Summary Notes of AS PHYSICS 终极考前冲刺班,<mark>注意看有黄色标记的部分哦~</mark>

COURSEMO | Shirley

Units	Key points	Definitions & descriptions	Notes
	SI base quantities (in AS) SI base units (in AS)	Base quantities: 1.length 2.time 3.current 4.temperature 5.mass Base units: 1.meter 2.second 3.ampere 4.kelvin	Corresponding symbols: 1.L 2.t 3.I 4.T 5.M Corresponding symbols: 1.m 2.s 3.A 4.K
1 Physical quantities and units	prefixes	Prefix Symbol Value	5.Kg
	estimates	Notes: • mass of a person 70 kg • height of a person 1.5 m • walking speed 1 ms ⁻¹	

Units	Key points	Definitions or descriptions	Formulae and graphs	Notes
		• speed of a car on t	the motorway 30ms ⁻¹	
		• volume of a can of	f drink 300 cm ³	
		• density of water 10	000 kgm ⁻³	
		weight of an apple	2.1 N	
			lomestic appliance 13 A	
		• e.m.f. of a car batte	ery 12 V	
		• the mass, in kg, of	a wooden metre rule (0.05 to 0.2) kg	
		• the volume, in cm3	3, of a cricket ball or a tennis ball (50 to 300) cm ³	
		• the mass, in g, of a	a new pencil 1–20 g	
		• the wavelength of	ultraviolet radiation 1 \times 10 ⁻⁸ m to 4 \times 10 ⁻⁷ m	
		• radius of proton or	r neutron ~ 10 ⁻¹⁵ m	
		• radius of nucleus ~	~ 10 ⁻¹⁵ m to 10 ⁻¹⁴ m	
		• radius of atom ~ 1	0 -10 m	
		size of molecule ~ 10 ⁻¹	¹⁰ m to 10 ⁻⁶ m.	
	Scalars	Defintion: A scalar qu	antity is the quantity which has magnitude only	
2	Vectors	Defintion: A vector qu	uantity is the quantity which has magnitude and direction	
Measurement			ultiple measurements, will result in readings being scattered arour	nd the accepted value.
techniques	Random erro	Notes:		
		<u> </u>	The effects of random errors lings about the true reading	
-		Description: An error	r in readings which is repeated throughout an experiment, produc	ing a constant absolute error or a
	Systematic erro	constant percentage er		ing a constant appointe error or a

Units	Key points	Definitions or descriptions	Formulae and graphs	Notes

		Notes:
		(Description) The effects of systematic errors
		the reading is larger or smaller than the true reading by a constant amount
		Description: Accuracy is determined by the closeness of the measurements to the true value
	Accuracy	Notes:
		This can be improved by reducing or eliminating systematic errors.
		Description: Precision is determined by the range in the measurements Notes:
	n vo cicio n	Precision is affected by random errors.
	precision	Distinguish between precision and accuracy:
		precision: the size of the smallest division on the measuring instrument
		accuracy: how close measurement value is to the true value
	Distance	Defintion: Length of path that an object moves through
	Displacement	Defintion: Distance travelled in a particular direction from starting point to final point
	Speed	Defintion: The rate of change of distance
	Velocity	Defintion: The rate of change of displacement $velocity = \frac{\Delta s}{\Delta t}$
		Defintion: The rate of change of velocity
3 Kinematics	Acceleration	$a = \frac{\Delta v}{\Delta t}$
Kinematics		equation 1: $v = u + at$ equation 2: $s = \frac{(u+v)}{2} \times t$
	suvat	equation 3: $s = ut + \frac{1}{2}at^2$
		equation 4: $v^2 = u^2 + 2as$

Ur	nits	Key points	Definitions or descriptions	Formulae and graphs	Notes

		Description: A body continues at rest or constant velocity unless acted upon by a resultant force
	Newton's first law	Notes:
		Newton's first law is the special case of Newton's second law (Newton's first law follows the Newton's second law)
		Defintion: mass is the property of a body resisting changes in motion
	mass	Or mass is the quantity of matter in a body
	111055	Notes:
		Mass is a measure of inertia
4		Description: The resultant force is equal to rate of change of momentum
4 Dynamics		$_{E}$ Δp $_{m}v-mu$
Dynamics	Newton's second law	$F = \frac{\Delta p}{\Delta t} = \frac{mv - mu}{t}$
		Notes:
		• The equation $F = ma$ is a special case of $F = \Delta p \Delta t$ which only applies when the mass of the object is constant.
		Description: Between two interactive objects, forces of action and reaction are same in magnitude but opposite in direction and
		in a same line
	Newton's third law	Notes:
		Appear and disappear at the same time
		Acting on two different objects
		They are forces of the same type.
	momentum	Defintion: Product of mass and velocity
	impulse	Defintion: Change in momentum=product of force and time
		P=mv
		Description: Total momentum of a system of bodies remains unchanged in any direction before and after the collision when
		there is no resultant external force acting on the system
	Conservation of	$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$
	momentum	Notes:
		It is base on newton's second and third law:
		force on A by B equal and opposite to force on B by A (due to Newton's third law)
		force is rate of change of momentum (due to Newton's second law)

_					
	Units	Key points	Definitions or descriptions	Formulae and graphs	Notes

		■ and time of contact is same
		so the change in momentum of A is equal and opposite to the change in momentum of B during the collision
		During the collision, the total momentum is also conserved
	Elastic collision	Description: Collision where total kinetic energy is conserved before and after the collision in a close system Notes: During the collision the total kinetic energy is not conserved In an elastic collision, the relative speed is conserved before and after the collision
	Inelastic collision	Description: collision where total kinetic energy is not conserved before and after the collision in a close system
	Force	Defintion: It is the rate of change of momentum $F = \frac{\Delta mv}{\Delta t}$
	weight	Defintion: Is a force on a mass causeed by gravity W=mg Notes: ● g=gravitational field strength (9.81N/kg) ● the direction of the weight is vertically downwards
	Centre of gravity	Defintion: The point from where all the weight of the body seems to act
5 Forces, density and pressure	upthrust	 Description: It is a force when an object is immersed in fluid, due to the difference in pressure on the upper surface and the lower surface Notes: Description: The origin of the upthrust pressure changes with depth the pressure on the lower surface of sphere is greater than the pressure on the upper surface of sphere

Units	Key points	Definitions or descriptions	Formulae and graphs	Notes
J		and and an area and an area and a second a second and	. commerciant graphic	

		P=Pgh P:density of fluid h: depth below the swrface $P_1 = Pgh$, $P_2 = Pgh_2$ $\Rightarrow F_1 = P_1 A$ $\Rightarrow F_2 = P_2 A$. $\Rightarrow F_3 = P_1 A$ $\Rightarrow F_4 = P_4 A$ $\Rightarrow F_4 = P_4 A$ $\Rightarrow F_5 = P_4 A$ $\Rightarrow F_5 = P_5 A$ $\Rightarrow F_6 = P_6 A$ $\Rightarrow F_7 = P_7 A$ $\Rightarrow F_8 = P_8 A$ $\Rightarrow F_8 = $
	Fictional force	 Notes: Decided by the properties of contact surface the magnitude of normal force. always against the relative motion
	Viscous force	Notes: Shape, contact area, the properties of contact surface Relative speed Opposite to the relative motion
	Air resistance	 Notes: When the speed is low, air resistance is directly proportional to the speed. when the speed is high, air resistance is proportional to the square of speed. special viscous force in air
5 Forces, density and pressure	Moment of a force	Defintion: Moment of a force about a point is Product of the force and the perpendicular distance between the line of action of the force and the point X_1 Y_2 Y_3 Y_4 Y_4 Y_5 Y_6 Y_6 Y_8

Units Key points Definitions or descriptions Formulae and graphs	Notes

	$moment = force \times distance from pivot$
	$=F_1 \times x_1$
	moment of force = $F_2 d \sin \theta$
	Notes:
	 Described by two direction: clockwise and anticlockwise Is used to described the turning effect.
couple	Defintion: Two forces acting on the same object are equal magnitude in opposite direction and separated by a distance
Torque of a couple	Defintion: Product of the one of the forces and the perpendicular distance between two lines of action of the forces $ \frac{60 \text{ cm}}{d} = \frac{F \times d}{2} \times 2 = Fd $
Principle of moment	Description: For any object that is in equilibrium, the sum of the clockwise moments about a point provided by the forces acting on the object equals the sum of the anticlockwise moments about that same point.

Units	Key points	Definitions or descriptions	Formulae and graphs	Notes
•				

	$d_1 \qquad d_2 \qquad d_3$ Reaction (R) at the pivot $F_1 d_1 + F_2 d_2 = F_3 d_3 + F_4 d_4$
equilibrium	Notes: Description: two conditions for a system to be in equilibrium: The resultant force acting on the object is zero. The resultant moment is zero. If all forces passing through the same point(共点力), it means that the total moment equals zero Wall If all forces are in a close triangle the resultant force is zero.
density	Defintion: density = mass / volume $ \rho = \frac{m}{v} $
pressure	Defintion: Pressure is defined as the force acting per unit area normal to the force.

				1 3
Units	Key points	Definitions or descriptions	Formulae and graphs	Notes

		pressure = $\frac{\text{normal force}}{\text{cross-sectional area}}$ $p = \frac{F}{A}$					
	Energy	Defintion: Ability to do work					
	principle of conservation of energy	Description: Energy is conserved and energy cannot be created or destroyed. It can only be converted from one form to another.					
	Work (J)	Defintion: The product of force and displacement in the direction of the force. work done = force × displacement = force × displacement in the direction of the force work done = Fs cos θ					
	F-d graph	Notes: The work done on an object is the area under the line in a force—displacement graph					
6 Work, energy and	Gravitational Potential Energy	 Defintion: the energy or ability to do work of a mass that is stored due to its position in a gravitational field gravitational potential energy change = mgΔh Notes: Change in gpe is equal to the work done against weight 					
power	Kinetic Energy	Defintion: the energy or ability to do work of a mass/body that is stored due to its motion kinetic energy = $\frac{1}{2}$ × mass × speed ² $E_k = \frac{1}{2}mv^2$ Notes: • The change in ke is equal to the total work done by all forces, is equal to the work done by resultant force					
	Pressure-volume graph	Notes: Area: Work done by gas $W = p\Delta V$					
	Heat cost by friction	Notes: Heat produced is equal to the work done against the frictional force					

	, ,	Torridae and graphs
		Defintion: work done per unit time
		_ work done ΔW
		power, $P = \frac{\text{work done}}{\text{time taken}} = \frac{\Delta W}{\Delta t}$
	D (14/)	
	Power (W)	$P = \frac{W}{t} = \frac{F \times v \times t}{t}$
		•
		and we have:
		$P = F \times v$
		Defintion: Ratio of effective power used to total power input
		efficiency = useful energy transferred in a given time × 100%
	Efficiency (%)	energy supplied in that time
		Notes:
		• The efficienty of electric heater is 100%
	deformation	Description: Change in shape cause by force in one dimension
		Description: force is proportional to extension provided proportionality limit is not exceeded
		F=kx
	Hooke's law	
		Notes:
		• spring constant (force per unit extension) is a measure of the stiffness of the spring
		$\frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \int_$
	F-x	ag Samura
		0
9		0 Extension, x
Deformati		Notes:
		I TOTAL

Formulae and graphs

Units

Key points

Units	Key points	Definitions or descriptions	Formulae and graphs	Notes
-------	------------	-----------------------------	---------------------	-------

on of solids		 Area: work done by the force Gradient: spring constant Limit of proportionality: maximum extension in the linear region Elastic limit: maximum elastic deformation
	Elastic deformation	Description: The deformation that return to the original shape after the load is removed
	stress	Defintion: Is the ratio of force to cross-sectional area tensile stress (σ) = $\frac{\text{force}}{\text{cross sectional area}} = \frac{F}{A}$
	strain	Defintion: The ratio of extension to original length tensile strain (ε) = $\frac{\text{extension}}{\text{original length}} = \frac{\Delta L}{L}$
	Young modulus	Defintion: Young modulus = stress/strain Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{\sigma}{\varepsilon} = \frac{F/A}{\Delta L/L} = \frac{FL}{A\Delta L}$ Notes: It is the measure of the stiffness of the material
	Stress stain graph	Hooke's law obeyed in this linear region gradient = Young modulus Strain Notes: Gradient: young modulus Area: strain energy per unit volume

Units	Key points	Definitions or descriptions	Formulae and graphs	Notes

	Elastic potential energy	Defintion: the energy stored in a body due to its deformation
14 Waves	Progressive wave	Description: transfers energy from one position to another through a material or a vacuum. Notes: ■ Property of waves: All waves can be reflected, refracted and diffracted ● (Defintion) Displacement for a progressive wave: ■ The distance in a specified direction of particle/point on wave from the equilibrium position ● (Defintion) Amplitude for a progressive wave: ■ The maximum displacement of particle on wave from the equilibrium position ● (Defintion) Wavelength for a progressive wave: ■ distance between two adjacent wavefronts or the distance between two points in phase that are adjacent. ● (Defintion) Period for a progressive wave: ■ time for one complete oscillation of particle $f = \frac{1}{T}$ ● (Defintion) Frequency for a progressive wave: ■ the number of complete oscillations of particle per unit time $v = \frac{\lambda}{T}$ • In a progressive wave adjacent particles are out of phase
	Longitudinal waves	Defintion: the particles of the medium vibrate parallel to the direction of The propagation of energy
	Transverse waves	Defintion: the particles of the medium vibrate at right angles to the direction of the propagation of energy
	The intensity of a wave	Defintion: the rate of energy transmitted (power) per unit area at right angles to the wave velocity $ \frac{power}{cross-sectional\ area} $

	Notes:					
	● intensity ∝ (amplitude) 2					
		of a wave generally decreases a	s it travals along			
	1	e may 'spread out'	s it travels along.			
		e may be absorbed or scattered				
	Radiation	Wavelength range/m				
	radio waves	>10 ⁶ to 10 ⁻¹				
	microwaves	10 ⁻¹ to 10 ⁻³				
	infrared	10^{-3} to 7×10^{-7}				
	visible	7×10^{-7} (red) to 4×10^{-7} (violet)				
	ultraviolet	4×10^{-7} to 10^{-8}				
Electromagnetic spectrum	X-rays	10 ⁻⁸ to 10 ⁻¹³				
	γ-rays	10 ⁻¹⁰ to 10 ⁻¹⁶				
		depending on wave source depending on medium				
	<u> </u>		source frequency when source r	noves relative to observer		
Doppler effect:	observed frequency $f_o = \frac{f_s \times v}{(v \pm v_s)}$					
Principle of superposition	Description: when two or more waves meet at a point, the resultant displacement is the sum of the individual displacements.					
Differential	Defintion: As wave pass through the slit wave spread into geometric shadow around the edge of slit. Notes: When the gap is almost equal to the wavelength, the diffraction is most noticeable.					
Diffraction	_		The greater the ratio of gap size to wavelength, the greater the angle of diffraction, the greater the degree of diffraction.			
Diffraction	• The greater t					
Interference	• The greater t		th, the greater the angle of diffraction the displacements of overlapping			

Formulae and graphs

Units

Key points

		Where they cancel out, the effect is known as destructive interference.
15 Superposition	Coherent	Notes: Description: coherent sources: two sources emit waves with a constant phase difference Description: coherent waves: constant phase difference between the waves
	double-slit	Notes: Notes: Prior 3 clark 1 contained of the c

Units	Key points	Definitions or descriptions	Formulae and graphs	Notes
		agnetri etive i	starforance dives bright frings	
		• first order maximu	nterference gives bright fringe	
			on ech slit overlap/meet/superpose with phase difference of 3 0	50° due to noth difference of 1 co
			nterference gives bright fringe	due to patif difference of λ , so
		Constructive	iterierence gives bright minge	
		• the part played by	diffraction in the production of the fringes	
15		■ waves at each	slit spread into the geometric shadow	
Superposition		■ then waves o	verlap to form fringes	
		 a double slit is use 	d rather than two separate sources of light	
		waves from the	ne double slit are coherent/have a constant phase difference	
		■ there is not a	constant phase difference/coherence for two separate light so	Durces
		• The conditions tha	t is required for an observable interference pattern:	
		■ waves must b	e coherent . (sources are connected to the same vibrator/ge	enerator)
		■ the overlappi	ng waves have similar/same amplitude	
		• The intensity of the	e light incident on the double slits is now increased without a	altering its frequency.
		■ no change to	fringe separation /number of fringes	
		■ bright fringes	are brighter	
		■ dark fringes a	re unchanged	
		The intensity of the	e light through one of the slits is now reduced .	
		■ same fringe s	eparation /number of fringes	
		■ bright fringes	are less bright	
		■ dark fringes a	re brighter	
		■ contrast betw	een fringes decreases	

	The separation between siles is 2800 nm and the wowelength is 450 nm. How many bright frings on the screen can be observed. $d = 2800 \times 10^{-9} \text{ m}$ $\lambda = 450 \times 10^{-9} \text{ m}$ $SiNO = \frac{1}{0} \cdot 0 < 90^{\circ}$ $SiNO =$
Stationary wave	Description: A wave pattern produced when two progressive waves of the same frequency travelling in opposite directions combine. It is characterised by nodes and antinodes. Notes: How the stationary wave is formed: Incident wave reflects at at fixed point/end then the incident wave and reflected wave superpose to form stationary wave. the conditions required for the formation of stationary waves two waves travelling at same speed in opposite directions overlap waves (are same type and) have same frequency/wavelength (Defintion) Antinode of a stationary wave: position where has maximum amplitude (Defintion) Node of a stationary wave: position where has minimum amplitude In a stationary wave adjacent particles are in phase

Formulae and graphs

Units

Key points

				1 2
Units	Key points	Definitions or descriptions	Formulae and graphs	Notes

			Stationary wave	Progressive wave		Stationary wave	Progressive wave
		Wavefront	Not move but oscillation at same position	Move with the velocity of the wave.	wavelength	Double the distance between a pair of adjacent nodes or antinodes	Distance between adjacent particles which have the same phase.
		Energy	Not transferred.	Transferred in the direction of travel of the wave	Amplitude	The amplitude varies from zero at the nodes to a maximum at the antinodes.	The amplitude is the same for all particles.
		Frequency	All particles, except at the nodes, vibrate at the same frequency.	All particles vibrate at the same frequency.	Phase difference between two particles	π m, where m is the number of nodes between the two particles.	$2\pi\;x/\lambda\;$, where x is the distance apart and λ is the wavelength.
	Field of force	Defintion: A region	of space where an ob	ject experiences a forc	e by the field		
	Electric field	Defintion: Electric field due to a charge is a region of space where another stationary charge experiences an electric force by the field					
		Defintion: force per	r unit positive charge				
	Electric field strength	E = F E = electric field str F = force on test ch q = size of test cha	ength (N/C)	()			
		Notes: It is a vector quantity in the same direction of the force experienced by the positive charge but opposite to the direction of force on negative charge					
	Defintion: The direction of electric force acting on a small test positive charge						
			path in which a free p	ositive charge will mov	/e		
	Electric field lines	Notes: • Field lines start	porpordicularly from	surface of positive ob	parand object and a	and parpandigularly	from curtage of negative
		charged object	perpendicularly Irom	surface of positive cr	iarged object and t	end perpendicularly	from surface of negative

Field strength of un field	E = V / d E = electric field strength (V/m) V = potential difference (voltage) between plates (V) d = distance between plates (m)
	Notes: The field is non-uniform near the ends of the plates
	Defintion: Electric current is the rate of flow of electric charge carriers past a point. I=Q/t
Current	Notes: Direction of flow of conventional current is same as the direction of flow of positive charges, and is opposite to the direction of flow of negative charges. I = nAvq n is number density of charge carriers(=charged particles) v is average drift velocity q is the charge of a charge carrier A is cross-sectional area
Charge	Notes: The charge on the carriers is quantised, it means charge exists only in discrete amounts elementary charge e = 1.6 × 10 ⁻¹⁹ C
Coulomb	Defintion: ampere second
Potential differe	nce Defintion: Energy transferred from electrical to other forms of energy per unit charge through the two point
Volt	Defintion: Joules per coulomb
power	Defintion: Work done per unit time Notes:

Units Key points Definitions or descriptions Formulae and graphs Notes
--

		• Electric power (P=IV) means the energy transferred from electrical energy to other formas of energy per unit time
		Heat power (the Joule's law) (P=I²R): The energy transferred from electrical energy to thermal energy per unit time
		• For resistor electric power equal heat power, P=IV=I ² R, V=IR
		Defintion: The ratio of voltage across it to the current through it
		$resistance = \frac{potential \ difference}{current}$
	Resistance	$R = \frac{V}{I}$
		Notes: Resistance of a resistor means the property that it would resist the flow of current
		Measured resistance between two points = total resistance between two points = combined resistance between two points
19 Current of		Defintion: The resistivity of a material is defined by $ρ$ = RA/L where R is resistance, L is length, A is cross-sectional area. $R = \frac{ρl}{A}$
electricity	Resistivity	ρ = resistivity of the material I = is the length A=is the cross sectional area
		Notes: Resistivity means the property of a type of a material that could resist the flow of current
	Ohm	Defintion: Volt per ampere

••		B =		COURSEMO Shirley
nits	Key points	Definitions or descriptions	Formulae and graphs	Notes
		R=wnstant		
	The I–V characteri ohmic resisto	, /	Tog: Ohmic resistor —— fixed resistor 范围电路 metallic anduleor at aretant tomporature	
	The I–V characteris filament lam	p filoment lamp — & Notes:		
		For very small current	ts and voltages, the graph is roughly a straight line.	
			$V \longrightarrow T \longrightarrow R_{\downarrow \downarrow}$ $V \longrightarrow R/k\Omega$ $V \longrightarrow K$	

The I–V characteristic for Negative temperature coefficient (NTC) thermistors

Notes:

- the resistance of this type of thermistor decreases with increasing temperature.
- Resistance of thermistor does not decrease linearly with temperature

The I–V characteristic for a diode	Notes: Describe the I–V characteristic zero current for one direction –ve V up to a few tenths of volt +ve V (resistance is infinite/very high) straight line with positive or increasing gradient +ve V (resistance decreases as V increases)
The ohm's law	Description: The current through a resistor is directly proportional to the voltage across it when the physical condition are constant The current through a resistor is directly proportional to the voltage across it when the physical condition are constant Notes: Graph is a straight line which passes through the origin.
e.m.f	Defintion: The energy transformed from other forms to electrical energy per unit charge driven around a complete circuit Notes: Defintion: electromotive force (e.m.f.) of a cell: The energy transformed from chemical to electrical energy per unit charge driven around a complete circuit
complete Circuit	therefore, $\varepsilon = IR + Ir$ becomes: $\varepsilon = V + Ir$ (as $V = IR$) or $V = \varepsilon - Ir$

Formulae and graphs

Units

Key points

		Notes:
		In a V-I graph, y-intercept is E, gradient is negative r.
		The graph is a straight line.
20 D.C.		V=terminal p.d. = total external p.d.
circuits		• Ir=lost volts
		Notes:
		● P=IE:
		Total input power of the supply
		\bullet P=IV=I ² R:
		Output power by the supply
	Power in complete	Power dissipated in the external circuit
	Circuit	\bullet P=I ² r:
		Power dissipated due to internal resistance
		For the whole complete circuit:
		$IE=IV+I^2r$
		I=E/ (R+r)
		• Efficiency of the battery = IV/ IE=V/ E
		P .
		l e e e e e e e e e e e e e e e e e e e
		\uparrow
		P
	Output power by the	max
	supply – external resistance	
	graph	
	grapri	
		R
		Notes:
		● When R=r, output power is maximum, V=Ir=1/2E, Efficiency of the battery = IV/ IE=V/ E=50%
	Kirchhoff's first law	Description: The sum of currents entering a junction is equal to the sum of currents leaving this junction

		I_1 Q I_2 I_3
		$ _1 = _2 + _3$
20 D.C.		Notes:
circuits		It is based on the conservation of charge
Circuits		Description: The sum of e.m.f.s is equal to the sum of the p.d.s around a closed circuit
	Kirchhoff's second law	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		4.0 = 40 and so = 0.1 A Notes: ■ It is based on the conservation of energy
	Potential divider	Notes: • Vin is constant • If R1 increases, Vout decreases $V_{out} = (\frac{R_2}{R_1 + R_2}) \times V_{in}$ $\frac{V_1}{V_2} = \frac{R_1}{R_2}$
		If R2 increases, Vout increases

Formulae and graphs

Units

Key points

Units Key points Definitions or descriptions Formulae and graphs Notes
--

	Potentiometers	Notes: When the potentiometer is balanced: The galvanometer gives zero deflection, showing that there is no current through it. The potential difference across the length of wire AY is equal to the e.m.f. of cell X. E ₁ = $\frac{L_{AY}}{L_{AD}}$ Wire When the potential difference across the length of wire AY is equal to the e.m.f. of cell X. E ₁ = $\frac{L_{AY}}{L_{AD}}$
	Rutherford's Experiment	 Observations 1: The vast majority of α-particles passed through the foil with very little or no deviation from their original path. Explanation 1: most of the atom is empty space. Observations 2: An extremely small number of particles were deflected through an angle greater than 90°. Explanation 2: the majority of mass in very small nucleus the nucleus has positive charge.
26	Notation	nucleon number element symbol ${}^{A}_{Z}X$ Notes: The Proton (Atomic) Number is the number of Protons and Electrons unless it is an ion. (Protons = Electrons)

COURSEMO | Shirley

				1 2
Unit	s Key points	Definitions or descriptions	Formulae and graphs	Notes

lear Isotope	Defintion: are the nuclei which have same number of protons but different number of nucleons (or neutrons)			
rsics				
	property	α-particle	β-particle	γ-radiation
	mass	4u	about u/2000	0
Radiation from radioactive	charge	+2e	-e or +e	0
substances	nature	helium nucleus (2 protons + 2 neutrons)	negative or positive electron	short-wavelength electromagnetic waves
	speed	up to 0.05c	more than 0.99c	С
	penetrating power	few cm of air	few mm of aluminium	few cm of lead
	relative ionising power	104	10 ²	1
	affects photographic film?	yes	yes	yes
	deflected by electric, magnetic fields?	yes, see Figure 26.3	yes, see Figure 26.3	no

_					= = = = = = = =
	Units	Key points	Definitions or descriptions	Formulae and graphs	Notes

26 Particle and nuclear physics		Figure 16.15 An electric field can be used to separate α-, β-and γ- radiations. (The deflection of the α-radiation has been greatly exaggerated here.) Figure 16.16 A magnetic field may also be used to separate α-, β-and γ- radiations. The deflection of the α-radiation has been greatly exaggerated here. Figure 16.16 A magnetic field may also be used to separate α-, β- and γ- radiations. The deflection of the α-radiation has been greatly exaggerated here. Notes: P-particles has a continuous range of energies, rather than discrete values of energy. β-particles will follow the different paths inside the electric field.
	specific charge	Notes: The greater the ratio of charge to mass, the more the deflection of particle in electric field or magnetic field
	Nuclear process	 Notes: nuclear processes nuclear fusion: two light nuclei join together into a massive nucleus nuclear fission: a massive nucleus split apart into two light nuclei radioactive decay: a unstable nucleus changes into a more stabe nucleus emitting α, β and γ-radiations Conservation in a nuclear process Proton number is conserved Nucleon number is conserved charge is conserved Momentum is conserved Mass-energy is conserved The decrease in mass transfer into energy in forms of kinetic energy of product particles or gamma radiation

COURSEMO | Shirley

Fundamental particle Defintion: Particle that have no internal structure		Defintion: Particle that have no internal structure	
26 Particle and nuclear physics	Hadron	Defintion: Particle that consist by quarks Notes: Two tpyes of hadrons ■ Meson (consist two quarks) Baryon (consist three quarks) ◆ Proton (uud)、Neutron (udd) ● not a fundamental particle	
	Lepton	Defintion: Particle that consist by non-quark Notes: ■ Lepton ■ Electron、Neutrino ● strong force not act on leptons ● all leptons are fundamental particles	
	<mark>quark</mark>	flavourchargestrangenessup (u) $+\frac{2}{3}$ 0down (d) $-\frac{1}{3}$ 0strange (s) $-\frac{1}{3}$ -1 Antiquarks	
	beta plus decay	Notes: • proton number of the nucleus decrease, • up quark change to down quark • (electron) neutrino also emitted	
	beta minus decay	 Notes: proton number of the nucleus increase, down quark change to up quark (electron) antineutrino also emitted similarity between a β⁺ particle and a β⁻ particle same (rest) mass equal (magnitude of) charge 	

	 difference between a β⁺ particle and a β⁻ particle opposite (sign of) charge one is matter and one is antimatteror one is an electron and one is an antielectron
strong interaction (force)	 Notes: nucleus is form by the strong force between nucleons nucleon (protron and neutron) is form by the strong force between quarks
weak interaction (force)	Notes: ■ beta decay due to weak force between quarks
mesons 173 (cire partides which are formed by two quarks) quarks: up quark down quarks) strunge quark anti-down quark arti-down quark conti-strunge quark	weak interaction between quarks, giving rise to β decay by: electrons antiple trans (are particles which are neutrino formed by three quarks) Eq: proton: $u u d \Rightarrow t = t = t = t = t = t = t = t = t = t$

Formulae and graphs

Units

Key points

COURSEMO | Shirley

				1 3
Units	Key points	Definitions or descriptions	Formulae and graphs	Notes

