GSERM - St. Gallen 2022 Analyzing Panel Data

June 9, 2022

Causation

The goal: Making causal inferences from observational data.

- Establish and measure the *causal* relationship between variables in a non-experimental setting.
- The fundamental problem of causal inference:

It is impossible to observe the causal effect of a treatment or a predictor on a single unit.

- · Specific challenges:
 - · Confounding
 - · Selection bias
 - · Heterogenous treatment effects

Causation and Counterfactuals

Causal statements imply counterfactual reasoning.

- "If the cause(s) had been different, the outcome(s) would be different, too."
- Conditioning, probabilistic and causal:

Probabilistic conditioning	Causal conditioning	
Pr(Y X=x)	Pr[Y do(X=x)]	
Factual	Counterfactual	
Select a sub-population	Generate a new population	
Predicts passive observation	Predicts active manipulation	
Calculate from full DAG*	Calculate from surgically-altered DAG*	
Always identifiable when X and Y	Not always identifiable even when	
are observable	X and Y are observable	

^{*}See below. Source: Swiped from Shalizi, "Advanced Data Analysis from an Elementary Point of View", Table 23.1.

- Causality (typically) implies / requires:
 - · Temporal ordering
 - · Mechanism
 - · Correlation

The Counterfactual Paradigm

Notation

- *N* observations indexed by i, $i \in \{1, 2, ...N\}$
- Outcome variable Y
- Interest: the effect on Y of a treatment variable W:
 - · $W_i = 1 \leftrightarrow \text{observation } i \text{ is "treated"}$
 - · $W_i = 0 \leftrightarrow \text{observation } i \text{ is "control"}$

Potential Outcomes

- Y_{0i} = the value of Y_i if $W_i = 0$
- Y_{1i} = the value of Y_i if $W_i = 1$
- $\delta_i = (Y_{1i} Y_{0i}) = \text{the } \underline{\text{treatment effect}} \text{ of } W$

Treatment Effects

The average treatment effect (ATE) is just:

$$\begin{split} \mathsf{ATE} &\equiv \bar{\delta} &= \mathsf{E}(Y_{1i} - Y_{0i}) \\ &= \frac{1}{N} \sum_{i=1}^N Y_{1i} - Y_{0i}. \end{split}$$

BUT we observe only Y_i :

$$Y_i = \begin{cases} Y_{0i} \text{ if } W_i = 0, \\ Y_{1i} \text{ if } W_i = 1. \end{cases}$$

or (equivalently)

$$Y_i = W_i Y_{1i} + (1 - W_i) Y_{0i}.$$

Estimating Treatment Effects

Key to estimating treatment effects: Assignment mechanism for W.

Neyman/Rubin/Holland: Treat inability to observed Y_{0i} / Y_{1i} as a missing data problem.

[press "pause"]

Missing Data Review

Notation:

$$\mathbf{X}_{i} \cup \{\mathbf{W}_{i}, \mathbf{Z}_{i}\}$$

 \mathbf{W}_i have some missing values, \mathbf{Z}_i are "complete"

Consider a matrix R with:

$$R_{ik} = \begin{cases} 1 & \text{if } W_{ik} \text{ is missing,} \\ 0 & \text{otherwise.} \end{cases}$$

$$\pi_{ik} = \Pr(R_{ik} = 1)$$

Missing Data (continued)

Rubin's flavors of missingness:

• Missing completely at random ("MCAR") (= "ignorable"):

$$R \perp \{Z, W\}$$

Missing at random ("MAR") (conditionally "ignorable"):

$$\textbf{R} \perp \textbf{W} | \textbf{Z}$$

Anything else is "informatively" (or "non-ignorably") missing.

[press "play"]

Estimating Treatment Effects

Key to estimating treatment effects: Assignment mechanism for W.

Neyman/Rubin/Holland: Treat inability to observed Y_{0i} / Y_{1i} as a missing data problem.

• If the "missingness" due to the value of W_i is orthogonal to the values of Y, then it is ignorable. Formally:

$$\Pr(W_i|\mathbf{X}_i, Y_{0i}, Y_{1i}) = \Pr(W_i|\mathbf{X}_i)$$

- If that "missingness" is non-orthogonal, then it is not ignorable, and can lead to bias in estimation
- Non-ignorable assignment of W requires understanding the mechanism by which that assignment occurs

SUTVA

One more thing: the stable unit-treatment value assumption ("SUTVA")

- Requires that there be two and only two possible values of Y for each observation i...
- "the observation (of Y_i) on one unit should be <u>unaffected</u> by the particular assignment of treatments to the other units."
- \equiv the "assumption of no interference between units," meaning:
 - · Values of Y for any two i,j $(i \neq j)$ observations do not depend on each other
 - \cdot Treatment effects are homogenous within categories defined by W

Treatment Effects Under Randomization of W

If W_i is assigned randomly, then:

$$Pr(W_i) \perp Y_{0i}, Y_{1i}$$

and so:

$$Pr(W_i|Y_{0i}, Y_{1i}) = Pr(W_i) \forall Y_{0i}, Y_{1i}.$$

This means that the "missing" data on Y_0/Y_1 are <u>ignorable</u> (here, in the special case where the \mathbf{X}_i on which W_i depends is null). This in turn means that:

$$f(Y_{0i}|W_i=0)=f(Y_{0i}|W_i=1)=f(Y_i|W_i=0)=f(Y_i|W_i=1)$$

and

$$f(Y_{1i}|W_i=0) = f(Y_{1i}|W_i=1) = f(Y_i|W_i=0) = f(Y_i|W_i=1)$$

Randomized W (continued)

Implication: Y_{0i} and Y_{1i} are (not identical but) exchangeable...

This in turn means that:

$$E(Y_{0i}|W_i)=E(Y_{1i}|W_i)$$

and so

$$\widehat{\mathsf{ATE}} = \mathsf{E}(Y_i|W_i = 1) - \mathsf{E}(Y_i|W_i = 0) = \bar{Y}_{W=1} - \bar{Y}_{W=0}.$$

will be an unbiased estimate of the ATE.

Observational Data: W Depends on X

Formally,

$$Y_{0i}$$
, $Y_{1i} \perp W_i | \mathbf{X}_i$.

Here,

- X are known confounders that (stochastically) determine the value of W_i.
- Conditioning on **X** is necessary to achieve exchangeability.

So long as W is entirely due to X, we can condition:

$$f(Y_{1i}|\mathbf{X}_i, W_i = 1) = f(Y_{1i}|\mathbf{X}_i, W_i = 0) = f(Y_i|\mathbf{X}_i, W_i)$$

and similarly for Y_{0i} .

W Depends on X (continued)

Estimands:

• the average treatment effect for the treated (ATT):

$$ATT = E(Y_{1i}|W_i = 1) - E(Y_{0i}|W_i = 1).$$

• the average treatment effect for the controls (ATC):

$$ATC = E(Y_{1i}|W_i = 0) - E(Y_{0i}|W_i = 0).$$

Corresponding estimates:

$$\widehat{\mathsf{ATT}} = \mathsf{E}\{[\mathsf{E}(Y_i|\mathbf{X}_i,W_i=1) - \mathsf{E}(Y_i|\mathbf{X}_i,W_i=0)]|W_i=1\}.$$

and

$$\widehat{\mathsf{ATC}} = \mathsf{E}\{[\mathsf{E}(Y_i|\mathbf{X}_i,W_i=1) - \mathsf{E}(Y_i|\mathbf{X}_i,W_i=0)]|W_i=0\}.$$

Note that in both cases the expectation of the whole term is conditioned on W_i .

Confounding

Confounding occurs when one or more observed or unobserved factors \mathbf{X} affect the causal relationship between W and Y.

Formally, confounding requires that:

- $Cov(X, W) \neq 0$ (the confounder is associated with the "treatment")
- $Cov(X, Y) \neq 0$ (the confounder is associated with the outcome)
- X does not "lie on the path" between W and Z (that is, X is not affected by either W or Y).

Digression: DAGs

<u>Directed acyclic graphs</u> (DAGs) are a tool for visualizing and interpreting structural/causal phenomena.

- DAGs comprise:
 - · Nodes (typically, variables / phenomena) and
 - · Edges (or lines; typically, relationships/causal paths).
- Directed means each edge is unidirectional.
- Acyclical means exactly what it suggests: If a graph has a "feedback loop," it is not a DAG.
- Read more at the Wikipedia page, or at this useful page.

Know your DAG

Figure: A DAG

Figure: Not a DAG

DAGs and Confounding

No Confounding
$$W \longrightarrow Y \longleftarrow X$$

What We're On About

Figure: Potential Confounding

Here:

- Y is the outcome of interest,
- ullet W is the primary predictor / covariate ("treatment") of interest,
- T_i is the "treatment indicator" for observation i,
- We're interested in estimating τ , the "treatment effect" of W on Y,
- X are observed confounders,
- **U** are <u>unobserved</u> confounders.

Things We Can Do

Randomize

```
(or...)
```

- Instrumental Variables Approaches
- Selection on Observables:
 - · Regression / Weighting
 - Matching (propensity scores, multivariate/minimum-distance, genetic, etc.)
- Regression Discontinuity Designs ("RDD")
- Differences-In-Differences ("DiD")
- Synthetic Controls
- Others...

Under Randomization

Figure: = no confounding!

Note:

- Randomized assignment of W "balances" covariate values both observed and unobserved – on average...
- That is, under randomization of W:

$$\mathsf{E}(\mathbf{X}_i,\mathbf{U}_i\,|\,W_i=0)=\mathsf{E}(\mathbf{X}_i,\mathbf{U}_i\,|\,W_i=1)$$

or, more demandingly,

$$E[f(X, U) | W_i = 0] = E[f(X, U) | W_i = 1]$$

• Can yield imbalance by random chance...

Covariate Balance / Imbalance

Nonrandom Assignment of W_i

Valid causal inference requires Y_{0i} , $Y_{1i} \perp W_i | \mathbf{X}_i, \mathbf{U}_i$

• That is, treatment assignment W_i is conditionally ignorable

"What if I have unmeasured confounders?"

- In general, that's a bad thing.
- ullet One approach: obtain *bounds* on possible values of au
 - · Assume you have one or more unmeasured confounders
 - · Undertake one of the methods described below to get $\hat{ au}$
 - \cdot Calculate the range of values for $\hat{\tau}$ that could occur, depending on the degree and direction of confounding bias
 - · Or ask: How strong would the effect of the **U**s have to be to make $\hat{\tau} \rightarrow 0$?
- Some useful cites:
 - · Rosenbaum and Rubin (1983)
 - · Rosenbaum (2002)
 - · DiPrete and Gangl (2004)
 - · Liu et al. (2013)
 - Ding and VanderWeele (2016)

Digression: Instrumental Variables

Figure: Instrumental Variables

As in the more general regression case where we have $Cov(\mathbf{X}, \mathbf{u}) \neq 0$, instrumental variables can be used to address confounding in causal analyses.

Instrumental Variables (continued)

Considerations:

- Requires:
 - 1. $Cov(\mathbf{Z}, W) \neq 0$
 - 2. **Z** has no independent effect on Y, except through W
 - 3. **Z** is exogenous [i.e., $Cov(\mathbf{Z}, \mathbf{u}) = 0$]
- Arguably most useful when treatment compliance is uncertain / driven by unmeasured factors ("intent to treat" analyses)
- Mostly, they're not that useful at all...
 - · Bound et al. (1995): Weak instruments are worse than endogeneity bias
 - Young (2020): Inferences in published IV work (in economics) are wrong and terrible
 - Shalizi (2020, chapters 20-21): Gathers all the issues together, sometimes hilariously
- Other useful references:
 - · Imbens et al. (1996) (the overly-cited one)
 - · Hernan and Robins (2006) (making sense of things)
 - · Lousdal (2018) (a good intuitive introduction)

Nonrandom Assignment of W_i (continued)

So...

- Causal inference with observational data typically requires that $\mathbf{U} = \varnothing ...$
- This typically requires a <u>strong</u> theoretical motivation in order to assume that the specification conditioning on the observed X exhausts the list of possible confounders.
- Even if this assumption is reasonable, there are two (related) important concerns:
 - · Lack of covariate balance (as above)
 - · Lack of overlap among observations with $W_i = 0$ vs. $W_i = 1$
 - The latter is related to positivity, the requirement that each observation's probability of receiving (or not receiving) the treatment is greater than zero

Overlap

Overlap and Balance

In general:

- Ensuring overlap allows us to make counterfactual statements from observational data
 - · Requires that we have comparable $W_i = 0$ and $W_i = 1$ units
 - It's necessary no overlap means any counterfactual statements are based on assumption
 - Think of this as an aspect of model identification (Crump et al. 2009)
 - Most often handled via matching
- Ensuring covariate balance corrects potential bias in $\hat{\tau}$ due to (observed) confounding
 - This can be done a number of different ways: stratification, weighting, regression...
 - Key: Adjusting for (observable) differences across groups defined by values of W
- In general, we usually address overlap first, then balance...

Matching

 $\underline{\mathsf{Matching}}$ is a way of dealing with one of both of covariate overlap and $\overline{\mathsf{(im)}}\mathsf{balance}.$

The process, generally:

- Choose the X on which the observations will be matched, and the matching procedure;
- 2. Match the observations with $W_i = 0$ and $W_i = 1$;
- 3. Check for balance in X_i ; and
- 4. Estimate $\hat{\tau}$ using the matched pairs.

Variants / considerations:

- 1:1 vs. 1:k matching
- "Greedy" vs. "Optimal" matching (see Gu and Rosenbaum 1993)
- Distances, calipers, and "common support"
- Post-matching: Balance checking...

Flavors of Matching

- Simplest: Exact Matching
 - · For each of the *n* observations *i* with W=1, find a corresponding observation *j* with W=0 that has identical values of **X**
 - · Calculate $\hat{\tau} = \frac{1}{n} \sum (Y_i Y_j)$
 - · Generally not practical, especially for high-dimensional X
 - · Variants: "coarsened" exact matching (e.g., lacus et al. 2011)
- Multivariate Matching
 - Match each observation i which has W=1 with a corresponding observation j with W=0, and whose values on \mathbf{X}_j are the most similar to \mathbf{X}_i
 - One example: Mahalanobis distance matching, based on the distance:

$$d_M(\mathbf{X}_i, \mathbf{X}_j) = \sqrt{(\mathbf{X}_i - \mathbf{X}_j)' \mathbf{S}^{-1} (\mathbf{X}_i - \mathbf{X}_j)}.$$

Flavors of Matching (continued)

- Propensity Score Matching
 - Match observation i which has W = 1 with observation j having W = 0 based on the closeness of their propensity score
 - · The <u>propensity score</u> is, $Pr(W_i = 1 | \mathbf{X}_i)$, typically calculated as the predicted value of T_i (the treatment indicator) from a logistic (or other) regression of T on \mathbf{X} .
 - The assumptions about matching [that Y is orthogonal to W|X and that $Pr(W_i = 1|X_i) \in (0,1)$] mean that $Y \perp W|Pr(T|X)$.
 - · In practice: read this...
- Other variants: Genetic matching (Diamond and Sekhon 2013), etc.¹

Shalizi (2016) notes that "(A)pproximate matching is implicitly doing nonparametric regression by a nearest-neighbor method," and that "(M)aybe it is easier to get doctors and economists to swallow "matching" than "nonparametric nearest neighbor regression"; this is not much of a reason to present the subject as though nonparametric smoothing did not exist, or had nothing to teach us about causal inference."

Matching Software

Interestingly, quite a few of the good matching programs written for R have been written by political scientists...

- the Match package (does propensity score, *M*-distance, and genetic matching, plus balance checking and other diagnostics)
- the MatchIt package (for pre-analysis matching; also has nice options for checking balance)
- the optmatch package (suite for 1:1 and 1:k matching via propensity scores, M-distance, and optimum balancing)
- matching (in the arm package)

Regression Discontinuity Designs

"RDD":

- Treatment changes abruptly [usually at some threshold(s)] according to the value(s) of some measured, continuous, pre-treatment variable(s)
 - · This is known as the "assignment" or "forcing variable(s)," sometimes denoted A
 - · Formally:

$$W_i = \begin{cases} 0 \text{ if } A_i \leq c \\ 1 \text{ if } A_i > c \end{cases}$$

- ullet Intuition: Observations near but on either side of the threshold(s) are highly comparable, and can be used to (locally) identify au
- This is because variation in W_i near the threshold is effectively random (a "local randomized experiment")
- E.g. Carpenter and Dobkin (2011) (on the relationship between the legal drinking age and public health outcomes like accidental deaths)

RDD (continued)

Pluses:

· Can be estimated straightforwardly, as:

$$Y_i = \beta_0 + \beta_1 A_i + \tau W_i + \gamma A_i W_i + \epsilon_i$$

 Generally requires fewer assumptions than IV or DiD (and those assumptions are easier to observe and test)

• Minuses:

- · Provides only an estimate of a <u>local</u> treatment effect
- · Fails if (say) subjects can manipulate A in the vicinity of c
- Lee and Lemieux (2010) is an excellent (if fanboi-ish) review
- R packages: rddtools, rdd, rdrobust, rdpower, rdmulti

Panel Data Approaches: Differences-In-Differences

"DiD":

• Leverages two-group, two-period data (T=2):

	Pre-Treatment	Post-Treatment
	(T=0)	(T=1)
Treated $(W=1)$	А	В
Unreated ($W = 0$)	C	D

- Process (simple version):
 - · Calculate the pre- vs. post-treatment difference for the treated group (B-A)
 - · Calculate the pre- vs. post-treatment difference for the untreated group (D-C)
 - Calculate the differences between the differences [DiD = (B A) (D C)]
 - · This is the same as fitting the regression:

$$Y_{it} = \beta_0 + \beta_1 W_{it} + \beta_2 T_{it} + \beta_3 W_{it} T_{it} + u_{it}$$

- Validity depends on (a) all the usual assumptions required by OLS, plus (b) the $\frac{\text{equal}}{\text{trends assumption}}$ that there are no time-varying differences between the two groups as we go from T=0 to T=1.
- Resources:
 - · Our old friend Wikipedia
 - · Pischke's slides on DiD
 - · R: package did
 - · Stata: ieddtab in the ietoolkit

Panel Data Approaches: Synthetic Controls

The "synthetic control method" (SCM):

- Addresses situations in which we have a single treated case (or small number of them)...
- Requires at least one (and ideally more) repeated measurements over time on the outcome of interest, and
- Also requires multiple (but not too many) non-treated cases
- Assumptions:
 - · Possible control units are similar
 - · Lack of spillover between treated and potential control units
 - · Lack of exogenous shocks to potential control units

Intuition:

- Create a counterfactual "control" unit that is as similar to the (pre-treatment) treated case as possible
- Do so by weighting the observed predictors across "control" cases to minimize the difference (in a MSE sense)
- · Also: compare the pre-treatment trend in the synthetic control to that in the treated case
- The weights are then used to create a post-treatment trend for the synthetic control
 Inference is via placebo methods (varying the timing of the intervention)

Advantages:

- · Works with (very) small N
- · Doesn't require parallel trends (a la DiD)
- Abadie et al. claim that SCM controls for both observed and unobserved time-varying confounders

A few references:

- · A nontechnical introduction in the BM I
- · Method of the Month Blog
- · The Development Impact blog post on SCM

Software Matters

- R
- · Packages for matching are listed above (Matching, MatchIt, etc.)
- · Similarly for RDD (rddtools, rdd, etc.) and DiD (did)
- · IV regression: ivreg (in AER), tsls (in sem), others
- · Synthetic controls are in Synth and MicroSynth
- See generally the Econometrics and SocialSciences CRAN Task Views
- Stata also has a large suite of routines for attempting causal inference with observational data...
- And there's a pretty good NumPy/SciPy-dependent package for Python, called (creatively) Causalinference

Causal Inference: One-Way (FE) Models

Imai and Kim (2019):

- The punch line first: "(t)he ability of unit fixed effects regression models to adjust for unobserved time-invariant confounders comes at the expense of dynamic causal relationships between treatment and outcome variables."
- Also dependent on functional form assumptions (specifically, linearity)

Intuition: For the model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$

where (for simplicity) X is a binary treatment for which we want to know a causal effect on Y:

- · Identification is via $Cov[(\mathbf{X}_{it}, \alpha_i), u_{it}] = 0$
- · In this framework, $\beta = \tau$, the typical causal estimand (that is, the expected difference between $Y_{it}(0)$ and $Y_{it}(1)$)

A more flexible approach is to think of a FE model as a DAG...

Fixed-Effects DAG

Source: Imai and Kim (2019).

Key FE Takeaways

Summarizing Imai and Kim (2019):

- Three key identifying assumptions for FE models:
 - · No unobserved time-varying confounders
 - · Past treatments / values of X do not affect current values of Y^2
 - · Past outcomes Y do not affect current values of X.
- Alternatively, one can select on observables (a la Blackwell and Glynn 2018) and model dynamics (albeit at the cost of failing to control for unobserved time-constant confounders).

"...researchers must choose either to adjust for unobserved time-invariant confounders through unit fixed effects models or to model dynamic causal relationships between treatment and outcome under a selection-on-observables approach. No existing method can achieve both objectives without additional assumptions" (Imai and Kim 2019, 484).

²Can be relaxed via IV, but that requires independence of past and present values of Y.

Two-Way Models

Imai and Kim redux (2020):

• In the simple T=2 case, DiD is equivalent to a two-way FE model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

- I & K: The same is not true for T > 2...
- More important: two-way FEs' ability to control for unmeasured confounders depends on the (linearity of the) functional form...
- Upshot: two-way FEs aren't a (nonparametric) cure-all...
- Related: When we control for both α_i and η_t , what exactly is the counterfactual?

Back To The WDI

>	describe(WDI	,fast=TRUE,	ranges=FALSE,	check=TRUE)

	vars	n	mean	sd	se
ISO3	1	13330	NaN	NA	NA
Year	2	13330	NaN	NA	NA
Region	3	13330	NaN	NA	NA
country	4	13330	Na.N	NA	NA
RuralPopulation	5	13045	48.61	2.574e+01	0.23
UrbanPopulation	6	13045	51.39	2.574e+01	0.23
BirthRatePer1K	7	12112	28.32	1.310e+01	0.12
FertilityRate	8	11847	3.97	2.010e+00	0.02
PrimarySchoolAge	9	10696	6.14	6.200e-01	0.01
LifeExpectancy	10	11829	64.37	1.146e+01	0.11
AgeDepRatioOld	11	11731	10.34	6.360e+00	0.06
ChildMortality	12	10761	75.75	7.773e+01	0.75
GDP	13	9585	242308268086.15	1.102e+12	11252014966.83
GDPPerCapita	14	9582	11685.74	1.868e+04	190.78
GDPPerCapGrowth	15	9598	1.89	6.210e+00	0.06
TotalTrade	16	8363	78.18	5.414e+01	0.59
FDIIn	17	8195	5.57	4.542e+01	0.50
NetAidReceived	18	8633	453209476.19	8.678e+08	9339331.98
MobileCellSubscriptions	19	9849	33.70	5.029e+01	0.51
NaturalResourceRents	20	8745	6.61	1.087e+01	0.12
GovtExpenditures	21	8012	16.20	8.190e+00	0.09
PaidParentalLeave	22	9776	0.10	3.000e-01	0.00
ColdWar	23	13330	0.48	5.000e-01	0.00
YearNumeric	24	13330	1990.50	1.790e+01	0.16

A New Question

Do paid parental leave policies decrease child mortality?

- Y = ChildMortality (N of deaths of children under 5 per 1000 live births) (logged)
- T = PaidParentalLeave (1 if provided, 0 if not)
- Xs:
 - GDPPerCapita (Wealth; in constant \$US) (logged)
 - NetAidReceived (Net official development aid received; in constant \$US) (logged)
 - GovtExpenditures (Government Expenditures, as a percent of GDP)

Preliminary Regressions

Table: Models of log(Child Mortality)

	BIV	OLS	FE.1way	FE.2way	FE.LDV
Paid Parental Leave	-1.812 (0.036)	-0.909*** (0.039)	-0.080* (0.043)	-0.128*** (0.025)	-0.205*** (0.026)
In(GDP Per Capita)		-0.676*** (0.010)	-1.086*** (0.017)	-0.291*** (0.013)	-0.549*** (0.012)
In(Net Aid Received)		-0.073*** (0.007)	-0.088*** (0.007)	0.008** (0.004)	0.003 (0.004)
Government Expenditures		-0.002* (0.001)	0.002** (0.001)	0.002*** (0.001)	0.002** (0.001)
Lagged Child Mortality					0.008*** (0.0001)
Constant	3.793* (0.012)	10.670*** (0.182)			
Observations	9,167	4,946	4,946	4,946	4,942
R ²	0.215	0.585	0.477	0.113	0.805
Adjusted R ²	0.215	0.585	0.461	0.076	0.799

p < 0.1; **p < 0.05; ***p < 0.01

Checking Covariate Balance (Pre-Matching)

```
> # Subset data a little bit:
> vars<-c("ISO3", "Year", "Region", "country", "UrbanPopulation",
          "FertilityRate", "PrimarySchoolAge", "ChildMortality",
          "GDPPerCapita", "NetAidReceived", "NaturalResourceRents",
          "GovtExpenditures", "PaidParentalLeave", "ColdWar",
          "lnCM")
> wdi<-WDT[vars]
> wdi<-na.omit(wdi)
> # Create discrete-valued variables (i.e., coarsen) for
> # matching on continuous predictors:
> wdi$GDP.Decile<-as.factor(ntile(wdi$GDPPerCapita,10))
> wdi$Aid.Decile<-as.factor(ntile(wdi$NetAidReceived.10))
> wdi$GSpend.Decile<-as.factor(ntile(wdi$GovtExpenditures.10))
> # Pre-match balance statistics...
> BeforeBal<-bal.tab(PaidParentalLeave~GDP.Decile+
                  Aid.Decile+GSpend.Decile.data=wdi.
                  stats=c("mean.diffs", "ks.statistics"))
```


Exact Matching

```
> M.exact <- matchit(PaidParentalLeave~GDP.Decile+Aid.Decile+
                    GSpend.Decile.data=wdi.method="exact")
> summarv(M.exact)
Call:
matchit(formula = PaidParentalLeave ~ GDP.Decile + Aid.Decile +
   GSpend.Decile, data = wdi, method = "exact")
Summary of Balance for All Data:
Sample Sizes:
              Control Treated
411
               4622
                          282
Matched (ESS)
                322 2
                          268
Matched
                831.
                          268
Unmatched
               3791.
                           14
Discarded
                  0.
> # Create matched data:
> wdi.exact <- match.data(M.exact,group="all")
> dim(wdi.exact)
```

[1] 1099 20

Propensity Scores

Propensity Score Matching

```
> M.prop <- matchit(PaidParentalLeave~GDP.Decile+Aid.Decile+
                    GSpend.Decile.data=wdi.method="nearest".
                    ratio=3)
> summary(M.prop)
Call:
matchit(formula = PaidParentalLeave ~ GDP.Decile + Aid.Decile +
   GSpend.Decile, data = wdi, method = "nearest", ratio = 3)
Summary of Balance for All Data:
Sample Sizes:
          Control Treated
All
             4622
                      282
Matched
              846
                      282
Unmatched
Discarded
                        ٥
> # Matched data:
> wdi.ps <- match.data(M.prop,group="all")
> dim(wdi.ps)
```

[1] 1128 21

"Optimal" Matching

```
> M.opt <- matchit(PaidParentalLeave~GDP.Decile+Aid.Decile+
                      GSpend.Decile,data=wdi,method="optimal",
                    ratio=3)
> summary(M.opt)
Call:
matchit(formula = PaidParentalLeave ~ GDP.Decile + Aid.Decile +
    GSpend.Decile, data = wdi, method = "optimal", ratio = 3)
Sample Sizes:
          Control Treated
All
             4622
                      282
Matched
              846
                      282
Unmatched
             3776
                        ٥
Discarded
                Ω
                         0
> # Matched data:
> wdi.opt <- match.data(M.opt,group="all")
> dim(wdi.opt)
```

[1] 1128 21

Post-Matching Regressions

Table: Models of log(Child Mortality)

	PreMatch.FE	Exact.FE	PS.FE	Optimal.FE
Paid Parental Leave	-0.083*	-0.163***	-0.117**	-0.164***
	(0.044)	(0.053)	(0.053)	(0.051)
n(GDP Per Capita)	-1.086***	-1.004***	-1.084***	-1.263***
. ,	(0.017)	(0.035)	(0.035)	(0.033)
In(Net Aid Received)	-0.087***	-0.044**	-0.079***	-0.037**
,	(0.007)	(0.017)	(0.018)	(0.015)
Government Expenditures	0.002**	0.004*	0.004	0.005**
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0.001)	(0.003)	(0.003)	(0.002)
Observations	4,820	1,077	1,115	1,119
R ²	0.476	0.505	0.537	0.613
Adjusted R ²	0.459	0.443	0.482	0.571

p<0.1; p<0.05; p<0.05; p<0.01

Another Approach: DiD

Intuition: Compare the child mortality "trajectories" of countries before and after they implement paid parental leave policies.

The model is:

Child Mortality_{it} =
$$\beta_0 + \beta_1$$
(Paid Parental Leave_{it}) + β_2 (Time_t) +
 = β_3 (Paid Parental Leave_{it} × Time_t) + (confounders) + u_{it}

DiD Regressions

Table: DiD Models of log(Child Mortality)

	OLS		One-Way FE		Two-Way FE	
Paid Parental Leave	-22.780*** (3.937)	4.562 (8.099)	-10.720*** (2.028)	-6.400 (6.073)	-2.942 (2.572)	-3.461 (9.244)
Time (1950=0)	-0.713*** (0.047)	-0.491*** (0.086)	-0.672*** (0.023)	-0.754*** (0.102)	k	
Paid Parental Leave x Time	0.421*** (0.077)	-0.140 (0.153)	0.179*** (0.038)	0.078 (0.111)	0.007 (0.050)	0.0003 (0.174)
In(GDP Per Capita)		-19.530*** (0.697)		-13.630*** (2.256)	*	-11.660*** (2.648)
In(Net Aid Received)		-2.990*** (0.452)		-0.480 (0.440)		-1.570*** (0.494)
Government Expenditures		-0.754*** (0.129)		0.564*** (0.140)	*	0.491*** (0.146)
Constant	49.800*** (1.893)	284.500*** (11.770)				
Observations	2,073	490	2,073	490	2,073	490
R ²	0.176	0.659	0.525	0.685	0.008	0.124
Adjusted R ²	0.175	0.655	0.514	0.665	-0.039	-0.042

*p<0.1; **p<0.05; ***p<0.01

Resources

Good references:

- · Freedman (2012)*
- · Shalizi (someday)*
- · Morgan and Winship (2014)
- · Pearl et al. (2016)
- · Peters et al. (2017)

• Courses / syllabi (a sampling):

- · Eggers (2019)
- · Frey (2019)
- · Imai (2019)
- · Sekhon (2015)
- · Simpson (2019)
- · Xu (2018)
- · Yamamoto (2018)

Other useful things:

- · The Causal Inference Book
- · Some useful notes

^{*} I really like this one.