Section 2 Cells

Sujin Park COGS 17 A05

04/14/25

MIDTERM I (125 Points) – Next Tue!

3:30-4:50 pm (80 minute)

Exam Online

For section slides:

Common features of Cells

- Soma
 Fancy word meaning "cell body"
- Cytoplasm
 Fluid within a cell
- Extracellular Fluid
 Fluid outside of a cell
- Cell Membrane
 A double layered wall consisting of lipids (fat molecules)

Important Organelles to Remember

- <u>Nucleus</u>

An inner "control center" where **DNA** is stored

Ribosomes Small protein producing factories

- <u>Mitochondria</u> The "newerhouse of the

The "powerhouse of the cell"

Specialized Cells of the Nervous System

2 Types of Cells

- <u>Neurons</u>

Cells that are specialized for Information Transfer via **Processes** and **Membrane**

Glia Cells

Have many functions but do not participate in Information Transfer

"Glia" meaning "Glue" which holds the nervous system together, both physically and chemically, to support Neurons

A lot smaller than neuron (1/10 size), but greater in amount (x10 times as many), takes up 50% of brain by weight

Different Glia Cells

Radial Glia

Guide the migration and growth of neurons during fetal development

- Ependymal Cells:

Lines ventricles and secretes CSF into the Ventricles

Oligodendrocytes

Surrounds axons in a process called myelination in the CNS

<u>Schwann Cells:</u> specialized Oligos which myelinate neurons of the PNS

Astrocytes

Provides nutrients, recycles NTs, maintains the BBB, and numerous other functions

- <u>Microglia</u>

Removes toxins from the brain, repairs damaged neurons

Neurons

- Very small cell-body, but branches can be 2m long
- Specialized cells for information transfer

- Dendrites:

- Spiny protrusions from the Soma which receives incoming signals
- Site of Postsynaptic Membranes
- w/ receptor sites

Axons

- Long fibers which reach out to other neurons
- Carries outgoing signals
- Terminates in Presynaptic Terminals (aka. Terminal Buttons, or End Bulbs) which releases NTs into the Synaptic Cleft

- Receptor Sites:

Specialized areas which interact with NTs from other neurons

Important lons to remember:

Na⁺, K⁺, Ca²⁺, Cl⁻ Sodium, Potassium, Calcium, Chloride

Important Concepts

- Nature always seeks **Equilibrium**, so is neural communication
- How to achieve this stable state?
- Concentration Gradient:
 - Molecules in areas of greater concentration will diffuse to areas of lesser concentration
- Electrical Gradient:
 - Negative repels negative charges and positive repels positive charges, but negative & positive attracts each other
 - = Electrostatic Pressure
- Selective Permeability of Membranes
 - Lipid bi-layers: typically impermeable to charged ions and larger molecules
 - Control which chemicals enter/leave the cell and this is done by gates that open or close to let ions pass through

Resting Potential

Membrane Potential

The difference in charge between the inside and outside of the cell, in milli-volts (mV)

Resting Potential:

- All gates are locked (waiting for ion flows and is ready to fire)
- Typically highly polarized, -70 mV for Neurons (fewer positive ions inside than outside cell)

Sodium/Potassium Pump

Helps establish resting potential by transporting 3 Na⁺ out and 2 K⁺ ions in

Action Potential (AP)

Depolarization of the Neuron

• If Resting Neurons are **Polarized**, then **Depolarized** neurons are not "resting" AKA neurons are "firing"

Propagation process

Stimulation from Presynaptic neuron → release of NTs → binds to Postsynaptic neurons > triggers AP that starts at the Axon Hillock

Action Potential (AP)

Mechanism of Action

- Na channels at axon hillock open, allowing an influx of Na ions, drastically shifting the membrane potential towards a peak of () mV
- Next Na gates open and more influx of Na ions
- At the peak, Na channels close while K channels open, allowing an efflux of K ions, shifting the membrane potential (positively/negatively) to a point where it overshoots (hyperpolarizes)
- K channels close and Na/K pumps start re-establishing resting potential (via () Na out, () K in) until membrane potential returns to -70 mV, This time period is called Refractory Period, during which the neuron cannot fire
- Calcium pumps at the Axon Terminal actively transports Ca out to reset the NT release mechanism

All or None Law

 In a given cell, AP will always have the same amplitude and velocity regardless of the intensity of the stimulus that triggered it

Action Potential (AP)

Mechanism of Action

- Na channels at axon hillock open, allowing an influx of Na ions, drastically shifting the membrane potential towards a peak of +50 mV
- Next Na gates open and more influx of Na ions
- At the peak, Na channels close while K channels open, allowing an efflux of K ions, shifting the membrane potential <u>negatively</u> to a point where it overshoots (hyperpolarizes)
- K channels close and Na/K pumps start re-establishing resting potential (via 3 Na out, 2 K in) until membrane potential returns to -70 mV, This time period is called Refractory Period, during which the neuron cannot fire
- Calcium pumps at the Axon Terminal actively transports Ca out to reset the NT release mechanism

All or None Law

 In a given cell, AP will always have the same amplitude and velocity regardless of the intensity of the stimulus that triggered it

Myelination

Speed up AP

- Glia cells wrapped around the axon, w/ gaps between called "Nodes of Ranvier", act as an insulator
- **Electrical conduction** (electricity flows thru axon insulation) in myelinated portions: very fast but decays over time → Reboost to original strength occurs at...

Nodes of Ranvier:

- The small gaps between myelin sheaths
- sustain lonic Conduction (when charged atoms flow through pores in the cell membrane, slower but stronger signal transmission) boosts the electrical signal

Myelination

Saltatory Conduction:

- Nerve impulse "jumps" from one node to another in a myelinated cell
- Increases overall speed of impulse

- Multiple Sclerosis (MS):

- A neurodegenerative disease where myelin degrades over time
- Electrical signals decay quickly and AP fail

The Synapse

- Presynaptic cell + Synaptic Cleft + Postsynaptic
 cell = The Synapse
- Presynaptic cells release NTs into the cleft via Exocytosis (releasing the NTs)
 - NTs are packaged into vesicles
- Influx of Ca initiates the exocytosis
 - Ca opens the Fusion Pore which binds vesicles to the presynaptic cellular membrane
- Following exocytosis, NTs passively diffuse across the synaptic cleft and binds to NT-specific receptor sites on postsynaptic neurons

terminal button

presynaptic membrane

Polarity of Postsynaptic Cells

- <mark>EPSP</mark>

- Increases a cell's likelihood of releasing NTs, more likely to "fire"
- Usually due to Na+ entering the cell

- <mark>IPSP</mark>

- Decreases a cell's likelihood of releasing NTs, less likely to "fire"
- Usually due to K+ entering or Clexiting

Polarity of Postsynaptic Cells

Summation

- A neuron's response = sum of EPSPs and IPSPs
- Temporal Summation: one or more cells repeatedly stimulate another in rapid succession
- Spatial Summation: multiple cells converge on a single location on a cell at the same time

Mechanisms of Neurotransmitters

(A) Ionotropic receptor (ligand-gated ion channel; fast)

lonotropic

- Directly affects ion gates
- Rapid and Short-lived responses
- Best for sending info about changing inputs

(B) Metabotropic receptor (G protein-coupled receptor; slow)

Metabotropic

- Causes metabolic changes in Postsynaptic cell
- Activation of G protein and second messenger
- Slower but long-lasting responses

Some Neurotransmitters and their Functions

Chemicals are called NTs if they impact nearby neurons

Neurotransmitter	Functions
Acetycholine (Ach)	All neuro-muscular junctionsCortical arousal
GABA	Most common inhibitory NTRegulate anxiety
Glutamate	Most common excitatory NTLearningPerceptionSchizophrenia
Serotonin (5HT)	Often acts as a neuromodulatorMood regulation, sleep, perception
Dopamine	ReinforcementAttentionMotor control
Norepinephrine	•Arousal •Attention
Epinephrine (adrenalin)	• Arousal • Attention
Substance P	Pain (damage, itch, extreme temperatures, etc)
Endorphins	•Counter effects of Substance P
Hormones	Testosterone, estrogen, cortisol, oxytocin, endorphins, etc

Agonist vs Antagonist

- Agonists: chemical that increases likelihood of NT
- Antagonist: chemical that decreases likelihood of NT
- What works as an Agonist vs. Antagonist often depends on how NT is typically processed in the cleft

Some examples:

1. Acetylcholinesterase (AChE)

Enzyme which breaks down ACh in the cleft (NT is often deactivated by enzymes or Glia in the cleft)

e.g., ACh deficit

- → Given AChE-Blocker, it will bind to the esterase, preventing the break down of ACh and freed ACh to re-stimulate the post synaptic cell and stays in the cleft longer
- → AChE-Blocker = act as an ACh agonist (increase the effect)

Post-synaptic cell

Agonist vs Antagonist

Some examples:

2. <u>Serotonin Reuptake</u>

- Usually, serotonin (5-HT) remains intact, and is reabsorbed back into the presynaptic cell after it's used (=Reuptake)
- 5-HT Agonist (e.g., Prozac, antidepressant): block this reuptake → prolonging its effects on postsynaptic cell
- 5-HT Antagonist (e.g., enzyme MAO): converts 5-HT into inactive form that won't affect Postsynaptic Cell
- Agonists and Antagonists can also act inside the presynaptic cell to affect NT release:
- Some antagonistic drugs (e.g. Reserpine) prevent NTs (Monoamines) from being packaged into vesicles
- Some agonists (e.g., Black Widow Spider venom) cause massive release of NT (ACh)

Prozac partially blocks normal reuptake of the neurotransmitter serotonin; excess serotonin in synapse enhances its mood-lifting effect.

Other Factors affecting Function

- Gene Transcription: Activation of <u>DNA</u> sequences initiated the production of proteins for structural and chemical changes within cell
- Receptor Sites can increase/decrease in #: repeated activity → more dendritic spines, more receptor sites
- 3. Receptor Sites can be blocked by NT mimics that do not readily detach (e.g., LSD, a potent psychedelic, binds primarily to serotonin receptors in the brain and act as agonist)
- 4. Some NTs, like Substance P (Pain), are produced in soma and carried by motor protein, Kinesin (transport NT to terminal by walking along micro-tubules) → may require hours/days to replenish
- 5. A few NT precursors can pass the BBB ightarrow used as medication (e.g., L-DOPA for dopamine)

Gene Expression Transcription Translation DNA MRNA Protein

Other Factors affecting Function

Exceptions: Receptor Sites on PRE-synaptic Terminal

- Auto-Receptors (a class of NT receptor)
 - Some <u>axons</u> have receptor sites for their <u>own NT</u>
 - Usually inhibitory, and act in a negative feedback role by becoming active when the amount of neurotransmitter release is too high
- Axo-axonic Synapses (Axon to Axon)
 - Presynaptic Terminal may have Receptor Sites for Inhibitory or Excitatory NT from <u>another</u> <u>cell</u>

Source: Brunton LL, Chabner BA, Knollmann BC: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 12th Edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

