MINESEC	LYCEE CLASSIQUE D'EDEA			
OBC	EXAMEN:	BACCALAURÉAT BLANC	Durée : 4h	Série : D & TI
DRL-DDSM	EPREUVE:	MATHEMATIQUES	Coefficient:4	Mai 2016

L'épreuve comporte trois exercices et un problème repartis sur deux pages numérotées de 1 à 2.

EXERCICE 1: 3,25 points

1. Calculer V_0 .

(ln désigne la fonction logarithme népérien).

Soient $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ les suites définies par : $\begin{cases} U_0 = \frac{1}{3} \\ \text{et } V_n = \ln\left(\frac{3}{2}U_n\right). \end{cases}$ (In désigne la fonction logarithme népérien).

2. Montrer que (V_n) est une suite géométrique de raison 2.

3. Exprimer V_n en fonction de n, puis U_n en fonction de V_n .

0,5pt

0,25pt

0,5pt

0,5pt

 $\begin{array}{l} \textbf{4. Calculer } \lim_{n \to +\infty} V_n \text{ et en déduire } \lim_{n \to +\infty} U_n. \\ \textbf{5. } \forall n \in \mathbb{N}^*, \text{ on pose } : S_n = V_0 + V_1 + \ldots + V_{n-1} \text{ et } T_n = U_0 \times U_1 \times U_2 \times \ldots \times U_{n-1}. \end{array}$

(a) Montrer que $S_n = (1-2^n) \ln 2$.

0,5pt

(b) Exprimer T_n en fonction de n et justifier que : $T_n = \left(\frac{2}{3}\right)^n e^{S_n}$.

1pt

EXERCICE 2: 4,75 points

Le plan complexe est rapporté à un repère orthonormé $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$ d'unité graphique 2cm.

- **1.** On considère dans \mathbb{C} l'équation $(E): z^3 2iz^2 + 4(1+i)z + 16 + 16i = 0$.
 - (a) Développer et réduire $(z+2) \lceil z^2 2(1+i)z + 8(1+i) \rceil$.

0,5pt

(b) Déterminer les racines carrées de -8-6i.

0,5pt

(c) Résoudre dans \mathbb{C} l'équation (E_1) : $z^2 - 2(1+i)z + 8(1+i) = 0$.

0,5pt

(d) En déduire alors les solutions de l'équation (E).

0,5pt

- 2. Soient A, B et C les points d'affixes respectives $z_A = -2$, $z_B = 4i$ et $z_C = 2 2i$.
 - (a) Faire une figure.

0,5pt

(b) Soit K le milieu de [BC]. On considère la similitude directe S de centre Aqui transforme B en K.

Déterminer et construire l'image \mathscr{C} du cercle \mathscr{C} de diamètre AB par S. 0,75pt

(c) Déterminer l'écriture complexe de S.

1pt

(d) Déterminer une mesure de l'angle orienté et le rapport de S.

0,5pt

PROBLEME: 12 points

Le problème comporte trois parties indépendantes A,B et C

PARTIE A: 4,75 points

On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = \frac{x-1}{\frac{x}{2}+1} - e^{-x}$ et l'on désigne par

 \mathscr{C} sa courbe représentative dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)^{-1}$ (unité graphique : 3cm).

- 1. Calculer $\lim_{x \to +\infty} f(x)$. Que peut-on en déduire pour la courbe \mathscr{C} ? 0,5pt
- 2. Calculer f'(x), en déduire les variations de f pour $x \in [0; +\infty[$. 1pt
- 3. Déterminer une équation de la tangente (T) à \mathscr{C} en son point d'abscisse 0. 0,5pt
- **4.** Montrer que l'équation f(x) = 0 admet une solution unique α .

Montrer que $1 < \alpha < 2$ et déterminer un encadrement d'amplitude 10^{-1} de α . **1pt**

- 5. Tracer (T) et $\mathscr E$ sur la même figure. 0,75pt
- **6.** (a) Déterminer les réels a et b tels que, $\forall x \neq -1, \frac{x-1}{x+1} = a + \frac{b}{x+1}$. **0,25pt**
 - (b) En déduire en cm^2 l'aire du domaine plan limité par (T), $\mathscr E$ et la droite d'équation x=1. (on hachurera ce domaine) 0,75pt

PARTIE B: 2,25 points

On considère l'équation différentielle (E): $y''+3y'+2y=\frac{x-1}{x^2}e^{-x}$.

- 1. Montrer que la fonction φ définie sur $]0;+\infty[$ par $\varphi(x)^x=e^{-x}\ln x$ est une solution particulière de (E).
- 2. Résoudre l'équation différentielle (E_0) : y''+3y'+2y=0. 0,75pt
- 3. En déduire les solutions générales de (E). 0,5pt

PARTIE C: 5 points

- A) Une urne contient n boules blanches $(n \in \mathbb{N}, n \ge 2)$, 5 boules rouges et 3 boules vertes. Un tirage consiste à tirer simultanément et au hasard 2 boules de l'urne.
 - 1. Quelle est la probabilité de tirer 2 boules blanches ? 0,5pt
 - 2. Montrer que la probabilité de tirer 2 boules de même couleur est $p(n) = \frac{n^2 n + 26}{(n+8)(n+7)}$. 1pt
 - 3. On suppose que : n = 4 et un joueur effectue 2 tirages indépendants avec remise. Pour chaque tirage, Si les boules sont unicolores, il reçoit 400F, sinon il reçoit 50F. Il mise 300F. Soit X la variable aléatoire égale au gain du joueur à l'issue des 2 tirages.

Déterminer la loi de probabilité de X et calculer l'espérance mathématique de X. 1,5pt

- **B)** On donne la série statistique suivante à deux variables :

La droite de régression de y en x est : y = 9x + 0, 6.

- **1.** Calculer x et y. **0,5pt**
- **2.** Montrer que a = 20. **0,5pt**
- 3. Calculer cov(x, y). 0,5pt
- **4.** Calculer *r* et conclure. **0,5pt**