What if analysis

- To find total expenditure and saving
- Make a data source in Microsoft Excel

Product	Expenditure	Saving
TC	500	60
TCC	600	70
WR	700	80
AR	800	90
K-TYPE	900	100
DC	1000	110
BK	1100	120
MM	1200	130
YKK	1300	140
MKL	1400	150

- In B13 type =SUM (B2:B11) and press enter
- In C14 type =C2-B13 and press enter
- **❖** To create scenario
 - Select data tab, in the data tools select what-if analysis -> scenario manager
 - In add scenario dialogue box, which appears. Click the add button.
 - In the 'Scenario Name' type -> Original Budget.
 - In 'Changing Cells' type -> B2:B11. Click ok.

• Scenario values dialog box opens to retain original values. Click ok

❖ To create new scenario

- Click on add button again.
- In scenario and type New Budget. Then click ok.

We get scenario values dialogue box. Change the values in B6, B7,B8 and B9 to 2500,2500,500 and 400 respectively. Then click ok.

Scenario Sumi	mary		
	Current Values:	Original Budget	New Budget
Changing			_
Cells:			
\$B\$2	500	500	500
\$B\$3	600	600	600
\$B\$4	700	700	700
\$B\$5	800	800	800
\$B\$6	2500	900	2500
\$B\$7	2500	1000	2500
\$B\$8	500	1100	500
\$B\$9	400	1200	400
\$B\$10	1300	1300	1300
\$B\$11	1400	1400	1400
Result Cells:			
\$C\$14	-11140	-9440	-11140

Goal Seek

- Select A1 and type Current Sales Data.
- Select A2 and type Items Sold.
- Select A3 and type Profit Per Item.
- Select A4 and type Total Profit.
- In B2 type 1000, in B3 type 25 and in B4 type =B2*B3.
- Select D1 and type Future Sales Data.
- Select D2 and type Items Sold.
- Select D3 and type Profit Per Item.
- Select D4 and type Total Profit.
- In E2 type 1000 and in E4 type =E2*E3.

❖ Goal Seek

- Select data tab then in data tools select what if analysis then select goal seek.
- In goal seek dialog box which appears, "In Set Cell" type E4.
- In "To Value" type 3000.
- In "By Changing Cells" type E3 then click ok.

<u>Output</u>

А	В	С	D	E
Current Sales Data			Future Sales Data	
Items Sold	1000		Items Sold	1000
Profit Per Item	25		Profit Per Item	3
Total Profit	25000		Total Profit	3000

Import the legacy data from different sources such as (Excel, SqlServer, Oracle etc.) and load in the target system. Make data source in Microsoft Excel.

Make a data source in Microsoft Excel

ITEM	JANUARY	FEBRUARY
TC	3,000	3,500
TCC	4,000	4,500
WR	5,000	5,500
AR	6,000	6,500
K-Type	7,000	7,500
DC	8,000	8,500
BK	9,000	9,500
MM	10,000	10,500
YKK	11,000	11,500

- Find the average
- Get data -> Microsoft Excel -> choose sheet from Excel -> OK -> Load
- The data will be displayed on navigator.
- Now you can Go to Edit Queries and make changes to various fields
- The fields of the table are shown on right side of screen. It has ∑ symbol before some field name such values are called Measures and other fields are called Dimensions.

<u>Output</u>

	D	3	2
₩-	A ^B _C ITEM ▼	1 ² ₃ Measures	1 ² ₃ Dimensions
1	TC	3000	3500
2	TCC	4000	4500
3	WR	5000	5500
4	AR	6000	6500
5	K-Type	7000	7500
6	DC	8000	8500
7	BK	9000	9500
8	MM	10000	10500
9	YKK	11000	11500
10	Average	7000	7500

Perform the Extraction Transformation and Loading (ETL) process to construct the database in Power BI.

- Get Data -> OData feed -> Put URL-https://services.odata.org/v3/Northwind/Northwind.svc -> OK ->

 Connect.
- Select tables such as product and order table -> Load.
- Open Edit Queries (New window will be displayed as Power Query Editor)
- Choose product ID, Name, Quantity Per Unit ,Unit In Stock -> OK
- To change Data type
- Select Column -> Click on Data type in Ribbon.
- To change Name of the column
- Double click on column -> Change Name
- To change Value
- Click Replace Value OR Right Click on Value
- To Load another table
- Go to Recent Sources -> Tick Order Table -> OK
- Go to Edit Queries -> Search Column Order_Details OR Click on the icon (which shows all the hidden columns) -> Select Product ID, Unit Price, Quantity -> Save and Apply.
- Add column -> custom column -> Name- Total
- Formula = select Order_Details.Unit Price*Order_Details.Quantity ->
 OK -> Save File and Apply.
- On Dashboard -> On left side -> click on Relationship Icon.

Implementation of Classification algorithm in R Programming.

- Open R tool
- Write on Console
- Code
- rainfall<c(799,1174.8,865.1,1134.6,635,918.5,998.6,784.2,985,882.8,10)
- rainfall.timeseries<-ts(rainfall,start=c(2012,1),frequency=12)
- print(rainfall.timeseries)
- plot(rainfall.timeseries)

```
Jan Feb Mar Apr May Jun Jul Aug Sep Oct
2012 799.0 1174.8 865.1 1134.6 635.0 918.5 998.6 784.2 985.0 882.8
Nov
2012 1071.0
```


Practical Implementation of Decision Tree using R Tool

- Open R tool
- Write on Console
- Code
- 4. Go to package -> find "party" package and install.
- Load party package
- Library(party)
- print(head(readingSkills))
- input.dat<-readingSkills[c(1:105),]
- output.tree <-ctree(nativeSpeaker ~age+shoeSize+score,data=input.dat)
- plot(output.tree)

```
- - X
R Console
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[Previously saved workspace restored]
> library(party)
Loading required package: grid
Loading required package: mvtnorm
Loading required package: modeltools
Loading required package: stats4
Loading required package: strucchange
Loading required package: zoo
Attaching package: 'zoo'
The following objects are masked from 'package:base':
    as.Date, as.Date.numeric
Loading required package: sandwich
> print(head(readingSkills))
  nativeSpeaker age shoeSize
                              score
           yes 5 24.83189 32.29385
1
2
           yes
                6 25.95238 36.63105
3
            no 11 30.42170 49.60593
4
            yes 7 28.66450 40.28456
            yes 11 31.88207 55.46085
5
            yes 10 30.07843 52.83124
> input.dat<-readingSkills[c(1:105),]
> output.tree <-ctree(nativeSpeaker ~age+shoeSize+score,data=input.dat)
> plot(output.tree)
>
```


k-means clustering using R

- Open R tool
- Write on Console
- Code
- require(datasets)
- data(iris)
- str(iris)
- summary(iris)
- head(iris)
- iris.new<-iris[,c(1,2,3,4)]
- head(iris.new)
- result<-kmeans(iris.new,3)
- result\$size
- result\$cluster
- plot(iris.new[c(1,2)],col=result\$cluster)
- plot(iris.new[c(3,4)],col=result\$cluster)

Raeesh Rayeen TYBSCIT (Roll no 23)

```
> require(datasets)
> data(iris)
> str(iris)
             150 obs. of 5 variables:
'data.frame':
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... $ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
            : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
$ Species
> summary(iris)
 Sepal.Length
               Sepal.Width
                              Petal.Length
                                            Petal.Width
             Min. :2.000
1st Qu.:2.800
                             Min. :1.000
1st Qu.:1.600
Min. :4.300
                                           Min. :0.100
                                            1st Ou.:0.300
1st Ou.:5.100
Median :5.800 Median :3.000
                             Median :4.350
                                            Median :1.300
Mean :5.843
              Mean :3.057
                             Mean :3.758
                                            Mean :1.199
 3rd Qu.:6.400 3rd Qu.:3.300
                            3rd Qu.:5.100
                                            3rd Qu.:1.800
Max. :7.900
              Max. :4.400 Max. :6.900
                                           Max. :2.500
     Species
setosa
        :50
versicolor:50
virginica:50
> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
        5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
                                          0.2 setosa
0.2 setosa
         4.7
                    3.2
                               1.3
3
4
         4.6
                    3.1
                                         0.2 setosa
0.4 setosa
                              1.4
                   3.6
         5.0
6
         5.4
                    3.9
> iris.new<-iris[,c(1,2,3,4)]
> head(iris.new)
 Sepal.Length Sepal.Width Petal.Length Petal.Width
       5.1
              3.5 1.4 0.2
2
         4.9
                    3.0
                                1.4
                                           0.2
3
         4.7
                    3.2
                               1.3
                                          0.2
                                          0.2
4
         4.6
                   3.1
                               1.5
5
         5.0
                    3.6
                                1.4
                                          0.2
                               1.7
                                          0.4
         5.4
                    3.9
> result<-kmeans(iris.new,3)
> result$size
[1] 38 62 50
> result$cluster
  [149] 1 2
> plot(iris.new[c(1,2)],col=result$cluster)
> plot(iris.new[c(3,4)],col=result$cluster)
```


Prediction Using Linear Regression

- Open R tool
- Write on Console
- Code
- x<-c(151,174,138,186,128,136,179,163,152,131)
- y<-c(63,81,56,91,47,57,76,72,62,48)
- relation<- $lm(y \sim x)$
- print(relation)
- print(summary(relation))
- a<-data.frame(x=170)
- result<-predict(relation,a)
- print(result)

Raeesh Rayeen TYBSCIT (Roll no 23)

```
R Console
> x<-c(151,174,138,186,128,136,179,163,152,131)
> y<-c(63,81,56,91,47,57,76,72,62,48)
> relation<-lm(y ~ x)
> print(relation)
Call:
lm(formula = y \sim x)
Coefficients:
(Intercept)
                0.6746
  -38.4551
> print(summary(relation))
Call:
lm(formula = y \sim x)
Residuals:
Min 1Q Median 3Q Max
-6.3002 -1.6629 0.0412 1.8944 3.9775
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -38.45509 8.04901 -4.778 0.00139 ** x 0.67461 0.05191 12.997 1.16e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared: 0.9548, Adjusted R-squared: 0.9491
F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06
> a<-data.frame(x=170)
> result<-predict(relation,a)
> print(result)
76.22869
>
```