n Shopper Spectrum ## @ Project Title: **Shopper Spectrum: Customer Segmentation and Product Recommendations in E-Commerce** ## 📌 Overview Shopper Spectrum is a full-scale machine learning project aimed at enhancing customer experience in e-commerce by: - Segmenting customers using **RFM analysis** - Building a **personalized recommendation system** - Deploying the solution via an **interactive Streamlit dashboard** (hosted using Ngrok) ## Objectives - iii **Understand customer behavior** using RFM (Recency, Frequency, Monetary) metrics - @ **Cluster customers** to enable targeted marketing - **Recommend products** based on purchase history and similarity - \bigoplus **Deploy** everything with an interactive web app ## Dataset - **Source**: [UCI Online Retail Dataset](https://archive.ics.uci.edu/ml/datasets/online+retail) - **File**: `Online Retail.xlsx` - Contains 541,909 transactions from a UK-based e-commerce store from 2010–2011 ## * Technologies Used | Category | Tools/Packages | |-----| | Programming | Python, Pandas, NumPy | | ML Models | KMeans, Cosine Similarity | | Dashboard | Streamlit | | Deployment | Ngrok | | Visualization | Matplotlib, Seaborn, Plotly |

* Project Structure Shopper_Spectrum_Project/ app.py # Streamlit app for dashboard Shopper_Spectrum.ipynb # Full project notebook — Online Retail.xlsx # Dataset – models/ — kmeans_model.pkl scaler.pkl similarity matrix.pkl assets/ └── plots, charts, and UI assets — requirements.txt ## \(\text{Key Features} \) ### 1. KFM-Based Customer Segmentation - Categorizes users into clusters like **High Value**, **Frequent Buyers**, **At-Risk**, etc. - Uses **KMeans clustering** after feature scaling ### 2. product Recommendation Engine - Based on **collaborative filtering** using **cosine similarity** - Suggests products similar to past user purchases ### 3. Streamlit Dashboard - Clean UI with: - 📂 Upload data - III Visualize segments - Q Get product recommendations - Accessible via **ngrok public URL** from Colab ## # How to Run ### 📦 1. Install Requirements

pip install -r requirements.txt

2. Train the Models (via Jupyter Notebook)

Open Shopper_Spectrum.ipynb and run all cells:

- Data cleaning
- EDA
- Clustering
- Recommendation engine
- Save models (.pk1 files)
- 3. Launch Streamlit App

streamlit run app.py

4. Use ngrok to expose the dashboard

python CopyEdit

from pyngrok import ngrok
ngrok.set_auth_token("YOUR_AUTHTOKEN")
ngrok.connect("http://localhost:8501")

Business Impact

- Increases cross-selling opportunities
- <u>i</u>
 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

 <u>i</u>

📚 Future Enhancements

- Integrate with live purchase data via APIs
- Add time-based cohort analysis
- Deploy to cloud (Streamlit Sharing, GCP, or AWS)

Author

Chetan Badgujar

GitHub: Chetan2414

License

This project is under the MIT License.

Let me know if you want this saved to a `.md` file or auto-pushed to your GitHub.