PCT

WORLD INTELLECTUAL PROPER' International Bure

INTERNATIONAL APPLICATION PUBLISHED UNDER 7

WO 9605317A1

(51) International Patent Classification 6:

C12N 15/53, 15/82, A01H 5/00, C12N 5/10, C12Q 1/68

(11) International Publication Number:

WO 96/05317

A1

US

(43) International Publication Date:

22 February 1996 (22.02.96)

(21) International Application Number:

PCT/US95/10403

(22) International Filing Date:

15 August 1995 (15.08.95)

(30) Pri rity Data:

08/291.939

16 August 1994 (16.08.94)

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(81) Designated States: AU, CA, JP, NZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(71) Applicant: THE GENERAL HOSPITAL CORPORATION [US/US]; Fruit Street, Boston, MA 02114 (US).

(72) Inventors: CHIANG, Hui-Hwa; Apartment 2, 58 South Russell Street, Boston, MA 02114 (US). HWANG, Inhwan; Plant Molecular Biology and Biotechnology Research Center, Gyeonsang National University, Chinju 660-701 (KR). GOODMAN, Howard, M.; 10 The Ledges Road, Newton Centre, MA 02159 (US).

(74) Agents: CIMBALA, Michele, A. et al.; Sterne, Kessler, Goldstein & Fox P.L.L.C., 1100 New York Avenue, N.W., Suite 600, Washington, DC 20005-3934 (US).

(54) Title: GA4 DNA, PROTEIN AND METHODS OF USE

(57) Abstract

The invention relates to the DNA and protein encoded by the GA4 locus. This protein is believed to be a member of the family of enzymes involved in the biosynthesis of the gibberellin family (GA) of plan growth hormones which promote various growth and developmental processes in higher plants, such as seed germination, stem elongation, flowering and fruiting. More specifically, the protein encoded by the GA4 locus is an hydroxylase. The invention also relates to vectors containing the DNA and the expression of the protein encoded by the DNA of the invention in a host cell. Additional aspects of the invention are drawn to host cells transformed with the DNA or antisense sequence of the invention, the use of such host cells for the maintenance, or expression or inhibition of expression of the DNA of the invention and to transgenic plants containing DNA of the invention. Finally, the invention also relates to the use of the protein encoded by the GA4 locus to alter aspects of plant growth.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	(E	Ireland	NZ	New Zealand
BJ	Benin	ίΤ	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ.	Kazakhstan	SK	Slovakia
СМ	Cameroon	u	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

GA4 DNA, Protein and Methods of Use

Field of the Invention

The invention relates to the field of molecular biology and plant growth hormones, and especially to gibberellins.

Background of the Invention

Gibberellins are a large family of tetracyclic triterpenoid plant growth hormones which promote various growth and developmental processes in higher plants, such as seed germination, stem elongation, flowering and fruiting (Stowe, B.B. et al., Annu. Rev. Plant Physiol. 8:181-216 (1957)). A number of GA responsive dwarf mutants have been isolated from various plant species, such as maize, pea, and Arabidopsis (Phinney, B.O. et al., "Chemical Genetics and the Gibberellin Pathway" in Zea mays L. in Plant Growth Substance, ed., P.F. Waering, New York: Academic (1982) pp. 101-110; Ingram, T.J. et al., Planta 160:455-463 (1984); Koornneef, M., Arabidopsis Inf. Serv. 15:17-20. (1978)). The dwarf mutants of maize (dwarf-1, dwarf-2, dwarf-3, dwarf-5) have been used to characterize the maize GA biosynthesis pathway by determining specific steps leading to biologically important metabolites (Phinney, B.O. et al., "Chemical Genetics and the Gibberellin Pathway" in Zea mays L. in Plant Growth Substance, ed., P.F. Waering, New York: Academic (1982) pp. 101-110; Fujioka, S. et al., Plant Physiol. 88:1367-1372 (1988)). Similar studies have been done with the dwarf mutants from pea (Pisum sativum L.) (Ingram, T.J. et al., Planta 160:455-463 (1984)). GA deficient mutants have also been isolated from Arabidopsis (gal, ga2, ga3, ga4, ga5) (Koornneef, M., et al., Theor. Appl. Genet. 58:257-263

(1980)). The Arabidopsis ga4 mutant, induced by ethyl methanesulfonate (EMS) mutagenesis, is a germinating, GA responsive, semidwarf whose phenotype can be restored to wild type by repeated application of exogenous GA (Koornneef, M. et al., Theor. Appl. Genet. 58:257-263 (1980)).

5

In Arabidopsis, the ga4 mutant allele blocks the conversion of 3- β -hydroxy GAs, reducing the endogenous levels of GA₁, GA₈ and GA₄ and increasing the endogenous levels of GA₁₉, GA₂₀ and GA₉ (Talon, M. et al., Proc. Natl. Acad. Sci. USA 87:7983-7987 (1990)). The reduced levels of the 3- β -hydroxy GAs is the cause of the semidwarf phenotype of the ga4 mutant. It has been suggested that the pea le mutant also encodes an altered form of 3- β -hydroxylase (Ross, J.J. et al., Physiol. Plant. 76:173-176 (1989)).

10

Summary of the Invention

The invention is first directed to GA4 DNA and the protein encoded by the GA4 DNA.

15

The invention is further directed to GA4 antisense DNA, and to the GA4 antisense RNA transcribed from it.

The invention is further directed to vectors containing GA4 encoding DNA and to the expression of GA4 protein encoded by the GA4 DNA in a host cell.

20

The invention is further directed to vectors containing GA4 antisense DNA and to the expression of GA4 antisense RNA by the GA4 antisense DNA in a host cell.

25

The invention is further directed to host cells transformed with the GA4 encoding DNA of the invention, and to the use of such host cells for the maintenance of the GA4 DNA or expression of the GA4 protein of the invention.

The invention is further directed to host cells transformed with the GA4 antisense DNA of the invention, and to the use of such host cells for the

maintenance of the GA4 DNA or inhibition of expression of the GA4 protein of the invention.

The invention is further directed to transgenic plants containing the GA4 encoding or GA4 antisense DNA of the invention.

The invention is further directed to a method for altering plant growth, using the GA4 encoding or GA4 antisense DNA of the invention

The invention is further directed to a method for altering plant growth, using the recombinantly made GA4 protein of the invention.

Brief Description of the Drawings

10

5

Figure 1: T-DNA tagged mutant (T) is an allele of the ga4 locus. Both the T-DNA tagged allele, ga4-2 (T) and the EMS-induced allele, ga4-1 (ga4), respond to GA_3 treatment with shoot elongation (T+ GA_3 and $ga4+GA_3$, respectively). W, canonical wild type, Landsberg er; T, ga4-2; and ga4, ga4-1.

15

Figure 2: DNA gel blot hybridization analysis showing cosegregation of the T-DNA insert with the ga4 mutation. DNA, isolated from leaf tissue of F3 progeny of individual F2 (ga4-2 x tt2) plants exhibiting the semidwarf phenotype, is shown in lanes 1-8, (8 samples). Four fragments associated with the T-DNA insert were visible in DNA from all plants. Molecular weight DNA size markers are shown in Kb. L, canonical, wild type, Landsberg er.

20

Figure 3: Restriction map of the genomic clones (λ T1-5 and λ WT6) and subclones (pT12, pT34, and pWT32) used to isolate the *GA4* gene. H, HindIII restriction site.

25

Figure 4: Nucleotide [SEQ ID No. 1] and deduced amino acid sequence [SEQ ID No. 2] of the GA4 cDNA clone. The position of the intron as deduced from a comparison of cDNA and genomic sequences is indicated with a down arrowhead • above the relevant line. The EMS-induced mutation at nucleotide 659 is indicated with a star (*) above that position. The

underlined area indicates the sequence of the PCR labeled probe used for RNA gel blot analysis.

Figure 5: Nucleotide sequence [SEQ ID No. 3] of GA4 genomic DNA. The intron is underlined. The ATG initiation codon is indicated with a down arrowhead • above and in front of the "A." The TGA stop codon is indicated with a star (*) above and after the "A.".

Figure 6: Amino acid sequence comparison of GA4 and barley flavanone-3-hydroxylase (F3H) [SEQ ID No. 4]. Identical residues are shown in bold type.

Figure 7: RNA gel blot analysis of *GA4* gene expression in different tissues (silique, flower, root and leaf) of *Arabidopsis*.

Figure 8: RNA gel blot analysis of ga4 and GA4 gene expression in Arabidopsis in 4-week-old rosette leaves of T-ga4 (ga4-2), ga4 (ga4-1) and Lan (Landsberg, er).

Figure 9: RNA gel blot analysis of *GA4* gene expression in Arabidopsis in *ga4-1* with (+) or without (-) exogenous GA₃. The *ga4-1* plants were sprayed with 10⁻⁵M GA₃ and leaf samples were taken 8 and 24 hours after the treatment.

Definitions

20

5

10

15

Italicized, uppercase names, such as "GA4," refer to the wild type gene while italicized, lower case names, such as "ga4," refer to the mutant gene.

Uppercase names, such as "GA4," refer to the protein, DNA or RNA encoded by the GA4 gene, while lowercase names, such as "ga4," refer to the protein DNA or RNA encoded by the mutant ga4 gene.

25

" GA_n " (with a number subscripted), refers to the "gibberellin A_n " compound. The chemical structures of some of the gibberellin A_n 's are presented in Moritz, T. et al., Planta 193:1-8 (1994).

Plant should be understood as referring to a multicellular differentiated organism capable of photosynthesis including angiosperms (monocots and dicots) and gymnosperms.

Plant cell should be understood as referring to the structural and physiological unit of plants. The term "plant cell" refers to any cell which is either part of or derived from a plant. Some examples of cells encompassed by the present invention include differentiated cells that are part of a living plant; differentiated cells in culture; undifferentiated cells in culture; the cells of undifferentiated tissue such as callus or tumors.

Plant cell progeny should be understood as referring to any cell or tissue derived from plant cells including callus; plant parts such as stems, roots, fruits, leaves or flowers; plants; plant seed; pollen; and plant embryos.

Propagules should be understood as referring to any plant material capable of being sexually or asexually propagated, or being propagated in vivo or in vitro. Such propagules preferably consist of the protoplasts, cells, calli, tissues, embryos or seeds of the regenerated plants.

Transgenic plant should be understood as referring to a plant having stably incorporated exogenous DNA in its genetic material. The term also includes exogenous DNA which may be introduced into a cell or protoplast in various forms, including, for example, naked DNA in circular, linear or supercoiled form, DNA contained in nucleosomes or chromosomes or nuclei or parts thereof, DNA complexed or associated with other molecules, DNA enclosed in liposomes, spheroplasts, cells or protoplasts.

A fragment of a molecule should be understood as referring to a shortened sequence of an amino acid or nucleotide genetic sequence that retains some desired chemical or biological property of the full-length sequence such that use of the full-length sequence is not necessary to achieve the desired purpose.

A mutation should be understood as referring to a detectable change in the genetic material which may be transmitted to daughter cells and possibly even to succeeding generations giving rise to mutant cells or mutant

10

5

15

20

25

organisms. If the descendants of a mutant cell give rise only to somatic cells in multicellular organisms, a mutant spot or area of cells arises. Mutations in the germ line of sexually reproducing organisms may be transmitted by the gametes to the next generation resulting in an individual with the new mutant condition in both its somatic and germ cells. A mutation may be any (or a combination of) detectable, unnatural change affecting the chemical or physical constitution, mutability, replication, phenotypic function, or recombination of one or more deoxyribonucleotides; nucleotides may be added, deleted, substituted for, inverted, or transposed to new positions with and without inversion. Mutations may occur spontaneously and can be induced experimentally by application of mutagens. A mutant variation of a nucleic acid molecule results from a mutant nucleic acid molecule.

A species should be understood as referring to a group of actually or potentially interbreeding natural populations. A species variation within a nucleic acid molecule or protein is a change in the nucleic acid or amino acid sequence that occurs among species and may be determined by DNA sequencing of the molecule in question.

A preparation that is substantially free of other A. thaliana DNA (or protein) should be understood as referring to a preparation wherein the only A. thaliana DNA (or protein) is that of the recited A. thaliana DNA (or protein). Though proteins may be present in the sample which are homologous to other A. thaliana proteins, the sample is still said to be substantially free of such other A. thaliana DNA (or protein) as long as the homologous proteins contained in the sample are not expressed from genes obtained from A. thaliana.

A DNA construct should be understood as referring to a recombinant, man-made DNA, linear or circular.

T-DNA (transferred DNA) should be understood as referring to a segment or fragment of Ti (tumor-inducing) plasmid DNA which integrates into the plant nuclear DNA.

10

5

15

20

25

PCT/US95/10403

5

10

15

20

25

30

Stringent hybridization conditions should be understood to be those conditions normally used by one of skill in the art to establish at least a 90% homology between complementary pieces of DNA or DNA and RNA. Lesser homologies, such as at least 70% homology or preferably at least 80% may also be desired and obtained by varying the hybridization conditions.

There are only three requirements for hybridization to a denatured strand of DNA to occur. (1) There must be complementary single strands in the sample. (2) The ionic strength of the solution of single-stranded DNA must be fairly high so that the bases can approach one another; operationally, this means greater than 0.2M. (3) The DNA concentration must be high enough for intermolecular collisions to occur at a reasonable frequency. The third condition only affects the rate, not whether renaturation/hybridization will occur.

Conditions routinely used by those of skill in the art are set out in readily available procedure texts, e.g., Current Protocol in Molecular Biology, Vol. I, Chap. 2.10, John Wiley & Sons, Publishers (1994) or Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989), incorporated herein by reference. As would be known by one of skill in the art, the ultimate hybridization stringency reflects both the actual hybridization conditions as well as the washing conditions following the hybridization, and one of skill in the art would know the appropriate manner in which to change these conditions to obtain a desired result.

For example, a prehybridization solution should contain sufficient salt and nonspecific DNA to allow for hybridization to non-specific sites on the solid matrix, at the desired temperature and in the desired prehybridization time. For example, for stringent hybridization, such prehybridization solution could contain 6x single strength citrate (SSC) (1xSSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5x Denhardt's solution, 0.05% sodium pyrophosphate and 100 μ g per ml of herring sperm DNA. An appropriate stringent hybridization mixture might then contain 6x SSC, 1x Denhardt's solution, 100 μ g per ml of yeast tRNA and 0.05% sodium pyrophosphate.

Alternative conditions for DNA-DNA analysis could entail the following:

- 1) prehybridization at room temperature and hybridization at 68°C;
- 2) washing with 0.2x SSC/0.1% SDS at room temperature;
- 3) as desired, additional washes at 0.2x SSC/0.1% SDS at 42°C (moderate-stringency wash); or
- 4) as desired, additional washes at 0.1x SSC/0.1% SDS at 68°C (high stringency).

Known hybridization mixtures, e.g., that of Church and Gilbert, Proc. Natl. Acad. Sci. USA 81:1991-1995 (1984), comprising the following composition may also be used: 1% crystalline grade bovine serum albumin/1mM EDTA/0.5M NaHPO₄, pH 7.2/7% SDS. Additional, alternative but similar reaction conditions can also be found in Sambrook et al., Molecular Cloning, Cold Spring Harbor (1989). Formamide may also be included in prehybridization/hybridization solutions as desired.

It should be understood that these conditions are not meant to be definitive or limiting and may be adjusted as required by those of ordinary skill in the art to accomplish the desired objective.

A vector should be understood to be a DNA element used as a vehicle for cloning or expressing a desired sequence, such as a gene of the invention, in a host.

A host or host cell should be understood to be a cell in which a sequence encoding a GA4 DNA of the invention is incorporated and expressed. A GA4 gene of the invention or the antisense of the gene may be introduced into a host cell as part of a vector by transformation. Both the sense and the antisense DNA sequences are present in the same host cell since DNA is double stranded. The direction of transcription, however, as directed by an operably linked promoter as designed by the artisan, dictates which of the two strands is ultimately copied into RNA.

5

10

15

20

25

PCT/US95/10403

Detailed Description

The process for genetically engineering GA4 protein sequences, according to the invention, is facilitated through the cloning of genetic sequences that are capable of encoding the GA4 protein and through the expression of such genetic sequences. As used herein, the term "genetic sequences" is intended to refer to a nucleic acid molecule (preferably DNA). Genetic sequences that are capable of encoding GA4 protein can be derived from a variety of sources. These sources include genomic DNA, cDNA, synthetic DNA, and combinations thereof. The preferred source of the ga4 genomic DNA is a plant genomic library and most preferably an Arabidopsis thaliana genomic library. A more preferred source of the GA4 cDNA is a plant cDNA library and most preferably an Arabidopsis thaliana cDNA library made from silique mRNA, although the message is ubiquitously expressed in the root, leaf and flower of plants.

15

10

5

The recombinant GA4 cDNA of the invention will not include naturally occurring introns if the cDNA was made using mature GA4 mRNA as a template. Genomic DNA may or may not include naturally occurring introns. Moreover, such genomic DNA may be obtained in association with the homologous (isolated from the same source; native) 5' promoter region of the GA4 gene sequences and/or with the homologous 3' transcriptional termination region. Further, such genomic DNA may be obtained in association with the genetic sequences which provide the homologous 5' non-translated region of the GA4 mRNA and/or with the genetic sequences which provide the homologous 3' non-translated region.

25

30

20

In plants, the GA4 sequences of the invention can be identified using T-DNA insertion mutants. In a T-DNA insertion mutant, the mutant phenotype is a result of the T-DNA insertion. A genomic library from such a mutant can be screening for the T-DNA element, and the flanking sequence analyzed to determine the native sequence that was disrupted by the T-DNA and thus led to the phenotype of the mutant plant.

The T-DNA generally carries a resistance selection marker, such as that for kanamycin, that is used to identify outcrosses that retain the T-DNA. This confirms co-segregation of the mutant phenotype and the T-DNA insert. Having identified a T-DNA mutant with the T-DNA inserted at the site of the GA4 gene, the T-DNA then becomes a tag with which the ga4 mutant gene (flanking both sides of the T-DNA insertion) can be isolated and used to identify other GA4 genes in libraries from nonmutants of the same species or in libraries made from other species, Walden et al., Plant J., 1: 281-288 (1991). Additional tests, such as DNA gel blot analysis can then be used to confirm that the T-DNA insert is present in the gene of interest, here the ga4 gene.

As exemplified herein from Arabidopsis thaliana, the Arabidopsis ga4 mutant plant used to identify the GA4 (wild type) and ga4 (mutant) genetic sequences of the invention is deficient in an enzyme of the gibberellin biosynthetic pathway called 3- β -hydroxylase. Accordingly, it is believed that the site of T-DNA insertion in the ga4 mutants of the invention is in the GA4 gene that encodes the 3- β -hydroxylase of the gibberellin biosynthetic pathway.

The genomic sequence of GA4, including introns, is shown in Figure 5 [SEQ ID No. 3]. The cDNA sequence of GA4 is shown in Figure 4 [SEQ ID No. 1] as is the sequence of the GA4 protein encoded by the sequence [SEQ ID No. 2]. A single base mutation of G to A occurs at base 659 in a ga4 mutant that was produced by chemical (EMS) mutation, as described in the Examples. This results in an amino acid change from cystein to tyrosine.

Due to the degeneracy of nucleotide coding sequences, and to the fact that the DNA code is known, all other DNA sequences which encode the same amino acid sequence as depicted in Figure 4 [SEQ ID No. 2] can be determined and used in the practice of the present invention. Additionally, those sequences that hybridize to sequence ID Nos. 1 or 3 under stringent conditions are also useful in the practice of the present invention.

A DNA sequence encoding GA4 protein or GA4 antisense RNA can be inserted into a DNA vector in accordance with conventional techniques,

10

5

15

20

25

including blunt-ending or staggered-ending termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. In one embodiment of the invention, expression vectors are provided that are capable of expressing GA4 mRNA or antisense RNA. Vectors for propagating a given sequence in a variety of host systems are well known and can readily be altered by one of skill in the art such that the vector will contain DNA or RNA encoding the desired genetic sequence and will be propagated in a desired host. Such vectors include plasmids and viruses and such hosts include eukaryotic organisms and cells, for example plant, yeast, insect, plant, mouse or human cells, and prokaryotic organisms, for example *E. coli* and *B. subtilus*. Shuttle vectors in which the desired genetic sequence is "maintained" in an available form before being extracted and transformed into a second host for expression are also useful DNA constructs envisioned as carrying the DNA of the invention.

5

10

15

20

25

30

A nucleic acid molecule, such as DNA, is said to be "capable of expressing" a polypeptide or antisense sequence if it contains a nucleotide sequence that encodes such polypeptide or antisense sequence and transcriptional and, if necessary, translational regulatory information operably linked to the nucleotide sequences that encode the polypeptide or antisense sequence.

Two DNA sequences (such as a promoter region sequence and the ga4 or GA4 gene encoding or antisense sequence) are said to be operably linked if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region sequence to direct the transcription of the desired sequence, or (3) interfere with the ability of the desired sequence to be transcribed by the promoter region sequence. Thus, a promoter region would be operably linked to a desired DNA sequence if the promoter were capable of effecting transcription of that DNA sequence.

Preferred prokaryotic hosts include bacteria such as *E. coli*, *Bacillus*, *Streptomyces*, *Pseudomonas*, *Salmonella*, *Serratia*, etc. The most preferred prokaryotic host is *E. coli*. The procaryotic host must be compatible with the replicon and control sequences in the expression plasmid.

5

Preferred eukaryotic hosts include plants, yeast, fungi, insect cells, mammalian cells. These hosts can be utilized for production of the desired genetic sequence, or GA4 or ga4 protein, in conventional methods, such as by growth in shake flasks, fermentors, tissue culture plates or bottles. Alternatively, multicellular organisms such as a plant might be used.

10

In one embodiment, a vector is employed that is capable of integrating the desired gene sequences into the host cell chromosome. Cells that have stably integrated the introduced DNA into their chromosomes can be selected by also introducing one or more markers which allow for selection of host cells which contain the expression vector. The marker may provide for prototrophy to an auxotrophic host, biocide resistance, e.g., antibiotics, or heavy metals, such as copper, or the like. The selectable marker gene sequence can either be directly linked to the DNA gene sequences to be expressed, or introduced into the same cell by co-transfection.

20

15

In another embodiment, the introduced sequence will be incorporated into a plasmid or viral vector capable of autonomous replication in the recipient host. Any of a wide variety of vectors may be employed for this purpose. Factors of importance in selecting a particular plasmid or viral vector include: the ease with which recipient cells that contain the vector may be recognized and selected from those recipient cells which do not contain the vector; the number of copies of the vector which are desired in a particular host; and whether it is desirable to be able to "shuttle" the vector between host cells of different species.

25

DNA encoding the desired protein is preferably operably linked to a promoter region, a transcription initiation site, and a transcription termination sequence, functional in plants. Any of a number of promoters which direct transcription in a plant cell is suitable. The promoter can be either constitutive

10

15

20

25

30

or inducible. Some examples of promoters functional in plants include the nopaline synthase promoter and other promoters derived from native Ti plasmids, viral promoters including the 35S and 19S RNA promoters of cauliflower mosaic virus (Odell *et al.*, *Nature 313:*810-812 (1985)), and numerous plant promoters.

Alternative promoters that may be used include nos, ocs, and CaMV promoters. Overproducing plant promoters may also be used. Such promoters, operably linked to the GA4 gene, should increase the expression of the GA4 protein. Overproducing plant promoters that may be used in this invention include the promoter of the small subunit (ss) of ribulose-1,5-biphosphate carboxylase from soybean (Berry-Lowe et al., J. Molecular and App. Gen. 1:483-498 (1982), and the promoter of the chlorophyll a/b binding protein. These two promoters are known to be light-induced in eukaryotic plant cells (see, for example, Genetic Engineering of Plants, an Agricultural Perspective, A. Cashmore, Plenum, New York 1983, pages 29-38; Corruzi, G. et al., J. of Biol. Chem. 258:1399 (1983); and Dunsmuir, P. et al., J. of Mol. and Applied Genet. 2:285 (1983)).

Genetic sequences comprising the desired gene or antisense sequence operably linked to a plant promoter may be joined to secretion signal sequences and the construct ligated into a suitable cloning vector. In general, plasmid or viral (bacteriophage) vectors containing replication and control sequences derived from species compatible with the host cell are used. The cloning vector will typically carry a replication origin, as well as specific genes that are capable of providing phenotypic selection markers in transformed host cells, typically antibiotic resistance genes.

General methods for selecting transgenic plant cells containing a selectable marker are well known and taught, for example, by Herrera-Estrella, L. and Simpson, J. (1988) "Foreign Gene Expression in Plants" in *Plant Molecular Biology, A Practical Approach*, Ed. C.H. Shaw, IRL Press, Oxford, England, pp. 131-160.

10

15

20

25

30

In another embodiment, the present invention relates to a transformed plant cell comprising exogenous copies of DNA (that is, copies that originated outside of the plant) encoding a GA4 gene expressible in the plant cell wherein said plant cell is free of other foreign marker genes (preferably, other foreign selectable marker genes); a plant regenerated from the plant cell; progeny or a propagule of the plant; and seed produced by the progeny.

Plant transformation techniques are well known in the art and include direct transformation (which includes, but is not limited to: microinjection (Crossway, Mol. Gen. Genetics 202:179-185 (1985)), polyethylene glycol transformation (Krens et al., Nature 296:72-74 (1982)), high velocity ballistic penetration (Klein et al., Nature 327:70-73 (1987)), fusion of protoplasts with other entities, either minicells, cells, lysosomes, or other fusible lipid-surfaced bodies (Fraley et al., Proc. Natl. Acad. Sci. USA 79:1859-1863 (1982)), electroporation (Fromm et al., Proc. Natl. Acad. Sci. USA 82:5824 (1985)) and techniques set forth in U.S. Patent No. 5,231,019)) and Agrobacterium tumefaciens mediated transformation as described herein and in (Hoekema et al., Nature 303:179 (1983), de Framond et al., Bio/technology 1:262 (1983), Fraley et al. WO84/02913, WO84/02919 and WO84/02920, Zambryski et al. EP 116,718, Jordan et al., Plant Cell Reports 7:281-284 (1988), Leple et al. Plant Cell Reports 11:137-141 (1992), Stomp et al., Plant Physiol. 92:1226-1232 (1990), and Knauf et al., Plasmid 8:45-54 (1982)). Another method of transformation is the leaf disc transformation technique as described by Horsch et al. Science 227:1229-1230 (1985).

The transformation techniques can utilize a DNA encoding the GA4 amino acid sequence of Figure 4 [SEQ ID No. 2], including the GA4 DNA sequence of Figure 4 [SEQ ID No. 1], the GA4 genomic sequence of Figure 5 [SEQ ID No. 3], fragments thereof or the antisense sequence, expressible in plants. Included within the scope of a gene encoding the GA4 amino acid sequence of Figure 4 [SEQ ID No. 2] are functional derivatives of the GA4 sequence of the invention, as well as variant, analog, species, allelic and mutational derivatives.

As used herein, modulation of GA4 expression entails the enhancement or reduction of the naturally occurring levels of the protein. Specifically, the translation of RNA encoding GA4 can be reduced using the technique of antisense cloning.

5

In general, antisense cloning entails the generation of an expression module which encodes an RNA complementary (antisense) to the RNA encoding GA4 (sense). By expressing the antisense RNA in a cell which expresses the sense strand, hybridization between the two RNA species will occur resulting in the blocking of translation. Alternatively, overexpression of the GA4 protein might be accomplished by use of appropriate promoters, enhancers, and other modifications. Those of skill in the art would be aware of references describing the use of antisense genes in plants (van der Krol et al., Gene 72:45-50 (1988); van der Krol et al., Plant Mol. Biol. 14:467-486 (1990); Zhang et al., Plant Cell 4:1575-1588 (1992)).

15

20

10

Other foreign marker genes (i.e., exogenously introduced genes) typically used include selectable markers such as a neo gene (Potrykus et al., Mol. Gen. Genet 199:183-188 (1985)) which codes for kanamycin resistance; a bar gene which codes for bialaphos resistance; a mutant EPSP synthase gene (Hinchee et al., Bio/technology 6:915-922 (1988)) which encodes glyphosate resistance; a nitrilase gene which confers resistance to bromoxynil (Stalker et al., J. Biol. Chem. 263:6310-6314 (1988)); a mutant acetolactate synthase gene (ALS) which confers imidazolinone or sulphonylurea resistance (EP application number 154,204); a methotrexate resistant DHFR gene (Thillet et al., J. Biol. Chem. 263:12500-12508) and screenable markers which include \(\beta\)-glucuronidase (GUS) or an R-locus gene, alone or in combination with a C-locus gene (Ludwig et al., Proc. Natl. Acad. Sci. USA 86:7092 (1989); Paz-Ares et al., EMBO J. 6:3553 (1987)).

25

30

Alternatively, the genetic construct for expressing the desired protein can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. The genetic material may also be transferred into plant cells using polyethylene glycol to form a precipitation

10

15

20

25

30

complex with the genetic material that is taken up by cells. (Paszkowski et al., EMBO J. 3:2717-22 (1984)). The desired gene may also be introduced into plant cells by electroporation. (Fromm et al., "Expression of Genes Transferred into Monocot and Dicot Plant Cells by Electroporation," Proc. Nat'l. Acad. Sci. U.S.A. 82:5824 (1985)). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the desired genetic construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of plasmids. Electroporated plant protoplasts reform cell walls, divide, and form plant calli. Selection of the transformed plant cells expressing the desired gene can be accomplished using phenotypic markers as described above.

Another method of introducing the desired gene into plant cells is to infect the plant cells with Agrobacterium tumefaciens transformed with the desired gene. Under appropriate conditions well-known in the art, transformed plant cells are grown to form shoots, roots, and develop further into plants. The desired genetic sequences can be joined to the Ti plasmid of Agrobacterium tumefaciens. The Ti plasmid is transmitted to plant cells on infection by Agrobacterium tumefaciens and is stably integrated into the plant genome. Horsch et al., "Inheritance of Functional Foreign Genes in Plants," Science 233: 496-498 (1984); Fraley et al., Proc. Nat'l Acad. Sci. U.S.A. 80: 4803 (1983)); Feldmann, K.A. et al., Mol. Gen. Genet., 208: 1-9 (1987); Walden, R. et al., Plant J., 1: 281-288 (1991).

Presently there are several different ways to transform plant cells with Agrobacterium:

- (1) co-cultivation of Agrobacterium with cultured, isolated protoplasts, or
- (2) transformation of cells or tissues with Agrobacterium.

 Method (1) requires an established culture system that allows culturing protoplasts and plant regeneration from cultured protoplasts. Method (2) requires that the plant cells or tissues can be transformed by Agrobacterium and that the transformed cells or tissues can be induced to regenerate into

PCT/US95/10403

WO 96/05317

5

10

15

20

25

30

whole plants. In the binary system, to have infection, two plasmids are needed: a T-DNA containing plasmid and a vir plasmid.

Routinely, however, one of the simplest methods of plant transformation is explant inoculation, which involves incubation of sectioned tissue with *Agrobacterium* containing the appropriate transformation vector (Plant Genetic Transformation and Gene Expression, A Laboratory Manual, Oxford: Blackwell Scientific Publications (1988); Walden, Genetic Transformation in Plants, Milton Koynes: Open University Press (1988)).

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be used for the expression of the desired gene. Suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manicot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hemerocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browallia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura. Additional plant genera that may be transformed by Agrobacterium include Ipomoea, Passiflora, Cyclamen, Malus, Prunus, Rosa, Rubus, Populus, Santalum, Allium, Lilium, Narcissus, Ananas, Arachis, Phaseolus, and Pisum.

Plant regeneration techniques are well known in the art and include those set forth in the Handbook of Plant Cell Culture, Volumes 1-3, Eds. Evans et al. Macmillan Publishing Co., New York, NY (1983, 1984, 1984, respectively); Predieri and Malavasi, Plant Cell, Tissue, and Organ Culture 17:133-142 (1989); James, D.J., et al., J. Plant Physiol. 132:148-154 (1988); Fasolo, F., et al., Plant Cell, Tissue, and Organ Culture 16:75-87 (1989); Valobra and James, Plant Cell, Tissue, and Organ Culture 21:51-54 (1990); Srivastava, P.S., et al., Plant Science 42:209-214 (1985); Rowland and Ogden, Hort. Science 27:1127-1129 (1992); Park and Son, Plant Cell, Tissue, and Organ Culture 15:95-105 (1988); Noh and Minocha, Plant Cell Reports

10

15

20

25

30

5:464-467 (1986); Brand and Lineberger, Plant Science 57:173-179 (1988); Bozhkov, P.V., et al., Plant Cell Reports 11:386-389 (1992); Kvaalen and von Arnold, Plant Cell, Tissue, and Organ Culture 27:49-57 (1991); Tremblay and Tremblay, Plant Cell, Tissue, and Organ Culture 27:95-103 (1991); Gupta and Pullman, U.S. Patent No. 5,036,007; Michler and Bauer, Plant Science 77:111-118 (1991); Wetzstein, H.Y., et al., Plant Science 64:193-201 (1989); McGranahan, G.H., et al., Bio/Technology 6:800-804 (1988); Gingas, V.M., Hort. Science 26:1217-1218 (1991); Chalupa, V., Plant Cell Reports 9:398-401 (1990); Gingas and Lineberger, Plant Cell, Tissue, and Organ Culture 17:191-203 (1989); Bureno, M.A., et al., Phys. Plant. 85:30-34 (1992); and Roberts, D.R., et al., Can. J. Bot. 68:1086-1090 (1990).

Plant regeneration from cultured protoplasts is described in Evans et al., "Protoplast Isolation and Culture," in Handbook of Plant Cell Culture 1:124-176 (MacMillan Publishing Co., New York, 1983); M.R. Davey, "Recent Developments in the Culture and Regeneration of Plant Protoplasts," Protoplasts, 1983 - Lecture Proceedings, pp. 19-29 (Birkhauser, Basel, 1983); P.J. Dale, "Protoplast Culture and Plant Regeneration of Cereals and Other Recalcitrant Crops," in Protoplasts 1983 - Lecture Proceedings, pp. 31-41 (Birkhauser, Basel, 1983); and H. Binding, "Regeneration of Plants," in Plant Protoplasts, pp. 21-37 (CRC Press, Boca Raton, 1985).

Techniques for the regeneration of plants varies from species to species but generally, a suspension of transformed protoplasts containing multiple copies of the desired gene is first provided. Embryo formation can then be induced from the protoplast suspensions, to the stage of ripening and germination as natural embryos. The culture media will generally contain various amino acids and hormones, such as auxins and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa.

Mature plants, grown from transformed plant cells, are selfed to produce an inbred plant. The inbred plant produces seed containing the recombinant DNA sequences promoting increased expression of GA4.

Parts obtained from regenerated plants, such as flowers, seeds, leaves, branches, fruit, and the like are covered by the invention provided that these parts comprise the herbicidal tolerant cells. Progeny and variants, and mutants of the regenerated plants are also included within the scope of this invention. As used herein, variant describes phenotypic changes that are stable and heritable, including heritable variation that is sexually transmitted to progeny of plants, provided that the variant still comprises a herbicidal tolerant plant through enhanced rate of acetylation. Also, as used herein, mutant describes variation as a result of environmental conditions, such as radiation, or as a result of genetic variation in which a trait is transmitted meiotically according to well-established laws of inheritance.

Plants which contain the GA4 encoding DNA of the invention and no other foreign marker gene are advantageous in that removal of the foreign marker gene, once inserted into the plant, may be impossible without also removing the GA4 gene. Absence of the foreign marker gene is sometimes desired so as to minimize the number of foreign genes expressed. This can be achieved by providing the GA4-encoding DNA between Ti-plasmid borders.

The T-DNA insertion mutant, ga4-2 and the EMS-induced mutant, ga4-1 both contain sequence alterations in the gene. The changes in the mutant alleles interfere with normal transcription. The deduced amino acid sequence of the GA4 protein shows similarity to the sequences of flavanone-3-hydroxylase and ACC oxidase from a variety of plant species (Meldgaard, M., Theor. Appl. Genet. 83: 695-706 (1992); Britsch, L. et al., J. Bio. Chem. 8: 5380-5387 (1992); Deikmann, J. et al., EMBO J. 7: 3315-3320 (1988)).

The GA4 gene product is believed to be a 3- β -hydroxylase. The 3- β -hydroxylase is critical for controlling stem growth (Ingram et al., Planta 160: 455-463 (1984). Accordingly, the GA4 of the invention may be applied to crops to enhance and facilitate such stem elongation, flowering and fruiting. Alternatively, the DNA encoding GA4 may be genetically inserted into the plant host.

10

5

15

20

25

All plants which can be transformed are intended to be hosts included within the scope of the invention (preferably, dicotyledonous plants). Such plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Sencia, Salpiglossis, Cucumis, Browalia, Glycine, Lolium, Zea, Triticum, Sorghum, Malus, Apium, Datura, the le mutant in peas, the ga4 mutant in Arabadopsis, and the dwarf-1 mutant in Monocotyledonous plants such as corn.

Examples of commercially useful agricultural plants useful in the methods of the invention as transgenic hosts containing the GA4 DNA or antisense sequence of the invention include grains, legumes, vegetables and fruits, including but not limited to soybean, wheat, corn, barley, alfalfa, cotton, rapeseed, rice, tobacco, rye, tomatoes, beans, peas, celery, grapes, cabbage, oilseed, apples, strawberries, mulberries, potatoes, cranberries and lettuce.

20

5

10

15

Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

-21-

Examples

Example 1 - Methods

Plants and RNA and DNA Isolation

5

10

15

20

25

The ga4 mutant was obtained from M. Koornneef (Agricultural University, Wageningen, The Netherlands). T-DNA tagged ga4 mutant was generated by Agrobacterium root transformation with the pBIN19 vector (Bevan, M., Nucl. Acids. Res. 12:8711-8721 (1984)) (Clontech, Palo Alto, CA as "pBin19 in MC1022"). A description of T-DNA tagging and insertional mutagenesis is found in Walden et al., Plant J., 1: 281-288 (1991); Meinke, Dev. Gen., 12: 382-392 (1991). Plants were grown under greenhouse conditions using a 16-hr light/8-hr dark cycle. Tissue for DNA and RNA isolation was harvested at approximately 3-4 weeks after planting and before bolting, frozen into liquid nitrogen and stored at -70°C. Genomic DNA was isolated using the methods of Watson, J.C. et al., DNA. Methods. Enzymol. 118:57-75 (1986). Total RNA was isolated using the methods of Ausubel, F.M. et al., Current protocols in Molecular Biology, New York: Green Publishing Associates Wiley Interscience (1989).

Library Construction and Screening

The genomic library for the T-DNA insertion mutant, ga4-2, was constructed in λ FIX II vectors (Stratagene, La Jolla, CA - see Stratagene Undigested Lambda FIXII Vector Cloning Kit Instruction Manual) and packaged using Gigapack II Gold packaging extracts (Stratagene). The ga4-2 and Landsberg genomic libraries and Landsberg cDNA library were plated on E. coli strain ER1458 (New England Biolabs (Beverly, MA) - Cat. No. 401-C, pp. 202-203.) (Also see Raleigh, E.A., Meth. Enzymol., 152: 130-141 (1987) and Bullock, W.O. et al., BioTechniques, 5: 376-378 (1987).) Alternatively, Arabidopsis genomic and cDNA libraries may be obtained from the

Arabidopsis Biological Resource Center, Ohio State University. The genomic library can be plated on *E. coli* strain NM554 and the cDNA library can be plated on *E. coli* strain Y1090 (both from Stratagene).

The DNA genomic library may be obtained as follows. One begins with a CsCl DNA preparation and partially digests it with Sau3Al. After digestion, a partial fill-in reaction is performed. The reaction mixture for the partial fill-in is as follows.

40 μl DNA 6 μl Sau3AI buffer 10x 2.5 μl 0.1 M DTT 1 μl 100 mM dATP 1 μl 100 mM dGTP 5 μl Klenow enzyme 4.5 μl H₂O

After 30 minutes at 37°C the reaction is terminated with phenol-chloroform and the DNA is obtained. The DNA is then loaded on a 0.7% low melting point agarose gel and after electrophoresing, bands between 10 and 23 kb are cut out from the gel. The gel with the cut-out bands is then melted at 67°C. The isolated DNA is then placed in the following ligation mixture:

2 μl Lambda Fix II, pre-digested arms (2 μg)
1 μg genomic DNA, partial fill-in
0.5 μl 10x ligation buffer
0.5 μl 10 mM ATP (pH 7.05)
0.5 μl T4 DNA ligase

 $\sim 1.5~\mu l~H_2O$ (to $5\mu l$ final volume) Following ligation overnight at 4°C, the DNA is packaged using GIGAPACK II GOLD.

Plaque lifts were made using Hybond filters (Amersham Corp.), which were then autoclaved for 2 min. Filters were hybridized with probes as described for DNA and RNA gel blot analysis below.

10

5

15

20

25

10

15

20

25

DNA Subcloning and Sequencing

Bacteriophage λ DNA was prepared from ER1458 lysates according to the mini-prep method of Grossberger, D., Nucl. Acids. Res. 15:6737 (1987). DNA fragments were subcloned into pBluescript KS vectors (Stratagene) and used to transform JM109.

Double stranded DNA was isolated from plasmid clones and purified by CsCl banding. Sequencing was performed using α -35S-dATP and Sequenase (United States Biochemical Corp.) according to the manufacture's protocol for double stranded DNA sequencing. Sequence analysis was performed using the Sequence Analysis Software package (Genetics Computer Group, Inc., Madison, WI) and the Blast network service of the National Center for Biotechnology Information (Bethesda, MD).

DNA and RNA Gel Blot Analysis

Electrophoresis of DNA was in Tris-Acetate-EDTA buffer with subsequent transfer in 25 mM NaHPO₄ to Biotrans filters (International Chemical and Nuclear Corp.). Electrophoresis of RNA samples was in agarose gels containing RNAase inhibitor using MOPS/EDTA buffer and transferred to filters as for DNA. Filters were UV-crosslinked using a Stratalinker (Stratagene) and baked for 1 hr at 80°C.

Radioactive probes were separated from unincorporated nucleotides using a 1-ml Sephadex G-50 spin column and denatured in a microwave oven (Stroop, W.G. et al., Anal. Biochem. 182:222-225 (1989)). Prehybridization for 1 hr and hybridization overnight were performed at 65°C in the hybridization buffer described by Church, G.M. et al., Proc. Natl. Acad. Sci. USA 81:1991-1995 (1984)). Filters were washed once for 15 min in 2xSSC at room temperature, then two times for 30 min in 0.1xSSC and 0.1%SDS at 60°C. The damp filters were autoradiographed at -80°C using intensifying screens. Filters were stripped twice in 2mM Tris-HCl, pH8.0, 1mM EDTA,

0.2% SDS at 70°C for 30 min prior to reprobing (Church, G.M. et al., Proc. Natl. Acad. Sci. USA 81:1991-1995 (1984)).

Example 2

Characterization of a Semidwarf T-DNA Insertion Mutant Allelic to ga4

5

10

15

20

25

A semidwarf mutant was generated from Arabidopsis thaliana (Landsberg erecta) as a result of Agrobacterium tumefaciens-mediated root transformation (Valvekens, D. et al., Proc. Natl. Acad. Sci. USA 85:5536-5540 (1988)). This mutant transgenic plant elongates its shoots in response to exogenously added GA₃ (Figure 1). The complementation analysis of the ga4-2 plant with ga4-1 plant (ga4xT) revealed that the transgenic plant has an insertion mutation that is an allele of the ga4 locus. There are several different gibberellin-responsive mutants in Arabidopsis, and therefore to test for allelism the transgenic plant was crossed to them in pairwise combination. Complementation analysis with the other genetically characterized semidwarf mutants in Arabidopsis revealed that the cross between the transgenic plant and the EMS-induced ga4 plant (Koornneef, M. et al., Theor. Appl. Genet. 58:257-263 (1980)) does not complement the mutant phenotype (Figure 1). Therefore the mutation in the transgenic plant is an allele of the ga4 locus.

To test for co-segregation of the mutant phenotype and the T-DNA insert, the T1 progeny of the transgenic mutant that exhibited the semidwarf trait were outcrossed to either an Arabidopsis tt2 plant or to wild type C24 (Arabidopsis Biological Resource Center - Ohio State University). One of skill in the art, however, would know that any Arabidopsis thaliana could be used to perform the out-cross to ga4-2 to obtain the F1 progeny. The self-fertilized F2 progeny from those two crosses were tested for segregation of the kanamycin resistance marker encoded by the T-DNA. Progeny were grown on sterile medium containing 50 mg/L kanamycin, and the ratio of kanamycin resistant plants to sensitive plants was determined by their viability. As approximately three quarters of the F2 progeny from both crosses are resistant

10

15

20

25

to kanamycin (Table I) the data indicates that there is one T-DNA insertion site in the transgenic plant.

Table I. Segregation Ratios of the F2 Progeny from ga4-2 (T-DNA tagged allele) Plants Crossed to tt2 Plants or Crossed to C24 Wild Type Plants

F2 Plant	Kan':Kan	Approximate Segregation Ratios	T-DNA Insertions
ga4-2 x tt2	163:56	3:1	1 (P>0.8)
ga4-2 x C24	104:29	3:1	1 (P>0.3)

Progeny were grown on sterile mineral nutrient medium containing 50 mg/L kanamycin; the ratio of kanamycin resistant plants to sensitive plants was determined from their viability. The number of T-DNA insertion sites predicted from the 3:1 segregation ratio and their probabilities from the Chisquare test are shown.

The self-fertilized F2 progeny from the two crosses were also tested for segregation of the mutant phenotype. The result from both crosses (Table II) shows a quarter of the resulting F2 progeny exhibit the semidwarf phenotype, indicating that the semidwarf phenotype is inherited as a single recessive mutation.

Table II. Segregation Ratios of the F2 Progeny from ga4-2 (T-DNA tagged allele) Plants 'Crossed to tt2 Plants or Crossed to C24 Wild Type Plants

F2 Plant	Wild Type:Dwarf	Approximate Segregation Ratios	Mutant Loci
ga4-2 x tt2	151:53	3:1	1 (P > 0.5)
ga4-2 x C24	74:25	3:1	1 (P>0.9)

Progeny were soil grown and the ratio of plants that showed wild type compared to semidwarf phenotype were determined. The number of mutant loci predicted from the 3:1 segregation ratio and their probabilities from the Chi-square test are shown.

Although the data from these two independent tests are indicative, they are not sufficient to conclude that the ga4 allele is tagged by the T-DNA insert. The

presence of the insert and its linkage with the mutant trait was therefore further tested by DNA gel blot analysis.

Example 3 DNA Gel Blot Analysis

5

10

15

20

Twenty F3 progeny from self-fertilized F2 plants (transgenic plant x tt2) were selected for their semidwarf phenotype and were then further tested for linkage of the T-DNA insert and the mutant phenotype by DNA gel blot analysis. DNA was isolated from leaf tissue of the individual F3 progeny, digested with HindIII and, after separation on an agarose gel and transfer, the DNA gel blot was probed with ³²P-labeled pBIN19 plasmid containing the T-DNA border sequences (Bevan, M., Nucl. Acids. Res. 12:8711-8721 (1984)). The probe hybridizes to DNA from all the representative transgenic plants confirming the presence of the T-DNA insert (Figure 2). For the results shown in Figure 2, the DNA was digested with HindIII, separated by electrophoresis, bound to nylon filters, and then hybridized to ³²P-labeled pBIN19 plasmid which contains the T-DNA border sequences. hybridization pattern correlates with the T-DNA insert and the T-DNA/plant junctions. Four fragments associated with the T-DNA insert were visible in all plants (lanes 1-8) (Figure 2) and cosegregate with the semidwarf phenotype. Therefore, the insertion site contains a complex T-DNA unit There is no hybridization with the wild type (Landsberg er) control. Thus, analysis from both the segregation test (Tables I and II) and the DNA gel blot analysis (Figure 2), indicate that the T-DNA insert is the cause of the semidwarf mutation in the transgenic plant (the T-DNA tagged allele will be referred to as ga4-2) and that the T-DNA insert is tightly linked to the ga4 locus (the EMS-induced allele will be referred to as ga4-1).

10

15

20

25

Example 4 Isolation of the GA4 Gene

A genomic library was constructed with DNA isolated from F4 progeny of the ga4-2 plant. All constructs were subcloned into pBluescript KS⁻. The genomic clone, λT1-5, was derived by screening the ga4-2 genomic library using ³²P-labeled pBIN19 vector as a probe. After plaque purification, clone λT1-5 was characterized by restriction enzyme analysis (Figure 3). The 1.2-kb HindIII fragment subclone, pT12, contains the T-DNA/plant DNA junction and was used to identify the insertion site by sequencing into the T-DNA insertion break point.

The genomic clone, λ WT6, was derived as follows. The subclone pWT32 which corresponds to the T-DNA insertion site in λ T1-5 was used as a probe to screen the leaf cDNA library and the ga4-1 genomic library.

To identify the region that corresponds to the T-DNA insertion site, the HindIII fragments of the genomic clone were subcloned into the plasmid vector pBluescript KS. The 1.2 Kb HindIII fragment subclone, pT12, contains the T-DNA/plant DNA junction and was used to identify the insertion site by sequencing into the T-DNA insertion break point. The plant sequences from the flanking 3.4 Kb HindIII fragment subclone, pT34, were used to isolate the corresponding wild type genomic clone, λ WT6 (Figure 3). The 3.2 Kb HindIII subclone from λ WT6 contains the sequences corresponding to the T-DNA insertion site in λ T1-5 and was used as a probe to screen the leaf cDNA library and the ga4-1 genomic library. The isolated full length ga4 genomic and cDNA clones span sequences contained in both clone pT34 and pWT32.

-28-

Example 5 Nucleotide and Amino Acid Sequences

The GA4 cDNA is 1077 nucleotides with an open reading frame of 359 amino acids (Figure 4; SEQ ID No. 1 and SEQ ID No. 2). There is a single 433-base-pair intron whose position was deduced from a comparison of the cDNA and genomic sequences (SEQ ID No. 3). Sequence analysis of the T-DNA/plant DNA junction indicates that the T-DNA insertion is within the intron. Analysis of the sequence revealed two possible AUG initiation codons (nucleotide position 1 and nucleotide position 10) within the open reading frame, both of which have weak homology to the "Kozak" consensus sequence for translation initiation (Kozak, M., Nucl. Acids Res. 15:8125-8148 (1987); Lütcke, H.A. et al., EMBO J. 6:43-48 (1987).

To confirm that the sequence determined is indeed the GA4 locus, genomic fragments from the other allele, ga4-1, were isolated and sequenced. The ga4-1 allele was generated by EMS mutagenesis in the same genetic background, Landsberg er. Sequence analysis of ga4-1 indicates that the EMS-induced mutation occurs at nucleotide 659 (Figure 4) resulting in a single nucleotide change from G to A and a corresponding amino acid change from cysteine to tyrosine. This nucleotide change in the coding region, leading to the amino acid change, is presumably responsible for the ga4-1 mutation.

An alignment of the amino acid sequence of GA4 to barley flavanone-3-hydroxylase (F3H) [SEQ ID No. 4] exhibits a 24% amino acid identity (Figure 6). Figure 6 shows this alignment for the deduced amino acid sequences of the GA4 gene from Arabidopsis and flavanone-3-hydroxylase (F3H) from barley (Meldgaard, M., Theor. Appl. Genet. 83:695-706 (1992)). In addition, alignment to the amino acid sequence of 1-aminocyclopropane-1-carboxylate oxidase (ethylene-forming enzyme) from petunia shows 18% amino acid identity (data not shown).

On the basis of this sequence similarity, it is concluded that the GA4 gene encodes an hydroxylase involved in GA biosynthesis, and specifically a

15

10

5

20

25

3-\(\beta\)-hydroxylase. This conclusion agrees with information based on biochemical studies (Talon, M. et al., Proc. Natl. Acad. Sci. USA 87:7983-7987 (1990)) that showed that the Arabidopsis ga4 mutant had reduced levels of the 3-hydroxy- and 3,13-hydroxy-GAs, and that it accumulates the 13-hydroxy-GAs and the non-3,13-hydroxy-GAs, with some exceptions. Due to the ubiquitous nature of gibberellin growth factors, it is likely that a similar activity and gene sequence will be found for the cognate genes corresponding to GA4 in agronomically important crop plants, such as, for example, corn, peas, barley, potato, radish, rapeseed, alfalfa, celery, grapes, cabbage, lettuce, carrots, cucumber, squash, watermelon, rice and beans.

5

10

15

20

25

Example 6 The ga4 Mutant Overexpresses ga4 mRNA

To study the pattern of *GA4* gene expression, total RNA was isolated from different tissue types and RNA gel blots were hybridized with a ³²P-labeled PCR *GA4* specific probe. A 1.4 Kb transcript is seen in root, flower, and siliques (Figure 7). The same size transcript was detected in leaves when more RNA is loaded on the gel. This data is shown in Figure 8 - the "Lan" sample. The gene is expressed ubiquitously in the different tissues examined (root, leaf, flower and silique), but the message is most abundant in the silique.

There is differential expression in 4-week-old rosette leaves between the wild type and mutants. There is 3 to 4 fold more message expressed in the EMS induced ga4-1 plants as compared to wild type, but no message is detected in the T-DNA tagged ga4-2 plants (Figure 8). The over-expression of ga4 message, detected in the ga4-1 plants, can be repressed by the application of 10-5M exogenous GA₃ on the rosette leaves of Arabidopsis. The transcriptional repression can be detected at 8 hours after the initial treatment and lasts for up to 24 hours (Figure 9).

The over-expression of ga4 message in the EMS-induced ga4-1 mutant and transcriptional regulation by exogenous GA₃ is a novel finding as regards the regulation of the gibberellin biosynthesis pathway. gibberellins in Arabidopsis are GA₁ and GA₄, which are effective in causing stem elongation (Talon, M. et al., Proc. Natl. Acad. Sci. USA 87:7983-7987 (1990)). GA₃ has been shown to be present at low levels in vegetative tissue of maize. GA₃ is biosynthesized from GA₂₀ via GA₅, and GA₁ is the product of GA₃ in Maize (Fujioka, S. et al., Plant Physiol. 94:127-131 (1990)). There is no evidence of GA₃ biosynthesis in Arabidopsis, but experiments show that exogenous GA3 is active in promoting stem elongation in Arabidopsis and in other species, for example, maize, cabbages, beans, rice, peas, watermelons, squash and cucumbers. The biological activity may be induced by either GA₃ itself or the terminal GAs, such as GA₁, as shown in the proposed pathway in maize (Fujioka, S. et al., Plant Physiol. 94:127-131 (1990)). In wild type plants, the concentrations and proportions of the cellular gibberellins are maintained by the balance between synthesis and utilization. In the ga4-1 plant, this balance is perturbed by the mutation and the concomitant reduction in the catalytic activity of the 3- β -hydroxylase which leads to the accumulation of GA₉ and GA₂₀ and the reduction in GA₄ and GA₁, respectively. mutated gene would either lead to translation of the mutant form of the protein (presumably inactive or less active) or to no translation at all. The overexpression of ga4 message as detected in the ga4-1 plants and the repression of transcription by exogenous GA₃ indicates a transcriptional feedback regulatory mechanism. One hypothesis to explain these results in the ga4-1 plants is that the regulatory domain of the GA4 protein is intact but the reduced levels of endogenous GA4 and GA1 diminish the feedback control by the terminal GAs and the application of exogenous GA3, which leads to the accumulation of terminal GAs in Arabidopsis, restores the feed-back mechanism.

30

5

10

15

20

25

It has been previously established that 3-\(\beta\)-hydroxylation is important in the regulation of stem growth (Ingram, T.J. et al., Planta 160:455-463

(1984)). Our results indicate that, in addition to the critical roles the properties and compartmentalization of the active GAs play in stem growth, molecular regulatory mechanisms also play an important part in the control of gibberellin biosynthesis.

5

10

Example 7 Expressing the GA4 Protein

The GA4 protein is expressed by transforming a host with the DNA construct of SEQ ID No.1 or SEQ ID No. 3 or a DNA construct comprising DNA encoding the amino acid sequence of SEQ ID No. 2 operably linked to a promoter. The GA4 protein is expressed from the construct in the transformed host cell.

Example 8 Gene Expression in a Plant

15

The expression of a gene in a plant is directed such that the gene has the same temporal and spatial expression pattern of GA4. The gene is operably linked to the regulatory sequences of GA4 DNA to create an expression module, and a plant is then transformed with the expression module.

Example 9

20

Modulating the Translation of RNA Encoding GA4 Protein

The translation of RNA encoding GA4 protein in a plant is modulated by generating an expression vector encoding antisense GA4 RNA. The plant is then transfected with the expression vector encoding the antisense GA4 RNA.

Example 10

Cloning DNA Encoding GA4 Protein

A DNA molecule encoding the GA4 protein is cloned by hybridizing a desired DNA molecule to the sequences or antisense sequences of DNA SEQ ID No. 1 or DNA SEQ ID No. 3 under stringent hybridization conditions. Those DNA molecules hybridizing to the probe sequences are selected and transformed into a host cell. The transformants that express GA4 are selected and cloned.

Example 11

10

15

5

Hybridization Conditions for Cloning DNA Encoding GA4 Protein

One possible set of hybridization conditions for the cloning of the DNA encoding GA4 protein is as follows:

- 1) prehybridizing for 1 hour;
- 2) hybridizing overnight at 65°C in the hybridization buffer; and
- 3) washing once for 15 minutes in 2xSSC at room temperature, then two times for 30 minutes in 0.1xSSC and 0.1% SDS at 60°C.

Example 12

20

Stimulating Plant Stem Elongation

Plant stem elongation is stimulated by inserting the DNA construct encoding the amino acid sequence shown in Figure 4 [SEQ ID No. 2] into a transgenic plant. The transgenic plant is produced by any of several methods known in the art including those previously described in this specification.

25

The stem elongation may be stimulated in Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot,

10

15

20

25

Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Sencia, Salpiglossis, Cucumis, Browalia, Glycine, Lolium, Zea, Triticum, Sorghum, Malus, Apium, and Datura.

Example 13 Producing Dwarf Plants

Dwarf plants are produced by blocking the GA4 gene by homologous recombination, or by transforming with a GA4 anti-sense DNA in order to produce transgenic plants. A cDNA sequence can be used to construct the antisense construct which is then transformed into a plant by using an Agrobacterium vector. (Zhang et al., Plant Cell 4: 1575-1588 (Dec. 1992)). Even partial antisense sequences can be used as antisense and can interfere with the cognate endogenous genes (van der Krol et al., Plant Mol. Biol. 14: 457-466 (1990)). The plant is transformed with the antisense construct according to the protocol of Valvekens et al., Proc. Natl. Acad, Sci, USA 85:5536-5540 (1988).

Dwarf plants are known to be commercially valuable. For example, dwarf trees for apples, cherries, peaches, pears and nectarines are commercially available (Burpee Gardens Catalogue 1994, pages 122-123).

Example 13 Molecular Weight Markers

The GA4 protein produced recombinantly is purified by routine methods in the art (*Current Protocol in Molecular Biology*, Vol. 2, Chap. 10, John Wiley & Sons, Publishers (1994)). Because, the deduced amino acid sequence is known, the molecular weight of this protein can be precisely

determined and the protein can be used as a molecular weight marker for gel electrophoresis. The calculated molecular weight of the GA4 protein based on the deduced amino acid sequence is 39.5 kDa.

Conclusions

5

We have obtained full length genomic and cDNA clones and the sequences for the GA4 protein. It is believed that the GA4 locus encodes an hydroxylase involved in gibberellin biosynthesis.

All references mentioned herein are incorporated by reference in the disclosure.

10

Having now fully described the invention by way of illustration and example for purposes of clarity and understanding, it will be apparent to those of ordinary skill in the art that certain changes and modifications may be made in the disclosed embodiments and such modifications are intended to be within the scope of the present invention.

PCT/US95/10403

-35-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - The General Hospital Corporation (i) APPLICANT:
 - (ii) INVENTORS: Chiang, Hui-Hwa Hwang, Inhwan Goodman, Howard M.
- (iii) TITLE OF INVENTION: GA4 DNA, Protein and Methods of Use
 - (iv) NUMBER OF SEQUENCES: 4
 - (v) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Sterne, Kessler, Goldstein and Fox
 - (B) STREET: 1100 New York Avenue, Suite 600 (C) CITY: Washington

 - (D) STATE: D.C.

 - (E) COUNTRY: U.S. (F) ZIP: 20005-3934
 - (vi) COMPUTER READABLE FORM:
 (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 15 August 1995
 - (C) CLASSIFICATION:
 - (vii) PRIORITY APPLICATION INFORMATION:
 - (A) APPLICATION NUMBER: 08/291,939
 - (B) FILING DATE: 16 August 1994 (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Cimbala, Michele A.
 - (B) REGISTRATION NUMBER: 33,851
 - (C) REFERENCE/DOCKET NUMBER: 0609.408PC00
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202) 371-2600 (B) TELEFAX: (202) 371-2540
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1270 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both (D) TOPOLOGY: both
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 (B) LOCATION: 107..1183
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TCGAGGTCGA CGGTATCGAT AAGCTTGATA TCGAATTCGG ATAAGAAAAA AAACACAAAC

ATCTATCAAA TTTACAAAGT TTTAAAACTA ATTAAAAAAG AGCAAG ATG CCT GCT Met Pro Ala

-36-

											CAC His 15					1	63
											CCG Pro					2	11
											GCT Ala						59
											GAC Asp					3	07
											GGT Gly					3	55
											GAC Asp 95					4	03
								_	_		AAG Lys					4	51
											CTC Leu					4	99
											CCA Pro					5	47
											ATC Ile					5	95
											AAA Lys 175					6-	43
											GTC Val					6	91
ATT Ile	GAA Glu	TGG Trp	GCC Ala	AGT Ser 200	CTC Leu	AGT Ser	TCA Ser	GAT Asp	TTA Leu 205	AAC Asn	TGG Trp	GCC Ala	CAA Gln	GCT Ala 210	GCT Ala	7.	39
											CCG Pro					7	87
GGT Gly	CTA Leu	GCA Ala 230	GCT Ala	CAT His	ACC Thr	GAC Asp	TCC Ser 235	ACC Thr	CTC Leu	CTA Leu	ACC Thr	ATT Ile 240	CTG Leu	TAC Tyr	CAG Gln	8	35
AAC Asn	AAT Asn 245	Thr	GCC Ala	GGT Gly	CTA Leu	CAA Gln 250	GTA Val	TTT Phe	CGC Arg	GAT Asp	GAT Asp 255	CTT Leu	GGT Gly	TGG Trp	GTC Val	8	83
ACC Thr 260	Val	CCA Pro	CCG Pro	TTT Phe	CCT Pro 265	Gly	TCG Ser	CTC Leu	GTG Val	GTT Val 270	AAC Asn	GTT Val	GGT Gly	GAC Asp	CTC Leu 275	9	31

-37-

					AAT Asn										979
					AGA Arg										1027
					AAG Lys										1075
					TAC Tyr									CGA Arg	1123
					TTC Phe 345										1171
	GAA Glu		TGA'	rtag/	ATA A	ATAA:	ragt:	rg To	GATC:	ract?	A GT	ragt:	rtga		1220
TTA	LAAT	ATT (GTTG:	CAAA?	rg A	rttc:	AGCA	A TA	rgat:	TTGT	TTG	CCT	CAA		1270

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 358 amino acids(B) TYPE: amino acid

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Pro Ala Met Leu Thr Asp Val Phe Arg Gly His Pro Ile His Leu Pro His Ser His Ile Pro Asp Phe Thr Ser Leu Arg Glu Leu Pro Asp Ser Tyr Lys Trp Thr Pro Lys Asp Asp Leu Leu Phe Ser Ala Ala Pro 35 40 45 Ser Pro Pro Ala Thr Gly Glu Asn Ile Pro Leu Ile Asp Leu Asp His Pro Asp Ala Thr Asn Gln Ile Gly His Ala Cys Arg Thr Trp Gly Ala 65 70 75 80 Phe Gln Ile Ser Asn His Gly Val Pro Leu Gly Leu Leu Gln Asp Ile Glu Phe Leu Thr Gly Ser Leu Phe Gly Leu Pro Val Gln Arg Lys Leu Lys Ser Ala Arg Ser Glu Thr Gly Val Ser Gly Tyr Ala Ser Leu Val Ser His Leu Ser Ser Ile Ser Lys Cys Gly Pro Lys Val Ser Pro Ser 130 135 140 Leu Ala Arg Leu Ser Thr Ile Ser Val Asn Phe Gly Pro Asn Ile Thr Ser Thr Thr Ala Ile Ser Tyr Glu Glu Tyr Glu Glu His Met Lys Lys 165 170 175

PCT/US95/10403 WO 96/05317

-38-

Leu	Ala	Ser	Lys 180	Leu	Met	Trp	Leu	Ala 185	Leu	Asn	Ser	Leu	Gly 190	Val	Ser
Glu	Glu	Asp 195	Ile	Glu	Trp	Ala	Ser 200	Leu	Ser	Ser	Asp	Leu 205	Asn	Trp	Ala
Gln	Ala 210	Ala	Leu	Gln	Leu	Asn 215	His	Tyr	Pro	Val	Cys 220	Pro	Glu	Pro	Asp
Arg 225	Ala	Met	Gly	Leu	Ala 230	Ala	His	Thr	Asp	Ser 235	Thr	Leu	Leu	Thr	Ile 240
Leu	Tyr	Gln	Asn	Asn 245	Thr	Ala	Gly	Leu	Gln 250	Val	Phe	Arg	Asp	Asp 255	Leu
Gly	Trp	Val	Thr 260	Val	Pro	Pro	Phe	Pro 265	Gly	Ser	Leu	Val	Val 270	Asn	Val
Gly	Asp	Leu 275	Phe	His	Ile	Leu	Ser 280	Asn	Gly	Leu	Phe	Lys 285	Ser	Val	Leu
His	Arg 290	Ala	Arg	Val	Asn	Gln 295	Thr	Arg	Ala	Arg	Leu 300	Ser	Val	Ala	Phe
Leu 305	Trp	Gly	Pro	Gln	Ser 310	Asp	Ile	Lys	Ile	Ser 315	Pro	Val	Pro	Lys	Leu 320
Val	Ser	Pro	Val	Glu 325	Ser	Pro	Leu	Tyr	Gln 330	Ser	Val	Thr	Trp	Lys 335	Glu
Tyr	Leu	Arg	Thr 340	Lys	Ala	Thr	His	Phe 345	Asn	Lys	Ala	Leu	Ser 350	Met	Ile
Arg	Asn	His 355	Arg	Glu	Glu										

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1703 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: both

 (D) TOPOLOGY: both

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TCGAGGTCGA	CGGTATCGAT	AAGCTTGATA	TCGAATTCGG	ATAAGAAAAA	AAACACAAAC	60
ATCTATCAAA	TTTACAAAGT	TTTAAAACTA	ATTAAAAAAG	AGCAAGATGC	CTGCTATGTT	120
AACAGATGTG	TTTAGAGGCC	ATCCCATTCA	CCTCCCACAC	TCTCACATAC	CTGACTTCAC	180
ATCTCTCCGG	GAGCTCCCGG	ATTCTTACAA	GTGGACCCCT	AAAGACGATC	TCCTCTTCTC	240
CGCTGCTCCT	TCTCCTCCGG	CCACCGGTGA	AAACATCCCT	CTCATCGACC	TCGACCACCC	300
GGACGCGACT	AACCAAATCG	GTCATGCATG	TAGAACTTGG	GGTGCCTTCC	AAATCTCAAA	360
CCACGGCGTG	CCTTTGGGAC	TTCTCCAAGA	CATTGAGTTT	CTCACCGGTA	GTCTCTTCGG	420
GCTACCTGTC	CAACGCAAGC	TTAAGTCTGC	TCGGTCGGAG	ACAGGTGTGT	CCGGCTACGC	480
GTCGCTCGTA	TCGCATCTTT	CTTCAATAAG	CAAATGTGGT	CCGAAGGTTT	CACCATCACT	540
GGCTCGCCTC	TCAACGATTT	CCGTAAACTT	TGGCCCCAAC	ATCACCTCAA	CTACTGGTAT	600
ΔΤΓΤΤΤΤΑΤΑ	CACTCGATCC	TATATACTTG	TACTTGTGTT	TATTAGACCT	TTTTCTACAT	660

WO 96/05317 PCT/US95/10403

-39-

TAACAAAAA	CATATACATA	AGGACACAAT	GTTTACATTT	AAGGTAGAAC	ATCCACAAAC	720
GTTGGACGCC	CTATAGGTAG	TAACAAGGGG	CATAGATAAC	AGAAGCAACC	GAAATTTGCC	780
TTGTCCTCGG	AGTTTAGTGG	ATTTAAGAGT	TAAGTGCATA	ATGAAATCTA	GTGTAGTAGT	840
GGACCCAACT	CAAAGATTTT	GAAGATATGT	ATTCTTTTAA	TCTTATCGGA	GAAAACAAAA	900
CAAAAAAACA	ACAACTTGCT	TTTCTATTTT	ATTTAAAGGT	CGTACAAATA	TTTAATGTAT	960
GTATATGCAA	ATTGTGTCTA	AATCTCATCT	GTACTAATTA	GATGAATACA	ATTCGTTTTT	1020
AATTAACAGC	GATATCGTAT	GAAGAGTACG	AGGAACATAT	GAAAAAGTTG	GCATCGAAAT	1080
TGATGTGGTT	AGCACTAAAT	TCACTTGGGG	TCAGCGAAGA	AGACATTGAA	TGGGCCAGTC	1140
TCAGTTCAGA	TTTAAACTGG	GCCCAAGCTG	CTCTCCAGCT	AAATCACTAC	CCGGTTTGTC	1200
CTGAACCGGA	CCGAGCCATG	GGTCTAGCAG	CTCATACCGA	CTCCACCCTC	CTGACCATTC	1260
TGTACCAGAA	CAATACCGCC	GGTCTACAAG	TATTTCGCGA	TGATCTTGGT	TGGGTCACCG	1320
TGCCACCGTT	TCCTGGCTCG	CTCGTGGTTA	ACGTTGGTGA	CCTCTTCCAC	ATCCTATCCA	1380
ATGGATTGTT	TAAAAGCGTG	TTGCACCGCG	CTCGGGTTAA	CCAAACCAGA	GCCCGGTTAT	1440
CTGTAGCATT	CCTTTGGGGT	CCGCAATCTG	ATATCAAGAT	ATCACCTGTA	CCGAAGCTGG	1500
TTAGTCCCGT	TGAATCGCCT	CTATACCAAT	CGGTGACATG	GAAAGAGTAT	CTTCGAACAA	1560
AAGCAACTCA	CTTCAACAAA	GCTCTTTCAA	TGATTAGAAA	TCACAGAGAA	GAATGATTAG	1620
ATAATAATAG	TTGTGATCTA	CTAGTTAGTT	TGATTAATAA	ATTGTTGTAA	ATGATTTCAG	1680
CAATATGATT	TGTTTGTCCT	CAA				1703

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 377 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ala Pro Val Ser Asn Glu Thr Phe Leu Pro Thr Glu Ala Trp Gly 1 5 10 15

Glu Ala Thr Leu Arg Pro Ser Phe Val Arg Asp Glu Asp Glu Arg Pro 20 25 30

Lys Val Ala His Asp Arg Phe Ser Asp Ala Val Pro Leu Ile Ser Leu 35 40 45

His Gly Ile Asp Gly Ala Arg Arg Ala Gln Ile Arg Asp Arg Val Ala 50 60

Ala Ala Cys Glu Asp Trp Gly Ile Phe Gln Val Ile Asp His Gly Val 65 70 75 80

Asp Ala Asp Leu Ile Ala Asp Met Thr Arg Leu Ala Arg Glu Phe Phe 85 90 95

Ala Leu Pro Ala Glu Asp Lys Leu Arg Tyr Asp Met Ser Gly Gly Lys
100 105 110

Lys Gly Gly Phe Ile Val Ser Ser His Leu Gln Gly Glu Ala Val Gln 115 120 125

Asp	Trp 130	Arg	Glu	Ile	Val	Thr 135	Tyr	Phe	Ser	Tyr	Pro 140	Val	Lys	Ala	Arg
Asp 145	Tyr	Gly	Arg	Trp	Pro 150	Glu	Lys	Pro	Ala	Gly 155	Trp	Cys	Ala	Val	Val
Glu	Arg	Tyr	Ser	Glu 165	Arg	Leu	Met	Gly	Leu 170	Ser	Сув	Asn	Leu	Met 175	Gly
Val	Leu	Ser	Glu 180	Ala	Met	Gly	Leu	Glu 185	Thr	Glu	Ala	Leu	Ala 190	Lys	Ala
Cys	Val	Asp 195	Met	Asp	Gln	Lys	Val 200	Val	Val	Asn	Phe	Tyr 205	Pro	Arg	Cys
Pro	Gln 210	Pro	Asp	Leu	Thr	Leu 215	Gly	Leu	Lys	Arg	His 220	Tyr	Asp	Pro	Gly
Thr 225	Ile	Thr	Leu	Leu	Leu 230	Gln	Asp	Leu	Val	Gly 235	Gly	Leu	Gln	Ala	Thr 240
Arg	Asp	Gly	Gly	Lys 245	Asn	Trp	Ile	Thr	Val 250	Gln	Pro	Ile	Ser	Gly 255	Ala
Phe	Val	Val	Asn 260	Leu	Gly	Asp	His	Gly 265	His	Phe	Met	Ser	Asn 270	Gly	Arg
Phe	Lys	Asn 275	Ala	Asp	His	Gln	Ala 280	Val	Val	Asn	Gly	Glu 285	Ser	Ser	Arg
Leu	Ser 290	Ile	Ala	Thr	Phe	Gln 295	Asn	Pro	Ala	Pro	Asp 300	Ala	Arg	Val	Trp
Pro 305	Leu	Ala	Val	Arg	Glu 310	Gly	Glu	Glu	Pro	Ile 315	Leu	Glu	Glu	Pro	11e 320
Thr	Phe	Thr	Glu	Met 325	Tyr	Arg	Arg	Lys	Met 330	Glu	Arg	Asp	Leu	Asp 335	Leu
Ala	Lys	Arg	Lys 340	Lys	Gln	Ala	Lys	Asp 345	Gln	Leu	Met	Gln	Gln 350	Gln	Leu
Gln	Leu	Gln 355	Gln	Gln	Gln	Ala	Val 360	Ala	Ala	Ala	Pro	Met 365	Pro	Thr	Ala
Thr	Lys 370	Pro	Leu	Asn	Glu	Ile 375	Leu	Ala							

10

What Is Claimed Is:

- A DNA construct consisting essentially of DNA encoding the amino acid sequence of SEQ ID No. 2.
- The DNA construct of claim 1, wherein said DNA is that of
 SEQ ID No. 1 or SEQ ID No. 3.
 - 3. A DNA construct comprising DNA encoding the amino acid sequence of SEQ ID No. 2.
 - 4. The DNA construct of claim 3, wherein said DNA is that of SEQ ID No. 1 or SEQ ID No. 3.
 - 5. A vector comprising the sequences of any one of claims 1-4.
 - 6. A host transformed with the vector of claim 5.
 - 7. The host of claim 6, wherein said host is selected from the group consisting of bacteria, yeast, plants, insects or mammals.
 - 8. The host of claim 7, wherein said host is a plant cell.

W 96/05317 PCT/US95/10403

- 9. The host of claim 8, wherein said plant cell is a dicotyledonous plant cell.
 - 10. A plant regenerated from the plant cell of claim 8.
 - 11. Progeny of the plant of claim 10.
- 12. A propagule of the plant of claim 11.

5

10

- 13. A seed produced by the progeny of claim 11.
- 14. A method for expressing GA4 protein, wherein said method comprises:
 - transforming a host with the construct of any one of claims 1-4 operably linked to a promoter;
 - expressing said GA4 protein from said DNA on said construct in said transformed host cell.
- 15. A method of directing the expression of a gene in a plant, such that said gene has the same temporal and spatial expression pattern of *GA4*, said method comprising the steps of:
 - operably linking said gene to the regulatory sequences
 of GA4 to create an expression module, and

5

10

- transforming said plant with said expression module of part (1).
- 16. A method of modulating the translation of RNA encoding GA4 in a plant comprising the steps of:
 - generating an expression vector encoding antisense GA4
 RNA;
 - 2) transfecting said plant with said expression vector of part (1).
- 17. An isolated DNA construct wherein said construct consists essentially of a nucleic acid sequence, and wherein said nucleic acid sequence:
 - 1) encodes a GA4 polypeptide, and
 - 2) hybridizes to the sense or antisense sequence of the DNA of SEQ ID No. 1 or SEQ ID No. 3 when hybridization is performed under stringent hybridization conditions.
- 18. An isolated DNA molecule encoding a GA4 protein, said DNA molecule prepared by a process comprising:
 - hybridizing a desired DNA molecule to the sense or antisense sequence of DNA SEQ ID No. 1 or DNA

PCT/US95/10403

SEQ ID No. 3, wherein the hybridization is performed under stringent hybridization conditions;

- selecting those DNA molecules of said population that hybridize to said sequence; and
- selecting DNA molecules of part (2) that encode
 said GA4 protein.
- 19. An isolated DNA molecule encoding a GA4 protein as claimed in claims 17 or 18, said DNA molecule prepared by a process comprising:
 - 1) prehybridizing for 1 hour;
 - 2) hybridizing overnight at 65°C in the hybridization buffer; and
 - washing once for 15 minutes in 2xSSC at room temperature, then two times for 30 minutes in 0.1xSSC and 0.1% SDS at 60°C.
- 20. A method of cloning a DNA molecule that encodes a GA4 protein, said method comprising:
 - hybridizing a desired DNA molecule to the sense or antisense sequence of DNA SEQ ID No. 1 or DNA SEQ ID No. 3, wherein the hybridization is performed under stringent hybridization conditions;
 - selecting those DNA molecules of said population that hybridize to said sequence;
 - 3) transforming said DNA of part (2) into a host cell; and

5

10

15

5

10

- 4) selecting transformants that express said GA4.
- 21. The method of claim 20 wherein the hybridization conditions consist essentially of:
 - 1) prehybridizing for 1 hour;
 - 2) hybridizing overnight at 65°C in the hybridization buffer; and
 - 3) washing once for 15 minutes in 2xSSC at room temperature, then two times for 30 minutes in 0.1xSSC and 0.1% SDS at 60°C.
- 22. A method of stimulating plant stem elongation, said method comprising inserting a DNA construct encoding the amino acid sequence shown in Figure 4 [SEQ ID No. 2] into a transgenic plant.
 - 23. A method of producing a transgenic dwarf plant said method comprising transforming a plant with the antisense construct of the *GA4* gene or cDNA.
 - 24. A dwarf plant resulting from reduced levels of $3-\beta$ -hydroxylase.
 - 25. The dwarf plant as claimed in claim 24 containing a mutation in the ga4 locus.

FIG.2

3/9

4/9

1	ATGC	CTGC	TAT	GTT	AAC	AGA	TGT	GTT	TAG	agg	CCA	TCC	CAT	TCA	CCT	CCC	ACA	CTC	TCAC	60
1	M P	A	M	L	T	D	٧	F	R	G	Н	P]	Н	L	P	Н	S	Н	20
61	ATAC	CTGA	CTT	CAC	ATC	TCT	CCG	GGA	GCT	CCC	GGA	TTC	TTA	CAA	GTG	GAC	CCC	TAA	AGAC	120
21	I P	D	F	Ţ	S	L	R	Ε	L	P	D	S	Y	K	W	Ī	Р	K	D	60
121	GATC	CCT	CTT	CTC	CGC	TGC	TCC	TTC	TCC	TCC	GGC	CAC	CCC	TGA	AAA	CAT	CCC	TCT	CATC	180
41	DL	L	F	S	A	A	Р	S	Ρ	P	A	T	G	£	N	1	Ρ	L	1	60
181	GACC	CGA	CCA	CCC	GGA	CGC	GAC	TAA	CCA	AAT	CGG	TCA	TGC	ATG	TAG	AAC	TTG	GGG	TGCC	240
61	D L	D	Н	Р	D	A	Ţ	N	Q	1	G	Н	A	С	R	1	W	G	A	80
241	TTCC	NAAT	CTC	AAA	CCA	CGG	CGT	GCC	TTT	GGG	ACT	TCT	CCA	AGA	CAT	TGA	GTT	TCT	CACC	300
81	F Q	1	S	N	Н	G	Υ.	Р	L	G	L	L	Q	D	I	E	F	L	T	100
301	GGTA	STCT	CTT	CCG	GCT	ACC	TGT	CCA	ACG	CAA	GCT	TAA	GTC	TGC	TCG	GTC	GGA	GAC	AGGT	360
101	G S	L	F	G	L	P	٧	Q	R	K	L	K	S	A	R	S	E	<u>T</u>	G	120
361	GTGT	CCGC	CTA	CGC	GTC	GCT	CGT	ATC	GCA	TCT	TTC	TTC	AAT.	AAG	CAA	ATG	TGG	TCO	GAAG	420
121	V S	G	Y	A	S	L	٧	S	Н	L	S	S	<u> </u>	S	K	С	G	Р	K	140
421	GTTT	CACC	ATC	ACT	GGC	TCG	CCT	CTC.	AAC	GAT	TTC	CGT	AAA	CTT	TGG	CCC	CAA	CAT	CACC	480
141		Р		-		_		S									N	_	T	160
481	TCAA	CTAC	TGC	GAT	ATC	GTA	TGA	AGA	GTA	CGA	GGA	ACA	TAT	GAA	AAA	GTT	GGC	ATO	GAAA	540
161	<u>S</u> T																			180
541	TTGA						-			-	_				-	-				600
181	L M	W	L	A	L	N	S	L	G	٧	S	Ε	E	D	I	Ε	W	A	\$ •	200
							~~~	^^1	100	TOO	TOT	CCA	TOO		TOA	ATA	rrr	T AC	TTCT	000
601	CTCA																			660
601 201	L S	S	D	L	N	W	A	Q	A	A	L	Q	L	N	Н	Y	Р	٧	С	220
		S AACC	D CGGA	L .ccg	N AGC	W Cat	A GGG	Q TCT	A AGC	A AGC	L TCA	Q TAC	L CGA	N CTC	H CAC	Y CCT	Р	V AAC	С	

# FIG.4A

721 241	CTGTACCAGAACAATACCGCCGGTCTACAAGTATTTCGCGATGATCTTGGTTGG	780 260
781 261	GTGCCACCGTTTCCTGGCTCGCTCGTGGTTAACGTTGGTGACCTCTTCCACATCCTATCC V P P F P G S L V V N V G D L F H I L S	840 280
841 281	AATGGATTGTTTAAAAGCGTGTTGCACCGCGCTCGGGTTAACCAAACCAGAGCCCGGTTA N G L F K S V L H R A R V N Q T R A R L	900 300
901 301	TCTGTAGCATTCCTTTGGGGTCCGCAATCTGATATCAAGATATCACCTGTACCGAAGCTG S V A F L W G P Q S D I K I S P V P K L	960 320
961 321	GTTAGTCCCGTTGAATCGCCTCTATACCAATCGGTGACATGGAAAGAGTATCTTCGAACA V S P V E S P L Y Q S V T W K E Y L R T	1020 340
1021 341	AAAGCAACTCACTTCAACAAAGCTCTTTCAATGATTAGAAATCACAGAGAAGAATGA K A T H F N K A L S M I R N H R E E +	1077 359

TTAGATAATAGTTGTGATCTACTAGTTAGTTTGATTAATAAATTGTTGTAAATGATT
TCAGCAATATGATTTGTCTCTCAA

FIG.4B

tcgaggtcga cggtatcgat aagcttgata tcgaattcgg ataagaaaa ooocacaaac atclatcaaa tttacaaagt tttaaaacta attaaaaaag 51 agcaagatge etgetatgtt aacagatgtg tttagaggee ateceattea 101 151 cotoccaca totcacatae etgactteae atototocgg gageteecgg 201 attettacaa giggaceeet aaagaegate teetettete egetgeteet 251 tatactagg caracggtgo ooocotacat atactagoca tagocacaa 301 ggocgcgact aaccoooleg gleatgeatg tagaaettgg ggtgeettee 351 aaateteaaa eeaeggegtg eetttgggae tteteeaaga eattgagttt 401 ctcoccggta gtctcttcgg gctacctgtc caacgcaagc ttaagtctgc 451 teggteggag acaggigigi eeggetaege giegelegta tegealetti 501 cttcaataag caaatgiggi ccgaaggitt caccaicact ggctcgcctc 551 tcaacgattt ccgtaaactt tggccccaac atcacctcaa ctactggtat 601 atcititata cacicgatee tatatacity tacitytyti tattagaeet 651 ttttctacat taacaaaaa catatacata aggacacaat gtttacattt 701 aaggtagaac atccacaaac gttggacgcc ctataggtag taacaagggg 751 cologatooc agaagcoocc gaaattigcc tigicclegg agtitagigg 801 attiaagagt taagtgcata atgaaatcta gtgtagtagt ggacccaact 851 coongottti googotatgi attettioo tettategga goooccoon 901 caaaaaaaca acaactigci titcialitti attiaaaggi cgiacaaata 951 tttaatgtat gtatatgcaa attgtgtcta aatctcatct gtactaatta gatgaataca attegttiti aattaacage gatategtat gaagagtaeg 1001

# FIG.5A SUBSTITUTE SHEET (RULE 26)

1051 aggaacatat gaaaaagttg gcatcgaaat tgatgtggtt agcactaaat 1101 tcocttgggg tcogcgoogo ogocottgoo tgggccogtc tcogttcogo 1151 tttaaactgg gcccaagctg ctctccagct aaatcactac ccggtttgtc 1201 ctgaaccgga ccgagccatg ggtctagcag ctcataccga ctccaccctc 1251 ctgaccatte tgtaccagaa caataccgce ggtetacaag tatttegega 1301 tgatcttggt tgggtcaccg tgccaccgtt tcctggctcg ctcgtggtta 1351 acgitigging activities attactor attactor attaction attactor attact 1401 ttgcaccgcg ctcgggttaa ccaaaccaga gcccggttat ctgtagcatt 1451 cctttggggt ccgcootctg atatcaagat atcacctgta ccgaagctgg 1501 ttagtcccgt tgaatcgcct ctataccaat cggtgacatg gaaagagtat cttcgaacaa aagcaactca cttcaacaaa gctctttcaa tgattagaaa 1551 1601 tcacagagaa gaatgattag ataataatag tigigatcia ciagitagit 1651 tgattaataa attgttgtoo atgatttcag cootatgatt tgtttgtcct 1701 COO

- * TGA STOP CODON
- INTRON

FIG.5B

8/9

	<u>i</u>				50
GA4		GHPIHLPHSH			
F3H	MA	PVSNETFLPT	EAWGEATERP	2 L AKDEDEKA	KVAHURFSDA
GA4		DLDHPDATNQ			
F3H	VPLISLHGID	GARRAQIRDR	VAAACEDWGI	FQVIDHGVDA	DLIADMTRLA
GA4	GSI FGLPVOR	KLKSARSETG	VS <b>G</b> YASLV <b>S</b> H	LSSISKCGPK	VSPSLARLST
F3H		KLRYDMSGGK			
$C\Lambda A$	TOVNEC DN	ITSTTAISYE	E V E E H M K K I A	CKI MIMI DI VIC	I GVSEEDTEW
GA4 F3H		KPAGWCAVVE			
		0.11.01.111.17.15	VODERROAMO	4 A ALITOCTI I	TILVOUNTAG
GA4		QAALQLNHYP .QKVVVNFYP			
F3H	ACVUMU	. UNVVVINFTE	ROPQPDLILG	LKKIIIDIGII	TEELQUEVGG
GA4		<b>WVTV</b> P <b>P</b> FP <b>G</b> S			
F3H	LQATRDGGKN	WITVQPISGA	FVVNLGDHGH	FM <b>SN</b> GR <b>F</b> KNA	DHQAVVNGES
GA4	ARI SVAFI WG	PQSDIKISPV	PKLVSPV <b>E</b> SP	LYQSVTWKEY	LRTKATHFNK
F3H		PAPDARVWPL			
C	AL CMT DNIUDE	E			
GA4 F3H		DQLMQQQLQL			ILA
		=			

FIG.6



FIG.7



FIG.8

+ - + - GA3 24 24 8 8 hrs



nal Application No

PCT/US 95/10403 A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/53 C12N15/82 A01H5/00 C12N5/10 C1201/68 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N A01H C12Q IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category Citation of document, with indication, where appropriate, of the relevant passages 17-19 WO,A,94 03606 (INT FLOWER DEV PTY LTD X ;HOLTON TIMOTHY ALBERT (AU); KEAM LISA ANN) 17 February 1994 see the whole document 24,25 X PLANTA. vol. 160, 1984 pages 464-468, 'Internode length in SPRAY, C., ET AL. Zea mays (L). The dwarf-1 mutation controls the 3beta-hydroxylation of gibberellin A20 to gibberellin A1' see the whole document -/--Patent family members are listed in annex. X Further documents are listed in the continuation of box C. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered to cannot be considered to filing date involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docucitation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 14 December 1995 05.01.96 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax (+31-70) 340-3016

Maddox, A

Inter -nal Application No PCT/US 95/10403

· (Contract		201703 93/10403
regory .	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
(	THEORETICAL AND APPLIED GENETICS, vol. 58, 1980 pages 257-263, KOORNNEEF, M., ET AL. 'Induction and analysis of gibberellin sensitive mutants	24,25
, <b>X</b>	in Arabidopsis thaliana (L.) Heynh.' see the whole document THE PLANT CELL,	1-21,24,
	vol. 7, no. 2, February 1995 pages 195-201, CHIANG, HH., ET AL. 'Isolation of the Arabidopsis GA4 locus' see the whole document	25
P,X	WO,A,94 28141 (LONG ASHTON RESEARCH STATION; LANGE THEODOR (DE); GRAEBE JAN E (DE) 8 December 1994 see page 66 - page 68; claims 1-47	17-19
Y	WO,A,93 18142 (UNIV WASHINGTON) 16 September 1993 see page 7	17
1	EUR. J. BIOCHEM., vol. 217, 1993 pages 745-754, BRITSCH, L., ET AL. 'Molecular characterization of flavonone 3beta-hydroxylases, consensus sequence, comparison with related enzymes and the role of conserved histidine residues' see the whole document	17
<b>A</b>	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 87, 1990 WASHINGTON US, pages 7983-7987, TALON, M., ET AL. 'Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants' see whole document particularly page 7987 left column last paragraph	1-25
A	PLANT PHYSIOL. (1990), 94(3), 1390-401, SMITH, VALERIE A., ET AL. 'Partial purification and characterization of the gibberellin A20 3.beta hydroxylase from seeds of Phaseolus vulgaris' see the whole document	1-25

Inter mai Application No
PCT/US 95/10403

·	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
tegory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PLANTA, vol. 195, no. 1, 1994 pages 98-107, LANGE, T., ET AL. 'Separation and characterisation of three 2-oxoglutarate-dependent dioxygenases from Cucurbita maxima L. endosperm involved in gibberellin biosynthesis' see the whole document	1-25
A	WO,A,93 16096 (GEN HOSPITAL CORP) 19 August 1993 see the whole document	1-25
A	WO,A,93 03616 (EVANS LLOYD THOMAS; KING RODERICK WHITFIELD (AU); MANDER LEWIS NOR) 4 March 1993 see the whole document	16,23-25
A	PLANT PHYSIOLOGY, vol. 102, June 1993 pages 363-371, NILSSON, O., ET AL. 'Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA' see the whole document	23-25
A	THE PLANT JOURNAL, vol. 3, no. 3, 1993 pages 371-382, SCHMÜLLING, T., ET AL. 'Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA' see page 374 - page 375 see page 378, left column	23-25
A	PLANT MOLECULAR BIOLOGY, vol. 23, 1993 pages 1199-1210, DEHIO, C., ET AL. 'Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA' see page 1208 - page 1209	23-25
A	PHYSIOL. PLANT., vol. 76, 1989 pages 173-176, ROSS, J.J., ET AL. 'Internode length in Pisum: Estimation of GA1 levels in genotypes Le,le and led' see the whole document	24,25

information on patent family members

Inte onal Application No PCT/US 95/10403

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9403606	17-02-94	AU-B- 469019 CA-A- 214077 EP-A- 065695 JP-T- 750960	0 17-02-94 1 14-06-95
WO-A-9428141	08-12-94	AU-B- 692979	4 20-12-94
WO-A-9318142	16-09-93	CA-A- 213170 EP-A- 063040 HU-A- 6999 JP-T- 750696	28-12-94 28-09-95
WO-A-9316096	19-08-93	AU-B- 365949 EP-A- 062697 HU-A- 6979 JP-T- 750385	71 07-12-94 97 28-09-95
WO-A-9303616	04-03-93	AU-A- 244409 EP-A- 059993 NZ-A- 24397	08-06-94