

# Sri Chaitanya IIT Academy, India a.p, telangana, karnataka, tamilnadu, maharashtra, delhi, ranchi

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

## ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 JEE ADVANCED
 DATE : 27-12-15

 TIME : 3:00
 2014\_P2 MODEL
 MAX MARKS : 180

#### **KEY & SOLUTIONS**

#### **PHYSICS**

| 1  | A | 2  | С | 3  | A | 4  | В | 5  | В | 6  | D |
|----|---|----|---|----|---|----|---|----|---|----|---|
| 7  | С | 8  | D | 9  | A | 10 | D | 11 | С | 12 | С |
| 13 | С | 14 | В | 15 | С | 16 | A | 17 | С | 18 | A |
| 19 | С | 20 | A |    |   |    |   | 6- |   |    |   |

## **CHEMISTRY**

| 21 | D | 22 | D | 23 | С | 24 | В | 25 | A | 26 | A |
|----|---|----|---|----|---|----|---|----|---|----|---|
| 27 | В | 28 | С | 29 | С | 30 | A | 31 | В | 32 | A |
| 33 | В | 34 | A | 35 | В | 36 | С | 37 | D | 38 | A |
| 39 | D | 40 | A |    |   |    |   |    | 7 |    |   |

# **MATHEMATICS**

| 41 | A | 42 | С | 43 | A | 44 | A | 45 | A | 46 | С |
|----|---|----|---|----|---|----|---|----|---|----|---|
| 47 | A | 48 | A | 49 | A | 50 | A | 51 | В | 52 | В |
| 53 | D | 54 | В | 55 | В | 56 | C | 57 | В | 58 | С |
| 59 | D | 60 | A |    |   |    |   |    |   |    |   |

Sec: Sr.IPLCO Page 1

## **PHYSICS**

2. Sol 1.5 hr = 3 
$$T_{Halflife}$$

at beginning of 1.5 hr count rate =  $(2)^3 x5 = 40 sec^{-1}$ 

$$40 \sec^{-1} = \frac{1}{9} \times 360 \text{s}^{-1} = \frac{1}{9} \text{ xinitial rate}$$

intensity of radiation =  $\frac{1}{9}$  x initial intensity at 2m

but intensity  $\propto \frac{1}{d^2}$ 

so, new distance =  $3 \times 2 = 6 \text{m}$ 

3. sol 
$$hf_1 = w + \frac{1}{2}mv_1^2$$

$$hf_2 = w + \frac{1}{2}mv_2^2$$

$$\frac{2h}{m}(f_1 - f_2) = v_1^2 - v_2^2$$

4. sol The energy of k-shell is  $E = \frac{-1240}{0.015} = -82.6 keV$ 

:. Energy between k and L shall is

$$E_{2-1} = \frac{3}{4}(82.6) = 62keV$$

7. sol the nuclei with greatest BE per nucleon is most stable.

11. sol 
$$r = \frac{q_1 q_2}{4\pi\varepsilon_0 (2KE)}$$

$$v^{2} = \frac{q_{1}q_{2}}{4\pi\varepsilon_{0}mr}$$

$$v^{2} = \frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19} \times 9 \times 10^{9}}{10^{-15} \times 2 \times 1.67 \times 10^{-27}}$$

$$v = 8.3 \times 10^6 \, ms^{-1}$$

12. Sol 
$$R = \frac{mv}{eB}$$
 or  $B = \frac{2 \times 1.67 \times 10^{-27} \times 8.3 \times 10^6}{1.6 \times 10^{-19} \times 1.25} = 139mT$ 

13 & 14

$$R = \frac{mv\sin\theta}{qB} \Rightarrow v\sin\theta = 1.2 \times 10^7 \text{ m/s} \quad \text{(Change of $\alpha$-particle} = 3.2 \times 10^{-19} \text{ c}\text{]}$$

Sec: Sr.IPLCO

$$P = \frac{2\pi m}{qB} v \cos \theta \implies v \cos \theta = \frac{PqB}{2\pi m} = 9 \times 10^6 \text{ m/s}$$

$$\therefore V_{\alpha} = \sqrt{(v \sin \theta)^2 + (v \cos \theta)^2} = 1.5 \times 10^7 \text{ m/s}$$

$$m_y v_y = m_\alpha v_\alpha \implies v_y = 2.715 \times 10^5 \text{ m/s}$$

 $\therefore$  TE released during an  $\alpha$ -decay of the nucleus X is,

$$E = KE_y + KE_\alpha = \frac{1}{2}m_y v_y^2 + \frac{1}{2}m_\alpha v_\alpha^2 = 4.77 \text{ MeV}$$

15 & 16

sol

$$E_{n_2 \to n_1} = -(13.6eV)Z^2 \left[ \frac{1}{n_2^2} - \frac{1}{n_1^2} \right]$$

So, 
$$204 = -13.6Z^2 \left( \frac{1}{4n^2} - 1 \right)$$

and 
$$40.8 = -13.6Z^2 \left( \frac{1}{4n^2} - \frac{1}{n^2} \right)$$

taking the ratio, n = 2, Putting in above equation Z= 4

$$E_{\min} = -13.6eV \times 4^2 \left( \frac{1}{4^2} - \frac{1}{3^2} \right) = 10.58eV$$