RapidChain: Scaling Blockchain via Full Sharding

Mahdi Zamani, Mahnush Movahedi, Mariana Raykova

Presented by Avish Menon and Neil Arakkal

Agenda

- Limitations of Current Consensus Protocols
- Overview of RapidChain
- Bootstrapping
- Consensus
- Reconfiguration
- Evaluation

Traditional Byzantine Consensus

- Vulnerable to Sybil attacks if used in an open-membership setting
- Protection against Sybil is inefficient

Bitcoin

- Uses Nakamoto Consensus
- Inhibits Sybil using PoW
- Full Replication: Low transaction throughput, high latency, poor scaling
- Tradeoff between scalability and decentralization

Sharding-Based Consensus

- Electing random small committees
 - Disjoint Ledger

RapidChain Aims

- Electing via probabilistic sampling process
- Reconfiguration to avoid Sybil Attacks
- Cross-shard transactions
 - Verification of transactions involving other committees
- Decentralized bootstrapping
 - Creating initial random committees

Model Overview

- n nodes with public (pk_i) and secret key(sk_i)
- m committees
- t < n/3 Byzantine nodes
- Less than 5% churn in every epoch

Top Level Diagram

RapidChain Top-Level

- Bootstrapping Phase Establishing a reference committee
 - Epoch Randomness
 - First sharding committees
 - Challenges for new nodes
 - Reorganization of existing committees
 - Reconfiguration Block

RapidChain Top-Level (cont'd)

- Consensus Phase
 - Each tx is sent to a random node
 - Tx sent to the output committee
 - Committee verifies and adds tx to block

RapidChain Top-Level (cont'd)

- Reconfiguration Phase
 - Reconfiguration block generated
 - Fresh epoch randomness
 - New list of participants
 - Cuckoo rule used to reconfigure existing committees

Stages of RapidChain

Bootstrapping

- Runs an election committee protocol
- Divides nodes into committees
- Only runs at the initialization of RapidChain

Consensus in Committees

Consists of two parts:

- A gossiping protocol for intershard communication
- A synchronous consensus protocol to agree on the header of the block

Gossiping Large Blocks

Information dispersal algorithm (IDA):

- Encode message into k chunks (M1,...,Mk) using an erasure coding mechanism.
- Give each neighbor k/d chunks (d is the number of neighbors)
- The message can be reconstructed from any set of (1-f)k chunks

Gossiping Large Blocks

- Compute a Merkle hash tree over message chunks M1, ..., Mk
- Send Merkle proof along with message chunk to neighbors
- Each node verifies the message using the Merkle proof and the Merkle root.

Consensus Protocol Details

A new leader is picked at the start of each iteration.

Inter-Committee Routing

Each committee maintains a routing table of log n records that point to log n different committees

Problem with Committees

Leave/join attacks: Corrupt nodes could strategically rejoin the network to take control of a committee.

Cuckoo rule:

- New node assigned a random shard
- Evict k nodes from the shard, not including the new node

Bounded cuckoo rule:

Bounded cuckoo rule:

Bounded cuckoo rule:

New node

Evaluation

Protocol	# Nodes	Resiliency	TPS	Latency	Storage	Shard Size	Time to Failure
Elastico	1,600	n/4	40	800 sec	1x	100	1 hour
OmniLedger	1,800	n/4	500	14 sec	1/3x	600	230 years
OmniLedger	1,800	n/4	3,500	63 sec	1/3x	600	230 years
RapidChain	1,800	n/3	4,220	8.5 sec	1/9x	200	1,950 years
RapidChain	4,000	n/3	7,380	8.7 sec	1/16x	250	4,580 years

Thank you!