PUMPIT UP

TEAM LA

Amol Gupta, Shirley Hu, Gbenga Ilori, Patrick Linehan, Jessica Niles, Hari Saripalli, & Jovial Zhang

GMMA 869 | Saturday, November 13, 2021

- 4M Tanzanians lack access to a safe source of water*
- Handpumps are a critical water supply method*
- 60,000 handpumps installed across Sub-Saharan Africa every year*
- 30% to 40% do not work at any one time*
- Women & girls spend 15-17 hours a week collecting water**
- Loss of \$1.2B initial investment with massive productivity & public health consequences*

*Purvis, 2016

**SimplePump, 2021

Section 1

THE COMPETITION

8 Models

20 Submissions

Best Score: 0.8188

Rank: 1347/12696

59,400 WATER PUMPS

40 attributes:

31 categorical | 6 numeric | 3 labels

PUMP STATUS

54.3% Functional

38.4% Non-Functional

7.3% Functional but needs repair

MISSING VALUES

6119 rows with NA's (10.3% of instances)

Features with 0s and 'none' in many instances

MISSING VALUES

NaNs & 0s:

Population, Construction Year, Lat/Long, GPS Height

Zero longitude in Atlantic Ocean

Zero latitude not in Tanzania

Topographic map: elevation > 0m

Imputed NaNs & 0s with means grouped by geographic location (subvillage, ward, lga, region)

CATEGORICAL VARIABLES

Cleaning:

Converted to lower case

Retained top 25 & imputed the rest as "Other"

Combined similar words into one

Replaced '0' & 'none' with most frequently occurring value

Dropped columns that are mostly similar

FEATURE ENGINEERING: LAT/ LONG

Remote Pumps:

Pumps in **remote areas** (far from other pumps) have higher chance of being **non-functional**

Geo-Clusters:

Used clustering of lat / long to create **15 geo- clusters** to calculate the distance of pump from its cluster centroid

Feature Importance:

Important feature in the model & boosted accuracy slightly

FEATURE ENGINEERING: DATE

Percentage of **non-functional pumps is higher for older pumps** (more than 15 years)

Used construction year & date recorded to calculate age of a pump

Parsed dates to create a month & season column - didn't make it to the top feature list

MODEL DEVELOPMENT

MODEL IMPROVEMENT

Phase 1	DecisionTree, No Cleaning	69.00%
Phase 2	Pipeline: SimpleImputer, AdaBoost	75.00%
Phase 3	Pipeline: SimpleImputer, Encoder, RF*	79.00%
Phase 4	Pipeline: Category Coalescer, RF*	80.80%
Phase 5	Extensive data cleaning, feature engineering, RF*	81.20%
Phase 6	Hyperparameter Tuned RF	81.47%
Phase 7	Hyperparameter Tuned: LightGBM, Catboost, XGBoost, Bagging, Extra Trees	81.56%
	VotingClassifier, StackingClassifier	81.88%

*RF: RandomForestClassifier

MODEL SUMMARY

CLASSIFICATION RATE

- Hyperparameters tuned using **GridSearchCV** (3-fold)
- Challenge: not knowing a good starting point
- **LightGBM:** hyperparameter tuning resulted in ~5% improvement compared to default parameters
- Best hyperparameters: learning rate, num_iterations,
 n_estimators
- **VotingClassifier** resulted in ~0.4% improvement in accuracy compared to best performing single model

Final Submission: VotingClassifier

Classification Rate: 0.8188

LightGBM FEATURE IMPORTANCE

Top 8 features of importance:

- 1. How the waterpoint is managed
- 2. Type of waterpoint, water quality
- 3. Distances from the cluster centroids
- 4. Age of the pumps
- 5. Payment scheme
- 6. If the waterpoint is permitted or not
- 7. Who is the installer
- 8. Where is the waterpoint installed

LESSONS LEARNED

What Worked

Data Cleaning

Feature Engineering

Hyperparameter Tuning

Voting / Stacked Ensemble

Models differ in feature importance

What Didn't

DBSCAN clustering for lat/ long: couldn't find optimal clusters

H2O AutoML: Default parameters - ran 6+ hours, Google Colab reached runtime limit

What Next

Optuna or hyperopt for hyperparameter optimization: GridSearchCV is not optimal

Build custom function transformers for data preprocessing to include in the model pipeline

Try H2O AutoML

Section 2

IMPLEMENTATION PROPOSAL

Management

Pumps managed by VWC & WUG have higher failure rates

Water Board Management have higher percentage of functional pumps

Waterpoint Type

Communal standpipe & hand pumps type waterpoints have higher percentage of functional pumps

'Other' and 'communal standpipe multiple' needs further investigation

Payment

Free / never pay water points have higher percentage of non-functional pumps

Water Quality

'Soft' water quality is better for waterpoint operation

Ward

Certain regions need more maintenance (Mishamo has high percentage of non-functional pumps)

Public Meetings

Hold public meeting about waterpoint

Installer

DWE & community installed pumps have higher functional rate

Permit

Permitted pumps have slightly higher functional rate

COSTS

Cost of False Negative: loss of water supply

Increased cost of water
Human life, health, and wellbeing
Economic – agriculture, livestock
Time – economic, education

Cost of False Positive: pump is not faulty

Waste of time and limited resources (wages, transportation costs)

Repair vs. Replace:

The cost to **repair a pump** (\$10) is significantly less than the **cost to** replace (~\$1,000)*

Value of Model:

Estimated immediate value of ~\$445K and medium/life term value of ~\$3.7M if the model is implemented

IMPLEMENTATION PROPOSAL

"Pump Playbook"

Predictive model built into interactive web platform

Mobile-friendly

Data collection verification & standardization

Pump Management:

Pump installation & maintenance education & employment program for women & girls

Best practices for installation & maintenance:

- *Management:* Water Board are effective managers
- Pump Age: Older pumps are more likely to fail
- *Public Meetings:* Host public meeting for waterpoint management
- *Permit:* Go through permit process
- Region: Certain regions require more maintenance
- Waterpoint Type: Focus on Communal Standpipe Multiple

Aligned with the UN Sustainable Development Goals:

Universal coverage of safe water by 2030**

Estimated that every \$1 invested in water & sanitation programs yields up to \$12 in economic returns*

CONCLUSION

Estimated to save \$445K by deploying the model

- Implement "Pump Playbook" maintenance program led by women & girls
- Focus on: Management, Pump Age, Public Meetings, Permit, Region, Waterpoint Type, Water Quality, & Payment

The Result?
Improved economic output & public health

EDA WORKFLOW

Data Distribution

- Non-functional pumps: 38%
- Functional pumps: 54%,
- Functional needs repair pumps: 7%

Water Level

If the amount_tsh is greater than 150K litres of water, the water pump is working and this amount is sufficient for the water pump to work smoothly

Waterpoint Type

~90% of the waterpoints are "Communal Standpipe" or "Standard Pumps".

Almost all pumps are used as a communal water supply for neighbourhoods which lack individual housing water service.

waterpoint_type_group 35000 - 58.3% 30000 - 25000 - 29.4% 15000 - 10.7% 5000 - 10.7% communal standpaipe pump other improved springitle trough dam waterpoint_type_group

Water Source

"Groundwater" accounts for the highest source of water at about 77% and the next is for the surface at about 22%.

Management Group

User groups manage ~90% of all pumps.

Public Meetings

86% of pumps held public meetings.

Water Quality

85% of pumps have "Good" water quality.

The rest of the pumps are split into salty and other categories.

Water Quantity

30K L is required for functional pumps.

Almost 56% of pumps have a high enough quantity.

~25% have insufficient water levels, with quantities below 15K L.

 KMeans clusters of lat/ long

XGBoost FEATURE IMPORTANCE

XGBoost has different feature importance for the same data

Does not include the geo spatial features that were added

RandomForest FEATURE IMPORTANCE

RandomForest has different feature importance for the same data

BASIN PERFORMANCE

Top Basins

Top three basins with more functional water pumps: Lake Victoria, Pangani, Rufiji

Lake Rukwa - Rufiji - Lake Victoria - Lake Rukwa - Rufiji - Lake Victoria - Lake Rukwa - Lake Rukwa - Rufiji - Ru

basin

Functional Rates

Top overall functional rate among basins: lake Nyass, Rufiji, Pangani

WATER QUANTITY

Top Basins

Top three basins with more water quantity: Lake Victoria, Pangani, Rufiji

Water Quantity

Basin with enough water has more functional water pumps

INSTALLER PERFORMANCE

Top Installers

Top three installer with more functional water pumps: Others, DWE, Community

Functional Rates

Top overall functional rate among installers: UN, Commu, DWE, Others

REGION WATER SOURCE & QUANTITY

Top Water Sources

Top three water sources in regions: Spring,

Shallow Well, Machine dbh

Top Region

Top region with enough water quantity: Iringa, Shinyange, Kilimanjaro

WATER SOURCE

Water Source

Water Source with the most functional water pumps: Spring, Shallow Well, Rainwater Harvesting, Machine dbh

Status Group

DWE performed the best in constructing functional water pumps with different water sources

FINANCIAL VALUE OF MODEL

Confusion Matrix

Predicted

Not Needs **Functional** Repair **Functional** 123 7316 524 Functional 340 115 Needs Repair 1242 73 4496 Not Functional

• The Confusion Matrix shows specificity of 42% for the 'Needs Repair' class.

• Specificity for the 'Needs Repair class is more useful in practical terms for the following reasons:

• Research shows it is much cheaper to repair a pump than to replace a bad one (\$10 vs \$1000)

• Ability to predict which pumps need repair before they need replacement, is the main value of the model

• If the model predicts that a pump that needs repair is not functional, it will trigger a check on the pump that will likely result in the right assessment

• Consequently, this category is also valuable.

• We assume average logistics cost of \$5 (50% of repair cost). For future work, we can calculated a weighted cost based on average distance of each well.

Repair and Replacement Costs (\$)

Predicted

	Functional	Needs	Not
	Functional	Repair	Functional
Functional	0	5	5
Needs Repair	1000	15	15
Not Functional	1000	1000	1000

Model Prediction Costs (\$)

Predicted

	Functional	Needs Repair	Not Functional
Functional	•	615	2,620
Needs Repair	621,000	5,100	1,725
Not Functional	1,242,000	73,000	4,496,000

-

FINANCIAL VALUE OF MODEL

- Based on our best model's performance metrics and assumptions made, we estimated a current model value of ~\$445K and life term value of ~\$3.7M if the model is implemented.
 - Current Model Value is estimated using Confusion Matrix, assuming only 42% of existing pumps needing repair will be correctly predicted by the model
 - Lifetime (cumulative) Model Value assumes all pumps currently functional will eventually need repair and assumes a 42% accurate model prediction rate for this class
- Other Recommendations / Costs
 - Hiring one person per location to monitor state of pumps – initiate "Pump Playbook" program.
 - Install sensors on pumps (smart water pumps) in very remote areas where communication may be difficult
 - Implement a preventive maintenance program based on age of the pumps (future work)

Current Model Value

TOTAL COST	\$'K	Comments
Ex Model	6,887	Cost of not using the model
With Model	6,442	Predicted costs if model is used
Model Value	445	Based on current state of pumps

Lifetime Model Value

TOTAL COST	\$'K	_
Ex Model	14,850	Assumes all will pumps eventually be replaced
With Model	11,174	Assumes model will detect 42% of pumps currently functional and needing repair
Model Value	3,676	Long term value based on current number of pumps

Based on our best model performance metrics and assumptions made, we have estimated an immediate model value of ~\$445K and medium/life term value of ~\$3.7M if the model is implemented

FINANCIAL ESTIMATES

No education: Average monthly wage of US\$300 = \$1.25/hour = \$10/day*

Water engineer: Average monthly wage of US\$623 = \$3.90/hour = \$31/day*

^{*} TakeProfit.org, 2021

GEOPLOT: SHOWING LATITUDE / LONDITUDE DATA BEFORE CLEANING

IMPLEMENTATION CASE STUDY

WaterWatchers

IBM & the city of Tshwane in South Africa piloted a crowdsourced app known as WaterWatchers

Users report water supply information via SMS

IBM found that the city was losing almost \$30M in wasted water annually*

^{*} Sustainable Brands, 2013

COUNTRY & POPULATION INFORMATION

Population

2020 total population of Tanzania: 59.73M*

- 21,381 records contain "0" value for population \rightarrow this is unlikely \rightarrow impute with mean
- Total population captured in dataset: 10,686,653 (from original data) + 3,848,580 (imputed) = 14,535,233 people (24.28% of Tanzanian population)
 - Average population around each well: 180 people
 - Assume $\sim 50\%$ average women = 7.3M women

Economy

- 2020 GDP of Tanzania: US\$62.41B*
- Employ 1 lead woman per 20 well = 2,970 jobs @ US\$8,600/year = US\$25.5M per year
- Estimated that every \$1 invested in water and sanitation programs yields up to \$12 in economic returns = US\$306.5M in yearly economic returns + 15-17 hours (2 days a week) per water-collecting woman

FUTURE WORK

Build **custom function transformers** to be included in the model pipeline

GridSearchCV is not optimal – we are curious to try **Hyperopt library for hyperparameter optimization** and compare the results

NLP to identify and combine similar words in the categorical columns

Improved data collection (see next slide)

FUTURE WORK: DATA COLLECTION

- Cost of implementing ML-derived preventative maintenance model compared to other models
- Performance of water pumps
- Payment tracking/ Payment Source
- XGBoost in Python, ML Enabled Smart Sensor System can be applied to monitor execution of water projects

LightGBM

	precision	recall	f1-score	support
0 1 2	0.80 0.60 0.87	0.91 0.33 0.78	0.85 0.42 0.82	7963 1076 5811
_	0.07	0.76	0.81	14850
accuracy macro avg	0.75	0.67	0.70	14850
weighted avg	0.81	0.81	0.81	14850

```
0 1 2
0 7242 154 567
1 601 355 120
2 1219 87 4505
```

```
from lightgbm import LGBMClassifier
lgbm = LGBMClassifier(boosting_type = 'gbdt',
                      num_leaves = 200,
                      learning_rate = 0.05,
                      min_data_in_leaf = 20,
                      max depth = 50,
                      objective = 'multiclass',
                      num_class = 3,
                      metric = 'multi_error',
                      bagging_fraction = 0.5,
                      num iterations = 200)
lgbm_pipeline = Pipeline(steps = [('preprocess', preprocessor), ('lgbm', lgbm)])
lgbm_pipeline.fit(X_train,y_train)
y_pred_lgbm_pipeline = lgbm_pipeline.predict(X_test)
print("Accuracy of LGBM = {:.4f}".format(accuracy_score(y_test, y_pred_lgbm_pipeline)))
/usr/local/lib/python3.7/dist-packages/lightgbm/engine.py:118: UserWarning: Found `num_iter
  warnings.warn("Found `{}` in params. Will use it instead of argument".format(alias))
Accuracy of LGBM = 0.8149
```

CatBoost

```
from catboost import CatBoostClassifier
cat = CatBoostClassifier(depth = 10,
                       iterations = 500,
                        learning rate = 0.05,
                       random_state = 42)
cat_pipeline = Pipeline(steps = [('preprocess', preprocessor), ('catboost', cat)])
cat_pipeline.fit(X_train,y_train)
y_pred_cat_pipeline = cat_pipeline.predict(X_test)
print("Accuracy of Catboost = {:.4f}".format(accuracy_score(y_test, y_pred_cat_pipeline)))
Accuracy of Catboost = 0.8042
from sklearn.metrics import classification_report, confusion_matrix
print(classification_report(y_test, y_pred_cat_pipeline))
pd.DataFrame(confusion_matrix(y_test, y_pred_cat_pipeline))
             precision
                          recall f1-score support
                  0.78
                            0.91
                                      0.84
                                               7963
          1
                  0.65
                            0.26
                                     0.37
                                               1076
                  0.86
                            0.75
                                     0.80
                                               5811
                                               14850
                                      0.80
    accuracy
  macro avg
                  0.76
                            0.64
                                     0.67
                                              14850
weighted avg
                  0.80
                            0.80
                                      0.79
                                              14850
      0
          1
0 7278 91
    653 279 144
 2 1364 62 4385
```

RandomForest

```
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(criterion = 'gini',
                           n estimators = 1000,
                           random state = 123,
                           min_samples_split = 5,
                           max depth = 20)
rf_pipeline = Pipeline(steps = [('preprocess', preprocessor), ('rf', rf)])
rf_pipeline.fit(X_train,y_train)
y_pred_rf_pipeline = rf_pipeline.predict(X_test)
print("Accuracy of RF = {:.4f}".format(accuracy_score(y_test, y_pred_rf_pipeline)))
Accuracy of RF = 0.8147
from sklearn.metrics import classification_report, confusion_matrix
print(classification report(y test, y pred rf pipeline))
pd.DataFrame(confusion_matrix(y_test, y_pred_rf_pipeline))
              precision
                          recall f1-score
                                             support
                            0.92
                                      0.85
                  0.79
                                                7963
                  0.64
                            0.31
                                      0.42
                                                1076
                                      0.82
                  0.88
                             0.76
                                                5811
                                      0.81
                                               14850
    accuracy
   macro avg
                  0.77
                                      0.70
                                               14850
                             0.67
weighted avg
                  0.81
                            0.81
                                      0.81
                                               14850
      0
          1
                 2
0 7318 120
         336
              110
2 1299 67 4445
```

XGBoost

```
xg = XGBClassifier(nthread=2,
                  num_class=3,
                  min_child_weight=3,
                  max_depth=15,
                  gamma=0.5,
                  scale_pos_weight=0.8,
                  subsample=0.7,
                  colsample_bytree = 0.8,
                  objective='multi:softmax')
xg_pipeline = Pipeline(steps = [('preprocess', preprocessor), ('xgboost', xg)])
xg_pipeline.fit(X_train,y_train)
y_pred_xg_pipeline = xg_pipeline.predict(X_test)
print("Accuracy of XGB = {:.4f}".format(accuracy_score(y_test, y_pred_xg_pipeline)))
Accuracy of XGB = 0.8156
from sklearn.metrics import classification_report, confusion_matrix
print(classification_report(y_test, y_pred_xg_pipeline))
pd.DataFrame(confusion_matrix(y_test, y_pred_xg_pipeline))
              precision
                          recall f1-score support
                  0.80
                            0.90
                                      0.85
                                                7963
           0
                  0.59
                                                1076
          1
                            0.34
                                      0.43
                  0.86
                                      0.82
                                                5811
          2
                            0.78
                                      0.82
                                               14850
    accuracy
                  0.75
                                      0.70
                                               14850
   macro avg
                            0.67
weighted avg
                  0.81
                            0.82
                                      0.81
                                               14850
      0
          1
0 7190 164 609
    589 361 126
2 1164 86 4561
```

VotingClassifier

```
from sklearn.ensemble import VotingClassifier

est_list = [('rf', rf), ('xgboost', xg), ('extra trees', xt), ('bagging', bag), ('catboost', cat)]

vclf = VotingClassifier(estimators = est_list, voting='soft')

vote_pipeline = Pipeline(steps = [('preprocess', preprocessor), ('voting', vclf)])

vote_pipeline.fit(X_train,y_train)
y_pred_vote_pipeline = vote_pipeline.predict(X_test)
```

```
print("Accuracy of VOTING = {:.4f}".format(accuracy_score(y_test, y_pred_vote_pipeline)))
```

Accuracy of VOTING = 0.8191

from sklearn.metrics import classification_report, confusion_matrix

print(classification_report(y_test, y_pred_vote_pipeline))

pd.DataFrame(confusion_matrix(y_test, y_pred_vote_pipeline))

		precision	recall	f1-score	support	
	0	0.80	0.92	0.85	7963	
	1	0.63	0.32	0.42	1076	
	2	0.88	0.77	0.82	5811	
accura	су			0.82	14850	
macro a	vg	0.77	0.67	0.70	14850	
weighted a	vg	0.82	0.82	0.81	14850	

2	1	0	
524	123	7316	0
115	340	621	1
4496	73	1242	2

Stacking

```
print("Accuracy of STACKING = {:.4f}".format(accuracy_score(y_test, y_pred_stacking_pipeline)))
```

Accuracy of STACKING = 0.8199

```
from sklearn.metrics import classification_report, confusion_matrix

print(classification_report(y_test, y_pred_stacking_pipeline))
pd.DataFrame(confusion_matrix(y_test, y_pred_stacking_pipeline))
```

1 0.64 0.33 0.43 107 2 0.86 0.79 0.82 581 accuracy 0.82 1485 macro avg 0.77 0.67 0.70 1485			precision	recall	f1-score	support
2 0.86 0.79 0.82 581 accuracy 0.82 1485 macro avg 0.77 0.67 0.70 1485		0	0.81	0.91	0.85	7963
accuracy 0.82 1485 macro avg 0.77 0.67 0.70 1485		1	0.64	0.33	0.43	1076
macro avg 0.77 0.67 0.70 1485		2	0.86	0.79	0.82	5811
9	accur	асу			0.82	14850
weighted avg 0.82 0.82 0.81 1485	macro	avg	0.77	0.67	0.70	14850
	weighted	avg	0.82	0.82	0.81	14850

	0	1	2
0	7238	129	596
1	594	350	132
2	1153	70	4588

REFERENCES

Average Salary Survey. (2021). Tanzania. Retrieved from https://www.averagesalarysurvey.com/Tanzania.

DrivenData. (2021). Pump it Up: Data Mining the Water Table. Retrieved from DrivenData: https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/.

Guardian. (2016). How do you solve a problem like a broken water pump?. Retrieved: https://www.theguardian.com/global-development-professionals-network/2016/mar/22/how-do-you-solve-a-problem-like-a-broken-water-pump.

Joseph, G. (2019). Why Do So Many Water Points Fail in Tanzania? An Empirical Analysis of Contributing Factors. World Bank Group.

Lifewater.org. (2021). The Tanzania Water Crisis: Facts, Progress, and How to Help. Retrieved from: https://lifewater.org/blog/tanzania-water-crisis-facts/.

Purvis. (2016). 13 Ways to Provide Water and Sanitation for Nine Billion People. The Guardian. Retrieved from https://www.theguardian.com/global-development-professionals-network/2015/jul/14/water-sanitation-scarcity-population-growth-summary.

SimplePump. (2021). Reliable Clean Water in Developing Nations. Retrieved from https://simplepump.com/reliable-clean-water-in-developing-nations/.

Sustainable Brands. (2013). IBM's Water Watchers Gives South African Citizens Power Over Water Challenges. Retrieved from https://sustainablebrands.com/read/ict-and-big-data/ibm-s-water-watchers-app-gives-south-african-citizens-power-over-water-challenges.

TakeProfit.org. (2021). Tanzania. Retrieved from https://take-profit.org/en/statistics/wages/tanzania/.

Water.org. (2021). Tanzania. Retrieved from: https://water.org/our-impact/where-we-work/tanzania/.

The Water Project. (2021). Water Crisis. Retrieved from https://thewaterproject.org/why-water/water-crisis.

World Bank. (2021). Tanzania. Retrieved from https://www.worldbank.org/en/country/Tanzania.

UNDP. (2015). Sustainable Development Goals. Retrieved from https://www.undp.org/sustainable-development-goals.

United Nations. (2007). Bringing Water to Africa's Poor. Retrieved from https://www.un.org/africarenewal/magazine/october-2007/bringing-water-africa%E2%80%99s-poor.

Zientala, P. (2017). Water Point Mapping in Tanzania Using a Machine Learning Approach. Department of Geography, University of Southhampton, UK.