Markl, Michael 27.06.2019

Seminar zur Optimierung und Spieltheorie

Institut für Mathematik der Universität Augsburg Diskrete Mathematik, Optimierung und Operations Research Sommersemester 2019

Nash Gleichgewichte in Dynamischen Flüssen

1 Dynamische Flüsse

Definition 1.1 (Netzwerk). Ein Netzwerk (G, u, s, t, τ) ist ein gerichteter Graph mit einer Quelle $s \in V$ und einer Senke $t \in V$, sodass alle Knoten von s aus erreichbar sind, sowie mit Kantenkapazitäten $u \in \mathbb{R}_+^E$, und Verzögerungszeiten $\tau \in \mathbb{R}_{\geq 0}^E$, sodass Zyklen eine positive Gesamtverzögerung haben.

Definition 1.2. Der Funktionenraum \mathfrak{F}_0 sei die Menge aller lokal Lebesgue-integrierbaren Funktionen $g: \mathbb{R} \to \mathbb{R}_{\geq 0}$, die auf der negativen Achse verschwinden.

Definition 1.3 (Dynamischer Fluss). Ein dynamischer Fluss ist ein Paar $f = (f^+, f^-)$ mit $f^+, f^- \in \mathfrak{F}_0^E$. Für eine Kante $e \in E$ und einen Zeitpunkt $\theta \in \mathbb{R}$ bezeichnet

- $f_e^+(\theta)$ bzw. $f_e^-(\theta)$ die Zu- bzw. Abflussrate an e zur Zeit θ ,
- $F_e^+(\theta):=\int_0^\theta f_e^+(t)\,\mathrm{d}t$ bzw. $F_e^-(\theta):=\int_0^\theta f_e^-(t)\,\mathrm{d}t$ den kumulativen Zu- bzw. Abfluss an e bis zur Zeit θ ,
- $z_e(\theta) := F_e^+(\theta) F_e^-(\theta + \tau_e)$ bzw. $q_e(\theta) := z_e(\theta)/u_e$ die Warteschlange bzw. Wartezeit an e zur Zeit θ ,
- $T_e(\theta) := \theta + q_e(\theta) + \tau_e$ die Austrittszeit aus e bei Eintrittszeit θ .

Definition 1.4 (Zulässiger Dynamischer Fluss). Ein zulässiger dynamischer Fluss erfüllt folgende Voraussetzungen:

- (F1) Kapazitätsbedingung: $\forall e \in E, \theta \in \mathbb{R} : f_e^-(\theta) \leq u_e$.
- (F2) Keine Flussentstehung in Kanten: $\forall e \in E, \theta \in \mathbb{R} : F_e^-(\theta + \tau_e) \leq F_e^+(\theta)$.
- (F3) Flusserhaltung in Knoten:

$$\forall \theta \in \mathbb{R} : \sum_{e \in \delta^{+}(v)} f_{e}^{+}(\theta) - \sum_{e \in \delta^{-}(v)} f_{e}^{-}(\theta) \begin{cases} \geqslant 0, \text{ falls } v = s, \\ \leqslant 0, \text{ falls } v = t, \\ = 0, \text{ sonst.} \end{cases}$$

(F4) Warteschlangenabbau: $\forall e \in E, \theta \in \mathbb{R} : z_e(\theta) > 0 \implies f_e^-(\theta + \tau_e) = u_e$.

Proposition 1.5. Für eine Kante $e \in E$ gilt in einen zulässigen dynamischen Fluss f:

- (i) Die Funktion $\theta \mapsto \theta + q_e(\theta)$ ist monoton wachsend und stetig.
- (ii) Für alle $\theta \in \mathbb{R}$ ist die Warteschlange z_e auf $(\theta, \theta + q_e(\theta))$ positiv.
- (iii) Zu jeder Zeit $\theta \in \mathbb{R}$ gilt $F_e^+(\theta) = F_e^-(T_e(\theta))$.
- (iv) Für alle $\theta_1 \leq \theta_2$ mit $\int_{\theta_1}^{\theta_2} f_e^+(t) dt = 0$ und $q_e(\theta_2) > 0$ gilt $\theta_1 + q_e(\theta_1) = \theta_2 + q_e(\theta_2)$.

2 Kürzeste Wege

Definition 2.1 (Kürzeste Wege). Für einen Fluss f bezeichne:

- $l^P(\theta) := T_{e_k} \circ \cdots \circ T_{e_1}(\theta)$ die Ankunftszeit am Endknoten eines Pfades $P = (e_1, \dots, e_k)$ zur Startzeit θ am Startknoten,
- \mathcal{P}_w die Menge aller s-w-Pfade,
- $l_w(\theta) := \min_{P \in \mathcal{P}_w} l^P(\theta)$ die früheste Ankunftszeit bei w zur Startzeit θ .

Lemma 2.2 (Dreiecksungl.). In einem zulässigen Fluss gilt $T_{vw}(l_v(\theta)) \geqslant l_w(\theta)$ für $vw \in E$.

Definition 2.3 (Aktivität einer Kante). Eine Kante $vw \in E$ ist aktiv zum Zeitpunkt θ , falls $T_{vw}(l_v(\theta)) = l_w(\theta)$ gilt; sonst ist sie inaktiv zum Zeitpunkt θ .

Die Menge Θ_e sei die abgeschlossene Menge aller Zeitpunkte, zu denen e aktiv ist.

Lemma 2.4. Für einen zulässigen Fluss und einem $\theta \in \mathbb{R}$ ist der Teilgraph der zur Zeit θ aktiven Kanten $G_{\theta} := (V, E_{\theta})$ ein azyklischer Graph, in dem s jeden Knoten erreichen kann.

Proposition 2.5. Für einen zulässigen Fluss f ist $(l_v(\theta))_{v \in V}$ die eindeutige Lösung von

$$\tilde{l}_w = \begin{cases} \theta, & falls \ w = s, \\ \min_{vw \in \delta^-(w)} T_{vw}(\tilde{l}_v), & sonst. \end{cases}$$

3 Dynamische Nash-Flüsse

Definition 3.1. Für einen zulässigen Fluss f und einen Zeitpunkt θ bezeichne

- $x_{vw}^+(\theta):=F_{vw}^+(l_v(\theta))$ bzw. $x_{vw}^-(\theta):=F_{vw}^-(l_w(\theta))$ für $vw\in E,$
- $b_v(\theta) := \sum_{e \in \delta^+(v)} x_e^+(\theta) \sum_{e \in \delta^-(v)} x_e^-(\theta)$ für $v \in V$.

Definition 3.2. Man sage, der Fluss f fließe nur entlang aktiver Kanten, falls f_{vw}^+ fast überall auf $l_v(\Theta_{vw}^c)$ verschwindet für alle Kanten $vw \in E$.

Definition 3.3. Man sage, der Fluss f fließe ohne Überholungen, falls $b_s(\theta) = -b_t(\theta)$ für alle $\theta \in \mathbb{R}$.

Theorem 3.4 (Charakterisierung dynamischer Nash-Flüsse). Für einen zulässigen dynamischen Fluss f sind die folgenden Aussagen äquivalent:

- (i) Der Fluss f fließt nur entlang aktiver Kanten
- (ii) Für alle Kanten $e \in E$ und zu jeder Zeit $\theta \in \mathbb{R}$ gilt $x_e^+(\theta) = x_e^-(\theta)$.
- (iii) Der Fluss f fließt ohne Überholungen.

Gilt eine dieser Aussagen, so nennt man f einen dynamischen Nash-Fluss.

Literatur

- [CCL15] COMINETTI, Roberto; CORREA, José; LARRÉ, Omar: Dynamic Equilibria in Fluid Queueing Networks. In: Operations Research 63 (2015), Nr. 1, 21-34. http://dx.doi.org/10.1287/opre.2015.1348. - DOI 10.1287/opre.2015.1348
- [KS11] KOCH, Ronald; SKUTELLA, Martin: Nash Equilibria and the Price of Anarchy for Flows over Time. In: Theory of Computing Systems 49 (2011), Jul, Nr. 1, 71–97. http://dx.doi.org/10.1007/s00224-010-9299-y. DOI 10.1007/s00224-010-9299-y. ISSN 1433-0490