Discrete Mathematics MATH1064, Lecture 29

Jonathan Spreer

1/16

Extra exercises for Lecture 29

Section 9.1: Problems 42, 43

Section 9.5: Problems 5-9

Jonathan Spreer Discrete Mathematics 2 / 16

From Lecture 28

Definition (Equivalence class)

If R is an equivalence relation on X and $x \in X$, then the set

$$[x] = \{ y \in X \mid (x, y) \in R \}$$

is called the equivalence class of x.

We looked at the equivalence relation R on \mathbb{Z} defined by

$$(m, n) \in R$$
 if and only if $3 \mid (m - n)$.

There are three equivalence classes:

- [0] =
- [1] =
- [2] =

General facts about equivalence classes

If R is an equivalence relation on the non-empty set X, then:

$$[x] \neq \emptyset$$
 for all $x \in X$

$$X = \bigcup_{x \in X} [x]$$

$$[x] \cap [y] = \begin{cases} \emptyset & \text{if } (x, y) \notin R \\ [x] = [y] & \text{if } (x, y) \in R \end{cases}$$

Conclusion: The equivalence classes partition the set X.

Jonathan Spreer Discrete Mathematics

4/16

Partitions

If $A \cap B = \emptyset$, then we say that A and B are disjoint.

Definition

A set $\{S_1, S_2, \ldots\}$ is a partition of S if:

- **2** $S = S_1 \cup S_2 \cup ...$
- **③** S_i ∩ S_j = \emptyset whenever $i \neq j$

(3) in words:

The sets S_1, S_2, \ldots are pairwise disjoint, or mutually disjoint.

Examples:

Examples of partitions

Definition

A set $\{S_1, S_2, \ldots\}$ is a partition of S if:

- **2** $S = S_1 \cup S_2 \cup ...$
- **③** S_i ∩ S_j = \emptyset whenever $i \neq j$

Let $E = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$ be the set of all even integers, and $O = \{\ldots, -3, -1, 1, 3, \ldots\}$ be the set of all odd integers. Then $\{E, O\}$ is a partition of \mathbb{Z} .

Why?

Examples of partitions

Definition

A set $\{S_1, S_2, \ldots\}$ is a partition of S if:

- **2** $S = S_1 \cup S_2 \cup ...$
- **③** S_i ∩ S_j = \emptyset whenever $i \neq j$

For each
$$i = 0, 1, 2, 3, 4$$
, let $S_i = \{n \in \mathbb{Z} \mid n \equiv i \pmod{5}\}$:

$$S_0 = \{\dots, -10, -5, 0, 5, 10, \dots\}$$

$$S_1 = \{\ldots, -9, -4, 1, 6, 11, \ldots\}$$

$$S_2 = \{\ldots, -8, -3, 2, 7, 12, \ldots\}$$

$$S_3 = \{\ldots, -7, -2, 3, 8, 13, \ldots\}$$

$$S_4 = \{\ldots, -6, -1, 4, 9, 14, \ldots\}$$

Then $\{S_0, S_1, S_2, S_3, S_4\}$ is a partition of \mathbb{Z} .

Direct proof:

- ① To show that $S_i \neq \emptyset$ for each i: $0 \in S_0$, $1 \in S_1$, $2 \in S_2$, $3 \in S_3$ and $4 \in S_4$.
- ② To show that $\mathbb{Z} = S_0 \cup S_1 \cup S_2 \cup S_3 \cup S_4$: It is clear that $S_0 \cup S_1 \cup S_2 \cup S_3 \cup S_4 \subseteq \mathbb{Z}$, since each $S_i \subseteq \mathbb{Z}$.

We must now show that $\mathbb{Z} \subseteq S_0 \cup S_1 \cup S_2 \cup S_3 \cup S_4$. Consider any $n \in \mathbb{Z}$. By the quotient-remainder theorem, n = 5q + r for some $r \in \{0, 1, 2, 3, 4\}$.

So $n \equiv r \pmod{5}$, and we have $n \in S_r$ for $r \in \{0, 1, 2, 3, 4\}$. Thus $n \in S_0 \cup S_1 \cup S_2 \cup S_3 \cup S_4$.

3 To show that S_0 , S_1 , S_2 , S_3 and S_4 are mutually disjoint: Suppose $n \in S_i \cap S_j$ for some $i \neq j$. Then $n \equiv i \equiv j \pmod{5}$, and so $5 \mid i - j$. But since $-4 \leq i - j \leq 4$, this means that i - j = 0. Therefore i = j, a contradiction.

Indirect proof:

The sets S_0 , S_1 , S_2 , S_3 and S_4 are the equivalence classes of the equivalence relation on \mathbb{Z} defined by

$$n \equiv m \pmod{5}$$

or

$$5 | (n-m).$$

Hence $\{S_0, S_1, S_2, S_3, S_4\}$ is a partition of \mathbb{Z} .

Another example

Consider:

$$\{ [n, n+1) \mid n \in \mathbb{Z} \} = \{ \ldots, [-2, -1), [-1, 0), [0, 1), [1, 2), \ldots \}$$

Is this a partition of \mathbb{R} ?

We saw that: An equivalence relation on X gives a partition of X. Conversely: A partition of X gives an equivalence relation on X.

Suppose $\{X_1, X_2, ...\}$ is a partition of X. Then the relation R defined by

$$x R y \iff \exists i \text{ such that } x \in X_i \text{ and } y \in X_i$$

is an equivalence relation.

In words:

x is related to y if and only if x and y lie in the same set X_i of the partition.

What can we do with equivalence classes?

Consider the relation R on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, defined by

$$(a,b) R (c,d)$$
 if and only if $ad = bc$

Is this an equivalence relation? Yes!

What are its equivalence classes?

$$\{(1,2), (2,4), (3,6), (4,8), \ldots\}$$

 $\{(1,3), (2,6), (3,9), (4,12), \ldots\}$
 $\{(-5,4), (-10,8), (-15,12), \ldots\}$

We call the set of all equivalence classes \mathbb{Q} .

This is how we construct the rational numbers!

Anti-symmetric

Let R be a relation on the set X.

The relation R is symmetric if and only if:

For all $a, b \in X$, $(a, b) \in R$ implies $(b, a) \in R$.

The relation R is anti-symmetric if and only if:

For all $a, b \in X$, $(a, b) \in R$ and $(b, a) \in R$ implies a = b.

Which statement is true?

- "anti-symmetric" = "not symmetric"
- 2 "anti-symmetric" ≠ "not symmetric"

Partial and total orders

A relation R on a set X which is reflexive, transitive, and anti-symmetric is called a partial order on X.

If in addition, for all $a, b \in X$, aRb or bRa, then R is called a total order on X.

Partial vs. total order:

Examples

Example 1: The relation \leq on \mathbb{R}

Example 2: Let X be a non-empty set. The relation R on $\mathcal{P}(X)$ defined by

$$(A, B) \in R$$
 if and only if $A \subseteq B$

is reflexive, transitive and anti-symmetric.

Let's do some counting!

Let
$$X = \{1, 2, ..., n\}$$
.

- **1** How many relations can you define on X?
- When the entire is a second of the entire of a second of the entire is a second of the entire
- How many symmetric relations can you define on X?
- How many anti-symmetric relations can you define on X?

Hint: $R \subseteq X \times X$. For each element of $X \times X$, you need to decide whether it is in R or not!