Group Theory Notes

Leon Lee

September 16, 2024

Contents

1	Recapping from previous courses		
	1.1	Groups, Subgroups, Cosets, oh my!	3
	1.2	Group Homomorphisms	5

1 Recapping from previous courses

1.1 Groups, Subgroups, Cosets, oh my!

Definition 1.1.1: Group

A **group** consists of a set G together with a function $G \times G \to G$ which maps an ordered pair $(g,h) \in G \times G$ to an element $g*h \in G$. The following axioms must be satisfied:

- 1. Associativity: (g * h) * k = g * (h * k) for each triple $(g, h, k) \in G \times G \times G$
- 2. **Identity**: There is an element $e \in G$ s.t. e * g = g = g * e for each element $g \in G$
- 3. **Inverse**: To each element $g \in G$ there is an element $h \in G$ s.t. gh = e = hg

Every single course seems to have its own definition for a group, this one is a bit more compact than others. FPM had the **closure** axiom, but that is satisfied by the definition of the function $G \times G \to G$

Note on notation: Usually just write gh instead of g * h. Additionally g^{-1} is the inverse of g

Definition 1.3.1: Subgroups

If H is a nonempty subset of G, then H is a **subgroup** provided that

- 1. $hk \in H$ for all $h, k \in H$
- 2. $h^{-1} \in H$ for each $h \in H$

Alternatively, we can say "H is closed under the group operation"

– Notation -

- $H \leq G$ means H is a subgroup of G, whereas $H \subseteq G$ means H is a subset of G.
- H < G means that H is a subgroup of G and also $H \neq G$.
- A subgroup is **proper** if $H \neq G$
- A subgroup is **non-trivial** if $H \neq \{e\}$

Note: $e \in H$ follows from the definition, and associativity follows from the fact that G is a group. Any subgroup H of G is a group using the same product as G

Definition 1.3.6: Cosets

Let $H \leq G$ and let $g \in G$. Then the **left coset of** H **determined by** g is the set $gH := \{gh : h \in H\}$. $Hg := \{hg : h \in H\}$ is the **right coset of** H **determined by** g

——— Notation -

- The set of left cosets of H is denoted G/H, the set of right cosets is denoted $H\backslash G$.
- The number of elements in a group G is denoted by #G or |G|, and is known as the **order** of G. We will use |G| in this course.
- The number of left cosets of a subgroup H of G is the **index** of H in G and is denoted by |G:H| or [G:H] (That is, [G:H]=|G/H|). We will use [G:H] in this course.

Theorem 1.3.8: Lagrange's Theorem

Let H be a subgroup of a finite group G. Then

$$|G| = [G:H] \cdot |H|$$

Consequences and Results

- The order of a subgroup must divide the order of the group, e.g. A group of order 12 cannot have a subgroup of order 8
- The converse of Lagrange's Theorem is false, e.g. there is a group of order 12 that doesn't have a subgroup of order 6

Theorem 1.3.9: Cauchy's Theorem

If G is a finite group and p is a prime that divides the order of G, then G has a subgroup of order p

Definition 1.3.10: Order of an element

Let $g \in G$. The **order** of g is the least positive integer such that $g^n = g$ or ∞ if such n does not exist. We write the order of g as o(g). Note that $o(g) = |\langle g \rangle|$.

It thus follows from Lagrange's Theorem that the order of an element of G must divide |G|, since if o(g) = n then $\langle g \rangle = \{g, g^2, \dots, g^n = e\}$ is a subgroup of G. We also have:

Corollary 1.3.11: If |G| is prime, then G is cyclic

Example A: Examples of Groups and Subgroups

- 1.2.1 S_n , the *n*-th symmetric group is the group of permutations of $\{1, 2, ..., n\}$. The group operation is composition of functions
- 1.2.6 A group (G, *) is **abelian** if g * h = h * g for all $g, h \in G$
 - Let F be a field
 - The **general linear group** GL(n,F) is the set of all invertible $n \times n$ matrices
 - The **special linear group** SL(n,F) is the set of all invertible $n \times n$ matrices with determinant equal to 1
- 1.3.5 Let G be a group and let $g \in G$. Then $\langle g \rangle := \{g^n : n \in \mathbb{Z}\}$ is a subgroup of G. It is called the **subgroup generated by** g. If $G = \langle g \rangle$ for some $g \in G$, then G is referred to as **cyclic**
- 1.3.7 A subgroup $H \leq G$ is **normal** if gH = Hg for all $g \in G$. In this case we write $H \subseteq G$

1.2 Group Homomorphisms

Definition 1.4.1: Group Homomorphism

Let G, H be groups. A function $\phi: G \to H$ such that

$$\phi(ab) = \phi(a)\phi(b)$$

for all $a, b \in G$ is a **group homomorphism**

Example 1.4.2: Cyclic Group Homomorphisms

Let C_n be the **cyclic group of order** n. We can think of C_n as the set of rotations of an equilaterial n-gon. If g is a rotation of $2\pi/n$ radians, then $C_n = \{g, g^2, \dots, g^n = e\}$. The group C_n is cyclic since all elements are powers of a single element g. Then

$$\phi: \mathbb{Z} \to C_n$$

$$a \mapsto q^a$$

is a group homomorphism. (proof in lecture notes)

Definition 1.4.3: Group Isomorphism

If G and H are groups and $\psi: G \to H$ is a bijective group homomorphism, we say that ψ is a **group isomorphism** and that G and H are **isomorphic**

Definition 1.4.5: Kernel of a Homomorphism

Let $\phi: G \to H$ be a group homomorphism. The **kernel** of ϕ is $\{g \to G: \phi(g) = e\}$

Definition 1.4.6: Automorphisms

Let G be a group. The st of all isomorphisms $\phi: G \to G$ is also a group. It is called the **automorphism group of** G, and is written $\operatorname{Aut}(G)$. The group operation is composition of functions

Definition 1.4.8: Direct Product

Let G, H be groups. The **product** (or **direct product**) $G \times H$ is a group, with group operation * given by

$$(g,h)*(g',h') = (g*_G g',h*_G h')$$

Note: we usually just say that (g,h)*(g',h')=(gg',hh')