in, and the text will be treated as MAGMA input. Tilde expansion of file names is allowed. In contrast to load, the user has the chance to interact as each line is read in:

As the line is read in, it is displayed and the system waits for user response. At this point, the user can skip the line (by moving "down"), edit the line (using the normal editing keys) or execute it (by pressing "enter"). If the line is edited, the new line is executed and the original line is presented again.

3.10 Saving and Restoring Workspaces

save "filename";

Copy all information present in the current MAGMA workspace onto a file specified by the string "filename". The workspace is left intact, so executing this command does not interfere with the current computation.

restore "filename";

Copy a previously stored MAGMA workspace from the file specified by the string "filename" into central memory. Information present in the current workspace prior to the execution of this command will be lost. The computation can now proceed from the point it was at when the corresponding save-command was executed.

3.11 Logging a Session

SetLogFile(F)

Overwrite BOOLELT Default: false

Set the log file to be the file specified by the string F: all input and output will be sent to this log file as well as to the terminal. If a log file is already in use, it is closed and F is used instead. By using SetLogFile(F: Overwrite := true) the file F is emptied before input and output are written onto it. See also HasOutputFile.

UnsetLogFile()

Stop logging Magma's output.

SetEchoInput(b)

Send input from external files to standard output if b is true. If b is false then input from external files will not appear in standard output.

3.12 Memory Usage

GetMemoryUsage()

Return the current memory usage of Magma (in bytes as an integer). This is the process data size, which does not include the executable code.

GetMaximumMemoryUsage()

Return the maximum memory usage of Magma (in bytes as an integer) which has been attained since last reset (see ResetMaximumMemoryUsage). This is the maximum process data size, which does not include the executable code.

ResetMaximumMemoryUsage()

Reset the value of the maximum memory usage of Magma to be the current memory usage of Magma (see GetMaximumMemoryUsage).

3.13 System Calls

Alarm(s)

A procedure which when used on UNIX systems, sends the signal SIGALRM to the Magma process after s seconds. This allows the user to specify that a Magma-process should self-destruct after a certain period.

ChangeDirectory(s)

Change to the directory specified by the string s. Tilde expansion is allowed.

GetCurrentDirectory()

Returns the current directory as a string.

Getpid()

Returns Magma's process ID (value of the Unix C system call getpid()).

Getuid()

Returns the user ID (value of the Unix C system call getuid()).

System(C)

Execute the system command specified by the string C. This is done by calling the C function system().

This also returns the system command's return value as an integer. On most Unix systems, the lower 8 bits of this value give the process status while the next 8 bits give the value given by the command to the C function exit() (see the Unix manual entries for system(3) or wait(2), for example). Thus one should normally divide the result by 256 to get the exit value of the program on success.

See also the Pipe intrinsic function.

%! shell-command

Execute the given command in the Unix shell then return to Magma. Note that this type of shell escape (contrary to the one using a System call) takes place entirely outside Magma and does not show up in Magma's history.

3.14 Creating Names

Sometimes it is necessary to create names for files from within MAGMA that will not clash with the names of existing files.

Tempname(P)

Given a prefix string P, return a unique temporary name derived from P (by use of the C library function mktemp()).

4 ENVIRONMENT AND OPTIONS

4.1 Introduction	. 97	<pre>SetLogFile(F) UnsetLogFile()</pre>	103 103
4.2 Command Line Options	. 97	SetMemoryLimit(n)	103
magma -b	97	<pre>GetMemoryLimit()</pre>	103
magma -c filename	97	SetNthreads(n)	103
magma -d	98	<pre>GetNthreads()</pre>	103
magma -n	98	SetOutputFile(F)	103
magma -q name	98	UnsetOutputFile()	103
magma -r workspace	98	SetPath(s)	103
magma -s filename	98	<pre>GetPath()</pre>	103
magma -S integer	98	SetPrintLevel(1)	103
magma b integer	90	<pre>GetPrintLevel()</pre>	103
4.3 Environment Variables	. 99	SetPrompt(s)	104
MAGMA_STARTUP_FILE	99	GetPrompt()	104
MAGMA_BIRKTOT_FILE MAGMA_PATH	99	SetQuitOnError(b)	104
MAGMA_MEMORY_LIMIT	99	SetRows(n)	104
MAGMA_LIBRARY_ROOT	99	GetRows()	104
MAGMA_LIBRARIES	99	GetTempDir()	104
MAGMA_SYSTEM_SPEC	99 99	SetTraceback(n)	104
MAGMA_USER_SPEC	99 99	GetTraceback()	104
MAGMA_HELP_DIR	99 99	SetSeed(s, c)	104
MAGMA_TEMP_DIR	99 99	GetSeed()	104
MAGMA_IEMF_DIR	99	GetVersion()	105
4.4 Set and Get	100	SetViMode(b)	105
Cot Assertions (b)		GetViMode()	105
SetAssertions(b)	100 100	de de l'illoue ()	100
GetAssertions()		4.5 Verbose Levels	105
SetAutoColumns(b)	100	SetVerbose(s, i)	105
GetAutoColumns()	100	SetVerbose(s, b)	105
SetAutoCompact(b)	100	GetVerbose(s)	105
GetAutoCompact()	100 100	IsVerbose(s)	105
SetBeep(b)	100	IsVerbose(s, 1)	105
GetBeep() SetColumns(n)	100	ListVerbose()	105
GetColumns()	100	ClearVerbose()	105
**	100	Oleal Velbose ()	100
GetCurrentDirectory()		4.6 Other Information Procedures	106
SetEchoInput(b)	101 101	ShowMemoryUsage()	106
<pre>GetEchoInput() GetEnvironmentValue(s)</pre>	101	ShowIdentifiers()	106
GetEnv(s)	101	ShowValues()	106
	101	Traceback()	106
SetGPU(b)	101	ListSignatures(C)	106
GetGPU()	101	ListSignatures(F, C)	106
SetHistorySize(n)	101	ListCategories()	106
GetHistorySize()	101	ListTypes()	106
SetIgnorePrompt(b)	101	Listiypes()	100
GetIgnorePrompt()		4.7 History	107
SetIgnoreSpaces(b)	102		107
GetIgnoreSpaces()	102	%p	
SetIndent(n)	$102 \\ 102$	%pn	$\begin{array}{c} 107 \\ 107 \end{array}$
GetIndent()		$^{\prime\prime}_{P}n_1$ n_2	
SetLibraries(s)	$102 \\ 102$	%P %P n	$\frac{107}{107}$
GetLibraries()	102		$\frac{107}{107}$
SetLibraryRoot(s)		$^{\prime\prime}_{P}n_1$ n_2	$\begin{array}{c} 107 \\ 107 \end{array}$
GetLibraryRoot()	102	%s **an	
SetLineEditor(b)	102	%sn	107
<pre>GetLineEditor()</pre>	102	$% \mathbf{s}n_{1}$ n_{2}	107

%S	107	%	111
${ m \%S}n$	107	•	111
$%Sn_1$ n_2	108	,	111
%	108	В	112
n	108	b	112
$n_1 n_2$	108	E	112
%e	108	е	112
%en	108	Fchar	112
$\%en_1$ n_2	108	fchar	112
%! shell-command	108	h	112
		Н	112
4.8 The Magma Line Editor	108	1	112
SetViMode	108	L	112
SetViMode	108	Tchar	112
4.9.1 Very Pindings (Emags and VI made)	109	tchar	112
4.8.1 Key Bindings (Emacs and VI mode)		W	112
<return></return>	109	W	112
<backspace></backspace>	109	A	113
<delete></delete>	109	a	113
<tab></tab>	109	C	113
<ctrl>-A</ctrl>	109	crange	113
<ctrl>-B</ctrl>	109	D	113
<ctrl>-C</ctrl>	109	drange	113
<ctrl>-D</ctrl>	109	I	113
<ctrl>-E</ctrl>	109	i	113
<ctrl>-F</ctrl>	109		113
<ctrl>-H</ctrl>	109	j k	113
<ctrl>-I</ctrl>	109	P	113
<ctrl>-J</ctrl>	109		113
<ctrl>-K</ctrl>	109	P R	113
<ctrl>-L</ctrl>	110	rchar	113
<ctrl>-M</ctrl>	110	S	113
<ctrl>-N</ctrl>	110		$113 \\ 114$
<ctrl>-P</ctrl>	110	s U	$114 \\ 114$
<ctrl>-U</ctrl>	110		$114 \\ 114$
<ctrl>-Vchar</ctrl>	110	u X	$114 \\ 114$
<ctrl>-W</ctrl>	110		$\frac{114}{114}$
<ctrl>-X</ctrl>	110	x Y	$114 \\ 114$
<ctrl>-Y</ctrl>	110		
<ctrl>-Z</ctrl>	110	yrange	114
<ctrl></ctrl>	111	4.9 The Magma Help System	114
<ctrl>-\</ctrl>	111		
4.8.2 Key Bindings in Emacs mode only.	111	SetHelpExternalBrowser(S, T)	115
		SetHelpExternalBrowser(S)	115
Mb	111	SetHelpUseExternalBrowser(b)	115
MB	111	SetHelpExternalSystem(s)	115
Mf	111	SetHelpUseExternalSystem(b)	115
MF	111	GetHelpExternalBrowser()	115
4.8.3 Key Bindings in VI mode only	111	GetHelpExternalSystem()	116
· J		<pre>GetHelpUseExternal()</pre>	116
0 •	111	4.9.1 Internal Help Browser	116
\$ <c+r1>_cpage</c+r1>	111		
<ctrl>-space</ctrl>	111		

Chapter 4 ENVIRONMENT AND OPTIONS

4.1 Introduction

This chapter describes the environmental features of Magma, together with options which can be specified at start-up on the command line, or within Magma by the Set- procedures. The history and line-editor features of Magma are also described.

4.2 Command Line Options

When starting up Magma, various command-line options can be supplied, and a list of files to be automatically loaded can also be specified. These files may be specified by simply listing their names as normal arguments (i.e., without a – option) following the Magma command. For each such file name, a search for the specified file is conducted, starting in the current directory, and in directories specified by the environment variable Magma_Path after that if necessary. It is also possible to have a startup file, in which one would usually store personal settings of parameters and variables. The startup file is specified by the Magma_Startup_file environment variable which should be set in the user's .cshrc file or similar. This environment variable can be overridden by the –s option, or cancelled by the –n option. The files specified by the arguments to Magma are loaded after the startup file. Thus the startup file is not cancelled by giving extra file arguments, which is what is usually desired.

MAGMA also allows one to set variables from the command line — if one of the arguments is of the form var:=val, where var is a valid identifier (consisting of letters, underscores, or non-initial digits) and there is no space between var and the :=, then the variable var is assigned within MAGMA to the string value val at the point where that argument is processed. (Functions like StringToInteger should be used to convert the value to an object of another type once inside MAGMA.)

magma -b

If the -b argument is given to Magma, the opening banner and all other introductory messages are suppressed. The final "total time" message is also suppressed. This is useful when sending the whole output of a Magma process to a file so that extra removing of unwanted output is not needed.

magma -c filename

If the -c argument is given to Magma, followed by a filename, the filename is assumed to refer to a package source file and the package is compiled and Magma then exits straight away. This option is rarely needed since packages are automatically compiled when attached.

magma -d

If the -d option is supplied to Magma, the licence for the current magmapassfile is dumped. That is, the expiry date and the valid hostids are displayed. Magma then exits.

magma -n

If the -n option is supplied to MAGMA, any startup file specified by the environment variable MAGMA_STARTUP_FILE or by the -s option is cancelled.

magma -q name

If the -q option is supplied to MAGMA, then MAGMA operates in a special manner as a slave (with the given name) for the MPQS integer factorisation algorithm. Please see that function for more details.

magma -r workspace

If the -r option is supplied to MAGMA, together with a workspace file, that workspace is automatically restored by MAGMA when it starts up.

magma -s filename

If the -s option is supplied to Magma, the given filename is used for the startup file for Magma. This overrides the variable of the environment variable Magma_Startup_file if it has been set. This option should not be used (as it was before), for automatically loading files since that can be done by just listing them as arguments to the Magma process.

magma -S integer

When starting up Magma, it is possible to specify a seed for the generation of pseudo-random numbers. (Pseudo-random quantities are used in several Magma algorithms, and may also be generated explicitly by some intrinsics.) The seed should be in the range 0 to $(2^{32}-1)$ inclusive. If \neg S is not followed by any number, or if the \neg S option is not used, Magma selects the seed itself.

Example H4E1.

By typing the command

```
magma file1 x:=abc file2
```

MAGMA would start up, read the user's startup file specified by MAGMA_STARTUP_FILE if existent, then read the file file1, then assign the variable x to the string value "abc", then read the file file2, then give the prompt.

4.3 Environment Variables

This section lists some environment variables used by MAGMA. These variables are set by an appropriate operating system command and are used to define various search paths and other run-time options.

MAGMA_STARTUP_FILE

The name of the default start-up file. It can be overridden by the magma -s command.

MAGMA_PATH

Search path for files that are loaded (a colon separated list of directories). It need not include directories for the libraries, just personal directories. This path is searched before the library directories.

MAGMA_MEMORY_LIMIT

Limit on the size of the memory that may be used by a MAGMA-session (in bytes).

MAGMA_LIBRARY_ROOT

The root directory for the MAGMA libraries (by supplying an absolute path name). From within MAGMA SetLibraryRoot and GetLibraryRoot can be used to change and view the value.

MAGMA_LIBRARIES

Give a list of MAGMA libraries (as a colon separated list of sub-directories of the library root directory). From within MAGMA SetLibraries and GetLibraries can be used to change and view the value.

MAGMA_SYSTEM_SPEC

The MAGMA system spec file containing the system packages automatically attached at start-up.

MAGMA_USER_SPEC

The personal user spec file containing the user packages automatically attached at start-up.

MAGMA_HELP_DIR

The root directory for the MAGMA help files.

MAGMA_TEMP_DIR

Optional variable containing the directory MAGMA is to use for temporary files. If not specified, this defaults to /tmp (on Unix-like systems) or the system-wide temporary directory (on Windows systems).

4.4 Set and Get

The Set- procedures allow the user to attach values to certain internal variables which control system or global features. The Get- functions enable one to obtain the current values of these variables.

SetAssertions(b)

GetAssertions()

Controls the checking of assertions (see the assert statement and related statements in the chapter on the language). Default is SetAssertions(1). The relevant values are 0 for no checking at all, 1 for normal checks, 2 for debug checks and 3 for extremely stringent checking.

SetAutoColumns(b)

GetAutoColumns()

If enabled, the IO system will try to determine the number of columns in the window by using ioctl(); when a window change or a stop/cont occurs, the Columns variable (below) will be automatically updated. If disabled, the Columns variable will only be changed when explicitly done so by SetColumns. Default is SetAutoColumns(true).

SetAutoCompact(b)

GetAutoCompact()

Control whether automatic compaction is performed. Normally the memory manager of Magma will compact all of its memory between each statement at the top level. This removes fragmentation and reduces excessive memory usage. In some very rare situations, the compactions may become very slow (one symptom is that an inordinate pause occurs between prompts when only a trivial operation or nothing is done). In such cases, turning the automatic compaction off may help (at the cost of possibly more use of memory). Default is SetAutoCompact(true).

SetBeep(b)

GetBeep()

Controls 'beeps'. Default is SetBeep(true).

SetColumns(n)

GetColumns()

Controls the number of columns used by the IO system. This affects the line editor and the output system. (As explained above, if AutoColumns is on, this variable will be automatically determined.) The number of columns will determine how words are wrapped. If set to 0, word wrap is not performed. The default value is SetColumns(80) (unless SetAutoColumns(true)).

GetCurrentDirectory()

Returns the current directory as a string. (Use ChangeDirectory(s) to change the working directory.)

SetEchoInput(b)

GetEchoInput()

Set to true or false according to whether or not input from external files should also be sent to standard output.

GetEnvironmentValue(s)

GetEnv(s)

Returns the value of the external environment variable s as a string.

SetGPU(b)

GetGPU()

Set the NVIDIA GPU mode to b; this determines whether MAGMA should use NVIDIA GPUs via CUDA when present. This is only relevant to a CUDA-enabled executable (typically downloaded as magma.cuda.exe) and is true by default in that case (so the GPU is used by default); for a non-CUDA-enabled executable, the procedure has no effect. Currently, a GPU is exploited in matrix multiplication over \mathbf{F}_2 and small prime finite fields and consequently anything which depends on such multiplication, such as the dense F_4 Gröbner basis algorithm over such fields.

SetHistorySize(n)

GetHistorySize()

Controls the number of lines saved in the history. If the number is set to 0, no history is preserved.

SetIgnorePrompt(b)

GetIgnorePrompt()

Controls the option to ignore the prompt to allow the pasting of input lines back in. If enabled, any leading '>' characters (possibly separated by white space) are ignored by the history system when the input file is a terminal, unless the line consists of the '>' character alone (without a following space), which could not come from a prompt since in a prompt a space or another character follows a '>'. Default is SetIgnorePrompt(false).

SetIgnoreSpaces(b)

GetIgnoreSpaces()

Controls the option to ignore spaces when searching in the line editor. If the user moves up or down in the line editor using <Ctrl>-P or <Ctrl>-N (see the line editor key descriptions) and if the cursor is not at the beginning of the line, a search is made forwards or backwards, respectively, to the first line which starts with the same string as the string consisting of all the characters before the cursor. While doing the search, spaces are ignored if and only if this option is on (value true). Default is SetIgnoreSpaces(true).

SetIndent(n)

GetIndent()

Controls the indentation level for formatting output. The default is SetIndent(4).

SetLibraries(s)

GetLibraries()

Controls the Magma library directories via environment variable Magma_LIBRARIES. The procedure SetLibraries takes a string, which will be taken as the (colon-separated) list of sub-directories in the library root directory for the libraries; the function GetLibraryRoot returns the current value as a string. These directories will be searched when you try to load a file; note however that first the directories indicated by the current value of your path environment variable Magma_Path will be searched. See SetLibraryRoot for the root directory.

SetLibraryRoot(s)

GetLibraryRoot()

Controls the root directory for the MAGMA libraries, via the environment variable MAGMA_LIBRARY_ROOT. The procedure SetLibraryRoot takes a string, which will be the absolute pathname for the root of the libraries; the function GetLibraryRoot returns the current value as a string. See also SetLibraries.

SetLineEditor(b)

GetLineEditor()

Controls the line editor. Default is SetLineEditor(true).

SetLogFile(F)

Overwrite BOOLELT Default: false

UnsetLogFile()

Procedure. Set the log file to be the file specified by the string F: all input and output will be sent to this log file as well as to the terminal. If a log file is already in use, it is closed and F is used instead. The parameter Overwrite can be used to indicate that the file should be truncated before writing input and output on it; by default the file is appended.

SetMemoryLimit(n)

GetMemoryLimit()

Set the limit (in bytes) of the memory which the memory manager will allocate (no limit if 0). Default is SetMemoryLimit(0).

SetNthreads(n)

GetNthreads()

Set the number of threads to be used in multi-threaded algorithms to be n, if POSIX threads are enabled in this version of MAGMA. Currently, this affects the coding theory minimum weight algorithm (MinimumWeight) and the F_4 Gröbner basis algorithm for medium-sized primes (Groebner).

SetOutputFile(F)

Overwrite BOOLELT Default: false

UnsetOutputFile()

Start/stop redirecting all Magma output to a file (specified by the string F). The parameter Overwrite can be used to indicate that the file should be truncated before writing output on it.

SetPath(s)

GetPath()

Controls the path by which the searching of files is done. The path consists of a colon separated list of directories which are searched in order ("." implicitly assumed at the front). Tilde expansion is done on each directory. (May be overridden by the environment variable MAGMA_PATH.)

SetPrintLevel(1)

GetPrintLevel()

Controls the global printing level, which is one of "Minimal", "Magma", "Maximal", "Default". Default is SetPrintLevel("Default").

SetPrompt(s)

GetPrompt()

Controls the terminal prompt (a string). Expansion of the following % escapes occurs:

- %% The character %
- %h The current history line number.
- %S The parser 'state': when a new line is about to be read while the parser has only seen incomplete statements, the state consists of a stack of words like "if", "while", indicating the incomplete statements.
- %s Like %S except that only the topmost word is displayed.

Default is SetPrompt("%S> ").

SetQuitOnError(b)

Set whether Magma should quit on any error to b. If b is true, MAGMA will completely quit when any error (syntax, runtime, etc.) occurs. Default is SetQuitOnError(false).

SetRows(n)

GetRows()

Controls the number of rows in a page used by the IO system. This affects the output system. If set to 0, paging is not performed. Otherwise a prompt is given after the given number of rows for a new page. The default value is SetRows(0).

GetTempDir()

Returns the directory MAGMA uses for storing temporary files. May be influenced on startup via the MAGMA_TEMP_DIR environment variable (see Section 4.3).

SetTraceback(n)

GetTraceback()

Controls whether MAGMA should produce a traceback of user function calls before each error message. The default value is SetTraceback(true).

SetSeed(s, c)

GetSeed()

Controls the initialization seed and step number for pseudo-random number generation. For details, see the section on random object generation in the chapter on statements and expressions.

GetVersion()

Return integers x, y and z such the current version of MAGMA is $\nabla x.y-z$.

SetViMode(b)

GetViMode()

Controls the type of line editor used: Emacs (false) or VI style. Default is SetViMode(false).

4.5 Verbose Levels

By turning verbose printing on for certain modules within Magma, some information on computations that are performed can be obtained. For each option, the verbosity may have different levels. The default is level 0 for each option.

There are also 5 slots available for user-defined verbose flags. The flags can be set in user programs by SetVerbose("Usern", true) where n should be one of 1, 2, 3, 4, 5, and the current setting is returned by GetVerbose("Usern").

SetVerbose(s, i)

SetVerbose(s, b)

Set verbose level for s to be level i or b. Here the argument s must be a string. The verbosity may have different levels. An integer i for the second argument selects the appropriate level. A second argument i of 0 or b of false means no verbosity. A boolean value for b of true for the second argument selects level 1. (See above for the valid values for the string s).

GetVerbose(s)

Return the value of verbose flag s as an integer. (See above for the valid values for the string s).

IsVerbose(s)

Return the whether the value of verbose flag s is non-zero. (See above for the valid values for the string s).

IsVerbose(s, 1)

Return the whether the value of verbose flag s is greater than or equal to l. (See above for the valid values for the string s).

ListVerbose()

List all verbose flags. That is, print each verbose flag and its maximal level.

ClearVerbose()

Clear all verbose flags. That is, set the level for all verbose flags to 0.

4.6 Other Information Procedures

The following procedures print information about the current state of MAGMA.

ShowMemoryUsage()

(Procedure.) Show Magma's current memory usage.

ShowIdentifiers()

(Procedure.) List all identifiers that have been assigned to.

ShowValues()

(Procedure.) List all identifiers that have been assigned to with their values.

Traceback()

(Procedure.) Display a traceback of the current Magma function invocations.

ListSignatures(C)

Isa BOOLELT Default: true Search MonStgElt Default: "Both" ShowSrc BOOLELT Default: false

List all intrinsic functions, procedures and operators having objects from category C among their arguments or return values. The parameter Isa may be set to false so that any categories which C inherit from are not considered. The parameter Search, with valid string values Both, Arguments, ReturnValues, may be used to specify whether the arguments, the return values, or both, are considered (default both). ShowSrc can be used to see where package intrinsics are defined. Use ListCategories for the names of the categories.

ListSignatures(F, C)

Isa BOOLELT Default: true Search MonStgElt Default: "Both" ShowSrc BOOLELT Default: false

Given an intrinsic F and category C, list all signatures of F which match the category C among their arguments or return values. The parameters are as for the previous procedure.

ListCategories()

ListTypes()

Procedure to list the (abbreviated) names for all available categories in MAGMA.

4.7 History

Magma provides a history system which allows the recall and editing of previous lines. The history system is invoked by typing commands which begin with the history character '%'. Currently, the following commands are available.

%р

List the contents of the history buffer. Each line is preceded by its history line number.

pn

List the history line n in %p format.

 pn_1 n_2

List the history lines in the range n_1 to n_2 in %p format.

%P

List the contents of the history buffer. The initial numbers are *not* printed.

 $\protect\space{1mm} Pn$

List the history line n in %P format.

 $%Pn_1$ n_2

List the history lines in the range n_1 to n_2 in %P format.

%s

List the contents of the history buffer with an initial statement for each line to reset the random number seed to the value it was just before the line was executed. This is useful when one wishes to redo a computation using exactly the same seed as before but does not know what the seed was at the time.

%sn

Print the history line n in %s format.

%sn₁ n₂

Print the history lines in the range n_1 to n_2 in %s format.

%S

As for %s except that the statement to set the seed is only printed if the seed has changed since the previous time it was printed. Also, it is not printed if it would appear in the middle of a statement (i.e., the last line did not end in a semicolon).

%Sn

Print the history line n in %S format.

 $%Sn_1$ n_2

Print the history lines in the range n_1 to n_2 in %S format.

%

Reenter the last line into the input stream.

n

Reenter the line specified by line number n into the input stream.

 $n_1 n_2$

Reenter the history lines in the range n_1 to n_2 into the input stream.

%e

Edit the last line. The editor is taken to be the value of the EDITOR environment variable if is set, otherwise "/bin/ed" is used. If after the editor has exited the file has not been changed then nothing is done. Otherwise the contents of the new file are reentered into the input stream.

en

Edit the line specified by line number n.

 $en_1 n_2$

Edit the history lines in the range n_1 to n_2 .

%! shell-command

Execute the given command in the Unix shell then return to MAGMA.

4.8 The Magma Line Editor

Magma provides a line editor with both Emacs and VI style key bindings. To enable the VI style of key bindings, type

SetViMode(true)

and type

SetViMode(false)

to revert to the Emacs style of key bindings. By default ViMode is false; that is, the Emacs style is in effect.

Many key bindings are the same in both Emacs and VI style. This is because some VI users like to be able to use some Emacs keys (like <Ctrl>-P) as well as the VI command keys. Thus key bindings in Emacs which are not used in VI insert mode can be made common to both.

4.8.1 Key Bindings (Emacs and VI mode)

<Ctrl>-key means hold down the Control key and press key.

<Return>

Accept the line and print a new line. This works in any mode.

<Backspace>

<Delete>

Delete the previous character.

<Tab>

Complete the word which the cursor is on or just after. If the word doesn't have a unique completion, it is first expanded up to the common prefix of all the possible completions. An immediately following Tab key will list all of the possible completions. Currently completion occurs for system functions and procedures, parameters, reserved words, and user identifiers.

<Ctrl>-A

Move to the beginning of the line ("alpha" = "beginning").

<Ctrl>-B

Move back a character ("back").

<Ctrl>-C

Abort the current line and start a new line.

<Ctrl>-D

On an empty line, send a EOF character (i.e., exit at the top level of the command interpreter). If at end of line, list the completions. Otherwise, delete the character under the cursor ("delete").

<Ctrl>-E

Move to the end of the line ("end").

<Ctrl>-F

Move forward a character ("forward").

<Ctrl>-H

Same as Backspace.

<Ctrl>-I

Same as Tab.

<Ctrl>-J

Same as Return.

<Ctrl>-K

Delete all characters from the cursor to the end of the line ("kill").

<Ctrl>-L

Redraw the line on a new line (helpful if the screen gets wrecked by programs like "write", etc.).

<Ctrl>-M

Same as <Return>.

<Ctrl>-N

Go forward a line in the history buffer ("next"). If the cursor is not at the beginning of the line, go forward to the first following line which starts with the same string (ignoring spaces iff the ignore spaces option is on — see SetIgnoreSpaces) as the string consisting of all the characters before the cursor. Also, if <Ctrl>-N is typed initially at a new line and the last line entered was actually a recall of a preceding line, then the next line after that is entered into the current buffer. Thus to repeat a sequence of lines (with minor modifications perhaps to each), then one only needs to go back to the first line with <Ctrl>-P (see below), press <Return>, then successively press <Ctrl>-N followed by <Return> for each line.

<Ctrl>-P

Go back a line in the history buffer ("previous"). If the cursor is not at the beginning of the line, go back to the first preceding line which starts with the same string (ignoring spaces iff the ignore spaces option is on — see SetIgnoreSpaces) as the string consisting of all the characters before the cursor. For example, typing at a new line x:= and then <Ctrl>-P will go back to the last line which assigned x (if a line begins with, say, x:=, it will also be taken).

<Ctrl>-U

Clear the whole of the current line.

<Ctrl>-Vchar

Insert the following character literally.

<Ctrl>-W

Delete the previous word.

<Ctrl>-X

Same as <Ctrl>-U.

<Ctrl>-Y

Insert the contents of the yank-buffer before the character under the cursor.

<Ctrl>-Z

Stop Magma.

<Ctrl>-_

Undo the last change.

<Ctrl>- \setminus

Immediately quit MAGMA.

On most systems the arrow keys also have the obvious meaning.

4.8.2 Key Bindings in Emacs mode only

Mkey means press the Meta key and then key. (At the moment, the Meta key is only the Esc key.)

Mb MB

Move back a word ("Back").

Mf MF

Move forward a word ("Forward").

4.8.3 Key Bindings in VI mode only

In the VI mode, the line editor can also be in two modes: the insert mode and the command mode. When in the insert mode, any non-control character is inserted at the current cursor position. The command mode is then entered by typing the Esc key. In the command mode, various commands are given a range giving the extent to which they are performed. The following ranges are available:

0

Move to the beginning of the line.

\$

Move to the end of the line.

<Ctrl>-space

Move to the first non-space character of the line.

%

Move to the matching bracket. (Bracket characters are $(,), [,], \{, \}, <,$ and >.)

Move to the next character. (See 'F', 'f', 'T', and 't'.)

Move to the previous character. (See 'F', 'f', 'T', and 't'.)

W

В
Move back a space-separated word ("Back").
b
Move back a word ("back").
E
Move forward to the end of the space-separated word ("End").
е
Move forward to the end of the word ("end").
Fchar
Move back to the first occurrence of <i>char</i> .
fchar
Move forward to the first occurrence of char.
h
Н
Move back a character ($Ctrl -H = Backspace$).
1
L
Move back a character ($\texttt{-L} = $ forward on some keyboards).
Tchar
Move back to just after the first occurrence of <i>char</i> .
tchar
Move forward to just before the first occurrence of <i>char</i> .
W
Move forward a space-separated word ("Word").

Any range may be preceded by a number to multiply to indicate how many times the operation is done. The VI-mode also provides the *yank-buffer*, which contains characters which are deleted or "yanked" – see below.

The following keys are also available in command mode:

Move forward a word ("word").

S

Α	
	Move to the end of the line and change to insert mode ("Append").
a	
	Move forward a character (if not already at the end of the line) and change to insert mode ("append").
С	
	Delete all the characters to the end of line and change to insert mode ("Change").
crai	nge
	Delete all the characters to the specified range and change to insert mode ("change").
D	
	Delete all the characters to the end of line ("Delete").
drai	nge
	Delete all the characters to the specified range ("delete").
I	
	Move to the first non-space character in the line and change to insert mode ("Insert").
i	
	Change to insert mode ("insert").
j	
	Go forward a line in the history buffer (same as <ctrl>-N).</ctrl>
k	
	Go back a line in the history buffer (same as <ctrl>-P).</ctrl>
Р	
	Insert the contents of the yank-buffer before the character under the cursor.
р	
	Insert the contents of the yank-buffer before the character after the cursor.
R	
	Enter over-type mode: typed characters replace the old characters under the cursor without insertion. Pressing Esc returns to the command mode.
rcha	ar
	Replace the character the cursor is over with <i>char</i> .
	•

Delete the whole line and change to insert mode ("Substitute").

S

Delete the current character and change to insert mode ("substitute").

IJ

u

Undo the last change.

X

Delete the character to the left of the cursor.

Х

Delete the character under the cursor.

Y

"Yank" the whole line - i.e., copy the whole line into the yank-buffer ("Yank").

yrange

Copy all characters from the cursor to the specified range into the yank-buffer ("yank").

4.9 The Magma Help System

Magma provides extensive online help facilities that can be accessed in different ways.

The easiest way to get some information about any MAGMA intrinsic is by typing: (Here we assume you to be interested in FundamentalUnit)

> FundamentalUnit;

Which now will list all signatures for this intrinsic (i.e. all known ways to use this function):

> FundamentalUnit;

```
Intrinsic 'FundamentalUnit'
```

Signatures:

```
(<FldQuad> K) -> FldQuadElt
(<RngQuad> 0) -> RngQuadElt
    The fundamental unit of K or O
(<RngQuad> R) -> RngQuadElt
   Fundamental unit of the real quadratic order.
```

Next, to get more detailed information, try

> ?FundamentalUnit

But now several things could happen depending on the installation. Using the default, you get

PATH: /magma/ring-field-algebra/quadratic/operation/\

class-group/FundamentalUnit

KIND: Intrinsic

FundamentalUnit(K) : FldQuad -> FldQuadElt
FundamentalUnit(0) : RngQuad -> RngQuadElt

A generator for the unit group of the order $\ensuremath{\text{O}}$ or the maximal order

of the quadratic field K.

Second, a WWW-browser could start on the part of the online help describing your function (or at least the index of the first character). Third, some arbitrary program could be called to provide you with the information.

If SetVerbose("Help", true); is set, MAGMA will show the exact command used and the return value obtained.

SetHelpExternalBrowser(S, T)

SetHelpExternalBrowser(S)

Defines the external browser to be used if SetHelpUseExternalBrowser(true) is in effect. The string has to be a valid command taking exactly one argument (%s) which will we replaced by a URL. In case two strings are provided, the second defines a fall-back system. Typical use for this is to first try to use an already running browser and if this fails, start a new one.

SetHelpUseExternalBrowser(b)

Tells MAGMA to actually use (or stop to use) the external browser. If both SetHelpUseExternalSystem and SetHelpUseExternalBrowser are set to true, the assignment made last will be effective.

SetHelpExternalSystem(s)

This will tell MAGMA to use a user defined external program to access the help. The string has to contain exactly one %s which will be replaced by the argument to ?. The resulting string must be a valid command.

SetHelpUseExternalSystem(b)

Tells MAGMA to actually use (or stop to use) the external help system. If both SetHelpUseExternalSystem and SetHelpUseExternalBrowser are set to true, the assignment made last will be effective.

GetHelpExternalBrowser()

Returns the currently used command strings.

GetHelpExternalSystem()

Returns the currently used command string.

GetHelpUseExternal()

The first value is the currently used value from SetHelpUseExternalBrowser, the second reflects SetHelpUseExternalSystem.

4.9.1 Internal Help Browser

Magma has a very powerful internal help-browser that can be entered with

> ??

5 MAGMA SEMANTICS

5.1 Introduction 119	5.6.2 The 'first use' Rule 12'
5.2 Terminology 119	5.6.3 Identifier Classes
5.3 Assignment 120	5.6.4 The Evaluation Process Revisited . 126
5.4 Uninitialized Identifiers 120	5.6.5 The 'single use' Rule 129
5.5 Evaluation in Magma 121	5.7 Procedure Expressions 129
5.5.1 Call by Value Evaluation 121	5.8 Reference Arguments 131
5.5.2 Magma's Evaluation Process 122	5.9 Dynamic Typing 132
5.5.3 Function Expressions 123	5.10 Traps for Young Players 133
5.5.4 Function Values Assigned to Identifiers124	5.10.1 Trap 1
5.5.5 Recursion and Mutual Recursion . 124	5.10.2 Trap 2
5.5.6 Function Application 125	5.11 Appendix A: Precedence 135
5.5.7 The Initial Context 126	3.11 Appendix A. 1 recedence 130
5.6 Scope 126	5.12 Appendix B: Reserved Words . 136
5.6.1 Local Declarations 127	

Chapter 5 MAGMA SEMANTICS

5.1 Introduction

This chapter describes the semantics of Magma (how expressions are evaluated, how identifiers are treated, etc.) in a fairly informal way. Although some technical language is used (particularly in the opening few sections) the chapter should be easy and essential reading for the non-specialist. The chapter is descriptive in nature, describing how Magma works, with little attempt to justify why it works the way it does. As the chapter proceeds, it becomes more and more precise, so while early sections may gloss over or omit things for the sake of simplicity and learnability, full explanations are provided later.

It is assumed that the reader is familiar with basic notions like a function, an operator, an identifier, a type and so on.

And now for some buzzwords: MAGMA is an imperative, call by value, statically scoped, dynamically typed programming language, with an essentially functional subset. The remainder of the chapter explains what these terms mean, and why a user might want to know about such things.

5.2 Terminology

Some terminology will be useful. It is perhaps best to read this section only briefly, and to refer back to it when necessary.

The term expression will be used to refer to a textual entity. The term value will be used to refer to a run-time value denoted by an expression. To understand the difference between an expression and a value consider the expressions 1+2 and 3. The expressions are textually different but they denote the same value, namely the integer 3.

A function expression is any expression of the form function ... end function or of the form func< ... | ... >. The former type of function expression will be said to be in the statement form, the latter in the expression form. A function value is the run-time value denoted by a function expression. As with integers, two function expressions can be textually different while denoting the same (i.e., extensionally equal) function value. To clearly distinguish function values from function expressions, the notation FUNC(... : ...) will be used to describe function values.

The formal arguments of a function in the statement form are the identifiers that appear between the brackets just after the function keyword, while for a function in the expression form they are the identifiers that appear before the |. The arguments to a function are the expressions between the brackets when a function is applied.

The body of a function in the statement form is the statements after the formal arguments. The body of a function in the expression form is the expression after the | symbol.

An identifier is said to occur *inside* a function expression when it is occurs textually anywhere in the body of a function.

5.3 Assignment

An assignment is an association of an identifier to a value. The statement,

```
> a := 6;
```

establishes an association between the identifier a and the value 6 (6 is said to be the value of a, or to be assigned to a). A collection of such assignments is called a context.

When a value V is assigned to an identifier I one of two things happens:

- (1) if I has not been previously assigned to, it is added to the current context and associated with V. I is said to be declared when it is assigned to for the first time.
- (2) if I has been previously assigned to, the value associated with I is changed to V. I is said to be re-assigned.

The ability to assign and re-assign to identifiers is why MAGMA is called an *imperative* language.

One very important point about assignment is illustrated by the following example. Say we type,

```
> a := 6;
> b := a+7;
```

After executing these two lines the context is [(a,6), (b,13)]. Now say we type,

```
> a := 0;
```

The context is now [(a,0), (b,13)]. Note that changing the value of a does not change the value of b because b's value is statically determined at the point where it is assigned. Changing a does not produce the context [(a,0), (b,7)].

5.4 Uninitialized Identifiers

Before executing a piece of code Magma attempts to check that it is semantically well formed (i.e., that it will execute without crashing). One of the checks Magma makes is to check that an identifier is declared (and thus initialized) before it is used in an expression. So, for example assuming a had not been previously declared, then before executing either of the following lines Magma will raise an error:

```
> a;
> b := a;
```

MAGMA can determine that execution of either line will cause an error since a has no assigned value. The user should be aware that the checks made for semantic well-formedness are necessarily not exhaustive!

There is one important rule concerning uninitialized identifiers and assignment. Consider the line,

```
> a := a;
```

Now if a had been previously declared then this is re-assignment of a. If not then it is an error since a on the right hand side of the := has no value. To catch this kind of error MAGMA checks the expression on the right hand side of the := for semantic well formedness before it declares the identifiers on the left hand side of the :=. Put another way the identifiers on the left hand side are not considered to be declared in the right hand side, unless they were declared previously.

5.5 Evaluation in Magma

Evaluation is the process of computing (or constructing) a value from an expression. For example the value 3 can be computed from the expression 1+2. Computing a value from an expression is also known as evaluating an expression.

There are two aspects to evaluation, namely *when* and *how* it is performed. This section discusses these two aspects.

5.5.1 Call by Value Evaluation

MAGMA employs call by value evaluation. This means that the arguments to a function are evaluated before the function is applied to those arguments. Assume f is a function value. Say we type,

```
> r := f(6+7, true or false);
```

MAGMA evaluates the two arguments to 13 and true respectively, before applying f.

While knowing the exact point at which arguments are evaluated is not usually very important, there are cases where such knowledge is crucial. Say we type,

```
> f := function( n, b )
>          if b then return n else return 1;
> end function;
and we apply f as follows
> r := f( 4/0, false );
```

MAGMA treats this as an error since the 4/0 is evaluated, and an error produced, before the function f is applied.

By contrast some languages evaluate the arguments to a function only if those arguments are encountered when executing the function. This evaluation process is known as call by name evaluation. In the above example r would be set to the value 1 and the expression 4/0 would never be evaluated because b is false and hence the argument n would never be encountered.

Operators like + and * are treated as infix functions. So

```
> r := 6+7;
```

is treated as the function application,

```
> r := '+'(6,7);
```

Accordingly all arguments to an operator are evaluated before the operator is applied.

There are three operators, 'select', 'and' and 'or' that are exceptions to this rule and are thus not treated as infix functions. These operators use call by name evaluation and only evaluate arguments as need be. For example if we type,

```
> false and (4/0 \text{ eq } 6);
```

MAGMA will reply with the answer false since MAGMA knows that false and X for all X is false.

5.5.2 Magma's Evaluation Process

Let us examine more closely how Magma evaluates an expression as it will help later in understanding more complex examples, specifically those using functions and maps. To evaluate an expression Magma proceeds by a process of identifier substitution, followed by simplification to a canonical form. Specifically expression evaluation proceeds as follows,

- (1) replace each identifier in the expression by its value in the current context.
- (2) simplify the resultant value to its canonical form.

The key point here is that the replacement step takes an expression and yields an unsimplified *value*! A small technical note: to avoid the problem of having objects that are part expressions, part values, all substitutions in step 1 are assumed to be done simultaneously for all identifiers in the expression. The examples in this chapter will however show the substitutions being done in sequence and will therefore be somewhat vague about what exactly these hybrid objects are!

To clarify this process assume that we type,

```
> a := 6;
> b := 7;
producing the context [ (a,6), (b,7) ]. Now say we type,
> c := a+b;
```

This produces the context [(a,6), (b,7), (c,13)]. By following the process outlined above we can see how this context is calculated. The steps are,

- (1) replace a in the expression a+b by its value in the current context giving 6+b.
- (2) replace b in 6+b by its value in the current context giving 6+7.
- (3) simplify 6+7 to 13

The result value of 13 is then assigned to c giving the previously stated context.

5.5.3 Function Expressions

MAGMA's evaluation process might appear to be an overly formal way of stating the obvious about calculating expression values. This formality is useful, however when it comes to function (and map) expressions.

Functions in Magma are first class values, meaning that Magma treats function values just like it treats any other type of value (e.g., integer values). A function value may be passed as an argument to another function, may be returned as the result of a function, and may be assigned to an identifier in the same way that any other type of value is. Most importantly however function expressions are evaluated *exactly* as are all other expressions. The fact that Magma treats functions as first class values is why Magma is said to have an essentially functional subset.

Take the preceding example. It was,

```
> a := 6;
> b := 7;
> c := a+b;
giving the context [ (a,6),(b,7),(c,13) ]. Now say I type,
> d := func< n | a+b+c+n >;
```

MAGMA uses the same process to evaluate the function expression func< n | a+b+c+n > on the right hand side of the assignment d := ... so evaluate expression a+b on the right hand side of the assignment c := ... So evaluation of this function expression proceeds as follows,

- (1) replace a in the expression func< n | a+b+c+n > by its value in the current context giving func< n | 6+b+c+n >.
- (2) replace b in func< n | 6+b+c+n > by its value in the current context giving func< n | 6+7+c+n >.
- (3) replace c in func< n | 6+7+c+n > by its value in the current context giving FUNC(n : 6+7+13+n)
- (4) simplify the resultant value FUNC(n : 6+7+13+n) to the value FUNC(n : 26+n).

Note again that the process starts with an expression and ends with a value, and that throughout the function expression is evaluated just like any other expression. A small technical point: function simplification may not in fact occur but the user is guaranteed that the simplification process will at least produce a function extensionally equal to the function in its canonical form.

The resultant function value is now assigned to d just like any other type of value would be assigned to an identifier yielding the context [(a,6),(b,7),(c,8),(d,FUNC(n:26+n))].

As a final point note that changing the value of any of a, b, and c, does *not* change the value of d!

5.5.4 Function Values Assigned to Identifiers

Say we type the following,

```
> a := 1;
> b := func< n | a >;
> c := func< n | b(6) >;
```

The first line leaves a context of the form [(a,1)]. The second line leaves a context of the form [(a,1), (b,FUNC(n:1))].

The third line is evaluated as follows,

- (1) replace the value of b in the expression func < n | b(6) > by its value in the current context giving FUNC(n: (FUNC(n: 1))(6)).
- (2) simplify this value to FUNC(n: 1) since applying the function value FUNC(n: 1) to the argument 6 always yields 1.

The key point here is that identifiers whose assigned value is a function value (in this case b), are treated exactly like identifiers whose assigned value is any other type of value.

Now look back at the example at the end of the previous section. One step in the series of replacements was not mentioned. Remember that + is treated as a shorthand for an infix function. So a+b is equivalent to '+'(a,b). + is an identifier (assigned a function value), and so in the replacement part of the evaluation process there should have been an extra step, namely,

- (4) replace + in func< n : 6+7+13+n > by its value in the current context giving FUNC(n : A(A(6,7), 13), n)).
- (5) simplify the resultant value to FUNC(n: A(26, n)). where A is the (function) value that is the addition function.

5.5.5 Recursion and Mutual Recursion

How do we write recursive functions? Function expressions have no names so how can a function expression apply *itself* to do recursion?

It is tempting to say that the function expression could recurse by using the identifier that the corresponding function value is to be assigned to. But the function value may not be being assigned at all: it may simply be being passed as an actual argument to some other function value. Moreover even if the function value were being assigned to an identifier the function expression cannot use that identifier because the assignment rules say that the identifiers on the left hand side of the := in an assignment statement are not considered declared on the right hand side, unless they were previously declared.

The solution to the problem is to use the \$\$ pseudo-identifier. \$\$ is a placeholder for the function value denoted by the function expression inside which the \$\$ occurs. An example serves to illustrate the use of \$\$. A recursive factorial function can be defined as follows,

```
> factorial := function(n)
>         if n eq 1 then
>         return 1;
```

```
> else
> return n * $$(n-1);
> end if;
> end function;
```

Here \$\$ is a placeholder for the function value that the function expression function(n) if n eq ... end function denotes (those worried that the denoted function value appears to be defined in terms of itself are referred to the fixed point semantics of recursive functions in any standard text on denotational semantics).

A similar problem arises with mutual recursion where a function value f applies another function value g, and g likewise applies f. For example,

```
> f := function(...) ... a := g(...); ... end function;
> g := function(...) ... b := f(...); ... end function;
```

Again Magma's evaluation process appears to make this impossible, since to construct f Magma requires a value for g, but to construct g Magma requires a value for f. Again there is a solution. An identifier can be declared 'forward' to inform Magma that a function expression for the forward identifier will be supplied later. The functions f and g above can therefore be declared as follows,

```
> forward f, g;
> f := function(...) ... a := g(...); ... end function;
> g := function(...) ... b := f(...); ... end function;
```

(strictly speaking it is only necessary to declare g forward as the value of f will be known by the time the function expression function(...) ... b := f(...); ... end function is evaluated).

5.5.6 Function Application

It was previously stated that MAGMA employs call by value evaluation, meaning that the arguments to a function are evaluated before the function is applied. This subsection discusses how functions are applied once their arguments have been evaluated.

Say we type,

```
> f := func< a, b | a+b >;
producing the context [ (f,FUNC(a,b : a+b)) ].
   Now say we apply f by typing,
> r := f( 1+2, 6+7 ).
```

How is the value to be assigned to r calculated? If we follow the evaluation process we will reach the final step which will say something like,

```
"simplify (FUNC(a, b : A(a,b)))(3,13) to its canonical form"
```

where as before A is the value that is the addition function. How is this simplification performed? How are function values applied to actual function arguments to yield result

values? Not unsurprisingly the answer is via a process of substitution. The evaluation of a function application proceeds as follows,

- (1) replace each formal argument in the function body by the corresponding actual argument.
- (2) simplify the function body to its canonical form.

Exactly what it means to "simplify the function body ..." is intentionally left vague as the key point here is the process of replacing formal arguments by values in the body of the function.

5.5.7 The Initial Context

The only thing that remains to consider with the evaluation semantics, is how to get the ball rolling. Where do the initial values for things like the addition function come from? The answer is that when MAGMA starts up it does so with an initial context defined. This initial context has assignments of all the built-in MAGMA function values to the appropriate identifiers. The initial context contains for example the assignment of the addition function to the identifier +, the multiplication function to the identifier *, etc.

If, for example, we start MAGMA and immediately type,

```
> 1+2;
```

then in evaluating the expression 1+2 Magma will replace + by its value in the initial context.

Users interact with this initial context by typing statements at the top level (i.e., statements not inside any function or procedure). A user can change the initial context through re-assignment or expand it through new assignments.

5.6 Scope

Say we type the following,

```
> temp := 7;
> f := function(a,b)
> temp := a * b;
> return temp^2;
> end function;
```

If the evaluation process is now followed verbatim, the resultant context will look like [(temp,7), (f,FUNC(a,b : 7 := a*b; return 7^2;))], which is quite clearly not what was intended!

5.6.1 Local Declarations

Ch. 5

What is needed in the previous example is some way of declaring that an identifier, in this case temp, is a 'new' identifier (i.e., distinct from other identifiers with the same name) whose use is confined to the enclosing function. MAGMA provides such a mechanism, called a local declaration. The previous example could be written,

```
> temp := 7;
> f := function(a,b)
> local temp;
> temp := a * b;
> return temp^2;
> end function;
```

The identifier temp inside the body of f is said to be '(declared) local' to the enclosing function. Evaluation of these two assignments would result in the context being [(temp, 7), (f, FUNC(a,b : local temp := a*b; return local temp^2;))] as intended.

It is very important to remember that temp and local temp are distinct! Hence if we now type,

```
> r := f(3,4);
```

the resultant context would be [(temp,7), $(f,FUNC(a,b : local temp := a*b; return local temp^2;)), <math>(r,144)$]. The assignment to local temp inside the body of f does not change the value of temp outside the function. The effect of an assignment to a local identifier is thus localized to the enclosing function.

5.6.2 The 'first use' Rule

It can become tedious to have to declare all the local variables used in a function body. Hence MAGMA adopts a convention whereby an identifier can be implicitly declared according to how it is first used in a function body. The convention is that if the first use of an identifier inside a function body is on the left hand side of a :=, then the identifier is considered to be local, and the function body is considered to have an implicit local declaration for this identifier at its beginning. There is in fact no need therefore to declare temp as local in the previous example as the first use of temp is on the left hand side of a := and hence temp is implicitly declared local.

It is very important to note that the term 'first use' refers to the first *textual* use of an identifier. Consider the following example,

```
> temp := 7;
> f := function(a,b)
> if false then
> temp := a * b;
> return temp;
> else
> temp;
> return 1;
```

```
> end if;
> end function;
```

The first textual use of temp in this function body is in the line

```
> temp := a * b;
```

Hence temp is considered as a local inside the function body. It is not relevant that the if false ... condition will never be true and so the first time temp will be encountered when f is applied to some arguments is in the line

```
> temp;
```

'First use' means 'first textual use', modulo the rule about examining the right hand side of a := before the left!

5.6.3 Identifier Classes

It is now necessary to be more precise about the treatment of identifiers in Magma. Every identifier in a Magma program is considered to belong to one of three possible classes, these being:

- (a) the class of value identifiers
- (b) the class of variable identifiers
- (c) the class of reference identifiers

The class an identifier belongs to indicates how the identifier is used in a program.

The class of value identifiers includes all identifiers that stand as placeholders for values, namely:

- (a) all loop identifiers;
- (b) the \$\$ pseudo-identifier;
- (c) all identifiers whose first use in a function expression is as a value (i.e., not on the left hand side of an :=, nor as an actual reference argument to a procedure).

Because value identifiers stand as placeholders for values to be substituted during the evaluation process, they are effectively constants, and hence they cannot be assigned to. Assigning to a value identifier would be akin to writing something like 7 := 8;!

The class of variable identifiers includes all those identifiers which are declared as local, either implicitly by the first use rule, or explicitly through a local declaration. Identifiers in this class may be assigned to.

The class of reference identifiers will be discussed later.

5.6.4 The Evaluation Process Revisited

The reason it is important to know the class of an identifier is that the class of an identifier effects how it is treated during the evaluation process. Previously it was stated that the evaluation process was,

- (1) replace each identifier in the expression by its value in the current context.
- (2) simplify the resultant value to its canonical form.

Strictly speaking the first step of this process should read,

(1') replace each *free* identifier in the expression by its value in the current context, where an identifier is said to be free if it is a value identifier which is not a formal argument, a loop identifier, or the \$\$ identifier.

This definition of the replacement step ensures for example that while computing the value of a function expression F, MAGMA does not attempt to replace F's formal arguments with values from the current context!

5.6.5 The 'single use' Rule

As a final point on identifier classes it should be noted that an identifier may belong to only *one* class within an expression. Specifically therefore an identifier can only be used in one way inside a function body. Consider the following function,

```
> a := 7;
> f := function(n) a := a; return a; end function;
```

It is *not* the case that a is considered as a variable identifier on the left hand side of the :=, and as a value identifier on the right hand side of the :=. Rather a is considered to be a value identifier as its first use is as a value on the right hand side of the := (remember that MAGMA inspects the right hand side of an assignment, and hence sees a first as a value identifier, before it inspects the left hand side where it sees a being used as a variable identifier).

5.7 Procedure Expressions

So far we have only discussed function expressions, these being a mechanism for computing new values from the values of identifiers in the current context. Together with assignment this provides us with a means of changing the current context – to compute a new value for an identifier in the current context, we call a function and then re-assign the identifier with the result of this function. That is we do

```
> X := f(Y);
```

where Y is a list of arguments possibly including the current value of X.

At times however using re-assignment to change the value associated with an identifier can be both un-natural and inefficient. Take the problem of computing some reduced form of a matrix. We could write a function that looked something like this,

```
reduce :=
  function( m )
    local lm;
    ...
  lm := m;
  while not reduced do
```

```
lm := some_reduction(m);
...
end while;
...
end function;
```

Note that the local 1m is necessary since we cannot assign to the function's formal argument m since it stands for a value (and values cannot be assigned to). Note also that the function is inefficient in its space usage since at any given point in the program there are at least two different copies of the matrix (if the function was recursive then there would be more than two copies!).

Finally the function is also un-natural. It is perhaps more natural to think of writing a program that takes a given matrix and *changes* that matrix into its reduced form (i.e., the original matrix is lost). To accommodate for this style of programming, Magma includes a mechanism, the *procedure expression* with its *reference arguments*, for changing an association of an identifier and a value *in place*.

Before examining procedure expressions further, it is useful to look at a simple example of a procedure expression. Say we type:

```
> a := 5; b := 6;
giving the context [ (a,5), (b,6) ]. Say we now type the following:
> p := procedure( x, ~y ) y := x; end procedure;
This gives us a context that looks like [ (a,5), (b,6), (p, PROC(x,~y : y := x;))], using a notation analogous to the FUNC notation.
    Say we now type the following statement,
> p(a, ~b);
```

This is known as a call of the procedure p (strictly it should be known as a call to the procedure value associated with the identifier p, since like functions, procedures in Magma are first class values!). Its effect is to change the current context to $[(a,5),(b,5),(p,PROC(a,\sim b:b:=a;))]$. a and x are called actual and formal value arguments respectively since they are not prefixed by $a \sim$, while b and y are called actual and formal reference arguments respectively because they are prefixed by $a \sim$.

This example illustrates the defining attribute of procedures, namely that rather than returning a value, a procedure changes the context in which it is called. In this case the value of b was changed by the call to p. Observe however that only b was changed by the call to p as only b in the call, and its corresponding formal argument y in the definition, are reference arguments (i.e., prefixed with a \sim). A procedure may therefore only change that part of the context associated with its reference arguments! All other parts of the context are left unchanged. In this case a and p were left unchanged!

Note that apart from reference arguments (and the corresponding fact that that procedures do not return values), procedures are exactly like functions. In particular:

- a) procedures are first class values that can be assigned to identifiers, passed as arguments, returned from functions, etc.
- b) procedure expressions are evaluated in the same way that function expressions are.
- c) procedure value arguments (both formal and actual) behave exactly like function arguments (both formal and actual). Thus procedure value arguments obey the standard substitution semantics.
- d) procedures employ the same notion of scope as functions.
- e) procedure calling behaves like function application.
- f) procedures may be declared 'forward' to allow for (mutual) recursion.
- g) a procedure may be assigned to an identifier in the initial context.

The remainder of this section will thus restrict itself to looking at reference arguments, the point of difference between procedures and functions.

5.8 Reference Arguments

If we look at a context it consists of a set of pairs, each pair being a name (an identifier) and a value (that is said to be assigned to that identifier).

When a function is applied actual arguments are substituted for formal arguments, and the body of the function is evaluated. The process of evaluating an actual argument yields a value and any associated names are ignored. Magma's evaluation semantics treats identifiers as 'indexes' into the context – when Magma wants the value of say x it searches through the context looking for a pair whose name component is x. The corresponding value component is then used as the value of x and the name part is simply ignored thereafter.

When we call a procedure with a reference argument, however, the name components of the context become important. When, for example we pass x as an actual reference argument to a formal reference argument y in some procedure, Magma remembers the name x. Then if y is changed (e.g., by assignment) in the called procedure, Magma, knowing the name x, finds the appropriate pair in the calling context and updates it by changing its corresponding value component. To see how this works take the example in the previous section. It was,

```
> a := 5; b := 6;
> p := procedure( x, ~y ) y := x; end procedure;
> p(a, ~b);
```

In the call Magma remembers the name b. Then when y is assigned to in the body of p, Magma knows that y is really b in the calling context, and hence changes b in the calling context appropriately. This example shows that an alternate way of thinking of reference arguments is as synonyms for the same part of (or pair in) the calling context.

5.9 Dynamic Typing

MAGMA is a dynamically typed language. In practice this means that:

- (a) there is no need to declare the type of identifiers (this is especially important for identifiers assigned function values!).
- (b) type violations are only checked for when the code containing the type violation is actually executed.

To make these ideas clearer consider the following two functions,

```
> f := func< a, b | a+b >;
> g := func< a, b | a+true >;
```

First note that there are no declarations of the types of any of the identifiers.

Second consider the use of + in the definition of function f. Which addition function is meant by the + in a+b? Integer addition? Matrix addition? Group addition? ... Or in other words what is the type of the identifier + in function f? Is it integer addition, matrix addition, etc.? The answer to this question is that + here denotes all possible addition function values (+ is said to denote a family of function values), and MAGMA will automatically chose the appropriate function value to apply when it knows the type of a and b.

```
Say we now type,

> f(1,2);
```

MAGMA now knows that a and b in f are both integers and thus + in f should be taken to mean the integer addition function. Hence it will produce the desired answer of 3.

Finally consider the definition of the function g. It is clear X+true for all X is a type error, so it might be expected that MAGMA would raise an error as soon as the definition of g is typed in. MAGMA does not however raise an error at this point. Rather it is only when g is applied and the line return a + true is actually executed that an error is raised.

In general the exact point at which type checking is done is not important. Sometimes however it is. Say we had typed the following definition for q,

```
> g := function(a,b)
> if false then
> return a+true;
> else
> return a+b;
> end if;
> end function;
```

Now because the if false condition will never be true, the line return a+true will never be executed, and hence the type violation of adding a to true will never be raised!

One closing point: it should be clear now that where it was previously stated that the initial context "contains assignments of all the built-in Magma function values to the appropriate identifiers", in fact the initial context contains assignments of all the built-in Magma function families to the appropriate identifiers.

5.10 Traps for Young Players

This section describes the two most common sources of confusion encountered when using Magma's evaluation strategy.

5.10.1 Trap 1

We boot MAGMA. It begins with an initial context something like [..., ('+',A), ('-',S), ...] where A is the (function) value that is the addition function, and S is the (function) value that is the subtraction function.

Now say we type,

```
> '+' := '-';
> 1 + 2;
```

Magma will respond with the answer -1.

To see why this is so consider the effect of each line on the current context. After the first line the current context will be [..., ('+',S), ('-',S), ...], where S is as before. The identifier + has been re-assigned. Its new value is the value of the identifier '-' in the current context, and the value of '-' is the (function) value that is the subtraction function. Hence in the second line when MAGMA replaces the identifier + with its value in the current context, the value that is substituted is therefore S, the subtraction function!

5.10.2 Trap 2

Say we type,

```
> f := func< n | n + 1 >;
> g := func< m | m + f(m) >;
```

After the first line the current context is [(f,FUNC(n:n+1))]. After the second line the current context is [(f,FUNC(n:n+1)), (g,FUNC(m:m+FUNC(n:n+1))].

If we now type,

```
> g(6);
```

MAGMA will respond with the answer 13.

Now say we decide that our definition of f is wrong. So we now type in a new definition for f as follows,

```
> f := func< n | n + 2 >;
If we again type,
> g(6);
```

MAGMA will again reply with the answer 13!

To see why this is so consider how the current context changes. After typing in the initial definitions of f and g the current context is [(f, FUNC(n : n+1)), (g, FUNC(m : m + FUNC(n : n+1)(m)))]. After typing in the second definition of f the current

context is [(f, FUNC(n: n+2)), (g, FUNC(m: m + FUNC(n: n+1)(m)))]. Remember that changing the *value* of one identifier, in this case f, does *not* change the value of any other identifiers, in this case g! In order to change the value of g to reflect the new value of f, g would have to be re-assigned.

5.11 Appendix A: Precedence

The table below defines the relative precedence of operators in Magma, with decreasing strength (so operators higher in the table bind more strongly). The column on the right indicates whether the operator is left-, right-, or non-associative.

```
left
(
                                                     left
Г
                                                     left
assigned
                                                     right
                                                     non
                                                     non
    &+
         &and &cat &join &meet
                                       &or
                                                     non-associative
$
   $$
                                                     non
                                                     left
   @@
                                                     left
0
   !!
!
                                                     right
                                                     right
                                                     right
unary-
                                                     left
cat
                                                     left
      div mod
   /
                                                     left
                                                     left
meet
sdiff
                                                     left
diff
                                                     left
join
                                                     left
adj in notadj notin notsubset subset
                                                     non
                                                     left
cmpeq cmpne eq ge gt le lt
not
                                                     right
                                                     left
and
                                                     left
or
    xor
                                                     non
   else select
                                                     right
                                                     left
->
                                                     left
        where
                                                     left
    is
```

5.12 Appendix B: Reserved Words

The list below contains all reserved words in the Magma language; these cannot be used as identifier names.

elif adj else and end assert eq assert2error assert3 eval assigned exists break exit by false for case forall cat catch forward clear fprintf cmpeq freeze function cmpne continue ge declare gtdefault if delete iload diff import div in do intrinsic

is join le load local lt meet mod ne not notadj notin notsubset or print printf procedure quit random read readi repeat

require requirege requirerange restore return save sdiff select subset then time to true try until vprint vprintf vtime when where while xor

6 THE MAGMA PROFILER

6.1 Introduction	139	<pre>ProfilePrintByTotalCount(G)</pre>	142
		<pre>ProfilePrintByTotalTime(G)</pre>	142
6.2 Profiler Basics	139	<pre>ProfilePrintChildrenByCount(G, n)</pre>	142
SetProfile(b)	139	<pre>ProfilePrintChildrenByTime(G, n)</pre>	142
ProfileReset()	139	6.3.2 HTML Reports	143
ProfileGraph()	140	<pre>ProfileHTMLOutput(G, prefix)</pre>	143
6.3 Exploring the Call Graph	141	6.4 Recursion and the Profiler	1/9
631 Internal Reports	1/1	0.4 Recursion and the Fromer	140

Chapter 6 THE MAGMA PROFILER

6.1 Introduction

One of the most important aspects of the development cycle is optimization. It is often the case that during the implementation of an algorithm, a programmer makes erroneous assumptions about its run-time behavior. These errors can lead to performance which differs in surprising ways from the expected output. The unfortunate tendency of programmers to optimize code before establishing run-time bottlenecks tends to exacerbate the problem.

Experienced programmers will thus often be heard repeating the famous mantra "Premature optimization is the root of all evil", coined by Sir Charles A. R. Hoare, the inventor of the Quick sort algorithm. Instead of optimizing during the initial implementation, it is generally better to perform an analysis of the run-time behaviour of the complete program, to determine what are the actual bottlenecks. In order to assist in this task, MAGMA provides a *profiler*, which gives the programmer a detailed breakdown of the time spent in a program. In this chapter, we provide an overview of how to use the profiler.

6.2 Profiler Basics

The Magma profiler records timing information for each function, procedure, map, and intrinsic call made by your program. When the profiler is switched on, upon the entry and exit to each such call the current system clock time is recorded. This information is then stored in a call graph, which can be viewed in various ways.

SetProfile(b)

Turns profiling on (if b is true) or off (if b is false). Profiling information is stored cumulatively, which means that in the middle of a profiling run, the profiler can be switched off during sections for which profiling information is not wanted. At startup, the profiler is off. Turning the profiler on will slow down the execution of your program slightly.

ProfileReset()

Clear out all information currently recorded by the profiler. It is generally a good idea to do this after the call graph has been obtained, so that future profiling runs in the same MAGMA session begin with a clean slate.

ProfileGraph()

Get the call graph based upon the information recorded up to this point by the profiler. This function will return an error if the profiler has not yet been turned on.

The call graph is a directed graph, with the nodes representing the functions that were called during the program's execution. There is an edge in the call graph from a function x to a function y if y was called during the execution of x. Thus, recursive calls will result in cycles in the call graph.

Each node in the graph has an associated label, which is a record with the following fields:

- (i) Name: the name of the function
- (ii) Time: the total time spent in the function
- (iii) Count: the number of times the function was called

Each edge $\langle x, y \rangle$ in the graph also has an associated label, which is a record with the following fields:

- (i) Time: the total time spent in function y when it was called from function x
- (ii) Count: the total number of times function y was called by function x

Example H6E1

We illustrate the basic use of the profiler in the following example. The code we test is a simple implementation of the Fibonacci sequence; this can be replaced by any Magma code that needs to be profiled.

```
> function fibonacci(n)
      if n eq 1 or n eq 2 then
>
>
        return 1;
>
        return fibonacci(n - 1) + fibonacci(n - 2);
      end if;
> end function;
> SetProfile(true);
> time assert fibonacci(27) eq Fibonacci(27);
Time: 10.940
> SetProfile(false);
> G := ProfileGraph();
> G;
Digraph
Vertex Neighbours
        2 3 6 7 ;
2
        2 3 4 5 ;
3
4
        ;
5
```

```
6
> V := Vertices(G);
> Label(V!1);
rec<recformat<Name: Strings(), Time: RealField(), Count: IntegerRing()> |
    Name := <main>,
    Time := 10.93999999999999950262,
    Count := 1
    >
> Label(V!2);
rec<recformat<Name: Strings(), Time: RealField(), Count: IntegerRing()> |
    Name := fibonacci,
    Time := 10.9399999999999950262,
    Count := 392835
> E := Edges(G);
> Label(E![1,2]);
rec<recformat<Time: RealField(), Count: IntegerRing()> |
    Time := 10.93999999999999950262,
    Count := 1
    >
```

6.3 Exploring the Call Graph

6.3.1 Internal Reports

The above example demonstrates that while the call graph contains some useful information, it does not afford a particularly usable interface. The MAGMA profiler contains some profile report generators which can be used to study the call graph in a more intuitive way.

The reports are all tabular, and have a similar set of columns:

- (i) Index: The numeric identifier for the function in the vertex list of the call graph.
- (ii) Name: The name of the function. The function name will be followed by an asterisk if a recursive call was made through it.
- (iii) Time: The time spent in the function; depending on the report, the meaning might vary slightly.
- (iv) Count: The number of times the function was called; depending on the report, the meaning might vary slightly.

ProfilePrintByTotalCount(G)

Percentage BOOLELT Default: false Max RNGINTELT Default: All

Print the list of functions in the call graph, sorted in descending order by the total number of times they were called. The Time and Count fields of the report give the total time and total number of times the function was called. If Percentage is true, then the Time and Count fields represent their values as percentages of the total value. If Max is set, then the report only displays the first Max entries.

ProfilePrintByTotalTime(G)

Percentage BOOLELT Default: false Max RNGINTELT Default: All

Print the list of functions in the call graph, sorted in descending order by the total time spent in them. Apart from the sort order, this function's behaviour is identical to that of ProfilePrintByTotalCount.

ProfilePrintChildrenByCount(G, n)

Percentage BOOLELT Default: false Max RNGINTELT Default: All

Given a vertex n in the call graph G, print the list of functions called by the function n, sorted in descending order by the number of times they were called by n. The Time and Count fields of the report give the time spent during calls by the function n and the number of times the function was called by the function n. If Percentage is true, then the Time and Count fields represent their values as percentages of the total value. If Max is set, then the report only displays the first Max entries.

ProfilePrintChildrenByTime(G, n)

Percentage BOOLELT Default: false Max RNGINTELT Default: All

Given a vertex n in the call graph G, print the list of functions in the called by the function n, sorted in descending order by the time spent during calls by the function n. Apart from the sort order, this function's behaviour is identical to that of ProfilePrintChildrenByCount.

Example H6E2_

Continuing with the previous example, we examine the call graph using profile reports.

> ProfilePrintByTotalTime(G);

Index	Name	Time	Count
1	<main></main>	10.940	1
2	fibonacci	10.940	392835
3	eq(<rngintelt> x, <rngintelt> y) -> BoolElt</rngintelt></rngintelt>	1.210	710646

```
4
      -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt
                                                                 0.630
                                                                         392834
      +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt
                                                                 0.250
                                                                         196417
5
      Fibonacci(<RngIntElt> n) -> RngIntElt
                                                                 0.000
                                                                         1
      SetProfile(<BoolElt> v)
                                                                 0.000
                                                                         1
> ProfilePrintChildrenByTime(G, 2);
Function: fibonacci
Function Time: 10.940
Function Count: 392835
Index Name
                                                                 Time
                                                                         Count
      fibonacci (*)
                                                                 182.430 392834
      eq(<RngIntElt> x, <RngIntElt> y) -> BoolElt
3
                                                                         710645
                                                                 1.210
      -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt
                                                                 0.630
                                                                         392834
      +(<RngIntElt> x, <RngIntElt> y) -> RngIntElt
                                                                 0.250
                                                                         196417
* A recursive call is made through this child
```

6.3.2 HTML Reports

While the internal reports are useful for casual inspection of a profile run, for detailed examination a text-based interface has serious limitations. Magma's profiler also supports the generation of HTML reports of the profile run. The HTML report can be loaded up in any web browser. If Javascript is enabled, then the tables in the report can be dynamically sorted by any field, by clicking on the column heading you wish to perform a sort with. Clicking the column heading multiple times will alternate between ascending and descending sorts.

ProfileHTMLOutput(G, prefix)

Given a call graph G, an HTML report is generated using the file prefix prefix. The index file of the report will be "prefix.html", and exactly n additional files will be generated with the given filename prefix, where n is the number of functions in the call graph.

6.4 Recursion and the Profiler

Recursive calls can cause some difficulty with profiler results. The profiler takes care to ensure that double-counting does not occur, but this can lead to unintuitive results, as the following example shows.

Example H6E3_

In the following example, **recursive** is a recursive function which simply stays in a loop for half a second, and then recurses if not in the base case. Thus, the total running time should be approximately (n+1)/2 seconds, where n is the parameter to the function.

```
> procedure delay(s)
      t := Cputime();
      repeat
        _ := 1+1;
>
      until Cputime(t) gt s;
> end procedure;
> procedure recursive(n)
      if n ne 0 then
        recursive(n - 1);
      end if;
>
      delay(0.5);
>
> end procedure;
> SetProfile(true);
> recursive(1);
> SetProfile(false);
> G := ProfileGraph();
```

Printing the profile results by total time yield no surprises:

> ProfilePrintByTotalTime(G);

Index	Name	Time	Count
1	<main></main>	1.020	1
2	recursive	1.020	2
5	delay	1.020	2
8	<pre>Cputime(<fldreelt> T) -> FldReElt</fldreelt></pre>	0.130	14880
7	+(<rngintelt> x, <rngintelt> y) -> RngIntElt</rngintelt></rngintelt>	0.020	14880
9	gt(<fldreelt> x, <fldreelt> y) -> BoolElt</fldreelt></fldreelt>	0.020	14880
3	<pre>ne(<rngintelt> x, <rngintelt> y) -> BoolElt</rngintelt></rngintelt></pre>	0.000	2
4	-(<rngintelt> x, <rngintelt> y) -> RngIntElt</rngintelt></rngintelt>	0.000	1
6	<pre>Cputime() -> FldReElt</pre>	0.000	2
10	SetProfile(<boolelt> v)</boolelt>	0.000	1

However, printing the children of **recursive**, and displaying the results in percentages, does yield a surprise:

```
3 ne(<RngIntElt> x, <RngIntElt> y) -> BoolElt 0.00 33.33
4 -(<RngIntElt> x, <RngIntElt> y) -> RngIntElt 0.00 16.67
* A recursive call is made through this child
```

At first glance, this doesn't appear to make sense, as the sum of the time column is 150%! The reason for this behavior is because some time is "double counted": the total time for the first call to **recursive** includes the time for the recursive call, which is also counted separately. In more detail:

```
> V := Vertices(G);
> E := Edges(G);
> Label(V!1)'Name;
<main>
> Label(V!2)'Name;
recursive
> Label(E![1,2])'Time;
1.019999999999999795718
> Label(E![2,2])'Time;
0.51000000000000000888
> Label(V!2)'Time;
1.01999999999999795718
```

As can seen in the above, the total time for recursive is approximately one second, as expected. The double-counting of the recursive call can be seen in the values of Time for the edges [1,2] and [2,2].

7 DEBUGGING MAGMA CODE

7.1 Introduction	149	7.2 Using the Debugger	149
SetDebugOnError(f)	149		

Chapter 7 DEBUGGING MAGMA CODE

7.1 Introduction

In ordered to facilitate the debugging of complex pieces of MAGMA code, MAGMA includes a debugger. This debugger is very much a prototype, and can cause MAGMA to crash.

SetDebugOnError(f)

If f is true, then upon an error MAGMA will break into the debugger. The usage of the debugger is described in the next section.

7.2 Using the Debugger

When use of the debugger is enabled and an error occurs, Magma will break into the command-line debugger. The syntax of the debugger is modelled on the GNU GDB debugger for C programs, and supports the following commands (acceptable abbreviations for the commands are given in parentheses):

- backtrace (bt) Print out the stack of function and procedure calls, from the top level to the point at which the error occurred. Each line i this trace gives a single *frame*, which consists of the function/procedure that was called, as well as all local variable definitions for that function. Each frame is numbered so that it can be referenced in other debugger commands.
- frame (f) n Change the current frame to the frame numbered n (the list of frames can be obtained using the backtrace command). The current frame is used by other debugger commands, such as print, to determine the context within which expressions should be evaluated. The default current frame is the top-most frame.
- list (1) [n] Print a source code listing for the current context (the context is set by the frame command). If n is specified, then the list command will print n lines of source code; the default value is 10.
- print (p) expr Evaluate the expression expr in the current context (the context is set by the frame command). The print command has semantics identical to evaluating the expression eval "expr" at the current point in the program.
- identifiers (id) Print a list of the assigned identifiers in the current context (the context is set by the frame command). The identifiers command is equivalent to invoking the ShowIdentifiers intrinsic at the current point in the program.
- help (h) Print brief help on usage.
- quit (q) Quit the debugger and return to the MAGMA session.

Example H7E1___

We now give a sample session in the debugger. In the following, we have written a function to evaluate $f(n) = \sum_{i=1}^{n} 1/n$, but have in our implementation we have accidentally included the evaluation of the term at n = 0.

```
> function f(n)
   if n ge 0 then
>
      return 1.0 / n + f(n - 1);
>
   else
      return 1.0 / n;
   end if;
> end function;
> SetDebugOnError(true);
> f(3);
f(
   n: 3
)
f(
   n: 2
)
f(
   n: 1
)
f(
   n: 0
)
       return 1.0 / n + f(n - 1);
>>
Runtime error in '/': Division by zero
debug> p n
debug> p 1.0 / (n + 1)
debug> bt
#0 *f(
   n: 0
) at <main>:1
#1 f(
   n: 1
) at <main>:1
#2 f(
   n: 2
) at <main>:1
#3 f(
   n: 3
) at <main>:1
debug> f 1
```

PART II SETS, SEQUENCES, AND MAPPINGS

8	INTRODUCTION TO AGGREGATES	155
9	SETS	165
10	SEQUENCES	193
11	TUPLES AND CARTESIAN PRODUCTS	215
12	LISTS	223
13	ASSOCIATIVE ARRAYS	229
14	COPRODUCTS	235
15	RECORDS	241
16	MAPPINGS	247

8 INTRODUCTION TO AGGREGATES

8.1 Introducti	on 157	8.2.3	Parents of Sets and S	Sequences	161
8.2 Restriction Sequences	ns on Sets and		Nested Aggregates		
8.2.1 Universe of	of a Set or Sequence 158	8.3.1	Multi-indexing		162
, ,	the Universe of a Set or Se-				

Chapter 8

INTRODUCTION TO AGGREGATES

8.1 Introduction

This part of the Handbook comprises seven chapters on aggregate objects in MAGMA as well as a chapter on maps.

Sets, sequences, tuples and lists are the four main types of aggregates, and each has its own specific purpose. Sets are used to collect objects that are elements of some common structure, and the most important operation is to test element membership. Sequences also contain objects of a common structure, but here the emphasis is on the ordering of the objects, and the most important operation is that of accessing (or modifying) elements at given positions. Sets will contain at most one copy of any element, whereas sequences may contain arbitrarily many copies of the same object. Enumerated sets and sequences are of arbitrary but finite length and will store all elements explicitly (with the exception of arithmetic progressions), while formal sets and sequences may be infinite, and use a Boolean function to test element membership. Indexed sets are a hybrid form of sets allowing indexing like sequences. Elements of Cartesian products of structures in MAGMA will be called tuples; they are of fixed length, and each coefficient must be in the corresponding structure of the defining Cartesian product. Lists are arbitrary finite ordered collections of objects of any type, and are mainly provided to the user to store assorted data to which access is not critical.

8.2 Restrictions on Sets and Sequences

Here we will explain the subtleties behind the mechanism dealing with sets and sequences and their universes and parents. Although the same principles apply to their formal counterparts, we will only talk about enumerated sets and sequences here, for two reasons: the enumerated versions are much more useful and common, and the very restricted number of operations on formal sets/sequences make issues of universe and overstructure of less importance for them.

In principle, every object e in Magma has some parent structure S such that $e \in S$; this structure can be used for type checking (are we allowed to apply function f to e?), algorithm look-up etc. To avoid storing the structure with every element of a set or sequence and having to look up the structure of every element separately, only elements of a common structure are allowed in sets or sequences, and that common parent will only be stored once.

8.2.1 Universe of a Set or Sequence

This common structure is called the *universe* of the set or sequence. In the general constructors it may be specified up front to make clear what the universe for the set or sequence will be; the difference between the sets i and s in

```
> i := { IntegerRing() | 1, 2, 3 };
> s := { RationalField() | 1, 2, 3 };
```

lies entirely in their universes. The specification of the universe may be omitted if there is an obvious common overstructure for the elements. Thus the following provides a shorter way to create the set containing 1, 2, 3 and having the ring of integers as universe:

```
> i := { 1, 2, 3 };
```

Only empty sets and sequences that have been obtained directly from the constructions

```
> S := { };
> T := [ ];
```

do not have their universe defined – we will call them the *null* set or sequence. (There are two other ways in which empty sets and sequences arise: it is possible to create empty sequences with a prescribed universe, using

```
> S := { U | };
> T := [ U | ];
```

and it may happen that a non-empty set/sequence becomes empty in the course of a computation. In both cases these empty objects have their universe defined and will not be *null*).

Usually (but not always: the exception will be explained below) the universe of a set or sequence is the parent for all its elements; thus the ring of integers is the parent of 2 in the set $i = \{1, 2, 3\}$, rather than that set itself. The universe is not static, and it is not necessarily the same structure as the parent of the elements before they were put in the set or sequence. To illustrate this point, suppose that we try to create a set containing integers and rational numbers, say $T = \{1, 2, 1/3\}$; then we run into trouble with the rule that the universe must be common for all elements in T; the way this problem is solved in Magma is by automatic coercion: the obvious universe for T is the field of rational numbers of which 1/3 is already an element and into which any integer can be coerced in an obvious way. Hence the assignment

```
T := \{ 1, 2, 1/3 \}
```

will result in a set with universe the field of rationals (which is also present when MAGMA is started up). Consequently, when we take the element 1 of the set T, it will have the rational field as its parent rather than the integer ring! It will now be clear that

```
> s := \{ 1/1, 2, 3 \};
```

is a shorter way to specify the set of rational numbers 1,2,3 than the way we saw before, but in general it is preferable to declare the universe beforehand using the $\{U \mid A\}$ notation.

Of course

```
> T := { Integers() | 1, 2, 1/3 }
```

would result in an error because 1/3 cannot be coerced into the ring of integers.

So, usually not every element of a given structure can be coerced into another structure, and even if it can, it will not always be done automatically. The possible (automatic) coercions are listed in the descriptions of the various Magma modules. For instance, the table in the introductory chapter on rings shows that integers can be coerced automatically into the rational field.

In general, every MAGMA structure is valid as a universe. This includes enumerated sets and sequences themselves, that is, it is possible to define a set or sequence whose elements are confined to be elements of a given set or sequence. So, for example,

```
> S := [ [ 1..10 ] | x^2+x+1 : x in { -3 ... 2 by 1 } ];
```

produces the sequence [7,3,1,1,3,7] of values of the polynomial $x^2 + x + 1$ for $x \in \mathbf{Z}$ with $-3 \le x \le 2$. However, an entry of S will in fact have the ring of integers as its parent (and not the sequence [1..10]), because the effect of the above assignment is that the values after the | are calculated and coerced into the universe, which is [1..10]; but coercing an element into a sequence or set means that it will in fact be coerced into the universe of that sequence/set, in this case the integers. So the main difference between the above assignment and

```
> T := [Integers() | x^2+x+1 : x in \{ -3 ... 2 by 1 \} ];
```

is that in the first case it is checked that the resulting values y satisfy $1 \le y \le 10$, and an error would occur if this is violated:

```
> S := [[1..10] | x^2+x+1 : x in { -3 .. 3 by 1}];
```

leads to a run-time error.

In general then, the parent of an element of a set or sequence will be the universe of the set or sequence, unless that universe is itself a set or sequence, in which case the parent will be the universe of this universe, and so on, until a non-set or sequence is encountered.

8.2.2 Modifying the Universe of a Set or Sequence

Once a (non-null) set or sequence S has been created, the universe has been defined. If one attempts to $modify\ S$ (that is, to add elements, change entries etc. using a procedure that will not reassign the result to a new set or sequence), the universe will not be changed, and the modification will only be successful if the new element can be coerced into the current universe. Thus,

```
> Z := Integers();
> T := [ Z | 1, 2, 3/3 ];
> T[2] := 3/4;
```

will result in an error, because 3/4 cannot be coerced into Z.

The universe of a set or sequence S can be explicitly modified by creating a parent for S with the desired universe and using the ! operator for the coercion; as we will see in the next subsection, such a parent can be created using the PowerSet and PowerSequence commands. Thus, for example, the set $\{1,2\}$ can be made into a sequence of rationals as follows:

```
> I := { 1, 2 };
> P := PowerSet( RationalField() );
> J := P ! I;
```

The coercion will be successful if every element of the sequence can be coerced into the new universe, and it is *not* necessary that the old universe could be coerced completely into the new one: the set $\{3/3\}$ of rationals can be coerced into PowerSet(Integers()). As a consequence, the empty set (or sequence) with any universe can be coerced into the power set (power sequence) of any other universe.

Binary functions on sets or sequences (like join or cat) can only applied to sets and sequences that are compatible: the operation on S with universe A and T with universe B can only be performed if a common universe C can be found such that the elements of S and T are all elements of C. The compatibility conditions are dependent on the particular Magma module to which A and B belong (we refer to the corresponding chapters of this manual for further information) and do also apply to elements of $a \in A$ and $b \in B$ —that is, the compatibility conditions for S and T are the same as the ones that determine whether binary operations on $a \in A$ and $b \in B$ are allowed. For example, we are able to join a set of integers and a set of rationals:

```
> T := \{ 1, 2 \} \text{ join } \{ 1/3 \}; for the same reason that we can do
```

```
> c := 1 + 1/3;
```

(automatic coercion for rings). The resulting set T will have the rationals as universe. The basic rules for compatibility of two sets or sequences are then:

- (1) every set/sequence is compatible with the null set/sequence (which has no universe defined (see above));
- (2) two sets/sequences with the same universe are compatible;
- (3) a set/sequence S with universe A is compatible with set/sequence T with universe B if the elements of A can be automatically coerced into B, or vice versa;
- (4) more generally, a set/sequence S with universe A is also compatible with set/sequence T with universe B if MAGMA can automatically find an over-structure for the parents A and B (see below);
- (5) nested sets and sequences are compatible only when they are of the same 'depth' and 'type' (that is, sets and sequences appear in exactly the same recursive order in both) and the universes are compatible.

The possibility of finding an overstructure C for the universe A and B of sets or sequences S and T (such that $A \subset C \supset B$), is again module-dependent. We refer the reader for

details to the Introductions of Parts III–VI, and we give some examples here; the next subsection contains the rules for parents of sets and sequences.

Perhaps the most common example of universes that are *not* compatible would be a prime finite field with the rationals, as not every rational can be coerced into the finite field, while Magma does not allow coercion from finite fields into the rationals in any event.

8.2.3 Parents of Sets and Sequences

The universe of a set or sequence S is the common parent for all its elements; but S itself is a MAGMA object as well, so it should have a parent too.

The parent of a set is a power set: the set of all subsets of the universe of S. It can be created using the PowerSet function. Similarly, PowerSequence(A) creates the parent structure for a sequence of elements from the structure A – that is, the elements of PowerSequence(A) are all sequences of elements of A.

The rules for finding a common overstructure for structures A and B, where either A or B is a set/sequence or the parent of a set/sequence, are as follows. (If neither A nor B is a set, sequence, or its parent we refer to the Part of this manual describing the operations on A and B.)

- (1) The overstructure of A and B is the same as that of B and A.
- (2) If A is the null set or sequence (empty, and no universe specified) the overstructure of A and B is B.
- (3) If A is a set or sequence with universe U, the overstructure of A and B is the overstructure of U and B; in particular, the overstructure of A and A will be the universe U of A.
- (4) If A is the parent of a set (a power set), then A and B can only have a common overstructure if B is also the parent of a set, in which case the overstructure is the power set of the overstructure of the universes U and V of A and B respectively. Likewise for sequences instead of sets.

We give two examples to illustrate rules (3) and (4). It is possible to create a set with a set as its universe:

```
> S := \{ \{ 1..100 \} \mid x^3 : x in [0..3] \};
```

If we wish to intersect this set with some set of integers, say the formal set of odd integers

```
> T := {! x : x in Integers() | IsOdd(x) !};
> W := S meet T;
```

then we can only do that if we can find a universe for W, which must be the common overstructure of the universe $U = \{1, 2, ..., 100\}$ of S and the universe 'ring of integers' of T. By rule (3) above, this overstructure of $U = \{1, 2, ..., 100\}$ will be the overstructure of the universe of U and the ring of integers; but the universe of U is the ring of integers (because it is the default for the set $\{1, 2, ..., 100\}$), and hence the overstructure we are looking for (and the universe for W) will be the ring of integers.

For the second example we look at sequences of sequences:

```
> a := [ [ 1 ], [ 1, 2, 3 ] ];
> b := [ [ 2/3 ] ];
```

so a is a sequence of sequences of integers, and b is a sequence of sequences of rationals. If we wish to concatenate a and b,

```
> c := a cat b;
```

we will only succeed if we find a universe for c. This universe must be the common overstructure of the universes of a and b, which are the 'power sequence of the integers' and the 'power sequence of the rationals' respectively. By rule (4), the overstructure of these two power sequences is the power sequence of the common overstructure of the rationals and the integers, which is the rationals themselves. Hence c will be a sequence of sequences of rationals, and the elements of a will have to be coerced.

8.3 Nested Aggregates

Enumerated sets and sequences can be arbitrarily nested (that is, one may create sets of sets, as well as sequences of sets etc.); tuples can also be nested and may be freely mixed with sets and sequences (as long as the proper Cartesian product parent can be created). Lists can be nested, and one may create lists of sets or sequences or tuples.

8.3.1 Multi-indexing

Since sequences (and lists) can be nested, assignment functions and mutation operators allow you to use *multi-indexing*, that is, one can use a multi-index i_1, i_2, \ldots, i_r rather than a single i to reach r levels deep. Thus, for example, if S = [1, 2], [2, 3], instead of

```
> S[2][2] := 4;
```

one may use the multi-index 2, 2 to obtain the same effect of changing the 3 into a 4:

```
> S[2,2] := 4;
```

All i_j in the multi-index i_1, i_2, \ldots, i_r have to be greater than 0, and an error will also be flagged if any i_j indexes beyond the length at level j, that is, if $i_j > \#S[i_1, \ldots, i_{j-1}]$, (which means $i_1 > \#S$ for j = 1). There is one exception: the last index i_r is allowed to index beyond the current length of the sequence at level r if the multi-index is used on the left-hand side of an assignment, in which case any intermediate terms will be undefined. This generalizes the possibility to assign beyond the length of a 'flat' sequence. In the above example the following assignments are allowed:

```
> S[2,5] := 7;
(and the result will be S = [ [1,2], [2,3, undef, undef, 7] ])
> S[4] := [7];
(and the result will be S = [ [1,2], [2,3], undef, [7] ]). But the following results in an
```

error:

$$> S[4,1] := 7;$$

Finally we point out that multi-indexing should not be confused with the use of sequences as indexes to create subsequences. For example, to create a subsequence of S = [5, 13, 17, 29] consisting of the second and third terms, one may use

```
> S := [ 5, 13, 17, 29 ];
> T := S[ [2, 3] ];
```

To obtain the second term of this subsequence one could have done:

```
> x := S[ [2, 3] ][2];
```

(so x now has the value S[3] = 17), but it would have been more efficient to index the indexing sequence, since it is rather expensive to build the subsequence [S[2], S[3]] first, so:

```
> x := S[[2, 3][2]];
```

has the same effect but is better (of course x := S[3] would be even better in this simple example.) To add to the confusion, it is possible to mix the above constructions for indexing, since one can use lists of sequences and indices for indexing; continuing our example, there is now a third way to do the same as above, using an indexing list that first takes out the subsequence consisting of the second and third terms and then extracts the second term of that:

```
> x := S[[2, 3], 2];
```

Similarly, the construction

$$> X := S[[2, 3], [2]];$$

pulls out the subsequence consisting of the second term of the subsequence of terms two and three of S, in other words, this assigns the sequence consisting of the element 17, not just the element itself!

9 SETS

9.1 Introduction	167	$\{ \ \mathtt{U} \ \ \mathtt{i} \ \ldots \ \mathtt{j} \ \mathtt{by} \ \mathtt{k} \ \}$	175
9.1.1 Enumerated Sets	167	9.3 Power Sets	175
9.1.2 Formal Sets	167	PowerSet(R)	175
9.1.3 Indexed Sets	167	PowerIndexedSet(R)	175
		PowerMultiset(R)	$\frac{176}{176}$
9.1.4 Multisets	167	<pre>in PowerFormalSet(R)</pre>	176
9.1.5 Compatibility	168	in	176
0.1.6 Notation	160	in	176
9.1.6 Notation	168	!	176
9.2 Creating Sets	168	!	176
9.2.1 The Formal Set Constructor	168	!	176
{! x in F P(x) !}	168	9.3.1 The Cartesian Product Constructors	177
9.2.2 The Enumerated Set Constructor .	169	9.4 Sets from Structures	177
	169	Set(M)	177
{ } { ʊ }	169	FormalSet(M)	177
$\{ e_1, e_2, \ldots, e_n \}$	169	1 Olimarbee (11)	111
$\{ U \mid e_1, e_2, \ldots, e_n \}$	169	9.5 Accessing and Modifying Sets.	178
{ e(x) : x in E P(x) }	170	9.5.1 Accessing Sets and their Associate	ed
$\{U \mid e(x) : x in E \mid P(x)\}$	170	Structures	178
$\{ e(x_1,\ldots,x_k) : x_1 \text{ in } E_1,\ldots,x_k \}$		#	178
$\inf E_k \mid P(x_1, \ldots, x_k) $	170	Category(S)	178
$\{U \mid e(x_1,,x_k) : x_1 \text{ in } E_1,, \}$	150	Type(S)	178
\mathtt{x}_k in \mathtt{E}_k $\mathtt{P}(\mathtt{x}_1,\;\ldots,\;\mathtt{x}_k)$ }	170	Parent(R)	178
9.2.3 The Indexed Set Constructor	171	Universe(R)	178
{@ @}	171	<pre>Index(S, x)</pre>	178
{@ U @}	171	Position(S, x)	178
$\{0 e_1, e_2, \ldots, e_n 0\}$	171	S[i]	178
$\{ @\ U\ \ e_1,\ e_2,\ \ldots,\ e_m\ @ \}$	171	S[I]	178
$\{0 \ e(x) : x \ in \ E \ \ P(x) \ 0\}$	171	9.5.2 Selecting Elements of Sets	179
$\{ Q \ U \ \ e(x) : x \ in E \ \ P(x) \ Q \}$	171	Random(R)	180
$\{ @ \ e(x_1,,x_k) : x_1 \ in \ E_1,, x_k \ in \ E_k \mid P(x_1,, x_k) \ @ \}$	172	random{ $e(x)$: x in $E \mid P(x)$ } random{ $e(x_1, \ldots, x_k)$: x_1 in E_1 ,	180
$\{0 \ U \mid e(x_1,, x_k) : x_1 \text{ in } E_1,,$		$\ldots, x_k \text{ in } E_k \mid P(x_1, \ldots, x_k)\}$	180
x_k in E_k $P(x_1, \ldots, x_k)$ 0	172	Representative (R)	180
9.2.4 The Multiset Constructor	172	Rep(R)	180
{* *}	172	ExtractRep(\sim R, \sim r)	181
{* U *}	172	$rep\{ e(x) : x in E P(x) \}$	181
$\{* e_1, e_2, \ldots, e_n *\}$	173	$\operatorname{rep}\{\ e(x_1,\ \ldots,\ x_k)\ :\ x_1\ in\ E_1,\ \ldots,$	
$\{* U \mid e_1, e_2, \ldots, e_m *\}$	173	\mathtt{x}_k in \mathtt{E}_k $\mathtt{P}(\mathtt{x}_1,\;\ldots,\;\mathtt{x}_k)$ }	181
$\{* e(x) : x in E \mid P(x) *\}$	173	Minimum(S)	182
$\{* U \mid e(x) : x in E \mid P(x) *\}$	173	Min(S)	182
$\{* e(x_1,\ldots,x_k) : x_1 \text{ in } E_1,\ldots,x_k$		Maximum(S)	182
in $E_k \mid P(x_1, \ldots, x_k) * \}$	173	Max(S)	182
$\{* U \mid e(x_1,,x_k) : x_1 \text{ in } E_1,,$		Hash(x)	182
x_k in $E_k \mid P(x_1, \ldots, x_k)*$	173	9.5.3 Modifying Sets	182
9.2.5 The Arithmetic Progression Construc		Include(\sim S, x)	182
tors	174	<pre>Include(S, x)</pre>	182
{ ij }	174	Exclude(\sim S, x)	182
{ U ij }	174	Exclude(S, x)	182
{ i i bv k }	175	ChangeUniverse(\sim S, V)	183

<pre>ChangeUniverse(S, V)</pre>	183	9.6.3 Other Set Operations	187
<pre>CanChangeUniverse(S, V)</pre>	183	Multiplicity(S, x)	187
SetToIndexedSet(E)	184	Multiplicities(S)	187
<pre>IndexedSetToSet(S)</pre>	184	Subsets(S)	187
<pre>Isetset(S)</pre>	184	Subsets(S, k)	188
IndexedSetToSequence(S)	184	RandomSubset(S, k)	188
<pre>Isetseq(S)</pre>	184	Multisets(S, k)	188
MultisetToSet(S)	184	Subsequences(S, k)	188
SetToMultiset(E)	184	Permutations(S)	188
SequenceToMultiset(Q)	184	Permutations(S, k)	188
9.6 Operations on Sets	185	9.7 Quantifiers	188
9.6.1 Boolean Functions and Operators .	185	$exists(t)$ { $e(x): x in E P(x)$ }	188
IsNull(R)	185	$exists(t_1,\;\ldots,\;t_r)\{\;e(x)\;:\;$	
<pre>IsEmpty(R)</pre>	185	x in E P(x)	188
eq	185	$ ext{exists(t)}\{ ext{e(x}_1, \ldots, ext{x}_k)\colon ext{x}_1 ext{ in } ext{E}_1,$	
ne	185	\ldots , x_k in E_k $P(x_1, \ldots, x_k)$ }	189
in	185	$\mathtt{exists}(t_1,\;\ldots,\;t_r)\big\{\;e(x_1,\;\ldots,\;x_k)\;:\;$	
notin	185	\mathtt{x}_1 in \mathtt{E}_1 , \ldots , \mathtt{x}_k in \mathtt{E}_k \mid P $\}$	189
subset	186	$forall(t)\{ e(x) : x in E P(x) \}$	190
notsubset	186	$ ext{forall}(ext{t}_1,\;\ldots,\; ext{t}_r)\{\; ext{e(x)}\;:\;$	
eq	186	x in E P(x)	190
ne	186	$ ext{forall(t)}\{ ext{e}(ext{x}_1,\;\ldots,\; ext{x}_k)\colon\;\; ext{x}_1\;\; ext{in E}_1,$	
<pre>IsDisjoint(R, S)</pre>	186	\ldots , x_k in $E_k \mid P(x_1, \ldots, x_k)$	190
9.6.2 Binary Set Operators	186	forall($t_1,, t_r$) { $e(x_1,, x_k)$: x_1 in $E_1,, x_k$ in E_k P }	190
join	186		
meet	187	9.8 Reduction and Iteration over Set	s191
diff	187	x in S	191
sdiff	187	&	191

Chapter 9 SETS

9.1 Introduction

A set in Magma is a (usually unordered) collection of objects belonging to some common structure (called the *universe* of the set). There are four basic types of sets: enumerated sets, whose elements are all stored explicitly (with one exception, see below); formal sets, whose elements are stored implicitly by means of a predicate that allows for testing membership; indexed sets, which are restricted enumerated sets having a numbering on elements; and multisets, which are enumerated sets with possible repetition of elements. In particular, enumerated and indexed sets and multisets are always finite, and formal sets are allowed to be infinite.

9.1.1 Enumerated Sets

Enumerated sets are finite, and can be specified in three basic ways (see also section 2 below): by listing all elements; by an expression involving elements of some finite structure; and by an arithmetic progression. If an arithmetic progression is specified, the elements are not calculated explicitly until a modification of the set necessitates it; in all other cases all elements of the enumerated set are stored explicitly.

9.1.2 Formal Sets

A formal set consists of the subset of elements of some carrier set (structure) on which a certain predicate assumes the value 'true'.

The only set-theoretic operations that can be performed on formal sets are union, intersection, difference and symmetric difference, and element membership testing.

9.1.3 Indexed Sets

For some purposes it is useful to be able to access elements of a set through an index map, which numbers the elements of the set. For that purpose Magma has indexed sets, on which a very few basic set operations are allowed (element membership testing) as well as some sequence-like operations (such as accessing the *i*-th term, getting the index of an element, appending and pruning).

9.1.4 Multisets

For some purposes it is useful to construct a set with some of its members repeated. For that purpose Magma has multisets, which take into account the repetition of members. The number of times an object x occurs in a multiset S is called the *multiplicity* of x in S. Magma has the $\hat{\ }$ operator to specify a multiplicity: the expression x^n means the object x with multiplicity x. In the following, whenever any multiset constructor or function expects an element y, the expression x^n may usually be used.

9.1.5 Compatibility

The binary operators for sets do not allow mixing of the four types of sets (so one cannot take the intersection of an enumerated set and a formal set, for example), but it is easy to convert an enumerated set into a formal set – see the section on binary operators below – and there are functions provided for making an enumerated set out of an indexed set or a multiset (and vice versa).

By the limitation on their construction formal sets can only contain elements from one structure in Magma. The elements of enumerated sets are also restricted, in the sense that either some universe must be specified upon creation, or Magma must be able to find such universe automatically. The rules for compatibility of elements and the way Magma deals with these universes are the same for sequences and sets, and are described in the previous chapter. The restrictions on indexed sets are the same as those for enumerated sets.

9.1.6 Notation

Certain expressions appearing in the sections below (possibly with subscripts) have a standard interpretation:

U the universe: any Magma structure;

- E the carrier set for enumerated sets: any enumerated structure (it must be possible to loop over its elements see the Introduction to this Part (Chapter 8));
- F the carrier set for formal sets: any structure for which membership testing using in is defined see the Introduction to this Part (Chapter 8));
- x a free variable which successively takes the elements of E (or F in the formal case) as its values;
- P a Boolean expression that usually involves the variable(s) x, x_1, \ldots, x_k ;
- e an expression that also usually involves the variable(s) x, x_1, \ldots, x_k .

9.2 Creating Sets

The customary braces { and } are used to define enumerated sets. Formal sets are delimited by the composite braces {! and !}. For indexed sets {@ and @} are used. For multisets {* and *} are used.

9.2.1 The Formal Set Constructor

The formal set constructor has the following fixed format (the expressions appearing in the construct are defined above):

```
\{! x in F | P(x) !\}
```

Form the formal set consisting of the subset of elements x of F for which P(x) is true. If P(x) is true for every element of F, the set constructor may be abbreviated to $\{! \ x \ in \ F \ !\}$. Note that the universe of a formal set will always be equal to the carrier set F.

9.2.2 The Enumerated Set Constructor

Enumerated sets can be constructed by expressions enclosed in braces, provided that the values of all expressions can be automatically coerced into some common structure, as outlined in the Introduction, (Chapter 8). All general constructors have an optional universe (U in the list below) up front, that allows the user to specify into which structure all terms of the sets should be coerced.

```
{ }
```

The null set: an empty set that does not have its universe defined.

```
{ U | }
```

The empty set with universe U.

```
\{ e_1, e_2, \ldots, e_n \}
```

Given a list of expressions e_1, \ldots, e_n , defining elements a_1, a_2, \ldots, a_n all belonging to (or automatically coercible into) a single algebraic structure U, create the set $\{a_1, a_2, \ldots, a_n\}$ of elements of U.

Example H9E1_

We create a set by listing its elements explicitly.

```
> S := { (7^2+1)/5, (8^2+1)/5, (9^2-1)/5 };
> S;
{ 10, 13, 16 }
> Parent(S);
Set of subsets of Rational Field
```

Thus S was created as a set of rationals, because / on integers has a rational result. If one wishes to obtain a set of integers, one could specify the universe (or one could use div, or one could use ! on every element to coerce it into the ring of integers):

```
> T := { Integers() | (7^2+1)/5, (8^2+1)/5, (9^2-1)/5 };
> T;
{ 10, 13, 16 }
> Parent(T);
Set of subsets of Integer Ring
```

```
\{ U \mid e_1, e_2, \ldots, e_n \}
```

Given a list of expressions e_1, \ldots, e_n , which define elements a_1, a_2, \ldots, a_n that are all coercible into U, create the set $\{a_1, a_2, \ldots, a_n\}$ of elements of U.

```
\{ e(x) : x in E | P(x) \}
```

Form the set of elements e(x), all belonging to some common structure, for those $x \in E$ with the property that the predicate P(x) is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8) (in particular, E must be a finite structure that can be enumerated).

If P(x) is true for every value of x in E, then the set constructor may be abbreviated to $\{ e(x) : x \text{ in } E \}$.

```
\{U \mid e(x) : x in E \mid P(x) \}
```

Form the set of elements of U consisting of the values e(x) for those $x \in E$ for which the predicate P(x) is true (an error results if not all e(x) are coercible into U). The expressions appearing in this construct have the same interpretation as before.

If P is always true, it may be omitted (including the |).

```
\{ e(x_1,\ldots,x_k) : x_1 \text{ in } E_1, \ldots, x_k \text{ in } E_k \mid P(x_1,\ldots,x_k) \}
```

The set consisting of those elements $e(x_1, \ldots, x_k)$, in some common structure, for which x_1, \ldots, x_k in E_1, \ldots, E_k have the property that $P(x_1, \ldots, x_k)$ is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8).

Note that if two successive allowable structures E_i and E_{i+1} are identical, then the specification of the carrier sets for x_i and x_{i+1} may be abbreviated to x_i , x_{i+1} in E_i .

Also, if $P(x_1,...,x_k)$ is always true, it may be omitted (including the |).

```
\{ U | e(x<sub>1</sub>,...,x<sub>k</sub>) : x<sub>1</sub> in E<sub>1</sub>, ..., x<sub>k</sub> in E<sub>k</sub> | P(x<sub>1</sub>,...,x<sub>k</sub>) \}
```

As in the previous entry, the set consisting of those elements $e(x_1, \ldots, x_k)$ for which $P(x_1, \ldots, x_k)$ is true, is formed, as a set of elements of U (an error occurs if not all $e(x_1, \ldots, x_k)$ are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that is always true may be omitted.

Example H9E2

Now that Fermat's last theorem may have been proven, it may be of interest to find integers that almost satisfy $x^n + y^n = z^n$. In this example we find all 2 < x, y, z < 1000 such that $x^3 + y^3 = z^3 + 1$. First we build a set of cubes, then two sets of pairs for which the sum of cubes differs from a cube by 1. Note that we build a set rather than a sequence of cubes because we only need fast membership testing. Also note that the resulting sets of pairs do not have their elements in the order in which they were found.

```
> cubes := { Integers() | x^3 : x in [1..1000] };
> plus := { <a, b> : a in [2..1000], b in [2..1000] | \
>        b ge a and (a^3+b^3-1) in cubes };
> plus;
{
```

```
< 9, 10 >,
< 135, 235 >
< 334, 438 >,
< 73, 144 >,
< 64, 94 >,
< 244, 729 >
}
```

Note that we spend a lot of time cubing integers this way. For a more efficient approach, see a subsequent example.

9.2.3 The Indexed Set Constructor

The creation of indexed sets is similar to that of enumerated sets.

```
{0 0}
```

The null set: an empty indexed set that does not have its universe defined.

```
{@ U | @}
```

The empty indexed set with universe U.

```
\{ @ e_1, e_2, \ldots, e_n @ \}
```

Given a list of expressions e_1, \ldots, e_n , defining elements a_1, a_2, \ldots, a_n all belonging to (or automatically coercible into) a single algebraic structure U, create the indexed set $Q = \{a_1, a_2, \ldots, a_n\}$ of elements of U.

```
\{	exttt{@ U | e}_1, e_2, \ldots, e_m 	exttt{@}\}
```

Given a list of expressions e_1, \ldots, e_m , which define elements a_1, a_2, \ldots, a_n that are all coercible into U, create the indexed set $Q = \{a_1, a_2, \ldots, a_n\}$ of elements of U.

```
\{0 \ e(x) : x \ in \ E \mid P(x) \ 0\}
```

Form the indexed set of elements e(x), all belonging to some common structure, for those $x \in E$ with the property that the predicate P(x) is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8) (in particular, E must be a finite structure that can be enumerated).

If P is always true, it may be omitted (including the |).

```
\{ @ U \mid e(x) : x in E \mid P(x) @ \}
```

Form the indexed set of elements of U consisting of the values e(x) for those $x \in E$ for which the predicate P(x) is true (an error results if not all e(x) are coercible into U). The expressions appearing in this construct have the same interpretation as before.

If P is always true, it may be omitted (including the |).

```
\{ @ e(x_1,...,x_k) : x_1 \text{ in } E_1, ..., x_k \text{ in } E_k \mid P(x_1,...,x_k) @ \}
```

The indexed set consisting of those elements $e(x_1, \ldots, x_k)$ (in some common structure), for which x_1, \ldots, x_k in $E_1 \times \ldots \times E_k$ have the property that $P(x_1, \ldots, x_k)$ is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8).

Note that if two successive allowable structures E_i and E_{i+1} are identical, then the specification of the carrier sets for x_i and x_{i+1} may be abbreviated to x_i , x_{i+1} in E_i .

Also, if $P(x_1,...,x_k)$ is always true, it may be omitted.

```
\{ @ U \mid e(x_1,\ldots,x_k) : x_1 \text{ in } E_1, \ldots, x_k \text{ in } E_k \mid P(x_1,\ldots,x_k) @ \}
```

As in the previous entry, the indexed set consisting of those elements $e(x_1, \ldots, x_k)$ for which $P(x_1, \ldots, x_k)$ is true is formed, as an indexed set of elements of U (an error occurs if not all $e(x_1, \ldots, x_k)$ are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that is always true may be omitted.

Example H9E3_

In the previous example we found pairs x, y such that $x^3 + y^3$ differs by one from some cube z^3 . Using indexed sets it is somewhat easier to retrieve the integer z as well. We give a small example. Note also that it is beneficial to know here that evaluation of expressions proceeds left to right.

```
> cubes := { @ Integers() | z^3 : z in [1..25] @};
> plus := { <x, y, z> : x in [-10..10], y in [-10..10], z in [1..25] |
>        y ge x and Abs(x) gt 1 and Abs(y) gt 1 and (x^3+y^3-1) in cubes
>        and (x^3+y^3-1) eq cubes[z] };
> plus;
{ <-6, 9, 8>, <9, 10, 12>, <-8, 9, 6> }
```

9.2.4 The Multiset Constructor

The creation of multisets is similar to that of enumerated sets. An important difference is that repetitions are significant and the operator ^^ (mentioned above) may be used to specify the multiplicity of an element.

```
{* *}
```

The null set: an empty multiset that does not have its universe defined.

```
{* U | *}
```

The empty multiset with universe U.

$$\{* e_1, e_2, \ldots, e_n *\}$$

Given a list of expressions e_1, \ldots, e_n , defining elements a_1, a_2, \ldots, a_n all belonging to (or automatically coercible into) a single algebraic structure U, create the multiset $Q = \{* a_1, a_2, \ldots, a_n *\}$ of elements of U.

$$\{* U \mid e_1, e_2, \ldots, e_m *\}$$

Given a list of expressions e_1, \ldots, e_m , which define elements a_1, a_2, \ldots, a_n that are all coercible into U, create the multiset $Q = \{* a_1, a_2, ..., a_n *\}$ of elements of U.

```
{* e(x) : x in E | P(x) *}
```

Form the multiset of elements e(x), all belonging to some common structure, for those $x \in E$ with the property that the predicate P(x) is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8) (in particular, E must be a finite structure that can be enumerated).

If P is always true, it may be omitted (including the |).

```
\{* U \mid e(x) : x in E \mid P(x) *\}
```

Form the multiset of elements of U consisting of the values e(x) for those $x \in E$ for which the predicate P(x) is true (an error results if not all e(x) are coercible into U). The expressions appearing in this construct have the same interpretation as before.

If P is always true, it may be omitted (including the |).

```
\{*\ \mathsf{e}(\mathsf{x}_1,\ldots,\mathsf{x}_k)\ :\ \mathsf{x}_1\ \mathsf{in}\ \mathsf{E}_1,\ \ldots,\ \mathsf{x}_k\ \mathsf{in}\ \mathsf{E}_k\ |\ \mathsf{P}(\mathsf{x}_1,\ \ldots,\ \mathsf{x}_k)\ *\}
```

The multiset consisting of those elements $e(x_1, \ldots, x_k)$ (in some common structure), for which x_1, \ldots, x_k in $E_1 \times \ldots \times E_k$ have the property that $P(x_1, \ldots, x_k)$ is true. The expressions appearing in this construct have the interpretation given in the Introduction (Chapter 8).

Note that if two successive allowable structures E_i and E_{i+1} are identical, then the specification of the carrier sets for x_i and x_{i+1} may be abbreviated to \mathbf{x}_i , \mathbf{x}_{i+1} in E_i .

Also, if $P(x_1,...,x_k)$ is always true, it may be omitted.

$$\{* U \mid e(x_1,...,x_k) : x_1 \text{ in } E_1, ..., x_k \text{ in } E_k \mid P(x_1,...,x_k)*\}$$

As in the previous entry, the multiset consisting of those elements $e(x_1, \ldots, x_k)$ for which $P(x_1, \ldots, x_k)$ is true is formed, as a multiset of elements of U (an error occurs if not all $e(x_1, \ldots, x_k)$ are elements of or coercible into U).

Again, identical successive structures may be abbreviated, and a predicate that is always true may be omitted.

Example H9E4_

Here we demonstrate the use of the multiset constructors.

```
> M := {* 1, 1, 1, 3, 5 *};
> M;
{* 1^^3, 3, 5 *}
> M := {* 1^^4, 2^^5, 1/2^3 *};
> // Count frequency of digits in first 1000 digits of pi:
> pi := Pi(RealField(1001));
> dec1000 := Round(10^1000*(pi-3));
> I := IntegerToString(dec1000);
> F := {* I[i]: i in [1 .. #I] *};
> F;
{* 7^^95, 3^^102, 6^^94, 2^^103, 9^^106, 5^^97,
1^116, 8^101, 4^93, 0^93 *}
> for i := 0 to 9 do i, Multiplicity(F, IntegerToString(i)); end for;
0 93
1 116
2 103
3 102
4 93
5 97
6 94
7 95
8 101
9 106
```

9.2.5 The Arithmetic Progression Constructors

Some special constructors exist to create and store enumerated sets of integers in arithmetic progression efficiently. This only works for arithmetic progressions of elements of the ring of integers.

```
{ i..j }
{ U | i..j }
```

The enumerated set whose elements form the arithmetic progression $i, i + 1, i + 2, \ldots, j$, where i and j are (expressions defining) integers. If j is less than i then the empty set will be created.

The only universe U that is legal here is the ring of integers.

```
{ i .. j by k }
{ U | i .. j by k }
```

The enumerated set consisting of the integers forming the arithmetic progression i, i + k, i + 2 * k, ..., j, where i, j and k are (expressions defining) integers (but $k \neq 0$).

If k is positive then the last element in the progression will be the greatest integer of the form i + n * k that is less than or equal to j. If j is less than i, the empty set will be constructed.

If k is negative then the last element in the progression will be the least integer of the form i + n * k that is greater than or equal to j. If j is greater than i, the empty set will be constructed.

As for the previous constructor, only the ring of integers is allowed as a legal universe U.

Example H9E5.

It is possible to use the arithmetic progression constructors to save typing in the creation of 'arithmetic progressions' of elements of other structures than the ring of integers, but it should be kept in mind that the result will not be treated especially efficiently like the integer case. Here is the 'wrong' way, as well as two correct ways to create a set of 10 finite field elements.

```
> S := { FiniteField(13) | 1..10 };
Runtime error in { .. }: Invalid set universe
> S := { FiniteField(13) | x : x in { 1..10 } };
> S;
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
> G := PowerSet(FiniteField(13));
> S := G ! { 1..10 };
> S;
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }
```

9.3 Power Sets

The PowerSet constructor returns a structure comprising the subsets of a given structure R; it is mainly useful as a parent for other set and sequence constructors. The only operations that are allowed on power sets are printing, testing element membership, and coercion into the power set (see the examples below).

```
PowerSet(R)
```

The structure comprising all enumerated subsets of structure R.

```
PowerIndexedSet(R)
```

The structure comprising all indexed subsets of structure R.

PowerMultiset(R)

The structure consisting of all submultisets of the structure R.

S in P

Returns **true** if enumerated set S is in the power set P, that is, if all elements of the set S are contained in or coercible into R, where P is the power set of R; **false** otherwise.

PowerFormalSet(R)

The structure comprising all formal subsets of structure R.

S in P

Returns true if indexed set S is in the power set P, that is, if all elements of the set S are contained in or coercible into R, where P is the power set of R; false otherwise.

S in P

Returns true if multiset S is in the power set P, that is, if all elements of the set S are contained in or coercible into R, where P is the power set of R; false otherwise.

P!S

Return a set with universe R consisting of the elements of the set S, where P is the power set of R. An error results if not all elements of S can be coerced into R.

P ! S

Return an indexed set with universe R consisting of the elements of the set S, where P is the power set of R. An error results if not all elements of S can be coerced into R.

P!S

Return a multiset with universe R consisting of the elements of the set S, where P is the power set of R. An error results if not all elements of S can be coerced into R.

Example H9E6_

```
> S := { 1 .. 10 };
> P := PowerSet(S);
> P;
Set of subsets of { 1 .. 10 }
> F := { 6/3, 12/4 };
> F in P;
true
> G := P ! F;
> Parent(F);
Set of subsets of Rational Field
> Parent(G);
Set of subsets of { 1 .. 10 }
```

9.3.1 The Cartesian Product Constructors

Using car< > and CartesianProduct(), it is possible to create the Cartesian product of sets (or, in fact, of any combination of structures), but the result will be of type 'Cartesian product' rather than set, and the elements are tuples – we refer the reader to Chapter 11 for details.

9.4 Sets from Structures

Set(M)

Given a finite structure that allows explicit enumeration of its elements, return the set containing its elements (having M as its universe).

FormalSet(M)

Given a structure M, return the formal set consisting of its elements.

9.5 Accessing and Modifying Sets

Enumerated sets can be modified by inserting or removing elements. Indexed sets allow some sequence-like operators for modification and access.

9.5.1 Accessing Sets and their Associated Structures

#R

Cardinality of the enumerated, indexed, or multi- set R. Note that for a multiset, repetitions are significant, so the result may be greater than the underlying set.

Category(S)

Type(S)

The category of the object S. For a set this will be one of SetEnum, SetIndx, SetMulti, or SetFormal. For a power set the type is one of PowSetEnum, PowSetIndx, PowSetMulti.

Parent(R)

Returns the parent structure of R, that is, the structure consisting of all (enumerated) sequences over the universe of R.

Universe(R)

Returns the 'universe' of the (enumerated or indexed or multi- or formal) set R, that is, the common structure to which all elements of the set belong. An error is signalled when R is the null set.

Index(S, x)

Position(S, x)

Given an indexed set S, and an element x, returns the index i such that S[i] = x if such index exists, or return 0 if x is not in S. If x is not in the universe of S, an attempt will be made to coerce it; an error occurs if this fails.

S[i]

Return the *i*-th entry of indexed set S. If i < 1 or i > #S an error occurs. Note that indexing is *not* allowed on the left hand side.

S[I]

The indexed set $\{S[i_1], \ldots, S[i_r]\}$ consisting of terms selected from the indexed set S, according to the terms of the integer sequence I. If any term of I lies outside the range 1 to #S, then an error results. If I is the empty sequence, then the empty set with universe the same as that of S is returned.

Example H9E7_

We build an indexed set of sets to illustrate the use of the above functions.

```
> B := { @ { i : i in [1..k] } : k in [1..5] @};
> B;
{ @
   { 1 },
   { 1, 2 },
   \{1, 2, 3\},\
   { 1, 2, 3, 4 },
   { 1, 2, 3, 4, 5 },
@}
> #B;
5
> Universe(B);
Set of subsets of Integer Ring
> Parent(B);
Set of indexed subsets of Set of subsets of Integer Ring
> Category(B);
{\tt SetIndx}
> Index(B, { 2, 1});
> #B[2];
2
> Universe(B[2]);
Integer Ring
```

9.5.2 Selecting Elements of Sets

Most finite structures in MAGMA, including enumerated sets, allow one to obtain a random element using Random. There is an alternative (and often preferable) option for enumerated sets in the random{} constructor. This makes it possible to choose a random element of the set without generating the whole set first.

Likewise, rep{ } is an alternative to the general Rep function returning a representative element of a structure, having the advantage of aborting the construction of the set as soon as one element has been found.

Here, E will again be an enumerable structure, that is, a structure that allows enumeration of its elements (see the Appendix for an exhaustive list).

Note that $random\{ e(x) : x in E \mid P(x) \}$ does *not* return a random element of the set of values e(x), but rather a value of e(x) for a random x in E which satisfies P (and mutatis mutandis for rep).

See the subsection on Notation in the Introduction (Chapter 8) for conventions regarding e, x, E, P.

Random(R)

A random element chosen from the enumerated, indexed or multi- set R. Every element has an equal probability of being chosen for enumerated or indexed sets, and a weighted probability in proportion to its multiplicity for multisets. Successive invocations of the function will result in independently chosen elements being returned as the value of the function. If R is empty an error occurs.

```
random{e(x) : x in E | P(x)}
```

Given an enumerated structure E and a Boolean expression P, return the value of the expression e(y) for a randomly chosen element y of E for which P(y) is true.

The expression P may be omitted if it is always true.

```
\operatorname{random}\{\operatorname{e}(\mathtt{x}_1,\ \ldots,\ \mathtt{x}_k)\ :\ \mathtt{x}_1\ \operatorname{in}\ \mathtt{E}_1,\ \ldots,\ \mathtt{x}_k\ \operatorname{in}\ \mathtt{E}_k\ |\ \mathtt{P}(\mathtt{x}_1,\ \ldots,\ \mathtt{x}_k)\}
```

Given enumerated structures E_1, \ldots, E_k , and a Boolean expression $P(x_1, \ldots, x_k)$, return the value of the expression $e(y_1, \cdots, y_k)$ for a randomly chosen element $< y_1, \ldots, y_k >$ of $E_1 \times \cdots \times E_k$, for which $P(y_1, \ldots, y_k)$ is true.

The expression P may be omitted if it is always true.

If successive structures E_i and E_{i+1} are identical, then the abbreviation \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i may be used.

Example H9E8_

Here are two ways to find a 'random' primitive element for a finite field.

```
> p := 10007;
> F := FiniteField(p);
> proots := { z : z in F | IsPrimitive(z) };
> #proots;
5002
> Random(proots);
5279
```

This way, a set of 5002 elements is built (and primitivity is checked for all elements of F), and a random choice is made. Alternatively, we use random.

```
> random{ x : x in F | IsPrimitive(x) };
4263
```

In this case random elements in F are chosen until one is found that is primitive. Since almost half of F's elements are primitive, only very few primitivity tests will be done before success occurs.

Representative(R)

Rep(R)

An arbitrary element chosen from the enumerated, indexed, or multi- set R.

```
\texttt{ExtractRep}(\sim \texttt{R,} \sim \texttt{r})
```

Assigns an arbitrary element chosen from the enumerated set R to r, and removes it from R. Thus the set R is modified, as well as the element r. An error occurs if R is empty.

```
\texttt{rep} \{ \texttt{ e(x)} : \texttt{ x in E | P(x) } \}
```

Given an enumerated structure E and a Boolean expression P, return the value of the expression e(y) for the first element y of E for which P(y) is true. If P(x) is false for every element of E, an error will occur.

```
\operatorname{\mathsf{rep}}\{\ \mathsf{e}(\mathsf{x}_1,\ \ldots,\ \mathsf{x}_k)\ :\ \mathsf{x}_1\ \mathsf{in}\ \mathsf{E}_1,\ \ldots,\ \mathsf{x}_k\ \mathsf{in}\ \mathsf{E}_k\ |\ \mathsf{P}(\mathsf{x}_1,\ \ldots,\ \mathsf{x}_k)\ \}
```

Given enumerated structures E_1, \ldots, E_k , and a Boolean expression $P(x_1, \ldots, x_k)$, return the value of the expression $e(y_1, \cdots, y_k)$ for the first element $\langle y_1, \ldots, y_k \rangle$ of $E_1 \times \cdots \times E_k$, for which $P(y_1, \ldots, y_k)$ is true. An error occurs if no element of $E_1 \times \cdots \times E_k$ satisfies P.

The expression P may be omitted if it is always true.

If successive structures E_i and E_{i+1} are identical, then the abbreviation \mathbf{x}_i , \mathbf{x}_{i+1} in E_i may be used.

Example H9E9_

As an illustration of the use of ExtractRep, we modify an earlier example, and find cubes satisfying $x^3 + y^3 = z^3 - 1$ (with $x, y, z \le 1000$).

Note that instead of taking cubes over again, we only have to take cube roots in the last line (on the small resulting set) once.

Minimum(S)

Min(S)

Given a non-empty enumerated, indexed, or multi- set S, such that 1t and eq are defined on the universe of S, this function returns the minimum of the elements of S. If S is an indexed set, the position of the minimum is also returned.

Maximum(S)

Max(S)

Given a non-empty enumerated, indexed, or multi- set S, such that 1t and eq are defined on the universe of S, this function returns the maximum of the elements of S. If S is an indexed set, the position of the maximum is also returned.

Hash(x)

Given a Magma object x which can be placed in a set, return the hash value of x used by the set machinery. This is a fixed but arbitrary non-negative integer (whose maximum value is the maximum value of a C unsigned long on the particular machine). The crucial property is that if x and y are objects and x equals y then the hash values of x and y are equal (even if x and y have different internal structures). Thus one could implement sets manually if desired by the use of this function.

9.5.3 Modifying Sets

Include (\sim S, x)

Include(S, x)

Create the enumerated, indexed, or multi- set obtained by putting the element x in S (S is unchanged if S is not a multiset and x is already in S). If S is an indexed set, the element will be appended at the end. If S is a multiset, the multiplicity of x will be increased accordingly. If x is not in the universe of S, an attempt will be made to coerce it; an error occurs if this fails.

There are two versions of this: a procedure, where S is replaced by the new set, and a function, which returns the new set. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the set S will not be copied.

Exclude(\sim S, x)

Exclude(S, x)

Create a new set by removing the element x from S. If S is an enumerated set, nothing happens if x is not in S. If S is a multiset, the multiplicity of x will be decreased accordingly. If x is not in the universe of S, an attempt will be made to coerce it; an error occurs if this fails.

There are two versions of this: a procedure, where S is replaced by the new set, and a function, which returns the new set. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the set S will not be copied.

```
\texttt{ChangeUniverse}(\sim\!\texttt{S, V})
```

```
ChangeUniverse(S, V)
```

Given an enumerated, indexed, or multi- set S with universe U and a structure V which contains U, construct a new set of the same type which consists of the elements of S coerced into V.

There are two versions of this: a procedure, where S is replaced by the new set, and a function, which returns the new set. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the set S will not be copied.

CanChangeUniverse(S, V)

Given an enumerated, indexed, or multi- set S with universe U and a structure V which contains U, attempt to construct a new set T of the same type which consists of the elements of S coerced into V; if successful, return true and T, otherwise return false.

Example H9E10

This example uses Include and Exclude to find a set (if it exists) of cubes of integers such that the elements of a given set R can be expressed as the sum of two of those.

```
> R := { 218, 271, 511 };
> x := 0;
> cubes := { 0 };
> while not IsEmpty(R) do
> x +:= 1;
> c := x^3;
> Include(~cubes, c);
> for z in cubes do
> Exclude(~R, z+c);
> end for;
> end while;
```

We did not record how the elements of R were obtained as sums of a pair of cubes. For that, the following suffices.

```
> R := { 218, 271, 511 }; // it has been emptied ! 
> { \{ x, y \} : x, y \text{ in cubes } | x+y \text{ in } R \};
```

```
{
    { -729, 1000 },
    { -125, 343 },
    { -1, 512 },
}
```

SetToIndexedSet(E)

Given an enumerated set E, this function returns an indexed set with the same elements (and universe) as E.

IndexedSetToSet(S)

Isetset(S)

Given an indexed set S, this function returns an enumerated set with the same elements (and universe) as E.

IndexedSetToSequence(S)

Isetseq(S)

Given an indexed set S, this function returns a sequence with the same elements (and universe) as E.

MultisetToSet(S)

Given a multiset S, this function returns an enumerated set with the same elements (and universe) as S.

SetToMultiset(E)

Given an enumerated set E, this function returns a multiset with the same elements (and universe) as E.

SequenceToMultiset(Q)

Given an enumerated sequence E, this function returns a multiset with the same elements (and universe) as E.

9.6 Operations on Sets

9.6.1 Boolean Functions and Operators

As explained in the Introduction (Chapter 8), when elements are taken out of a set their parent will be the universe of the set (or, if the universe is itself a set, the universe of the universe, etc.); in particular, the set itself is not the parent. Hence equality testing on set elements is in fact equality testing between two elements of certain algebraic structures, and the sets are irrelevant. We only list the (in)equality operator for convenience here.

Element membership testing is of critical importance for all types of sets.

Testing whether or not R is a subset of S can be done if R is an enumerated or indexed set and S is any set; hence (in)equality testing is only possible between sets that are not formal sets.

IsNull(R)

Returns true if and only if the enumerated, indexed, or multi- set R is empty and does not have its universe defined.

IsEmpty(R)

Returns true if and only if the enumerated, indexed or multi- set R is empty.

x eq y

Given an element x of a set R with universe U and an element y of a set S with universe V, where a common overstructure W can be found with $U \subset W \supset V$ (see the Introduction (Chapter 8) for details on overstructures), return true if and only if x and y are equal as elements of W.

x ne y

Given an element x of a set R with universe U and an element y of a set S with universe V, where a common overstructure W can be found with $U \subset W \supset V$ (see the Introduction (Chapter 8) for details on overstructures), return true if and only if x and y are distinct as elements of W.

x in R

Returns true if and only if the element x is a member of the set R. If x is not an element of the universe U of R, it is attempted to coerce x into U; if this fails, an error occurs.

x notin R

Returns true if and only if the element x is not a member of the set R. If x is not an element of the parent structure U of R, it is attempted to coerce x into U; if this fails, an error occurs.

R subset S

Returns true if the enumerated, indexed or multi- set R is a subset of the set S, false otherwise. For multisets, if an element x of R has multiplicity n in R, the multiplicity of x in S must be at least n. Coercion of the elements of R into S is attempted if necessary, and an error occurs if this fails.

R notsubset S

Returns true if the enumerated, indexed, or multi- set R is a not a subset of the set S, false otherwise. Coercion of the elements of R into S is attempted if necessary, and an error occurs if this fails.

R eq S

Returns true if and only if R and S are identical sets, where R and S are enumerated, indexed or multi- sets For indexed sets, the index function is irrelevant for deciding equality. For multisets, matching multiplicities must also be equal. Coercion of the elements of R into S is attempted if necessary, and an error occurs if this fails.

R ne S

Returns **true** if and only if R and S are distinct sets, where R and S are enumerated indexed, or multi-sets. For indexed sets, the index function is irrelevant for deciding equality. For multisets, matching multiplicities must also be equal. Coercion of the elements of R into S is attempted if necessary, and an error occurs if this fails.

IsDisjoint(R, S)

Returns true iff the enumerated, indexed or multi- sets R and S are disjoint. Coercion of the elements of R into S is attempted if necessary, and an error occurs if this fails.

9.6.2 Binary Set Operators

For each of the following operators, R and S are sets of the same type. If R and S are both formal sets, then an error will occur unless both have been constructed with the same carrier structure F in the definition. If R and S are both enumerated, indexed, or multisets, then an error occurs unless the universes of R and S are compatible, as defined in the Introduction to this Part (Chapter 8).

Note that

$$Q := \{ ! x in R ! \}$$

converts an enumerated set R into a formal set Q.

R join S

Union of the sets R and S (see above for the restrictions on R and S). For multisets, matching multiplicities are added in the union.

R meet S

Intersection of the sets R and S (see above for the restrictions on R and S). For multisets, the minimum of matching multiplicities is stored in the intersection.

R diff S

Difference of the sets R and S. i.e., the set consisting of those elements of R which are not members of S (see above for the restrictions on R and S). For multisets, the difference contains any elements of R remaining after removing the corresponding elements of S the appropriate number of times.

R sdiff S

Symmetric difference of the sets R and S. i.e., the set consisting of those elements which are members of either R or S but not both (see above for the restrictions on R and S). Alternatively, it is the union of the difference of R with S and the difference of S with R.

Example H9E11_

```
> R := { 1, 2, 3 };
> S := { 1, 1/2, 1/3 };
> R join S;
{ 1/3, 1/2, 1, 2, 3 }
> R meet S;
{ 1 }
> R diff S;
{ 2, 3 }
> S diff R;
{ 1/3, 1/2 }
> R sdiff S;
{ 1/3, 1/2, 2, 3 }
```

9.6.3 Other Set Operations

```
Multiplicity(S, x)
```

Return the multiplicity in multiset S of element x. If x is not in S, zero is returned.

Multiplicities(S)

Returns the sequence of multiplicities of distinct elements in the multiset S. The order is the same as the internal enumeration order of the elements.

Subsets(S)

The set of all subsets of S.

Subsets(S, k)

The set of subsets of S of size k. If k is larger than the cardinality of S then the result will be empty.

RandomSubset(S, k)

A random subset of S of size k. It is an error if k is larger than the size of S.

Multisets(S, k)

The set of multisets consisting of k not necessarily distinct elements of S.

```
Subsequences(S, k)
```

The set of sequences of length k with elements from S.

Permutations(S)

The set of permutations (stored as sequences) of the elements of S.

```
Permutations(S, k)
```

The set of permutations (stored as sequences) of each of the subsets of S of cardinality k.

9.7 Quantifiers

To test whether some enumerated set is empty or not, one may use the IsEmpty function. However, to use IsEmpty, the set has to be created in full first. The existential quantifier exists enables one to do the test and abort the construction of the set as soon as an element is found; moreover, the element found will be assigned to a variable.

Likewise, forall enables one to abort the construction of the set as soon as an element not satisfying a certain property is encountered.

Note that exists(t) { e(x) : x in $E \mid P(x)$ } is not designed to return true if an element of the set of values e(x) satisfies P, but rather if there is an $x \in E$ satisfying P(x) (in which case e(x) is assigned to t).

For the notation used here, see the beginning of this chapter.

```
exists(t){ e(x): x in E \mid P(x) }
exists(t<sub>1</sub>, ..., t<sub>r</sub>){ e(x): x in E \mid P(x) }
```

Given an enumerated structure E and a Boolean expression P(x), the Boolean value true is returned if E contains at least one element x for which P(x) is true. If P(x) is not true for any element x of E, then the Boolean value false is returned.

Moreover, if P(x) is found to be true for the element y, say, of E, then in the first form of the exists expression, variable t will be assigned the value of the expression e(y). If P(x) is never true for an element of E, t will be left unassigned. In the second form, where t variables t_1, \ldots, t_r are given, the result e(y) should be a tuple of length t; each variable will then be assigned to the corresponding component of

the tuple. Similarly, all the variables will be left unassigned if P(x) is never true. The clause (t) may be omitted entirely.

The expression P may be omitted if it is always true.

```
exists(t){e(x<sub>1</sub>, ..., x<sub>k</sub>): x<sub>1</sub> in E<sub>1</sub>, ..., x<sub>k</sub> in E<sub>k</sub> | P(x<sub>1</sub>, ..., x<sub>k</sub>)}
exists(t<sub>1</sub>, ..., t<sub>r</sub>){ e(x<sub>1</sub>, ..., x<sub>k</sub>) : x<sub>1</sub> in E<sub>1</sub>, ..., x<sub>k</sub> in E<sub>k</sub> | P}
```

Given enumerated structures E_1, \ldots, E_k , and a Boolean expression $P(x_1, \ldots, x_k)$, the Boolean value true is returned if there is an element $\langle y_1, \ldots, y_k \rangle$ in the Cartesian product $E_1 \times \cdots \times E_k$, such that $P(y_1, \ldots, y_k)$ is true. If $P(x_1, \ldots, x_k)$ is not true for any element (y_1, \ldots, y_k) of $E_1 \times \cdots \times E_k$, then the Boolean value false is returned.

Moreover, if $P(x_1, ..., x_k)$ is found to be true for the element $\langle y_1, ..., y_k \rangle$ of $E_1 \times \cdots \times E_k$, then in the first form of the exists expression, the variable t will be assigned the value of the expression $e(y_1, ..., y_k)$. If $P(x_1, ..., x_k)$ is never true for an element of $E_1 \times \cdots \times E_k$, then the variable t will be left unassigned. In the second form, where t variables $t_1, ..., t_r$ are given, the result $e(y_1, ..., y_k)$ should be a tuple of length t; each variable will then be assigned to the corresponding component of the tuple. Similarly, all the variables will be left unassigned if $P(x_1, ..., x_k)$ is never true. The clause (t) may be omitted entirely.

The expression P may be omitted if it is always true.

If successive structures E_i and E_{i+1} are identical, then the abbreviation \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i may be used.

Example H9E12.

As a variation on an earlier example, we check whether or not some integers can be written as sums of cubes (less than 10^3 in absolute value):

```
> exists(t){ <x, y> : x, y in [ t^3 : t in [-10..10] ] | x + y eq 218 };
true
> t;
<-125, 343>
> exists(t){ <x, y> : x, y in [ t^3 : t in [1..10] ] | x + y eq 218 };
false
> t;
>> t;
^
```

User error: Identifier 't' has not been declared

```
forall(t){ e(x) : x in E | P(x) }

forall(t<sub>1</sub>, ..., t<sub>r</sub>){ e(x) : x in E | P(x) }
```

Given an enumerated structure E and a Boolean expression P(x), the Boolean value true is returned if P(x) is true for every element x of E.

If P(x) is not true for at least one element x of E, then the Boolean value false is returned.

Moreover, if P(x) is found to be false for the element y, say, of E, then in the first form of the exists expression, variable t will be assigned the value of the expression e(y). If P(x) is true for every element of E, t will be left unassigned. In the second form, where r variables t_1, \ldots, t_r are given, the result e(y) should be a tuple of length r; each variable will then be assigned to the corresponding component of the tuple. Similarly, all the variables will be left unassigned if P(x) is always true. The clause (t) may be omitted entirely.

The expression P may be omitted if it is always true.

```
forall(t){e(x<sub>1</sub>, ..., x<sub>k</sub>): x<sub>1</sub> in E<sub>1</sub>, ..., x<sub>k</sub> in E<sub>k</sub> | P(x<sub>1</sub>, ..., x<sub>k</sub>)}
forall(t<sub>1</sub>, ..., t<sub>r</sub>){ e(x<sub>1</sub>, ..., x<sub>k</sub>) : x<sub>1</sub> in E<sub>1</sub>, ..., x<sub>k</sub> in E<sub>k</sub> | P}
```

Given sets E_1, \ldots, E_k , and a Boolean expression $P(x_1, \ldots, x_k)$, the Boolean value true is returned if $P(x_1, \ldots, x_k)$ is true for every element (x_1, \ldots, x_k) in the Cartesian product $E_1 \times \cdots \times E_k$.

If $P(x_1,...,x_k)$ fails to be true for some element $(y_1,...,y_k)$ of $E_1 \times \cdots \times E_k$, then the Boolean value false is returned.

Moreover, if $P(x_1, \ldots, x_k)$ is false for the element $\langle y_1, \ldots, y_k \rangle$ of $E_1 \times \cdots \times E_k$, then in the first form of the exists expression, the variable t will be assigned the value of the expression $e(y_1, \cdots, y_k)$. If $P(x_1, \ldots, x_k)$ is true for every element of $E_1 \times \cdots \times E_k$, then the variable t will be left unassigned. In the second form, where t variables t_1, \ldots, t_r are given, the result $e(y_1, \cdots, y_k)$ should be a tuple of length t; each variable will then be assigned to the corresponding component of the tuple. Similarly, all the variables will be left unassigned if $P(x_1, \ldots, x_k)$ is never true. The clause (t) may be omitted entirely.

The expression P may be omitted if it is always true.

If successive structures E_i and E_{i+1} are identical, then the abbreviation \mathbf{x}_i , \mathbf{x}_{i+1} in \mathbf{E}_i may be used.

Example H9E13.

This example shows that forall and exists may be nested.

It is well known that every prime that is 1 modulo 4 can be written as the sum of two squares, but not every integer m congruent to 1 modulo 4 can. In this example we explore for small m whether perhaps $m \pm \epsilon$ (with $|\epsilon| \le 1$) is always a sum of squares.

```
> forall(u){ m : m in [5..1000 by 4] |
> exists{ <x, y, z> : x, y in [0..30], z in [-1, 0, 1] |
> x^2+y^2+z eq m } };
```

false
> u;
77

9.8 Reduction and Iteration over Sets

Both enumerated and indexed sets allow enumeration of their elements; formal sets do not. For indexed sets the enumeration will occur according to the order given by the indexing.

Instead of using a loop to apply the same binary associative operator to all elements of an enumerated or indexed set, it is in certain cases possible to use the *reduction operator* &

x in S

Enumerate the elements of an enumerated or indexed set S. This can be used in loops, as well as in the set and sequence constructors.

&o S

Given an enumerated or indexed set $S = \{a_1, a_2, \ldots, a_n\}$ of elements belonging to an algebraic structure U, and an (associative) operator $\circ : U \times U \to U$, form the element $a_{i_1} \circ a_{i_2} \circ a_{i_3} \circ \ldots \circ a_{i_n}$, for some permutation i_1, \ldots, i_n of $1, \ldots, n$.

Currently, the following operators may be used to reduce enumerated sets: +, *, and, or, join, meet and +, *, and, or to reduce indexed sets. An error will occur if the operator is not defined on U.

If S contains a single element a, then the value returned is a. If S is the null set (empty and no universe specified) or S is empty with universe U (and the operation is defined in U), then the result (or error) depends on the operation and upon U. The following table defines the return value:

	empty	null
&+	$U \ ! \ 0$	error
&*	U! 1	error
∧	true	true
∨	false	false
&join	empty	null
&meet	error	error

Warning: since the reduction may take place in an arbitrary order on the arguments a_1, \ldots, a_n , the result is not unambiguously defined if the operation is not commutative on the arguments!

Example H9E14____

Try to guess what happens if k < 0.

The function **choose** defined below takes a set S and an integer k as input, and produces a set of all subsets of S with cardinality k.

```
> function choose(S, k)
      if k eq 0 then
         return { { } };
>
>
      else
         return &join\{ \{ s \text{ join } \{ x \} : s \text{ in choose}(S \text{ diff } \{ x \}, k-1) \} : x \text{ in } S \};
      end if;
> end function;
So, for example:
> S := { 1, 2, 3, 4 };
> choose(S, 2);
        { 1, 3 },
        { 1, 4 },
        { 2, 4 },
        { 2, 3 },
        { 1, 2 },
        { 3, 4 }
}
```

10 SEQUENCES

10.1 Introduction	195	Position(S, x, f)	201
10.1.1 Enumerated Sequences	195	Representative(R)	201
10.1.1 Enumerated Sequences	190	Rep(R)	201
10.1.2 Formal Sequences	195	Random(R)	202
10.1.2. (7	100	<pre>Explode(R)</pre>	202
10.1.3 Compatibility	196	$Eltseq(\mathtt{R})$	202
10.2 Creating Sequences	196	10.4.3 Modifying Enumerated Sequences .	202
10.2.1 The Formal Sequence Constructor .	196	Append($\sim S$, x)	202
[! x in F P(x) !]	196	Append(S, x)	202
		Exclude $(\sim S, x)$	202
10.2.2 The Enumerated Sequence Constructor	c- 197	Exclude(S, x)	202
		Include(\sim S, x) Include(S, x)	$\frac{203}{203}$
[]	197	Insert(\sim S, i, x)	$\frac{203}{203}$
[n]	197	Insert(S, i, x)	$\frac{203}{203}$
$[e_1, e_2, \ldots, e_n]$	197	Insert(\sim S, k, m, T)	203
$[\ U \ \ e_1, \ e_2, \ \ldots, \ e_m \] \ [\ e(x) \ : \ x \ in \ E \ \ P(x) \]$	$197 \\ 197$	Insert(S, k, m, T)	203
[U e(x) : x in E P(x)]	197	$Prune(\sim S)$	204
$[e(x_1,,x_k): x_1 \text{ in } E_1,, x_k]$	191	Prune(S)	204
in $E_k \mid P(x_1, \ldots, x_k)$]	197	Remove(\sim S, i)	204
$[U \mid e(x_1, \ldots, x_k) : x_1 \text{ in } E_1, \ldots,$	101	Remove(S, i)	204
x_k in $E_k \mid P(x_1, \ldots, x_k)$	198	Reverse(\sim S)	204
10.2.3 The Arithmetic Progression Construc		Reverse(S)	204
tors	198	Rotate(\sim S, p)	204
		Rotate(S, p)	204
[ij]	198	$Sort(\sim S)$	205
[U ij]	198 198	Sort(S)	205
[ijbyk]	198	$Sort(\sim S, C)$	205
[U i j by k]		$Sort(\sim S, C, \sim p)$	$\frac{205}{205}$
10.2.4 Literal Sequences	199	Sort(S, C) ParallelSort(\sim S, \sim T)	$\frac{205}{205}$
\[m_1 ,, m_n]	199	Undefine $(\sim S, i)$	$\frac{205}{205}$
10.2 Dower Cogueros	199	Undefine(S, i)	$\frac{205}{205}$
10.3 Power Sequences		ChangeUniverse(S, V)	206
PowerSequence(R)	199	ChangeUniverse(S, V)	206
in	199	CanChangeUniverse(S, V)	206
!	199	10.4.4 Creating New Enumerated Sequence	es
10.4 Operators on Sequences	200	from Existing Ones	207
10.4.1 Access Functions	200	cat	207
#	200	cat:=	207
Parent(S)	200	Partition(S, p)	207
Universe(S)	200	Partition(S, P)	208
S[i]	200	Setseq(S) SetToSequence(S)	$\frac{208}{208}$
10.4.2 Selection Operators on Enumerate	ed	Seqset(S)	$\frac{208}{208}$
Sequences	201	SequenceToSet(S)	208
S[I]	201	And(S, T)	209
Minimum(S)	201	And $(\sim S, T)$	209
Min(S)	201	Or(S, T)	209
Maximum(S)	201	Or(~S, T)	209
Max(S)	201	Xor(S, T)	209
<pre>Index(S, x)</pre>	201	$\mathtt{Xor}(\sim\mathtt{S},\ \mathtt{T})$	209
<pre>Index(S, x, f)</pre>	201	Not(S)	209
Position(S, x)	201	$\mathtt{Not}(\sim\!\mathtt{S})$	209

$10.5 \; \text{Predicates on Sequences} \; . \; .$. 210	ge	212
<pre>IsComplete(S)</pre>	210	gt	212
<pre>IsDefined(S, i)</pre>	210	10.6 Recursion, Reduction, and Iter	a-
<pre>IsEmpty(S)</pre>	210	tion	
IsNull(S)	210	10.6.1 Recursion	. 212
10.5.1 Membership Testing	. 210		212
in	210	Self(n) Self()	$\frac{212}{212}$
notin	210	•	
<pre>IsSubsequence(S, T)</pre>	211	$10.6.2 \; \mathrm{Reduction} \; \ldots \; \ldots \; \ldots \; \ldots$. 213
<pre>IsSubsequence(S, T: Kind := o)</pre>	211	&	213
eq	211	40 = 7.	
ne	211	$10.7 ext{ Iteration} ext{$	213
10.5.2 Testing Order Relations	. 211	for x in S do $st;$ end for;	213
1t	211	10.8 Bibliography	214
ام	211	4 6 1 0	

Chapter 10 SEQUENCES

10.1 Introduction

A sequence in MAGMA is a linearly ordered collection of objects belonging to some common structure (called the *universe* of the sequence).

There are two types of sequence: enumerated sequences, of which the elements are all stored explicitly (with one exception, see below); and formal sequences, of which elements are stored implicitly by means of a predicate that allows for testing membership. In particular, enumerated sequences are always finite, and formal sequences are allowed to be infinite. In this chapter a sequence will be either a formal or an enumerated sequence.

10.1.1 Enumerated Sequences

An enumerated sequence of length l is an array of indefinite length of which only finitely many terms – including the l-th term, but no term of bigger index — have been defined to be elements of some common structure. Such sequence is called *complete* if all of the terms (from index 1 up to the length l) are defined.

In practice the length of an enumerated sequence must be less than 2^{30} .

Incomplete enumerated sequences are allowed as a convenience for the programmer in building complete enumerated sequences. Some sequence functions require their arguments to be complete; if that is the case, it is mentioned explicitly in the description below. However, all functions using sequences in *other* Magma modules always assume that a sequence that is passed in as an argument is complete. Note that the following line converts a possibly incomplete sequence S into a complete sequence T:

$$T := [s : s in S];$$

because the enumeration using the in operator simply ignores undefined terms.

Enumerated sequences of Booleans are highly optimized (stored as bit-vectors).

10.1.2 Formal Sequences

A formal sequence consists of elements of some range set on which a certain predicate assumes the value 'true'.

There is only a very limited number of operations that can be performed on them.

10.1.3 Compatibility

The binary operators for sequences do not allow mixing of the formal and enumerated sequence types (so one cannot take the concatenation of an enumerated sequence and a formal sequence, for example); but it is easy to convert an enumerated sequence into a formal sequence – see the section on binary operators below.

By the limitation on their construction formal sequences can only contain elements from one structure in Magma. The elements of enumerated sequences are also restricted, in the sense that either some common structure must be specified upon creation, or Magma must be able to find such universe automatically. The rules for compatibility of elements and the way Magma deals with these parents is the same for sequences and sets, and is outlined in Chapter 8.

10.2 Creating Sequences

Square brackets are used for the definition of enumerated sequences; formal sequences are delimited by the composite brackets [! and !].

Certain expressions appearing below (possibly with subscripts) have the standard interpretation:

- U the universe: any Magma structure;
- E the range set for enumerated sequences: any enumerated structure (it must be possible to loop over its elements see the Introduction to this Part);
- F the range set for formal sequences: any structure for which membership testing using in is defined see the Introduction to this Part);
- x a free variable which successively takes the elements of E (or F in the formal case) as its values;
- P a Boolean expression that usually involves the variable(s) x, x_1, \ldots, x_k ;
- e an expression that also usually involves the variable(s) x, x_1, \ldots, x_k .

10.2.1 The Formal Sequence Constructor

The formal sequence constructor has the following fixed format (the expressions appearing in the construct are defined above):

[! x in F | P(x) !]

Create the formal sequence consisting of the subsequence of elements x of F for which P(x) is true. If P(x) is true for every element of F, the sequence constructor may be abbreviated to [! x in F !]

10.2.2 The Enumerated Sequence Constructor

Sequences can be constructed by expressions enclosed in square brackets, provided that the values of all expressions can be automatically coerced into some common structure, as outlined in the Introduction. All general constructors have the universe U optionally up front, which allows the user to specify into which structure all terms of the sequences should be coerced.

[]

The null sequence (empty, and no universe specified).

[U |]

The empty sequence with universe U.

[e_1 , e_2 , ..., e_n]

Given a list of expressions e_1, \ldots, e_n , defining elements a_1, a_2, \ldots, a_n all belonging to (or automatically coercible into) a single algebraic structure U, create the sequence $Q = [a_1, a_2, \ldots, a_n]$ of elements of U.

As for multisets, one may use the expression x^n to specify the object x with multiplicity n: this is simply interpreted to mean x repeated n times (i.e., no internal compaction of the repetition is done).

[U | e_1 , e_2 , ..., e_m]

Given a list of expressions e_1, \ldots, e_m , which define elements a_1, a_2, \ldots, a_n that are all coercible into U, create the sequence $Q = [a_1, a_2, \ldots, a_n]$ of elements of U.

[e(x) : x in E | P(x)]

Form the sequence of elements e(x), all belonging to some common structure, for those $x \in E$ with the property that the predicate P(x) is true. The expressions appearing in this construct have the interpretation given at the beginning of this section.

If P(x) is true for every element of E, the sequence constructor may be abbreviated to [e(x) : x in E] .

[U | e(x) : x in E | P(x)]

Form the sequence of elements of U consisting of the values e(x) for those $x \in E$ for which the predicate P(x) is true (an error results if not all e(x) are coercible into U). The expressions appearing in this construct have the same interpretation as above.

[$e(x_1,\ldots,x_k)$: x_1 in E_1 , ..., x_k in E_k | $P(x_1,\ldots,x_k)$]

The sequence consisting of those elements $e(x_1, \ldots, x_k)$, in some common structure, for which x_1, \ldots, x_k in E_1, \ldots, E_k have the property that $P(x_1, \ldots, x_k)$ is true.

The expressions appearing in this construct have the interpretation given at the beginning of this section.

Note that if two successive ranges E_i and E_{i+1} are identical, then the specification of the ranges for x_i and x_{i+1} may be abbreviated to x_i , x_{i+1} in E_i .

Also, if $P(x_1,...,x_k)$ is always true, it may be omitted.

[U |
$$e(x_1, \ldots, x_k)$$
 : x_1 in E_1 , ..., x_k in E_k | $P(x_1, \ldots, x_k)$]

As in the previous entry, the sequence consisting of those elements $e(x_1, \ldots, x_k)$ for which $P(x_1, \ldots, x_k)$ is true is formed, as a sequence of elements of U (an error occurs if not all $e(x_1, \ldots, x_k)$ are coercible into U).

10.2.3 The Arithmetic Progression Constructors

Since enumerated sequences of integers arise so often, there are a few special constructors to create and handle them efficiently in case the entries are in arithmetic progression. The universe must be the ring of integers. Some effort is made to preserve the special way of storing arithmetic progressions under sequence operations.

The enumerated sequence of integers whose elements form the arithmetic progression $i, i+1, i+2, \ldots, j$, where i and j are (expressions defining) arbitrary integers. If j is less than i then the empty sequence of integers will be created.

The universe U, if it is specified, has to be the ring of integers; any other universe will lead to an error.

The enumerated sequence consisting of the integers forming the arithmetic progression i, i + k, i + 2 * k, ..., j, where i, j and k are (expressions defining) arbitrary integers (but $k \neq 0$).

If k is positive then the last element in the progression will be the greatest integer of the form i + n * k that is less than or equal to j; if j is less than i, the empty sequence of integers will be constructed.

If k is negative then the last element in the progression will be the least integer of the form i + n * k that is greater than or equal to j; if j is greater than i, the empty sequence of integers will be constructed.

The universe U, if it is specified, has to be the ring of integers; any other universe will lead to an error.

Example H10E1.

As in the case of sets, it is possible to use the arithmetic progression constructors to save some typing in the creation of sequences of elements of rings other than the ring of integers, but the result will not be treated especially efficiently.

```
> s := [ IntegerRing(200) | x : x in [ 25..125 ] ];
```

10.2.4 Literal Sequences

A literal sequence is an enumerated sequence all of whose terms are from the same structure and all of these are 'typed in' literally. The sole purpose of literal sequences is to load certain enumerated sequences very fast and very space-efficiently; this is only useful when reading in very large sequences (all of whose elements must have been specified literally, that is, not as some expression other than a literal), but then it may save a lot of time. The result will be an enumerated sequence, that is, not distinguished in any way from other such sequences.

At present, only literal sequences of integers are supported.

```
\[ \mathtt{m}_1, ..., \mathtt{m}_n ]
```

Given a succession of literal integers m_1, \ldots, m_n , build the enumerated sequence $[m_1, \ldots, m_n]$, in a time and space efficient way.

10.3 Power Sequences

The PowerSequence constructor returns a structure comprising the enumerated sequences of a given structure R; it is mainly useful as a parent for other set and sequence constructors. The only operations that are allowed on power sequences are printing, testing element membership, and coercion into the power sequence (see the examples below).

```
PowerSequence(R)
```

The structure comprising all enumerated sequences of elements of structure R. If R itself is a sequence (or set) then the power structure of its universe is returned.

```
S in P
```

Returns true if enumerated sequence S is in the power sequence P, that is, if all elements of the sequence S are contained in or coercible into R, where P is the power sequence of R; false otherwise.

```
P!S
```

Return a sequence with universe R consisting of the entries of the enumerated sequence S, where P is the power sequence of R. An error results if not all elements of S can be coerced into R.

Example H10E2_

```
> S := [ 1 .. 10 ];
> P := PowerSequence(S);
> P;
Set of sequences over [ 1 .. 10 ]
> F := [ 6/3, 12/4 ];
> F in P;
true
> G := P ! F;
```

```
> Parent(F);
Set of sequences over Rational Field
> Parent(G);
Set of sequences over [ 1 .. 10 ]
```

10.4 Operators on Sequences

This section lists functions for obtaining information about existing sequences, for modifying sequences and for creating sequences from others. Most of these operators only apply to enumerated sequences.

10.4.1 Access Functions

#S

Returns the length of the enumerated sequence S, which is the index of the last term of S whose value is defined. The length of the empty sequence is zero.

Parent(S)

Returns the parent structure for a sequence S, that is, the structure consisting of all (enumerated) sequences over the universe of S.

Universe(S)

Returns the 'universe' of the sequence S, that is, the common structure to which all elements of the sequence belong. This universe may itself be a set or sequence. An error is signalled when S is the null sequence.

S[i]

The *i*-th term s_i of the sequence S. If $i \leq 0$, or i > #S + 1, or S[i] is not defined, then an error results. Here i is allowed to be a multi-index (see Introduction for the interpretation). This can be used as the left hand side of an assignment: S[i]:= x redefines the i-th term of the sequence S to be x. If $i \leq 0$, then an error results. If i > n, then the sequence $[s_1, \ldots, s_n, s_{n+1}, \ldots, s_{i-1}, x]$ replaces S, where s_{n+1}, \ldots, s_{i-1} are all undefined. Here i is allowed to be a multi-index.

An error occurs if x cannot be coerced into the universe of S.

10.4.2 Selection Operators on Enumerated Sequences

Here, S denotes an enumerated sequence $[s_1, \ldots, s_n]$. Further, i and j are integers or multi-indices (see Introduction).

S[I]

The sequence $[s_{i_1}, \ldots, s_{i_r}]$ consisting of terms selected from the sequence S, according to the terms of the integer sequence I. If any term of I lies outside the range 1 to #S, then an error results. If I is the empty sequence, then the empty set with universe the same as that of S is returned.

The effect of T := S[I] differs from that of T := [S[i] : i in I]: if in the first case an undefined entry occurs for $i \in I$ between 1 and #S it will be copied over; in the second such undefined entries will lead to an error.

Minimum(S)

Min(S)

Given a non-empty, complete enumerated sequence S such that 1t and eq are defined on the universe of S, this function returns two values: a minimal element s in S, as well as the first position i such that s = S[i].

Maximum(S)

Max(S)

Given a non-empty, complete enumerated sequence S such that gt and eq are defined on the universe of S, this function returns two values: a maximal element s in S, as well as the first position i such that s = S[i].

Index(S, x)

Index(S, x, f)

Position(S, x)

Position(S, x, f)

Returns either the position of the first occurrence of x in the sequence S, or zero if S does not contain x. The second variants of each function starts the search at position f. This can save time in second (and subsequent) searches for the same entry further on. If no occurrence of x in S from position f onwards is found, then zero is returned.

Representative(R)

Rep(R)

An (arbitrary) element chosen from the enumerated sequence R

Random(R)

A random element chosen from the enumerated sequence R. Every element has an equal probability of being chosen. Successive invocations of the function will result in independently chosen elements being returned as the value of the function. If R is empty an error occurs.

Explode(R)

Given an enumerated sequence R of length r this function returns the r entries of the sequence (in order).

Eltseq(R)

The enumerated sequence R itself. This function is just included for completeness.

10.4.3 Modifying Enumerated Sequences

The operations given here are available as both procedures and functions. In the procedure version, the given sequence is destructively modified 'in place'. This is very efficient, since it is not necessary to make a copy of the sequence. In the function version, the given sequence is not changed, but a modified version of it is returned. This is more suitable if the old sequence is still required. Some of the functions also return useful but non-obvious values.

Here, S denotes an enumerated sequence, and x an element of some structure V. The modifications involving S and x will only be successful if x can be coerced into the universe of S; an error occurs if this fails. (See the Introduction to this Part).

Append(\sim S, x) Append(S, x)

Create an enumerated sequence by adding the object x to the end of S, i.e., the enumerated sequence $[s_1, \ldots s_n, x]$.

There are two versions of this: a procedure, where S is replaced by the appended sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Exclude(\sim S, x) Exclude(S, x)

Create an enumerated sequence obtained by removing the first occurrence of the object x from S, i.e., the sequence $[s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n]$, where s_i is the first term of S that is equal to x. If x is not in S then this is just S.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

```
Include(\simS, x)
Include(S, x)
```

Create a sequence by adding the object x to the end of S, provided that no term of S is equal to x. Thus, if x does not occur in S, the enumerated sequence $[s_1, \ldots, s_n, x]$ is created.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

```
Insert(\simS, i, x)
Insert(S, i, x)
```

Create the sequence formed by inserting the object x at position i in S and moving the terms $S[i], \ldots, S[n]$ down one place, i.e., the enumerated sequence $[s_1, \ldots, s_{i-1}, x, s_i, \ldots, s_n]$. Note that i may be bigger than the length n of S, in which case the new length of S will be i, and the entries $S[n+1], \ldots, S[i-1]$ will be undefined.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

```
Insert(~S, k, m, T)
Insert(S, k, m, T)
```

Create the sequence $[s_1, \ldots, s_{k-1}, t_1, \ldots, t_l, s_{m+1}, \ldots, s_n]$. If $k \leq 0$ or k > m+1, then an error results. If k = m+1 then the terms of T will be inserted into S immediately before the term s_k . If k > n, then the sequence $[s_1, \ldots, s_n, s_{n+1}, \ldots, s_{k-1}, t_1, \ldots, t_l]$ is created, where s_{n+1}, \ldots, s_{k-1} are all undefined. In the case where T is the empty sequence, terms s_k, \ldots, s_m are deleted from S.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

$Prune(\sim S)$

Prune(S)

Create the enumerated sequence formed by removing the last term of the sequence S, i.e., the sequence $[s_1, \ldots, s_{n-1}]$. An error occurs if S is empty.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Remove(\sim S, i)

Remove(S, i)

Create the enumerated sequence formed by removing the *i*-th term from S, i.e., the sequence $[s_1, \ldots s_{i-1}, s_{i+1}, \ldots, s_n]$. An error occurs if i < 1 or i > n.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Reverse (\sim S)

Reverse(S)

Create the enumerated sequence formed by reversing the order of the terms in the complete enumerated sequence S, i.e., the sequence $[s_n, \ldots, s_1]$.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Rotate(\sim S, p)

Rotate(S, p)

Given a complete sequence S and an integer p, create the enumerated sequence formed by cyclically rotating the terms of the sequence p terms: if p is positive, rotation will be to the right; if p is negative, S is cyclically rotated -p terms to the left; if p is zero nothing happens.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

Sort(∼S)

Given a complete enumerated sequence S whose terms belong to a structure on which lt and eq are defined, create the enumerated sequence formed by (quick-)sorting the terms of S into increasing order.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

 $Sort(\sim S, C)$ $Sort(\sim S, C, \sim p)$ Sort(S, C)

Given a complete enumerated sequence S and a comparison function C which compares elements of S, create the enumerated sequence formed by sorting the terms of S into increasing order with respect to C. The comparison function C must take two arguments and return an integer less than, equal to, or greater than 0 according to whether the first argument is less than, equal to, or greater than the second argument (e.g.: func<x, y | x - y>).

There are three versions of this: a procedure, where S is replaced by the new sequence, a procedure, where S is replaced by the new sequence and the corresponding permutation p is set, and a function, which returns the new sequence and the corresponding permutation. The procedural version takes a reference $\sim S$ to S as an argument. Note that the procedural version is much more efficient since the sequence S will not be copied.

```
ParallelSort(\simS, \simT)
```

Given a complete enumerated sequence S, sorts it in place and simultaneously sorts T in the same order. That is, whenever the sorting process would swap the two elements S[i] and S[j] then the two elements T[i] and T[j] are also swapped.

Undefine(∼S, i)
Undefine(S, i)

Create the sequence which is the same as the enumerated sequence S but with the i-th term of S undefined; i may be bigger than #S, but $i \le 0$ produces an error.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

```
ChangeUniverse(S, V)
```

ChangeUniverse(S, V)

Given a sequence S with universe U and a structure V which contains U, construct a sequence which consists of the elements of S coerced into V.

There are two versions of this: a procedure, where S is replaced by the new sequence, and a function, which returns the new sequence. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the sequence S will not be copied.

CanChangeUniverse(S, V)

Given a sequence S with universe U and a structure V which contains U, attempt to construct a sequence T which consists of the elements of S coerced into V; if successful, return true and T, otherwise return false.

Example H10E3

We present three ways to obtain the Farey series F_n of degree n.

The Farey series F_n of degree n consists of all rational numbers with denominator less than or equal to n, in order of magnitude. Since we will need numerator and denominator often, we first abbreviate those functions.

```
> D := Denominator;
> N := Numerator;
```

The first method calculates the entries in order. It uses the fact that for any three consecutive Farey fractions $\frac{p}{q}$, $\frac{p'}{q'}$, $\frac{p''}{q''}$ of degree n:

$$p'' = \lfloor \frac{q+n}{q'} \rfloor p' - p, \quad q'' = \lfloor \frac{q+n}{q'} \rfloor q' - q.$$

```
> farey := function(n)
>          f := [ RationalField() | 0, 1/n ];
>          p := 0;
>          q := 1;
>          while p/q lt 1 do
>          p := ( D(f[#f-1]) + n) div D(f[#f]) * N(f[#f]) - N(f[#f-1]);
>          q := ( D(f[#f-1]) + n) div D(f[#f]) * D(f[#f]) - D(f[#f-1]);
>          Append(~f, p/q);
>          end while;
>          return f;
> end function;
```

The second method calculates the Farey series recursively. It uses the property that F_n may be obtained from F_{n-1} by inserting a new fraction (namely $\frac{p+p'}{q+q'}$) between any two consecutive rationals $\frac{p}{q}$ and $\frac{p'}{q'}$ in F_{n-1} for which q+q' equals n.

```
> function farev(n)
```

```
if n eq 1 then
>
        return [RationalField() | 0, 1 ];
>
>
        f := farey(n-1);
        i := 0;
>
        while i lt #f-1 do
           i +:= 1;
           if D(f[i]) + D(f[i+1]) eq n then
               Insert( \tilde{f}, i+1, (N(f[i]) + N(f[i+1]))/(D(f[i]) + D(f[i+1])));
           end if;
        end while;
>
        return f;
     end if;
> end function;
The third method is very straightforward, and uses Sort and Setseq (defined above).
> farey := func< n |</pre>
                 Sort(Setseq({ a/b : a in { 0..n}, b in { 1..n} | a le b }))>;
> farey(6);
[ 0, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 1 ]
```

10.4.4 Creating New Enumerated Sequences from Existing Ones

S cat T

The enumerated sequence formed by concatenating the terms of S with the terms of T, i.e. the sequence $[s_1, \ldots, s_n, t_1, \ldots, t_m]$.

If the universes of S and T are different, an attempt to find a common overstructure is made; if this fails an error results (see the Introduction).

S cat:= T

Mutation assignment: change S to be the concatenation of S and T. Functionally equivalent to S := S cat T.

If the universes of S and T are different, an attempt to find a common overstructure is made; if this fails an error results (see the Introduction).

Partition(S, p)

Given a complete non-empty sequence S as well as an integer p that divides the length n of S, construct the sequence whose terms are the sequences formed by taking p terms of S at a time.

Partition(S, P)

Given a complete non-empty sequence S as well as a complete sequence of positive integers P, such that the sum of the entries of P equals the length of S, construct the sequence whose terms are the sequences formed by taking P[i] terms of S, for $i = 1, \ldots, \#P$.

```
Setseq(S)
```

SetToSequence(S)

Given a set S, construct a sequence whose terms are the elements of S taken in some arbitrary order.

```
Seqset(S)
```

SequenceToSet(S)

Given a sequence S, create a set whose elements are the distinct terms of S.

Example H10E4

The following example illustrates several of the access, creation and modification operations on sequences.

Given a rational number r, this function returns a sequence of different integers d_i such that $r = \sum 1/d_i$ [Bee93].

```
> egyptian := function(r)
        n := Numerator(r);
        d := Denominator(r);
        s := [d : i in [1..n]];
        t := \{ d \};
>
        i := 2;
>
        while i le #s do
                c := s[i];
                if c in t then
>
                       Remove(~s, i);
>
                       s cat := [c+1, c*(c+1)];
>
                else
>
                       t join:= { c};
                        i := i+1;
>
                end if;
>
        end while;
        return s;
> end function;
```

Note that the result may be rather larger than necessary:

```
> e := egyptian(11/13);
> // Check the result!
> &+[1/d : d in e];
11/13
```

```
> #e;
2047
> #IntegerToString(Maximum(e));
1158
```

while instead of this sequence of 2047 integers, the biggest of the entries having 1158 decimal digits, the following equation also holds:

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{12} + \frac{1}{78} = \frac{11}{13}.$$

10.4.4.1 Operations on Sequences of Booleans

The following operations work pointwise on sequences of booleans of equal length.

And(S, T)
$$And(\sim S, T)$$

The sequence whose ith entry is the logical and of the ith entries of S and T. The result is placed in S if it is given by reference (\sim) .

$$Or(S, T)$$
 $Or(\sim S, T)$

The sequence whose ith entry is the logical or of the ith entries of S and T. The result is placed in S if it is given by reference.

The sequence whose ith entry is the logical xor of the ith entries of S and T. The result is placed in S if it is given by reference.

$$\operatorname{\mathsf{Not}}(\operatorname{\mathsf{S}})$$

The sequence whose ith entry is the logical not of the ith entry of S. The result is placed in S if it is given by reference.

10.5 Predicates on Sequences

Boolean valued operators and functions on enumerated sequences exist to test whether entries are defined (see previous section), to test for membership and containment, and to compare sequences with respect to an ordering on its entries. On formal sequences, only element membership can be tested.

IsComplete(S)

Boolean valued function, returning true if and only if each of the terms S[i] for $1 \le i \le \#S$ is defined, for an enumerated sequence S.

IsDefined(S, i)

Given an enumerated sequence S and an index i, this returns true if and only if S[i] is defined. (Hence the result is false if i > #S, but an error results if i < 1.) Note that the index i is allowed to be a multi-index; if $i = [i_1, \ldots, i_r]$ is a multi-index and $i_j > \#S[i_1, \ldots, i_{j-1}]$ the function returns false, but if S is s levels deep and r > s while $i_j \leq \#S[i_1, \ldots, i_{j-1}]$ for $1 \leq j \leq s$, then an error occurs.

IsEmpty(S)

Boolean valued function, returning true if and only if the enumerated sequence S is empty.

IsNull(S)

Boolean valued function, returning true if and only if the enumerated sequence S is empty and its universe is undefined, false otherwise.

10.5.1 Membership Testing

Here, S and T denote sequences. The element x is always assumed to be compatible with S.

x in S

Returns true if the object x occurs as a term of the enumerated or formal sequence S, false otherwise. If x is not in the universe of S, coercion is attempted. If that fails, an error results.

x notin S

Returns true if the object x does not occur as a term of the enumerated or formal sequence S, false otherwise. If x is not in the universe of S, coercion is attempted. If that fails, an error results.

IsSubsequence(S, T)

IsSubsequence(S, T: Kind := option)

Kind MonStgElt Default: "Consecutive"

Returns true if the enumerated sequence S appears as a subsequence of consecutive elements of the enumerated sequence T, false otherwise.

By changing the default value "Consecutive" of the parameter Kind to "Sequential" or to "Setwise", this returns true if and only if the elements of S appear in order (but not necessarily consecutively) in T, or if and only if all elements of S appear as elements of T; so in the latter case the test is merely whether the set of elements of S is contained in the set of elements of T.

If the universes of S and T are not the same, coercion is attempted.

S eq T

Returns true if the enumerated sequences S and T are equal, false otherwise. If the universes of S and T are not the same, coercion is attempted.

S ne T

Returns true if the enumerated sequences S and T are not equal, false otherwise. If the universes of S and T are not the same, coercion is attempted.

10.5.2 Testing Order Relations

Here, S and T denote complete enumerated sequences with universe U and V respectively, such that a common overstructure W for U and V can be found (as outlined in the Introduction), and such that on W an ordering on the elements is defined allowing the Magma operators eq (=), le (\leq), lt (<), gt (>), and ge (\geq) to be invoked on its elements.

With these comparison operators the lexicographical ordering is used to order complete enumerated sequences. Sequences S and T are equal (S eq T) if and only if they have the same length and all terms are the same. A sequence S precedes T (S lt T) in the ordering imposed by that of the terms if at the first index i where S and T differ then S[i] < T[i]. If the length of T exceeds that of S and S and T agree in all places where S until after the length of S, then S lt T is true also. In all other cases where $S \neq T$ one has S gt T.

S lt T

Returns true if the sequence S precedes the sequence T under the ordering induced from S, false otherwise. Thus, true is returned if and only if either S[k] < T[k] and S[i] = T[i] (for $1 \le i < k$) for some k, or S[i] = T[i] for $1 \le i \le \#S$ and #S < #T.

S le T

Returns true if the sequence S either precedes the sequence T, under the ordering induced from S, or is equal to T, false otherwise. Thus, true is returned if and only if either S[k] < T[k] and S[i] = T[i] (for $1 \le i < k$) for some k, or S[i] = T[i] for $1 \le i \le \#S$ and $\#S \le \#T$.

S ge T

Returns true if the sequence S either comes after the sequence T, under the ordering induced from S, or is equal to T, false otherwise. Thus, true is returned if and only if either S[k] > T[k] and S[i] = T[i] (for $1 \le i < k$) for some k, or S[i] = T[i] for $1 \le i \le \#T$ and $\#S \ge \#T$.

S gt T

Returns true if the sequence S comes after the sequence T under the ordering induced from S, false otherwise. Thus, true is returned if and only if either S[k] > T[k] and S[i] = T[i] (for $1 \le i < k$) for some k, or S[i] = T[i] for $1 \le i \le \#T$ and #S > #T.

10.6 Recursion, Reduction, and Iteration

10.6.1 Recursion

It is often very useful to be able to refer to a sequence currently under construction, for example to define the sequence recursively. For this purpose the Self operator is available.

Self(n)

This operator enables the user to refer to an already defined previous entry s[n] of the enumerated sequence s inside the sequence constructor, or the sequence s itself.

Example H10E5_

The example below shows how the sequence of the first 100 Fibonacci numbers can be created recursively, using Self. Next it is shown how to use reduction on these 100 integers.

```
> s := [ i gt 2 select Self(i-2)+Self(i-1) else 1 : i in [1..100] ];
> &+s;
927372692193078999175
```

10.6.2 Reduction

Instead of using a loop to apply the same binary associative operator to all elements of a complete enumerated sequence, it is possible to use the reduction operator &.

```
&0 S
```

Given a complete enumerated sequence $S = [a_1, a_2, \ldots, a_n]$ of elements belonging to an algebraic structure U, and an (associative) operator $\circ : U \times U \to U$, form the element $a_1 \circ a_2 \circ a_3 \circ \ldots \circ a_n$.

Currently, the following operators may be used to reduce sequences: +, *, and, or, join, meet, cat. An error will occur if the operator is not defined on U.

If S contains a single element a, then the value returned is a. If S is the null sequence (empty and no universe specified), then reduction over S leads to an error; if S is empty with universe U in which the operation is defined, then the result (or error) depends on the operation and upon U. The following table defines the return value:

	empty	null
&+	$U \ ! \ 0$	error
&*	$U \ ! \ 1$	error
∧	true	true
∨	false	false
&join	empty	null
&meet	error	error
&cat	empty	null

10.7 Iteration

Enumerated sequences allow iteration over their elements. In particular, they can be used as the range set in the sequence and set constructors, and as domains in for loops.

When multiple range sequences are used, it is important to know in which order the range are iterated over; the rule is that the repeated iteration takes place as nested loops where the first range forms the innermost loop, etc. See the examples below.

```
for x in S do statements; end for;
```

An enumerated sequence S may be the range for the for-statement. The iteration only enumerates the defined terms of the sequence.

Example H10E6

The first example shows how repeated iteration inside a sequence constructor corresponds to nesting of loops.

```
> [<number, letter> : number in [1..5], letter in ["a", "b", "c"]];
```

```
[ <1, a>, <2, a>, <3, a>, <4, a>, <5, a>, <1, b>, <2, b>, <3, b>, <4, b>, <5,
b>, <1, c>, <2, c>, <3, c>, <4, c>, <5, c> ]
> r := [];
> for letter in ["a", "b", "c"] do
> for number in [1..5] do
> Append(~r, <number, letter>);
> end for;
> end for;
> r;
[ <1, a>, <2, a>, <3, a>, <4, a>, <5, a>, <1, b>, <2, b>, <3, b>, <4, b>, <5,
b>, <1, c>, <2, c>, <3, c>, <4, c>, <5, c> ]
```

This explains why the first construction below leads to an error, whereas the second leads to the desired sequence.

```
> // The following produces an error:
> [ <x, y> : x in [0..5], y in [0..x] | x^2+y^2 lt 16 ];

User error: Identifier 'x' has not been declared
> [ <x, y> : x in [0..y], y in [0..5] | x^2+y^2 lt 16 ];
[ <0, 0>, <0, 1>, <1, 1>, <0, 2>, <1, 2>, <2, 2>, <0, 3>, <1, 3>, <2, 3> ]
```

Note the following! In the last line below there are two different things with the name x. One is the (inner) loop variable, the other just an identifier with value 1000 that is used in the bound for the other (outer) loop variable y: the limited scope of the inner loop variable x makes it invisible to y, whence the error in the first case.

```
> // The following produces an error:
> #[ <x, y> : x in [0..5], y in [0..x] | x^2+y^2 lt 100 ];
User error: Identifier 'x' has not been declared
> x := 1000;
> #[ <x, y> : x in [0..5], y in [0..x] | x^2+y^2 lt 100 ];
59
```

10.8 Bibliography

[Bee93] L. Beeckmans. The splitting algorithm for Egyptian fractions. J. Number Th., 43:173–185, 1993.

11 TUPLES AND CARTESIAN PRODUCTS

11.1 Introduction	217	Append(T, x)	218
		Append(\sim T, x)	219
11.2 Cartesian Product Constructor		Prune(T)	219
and Functions	217	$\mathtt{Prune}(\sim\!\mathtt{T})$	219
car< >	217	<pre>Flat(T)</pre>	219
<pre>CartesianProduct(R, S)</pre>	217		
CartesianProduct(L)	217	11.4 Tuple Access Functions	. 220
CartesianPower(R, k)	217	Parent(T)	220
Flat(C)	217	#	220
NumberOfComponents(C)	218	T[i]	220
Component(C, i)	218	<pre>Explode(T)</pre>	220
C[i]	218	TupleToList(T)	220
#	218	Tuplist(T)	220
Rep(C)	218	44 8 77 110	
Random(C)	218	11.5 Equality	. 220
		eq	220
11.3 Creating and Modifying Tuples	218	ne	220
elt< >	218		
!	218	11.6 Other Operations	. 221
$< a_1, a_2,, a_k >$	218	* *	221

Chapter 11

TUPLES AND CARTESIAN PRODUCTS

11.1 Introduction

A cartesian product may be constructed from a finite number of factors, each of which may be a set or algebraic structure. The term *tuple* will refer to an element of a cartesian product.

Note that the rules for tuples are quite different to those for sequences. Sequences are elements of a cartesian product of n copies of a fixed set (or algebraic structure) while tuples are elements of cartesian products where the factors may be different sets (structures). The semantics for tuples are quite different to those for sequences. In particular, the parent cartesian product of a tuple is fixed once and for all. This is in contrast to a sequence, which may grow and shrink during its life (thus implying a varying parent cartesian product).

11.2 Cartesian Product Constructor and Functions

The special constructor $car < \dots >$ is used for the creation of cartesian products of structures.

car< R_1 , ..., R_k >

Given a list of sets or algebraic structures R_1, \ldots, R_k , construct the cartesian product set $R_1 \times \cdots \times R_k$.

CartesianProduct(R, S)

Given structures R and S, construct the cartesian product set $R \times S$. This is the same as calling the car constructor with the two arguments R and S.

CartesianProduct(L)

Given a sequence or tuple L of structures, construct the cartesian product of the elements of L.

CartesianPower(R, k)

Given a structure R and an integer k, construct the cartesian power set R^k .

Flat(C)

Given a cartesian product C of structures which may themselves be cartesian products, return the cartesian product of the base structures, considered in depth-first order (see Flat for the element version).

NumberOfComponents(C)

Given a cartesian product C, return the number of components of C.

Component(C, i)

C[i]

The i-th component of C.

#C

Given a cartesian product C, return the cardinality of C.

Rep(C)

Given a cartesian product C, return a representative of C.

Random(C)

Given a cartesian product C, return a random element of C.

Example H11E1.

We create the product of \mathbf{Q} and \mathbf{Z} .

```
> C := car< RationalField(), Integers() >;
> C;
```

Cartesian Product<Rational Field, Ring of Integers>

11.3 Creating and Modifying Tuples

elt< C |
$$a_1, a_2, ..., a_k >$$

C ! < $a_1, a_2, ..., a_k >$

Given a cartesian product $C = R_1 \times \cdots \times R_k$ and a sequence of elements a_1, a_2, \ldots, a_k , such that a_i belongs to the set R_i $(i = 1, \ldots, k)$, create the tuple $T = \langle a_1, a_2, \ldots, a_k \rangle$ of C.

$$< a_1, a_2, \ldots, a_k >$$

Given a cartesian product $C = R_1 \times \cdots \times R_k$ and a list of elements a_1, a_2, \ldots, a_k , such that a_i belongs to the set R_i , $(i = 1, \ldots, k)$, create the tuple $T = \langle a_1, a_2, \ldots, a_k \rangle$ of C. Note that if C does not already exist, it will be created at the time this expression is evaluated.

Append(T, x)

Return the tuple formed by adding the object x to the end of the tuple T. Note that the result lies in a new cartesian product of course.

Append(\sim T, x)

(Procedure.) Destructively add the object x to the end of the tuple T. Note that the new T lies in a new cartesian product of course.

Prune(T)

Return the tuple formed by removing the last term of the tuple T. The length of T must be greater than 1. Note that the result lies in a new cartesian product of course.

Prune(\sim T)

(Procedure.) Destructively remove the last term of the tuple T. The length of T must be greater than 1. Note that the new T lies in a new cartesian product of course.

Flat(T)

Construct the flattened version of the tuple T. The flattening is done in the same way as Flat, namely depth-first.

Example H11E2

We build a set of pairs consisting of primes and their reciprocals.

```
> C := car< Integers(), RationalField() >;
> C ! < 26/13, 13/26 >;
<2, 1/2>
> S := { C | <p, 1/p> : p in [1..25] | IsPrime(p) };
> S;
{ <5, 1/5>, <7, 1/7>, <2, 1/2>, <19, 1/19>, <17, 1/17>, <23, 1/23>, <11, 1/11>, <13, 1/13>, <3, 1/3> }
```

11.4 Tuple Access Functions

Parent(T)

The cartesian product to which the tuple T belongs.

#T

Number of components of the tuple T.

T[i]

Return the i-th component of tuple T. Note that this indexing can also be used on the left hand side for modification of T.

```
Explode(T)
```

Given a tuple T of length n, this function returns the n entries of T (in order).

```
TupleToList(T)
```

Tuplist(T)

Given a tuple T return a list containing the entries of T.

Example H11E3_

```
> f := < 11/2, 13/3, RootOfUnity(3, CyclotomicField(3)) >;
> f;
<11/2, 13/3, (zeta_3)>
> #f;
3
> Parent(f);
Cartesian Product<Rational Field, Rational Field, Cyclotomic field Q(zeta_3)>
> f[1]+f[2]+f[3];
(1/6) * (59 + 6*zeta_3)
> f[3] := 7;
> f;
<11/2, 13/3, 7>
```

11.5 Equality

```
T eq U
```

Return true if and only if the tuples T and U are equal.

```
T ne U
```

Return true if and only if the tuples T and U are distinct.

11.6 Other Operations

&*T

For a tuple T where each component lies in a structure that supports multiplication and such there exists a common over structure, return the product of the entries.

12 LISTS

12.1 Introduction	. 225	SequenceToList(Q)	226
		Seqlist(Q)	226
12.2 Construction of Lists	. 225	TupleToList(T)	226
[* *]	225	Tuplist(T)	226
$[* e_1, e_2,, e_n *]$	$\frac{1}{225}$	Reverse(L)	226
12.3 Creation of New Lists	. 225	12.4 Access Functions	226
cat	225	#	226
cat:=	$\frac{-2}{225}$	<pre>IsEmpty(S)</pre>	226
Append(S, x)	225	S[i]	226
Append($\sim S$, x)	225	S[I]	227
Insert(\sim S, i, x)	226	<pre>IsDefined(L, i)</pre>	227
<pre>Insert(S, i, x)</pre>	226	19 5 4	005
Prune(S)	226	12.5 Assignment Operator	227
$Prune(\sim S)$	226	S[i] := x	227

Chapter 12

LISTS

12.1 Introduction

A *list* in MAGMA is an ordered finite collection of objects. Unlike sequences, lists are not required to consist of objects that have some common parent. Lists are not stored compactly and the operations provided for them are not extensive. They are mainly provided to enable the user to gather assorted objects temporarily together.

12.2 Construction of Lists

Lists can be constructed by expressions enclosed in special brackets [* and *].

[* *]

The empty list.

[* e_1 , e_2 , ..., e_n *]

Given a list of expressions e_1, \ldots, e_n , defining elements a_1, a_2, \ldots, a_n , create the list containing a_1, a_2, \ldots, a_n .

12.3 Creation of New Lists

Here, S denotes the list $[*s_1, \ldots, s_n *]$, while T denotes the list $[*t_1, \ldots, t_m *]$.

S cat T

The list formed by concatenating the terms of the list S with the terms of the list T, i.e. the list $[*s_1, \ldots, s_n, t_1, \ldots, t_m *]$.

S cat:= T

(Procedure.) Destructively concatenate the terms of the list T to S; i.e. so S becomes the list $[*s_1, \ldots, s_n, t_1, \ldots, t_m *]$.

Append(S, x)

The list formed by adding the object x to the end of the list S, i.e. the list $[*s_1, \ldots s_n, x *]$.

Append(\sim S, x)

(Procedure.) Destructively add the object x to the end of the list S; i.e. so S becomes the list $[*s_1, \ldots s_n, x *]$.

Insert(\sim S, i, x)

Insert(S, i, x)

Create the list formed by inserting the object x at position i in S and moving the terms $S[i], \ldots, S[n]$ down one place, i.e., the list $[*s_1, \ldots, s_{i-1}, x, s_i, \ldots, s_n *]$. Note that i must not be bigger than n+1 where n is the length of S.

There are two versions of this: a procedure, where S is replaced by the new list, and a function, which returns the new list. The procedural version takes a reference $\sim S$ to S as an argument.

Note that the procedural version is much more efficient since the list S will not be copied.

Prune(S)

The list formed by removing the last term of the list S, i.e. the list $[*s_1, ..., s_{n-1} *]$.

$\texttt{Prune}(\sim\!\!\texttt{S})$

(Procedure.) Destructively remove the last term of the list S; i.e. so S becomes the list $[*s_1, ..., s_{n-1} *]$.

SequenceToList(Q)

Seqlist(Q)

Given a sequence Q, construct a list whose terms are the elements of Q taken in the same order.

TupleToList(T)

Tuplist(T)

Given a tuple T, construct a list whose terms are the elements of T taken in the same order.

Reverse(L)

Given a list L return the same list, but in reverse order.

12.4 Access Functions

#S

The length of the list S.

IsEmpty(S)

Return whether S is empty (has zero length).

S[i]

Return the *i*-th term of the list S. If either $i \leq 0$ or i > #S+1, then an error results. Here i is allowed to be a multi-index (see Section 8.3.1 for the interpretation).

S[I]

Return the sublist of S given by the indices in the sequence I. Each index in I must be in the range [1..l], where l is the length of S.

IsDefined(L, i)

Checks whether the *i*th item in L is defined or not, that is it returns **true** if i is at most the length of L and **false** otherwise.

12.5 Assignment Operator

S[i] := x

Redefine the *i*-th term of the list S to be x. If $i \leq 0$, then an error results. If i = #S + 1, then x is appended to S. Otherwise, if i > #S + 1, an error results. Here i is allowed to be a multi-index.

13 ASSOCIATIVE ARRAYS

13.1 Introduction	 231	A[x]	231
		<pre>IsDefined(A, x)</pre>	231
13.2 Operations	 231	Remove(\sim A, x)	231
AssociativeArray()	231	Universe(A)	231
AssociativeArray(I)	231	Keys(A)	232
$\Delta [x] \cdot = v$	231	-	

Chapter 13

ASSOCIATIVE ARRAYS

13.1 Introduction

An associative array in MAGMA is an array which may be indexed by arbitrary elements of an index structure I. The indexing may thus be by objects which are not integers. These objects are known as the keys. For each current key there is an associated value. The values associated with the keys need not lie in a fixed universe but may be of any type.

13.2 Operations

AssociativeArray()

Create the null associative array with no index universe. The first assignment to the array will determine its index universe.

AssociativeArray(I)

Create the empty associative array with index universe I.

A[x] := y

Set the value in A associated with index x to be y. If x is not coercible into the current index universe I of A, then an attempt is first made to lift the index universe of A to contain both I and x.

A[x]

Given an index x coercible into the index universe I of A, return the value associated with x. If x is not in the keys of A, then an error is raised.

IsDefined(A, x)

Given an index x coercible into the index universe I of A, return whether x is currently in the keys of A and if so, return also the value A[x].

Remove (\sim A, x)

(Procedure.) Destructively remove the value indexed by x from the array A. If x is not present as an index, then nothing happens (i.e., an error is not raised).

Universe(A)

Given an associative array A, return the index universe I of A, in which the keys of A currently lie.

Keys(A)

Given an associative array A, return the current keys of A as a set. Warning: this constructs a new copy of the set of keys, so should only be called when that is needed. It is not meant to be used as a quick access function.

Example H13E1.

This example shows simple use of associative arrays. First we create an array indexed by rationals.

```
> A := AssociativeArray();
> A[1/2] := 7;
> A[3/8] := "abc";
> A[3] := 3/8;
> A[1/2];
> IsDefined(A, 3);
true 3/8
> IsDefined(A, 4);
false
> IsDefined(A, 3/8);
true abc
> Keys(A);
\{ 3/8, 1/2, 3 \}
> for x in Keys(A) do x, A[x]; end for;
1/2 7
3/8 abc
3 3/8
> Remove(~A, 3/8);
> IsDefined(A, 3/8);
false
> Keys(A);
{ 1/2, 3 }
> Universe(A);
Rational Field
```

We repeat that an associative array can be indexed by elements of any structure. We now index an array by elements of the symmetric group S_3 .

```
> G := Sym(3);
> A := AssociativeArray(G);
> v := 1; for x in G do A[x] := v; v +:= 1; end for;
> A;
Associative Array with index universe GrpPerm: G, Degree 3, Order 2 * 3
> Keys(A);
{
    (1, 3, 2),
    (2, 3),
    (1, 3),
    (1, 2, 3),
```

```
(1, 2),
Id(G)
}
> A[G!(1,3,2)];
```

14 COPRODUCTS

14.1 Introduction	237	#	238
14.2 Creation Functions	237	<pre>Constituent(C, i) Index(x)</pre>	$\frac{238}{238}$
14.2.1 Creation of Coproducts	237	14.4 Retrieve	238
<pre>cop< > cop< ></pre>	$237 \\ 237$	Retrieve(x)	238
14.2.2 Creation of Coproduct Elements .	237	$14.5 \; \mathrm{Flattening} \;\; \ldots \;\; \ldots \;\; \ldots \;\; \ldots$	239
m(e)	237	Flat(C)	239
!	237	14.6 Universal Map	239
14.3 Accessing Functions	238	UniversalMap(C, S, [n_1 ,, n_m])	239
Injections(C)	238		_00

Chapter 14 COPRODUCTS

14.1 Introduction

Coproducts can be useful in various situations, as they may contain objects of entirely different types. Although the coproduct structure will serve as a single parent for such diverse objects, the proper parents of the elements are recorded internally and restored whenever the element is retrieved from the coproduct.

14.2 Creation Functions

There are two versions of the coproduct constructor. Ordinarily, coproducts will be constructed from a list of structures. These structures are called the *constituents* of the coproduct. A single sequence argument is allowed as well to be able to create coproducts of parameterized families of structures conveniently.

14.2.1 Creation of Coproducts

$$cop < S_1, S_2, ..., S_k >$$
 $cop < [S_1, S_2, ..., S_k] >$

Given a list or a sequence of two or more structures S_1, S_2, \ldots, S_k , this function creates and returns their coproduct C as well as a sequence of maps $[m_1, m_2, \ldots, m_k]$ that provide the injections $m_i: S_i \to C$.

14.2.2 Creation of Coproduct Elements

Coproduct elements are usually created by the injections returned as the second return value from the cop<> constructor. The bang (!) operator may also be used but only if the type of the relevant constituent is unique for the particular coproduct.

Given a coproduct injection map m and an element of one of the constituents of the coproduct C, create the coproduct element version of e.

Given a coproduct C and an element e of one of the constituents of C such that the type of that constituent is unique within that coproduct, create the coproduct element version of e.

14.3 Accessing Functions

Injections(C)

Given a coproduct C, return the sequence of injection maps returned as the second argument from the cop<> constructor.

#C

Given a coproduct C, return the length (number of constituents) of C.

Constituent(C, i)

Given a coproduct C and an integer i between 1 and the length of C, return the i-th constituent of C.

Index(x)

Given an element x from a coproduct C, return the constituent number of C to which x belongs.

14.4 Retrieve

The function described here restores an element of a coproduct to its original state.

Retrieve(x)

Given an element x of some coproduct C, return the element as an element of the structure that formed its parent before it was mapped into C.

Example H14E1

We illustrate basic uses of the coproduct constructors and functions.

```
> C := cop<IntegerRing(), Strings()>;
> x := C ! 5;
> y := C ! "abc";
> x;
5
> y;
abc
> Parent(x);
Coproduct < Integer Ring, String structure >
> x eq 5;
true
> x eq y;
false
> Retrieve(x);
> Parent(Retrieve(x));
Integer Ring
```

Ch. 14 COPRODUCTS 239

14.5 Flattening

The function described here enables the 'concatenation' of coproducts into a single one.

Flat(C)

Given a coproduct C of structures which may themselves be coproducts, return the coproduct of the base structures, considered in depth-first order.

14.6 Universal Map

UniversalMap(C, S, [
$$n_1$$
, ..., n_m])

Given maps n_1, \ldots, n_m from structures S_1, \ldots, S_m that compose the coproduct C, to some structure S, this function returns the universal map $C \to S$.

15 RECORDS

15.1 Introduction	243 Format(r)		245
15.2 The Record Format Constructor	243	Names(F) Names(r)	$ \begin{array}{r} 245 \\ 245 \end{array} $
recformat< >	243	r'fieldname	245
15.3 Creating a Record	244	r'fieldname:= e; delete	$ \begin{array}{r} 245 \\ 245 \end{array} $
rec< >	244	assigned	245
15.4 Access and Modification	245	r''s	245

Chapter 15 RECORDS

15.1 Introduction

In a record several objects can be collected. The objects in a record are stored in record fields, and are accessed by using fieldnames. Records are like tuples (and unlike sets or sequences) in that the objects need not all be of the same kind. Though records and tuples are somewhat similar, there are several differences too. The components of tuples are indexed by integers, and every component must be defined. The fields of records are indexed by fieldnames, and it is possible for some (or all) of the fields of a record not to be assigned; in fact, a field of a record may be assigned or deleted at any time. A record must be constructed according to a pre-defined record format, whereas a tuple may be constructed without first giving the Cartesian product that is its parent, since MAGMA can deduce the parent from the tuple.

In the definition of a record format, each field is given a fieldname. If the field is also given a parent magma or a category, then in any record created according to this format, that field must conform to this requirement. However, if the field is not given a parent magma or category, there is no restriction on the kinds of values stored in that field; different records in the format may contain disparate values in that field. By contrast, every component of a Cartesian product is a magma, and the components of all tuples in this product must be elements of the corresponding magma.

Because of the flexibility of records, with respect to whether a field is assigned and what kind of value is stored in it, Boolean operators are not available for comparing records.

15.2 The Record Format Constructor

The special constructor recformat< ... > is used for the creation of record formats. A record format must be created before records in that format are created.

recformat< L >

Construct the record format corresponding to the non-empty fieldname list L. Each term of L must be one of the following:

- (a) fieldname in which case there is no restriction on values that may be stored in this field of records having this format;
- (b) fieldname: expression where the expression evaluates to a magma which will be the parent of values stored in this field of records having this format; or
- (c) fieldname:expression where the expression evaluates to a category which will be the category of values stored in this field of records having this format;

where *fieldname* consists of characters that would form a valid identifier name. Note that it is not a string.

Example H15E1

We create a record format with these fields: n, an integer; misc, which has no restrictions; and seq, a sequence (with any universe possible).

```
> RF := recformat< n : Integers(), misc, seq : SeqEnum >;
> RF;
recformat<n: IntegerRing(), misc, seq: SeqEnum>
> Names(RF);
[ n, misc, seq ]
```

15.3 Creating a Record

Before a record is created, its record format must be defined. A record may be created by assigning as few or as many of the record fields as desired.

```
rec< F | L >
```

Given a record format F, construct the record format corresponding to the field assignment list L. Each term of L must be of the form—fieldname: = expression where fieldname is in F and the value of the expression conforms (directly or by coercion) to any restriction on it. The list L may be empty, and there is no fixed order for the fieldnames.

Example H15E2.

We build some records having the record format RF.

```
> RF := recformat< n : Integers(), misc, seq : SeqEnum >;
> r := rec< RF | >;
> r;
rec<RF | >
> s := rec< RF | misc := "adsifaj", n := 42, seq := [ GF(13) | 4, 8, 1 ]>;
> s;
rec<RF | n := 42, misc := adsifaj, seq := [ 4, 8, 1 ]>
> t := rec< RF | seq := [ 4.7, 1.9 ], n := 51/3 >;
> t;
rec<RF | n := 17, seq := [ 4.7, 1.9 ]>
> u := rec< RF | misc := RModule(PolynomialRing(Integers(7)), 4) >;
> u;
rec<RF | misc := RModule of dimension 4 with base ring Univariate Polynomial Algebra over Integers(7)>
```

15.4 Access and Modification Functions

Fields of records may be inspected, assigned and deleted at any time.

Format(r)

The format of record r.

Names(F)

The fieldnames of the record format F returned as a sequence of strings.

Names(r)

The fieldnames of record r returned as a sequence of strings.

r'fieldname

Return the field of record r with this fieldname. The format of r must include this fieldname, and the field must be assigned in r.

r'fieldname:= expression;

Reassign the given field of r to be the value of the expression. The format of r must include this fieldname, and the expression's value must satisfy (directly or by coercion) any restriction on the field.

delete r'fieldname

(Statement.) Delete the current value of the given field of record r.

assigned r'fieldname

Returns true if and only if the given field of record r currently contains a value.

r''s

Given an expression s that evaluates to a string, return the field of record r with the fieldname corresponding to this string. The format of r must include this fieldname, and the field must be assigned in r.

This syntax may be used anywhere that r'fieldname may be used, including in left hand side assignment, assigned and delete.

Example H15E3____

```
> RF := recformat< n : Integers(), misc, seq : SeqEnum >;
> r := rec< RF | >;
> s := rec< RF | misc := "adsifaj", n := 42, seq := [ GF(13) | 4, 8, 1 ]>;
> t := rec< RF | seq := [ 4.7, 1.9 ], n := 51/3 >;
> u := rec< RF | misc := RModule(PolynomialRing(Integers(7)), 4) >;
> V4 := u'misc;
> assigned r'seq;
false
> r'seq := Append(t'seq, t'n); assigned r'seq;
true
> r;
rec<RF \mid seq := [ 4.7, 1.9, 17 ]>
> // The following produces an error:
> t''(s'misc);
>> t''(s'misc);
Runtime error in ': Field 'adsifaj' does not exist in this record
> delete u''("m" cat "isc"); u;
rec<RF | >
```

16 MAPPINGS

16.1 Introduction	249	*	253
16.1.1 The Map Constructors	249	Components(f)	253
16.1.2 The Graph of a Map	250	16.3.2 (Co)Domain and (Co)Kernel	. 254
16.1.3 Rules for Maps	250	Domain(f) Codomain(f)	$254 \\ 254$
10.1.6 Ituics for Maps	200	Image(f)	254
16.1.4 Homomorphisms	250	Kernel(f)	254
16.1.5 Checking of Maps	250	16.3.3 Inverse	. 254
16.2 Creation Functions	251	Inverse(m)	254
	_	16.3.4 Function	. 254
16.2.1 Creation of Maps	251	Function(f)	254
map< >	251		
map< >	$251 \\ 251$	16.4 Images and Preimages	255
map< >	-	0	255
16.2.2 Creation of Partial Maps	252	f(a)	255
pmap< >	252	0	255
pmap< >	252	f(S)	255
pmap< >	252	@	255
16.2.3 Creation of Homomorphisms	252	f(C)	255
•	-	@@	255
hom< >	252	@@	255
hom< >	252	@@	255
hom< >	252	${\tt HasPreimage(x, f)}$	255
hom< >	253	16 5 Deposits of Mans	256
hom< >	253	16.5 Parents of Maps	
16.2.4 Coercion Maps	253	Parent(m)	256
Coercion(D, C)	253	Domain(P)	256
Bang(D, C)	253	Codomain(P)	256
Dang (D, O)	200	Maps(D, C)	256
16.3 Operations on Mappings	253	Iso(D, C)	256
16.3.1 Composition	253	Aut(S)	256

Chapter 16 MAPPINGS

16.1 Introduction

Mappings play a fundamental role in algebra and, indeed, throughout mathematics. Reflecting this importance, mappings are one of the fundamental datatypes in our language. The most general way to define a mapping $f:A\to B$ in a programming language is to write a function which, given any element of A, will return its image under f in B. While this approach to the definition of mappings is completely general, it is desirable to have mappings as an independent datatype. It is then possible to provide a very compact notation for specifying important classes of mappings such as homomorphisms. Further, a range of operations peculiar to the mapping type can be provided.

Mappings are created either through use of *mapping constructors* as described in this Chapter, or through use of certain standard functions that return mappings as either primary or secondary values.

All mappings are objects in the MAGMA category Map.

16.1.1 The Map Constructors

There are three main mapping constructors: the general map constructor $\mathtt{map}<>$, the homomorphism constructor $\mathtt{hom}<>$, and the partial map constructor $\mathtt{pmap}<>$. The general form of all constructors is the same: inside the angle brackets there are two components separated by a pipe |. To the left the user specifies a domain A and a codomain B, separated by ->; to the right of the pipe the user specifies how images are obtained for elements of the domain. The latter can be done in one of several ways: one specifies either the graph of the map, or a rule describing how images are to be formed, or for homomorphisms, one specifies generator images. We will describe each in the next subsections. The result is something like $\mathtt{map}<$ A -> B | expression>.

The domain and codomain of the map can be arbitrary magmas. When a full map (as opposed to a partial map) is constructed by use of a graph, the domain is necessarily finite.

The main difference between maps and partial maps is that a partial map need not be defined for every element of the domain. The main difference between these two types of map and homomorphisms is that the latter are supposed to provide *structure-preserving* maps between algebraic structures. On the one hand this makes it possible to allow the specification of images for homomorphisms in a different fashion: homomorphism can be given via *images* for *generators* of the domain. On the other hand homomorphisms are restricted to cases where domain and (image in the) codomain have a similar structure. The generator image form only makes sense for domains that are *finitely presented*. Homomorphisms are described in more detail below.

16.1.2 The Graph of a Map

Let A and B be structures. A subgraph of the cartesian product $C = A \times B$ is a subset G of C such that each element of A appears at most once among the first components of the pairs $\langle a, b \rangle$ of G. A subgraph having the additional property that every element of A appears as the first component of some pair $\langle a, b \rangle$ of G is called a graph of $A \times B$.

A mapping between A and B can be identified with a graph G of $A \times B$, a partial map can be identified with a subgraph. We now describe how a graph may be represented in the context of the map constructor. An element of the graph of $A \times B$ can be given either as a tuple < a, b>, or as an $arrow\ pair\ a -> b$. The specification of a (sub)graph in a map constructor should then consist of either a (comma separated) list, a sequence, or a set of such tuples or arrow pairs (a mixture is permitted).

16.1.3 Rules for Maps

The specification of a rule in the map constructor involves a free variable and an expression, usually involving the free variable, separated by :->, for example x :-> 3*x - 1. The scope of the free variable is restricted to the map constructor (so the use of x does not interfere with values of x outside the constructor). A general expression is allowed in the rule, which may involve intrinsic or user functions, and even in-line definitions of such functions.

16.1.4 Homomorphisms

Probably the most useful form of the map-constructor is the version for homomorphisms. Most interesting mappings in algebra are homomorphisms, and if an algebraic structure A belongs to a family of algebraic structures which form a variety we have the fundamental result that a homomorphism is uniquely determined by the images of any generating set. This provides us with a particularly compact way of defining and representing homomorphisms. While the syntax of the homomorphism constructor is similar to that of the general mapping constructor, the semantics are sometimes different.

The kind of homomorphism built by the hom-constructor is determined entirely by the domain: thus, a group homomorphism results from applying hom to a domain A that is one of the types of group in MAGMA, a ring homomorphism results when A is a ring, etc. As a consequence, the requirements on the specification of homomorphisms are dependent on the category to which A belongs. Often, the codomain of a homomorphism is required to belong to the same variety. But even within a category the specification may depend on the type of structure; for details we refer the reader to the specific chapters.

A homomorphism can be specified using either a rule map or by generator images. In the latter case the processor will seek to express an element as a word in the generators of A when asked to compute its image. Thus A needs to be finitely presented.

16.1.5 Checking of Maps

It should be pointed out that checking the 'correctness' of mappings can be done to a limited extent only. If the mapping is given by means of a graph, MAGMA will check that no multiple images are specified, and that an image is given for every element of the

Ch. 16 MAPPINGS 251

domain (unless a partial map is defined). If a rule is given, it cannot be checked that it is defined on all of the domain. Also, it is in general the responsibility of the user to ensure that the images provided for a hom constructor do indeed define a homomorphism.

16.2 Creation Functions

In this section we describe the creation of maps, partial maps, and homomorphisms via the various forms of the constructors, as well as maps that define coercions between algebraic structures.

16.2.1 Creation of Maps

Maps between structures A and B may be specified either by providing the full graph (as defined in the previous section) or by supplying an expression rule for finding images.

map< A
$$\rightarrow$$
 B | G \rightarrow

Given a finite structure A, a structure B and a graph G of $A \times B$, construct the mapping $f: A \to B$, as defined by G. The graph G may be given by either a set, sequence, or list of tuples or arrow-pairs as described in the Introduction to this Chapter. Note that G must be a full graph, i.e., every element of A must occur exactly once as a first component.

map< A
$$\rightarrow$$
 B | x :-> e(x) >

Given a set or structure A, a set or structure B, a variable x and an expression e(x), usually involving x, construct the mapping $f:A\to B$, as defined by e(x). It is the user's responsibility to ensure that a value is defined for every $x\in A$. The scope of the variable x is restricted to the map-constructor.

map< A
$$\rightarrow$$
 B | x :-> e(x), y :-> i(y) >

Given a set or structure A, a set or structure B, a variable x, an expression e(x), usually involving x, a variable y, and an expression i(y), usually involving y, construct the mapping $f: A \to B$, as defined by $x \mapsto e(x)$, with corresponding inverse $f^{-1}: B \to A$, as defined by $y \mapsto i(y)$. It is the user's responsibility to ensure that a value e(x) is defined for every $x \in A$, a value i(y) is defined for every $y \in B$, and that i(y) is the true inverse of e(x). The scope of the variables x and y is restricted to the map-constructor.

16.2.2 Creation of Partial Maps

Partial mappings are quite different to both general mappings and homomorphisms, in that images need not be defined for every element of the domain.

pmap< A
$$\rightarrow$$
 B | G \rightarrow

Given a finite structure A of cardinality n, a structure B and a subgraph G of $A \times B$, construct the partial map $f: A \to B$, as defined by G. The subgraph G may be given by either a set, sequence, or list of tuples or arrow-pairs as described in the Introduction to this Chapter.

pmap< A
$$\rightarrow$$
 B | x :-> e(x) >

Given a set A, a set B, a variable x and an expression e(x), construct the partial map $f: A \to B$, as defined by e(x). This form of the map constructor is a special case of the previous one whereby the image of x can be defined using a single expression. Again the scope of x is restricted to the map-constructor.

pmap< A
$$\rightarrow$$
 B | x :-> e(x), y :-> i(y) >

This constructor is the same as the map constructor above which allows the inverse map i(y) to be specified, except that the result is marked to be a partial map.

16.2.3 Creation of Homomorphisms

The principal construction for homomorphisms consists of the generator image form, where the images of the generators of the domain are listed. Note that the kind of homomorphism and the kind and number of generators for which images are expected, depend entirely on the type of the domain. Moreover, some features of the created homomorphism, e.g. whether checking of the homomorphism is done during creation or whether computing preimages is possible, depend on the types of the domain and the codomain. We refer to the appropriate handbook chapters for further information.

Given a finitely generated algebraic structure A and a structure B, as well as a graph G of $A \times B$, construct the homomorphism $f: A \to B$ defined by extending the map of the generators of A to all of A. The graph G may be given by either a set, sequence, or list of tuples or arrow-pairs as described in the Introduction to this Chapter.

The detailed requirements on the specification are module-dependent, and can be found in the chapter describing the domain A.

hom< A -> B |
$$y_1$$
, ..., y_n > hom< A -> B | x_1 -> y_1 , ..., x_n -> y_n >

This is a module-dependent constructor for homomorphisms between structures A and B; see the chapter describing the functions for A. In general after the bar the images for all generators of the structure A must be specified.

```
hom< A \rightarrow B | x :-> e(x) >
```

Given a structure A, a structure B, a variable x and an expression e(x), construct the homomorphism $f:A\to B$, as defined by e(x). This form of the map constructor is a special case of the previous one whereby the image of x can be defined using a single expression. Again the scope of x is restricted to the map-constructor.

hom< A
$$\rightarrow$$
 B | x :-> e(x), y :-> i(y) >

This constructor is the same as the map constructor above which allows the inverse map i(y) to be specified, except that the result is marked to be a homomorphism.

16.2.4 Coercion Maps

MAGMA has a sophisticated machinery for coercion of elements into structures other than the parent. Non-automatic coercion is usually performed via the ! operator. To obtain the coercion map corresponding to ! in a particular instance the Coercion function can be used.

```
Coercion(D, C)
```

Bang(D, C)

Given structures D and C such that elements from D can be coerced into C, return the map m that performs this coercion. Thus the domain of m will be D and the codomain will be C.

16.3 Operations on Mappings

16.3.1 Composition

Although compatible maps can be composed by repeated application, say g(f(x)), it is also possible to create a composite map.

```
f * g
```

Given a mapping $f: A \to B$, and a mapping $g: B \to C$, construct the composition h of the mappings f and g as the mapping $h = g \circ f: A \to C$.

Components(f)

Returns the maps which were composed to form f.

16.3.2 (Co)Domain and (Co)Kernel

The domain and codomain of any map can simply be accessed. Only for some intrinsic maps and for maps with certain domains and codomains, also the formation of image, kernel and cokernel is available.

Domain(f)

The domain of the mapping f.

Codomain(f)

The codomain of the mapping f.

Image(f)

Given a mapping f with domain A and codomain B, return the image of A in B as a substructure of B. This function is currently supported only for some intrinsic maps and for maps with certain domains and codomains.

Kernel(f)

Given the homomorphism f with domain A and codomain B, return the kernel of f as a substructure of A. This function is currently supported only for some intrinsic maps and for maps with certain domains and codomains.

16.3.3 Inverse

Inverse(m)

The inverse map of the map m.

16.3.4 Function

For a map given by a rule, it is possible to get access to the rule as a user defined function.

Function(f)

The function underlying the mapping f. Only available if f has been defined by the user by means of a rule map (i.e., an expression for the image under f of an arbitrary element of the domain).

16.4 Images and Preimages

The standard mathematical notation is used to denote the calculation of a map image. Some mappings defined by certain system intrinsics and constructors permit the taking of preimages. However, preimages are not available for any mapping defined by means of the mapping constructor.

a @ f

Given a mapping f with domain A and codomain B, and an element a belonging to A, return the image of a under f as an element of B.

S @ f f(S)

Given a mapping f with domain A and codomain B, and a finite enumerated set, indexed set, or sequence S of elements belonging to A, return the image of S under f as an enumerated set, indexed set, or sequence of elements of B.

C @ f

Given a homomorphism f with domain A and codomain B, and a substructure C of A, return the image of C under f as a substructure of B.

y @@ f

Given a mapping f with domain A and codomain B, where f supports preimages, and an element y belonging to B, return the preimage of y under f as an element of A.

If the mapping f is a homomorphism, then a single element is returned as the preimage of y. In order to obtain the full preimage of y, it is necessary to form the coset K * y@@f, where K is the kernel of f.

R @@ f

Given a mapping f with domain A and codomain B, where f supports preimages, and a finite enumerated set, indexed set, or sequence of elements R belonging to B, return the preimage of R under f as an enumerated set, indexed set, or sequence of elements of A.

D @@ f

Given a mapping f with domain A and codomain B, where f supports preimages and the kernel of f is known or can be computed, and a substructure D of B, return the preimage of D under f as a substructure of A.

HasPreimage(x, f)

Return whether the preimage of x under f can be taken and the preimage as a second argument if it can.

16.5 Parents of Maps

Parents of maps are structures knowing a domain and a codomain. They are often used in automorphism group calculations where a map is returned from an automorphism group into the set of all automorphisms of some structure. Parents of maps all inherit from the type PowMap. The type PowMapAut which inherits from PowMap is type which the parents of automorphisms inherit from.

There is also a power structure of maps (of type PowStr, similar to that of other structures) which is used as a common overstructure of the different parents.

Parent(m)

The parent of m.

Domain(P)

Codomain(P)

The domain and codomain of the maps for which P is the parent.

Maps(D, C)

Iso(D, C)

The parent of maps (or isomorphisms) from D to C. Iso will only return a different structure to Maps if it has been specifically implemented for such maps.

Aut(S)

The parent of automorphisms of S.

INDEX OF INTRINSICS

```
3-919, 3-947, 3-956, 3-967, 3-971,
!, 1-13, 1-176, 1-199, 1-218, 1-237,
      2-271, 2-285, 2-340, 2-346, 2-357,
                                                                                      3-991, 3-1008, 3-1030, 3-1087,
                                                                                      3-1103, 3-1172, 3-1182, 1183, 3-1197,
      358, 2-374, 2-401, 2-417, 2-451,
      2-482, 2-602, 3-671, 3-746, 3-778,
                                                                                      3-1200, 1201, 3-1219, 3-1239, 1240,
                                                                                     3-1200, 1201, 3-1219, 3-1239, 124
3-1245, 3-1265, 4-1294, 4-1332,
4-1346, 4-1362, 4-1372, 4-1390,
4-1398, 4-1407, 4-1451, 4-1481,
4-1504, 4-1518, 4-1531, 4-1539,
4-1541, 4-1553, 4-1569, 4-1575,
4-1608, 5-1626, 5-1700, 5-1703,
5-1766, 5-1818, 5-1851, 5-1994,
5-2055, 5-2190, 6-2242, 6-2255,
6-2273, 6-2366, 2367, 6-2440, 6-
     779, 3-794, 3-797, 3-820, 3-892, 893, 3-967, 3-1007, 3-1079, 3-1101, 3-1169-1171, 3-1194, 3-1200, 3-1240,
     3-1109-1171, 3-1194, 3-1200, 3-1240, 4-1290, 4-1332, 4-1344, 4-1369, 4-1397, 4-1405, 4-1503, 4-1517, 4-1538, 4-1594, 5-1624, 5-1670, 5-1672, 5-1687, 1688, 5-1700, 5-1809, 1810, 5-1813, 5-1992, 1993, 5-2003,
      5-2055, 5-2058, 5-2189, 2190, 6-2240,
                                                                                      6-2273, 6-2366, 2367, 6-2449, 6-2508,
                                                                                      6-2547, 6-2565, 6-2576, 6-2586,
      6-2254, 6-2271, 6-2448, 6-2456,
      6-2495-2497, 6-2546, 6-2564, 6-2576,
                                                                                      6-2607, 7-2624, 2625, 7-2659, 7-2661,
      6-2581, 6-2586, 6-2606, 7-2619,
                                                                                      7-2663, 7-2673, 7-2683, 7-2688,
      7-2630, 7-2658, 7-2671, 7-2709,
                                                                                      7-2719, 7-2751, 7-2756, 7-2773,
      2710, 7-2749, 7-2753, 7-2836,
                                                                                     7-2777, 7-2792, 7-2837, 7-2855,
     2710, 7-2749, 7-2753, 7-2836,
7-2887, 7-2915, 7-2929, 2930, 7-2933,
7-2984, 8-3219, 8-3245, 3246, 8-3280,
8-3318, 8-3352, 9-3550, 9-3646,
9-3669, 9-3732, 9-3745, 9-3748,
9-3906, 9-3919, 9-3939, 3940, 9-3950,
9-3966, 9-4003, 10-4268, 10-4445,
                                                                                     7-2915, 7-2990, 8-3219, 8-3250,
                                                                                     8-3270, 8-3281, 8-3304, 8-3318,
8-3354, 8-3363, 8-3385, 9-3464,
9-3519, 9-3530, 9-3551, 9-3556,
9-3562, 9-3653, 9-3673, 9-3745,
9-3791, 9-3841, 9-3940, 9-3957,
9-3964, 9-3970, 9-4167, 9-4187,
      10-4462, 4463, 10-4509, 11-4668, 4669, 11-4696, 11-4721, 11-4763,
                                                                                      10-4270, 10-4411, 10-4451, 10-4466, 10-4510, 10-4548, 10-4588, 11-4668,
      11-4813, 11-4827, 11-4869, 11-4917, 12-5048, 5049, 12-5145, 12-5166,
                                                                                      11-4671, 4672, 11-4696, 11-4699, 11-4726, 4727, 11-4813, 11-4833,
      5167, 12-5169, 5170, 12-5174, 5175,
      12-5202, 5203, 12-5210, 12-5229, 5230,
                                                                                      11-4896, 11-4918, 11-4945, 12-5030,
      12-5284, 5285, 12-5358, 5359, 13-5434,
                                                                                      12-5121, 5122, 12-5145, 12-5167,
      13-5536, 13-5594, 13-5641
                                                                                      12-5170, 12-5185, 12-5207, 13-5435,
!!, 3-947, 3-1182, 3-1260, 4-1466,
                                                                                      13-5537, 13-5594, 13-5643
      5-1700, 11-4770
                                                                                *:=, 1-68, 2-272, 2-289, 2-341, 2-361,
                                                                                      2-381, 2-401, 2-421, 2-453, 2-485, 3-672, 3-1087, 4-1398, 4-1407,
\sim, 12-5208
(,),2-604, 4-1506, 5-1626, 5-1701,
      5-1818, 5-2055, 6-2273, 6-2548, 6-2566, 7-2645, 13-5436, 13-5538,
                                                                                      5-1994, 6-2449, 6-2508, 7-2673,
                                                                                      8-3385, 10-4270, 10-4466, 12-5207
                                                                               8-3385, 10-4270, 10-4466, 12-5207

+, 2-271, 2-276, 2-289, 2-314, 2-318,

2-341, 2-343, 2-361, 2-381, 2-401,

2-421, 2-438, 2-453, 2-485, 2-545,

2-586, 2-603, 2-615, 3-671, 3-682,

3-739, 3-747, 3-779, 3-834, 3-842,

3-886, 3-919, 3-956, 3-967, 3-971,

3-991, 3-1087, 3-1103, 3-1135,

3-1172, 3-1183, 3-1197, 3-1201,

3-1219, 3-1240, 3-1245, 3-1265
(,,),5-1626, 5-1701, 5-1818, 5-1994,
      5-2190, 6-2273, 6-2450, 6-2548,
(), 1-237, 1-255, 2-619, 4-1518,
6-2276, 6-2289, 6-2367, 6-2529,
      7-2992, 9-3556, 10-4258
*, 1-68, 1-253, 2-271, 2-276, 2-289,
                                                                                      3-1219, 3-1240, 3-1245, 3-1265,
      2-314, 2-318, 2-341, 2-343, 2-350,
                                                                                     4-1294, 4-1332, 4-1346, 4-1362,
      2-361, 2-381, 2-401, 2-421, 2-438,
                                                                                     4-1372, 4-1390, 4-1398, 4-1407,
                                                                                    4-1451, 4-1481, 4-1504, 4-1509, 4-1531, 4-1539, 4-1553, 4-1569,
      2-453, 2-485, 2-545, 2-586, 587,
      2-603, 2-619, 3-672, 3-679, 3-739,
      740, 3-747, 3-795, 796, 3-834, 3-842,
                                                                                     6-2242, 6-2254, 7-2625, 7-2657,
```

```
7-2659, 7-2663, 7-2673, 7-2683, 7-2688, 7-2718, 7-2755, 7-2773, 7-2837, 7-2915, 7-2918, 7-2930, 7-2990, 8-3082, 8-3125, 8-3219,
                                                                                 4-1529, 4-1595, 5-1642, 5-1690, 5-1813, 5-1983, 5-2056, 5-2189, 6-2234, 6-2238, 6-2288, 6-2462,
                                                                                 6-2495, 2496, 6-2544, 6-2561, 6-2576,
      8-3270, 8-3281, 8-3304, 8-3318,
                                                                                 6-2589, 6-2603, 7-2621, 7-2658,
                                                                                 7-2671, 7-2687, 7-2712, 7-2771,
      8-3384, 3385, 9-3464, 9-3519, 9-3530,
      9-3551, 9-3562, 9-3653, 9-3673,
                                                                                 7-2836, 7-2911, 8-3253, 8-3280,
      9-3745, 9-3841, 9-3957, 9-3964,
                                                                                 8-3303, 8-3318, 9-3529, 9-3646,
      9-3970, 9-4187, 10-4270, 10-4415,
                                                                                 9-3669, 9-3726, 9-3739, 9-3745,
      10-4466, 11-4672, 11-4696, 11-4726,
                                                                                 9-3939, 9-4183, 11-4721, 11-4813,
      11-4813, 11-4833, 11-4896, 4897,
                                                                                11-4827, 11-4912, 11-4953, 12-5048,
      11-4908, 11-4920, 11-4945, 11-4954, 12-5028, 12-5121, 12-5144, 5145, 12-5207, 12-5290-5292, 12-5370, 5371, 12-5407, 5408, 13-5435, 13-5441, 12-523, 13-5435, 13-5441,
                                                                                 5049, 12-5145, 12-5166, 12-5169,
                                                                                 12-5201, 12-5229, 12-5284, 5285, 13-5430, 13-5529, 13-5593
                                                                           7, 2-272, 2-275, 2-289, 2-314, 2-318,
2-341, 2-350, 2-357, 2-361, 2-381,
2-401, 2-421, 2-453, 2-485, 2-603,
2-610, 3-672, 3-679, 3-739, 3-747,
3-834, 3-919, 3-956, 3-967, 3-1087,
      13-5533, 13-5537, 13-5594, 13-5598,
      13-5643
+:=, 2-272, 2-289, 2-341, 2-361, 2-381, 2-401, 2-421, 2-453, 2-485, 3-672,
      3-1087, 4-1398, 4-1407, 7-2673,
                                                                                 3-1103, 3-1172, 3-1183, 3-1219,
      8-3384, 3385, 10-4270, 10-4466,
                                                                                 4-1295, 4-1332, 4-1346, 4-1362,
      12-5207, 12-5291, 5292, 12-5370,
                                                                                 4-1398, 4-1482, 4-1504, 4-1539,
      12-5372, 12-5408
                                                                                 4-1603, 4-1605, 5-1626, 5-1634,
-, 2-271, 2-289, 2-314, 2-318, 2-341,
                                                                                 5-1700, 5-1728, 5-1818, 5-1848,
                                                                                 5-1994, 5-2014, 6-2245, 6-2278,
      2-361, 2-381, 2-401, 2-421, 2-453,
                                                                                5-1994, 5-2014, 6-2245, 6-2278, 6-2450, 6-2457, 6-2508, 6-2547, 6-2565, 7-2620, 7-2625, 7-2659, 7-2673, 7-2683, 7-2686, 7-2751, 7-2837, 7-2916, 8-3247, 8-3385, 9-3464, 9-3527, 9-3562, 9-3654, 9-3745, 9-3957, 10-4271, 10-4548, 10-4588, 11-4672, 11-4696, 11-4727, 11-4909, 11-4923, 11-4954, 12-5145, 2-272, 2-289, 2-341, 2-361, 2-485.
      2-485, 2-545, 2-586, 2-603, 3-671,
      3-747, 3-834, 3-842, 3-919, 3-967,
      3-971, 3-991, 3-1087, 3-1103,
     3-971, 3-991, 3-1087, 3-1103,
3-1172, 3-1197, 3-1201, 3-1219,
3-1240, 3-1245, 3-1265, 4-1294,
4-1332, 4-1346, 4-1362, 4-1372,
4-1390, 4-1398, 4-1407, 4-1481,
4-1504, 4-1539, 6-2242, 7-2625,
7-2659, 7-2673, 7-2718, 2719, 7-2755,
2756, 7-2837, 7-2915, 7-2990,
8-3219, 8-3270, 8-3281, 8-3304,
8-3318, 9-3551, 9-3653, 9-3673
                                                                           /:=, 2-272, 2-289, 2-341, 2-361, 2-485, 5-1994, 6-2450, 6-2508, 8-3385,
                                                                                 10-4271
      8-3318, 9-3551, 9-3653, 9-3673,
                                                                           <>, 1-218
      9-3745, 9-3841, 9-3957, 9-3964,
                                                                           =, 6-2232, 6-2275, 6-2588
      9-3970, 9-4187, 10-4270, 10-4447,
                                                                           @, 1-255, 4-1575, 6-2289, 6-2367,
      10-4462, 10-4466, 10-4510, 11-4672,
                                                                                 6-2529, 7-2992, 9-3677, 9-3733,
       11\text{-}4696, \ 11\text{-}4726, \ 11\text{-}4813, \ 11\text{-}4833, \\
                                                                                 9-3942, 9-3951, 9-4172, 10-4451,
      11-4897, 11-4945, 12-5122, 12-5145, 12-5207, 12-5291, 12-5293, 12-5371, 12-5373, 5374, 13-5435, 13-5537,
                                                                                 11-4892, 11-4949
                                                                           @@, 1-255, 6-2290, 6-2529, 9-3797,
                                                                                  9-3799, 9-3942, 10-4451, 11-4892,
      13-5594, 13-5643
                                                                                  11-4949
-:=, 2-272, 2-289, 2-341, 2-361, 2-381, 2-401, 2-421, 2-453, 2-485, 3-672, 3-1087, 4-1398, 4-1407, 7-2673,
                                                                            [...], 1-68, 69, 1-178, 1-197, 198, 1-200,
                                                                                  201, 1-218, 1-220, 1-226, 227, 1-231,
                                                                                 2-537, 2-578, 2-607, 3-838, 3-928, 3-1007, 4-1504, 6-2276, 7-2632, 7-2675, 7-2725, 7-2916, 7-2992, 8-3271, 3272, 9-3733, 9-3906, 9-3920,
      10-4270, 10-4466, 12-5207, 12-5291, 12-5293, 12-5371, 12-5374
-A, 2-586
                                                                                 10-4269, 10-4447, 10-4466, 10-4509, 12-5060, 5061, 13-5437, 13-5596
-x, 8-3304
., 2-346, 2-374, 375, 2-417, 2-439,
      2-451, 2-482, 2-613, 3-671, 3-746,
                                                                           [* *], 1-225
      3-822, 3-835, 3-899, 3-922, 3-991,
                                                                           [], 2-536, 2-578, 2-606, 3-796, 4-1504,
      3-1080, 3-1101, 3-1169, 3-1240,
                                                                                 6-2232, 6-2275, 2276, 7-2632, 7-2725,
      3-1243, 4-1284, 4-1332, 4-1344,
                                                                                 7-2756, 7-2916, 8-3271, 3272, 9-3551,
                                                                                 9-3556, 12-5167, 13-5539
      4-1360, 4-1368, 4-1405, 4-1501,
```

```
" ", 1-68
                                                          '', 1-245
#, 1-11, 1-69, 1-178, 1-200, 1-218,
                                                          { }, 1-169, 1-174, 175
    1-220, 1-226, 1-238, 2-268, 2-339, 2-379, 2-420, 3-722, 3-728, 3-778,
                                                          {* *}, 1-172, 173
                                                          \{0\ 0\},\ 1-171
    3-846, 3-1007, 3-1226, 4-1287,
                                                          A, 11-4924
    4-1407, 4-1595, 5-1646, 5-1670,
                                                          AbelianBasis, 5-1660, 5-1757, 5-1880,
    5-1692, 5-1767, 5-1824, 5-1936,
                                                              5-2017, 6-2250
    5-1984, 5-2142, 5-2146, 5-2158, 2159,
                                                          AbelianExtension, 3-1025, 1026, 3-1028,
    5-2161, 5-2163, 5-2172, 5-2185,
                                                              3-1033, 3-1234
    6-2251, 6-2271, 6-2295, 6-2367,
                                                          AbelianGroup, 2-347, 5-1629, 5-1635,
    6-2463, 6-2501, 6-2523, 6-2545,
                                                              5-1696, 5-1978, 5-2043, 6-2233, 2234,
    6-2548, 6-2562, 6-2566, 6-2576,
                                                              6-2239, 6-2245, 6-2284, 6-2458,
    6-2586, 6-2605, 6-2607, 7-2620, 7-2671, 7-2929, 7-2992, 8-3152, 8-3252, 8-3348, 10-4256, 10-4280,
                                                              6-2461, 10-4289, 10-4348, 10-4475,
                                                              11 - 4956
                                                          AbelianInvariants, 5-1660, 5-1757,
    10-4332, 10-4447, 10-4469, 11-4957, 12-5056, 12-5167, 12-5170, 12-5236, 12-5239, 12-5286, 12-5342, 13-5429, 13-5529, 13-5593
                                                              5-1880, 5-2017, 6-2250
                                                          AbelianLieAlgebra, 8-3216
                                                          AbelianNormalQuotient, 5-1765
                                                          AbelianNormalSubgroup, 5-1765
#A, 11-4858
                                                          AbelianpExtension, 3-1026
#N, 2-403
                                                          AbelianQuotient, 5-1729, 5-1849, 5-2015,
#P, 2-452
                                                              6-2245, 6-2318, 6-2476
&, 1-191, 1-213, 9-3736
                                                          AbelianQuotientInvariants, 5-2015, 6-2318,
&*, 1-68, 1-221, 3-956
                                                              2319, 6-2476
&cat, 1-68
                                                         AbelianSubfield, 3-1032
&meet, 3-1008
                                                          AbelianSubgroups, 5-1665, 5-1727, 5-2010
&meet S, 2-615, 3-957, 9-3466, 9-3519
                                                         Abs, 2-292, 2-318, 2-363, 2-431, 2-472, 2-488, 11-4697
\[...], 1-199
^, 1-68, 2-272, 2-289, 2-314, 2-318,
                                                         AbsoluteAffineAlgebra, 3-1091
    2-341, 2-350, 2-361, 2-381, 2-401,
                                                         AbsoluteAlgebra, 10-4342
    2-421, 2-428, 2-453, 2-485, 2-545,
                                                          AbsoluteBasis, 2-359, 3-831, 3-912
    2-586, 3-748, 3-795, 3-834, 3-919,
                                                          AbsoluteCartanMatrix, 7-2979
    3-956, 3-967, 3-1087, 3-1103,
                                                          AbsoluteCharacteristicPolynomial, 3-837,
    3-1172, 3-1183, 3-1240, 3-1245, 4-1294, 4-1332, 4-1346, 4-1362, 4-1372, 4-1398, 4-1407, 4-1482,
                                                              3-926
                                                         AbsoluteDegree, 2-360, 3-828, 3-908,
                                                              3-1035, 3-1142, 4-1283
    4-1518, 5-1626, 5-1653, 5-1658,
                                                         AbsoluteDiscriminant, 2-360, 3-828,
    5-1700, 1701, 5-1716, 1717, 5-1733,
                                                              3-909, 3-1035, 3-1143
    1734, 5-1818, 5-1842, 1843, 5-1851,
                                                          AbsoluteField, 3-823, 3-900
    5-1863, 5-1994, 5-1999, 5-2005,
                                                          AbsoluteFunctionField, 3-1138
    5-2055, 5-2190, 6-2273, 6-2354,
                                                          AbsoluteGaloisGroup, 3-1039
    2355, 6-2449, 2450, 6-2468, 6-2508,
                                                          AbsoluteInertiaDegree, 3-950, 4-1282
    6-2547, 2548, 6-2566, 6-2576, 6-2586,
                                                          AbsoluteInertiaIndex, 3-950, 4-1282
    6-2607, 7-2624, 2625, 7-2657, 7-2659,
    7-2673, 7-2719, 7-2773, 7-2848,

7-2914, 7-2939, 7-2963, 7-2990,

7-2992, 8-3250, 8-3281, 8-3318, 3319,

8-3354, 8-3363, 9-3464, 9-3519,

9-3530, 9-3597, 3598, 9-3654, 9-3673,
                                                          AbsoluteInvariants, \mathbf{10}-4439
                                                          AbsoluteLogarithmicHeight, \mathbf{3}-924
                                                          AbsolutelyIrreducibleConstituents, 7-2968
                                                          AbsolutelyIrreducibleModule, 7-2920
                                                          AbsolutelyIrreducibleModules, 7-2965
    9-3745, 9-3940, 9-4167, 11-4668,
                                                          AbsolutelyIrreducibleModulesBurnside,
    11-4727, 11-4896, 11-4918, 12-5070, 12-5144, 12-5207, 12-5254, 12-5296,
                                                              7-2967
                                                          AbsolutelyIrreducibleModulesInit, 7-2971
    13-5493
                                                          AbsolutelyIrreducibleModulesSchur, 5-2037,
^-1, 2-586
                                                              7-2969
\hat{}:=, 2-272, 2-289, 2-341, 2-361, 2-485,
                                                          AbsolutelyIrreducibleRepresentationProc-
    5-1994, 6-2449, 2450, 6-2508
                                                              essDelete, 7-2971
', 1-52, 1-245
                                                          AbsolutelyIrreducibleRepresentationsInit,
'', 1-52
```

7-2971

AbsolutelyIrreducibleRepresentationsSchur, AdditiveZeroSumCode, 13-5591 AddNormalizingGenerator, 5-1789 AbsoluteMinimalPolynomial, 3-837, 3-927, AddRedundantGenerators, 6-25773-1174 AddRelation, 6-2400, 6-2591AbsoluteModuleOverMinimalField, 7-2957 AddRelator, 6-2408AbsoluteModulesOverMinimalField, 7-2958 AddRepresentation, 8-3385AbsoluteNorm, 2-383, 3-836, 3-926, 3-949 AddRingRelations, 6-2306AbsoluteOrder, $\mathbf{3}$ -900, $\mathbf{3}$ -1138 AddRow, 2-540, 2-582, 7-2727AbsolutePolynomial, 3-1091 AddScaledMatrix, $\mathbf{2}$ -545, 546 AbsolutePrecision, 4-1297, 4-1347, 4-1362 AddSimplex, 12-5031AbsoluteQuotientRing, 3-1091 Addsimplex, 12-5031 AbsoluteRamificationDegree, 3-949, 4-1282 AddSubgroupGenerator, 6-2409 AbsoluteRamificationIndex, 3-949, 4-1282 AddVectorToLattice, 12-5148 AbsoluteRank, 8-3103 AddVertex, 12-5291, 12-5370 AbsoluteRationalScroll, 9-3729, 9-4177 AddVertices, 12-5291, 12-5370, 5371 AbsoluteRepresentation, 5-1862 adj, **12**-5301, **12**-5379 AbsoluteRepresentationMatrix, 3-837, 3-927 AdjacencyMatrix, 3-724, 12-5315Adjoin, 7-2657 AbsoluteRootNumber, 4-1286 Adjoint, 2-554, 7-2722, 9-3676 AdjointAlgebra, 4-1581, 7-2872 AbsoluteTotallyRamifiedExtension, 4-1281 AbsoluteTrace, 2-383, 3-837, 3-926 AbsoluteValue, 2-292, 2-318, 2-363, AdjointCategory, 4-1600 **2**-431, **2**-472, **2**-488, **11**-4697 AdjointIdeal, 9-3916 AbsoluteValues, 3-923AdjointIdealForNodalCurve, 9-3916 Absolutize, 3-1091AdjointLinearSystem, 9-3917 ActingGroup, 5-2218, 8-3342AdjointLinearSystemForNodalCurve, 9-3916 ActingWord, 5-1770AdjointLinearSystemFromIdeal, 9-3916 Action, 5-1732, 5-1738, 6-2367, 7-2789, AdjointMatrix, 8-3271 **7**-2912, **12**-5071, **12**-5251, **12**-5334 AdjointRepresentation, 8-3370, 8-3378, ActionGenerator, 3-771, 7-2787, 7-2912, **8**-3383 **7**-2955 AdjointRepresentationDecomposition, 8-3377 ActionGenerators, 7-2955 Adjoints, 9-3917ActionGroup, $\mathbf{7}$ -2955 AdjointVersion, 8-3127 ActionImage, 5-1738, 12-5071, 12-5251, AdmissableTriangleGroups, 11-4704AdmissiblePair, $\mathbf{11}\text{-}5014$ **12**-5335 Advance, 5-1799, 5-2133, 5-2151, 5-2156, ActionKernel, 5-1738, 12-5071, 12-5252, **12**-5335 **5**-2170 ActionMatrix, 7-2820, 7-2894, 7-2939 AffineAction, 5-1758AdamsOperator, 8-3391AffineAlgebra, 3-1086, 9-3528AddAttribute, 1-52AffineAlgebraMapKernel, 9-3532AddColumn, 2-541, 2-582, 7-2727AffineDecomposition, 9-3778, 9-3807AddConstraints, 13-5666 AffineGammaLinearGroup, 5-1790 AddCubics, 10-4374, 10-4415 AffineGeneralLinearGroup, 5-1758, 5-1790, AddEdge, 12-5292, 12-5372, 5373, 12-5408 **5**-2067 AddEdges, 12-5292, 5293, 12-5373, 12-5408 AffineGroup, 2-405, 5-1796AddGenerator, 3-1050, 6-2400, 6-2592 AffineImage, 5-1758AddGroupRelations, 6-2305, 6-2312AffineKernel, 5-1759 AdditiveCode, 13-5588, 5589AffineLieAlgebra, 8-3301 AffineNormalForm, $\mathbf{12}\text{-}5130$ AdditiveCyclicCode, $13\text{-}5605,\ 5606$ AdditiveGroup, 2-287, 2-339, 2-377, AffinePatch, 9-3773, 9-3932 4-1284 AffinePlane, 9-3905AdditiveHilbert90, 2-384AffineSigmaLinearGroup, 5-1790 AdditiveOrder, 8-3081, 8-3121, 8-3157, AffineSigmaSymplecticGroup, 5-1791 AffineSpace, 9-3725, 3726, 9-3905AdditivePolynomialFromRoots, 3-1244 AffineSpecialLinearGroup, 5-1790, 5-2067 ${\tt AdditiveQuasiCyclicCode,~13-} 5606$ AffineSymplecticGroup, 5-1791 AdditiveRepetitionCode, 13-5590 AFRNumber, 9-4135AdditiveUniverseCode, 13-5591 AGammaL, 5-1790 AdditiveZeroCode, 13-5590 AGCode, 13-5502

100 1 10 7707	17. V 100 F V 1000 0 0004
AGDecode, 13-5505	Alt, 5-1635, 5-1696, 6-2284
AGDualCode, 13-5502	AlternantCode, 13-5460
Agemo, 5-2019, 6-2256	AlternatingCharacter, 7-3020
AGL, 5-1758, 5-1790, 5-2067	AlternatingCharacterTable, 7-3020
AGM, 2-514	AlternatingCharacterValue, 7-3020
AHom, 7-2794, 7-2933	AlternatingDominant, 8-3396, 3397
AInfinityRecord, 7-2818	AlternatingElementToWord, 5-2079
aInvariants, 10-4250, 10-4416	AlternatingElementToWord (G, g), 5-1781
Alarm, 1-94	AlternatingGroup, 5-1635, 5-1696, 6-2284
AlgComb, 4-1390	AlternatingOrSymmetricElementToWord,
Algebra, 2-359, 3-826, 3-906, 4-1546,	5 -1778, 5 -2076
7 -2618, 7 -2629, 2630, 7 -2640, 2641,	AlternatingPower, 8-3391
7 -2654, 7 -2661, 7 -2688, 7 -2712,	AlternatingSpace, 4-1590
7 -2752, 7 -2789, 7 -2846, 7 -2940,	AlternatingSquare, 10-4590
8-3217, 8-3279, 9-3615	AlternatingSum, 2-517
AlgebraGenerators, 7-2739	AlternatingTensor, 4-1569
AlgebraicClosure, 3-1078	AlternatingWeylSum, 8-3398
AlgebraicGenerators, 8-3348	Ambient, 9-3549, 9-3741, 9-3829, 9-4171,
AlgebraicGeometricCode, 13-5502	12 -5142
AlgebraicGeometricDualCode, 13-5502	Ambient (S), 4-1450
AlgebraicPowerSeries, 4-1385	AmbientMatrix, 9-3556
AlgebraicToAnalytic, 3-1252	AmbientModule, 11-4815
AlgebraMap, 9-3796	AmbientSpace, 3-675, 9-3741, 9-3829,
AlgebraOverCenter, 7-2641	9-3911, 11-4730, 13-5430, 13-5529,
AlgebraStructure, 7-2739	13-5592
AlgorithmicFunctionField, 9-3956	AmbientVariety, 11-4957
AllCarra at Chair Man 2 7 2812	AmbiguousForms, 3-800
AllCompactChainMaps, 7-2813	Amodule, 7-2788, 7-2812
AllCones, 9-4168	AnalyticDrinfeldModule, 3-1248
AllberiningPolynomials, 9-3796	AnalyticHomomorphisms, 10-4516
Alldeg, 12-5303, 12-5305, 12-5381,	AnalyticInformation, 10-4396
12-5383	Analytic Medula 2 1252
AllEage 4 1416	AnalyticModule, 3-1252
Allumentary 6 2260	AnalyticRank, 10-4326, 10-4344, 10-4396
AllInformationSets 12-5422	And, 1-209 and, 1-11
AllInformationSets, 13-5432	Angle, 11-4672, 11-4698
AllInverseDefiningPolynomials, 9-3796	=
AllIrreduciblePolynomials, 2-386	AnisotropicSubdatum, 8-3103 Applicator 3-068 7-2770 9-3564
All Nilpetent ical gabrag 8-2286	Annihilator, 3 -968, 7 -2779, 9 -3564
AllPairsShortestPaths 12-5304	AntiAutomorphismTau, 8-3324
AllParellelClagger 12-5394	Antipode, 8-3323
AllParallelClasses, $12-5244$ AllParallelisms, $12-5244$	AntisymmetricForms, 3 -771, 772, 5 -1965 AntisymmetricMatrix, 2 -532, 533
AllPagents 12-5065	AntisymmetricSpace, 4-1590 AntisymmetricTensor, 4-1569
AllPassants, $12\text{-}5065$ AllRays, $9\text{-}4170$	ApparentCodimension, 9-4123, 9-4132
AllResolutions, 12-5243	ApparentEquationDegrees, 9-4123, 9-4132
AllRoots, 2-385	ApparentSyzygyDegrees, 9-4123, 9-4132
AllSecants, 12-5065	Append, 1-202, 1-218, 219, 1-225
AllSlopes, 4-1419	Apply, 9-3677
AllSolvableLieAlgebras, 8-3286	ApplyContravariant, 9-4109
AllSqrts, 2-342	ApplyTransformation, $10-4411$
-	
AllSquareRoots, 2 -342 AllTangents, 12 -5065, 12 -5067	ApproximateByTorsionGroup, 11 - 4951 ApproximateByTorsionPoint, 11 - 4950
AllVertices, 4-1416	ApproximateOrder, $11-4946$
AlmostSimpleGroupDatabase, 5-2145	ApproximateStabiliser, 5-1856
Alphabet, 13-5430, 13-5529, 13-5591	AQInvariants, 5-2015, 6-2318, 2319, 6-2476
AlphaBetaData, 10-4532	AQPrimes, 6-2321
inplication to 1002	

Arcoss, 2-501, 4-1354 Arcosse, 2-502 Arcost, 2-502 Arcost, 2-502 Arcost, 2-503 Arcost, 2-501, 4-1354 Arcose, 2-501, 4-1354 Arcose, 2-501, 502, 4-1354 Arcose, 2-501, 502, 4-1354 Arcostan, 2-502 Arcostan, 2-504 Arcostan, 2-5148 Arcostan, 2-5148 Arcostan, 2-5148 Arcostan, 2-5148 Arcostan, 2-504 Argosh, 2-504		
Arcsec, 2-502 Arcsin, 2-501, 4-1354 Arctan, 2-501, 502, 4-1354 Arctan, 3-501, 502, 4-1354 Arctan, 3-501, 502, 4-1354 Arctan, 3-501, 502, 4-1355 ArcinearlyEquivalent, 9-3971, 9-4191 ArcProportional, 12-5145 Arg, 2-486 Argcosh, 2-504 Argsosh, 2-504 ArtimeticGenus(Plesingularization, 9-4078 ArithmeticGenus(Plesingularization, 9-4078 ArithmeticGenus(Plesingularization, 9-4078 ArithmeticGenus(Plesingularization, 9-4078 ArithmeticFrianglaCroup, 11-4704 ArithmeticFrianglaCroup, 11-4705 ArithmeticFrianglaCroup, 11-4704 ArithmeticFrianglaCroup, 11-4705 ArithmeticGroup, 2-309, 2-373, 4-1343, 5-1709, 5-1735, 5-1833, 5-1876, 5-1878, 5-1291, 7-2997 AssignaCapacities, 12-5362, 5363 AssociatedPrimitiveCharacter, 2-348, Asso	Arccos, $2-501$, $4-1354$	
Arcsin, 2-501, 4-1354 Arctan, 2-501, 502, 4-1354 Arctan, 2-501, 502, 4-1354 Arctan, 2-502 AreCohomologous, 5-2219 AreCohomologous, 5-2219 AreGomologous, 5-2219 AreIdentical, 6-2512 AreInvolutionsConjugate, 5-1887 AreInenzityEquivalent, 9-3071, 9-4191 AreProportional, 12-5145 Argin, 2-504 Argcosch, 2-504 Argcosch, 2-504 Argcosch, 2-504 Argsch, 2-505 ArithmeticGenusOfDesingularization, 9-4078 ArithmeticFenus, 9-3766, 9-3929, 9-4026 ArithmeticGriangleGroup, 11-4704 ArithmeticFriangleGroup, 11-4704 ArithmeticFriangle, 3-1037 ArtinRepresentation, 3-1264, 10-4535 ArtinRepresentation, 3-1264 ArtinSchreierExtension, 3-1224 ArtinSchreierExtension, 3-1224 ArtinSchreierExtension, 3-1241 ArtinSchreierExtension, 3-1241 ArtinSchreierExtension, 3-1244 ArtinSchreierExtension, 3-1244 ArtinSchreierExtension, 3-1244 ArtinSchreierExtension, 3-1244 ArtinSchreierExtension, 3-1245 Assignal, 5-1799, 5-1785 Assignal, 5-1799, 5-1785 Assignal, 5-1790, 5-2067 Assignal, 5-1790, 5-2067 Assignal, 5-1790, 5-2067 Assignal, 6-1790 AssociatedPrimitiveCharacter, 2-348, 3-3055 AssociatedPrimitiveCharacter, 2-348, 3-1056 AssociatedP	Arccosec, $2-502$	4 -1287, 4 -1329, 4 -1344, 4 -1360,
Arctan, 2-501, 4-1354 Arctan2, 2-502 AreGenerators, 12-518 AreInchard, 6-2512 AreInchard, 6-2512 AreInchard, 6-2512 AreInchard, 6-2512 AreInchard, 6-2513 AssignWeight, 12-2536, 5363 AssociatedEllipticCurve, 10-4364 AssociatedForm, 4-1570 AssociatedForm, 4-1570 AssociatedForm, 4-1570 AssociatedForm, 4-1570 AssociatedPrimitiveCrossencharacter, 3-1055 AreInchard, 6-254 AreInchard, 6-254 AssociatedPrimitiveCrossencharacter, 3-1055 AreInchard, 6-254 AreInchard, 6-254 AssociatedPrimitiveCrossencharacter, 3-1055 AssociatedPrimitiveCrossencharacter, 3-1054 AssociatedPrimitiveCrossencharacter, 3-	Arccot, 2 -502	4 -1368, 4 -1404, 7 -2670, 7 -2827,
### Arctanx, 2-501, 502, 4-1354 ### Arctanx, 2-502 ### Arcomologous, 5-2219 ### Arcidemerators, 12-5148 ### Arcidemerators, 12-5145 ### Argidemerators, 12-5146 ### Argidemerators, 12-5146 ### Argidemerators, 12-5146 ### Argidemerators, 12-5148 ### Argidemerators, 12-5148 ### Argidemerators, 12-5148 ### Argidemerators, 12-5148 ### Argidemerators, 12-5361 ### AssociatedPrimitiveCharacter, 2-348, 3-1055 ### AssociatedPrimitiveGossencharacter, 3-1054 ### AssociatedPrimitiveGrossencharacter, 3-1054 ### AssociatedPrimitiveGrossencharacter, 3-1054 ### AssociatedPrimitiveGossencharacter, 3-1054 ### AssociatedPrimitiveGrossencharacter, 3-1064 ### AssociatedPrimitiveGrossencharacter, 3-1064 ### AssociatedPrimitiveGrossencharacter, 3-1064 ### AssociatedPrimitiveGrossencharacter,	Arcsec, 2 -502	7 -2886, 8 -3279, 8 -3317, 9 -3645,
### Arctanx, 2-501, 502, 4-1354 ### Arctanx, 2-502 ### Arcomologous, 5-2219 ### Arcidemerators, 12-5148 ### Arcidemerators, 12-5145 ### Argidemerators, 12-5146 ### Argidemerators, 12-5146 ### Argidemerators, 12-5146 ### Argidemerators, 12-5148 ### Argidemerators, 12-5148 ### Argidemerators, 12-5148 ### Argidemerators, 12-5148 ### Argidemerators, 12-5361 ### AssociatedPrimitiveCharacter, 2-348, 3-1055 ### AssociatedPrimitiveGossencharacter, 3-1054 ### AssociatedPrimitiveGrossencharacter, 3-1054 ### AssociatedPrimitiveGrossencharacter, 3-1054 ### AssociatedPrimitiveGossencharacter, 3-1054 ### AssociatedPrimitiveGrossencharacter, 3-1064 ### AssociatedPrimitiveGrossencharacter, 3-1064 ### AssociatedPrimitiveGrossencharacter, 3-1064 ### AssociatedPrimitiveGrossencharacter,	Arcsin, 2-501, 4-1354	9 -3668, 9 -3726, 9 -3739, 9 -3745,
Arctan2, 2-502 Arc6Combologous, 5-2219 Arc6Combologous, 5-2219 Arc6Combologous, 5-2219 Arc6Combologous, 5-2188 Arc6Identical, 6-2512 Arc6Combologous, 5-2188 Arc6Identical, 6-2512 Arc6Combologous, 5-2188 Arc6Identical, 6-2512 Arc6Combologous, 5-2188 Arc6Combologous, 5-288 Arc6Combologous, 5-2888 Arccombologous, 5-2888 Arccombologous, 5-2888 Arccombologous, 5-2888 Arccombologous, 7-268, 1-2488 Arccombologous, 7-2		
AreGonerotros, 12-5148 AreIdentical, 6-2512 AreInvolutionsConjugate, 5-1887 AreLinearlyEquivalent, 9-3971, 9-4191 AreProportional, 12-5145 Argosoch, 2-504 Argosoch, 2-504 Argosoch, 2-504 Argosoch, 2-504 Argosch, 1-62 Argosch, 2-60		AssignVertexLabels, 12-5361
ArsignWeights, 12-5362, 5363 ArsignWeights, 12-5362, 5363 ArsignWeights, 12-5362, 5363 Assigndapatities, 12-5362, 5362 Assigndapatities, 12-5362, 5363 Assigndapatities, 12-5362, 5363 Assigndapatities, 12-5362, 5363 Assigndapatities, 12-5362, 5363 Assigndapatities, 12-5362, 5362 Assigndapatities, 12-5362, 5362 Assigndapherefix, 3-1078 Assignlabel, 12-5361, 5362 Assigndapherefix, 3-1078 Assignlabel, 12-5362, 5363 Assigndapoptents, 12-5364, 13-5609 Assignlabeler, 12-5362, 5363 Assignlabeler, 12-5364, 2-5373, 2-417,		
AreInvolutionsConjugate, 5-1887 AreInvolutionsConjugate, 5-1887 AreInvolutionsConjugate, 5-1887 AreInvolutionsConjugate, 5-1887 AreInvolutionsConjugate, 5-1887 AreInvariant, 2-638 Arginant, 2-638 Arginant, 2-638 Arginant, 2-504 Arginant, 2-638 Arginant, 2-504 Arginant, 2-638 Arginant, 2-504 Arginant, 2-504 Arginant, 2-504 Arginant, 2-504 Arginant, 2-648 Arginant, 2-648 Arginant, 2-648 Arginant, 2-648 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenus, 9-403 ArithmeticGenus, 9-403 ArithmeticGenus, 11-4693 ArithmeticGenus, 11-4693 ArtinschreicriangleGroup, 11-4704 ArithmeticVolume, 11-4693 Artinschreiermag, 3-1244 ArtinSchreierExtension, 3-1259 ArtinSchreierExtension, 3-1224 ArtinSchreierExtension, 3-1224 ArtinSchreierExtension, 3-1241 ArtinSchreierImage, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierReduction, 3-1255 ArithmeticGenusl, 9-4136 AscotatedGrapedAlgebra, 7-2781, AssociatedGrapedAlgebra, 1-5048 AssociatedGrapedAlgebra, 1-5048 AssociatedGrapedAlgebra, 1-5048 AssociatedGrapedAlgebra, 1-5048 AssociatedGraped Associate	•	
AreInvolutionsConjugate, 5-1887 AreLinearlyEquivalent, 9-3071, 9-4191 AreProportional, 12-5145 Arf Invariant, 2-638 Arf Invariant, 2-638 Argosch, 2-504 Argosch, 2-504, 4-1355 Argosch, 2-504, 4-1355 Argosch, 2-504, 4-1355 Argosch, 2-504 Argsch, 2-504 Argsch, 2-504 Argsch, 2-504 Argsch, 2-504 Argsch, 2-504 Arginnt, 2-503, 4-1354 Argument, 2-86, 11-4697 ArithmeticGenus(Phosingularization, 9-4078 ArithmeticGenus(Phosingularization, 9-4078 ArithmeticGenus(Phosingularization, 9-4078 ArithmeticVolume, 11-4693, 11-4698 ArithmeticVolume, 11-4693, 11-4698 ArtinmeticVolume, 11-4693, 11-4698 ArtinmeticVolume, 11-4693, 11-4698 ArtinmeticVolume, 11-30, 11-4698 ArtinmeticFarentation, 3-1264, 10-4535 ArtinRepresentation, 3-1244 ArtinSchreierMap, 3-1241 ArtinSchreierReduction, 3-1255 ArtinTateformula, 9-4136 AsCotensorSpace, 4-1579 AsSignal, 5-1790 Assignal, 5-1790 Assignal, 5-1790 Assignal, 5-1790 Assignal, 5-1790 Assignal, 5-1791 Assignal, 5-1791 Assignalabel, 12-5362, 5363 Assigndapacities, 12-5362, 5363 Assigndapacities, 12-5362, 5363 Assigndapacity, 12-5362 Assignal, 5-1790 Assignalabel, 12-5362, 5362 Assignalabel, 12-5361, 5362 Astinabel are 12-472 Assignalabel, 12-5361, 5362 Assignalabel, 12-5		
AreLinearlyEquivalent, 9-3971, 9-4191 AreProportional, 12-5145 Arf Invariant, 2-638 Arg.Oscoh, 2-504 Arg.Osc		
AreProportional, 12-5145 Arg Invariant, 2-638 Arg (3-486) Arg (3-486) Arg (3-486) Arg (3-486) Arg (3-504) Arg (3-504) Arg (3-1055) Arg (3-1055) Arg (3-1055) Arg (3-1056) Arg		
Arglarinat, 2-638 Arg. 2-486 Arg. 2-504 Argcosh, 2-504 Argcosh, 2-504 Argcosh, 2-504 Argsch, 2-504 Argsch, 2-503 Argsch, 2-504 Argsch, 2-503 Argsch, 2-504 Argsch, 2-503 Argsch, 2-504 Argsch, 2-503 Argsch, 2-504 Assciptager, 7-2618, 7-2639, 2-64 AssciatedPrimitiveCharacter, 3-1064 AssciatveAlgera, 7-2618, 7-2639, 2-640 ArscociatveAlgera, 7-2618, 7-2639, 2-640 ArscociatveAlgera, 7-2618, 7-2639, 2-640 AssciatveAlgera, 7-2618, 7-2639 AssciatveAlgera, 7-2618, 7-2639, 2-640 Astrineorpheap, 1-2580 Astrineorpheap, 1-4-452 Artineorpheap, 1-4-452 Artineheriorph		
Arg.cosch, 2-504 Argcosch, 2-504 Argcosch, 2-504 Argsoch, 2-504 ArsociativeArray, 1-231 AssociativeArray, 1-		
Argcosech, 2-504 Argcoth, 2-504 Argcoth, 2-504 Argsoth, 2-504 Argsoth, 2-504 Argsinh, 2-503, 4-1354 Argtanh, 2-503, 4-1355 Argument, 2-486, 11-4697 ArithmeticGenus 9-3766, 9-3929, 9-4026 ArithmeticGenus 9-4018 ArtinmeticGenus 9-3029, 2-4028 ArtinmeticGenus 9-4028 ArtinmeticGenus 9-3029, 2-4028 ArtinmeticGenus 9-4028 ArtinmeticGenus 9-4029 Artinmeti		
Argcosh, 2-504, 4-1355 Argsech, 2-504 Argsech, 2-504 Argsinh, 2-503, 4-1354 Argtanh, 2-504, 4-1355 Argument, 2-486, 11-4697 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenus of Posingularization, 9-4078 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenus, 9-3766, 9-3929, 0-4292 Arterpairing, 10-4292	=	
Argseth, 2-504 Argseth, 2-503, 4-1354 Argstah, 2-503, 4-1355 Argument, 2-486, 11-4667 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGeometricMean, 2-514 ArithmeticTriangleGroup, 11-4704 ArithmeticVolume, 11-4693, 11-4698 Arrows, 4-1601, 9-4013 ArtinMap, 3-1037 ArtinMap, 3-1037 ArtinRepresentation, 3-1254 ArtinSchreierExtension, 3-1224 ArtinSchreierImage, 3-1241 ArtinSchreierImage, 3-1255 ArtinTateFormula, 9-4136 AsCotensorSpace, 4-1579 AskExtensiondf, 3-886, 3-1135 AsSigmal, 5-1790 AsExtensionoff, 3-886, 3-1135 AsSigmal, 5-1790 AssertAttribute, 2-309, 2-373, 4-1343, 5-1790, 5-1285, 5-1833, 5-1876, 5-1878, 5-2192, 7-2997 AssertEmbedding, 11-4874 AssignCapacities, 12-5362 AssignCapacities, 12-5363 AssignCapacities, 12-5363 AssignCapacities, 12-5363 AssignCapacities, 12-5363 AssignLabel, 12-5361, 5362 AssignLabel, 12-5361, 5362 AssignLabels, 12-5363 AssignLabels, 12-5363 AssignLabels, 12-5361, 5362 AssignLabels, 12-5362, 13-5464, 13-5698, 13-5698, 13-56	=	
Argsech, 2-504 Argsinh, 2-503, 4-1354 Argtanh, 2-504, 4-1355 Argument, 2-486, 11-4697 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenus Group, 11-4704 ArithmeticGroup, 11-4704 ArithmeticTriangleGroup, 11-4704 ArithmeticVolume, 11-4693, 11-4698 Arrows, 4-1601, 9-4013 ArtinMepresentation, 3-1264, 10-4535 ArtinRepresentations, 3-1224 ArtinSchreierExtension, 3-1224 ArtinSchreierExtension, 3-1224 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierReduction, 3-1255 ArtinIateFormula, 9-4136 AscotensorSpace, 4-1579 AksextensionOf, 3-886, 3-1135 Assignal, 5-1790 ASL, 5-1790, 5-2067 AsMatrices, 4-1565 AssertAttribute, 2-309, 2-373, 4-1343, 5-1779, 5-1785, 5-1833, 5-1876, 5-1878, 5-2192, 7-2997 AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacities, 12-5363 AssignCapacities, 12-5363 AssignCapacities, 12-5363 AssignCapacities, 12-5363 AssignLabel, 12-5361, 5362 AssignLabel, 12-5361, 5362 AssignLabel, 12-5361, 5362 AssignLabel, 12-5361, 5362 AssignLabels, 12-5363 AssignLabels, 12-5364, 2-373, 2-417, AssignLaberGroup, 12-237, 2-417, AssignLaberGroup, 12-237, 2-417, AssignLaberGroup, 12-238 AstinLehnerInvolution, 11-4625, 11-4642 AttinLehnerDerator, 11-4734, 11-4820, 11-4835, 11-4963, 4964, 11-4987 AttinLehnerTuvolution, 11-4625, 11-4642 AttinLehnerDerator, 11-4734, 11-4820, 11-4835, 11-4963, 4964, 11-4987 AttinLehnerTuvolution, 11-4625, 11-4642 AttinLehnerTuvolution, 11-4619 AttinLehnerTuvolution, 12-58 Atepairing, 10-4292 AttinlehnerTuvolution, 12-658 AttentDai		
Argsinh, 2-504, 4-1354 Argtanh, 2-504, 4-1355 Argument, 2-486, 11-4697 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenus floresingularization, 9-4078 ArithmeticGenestricMean, 2-514 ArithmeticTriangleGroup, 11-4704 ArtinleInerTriangleGroup, 11-4729 AttinLeInerTuvolution, 11-4625, 11-4642 AtkinLeInerTuvolution, 11-4625, 11-4642 AtkinLeInerTuvolution, 11-4625, 11-4642 AtkinLennerTuvolution, 11-4625, 11-4619 AttinuclenerTuvolution,	=	
Argtanh, 2-504, 4-1355 Argument, 2-486, 11-4697 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenus floesingularization, 9-4078 ArithmeticGenuetricMean, 2-514 ArithmeticGroup, 11-4704 ArithmeticVolume, 11-4698 Arrows, 4-1601, 9-4013 ArtimRepresentation, 3-1264, 10-4535 ArtimRepresentations, 3-1259 ArtimSchreierImage, 3-1241 ArtimSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtimSchreierMap, 3-1255 ARSCotensorSpace, 4-1579 ARSExtensionOf, 3-886, 3-1135 ASSignal, 5-1790 ASIgmaSp, 5-1791 ASL, 5-1790, 5-2067 ARSmatrices, 4-1565 ASp, 5-1791 AssertEmbedding, 11-4874 AssertEmbedding, 11-4874 AssertEmbedding, 11-4874 AssertEmbedding, 11-4874 AssertEmbedding, 11-4874 AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignLabel, 12-5361, 5362 AssignLabel, 12-5361, 5362 AssignLabel, 12-5361, 5362 AssignLabels, 12-5363, 5-2182 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AssignNamer 1-9-408 AtkinLehner, 11-4780 AtkinLehner, 11-4780 AtkinLehner, 11-4780 AtkinLehner, 11-4780 AtkinLehner, 11-4780 AtkinLehner, 11-4780 AtkinLehner, 11-4784 AtkinLehner, 11-4784 AtkinLehner, 11-4784 AtkinLehner, 11-4784 AtkinLehner, 11-4784 AtkinLehner, 11-4784 AtkinLe		=
Argument, 2-486, 11-4697 ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenusOfDesingularization, 9-4078 ArithmeticGeometricMean, 2-514 ArtingleGeometricMean, 2-514 ArtinclenerOperator, 11-4784 ArtinlenerInvolution, 11-4625, 11-4642 AtkinLenerInvolution, 11-4625, 11-462 AtkinLenerInvolution, 11-4625, 11-461 AtkinDenerInvolution, 11-4625, 11-461 AtkinLenerInvolution, 11-4625, 11-461 AtkinLenerInvolution, 11-4625,	Argsinh, 2-503, 4-1354	AssociativeArray, $1 extst{-}231$
ArithmeticGenus, 9-3766, 9-3929, 9-4026 ArithmeticGenusifDesingularization, 9-4078 ArithmeticGeometricMean, 2-514 ArithmeticGeometricMean, 11-4704 ArithmeticTriangleGroup, 11-4704 ArithmeticVolume, 11-4693, 11-4698 Arrows, 4-1601, 9-4013 ArrinMap, 3-1037 ArtinRepresentation, 3-1264, 10-4535 ArtinRepresentation, 3-1259 ArtinSchreierExtension, 3-1224 ArtinSchreierExtension, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1255 ArtinTateFormula, 9-4136 ASCotensorSpace, 4-1579 ASExtensionOf, 3-886, 3-1135 ASigmal, 5-1790 ASigmap, 5-1791 ASI, 5-1790, 5-2067 ASMatrices, 4-1565 ASp, 5-1791 ASSIgmal, 5-1790 AssertAttribute, 2-309, 2-373, 4-1343, 5-1790, 5-2067 AssertAttribute, 2-309, 2-373, 4-1343, 5-1790, 5-1785, 5-1833, 5-1876, 5-1878, 5-2192, 7-2997 AssertEmbedding, 11-4874 AssignCapacity, 12-5362 AssignCapacity, 12-5362 AssignCapacity, 12-5362 AssignLabels, 12-5363 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AssignNamevall Attach, 1-259 AttinLehner, 1volution, 11-4625 AttinLehner, 1volution, 11-4780 AttinLehner, volution, 11-4780 AttinLehner, volution, 11-4625 AttinLehner, volution, 11-4625 AttinLehner, volution, 11-4780 AttinLehner, volution, 11-4625 AttinLehner, volution, 11-4625 AttinLehner, volution, 11-4625 AttinLehner, volution, 11-4625 AttinLehner, volution, 11-4626 AttinLehrer volution, 11-4784 AttinLehner, volution, 11-4628 At	Argtanh, $2-504$, $4-1355$	AssociatorTensor, 41566
ArithmeticGenusOfDesingularization, 9-4078 ArithmeticGeometricMean, 2-514 ArithmeticTriangleGroup, 11-4704 ArithmeticTriangleGroup, 11-4704 ArithmeticVolume, 11-4693, 11-4698 Arrows, 4-1601, 9-4013 ArtinMepresentation, 3-1264, 10-4535 ArtinRepresentation, 3-1264, 10-4535 ArtinRepresentations, 3-1259 ArtinSchreierExtension, 3-1224 ArtinSchreierImage, 3-1241 ArtinSchreierImage, 3-1241 ArtinSchreierMap, 3-1255 ArtinTateFormula, 9-4136 AsCotensorSpace, 4-1579 AsExtensionOff, 3-886, 3-1135 ASIgmaL, 5-1790 ASigmaL, 5-1790 ASigmaSp, 5-1791 ASL, 5-1790, 5-2067 AsMatrices, 4-1565 Aspolynomial, 7-2886 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, 5-1878, 5-2192, 7-2997 AssignCapacities, 12-5362, 5363 AssignCapacities, 12-5362 AssignLabels, 12-5362 AssignLabels, 12-5363 AssignLabels, 12-5361, 5362 AssignNames, 1-9, 2-346, 2-373, 2-417, AssignNames, 1-9, 2-346, 2-373, 2-417, Attech, 1-482 AtkinLehnerInvolution, 11-4625, 11-4642 AtkinLehner, 11-4780 AtkinLehner, 11-4784 AtkinLehnerInvolution, 11-4625, 11-462 AtkinLehner, 11-4780 AtkinLehner involution, 11-4625, 11-462 AtkinLehner, 11-4780 AtkinLehner involution, 11-4625, 11-462 AtkinLehner involution, 11-4625 AtkinLehner involution, 11-4625 AtkinLehner involution, 11-4625 AtkinLehner involution, 11-4625 AtkinLehner involution, 11-4627 AtkinLehner involution, 11-4627 AtkinLehner involution, 11-4628 AtkinLehner involution, 11-4628 AtkinLehner involution, 11-4628 AtkinLehner involution, 11-4628 AtkinLehner involution, 11-4629 AtkinLehner involution, 11-4628 AtkinLehner involution,	Argument, $2-486$, $11-4697$	AsTensor, $4-1580$
ArithmeticGeometricMean, 2-514 ArithmeticTriangleGroup, 11-4704 ArithmeticVolume, 11-4693, 11-4698 Arrows, 4-1601, 9-4013 ArtinMap, 3-1037 ArtinRepresentation, 3-1264, 10-4535 ArtinRepresentations, 3-1259 ArtinRepresentations, 3-1259 ArtinSchreierExtension, 3-1244 ArtinSchreierImage, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierReduction, 3-1255 ArtinRepresentations, 3-1255 ArtinRepresentations, 3-1256 ArtinRepresentations, 3-1257 ArtinSchreierImage, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierReduction, 3-1255 ArtinSchreierReduction, 3-1256 Augmentation T-2753 AugmentationMap, 7-2752 AugmentCode, 13-5464, 13-5607 AutoCorrelation, 13-5656 Autocorrelation, 13-5656 Autocorrelation, 13-5656 Automorphism, 4-1474, 8-3363, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 4232, 10-4261 AttinSchreierReduction, 3-1258 Autocorrelation, 13-5656 Automorphismicroup, 2-359, 2-379, 2-405, 3-839, 3-978, 979, 3-1037, 3-1152, 3-1564, 4-1331, 5-1470, 3-1564, 13	ArithmeticGenus, 9-3766, 9-3929, 9-4026	AsTensorSpace, 4 - 1579
ArithmeticGeometricMean, 2-514 ArithmeticTriangleGroup, 11-4704 ArithmeticVolume, 11-4693, 11-4698 Arrows, 4-1601, 9-4013 ArtinMap, 3-1037 ArtinRepresentation, 3-1264, 10-4535 ArtinRepresentations, 3-1259 ArtinRepresentations, 3-1259 ArtinSchreierExtension, 3-1244 ArtinSchreierImage, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierReduction, 3-1255 ArtinRepresentations, 3-1255 ArtinRepresentations, 3-1256 ArtinRepresentations, 3-1257 ArtinSchreierImage, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierReduction, 3-1255 ArtinSchreierReduction, 3-1256 Augmentation T-2753 AugmentationMap, 7-2752 AugmentCode, 13-5464, 13-5607 AutoCorrelation, 13-5656 Autocorrelation, 13-5656 Autocorrelation, 13-5656 Automorphism, 4-1474, 8-3363, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 4232, 10-4261 AttinSchreierReduction, 3-1258 Autocorrelation, 13-5656 Automorphismicroup, 2-359, 2-379, 2-405, 3-839, 3-978, 979, 3-1037, 3-1152, 3-1564, 4-1331, 5-1470, 3-1564, 13	ArithmeticGenusOfDesingularization, 9-4078	AtEof, $1-82$
ArithmeticTriangleGroup, 11-4704 ArithmeticVolume, 11-4693, 11-4698 Arrows, 4-1601, 9-4013 ArtinMap, 3-1037 ArtinRepresentation, 3-1264, 10-4535 ArtinRepresentations, 3-1294 ArtinSchreierExtension, 3-1224 ArtinSchreierImage, 3-1241 ArtinSchreierImage, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1246 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1245 ArtinSchreierImage, 3-1241 ArtinSchreierImage, 3-1258 Augmentation, 7-2756 Augmentation, 7-2756 Augmentation, 7-2756 Augmentation, 7-2756 Augmentation, 7-2756 Augmentation, 7-2756 Augmentation, 13-5656 AutometicToup, 6-2556, 2557 Automorphism, 4-1474, 8-3363, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 4232, 10-4261 ArtinSchreierImage, 3-1241 ArtinSchreierImage, 3-1241 ArtinSchreierImage, 3-1241 ArtinSchreierImage, 3-1258 Augmentation, 7-2756 Augme		AteqPairing, 10-4292
ArithmeticVolume, 11-4693, 11-4698 Arrows, 4-1601, 9-4013 ArtinMap, 3-1037 ArtinRepresentation, 3-1264, 10-4535 ArtinRepresentations, 3-1259 ArtinRepresentations, 3-1259 ArtinSchreierExtension, 3-1244 ArtinSchreierImage, 3-1241 ArtinSchreierReduction, 3-1255 ArtinSchreierReduction, 3-1255 ArtinSchreierReduction, 3-1255 ArtinSchreierReduction, 3-1255 ArtinSchreierReduction, 3-1255 ArtinInSchreierReduction, 3-1255 AscotensorSpace, 4-1579 Assignal, 5-1790 Assignal, 5-1791 Assignal, 11-4835 Automorrhism, 4-1474, 8-3363, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 9-3807, 9-3810, 9-3934, 10-4231, 10-4261 AtkinLehner(poperator, 11-4826, 11-4887 AtkinModularPolynomial, 11-487 Autach, 1-47 Attach, 1-487 Attach, 1-47 A		
Arrows, 4-1601, 9-4013 ArtinMap, 3-1037 ArtinRepresentation, 3-1264, 10-4535 ArtinRepresentations, 3-1259 ArtinRepresentations, 3-1259 ArtinSchreierExtension, 3-1224 ArtinSchreierImage, 3-1241 ArtinSchreierImage, 3-1241 ArtinSchreierReduction, 3-1255 ArtinTateFormula, 9-4136 AsCotensorSpace, 4-1579 AsExtension0f, 3-886, 3-1135 AsigmaL, 5-1790 AsigmaSp, 5-1791 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, AssertEmbedding, 11-4874 AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNamePrefix, 3-1078 AssignNamePrefix, 3-1078 AssignNamer, 1-9, 2-346, 2-373, 2-417, AtkinLehnerOperator, 11-4734, 11-4820, 11-4826, 11-4835, 11-4963, 4964, 11-4987 AtkinLehnerOperator, 11-4734, 11-4820, 11-4835, 11-4963, 4964, 11-4987 AtkinMedularPolynomial, 11-4879 AtkinMedularPolynomial, 11-4619 AtkinLehnerOperator, 11-4734, 11-4820, 11-4835, 11-4963, 4964, 11-4987 AtkinMedularPolynomial, 11-4619 AtkinLehnerOperator, 11-4763, 4964, 11-4987 AtkinMedularPolynomial, 11-4819 AtkinMedularPolynomial, 11-4619 AtkinMedularPolynomial, 11-4619 AtkinMedularPolynomial, 11-4619 AtkinMedularPolynomial, 11-4619 AtkinMedularPolynomial, 11-4819 AtkinMedularPolynomial, 11-4619 AtkinMedularPolynomial, 12-5172 AtkinMedularPolynomial, 12-5278 AtkinMedularPolynomial, 12-528 AtkinMedularPolynomial, 12-526 AtkinMedularPolynomial, 12-45 AtkinMedularPolynomial, 12-45 AtkinMedularPolynomial, 12-1		_
ArtinMap, 3-1037 ArtinRepresentation, 3-1264, 10-4535 ArtinRepresentation, 3-1259 ArtinRepresentations, 3-1259 ArtinSchreierExtension, 3-1224 ArtinSchreierImage, 3-1241 ArtinSchreierImage, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1255 ArtinSchreierMap, 3-1255 ArtinSchreierMap, 3-1255 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1255 ArtinSchreierMap, 3-1255 ArtinSchreierMap, 3-1255 ArtinSchreierMap, 3-1255 ArtinSchreierMap, 3-1255 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1255 Augmentation, 7-2756 Augmentation, 7-2756 Augmentation, 7-2753 Augmentation, 3-13-5607 Authoration, 13-5607 Authoration, 13-5607 Authoration, 13-5656 Autocorrelation, 13-5656 Autocorrelation, 13-5656 Automorphism, 4-1474, 8-3363, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 4232, 10-4261 AutomorphismGroup, 2-359, 2-379, 2-405, 3-745, 3-756, 3-763, 3-769, 3-839, 3-978, 979, 3-1037, 3-1152, 3-1156, 4-1313, 1314, 4-1331, 5-1770, assignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignEdgeLabels, 12-5363 AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNamePrefix, 3-1078 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, ArkinSchreierMap, 5-2172 ArtinSchreierMap, 5-2172 ArtinSchreierMap, 5-2172 ArtinSchreierMap, 5-2172 ArtinSchreierMap, 5-2172 ArtinSchreierMap, 5-2172 ArtinSchreierMap, 5-2172 AttachSpec, 1-49 ArtinSchreierMap, 5-2172 AttachSpec, 1-49 Attach, 1-47 Attach, 1-47 AttachSpec, 1-49 Attach, 1-47 AttachSpec, 1-49 Attach, 1-47 AttachSpec, 1-49 AttachSpec, 1-49 Authoringines, 5-2172 AutochreierMap, 7-2752 AugmentationIndal, 7-2753 AugmentationIndan, 7-2756 AugmentationIndan, 7-2756 AutochreierM		
ArtinRepresentation, 3-1264, 10-4535 ArtinRepresentations, 3-1259 AtkinModularPolynomial, 11-4619 AttinScroup, 5-2172 AttinScroup, 5-2172 AttachSpec, 1-49 Augmentation, 7-2756 AugmentationMap, 7-2753 AugmentationMap, 7-2752 AugmentationMap, 7-2756 Autocorrelation, 13-5667 AutomaticGroup, 6-2556, 2557 Automorphism, 4-1474, 8-3363, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 4232, 10-4261 AutomorphismGroup, 2-359, 2-379, 2-405, 3-745, 3-756, 3-761, 3-763, 3-769, 3-839, 3-978, 979, 3-1037, 3-1152, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 5-1869, 5-2023, 5-2027, 5-2182, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 5-1869, 5-2023, 5-2027, 5-2182, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 5-1869, 5-2023, 5-2027, 5-2182, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 5-1869, 5-2023, 5-2027, 5-2182, 3-1156, 4-1313, 12-5269, 13-5699, 13-5699, 13-5698 AutomorphismCouphatchingIdempotents,		
ArtinRepresentations, 3-1259 ArtinSchreierExtension, 3-1224 ArtinSchreierImage, 3-1241 ArtinSchreierImage, 3-1241 ArtinSchreierReduction, 3-1255 ArtinSchreierReduction, 3-1256 AutenstionIdeal, 7-2752 AugmentationIdeal, 7-2752 AugmentationIdeal, 7-2752 AugmentationIdeal, 7-2752 AugmentationIdeal, 7-2753 AutenSpec, 1-49 Autenspec, 1-2461 Autenspec, 1-2		
ArtinSchreierExtension, 3-1224 ArtinSchreierImage, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierMap, 3-1255 ArtinTateFormula, 9-4136 AsCotensorSpace, 4-1579 AsExtensionOff, 3-886, 3-1135 Asigmal, 5-1790 AsIgmaSp, 5-1791 AsSigmaSp, 5-1791 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1878, 5-2182, 7-2997 AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362, 5362 AssignLabels, 12-5361, 5362 AssignNames, 1-9, 2-346, 2-373, 2-417, Attach, 1-47 Attach, 1-49 Attach, 1-47 Attach, 1-47 Attach, 1-47 Attach, 1-47 Attach, 1-47 Attach, 1-47 Attach, 1-49		
ArtinSchreierImage, 3-1241 ArtinSchreierMap, 3-1241 ArtinSchreierReduction, 3-1255 ArtinSchreierReduction, 3-1255 ArtinTateFormula, 9-4136 AsCotensorSpace, 4-1579 AsExtensionOf, 3-886, 3-1135 AsExtensionOf, 3-886, 3-1135 AsigmaL, 5-1790 AsigmaSp, 5-1791 Asl, 5-1790, 5-2067 Aspelynomial, 7-2886 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, 5-1878, 5-2192, 7-2997 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignCapacity, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNames, 1-9, 2-346, 2-373, 2-417, Attach, 1-47 Attach, 1-49 Augmentation, 7-2756 Augmentationdea, 7-2753 Augmentationdea, 7-2753 Augmentationdea, 7-2753 Augmentationdea, 7-2753 Augmentationdea, 7-2753 Augmentationdea, 7-2752 Augmentationdea, 7-2753 Augmentationdea, 7-2752 Augmentationdea, 7-2526 Augmentationdea, 7-2566 Augmentationdea, 7-2566 Augmentationd	-	
ArtinSchreierMap, 3-1241 ArtinSchreierReduction, 3-1255 ArtinStareierReduction, 3-1255 ArtinTateFormula, 9-4136 AscotensorSpace, 4-1579 AssextensionOff, 3-886, 3-1135 Asgmal, 5-1790 Asigmal, 5-1790 AsigmaSp, 5-1791 AsigmaSp, 5-1791 Asharrices, 4-1565 Asp, 5-1791 Aspolynomial, 7-2886 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, 5-1878, 5-2192, 7-2997 AssignCapacities, 12-5362, 5363 AssignCapacities, 12-5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNames, 1-9, 2-346, 2-373, 2-417, AssignNames, 1-9, 2-346, 2-373, 2-417, AutomorphismGroupMatchingIdempotents,		
ArtinSchreierReduction, 3-1255 ArtinTateFormula, 9-4136 AsCotensorSpace, 4-1579 AsExtensionOf, 3-886, 3-1135 AsExtensionOf, 3-886, 3-1135 AsigmaL, 5-1790 AsigmaSp, 5-1791 AsigmaSp, 5-1791 AsligmaSp, 5-1791 Aspolynomial, 7-2886 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, AssignCapacities, 12-5362 AssignCapacity, 12-5362 AssignCapacity, 12-5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, Asugmentation, 7-2756 AugmentationIdeal, 7-2753 AugmentationIdeal, 7-2753 AugmentationIdeal, 7-2753 AugmentationIdeal, 7-2752 AugmentationIdeal, 7-2752 AugmentationIdeal, 7-2752 AugmentationIdeal, 7-2752 AugmentationIdeal, 7-2752 AugmentationIdeal, 7-2752 AugmentationIdeal, 7-2753 AugmentationIdeal, 7-2752 AugmentationIdeal, 7-2753 AugmentationIdeal, 7-2752 AugmentationIdeal, 12-5260, 12-5268, 13-5494, 12-5264, 12-5264, 12-5264, 12-5264, 13-5494, 12-5609, 13-5638 AutomorphismGroupMatchingIdempotents,		
ArtinTateFormula, 9-4136 AsCotensorSpace, 4-1579 AsExtensionOf, 3-886, 3-1135 Asigmal, 5-1790 AsigmaSp, 5-1791 Aut, 1-256, 9-3810, 10-4450, 12-5250, 13-5495 AutoCorrelation, 13-5656 ASp, 5-1791 Automorphism, 4-1474, 8-3363, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 5-1709, 5-1785, 5-1833, 5-1876, 4232, 10-4261 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignCapacity, 12-5362 AssignLabel, 12-5361, 5362 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AutomorphismGroup, 2-359, 2-379, 2-405, 3-769, 3-	-	
AsCotensorSpace, 4-1579 AsExtensionOf, 3-886, 3-1135 Asigmal, 5-1790 AsigmaSp, 5-1791 AsigmaSp, 5-1791 AsigmaSp, 5-1791 Asharrices, 4-1565 Asp, 5-1791 Aspolynomial, 7-2886 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, AssignCapacities, 12-5362 AssignCapacity, 12-5362 AssignCapacity, 12-5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNames, 1-9, 2-346, 2-373, 2-417, AutomorphismGroupMatchingIdempotents, AugmentationIdeal, 7-2753 AugmentationIdeal, 7-2752 AugmentationIdeal, 13-5607 Aut, 1-256, 9-3810, 10-4450, 12-5256, 2557 Automorphism, 4-1474, 8-3636, 9-3804, 9-3804, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 4232, 10-4261 AutomorphismGroup, 6-2556, 2557 AutomorphismGroup, 6-2556, 2557 AutomorphismGroup, 6-2566, 2577 AutomorphismGroup, 6-2566, 2577 AutomorphismGroup, 6-2566, 2577 AutomorphismGroup, 6-2566, 2577 AutomorphismGroup, 6-2566, 257 AutomorphismGroup, 6-2566, 2577 Automorp		
AsExtensionOf, 3-886, 3-1135 AsigmaL, 5-1790 AsigmaSp, 5-1791 AsigmaSp, 5-1791 AsMatrices, 4-1565 Aspolynomial, 7-2886 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AsignNameSp, 5-1790 Automorphism, 7-2752 AutomaticGroup, 6-2564, 13-5607 Automorphism, 13-5656 AutoCorrelation, 13-5656 AutoCorrelation, 13-5656 Automorphism, 4-1474, 8-3363, 9-3804, Automorphism, 4-1474, 8-3363, 9-3804, Automorphism, 4-1474, 8-3363, 9-3804, AutomorphismGroup, 2-359, 2-379, 2-405, AutomorphismGroup, 2-359, 2-379, 2-405, AssignCapacity, 12-5362 AssignLabels, 12-5363 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNamePrefix, 3-1078 AssignNamePrefix, 3-1078 AssignNamePrefix, 3-1078 AutomorphismGroupMatchingIdempotents,	•	
ASigmaL, 5-1790 ASigmaSp, 5-1791 ASL, 5-1790, 5-2067 ASMatrices, 4-1565 ASp, 5-1791 ASPOlynomial, 7-2886 ASsertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1878, 5-2192, 7-2997 ASSIgmaCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignEdgeLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AssignNames 1-9, 2-346, 2-373, 2-417, Automorphism 10-4450, 12-5250, 12-5250, 13-5494, 13-5464, 13-5607 Aut, 1-256, 9-3810, 10-4450, 12-5250, 13-5464, 13-5607 Aut, 1-256, 9-3810, 10-4450, 12-5256, 2557 Automorphism, 4-1474, 8-3363, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 4232, 10-4261 AutomorphismGroup, 2-359, 2-379, 2-405, 3-745, 3-756, 3-761, 3-763, 3-769, 3-745, 3-756, 3-761, 3-763, 3-769, 3-1152, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1		
ASigmaSp, 5-1791 ASL, 5-1790, 5-2067 ASMatrices, 4-1565 ASp, 5-1791 ASPOlynomial, 7-2886 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, 5-1878, 5-2192, 7-2997 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AssignNameFroup, 5-2860 Automorphism, 4-1474, 8-3363, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 4232, 10-4261 AutomorphismGroup, 2-359, 2-379, 2-405, 3-745, 3-756, 3-761, 3-763, 3-769, 3-745, 3-756, 3-761, 3-763, 3-769, 3-839, 3-978, 979, 3-1037, 3-1152, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1152, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1669, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNameFrefix, 3-1078 AssignNameFrefix, 3-1078 AssignNameFrefix, 3-1078 AssignNameFrefix, 3-1078 AssignNameFrefix, 3-1078 AutomorphismGroupMatchingIdempotents,		
ASL, 5-1790, 5-2067 AsMatrices, 4-1565 ASp, 5-1791 AsPolynomial, 7-2886 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, 4232, 10-4261 AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignEdgeLabels, 12-5361, 5362 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AutomorphismGroup, 2-359, 2-379, 2-405, 4232, 10-4261 AutomorphismGroup, 2-359, 2-379, 2-405, 3-765, 3-766, 3-761, 3-763, 3-769, 3-839, 3-978, 979, 3-1037, 3-1152, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156		=
AsMatrices, 4-1565 ASp, 5-1791 AsPolynomial, 7-2886 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, Automorphism, 4-1474, 8-3363, 9-3804, AutomorphismGroup, 2-359, 2-379, 2-405, AutomorphismGroupMatchingIdempotents,	ASigmaSp, 5-1791	Aut, $1-256$, $9-3810$, $10-4450$, $12-5250$,
Aspolynomial, 7-2886 AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, 4232, 10-4261 AssignCapacities, 12-5362, 5363 AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AssignNames, 1-9, 2-346, 2-373, 2-417, AstignNamePrefix, 3-108 Automorphism, 4-1474, 8-3363, 9-3804, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 4232, 10-4261 AutomorphismGroup, 2-359, 2-379, 2-405, 3-745, 3-756, 3-761, 3-763, 3-769, 3-745, 3-756, 3-761, 3-763, 3-769, 3-839, 3-978, 979, 3-1037, 3-1152, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1152, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1152, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-	ASL, 5-1790, 5-2067	13 -5495
AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, 5-1878, 5-2192, 7-2997 AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, Automorphism, 4-1474, 8-3363, 9-3804, 9-3804, 9-3804, 9-3807, 9-3810, 9-3934, 10-4231, 4232, 10-4261 AutomorphismGroup, 2-359, 2-379, 2-405, 9-3810, 9-3979, 3-763, 3-769, 3-745, 3-756, 3-761, 3-763, 3-769, 3-839, 3-978, 979, 3-1037, 3-1152, 3-1156, 4-1313, 1314, 4-1331, 5-1770, 3-1156, 4-1313, 1314, 4-1331, 3-1156, 3-		AutoCorrelation, ${f 13} ext{-}5656$
AssertAttribute, 2-309, 2-373, 4-1343, 5-1709, 5-1785, 5-1833, 5-1876, 4232, 10-4261 5-1878, 5-2192, 7-2997 AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362	ASp, 5-1791	AutomaticGroup, 6 - 2556 , 2557
5-1709, 5-1785, 5-1833, 5-1876, 5-1878, 5-2192, 7-2997 AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 362 AssignLabels, 12-5361	AsPolynomial, 7 - 2886	Automorphism, 4-1474, 8-3363, 9-3804,
5-1709, 5-1785, 5-1833, 5-1876, 5-1878, 5-2192, 7-2997 AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 Assigned, 1-6, 1-52, 1-245 AssignEdgeLabels, 12-5361, 5362 AssignLabels, 12-5363 AssignLabels, 12-5361, 5362 Assig	AssertAttribute, 2-309, 2-373, 4-1343,	9 -3807, 9 -3810, 9 -3934, 10 -4231,
5-1878, 5-2192, 7-2997 AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 Assigned, 1-6, 1-52, 1-245 AssignEdgeLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignL	5 -1709, 5 -1785, 5 -1833, 5 -1876,	
AssertEmbedding, 11-4874 AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 AssignCapacity, 12-5362 AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNameS, 1-9, 2-346, 2-373, 2-417, AutomorphismGroupMatchingIdempotents,		
AssignCapacities, 12-5362, 5363 AssignCapacity, 12-5362 Assigned, 1-6, 1-52, 1-245 AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNameS, 1-9, 2-346, 2-373, 2-417, AutomorphismGroupMatchingIdempotents,		
AssignCapacity, 12-5362 assigned, 1-6, 1-52, 1-245 AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AutomorphismGroupMatchingIdempotents,		
assigned, 1-6, 1-52, 1-245 AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLDPCMatrix, 13-5512 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, 5-1869, 5-2023, 5-2027, 5-2182, 5-2184, 6-2261, 7-2784, 7-2937, 8-3363, 9-3810, 9-3938, 10-4267, 10-4453, 12-5069, 12-5094, 12-5131, 12-5248, 12-5254, 12-5326, 13-5494, AutomorphismGroupMatchingIdempotents,		
AssignEdgeLabels, 12-5363 AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLDPCMatrix, 13-5512 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AssignNamePrefix, 6-2261, 7-2784, 7-2937, 8-3363, 9-3810, 9-3938, 10-4267, 10-4453, 12-5069, 12-5094, 12-5131, 12-5248, 12-5254, 12-5326, 13-5494, 13-5609, 13-5638 AutomorphismGroupMatchingIdempotents,		
AssignLabel, 12-5361, 5362 AssignLabels, 12-5361, 5362 AssignLDPCMatrix, 13-5512 AssignNamePrefix, 3-1078 AssignNames, 1-9, 2-346, 2-373, 2-417, AssignNamePrefix, 362 8-3363, 9-3810, 9-3938, 10-4267, 10-4453, 12-5069, 12-5094, 12-5131, 12-5248, 12-5254, 12-5326, 13-5494, 13-5609, 13-5638 AutomorphismGroupMatchingIdempotents,		
AssignLabels, 12-5361, 5362 10-4453, 12-5069, 12-5094, 12-5131, AssignLDPCMatrix, 13-5512 12-5248, 12-5254, 12-5326, 13-5494, AssignNamePrefix, 3-1078 13-5609, 13-5638 AssignNames, 1-9, 2-346, 2-373, 2-417, AutomorphismGroupMatchingIdempotents,		
AssignLDPCMatrix, 13-5512		
AssignNamePrefix, 3-1078 13-5609, 13-5638 AssignNames, 1-9, 2-346, 2-373, 2-417, AutomorphismGroupMatchingIdempotents,		
AssignNames, 1-9, 2-346, 2-373, 2-417, AutomorphismGroupMatchingIdempotents,		
7-7/X3		
2 400, 2 400, 5 622, 5 600, 6 600,	4-400, 4-400, 3-822, 3-803, 3-899,	1-2100

${\tt AutomorphismGroupOverCyclotomicExtension,}$	7 -2712, 7 -2753, 2754, 7 -2771, 7 -2839,
11- 4643	7 -2911, 8 -3072, 8 -3103, 8 -3218,
AutomorphismGroupOverExtension, 11-4643	8-3227, 8-3252, 8-3279, 8-3302,
AutomorphismGroupOverQ, 11 - 4642	8 -3345, 8 -3347, 9 -3549, 9 -3647,
AutomorphismGroupSolubleGroup, 5-2026	9 -3670, 9 -3741, 9 -3911, 9 -4182,
AutomorphismGroupStabilizer, 12-5249,	10 -4215, 10 -4253, 10 -4256, 10 -4409,
13 -5495	10 -4442, 10 -4457, 10 -4508, 10 -4514,
AutomorphismOmega, 8-3324	11-4664, 11-4690, 11-4730, 11-4815,
Automorphisms, 3-978, 3-1152, 3-1155,	11-4830, 11-4855, 11-4983, 11-5001,
1156, 4-1313, 9-3939, 10-4267	12-5204
AutomorphismSubgroup, 12-5249, 13-5494	BaseScheme, 9-3801, 9-3830
AutomorphismTalpha, 8-3324	BasicAlgebra, 7-2763-2765
AutomorphousClasses, 3-722	BasicAlgebraFromGroup, 7-2770
AuxiliaryLevel, 11-4830	BasicAlgebraFromSchur, 7-2770
BachBound, 3 -931	BasicAlgebraGroupNames, 7 -2770 BasicAlgebraOfBlockAlgebra, 7 -2766
BadPlaces, 10-4336, 10-4389	BasicAlgebraOfEndomorphismAlgebra, 7-2765
BadPrimeData, 10-4582	BasicAlgebraOfExtAlgebra, 7-2766, 7-2810
BadPrimes, 10-4221, 10-4305, 10-4483	BasicAlgebraOfGroupAlgebra, 7-2765
BaerDerivation, 12-5076 BaerSubplane, 12-5076	BasicAlgebraOfHeckeAlgebra, 7-2765
Ball, 12 -5314	BasicAlgebraOfMatrixAlgebra, 7-2765
Bang, 1-253	BasicAlgebraOfPrincipalBlock, 7-2766
BarAutomorphism, 8-3324	BasicAlgebraOfSchurAlgebra, 7-2765
BarycentricSubdivision, 12-5032	BasicCodegrees, 8-3149, 8-3198
Base, 5-1786, 5-1878	BasicDegrees, 8-3149, 8-3198
BaseChange, 3-678, 4-1486, 7-3028,	BasicOrbit, 5-1786, 5-1878
9-3771, 3772, 9-3910, 10-4244, 4245,	BasicOrbitLength, 5-1786, 5-1878
10- 4427, 10- 4458, 10- 4508, 4509	BasicOrbitLengths, 5-1787, 5-1879
BaseChangeMatrix, 7-2800	BasicOrbits, 5-1786
BaseComponent, 9-3830	BasicRootMatrices, 8-3194
BaseCurve, 11-4624	BasicStabiliser, 5-1787, 5-1879
BaseElement, 6-2523	BasicStabiliserChain, 5-1787, 5-1879
BaseExtend, 2-346, 3-678, 8-3347,	BasicStabilizer, 5 -1787, 5 -1879
9 -3771, 3772, 10 -4244, 4245, 10 -4427,	BasicStabilizerChain, 5-1787, 5-1879
10 -4458, 10 -4508, 4509, 11 -4720,	Basis, 2 -359, 2 -616, 3 -677, 3 -742,
11 -4812, 11 -4875, 11 -4904	3- 830, 3- 911, 3- 951, 3- 1142, 3- 1189,
BaseField, 2 -359, 2 -371, 2 -613, 3 -822,	3 -1206, 4 -1507, 4 -1533, 4 -1541,
3 -899, 3 -1035, 3 -1085, 3 -1137, 1138,	7 -2621, 7 -2655, 7 -2662, 7 -2677,
3 -1226, 3 -1239, 1240, 4 -1283, 4 -1472,	7 -2724, 7 -2772, 7 -2839, 7 -2940,
4 -1501, 4 -1573, 4 -1597, 7 -2620,	7 -2986, 8 -3228, 8 -3253, 9 -3428,
7 -2839, 8 -3072, 9 -3647, 9 -3741,	9 -3515, 9 -3559, 9 -3976, 10 -4391,
9 -3911, 10 -4215, 10 -4442, 10 -4457,	11-4723, 11-4765, 11-4815, 11-4829,
10-4508, 10-4514, 11-4983, 11-4985,	11 -4912, 12 -5145, 13 -5430, 13 -5529,
11-5001	13 -5593
BaseImage, 5-1788	Bacic (S) $A = IA5II$
BaseImageWordStrip, 5-1789	Basis (S), 4-1450
BaseLocus, $9-3843$	BasisChange, 8-3112
DM-J-1- F 9719 8 9979 9979	BasisChange, $8-3112$ BasisDenominator, $3-677$
BaseModule, 7 -2712, 8 -3272, 3273	BasisChange, $8-3112$ BasisDenominator, $3-677$ BasisElement, $2-616$, $7-2621$, $7-2678$,
BaseMPolynomial, 2-328	BasisChange, 8-3112 BasisDenominator, 3-677 BasisElement, 2-616, 7-2621, 7-2678, 7-2724, 7-2888, 8-3253, 9-3428,
BaseMPolynomial, 2 -328 BasePoint, 5 -1786, 5 -1878	BasisChange, 8-3112 BasisDenominator, 3-677 BasisElement, 2-616, 7-2621, 7-2678, 7-2724, 7-2888, 8-3253, 9-3428, 9-3515, 9-3559
BaseMPolynomial, 2 -328 BasePoint, 5 -1786, 5 -1878 BasePoints, 9 -3801, 9 -3832	BasisChange, 8-3112 BasisDenominator, 3-677 BasisElement, 2-616, 7-2621, 7-2678, 7-2724, 7-2888, 8-3253, 9-3428, 9-3515, 9-3559 BasisMatrix, 2-616, 3-677, 3-742, 3-779,
BaseMPolynomial, 2-328 BasePoint, 5-1786, 5-1878 BasePoints, 9-3801, 9-3832 BaseRing, 2-347, 348, 2-419, 2-451,	BasisChange, 8-3112 BasisDenominator, 3-677 BasisElement, 2-616, 7-2621, 7-2678, 7-2724, 7-2888, 8-3253, 9-3428, 9-3515, 9-3559 BasisMatrix, 2-616, 3-677, 3-742, 3-779, 3-913, 3-951, 3-1142, 3-1189,
BaseMPolynomial, 2-328 BasePoint, 5-1786, 5-1878 BasePoints, 9-3801, 9-3832 BaseRing, 2-347, 348, 2-419, 2-451, 2-536, 2-577, 3-678, 3-743, 3-900,	BasisChange, 8-3112 BasisDenominator, 3-677 BasisElement, 2-616, 7-2621, 7-2678, 7-2724, 7-2888, 8-3253, 9-3428, 9-3515, 9-3559 BasisMatrix, 2-616, 3-677, 3-742, 3-779, 3-913, 3-951, 3-1142, 3-1189, 7-2662, 7-2754, 7-2846, 9-3559,
BaseMPolynomial, 2-328 BasePoint, 5-1786, 5-1878 BasePoints, 9-3801, 9-3832 BaseRing, 2-347, 348, 2-419, 2-451, 2-536, 2-577, 3-678, 3-743, 3-900, 3-991, 3-1035, 3-1101, 3-1137, 1138,	BasisChange, 8-3112 BasisDenominator, 3-677 BasisElement, 2-616, 7-2621, 7-2678, 7-2724, 7-2888, 8-3253, 9-3428, 9-3515, 9-3559 BasisMatrix, 2-616, 3-677, 3-742, 3-779, 3-913, 3-951, 3-1142, 3-1189, 7-2662, 7-2754, 7-2846, 9-3559, 13-5430, 13-5593
BaseMPolynomial, 2-328 BasePoint, 5-1786, 5-1878 BasePoints, 9-3801, 9-3832 BaseRing, 2-347, 348, 2-419, 2-451, 2-536, 2-577, 3-678, 3-743, 3-900, 3-991, 3-1035, 3-1101, 3-1137, 1138, 3-1240, 3-1243, 3-1246, 4-1283,	BasisChange, 8-3112 BasisDenominator, 3-677 BasisElement, 2-616, 7-2621, 7-2678, 7-2724, 7-2888, 8-3253, 9-3428, 9-3515, 9-3559 BasisMatrix, 2-616, 3-677, 3-742, 3-779, 3-913, 3-951, 3-1142, 3-1189, 7-2662, 7-2754, 7-2846, 9-3559, 13-5430, 13-5593 BasisMatrix (S), 4-1450
BaseMPolynomial, 2-328 BasePoint, 5-1786, 5-1878 BasePoints, 9-3801, 9-3832 BaseRing, 2-347, 348, 2-419, 2-451, 2-536, 2-577, 3-678, 3-743, 3-900, 3-991, 3-1035, 3-1101, 3-1137, 1138, 3-1240, 3-1243, 3-1246, 4-1283, 4-1327, 4-1345, 4-1359, 4-1368,	BasisChange, 8-3112 BasisDenominator, 3-677 BasisElement, 2-616, 7-2621, 7-2678, 7-2724, 7-2888, 8-3253, 9-3428, 9-3515, 9-3559 BasisMatrix, 2-616, 3-677, 3-742, 3-779, 3-913, 3-951, 3-1142, 3-1189, 7-2662, 7-2754, 7-2846, 9-3559, 13-5430, 13-5593 BasisMatrix (S), 4-1450 BasisOfDegreeOCoxMonomials, 9-4185
BaseMPolynomial, 2-328 BasePoint, 5-1786, 5-1878 BasePoints, 9-3801, 9-3832 BaseRing, 2-347, 348, 2-419, 2-451, 2-536, 2-577, 3-678, 3-743, 3-900, 3-991, 3-1035, 3-1101, 3-1137, 1138, 3-1240, 3-1243, 3-1246, 4-1283,	BasisChange, 8-3112 BasisDenominator, 3-677 BasisElement, 2-616, 7-2621, 7-2678, 7-2724, 7-2888, 8-3253, 9-3428, 9-3515, 9-3559 BasisMatrix, 2-616, 3-677, 3-742, 3-779, 3-913, 3-951, 3-1142, 3-1189, 7-2662, 7-2754, 7-2846, 9-3559, 13-5430, 13-5593 BasisMatrix (S), 4-1450

BasisOfHolomorphicDifferentials, 3-1217, BKZ, **3**-698 9-3957 BLLC, **13-**5480 BasisOfRationalFunctionField, 9-4185 BLLCLowerBound, 13-5476 BasisProduct, 7-2630, 7-2888, 8-3246BLLCUpperBound, 13-5476BasisProducts, **7**-2631, **8**-3246 Block, **12**-5229, **12**-5240 BasisReduction, 3-690, 691BlockDegree, 12-5237, 12-5239 BasisScaling, 3-739BlockDegrees, 12-5237Basket, 9-4129, 9-4131 BlockGraph, 12-5253, 12-5299 BBSModulus, 13-5656BlockGroup, 12-5249BCHBound, 13-5478BlockMatrix, 2-543BCHCode, 13-5458Blocks, 5-1890, 7-3006, 12-5236 BDiagram, **12**-5103 BlocksAction, 5-1742 BDLC, 13-5481 BlockSet, 12-5229BlocksImage, $\mathbf{5}$ -1743, $\mathbf{5}$ -1890 BDLCLowerBound, 13-5476BDLCUpperBound, ${\bf 13}\text{-}5476$ BlockSize, 12-5237, 12-5239 Bell, 2-300, 12-5158 BlockSizes, 12-5237 BerlekampMassey, 13-5653BlocksKernel, 5-1743 BernoulliApproximation, 2-515, 12-5158Blowup, 9-3737, 9-3922, 9-4165, 9-4195 BernoulliNumber, 2-515, 12-5158 BlowUpDivisor, 9-4047BernoulliPolynomial, 2-442, 12-5158 BlowUpDivisorAllPatches, 9-4048BesselFunction, 2-513BlumBlumShub, 13-5655BesselFunctionSecondKind, 2-513 BlumBlumShubModulus, 13-5656 BestApproximation, 2-494BogomolovNumber, 9-4146BestDimensionLinearCode, 13-5481 BooleanPolynomialRing, 9-3439 BestKnownLinearCode, 13-5480 Booleans, 1-11 BestKnownQuantumCode, 13-5635 BorderedDoublyCirculantQRCode, 13-5462 BestLengthLinearCode, 13-5480 Borel, **12-**5090 BestTranslation, 2-330 BorelSubgroup, 12-5090 BettiNumber, 9-3573, 10-4397, 12-5036Bottom, **3**-1007, **5**-1670, **7**-2930 BettiNumbers, 9-3573, 9-4132Bound, 3-994BettiTable, 9-3573Boundary, 12-5027BFSTree, 12-5316, 12-5387 BoundaryIntersection, 11-4699 BianchiCuspForms, 11-5001BoundaryMap, 4-1547, 11-4776 Bicomponents, **12**-5307, **12**-5384 BigO, **4**-1291, **4**-1345 BoundaryMaps, 4-1547BoundaryMatrix, 12-5036 ${\tt BigPeriodMatrix, \ 10-}4513$ BoundaryPoints, 12-5126 BigTorus, 9-4177 BoundedFSubspace, 11-4929 BinaryForms, 9-3626BoundingBox, 12-5116BinaryQuadraticForms, 3-793 BoxElements, 12-5132BinaryResidueCode, 13-5553 BQPlotkinSum, 13-5555, 5556 BinaryString, 1-68 BraidGroup, 6-2284, 6-2494, 8-3168 BinaryTorsionCode, 13-5553 Branch, 8-3389 Binomial, 2-299, 12-5157 BranchVertexPath, 12-5317 BinomialToricEmbedding, 9-4205 BrandtModule, 11-4811, 4812, 11-4821, bInvariants, 10-4251, 10-4416**11-**4831 BipartiteGraph, 12-5279BrandtModuleDimension, 11-4820, 4821 Bipartition, 12-5304, 12-5380BrandtModuleDimensionOfNewSubspace, BiquadraticResidueSymbol, 3-859 **11-**4821 BitFlip, 13-5647 BrauerCharacter, 7-3006 BitPrecision, 2-484, 2-487BrauerClass, 11-4930BitwiseAnd, 2-290BravaisGroup, 5-1967 BitwiseNot, 2-289BreadthFirstSearchTree, 12-5316, 12-5387 BitwiseOr, 2-290Bruhat, 8-3355BitwiseXor, 2-290BruhatDescendants, 8-3149, 3150BKLC, **13-**5480 BruhatLessOrEqual, 8-3149 BKLCLowerBound, ${f 13}\text{-}5476$ BSGS, 5-1783, 5-1876 BKLCUpperBound, 13-5476BString, 1-68BKQC, 13-5635BuildHomomorphismFromGradedCap, 7-2781

BurauRepresentation, 6-2533	CartesianProduct, 1-217, 12-5296
BurnsideCokernel, 5-1675	Cartier, 3-1222, 9-3959, 9-4189
BurnsideMatrix, 5-1726, 5-2011	CartierRepresentation, 3-1222, 9-3959
CalabiYau, 9- 4147	CartierToWeilMap, 9 - 4191
CalculateCanonicalClass, $9-4008$	CasimirValue, $8-3388$
CalculateMultiplicities, 9 - 4008	CasselsMap, ${f 10} ext{-}4358$
CalculateTransverseIntersections, $9-4009$	CasselsTatePairing, ${f 10}$ - 4363
CalderbankShorSteaneCode, ${f 13}$ - 5620	cat, $1-68$, $1-207$, $1-225$, $13-5468$,
CambridgeMatrix, 7 -2710	13 -5534, 13 -5608
CanChangeRing, $2-544$, $11-4875$	cat:=, $1-68$, $1-207$, $1-225$
CanChangeUniverse, 1-183, 1-206	Catalan, 2-487, 12-5157
CanContinueEnumeration, 6-2411	Category, $1-28$, $1-178$, $2-268$, $2-270$,
CanDetermineIsomorphism, $11\text{-}4862$	2 -287, 2 -290, 2 -339, 2 -341, 2 -358,
CanIdentifyGroup, $5-2134$	2 -361, 2 -377, 2 -381, 2 -401, 2 -419,
CanNormalize, $3-1252$	2 -421, 2 -451, 2 -483, 484, 3 -675,
CanonicalBasis, 8-3321	3 -798, 3 -822, 3 -833, 3 -898, 3 -919,
CanonicalClass, 9-4009, 9-4187	3 -1085, 3 -1087, 3 -1102, 3 -1137,
CanonicalCoordinateIdeal, 9-4039	3 -1170, 3 -1182, 3 -1197, 4 -1345, 1346,
CanonicalCurve, $10-4537$	4- 1398, 4- 1406, 4- 1408, 7- 2671,
CanonicalDissidentPoints, 9-4130	7 -2989, 9 -3647, 9 -3653, 9 -3670,
CanonicalDivisor, 3 -1200, 9 -3836, 9 -3969,	9 -3673, 10 -4215, 10 -4253, 10 -4256,
9-4187	10 -4259, 10 -4270, 11 -4814, 12 -5204,
CanonicalElement (S, v), 4-1444	5205
CanonicalElements, 8-3329	CayleyGraph, 12 -5297
CanonicalFactorRepresentation, 6-2501	Ceiling, 2-293, 2-318, 2-363, 2-487
CanonicalGraph, 12-5330	Cell, $5-1797$
CanonicalHeight, 10-4309, 10-4479	CellNumber, $5-1797$
CanonicalImage, 9-3977	CellSize, 5 -1797
CanonicalIntersection, $9-4053$	Center, 2-268, 2-287, 2-339, 4-1398,
CanonicalInvolution, 11 - 4625	5 -1657, 5 -1751, 5 -1863, 5 -2016,
Canonicalisation, $9-4173$, $9-4197$	6 -2246, 6 -2472, 7 -2890, 7 -2901,
CanonicalLength, $6-2502$	8 -3262, 11 -4699
CanonicalLinearSystem, $9-3917$	CenterDensity, $3-700$
CanonicalLinearSystemFromIdeal, $9\text{-}3916$	CenterPolynomials, $8-3353$
Canonical Map, $9-3977$	CentralCharacter, $3-1061$, $3-1065$, $11-4983$,
CanonicalModularPolynomial, 11 - 4619	11- 5012
CanonicalScheme, ${f 10}$ - 4536	CentralCollineationGroup, ${f 12}$ - 5074
CanonicalSheaf, $9\text{-}3862$	CentralEndomorphisms, $3-773$, $5-1966$
CanonicalWeightedModel, $9\text{-}4038$	CentralExtension, $5-2040$
CanRedoEnumeration, $6-2411$	CentralExtensionProcess, 5 -2040
CanSignNormalize, $3-1252$	CentralExtensions, $5-2040$
CanteautChabaudsAttack, ${f 13}$ - 5474	CentralIdempotents, 7 -2646
Capacities, ${f 12} ext{-}5364$	Centraliser, 5-1653, 5-1672, 5-1717,
Capacity, ${f 12} ext{-}5364$	5 -1842, 5 -2005, 6 -2246, 6 -2468, 2469,
car, 1-217	7 -2641, 7 -2645, 7 -2718, 7 -2754,
Cardinality, $2-403$	7 -2757, 8 -3262
CarlitzModule, 3-1247	CentraliserOfInvolution, 5-1886, 1887
CarmichaelLambda, ${f 2}$ -296	CentraliserOrderCSp, 5-1838
CartanInteger, 8-3132	CentraliserOrderO, 5-1839
CartanMatrix, 7 -2740, 7 -2979, 8 -3045,	CentraliserOrderSp, 5-1836
3046, 8-3053, 8-3071, 8-3101,	CentralisingMatrix, 5-1892
8 -3148, 8 -3197, 8 -3302, 8 -3349,	Centralizer, 5-1653, 5-1672, 5-1717,
9-4010	5 -1842, 5 -2005, 6 -2246, 6 -2468, 2469,
CartanName, 8-3056, 8-3071, 8-3101,	7 -2641, 7 -2645, 7 -2718, 7 -2754,
8 -3147, 8 -3196, 8 -3254, 8 -3302,	7-2757, 7-2778, 8-3262
8-3349 Contan Subal cabra 8-2262	CentralizerGLZ, 5-1967, 5-1969
Cartagian Payor 1-217	CentralOrder 5-1822
CartesianPower, $1-217$	CentralOrder, 5-1822

```
3-1141, 4-1287, 4-1346, 4-1398, 4-1407, 7-2671
CentralValue, 10-4572
Centre, 2-268, 2-377, 3-824, 3-904,
    3-1085, 4-1406, 5-1657, 5-1751, 5-1863, 5-2016, 6-2246, 6-2472, 7-2641, 7-2718, 7-2778, 7-2890, 7-2901, 7-2989, 8-3262
                                                       CharacteristicPolynomial, 2-383, 2-552,
                                                           3-837, 3-926, 3-1173, 1174, 4-1300, 1301, 5-1822, 7-2660, 7-2722,
                                                           7-2838, 11-4899, 12-5300, 13-5653
                                                       CharacteristicPolynomialFromTraces,
CentredAffinePatch, 9-3778
CentreDensity, \mathbf{3}\text{-}700
                                                           10-4397
{\tt CentreOfEndomorphismAlgebra, 5-1966}
                                                       CharacteristicSeries, 5-2185
CentreOfEndomorphismRing, \mathbf{3}\text{-}772, \mathbf{5}\text{-}1966,
                                                       CharacteristicVector, 2-602, 4-1503
                                                       CharacterMultiset, 8-3398, 8-3402
CentrePolynomials, 8-3353
                                                       CharacterRing, 7-2983
                                                       CharacterTable, 5-1674, 5-1775, 5-1873,
Centroid, 4-1582, 7-2901
CFENew, 10-4577
                                                           5-2036, 6-2259, 7-2985, 7-3007
                                                       CharacterTableConlon, 5-2036, 7-2986
CFP, 6-2501
                                                       CharacterTableDS, 7-2986
Chabauty, 10-4338, 4339, 10-4495
Chabauty0, 10-4495
                                                       CharacterTableNames, 7-3008
ChainComplex, \mathbf{12}\text{-}5037
                                                       CharacterWithSchurIndex, 7-2997
                                                       ChebyshevFirst, \mathbf{2}-440
ChainMap, 4-1552
                                                       ChebyshevSecond, 2-440
ChainmapToCohomology, 7-2820
ChangeAlgebra, 7-2788
                                                       ChebyshevT, 2-440
Change Ambient, 12-5142
                                                       ChebyshevU, 2-440
ChangeBase, 5-1789
                                                       CheckCodimension, 9-4132
ChangeBasis, 7-2630, 7-2640, 8-3216,
                                                       CheckFunctionalEquation, 10-4577
                                                       CheckPolynomial, 13-5433
    12-5151
ChangeDerivation, 9-3657, 9-3679
                                                       CheckWeilPolynomial, 9-4137
ChangeDifferential, 9-3658, 9-3679
                                                       ChernNumber, 9-4027
                                                       ChevalleyBasis, 8-3257, 3258
ChangeDirectory, 1-94
                                                       ChevalleyGroup, 5-2064
ChangeEulerFactor, 10-4584
ChangeField, 3-1260
                                                       ChevalleyGroupOrder, 5-2066
                                                       ChevalleyOrderPolynomial, \mathbf{5}-2065
ChangeIdempotents, 7-2781
ChangeLocalInformation, 10-4584, 4585
                                                       chi, 2-349
ChangeModel, 3-1255
                                                       ChiefFactors, 5-1754, 5-1866
{\tt ChangeOfBasisMatrix, 5-}1874
                                                       ChiefSeries, 5-1755, 5-1866, 5-2017,
ChangeOrder, 9-3454, 3455, 9-3522
                                                           6-2256
ChangePrecision, 2-487, 3-968, 4-1288, 4-1298, 4-1345, 4-1348, 4-1358,
                                                       ChienChoyCode, 13-5460
                                                       ChineseRemainderTheorem, 2-316, 2-336,
    4-1484, 7-3027, 9-3652
                                                           2-428, 3-961, 3-1183, 3-1253
                                                       Cholesky, 3-719
ChangeRepresentationType, 7-2753
ChangeRing, 2-419, 2-452, 2-544, 2-584,
                                                       ChromaticIndex, 12-5317
    3-678, 4-1345, 4-1368, 4-1392,
                                                       ChromaticNumber, 12-5317
    4-1502, 5-1812, 7-2621, 7-2685,
                                                       ChromaticPolynomial, 12-5317
    7-2718, 7-2914, 7-2956, 8-3253,
                                                       cInvariants, 10-4251, 10-4416
    8-3279, 8-3317, 8-3347, 9-3454,
                                                       Class, 5-1660, 5-1666, 5-1705, 5-1830,
    9-3522, 9-3566, 10-4244, 10-4407,
    10-4410, 10-4427, 11-4875
                                                       ClassCentraliser, 5-1708, 5-1832, 5-1999
ChangeSupport, 12-5278, 12-5357
                                                       ClassCentralizer, 5-1708, 5-1832, 5-1999
                                                       Classes, 5-1661, 5-1705, 5-1830, 5-1999,
ChangeTensorCategory, 4-1571, 4-1597,
                                                           12-5339
ChangeUniverse, 1-183, 1-206, 4-1502
                                                       ClassesCSp, \mathbf{5}\text{-}1838
ChangGraphs, 12-5300
                                                       ClassesData, 5-1662, 7-2989
Character, 3-1261, 4-1473
                                                       ClassesExtSp, 5-1839
CharacterDegrees, 5-1674, 5-2036, 7-2987
                                                       ClassesGO, 5-1839
CharacterDegreesPGroup, 5-2036, 7-2987
                                                       ClassesGOMinus, \mathbf{5}\text{-}1840
CharacterField, 7-2990
                                                       ClassesGOPlus, 5-1840
Characteristic, 2-268, 2-288, 2-339,
                                                       ClassesSp, 5-1836
    2-360, 2-379, 2-420, 2-452, 2-483,
                                                       ClassField, 4-1319
```

ClassFunctionSpace, 7-2983

3-828, **3**-908, **3**-1086, **3**-1102,

ClassGroup, 2-287, 2-359, 3-799, 3-854, $\mathbf{3}$ -930, $\mathbf{3}$ -1163, $\mathbf{3}$ -1212, $\mathbf{9}$ -3973 ClearStoredModularForms, 11-4983 ClearVerbose, 1-105ClassGroupAbelianInvariants, 3-1164, ClebschGraph, 12-5300**3**-1213, **9**-3975 ClebschInvariants, 10-4437 ClassGroupCyclicFactorGenerators, $\mathbf{3}$ -933 ClebschSalmonInvariants, 9-4106 ${\tt ClassGroupExactSequence, 3-1163, 3-1214}$ ClebschToIgusaClebsch, 10-4439 ${\tt ClassGroupGenerationBound,~3-} 1212$ CliffordAlgebra, 7-2885, 2886ClassGroupGetUseMemory, $\mathbf{3}$ -935 CliffordIndexOne, 9-3990 ClassGroupPRank, 3-1165, 3-1216, 9-3975 CliqueComplex, 12-5024 ${\tt ClassGroupPrimeRepresentatives, 3-931}$ CliqueNumber, 12-5320ClassGroupSetUseMemory, 3-935 ClockCycles, 1-27ClassGroupStructure, 3-800 ClosestVectors, 3-702 ClassicalChangeOfBasis, 5-1909 ClosestVectorsMatrix, 3-703 ClassicalConstructiveRecognition, 5-1907 CloseVectors, 3-705ClassicalCovariantsOfCubicSurface, 9-4107 CloseVectorsMatrix, $\mathbf{3}\text{-}705$ ClassicalForms, 5-2084 CloseVectorsProcess, 3-710 ClassicalIntersection, 7-2881 Closure, 8-3403ClassicalMaximals, 5-2106 ClosureGraph, 12-5298Cluster, 9-3735, 9-3752, 9-3972ClassicalModularPolynomial, 11-4619cmpeq, 1-12
cmpne, 1-12 ClassicalPeriod, 11-4796 ClassicalRewrite, 5-1909 ClassicalRewriteNatural, 5-1910 CMPoints, 11-4706CMTwists, 11-4859ClassicalStandardGenerators, 5-1907 ClassicalStandardPresentation (type, d, q: CO, 5-2069-), **5**-1910 CoblesRadicand, 9-4105 ClassicalSylow, 5-2108CoboundaryMapImage, 5-2208 ClassicalSylowConjugation, 5-2108 CocycleMap, 5-2220ClassicalSylowNormaliser, 5-2108 CodeComplement, 13-5464, 13-5607ClassicalSylowToPC, 5-2108 Codegree, **12**-5139 ClassicalType, 5-2089CodeToString, 1-69 ClassifyRationalSurface, 9-4080Codifferent, 3-958, 3-1189ClassInvariantsCSp, $\mathbf{5}\text{-}1837$ Codimension, 9-3766, 9-4131ClassInvariantsExtSp, $\mathbf{5}$ -1838Codomain, 1-254, 1-256, 2-619, 4-1518, **4**-1571, **4**-1608, **5**-1694, **5**-1815, **6**-2290, **6**-2529, **7**-2795, **8**-3364, **9**-3555, **9**-3795, **9**-3869, **10**-4452, ClassInvariantsGO, 5-1839 ClassInvariantsGOMinus, 5-1839 ClassInvariantsGOPlus, 5-1839 ClassInvariantsSp, 5-1836 **11-**4900, **11-**4911 ClassMap, 5-1660, 5-1708, 5-1830, 5-1999 Coefficient, 2-422, 2-455, 4-1293, ClassNumber, 3-799, 3-855, 3-931, 3-1164, **4**-1304, **4**-1348, **4**-1373, **7**-2756, **3-**1213, **9-**3974 **9**-3674, **11**-4725, **12**-5209 ClassNumberApproximation, 3-1212 CoefficientDenominator, $\mathbf{2}\text{-}456$ ClassNumberApproximationBound, 3-1212 CoefficientField, 2-613, 3-822, 3-899, ClassPowerCharacter, 7-2993 **3**-1035, **3**-1137, 1138, **3**-1226, **4**-1283, ClassRepresentative, 2-336, 3-962, **4**-1501, **7**-2620, **7**-2990, **9**-3596, **5**-1662, **5**-1707, **5**-1831, **5**-1999 **9**-3741, **11**-4983, **11**-5001, **13**-5591 ClassRepresentativeFromInvariants, 5-1832 CoefficientHeight, 3-924, 3-949, 3-1180, ClassRepresentativesCSp, 5-1838 **3**-1189 ClassRepresentativesExtSp, 5-1838 CoefficientIdeals, 3-742, 3-913, 3-951, **3**-1142, **3**-1189, **4**-1540 ClassRepresentativesGO, 5-1840 ClassRepresentativesGOMinus, 5-1840 CoefficientLength, 3-925, 3-949, 3-1180, ClassRepresentativesGOPlus, 5-1840 **3**-1190 ClassRepresentativesSp, 5-1837 CoefficientMap, 9-3832 ClassTwo, 5-2035CoefficientNumerator, 2-456CoefficientRing, 2-419, 2-451, 2-536, CleanCompositionTree, 5-1920 ClearDenominator, 11-4900**2**-577, **3**-678, **3**-822, **3**-899, 900, ClearDenominators, 2-466**3**-991, **3**-1035, **3**-1101, **3**-1137, 1138, ClearPrevious, 1-78 4-1283, 4-1327, 4-1345, 4-1359, ClearStoredFactors, 2-308 **4**-1368, **4**-1501, **4**-1528, **5**-1814,

7 2620 7 2654 7 2671 7 2697	Columniio cht 9 570
7 -2620, 7 -2654, 7 -2671, 7 -2687,	ColumnWeight, 2-578
7 -2712, 7 -2753, 2754, 7 -2771, 7 -2911,	ColumnWeights, 2 -578, 9 -3549
7-2940, 7-3027, 7-3029, 8-3218,	ColumnWord, 12-5183
8-3227, 8-3252, 8-3279, 8-3302,	CombineIdealFactorisation, 9-3838
8 -3317, 8 -3345, 8 -3347, 9 -3529,	CombineInvariants, 3-993
9 -3549, 9 -3596, 9 -3670, 9 -3741,	COMinus, 5 -2071
9- 3911, 9- 4182, 10- 4253, 10- 4256,	CommonComplement, ${f 2} ext{-}641$
10 -4442, 10 -4457, 10 -4508, 10 -4514,	CommonEigenspaces, 7 -2732
11- 4730, 11- 4983, 11- 5001, 12- 5204	CommonModularStructure, 11 - 4868
CoefficientRing (S), 4-1441	CommonOverfield, 2-371
Coefficients, 2-422, 2-454, 4-1293,	CommonZeros, 3 -1177, 9 -3963
4 -1348, 4 -1362, 4 -1373, 7 -2674,	Commutator, 8-3355
7 -2756, 8 -3281, 8 -3319, 9 -3552,	CommutatorGraph, 8-3227
9 -3674, 10 -4250	CommutatorIdeal, 7 -2642, 7 -2850
CoefficientsAndMonomials, 2-456, 9-3552	CommutatorModule, 7-2641
CoefficientsNonSpiral, 4-1375	CommutatorSubgroup, 5-1653, 5-1716,
CoefficientSpace, 9-3832	5-1750, 5-1842, 5-1863, 5-2005,
Coercion, 1-253	5 -2016, 6 -2246, 6 -2334, 6 -2468
Cofactor, 2-551	
	CommutatorTensor, 4-1566
Cofactors, 2-551	comp, 2-277, 3-826, 3-906
CohenCoxeterName, 8-3194	CompactInjectiveResolution, 7-2801
CohomologicalDimension, 5-1673, 5-1772,	CompactPart, 12 -5135
5 -2202, 2203, 7 -2979	CompactPresentation, 5-2049
Cohomological Dimensions, 5-2202, 7-2980	CompactProjectiveResolution, 7 -2797,
Cohomology, 5-2220	7 -2812
CohomologyClass, 5-2219	CompactProjectiveResolutionPGroup, ${f 7}$ -2812
CohomologyDimension, $9-3587$, $9-3877$	${\tt CompactProjectiveResolutionsOfSimpleModules,} \blacksquare$
CohomologyElementToChainMap, ${f 7}$ -2813	7 -2797
CohomologyElementToCompactChainMap, 7-2813	CompanionMatrix, 2-437, 7-2710, 9-3686
CohomologyGeneratorToChainMap, 7 - 2805	Complement, 2-615, 9-3737, 9-3832,
CohomologyGroup, 5-2202	11 -4776, 11 -4932, 12 -5231, 12 -5293
CohomologyLeftModuleGenerators, 7-2805	ComplementaryDivisor, 3-1211, 9-3972
CohomologyModule, 3 -1032, 5 -2200, 2201	ComplementaryErrorFunction, 2-515
CohomologyRightModuleGenerators, 7-2804	ComplementBasis, 5-2009
CohomologyRing, 7-2814	ComplementOfImage, 11-4932
CohomologyRingGenerators, 7-2804	Complements, 5-1763, 5-2020, 7-2927
CohomologyRingQuotient, 7-2820	Complete, 6-2524
CohomologyToChainmap, 7-2820	CompleteDigraph, 12-5281
CohomotopismCategory, 4-1600	CompleteGraph, 12-5280
CoisogenyGroup, 8-3106, 8-3149, 8-3198,	CompleteGraph, 12-5280 CompleteKArc, 12-5064
8-3350	
	CompletelyReduciblePart (G), 5-1949
Cokernel, 2-619, 4-1518, 4-1552, 7-2795,	CompleteTheSquare, 10-4407
9-3556, 9-3870, 11-4893, 11-4923	CompleteUnion, 12-5296
Collect, 6-2429, 8-3389	CompleteWeightEnumerator, 13-5451,
CollectRelations, 6-2427	13 -5541, 13 -5569, 13 -5603, 5604
CollineationGroup, $12-5069$	Completion, 2-277, 2-357, 3-826, 3-906,
CollineationGroupStabilizer, 12 -5069	3 -1199, 4 -1315, 9 -3660, 9 -3681,
CollineationSubgroup, ${f 12}$ -5069	9 -3951
Colon, 7 -2663	Complex, $4-1545$
ColonIdeal, $3-958$, $3-1183$, $9-3465$, $9-3564$	ComplexCartanMatrix, 8-3194
ColonIdealEquivalent, $9\text{-}3465$	ComplexConjugate, $2-292$, $2-362$, $2-488$,
ColonModule, $9-3564$	3 -832, 3 -859, 3 -868, 3 -917
Column, 9-3552, 12-5181	ComplexEmbeddings, 11 - 4743
ColumnLength, 12-5182	ComplexEvaluation, $10-4549$
Columns, 12-5181	ComplexField, 2-481
ColumnSkewLength, 12-5181	ComplexReflectionGroup, 8-3190
ColumnSubmatrix, 2-538, 539, 2-581	ComplexRootDatum, 8-3195
ColumnSubmatrixRange, 2-539, 2-581	ComplexRootMatrices, 8-3193
	1

ComplexToPolar, 2 - 486	ConeQuotientByLinearSubspace, ${f 12}$ -5119
ComplexValue, $11-4671$, $11-4696$	Cones, 9-4168
Component, $1-218$, $3-1055$, $3-1065$, $9-4008$,	ConesOfCodimension, $9-4168$
12 -5306, 5307, 12 -5384	ConeToPolyhedron, 12-5120
ComponentGroup, $9-3987$	ConeWithInequalities, $12-5118$
ComponentGroupOfIntersection, 11 - 4921	ConformalHamiltonianLieAlgebra, $8-3242$
ComponentGroupOfKernel, 11-4890	ConformalOrthogonalGroup, 5-2069
ComponentGroupOrder, 11 - 4800 , 11 - 4972	ConformalOrthogonalGroupMinus, ${f 5}$ -2071
Components, $1-253$, $3-823$, $3-900$, $3-1033$,	ConformalOrthogonalGroupPlus, ${f 5}$ - 2070
3 -1054, 3 -1065, 9 -3791, 12 -5306,	ConformalSpecialLieAlgebra, $8-3241$
12- 5384	ConformalSymplecticGroup, ${f 5} ext{-}2068$
ComposeTransformations, ${f 10} ext{-}4411$	ConformalUnitaryGroup, ${f 5}$ - 2067
Composite, $4-1282$	CongruenceGroup, $11-4744$, $11-4793$
CompositeFields, $3-817$, $3-880$	CongruenceGroupAnemic, ${f 11}$ - 4745
Composition, $3-795$, $3-1157$, $4-1350$,	CongruenceImage, $5-1942$
7 -3002	CongruenceModulus, 11 - 4798 , 11 - 4939
CompositionAlgebra, 7 - 2899	CongruenceSubgroup, 11 - 4663
CompositionFactors, $5-1659$, $5-1755$,	Conic, $9-3909$, $10-4214$, $10-4228$, $12-5064$
5 -1866, 5 -2017, 7 -2622, 7 -2922,	ConjecturalRegulator, ${f 10} ext{-}4326$, ${f 10} ext{-}4344$
8-3265	ConjecturalSha, ${f 10}$ - 4344
CompositionSeries, $5-1750$, $5-2017$,	ConjugacyClasses, $5-1661$, $5-1705$, $5-1830$,
6 -2256, 7 -2622, 7 -2922, 8 -3265	5 -1999, 7 -2853, 8 -3148
CompositionTree, $5-1914$, 1915	ConjugacyInvariantCSp, 5 - 1837
CompositionTreeCBM, $5-1919$	ConjugacyInvariantO, 5 -1839
CompositionTreeElementToWord, ${f 5}$ - 1918	ConjugacyInvariantSp, 5 - 1835
CompositionTreeFactoredOrder, 5 - 1918	Conjugate, $2-292$, $2-362$, $2-488$, $3-795$,
CompositionTreeFactorNumber, 5-1919	3 -859, 3 -861, 3 -869, 3 -923, 5 -1653,
CompositionTreeFastVerification, 5 -1916	5 -1716, 5 -1842, 5 -2005, 6 -2354,
CompositionTreeNiceGroup, 5 -1918	6 -2468, 7 -2837, 7 -2855, 12 -5185
CompositionTreeNiceToUser, 5-1918	ConjugateIntoBorel, $8-3356$
CompositionTreeNonAbelianFactors, 5-1919	ConjugateIntoTorus, $8-3356$
CompositionTreeOrder, 5-1918	ConjugatePartition, $12-5180$
CompositionTreeReductionInfo, 5-1919	Conjugates, 3-922, 3-1089, 5-1660,
CompositionTreeSeries, 5-1919	5 -1666, 5 -1705, 5 -1830, 5 -1999
CompositionTreeSLPGroup, 5-1918	ConjugatesToPowerSums, 3-1006
CompositionTreeVerify, 5-1916	ConjugateTranspose, 2-636
Compositum, 3 -818, 3 -881	ConjugationClassLength, 8-3407
Compress, 4-1570	Connect, 9-4008
ComputePrimeFactorisation, 9-3838	ConnectedKernel, 11-4890
ComputeReducedFactorisation, 9-3838	ConnectingHomomorphism, 4-1556
Comultiplication, 8-3323	ConnectionNumber, 12-5240
ConcatenatedCode, $13-5468$	ConnectionPolynomial, 13-5653
CondensationMatrices, 7-2740	Consistency, 6-2427
CondensedAlgebra, 7-2736	ConstaCyclicCode, 13 - 5457
ConditionalClassGroup, 3-931	ConstantCoefficient, 2-422, 3-1246
ConditionedGroup, $5-2045$	ConstantField, $3-1137$, $9-3647$
Conductor, 2-348, 2-360, 3-795, 3-854,	ConstantFieldExtension, 3-1140, 9-3659,
3 -868, 3 -911, 3 -1035, 3 -1055,	9 -3680
3 -1064, 3 -1237, 3 -1261, 4 -1478,	ConstantMap, $9-3789$
7 -2847, 10 -4305, 10 -4336, 10 -4346,	ConstantRing, 9-3647, 9-3670
10 -4389, 10 -4434, 10 -4582, 11 -4815,	ConstantWords, $13-5454$
11 -4821, 11 -4858, 11 -5012	Constituent, 1-238
ConductorExponent, $4-1478$, $10-4434$	Constituents, 3-779, 7-2922
ConductorRange, 10-4332	ConstituentsWithMultiplicities, 7-2922
Cone, 9-4168, 12-5033, 12-5117	Constraint, 13-5667
ConeIndices, 9-4169	Construction, 5 -2160-2163
ConeInSublattice, 12-5119	ConstructionX, 13-5469
ConeIntersection, 9-4169	ConstructionX3, 13-5469
,	,

Construction X3u, 13-5469CoreflectionMatrix, 8-3077, 8-3117, ConstructionXChain, 13-5469 8-3161, 8-3205 ConstructionXX, 13-5470 CorestrictCocycle, 5-2208 Construction Y1, 13-5472CorestrictionMapImage, 5-2208 ${\tt ConstructTable, \ 7-2753}$ Coroot, 8-3075, 8-3112, 8-3155, 8-3203, ContactLieAlgebra, 8-3243 8-3358 ContainsQuadrangle, 12-5063 CorootAction, 8-3166 ${\tt ContainsZero,~12-} 5138$ CorootGSet, 8-3166Content, 2-430, 2-467, 3-676, 3-861, CorootHeight, 8-3079, 8-3120, 8-3158, **3**-950, **3**-957, **12**-5167, **12**-5170, 8-3360 CorootLattice, 8-3110 ContentAndPrimitivePart, 2-430, 2-467 CorootNorm, 8-3080, 8-3120, 8-3158, Contents, 4-1529Continuations, 4-1314 CorootNorms, 8-3079, 8-3120, 8-3158, ContinuedFraction, 2-494 8-3360 ContinueEnumeration, $\mathbf{6}\text{-}2411$ CorootPosition, 8-3075, 8-3112, 8-3155, Contpp, 2-430, 2-467**8**-*3203*, **8**-*3358* Contract, 12-5294, 12-5375 Coroots, 8-3075, 8-3112, 8-3155, 8-3202, Contraction, 12-52318-3358 Contravariants, 10-4417 CorootSpace, 8-3074, 8-3110, 8-3154, 8-3202, 8-3357 ContravariantsOfCubicSurface, 9-4108 Correlation, 13-5564ControlledNot, 13-5647CorrelationGroup, 12-5094Convergents, 2-494 Converse, 12-5300, 12-5377 Cos, 2-499, 4-1354Cosec, 2-500ConvertFromManinSymbol, 11-4763 ConvertToCWIFormat, 2-327 Cosech, 2-503Convolution, 4-1350CosetAction, 5-1639, 5-1652, 5-1747, **5**-1861, **5**-2022, **6**-2374, **6**-2422, ConwayPolynomial, 2-386 **6**-2466 Coordelt, 3-671CosetDecode, ${\bf 13}$ -5571Coordinate, 9-3733, 9-3920 CoordinateLattice, $\mathbf{3}\text{-}665$ CosetDistanceDistribution, 13-5455CoordinateMatrix, 9-3438, 9-3516CosetEnumerationProcess, $\mathbf{6}$ -2405 CosetGeometry, $\mathbf{12}\text{-}5086$, $\mathbf{12}\text{-}5091$ CoordinateRing, 3-678, 9-3730, 9-3742, **9**-3906, **9**-3911 CosetGeometryFromCGroup, 12-5101 Coordinates, 2-617, 3-673, 674, 3-749, 4-1507, 7-2633, 7-2724, 7-2754, CosetGeometryFromCPlusGroup, 12-5103 CosetGeometryToCGroup, 12-5101 **7**-2837, **8**-3272, **9**-3437, **9**-3516, CosetImage, 5-1639, 5-1653, 5-1747, **9**-3552, **9**-3733, **9**-3906, **9**-3920, **5**-1861, **5**-2022, **6**-2374, **6**-2422, **12**-5061, **13**-5436, **13**-5538, **13**-5595 6 - 2467CoordinateSpace, 3-675 CosetKernel, 5-1639, 5-1653, 5-1747, CoordinatesToElement, 3-671 **5**-1861, **5**-2022, **6**-2374, **6**-2422, CoordinatesToLattice, 3-746 6 - 2467CoordinateVector, 3-674 CosetLeaders, 13-5438, 13-5563 cop, 1-237CosetRepresentatives, 11-4665, 11-4674, COPlus, **5**-2070 **13**-5560 CoprimeBasis, 2-312, 3-960CosetSatisfying, 6-2372, 6-2412CoprimeBasisInsert, 3-961CosetSpace, 6-2366, 6-2423CosetsSatisfying, 6-2372, 6-2412CoprimeRepresentative, 3-962CopyCoefficients, 10-4585CosetTable, 5-1652, 5-1767, 5-1868, **5**-2021, **6**-2364, **6**-2413, **6**-2465 Coradical, 4-1581 Corank2Case, 9-3762CosetTableToPermutationGroup, 6-2364 Corank3Case, 9-3763CosetTableToRepresentation, 6-2364 CordaroWagnerCode, 13-5426Cosh, 2-503, 4-1354Core, 5-1653, 5-1717, 5-1843, 5-2005, Cot, 2-500**6**-2246, **6**-2354, **6**-2469 CotensorCategory, 4-1600 CoreflectionGroup, 8-3167 CotensorSpace, 4-1589 CoreflectionMatrices, 8-3077, 8-3117, Coth, 2-503 8-3161, 8-3205 Counit, 8-3323

CurveDifferential, 9-3956CountPGroups, $\mathbf{5}\text{-}2136$ CurveDivisor, 9-3956Covalence, **12**-5237 CoverAlgebra, 7-2780 CurvePlace, 9-3956CoveringCovariants, 10-4417 CurveQuotient, 9-3945 CoveringRadius, 3-716, 13-5455Curves, 9-4129 CoveringStructure, 1-29 Cusp, 11-4646CoweightLattice, 8-3122, 8-3159, 8-3206, CuspForms, 11-47178-3361 CuspidalInducingDatum, 11-5013 CoxeterDiagram, 8-3057, 8-3071, 8-3101, CuspidalProjection, 11-4732**8**-3147, **8**-3196, **8**-3349, **12**-5101 CuspidalSubgroup, 11-4960CoxeterElement, 8-3152, 8-3198, 8-3353 CuspidalSubspace, 11-4732, 11-4775, CoxeterForm, 8-3077, 8-3117, 8-3157**11**-4817, **11**-4828 CoxeterGraph, 8-3043, 8-3052, 8-3071, CuspIsSingular, 11-4646 **8**-3101, **8**-3148, **8**-3197, **8**-3349 CuspPlaces, 11-4646CoxeterGroup, 6-2282, 6-2284, 8-3060, Cusps, 11-4666, 11-4673**8**-3084, **8**-3134, **8**-3140, 3141, **8**-3143-3145, **■ 8**-3174, **8**-3208 CuspWidth, 11-4666CutVertices, 12-5307, 12-5384Cycle, 5-1734, 6-2509CoxeterGroupFactoredOrder, 8-3042, 3043, **8**-3047, **8**-3049, **8**-3055 CycleCount, 2-324 CoxeterGroupOrder, 8-3042, 3043, 8-3047, CycleDecomposition, 5-1734**8**-3049, **8**-3055, **8**-3072, **8**-3105 CycleStructure, 5-1701 CoxeterLength, 8-3152, 8-3206CyclicCode, 13-5427, 13-5456, 13-5527CyclicGroup, 5-1635, 5-1696, 5-1978, CoxeterMatrix, 8-3042, 8-3052, 8-3071, **8**-3101, **8**-3147, **8**-3197, **8**-3349 **6**-2285, **6**-2459 CoxeterNumber, 8-3152, 8-3198, 8-3350 CyclicPolytope, 12-5117 CoxMonomialLattice, 9-4178, 9-4184 CyclicSubgroups, 5-1665, 5-1726, 5-2010 CoxRing, 9-4180, 9-4182 CyclicToRadical, 3-1002 CPSHeightBounds, 10-4338CyclotomicAutomorphismGroup, 3-868 Cputime, 1-26CyclotomicCharacter, 4-1461 CreateCharacterFile, 2-324CyclotomicData, 10-4532 CreateCycleFile, 2-324CyclotomicFactors, 13-5527 CreateK3Data, 9-4148CyclotomicField, 3-865CreateVirtualRays, 9-4170 CyclotomicOrder, 3-868CremonaDatabase, $\mathbf{10}$ -4332CyclotomicPolynomial, 3-866CremonaReference, 10-4333 CyclotomicRelativeField, 3-868 CriticalPoints, 10-4590 CyclotomicUnramifiedExtension, 4-1278 Cylinder, 12-5034CriticalStrip, 11-4967 ${\tt CrossCorrelation,~13-} 5657$ Darstellungsgruppe, 6-2286 Data, 5-2134 CrossPolytope, 12-5117 CRT, 2-316, 2-428, 3-961, 3-1183, 3-1253 DawsonIntegral, 2-515 CryptographicCurve, 10-4287Decimation, 13-5657CrystalGraph, 8-3328 DecodingAttack, 13-5474CSp, 5-2068DecomposeAutomorphism, 8-3365 CSSCode, 13-5620DecomposeCharacter, 8-3387 CU, 5-2067, 2068 DecomposeUsing, 11-4926CubicFromPoint, 10-4407DecomposeVector, $\mathbf{2}$ -616 ${\tt Cubic Surface By Hexahedral Coefficients,}$ Decomposition, 2-336, 2-349, 2-359, 9-4105 **3-**841, 842, **3-**928, **3-**959, **3-**970, **3**-1054, **3**-1187, **3**-1194, **3**-1262, **4**-1480, **7**-2926, **7**-3002, **9**-3968, CubicSurfaceFromClebschSalmon, 9-4106Cunningham, 2-308 **11**-4771, **11**-4817, **11**-4828, **11**-4924 Current, 5-2133, 5-2151, 5-2156, 5-2170 DecompositionField, 3-980, 3-1035, 1036CurrentLabel, 5-2133, 5-2151, 5-2156, DecompositionGroup, 3-844, 3-973, 3-979, Curve, 9-3742, 9-3748, 3749, 9-3907, 3908, **3-**1036, **4-**1331 **9**-3919, 3920, **9**-3941, **9**-3950, **9**-3957, DecompositionMatrix, 7-2979 **9**-3961, **9**-3964, **9**-3966, **9**-4127, DecompositionMultiset, 8-3398, 8-3402 **10**-4256, **10**-4259, **10**-4270, **10**-4409, DecompositionType, 3-959, 3-1036, 3-1187, **10**-4457, **13**-5505 **3**-1194, **3**-1238

D 1000	D 4D 1D W 4 0 4006
DecompositionTypeFrequency, 3-1036	Degree6DelPezzoType6, 9-4096
Decycle, 6-2510	DegreeMap, 11-4930
DedekindEta, 2-508	DegreeOfCharacterField, 7-2990
DedekindTest, 2-431	DegreeOfExactConstantField, 3-1143, 3-1238
DeepHoles, 3-716	DegreeOfFieldExtension, 5-1892
DefinesAbelianSubvariety, 11-4853	DegreeOnePrimeIdeals, 3-929
DefinesHomomorphism, 6-2295	DegreeRange, 12-5262
DefiningConstantField, 3-1137	DegreeReduction, 5-1748
DefiningEquation, 9-3742	Degrees, 4-1546, 12-5262
DefiningEquations, 9-3742, 9-3795, $10-4409$	DegreeSequence, 12 -5304, 12 -5306, 12 -5381, ■ 12 -5383
DefiningIdeal, $9-3742$, $9-3911$, $10-4215$	DegreesOfCohomologyGenerators, $7\text{-}2805$
DefiningMap, 4 - 1283	Delaunay, 10 - 4523
DefiningMatrix, ${f 12}$ -5150	delete, $1-10$, $1-245$, $5-2127$
DefiningModularSymbolsSpace, ${f 11} ext{-}5012$	DeleteCapacities, ${f 12}$ – 5365
DefiningMonomial, 9 - 4192	DeleteCapacity, ${f 12} ext{-}5365$
DefiningPoints, $4-1414$	DeleteData, 5 -1767
DefiningPolynomial, $2-360$, $2-379$, $3-829$,	DeleteEdgeLabels, ${f 12}$ - 5365
3 -910, 3 -1142, 3 -1262, 4 -1283,	DeleteGenerator, 6 -2400, 6 -2592
4- 1327, 4- 1360, 4- 1389, 4- 1474,	DeleteHeckePrecomputation, ${f 11}$ - ${f 4987}$
9 -3742, 9 -3911, 10 -4215, 10 -4254,	DeleteLabel, $12-5361$, $12-5365$
10- 4444, 10- 4508	DeleteLabels, $12-5362$, $12-5365$
DefiningPolynomials, $3-1142$, $9-3742$,	DeleteRelation, $6-2400$, 2401 , $6-2592$
9 -3795, 10 -4532	DeleteVertexLabels, ${f 12}$ - 5362
DefiningSubschemePolynomial, ${f 10}$ - 4256	DeleteWeight, ${f 12}$ - 5365
DefiniteGramMatrix, 11 - 4690	DeleteWeights, ${f 12}$ - 5365
DefiniteNorm, 11 - 4690	DelPezzoSurface, 9 - 4091 , 4092
DefRing, 8-3345	DelsarteGoethalsCode, ${f 13} extstyle{-}5548$
DegeneracyMap, 11 - 4769	Delta, 2 -509
DegeneracyMatrix, 11 - 4770	Demazure, 8-3393
DegeneracyOperator, ${f 11}$ - 4987	Denominator, $2-287$, $2-361$, $3-834$, $3-920$,
Degree, 2 -336, 2 -360, 2 -379, 2 -423,	3 -948, 3 -1104, 3 -1175, 3 -1188,
2 -460, 2 -613, 3 -676, 3 -743, 3 -828,	3 -1205, 7 -2662, 9 -3536, 9 -3745, 3746,
3 -844, 3 -846, 3 -908, 3 -950, 3 -972,	9 -3970, 11 -4900
3 -1007, 3 -1035, 3 -1085, 3 -1104,	Density, $2-536$, $2-577$, $3-701$
3 -1141, 3 -1176, 3 -1192, 3 -1197,	DensityEvolutionBinarySymmetric, ${f 13}$ - 5517
3 -1205, 3 -1226, 3 -1239, 3 -1246,	DensityEvolutionGaussian, ${f 13} extstyle-5519$
3 -1261, 4 -1283, 4 -1327, 4 -1349,	Depth, $2-603$, $4-1506$, $5-2046$, $6-2449$,
4 -1407, 4 -1472, 4 -1528, 4 -1552,	9- 3618
5 -1690, 5 -1701, 5 -1732, 5 -1797,	DepthFirstSearchTree, $f 12 extstyle -5316$, $f 12 extstyle -5388$
5 -1813, 5 -1820, 5 -2172, 2173, 7 -2633,	Derivation, $9-3649$, $9-3670$
7 -2654, 7 -2712, 7 -2993, 8 -3272,	DerivationAlgebra, 2 -645, 4 -1583, 7 -2901
8 -3281, 8 -3319, 9 -3424, 9 -3549,	DerivationClosure, 4 - 1592
9 -3552, 9 -3557, 9 -3675, 9 -3752,	Derivative, $2-426$, $2-462$, $3-991$, $3-1105$,
9 -3766, 9 -3830, 9 -3843, 9 -3869,	4 -1304, 4 -1349, 4 -1377, 9 -3657
9 -3911, 9 -3936, 9 -3952, 9 -3965,	DerivedGroup, $5-1657$, $5-1750$, $5-1863$,
9 -3970, 9 -4012, 9 -4127, 9 -4131,	5 -2016, 6 -2246, 6 -2334, 6 -2473
10 -4266, 10 -4409, 10 -4434, 10 -4532,	DerivedGroupMonteCarlo, 5-1888
10 -4582, 10 -4589, 11 -4730, 11 -4815,	DerivedLength, 5-1657, 5-1750, 5-1863,
11 -4830, 11 -4900, 11 -4946, 12 -5139,	5 -2017, 6 -2257, 6 -2472
12 -5209, 12 -5303, 12 -5305, 12 -5381,	DerivedSeries, 5-1657, 5-1750, 5-1863,
5382	5 -2017, 6 -2256, 6 -2473, 8 -3266
Degree (S), 4-1450	DerivedSubgroup, 5-1657, 5-1750, 5-1863,
Degree6DelPezzoType2_1, 9-4096	5 -2016, 6 -2246, 6 -2334, 6 -2473
Degree6DelPezzoType2_2, 9-4096	DerksenIdeal, 9-3627, 9-3633
Degree6DelPezzoType2_3, 9-4096	Descendants, 5-2032
Degree6DelPezzoType3, 9-4096	DescentInformation, 10-4351
Degree6DelPezzoType4, $9-4096$	DescentMaps, 10 - 4358

```
Design, 12-5076, 12-5226, 12-5247
                                                     DihedralSubspace, 11-4732
DesingulariseSurfaceByBlowUp, 9-4047
                                                    Dilog, 2-498
                                                    Dimension, 2-613, 2-617, 3-676, 3-723, 3-742, 3-1206, 3-1261, 4-1472,
Detach, 1-47
DetachSpec, 1-49
                                                         4-1529, 4-1540, 4-1595, 5-2201,
Determinant, 2-550, 2-588, 3-676, 3-721,
    3-723, 3-743, 3-1260, 4-1482,
                                                         7-2620, 7-2654, 7-2688, 7-2724,
                                                         7-2772, 7-2789, 7-2931, 7-2940,
    4-1529, 5-1822, 7-2721, 9-4010,
                                                         7-3027, 8-3072, 8-3103, 8-3148,
    10-4411, 10-4590, 10-4595
Development, 12-5235
                                                         8-3228, 8-3252, 8-3302, 8-3348,
DFSTree, 12-5316, 12-5388
                                                         9-3483, 9-3523, 9-3532, 9-3766,
Diagonal Automorphism, 8-3274, 8-3364
                                                         9-3830, 9-3976, 9-4125, 9-4128,
                                                         9-4131, 10-4457, 10-4514, 11-4730,
DiagonalForm, 2-464
                                                         11-4815, 11-4830, 11-4855, 11-4880,
Diagonalisation, 7-2733
                                                         11-4912, 11-4984, 11-5001, 12-5024,
Diagonalization, \mathbf{3}-718, \mathbf{7}-2733
                                                         12-5139, 12-5144, 13-5429, 13-5592,
DiagonalJoin, 2-544, 2-584, 7-2726, 2727
                                                         13-5640
DiagonalMatrix, 2-531, 7-2710, 8-3246
                                                     Dimension (S), 4-1450
Diagonal Model, 10-4407
                                                     DimensionByFormula, {f 11}-4730
DiagonalSparseMatrix, 2-576
DiagonalSum, 12-5185
                                                    DimensionCuspForms, 11-4805
                                                    {\tt DimensionCuspFormsGamma0, \ 11-}4805
Diagram, 12-5097
                                                    DimensionCuspFormsGamma1, 11-4805
DiagramAutomorphism, 8-3274, 8-3325,
                                                    DimensionNewCuspFormsGamma0, \mathbf{11}-4805
Diameter, 2-489, 12-5313, 13-5455
                                                    DimensionNewCuspFormsGamma1, 11-4805
                                                     DimensionOfCentreOfEndomorphismRing,
{\tt DiameterPath,~12-} 5313
                                                         3-773, 5-1966
DickmanRho, 2-296
DicksonFirst, 2-390, 2-441
                                                    DimensionOfEndomorphismRing, 3-772, 5-1966
DicksonInvariant, 2-638
                                                    DimensionOfExactConstantField, 3-1143
                                                     DimensionOfFieldOfGeometricIrreducibility,
DicksonNearfield, 2-399
                                                         9-3953
DicksonPairs, 2-397
                                                    DimensionOfGlobalSections, 9-3877
DicksonSecond, 2-390, 2-441
DicksonTriples, 2-397
                                                    DimensionOfHomology, 4-1547
DicyclicGroup, 5-1635
                                                    DimensionOfKernelZ2, 13-5559
diff, 1-187
                                                     DimensionOfSpanZ2, 13-5559
                                                     DimensionsEstimate, 8-3234
Difference, 9-3736
DifferenceSet, 12-5234
                                                     DimensionsOfHomology, 4-1547
Different, 3-911, 3-929, 3-958, 3-1146,
                                                     DimensionsOfInjectiveModules, 7-2772
    3-1180, 3-1189
                                                     {\tt DimensionsOfProjectiveModules,~7-2772}
DifferentDivisor, 3-1200
                                                    DimensionsOfTerms, 4-1547
Differential, 3-1217, 9-3649, 9-3657,
                                                    DirectProduct, 5-1637, 5-1698, 5-1816,
    9-3670, 9-3957
                                                         5-1988, 6-2286, 6-2458, 6-2591,
                                                         8-3165, 8-3362, 9-3728, 9-3905,
DifferentialBasis, 3-1211, 3-1218,
    9-3957, 9-3976
                                                         11-4918, 13-5464, 13-5534, 13-5607
DifferentialFieldExtension, 9-3661
                                                    DirectSum, 2-635, 3-682, 3-740, 4-1502,
DifferentialIdeal, 9-3666
                                                         4-1531, 4-1547, 6-2246, 7-2631,
                                                        7-2715, 7-2717, 7-2914, 7-2940,
7-2961, 7-3027, 8-3082, 8-3125,
8-3261, 8-3399, 8-3402, 9-3563,
9-3867, 11-4918, 12-5144, 13-5464,
DifferentialLaurentSeriesRing, 9-3645
Differential Multiplicities, 9-4052
DifferentialOperator, 9-3694
DifferentialOperatorRing, 9-3668
DifferentialRing, 9\text{-}3644
                                                         13-5534, 13-5607, 13-5633
DifferentialRingExtension, 9-3661
                                                     DirectSum (M1, M2), 4-1451
DifferentialSpace, 3-1139, 3-1211, 3-1217,
                                                    DirectSumDecomposition, 7-2646, 7-2926,
    1218, 9-3956, 3957, 9-3976
                                                         8-3083, 8-3126, 8-3261, 8-3399,
Differentiation, 3-1179
                                                         8-3402
DifferentiationSequence, 3-1179
                                                    DirichletCharacter, 3-1059, 3-1264,
Digraph, 12-5276
                                                         11-4731, 11-4855, 11-4983
DihedralForms, 11-4738
                                                    DirichletCharacterOverNF, 3-1062
DihedralGroup, 5-1635, 5-1696, 5-1978,
                                                    DirichletCharacterOverQ, 3-1062
    6-2285, 6-2459
                                                    DirichletCharacters, 11-4730, 11-4856
```

```
DirichletGroup, 2-346, 3-1053
                                                       7-2795, 8-3364, 9-3555, 9-3795,
                                                       9-3869, 10-4452, 11-4900, 11-4911
DirichletRestriction, 3-1057
Disconnect, 9-4008
                                                   DominantCharacter, 8-3388
Discriminant, 2-360, 2-436, 2-471, 2-637,
                                                   DominantDiagonalForm, 3-768
    3-743, 3-794, 3-828, 3-854, 3-861,
                                                   DominantLSPath, 8-3326
    3-908, 3-1035, 3-1143, 4-1284,
                                                   DominantWeight, 8-3123, 8-3160, 8-3207,
    4-1329, 4-1584, 7-2654, 7-2840,
                                                       8-3361
    7-2846, 10-4219, 10-4251, 10-4417,
                                                   DotProduct, 2-625
    10-4434, 11-4815, 11-4821, 11-4911
                                                   DotProductMatrix, 2-625
DiscriminantDivisor, 3-1237, 1238
                                                   Double, 10-4510
                                                   DoubleCoset, 5-1766, 6-2371
DiscriminantFromShiodaInvariants, 10-4440
                                                   DoubleCosetCanonical, 5-1766
DiscriminantOfHeckeAlgebra, 11-4783
                                                   DoubleCosetRepresentatives, 5-1766
DiscriminantRange, 3-846
                                                   DoubleCosets, 6-2371
DiscToPlane, \mathbf{11}\text{-}4699
                                                   DoubleGenusOneModel, 10-4415
Display, 6-2428
                                                   DoublePlotkinSum, 13-5556
DisplayBurnsideMatrix, 5-1726, 5-2011
                                                   DoublyCirculantQRCode, 13-5461
DisplayCompTreeNodes, \mathbf{5}-1918
                                                   {\tt DoublyCirculantQRCodeGF4, 13-} 5462
DisplayFareySymbolDomain, 11-4677
                                                   Dual, 3-680, 3-740, 4-1533, 4-1546, 6-2262, 7-2800, 7-2962, 8-3083,
DisplayPolygons, 11-4675
Distance, 2-489, 4-1310, 11-4672,
                                                       8-3127, 8-3165, 8-3201, 8-3362,
    11-4698, 12-5313, 12-5392, 13-5435,
                                                       9-3867, 11-4933, 12-5055, 12-5118,
    13-5537, 13-5595
                                                       12-5143, 12-5231, 13-5431, 13-5441,
DistanceMatrix, 12-5315
                                                       13-5533, 13-5593, 13-5598
DistancePartition, 12-5314
                                                   DualAtkinLehner, 11-4780
Distances, 12-5392
                                                   DualBasisLattice, 3-681
DistinctDegreeFactorization, 2-436
                                                   DualCoxeterForm, 8-3077, 8-3117, 8-3157
DistinctExtensions, 5-2212
                                                   DualEuclideanWeightDistribution, 13-5568
DistinguishedOrbitsOnSimples, 8-3103
                                                   DualFaceInDualFan, 9-4170
div, 2-289, 2-341, 2-421, 2-427, 2-453,
                                                   DualFan, 9-4164
    2-464, 3-672, 3-842, 3-858, 3-920,
                                                   DualHeckeOperator, \mathbf{11}-4779
    3-956, 3-967, 3-971, 3-1172, 3-1197,
                                                   DualIsogeny, 10-4264
    3-1201, 4-1294, 4-1304, 4-1346,
                                                   DualityAutomorphism, 8-3365
    4-1362, 4-1398, 4-1408, 7-2659,
                                                   DualKroneckerZ4, 13-5556
    7-2673, 9-3551, 9-3654, 9-3964,
                                                   DualLeeWeightDistribution, 13-5566
    9-3970
                                                   DualMorphism, 8-3131
div:=, 2-289, 2-453, 4-1295, 7-2673
                                                   DualPolynomial, 5-1835
{\tt DivideOutIntegers, 11-} 4886
                                                   DualQuotient, 3-681
DivisionPoints, 10-4271
                                                   DualStarInvolution, 11-4780
DivisionPolynomial, 10-4254
                                                   DualVectorSpace, 11-4768
Divisor, 3-842, 3-971, 3-1176, 3-1189,
                                                   DualWeightDistribution, 13-5450, 13-5540,
    3-1200, 3-1220, 9-3835, 3836, 9-3958,
                                                       13-5565, 13-5603
    9-3966–3968, 9-4186, 4187, 13-5505
                                                   DuvalPuiseuxExpansion, 4-1427
DivisorClassGroup, 9-4185
                                                   DynkinDiagram, 8-3057, 8-3071, 8-3101,
DivisorClassLattice, 9-4178, 9-4185
                                                       8-3147, 8-3196, 8-3349
DivisorGroup, 3-841, 3-970, 3-1139,
                                                   DynkinDigraph, 8-3049, 8-3053, 8-3071,
    3-1196, 3-1200, 9-3835, 9-3966,
                                                       8-3101, 8-3148, 8-3197, 8-3349
    9-4186
                                                   E, 2-482
DivisorIdeal, 7-2687, 9-3529
                                                   e, 2-482
DivisorMap, 9-3870, 9-3977
                                                   E . i, 12-5359
DivisorOfDegreeOne, 3-1201, 9-3954
                                                  E2NForm, 11-4648
Divisors, 2-312, 2-314, 3-929, 3-959
                                                   E4Form, 11-4648
DivisorSigma, 2-296
                                                   E6Form, 11-4648
DivisorToSheaf, 9-3871
                                                   Ealpha, 8-3326, 3327
Dodecacode, 13-5620
                                                   EARNS, 5-1758
Domain, 1-254, 1-256, 2-619, 3-1054,
                                                   EasyBasis, 9-3437
    4-1389, 4-1518, 4-1571, 4-1608,
                                                  EasyIdeal, 9-3437
    5-1694, 5-1815, 6-2290, 6-2529,
                                                  EchelonForm, 2-554, 7-2727
```

```
EchelonForm (M), 4-1447
                                                      ElementaryPhiModule, 7-3027
EcheloniseWord, 6-2429
                                                      ElementarySymmetricPolynomial, 9-3503,
ECM, 2-310
                                                           9-3636
ECMFactoredOrder, 2-312
                                                      ElementaryToHomogeneousMatrix, 12-5220
ECMOrder, 2-312
                                                      ElementaryToMonomialMatrix, 12-5219
ECMSteps, 2-311
                                                      ElementaryToPowerSumMatrix, 12-5220
EdgeCapacities, 12-5365
                                                      ElementaryToSchurMatrix, 12-5219
EdgeConnectivity, \mathbf{12}\text{-}5311, \mathbf{12}\text{-}5386
                                                      Elements, 2-346, 6-2523, 11-4953,
EdgeDeterminant, 9-4012
                                                           12-5089
EdgeFacetIncidenceMatrix, 12-5142
                                                      ElementSequence, 5-2040
EdgeGroup, 12-5330
                                                      ElementSet, 5-1703
EdgeIndices, 12-5125, 12-5358
                                                      ElementToSequence, 1-69, 2-314, 2-348,
EdgeLabels, 9-4012, 12-5365
                                                           2-364, 2-376, 2-401, 2-422, 2-536,
EdgeMultiplicity, 12-5358
                                                           2-577, 2-603, 3-673, 3-796, 3-838,
                                                           3-928, 3-968, 3-1171, 4-1293,
Edges, 12-5125, 12-5284, 12-5358
                                                           4-1348, 4-1362, 4-1405, 4-1504, 4-1539, 5-1688, 5-1810, 5-1992,
EdgeSeparator, 12-5311, 12-5386
EdgeSet, 12-5284
                                                           6-2241, 6-2271, 6-2448, 6-2501,
6-2548, 6-2566, 6-2593, 6-2607,
7-2633, 7-2660, 7-2725, 7-2756,
7-2837, 7-2915, 8-3272, 10-4250,
EdgeUnion, 12-5296, 12-5376
EdgeWeights, 12-5365
EFAModuleMaps, 6-2477
EFAModules, 6-2478
                                                           10-4269, 10-4447, 10-4466, 10-4509,
EFASeries, 6-2473
EffectiveHodgeStructure, 10-4548, 10-4589
                                                           12-5061, 12-5167
EffectiveHypersurfaceTwist, 9-3837
                                                      ElementType, 1-29
EffectiveSubcanonicalCurves, 9-4134
                                                      EliasAsymptoticBound, 13-5478
                                                      EliasBound, 13-5476
EffectiveWeight, 10-4548
EhrhartCoefficient, 12-5127
                                                      Eliminate, 6-2380, 6-2402, 6-2593
EhrhartCoefficients, 12-5127
                                                      EliminateGenerators, 6-2380
                                                      EliminateRedundancy, 6-2428
EhrhartDeltaVector, 12-5127
                                                      Elimination, 9-3790
EhrhartPolynomial, 12-5127
                                                      EliminationIdeal, 9-3474, 3475
EhrhartSeries, 12-5127
                                                      EllipticCurve, 3-1073, 9-3933, 10-4240-4242,
EichlerInvariant, 7-2848
Eigenform, 11-4749, 11-4785, 11-4991,
                                                           10-4333, 10-4536, 11-4749, 11-4803,
    11-5004
Eigenforms, \mathbf{11}-4991
Eigenspace, \mathbf{2}-553, \mathbf{7}-2723, \mathbf{9}-4125
                                                      EllipticCurveDatabase, 10-4332
                                                      EllipticCurveFromjInvariant, 10-4240
Eigenvalues, 2-553, 7-2723
                                                      EllipticCurveFromPeriods, 10-4323
EightDescent, 10-4368
                                                      EllipticCurves, 10-4334
Eisenstein, 2-505, 3-802
                                                      EllipticCurveSearch, 10-4345, 10-4390
EisensteinData, 11-4736
                                                      EllipticCurveWithGoodReductionSearch,
EisensteinProjection, 11-4732
                                                           10-4345
EisensteinSeries, 11-4736
                                                      EllipticCurveWithjInvariant, 10-4240
EisensteinSubspace, 11-4732, 11-4775,
                                                      EllipticExponential, 10-4323
    11-4817, 11-4828
                                                      EllipticInvariants, 11-4693, 11-4975
EisensteinTwo, 10-4314
                                                      EllipticLogarithm, 10-4324
Element, 2-401, 11-4950
                                                      EllipticPeriods, 11-4975
ElementaryAbelianGroup, 6-2459
                                                      EllipticPoints, 11-4666
                                                      elt, 1-218, 2-284, 285, 2-340, 2-358, 2-374, 375, 2-417, 2-451, 2-482,
ElementaryAbelianNormalSubgroup, 5-1765
ElementaryAbelianQuotient, 5-1729, 5-1849,
                                                           2-601, 3-671, 3-794, 3-820, 3-892, 893, 3-1101, 3-1169, 1170, 4-1290,
    5-2015, 6-2250, 6-2318, 6-2476
ElementaryAbelianSeries, 5-1762, 5-1865,
                                                           1291, 4-1344, 4-1370, 4-1503,
    5-2018, 6-2256
                                                           5-1624, 5-1687, 5-1809, 7-2630,
ElementaryAbelianSeriesCanonical, 5-1762,
                                                           7-2671, 7-2709, 7-2749, 7-2887,
    5-1865, 5-2018
                                                           7-2914, 7-2984, 8-3246, 8-3303,
ElementaryAbelianSubgroups, 5-1665,
    5-1726, 5-2010
                                                           8-3352, 10-4445, 10-4462, 13-5434,
ElementaryDivisors, 2-558, 2-589, 4-1533,
                                                           13-5536, 13-5594
                                                      elt<>, 10-4268
```

```
4-1288, 4-1295, 4-1332, 4-1346, 1347, 4-1360, 4-1362, 4-1368, 4-1376, 4-1391, 4-1398, 4-1407, 1408, 4-1441, 4-1482, 4-1508, 4-1530, 4-1539, 4-1541, 4-1575, 1576, 4-1594, 4-1601,
Eltlist, 8-3353
Eltseq, 1-69, 1-202, 2-287, 2-314,
       2-364, 2-376, 2-422, 2-536, 2-577, 2-603, 3-673, 3-749, 3-796, 3-838, 3-928, 3-968, 3-1171, 3-1240,
        3-1246, 4-1293, 4-1333, 4-1348,
                                                                                                        5-1626, 5-1647, 5-1672, 5-1702,
                                                                                                        5-1715, 5-1767, 5-1820, 5-1825,
        4-1362, 4-1405, 4-1504, 4-1539,
        4-1564, 5-1688, 5-1810, 5-1992,
                                                                                                        5-1995, 5-2004, 5-2056, 5-2190,
        6-2241, 6-2271, 6-2448, 6-2501,
                                                                                                        6-2250, 6-2252, 6-2274, 6-2359,
        6-2548, 6-2566, 6-2593, 6-2607,
                                                                                                        6-2367, 6-2451, 6-2464, 6-2512,
        7-2633, 7-2660, 7-2725, 7-2756,
                                                                                                        6-2548, 6-2566, 6-2579, 6-2587,
        7-2837, 7-2915, 8-3272, 9-3551,
                                                                                                        6-2607, 7-2624, 7-2626, 7-2657,
                                                                                                        7-2659, 7-2663, 7-2673, 7-2683, 7-2688, 7-2720, 7-2725, 7-2837, 7-2918, 7-2930, 7-2990, 8-3071, 8-3100, 8-3249, 8-3304, 8-3327, 8-3347, 8-3384, 9-3467, 9-3520, 9-3529, 9-3553, 9-3563, 9-3650, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674, 9-3674
        9-3655, 9-3674, 10-4250, 10-4269,
       10-4409, 10-4447, 10-4466, 10-4509, 11-4668, 11-4731, 11-4814, 11-4830, 11-4894, 11-4950, 12-5061, 12-5167
EltTup, 8-3304 Embed, 2-372, 3-824, 3-904, 3-1139,
                                                                                                        9-3654, 9-3671, 9-3674, 9-3727,
        7-2842, 2843
                                                                                                        9-3743, 9-3745, 9-3748, 9-3796,
Embedding, 12-5324, 12-5389
EmbeddingMap, 3-824, 3-904, 3-1007
                                                                                                        9-3829, 9-3835, 9-3841, 9-3920,
                                                                                                        9-3930, 9-3940, 9-3957, 9-3961,
EmbeddingMatrix, 7-2846
Embeddings, \mathbf{11}\text{-}4873
                                                                                                        9-3964, 9-3966, 9-3971, 9-4003,
                                                                                                        9-4011, 9-4125, 9-4128, 9-4132,
EmbeddingSpace, 4-1529
                                                                                                        9-4167, 9-4182, 9-4186, 10-4253,
EmbedPlaneCurveInP3, 9-3821
                                                                                                        10-4256, 10-4259, 10-4265, 10-4274,
EModule, 9-3547, 3548
                                                                                                        10-4307, 10-4446, 10-4451, 10-4465,
EmptyBasket, 9-4129
                                                                                                        10-4510, 10-4533, 10-4548, 11-4664,
EmptyDigraph, 12-5281
                                                                                                        11-4668, 11-4671, 11-4696, 11-4813, 11-4832, 11-4867, 11-4903, 11-4916, 11-4947, 11-4959, 12-5028, 12-5057,
EmptyGraph, 12-5280
EmptyPolyhedron, 12-5120
EmptyScheme, 9-3736
                                                                                                        12-5059, 5060, 12-5121, 12-5145,
EmptySubscheme, 9-3736
                                                                                                        12-5147, 12-5167, 12-5170, 12-5185, 12-5205, 12-5208, 12-5247, 12-5286,
End, 11-4904
EndomorphismAlgebra, 4-1513, 5-1966,
                                                                                                        12-5302, 12-5359, 12-5379, 13-5437,
                                                                                                        13-5442, 13-5532, 13-5596, 13-5599,
EndomorphismRing, 3-772, 5-1966, 7-2936,
                                                                                                        13-5640, 13-5643
        10-4517, 4518
                                                                                                EqualDegreeFactorization, 2-436
Endomorphisms, 3-772, 5-1966
                                                                                                 Equality, 3-1157
{\tt EndpointWeight,~8-}3327
                                                                                                EqualizeDegrees, 4-1549
EndVertices, 4-1417, 12-5287, 12-5359
Enumerate, \mathbf{7}\text{-}2858
                                                                                                 Equation, 9-3742
                                                                                                EquationOrder, 3-852, 3-882, 883, 3-1032,
EnumerationCost, 3-712
EnumerationCostArray, 3-713
                                                                                                        3-1132
                                                                                                EquationOrderFinite, 3-1131
Eof, 1-82
                                                                                                 EquationOrderInfinite, 3-1132
EpsilonFactor, 3-1263, 4-1479
                                                                                                 Equations, 9-3742, 10-4409
eq, 1-11, 1-70, 1-185, 186, 1-211, 1-220,
        2-270, 2-272, 2-276, 2-288, 2-290,
                                                                                                 Equidimensional Decomposition, 9-3493
                                                                                                 EquidimensionalPart, 9-3493
        2-318, 2-340, 341, 2-343, 2-348,
       2-360, 361, 2-380, 381, 2-401, 2-403, 2-420, 421, 2-439, 2-452, 453, 2-484, 485, 2-585, 2-614, 3-673, 3-677, 3-722, 723, 3-745, 3-747, 3-779,
                                                                                                 EquitablePartition, 12-5314
                                                                                                EquivalentPoint, 11-4671
                                                                                                Erf, 2-515
                                                                                                Erfc, 2-515
        3-797, 3-832, 3-834, 3-841, 3-916,
                                                                                                Error, 1-19
        3-920, 3-953, 3-957, 3-967, 3-970,
                                                                                                ErrorFunction, 2-515
        3-1008, 3-1030, 3-1086, 3-1088,
                                                                                                EstimateOrbit, 5-1855
        3-1102, 1103, 3-1166, 3-1172, 3-1185,
                                                                                                Eta, 7-2749
                                                                                                EtaqPairing, 10-4291
        3-1197, 3-1201, 1202, 3-1219, 3-1239,
        1240, 3-1243, 3-1245, 3-1265,
                                                                                                EtaTPairing, 10-4291
```

EuclideanDecoding, ${f 13}$ -5486	ExplicitCoset, 6 -2367
EuclideanDistance, 13 - 5567	Explode, $1-202$, $1-220$
EuclideanLeftDivision, $9-3683$	Exponent, $2-347$, $5-1662$, $5-1709$, $5-1832$,
EuclideanNorm, $2-292$, $2-427$, $3-968$,	5 -1984, 6 -2251, 11 -4957
4- 1301, 4- 1399	ExponentDenominator, 4 -1349
EuclideanRightDivision, $9-3683$	ExponentialFieldExtension, 93663
EuclideanWeight, ${f 13} ext{-}5567$	ExponentialIntegral, 2 -515
EuclideanWeightDistribution, $13-5568$	ExponentialIntegralE1, 2-516
EuclideanWeightEnumerator, 13-5570	ExponentLattice, 4-1389
EulerCharacteristic, 9-4013, 12-5036	ExponentLaw, 6-2427
EulerFactor, 3-1263, 4-1475, 10-4435,	Exponents, 2-458, 8-3406, 9-3655
10 -4473, 4474, 10 -4533, 10 -4549,	ExponentSum, 6-2271
10-4582	ExpurgateCode, 13-5465
EulerFactorModChar, 10-4473	ExpurgateWeightCode, 13-5465
EulerFactorsByDeformation, 10-4474	Ext, 7-2975, 9-3583
EulerGamma, 2-488	ext, 2 -277, 2 -369, 370, 3 -679, 3 -814,
EulerianGraphDatabase, 12-5341	3 -879, 3 -884, 3 -1128, 3 -1133,
EulerianNumber, 12-5158	4 -1277, 4 -1279, 1280, 9 -3662
EulerPhi, 2-297	ExtAlgebra, 7-2809
EulerPhiInverse, 2-297	Extend, 3-1056, 3-1065, 3-1249, 9-3793
EulerProduct, 3-932	ExtendBasis, 2-617, 7-2621, 8-3253
Evaluate, 2-349, 2-426, 2-462, 463,	ExtendCode, 13-5465, 13-5534, 13-5607,
3 -843, 3 -923, 3 -944, 3 -992, 3 -1105,	13-5633
3 -1176, 3 -1198, 4 -1304, 4 -1350, 4 -1377, 6 -2577, 7 -2676, 0 -2732	ExtendedCategory, 1-28
4 -1377, 6 -2577, 7 -2676, 9 -3733, 9 -3051, 9 -3065, 10 -4451, 10 -4571	ExtendedCohomologyClass, 5-2220
9- 3951, 9- 3965, 10- 4451, 10- 4571, 11- 4886, 11- 4969	ExtendedGcd (A, B), 4-1444 ExtendedGreatestCommonDivisor, 2-295,
EvaluateAt, 13-5666	2 -429, 4 -1399
EvaluateByPowerSeries, 9-3935	ExtendedGreatestCommonLeftDivisor, 9-3684
EvaluatePolynomial, 10-4444	ExtendedGreatestCommonRightDivisor, 9-3684
EvaluationPowerSeries, 4-1385	ExtendedLeastCommonLeftMultiple, 9-3685
EvenSubalgebra, 7-2889	ExtendedOneCocycle, 5-2219
EvenSublattice, 3-681	ExtendedPerfectCodeZ4, 13-5550
EvenWeightCode, 13-5426	ExtendedSp, 5-1838
EvenWeightSubcode, 13-5426	ExtendedSymplecticGroup, 5-1838
ExactConstantField, 3-1137, 9-3648	ExtendedType, 1-28, 3-822, 3-833
ExactExtension, 4-1549	ExtendedUnitGroup, 2-405
ExactQuotient, 2-289, 2-427, 2-464	ExtendField, 2 -612, 5 -1812, 13 -5467
ExactValue, 11-4671, 11-4696	ExtendGaloisCocycle, 8-3342
Exceptional Jordan CSA, 7-2900	ExtendGeodesic, 11-4672
ExceptionalUnitOrbit, 3-938	ExtendIsometry, 2-641
ExceptionalUnits, 3-938	Extends, $3-843$, $3-972$
Exclude, 1-182, 1-202	Extension, 5-1674, 5-1773, 5-1988, 1989,
ExcludedConjugate, 6-2414	5 -2209, 7 -2975, 9 -3482, 9 -3502
ExcludedConjugates, 6-2368, 6-2414	ExtensionClasses, 5-2143
ExistsConwayPolynomial, 2-386	ExtensionExponents, 5-2142
ExistsCosetSatisfying, 6-2414	ExtensionField, $2-370$
ExistsCoveringStructure, 1-29	ExtensionNumbers, 5-2142
ExistsExcludedConjugate, 6-2414	ExtensionPrimes, $5-2142$
ExistsGroupData, 5-2146	ExtensionProcess, $5-1673$, $5-1772$
ExistsModularCurveDatabase, $11-4620$	ExtensionsOfElementaryAbelianGroup, 5 -2213
ExistsNormalisingCoset, 6 -2415	ExtensionsOfSolubleGroup, 5 -2213
ExistsNormalizingCoset, $6-2415$	Exterior, $12-5065$
Exp, 2-497, 3-1251, 4-1299, 4-1352	ExteriorAlgebra, $7-2670$
Expand, $3-1176$, $4-1298$, $4-1389$, $9-3792$,	ExteriorCotensorSpace, $4-1590$
9 -3870, 9 -3951	ExteriorPower, 7 -2717, 8 -3380, 8 -3400
ExpandBasis, 3-731	ExteriorSquare, $3-682$, $7-2717$, $7-2961$
ExpandToPrecision, 4 - 1423	ExternalLines, ${f 12}$ -5065

ExtGenerators, 5-2040	9 -3941, 10 -4256, 10 -4273, 10 -4280,
ExtraAutomorphism, 11-4642	10-4473
ExtractBlock, 2-537, 2-580, 7-2726	FactoredProjectiveOrder, 2-561, 5-1822,
ExtractBlockRange, 2-538, 2-580	7-2722
ExtractGenerators, 6-2350	Factorial, 2 -299, 12 -5157
ExtractGroup, 6 -2350, 6 -2429	Factorisation, 2-306, 2-432, 3-859,
ExtractRep, 1-181	3-959, 3-1187, 9-3696, 10-4584,
ExtraSpecialAction, 5-1898	11-4925
ExtraSpecialBasis, 5-1899	FactorisationOverSplittingField, 2-380
ExtraSpecialGroup, $5-1636$, $5-1697$,	FactorisationToInteger, 2-286
5-1898, 5-1978, 6-2285, 6-2459	FactorisationToPolynomial, 2-433
ExtraSpecialNormaliser, 5-1898	Factorization, 2-306, 2-432, 2-467,
ExtraspecialPair, 8-3132	3 -859, 3 -959, 3 -1187, 4 -1310,
ExtraspecialPairs, 8-3132	4 -1334, 4 -1355, 4 -1475, 7 -2855,
ExtraSpecialParameters, 5-1898	9 -3696, 10 -4584, 11 -4925
ExtraspecialSigns, 8-3132	FactorizationOverSplittingField, 2-380
ExtremalLieAlgebra, 8-3226	FactorizationToInteger, 2-286, 2-314
ExtremalRayContraction, 9-4197	FakeIsogenySelmerSet, 10-4379
ExtremalRayContractionDivisor, 9-4197	FakeProjectiveSpace, 9-4177
ExtremalRayContractions, 9-4197	Falpha, 8-3326, 3327
ExtremalRays, 9-4197	FaltingsHeight, 10-4308
f, 9-3733, 9-3797-3799, 9-3942, 9-3951	Fan, 9-4163, 9-4167, 9-4178, 9-4184
Face, 9-4169, 12-5324, 12-5389	Fano, 9 -4145, 4146
FaceFunction, 4-1420	FanoBaseGenus, 9-4146
FaceIndices, 12 -5125	FanoDatabase, $9-4146$
Faces, $4-1415$, $12-5025$, $12-5125$, $12-5324$,	FanOfAffineSpace, 9-4163
12 -5388	FanOfFakeProjectiveSpace, 9-4163
FacesContaining, 4-1418	FanOfWPS, $9-4163$
FaceSupportedBy, 12-5125	FanoGenus, 9-4146
FacetIndices, $12-5124$	FanoIndex, $9-4146$
Facets, 12 -5025, 12 -5124	FanWithWeights, 9 -4165
Facint, 2-286, 2-314	FareySymbol, $11-4673$
Facpol, 2 -433	FewGenerators, 5 - 1690
Factor, 2 -324	Fibonacci, 2 -300, 12 -5157
FactorBasis, 3-932	Field, 3 -1261, 4 -1473, 5 -2173, 10 -4548,
FactorBasisVerify, 3-932	12 -5055, 13 -5430, 13 -5591, 13 -5640
FactoredCarmichaelLambda, 2-296	FieldAutomorphism, $8-3364$
FactoredCharacteristicPolynomial, 2-553,	FieldMorphism, 3-1157
11-4899	FieldOfDefinition, $11-4856$, $11-4900$,
FactoredChevalleyGroupOrder, 5-2065	11 -4911, 11 -4946, 11 -4957
FactoredDefiningPolynomials, 9-3795	FieldOfFractions, $2-287$, $2-357$, $2-377$,
FactoredDiscriminant, 7-2654, 7-2839,	3 -884, 3 -1085, 3 -1100, 3 -1138,
7 -2847	4 -1281, 4 -1345, 4 -1358, 4 -1398,
FactoredEulerPhi, 2 -297	4 -1406, 9 -3536, 9 -3645
FactoredEulerPhiInverse, 2-297	FieldOfGeometricIrreducibility, $9\text{-}3952$
FactoredHeckePolynomial, 11 - 4966	FindCommonEmbeddings, ${f 11}$ - 4920
FactoredIndex, $5-1646$, $5-1715$, $5-1841$,	FindDependencies, ${f 2} ext{-}324$
5 -2006, 6 -2257, 6 -2336, 6 -2463	FindFirstGenerators, $9\text{-}4122$
FactoredInverseDefiningPolynomials, 9-3796	FindGenerators, $3\text{-}1050$
FactoredMCPolynomials, $2-553$	FindN, $9-4147$
FactoredMinimalAndCharacteristicPolynom-	FindRelations, $2-323$
ials, 2 - 553	FindRelationsInCWIFormat, ${f 2}$ - 327
FactoredMinimalPolynomial, $2-553$	FindWord, 11 - 4665
FactoredModulus, 2-339	FineEquidimensionalDecomposition, $9-3493$
FactoredOrder, 2-384, 2-560, 5-1646,	FiniteAffinePlane, 12-5046, 5047, 12-5058
5 -1692, 5 -1821, 5 -1824, 5 -1936,	12- 5076
5 -1984, 5 -2185, 6 -2251, 6 -2337,	FiniteDivisor, 3-1205
6 -2429, 6 -2463, 7 -2722, 8 -3348,	FiniteField. 2 -368. 369

Finitalia Almahma 8 2202	EmanAbalianGraum 6 2221 6 2450
FiniteLieAlgebra, 8-3302	FreeAbelianGroup, 6-2231, 6-2459
FiniteProjectivePlane, 12-5045, 5046,	FreeAbelianQuotient, 6-2250, 6-2476
12-5076	FreeAlgebra, 7 -2670, 7 -2696
FiniteSplit, 3-1205	FreefValues, 8-3233
FireCode, 13-5461 FirstCharmClassOfDesingularization 0-4053	FreeGroup, 6-2270
FirstIndexOfColumn 12-5182	FreeLieAlgebra, 8-3218
FirstIndexOfColumn, 12-5182 FirstIndexOfRow, 12-5181	FreeMonoid, 6 -2585 FreeNilpotentGroup, 6 -2459
FirstWeights, 9-4132	FreeProduct, 6-2286, 6-2591
FittingGroup, 5-1751, 5-2016, 6-2246,	FreeResolution, 9-3568, 9-3618
6-2473	FreeSemigroup, 6-2585
FittingIdeal, 9-3565	Frobenius, 2-383, 384, 10-4398, 10-4449,
FittingIdeals, 9-3565	10-4467, 12-5211
FittingLength, 6-2473	Frobenius Action On Points, 10-4398
FittingSeries, 6-2473	Frobenius Action On Reducible Fiber, 10-4398
FittingSubgroup, 5-1657, 5-1751, 5-2016,	Frobenius Action On Trivial Lattice, 10-4398
6-2246 , 6-2473	Frobenius Automorphism, 3-1037, 4-1331
Fix, 5 -1733, 1734, 7 -2963, 13 -5493	Frobenius Automorphisms, 5-1892
FixedArc, 11-4672	FrobeniusElement, 3-984, 4-1472
FixedField, 3 -980, 3 -1032, 4 -1331, 7 -3029	FrobeniusFormAlternating, 2-555
FixedGroup, 3 -980	FrobeniusImage, 2 -569, 3 -1241
FixedPoints, 11-4671, 11-4699	FrobeniusMap, 3-1241, 8-3365, 10-4266
FixedSubspaceToPolyhedron, 12-5120	FrobeniusMatrix, 7-3027, 10-4314, 10-4449
FlagComplex, 12-5024	FrobeniusPolynomial, 11-4968
Flat, 1-217, 1-219, 1-239, 3-838, 3-928,	FrobeniusTracesToWeilPolynomials, 9-4136
3 -1171	FromAnalyticJacobian, 10-4514
Flexes, 9-3930	FromLiE, 8-3406
Flip, 9-4198	FSCentraliser, 6-2394, 2395
FlipCoordinates, 9-3934	FSCentralizer, 6 -2394, 2395
Floor, 2-293, 2-318, 2-363, 2-487	FSEqual, 6 -2394
Flow, 12 -5412	FSFiniteIndex, 6-2394
Flush, 1-83	FSFreeGenerators, 6-2394
Foliation, 4-1579	FSIndex, 6 -2394
Form, 12 -5145	FSIsConjugate, 6-2394, 2395
FormalGroupHomomorphism, 10 - 4258	FSIsIn, 6-2394
FormalGroupLaw, 10-4257	FSIsSubgroup, 6-2394
FormalLog, 10-4258	FSMeet, 6 -2394
FormallyResolveProjectiveHyperSurface,	FSNormaliser, $6-2395$
9-4074	FSNormalizer, 6-2395
FormalPoint, $9-3920$	FSSupergroup, 6 -2394
FormalSet, $1-177$	FuchsianGroup, 11 - 4687 , 4688
Format, $1-245$	FuchsianMatrixRepresentation, ${f 11}$ - 4690
FormType, 5 -2085	FullCone, 12 -5118
forward, $1-41$	FullCorootLattice, 8-3110
FourCoverPullback, ${f 10}$ - 4367	FullDirichletGroup, ${f 2} ext{-}346$
FourDescent, 10 - 4364	FullModule, $9-3865$
FourToTwoCovering, ${f 10}$ - 4416	FullRootLattice, 8-3110
FPAlgebra, $7-2686$	FullyNondegenerateTensor, 4 - 1573
FPGroup, 5-1640, 5-1769, 5-1868, 5-2044,	Function, $1-254$
5 -2187, 5 -2201, 6 -2246, 6 -2280,	FunctionDegree, 9-3796
6 -2283, 6 -2461, 6 -2562	FunctionField, 3-1099, 1100, 3-1128, 1129,
FPGroupStrong, 5-1769, 5-1868, 6-2281	3 -1138, 3 -1196, 1197, 3 -1201, 3 -1205,
FPQuotient, 5-1769	3 -1217, 3 -1235, 3 -1242, 9 -3633,
FractionalPart, 9-3837	9 -3730, 9 -3906, 9 -3950, 10 -4444,
Frame, 4-1571, 4-1597	11-4624
FrattiniQuotientRank, 5-2016	FunctionFieldDatabase, 3-1226
FrattiniSubgroup, 5-1657, 5-1751, 5-1880,	FunctionFieldDifferential, 9-3956
5 -2016, 6 -2255	FunctionFieldDivisor, 9-3956

FunctionFieldPlace, $9-3956$	${\tt GammaRootSpace, 8-}3102$
FunctionFields, 3-1226	GammaShifts, ${f 10}$ - 4589
FundamentalClosure, 8-3403	GammaUpper0, $11 ext{-}4663$
FundamentalCoweights, 8-3122, 8-3159,	GammaUpper1, $11 ext{-}4663$
8 -3206, 8 -3361	GapNumbers, $3-1145$, $3-1207$, $9-3953$,
FundamentalDiscriminant, 3-795	9 -3965, 9 -3976
Fundamental Domain, $11-4665$, $11-4674$,	GaussianBinomial, 8-3315
11- 4702	GaussianFactorial, 8-3315
FundamentalElement, 6-2495	GaussNumber, 8-3315
FundamentalGroup, 8-3047, 8-3049, 8-3056,	GaussReduce, 3-697
8-3106, 8-3148, 8-3197, 8-3350	GaussReduceGram, 3-697
FundamentalInvariants, 9-3608, 9-3627,	GaussValuation (f), 4-1442
9-3633	GaussValuations (M), 4-1447
FundamentalQuotient, 3-797	GaussValuations (v), $4-1447$
FundamentalUnit, 3-854	GCD, 2-295, 2-343, 2-429, 2-465, 466,
FundamentalUnits, 3-1165	3 -858, 3 -957, 3 -1201, 3 -1246,
FundamentalWeights, 8-3122, 8-3159,	4 -1304, 4 -1399, 4 -1408, 6 -2516,
8-3206, 8-3361	9-3971
fValue, 8-3233	Gcd, $2-295$, $2-314$, $2-343$, $2-429$, $2-465$,
fValueProof, 8-3233	3 -858, 3 -957, 3 -967, 3 -1187, 3 -1201,
fVector, $12-5124$	4 -1304, 4 -1399, 6 -2516, 9 -3971
G2Invariants, 10 - 4439	GCLD, 9-3684
G2ToIgusaInvariants, ${f 10}$ - 4439	GCRD, 9-3684
GabidulinCode, 13-5461	ge, 1-71, 1-212, 2-274, 2-292, 2-318,
GallagerCode, $13-5511$	2 -362, 2 -420, 2 -485, 3 -1202, 5 -1672,
GaloisCohomology, 8-3342	6 -2274, 6 -2513, 6 -2587, 9 -3971
GaloisConjugacyRepresentatives, 2-347	GegenbauerPolynomial, 2-441
GaloisConjugate, 7-2993	GeneralisedRowReduction, 8-3371, 8-3402
GaloisField, 2 -368, 369	GeneralisedWallForm, 2-647
GaloisGroup, 2-378, 3-839, 3-985, 986,	GeneralizedFibonacciNumber, 2-300,
3 -1147, 4 -1315, 4 -1472	12-5157
GaloisGroupInvariant, 3-992	GeneralizedSrivastavaCode, 13-5461
GaloisImage, 4-1301	GeneralLinearGroup, 5-1808, 5-2066
GaloisOrbit, 7 -2993	
	GeneralOrthogonalGroupMinus 5 2071
GaloisProof, 3-987	GeneralOrthogonalGroupMinus, 5-2071
GaloisQuotient, 3-995	GeneralOrthogonalGroupPlus, 5-2070
GaloisRepresentation, $4-1466-1471$,	GeneralUnitaryGroup, 5-2068
11-5014	GenerateGraphs, 12-5342
GaloisRepresentations, 4-1464, 1465	GeneratepGroups (p, d, c : -), 5 - 2032
GaloisRing, 4-1403, 1404	GeneratingWords, $6 extstyle - 2354$
GaloisRoot, 3 - 987	Generator, $2-336$, $2-375$, $4-1405$
GaloisSplittingField, ${f 3} ext{-}996$	GeneratorMatrix, $3-742$, $13-5430$, $13-5529$,
GaloisSubfieldTower, ${f 3} extsf{-}995$	13- 5593
GaloisSubgroup, $3 ext{-}994$	GeneratorNumber, 6-2272
Gamma, $2-511, 512$	GeneratorOrder, 6 - 2562
Gamma0, $11 - 4663$	GeneratorPolynomial, $13-5433$
Gamma1, $11-4663$	Generators, 2-347, 2-613, 3-742, 3-835,
GammaAction, 5-2218, 8-3102	836, 3 -922, 3 -952, 3 -1033, 3 -1189,
GammaActionOnSimples, 8-3103	4 -1501, 4 -1595, 5 -1642, 5 -1690,
GammaArray, $10-4533$	5 -1813, 5 -1983, 5 -2056, 5 -2184,
GammaCorootSpace, 8-3102	6 -2234, 6 -2238, 6 -2288, 6 -2462,
GammaD, 2 -512	6 -2495, 6 -2544, 6 -2561, 6 -2576,
GammaFactors, 10-4582, 10-4589	6 -2589, 6 -2603, 7 -2655, 7 -2662,
GammaGroup, 5-2217, 5-2220, 8-3341, 3342	7 -2712, 7 -2772, 7 -2911, 8 -3347,
GammaList, 10-4533	9- 3648, 9- 3941, 10- 4289, 10- 4349, 10- 4393, 11- 4665, 11- 4674, 11- 4912,
GammaOrbitonRoots, 8-3103	
GammaOrbitsOnRoots, 8-3103	11-4953, 13-5430, 13-5529, 13-5593
GammaOrbitsRepresentatives, 8-3115	GeneratorsOfGroupOfUnits, ${f 7}$ -2780

GeneratorsOverBaseRing, 3-836	GetEchoInput, 1-101
GeneratorsSequence, 3-836, 5-1690	GetElementPrintFormat, 6-2494
GeneratorsSequenceOverBaseRing, 3-836	GetEnv, 1-101
GeneratorStructure, 6-2428	GetEnvironmentValue, 1-101
Generic, 2-614, 4-1502, 4-1597, 5-1642,	GetEvaluationComparison, 3-991
5-1690, 5-1814, 7-2683, 7-2712,	GetForceCFP, 6-2494
8 -3273, 9 -3465, 9 -3519, 9 -3549,	GetGMPVersion, 2-480
10 -4256, 13 -5430, 13 -5529, 13 -5592	
GenericAbelianGroup, 6-2235	GetGPU, 1-101
GenericGroup, 3-1049	GetHelpExternalBrowser, 1-115
GenericMinimalPolynomial, 7-2903	GetHelpExternalSystem, 1-116
GenericModel, 10-4407	GetHelpUseExternal, 1-116
GenericNorm, 7-2903	GetHistorySize, 1-101
GenericPoint, 9-3747	GetIgnorePrompt, 1-101
GenericTrace, 7-2903	GetIgnoreSpaces, 1-102
GenericTracelessSubspaceBasis, 7-2903	GetIndent, 1-102
Genus, 3-721, 3-1143, 3-1238, 9-3929,	GetLibraries, 1-102
9-3952, 9-4135, 10-4434, 10-4514,	GetLibraryRoot, 1-102
11-4618, 11-4665	GetLineEditor, 1-102
Genus2GonalMap, 9-3991	GetMatrices, 6-2301, 6-2312
Genus3GonalMap, 9-3991	GetMaximumMemoryUsage, 1-93
Genus4GonalMap, 9-3992	GetMemoryLimit, 1-103
Genus5GonalMap, 9-3992	GetMemoryUsage, 1-93
Genus5PlaneCurveModel, 9-3995	GetMPCVersion, 2-480
Genus6GonalMap, 9-3993	GetMPFRVersion, 2-480
Genus6PlaneCurveModel, 9-3995	GetNthreads, 1-103
Genus And Canonical Map, 9-3989	GetPath, 1-103
GenusContribution, 9-4010	Getpid, $1-94$
GenusField, 3-1031	GetPrecision, $4-1346$, $4-1359$
GenusOneModel, $10-4406$	GetPresentation, 6-2494
GenusRepresentatives, 3-724	GetPreviousSize, 1-79
Geodesic, 11-4698, 12-5313, 12-5393	GetPrintLevel, 1-103
GeodesicExists, 12-5393	GetPrompt, 1-104
Geodesics, 12 -5393	GetRep, 5-1767
GeodesicsIntersection, 11-4673, 11-4675,	GetRows, $1-104$
11-4699	Gets, 1-84
GeometricAutomorphismGroup, 10-4454	GetSeed, 1-31, 1-104
GeometricAutomorphismGroupFromShiodaInvariants,	GetShowRealTime, $1-27$
10 -4455	GetStoredFactors, ${f 2}$ -308
GeometricAutomorphismGroupGenus2Classification, ■	GetTempDir, $1-104$
10 -4456	GetTraceback, $1-104$
GeometricAutomorphismGroupGenus3Classification, ■	Getuid, $1-94$
10 -4456	Getvecs, $5\text{-}2169$
GeometricGenus, 9-3929, 9-4026	GetVerbose, $1\text{-}105$
GeometricGenusOfDesingularization, $9-4077$	GetVersion, $1\text{-}105$
GeometricMordellWeilLattice, ${f 10}$ - 4393	GetViMode, $1\text{-}105$
GeometricSupport, ${f 13} ext{-}5505$	GewirtzGraph, ${f 12}$ - 5300
GeometricTorsionBound, 10-4392	GF, 2 -368, 369
GetAssertions, $1-100$	GHomOverCentralizingField, 7 -2933
GetAttributes, $1-53$	GilbertVarshamovAsymptoticBound, ${f 13}$ -5478
GetAutoColumns, 1-100	GilbertVarshamovBound, ${f 13}$ -5477
GetAutoCompact, 1-100	GilbertVarshamovLinearBound, ${f 13}$ -5477
GetBeep, 1-100	Girth, 12 -5314
Getc, $1-84$	GirthCycle, 12 - 5314
GetCells, 8-3172	GL, 5-1808, 5-2066
GetColumns, 1-100	GlobalSectionSubmodule, 93866
GetCurrentDirectory, 1-94, 1-101	GlobalUnitGroup, 3 -1165, 3 -1214, 9 -3974
GetDefaultRealField, 2 -479	Glue, 12- 5031

GModule, 5-1675, 5-1775, 1776, 5-1814, Group, 3-770, 3-1261, 4-1472, 5-1629, **5**-1862, **5**-1873, **5**-2037, **6**-2388, 2389, **6**-2478, **7**-2812, **7**-2911, **7**-2947, **5**-1644, **5**-1672, **5**-1732, **5**-2128, **5**-2141, **5**-2158-2161, **5**-2163, **5**-2166, **5**-2184, **5**-2201, **5**-2218, **6**-2279, **7**-2949, 2950, **7**-2953, **9**-3603 **6**-2368, **6**-2381, **6**-2415, **7**-2753, GModuleAction, 7-2954 **7**-2812, **7**-2912, **7**-2989, **9**-3596, GModulePrimes, 6-2388, 6-2479**9**-3633, **11**-4674, **11**-4693, **12**-5090 GO, 5-2069 GroupAlgebra, 7-2618, 7-2747, 7-2753 GoethalsCode, ${f 13}$ -5548GroupAlgebraAsStarAlgebra, 7-2873 GoethalsDelsarteCode, 13-5548GroupData, 5-2146GolayCode, 13-5461GroupIdeal, 9-3626, 9-3633GolayCodeZ4, 13-5548GroupName, 5-1643GOMinus, 5-2071 GroupOfLieType, 8-3061, 8-3134, 8-3174, GoodBasePoints, 5-1875, 5-2116**8-**3208, **8-**3339–3341 ${\tt GoodLDPCEnsemble, \ 13-}5519$ ${\tt GroupOfLieTypeFactoredOrder,~8-}3105$ ${\tt GOPlus, 5-}2070$ GroupOfLieTypeHomomorphism, 8-3134, 8-3366 ${\tt GoppaCode, 13-} 5459$ GroupOfLieTypeOrder, 8-3105 ${\tt GoppaDesignedDistance,\ 13-}5505$ GrowthFunction, 6-2570 GorensteinClosure, 7-2834GRSCode, 13-5463GorensteinIndex, 9-4174 GSet, 5-1690, 5-1731, 1732 GPCGroup, 5-1639, 5-2044, 6-2461 GSetFromIndexed, 5-1731 GR, 4-1403, 1404 gt, 1-71, 1-212, 2-274, 2-292, 2-318, GradedAutomorphismGroup, 7-2783 **2**-362, **2**-420, **2**-485, **3**-1202, **6**-2274, GradedAutomorphismGroupMatchingIdempotents, **6**-2587, **9**-3971, **11**-4819 **7**-2783 GU, **5**-2068 GradedCapHomomorphism, 7-2781 GuessAltsymDegree, 5-1781, 5-2079GradedCone, 9-4192H2_G_A, 3-1031 ${\tt GradedCoverAlgebra, \cite{T-}}2780$ $H2_G_QmodZ, 6-2262$ GradedModule, 9-3548, 9-3559HadamardAutomorphismGroup, 12-5262 GradientVector, $\mathbf{4}$ -1418 HadamardCanonicalForm, 12-5259 GradientVectors, 4-1418 ${\tt HadamardCodeZ4}$, ${\tt 13-}5549$ Grading, 9-3424, 9-3549HadamardColumnDesign, 12-5261 Gradings, 9-3731, 9-4178, 9-4182 HadamardDatabase, 12-5262GramMatrix, 2-626, 3-676, 3-742, 3-785, HadamardDatabaseInformation, 12-5264 **3**-802, **7**-2856, **11**-4815 HadamardDatabaseInformationEmpty, 12-5264 Graph, 12-5091, 12-5125, 12-5273, HadamardGraph, 12-5299 **12**-5340, **12**-5342 HadamardInvariant, 12-5259 GraphAutomorphism, 8-3274, 8-3325, 8-3364 HadamardMatrixFromInteger, 12-5260 Graphs, 12-5339HadamardMatrixToInteger, 12-5260GraphSizeInBytes, 12-5272 HadamardNormalize, 12-5259GrayMap, 13-5546HadamardRowDesign, 12-5261 GrayMapImage, 13-5546HadamardTrasformation, 13-5647 GreatestCommonDivisor, 2-295, 2-343, HalfIntegralWeightForms, 11-4719, 4720 **2**-429, **2**-465, **3**-858, **3**-957, **3**-1201, HalfspaceToPolyhedron, 12-5119 **4**-1304, **4**-1399, **6**-2516, **9**-3971 HallSubgroup, 5-2009GreatestCommonLeftDivisor, 9-3684 HamiltonianLieAlgebra, 8-3242 GreatestCommonRightDivisor, 9-3684 HammingAsymptoticBound, 13-5478GRHBound, 3-932HammingCode, 13-5428GriesmerBound, 13-5476HammingWeightEnumerator, 13-5541, 13-5569 GriesmerLengthBound, 13-5478 Harmonic Number, 12-5158GriesmerMinimumWeightBound, 13-5478 HasAdditionAlgorithm, 10-4475 Groebner, 7-2678, 9-3430, 9-3559HasAffinePatch, 9-3774 GroebnerBasis, 7-2679, 9-3434, 9-3452, HasAllPQuotientsMetacyclic, 5-2138 ${\tt HasAllRootsOnUnitCircle, 9-4136}$ GroebnerBasisUnreduced, 9-3434 HasAttribute, 2-373, 4-1343, 5-1876, Grossencharacter, 3-1064, 3-1073, 10-4549 **5**-1878, **5**-2023, **5**-2192, **8**-3303 GrossenTwist, 3-1065HasCharacterTable, 7-3008 GroundField, 2-371, 3-822, 3-899 HasClique, 12-5319

HasClosedCosetTable, 6-2413 HasOutputFile, 1-82 HasCM, 11-4929 HasParallelClass, 12-5244 HasComplement, 5-1763, 6-2258, 7-2927 HasParallelism, 12-5243HasCompleteCosetTable, 6-2413 HasPlace, 3-1161, 3-1195, 9-3961 ${\tt HasPoint, \ 10-}4500$ HasComplexConjugate, 3-832, 3-917 HasComplexMultiplication, 10-4308, HasPointsEverywhereLocally, 10-4500 **10-**4337 HasPointsOverExtension, 9-3752HasCompositionTree, 5-1919HasPolynomial, 4-1420 HasPolynomialFactorization, $\mathbf{2}$ -433HasComputableAbelianQuotient, 6-2319 HasComputableLCS, 6-2473HasPowerSumBasis, 12-5205 HasDefinedModuleMap, 4-1553 HaspQuotientDefinitions, 6-2324 HasDefiningMap, 4-1283 HasPreimage, 1-255HasProjectiveDerivation, 9-3651, 9-3671 HasDenseAndSparseRep, 12-5283 HasDenseRep, 12-5283HasPRoot, 4-1284HasDenseRepOnly, 12-5283HasRandomPlace, 3-1161, 3-1195HasElementaryBasis, 12-5205 HasRationalPoint, $\mathbf{10}$ -4224HasRationalSolutions, 9-3690HasEmbedding, 7-2842HasFiniteAbelianQuotient, 6-2321 HasResolution, 12-5243HasFiniteAQ, 6-2321 HasRoot, 2-424, 4-1308, 4-1435HasFiniteDimension, 9-3532 HasRootOfUnity, 4-1284 HasFiniteIndex (G, H), 5-1948HasSchurBasis, 12-5205 HasFiniteKernel, 11-4902 HasseMinkowskiInvariant, 3-786 HasFiniteOrder, 2-560, 5-1821 HasseMinkowskiInvariants, 3-787HasFiniteOrder (g : -), $\mathbf{5}$ -1950 HasseWittInvariant, 3-1165, 3-1216, HasFiniteRank (G), 5-1948HasFunctionField, 9-3730, 9-3950HasSingularPointsOverExtension, 9-3930 HasGCD, 2-270HasSingularVector, 2-628 HasGNB, 4-1278 HasSparseRep, 12-5283 HasSparseRepOnly, 12-5283HasGrevlexOrder, 9-3468 HasGroebnerBasis, 9-3437 HasSquareSha, 10-4484 HasStringProperty, 12-5101 Hash, 1-182 HasHodgeStructure, 10-4589HasSupplement, 5-1764HasHomogeneousBasis, 12-5205HasTwistedHopfStructure, 8-3323 HasValidCosetTable, 6-2413 ${\tt HasIndexOne}$, ${\tt 10-}4484$ HasIndexOneEverywhereLocally, 10-4484 HasValidIndex, 6-2415HasInfiniteComputableAbelianQuotient, HasWeakIntersectionProperty, 12-5096 HasZeroDerivation, 9-3651, 9-36716 - 2319 ${\tt HasInfinitePSL2Quotient:,~6-2309}$ HBinomial, 8-3280HasIntegralPoint, 12-5126 HeckeAlgebra, 11-4783, 11-4905HasIntersectionProperty, 12-5096, 12-5101 HeckeBound, 11-4783HasIntersectionPropertyN, 12-5096 HeckeCharacter, 3-1059, 3-1264HasIntersectionPropertyPlus, 12-5103 HeckeCharacterGroup, 3-1034, 3-1053 HasInverse, 3-1157 HeckeEigenvalue, 11-4821, 11-4991 HasIrregularFibres, 9-4012 HeckeEigenvalueBound, 11-4990 HasIsotropicVector, 2-628 HeckeEigenvalueField, 11-4783, 11-4991 HasKnownInverse, 9-3790 HeckeEigenvalueRing, 11-4783 HasLeviSubalgebra, 8-3269 HeckeEigenvectors, 11-4821HasLinearGrayMapImage, 13-5546 HeckeLift, 3-1057 HasMonomialBasis, 12-5205HeckeOperator, 11-4734, 11-4779, 11-4819, HasMultiplicityOne, 11-4862 11-4821, 11-4835, 11-4964, 11-4986, HasNegativeWeightCycle, 12-5393, 5394 **11-**5003 HasNonsingularPoint, 9-3750 HeckePolynomial, 11-4734, 11-4779, HasOddDegreeModel, 10-4428**11-**4965 ${\tt HasOnlyOrdinarySingularities}, {\tt 9-}3916$ HeegnerDiscriminants, 10-4317 HasOnlyOrdinarySingularitiesMonteCarlo, HeegnerForms, 10-4318HeegnerPoint, 10-4316 ${\tt HasOnlySimpleSingularities}, {\tt 9-}4030$ HeegnerPoints, 10-4319 HasOrder, 10-4467HeegnerTorsionElement, 10-4318

Height, $2-363$, $5-1797$, $10-4309$, $10-4337$,	HilbertDenominator, $9-3499$, $9-3567$
10 -4391, 10 -4479	HilbertFunction, $9-4120$
HeightConstant, ${f 10}$ -4479	HilbertGroebnerBasis, $9\text{-}3456$
HeightDifferenceBounds, ${f 10}$ - 4338	HilbertIdeal, $9\text{-}3627$
HeightDifferenceLowerBound, ${f 10}$ -4338	HilbertNumerator, $9-3499$, $9-3567$, $9-4121$,
HeightDifferenceUpperBound, 10-4338	9- 4131
HeightOnAmbient, 9-3778	HilbertPolynomial, 9-3499, 9-3567, 9-4193
HeightPairing, 10-4310, 10-4391, 10-4479	HilbertPolynomialOfCurve, 9-4133
HeightPairingLattice, 10-4391	HilbertSeries, 9-3499, 9-3566, 9-3618,
HeightPairingMatrix, 10-4310, 10-4337,	9 -4120, 9 -4132, 9 -4193
10- 4391, 10- 4480	HilbertSeriesApproximation, 9-3618
HeisenbergAlgebra, 2-646, 4-1585	HilbertSeriesMultipliedByMinimalDenomina-
HeisenbergGroup, 4-1585	tor, 9-4121
HeisenbergLieAlgebra, 4-1585	HilbertSpace, $13-5640$
HenselLift, 2-437, 2-494, 4-1306, 4-1308,	HilbertSymbol, 7 -2840, 10 -4222
4-1355	HirschNumber, $6-2463$
HermiteConstant, 3-700	HirschNumber (G), 5-1948
HermiteForm, 2 -557, 4 -1541, 7 -2728	HKZ, 3 -696, 697
HermiteForm (M), 4-1448	
	HKZGram, 3-696
HermiteNumber, 3-700	HodgeNumber, 9-4028
HermitePolynomial, 2-441	HodgeStructure, 10-4548, 10-4589
HermitianAutomorphismGroup, 3-731	HodgeVector, 10-4548
HermitianCode, 13-5502	Holes, 3-716
HermitianFunctionField, 3-1129	Holomorph, 5-2195
HermitianTranspose, 3-731	Hom, 2 -600, 4 -1510, 1511, 4 -1536, 6 -2260,
HesseCovariants, 10-4417	7 -2933, 9 -3582, 11 -4904
HesseModel, 10-4407	hom, 1-252, 253, 2-283, 2-340, 2-374,
HessenbergForm, 2-555, 7-2722	2 -420, 2 -452, 3 -821, 3 -894, 3 -896,
HessePolynomials, 10-4418	3 -1103, 3 -1167, 1168, 4 -1330, 4 -1536,
Hessian, $10-4417$	5 -1624, 1625, 5 -1694, 5 -1814, 5 -1985,
HessianMatrix, $9-3743$, $9-3912$	6 -2262, 6 -2289, 6 -2458, 6 -2528,
Hexacode, 13 - 5620	6 -2551, 6 -2568, 6 -2577, 6 -2608,
HighestCoroot, 8-3076, 8-3114	7 -2633, 7 -2672, 7 -2718, 7 -2777,
HighestLongCoroot, 8-3076, 8-3114	7 -2933, 8 -3130, 8 -3224, 8 -3273,
HighestLongRoot, 8-3076, 8-3114, 8-3156,	12 -5150
8- 3359	hom < >, 2-356, 2-479
HighestRoot, $8-3076$, $8-3114$, $8-3156$,	HomAdjoints, $9-4077$
8- 3359	HomGenerators, 5-2040, 6-2260
HighestShortCoroot, 8-3076, 8-3114	HomogeneousComponent, $7-2889$, $9-3425$
HighestShortRoot, 8-3076, 8-3114, 8-3156,	HomogeneousComponents, $9-3425$
8-3359	HomogeneousModuleTest, $9-3505$, $9-3620$
HighestWeightModule, 8-3320, 8-3380	HomogeneousModuleTestBasis, $9\text{-}3506$
HighestWeightRepresentation, 8-3320,	HomogeneousToElementaryMatrix, 12 - 5217
8 -3370, 8 -3379, 8 -3383	HomogeneousToMonomialMatrix, 12 - 5217
HighestWeights, 8-3402	HomogeneousToPowerSumMatrix, 12-5217
HighestWeightsAndVectors, 8-3321, 8-3399	HomogeneousToSchurMatrix, 12-5217
HighestWeightVectors, 8-3402	Homogenization, $9-3481$
HighMap, 7-2819	HomologicalDimension, 9-3573, 9-3618
HighProduct, 7-2819	Homology, 4-1547, 11-4879, 12-5035
Hilbert90, 2 -384, 3 -1009	HomologyBasis, $10-4513$
HilbertBasis, 12-5133	HomologyGenerators, 12-5037
HilbertCharacterSubgroup, 3-1054	HomologyGroup, 12-5036
HilbertClassField, 3-1028, 3-1234	HomologyOfChainComplex, 4-1547
HilbertClassPolynomial, 11-4625	Homomorphism, 6-2262, 6-2295, 9-3555
HilbertCoefficient, 9-4194	Homomorphisms, 5-1986, 6-2260, 6-2292,
HilbertCoefficients, 9-4194	2293
HilbertCuspForms, 11-4981	HomomorphismsProcess, 6-2294
HilbertDeltaVector, 9-4194	Homotopism, 4-1607
1101	

HomotopismCategory, $4-1600$	ideal, 2 -275, 2 -335, 2 -343, 2 -438,
HookLength, $12-5183$	3 -947, 3 -1182, 6 -2590, 7 -2620,
HorizontalJoin, 2 -543, 2 -583, 7 -2726	7 -2661, 7 -2677, 7 -2714, 7 -2751,
HorrocksMumfordBundle, 9-3864	7 -2779, 7 -2849, 8 -3247, 9 -3427,
HughesPlane, $2-407$	9-3515
Hull, 13- 5431	IdealFactorisation, 9-3838
HyperbolicBasis, 2 - 638	Idealiser, 7-2641, 7-2754
HyperbolicCoxeterGraph, 8-3058	Idealizer, 7-2641, 7-2754
HyperbolicCoxeterMatrix, $8-3058$	IdealOfSupport, 9-3837
HyperbolicPair, 2 - 628	IdealQuotient, 3-958, 3-1183, 9-3465
HyperbolicSplitting, $2-629$	Ideals, 3-1182, 3-1205, 11-4816, 11-4821
Hypercenter, $5-1657$, $5-1751$, $5-2016$,	IdealWithFixedBasis, 9-3427, 9-3515
6 -2247	Idempotent, 13-5433
Hypercentre, $5-1657$, $5-1751$, $5-2016$,	IdempotentActionGenerators, 7-2787
6 -2247	IdempotentGenerators, 7-2772
HyperellipticCurve, $10-4409$, $10-4425$,	IdempotentPositions, 7-2772
4426, 10 -4536	Idempotents, 3-962
HyperellipticCurveFromG2Invariants,	IdentificationNumber, 5-2141
10- 4443	Identify, 10-4536
HyperellipticCurveFromIgusaClebsch,	IdentifyAlmostSimpleGroup, 5-2146
10- 4442	IdentifyGroup, 5-2133, 6-2392
HyperellipticCurveFromShiodaInvariants,	IdentifyOneCocycle, 5-2205
10- 4443	IdentifyTwoCocycle, 5-2205
HyperellipticCurveOfGenus, ${f 10}$ - 4426	IdentifyZeroCocycle, 5-2204
HyperellipticPolynomial, 10 - 4513	Identity, 2-285, 2-340, 2-358, 2-375,
HyperellipticPolynomialFromShiodaInvariants, ■	2 -403, 2 -418, 2 -451, 2 -483, 3 -794,
10- 4443	3 -821, 3 -894, 3 -1079, 3 -1101,
HyperellipticPolynomials, $10-4251$,	3 -1170, 3 -1200, 3 -1217, 4 -1345,
10-4434	4 -1405, 5 -1624, 5 -1688, 5 -1810, 5 -1002, 5 -2055, 5 -2180, 6 -2240
<pre>HyperellipticPolynomialsFromShiodaInvariants,</pre>	5 -1993, 5 -2055, 5 -2189, 6 -2240, 6 -2271, 6 -2448, 6 -2495, 6 -2546,
10- 4432	6 -2571, 6 -2448, 6 -2493, 6 -2540, 6 -2564, 6 -2576, 6 -2606, 7 -2671,
HypergeometricData, $10-4531$	7 -2984, 8 -3352, 9 -3646, 9 -3939,
HypergeometricMotiveClearTable, 10-4537	9-3957, 9-3966, 10-4268, 10-4462,
HypergeometricMotiveSaveLimit, 10-4537	11-4664
HypergeometricSeries, 2-514, 4-1355	IdentityAutomorphism, 8-3131, 8-3274,
HypergeometricSeries2F1, 11-4704	8-3363, 9-3804, 9-3934
HypergeometricU, 2-514	IdentityFieldMorphism, 3-1157
HyperplaneAtInfinity, 9-3777	IdentityHomomorphism, 5-1625, 5-1986
HyperplaneSectionDivisor, 9-3836	IdentityIsogeny, 10-4266
HyperplaneToPolyhedron, 12-5119	IdentityMap, 8-3131, 9-3788, 9-3804,
HypersurfaceSingularityExpandFunction,	10-4266, 11-4885, 12-5149
9-3755	IdentityMatrix (S), 4-1446
HypersurfaceSingularityExpandFurther,	IdentityMatrix (S, n), 4-1446
9-3755	IdentitySparseMatrix, 2-576
Id, 2 -271, 3 -1200, 3 -1217, 5 -1624,	IdentityTransformation, 10-4410
5 -1688, 5 -1810, 5 -1993, 5 -2055,	IgusaClebschInvariants, 10-4437, 4438
5 -2189, 6 -2240, 6 -2271, 6 -2448,	IgusaClebschToIgusa, 10-4439
6 -2495, 6 -2546, 6 -2564, 6 -2576,	IgusaInvariants, 10-4438
6 -2586, 6 -2606, 7 -2984, 8 -3352,	IgusaToG2Invariants, 10-4439
8 -3363, 9 -3939, 9 -3966, 10 -4268,	IharaBound, 3 -1160, 9 -3954
10 -4462, 12 -5166, 12 -5169	Ilog, 2 -292
IdDataNLAC, 8-3287	Ilog2, 2 -292
IdDataSLAC, 8-3286	Im, 2-486, 11-4696
Ideal, 3-798, 3-843, 3-861, 3-971,	Image, 1-254, 2-619, 4-1518, 4-1552,
3 -1086, 3 -1182, 3 -1198, 4 -1603,	4 -1573, 4 -1608, 5 -1694, 5 -1733,
9-3427, 9-3515, 9-3742, 9-3837,	5 -1815, 6 -2290, 6 -2529, 7 -2723,
9 -3962, 9 -3972	7 -2777, 9 -3556, 9 -3799, 9 -3870,

11 -4892, 12 -5070, 12 -5150, 12 -5251,	IndependentGenerators, ${f 10}$ - 4391
12- 5334	IndependentUnits, 3-937, 3-1165
Image (M), $4-1448$	IndeterminacyLocus, $9\text{-}4196$
ImageBasis, 12 - 5150	Index, 1-69, 1-178, 1-201, 1-238, 3-679
ImageFan, $9-4190$	3 -910, 3 -929, 3 -948, 3 -1146, 4 -1375
ImageSystem, $9-3824$	5 -1646, 5 -1715, 5 -1841, 5 -2006,
ImageWithBasis, 7 -2917	6 -2257, 6 -2336, 6 -2415, 6 -2463,
Imaginary, $2-486$, $11-4670$, $11-4696$	9 -4003, 9 -4011, 9 -4125, 9 -4128,
ImaginaryTwist, ${f 10}$ - 4590	9 -4143, 11 -4664, 11 -4674, 11 -4909,
ImplicitFunction, $4-1385$, $4-1423$	12 -5060, 12 -5139, 12 -5285, 12 -5359
Implicitization, $9-3502$	IndexCalculus, $9\text{-}3979$
ImprimitiveAction, $5-1890$	IndexCalculusMatrix, 9 - 3979
ImprimitiveBasis, 5 - 1890	IndexedCoset, $6\text{-}2367$
ImprimitiveReflectionGroup, $8-3192$	IndexedSetToSequence, ${f 1}$ -184
ImproveAutomorphismGroup, $3-1038$	IndexedSetToSet, 1 - 184
in, 1-70, 1-176, 1-185, 1-199, 1-210,	IndexFormEquation, ${f 3} extsf{-}945$
2 -272, 2 -276, 2 -290, 2 -341, 2 -343,	IndexOfPartition, ${f 12} ext{-}5164$
2 -361, 2 -381, 2 -401, 2 -421, 2 -439,	IndexOfSp, 5 - 1838
2 -453, 2 -485, 2 -614, 3 -673, 3 -747,	IndexOfSpeciality, 3 -1206, 9 -3976
3 -797, 3 -834, 3 -920, 3 -953, 3 -957,	Indicator, 7 -2993
3 -1088, 3 -1103, 3 -1172, 3 -1185,	Indices, 11 - 4618 , 12 - 5358
3 -1197, 3 -1202, 3 -1219, 3 -1240,	IndicialPolynomial, $9\text{-}3689$
4 -1296, 4 -1347, 4 -1398, 4 -1408,	IndivisibleSubdatum, $8-3127$
4 -1451, 4 -1508, 4 -1530, 4 -1594,	Indivisible Subsystem, $8-3083$
5 -1647, 5 -1714, 5 -1767, 5 -1825,	Induce, $4-1581$
5 -1936, 5 -2003, 5 -2057, 6 -2252,	InducedAutomorphism, ${f 3}$ - 1024
6 -2359, 6 -2367, 6 -2463, 6 -2511,	InducedGammaGroup, $5\text{-}2217$
6 -2524, 6 -2579, 7 -2626, 7 -2657,	InducedMap, 31024
7 -2663, 7 -2673, 7 -2684, 7 -2724,	InducedMapOnHomology, $4\text{-}1556$
7 -2837, 7 -2918, 7 -2990, 9 -3469,	InducedOneCocycle, 5 -2219
9 -3521, 9 -3553, 9 -3597, 9 -3748, 3749,	InducedPermutation, $6\text{-}2502$
9 -3833, 9 -3920, 9 -3941, 9 -3958,	InducedTensor, 4 - 1578
9 -3964, 9 -3971, 9 -4167, 10 -4274,	InduceWG, $8-3172$
10 -4451, 11 -4620, 11 -4668, 11 -4814,	InduceWGtable, $8\text{-}3172$
11 -4903, 11 -4947, 12 -5060, 12 -5126,	Induction, $4-1486$, $7-2962$, $7-2997$
12 -5146, 12 -5239, 12 -5286, 12 -5302,	IneffectiveSubcanonicalCurves, $9\text{-}4134$
12 -5379, 13 -5442, 13 -5531, 13 -5599	Inequalities, ${f 12} ext{-}5123$
IncidenceDigraph, ${f 12} ext{-}5277$	InertiaDegree, $3-844$, $3-950$, $3-972$,
IncidenceGeometry, $12-5082$, $12-5091$	3 -1192, 3 -1198, 4 -1282, 4 -1327,
IncidenceGraph, $12-5077$, $12-5090$, $12-5253$,	4- 1360
12 -5274, 12 -5299	InertiaField, 3-980
IncidenceMatrix, 12-5055, 12-5237,	InertiaGroup, 3 -979, 4 -1331, 4 -1476
12- 5315	InertiaInvariants, $4-1478$
IncidenceStructure, 12-5224, 12-5246,	InertialElement, $4-1332$
12 -5253	Infimum, 6 - 2502
IncidentEdges, 12-5287, 12-5304, 12-5306,	InfiniteDivisor, 3 - 1205
12 -5358, 12 -5381, 12 -5383	InfinitePart, $12-5136$
Include, $1-182$, $1-203$	InfinitePlaces, $3-842$, $3-923$, $3-971$,
IncludeAutomorphism, ${f 13}$ -5450	3- 1194
IncludeWeight, $9-4133$, $9-4135$	InfiniteSum, $2-516$
InclusionMap, $5-2004$, $6-2456$	Infinity, $2-317$
IndecomposableSummands, $7-2646$, $7-2926$,	InflationMap, $7-2815$
8 -3083, 8 -3126, 8 -3261, 8 -3399,	InflationMapImage, $5\text{-}2208$
8-3402	InflectionPoints, 9-3930
InDegree, $12-5304$, $12-5382$	InformationRate, $13-5429$, $13-5530$,
IndentPop, 1-80	13 -5593
IndentPush, 1-80	InformationSet, 13-5432, 13-5562
IndependenceNumber, 12 - 5321	InformationSpace, 13-5432, 13-5561

InitialCoefficients, $9-4132$	IntegralNormEquation, 3 - 942
InitialiseProspector, 5 - 1651	IntegralPart, ${f 12} ext{-}5135$
InitializeEvaluation, 3 -991	IntegralPoints, $10-4329$, $10-4338$
InitialVertex, $12-5287$, $12-5359$	IntegralQuarticPoints, ${f 10} ext{-}4330,\ 4331$
Injection, $7-2787$	IntegralSplit, $3-958$, $3-1175$, $3-1188$,
Injections, $1-238$	9 -3746
InjectiveHull, 7-2801	IntegralUEA, $8-3278$
InjectiveModule, 7-2801	IntegralUEAlgebra, 8-3278
InjectiveResolution, $7-2801$	IntegralUniversalEnvelopingAlgebra, 8-3278
InjectiveSyzygyModule, 7-2802	Interior, 12 -5065
InNeighbors, 12 -5306, 12 -5383	InteriorPoints, 12-5126
InNeighbours, 12 -5306, 12 -5383	InternalEdges, $11-4674$
InnerAutomorphism, 8-3274, 8-3364	Interpolation, 2 -426, 2 -463, 2 -517
InnerAutomorphismGroup, 7-2784, 8-3274	Intersection, 9-3736, 9-3833, 11-4663,
InnerFaces, 4-1415	11-4921
InnerGenerators, 5-2185	IntersectionArray, 12-5338
InnerNormal, 12-5124	IntersectionForm, 9-4191
InnerNormals, 9-4169	IntersectionForms, 9-4191
InnerProduct, 2-604, 3-672, 3-748,	
	IntersectionGroup, 11-4793, 4794
4-1506, 7 -2633, 7 -2993, 8 -3272,	IntersectionMatrix, 9-3986, 9-4050,
11 -4814, 12 -5212, 13 -5436, 13 -5538,	12-5315
13-5595, 13-5644	IntersectionNumber, $9-3843$, $9-3927$,
InnerProductMatrix, 2-626, 3-676, 3-742,	12- 5237
11 -4815, 11 -4821	IntersectionNumbers, 9-3927
InnerProductScaling, 3-739	IntersectionOfImages, $11-4921$
InnerShape, 12 -5180	IntersectionPairing, $9-3877$, $11-4784$,
InnerSlopes, $4-1419$	11- 4935
InnerTwists, $11\text{-}4859$, $11\text{-}4929$	IntersectionPairingIntegral, ${f 11}$ - ${f 4935}$
InnerVertices, 4 -1416	IntersectionWithNormalSubgroup, ${f 5}$ - 1716
Insert, 1-203, 1-226	intrinsic , 1 - 43
InsertBlock, $2-538$, $2-581$, $7-2726$	Intseq, $2-286$
InsertVertex, $12-5294$, $12-5375$	InvariantBilinearForms, 2 - 648
Instance, 8-3231	InvariantFactors, $2-555$, $7-2730$
InstancesForDimensions, 8-3235	InvariantField, $9-3632$
IntegerRelation, 2-495	InvariantFormBases, 2-651
IntegerRing, 2-284, 2-337, 338, 2-357,	InvariantForms, 3 -731, 3 -771, 5 -1965
3 -819, 3 -852, 3 -883, 3 -888, 3 -1101,	InvariantQuadraticForms, 2-649
4 -1281, 4 -1345, 4 -1360, 9 -3745	InvariantRing, 9-3596, 9-3626
Integers, 2-284, 2-337, 338, 2-357,	Invariants, 5-2201, 10-4417, 11-4957
3 -819, 3 -883, 3 -888, 4 -1281, 4 -1345,	InvariantSesquilinearForms, 2-650
4 -1360, 9 -3745	InvariantsMetacyclicPGroup, 5-2138
IntegerSolutionVariables, 13-5667	InvariantsOfDegree, 9-3600, 9-3626
IntegerToSequence, 2 -286	Inverse, 1-254, 2-401, 6-2508, 6-2548,
IntegerToString, 1-70, 2-286, 287	6-2566, 8-3354, 8-3371, 9-3790,
Integral, 2-426, 2-462, 4-1349, 4-1377	9 -3940, 10 -4411, 10 -4451, 11 -4896
IntegralBasis, 2-358, 3-830, 3-911,	InverseDefiningPolynomials, 9-3795
4-1330, 11-4765	InverseJeuDeTaquin, 12-5185
IntegralBasisLattice, 3-683	InverseKrawchouk, 13-5492
IntegralClosure, 3-1132	
	InverseMattsonSolomonTransform, 13-5491
Integral Hacks Operator 11-4770	InverseMod, 2-315, 3-958
IntegralHeckeOperator, 11-4779	InverseRoot, 4-1303
IntegralHomology, 11-4880	InverseRowInsert, 12-5186
Integral Mapping, 11-4796	InverseRSKCorrespondenceDoubleWord,
IntegralMatrix, 11-4894	12- 5189
IntegralMatrixGroupDatabase, 5-2159	InverseRSKCorrespondenceMatrix, 12-5190
IntegralMatrixOverQ, 11-4894	InverseRSKCorrespondenceSingleWord,
IntegralModel, 10-4245, 10-4429	12 -5189
IntegralMultiple, $9-3837$	InverseSqrt, 4 -1302, 1303

InverseSquareRoot, 4-1302, 1303 IsAlgebraicField, 3-832, 3-916InverseTransformation, 10-4411 IsAlgebraicGeometric, ${\bf 13}\text{-}5504$ InverseWordMap, 5-1770, 5-1869IsAlternating, 4-1573, 4-1597, 5-1777 Involution, **7**-2756, **10**-4447 IsAltsym, 5-1777InvolutionClassicalGroupEven, 5-1886IsAmbient, 9-3549, 9-3740, 11-4815 IsAmbientSpace, 11-4728, 11-4832Iroot, **2**-293 IrreducibleCartanMatrix, 8-3054IsAmple, 9-4189 ${\tt IsAnalyticallyIrreducible, 9-} 3921$ IrreducibleCoxeterGraph, 8-3054IrreducibleCoxeterGroup, 8-3140 IsAnisotropic, 8-3109 IrreducibleCoxeterMatrix, 8-3054 IsAnticanonical, 9-3841 IsAntisymmetric, 4-1573, 4-1597IrreducibleDynkinDigraph, 8-3054 IrreducibleLowTermGF2Polynomial, 2-386 IsArc, 12-5064IsArithmeticallyCohenMacaulay, 9-3769, IrreducibleMatrixGroup, 5-2164 IrreducibleModule, 7-2788 **9**-3876 Is Arithmetically Gorenstein, $\mathbf{9}\text{-}3769$ Irreducible Modules, 7-2965, 7-2969, **7**-2972 Is Associative, 7-2631IrreducibleModulesBurnside, 7-2968 IsAttachedToModularSymbols, 11-4862, IrreducibleModulesInit, 7-2971 **11-**4882 IrreducibleModulesSchur, 5-2038, 7-2970 IsAttachedToNewform, 11-4862IrreduciblePolynomial, 2-386 IsAutomaticGroup, 6-2556, 2557 IrreducibleReflectionGroup, 8-3185 IsAutomorphism, 9-3804 IsBalanced, 12-5242IrreducibleRepresentationsInit, 7-2971 IrreducibleRepresentationsSchur, 5-2038 IsBasePointFree, 9-3829, 9-3843IrreducibleRootDatum, 8-3097IsBass, 7-2848IrreducibleRootSystem, 8-3070 IsBiconnected, 12-5306, 12-5384 IsBig, 9-4189IrreducibleSecondaryInvariants, 9-3607 IrreducibleSimpleSubalgebrasOfSU, 8-3410 IsBijective, 4-1519, 9-3557IrreducibleSimpleSubalgebraTreeSU, 8-3410 IsBipartite, 12-5302, 12-5379 IrreducibleSolubleSubgroups, 5-2113 IsBlock, 5-1741, 12-5240 IrreducibleSparseGF2Polynomial, $\mathbf{2}$ -386IsBlockTransitive, 12-5252 IrreducibleSubgroups, 5-2113 IsBogomolovUnstable, 9-4146Irregularity, 9-4027IsBoundary, $\mathbf{4}\text{-}1420$ IrregularLDPCEnsemble, 13-5511IsBravaisEquivalent, ${f 5}$ -1968IsCanonical, 3-1202, 3-1217, 9-3841, 9-3971, 9-4126, 9-4128, 4129, 9-4171, 9-4174, 9-4179 IrrelevantComponents, 9-4182 IrrelevantGenerators, 9-4182 IrrelevantIdeal, 9-4178, 9-4182 Is2T1, **12**-5097 IsCanonicalWithTwist, 9-3842 ISA, 1-29 IsCapacitated, 12-5363 ISABaseField, 3-1137 IsCartanEquivalent, 8-3047, 8-3055, IsAbelian, 3-833, 3-918, 3-1031, 4-1314, 8-3071, 8-3100, 8-3146, 8-3196, **5**-1654, **5**-1692, **5**-1828, **5**-1984, 8-3347 **6**-2469, **8**-3269, **8**-3351 IsCartanMatrix, 8-3045 IsAbelianByFinite, 5-1947 IsCartanSubalgebra, 8-3263 IsAbelianVariety, 11-4862 IsCartier, 9-3842, 9-4189IsAbsoluteField, 3-833, 3-918IsCentral, 3-1031, 5-1654, 5-1715, **5**-1842, **5**-2007, **6**-2470, **7**-2776, IsAbsolutelyIrreducible, 5-1862, 7-2920, **7**-2964, **8**-3107, **9**-3952 **8**-3269, 3270, **8**-3357 IsAbsoluteOrder, **3**-917, **3**-1166 IsCentralByFinite, 5-1947 IsCentralCollineation, 12-5074IsAdditiveOrder, 8-3081, 8-3121IsAdditiveProjective, 13-5600IsCGroup, 12-5101 IsAdjoint, 8-3108, 8-3351 IsAffine, 5-1758, 8-3150, 9-3739, 9-3741 IsChainMap, 4-1553 IsCharacter, 7-2991IsAffineLinear, 9-3797, 12-5138 IsChevalleyBasis, 8-3258IsAlgebraHomomorphism, 7-2777 IsClassicalType, 8-3269IsAlgebraic, 8-3365IsCluster, 9-3740Is Algebraically Dependent, 2-454IsCM, 11-4929IsAlgebraicallyIsomorphic, 8-3347 IsCoercible, 1-13, 4-1576, 4-1594,

9-3749, **12**-5202

IsAlgebraicDifferentialField, 9-3650

IsCohenMacaulay, $9-3618$, $9-3769$	IsDefinite, $7-2843$, $11-4984$
IsCokernelTorsionFree, ${f 12}$ -5150	IsDegenerate, 4 -1421
IsCollinear, 12 - 5063	IsDelPezzo, 9 - 4092
IsCommutative, $2-269$, $2-288$, $2-340$,	IsDenselyRepresented, ${f 13} extstyle{-}5640$
2 -360, 2 -379, 2 -420, 2 -452, 2 -484,	IsDesarguesian, ${f 12}$ - 5057
3 -832, 3 -916, 3 -1086, 3 -1102,	IsDesign, $oldsymbol{12} ext{-}5242$
4 -1346, 4 -1407, 7 -2631, 7 -2687,	IsDiagonal, $2-549$, $2-585$, $7-2720$
7 -2776, 11 -4915, 12 -5205	IsDifferenceSet, ${f 12} ext{-}5235$
IsCompactHyperbolic, 8-3150	IsDifferentialField, 9 - 3650
IsComplete, 1-210, 6-2368, 9-3829,	IsDifferentialIdeal, $9\text{-}3667$
9- 4171, 9- 4179, 12- 5064, 12- 5242,	IsDifferentialLaurentSeriesRing, 9-3650
12- 5302, 12- 5380	IsDifferentialOperatorRing, 9-3671
IsCompletelyReducible, 5-1948	IsDifferentialSeriesRing, 9-3650
IsComplex, 3-843, 3-972	IsDimensionCompatible, 7-2776
IsConcurrent, 12-5063	IsDirected, 12 -5380
IsConditioned, 5-2045	IsDirectSum, 12-5148
IsConfluent, 6-2545, 6-2604	IsDirectSummand, 7-2927
IsCongruence, 11-4664	IsDiscriminant, 3-794
IsConic, 9-3740, 10-4214	IsDisjoint, 1-186
IsConjugate, 5-1654, 5-1662, 5-1708,	IsDistanceRegular, 12-5337
5 -1735, 5 -1832, 5 -1995, 5 -1999, 5 -2007, 6 -2360, 6 -2470, 6 -2476,	IsDistanceTransitive, 12-5337
6 -2513, 7 -2859, 7 -2993	IsDistinguished (f), 4-1442
IsConnected, 12-5306, 12-5384	IsDivisible, 9-3841 IsDivisibleBy, 2-290, 2-427, 2-454,
IsConsistent, 2 -546, 547, 5 -1982, 6 -2455,	3-1172, 10-4271, 10-4483
7-2734	IsDivisionRing, 2-269, 2-288, 2-340,
IsConsistent (M, e), 4-1451	2 -360, 2 -380, 2 -420, 2 -452, 2 -484,
IsConsistent (M, v), 4-1451	3 -1086, 3 -1102, 3 -1166, 4 -1346,
IsConsistent (M, W), 4-1451	4 -1407, 12 -5205
IsConstant, 3-1173, 10-4265	IsDivisorialContraction, 9-4198
IsConstantCurve, 10-4390	IsDomain, 2-270, 2-288, 2-340, 2-360,
IsContravariant, 4-1571, 4-1597, 4-1601	2 -380, 2 -420, 2 -452, 2 -484, 3 -832,
IsConway, $2-379$	3 -917, 3 -1086, 3 -1102, 3 -1166,
IsCorootSpace, 8-3111	4 -1346, 4 -1407, 9 -3650, 12 -5205
IsCovariant, 4-1571, 4-1597, 4-1601	IsDominant, 8-3123, 8-3160, 8-3207,
IsCoxeterAffine, $8-3052$	9 -3796
IsCoxeterCompactHyperbolic, $8\text{-}3058$	IsDoublePoint, $9-3921$
IsCoxeterFinite, $8-3052$	IsDoublyEven, ${f 13}$ -5443
IsCoxeterGraph, $8-3043$	IsDualComputable, ${f 11}$ - 4933
IsCoxeterHyperbolic, 8 - 3058	IsDynkinDigraph, $8-3049$
IsCoxeterIrreducible, $8-3042$, $8-3048$	IsEdgeCapacitated, ${f 12}$ - 5363
IsCoxeterIsomorphic, 8-3042, 8-3046,	IsEdgeLabelled, 12-5363
8-3055, 8-3146, 8-3196	IsEdgeTransitive, 12-5337
IsCoxeterMatrix, 8-3041	IsEdgeWeighted, 12-5364
IsCPlusGroup, 12-5103	IsEffective, 3 -1202, 9 -3840, 9 -3970,
IsCrystallographic, 8-3048, 8-3073,	9-4133, 9-4189
8-3107, 8-3151, 8-3201	IsEichler, 7 -2847
IsCurve, 9-3740, 9-3908	IsEisenstein, 4-1279, 11-4728, 11-4775,
IsCusp, 9-3921, 11-4670	
-	11-4818
IsCuspidal, 11-4728, 11-4775, 11-4818,	Is Eisenstein Series, $11-4728$, $11-4736$
IsCuspidal, 11-4728, 11-4775, 11-4818, 11-4983	IsEisensteinSeries, $11-4728$, $11-4736$ IsElementaryAbelian, $5-1654$, $5-1692$,
IsCuspidal, 11-4728, 11-4775, 11-4818, 11-4983 IsCyclic, 3-833, 3-918, 5-1654, 5-1692,	IsEisensteinSeries, 11-4728, 11-4736 IsElementaryAbelian, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469
IsCuspidal, 11-4728, 11-4775, 11-4818, 11-4983 IsCyclic, 3-833, 3-918, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469,	IsEisensteinSeries, 11-4728, 11-4736 IsElementaryAbelian, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469 IsEllipticCurve, 10-4243, 4244, 10-4433
IsCuspidal, 11-4728, 11-4775, 11-4818, 11-4983 IsCyclic, 3-833, 3-918, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469, 7-2942, 13-5443, 13-5532	IsEisensteinSeries, 11-4728, 11-4736 IsElementaryAbelian, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469 IsEllipticCurve, 10-4243, 4244, 10-4433 IsEllipticWeierstrass, 9-3932
IsCuspidal, 11-4728, 11-4775, 11-4818, 11-4983 IsCyclic, 3-833, 3-918, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469, 7-2942, 13-5443, 13-5532 IsDecomposable, 7-2926, 7-2964	IsEisensteinSeries, 11-4728, 11-4736 IsElementaryAbelian, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469 IsEllipticCurve, 10-4243, 4244, 10-4433 IsEllipticWeierstrass, 9-3932 IsEmbedded, 9-3549
IsCuspidal, 11-4728, 11-4775, 11-4818, 11-4983 IsCyclic, 3-833, 3-918, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469, 7-2942, 13-5443, 13-5532 IsDecomposable, 7-2926, 7-2964 IsDefault, 2-379	IsEisensteinSeries, 11-4728, 11-4736 IsElementaryAbelian, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469 IsEllipticCurve, 10-4243, 4244, 10-4433 IsEllipticWeierstrass, 9-3932 IsEmbedded, 9-3549 IsEmpty, 1-185, 1-210, 1-226, 3-710,
IsCuspidal, 11-4728, 11-4775, 11-4818, 11-4983 IsCyclic, 3-833, 3-918, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469, 7-2942, 13-5443, 13-5532 IsDecomposable, 7-2926, 7-2964	IsEisensteinSeries, 11-4728, 11-4736 IsElementaryAbelian, 5-1654, 5-1692, 5-1828, 5-1984, 6-2257, 6-2469 IsEllipticCurve, 10-4243, 4244, 10-4433 IsEllipticWeierstrass, 9-3932 IsEmbedded, 9-3549

9 -3767, 9 -3779, 12 -5136, 12 -5303,	IsFlex, $9-3920$
12 -5380	IsFlipping, $9-4198$
IsEmptySimpleQuotientProcess, $6\text{-}2298$	IsForest, $oldsymbol{12}$ -5303
IsEmptyWord, 6 -2512	IsFree, $3-744$, $6-2257$, $9-3563$, $9-3829$
IsEndomorphism, $9-3804$, $11-4902$	IsFrobenius, $5\text{-}1736$
IsEof, 1-82	IsFTGeometry, ${f 12}$ - 5094
IsEquationOrder, 3 -917, 3 -1166	IsFuchsianOperator, $9-3688$
IsEquidistant, 13-5443	IsFullyNondegenerate, 4 - 1573
IsEquitable, 12 -5314	IsFundamental, 3-795
IsEquivalent, 3-797, 10-4356, 10-4412,	IsFundamentalDiscriminant, 3-795
11 -4668, 11 -4671, 12 -5129, 13 -5497	IsGamma0, 11-4664, 11-4728
IsEtale, 7 -3027	IsGamma1, 11-4664, 11-4728
Isetseq, 1-184	IsGE, 6-2513
Isetset, 1-184	IsGe, 6-2513
IsEuclideanDomain, 2-269, 2-288, 2-340,	
	IsGeneralizedCartanMatrix, 8-3300
2 -360, 2 -379, 2 -420, 2 -452, 2 -484,	IsGeneralizedCharacter, 7-2991
3 -832, 3 -916, 3 -1086, 3 -1102,	IsGenuineWeightedDynkinDiagram, 8-3292
3 -1166, 4 -1346, 4 -1407, 12 -5205	IsGenus, 3-721
IsEuclideanRing, 2-269, 2-288, 2-340,	IsGenusOneModel, 10-4407
2 -360, 2 -380, 2 -420, 2 -452, 2 -484,	IsGeometricallyHyperelliptic, 9-3933
3 -1086, 3 -1102, 3 -1166, 4 -1346,	IsGL2Equivalent, 10 - 4452
4 -1407, 12 -5205	IsGLattice, $3\text{-}770$
IsEulerian, 12 - 5302	IsGLConjugate, $5-1832$, $5-2112$
IsEven, 2-290, 2-315, 2-348, 3-677,	IsGlobal, $3\text{-}1166$
3 -1057, 5 -1701, 5 -1777, 10 -4484,	IsGloballySplit, $3-1010$
13 -5443	IsGlobalUnit, $3-1173$, $3-1214$
IsExact, 3 -677, 3 -1219, 4 -1549, 1550,	IsGlobalUnitWithPreimage, 3-1173, 3-1214
9 -3958, 11 -4671, 11 -4696, 11 -4947	IsGLQConjugate, $5-1969$
IsExactlyDivisible, 4 - 1295	IsGLZConjugate, 5 -1968, 1969
IsExceptionalUnit, $3-938$	IsGorenstein, 7 -2848, 9 -3769, 9 -4171,
IsExtension, 5-1989	9 -4173, 9 -4179
IsExtensionOf, 5 -2215, 2216	IsGorensteinSurface, 9-4126, 9-4129
IsExtraSpecial, $5-1654$, $5-1692$, $5-1880$,	IsGraded, $9-3550$, $9-3557$
5 -1985	IsGradedIsomorphic, 7-2783
IsExtraSpecialNormaliser, $5-1898$	IsGraph, $12-5095$
IsFace, 4-1419, 12-5126	IsGroebner, 9-3437
IsFactorial, 2-299	IsHadamard, 12 -5259
IsFactorisationPrime, 9-3841	IsHadamardEquivalent, 12-5259
IsFaithful, 5-1738, 7-2991	IsHeckeAlgebra, 11-4915
	IsHeckeOperator, 11 - 4902
IsFakeWeightedProjectiveSpace, 9-4180	
IsFanMap, 9-4172	IsHereditary, 7-2848
IsFano, 9-4174, 9-4179	IsHomeomorphic, 12-5324, 12-5388
IsField, 2-269, 2-288, 2-340, 2-360,	IsHomogeneous, 9-3425, 9-3467, 9-3550,
2 -379, 2 -420, 2 -452, 2 -484, 3 -832,	9 -3552, 9 -3557, 9 -3731, 12 -5208
3 -916, 3 -1086, 3 -1102, 3 -1166,	IsHomomorphism, 5-1694, 5-1815, 5-1986
4 -1346, 4 -1407, 9 -3650, 11 -4915,	IsHyperbolic, 8-3150
12- 5205	IsHyperelementary, $5-1655$
IsFinite, $2-269$, $2-288$, $2-318$, $2-340$,	IsHyperelliptic, $9-3933$
2 -360, 2 -379, 2 -420, 2 -452, 2 -484,	IsHyperellipticCurve, $9-3740$, $10-4426$
3 -832, 3 -843, 3 -916, 3 -971, 3 -1086,	IsHyperellipticCurveOfGenus, ${f 10}$ – 4426
3 -1102, 3 -1197, 4 -1346, 4 -1407,	IsHyperellipticWeierstrass, $9\text{-}3933$
5 -1824, 5 -1943, 6 -2251, 6 -2450,	IsHypersurface, $9-3743$
6 -2469, 6 -2545, 6 -2562, 6 -2604,	IsHypersurfaceDivisor, $9-3973$
8 -3107, 8 -3150, 8 -3351, 11 -4958,	IsHypersurfaceSingularity, $9-3755$
12 -5205	IsId, 5-1627, 5-1702, 5-1820, 5-1995,
IsFiniteOrder, 3-1166	6 -2250, 6 -2451, 6 -2512, 6 -2548,
IsFirm, 12 -5094	6 -2566, 6 -2607, 10 -4274
IsFlag, 12 -5139	IsIdeal, 4 -1603, 7 -2754, 7 -2779
.	, , , , , , , , , , , , , , , , , , , ,

T T 1	₩ 0064 ₩ 0001 0 0070 0 0107
IsIdempotent, 2-273, 2-291, 2-341, 2-362,	7 -2964, 7 -2991, 8 -3073, 8 -3107,
2 -382, 2 -422, 2 -454, 2 -484, 3 -835,	8 -3151, 9 -3769, 9 -3913, 11 -4772
3 -921, 3 -1088, 3 -1104, 3 -1172,	IsIrreducibleFiniteNilpotent, ${f 5}$ - 1951
4 -1347, 4 -1399, 4 -1408, 7 -2626,	IsIrregularSingularPlace, $9 extstyle extstyle 3688$
7 -2673	IsIsogenous, 8-3100, 8-3347, 10-4253,
IsIdentical, $3-745$, $4-1347$, $9-3650$,	10 -4517, 11 -4862
9-3671	IsIsogenousPeriodMatrices, 10-4517
IsIdenticalPresentation, $5-2029$, $6-2455$	IsIsogeny, 8-3131, 11-4902
IsIdentity, 2-401, 3-797, 3-1157, 5-1627,	IsIsolated, 9-4126, 9-4129, 9-4171,
5-1702, 5-1820, 5-1995, 6-2250,	9-4174, 9-4179
6 -2451, 6 -2512, 6 -2548, 6 -2566,	
	IsIsometric, 2-639, 3-746, 3-757, 3-765,
6-2607, 10-4274, 10-4465	766, 3-769
IsInArtinSchreierRepresentation, 3-1167	IsIsometry, 2 -639
IsInCorootSpace, 8-3114	IsIsomorphic, 2-405, 3-765, 766, 3-833,
IsIndecomposable, $4-1480$, $11-4818$	3 -918, 3 -1155, 4 -1310, 4 -1314,
IsIndefinite, $7-2843$	5 -1770, 5 -1871, 5 -2029, 6 -2261,
IsIndependent, $2-617$, $7-2621$, $8-3253$	7 -2784, 7 -2858-2860, 7 -2937, 8 -3071,
IsIndivisibleRoot, $8-3080$, $8-3120$	8 -3100, 8 -3146, 8 -3250, 9 -3876,
IsInduced, 5 -2218	9 -3939, 10 -4253, 10 -4452, 10 -4517,
IsInert, 3 -955, 3 -1185	11 -4863, 12 -5057, 12 -5128, 12 -5248,
IsInertial, $4-1277$	12 -5254, 12 -5330, 13 -5497
IsInfinite, 3-843, 3-972, 6-2251,	IsIsomorphicBigPeriodMatrices, 10-4517
11-4670	IsIsomorphicCubicSurface, 9-4104
IsInflectionPoint, 9-3920	IsIsomorphicOverQt, 3-1154
IsInformationSet, 13-5562	IsIsomorphicSmallPeriodMatrices, 10-4517
IsInImage, 9-3502	IsIsomorphicSolubleGroup, 5-2026
IsInInterior, 12-5126	IsIsomorphicWithTwist, 9-3876
IsInjective, 4-1519, 4-1553, 7-2791,	IsIsomorphism, 4-1553, 8-3250, 9-3796,
9-3557, 11-4902	10-4262, 11-4902
IsInKummerRepresentation, 3-1167	IsKEdgeConnected, $12-5311$, $12-5386$
IsInner, 5-2190, 8-3109	IsKnownIsomorphic, $8-3250$
IsInRadical, $9-3470$	IsKnuthEquivalent, ${f 12}$ -5167
IsInRootSpace, $8-3111$, $8-3114$	IsKVertexConnected, 12 -5311, 12 -5386
IsInSecantVariety, $9\text{-}3820$	IsLabelled, $12-5361$, $12-5363$
IsInSmallGroupDatabase, 5 -2127	IsLarge, 6 -2363
IsInSmallModularCurveDatabase, 11 - 4639	IsLargeReeGroup, 5 -2105
IsInSupport, 9-4167	IsLDPC, 13 -5512
IsInt, 3 -988	IsLE, 6 -2513
IsInTangentVariety, 9-3818	IsLe, 6 -2513
IsInteger, 11-4902	IsLeaf, 8-3219
IsIntegral, 2-291, 2-362, 2-485, 3-677,	IsLeftIdeal, 7 -2663, 7 -2754, 7 -2779
3 -835, 3 -921, 3 -953, 3 -1185, 4 -1297,	IsLeftIsomorphic, 7-2860
4 -1330, 9 -3840, 10 -4274, 10 -4430,	IsLeftModule, 7-2940
12-5146	IsLexicographicallyOrdered, 12-5188
IsIntegralDomain, 2-270	IsLie, 7-2631
IsIntegrallyClosed, 12-5139	
	Islinear, 7 -2991, 9 -3743, 9 -3797
IsIntegralModel, 10-4246, 4247	IsLinearGroup, 5-2088
IsInterior, 4-1420	IsLinearlyDependent, 10-4391
IsIntersection, 9-3927	IsLinearlyEquivalent, 9-3842, 9-3973,
IsIntrinsic, 1-32	9-4191
IsInTwistedForm, $8-3342$	IsLinearlyEquivalentToCartier, 9-4191
IsInvariant, $3-993$, $9-3597$	IsLinearlyIndependent, $10-4275$, $10-4312$,
IsInvertible, 9-3790, 9-3816	10- 4391
IsIrreducible, 2-273, 2-291, 2-341,	IsLinearSpace, $12-5138$, $12-5242$
2 -362, 2 -382, 2 -422, 2 -436, 2 -454,	IsLinearSystemNonEmpty, $9-3845$
2 -468, 2 -484, 3 -835, 3 -921, 3 -1088,	IsLineRegular, $12-5242$
3 -1173, 3 -1262, 4 -1309, 4 -1347,	IsLineTransitive, $12-5075$
4 -1480, 5 -1862, 7 -2673, 7 -2920,	IsLittlewoodRichardson, 12-5183
	•

IsLocalIdeal, 4-1603	IsNodalCurve, 9-3913
IsLocallyFree, 9-3874	IsNode, 9-3921
IsLocallySoluble, 10-4414	IsNondegenerate, $2-627$, $4-1573$
IsLocallySolvable, $9-3781$, $10-4221$	IsNonSingular, 9-4171, 9-4173, 9-4179
IsLocallyTwoTransitive, 12-5097	IsNonsingular, 2-627, 9-3754, 9-3767,
IsLocalNorm, 3 -1040	9 -3913, 9 -3920, 9 -4171, 9 -4173,
IsLongRoot, 8-3080, 8-3120, 8-3159,	9-4179
8-3360	IsNorm, 3- 1040
IsLorentzian, 3-756	IsNormal, 2-382, 3-833, 3-918, 3-1031,
IsLowerTriangular, $2\text{-}549$, $2\text{-}585$	4 -1314, 5 -1655, 5 -1715, 5 -1842,
IsMagmaEuclideanRing, ${f 2}$ -269	5 -2007, 6 -2360, 6 -2470, 9 -4029
IsMatrixRing, $7\text{-}2844$	IsNormalised, $5-2218$
IsMaximal, 3-917, 3-1166, 5-1655, 5-1719,	IsNormalising, $8-3341$
5 -1842, 5 -2007, 6 -2257, 6 -2360,	IsNull, 1-185, 1-210, 12-5303, 12-5380
7 -2847, 9 -3468	IsNullHomotopy, ${f 7}$ - 2820
IsMaximisingFunction, ${f 13}$ - 5667	IsNumberField, $3-832$, $3-916$
IsMaximumDimensional, ${f 12}$ -5138	Iso, $1-256$, $10-4450$
IsMaximumDistanceSeparable, ${f 13}$ - 5443	iso, $6-2263$, $9-3787$
IsMDS, $13-5443$	IsOdd, $2-290$, $2-315$, $2-348$, $3-1057$
IsMemberBasicOrbit, 5-1787	IsogenousCurves, ${f 10}$ - 4308
IsMetacyclicPGroup, ${f 5}$ -2138	Isogeny, $11-4621$, $11-4650$
IsMinimal, 11 - 5012	IsogenyFromKernel, $oldsymbol{10}$ - $4263,~4264$
IsMinimalModel, ${f 10}$ - 4246	IsogenyFromKernelFactored, ${f 10}$ - ${f 4263},{f 4264}$
IsMinimalTwist, 11 - 4777	IsogenyGroup, $8-3106$, $8-3148$, $8-3197$,
IsMinusOne, 2-273, 2-291, 2-341, 2-362,	8 -3350
2 -382, 2 -422, 2 -454, 2 -484, 2 -549,	IsogenyMapOmega, ${f 10}$ - 4265
2 -585, 3 -835, 3 -921, 3 -967, 3 -1087,	IsogenyMapPhi, ${f 10}$ - 4265
3 -1104, 3 -1172, 4 -1297, 4 -1332,	IsogenyMapPhiMulti, ${f 10}$ - 4265
4 -1347, 4 -1362, 4 -1376, 4 -1399,	IsogenyMapPsi, ${f 10}$ - 4265
4 -1408, 7 -2626, 7 -2673, 7 -2720,	IsogenyMapPsiMulti, ${f 10}$ - 4265
7 -2991, 9 -3745, 12 -5208	IsogenyMapPsiSquared, ${f 10}$ - 4265
IsMixed, 6 -2257	IsolatedPointsFinder, $9\text{-}3846$
IsMobile, $9-3843$	IsolatedPointsLifter, 93846
IsModular, 3-745	${\tt IsolatedPointsLiftToMinimalPolynomials,}$
IsModularCurve, 9-3740	9-3847
IsModuleHomomorphism, 7-2795, 7-2933	IsolGroup, 5-2166
IsMonic, 2 -422, 9 -3674	IsolGroupDatabase, 5-2166
IsMoriFibreSpace, $9-4198$	IsolGroupOfDegreeFieldSatisfying, 5-2168
IsMorphism, $\bar{\bf 3}$ -1157, ${\bf 11}$ -4901	IsolGroupOfDegreeSatisfying, 5 -2168
IsNearLinearSpace, 12-5242	IsolGroupSatisfying, 5-2168
IsNearlyPerfect, 13-5443	IsolGroupsOfDegreeFieldSatisfying, 5-2168
IsNeat, $6-2257$	IsolGroupsOfDegreeSatisfying, 5-2168
IsNef, 9-3843, 9-4189	IsolGroupsSatisfying, 5-2168
IsNefAndBig, 9-3843	IsolGuardian, $5-2167$
IsNegative, 8-3079, 8-3119, 8-3157	IsolInfo, 5 -2167
IsNegativeDefinite, 3-720	IsolIsPrimitive, 5-2167
IsNegativeSemiDefinite, 3-720	IsolMinBlockSize, 5-2167
IsNew, 11-4728, 11-4775, 11-4984	IsolNumberOfDegreeField, 5-2166
IsNewform, $11-4728$	IsolOrder, 5-2167
IsNewtonPolygonOf, 4-1420	IsolProcess, 5-2169
IsNilpotent, 2-273, 2-291, 2-341, 2-362,	IsolProcessOfDegree, 5-2169
2 -382, 2 -422, 2 -454, 2 -484, 3 -835,	IsolProcessOfDegreeField, 5-2170
3 -921, 3 -1088, 3 -1104, 3 -1172,	IsolProcessOfField, 5-2169
4 -1347, 4 -1399, 4 -1408, 5 -1655,	IsometricCircle, 11-4699
5 -1692, 5 -1828, 5 -1949, 5 -1984,	IsometryGroup, 2 -641, 7 -2870, 7 -2880
6 -2469, 7 -2626, 7 -2673, 7 -2689,	IsomorphicCopy, 5-1944
7 -2720, 8 -3269, 9 -3533	IsomorphicProjectionToSubspace, 9-3821
IsNilpotentByFinite, 5-1946	Isomorphism, 6-2263, 7-2859, 10-4261
r	

IsomorphismData, ${f 10}$ - 4261	IsPID, 2 -269, 2 -288, 2 -340, 2 -360,
Isomorphisms, $3-1154$, $3-1156$, $9-3939$	2 -379, 2 -420, 2 -452, 2 -484, 3 -832,
IsomorphismToIsogeny, ${f 10}$ - 4262	3 -916, 917, 3 -1086, 3 -1102, 3 -1166,
IsomorphismToStandardCopy, ${f 5}$ -2115	4 -1346, 4 -1407, 12 -5205
IsomorphismTypesOfBasicAlgebraSequence,	IspIntegral, ${f 10}$ - 4430
7 -2789	IsPIR, 2 -270
IsomorphismTypesOfRadicalLayers, 7-2789	IsPlanar, 9-3741, 12-5323, 12-5388
IsomorphismTypesOfSocleLayers, 7-2789	IsPlaneCurve, 9-3740
IsOnBoundary, 12-5126	IspLieAlgebra, 8-3275
IsOne, 2-273, 2-291, 2-315, 2-341,	IspMaximal, 7 -2847
2 -362, 2 -382, 2 -422, 2 -454, 2 -484,	IspMinimal, $10-4431$
2 -549, 2 -585, 3 -835, 3 -921, 3 -953,	IspNormal, 10 -4430
3 -967, 3 -1087, 3 -1104, 3 -1172,	IsPoint, 4 -1420, 10 -4269, 10 -4445,
3 -1185, 4 -1297, 4 -1332, 4 -1347,	10 -4509
4-1362, 4-1376, 4-1399, 4-1408,	IsPointed, 12 -5139
4 -1475, 6 -2587, 7 -2626, 7 -2673,	IsPointRegular, $12-5242$
7 -2720, 7 -2991, 9 -3654, 9 -3674,	IsPointTransitive, $12-5075$, $12-5252$
9-3745, 12 -5208	IsPolarSpace, 2 - 634
IsOneCoboundary, 5-2205	IsPolycyclic, 5-1950
	IsPolycyclicByFinite, 5-1946
IsOneCocycle, 5-2219	IsPolygon, 12 -5303
IsOnlyMotivic, 11-4863	IsPolynomial, 4-1391, 9-3796
IsOptimal, 11-4902	IsPolytope, 12 -5139
IsOrbit, 5-1740	IsPositive, 3-1202, 8-3079, 8-3119,
IsOrder, 10-4274	8-3157, 9 -3970
IsOrdered, 2-269, 2-288, 2-340, 2-360,	IsPositiveDefinite, 3-720
2 -379, 2 -420, 2 -452, 2 -484, 3 -832,	IsPositiveSemiDefinite, 3-720
3 -916, 3 -1086, 3 -1102, 4 -1346,	IsPower, 2-291, 2-385, 3-834, 3-920, 921,
4 -1407, 12 -5205	3 -959, 3 -1080, 3 -1183, 4 -1303
IsOrderTerm, 9-3654	IsPRI, 12 -5096
IsOrdinary, 10-4280	IsPrimary, 9-3467, 9-3530
IsOrdinaryProjective, 9-3741	IsPrime, 2-273, 2-291, 2-301, 2-315,
IsOrdinaryProjectiveSpace, 9-3740	2 -341, 2 -362, 2 -382, 2 -422, 2 -454,
IsOrdinarySingularity, 9-3754, 9-3921	2 -484, 3 -835, 3 -921, 3 -953, 3 -1088,
IsOrthogonal, 10-4598	3 -1173, 3 -1185, 4 -1347, 7 -2673,
IsOrthogonalCharacter, 7-3002	9 -3468, 9 -3530, 9 -3840
IsOrthogonalGroup, 5-2088	IsPrimeCertificate, 2-302
IsotropicSubspace, 3-787	IsPrimeField, 2-371
IsOuter, 8-3109	IsPrimePower, 2 -302, 2 -315
IsOverQ, 11-4916	IsPrimitive, 2-315, 2-344, 2-348, 2-382,
IsOverSmallerField, 5-1900	3 -835, 3 -921, 3 -1057, 3 -1064,
IsParabolicSubgroup, 8-3163	5 -1735, 5 -1741, 5 -1890, 10 -4533,
IsParallel, 12 -5063	12 -5096, 12 -5146, 12 -5337
IsParallelClass, 12-5244	IsPrimitiveFiniteNilpotent, ${f 5}$ - 1951
IsParallelism, 12-5244	IsPrincipal, $3-954$, $3-1185$, $3-1202$,
IsPartialRoot, 4-1425	7 -2860, 9 -3467, 9 -3842, 9 -3973,
IsPartition, 12-5163	9- 4191
IsPartitionRefined, 12-5329	IsPrincipalIdealDomain, ${f 2}$ - 269
IsPath, 12 -5303	IsPrincipalIdealRing, $2-270$, $2-288$,
IsPathTree, 7-2776	2 -340, 2 -360, 2 -380, 2 -420, 2 -452,
IsPerfect, 3-1141, 5-1655, 5-1692,	2 -484, 3 -832, 3 -917, 3 -1086, 3 -1102,
5 -1828, 5 -1984, 6 -2319, 6 -2469,	3 -1166, 4 -1346, 4 -1407, 12 -5205
13- 5443, 13- 5599	IsPrincipalSeries, 11-5013
IsPerfectlyCentered, 12-5139	IsProbablePrime, 2-302
IsPermutationCharacter, 7-2991	IsProbablyMaximal, 5-1720
IsPermutationDecodeSet, 13-5487, 13-5577	IsProbablyPerfect, 5-1888
IsPermutationModule, 7 -2921, 7 -2964	IsProbablyPermutationPolynomial, 2-390
IspGroup, 6-2257	IsProbablyPrime, 2 -302

IsProbablySupersingular, 10-4280 IsResiduallyConnected, 12-5095 IsProductOfParallelDescendingCycles, IsResiduallyPrimitive, 12-50966-2497 IsResiduallyWeaklyPrimitive, 12-5096IsProjective, 7-2791, 7-2964, 9-3739, Is Residually Wealy Primitive, $\mathbf{12}$ -5096 **9**-3741, **9**-4179, **13**-5443, **13**-5532, Is Resolution, 12-5243IsRestrictable, 8-3275 IsProjectivelyIrreducible, 8-3073, 8-3107IsRestricted, 8-3275 IsProper, **7**-2688, **9**-3467, **9**-3520, **9**-3530 IsRestrictedSubalgebra, 8-3276 IsProperChainMap, 4-1553 IsReverseLatticeWord, 12-5167 IsProportional, 5-1894IsRightIdeal, 7-2663, 7-2754, 7-2779 IsPseudoReflection, 8-3180 IsRightIsomorphic, 7-2860 IsPseudoSymplecticSpace, 2-635 IsRightModule, 7-2940IspSubalgebra, 8-3276 IsRing, 11-4915 IsPure, 6-2257, 13-5632IsRingHomomorphism, 3-896, 3-1168 IsPyramid, **12**-5140 IsRingOfAllModularForms, 11-4728 IsQCartier, 9-4189 IsRoot, 9-3549, 12-5316 IsQFactorial, 9-4171, 9-4174, 9-4179 IsRootedTree, 12-5316 IsQGorenstein, 9-4171, 9-4174, 9-4179 IsRootSpace, 8-3111 IsQGroup, 5-1655 IsRPRI, 12-5096 IsQPrincipal, 9-4191 IsRWP, 12-5096Isqrt, 2-293 IsRWPRI, **12**-5096 IsQuadratic, 3-852, 3-919 IsSatisfied, 6-2289IsQuadraticTwist, 10-4248, 10-4431IsSaturated, 9-3741, 11-4916 IsQuadricIntersection, 10-4366 IsScalar, 2-549, 2-585, 5-1820, 7-2645, IsQuasisplit, 8-3109 **7**-2659, **7**-2720 IsQuaternionAlgebra, 7-2844 IsQuaternionic, 11-4863 IsSelfDual, 11-4863, 12-5057, 12-5241, IsQuotient, **12**-5148 **13**-5443, **13**-5532, **13**-5599 IsRadical, 9-3468, 9-3530 IsSelfNormalising, 5-1656, 5-1716, 6-2470 IsRamified, 3-954, 3-1185, 3-1262, IsSelfNormalizing, 5-1656, 5-1716, **4**-1289, **4**-1329, **4**-1477, **7**-2840 **5**-2007, **6**-2360, **6**-2470 IsRational, 9-4079IsSelfOrthogonal, 13-5443, 13-5532, IsRationalCurve, 9-3740, 10-4214 **13**-5599 IsRationalFunctionField, 3-1166 IsSemiLinear, 5-1892IsRC, 12-5095 IsSemiregular, 5-1736 IsReal, 2-485, 3-843, 3-868, 3-972, IsSemisimple, 4-1480, 7-2623, 7-2791, **7**-2991, **11**-4670 **7**-2924, **8**-3073, **8**-3107, **8**-3151, IsRealisableOverSmallerField, 7-2957 **8**-*3269*, **8**-*3351*, **8**-*3357* IsRealisableOverSubfield, 7-2957 IsSeparable, 2-436, 12-5306, 12-5384 IsRealReflectionGroup, 8-3200 IsSeparating, 3-1173 IsReduced, 3-797, 8-3073, 8-3107, 8-3109, IsServerSocket, 1-89**9**-3549, **9**-3769, **9**-3913, **9**-4012, IsSharplyTransitive, 5-1736 **10-**4225 IsShortExactSequence, 4-1550, 4-1553 IsReductive, 8-3269IsShortRoot, 8-3080, 8-3120, 8-3159, IsReeGroup, 5-21028-3360 IsReflection, 8-3160, 8-3180 IsSimilar, 2-555, 2-643, 7-2730, 7-2942 IsReflectionGroup, 8-3180, 8-3200IsSimilarity, 2-642, 643 IsReflectionSubgroup, 8-3163IsSimple, 3-744, 3-832, 3-916, 5-1656, IsReflexive, 9-4173IsRegular, 2-291, 2-341, 2-362, 2-382, 2-422, 2-454, 3-835, 3-921, 3-1088, 3-1104, 3-1173, 4-1347, 4-1399, **5**-1693, **5**-1828, **5**-1984, **6**-2469, **6**-2512, **7**-2623, **8**-3269, **8**-3351, **11**-4863, **12**-5138, **12**-5241, **12**-5380 **5**-1736, **7**-2626, **7**-2673, **9**-3796, IsSimpleStarAlgebra, 7-2878 **9**-4012, **9**-4196, **12**-5303, **12**-5380 IsSimpleSurfaceSingularity, 9-4029 IsRegularLDPC, 13-5513IsSimplex, 12-5138IsSimplicial, 9-4174, 12-5138 IsRegularPlace, 9-3688 IsRegularSingularOperator, 9-3688 IsSimplifiedModel, 10-4246, 10-4430IsRegularSingularPlace, 9-3688 IsSimplyConnected, 8-3108, 8-3351

IsSimplyLaced, $8-3042$, $8-3044$, $8-3048$,	IsSUnitWithPreimage, $3-1215$
<i>3049</i> , 8 - <i>3055</i> , 8 - <i>3073</i> , 8 - <i>3108</i> ,	IsSupercuspidal, 11 - 5013
8 -3151, 8 -3201, 8 -3351	IsSuperlattice, 12-5148
IsSinglePrecision, $2-291$	IsSupersingular, 10-4279
IsSingular, 2-550, 9-3754, 9-3767,	IsSuperSummitRepresentative, 6-2512
9 -3913, 9 -3920, 9 -4171, 9 -4173,	IsSupportingHyperplane, $12-5125$
9-4179	IsSurjective, $4-1519$, $4-1553$, $9-3502$,
IsSIntegral, 10 -4274	9-3557, 11-4902
IsSkew, 12-5183	IsSuzukiGroup, 5-2096
IsSLZConjugate, 5-1969	IsSymmetric, $2-549$, $2-585$, $4-1573$,
IsSmooth, 9-4173	4-1597, 5 -1777, 7 -2720, 9 -3503,
IsSoluble, 5-1656, 5-1692, 5-1828,	9-3636, 12 -5242, 12 -5337
5-1950, 5-1984, 5-2128, 5-2185,	IsSymplectic, 10 -4598
6-2470, 8-3269	IsSymplecticCharacter, 7-3002
IsSolubleAutomorphismGroupPGroup, 5-2185	IsSymplecticGroup, 5-2088
IsSolubleByFinite, 5-1945	
· · · · · · · · · · · · · · · · · · ·	IsSymplecticMatrix, 2-550
IsSolvable, 5-1656, 5-1692, 5-1828,	IsSymplecticSelfDual, 13-5629
5 -1984, 5 -2128, 5 -2185, 6 -2470,	IsSymplecticSelfOrthogonal, 13-5629
8-3269	IsSymplecticSpace, 2-635
IsSolvableAutomorphismGroupPGroup, 5-2185	IsTamelyRamified, 3-917, 918, 3-955,
IsSpacelike, 3-756	3 -1167, 3 -1186, 4 -1289, 4 -1329,
IsSpecial, 3-1202, 5-1656, 5-1692,	4-1477
5 -1880, 5 -1985, 9 -3976	IsTangent, 9-3921
IsSpinorGenus, 3-721	IsTensor, 5-1894
IsSpinorNorm, 3-722	IsTensorInduced, 5-1896
IsSplit, 3 -955, 3 -1185, 8 -3109, 8 -3351	IsTerminal, 9-4171, 9-4174, 9-4179
IsSplitAsIdealAt, 3-1010	IsTerminalThreefold, 9-4126, 9-4129
IsSplittingCartanSubalgebra, 8-3264	IsThick, $12-5095$
IsSplittingField, 7-2842	IsThin, $12-5095$
IsSplitToralSubalgebra, $8-3264$	IsTimelike, $3-756$
IsSPrincipal, $3-1215$	IsTorsionUnit, 3 -921
IsSquare, $2-290$, $2-315$, $2-341$, $2-382$,	IsTotallyEven, 2 -349, 3 -1057
3 -834, 3 -920, 3 -959, 3 -1080, 3 -1183,	IsTotallyIsotropic, ${f 2} extsf{-}630$
4- 1302, 4- 1379	IsTotallyPositive, $3 extsf{-}835$, $3 extsf{-}921$
IsSquarefree, 2 -290, 2 -315	IsTotallyPositiveDefinite, ${f 3} extsf{-}744$
IsStandard, 12 -5183	IsTotallyRamified, $3-954$, $3-1167$, $3-1186$,
IsStandardAffinePatch, $9-3773$	4- 1289, 4- 1329
IsStandardParabolicSubgroup, 8-3163	IsTotallyReal, $3\text{-}919$
IsStarAlgebra, 7 -2871, 7 -2903	IsTotallySingular, 2 - 630
IsSteiner, 12 - 5242	IsTotallySplit, $3-955$, $3-1186$
IsStrictlyConvex, $12-5138$	IsTransformation, 10-4410
IsStringCGroup, 12-5101	IsTransitive, $5-1735$, $12-5075$, $12-5337$
IsStronglyAG, 13-5505	IsTransvection, $8-3180$
IsStronglyConnected, 12 -5307, 12 -5384	IsTransverse, $9-3927$
IsSubcanonicalCurve, 9-4133	IsTree, 12 -5303
IsSubfield, 3 -833, 3 -918, 3 -1153	IsTriangleGroup, 11-4704
IsSubgraph, 12 -5302, 12 -5379	IsTriconnected, 12 -5308, 12 -5385
IsSublattice, 3 -745, 12 -5148	IsTrivial, 2-348, 3-1057, 5-1656, 5-1984,
IsSubmodule, 4-1536	12 -5241
IsSubnormal, 5-1656, 5-1716, 5-1842,	IsTrivialOnUnits, 3-1057
5-2007	IsTwist, 10-4248, 11-4777
IsSubscheme, 9-3743, 9-3930	IsTwisted, $8-3109$, $8-3352$
IsSubsequence, 1-211	IsTwoCoboundary, 5-2205
IsSubspace (A, B), 4 -1451	IsTwoSidedIdeal, 7-2663
IsSubsystem, 9-3833	IsUFD, 2-270, 2-288, 2-340, 2-360,
IsSubtensor, 4-1602	2 -379, 2 -420, 2 -452, 2 -484, 3 -832,
IsSubtensorSpace, 4-1605	3 -916, 917, 3 -1086, 3 -1102, 3 -1166,
IsSUnit, 3-1215	4 -1346, 4 -1407, 12 -5205
• • •	,

IsUltraSummitRepresentative, $6\text{-}2512$	IsWreathProduct, $5\text{-}1693$
IsUndirected, $12\text{-}5380$	IsZero, 2 -273, 2 -291, 2 -341, 2 -362,
IsUniform, 12 -5241	2 -382, 2 -401, 2 -422, 2 -454, 2 -484,
IsUnipotent, 5-1857, 5-1949, 7-2721,	2 -549, 2 -585, 2 -604, 3 -673, 3 -747,
8-3357	3 -835, 3 -921, 3 -953, 3 -967, 3 -1087,
IsUniqueFactorizationDomain, 2-270	3 -1104, 3 -1172, 3 -1185, 3 -1202,
IsUniquePartialRoot, 4-1425	3 -1219, 3 -1245, 4 -1297, 4 -1332,
IsUnit, 2-273, 2-291, 2-315, 2-341,	4-1347, 4-1362, 4-1376, 4-1391,
2 -362, 2 -382, 2 -401, 2 -422, 2 -454,	
	4 -1399, 4 -1408, 4 -1475, 4 -1506,
2 -484, 2 -549, 3 -835, 3 -921, 3 -967,	4-1539, 4-1553, 7-2624, 7-2626,
3 -1088, 3 -1104, 3 -1173, 4 -1297,	7 -2659, 7 -2673, 7 -2683, 7 -2688,
4 -1347, 4 -1362, 4 -1376, 4 -1399,	7 -2720, 7 -2916, 7 -2991, 8 -3304,
4 -1408, 7 -2626, 7 -2659, 7 -2673,	8 -3327, 9 -3467, 9 -3520, 9 -3530,
7 -2689, 7 -2720, 9 -3533, 9 -3745	9 -3553, 9 -3556, 9 -3563, 9 -3654,
IsUnital, $12\text{-}5067$	9 -3674, 9 -3745, 9 -3958, 9 -3971,
IsUnitary, 2-269, 2-288, 2-340, 2-360,	10 -4265, 10 -4274, 10 -4465, 11 -4902,
2 -379, 2 -420, 2 -452, 2 -484, 3 -832,	11 -4948, 12 -5138, 12 -5146, 12 -5208,
3 -916, 3 -1086, 3 -1102, 4 -1346,	13 -5437, 13 -5532, 13 -5596
4 -1407, 12 -5205	IsZeroAt, 11-4969
IsUnitaryGroup, 5-2088	
IsUnitarySpace, 2-635	IsZeroComplex, 4-1550
• •	IsZeroDimensional, 9-3468, 9-3520
IsUnitWithPreimage, 3-1173	IsZeroDivisor, 2 -273, 2 -291, 2 -341,
IsUnivariate, 2-460	2 -362, 2 -382, 2 -422, 2 -454, 2 -484,
IsUnramified, 3-917, 918, 3-955, 3-1167,	3 -835, 3 -921, 3 -1088, 3 -1104,
3 -1186, 4 -1289, 4 -1329, 4 -1477,	3 -1173, 4 -1347, 4 -1399, 4 -1408,
7 -2840	7 -2626, 7 -2673, 9 -3840
IsUpperTriangular, $2\text{-}549$, $2\text{-}585$	IsZeroMap, $4-1550$
IsValid, 6 -2295, 6 -2350	IsZeroTerm, 4-1550
IsVerbose, 1-105	JacketMotive, 10 - 4547
IsVertex, 4 -1420, 9 -4003	Jacobi, 6-2429
IsVertexLabelled, 12-5361	
IsVertexTransitive, 12-5337	Jacobian, 10-4374, 10-4415, 10-4457
IsWeakFano, 9-4179	JacobianIdeal, 9-3470, 9-3743, 9-3912
IsWeaklyAdjoint, 8-3108, 8-3351	JacobianMatrix, $2-462$, $9-3743$, $9-3912$
IsWeaklyAG, 13-5504	JacobianOrdersByDeformation, ${f 10}$ - 4474
· · · · · · · · · · · · · · · · · · ·	JacobianPoint, ${f 10}$ - 4463
IsWeaklyAGDual, 13-5504	JacobiMotive, ${f 10}$ - 4547
IsWeaklyConnected, 12-5307, 12-5384	JacobiSymbol, 2 -297, 2 -431
IsWeaklyEqual, 4-1347, 4-1377, 9-3654,	JacobiTheta, 2 -507, 508
9-3674	JacobiThetaNullK, 2-508
IsWeaklyMonic, $9\text{-}3674$	
IsWeaklyPrimitive, ${f 12} ext{-}5096$	JacobsonRadical, 7-2622, 7-2646, 7-2788,
IsWeaklySimplyConnected, 8-3108, 8-3351	7 -2924, 7 -2931
IsWeaklyZero, 4-1332, 4-1347, 4-1377,	JBessel, 2 -513
9 -3654, 9 -3674	JellyfishConstruction, ${f 5}$ - 1748
IsWeaklyZero (f), 4-1441	JellyfishImage, ${f 5}$ - 1749
IsWeaklyZero (M), 4-1447	JellyfishPreimage, 5 - 1749
IsWeaklyZero (v), 4-1450	JenningsLieAlgebra, 8-3276
	JenningsSeries, 5-1657, 5-1751, 5-1880,
IsWeierstrassModel, 10-4246	5-2019
IsWeierstrassPlace, 3-1197, 3-1210,	
9-3965	JeuDeTaquin, 12-5185
IsWeighted, $f 12$ -5364	jFunction, 11-4624, 11-4648
IsWeightedProjectiveSpace, $9\text{-}4180$	JH, 11-4848, 4849
IsWeil, 9 -4189	jInvariant, $2-508$, 509 , $3-802$, $10-4251$,
IsWGsymmetric, $8-3172$	11- 4648
IsWildlyRamified, 3 -917, 918, 3 -954, 955,	JInvariants, 10 - 4438
3 -1167, 3 -1186, 3 -1262, 4 -1289,	jNInvariant, 11 - 4648
4-1329, 4-1478	JohnsonBound, 13-5476
IsWPRI, 12-5096	Join, 12-5030
TOWLINE, IM OUGO	001H, 12 0000

join, 1-186, 8-3082, 8-3125, 9-3736,	KrawchoukTransform, ${f 13}$ - 5492
12 -5295, 12 -5375, 5376	KroneckerCharacter, 2 - 347
JOne, 11-4848	KroneckerProduct, 2-544
JordanForm, 2 -554, 7 -2729	KroneckerSymbol, 2 -298
JordanSpinAlgebra, 7 -2900	KSpace, 2 -600, 601, 2 -613, 3 -826, 3 -906,
JordanTripleProduct, 7 -2900	7 -2772
jParameter, $11-4705$	KSpaceWithBasis, 2 - 616
Js, 11-4848	KTensorSpace, $4-1587$
JustesenCode, 13-5463	KummerSurface, 10-4508
Juxtaposition, 13-5468, 13-5608	KummerSurfaceScheme, 9-4024
JZero, 11-4847	KummerTwist, $10-4547$
K3Copy, 9-4134	L, 9-3677, 11-4969
K3Database, 9-4143	L2Quotients, 6-2299, 6-2303
K3Surface, 9-4134, 9-4144, 9-4148, 4149	L3Quotients, 6-2312
K3SurfaceRaw, 9-4149	Label, 12-5361, 12-5364
K3SurfaceToRecord, 9-4148	Labelling, 5-1732
KacMoodyClass, 8-3300	Labels, 11-4674, 12-5361, 12-5364
· · · · · · · · · · · · · · · · · · ·	
KacMoodyClasses, 8-3300	LaguerrePolynomial, 2-440, 441
kArc, 12-5064	Lang, 8-3356
KBessel, 2 -513	Laplace, 4-1350
KBessel2, 2 -513	LargeReeElementToWord, 5-2105
KBinomial, 8-3318	LargeReeGroup, 5-2075
KCotensorSpace, 4-1589	LargeReeSylow, 5-2111
KCubeGraph, 12 -5280	LargestConductor, 10-4332
KDegree, 8-3319	LargestDimension, 3-728, 5-2157, 5-2159,
KerdockCode, 13-5548	5 -2161, 5 -2163
Kernel, 1-254, 2-403, 2-546, 2-587,	LastIndexOfColumn, 12-5182
2 -619, 3 -1262, 4 -1519, 4 -1552,	LastIndexOfRow, 12-5181
4 -1608, 5 -1694, 5 -1815, 5 -1986,	Lattice, 3-663, 3-667, 668, 3-670,
6 -2290, 7 -2723, 7 -2777, 7 -2795,	3 -729, 3 -770, 3 -779, 3 -802, 3 -924,
7 -2989, 8 -3273, 9 -3556, 9 -3869,	5 -2158-2163, 11 -4768, 11 -4880,
10-4266, 11-4776, 11-4828, 11-4890,	11- 4913, 11- 4956
12 -5090	LatticeBasisInCone, 12 - 5119
Kernel (M), 4-1448	LatticeCoordinates, 11 - 4950
KernelBasis, $12-5150$	LatticeData, 3 -729
KernelCosetRepresentatives, ${f 13}$ - 5559	LatticeDatabase, $3-728$
KernelEmbedding, 12 -5150	LatticeElementToMonomial, 9 - 4192
KernelMatrix, $2\text{-}546$, $2\text{-}588$	LatticeMap, ${f 12}$ - 5150
Kernels, $12-5090$	LatticeName, $3\text{-}728$
KernelZ2CodeZ4, 13 - 5559	LatticeVector, ${f 12} ext{-}5145$
Keys, $1-232$	LatticeWithBasis, $3-664$, $3-770$
KillingMatrix, $8-3268$	LatticeWithGram, 3 - 665 , 3 - 770
KissingNumber, $3-701$	LaurentSeriesRing, $4-1342$, $8-3302$
KleinBottle, 12 - 5034	LayerBoundary, 5 - 2047
KLPolynomial, $8-3404$	LayerLength, 5 -2047
KMatrixSpace, $2-600$, $2-613$	LazyPowerSeriesRing, 4 - 1368
KMatrixSpaceWithBasis, 4 - 1513	LazySeries, 4 - 1370
KModule, 2 -600, 2 -613	LCfRequired, ${f 10}$ - 4581
KModuleWithBasis, 2 - 616	LCLM, 9-3685
Knot, $3-1040$, $12-5065$	LCM, 2-296, 2-343, 2-430, 2-466, 3-858,
KnownAutomorphismSubgroup, ${f 13}$ - 5450	3 -957, 3 -1202, 4 -1408, 6 -2517,
KnownIrreducibles, 7-2985	9-3971
KodairaEnriquesDimension, $9-4032$	Lcm, 2-296, 2-314, 2-343, 2-430, 2-466,
KodairaEnriquesType, $9-4031$	3 -858, 3 -957, 3 -967, 3 -1187, 3 -1202,
KodairaSymbol, $10-4307$	6 -2517, 9 -3971
KodairaSymbols, 10-4307, 10-4389	LCT, 9-3924
KostkaNumber, 12-5193	LDPCBinarySymmetricThreshold, 13-5517
KrawchoukPolynomial, 13-5492	LDPCCode, 13 -5511
• •	•

LDPCDecode, 13-5514LeftStringLength, 8-3080, 8-3119, 8-3158 LeftZeroExtension, 4-1549 LDPCDensity, 13-5512LDPCEnsembleRate, 13-5513 LegendreModel, 10-4220 LDPCGaussianThreshold, 13-5518 LegendrePolynomial, 2-440, 10-4219LegendreSymbol, 2-297LDPCGirth, 13-5513Length, 2-455, 3-673, 3-925, 3-1240, LDPCMatrix, **13**-5512 **4**-1540, **5**-1673, **7**-2675, **8**-3152, LDPCSimulate, 13-55158-3206, 9-3731, 9-4182, 12-5167, le, 1-71, 1-211, 2-274, 2-292, 2-318, **2**-362, **2**-420, **2**-485, **3**-1202, **5**-1672, **12**-5170, **12**-5209, **13**-5429, **13**-5529, **6**-2274, **6**-2513, **6**-2587, **9**-3971 **13**-5592 LeadingCoefficient, 2-422, 2-455, 3-1245, LengthenCode, 13-5465 **4**-1304, **4**-1348, **4**-1374, **7**-2674, Lengths, 9-3731 **9**-3552, **9**-3674, **11**-4971 LensSpace, 12-5034LeadingExponent, 5-2046, 6-2449LeonsAttack, 13-5473Level, 3-676, 3-778, 7-2847, 11-4618, 11-4664, 11-4731, 11-4814, 11-4821, LeadingGenerator, 5-2046, 6-2272, 6-2449LeadingMonomial, 2-456, 7-2674, 9-3552**11**-4830, **11**-4856, **11**-4983, **11**-5001 LeadingMonomialIdeal, 9-3465, 9-3519LeadingTerm, 2-423, 2-457, 4-1348, 4-1374, 5-2045, 6-2449, 7-2675, Levels, 3-779 LevenshteinBound, 13-5476 **9**-3552, **9**-3675 LexicographicalOrdering, 12-5188 LeadingTerm (f), $\mathbf{4}\text{-}1442$ LexProduct, 12-5296LeadingTerms (M), 4-1447LFSRSequence, 13-5653LeadingTerms (v), 4-1450LFSRStep, 13-5653LeadingTotalDegree, 2-460, 7-2675 LFunction, 10-4395, 4396 LeadingWeightedDegree, 9-3424 LGetCoefficients, 10-4581 LeastCommonLeftMultiple, 9-3685 LHS, 6-2232, 6-2275, 6-2588 lideal, 6-2590, 7-2619, 7-2661, 7-2677, LeastCommonMultiple, 2-296, 2-343, 2-430, **7**-2714, **7**-2750, **7**-2849 **2**-466, **3**-858, **3**-957, **3**-1202, **4**-1304, **6**-2517, **9**-3971 LieAlgebra, 7-2618, 7-2641, 8-3061, LeeBrickellsAttack, 13-5473**8**-3084, **8**-3134, **8**-3174, **8**-3208, LeeDistance, $\mathbf{13}\text{-}5566$ **8**-3214, 3215, **8**-3217, **8**-3220, **8**-3236, LeeWeight, 13-5435, 13-5566**8**-*3238*, **8**-*3370*, **8**-*3383* LieAlgebraHomorphism, 8-3134 LeeWeightDistribution, 13-5566LeeWeightEnumerator, 13-5569 LieAlgebraOfDerivations, 8-3267 LeftAnnihilator, 7-2642, 7-2754, 7-2779 LieBracket, 7-2645LieCharacteristic, $\mathbf{5}\text{-}2080$ LeftConjugate, 6-2509 LeftCosetSpace, 6-2366, 6-2423LieConstant_C, 8-3133 LeftDescentSet, 8-3153, 8-3199LieConstant_epsilon, 8-3132 ${\tt LieConstant_eta,~8-}3133$ LeftDiv, 6-2509LeftDomain, 4-1576 LieConstant_M, 8-3133 LieConstant_N, 8-3132 LeftExactExtension, 4-1548 LeftGCD, 6-2516LieConstant_p, 8-3132 LeftGcd, 6-2516LieConstant_q, 8-3132 LeftGreatestCommonDivisor, 6-2516 LiEMaximalSubgroups, 8-3409 LeftIdeal, 7-2849LieRepresentationDecomposition, 8-3377 LeftIdealClasses, 7-2852 LieType, 5-2081LeftInverse, 11-4937Lift, 3-1176, 3-1198, 9-3965 LiftCharacter, 7-2997 LeftInverseMorphism, 11-4937 LeftIsomorphism, 7-2860LiftCharacters, 7-2997 LeftLCM, 6-2517 LiftCocycle, 5-2208 LeftLcm, 6-2517 LiftDescendant, 10-4355 LiftedDecode, 13-5574, 5575 LeftLeastCommonMultiple, 6-2517 LeftMixedCanonicalForm, 6-2505 LiftHomomorphism, 7-2794 LeftNormalForm, 6-2505LiftMap, 9-3678 LeftNucleus, 4-1582, 7-2901LiftPoint, 9-3782 LeftOrder, 7-2661, 7-2851 LiftToChainmap, 7-2820 LeftRepresentationMatrix, 7-2660 Line, 9-3909, 12-5240 LeftString, 8-3080, 8-3119, 8-3157 LinearCategory, 4-1600

LinearCharacters, 5-1872, 7-2987LMGIsNilpotent, 5-1927 LinearCode, 12-5078, 12-5253, 13-5424, LMGIsNormal, 5-1927 5425, **13**-5467, **13**-5523, 5524 LMGIsPrimitive, 5-1933LinearCovariants, 9-4107 LMGIsSoluble, 5-1927 LinearElimination, 9-3846 LMGIsSolvable, 5-1927LinearlyEquivalentDivisorWithNoSupportOn, LMGIsSubgroup, 5-1926 9-4192 LMGLowIndexSubgroups, 5-1933 LinearRelation, 2-495LMGMaximalSubgroups, 5-1932 LinearRelations, 3-1003 LMGMeet, 5-1932LinearSpace, 12-5225, 12-5247 LMGNormalClosure, 5-1927 LinearSpanEquations, 12-5122 LMGNormaliser, 5-1932LinearSpanGenerators, 12-5122 LMGNormalizer, 5-1932 LinearSubspaceGenerators, 12-5122 LMGNormalSubgroups, $\mathbf{5}\text{-}1933$ LinearSystem, 9-3824, 9-3826, 3827, 9-3829LMGOrder, 5-1926LinearSystemDivisorRestriction, 9-4051LMGRadicalQuotient, 5-1932 LinearSystemTrace, 9-3828LMGRightTransversal, 5-1933 LineAtInfinity, 9-3931LMGSocleStar, 5-1928LMGSocleStarAction, 5-1929 LineGraph, 12-5077, 12-5294, 12-5299LineGroup, 12-5069LMGSocleStarActionKernel, 5-1929 LineOrbits, 5-1851LMGSocleStarFactors, 5-1928 Lines, 12-5052LMGSocleStarQuotient, 5-1929 LineSet, 12-5048LMGSolubleRadical, 5-1928 Linking, 9-4012LMGSolvableRadical, 5-1928LinkingNumbers, 9-4012LMGSylow, 5-1928ListAttributes, 1-53 LMGUnipotentRadical, 5-1928 ListCategories, 1-106 loc, 2-277ListSignatures, 1-106 LocalBlowUp, 9-3737ListTypes, 1-106 LocalComponent, 11-5012 ListVerbose, 1-105 LocalCoxeterGroup, 8-3163 ${\tt LittlewoodRichardsonTensor,~8-3394}$ LocalDegree, 3-844, 3-973LLL, **3**-686, **3**-691, **3**-901 LocalFactorization, 4--1310LLLBasisMatrix, 3-690 LocalField, 4-1325LLLGram, 3-690 LocalGenera, 3-722 LLLGramMatrix, 3-691 LocalHeight, 10-4310, 10-4337, 10-4391 LMGCenter, 5-1928 LocalIdeal, 4-1602, 1603 LMGCentraliser, 5-1932 LocalInformation, 10-4306, 10-4336, LMGCentralizer, 5-1932**10**-4346, **10**-4389 LMGCentre, 5-1928Localization, 2-277, 9-3513, 9-3548, LMGCharacterTable, 5-1933 9-3681 LMGChiefFactors, 5-1928 LocallySArcTransitive, 12-5097 LMGChiefSeries, 5-1928 LocalPolynomialAlgebra, 9-3513 LMGClasses, 5-1932LocalPolynomialRing, 9-3513 LMGCommutatorSubgroup, 5-1927 LocalQuotient, 4-1603 LMGCompositionFactors, 5-1927 LocalRing, 3-906, 3-1241, 4-1315 LMGCompositionSeries, 5-1927LocalTwoSelmerMap, $\mathbf{10}$ -4342, 4343 ${\tt LocalUniformizer, 3-} 1198$ LMGConjugacyClasses, 5-1932Log, 2-388, 2-497, 498, 3-801, 4-1299, LMGCosetAction, 5-1933 LMGCosetActionInverseImage, 5-1933 **4**-1352, **6**-2249, **10**-4298 LMGCosetImage, 5-1933LogarithmicFieldExtension, 9-3663 LMGDerivedGroup, 5-1927LogCanonicalThreshold, 9-3924 LMGEqual, 5-1927 ${\tt LogCanonicalThresholdAtOrigin, 9-3924}$ LMGFactoredOrder, 5-1926LogCanonicalThresholdOverExtension, 9-3924LMGFittingSubgroup, 5-1928 LogDerivative, 2-513LogGamma, **2**-512 LMGIndex, 5-1927LMGInitialise, 5-1926LogIntegral, 2-516 Logs, **3**-923 LMGInitialize, 5-1926 LongestElement, 8-3152, 8-3198 LMGIsConjugate, 5-1932 LMGIsIn, 5-1926 LongExactSequenceOnHomology, 4-1556

LowerCentralSeries, 5-1657, 5-1750, MatRepCharacteristics, 5-2173 **5**-1863, **5**-2018, **6**-2256, **6**-2473, MatRepDegrees, 5-2172 8-3266 MatRepFieldSizes, 5-2172 LowerFaces, 4-1415 MatRepKeys, 5-2172Matrices, 10-4409, 12-5262LowerSlopes, 4-1419 Matrix, 2-527, 2-529-531, 2-544, 2-584, LowerTriangularMatrix, 2-531, 532 **4**-1540, **9**-3556, **9**-3810, **10**-4409, LowerVertices, 4-1416 LowIndexNormalSubgroups, 6-2353 **11**-4699, **11**-4894, **12**-5146, **12**-5262 ${\tt MatrixAlgebra, 2-378, 7-2618, 7-2645,}$ LowIndexProcess, 6-2349 LowIndexSubgroups, 5-1723, 5-1843, **7**-2688, **7**-2709, **7**-2711, **7**-2844, **5-**2010, **6-**2345 **9**-3533, **11**-4913 LowIndexSubgroupsCT, 5-1844 MatrixGroup, 5-1628, 5-1811, 5-2173, LPolynomial, **3**-1160, **9**-3954 **7**-2912 LPProcess, 13-5666MatrixLieAlgebra, 8-3061, 8-3084, 8-3216, *3217*, **8**-*3236* LRatio, 11-4789, 11-4969 LRatioOddPart, 11-4789MatrixOfElement, 5-2202 MatrixOfInequalities, 12-5123 LSeries, 10-4534, 10-4558, 10-4561-4570, MatrixOfIsomorphism, 8-3287 ${\tt MatrixRepresentation, 7-} 2846, \ {\tt 9-} 3941$ MatrixRing, 7-2709, 7-2711, 7-2844 LSeriesLeadingCoefficient, 11-4789 MatrixUnit, 7-2710 LSetCoefficients, 10-4579 MattsonSolomonTransform, 13-5491LSetPrecision, 10-4586 LStar, 10-4572 Max, 1-182, 1-2011t, 1-71, 1-211, 2-274, 2-292, 2-318, MaxCones, 9-4168**2**-362, **2**-420, **2**-485, **3**-1202, **5**-1672, Maxdeg, 12-5303, 12-5305, 12-5381, 5382 **6**-2274, **6**-2587, **9**-3553, **9**-3971, MaximalAbelianSubfield, 3-1028, 3-1234 **11**-4772, **11**-4818 MaximalCommutativeSubalgebra, 7-2778 LTaylor, $\mathbf{10}\text{-}4572$ MaximalExtension, 7-2975 Lucas, 2-300, 12-5157 MaximalIdeals, 7-2622, 8-3266MacWilliamsTransform, 13-5452, 5453, MaximalIdempotent, 7-2778 13-5604 MaximalIncreasingSequence, 12-5167 MaedaInvariants, 10-4441 MaximalIncreasingSequences, 12-5168MagicNumber, 9-4128MaximalIntegerSolution, 13-5664 MainAntiautomorphism, 7-2889 MaximalLeftIdeals, 7-2622, 7-2850MainInvolution, 7-2889 MaximalNormalSubgroup, 5-1753 MaximalNumberOfCosets, 6-2415MakeAmbientInnerProduct, 3-742 MakeBasket, 9-4129MaximalOrder, 2-357, 3-819, 3-852, 3-888, **3**-1033, **3**-1132, **7**-2650, 2651, **7**-2832, MakeCoprime, 3-962MakeDirected, 8-31722833 MakePCMap, 9-3803MaximalOrderFinite, 3-1131, 3-1235, MakeProjectiveClosureMap, 9-3803 **3**-1242, **7**-2650, 2651 MakeResolutionGraph, 9-4007 MaximalOrderInfinite, 3-1132, 3-1235, **3**-1242, **7**-2651 MakeSpliceDiagram, 9-4011 MakeType, 1-29MaximalOrders, 3-1242Manifold, 5-2175MaximalOvergroup, 6-2355MaximalParabolics, 12-5090ManifoldDatabase, 5-2175 ManinConstant, 10-4318MaximalPartition, 5-1741 ManinSymbol, 11-4764 ${\tt MaximalRightIdeals, 7-} 2622, {\tt 7-} 2850$ MantissaExponent, 2-485MaximalSolution, 13-5664map, 1-251, 9-3786, 9-3789 MaximalSubfields, 3-1008 Mapping, 8-3363MaximalSubgroups, 5-1673, 5-1720, 5-1847, Maps, 1-256, 4-1608**5**-2011, **5**-2115, **6**-2258, **8**-3409 MargulisCode, 13-5511 MaximalSubgroupsData (str : -), 5-2116MarkGroebner, 7-2680, 9-3437MaximalSublattices, 3-779 MaximalSubmodules, 7-2924, 7-2930Mass, 7-2852MasseyProduct, 7-2819 MaximalTotallyIsotropicSubspace, 2-630 Match, 6-2403, 6-2593MaximalTotallySingularSubspace, 2-631 MatRep, 5-2173 MaximalVertexFacetHeightMatrix, 12-5131

MaximalZeroOneSolution, 13-5664	MinimalElementConjugatingToPositive,
Maximum, 1-182, 1-201, 2-274, 2-292,	6 -2526
2 -318, 2 -362, 2 -485	MinimalElementConjugatingToSuperSummit,
MaximumBettiDegree, 9-3573	6-2526
MaximumClique, 12-5320	MinimalElementConjugatingToUltraSummit,
MaximumDegree, 3 -1109, 12 -5303, 12 -5305,	6-2526
12 -5381, 5382	MinimalField, 2-358, 359, 3-866, 5-1862, 7-2921
MaximumFlow, 12-5412	MinimalFreeResolution, 9-3618
MaximumInDegree, 12 -5305, 12 -5382	MinimalFreeResolution, 9-3018 MinimalGeneratorForm, 7-2781
MaximumIndependentSet, 12-5321	MinimalGeneratorFormAlgebra, 7-2781
MaximumMatching, 12-5309, 12-5385	MinimalHeckePolynomial, 11-4966
MaximumOutDegree, 12-5305, 12-5382	MinimalIdeals, 7 -2622, 8 -3265
Maxindeg, 12-5305, 12-5382	MinimalIdeatity, 7-2778
MaxNorm, 2-431, 2-472	MinimalInequalities, 12-5123
Maxoutdeg, 12-5305, 12-5382	MinimalInteger, 3-948
MaxParabolics, 12-5090	MinimalIntegerSolution, 13-5664
McElieceEtAlAsymptoticBound, 13-5478	MinimalLeftIdeals, 7-2622
McEliecesAttack, 13-5473	MinimalModel, 10-4220, 10-4246, 10-4390
MCPolynomials, 2-552	MinimalModelGeneralType, 9-4038
MDSCode, 13-5464	MinimalModelKodairaDimensionOne, 9-4038
MEANS, 5-1766	MinimalModelKodairaDimensionZero, 9-4035
Meataxe, 7-2920	MinimalModelRationalSurface, 9-4034
meet, 1-187, 2-276, 2-343, 2-371, 2-438,	MinimalModelRuledSurface, $9-4035$
2 -615, 3 -682, 3 -739, 3 -779, 3 -886,	MinimalNormalSubgroup, 5-2020
3 -957, 3 -1008, 3 -1030, 3 -1135,	MinimalNormalSubgroups, 5-1753, 5-2016
3 -1187, 1188, 3 -1239, 4 -1451, 4 -1509,	MinimalOverfields, 3-1008
4-1533, 4-1541, 5-1653, 5-1716,	MinimalOvergroup, $6-2355$
5 -1842, 5 -2005, 6 -2254, 6 -2354, 6 -2468, 7 -2624, 7 -2657, 7 -2724,	MinimalOvergroups, $5-1673$
7-2848, 7-2855, 7-2918, 7-2930,	MinimalParabolics, 12 - 5090
8-3249, 9-3466, 9-3519, 9-3530,	MinimalPartition, $5-1742$
9-3562, 9-3736, 9-3833, 11-4663,	MinimalPartitions, $5-1742$
11-4817, 11-4833, 11-4908, 11-4921,	MinimalPolynomial, $2-292$, $2-362$, $2-382$,
11-4954, 12-5060, 12-5121, 13-5441,	2 -496, 2 -552, 3 -837, 3 -926, 3 -1088,
13-5533, 13-5598	3 -1173, 1174, 4 -1300, 4 -1333, 5 -1823,
meet:=, 2 -615, 5 -2005, 6 -2254, 6 -2468	7 -2625, 7 -2660, 7 -2689, 7 -2722,
MelikianLieAlgebra, 8-3244	7 -2838, 9 -3533, 9 -3656, 11 -4899
MergeFields, 3-817, 3-880	MinimalQuadraticTwist, 10-4250
MergeFiles, 2-325	MinimalRelations, 7-2814
MergeUnits, 3-937	MinimalRGenerators, 12-5133
MetabolicSpace, 2-631	MinimalRightIdeals, 7-2622
MetacyclicPGroups, 5-2137	Minimal Submodule 7 2025
MidNucleus, 4-1582, 7-2901	MinimalSubmodule, 7 -2925 MinimalSubmodules, 7 -2924, 2925
Mij2EltRootTable, 8-3170	MinimalSuperlattices, 3-779
MilnorNumber, 9-3473	MinimalSupermodules, 7-2930
MilnorNumberAnalyticHypersurface, 9-3756	MinimalSyzygyModule, 9-3565
Min, 1-182, 1-201, 3-700, 3-948, 3-1175	MinimalVectorSequence, 3-1110
Mindeg, 12-5304, 5305, 12-5381, 12-5383	MinimalWeierstrassModel, 10-4429
MinimalAlgebraGenerators, 9-3504, 9-3620	MinimalZeroOneSolution, 13-5664
MinimalAndCharacteristicPolynomials, $2-552$	Minimise, 3-867, 10-4412, 4413
MinimalBaseRingCharacter, $2-349$	MinimiseWeights, 9-4133
MinimalBasis, $9-3564$, $9-3742$	Minimize, 3-867, 3-1262, 4-1484, 7-2958
MinimalBlocks, $5-1742$	MinimizeCubicSurface, 9-4101
MinimalChernNumber, 9-4027	MinimizeDeg4delPezzo, 9-4102
MinimalCyclotomicField, $3 ext{-}866$	MinimizeGenerators, $9-3634$
MinimalDecomposition, $9-3485$	MinimizePlaneQuartic, $9-3988$
MinimalDegreeModel, 10-4390	MinimizeReduce, $9-4102$

MinimizeReduceCubicSurface, 9-4102	ModularCurve, 11-4617
MinimizeReduceDeg4delPezzo, 9-4102	ModularCurveDatabase, 11 - 4620
MinimizeReducePlaneQuartic, 9-3988	ModularCurveQuotient, 11 - 4626
Minimum, 1-182, 1-201, 2-274, 2-292,	ModularDegree, $10-4327$, $11-4798$, $11-4939$
2 -318, 2 -362, 2 -485, 3 -700, 3 -948,	ModularEmbedding, $11-4868$
3 -1175, 3 -1188, 3 -1198	ModularEquation, $11-4830$
MinimumCut, 12 -5411	ModularForm, $11-4721$, $11-4749$
MinimumDegree, 12 -5304, 5305, 12 -5381,	ModularForms, 11-4717
12 -5383	ModularHyperellipticCurve, 11 - 4629 , 4630
MinimumDistance, 13-5445, 13-5540,	ModularKernel, 11-4793
13 -5565, 13 -5600	ModularNonHyperellipticCurveGenus3,
MinimumDominatingSet, 12-5304	11-4631
MinimumEuclideanDistance, 13-5568	ModularParameterization, $11-4868$
MinimumEuclideanWeight, 13-5568	ModularParametrisation, $10-4317$
MinimumInDegree, 12-5305, 12-5382	ModularParametrization, $10-4317$
MinimumLeeDistance, ${f 13}$ - 5566	ModularPolarization, $11-4933$
MinimumLeeWeight, 13 - 5566	ModularSolution, $2-589$
MinimumOutDegree, 12 - 5305 , 12 - 5382	ModularSymbols, $11-4750$, $11-4758$, $11-4761$,
MinimumWeight, $13-5445$, $13-5540$, $13-5565$,	11- 4770, 11- 4803, 11- 4831, 11- 4852,
13 -5600, 13 -5631	11- 4883
MinimumWeightBounds, ${f 13}$ - 5447	ModularSymbolToIntegralHomology, ${f 11}$ - 4872
MinimumWeightTree, 12 -5394	ModularSymbolToRationalHomology, ${f 11}$ - 4872
MinimumWord, ${f 13}$ - 5448	Module, 3 -738, 3 -952, 3 -1178, 3 -1220,
MinimumWords, ${f 13}$ - 5448	4 -1524, 4 -1541, 5 -2201, 7 -2633,
Minindeg, $12-5305$, $12-5382$	7 -2655, 7 -2753, 7 -2930, 7 -2939,
MinkowskiBound, 3 -931	8 -3272, 9 -3613, 9 -3865, 9 -3952,
MinkowskiLattice, $3-668$, $3-924$	9 -3958
MinkowskiSpace, $3-669$, $3-825$, $3-924$	ModuleHomomorphism, 9 - 3869
Minor, 2-551	ModuleMap, 4 - 1552
MinorBoundary, $5-2047$	ModuleOverSmallerField, 7 - 2958
MinorLength, 5-2047	ModulesOverCommonField, 7 -2959
Minors, 2-551	ModulesOverSmallerField, 7 -2958
Minoutdeg, $12-5305$, $12-5382$	ModuleWithBasis, 7 -2941
MinParabolics, $12-5090$	Moduli, $4-1502$, $8-3252$
MinRowsGeneratorMatrix, $13-5559$	ModuliPoints, 11 - 4617
MinusInfinity, 2 -317	Modulus, 2-339, 2-347, 348, 2-440, 2-486,
MinusTamagawaNumber, 11 - 4801	3 -966, 3 -1054, 3 -1064
MinusVolume, $11-4789$	MoebiusMu, 2 -298, 2 -314
MixedCanonicalForm, $6-2505$	MoebiusStrip, $12-5034$
MMP, 9 -4200	MolienSeries, $9-3604$
mod, 2-289, 2-315, 2-421, 2-427, 3-858,	MolienSeriesApproximation, 9-3604
3 -957, 3 -967, 3 -1172, 3 -1197,	MonicDifferentialOperator, 9-3676
3 -1201, 4 -1304, 4 -1408, 9 -3964,	MonodromyPairing, 11-4836
9-3970	MonodromyWeights, 11-4836
mod:=, 2-289	Monoid, 6-2589
ModByPowerOf2, 2 -289	Monomial, 2-458
ModelToSequence, 10-4409	MonomialBasis, 9-3533
ModelToString, 10-4409	MonomialCoefficient, 2-422, 2-456, 7-2674
ModelType, 11-4618	MonomialGroup, 13-5494
Modexp, 2-315, 2-428, 3-858, 3-920,	MonomialGroupStabilizer, 13-5495
3-1172	MonomialLattice, 9-4178, 9-4185
ModifySelfintersection, 9-4009	MonomialOrder, 9-3422, 9-3513
ModifyTransverseIntersection, 9-4009 Modinv, 2-315, 3-958, 3-1172	Monomial 0rderWeightVectors, 9-3422, 9-3513
Modorder, 2 -315, 3 -936, 3 -1172	Monomials, 2-423, 2-456, 7-2674, 8-3281, 8-3318, 9-3552
Modsqrt, 2 -315	8-3316, 9-3352 MonomialsOfDegree, 9-3425
Modsqrt, \mathbf{z} -313 ModularAbelianVariety, 11 - 4850 , 11 - 4852 ,	MonomialsOfWeightedDegree, $9-3425$, $9-3824$
11-4855, 11-4967, 11-4974	MonomialSubgroup, 13-5494
1000, 1001, <u></u> 1014	

MonomialToElementaryMatrix, 12-5216 MonomialToHomogeneousMatrix, 12-5216 MonomialToPowerSumMatrix, 12-5216 MonomialToSchurMatrix, 12-5216 MooreDeterminant, 3-731 MordellWeilGroup, 10-4348, 10-4393 MordellWeilLattice, 10-4393 MordellWeilRank, 10-4348 MordellWeilRankBounds, 10-4348 MordellWeilShaInformation, 10-4351 MoriCone, 9-4197 Morphism, 2-608, 3-779, 4-1519, 4-1536, 6-2254, 7-2624, 7-2917, 7-2919, 7-2931, 8-3130, 8-3250, 9-3559	7-2671, 7-2836, 7-2886, 9-3646, 9-3669, 9-3726, 9-3739, 9-4183, 13-5529 Name2Mij, 8-3170 Names, 1-245 NameSimple, 5-1777 NaturalActionGenerator, 3-771 NaturalBlackBoxGroup, 5-2055 NaturalFreeAlgebraCover, 7-2735, 2736 NaturalGroup, 3-771 NaturalMap, 11-4941 NaturalMaps, 11-4941 ncl, 5-1632, 5-1713, 5-1841, 5-2002, 6-2333, 2334, 6-2455, 6-2468
MotivicWeight, $10-4582$	Nclasses, 5-1662, 5-1709, 5-1832, 5-1999,
MovablePart, 9 -4189 MPQS, 2 -311	7-2989 Nacla 2-525 2-577 2-602 7-2710
Multidegree, 9-3731	Ncols, 2-535, 2-577, 2-603, 7-2719, 11-4894
MultiDigraph, 12-5355	nCovering, 10-4415
MultiGraph, 12 -5354	ne, 1-12, 1-70, 1-185, 186, 1-211, 1-220,
Multinomial, 2 -299, 12 -5157	2 -270, 2 -272, 2 -276, 2 -288, 2 -290,
MultipartiteGraph, ${f 12}$ - 5280	2 -318, 2 -340, 341, 2 -343, 2 -360, 361,
MultiplicationByMMap, ${f 10}$ - 4266	2 -380, 381, 2 -401, 2 -403, 2 -420, 421,
MultiplicationTable, 3-915, 7-2654,	2 -439, 2 -452, 453, 2 -484, 485, 2 -614,
8-3229, 3230 Walting a 2007 2007 2007 2007	3 -673, 3 -677, 3 -745, 3 -747, 3 -832,
MultiplicativeGroup, 2-287, 2-339, 2-377,	3 -834, 3 -917, 3 -920, 3 -953, 3 -967,
3-936, 3-966, 7-2864 MultiplicativeJordanDecomposition, 8-3356	3 -1086, 3 -1088, 3 -1102, 1103, 3 -1166, 3 -1172, 3 -1185, 3 -1197, 3 -1201, 1202,
MultiplicativeOrder, $11-4692$	3 -1265, 4 -1288, 4 -1296, 4 -1346, 1347,
MultiplicatorRing, 3-891, 3-1136, 3-1187,	4 -1398, 4 -1407, 1408, 4 -1441, 4 -1509,
7-2663	5 -1627, 5 -1647, 5 -1702, 5 -1715,
Multiplicities, $1-187$, $9-3839$, $9-4009$,	5 -1767, 5 -1820, 5 -1825, 5 -1995,
9- 4050	5 -2004, 5 -2056, 5 -2190, 6 -2250,
MultiplicitiesAndIntersections, 9-4051	6 -2252, 6 -2274, 6 -2359, 6 -2367,
Multiplicity, 1-187, 8-3384, 9-3754,	6-2451, 6-2464, 6-2513, 6-2548, 6-2566, 6-2570, 6-2587, 6-2607
9-3832, 9-3838, 9-3921, 12 -5358	6 -2566, 6 -2579, 6 -2587, 6 -2607, 7 -2624, 7 -2626, 7 -2659, 7 -2673,
MultiplicityFast, 9-3838 Multiplier, 5-2172	7 -2683, 7 -2720, 7 -2725, 7 -2837,
MultiplyByTranspose, 2-587	7 -2990, 8 -3249, 9 -3467, 9 -3520,
MultiplyColumn, 2 -541, 2 -583, 7 -2727	9-3940, 9-3961, 9-3964, 9-3966,
MultiplyDivisor, 9-3979	9 -3971, 10 -4253, 10 -4256, 10 -4259,
MultiplyFrobenius, 3-1224	10 -4274, 10 -4307, 10 -4446, 10 -4465,
MultiplyRow, $2-541$, $2-582$, $7-2727$	10 -4510, 10 -4533, 10 -4548, 12 -5057,
MultiplyTransformations, 10-4411	12 -5059, 5060, 12 -5205, 12 -5208,
Multiset, 8-3384	12 -5247, 12 -5286, 13 -5437, 13 -5442,
Multisets, 1-188, 12-5159	13-5532, 13-5596, 13-5599, 13-5640, 13-5643
MultisetToSet, $1-184$ MultivariatePolynomial, $2-451$	NearLinearSpace, 12 -5224, 12 -5246
MurphyAlphaApproximation, 2-328	NefCone, 9-4197
MValue, 10-4533	NegationMap, 10 - 4266
NagataAutomorphism, 9-3808	Negative, 8-3079, 8-3119, 8-3157
Nagens, 3-771, 7-2955	NegativeGammaOrbitsOnRoots, $8-3103$
NaiveHeight, 10-4309, 10-4337, 10-4391,	NegativePrimeDivisors, $9-3843$
10-4479	NegativeRelativeRoots, 8-3114
Nalggens, 8-3348	Neighbor, 3 -723
Name, 2-374, 2-417, 2-450, 2-480, 3-822,	NeighborClosure, 3-723
3 -854, 3 -899, 3 -991, 3 -1100, 3 -1169, 4 -1287, 4 -1329, 4 -1344, 4 -1404,	Neighbors, 3 -723, 12 -5304, 12 -5381 Neighbour, 3 -723
1 1201, 1 1020, 1 1011, 1 1101,	

NeighbourClosure, 3-723	NilpotentSubgroups, 5-1665, 5-1727,
Neighbours, 3 -723, 12 -5304, 12 -5381	5-2010
Network, 12 -5400	Nilradical, 8-3262
New, 1-57	NineDescent, 10-4376
Newform, 11-4739, 11-4749, 11-4850	NineSelmerSet, 10-4376
NewformDecomposition, $11-4772$, $11-4990$, $11-5004$	nIsogeny, 11-4885
Newforms, 11-4739, 11-4741	NNZEntries, 2 -535, 2 -577
NewformsOfDegree1, 11-4991	NoetherNormalisation, 9-3494, 9-4131 NoetherNormalization, 9-3494
NewLevel, 11-4984	NoetherNumerator, 9-4131
NewModularHyperellipticCurve, 11-4629	NoetherWeights, 9-4131
NewModularHyperellipticCurves, 11-4628	NoncentralGeneratorsOfGroupOfUnits, 7-2780
NewModularNonHyperellipticCurveGenus3,	NonCuspidalQRationalPoints, 11-4646
11- 4630	NondegenerateTensor, 4-1573
NewModularNonHyperellipticCurvesGenus3,	NonIdempotentActionGenerators, 7-2787
11- 4630	NonIdempotentGenerators, 7-2772
NewQuotient, 11 - 4942	NonNilpotentElement, 8-3270
NewSubspace, $11-4732$, $11-4775$, $11-4988$,	NonOrdinaryPrimes, 9-4139
11- 5004	NonPrimitiveAlternantCode, 13-5460
NewSubvariety, 11 - 4942	NonSimplicialCones, 9-4168
NewtonPolygon, 4-1305, 4-1413, 1414,	NonsolvableSubgroups, 5-1666, 5-1727
9-3691	NonSpecialDivisor, 3-1254
NewtonPolynomial, 9-3691	Norm, 2-292, 2-362, 2-383, 2-488, 2-604,
NewtonPolynomials, 9-3691	3 -672, 3 -743, 3 -748, 3 -836, 3 -926,
NextClass, 6-2426	3 -948, 3 -1088, 3 -1173, 1174, 3 -1188,
NextElement, 6-2294, 6-2524	3 -1198, 3 -1205, 4 -1300, 4 -1318,
NextExtension, 5-2041	4 -1333, 4 -1506, 7 -2660, 7 -2664,
NextGraph, 12 -5343 NextModule, 7 -2971	7 -2837, 7 -2855, 7 -2993, 11 -4814
NextPrime, 2-303	NormAbs, $2-383$, $3-836$, $3-926$, $3-949$
NextRepresentation, 7-2971	NormalClosure, $3-817$, $3-880$, $5-1653$,
NextSimpleQuotient, 6-2298	5 -1658, 5 -1717, 5 -1843, 5 -1863,
NextSubgroup, 6-2350	5 -2005, 6 -2355, 6 -2468
NextVector, 3-710	NormalClosureMonteCarlo, 5-1887
NFaces, 12 -5324, 12 -5389	NormalComplements, 5-2020
NFS, 2 -320	NormalCone, 12-5124
NFSProcess, $2-320$	NormalEdgeCones, 12-5124
Ngens, 2-614, 4-1528, 4-1595, 5-1642,	NormalElement, 2-376
5 -1690, 5 -1813, 5 -1983, 5 -2056,	NormalFan, 9-4164
5 -2184, 6 -2234, 6 -2238, 6 -2288,	NormalForm, 6-2505, 7-2684, 9-3438,
6-2381, 6-2462, 6-2495, 6-2544,	9-3521, 9-3552, 12-5129 NormalFormOfHypersurfaceSingularity,
6 -2561, 6 -2576, 6 -2589, 6 -2603,	9-3760
7 -2712, 7 -2772, 7 -2912, 8 -3227,	Normalisation, 9-3495, 9-3793, 13-5643
8 -3348, 9 -3649, 9 -3941, 10 -4289, 10 -4349, 11 -4912, 11 -4953, 13 -5530,	NormalisationCoefficient, 13-5643
13-5593	Normalise, 2-344, 2-604, 4-1505, 8-3355
NGrad, 9-3731	NormalisedCone, 12 -5119
NilpotencyClass, 5-1657, 5-1750, 5-1863,	Normaliser, 5-1654, 5-1672, 5-1718,
5-2018, 6-2473	5 -2005, 6 -2355, 6 -2469, 8 -3262
NilpotentBoundary, 5-2047	NormaliserCode, $13-5625$
NilpotentLength, 5-2047	NormaliserMatrix, 13-5625
NilpotentLieAlgebra, 8-3286	Normalization, 9-3495, 9-3793, 12-5026,
NilpotentOrbit, 8-3292	13 - <i>5643</i>
NilpotentOrbits, 8-3293	NormalizationCoefficient, ${f 13}$ - ${f 5643}$
NilpotentPresentation, $6\text{-}2474$	Normalize, 2-344, 2-430, 2-466, 2-604,
NilpotentQuotient, $5-1729$, $5-1849$,	4 -1505, 8 -3355, 9 -3551, 13 -5435,
6 -2325, 8 -3223	13 -5538, 13 -5594

```
Normalizer, 5-1654, 5-1672, 5-1718,
                                                       NullGraph, 12-5280
    5-1843, 5-2005, 6-2355, 6-2469, 7-2847, 8-3262
                                                       NullHomotopy, 7-2820
                                                       Nullity, 11-4900
                                                      NullSpace, 2-619, 4-1519, 7-2723
Nullspace, 2-546, 2-587, 8-3273
NormalizerCode, 13-5625
NormalizerGLZ, 5-1967
                                                       NullspaceMatrix, 2-546, 2-588
NormalizerMatrix, 13-5625
NormalLattice, 5-1658, 5-1753, 5-2020
                                                       NullspaceOfTranspose, 2-546, 2-588,
NormalNumber, 9-4128
                                                           7-2723, 8-3273
NormalSubfields, 3-1031
                                                       Number, 9-4143
                                                       NumberField, 3-812, 813, 3-841, 3-844,
NormalSubgroups, 5-1658, 5-1726, 5-1753,
                                                           3-852, 3-878, 879, 3-884, 3-970,
NormEquation, 2-316, 2-384, 3-857,
                                                           3-972, 3-1007, 3-1032
    3-939-941, 3-1040, 4-1318
                                                       NumberFieldDatabase, 3-845
NormGroup, 3-1035, 3-1254, 4-1318, 7-2878
                                                       NumberFieldLattice, 3-737, 738
NormGroupDiscriminant, 4-1319
                                                       NumberFields, 3-846, 847
                                                       NumberFieldSieve, \mathbf{2}-320
NormInduction, 3-1057
NormKernel, 4-1318
                                                       NumberingMap, 5-1648, 5-1703, 5-1826,
                                                           5-1996, 6-2253
NormModule, 7-2856
                                                       NumberOfActionGenerators, 3-771, 7-2912,
NormOneGroup, 7-2863
NormResidueSymbol, 10-4221
                                                           7-2955
NormSpace, 7-2856
                                                       NumberOfAffinePatches, 9-3774
Not, 1-209
                                                       NumberOfAlgebraicGenerators, 8-3348
not, 1-11
                                                       NumberOfAntisymmetricForms, 3-772, 5-1966
notadj, 12-5301, 12-5379
                                                       NumberOfBlocks, 12-5236
notin, 1-71, 1-185, 1-210, 2-272, 2-276,
                                                       NumberOfBlowUpDivisors, 9-4047
    2-290, 2-341, 2-343, 2-361, 2-381,
                                                       NumberOfBoundaryPoints, 12-5127
    2-401, 2-421, 2-439, 2-453, 2-485,
                                                       NumberOfCells, 5-1797
    2-614, 3-953, 3-1088, 3-1103,
                                                       NumberOfClasses, 5-1662, 5-1709, 5-1832,
                                                           5-1999, 7-2989, 12-5339
    3-1172, 3-1185, 3-1197, 3-1202,
    4-1296, 4-1347, 4-1398, 4-1408,
                                                       NumberOfColumns, 2-535, 2-577, 2-603,
    4-1508, 5-1647, 5-1714, 5-1767, 5-1825, 5-2003, 6-2252, 6-2359,
                                                           7-2719
                                                       NumberOfComponents, 1-218, 10-4390
    6-2367, 6-2463, 6-2512, 6-2524,
6-2579, 7-2626, 7-2657, 7-2663,
7-2673, 7-2684, 7-2725, 7-2837,
7-2990, 9-3470, 9-3521, 9-3964,
                                                       NumberOfConstantWords, 13-5454
                                                       NumberOfConstraints, 13-5666
                                                       NumberOfCoordinates, 9-3731
                                                       NumberOfCurves, 10-4332, 4333
    9-3971, 12-5060, 12-5239, 12-5286,
                                                       NumberOfDivisors, \mathbf{2}-296, \mathbf{2}-314
                                                       NumberOfEdges, 12-5125, 12-5300, 12-5379
    12-5302, 12-5379, 13-5442, 13-5531,
    13-5599
                                                       NumberOfExtensions, 4-1320
notsubset, 1-186, 2-276, 2-343, 2-439,
                                                       NumberOfFaces, 12-5125, 12-5324, 12-5389
    2-614, 4-1508, 5-1647, 5-1715,
                                                       NumberOfFacets, 12-5125
    5-1825, 5-2004, 6-2252, 6-2360,
                                                       NumberOfFields, 3-846, 3-1226
    6-2464, 6-2579, 7-2624, 7-2683,
                                                       NumberOfFixedSpaces, 5-1853
    7-2725, 8-3249, 9-3467, 9-3520,
                                                       NumberOfGenerators, 2-347, 2-614, 4-1528,
    12-5060, 12-5239, 12-5286, 13-5442,
                                                           4-1595, 5-1642, 5-1690, 5-1813,
    13-5531, 13-5599
                                                           5-1983, 5-2056, 5-2184, 6-2234,
NPCGenerators, 5-1983, 5-2184, 6-2462
                                                           6-2238, 6-2288, 6-2381, 6-2462,
                                                           6-2495, 6-2544, 6-2561, 6-2576, 6-2589, 6-2603, 7-2712, 7-2772, 8-3148, 8-3197, 8-3227, 8-3348,
NPCgens, 5-1983, 5-2184, 6-2462
Nqubits, 13-5640
Nrels, 6-2381, 6-2544, 6-2603
Nrows, 2-535, 2-577, 2-604, 7-2719,
                                                           9-3941, 10-4289, 10-4349, 13-5429,
    11-4894
                                                           13-5530, 13-5593
Nsgens, 5-1787, 5-1879
                                                       NumberOfGradings, 9-3731, 9-4178, 9-4183
                                                       NumberOfGraphs, \mathbf{12}\text{-}5339
NthPrime, 2-304
nTorsionSubgroup, 11-4951
                                                       NumberOfGroups, 5-2142, 5-2146, 5-2158,
NuclearRank, 6-2430
                                                           2159, 5-2161, 5-2163
Nucleus, 4-1583
                                                       NumberOfInclusions, 5-1673
NucleusClosure, 4-1592
                                                       NumberOfInteriorPoints, 12-5127
```

NumberOfInvariantForms, 3-772, 5-1966 NumberOfSolubleIrreducibleMatrixGroups, NumberOfIrreducibleMatrixGroups, 5-2164 **5**-2164 NumberOfIsogenyClasses, 10-4333 NumberOfStandardTableaux, 12-5192 NumberOfLattices, 3-728, 5-2158, 2159, NumberOfStandardTableauxOnWeight, 12-5192 **5-**2161, **5-**2163 NumberOfStrings, 6-2495 NumberOfLevels, 3-778 NumberOfStrongGenerators, 5-1787, 5-1879 NumberOfLines, 12-5056NumberOfSubgroupsAbelianPGroup (A), 6-2258NumberOfMatrices, 12-5262NumberOfSymmetricForms, 3-772, 5-1966 NumberOfMetacyclicPGroups, 5-2138 NumberOfTableauxOnAlphabet, 12-5193 ${\tt NumberOfNewformClasses, 11-}4738$ NumberOfTransitiveGroups, 5-2148NumberOfNonZeroEntries, 2-535, 2-577 NumberOfVariables, 13-5666NumberOfPartitions, 2-299, 12-5163 NumberOfVariants, 2-398NumberOfPCGenerators, 5-1983, 5-2184, NumberOfVertices, 12-5122, 12-5300, **6**-2429, **6**-2462 **12**-5379 NumberOfPermutations, 12-5157 NumberOfWords, 13-5454, 13-5604NumberOfPlacesDegECF, 3-1159, 3-1196, NumbersOfPointsOnDegree2K3Surface, 9-41399-3953 NumbersOfPointsOnSurface, 10-4397NumberOfPlacesOfDegreeOne, 3-1239 Numerator, 2-361, 3-834, 3-920, 3-1104, NumberOfPlacesOfDegreeOneECF, 3-1159, 1160, **3**-1175, **3**-1205, **9**-3536, **9**-3745, 3746, **3**-1196, **9**-3954 **9-**3970, **9-**4131 NumberOfPlacesOfDegreeOneECFBound, 3-1160, NumericalBidiagonalForm, 2-567 **3**-1196, **9**-3954 Numerical Derivative, 2-518 ${\tt NumberOfPlacesOfDegreeOneOverExact-}$ NumericalEigenvalues, 2-567 ConstantField, 3-1159, 1160, 3-1196, NumericalEigenvectors, 2-567 NumericalHessenbergForm, 2-566 NumberOfPlacesOfDegreeOneOverExact-NumericalImage, 2-564ConstantFieldBound, 3-1160, 3-1196, NumericalInverse, 2-561 NumericalIsConsistent, 2-564 ${\tt NumberOfPlacesOfDegreeOverExactConstant-}$ NumericalKernel, 2-563Field, 3-1159, 3-1196, 9-3953Numerical Pseudoinverse, 2-564NumberOfPoints, 12-5056, 12-5127, 12-5236NumericalRank, 2-563NumberOfPointsAtInfinity, 10-4447 NumericalSchurForm, 2-566NumberOfPointsOnCubicSurface, 9-4104 NumericalSignature, 3-720 NumberOfPointsOnSurface, 10-4397 NumericalSingularValueDecomposition, 2-567 NumberOfPositiveRoots, 8-3047, 8-3056, Numerical Solution, 2-5648-3075, 8-3112, 8-3148, 8-3155, NumericClebschTransfer, 9-41088-3202, 8-3357 NumExtraspecialPairs, 8-3132 NumberOfPrimePolynomials, 2-431NumPosRoots, 8-3047, 8-3056, 8-3075, NumberOfPrimitiveAffineGroups, 5-21538-3112, 8-3148, 8-3155, 8-3202, NumberOfPrimitiveAlmostSimpleGroups, 8-3357 5 - 2153**0**, **4**-1291, **4**-1345, **9**-3655 NumberOfPrimitiveDiagonalGroups, 5-2153 0(x), 4-1442NumberOfPrimitiveGroups, 5-2153 ObjectiveFunction, 13-5667 NumberOfPrimitiveProductGroups, 5-2153 Obstruction, 12-5323, 12-5388 NumberOfPrimitiveSolubleGroups, 5-2153 ObstructionDescentBuildingBlock, 11-4930 NumberOfProjectives, 7-2772OctonionAlgebra, 7-2899 NumberOfPunctures, 9-3930OddGraph, 12-5300 NumberOfQubits, 13-5640Oddity, 3-786NumberOfQuotientGradings, 9-4179, 9-4183 OldQuotient, 11-4943NumberOfRationalPoints, 11-4858 NumberOfRelations, 6-2381, 6-2544, 6-2603OldSubvariety, $\mathbf{11}$ -4943NumberOfRelationsRequired, 2-323 Omega, 5-2019, 5-2072, 6-2256NumberOfRepresentations, 5-2141 OmegaMinus, 5-2072OmegaPlus, 5-2072NumberOfRows, 2-535, 2-577, 2-604, **7**-2719, **12**-5181 One, 2-271, 2-285, 2-340, 2-358, 2-375, **2-**418, **2-**451, **2-**483, **3-**821, **3-**894, NumberOfSkewRows, 12-5181 NumberOfSmallGroups, 5-2128 **3**-1079, **3**-1101, **3**-1170, **4**-1290, **4**-1345, **4**-1405, **7**-2619, **7**-2658, NumberOfSmoothDivisors, 3-1201

7 -2671, 7 -2836, 7 -2984, 8 -3280,	OrderedPartitionStackZero, 5 - 1797
8 -3318, 8 -3363, 9 -3646, 9 -3669	Ordering, $6-2544$, $6-2603$
OneCocycle, 5-2205, 5-2219	OrderOfRootOfUnity, 2 -349
OneCohomology, 5-2220	OreConditions, $4-1320$
OneParameterSubgroupsLattice, 9-4178,	OrientatedGraph, $12-5297$, $12-5377$
9-4185	Origin, 9-3732, 9-3906
OneSkeleton, 9-4167	OriginalRing, 7 -2687, 9 -3529
OnlyUpToIsogeny, 11 - 4902	OrthogonalComplement, $2-627$, $3-740$,
Open, 1-83	11- 4817, 11- 4828
OpenGraphFile, ${f 12}$ -5345	OrthogonalDecomposition, $3\text{-}682$
OpenSmallGroupDatabase, 5-2127	Orthogonalize, $3-718$
OppositeAlgebra, 7-2766	OrthogonalizeGram, $3-718$
OptimalEdgeColouring, 12 - 5317	OrthogonalReflection, $2-638$, $8-3183$
OptimalSkewness, 2 -328	OrthogonalSum, $2-637$, $3-682$
OptimalVertexColouring, 12 - 5317	OrthogonalSymmetrization, 7-3000, 10-4598
OptimisedRepresentation, 3-818, 3-881,	OrthogonalTensorProduct, 2 - 637
3 -886, 4 -1363, 7 -2858	Orthonormalize, $3-719$
OptimizedRepresentation, 3-818, 3-881,	OutDegree, $12-5304$, $12-5382$
3 -886, 4 -1363, 7 -2858	OuterFaces, 4-1416
Or, 1-209	OuterFPGroup, 5 - 2187
or, 1-11	OuterNormal, $12-5124$
Orbit, 3-748, 5-1643, 5-1734, 5-1851,	OuterNormals, 9-4169
12 -5070, 12 -5251, 12 -5334	OuterOrder, 5 -2185
OrbitAction, 5-1739, 5-1859	OuterShape, 12 -5180
OrbitActionBounded, 5-1859	OuterVertices, 4-1416
OrbitalGraph, 12 -5298	OutNeighbors, 12 -5306, 12 -5383
OrbitBounded, 5-1851	OutNeighbours, 12 -5306, 12 -5383
OrbitClosure, 5-1643, 5-1735, 5-1852	OvalDerivation, $12-5076$
OrbitImage, 5-1739, 5-1859	OverconvergentHeckeSeries, 11-4746
OrbitImageBounded, 5-1859	OverconvergentHeckeSeriesDegreeBound,
OrbitKernel, 5-1740, 5-1859	11-4746
OrbitKernelBounded, 5-1860	Overdatum, $8-3163$, $8-3201$
OrbitRepresentatives, 5-1734	OverDimension, 2 -614, 4 -1501, 1502
Orbits, 5-1734, 5-1851, 12-5070, 12-5251, ■	Overgroup, 8-3163, 8-3201
12-5334	P, 2 -482
OrbitsOfSpaces, 5-1853	p, 2 -482
OrbitsOnSimples, 8-3103	PackingRadius, 3-700
OrbitsPartition, 12-5337	PadCode, 13-5465, 13-5535, 13-5607
Order, 2-344, 2-347, 348, 2-384, 2-405,	PadeHermiteApproximant, 3-1113, 3-1116
2- 560, 3- 796, 3- 884, 3- 886, 887,	pAdicEllipticLogarithm, 10-4324
3 -948, 3 -1054, 3 -1134, 3 -1138,	pAdicEmbeddings, 11-4743
3 -1188, 4 -1389, 4 -1540, 5 -1627,	pAdicField, 4-1275, 1276, 4-1283
5-1646, 5-1673, 5-1692, 5-1701,	pAdicHeight, 10-4314
5 -1821, 5 -1824, 5 -1936, 5 -1945,	pAdicLSeries, $11-4803$
5 -1984, 5 -1995, 5 -2056, 5 -2172,	pAdicQuotientRing, 4-1276
5 -2185, 5 -2190, 6 -2247, 2248, 6 -2251,	pAdicRegulator, 10-4314
6 -2337, 6 -2429, 6 -2450, 6 -2463,	pAdicRing, 4-1275, 1276, 4-1283
6 -2545, 6 -2562, 6 -2605, 7 -2648, 2649,	PairReduce, 3-693
7- 2661, 7- 2722, 7- 2831, 7- 2834,	PairReduceGram, 3 -693
7 -2993, 8 -3348, 9 -3675, 9 -3940, 3941,	PaleyGraph, 12 -5298
10-4256, 10-4273, 10-4280, 10-4284,	PaleyTournament, 12-5298
10-4467, 10-4469, 11-4946, 11-4957,	PALPNormalForm, 12-5129
12 -5056, 12 -5237, 12 -5300, 12 -5379	ParallelClass, 12-5063
OrderAutomorphismGroupAbelianPGroup (A),	ParallelClasses, 12-5063
5-2028	ParallelSort, 1-205
OrderedIntegerMonoid, 12-5166	Parameters, $12-5237$
OrderedMonoid, 12-5166, 12-5169, 12-5173	Parametrization, 3-1211, 9-3965, 10-4229
OrderedPartitionStack, 5-1797	ParametrizationMatrix, 10-4229
oracroal arterolloudon, o 1191	raramourizationnaurix, 10 4223

ParametrizationToPuiseux, 4-1428	PAutExtendedPerfectCodeZ4, 13-5583
ParametrizeDegree5DelPezzo, $9-4100$	PAutExtendedPerfectCodeZ4Order, ${f 13}$ - 5583
ParametrizeDegree6DelPezzo, 9 - 4096	PAutHadamardCodeZ4, 13 - 5582
ParametrizeDegree7DelPezzo, $9-4095$	PAutHadamardCodeZ4Order, ${f 13}$ - 5582
ParametrizeDegree8DelPezzo, $9-4094$	PCClass, $5-2046$
ParametrizeDegree9DelPezzo, $9-4093$	pCentralSeries, $5-1658$, $5-1752$, $5-1880$,
ParametrizeDelPezzo, $9-4090$	5 -2018
ParametrizeDelPezzoDeg6, 9 - 4097	pCentralTensor, 4 - 1567
ParametrizeOrdinaryCurve, ${f 10}$ - 4230	PCExponents, $6\text{-}2463$
ParametrizePencil, $9-4090$	PCGenerators, 5-1983, 5-2184, 6-2462
ParametrizeProjectiveHypersurface, $9-4084$	PCGroup, 5-1639, 5-1850, 5-1879, 5-2042,
ParametrizeProjectiveSurface, $9-4084$	5 -2050, 6 -2246, 6 -2393, 6 -2461,
ParametrizeQuadric, $9-4088$	7 -2812
ParametrizeRationalNormalCurve, 10 - 4230	PCGroupAutomorphismGroupPGroup, 5-2187
ParametrizeSingularDegree3DelPezzo, 9-4100	pClass, 5 -2019, 6 -2430
ParametrizeSingularDegree4DelPezzo, 9-4100	pClosure, 8 -3276
Parent, 1-178, 1-200, 1-220, 1-256,	PCMap, 7 -2812, 9 -3777
2 -268, 2 -270, 2 -287, 2 -290, 2 -339,	pCore, 5-1654, 5-1751, 5-1843, 5-2009,
2 -341, 2 -358, 2 -361, 2 -377, 2 -381,	5 -2016
2 -401, 2 -419, 2 -421, 2 -451, 2 -483,	pCoreQuotient, 5-1751
484, 2 -614, 3 -747, 3 -798, 3 -822,	pCover, 5-1673, 5-1772, 5-2209
3 -833, 3 -898, 3 -919, 3 -1085, 3 -1087,	pCoveringGroup, 6-2428
3 -1102, 3 -1137, 3 -1170, 3 -1182,	PCPresentation, 5-1936
3 -1197, 4 -1297, 4 -1345, 1346, 4 -1398,	PCPrimes, 5 -1983
4- 1406, 4- 1408, 4- 1502, 4- 1571,	PDSetHadamardCode, $13-5489$
4 -1576, 5 -1642, 5 -1690, 5 -1814,	PDSetHadamardCodeZ4, ${f 13}$ - 5580
5 -1995, 5 -2056, 6 -2232, 6 -2234,	PDSetKerdockCodeZ4, 13 - 5580
6 -2272, 6 -2276, 6 -2450, 6 -2483,	PDSetSimplexCode, ${f 13} ext{-}5489$
6 -2501, 6 -2547, 6 -2564, 6 -2576,	pElementaryAbelianNormalSubgroup, 5-1765
6 -2589, 6 -2603, 7 -2625, 7 -2671,	Pencil, $12-5063$
7 -2712, 7 -2911, 7 -2989, 9 -3647,	PentahedronIdeal, $9-4109$
9 -3653, 9 -3670, 9 -3673, 9 -4189,	PerfectForms, $5-1967$
10 -4270, 10 -4452, 11 -4814, 11 -4985,	PerfectGroupDatabase, 5 -2140
12 -5204, 5205, 13 -5436, 13 -5538,	PerfectSubgroups, $5-1666$, $5-1727$
13 -5595	PeriodMapping, $11-4796$, $11-4972$
Parent (f), 4 -1441	Periods, 10 -4322, 4323, 11 -4796, 11 -4972
Parent (v), $4-1450$	PermRep, 5 -2173
ParentCell, 5-1798	PermRepDegrees, 5 -2173
ParentGraph, 12 - 5286	PermRepKeys, $5-2173$
ParentPlane, 12 -5052	Permutation, $5-1788$
ParentRing, $4-1420$	PermutationAutomorphism, 9 - 3807
ParityCheckMatrix, $13-5431$, $13-5530$,	PermutationCharacter, $3-1260$, $4-1465$,
13 -5593	5 -1674, 1675, 5 -1775, 5 -1873, 7 -3002
PartialDual, 3-681	PermutationCode, 13-5425, 13-5524
PartialFactorization, 2-313	PermutationDecode, $13-5488$, $13-5577$, 5578
PartialFractionDecomposition, $3-1106$	PermutationGroup, $5-1628$, $5-1689$, $5-2142$,
PartialWeightDistribution, $13-5451$	5 -2173, 5 -2187, 6 -2246, 6 -2393,
Partition, 1-207, 208, 8-3293	9 -3941, 13 -5494, 13 -5609, 13 -5638
Partition2WGtable, 8-3171	${\tt PermutationGroupExtendedPerfectCodeZ4,}$
PartitionCovers, $12-5180$	13- 5583
Partitions, 2 -299, 12 -5163	PermutationGroupExtendedPerfectCodeZ4Order,
PartitionToWeight, $8-3407$	13- 5583
PascalTriangle, $12-5238$	PermutationGroupHadamardCodeZ4, ${f 13}$ - 5582
Path, 12-5393	PermutationGroupHadamardCodeZ4Order,
PathExists, 12-5393	13- 5582
PathGraph, 12-5280	PermutationMatrix, 2-533
Paths, 12-5393	PermutationModule, 5-1675, 1676, 5-1776,
PathTree, 7 -2787	5 -1874, 7 -2911, 7 -2951

PermutationRepresentation, $5-2141$, $5-2187$,	Plurigenus, $9-4026$
9-3941	PlurigenusOfDesingularization, $9-4078$
Permutations, 1-188, 12-5159	pMap, 8-3275
PermutationSupport, 5-2187	pmap, 1-252
PermuteWeights, 8-3386	pMatrixRing, 7-2842
pExcess, 3-786	pMaximalOrder, 3-890, 3-1136, 3-1187,
Pfaffian, 2-551, 4-1584	7 -2834
Pfaffians, 2-551	pMinimalWeierstrassModel, 10 - 4429
pFundamentalUnits, 3 -937	pMinimise, $10-4413$
PGammaL, 5-1792	pMinus1, 2 -309
PGammaU, 5-1793	pMultiplicator, 5-1673, 5-1772, 5-2209
PGL, 5-1791	pMultiplicatorRank, 6-2430
PGO, 5-1794	pNormalModel, 10-4429
PGOMinus, 5 -1794	Point, 9-4125, 12-5229
PGOPlus, 5-1794	PointDegree, 12 - 5239
PGroupStrong, 6-2281	PointDegrees, $12-5236$
PGroupToForms, 7-2871	PointGraph, 12 -5253, 12 -5299
PGU, 5-1792	PointGroup, 12 -5069, 12 -5249
PhaseFlip, 13 -5647	PointOnRegularModel, 9-3987
Phi, 7 -3028	Points, 9-3749, 9-4129, 10-4224, 10-4256,
phi, 11-4892, 11-4949	10-4268, 10-4288, 10-4395, 10-4445,
PhiDual, 5-1837	10-4448, 10-4463, 10-4469, 10-4476,
PhiIredduciblePolynomials, 5-1837	10 -4499, 10 -4509, 10 -4511, 12 -5052,
PhiModule, 7 -3027	12 -5089, 12 -5126, 12 -5133, 12 -5236
PhiModuleElement, 7-3027	PointsAtInfinity, 9-3931, 10-4269,
PhiSelmerGroup, 10-4502	10 -4445, 10 -4447
PHom, 7 -2794	PointsCubicModel, 9-3985
Pi, 2 -488	PointSearch, 9-3782
PicardClass, 9-4189	PointSet, 9-3748, 10-4258, 12-5048,
PicardGroup, 3 -855, 3 -931	12 -5229
PicardLattice, 9-4178	PointsKnown, 10-4448
PicardNumber, 3-855	PointsOverSplittingField, 9-3752
PicardToClassGroupsMap, 9-4191	PointsQI, 10-4366, 10-4395
PicardToClassLatticesMap, 9-4191	Polar, 12- 5117
PicnDescent, 10-4502	Polarisation, 4-1568, 9-4125
pIntegralModel, $10-4429$	PolarisedVariety, $9\text{-}4130$
Pipe, 1-86	Polarization, 4 - 1568
pIsogenyDescent, $10-4379$	PolarSpaceType, ${f 2}$ - 634
pIsogneyDescent, ${f 10} ext{-}4379$	PolarToComplex, ${f 2}$ - 486
Place, 3 -841, 3 -970, 3 -1192, 3 -1194,	PoleDivisor, 3 - 1205
9 -3961, 3962	Poles, 3 -1176, 3 -1194, 9 -3963
PlaceEnumCopy, 3 -1256	PollardRho, 2 - 309
PlaceEnumCurrent, 3 - 1256	PolycyclicGenerators, ${f 5}$ - 1879
PlaceEnumInit, 3 -1255, 1256	PolycyclicGroup, $5-1629$, $5-1980$, $6-2452$
PlaceEnumNext, 3 - 1256	PolygonGraph, ${f 12}$ - 5280
PlaceEnumPosition, 3 - 1256	Polyhedron, $9-4192$, $12-5119$, 5120
Places, $3-841$, $3-970$, $3-1139$, $3-1161$,	PolyhedronInSublattice, ${f 12}$ -5120
3 -1193, 3 -1195, 3 -1201, 9 -3961, 3962	PolyhedronWithInequalities, ${f 12} ext{-}5116$
PlacticIntegerMonoid, $12-5169$	Polylog, 2 -498
PlacticMonoid, 12-5169	PolylogD, 2-499
PlanarDual, 12 -5324	PolylogDold, 2-499
PlanarGraphDatabase, 12-5341	PolylogP, 2-499
PlaneToDisc, 11-4699	PolyMapKernel, 9-3502
Plethysm, 8-3392	Polynomial, 2-418, 2-458, 3-1246, 4-1420,
PlotkinAsymptoticBound, 13-5478	9-3742
PlotkinBound, 13-5477	PolynomialAlgebra, 2-415, 2-448, 9-3421,
PlotkinSum, 13-5465, 13-5535, 13-5555,	3422, 9-3424 Polymomial Coefficient 4-1370
13 -5607, 5608	PolynomialCoefficient, 4-1379

PolynomialMap, 9-3832pQuotient, 5-1638, 5-1729, 5-1849, **5**-2015, **5**-2043, **6**-2321, **8**-3276 PolynomialRing, 2-415, 2-448, 9-3421, 3422, **9**-3424, **9**-3597, **10**-4409 pQuotientDefinitions, 6-2324 Polynomials, 9-3742 pQuotientProcess, 6-2425 pRadical, 3-891, 3-1136, 3-1188PolynomialSieve, 2-330pRank, 12-5056, 12-5237 Polytope, **12**-5116 PolytopeOfProjectiveSpace, 12-5117 pRanks, 5-2019Precision, 2-484, 2-487, 4-1284, 4-1297, PolytopeOfWPS, 12-5117 PolyToSeries, $\mathbf{4}$ -1384**4**-1327, **4**-1346, **4**-1359, **4**-1484, POmega, 5-1795**11-**4725 ${\tt POmegaMinus, 5-}1796$ Precision (S), 4-1441POmegaPlus, 5-1795PrecisionBound, 11-4723 Pop, **5**-1799 Preimage, **12**-5150 POpen, 1-86PreimageIdeal, **7**-2687, **9**-3529 PreimageRing, 2-440, 7-2687, 9-3529Position, 1-69, 1-178, 1-201PositiveConjugates, 6-2520 PreparataCode, 13-5548PositiveConjugatesProcess, 6-2523Preprune, 4-1548 Presentation, 7-2740, 8-3174, 9-3550PositiveCoroots, 8-3075, 8-3112, 8-3155, **8**-3203, **8**-3358 PresentationIsSmall, 6-2455 PositiveDefiniteForm, 3-772, 5-1965 PresentationLength, 6-2288, 6-2381 PositiveGammaOrbitsOnRoots, 8-3103 PresentationMatrix, 9-3556 PositiveQuadrant, 12-5118 PrettyPrintInvariant, 3-994 PositiveRelativeRoots, 8-3114 PreviousPrime, 2-303 PositiveRoots, 8-3075, 8-3112, 8-3155, PrimalityCertificate, 2-302 **8**-3203, **8**-3358 Primary, 3-859PrimaryAbelianBasis, 5-1660, 5-1757, PositiveRootsPerm, 8-3317 PositiveSum, 2-517 **5**-1880, **5**-2017, **6**-2250 PossibleCanonicalDissidentPoints, 9-4130 PrimaryAbelianInvariants, 5-1660, 5-1757, PossibleHypergeometricData, 10-4532 **5**-1880, **5**-2017, **6**-2250 PossibleSimpleCanonicalDissidentPoints, PrimaryAlgebra, 9-3615 9-4130 PrimaryComponents, 9-3768Power, 3-795PrimaryDecomposition, 9-3484, 9-3530PowerFormalSet, 1-176 PrimaryIdeal, 9-3615PowerGroup, 6-2483PrimaryInvariantFactors, 2-555, 7-2730 PowerIdeal, 2-276PrimaryInvariants, 9-3605 PowerIndexedSet, 1-175PrimaryRationalForm, 2-554, 7-2729 Prime, 3-723, 4-1282, 4-1327, 11-4830 PowerMap, 5-1663, 5-1709, 5-1833, 5-2000, **7**-2989 PrimeBasis, 2-304, 2-312 PowerMultiset, 1-176 PrimeComponents, 9-3768 PowerPolynomial, 2-428PrimeDivisors, 2-304, 2-312, 2-314 PowerProduct, 3-839, 3-928, 3-961, 3-1179 PrimeFactorisation, 9-3838PowerRelation, 2-495 PrimeField, 2-268, 2-358, 2-371, 2-377, PowerResidueCode, 13-5462 **2**-403, **2**-483, **3**-824, **3**-904, **3**-1085, PowerSequence, 1-199 **3**-1137, **4**-1283, **4**-1406 PowerSeries, 11-4725, 11-4785PrimeForm, 3-794PowerSeriesRing, 4-1341PrimeIdeal, 7-2850PowerSet, 1-175PrimePolynomials, 2-431 PowerSumToElementaryMatrix, 12-5219 PrimePowerRepresentation, $\mathbf{3}$ -1180 PrimeRing, 2-268, 2-287, 2-339, 2-377, 2-419, 2-451, 3-824, 3-904, 3-1085, 3-1102, 3-1137, 4-1283, 4-1398, 4-1406, 7-2671, 12-5204 PowerSumToElementarySymmetric, 3-1006 PowerSumToHomogeneousMatrix, 12-5219 PowerSumToMonomialMatrix, 12-5219 PowerSumToSchurMatrix, 12-5218 pPart, 10-4537 Primes, 3-779pParts, 10-4537 PrimesInInterval, 2-304pPlus1, 2-310 PrimesUpTo, 2-304pPowerTorsion, 10-4348PrimitiveData, 10-4532 PrimitiveElement, 2-344, 2-375, 3-835, pPrimaryComponent, 6-2251 pPrimaryInvariants, 6-2250 **3**-922, **3**-948, **3**-1143

PrimitiveGroup, 5-2153, 2154 ProjectiveGammaLinearGroup, 5-1792 PrimitiveGroupDatabaseLimit, 5-2153 ProjectiveGammaUnitaryGroup, 5-1793 PrimitiveGroupDescription, 5-2153 ProjectiveGeneralLinearGroup, 5-1791 PrimitiveGroupIdentification, 5-2157 ProjectiveGeneralOrthogonalGroup, 5-1794 PrimitiveGroupProcess, 5-2155, 2156 ProjectiveGeneralOrthogonalGroupMinus, PrimitiveGroups, $\mathbf{5}$ -2154 5 - 1794PrimitiveIdempotentData, 7-2736 ProjectiveGeneralOrthogonalGroupPlus, PrimitiveIdempotents, 7-27365 - 1794PrimitiveLatticeVector, 12-5146 ProjectiveGeneralUnitaryGroup, 5-1792 PrimitivePart, 2-430, 2-467ProjectiveIndecomposableDimensions, 7-2976 PrimitivePolynomial, 2-386 ProjectiveIndecomposableModule, 7-2976 PrimitiveQuotient, 5-1748 ProjectiveIndecomposableModules, 7-2977 PrimitiveRoot, 2-316, 2-344ProjectiveMap, 9-3789 ${\tt PrimitiveWreathProduct, 5-} 1698$ ProjectiveModule, 7-2787, 2788PrincipalCharacter, 4-1460, 7-2984ProjectiveOmega, 5-1795 PrincipalDivisor, 3-1176, 9-3968ProjectiveOmegaMinus, 5-1796PrincipalDivisorMap, 3-1214 ProjectiveOmegaPlus, 5-1795ProjectiveOrder, **2**-560, **5**-1822, **7**-2722 ProjectivePlane, **2**-406, **9**-3905 PrincipalIdealMap, 3-1162 PrincipalSeriesParameters, $\mathbf{11}\text{-}5013$ PrincipalUnitGroup, 4-1317 ProjectiveRationalFunction, 9-3745 ProjectiveResolution, 7-2796, 7-2813 PrincipalUnitGroupGenerators, 4-1317 PrintFile, 1-81 ProjectiveResolutionPGroup, 7-2813 PrintFileMagma, 1-81 ProjectiveSigmaLinearGroup, 5-1792 PrintProbabilityDistribution, 13-5644ProjectiveSigmaSymplecticGroup, 5-1793ProjectiveSigmaUnitaryGroup, 5-1793 PrintSortedProbabilityDistribution, ProjectiveSpace, 9-3726, 9-3905, 9-4177 PrintSylowSubgroupStructure, 8-3368 ProjectiveSpaceAsToricVariety, 9-4177 PrintTermsOfDegree, 4-1373 ProjectiveSpecialLinearGroup, 5-1791 PrintToPrecision, 4-1373 ProjectiveSpecialOrthogonalGroup, 5-1794 PrintTreesSU, 8-3410 ProjectiveSpecialOrthogonalGroupMinus, Probability, 13-5644**5**-1795 ProbabilityDistribution, 13-5644 ${\tt ProjectiveSpecialOrthogonalGroupPlus,}$ ProbableAutomorphismGroup, 3-1037 **5**-1795 ProbableRadicalDecomposition, 9-3485ProjectiveSpecialUnitaryGroup, 5-1792 ProcessLadder, 5-1766 ProjectiveSuzukiGroup, 5-1796 Product, 12-5029 ProjectiveSymplecticGroup, 5-1793 ProductCode, 13-5464Projectivity, 9-3809 Prospector, 5-1651ProductProjectiveSpace, 9-3729 PrueferRankBound (G), 5-1948ProductRepresentation, 3-839, 3-928, **3**-1179, **8**-3385, 3386 Prune, 1-204, 1-219, 1-226, 3-1090, ProfileGraph, 1-140 **4**-1547, **9**-3793, **12**-5031 ProfileHTMLOutput, 1-143 pSelmerGroup, 3-1022, 4-1318, 10-4342 ProfilePrintByTotalCount, 1-142 PseudoAdd, **10**-4510 ProfilePrintByTotalTime, 1-142 PseudoAddMultiple, 10-4510 PseudoBasis, 3-742, 4-1533, 7-2655, ProfilePrintChildrenByCount, 1-142 ProfilePrintChildrenByTime, 1-142 **7**-2662 ProfileReset, 1-139PseudoBasisMatrix, 3-742Proj, 9-3726, 9-3736, 9-4190PseudoDimension, 13-5530Projection, 9-3789PseudoGenerators, 4-1533 ProjectionFromNonsingularPoint, 9-3789 PseudoGramMatrix, 3-742 PseudoMatrix, 3-742, 4-1540, 7-2655, ProjectionMap, 11-4639 ProjectionOnto, 11-4936**7**-2662 ProjectionOntoImage, 11-4936 PseudoRandom, 5-2058ProjectiveClosure, 9-3773, 9-3802, 9-3931 PseudoReflection, 8-3180 ProjectiveClosureMap, 9-3777 PseudoReflectionGroup, 8-3184 ProjectiveCover, **7**-2796, **7**-2979 PseudoRemainder, 2-427ProjectiveEmbedding, 12-5058Psi, 2-513 ProjectiveFunction, 9-3745, 9-3951 PSigmaL, 5-1792

PSigmaSp, 5-1793	QuadraticFormMatrix, 2 - 636
PSigmaU, 5-1793	QuadraticFormPolynomial, 2-637
pSignature, 3-786	QuadraticForms, 3-793
PSL, 5-1791	QuadraticNorm, 2 -636
PSL2, 11-4663	QuadraticOrder, $3\text{-}798$
PSO, 5-1794	QuadraticSpace, ${f 2}$ - 636
PSOMinus, 5 -1795	QuadraticTransformation, $9\text{-}3813$
PSOPlus, 5 -1795	QuadraticTwist, $oldsymbol{10}$ -4247, $oldsymbol{10}$ -4431
PSp, 5 -1793	QuadraticTwists, $f 10$ -4248, $f 10$ -4431
PSU, 5-1792	QuadricIntersection, 10 - 4366 , 10 - 4409
pSubalgebra, 8-3275	QuantizedUEA, 8-3316
PSz, 5-1796	QuantizedUEAlgebra, $8-3316$
PuiseuxExpansion, 4-1422	QuantizedUniversalEnvelopingAlgebra,
PuiseuxExponents, 4-1426	8-3316
PuiseuxExponentsCommon, 4-1426	QuantumBasisElement, ${f 13}$ - 5625
PuiseuxSeriesRing, 4-1342	QuantumBinaryErrorGroup, ${f 13}$ - 5626
PuiseuxToParametrization, 4-1428	QuantumCode, 13-5615, 13-5618, 5619
Pullback, 6-2389, 6-2527, 7-2795, 9-3797,	QuantumCyclicCode, 13-5621-5623
9 -3799, 9 -3834, 9 -3936, 10 -4451,	QuantumDimension, 8-3388
11-4908	QuantumErrorGroup, 13 -5626, 5627
PunctureCode, 13-5465, 5466, 13-5535,	QuantumQuasiCyclicCode, 13-5624
13-5608, 13-5633	QuantumState, 13-5641
PureBraidGroup, 8-3168	QuarticG4Covariant, 10-4356
PureLattice, 3-683	QuarticG6Covariant, 10-4356
PurelyRamifiedExtension, 9-3663, 9-3680	QuarticHSeminvariant, 10-4356
PureRayIndices, 9-4170	
·	QuarticIInvariant, 10-4356
PureRays, 9-4170	QuarticJInvariant, 10-4356
Pushforward, 9-3936	QuarticMinimise, 10-4356
Pushout, 7 -2795	QuarticMinimize, 10-4394
PushThroughIsogeny, 10-4264	QuarticNumberOfRealRoots, 10-4356
Put, 1-83	QuarticPSeminvariant, 10-4356
Puts, 1-83	QuarticQSeminvariant, 10-4356
Pyramid, 12-5141	QuarticReduce, 10-4356
qCoverDescent, 10-4500	QuarticRSeminvariant, 10-4356
qCoverPartialDescent, 10-4505	QuasiCyclicCode, ${f 13} ext{-}5457$
QECC, 13-5635	QuasisimpleMatrixGroup, ${f 5}$ -2 165
QECCLowerBound, $13-5637$	QuasisimpleMatrixGroups, ${f 5}$ - 2166
QECCUpperBound, ${f 13} ext{-}5637$	QuasiTwistedCyclicCode, ${f 13}$ - 5457
qEigenform, $11-4749$, $11-4785$	QuaternaryPlotkinSum, ${f 13}$ - 5555
qExpansion, 11 - 4725	Quaternion, ${f 11} extsf{-}4692$
qExpansionBasis, 11 - 4723 , 11 - 4786 ,	Quaternion Algebra, $7-2618$, $7-2826-2829$,
11- 4820	7 -2846, 10 -4232, 11 -4690
qExpansionExpressions, ${f 11}$ - ${f 4653}$	QuaternionicAutomorphismGroup, ${f 3}$ - 731
qExpansionsOfGenerators, ${f 11} ext{-}4654$	QuaternionicGModule, ${f 3} extsf{-}731$
QFactorialisation, $9\text{-}4197$	QuaternionicMatrixGroupDatabase, ${f 5}$ - 2161
qIntegralBasis, ${f 11} ext{-}4786$	QuaternionOrder, 7-2831, 7-2835, 11-4690,
QLDecomposition, $2\text{-}561$	11- 4821, 11- 4984
QMatrix, 2 -436	QUAToIntegralUEAMap, 8-3331
QNF, 3- 813, 3- 879	Quiver, 7 -2785
QRCode, 13 -5461	QuiverAndRelations, 7 -2786
QRCodeZ4, 13 -5548	quo, 2-275, 2-337, 2-438, 2-610, 3-679,
Qround, 2-363, 3-834, 3-920	3 -818, 3 -966, 4 -1276, 4 -1509,
QuadeIdeal, 9-3634	4 -1526, 4 -1546, 5 -1633, 5 -1728,
QuadraticCharacter, 3-1057	5 -1848, 5 -1981, 5 -2014, 6 -2245,
QuadraticClassGroupTwoPart, 3-856	6 -2277, 6 -2451, 6 -2457, 6 -2591,
QuadraticField, 3-852	7 -2620, 7 -2685, 7 -2751, 7 -2780,
QuadraticForm, 3-677, 3-785, 3-861,	7 -2919, 7 -2941, 8 -3223, 8 -3247,
5-2085, 12 -5065	9-3527, 9-3558, 12 -5289
3 2000, 12 0000	0 0021, 0 0000, II 0200

Quotient, $4-1603$, $4-1605$, $11-4909$,	RandomCurveByGenus, $9\text{-}3914$
11 -4954, 12 -5090, 12 -5148	RandomDigraph, 12 - 5281
QuotientDimension, $9-3464$, $9-3519$	RandomElementOfNormalClosure, 5-1886
QuotientGenerators, $12-5135$	RandomElementOfOrder, 5-1885
QuotientGradings, 9-4178, 9-4183	RandomEllipticFibration_d10g10, 9-4044
QuotientMap, 3-797	RandomEllipticFibration_d7g6, 9-4043
QuotientModule, 7 -2696-2700, 9 -3559	
	RandomEllipticFibration_d8g7, 9-4043
QuotientModuleAction, 5-1862	RandomEllipticFibration_d9g7, $9-4044$
QuotientModuleImage, ${f 5}$ - 1862	RandomEnriquesSurface_d9g6, 9 - 4043
QuotientRepresentation, 4 - 1328	RandomExtension, $2-370$
QuotientRing, 3 - 1086 , 9 - 3666	RandomGenusOneModel, 10-4407
QuotientWithPullback, 8-3248	RandomGLnZ, 2-534
Quotrem, 2-293, 2-426, 3-967, 3-1197,	RandomGraph, 12 -5280, 12 -5340
3 -1201, 3 -1246, 4 -1399, 4 -1408,	
9-3964, 9-3970	RandomHookWalk, 12-5179
Quotrem (A, B), 4-1444	RandomIdealGeneratedBy, 7-2779
	RandomIrreduciblePolynomial, ${f 2}$ - 386
Radical, 2-627, 4-1581, 5-1658, 5-1761,	RandomLinearCode, ${f 13}$ - 5426 , ${f 13}$ - 5526
5 -1865, 8 -3127, 9 -3483	RandomMatrix, 2 - 534
Radical Decomposition, $9-3485$, $9-3530$	RandomModel, 10-4407
RadicalExtension, $3\text{-}816$, $3\text{-}879$	RandomNodalCurve, 9-3913
RadicalQuotient, 5 - 1761 , 5 - 1865	RandomOrdinaryPlaneCurve, 9-3914
RamificationDegree, 3-949, 3-1192,	RandomPartition, 12-5164
3 -1197, 4 -1282, 4 -1327, 4 -1360	
RamificationDivisor, 3-1145, 3-1210,	RandomPlace, 3-1161, 3-1195, 9-3961
9 -3936, 9 -3969, 9 -3976	RandomPolytope, ${f 12} ext{-}5116$
RamificationField, 3-980	RandomPositiveCone, 12 -5118
	RandomPrime, 2 -294, 2 -304
RamificationGroup, 3-979, 4-1331	RandomPrimePolynomial, 2-431
RamificationIndex, 2-336, 3-844, 3-949,	RandomProcess, $5-1650$, $5-1703$, $5-1826$,
3 -973, 3 -1192, 3 -1197, 4 -1282,	5 -1996, 6 -2253, 6 -2464, 6 -2580
4 -1327, 4 -1360	RandomProcessWithValues, 5-1650
RamifiedPlaces, $7\text{-}2839$	RandomProcessWithWords, 5-1650
RamifiedPrimes, $7-2839$	
RamifiedRepresentation, 4-1328	RandomProcessWithWordsAndValues, 5-1650
Random, $1-11$, $1-31$, $1-180$, $1-202$, $1-218$,	RandomQuantumCode, 13-5619
2 -271, 2 -294, 2 -340, 2 -346, 2 -358,	RandomRationalSurface_d10g9, $9-4042$
2 -375, 2 -403, 2 -602, 3 -820, 3 -893,	RandomSchreier, $5-1783$, $5-1877$
3 -967, 3 -1007, 3 -1054, 3 -1170,	RandomSchreierBounded, 5-1877
3 -1241, 3 -1244, 4 -1290, 4 -1405,	RandomSequenceBlumBlumShub, 13-5655
4-1503, 4-1595, 5-1649-1651, 5-1670,	RandomSequenceRSA, $13-5654$, 5655
	RandomSLnZ, 2-534
5 -1703, 1704, 5 -1797, 5 -1826, 5 -1996,	RandomSubcomplex, 4-1546
1997, 6 -2240, 6 -2253, 6 -2271,	RandomSubset, 1-188
6 -2465, 6 -2497, 6 -2549, 6 -2568,	
6 -2580, 6 -2593, 6 -2608, 7 -2619,	RandomSymplecticMatrix, 2-534
7 -2710, 7 -2772, 7 -2915, 7 -2930,	RandomTableau, $12-5179$
8 -3245, 8 -3353, 8 -3364, 9 -3750,	RandomTensor, 4 - 1596
9 -3830, 10 -4224, 10 -4288, 10 -4333,	RandomTransformation, ${f 10}$ - 4411
10 -4446, 10 -4465, 11 -4668, 12 -5049,	RandomTree, $12-5280$
12 -5060, 12 -5229, 5230, 12 -5287,	RandomUnimodularMatrix, 2-534
12 -5342, 13 -5434, 13 -5530, 13 -5594	RandomWord, $6-2497$
RandomAbelianSurface_d10g6, 9-4043	Rank, 2-420, 2-452, 2-551, 2-588, 2-619,
RandomAdditiveCode, 13-5591	3 -676, 3 -742, 3 -991, 3 -1085, 3 -1102,
•	
RandomAutomorphism, 8-3364	4 -1368, 4 -1507, 4 -1519, 7 -2671,
RandomBaseChange, 7-3028	7 -2687, 7 -2721, 8 -3072, 8 -3103,
RandomBits, 2-294	8 -3148, 8 -3197, 8 -3218, 8 -3349,
RandomCFP, $6-2497$	9 -3529, 9 -3564, 10 -4348, 11 -4815,
RandomCompleteIntersection, $9-4024$	11 -4901, 11 -4912, 12 -5089
RandomCone, $12-5118$	RankBound, $10-4348$, $10-4392$, $10-4485$,
RandomConsecutiveBits, 2-294	10- 4503

RankBounds, 10-4348, 10-4392, 10-4485, RealVolume, 11-4789**10-**4503 rec, 1-244 RanksOfPrimitiveIdempotents, 7-2736 recformat, 1-243RankZ2, 13-5559ReciprocalPolynomial, 2-428RationalCharacterTable, 7-2972, 7-2987 RecogniseAbelian (G), 5-1950RationalCurve, 10-4214 RecogniseAlternating, 5-1780, 5-2078 RationalCuspidalSubgroup, 11-4961 RecogniseAlternatingOrSymmetric, 5-1778, RationalDifferentialField, 9-3644 5 - 2076RationalExtensionRepresentation, 3-1138 RecogniseClassicalSSA, 7-2877 RationalField, 2-357 RecogniseExchangeSSA, 7-2877 RationalForm, 2-555, 7-2730 RecogniseLargeRee, 5-2105 RationalFunction, 3-1179 RecogniseRee, 5-2102 RationalFunctionField, 3-1099, 1100RecogniseSL, 5-2093 Rational Homology, 11-4880RecogniseSL3, 5-2091 RecogniseSmallDegree, 5-2094Rational Map, 10-4263 Rational Mapping, 11-4796RecogniseSp4, 5-2093 RecogniseSpOdd, 5-2093 RationalMatrixGroupDatabase, 5-2157 RationalPoint, 10-4224RecogniseStarAlgebra, 7-2878 RationalPoints, 9-3749, 9-3752, 10-4224, RecogniseSU3, 5-209310-4256, 10-4268, 10-4288, 10-4445, 10-4448, 10-4463, 10-4469, 10-4476, RecogniseSU4, 5-2094RecogniseSymmetric, 5-1780, 5-2078**10**-4499, **10**-4510, 4511 RecogniseSz, 5-2096 RationalPointsByFibration, 9-3750 RecognizeClassical, 5-2087 RationalPuiseux, 4-1386 RecognizeLargeRee, 5-2105 Rational Reconstruction, 2-364, 3-1180 RecognizeRee, 5-2102 RationalRuledSurface, 9-4023 RecognizeSL, 5-2093 Rationals, 2-357 RecognizeSL2, 5-2089 RationalsAsNumberField, 3-813, 3-879 RecognizeSp4, 5-2093 RecognizeSpOdd, $\mathbf{5}$ -2093 RationalScroll, 9-4177 Rational Sequence, 8-3327 RecognizeSU3, 5-2093 RationalSolutions, 9-3690 RecognizeSU4, 5-2094RawBasket, 9-4131RecognizeSz, 5-2096 RawEval, 3-1064Reconstruct, 3-968 Ray, 9-4170, 12-5122 ReconstructionEnvironment, 3-968 RayClassField, 3-1025, 1026 ReconstructLatticeBasis, 3-698 RayClassGroup, 3-1019, 3-1231 Rectify, 12-5185 RayClassGroupDiscLog, 3-1232 RedoEnumeration, $\mathbf{6}$ -2411 RayLattice, 9-4185Reduce, 3-1141, 4-1514, 7-2680, 9-3438, RayLatticeMap, 9-4185**10-**4413 RayResidueRing, $\mathbf{3}$ -1021, $\mathbf{3}$ -1231 ReduceCharacters, 7-3003 Rays, 9-4170, 9-4178, 12-5122 ReduceCluster, 9-3987 Re, 2-486, 11-4696 ReduceCubicSurface, 9-4102 Reachable, 12-5313, 12-5392 ReducedAteTPairing, 10-4292 Read, 1-85, 1-87, 1-90ReducedBasis, 7-2856, 2857, 10-4313, ReadBinary, 1-8510-4480 ReadBytes, 1-87, 1-90 ReducedDiscriminant, 3-909Real, 2-486, 11-4670, 11-4696 ReducedEtaTPairing, 10-4291 RealEmbeddings, 3-843, 3-924ReducedFactorisation, 9-3838 RealField, 2-480 ReducedForm, 3-796 RealHomology, 11-4880ReducedForms, 3-798 ReducedGramMatrix, 7-2856, 2857 RealInjection, 8-3072 RealMatrix, 11-4894ReducedLegendreModel, 10-4220 RealPeriod, 10-4323ReducedLegendrePolynomial, $\mathbf{10}$ -4219RealPlaces, 3-842, 3-971ReducedMinimalWeierstrassModel, 10-4430 RealSigns, 3-843ReducedModel, 10-4430RealTamagawaNumber, 11-4801 ReducedOrbits, 3-798 Realtime, 1-26, 27 ReducedSubscheme, 9-3769 RealVectorSpace, 11-4880 ReducedTatePairing, 10-4290

RegularSpliceDiagram, 9-4010 ReduceGenerators, 5-1789, 6-2377ReduceGroebnerBasis, 9-3438 RegularSubgroups, $\mathbf{5}\text{-}1666$ ReducePlaneCurve, 9-3987 Regulator, 3-828, 3-909, 3-1162, 10-4310, ReduceQuadrics, 10-4414 **10-**4480 ReduceToTriangleVertices, 11-4704 RegulatorLowerBound, 3-828, 3-909 RelationIdeal, 9-3479, 9-3615 ReduceVector, $\mathbf{2}$ -616Reduction, 3-796, 3-861, 3-1207, 9-3783, RelationMatrix, 3-932, 6-2234, 9-3550 3784, **9**-3830, **9**-3844, **9**-3975, RelationModule, 9-3549**10-**4225, **10-**4336 Relations, 3-933, 3-1178, 3-1221, 6-2234, ReductionOrbit, 3-796 **6**-2288, **6**-2544, **6**-2590, **6**-2603, Reductions, 11-4743**9**-3550, **9**-3615, **9**-3952, **9**-3958, ReductionStep, 3-796 **11-**4748 ReductionType, $\mathbf{10}\text{-}4306$ RelativeField, 3-823, 3-900, 4-1329ReductiveRank, 8-3349RelativeInvariant, 3-993 ReductiveType, 8-3254RelativePrecision, 4-1297, 4-1333, Reductum, 2-427, 2-464**4**-1348, **4**-1362, **9**-3651 ReeConjugacyClasses, 5-2113 RelativePrecisionOfDerivation, 9-3651, ReedMullerCode, 13-54289-3672 ReedMullerCodeQRMZ4, 13-5551 RelativeProj, 9-4191RelativeRank, 8-3103 ReedMullerCodeRMZ4, 13-5551 ReedMullerCodesLRMZ4, 13-5551 RelativeRootDatum, 8-3115 ReedMullerCodesRMZ4, 13-5552 RelativeRootElement, 8-3346 ReedMullerCodeZ4, 13-5548, 13-5551 RelativeRoots, 8-3114 ReedSolomonCode, 13-5463RelativeRootSpace, 8-3111 ReeElementToWord, 5-2102 Remove, 1-204, 1-231ReeGroup, 5-2075RemoveColumn, 2-541, 2-583 ReeIrreducibleRepresentation, 5-2103 RemoveConstraint, 13-5667 ReeMaximalSubgroups, 5-2107 RemoveEdge, 12-5293, 12-5374 ReeMaximalSubgroupsConjugacy, 5-2107 RemoveEdges, 12-5293, 12-5374 RemoveFiles, 2-325ReesIdeal, 9-3466ReeSylow, 5-2111RemoveIrreducibles, 7-3003 ReeSylowConjugacy, 5-2111 RemoveLinearRelations, 9-3737 RefineSection, $\mathbf{5}$ -1759 RemoveRow, 2-541, 2-583Reflection, 8-3161, 8-3180, 8-3360RemoveRowColumn, 2-541, 2-583RemoveVertex, 12-5291, 12-5371 ReflectionFactors, 2-638ReflectionGroup, 8-3060, 8-3084, 8-3134, RemoveVertices, 12-5291, 12-5371 **8**-3144, 3145, **8**-3167, **8**-3174, **8**-3185-3187 RemoveWeight, 9-4133, 9-4135RemoveZeroRows, 2-541, 2-583 ReflectionMatrices, 8-3077, 8-3117, Rep, 1-180, 1-201, 1-218, 2-271, 3-1007, 8-3161, 8-3205 ReflectionMatrix, 8-3077, 8-3117, 8-3161, **5**-1648, **5**-1704, **5**-1798, **5**-1997, **5**-2058, **6**-2253, **6**-2464, **6**-2495, 8-3205 ReflectionPermutation, 8-3078, 8-3118, **6**-2523, **6**-2549, **6**-2568, **6**-2580, 8-3161, 8-3205 **6**-2608, **12**-5049, **12**-5060, **12**-5229, ReflectionPermutations, 8-3078, 8-3118, 5230, **12**-5287 **8**-*3205* RepeatPartition, 4-1601 Reflections, 8-3160, 8-3360RepetitionCode, 13-5426, 13-5526ReflectionSubgroup, 8-3162, 3163ReplaceRelation, 6-2401, 6-2592ReflectionWord, 8-3078, 8-3118, 8-3162, ReplicationNumber, 12-5237Representation, 6-2241, 7-2954, 9-3626, ReflectionWords, 8-3078, 8-3118, 8-3162, 9-3633 8-3205 RepresentationDimension, 8-3388 Regexp, 1-73RepresentationMatrix, 3-837, 3-927, **3**-1173, 1174, **4**-1333, **7**-2645, **7**-2660, Regularity, 9-3573RegularLDPCEnsemble, 13-5511**7**-2689, **9**-3533 RegularModel, 9-3986 RepresentationNumber, 3-802 RegularRepresentation, 5-1639, 5-1747, RepresentationType, 7-2753 **7**-2645, **7**-2788 Representative, 1-180, 1-201, 2-271, Regular Sequence, 9-3466 **2**-285, **2**-340, **2**-358, **2**-375, **2**-418,

2- 451, 2- 483, 3- 721–723, 3- 821,	RestrictParts, $12\text{-}5213$
3 -894, 3 -1007, 3 -1079, 3 -1101,	RestrictResolution, 7 - 2814
3 -1170, 4 -1290, 4 -1345, 4 -1405,	Resultant, $2-436$, $2-471$
5 -1648, 5 -1704, 5 -1798, 5 -1997,	ResumeEnumeration, $6-2412$
6 -2253, 6 -2464, 6 -2495, 6 -2523,	Retrieve, $1-238$
6 -2549, 6 -2568, 6 -2608, 7 -2671,	Reverse, $1-204$, $1-226$, $4-1350$
8 -3294, 9 -4187, 12 -5049, 12 -5060,	ReverseColumns, 2 -540, 2 -582
12 -5229, 5230, 12 -5287	ReverseRows, 2 -540, 2 -582
RepresentativeCocycles, 5-2040	Reversion, $4-1350$
RepresentativeMatrixCSp, 5-1837	RevertClass, 6 -2428
RepresentativeMatrixO, 5-1839	Rewind, $1-83$
RepresentativeMatrixSp, 5-1835	Rewrite, 6-2342, 2343
RepresentativePoint, 9-3964	ReynoldsOperator, 9-3600
Representatives, 3-724	RGenerators, $12-5133$
Res_H2_G_QmodZ, 6-2262	RHS, 6-2232, 6-2276, 6-2588
ResetMaximumMemoryUsage, 1-93	RichelotIsogenousSurface, 10-4459
ResetMinimumWeightBounds, 13-5447	RichelotIsogenousSurfaces, 10-4459
Residual, 12-5232	rideal, 6-2590, 7-2620, 7-2661, 7-2677,
Residue, 3-1220, 9-3958, 9-3965, 12-5092	7 -2714, 7 -2751, 7 -2849
ResidueClassDegree, 3-1192, 3-1198	RiemannRochBasis, 9-3844, 9-3871, 9-4192
ResidueClassField, 2-277, 2-337, 3-844,	RiemannRochCoordinates, 9-3845
3 -949, 3 -972, 3 -1192, 3 -1198,	RiemannRochDimension, 9-4192
4 -1284, 4 -1329, 4 -1345, 4 -1360,	RiemannRochPolytope, 9-4192
9-3965	RiemannRochSpace, 3-1207, 9-3844, 9-3975
ResidueClassRing, 2-337, 338	RiemannZeta, 10-4558
ResidueField, 4-1407	RightAction, 7-2912
ResidueSystem, 4-1284	RightActionGenerator, 7-2955
Resolution, 9-4173, 9-4197	RightAdjointMatrix, 8-3271
ResolutionData, 7-2812	RightAnnihilator, 7 -2642, 7 -2754, 7 -2779
ResolutionGraph, 9-4003, 4004, 9-4006 ResolutionGraphVertex, 9-4003	RightCosetSpace, 6-2366, 6-2423
	RightDescentSet, 8-3153, 8-3199
ResolveAffineCurve, 9-4069 ResolveAffineMonicSurface, 9-4073	RightDomain, 4-1576
ResolveFanMap, 9-4173	RightExactExtension, 4-1548
ResolveLinearSystem, 9-4197	RightGCD, 6 -2516 RightGcd, 6 -2516
ResolveProjectiveCurve, 9-4071	RightGreatestCommonDivisor, 6-2516
ResolveSingByBlowUp, 9-4047	RightHandFactors, 9-3702
ResolveSingularSurface, 9-4045	RightIdeal, 7-2849
Restrict, 3-1055, 3-1065	RightIdealClasses, 7-2852
RestrictDegree, 12-5213	RightInverse, 11-4938
RestrictedPartitions, 2-299, 12-5163	RightInverseMorphism, 11-4938
RestrictedSubalgebra, 8-3275	RightIsomorphism, 7-2860
RestrictEndomorphism, 11-4886	RightLCM, 6-2517, 2518
RestrictField, 2 -612, 5 -1812, 13 -5467	RightLcm, 6-2517, 2518
Restriction, 4-1486, 5-2207, 7-2788,	RightLeastCommonMultiple, 6-2517, 2518
7 -2962, 7 -2997, 9 -3746, 9 -3792,	RightMixedCanonicalForm, 6-2506
9 -3867, 11 -4886, 12 -5232	RightNormalForm, $6-2505$
RestrictionChainMap, 7-2814	RightNucleus, 4-1582, 7-2901
RestrictionData, 7-2814	RightOrder, 7 -2661, 7 -2851
RestrictionMap, 8-3275	RightRegularModule, 7-2788
RestrictionMatrix, 8-3290, 8-3403, 8-3409	RightRepresentationMatrix, 7-2660
RestrictionOfGenerators, 7-2815	RightString, 8-3080, 8-3119, 8-3158
RestrictionOfScalars, 7-2643, 7-2653,	RightStringLength, 8-3080, 8-3119, 8-3158
9- 3778	RightTransversal, 5-1652, 5-1768, 5-1868,
RestrictionToImage, 11 - 4886	5 -2021, 6 -2254, 6 -2368, 6 -2423,
RestrictionToPatch, $9-3745$, $9-3803$	6 -2465
RestrictionToSubtorus, 9-4177	RightZeroExtension, $4-1549$
RestrictPartitionLength, $12-5213$	Ring, 5-2201, 9-3748, 10-4259

RingClassGroup, 3 -931	Round, 2-293, 2-318, 2-363, 2-423, 2-486
RingGeneratedBy, ${f 11}$ - 4906	RoundDownDivisor, $9-3836$
RingMap, $9-3748$	RoundUpDivisor, $9\text{-}3837$
RingOfFractions, $9-3536$, $9-3645$	Row, 12 -5181
RingOfIntegers, 2-284, 2-337, 2-357,	RowInsert, $12-5186$
3 -819, 3 -852, 3 -883, 3 -888, 3 -1101,	RowLength, 12- 5181
4 -1281, 4 -1345, 4 -1360	RowNullSpace, $7-2723$, $8-3273$
RMatrixSpace, 4-1501, 4-1510, 11-4913	RowReductionHomomorphism, 8-3371
RMatrixSpaceWithBasis, 4-1501, 4-1513	Rows, 11-4894, 12-5181
RModule, 4-1500, 7-2910, 8-3272, 9-3548,	RowSequence, $2-536$
11-4723	RowSkewLength, 12-5181
RModuleWithAction, 11-4914	RowSpace, 7 -2723
RModuleWithBasis, 4-1501	Rowspace, 2-588
RombergQuadrature, 2-517	RowSubmatrix, 2-538, 2-581
Root, 2-384, 2-488, 3-834, 3-920, 3-959,	RowSubmatrixRange, 2-538, 2-581
	RowWeight, 2-578
3 -1080, 3 -1183, 4 -1303, 8 -3075,	
8 -3112, 8 -3155, 8 -3203, 8 -3358,	RowWeights, 2-578
12-5316	RowWord, 12-5183
RootAction, 8-3166	RPolynomial, 8-3404
RootClosure, 8-3121	RQDecomposition, 2-561
RootDatum, 8-3059, 8-3084, 8-3094,	RSAModulus, 13-5655
8-3096, 8-3099, 8-3111, 8-3147,	RSKCorrespondence, 12-5189
8-3197, 8-3257, 8-3317, 8-3349,	RSpace, $4-1500$, $5-1814$, $11-4723$, $11-4831$,
8-3384	13 -5430, 13 -5530
RootGSet, $8-3166$	RSpaceWithBasis, 4 - 1501
RootHeight, $8-3079$, $8-3120$, $8-3158$,	RTensorSpace, 4 - 1587
8 -3360	RubinSilverbergPolynomials, ${f 10}$ - 4416
RootImages, $8-3131$	RuledSurface, $9-3728$, 3729 , $9-3905$
RootLattice, 8-3110	RWSGroup, $6-2538$, 2539
RootNorm, 8-3080, 8-3120, 8-3158, 8-3360	RWSMonoid, $6-2542$, $6-2598$
RootNorms, 8-3079, 8-3120, 8-3158, 8-3360	SafeUniformizer, 3-1192
RootNumber, 3-1071, 1072, 3-1263, 4-1286,	SAT, 9-3458
4 -1479, 10 -4326, 10 -4343, 10 -4346,	SatisfiesSzPresentation, 5-2097
10 -4590	Saturate, 9 -3739
RootNumbers, 3-1072	SaturateSheaf, $9-3866$
RootOfUnity, 2-358, 2-380, 3-866, 867,	Saturation, 2-558, 9-3465, 10-4349,
3 -1079	10 -4483, 11 -4906
RootPermutation, 8-3131	SaveCharacterTable, 7-2987
RootPosition, 8-3075, 8-3112, 8-3155,	ScalarLattice, 12-5143
8-3203, 8-3358	ScalarMatrix, 2 -531, 7 -2710, 8 -3246
Roots, 2-380, 2-424, 2-491, 3-1079,	ScalarSparseMatrix, 2 -576
3 -1178, 4 -1307, 4 -1334, 4 -1434,	Scale, $3-743$, $10-4548$
8-3075, 8-3112, 8-3155, 8-3202,	ScaledIgusaInvariants, 10-4439
8-3358	ScaledLattice, 3-665
RootsAndCoroots, 8-3200	ScaleGenerators, 4-1392
RootSequence, 2-638	ScalingFactor, 10-4411
RootSide, 12-5316	Scheme, 9-3734, 3735, 9-3744, 9-3748, 3749,
RootsInSplittingField, 2-380	9-3865, 9-4205, 10-4259, 10-4270
RootsNonExact, 2-493	SchemeGraphMap, 9-3815
RootSpace, 8-3074, 8-3110, 8-3154,	
	SchemeGraphMapToSchemeMap, 9-3816
8-3202, 8-3357	SchemeMap, 9-3940
RootSystem, 8-3059, 8-3068, 3069, 8-3134,	SchreierGenerators, 6-2355
8-3146, 8-3197, 8-3256	SchreierGraph, 12-5298
RootVertex, 9-4011	SchreierSystem, 6-2355
RosenhainInvariants, 10-4521	SchreierVector, 5-1787
Rotate, 1-204, 2-604, 4-1505, 13-5436,	SchreierVectors, 5-1787
13-5538, 13-5595	Schur, 7-2993
RotateWord, $6-2403$, $6-2593$	SchurIndex, 7 -2994

SchurIndexGroup, 7-2997 Segset, 1-208SchurIndices, 7-2994 SeqToClifford, 7-2887 SchurToElementaryMatrix, 12-5215 SequenceOfRadicalGenerators, 7-2740 SchurToHomogeneousMatrix, 12-5215 SequenceToElement, 2-376 SequenceToFactorization, 2-314SchurToMonomialMatrix, 12-5214 SchurToPowerSumMatrix, 12-5215 SequenceToInteger, 2-286 SClassGroup, 3-1215 SequenceToList, 1-226SClassGroupAbelianInvariants, 3-1215 SequenceToMultiset, 1-184SClassGroupExactSequence, 3-1215 SequenceToSet, 1-208 SClassNumber, 3-1215 SerreBound, 3-1160, 9-3954sdiff, 1-187 Set, 1-177, 2-339, 2-377, 6-2550, 6-2568, SEA, 10-4280 2569, **6**-2609, **12**-5061, **12**-5240 Search, 6-2380 SetAllInvariantsOfDegree, 9-3602 SearchEqual, 6-2381SetAssertions, 1-100 SearchForDecomposition, 5-1903SetAutoColumns, 1-100 SearchForIsomorphism, $\mathbf{6}\text{-}2315$ SetAutoCompact, 1-100SearchPGroups, 5-2136 SetBeep, 1-100Sec, 2-500SetBufferSize, 10-4332SecantVariety, 9-3819 SetClassGroupBounds, 3-935Sech, 2-503SetColumns, 1-100 SetDebugOnError, 1-149 SecondaryInvariants, 9-3606 SetDefaultRealField, 2-479 SectionCentraliser, 5-1717 SectionCentralizer, 5-1717 SetDisplayLevel, 6-2429Sections, 9-3830SetEchoInput, 1-93, 1-101Sections (G), 7-2955SetElementPrintFormat, 6-2494 Seek, 1-83SetEntry, 2-579 SegreEmbedding, 9-3729 SetEvaluationComparison, 3-991 SetForceCFP, 6-2494SegreProduct, 9-3729 SetGlobalTCParameters, 6-2340 Self, 1-212 SelfComplementaryGraphDatabase, 12-5341 SetGPU, 1-101 SelfIntersection, 9-3843SetHeckeBound, 11-4783SelfIntersections, 9-4009SetHelpExternalBrowser, 1-115 SelmerGroup, 10-4358SetHelpExternalSystem, 1-115 Semidir, 5-2169SetHelpUseExternalBrowser, 1-115 SemidirectProduct, 5-1637 SetHelpUseExternalSystem, 1-115 SetHistorySize, 1-101 Semigroup, 6-2588SetIgnorePrompt, 1-101 SemiInvariantBilinearForms, 2-652 SemiInvariantQuadraticForms, $\mathbf{2}\text{-}652$ SetIgnoreSpaces, 1-102 SemiInvariantSesquilinearForms, 2-652SetIndent, 1-102 SetIntegerSolutionVariables, 13-5667 SemilinearDual, 2-650SemiLinearGroup, 5-1816 SetKantPrecision, 3-898 SemiOrthogonalBasis, 2-647 SetKantPrinting, 3-898 SemisimpleDecomposition, 7-3028 SetLibraries, 1-102 SemisimpleEFAModuleMaps, 6-2479SetLibraryRoot, 1-102 SetLineEditor, 1-102SemisimpleEFAModules, 6-2479SemisimpleEFASeries, 6-2474SetLMGSchreierBound, 5-1926 SemisimpleGeneratorData, 7-2738 SetLogFile, 1-93, 1-103SemisimpleRank, 8-3350SetLowerBound, 13-5667SetMaximiseFunction, 13-5667 SemisimpleType, 8-3254Semisimplification, 4-1480SetMemoryLimit, 1-103 SeparatingElement, 3-1145, 9-3646 SetNthreads, 1-103SeparationVertices, 12-5308, 12-5385SetObjectiveFunction, ${f 13}{\mbox{-}}5667$ Seq, 6-2550, 6-2569, 6-2609SetOptions, 6-2380Seqelt, 2-376SetOrderMaximal, 3-919, 3-1133SeqFact, 2-314 SetOrderTorsionUnit, 3-919 SeqFromClifford, 7-2888 SetOrderUnitsAreFundamental, 3-919 Segint, 2-286 SetOutputFile, 1-82, 1-103Seqlist, 1-226SetPath, 1-103

SetPowerPrinting, $2\text{-}373$	ShimuraReduceUnit, 11 - 4703
SetPrecision, 11 - 4725	ShiodaAlgebraicInvariants, ${f 10}$ - 4441
SetPresentation, $6-2494$	ShiodaInvariants, ${f 10}$ - 4440
SetPreviousSize, $1-79$	ShiodaInvariantsEqual, ${f 10}$ - 4440
SetPrimitiveElement, 2-375	ShortBasis, 3 -1206, 9 -3976
SetPrintKetsInteger, ${f 13} ext{-}5641$	ShortCosets, 5-1768, 5-2021
SetPrintLevel, 1-103	ShortenCode, 13-5466, 13-5535, 13-5608,
SetProcessParameters, 6-2410	13 - <i>5633</i>
SetProfile, 1-139	ShortestPath, 12-5393
SetPrompt, 1-104	ShortestPaths, 12-5393
SetQuitOnError, 1-104	ShortestVectors, 3-702, 3-769
SetRationalBasis, 11-4988	ShortestVectorsMatrix, 3-702
SetRows, 1-104	ShortVectors, 3 -704, 3 -769
SetSeed, 1-31, 1-104	ShortVectorsMatrix, 3-705
Setseq, 1-208	ShortVectorsProcess, 3-710
SetShowRealTime, 1-27	ShowIdentifiers, 1-106
SetsOfSingularPlaces, 9-3688	ShowMemoryUsage, 1-106
SetStoreModularForms, 11-4983	ShowOptions, 6-2379
SetTargetRing, 3-1056	ShowPrevious, 1-78
SetToIndexedSet, 1-184	Showlalues, 1-106
SetToThdexedSet, 1-184 SetToMultiset, 1-184	
•	ShrikhandeGraph, 12-5300
SetTrosepack, 1-208	ShrinkingGenerator, 13-5654
SetTraceback, 1-104	Shuffle, 4-1569
SetUpperBound, 13-5667	SiegelTransformation, 2-638
SetVerbose, 1-105, 2-301, 2-306, 2-308,	Sieve, 2-388
2 -319, 2 -388, 2 -426, 2 -433, 2 -468,	Sign, 2-293, 2-318, 2-363, 2-431, 2-472,
2 -589, 3 -691, 3 -697, 3 -712, 3 -896,	2 -488, 3 -1255, 5 -1701, 10 -4582,
4 -1421, 5 -1666, 6 -2329, 6 -2543,	11-4856
6 -2558, 6 -2600, 7 -2679, 2680, 7 -2929,	Signature, 2-288, 2-360, 3-829, 3-910,
8 -3169, 9 -3440, 9 -3457, 9 -3485,	11-4693
9 -3569, 9 -3599, 9 -4093, 9 -4136,	SignDecomposition, 9-3837, 9-3970
9-4139, 10-4284, 10-4287, 10-4430,	SiksekBound, 10 -4311
10- 4469, 11- 4628, 12- 5265	SilvermanBound, 10-4311
SetViMode, 1-105, 1-108	SilvermanHeightBounds, 10-4338
Seysen, 3-694	SimilarityGroup, 2 -643, 7 -2870
SeysenGram, 3-694	SimNEQ, $3-942$
SFA, 12-5200	SimpleCanonicalDissidentPoints, $9\text{-}4130$
SFAElementary, $12-5200$	SimpleCohomologyDimensions, $7-2802$
SFAHomogeneous, $12-5200$	SimpleCoreflectionMatrices, $8-3077$,
SFAMonomial, $12-5200$	8 -3117, 8 -3161, 8 -3205
SFAPower, $12-5200$	SimpleCoroots, $8-3074$, $8-3111$, $8-3154$,
SFASchur, 12 -5200	8 -3202, 8 -3357
Shadow, $12-5093$	SimpleEpimorphisms, $6\text{-}2298$
ShadowSpace, $12\text{-}5093$	SimpleExtension, $3-823$, $3-900$
Shape, $8-3327$, $12-5180$	SimpleGroupName, $5\text{-}2081$
Sheaf, $9-3844$, $9-3862$	SimpleGroupOfLieType, $8-3340,\ 3341$
SheafHomomorphism, $9-3869$	SimpleHomologyDimensions, 7 -2797
SheafHoms, $9-3867$	SimpleLattice, $3\text{-}740$
SheafOfDifferentials, $9\text{-}3864$	SimpleModule, 7 - 2788
SheafToDivisor, $9-3836$	SimpleOrders, 8-3202
ShephardTodd, 8-3189, 8-3192	SimpleParameters, 7-2878
ShephardToddNumber, 8-3194	SimpleQuotientAlgebras, 7-2735
Shift, 4-1548, 12-5026	SimpleQuotientProcess, 6 -2298
ShiftLeft, 2-289	SimpleQuotients, 6-2297
ShiftRight, 2-289	SimpleReflectionMatrices, 8-3077, 8-3117,
ShiftToDegreeZero, 4-1548	8 -3161, 8 -3205
ShiftValuation, 4-1304	SimpleReflectionPermutations, 8-3078,
ShimuraConjugates, $11-4705$	8 -3117, 8 -3161, 8 -3205

SimpleReflections, 8-3161 SLPolynomialRing, 3-991 SimpleRelativeRoots, 8-3114SmallBasis, 9-3437SimpleRoots, 8-3074, 8-3111, 8-3154, SmallDegreeImage, 5-20948-3202, 8-3357 SmallDegreePreimage, 5-2094 SmallerField, 5-1900SimpleStarAlgebra, 7-2874 SimpleSubgroups, 5-1666, 5-1727SmallerFieldBasis, 5-1900 Simplex, 9-3733, 12-5034SmallerFieldImage, 5-1900 SimplexAlphaCodeZ4, 13-5548SmallGraphDatabase, 12-5341SimplexBetaCodeZ4, 13-5548 SmallGroup, 5-2128, 2129 SimplexCode, 13-5428SmallGroupDatabase, 5-2127 SimplicialComplex, 12-5023, 5024SmallGroupDatabaseLimit, 5-2127 SimplicialProjectivePlane, 12-5034 SmallGroupDecoding, 5-2135 SmallGroupEncoding, 5-2134SimplicialSubcone, 12-5119 Simplicial Subdivision, 9-4172 SmallGroupIsInsoluble, 5-2129 SimplifiedModel, 10-4246, 10-4428 Simplify, 3-901, 3-1090, 3-1135, 4-1529, SmallGroupIsInsolvable, 5-2129SmallGroupIsSoluble, 5-2128**6**-2377, **6**-2380, **12**-5232 SmallGroupIsSolvable, 5-2128, 2129 SimplifyLength, 6-2379, 2380 SmallGroupProcess, 5-2132 SimplifyPresentation, 6-2380 SmallGroups, 5-2129, 2130 SimplifyRep, 4-1392SmallModularCurve, 11-4638 SimplyConnectedVersion, 8-3127 SmallPeriodMatrix, 10-4513 SimpsonQuadrature, 2-517 SmallRoots, 2-424SimsSchreier, 5-1783SMaximalOrder, 3-1242Sin, 2-499, 4-1354 SmithForm, 2-558, 7-2728Sincos, 2-499, 4-1354SmithForm (M), 4-1448SingerDifferenceSet, 12-5234 SnuRing (F), 4-1440SingletonAsymptoticBound, 13-5478 SnuRing (F, nu), 4-1440 SingletonBound, 13-5477SnuRing (p), 4-1440 SingularCones, 9-4168SnuRing (p, e), 4-1440SingularPoint, 9-4047SnuRing (S), $\mathbf{4}\text{-}1441$ SingularPoints, 9-3930 SnuRing (S, nu), $\mathbf{4}$ -1441 SingularRadical, 2-627 50, 5-2070SingularRank, 9-4135 Socket, 1-88, 89SingularSubscheme, 9-3768 SocketInformation, 1-89 Sinh, 2-502, 503, 4-1354 Socle, 5-1757, 5-2016, 7-2788, 7-2925SIntegralDesbovesPoints, 10-4331 SocleAction, 5-1759SIntegralLjunggrenPoints, 10-4331 SocleFactor, 5-1757 SIntegralPoints, 10-4329SocleFactors, 5-1758, 7-2925 SIntegralQuarticPoints, 10-4331 SocleImage, 5-1759SixDescent, 10-4375SocleKernel, 5-1759Size, 9-4009, 9-4013, 12-5300, 12-5379 SocleQuotient, 5-1759 Skeleton, 9-4167, 12-5033 SocleSeries, 5-1758, 7-2925 SkewHadamardDatabase, 12-5262 SolubleNormalQuotient, 5-1765 SkewInvariant100, 9-4106SolubleQuotient, 5-1729, 5-1850, 5-2043, SkewShape, 12-5180**6**-2330, 2331, **6**-2438 SkewWeight, 12-5181SolubleRadical, 5-1761, 5-1865, 8-3262, SL, 5-20668-3362 SL2Characteristic, 5-2090 SolubleResidual, 5-1658, 5-1750, 5-1863 SL2ElementToWord, 5-2090SolubleSchreier, 5-1784 SL2Triple, 8-3294SolubleSubgroups, 5-1666 Solution, 2-316, 2-341, 2-547, 7-2734, SL3ElementToWord (G, g), 5-2092SL4Invariants, 10-4417 **13-**5667 Slice, 4-1578Solutions, 3-944Slope, 12-5063SolvableLieAlgebra, 8-3285 Slope (S), 4-1441SolvableQuotient, 5-1729, 5-1850, 5-2043, Slopes, 4-1419, 7-3028 **6**-2330, 2331, **6**-2438 SlopeValuation, 9-3695SolvableRadical, 5-1761, 5-1865, 8-3262 SLPGroup, 6-2575SolvableResidual, 5-1658, 5-1750, 5-1863

SolvableSchreier, $5\text{-}1784$	SplitRootDatum, $8-3129$
SolvableSubgroups, $5-1666$, $5-1727$	SplittingCartanSubalgebra, 8-3264
Solve, 9 -4087	SplittingField, $2-370$, $3-817$, $3-880$,
SolveByRadicals, $3-1001$	4- 1281 , 4- 1313
SOMinus, 5-2072	SplitToralSubalgebra, 8-3264
SOPlus, 5-2071	SpMatrix (A), 4-1447
Sort, 1-205	SpMatrix (r, c, A), 4-1447
SortDecomposition, 11 - 4772 , 11 - 4817	SpMatrix (v), 4 -1447
SP, 4-1463	SpMatrixSpace (S, r, c), $4-1446$
Sp, 5 -2069	SPolynomial, 9-3438, 9-3551
SpaceOfDifferentialsFirstKind, 3-1217,	SPrincipalDivisorMap, 3-1215
9-3956	SpRing (F), 4-1440
SpaceOfHolomorphicDifferentials, 3-1217,	SpRing (F, nu), 4-1440
9-3956	SpRing (p), 4-1440
SpanningFan, 9-4164	SpRing (p, e), 4-1440
SpanningForest, 12 -5315, 12 -5387	SpRing (S), 4-1441
SpanningTree, 12 -5315, 12 -5387	SpRing (S, nu), 4-1441
SpanZ2CodeZ4, 13 -5559	Sprint, 1-81
SparseIrreducibleRootDatum, 8-3098	Sprintf, 1-82
SparseMatrix, 2-573, 574, 2-584	SpSpace (M), 4 -1449
SparseMatrixStructure, 2-576	SpSpace (R, n), 4-1449
SparseRootDatum, 8-3098, 3099	SpSpace (v), 4 -1449
SparseStandardRootDatum, 8-3098	SpVector (e), 4-1450
Spec, 9-3726, 9-3736	Sqrt, 2-342, 2-350, 2-384, 2-488, 3-834,
SpecialEvaluate, 3-1246	3 -920, 3 -959, 3 -1080, 3 -1183,
SpecialLieAlgebra, 8-3241	4 -1302, 4 -1350, 4 -1378
SpecialLinearGroup, 5-2066	SquareFreeFactorization, 4-1309
SpecialOrthogonalGroup, 5-2070	SquarefreeFactorization, 2-293, 2-314,
SpecialOrthogonalGroupMinus, 5-2071	2 -435, 2 -468
SpecialOrthogonalGroupPlus, 5-2070, 2071	SquarefreePart, 2-468
SpecialPresentation, $5-2047$	SquarefreePartialFractionDecomposition,
SpecialUnitaryGroup, 5-2068	3- 1106
SpecialWeights, $5-2047$	SquareLatticeGraph, $12-5300$
SpecifyCharacteristic, 6-2305, 6-2312	SquareRoot, 2-342, 2-384, 2-488, 3-834,
Spectrum, 8-3392, 12-5300	3 -920, 3 -959, 3 -1080, 3 -1183,
Sphere, 3-746, 12-5034, 12-5314	4 -1302, 4 -1350, 4 -1378
SpherePackingBound, ${f 13}$ -5477	SQUFOF, 2 -310
Spin, 5-2072	SrAutomorphism, 11 - 4642
SpinMinus, 5-2073	SRegulator, $3-1215$
SpinorCharacters, 3 -722	SrivastavaCode, ${f 13}$ - 5461
SpinorGenera, 3-721	SSGaloisRepresentation, $7-3028$, 3029
SpinorGenerators, 3 -722	Stabiliser, 5 -1735
SpinorGenus, 3-721	StabiliserCode, ${f 13} extstyle{-}5625$
SpinorNorm, $2-638$, $5-2087$	StabiliserGroup, ${f 13} ext{-}5627$
SpinorRepresentatives, 3 -724	StabiliserMatrix, ${f 13} ext{-}5625$
SpinPlus, 5-2073	StabiliserOfSpaces, ${f 5}$ - 1856
Splice, 4 -1548	Stabilizer, $3-748$, $5-1735$, $5-1852$,
SpliceDiagram, 9-4010, 4011, 9-4013, 4014	11 -4671, 12 -5070, 12 -5251, 12 -5334
SpliceDiagramVertex, $9\text{-}4011$	StabilizerCode, ${f 13} extstyle{-}5625$
Split, 1-73	StabilizerGroup, ${f 13} ext{-}5627$
SplitAllByValues, $5\text{-}1798$	StabilizerLadder, $5-1767$
SplitCell, 5 -1798	StabilizerMatrix, $13-5625$
SplitCellsByValues, 5-1798	StandardAction, 8-3167, 8-3201
Splitcomponents, 12-5308, 12-5385	StandardActionGroup, 8-3167, 8-3201
SplitExtension, 5-1674, 5-1773, 5-2209	StandardAlternatingForm, 2-631
SplitMaximalToralSubalgebra, 8-3264	StandardBasis, 9-3516
SplitOctonionAlgebra, 7-2899	StandardCopy, 5-2115
SplitRealPlace, $11-4690$	StandardForm, 7 -2840, 13 -5432, 13 -5558

StandardFormConjugationMatrices, 7-2740	12 -5368, 12 -5403, 13 -5439, 13 -5530,
StandardGenerators, 5-2114, 8-3302	13 -5596
StandardGeneratorsGroupNames, 5-2114	SubalgebraFromBasis, 7-2778
StandardGraph, 12 -5278, 12 -5357	Subalgebra Tralygian Craph 8-2280
StandardGroup, 5-1686	SubalgebrasInclusionGraph, 8-3289
StandardHermitianForm, 2-632	SubcanonicalCurve, 9-4133 Subcode, 13-5439, 5440, 13-5530, 5531,
StandardLattice, 3-665	13-5596, 5597, 13-5620
StandardMaximalTorus, 8-3362	SubcodeBetweenCode, 13-5440, 13-5597
StandardMetacyclicPGroup, 5-2138	SubcodeWordsOfWeight, 13 -5440, 13 -5597
StandardParabolicSubgroup, 8-3163	SubfieldCode, 13-5467
StandardPresentation, 5-2029, 5-2115	SubfieldLattice, 3-1007
StandardPseudoAlternatingForm, 2-632	SubfieldRepresentationCode, 13-5467
StandardQuadraticForm, 2-632 StandardPopresentation, 8-3360, 8-3378	SubfieldRepresentationParityCode, 13-5467
StandardRepresentation, 8-3369, 8-3378, 8-3382	Subfields, 3-839, 3-1006, 3-1150
StandardRootDatum, 8-3097	SubfieldSubcode, 13-5467
StandardRootSystem, 8-3070	SubfieldSubplane, 12-5054
StandardSimplex, 12-5117	Subgroup, 6-2368, 6-2416, 11-4905, 4906,
StandardSymmetricForm, 2-633	11-4951
StandardTableaux, 12-5177	SubgroupClasses, 5-1664, 5-1721, 5-1845,
StandardTableauxOfWeight, 12-5177	5 -2010
Star, 7-2871, 7-2903	SubgroupLattice, 5-1668, 5-1726, 5-2011
StarInvolution, 11-4780	SubgroupOfTorus, $11-4791$
StarIredduciblePolynomials, 5-1835	Subgroups, 5-1664, 5-1721, 5-1845,
StarOnGroupAlgebra, 7-2873	5 -2010, 5 -2116, 6 -2258
StartEnumeration, 6-2410	SubgroupScheme, 10-4255, 11-4621, 11-4649
StartNewClass, 6-2426	SubgroupsData, 5-2116
Stauduhar, 3-988	SubgroupsLift, 5-1723, 5-1847
SteenrodOperation, 9-3619	Sublattice, 12 -5147, 5148
SteinitzClass, 4-1533	SublatticeClasses, 3-774
SteinitzForm, 4-1533	SublatticeLattice, 3-777, 778
SternsAttack, 13-5474	Sublattices, 3-773, 774
StirlingFirst, 2-299, 12-5158	Submatrix, 2 -537, 538, 2 -580, 7 -2726
StirlingSecond, 2-299, 12-5158	SubmatrixRange, 2 -538, 2 -580
StoreFactor, 2-307	Submodule, 9-3559 SubmoduleAction, 5-1862
StringToCode, 1-69	SubmoduleImage, 5-1862
StringToInteger, 1-70	SubmoduleLattice, 7 -2928
StringToIntegerSequence, 1-70	SubmoduleLatticeAbort, 7-2928
Strip, 5-1788	Submodules, 7-2929
StrongApproximation, 3-1253	SubnormalSeries, 5-1658, 5-1752, 5-1864,
StrongGenerators, 5-1787, 1788, 5-1879	5-2018, 6 -2256
StronglyConnectedComponents, 12-5307,	SubOrder, 3-883, 3-1138
12 -5384	Subring, 11-4906
StronglyRegularGraphsDatabase, 12-5339	Subsequences, 1-188, 12-5159
StructureConstant, 7-2994	subset, 1-186, 2-276, 2-343, 2-439,
StructureConstants, 4-1564, 8-3133	2 -614, 3 -677, 3 -745, 3 -832, 3 -917,
StructureSheaf, 9-3862	3 -953, 3 -957, 3 -1008, 3 -1030,
SU, 5-2068	3 -1166, 3 -1239, 4 -1508, 4 -1530,
sub, 2-287, 2-339, 2-370, 371, 2-608,	4 -1594, 5 -1647, 5 -1672, 5 -1715,
3 -678, 3 -738, 3 -817, 3 -845, 3 -852,	5 -1825, 5 -2004, 6 -2252, 6 -2360,
3 -880, 3 -883, 3 -1129, 3 -1226,	6 -2463, 2464, 6 -2579, 7 -2624, 7 -2663,
4- 1326, 4- 1507, 4- 1526, 4- 1546,	7 -2683, 7 -2688, 7 -2724, 7 -2918,
5 -1632, 5 -1712, 5 -1840, 5 -2001,	7 -2930, 8 -3082, 8 -3125, 8 -3249,
6 -2243, 2244, 6 -2333, 6 -2455, 6 -2590,	8 -3347, 9 -3467, 9 -3520, 9 -3530,
7 -2619, 7 -2713, 7 -2750, 7 -2778,	9 -3563, 9 -3749, 9 -3833, 9 -3941,
7 -2916, 7 -2941, 8 -3082, 8 -3124,	11-4664, 11-4818, 11-4832, 11-4867,
8 -3247, 9 -3558, 12 -5054, 12 -5288,	11-4916, 11-4959, 12-5058, 12-5060,

12- 5121, 12- 5239, 12- 5286, 13- 5442,	SuSpace (v), $4-1449$
13 -5531, 13 -5599	Suspension, $12-5033$
Subsets, 1-187, 188, 12-5159	SuVector (e), $4-1450$
Substitute, 6 -2403, 6 -2593	SuzukiGroup, 5-2073
Substring, 1-69	SuzukiIrreducibleRepresentation, 5 -2097
SubsystemSubgroup, 8-3361	SuzukiMaximalSubgroups, 5-2107
Subtensor, 4-1602	SuzukiMaximalSubgroupsConjugacy, 5-2107
SubtensorSpace, 4-1605	SuzukiSylow, 5-2109
SubWeights, 8-3386	SuzukiSylowConjugacy, 5-2110
Subword, 6-2403, 6-2593	SVPermutation, 5-1788
SuccessiveMinima, 3-711	SVWord, 5-1788
SuggestedPrecision, 4-1310, 4-1334	SwapColumns, 2-540, 2-582, 7-2727
Sum, 8-3079, 8-3119, 8-3157, 12 -5232	SwapRows, 2-540, 2-582, 7-2727
SuMatrix (r, c, A), 4-1447	SwinnertonDyerPolynomial, 2-442
SuMatrix (v), 4-1447	Switch, 12-5294
SuMatrixSpace (S, r, c), 4-1446	Sylow, 5-1654, 5-1718, 5-1843, 5-2009,
Summands, $12-5148$	6 -2255, 10 -4475
SumNorm, $2-431$, $2-472$	SylowBasis, $5\text{-}2009$
SumOf, $11-4920$	SylowSubgroup, $5-1654$, $5-1718$, $5-1843$,
SumOfBettiNumbersOfSimpleModules, ${f 7}$ -2810	5 -2009, 6 -2255, 8 -3368
SumOfDivisors, 2-297, 2-314	SylowSystem, $5-1951$
SumOfImages, 11 - 4920	Sym, 5-1636, 5-1686, 5-1696, 6-2285
SumOfMorphismImages, 11-4920	SymmetricBilinearForm, $2-464$, $5-2085$
SUnitAction, 3-964	SymmetricCharacter, 7 -3019, 12 -5212
SUnitCohomologyProcess, 3-1009	SymmetricCharacterTable, 7-3019
SUnitDiscLog, 3-964	SymmetricCharacterValue, 7-3019
SUnitGroup, 3 -962, 3 -1215	SymmetricCotensorSpace, 4-1590
Superlattice, 12-5148	SymmetricElementToWord (G, g), 5-1780,
SuperScheme, 9-3741	5-2078
SupersingularEllipticCurve, 10-4242	SymmetricForms, 3 -771, 5 -1965
SupersingularModule, 11-4826	SymmetricFunctionAlgebra, 12-5200
SupersingularPolynomial, 10-4279	SymmetricFunctionAlgebraElementary,
SuperSummitCanonicalLength, 6-2503	12-5200
SuperSummitInfimum, 6-2503	SymmetricFunctionAlgebraHomogeneous, ${f 12} ext{-}5200$
SuperSummitProcess, 6-2523	
SuperSummitRepresentative, 6-2520	SymmetricFunctionAlgebraMonomial, 12-5200
SuperSummitSet, 6-2520	SymmetricFunctionAlgebraPower, 12-5200
SuperSummitSupremum, 6-2503	SymmetricFunctionAlgebraSchur, 12-5200
Supplements, 5-1764	SymmetricGroup, 5-1636, 5-1686, 5-1696,
Support, 2-423, 2-577, 2-604, 3-673,	6-2285
3 -843, 3 -960, 3 -971, 3 -1194, 3 -1205,	SymmetricMatrix, 2-532, 3-785
4 -1506, 5 -1732, 7 -2633, 7 -2756,	SymmetricNormaliser, 5-1718
7 -2916, 8 -3272, 9 -3837, 9 -3968,	SymmetricNormalizer, 5-1718
12 -5053, 12 -5209, 12 -5236, 12 -5240,	SymmetricPower, $7-2717$, $8-3380$, $8-3391$,
12 -5278, 12 -5357, 13 -5436, 13 -5538,	8 -3399, 9 -3693, 10 -4590, 10 -4596
13 -5595	SymmetricRepresentation, 6 -2532, 7 -3017
SupportingCone, ${f 12}$ -5126	SymmetricRepresentationOrthogonal, ${f 7}$ - 3018
Supremum, $6-2502$	SymmetricRepresentationSeminormal, 7-3018
Surface, $9-4023$	SymmetricSpace, $4-1590$
SuRing (F), 4-1440	SymmetricSquare, $3-683$, $7-2717$, $7-2961$
SuRing (F, nu), 4-1440	SymmetricTensor, 4-1569
Suring (p), 4-1440	SymmetricToQuadraticForm, 2 - 636
SuRing (p), $4-1440$ SuRing (p, e), $4-1440$	SymmetricToQuadraticForm, 2-636 SymmetricWeightEnumerator, 13-5569
SuRing (p, e), $4-1440$	SymmetricWeightEnumerator, ${f 13}$ - 5569
SuRing (p, e), 4-1440 SuRing (S), 4-1441	SymmetricWeightEnumerator, ${\bf 13}$ - 5569 Symmetrization, ${\bf 7}$ - 3000 , ${\bf 10}$ - 4597
SuRing (p, e), 4-1440 SuRing (S), 4-1441 SuRing (S, nu), 4-1441	SymmetricWeightEnumerator, ${\bf 13}$ - 5569 Symmetrization, ${\bf 7}$ - 3000 , ${\bf 10}$ - 4597 SymplecticBasis, ${\bf 2}$ - 630
SuRing (p, e), 4-1440 SuRing (S), 4-1441 SuRing (S, nu), 4-1441 SurjectivePart, 11-4887	SymmetricWeightEnumerator, $13\text{-}5569$ Symmetrization, $7\text{-}3000$, $10\text{-}4597$ SymplecticBasis, $2\text{-}630$ SymplecticDual, $13\text{-}5628$
SuRing (p, e), 4-1440 SuRing (S), 4-1441 SuRing (S, nu), 4-1441	SymmetricWeightEnumerator, ${\bf 13}$ - 5569 Symmetrization, ${\bf 7}$ - 3000 , ${\bf 10}$ - 4597 SymplecticBasis, ${\bf 2}$ - 630

SymplecticInnerProduct, ${f 13}$ - 5628	TensorFactors, $5-1894$
SymplecticMatrixGroupDatabase, 5-2163	TensorInducedAction, 5 -1896
SymplecticSpace, 2 - 634	TensorInducedBasis, 5 - 1896
SymplecticSymmetrization, $7-3000$, $10-4598$	TensorInducedPermutations, ${f 5}$ - 1896
SymplecticTransvection, $8-3182$	TensorOnVectorSpaces, 4 - 1569
Syndrome, $13-5435$, $13-5563$	TensorOverCentroid, $4-1583$
SyndromeDecode, $13-5573$	TensorPower, $7-2961$, $8-3390$, $9-3867$
SyndromeDecoding, $13-5485$	TensorProduct, $2-604$, $2-615$, $3-682$,
SyndromeSpace, $13-5433$, $13-5563$	7 -2715, 7 -2717, 7 -2764, 7 -2961,
System, 1-94	8 -3322, 8 -3380, 8 -3390, 8 -3399,
SystemNormaliser, $5-2009$	9 -3585, 9 -3867, 10 -4590, 4591,
SystemNormalizer, 5-2009	12 -5296
SystemOfEigenvalues, 11 - 4786	TensorSpace, $4-1587$
SystemOfForms, $4-1565$	TensorWreathProduct, 5-1816
SyzygyMatrix, 9-3501	Term, $2-457$, $4-1547$
SyzygyModule, 7 -2797, 9 -3565	TerminalIndex, $9-4126$
SzClassMap, 5-2113	Terminalisation, $9-4173$, $9-4197$
SzClassRepresentative, 5-2113	TerminalPolarisation, $9-4126$
SzConjugacyClasses, 5-2113	TerminalVertex, $12-5287$, $12-5359$
SzElementToWord, 5-2097	Terms, 2-423, 2-457, 4-1547, 7-2674,
SzIsConjugate, 5-2113	9 -3552, 9 -3675
SzPresentation, 5-2097	TestHeckeRep, 8-3172
Tableau, 12-5174	TestWG, 8-3171
TableauIntegerMonoid, 12-5172	Theta, $2-511$
TableauMonoid, 12-5172	ThetaOperator, $11-4780$
Tableaux, 12 -5212	ThetaSeries, 3-711, 3-802, 11-4820
TableauxOfShape, 12-5177	ThetaSeriesIntegral, 3-712
TableauxOnShapeWithContent, 12-5177	ThetaSeriesModularForm, 3-715
TableauxWithContent, 12-5177	ThetaSeriesModularFormSpace, 3-715
TableOfMarks, 5-1726, 5-2011	ThreeDescent, 10-4369
TaftDecomposition, 7-2876	ThreeDescentByIsogeny, 10-4373
Tails, 6-2426	ThreeDescentCubic, 10-4371
TamagawaNumber, 10-4305, 11-4800, 11-4973	ThreeIsogenyDescent, 10-4372
TamagawaNumbers, 10-4305	ThreeIsogenyDescentCubic, 10-4373
TameOrder, 7 -2834	ThreeIsogenySelmerGroups, 10-4372
Tan, 2-500, 4-1354	ThreeSelmerElement, 10-4374
Tangent, 12-5065	ThreeSelmerGroup, $10-4371$
TangentAngle, 11-4672, 11-4698	ThreeTorsionMatrices, 10-4375
TangentCone, 9-3754, 9-3921	ThreeTorsionPoints, 10-4375
TangentLine, 9-3921	ThreeTorsionType, 10-4374
TangentSheaf, 9-3864	Thue, 3 -943, 944
TangentSpace, 9-3754	TietzeProcess, 6-2379
TangentVariety, 9-3818	TjurinaNumber, 9-3473
Tanh, 2-503, 4-1354	TjurinaNumberAnalyticHypersurface, 9-3756
TannerGraph, 13-5513	To2DUpperHalfSpaceFundamentalDomian,
TargetRestriction, 3-1056	10-4516
TateLichtenbaumPairing, 3-1216	ToAnalyticJacobian, 10-4514
TatePairing, 10-4290	ToddCoxeter, 6-2336
TateTwist, 3-1065, 4-1483, 10-4548,	ToddCoxeterSchreier, 5-1784, 5-1877
10-4589	ToLiE, 8-3406
TeichmuellerLift, 4-1302	Top, 3-1007, 5-1670, 7-2930
TeichmuellerSystem, 3-1241	TopQuotients, 5-2142
Tell, 1-83	Tor, 9-3585
Tempname, 1-94	ToralRootDatum, 8-3098
Tensor, 4-1562, 4-1564-1566	ToralRootSystem, 8-3070
TensorBasis, 5-1894	ToricAffinePatch, 9-4180
TensorCategory, 4-1571, 4-1597, 4-1600,	ToricCode, 13-5506
4-1608	ToricIdentityMap, 9-4195
1 1000	Tolloluenologiap, o 4100

ToricLattice, 12-5143, 12-5147Transport, 6-2527ToricVariety, 9-4176-4178, 9-4183, 9-4186 Transpose, 2-545, 2-586, 4-1541, 7-2721 ToricVarietyMap, 9-4195 TransposePartition, 8-3407TorsionBound, 10-4348, 10-4392, 10-4476, Transvection, 8-3180**11-**4798 Transversal, 2-615, 5-1652, 5-1768, **5**-1868, **5**-2021, **6**-2254, **6**-2355, 2356, TorsionCoefficients, 12-5036**6**-2368, **6**-2423, **6**-2465, **8**-3164, 3165 ${\tt TorsionFreeRank,~6-}2250,~6-2320$ TorsionFreeSubgroup, 6-2251TransversalElt, 8-3164, 3165 TransversalProcess, $\mathbf{5}$ -1768TorsionInvariants, $\mathbf{6}$ -2250TorsionLowerBound, 11-4962TransversalProcessNext, 5-1768 TransversalProcessRemaining, 5-1768TorsionMultiple, 11-4962TorsionSubgroup, 6-2251, 10-4289, 10-4347, TransversalWords, 8-3164 **10**-4392, **10**-4476, **11**-4963 TransverseIndex, 9-4128 TorsionSubgroupScheme, 10-4255TransverseIntersections, 9-4010TorsionUnitGroup, $\mathbf{3}$ -936 TransverseType, 9-4127 Torus, 12-5034TrapezoidalQuadrature, 2-517TorusTerm, 8-3353TrialDivision, 2-309, 3-859TotalDegree, 2-460, 3-1104, 7-2675Triangular Decomposition, 9-3491TotalLinking, 9-4012TriangularGraph, 12-5300Triangulation, 12-5132TotallyRamifiedExtension, 4-1279, 4-1358 TotallySingularComplement, 2-637 TriangulationOfBoundary, 12-5132 TotallyUnitTrivialSubgroup, 3-1053 TrivialLieRepresentationDecomposition, TotalNumberOfCosets, 6-2416 8-3377 ${\tt Trivial Module, \cite{T-}} 2947$ Trace, 2-292, 2-362, 2-383, 2-551, **2**-605, **3**-836, **3**-926, **3**-1088, **3**-1173, TrivialOneCocycle, 5-2219 4-1300, 4-1333, **5**-1822, **7**-2660, TrivialRepresentation, 8-3378, 8-3382 **7**-2721, **7**-2756, **7**-2837, **10**-4284, TrivialRootDatum, 8-3098 **11**-4901, **13**-5436, **13**-5467, **13**-5595 TrivialRootSystem, 8-3070 TraceAbs, 2-383, 3-837, 3-926Truncate, 2-293, 2-363, 2-486, 4-1349, Traceback, 1-106**9**-*36*55 ${\tt TraceInnerProduct,~13-}5595$ TruncateCoefficients, 9-3676 TraceMatrix, 3-915TruncatedAlgebra, 7-2780 TraceOfFrobenius, 10-4284, 10-4390Truncation, 12-5093Tuple, 10-4410 TraceOfFrobeniusDirect, 10-4306 TraceOfProduct, 2-551 TupleToList, 1-220, 1-226Tuplist, 1-220, 1-226 TracesOfFrobenius, 10-4306 TwelveDescent, $\mathbf{10}$ -4375TraceZeroSubspace, 7-2655Twist, 9-3563, 9-3863, 10-4532TrailingCoefficient, 2-422, 2-455, 456, **7**-2674 TwistedBasis, 8-3259TrailingTerm, 2-423, 2-458, 7-2675TwistedCartanName, 8-3101 Transformation, 10-4450TwistedDual, 2-652TransformationMatrix, 3-913, 3-951, TwistedGroup, 5-2220 **3-**1142, **3-**1189 TwistedGroupOfLieType, 8-3345 TransformForm, 5-2086, 2087TwistedLieAlgebra, 8-3238 ${\tt TransitiveGroup,~5-} 2148,~2149$ TwistedPolynomials, 3-1243 ${\tt TransitiveGroupDatabaseLimit, 5-} 2148$ TwistedQRCode, 13-5462 ${\tt TwistedRootDatum,~8-} 3128$ TransitiveGroupDescription, $\mathbf{5}$ -2148 ${\tt Transitive Group Identification, \, 5-} 2152$ TwistedSemilinearDual, 2-652 TransitiveGroupProcess, 5-2151TwistedTori, 8-3367TransitiveGroups, 5-2149TwistedToriOrders, 8-3366 TransitiveQuotient, 5-1747 TwistedTorus, 8-3367 TwistedTorusOrder, 8-3366Transitivity, 5-1736 Translate, 10-4589TwistedWindingElement, 11-4790 Translation, 9-3676, 9-3807, 9-3811, TwistedWindingSubmodule, 11-4791 TwistingDegree, 8-3103Twists, 10-4248, 10-4431TranslationMap, 9-3678, 10-4263TranslationOfSimplex, 9-3811 TwoCocycle, 3-1039, 5-2205TranslationToInfinity, 9-3934 TwoCover, 10-4354

TwoCoverDescent, 10-4491	UnitEquation, $3-945$
TwoCoverPullback, 10-4367	UnitGenerators, 2-347
TwoDescendantsOverTwoIsogenyDescendant,	UnitGroup, 2-287, 2-339, 2-344, 2-359,
10- 4355	2 -377, 2 -404, 3 -936, 3 -966, 3 -1162,
TwoDescent, 10-4353, 10-4394	4 -1317, 7 -2864
TwoElement, 3 -952, 3 -1188	UnitGroupAsSubgroup, 3-937
TwoElementNormal, 2-336, 3-953	UnitGroupGenerators, 4-1317, 1318
TwoGenerators, 3-1198, 9-3962	UnitRank, 3-829, 3-910, 3-936, 3-1162
TwoGenus, 9-4135	Units, 7-2863
TwoIsogeny, 10-4263	UnitTrivialSubgroup, 3-1053
TwoIsogenyDescent, 10-4355	UnitVector, 9-3550
TwoIsogenySelmerGroups, 10-4395	Unity, 3-1240, 3-1243
TwoPowerIsogenyDescentRankBound, 10-4377	UnivariateEliminationIdealGenerator,
TwoSelmerGroup, 10-4359, 10-4394, 10-4484	9-3476
TwoSidedIdealClasses, 7-2853	UnivariateEliminationIdealGenerators,
TwoSidedIdealClassGroup, 7-2853	9-3476
TwoTorsionPolynomial, 10-4254	UnivariatePolynomial, 2-461
TwoTorsionSubgroup, 3-800, 10-4347,	UniversalCotensorSpace, 4-1597
10-4476	UniversalEnvelopingAlgebra, 8-3278
TwoTransitiveGroupIdentification, 5-1777	UniversalMap, 1-239
Type, 1-28, 1-178, 2-268, 2-270, 3-675,	UniversalPropertyOfCokernel, 11-4887
3-822, 3-833, 9-3647, 9-3653,	UniversalTensorSpace, 4-1597
9-3670, 9-3673, 10-4215, 10-4253, 10-4256, 10-4259, 10-4270, 11-4814	Universe, 1-178, 1-200, 1-231, 6-2238
	UniverseCode, 13-5426, 13-5526
TypeOfContraction, 9-4198	UnlabelledGraph, 12-5365
TypeOfSequence, 3-1109	UnramifiedCharacter, 4-1461
Types, 12-5089	UnramifiedExtension, 4-1277, 4-1358
TypesOfContractions, 9-4198	UnramifiedQuotientRing, 4-1277
UltraSummitProcess, 6-2523	UnramifiedRepresentation, 4-1462
UltraSummitRepresentative, 6-2520	UnsetBounds, 13-5667
UltraSummitSet, 6-2520	UnsetGlobalTCParameters, 6-2340
UncapacitatedGraph, 12-5366	UnsetLogFile, 1-93, 1-103
Undefine, 1-205	UnsetOutputFile, 1-82, 1-103
UnderlyingDigraph, 12-5297, 12-5377	UntwistedOvergroup, 8-3345
UnderlyingElement, 5-2056	UntwistedRootDatum, 8-3129
UnderlyingField, 3-1139, 9-3647	UnweightedGraph, 12-5366
UnderlyingGraph, 9-4008, 9-4011, 12-5033,	UpdateHadamardDatabase, 12-5264
12 -5297, 12 -5377	UpperCentralSeries, 5-1658, 5-1751,
UnderlyingMultiDigraph, 12-5378	5 -1864, 5 -2018, 6 -2256, 6 -2474,
UnderlyingMultiGraph, 12-5377	8-3266
UnderlyingNetwork, 12-5378	UpperHalfPlane, $11-4669$
UnderlyingRing, 3-1139, 9-3647, 9-4182	UpperTriangularMatrix, 2-532
UnderlyingVertex, 9-4011	UserGenerators, 6-2238
Ungetc, 1-84	UserRepresentation, $6-2241$
Uniformizing Element, $3-844$, $3-948$, $3-972$,	UsesBrandt, 11 - 4832
3 -1198, 4 -1284, 4 -1291, 4 -1332,	UsesMestre, $11-4832$
4 -1344, 4 -1360	UseTwistedHopfStructure, $8-3323$
UniformizingParameter, $9-3952$, $9-3965$	Valence, 4-1571, 4-1597, 4-1601, 12-5304
Union, 9-3736, 9-3909, 12-5232, 12-5295,	Valency, $9-4012$
12 -5375, 5376	ValidateCryptographicCurve, ${f 10}$ - 4287
UnipotentMatrixGroup, 5-1934	Valuation, 2-293, 2-336, 2-364, 2-423,
UnipotentStabiliser, 5-1857	2 -427, 3 -842, 3 -928, 3 -950, 3 -971,
UnitalFeet, $12-5067$	3 -1176, 3 -1188, 3 -1198, 3 -1207,
UnitaryForm, 5-2085	3 -1220, 4 -1298, 4 -1333, 4 -1349,
UnitaryReflection, 8-3183	4 -1362, 4 -1373, 4 -1399, 9 -3952,
UnitarySpace, 2-635	9 -3958, 9 -3964, 3965, 9 -3972
UnitaryTransvection, 8-3182	ValuationRing, 3-1102, 4-1397
UnitDisc, 11-4695	ValuationsOfRoots, 4-1305, 4-1421

ValueList, 2-349 WeberToHilbertClassPolynomial, 11-4626 ValuesOnUnitGenerators, 2-349 WedderburnDecomposition, 7-2875 VanLintBound, 13-5477 WeierstrassDegree (f), 4-1442VariableExtension, 9-3481 WeierstrassDegrees (M), 4-1447 VariableWeights, 9-3424 WeierstrassDegrees (v), 4-1450VariantRepresentatives, 2-399WeierstrassModel, 10-4245Variety, 9-3471, 9-3835, 9-4189WeierstrassPlaces, 3-1145, 3-1196, **3**-1210, **9**-3962, **9**-3976 VarietySequence, 9-3472 VarietySizeOverAlgebraicClosure, 9-3472 WeierstrassPoints, 9-3976 Vector, 2-535, 3-749, 9-3551, 12-5146 WeierstrassPreparation (f), 4-1444 VectorAction, 7-2892 WeierstrassSeries, 2-507, 3-802VectorSpace, 2-359, 2-377, 2-600, 601, WeierstrassTerm (f), 4-1442 **2**-613, **3**-826, **3**-906, **5**-1814, **7**-2688, WeierstrassTerms (M), 4-1447**7**-2772, **9**-3532, **11**-4723, **11**-4768, WeierstrassTerms (v), 4-1450**11**-4880, **11**-4913, **12**-5055, **13**-5430 Weight, 2-605, 4-1419, 4-1506, 6-2271, VectorSpaceWithBasis, 2-616**8**-3402, **10**-4532, **10**-4548, **10**-4589, Verify, 5-1784, 5-1877 **11-**4731, **11-**4983, **12-**5164, **12-**5180, VerifyMinimumDistanceLowerBound, 13-5447 **12**-5364, **13**-5435, **13**-5537, **13**-5595 VerifyMinimumDistanceUpperBound, 13-5448 WeightClass, 5-2046 VerifyMinimumWeightUpperBound, 13-5448 WeightDistribution, 13-5450, 13-5540, **13**-5565, **13**-5603, **13**-5630 VerifyRelation, 3-1004WeightedAffinePatch, 9-3774VerschiebungImage, 3-1241 VerschiebungMap, 3-1241 WeightedDegree, 3-1104, 9-3424, 9-3552Vertex, 9-4003, 9-4011WeightedDynkinDiagram, 8-3294 WeightedProjectiveSpace, 9-4177 VertexConnectivity, 12-5310, 12-5386 WeightEnumerator, 13-5451, 13-5541, VertexEdgeIncidenceMatrix, 12-5142 VertexFacetHeightMatrix, 12-5142 **13**-5569, **13**-5603 WeightLattice, 8-3122, 8-3159, 8-3206, VertexFacetIncidenceMatrix, 12-5142 8-3361 VertexLabels, 9-4012, 12-5361 WeightOneHalfData, 11-4731, 11-4738VertexPath, 9-4013, 12-5317 WeightOrbit, 8-3123, 8-3160, 8-3207 VertexSeparator, 12-5310, 12-5385 ${\tt VertexSet, 12-} 5284$ Weights, 7-3029, 8-3384, 8-3398, 8-3402, VerticalJoin, 2-543, 2-583, 4-1541, **9**-4131, **11**-4856, **12**-5364 **7**-2726 WeightsAndMultiplicities, 8-3384 Vertices, 4-1416, 9-4011, 12-5122, WeightsAndVectors, 8-3321, 8-3398, 8-3402 WeightSequence, 8-3327 **12**-5284 VirtualDecomposition, 8-3387 WeightsOfFlip, 9-4198 VirtualRayIndices, 9-4170 WeightToPartition, 8-3407WeightVectors, 8-3402VirtualRays, 9-4170 Volume, 3-743, 12-5127Weil, 9-4189WeilDescent, 3-1223, 10-4296 VolumeOfBoundary, 12-5127 Voronoi, 10-4523WeilDescentDegree, 3-1224, 10-4297VoronoiCell, 3-716 WeilDescentGenus, 3-1224, 10-4297WeilHeight, $\mathbf{10}\text{-}4309$ VoronoiData, 11-5001 WeilPairing, 10-4275, 10-4290, 10-4468 VoronoiGraph, 3-716 VoronoiRelevantVectors, 3-716 WeilPolynomialOfDegree2K3Surface, 9-4139WeilPolynomialOverFieldExtension, 9-4137 WaitForConnection, 1-89 WaitForIO, 1-90WeilPolynomialToRankBound, 9-4136 WeilRepresentation, 11-5014WallDecomposition, 2-647WallForm, 2-647WeilRestriction, 3-1140, 9-3778WallIsometry, 2-647 WeilToClassGroupsMap, 9-4185 WeakApproximation, 3-961, 3-1192WeilToClassLatticesMap, 9-4185 WeylGroup, 8-3260, 3261, 8-3350 WeakDegree, 9-3675 WeylWord, 8-3327WeakOrder, 9-3675WeberClassPolynomial, 11-4625WG2GroupRep, 8-3173WeberF, 2-509WG2HeckeRep, 8-3173WeberF1, 2-510 WGelement2WGtable, 8-3172 WeberF2, 2-509, 510 WGidealgens2WGtable, 8-3173

WGtable2WG, $8-3171$	ZariskiDecomposition, $9-3844$
Width, $12-5139$	ZassenhausNearfield, ${f 2}$ - 400
Widths, $11\text{-}4674$	ZBasis, 7 -2655, 7 -2662, 8 -3228
WindingElement, ${f 11}$ - 4790	ZClasses, 5-1968
WindingLattice, ${f 11}$ - 4790	ZechLog, 2 -388
WindingSubmodule, 11-4790	Zero, 2-271, 2-285, 2-340, 2-358, 2-375,
WittDecomposition, 2-630	2 -403, 2 -418, 2 -451, 2 -483, 2 -602,
WittDesign, 12 -5234	3 -671, 3 -746, 3 -821, 3 -894, 3 -1079,
WittIndex, 2-630	3 -1101, 3 -1170, 3 -1240, 3 -1243,
WittInvariant, 3-786	4 -1290, 4 -1345, 4 -1405, 4 -1503,
WittInvariants, 3-787	7 -2619, 7 -2658, 7 -2671, 7 -2836,
WittLieAlgebra, 8-3241	7 -2915, 7 -2984, 8 -3219, 8 -3245,
WittRing, 3-1240	8 -3280, 8 -3318, 9 -3550, 9 -3646,
Word, 12-5183	9 -3669, 12 -5145
WordAcceptor, 6-2562	ZeroChainMap, 4-1552
WordAcceptorSize, 6-2562	ZeroCocycle, 5 -2204
WordDifferenceAutomaton, 6-2562	ZeroCode, 13-5426, 13-5526
WordDifferences, 6-2562	ZeroComplex, 4-1545
WordDifferenceSize, 6-2562	ZeroCone, 12 -5118
WordGroup, 5-1770, 5-1869	ZeroDivisor, 3 -1205, 9 -3836, 9 -4187
•	Zeroes, 3-829, 3-910, 3-1176
WordInStrongGenerators, 5-1789	ZeroExtension, $4-1549$
WordMap, 5-1934	ZeroFan, 9-4164
WordProblem, 7-2742	ZeroGammaOrbitsOnRoots, 8-3103
WordProblemData, 7-2742	ZeroMap, 7 -2794, 11 -4885, 12 -5149
Words, 13-5453, 13-5604	ZeroMatrix, 2-531
WordsOfBoundedLeeWeight, 13-5567	ZeroMatrix (S), 4-1446
WordsOfBoundedWeight, 13-5454, 13-5605	ZeroMatrix (S, n), 4-1446
WordsOfLeeWeight, 13-5566	ZeroMatrix (S, r, c), 4-1446, 1447
WordStrip, 5-1788	ZeroModularAbelianVariety, 11-4853
WordToSequence, 6-2501	ZeroModule, 7-2788
WordToTableau, 12-5174	ZeroRepresentation, 4-1460
WPS, 9-4177	ZeroRootLattice, 8-3111
WreathProduct, 5-1699, 5-1816, 5-1989	ZeroRootSpace, 8-3111
Write, $1-81$, $1-87$, $1-90$	Zeros, 3-910, 3-1176, 3-1194, 9-3963
WriteBinary, $1-81$	ZeroSubgroup, 11-4951
WriteBytes, 1-87, 1-90	ZeroSubscheme, 9-3877
WriteGModuleOver, 7 -2959	
WriteHadamardDatabase, ${f 12}$ - 5264	ZeroSubspace, 11-4732
WriteK3Data, 9 - 4148	ZeroSumCodo 12-5426 12-5526
WriteOverLargerField, ${f 5} extsf{-}1892$	ZeroSumCode, $13-5426$, $13-5526$ ZeroVector (S), $4-1450$
WriteOverSmallerField, $5-1902$, $7-2957$	ZetaFunction, 2-516, 3-1161, 9-3954,
WriteRawHadamardData, ${f 12}$ - 5265	10-4286, 10-4448
WriteRepresentationOver, ${f 7}$ -2959	ZetaFunctionOfCurveModel, 9-3955
WriteWG, $8-3173$	
WronskianDeterminant, $9\text{-}3667$	ZetaFunctionsByDeformation, 10-4474
WronskianMatrix, 9 - 3667	ZGenerators, 12-5133
WronskianOrders, $3-1145$, $3-1211$, $9-3953$,	ZinovievCode, 13-5471
9 -3976	
WZWFusion, $8-3408$	
X, 9-3748	
XGCD, 2 -295, 2 -429, 4 -1399, 4 -1408	
XGcd, 3 -967	
Xgcd, 2-295, 2-429, 4-1399	
Xor, 1-209	
xor, 1-11	
YoungSubgroup, 5-1697	
YoungSubgroupLadder, 5-1767	
Z4CodeFromBinaryChain, 13-5553	
•	