1. Introduction to SVM

SVM or Support Vector Machine is a supervised Machine Learning technique. It is used for classification, regression, and outlier detection.

Use SVM to build and train a model using human cell records and classify cells to whether the samples are benign (mild state) or malignant (evil state).

SVM works by mapping data to a high-dimensional feature space so that data points can be categorized, even when the data are not otherwise linearly separable (This gets done by kernel function of SVM classifier). A separator between the categories is found, then the data is transformed in such a way that the separator could be drawn as a hyperplane.

2. Perform Necessary Imports

```
In [2]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

3. About the Cancer Data Set

Public Source: https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)) UCI Machine learning repository

4. Loading Data From CSV file

```
In [4]:
```

```
cancer_df = pd.read_csv('cell_samples.csv')
```

In [5]:

```
cancer_df.head()
```

Out[5]:

	ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	Norr
0	1000025	5	1	1	1	2	1	3	
1	1002945	5	4	4	5	7	10	3	
2	1015425	3	1	1	1	2	2	3	
3	1016277	6	8	8	1	3	4	3	
4	1017023	4	1	1	3	2	1	3	
4									•

In [6]:

```
cancer_df.tail()
```

Out[6]:

	ID	Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	No
694	776715	3	1	1	1	3	2	1	
695	841769	2	1	1	1	2	1	1	
696	888820	5	10	10	3	7	3	8	
697	897471	4	8	6	4	3	4	10	
698	897471	4	8	8	5	4	5	10	
4									•

The characteristics of the cell samples from each patient are contained in fields Clump to Mit. The values are graded from 1 to 10, with 1 being the closest to benign.

The Class field contains the diagnosis, as confirmed by separate medical procedures, as to whether the samples are benign (value = 2) or malignant (value = 4).

In [9]:

```
cancer_df.shape
```

Out[9]:

(699, 11)

In [10]:

```
cancer_df.size
```

Out[10]:

7689

In [11]:

```
cancer_df.count()
```

Out[11]:

699
699
699
699
699
699
699
699
699
699
699

```
In [12]:
```

```
cancer_df['Class'].value_counts()

Out[12]:

458
4 241
Name: Class, dtype: int64
```

5. Distribution of the Classes

In [18]:

```
malignant_df = cancer_df[cancer_df['Class']==4][0:250]
benign_df = cancer_df[cancer_df['Class']==2][0:250]

axes = malignant_df.plot(kind='scatter', x ='Clump', y ='UnifSize', color ='Red', label ='Malignant')

benign_df.plot(kind='scatter', x ='Clump', y ='UnifSize', color ='Blue', label='Benign', ax=axes)
```

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x23f18a1fc88>

6. Identifying unwanted rows

In [19]:

```
cancer_df.dtypes
```

Out[19]:

ID int64 Clump int64 UnifSize int64 UnifShape int64 MargAdh int64 SingEpiSize int64 BareNuc object BlandChrom int64 NormNucl int64 Mit int64 Class int64

dtype: object

In [22]:

```
#discarding non numeric rows
cancer_df = cancer_df[pd.to_numeric(cancer_df['BareNuc'], errors = 'coerce').notnull()]
```

In [23]:

```
cancer_df.dtypes
```

Out[23]:

ID int64 int64 Clump UnifSize int64 UnifShape int64 MargAdh int64 SingEpiSize int64 BareNuc object BlandChrom int64 NormNucl int64 Mit int64 int64 Class dtype: object

```
In [25]:
```

```
cancer_df['BareNuc'] = cancer_df['BareNuc'].astype('int')
cancer_df.dtypes
```

Out[25]:

ID int64 Clump int64 UnifSize int64 UnifShape int64 MargAdh int64 SingEpiSize int64 BareNuc int32 BlandChrom int64 NormNucl int64 Mit int64 int64 Class dtype: object

7. Remove unwanted columns

```
In [26]:
```

```
cancer_df.columns
Out[26]:
```

```
Indov(['ID' 'Clu
```

In [29]:

In [32]:

```
X = np.asarray(feature_df)

#cancer_df had 100 rows and 11 columns
#feature_df had 9 columns out of the the nital 11 columns

#X is the independent variable

#dependent variable will be Y

Y = np.asarray(cancer_df['Class'])
```

```
In [33]:
X[0:5]
Out[33]:
array([[ 5,
                    1,
                         2, 1,
                                 3,
                                     1,
                                         1],
            1,
                 1,
       [5,
                         7, 10,
                 4,
                     5,
                                 3,
                                         1],
                1,
                     1,
                         2,
                            2,
                                 3,
                                    1,
                                         1],
       [ 3,
            1,
            8, 8,
                    1,
                         3, 4,
                                 3, 7, 1],
       [6,
                 1,
                     3,
                            1,
       [4,
            1,
                         2,
                                 3,
                                     1,
                                         1]], dtype=int64)
In [34]:
Y[0:5]
Out[34]:
array([2, 2, 2, 2], dtype=int64)
8. Divide the data as Train/ Test dataset
In [37]:
. . .
cancer_df --> Train/ Test
Train(X, y) #X is a 2D Array, #Y is a 1D array
Test(X,y)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, random_state
=4 )
In [38]:
X_train.shape
Out[38]:
(546, 9)
In [40]:
y_train.shape
Out[40]:
(546,)
9. Modelling (SVM with Scikit-learn)
In [43]:
from sklearn import svm
classifier = svm.SVC(kernel='linear', gamma = 'auto', C=2) #defalut is RBF
```

```
In [44]:
```

```
classifier.fit(X_train, y_train)
```

Out[44]:

SVC(C=2, gamma='auto', kernel='linear')

In [45]:

y_predict = classifier.predict(X_test)

10. Evaluation (Results)

In [46]:

from sklearn.metrics import classification_report
print(classification_report(y_test, y_predict))

	precision	recall	f1-score	support
2	1.00	0.94	0.97	90
4	0.90	1.00	0.95	47
accuracy			0.96	137
macro avg	0.95	0.97	0.96	137
weighted avg	0.97	0.96	0.96	137