

v.d/v.d[i] (v.p[i])	i=0
S	0
a	∞
b	∞
С	∞
d	∞
е	∞
f	∞
g	∞

v.d/v.d[i] (v.p[i])	i=0	i=1
S	0	0
а	∞	5 (s)
b	∞	2 (s)
С	∞	4 (s)
d	∞	∞
е	∞	20 (s)
f	∞	4 (s)
g	∞	9 (s)

$$(a,b) = (v.d[i-1], v.d[i])$$

Run the Bellman-Ford Algorithm, starting from vertex s.

Note: there are two possibilities for d.p[2], b and c. Algorithm can break ties arbitrarily. We chose c.

v.d/v.d[i] (v.p[i])	i=0	i=1	i=2
S	0	0	0
a	∞	5 (s)	5 (s)
b	∞	2 (s)	-1(c)
С	∞	4 (s)	4(s)
d	∞	∞	6(b,c)
е	∞	20 (s)	12(c)
f	∞	4 (s)	4(s)
g	∞	9 (s)	6(f)

$$(a, b) = (v. d[i - 1], v. d[i])$$

v.d/v.d[i] (v.p[i])	i=0	i=1	i=2	i=3
S	0	0	0	0
а	∞	5 (s)	5 (s)	5 (s)
b	∞	2 (s)	-1(c)	-1(c)
С	∞	4 (s)	4(s)	4(s)
d	∞	∞	6(b,c)	3(b)
е	∞	20 (s)	12(c)	7(d)
f	∞	4 (s)	4(s)	4(s)
g	∞	9 (s)	6(f)	6(f)

$$(a,b) = (v.d[i-1], v.d[i])$$

v.d/v.d[i] (v.p[i])	i=0	i=1	i=2	i=3	i=4
S	0	0	0	0	0
а	∞	5 (s)	5 (s)	5 (s)	5 (s)
b	∞	2 (s)	-1(c)	-1(c)	-1(c)
С	∞	4 (s)	4(s)	4(s)	4(s)
d	∞	∞	6(b,c)	3(b)	3(b)
е	∞	20 (s)	12(c)	7(d)	4(d)
f	∞	4 (s)	4(s)	4(s)	3(e)
g	∞	9 (s)	6(f)	6(f)	6(f)

$$(a, b) = (v. d[i - 1], v. d[i])$$

v.d/v.d[i] (v.p[i])	i=0	i=1	i=2	i=3	i=4	i=5
S	0	0	0	0	0	0
a	∞	5 (s)	5 (s)	5 (s)	5 (s)	5 (s)
b	∞	2 (s)	-1(c)	-1(c)	-1(c)	-1(c)
С	∞	4 (s)	4(s)	4(s)	4(s)	4(s)
d	∞	∞	6(b,c)	3(b)	3(b)	3(b)
е	∞	20 (s)	12(c)	7(d)	4(d)	4(d)
f	∞	4 (s)	4(s)	4(s)	3(e)	0(e)
g	∞	9 (s)	6(f)	6(f)	6(f)	5(f)

$$(a,b) = (v.d[i-1], v.d[i])$$

v.d/v.d[i] (v.p[i])	i=0	i=1	i=2	i=3	i=4	i=5	i=6
S	0	0	0	0	0	0	0
а	∞	5 (s)	5 (s)	5 (s)	5 (s)	5 (s)	5 (s)
b	∞	2 (s)	-1(c)	-1(c)	-1(c)	-1(c)	-1(c)
С	∞	4 (s)	4(s)	4(s)	4(s)	4(s)	4(s)
d	∞	∞	6(b,c)	3(b)	3(b)	3(b)	3(b)
е	∞	20 (s)	12(c)	7(d)	4(d)	4(d)	4(d)
f	∞	4 (s)	4(s)	4(s)	3(e)	0(e)	0(e)
g	∞	9 (s)	6(f)	6(f)	6(f)	5(f)	2(f)

$$(a,b) = (v.d[i-1], v.d[i])$$

v.d/v.d[i] (v.p[i])	i=0	i=1	i=2	i=3	i=4	i=5	i=6	i=7
S	0	0	0	0	0	0	0	0
а	∞	5 (s)	5 (s)	5 (s)	5 (s)	5 (s)	5 (s)	5 (s)
b	∞	2 (s)	-1(c)	-1(c)	-1(c)	-1(c)	-1(c)	-1(c)
С	∞	4 (s)	4(s)	4(s)	4(s)	4(s)	4(s)	4(s)
d	∞	∞	6(b,c)	3(b)	3(b)	3(b)	3(b)	3(b)
е	∞	20 (s)	12(c)	7(d)	4(d)	4(d)	4(d)	4(d)
f	∞	4 (s)	4(s)	4(s)	3(e)	0(e)	0(e)	0(e)
g	∞	9 (s)	6(f)	6(f)	6(f)	5(f)	2(f)	2(f)

Run the Bellman-Ford Algorithm, starting from vertex s.

v.d/v.d[i] (v.p[i])	i=7
S	0
а	5 (s)
b	-1(c)
С	4(s)
d	3(b)
e	4(d)
f	0(e)
g	2(f)

Final column v.d values report shortest path distances from s.

The v.p values form a shortest path tree.

