

4/9/2021

CST1510 Programming for Data Communication and Networking

Final Coursework

Avinesh Culloo

(M00776456)

Contents

Introduction	2
UML Diagram	3
Steps for running	3
Server-Side Software System	4
Client-side Software System	6
Some screenshots of the GUI	6
How can it be improved?	8
Special thanks to:	8
References:	8

Introduction

This project is based on designing and implementing a 'Vending Machine' for sushi. It is a Client/Server-Side software system built in Python to interact with the user on the client-side and the data storage is processed on the server-side. The vending machine under the name of 'ケシャフ sushi' (Keshav in Japanese) will allow the user to carry out the following operations when generating an order.

- 1) Start with a welcome message.
- 2) Choose sushi according to a category and then, he/she will have to enter the quantity the latter wish to purchase.
- 3) A window will display the sushi ID, sushi's name, individual price, and the total price.
- 4) After each order place, the vending machine will allow the following list of options:
 - a. Add Another
 - b. Finish and Pay
 - c. Cancel
- 5) Add Another operation will allow the user to add another sushi to his/her cart.
- 6) Finish and Pay will display the final receipt containing the list of items, individual price, total price and proceed to make the payment.
- 7) Cancel will display a message and go back to the Welcome window.
- 8) The user can make payment either by cash or card. If payment is done by cash, then the change will also be displayed.
- 9) Finally, after payment, a goodbye message will be displayed and redirecting the user back to the welcome message.

Python

Python is a high-level programming language that can be used for the following applications:

- 1) Web Development: Django, Pyramid, Bottle, Tornado, Flask, web2py
- 2) GUI Development: tkinter, PyGObject, PyQt, PySide, Kivy, wxPython
- 3) Scientific and Numeric: SciPy, Pandas, IPython
- 4) Software Development: Buildbot, Trac, Roundup

For this coursework, tkinter was used for the GUI development.

Tkinter

Tkinter is not the only GUI Programming toolkit for python as mentioned above, but it is the most commonly used one. It provides a powerful object-oriented interface to the Tk GUI toolkit.

Tkinter was imported by running the following code as shown in fig1:

fig 1 from tkinter import *

UML Diagram

Steps for running

- 1) Update the details of the database and execute a file by the name 'execution.sql' in the database. (More details below)
- 2) Run the server.py file.
- 3) Run the client.py file to start the application.

Server-Side Software System

The server will carry out the following operations:

- 1) The server will set up the connection to communicate to the client and also with the database.
- 2) It will retrieve the sushi details from a database stored in MySQL database service into a list.
- 3) The server will send the list to the client.
- 4) After the order is placed at the client-side, the quantity ordered along with the sushi ID will be sent back to the server-side.
- 5) The server will update the quantity in the database according to the sushi ID.

MySQL Database Service

To connect to a database from python, we have to import MySQL library as shown in fig 2 below.

```
fig 2 jimport mysql.connector
```

In order, for the server software system able to extract records from the database, a connection has to be set up.

Fig 3 will show a screenshot of the code to be amended in server.py. The database name to be inserted is the name of your database as shown in Fig 3A

Fig 3

Fig 3A

Fig 4 will show a screenshot of how to find the Hostname, Port, Username, Password.

Fig 4

Socket Programming

Sockets will act as a point-to-point channel of communication between the client and the server. The socket library was imported as shown in fig 5 below.

import socket

Threading in communication

When communication is set up, once it received or sent information from/to the client, the communication will terminate. In order, to keep the communication active, threading was used.

Threading was imported as shown in fig 6 below.

fig 6 __thread import *

Client-side Software System

On the client-side, the GUI will be implemented which will allow the user to carry out the following operations:

- 1) Choose a category
- 2) Choose sushi from that specific category and choose the quantity (0 to 10) and place the order.
- 3) The user can choose another sushi.
- 4) The final receipt will be displayed and then, proceeding to pay (either by cash or by card).

Some screenshots of the GUI

- 1) Fig 7 shows the welcome window.
- 2) Fig 8 shows the menu window

3) Fig 9 shows the individual product details window.

Fig 9

4) Fig 10 shows the final receipt window.

Fig 10

5) Fig 11 shows the payment method.

Fig 11.A

Fig 11.B

How can it be improved?

- 1) Delete a single order instead of canceling the whole order.
- 2) After each card payment, the user receives a successful payment email.

Special thanks to:

Waseemah Moedeen, Lecturer in IT, Programme Coordinator for BSc CSSE (October) who was always there to help us with our queries and guide us on the right path.

References:

• https://www.python.org/about/apps/ [Accessed 16 March 2021].