

Mark Scheme (Results)

October 2020

Pearson Edexcel International A Level In Further Pure Mathmatics F3 (WFM03/01)

Question Number	Scheme	Notes	Marks		
1(a)	$4\sinh^3 x + 3\sinh x = 4\left(\frac{e^x - e^{-x}}{2}\right)^3 + 3\left(\frac{e^x - e^{-x}}{2}\right)$				
	$=4\left(\frac{e^{3x}-3e^{x}+3e^{-x}-e^{-3x}}{8}\right)+3\left(\frac{e^{x}-e^{-x}}{2}\right)$				
	Uses $\sinh x = \frac{e^x - e^{-x}}{2}$ on both sinh terms and attempts to cube the bracket				
	(min accepted is a linear x a quadratic bracket)				
	$= \frac{1}{2}e^{3x} - \frac{3}{2}e^{x} + \frac{3}{2}e^{-x}$		A1*		
	$=\frac{e^{3x}-e^{-3x}}{2}$	$-= \sinh 3x^*$			
	2		(-)		
(L)			(2)		
(b)		$nh^3 x + 3\sinh x = 19\sinh x$	M1		
	$\Rightarrow 4\sinh^3 x - 16\sinh x = 0$				
	Uses the result from (a) and combines terms				
	$(\sinh x = 0 \text{ or}) \sinh^2 x = 4$	$\sinh^2 x = 4 \text{ or } \sinh x = (\pm)2$	A1		
	(0, 0)	States the origin as one intersection	B1		
	$\ln\left(2+\sqrt{5}\right)$ and $-\ln\left(2+\sqrt{5}\right)$	Two correct non-zero x values(allow e.g. $\ln(-2+\sqrt{5})$ for $-\ln(2+\sqrt{5})$)	A1		
	$\left(\ln\left(2+\sqrt{5}\right),38\right)$ and $\left(-\ln\left(2+\sqrt{5}\right),-38\right)$	Two correct points (allow e.g. $\ln(-2+\sqrt{5})$ for $-\ln(2+\sqrt{5})$)	A1		
			(5)		
	Alternative for (b)	using exponentials			
		$\frac{-e^{-3x}}{2} = \frac{19(e^x - e^{-x})}{2} \Longrightarrow \dots$	M1		
		forms and collects terms to one side	A 1		
	$\Rightarrow e^{6x} - 19e^{4x} + 19e^{2x} - 1 = 0$	Correct equation (or equivalent)	A1		
	(0, 0)	States the origin as one intersection	B1		
	$\frac{1}{2}\ln(9+4\sqrt{5})$ or $\frac{1}{2}\ln(9-4\sqrt{5})$	Two correct non-zero x values (oe)	A1		
	$\left(\frac{1}{2}\ln\left(9+4\sqrt{5}\right),38\right)$ and $\left(\frac{1}{2}\ln\left(9-4\sqrt{5}\right),-38\right)$	Two correct points (oe)	A1		
			Total 7		

Question Number	Scheme	Notes	Marks
rumoer	Scheme	Trotes	IVIGIRS
2(i)	$3x^2 + 12x + 24 = 3(x^2 + 4x + 8)$	Obtains $3((x+2)^2 +)$ or	
	$=3((x+2)^2+4)$	$3(x+2)^2 +$	M1
	,	Must include 3 now or later	
	$3((x+2)^2+4)$ or $3(x+2)^2+12$		A1
	$\int \frac{1}{3x^2 + 12x + 24} \mathrm{d}x = \frac{1}{3} \int \frac{1}{(x+2)^3}$	$\frac{1}{(x^2+4)^2+4} dx = \frac{1}{6} \arctan \frac{x+2}{2} (+c)$	M1A1
	M1: Use of		
	A1: Fully correct expression (condone omission of $+ c$)	
(**)			(4)
(ii)	$27 - 6x - x^2 = -\left(x^2 + 6x - 27\right)$	Obtains $-((x+3)^2 +)$ or	M1
	$=-\left(\left(x+3\right)^2-36\right)$	$-(x+3)^2+$	1411
	$-((x+3)^2-36)$ or $36-(x+3)^2$		A1
	$\int \frac{1}{\sqrt{27 - 6x - x^2}} \mathrm{d}x = \int \frac{1}{\sqrt{36 - (x^2)^2}} \mathrm{d}x$	$\frac{1}{(x+3)^2} dx = \arcsin\left(\frac{x+3}{6}\right)(+c)$	
	$(Or = -\arccos\left(\frac{\lambda}{\lambda}\right))$	$\left(\frac{c+3}{6}\right)(+c)$	M1A1
	M1: Use of arcsin	(or – arccos)	
	A1: Fully correct expression (condone omission of $+c$)	
			(4)
			Total 8

Question Number	Scheme	Notes	Marks
3	$\mathbf{M} = \begin{pmatrix} 3 & -4 \\ 1 & -2 \\ 1 & -5 \end{pmatrix}$	$\begin{pmatrix} k \\ k \\ 5 \end{pmatrix}$	
(a)	$ \mathbf{M} - \lambda \mathbf{I} = \mathbf{M} = \begin{vmatrix} 3 - \lambda & -4 \\ 1 & -2 - \lambda \\ 1 & -5 \end{vmatrix}$ $(0) + 4[2 - k] + k$ Attempts $ \mathbf{M} - \lambda \mathbf{I} $	[-5+5]	M1
	$(0)+4[2-k]+k[-5+3]$ Uses $ \mathbf{M}-\lambda\mathbf{I} =0$ and	•	M1
	k=2 Cae)	A1 (2)
(b)	(2 2)[(2 2)(2 5) 10] 4(5	1 2) 2 (5 2 2 1) 0	(3)
	$(3-\lambda)\lfloor (\lambda+2)(\lambda-5)+10\rfloor + 4(5-2)$	M1	
	Attempts $ \mathbf{M} - \lambda \mathbf{I} = 0$ using		
	$\Rightarrow (3-\lambda) [(\lambda+2)(\lambda$	$(-5)+12 \rfloor = 0$	
	$(\lambda+2)(\lambda-5)+12 \Rightarrow \lambda^2-3\lambda+2=0$	$\Rightarrow (\lambda - 2)(\lambda - 1) = 0 \Rightarrow \lambda = \dots$	M1
	Uses $\lambda = 3$ as a factor to obtain and solve a	· · · · · · · · · · · · · · · · · · ·	
	(Alternatively may use calculator to s $\lambda = 1, 2$	rect values	A1
	,		(3)
(c)	$\begin{pmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Rightarrow \begin{cases} 3x - 4y + 2z = 3z \\ x - 2y + 2z = 3y \\ x - 5y + 5z = 3z \end{cases}$	Uses the eigenvalue 3 and their k to form at least 2 equations in x , y and z	M1
	$\alpha \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ (\alpha a constant)	Any correct eigenvector. Allow any constant multiple of $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$	A1
	$\frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	Correct normalised vector	A1
			(3)
			Total 9

Question Number	Scheme	Notes	Marks
4.	$I_n = \int x^n \cos x \mathrm{d}x$		
(a)	$I_n = \int x^n \cos x dx$ $\int x^n \cos x dx = x^n \sin x - \int nx^{n-1} \sin x dx$ $M1: \text{ Parts in the correct direction}$ $A1: \text{ Correct expression}$		
		$x + \int n(n-1)x^{n-2}\cos x dx$ ain (dependent on the first M)	dM1
	$= x^n \sin x + nx^{n-1} c$	$\cos x - n(n-1)I_{n-2}$ * oof with no errors	A1*
ATT			(4)
ALT	$I_n = \int x^n \cos x \mathrm{d}x$	$= \int x^{n-1} (x \cos x) dx$	
		$(x + \cos x) dx$ e correct direction et expression	M1A1
	$= x^{n} \sin x + x^{n-1} \cos x - (n-1) \int x^{n-1} \sin x dx$		
	$= x^{n} \sin x + x^{n-1} \cos x - (n-1) \left\{ -x^{n-1} \cos x - (n-1) \right\}$ Uses integration by parts again	$+(n-1)I_{n-2}$ $-(n-1)I_{n-2}$ ain (dependent on the first M)	dM1
	$= x^n \sin x + nx^{n-1} c$	$\cos x - n(n-1)I_{n-2}$ * oof with no errors	A1*
(b)	$I_0 = \sin x \ (+k)$		B1
	$I_4 = x^4 \sin x + 4x^3 \cos x - 12I_2$	Applies the reduction formula once for I_4 or I_2	M1
	Applies the reduction formula again ar	$\frac{2(x^2 \sin x + 2x \cos x - 2I_0)}{\text{nd obtains an expression for } I_4 \text{ which can}}$	M1
	$= (x^4 - 12x^2 + 24)\sin^2 A$ Award A1 for either bra	$x + (4x^3 - 24x)\cos x + c$ acket and A1 for the other t is otherwise correct, award A1A0	A1A1
			(5) Total 9

Question Number	Scheme	Notes	Marks		
5	$\frac{x^2}{25} - \frac{y^2}{4} = 1 y = mx + c$				
(a)	$\frac{x^2}{25} - \frac{y^2}{4} = 1 y = mx + c$ $\frac{x^2}{25} - \frac{(mx + c)^2}{4} = 1 \Rightarrow 4x^2 - 25(m^2x^2 + 2cmx + c^2) = 100$ Substitutes to obtain a quadratic in x and eliminates fractions				
	$4x^2 - 25\left(m^2x^2 + 2cmx + c^2\right) = 100$				
	$\left(\Rightarrow \left(25m^2-4\right)x^2+50cm^2\right)$	$x + 25c^2 + 100 = 0$	A1		
	Correct 3'	,			
	$"b^2 = 4ac" \Rightarrow (50cm)^2 = 4(2)$ Uses 'b ² = 4ac' or	/ \ /	M1		
	$2500c^{2}m^{2} = 2500c^{2}m^{2} + 100$ $10000m^{2} = 400$ $25m^{2} = c^{2}$ Fully correct proof v	$000m^{2} - 400c^{2} - 1600$ $c^{2} + 1600$ $+ 4*$	A1*		
ALT 1	Using hyperbolic p	parameters:	(4)		
	$x = 5\cosh t, y = 2\sinh t$				
	$\frac{2\cosh t}{5\sinh t}(x-5\cosh t)$ M1: Attempts the equation of the tangent A1: C		M1A1		
	$y = \frac{2\cosh t}{5\sinh t}x - \frac{2\cosh t}{5\sinh t}$				
	$25m^{2} = \frac{4\cosh^{2} t}{\sinh^{2} t}, \ 4 + c^{2} = 4 + \frac{4}{\sinh^{2}}$ Extracts 25m ² and 4 + c ² f		M1		
	$\therefore 25m^2 = 4 + $ Fully correct proof v		A1*		
ALT 2	Using trigonometric	naramatara	(4)		
ALI Z	$x = 5\sec t, y = 2\tan t = 0$	•			
	$\frac{2 \sec t}{5 \tan t} (x - 5 \sec t)$ M1: Attempts the equation of the tangent A1: C	$= y - 2 \tan t$	M1A1		
	$y = \frac{2\sec t}{5\tan t}x + \frac{2\tan^2 t}{2\tan t}$				
	$25m^{2} = \frac{4\sec^{2}t}{\tan^{2}t} = \frac{4}{\sin^{2}t} \qquad 4+c^{2} = 4\left(1 + \frac{1}{\tan^{2}t}\right)$, (M1		
	$25m^2 \text{ and } 4 + c^2 \text{ from}$ $\therefore 25m^2 = 4 + 6$ Fully correct proof v	$-c^2$ *	A1*		
	Tany concer proof v		(4)		

(b)	$25m^2 = c^2 + 4$ a	nd 2 = m + c	
	$25m^2 = (2-m)^2 + 4 \text{ or } 2$	114 2 111 10	
	()	()	M1
	Uses the given hyperbola and the straight line equation in	* *	
	$24m^2 + 4m - 8 = 0$	m of c	
	$\begin{array}{c c} 24m + 4m - 8 = 0 \\ \text{or} & \text{Correct 3TQ in } m \text{ or } c \end{array}$		
	$24c^2 - 100c + 96 = 0$		A1
	$24m^2 + 4m - 8 = 0 \Rightarrow m = \frac{1}{2}, -\frac{2}{3}$		
	Or	Solves their 3TQ in <i>m</i> or <i>c</i>	M1
	$24c^2 - 100c + 96 = 0 \Rightarrow c = \frac{3}{2}, \frac{8}{3}$		
	$y = \frac{1}{2}x + \frac{3}{2}$ or $y = -\frac{2}{3}x + \frac{8}{3}$	One correct tangent	A1
	$y = \frac{1}{2}x + \frac{3}{2} \text{ or } y = -\frac{2}{3}x + \frac{8}{3}$ $y = \frac{1}{2}x + \frac{3}{2} \text{ and } y = -\frac{2}{3}x + \frac{8}{3}$	Both correct tangents	A1
			(5)
(c)	$m = \frac{1}{2}, c = \frac{3}{2} \Rightarrow \frac{9}{4}x^2 + \frac{75}{2}$	$\frac{6}{4}x + \frac{625}{4} = 0 \Longrightarrow x = \dots$	
	or		M1
	$m = -\frac{2}{3}, c = \frac{8}{3} \Rightarrow \frac{64}{9}x^2 - \frac{80}{9}$	$\frac{60}{6}x + \frac{2500}{6} = 0 \Rightarrow x = \dots$	
	Uses one of their m and c pairs and solves for x		
	$x = -\frac{25}{3}, y = -\frac{8}{3}$ or $x = \frac{25}{4}, y = -\frac{3}{2}$	One correct point	A1
	$x = -\frac{25}{3}, y = -\frac{8}{3} \text{ or } x = \frac{25}{4}, y = -\frac{3}{2}$ $x = -\frac{25}{3}, y = -\frac{8}{3} \text{ and } x = \frac{25}{4}, y = -\frac{3}{2}$	Both correct points	A1
			Total 12

$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & a \end{pmatrix}$ $ A = a - 2 + a - 1 + 2 - 1(= 2a - 2) \qquad \text{Correct determinant in any form} \qquad \text{BI}$ $\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & a \end{pmatrix} \leftarrow \begin{pmatrix} a - 2 & a - 1 & 1 \\ -a - 2 & a - 1 & 3 \\ -2 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} a - 2 & 1 - a & 1 \\ -a - 2 & a - 1 & 3 \\ -2 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} a - 2 & 1 - a & 1 \\ -a - 2 & 0 & 2 \end{pmatrix}$ $Applies the correct method to reach at least a matrix of cofactors$ $2 \text{ correct rows or } 2 \text{ correct columns needed}$ $\begin{pmatrix} a - 2 & 1 - a & 1 \\ a + 2 & a - 1 & -3 \\ -2 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} a - 2 & a + 2 & -2 \\ 1 - a & a - 1 & 0 \\ 1 & -3 & 2 \end{pmatrix}$ $-2 \text{ Correct transpose of cofactors}$ $A1$ $A1$ $A2$ $A3$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$	Marks		Notes	Scheme	Question Number	
A = $a-2+a-1+2-1(=2a-2)$ Correct determinant in any form B1 $ \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & a \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & a-1 & 1 \\ -a-2 & a-1 & 3 \\ -2 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & 1-a & 1 \\ a+2 & a-1 & -3 \\ -2 & 0 & 2 \end{pmatrix} $ M1 Applies the correct method to reach at least a matrix of cofactors 2 correct rows or 2 correct columns needed $ \begin{pmatrix} a-2 & 1-a & 1 \\ a+2 & a-1 & -3 \\ -2 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & a+2 & -2 \\ 1-a & a-1 & 0 \\ 1 & -3 & 2 \end{pmatrix} $ Correct transpose of cofactors $ A1 $ (b) $ a = 4 \Rightarrow A^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} $ Correct inverse (follow through their matrix from (a)) $ a = 4 \Rightarrow A^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} $ Correct inverse (follow through their matrix from (a)) Attempt to multiply the parametric form of b by their inverse $ a = 4 \Rightarrow A^{-1} = \begin{pmatrix} 6 & -\lambda \\ -4 & 4\lambda\lambda \\ 2 & -\lambda \end{pmatrix} $ Correct parametric form A1 $ a = \begin{pmatrix} 6 & \lambda \\ -4 & 4\lambda\lambda \\ 2 & -\lambda \end{pmatrix} $ Correct equation (allow equivalent)			$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & a \end{pmatrix}$			
$ \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & a \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & a-1 & 1 \\ -a-2 & a-1 & 3 \\ -2 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & 1-a & 1 \\ a+2 & a-1 & -3 \\ -2 & 0 & 2 \end{pmatrix} $ M1 Applies the correct method to reach at least a matrix of cofactors $ 2 \text{ correct rows or 2 correct columns needed} $ $ \begin{pmatrix} a-2 & 1-a & 1 \\ a+2 & a-1 & -3 \\ -2 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & a+2 & -2 \\ 1-a & a-1 & 0 \\ 1 & -3 & 2 \end{pmatrix} $ Correct transpose of cofactors $ A^{-1} = \frac{1}{2a-2} \begin{pmatrix} a-2 & a+2 & -2 \\ 1-a & a-1 & 0 \\ 1 & -3 & 2 \end{pmatrix} $ Correct inverse $ A^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} $ Correct inverse (follow through their matrix from (a)) $ = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12-6\lambda \\ 4+2\lambda \\ 6+3\lambda \end{pmatrix} = \dots$ Attempt to multiply the parametric form of h 2 by their inverse $ = \begin{pmatrix} 6-\lambda \\ -4+4\lambda \\ 2-\lambda \end{pmatrix} $ Correct parametric form $ = \begin{pmatrix} 6-\lambda \\ -4+4\lambda \\ 2-\lambda \end{pmatrix} $ Correct equation (allow equivalent A1)		B1	Correct determinant in any form	$ \mathbf{A} = a - 2 + a - 1 + 2 - 1 (= 2a - 2)$		
$\begin{pmatrix} a-2 & 1-a & 1 \\ a+2 & a-1 & -3 \\ -2 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & a+2 & -2 \\ 1-a & a-1 & 0 \\ 1 & -3 & 2 \end{pmatrix}$ Correct transpose of cofactors $\mathbf{A}^{-1} = \frac{1}{2a-2} \begin{pmatrix} a-2 & a+2 & -2 \\ 1-a & a-1 & 0 \\ 1 & -3 & 2 \end{pmatrix}$ Correct inverse $\mathbf{A}^{-1} = \frac{1}{2a-2} \begin{pmatrix} a-2 & a+2 & -2 \\ 1-a & a-1 & 0 \\ 1 & -3 & 2 \end{pmatrix}$ Correct inverse (follow through their matrix from (a)) $= \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12-6\lambda \\ 4+2\lambda \\ 6+3\lambda \end{pmatrix} = \dots$ Attempt to multiply the parametric form of l_2 by their inverse $= \begin{pmatrix} 6-\lambda \\ -4+4\lambda \\ 2-\lambda \end{pmatrix}$ Correct parametric form $= \begin{pmatrix} 6-\lambda \\ -4+4\lambda \\ 2-\lambda \end{pmatrix}$ Correct equation (allow equivalent A1		М	$ \begin{array}{c} 1 \\ 3 \\ 2 \end{array} \rightarrow \begin{pmatrix} a-2 & 1-a & 1 \\ a+2 & a-1 & -3 \\ -2 & 0 & 2 \end{pmatrix} $ $ \begin{array}{c} a \\ c \\ c$	$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & a \end{pmatrix} \rightarrow \begin{pmatrix} a-2 & a-1 \\ -a-2 & a-1 \\ -2 & 0 \end{pmatrix}$ Applies the correct method to real		
(b) $ a = 4 \Rightarrow \mathbf{A}^{-1} = \frac{1}{2a - 2} \begin{pmatrix} a - 2 & a + 2 & -2 \\ 1 - a & a - 1 & 0 \\ 1 & -3 & 2 \end{pmatrix} $ Correct inverse (follow through their matrix from (a)) B1ft $ = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12 - 6\lambda \\ 4 + 2\lambda \\ 6 + 3\lambda \end{pmatrix} = \dots $ Attempt to multiply the parametric form of l_2 by their inverse $ = \begin{pmatrix} 6 - \lambda \\ -4 + 4\lambda \\ 2 - \lambda \end{pmatrix} $ Correct parametric form A1 $ \mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \end{pmatrix} $ Correct equation (allow equivalent A1)		A 1	$ \begin{array}{c cccc} $	$\begin{pmatrix} a-2 & 1-a & 1 \\ a+2 & a-1 & -3 \\ -2 & 0 & 2 \end{pmatrix} \to$		
$= \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12-6\lambda \\ 4+2\lambda \\ 6+3\lambda \end{pmatrix} = \dots$ Attempt to multiply the parametric form of l_2 by their inverse $= \begin{pmatrix} 6-\lambda \\ -4+4\lambda \\ 2-\lambda \end{pmatrix}$ Correct parametric form $\mathbf{A} 1$ $\mathbf{r} = \begin{pmatrix} 6 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \end{pmatrix}$ Correct equation (allow equivalent l_1)		A1	Correct inverse	$\mathbf{A}^{-1} = \frac{1}{2a - 2} \begin{pmatrix} a - 2 & a + 2 & -2 \\ 1 - a & a - 1 & 0 \\ 1 & -3 & 2 \end{pmatrix}$		
$= \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12-6\lambda \\ 4+2\lambda \\ 6+3\lambda \end{pmatrix} = \dots$ Attempt to multiply the parametric form of l_2 by their inverse $= \begin{pmatrix} 6-\lambda \\ -4+4\lambda \\ 2-\lambda \end{pmatrix}$ Correct parametric form $\mathbf{A} 1$ $\mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ +\lambda \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \end{pmatrix}$ Correct equation (allow equivalent l_1)	(4)	B1	` ·	$a = 4 \Rightarrow \mathbf{A}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix}$	(b)	
		1 M		$= \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12 - 6\lambda \\ 4 + 2\lambda \\ 6 + 3\lambda \end{pmatrix} = \dots$		
		A 1	Correct parametric form	$= \begin{vmatrix} -4+4\lambda \end{vmatrix}$		
		A !	1 \ 1	$\mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix}$		
Te	(4) Total 8					

	lua a a a		T
	Alternatives for (b)		
(i)	$a = 4 \Rightarrow \mathbf{A}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix}$	Correct inverse (follow through their matrix from (a))	B1ft
	$\begin{bmatrix} \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12 \\ 4 \\ 6 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 36 \\ -24 \\ 12 \end{pmatrix}$	Attempt A^{-1} (point on l_2) and A^{-1} (direction of l_2)	M1
	$\begin{bmatrix} \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} -6 \\ 2 \\ 3 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} -6 \\ 24 \\ -6 \end{pmatrix}$	Both correct (NB No ft)	A1
	$\mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix}$	Correct equation (allow equivalent forms) but if given as $l =$ award A0	A1
			(4)
(ii)	$a = 4 \Rightarrow \mathbf{A}^{-1} = \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix}$	Correct inverse (follow through their matrix from (a))	B1ft
	$ \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 12 \\ 4 \\ 6 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 36 \\ -24 \\ 12 \end{pmatrix} $	Attempt A^{-1} (point on l_2) for 2 points	M1
	$\begin{bmatrix} \frac{1}{6} \begin{pmatrix} 2 & 6 & -2 \\ -3 & 3 & 0 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \\ 9 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 30 \\ 0 \\ 6 \end{pmatrix}$	Both correct (NB No ft)	A1
	$\mathbf{r} = \begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 4 \\ -1 \end{pmatrix}$	Obtain the direction vector and deduce correct equation (allow equivalent forms) but if given as $l =$ award A0	A1
			(4)

Question Number	Scheme	Notes	Marks
7	$x = \cosh t + t,$	$y = \cosh t - t$	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sinh t + 1, \frac{\mathrm{d}y}{\mathrm{d}t} = \sinh t - 1$	Correct derivatives	B1
	$\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} = \sinh^{2} t + 2s$ $= 2 \sin t$ M1: Squares correctly, can	$n^2 t + 2$	M1
	$= 2\left(1 + \sinh^2 t\right) = 2\cosh^2 t^*$	Uses $\cosh^2 t = 1 + \sinh^2 t$ to complete the proof with no errors	A1*
(b)	$S = 2\pi \int y ds = 2\pi \int (\cosh t - t) \sqrt{2} \cosh t$	Uses $S = 2\pi \int y ds$ with the given y and the result from part (a)	(3) M1
	$=2\sqrt{2}\pi\int_0^{\ln 3}\left(\cosh^2t-t\cosh t\right)\mathrm{d}t^*$	Correct proof with no errors	A1*
(c)	$\int \cosh^2 t \mathrm{d}t = \int \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t \mathrm{d}t$	Uses $\cosh^2 t = \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t$	(2) M1
	$\int t \cosh t \mathrm{d}t = t \sinh t - \int \sinh t \mathrm{d}t$	Attempts integration by parts the right way round on <i>t</i> cosh <i>t</i> Correct expression	M1 A1
	$S = \left(2\sqrt{2}\pi\right)\int \left(\cosh^2 t - t\cosh t\right)dt = \left(2\sqrt{2}\pi\right)$		A1A1
	A1: 2 corr A1: All		
	$(S=)2\sqrt{2}\pi\left\{\left(\frac{1}{2}\ln 3 + \frac{1}{2}\ln 3 + $	$\frac{10}{9} - \frac{4}{3} \ln 3 + \frac{5}{3} - (1)$	dM1
	dM1: Correct use of limits 0 and ln3	depends on both preceding M marks	
	$S = \frac{1}{9}\sqrt{2}\pi \left(32 - 15\ln 3\right)$	cao	A1 (7)
	Alternative for (c)		Total 12
	$\int \cosh^2 t dt = \int \left(\frac{e^t + e^{-t}}{2}\right)^2 dt$ $= \frac{1}{4} \int \left(e^{2t} + 2 + e^{-2t}\right) dt$	Substitutes the exponential form and attempts to square	M1
	T V	Substitutes the average ential forms	M1
	$\int t \cosh t dt = \frac{1}{2} \int t \left(e^t + e^{-t} \right) dt$ $= \frac{1}{2} t e^t - \frac{1}{2} \int t e^t dt - \left\{ \frac{1}{2} t e^{-t} - \frac{1}{2} \int e^{-t} dt \right\}$	Substitutes the exponential form and attempts integration by parts the right way round	
	()	A1
	$(S =) \left(2\sqrt{2}\pi\right) \left\{ \frac{1}{4} \left(\frac{1}{2}e^{2t} + 2t - \frac{1}{2}e^{2t} + 2t $	ral correct but both must be in a complete	A1A1
	Depends on both M marks above	Correct use of limits 0 and ln3	dM1
	$S = \frac{1}{9}\sqrt{2}\pi \left(32 - 15\ln 3\right)$	cao	A1

Alternative fo	or the first 3 marks of (c)		
$=2\sqrt{2}\pi\int$	$\left(\cosh^2 t - t \cosh t\right) \mathrm{d}t$		
$=2\sqrt{2}\pi\int$	$\cosh t \left(\cosh t - t\right) \mathrm{d}t$		
$2\sqrt{2}\pi\Big(\Big[\sinh t\Big(\cos t\Big)\Big]$	$[\sinh t - t] - \int \sinh t (\sinh t - 1) dt$		
,			
	$ \overline{2}\pi \Big(\Big[\sinh t \Big(\cosh t - t \Big) \Big] - \Big[\cosh t \Big(\Big) \Big] $		M1A1
M1 (2 nd on e-PEN): Use parts twice	A1 Correct expression	
		Uses $\cosh^2 t = \pm \frac{1}{2} \pm \frac{1}{2} \cosh 2t$	M1 (1st on e-PEN)
Rest	as main scheme		

Question Number	Scheme	Notes	Marks
8(a)	$\mathbf{n} = \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} \times \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -10+6 \\ -(2-9) \\ -2+15 \end{pmatrix}$	Attempt vector product between normal vectors	M1
	$= \begin{pmatrix} -4\\7\\13 \end{pmatrix}$	Correct vector	A1
	$x = 0 \Rightarrow -5y + 3z = 11, -2y + 2z = 7$ $\Rightarrow y = -\frac{1}{4}, z = \frac{13}{4}$ or $y = 0 \Rightarrow x + 3z = 11, 3x + 2z = 7$	Correct strategy to find a point on <i>l</i>	M1
	$\Rightarrow x = -\frac{1}{7}, z = \frac{26}{7}$ or $z = 0 \Rightarrow x - 5y = 11, 3x - 2y = 7$ $\Rightarrow x = 1, y = -2$	Correct position vector of point on <i>l</i>	A1
	$\mathbf{r} = \mathbf{i} - 2\mathbf{j} + \lambda \left(-4\mathbf{i} + 7\mathbf{j} + 13\mathbf{k} \right)$	Correct equation. (follow through their position and direction vectors but must be "r = ")	A1ft
ALT	x = 11 + 5y - 3z		(5)
ALI	•	2-) 27	
	$3x - 2y + 2z = 7 \Rightarrow 3(11 + 5y)$ $\Rightarrow y - \frac{7z}{13} = -\frac{26}{13} \left(z = \frac{13y}{2}\right)$ Eliminate one va	$\left(\frac{+26}{7}\right)$	M1
	$x = 11 + 5\left(-\frac{26}{13} + \frac{7z}{13}\right) \Rightarrow z = \frac{13 - 13x}{4}$	Obtain 2 correct expressions for one of the variables	A1
	$\frac{x-1}{-\frac{4}{13}} = \frac{y+2}{\frac{7}{13}} = z$	M1 Obtain a Cartesian equation for <i>l</i> A1 Correct equation	M1A1
	$\mathbf{r} = (\mathbf{i} - 2\mathbf{j}) + \lambda \left(-\frac{4}{13}\mathbf{i} + \frac{7}{13}\mathbf{j} + \mathbf{k} \right) \text{ oe}$	Deduce a vector equation for <i>l</i> Follow through their Cartesian equation	A1ft
			(5)

<i>a</i> .		Ī	
(b)	$ \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} $	Correct vector joining P to Q	B1
	$ \begin{pmatrix} -4 \\ 7 \\ 13 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} -40 \\ 5 \\ -15 \end{pmatrix} $	Attempt vector product between the direction of l and their $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$	M1
		Correct vector	A1
	$\sin \theta = \frac{\left -40\mathbf{i} + 5\mathbf{j} - 15\mathbf{k} \right }{\left -4\mathbf{i} + 7\mathbf{j} + 13\mathbf{k} \right \left \mathbf{i} + 2\mathbf{j} - 2\mathbf{k} \right }$	Angle between PQ and line n	
	$d = \left \overrightarrow{PQ} \right \sin \theta$		
	$d = \frac{\left -40\mathbf{i} + 5\mathbf{j} - 15\mathbf{k} \right }{\left -4\mathbf{i} + 7\mathbf{j} + 13\mathbf{k} \right } = \frac{1}{\sqrt{234}} \sqrt{40^2 + 5^2 + 15^2}$	Fully correct method for the distance	M1
	$d = \frac{5\sqrt{481}}{39}$	Cao Allow equivalent exact forms e.g. $d = \frac{5\sqrt{74}}{\sqrt{234}}$	A1
			(5)
ALT 1	$\mathbf{r}_{m} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} + \lambda \begin{pmatrix} -\frac{4}{7}\\1\\\frac{13}{7} \end{pmatrix} \text{ or } \mathbf{r}_{n} = \begin{pmatrix} 3\\2\\1 \end{pmatrix} + \mu \begin{pmatrix} -\frac{4}{7}\\1\\\frac{13}{7} \end{pmatrix}$		B1ft
	$\overrightarrow{OP} = \begin{pmatrix} 2\\0\\3 \end{pmatrix} \overrightarrow{ON} = \begin{pmatrix} 3 - \frac{4}{7}\mu\\2 + \mu\\1 + \frac{13}{7}\mu \end{pmatrix} \overrightarrow{NP} = \begin{pmatrix} -1 + \frac{4}{7}\mu\\-2 - \mu\\2 - \frac{13}{7}\mu \end{pmatrix}$	Uses either P and the parametric form of a point on n OR Q and the parametric form of a point on m	
	$\begin{bmatrix} -1 + \frac{7}{7}\mu \\ -2 - \mu \\ 2 - \frac{13}{7}\mu \end{bmatrix} \cdot \begin{bmatrix} -\frac{7}{7} \\ 1 \\ \frac{13}{7} \end{bmatrix} = 0$	M1: Forms scalar product of vector <i>NP</i> and direction vector of <i>l</i> and equates to zero A1: Correct vectors	M1A1
	$\Rightarrow \mu = \frac{56}{117}$	Solves	M1
	$\Rightarrow d = \sqrt{\left(-\frac{85}{117}\right)^2 + \left(-\frac{290}{117}\right)^2 + \left(\frac{10}{9}\right)^2} = \frac{5\sqrt{481}}{39}$	Obtains the correct distance	A1
			(5)
	Alternative for M1A1M1		
	Alternative for M1A1M1 $\overrightarrow{NP} = \begin{pmatrix} -1 + \frac{4}{7}\mu \\ -2 - \mu \\ 2 - \frac{13}{7}\mu \end{pmatrix} \Rightarrow d = \sqrt{\left(-1 + \frac{4}{7}\mu\right)^2 + \left(-2 - \mu\right)^2}$	$\int_{0}^{2} + \left(2 - \frac{13}{7}\mu\right)^{2} \Rightarrow d \text{ is min when } \Rightarrow \mu$	$x = \frac{56}{117}$
	M1: Find d in terms of a parameter		
	A1: correct expression M1: use calculus (or simplify and complete the squ	are) to find the parameter corresponding to	the min d
	1 1111. use calculus (of simplify and complete the squ	are, to find the parameter corresponding to	and min u

ALT 2	Correct vector PQ		B1
	$\begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 7 \\ 13 \end{pmatrix} = \begin{vmatrix} 1 \\ 2 \\ -2 \end{vmatrix} \begin{vmatrix} -4 \\ 7 \\ 13 \end{vmatrix} \cos \theta$	Forms the scalar product and attempts to evaluate the LHS	M1
	$\cos\theta = \frac{-16}{3\sqrt{234}}$	Correct value for $\cos \theta$ exact or decimal	A1
	$d = PQ \sin\theta = 3\sqrt{1 - \left(\frac{-16}{3\sqrt{234}}\right)^2} = \frac{5\sqrt{74}}{\sqrt{234}}$	M1: Correct method for the distance. A1: Correct EXACT distance	M1A1
			(5)
			Total 10