ELEMENTOS ACTIVOS EL-2207

Objetivos

El transistor de efecto de campo MOSFET y la tecnología CMOS (6 semanas)

- Construcción, símbolo, clasificación.
- Funcionamiento.
- Curvas características y polarización.
- Modelo del MOSFET para aplicaciones analógicas.
- Modelo del MOSFET para aplicaciones digitales.
- Capacitancias internas y modelos de alta frecuencia.
- Aplicaciones: El FET como interruptor: interruptor serie, paralelo, inversor lógico y compuertas lógicas básicas
- Escalamiento de MOSFETs

Objetivo

Conocer el comportamiento y modelado del transistor de efecto de campo MOSFET, así como sus principales aplicaciones.

Transistor: dispositivo de al menos tres terminales, en el que una terminal controla el flujo de corriente entre las otras dos

MOSFETs

- Basado en el principio de efecto de campo
 - Uso de un campo eléctrico para controlar corriente entre dos terminales
- Transistor más utilizado (más de 80% del mercado)
- Base de la industria microelectrónica

- Principio de efecto de campo presentado en 1925 por Julius Lillienfeld
- MOSFET
 - Patente presentada en 1928 por Lillienfeld
 - Implementación posible en los 60s
- Teoría de escalamiento = miniaturización
 - 60s, Robert Dennard

1986 / 1.5μm

1988 / 1.0μm

1991 / 0.8μm

1993 / 0.6μm

1996 / 0.4μm

1998 / 0.25μm

2000 / 0.18μm

- Dispositivo de 4 terminales: compuerta, fuente, drenador y substrato
- Dispositivo UNIPOLAR ⇒ corriente de conducción involucra prácticamente sólo un tipo de portador de carga
- MOSFET consiste en
 - dos regiones semiconductoras fuertemente dopadas separadas por una región semiconductora de tipo complementario
 - un aislante y un electrodo sobre dicha región

Principio de Funcionamiento del MOSFET

La corriente de arrastre que fluye entre fuente y drenador se controla variando el voltaje en el electrodo de compuerta

Sección Transversal - MOSFET

Polarización y Regiones de Operación

- Desde el punto de vista del potencial de superficie/ V_{GS}
 - Banda plana
 - Acumulación
 - Agotamiento
 - Inversión
 - Inversión débil
 - Inversión fuerte

Transistor "apagado" = Corriente ≈ 0

Transistor "encendido" = Corriente ≠ 0

- Desde el punto de vista de V_{DS} en comparación con V_{GS}
 - Región de corte
 - Transistor "apagado" = Corriente ≈ 0
 - Determinado por V_{GS}
 - Región lineal
 - Región de saturación

Transistor "encendido" = Corriente ≠ 0

Sistema Metal Oxido Semiconductor

El comportamiento del MOSFET se define con base en el POTENCIAL DE SUPERFICIE ψ_S , que mide la deformación de bandas del semiconductor en la interfaz con el óxido

Banda Plana

 ψ_{S} : potencial en la interfaz Si-SiO $_{2},$ potencial de superficie, medido con respecto a φ_{B}

 ϕ_B : potencial en el semiconductor en zona lejana a la interfaz Si-SiO₂, diferencia entre E_i y E_F

-V_{FB} voltaje necesario para compensar la diferencia de función de trabajo del metal y el semiconductor

Acumulación

Sin canal ⇒ MOSFET = Dos diodos en serie en direcciones opuestas ⇒ I_{DS} ≈ 0

Agotamiento

Agotamiento: $0 < \psi_S < \phi_B$

$$0 < V_{FB} < V_{GS} < V_{TH}$$

 $0 < V_{FB} < V_{GS} < V_{TH}$ $V_{TH} = \text{voltaje de umbral (V}_{GS} \text{ para activar MOSFET)}$

- -huecos repelidos de la superficie = empobrecimiento de huecos en la superficie
- -Transistor aún inactivo = región de subumbral

Inversión

Inversión débil: $\phi_B < \psi_S < 2 \phi_B$ Inversión fuerte: $\psi_S \ge 2 \phi_B$ $\Rightarrow V > V$

$$\Rightarrow V_{GS} \ge V_{TH}$$

-electrones atraídos a la superficie = concentración de electrones en la superficie iguala concentración de huecos en el substrato

⇒superficie de substrato p se comporta como material n

MOSFET sin Tensión Aplicada

MOSFET con $V_{GS} > V_{TH}$

Transistores NMOS y PMOS

- Drenador Compuerta Fuente

 Polisilicio P+

 P+

 P+

 P+

 P+

 N

 Substrato
- Flujo de corriente: de drenador a fuente
- Drenador es región n+ conectada al potencial más alto
- Se forma canal tipo N entre drenador y fuente
- Flujo de corriente debido a electrones

- Flujo de corriente: de fuente a drenador
- Drenador es región p+ conectada al potencial más bajo
- Se forma canal tipo P entre drenador y fuente
- Flujo de corriente debido a huecos

Desde el punto de vista de fabricación, la fuente y el drenador son intercambiables. Sólo pueden distinguirse después de polarizarlos

Simbología del MOSFET

Símbolos de tres terminales: substrato conectado a fuente, flecha indica dirección de corriente técnica

Si no se usan flechas, un círculo sin rellenar se añade a la compuerta de los transistores PMOS

MOSFETs de enriquecimiento (normalmente apagado)

MOSFETs de empobrecimiento (normalmente encendido)

Simbología del MOSFET

Símbolos de cuatro terminales: flecha en substrato apunta de P a N

MOSFETs de enriquecimiento (normalmente apagado)

MOSFETs de empobrecimiento (normalmente encendido)

NMOS: PMOS: Substrato P, Substrato N, canal P

 $G \circ \longrightarrow \circ B \qquad G \circ \longrightarrow \circ B$ $S \circ \bigvee_{D} i_{D}$

NMOS

PMOS

Empobrecimiento y Enriquecimiento

Enriquecimiento: normalmente inactivo

Empobrecimiento: normalmente activo

Voltaje de Umbral

Voltaje V_{GS} necesario para causar inversión de la superficie

V_{TH} tiene 4 componentes

$$Q_{B} = -qN_{A}x_{d} = -\sqrt{2qN_{A}\varepsilon_{Si}|\psi_{S}|} = -\sqrt{2qN_{A}\varepsilon_{Si}|2\phi_{B}|}$$

x_d: ancho de zona de agotamiento

Ecuaciones Características (región de subumbral)

En la región de corte (subumbral), $V_{GS} < V_{TH}$ Idealmente, la corriente es cero.

En el caso real, la corriente de subumbral se calcula como

$$I_{D} = I_{D0} \cdot e^{\frac{(V_{GS} - V_{TH})}{mV_{t}}} \cdot [1 - e^{-V_{DS}/V_{t}}] \approx I_{D0} \cdot e^{\frac{(V_{GS} - V_{TH})}{mV_{t}}}$$

$$I_{D0} = I_{D}(V_{GS} = V_{TH}) \cdot \frac{W}{L} \approx 0.1 \mu A \cdot \frac{W}{L}$$

W: ancho de transistor

L: longitud de canal

V_{TH} : voltaje de umbral

V_t: voltaje térmico

C_{dep}: capacitancia de agotamiento de substrato, C_{ox}: capacitancia de compuerta

$$m = 1 + \frac{C_{dep}}{C_{ox}}$$

O bien, con la pendiente de subumbral S,

$$I_D = I_{D0} \cdot e^{\frac{(V_{GS} - V_{TH})}{mV_t}} = I_{D0} \cdot e^{\frac{(V_{GS} - V_{TH})\ln 10}{S}}$$

$$S = \left\lceil \frac{d(\log I_{DS})}{dV_{GS}} \right\rceil^{-1} = \ln 10 \cdot V_t \cdot m$$

 $S = \left[\frac{d(\log I_{DS})}{dV_{CS}}\right]^{-1} = \ln 10 \cdot V_t \cdot m$ Cambio en V_{GS} necesario para una variación de una década en I_{DS}

Valor ideal: 60 mV/dec

Corriente de Subumbral

Pendiente de Subumbral

Ecuaciones Características (región lineal)

Corriente de drenador en la región lineal: $V_{GS} \ge V_{TH}$, V_{GS} - $V_{TH} > V_{DS}$

$$I_{D} = K' \cdot \frac{W}{L} (V_{GS} - V_{TH} - \frac{V_{DS}}{2}) \cdot V_{DS} = K \cdot (V_{GS} - V_{TH} - \frac{V_{DS}}{2}) \cdot V_{DS}$$

$$K' = \frac{\mu \cdot \varepsilon_{OX}}{t_{OX}}, \left[\frac{A}{V^2}\right] \qquad K = \frac{\mu \cdot \varepsilon_{OX}}{t_{OX}} \cdot \frac{W}{L}$$

K: parámetro de transconductancia K`= transconductancia del proceso

μ: movilidad

 $\varepsilon_{\rm OX}$: permitividad del SiO₂ = 3.9 $\varepsilon_{\rm 0}$

t_{OX}: espesor de óxido

Región lineal

$$V_{GS} \ge V_{TH}, \ V_{DS} < V_{GS} - V_{TH}$$

Ecuaciones Características (región de saturación)

Corriente de drenador en la región de saturación: V_{GS} ≥ V_{TH}, V_{GS}-V_{TH} ≤ V_{DS}

$$I_D = \frac{K'}{2} \cdot \frac{W}{L} (V_{GS} - V_{TH})^2 = \frac{K}{2} (V_{GS} - V_{TH})^2$$

Modulación de largo de canal

$$I_D = \frac{K'}{2} \cdot \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

λ: coeficiente de modulación de canal [V-1]

Modulación de longitud de canal: Estrangulamiento del canal a partir de $V_{DS} \ge V_{DS,SAT} = V_{GS} - V_{TH}$

 \Rightarrow El canal se acorta \Rightarrow La corriente en saturación no es constante para un V_{GS} dado, sino depende también de V_{DS}

Curvas Características del MOSFET

Figure 12.6 Characteristic curves for an NMOS transistor.

Curvas Características del MOSFET

Curva de transferencia

Función de transferencia:

Salida = f(Entrada)

Salida : I_D

Entrada: V_{GS}

$$I_D = \frac{K'}{2} \cdot \frac{W}{L} (V_{GS} - V_{TH})^2 = \frac{K}{2} (V_{GS} - V_{TH})^2$$

Regiones de Operación

Polarización del Substrato

Diodos parásitos difusión-substrato deben estar polarizados en inversa

NMOS: Substrato debe conectarse al voltaje más bajo del sistema, por ejemplo a tierra (GND).

PMOS: Substrato debe conectarse al voltaje más alto del sistema, por ejemplo, a $V_{\rm DD}$.

También como protección ante el efecto de enganche (latch-up)

Polarización del Substrato

Polarización V_{BS} afecta la tensión de umbral V_{TH} = efecto de substrato (body effect)

El efecto se conoce también como sensibilidad de substrato En general, se presenta de manera que aumenta el voltaje de umbral Puede utilizarse para disminuir la corriente de subumbral, por ejemplo, en memorias DRAM

Voltaje de Umbral con Efecto de Substrato

- V_B ≠ V_S cambia el voltaje de umbral
- Se analiza aquí el caso de un NMOS

Coeficiente de efecto de substrato

$$\gamma = \frac{\sqrt{2qN_A \varepsilon_{si}}}{C'_{ox}}$$

Compensación del cambio en la carga en la zona de carga espacial debido a $V_{BS} \neq 0$

$$\phi_B = V_t \cdot \ln \left(\frac{N_A}{n_i} \right)$$

Efecto de Substrato

Un voltaje de substrato negativo con respecto al surtidor o bien un voltaje de surtidor positivo con respecto al substrato causan un aumento del voltaje de umbral

MOSFET con $V_{TH} < V_{TH0}$

V_{TH} disminuye, más corriente de fuga de subumbral

MOSFET con $V_{TH} > V_{TH0}$

V_{TH} aumenta, menos corriente de fuga de subumbral

