Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

12	Aprile	$\boldsymbol{2021}$	-	9:00
E	CANTE	ONI	TN	ATE:

2. Sia assegnata la matrice

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 6 & 1 \\ 2 & 1 & \alpha \end{bmatrix}$$

dipendente dal parametro $\alpha \in [6, 10]$. Scrivere lo script Matlab es2_parte1.m in cui:

a) si calcoli l'espressione di $\|\mathbf{A}\|_{\infty}$ al variare di α ;

Punti: 2

b) si stabilisca per quale valore α^* del parametro α risulta minimo il valore assunto da $\|\mathbf{A}\|_{\infty}$;

Punti: 3

c) si stabilisca se il valore α^* determinato al punto b) è anche quello per cui risulta minimo il valore assunto da $\|\mathbf{A}\|_1$, giustificando la risposta;

Punti: 4

d) si dica (giustificando la risposta) se la matrice

$$\mathbf{A}^* = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 6 & 1 \\ 2 & 1 & \alpha^* \end{bmatrix}$$

ammette fattorizzazione di Cholesky.

Punti: 3

- e) Scrivere lo script Matlab es2_parte2.m in cui:
 - 1) Si generi un segnale $\mathbf{x}(\mathbf{t})$, box di durata \mathbf{s} sec ed ampiezza A=1. Si consideri il campionamento nel dominio temporale con un passo $\mathbf{dt}=100$ ms. L'asse temporale su cui è definito il segnale è $\mathbf{t}=[0:\mathbf{dt}:\mathbf{Lt}]$. Per generare il segnale box di di ampiezza 1, di durata \mathbf{s} secondi sull'asse temporale definito dal vettore \mathbf{t} , usare la funzione rectangularPulse $(0.0,\mathbf{s},\mathbf{t})$ funzione built-in di Matlab che genera un segnale box di durata \mathbf{s} secondi, sull'asse temporale \mathbf{t}), nel modo sotto indicato: $\mathbf{x}=\mathbf{coil}(\mathbf{roctangularPulse}(0.0,\mathbf{s},\mathbf{t}))$:

x = ceil(rectangularPulse(0.0,s,t));

Si calcoli in MATLAB la trasformata di Fourier del segnale $\mathbf{x}(\mathbf{t})$, e si verifichi la proprietà di scalatura nel dominio reale, facendo variare la durata \mathbf{s} del segnale box tra 0.3s e 0.9s con passo 0.2, e la lunghezza dell'asse temporale $\mathbf{L}\mathbf{t}$ tra 4 e 10 con passo 2. Cosa succede variando \mathbf{s} ? Cosa succede al variare di $\mathbf{L}\mathbf{t}$? Commentare i risultati alla luce della proprietà.

Punti:	4		

Totale: 16