

Andreas Jordan

Bufferpool-Fragmentierung beim SQL Server erkennen

#ittage

ORDIX AG

Bufferpool-Fragmentierung beim SQL Server erkennen

Andreas Jordan

IT-Tage 14.12.2023, Frankfurt am Main

Andreas Jordan

- Principal Consultant und Teamleiter
- Microsoft SQL Server
- Oracle Database
- PowerShell
- Sprecher auf den <u>IT-Tagen 2015, 2022, 2023</u>
- Sprecher auf der <u>DOAG Konferenz & Ausstellung 2022, 2023</u>
- https://blog.ordix.de/andreas-jordan

Agenda

- Fragmentierung: Egal oder schädlich?
- Welche Seiten sind im Hauptspeicher?
- Fragmentierung ganz klassisch ermitteln
- Meine Empfehlungen

- Vorab:
 - Die Datenbank teilt alle Daten in 8 kByte große Seiten (pages) ein.
 - Dies ist die kleinste Einheit, die zwischen der Festplatte und dem Hauptspeicher ausgetauscht wird.
- Externe Fragmentierung:
 - Die Position der Seiten innerhalb der Datendatei ist nicht optimal.
- Interne Fragmentierung:
 - Der Füllgrad der Seiten ist nicht optimal.
- Heute im Fokus:
 - Die Seiten im Hauptspeicher.

ORDİX AG

ORDİX AG

ORDİX AG

ORDIX AG

■ Die Antwort darauf hat die Systemsicht sys.dm_os_buffer_descriptors.

Column name	Data type	Description
database_id	int	ID of database associated with the page in the buffer pool.
file_id	int	ID of the file that stores the persisted image of the page.
page_id	int	ID of the page within the file.
page_level	int	Index level of the page.
allocation_unit_id	bigint	ID of the allocation unit of the page. This value can be used to join sys.allocation_units.
page_type	nvarchar(60)	Type of the page, such as: Data page or Index page.
row_count	int	Number of rows on the page.
free_space_in_bytes	int	Amount of available free space, in bytes, on the page.

ORDIX AG

Wie sieht das in der Praxis aus?

Cached Data MB	Free MB	% Free	DB Name
175.749,02	39.844,72	22,0	***ALL DATABASES***
173.938,23	39.349,53	22,6	TCPRD
1.246,66	347,03	27,8	tempdb
341,95	128,73	37,7	TCRAP_13_DB
209,53	13,35	6,4	msdb
5,32	2,02	38,0	ResourceDb
3,55	2,22	62,5	TcClusterDB_TCPRD
2,52	1,17	46,4	master
1,24	0,57	46,0	model

Cached Data MB	Free MB	% Free	DB Name
25.765,27	10.310,18	40,	0 ***ALL DATABASES***
25.543,92	10.285,73	40,	3 tc
189,42	12,53	6,	6 tempdb
16,31	6,72	41,	2 ResourceDb
10,70	3,14	29,	4 msdb
1,99	0,89	44,	7 master
1,83	0,66	36,	1 TcClusterDB
1,08	0,44	40,	7 model

ORDIX AG

Wie sieht das in der Praxis aus?

Cached Data MB	Free MB	% Free	DB Name
295,32	32,25	9,0	***ALL DATABASES***
226,74	14,84	6,5	COPRA6Test
24,44	2,14	8,8	COPRA6Design
20,38	7,02	34,5	ResourceDb
12,65	3,60	28,5	tempdb
7,27	2,75	37,8	msdb
2,27	1,15	50,7	master
1,57	0,75	47,8	model

ORDIX AG

Geht das per SQL?

```
SELECT database_id

, DB_NAME(database_id) AS database_name

, COUNT(*) AS pages

, COUNT(*)*8/1024 AS mb_total

, SUM(CAST(free_space_in_bytes as bigint))/1024/1024 AS mb_free

FROM sys.dm_os_buffer_descriptors

WHERE database_id BETWEEN 5 and 32760

GROUP BY database_id

ORDER BY SUM(CAST(free_space_in_bytes as bigint)) DESC;
```

database_id	database_name	pages	mb_total	mb_free	pct_free
5		2207142	17243	4983	28
6	_PRODU	119556	934	305	32
7	_PRINT	80949	632	28	4
9	_T	14835	115	14	12
8	TRANSFER	438	3	1	35

database_id	database_name	page_type_and_level	pages	mb_total	mb_free
5	\	DATA_PAGE	1967816	15373	4752
6	_PRODU	DATA_PAGE	146784	1146	281
5	\ \	INDEX_PAGE_non_leaf	25530	199	71
5	X.	INDEX_PAGE_leaf	157891	1233	71
7	_PRINT	DATA_PAGE	5051	39	22
6	_PRODU	INDEX_PAGE_leaf	13061	102	19

table_name	index_id	index_name	index_type	page_type_and_level	pages	mb_total	mb_free	avg_free_space_in_bytes	avg_page_space_used_in_percent
EKPOS	1	PK_EKPOS	CLUSTERED	DATA_PAGE	761544	5949	1704	2346	71
AUFARTIK	1	PK_AUFARTIK	CLUSTERED	DATA_PAGE	480760	3755	1324	2887	64
AUFKOPF	1	PK_AUFKOPF	CLUSTERED	DATA_PAGE	125746	982	297	2479	69
EKKOPF	1	PK_EKKOPF	CLUSTERED	DATA_PAGE	131163	1024	222	1782	77
GRP	1	PK_GRP	CLUSTERED	DATA_PAGE	86046	672	215	2621	67
LIEFPOS	1	PK_LIEFPOS	CLUSTERED	DATA_PAGE	52171	407	179	3617	55
AUFTEXT	1	PK_AUFTEXT	CLUSTERED	DATA_PAGE	54944	429	170	3250	59
LIEFKOPF	1	PK_LIEFKOPF	CLUSTERED	DATA_PAGE	24500	191	70	3000	62
EKLIEFK	1	PK_EKLIEFK	CLUSTERED	DATA_PAGE	18780	146	60	3379	58
MWBUCH_H	1	PK_MWBUCH_H	CLUSTERED	DATA_PAGE	18932	147	43	2385	70
GESTELL_HIST	1	PK_GESTELL_HIST	CLUSTERED	DATA_PAGE	15281	119	42	2889	64
BE_KOPF	1	PK_BE_KOPF	CLUSTERED	DATA_PAGE	13789	107	41	3160	60
BELEGARCHIV	1	PK_BELEGARCHIV	CLUSTERED	DATA_PAGE	18639	145	39	2222	72
AUFPREIS	1	PK_AUFPREIS	CLUSTERED	DATA_PAGE	12612	98	38	3188	60
RECHKOPF	1	PK_RECHKOPF	CLUSTERED	DATA_PAGE	38494	300	33	919	88
AUFPOS	1	PK_AUFPOS	CLUSTERED	DATA_PAGE	10851	84	29	2821	65

- Welche Datenbanken sind dominant?
- Wie verändern sich die Anteile über die Zeit?
- Welche Objekte sind dominant?
- Wie verändern sich die Anteile über die Zeit?
- Wie verändert sich der freie Platz über die Zeit?

Fragmentierung ganz klassisch ermitteln

- sys.dm_db_index_physical_stats
 - avg_fragmentation_in_percent
 - Berücksichtigt den kompletten Index.
 - Berücksichtigt vor allem externe Fragmentierung.
 - Wird von Wartungsplänen und Ola Hallengren genutzt.
 - avg_page_space_used_in_percent
 - Berücksichtigt nur die interne Fragementierung.
 - Die Seiten müssen in den Hauptspeicher geladen werden.
 - Ist nur bei SAMPLED und DETAILED vorhanden, nicht bei LIMITED.

Meine Empfehlungen

ORDIX AG

- Regelmäßige Defragmentierung mit der Maintenance Solution von Ola Hallengren.
 - Schwellwerte anpassen.
 - LogToTable verwenden.
- Θ

So wenig Defragmentierung wie möglich, so viel wie nötig.

- Regelmäßige Analyse der Hauptspeicherverwendung mit sys.dm_os_buffer_descriptors.
 - Wie viel "Luft" befindet sich im Hauptspeicher?
 - Welche Indizes sind dafür verantwortlich?

Bei wenig "Luft" muss nicht defragmentiert werden.

ORDIX AG

Aktiengesellschaft für Softwareentwicklung, Schulung, Beratung und Systemintegration

Zentrale Paderborn Karl-Schurz-Straße 19a 33100 Paderborn Tel.: 05251 1063-0

Fax: 0180 1 67349 0

Seminarzentrum Wiesbaden Kreuzberger Ring 13 65205 Wiesbaden Tel.: 0611 77840-00

info@ordix.de https://www.ordix.de/