第六章 时序逻辑电路

- 6.1 概述
- 6.2 时序逻辑电路的分析
- 6.3,6.4 常用时序逻辑电路
- 6.5 时序逻辑电路的设计
 - 计数器
 - 序列信号 检测器

计数器(74161, 74160) 寄存器 (74175) 移位寄存器 (74194)

6.5 同步时序逻辑电路的设计

例1:用JK触发器设计一个模5计数器。

(1) 建立状态转换图 **/0 /0** 000 010 001 **100** 011 /**C** Q3 Q1 Q2 CLK-

例1:用JK触发器设计一个模5计数器。

(1) 建立状态转换图

(4) 逻辑电路图

例1:用JK触发器设计一个模5计数器。

(1) 建立状态转换图

(2) K图 (用 K图描述状态转换图,然后求触发器输入)

Q_2	$Q_1 \ 00$	01	11	10
Q_3	0	0	1	0
1	0	X	X	X

$Q_3^* = Q_2 Q_1 Q_2$	$2_3'$
$\boldsymbol{Q}_3^* = \boldsymbol{J}_3 \boldsymbol{Q}_3'$	$+K_3'Q_3$
$J_3 = Q_2 Q_1$	$K_3 = 1$

(3) 检查自启动

Q_2	$Q_1 \ 00$	01	11	10
0	001	010	100	011
1	000	010	000	010
		(Q_3Q_2)	$(Q_1)^*$	

$\mathbf{\Omega}$	$\boldsymbol{\alpha}$	$\mathbf{\mathcal{L}}_{2}$		
Q_2	00	01	11	10
$Q_3 \setminus 0$		0	0	V
1	0	X	X	X

$$Q_{1}^{*} = Q_{3}'Q_{1}'$$

$$Q_{1}^{*} = J_{1}Q_{1}' + K_{1}'Q_{1}$$

$$J_{1}^{*} = Q_{3}', \quad K_{1} = 1$$

Q_2	<i>Q</i> ₁	01	11	10
$Q_3 \setminus 0$	0	0	0	0
1		X	X	X
		7	C	

$$Q_1^*$$

$$C = Q_3$$

(3) 检查自启动

$Q_3Q_2Q_1$	$Q_3' Q_2' Q_1'$	C
1 0 1	0 1 0	1
1 1 0	0 1 0	1
1 1 1	0 0 0	1

$$\begin{cases} Q_3^* = Q_2 Q_1 Q_3' \\ Q_2^* = Q_1 Q_2' + Q_1' Q_2 \\ Q_1^* = Q_3' Q_1' \end{cases}$$

(4) 逻辑电路图

$$\begin{cases}
J_{3} = Q_{2}Q_{1} & K_{3} = 1 \\
J_{2} = Q_{1} & K_{2} = Q_{1} \\
J_{1} = Q'_{3} & K_{1} = 1 \\
C = Q_{3}
\end{cases}$$

例2:用D触发器设计一个如下所示的可控模6计数器。

例2:用D触发器设计一个如下所示的可控模6计数器。

(1) 次态K图

Q_2Q_1						
SQ_3^{2}	00	01	11	10		
00	XXX	011	010	110		
01	101	001	XXX	100		
11	110	100	XXX	010		
10	XXX	101	001	011		

 $(Q_3Q_2Q_1)^*$

模6计数器的状态

不一定必须从000,001,010,...101递增循环 也可以是任意顺序,只要有6个状态不断循环即可

(1) 次态K图

(1) 次态K图

Q_2	\mathcal{O}_{1}			
SQ_3^{23}	00	01	11	10
00	XXX	011	010	110
01	101	001	XXX	100
11	110	100	XXX	010
10	XXX	101	001	011
$\left(\boldsymbol{\mathcal{Q}}_{3}\boldsymbol{\mathcal{Q}}_{2}\boldsymbol{\mathcal{Q}}_{1}\right)^{*}$				

Q_2Q) ₁				
SQ_3	00	01	11	10	_
00	X	0	0	1	
01	1/	0	X	1	
11	1	1	X	0	
10	X	1	0	0	
	Q_3^*		$Q_3^* =$	= S'Q	$Q_1' + SQ_2' = D_3$

Q_2Q	2_1				
SQ_3	00	01	11	10	
00	X	1	1	\forall	
01	0	0	X	0	
11	1	0	X	1	
10	X/	0	0	1	
	Q_2^*	Q	$Q_2^* = Q_2^*$	$S'Q'_3$	+ 50

(1) 次态K图

Q_2	O_1			
SQ_3^{2}	00	01	11	10
00	111	011	010	110
01	101	001	000	100
11	110	100	000	010
10	111	101	001	011
$\left(\boldsymbol{\mathcal{Q}}_{3}\boldsymbol{\mathcal{Q}}_{2}\boldsymbol{\mathcal{Q}}_{1}\right) ^{st}$				

Q_2Q	Q_1				
SQ_3	00	01	11	10	_
00	X	0	0	1	
01	1/	0	X	1	
11	1	1	X	0	
10	X	1	0	0	
	Q_3^*		$Q_3^* =$	= S'Q	$Q_1' + SQ_2' = D_3$

Q_2Q	2_1				
SQ_3	00	01	11	10	
00	X	1	1		
01	0	0	X	0	
11	1	0	X	1	
10	X/	0	0	1	
	Q_2^*	Q	$Q_2^* = Q_2^*$	$S'Q'_3$	+ 50

(2) 检查自启动(方法I)

000 ->111 -> 001

(2) 检查自启动(方法II)

$$S=1$$
时, $Q_3Q_2Q_1$ 000 \rightarrow 111 \rightarrow 000 $S=0$ 时, $Q_3Q_2Q_1$ 000 \rightarrow 111 \rightarrow 000 此电路不能自启动

$$Q_3^* = S'Q_1' + SQ_2'$$

$$Q_2^* = S'Q_3' + SQ_1'$$

$$Q_1^* = S'Q_2' + SQ_3'$$

(3) 修改K图

$$S=1$$
时, $Q_3Q_2Q_1$ 000 \rightarrow 111 \rightarrow 100

$$S=0$$
时, $Q_3Q_2Q_1$ 000 \rightarrow 111 \rightarrow 100

$$Q_3^* = S'Q_1' + SQ_2' + Q_3Q_2Q_1$$

练习1 分析移位型计数器 是几进制,能否自启动。

1)驱动方程 状态方程

$$Q^*_2 = G_1$$

$$D1 = Q_3' \qquad Q^*_1 = Q_3'$$

$$Q^*_1 = Q_5$$

2)状态转换表

Q_3	Q_2	Q_1	Q_3^*	Q ₂ *	Q ₁ *
0	0	0	D	Ð	
0	0	1	0	-	
0	1	0	-	0	-
0	1	1	1	-	
1	0	0	0	D	0
1	0	1	0	-	0
1	1	0		0	0
1	1	1	(1	Ο

练习1 分析移位型计数器 是几进制,能否自启动。

1)驱动方程 状态方程

D3=Q2

 $Q^*_3 = Q_2$

D2=Q1

 $Q^*_2 = Q1$

D1=Q3'

 $Q^*_1 = Q3'$

2)状态转换表

$\mathbf{\Omega}$	$\mathbf{\Omega}$		^ *	^ *	^ *
Q_3	Q_2	Q_1	Q_3^*	\mathbf{Q}_2^*	Q_1^*
0	0	0	0	0	•
0	0	1	0	-	-
0	+	0	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
т	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	0

 D_2 \Box

C1

 FF_2

 Q_1

 FF_1

CLK-

六进制计数器 不能自启动

1D

C1

 FF_3

 $Q_3Q_2Q_1$

 $\boldsymbol{\mathcal{L}}_2$

练习1

先修改总K图, 使得能自启动(保留Q1→D1,Q2 →D2的移位关系)

然后根据修改后的总K图,得到Q1*分K图, 求出D1的新逻辑式

只需设计 D_1

例3:设计一个串行输入的序列信号检测器,每来一个时钟,输入端a 送入一个数据,当检测到一个完整的序列"010011"之后,要求输出端 y 送出一个指示信号1.

例3:设计一个串行输入的序列信号检测器,每来一个时钟,输入端a 送入一个数据,当检测到一个完整的序列"010011"之后,要求 输出端 y 送出一个指示信号1.

例3:设计一个串行输入的序列信号检测器,每来一个时钟,输入端a 送入一个数据,当检测到一个完整的序列"010011"之后,要求输出端 y 送出一个指示信号1.

4)逻辑电路图(略)

例5:设计一个自动售饮料机的逻辑电路。每次只允许投入一枚五角或一元的硬币。投入一元五角硬币后,机器给出一瓶饮料;投入两元(两枚一元)硬币后,在给出饮料的同时找回五角钱。

例5:设计一个自动售饮料机的逻辑电路。每次只允许投入一枚五角或一元的硬币。投入一元五角硬币后,机器给出一瓶饮料;投入两元(两枚一元)硬币后,在给出饮料的同时找回五角钱。

一、抽象、画出状态转换图

	输	入		输出			
一元	更币A	五角码	更币 B	是否给饮料Y		是否	线钱Z
投	未投	投	未投	给	未给	找	未找
1	0	1	0	1	0	1	0

输入	状态S
未投币前	S_0
投入五角后	S_1
投入一元后	S_2

二、状态分配

取n=2, 令 Q_1Q_0 的00、01、10为 S_0 、 S_1 、 S_2

则,	$Q_1Q_0^{AA}$	3 00	01	11	10
	00	00/00	01/00	XX/XX	10/00
	01	01/00	10/00	XX/XX	00/10
	11	XX/XX	XX/XX	XX/XX	XX/XX
	10	10/00	00/10	XX/XX	00/11

$Q_{1 \setminus A}^*$	В			
Q_1Q_0	00	01	11	10
00	0	0	X	
01	0	1	X	0
11	X	X	X	X
10	1	0	X	0

$$Q_1^*Q_0^*/YZ$$

$$Q_1^* = Q_1 A' B' + Q_1' Q_0' A + Q_0 B$$

Q_{0}^{*}	B				Y Al	3			
Q_1Q_0	00	01	11	10	Q_1Q_0	00	01	11	10
00	0	1	X	0	00	0	0	X	0
01	1	0	X	0	01	0	0	X	1
11	X	X	X	X	11	X	X	X	X
10	0	0	X	0	10	0	1	X	1
Q	$Q_0^* = Q$	$Q_1'Q_0'$	B+Q	$Q_0A'I$	B' Y	$=Q_1$	B +	Q_1A	$+Q_0A$

$\angle AB$	3			
$Q_1 Q_0$	00	01	11	10
00	0	0	X	0
01	0	0	X	0
11	X	X	X	X
10	0	0	X	1

$$Z = Q_1 A$$

三、选用D触发器,求方程组

$$D_{1} = Q_{1}^{*} = Q_{1}A'B' + Q_{1}'Q_{0}'A + Q_{0}B$$

$$D_{0} = Q_{0}^{*} = Q_{1}'Q_{0}'B + Q_{0}A'B'$$

$$Y = Q_{1}B + Q_{1}A + Q_{0}A$$

$$Z = Q_{1}A$$

四、检查电路能否自启动

$$AB = 00$$
时, $Q_1^*Q_0^* = 11$, $YZ = 00$
 $AB = 01$ 时, $Q_1^*Q_0^* = 10$, $YZ = 10$
 $AB = 10$ 时, $Q_1^*Q_0^* = 00$, $YZ = 11$

不能自启动

五、画逻辑图

峻空, 连则 20

作业

283

办证法

化尚电势→冈门条孔

6.33 用DFF设计11进制计数器

你会答 \$12 71

补充题

用两个JKFF和逻辑门设计一个双向可控模4计数器(4进制计数器), 当控制信号a为1时,递增计数; 当a为0时,递减计数; 状态转换如下图。 y为计数器的输出信号。 要求写出详细设计过程 并画出最终的逻辑电路图。

1/1 0/0 01 1/1 0/0 0/0 1/0 1/0 1/0

a/y

 Q_1Q_0