

Université de Paris-Est Créteil

Faculté des Sciences et technologie

Master 2 Systèmes distribués et Technologies de la Data Science (STDS)

Présentation du projet Module: Apprentissage profond

Deep Learning dans la détection et le diagnostique du covid 19 en utilisant les modalités de radiologie

Présenté par :

Salem Aghiles BRAI

L'ARCHITECTURE DE MODELE

EVALUATION

CONCLUSION ET PERSPECTIVES

PLAN DE TRAVAIL

INTRODUCTION

DeepLearning

REFERENCE:

Mustafa Ghaderzadeh, Farkhondeh Asadi, "Deep Learning in the Detection and Diagnosis of COVID-19 Using Radiology Modalities: A Systematic Review", Journal of Healthcare Engineering, vol. 2021, Article ID 6677314, 10 pages, 2021. https://doi.org/10.1155/2021/6677314

OBJECTIFS

- 2 différentes modalités radiologique
- Environs 17600 images
- Cas Covid et Non Covid
- Répartition de 80% entrainement et 20% pour le test

LA METHODE PROPOSEE

Pré-traitement Modèle Classification Non - Covid Covid

Model Architecture

Prétraitement

Modèle d'apprentissage

Résultats

Grayscale

Resizing image to 256x256

Image Normalization

$$Transformed.\ Values = rac{Values - Minimum}{Maximum - Minimum}$$

OVUE D'ENSEMBLE DU MODELE PROPOSE

Feature Learning

Classification

flatten

L'ARCHITECTURE DU MODELE

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 254, 254, 32)	320
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 127, 127, 32)	0
conv2d_1 (Conv2D)	(None, 125, 125, 64)	18496
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 62, 62, 64)	0
conv2d_2 (Conv2D)	(None, 60, 60, 32)	18464
flatten (Flatten)	(None, 115200)	0
dense (Dense)	(None, 128)	14745728
dense_1 (Dense)	(None, 2)	258

Total params: 14,783,266
Trainable params: 14,783,266

Non-trainable params: 0

- Training Accuracy de 95 %
- Validation Accuracy de 93 %

à partir de l'époque 300 les deux courbes (Loss, Accuracy) commencent à s'aplatir

- Accuracy on COVID positive images: 92,5%
- Accuracy on COVID negative images: 94%
- Accuracy on Validation set: 93%

- Data Augmentation
- Validation croisée
- Utilisation des GPU pour optimiser le temps du calcul

