

Autoencoder based Domain Adaptation for Speaker Recognition under Insufficient Channel Information

Suwon Shon, Seongkyu Mun*, Wooil Kim**, Hanseok Ko*

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA

Korea University, Seoul, South Korea* Incheon National University, South Korea**

Speaker recognition task

Channel domain mismatched condition

- Domain adaptation challenge 2013 @ JHU workshop
 - SRE10 (evaluation) collected in 2010 (mostly cellular)
 - * 7,169 target and 408,950 non-target trials
 - SWB collected from 1992-2000 (mostly landline), mismatched
 - SRE collected from 2004-2008 (mostly cellular), matched
 - * Suppose we don't have labels on SRE

Domain adaptation challenge 2013 @ JHU workshop

- SRE10 (evaluation) collected in 2010 (mostly cellular)
 - * 7,169 target and 408,950 non-target trials
- SWB collected from 1992-2000 (mostly landline), mismatched
- SRE collected from 2004-2008 (mostly cellular), matched
 - * Suppose we don't have labels on SRE

	Unlabe	led data	Labeled data	ı	
System #	UBM, T	W,m	WC,AC	EER	= _ Domain
0*	SRE	SRE	SRE	2.43	matched
1	SWB	SRE	SRE	2.33	benchmark
2	SWB	SRE	SWB	5.70	
3*	SWB	SWB	SWB	6.92	Domain mismatched

Table 2: *SRE10* Test using DAC13 i-vector set.

Motivation

Insufficient Channel Information

	SWB	SRE	SRE-1phn
#spkrs	3114	3790	3787
#calls	33039	36470	25640
Avg. #calls/spkrs	10.6	9.6	6.77
Avg. #phone_num/spkr	3.8	2.8	1

<Statistics in DAC 13 i-vector Dataset>

System #	UBM, T	W , <i>m</i>	WC,AC	EER	•
1	SWB	SRE	SRE	2.33	hattar
2	SWB	SRE	SWB	5.70	better
3	SWB	SRE-1phn	SRE-1phn	9.34	Worse
4	SWB	SRE-1phn	SWB	5.66	worse

<SRE10 Test using DAC13 i-vector set>

Performance degraded by Insufficient channel information although it is matched domain dataset

Auto-encoder based Domain Adaptation (AEDA)

 \star : out-of-domain i-Vector from D_{out} with label

 \triangle : adapted i-Vector from D_{out}^t

 \triangle : in-domain i-Vector from D_{in} without label

Useless because of insufficient channel information

Auto-encoder based Domain Adaptation (AEDA)

 \bigstar ★ : out-of-domain i-Vector from D_{out} with label \blacktriangle : adapted i-Vector from D_{out}^t \bigtriangleup : in-domain i-Vector from D_{in} without label

Transferring labeled out-of-domain dataset to in-domain

Autoencoder and Denoising Autoencoder

$$\mathcal{L}(X,X') = ||X - X'||^2$$

 $\mathcal{L}(X,X') = ||X - \widetilde{X}'||^2$

<Autoencoder>

<Denoising Autoencoder>

Auto-encoder based Domain Adaptation (AEDA)

Auto-encoder based Domain Adaptation (AEDA)

In-domain autoencoder (using unlabeled in-domain dataset)

Auto-encoder based Domain Adaptation (AEDA)

domain transferring autoencoder (using labeled out-of-domain dataset)

Sparse reconstruction

$$\mathcal{L}(X, X') = ||X - \tilde{X}'||^2$$

<Denoising Autoencoder>

Objective function :
$$\min_{lpha_j} \| \, \Omega_{in} lpha_j - \mathbf{y}_j^{in} \, \|^2 + \gamma \, | \, lpha_j \, |^2$$

$$\mathcal{L}(X_{in}, Y_{in}) = ||X_{in} - Y_{in}||^{2}$$

= $||\tilde{X}_{in} - Y_{in}||^{2}$

<Out-of-domain transferring autoencoder>

Structure of Autoencoder which sharing hidden layer h

Objective functions

- AE part
$$\min_{f_{in},g} \|\mathbf{X}_{in} - \mathbf{Y}_{in}\|^2 = \min_{f_{in},g} \|\mathbf{X}_{in} - g(f_{in}(\mathbf{X}_{in}))\|^2$$

Least angle regression

Structure of Autoencoder which sharing hidden layer h

Objective functions

- AE part $\min_{f_{in},g} \|\mathbf{X}_{in} - \mathbf{Y}_{in}\|^2 = \min_{f_{in},g} \|\mathbf{X}_{in} - g(f_{in}(\mathbf{X}_{in}))\|^2$

Least angle regression

- Least angle regression for sparse reconstruction

$$\min_{\alpha_{j}} \|\Omega_{in}\alpha_{j} - \mathbf{y}_{j}^{in}\|^{2} + \gamma |\alpha_{j}|^{2}$$

Structure of Autoencoder which sharing hidden layer h

Objective functions

- AE part
$$\min_{f_{in},g} \|\mathbf{X}_{in} - \mathbf{Y}_{in}\|^2 = \min_{f_{in},g} \|\mathbf{X}_{in} - g(f_{in}(\mathbf{X}_{in}))\|^2$$

- DAE part
$$\min_{f_{out},g} \| \mathbf{X}_{in} - \mathbf{Y}_{in} \|^2 = \min_{f_{out},g} \| \mathbf{X}_{in} - g(f_{out}(\mathbf{X}_{out})) \|^2$$

$$- \text{ AEDA} \quad \min_{f_{in}, f_{out}, g} \| \mathbf{X}_{in} - g(f_{in}(\mathbf{X}_{in})) \|^2 + \| \widetilde{\mathbf{X}}_{in} - g(f_{out}(\mathbf{X}_{out})) \|^2$$

$$- \text{ Training network} \quad \min_{\alpha} \| \Omega_{in} \alpha_j - \mathbf{y}_j^{in} \|^2 + \gamma \| \alpha_j \|^2 \quad \text{Sparse reconstruction}$$

Structure of Autoencoder which sharing hidden layer h

AEDA

- 600 dim i-vector with 1000 hidden node with learning rate 0.005
- Sparse reconstruction
 - Least Angle Regression(LARS)
 - Sparsity 0.01
 - Random 1500 spk i-vector for in-domain dictionary Ω_{in}

Performance

- Using PLDA with 400 eigenvoice after 400 dim LDA transform
- EER, DCF10, DCF08

Experimental result

Auto-encoder based Domain Adaptation (AEDA)

#	Adaptation & Compensation	WC,AC	EER	DCF10	DCF08
3	_	SRE-1phn	9.34	0.721	0.520
4	-	SWB	5.66	0.633	0.426
5	Interpolated [13]	SWB + SRE- 1phn	6.55	0.652	0.454
6	IDV [15]	IDV-SWB	6.15	0.676	0.476
7	DICN [16]	DICN-SWB	4.99	0.623	0.416
8	DAE [23]	DAE-SWB	4.81	0.610	0.398
9	AEDA	AEDA-SWB	4.50	0.589	0.362

Conclusion

- Only small subset of unlabeled in-domain dataset is used for domain adaptation
- Insufficient channel information dataset is effectively used for transferring knowledge of in-domain
- Domain transferring autoencoder part of AEDA can be trained using sparse reconstruction without actual pair of in-domain and out-of-domain

Q & A

Thanks!

Domain related paper:

 Suwon Shon, Seongkyu Mun and Hanseok Ko,
 "Recursive whitening transformation for speaker recognition on Language Mismatched Condition"
 4.9 Evaluation of Speaker and language identification systems session, Wednesday 10:00~12:00