- Formule d'Euler : $e^{ix}=\cos x+i\sin x$ Formule d'Euler : $\cos x=\frac{e^{ix}+e^{-ix}}{2}$ et $\sin x=$

- Suite géométrique: $\sum_{k=0}^n u_k = u_0 + \cdots + u_n = u_0(1+q+\cdots+q^n) = u_0 \frac{1-q^{n+1}}{1-q^n} (q \neq 1)$ trigo: $\sin^2(\theta) = \frac{1-\cos 2\theta}{1-q^n}, \cos^2(\theta) = \frac{1+\cos 2\theta}{1-q^n}$
 - Peigne de Dirac de pas T $W_T(t) = \sum_{k=-\infty}^{k=+\infty} \delta(t-t)$
- Energie d'un signal à temps continue : $E_x \; = \;$ $\int_{\mathbb{R}} x(t) x^*(t) dt = \int_{\mathbb{R}} |x(t)|^2 \, dt$ si $x(t) \in \mathbb{R}$ Si divergence : Puissance moyenne temps conti-
- nue : $P_x = \lim_{\theta \to \infty} \frac{1}{\eta n} x(t) x^*(t) dt$. Temps discret : $\lim_{K \to \infty} \frac{1}{2K+1} \sum_{k=-K}^{K} R[k] x^*[k]$ Intercorrélation temps continue : taux de ressemblance entre deux signaux décalés l'un par
- rapport à l'autre
- A energie finie : $\gamma_{xy}(\tau) = \int_{\mathbb{R}} x(t) y^*(t-\tau) dt$ A puissance finie : $\gamma_{xy}(\tau) = \lim_{t \to \infty} \frac{1}{2\theta} \int_{\mathbb{R}} x(t) y^*(t-t) dt$
- Discret reprendre le même schéma que au des- Autocorrélation temps continue : taux de ressem
 - blance avec une version décalée de lui-même. Réponse impulsionnelle h(t) : on input $\delta[k]$ dans Même formule que l'intercorrélation mais avec
- Réponse indicielle : on input $\boldsymbol{u}[k]$ dans notre SLI
- on obtient $y_u(t) = \int_{-\infty}^t h(u) du$ fonction de répartition, et donc h densité
- particular, constant a section $TF\{h(t)\}=3$ Système Linéaire, homogène et invariant
 - Gain de $H=2\log_{10}|H(f)|$, Phase : $\psi(f)=$
 - arg H(f)
- Convolution : $x(t)\star h(t)=\int_{\mathbb{R}}h(\tau)x(t-\tau)d\tau$ $- \operatorname{Si} \operatorname{SLI}: y[k] = x[k] \star h[k]$
 - $X(f) = TF\{x(t)\} = \int_{\mathbb{R}} x(t)e^{-j2\pi ft} dt$ $x(t) = TF^{-1}\{X(f)\} = \int_{\mathbb{R}} X(f)e^{+j2\pi ft} df$
- $X(\nu)=TF\{x[k]\}=\sum_{k=-\infty}^{+\infty}x[k]e^{-j2\pi\nu k}$ pério
 - dique de période 1
- Egalité de Plancherel : $\int_{\mathbb{R}} x_1(t) x_2^*(t) dt$ $-x[k] = TF^{-1}\{X(\nu)\} = \int_0^1 X(\nu)e^{+j2\pi\nu k} d\nu$
- Egalité de Parseval : $\int_{\mathbb{R}} |x(t)|^2 dt = \int_{\mathbb{R}} |X(f)|^2 dt$ Invariant si $y_1(t) = y_2(t)$ Densité spectrale d'énergie (DSE) = Energie d'un **4 Analyse en régime harmonique** signal calculé dans le domaine fréquentiel (voir $I_{\mathbb{R}}X_{1}(f)X_{2}^{*}(f)df$ On peut integré dans les deux domaines: $\int sinc^2 \rightarrow \int rect$

2 Démonstration

- $f(t)\delta(t t_0) = f(t_0)\delta(t t_0)$ $\Leftrightarrow f(t)\delta(t - t_0) = 0$ $\forall t \neq t_0 : \delta(t - t_0) = 0 \text{ donc}$
- $\forall t=t_0: f(t)=f(t_0) \implies f(t)\delta(t-t_0)=f(t_0)\delta(t-ty)(t)=x(t)\star h(t)=\int_{\mathbb{R}}x(t-u)h(u)du$ 5 Convolution à la main $= f(t_0)\delta(t - t_0)$
- $\gamma_{xy}(au) = \gamma_{yx}(- au)$ faire un changement de va-

- $x(t)\star\delta(t-\tau)=x(t-\tau)$ définition into diamond
- TF discrète de période 1 : montrer que X(
 u)= $X(\nu + 1)$
- Retard : $TF\{x(t-\tau)\}=e^{-j2\pi f\tau}X(f)$ chan-— Propriété des TF:
- gement de variable $t'=t-\tau$ Inversion temporel : $TF\{x(-t)\}=X(-f)$ changement de variable t'=-t attention
 - Conjugaison : $TF\{x^*(t)\}=X^*(f)=\int x^*(t)e^{-j2\pi ft}=(\int x(t)e^{j\pi ft})^*=(X(-f))^*-x$ réel + pair $\Longrightarrow TF\{x\}$ réel paire : x(-t)= $x(t) \implies X(-t) = X(t) \text{ et } x(t) = x^*(t) \implies$ changement du sens des bornes
 - Dérivation : $TF\{x^{(n)}(t)\}=(j2\pi f)^nX(f)$ et $TF\{(-j2\pi t)^nx(t)\}=X^{(n)}(f)$ X * (f) = X(f)
- Changement déchelle : $TF\{x(\alpha t)\}=\frac{1}{|\alpha|}X(\frac{t}{\alpha})$: compression de l'échelle du temps \implies dilatation de l'échelle des fré-
- signe de α faire deux cas $t'=rac{t}{\alpha}$ Modulation : $TF\{x(t)e^{j2\pi f_0t}\}=X(f-f_0)$: quence: changement de variable ATTENTION

évident

- Convolution : $TF\{x(t)\star y(t)\}=X(f)Y(f)$: definition into Fubini into changement de var into cafd
 - Produit : Attention temps discret donne ® : prouver par tf inverse
- $TF\{\gamma_x(au)\}: \gamma_x(au)=x(au)\star x^*(au)$ puis prop TF pour cqfd — Théorème de Wiener-Kintchine : $\Gamma_x(f)$

- Linéaire = Additivité + homogène
 Additivité :
- Soit $x_1(t) \to h(t)$ et $x_2(t) \to h(t) \to$ somme
 - $\begin{array}{l} \operatorname{des} \operatorname{deux} \operatorname{sorties} = y_1(t) \\ \operatorname{Soit} x_1(t) + x_2(t) \to h(t) \to y_2(t) \end{array}$
 - Additif $si\ y_1(t) = y_2(t)$
- $\operatorname{Soit} x(t) * K \to h(t) \to y_1(t)$ $\operatorname{Soit} x(t) \to h(t) \to *K \to y_2(t)$ — Homogène si $y_1(t) = y_2(t)$
- Soit $x(t) \rightarrow (t-T) \rightarrow h(t) \rightarrow y_1(t)$ Invariance dans le temps
 - Soit $x(t) \rightarrow h(t) \rightarrow t T \rightarrow y_2(t)$

Densité spectrale de puissance (DSP) = same = dale permanent) pour diverses valeurs de f_0 balayant limité à $[-\theta;\theta]$ La réponse en fréquence d'un SLI peut être obtenue

$$x(t) = A_e sin(2\pi f_0 t) \rightarrow SLI \rightarrow y(t) = A_e(f_0) \sin(2\pi f_0 t + \psi(f_0)).$$

$$|H(f_0)| = \frac{A_s(f_0)}{A_c}.$$

 $\psi(f_0) = argH(f_0).$

- 1. inversion du temps de $x(u) \to x(-u)$
- 2. Décalage en un t donné : $x(-u) \rightarrow x(t-u)$

- 3. Multiplication terme à terme avec h(u): x(t-+) filtre post bloqueur en again $f_c=f_c/2$ pour retirer les ondelettes provoqué par le sinc autour de f_e.
- 9 Réduction de cadence
- échantillonnage version numérique = même démo que échantillonnage continue avec $T_e = N:x[k]
 ightarrow$ $v^{\downarrow}[n] = x[k] = x[nN]$

$$x_e[k] = \sum_n x[nN]\delta(k - nN)$$

$$e[k] = \sum_{n} x[nN]\delta(k-nN)$$

 $x(t)
ightarrow x[k] = x(kT_e+), T_e$ période d'échantillon La fonction est le résultat d'une convolution

7 Échantillonnage

Penser à la formule de la dérivé

Brut force le calcul

Pour les TF complexe : 4 méthode :

4. Intégration du produit sur ℝ

 $u \rightarrow h(u)x(t-u)$

 $x_e(t) = \sum_{k=-\infty}^{+\infty} x(kT_e)\delta(t - kT_e)$

 $=\sum_{k=-\infty}^{+\infty}x[k]\delta(t-kT_e)$

 $=x(t)\sum\delta(t-kT_e)$

 $X_e(f) = \sum x[k]e^{-j2\pi fkT_e}$

$$x_e[k] = \sum_n x[nN]\delta(k - nN)$$

$$= \sum_{x} x^{\perp} [n] \delta(k - nN)$$

$$= x[k] \sum_{\delta} \delta(k - nN)$$

$$X_{\delta}(\nu) = TF \{ \sum_{x} x^{\perp} [n] \delta(k - nN) \}$$

$$= \sum_{x} x^{\perp} e^{-j2\pi \nu n N}$$

$$= X(\nu') |\nu = \nu N$$

$$\begin{split} X_e(\nu) &= X(\nu) \otimes \frac{1}{N} \sum_{n=-\infty}^{+\infty} \delta(\mu - \frac{n}{N}) \\ &= \frac{1}{N} X(\nu) \star \sum_{n=0}^{N-1} \delta(\nu - \frac{n}{N}) \\ &= \frac{1}{N} \sum X(\nu - \frac{n}{N}) \end{split}$$

 $=X(f)\star TF\{\sum\delta(t-kT_e)\}$

 $=X(\nu)|_{\nu=fT_e=\frac{f}{f_e}}$

 $X(\nu) = f_e \sum X(f - \frac{k}{T_c})|_{f = \frac{\nu}{T_c} = \nu f_e}$

 $=\frac{1}{T_e}\sum X(f-k\frac{1}{T_e})$

 $X^{\downarrow}(\nu') = \frac{1}{N} \sum X(\nu - \frac{n}{N})|_{\nu = \nu'/N}$

+ Filtre antialisaing pré-échantillonage : $f_c = f_c/2$ pour Cette fois-ci on écarte l'axe des abscises $\nu' = \nu N$. Shan-éviter le recouvrement spectrale + **dessin** non $\frac{1}{2} > 2\nu_{max}$ donc on filtre antialiasing $f_c = \frac{1}{2}$, avant non $\frac{1}{N}>2\nu_{max}$ donc on filtre antialiasing $f_c=\frac{1}{2N}$ avant 10 Élévation de cadence

On veut : x[k] o y(t) . Inverse de l'échantillonnage : on cale des rectangles $p(t) = rect_{T_e}(t - rac{T_e}{2})$ faire dessin

8 Blocage d'ordre zéro

 $X^\uparrow(\nu^{\prime\prime}) = TF\{x^\uparrow[m]\} = \sum x^\uparrow[m]e^{-j2\pi\mu^{\prime\prime}m}$ = bloqueur d'ordre zéros version numérique Insérer M-1 zéros entre chaque point. $x[k] \to x^{\uparrow}[m] = \begin{cases} x[k] & \text{si } m = kM \\ 0 & \text{sinon} \end{cases}$

$$\begin{split} X^{\uparrow}(\nu'') &= TF\{x^{\uparrow}[m]\} = \sum_{m} x^{\uparrow}[m]e^{-j} \\ &= \sum_{k} x[k]e^{-j2\pi\nu''kM} \end{split}$$

Filtre post traitement de $f_c=rac{1}{2M}$ et de hauteur M pour ré-équilibré le $*rac{1}{N}$ qu'on fait avec une réduction de ca-Le sinus cardinale s'annule en $f=f_e$ et vaut $1/f_e$ en On réduit l'axe des abscises par $u''=\nu/M$.

en zéro, il annule l'effet du $*f_e$ qu'on a après échantillonzéro. Il est proche de 1 autour de zéros. Par sa valeur

nage sur l'ordonnée

 $=X(\nu)|_{\nu=M\nu^{\prime\prime}}$

 $= T_e \frac{\sin(\pi f T_e)}{-\epsilon_{TT}} e^{-j2\pi f T_e/2} * X_e(f)$

 $= \sum x[k](\delta(t-kT_e) \star p(t))$

 $= p(t) \star x_e(t)$ $Y(f) = P(f)X_e(f)$

 $y(t) = \sum x[k]p(t - kT_e)$

$ \begin{aligned} x[k] & X(\nu) \\ \frac{\delta[k]}{\delta[k-k_0]} & 1 \\ \frac{\delta[k-k_0]}{\delta[k-k_0]} & e^{-j2\pi\nu k_0} \\ e^{-j2\pi\nu_0 \kappa} & \delta(\nu-\nu_0) \\ \cos[2\pi\nu_0 t] & \frac{1}{2}\delta(\nu-\nu_0) + \frac{1}{2}\delta(\nu+\nu_0) \\ \sin[2\pi\nu_0 t] & \frac{1}{2}\delta(\nu-\nu_0) + \frac{1}{2}\delta(\nu+\nu_0) \\ \sin[2\pi\nu_0 t] & \frac{1}{2}\delta(\nu-\nu_0) + \frac{1}{2}\delta(\nu+\nu_0) \\ \frac{1}{2}\delta(\nu-\nu_0) + \frac{1}{2}\delta(\nu+\nu_0) \\ \cos[2\pi\nu_0 t] & \frac{1}{2}\delta(\nu-\nu_0) + \frac{1}{2}\delta(\nu+\nu_0) \\ \sin[2\pi\nu_0 t] & \frac{1}{2}\delta(\nu-\nu_0) + \frac{1}{2}\delta(\nu+\nu_0) \\ \sin[2\pi\nu_0 t] & \sin[2\pi\nu_0 t] & \sin[2\pi\nu_0 t] \\ & \sin[2\pi\nu_0 t] & \sin[2\pi\nu$	$X(\nu)$ $X(\nu)$ $= -3\pi\nu k_0$ $\delta(\nu)$ $\delta(\nu - \nu_0)$ $\frac{1}{2}\delta(\nu - \nu_0) + \frac{1}{2}\delta(\nu + \nu)$ Sinon	_	_	,	_	_	_				_
$\forall k=0,1,\dots,N-1$ sinon	$\frac{x[k]}{\delta[k]}$ $\frac{\delta[k]}{\delta[k-k_0]}$ $\frac{e^{-j2\pi\nu_0k}}{\cos[2\pi\nu_0t]}$ $\sin[2\pi\nu_0t]$ $x[k] = \begin{cases} 1 & \forall k = 0, 1, \dots, N-1 \\ 0 & \text{sinon} \end{cases}$						+ 1/0)	$\nu + \nu_0$)		$\sin \nu = 0$	
$\forall k=0,1,\dots,N-1$ sinon	$x[k]$ $\frac{\sigma[k]}{\delta[k-k_0]}$ $\frac{\delta[k-k_0]}{1}$ $\frac{e^{-j2\pi\nu_0k}}{\sin[2\pi\nu_0t]}$ $\sin[2\pi\nu_0t]$ $x[k] = \begin{cases} 1 & \forall k = 0, 1, \dots, N-1 \\ 0 & \text{sinon} \end{cases}$	(×)		$-j2\pi\nu k_0$	t)	$\nu - \nu_0$	$\delta(\nu - \nu_0) + \frac{1}{2}\delta(\nu)$	$\delta(\nu - \nu_0) + \frac{1}{2j}\delta($	$e^{-j\pi\nu(N-1)\frac{sin(\pi\nu)}{sin(\pi\nu)}}$	N	
	$x \begin{bmatrix} k \\ \delta \\ k \end{bmatrix}$ $\frac{\delta[k]}{\delta[k - k_0]}$ $\frac{\delta[k - k_0]}{\delta[k - k_0]}$ $\frac{e - j 2\pi \nu_0 k}{\sin[2\pi \nu_0 t]}$ $\sin[2\pi \nu_0 t]$ $x[k] = \begin{cases} 1 \\ 0 \end{cases}$	X	-	e_	δ(1	δ()	$\frac{1}{2}\delta$	<u>1</u> 2		_	1
	$\begin{array}{c} \chi(f) \\ (1) \\ (1) \\ (2) \\ (2) \\ (3) \\ (4) \\ (4) \\ (4) \\ (5) \\ (6) \\ (7) \\ (7) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (1) \\ (1) \\ (2) \\ (1) \\ (3) \\ (4) \\ (4) \\ (4) \\ (5) \\ (6) \\ (7) \\ (7) \\ (8) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (6) \\ (6) \\ (7) \\ (7) \\ (8) \\ (8) \\ (8) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (6) \\ (6) \\ (7) \\ (7) \\ (8) \\ (8) \\ (8) \\ (8) \\ (9) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (4) \\ (5) \\ (6) \\ (6) \\ (6) \\ (7) \\ (7) \\ (8) $	x[k]	$\delta[k]$	$\delta[k-k_0]$	_	$e^{-j2\pi\nu_0k}$	$\cos[2\pi\nu_0 t]$	$\sin[2\pi\nu_0 t]$	Ţ	0	