

The Future of Analog IC Technology

描述

MP150 是一款原边调节器,可以在无光耦合器的条件下提供精确的恒压(CV)调节。MP150 支持降压、升降压、升压和反激拓扑。它内部集成了 500V MOSFET,可简化结构,节约成本,是离线低功率应用的理想之选,如家用电器和备用电源。

MP150 是一款绿色节能型调节器。当负载减轻,它的峰值电流和开关频率均会随之降低,这种特性使其在轻载时能达到极高的效率,有效地提升了芯片的整体平均效率。

MP150 具备多种保护功能,包括热保护 (TSD)、VCC 欠压锁定保护(UVLO)、过载 保护(OLP)、短路保护(SCP)和开环保护。

MP150有TSOT23-5和SOIC8两种封装可选。

特性

- 原边恒压(CV)控制,支持降压、升降压、 升压和反激拓扑
- 集成了 500V/30Ω MOSFET
- < 150mW 空载功耗
- 高达 2W 输出功率
- 最大 DCM 输出电流 120mA
- 最大 CCM 输出电流 200mA
- 频率折叠
- 最大频率限值
- 峰值电流调节
- 内部高压启动电流源

应用

- 家用电器、白色家电和消费类电子
- 工业控制
- 备用电源

所有 MPS 芯片都保证无铅,无卤素,并且遵守 RoHS 规范。如需要查询具体芯片环保等级,请访问 MPS 官网之质量保证 "MPS" 和 "The Future of Analog IC Technology"是 MPS 的注册商标。

典型应用

订购信息

产品型号*	封装	顶标
MP150GJ	TSOT23-5	ADG
MP150GS	SOIC8	MP150

- *对于编带和卷盘,请添加后缀-Z(例如 MP150GJ-Z);
- *对于编带和卷盘,请添加后缀-Z(例如 MP150GS-Z);

参考封装

绝对最大额定值(1)

漏极电压	0.7V 至 500V
所有其他引脚	0.7V 至 6.5V
连续耗散功率 (T _A = +25°C) (2)	
TSOT23-5	1W
SOIC-8	1W
结温度	150°C
引脚温度	260°C
存储温度	-60°C 至 +150°C
ESD 人体模型防静电能力	4.0kV
ESD 机器模型防静电能力	200V

推荐工作条件(3)

工作结温(T」)	40°C 至 +125°C
VCC 工作范围	5.3V 至 5.6V

<i>热阻</i> ⁽⁴⁾	$oldsymbol{ heta}_{JA}$	Ө ЈС
*** P.D. * *	UJA	UJC

TSOT23-5	100	55	°C/W
SOIC8	. 96	45	°C/W

注:

- 1) 超过这些限定值可能会损坏芯片。
- 2) 最大允许功耗是最大结温 $T_J(MAX)$ 、结温-环境热阻 θ_{JA} 和环境温度 T_A 的函数。任何环境温度下允许的最大连续耗散功率由 $P_D(MAX) = (T_J(MAX)-T_A)/\theta_{JA}$ 计算。超过最大允许耗散功率会使芯片温度过高,导致稳压器进入热保护状态。内部热保护电路保护芯片免受永久性损坏。
- 3) 设备不能保证在其工作条件之外运行。
- 4) 上述数据是在 JESD51-7(4 层板)上测量所得。

电气特性

除非另有说明,以下皆在 Vcc = 5.8V, TA = 25°C 条件下测试得出。

参数	符号	测试条件	最小值	典型值	最大值	单位
启动电流源 (漏极引脚)						
内部电流源供电电流	Iregulator	VCC=4V;V _{Drain} =100V	2.5	3.5	4.5	mA
漏极引脚漏电流	I _{Leak}	VCC=5.8V;V _{Darin} =400V		10	12	μΑ
击穿电压	$V_{(BR)DSS} \\$		500			V
供电电压管理(VCC 引脚)						
内部电流源关断时 VCC 电平(上升)	VCCoff		5.4	5.6	5.8	V
内部电流源开通时 VCC 电平(下降)	VCC _{ON}		5.1	5.3	5.6	V
控制内部电流源开通与关断的 VCC 迟滞				250		mV
IC 停止工作时 VCC 电平(下降)	VCC _{stop}			3.4		V
保护模式结束时 VCC 电平(下降)	VCC _{pro}			2.4		V
内部 IC 损耗	Icc	VCC=5.8V, f _s =37kHz, D= 40%			430	μA
内部 IC 损耗(无开关时)	Icc				300	μΑ
锁定关闭后内部 IC 损耗	Icclatch	VCC=5.3V		16		μΑ
内部 MOSFET (漏极引脚)						
击穿电压	V _{BRDSS}		500			V
通态电阻	R_{on}			30		Ω
内部电流检测					<u> </u>	
峰值电流限值	I _{Limit}		260	290	345	mA
前沿消隐时间	auLEB1			350		ns
SCP 阈值	I _{SCP}			450		mA
SCP 前沿消隐时间	τ _{LEB2}			180		ns
反馈输入(FB 引脚)					<u> </u>	
最小关断时间	$ au_{minoff}$		15	18	21	μs
原边 MOSFET 开通时的反馈电压阈值	V_{FB}		2.45	2.55	2.65	V
OLP 触发时反馈电压阈值	V _{FB_OLP}			1.7		V
OLP 延迟时间	TOLP	f _s =37kHz		170		ms
开环检测电压	V _{OLD}			60		mV
热保护						
热保护阈值				150		٥С

典型特性

典型性能特性

除非另有说明,以下波形皆在 V_{IN} = 265VAC, V_{OUT} = 5V, I_{OUT} = 200mA, L = 1mH, C_{OUT} = 100μF, T_A = +25°C 条件下测试得出。

Open Loop Protection

典型性能特性 (续表)

除非另有说明,以下皆在 V_{IN} = 230VAC, V_{OUT} = 5V, I_{OUT} = 200mA, L = 1mH, C_{OUT} = 100 μ F, T_A = +25°C 条件下测试得出。

引脚功能

引脚 # TSOT23-5	引脚# SOIC8	名称	描述
1	1	VCC	控制电路电源供电。
2	2	FB	调节器反馈。
3,4	3,4	SOURCE	内部功率MOSFET源极。VCC和FB引脚的接地参考。
5	7	DRAIN	内部功率MOSFET漏极。高压电流源输入。
	5,6,8	N/C	无连接。

功能框图

图 1: 功能框图

运行原理

MP150是一款绿色节能型调节器。当负载减轻时,峰值电流和开关频率均会随之降低。这种特性使其在轻载时能达到极高的效率,从而有效地提升电路的平均效率。典型应用图所示,MP150仅需极少的外部元器件。更多其他特性,请见以下章节。

启动和欠压锁定

内部高压电流源实现自供电功能,它从漏极引脚给 IC 供电。当 VCC 电压达到 5.6V 时,IC 开启开关且内部高压电流源关闭。当 VCC 电压降至 5.3V 以下时,内部高压电流源开启给外部 VCC 电容充电。使用几 μF 的小电容来稳定 VCC 电压,从而降低电容成本。

当 VCC 电压降至 3.4V 以下时,IC 停止开关动作,然后内部高压电流源给 VCC 电容器充电。

在故障情况下,如过载保护、短路保护和过温保护时,IC 停止开关动作且有一个内部电流源(16μA)给 VCC 电容器放电。直到 VCC 电压降至 2.4V 以下,内部高压电流源才会再次给 VCC 电容器充电。可使用以下公式估算出重启时间:

$$t_{\text{restart}} = C_{\text{VCC}} \times \frac{V_{\text{CC}} - 2.4V}{16 \text{uA}} + C_{\text{VCC}} \times \frac{5.6V - 2.4V}{3.5 \text{mA}}$$

图 2 为 VCC 欠压锁定保护时的典型波形图。

图 2: VCC 欠压锁定

恒压工作

当 MP150 用于 Buck 方案中时,相当于一个全集成调节器,正如第一页典型应用中所示。

在每个周期初始时刻,反馈电压下降到 2.5V 基准电压以下,表明输出电压不足,集成 MOSFET 导通。峰值电流限值决定了开启(ON)时间。到达开启(ON)时间后,集成 MOSFET 关闭。

当续流二极管(D1)导通时,采样电容器(C3)的电压被充电至输出电压值。

这样,采样电容器电压随输出电压的变化而变 化。采样电容器可以采样并保持输出电压用以调 节输出电压。电感器电流低于输出电流后,采样 电容器电压降低。

当反馈电压低于基准电压(2.5 V)时,开始一个新的开关周期。

图 3 显示了 CCM 下的详细工作时序图。

图 1: VFB vs Vout

根据以下公式计算采样电容器调节的输出电压值:

$$Vo = 2.5V \times \frac{R1 + R2}{R2}$$

频率折叠

在轻载或空载的情况下,输出电压下降非常缓慢,这样 MOSFET 开启的间隔时间加长,即频率会随着负载的减小而降低。所以 MP150 在轻载时可以通过自动减少开关频率来维持高效率。

开关频率计算公式为:

$$f_s = \frac{(V_{in} - V_o)}{2L(I_{neak} - I_o)} \cdot \frac{V_o}{V_{in}}$$
,用于 CCM

$$f_s = \frac{2(V_{in} - V_O)}{LI_{peak}^2} \cdot \frac{I_o V_o}{V_{in}}$$
,用于 DCM

同时,随着关断(OFF)时间的增加,峰值电流限值也从 290mA 逐步下降。在待机模式下,频率和峰值电流都降低到最小值,以便使用较小的假负载。因此,峰值电流调节有助于减少空载损耗。可以通过以下公式计算峰值电流,其中 τ_{off} 指 MOSFET 的关断时间:

$$I_{\text{Peak}} = 290\text{mA} - (1\text{mA}/\mu\text{s}) \times (\tau_{\text{off}} - 18\mu\text{s})$$

最小关断时间限制

MP150 具有最小关断时间限制。正常工作情况下,最小关断时间限制为 18μs; 启动时,最小关断时间限制从 72μs 逐步缩短至 36μs 再至 18 μs (见图 4)。每个最小关断时间均有 128 个开关周期。此软启动功能可保证安全启动。

图 4: 启动时的 tminoff

EA 补偿

图 5: EA 和斜坡补偿

MP150 具有基于误差放大器(EA)的补偿功能以提高负载调整率(图 5)。在 MOSFET 关断 6µs后,MP150 对反馈电压进行采样,并对 2.5V 电压基准进行调节,从而提升输出调整率。

斜坡补偿

MP150 采用内部斜坡补偿电路来精确维持输出电压。如图 5 所示,额外的指数变化的电压信号被施加在反馈比较器的基准电压上,它用来降低反馈比较器的基准电压。

斜坡补偿随着负载条件变化:在满载条件下,补偿大约为 1mV/μs,随着负载的减小,补偿电压呈指数增长。

过载保护(OLP)

随着负载的加重,峰值电流和开关频率也会随之提高。当开关频率和峰值电流达到最大极限时,如果负载仍持续增加,输出电压将开始下降。FB电压则会降至 OLP 阈值以下。

通过持续监测 FB 电压, 当 FB 电压降至故障标志 阈值 1.7V 以下时,定时器启动。如果计时器达到 170ms(fa =37kHz),则会触发过载保护 (OLP)。

过载保护延迟时间可以避免电源启动或负载转换时误触发过载保护(OLP)。因此,电源启动应小于 170ms($f_s=28kHz$)。不同的开关频率(f_s)会产生不同的过载保护延迟时间,OLP 延迟时间按以下公式计算:

$$\tau_{\text{Delay}} \approx 170 ms \times \frac{37 kHz}{fs}$$

短路保护 (SCP)

当峰值电流上升至短路保护阈值 450mA 以上时,MP150 关断电源。一旦故障解除,电源恢复正常工作。

热保护(TSD)

为防止任何过热引起的损坏,当内部温度超过 150℃ 时, MP150 停止开关操作。 热保护 (TSD) 期间, VCC 电容器放电至 2.4V, 然后内部高压调节器重新充电 VCC。

开环检测

如果 V_{FB} 降至低于 60mV, IC 将停止工作并重启。 在软启动过程中,开环检测被屏蔽 128 个开关周期。

前沿消隐

IC 内的电流检测电阻器与电流比较器输入之间内部前沿消隐(LEB)模块避免了由于寄生电容所引起的开关提前终止。在消隐时间内,电流比较器被屏蔽,不能关闭外部 MOSFET。图 6 显示了前沿消隐的工作机制。

图 6: 前沿消隐

应用信息

表 1.使用 MP150 的常见拓扑结构

拓扑选项

MP150 可用于常见的拓扑结构,如降压、升降压、升压和反激。更多信息,请见表 1。

部件选择

输入电容器

输入电容器为转换器提供直流输入电压。图 **7** 显示了典型半波整流器直流总线电压波形图。

图 7: 输入电压波形图

通常,全电压输入条件下,半波整流器需要一个 3uF/W 额定值的输入电容器。当使用全波整流器 时,需选择一个小的输入电容器,但最小直流电 压不得低于 70V,以免触发过温保护。

电感器

MP150 具有最小关断时间限制,决定了最大输出功率。最大输出功率随着电感量的增加而增大。使用一个电感量非常小的电感器可能会造成满载时故障,但使用较大的电感器也意味着更高的OLP 负载。故在能够提供额定功率输出的条件下,建议选择具有较小电感量的电感器。最大输出功率可根据以下公式估算出:

$$P_{omax} = V_o(I_{peak} - \frac{V_o \tau_{minoff}}{2L})$$
,用于 CCM

$$P_{\text{omax}} = \frac{1}{2}LI_{\text{peak}}^2 \cdot \frac{1}{\tau_{\text{minoff}}}$$
 ,用于 DCM

应考虑到转换器的参数-例如峰值电流限和最小关断时间-估计出最大输出功率的最小电感功率(P_{min}),然后选择 P_{min} 值超过额定功率的电感器。

以输出电压 5V 和 12V 为例,其中图 8 示例显示了 5V 输出的 P_{min} 曲线,图 9 显示了 12V 输出的 P_{min} 曲线(I_{peak} =0.29A, τ_{minoff} = $18\mu s$)。

图 9: 12V 时 P_{min} vs. L

对于一个 0.5W 输出转换器 (5V, 0.1A), 基于 图 8 估算得出的最小电感值约为 0.6mH。同样, 对于 1.2W 输出转换器 (12V, 0.1A), 基于图 9 估算出其最小电感值约为 0.9mH。

为降低成本,可使用不低于计算值的市售标准电感器。

续流二极管

选择二极管时,其最大反向电压额定值应超过最大输入电压值,并且其额定电流值应超过输出电流值。

续流二极管的反向恢复会影响效率和电路工作, 所以请使用超快恢复二极管,如用于 DCM 时选 EGC10JH,而用于 CCM 时选择 UGC10JH。

输出电容器

输出电容器用来维持直流输出电压。估算输出电压纹波的公式为:

$$V_{\text{CCM_ripple}} = \frac{\Delta i}{8f_s C_o} + \Delta i \cdot R_{\text{ESR}}$$
,用于 CCM

$$V_{\text{DCM_ripple}} = \frac{I_o}{f_s C_o} \cdot \left(\frac{I_{pk} - I_o}{I_{pk}}\right)^2 + I_{pk} \cdot R_{\text{ESR}}$$
,用于DCM

建议采用陶瓷、钽或低 ESR 电解电容器,以降低输出电压纹波。

反馈电阻

分压电阻决定了输出电压的大小。应选择合适的 R1 和 R2 值以使 V_{FB} 保持在 2.5V。应避免 R2 值 过大(R2 通常为 $5k\Omega$ 到 $10k\Omega$)。

反馈电容器

反馈电容器提供输出电压的采样和保持功能。容量太小会导致在轻载下负载调整率变差,容量太大会影响电路正常工作。请使用以下公式估算出电容范围:

$$\frac{1}{2}\frac{V_o}{R_1+R_2}\cdot\frac{C_o}{I_o} \leq C_{FB} \leq \frac{V_o}{R_1+R_2}\cdot\frac{C_o}{I_o}$$

根据实际情况选择合适的电容值。

假负载

需要一个假负载来保证负载调整率。这样就能保证有足够的电感能量给采样保持电容充电,以便能正确检测输出电压。以 3mA 的假负载开始,可根据需要进行调整。

浪涌性能

应选择合适的输入电容器,以获得良好的防浪涌能力。图 10 所示为半波整流器。表 2 显示了正常条件下不同浪涌电压所需的电容值。

图 10: 半波整流器

表 2: 建议电容值

** * **********************************					
浪涌电压	500V	1000V	2000V		
C1	1µF	10µF	22µF		
C2	1µF	4.7µF	10µF		

布局指南

PCB 布局对于运行的稳定性,良好的 EMI 性能和散 热性能至关重要。为获得最佳效果,请遵循以下建议。

- 1) 输入电容器、IC、续流二极管、电感器和输出 电容器组成的回路包围的面积应控制到最小。
- 2) 功率电感器放置在远离输入滤波器的位置。
- 3) 在 FB 引脚和源极引脚之间,靠近 IC 放置一个几百 pF 的电容器。
- 4) 将漏极引脚连接至散热焊盘或大面积铺铜,以 提高散热性能。

顶层

底层

设计实例

以下为符合应用指南规格的设计实例:

表 3: 设计实例

V _{IN}	85 至 265Vac	
V _{OUT}	5V	
I _{OUT}	200mA	

图 12 显示了详细的应用原理图。典型性能特征和波形图已在典型性能特性章节中显示。更多详细应用信息,请参考相关评估板规格书。

© 2018 MPS 版权所有。

典型应用电路

图 11 为采用了 MP150 的 5V, 200mA 非隔离式电源的典型应用示例。

图 11: 典型应用示例; 5V, 200mA

流程图

UVLO, OTP, SCP, OLP and Open Loop Protection are auto restar 图 12: 控制流程图

图 13: 故障下的信号演变图

© 2018 MPS 版权所有。

封装信息

TSOT23-5

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

DETAIL "A"

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING CONFORMS TO JEDEC MO-178, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.

封装信息

SOIC8

TOP VIEW

RECOMMENDED LAND PATTERN

FRONT VIEW

SIDE VIEW

DETAIL "A"

NOTE:

- 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX.
- 5) DRAWING CONFORMS TO JEDEC MS-012, VARIATION AA.
- 6) DRAWING IS NOT TO SCALE.

注:本文中信息如有变更,不另通知。当前所用规格,请联系 MPS。用户应确保其对 MPS 产品的具体应用不侵犯他人知识产权,MPS 不对此类应用承担任何法律责任。