Start 1p

1. Fie mulţimea $U = \{(x, y, z, t) : 2x - 3y + z - t = 0\} \subset \mathbb{R}^4$.

 $(0,\!75\mathrm{p}\!+\!0,\!75\mathrm{p})\;a)$ Demonstrați căUeste subspațiu vectorial. Justificați apoi că $\dim U=3.$

(1,5p) b) Determinați vectorii din subspațiul U ce aparțin și subspațiului $D=span\{(2,-3,1,-1)\}.$

(1,5p) c) Fie A o matrice pătratică de ordinul n cu determinantul nul. Analizați dacă afirmația "sistemul liniar AX=b are o infinitate de soluții" este adevărată sau falsă.

2. Fie familia de matrice

$$A(n) = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 3 \\ -1 & 2 & n \end{bmatrix} , n \in \mathbb{N}.$$

(0,75p+0,75p) a) Demonstrați că $Null(A(n)) = \{(0,0,0)\}$ pentru orice $n \neq 0$. Determinați apoi o bază a subspațiului col(A(0)).

(1,5p) b) Rezolvaţi folosind forma scară redusă sistemul liniar A(0)X=b, unde $b^t=(1,2,3).$

(1,5p) c) Determinați baza B a lui \mathbb{R}^3 știind că $T_{BB_c} = A(1)$.