Récapitulatif de P2

Cinématique du point I.

Frenet:
$$\vec{\tau} = \frac{\vec{\sigma}}{2}$$

$$\frac{\vec{N}}{R} = \frac{d\vec{\tau}}{ds}$$

$$\vec{a} = \frac{dv}{dt}\vec{\tau} + \frac{v^2}{R}\vec{N}$$

Rotation:
$$\omega = \frac{2\pi}{T}$$

$$V = \omega R$$

Forces et interactions fondamentales II.

$$\overrightarrow{F_{1\to 2}} = -\frac{Gm_1m_2}{r^2} \overrightarrow{e_{1\to 2}}$$

$$\overrightarrow{G_O(M)} = -Gm_O \frac{\overrightarrow{OM}}{OM^3}$$

$$\overrightarrow{G_O(M)} = -Gm_O \frac{\overrightarrow{OM}}{OM^3}$$

III. Principe de la dynamique

$$\overrightarrow{F} = m\overrightarrow{a_{M/\mathcal{R}_0}}$$

$$\overrightarrow{F} = m\overrightarrow{a_{M/\mathcal{R}_0}} \qquad \overrightarrow{T_{ressort}} = -k\overrightarrow{M_0M} \qquad \boxed{R_T = fR_N} \qquad \overrightarrow{\pi} = -\rho V\overrightarrow{g}$$

$$R_T = fR_N$$

$$\vec{\pi} = -\rho V \vec{g}$$

IV. Puissance, Travail, Énergie

$$\mathcal{P}(t) = \vec{f}(t) \cdot \vec{v}(t)$$

$$\mathcal{P} = \frac{\delta W}{dt}$$

$$\delta W = \vec{f} \cdot d\vec{O}\vec{M}$$

$$\mathcal{P} = \frac{\delta W}{dt}$$

$$\delta W = \vec{f} \cdot d\overrightarrow{OM}$$

	Définition	Théorème de l'énergie	Puissance
ε_c	$\mathcal{E}_C = \frac{1}{2}mv^2$	$\mathcal{E}_C(B) - \mathcal{E}_C(A) = W_{A \to B}(\vec{F})$	$\frac{d\mathcal{E}_{\mathcal{C}}}{dt} = \mathcal{P}(\vec{F})$
\mathcal{E}_{P}	$\overrightarrow{f_c} = -\overrightarrow{\operatorname{grad}}(\mathcal{E}_P)$	$\mathcal{E}_P(B) - \mathcal{E}_P(A) = -W_{A \to B}(\overrightarrow{f_c})$	$rac{d\mathcal{E}_P}{dt} = -\mathcal{P}(\overrightarrow{f_c})$
\mathcal{E}_{M}	$\mathcal{E}_{M} = \mathcal{E}_{C} + \mathcal{E}_{P}$	$\mathcal{E}_M(B) - \mathcal{E}_M(A) = W_{A \to B}(\overrightarrow{f_{nc}})$	$\frac{d\mathcal{E}_M}{dt} = \mathcal{P}(\overrightarrow{f_{nc}})$

$$\mathcal{E}_{P_P} = mgz$$

$$\boxed{\mathcal{E}_{P_{P}} = mgz}$$

$$\mathcal{E}_{P_{E}} = \frac{1}{2}k(l - l_{0})^{2}$$

V. Moment cinétique

1. Définitions

$$\mathcal{M}_{O}^{t}(\overrightarrow{F}) = \overrightarrow{OM} \wedge \overrightarrow{F}$$

$$\overrightarrow{L_0} = \overrightarrow{OM} \wedge m\overrightarrow{v}$$

$$\boxed{\mathcal{M}_{O}^{t}(\vec{F}) = \overrightarrow{OM} \wedge \overrightarrow{F}} \qquad \boxed{\overrightarrow{L_{O}} = \overrightarrow{OM} \wedge m\overrightarrow{v}} \qquad \boxed{\frac{d\overrightarrow{L_{0}}}{dt} = \sum \mathcal{M}_{O}^{t}(\vec{F})}$$

2. Propriétés d'une force centrale

- Conservation du moment cinétique $\left(\frac{d\overrightarrow{L_0}}{dt}=0\right)$
- Loi des aires vérifiée • Formules de Binet
- Le mouvement de M est plan

$$\boxed{C = r^2 \dot{\theta} = r_0 v_0 sin\alpha} \quad \alpha = \left(\overrightarrow{OM}, \overrightarrow{v_0}\right) \qquad \boxed{\overrightarrow{L_O} = mC\overrightarrow{u_r}} \qquad \frac{d\mathcal{A}}{dt} = \frac{C}{2}$$

$$\overrightarrow{L_O} = mC\overrightarrow{u_r}$$

$$\frac{d\mathcal{A}}{dt} = \frac{C}{2}$$

3. Kepler

- 1°: trajectoires = ellipses
- 2°: loi des aires
- $3^{\circ}: \frac{a^3}{T^2} = \frac{GM}{4\pi^2} = \text{constante}$

Récapitulatif de P2

4. Champ de force Newtonien

Etat	Energie	Excentricité	Trajectoire
Diffusion	$\mathcal{E}_m > 0$	e > 1	Hyperbole
Dillusion	$\mathcal{E}_m = 0$	e = 1	Parabole
Lié	$\mathcal{E}_m < 0$	<i>e</i> < 1	Ellipse
Lie		e = 0	Cercle

$$\begin{vmatrix} \vec{f} = \frac{k}{r^2} \overrightarrow{u_r} \end{vmatrix} \qquad \begin{vmatrix} \mathcal{E}_P = \frac{k}{r} \end{vmatrix}$$

$$\mathcal{E}_m = \frac{1}{2} m \dot{r}^2 + \frac{mC^2}{\varepsilon_{r_{adiale}}} + \frac{m}{\varepsilon_{p_{effective}}}$$

Etude de l'état lié:

A : Apogée
$$P : Périgée \\ a : demi-grand axe \\ b : demi-petit axe$$

$$2a = r_A + r_P \\ b^2 = ap \\ \mathcal{A}ire = \pi ab \\ \mathcal{E}_M = \frac{k}{2r}$$

VI. Changement de référentiel

$$\boxed{ \overrightarrow{\Omega_{\mathcal{R}^{'}/\mathcal{R}}} = \omega \, \overrightarrow{u_z} } \qquad \left(\frac{d\overrightarrow{u}}{dt} \right)_{\mathcal{R}} = \left(\frac{d\overrightarrow{u}}{dt} \right)_{\mathcal{R}^{'}} + \overrightarrow{\Omega_{\mathcal{R}^{'}/\mathcal{R}}} \wedge \overrightarrow{u}$$

	Composition	Cas particuliers et formules
Vitesses	$\boxed{\overrightarrow{v_a} = \overrightarrow{v_r} + \overrightarrow{v_e}}$	$\overrightarrow{v_e} = \underbrace{\overrightarrow{v_{O'/\mathcal{R}}}}_{\text{e on rotation}} + \underbrace{\overrightarrow{\Omega} \wedge \overrightarrow{O'M}}_{\text{e on translation}}$
Accélérations	$\left[\overrightarrow{a_a} = \overrightarrow{a_r} + \overrightarrow{a_e} + \overrightarrow{a_c}\right]$	$\overrightarrow{a_e} = \underbrace{\overrightarrow{a_{O'/\mathcal{R}}}}_{\text{e o en rotation si origines communes}} + \underbrace{\overrightarrow{\Omega} \wedge (\overrightarrow{\Omega} \wedge \overrightarrow{O'M})}_{\text{e o en translation}}$ $\overrightarrow{a_e} = -\omega^2 \overrightarrow{HM} \text{ (en rot° si origines communes)}$ $\overrightarrow{a_c} = 2\overrightarrow{\Omega} \wedge \overrightarrow{v_r}$

$$\overrightarrow{a_{M/\mathcal{R}}} = \overrightarrow{F} + \overrightarrow{F_{l_c}} + \overrightarrow{F_{l_e}}$$

 $\boxed{m \; \overrightarrow{a_{M/\mathcal{R}}} = \overrightarrow{F} + \overrightarrow{F_{l_c}} + \overrightarrow{F_{l_e}}}$ Force d'inertie d'entrainement : $\overrightarrow{F_{l_e}} = -m\overrightarrow{a_e}$ Force d'inertie de Coriolis : $\overrightarrow{F_{l_c}} = -m\overrightarrow{a_c}$