CSC 307: DISCRETE STRUCTURES MR FELIX

- A set is a collection of distinct objects or elements. These elements can be anything, such as numbers, letters, or even other sets.
- Sets are denoted using capital letters, often from the beginning of the alphabet (e.g., A, B, C).
- The elements of a set are enclosed within curly braces. For example, if we have a set of natural numbers less than 10, it can be represented as {1, 2, 3, 4, 5, 6, 7, 8, 9}.
- Sets are defined by their elements, and the order in which elements are listed does not matter. For example, {1, 2, 3} is the same set as {3, 2, 1}.

- Elements, Membership, and Notation
- An element is an individual object within a set. For example, in the set of natural numbers less than 10, 3 is an element.
- We use the symbol "∈" to denote that an element belongs to a particular set. For example, "3 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}".
- To indicate that an element is not part of a set, we use the symbol "∉". For example, "10 ∉ {1, 2, 3, 4, 5, 6, 7, 8, 9}".

Set Equality

Two sets are equal if and only if they have exactly the same elements.

For example, if set $A = \{1, 2, 3\}$ and set $B = \{3, 2, 1\}$, then A = B because they have the same elements.

Subsets and Supersets

A set A is considered a **subset** of another set B if every element in A is also an element in B. This is denoted as $A \subseteq B$.

Conversely, if A is a subset of B, then B is a **superset** of A, denoted as $B \supseteq A$.

A set is always considered a subset of itself, i.e., $A \subseteq A$.

Set Equality

Two sets are equal if and only if they have exactly the same elements.

For example, if set $A = \{1, 2, 3\}$ and set $B = \{3, 2, 1\}$, then A = B because they have the same elements.

Subsets and Supersets

A set A is considered a **subset** of another set B if every element in A is also an element in B. This is denoted as $A \subseteq B$.

Conversely, if A is a subset of B, then B is a **superset** of A, denoted as $B \supseteq A$.

A set is always considered a subset of itself, i.e., $A \subseteq A$.

Union and Intersection

• The **union** of two sets, denoted by A U B, contains all the elements that are in either set A or set B or in both.

For example, if $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, then $A \cup B = \{1, 2, 3, 4, 5\}$.

- The **intersection** of two sets, denoted by $A \cap B$, contains all the elements that are common to both set A and set B.
- Using the same sets A and B, $A \cap B = \{3\}$.

Set Difference and Complement

The **set difference** between two sets, A - B (or $A \setminus B$), contains all the elements that are in set A but not in set B.

For example, if $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, then $A - B = \{1, 2\}$.

The **complement** of a set A with respect to a universal set U is the set of all elements in U that are not in A. It is denoted as A'.

Disjoint Sets

Two sets A and B are **disjoint** if they have no elements in common, i.e., $A \cap B = \emptyset$.

For example, if $A = \{1, 2\}$ and $B = \{3, 4\}$, then A and B are disjoint sets.

De Morgan's Laws

De Morgan's Laws are important principles in set theory:

First De Morgan's Law: The complement of the union of two sets is equal to the intersection of their complements.

$$(A \cup B)' = A' \cap B'$$

Second De Morgan's Law: The complement of the intersection of two sets is equal to the union of their complements.

$$(A \cap B)' = A' \cup B'$$

These laws are valuable for simplifying complex set expressions and logical statements.

Symmetric Difference

The **symmetric difference** of two sets, denoted by A \triangle B, contains all the elements that are in either set A or set B but not in both.

$$A \triangle B = (A \cup B) - (A \cap B)$$

Let's consider the same sets A and B:

First, find the union of A and B: A \cup B = {1, 2, 3} \cup {3, 4, 5} = {1, 2, 3, 4, 5}

Now, find the complement of the union: $(A \cup B)' = \{1, 2, 3, 4, 5\}' = \{complement of \{1, 2, 3, 4, 5\} \text{ with respect to the universal set}\}$

If the universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, then $(A \cup B)' = \{6, 7, 8\}$

So, according to the First De Morgan's Law, $(A \cup B)' = A' \cap B'$:

$$(A \cup B)' = \{6, 7, 8\} A' \cap B' = (\{1, 2, 3, 4, 5\})' \cap (\{1, 2, 3, 4, 5\})' = \{6, 7, 8\}$$

Example 2: Second De Morgan's Law - Complement of Intersection

Let's consider the same sets A and B:

$$A = \{1, 2, 3\} B = \{3, 4, 5\}$$

Now, we want to find the complement of the intersection of A and B, $(A \cap B)'$.

First, find the intersection of A and B: A \cap B = {1, 2, 3} \cap {3, 4, 5} = {3}

Now, find the complement of the intersection: $(A \cap B)' = \{3\}' = \{\text{complement of } \{3\} \text{ with respect to the universal set} \}$

Using the same universal set $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, then $(A \cap B)' = \{1, 2, 4, 5, 6, 7, 8\}$ So, according to the Second De Morgan's Law, $(A \cap B)' = A' \cup B'$:

$$(A \cap B)' = \{1, 2, 4, 5, 6, 7, 8\} A' \cup B' = (\{1, 2, 3, 4, 5\})' \cup (\{3, 4, 5\})' = \{1, 2, 4, 5, 6, 7, 8\}$$

Example 3: Symmetric Difference

Now, let's find the symmetric difference of sets A and B:

$$A = \{1, 2, 3\} B = \{3, 4, 5\}$$

Symmetric Difference (A Δ B) contains elements that are in A or in B, but not in both.

First, find the union of A and B: A \cup B = {1, 2, 3} \cup {3, 4, 5} = {1, 2, 3, 4, 5}

Then, find the intersection of A and B: $A \cap B = \{1, 2, 3\} \cap \{3, 4, 5\} = \{3\}$

Finally, calculate the symmetric difference: A \triangle B = (A \cup B) - (A \cap B) = {1, 2, 3, 4, 5} - {3} = {1, 2, 4, 5}

So, A \triangle B = {1, 2, 4, 5}, which includes elements that are in either A or B but not in both.