

Chapitre VII – Probabilités

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES
I – Probabilités conditionnelles
1. Définition
2. Arbre de probabilité
3. Formule des probabilités totales
II – Variables aléatoires
1. Définition
2. Loi de probabilité
3. Espérance, variance et écart-type
J. Esperance, variance of ecant-type

I – Probabilités conditionnelles

1. Définition

À RETENIR 🧣

Définition

Soient A et B deux événements avec A de probabilité non nulle. Alors **la probabilité** conditionnelle de B sachant que A est réalisé (notée $P_A(B)$) est $P_A(B) = \frac{P(A \cap B)}{P(A)}$.

À LIRE 🤲

Rappel

On rappelle que $P(A \cap B) = P(A) + P(B) - P(A \cup B)$.

À LIRE 99

Différence entre conditionnelle et intersection

Il faut faire attention, à bien faire la distinction entre une probabilité conditionnelle ("**Sachant qu'on a** *A*, quelle est la probabilité d'avoir *B*?") et une intersection ("Quelle est la probabilité d'avoir *A* **et** *B* **à la fois**?").

À RETENIR 💡

Indépendance

Deux événements A et B sont dits **indépendants** si la réalisation de l'un n'a aucune incidence sur la réalisation de l'autre et réciproquement. C'est-à-dire si $P(A \cap B) = P(A) \times P(B)$.

À RETENIR 🥊

Propriétés

Pour deux événements indépendants A et B, on a les relations suivantes :

- -- $P_A(B) = P(B)$
- -- $P_B(A) = P(A)$

2. Arbre de probabilité

Au lycée, pour représenter visuellement des probabilités on utilise très souvent un **arbre de probabilité**. Nous nous limiterons ici au cas de deux événements, mais il est possible d'en rajouter encore d'autres.

Ainsi:

Définition Soient A et B

Soient A et B deux événements. L'arbre de probabilité décrivant la situation est le suivant :

La somme (dans le sens vertical) des probabilités de chacune des branches ayant une "racine" commune doit toujours faire 1.

Exemple

Soit A et B deux événements non-indépendants tels que $P(A) = \frac{4}{7}$, $P_A(B) = \frac{1}{4}$ et $P_{\bar{A}}(B) = \frac{5}{9}$.

Alors l'arbre permettant de modéliser la situation est le suivant :

3. Formule des probabilités totales

Voici maintenant l'énoncé de la **formule des probabilités totales**, qui peut être très utile pour calculer des probabilités que l'on ne connaît pas (ou qui ne sont pas données dans un énoncé d'exercice) :

À RETENIR 💡

Formule des probabilités totales

Soient $A_1,A_2,...,A_n$ des événements qui partitionnent (qui recouvrent) l'univers Ω , alors pour tout événement B:

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \dots + P(B \cap A_n)$$

ÀLIRE 00

Exemple

En reprenant l'arbre précédent, comme A et \bar{A} recouvrent notre univers (en effet, soit on tombe sur A, soit on tombe sur \bar{A} : pas d'autre issue possible), calculons P(B):

D'après la formule des probabilités totales, $P(B) = P(B \cap A) + P(B \cap \bar{A}) = \frac{107}{252}$.

II – Variables aléatoires

1. Définition

À RETENIR 💡

Définition

Une **variable aléatoire** X est une fonction qui, à chaque événement élémentaire de l'univers Ω y associe un nombre réel. C'est-à-dire : $X : \Omega \to \mathbb{R}$.

L'ensemble des valeurs prises par X est noté $X(\Omega)$.

À LIRE 00

Les variables aléatoires sont très utiles notamment pour modéliser des situations de gains ou de pertes (à un jeu d'argent par exemple).

2. Loi de probabilité

À RETENIR 🦞

Définition

Soit X une variable aléatoire. La **loi de probabilité** de X attribue à chaque valeur x_i la probabilité $p_i = P(X = x_i)$ de l'événement $X = x_i$ constitué de tous les événements élémentaires dont l'image par X est x_i .

On représente généralement les lois de probabilité par un tableau.

À RETENIR 🬹

Représentation d'une loi de probabilité par un tableau

Soit X une variable aléatoire. On peut représenter sa loi de probabilité par le tableau ci-contre :

x_i	x_1	x_2		x_n
p_i	p_1	p_2	•••	p_n
$=P(X=x_i)$	$=P(X=x_1)$	$=P(X=x_2)$		$=P(X=x_n)$

On a $p_1 + p_2 + \cdots + p_n = 1$.

À LIRE 99

Cette définition peut sembler un peu compliquée mais elle signifie juste qu'une loi de probabilité assigne une probabilité à chaque valeur prise par notre variable aléatoire.

3. Espérance, variance et écart-type

À RETENIR 💡

Espérance

L'**espérance** E(X) d'une variable aléatoire X est le réel : $E(X) = x_1 \times p_1 + x_2 \times p_2 + \cdots + x_n \times p_n$.

À RETENIR 💡

Variance et écart-type

La **variance** V(X) et l'**écart-type** $\sigma(X)$ d'une variable aléatoire X sont les réels positifs suivants :

$$--V(X) = E(X^2) - E(X)^2$$

$$\sigma(X) = \sqrt{V(X)}$$

À LIRE 00

Exemple

Calcul de l'espérance, de la variance et de l'écart-type. Soit X une variable aléatoire suivant la loi de probabilité donnée par le tableau ci-dessous :

x_i	-1	0	2	6
p_i	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{8}$	$\frac{1}{8}$

On a:

$$E(X) = -1 \times \frac{1}{4} + 0 \times \frac{1}{2} + 2 \times \frac{1}{8} + 6 \times \frac{1}{8} = \frac{3}{4}$$

$$V(X) = ((-1)^2 \times \frac{1}{4} + 0^2 \times \frac{1}{2} + 2^2 \times \frac{1}{8} + 6^2 \times \frac{1}{8}) - (\frac{3}{4})^2 = \frac{75}{16}$$

$$- \sigma(X) = \sqrt{\frac{75}{16}} \approx 2.165$$

Chacun de ces paramètres a une utilité bien précise. En effet :

À RETENIR 🧣

Signification des paramètres

- L'espérance est la **valeur moyenne** prise par *X*.
- La variance et l'écart-type mesurent la **dispersion** des valeurs prises par *X*.
 Plus ces valeurs sont grandes, plus les valeurs sont dispersées autour de l'espérance.