

Astroinformatics school - "Rise of the machines"

4 to 6 February 2019 Presented by Rebecca Lange and Dan Marrable

Decision trees

- Classification algorithm
 - Predict discrete (category) outputs
 - Will Shiv play cricket?

Training

- Recursively split data into subsets based on a single attribute
- Stop when all subsets are pure (all yes / no)

Prediction

Based on subset where new data is placed

Training data: 9 yes / 5 no

	•	•		
Day	Outlook	Humidity	Wind	Cricket
1	Sunny	High	Weak	No
2	Sunny	High	Strong	No
3	Overcast	High	Weak	Yes
4	Rain	High	Weak	Yes
5	Rain	Normal	Weak	Yes
6	Rain	Normal	Strong	No
7	Overcast	Normal	Strong	Yes
8	Sunny	High	Weak	No
9	Sunny	Normal	Weak	Yes
10	Rain	Normal	Weak	Yes
11	Sunny	Normal	Strong	Yes
12	Overcast	High	Strong	Yes
13	Overcast	Normal	Weak	Yes
14	Rain	High	Strong	No

New data:

15	Rain	High	Weak	?
----	------	------	------	---

Source: Victor Lavrenko, Decision Trees, University of Edinburgh 2014.

2 yes / 0 no pure subset

0 yes / 3 no pure subset

High

Weak

8

Source: Victor Lavrenko, Decision Trees, University of Edinburgh 2014.

Day	Humidity	Wind	Day	Humidity	Wind
9	Normal	Weak	1	High	Weak
11	Normal	Strong	2	High	Strong
			8	High	Weak

2 yes / 0 no pure subset

0 yes / 3 no pure subset

Day	Outlook	Humidity	Day	Outlook	Humidity
4	Rain	High	6	Rain	Normal
5	Rain	Normal	14	Rain	High
10	Pain	Normal			

3 yes / 0 no pure subset

0 yes / 2 no pure subset

New data:

Day	Outlook	Humidity	Wind	Cricket	
15	Rain	High	Weak	?	→ yes

Decision trees

Which attribute provides the best split?

- Split attributes based on a purity measure (e.g. entropy, gini)
- Information gain = average weighted entropy of each subset
- Example: http://www.saedsayad.com/decision_tree.htm

Learning curves

Underfit (high bias)

- Try more features
- Decrease regularisation

Overfit (high variance)

- Get more data
- Use less features
- Increase regularisation

Source: Andrew Ng, Coursera - Machine Learning. 2012

Random forests

- Train multiple decision trees (forest
 - training examples
 - features
- Final prediction is based on the ave
- Avoids overfitting problems with sir

$$P(y|x) = \frac{1}{n} \sum_{i=1}^{n} P_i(y)$$

Decision trees split one attribute at a time

Greedy algorithm

Decision trees split one attribute at a time

Greedy algorithm

Decision trees split one attribute at a time

Greedy algorithm

Decision trees split one attribute at a time

Greedy algorithm

Decision trees split one attribute at a time

Greedy algorithm

Decision trees split one attribute at a time

Greedy algorithm

Decision trees split one attribute at a time

Greedy algorithm

Decision trees split one attribute at a time

Greedy algorithm

Better: a model that can predict using less parameters, e.g. a function instead of a decision tree.

Linear model

$$z = w_1 x_1 + w_2 x_2 + b$$
 3 parameters

Optimisation

У

0

Iteration: 1

Model: $0.09x_1 - 0.01x_2 - 0.024$

Loss: 0.641

Iteration: 2

Model: $0.17x_1 - 0.08x_2 - 0.07$

Loss: 0.623

Iteration: 5

Model: $0.42x_1 - 0.16x_2 - 0.46$

Loss: 0.583

Iteration: 7

Model: $0.64x_1 - 0.08x_2 - 1.65$

Loss: 0.527

Iteration: 9

Model: $1.15x_1 - 0.37x_2 - 6.39$

Loss: 0.351

Iteration:18

Model: $2.13x_1 - 2.05x_2 - 21.88$

Loss: 0.091

Linear regression

- Predict a continuous value
- Find the line of best fit
- Training process similar to logistic regression
 - different loss function
 - mean squared error

Linear model

$$y = 0.12x + 0.53$$

Logistic regression

Input layer Output layer

Demo: http://playground.tensorflow.org/

Housing price prediction

Housing price prediction

