Mathematik (AHS)

Formelsammlung

für die standardisierte kompetenzorientierte schriftliche Reifeprüfung (ab Schuljahr 2017/18)

1 Mengen

\in	ist Element von
∉	ist nicht Element von
\cap	Durchschnitt(smenge)
U	Vereinigung(smenge)
C	echte Teilmenge
⊆	Teilmenge
\	Differenzmenge ("ohne")
{}	leere Menge

Zahlenmengen

N = {0, 1, 2,}	natürliche Zahlen
\mathbb{Z}	ganze Zahlen
Q	rationale Zahlen
\mathbb{R}	reelle Zahlen
\mathbb{C}	komplexe Zahlen
$\mathbb{R}^{^{+}}$	positive reelle Zahlen
\mathbb{R}_0^+	positive reelle Zahlen mit Null

2 Vorsilben

Tera-	Т	1012	Dezi-	d	10 ⁻¹
Giga-	G	10 ⁹	Zenti-	С	10 ⁻²
Mega-	М	10 ⁶	Milli-	m	10 ⁻³
Kilo-	k	10 ³	Mikro-	μ	10 ⁻⁶
Hekto-	h	10 ²	Nano-	n	10 ⁻⁹
Deka-	da	10¹	Pico-	р	10 ⁻¹²

3 Potenzen

Potenzen mit ganzzahligen Exponenten

 $a \in \mathbb{R}; n \in \mathbb{N} \setminus \{0\}$ $a \in \mathbb{R} \setminus \{0\}; n \in \mathbb{N} \setminus \{0\}$

$$a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \text{ Faktoren}}$$
 $a^1 = a$ $a^0 = 1$ $a^{-1} = \frac{1}{a}$ $a^{-n} = \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$

Potenzen mit rationalen Exponenten (Wurzeln)

 $a, b \in \mathbb{R}_0^+$; $n, k \in \mathbb{N} \setminus \{0\}$ mit $n \ge 2$

$$a = \sqrt[n]{b} \iff a^n = b$$
 $a^{\frac{1}{n}} = \sqrt[n]{a}$ $a^{\frac{k}{n}} = \sqrt[n]{a^k}$ $a^{-\frac{k}{n}} = \frac{1}{\sqrt[n]{a^k}}$ mit $a > 0$

Rechenregeln

$$a, b \in \mathbb{R} \setminus \{0\}; r, s \in \mathbb{Z}$$

bzw. $a, b \in \mathbb{R}^+; r, s \in \mathbb{Q}$

$$a,b \in \mathbb{R}_0^+; m,n,k \in \mathbb{N} \setminus \{0\} \text{ mit } m,n \ge 2$$

$$a^r \cdot a^s = a^{r+s}$$

$$\frac{a^r}{a^s} = a^{r-s}$$

$$(a^r)^s = a^{r \cdot s}$$

$$(a \cdot b)^r = a^r \cdot b^r$$

$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{a^k} = (\sqrt[n]{a})^k$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad (b \neq 0)$$

$$\sqrt[n]{\sqrt[n]{a}} = \sqrt[n \cdot m]{a}$$

Binomische Formeln

 $a, b \in \mathbb{R}; n \in \mathbb{N}$

$$(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

$$(a - b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$

$$(a + b) \cdot (a - b) = a^2 - b^2$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} \cdot b^k$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^{n-k} \cdot b^k$$
$$(a-b)^n = \sum_{k=0}^n (-1)^k \cdot \binom{n}{k} \cdot a^{n-k} \cdot b^k$$

4 Logarithmen

 $a, b, c \in \mathbb{R}^+$ mit $a \neq 1; x, r \in \mathbb{R}$

$$x = \log_a(b) \Leftrightarrow a^x = b$$

$$\log (h \cdot c) = \log (h) + \log (h)$$

$$\log_a(\frac{-}{c}) =$$

$$\log_a(b \cdot c) = \log_a(b) + \log_a(c) \qquad \log_a(b) - \log_a(c) \qquad \log_a(b^r) = r \cdot \log_a(b)$$

$$og_a(b^r) = r \cdot log_a(b)$$

$$\log_a(a^x) = x$$

$$\log_a(a) = 1$$

$$\log_a(1) = 0$$

$$\log_a\left(\frac{1}{a}\right) = -1$$

natürlicher Logarithmus (Logarithmus zur Basis e): $ln(b) = log_e(b)$ dekadischer Logarithmus (Logarithmus zur Basis 10): $lg(b) = log_{10}(b)$

5 Quadratische Gleichungen

 $p, q \in \mathbb{R}$

$$a, b, c \in \mathbb{R}$$
 mit $a \neq 0$

$$x^2 + p \cdot x + q = 0$$

$$X_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

$$a \cdot x^2 + b \cdot x + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Satz von Vieta

 x_1 und x_2 sind genau dann die Lösungen der Gleichung $x^2 + p \cdot x + q = 0$, wenn gilt:

$$X_1 + X_2 = -p$$

$$X_1 \cdot X_2 = q$$

Zerlegung in Linearfaktoren:

$$X^{2} + D \cdot X + Q = (X - X_{1}) \cdot (X - X_{2})$$

6 Ebene Figuren

A ... Flächeninhalt

u ... Umfang

Dreieck

$$u = a + b + c$$

Allgemeines Dreieck

Heron'sche Flächenformel

$$A = \sqrt{s \cdot (s - a) \cdot (s - b) \cdot (s - c)} \text{ mit } s = \frac{a + b + c}{2}$$

Rechtwinkeliges Dreieck mit Hypotenuse c und Katheten a, b

$$A = \frac{a \cdot b}{2} = \frac{c \cdot h_c}{2}$$

Satz des Pythagoras

$$a^2 + b^2 = c^2$$

Viereck

Quadrat

$$A = a^2$$

$$u = 4 \cdot a$$

Rechteck

$$A = a \cdot b$$

$$u = 2 \cdot a + 2 \cdot b$$

Raute (Rhombus)

$$A = a \cdot h_a = \frac{e \cdot f}{2}$$

$$u = 4 \cdot a$$

Parallelogramm

$$A = a \cdot h_a = b \cdot h_b$$

$$u = 2 \cdot a + 2 \cdot b$$

Trapez

$$A = \frac{(a+c) \cdot h}{2}$$

$$u = a + b + c + d$$

Deltoid

$$A = \frac{e \cdot f}{2}$$

$$u = 2 \cdot a + 2 \cdot b$$

Kreis

$$A = \pi \cdot r^2 = \frac{\pi \cdot d^2}{4}$$

$$u = 2 \cdot \pi \cdot r = \pi \cdot d$$

Kreisbogen und Kreissektor

 α im Gradmaß (°)

$$b = \pi \cdot r \cdot \frac{\alpha}{180^{\circ}}$$

7 Körper

V... Volumen

O ... Inhalt der Oberfläche

G... Inhalt der Grundfläche

M ... Inhalt der Mantelfläche

u_G ... Umfang der Grundfläche

Prisma

$$V = G \cdot h$$

$$M = u_{\rm G} \cdot h$$

$$O = 2 \cdot G + M$$

Drehzylinder

$$V = G \cdot h$$

$$M = u_{\rm G} \cdot h$$

$$O = 2 \cdot G + M$$

Pyramide

$$V = \frac{G \cdot h}{3}$$

$$O = G + M$$

Drehkegel

$$V = \frac{G \cdot h}{3}$$

$$M = \pi \cdot r \cdot s$$

$$O = G + M$$

Kugel

$$V = \frac{4}{3} \cdot \pi \cdot r^3$$

$$O = 4 \cdot \pi \cdot r^2$$

Trigonometrie

Umrechnung zwischen Gradmaß und Bogenmaß

Trigonometrie im rechtwinkeligen Dreieck

Sinus:

 $sin(\alpha) = \frac{Gegenkathete \ von \ \alpha}{a}$

Hypotenuse

Cosinus: $cos(\alpha) = \frac{Ankathete von \alpha}{Hypotenuse}$

Tangens: $tan(\alpha) = \frac{Gegenkathete von \alpha}{Ankathete von \alpha}$

Trigonometrie im Einheitskreis

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \text{ für } \cos(\alpha) \neq 0$$

9 Vektoren

P, Q ... Punkte

Vektoren in \mathbb{R}^2

Pfeil von P nach Q:

$$P = (p_1 | p_2), Q = (q_1 | q_2)$$

$$\overrightarrow{PQ} = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \end{pmatrix}$$

Rechenregeln in R²

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \end{pmatrix}$$

$$k \cdot \overrightarrow{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \end{pmatrix} \text{ mit } k \in \mathbb{R}$$

Skalares Produkt in \mathbb{R}^2

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 \cdot b_1 + a_2 \cdot b_2$$

Betrag (Länge) eines Vektors in \mathbb{R}^2

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2}$$

Normalvektoren zu $\overrightarrow{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ in \mathbb{R}^2

$$\overrightarrow{n} = k \cdot \begin{pmatrix} -a_2 \\ a_1 \end{pmatrix}$$
 mit $k \in \mathbb{R} \setminus \{0\}$ und $|\overrightarrow{a}| \neq 0$

Orthogonalitätskriterium in \mathbb{R}^2 und \mathbb{R}^3

$$\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b} \text{ mit } |\vec{a}| \neq 0; |\vec{b}| \neq 0$$

Vektoren in \mathbb{R}^n

Pfeil von P nach Q:

$$P = (p_1|p_2|...|p_n), Q = (q_1|q_2|...|q_n)$$

$$\overrightarrow{PQ} = \begin{cases} q_1 - p_1 \\ q_2 - p_2 \\ \vdots \\ q_n - p_n \end{cases}$$

Rechenregeln in \mathbb{R}^n

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \\ \vdots \\ a_n \pm b_n \end{pmatrix}$$

$$k \cdot \overrightarrow{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \\ \vdots \\ k \cdot a_n \end{pmatrix} \text{ mit } k \in \mathbb{R}$$

Skalares Produkt in \mathbb{R}^n

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n$$

Betrag (Länge) eines Vektors in \mathbb{R}^n

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

Winkel φ zwischen \overrightarrow{a} und \overrightarrow{b} in \mathbb{R}^2 und \mathbb{R}^3

$$\cos(\varphi) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} \text{ mit } |\overrightarrow{a}| \neq 0; |\overrightarrow{b}| \neq 0$$

Parallelitätskriterium in \mathbb{R}^2 und \mathbb{R}^3

$$\vec{a} \parallel \vec{b} \iff \vec{a} = k \cdot \vec{b} \text{ mit } k \in \mathbb{R} \setminus \{0\}$$

$$\text{und } |\vec{a}| \neq 0; |\vec{b}| \neq 0$$

10 Geraden

Parameterdarstellung einer Geraden g in \mathbb{R}^2 und \mathbb{R}^3

$$g: X = P + t \cdot \overrightarrow{g} \text{ mit } t \in \mathbb{R}$$

Gleichung einer Geraden g in \mathbb{R}^2

explizite Form der Geradengleichung: $g: y = k \cdot x + d$ dabei gilt $k = \tan(\alpha)$ allgemeine Geradengleichung: $g: a \cdot x + b \cdot y = c$ Normalvektordarstellung: $g: \vec{n} \cdot X = \vec{n} \cdot P$ dabei gilt $\vec{n} \parallel \begin{pmatrix} a \\ b \end{pmatrix}$ für $\begin{pmatrix} a \\ b \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

11 Änderungsmaße

Für eine auf einem Intervall [a; b] definierte reelle Funktion f gilt:

Absolute Änderung von f in [a; b]

$$f(b) - f(a)$$

Relative (prozentuelle) Änderung von f in [a; b]

$$\frac{f(b) - f(a)}{f(a)} \text{ mit } f(a) \neq 0$$

Differenzenquotient (mittlere Änderungsrate) von f in [a; b] bzw. $[x; x + \Delta x]$

$$\frac{f(b) - f(a)}{b - a}$$
 bzw. $\frac{f(x + \Delta x) - f(x)}{\Delta x}$ mit $b \neq a$ bzw. $\Delta x \neq 0$

Differenzialquotient (lokale bzw. "momentane" Änderungsrate) von f an der Stelle x

$$f'(x) = \lim_{x_1 \to x} \frac{f(x_1) - f(x)}{x_1 - x}$$
 bzw. $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$

12 Ableitung und Integral

 $f, g, h \dots$ auf ganz \mathbb{R} oder in einem Intervall definierte differenzierbare Funktionen

f' ... Ableitungsfunktion von f

F... Stammfunktion von f

g' ... Ableitungsfunktion von g

G ... Stammfunktion von g

h' ... Ableitungsfunktion von h

H ... Stammfunktion von h

 $C, k, q \in \mathbb{R}; a \in \mathbb{R}^+ \setminus \{1\}$

Bestimmtes Integral

$$\int f(x) dx = F(x) + C \text{ mit } F' = f$$

Unbestimmtes Integral

$$\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

Funktion	Ableitungsfunktion	Stammfunktion
f(x) = k	f'(x)=0	$F(x) = k \cdot x$
$f(x) = x^q$	$f'(x) = q \cdot x^{q-1}$	$F(x) = \frac{x^{q+1}}{q+1} \text{ für } q \neq -1$ $F(x) = \ln(x) \text{ für } q = -1$
$f(x) = e^x$	$f'(x)=e^x$	$F(x) = e^x$
$f(x)=a^x$	$f'(x) = \ln(a) \cdot a^x$	$F(x) = \frac{a^x}{\ln(a)}$
$f(x) = \sin(x)$	$f'(x) = \cos(x)$	$F(x) = -\cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	$F(x) = \sin(x)$
$g(x) = k \cdot f(x)$	$g'(x) = k \cdot f'(x)$	$G(x) = k \cdot F(x)$
$h(x) = f(x) \pm g(x)$	$h'(x) = f'(x) \pm g'(x)$	$H(x) = F(x) \pm G(x)$
$g(x) = f(k \cdot x)$	$g'(x) = k \cdot f'(k \cdot x)$	$G(x) = \frac{1}{k} \cdot F(k \cdot x)$

13 Statistik

 x_1, x_2, \dots, x_n ... eine Liste von n reellen Zahlen $x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$... geordnete Liste mit n Werten

Arithmetisches Mittel

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$$

Median

$$\tilde{X} = \begin{cases} X_{\left(\frac{n+1}{2}\right)} & \dots \text{ für } n \text{ ungerade} \\ \frac{1}{2} \cdot \left(X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)}\right) \dots \text{ für } n \text{ gerade} \end{cases}$$

Streuungsmaße

 $s^2 \dots$ (empirische) Varianz einer Datenliste

s ... (empirische) Standardabweichung einer Datenliste

$$S^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$S = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

Wenn aus einer Stichprobe vom Umfang n die Varianz einer Grundgesamtheit geschätzt werden soll:

$$S_{n-1}^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \overline{x})^2$$

$$S_{n-1} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

14 Wahrscheinlichkeit

 $n \in \mathbb{N} \setminus \{0\}; k \in \mathbb{N} \text{ mit } k \leq n$

A, B ... Ereignisse

 $\neg A$ bzw. \overline{A} ... Gegenereignis von A

 $A \wedge B$ bzw. $A \cap B \dots A$ und B (sowohl das Ereignis A als auch das Ereignis B treten ein)

 $A \vee B$ bzw. $A \cup B \dots A$ oder B (mindestens eines der beiden Ereignisse A und B tritt ein)

P(A) ... Wahrscheinlichkeit für das Eintreten des Ereignisses A

P(A|B) ... Wahrscheinlichkeit für das Eintreten des Ereignisses A unter der Voraussetzung, dass B eingetreten ist (bedingte Wahrscheinlichkeit)

Fakultät (Faktorielle)

$$n! = n \cdot (n-1) \cdot ... \cdot 1$$
 $0! = 1$

Binomialkoeffizient

$$1! = 1 \qquad \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Wahrscheinlichkeit bei einem Laplace-Versuch

$$P(A) = \frac{\text{Anzahl der für } A \text{ günstigen Ausgänge}}{\text{Anzahl der möglichen Ausgänge}}$$

Elementare Regeln

$$P(\neg A) = 1 - P(A)$$

$$P(A \wedge B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

$$P(A \land B) = P(A) \cdot P(B)$$
 ... wenn A und B (stochastisch) unabhängig voneinander sind

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

$$P(A \lor B) = P(A) + P(B) \dots$$
 wenn A und B unvereinbar sind

Erwartungswert μ einer diskreten Zufallsvariablen X mit den Werten x_1, x_2, \dots, x_n

$$\mu = E(X) = x_1 \cdot P(X = x_1) + x_2 \cdot P(X = x_2) + \dots + x_n \cdot P(X = x_n) = \sum_{i=1}^{n} x_i \cdot P(X = x_i)$$

Varianz σ^2 einer diskreten Zufallsvariablen X mit den Werten $x_1, x_2, ..., x_n$

$$\sigma^2 = V(X) = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(X = x_i)$$

Standardabweichung σ

$$\sigma = \sqrt{V(X)}$$

Binomialverteilung

 $n \in \mathbb{N} \setminus \{0\}; k \in \mathbb{N}; p \in \mathbb{R} \text{ mit } k \le n \text{ und } 0 \le p \le 1$

Zufallsvariable X ist binomialverteilt mit den Parametern n und p

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$

$$E(X) = \mu = n \cdot p$$

$$V(X) = \sigma^2 = n \cdot p \cdot (1 - p)$$

Normalverteilung

 $\mu, \sigma \in \mathbb{R} \text{ mit } \sigma > 0$

f ... Dichtefunktion

 ϕ ... Dichtefunktion der Standardnormalverteilung

 ϕ ... Verteilungsfunktion der Standardnormalverteilung

Normalverteilung $N(\mu; \sigma^2)$: Zufallsvariable X ist normalverteilt mit dem Erwartungswert μ und der Standardabweichung σ bzw. der Varianz σ^2

$$P(X \le x_1) = \int_{-\infty}^{x_1} f(x) \, \mathrm{d}x = \int_{-\infty}^{x_1} \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{1}{2} \cdot \frac{(x - \mu)^2}{\sigma}} \, \mathrm{d}x$$

Wahrscheinlichkeiten für σ -Umgebungen

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 0.683$$

$$P(\mu - 2 \cdot \sigma \le X \le \mu + 2 \cdot \sigma) \approx 0.954$$

$$P(\mu - 3 \cdot \sigma \le X \le \mu + 3 \cdot \sigma) \approx 0.997$$

Standardnormalverteilung N(0; 1)

$$Z = \frac{x - \mu}{\sigma}$$

$$\phi(z) = P(Z \le z) = \int_{-\infty}^{z} \varphi(x) \, \mathrm{d}x = \frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{-\infty}^{z} e^{-\frac{x^2}{2}} \, \mathrm{d}x$$

$$\phi(-z) = 1 - \phi(z)$$

$$P(-z \le Z \le z) = 2 \cdot \phi(z) - 1$$

$$P(-z \le Z \le z)$$
 = 90 %
 = 95 %
 = 99 %

 z
 $\approx 1,645$
 $\approx 1,960$
 $\approx 2,576$

Konfidenzintervall

h ... relative Häufigkeit in einer Stichprobe

p ... unbekannter relativer Anteil in der Grundgesamtheit

γ ... Konfidenzniveau (Vertrauensniveau)

 γ -Konfidenzintervall für p (diejenigen Werte p, in deren γ -Schätzbereich der Wert h liegt):

$$\left[h-z\cdot\sqrt{\frac{h\cdot(1-h)}{n}};\,h+z\cdot\sqrt{\frac{h\cdot(1-h)}{n}}\right],\,\text{wobei für }z\,\,\text{gilt:}\,\,\gamma=2\cdot\,\phi(z)-1$$

15 Größen und ihre Einheiten

Größe Temperatur	Einheit Grad Celsius bzw. Kelvin	Symbol °C K	Beziehung $\Delta t = \Delta T$
Frequenz	Hertz	Hz	1 Hz = 1 s ⁻¹
Energie, Arbeit, Wärmemenge	Joule	J	$1 J = 1 kg \cdot m^2 \cdot s^{-2}$
Kraft	Newton	N	$1 N = 1 kg \cdot m \cdot s^{-2}$
Drehmoment	Newtonmeter	N·m	$1 \text{ N} \cdot \text{m} = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$
elektrischer Widerstand	Ohm	Ω	1 Ω = 1 V · A ⁻¹ = 1 kg · m ² · A ⁻² · s ⁻³
Druck	Pascal	Pa	1 Pa = 1 N · m ⁻² = 1 kg · m ⁻¹ · s ⁻²
elektrische Stromstärke	Ampere	Α	1 A = 1 C · s ⁻¹
elektrische Spannung	Volt	V	$1 V = 1 \cdot J \cdot C^{-1} =$ $1 kg \cdot m^2 \cdot A^{-1} \cdot s^{-3}$
Leistung	Watt	W	$1 W = 1 J \cdot s^{-1} =$ $1 kg \cdot m^2 \cdot s^{-3}$

16 Physikalische Größen und Definitionen

Dichte	$\varrho = \frac{m}{V}$		
Leistung	$P = \frac{\Delta E}{\Delta t}$	$P = \frac{\Delta W}{\Delta t}$	$P = \frac{dW(t)}{dt}$
Kraft	F = m · a		
Arbeit	$W = F \cdot s$		
	$W = \int F(s) ds$	$F = \frac{dW}{ds}$	
kinetische Energie	$E_{\rm kin} = \frac{1}{2} \cdot m \cdot v^2$		
potenzielle Energie	$E_{\text{pot}} = m \cdot g \cdot h$		
gleichförmige geradlinige Bewegung	$V = \frac{S}{t}$	$v = \frac{ds}{dt}$	$v(t) = s'(t) = \frac{ds}{dt}$
gleichmäßig beschleunigte geradlinige Bewegung	$V = a \cdot t + V_0$	$a = \frac{dv}{dt}$	$a(t) = v'(t) = \frac{dv}{dt} = s''(t) = \frac{d^2s}{dt^2}$

17 Finanzmathematische Grundlagen

Zinseszinsrechnung

 K_0 ... Anfangskapital

 K_n ... Endkapital

p... Jahreszinssatz in Prozent

$$K_n = K_0 \cdot (1 + i)^n \text{ mit } i = \frac{p}{100}$$

Kosten-Preis-Theorie

x produzierte, angeboter	ne, nachgefragte bzw. verkaufte Menge ($x \ge 0$)
variable Kosten	$K_{\vee}(x)$
Fixkosten	K_{f}
(Gesamt-)Kosten	$K(x) = K_{\nu}(x) + K_{\rm f}$
Grenzkosten	K'(x)
Nachfragepreis	p(x)
Erlös/Ertrag	$E(x) = p(x) \cdot x$
Grenzerlös	E'(x)
Gewinn	G(x) = E(x) - K(x)
Grenzgewinn	G'(x)
Break-even-Point/Gewinns	schwelle $E(x) = K(x)$ bei (erster) Nullstelle x der Gewinnfunktion