	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006

 $Q(\beta^-)=-2.91\times 10^3$ 3; S(n)=7493.5 3; S(p)=7073 9; $Q(\alpha)=-787$ 5 2012Wa38

Note: Current evaluation has used the following Q record.

 $Q(\beta^{-})=-2915\ 28$; $S(n)=7493.50\ 30$; $S(p)=7072\ 9$; $Q(\alpha)=-788\ 5$ 2003Au03

Isotope shift is measured by 1977No04, 1978No09, 1983Mu12.

Charge radii are measured by 1977No04, 1978No09, 1983Mu12.

In the comments for each rotational band the mean-squared deviation Δ of the energy values calculated with use of Variable Moment of Inertia model from the experimental ones is presented.

¹³¹Ba Levels

Neutron resonance parameters: see 1981MuZQ, 2004BrZU.

Cross Reference (XREF) Flags

A 131 Ba IT decay (14.6 min) B 131 La ε decay C 122 Sn(13 C,4nγ),(12 C,3nγ) D 130 Ba(d,p)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0^{c}	1/2+	11.50 d 6	ABCD	$%ε+%β^+=100$ μ=0.708113 15 μ: from trapped ion spectroscopy (2001STZZ,1987Kn10). Other: -0.709 16 from Collinear LASER spectroscopy (1983Mu12). $J^π$: L=0 in (d,p). $T_{1/2}$: from 1991Bo34. Others: 11.8 d 2 (1953Co24), 11.52 d 8 (1956Be12), 12.0 d I (1963Ly02).
108.077 ^c 5	3/2+	0.35 ns 5	ABCD	J^{π} : L=2 in (d,p); M1+E2 γ to 1/2 ⁺ . $T_{1/2}$: from ¹³¹ La ε decay.
187.995 ^e 9	9/2-	14.6 min 2	A CD	% $TT=100$ $\mu=-0.870 \ 18$; Q=+1.46 13 (2001StZZ) μ ,Q: from Collinear LASER Spectroscopy (1983Mu12). J^{π} : E3 γ to 3/2 ⁺ . $T_{1/2}$: from 1963Ho05.
285.251 5	3/2+		BCD	J^{π} : L=2 in (d,p); M1+E2 γ from 1/2 ⁺ .
287.52 ^e 20	11/2-‡		С	
316.585 ^c 7	5/2+‡		BCD	
365.165 5	1/2+		B D	J^{π} : L=0 in (d,p).
525.850 <i>6</i>	$(3/2)^+$		BCD	J^{π} : M1(+E2) γ to 1/2+; L=(2) in (d,p).
542.89 ^c 14	7/2+‡		BC	
561.725 <i>15</i>	$3/2^+, 5/2^+$		B D	J^{π} : L=2 in (d,p).
706.45 ^e 17	13/2-‡		С	
718.779 10	$3/2^+, 5/2^+$			J^{π} : M1,E2 γ to 7/2 ⁺ , γ to 1/2 ⁺ .
719.494 <i>15</i>	$1/2^+, 3/2^+$		В	J^{π} : from M1,E2 γ 's to $1/2^+$, $3/2^+$ states, $\varepsilon + \beta +$ decay from $3/2^+$ parent.
757 10	5/2-,7/2-		D	J^{π} : L=3 in (d,p).
783? 10	ı.		D	
803.41 ^c 24	9/2+‡		C	
839? 10	1/0+ 2/0+ 5/01		_ D	TT C 151 TO 1 20t 2 20t 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
879.333 <i>17</i>	$1/2^+, 3/2^+, 5/2^+$		В	J ^{π} : from M1,E2 γ 's to 3/2 ⁺ states, γ to 1/2 ⁺ g.s. ε + β + decay from 3/2 ⁺

131Ba Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
905 10	(1/2+)	D	parent.
895 10	$(1/2^+)$ $15/2^{-\ddagger}$	D	J^{π} : L=(0) in (d,p).
898.72 ^e <i>17</i> 949.94 <i>3</i>	3/2 ⁺ ,5/2 ⁺	C B D	J^{π} : L=2 in (d,p).
974.211 <i>15</i>	3/2+,5/2+	B D	J^{π} : L=2 in (d,p).
1030.6 6	$(13/2^{-})$	С	J^{π} : (E2) γ to 9/2 ⁻ , (M1,E2) γ to 11/2 ⁻ .
1100 10	1/2-,3/2-	D	J^{π} : L=1 in (d,p).
1118.91 ^c 22	11/2 ^{+‡}	C	
1135? 10	1/0+ 2/2+ 5/2+	D	TT C 161 (201) (201)
1154.262 <i>24</i> 1162 <i>10</i>	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ 5/2 ⁻ ,7/2 ⁻	B D	J^{π} : from M1 γ to $(3/2)^+$ state, γ to $1/2^+$ g.s. $\varepsilon + \beta +$ decay from $3/2^+$ parent. J^{π} : L=3 in (d,p).
1202? 10	3/2 ,1/2	D D	$J : L - J \text{ in } (\mathbf{u}, \mathbf{p}).$
1243 10	$(5/2^-,7/2^-)$	D	J^{π} : L=(3) in (d,p).
1243.96 7	1/2,3/2,5/2 ⁽⁺⁾ @	В	
1291.63 5	1/2,3/2,5/2 ⁽⁺⁾ @	B D	
1317 10	1/2-,3/2-	D	J^{π} : L=1 in (d,p).
1349.77 ^h 22	$(15/2^{-})$	С	J^{π} : M1+E2 γ to 13/2 ⁻ .
1417.92 ^c 23	13/2+‡	C	
1437 10	$(1/2^+)$	D	J^{π} : L=(0) in (d,p).
1458.67 ^e 16	17/2-‡	C	
1475.72 10	1/2+	B D	J^{π} : L=0 in (d,p).
1494.65 <i>4</i> 1565 <i>10</i>	1/2,3/2,5/2 ⁽⁺⁾ @ 5/2 ⁻ ,7/2 ⁻	В	J^{π} : L=3 in (d,p).
1605 10	3/2 ,1/2	D D	$J : L=3 \text{ III } (\mathbf{u},\mathbf{p}).$
1669 10	3/2+,5/2+	D	J^{π} : L=2 in (d,p).
1683.01 ^e 16	19/2-#	С	
1713.2 6	$(17/2^{-})^{\&}$	С	
1747 10	$(1/2^+)$	D	J^{π} : L=(0) in (d,p).
1785 10	4	D	
1796.68 ^c 23	15/2+‡	C	17 I O' (I)
1820 <i>10</i> 1908 <i>10</i>	1/2 ⁺ (1/2 ⁺)	D D	J^{π} : L=0 in (d,p). J^{π} : L=(0) in (d,p).
1943 <i>10</i>	$(1/2^{+})$	D D	J^{π} : L=(0) in (d,p).
1965? 10	(1/2)	c	
1981.82 <i>13</i>	1/2,3/2,5/2	B D	J^{π} : log ft =7.2 from 3/2 ⁺ parent.
2045.24 ^h 17	$(19/2^{-})^{\#}$	C	
2051 15	$(5/2^-,7/2^-)$	D	J^{π} : L=(3) in (d,p).
2064.81 11	1/2,3/2,5/2 ⁽⁺⁾ @	В	
2100? <i>15</i> 2109.4 ^d 4	(15/2+)	D	We attestabled (E1) as to 12/2
	$(15/2^+)$	С	J^{π} : stretched (E1) γ to $13/2^{-}$.
2122.06 ^c 21 2163.16 8	17/2 ^{+‡} 1/2,3/2,5/2	C B	J^{π} : log $ft=7.0$ from $3/2^{+}$ parent.
2195.23 10	1/2,3/2,5/2 ⁽⁺⁾ @	В	$J : \log Jt - 7.0$ from $5/2$ parent.
2271.17 9	1/2,3/2,5/2 ⁽⁺⁾ @	В	
2310 15	5/2-,7/2-	D	J^{π} : L=3 in (d,p).
2320.10 ^d 19	$(17/2^+)$	C	J^{π} : stretched (E1) to $15/2^{-}$.
2347 15	$(5/2^-,7/2^-)$	D	J^{π} : L=(3) in (d,p).
2358.10 ^f 17	21/2-‡	С	
2385.17 9	1/2,3/2,5/2	B D	J^{π} : log ft =6.4 from 3/2 ⁺ parent.
2401 15		D	
2433? 15		D	

131Ba Levels (continued)

E(level) [†]	J^π	XREF	Comments
2460.7 ^l 3	(19/2) <mark>&</mark>	С	
2487 15	$5/2^-,7/2^-$	D	J^{π} : L=3 in (d,p).
2519.36 22	$(21/2^{-})^{\&}$	C	
2524 15	3/2+,5/2+	D	J^{π} : L=2 in (d,p).
2533.9 ^c 3	19/2+‡	С	
2561.28 ^d 18	$(19/2^+)$	C	J^{π} : stretched (E2) γ to $15/2^+$.
2592 <i>15</i>	$(5/2^-,7/2^-)$ $23/2^{-\ddagger}$	D	J^{π} : L=(3) in (d,p).
2611.53 ^e 24 2616 <i>15</i>	$(5/2^-,7/2^-)$	C D	J^{π} : L=(3) in (d,p).
2656 15	$(5/2^-,7/2^-)$	D	J^{π} : L=(3) in (d,p).
2725.38 ⁱ 25	$(21/2^+)$	С	J^{π} : stretched (E2) γ to $17/2^+$.
2795.43 ^{bd} 22	$(21/2^+)^{\ddagger}$	С	Additional information 1.
2795.51 ^{bh} 24	$(23/2^{-})^{\#}$	C	Additional information 2.
2862.6 ^c 4	21/2+‡	C	
2868.6 ^k 4	,	C	
2884.4 ^l 4	(23/2) [#]	C	
3009.9 ^k 5	(-1)	C	
3057.40 ^d 20	$(23/2^+)^{\ddagger}$	C	
3119.3 ^j 7	(- 1)	C	
3138.9 8	$(23/2^{-})^{\&}$	С	
3255.0 <i>3</i>	$(25/2^{-})^{\&}$	С	
3256.9 ^k 6	, ,	С	
3272.6 ^d 4	$(25/2^+)^{\ddagger}$	С	
3303.6 ⁱ 4	$(25/2^+)^{\#}$	С	
3401.1 ^e 3	25/2-‡	С	
3431.4 ^j 8	,	С	
3477.1 ^h 4	$(27/2^{-})$	С	J^{π} : stretched (E2) γ to 23/2 ⁻ .
3510.6 5	(27/2)#	C	
3556.1 ^d 4	$(27/2^+)^{\ddagger}$	C	
3585.2 ^k 7		C	
3653.1 ^g 4	$(27/2^{-})$	C	J^{π} : stretched (E2) γ to 23/2 ⁻ .
3657.3 ^l 5	(27/2)#	C	
3717.7 ^e 4	27/2-‡	C	
3808.4^{j} 13		C	
3902.4 <i>f</i> 4	$(25/2^{-})$	C	J^{π} : $\Delta J=2$ (E2) γ to $21/2^{-}$, $\Delta J=0$ D γ to $25/2^{-}$.
3940.9 ^d 5	$(29/2^+)^{\ddagger}$	C	
3949.7 ^k 7		C	
4046.6 <i>f</i> 4	$(27/2^{-})$	C	J^{π} : $\Delta J=2$ (E2) γ to 23/2 ⁻ , $\Delta J=0$ D γ to 27/2 ⁻ .
4072.0 ⁱ 5	$(29/2^+)^{\#}$	C	
4205.4 ^j 17		С	
$4278.6\frac{d}{5}$	$(31/2^+)^{\ddagger}$	C	
4307.9^{f} 5	$(29/2^{-})^{\ddagger}_{\mu}$	С	
4338.8 ^h 5	$(31/2^{-})^{\#}$	C	
4410.3? ^k 13	щ	C	
4501.9 ⁸ 5	$(31/2^{-})^{\#}$	C	
4512.4 ¹ 5	$(31/2)^{\#}$	C	

¹³¹Ba Levels (continued)

E(level) [†]	J^{π}	XREF	E(level) [†]	J^{π}	XREF	E(level) [†]	J^{π}	XREF
4633.3 ^f 5	$(31/2^-)^{\ddagger}$	С	5351.3 ^h 6	$(35/2^-)^{\#}$	C	6174.4? ^d 10	$(39/2^+)^a$	С
4670.0? ^j 20		C	5387.9 <mark>8</mark> 6	$(35/2^{-})^{\#}$	C	6235.6? ⁱ 12	$(37/2^+)^a$	C
4750.3 ^d 6	$(33/2^+)^{\ddagger}$	C	5404.5 ^f 7	$(35/2^{-})^{\ddagger}$	C	6365.0? ^f 10	$(39/2^{-})^{a}$	C
4975.2 ^f 6	$(33/2^{-})^{\ddagger}$	C	5489.4 ¹ 12	$(35/2)^{\#}$	C	6440.9? <mark>8</mark> 12	$(39/2^{-})^{a}$	C
5042.0 ⁱ 6	$(33/2^+)^{\#}$	C	5687.2 ^d 9	$(37/2^+)^{\ddagger}$	C			
5163.2 ^d 6	$(35/2^+)^{\ddagger}$	C	5856.4 ^f 7	$(37/2^{-})^{\ddagger}$	C			

[†] From least-squares fit to E γ 's, resulted normalized χ^2 =0.6.

 $^{^{\}ddagger}$ M1+E2 or M1,E2, stretched E2 γ cascades to bandhead.

 $^{^{\#}}$ Stretched E2 γ cascade to bandhead.

[@] log ft=6.4-7.5 from 3/2⁺ parent; γ to 1/2⁺.

[&]amp; From decay pattern.

^a From assignment to band.

^b The levels 1795.51, 23/2⁻ and 2795.43, 21/2⁺ are very close; during least square fitting at first the level energies were fixed by turns, at final stage both energies were fixed.

^c Band(A): $\Delta J=1$ band, probable Configuration=(ν s_{1/2}); (Δ =40 keV).

^d Band(B): band on Configuration=(N,H11/2)(π g_{7/2})(π h_{11/2}); (Δ =63 keV).

^e Band(C): yrast band, Configuration= $(v h_{11/2})$; (Δ =149 keV).

^f Band(D): band on Configuration= $(N,H11/2)(\pi h_{11/2})^2$; (Δ =80 keV).

^g Band(E): $\Delta J=2$ band, candidate for Configuration= $(v h_{11/2})^3$ (GAMMA=-40 DEG); (Δ =15 keV).

^h Band(F): ΔJ=2 band, candidate for Configuration=(ν h_{11/2})³, (γ =-80°); Δ=51 keV.

ⁱ Band(G): $\Delta J=2$ band, Configuration= $(N,S1/2)(\nu h_{11/2})^2$; ($\Delta=82$ keV).

^j Band(H): Possible rotational level sequence.

^k Band(I): Possible rotational level sequence.

¹ Band(J): Possible rotational level sequence with $\Delta J=2$; ($\Delta=96$ keV).

γ (131Ba)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\clip{t}}$	$I_{\gamma}^{\dagger\ddagger}$	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.a	$\delta^{m{b}}$	α^{c}	Comments
108.077	3/2+	108.081 5	100	0.0	1/2+	M1+E2	0.127 14	0.812 3	B(M1)(W.u.)=0.027 4; B(E2)(W.u.)=24 7
187.995	9/2-	79.918 <i>7</i>	100	108.077	3/2+	E3		80.1	B(E3)(W.u.)=0.00087 3
285.251	3/2+	177.186 <i>16</i>	1.23 [#] <i>12</i>	108.077	3/2+	M1,E2		0.23 3	
		285.246 7	100.0 [#] 23	0.0	1/2+	M1,E2		0.0547 14	$\alpha(K)$ exp=0.043 4
287.52	$11/2^{-}$	99.7 <i>3</i>	100	187.995	9/2-	M1(+E2)	-0.01 4	1.01	•
316.585	5/2+	208.509 8	100.0 [#] 25	108.077	$3/2^{+}$	M1+E2	-0.21~3	0.130	α (K)exp=0.108 7
		316.575 <i>14</i>	28.8 [#] <i>13</i>	0.0	1/2+	E2		0.0383	
365.165	1/2+	79.918 7	4.74 9	285.251		M1+E2	0.21 2	2.01 2	
		257.087 9	20.3 4	108.077		M1,E2		0.0742 6	$\alpha(K)$ exp=0.058 6
525 050	(2/2)+	365.162 8	100.0 19	0.0	1/2+	M1	.0.4	0.0294	
525.850	$(3/2)^+$	160.687 <i>7</i> 209.269 <i>27</i>	10.0 <i>3</i> 1.78 <i>18</i>	365.165 316.585		M1(+E2) M1,E2	< 0.4	0.270 8 0.138 <i>11</i>	$\alpha(K) \exp = 0.111 \ 8$
		240.593 7	7.66 19	285.251		M1(+E2)	< 0.2	0.138 11	u(1x)exp=0.111 0
		417.783 <i>15</i>	100.0# 23	108.077		M1,E2	10.2	0.0187 23	
		525.851 <i>16</i>	48.6 [#] 10	0.0	1/2+	M1,E2		0.0103 16	
542.89	7/2+	226.6 5	15.4	316.585		M1+E2	-0.23 8	0.103	E_{γ} : average of 227.2 ((¹³ C,4ηγ)) and 226.3 (ε decay).
		435.3 5	100	108.077	3/2+	E2		0.0145	E _γ : average of 435.7 ((13 C,4n γ)) and 434.83 (ε decay).
561.725	3/2+,5/2+	245.10 <i>4</i> 276.5 <i>3</i>	5.3 <i>9</i> 0.5 <i>3</i>	316.585 285.251		M1,E2		0.086 2	α (K)exp=0.070 8
		453.659 <i>15</i>	100.0 22	108.077		M1,E2		0.015 2	$\alpha(K) \exp = 0.0161 \ 9$
		561.785 ^d 16	18.7 5	0.0	1/2+	M1,E2			$\alpha(K) \exp = 0.0079 \ 20$
		301.703 10	10.7 5	0.0	1/2	1111,22			E_{γ} : poor fit, energy level difference is equal to 561.752 11.
706.45	$13/2^{-}$	419.0 <i>3</i>	100		$11/2^{-}$	M1+E2	-0.327	0.0203 2	
	1 1	518.6 <i>3</i>	9.7	187.995		E2			
718.779	3/2+,5/2+	176.04 <i>16</i>	22 15	542.89	7/2+	M1,E2		0.24 4	E_{γ} : poor fit, energy level difference is equal to 175.63 <i>13</i> .
		192.929 8	100 19	525.850					
719.494	1/2+,3/2+	718.5 <i>3</i> 157.82 <i>8</i>	12 <i>5</i> 7.8 <i>6</i>	0.0 561.725	1/2 ⁺ 3/2 ⁺ ,5/2 ⁺				
/ 17. 4 74	1/2 ,3/2	137.82 8 176.6 ^d	7.00		3/2 ,3/2 7/2 ⁺				
		176.6 ^d 193.5 ^d			•				
		193.5 ^a 402.90 <i>4</i>	100 15	525.850 316.585		M1,E2		0.0206 23	
		434.33 10	75 <i>3</i>	285.251		M1,E2 M1(+E2)	≤0.64	0.0206 23	
		611.407 <i>18</i>	89 <i>3</i>	108.077		M1,E2	_0.0 т	0.0103 /	
		719.53 4	19.7 7	0.0	1/2+	M1,E2			
803.41	9/2+	260 <i>1</i>	<100 ^{&}	542.89	7/2+				

S

$\gamma(\frac{131}{Ba})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} †‡	E_f	J_f^{π} Mul	t. $\frac{a}{\delta^b}$	α^{c}	Comments
879.333	1/2+,3/2+,5/2+	159.90 9	5.4 11	719.494 1/2+				
		336.4 ^d 353.479 24	65 <i>5</i>	542.89 7/2 ⁺ 525.850 (3/2)		72	0.030 <i>3</i>	
		594.080 22	100 <i>3</i>	285.251 3/2+	M1,E		0.050 5	
		771.19 23	3.1 9	108.077 3/2+				
898.72	15/2-	879.20 ^d 4 192.3 3	12.2 <i>5</i> 14.9	0.0 1/2 ⁺ 706.45 13/2		E2 -0.24 <i>12</i>	0.163 2	
090.72	13/2	611.3 3	100	287.52 11/2		L2 -0.2 4 12	0.103 2	
949.94	3/2+,5/2+	230.4 <mark>d</mark>		719.494 1/2+	,3/2+			
		584.81 5	28 3	365.165 1/2 ⁺		E2		
		664.63 <i>5</i> 841.86 <i>4</i>	63.3 25 100 4	285.251 3/2 ⁺ 108.077 3/2 ⁺		32		$\alpha(K) \exp = 0.0025 \ 6$
974.211	3/2+,5/2+	94.9 ^d	100 /	879.333 1/2 ⁺				a(12)e.ip 010020 0
	, , ,	254.7 ^d		719.494 1/2+				
		413.30 ^d 23	22 5	561.725 3/2+	,5/2 ⁺ M1,E	Ε2	0.0192 23	
		431.3 ^d		542.89 7/2+				
		657.630 <i>23</i> 866.138 <i>26</i>	24.4 <i>7</i> 100 <i>3</i>	316.585 5/2 ⁺ 108.077 3/2 ⁺				$\alpha(K) \exp = 0.067 \ 14$ $\alpha(K) \exp = 0.0029 \ 16$
		974.204 26	61.1 15	$0.0 1/2^+$				<i>a</i> (K) <i>C</i> (P)=0.0029 10
1030.6	$(13/2^{-})$	743 <i>1</i>		287.52 11/2	- (M1,			
1118.91	11/2+	843 <i>I</i> 316 <i>I</i>	<11	187.995 9/2 ⁻ 803.41 9/2 ⁺				
1110.71	11/2	575.8 <i>3</i>	100	542.89 7/2+				
1154.262	1/2+,3/2+,5/2+	204.3 ^d			,5/2+			
		628.402 24	100 3	525.850 (3/2) 316.585 5/2 ⁺				$\alpha(K)$ exp=0.0072 8
		837.86 <i>11</i> 1154.23 <i>20</i>	26 <i>5</i> 20 <i>3</i>	$0.0 1/2^+$				
1243.96	1/2,3/2,5/2 ⁽⁺⁾	524.4 ^d		719.494 1/2+	,3/2+			
		927.40 <i>13</i>	40 5	316.585 5/2+				
		958.89 <i>14</i> 1135.85 <i>12</i>	32 <i>7</i> 100 <i>6</i>	285.251 3/2 ⁺ 108.077 3/2 ⁺				
		1243.72 16	26 6	0.0 1/2+				
1291.63	$1/2,3/2,5/2^{(+)}$	317.50 6	100 9	974.211 3/2+				
		729.19 ^d 27 1291.54 6	2.9 <i>18</i> 37.1 <i>19</i>	561.725 3/2 ⁺ 0.0 1/2 ⁺				
1349.77	$(15/2^{-})$	451.0 3	<9.4	0.0 1/2 ⁺ 898.72 15/2				
		643.5 <i>3</i>	100	706.45 13/2	- M1+			
1417.92	13/2+	299.0 <i>3</i> 614.4 <i>3</i>	23.6 100	1118.91 11/2 803.41 9/2 ⁺		E2 -0.19 <i>10</i>	0.0493 2	
1458.67	17/2-	560.0 3	100	898.72 15/2		E2 -0.42 9		
	•	752.2 <i>3</i>	<69	706.45 13/2				

6

$\gamma(\frac{131}{Ba})$ (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ} †‡	\mathbb{E}_f	\mathtt{J}^π_f	Mult. ^a	δ^{b}	α^{c}
1475.72	1/2+	231.8 ^d		1243.96	1/2,3/2,5/2 ⁽⁺⁾			
		1158.0 ^d 5	20 6	316.585				
		1367.47 <i>12</i>	100 16	108.077	•			
		1475.98 <i>15</i>	73 27	0.0	1/2+			
1494.65	$1/2,3/2,5/2^{(+)}$	544.7 ^d		949.94	3/2+,5/2+			
		933.03 8	15.0 24		3/2+,5/2+			
		969.72 ^d 30	11.0 18	525.850				
		1178.03 4	100 5	316.585				
		1209.45 15	9.5 <i>23</i> 18 <i>4</i>	285.251				
		1386.05 28 1494.65 8	22.8 23	108.077 0.0	3/2+ 1/2+			
1683.01	19/2-	224.2 3	6.1	1458.67	17/2 ⁻	M1+E2	-0.19 10	0.107
1003.01	17/2	784.4 <i>3</i>	100	898.72	15/2	E2	0.17 10	0.107
1713.2	$(17/2^{-})$	683 <i>1</i>	100	1030.6	$(13/2^{-})$			
1796.68	15/2+	379 <i>1</i>	<14	1417.92	13/2+	D		
		677.6 <i>3</i>	100	1118.91	11/2+	E2		
1981.82	1/2,3/2,5/2	1420.7 5	56 28		3/2+,5/2+			
		1696.56 22	99 13	285.251	3/2+			
2045.24	(10/2=)	1873.65 <i>17</i> 332 <i>1</i>	100 <i>15</i> <15	108.077 1713.2				
2043.24	$(19/2^{-})$	363 <i>1</i>	<15	1713.2	(17/2 ⁻) 19/2 ⁻			
		586.8 <i>3</i>	100	1458.67	17/2 ⁻	M1+E2	-0.32 7	
		695.6 <i>3</i>	83	1349.77	$(15/2^{-})$	E2	0.32 /	
2064.81	1/2,3/2,5/2 ⁽⁺⁾	570.3 ^d		1494.65	1/2,3/2,5/2 ⁽⁺⁾			
2001.01	1/2,3/2,5/2	1699.60 <i>15</i>	100 40	365.165				
		1779.40 26	17 5	285.251				
		1957.16 ^d 13	52 6	108.077	3/2+			
		2064.94 20	10 3	0.0	1/2+			
2109.4	$(15/2^+)$	1403.0 <i>3</i>	100	706.45	13/2	(E1+M2)	-0.03 6	
2122.06	17/2+	325 1	<27	1796.68	15/2 ⁺			
		704.0 [@] 3	100	1417.92	13/2+	E2		
2163.16	1/2,3/2,5/2	1212.85 22	45 15	949.94	3/2+,5/2+			
		1443.66 11	100 7	719.494				
		1601.53 <i>17</i> 2055.24 22	15 <i>4</i> 34 <i>7</i>	561.725 108.077	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺			
2195.23	1/2,3/2,5/2 ⁽⁺⁾	700.38 15	72 <i>15</i>	1494.65	1/2,3/2,5/2 ⁽⁺⁾			
2173.23	1/4,3/4,3/4	1315.80 <i>17</i>	22 9	879.333	1/2+,3/2+,5/2+			
		2087.44 20	100 27	108.077				
		2195.58 30	43 14	0.0	1/2+			
2271.17	1/2,3/2,5/2 ⁽⁺⁾	1296.81 <i>17</i>	66 10		3/2+,5/2+			
		1906.40 24	62 18	365.165				

γ ⁽¹³¹Ba) (continued)</sup>

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\dagger\ddagger}$	\mathbb{E}_f	\mathtt{J}_f^π	Mult.a	δ^{b}	α^{c}
2271.17	1/2,3/2,5/2 ⁽⁺⁾	1954.48 <i>15</i> 2271.23 <i>20</i>	100 <i>13</i> 45 9	316.585 0.0	5/2 ⁺ 1/2 ⁺	·		
2320.10	(17/2+)	211 <i>I</i> 1421.4 <i>3</i>	<54 100	2109.4 898.72	(15/2 ⁺) 15/2 ⁻	(E1+M2)	-0.05 5	
2358.10	21/2-	675.0 <i>3</i>	95	1683.01	19/2	M1+E2	-0.49 14	
2385.17	1/2,3/2,5/2	899.5 [@] 3 1823.41 <i>10</i> 1859.08 <i>21</i>	100 100 9 13 5	1458.67 561.725 525.850	17/2 ⁻ 3/2 ⁺ ,5/2 ⁺ (3/2) ⁺	E2		
2460.7	(19/2)	2067.6 ^d 4 2100.30 23 415 1 748 1 777.7 3 1002 1	2.6 9 14 4 <31 <31 100 <31	316.585 285.251 2045.24 1713.2 1683.01 1458.67	5/2 ⁺ 3/2 ⁺ (19/2 ⁻) (17/2 ⁻) 19/2 ⁻ 17/2 ⁻	(D)		
2519.36	(21/2 ⁻)	474.0 <i>3</i> 806 <i>I</i>	100 <36	2045.24 1713.2	$(19/2^{-})$ $(17/2^{-})$	M1,E2		0.0133 19
2533.9	19/2+	412 ^d 1 737.2 3	<24 100	2122.06 1796.68	17/2 ⁺ 15/2 ⁺	E2		
2561.28	(19/2+)	1075 <i>I</i> 241.3 <i>3</i> 764.5 <i>3</i>	<24 45 63	1458.67 2320.10 1796.68	17/2 ⁻ (17/2 ⁺) 15/2 ⁺	E1 D (E2)		
2611.53	23/2-	1102.5 <i>3</i> 253 <i>1</i> 928.5 <i>3</i>	100 <11 100	1458.67 2358.10 1683.01	17/2 ⁻ 21/2 ⁻ 19/2 ⁻	(E1+M2) M1,E2 E2	+0.04 12	0.078 1
2725.38	(21/2+)	603.0 <i>3</i> 680.5 <i>3</i>	83 100	2122.06 2045.24	17/2 ⁺ (19/2 ⁻)	(E2) (E1)		
2795.43	(21/2+)	1042 <i>I</i> 234.1 <i>3</i> 261 <i>I</i> 475.2 <i>3</i>	<35 19.1 <100& <7	1683.01 2561.28 2533.9 2320.10	19/2 ⁻ (19/2 ⁺) 19/2 ⁺ (17/2 ⁺)	M1+E2	-0.22 4	0.095
		673.5 <i>3</i> 750 <i>I</i>	<7	2122.06 2045.24	17/2 ⁺ (19/2 ⁻)	(E2)		
2795.51	(23/2-)	1112.5 [@] 3 276.0 3 437.3 3 750.5 3 1111.5 [@] d 3	43.5 <29 60 100 <31	1683.01 2519.36 2358.10 2045.24 1683.01	19/2 ⁻ (21/2 ⁻) 21/2 ⁻ (19/2 ⁻) 19/2 ⁻	D M1,E2 D E2		0.0602 9
2862.6	21/2+	328 ^d 1 740.5 3	<65 100	2533.9 2122.06	19/2 ⁺ 17/2 ⁺	E2		
2868.6		549 <i>I</i> 1185.5 <i>3</i>	100 100 <90	2320.10 1683.01	$(17/2^+)$ $19/2^-$	L/L		

$\gamma(\frac{131}{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\dagger \ddagger}$	E_f J_f^π	Mult.a	δ^{b}	α^{c}
2884.4	(23/2)	365 1	<22	2519.36 (21/2 ⁻)			
		423.7 <i>3</i>	100	2460.7 (19/2)	E2		0.0158
3009.9		141.3 <i>3</i>	100	2868.6			
3057.40	$(23/2^+)$	195 <i>I</i>	<7.4	2862.6 21/2 ⁺	D		
		261.8 <i>3</i>	<100 ^{&}	2795.43 (21/2+)	M1,E2		0.0703 1
		496 <i>1</i>	<7.4	2561.28 (19/2+)	,		
		523.5 <i>3</i>	<7.4	2533.9 19/2+	(E2)		
		699.4 <i>3</i>	20.4	2358.10 21/2-	(E1)		
3119.3		324 <i>1</i>	<100	2795.43 (21/2+)			
		761 <i>I</i>	<100	2358.10 21/2-			
3138.9	$(23/2^{-})$	1094 <i>1</i>	100	2045.24 (19/2 ⁻)			
3255.0	$(25/2^{-})$	459.5 3	100	2795.51 (23/2 ⁻)	M1,E2		0.0145 20
		736 1	<59	2519.36 (21/2 ⁻)			
22710		897 <i>I</i>	<59	2358.10 21/2	254 72		0.004.
3256.9	(0.5 (0.±)	247.0 3	100	3009.9	(M1,E2)	0.10.5	0.084 2
3272.6	$(25/2^+)$	215.1 3	100	3057.40 (23/2 ⁺)	M1+E2	$-0.12\ 5$	0.119
		477 1	<7.7	2795.43 (21/2+)			
2202 6	(25/2+)	662 1	<7.7	2611.53 23/2 ⁻	EO		
3303.6	$(25/2^+)$	578.2 <i>3</i>	100	2725.38 (21/2+)	E2	0 7 4 7 2	
3401.1	25/2-	789.5 [@] 3	100	2611.53 23/2-	M1+E2	-0.56 13	
2421 4		1043.0 3	61	2358.10 21/2	E2		
3431.4		312 1	100	3119.3	D		
		636 1	<30	2795.43 (21/2+)			
2.455.1	(27.12-)	820 ^d 1	<30	2611.53 23/2			
3477.1	$(27/2^{-})$	222 1	<37	3255.0 (25/2-)	F-2		
		682 <i>I</i>	100	2795.51 (23/2 ⁻)	E2		
2510.6	(27/2)	865.5 3	95	2611.53 23/2	(E2)		
3510.6	(27/2)	626.1 <i>3</i> 283.5 <i>3</i>	100 100	2884.4 (23/2) 3272.6 (25/2 ⁺)	E2 M1+E2	0.07.4	0.0569
3556.1	$(27/2^+)$	283.3 3 499 <i>1</i>	< 8.0	3057.40 (23/2 ⁺)	WH+EZ	-0.07 4	0.0309
3585.2		328.3 3	100	3256.9			
3653.1	$(27/2^{-})$	858 <i>I</i>	<37	2795.51 (23/2 ⁻)			
3033.1	(21/2)	1041.5 3	100	2611.53 23/2	(E2)		
3657.3	(27/2)	772.9 3	100	2884.4 (23/2)	E2		
3717.7	27/2-	316 [@] 1	<56	3401.1 25/2			
3/1/./	21/2	1106.2 3	100	2611.53 23/2	E2		
3808.4		377 <i>I</i>	100	3431.4	D		
3902.4	$(25/2^{-})$	501.2 3	100	3401.1 25/2	D		
5702.1	(23/2)	1545 <i>I</i>	<69	2358.10 21/2	(E2)		
3940.9	$(29/2^+)$	384.7 3	100	3556.1 (27/2 ⁺)	M1+E2	-0.34 5	0.0253 1
	(1-)	668 <i>I</i>	<30	$3272.6 (25/2^+)$	-		
3949.7		364.5 3	100	3585.2			

9

γ (131Ba) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ} †‡	\mathbf{E}_f	\mathbf{I}^{π}	Mult.a	$\delta^{\color{red} oldsymbol{b}}$	α^{c}
					J_f^{π}			
4046.6	$(27/2^{-})$	144.2 3	100	3902.4	$(25/2^{-})$	M1+E2	-0.39 6	0.379 7
		328.9 <i>3</i>	<91	3717.7	27/2	D		
		908 <i>I</i>	<91	3138.9	$(23/2^{-})$	(E2)		
		1251 <i>I</i>	<91	2795.51	$(23/2^{-})$	(E2)		
4072.0	(20/2+)	1435 1	<91	2611.53		(E2)		
4072.0 4205.4	$(29/2^+)$	768.4 <i>3</i> 397 <i>1</i>	100 100	3303.6 3808.4	$(25/2^+)$	E2 D		
4203.4	$(31/2^+)$	337.7 3	100	3940.9	$(29/2^+)$	D М1+E2	-0.12 12	0.0360 2
4276.0	(31/2)	722.6 3	58	3556.1	$(29/2^{+})$ $(27/2^{+})$	E2	-0.12 12	0.0300 2
4207.0	(20/2=)	261.3 3	100 ^{&}	4046.6				0.0707.2
4307.9 4338.8	$(29/2^{-})$	261.3 3 861.7 <i>3</i>	100	3477.1	$(27/2^{-})$	M1,E2 E2		0.0707 2
	$(31/2^{-})$				$(27/2^{-})$	EZ		
4410.3?	(21/2-)	461 ^d 1	100	3949.7	(27/2-)	F-0		
4501.9	$(31/2^{-})$	848.8 3	100	3653.1	$(27/2^{-})$	E2		
4512.4	(31/2)	855.2 3	<30	3657.3	(27/2)	E2		
1622.2	(21/2-)	1001.8 3	100	3510.6	(27/2)	E2		
4633.3	$(31/2^{-})$	325.4 <i>3</i> 587 <i>1</i>	<100 <100	4307.9 4046.6	$(29/2^{-})$	D		
4650.00					$(27/2^{-})$			
4670.0?	(22/2±)	465 ^d 1	100	4205.4	(21/2±)	N / 1 F O		0.0125.10
4750.3	$(33/2^+)$	471.7 3	100	4278.6	$(31/2^+)$	M1,E2		0.0135 19
4075.2	(22/2-)	809 <i>I</i> 341.9 <i>3</i>	<50	3940.9	$(29/2^+)$	M1+E2	0.10.2	0.0348
4975.2	$(33/2^{-})$	541.9 5 667 <i>1</i>	100 <54	4633.3 4307.9	$(31/2^{-})$ $(29/2^{-})$	WH+EZ	-0.10 3	0.0346
5042.0	$(33/2^+)$	970.0 <i>3</i>	100	4072.0	$(29/2^+)$	E2		
5163.2	$(35/2^+)$	412.8 3	100	4750.3	$(33/2^+)$	M1,E2		0.0193 23
3103.2	(33/2)	885 <i>1</i>	<51	4278.6	$(33/2^+)$ $(31/2^+)$	1411,112		0.0173 23
5351.3	$(35/2^{-})$	1012.5 3	100	4338.8	$(31/2^{-})$	E2		
5387.9	$(35/2^{-})$	886.0 <i>3</i>	100	4501.9	$(31/2^{-})$	E2		
5404.5	$(35/2^{-})$	429.3 <i>3</i>	100	4975.2	$(33/2^{-})$	D		
	. , ,	771 <i>1</i>	<80	4633.3	$(31/2^{-})$			
5489.4	(35/2)	977 <i>1</i>	100	4512.4	(31/2)	E2		
5687.2	$(37/2^+)$	524 <i>1</i>	100	5163.2	$(35/2^+)$	M1,E2		0.0103 16
		937 <i>1</i>	<61	4750.3	$(33/2^+)$			
5856.4	$(37/2^{-})$	452.0 <i>3</i>	100	5404.5	$(35/2^{-})$	M1+E2	-0.17 3	0.0170 <i>1</i>
		881 <i>I</i>	<71	4975.2	$(33/2^{-})$			
6174.4?	$(39/2^+)$	487 <mark>d</mark> 1	<100	5687.2	$(37/2^+)$			
		1012 ^d 1	<100	5163.2	$(35/2^+)$			
6235.6?	$(37/2^+)$	1194 ^d 1	100	5042.0	$(33/2^+)$			
6365.0?	$(39/2^{-})$	509 ^d 1	<100	5856.4	$(37/2^{-})$			
		961 ^d 1	<100	5404.5	$(35/2^{-})$			
6440.9?	(39/2-)	1053 <i>1</i>	100	5387.9	$(35/2^{-})$			

γ (131Ba) (continued)

- † Relative photon branching from each level.
- [‡] Weighted average of all available data.
- # Data from ε decay adopted: branching ratios from ε decay and (13 C,4n γ) and (12 C,3n γ) are discrepant. See these data sets for details.
- [@] Doublet with a transition in ¹³²Ba.
- & Multiplet.
- ^a From $\alpha(\exp)$, $\gamma(\theta)$ and DCO measurements, except as noted. E2 is assumed for quadrupole transitions, and M1+E2 is assumed for D+Q transitions within a band
- ^b From ce and $\gamma\gamma(\theta)$ data.
- ^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^d Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{131}_{56} \mathrm{Ba}_{75}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{131}_{56}\mathrm{Ba}_{75}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{131}_{56}{\rm Ba}_{75}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{131}_{56}\mathrm{Ba}_{75}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{131}_{56}\mathrm{Ba}_{75}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

* γ Decay (Uncertain)

131**Ba IT decay (14.6 min)** 1963Ho05

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006

Parent: 131 Ba: E=187.50 20; J^{π} =9/2 $^-$; $T_{1/2}$ =14.6 min 2; %IT decay=100.0 1963Ho05: 131 Ba IT decay [from 127 I(7 Li,3n), E≈38 MeV, 131 La ε decay]; measured x-rays, γ , $\gamma\gamma$, γ (t), deduced levels, J^{π} , $T_{1/2}$. Scintillation detectors, chemical separations.

1972Ha41: ¹³¹Ba IT decay [from ¹³¹La ε decay]; measured Ece, Ice, deduced levels, γ -multipolarities, J^{π} . Chemical separation, permanent-magnet, semi-circular focusing spectrograph with 0.5 keV FWHM at 150 keV.

131 Ba Levels

E(level)	J^{π}	$T_{1/2}$	Comments
0.0	1/2+	11.50 d 6	
108.45 <i>16</i>	$3/2^{+}$		
187.50 20	9/2-	14.6 min 2	The level is populated by 131 La ε decay with intensity $\leq 1\%$ (1963Ho05,1972Ha41). The level is populated in 141 Pr, 140 Ce, 139 La(π^- ,xpyn) reactions; σ_m/σ_g =5.1 5 for 139 La(π ,8n) (1982Bu07).
			101

I_γ normalization: From level scheme.

E_{γ}^{\dagger}	Ι _γ ‡#	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α@	Comments
79.05 12	2.4 12	187.50	9/2-	108.45	3/2+	E3		80.8 13	$\alpha(K) \exp = 12.3 \ 15 \ (1963 \text{Ho}05);$ $L2:L3:M=2.3 \ 3:2.1 \ 3:1.5 \ 3$ $(1972 \text{Ha}41)$ $\alpha(K) = 12.21 \ 18; \ \alpha(L) = 53.4 \ 9;$ $\alpha(M) = 12.34 \ 21; \ \alpha(N+) = 2.88 \ 5$ $\alpha(N) = 2.55 \ 5; \ \alpha(O) = 0.323 \ 6;$ $\alpha(P) = 0.000490 \ 8$
108.45 <i>16</i>	100	108.45	3/2+	0.0	1/2+	M1+E2	0.127 14	0.794	$\alpha(K)$ =0.675 10; $\alpha(L)$ =0.0948 18; $\alpha(M)$ =0.0196 4; $\alpha(N+)$ =0.00491 10 $\alpha(N)$ =0.00422 8; $\alpha(O)$ =0.000640 12; $\alpha(P)$ =4.42×10 ⁻⁵ 7 $\alpha(\exp)$: K:L1:L2:L3:M=745 80:100 10:11 2:4.2 8:26 3 (1972Ha41). δ : from 1972Ha41.

[†] From 1972Ha41.

[‡] From 1963Ho05.

[#] For absolute intensity per 100 decays, multiply by 0.5544 8.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹³¹Ba IT decay (14.6 min) 1963Ho05

¹³¹La ε decay **1979En06**

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006

Parent: 131 La: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=59$ min 2; $Q(\varepsilon)=2915$ 28; $\%\varepsilon+\%\beta^+$ decay=100.0

1979En06: 131 La ε decay (59 min) [from (p,X) reaction with various targets, E=660 MeV]; measured γ , $\gamma\gamma$ coin, ce, deduced levels, J^{π} . Mass-separator, synchrocyclotron, Ge(Li), Si(Li) detectors.

1972Ha41: 131 La ε decay [from 133 Cs(α ,6n) reaction, E=80 MeV]; measured Ece, Ice, deduced levels, γ -multipolarities, J^{π} . Chemical separation, permanent-magnet, semi-focusing spectrograph with 0.5 keV FWHM at 150 keV.

1960Cr01: ¹³¹La ε decay [from ¹³⁰Ba(d,n) reaction, E=11.5 MeV]; measured β^+ , ce, γ , $\gamma\gamma$ coin, $T_{1/2}$, deduced levels, β^+ branching (3 branches, only). Chemical separation, magnetic lens, scintillation spectrometers.

Others: 1983AbZX, 1980VyZZ, 1991Bo34.

¹³¹Ba Levels

The decay scheme is that of 1979En06 and based on coincidence data and energy sums.

E(level) [†]	${f J}^\pi$	$T_{1/2}$	Comments
0.0	1/2+	11.50 d 6	T _{1/2} : from 1991Bo34.
108.077 5	3/2+	0.35 ns 5	$T_{1/2}$: from $\gamma ce(t)$ (1979An06).
285.251 5	3/2+		
316.585 7	5/2+		
365.164 5	1/2+		
525.850 <i>6</i>	$(3/2)^+$		
542.87 8	7/2+		
561.720 <i>14</i>	$3/2^+, 5/2^+$		
718.779 <i>10</i>	3/2+,5/2+		
719.494 <i>15</i>	1/2+,3/2+,5/2+		
879.333 17	1/2+,3/2+,5/2+		
949.94 3	3/2+,5/2+		
974.211 <i>15</i>	3/2+,5/2+		
1154.262 24	1/2+,3/2+,5/2+		
1243.96 7	1/2,3/2,5/2 ⁽⁺⁾		
1291.63 <i>5</i>	$1/2,3/2,5/2^{(+)}$		
1475.50 <i>12</i>	1/2+		
1494.65 <i>4</i>	1/2,3/2,5/2 ⁽⁺⁾		
1981.82 <i>13</i>	1/2,3/2,5/2		
2064.81 <i>11</i>	$1/2,3/2,5/2^{(+)}$		
2163.16 8	1/2,3/2,5/2		
2195.23 10	$1/2,3/2,5/2^{(+)}$		
2271.17 9	$1/2,3/2,5/2^{(+)}$		
2385.11 9	1/2,3/2,5/2		

[†] From least-squares fit to E γ .

ε, β^+ radiations

E(decay)	E(level)	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(5.3 \times 10^2 \ 3)$	2385.11	0.184 16	6.35 7	0.184 16	εK=0.8378 11; εL=0.1264 8; εM+=0.0357 3
$(6.4 \times 10^2 \ 3)$	2271.17	0.101 10	6.79 7	0.101 10	ε K=0.8410 7; ε L=0.1241 5; ε M+=0.03495 17
$(7.2 \times 10^2 \ 3)$					ε K=0.8425 6; ε L=0.1229 4; ε M+=0.03457 13
$(7.5 \times 10^2 \ 3)$	2163.16	0.098 10	6.94 <i>6</i>	0.098 10	ε K=0.8430 5; ε L=0.1225 4; ε M+=0.03444 12

Continued on next page (footnotes at end of table)

131 La ε decay 1979En06 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ ‡	$\mathrm{I}arepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(8.5 \times 10^2 \ 3)$	2064.81		0.16 4	6.84 12	0.16 4	εK=0.8444 4; εL=0.1215 3; εM+=0.03409 9
$(9.3 \times 10^2 \ 3)$	1981.82		0.091 13	7.17 7	0.091 13	ε K=0.8454 3; ε L=0.12077 23; ε M+=0.03386 8
$(1.42 \times 10^3 \ 3)$	1494.65	0.0011 4	0.46 3	6.85 4	0.46 3	av E β =189 13; ε K=0.8465 6; ε L=0.11806 18; ε M+=0.03299 6
$(1.44 \times 10^3 \ 3)$	1475.50	0.00039 13	0.13 2	7.41 <i>7</i>	0.13 2	av E β =197 13; ε K=0.8461 7; ε L=0.11793 19; ε M+=0.03295 6
$(1.62 \times 10^3 \ 3)$	1291.63	0.0048 10	0.39 3	7.04 4	0.38 3	av E β =278 13; ε K=0.8390 19; ε L=0.1163 4; ε M+=0.03248 10
$(1.67 \times 10^3 \ 3)$	1243.96	0.0026 5	0.16 <i>I</i>	7.45 <i>4</i>	0.16 <i>I</i>	av E β =298 13; ε K=0.8357 22; ε L=0.1158 4; ε M+=0.03231 11
$(1.76 \times 10^3 \ 3)$	1154.262	0.0062 9	0.23 1	7.33 3	0.24 1	av E β =338 13; ε K=0.828 3; ε L=0.1144 5; ε M+=0.03193 14
$(1.94 \times 10^3 \ 3)$	974.211	0.090 10	1.56 6	6.59 <i>3</i>	1.64 6	av E β =417 13; ε K=0.804 5; ε L=0.1107 7; ε M+=0.03089 20
$(1.97 \times 10^3 \ 3)$	949.94	0.026 3	0.40 2	7.19 3	0.43 2	av E β =427 13; ε K=0.800 5; ε L=0.1101 8; ε M+=0.03072 21
$(2.04 \times 10^3 \ 3)$	879.333	0.203 20	2.51 10	6.43 <i>3</i>	2.79 11	av E β =458 13; ε K=0.787 6; ε L=0.1082 9; ε M+=0.03017 24
$(2.20 \times 10^3 \ 3)$	719.494	0.29 3	2.16 13	6.56 4	2.45 15	av E β =529 13; ε K=0.751 8; ε L=0.1030 11; ε M+=0.0287 3
$(2.20 \times 10^3 \ 3)$	718.779	0.020 5	0.15 4	7.72 11	0.17 4	av E β =529 13; ε K=0.750 8; ε L=0.1030 11; ε M+=0.0287 3
$(2.35 \times 10^3 \ 3)$	561.720	1.21 8	5.94 20	6.18 <i>3</i>	7.14 23	av E β =599 13; ε K=0.707 9; ε L=0.0969 12; ε M+=0.0270 4
$(2.37 \times 10^3 \ 3)$	542.87	0.007 7	0.03 3	8.4 5	0.04 4	av E β =607 13; ε K=0.702 9; ε L=0.0961 12; ε M+=0.0268 4
$(2.39 \times 10^3 \ 3)$	525.850	5.4 3	24.6 8	5.58 <i>3</i>	30.0 9	av E β =615 13; ε K=0.697 9; ε L=0.0954 12; ε M+=0.0266 4
$(2.55 \times 10^3 \ 3)$	365.164	5.1 3	15.9 6	5.82 3	21.1 7	av E β =686 13; ε K=0.646 10; ε L=0.0883 13; ε M+=0.0246 4
$(2.60 \times 10^3 \ 3)$	316.585	0.54 5	1.54 14	6.85 5	2.08 19	av E β =708 13; ε K=0.630 10; ε L=0.0860 13; ε M+=0.0240 4
$(2.63 \times 10^3 \ 3)$	285.251	1.9 <i>I</i>	5.1 3	6.34 4	7.0 4	av E β =722 13; ε K=0.619 10; ε L=0.0846 14; ε M+=0.0236 4
$(2.81 \times 10^3 \ 3)$	108.077	3.8 4	7.2 7	6.25 5	11.2 10	av E β =802 13; ε K=0.559 10; ε L=0.0762 14; ε M+=0.0212 4
2961 45	0.0	4.8 9	7.5 15	6.26 9	13.6 24	av E β =851 13; ε K=0.522 10; ε L=0.0712 13; ε M+=0.0198 4
						E(decay): from E β +=1939 45 (1960Cr01).

[†] Level populations (%) by $\varepsilon + \beta^+$ decay were computed (by evaluators) using the total intensities of γ' s. [‡] Absolute intensity per 100 decays.

 131 La ε decay 1979En06 (continued)

$\gamma(^{131}\text{Ba})$

Iγ normalization: $\Sigma(I(\gamma+ce) \text{ of } \gamma's \text{ to g.s.})=345 \text{ 4}; \%ε+\%β+(to g.s.)=13.6 \text{ 23}.$ $\alpha(K)$ exp of 1979En06 is normalized to $\alpha(K)(108\gamma)=0.681$ (by evaluators).

 ω

$_{\rm E_{\gamma}}^{\dagger}$	I_{γ} †&	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	J_f^π	Mult.‡	δ^{\ddagger}	α^a	Comments
79.918 7	3.21 6	365.164	1/2+	285.251	3/2+	M1+E2	0.21 2	1.98 4	$\alpha(K)$ =1.635 24; $\alpha(L)$ =0.272 12; $\alpha(M)$ =0.0571 25; $\alpha(N+)$ =0.0141 6 $\alpha(N)$ =0.0122 6; $\alpha(O)$ =0.00180 7; $\alpha(P)$ =0.0001058 15 $\alpha(\exp)$: K:L1:L2:L3:M=62 9:10 2:1.9 3:1.2 3:2.6 4 (1972Ha41).
94.9 [#] <i>b</i> *98.197 <i>27</i>	0.146 <i>21</i>	974.211	3/2+,5/2+	879.333	1/2+,3/2+,5/2+				
x107.22 5	1.70 17					M1,E2		1.2 4	$\alpha(K)$ =0.84 15; $\alpha(L)$ =0.25 16; $\alpha(M)$ =0.05 4; $\alpha(N+)$ =0.013 9 $\alpha(N)$ =0.011 8; $\alpha(O)$ =0.0016 10; $\alpha(P)$ =4.57×10 ⁻⁵ 7
108.081 5	100.0 18	108.077	3/2+	0.0	1/2+	M1+E2	0.127 <i>14</i>	0.802	$\alpha(K)$ =0.681 10; $\alpha(L)$ =0.0957 18; $\alpha(M)$ =0.0198 4; $\alpha(N+)$ =0.00496 9 $\alpha(N)$ =0.00427 8; $\alpha(O)$ =0.000646 12; $\alpha(P)$ =4.46×10 ⁻⁵ 7 $\alpha(\exp)$: K:L1:L2:L3:M=745 80:100 10:11 2:4.2 8:26 3 (1972Ha41).
157.82 8	0.274 18	719.494	1/2+,3/2+,5/2+		3/2+,5/2+				22 0.20 0 (17.12.12.17).
159.90 <i>9</i> 160.687 <i>7</i>	0.31 <i>6</i> 7.21 20	879.333 525.850	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ (3/2) ⁺	365.164	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ 1/2 ⁺	M1(+E2)	<0.4	0.268 8	$\alpha(K)\exp=0.214\ 20$; K/L=7.3 8 $\alpha(K)=0.226\ 5$; $\alpha(L)=0.033\ 3$; $\alpha(M)=0.0068$ 7; $\alpha(N+)=0.00169\ 16$ $\alpha(N)=0.00146\ 14$; $\alpha(O)=0.000220\ 18$; $\alpha(P)=1.461\times10^{-5}\ 22$
176.04 <i>16</i>	0.11 7	718.779	3/2+,5/2+	542.87	7/2+	M1,E2		0.23 4	$\alpha(K)=0.188 \ 15; \ \alpha(L)=0.037 \ 14;$ $\alpha(M)=0.008 \ 3; \ \alpha(N+)=0.0019 \ 7$ $\alpha(N)=0.0017 \ 7; \ \alpha(O)=0.00024 \ 8;$ $\alpha(P)=1.09\times10^{-5} \ 6$
176.6 [#] <i>b</i>		719.494	1/2+,3/2+,5/2+	542.87	7/2 ⁺				
177.186 <i>16</i>	0.61 [@] 6	285.251	3/2+	108.077	3/2+	M1,E2		0.23 3	$\alpha(K)$ =0.184 14; $\alpha(L)$ =0.036 14; $\alpha(M)$ =0.008 3; $\alpha(N+)$ =0.0019 7 $\alpha(N)$ =0.0016 6; $\alpha(O)$ =0.00023 8; $\alpha(P)$ =1.07×10 ⁻⁵ 6
192.929 8 193.5 ^{#b} 204.3 ^{#b}	0.49 9	718.779 719.494 1154.262	3/2 ⁺ ,5/2 ⁺ 1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ 1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺	525.850 525.850 949.94					

¹³¹La ε decay 1979En06 (continued)

$\gamma(^{131}\text{Ba})$ (continued)

E_{γ}^{\dagger}	I_{γ} †&	$E_i(level)$	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.‡	δ^{\ddagger}	α^a	Comments
208.509 8	12.1 [@] 3	316.585	5/2+	108.077	3/2+	M1,E2		0.139 11	$\alpha(K)\exp=0.107 \ 7$ $\alpha(K)=0.113 \ 4; \ \alpha(L)=0.020 \ 6; \ \alpha(M)=0.0043 \ 13;$ $\alpha(N+)=0.0010 \ 3$
209.269 27	1.28 13	525.850	(3/2)+	316.585	5/2+	M1,E2		0.137 11	$\alpha(N)$ =0.0009 3; $\alpha(O)$ =0.00013 4; $\alpha(P)$ =6.7×10 ⁻⁶ 5 $\alpha(K)$ exp=0.110 8 $\alpha(K)$ =0.112 4; $\alpha(L)$ =0.020 6; $\alpha(M)$ =0.0042 13; $\alpha(N+)$ =0.0010 3
226.3 ^{#b}		542.87	7/2+	316.585	5/2+				α (N)=0.0009 3; α (O)=0.00013 4; α (P)=6.6×10 ⁻⁶ 5
230.4 [#] b		949.94	3/2 ⁺ ,5/2 ⁺		1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺				
231.8 [#] b		1475.50	1/2+		1/2,3/2,5/2 ⁽⁺⁾				
240.593 7	5.50 14	525.850	$(3/2)^+$	285.251	3/2+	M1(+E2)	<0.2	0.0870	$\alpha(K)$ exp=0.073 6; K/L=8.7 12 $\alpha(K)$ =0.0745 11; $\alpha(L)$ =0.00992 17; $\alpha(M)$ =0.00205 4; $\alpha(N+)$ =0.000514 9
									$\alpha(N)=0.000441 \ 8; \ \alpha(O)=6.74\times10^{-5} \ II;$ $\alpha(P)=4.87\times10^{-6} \ 7$
245.10 3	1.25 20	561.720	3/2+,5/2+	316.585	5/2+	M1,E2		0.085 3	$\alpha(K)=4.87 \times 10^{-5}$ $\alpha(K)\exp=0.069 \ 8$ $\alpha(K)=0.0702 \ 13; \ \alpha(L)=0.0117 \ 24; \ \alpha(M)=0.0024 \ 6; \alpha(N+)=0.00060 \ 12$
									$\alpha(N)=0.00052 \ 11; \ \alpha(O)=7.6\times10^{-5} \ 13;$ $\alpha(P)=4.2\times10^{-6} \ 5$
254.7 ^{#b} 257.087 9	13.71 27	974.211 365.164	3/2 ⁺ ,5/2 ⁺ 1/2 ⁺	719.494 108.077	$1/2^+, 3/2^+, 5/2^+$	M1,E2		0.0736 13	$\alpha(K)$ exp=0.057 6
237.007 9	13./1 2/	303.104	1/2	108.077	3/2	W11,E2		0.0730 13	$\alpha(K)$ =0.0611 17; $\alpha(L)$ =0.0100 18; $\alpha(M)$ =0.0021 4; $\alpha(N+)$ =0.00051 9
									$\alpha(N)=0.00044 \ 8; \ \alpha(O)=6.5\times10^{-5} \ 10; \ \alpha(P)=3.7\times10^{-6}$
276.4 3	0.12 6	561.720	3/2+,5/2+	285.251	3/2+				4
285.246 7	49.6 [@] 11	285.251	3/2+	0.0	1/2+	M1,E2		0.0542 14	$\alpha(K)\exp=0.042$ 4 $\alpha(K)=0.0453$ 24; $\alpha(L)=0.0071$ 9; $\alpha(M)=0.00149$ 21; $\alpha(N+)=0.00037$ 5
									$\alpha(N)=0.00032 \ 4; \ \alpha(O)=4.7\times10^{-5} \ 5; \ \alpha(P)=2.8\times10^{-6} \ 4$
316.575 14	3.49 [@] 15	316.585	5/2+	0.0	1/2+	E2		0.0381	$\alpha(K)$ =0.0312 5; $\alpha(L)$ =0.00552 8; $\alpha(M)$ =0.001163 17; $\alpha(N+)$ =0.000284 4
									$\alpha(N)=0.000247 \ 4; \ \alpha(O)=3.56\times10^{-5} \ 5;$ $\alpha(P)=1.781\times10^{-6} \ 25$
									$\alpha(L) = 1.761 \times 10^{-25}$ $\alpha(L) = 0.0059$ 22 (calculated by evaluators from 1980VyZZ).

¹³¹La ε decay 1979En06 (continued)

$\gamma(^{131}\text{Ba})$ (continued)

E_{γ}^{\dagger}	I_{γ} †&	$E_i(level)$	J_i^{π}	E_f J_f^{π}	Mult.‡	δ^{\ddagger}	α^a	Comments
317.50 6 336.4 ^{#b} x352.07 15	1.10 <i>10</i> 0.50 <i>23</i>	1291.63 879.333	1/2,3/2,5/2 ⁽⁺⁾ 1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺	974.211 3/2 ⁺ ,5/2 ⁻ 542.87 7/2 ⁺	+ M1,E2		0.0297 24	$\alpha(K)$ =0.0250 25; $\alpha(L)$ =0.00370 14; $\alpha(M)$ =0.00077 4;
353.479 24	3.76 26	879.333	1/2+,3/2+,5/2+	525.850 (3/2)+	M1,E2		0.0294 24	$\alpha(N+)=0.000191 7$ $\alpha(N)=0.000165 7; \alpha(O)=2.46\times10^{-5} 4;$ $\alpha(P)=1.55\times10^{-6} 25$ $\alpha(K)\exp=0.026 3$ $\alpha(K)=0.0248 25; \alpha(L)=0.00366 13; \alpha(M)=0.00076 4;$ $\alpha(N+)=0.000189 6$
^x 354.32 <i>19</i>	0.61 15							$\alpha(N)=0.000163 \ 6; \ \alpha(O)=2.43\times10^{-5} \ 4;$ $\alpha(P)=1.53\times10^{-6} \ 24$
365.162 8	67.7 13	365.164	1/2+	0.0 1/2+	M1		0.0291	$\alpha(K)\exp=0.025\ 3;\ K/L=8.0\ 4$ $\alpha(K)=0.0250\ 4;\ \alpha(L)=0.00325\ 5;\ \alpha(M)=0.000670\ 10;$ $\alpha(N+)=0.0001683\ 24$ $\alpha(N)=0.0001445\ 21;\ \alpha(O)=2.22\times10^{-5}\ 4;$ $\alpha(P)=1.630\times10^{-6}\ 23$
402.90 4	3.5 5	719.494	1/2+,3/2+,5/2+	316.585 5/2+	M1,E2		0.0205 23	$\alpha(K) = 1.030 \times 10^{-25}$ $\alpha(K) = 0.0163$ $\alpha(K) = 0.017322$; $\alpha(L) = 0.002496$; $\alpha(M) = 0.0005168$; $\alpha(N+) = 0.0001283$ $\alpha(N) = 0.000110522$; $\alpha(O) = 1.66 \times 10^{-5}7$; $\alpha(P) = 1.08 \times 10^{-6}19$
413.30 ^b 23	0.94 18	974.211	3/2+,5/2+	561.720 3/2+,5/2	+ M1,E2		0.0191 22	$\alpha(K) \exp = 0.013 \ 4$ $\alpha(K) = 0.0162 \ 21; \ \alpha(L) = 0.00231 \ 7; \ \alpha(M) = 0.000479$ $10; \ \alpha(N+) = 0.000119 \ 4$ $\alpha(N) = 0.000103 \ 3; \ \alpha(O) = 1.54 \times 10^{-5} \ 8;$ $\alpha(P) = 1.01 \times 10^{-6} \ 18$
^x 416.21 21	2.2 7				M1,E2		0.0187 22	E _y : the level energy difference is equal to 412.463 <i>18</i> . $\alpha(K)$ =0.0159 21; $\alpha(L)$ =0.00226 7; $\alpha(M)$ =0.000469 11; $\alpha(N+)$ =0.000117 4 $\alpha(N)$ =0.000101 3; $\alpha(O)$ =1.51×10 ⁻⁵ 8; $\alpha(P)$ =9.9×10 ⁻⁷ 18
417.783 15	71.8 [@] 16	525.850	(3/2)+	108.077 3/2+	M1,E2		0.0185 22	$\alpha(K)=0.0157 \ 2I; \ \alpha(L)=0.00224 \ 7; \ \alpha(M)=0.000464$ $II; \ \alpha(N+)=0.000115 \ 4$ $\alpha(N)=0.000100 \ 3; \ \alpha(O)=1.49\times10^{-5} \ 8;$ $\alpha(P)=9.8\times10^{-7} \ I8$
431.3 ^{#b} 434.33 <i>10</i>	2.61 10	974.211 719.494	3/2 ⁺ ,5/2 ⁺ 1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺	542.87 7/2 ⁺ 285.251 3/2 ⁺	M1(+E2)	≤0.64	0.0181 7	$ \begin{array}{l} \alpha(\mathrm{K}) \! = \! 0.0155 \; 6; \; \alpha(\mathrm{L}) \! = \! 0.00206 \; 4; \; \alpha(\mathrm{M}) \! = \! 0.000424 \; 7; \\ \alpha(\mathrm{N}+) \! = \! 0.0001064 \; 20 \\ \alpha(\mathrm{N}) \! = \! 9.14 \! \times \! 10^{-5} \; 17; \; \alpha(\mathrm{O}) \! = \! 1.40 \! \times \! 10^{-5} \; 3; \end{array} $

S

¹³¹ La ε decay	1979En06 (continued)

γ (131Ba) (continued)

${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}$ †&	$E_i(level)$	\mathbf{J}_i^{π}	E_f	$\boldsymbol{\mathrm{J}}_{f}^{\pi}$	Mult.‡	α^{a}	Comments
434.83 8	0.30 9	542.87	7/2+	108.077	3/2+	E2	0.01461	$\alpha(P)=1.00\times10^{-6}$ 5 $\alpha(K)\exp=0.0232$ 25 (recalculated by evaluators)\$ $\alpha(K)\exp=0.058$ 15 in 1979En06 apparently, is a misprint. $\alpha(K)=0.01220$ 17; $\alpha(L)=0.00192$ 3; $\alpha(M)=0.000400$ 6; $\alpha(N+)=9.86\times10^{-5}$ 14 $\alpha(N)=8.53\times10^{-5}$ 12; $\alpha(O)=1.256\times10^{-5}$ 18; $\alpha(P)=7.24\times10^{-7}$ 11
x448.92 29 453.659 15	0.424 <i>15</i> 23.5 <i>5</i>	561.720	3/2+,5/2+	108.077	3/2+	M1,E2	0.0149 20	$\begin{array}{l} \alpha(\text{K}) \text{exp=0.0159} \ 9 \\ \alpha(\text{K}) = 0.0126 \ 19; \ \alpha(\text{L}) = 0.00177 \ 10; \ \alpha(\text{M}) = 0.000367 \ 18; \\ \alpha(\text{N}+) = 9.1 \times 10^{-5} \ 6 \\ \alpha(\text{N}) = 7.9 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 1.19 \times 10^{-5} \ 9; \ \alpha(\text{P}) = 7.9 \times 10^{-7} \\ 15 \end{array}$
^x 483.87 <i>18</i> 524.4 [#] <i>b</i>	0.26 3	1243.96	1/2,3/2,5/2 ⁽⁺⁾	710 404	1/2+,3/2+,5/2+			
525.851 16	34.9 [@] 7	525.850	$(3/2)^+$	0.0	1/2 ,3/2 ,3/2	M1,E2	0.0101 16	$\alpha(K)$ =0.0086 14; $\alpha(L)$ =0.00118 11; $\alpha(M)$ =0.000244 21; $\alpha(N+)$ =6.1×10 ⁻⁵ 6 $\alpha(N)$ =5.2×10 ⁻⁵ 5; $\alpha(O)$ =7.9×10 ⁻⁶ 9; $\alpha(P)$ =5.4×10 ⁻⁷ 11
544.7 [#] <i>b</i>		1494.65	1/2,3/2,5/2 ⁽⁺⁾	949.94	3/2+,5/2+			
561.785 ^b 16	4.40 10	561.720	3/2+,5/2+	0.0	1/2+	M1,E2	0.0085 14	$\alpha(K) \exp = 0.0078 \ 20$ $\alpha(K) = 0.0073 \ 13; \ \alpha(L) = 0.00099 \ 11; \ \alpha(M) = 0.000204 \ 20;$ $\alpha(N+) = 5.1 \times 10^{-5} \ 6$ $\alpha(N) = 4.4 \times 10^{-5} \ 5; \ \alpha(O) = 6.6 \times 10^{-6} \ 8; \ \alpha(P) = 4.6 \times 10^{-7} \ 9$ E_{γ} : the level energy difference is equal to 561.748 \ 11.
^x 567.1 3	0.106 29					M1,E2	0.0083 14	$\alpha(K)$ =0.0071 12; $\alpha(L)$ =0.00096 10; $\alpha(M)$ =0.000199 20; $\alpha(N+)$ =5.0×10 ⁻⁵ 6 $\alpha(N)$ =4.3×10 ⁻⁵ 5; $\alpha(O)$ =6.5×10 ⁻⁶ 8; $\alpha(P)$ =4.5×10 ⁻⁷ 9
570.3 ^{#b} 584.81 <i>5</i>	0.263 28	2064.81 949.94	1/2,3/2,5/2 ⁽⁺⁾ 3/2 ⁺ ,5/2 ⁺	1494.65 365.164	1/2,3/2,5/2 ⁽⁺⁾ 1/2 ⁺	M1,E2	0.0077 13	$\alpha(K)$ =0.0066 <i>12</i> ; $\alpha(L)$ =0.00089 <i>10</i> ; $\alpha(M)$ =0.000183 <i>20</i> ; $\alpha(N+)$ =4.6×10 ⁻⁵ 6
594.080 22	5.75 15	879.333	1/2+,3/2+,5/2+	285.251	3/2+	M1,E2	0.0074 12	$\alpha(N)=3.9\times10^{-5}$ 5; $\alpha(O)=6.0\times10^{-6}$ 8; $\alpha(P)=4.2\times10^{-7}$ 9 $\alpha(K)=0.0063$ 11; $\alpha(L)=0.00085$ 10; $\alpha(M)=0.000176$ 19; $\alpha(N+)=4.4\times10^{-5}$ 5
611.407 <i>18</i>	3.11 9	719.494	1/2+,3/2+,5/2+	108.077	3/2+	M1,E2	0.0069 12	$\alpha(N)=3.8\times10^{-5} 5$; $\alpha(O)=5.7\times10^{-6} 8$; $\alpha(P)=4.0\times10^{-7} 8$ $\alpha(K)=0.0059 11$; $\alpha(L)=0.00079 10$; $\alpha(M)=0.000163 19$; $\alpha(N+)=4.1\times10^{-5} 5$
628.402 24	0.655 20	1154.262	1/2+,3/2+,5/2+	525.850	$(3/2)^+$	M1	0.00765	$\alpha(N)=3.5\times10^{-5} \ 4; \ \alpha(O)=5.3\times10^{-6} \ 7; \ \alpha(P)=3.7\times10^{-7} \ 8$ $\alpha(K)=0.0071 \ 8$ $\alpha=0.00765; \ \alpha(K)=0.00654 \ 20; \ \alpha(L)=0.00083 \ 3$
^x 647.03 9	0.183 20							

6

¹³¹ La ε decay	1979En06 (continued)

γ (131Ba) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \&}$	$E_i(level)$	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.‡	α^a	Comments
657.630 23	1.022 27	974.211	3/2+,5/2+	316.585	5/2+	M1,E2	0.0058 10	$\alpha(K) \exp = 0.0066 \ 14$ $\alpha(K) = 0.0049 \ 9; \ \alpha(L) = 0.00066 \ 9; \ \alpha(M) = 0.000135 \ 17;$ $\alpha(N+) = 3.4 \times 10^{-5} \ 5$ $\alpha(N) = 2.9 \times 10^{-5} \ 4; \ \alpha(O) = 4.4 \times 10^{-6} \ 6; \ \alpha(P) = 3.1 \times 10^{-7} \ 7$
^x 661.08 4 664.63 5 ^x 694.62 14	0.752 <i>29</i> 0.595 <i>23</i> 0.116 <i>29</i>	949.94	3/2+,5/2+	285.251	3/2+			
700.38 15	0.108 22	2195.23	1/2,3/2,5/2 ⁽⁺⁾ 3/2 ⁺ ,5/2 ⁺	1494.65	1/2,3/2,5/2 ⁽⁺⁾ 1/2 ⁺			
718.5 <i>3</i> 719.53 <i>4</i>	0.060 23 0.690 24	718.779 719.494	1/2+,3/2+,5/2+	0.0 0.0	1/2+	M1,E2	0.0046 8	$\alpha(K)$ exp=0.0045 14 $\alpha(K)$ =0.0040 7; $\alpha(L)$ =0.00052 7; $\alpha(M)$ =0.000108 15; $\alpha(N+)$ =2.7×10 ⁻⁵ 4 $\alpha(N)$ =2.3×10 ⁻⁵ 4; $\alpha(O)$ =3.5×10 ⁻⁶ 6; $\alpha(P)$ =2.5×10 ⁻⁷ 5
729.19 ^b 27 x768.93 9	0.032 <i>19</i> 0.243 <i>21</i>	1291.63	1/2,3/2,5/2 ⁽⁺⁾	561.720	3/2+,5/2+			E_{γ} : the level energy difference is equal to 729.86 5.
771.19 23	0.18 5	879.333	1/2+,3/2+,5/2+	108.077	3/2+			
837.86 11	0.172 30	1154.262	$1/2^+, 3/2^+, 5/2^+$	316.585	5/2+			
841.86 4	0.94 3	949.94	3/2+,5/2+	108.077	3/2+	M1,E2	0.0032 6	$\alpha(K)$ exp=0.0025 6 $\alpha(K)$ =0.0027 5; $\alpha(L)$ =0.00036 5; $\alpha(M)$ =7.3×10 ⁻⁵ 11; $\alpha(N+)$ =1.8×10 ⁻⁵ 3
866.138 26	4.19 11	974.211	3/2+,5/2+	108.077	3/2+	M1,E2	0.0030 5	$\alpha(N)=1.58\times10^{-5}\ 23;\ \alpha(O)=2.4\times10^{-6}\ 4;\ \alpha(P)=1.7\times10^{-7}\ 4$ $\alpha(K)\exp=0.0029\ 16$ $\alpha(K)=0.0026\ 5;\ \alpha(L)=0.00033\ 5;\ \alpha(M)=6.8\times10^{-5}\ 10;$ $\alpha(N+)=1.72\times10^{-5}\ 25$ $\alpha(N)=1.47\times10^{-5}\ 22;\ \alpha(O)=2.3\times10^{-6}\ 4;\ \alpha(P)=1.6\times10^{-7}\ 3$
879.20 ^b 4	0.704 25	879.333	$1/2^+, 3/2^+, 5/2^+$	0.0	1/2+			E_{γ} : the level energy difference is equal to 879.315 16.
927.40 13	0.129 16	1243.96	$1/2,3/2,5/2^{(+)}$	316.585	5/2+			,
933.03 <i>8</i> *944.13 <i>14</i>	0.175 28 0.083 <i>15</i>	1494.65	1/2,3/2,5/2 ⁽⁺⁾	561.720	3/2+,5/2+			
958.89 <i>14</i>	0.101 22	1243.96	$1/2,3/2,5/2^{(+)}$	285.251	3/2+			
969.72 ^b 30 974.204 26	0.129 <i>21</i> 2.56 <i>6</i>	1494.65 974.211	1/2,3/2,5/2 ⁽⁺⁾ 3/2 ⁺ ,5/2 ⁺	525.850 0.0	(3/2) ⁺ 1/2 ⁺	M1,E2	0.0023 4	E _γ : the level energy difference is equal to 968.81 4. $\alpha(K)$ exp=0.0025 3 $\alpha(K)$ =0.0020 4; $\alpha(L)$ =0.00025 4; $\alpha(M)$ =5.2×10 ⁻⁵ 8; $\alpha(N+)$ =1.30×10 ⁻⁵ 19 $\alpha(N)$ =1.12×10 ⁻⁵ 16; $\alpha(O)$ =1.7×10 ⁻⁶ 3; $\alpha(P)$ =1.24×10 ⁻⁷
^x 1105.93 <i>14</i> ^x 1129.3 <i>4</i>	0.103 <i>16</i> 0.065 <i>16</i>							23
	0.320 17	1243.96	1/2,3/2,5/2 ⁽⁺⁾	108.077	3/2+			
1135.85 72	3.320 17							
1135.85 <i>12</i> 1154.23 <i>20</i>	0.128 20	1154.262	$1/2^+, 3/2^+, 5/2^+$	0.0	1/2+			

7

¹³¹La ε decay 1979En06 (continued)

$\gamma(^{131}\text{Ba})$ (continued)

					, .	
$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ} †&	$E_i(level)$	\mathtt{J}_i^{π}	E_f	$\boldsymbol{\mathrm{J}}_{f}^{\pi}$	Comments
1178.03 4	1.17 6	1494.65	1/2,3/2,5/2 ⁽⁺⁾	316.585	5/2+	
1209.45 15	0.111 26	1494.65	1/2,3/2,5/2 ⁽⁺⁾	285.251		
1212.85 22	0.09 3	2163.16	1/2,3/2,5/2	949.94		
^x 1227.74 10	0.095 13	2103.10	1/2,5/2,5/2	7 17.7 1	5/2 ,5/2	
1243.72 16	0.083 18	1243.96	1/2,3/2,5/2 ⁽⁺⁾	0.0	1/2+	
1291.54 6	0.408 21	1291.63	$1/2,3/2,5/2^{(+)}$	0.0	1/2+	
1296.81 <i>17</i>	0.098 14	2271.17	1/2,3/2,5/2 ⁽⁺⁾		3/2+,5/2+	
1315.80 17	0.033 13	2195.23	1/2,3/2,5/2 ⁽⁺⁾		1/2+,3/2+,5/2+	
^x 1351.48 <i>13</i>	0.033 13	2193.23	1/2,3/2,3/2	017.333	1/2 ,3/2 ,3/2	
x1355.99 <i>17</i>	0.173 27					
1367.47 12	0.26 4	1475.50	1/2+	108.077	3/2+	
1386.05 28	0.21 4	1494.65	1/2,3/2,5/2 ⁽⁺⁾	108.077		
^x 1389.64 27	0.25 4	1171.03	1/2,3/2,3/2	100.077	3/2	
1420.7 5	0.08 4	1981.82	1/2,3/2,5/2	561.720	$3/2^+, 5/2^+$	
1443.66 11	0.201 14	2163.16	1/2,3/2,5/2		1/2+,3/2+,5/2+	
^x 1455.05 25	0.088 22		1 7-1 7-1		7 7-1 7-1	
1475.98 <i>15</i>	0.18 5	1475.50	1/2+	0.0	1/2+	E_{γ} : 1476.22 13 in 1980VyZZ.
1494.65 8	0.267 26	1494.65	1/2,3/2,5/2 ⁽⁺⁾	0.0	1/2+	•
^x 1500.11 6	0.50 4				,	
^x 1560.41 <i>18</i>	0.101 19					
^x 1564.22 18	0.097 18					
^x 1570.19 20	0.079 17					
^x 1582.24 20	0.158 17					
x1591.05 22	0.086 16					
1601.53 <i>17</i>	0.031 8	2163.16	1/2,3/2,5/2	561.720	3/2+,5/2+	
^x 1664.60 25	0.076 16	4004.00			a /a +	
1696.56 22	0.141 18	1981.82	1/2,3/2,5/2	285.251		
1699.60 <i>15</i>	0.35 15	2064.81	$1/2,3/2,5/2^{(+)}$	365.164	1/2+	
^x 1717.6 5	0.15 3					
x1754.39 <i>14</i>	0.154 28					
^x 1771.21 27	0.062 20	2064.01	1/0 2/0 5/0(+)	205.251	2/2+	
1779.40 26	0.060 17	2064.81	$1/2,3/2,5/2^{(+)}$	285.251	3/2	
^x 1793.24 <i>10</i> 1823.41 <i>10</i>	0.173 <i>26</i> 0.57 <i>5</i>	2385.11	1/2,3/2,5/2	561 720	3/2+,5/2+	
x1844.94 21	0.37 3	2303.11	1/2,3/2,3/2	301.720	3/2 ,3/2	
x1849.80 21	0.110 28					
1859.08 <i>21</i>	0.103 20	2385.11	1/2,3/2,5/2	525.850	$(3/2)^{+}$	
1873.65 <i>17</i>	0.142 21	1981.82	1/2,3/2,5/2	108.077		
1906.40 24	0.092 26	2271.17	1/2,3/2,5/2 ⁽⁺⁾	365.164		
x1947.22 12	0.092 20	4411.11	1/2,3/2,3/2	JUJ.1U4	1/2	
1954.48 15	0.148 19	2271.17	1/2,3/2,5/2 ⁽⁺⁾	316.585	5/2+	
1957.16 ^b 13	0.148 17	2064.81	1/2,3/2,5/2 ⁽⁺⁾	108.077		E : the level apercy difference is equal to 1056.01.0
1937.10 13	0.165 21	2004.81	1/2,3/2,3/2	108.077	3/2	E_{γ} : the level energy difference is equal to 1956.91 9.

 131 La ε decay 1979En06 (continued)

$\gamma(^{131}\text{Ba})$ (continued)

E_{γ}^{\dagger}	I_{γ} †&	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
2055.24 22	0.069 14	2163.16	1/2,3/2,5/2	108.077	3/2+	
2064.94 20	0.035 10	2064.81	$1/2,3/2,5/2^{(+)}$	0.0	$1/2^{+}$	
2067.6 ^b 4	0.015 5	2385.11	1/2,3/2,5/2	316.585	$5/2^{+}$	E_{γ} : the level energy difference is equal to 2068.56 9.
2087.44 20	0.15 4	2195.23	$1/2,3/2,5/2^{(+)}$	108.077	$3/2^{+}$	
2100.30 ^b 23	0.080 18	2385.11	1/2,3/2,5/2	285.251	$3/2^{+}$	E_{γ} : the level energy difference is equal to 2099.90 0.
^x 2164.2 5	0.14 8					
^x 2172.3 5	0.14 5					
2195.58 <i>30</i>	0.065 20	2195.23	$1/2,3/2,5/2^{(+)}$	0.0	$1/2^{+}$	
^x 2206.9 4	0.097 27					
x2215.51 <i>15</i>	0.096 21					
x2238.60 25	0.063 14					
x2263.9 4	0.031 9					
2271.23 20	0.066 12	2271.17	1/2,3/2,5/2 ⁽⁺⁾	0.0	1/2+	

[†] From 1980VyZZ, 1979En06.

From ce data of 1972Ha41, 1979En06, and 1983AbZX.
 From 1983AbZX, Iγ not given.
 [a] Iγ(177γ)/Iγ(285γ)=0.0122 12, Iγ(209γ)/Iγ(316γ)=0.288 15, and Iγ(526γ)/Iγ(418γ)=0.486 15 are discrepant with 0.39 6, 0.62, and 0.0066 10 from (13C,4nγ), (12C,3nγ).
 [b] For absolute intensity per 100 decays, multiply by 0.250 7.

^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^b Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

¹³¹La ε decay **1979En06**

Decay Scheme

Legend $\frac{\underline{\underline{bcetay \ Sentente}}}{\text{Intensities: } I_{(\gamma+ce)} \ \text{per } 100 \ \text{parent decays}}$

 $\%\varepsilon + \%\beta^{+} = 100 / Q^{+} = 2915 \ 28$ $131_{57} La_{74}$ 59 min 2

														3	/ 24/4		
	20030 20030 185.6 0.020	\$10, 45.54 \$10, 4	, 58	సిసి									/		$\underline{^{\mathrm{I}eta^{+}}}$	<u>Ιε</u>	Log ft
1/2,3/2,5/2	2,00		0,00	, — 'e' 'o', o',	90.90.								2385.11			0.184	6.35
1/2,3/2,5/2 ⁽⁺⁾		25.50	1,26.2	2/9- 3/10/23 2/9-5/58 - 3/10/23 1/3/5/4 0/16	5000 5000 5000	127.56.0012	0000 	5 5					2271.17			0.101	6.79
1/2,3/2,5/2 ⁽⁺⁾				2,20	9. 2.	2.2.3.	; 	20.0	§		_		2195.23			0.089	6.95
1/2,3/2,5/2					H	Ť	25 25 25 25 25 25 25 25	86-	, ,	8,8,	့ <u> </u>		2163.16			0.098	6.94
1/2,3/2,5/2(+)							82.4	, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	- يې رې	500	?		2064.81			0.16	6.84
1/2,3/2,5/2							L <u>i</u> l	<u> </u>	(6)	, & .			1981.82			0.091	7.17
1/2,3/2,5/2 ⁽⁺⁾					•			1				1.7.8.4.9.0.8.5 1.7.8.4.9.0.8.5 1.7.8.4.9.0.8.5 1.7.8.4.9.0.8.5 1.7.8.4.9.0.9.0.9.5 1.7.8.4.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	1494.65		0.0011	0.46	6.85
3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺	1 1												974.211		0.090 0.026	1.56 0.40	6.59 7.19
1/2+,3/2+,5/2+													879.333		0.203	2.51	6.43
													/				
1/2+,3/2+,5/2+											_	1	719.494		0.29	2.16	6.56
2/2+ 5/2+							1 1					1 1 1 1	//				
$\frac{3/2^+,5/2^+}{(3/2)^+}$		•			- +		+	_	\vdash	+	+	 	561.720		1.21 5.4	5.94 24.6	6.18 5.58
(2.2)													323.630		3.4	24.0	3.36
1/2+	i i												365.164		£ 1	15.9	£ 00
5/2 ⁺			- I									•	316.585		5.1 0.54	15.9	5.82 6.85
3/2+				+	+		1		+	_	با	*	285.251		1.9	5.1	6.34
<u>3/2</u> ⁺							ļ				,		108.077	0.35 ns 5	3.8	7.2	6.25
1/2+		ļ		1									0.0	11.50 d 6	4.8	7.5	6.26
				•			•			-				11.50 0 0	4.0	1.3	0.20

¹³¹La ε decay 1979En06

Decay Scheme (continued)

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $\begin{array}{c|cccc} & & & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & & & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & & & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & & & & \gamma \text{ Decay (Uncertain)} \\ & & & & & \text{Coincidence} \end{array}$

1/2+

Legend

γ Decay (Uncertain) Coincidence	$\%\varepsilon + \%\beta^{+} = 100$	$Q^{+}=2915\ 28$ $131_{57}La_{74}$, 59 mir	1 2
\$\partial \partial \part	, /	¹³¹ ₅₇ La ₇₄		
\$ \partial \par	/			
	/	70 +		
4 (A. 1)		$\underline{^{\mathrm{I}eta^+}}$	<u>Ιε</u>	$\underline{\text{Log } ft}$
<u>1/2</u> ⁺	1475.50	0.00039	0.13	7.41
	,			
1/2,3/2,5/2 ⁽⁺⁾	1291.63	0.0040	0.20	7 04
1/2,3/2,5/2 ⁽⁺⁾	1243.96	0.0048	0.39	7.04
	1243.90 /	0.0026	0.16	7.45
1/2+,3/2+,5/2+	1154.262	0.0062	0.23	7.33
		0.0002	0.20	,,,,,
	<u> </u>			
3/2+,5/2+	974.211	0.090	1.56	6.59
3/2+,5/2+ 1/2+,3/2+,5/2+	949.94	0.026	0.40	7.19
	879.333	0.203	2.51	6.43
	/			
1/2+,3/2+,5/2+	719.494	0.29	2.16	6.56
	/			
3/2+,5/2+	561.720	1.21	5.94	6.18
7/2+ (3/2)+	542.87	0.007	0.03	8.4
(3/2)	525.850	5.4	24.6	5.58
	,			
	265.164		15.0	5.00
1/2 ⁺ 5/2+	365.164	5.1	15.9	5.82
5/2 ⁺ 3/2 ⁺	316.585 285.251	0.54 1.9	1.54 5.1	6.85 6.34

6.25

6.26

¹³¹La ε decay 1979En06

Decay Scheme (continued) Legend Intensities: $I_{(\gamma+ce)}$ per 100 parent decays $\begin{array}{l} \rm{I}_{\gamma} < 2\% \times \rm{I}_{\gamma}^{max} \\ \rm{I}_{\gamma} < 10\% \times \rm{I}_{\gamma}^{max} \\ \rm{I}_{\gamma} > 10\% \times \rm{I}_{\gamma}^{max} \\ \gamma \, \rm{Decay} \, (Uncertain) \end{array}$ 0.0 59 min 2 Q⁺=2915 28 Coincidence ¹³¹₅₇La₇₄ $I\beta^+$ $\underline{\text{Log } ft}$ $\underline{\text{I}\varepsilon}$ 1/2⁺,3/2⁺,5/2⁺ 3/2⁺,5/2⁺ 2.16 719.494 0.29 6.56 718.779 0.020 0.15 7.72 3/2+,5/2+ 561.720 1.21 5.94 6.18 7/2+ 542.87 0.007 0.03 8.4 (3/2) 525.850 5.4 24.6 5.58 1/2+ 365.164 5.1 15.9 5.82 5/2+ 316.585 0.54 1.54 6.85 285.251 3/2+ 1.9 6.34 5.1 3/2+ 7.2 3.8 6.25 1/2+ 11.50 d 6 7.5 6.26 $^{131}_{56} Ba_{75}$

122 Sn(13 C,4n γ),(12 C,3n γ) 1990Ma07,1975Gi11

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, I. Mitropolsky, A. Rodionov	NDS 107, 2715 (2006)	17-Jul-2006

1990Ma07: 122 Sn(13 C,4n γ), E=57 MeV; measured $\gamma\gamma$, $\gamma(\theta)$, deduced A₂, A₄, DCO. Five Ge detectors, BGO anti-Compton shielding. Cranking model calculations, band assignment.

1975Gi11: 122 Sn(12 C,3n γ) E=49 MeV; measured E γ , I γ , $\gamma(\theta)$, $\gamma\gamma$, deduced A $_2$, J^{π} . Ge(Li) detectors. Band assignment.

¹³¹Ba Levels

The level scheme is that of 1990Ma07, partly of 1975Gi11, and based on coincidence relationships and relative transition intensities. The spin and parity values are from the angular distribution and correlation data.

E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	Comments
0.0 ^c	1/2+	11.50 d 6	
108.01 ^c 16	3/2+	11.00 0	
187.09 ^e 18	9/2-	14.6 min 2	
285.10 20	3/2+		
286.86 ^e 23	$11/2^{-}$		
316.49 ^c 20	5/2+		
526.4 <i>4</i>	$(3/2)^+$		
543.55 ^c 23	$7/2^{+}$		
705.86 ^e 20	$13/2^{-}$		
803.4 ^c 3	9/2+		
898.23 ^e 18	15/2-		
1029.9 7	$(13/2^{-})$		
1119.08° 25	$11/2^{+}$		
1349.27 ^h 23	$(15/2^{-})$		
1417.89 ^c 25	13/2+		
1458.24 ^e 17	17/2		
1682.61 ^e 17	19/2-		
1712.7 <i>6</i> 1796.56 ^{<i>c</i>} 23	$(17/2^{-})$ $15/2^{+}$		
2044.83 ^h 17			
	(19/2 ⁻)		
2108.9 ^d 4	$(15/2^+)$		
2121.85 ^c 21	17/2+		
2319.73 ^d 20	$(17/2^+)$		
2357.72 ^e 17	21/2		
2460.3 <i>3</i>	(19/2)		
2518.95 22	$(21/2^{-})$ $19/2^{+}$		
2533.7° 3			
2560.97 ^d 18	$(19/2^+)$		
2611.14 ^e 24	23/2-		
2725.1^{i} 3	$(21/2^+)$		
2795.11 ^{ah} 4	$(23/2^{-})$		Additional information 1.
2795.13 ^{ad} 23	$(21/2^+)$		Additional information 2.
2862.3° 4	$21/2^{+}$		
2868.2 [@] 4			
2884.0 ^{&} 4	(23/2)		
3009.5 [@] 5			
3057.10 ^d 20	$(23/2^+)$		
3037.10 20	(23/2)		

122 Sn(13 C,4n γ),(12 C,3n γ) 1990Ma07,1975Gi11 (continued)

¹³¹Ba Levels (continued)

E(level) [†]	J^{π}	E(level) [†]	J^π	E(level) [†]	${ m J}^{\pi}$	E(level) [†]	${f J}^\pi$
3119.0 [#] 7	· <u> </u>	3584.8 [@] 7		4278.3 ^d 5	$(31/2^+)$	5162.9 ^d 6	$(35/2^+)$
3138.5 8	$(23/2^{-})$	3652.7 ⁸ 4	$(27/2^{-})$	4307.5 ^f 5	$(29/2^{-})$	5350.9 ^h 6	$(35/2^{-})$
3254.6 <i>3</i>	$(25/2^{-})$	3656.9 ^{&} 5	(27/2)	4338.4 ^h 5	$(31/2^{-})$	5387.5 <mark>8</mark> 6	$(35/2^{-})$
3256.5 [@] 6		3717.3 e 4	$27/2^{-}$	4410.4? [@] <i>13</i>		5404.1 ^f 7	$(35/2^{-})$
3272.3 ^d 4	$(25/2^+)$	3808.1 [#] <i>13</i>		4501.5 ⁸ 5	$(31/2^{-})$	5489.0 <mark>&</mark> <i>12</i>	(35/2)
3303.3 ⁱ 4	$(25/2^+)$	3902.0 ^f 4	$(25/2^{-})$	4512.0 ^{&} 5	(31/2)	5686.9 ^d 9	$(37/2^+)$
3400.7 ^e 3	$25/2^{-}$	3940.6 ^d 5	$(29/2^+)$	4632.9 ^f 5	$(31/2^{-})$	5856.1 ^f 7	$(37/2^{-})$
3431.0 [#] 8		3949.3 [@] 7		4669.8? [#] 20		6174.6? ^d 11	$(39/2^+)$
3476.7 <mark>h</mark> 4	$(27/2^{-})$	4046.2 ^f 4	$(27/2^{-})$	4750.0 ^d 6	$(33/2^+)$	6235.7? ⁱ 12	$(37/2^+)$
3510.2 ^b 5	(27/2)	4071.7 ⁱ 5	$(29/2^+)$	4974.8 ^f 6	$(33/2^{-})$	6365.1? ^f 10	$(39/2^{-})$
3555.8 ^d 4	$(27/2^+)$	4205.1 [#] <i>17</i>		5041.7 ⁱ 6	$(33/2^+)$	6440.5? ⁸ 12	$(39/2^{-})$

[†] From least-squares fit to $E\gamma$'s.

[‡] From the Adopted Levels.

[#] Possible rotational level sequence.

[@] Possible rotational level sequence.

[&]amp; Possible rotational level sequence with $\Delta J=2$.

^a The levels 1795.11, 23/2⁻ and 2795.13, 21/2⁺ are very close; during least square fitting, at first the level energies were fixed by turns, at final stage both energies were fixed.

b State was assumed in 1994Se10 as a member of rotational band with ΔJ=2. Analysis based on the Variable Moment of Inertia model shows.

^c Band(A): $\Delta J=1$ band, probable Configuration=(ν s_{1/2}).

^d Band(B): band, Configuration=(N,H11/2)(π ,G_{7/2})(π ,H_{11/2}).

^e Band(C): yrast band, Configuration= $(v h_{11/2})$.

^f Band(D): band, Configuration= $(N,H11/2)(\pi,H_{11/2})^2$.

^g Band(E): $\Delta J=2$ band, candidate for Configuration= $(\nu h_{11/2})^3$ (GAMMA=-40 DEG).

^h Band(F): $\Delta J=2$ band, candidate for Configuration= $(v h_{11/2})^3$ (GAMMA=-80 DEG).

ⁱ Band(G): $\Delta J=2$ band, Configuration= $(N,S1/2)(\nu H_{11/2})^2$.

 $_{56}^{131} Ba_{75}$ -3

122 Sn(13 C,4n γ),(12 C,3n γ)	1990Ma07,1975Gi11	(continued)
--	-------------------	-------------

γ(¹³¹ Ba)
----	--------------------

$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}^{π}_f	Mult.‡	$\delta^{\#}$	α^{d}	$I_{(\gamma+ce)}^{\dagger}$	Comments
(79.05 12)		187.09	9/2-	108.01	3/2+	E3		76.2 11		E_{γ} : from ¹³¹ Ba IT decay, not observed in ¹²² Sn(¹³ C,4nγ), (¹² C,3nγ).
99.7 3	91.1 [@]	286.86	11/2-	187.09	9/2-	M1(+E2)	-0.01 4	0.995 17	181.7	Mult.: $\gamma(\theta)$: A ₂ =-0.30 4 (1975Gi11). δ: from 1977Kr13.
108.0 <i>3</i> 141.3 <i>3</i>	121.7 [@] <2.0	108.01 3009.5	3/2+	0.0 2868.2	1/2+	M1+E2	-0.7 4	1.01 17	244.6	Mult.: $\gamma(\theta)$: A ₂ =-0.59 4, A ₄ =0.08 6.
144.2 <i>3</i>	2.2 [@]	4046.2	$(27/2^{-})$	3902.0	(25/2-)	M1+E2 (D)	-0.39 6	0.375 9	3.1 7.0	Mult.: $\gamma(\theta)$: A ₂ =-0.70 8, A ₄ =0.01 11. Mult.: $\gamma(\theta)$: A ₂ =-0.38 5, A ₄ =0.10 7.
177.0 ^c 2	&	285.10	3/2+	108.01	3/2+	M1,E2		0.23 4		I_{γ} : 3.8 4 (1975Gi11). Mult.: $\gamma(\theta)$: A ₂ =0.01 10 (1975Gi11).
192.3 <i>3</i>	14.8 [@]	898.23	15/2-	705.86	13/2-	M1+E2	-0.24 12	0.161 4	17.2	Mult.: $\gamma(\theta)$: A ₂ =-0.56 4, A ₄ =0.12 6. δ : +0.02 4 obtained by 1977Kr13 from data of 1975Gi11.
195 <i>1</i>	<2.0	3057.10	$(23/2^+)$	2862.3	$21/2^{+}$	D				
208.5 <i>3</i> x209 <i>1</i>	7.7 [@] &	316.49	5/2+	108.01	•	M1+E2	-0.21 3	0.1286 19	8.7 5.4	Mult.: $\gamma(\theta)$: A ₂ =-0.41 4, A ₄ =0.09 6.
211 <i>I</i>	<2.0	2319.73	$(17/2^+)$	2108.9	$(15/2^+)$					
215.1 <i>3</i> 222 <i>I</i>	25.9 [@] <2.0	3272.3 3476.7	$(25/2^+)$ $(27/2^-)$	3057.10 3254.6	$(23/2^+)$ $(25/2^-)$	M1+E2	-0.12 5	0.1176 <i>18</i>	29.0	Mult.: $\gamma(\theta)$: A ₂ =-0.38 4, A ₄ =0.06 6.
224.2 3	3.4 [@]	1682.61	19/2-	1458.24	17/2-	M1+E2	-0.19 <i>10</i>	0.1054 17	3.8	Mult.: $\gamma(\theta)$: A ₂ =-0.48 6, A ₄ =0.10 8. δ : +0.12 8 obtained by 1977Kr13 from data of 1975Gi11.
227.2 <i>3</i> ^x 231 <i>I</i>	3.1 [@]	543.55	7/2+	316.49	5/2+	M1+E2 D	-0.23 8	0.1019 <i>16</i>	3.4 3.7	Mult.: $\gamma(\theta)$: A ₂ =-0.47 7, A ₄ +0.05 9. Mult.: $\gamma(\theta)$: A ₂ =-0.48 7, A ₄ =0.08 10.
234.1 <i>3</i> 241.3 <i>3</i>	5.6 [@] 2.5	2795.13 2560.97	$(21/2^+)$ $(19/2^+)$	2560.97 2319.73		M1+E2 D	-0.22 4	0.0939	6.1	Mult.: $\gamma(\theta)$: A ₂ =-0.52 5, A ₄ =0.02 8.
247.0 <i>3</i>	2.9 [@]	3256.5		3009.5		(M1,E2)		0.0830 23	3.1	Mult.: $\gamma(\theta)$: A ₂ =-0.5 7, A ₄ =0.03 10.
253 <i>1</i>	<1.9 [@]	2611.14	$23/2^{-}$	2357.72	$21/2^{-}$	M1,E2		0.0772 19	< 2.0	
260 1	<29.0 ^a	803.4	9/2+	543.55						
261 <i>I</i>	<29.0 ^a	2795.13	$(21/2^+)$		19/2+				a	
261.3 3	<27.1 ^a @	4307.5	$(29/2^{-})$		$(27/2^{-})$	M1,E2		0.0702 11	<29.0°	
261.8 <i>3</i>	<27.1 ^a @	3057.10	$(23/2^+)$	2795.13	$(21/2^+)$	M1,E2		0.0698 11	<29.0 ^a	Mult.: $\gamma(\theta)$: A ₂ =-0.43 4, A ₄ =0.04 6 (average values for 261 multiplet).
276.0 3	<1.9 [@]	2795.11	$(23/2^{-})$	2518.95		M1,E2		0.0597 11	<2.0	
283.5 3	25.1 &	3555.8	$(27/2^+)$		$(25/2^+)$	M1+E2	-0.07 4	0.0562	26.5	Mult.: $\gamma(\theta)$: A ₂ =-0.31 4, A ₄ =0.04 6.
285.3 ^c 3		285.10	3/2+	0.0	1/2+	M1,E2		0.0542 14		I _γ : 9.7 10 (1975Gi11). Mult.: $\gamma(\theta)$: A ₂ =-0.36 7 (1975Gi11).
299.0 <i>3</i> 312 <i>I</i>	2.1 [@] 6.8	1417.89 3431.0	13/2+	1119.08 3119.0	11/2+	M1+E2 D	-0.19 <i>10</i>	0.0488	2.2	Mult.: $\gamma(\theta)$: A ₂ =-0.40 9, A ₄ =-0.07 2.

 ω

$^{122}{\rm Sn}(^{13}{\rm C,4n}\gamma), (^{12}{\rm C,3n}\gamma) \qquad \textbf{1990Ma07,1975Gi11} \ (\textbf{continued})$

γ (131Ba) (continued)

	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	${\rm J}_f^\pi$	Mult.‡	δ#	α^{d}	$I_{(\gamma+ce)}^{\dagger}$	Comments
	316 ^{eb} 1	<2.0 ^e	1119.08	11/2+	803.4	9/2+	D				
ı	316 ^{eb} 1	<2.0 ^e	3717.3	$27/2^{-}$	3400.7 2	25/2-					Mult.: $\gamma(\theta)$: A ₂ =0.20 5, A ₄ =-0.02 6.
ı	316.5 <i>3</i>	4.8 [@] &	316.49	5/2+		1/2+	E2		0.0382	5.0	
ı	324 <i>I</i> 325 <i>I</i>	<2.0 ^a <2.0 ^a	3119.0	17/2+	2795.13 (
	325.4 <i>3</i>	<2.0 ^a	2121.85 4632.9	$(31/2^{-})$	1796.56 1 4307.5 ($(29/2^{-})$	D				
ı	328^{f} 1	<2.0	2862.3	21/2+		19/2+	_				
l	328.3 <i>3</i>	< 2.0	3584.8	•	3256.5	•					
ı	328.9 <i>3</i>	<2.0	4046.2	$(27/2^{-})$		27/2-	D				
l	332 <i>I</i> 337.7 <i>3</i>	<2.0 6.4 [@]	2044.83 4278.3	$(19/2^{-})$ $(31/2^{+})$		$(17/2^{-})$ $(29/2^{+})$	M1+E2	-0.12 12	0.0356 6	6.6	Mult.: $\gamma(\theta)$: A ₂ =-0.38 5, A ₄ =0.13 8.
l	341.9 3	3.7 [@]	4974.8	$(33/2^{-})$		$(31/2^{-})$	M1+E2	-0.12 12	0.0336 0	3.8	Mult.: $\gamma(\theta)$: A ₂ =-0.36 3, A ₄ =0.13 6. Mult.: $\gamma(\theta)$: A ₂ =-0.36 7, A ₄ =0.04 16.
ı	363 1	<2.0	2044.83	$(19/2^{-})$	1682.61 1		1111122	0.10 5	0.05 15	5.0	11dd: 7(0). 11 ₂ 0.50 7, 114 0.01 10.
ı	364.5 <i>3</i>	<2.0	3949.3	(22/2)	3584.8	(21/2-)					
l	365 <i>1</i> 377 <i>1</i>	<2.0 3.6	2884.0 3808.1	(23/2)	2518.95 (3431.0	(21/2)	D				Mult.: $\gamma(\theta)$: A ₂ =-0.59 7, A ₄ =0.03 14.
ı	379 1	<2.0	1796.56	15/2+	1417.89 1	13/2+	D				Mult. 7(0). 112 - 0.35 7, 114 - 0.05 17.
	384.7 <i>3</i>	6.7 [@]	3940.6	$(29/2^+)$		$(27/2^+)$	M1+E2	-0.34 5	0.0250	6.9	Mult.: $\gamma(\theta)$: A ₂ =-0.64 5, A ₄ =0.02 7.
	397 <i>1</i>	2.8	4205.1		3808.1		D				
	412 ^f 1	<2.0	2533.7	19/2+	2121.85 1	-			0.0404.00		
	412.8 <i>3</i> 415 <i>I</i>	3.9 [@] <2.0	5162.9 2460.3	$(35/2^+)$ (19/2)	4750.0 (2044.83 ($(33/2^+)$	M1,E2		0.0191 22	4.0	Mult.: $\gamma(\theta)$: A ₂ =-0.23 7, A ₄ =0.08 10.
	^x 417 <i>I</i>	10.9 [@]	2100.5	(1)/2)	2011.05 ((1)/2	(E2)		0.0165 3	11.1	
ı	418.8° 4	&	526.4	$(3/2)^+$	108.01 3	3/2+	()		***************************************		I _γ : 72.5 73 (1975Gi11, composite line).
ı	419.0 <i>3</i>	73.9 [@]	705.86	13/2-	286.86 1	11/2-	M1+E2	-0.32 7	0.0201 4	75.4	Mult.: $\gamma(\theta)$: A ₂ =-0.65 4, A ₄ =0.06 6.
	423.7 <i>3</i>	9.1 [@]	2884.0	(23/2)		(19/2)	E2		0.01575	9.2	Mult.: $\gamma(\theta)$: A ₂ =0.32 6, A ₄ =-0.04 7.
ı	429.3 <i>3</i>	2.5	5404.1	$(35/2^{-})$,	$(33/2^{-})$	D				
	435.7 <i>3</i>	20.1 [@] <2.0	543.55	7/2+	108.01 3	3/2+	E2		0.01453	20.4	Mult.: $\gamma(\theta)$: A ₂ =0.19 5, A ₄ =-0.07 6.
ı	437.3 3	3.9	2795.11	$(23/2^{-})$	2357.72 2	21/2-	D				
	451.0 <i>3</i>	<2.0	1349.27	$(15/2^{-})$	898.23 1			0.4= 0	0.04.60.0		
	452.0 3	2.8 3.4 [@]	5856.1	(37/2 ⁻)		$(35/2^{-})$	M1+E2	-0.17 <i>3</i>	0.01683	2.5	Mult.: $\gamma(\theta)$: A ₂ =-0.44 9, A ₄ =0.03 12.
	459.5 <i>3</i> 461 <i>f 1</i>	<2.0	3254.6 4410.4?	$(25/2^{-})$	2795.11 (3949.3	(25/2)	M1,E2		0.0144 19	3.5	
	$461^{5}I$ $465^{f}I$	<2.0	4669.8?		3949.3 4205.1						
	471.7 3	4.0 [@]	4750.0	$(33/2^+)$		$(31/2^+)$	M1,E2		0.0134 19	4.1	Mult.: $\gamma(\theta)$: A ₂ =-0.70 7, A ₄ =0.12 10.
	474.0 <i>3</i>	5.6 [@]	2518.95	$(21/2^{-})$	2044.83 (M1,E2		0.0131 19	5.7	//e/7
l	475.2 <i>3</i>	< 2.0	2795.13	$(21/2^+)$	2319.73 (,				
1											

$^{122}{\rm Sn}(^{13}{\rm C,4n}\gamma), (^{12}{\rm C,3n}\gamma) \qquad \textbf{1990Ma07,1975Gi11} \ (\textbf{continued})$

γ (131Ba) (continued)

								,		
$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	$\delta^{\#}$	α^d	$I_{(\gamma+ce)}^{\dagger}$	Comments
477 1	<2.0	3272.3	$(25/2^+)$	2795.13						
486.8 <i>3</i>	9.7 [@]	803.4	9/2+	316.49	-	E2		0.01061	9.8	Mult.: $\gamma(\theta)$: A ₂ =0.25 6, A ₄ =0.02 7.
487 ^{<i>f</i>} 1 496 <i>1</i>	<2.0	6174.6?	$(39/2^+)$	5686.9						
496 <i>1</i> 499 <i>1</i>	<2.0 <2.0	3057.10 3555.8	$(23/2^+)$ $(27/2^+)$	2560.97 3057.10						
501.2 3	2.9	3902.0	$(25/2^{-})$	3400.7	25/2	D				
509 ^f 1	< 2.0	6365.1?	$(39/2^{-})$	5856.1	$(37/2^{-})$					
518.6 <i>3</i>	7.2 [@]	705.86	13/2-		9/2-	E2		0.00892	7.3	Mult.: $\gamma(\theta)$: A ₂ =0.34 6, A ₄ =-0.09 8.
523.5 <i>3</i>	<2.0	3057.10	$(23/2^+)$	2533.7	19/2+	(E2)		0.00869		
524 <i>1</i> 525.8° 5	3.3 &	5686.9 526.4	$(37/2^+)$ $(3/2)^+$	5162.9 0.0	$(35/2^+)$ $1/2^+$	M1,E2		0.0102 16		I _v : 4.8 5 (1975Gi11).
323.6 3		320.4	(3/2)	0.0	1/2					Y_{γ} . 4.8 3 (1973G111). Mult.: $\gamma(\theta)$: A ₂ =0.23 10 (1975Gi11).
^x 544.8 3	6.0					D				, ,
549 <i>1</i>	2.2	2868.2		2319.73						
560.0 3	28.9 [@]	1458.24	17/2-	898.23	15/2	M1+E2	-0.42 9	0.00954 21	29.2	Mult.: $\gamma(\theta)$: A ₂ =-0.73 4, A ₄ =0.06 6. δ : -0.25 12 obtained by 1977Kr13 from data of 1975Gi11.
575.8 <i>3</i>	17.8 [@]	1119.08	$11/2^{+}$	543.55	7/2+	E2		0.00674	17.9	Mult.: $\gamma(\theta)$: A ₂ =0.31 6, A ₄ =0.02 7.
578.2 <i>3</i>	5.6	3303.3	$(25/2^+)$		$(21/2^+)$	E2		0.00667		Mult.: $\gamma(\theta)$: A ₂ =0.28 7, A ₄ =0.05 8.
586.8 <i>3</i> 587 <i>1</i>	13.4 [@] <2.0	2044.83 4632.9	$(19/2^{-})$ $(31/2^{-})$	1458.24 4046.2		M1+E2	-0.32 7	0.00864 <i>16</i>	13.5	Mult.: $\gamma(\theta)$: A ₂ =-0.63 5, A ₄ =0.07 7.
x593 1	4.6	2725 1	(21/2+)	2121.05	17/0+	(E2)		0.00624		
603.0 <i>3</i> x605 <i>1</i>	4.8	2725.1	$(21/2^+)$	2121.85	17/2	(E2)		0.00598		
x608 1	99.4 <mark>@</mark>	909 22	15/2-	206.06	11/2-	EO		0.00577	100.0	M-14 (0) A 0.21 5 A 0.04 6
611.3 <i>3</i> 614.4 <i>3</i>	8.9 [@]	898.23 1417.89	15/2 ⁻ 13/2 ⁺	286.86 803.4	9/2 ⁺	E2 E2		0.00577 0.00570	100.0 9.0	Mult.: $\gamma(\theta)$: A ₂ =0.31 5, A ₄ =-0.04 6.
626.1 <i>3</i>	5.2	3510.2	(27/2)	2884.0	(23/2)	E2 E2		0.00543	9.0	Mult.: $\gamma(\theta)$: A ₂ =0.39 8, A ₄ =0.02 9.
636 1	<2.0 21.3 [@]	3431.0	(15/2=)	2795.13		M1 . F2	0.22.0	0.00600.15	21.4	M I. (0) A 0.64 (A 0.10 C
643.5 <i>3</i> 662 <i>1</i>	<2.0	1349.27 3272.3	$(15/2^-)$ $(25/2^+)$	705.86 2611.14		M1+E2	-0.32 9	0.00690 15	21.4	Mult.: $\gamma(\theta)$: A ₂ =-0.64 4, A ₄ =0.10 6.
667 <i>I</i>	<2.0	4974.8	$(33/2^{-})$		$(29/2^{-})$					
668 1	< 2.0	3940.6	$(29/2^+)$		$(25/2^+)$	(77.6)		0.00474		
673.5 3	<2.0 9.5 [@]	2795.13	$(21/2^+)$	2121.85		(E2)	0.40.14	0.00452	0.6	N. I. (0) A 0.70 (A 0.00 0
675.0 3	9.5 [@]	2357.72 1796.56	21/2-	1682.61		M1+E2	-0.49 <i>14</i>	0.00596 19	9.6	Mult.: $\gamma(\theta)$: A ₂ =-0.78 6, A ₄ =0.09 8.
677.6 <i>3</i> ^x 678 <i>1</i>	14.2	1/90.36	15/2+	1119.08	11/2'	E2 (E2)		0.00445 0.00445	14.3	Mult.: $\gamma(\theta)$: A ₂ =0.24 6, A ₄ =-0.02 7.
680.5 <i>3</i>	5.8	2725.1	$(21/2^+)$	2044.83		(E1)		1.65×10^{-3}		
682 <i>1</i> 683 <i>1</i>	5.4	3476.7 1712.7	$(27/2^{-})$ $(17/2^{-})$	2795.11 1029.9		E2		0.00438		
003 1		1/12./	(1//2)	1029.9	(13/2)					

S

 $^{122}{\rm Sn}(^{13}{\rm C,4n}\gamma), (^{12}{\rm C,3n}\gamma) \qquad \textbf{1990Ma07,1975Gi11} \ (\textbf{continued})$

γ (131Ba) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathtt{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ#	α^d	$I_{(\gamma+ce)}^{\dagger}$	Comments
695.6 <i>3</i>	11.1	2044.83	$(19/2^{-})$	1349.27		E2		0.00417		Mult.: $\gamma(\theta)$: A ₂ =0.21 6, A ₄ =-0.02 7.
699.4 3	5.5	3057.10	$(23/2^+)$	2357.72		(E1)		1.55×10^{-3}		
704.0 ^b 3	7.3	2121.85	17/2+	1417.89		E2		0.00405		Mult.: $\gamma(\theta)$: A ₂ =0.17 5, A ₄ =0.06 6.
722.6 3	3.7	4278.3	$(31/2^+)$	3555.8	$(27/2^+)$	E2		0.00380		
736 <i>1</i> 737.2 <i>3</i>	<2.0 8.4	3254.6 2533.7	$(25/2^{-})$ $19/2^{+}$	2518.95 1796.56		E2		0.00363		$M_{\rm plt}$, $M_{$
737.2 3 740.5 <i>3</i>	3.1	2862.3	21/2+	2121.85		E2 E2		0.00363		Mult.: $\gamma(\theta)$: A ₂ =0.26 6, A ₄ =-0.05 8.
743 <i>1</i>	3.3	1029.9	$(13/2^{-})$	286.86		(M1,E2)		0.00337		
748 <i>1</i>	< 2.0	2460.3	(19/2)	1712.7	$(17/2^{-})$, , ,				
750 <i>1</i>		2795.13	$(21/2^+)$	2044.83						
750.5 <i>3</i>	6.5	2795.11	$(23/2^{-})$	2044.83		E2		0.00347		
752.2 3	<19.9 [@]	1458.24	$17/2^{-}$	705.86		E2		0.00345	< 20.0	Mult.: $\gamma(\theta)$: A ₂ =0.31 6, A ₄ =0.06 7.
761 <i>I</i> 764.5 <i>3</i>	<2.0 3.5	3119.0 2560.97	(10/2±)	2357.72		(E2)		0.00332		Mult. 4(0): A =0.22 0 A =0.05 11
764.3 3 768.4 <i>3</i>	3.3 3.4	4071.7	$(19/2^+)$ $(29/2^+)$	1796.56 3303.3	$(25/2^+)$	(E2) E2		0.00332		Mult.: $\gamma(\theta)$: A ₂ =0.32 9, A ₄ =0.05 11.
771 <i>I</i>	<2.0	5404.1	$(35/2^{-})$	4632.9	$(23/2^{-})$ $(31/2^{-})$	LL		0.00320		
772.9 3	<2.0	3656.9	(27/2)	2884.0	(23/2)	E2		0.00324		
777.7 3	6.4	2460.3	(19/2)	1682.61	19/2-	(D)				Mult.: $\gamma(\theta)$: A ₂ =0.40 6, A ₄ =0.09 8.
784.4 <i>3</i>	56.0 [@]	1682.61	$19/2^{-}$	898.23	$15/2^{-}$	E2		0.00313	56.2	Mult.: $\gamma(\theta)$: A ₂ =0.34 6, A ₄ =-0.05 6.
^x 787.5 3	< 2.0					(E2)		0.00310		
789.5 ^b 3	4.1	3400.7	$25/2^{-}$	2611.14		M1+E2	-0.56 <i>13</i>	0.00404 12		Mult.: $\gamma(\theta)$: A ₂ =-0.80 8, A ₄ =0.11 11.
806 <i>1</i>	<2.0	2518.95	$(21/2^{-})$	1712.7	$(17/2^{-})$					
809 <i>1</i>	<2.0	4750.0	$(33/2^+)$	3940.6	$(29/2^+)$					
820 ^f 1 *834 1	< 2.0	3431.0		2611.14	23/2-					
843 <i>I</i>		1029.9	$(13/2^{-})$	187.09	0/2-	(E2)		0.00265		
^x 844 <i>1</i>		1029.9	(13/2)	107.09	9/2	(E2)		0.00203		
848.8 <i>3</i>	5.0	4501.5	$(31/2^{-})$	3652.7	$(27/2^{-})$	E2		0.00261		
855.2 <i>3</i>	< 2.0	4512.0	(31/2)	3656.9	(27/2)	E2		0.00256		
858 <i>1</i>	<2.0	3652.7	$(27/2^{-})$	2795.13		77.0				
861.7 <i>3</i> 865.5 <i>3</i>	4.3 5.1	4338.4 3476.7	$(31/2^{-})$ $(27/2^{-})$	3476.7 2611.14	$(27/2^{-})$ $23/2^{-}$	E2 (E2)		0.00252 0.00249		Mult.: $\gamma(\theta)$: A ₂ =0.30 8, A ₄ =-0.01 9. Mult.: $\gamma(\theta)$: A ₂ =0.25 7, A ₄ =-0.04 8.
803.3 <i>3</i> 881 <i>1</i>	<2.0	5856.1	$(27/2^{-})$ $(37/2^{-})$	4974.8	$(33/2^{-})$	(E2)		0.00249		Mult.: $\gamma(\theta)$: A ₂ =0.25 /, A ₄ =-0.04 8.
885 <i>I</i>	<2.0	5162.9	$(35/2^+)$	4278.3	$(33/2^+)$ $(31/2^+)$					
886.0 <i>3</i>	<2.0	5387.5	$(35/2^{-})$	4501.5	$(31/2^{-})$	E2		0.00236		
897 <i>1</i>	< 2.0	3254.6	$(25/2^{-})$	2357.72	$21/2^{-}$					
899.5 <i>3</i>	10.0	2357.72	21/2	1458.24		E2		0.00229		Mult.: $\gamma(\theta)$: A ₂ =0.27 6, A ₄ =-0.05 7.
908 1	<2.0	4046.2	$(27/2^{-})$	3138.5	$(23/2^{-})$	EO		0.00212		Mult. 4(0): A =0.25 6 A 0.06 7
928.5 <i>3</i> 937 <i>1</i>	16.8 <2.0	2611.14 5686.9	$23/2^{-}$ $(37/2^{+})$	1682.61 4750.0	$(33/2^+)$	E2		0.00213		Mult.: $\gamma(\theta)$: A ₂ =0.25 6, A ₄ =-0.06 7.
961 ^f 1	<2.0	6365.1?	$(37/2^{-})$ $(39/2^{-})$	5404.1	$(35/2^{-})$					
901 ³ 1 970.0 3	2.6 6	5041.7	$(39/2)$ $(33/2^+)$	4071.7	(33/2) $(29/2^+)$	E2		0.00193		
7,0.03	2.00	2011.7	(35/2)	10/11/	(2)/2)			0.00175		

6

E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	$\delta^{\#}$	α^d	Comments
977 1	<2.0	5489.0	(35/2)	4512.0 (31/2)	E2		0.00190	
1001.8 <i>3</i>	6.7	4512.0	(31/2)	3510.2 (27/2)	E2		0.00180	
1002 <i>1</i>	< 2.0	2460.3	(19/2)	1458.24 17/2-				
1012 ^f 1	< 2.0	6174.6?	$(39/2^+)$	5162.9 (35/2 ⁺)				
1012.5 3		5350.9	$(35/2^{-})$	4338.4 (31/2 ⁻)	E2		1.76×10^{-3}	
^x 1038 <i>1</i>	< 2.0				(E2)		1.67×10^{-3}	
1041.5 3	5.4	3652.7	$(27/2^{-})$	2611.14 23/2-	(E2)		1.66×10^{-3}	
1042 <i>I</i>	< 2.0	2725.1	$(21/2^+)$	1682.61 19/2-			2	
1043.0 <i>3</i>	2.5	3400.7	$25/2^{-}$	2357.72 21/2	E2		1.65×10^{-3}	
1053 <i>1</i>	< 2.0	6440.5?	$(39/2^{-})$	5387.5 (35/2 ⁻)			4	
1075 <i>I</i>	< 2.0	2533.7	19/2+	1458.24 17/2	E1		6.65×10^{-4}	
1094 <i>I</i>	<2.0	3138.5	$(23/2^{-})$	2044.83 (19/2 ⁻)	(F1 - MO)	0.04.12	0.00064.10	M. I. (0) A 0.15 (A 0.12 0
1102.5 3	5.6	2560.97	$(19/2^+)$	1458.24 17/2	(E1+M2)	+0.04 12	0.00064 10	Mult.: $\gamma(\theta)$: A ₂ =-0.15 6, A ₄ =-0.13 8.
1106.2 3	3.6	3717.3	27/2-	2611.14 23/2	E2		1.46×10^{-3}	Mult.: $\gamma(\theta)$: A ₂ =0.37 8, A ₄ =-0.06 10.
1111.5 ^{bf} 3	<2.0	2795.11	$(23/2^{-})$	1682.61 19/2				E_{γ} : poor fit, level energy difference is equal to 1112.10 <i>19</i> .
1112.5 ^b 3	12.8	2795.13	$(21/2^+)$	1682.61 19/2-	D			
^x 1132 <i>1</i>	< 2.0							
^x 1180 <i>I</i>	< 2.0							
1185.5 3	< 2.0	2868.2		1682.61 19/2				
1194 ^{<i>f</i>} <i>1</i>	< 2.0	6235.7?	$(37/2^+)$	$5041.7 (33/2^+)$			2	
^x 1222 <i>I</i>	< 2.0				(E2)		1.20×10^{-3}	
1251 <i>I</i>	< 2.0	4046.2	$(27/2^{-})$	2795.11 (23/2 ⁻)	(E2)		$1.15 \times 10^{-3} 2$	
1403.0 <i>3</i>	1.7	2108.9	$(15/2^+)$	705.86 13/2-	(E1+M2)	-0.03 6	5.64×10^{-4} 17	Mult.: $\gamma(\theta)$: A ₂ =-0.27 7, A ₄ =0.06 14.
1421.4 3	3.7	2319.73	$(17/2^+)$	898.23 15/2	(E1+M2)	$-0.05\ 5$	5.71×10^{-4} 17	Mult.: $\gamma(\theta)$: A ₂ =-0.30 7, A ₄ =-0.05 10.
1435 <i>1</i>	< 2.0	4046.2	$(27/2^{-})$	2611.14 23/2	(E2)		9.18×10^{-4}	
1545 <i>1</i>	< 2.0	3902.0	$(25/2^{-})$	$2357.72 \ 21/2^{-}$	(E2)		8.41×10^{-4}	

[†] From 1990Ma07, except as noted. Iy's given in comments are relative to Iy(99.7 γ)=100 10 (1975Gi11).

 $^{^{\}ddagger}$ From $\gamma(\theta)$ and DCO measurements (1990Ma07), except as noted. E2 is assumed for quadrupole transitions, and M1+E2 is assumed for D+Q transitions within a band.

[#] From $\gamma(\theta)$ (1990Ma07), except as noted.

[@] From I(γ +ce) and adopted α 's (evaluators).

[&]amp; Iγ(177γ)/Iγ(285γ)=0.39 6, Iγ(209γ)/Iγ(316γ)=0.62, and Iγ(526γ)/Iγ(418γ)=0.0066 10 from 1975Gi11 discrepant with 0. 0.288 15, and 0.486 15 from ε decay.

^a Multiplet.

b Doublet with a transition in ¹³²Ba.
 c From 1975Gi11.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed with undivided intensity.

f Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

¹³¹₅₆Ba₇₅

¹³¹₅₆Ba₇₅

122 Sn(13 C,4n γ),(12 C,3n γ) 1990Ma07,1975Gi11

122 Sn(13 C,4n γ),(12 C,3n γ) 1990Ma07,1975Gi11 (continued)

130**Ba(d,p)** 1970Vo04

Type Author Citation Literature Cutoff Date
Full Evaluation Yu. Khazov, I. Mitropolsky, A. Rodionov NDS 107, 2715 (2006) 17-Jul-2006

1970Vo04: 130 Ba(d,p), E=12 MeV, FWHM=15 keV; E(p), I(p)(θ); deduced L_n .

¹³¹Ba Levels

E(level)	L	S' [†]	E(level)	L	S' [†]	E(level)	L	S' [†]	E(level)	L	S' [†]
0.0	0	0.53	895 10	(0)	0.01	1565 10	3	0.34	2310 15	3	0.11
105 5	2	1.03	946 <i>10</i>	2	0.17	1605 10			2347 15	(3)	0.06
187? 5			970 <i>10</i>	2	0.22	1669 <i>10</i>	2	0.09	2384? 15		
284 5	2	0.43	1100 <i>10</i>	1	0.62	1747 10	(0)	0.008	2401 <i>15</i>		
316? 5			1135? <i>10</i>			1785 <i>10</i>			2433? 15		
364 5	0	0.016	1162 <i>10</i>	3	1.19	1820 <i>10</i>	0	0.049	2487 <i>15</i>	3	0.28
520? 10	(2)	0.20	1202? <i>10</i>			1908 <i>10</i>	(0)	0.052	2524 <i>15</i>	2	0.50
559 10	2	0.51	1243 <i>10</i>	(3)	0.07	1943 <i>10</i>	(0)	0.011	2592 <i>15</i>	(3)	0.14
718? 10			1282 <i>10</i>			1965? <i>10</i>			2616 <i>15</i>	(3)	0.13
757 10	3	0.35	1317 <i>10</i>	1	0.16	1991 <i>10</i>			2656 <i>15</i>	(3)	0.18
783? 10			1437 <i>10</i>	(0)	0.008	2051 <i>15</i>	(3)	0.06			
839? 10			1472 <i>10</i>	0	0.018	2100? <i>15</i>					

[†] DWBA calculations without cutoff.