文章编号: 1006-3080(2004)03-0336-03

TSP邻近算法在 Euclid平面上的性能比分析

刘剑平 (华东理工大学数学系,上海 200237)

摘要: 旅行推销员问题 (TSP)邻近算法的性能比已经被证明有 一个关于点数的对数函数上界,本文就该方法在欧几里得平面上给出了性能比的 一个对数下界。

关键词: 旅行推销员问题; 启发式算法; 邻近算法; 性能比中图分类号: TP301 文献标识码: A

Performance Ratio Analysis of the Nearest Neighbor Algorithm of TSP in Euclidean Plane

LIU Jian-ping (Department of Mathematics ECUST, Shanghai 200237, China)

Abstract The performance ratio of the nearest neighbor algorithm of traveling salesman problem has been shown to have an upper bound above by a logarithmic function of the number of nodes. In this paper, we provide a logarithmic lower bound on the worst case in Euclidean plane.

Key words traveling salesman problem; heuristics algorithm; nearest neighbor algorithm; performance ratio

旅行推销员问题 (TSP)是一个推销员从家住城市出发,巡访其他城市各一次后返回家住城市,在形成的访问路线中寻找一条代价最小的路线,这里的代价可以是距离,或者是运价,或者是其他量,所得到的访问路线被称为最优回路

求解 TSP的精确解可用分支定界法 $^{[1]}$,而此问题的计算复杂性已经被证明为 NP困难的 $^{[2]}$ 。由此产生了许多求 TSP近似解的启发式算法,如邻近算法。邻近算法已经被证明其性能比(即形成回路长度与最优回路长度之比)不超过 $\frac{1}{2}[\log_2 n]+\frac{1}{2}^{[3]}$ 。本文在 Euclid 平面上构造了邻近算法的性能比超过 $\frac{2}{9}[\log_2 \frac{n+3}{3}]$ 的例子,从而说明了该方法的性能比为 $O(\log_2 n)$ 的量级。

基金项目: 华东理工大学科研基金资助项目

E-mait Liujianpiao6@ 163. com

收稿日期: 2003-06-06

作者简介: 刘剑平 (1960-),男,浙江宁波人,副教授,硕士,从事组合

1 TSP邻近算法在 Euclid平面上的 例子构造

邻近算法是 Rosenkratz等提出的,方法如下 ^[3]: 设有 n 个城市编号为 $N = \{1, 2, \cdots, n\}$,出发点为城市 j_1 ,下一个城市的选取以离 j_1 最近的原则选取,假定已有 k 个城市形成的行走路线 $j_1 \rightarrow j_2 \rightarrow j_3 \rightarrow \cdots \rightarrow j_k$,k < n,则 j_{k+1} 取尚未通过的 n - k 个城市中离 j_k 最近的一个城市,直到最后头尾相连形成一条 Hamilton回路

例子构造: n=3,构成边长为 1的正三角形的三个顶点,称为 F_1 ,见图 1(a)。 n=9时,两个边长为 1的正三角形之间放一个边长为 1的正三角形所形成的 9个点,称为 F_2 ,见图 1(b)。假如 F_{i-1} 已经构成,则 F_i 是由两个 F_{i-1} 的拷贝,中间放一个边长为 1的正三角形的三个顶点,称为 F_i ,见图 1(c)

H I WEFFAINI

Fig. 1 Example of the nearest neighbor algorithm

设 F_i 的总顶点数为 v_i ,则 $v_1 = 3$, $v_2 = 9$, $v_3 = 2v_2 + 3 = 21$, …, $v_i = 2v_{i-1} + 3$, 即 $v_i + 3 = 2(v_{i-1} + 3) = 2^2(v_{i-2} + 3) = \dots = 2^{j-1}(v_1 + 3) = 3$ 2,则 $v_i = 3$ 2 - 3 容易知道上层有 2 - 1个顶点,下层有 2×2 - 2个顶点。其最优回路是: 先依次取下排顶点,再依次取上排顶点,最后返回起点,即 3×2 - 3个点的凸包形成回路,见图 2

图 2 最优回路

Fig. 2 Optimal tour

由图 1知,令 p_i 为 F_i 的邻近算法行走方向路径,则 p_1 为 $1 \rightarrow 2 \rightarrow 3$, p_2 为 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9$, \cdots , p_i 为先按 p_{i-1} 路径走到 $A \rightarrow B \rightarrow C \rightarrow D$,再按 p_{i-1} 路经走到 $E \rightarrow F$,即 $1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots \rightarrow 3 \leftarrow 2 \rightarrow 3$ 的路径。设 $d^{AB} = l_i^B$, $d^{AE} = l_i^B$, f_i 持 p_i 方向行走的总长度为 S_i ,其余 σ , l_i 的长度见图 1(c),取 $d^{AE} = d^{AE} G$,

那么,按邻近算法构造的行走路线有一条按 p_i 方向的行走路线

2 TSP邻近算法在 Euclid平面上的 性能比的下界证明

引理 **1** 由以上 F_i 的构造方法及 d_i 满足式 (1) 的要求 则 d_i 是严格单调递增序列。

证 不妨设 ki~ ki 的长度如图 1(d),由图 1

$$l_i = 2c_i + d_{i-1} - 1$$
 (2)

$$l_i^q = a - a_{-1} \tag{3}$$

$$a = 0.5 + 1 + 2c_{i-1} + d_{i-2} - 1$$
 (4)

由归纳法: 设 $d_1 = 1$,易求得

$$d_{2} = \left((I_{2}^{q})^{2} - \frac{3}{4} \right)^{1/2} - c_{1} = \frac{\overline{13} - 1}{2},$$

$$d_{3} = \left((I_{3}^{q})^{2} - \frac{3}{4} \right)^{1/2} - c_{2} = \frac{\overline{61} - 5}{2},$$

知 $d_1 < d_2 < d_3$,设 $d_{i-2} < d_{i-1}$,则由式 (1) (3)可知 $d_i = \left((l_i^q)^2 - \frac{3}{4} \right)^{1/2} - c_{i-1} =$

 $\left((c_{i} - a_{-1})^{2} - \frac{3}{4} \right)^{1/2} - c_{i-1}$

(C)1994-2020 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne

又由图 1(d)知

$$k_{4} = \left[(a + d_{i})^{2} + \left(\frac{3}{2} \right)^{2} \right]^{1/2} =$$

$$\left[\left(c_{i} - c_{i-1} + \left((c_{i} - c_{i-1})^{2} - \frac{3}{4} \right)^{1/2} \right)^{2} + \frac{3}{4} \right]^{1/2} =$$

$$\left[2(a - c_{i-1})^{2} + 2(c_{i} - a_{-1}) \left((c_{i} - a_{-1})^{2} - \frac{3}{4} \right)^{1/2} \right]^{1/2} <$$

$$\left[2(a - a_{-1})^{2} + 2(a - c_{i-1})^{2} \right]^{1/2} = 2(c_{i} - c_{i-1})$$
再由式 (4)及图 1(c)可知

$$k_4 < 2(c_{i-1} + d_{i-2} + 0.5) = 2c_{i-1} + 2d_{i-2} + 1,$$

 $k_3 = l_i - a + 1.5$

由式 (2) 知 $k_3 = a + d_{i-1} + 0.5$,结合式 (4) 知 $k_{3}=2a_{-1}+d_{i-1}+d_{i-2}+1$, 所以当 $d_{i-2}< d_{i-1}$ 时, $k_4 < k_3$ 而由式 (1)可知 $k_1 = k_2 = k_3$,则 $k_4 < k_2$ 所以 $d_i < d_{i+1}$ 对任意的 i 成立。 证毕

注: di 是严格单调上升序列, 但每次不能取得 太大,要保证 ㎏ ㎏ ㎏

定理 1 对上述构造的 F_{i} 点数 n=3 2-3有 $\frac{NN(F_i)}{OPT(F_i)} \geqslant \frac{2}{9}\log_2\frac{n+3}{3}$

其中 $NN(F_i)$ 为邻近算法产生的回路长度, OP T(Fi) 为最优回路

证 从图 1(c)中可以看出:

$$l_i^p > c_{i-1} + d_{i-1}$$
 (5)

$$l_i = 2l_{i-1} + d_{i-1} + 2$$
(6)

$$s_i = 2s_{i-1} + l_i^q + l_i^p + 2$$
 (7)

$$OPT(F_i) = 2l_i + 1 \tag{8}$$

$$NN(F_i) > s_i$$
 (9)

$$a = l_{i-1} + 1.5 \tag{10}$$

再由式(1),(3)可知

$$d_{i} = \left(\left(l_{i}^{q} \right)^{2} - \frac{3}{4} \right)^{1/2} - a_{-1} =$$

$$\left(\left(a - a_{-1} \right)^{2} - \frac{3}{4} \right)^{1/2} - c_{i-1} < a - 2a_{-1}$$

再由式 (4)知 $d_i < d_{i-2} + 0.5$, 当 i 为奇数时

$$d_i < d_{i-2} + 0.5 < d_{i-4} + 2 \times 0.5 < \cdots < d_{i+1} + 0.5 \times \frac{i-1}{2} = 1 + \frac{i-1}{4} = \frac{i+3}{4}$$

当 i为偶数时

$$d_i < d_2 + 0.5 \times \frac{i-2}{2} = \frac{\overline{13}-1}{2} + \frac{i-2}{4}$$

总之,对一切 i 有 $d_i < i/4 + 1$ (11)
将式 (11)代入式 (6),得到

$$li < 2li-1+\frac{i-1}{4}+3=2li-1+\frac{i}{4}+\frac{11}{4}$$

由递推法可知

$$l_{i} + \frac{i}{4} + \frac{13}{4} < 2(l_{i-1} + \frac{i-1}{4} + \frac{13}{4}) < 2(l_{i-2} + \frac{i-2}{4} + \frac{13}{4}) < \cdots < 2^{i-1}(l_{1} + \frac{1}{4} + \frac{13}{4})$$

$$l_{i} < \frac{9}{2} \times 2^{i-1} - \frac{i}{4} - \frac{13}{4}$$

$$OPT(F_{i}) = 2l_{i} + 1 < 2 \times 2^{i-1} - \frac{i}{2} - \frac{13}{2} + 1 < 9 \times 2^{i-1}$$
 (12)

由式(3),(5),(7),(10)可知

$$s_{i} = 2s_{i-1} + l_{i}^{p} + l_{i}^{q} + 2 > 2s_{i-1} + a_{-1} + d_{i-1} + c_{i} - c_{i-1} + 2 = 2s_{i-1} + d_{i-1} + l_{i-1} + 1. 5 + 2 = 2s_{i-1} + d_{i-1} + l_{i-1} + 3. 5$$

而由 d≥ 1及式(6)可知

由 d_i 单调上升及式 (6)知 l≥ 2l_{i-1+3},即 $l_{i} + 3 \geqslant 2(l_{i-1} + 3) \geqslant 2^{2}(l_{i-2} + 3) \geqslant \cdots \geqslant$ $2^{i-1}(l_1+3)=2^{i+1}$

 $s_i \geqslant 2s_{i-1} + 2^i - \frac{3}{2} + 3 =$

即 🍃 2⁺¹ – 3.结合式 (13).有

$$2s_{i-1} + 2^{i} + \frac{3}{2} > 2s_{i-1} + 2^{i}$$

$$s_{i} > 2s_{i-1} + 2^{i} > 2(2s_{i-2} + 2^{i-1}) + 2^{i} =$$

$$2^{2}s_{i-2} + 2 \times 2^{i} > \cdots > 2^{i-1}s_{1} + (i-1)2^{i} =$$

$$2^{i-1} \times 2 + i \times 2^{i} - 2^{i} = i \times 2^{i}$$
 (14)

由式(12),(14)知

$$\frac{NN(F_i)}{OPT(F_i)} > \frac{s_i}{OPT(F_i)} > \frac{i \times 2^i}{9 \times 2^{i-1}} = \frac{2i}{9}$$

当 n=3 (2-3时,即 $i=\log_2\frac{n+3}{3}$,故

参考文献:

- [1] Gillett B E. Introduction to Operations Research: A Computero riented Algorithmic Approach [M]. USA McGraw-Hill
- [2] Lawler E L, Lenstra J K, Rinnooy Kan A H G, et al. The Traveling Sales man Problem A Guided Tour of Combinatorial Optimization [M]. New York John Wiley & Sons, 1985.
- [3] Rosenkrantz D J, Stearns R E, Lewis P M. An analysis of several heuristics for the traveling salesmen problem [J]. SIAM J Comput, 1977, 6(3): 563-581.