

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 60142607 A

(43) Date of publication of application: 27.07.85

(51) Int. CI

H03H 9/17

(21) Application number: 58246768

(22) Date of filing: 29.12.83

(71) Applicant:

NEC CORP

(72) Inventor:

HOSHINO SHIGEKI MIYASAKA YOICHI

(54) PIEZOELECTRIC THIN FILM COMPOSITE **OSCILLATOR**

(57) Abstract:

PURPOSE: To obtain a composite oscillator which is free of spurious response and has excellent characteristics by specifying the thickness ratio between a piezoelectric thin film and a silicon diaphragm and the ratio between the overall thickness and electrode size.

CONSTITUTION: The thickness of the ZnO piezoelectric thin film 25 is denoted as T1, and the thickness of the thin layer part of the silicon diaphragm consisting of a silicon thin film 23 and an SiO2 thin film 24 by doping boron to high concentration is denoted as T2; and the overall thickness of an oscillation part of multilayer structure is T and the diameter of an upper electrode 27 on the oscillation position is L. Then when their ratios are substituted by $X=T_2/T_1$ and Y=L/T so that $Y_{\le 10X}^2$ -20X+8.2 (where 0<X \le 0.7) and Y \le 10.3X+4.4 (where 0.7<X<3.0), maximum electrode size which does not excite an in-harmonic overtone as spurious response is obtained and excellent characteristics having an oscillation component only near an electrode are

obtained.

COPYRIGHT: (C)1985,JPO&Japio

⑲ 日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭60 - 142607

@Int.Cl.4

識別記号

庁内整理番号

❸公開 昭和60年(1985)7月27日

H 03 H 9/17

7190 - 5J

審査請求 未請求 発明の数 1 (全5頁)

❷発明の名称

圧電薄膜複合振動子

②特 願 昭58-246768

❷出 昭58(1983)12月29日 願

砂発 明 者 星 茂 樹 東京都港区芝5丁目33番1号 日本電気株式会社内

東京都港区芝5丁目33番1号 日本電気株式会社内

砂発 明 坂 洋 ⑪出 願

日本電気株式会社 東京都港区芝5丁目33番1号

四代 理

弁理士 内原

発明の名称

压饵薄膜被合振動子

特許請求の範囲

シリコン・ダイアフラムの薄層上に絶縁薄膜、 電極、 ZnO圧電薄膜、電極の膜で積層された構造 の振動部位をもち、その周録部をシリコン基板に よって支持された厚み振動圧電視合振動子におい て、ZnO薄膜の厚さをTi,シリコン・ダイヤフラ ムの薄層部の厚さをT2多層構造の振動部位全体の 厚さをTとし、さらに前配振動部位上の上部電極 は円形であり、その直径をLとし、ZnO薄膜とシ リコン・ダイヤフラムとの厚さの比Tg/TgをX、 全体の厚さと円形電板の直径の比 L/TをYと聞き 換えたときに、XとYが次式

Y≤10X² -20X+8.2 (ただし0<X≤0.7)

 $Y \le 10.3X + 4.4$

(ただし 0.7 < X < 3.0)

となる関係を有することを特徴とする圧電薄膜複 合振動子。

発明の詳細な説明

(産業上の利用分野)

本発明は圧電薄膜を用いた VHF, UHF 用高周波 圧氓振動子に関し、特にシリコン・ダイヤフラム と圧電視膜との組み合わせからなる複合構造の振 動部位を有する圧量薄膜振動子に関するものであ

(従来技術)

一般に、高周波領域で使用される圧電振動子は 振動モードとして板面が厚さに比べて十分広い圧 電性薄板の厚み振動が用いられている。

厚み振動の共振周波数は圧電性薄板の厚さに反 比例するので高周波帯で使用するためには厚さを 輝くしなければならないが、厚さが40ミクロン 程度以下になると平行平面研磨などの加工が非常

振動部分の厚さを再くして5 0Mkk以上の厚み扱 動圧電振動子を得る方法としては、第1図、第2 図の構造の圧電褥膜振動子が公知である。との圧 電薄膜振動子はシリコン基板 2 2 の上に新らたに

特開昭60-142607(2)

シリコン薄膜 2 3 と絶縁体の薄膜 2 4 を形成した後、エッチングによってシリコン基板 2 2 に空孔 2 1 を形成し、さらに絶縁体薄膜 2 4 の上に顧に下地電極 2 6、圧電薄膜 2 5、上部電極 2 7を形成することによって製造するもので、一般に非圧電性である薄膜部材 23,24 と圧電薄膜 2 5 とからなる複合ダイブフラムが周緑部を基板 2 2によって支持された構造となっている。

圧電板だけからなる圧電振動子ではすでに実験的にも理論的にも詳しく調べられており、インハーモニック・オーバートーン・モードがスプリアスとして励振されないような電極寸法もよく知られている。しかし、従来圧電薄膜を利用した複合振動子においては、圧電板だけからなる圧電振動子についての理論や実験から類推するほかはなく、その類推が正しいかどうかは確かめられていなかった。

圧電薄膜複合振動子において発振器やフィルタ への応用面から電極寸法はできるだけ大きくする ことが必要であるが、電極寸法を増大するとスプ

(3)

部位上の上部電極は円形であり、その直径をLとし、ZnO薄膜とシリコン・ダイブフラムとの厚さの比T。/TiをX,全体の厚さと円形電極の直径の比L/TをYと置き換えたときにXとYが次式

Y≤10X²-20X+8.2 (ただし0<X≤0.7)

Y≤10.3X+4.4 (ただし0.7<X<3.0) で表わされる関係を有していることを特徴とする 圧電薄膜複合振動子である。

次に本発明について詳細に説明する。 (実施例)

第1,第2図は本発明の振動子の振動部位の基本構造を示している。第1,第2図において、22 は表面が(100)面であるようなシリコン基板、21 はエッチングによって基板に作製した空孔、23 はホウ素を高濃度にドーブしたシリコン海膜である。24は温度補償のために設けられた薄いSiQ。 7 に上部円形域板である。

第1,第2図のよりな複合振動子に対して一例 として、以下 Zn O 薄膜25と シリコン 薄膜23の リアスが励振されるようになり、特性が悪くなる。 よってスプリアスが励振されずできるだけ大きな 電極寸法をもつ振動子が実現できれば、非常に実 用上大きな効果をもたらす。

(発明の目的)

本発明は上記のような複合振動子において、インハーモニック・オーバートーンがスプリアスとして励扱されない最大電極寸法をもち、かつ振動成分が電極近傍にだけ存在することができるシリコン・ダイアフラムと圧電薄膜の厚さの比をもち、良好な厚み凝振動特性をもつ複合振動子を実現することを目的としている。

(発明の構成)

本発明はシリコン・ダイアフラムの薄層上の厚み方向に絶縁神膜、下部電極、 $Z_n O$ 薄膜、上部電極の順に積層された多層構造の振動部位を有し、 周線部をシリコン基板によって支持された厚み振動圧電振動子において $Z_n O$ 薄膜の厚さを T_1 、シリコン・ダイヤフラムの薄層部の厚さを T_2 多層構造の振動部位全体の厚さを T とし、さらに前配振動

(4

厚さの比がルの場合について説明する。

 $\triangle = 1 - \frac{1}{2} \left(1 + \sqrt{1 - \frac{16}{\pi^2}} R_1^{e^2} \right)$

ZnO薄膜25の厚さをTi,シリコン薄膜の厚さをTi,上部円形電極の直径をL、複合構造部位の全厚をTとする。複合振動子において全面電極の場合の共振周波数をfr^o,反共振周波数fa^o,電極直径がLのときの共振周波数をfrとする。また複合板の圧電反作用に帰因し実効電気機械結合係数R^c に依存する周波数低下量を

とする。との時、この複合振動子の基本厚み縦振動の共振特性を第3図に示す。第3図は電極度色しを変化させたときの振動子の規格化された共振周波数の変化を示したものである。第3図において、『T√△≃1.9では0≤φ≤の領域には共振周波数は1点(○印をつけたI点)しかなく、その場合の振動子の表面の変位Uz は振動部位中心から端の方へ第4図に示したようになり、基本モードだけが電極近傍に閉じ込められ、スプリアスは生じ

/51

ない。一方、 - √△≃2.2では、 0≤φ≤1 の領域に

の場合の2点での振動子の表面の変位山「 は振動部位中心から端の方へ、第 5 図(a)、第 5 図(b)に示されたようになり、基本モートだけでなく、第 5 図(b)に示されたような 2 次のインハーモニック・オーバートーンも電極近傍に閉じ込められ、スプリアスとなる。

一般に第3図においてわかるように、 L_T の値が大きくなるとインハーモニック・オーバートーンが 0 ≤ φ ≤ 1 の領域に入り、その場合、スプリアスとして励振される。第3図における破線は圧電板だけからなる円形電徳をもつ振動子について、したものであり、実線は円形電極をもつ複合振動子の場合を示している。第3図からわかるように同じ L_T √ の値に対しても圧電板だけの場合とで共振周波数が異なり、圧電振動子の場合とで共振周波数が異なり、圧電振動子の結果から複合振動子の場合を予想するととはできない。

第3図からわかるように、ある $\frac{1}{T}\sqrt{\triangle}$ の値以下 では $0\stackrel{<}{-}$ $\phi\stackrel{<}{\le} 1$ の領域にインハーモニック・オーバ ートーンが存在しなくなるので、その時の値 $\frac{L}{T}$ $\sqrt{\triangle}$

. (I)式で扱わされる領域に関する具体的な一例として、 Z_nO の膜厚 $T_1=3.884m$ 、 S_1 の膜厚 $T_2=3.804m$ の複合振動子の特性について述べると、

上了の値が 1 6 (L=125 mm) の場合を試作した結果、スプリアスが生じない共振特性が得られた。 なお本発明に係る振動子の製造方法の概略は次

を除去し、その後エチレンジアミン・ピロカテコールー水の異方性エッチング液でエッチングする。その後リン酸で残りのSi,N.膜を除去し、表面にAu/T 電低を蒸着でつけ、その上に Zn O膜をスパッタでつける。その後、AI電極をリンテラフィ

また前述の式はスプリアスの発生しない最大電 徳寸法の条件であるが、Y<10X¹ -20X+8.2(0<X ≤0.7)又はY<10.3X+4.4(0.7<X<3.0) の範囲でも

(リフトオフ)でZnO上につける。

特開昭60-142607(3)

になるような電極寸法にすれば、発振器及びフィルタ等に使用してもスプリアスが生じない特性が 得られるととになる。

第6図に Z_nO 薄膜とシリコン薄膜の厚さの比 T_*/T_* に対する $\frac{L_0}{T}$ の値を示す。第6図から、スプリアスが生じない最大電極寸法となる時の L_0/T の値は $L_0/T=Y$, $T_*/T_*=X$ とすると呼ば次式で近似できることが明らかである。

即ち、Y=10X2-20X+8.2(ただし0<X≤0.7)

Y=10.3X+4.4 (ただし0< X< 3.0)また、 $T_1/T_1=3.0$ の場合において、 $\frac{L}{T}=20.0$ の場合、 $0\le p\le 1$ の領域には共振周波数は基本モード 1 点だけしかないけれども、その時の変位は第7図に示したようになり、振動子に励振される振動変位は電極の外側にも波衰せずに伝播する。このため、振動子を構成するダイブフラムの端の影響が無視できなくなり、良い特性が得られないととがわかる。よって、発振器及びフィルタへ応用する時には複合振動においては、 T_1/T_1 の値を3.0より小さくする必要がある。

(8)

Yの値がそれぞれ10X-20X+8.2(あるいは 10.3X+4.4) に近い場合はスプリアスのない良好 な特性が得られる。ただしYが1に近づく範囲で は振動子は良好な特性が得られない。

以上述べたように本発明によればスプリアスのない良好な特性の複合振動子が得られ工業的価値も多大である。

図面の簡単な説明

第1図,第2図はZnO/Si複合振動子の構造を示す図、第3図は振動子において電極寸法を変化した時の共振周波数の変化を示す図、第4図、第5図、第7図は振動子の表面における変位以zの大きさを示す図、第6図はZnO薄膜とSi薄膜の比T₂/T₁に対するスプリアスが生じない最大電極寸法Lと振動子の厚さTの比L₀/Tの値を示す図である。

以上の図において 2 2 はシリコン基板、 2 3 は シリコン薄膜、 2 4 は SIO, 薄膜、 2 5 は ZnO 薄膜、 26,27,28 は電極、 2 1 は空孔を示してんる。 (10^{で吸入 弁理士} 内 原 習

図

第

特開昭60-142607(5)

