

Sharif University of Technology

School of Electrical Engineering
Principles of Biomedical Engineering
Dr. Ali Ghazizadeh
Fall Semester 1400

Homework 2 - Cell potential

Note:

- Please upload your assignment on CW.
- You can either type or scan your answers but it should be legible.
- Your file name should be in format of HW#_Name_Student ID.
- Do not copy other students' answers.
- If you have any questions regarding this assignment, message $@asadian_ah$ in Telegram or email ahosseina98@gmail.com.

Problem 1.

Choose the correct answer.

- 1. Which of the following values is unnecessary when finding the equilibrium potential of an ion using the Nernst equation?
 - a) The temperature
 - b) The ratio of external and internal ion concentrations.
 - c) The charge of the ion
 - d) The permeability of the ion channel

- 2. The resting membrane potential is close in value to the Nernst equilibrium potential for ——— because ———.
 - a) Na⁺ / there is a leakage of Na⁺ ions through the membrane channels
 - b) K⁺ / there is a leakage of Ca²⁺ ions through the membrane channels
 - c) K⁺ / the membrane is very permeable to K⁺ ions at rest
 - d) Na⁺ / due to its large driving force
 - e) Cl⁻ / because it's the only negatively charged ion
- 3. What effect does an intravenous injection of KCl have on behavior of neurons?
 - a) Extracellular [K⁺] decreases and therefore the membrane potential gets closer to Na+ equilibrium potential.
 - b) The membrane potential becomes more negative and it becomes more difficult to generate action potentials.
 - c) Extracellular [K⁺] increases and therefore the membrane potential gets closer to Na+ equilibrium potential.
 - d) None of the above is true.
- 4. What would happen to the resting membrane potential of a neuron if sodium (Na⁺) channels were normally open in the membrane, but everything else was the same?
 - a) Nothing much would happen, and it would remain at approximately -65 mV.
 - b) It would be less negative than the normal resting potential.
 - c) It would be more negative than the normal resting potential.
 - d) It would lose its polarization and stand at exactly 0 mV (no difference between inside and outside of the neuron).
 - e) None of the above.

Problem 2.

Drive Goldman equation when we have four ions of Ca²⁺, Cl⁻, K⁺, Na⁺.

Problem 3.

Consider the following values for concentration and membrane permeability of each ion and answer the following questions.

Ion	Relative Permeability	ICF	ECF
K^{+}	1	300	30
Na ⁺	0.1	20	500
Cl	0.15	40	400

$$R_k = 1.7 \text{ K}\Omega, R_{Na} = 15.7 \text{ K}\Omega, R_C = 3.5 \text{ K}\Omega$$

- a) If there were no active pump mechanism (i.e. the current sources were zero) what would be the resting membrane potential and ion currents according to parallel-conductance membrane model?
- b) Which Nernst potential is close to resting potential of membrane?
- c) If both pumps are active, can you use the Goldman equation with all ions to calculate the resting potential? Explain your answer.

Problem 4.

Assume $I_m(t)$ is applied to cell membrane. Calculate and plot cell membrane potential. $(t_0 = 6ms, K = 15\mu A)$

$$R_k = 1.7 \text{ K}\Omega, R_{Na} = 15.67 \text{ K}\Omega, R_C = 3.125 \text{ K}\Omega$$

 $E_k = 150 \text{ mv}, E_{Na} = 56 \text{ mv}, E_{Cl} = 150 \text{ mv}, C_m = 1 \text{ μF}$

Problem 5.

Equlibrium concentrations of intracellular and extracellular ions are shown for a 'normal' marine algal cell (Valonia ventricosa) in the table below. The reported membrane potential is -70 mV (negative-inside)¹.

a) For the four ions below, sort ions based on their predicted relative permeabilities, given the reported resting voltage. Then find a way to approximate the relative permeability of each ion with respect to the most permeable ion.

Ion	Extracellular(mM)	Intracellular(mM)	
Na ⁺	490	40	
K^{+}	10	435	
Ca ²⁺	1.0	$< 10^{-4}$	
Cl ⁻	560	140	

¹Gutknecht J (1966) Sodium, potassium, and chloride transport and membrane potentials in Valonia ventricosa. The Biological Bulletin 130:331–344.

b) For the most permeable ion (in a), calculate the net concentration of imbalanced charge that would cause a potential of -100 mV. Valonia is a spherical cell with a diameter of 1 centimeter.

(Equations and constants are provided. Please be sure that you show units.)

$$\mathbf{Q}=\mathbf{C}$$
. ΔE , (coulombs) = (coulombs/volt) (volt)
Charge (Q) for a spherical cell of radius r : $Q=Volume.c.F$
c is the concentration of net charge and F is the Faraday constant.

Capacitance of a spherical cell of radius r :
$$C = Area \cdot C'$$

 C' is the capacitance per unit area. ($\simeq 1 \frac{\mu F}{cm^2}$ for cells)
 $F = 9.649 \cdot 10^4$ (coulombs . mol^{-1})

Problem 6. The Patch Clamp

The patch-clamp technique was developed in 1976 by Erwin Neher and Bert Sakmann to record current from single ion channels.

- a) Explain this technique briefly.
- b) It is 1976 and you developed the patch clamp technique. You obtained the following data from your first experiment. What does this tell you about the ion channel in this recording? Provide a rationale for your answer.
 (The patch pipette did not contain any neurotransmitters.)

