Numeric String

Alexa performs the following sequence of operations on a string, s, of integers:

- 1. Make a list of all substrings of s that are a given length, k.
- 2. Consider each substring to be a base b number (where b is given). Convert each substring in the list from base b to base b (i.e., convert $(substring)_b \Rightarrow (substring)_{10}$), replacing the base b numbers with base-b numbers.
- 3. Replace each base-10 number with its value modulo a given m (i.e., $(x)_{10} \Rightarrow (x)_{10} \mod m$).
- 4. Calculate the *magic number* by summing all the integers in the final list.

The diagram shows an example where s=12212, k=3, b=3 and m=5:

Given s, k, b, and m, can you find the magic number?

Input Format

The first line contains a string denoting s.

The second line contains three space-separated integers describing the respective values of k (the substring length), b (the base), and m (the modulo).

Constraints

- $1 \le |s| \le 3 \cdot 10^5$
- $1 \le k \le |s|$
- $1 \le m \le 1000$
- $2 \le b \le 10$
- String s is composed of decimal digits in the inclusive range [0,b-1], so each substring of length k always forms a valid base b number.
- String s may contain leading zeros.

Subtasks

• $1 \leq |s| \leq 3 \cdot 100$ for 60% of the maximum score.

Output Format

Print an integer denoting the magic number.

Sample Input 0

12212 3 3 5

Explanation 0

Given s=12212, substring length k=3, base b=3, and modulo m=5, we calculate the following:

Substrings of length k=3Convert $(x)_{b=3} \Rightarrow (x)_{10}$ Modulo m=5

122	17	$17 \bmod 5 = 2$
221	25	$25 \bmod 5 = 0$
212	23	$23 \mod 5 = 3$

We then print the final sum, 2+0+3=5, as our answer.

Sample Input 1

```
111101
4 2 15
```

Sample Output 1

27

Explanation 1

Given s=111101, substring length k=4, base b=2, and modulo m=15, we calculate the following:

Substrings of length k=4Convert $(x)_{b=2} \Rightarrow (x)_{10}$ Modulo m=15

1111	15	$15 \bmod 15 = 0$
1110	14	$14 \bmod 15 = 14$
1101	13	$13 \mod 15 = 13$

We then print the final sum, 0+14+13=27, as our answer.

Sample Input 2

```
0111
2 10 100
```

Sample Output 2

23

Explanation 2

In this sample, the substrings are 01, 11 and 11.