EMERGING FOREST FOR EARLY

DETECTION OF FOREST FIRES

PROJECT REPORT

Submitted By

TEAM ID - PNT2022TMID45949

INDUSTRY MENTOR: SHANTHI

FACULTY MENTOR: J.RAJA

TEAM LEADER: G.SAMSON – 814619106301

TEAM MEMBERS: B.S.THARANI - 814619106901

M.SUBHASH - 814619104019

C.SARANYA - 814619104016

BACHELOR OF ENGINEERING IN
INSTRUMENTATION AND COMMUNICATION

TRICHY ENGINEERING COLLEGE
ANNA UNIVERSITY, CHENNAI
NOVEMBER 2022

LIST OF TABLE

S.NO.	TITLE	PAGE NO.
1	INTRODUCTION	3
1.1	Project Overview	3
1.2	Purpose	4
2	LITERATURE SURVEY	5
2.1	Existing problem	5
2.2	References	5
2.3	Problem Statement Definition	7
3	IDEATION & PROPOSED SOLUTION	8
3.1	Empathy Map Canvas	8
3.2	Ideation & Brainstorming	8
3.3	Proposed Solution	9
3.4	Problem Solution fit	11
4	REQUIREMENT ANALYSIS	12
4.1	Functional requirement	12
4.2	Non-Functional requirements	13
5	PROJECT DESIGN	14
5.1	Data Flow Diagrams	14
5.2	Solution & Technical Architecture	14
5.3	User Stories	16
6	PROJECT PLANNING & SCHEDULING	18
6.1	Sprint Planning & Estimation	18
6.2	Sprint Delivery Schedule	19
6.3	Reports from JIRA	19
7	CODING & SOLUTIONING	20
7.1	Feature 1	20
7.2	Feature 2	20
8	TESTING	21
8.1	Test Cases	21
8.2	User Acceptance Testing	21
9	RESULTS	22
9.1	Performance Metrics	22
10	ADVANTAGES & DISADVANTAGES	23
11	CONCLUSION	23
12	FUTURE SCOPE	24
13	APPENDIX	25

Project Report

EMERGING METHODS FOR EARLY DETECTION OF FOREST FIRES

1.INTRODUCTION

Forest fires are occurring throughout the year with an increasing intensity in the summer and autumn periods. These events are mainly caused by the actions of humans, but different nature and environmental phenomena, like lightning strikes or spontaneous combustion of dried leafs or sawdust, can also be credited for their occurrence. Regardless of the reasons for the ignition of the forest fires, they usually cause devastating damage to both nature and humans. Forest fires are also considered as a main contributor to the air pollution, due to the fact that during every fire huge amounts of gases and particle mater are released in the atmosphere. To fight forest fires, different solutions were employed throughout the years. They ware primary aimed at the early detection of the fires.

1.1 Project Overview

The simplest of these solutions is the establishment of a network of observation posts - both cheap and easy to accomplish, but also time-consuming for the involved people. The constant evolution of the information and communication technologies has led to the introduction of a new generation of solutions for early detection and even prevention of forest fires. ICT-based networks of cameras and sensors and even satellite-based solutions were developed and used in the last decades. These solutions have greatly decreased the direct involvement of humans in the forest fire detection process, but have also proven to be expensive and hard to maintain. In this paper we will discuss and present two different emerging solutions for early detection of forest fires. The first of these solutions involves the use of unmanned aerial vehicles (UAVs) with specialized cameras. Several different scenarios for the possible use of the drones for forest fire detection will be presented and analysed, including a solution with the use of a combination between a fixed-wind and a rotary-wing UAVs. In the next chapter of the paper, we will present and discuss the possibilities for development of systems for early forest fire detection using LoRaWAN sensor networks and we will analyze and present some of the hardware and software components for the realization of such sensor networks. The paper will also provide another point-of-view, which will present the involvement of students in the development and in the use of both systems and we will analyze the advantages and the benefits, which the students will gain from their work on and with these solutions.

1.2 Purpose

Detection of forest fire and smoke in wild land areas is done through remote sensing-based methods such as *satellites*, *high-resolution static cameras fixed on the ground, and unmanned aerial vehicles (UAVs)*.

- (i)Images that are captured through the satellites have poor resolution, and hence, it becomes difficult to detect the particular area.
- (ii)Continuous information about the status of the forest could not be obtained due to the restrictions in the monitoring of forests.
- (iii) Weather might not be stable in all situations as it might vary, and thus, it results in the collection of noisy images.

LITERATURE REVIEW

S.NO	REFERENCES	EXISTING PROBLEM	PROBLEM STATEMENT
		TROBLEM	DEFINITION
1	Suhas G,Chetan	Fire Detection Using	From sprawling
	Kumar , Abhishek B S /	Learning	urbans to dense
	2020		jungles, fire
			accidents pose a major threat
			to the world
2	Diyana Kinaneva /	Emerging methods for	The constant
	2018	early detection of	evolution of
		forest fires using	the information
		unmanned aerial	and
		vehicles and	communication
		LoRaWAN sensor	technologies
		networks	has led to the
			introduction of
			a new
			generation of
			solutions for
			early detection
			and even
			prevention of
			forest fires
3	Amit Sharma ,Pradeep	Sustainable Cities and	In the current
	Kumar Singh / 2020	Society	scenario, the
			concept of
			Smart Cities is one of the
			emerging and
			challenging
			research areas.
			It is observed
			that the
			proposed
			system has a
			higher fire detection rate
	5		to improve the
			true detection

			of forest fire from 95 to 98 percent.
4	Debasis Parida / 2021	IoT Based Forest Fire Detection System using Arduino and GSM Module	It could be avoided if a robust system could be deployed in forest areas to detect the fire and alert to Fire extinguishing authority to take immediate action.
5	Jijitha R, Shabin P / 2019	A Review on Forest Fire Detection	In order to prevent the natural resources and human safety and property. Early detection in forest fire can be significant impact on the control of forest fire. Many forest fire detection techniques have been proposed by different researchers. There are so many

		techniques to detect the occurrence of forest fire.
Priyadarshini M Hanamaraddi / 2016	Image Processing for Forest Fire Detection	A colour model is an abstract mathematical model describing the way colours can be represented as tuples of numbers (e.g. triples in RGB or quadruples in CMYK).

2.3 Problem Statement Definition

- > Processing of symptoms of a forest fire.
- > Processing inputs from various sensors.
- > Images of a video are fed to a CNN model to extract high level features.
- > Processing of those images.
- > Alert people as well as animals.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 PROPOSED SOLUTION:

Serial No.	Parameter	Description
1	Problem Statement (Problem	Forest fires pose a serious
	to be solved)	threat to the environment
		because they harm the
		economy, the ecosystem, and
		put people in danger. In a
		sparsely populated forest area,
		it is difficult to predict and
		detect forest fires, and it is
		even more challenging if the
		prediction is done using
		ground based technologies
		such as camera or video-based
		approaches.
2	Idea / Solution description	When there are any signs of a
		forest fire or other suspicious
		activity, the video of fire is
		streamed on the console, an
		alerting sound is produced,
		and an alert message is sent to
		the respective forest authorities.
3	Novelty / Uniqueness	Due to their dependability and
3	Novelty / Offiqueness	effectiveness, satellites can be
		a valuable source of data both
		before and during the Fire
		since ground based techniques
		makes the prediction more
		challenging. Applying
		convolutional neural network
		(CNN) technology to image
		recognition can theoretically
		extract deeper features and
		minimize blindness and
		unpredictability to a
		substantial extent in the
		feature extraction process,
		which can significantly
		increase the accuracy of flame
		image recognition.
4	Social Impact / Customer	A fire-detection system can
	Satisfaction	limit the emission of harmful
		byproducts of combustion as
		well as globalwarming gases
		produced by the fire by
		delivering early warning
		notification. Early fire
		detection helps to rescue
		countless acres of forest land,

5	Business Model (Revenue Model)	limits environmental damage caused by wildlife, and saves the loss of plants and animals This device can only be utilized by a large firm or by the government to monitor
6	Scalability of the Solution	vast forest reserves While controlling wildfires has advanced over the past few decades, there is still a need to increase disaster risk reduction capabilities, including early detection systems and real-time data transmission at all phases and stages of a forest surveillance system. Monitoring the possible danger areas and early fire detection can considerably minimize the response time, potential damage, and firefighting expenses. Regardless of the geographical distance between resources and users, the system is regionally expandable and maintains its usability and usefulness.

3.4 PROBLEM SOLUTION FIT

Project Design Phase-I - Solution Fit Template

Project Title: Emerging Methods for Early Detection of Forest Fires

4.REQUIREMENT ANALYSIS

4.1 Functional Requirements:

Following are the functional requirements of the proposed solution

FR No	Functional Requirement	Sub Requirement (Story / Sub-
	(Epic)	Task)
FR-1	User Registration	Registration through the
		registered government ID
FR-2	User Confirmation	Confirmation via OTP
FR-3	User Login	Login using credentials
FR-4	User Search	Search for Info on forest fire
		occurrence
FR-5	User Profile	User shall be given a live feed
		of the forest
FR-6	Overall Surveillance Report	Helps to understand the
		current scenario in the forest
		by giving report as "no fire" or
		"negative"
FR-7	Cloud Server Access	To save and run the model
		from the camera footage
FR-8	Live Camera Feed	Real-time monitoring by the
		forest officials
FR-9	GSM Module	To alert the nearest forest
		range officer and the local fire
		department
FR-10	Alert	The system will send
		notification to the user when
		fire is detected

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Governments who manage
		reserve forests, large
		corporations that own acres of
		land where they grow trees for
		profit, NGOs that work to
		conserve forests, and the
		forest department can all make
		use of this project as a service
		to track the activity of
		endangered species.

NFR-2	Security	The server is an IBM cloud,
		which has very excellent
		encryption standards, to assure
		security in the monitoring
		process. Only government of
		company's officials have
		access to these files. OTP will conduct additional security
		checks as confirmation. The
		backup videos will be kept on
		the IBM cloud server.
NFR-3	Reliability	The project is very much
THE S	Rendonity	reliable compared to an
		previous generation open-
		source forest monitoring
		system where the data can be
		easily manipulated and this is
		much robust as the initial cost
		is higher while there will be
		no need for any maintenance
		cost
NFR-4	Performance	This initiative outperforms
		other technologies for
		detecting forest fires, such as
		satellite monitoring, IOT
		sensors, and the usage of IR
		sensor-based cameras. Over
		time, this model becomes
		more accurate.
NFR-5	Availability	This data is only accessible to
		officials since it contains
		sensitive information about
		thousands of acres of forest
		lands. As the AI model is
		connected to the IBM server,
		this can therefore be opened
		anywhere by the authorised
		individual.
NFR-6	Scalability	The initial setup costs more
		than other ways, but there will
		be reduced or no maintenance
		costs, and the cost to halt a
		forest fire and the pollution
		and wildlife lost is
		considerably greater than the
		initial setup costs. Given that
		they are much easier to
		implement, the project can
		readily be scaled to encompass
		bigger areas of the forests

5.PROJECT DESIGN

5.1 Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 Flow Diagram

A flow diagram is a visualization of a sequence of actions, movements within a system and/or decision points. They're a detailed explanation of each step in a process, no matter the level of complexity of that process.

5.3 Solution & Technical Architecture:

- Forest fires are a major environmental issue, creating economic and ecological damage while endangering human lives.
- There are typically about 100,000 wildfires in the United States every year. Over 9 million acres of land have been destroyed due to treacherous wildfires.
- It is difficult to predict and detect Forest Fire in a sparsely populated forest area and it is more difficult if the prediction is done using ground-based methods like Camera or Video-Based approach.
- Satellites can be an important source of data prior to and also during the Fire due to its reliability and efficiency.
- The various real-time forest fire detection and prediction approaches, with the goal of informing the local fire authorities.

Example - Solution Architecture Diagram:

5.3 User Stories

Use the below template to list all the user stories for the product.

User Type	Function al Require ment (Epic)	User Stor y Num ber	User Story / Task	Acceptance criteria	Priority	Release
Custo mer (Mobil e user)	Registrati on	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
,		USN-2	confirmation emailonce I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the applicationthrough Facebook	I can register & access the dashboard with Facebook Login	high	Sprint-2
		USN-4	As a user, I can register for the applicationthrough Gmail		Low	Sprint-1
	Login	USN-1	As a user, I can log into the application byentering email & password	They can access the details and dashboard	High	Sprint-1
Custome r (Web user)	Registrati on	USN-3	Login into executive portal to help the user	Help in accessing the moment and the acess	High	Sprint-1
Custome r Care Executiv e	Help dashboard	USN-2	Can provide the necessary details of help through desired way like email mobiles and SMS		Medium	Sprint-1
Administr ator	User acco unt cont rol	USN-4	The person who is responsible for the website control and other management activities	Provides support to forestfire predection	High	Sprint-1

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Milestone Name	Milestone Number	Description	Mandatory
Project Objectives	M-01	We will be able to learn to prepare dataset, image processing, working with CNN layers, read images using OpenCV and CNN for computer vision AI	Yes
Project Flow	M-02	A project management process flowchart is a graphical aid, designed to visualize the sequence of steps to be followed throughout the project management process	Yes
Pre- Requisites	M-03	To complete this project, we should have known following project such as Keras, Tensor Flow, Python ,Anaconda, OpenCV,Flask, Scikitlearn etc	Yes
Prior Knowledge	M-04	One should have knowledge on the Supervised Learning ,CNN and Regression Classification and Clustering, ANN	Yes
Data collection	M-05	We can collect dataset from different open sources like kaggle.com, UCI machine learning etc.	Yes
Image Preprocessing	M-06	Importing the ImageDataGenerator libraries, Define Parameters/Arguments for ImageDataGenerator class, Applying Image Data Generator Functionality to train set and test set	Yes
Model Building	M-07	Importing the model building libraries, Initializing the model, Adding CNN layers, Adding Dense layers, Configuring the learning Process, Train the model, Save the model, Predictions.	Yes
Video Analysis	M-08	in twilio service and sending alert message	Yes
Train CNN model	M-09	Register for IBM Cloud and train Image Classification Model	Yes

6. 2 Sprint Delivery Schedule

Ideation Phase	M-10	Prepare Literature Survey on the selected Project and Information Gathering, empathy map and ideation	Yes
Project Design Phase-I	M-11	Prepare Proposed solution , problem-solution fit and Architecture	Yes
Project Design Phase-II	M-12	Prepare Customer journey ,functional requirements, Dataflow diagram and Technology Architecture	Yes
Project Planning Phase	M-13	Prepare Milestone list , Activity list and Sprint Delivery Plan	Yes
Project Development Phase	M-14	Project Development delivery of Sprint 1, Sprint 2, Sprint 3, Sprint 4	Yes

6.3 Reports from JIRA

- Packages. Host and manage packages.
- Security. Find and fix vulnerabilities.
- Instant dev environments.
- Copilot. Write better code with AI.
- Manage code changes.
- Issues. Plan and track work.
- Discussions. Collaborate outside of code.

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

7.1 Feature 1

7.2 Feature 2

After the image preprocessing we have done the model building. The model building output is shown here.

```
[] model = load_model("/content/drive/MyDrive/forest.h5") def predictImage(filename):
img1 = image. load_ing(filename, target_size=(128, 128)) Y = image.
ing_to_array (img1)
X = np. expand_dims(Y, axis=0)
val = model. predict(X)

print(val)
if val == 1:
print(" fire")
elif val == 0:
```

print("no fire")

predictImage("/content/drive/MyDrive/Dataset/Test set/with fire/with fire (1).jpg")

1/1 [===

(====] - 41s 41s/step

[[1.]]

OUTPUT

{'forest': 0, 'with fire': 1}

8. TESTING

8.1 Test Cases

Comparison	Human based observation	Satellite system	Optical cameras	Wireless sensor networks
Cost	Low	Very high	High	Medium
Efficiency and practicality	Low	Low	Medium	High
Faulty alarms repetition	Low	Low	Medium	Medium
Fire localising accuracy	Low	Medium	Medium	High
Detection delay	Long	Very long	Long	Small
Fire behaviour information		Yes		Yes
Can be used for other purposes	No	Yes	No	Yes

8.2 User Acceptance Testing

Resolution	Severity1	Severity2	Severity3	Severity4	Subtotal
By Design	10	4	2	2	19
Duplicate	1	1	3	0	5
External	2	3	1	1	7
Fixed	11	2	5	20	38
Not Reproduced	0	0	0	0	0
Skipped	0	0	1	1	2
Won'tFix	0	5	2	1	8
Totals	24	14	13	26	77

Testing analysis

Section	Total Cases	Not Tested	Fai l	Pass
Print Engine	7	0	0	7
Client Application	52	0	0	52
Security	2	0	0	2
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	5	0	0	5
Version Control	2	0	0	2

9. RESULTS

9.1 Performance Metrics

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Python Flask framework is used	Technology of Open source framework
2.	Security Implementations	Mandatory Access Control (MAC) and Preventative Security Control is used	e.g. SHA 256, Encryptions,IAMControls, OWASP etc.
3.	Scalable Architecture	High scalability with 3-tier architecture	Web server – HTML ,CSS ,JavaScript Application server – Python , AnacondaDatabase server –IBM DB2
4.	Availability	Use of load balancing to distribute traffic acrossservers	IBM load balancer
5.	Performance	Enhance the performance by using IBM CDN	IBM Content Delivery Network

10. ADVANTAGES & DISADVANTAGES

Advantages

- ➤ They kill and displace wildlife, alter water cycles and soil fertility, and endanger the lives and livelihoods of local communities.
- They also can rage out of control.
- ➤ It allows the person and their family to educate themselves, seek support that works for them, and make informed decisions and plans.
- ➤ Low cost to produce and maintain
- Versatile mounting hardware
- Relays vital weather information Limited battery capabilities
- Provides the customer with wildfire detection and monitoring to minimize damage caused by wildfires.
- > Small form minimizes wildlife disruption.

Disadvantages

- ➤ Does not have global market penetration like other competitors
- Limited battery capabilities.
- ➤ Limited data transfer and communications capabilities
- Will only be available on the west coast at product.
- > It cannot be used without internet connection.

11. CONCLUSION

The only effective way to minimize damage caused by forest fires is their early detection and fast reaction, apart from preventive measures. Great efforts are therefore made to achieve early forest fire detection, which is traditionally based on human surveillance. Technically more advanced forest fire surveillance systems is based on video camera monitoring units mounted on monitoring spots and distant monitoring from operation center in conjunction with satellite monitoring. Infrared and laser-based systems are more sensitive and they generate less false alarms, but their price is quite high in comparison to video cameras sensitive in visible spectra. In all those systems automatic forest fire detection is based on smoke recognition during the day and flame recognition during the night.

Wildfire will continue to affect source water quality resulting to increasing treatment, maintenance and operating costs. Therefore, forest and watershed managers and water suppliers have to be well informed about

wildfire impacts so as to develop mitigation strategies to build resiliency to wildfire in water supply. Recommended strategies to be fully developed and implemented, they should collect substantial information about magnitude and timing of post-fire impacts. But the bottom line is that wildfire impacts should be incorporated into routine planning, protection and operations of forests watersheds and water sources.

Recommendations:

- Forest managers should ensure proper forest management practices through tree thinning by removing dry trees and branches which act as fuel to fires. They should also have post-wildfire mitigation strategies in place such that proper assessment and monitoring is conducted to minimize causes of forest fires, as well as, establishment of landscape emergency stabilization plans to reduce sediment and ash transport into open water sources. Additionally, forest restoration and rehabilitation on the burnt landscape should be done soon after forest fires to minimize pollutants that could be carried from the area
- Watershed managers should introduce source water protection by having restriction to forests watershed having the water sources used for drinking water supply. This way anthropogenic activities that might cause forest fires are eliminated. Proper land management practices should be ensured through close monitoring of all human activities happening such as logging, mining and residential developments. Also, they should implement run-off control measures on the steep landscape such as stream channel erosion controls or using wood-straw mulch on burnt area that is being rehabilitated or restored.
- Water Providers should modify their designed treatment infrastructures into robust plants that are able to remove pollutants released by forest fires. There should be constant water quality monitoring to understand the key pollutant sources considering all burnt areas that could be exposing the pollutants to the water reservoirs. Highly optimized treatment processes with highly trained operators having knowledge about wildfire water quality impacts should be considered so as to meet drinking water quality standards during post-wildfire periods.

12. FUTURE SCOPE

- Life casualties and avoid loss of properties
- Loss of valuable timber resources;
- Degradation of water catchment areas resulting in loss of water;
- Biodiversity and extinction of plants and animals
- Wild Life Habitat And Depletion Of Wild Life
- Natural regeneration and reduction in forest cover and production;
- Global warming resulting in normal temperature;
- Carbon Sink Resource And Increase In Percentage Of Co2 In The Atmosphere
- Change In The Micro Climate Of The Area Resulting In Healthy Living Conditions
- Soil erosion disaffecting productivity of soils and agricultural production;
- Avoid Ozone Layer Depletion

REFERENCES

- **1.** Abrha H, Adhana K. 2019. Desa'a national forest reserve susceptibility to fire under climate change. Forest Science and Technology. 15(3):140–146. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- 2. Alexander D. 1993. Natural disaster. London: UCL Press Ltd.; p. 632. [Google Scholar]
- **3.** Aponte C, de Groot WJ, Wotton BM. 2016. Forest fires and climate change: causes, consequences and management options. Int J Wildland Fire. 25(8):i–ii. [Crossref], [Web of Science ®], [Google Scholar]
- **4.** Babu KVS, Roy A, Prasad PR. 2016. Forest fire risk modelling in Uttarakhand Himalaya using TERRA satellite datasets. Eur J Remote Sens. 49(1):381–395. [Taylor & Francis Online], [Google Scholar]

- **5.** Bahuguna VK, Upadhay A. 2002. Forest fires in India: policy indicatives for community participation. Int Forest Rev. 4(2):122–127. [Crossref], [Web of Science ®], [Google Scholar]
- 6. Bajracharya KM. 2002. Forest fire situation in Nepal. Int For Fire News. 26:84–86. [Google Scholar]
- 7. Bhujel KD, Maskey-Byanju R, Gautam AP. 2017. Wildlife dynamics in Nepal from 2000–2016. Nep Jnl Environ Sci. 5:1–8. [Crossref], [Google Scholar]
- **8.** Brown AA, Davis KP. 1959. Forest fire control and use. Graw-Hill series in forest resources, New York, McGraw-Hill [1973] xii, 686 p. illus. 24 cm. [Google Scholar]
- 9. Cha S, Kim CB, Kim J, Lee AL, Park KH, Koo N, Kim YS. 2020. Land-use changes and practical application of the land degradation neutrality (LDN) indicators: a case study in the subalpine forest ecosystems, Republic of Korea. Forest Science and Technology. 16(1):8–17. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- 10. Darmawan M, Aniya M, Tsuyuki S. 2001. Forest fire hazard model using remote sensing and geographic information systems: towards understanding of land and forest degradation in lowland areas of east Kalimanthan, Indonesia. Paper presented in 22nd Asian Conference on Remote Sensing, 509 November 2001, Singapore. [Google Scholar]

13. APPENDIX

Source Code

prerequisities

conda create -n tensorflow python=3.5

activate tensorflow

pip install –ignore—installed –upgrade tensorflow

!pip install tensorflow

!pip install opency-python

!pip install opency-contrib-python

import tensorflow as tf

import numpy as np

from tensorflow import keras

import os

import cv2

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.preprocessing import image

import matplotlib.pyplot as plt

#its important to split the training and testing - Data set is stored in the path specified.

```
train = ImageDataGenarator(rescale=1/255)
test = ImageDataGenerator(rescale=1/255)
train_dataset = train.flow_from_directory("D:/archive/fire_dataset/Training and validation/",
                     target_size=(150,150),
                      batch_size =32,
                      class mode = 'binary')
train_dataset = test.flow_from_directory("D:/archive/fire_dataset/Testing/",
                      target_size=(150,150),
                      batch size =32,
                      class_mode ='binary')
test_dataset.class_indices
# we shall build the model here!
# simple CNN shall do the task, you can try other tech as well.
# Try with other activation functions also.
model = keras.Sequential()
model.add(keras.layers.Conv2D(32,(3,3),activation='relu',input_shape=(150,150,3)))
model.add(keras.layers.MaxPool2D(2,2))
model.add(keras.layers.Conv2D(64,(3,3),activation='relu'))
model.add(keras.layers.MaxPool2D(2,2))
model.add(keras.layers.Conv2D(128,(3,3)),activation='relu'))
model.add(keras.layers.MaxPool2D(2,2))
model.add(keras.layers.Conv2D(128,(3,3)),activation='relu'))
model.add(keras.layers.MaxPool2d(2,2))
model.add(keras.layers.Flatten())
```

```
model.add(keras.layers.Dense(512,activation='relu'))
model.add(keras.layers.Dense(1,activation='sigmod'))
# It is time to compile the model, let us
compile.model.compile(optimizer='adam',loss='binary crossentropy',metrics=['accuracy'])
# let's get the model fit.
r = model.fit(train_dataset, epochs = 7, validation_data = test_dataset)
# Epochs you can vary!
# Can we work on the testing dataset, the prediction happen here.
predictions = model.predict(test_dataset)
predictions = np.round(predictions)
predictions
print(len(prediction))
# it's time to plot it! lets plot loss.
import matplib.pyplot as plt
plt.plot(r.history['loss'], label='loss')
plt.plot(r.history['val_loss'], label='val_loss')
plt.legend()
# This helps in taking individual images from the Dataset, load and check results.
def predictImage(filename):
  img1 = image.load_img(filename,target_size=(150,150))
  plt.imshow(img1)
```

```
Y = image.img_to_array(img1)

X = np.expand_dims(Y,axis=0)

val = model.predict(X)

print(val)

if val ==1:

plt.xlabel("No fire",fontsize=30)

elif val == 0:

plt.xlabel("fire",fontsize=30)
```

GitHub & Project Demo Link

https://github.com/IBM-EPBL/IBM-Project-41277-1660640872

https://drive.google.com/file/d/17jIRdA5Njj551nP3fgzFbvCGAKwViooc/view?usp=sharing

