© 2021 В. И. Моисеев, А. В. Жебанов, В. А. Ксенофонтова

МАТЕМАТИЧЕСКОЕ ОБОСНОВАНИЕ НОВОГО СПОСОБА ПЕРЕВОЗКИ ДОРОЖНО-СТРОИТЕЛЬНОГО НЕФТЕБИТУМА

Сложности в процессе перевозки дорожных нефтебитумов в климатических условиях РФ вызваны резким повышением его вязкости по мере охлаждения. Это приводит к большим затратам времени и тепловой энергии на организацию выгрузки и перегрузки. В статье предложен новый способ доставки дорожного нефтебитума в виде насыпного груза. Нефтебитум предлагается изготовлять в виде пеллет (твердых коротких цилиндров) с твердой защитной оболочкой, предотвращающей их взаимное слипание и налипание на стенки транспортной емкости, при этом сама оболочка является одной из составляющих асфальтобетона. Рассмотрены возможные способы производства дорожного нефтебитума в виде пеллет и его перевозки любым видом транспорта. Построена обобщенная математическая модель процесса перевозки на основе сетей Петри.

 $\mathit{Ключевые\ c.noвa}$: нефтебитум, перевозка нефтебитума, математическая модель, сеть Петри, бизнес-процесс перевозки.

Введение. На протяжении последних лет (начиная с 2017 года) в рамках проекта «Безопасные и качественные автомобильные дороги» в РФ активно развивается транспортная система. В рамках реализации программы её развития осуществляется строительство и реконструкция автомобильных дорог федерального назначения. Результатом выполнения проекта ожидается увеличение доли автомобильных дорог регионального значения, соответствующих нормативным требованиям, при их общей протяженности не менее чем до 50 % (относительно декабря 2017 года). Доля автомобильных дорог, соответствующих нормативным требованиям, в крупнейших городских агломерациях должна быть доведена до 85 %. Одновременно идет работа по усилению мер безопасности движения на дорогах. Отдельное внимание в рамках проекта отводится качеству дорожного покрытия.

Для строительства и ремонта дорожных покрытий используют дорожные нефтебитумы, (ДНБ) позволяющие сохранять прочностные характеристики дорожного полотна, изготовленного из асфальтобетона в широком интервале температур, обеспечивать прочное и устойчивое сцепление с поверхностью минеральных материалов, смесь с которыми образует асфальтобетон, сохранять его первоначальные свойства в период эксплуатации.

Для производства горячих и холодных асфальтобетонных смесей применяют как вязкие, так и жидкие ДНБ [1]. Они являются шлаковыми остатками крекинг-процесса переработки сырой нефти, образующиеся после извлечения из неё самых ценных легких фракций — бензина, дизельных фракций, керосина и др. На выходе из аппарата битумная фракция имеет температуру, близкую к плюс 400 °С и сравнительно малую вязкость [2]. По обогреваемому битум-проводу фракция отгоняется в накопительный резервуар.

Имеется несколько типов стандартных вертикальных стальных резервуаров для хранения темных нефтепродуктов при температурах до минус $40\,^{\circ}\mathrm{C}$.

Резервуары типа PBC-200, PBCП-200 с вместимостью от 100 м^3 до 5000 м^3 обычно изготовляются из углеродистой или низколегированной стали и имеют стоимость от 1,3 до 11,5 млн руб.

Резервуар наполняется в течение достаточно большого времени, в зависимости от его вместимости, количества завязанных на него нефтеперегонных аппаратов и их производительности. Перед отправкой потребителю содержимое каждого резервуара вторично разогревают в течение нескольких суток с большими затратами тепловой энергии для восстановления текучести ДНБ и заполняют им котлы вагонов-цистерн для высоковязких нефтепродуктов (цистерны-пековозы) или бункерные полувагоны, показанные на рис. 1. Заполнение вагонов осуществляют самотеком при температуре продукта не ниже плюс 180 °C [3–7]. При этом перевозку ДНБ производят как повагонно, так и наливными поездами из 40–45 вагонов.

Рис. 1. Железнодорожный бункерный полувагон

Для автомобильных перевозок ДНБ используют битумовозы различных серий с вместимостью котла от 15 до 40 м 3 на базе тяжелой колесной техники КАМАЗ, МАЗ, Scania и др. Крупные серии битумовозов серии ППЦБ 912504 и ППЦБ 912505 имеют вместимость котла 33 м 3 и 30 м 3 . Котлы устанавливаются на трехосное шасси автомобиля BPW.

В России годовое производство ДНБ превышает 200 тыс. тонн, из них свыше 68 % перевозится железной дорогой, а около 30 % — автомобильным и речным транспортом.

При прочих равных условиях железнодорожные перевозки ДНБ дешевле автомобильных, но так как их средняя дальность близка к 1,6 тыс. км, то удельный вес транспортных издержек в стоимости битума у потребителя достаточно высок.

Для снижения стоимости доставки ДНБ предлагается изготовлять в виде пеллет (твердых коротких цилиндров) с защитной оболочкой, предотвращающей их взаимное слипание и налипание на стенки транспортной емкости [8], а перевозку и сопутствующие транспортные операции сориентировать на холодное время года. В настоящее время вывоз ДНБ с заводапроизводителя ориентируют, наоборот, на летний период. Это в некоторой степени снижает очень большие затраты времени и тепловой энергии на разогрев продукта в накопительных резервуарах. При этом первым встает вопрос об организации производства твердых, и не слипающихся друг с другом пеллет.

Известно, что асфальтобетон, образующий полотно автомобильной дороги, приготавливается из смеси: гранитной крошки, песка, крупного наполнителя и др. В этой смеси нефтебитум и гудрон являются вяжущими составляющими, затвердевающими при охлаждении, их содержание по массе колеблется в пределах от $2,5\,\%$ до $9\,\%$.

При приготовлении различных марок асфальтобетона используется, в частности, смеси из мелкого песка и извести, включающие поверхностно-активные вещества, повышающие прочность асфальтобетона с сохранением его пластичности. Содержание этих наполнителей выдерживается в пределах 6–12 % . Из этих составляющих и может быть изготовлена защитная оболочка пеллет в процессе их изготовления. Планируется, что содержание песка в оболочке доходит до 50–70 %, она может считаться достаточно твёрдой. Оболочка обеспечивает максимально возможное снижение сил адгезионного взаимодействия между отдельными пеллетами даже при наличии внешнего давления и температурах, приближающихся к температурам размягчения ДНБ, близких к плюс 60 °C.

Производство пеллет из затвердевшего ДНБ предлагается проводить в специального вида экструдерах, имеющих два загрузочных люка. В первый подается нефтебитум в размягченном состоянии при температуре, близкой к плюс 70 °C, во второй засыпается в виде твердого порошка материал оболочки. При изготовлении пеллет охлаждается до своего затвердевания.

Как видно из табл. 1, содержание битумной фракции, которую образуют в основном асфальтены, являющиеся одной из компонентов сырой нефти, сравнительно невелико, около 5 % и при крекинг-процессе битумная фракция образуется на нижних тарелках перегонного аппарата. На выходе из него битумная фракция имеет температуру, близкую к плюс 400 °C. Из перегонного аппарата битум может подаваться в малый накопительный резервуар, где охлаждается при непрерывном перемешивании до температуры плюс 80...100 °C, когда его вязкость становится уже достаточно большой. Оттуда битум подается в первый загрузочный люк экструдера, во второй его загрузочный люк засыпается сухая смесь сыпучих материалов, образующих защитную оболочку пеллет.

Структура	перепаботки	нефти на	2019 год (%, тыс. тонн)
Структура	переработки	нефіи на	2017 год (<i>70</i> , тыс. тонн)

Тип продукции	%	Тыс. тонн
Бензин и средние дистилляты	44,4	1731,6
Мазут	33,8	1318,2
Вакуумный газойль	16,7	651,3
Битумы	5. 2	202,9

При вращении шнека экструдера сухая смесь механически вдавливается в вязкий, но еще пластичный «тестообразный» нефтебитум. При медленном вращении шнека он продавливается через решетку и обрезается вращающимся ножом, укрепленном на оси шнека экструдера. Упомянутый способ изготовления пеллет уже разработан в процессах и аппаратах химической технологии и технологиях пищевой промышленности.

Рис. 2. Устройство экструдера

Промежуточное хранение пеллет из ДНБ можно обеспечить в стандартных разборных контейнерах (рис. 3) или даже насыпом на открытой площадке.

Обеспечиваются следующие положительные моменты.

- 1. Снимается необходимость разогрева продукта перед вывозом с нефтеперерабатывающего завода (НПЗ). Разогрев требует больших затрат времени и тепловой энергии, кроме того, он представляет пожароопасную операцию, так как нефтебитумы имеют сравнительно низкую температуру вспышки.
- 2. Исключается необходимость строительства и эксплуатации громоздких накопительных резервуаров типа PBC-200, PBCП-200, имеющих высокую себестоимость изготовления.
- 3. Исключается необходимость периодической очистки резервуаров от высоковязких остатков нефтепродукта и утилизации газообразных и жидких отходов, образующихся при этой операции.
 - 4. Освобождаются производственные площади на территории НПЗ.
- 5. Снимается необходимость в протяженных битумопроводов, с мощными системами разогрева.

Железнодорожную транспортировку ДНБ в виде пеллет предлагается производить наличным подвижным составом для насыпных грузов, находящимся в настоящее время в обороте — в открытых полувагонах и платформах-думпкарах. Пеллеты можно также доставлять автомобильным и водным транспортом как насыпом в кузов транспортного средства (грузового автомобиля, плавсредства), так и с использованием контейнеров (рис. 3).

Перспективы контейнерных перевозок ДНБ заключаются в универсальности средств доставки, в хранении и эксплуатации.

Преимуществом производства ДНБ в виде пеллет – это хранение, особенно в регионах с продолжительным зимним периодом (Ямал, Норильск, Воркута, Урал, Чукотка, Сибирь). Би-

тум, находящийся в твердом виде, там возможно хранить как насыпом, под навесом, защищающим от солнечной радиации, так и в складных контейнерах (рис. 3).

Рис. 3. Разборный контейнер для перевозки пеллет

Складные контейнеры позволят не только организовать хранение нефтебитума на складе, но и значительно снизить затраты на погрузку и перегрузку. Их использование позволяет применить смешанные перевозки — складные контейнеры занимают мало места, их легко перевозить в собранном состоянии, а вагоны и автомобильный транспорт после выгрузки ДНБ использовать по другому назначению. При контейнерном способе перевозок практически отсутствует порожний пробег транспортного средства.

Остановимся на вопросе о выгрузке доставленного ДНБ и его применении по целевому назначению. В настоящее время операция выгрузки на асфальтобетонном предприятии также является очень трудоемкой и энергозатратной операцией. За время перевозки в вагонецистерне или полувагоне бункерного типа ДНБ охлаждается и переходит в затвердевшее состояние, и для восстановления его текучести необходим длительный и интенсивный разогрев. Даже в летнее время вагон-цистерну разогревают в течение 25–30 часов, используя очень мощные тепловые электронагревательные элементы (ТЭН). Одновременно на сливную площадку ставят не более двух-трех вагонов-цистерн, т. к. в противном случае для организации слива необходимо строить специальную подстанцию, чтобы обеспечить площадку потребными энергоресурсами. Выгрузка наливного поезда может продолжаться более месяца. Непроизводительный простой вагонов-цистерн очевиден. После выгрузки самотеком ДНБ передается по трубопроводу в хранилище на асфальтобетонном заводе, где стоят уже упомянутые резервуары РВС-200 или РВСП-200 большой емкости.

В городе часто происходят прорывы систем водо- и теплоснабжения. При этом асфальт на улице вскрывается, коммунальные службы производят ремонт трубы, траншею зарывают, а асфальтовое покрытие восстанавливают. Обидно, когда на ремонт асфальтового покрытия требуется только 3 тонны ДНБ, но целых двое суток необходимо разогреть весь резервуар, на ремонт взять менее 0, 5 % от его содержимого.

Использование ДНБ в виде пеллет способно кардинальным образом уменьшить себестоимость такого ремонта. Асфальтобетон можно изготовлять небольшими порциями, хранить в «сухом виде», а разогревать и укладывать в дорожное полотно уже на месте применения в количестве, необходимом по условиям обстановки.

Наконец отметим перевозки ДНБ водным транспортом. На сегодняшний день для транспортировки нефтепродуктов водным транспортом используются танкеры морские, речные, озерные, самоходные, имеющие машинные отделения, и несамоходные — баржи, передвигающиеся при помощи буксиров. Морские танкеры от речных отличаются грузоподъемностью: 10–12 тыс. тонн у речных против 50 тыс. тонн у морских. Для снижения транспортных расходов на сегодняшний день применяются нефтерудовозы — это грузовые суда смешанного плавания.

Налив и откачка нефтепродуктов из нефтяных танков осуществляется по трубопроводам, имеющемуся на судне. Морские танкеры, не имеющие возможности войти в порт, загружаются с лихтеров. Для разгрузки нефтеналивного судна на берегу необходимо наличие мощ-

ных терминалов для приемки и хранения нефтегрузов. Для вязких нефтепродуктов отдельно встает вопрос об обеспечении их мощными источниками электро-и теплоснабжения.

При организации перевозок ДНБ в виде насыпных грузов большая часть этих инженерных проблем существенно упрощается. Хранение и перевозка ДНБ в виде пеллет в складных контейнерах открывает возможность перевозки нефтебитума, используя балкеры, сухогрузы и контейнеровозы, не требующие для своей разгрузки и загрузки специально оборудованных портов и терминалов.

Эти моменты особенно актуальны для Севера и Востока России, где:

- 1. Ведется активное развитие региона, связанное с освоением нефтяных и газовых месторождений, которые требуют ускоренного строительства автомобильных дорог и портовых сооружений, городов и поселков городского типа.
- 2. Необходимо усиление тылового обеспечения Вооруженных Сил в условиях складывающейся международной обстановки.
- 3. Имеется большая протяженность судоходных рек, превышающая 120 тыс. км. при слабом развитии сети автомобильных и железных дорог.

В заключение рассмотримим упрощенную математическую модель базового способа, применяемого в настоящее время, и нового способа железнодорожных перевозок ДНБ.

Модель может быть обобщена и на другие виды транспорта. Перевозка ДНБ включает следующие операции (рис. 4):

- подготовка транспортного средства и груза к погрузке (разогрев ДНБ по базовому способу и загрузку пеллет в контейнеры по новому);
- организацию предварительного хранения пеллет, комплектацию их в контейнеры и т. д.;
- непосредственная погрузка налив самотеком по базовому способу и установка контейнеров по новому способу (при использовании средств механизации);
- доставка железнодорожным транспортом до конечного потребителя;
- подготовка к выгрузке, разогрев ДНБ для восстановления текучести по базовому способу, в новом способе отсутствует;
- выгрузка самотеком в приемную яму и передача по обогреваемому трубопроводу в накопительный резервуар PBC-200 по базовому способу, складирование груза с применением средств малой механизации по новому способу;
- формирование нефтеналивного поезда для обратного рейся на НПС по базовому способу, в новом способе операция отсутствует;
- очистка транспортного котла вагона цистерны (бункера) от остатков перевозимого груза на НПЗ, включающая непосребственный процесс очистки, дегазацию, просушку и т. д. с использованием пара и специализироанных средств по базовому способу, в новом способе отсутствует;
- по новому способу подача пустых контейнеров на НПЗ для очередного наполнения.
 В базовом способе отсутствует.

Цикл замыкается.

Вспомогательные процессы: осмотр состава (в техническом и коммерческом отношениях), оформление сопроводительной документации, маркировка вагона и т. д. опускаются как процессы, не зависящие от характера груза и не оказывающие влияние на продолжительность процесса поставки.

Различие в процессе перевозки ДНБ в жидком виде и в виде пеллет только в продолжительности описанных операций, которая зависит от типа груза, вида транспорта, температуры окружающей среды, непосредственная продолжительность процесса транспортировки и т. д.

Опишем модель графически с использованием сетей Петри [8, 9], которые представляют из себя ориентированный мультиграф, имеющий вершины двух типов: позиции (p_i) и переходы (t_i) , соединенных между собой дугами.

Рис. 4. Модель процесса транспортировки нефтебитума

Для упрощения схемы процесса перевозки возможно применение декомпозиции таких процессов, как

- очистка транспортного средства;
- подготовка груза к погрузке и выгрузке.

Продолжительность операций процесса транспортировки груза определяется эмпирически и является величиной случайной. Для декомпозированных процессов их продолжительность складывается как продолжительность выполнения вложенных подпроцессов. Соответственно построенная сеть Петри является стохастической с временными задержками в позициях (p_i).

Сеть Петри процесса перевозки нефтебитума обозначим через N:

$$N = \{P, T, F, W, M_0, \Theta\},\$$

где

 $P = \{p_i\}$, i = 1,...,n — конечное множество позиций; $T = \{t_j\}$, j = 1,...m — конечное множество переходов;

 $F\subseteq (P\times T)\cup (T\times P)$ — конечное множество дуг; $W:F\to R$ — весовая функция графа, которая каждой дуге сопоставляет некое рациональное число, например, продолжительность процесса перевозки, стоимость процесса перевозки и т. д. ; $M_0:P\to Z_+$ — начальное маркирование сети, определяемое множеством положительных целых чисел Z_+ ; $\tau\in\Theta:T\to R_+$ — функция времени срабатывания, которая каждому переходу сопоставляет ее время срабатывания, являющееся случайной величиной для данной модели; R_+ — множество неотрицательных рациональных чисел.

Рассмотрим сеть Петри, представленную на рис. 4б. Ее достижимость описывается матрицами перехода D^- и D^+ , где $D^- = D^-(p_i,t_j)_-$ матрица, элементами которой является количество дуг, идущих от p_i к p_i и $D^+ = D^+(t_j,p_i)_-$ матрица, элементами которой является количество дуг, идущих от p_i к p_i . Для построенной сети Петри $D^- = \begin{bmatrix} d_{i_j} \end{bmatrix}$ такова, что $d_{i_j}^- = 1$, если существует переход из p_i к p_i , в остальных случаях нули.

Элементы матрицы $D^+ = \left[d_{i_j}^+ \right]$ определяют вероятность перехода в позицию p_i согласно формуле

$$arphi_{i_{j}} = rac{arphi_{i_{j}} au_{i_{j}}}{\displaystyle \sum_{l,m} arphi_{l_{m}} au_{l_{m}}},$$
 где $au_{i_{j}} = rac{1}{\sigma_{i_{j}} \sqrt{2\pi}} \int_{0}^{+\infty} x e^{-rac{(x-\mu_{i_{j}})^{2}}{2\sigma_{i_{j}}^{2}}} dx;$

 ψ_{i_j} – вероятность того, что соответствующий переход выполнен;

- τ_{i_i} время задержки в позиции p_i ;

 $\mu_{i_{j}}$ — среднее ожидаемое время выполнения і-го этапа;

 σ_{i_j} – отклонение от среднего при выполнении i-го шага.

Рассмотрим матрицу перехода построенной модели $D = D^+ - D^-$.

Переход t_j в маркировке M разрешен, если $^{M \, \geq \, e(j)D^-}$, где $^{e(j)}$ – вектор, у которого на ј-м месте стоит 1, остальные все 0. Результат запуска перехода t_j в маркировке M обозначим функцией $^{\delta(M,t_j)}$, которая определяет новую маркировку $^{M'}$ следующим образом:

$$M' = \delta(M, t_j) = M + e(t_j)D \tag{1}$$

Уравнение (1) имеет решение, если M' достижима.

Рассмотрим последовательность переходов $^{H = \{t_{j_1}, t_{j_2}, \dots t_{j_k}\}}$. Тогда

$$\delta(M, t_j) = M + f(H)D, \qquad (2),$$

где $f(H) = e(t_{j_1}) + ... + e(t_{j_k})$ – вектор запуска последовательности H.

Решение уравнения (2) позволяет ответить на вопрос о достижимости требуемого состояния системы и дать прогноз о времени этого достижения.

Имитационное моделирование позволяет воспроизвести процесс перевозки ДНБ. Для его проведения в качестве инструментальной среды использовалась платформа Business Studio, позволяющая провести функционально-стоимостной анализ. При моделировании применялись нотации BPMN и EPC [8, 10].

Длительность проведения этапов перевозки (из расчета на один маршрут)

Таблица 2

Anniem propriem sinner meterosim (no pue ieiu nu egim mupine) i			
	Базовый способ перевозки	Новый способ перевозки	
Транспортировка в один конец	72 часа		
Погрузка	9 часов		
Выгрузка	210 часов	36 часов	

Проведем функционально стоимостной анализ процесса перевозки. Для этого сделаем следующие допущения:

- средняя дальность перевозки 1647 км;
- средняя скорость перевозки 550 км/сутки;
- под погрузку подается по 5 вагонов;
- под выгрузку по 3 вагона;
- время проведения имитации 182 суток;
- доходная ставка от перевозки нефтепродукта в 2019 году 784,8 коп/10т. км;
- один маршрут состоит из 45 вагонов.

Длительность проведения этапов перевозки приведена в таблице 2.

Задаем свойства процессов с учетом данных их таблицы 2 как случайные величины.

Таблица 3

Линейный список операций для процесса перевозки нефтебитума (базовый способ)

Количество выполнений	Процесс	Средняя продолжительность, час	Суммарное полное время за 6 мес., час
12	Очистка цистерны, погрузка ДНБ	9,12	110
12	Доставка ДНБ	75,5	909,3
12	Слив ДНБ	209,2	2510
11	Возврат состава на станцию отправления	75	839

Таблица 4

Линейный список операций для процесса перевозки нефтебитума в виде пеллет (новый способ)

Количество выполнений	Процесс	Средняя продолжительность, час	Суммарное полное время, час
24	Погрузка пеллет	9,12	219
23	Доставка НБ	70,34	1625
23	Выгрузка пеллет	36	827
23	Возврат маршрута на станцию отправления	73,6	1692,8

Исходя из вышеизложенного находим, что количество оборотов одного маршрута из 45 вагонов за шесть месяцев в году составляет по базовому варианту 13 оборотов, а по новому варианту – 24 оборота.

Выводы

- 1. Предложена новая модель перевозки дорожных нефтебитумов, позволяющая исключить порожний пробег вагонов и допускающая возможность смешанных перевозок, включая железную дорогу, водный и автомобильный транспорт (контейнерные перевозки).
- 2. Построена система математических моделей процесса перевозки, слива ВНП. Для этого впервые использовалась российская платформа Business Studio, использовавшаяся ранее для моделирования производственных бизнес-процессов.
- 3. Проведен ФСА, позволяющий оценить экономический эффект предложенных новых способов перевозки ВНП. Разница провозной платы за нефтебитум между базовым способом перевозки и новым за год составит порядка 9 млн руб. на один состав (наливной поезд) [8].

СПИСОК ЛИТЕРАТУРЫ

- 1 Кладов А. В., Коваленко В. П., Шлячков В. В. Вязкостно-температурные свойства нефтепродуктов // Сборник рефератов депонированных рукописей ЦВНИ МО РФ. Сер. Б, вып № 69. Инв. № Б5591, 2004.
- 2 ГОСТ 22245-90 Межгосударственный стандарт. Битумы нефтяные дорожные вязкие. Технические условия. Дата введения 1991-01-01 [Электронный ресурс]. URL: https://docs.cntd.ru/document/1200003410
- 3 Анненков А. Ц., Куприна А. Ф., Осипов А. П. Перевозки наливных грузов: принципы оптимизации // Железнодорожный транспорт. 1997. № 9. С. 2–6.
- 4 Савин В. И. Перевозки грузов железнодорожным транспортом. Справочное пособие. М. : «Дело и сервис», 2003. 527 с.
- 5 Хранение нефти и нефтепродуктов / В. Н. Антипов [и др.]. М. : «Нефть и газ», 2003, 556 с.
- 6 Транспорт и хранение высоковязких нефтей и нефтепродуктов / Р. Н. Бахтизин [и др.] // Применение электроподогрева. М.: Химия, 2004. 193 с.
- 7 Моисеев В. И., Жебанов А. В., Комарова Т. А. Влияние термогравитационной конвекции на скорость охлаждения жидких нефтепродуктов в цистерне // Вестник транспорта Поволжья. 2016. № 2 (56). С. 67–70.
- 8 Ксенофонтова В. А. Анализ применения нового способа перевозки нефтебитума для дорожно-строительных работ по железной дороге // Интеллектуальные технологии на транспорте. 2020. № 4. С. 51–60.
- 9 Рябухин С. И. Применение сетей Петри для моделирования событийно-процессных цепей и построения структур базы данных // Вестник Новосибрского государственного технического универстета. Серия: информационные технологии. 2013. Т. 11. № 4. С. 92–101.
- 10 Ксенофонтова В. А., Карпова Т. С., Моисеев В. И. Лолипс: патент России № 2019666553. 2019. URL: https://elibrary.ru/item.asp?id=41533278