Дифференцируемый алгоритм поиска архитектуры с контролем сложности

M. E. Христолюбов В. В. Стрижов khristolyubov@phystech.edu, strijov@phystech.edu

Москва, Московский физико-технический институт

Москва 2022

Цель исследования

Цель

Построить гладко согласованный атлас для фазовой траектории временного ряда

Проблема

Для фазовой траектории не определено понятия согласованного атласа, отсутствует метод его построения и способ проверки атласа на согласованность.

Метод решения

Устанавливается связь между фазовой траекторией и многообразием. С помощью математического понятия согласованного атласа для многообразия вводится определение согласованного атласа моделей для фазовой траектории. Предлагается метод построения атласа и способ проверки атласа на гладкую согласованность.

Основная литература

- Исаченко Р.В., Стрижов В.В. *Снижение размерности пространства в задачах декодирования сигналов.* 2021.
- F. Takens Detecting strange attractors in turbulence. 1981.
- Albert Gu, Karan Goel, Christopher R'e Efficiently Modeling Long Sequences with Structured State Spaces 2021
- А.В. Чернавский Часть первая. Многообразия. 2010.

Теневая фазовая траектория

ightharpoonup Доступ к фазовой траектории динамической системы отсутствует, вместо нее работают с фазовой траекторией ряда. Точка фазовой траектории ряда $[s_1, \ldots s_m]$ в момент времени i является предысторией ряда длины N:

$$\mathbf{x}_i^{(N)} = \eta(s_i).$$

В данном случае $\mathbf{x}_{i}^{(N)}$ — точки фазовой траектории

$$\mathbf{x}_i^{(N)} = \eta(s_i) = [s_{i-N+1}, \ldots, s_i].$$

▶ Локальная параметризация многообразия M размерности n в окрестности $X(\mathbf{x})$ точки \mathbf{x} — это взаимнооднозначное отображение ϕ подмножества $W \in \mathbb{R}^n$ в $X(\mathbf{x})$.

Многообразие

Гладким n-мерным многообразием M называется множество, для которого задана система подмножеств X_i и взаимно однозначные отображения на них $\phi_i: W_i \to X_i$ открытых подмножеств W_i аффинного пространства \mathbb{R}^n , причем

- $ightharpoonup M = \cup X_i$,
- lacktriangle Для каждой пары ϕ_i,ϕ_j прообразы пересечения $X_i\cap X_j$ множества

$$W_{ij}=\phi_i^{-1}(X_i\cap X_j)$$
 u $W_{ji}=\phi_j^{-1}(X_i\cap X_j)$

являются открытыми подмножествами в \mathbb{R}^n ,

 $ightharpoonup \phi_{ij} = \phi_i^{-1}\phi_i$ есть диффеоморфизм

$$W_{ij}=\phi_i^{-1}(X_i\cap X_j)$$
 на $W_{ji}=\phi_j^{-1}(X_i\cap X_j).$

Карты и атлас

- Взаимнооднозначное отображение: $\phi: W \to X$, где W область в \mathbb{R}^n , $X \subset M$, называется в общем случае локальной параметризацией, также картой многообразия M или локальной координатной системой. Две карты называются гладко согласованными, если для них выполнено условие 3) определения 3.
- lacktriangle Совокупность карт ϕ_i называется атласом, если области X_i покрывают M. Если выполнены три условия определения 3, то говорят, что данный атлас является гладко согласованным и определяет в M структуру гладкого многообразия.

Алгоритм аппроксимации

Аппроксимацией точки ${\bf x}$ фазовой траектории называется композиция $\xi \circ \phi$ вложения точки фазовой траектории в скрытое пространство $\xi: \mathbb{X} \hookrightarrow \mathbb{W}$ и восстановления $\phi: \mathbb{W} \hookrightarrow \mathbb{X}$.

Модели аппроксимации как карты многообразия фазовой траектории

 Каждая точка w; скрытого пространства восстанавливает точку фазовой траектории $\hat{\mathbf{x}}_i = [f(t_j, \mathbf{w}_i)]_{i=0}^N$. Тогда из соображений непрерывности данная функция восстановления обобщается на окрестность W_i точки w_i и строится $\phi_i:W_i\hookrightarrow X_i$ так, что для всех $\mathbf{w}\in W_i$ выполнено

$$\phi_i(\mathbf{w}) = \hat{\mathbf{x}}_i$$

▶ Таким образом из алгоритма аппроксимации естественным образом возникает система отображений

$$\phi_i:W_i o X_i$$
 и обратных отображений $\phi_i^{-1}=\xi_i:X_i\hookrightarrow W_i$

Согласованность атласа

Пусть дана функция

$$\xi(\mathbf{x}) = \underset{\mathbf{w}}{\operatorname{arg min}} L(\mathbf{x}, \phi(\mathbf{w})).$$

Если $L(\mathbf{x}, \phi(\mathbf{w}))$ — выпуклая функция, а $\phi(\mathbf{w})$ — линейная функция, тогда $\xi(\mathbf{x})$ — гладко дифференцируемая функция.

ightharpoonup Таким образом, в модели ARIMA ξ является гладко дифференцируемой в соответствии с доказанной теоремой, так как L — квадратичная функция ошибки, а f линейно зависит от своих параметров.

Постановка вычислительного эксперимента

- ▶ Цель эксперимента сравнить модели аппроксимации и убедиться, что атлас гладко согласован.
- Вычислительный эксперимент проводится на синтетической выборке и данных акселерометра мобильного устройства. Сравнивается качество аппроксимации и липшицевость отображения в пространство параметров моделей.

Результаты вычислительного эксперимента

▶ Результаты моделей аппроксимации на синтетической выборке:

Модель	Std	Размерность СП	MeanStabError	MaxStabError	max L
SSA	2.12	2	2.06	3.98	0.35
LSTM	4.21	2	1.80	3.63	0.51
S4	3.93	2	1.20	3.52	0.44

▶ Результаты моделей аппроксимации на данных акселерометра мобильного устройства:

Модель	Std	Размерность СП	${\sf MeanStabError}$	MaxStabError	max L
SSA	30.0	10	1.80	5.22	0.64
LSTM	44.2	10	3.08	7,88	1,04
S4	33.1	10	2,14	6,33	0,98

Визуализация липшицевости отображения в пространство параметров модели

Рис.: Фазовая траектория и траектория в пространстве параметров модели

Заключение

- Введено понятие атласа для набора моделей аппроксимации фазовой траектории.
- ▶ Предложен метод, построения атласа многообразия фазовой траектории ряда.
- ▶ Проведен эксперимент по проверке атласа на согласованность.