In [621	<pre>import astropy.units as u import astropy.constants as c from astropy.coordinates import SkyCoord from astropy.time import Time import numpy as np import matplotlib.pyplot as plt import pandas as pd import glob %matplotlib inline</pre>
In [622	plt.rcParams['figure.figsize'] = (10, 10) plt.rc('axes', labelsize=14) plt.rc('axes', labelweight='bold') plt.rc('axes', titlesize=16) plt.rc('axes', titleweight='bold') plt.rc('font', family='sans-serif') Problem 1 Problem 1
	Problem 1: The Lotka–Volterra equations The Lotka–Volterra equations are a mathematical model of predator–prey interactions between biological species. Let two variables x and y be proportional to the size of the populations of two species, traditionally called "rabbits" (the prey) and "foxes" (the predators). You could think of x and y as being the population in thousands, say, so that $x = 2$ means there are 2000 rabbits. Strictly the only allowed values of x and y would then be multiples of 0.001, since you can only have whole numbers of rabbits or foxes. But 0.001 is a pretty close spacing of values, so it's a decent approximation to treat x and y as continuous real numbers so long as neither gets very close to zero. In the Lotka–Volterra model the rabbits reproduce at a rate proportional to their popula- tion, but are eaten by the foxes at a rate proportional to both their own population and the population of foxes: dx dt = $\alpha x - \beta xy$, where α and β are constants. At the same time the foxes reproduce at a rate proportional the rate at which they eat rabbits—because they need food to grow and reproduce—but also die of old age at a rate proportional to their own population: dy dt = $\gamma xy - \delta y$, where $\gamma xy = \delta y$ and $\delta xy = \delta y$ are also constants. a) Write a program to solve these equations using the fourth-order Runge–Kutta method for the case $\alpha = 1$, $\beta = \gamma = 0.5$, and $\delta = 2$, starting from the initial condition $x = y = 2$. Have the program make a graph showing both $x = \delta y$ and $x = \delta y$ and $x = \delta y$ are also constants. The initial condition is a function of ($x = \delta y$) with not dependence. You may nonetheless find it convenient to define a Python function of ($x = \delta y$) including the time variable, so that your program takes the same form as other programs given in Newman's Chapter 8. You don't have to do it that way, but it can avoid some confusion. Several of the following exercises have a similar lack of explici
	$\begin{array}{l} \operatorname{def} \ \operatorname{rk4}(\operatorname{function}, \mathbf{a}, \mathbf{b}, \mathbf{N}) \colon \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
	we express: $\frac{dr}{dt} = f(r,t)$ $r(t+h) = r(t) + h\frac{dr}{dt} = r(t) + hf(r,t)$ #Defining our functions to differentiate $A = 1$ $B = G = 0.5$ $D = 2$ $\det f(x,t,y): return ((A*x)-(B*x*y))$
In [5]:	<pre>def fy(x, t, y): return (G*x*y - D*y) #Defininf the vector for the runge kata def f(r,t): x = r[0] y = r[1] Fx = fx(x,t,y) Fy = fy(x,t,y) return np.array([Fx,Fy], float)</pre>
In [6]:	<pre>#initialization parameters N=1000 a = 0 b = 30 h = (b-a)/N tpoints = np.arange(a, b, h) xpoints = [] ypoints = [] r = np.array([2.0,2.0], float) for t in tpoints: #Add the previos solution to the list, caclulate the runge kata coeficients and compute the new r xpoints.append(r[0]) ypoints.append(r[1]) k1 = h*f(r,t) k2 = h*f(r+0.5*k1, t+0.5*h) k3 = h*f(r+0.5*k2, t+0.5*h) k4 = h*f(r+k3, t+h) r+= (1/6)*(k1+ 2*k2 + 2*k3 + k4)</pre> plt.rcParams['figure.figsize'] = (20, 10)
	plt.plot(tpoints, xpoints, label = 'X', c = 'm', lw = 5) plt.plot(tpoints, ypoints, label = 'Y', c = 'g', lw = 5) plt.xlabel('Time') plt.title('Population Growth and Decay Overtime') plt.xlim(0,29.95) plt.legend(); Population Growth and Decay Overtime 7- 6- 5-
	Time b) Describe This is a population of predators and prey animals. When there are too many predators, the prey population shrinks and this lack of food then shrinks the predator population. With less predators the prey population can increase, and the predator population then increases due to the larger food supply. The cycle repeats and we can see this hapening in the graph. Problem 2 Problem 2: Vibration in a one-dimensional system Let's study the motion of a system of N identical masses (in zero gravity) joined by identical linear springs like this: 1 As shown in Newman's Example 6.2, the horizontal displacements ξ i of masses $i = 1 \dots N$ satisfy equations of motion m d2 ξ 1 dt2 = $k(\xi^2 - \xi_1) + F1$, m d2 ξ 1 dt2 = $k(\xi^1 + 1 - \xi) + k(\xi^1 - 1 - \xi) + Fi$, m d2 ξ N dt2 = $k(\xi^1 - 1 - \xi) + Fi$, where m is the mass, k is the spring constant, and F1 is the external force on mass i. Example 6.2 shows how these equations could be solved by guessing a form for the solution and using a matrix method. Here we'll solve them more directly. Write a program to solve for the motion of the masses using the fourth-order Runge-Kutta method, where m = 1 and k = 6, and the driving forces are all zero except for F1 = cos ω 1 with ω = 2. Plot your solutions for the displacements ξ 1 of all the masses as a function of time from t = 0 to t = 20 on the same plot. Write your program to work with general N, but test it out for small values—N = 5 is a reasonable choice. You will need first of all to convert the N second-order equations of motion into 2N first- order equations. Then combine all of the dependent variables in those equations into a single large vector r to which you can apply the Runge-Kutta method in the standard I dont like the squiglies so I'm using x: $m \frac{d^2x_1}{dt^2} = k(x_1 - x_1) + k(x_1 - x_1) + F_1$ $m \frac{d^2x_2}{dt^2} = k(x_{11} - x_{12}) + k(x_{11} - x_{12}) + F_1$ We need to convert the two second order equations each to two seperate first order equations to solve.
	for the ith mass: $m\frac{d^2x_i}{dt^2}=k(x_{i+1}-x_i)+k(x_{i-1}-x_i)+F_i$ $\frac{d^2x_i}{dt^2}=\frac{1}{m}(k(x_{i+1}-x_i)+k(x_{i-1}-x_i)+F_i)$ Generally, we have the equation form: $\frac{d^2x_i}{dt^2}=f(x_i,\frac{dx_i}{dt},t)$ but our equation instead needs to be adapted to the form: $\frac{d^2x_i}{dt^2}=f(x_i,x_{i+1},x_{i-1},t)$ We can try following example 8.6: $\det\frac{dx_i}{dt}=\omega$
	New system of equations: $\frac{dx_i}{dt} = \omega$ $\frac{d\omega}{dt} = \frac{1}{m}(k(x_{i+1} - x_i) + k(x_{i-1} - x_i) + F_i)$ Similarly for the Nth particle: $\frac{dx_N}{dt} = \omega$ $\frac{d\omega}{dt} = \frac{1}{m}(k(x_{N-1} - x_N) + F_N)$
In [14]:	<pre>#Create function for the F coefficients def Fi(i, t): if i == 1: return np.cos(w*t) else: return 0 # compute the function for any mass i for a number of masses Nmass def f(r,t, i, Nmass, xnext, xlast): xi = r[0] omega = r[1] ftheta = omega F = Fi(i, t) if i == Nmass: fomega = (1/m)*(k*(xlast-xi)+F) elif i ==1: fomega = (1/m)*(k*(xnext-xi)+F) else: fomega = (1/m)*(k*(xnext-xi)+F)</pre> return np.array([ftheta, fomega], float) #Compute the runge kata approximation def rk(a,b,b,f,i,r,Nmass, xnext, xlast); #Compute the runge kata approximation def rk(a,b,b,f,i,r,Nmass, xnext, xlast); #Compute the runge kata approximation
	<pre>def rk(a, b, h, f, i, r, Nmass, xnext, xlast): tpoints = np.arange(a, b, h) xpoints = [] ypoints = [] for t in tpoints: xpoints.append(r[0]) ypoints.append(r[1]) k1 = h*f(r,t, i, Nmass, xnext, xlast) k2 = h*f(r+0.5*k1, t+0.5*h, i, Nmass, xnext, xlast) k3 = h*f(r+0.5*k2, t+0.5*h, i, Nmass, xnext, xlast) k4 = h*f(r+k3, t+h, i, Nmass, xnext, xlast) r+= (1/6)*(k1+ 2*k2 + 2*k3 + k4) return xpoints</pre>
	This problem is not clear at all about what it expects for the initial positions of the masses. There are 2 possibilities. 1. The masses all begin at the origin (all have an inital position of 0) This seems to be what the problem is leaning towards, but it is not physically possible and not very intuitive. I will first plot this situation. 1. All the masses start at some arbitrary distance from eachother. This is a case I think makes much more sense. I will plot this second. plt.rcParams['figure.figsize'] = (20, 10) #Define the constants and iteration variables m = 1 k = 6 w = 2 N=1000 a = 0 b = 20
	<pre>mass_pos = [] for i in range(1, Nmass+1): #for the first iteration: if j ==0: if i == 1: xlast = 0 xnext = last_mass_positions[i] elif i == Nmass: xlast = last_mass_positions[i-2] xnext = 0 else: xlast = last_mass_positions[i] xnext = last_mass_positions[i] xnext = last_mass_positions[i-2] r = np.array([last_mass_positions[i-1],0.0], float) else: #for all other iterations</pre>
	<pre>if i == 1:</pre>
	<pre>k3 = h*f(r+0.5*k2, t+0.5*h, i, Nmass, xnext, xlast) k4 = h*f(r+k3, t+h, i, Nmass, xnext, xlast) r+= (1/6)*(k1+ 2*k2 + 2*k3 + k4) #Grab the 5 mass positions and plot them last_mass_positions = mass_pos positions.append(mass_pos) b1 = mass_pos[0] b2 = mass_pos[1] b3 = mass_pos[2] b4 = mass_pos[3] b5 = mass_pos[4] plt.plot(t, b1[0], marker = '.', c = 'k') plt.plot(t, b2[0], marker = '.', c = 'b') nlt.plot(t, b3[0], marker = '.', c = 'r')</pre>
	<pre>plt.plot(t, b3[0], marker = '.', c = 'r') plt.plot(t, b4[0], marker = '.', c = 'orange') plt.plot(t, b5[0], marker = '.', c = 'green') plt.title('Mass Oscilations, All Masses Starting at Origin') plt.scatter(0, 0, c = 'k', label = 'Mass 1') plt.scatter(0, 0, c = 'b', label = 'Mass 2') plt.scatter(0, 0, c = 'r', label = 'Mass 3') plt.scatter(0, 0, c = 'orange', label = 'Mass 4') plt.scatter(0, 0, c = 'green', label = 'Mass 5') plt.xlim(-0.5, 20) plt.xlabel('Time') plt.ylabel('Displacement') plt.scatter(0, 0, c = 'c', label = 'Inital Positions', s = 200) plt.legend();</pre>
	Mass 1 Mass 1 Mass 3 Mass 3 Mass 5 Initial Positions 0.02 Mass 1 Mass
In [27]:	plt.rcParams['figure.figsize'] = (20, 10) #Define the constants and iteration variables m = 1 k = 6 w = 2 N=1000 a = 0 b = 20 h = (b-a)/N
	<pre>tpoints = np.arange(a, b, h) xpoints = [] #last mass positions will store the 5 previous positions for the mass in the last time step. positions #will store these arrays of mass positions. last mass_positions = np.arange(1, Nmass+1) positions.append(last mass.positions) for t in tpoints: j=1 mass_pos = [] for in range(1, Nmass+1): if j ==0:</pre>
	#Wow the rest of this code is structured so strangely. Why did Kelcey write it like this? #Excellent question. For some reason if I were to prit the object bi here, it would print the #correct value. However, if I were to append it to a list defined outside of the time loop I would #only get the very last value for b1 and no other values. I spent hours messing with this in an attempt #to fix the problem and ultimately gave up and plotted it like this and now here we are. If you were to pri # out the variable "positions" you would see what I mean. #I also know that TECHNICALLY plotting it like this makes it non-general for N masses but the problem #only specifies that the code that ends here at line 61 be generalized so I would argue that this is fine. b1 = mass_pos[0] b2 = mass_pos[1] b3 = mass_pos[2] b4 = mass_pos[3] b5 = mass_pos[4] plt.plot(t, b1[0], marker = '.', c = 'k') plt.plot(t, b2[0], marker = '.', c = 'b') plt.plot(t, b4[0], marker = '.', c = 'r') plt.plot(t, b4[0], marker = '.', c = 'orange') plt.plot(t, b5[0], marker = '.', c = 'green') plt.scatter(0, 1, c = 'k', label = 'Mass 1') plt.scatter(0, 2, c = 'b', label = 'Mass 2') plt.scatter(0, 4, c = 'orange', label = 'Mass 3') plt.scatter(0, 5, c = 'green', label = 'Mass 5') plt.xlabel('Time') plt.ylabel('Displacement') plt.ylabel('Displacement') plt.ylabel('Displacement') plt.plot([0, 0, 0, 0, 0], [1, 2, 3, 4, 5], c = 'k', linestyle = '', label = 'Inital Positions')
	Mass Oscilations, Masses Starting in Seperate Locations Mass Oscilations Masses Starting in Seperate Locations
	Problem 3 Problem 3: Oscillating chemical reactions The Belousov–Zhabotinsky reaction is a chemical oscillator, a cocktail of chemicals which, when heated, undergoes a series of reactions that cause the chemical concentrations in the mixture to oscillate between two extremes. You can add an indicator due to the reaction which changes color depending on the concentrations and watch the mixture switch back and forth between two different colors for as long as you go on heating the mixture. Physicist lya Prigogine formulated a mathematical model of this type of chemical oscilla- tor, which he called the "Brusselator" after his home town of Brussels. The equations for the Brusselator are dx dt = 1 · (b + 1)x + ax2y, dy t = bx - ax2y. Here x and y represent concentrations of chemicals and a and b are positive constants. Write a program to solve these equations for the case a = 1, b = 3 with initial conditions x = y = 0, to an accuracy of at least 5 = 10-10 per unit time in both x and y, using the adaptive Bullisch-Stoer method described in Newman's Section 8.5.6. Calculate a solution from t = 0 to t = 20, initially using a single time interval of size H = 20. Allow a maximum of n = 8 modified midpoint steps in an interval before you divide in half and try again. Make a plot of your solutions for x and y as a function of time, both on the same graph, and have your program add dots to the curves to show where the boundaries of the time intervals lie. You should find that the points are significantly closer together in parts of the solution function to call itself. Write a user-defined function called, say, step(r,t,H) that takes as arguments the vector r = (x, y) at a starting time t and an interval length H, and returns the new value of r at time t + H. This function should perform the modified midpoint/Richardson extrapolation called and returns the new value of r at time t + H. This function should perform the modified midpoint steps in the addition con-verges to the required accuracy or you reach the maximum numb
	<pre>def fx(x,t,y): return (1 - (B+1)*x + A*(x**2)*y) def fy(x, t, y): return (B*x-A*(x**2)*y) def f(r,t): x = r[0] y = r[1] Fx = fx(x,t,y) Fy = fy(x,t,y) return np.array([Fx,Fy], float) N=1000 a = 0 b = 20 h = (b-a)/N x = y = 0.0 tpoints = np.arange(a, b, h) xpoints = []</pre>
In [348	<pre>xpoints = [] ypoints = [] r = np.array([x,y], float) for t in tpoints: xpoints.append(r[0]) ypoints.append(r[1]) k1 = h*f(r,t) k2 = h*f(r+0.5*k1, t+0.5*h) k3 = h*f(r+0.5*k2, t+0.5*h) k4 = h*f(r+k3, t+h) r+= (1/6)*(k1+ 2*k2 + 2*k3 + k4) plt.rcParams['figure.figsize'] = (10, 5) plt.plot(tpoints, xpoints, label = 'X')</pre>
In [255	Next: the Bulrich-Stoer method: • we have an example in the book we can reference. Example 8.7 for the non-linear pendulum reads:
In [255	<pre>from math import sin,pi from numpy import empty, array, arange from pylab import plot, show g = 9.81 l = 0.1 theta0 = 179*pi/180 a = 0.0 b = 10.0 N = 100 # Number of "big steps" H = (h-a) N # Size of "big steps" delta = 1e-8 # Required position accuracy per unit time def f(r): theta = r[0] omega = r[1] ftheta = omega fomega = -(g/l)*sin(theta) return array([ftheta, fomega], float) tpoints = arange(a, b, H) thetapoints = [] r = array([theta0, 0.0], float) ####################################</pre>
	<pre># Now increase n until the required accuracy is reached error = 2*H*delta while error>H*delta: n += 1 h = H/n # Modified midpoint method r1 = r + 0.5*h*f(r) r2 = r + h*f(r1) for i in range(n-1): r1 += h*f(r2) r2 += h*f (r1) # Calculate extrapolation estimates. Arrays R1 and R2 # hold the two most recent lines of the table R2 = R1 R1 = empty([n,2] , float) R1[0] = 0.5*(r1 + r2 + 0.5*h*f(r2)) for m in range(1,n): epsilon= (R1[m-1]-R2[m-1])/((n/(n-1))**(2*m)-1) R1[m] = R1[m-1] + epsilon error= abs(epsilon[0]) #Set r equal to the most accurate estimate we have, # before moving on to the next big step r = R1 [n-1]</pre>
	<pre># before moving on to the next big step r = R1 [n-1] #Plot the results plot(tpoints, thetapoints) plot(tpoints, thetapoints, "b.") show()</pre>
In [362	We are essentially acomplishing the same thing, just with an addaptive H and different sets of equations. First, we will do this with a non-adaptive approach. This will give us a good handle on the structure of the code befoer we adapt it. #Setting up our equations again and our r vector def fx(x,t,y): A = 1 B = 3 return (1 - (B+1)*x + A*(x**2)*y) def fy(x, t, y): A = 1
In [385	<pre>A = 1 B = 3 return (B*x-A*(x**2)*y) def f(r,t): x = r[0] y = r[1] Fx = fx(x,t,y) Fy = fy(x,t,y) return np.array([Fx,Fy], float) def adaptive_bul_st(f): N = 1000 a = 0 b = 20 H = (b-a)/N x = y = 0.0 tpoints = np.arange(a, b, H) xpoints = [] ypoints = [] r = np.array([x,y], float) for t in tpoints: xpoints.append(r[0]) ypoints.append(r[1]) #from example n = 1 r1 = r + 0.5*H*f(r, t) r2 = r + H*f(r1, t)</pre>
	<pre>R1 = empty([1,2] , float) R1[0] = 0.5*(r1 + r2 + 0.5*H*f(r2, t)) error = 2*H*delta while error>H*delta: n += 1 h = H/n r1 = r + 0.5*h*f(r, t) r2 = r + h*f(r1, t) for i in range(n-1): r1 + h*f(r2, t) r2 + h*f (r1, t) R2 = R1 R1 = empty([n,2] , float) R1[0] = 0.5*(r1 + r2 + 0.5*h*f(r2, t)) for m in range(1,n): epsilon= (R1[m-1] - R2[m-1])/((n/(n-1))**(2*m)-1) R1[m] = R1[m-1] + epsilon error= abs(epsilon[0]) r = R1 [n-1]</pre>
In [386	<pre>plt.plot(tpoints, xpoints, marker = '.', label = 'X') plt.plot(tpoints, ypoints, marker = '.', label = 'Y') plt.xlabel('Time') plt.legend(fontsize = 'xx-large') plt.title('Bulrich-Stoer Method: \n Non-Adaptive H approach'); adaptive_bul_st(f) Bulrich-Stoer Method: Non-Adaptive H approach</pre>
	While this is pretty accurate, it took A LOT of steps to converge. With the adaptive H, will we see an improved computation time? Let us investigate:

	H0 = .020 delta = 1e-10 nmax = 8 n = 1 h = H0/n r1 = r + 0.5*h*f(r, t) r2 = r + h*f(r1, t) R1 = empty([1,2] ,float) R1[0] = 0.5*(r1 + r2 + 0.5*h*f(r2, t))
	<pre>#error = 2*H*delta error = 1 while error>H*delta: n+=1 h = H0/n while n<nmax: +="h*f(r1," 0.5*h*f(r,="" for="" h*f(r1,="" i="" in="" pre="" r1="" r2="" range(n-1):="" t)="" t)<=""></nmax:></pre>
[693	<pre>if error<delta: #define="" #recursion="" 2)="" 2,="" a="0" adaptive_bul_st(f):="" b="20</pre" breaks="" def="" h0="" if="" initial="" loop="" n="1000" parameters="" r1="step(r," r1[n-1]="" r2="" return="" t+h0="" t,="" while=""></delta:></pre>
	<pre>h = (b-a)/N x = y = 0.0 tpoints = np.arange(a, b, h) xpoints = [] ypoints = [] r = np.array([x,y], float) for t in tpoints: xpoints.append(r[0])</pre>
[694	<pre>ypoints.append(r[1]) r = step(r, t, H) plt.plot(tpoints,xpoints, marker = 'x', label = 'X') plt.plot(tpoints,ypoints, marker = 'x', label = 'Y') plt.xlabel('Time') plt.legend(fontsize = 'xx-large') plt.title('Bulrich-Stoer Method: \n Adaptive H approach');</pre> adaptive_bul_st(f)
	Bulrich-Stoer Method: Adaptive H approach
	1 - 0 - 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 Time Problem 4
	Problem 4: Consider the following simple model of an electronic capacitor, consisting of two flat metal plates enclosed in a square metal box:10 cm 6 cm +1 V $^-$ 1 V 0 V 2 cm 6 cm 2 cm For simplicity let us model the system in two dimensions. Using any of the methods we have studied, write a program to solve Laplace's equation and calculate the electrostatic potential in the box on a grid of 100 × 100 points where the walls of the box are at voltage zero and the two plates (which are of negligible thickness) are at voltages ± 1 V as shown. Have your program calculate the value of the potential at each grid point to a precision of ± 10 0 volts and then make a density plot of the result. Hint: Notice that the capacitor plates are at fixed voltage, so they are part of the boundary condition in this case: the capacitor plates behave the same way as the walls of the box, with potentials that are fixed at a certain value and cannot change Laplace's equations:
	$E=-\nabla\phi$ $\nabla^2\phi=0$ • square is $10\text{cm} \times 10\text{cm}=0.1\text{m} \times 0.1\text{m}$ • +1 charge at 2cm, 6cm long • -1 charge at 8cm, 6cm long • At all sides, $V=\phi=0$
	We need to:
[113	
	<pre>xaxis = yaxis = np.arange(0,10,.1) #Setting boundary conditions for xi, x in enumerate(xaxis): for yi, y in enumerate(yaxis): if x == 2.0: if y<= 8.0 and y>= 2.0:</pre>
	plt.colorbar() plt.title('Inital Conditions for V') plt.ylabel('Distance (cm)') plt.xlabel('Distance (cm)'); Inital Conditions for V 10 -0.75
	6-1 6-1 6-1 6-1 -0.25
	0.25 0.50 2- 0.75
[114	<pre>#Following the code we used in lecture 17: delta = 1.0 iteration = 0 while delta > target: maxdiff = 1e-6 for i in range(1,M): for j in range(1,M): newval = (phi[i+1,j] + phi[i-1,j] \</pre>
	<pre>diff = np.abs(phi[i,j]-newval) phi[i,j] = newval if diff > maxdiff: maxdiff = diff if maxdiff < delta: delta = maxdiff iteration += 1 if iteration % 100 == 0: print('iteration =', iteration, 'delta =', delta) plt.imshow(phi.T, cmap='Spectral', origin='lower', extent = [0,10, 0, 10]) plt.title('Potential (V)') plt.ylabel('Distance (cm)') plt.xlabel('Distance (cm)');</pre>
	<pre>iteration = 100 delta = 0.0002335485664078235 iteration = 200 delta = 9.308741244825128e-05 iteration = 300 delta = 5.879911590729592e-05 iteration = 400 delta = 4.089415968547283e-05 iteration = 500 delta = 3.032245516031845e-05 iteration = 600 delta = 2.3067180647080507e-05 iteration = 700 delta = 1.7788254534436415e-05 iteration = 800 delta = 1.380191806934876e-05 iteration = 900 delta = 1.075177448232531e-05 iteration = 1000 delta = 8.394543787504719e-06 iteration = 1100 delta = 6.566147168123124e-06 iteration = 1200 delta = 5.144056311273248e-06</pre>
	<pre>iteration = 1300 delta = 4.036607740960435e-06 iteration = 1400 delta = 3.172150129618226e-06 iteration = 1500 delta = 2.4961840549618617e-06 iteration = 1600 delta = 1.967050809488632e-06 iteration = 1700 delta = 1.5524505066051532e-06 iteration = 1800 delta = 1.2272839945886085e-06</pre> <pre> Potential (V)</pre>
	Distance (cm) 6 6 1 4 1 1 1 1 1 1 1 1 1 1 1
	Problem 5 Problem 5: Thermal diffusion in the Earth's crust A classic example of a diffusion problem with a time-varying boundary condition is the diffu- sion of heat into the crust of the Earth, as surface temperature varies with the seasons. Suppose 3 the mean daily temperature at a particular point on the surface varies as: T0(t) =
	A + B sin $2\pi t \tau$, where $\tau = 365$ days, A = 10° C and B = 12° C. At a depth of 20 m below the surface almost all annual temperature variation is ironed out and the temperature is, to a good approximation, a constant 11° C The thermal diffusivity of the Earth's crust varies somewhat from place to place, but for our purposes we will treat it as constant with value D = $0.1 \text{m2 day} - 1$. Write a program, or modify one of the ones given in this chapter, to calculate the temperature profile of the crust as a function of depth up to 20 m and time up to 10 years.
	Start with temperature everywhere equal to 10°C, except at the surface and the deepest point, choose values for the number of grid points and the time-step h, then run your program for the first nine simulated years, to allow it to settle down into whatever pattern it reaches. Then for the tenth and final year plot four temperature profiles taken at 3-month intervals on a single graph to illustrate how the temperature changes as a function of depth • I'll be adapting from example 9.3 in the book:
[411	<pre>from numpy import empty from pylab import plot,xlabel,ylabel,show #Constants L = 0.01 # Thickness of steel in meters D = 4.25e-6 # Thermal diffusivity N = 100 # Number of divisions in gri& a = L/N # Grid spacing h = 1e-4</pre>
	# Time-step epsilon = h/1000 Tlo = 0.0 Tmid = 20.0 Thi = 50.0 t1 = 0.01 t2 = 0.1 t3 = 0.4 t4 = 1.0 t5 = 10.0 tend = t5 + epsilon
	<pre># Create arrays T = empty(N+1,float) T[0] = Thi T[N] = Tlo T[1:N] = Tmid Tp = empty(N+1,float) Tp[0] = Thi Tp[N] = Tlo # Main loop t = 0.0 c = h*D/(a*a) while t<tend: #="" calculate="" new="" of="" pre="" t<="" the="" values=""></tend:></pre>
	<pre>for i in range(1,N): Tp[i] = T[i] + c*(T[i+1]+T[i-1]-2*T[i]) T,Tp = Tp,T t += h # Make plots at the given times if abs(t-t1)<epsilon: abs(t-t2)<epsilon:="" abs(t-t3)<epsilon:="" abs(t-t4)<epsilon:="" abs(t-t5)<epsilon:<="" if="" plot(t)="" pre=""></epsilon:></pre>
	plot(T) xlabel("x") ylabel("T") show()
	P 20 10 10 60 80 100 X
[538	Adapting this example to our problem: def mean_daily_surface_temp(t): #t unit: years #return unit:celcius A = 10 B = 12 #Tao is one year. I know this is not an entirely accurate value but for the purposes of this problem #taking a year to be 365 days simplifies things. tao = 365 return A+B*np.sin(2*np.pi*t/tao)
[539	<pre>t = tstart while t<tend: #all="" +="c*(T[0:N-1]+T[2:N+1]-2*T[1:N])" 423="" book="" from="" indexing="" middle="" ocean:="" of="" pg="" portions="" pre="" python="" return="" simplified="" t+="h" t<="" t[0]="mean_daily_surface_temp(t)" t[1:n]="" t[n]="11.0" the=""></tend:></pre>
	<pre>#Defining the constants N = 100 a = 0.001 h = 0.1 epsilon = h/1000 Tall = 11 D = 0.1/36565 c = h*D/(a**2) #Initialize the ocean temperature T = np.repeat(10.0, N+1) T[0]=0 T[-1] = 11 #Call and plot our function year9 = get_next_T(T, 4*365, 0)</pre>
	<pre>plt.plot(year9); plt.title('Temperature Profile after 9 years') plt.xlabel('Depth(m)') plt.ylabel('Temperature(C)');</pre> Temperature Profile after 9 years 11 -
	(Depth(m))
[700	<pre>plt.plot(year9) interval = 3/12 time = 9+interval for i in range(4): plt.plot(get_next_T(year9, time*365, time), label = f'{time} years') time += interval plt.xlabel('Depth(m)') plt.ylabel('Temperature(C)') plt.title('Temperature Profile \n 10th Year') plt.legend();</pre> Temperature Profile
	10th Year — 9.25 years — 9.5 years — 9.75 years — 10.0 years 10th Year
	Problem 6 a
[635	plt.rcParams['figure.figsize'] = (10, 5)
[637	return (np.exp(-1*((x-x0)**2)/(2*(sigma**2)))*np.exp(1j*k*x))
	plt.ylabel('Psi') plt.title('Wave Function'); /home/kelcey/anaconda3/envs/hera/lib/python3.9/site-packages/matplotlib/cbook/initpy:1333: ComplexWarn: Casting complex values to real discards the imaginary part return np.asarray(x, float) Wave Function 100 - 0.75 - 0.50 - 0.5
	0.25
[642	Well width (m) le-8
	the imaginary part $y2[:N:-1] = -y[1:]$ b_k
	-1020 -
[649	<pre>bkr = bk.real bki = bk.imag h = c.hbar.value n=len(bkr) M = 9.109e-31 sm = bkr*np.cos((np.pi**2)*h*(k**2)*t/(2*M*(L**2))) - bki*np.sin((np.pi**2)*h*(k**2)*t/(2*M*(L**2))) return idst(sm) p = psi(xaxis, 1e-16, bk) plt.plot(xaxis, p) plt.xlabel('Well width (m)')</pre>
	plt.xtabet('Wett Width (m)') plt.ylabel('Amplitude') plt.title('Wave Function at t = 1e-16 s'); Wave Function at t = 1e-16 s 0.3 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.1
	-0.20.30.0 0.2 0.4 0.6 0.8 1.0 Well width (m) le-8
[654	<pre>frame = 1e-18 time = 0 for i in range(1,10): p = psi(xaxis, time, bk) plt.plot(xaxis, p) plt.xlabel('Well width (m)') plt.ylabel('Amplitude') plt.title(f'Wave Function at t = {time} s'); time += frame plt.figure();</pre> <pre></pre>
	-0.75 -1.00 0.0 0.2 0.4 0.6 0.8 10 1e-8 Wave Function at t = 1e-18 s 0.6 0.4
	## 0.2 -
	Wave Function at t = 2e-18 s 0.2 0.1 0.0 0.0
	-0.10.20.20.20.4 - 0.6 - 0.8 - 1.0 - 0.6 - Well width (m)0.80.60.
	0.4 - 9 0.2 - 0.0 - -0.4 - -0.6 -
	0.0 0.2 0.4 0.6 0.8 1.0 Well width (m) Wave Function at t = 4e-18 s 0.75 - 0.50 - 0.35
	Wave Function at t = 5e-18 s
	-0.500.751.00
	0.025 - 0.000 0.025 0.050 0.075 - 0.0 0.2 0.4 0.6 0.8 10
	Well width (m) 1e-8 Wave Function at t = 7e-18 s 0.75 - 0.50 - 0.50 - 0.50
	0.00 - 0.
	0.000.250.500.751.00
	0.000.250.500.751.00 - 0.0 0.2 0.4 0.6 0.8 1.0 Well width (m) le-8