Case Docket No. IHM-226

THE ASSISTANT COMMISSIONER FOR PATENTS Box Patent Application

"Expre	ss Mail" Mailing Label Number EL373306347US
Date of	Deposit October 13, 1999
deposited with 37 CFR 1.10 c	y that this transmittal letter and the papers referred to as being enclosed therein are being the United States Postal Service "Express Mail Post Office to Addressee" service under on the date indicated above and is addressed to the Assistant Commissioner for Patents, oplication, Washington, DC 20231.
	Viriate G. Cardese

Sir:		
Transmi	tted herewith for filing is the patent application of	
Inventor	r(s): Masatoshi Sugiura, Youichi Kato, and Kazuyuki Sakakibara	
For:	BATTERY PACK WITH IMPROVED HEAT RADIATION AND SEALING	
Enclosed	d are:	
	This is a request for filing a continuation divisional application under 37 CFR 1.53(b), of pending serial no filed on	prior application

Please Print Name of Person Signing

X An executed Declaration, Petition and Power of Attorney.

 \times An assignment of the invention to Makita Corporation

sheets of formal drawings (Figs. 1-8).

cover sheet (Form PTO 1595) is also enclosed. A verified statement to establish small entity status under 37 C.F.R. 1.9 and 37 C.F.R. 1.27.

pages of specification, 2 pages of claims, 1 pages of abstract.

X Other Preliminary Amendment

 \mathbf{X} Other Correction of Attorney's Address

The filing fee has been calculated as shown below:

(Col. 1)	(Col. 2)
NO. FILED	NO. EXTRA

FOR:	NO. FILED	NO.	EXTRA
BASIC FEE	///////////////////////////////////////	//////	///////////////////////////////////////
TOTAL CLAIMS	15 - 20	=	0
INDEP. CLAIMS	1 - 3	=	0
☐ MULTIPLE DEPENDENT CLAIMS PRESENTED			

* If the difference in Col. 2 is less than zero, enter "0" in Col. 2.

SMALL ENTITY

RATE	FEE
////////	\$
x 9=	\$
x 39	\$
+130	\$
TOTAL	0

OTHER THAN SMALL ENTITY

OR OR OR OR OR

<u>OR</u>

_____. A recordation form

	KAIL	FEE
	////////	\$ 760.00
-	x 18=	\$
	x 78	\$
i	+260	\$
•	TOTAL	\$ 760.00

L	Please charge my Deposit Account No. 12-0080 in the amount of \$.
	A duplicate copy of this sheet is enclosed.

 $|\mathsf{X}|$ A check in the amount of \$150.00 to cover the filing fee is enclosed.

 $|\mathbf{X}|$ The Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 12-0080. A duplicate copy of this sheet is enclosed.

 \boxtimes Any additional filing fees required under 37 C.F.R. 1.16.

X

 \times

	X	Any patent application processing fees under 37 C.F.R. 1.17.
X	this appli	unissioner is hereby authorized to charge payment of the following fees during the pendency of cation or credit any overpayment to Deposit Account No. 12-0080. ate copy of this sheet is enclosed.
	X	Any patent application processing fees under 37 C.F.R. 1.17.
		The issue fee set in 37 C.F.R. 1.18 at or before mailing of the Notice of Allowance, pursuant to 37 C.F.R 1.311(b).
		Any filing fees under 37 C.F.R. 1.16 for presentation of extra claims.
X	A check is also en	in the amount of \$_40.00 to cover the recording of assignment documents closed.
X		all future communications (May only be completed by applicant, or attorney or agent of record) Hugo Liepmann at Customer Number: 000959 whose address is:
		Lahive & Cockfield, LLP 28 State Street
		Boston, Massachusetts 02109
Date:_	October 13	By A hiepman W. Hugo Liepmanh Reg. No. 20,407 28 State Street
		Boston MA 02109

Boston, MA 02109 (617) 227-7400 Telecopier (617) 742-4214

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of: Masatoshi Sugiura, Youichi Kato, and Kazuyuki Sakakibara

Serial No.: Not Yet Assigned

Filed: Herewith on or about October 13, 1999

For: BATTERY PACK WITH IMPROVED HEAT RADIATION AND SEALING

Attorney Docket No.: IHM-226

Assistant Commissioner for Patents Washington, D.C. 20231

Group Art Unit: Not Yet Assigned

Examiner: Not Yet Assigned

PRELIMINARY AMENDMENT

Dear Sir:

Preliminary to examination of the U.S. national patent application filed herewith, please amend the above-titled application as follows.

In the specification

Please amend the specification as follows:

Page 1, line 4, delete "215" and insert --15--;

Page 2, line 31, after "of blocks and", delete "further comprising" and insert --there is--;

Page 3, line 3, after "cooling", insert --,--;

line 4, after "airflow", delete "are" and insert --is--;

line 7, after "first case", insert --,-- and delete "and";

line 7, after "cells and", delete "being" and insert --is--;

Page 6, line 27, after "The cells", delete "generates" and insert --generate--;

- Page 7, line 26, after "air outlet", delete "130" and insert --131--; and
- Page 8, line 8, after "grid or", delete "other any" and insert --in any other--.

In the claims

Delete claims 1-13, and add the following new claims:

- 14. (New) A battery pack comprising
 - a first case containing a plurality of battery cells,
- a radiator disposed in contact with the cells within the first case, the radiator having at least one surface for radiating heat conducted from the cells,
- a first air passage defined at least partially by said at least one surface of the radiator, the first air passage being separated from the cells, and
- at least one air outlet formed in the first case and connected with the first air passage.
- 15. (New) A battery pack in accordance with claim 14, wherein the radiator includes a plurality of ribs which are oriented generally parallel to the direction of airflow through the first air passage.
- 16. (New) A battery pack in accordance with claim 14, wherein the cells are divided into a plurality of blocks and further comprising at least one second air passage provided between the blocks, the at least one second air passage being in communication with the first air passage.
- 17. (New) A battery pack in accordance with claim 16, wherein the radiator includes a plurality of ribs which are oriented generally parallel to the direction of airflow through at least one of the first and second air passages.
- 18. (New) A battery pack in accordance with claim 14, further comprising

a second case smaller than the first case, the second case containing the cells and being placed within the first case, and

elastic material interposed between the first and seconded cases, wherein the first air passage is formed between the first and second cases.

- 19. (New) A battery pack in accordance with claim 18, wherein the cells are divided into a plurality of blocks and further comprising at least one second air passage provided between the blocks, the at least one second air passage being in communication with the first air passage.
- 20. (New) A battery pack in accordance with claim 18, further comprising an air inlet provided in the first case and connected with the first air passage, wherein the first air passage is defined by inner surfaces of the first case and continuous recesses provided in outer surfaces of the second case.
- 21. (New) A battery pack in accordance with claim 20, wherein each of the first and second cases has a generally box-like shape, and the first air passage starts at the inlet provided in the first case which is provided in an upper surface of the first case, proceeds along a first inner side surface of the first case, forks into two branches along two opposite second and third inner side surfaces of the first case connected to the first inner side surface, and terminates at first and second air outlets provided in a fourth inner side surface of the first case.
- 22. (New) A battery pack in accordance with claim 21, wherein the second case includes first to fourth outer side surfaces corresponding to the first to fourth inner side surfaces of the first case, respectively,

the radiator includes a radiator plate having a generally U-shaped cross section which continuously surrounds the first, second, and third outer surfaces of the second case, and

the ribs are formed on outer surfaces of the radiator plate in the first air passage.

- 23. (New) A battery pack in accordance with claim 22, wherein the elastic material is disposed along upper and lower edges of the first case such that the first air passage is hermetically isolated from the cells.
- 24. (New) A battery pack in accordance with claim 20, wherein the cells are divided into a plurality of blocks and further comprising at least one second air passage provided between the blocks, the at least one second air passage being in communication with the first air passage.
- 25. (New) A battery pack in accordance with claim 24, wherein the cells are divided into two blocks and the radiator includes first and second radiator plates arranged in parallel, each radiator plate having a generally U-shaped cross section and surrounding one of the cell blocks, and

the second air passage is defined between the radiator plates.

- 26. (New) A battery pack in accordance with claim 25, wherein the ribs are provided on outer surfaces of the first and second radiator plates in the second air passage.
- 27. (New) A battery pack in accordance with claim 25 further comprising a third air outlet provided in the fourth inner side surface of the first case between the first and second outlets, wherein a first end of the second air passage is connected to the first air passage and a second end thereof is connected to the third air outlet.
- 28. (New) A battery pack in accordance with claim 25, wherein the second air passage is hermetically isolated from the cell blocks.

REMARKS

This amendment corrects clerical errors in the specification and improves idiomatic style and grammar. Claims 1-13 are deleted and claims 14-28 are added. Hence, this amendment does not introduce any new matter. Accordingly, entry of the above amendment is respectfully requested.

Respectfully submitted,

LAHIVE & COCKFIELD, LLP

W. Hugo Liepmann

Reg. No. 20,407

Attorney for Applicants

28 State Street Boston, MA 02109 Tel.: (617) 227-7400

Fax: (617) 742-4214

Date: October 13, 1999

TITLE OF THE INVENTION

BATTERY PACK WITH IMPROVED HEAT RADIATION AND SEALING

This application claims priority on Japanese Patent Application No. 10-294071 filed on October 215, 1998 and Japanese Patent Application No. 11-78343, the contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention generally relates to battery packs. More particularly, the present invention relates to battery packs having cells which are contained in a case and which are used as power sources for electric tools.

Description of the Related Art

Generally, battery packs for electric tools include exposed electric terminals for charging and discharging. When a battery pack is attached to an electric power tool, electric contact is established between the terminals of the pack and the terminals of the battery holder in the tool, thus supplying power to the tool. When the charge level of a battery pack becomes low, the pack is set in a battery charger to establish electric contact between the charging and discharging terminals of the pack and the charging terminals of the battery charger, thus allowing recharging of the cells in the pack.

When charging the cells in a battery pack, the cells' temperature rises due to buildup of heat in the cells themselves and heat conduction from the transformer of the charger. In certain types of cells and batteries, such as nickel metal hydride cells, this phenomenon is so severe that the service life of the cells is shortened unless some measures are taken. One structure for preventing heat buildup in a battery pack is disclosed in Japan Published Unexamined Utility Model Application No. 6-54209. This structure includes in a charger a fan for delivering air to the terminals and air passages running through the cells in the battery pack and connecting openings provided in the battery pack case. When the battery pack is set in the charger, the fan sends air through the cells along the passages in order to prevent heat buildup in the cells.

Although the foregoing structure can significantly lessen the deterioration of the cells by preventing prevent heat buildup in the cells, it suffers from other drawbacks. For example, moisture and other foreign matter can easily enter the battery pack through the openings in the case and may rust the cells, which may cause leakage of the electrolyte. Furthermore, conductive foreign matter may cause a short-circuit. In order to solve problems caused by entry of foreign matter, Japan Published Examined Utility Model Application No. 37634 discloses an improved combination of a battery pack and a charger. The battery pack is provided with interlocked doors which open when the pack is set on the charger and close when the pack is removed from the charger so as to keep out foreign matter. One significant drawback of this structure is an increase in the manufacturing cost due to the sliding doors and guide bosses protruding from the charger for opening and closing the doors. Moreover, the existence of the guide bosses limits the types of battery packs that can be recharged on the charger, thus reducing its general versatility. The durability and reliability of the mechanism for operating the sliding doors is somewhat questionable because the relatively fragile guide bosses may break when the battery pack is set on the charger.

SUMMARY OF THE INVENTION

In view of the above-identified problems, an important object of the present invention is to provide a battery pack having a simple structure for preventing both internal heat buildup and entry of foreign matter.

Another object of the present invention is to provide a battery pack having a simple structure for improving the durability of the battery pack by lessening vibration and impact on the cells.

The above objects and other related objects are realized by the invention, which provides a battery pack comprising: a first case containing a plurality of cells; radiator means which is disposed in contact with the cells within the first case and has at least one surface for radiating heat conducted from the cells; a first air passage which is defined at least partially by said at least one surface of the radiator means and separated from the cells; and at least one air outlet formed in the first case and connected with the first air passage. This structure itself (i.e., not in cooperation with any other structure, such as a charger) easily achieves prevention of heat buildup in the cell in the battery pack and prevention of entry of foreign matter into the inner case, thus prolonging the service life of the cells and preventing leakage of the electrolytic solution and short-circuiting due to rusting.

According to one aspect of the present invention, the cells are divided into a plurality of blocks and further comprising at least one second passage provided between the blocks, the at least one second air passage being in communication with the first air passage. The second air passage provided between the cell blocks more evenly cools the cells and thus more effectively prevents deterioration of the cells.

According to another aspect of the present invention, the radiator means includes a plurality of ribs which are oriented generally parallel to the direction of airflow through at least in one of the first and second air passages. Due to the ribs extending in the direction of cooling airflow are provided on certain surfaces of the first and/or second air passages, heat is more effectively radiated from the cells.

According to yet another aspect of the present invention, the battery pack further comprises a second case which is smaller than the first case and contains the cells and being placed within the first case. Furthermore, the first air passage may be formed between the first and second cases, whereas elastic material interposed may be between the first and second cases. The aforementioned double casing structure effectively lessens transmission of impact and vibration to the cells, thus enhancing the durability of the battery pack.

According to still another aspect of the present invention, the battery pack further comprises an air inlet provided in the first case and connected with the first air passage, whereas the first air passage is defined by inner surfaces of the first case and continuous recesses provided in outer surfaces of the second case.

In accordance with another aspect of the present invention, each of the first and second cases has a generally box-like shape. Moreover, the first air passage starts at the inlet provided in an upper surface of the first case, proceeds along a first inner side surface of the first case, forks into two branches along two opposite second and third inner side surfaces of the first case connected to the first inner side surface, and terminates at first and second air outlets provided in a fourth inner side surface of the first case.

In one practice, the second case includes first to fourth outer side surfaces corresponding to the first to fourth inner side surfaces of the first case, respectively, whereas the radiator means is a radiator plate having a generally U-shaped cross section which continuously surrounds the first, second, and third outer surfaces of the second case. Further, the ribs may be formed on outer surfaces of the radiator plate in the first air passage.

In another practice, the elastic material is disposed along upper and lower edges of the first case such that the first air passage is hermetically isolated from the cells.

In one aspect, the cells are divided into two blocks and the radiator means includes first and second radiator plates arranged in parallel, with each radiator plate having a generally U-shaped cross section and surrounding one of the cell blocks. Moreover, the second air passage is defined between the radiator plates.

In another aspect, the ribs are provided on outer surfaces of the first and second radiator plates in the second air passage.

In one embodiment, the battery pack of the invention further comprises a third air

outlet provided in the fourth inner side surface of the first case between the first and second outlets. In this embodiment, a first end of the second air passage may be connected to the first air passage and a second end thereof is connected to the third air outlet.

To carry out the invention in one preferred mode, the second air passage is hermetically isolated from the cell blocks.

Other general and more specific objects of the invention will in part be obvious and will in part be evident from the drawings and descriptions which follow.

BRIEF DESCRIPTION OF THE ATTACHED DRAWINGS

For a fuller understanding of the nature and objects of the present invention, reference should be made to the following detailed description and the accompanying drawings, in which:

Figure 1 is a perspective view of a battery pack according to the present invention;

Figure 2 is an exploded view of the battery pack shown in Figure 1;

Figure 3 is a perspective view of the battery pack shown in Figure 1;

Figure 4 is a perspective view of the battery pack shown in Figure 1 seen from a different angle from the perspective of Figure 3, showing a controller of the battery pack;

Figure 5 is a vertical cross section of the battery pack shown in Figure 1;

Figure 6 is a perspective view of the battery pack shown in Figure 1 with an outer case shown in alternate one-long-and-two-short dashed lines and airflow indicated by arrows;

Figure 7 is a perspective view of a battery pack of a second embodiment according to the present invention; and

Figure 8 is a vertical cross section of the battery pack shown in Figure 7.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments according to the present invention will be described hereinafter with reference to the attached drawings.

First Embodiment

Figure 1 is a perspective view of a battery pack 1 according to the present invention, whereas Figure 2 is an exploded view of the battery pack 1. The battery pack 1 has a double casing structure that includes a generally cubic inner case 2 for containing eight nickel metal hydride cells 4 in an upright position and an also generally cubic outer case 3 for housing the inner case 2. The nickel metal hydride cells (hereinafter referred to as NiMH cells) 4 are connected in series by lead plates 5. The inner case 2 includes a base plate 6 on which the NiMH cells 4 are placed and a cover 7 disposed over the base plate 6. The inner case 2 further

includes two coupling portions 8, each extending from the base plate 6 and the cover 7 for connecting the cover 7 to the base plate 6. The coupling portions 8 cover the side walls of the NiMH cells 4 located adjacent to the coupling portions, thus exposing the side walls of the other cells 4. Further included in the inner case 2 is an aluminum radiator plate 9 having a generally U-shaped horizontal cross section for radiating heat generated by the NiMH cells 4. As shown in Figures 3 and 4, when set between the base plate 6 and the cover 7, the radiator plate 9 covers the exposed side walls of the NiMH cells 4, thus completely sealing the cells 4 together with the base plate 6 and the cover 7, except for the portions 6 of the cells welded to charging and discharging terminals 12. The terminals 12 are in contact with the electrodes of the terminals cells 4. The inner surface of the radiator plate 9 is covered with a highly heat conductive insulator which is in contact with the NiMH cells 4. The outer surface of the two parallel end walls of the radiator plate 9 are provided with a plurality of longitudinal parallel ribs 10.

Referring to Figures 2 to 4, a plurality of parallel guide plates 11 are erected on the upper surface of the cover 7. Disposed between the guide plates 11 are the charging terminals 12 and miscellaneous terminals 15 including temperature detection terminal connected to a temperature sensor 13 which is attached to one of the cells 4 and data transmission terminals connected to a controller 14 provided on the coupling portions 8a.

Referring to Figures 2 and 3, the inner case 2 further includes an upper portion 16 which is formed between the charging terminals 12 in proximity to the guide plates 11. The upper portion 16 covers the upper surface of the cover 7 and extends downward to a side wall 7a located on the opposite side of the coupling portion 8 of the case 2. Two partitions 17 are erected on the side edges of the upper portion 16, extending from the vertical wall of the upper portion 16 to the side wall 7a. The partitions 17 and the upper portion 16 define a groove 18 which is connected with a recess 19 provided vertically in the side wall 7a.

Referring to Figures 1 and 2, the outer case 3 includes a box-shaped main casing 20 which nearly completely encases the inner case 2 and a lid 21 which is welded to the upper opening of the main casing 20. The upper surface of the lid 21 includes a connector 22 which covers and abuts the upper surfaces of the guide plates 11 of the inner case 2 and includes slots 23 aligned with the terminals provided between the guide plates 11. As also shown in Figure 5, a pair of brackets 24 extends from the two outer slots 23 so as to have a generally T-shaped cross section as shown in the cross section of Figure 5. When the brackets 24 are slid in the direction parallel to the slots 23 into the holder portion provided in a housing of an electric power tool, electrical contact between the terminals of the battery pack and the tool is established when the battery pack 1 is attached to the power tool. Two lock buttons 25 are provided on the main casing 20 of the outer case 3 below the brackets 24 and are outwardly

biased by plate springs (not shown). Each of the lock buttons 25 includes on the upper surface thereof a stopper 26 having a triangular cross section. When the connector 22 is slid into the holder portion of the power tool, the stoppers 26 travel over and engage the respective stoppers of the tool, thus preventing the connector 22 from being disengaged from the tool. Additionally, the connector 22 includes a surface inclined along the upper edges of the partitions 17, thus covering the upper portion 16 from above, except where an air inlet 27 is provided.

Referring to Figures 2 and 5, grooves 28 having an L-shaped cross section are formed along the corners and the upper side edges of the cover 7, whereas a similar groove 29 also having an L-shaped cross section is formed along the corners and three lower edges of the base plate 6. Elastic members 30 made of rubber, sponge, or other suitable material which have a square cross section are disposed between the grooves 28 and 29 and the outer case 3. Referring to Figure 6, two air outlets 31 (only one shown) are provided in the portions of the main casing 20 that oppose the two ends of the radiator plate 9. When the inner case 2 is set inside the outer case 3, a forked air passage 32 is formed between the inner and outer cases 2 and 3, starting at the air inlet 27 of the outer case 3 and reaching the air outlets 31 of the outer case 3 along the groove 18, the recess 19, and the radiator plate 9 of the inner case 2. The elastic members 30 additionally seal the air passage 32 so as to isolate the passage from the terminals and the exposed areas of the cells 4.

When the battery pack 1 is set on a charger (not shown) by sliding the pack 1 into the charger in the same manner as described above regarding attachment of the pack to a power tool, the NiMH cells 4 begin to generate heat. As shown in Figure 6, airflow generated by the fan in the charger enters the passage 32 at the air inlet 27 and exits the passage at the outlets 31. As the radiator plate 9, which is in contact with the cells 4, is located along the air passage 32 and thus in communication with the outside of the battery pack 1, the airflow removes the heat of the cells via the radiator plate 9. This checks the heat buildup of the cells and minimizes the deterioration of the cells 4.

The cells generates heat as well when the battery pack 1 is set in an electric power tool as a power source. However, the fan for cooling the motor of the tool creates an airflow through the air passage 32, similarly checking an excessive temperature rise in the cells 4. Particularly, the ribs 10 provided on the radiator plate 9 facilitate radiation of heat by increasing the area of the passage 32 that is in contact with the air in the passage.

As the battery pack 1 has a double casing structure, placing the inner case 2 within the outer case 3 and the elastic members 30 which seal the air passage 32, any water or other foreign matter that enters the battery pack is contained in the passage 32 and kept out of the inner case 2. Accordingly, this structure provides protection against rusting of the cells 4,

leakage of the electrolyte, and short-circuiting. According to the first embodiment, therefore, the structure of the battery pack 1 itself (i.e., not in cooperation with any other structure, such as a charger) easily achieves prevention of heat buildup in the cell 4 and prevention of entry of foreign matter into the inner case 2.

Furthermore, the elastic members 30 disposed between the inner case 2 and the outer case 3 securely support the inner case 2 so as to cushion external impact and vibration without rattling. This feature makes the structure a suitable container of a power source for electric power tools which are subjected to severe impact or vibration. In particular, neither the lead plates 5 nor the charging and discharging terminals 12 are dislodged from their spot welding in this durable structure under normal operating conditions. In addition, the elastic members 30 advantageously seal the air passage 32.

Second Embodiment

In the structure of the first embodiment, if a large number of NiMH cells are contained in the inner case, some of the cells may not be disposed in contact with the radiator plate, thus failing to prevent heat buildup and thus deterioration of those cells. An alternate structure suitable for containing a large number of cells is described hereinafter with reference to Figures 7 and 8, in which identical or similar reference numerals or characters denote identical or similar parts or elements throughout the several views. Therefore, description of such elements is omitted in order to avoid redundancy.

Figure 7 is an exploded view of a battery pack 101 which includes an inner case 102 containing twenty-four NiMH cells 4, which are divided into two twelve-cell blocks 133. The battery pack 101 further includes two radiator plates 134 with ribs 135 which surround each block 133 of cells 4 so as to define between the blocks 133 a second air passage 136 connected to an air passage 132. The second air passage 136 is in communication with the outside of the battery pack 101 via an air outlet 137 (the cross section of this opening is limited to that of either air outlet 130 due to the controller 14). Additionally, upper and lower guide rails 138 are provided on the base plate 106 and the cover 107 for each radiator plate 134. The guide rails 138 support the radiator plates 134 between the base plate 106 and the cover 107 and seals the inner case 102.

As in the first embodiment, the second embodiment prevents temperature buildup in the cells 4 and provides shock absorption and protection from dust. According to the second embodiment in particular, the second air passage 136 formed between the two blocks 133 of the cells 4 permits air to flow therethrough from the cooling fan of the charger or the electric power tool and to exit at the outlet 137, thus augmenting the cooling effect. In the structure of the

second embodiment, every cell 4 is in contact with one of the radiator plates 134 such that the cells are evenly cooled, thus minimizing deterioration of the cells 4 due to heat buildup, despite the large number of cells contained in the battery pack 101.

Those with ordinary skill in the art to which the present invention pertains will appreciate that battery packs may be divided into more than two blocks by providing two or more second air passages. Likewise, the configuration of the second air passage 136 is not limited to the one described in the second embodiment; the air passage may be formed in the shape of a cross, or in a grid or other any suitable pattern.

In the foregoing embodiments, each of the air passages 32 and 132 is defined between the flat inner surfaces of the outer case 3 (103) and the groove 18 (118), the recess 19 (119), and the radiator plate 9 (the radiator plates 134) of the inner case 2 (102). It should be noted that the same effect can be obtained by providing similar continuous structures on the inner surfaces of the outer case and making the inner surfaces of the inner case flat. Furthermore, if the controller 14 is not provided, the coupling portions 8 (108) may be narrowed such that the radiator plate 9 (the radiator plates 134) may surround the substantially entire circumference(s) of the cell block(s). Additionally, the radiator plate 9 (the radiator plates 134) may be made higher so as to increase the area in contact with the cells 4. The ribs 10 (35) may be provided on the outer surface of the radiator plate 9 (the radiator plates 134) below the side wall 7a of the inner case 2 (102). According to either of the above embodiments, an insulating material is provided on the inner surface of the inner case; however, such a material may be provided on the cells 4 instead.

Moreover, if sealing of the air passage(s) is not required, the elastic members 30 (130) may be placed only on the eight corners between the inner and outer cases. Alternatively, such elastic members may be provided in the form of sheets that are disposed between the inner and outer cases, except where the air passage(s) is located.

As described above, both battery packs 1 and 101 are set in place in a charger and an electric power tool by sliding the connector 22 (122) into the battery pack holding portions of the charger and the tool. Alternatively, the battery packs may be provided with a cylindrical portion that is inserted into the battery holder of the charger and the tool. In this case, depending on the structure used for attaching the battery packs to tools and chargers, the design and/or the locations of the air inlets and outlets may be changed. For example, the air inlet 27 may be provided on a side surface of the outer case 3, whereas the air outlets 31 or 137 may be provided on the bottom surface of the outer case 3. In addition, these openings may be divided into a plurality of small openings or slits.

Neither of the battery packs needs to have a double casing structure which includes

inner and outer cases as described above. For example, if first and second air passages covered with radiator means are provided in a sealed condition in one case, such that the radiator means is in contact with the cells, radiation of heat from the cells and protection of the cells against dust and moisture can be achieved. In this case, first and second air passages may be formed through the case.

Effects of the Invention

The structures according to the present invention themselves (i.e., not in cooperation with any other structure, such as a charger) easily achieves prevention of heat buildup in the cell in the battery pack and prevention of entry of foreign matter into the inner case, thus prolonging the service life of the cells and preventing leakage of the electrolytic solution and short-circuiting due to rusting.

The double casing structure according to the present invention, in which an inner case is placed in an outer case with air passages and elastic members provided between the two cases, lessens transmission of impact and vibration to the cells, thus enhancing the durability of the battery pack.

Equivalents

It will thus be seen that the present invention efficiently attains the objects set forth above, among those made apparent from the preceding description. As other elements may be modified, altered, and changed without departing from the scope or spirit of the essential characteristics of the present invention, it is to be understood that the above embodiments are only an illustration and not restrictive in any sense. The scope or spirit of the present invention is limited only by the terms of the appended claims.

WHAT IS CLAIMED IS:

- 1. A battery pack comprising:
 - a first case containing a plurality of cells;

radiator means disposed in contact with the cells within the first case, the radiator means having at least one surface for radiating heat conducted from the cells;

a first air passage defined at least partially by said at least one surface of the radiator means, the first air passage being separated from the cells; and

at least one air outlet formed in the first case and connected with the first air passage.

- 2. A battery pack in accordance with claim 1, wherein the cells are divided into a plurality of blocks and further comprising at least one second passage provided between the blocks, the at least one second air passage being in communication with the first air passage.
- 3. A battery pack in accordance with claim 1, wherein the radiator means includes a plurality of ribs which are oriented generally parallel to the direction of airflow through the air first passage.
- 4. A battery pack in accordance with either claim 2, wherein the radiator means includes a plurality of ribs which are oriented generally parallel to the direction of airflow through at least in one of the first and second air passages.
- 5. A battery pack in accordance with any one of claims 1 to 4 further comprising a second case smaller than the first case, the second case containing the cells and being placed within the first case, wherein the first air passage is formed between the first and second cases, and further comprising elastic material interposed between the first and second cases.
- 6. A battery pack in accordance with claim 5 further comprising an air inlet provided in the first case and connected with the first air passage, wherein the first air passage is defined by inner surfaces of the first case and continuous recesses provided in outer surfaces of the second case.
- 7. A battery pack in accordance with claim 6, wherein each of the first and second cases has a generally box-like shape, and further wherein the first air passage starts at the inlet provided in an upper surface of the first case, proceeds along a first inner side surface of the first

case, forks into two branches along two opposite second and third inner side surfaces of the first case connected to the first inner side surface, and terminates at first and second air outlets provided in a fourth inner side surface of the first case.

- 8. A battery pack in accordance with claim 7, wherein the second case includes first to fourth outer side surfaces corresponding to the first to fourth inner side surfaces of the first case, respectively, wherein the radiator means is a radiator plate having a generally U-shaped cross section which continuously surrounds the first, second, and third outer surfaces of the second case, and further wherein the ribs are formed on outer surfaces of the radiator plate in the first air passage.
- 9. A battery pack in accordance with claim 8, wherein the elastic material is disposed along upper and lower edges of the first case such that the first air passage is hermetically isolated from the cells.
- 10. A battery pack in accordance with claim 7, wherein the cells are divided into two blocks and the radiator means includes first and second radiator plates arranged in parallel, each radiator plate having a generally U-shaped cross section and surrounding one of the cell blocks, and further wherein the second air passage is defined between the radiator plates.
- 11. A battery pack in accordance with claim 10, wherein the ribs are provided on outer surfaces of the first and second radiator plates in the second air passage.
- 12. A battery pack in accordance with claim 10 further comprising a third air outlet provided in the fourth inner side surface of the first case between the first and second outlets, wherein a first end of the second air passage is connected to the first air passage and a second end thereof is connected to the third air outlet.
- 13. A battery pack in accordance with claim 10, wherein the second air passage is hermetically isolated from the cell blocks.

ABSTRACT OF THE DISCLOSURE

BATTERY PACK WITH IMPROVED HEAT RADIATION AND SEALING

A battery pack 1 has a double casing structure, including an inner case 2 placed inside an outer case 3. The inner case 2 includes a radiator plate 9 which is in contact with the side walls of cells 4 contained in the battery pack 1. A forked air passage 32 is defined between the inner and outer cases 2 and 3 from an air inlet 27 along the outer surface of the radiator plate 9 to a pair of air outlets 31.

Fig 1

Fig 2

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

Attorney's Docket Number IHM- 226

Declaration, Petition and Power of Attorney For Patent Application

As a below named inventors, we hereby declare that:

Our residence, post office address and citizenship are stated below next to our names.

We believe we are original, first and sole inventors(if only one name is listed below)or an original, first and joint inventor(if plural names are listed below)of the subject matter which is claimed and for which a patent is sought on the invention entitled

Battery	Pack W	Vith	Improved	Heat	Radiation	And	Sealing	W
the spec	ification	of w	hich					
(check o	ne)							
X is att	ached h	ereto).					
	was file	ed on						_as
•	Applica	tion	Serial No	÷				_
	and wa	s am	ended on_		oplication)			·
				(m aj	ppiication)			

We do not know and do not believe that the subject matter of this application was ever known or used in the United States before our invention thereof or patented or described in any printed publication in any country before our invention thereof or more than one year prior to the date of this application, and that said subject matter has not been patented or made the subject of an issued inventor's certificate in any country foreign to the United States on an application filed by us or our legal representatives or assigns more than twelve months prior to the date of this application; that we acknowledge my duty to disclose information of which we are aware which is material to the examination of this application, that no application for patent or inventor's certificate on the subject matter of this application has been filed by us or our representatives or assigns in any country foreign to the United States, except those identified below, and that we have reviewed and understand the contents of the specification, including the claims as amended by any amendment referred to herein.

We acknowledge the duty disclose to the Office all information known to us to be material to patentability as defined in Title 37, Code of Federal Regulations, § 1.56.

PRIORITY CLAIM

We hereby claim foreign priority benefits Title 35, United States Code, § 119 of any foreign application(s) for patent or inventor's certificate or of any PCT international application(s) designating at least one country other than the United States of America listed below and have also identified below any foreign application(s) for patent or inventor's certificate or any PCT international application(s) designating at least one country other than the United States of America filed by us in the same subject matter having a filing date before that of the application(s) of which priority is claimed.

Check one:

no such applications have been filed.

X such applications have been filed as follows.

EARLIEST FOREIGN APPLICATION(S), IF ANY FILED WITHIN 12 MONTHS (6 MONTHS FOR DESIGN) PRIOR TO THIS U.S. APPLICATION

Country	Application Number	Date of filing	Priority Claimed
Japan	10-294071	October 15, 1998	_X_Yes No
Japan	11-78343	March 23, 1999	<u>X</u> Yes No
Japan			Yes No
Japan			Yes No
			Yes No

(6 MONTHS FOR DESIGN) PRIOR TO THIS U.S. APPLICATION

CLAIM FOR BENEFIT OF EARLIER U.S./PCT APPLICATION(S)

We hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, \$112, We acknowledge the duty to disclose to the Office all information known to us to be material to patentability as defined in Title 37, Code of Federal Regulations, § 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application. As to subject matter of this application which is common to our earlier United States application, if any, described below, we do not believe that the same was ever known or used in the United States before our invention thereof or more than one year prior to said earlier application, or in public use or on sale in the United Sates more than one year prior to said earlier application, that the said common subject matter has not been patented or made the subject of an inventor's certificate issued before the date of said earlier application in any country foreign to the United Sates on an application, filed by us or our legal representatives or assigns more than twelvemonths prior to said application and that no application for patent or inventor's certificate onsaid subject matter has been filed by us or our representatives or assigns in any country foreign to the United States except those identified herein.

None (Application Serial No.)	(Filing Date)	(Status) (patented, pending, aband.)
None (Application Serial No.)	(Filing Date)	(Status) (patented, pending, aband.)

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorneys and/or agents to prosecute this application and transact all business in the Patent and Trademark Office connected therewith.

W. Hugo Liepmann	Reg. No. 20,407	Amy E. Mandragouras	Reg. No. 36,207
James E. Cockfield	Reg. No. 19,162	Anthony A. Laurentano	Reg. No. 38,220
Thomas V. Smurzynski	Reg. No. 24,798	Jane E. Remillard	Reg. No. 38,872
Ralph A. Loren	Reg. No. 29,325	Mark A. Kurisko	Reg. No. 38,944
Thomas J Engollenner	Reg. No. 28,711	Jane M. Silveri	Reg. No. 39,030
Giulio A. Deconti, Jr.	Reg. No. 31,503	Jeremiah Lynch	Reg. No. 17,425
Ann Lamport Hammitte	Reg. No. 34,858	Lawrence E. Monks	Reg. No. 34,224
Paul Louis Myers	Reg. No. 35,965	Catherine J. Kara	Reg. No. P41,106
Elizabeth A. Hanley	Reg. No. 33,505	Peter J. Rainville	Reg. No. P41,268
Micheal I. Falkoff	Reg. No. 30,833	Mark D. Russett	Reg. No. P41,281
John V Bianco	Reg. No. 36,748	Scott D. Rothenberger	Reg. No. P41,277

Send Correspondence to:

Lahive & Cockfield, LLP, 28 Sate Street, Boston. MA 02109

Direct telephone calls to: (name and telephone Number)

W. Hugo Liepmann, (671) 227-7400

Wherefore I petition that letters patent be granted to me for the invention or discovery described and claimed in the attached specification and claims, and hereby subscribe my name to said specification and claims and to the foregoing declaration, power of attorney, and this petition.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of sole or first inventor Masatoshi Sugiura	•
Inventor's signature Magatoshi Signora	Date June 22, 1999
Residence	ken, Japan
Citzenship Japan	
Post Office Address(if different)	ome, Anjo-shi, Aichi-ken, Japan

Full name of second inven-	tor	
Youichi Kato		
Inventor's signature		Date
yorchi Kato		June 22, 1999
Residence		
3-12-9 Masaki, Naka-ku,	Nagoya-shi, Aichi-ken,	Japan
Citzenship		
Japan		
Post Office Address(if diffe	erent)	
C/O Makita Corporation	11-8 Sumiyoshi-cho	3-chome, Anjo-shi, Aichi-ken, Japan

Full name of third inventor	
Kazuyuki Sakakibara	
Inventor's signature	Date
Kazuyuki Sakaki bara	June 22, 1999
Residence Apt #901, 56-1 Azukizaka	Miai-cho, Okazaki-shi, Aichi-ken, Japan
Citzenship	
Japan	
Post Office Address(if diffe	ent)
C/O Makita Corporation	11-8 Sumiyoshi-cho 3-chome, Anjo-shi, Aichi-ken, Japan

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of: Masatoshi Sugiura, Youichi Kato, and Kazuyuki Sakakibara

Serial No.: Not Yet Assigned

Filed: Herewith on or about October 13, 1999

For: BATTERY PACK WITH IMPROVED HEAT RADIATION

AND SEALING

Attorney Docket No.: IHM-226

Assistant Commissioner for Patents Washington, D.C. 20231

Group Art Unit: Not Yet Assigned

Examiner: Not Yet Assigned

CORRECTION OF ATTORNEY'S ADDRESS

Dear Sir:

Please communicate with Applicants' attorney at the following address:

W. Hugo Liepmann, Esq. Lahive & Cockfield, LLP 28 State Street Boston, MA 02109

The Power of Attorney has an error in the attorney's address, in that it misspells the street name. This document corrects that error.

Respectfully submitted,

LAHIVE & COCKFIELD, LLP

W. Hugo Lepmann Reg. No. 20,407

Attorney for Applicants

28 State Street Boston, MA 02109 Tel.: (617) 227-7400

Fax: (617) 742-4214

Date: October 13, 1999