Projekt - Zpracování multimediálních dat 2024

Cílem projektu je vytvoření aplikace, která bude demonstrovat techniky vodoznačení v prostorové a frekvenční oblasti a vybrané útoky na vodoznačená data. Dále bude implementována sadu testů odolnosti vodoznačených dat vůči různým útokům. Výsledkem projektu bude tedy nejen program pro vložení a extrakci vodoznaku, ale i vyhodnocení odolnosti vloženého vodoznaku v hostitelských datech. Vyhodnocení bude vhodně interpretováno v tabulce s popisem (Excel). Vodoznačící techniky budou použity celkem 2 a to buď níže popsané, nebo libovolné vybrané např. z databáze článků https://ieeexplore.ieee.org/. Platí však pravidlo, že každá technika musí využívat jinou doménu pro vložení vodoznaku (prostorová, frekvenční).

Vodoznakem bude Vámi vytvořený černobílý obrázek.

- 1) Vodoznačící technika využívající prostorovou oblast vložení viditelného/skrytého vodoznaku:
 - a. Možnost volby bitové hladiny pro vložení vodoznaku.
 - b. Vodoznak bude moci být vložen do složky Y, Cb a Cr. Uživatel si bude moci vybrat, vždy pouze do 1 oblasti.
- 2) Vodoznačící technika využívající frekvenční oblast po DCT vkládající skrytý vodoznak:
 - a. Vodoznačící metoda bude využívat bloky o Vámi zadané velikosti.
 - b. Možnost volby frekvenčních koeficientů, které budou použity pro vložení vodoznaku.
- 3) Rozšíření pro vkládání vodoznaků z části 1 a 2
 - a. Možnost definice odolnosti vloženého vodoznaku (h).
 - b. Možnost vkládat vodoznak na více míst jednoho obrazu.

Útoky, které budou implementovány (každý si vybere 3, z nichž pouze 1 může být útokem PNG nebo JPEG a 1 bude útok ořezáním):

- Útok kompresí JPEG,
- Útok kompresí PNG,
- Útok rotací obrazu 45° a 90°,
- Útok změny velikosti obrazu na 75% a 50% (poměr stran zůstane zachován),
- Útok převrácením obrazu (mirroring),
- Útok ořezáním obrazu.

K řešení projektu můžete využít aplikaci ze cvičení a jakoukoli knihovnu – doporučuji se držet ImageJ a Matrix, kde naleznete všechny potřebné metody. K projektu nesmíte využít již hotový software pro vodoznačení stažený z Internetu. Implementovat můžete metody popsané níže nebo jejich modifikace nebo jiné metody popsané v článcích na https://ieeexplore.ieee.org/ či jinde.

Hodnocení projektu:

- Implementace vodoznačící metody 1: 4 body
- Implementace vodoznačící metody 2: 4 body
- Implementace bodu 3: 4 body
- Implementace útoků: 6 bodů (2 body za jeden útok)
- Interpretace výsledků v tabulce: 2 body

Minimální požadavek pro splnění zápočtu je Implementace vodoznačící metody 1 a získání 4 bodů.

Kontrolní cvičení, kdy přinesete na ukázku postup řešení, implementovanou alespoň 1. vodoznačící metodu, je ve čtvrtek 11. dubna vždy v celou hodinu 12, 13, 15, 16. Součástí

kontrolního cvičení bude také možnost konzultací! Kontrolní cvičení je dobrovolné, avšak doporučené z důvodu kontroly správnosti pochopení problematiky.

Postup odevzdání projektu:

- Projekt nazvěte dle vašeho ID,
- projekt vyexportujte do archivu (zip souboru),
- do zip souboru přiložte navíc xlsx soubor, pokud jej máte,
- archivovaný projekt vložte do e-learningu.

Odevzdání projektu – viz e-learning.

Obhajoba projektu bude probíhat ve 12. popřípadě 13. týdnu semestru.

Metoda vodoznačení LSB v jasové složce

Princip vložení vodoznaku je patrný z Obrázek 1.

Obrázek 1: LSB technika – vložení vodoznaku

Nejdůležitějším parametrem pro vložení vodoznaku metodou LSB je parametr hloubka vložení h. Ten definuje, jaká z bitových hladin originálního obrazu C_0 bude využita pro vložení permutovaného vodoznaku W. Na základě parametru h se tedy vynulují veškeré bity v dané hladině originálního obrazu C_0 , čímž vznikne obraz C_0 * připravený pro vložení vodoznaku. Z binárního permutovaného vodoznaku W se vytvoří osmibitový vodoznak W*, kde všechny hladiny, kromě hladiny h, budou nulové. Hladina h bude obsahovat hodnoty binárního vodoznaku.

Vlastní vodoznačení poté probíhá prostým součtem obou upravených obrazů (vodoznaku W^* a originálního obrazu C_0^*).

$$\mathbf{C}_{\mathbf{w}} = \mathbf{C}_{\mathbf{o}}^* + \mathbf{W}^*$$

Příklad je uveden na osmi-bitovém pixelu originálního obrazu C_0 , do kterého je vložena informace z vodoznaku W. Hloubka vložení je nastavená na h = 3.

	MSB							LSB
c_o	1	0	1	1	0	1	0	1
w	1	0	0	0	0	0	0	0
	MSB							LSB
${c_o}^*$	1	0	1	1	0	0	0	1
w*	0	0	0	0	0	1	0	0
	MSB							LSB
C_W	1	0	1	1	0	1	0	1

K extrakci vodoznaku je zapotřebí znát hloubku vložení h, vodoznačený obraz C_w a klíč k, který byl použit pro permutaci při vkládání vodoznaku.

Obrázek 2: LSB technika – extrakce vodoznaku

Extrakce probíhá vyjmutím nejméně významných bitů hladiny h z vodoznačného obrazu. Tyto bity se stávají nejvíce významnými bity vodoznaku a je k nim doplněn patřičný počet nul.

1.1 Vodoznačení s využitím 2D-DCT transformace

Při vkládání vodoznaku do originálních dat se použijí koeficienty (u_1, v_1) , (u_2, v_2) ve frekvenční oblasti, kde u_i a v_i definují pozici bodů v transformovaném bloku frekvenčních koeficientů o rozměru 8x8 prvků. Tyto dva koeficienty jsou vybírány z oblasti středních frekvencí a to proto, aby byla zajištěna odolnost daného vodoznaku a zároveň jeho nevnímatelnost. Při vkládání vodoznaku jsou používány takové koeficienty u, v, které jsou kvantovány stejným počtem kvantizačních hladin. Z doporučené kvantizační tabulky pro jasové složky u komprese JPEG (Tabulka) plyne, že vhodnými koeficienty jsou například (3,1) a (4,1), (4,3) a (5,2), (1,4) a (3,3) a další. Proces vložení vodoznaku do barvonosných složek U a V je méně efektivní zejména díky podvzorkování využívaného téměř ve všech kompresních standardech. Z toho důvodu se u většiny případů používá frekvenční oblast jasové složky.

	16	11	10	16	24	40	51	61
	12	12	14	19	26	58	60	55
	14	13	16	24	40	57	69	56
	14	17	22	29	51	89	80	62
	18	22	37	56	68	109	103	77
,	24	35	55	64	81	104	113	92
	49	64	78	87	103	121	120	101
,	72	92	95	98	112	100	103	99

Tabulka 1: Tabulka pro kvantizaci DCT koeficientů jasových složek ve standardu JPEG

Metodu vložení vodoznaku popisuje Obrázek 3.

Proces vložení vodoznaku

Originální obraz C₀ je v první fázi rozložen na bloky **B** o rozměrech 8x8 pixelů přesně tak, jak je tomu u standardu JPEG. Na každý blok **B** je aplikována 2D diskrétní kosinová transformace podle rovnice

$$G(i,j) = \frac{1}{4}C_iC_j \sum_{x=0}^{7} \sum_{y=0}^{7} B(x,y)\cos\frac{(2y+1)j\pi}{16}\cos\frac{(2x+1)i\pi}{16},$$

kde

$$C_i = \frac{1}{\sqrt{2}} pokud i = 0, jinak C_i = 1$$

$$C_j = \frac{1}{\sqrt{2}} pokud j = 0, jinak C_j = 1$$

Následuje úprava rozměrů vodoznaku **W**. V tomto případě je potřeba zajistit, aby celkový počet pixelů vodoznaku **W** byl menší nebo roven celkovému počtu bloků **B**. Po úpravě vodoznaku je možné přistoupit k samotnému vložení vodoznaku do originálního obrazu **C**₀. Originální obraz je během procesu vodoznačení upravován podle následujících pravidel:

- V případě, že bit vodoznaku vkládaného do bloku **B** je roven nule, musí platit nerovnice $B_i(u_i, v_i) > B_j(u_j, v_j)$, kde B_i a B_j představují dva vybrané koeficienty v transformované matici. Pokud tato podmínka není splněna, jsou tyto koeficienty navzájem prohozeny.
- V případě, že bit vodoznaku vkládaného do bloku B je roven jedné, musí platit nerovnice B_i(u_i, v_i) ≤ B_j(u_j, v_j), kde B_i a B_j představují dva vybrané koeficienty v transformované matici. Pokud tato podmínka není splněna, jsou tyto koeficienty navzájem prohozeny.

Obrázek 3: Vložení vodoznaku metodou DCT

Pro zvýšení odolnosti vloženého byl zaveden koeficient hloubky vložení h. Pokud neplatí podmínka

$$|B_i(u_1, v_1) - B_i(u_2, v_2)| > h,$$
 3

je hodnota h/2 k jednomu z vybraných koeficientů bloku B_i přičtena a od druhého odečtena tak, aby byla nerovnice 3 splněna. V případě, že je podmínka 3 splněna, zůstávají koeficienty B_i nezměněny. Po úpravě všech bloků originálního obrazu C_0 je s každým blokem provedena inverzní 2D diskrétní kosinová transformace dle rovnice

$$B(x,y) = \frac{1}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} C_i C_j G(i,j) \cos \frac{(2y+1)j\pi}{16} \cos \frac{(2x+1)i\pi}{16}.$$

Jednotlivé bloky jsou dále uspořádány do obrazu, čímž je získán vodoznačený obraz C_w.

Proces extrakce vodoznaku

Extrakce vodoznaku je vyobrazena na Obrázek 4.

Obrázek 4: Extrakce vodoznaku metodou DCT

Jak je patrné, k extrakci je potřebný pouze vodoznačený obraz C_w , který je v první fázi extrakce rozdělen na bloky $\mathbf B$ o stejné velikosti jako u procesu vkládání, tedy na bloky $\mathbf B$ o velikosti 8x8 pixelů. Každý blok je transformován do frekvenční oblasti pomocí 2D diskrétní kosinové transformace podle

$$G(i,j) = \frac{1}{4}C_iC_j \sum_{x=0}^{7} \sum_{y=0}^{7} B(x,y)\cos\frac{(2y+1)j\pi}{16}\cos\frac{(2x+1)i\pi}{16},$$
 5

Ve fázi, kdy jsou získány všechny transformované bloky **B**, je zahájen proces extrakce vodoznaku. Ten probíhá porovnáním koeficientů každého bloku na stejných pozicích, které byly použity při vkládání vodoznaku. V případě splnění nerovnosti

$$B_i(u_i, v_i) > B_j(u_j, v_j)$$

je extrahovaný bit vodoznaku w'_i roven nule, jinak je w'_i roven jedné. Z extrahovaných bitů vodoznaku je sestaven vodoznak \mathbf{W}' .