Vysoké učení technické v Brně Fakulta informačních technologií

IIS - Informační systémy Projekt

	vzorce	sekundy
maskoff_tone	36976	02.31
maskon_tone	55792	03.49

2 Úkol 2

	vzorce	sekundy
maskoff_sentence	50404	03.15
maskon_sentence	53408	03.34

3 Úkol 3

 $velikost_ramce = 16000 \times delka_ramce_v_sekundach$

	střední hodnota	rozptyl
maskoff	103.36884983639695	1.5700927327790588
maskon	103.94641599166626	0.2684847205503971

Můžeme toho docílit třeba tím že zvýšíme vzorkovací frekvenci a tím zvýšíme přesnost f_0 .

```
def dft(s_seg):
    result = []
    N = 1024
    s_seg_n = np.zeros(N)
    s_seg_n = np.array(s_seg_n)
    for i in range(len(s_seg)):
            s_seg_n[i] = s_seg[i]
    for k in range(len(s_seg_n)-1):
        value = 0
        for n in range(len(s_seg_n)):
             value += s_seg_n[n]*np.exp(-2j * np.pi * k * n / N)
        result.append(value)
    return np. array (result)
def my_segment_to_dft(s_seg):
    s_- f f t = []
    for i in range(len(s_seg)):
        tmp = dft(s_seg[i])
        \log_{-} ramce = 10*np.log10(abs(tmp)**2+1e-20)
        s_fft.append(log_ramce)
    return np.array(s_fft)
```


6 Úkol 6

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$

Jedná se o filtr pásmovou propusť


```
def idft(s_seg):
    s_fft = []
    N = 1024
    for n in range(len(s_seg)-1):
        value = 0
        for k in range(len(s_seg)):
            value += s_seg[k]*np.exp(2j * np.pi * k * n / N)
        value = 1/N*value
        s_fft.append(value)
    return np.array(s_fft)
```


8 Úkol 8

Signály jsou si podobné jen ten simulovaný nabývá větší hodnot. Nejvíce jsou si podobné v mezerách mezi slovy.

9 Závěr

Práce na projektu mě celkem bavila. Jeho řešení ale zabralo déle než jsem čekal. Nejdelší dobu jsem strávil na úkolu číslo 4. Výsledky mi přijdou správné. Výsledné nahrávky simulované roušky zní jako bych mluvil přes ruličku toaletního papíru:)

10 Bonusové úkoly

11 Úkol 13

Graf znázornuje rozdíl mezi frekvenční charakteristikou se stejnými a jinými f0

