МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

общая трудоемкость дисциплины составляет: ___3____ зачетных единиц(ы)

УТВЕРЖДАЮ Декан/Директор /Соболев В.В. 23.05. 2023 г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Параллельное и распределенное программирование 10/021 (2023) наименование - полностью направление (специальность) 01.04.04 «Прикладная математика» код, наименование - полностью направленность (профиль/ программа/специализация) «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта» наименование - полностью уровень образования: магистратура форма обучения: очная очная/очно-заочная/заочная

Кафедра «Прикладная математика и информационные технологии»
полное наименование кафедры, представляющей рабочую программу
Составитель Нефедов Денис Геннадьевич, к.т.н., доцент
Ф.И.О.(полностью), степень, звание
Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования и рассмотрена на заседании кафедры
Протокол от
Заведующий кафедрой
<u> </u>
СОГЛАСОВАНО
Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану 01.04.04 «Прикладная математика» (программа «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта»)
Протокол заседания учебно-методической комиссии по УГСН 010000 «Математика и механика» от
Председатель учебно-методической комиссии по УГСН 010000 «Математика и механика» код и наименование – полностью
Руководитель образовательной программы К.В. Кетова
71.05. 20 <u>23</u> г.

Аннотация к дисциплине

Название дисциплины	Параллельное и распределенное программирование
Направление (специальность) подготовки	01.04.04 «Прикладная математика»
Направленность (профиль/программа/ специализация)	Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта
Место дисциплины	Часть, формируемая участниками образовательных отношений, Блока 1 «Дисциплины (модули)» ООП.
Трудоемкость (з.е. / часы)	3 / 108
Цель изучения дисциплины	Ознакомление магистрантов с математическими моделями и методами параллельного программирования для многопроцессорных вычислительных систем
Компетенции, формируемые в результате освоения дисциплины	ПК-1. Способен интегрировать программные модули и компоненты при разработке программного обеспечения в области профессиональной деятельности. ПК-2. Способен проектировать и разрабатывать наукоемкое программное обеспечение.
Содержание дисциплины (основные разделы и темы)	Принципы построения параллельных вычислительных систем. Моделирование и анализ параллельных вычислений. Принципы разработки параллельных алгоритмов и программ. Параллельные численные алгоритмы для решения типовых задач вычислительной математики.
Форма промежуточной аттестации	Зачет

1. Цели и задачи дисциплины:

Целью преподавания дисциплины является ознакомление магистрантов с математическими моделями и методами параллельного программирования для многопроцессорных вычислительных систем.

Задачи дисциплины:

- изучить архитектурные принципы реализации параллельной обработки в вычислительных машинах;
 - изучить методы и языковые механизмы конструирования параллельных программ.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№ п/п	Знания
1	Средства параллельного программирования.
2	Средства распределенного программирования.
3	Алгоритмы распараллеливания задач линейной алгебры и задач, решаемых
	сеточными методами.

Умения, приобретаемые в ходе освоения дисциплины

№ П/П	Умения
1	Создавать параллельные программы.
2	Разрабатывать программные проекты для распределенных систем.

Навыки, приобретаемые в ходе освоения дисциплины

№ п/п		Навыки
1	Разработк	а и программная реализация параллельных численных алгоритмов.

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ПК-1. Способен	ПК-1.1. Знать: процедуры			
интегрировать	интеграции программных			
программные модули	модулей и компонентов при	1,2,3		
и компоненты при	разработке программного			
разработке	обеспечения.			
программного	ПК-1.2. Уметь: использовать			
обеспечения в	стандартные программные			
области	модули и компоненты при			
профессиональной	разработке программного		1,2	
деятельности	обеспечения в области			
	профессиональной			
	деятельности.			
	ПК-1.3. Владеть:			
	практическими навыками			
	интеграции программных			
	модулей и компонентов при			1
	разработке программного			1
	обеспечения в области			
	профессиональной			
	деятельности			
ПК-2. Способен	ПК-2.1. Знать: принципы			
проектировать и	построения программно-	1,2,3		
разрабатывать	технической архитектуры и			

наукоемкое	методологию проектирования		
программное	наукоемкого программного		
обеспечение	обеспечения.		
	ПК-2.2. Уметь: вырабатывать		
	требования и варианты	1,2	
	реализации наукоемкого	1,2	
	программного обеспечения		
	ПК-2.3. Владеть:		
	практическими навыками		
	проектирования и разработки		1
	наукоемкого программного		-
	обеспечения		

3. Место дисциплины в структуре ООП:

Дисциплина относится к части, формируемой участниками образовательных отношений, блока 1 "Дисциплины (модули)" ООП.

Дисциплина изучается на 2 курсе в 3 семестре.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): Разработка приложений на С#.

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): –

4. Структура и содержание дисциплины

4.1. Структура дисциплин

No	Раздел дисциплины. Форма	Всего часов на раздел	Семестр	Распределение трудоемкости раздела (в часах) по видам учебной работы					Содержание самостоятельной		
Π/Π	промежуточной	го ч	Cem		конт	гактна	R		работы		
	аттестации (по семестрам))	лек	пр	лаб	КЧА	CPC	1		
1	2	3	4	5	6	7	8	10	11		
1	Принципы построения параллельных вычислительны х систем	26	3	4	_	8	_	14	Подготовка к защите лабораторной работы		
2	Моделирование и анализ параллельных вычислений	26	3	4	_	8	_	14	Подготовка к защите лабораторной работы		
3	Принципы разработки параллельных алгоритмов и программ	28	3	4	_	8	_	16	Подготовка к защите лабораторной работы		
4	Параллельные численные алгоритмы для решения типовых задач вычислительно й математики	26	3	4	_	8	_	14	Подготовка к защите лабораторной работы		

									Зачет
									выставляется по
									совокупности
5	Зачет	2	3	_	_	_	0,3	1,7	результатов
									текущего
									контроля
									успеваемости
	Итого:	108	3	16	_	32	0,3	59,7	

4.2. Содержание разделов курса

	4.2. Содержание раздел	ов курса		1	Т	T
№ п/п	Раздел дисциплины	Коды компетенции и индикаторов	Знания	Умения	Навыки	Форма контроля
1	Принципы построения параллельных вычислительных систем	ПК-1.1 ПК-1.2 ПК-1.3 ПК-2.1 ПК-2.2 ПК-3.3	1,2,3	1,2	1	Защита лабораторной работы
2	Моделирование и анализ параллельных вычислений	ПК-1.1 ПК-1.2 ПК-1.3 ПК-2.1 ПК-2.2 ПК-3.3	1,2,3	1,2	1	Защита лабораторной работы
3	Принципы разработки параллельных алгоритмов и программ	ПК-1.1 ПК-1.2 ПК-1.3 ПК-2.1 ПК-2.2 ПК-3.3	1,2,3	1,2	1	Защита лабораторной работы
4	Параллельные численные алгоритмы для решения типовых задач вычислительной математики	ПК-1.1 ПК-1.2 ПК-1.3 ПК-2.1 ПК-2.2 ПК-3.3	1,2,3	1,2	1	Защита лабораторной работы

4.3. Наименование тем лекций, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лекций	Трудоем- кость (час)
1	1	1. Различие многозадачных, параллельных и	4
		распределенных вычислений.	
		2. Проблемы использования параллелизма.	
		3. Пути достижения параллелизма.	
		4. Способы построения многопроцессорных	
		вычислительных систем.	
2	2	1. Модель алгоритма в виде графа "операнд - операции"	4
		2. Модель параллельных вычислений в виде графа "процесс-	
		pecypc"	
3	3	1. Оценка эффективности параллельных вычислений.	4

		2. Уровни распараллеливания вычислений.	
		3. Этапы построения параллельных алгоритмов и программ.	
4	4	1. Общие способы распараллеливания алгоритмов.	4
		2. Параллельные численные алгоритмы многомерной	
		многоэкстремальной оптимизации.	
	Всего		16

4.4. Наименование тем практических занятий, их содержание и объем в часах Не предусмотрены учебным планом

4.5. Наименование тем лабораторных работ, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лабораторных работ	Трудоем- кость (час)
1	1	Параллельные вычисления на центральном процессоре	8
2	2	Параллельные вычисления на графическом процессоре	8
3	3	Асинхронное программирование	8
4	4	Распределенное программирование	8
	Всего		32

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся (формы текущего контроля приводятся согласно данным таблицы 4.2):

- защиты лабораторных работ:
- 1) Принципы построения параллельных вычислительных систем;
- 2) Моделирование и анализ параллельных вычислений;
- 3) Принципы разработки параллельных алгоритмов и программ;
- 4) Параллельные численные алгоритмы для решения типовых задач вычислительной математики.

Примечание: оценочные материалы (вопросы к проведению лабораторных занятий, задания для самостоятельной работы и др.) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – зачет.

6. Учебно-методическое и информационное обеспечение дисциплины:

а) Основная литература

	сповная литература					
№ п/п	Наименование книги					
1	Биллиг В.А. Параллельные вычисления и многопоточное	2021				
	программирование: учебник [Электронный ресурс]/ В. А. Биллиг. — 2-е					
	изд. — М.: Интернет-Университет Информационных Технологий					
	(ИНТУИТ), 2021. – 310 с. – Режим доступа:					
	https://www.iprbookshop.ru/102044.html.					
2	Левин М.П. Параллельное программирование с использованием	2020				
	ОрепМР: учебное пособие [Электронный ресурс]/ Левин М.П.—					
	Электрон. текстовые данные.— М.: Интернет-Университет					
	Информационных Технологий (ИНТУИТ), 2020.— 133 с.— Режим					
	доступа: http://www.iprbookshop.ru/97572.					
3	Алексеев А.А. Основы параллельного программирования с	2020				
	использованием Visual Studio 2010: учебное пособие [Электронный					
	ресурс]/ Алексеев А.А.— Электрон. текстовые данные.— М.: Интернет-					
	Университет Информационных Технологий (ИНТУИТ), 2020.— 330 с.—					
	Режим доступа: http://www.iprbookshop.ru/57381.					

3	Федотов И.Е. Приемы параллельного программирования: учебное	2019
	пособие [Электронный ресурс]: учебное пособие/ Федотов И.Е.—	
	Электрон. текстовые данные.— М.: Российский новый университет,	
	2019.— 184 с.— Режим доступа: http://www.iprbookshop.ru/21300.	

б) Дополнительная литература

No	Наименование книги		
п/п	Hanwellobanne kim n	издания	
1	Абрамян М.Э. Практикум по параллельному программированию с	2020	
	использованием электронного задачника Programming Taskbook for MPI		
	[Электронный ресурс]/ Абрамян М.Э.— Электрон. текстовые данные.—		
	Ростов-на-Дону: Южный федеральный университет, 2020.— 172 с.—		
	Режим доступа: http://www.iprbookshop.ru/47085.		
3	Туральчук К.А. Параллельное программирование с помощью языка С#	2019	
	[Электронный ресурс]/ Туральчук К.А.— Электрон. текстовые данные.—		
	М.: Интернет-Университет Информационных Технологий (ИНТУИТ),		
	2019.— 189 с.— Режим доступа: http://www.iprbookshop.ru/79714.		

в) методические указания для обучающихся по освоению дисциплины

Русяк И.Г., Кетова К.В., Касаткина Е.В., Вавилова Д.Д. Методические указания к оформлению и выполнению рефератов, лабораторных работ, курсовых работ и проектов, практик, выпускных квалификационных работ для студентов направления «Прикладная математика», 2021. -38 c.- Рег. номер МиЕН 1-1/2021.

г) перечень ресурсов информационно-коммуникационной сети Интернет

- 1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks.
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgi-bin/irbis64r 12/cgiirbis 64.exe?LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS.
- 3. Национальная электронная библиотека http://нэб.рф.
- 4. Мировая цифровая библиотека http://www.wdl.org/ru/.
- 5. Международный индекс научного цитирования Web of Science http://webofscience.com.
- 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp.
- 7. Справочно-правовая система КонсультантПлюс http://www.consultant.ru/.

д) лицензионное и свободно распространяемое программное обеспечение:

- 1. Microsoft Office Standard 2007.
- 2. Среда программирования MS Visual Studio Community 2019.

7. Материально-техническое обеспечение дисциплины:

1. Лекционные занятия.

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебнонаглядные пособия, тематические иллюстрации).

2. Лабораторные работы.

Для лабораторных занятий используются аудитория №6-309, оснащенная следующим оборудованием: проектор, экран, компьютер/ноутбук

3. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова (ауд. 201 корпус № 1, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.7);
- помещения для самостоятельной работы обучающихся (указать ауд. 309, корпус №6, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.48).

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психологомедико-педагогической комиссии (ПМПК).

Лист согласования рабочей программы дисциплины (модуля) на учебный год

по направленно	мма дисциплины (модуля) по направлению подготовки 01.04.04 Прикладная математика» код и наименование направления подготовки (специальности) ости (профилю/программе/специализации) ботка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта» наименование направленности (профиля/программы/специализации)	
согласована на Учебный год	ведение учебного процесса в учебном году: «Согласовано»: заведующий кафедрой, ответственной за РПД (подпись и дата)	ě
2023 – 2024	MRUS 27.04,2023	
2024 – 2025		

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства по дисциплине Параллельное и распределенное программирование

направление (специальность) <u>01.04.04 «Прикладная математика»</u> код, наименование – полностью

направленность (профиль/ программа/специализация) «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта»

наименование – полностью

уровень образования: магистратура

форма обучения: очная

общая трудоемкость дисциплины составляет: 3 зачетных единиц(ы)

1. Оценочные средства

Оценивание формирования компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины.

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами

достижения компетенций, представлены ниже

№ п/п	Коды компетенции и индикаторов	Результат обучения (знания, умения и навыки)	Формы текущего и промежуточного контроля
1	ПК-1.1. Знать: процедуры интеграции программных модулей и компонентов при разработке программного обеспечения	31: средства параллельного программирования 32: средства распределенного программирования 33: алгоритмы распараллеливания задач линейной алгебры и задач, решаемых сеточными методами	Защита лабораторной работы
2	ПК-1.2. Уметь: использовать стандартные программные модули и компоненты при разработке программного обеспечения в области профессиональной деятельности	У1: создавать параллельные программы У2: разрабатывать программные проекты для распределенных систем	Защита лабораторной работы
3	ПК-1.3. Владеть: практическими навыками интеграции программных модулей и компонентов при разработке программного обеспечения в области профессиональной деятельности	H1: Разработка и программная реализация параллельных численных алгоритмов	Защита лабораторной работы
4	ПК-2.1. Знать: принципы построения программно-технической архитектуры и методологию проектирования наукоемкого программного обеспечения	31: средства параллельного программирования 32: средства распределенного программирования 33: алгоритмы распараллеливания задач линейной алгебры и задач, решаемых сеточными методами	Защита лабораторной работы
5	ПК-2.2. Уметь: вырабатывать требования и варианты реализации наукоемкого программного обеспечения	У1: создавать параллельные программы У2: разрабатывать программные проекты для распределенных систем	Защита лабораторной работы
6	ПК-2.3. Владеть: практическими навыками проектирования и разработки наукоемкого программного обеспечения	H1: Разработка и программная реализация параллельных численных алгоритмов	Защита лабораторной работы

Типовые задания для оценивания формирования компетенций

Наименование: зачет

Представление в ФОС: перечень вопросов

Перечень вопросов для проведения зачета:

- 1 Представление алгоритма. Определение реализации алгоритма, последовательного и параллельного представления алгоритма.
- 2 Определение сети Петри. Разметка сети Петри. Правила срабатывания переходов. Работа сети.
- 3 Граф достижимости сети Петри. Понятия ограниченной и безопасной сети. Понятие тупиковой разметки сети Петри.
- 4 Определение процесса. Два главных типа взаимодействия параллельных процессов. Задача взаимного исключения (определение).
- 5 Понятие критического интервала, разделяемого и неразделяемого ресурса. Пример сети Петри, моделирующей взаимное исключение.
- 6 Семафоры (определение). Операции над семафорами. Пример сети Петри, моделирующей операции над семафорами.
- 7 Определение взаимной блокировки. Необходимые условия дедлока. Привести пример сети Петри, допускающей дедлок.
- 8 Определение взаимной блокировки. Два подхода к борьбе с дедлоками.
- 9 Механизм «условных критических интервалов». Пример решения задачи «читателиписатели» с помощью этого механизма.
- 10 Монитор. Общее представление. Пример монитора для задачи «производительпотребитель».
- 11 Модели параллельно-последовательного программирования. MPMD и SPMD модели программирования.
- 12 Параллельная программа разделения множеств (Дейкстры), идея доказательства её корректности.
- 13 Ускорение и эффективность вычислений. Закон Амдала.
- 14 Событийное управление (определение). Типичные «локальные» ситуации, которые могут возникнуть в событийном управлении, представить сетью Петри.
- 15 Событийное управление. Операции над сетями Петри (присоединения, исключения, итераций, наложения, разметки), продемонстрировать примерами.
- 16 Потоковое управление (определение). Операции: преобразователь, синхронизатор, распределитель, селектор, арбитр. Пример реализации этими операциями условного выражения: if a < b then a + c else a c.
- 17 Потоковое управление (определение). Волновые вычисления. Пример волнового процессора умножения матрицы на матрицу.
- 18 Динамическое управление (определение). Понятие программы в асинхронном динамическом программировании.
- 19 Вычислительная модель Э. Дейкстры (охраняемые команды). Вычислительная модель Ч.Хоара последовательных сообщающихся процессов.
- 20 Синхронные вычисления. Определение систолического вычислителя. Три фазы систолического алгоритма. Пример систолического процессора для умножения матрицы на вектор (привести схему и программу).

Критерии оценки:

Приведены в разделе 2.

Наименование: защита лабораторных работ.

Представление в ФОС:

Примеры вопросов, представляемых студенту для защиты лабораторной работы

- 1. Расскажите преимущества и недостатки использования библиотеки ТРL для реализации параллельных вычислений.
- 2. Для чего используется синхронизация потоков?

- 3. Какие делегаты используются для создания потоков?
- 4. Назовите типы памяти, доступные нитям в технологии CUDA.
- 5. Что такое асинхронное программирование?
- 6. Примеры распределенных программ.

Критерии оценки:

Приведены в разделе 2.

Наименование: тест

Представление в ФОС: набор вопросов для проведения тестирования

Компетенция

ПК-1. Способен интегрировать программные модули и компоненты при разработке программного обеспечения в области профессиональной деятельности.

Компетенция

ПК-2. Способен проектировать и разрабатывать наукоемкое программное обеспечение.

Оценочные материалы

Компетенция ПК-1. Способен интегрировать программные модули и компоненты при разработке программного обеспечения в области профессиональной деятельности.

Проведение работы заключается в ответе на вопросы теста.

- 1. Пусть доля последовательных вычислений в применяемом алгоритме обработки данных составляет 75%. Тогда, согласно закону Амдала, ускорение процесса вычислений при использовании 5 процессоров ограничивается величиной:
 - A) 5
 - B) 2,5
 - C) 1,66
 - D) 1,25
- 2. Что такое эффективность параллельного алгоритма?
 - А) отношение размера входных данных к размеру выходных данных
 - В) произведение минимального времени выполнения параллельного алгоритма и количества процессоров
 - С) отношение ускорения алгоритма к количеству процессоров
 - D) минимальное время выполнения параллельного алгоритма
- 3. Какая из представленных типов памяти GPU обладает наименьшей скоростью работы?
 - А) Разделяемая память
 - В) Константная память
 - С) Глобальная память

- D) Текстурная память
- 4. Функция, вызываемая из CPU и выполняемая на GPU, должна определяться спецификатором
 - A) device .
 - B) __global__.
 - C) __host__.
 - D) __syncthreads.
- 5. Какой из режимов вычислений поддерживает классический последовательный компьютер фон Неймана?
 - А) обработка нескольких инструкций и одиночного элемента данных в каждый момент времени.
 - В) обработка одиночной инструкции и нескольких потоков данных в каждый момент времени.
 - С) обработка одиночной инструкции и одиночного элемента данных в каждый момент времени.
 - D) обработка нескольких инструкций и нескольких потоков данных в каждый момент времени.

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	D	С	С	В	С

Компетенция ПК-2. Способен проектировать и разрабатывать наукоемкое программное обеспечение.

Проведение работы заключается в ответе на вопросы теста.

- 1. Метод конвейерного параллелизма:
 - А) приводит к тому, что эффективная производительность каждого из задействованных процессоров не превосходит производительности самого медленного процессора.
 - В) используется в автомобильной промышленности.
 - С) является методом динамической балансировки загрузки.
 - D) является методом статической балансировки загрузки процессоров.
- 2. Для передачи массива между процессорными узлами системы с распределенной памятью:
 - А) следует передавать данные поэлементно

- В) следует передавать данные одним блоком
- С) следует использовать семафоры
- D) следует использовать мониторы
- 3. Под кластером обычно понимается:
 - А) множество отдельных компьютеров, подключенных к сети Интернет
 - В) множество отдельных компьютеров, объединенных в локальную вычислительную сеть
 - С) множество отдельных компьютеров, объединенных в сеть, для которых при помощи специальных аппаратно-программных средств обеспечивается возможность унифицированного управления, надежного функционирования и эффективного использования
- 4. При асинхронном способе взаимодействия участники взаимодействия:
 - А) обязательно ожидают готовности остальных участников взаимодействия, сами операции завершаются только после полного окончания всех коммуникационных действий.
 - В) в зависимости от ситуации могут, как дожидаться, так и не дожидаться завершения передачи данных.
 - С) могут не дожидаться полного завершения действий по передаче данных.
- 5. В основе классификации вычислительных систем в систематике Флинна используются:
 - А) показатели производительности вычислительных систем.
 - В) понятия потоков команд и данных
 - С) количество имеющихся процессоров и принцип разделения памяти между процессорами.

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	A	В	С	С	В

Критерии оценки:

Приведены в разделе 2.

2. Критерии и шкалы оценивания

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов	
	Лабораторная работа выполнена в полном объеме; Представлен отчет, содержащий необходимые расчеты, выводы, оформленный	
Лабораторная работа	в соответствии с установленными требованиями; Продемонстрирован удовлетворительный уровень владения материалом при защите лабораторной работы, даны правильные ответы не менее чем на 50% заданных вопросов.	

Промежуточная аттестация по дисциплине проводится в форме зачета.

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов	
«зачтено»	80-100	
«не зачтено»	40-80	

Eсли сумма набранных баллов менее 40 – обучающийся не допускается до промежуточной аттестации.

Если сумма баллов составляет от 40 до 100 баллов, обучающийся допускается к зачету.

Билет к зачету включает 1 теоретическое и 1 практическое задание.

Промежуточная аттестация проводится в письменной форме.

Время на подготовку: 60 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки:

Оценка	Критерии оценки		
«зачтено» Обучающийся демонстрирует знание основного учебно-програматериала в объеме, необходимом для дальнейшей учебы, умесприменять его при выполнении конкретных заданий, предусмопрограммой дисциплины			
«не зачтено»	Обучающийся демонстрирует значительные пробелы в знаниях основного учебно-программного материала, допустил принципиальные ошибки в выполнении предусмотренных программой заданий и не способен продолжить обучение		