305 Lecture 2.6 - Complicated Truth Tables

Brian Weatherson

This lecture is about how to build more complicated truth tables than we have looked at so far.

forall x, chapters 10 and 11.

The Example

We are going to work out the truth table for this sentence:

$$(A \lor \neg B) \to (B \to (A \land C))$$

• How many rows should there be in the truth table?

How Many Rows

- How many rows should there be in the truth table?
- There are three (3) atomic sentences, so there should be
 2³ = 8 rows.

Laying Out the Rows

- · The convention for these is a bit odd.
- · Here's one way to think about it.
- For the left-most column you fill the first half of the rows with $\mathbb T$ and then the second half of the rows with $\mathbb F$.

First Column

АВС	$(A \mathrel{\vee} \neg B) \mathrel{\rightarrow} (B \mathrel{\rightarrow} (A \mathrel{\wedge} C))$
T	
T	
\mathbb{T}	
\mathbb{T}	
F	
F	
F	
F	

Second Column

- Then the second column has one quarter \mathbb{T} , followed by one quarter \mathbb{F} , followed by one quarter \mathbb{F} .
- In this case that means we alternate every two rows.

Second Column

АВС	$(A \vee \neg B) \to (B \to (A \wedge C))$
TT	
TT	
TF	
TF	
FT	
FT	
FF	
FF	

Third Column

- From now on you do half as many rows between changes.
- In this table we did 4 rows with one value then 4 of another for column 1, 2 with one value then 2 with another for column 2, and now alternate every row for column 3.
- It's helpful to know the full algorithm in case you ever have to do this with 5 or more variables.
- But I won't do that in this course.

Third Column

```
A B C \mid (A \lor \neg B) \rightarrow (B \rightarrow (A \land C))
TTT
TTF
TFT
TFF
FTT
FTF
FFT
FFF
```

Parsing the Sentence

Now we need to go back to our sentence.

$$(\mathsf{A} \vee \neg \mathsf{B}) \to (\mathsf{B} \to (\mathsf{A} \wedge \mathsf{C}))$$

What is its main connective?

Parsing the Sentence

Now we need to go back to our sentence.

$$(A \lor \neg B) \to (B \to (A \land C))$$

What is its main connective?

 It's the first →. The sentence is of the form D → E, where D is (A ∨ ¬B) and E is (B → (A ∧ C))

Building Up

So eventually, we will have the truth value for the whole sentence under the first \rightarrow .

- · But that's some distance away.
- While that's where we want to get to, we have to build from the inside out.
- The first thing to do is to repeat the values for the atomic sentences.

Atomic Replicator

АВС	(A ∨	¬ B) –	→ (B →	(A ^	(C))
TTT	T	T	T	T	T
TTF	T	\mathbb{T}	\mathbb{T}	\mathbb{T}	F
TFT	T	F	F	\mathbb{T}	\mathbb{T}
TFF	T	F	F	\mathbb{T}	F
FTT	F	\mathbb{T}	\mathbb{T}	F	\mathbb{T}
FTF	F	\mathbb{T}	\mathbb{T}	F	F
FFT	F	F	F	F	\mathbb{T}
FFF	F	F	F	F	F

What can we fill in immediately?

Next Steps

- We have enough on the table to include the values for ¬B.
- And we have enough on the table to include the values for the A ∧ C on the far right.
- · We'll do these in order.

Negation

Everywhere B is \mathbb{T} , $\neg B$ is \mathbb{F} , so let's include all of those.

ABC	(A ∨	\neg	B)	\rightarrow (B \rightarrow	· (A ^	(C))
TTT	T	F	T	T	T	T
TTF	T	F	T	\top	\mathbb{T}	F
TFT	T		F	F	\mathbb{T}	\mathbb{T}
TFF	T		F	F	\mathbb{T}	F
FTT	F	F	T	T	F	\mathbb{T}
FTF	F	F	T	T	F	F
FFT	F		F	F	F	\mathbb{T}
FFF	F		F	F	F	F

Negation (cont)

Everywhere B is \mathbb{F} , \neg B is \mathbb{T} , so let's include all of those.

(A ∨ -	¬В)	\rightarrow (B \rightarrow	(A ^	(C))
T	- T	T	T	T
T	- T	T	T	F
TT	F	F	\mathbb{T}	\mathbb{T}
TT	F	F	\mathbb{T}	F
F	- T	T	F	\mathbb{T}
F	- T	T	F	F
FT	F	F	F	\mathbb{T}
FT	F	F	F	F
	T 0			

Conjunction

If A, C are both \mathbb{T} , so is A \wedge C. So let's include those.

ABC	(A ∨ -	¬В)	\rightarrow (B \rightarrow	(A ^	C))
TTT	T	- T	T	TT	T
TTF	T	= T	T	T	F
TFT	TT	T F	F	TT	T
TFF	TT	T F	F	T	F
FTT	F	- T	T	F	\mathbb{T}
FTF	F	= T	T	F	F
FFT	FI	F	F	F	\mathbb{T}
FFF	FI	F	F	F	F

Conjunction (cont)

And $A \wedge C$ is false everywhere else.

Α	В	С	(A	∨ ¬	В) → (B	\rightarrow (A	\land	C))
T	T	T	T	F	\mathbb{T}	T	T	T	T
\mathbb{T}	T	F	T	F	\mathbb{T}	\mathbb{T}	T	F	\mathbb{F}
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	F	F	T	T	\mathbb{T}
\mathbb{T}	F	F	T	T	F	F	T	F	F
F	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}
F	\mathbb{T}	F	F	F	\mathbb{T}	T	F	F	F
F	F	\mathbb{T}	F	\mathbb{T}	F	F	F	F	\mathbb{T}
F	F	F	F	\mathbb{T}	F	F	F	F	\mathbb{F}

Complex Disjunction

- The next step is combining the values of A and ¬B to get the value of A ∨ ¬B.
- The main thing to remember here is what your inputs are.
- In this case it's not too confusing; it's the values immediately to either side of the v.
- But that won't be the general case.

Disjunction

When A is \mathbb{T} , so is A $\vee \neg B$.

TET TITE E TIT	
TEE TITE E TEE	
FTF F FT T FFF	
FFT F TF F FFT	

Disjunction (cont)

And when $\neg B$ is \mathbb{T} , so is $A \vee \neg B$.

Α	В	С	(A	٧	\neg	B)	→ (B	\rightarrow (A	\land	C))
T	T	\mathbb{T}	T	\mathbb{T}	F	\mathbb{T}	T	T	T	T
\mathbb{T}	\mathbb{T}	F	T	\mathbb{T}	F	\mathbb{T}	\mathbb{T}	\mathbb{T}	F	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	T	\mathbb{T}
\mathbb{T}	F	F	T	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}	F	F
F	\mathbb{T}	\mathbb{T}	F		F	\mathbb{T}	\mathbb{T}	F	F	\mathbb{T}
F	\mathbb{T}	F	F		F	\mathbb{T}	\mathbb{T}	F	F	F
F	F	\mathbb{T}	F	\mathbb{T}	\mathbb{T}	F	F	F	F	\mathbb{T}
F	F	F	F	\mathbb{T}	\mathbb{T}	F	F	F	F	F

Disjunction (part III)

Otherwise, $A \lor \neg B$ is \mathbb{F} .

Α	В	С	(A	٧	\neg	B)	\rightarrow (B	\rightarrow (A	٨	C))
T	T	\mathbb{T}	T	T	F	\mathbb{T}	T	T	T	T
\mathbb{T}	\mathbb{T}	F	T	\mathbb{T}	F	\mathbb{T}	T	T	F	F
\mathbb{T}	F	\mathbb{T}	T	\mathbb{T}	T	F	F	T	T	\mathbb{T}
\mathbb{T}	F	F	T	\mathbb{T}	\mathbb{T}	F	F	T	F	F
F	\mathbb{T}	\mathbb{T}	F	F	F	\mathbb{T}	T	F	\mathbb{F}	\mathbb{T}
F	\mathbb{T}	F	F	F	F	\mathbb{T}	T	F	F	F
F	F	\mathbb{T}	F	\mathbb{T}	\mathbb{T}	F	F	F	F	\mathbb{T}
F	F	F	F	\mathbb{T}	\mathbb{T}	F	F	F	F	F

Conditional

- Now we have to do B \rightarrow (A \wedge C).
- We have to remember the table for → TFTT.
- And we have to remember that what's on the right-hand side of this conditional is a complex sentence: A ∧ C.

Conditional Terminology

- It's helpful to recall our distinctive terminology for conditionals
- We'll often call the left-hand side of a conditional the antecedent. ('Ante' for before, if that helps.)

Conditional Terminology

- It's helpful to recall our distinctive terminology for conditionals
- We'll often call the left-hand side of a conditional the antecedent. ('Ante' for before, if that helps.)
- And we'll call the right-hand side the consequent (i.e., what comes after).
- We won't have fancy distinct terminology for the left-hand and right-hand sides of other sentences, because they are symmetric.

B is \mathbb{T} , A \wedge C is \mathbb{T} , so this is $\mathbb{T} \to \mathbb{T}$, i.e., \mathbb{T} .

ABC	$(A \lor \neg B) \rightarrow (B \rightarrow (A \land C)$))
TTT		
TTF		
TFT		
TFF		
FTT		
FTF		
FFT		
FFF		

B is \mathbb{T} , A \wedge C is \mathbb{F} , so this is $\mathbb{T} \to \mathbb{F}$, i.e., \mathbb{F} .

ABC	(A ∨ ¬ E	$(B \rightarrow (B - B))$	→ (A ∧	C))
TTT	TTF	T T	TT	T
TTF	TTF		TF	F
TFT		- F	TT	\mathbb{T}
TFF		F	TF	F
FTT		T T	FF	\mathbb{T}
FTF	FFF7	T T	FF	F
FFT	FTTI	- F	FF	\mathbb{T}
FFF		- F	FF	F

B is \mathbb{F} , A \wedge C is \mathbb{T} , so this is $\mathbb{F} \to \mathbb{T}$, i.e., \mathbb{T} .

ABC	(A ∨ ¬ B)	\rightarrow (B \rightarrow	(A ∧ C))
TTT	TTFT	TT	TTT
TTF	TTFT	TF	TFF
TFT	TTTF	FT	TTT
TFF	TTTF	F	TFF
FTT	FFFT	T	FFT
FTF	FFFT	T	FFF
FFT	FTTF	F	FFT
FFF	FTTF	F	FFF

B is \mathbb{F} , A \wedge C is \mathbb{F} , so this is $\mathbb{F} \to \mathbb{F}$, i.e., \mathbb{T} .

ABC	(A ∨ ¬	$B) \rightarrow (B)$	→ (A	∧ C))
TTT	TTF	\mathbb{T}	T T	TT
TTF	TTF	\mathbb{T} \mathbb{T}	FT	FF
TFT	TTT	\mathbb{F} \mathbb{F}	\mathbb{T} \mathbb{T}	TT
TFF		\mathbb{F} \mathbb{F}	TT	FF
FTT	FFF	\mathbb{T} \mathbb{T}	F	FT
FTF	FFF	\mathbb{T} \mathbb{T}	F	FF
FFT	FTT	\mathbb{F} \mathbb{F}	F	FT
FFF	FTT	\mathbb{F} \mathbb{F}	F	FF

B is \mathbb{T} , A \wedge C is \mathbb{F} , so this is $\mathbb{T} \to \mathbb{F}$, i.e., \mathbb{F} .

ABC	$(A \lor \neg B) \to (B \to (A \land C))$	C))
TTT	TTET TTTT	Γ
TTF		F
TFT		Γ
TFF	TTTE ETTE	F
FTT	FFFT TFFF	Γ
FTF		F
FFT	FTTF F FF1	Γ
FFF	FTTF F FF	F

B is \mathbb{T} , A \wedge C is \mathbb{F} , so this is $\mathbb{T} \to \mathbb{F}$, i.e., \mathbb{F} .

ABC	$(A \lor \neg B) \rightarrow (B \rightarrow (A \land C))$	
TTT		
TTF		
TFT		
TFF		
FTT		
FTF		
FFT		
FFF	FTTF F FFF	

Rows 7 and 8

B is \mathbb{F} , A \wedge C is \mathbb{F} , so this is $\mathbb{F} \to \mathbb{F}$, i.e., \mathbb{F} .

ABC	$(A \lor \neg B) \to (B \to (A \land C))$
TTT	
TTF	
TFT	
TFF	
FTT	
FTF	
FFT	
FFF	

Almost Done

- · Now we just need to put the two parts together.
- We have a conditional whose left-hand side, the antecedent, is A ∨ ¬B.
- And the right-hand side, the consequent, is $B \to (A \land C)$.
- In each row we've computed the truth values for the antecedent and consequent.
- · Now it's a matter of just looking up how they combine.
- Remember that the truth table for → is TFTT.
- To help, I've started by putting in blue the columns for the antecedent and consequent.

Getting There

Putting the two relevant columns in blue to make them stand out.

Α	В	С	(A	٧	\neg	B)	\rightarrow (E	3	\rightarrow	(A	٨	C))
T	T	T	T	T	F	T	Т	Γ	T	\mathbb{T}	T	T
\mathbb{T}	\mathbb{T}	F	T	T	F	\mathbb{T}	Т	Γ	F	\mathbb{T}	F	F
\mathbb{T}	F	\mathbb{T}	T	T	\mathbb{T}	F	I.	F	T	T	T	\mathbb{T}
\mathbb{T}	F	F	T	T	\mathbb{T}	F	I.	F	T	T	F	F
F	\mathbb{T}	\mathbb{T}	F	F	F	\mathbb{T}	Т		F	F	F	\mathbb{T}
F	\mathbb{T}	F	F	F	F	\mathbb{T}	Т		F	F	F	F
F	F	\mathbb{T}	F	T	\mathbb{T}	F	I.	F	T	F	F	\mathbb{T}
F	F	F	F	T	T	F	Œ	F	T	F	F	F

That's $\mathbb{T} \to \mathbb{T}$, i.e., \mathbb{T} .

That's $\mathbb{T} \to \mathbb{F}$, i.e., \mathbb{F} .

That's $\mathbb{T} \to \mathbb{T}$, i.e., \mathbb{T} .

That's also $\mathbb{T} \to \mathbb{T}$, i.e., \mathbb{T} .

Rows 5 and 6

That's $\mathbb{F} \to \mathbb{F}$, i.e., \mathbb{T} .

Rows 7 and 8

That's $\mathbb{T} \to \mathbb{T}$, i.e., \mathbb{T} .

Summing Up

It's true everywhere except when A, B are both $\mathbb T$, and C is $\mathbb F.$

Α	В	С	(A	٧	\neg	B	$) \rightarrow ($	В	\rightarrow	(A	\land	C))
T	T	T	T	T	F	T	T	T	T	T	T	T
\mathbb{T}	\mathbb{T}	F	T	T	F	\mathbb{T}	F	\mathbb{T}	F	T	F	F
\mathbb{T}	F	T	T	T	\mathbb{T}	F	T	F	T	T	\mathbb{T}	\mathbb{T}
\mathbb{T}	F	F	T	\mathbb{T}	\mathbb{T}	F	T	F	T	\mathbb{T}	F	\mathbb{F}
F	\mathbb{T}	\mathbb{T}	F	F	F	\mathbb{T}	T	\mathbb{T}	F	F	F	\mathbb{T}
F	\mathbb{T}	F	F	F	F	\mathbb{T}	T	\mathbb{T}	F	F	F	\mathbb{F}
F	F	\mathbb{T}	F	F	\mathbb{T}	F	T	F	T	F	F	\mathbb{T}
F	F	F	F	F	\mathbb{T}	F	T	F	T	F	F	\mathbb{F}

For Next Week

- We'll start on analysing arguments using truth tables.
- Remember to do the assignment by Friday 5pm.