หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

โจทย์วันจันทร์ที่ 7 มิถุนายน พ.ศ. 2564 จำนวน 11 ข้อ

ที่	เนื้อหา	โจทย์
1.	Breadth-first search จำนวน 2 ข้อ	1. พีทซิลล่าและผู้ติดตาม (PZ_Follower)
		2. เขาวงกตของแอนเชียนพีท (AP_Maze)
2.	โจทย์ประยุกต์ จำนวน 9 ข้อ	3. พีทเทพหนีฝุ่น (PT_PM2.5)
		4. ผีน้อยออกให้ทัน (PN_Out In Time)
		5. จุดเทียนภาวนา (Candle Lighting Prayer)
		6. ท่อระบายน้ำ (Sewer)
		7. ฝ่าเขาวงกต (maze)
		8. ทุ่นยนต์ (Robot TOI13)
		9. แผนที่ลายแทง (Map)
		10. เกมตรงข้ามบียูยู (BUU Opposite)
		11. พีทเล่นแพ็กแมน (Peatt Pacman)

1. เรื่อง Breadth-first search จำนวน 2 ข้อ

1. พีทซิลล่าและผู้ติดตาม (PZ_Follower)

พีทซิลล่าได้หลงเข้าไปยังโลกที่สุดแสนประหลาดแห่งหนึ่ง หลังจากที่สอบถามผู้คนในเมืองก็ได้ข้อมูลมาว่าในโลกนี้มีเมืองอยู่ ทั้งสิ้น N เมือง (หมายเลข 1 ถึง N) และมีถนน M เส้น ปัจจุบันพีทซิลล่าอยู่ที่เมือง S และ ราชาปีศาจอยู่ที่เมือง E ราชาปีศาจนั้นกุม ความลับเกี่ยวกับประตมิติที่สามารถใช้เพื่อเดินทางไปที่โลกไหนก็ได้

พีทซิลล่าต้องการจะจัดการกับราชาปีศาจจึงจะหาทางที่จะเดินทางจากเมือง S ไปยังเมือง E โดยการเดินทางจะสามารถ เดินทางไป-กลับผ่านถนนได้เท่านั้น เริ่มต้นพีทซิลล่าจะมีผู้ติดตาม 0 คน และ ถนนสายที่ i เป็นถนนแบบสองทางจะมีผู้ติดตามอยู่ w_i คน ซึ่งผู้ติดตามบางคนจะอยากเดินทางต่อไปกับพีทซิลล่า แต่บางคนก็อยากหยุด โดยเมื่อพีทซิลล่ามีผู้ติดตามอยู่ y คนแล้ว เดินทางบนถนนสายที่ j พีทซิลล่าจะมีผู้ติดตามที่จะเดินทางต่อไปกับพีทซิลล่าเท่ากับ y XOR w_j คน และเนื่องจากโลกนี้เป็นโลกที่ ประหลาด เมื่อพีทซิลล่าเดินทางผ่านถนนสายใดแล้ว จำนวนผู้ติดตามบนถนนจะกลับมาเป็น w_j คน เท่าเดิม เนื่องจากผู้ติดตามเป็น คนไร้ประโยชน์ พีทซิลล่าต้องการให้มีผู้ติดตามน้อยที่สุด

ในข้อนี้<u>พีทซิลล่าไม่จำเป็นจะต้องหยุดเมื่อเดินทางมาถึงเมือง E ครั้งแรก</u> โดยเขาสามารถเดินทางต่อไปได้ เผื่อการเดินทาง ต่อไปจะทำให้คำตอบเมื่อกลับมาเมือง E แล้วน้อยที่สุด เขาก็จะสามารถเดินทางต่อไปได้อีก

นิยาม การดำเนินการ XOR (Exclusive OR) เป็น Bitwise operation ที่จะเปรียบเทียบบิตของตัวเลขฐาน สอง โดยหาก บิตที่มีค่าแตกต่างกัน (1 XOR 0 หรือ 0 XOR 1) จะคืนค่าเป็นจริง (1) แต่หากบิตของตัวเลขฐานสองมีค่าเหมือนกัน (1 XOR 1 หรือ 0 XOR 0) จะคืนค่าเป็นเท็จ (0) ในการเขียนโปรแกรมภาษาซี นักเรียนสามารถเรียกใช้การดำเนินการนี้ได้โดยใช้เครื่องหมาย ^ เช่น 6 ^ 10 = 0110 XOR 1010 = 1100 = 12 นั่นเอง

<u>งานของคูณ</u>

จงเขียนโปรแกรมเพื่อช่วยพีทซิลล่าหาจำนวนผู้ติดตามน้อยที่สุดในการเดินทางไปยังตำแหน่งที่ราชาปีศาจอยู่

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก T (1 <= T <= 10) แทนจำนวนชุดข้อมูลทดสอบย่อย ในแต่ละชุดข้อมูลทดสอบย่อย บรรทัดแรก รับจำนวนเต็มบวก N M S E คั่นด้วยหนึ่งช่องว่าง โดยที่ 1 <= S, E <= N <= 100 และ

1 <= M <= 5,000

อีก M บรรทัดถัดมา บรรทัดที่ i+1 รับจำนวนเต็มบวก a b w_i คั่นด้วยหนึ่งช่องว่าง แทนว่ามีถนนแบบสองทางเชื่อม ระหว่างเมือง a และเมือง b มีผู้ติดตาม w_i คน โดยที่ 1 <= a, b <= N และ $1 <= w_i <= 1,000$

หมายเหตุ รับประกันว่าสำหรับทุกชุดข้อมูลทดสอบ จะมีเส้นทางที่สามารถเดินจากเมือง S ไปถึงเมือง E ได้เสมอ โดย<u>การที่</u> เดินทางไปถึงเมือง E ไม่ได้หมายความว่าจะต้องสู้กับปีศาจเลย สามารถเดินทางต่อไปได้

20% ของชุดข้อมูลทดสอบ จะมีค่า N <= 5, M <= 9, w_i <= 3 และ

10% ของชุดข้อมูลทดสอบ จะมีค่า M = N-1 และเป็นกราฟที่เมืองทุกเมืองสามารถไปมาหากันได้

<u>ข้อมูลส่งออก</u>

มี T บรรทัด แต่ละบรรทัด แสดงจำนวนผู้ติดตามที่น้อยที่สุดที่เป็นไปได้เมื่อพีทซิลล่าอยู่ที่เมือง E

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
1	1
4 4 1 4	
1 2 3	
1 3 5	
2 3 1	
3 4 4	

คำอธิบายตัวอย่างที่ 1

มีทั้งสิ้น 1 คำถาม ได้แก่ คำถามแรก เริ่มจากเมือง 1 (w=0) แล้วไปเมือง 3 (w=5) แล้วไปเมือง 4 (w=1) จะได้ผู้ติดตาม รวมเป็น 1 ซึ่งน้อยที่สุดเท่าที่จะเป็นไปได้แล้ว

+++++++++++++++++

2. เขาวงกตของแอนเชียนพีท (AP_Maze)

ที่มา: ข้อสอบท้ายค่ายสองศูนย์ ม.บูรพา รุ่น13 PeaTT~

วันนี้คุณจะต้องมาผจญภัยในเขาวงกตของแอนเชียนพีทซึ่งภายในเขาวงกตจะมีเลเซอร์ลำแสงตั้งอยู่ เลเซอร์ลำแสงนี้จะ ปล่อยแสงเป็นเส้นตรงและเปลี่ยนทิศทางการปล่อยแสงตามเข็มนาฬิกาในทุก ๆ วินาที โดยลำแสงดังกล่าวจะไม่สามารถทะลุผ่าน กำแพง ประตูทางออก หรือ เลเซอร์ลำแสงอันอื่นได้

เริ่มต้นคุณยืนอยู่ในเขาวงกตในวินาทีที่ 0 คุณต้องการจะเดินไปยังประตูทางออก การเดินหนึ่งก้าวใช้เวลา 1 วินาทีโดย สามารถเดินได้ 4 ทิศทางได้แก่ บน, ล่าง, ซ้าย และ ขวา ซึ่งช่องที่คุณจะเดินไปจะต้องไม่โดนแสงจากเลเซอร์ลำแสงโดยเด็ดขาด อยากทราบว่าคุณสามารถเดินทางไปถึงประตูทางออกได้เร็วที่สุดในเวลากี่วินาที?

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

์ ตัวอย่างการเปลี่ยนทิศของเลเซอร์ลำแสงตามเข็มนาฬิกา เมื่อ x คือที่ตั้งของเลเซอร์ลำแสง

			/	
X	X	X	X	X
			./	
t=0	t=1	t=2	t=3	t=4

จะเห็นว่าเมื่อถึงรูปแบบที่ 4 รูปแบบของลำแสงจะกลับมาเป็นรูปแบบที่ 1 วนซ้ำกลับมาเรื่อย ๆ

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาว่าคุณจะออกจากเขาวงกตของแอนเชียนพีทได้เร็วที่สุดในกี่วินาที โดยตลอดการเดินทางจะไม่โดน แสงจากเลเซอร์ลำแสง

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก ระบุจำนวนคำถามย่อย Q โดยที่ Q ไม่เกิน 5 ในแต่ละคำถามย่อย รับข้อมูลนำเข้าดังนี้

รับประกันว่า S และ E จะมีอย่างละช่องเดียว

20% ของชุดข้อมูลทดสอบจะมี N, M <= 10

50% ของชุดข้อมูลทดสอบจะมี N, M <= 100

<u>ข้อมูลส่งออก</u>

มี Q บรรทัด แต่ละบรรทัดให้แสดงเวลาน้อยสุดในการเดินทางจากทางเข้าไปยังประตูทางออก หรือ แสดง -1 ถ้าคุณไม่ สามารถเดินทางไปถึงประตูทางออกได้โดยไม่โดนแสงจากเลเซอร์ลำแสง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3	2
2 3	3
S-#	-1
.E.	
1 5	
SE/	
5 5	
S	

.	
E	

คำอธิบายตัวอย่างที่ 1

มีทั้งสิ้น 3 คำถามย่อย

คำถามแรก ให้เดินลงและเดินขวาจะถึงประตูทางออกได้ในวินาทีที่ 2 โดยวินาทีแรกเดินลงได้เพราะเลเซอร์ลำแสงเปลี่ยน ทิศทางไปทิศทางอื่น '\' และวินาทีที่ 2 เดินขวาถึงประตูทางออกได้โดยไม่ต้องสนใจเลเซอร์ลำแสง

คำถามที่สอง เดินขวา 3 ก้าวก็จะถึงประตูทางออกได้ ซึ่งเลเซอร์ลำแสงจะไม่ทะลุประตูทางออกออกมา จึงไม่รบกวนการ เดินทาง

คำถามที่สาม จะไม่สามารถไปถึงประตูทางออกได้ เพราะจะโดนเลเซอร์ลำแสงอย่างแน่นอน รูปแบบการเปลี่ยนแปลงของ เลเซอร์ลำแสงในตัวอย่างนี้ เป็นดังนี้

S	S.	S/	S	S/.	S.	S/
		\/.	.	.\/./		\/.
		.\/	.	\/\/.	- -	.\/
.	.	./\		/ \/ \.	.	./\
		/\E				
Input	t=0	t=1	t=2	t=3	t=4	t=5

2. เรื่อง โจทย์ประยุกต์ จำนวน 9 ข้อ

++++++++++++++++

3. พีทเทพหนีฝุ่น (PT_PM2.5)

 $\overset{-}{n}$ ี่มา: ข้อสอบท้ายค่ายสองศูนย์ ม.บูรพา รุ่น15 ออกโดย PeaTT \sim

พีทเทพ (Peattaep) เป็นพระราชาปกครองดินแดน POSNBUU ซึ่งต้องเผชิญกับปัญหาฝุ่นละอองขนาดเล็ก PM2.5 ที่เกิน มาตรฐาน

ดินแดน POSNBUU เป็นตารางขนาด R แถว C คอลัมน์ ในแต่ละช่องจะประกอบไปด้วย '#' คือช่องที่ห้ามเดิน (ทั้งพีทเทพ และฝุ่นพิษจะไม่สามารถเข้าไปยังช่อง # ได้), 'S' คือจุดเริ่มต้นของพีทเทพ, 'E' คือประตูทางออกของพีทเทพ และตัวเลขจาก 0 ถึง 9 เพื่อบอกว่าตอนเริ่มต้นในแต่ละช่องมีฝุ่นพิษอยู่กี่หน่วย (เลข 0 แปลว่าไม่มีฝุ่นพิษ)

พีทเทพต้องการเดินจากจุดเริ่มต้นไปยังประตูทางออกโดยเผชิญกับฝุ่นพิษน้อยที่สุด เขาสามารถเดินทางไปได้ใน 4 ทิศทาง ได้แก่ ขึ้นบนหนึ่งช่อง, ลงล่างหนึ่งช่อง, ไปซ้ายหนึ่งช่อง และไปขวาหนึ่งช่อง ในแต่ละนาทีเมื่อพีทเทพเดินไปฝุ่นพิษเองก็สามารถพัด ไปข้าง ๆ ได้หนึ่งช่องใน 4 ทิศทางเช่นกัน ฝุ่นหลาย ๆ ช่องสามารถพัดมารวมกันได้

ฝุ่นพิษจะพยายามพัดเข้าหาพีทเทพให้ได้ ไม่ว่าจะไล่ตามหรือดักทางอยู่ข้างหน้า และพีทเทพจะพยายามหนีฝุ่นพิษไปยัง ทางออกเพื่อที่จะ<u>เจอกับฝุ่นพิษจำนวนน้อยที่สุดโดยไม่จำเป็นจะต้องเดินทางด้วยระยะทางที่สั้นที่สุด</u> ดังนั้นในบางจังหวะของการ เดินทาง พีทเทพและฝุ่นสามารถอยู่กับที่ได้

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาจำนวนฝุ่นที่น้อยที่สุด ในการเดินทางของพีทเทพไปยังทางออก

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 10 ในแต่ละคำถาม ข้อมูลในแต่ละบรรทัดมีรายละเอียดดังนี้

บรรทัดแรก รับจำนวนเต็มบวก R C แทนขนาดของตาราง โดยที่ R, C ไม่เกิน 1,000

อีก R บรรทัดต่อมา รับตารางเริ่มต้นโดยประกอบไปด้วยตัวเลข 0-9, #, S, E เท่านั้น ซึ่ง S และ E จะปรากฏในตาราง เริ่มต้นเพียงครั้งเดียว

20% ของชุดข้อมูลทดสอบ จะมี N ไม่เกิน 10

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดให้แสดงจำนวนฝุ่นที่น้อยที่สุด ในการเดินทางของพีทเทพไปยังทางออก หากพีทเทพไม่สามารถ เดินทางไปยังประตูทางออกได้ให้ตอบว่า -1

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	9
5 7	6
000E0#3	
#0##0#0	
050#0#0	
4#0#0#0	
0#0S000	
1 4	
SE69	

คำอธิบายตัวอย่างที่ 1 มีทั้งสิ้น 2 คำถาม ได้แก่

-คำถามแรก ตารางเริ่มต้นมีขนาด 5 แถว 7 คอลัมน์ ดังตารางซ้าย

			E	#	3
#		#	#	#	
	5		#	#	
4	#		#	#	
	#		S		

			–Е	#	3
#		#	#	#	
	<u>5</u>		#	#	
4	#		#	#	
	#		_S		

พีทเทพจะเดินทางตามเส้นทางดังตารางขวา ยังไงเขาก็จะต้องเจอฝุ่นพิษ 9 หน่วยทางซ้ายแน่นอน โดยฝุ่น 4 หน่วยจะพัด มาดักและฝุ่น 5 หน่วยจะอยู่กับที่ดักรอเขา แต่ฝุ่นพิษ 3 หน่วยทางด้านขวาจะพัดมาไม่ทัน จึงตอบ 9

-คำถามที่สอง ตารางเริ่มต้นมีขนาด 1 แถว 4 คอลัมน์ ดังตารางซ้าย

S	Ε	6	9

S-	_E	6	9

พีทเทพจะเดินไปทางขวา 1 ช่อง ฝุ่นพิษ 6 หน่วยก็จะพัดมาเจอกับเขาที่ประตูทางออก แต่ฝุ่นพิษ 9 หน่วยจะพัดมาไม่ทัน จึงตอบว่า 6 หน่วยนั่นเอง

+++++++++++++++++

4. ผีน้อยออกให้ทัน (PN_Out In Time)

. ที่มา: ข้อสอบท้ายค่ายสองศูนย์ ม.บูรพา รุ่น16 ออกโดย PeaTT~

กาลครั้งหนึ่งนานมาแล้ว มีผีน้อยในเกาหลีใต้พยายามที่จะทำเรื่องขอกลับประเทศไทยเพื่อหนีโรค "โควิด-19" ที่กำลังแพร่ ระบาดอย่างหนักในประเทศเกาหลีใต้ ซึ่งดินแดนที่ผีน้อยต้องการจะหนีเป็นตารางขนาด R แถว C คอลัมน์ ช่องบนซ้ายคือช่อง (1, 1) และ ช่องล่างขวาคือช่อง (R, C) แต่ละช่องจะประกอบไปด้วยช่องว่าง (แทนด้วยสัญลักษณ์จุด '.') หรือ กำแพงที่เดินไปไม่ได้ (แทนด้วยสัญลักษณ์จาร์ป '#')

เริ่มต้นผีน้อยอยู่ที่ช่อง (Si, Sj) ต้องการเดินทางไปยังทางออกที่ช่อง (Ei, Ej) โดยการเดินทางจะเดินทางได้ในสี่ทิศทางได้แก่ ขึ้นบน, ลงล่าง, ไปทางซ้าย และ ไปทางขวาเท่านั้น

(b)

ภาพ a แสดงตารางเริ่มต้นขนาด 5 x 8 และ ภาพ b แสดงการเดินในตารางได้ในสี่ทิศทาง

ผีน้อยจะต้องเดินไปให้ถึงทางออกภายใน T ก้าวเท่านั้น โดยผีน้อยสามารถเดินกลับมาช่องเดิมได้แต่จำนวนก้าวก็ต้องนับ เพิ่มต่อเนื่อง กล่าวคือ ผีน้อยสามารถเดินผ่านทางออกไปยังช่องอื่นแล้วเดินกลับมายังทางออกอีกครั้งได้ แต่การเดินทางทั้งหมด จะต้องสิ้นสุดที่ช่องทางออก และ การเดินทางทั้งหมดจะต้องไม่เกิน T ก้าว ในข้อนี้ต้องการหาจำนวนช่องว่างที่มากที่สุดที่ผีน้อย สามารถเดินทางไปถึง

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาจำนวนช่องว่างมากที่สุดที่ผีน้อยสามารถเดินทางไปถึงได้ ในการเดินทางจากจุดเริ่มต้นไปยังจุด ทางออกภายใน T ก้าว

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก Q แทนจำนวนชุดทดสอบย่อย โดยที่ Q ไม่เกิน 20 ในแต่ละชุดทดสอบย่อย

บรรทัดแรก รับจำนวนเต็มบวก R C T แทนขนาดตาราง และ จำนวนก้าวที่สามารถเดินได้ ตามลำดับห่างกันหนึ่งช่องว่าง โดยที่ 2 <= R, C <= 30; 1 <= T <= 900

อีก R บรรทัดต่อมา รับตาราง โดยประกอบไปด้วย # หรือ .

บรรทัดสุดท้าย รับ Si, Sj, Ei, Ej ตามลำดับห่างกันหนึ่งช่องว่าง โดยที่ 1 <= Si, Ei <= R และ 1 <= Sj, Ej <= C รับประกันว่า ตารางในข้อนี้ ช่องว่างแต่ละช่องจะสามารถเดินทางไปหาช่องว่างอื่นได้เพียงเส้นทางเดียว กล่าวคือ ช่องว่าง สองช่องใด ๆ จะเดินทางหากันได้เพียงเส้นทางการเดินเส้นทางเดียวเท่านั้น

<u>ข้อมูลส่งออก</u>

Q บรรทัด แต่ละบรรทัดตอบจำนวนช่องว่างที่มากที่สุดที่ผีน้อยสามารถเดินทางไปถึงได้ หากไม่สามารถเดินทางมายังทางออกได้ ภายใน T ก้าว ให้ตอบ -1

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3	7
5 8 9	10
# # # .	-1
.###.	
##.###	
##.##	
##.###	
4 3 2 4	
4 5 100	
.####	
#.	
#.##.	
3 3 1 3	
3 5 2	
• • • •	
.####	
• • • • •	
3 3 1 3	

+++++++++++++++++

5. จุดเทียนภาวนา (Candle Lighting Prayer)

-ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 11 ม.สงขลานครินทร์ วิทยาเขตตรัง

เมื่อครั้งรายาบุหลันผู้ครองบุหงาตันหยงนครมายาวนานสิ้นพระชนม์ ชาวเมืองต่างเศร้าโศกอาลัยเป็นอย่างมาก ทุกคนต่าง รวมตัวกันที่ลานพิธีกรรมเพื่อจุดเทียนและสวดภาวนาตามธรรมเนียมที่ปฏิบัติกันมาเพื่อแสดงความ อาลัยและส่งดวงพระวิญญาณสู่ สวรรคาลัย

ลานพิธีกรรมถูกปูด้วยกระเบื้องสี่เหลี่ยมจัตุรัสยาวด้านละ 1 หน่วย โดยปูกระเบื้องชิดกัน M แถวและ N หลัก ผู้มาร่วมไว้ อาลัยและสวดภาวนาจะเลือกนั่งบนกระเบื้องตามอัธยาศัย แต่ต้องนั่งหนึ่งคนต่อกระเบื้องหนึ่งแผ่น เมื่อเลือกที่นั่งได้แล้วทุกคนจะไม่ ลุกจากที่นั่ง จนกว่าจะเสร็จสิ้นการสวดภาวนา

ก่อนสวดภาวนา ทุกคนจะต้องจุดเทียนด้วยไม้ชีด หรือหากไม่มีไม้ชีดจะต้องรอต่อไฟเทียนจากผู้ที่นั่งติดกัน คนใดคนหนึ่ง จากทั้ง 8 ทิศทาง และไม่สามารถลุกจากกระเบื้องเพื่อไปต่อเทียนจากคนอื่นที่ไม่ได้นั่งบน กระเบื้องแผ่นที่อยู่ติดกัน พิธีการสวด ภาวนาจะรอจนกระทั่งทุกคนที่มาร่วมพิธีจุดเทียนเรียบร้อยแล้ว ประธานในพิธีจึงจะเริ่มนำสวดภาวนาอย่างพร้อมเพรียงกัน ด้วย ความเป็นผู้ประหยัดมัธยัสถ์ตามวิถีปฏิบัติของคนในบุหงาตันหยงนคร แม้ในยามที่เป็นพิธีอาลัยผู้ครองนครอันยิ่งใหญ่ ชาวเมืองที่มา ร่วมงานก็พยายามที่ใช้จำนวนไม้ขีดไฟให้น้อยที่สุดที่เป็นไปได้ดังตัวอย่างในรูปที่ 1

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

รูปที่ 1 ตัวอย่างการจุดเทียนในการสวดภาวนาโดยใช้ไม้ชีดไฟน้อยที่สุดเพียง 3 ก้าน (เป็นรูปแบบหนึ่งจากหลายรูปแบบที่ เป็นไปได้)

<u>งานของคูณ</u>

จงเขียนโปรแกรมเพื่อหาจำนวนไม้ขีดไฟที่น้อยที่สุดซึ่งทำให้ทุกคนจุดเทียนได้และพร้อมที่จะสวดภาวนา

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก มีจำนวนเต็มสองจำนวน คือ M ระบุจำนวนแถว และ N ระบุจำนวนหลักของลานพิธีกรรม แต่ละจำนวนถูกคั่น ด้วยช่องว่างหนึ่งช่อง กำหนดให้ 2 <= M, N <= 2,000

บรรทัดที่ 2 ถึงบรรทัดที่ M+1 แต่ละบรรทัดประกอบด้วยสตริงขนาด N ตัวอักขระ แต่ละอักขระแดงการนั่งของผู้เข้าร่วม สวดภาวนาในพิธี โดยกำหนดให้ '0' แทนพื้นที่ว่างที่ไม่มีคนนั่ง และ '1' แทนพื้นที่ที่มีคนนั่ง

<u>ข้อมูลส่งออก</u>

มีหนึ่งบรรทัด ระบุจำนวนไม้ขีดไฟที่น้อยที่สุด ซึ่งทำให้ทุกคนจุดเทียนได้และพร้อมที่จะสวดภาวนา

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 5	3
10011	
00001	
01100	
10011	
4 4	1
0010	
1010	
0100	
1111	

+++++++++++++++++

6. ท่อระบายน้ำ (Sewer)

เมืองแห่งหนึ่งมีพื้นที่เป็นรูปสี่เหลี่ยมขนาด a แถวคุณ b คอลัมน์และแบ่งเขตเป็นจำนวนเท่ากับ axb เขต แต่ละเขตจะมี

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

พิกัด (i, j) โดยเขตที่พิกัด (1, 1) จะอยู่ที่มุมซ้ายบนของพื้นที่สี่เหลี่ยมและแต่ละเขตจะมีท่อระบายน้ำเชื่อมต่อกับเขตเพื่อนบ้าน หรือไม่ก็ได้ ดังแสดงในรูป (ให้เครื่องหมาย 🏗 และ 📛 แสดงถึงท่อระบายน้ำที่เขื่อมระหว่างเขต)

(1, 1)	中	(1, 2)	⇔	(1, 3)		(1, 4)	เหนือ
(2, 1)		(2, 2)	\Leftrightarrow	(2, 3)	⇔	(2, 4)	
(3, 1)	中	(3, 2)	\Leftrightarrow	(3, 3)	\Leftrightarrow	(3, 4)	ดะวันตก<
(4, 1)		(4, 2)		(4, 3)		(4, 4)	_ V

กำหนดให้เขตที่พิกัด (1, 1) เป็นจุดเริ่มปล่อยน้ำทิ้ง โดยจะสามารถระบายน้ำทิ้งไปยังท่อระบายน้ำที่เชื่อมอยู่กับเขตนั้น ๆ และแต่ละท่อใช้เวลาระบายน้ำทิ้งจากเขตหนึ่งไปยังเขตหนึ่งด้วยเวลาหนึ่งหน่วย น้ำสามารถไหลได้ 4 ทิศทาง คือ ไหลไปยังเขตทิศ เหนือ ไหลลงเขตทิศใต้ ไหลไปทางเขตตะวันออก และ ไหลไปทางเขตตะวันตก โดยเขตรับน้ำจะไม่สามารถระบายน้ำกลับไปยังเขต ก่อนหน้าที่ระบายน้ำมาให้

จงเขียนโปรแกรมเพื่อคำนวณหาระยะเวลาที่น้อยที่สุดที่น้ำทิ้งอย่างน้อย 2 สายจะมาบรรจบกัน พร้อมทั้งบอกพิกัดของเขต ที่น้ำทิ้งมาบรรจบกัน (รับประกันว่าข้อมูลนำเข้าทุกชุด จะมีเขตที่น้ำสองสายมาบรรจบกันเกิดขึ้นเร็วที่สุดเพียงเขตเดียวเสมอ) โดย จากรูปตัวอย่างข้างบนนี้ น้ำทิ้งจะเริ่มต้นที่ (1, 1) ในช่วงเวลา 1 และเคลื่อนไปสู่ (2, 1) และ (1, 2) ในช่วงเวลาที่ 2 จากนั้นจึงไปสู่ (3, 1) และ (1, 3) ในช่วงเวลาที่ 3 และถึง (3, 2) กับ (2, 3) ในช่วงเวลาที่ 4 และสุดท้ายจึงมาบรรจบกันที่พิกัด (3, 3) ในช่วงเวลาที่ 5 ตามลำดับ

กำหนดให้แต่ละเขตสามารถมีรูปแบบการติดตั้งท่อระบายน้ำได้ทั้งหมด 4 รูปแบบ เมื่อพิจารณาการเชื่อมต่อทางทิศ ตะวันออกและทิศใต้เท่านั้น ได้แก่ R หมายถึง เขตนั้นมีท่อระบายน้ำเชื่อมกับเขตทิศตะวันออก, D หมายถึงเขตนั้นมีท่อระบาย น้ำเชื่อมกับเขตทิศใต้, B หมายถึงเขตนั้นมีท่อระบายน้ำเชื่อมกับทั้งเขตทิศตะวันออกและทิศใต้ และ N หมายถึงเขตนั้นไม่มีท่อ ระบายน้ำเชื่อมกับทั้งเขตทิศตะวันออกและทิศใต้

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก เป็นค่าของตัวแปร a และ b โดยที่ 2 <= a, b <= 100

บรรทัดที่สองถึง a+1 แต่ละบรรทัดมีตัวอักษรทั้งหมด b ตัวคั่นด้วยช่องว่าง แต่ละตัวระบุถึงสถานะการมีท่อระบายน้ำของเขตแต่ละ เขตในพิกัด (i, j) โดยเริ่มจากพิกัดที่ (1, 1) ไปเรื่อยๆตามลำดับ และ 1 <= i <= a, 1 <= j <= b

<u>ข้อมูลส่งออก</u>

บรรทัดแรก จำนวนเต็มบวก 1 ตัว แสดงถึงช่วงเวลาที่น้ำทิ้งมาบรรจบกัน บรรทัดที่สอง เป็นจำนวนเต็ม 2 ตัว คั่นด้วยช่องว่าง ซึ่งเป็นพิกัด (i, j) ที่น้ำทิ้งมาบรรจบกัน

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 4	5
BRDN	3 3
D R B D	
RRRD	
N N N	

3 4	5
B B B D	2 4
DNRB	
RRRN	

++++++++++++++++

7. ฝ่าเขาวงกต (maze)

นักล่าสมบัตินามว่า "อินเดียนา เจ" พลาดพลั้งตกลงไปในหลุมพรางที่ส่งเขาไปอยู่ในเขาวงกตซึ่งมีทางออกอยู่เพียงตำแหน่ง เดียวเท่านั้น เคราะห์ดีที่นายอินเดียนามีแผนที่เขาวงกตติดตัวมาด้วย ทำให้เขาทราบตำแหน่งปัจจุบันของเขาและตำแหน่งของ ทางออก จากแผนที่ อินเดียนาพบว่าพื้นที่เขาวงกตถูกแบ่งออกเป็นช่องจำนวน M แถว N หลัก โดยแต่ละช่องในแผนที่จะมีเลขหนึ่ง หรือเลขศูนย์อย่างใดอย่างหนึ่ง ซึ่งเลขศูนย์แทนกำแพงและเลขหนึ่งแทนทางเดิน นอกจากนี้เขาวงกตยังวางตัวในทิศเหนือ-ใต้ ตะวันออก-ตะวันตกพอดี ดังแสดงในภาพตัวอย่างที่อยู่หน้าถัดไป

อย่างไรก็ตามปัญหาหนักใจมีอยู่ว่า บริเวณที่อินเดียนาตกลงมาไม่ได้เชื่อมต่อกับทางออก อินเดียนาจึงจำเป็นที่จะต้อง ระเบิดกำแพงเขาวงกตด้วยระเบิดที่มีติดตัวอยู่เพียงลูกเดียวเท่านั้น นอกจากนี้อินเดียนาทราบว่าระเบิดนี้มีพลังทำลายกำแพงเขา วงกตได้เพียงหนึ่งช่องเท่านั้น

อินเดียนาจึงจำเป็นที่จะต้องวางแผนว่าเขาจะต้องเดินในเขาวงกตอย่างไร และใช้ระเบิดทำลายกำแพงตรงพื้นที่ช่องใดจึงจะ สามารถเดินไปถึงทางออกได้ อินเดียนาทราบตำแหน่งเริ่มต้นของเขาและตำแหน่งทางออกเท่านั้น และเพื่อให้การวางแผนและ ประมาณระยะทางเดินเป็นไปโดยง่าย อินเดียนาจะเดินในทิศเหนือ ใต้ ตะวันออก หรือ ตะวันตก เท่านั้น อินเดียนาจะไม่เดินในทิศ เฉียงเป็นอันขาด (เช่น ไม่เดินในทิศตะวันออกเฉียงเหนือ เป็นต้น)

ยกตัวอย่างจากแผนที่ในหน้าถัดไป เขาวงกตนี้ประกอบด้วยช่องจำนวนทั้งหมด 5 แถวและ 8 หลัก กำหนดให้อินเดียนา เริ่มต้นในช่องที่ถูกเน้นด้วยวงรี และทางออกอยู่ ณ ตำแหน่งที่เน้นด้วยสามเหลี่ยม หากอินเดียนาระเบิดกำแพงที่ช่องใดช่องหนึ่งที่ถูก เน้นด้วยลูกศรก็จะสามารถเดินไปถึงทางออกได้ การระเบิดกำแพงที่ช่องอื่นๆ นอกจากหนึ่งในสี่ช่องนี้ จะไม่ทำให้อินเดียนาไปถึง ทางออกได้

ยิ่งไปกว่านั้น อินเดียนายังสนใจด้วยว่าทางเดินจากจุดเริ่มต้นไปถึงทางออกที่ใกล้ที่สุดมีระยะทางเท่าใด (ระยะทางนับจาก จำนวนช่องที่เดินผ่าน) จากตัวอย่างเดิม ถ้าอินเดียนาระเบิดกำแพงที่ช่อง ณ ตำแหน่งแถวที่สอง หลักที่ห้า หรือ ตำแหน่งแถวที่สาม หลักที่หก จะทำให้ได้ทางเดินที่ใกล้ที่สุดด้วย คือได้ทางเดินที่ผ่านจำนวนช่องทั้งหมด 6 ช่อง (นับช่องที่จุดเริ่มต้นและสิ้นสุดและช่อง ที่เป็นกำแพงที่ถูกระเบิดด้วย)

-	เหนือ	0	0	1	1	0	0	0	0
ตะวันตก	ตะวันออก	1	0	1	1	0 🛑	1	1	1
NESTANII	มเขาหยอบ	1	0	1	1	1	0 🛑	0	1
		1	1	0	0		0 🛑	0	1
	ใต้	0	0	1	1	0 🛑	1	1	1

จงเขียนโปรแกรมที่มีประสิทธิภาพในการหาจำนวนช่องของกำแพงที่อินเดียนาสามารถทำการระเบิดเพื่อนำอินเดียนาไปสู่ ทางออกได้ รวมทั้งหาระยะทางเดินที่สั้นที่สุดจากจุดเริ่มต้นไปจนถึงทางออก

บรรทัดแรกระบุค่า M และ N ซึ่งแทนจำนวนแถวและจำนวนหลักของเขาวงกตตามลำดับ โดยที่ 1 <= M, N <= 150 โดย M และ N ถูกคั่นด้วยช่องว่าง

บรรทัดที่สองระบุแถว (Rs) และหลัก (Cs) ของช่องที่อินเดียนาเริ่มต้น โดยที่ 1 <= Rs <= M และ 1 <= Cs <= N โดย Rs และ Cs ถูกคั่นด้วยช่องว่าง

บรรทัดที่สามระบุแถว (Re) และหลัก (Ce) ของช่องที่เป็นทางออก โดยที่ 1 <= Re <= M และ 1 <= Ce <= N โดย Re และ Ce ถูกคั่นด้วยช่องว่าง รับประกันว่าตำแหน่งเริ่มต้นและทางออกจะตรงกับช่องที่มีเลขหนึ่งอยู่ในแผนที่

อีก M บรรทัดต่อมา ในแต่ละบรรทัดจะประกอบไปด้วยเลขจำนวน N ตัวแต่ละตัวคั่นด้วยช่องว่างโดยเลขศูนย์แทนกำแพง และเลขหนึ่งแทนทางเดิน บรรทัดแรกใน M บรรทัดนี้บอกลักษณะช่องของแถวแรกในเขาวงกต (แถวแรกคือแถวที่อยู่ทางเหนือสุด) เรียงจากหลักทางทิศตะวันตกไปตะวันออก (หลักแรกคือหลักทางทิศตะวันตก) บรรทัดถัดมาบอกลักษณะของแถวที่สอง และเป็น เช่นนี้ไปเรื่อย ๆ จนครบ M บรรทัด

สำหรับข้อมูลเข้าทุกชุด อินเดียนาจำเป็นต้องใช้ระเบิดหนึ่งลูกในการไปถึงทางออก

<u>ข้อมูลส่งออก</u>

บรรทัดแรก ระบุจำนวนช่องกำแพงที่อินเดียนาสามารถวางระเบิดและพาอินเดียนาไปถึงทางออกได้ บรรทัดที่สอง ระบุระยะทางที่น้อยที่สุดที่อินเดียนาสามารถเดินเพื่อไปถึงทางออก โดยระยะทางคือจำนวนช่องที่อินเดียนา เดินผ่านทั้งหมด ซึ่งนับรวมช่องที่เป็นจุดเริ่มต้นและจุดสิ้นสุด พร้อมทั้งนับรวมช่องกำแพงที่อินเดียนาระเบิดด้วย

ตัวอย่าง

ข้อ	มูลน์	าเข้า	1					ข้อมูลส่งออก
5	8							4
4	5							6
2	8							
0	0	1	1	0	0	0	0	
1	0	1	1	0	1	1	1	
1	0	1	1	1	0	0	1	
1	1	0	0	1	0	0	1	
0	0	1	1	0	1	1	1	

+++++++++++++++++

8. หุ่นยนต์ (Robot TOI13)

. ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 13 ณ ศูนย์ สอวน. โรงเรียนมหิดลวิทยานุสรณ์

ทุเรียน จิงโจ้ และอีกาดำ เป็นนักเรียนโรงเรียนวิทยาศาสตร์แห่งหนึ่ง ในภาคเรียนนี้เขาทั้งสามคนลงทะเบียนเรียนรายวิชา ความคิดสร้างสรรค์และนวัตกรรมซึ่งจะต้องสร้างชิ้นงานนวัตกรรมส่งคุณครู วันหนึ่งขณะที่ทั้งสามกำลังเรียนรายวิชาบูรณาการ ความรู้ ภายในชั้นเรียนมีการอภิปรายเกี่ยวกับสังคมผู้สูงอายุ (aging society) ซึ่งทำให้ทั้งสามคนสนใจเป็นอย่างมาก และรวมกลุ่ม กันคิดสร้างชิ้นงานสำหรับส่งคุณครูในรายวิชาแรกได้ นั่นคือ หุ่นยนต์ช่วยผู้สูงอายุเก็บสิ่งของ

ทุเรียน จิงโจ้ และ อีกาดำ ช่วยกันออกแบบการทำงานของหุ่นยนต์จำนวน K ตัวให้สามารถทำงานได้ ดังนี้

- -หุ่นยนต์แต่ละตัวสามารถเคลื่อนที่ไปได้ 4 ทิศทางเท่านั้น คือ เคลื่อนที่ไปทางด้านซ้าย ด้านขวา ด้านหน้า และด้านหลัง ของหุ่นยนต์
- -หุ่นยนต์สามารถเคลื่อนที่ในแนวระนาบตามแผนที่ข้อมูลซึ่งอยู่ในรูปของตารางขนาด N×M โดยที่ 1 <= N <= 2,000 และ 1 <= M <= 2,000
- -สำหรับแผนที่ข้อมูลนั้น ภายในแต่ละช่องของตารางจะประกอบไปด้วยตัวอักขระซึ่งบอกว่าช่องนั้นเป็นตำแหน่งเริ่มต้น พื้นที่ว่าง สิ่งกีดขวาง หรือสิ่งของเป้าหมาย โดย
 - -X หมายถึง ตำแหน่งเริ่มต้นของหุ่นยนต์ ซึ่งมีเป็นจำนวน K ตำแหน่งที่ไม่ซ้ำกัน
 - -E หมายถึง พื้นที่ว่าง
 - -W หมายถึง สิ่งกีดขวาง
 - -A หมายถึง สิ่งของเป้าหมาย ซึ่งอาจมีมากกว่า 1 ชิ้นได้
- -หุ่นยนต์สามารถเคลื่อนที่ผ่านพื้นที่ว่าง (E) สิ่งของเป้าหมาย (A) และตำแหน่งเริ่มต้น (X) ได้ แต่ไม่สามารถเคลื่อนที่ผ่านสิ่ง กีดขวาง (W) ได้ และจะต้องเคลื่อนที่ภายในขอบเขตของแผนที่ข้อมูลที่กำหนดให้เท่านั้น
 - -การเคลื่อนที่จากช่องใด ๆ ไปยังช่องถัดไป จะนับเป็น 1 ก้าว
- -หุ่นยนต์จะเก็บสิ่งของเป้าหมายแต่ละชิ้นได้สำเร็จ ก็ต่อเมื่อหุ่นยนต์สามารถเคลื่อนที่ไปอยู่ภายในช่องที่ระบุว่าเป็นสิ่งของ เป้าหมาย A และได้เคลื่อนที่กลับมายังตำแหน่งเริ่มต้นของหุ่นยนต์ตัวนั้น โดยหุ่นยนต์สามารถหยิบและบรรทุกสิ่งของเป้าหมายได้ ครั้งละ 1 ชิ้นเท่านั้น นั่นคือ หลังจากหุ่นยนต์หยิบสิ่งของเป้าหมายได้แล้ว หุ่นยนต์ต้องบรรทุกสิ่งของเป้าหมายนั้นกลับไปยังตำแหน่ง เริ่มต้น และวางสิ่งของเป้าหมายก่อนที่จะเคลื่อนที่ไปหยิบสิ่งของเป้าหมายชิ้นถัดไปได้ (ในกรณีที่มีสิ่งของเป้าหมายหลายชิ้น) สมมติให้แผนที่ข้อมูลมีขนาด 5×5 (N=5, M=5) และภายในแต่ละช่องของตารางจะประกอบไปด้วยตัวอักขระ ดังรูปที่ 1

E	E	E	Е	E
A	E	A	E	W
W	E	Е	M	W
W	E	E	x	E
W	W	Е	x	A

รปที่ 1

จะเห็นว่ามีสิ่งของเป้าหมายทั้งสิ้น 3 ชิ้น และหุ่นยนต์ 2 ตัว ดังนั้นหุ่นยนต์แต่ละตัวอาจเคลื่อนที่จากตำแหน่งเริ่มต้น (X) ไป หยิบและบรรทุกสิ่งของเป้าหมาย (A) กลับมายังตำแหน่งเริ่มต้นได้ดังรูปที่ 2 รูปที่ 3 และรูปที่ 4 โดยมีจำนวนก้าวรวมทั้งหมด 18 ก้าว ซึ่งเป็นจำนวนก้าวรวมที่น้อยที่สุดที่หุ่นยนต์ทั้ง 2 ตัวต้องใช้ในการเก็บสิ่งของเป้าหมายได้สำเร็จทั้งหมด 3 ชิ้น

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

E	E	E	E	E
A	E	A (1) (2)	E	W
W	E	E S	W	W
W	E	E Z	<u>_</u> x	E
W	W	E	x	A

รูปที่ 2

รูปที่ 3

E	E E	E	E
A	E A	Е	W
W	E E	M	W
W	E E	<u>◆</u> ① x	Е
W	W E	x	A

ราไที่ 4

และเพื่อให้หุ่นยนต์สามารถทำงานได้อย่างมีประสิทธิภาพ ทุเรียน จิงโจ้ และอีกาดำ จึงต้องการให้หุ่นยนต์ใช้จำนวนก้าว รวมที่น้อยที่สุดที่หุ่นยนต์จะต้องใช้ในการเก็บสิ่งของเป้าหมายให้ได้มากชิ้นที่สุด ทั้งนี้อาจไม่จำเป็นต้องใช้หุ่นยนต์ทุกตัวในการเก็บ สิ่งของเป้าหมาย เนื่องจากเวลาส่งชิ้นงานใกล้เข้ามาทุกที ทั้งสามจึงมองหาสมาชิกเพิ่มเติมที่จะสามารถช่วยเขียนโปรแกรมเพื่อหา จำนวนก้าวที่น้อยที่สุดที่หุ่นยนต์จะต้องใช้ในการเก็บสิ่งของเป้าหมายได้สำเร็จให้ได้มากชิ้นที่สุด

<u>งานของคุณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อช่วย ทุเรียน จิงโจ้ และ อีกาดำ หาจำนวนก้าวรวมที่น้อยที่สุดที่หุ่นยนต์จะต้องใช้ใน การเก็บสิ่งของเป้าหมายได้สำเร็จให้ได้มากชิ้นที่สุด

<u>ข้อมูลนำเข้า</u>

บรรทัดที่ 1 มีจำนวนเต็มสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง จำนวนแรก คือ N ระบุจำนวนแถวของตาราง แผนที่ข้อมูล และ จำนวนที่สอง คือ M ระบุจำนวนคอลัมน์ของตารางแผนที่ข้อมูล กำหนดให้ 1 <= N <= 2,000 และ 1 <= M <= 2,000

N บรรทัดต่อมา แต่ละบรรทัดประกอบด้วยสตริงขนาด M ตัวอักขระ แต่ละอักขระแสดงข้อมูลภายในตารางแผนที่แต่ละ ช่อง โดยกำหนดให้ X แทนตำแหน่งเริ่มต้น, E แทนพื้นที่ว่าง, W แทนสิ่งกีดขวาง, A แทนสิ่งของเป้าหมาย กำหนดให้ ข้อมูลนำเข้าที่ ใช้ทดสอบจะมีอักขระ X ได้ตั้งแต่ 1 จนถึง 100 จำนวน และ ข้อมูลนำเข้าที่ใช้ทดสอบจะมีอักขระ A ได้ตั้งแต่ 1 จนถึง 100 จำนวน

<u>ข้อมูลส่งออก</u>

บรรทัดที่ 1 แสดงจำนวนเต็มสองจำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง โดยจำนวนแรกหมายถึงจำนวนชิ้นของ สิ่งของเป้าหมายที่หุ่นยนต์สามารถเก็บได้สำเร็จ และ จำนวนที่สอง ระบุจำนวนก้าวรวมที่น้อยที่สุดที่หุ่นยนต์จะต้องใช้ในการเก็บ สิ่งของเป้าหมายสำเร็จได้มากชิ้นที่สุด

ข้อมูลนำเข้า	ข้อมูลส่งออก
--------------	--------------

10	
5 5	3 18
EEEEE	
AEAEW	
WEEWW	
WEEXE	
WWEXA	
5 5	1 6
WEEEE	
AWAEW	
WEEWW	
WEEXE	
WWEEE	
5 9	2 64
EEEWEEEEE	
EWEWEWEEE	
AWXWEWWWE	
EWWWEWEEE	
EEEEEWAEE	
5 5	0 0
WEEEE	
AWEEW	
WEEWW	
WEEXE	
WWEEE	

++++++++++++++++

9. แผนที่ลายแทง (Map)

ในยุคอารยธรรมลุ่มน้ำโขงโบราณ มี "ชนเผ่าต๋อย" ซึ่งถูกกล่าวขานว่าเคยมีความรุ่งเรื่องทั้งด้านสติปัญญา วิทยาการและ วัตถุ หัวหน้าชนเผ่าต๋อยในอดีตตระหนักถึงอันตรายที่จะเกิดขึ้นแก่องค์ความรู้ และวิทยาการที่ชนเผ่าได้คิดค้นขึ้นมา จึงบันทึกองค์ ความรู้และวิทยาการต่าง ๆ ของชนเผ่า และซ่อนบันทึกนี้ รวมทั้งสมบัติของชนเผ่าทั้งหมดไว้ด้วยกัน จากนั้นหัวหน้าชนเผ่าได้ทำ แผนที่ลายแทงไปยังที่ซ่อนสมบัติเหล่านั้น ลงบนหนังสัตว์รูปสี่เหลี่ยมผืนผ้าที่มีความยาวตามแนวตั้ง m หน่วย และความยาวตาม แนวนอน n หน่วย

เพื่อเป็นการรักษาความลับของที่ซ่อนสมบัติหัวหน้าชนเผ่าได้ตัดแบ่งแผนที่ลายแทงออกเป็นชิ้นส่วนเล็ก ๆ รูปสี่เหลี่ยม จัตุรัสขนาด 1 ตารางหน่วย จำนวนทั้งสิ้น m x n ชิ้น โดยด้านหลังของแต่ละชิ้นมีหมายเลข 0, 1, 2, 3, ..., (m x n) - 2, (m x n) - 1 เขียนกำกับอยู่ แล้วแจกจ่ายชิ้นส่วนเหล่านี้ทั้งหมดให้ทุกครัวเรือนในชนเผ่าช่วยกันดูแล และจารึกความสัมพันธ์ระหว่างชิ้นส่วน เล็ก ๆ ของลายแทง จำนวนทั้งสิ้น (m x n) - 1 ความสัมพันธ์ ไว้ที่แท่นบูชา ณ ลานหินแตก ทางเข้าสู่ผาแต้ม เพื่อใช้ในการประกอบ

ชิ้นส่วนเหล่านั้นให้กลับมาเป็นแผนที่ลายแทงดังเดิม

ในแต่ละความสัมพันธ์มีตัวอักษร 'U' หรือ 'L' (อักษรภาษาอังกฤษตัวพิมพ์ใหญ่) แทนการอยู่ติดกันทางด้านบน หรือการอยู่ ติดกันทางด้านซ้าย ตามลำดับ ตัวอย่างเช่น

4 L 2 หมายความว่า ชิ้นส่วนหมายเลข 4 <u>อยู่ติดทางด้านซ้าย</u>ของชิ้นส่วนหมายเลข 2

10 U 25 หมายความว่า ชิ้นส่วนหมายเลข 10 <u>อยู่ติดทางด้านบน</u>ของชิ้นส่วนหมายเลข 25

ในเดือนพฤษภาคมนี้ ทายาทผู้นำชนเผ่าต๋อยจะทำการรวบรวมชิ้นส่วนเล็ก ๆ ของลายแทงทั้งหมด เพื่อเปิดขุมสมบัตินำเอา องค์ความรู้ วิทยาการ รวมถึงสมบัติของชนเผ่า ออกมาช่วยพัฒนาประเทศ แต่การจัดเรียงชิ้นส่วนเล็ก ๆ ตามความสัมพันธ์ที่จารึกไว้ นั้น มีความยุ่งยากเป็นอย่างมาก ทายาทผู้นำชนเผ่าได้รับข่าวว่าจะมีผู้รู้วัยเยาว์จำนวนมากมารวมตัวกันในการแข่งขันคอมพิวเตอร์ โอลิมปิกระดับชาติ ครั้งที่ 10 ณ มหาวิทยาลัยอุบลราชธานี จึงได้เข้ามาขอความช่วยเหลือจากผู้รู้ ให้เขียนโปรแกรมคอมพิวเตอร์ จัดเรียงชิ้นส่วนเล็ก ๆ ของลายแทงทั้งหมด ตามความสัมพันธ์ที่มีการจารึกไว้ เพื่อประกอบเป็นแผนที่ลายแทงไปยังขุมสมบัติ

จงเขียนโปรแกรมคอมพิวเตอร์ที่มีประสิทธิภาพ เพื่อประกอบแผนที่ลายแทงจากความสัมพันธ์ที่กำหนดให้

<u>ข้อมูลนำเข้า</u>

<u>งานของคูณ</u>

บรรทัดแรก ประกอบด้วยจำนวนเต็ม m และ n ซึ่งแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง แสดงความยาวตามแนวตั้ง และความยาวตามแนวนอนของแผนที่ลายแทง ตามลำดับ เมื่อ 1 <= m <= 200 และ 1 <= n <= 200

บรรทัดที่สอง ถึงบรรทัดที่ $m \times n$ แสดงความสัมพันธ์ที่ถูกจารึกไว้ จำนวน $(m \times n)$ - 1 ความสัมพันธ์ โดยแต่ละบรรทัดมี การจัดเรียงดังนี้ จำนวนเต็ม i ตามด้วยช่องว่างหนึ่งช่อง ตัวอักษรภาษาอังกฤษตัวพิมพ์ใหญ่ 'U' หรือ 'L' อย่างใดอย่างหนึ่ง ตามด้วย ช่องว่างหนึ่งช่อง และจำนวนเต็ม j เมื่อ $0 <= i < m \times n$ และ $0 <= j < m \times n$

<u>ข้อมูลส่งออก</u>

มีทั้งหมด m บรรทัดโดยแต่ละบรรทัดประกอบด้วย จำนวนเต็มทั้งหมด n จำนวนแต่ละจำนวนถูกคั่นด้วยช่องว่างหนึ่งช่อง ซึ่งแสดงการเรียงลำดับชิ้นส่วนเล็ก ๆ ของลายแทงตามแนวนอนโดยทั้งหมดประกอบกันเป็นแผนที่ลายแทงขุมสมบัติรูป สี่เหลี่ยมผืนผ้าที่มีความยาวตามแนวตั้ง m หน่วย และความยาวตามแนวนอน n หน่วย

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 2	0 1
1 U 5	3 5
0 U 3	4 2
4 L 2	
0 L 1	
5 U 2	
1 5	1 2 0 4 3
4 L 3	
2 L 0	
1 L 2	
0 L 4	

หากไม่ได้รับความอนุญาตจาก นายอัครพนธ์ วัชรพลากร (พี่พีท)

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

1. ความสัมพันธ์ที่กำหนดให้จะสามารถนำแต่ละชิ้นส่วนเล็ก ๆ มาสร้างแผนที่ลายแทงโดยเชื่อมโยง (connected) ไปยังชิ้นส่วนเล็ก ๆ อื่นได้เสมอ ดังแผนที่ลายแทงในรูปที่ 1 (ก) โดยข้อมูลนำเข้าจะไม่มีความสัมพันธ์ในลักษณะเช่น รูปที่ 1 (ข) และ (ค)

รูปที่ 1 แสดงตัวอย่างแผนที่ลายแทง (ก) แผนที่ลายแทงที่ถูกสร้างจากความสัมพันธ์ที่เชื่อมโยง (ข) และ (ค) แผนที่ลายแทงที่ถูกสร้างจากความสัมพันธ์ที่ไม่เชื่อมโยง

++++++++++++++++++

10. เกมตรงข้ามบียูยู (BUU Opposite)

์ ที่มา: ข้อสอบท้ายค่ายสองคัดเลือกผู้แทนศูนย์ม.บูรพารุ่น 11 ออกโดย PeaTT \sim

เมื่อมีเวลาว่าง เทพจะชอบเล่นเกมเกมหนึ่งที่มีชื่อว่า "เกมตรงข้ามบียูยู" (BUU Opposite)

เกมตรงข้ามบียูยู (BUU Opposite) เป็นเกมที่มีเบี้ยสองตัวคือ A และ B เคลื่อนที่ไปมาบนกระดานสี่เหลี่ยมมุมฉากขนาด R x C ช่อง ในกระดานนั้น บางช่องเป็นช่องที่ห้ามเดิน แต่สำหรับช่องอื่น เบี้ยทั้งสองตัวจะสามารถเดินไปยังช่องนั้นได้

เบี้ยจะเดินในทิศทางขึ้นบน, ลงล่าง, ซ้าย และขวาเท่านั้น และการเดินไม่สามารถเดินไปยังช่องห้ามเดินได้อย่างไรก็ตาม เบี้ยทั้งสองนี้ไม่ได้เคลื่อนที่โดยเป็นอิสระต่อกัน แต่การเคลื่อนที่ของเบี้ยทั้งสองนั้นจะเกิดขึ้นพร้อมกันแต่มีทิศทางตรงกันข้าม เช่น ถ้า A เดินไปทางซ้าย B ก็จะเดินไปทางขวา ถ้า A เดินขึ้นบน B ก็จะเดินลงล่าง แต่ถ้าการเคลื่อนที่ของเบี้ยตัวใดตัวหนึ่งไม่สามารถ เกิดขึ้นได้ เนื่องจากจะเป็นการเดินออกนอกตาราง หรือเดินเข้าไปในช่องที่ห้ามเดิน การเดินในครั้งนั้นจะทำให้เบี้ยตัวนั้นจะอยู่ที่ช่อง เดิม นอกจากนี้เบี้ยทั้งสองสามารถเดินสวนกันได้และยังสามารถเดินไปหยุดอยู่ที่ช่องเดียวกันได้ด้วย

เทพเล่นเกมตรงข้ามบียูยูนี้โดยต้องการหาระยะที่เบี้ยทั้งสองจะสามารถเดินไปใกล้กันให้มากที่สุดเท่าที่จะเป็นไปได้ และ ระยะทางดังกล่าวจะต้องไม่ผ่านช่องห้ามเดิน โดย<u>ระยะระหว่างตำแหน่งสองตำแหน่งบนตารางคือจำนวนตาเดินที่น้อยที่สุดจาก ตำแหน่งแรกไปยังตำแหน่งที่สอง และเทพต้องการหาว่าการที่จะเดินให้ได้ระยะทางที่เบี้ยทั้งสองอยู่ใกล้กันมากที่สุดโดยไม่ผ่านช่อง ห้ามเดิน จะต้องใช้จำนวนช่องตารางเดินที่น้อยที่สุดเป็นเท่าใด</u>

เช่น R=2, C=5 ให้ '.' คือช่องว่าง, '#' คือช่องที่ห้ามเดิน และตารางเริ่มต้นเป็นดังภาพที่ 1

А	•	•	•	•		•	•	А	•	•
•	•	•	•	В		•	•	В	•	•
	ภ	าพที่ 1			-	ภาพที่ 2				

เทพสามารถเล่นเกมตรงข้ามบียูยูโดยให้เบี้ย A เดินไปทางขวาสองครั้ง จะทำให้เบี้ย B เดินมาทางซ้ายสองครั้งเช่นกันดัง ภาพขวา จะได้ระยะที่เบี้ยสองตัวจะสามารถเดินไปใกล้กันได้มากที่สุดเท่ากับ 1 ช่องตาราง ซึ่งเป็นระยะที่ใกล้ที่สุดเท่าที่จะเป็นไป ได้แล้ว ไม่สามารถทำให้เบี้ยสองตัวอยู่ใกล้กันมากกว่านี้ได้อีก และจำนวนช่องตารางเดินจากตำแหน่งเริ่มต้นของเบี้ย A และ B ที่ น้อยที่สุดเพื่อให้เบี้ยทั้งสองเดินมาใกล้กันมากที่สุดมีค่าเท่ากับ 2 ช่องตารางนั่นเอง

<u>งานของคณ</u>

จงเขียนโปรแกรมอย่างมีประสิทธิภาพเพื่อช่วยเทพหาระยะทางที่เบี้ยสองตัวจะสามารถเดินไปใกล้กันได้มากที่สุดและหา จำนวนช่องตารางเดินที่น้อยที่สุดจากตำแหน่งของเบี้ยทั้งสองเพื่อทำให้เบี้ยทั้งสองเดินมาใกล้กันมากที่สุด

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q มีค่าไม่เกิน 5 ในแต่ละคำถาม ให้รับข้อมูลดังนี้

บรรทัดแรก รับจำนวนเต็มบวก R C ตามลำดับห่างกันหนึ่งช่องว่าง เพื่อแสดงขนาดของตาราง โดยที่ 2 <= R, C <= 30 อีก R บรรทัดต่อมา รับข้อมูลของตารางเป็นตัวอักขระ C ตัวติดกัน โดยที่ '.' คือช่องว่าง, '#' คือช่องที่ห้ามเดิน และรับประกันว่าจะมีตัวอักษร 'A' และ 'B' ปรากฏในตารางอย่างละตัวเท่านั้น

20% ของชุดข้อมูลทดสอบ ในตารางจะไม่มีสิ่งกีดขวาง

40% ของชุดข้อมูลทดสอบ จะสามารถเดินจนเบี้ยทั้งสองมาอยู่ในตำแหน่งเดียวกันได้เสมอ

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด แต่ละบรรทัดให้แสดงระยะที่เบี้ยทั้งสองจะสามารถเดินไปใกล้กันได้มากที่สุด เว้นวรรคหนึ่งวรรค ตามด้วย จำนวนช่องตารางเดินที่น้อยที่สุดจากตำแหน่งเริ่มต้นเพื่อทำให้เบี้ยเดินมาใกล้กันได้มากที่สุด อย่างไรก็ตามถ้าเบี้ยทั้งสองอยู่ใน ตำแหน่งที่ไม่ว่าจะเดินอย่างไรก็ตาม จะไม่มีทางเดินที่เป็นไปได้ระหว่างตำแหน่งของเบี้ยทั้งสอง ให้ตอบระยะทางใกล้สุดเป็น -1 และ จำนวนช่องตารางเดินน้อยที่สุดเป็น 0

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4	1 2
2 5	-1 0
A	0 2
B	0 4
1 5	
A.#.B	
1 5	
AB	
3 5	
A	
###	
###.B	

<u>ตัวอย่างที่1</u>

มีทั้งสิ้น 4 คำถาม ได้แก่

คำถามแรก เป็นไปตามตัวอย่างในโจทย์

คำถามที่สอง ไม่ว่าจะเดินอย่างไรก็ไม่มีทางเดินที่เป็นไปได้ระหว่างตำแหน่งของเบี้ยทั้งสอง จึงตอบระยะทางใกล้สุดเป็น -1 และจำนวนช่องตารางเดินน้อยสุดเพื่อให้ได้ระยะทางดังกล่าวเป็น 0 นั่นเอง

คำถามที่สาม เทพสามารถเล่นเกมตรงข้ามโดยให้เบี้ย A เดินไปทางขวาสองครั้ง จะทำให้เบี้ย B เดินมาทางซ้ายสองครั้ง เช่นกัน แล้วเบี้ยทั้งสองจะมาอยู่ที่ตำแหน่งเดียวกันนั่นเอง

คำถามที่สี่ เทพสามารถเล่นเกมตรงข้าม 4 ครั้ง โดยให้เบี้ย A เดินไปทางขวา, เดินไปทางขวา, เดินไปทางขวา และ เดินลง จะพบว่าเบี้ยทั้งสองจะมาอยู่ที่ตำแหน่งเดียวกัน จึงตอบว่า 0 4 นั่นเอง

+++++++++++++++++

_____ 11. พีทเล่นแพ็กแมน (Peatt Pacman)

์ ที่มา: ข้อสอบท้ายค่ายสองศูนย์ ม.บูรพา รุ่น12 PeaTT~

เด็กชายพีทเป็นเด็กอนุบาลอายุ 5 ขวบที่ชอบเล่นเกมแพ็กแมน (Pacman) เป็นอย่างมาก

เกมแพ็กแมน (Pacman) เป็นเกมหนึ่งที่ผู้เล่นจะควบคุมตัวละครให้เดินกินเม็ดคะแนนพร้อม ๆ กับเดินหลบผี (Ghost) ไป ด้วย

เกมแพ็กแมนจะเล่นในตารางขนาด R แถว C คอลัมน์ โดยช่องบนซ้ายคือช่อง (0, 0) และช่องล่างขวาคือช่อง (R-1, C-1) เกมนี้เล่นทั้งสิ้น T วินาที ในแต่ละวินาทีแพ็กแมนและผีสามารถเดินทางไปยังช่องที่อยู่ติดกันในทิศทางบนล่างซ้ายขวา<u>หรือจะหยุด อยู่กับที่ก็ได้</u> นอกจากนี้บางช่องของตารางอาจเป็นกำแพงที่แพ็กแมนและผีเดินทางเข้าไปไม่ได้

กำหนดให้เริ่มต้นแพ็กแมนจะอยู่ช่อง (rp, cp) ในวินาทีที่ 0 และแพ็กแมนเริ่มเดินทางได้ในวินาทีที่ 1 ส่วนผีมีทั้งสิ้น N ตัว โดยผีตัวที่ i จะโผล่ขึ้นมาในช่อง (ri, ci) ในวินาทีที่ ti ของเกม ในวินาทีที่ ti ที่ผีโผล่มานั้น ผีจะยังเดินไม่ได้ ต้องรอวินาทีถัดไปถึงจะ เริ่มเดินทางได้ ตัวอย่างเช่น ถ้า ti=0 หมายความว่า ผีตัวนั้นจะเริ่มเดินทางได้พร้อมกับแพ็กแมน หรือ ถ้า ti=T หมายความว่า ผีตัว นั้นโผล่มาหลังจากแพ็กแมนเดินครบหมดแล้ว และผีจะเดินทางไปไหนไม่ได้เลย แต่จะถือว่าผีโผล่มาในช่องนั้นอยู่ดี

แพ็กแมนนั้นมองไม่เห็นผี ดังนั้นจึงไม่สามารถเดินหลบผีได้ แต่อย่างไรก็ตาม แพ็กแมนนั้นทราบค่า ti, ri, ci ของผีทุก ๆ ตัว เมื่อแพ็กแมนเห็นว่าช่องใดที่ผีมีโอกาสมาถึงก็จะไม่เลือกเดินทางเข้าไปยังช่องนั้นเด็ดขาด เด็กชายพีทอยากทราบว่า จากข้อมูลที่ แพ็กแมนมีนั้น แพ็กแมนสามารถหาทางเดินปลอดภัยที่รับประกันได้ว่า เมื่อเวลาผ่านไป T วินาทีแล้ว ไม่มีทางที่ผีตัวไหนจะมากิน แพ็กแมนได้อย่างแน่นอนหรือไม่? โดยผีจะมากินแพ็กแมนได้ก็ต่อเมื่อผีและแพ็กแมนนั้นอยู่ที่ช่องเดียวกันหลังจากที่ผีและแพ็กแมน ได้ตัดสินใจเดินทาง (หรือหยุดนิ่งอยู่กับที่) ในวินาทีนั้นแล้ว

<u>งานของคุณ</u>

จงเขียนโปรแกรมช่วยเด็กชายพีทเล่นเกมแพ็กแมนทั้งสิ้น Q เกม

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก จำนวนเต็มบวก Q แทนจำนวนคำถาม โดยที่ Q ไม่เกิน 10

ในแต่ละคำถาม ให้รับข้อมูลดังนี้

บรรทัดแรกรับจำนวนเต็ม R, C, N, T, rp, cp ตามลำดับห่างกันหนึ่งช่องว่าง โดยที่ 1 <= R, C <= 700 และ 1 <= N <= 60,000 และ 1 <= T <= 490,000 และ 0 <= rp < R และ 0 <= cp < C

อีก N บรรทัดต่อมา รับจำนวนเต็ม ti, ri, ci ตามลำดับห่างกันหนึ่งช่องว่างแสดงข้อมูลของผีแต่ละตัว โดยที่ 0 <= ti <= T และ 0 <= ri < R และ 0 <= ci < C

อีก R บรรทัดต่อมา แต่ละบรรทัดรับอักขระ C ตัวอักขระติดกันแทนตาราง โดยที่ . คือช่องว่าง และ # คือกำแพง ที่แพ็กแมนและฝีไม่สามารถเดินทางเข้าไปได้

25% ของชุดข้อมูลทดสอบ จะมี R, C, N ไม่เกิน 100

<u>ข้อมูลส่งออก</u>

มีทั้งสิ้น Q บรรทัด ให้ตอบตามลำดับข้อมูลนำเข้า ถ้าแพ็กแมนสามารถหาทางเดินที่ปลอดภัยได้จนจบเกม ให้ตอบว่า YES แต่ถ้าไม่สามารถหาทางเดินดังกล่าวได้ให้ตอบว่า NO เว้นวรรค ตามด้วยวินาทีที่มากที่สุดที่แพ็กแมนรอดจากการถูกผีกิน โดยหาก แพ็กแมนไม่รอดสักวินาทีเลยให้ตอบเวลาเป็น -1

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
4 2 5 1 1 0 2	YES NO -1
1 0 2	NO 0
• • • • •	YES
2 5 1 1 0 2 0 0 2	
• • • • •	
2 5 4 1 0 2 1 0 2 1 0 3 1 0 1 1 1 2	
5 5 2 10 2 2 0 0 0 0 4 4	

คำอธิบายตัวอย่างที่ 1

มีทั้งสิ้น 4 คำถาม ได้แก่

คำถามแรก ตารางขนาด 2 x 5 มีผี 1 ตัว เล่นเกม 1 วินาที ตอนแรกแพ็กแมนอยู่ที่ช่อง (0, 2) ในวินาทีที่ 0 ผีจะโผล่มาในวินาทีที่ 1 ที่ช่อง (0, 2) ถึงผีและแพ็กแมนจะเริ่มต้นอยู่ที่ช่องเดียวกัน แต่ผีโผล่ออกมาช้ากว่าแพ็กแมน ดังนั้นแพ็กแมน สามารถหนีฝีได้อย่างแน่นอน จึงตอบว่า YES

คำถามที่สอง ตารางขนาด 2 x 5 มีฝี 1 ตัว เล่นเกม 1 วินาที ตอนแรกแพ็กแมนอยู่ที่ช่อง (0, 2) ในวินาทีที่ 0 ผีจะโผล่มาในวินาทีที่ 0 ที่ช่อง (0, 2) จะเห็นว่าผีเกิดที่เดียวกับแพ็กแมน และเริ่มเดินพร้อมกัน ดังนั้นแพ็กแมนไม่มีทางหนีได้อย่าง แน่นอน จึงตอบว่า NO -1 เพราะวินาทีที่ 0 แพ็กแมนก็ถูกกินแล้วไม่รอดสักวินาทีเลย

คำถามที่สอง ตารางขนาด 2 x 5 มีผี 4 ตัว เล่นเกม 1 วินาที ตอนแรกแพ็กแมนอยู่ที่ช่อง (0, 2) ในวินาทีที่ 0 ผี 4 ตัวจะโผล่มาในวินาทีที่ 1 ที่ช่อง (0, 2), (0, 3), (0, 1) และ (1, 2) ตามลำดับ จะเห็นว่าผี 4 ตัวเกิดทีหลัง แต่เกิดมาในทุก ๆ ที่ที่ แพ็กแมนสามารถเดินทางไปได้ แพ็กแมนจึงไม่สามารถหนีได้อย่างแน่นอน จึงตอบว่า NO 0 เพราะวินาทีที่ 0 แพ็กแมนยังรอดอยู่ แต่ในวินาทีที่ 1 ไม่ว่าแพ็กแมนจะทำอย่างไรก็ต้องถูกผีกินอย่างแน่นอน

คำถามที่สี่ ตารางขนาด 5 x 5 และมีบางช่องเป็นกำแพง ตัวอย่างนี้ผีตัวไหนก็ไม่สามารถเข้าไปกินแพ็กแมนได้เลยเพราะติด กำแพง แพ็กแมนจึงอยู่เฉย ๆ จนครบ 10 วินาทีก็จะสามารถหนีผีได้อย่างแน่นอน จึงตอบว่า YES