ECE 220 Computer Systems & Programming

Lecture 1 – Course Overview & LC-3 Review January 15, 2019

1

Tools & Resources

- Course wiki course info, MP write-up, exam info, etc.
- Github MP/LAB release and submission
- Piazza discussion board monitored by TAs
- Compass online grade book
- CBTF facility for taking programming quizzes, reserve your seat 10 days in advance at https://cbtf.engr.illinois.edu
- Emergency response
- Resources: CARE, counseling center, DRES

ECE ILLINOIS ILLLINOIS

Course Logistics

- 4 Lectures to choose from (Hu, Chen, Bhowmik, Moon)
- Programming Studio on Fridays (10 makeup pts/week towards MPs)
- MPs: due every Thursday @ 10pm (100 pts each, late penalty 2pts/hour)
- Quizzes: 6 programming quizzes, lowest score dropped
- Exams: 2 midterms and a final Exam (paper format)
- Textbook: Patt & Patel, Introduction to Computing Systems: from bits to gates to C and beyond. 2nd Edition.
- Academic Integrity

Grading Mechanics:

MPs: 10% Quizzes: 20% Midterms: 22% x 2

Final Exam: 26%

ECE ILLINOIS

THILINOIS

2

Levels of Transformation in Computing Systems

Problems
Algorithms
Language
Instruction Set Architecture
Microarchitecture
Circuits
Devices
Electrons

ECE ILLINOIS

LC-3 Review - The von Neumann Model

- 1. Memory
- 2. Processing Unit
- 3. Input
- 4. Output
- 5. Control Unit

ECE ILLINOIS

II LLINOIS

5

LC-3 Review – Processing Unit, Input/Output, Control Unit

Processing Unit

- The Arithmetic and Logic Unit (ALU) only has ______, _____ operations
- Temporary Storage using general-purpose registers:

Input - Keyboard (use 2 registers)

1.

2.

Output - Monitor (use 2 registers)

- 1.
- 2.

Control Unit

IR: instruction register –

PC: program counter –

ECE ILLINOIS

TILLINOIS.

LC-3 Review - Memory

Load and Store Using

- MAR: Memory Address Register (______ -bit)
- MDR: Memory Data Register (-bit)

Load Data from Memory Address X

Step 1: place address x in ______
Step 2: send ______ signal to memory
Step 3: data in _____ is placed in _____

Store Data to Memory Address Y

Step 1: place address Y in ______, place data in ______ Step 2: send ______ signal to memory

Step 3: data is _______ signal to memory

ECE ILLINOIS ILLLINOIS

6

LC-3 Review - ISA (Instruction Set Architecture)

Memory Organization

- Address space (# of distinct memory locations):
- Addressability (# of bits stored in each memory location):

Register Set

- Eight 16-bit general-purpose registers: R0, R1, ...R7
- special-purpose register: ______, ______,

ECE ILLINOIS ILLLINOIS

LC-3 Review – ISA (Instruction Set Architecture)

Instruction Set

Data Types: 16-bit 2's complement integers

Addressing Modes (how the location of operand is specified): Non-memory addresses – immediate (part of instruction), register

Memory address - PC-relative, base+offset, indirect

Opcodes (16-bit, bits 12-15 used to specify the opcode):

Operate instructions: ADD, AND, NOT

Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI Control instructions: BR, JSR/JSRR, JMP, RET, TRAP, RTI Condition codes: N (negative), Z (zero), P (positive)

ECE ILLINOIS

ILLINOIS

9

11

Using LD, LDI, LDR, LEA

Using LD, LDI, LDR, LEA

10

LC-3 Exercise

1. Initialize a register

2. Copy value from one register to another

3. Compute 5 - 3

4. Compute 4 x 3

ECE ILLINOIS

12

MP1 – Printing a Histogram

