

"lost in a field of genomics and code CGI style"

My background: largely in RADseq methods

What the structure of today is (focused on WGS and red-rep data)

"lost in a field of genomics and code CGI style"

My background: largely in RADseq methods

What the structure of today is (focused on WGS and red-rep data)

	ind1	ind2	ind3	ind4	ind5
site1					
site2					
site3					
site4					
site5					

"lost in a field of genomics and code CGI style"

My background: largely in RADseq methods

What the structure of today is (focused on WGS and red-rep data)

"lost in a field of genomics and code CGI style"

My background: largely in RADseq methods

What the structure of today is (focused on WGS and red-rep data)

An overview of 'omics approaches

Genomics

- The study of the genome
- We'll be talking about whole genome sequencing (WGS) and reduced-representation sequencing (sequencing a subset of the genome)

An overview of 'omics approaches

Genomics

- The study of the genome
- We'll be talking about whole genome sequencing (WGS) and reduced-representation sequencing (sequencing a subset of the genome)

Metagenomics

- The study of nucleotide sequences from all organisms in a sample
- Sometimes called "community genomics", alluding to the study of specific communities
- Can involve sequencing a specific marker from all organisms of a specific type (e.g., 16S from all bacteria) or sequencing all extracted DNA or RNA

An overview of 'omics approaches

Genomics

- The study of the genome
- We'll be talking about whole genome sequencing (WGS) and reduced-representation sequencing (sequencing a subset of the genome)

Metagenomics

- The study of nucleotide sequences from all organisms in a sample
- Sometimes called "community genomics", alluding to the study of specific communities
- Can involve sequencing a specific marker from all organisms of a specific type (e.g., 16S from all bacteria) or sequencing all extracted DNA or RNA

Transcriptomics

- The study of the transcriptome the complete set of RNA transcripts that are produced by the genome
- Often the goal is to compare what genes are expressed in specific environments, circumstances, or tissue/cell types

WGS and reduced-representation sequencing

WGS and reduced-representation sequencing

WGS and reduced-representation sequencing

Practical considerations

- Financial & computational resources
- Sample quality (high-quality DNA is critical for sequencing methods that require long, contiguous DNA; low-quality DNA is fragmented)
- Sample selection (outgroups, etc.)
- Number of loci
- Number of reads (depth of coverage)
 - 0.1–3X for probabilistic genotyping (takes into account uncertainty)
 - 10–30X for "hard genotyping"

Genome

Reads

Coverage: number of reads we have overlapping any given position, or: Average sequenced bp / total genome length

Contigs

Scaffold (chromosome?)

Coverage: 61 / 26 = 2.3X

Comparing genome assemblies: **N50** and **L50** usually referred to

Comparing genome assemblies: **N50** and **L50** usually referred to

For RADseq libraries:

Genome size (bp)

For RADseq libraries:

Genome size (bp) x % genome in size range

For RADseq libraries:

Genome size (bp) x % genome in size range

For RADseq libraries:

Genome size (bp) x % genome in size range

For RADseq libraries:

Genome size (bp) x % genome in size range

Average fragment length (bp)

For RADseq libraries:

Genome size (bp) x % genome in size range

x desired coverage

Average fragment length (bp)

For RADseq libraries:

For RADseq libraries:

2Gb genome x 2% x 10X coverage = 1,454,545 reads 275bp avg fragment length

WGS and reduced-representation sequencing: library preparation

Raw reads

Quality check (fastqc)

Biases in genomic data

Where do biases arise from? How can we go about identifying them?

De novo assembly errors are going to differ from those produced with a reference genome

Errors from sequencing:

PCR duplicates, genotyping and sequencing errors, read mapping errors

Other types of errors/biases:

Contamination, wrong species (misidentifications), close relatives sequenced, low coverage, differences in library preparation

Think about these biases all the way through your pipeline:

RADseq

Paralogs are a problem

RADseq

RADseq

Paralogs are a problem

Biases across **different libraries**, making recovery of shared sites (fragments) between individuals difficult

Paralogs are a problem

Biases across **different libraries**, making recovery of shared sites (fragments) between individuals difficult

Paralogs are a problem

Biases across **different libraries**, making recovery of shared sites (fragments) between individuals difficult

Missing data (especially in big genomes!)

- May need to retain sites with lots of MD simply because you can't lose outgroups
- Helpful to think about the source of missing data

А	Reference genome	
А		
G		
G		
G		
G		
G		
G		
G		

А	Reference genome	
Α		
G		Coloulate E statistics that compare
G		Calculate F-statistics that compare observed vs expected
G		heterozygosity in your data
G		
G G		

Α	Reference genome
А	
G	
C	

Α	Reference genome		
Α			
G		1	Domovo ony oitoo with minor
C			Remove any sites with minor frequencies lower than a give
			threshold

PCR duplicates cause some variants to be amplified more than others; **sequencing and read mapping errors** produce erroneous variant calls

Low coverage assemblies

Can run a pipeline like ANGSD that generates genotype likelihoods which reduces the number of lost sites

PCR duplicates cause some variants to be amplified more than others; **sequencing and read mapping errors** produce erroneous variant calls

Low coverage assemblies

Linkage among variants to be used for downstream analyses

PCR duplicates cause some variants to be amplified more than others; **sequencing and read mapping errors** produce erroneous variant calls

Low coverage assemblies

Linkage among variants to be used for downstream analyses

Should perform linkage disequilibrium (LD)-pruning on any datasets intended for things like population structure

Takes in window size, how much to move window, and correlation

Illustration (with permission): J.F. McLaughlin

https://corbett-lab.github.io/what_file_type/

Illustration (with permission): J.F. McLaughlin

Raw reads

Trimming/demult.

Mapping/aligning

Variant calling

Raw reads

Trimming/demult.

Mapping/aligning

Variant calling

Raw reads and quality scores (may be paired):

.fastq (fastq.gz) or .fq

Raw reads

Trimming/demult.

Alignments and sequences:

Raw reads and quality scores

.sam, .bam, or .fasta

(may be paired):

.fastq (fastq.gz) or .fq

Variant calling

Raw reads

Raw reads and quality scores (may be paired):
.fastq (fastq.gz) or .fq

Trimming/demult.

Mapping/aligning

Alignments and sequences:

.sam, .bam, or .fasta

Variant calling

Variant calls:

.vcf (vcf.gz)

Raw reads

Raw reads and quality scores (may be paired):
.fastq (fastq.gz) or .fq

Trimming/demult.

Mapping/aligning

Alignments and sequences:

.sam, .bam, or .fasta

Variant calling

variant calls: These contain both
vcf (vcf.gz) SNPs and indels!

Variant call format (VCF) file

```
##fileformat=VCFv4.2
##fileDate=20220812
##source=PLINKv1.90
##contig=<ID=0,length=2147483645>
##INFO=<ID=PR,Number=0,Type=Flag,Description="Provisional reference allele, may
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
#CHROM POS ID REF ALT OUAL FILTER INFO FORMAT ALT3 ALT3 ANG8 ANG8 BAR360 E
0 15 Locus 15 T C . . PR GT 0/0 0/0 0/0 0/0 ./. 0/0 0/0 ./. 0/1 0/0 0/0 0/0
0 28 Locus_28 A C . . PR GT 0/0 0/0 ./. ./. 0/0 ./. ./. ./. ./. 0/0 ./. 0/0
0 61 Locus 61 C T . . PR GT 1/1 ./. 1/1 0/0 0/1 0/0 0/0 0/0 ./. 0/0 0/0 0/0
0 82 Locus 82 C T . . PR GT 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 ./. 0/0 0/0 ./.
0 90 Locus 90 C T . . PR GT 0/0 0/0 ./. 0/0 0/0 0/0 0/0 0/1 ./. 0/0 0/0 0/0
0 91 Locus 91 T A . . PR GT 0/0 0/0 0/0 0/0 ./. 0/0 0/0 1/1 ./. 0/0 0/0 0/0
0 162 Locus_162 C T . . PR GT 0/1 0/1 0/0 ./. ./. 0/0 0/0 ./. 0/0 0/0 1/1 0/0
0 166 Locus_166 C T . . PR GT 0/0 ./. 0/0 ./. 0/0 ./. ./. 0/1 ./. ./. 0/0 ./.
```

Variant call format (VCF) file

```
##fileformat=VCFv4.2
##FILTER=<ID=PASS,Description="All filters passed">
##FILTER=<ID=FS SOR filter,Description="(vc.isSNP() && ((vc.hasAttribute('FS') && F
##FILTER=<ID=MQ_filter,Description="vc.isSNP() && ((vc.hasAttribute('MQ') && MQ < 4
##FILTER=<ID=OUAL filter, Description="OUAL < 30.0">
##FILTER=<ID=RPRS filter,Description="(vc.isSNP() && (vc.hasAttribute('ReadPosRanks
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths for the ref
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read depth">
##FORMAT=<ID=GO,Number=1,Type=Integer,Description="Genotype quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=PGT,Number=1,Type=String,Description="Physical phasing haplotype
##FORMAT=<ID=PID,Number=1,Type=String,Description="Physical phasing ID inform
##FORMAT=<ID=PL, Number=G, Type=Integer, Description="The phred-scaled genotype
##GATKCommandLine=<ID=VariantFiltration,CommandLine="VariantFiltration --outg
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in genotypes, 1
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele frequency, for each ALT
##INFO=<ID=AN, Number=1, Type=Integer, Description="Total number of alleles in c
##INFO=<ID=BaseQRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxc
##INFO=<ID=ClippingRankSum,Number=1,Type=Float,Description="Z-score From Wilc
##INFO=<ID=DP,Number=1,Type=Integer,Description="Combined depth across sample
##INFO=<ID=ExcessHet,Number=1,Type=Float,Description="Phred-scaled p-value fc
##INFO=<ID=FS.Number=1.Type=Float.Description="Phred-scaled p-value using Fis
##INFO=<ID=InbreedingCoeff,Number=1,Type=Float,Description="Inbreeding coeffj
                                                                                 SCAF 1
##INFO=<ID=MLEAC, Number=A, Type=Integer, Description="Maximum likelihood expect
##INFO=<ID=MLEAF,Number=A,Type=Float,Description="Maximum likelihood expectat
##INFO=<ID=MO.Number=1.Type=Float.Description="RMS mapping quality">
##INFO=<ID=MQRankSum,Number=1,Type=Float,Description="Z-score From Wilcoxon r
##INFO=<ID=QD,Number=1,Type=Float,Description="Variant Confidence/Quality by pepting"
##INFO=<ID=ReadPosRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxon ra
##INFO=<ID=SOR, Number=1, Type=Float, Description="Symmetric Odds Ratio of 2x2 conting
##SentieonCommandLine.GVCFtyper=<ID=GVCFtyper,Version="sentieon-genomics-202112.04"
##SentieonCommandLine.Haplotyper=<ID=Haplotyper,Version="sentieon-genomics-202112.0"
##contig=<ID=SCAF 1,length=88620470.assemblv=unknown>
##contig=<ID=SCAF 2,length=80884353,assembly=unknown>
##contig=<ID=SCAF_3,length=68994874,assembly=unknown>
##contig=<ID=SCAF_4, length=60156485, assembly=unknown>
```

```
##reference=file://ccqp-workflow-results/41-Cyanocitta/data/genome/bCyaSte1.NCBI.p
##source=VariantFiltration
##bcftools viewVersion=1.12+htslib-1.12
##bcftools viewCommand=view -S ccgp-workflow-results/41-Cyanocitta/results/41-Cyano
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT MVZCCGP-Cst1 I-A01 MVZCCGP-Cst
SCAF_1 8234 . C T 9034.03 . AC=48; AF=0.16; AN=300; BaseQRankSum=-0.174; ClippingRank
SCAF 1 14861 . C T 665.39 . AC=6;AF=0.02;AN=300;BaseQRankSum=0.431;ClippingRankSu
SCAF 1 21459 . T C 13570 . AC=66:AF=0.221:AN=298:BaseORankSum=0.21:ClippingRankSum
SCAF 1 36143 . T C 3685.22 . AC=27;AF=0.0906;AN=298;BaseORankSum=-0;ClippingRankSu
SCAF_1 47228 . T C 3681.84 . AC=17;AF=0.057;AN=298;BaseQRankSum=-0;ClippingRankSum
SCAF 1 48964 . C A 751.02 . AC=6;AF=0.0201;AN=298;Base0RankSum=-0;ClippingRankSum
SCAF 1 58848 . A T 6379.99 . AC=31;AF=0.103;AN=300;BaseQRankSum=-0;ClippingRankSum
       65432 . T C 2476.73 . AC=19; AF=0.0633; AN=300; BaseQRankSum=0.253; ClippingRar
       76112 . C T 7906.82 . AC=40;AF=0.133;AN=300;BaseQRankSum=0;ClippingRankSum=
       87858 . T C 465.78 . AC=3;AF=0.01;AN=300;BaseQRankSum=0.711;ClippingRankSu
SCAF_1 93071 . G C 774.35 . AC=4; AF=0.0133; AN=300; BaseQRankSum=-0; ClippingRankSum
SCAF_1 102600 . G A 3434.05 . AC=19;AF=0.0638;AN=298;BaseQRankSum=-0;ClippingRank
```

bcftools: helpful for data processing (can also do variant calling)

https://samtools.github.io/bcftools/bcftools.html

Different commands we'll use in exercises: query and view

bcftools COMMAND [OPTIONS] file.vcf

bcftools: helpful for data processing (can also do variant calling)

https://samtools.github.io/bcftools/bcftools.html

Different commands we'll use in exercises: *query* and *view*

```
bcftools COMMAND [OPTIONS] file.vcf
bcftools query -l file.vcf
```

bcftools: helpful for data processing (can also do variant calling)

https://samtools.github.io/bcftools/bcftools.html

Different commands we'll use in exercises: *query* and *view*

```
bcftools COMMAND [OPTIONS] file.vcf
bcftools query -l file.vcf
bcftools query -f '%CHROM' file.vcf
```

bcftools: helpful for data processing (can also do variant calling)

https://samtools.github.io/bcftools/bcftools.html

Different commands we'll use in exercises: *query* and *view*

```
bcftools COMMAND [OPTIONS] file.vcf
bcftools query -l file.vcf
bcftools query -f '%CHROM' file.vcf
bcftools query -f '%CHROM' file.vcf | head -3
```

bcftools: helpful for data processing (can also do variant calling)

https://samtools.github.io/bcftools/bcftools.html

Different commands we'll use in exercises: *query* and *view*

```
bcftools COMMAND [OPTIONS] file.vcf
bcftools query -l file.vcf
bcftools query -f '%CHROM' file.vcf
bcftools query -f '%CHROM' file.vcf | head -3
```

-q, --min-af FLOAT[:nrefl:alt1|:minorl:majorl:nonmajor]

vcftools and plink: helpful for summary statistics

vcftools and plink: helpful for summary statistics

```
vcftools --vcf file.vcf --out outfile_name --OPTION
```

vcftools and plink: helpful for summary statistics

```
vcftools --vcf file.vcf --out outfile_name --OPTION
vcftools --vcf file.vcf --out file_name --missing-indv
```

vcftools and plink: helpful for summary statistics

```
vcftools --vcf file.vcf --out outfile_name --OPTION
vcftools --vcf file.vcf --out file_name --missing-indv
plink --vcf file.vcf --out prefix_name --distance square --make-bed --recode vcf
```

Dataset we're working with today

Lampropeltis triangulum ddRAD data (~50K SNPs)

EXERCISE 1: gathering basic statistics

Download the vcf file on GitHub here:

https://github.com/eachambers/EvoGeno-Methods-Workshop/blob/main/Workshop1/Data/lampro.vcf

Download the worksheet here:

https://github.com/eachambers/EvoGeno-Methods-Workshop/blob/main/Workshop1/Exercises/EvoGenomics Ws1 Ex1.txt