Probability and Statistics

3 - Discrete Random Variables

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

November 3, 2023

Definition (3.26)

Let X, Y be discrete random variables with respect to the same probability measure Pr, i.e. with respect to the same triple $(\Omega, \mathcal{A}, \Pr)$. Then X and Y are called *independent random variables* if for all subsets $S, T \subseteq \mathbb{R}$ the events $X^{-1}(S)$ and $Y^{-1}(T)$ are independent, i.e.:

$$\Pr(X \in S, Y \in T) = \Pr(X \in S) \cdot \Pr(Y \in T) = \Pr(X^{-1}(S)) \cdot \Pr(Y^{-1}(T))$$

More generally, any finite number of random variables $X_1, ..., X_n$ are independent, if

$$\Pr\left(\bigcap_{i=1}^{n} \{X_i \in S_i\}\right) = \prod_{i=1}^{n} \Pr(X_i \in S_i)$$

for all subsets $S_1, ..., S_n \subseteq \mathbb{R}$.

Lemma (3.27)

Let X and Y be independent random variables and $h, k : \mathbb{R} \to \mathbb{R}$. Then also h(X) and k(Y) are independent random variables.

$$\begin{split} & P_{r} \left(\ h(x) \in S, \ h(Y) \in T \right) = P_{r} \left(\left(h \circ X \right)^{-1} (S)_{n} \left(h \circ Y \right)^{-1} (T) \right) \\ & = P_{r} \left(\ X^{-1} \left(h^{-1} (S) \right) \cap Y^{-1} \left(h^{-1} (T) \right) \right) = P_{r} \left(X^{-1} \left(h^{-1} (S) \right) \right) \cdot P_{r} \left(Y^{-1} \left(h^{-1} (T) \right) \right) \\ & = P_{r} \left(\left(h (X) \right)^{-1} (S) \right) \cdot P_{r} \left(\left(h (Y) \right)^{-1} (T) \right) = P_{r} \left(h (X) \in S \right) \cdot P_{r} \left(h (Y) \in T \right) \end{split}$$

Lemma (3.28)

Let X, Y be discrete random variables with respect to the same probability measure Pr, i.e. with respect to the same triple $(\Omega, \mathcal{A}, Pr)$. Then the following conditions are equivalent:

- (i) X and Y are independent $P_r(X \in S, Y \in T) = P_r(X \in S) \cdot P_r(Y \in T) \qquad \{\cdot \cdot \cdot \cdot S, T \in R\}$ $P_r(X = x, Y = y) = P_r(X \in \{x\}, Y \in \{y\}) = P_r(X \in \{x\}) \cdot P_r(Y \in T) \qquad \{\cdot \cdot \cdot \cdot S, T \in R\}$ (ii) $P_{XY}(X, y) = P_X(X) \cdot P_Y(Y) \qquad \text{for all } X, Y \in \mathbb{R}$
- (iii) $E(h(X) \cdot k(Y)) = E(h(X)) \cdot E(k(Y))$ for all functions $h, k : \mathbb{R} \to \mathbb{R}$

In order to prove the lemma, it suffices to show:

$$(i) \implies (ii) \implies (iii) \implies (i)$$

(i) \Longrightarrow (ii): Trivial, as (ii) simply states the independence of events $X^{-1}(S)$ and $Y^{-1}(T)$, where S and T just consist of single elements: $S = \{x\}$, $T = \{y\}$.

$$(ii) \implies (iii)$$
:

(iii) \Longrightarrow (i): Let $S, T \subseteq \mathbb{R}$. Consider the *indicator functions* $I_S : \mathbb{R} \to \{0, 1\}$ and $I_T : \mathbb{R} \to \{0, 1\}$ defined by:

$$I_S(x) = \left\{ egin{array}{ll} 1 & ext{if } x \in S \\ 0 & ext{if } x
otin S \end{array}
ight. \quad ext{and} \quad I_T(x) = \left\{ egin{array}{ll} 1 & ext{if } x \in T \\ 0 & ext{if } x
otin T \end{array}
ight.$$

Then:

$$Pr(X \in S) \cdot Pr(Y \in T) = \left(\sum_{x \in S} p_X(x)\right) \left(\sum_{y \in T} p_Y(y)\right)$$
$$= \left(\sum_{x \in \mathbb{R}} I_S(x) p_X(x)\right) \left(\sum_{y \in \mathbb{R}} I_T(y) p_Y(y)\right)$$

$$\left(\sum_{x\in\mathbb{R}}I_{S}(x)p_{X}(x)\right)\left(\sum_{y\in\mathbb{R}}I_{T}(y)p_{Y}(y)\right) = E(I_{S}(X))\cdot E(I_{T}(Y))$$

$$= E(I_{S}(X)\cdot I_{T}(Y)) \qquad \text{(by (iii))}$$

$$= \sum_{(x,y)\in\mathbb{R}^{2}}I_{S}(x)\cdot I_{T}(y)\cdot p_{XY}(x,y) \qquad \text{(4. 24) (...)}$$

$$= \sum_{x\in S}\sum_{y\in T}p_{XY}(x,y)$$

$$= \Pr(X\in S,Y\in T)$$

Corollary (3.29)

(i) Let X, Y be independent random variables. Then:

$$E(XY) = E(X) \cdot E(Y)$$

(ii) Let X, Y be independent random variables with moment generating functions $\phi_X(t)$ and $\phi_Y(t)$. Then:

$$\phi_{X+Y}(t) = \phi_X(t) \cdot \phi_Y(t)$$

(iii) Let X_1, \ldots, X_n be independent random variables having all the same distribution. Then:

$$\phi_{X_1+\cdots+X_n}(t) = (\phi_{X_1}(t))^n$$

Correlation

Definition (3.30)

The correlation between two random variables X and Y is defined to be E(XY).

Cauchy-Schwarz Inequality

Lemma (3.31)

Let X, Y be random variables. Then:

$$|E(XY)| \leq \sqrt{E(X^2) \cdot E(Y^2)}$$

If $\mathcal{A} = \mathcal{P}(\Omega)$, then equality holds if and only if there exists some $\lambda \in \mathbb{R}$ with:

$$X(\omega) = \lambda \cdot Y(\omega)$$
 for all $\omega \in \Omega^* := \{\omega \in \Omega \mid \Pr(\{\omega\}) > 0\}$ (In this case: $\lambda = \frac{E(XY)}{E(Y^2)}$)

Proof of (3.31)

Put
$$\lambda := \frac{E(XY)}{F(Y^2)}$$
. Then:

$$0 \leq E((X - \lambda Y)^{2}) = E(X^{2} - 2\lambda XY + \lambda^{2}Y^{2})$$

$$\Rightarrow 0 \leq E(X^{2}) - 2\lambda E(XY) + \lambda^{2} E(Y^{2})$$

$$\Rightarrow 0 \leq E(X^{2}) - 2\frac{(E(XY))^{2}}{E(Y^{2})} + \frac{(E(XY))^{2}}{(E(Y^{2}))^{2}} E(Y^{2})$$

$$\Rightarrow 0 \leq E(X^{2}) - \frac{(E(XY))^{2}}{E(Y^{2})}$$

$$\Rightarrow (E(XY))^{2} \leq E(X^{2}) E(Y^{2})$$

$$\Rightarrow |E(XY)| \leq \sqrt{E(X^{2}) \cdot E(Y^{2})}$$

$$\Rightarrow |E(XY)| \leq \sqrt{E(X^{2}) \cdot E(Y^{2})}$$

$$\Rightarrow |E(XY)| \leq \sqrt{E(X^{2}) \cdot E(Y^{2})}$$

Covariance

Definition (3.32)

Let X, Y be random variables and $m_X = E(X)$, $\sigma_X^2 = Var(X)$, $m_Y = E(Y)$, $\sigma_Y^2 = Var(Y)$.

The covariance between X and Y is defined by:

X and Y are said to be uncorrelated if Cov(X, Y) = 0.

$$X, Y$$
 independent $\implies X, Y$ uncorrelated

Remark (3.33)

Let X, Y be random variables. If X and Y are independent, then X and Y are also uncorrelated.

Normalized Random Variable

Definition (3.34)

Let X be a random variable whose expectation m = E(X) and standard deviation σ_X exist and are finite. Then, the *normalized random variable* defined by X is:

$$X^{\circ} = \frac{X-m}{\sigma_X}$$

Note:
$$E(X^o) = 0$$
 and $\sigma_{X^o} = 1$.

Correlation Coefficient

Definition (3.35)

The correlation coefficient of X and Y is defined to be the correlation between the normalized random variables defined by X and Y:

$$\rho_{XY} := E\left(\left(\frac{X - m_X}{\sigma_X}\right)\left(\frac{Y - m_Y}{\sigma_Y}\right)\right) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Correlation Coefficient

Lemma (3.36)

Let X, Y be random variables. Then:

$$|
ho_{XY}| \leq 1$$

If $A = \mathcal{P}(\Omega)$, then equality holds if and only if $X|_{\Omega^*}$ and $Y|_{\Omega^*}$ are related by a linear function plus a constant, where $\Omega^* := \{ \omega \in \Omega \mid \Pr(\{\omega\}) > 0 \}.$

50 / 92

Proof of (3.36)

$$|\rho_{XY}| = \left| E\left(\left(\frac{X - m_X}{\sigma_X}\right) \left(\frac{Y - m_Y}{\sigma_Y}\right)\right) \right|$$

$$\leq \sqrt{E\left(\left(\frac{X - m_X}{\sigma_X}\right)^2\right) E\left(\left(\frac{Y - m_Y}{\sigma_Y}\right)^2\right)} = 1$$

Furthermore, $|\rho_{XY}|=1$, if and only if

$$\frac{X|_{\Omega^*} - m_X}{\sigma_X} = \lambda \cdot \frac{Y|_{\Omega^*} - m_Y}{\sigma_Y} \qquad (\lambda = \rho_{XY} \in \{1, -1\})$$

$$\iff X|_{\Omega^*} = \rho_{XY} \cdot \frac{\sigma_X}{\sigma_Y} \cdot Y|_{\Omega^*} + \left(m_X - \rho_{XY} \cdot \frac{\sigma_X}{\sigma_Y} m_Y\right)$$

$$Var(X_1 + \cdots + X_n)$$

Theorem (3.37)

Let $X_1, ..., X_n$ be random variables. Then:

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i) + 2 \cdot \sum_{1 \leq i < j \leq n} Cov(X_i, X_j)$$