Задачи върху функции.

Задача 1. Дадено е непразно множество S. Нека $f:S\to S$ и $g:S\to S$. Тези функции са такива, че

$$\forall x \in S (f(x) = g(f(f(x))) \land g(x) = f(g(f(x))))$$

Докажете, че f = g.

Решение. Нека х е произволен елемент на S. В сила

$$f(x) = g(f(f(x)))$$
 // понеже $f(x) = g(f(f(x)))$ = $g(f(f(x)))$ // понеже $g(Y) = f(g(f(Y)))$ = $f(g(f(f(x))))$ // понеже $g(f(f(Y))) = f(Y)$ = $f(f(f(x)))$ // понеже $f(x) = g(f(f(x)))$ = $f(g(f(f(x))))$ // понеже $f(g(f(Y))) = g(Y)$ = $f(g(f(x)))$ // понеже $f(g(f(x))) = g(X)$ = $g(x)$ // което и трябваше да покажем

Показахме, че $\forall x \in S : f(x) = g(x)$. Тогава f = g.

Задача 2. Докажете, че множеството от функциите от вида $f: \mathbb{N} \to \{0,1\}$ е неизброимо безкрайно.

Решение. Да допуснем противното. А именно, че функциите от този вид може да бъдат изброени като f_0, f_1, f_2, \ldots . Да разгледаме числената редица $f_0(0), f_1(1), f_2(2), \ldots$. Но тази редица е функция с домейн $\mathbb N$ и кодомейн $\{0,1\}$. Да дефинираме нотацията $f_k(k)$ по следния начин: за всяко $k \in \mathbb N$:

$$\overline{f_k(k)} = \begin{cases} 1, & \text{and } f_k(k) = 0 \\ 0, & \text{and } f_k(k) = 1 \end{cases}$$

Сега да разгледаме редицата $\overline{f_0(0)}, \overline{f_1(1)}, \overline{f_2(2)}, \ldots$, която също е редица от нули и единици, което означава, че е функция с домейн $\mathbb N$ и кодомейн $\{0,1\}$. Но функцията $\overline{f_0(0)}, \overline{f_1(1)}, \overline{f_2(2)}, \ldots$ се различава, за всяко $j \in \mathbb N$, от f_j върху поне една стойност, а именно j. Следователно, $\overline{f_0(0)}, \overline{f_1(1)}, \overline{f_2(2)}, \ldots$ не е нито една от функциите в наредбата.

Определение 1. Дефинираме "композиция на функции" по следния начин. Нека X, Y и Z са произволни множества. Нека $f: X \to Y$ и $g: Y \to Z$. Функцията $g \circ f: X \to Z$, дефинирана така:

$$\forall x \in X : (g \circ f)(x) = g(f(x))$$

наричаме композицията на g и f. Внимание: в израза $g \circ f: X \to Z$, $g \circ f$ е името на функцията-композиция.

Задача 3. Дадено е множество A и функция $h:A\to A$, която е сюрекция. Докажете, че за всяка функция $f:A\to A$ и всяка функция $g:A\to A$ е вярно, че ако $f\circ h=g\circ h$, то f=g.

Решение. Разглеждаме произволни функции $f: A \to A$ и $g: A \to A$. Допускаме, че за всеки елемент $x \in A$ е вярно, че $f \circ h(x) = g \circ h(x)$, тоест, че f(h(x)) = g(h(x)), където h е сюрекция. Ще докажем, че за произволен елемент $a \in A$ е вярно, че f(a) = g(a).

Щом h е сюрекция, съществува $b \in A$, такъв че h(b) = a. Щом за всеки елемент $x \in A$ е вярно, че f(h(x)) = g(h(x)), в частност за b е вярно, че f(h(b)) = g(h(b)). Но h(b) = a, така че f(a) = g(a), което и трябваше да покажем.

Задача 4. Докажете, че композицията на функции е асоциативна.

Решение. Иска се да докажем, че ако X, Y, W и Z са произволни домейни и $f: X \to Y$ и $g: Y \to W$ и $h: W \to Z$, то $(h \circ g) \circ f = h \circ (g \circ f)$. Но двете функции $(h \circ g) \circ f$ и $h \circ (g \circ f)$ имат един и същи домейн и един и същи кодомейн, така че, за да покажем, че са равни, достатъчно е да покажем, че за всеки $x \in X$:

$$((h \circ g) \circ f)(x) = (h \circ (g \circ f))(x)$$

Разглеждаме произволен $x \in X$. Щом f, g и h са функции, съществува единствен $y \in Y$, такъв че f(x) = y, съществува единствен $w \in W$, такъв че g(y) = w и съществува единствен $z \in Z$, такъв че f(w) = z. И така, щом веднъж изберем x, елементите y, w и z са уникално определени.

Очевидно $(h \circ (g \circ f))(x) = h(g(f(x)))$ и това е елементът z. Но $((h \circ g) \circ f)(x)$ е композицията на $h \circ g$ и f. Очевидно $(h \circ g)(y) = z$, където y = f(x), така че $((h \circ g) \circ f)(x)$ също е z. Доказахме, че композицията на функции е асоциативна.

Определение 2. Нека W е произволно множество и $h: W \to W$ е произволна. За всяко $n \in \mathbb{N}^+$ дефинираме, че

$$h^{n} = \begin{cases} h, & \text{ako } n = 1, \\ h \circ h^{n-1}, & \text{ako } n > 1 \end{cases}$$

Изразът h^n не означава познатото ни от училище повдигане на степен, а е начин за записване на n-1 кратна композиция на функцията h със себе си.

Задача 5. Нека U е произволен универсум и $A, B \subseteq U$ са произволни множества в него. Дефинираме $f: 2^U \to 2^U$ така:

$$\forall x \in 2^U : f(x) = A \cap (B \cup x)$$

Докажете, че $f^2 = f$.

Решение. Наистина,

$$f^{2}(x) = f(A \cap (B \cup x)) = A \cap (B \cup (A \cap (B \cup x))) =$$

$$A \cap ((B \cup A) \cap (B \cup B \cup x)) = A \cap ((B \cup A) \cap (B \cup x)) =$$

$$(A \cap (B \cup A)) \cap (B \cup x) = A \cap (B \cup x) = f(x)$$

Задача 6. Неща A и B са множества. Нека $f:A\to B$ и $g:A\to B$. Докажете или опровергайте, че

- $\mathfrak{T} \cap \mathfrak{g}$ е функция.
- ② $f \cap g$ е функция с домейн A и кодомейн B.
- $\mathfrak{G} \ \mathsf{f} \cup \mathsf{g} \ \mathsf{e} \ \mathsf{ф}$ ункция.
- 4 Ако $g \subseteq f$, то $f \cup g$ е функция с домейн A и кодомейн B.

Решение. Да разгледаме булетите един след друг.

① Твърдението е вярно. Първо да отбележим, че от формална гледна точка, изразът " $f \cap g$ " е добре дефиниран, понеже и f, и g са множества, така операцията сечение е приложима върху тях. Нека

$$A' = \{x \in A \mid f(x) = g(x)\}\$$

$$B' = \{y \in B \mid \exists x \in A(f(x) = g(x) = y)\}\$$

Ще докажем, че $f \cap g$ е тотална функция с домейн A' и кодомейн B'. Наистина, за всяко $x \in A'$ знаем, че

- съществува единствено $y_1 \in B$, такова че $f(x) = y_1$, понеже f е тотална функция и
- съществува единствено $y_2 \in B$, такова че $g(x) = y_2$, понеже g е тотална функция.

Освен това въпросните y_1 и y_2 съвпадат, понеже дефиницията на A' е такава, и този елемент $y_1=y_2$ е елемент на B', понеже дефиницията на B' е такава. Заключаваме, че за всяко $x\in A'$ съществува единствено $y\in B'$, такова че $(f\cap g)(x)=y$. Но това е дефиницията на тотална функция с домейн A' и кодомейн B'.

② В общия случай това не е вярно. Като контрапример да разгледаме $A = \{a, b\}$, $B = \{c, d\}$, $f = \{(a, c), (b, d)\}$ и $g = \{(a, d), (b, c)\}$. Тогава $f \cap g = \emptyset$. Това не е тотална функция с домейн A и кодомейн B.

Резултатът от ① остава в сила! В този пример, $A' = \emptyset$ и $B' = \emptyset$, така че $f \cap g$ е тотална функция, но с празни домейн и кодомейн (така че самата тя е празна).

И така, в общия случай $f \cap g$ е само частична функция, но не и тотална функция, с домейн A и кодомейн B.

- ③ Твърдението не е вярно. Като контрапример пак да разгледаме $A = \{a, b\}, B = \{c, d\},$ $f = \{(a, c), (b, d)\}$ и $g = \{(a, d), (b, c)\}$. Тогава $f \cup g = \{(a, c), (b, d), (a, d), (b, c)\}$. Това не е дори частична функция с домейн A и кодомейн B.

Задача 7. Нека $f : \mathbb{R} \to \mathbb{R}$ и $g : \mathbb{R} \to \mathbb{R}$.

а) Намерете f, ако g(x) = 2x + 1 и $(g \circ f)(x) = 2x^2 - 3$.

б) Намерете g, ако f(x) = 3x - 1, $(g \circ f)(x) = 6x + 5$ и g е линейна функция, тоест g(x) = ax + b за някакви $a, b \in \mathbb{R}$.

Решение.

- а) Щом g(x)=2x+1, то g(f(x))=2f(x)+1. Дадено е, че $(g\circ f)(x)=2x^2-3$, но това е същото като $g(f(x))=2x^2-3$. Тогава $2f(x)+1=2x^2-3$, откъдето $f(x)=x^2-2$.
- б) Търсим \mathfrak{a} и \mathfrak{b} , такива че $\mathfrak{g}(x) = \mathfrak{a}x + \mathfrak{b}$. Щом $\mathfrak{f}(x) = 3x 1$, то $\mathfrak{g}(\mathfrak{f}(x)) = \mathfrak{a}(3x 1) + \mathfrak{b} = 3\mathfrak{a}x + \mathfrak{b} \mathfrak{a}$, така че $(\mathfrak{g} \circ \mathfrak{f})(x) = 3\mathfrak{a}x \mathfrak{a} + \mathfrak{b}$. От друга страна, дадено \mathfrak{e} , че $(\mathfrak{g} \circ \mathfrak{f})(x) = 6x + 5$. Тогава

$$3a = 6$$
$$-a + b = 5$$

откъдето веднага получаваме a=2, b=7. И така, g(x)=2x+7.