Noţiuni introductive

Multiset

- S o mulţime **finită** nevidă
- Multiset
 - \cdot R = (S, r)
 - $r: S \rightarrow \mathbb{N}$ funcție de multiplicitate
- Notaţie
 - $R = \{x^{r(x)} \mid x \in S\}$

Exemplu

- $S = \{x, y, z\}, m = 2$
 - \circ S²= { xx, yy, zz, xy, yx, xz, zx, yz, zy}
 - $S^{<2>} = \{ xx, yy, zz, xy, xz, yz \}$
 - $\circ S^{(2)} = \{ \{x, y\}, \{x, z\}, \{y, z\} \}$

- Graf orientat: $G = (V, E), E = (V^2, r)$
 - v ∈ V vârf
 - \circ e = (u, v) = uv arc
 - u = v **buclă**
 - u = e- vârf iniţial / origine / extremitate iniţială
 - v = e⁺ vârf final / terminus

- Graf orientat: $G = (V, E), E = (V^2, r)$
 - v ∈ V vârf
 - \circ e = (u, v) = uv arc
 - u = v − buclă
 - \cdot u = e⁻ vârf iniţial / origine / extremitate iniţială
 - $v = e^+ varf final / terminus$

Un arc e cu r(e) > 1 îl vom numi arc multiplu

- $G = (V, E), E = (V^2, r)$
 - $d_G^-(u)$ grad interior $d_G^-(u) = |\{e \in E \mid u \text{ extremitate final a pentru } e \}|$
 - $d_G^+(u)$ grad exterior $d_G^+(u) = |\{e \in E \mid u \text{ extremitate initiala pentru } e \}|$
 - $d_G(u) \operatorname{grad}$ $d_G(u) = d_G^+(u) + d_G^-(u)$

- $G = (V, E), E = (V^2, r)$
 - $d_G^-(u)$ grad interior $d_G^-(u) = |\{e \in E \mid u \text{ extremitate final a pentru } e \}|$
 - $d_G^+(u)$ grad exterior $d_G^+(u) = |\{e \in E \mid u \text{ extremitate initiala pentru } e \}|$
 - $d_G(u) \operatorname{grad}$ $d_G(u) = d_G^+(u) + d_G^-(u)$

Are loc relația

$$\sum_{u \in V} d_G^-(u) = \sum_{u \in V} d_G^+(u) = |E|$$

Multisetul gradelor

- G orientat, $V = \{v_1, v_2, ..., v_n\}$
 - Multisetul gradelor interioare

$$s^{-}(G) = \{d_{G}^{-}(v_{1}),...,d_{G}^{-}(v_{n})\}$$

Multisetul gradelor exterioare

$$s^{+}(G) = \{d_{G}^{+}(v_{1}),...,d_{G}^{+}(v_{n})\}$$

Exemplu

- ▶ Graf neorientat: $G = (V, E), E = (V^{<2>}, r)$
 - $\circ v \in V varf / nod$
 - e = {u,v} = uv muchie
 - u = v buclă
 - u, v capete / extremități
 - O muchie e cu r(e) > 1 o vom numi muchie multiplă

Graf neorientat - Noțiuni

•
$$G = (V, E), E = (V^{<2>}, r)$$

- $d_G(u)$ grad
 - = de câte ori este u extremitate a unei muchii (incident cu o muchie)
 - $d_G(u) = |\{e \in E \mid e \text{ nu este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}|$

Graf neorientat - Noțiuni

•
$$G = (V, E), E = (V^{<2>}, r)$$

- $d_G(u)$ grad
 - = de câte ori este u extremitate a unei muchii (incident cu o muchie)
 - $d_G(u) = |\{e \in E \mid e \text{ nu este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ este buclă}, u \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid e \text{ extremitate a lui } e \}| + 2 \cdot |\{e \in E \mid$
- Dacă V = {v₁, v₂, ..., v_n}, multisetul gradelor lui G este:

$$s(G) = \{d_G(v_1), ..., d_G(v_n)\}$$

Exemplu

Graf neorientat - Noțiuni

•
$$G = (V, E), E = (V^{<2>}, r)$$

Are loc relația

$$\sum_{u\in V} d_G(u) = 2|E|$$

Graf neorientat - Noțiuni

•
$$G = (V, E), E = (V^{<2>}, r)$$

Are loc relația

$$\sum_{u \in V} d_G(u) = 2 |E|$$

 Consecință. Într-un graf neorientat există un număr par de vârfuri de grad impar

Graf simplu

Graf simplu

▶ Graf simplu: $G = (V, E), E \subseteq V^{(2)}$, adică un graf neorientat fără bucle și muchii multiple

Graf simplu

- ▶ **Graf simplu**: $G = (V, E), E \subseteq V^{(2)}$, adică un graf neorientat fără bucle și muchii multiple
 - e = {u, v} = uv muchie
 - u = v buclă
 - u, v capete / extremităţi
 - $d_G(u)$ grad

Notaţii

- ▶ V(G), E(G)
- ▶ e = uv

Alte noțiuni fundamentale

Adiacență. Incidență

- ightharpoonup Fie G = (V, E) un graf neorientat
 - u și $v \in V$ sunt **adiacente** dacă u $v \in E$
 - Un vecin al lui u ∈ V este un vârf adiacent cu el
 - Notație N_G(u) = mulțimea vecinilor lui u

Adiacență. Incidență

- ightharpoonup Fie G = (V, E) un graf neorientat
 - u și $v \in V$ sunt **adiacente** dacă u $v \in E$
 - Un vecin al lui u ∈ V este un vârf adiacent cu el
 - Notație N_G(u) = mulțimea vecinilor lui u
 - O muchie e ∈ E este incidentă cu un vârf u dacă u este extremitate a lui e

Adiacență. Incidență

- Fie G = (V, E) un graf neorientat
 - u și $v \in V$ sunt **adiacente** dacă u $v \in E$
 - Un vecin al lui $u \in V$ este un vârf adiacent cu el
 - Notație N_G(u) = mulțimea vecinilor lui u
 - O muchie e ∈ E este incidentă cu un vârf u dacă u este extremitate a lui e
 - e și f ∈ E sunt adiacente dacă există un vârf în care sunt incidente (au o extremitate în comun)

Exemplu

Fie G un graf orientat

Un drum este o secvență P de vârfuri și arce care se succed alternativ:

$$P = [v_1, e_1, v_2, e_2, ..., v_{m-1}, e_{m-1}, v_m]$$
 unde $v_1, ..., v_m \in V(G)$, $e_1, ..., e_{m-1} \in E(G)$, și fiecare arc e_i are extremitatea inițială v_i și finală v_{i+1}

Fie G un graf orientat

Un drum este o secvență P de vârfuri și arce care se succed alternativ:

```
P = [v_1, e_1, v_2, e_2, ..., v_{m-1}, e_{m-1}, v_m] unde v_1, ..., v_m \in V(G), e_1, ..., e_{m-1} \in E(G),  și fiecare arc e_i are extremitatea inițială v_i și finală v_{i+1}
```

- P este drum simplu dacă nu conține un arc de mai multe ori $(e_i \neq e_i, \forall i \neq j)$
- P este drum elementar dacă nu conține un vârf de mai multe ori $(v_i \neq v_i, \forall i \neq j)$

Observație

In cazul în care nu avem arce multiple putem descrie un drum doar ca o **succesiune de vârfuri** (fără a mai preciza și arcele):

$$P = [v_1, v_2, ..., v_{m-1}, v_m]$$

Exemplu

$$P = [v_1, e_1, v_2, e_2, ..., v_{m-1}, e_{m-1}, v_m]$$

- ► Lungimea lui P = I(P) = cardinalul multisetului arcelor lui <math>P(I(P) = m-1)
- v₁ și v_m se numesc capetele/ extremitățile lui P
- P se numeşte şi v₁-v_m lanţ

$$P = [v_1, e_1, v_2, e_2, ..., v_{m-1}, e_{m-1}, v_m]$$

- ► Lungimea lui P = I(P) = cardinalul multisetului arcelor lui <math>P(I(P) = m-1)
- v₁ și v_m se numesc capetele/ extremitățile lui P
- P se numeşte şi v₁-v_m lanţ
- Notăm
 - $V(P) = \{v_1, v_2, ..., v_m\}$
 - \circ E(P) = {e₁, e₂, ..., e_{m-1}}

Pentru două vârfuri u și v definim distanța de la u la v astfel:

$$d_G(u,v) = \begin{cases} 0, \text{ daca } u = v \\ \infty, \text{ daca nu exista } u - v \text{ drum in } G \\ \min\{l(P) \mid P \text{ este } u - v \text{ drum in } G\}, \text{ altfel} \end{cases}$$

(cea mai mică lungime a unui u-v drum)

Pentru două vârfuri u și v definim distanța de la u la v astfel:

$$d_G(u,v) = \begin{cases} 0, \text{ daca } u = v \\ \infty, \text{ daca nu exista } u - v \text{ drum in } G \\ \min\{l(P) \mid P \text{ este } u - v \text{ drum in } G\}, \text{ altfel} \end{cases}$$

(cea mai mică lungime a unui u-v drum)

 Un u-v drum de lungime d_G(u,v) se numeşte drum minim de la u la v

Pentru două vârfuri u și v definim distanța de la u la v astfel:

$$d_G(u,v) = \begin{cases} 0, \text{ daca } u = v \\ \infty, \text{ daca nu exista } u - v \text{ drum in } G \\ \min\{l(P) \mid P \text{ este } u - v \text{ drum in } G\}, \text{ altfel} \end{cases}$$

(cea mai mică lungime a unui u-v drum)

- Un u-v drum de lungime d_G(u,v) se numeşte drum minim de la u la v
- Vom nota și d(u,v) dacă G se deduce din context

Exemplu

Drumuri. Circuite

Un circuit este un drum cu capetele identice

$$C = [v_1, e_1, v_2, e_2, ..., v_{m-1}, e_{m-1}, v_m, e_m, v_1]$$

- C este circuit simplu dacă drumul asociat este simplu
- Circuit elementar
- Notații V(C), E(C)

Exemplu

Lanțuri. Cicluri

Pentru G graf neorientat - noțiuni similare

Un lanţ este o secvenţă P de vârfuri şi muchii care se succed alternativ:

```
P = [v_1, e_1, v_2, e_2, ..., v_{m-1}, e_{m-1}, v_m] unde v_1, ..., v_m \in V(G), e_1, ..., e_{m-1} \in E(G), și fiecare muchie e_i are extremitățile v_i și v_{i+1}
```

- lanţ simplu / lanţ elementar / lungime
- ciclu / ciclu simplu / ciclu elementar
- distanță / lanț minim

Lanțuri. Cicluri

Observație

In cazul unui graf simplu putem descrie un lanţ/ciclu doar ca o succesiune de vârfuri (fără a mai preciza și muchiile):

$$P = [v_1, v_2, ..., v_{m-1}, v_m]$$

Exemplu

Graf parțial. Subgraf

Fie G = (V, E) și $G_1 = (V_1, E_1)$ două grafuri

• G_1 este **graf parțial** al lui G (vom nota $G_1 \le G$) dacă $V_1 = V$, $E_1 \subseteq E$

Graf parțial. Subgraf

Fie G = (V, E) și $G_1 = (V_1, E_1)$ două grafuri

- G_1 este **graf parțial** al lui G (vom nota $G_1 \le G$) dacă $V_1 = V$, $E_1 \subseteq E$
- G_1 este **subgraf** al lui G (vom nota $G_1 < G$) dacă $V_1 \subseteq V$, $E_1 \subseteq E$

Graf parțial. Subgraf

Fie G = (V, E) și $G_1 = (V_1, E_1)$ două grafuri

- G_1 este **graf parțial** al lui G (vom nota $G_1 \le G$) dacă $V_1 = V$, $E_1 \subseteq E$
- G_1 este **subgraf** al lui G (vom nota $G_1 < G$) dacă $V_1 \subseteq V$, $E_1 \subseteq E$
- G_1 este subgraf indus de V_1 în G (vom nota $G_1=G[V_1]$) dacă

$$V_1 \subseteq V$$
,

 $E_1 = \{e^{r(e)} | e \in E(G), e \text{ are ambele extremități în } V_1 \}$ (toate arcele/muchiile cu extremități în V_1)

Conexitate

Fie G = (V, E) un graf neorientat

G este **graf conex** dacă, pentru orice două vârfuri distincte u și v, există un u-v lanț (între orice două vârfuri există un lanț)

Conexitate

Fie G = (V, E) un graf neorientat

- G este **graf conex** dacă, pentru orice două vârfuri distincte u și v, există un u-v lanț (între orice două vârfuri distincte există un lanț)
- O componentă conexă a lui G este un subgraf indus conex maximal (care nu este inclus în alt subgraf conex)

Conexitate

Fie G = (V, E) un graf neorientat

- G este **graf conex** dacă, pentru orice două vârfuri distincte u și v, există un u-v lanț (între orice două vârfuri există un lanț)
- O componentă conexă a lui G este un subgraf indus conex maximal (care nu este inclus în alt subgraf conex)
- Pentru cazul orientat tare-conexitate

două componente conexe

Notații

- ightharpoonup G V, $V \in V(G)$
- ightharpoonup G e, $e \in E(G)$
- $ightharpoonup G V', V' \subseteq V(G)$
- $ightharpoonup G E', E' \subseteq E(G)$
- \rightarrow G + e

Fie G₁, G₂ două grafuri

- $ightharpoonup G_1 = (V_1, E_1), r_1 funcția de multiplicitate$
- $ightharpoonup G_2 = (V_2, E_2), r_2$ funcția de multiplicitate

Grafurile G_1 și G_2 sunt **izomorfe** ($G_1 \sim G_2$) \Leftrightarrow există $f: V_1 \rightarrow V_2$ bijectivă cu $r_1(uv) = r_2(f(u)f(v))$

pentru orice $u,v \in V_1$

$$G_1 \sim G_2 \Rightarrow s(G_1) = s(G_2)$$

$$s(G_1) = s(G_2) \not\Rightarrow G_1 \sim G_2$$
?

neizomorfe

Un graf neorientat G = (V, E) se numește **bipartit** \Leftrightarrow există o partiție a lui V în două submulțimi nevide V_1 , V_2 (**bipartiție**):

$$V = V_1 \cup V_2$$
$$V_1 \cap V_2 = \emptyset$$

astfel încât orice muchie $e \in E$ are o extremitate în V_1 și cealaltă în V_2 :

$$|e \cap V_1| = |e \cap V_2| = 1$$

Observație

G = (V, E) bipartit ⇔ există o colorare a vârfurilor cu două culori:

$$c: V \rightarrow \{1, 2\}$$

astfel încât pentru orice muchie e=xy∈E avem

$$c(x) \neq c(y)$$

(bicolorare)

nu este bipartit

► C_n – ciclu elementar

▶ K_n – graf complet

▶ K_{p,q} – graf bipartit complet

▶ K_{3,3}

- Dată o secvență de numere s, se poate construi un graf neorientat având secvența gradelor s?
- Dar un graf simplu?

- Condiţii necesare
- Condiţii suficiente

Dată o secvență de numere s, se poate construi un graf neorientat având secvența gradelor $s = \{d_1, d_2, ..., d_n\}$?

Condiţii necesare

$$\circ$$
 s={2, 4, 2, 6}

Dată o secvență de numere s, se poate construi un graf neorientat având secvența gradelor $s = \{d_1, d_2, ..., d_n\}$?

Condiţii necesare

- \circ s={2, 4, 2, 6}
- \circ s={2, 4, 2, 5}

Dată o secvență de numere s, se poate construi un graf neorientat având secvența gradelor $s = \{d_1, d_2, ..., d_n\}$?

- Condiţii necesare
 - \circ d₁ + d₂ + ... + d_n număr par

Condiţii suficiente

$$\circ$$
 d₁ + d₂ + ... + d_n - număr par

Teoremă

Fie $s_0 = \{d_1, d_2, ..., d_n\}$ o secvență de numere naturale. Avem:

 s_0 este secvența gradelor unui graf neorientat

$$d_1 + d_2 + \dots + d_n$$
 - număr par

▶ Transformări care conservă gradele

▶ Transformări care conservă gradele

▶ Transformări care conservă gradele

Reprezentarea grafurilor

- Geometrică
- Algebrică

Reprezentarea grafurilor

- Geometrică
- Algebrică

- Matrice de adiacenţă
- Liste de adiacenţă
- Listă de muchii
- Matrice de incidenţă

