- 65. 19
- 67. a. Dark b. 1.597
- 69. a. No b. 0.044° c. 4.6 mm d. 1.5 m
- 71. b. 0.022°, 0.058°
- 73. b. -11.5°, -53.1°
- 75. a. 0.52 mm b. 0.074° c. 1.3 m

Chapter 23

- 1. a. 3.3 ns b. 75 cm, 67 cm, 46 cm
- 3. 0.40 ns
- 5. 30°
- 7. 6.1 m
- 9. 433 cm
- 11. 16°
- 13. 1.39
- 15. 76.7°
- 17. 3.2 cm
- 19. 1.52
- 21. 1.48
- 23. 1600 nm
- 25. 6.0 cm behind the lens, inverted
- 27. 7.5 cm in front of the lens, upright
- 29. 68 cm
- 31. 200 cm
- 33. 36 cm
- 35. 40 cm in front of mirror, inverted
- 37. 12 cm behind mirror, upright
- 39. a. 3 b. B(+1.0 m, -2.0 m), C(-1.0 m, +2.0 m), D(+1.0 m, +2.0 m)
- 41. 10 m
- 43. 1.7
- 45. a. 87 cm b. 65 cm c. 43 cm
- 47. 4.0 m
- 49. a. Total internal reflection b. Refraction at 72° c. 18 cm
- 51. 1.58
- 53. 1.0°
- 55. 2.00
- 57. b. −15 cm, 1.5 cm, agree
- 59. b. 50 cm, 0.67 cm, agree
- 61. b. -20 cm, 0.33 cm, agree
- 63. 15.1 cm
- 65. -15 cm, 0.75 cm, behind, upright
- 67. Concave, 3.6 cm
- 69. 67 cm, 1.0 m
- 71. a. 5.9 cm b. 6.0 cm
- 73. 16 cm

79. a.
$$t = \frac{n_1}{c} \sqrt{x^2 + a^2} + \frac{n_2}{c} \sqrt{(w - x)^2 + b^2}$$

79. a.
$$t = \frac{n_1}{c} \sqrt{x^2 + a^2} + \frac{n_2}{c} \sqrt{(w - x)^2 + b^2}$$

b. $0 = \frac{n_1 x}{c \sqrt{x^2 + a^2}} - \frac{n_2 (w - x)}{c \sqrt{(w - x)^2 + b^2}}$

81. b. 1.574

Chapter 24

- 1. b. $s'_2 = 49 \text{ cm}, h'_2 = 4.6 \text{ cm}$
- 3. b. $s'_2 = 30 \text{ cm}$, $h'_2 = 6.0 \text{ cm}$
- 5. b. $s'_2 = -3.33$ cm, $h'_2 = 0.66$ cm
- 7. 5.0
- 9. 3.0 mm
- 11. 6.0 mm
- 13. a. Myopia b. 100 cm

- 15. 6.3 cm
- 17. 5.0 cm
- 19. 6.0 mm
- 21. a. 8.0 cm b. 1.2 cm
- 23. Upright image, 1.0 cm tall, 6.4 cm to left of the second lens
- 25. a. Both images 2.0 cm tall; one upright 10 cm left of lens, the other inverted 20 cm to right of lens.
- 27. a. $f_2 + f_1$ b. $\frac{f_2}{|f_1|} w_1$
- 29. 16 cm placed 80 cm from screen
- 31. 23 cm
- 33. 5.0 cm
- 35. a. +3.0 D as objective b. -1.5 c. 0.56 m
- 37. 4.6 mm
- 39. 15 km
- 41. a. 3.8 cm b. Sun is too bright
- 43. 3.5 m
- 45. b. $\Delta n_2 = \frac{1}{2} \Delta n_1$ c. Crown converging, flint diverging d. 4.18 cm

Chapter 25

- 1. a. Electrons added b. 7.5×10^{10}
- 3. 2.5×10^{10}
- 5. 1.9×10^5
- 9. Right negatively charged, left positively charged
- 13. a. 0.056 N b. 2.9
- 15. a. 58 N b. 4.7×10^{-35} N c. 1.2×10^{36}
- 17. $-(4.1 \times 10^{-4} \text{ N})\hat{i}$
- 19. a. 1.3×10^{14} m/s² toward bead b. 2.4×10^{17} m/s² away from bead
- 21. a. $(6.4\hat{i} + 1.6\hat{j}) \times 10^{-17} \,\mathrm{N}$
 - b. $-(6.4\hat{i} + 1.6\hat{j}) \times 10^{-17} \,\text{N}$ c. $4.0 \times 10^{10} \,\text{m/s}^2$ d. $7.3 \times 10^{13} \,\text{m/s}^2$
- 23. $-4.5 \times 10^4 \hat{r}$ N/C (i.e., toward the bead)
- 25. 3.3×10^6 N/C, downward
- 27. $-6.8 \times 10^4 \hat{i} \text{ N/C}$, $3.0 \times 10^4 \hat{i} \text{ N/C}$, $(8.1 \times 10^3 \hat{i} 3.9 \times 10^4 \hat{j}) \text{ N/C}$
- 29. a. 0.36 m/s² toward glass bead b. 0.18 m/s² toward plastic bead
- 31. 82 nC
- 33. 3.1×10^{-4} N, upward
- 35. 4.3×10^{-3} N, 253° ccw
- 37. $2.0 \times 10^{-4} \text{ N}, 45^{\circ} \text{ cw}$
- 39. $-1.0 \times 10^{-3} \hat{i} \text{ N}$
- 41. $(1.02 \times 10^{-5}\hat{i} + 2.2 \times 10^{-5}\hat{j})$ N
- 43. 0.68 nC

45.
$$(F_{\text{net}})_x = \frac{-2KQqa}{(a^2 + y^2)^{3/2}}$$

47.
$$(2 - \sqrt{2})\frac{KQq}{L^2}$$

- 49. $-\frac{4}{9}q$, $x = \frac{1}{3}L$
- 51. 6.6×10^{15} rev/s
- 53. a. 2.3×10^{-6} b. 4.3×10^{7} N/C, upward
- 55. 33 nC
- 57. a. $1.1 \times 10^{18} \,\text{m/s}^2$ b. $1.0 \times 10^{-12} \,\text{N}$ c. $6.3 \times 10^6 \,\text{N/C}$ d. $69 \,\text{nC}$
- 59. $0.75 \mu C$
- 61. 1.8×10^5 N/C, 60° ccw from the +x-axis; 1.8×10^5 N/C, 60° cw from the -x-axis
- 63. a. (4.0 cm, 1.0 cm) b. (0.0 cm, 2.0 cm) c. (-2.0 cm, -2.0 cm)
- 65. a. $\vec{E}_1 = (8.5\hat{i} 2.8\hat{j}) \text{ kN/C}, \vec{E}_2 = 10 \hat{i} \text{ kN/C},$ $\vec{E}_3 = (8.5\hat{i} + 2.8\hat{j}) \text{ kN/C}$ c. $27\hat{i} \text{ kN/C}$
- 67. 14°
- 69. b. 22 nC
- 71. b. 5.1 nC

A-28 ANSWERS

- 73. $0.11 \mu C$
- 75. $1.7 \times 10^{-4} \text{ N}$

Chapter 26

- 1. 7.6×10^3 N/C along the +x-axis
- 3. 1.0×10^4 N/C at 11° below the +x-axis
- 5. a. 36 N/C b. 18 N/C
- 7. 4000 N/C
- 9. 1.3×10^5 N/C, 0.0 N/C, 1.3×10^5 N/C
- 11. a. 2.6×10^4 N/C, left b. 2.6×10^{-5} N, right
- 13. a. 7.6×10^4 N/C, left b. 7.6×10^{-5} N, right
- 15. 27 nC
- 17. 1.9 cm
- 19. 2.7×10^{11}
- 21. a. 3.6×10^6 N/Cb. 8.3×10^5 m/s
- 23. 18 cm
- 25. $3.1 \times 10^{-21} \text{ N m}$
- 27. $9.0 \times 10^{-13} \,\mathrm{N}\vec{p}$
- 29. a. $(-9.7 \times 10^4 \hat{i} + 9.2 \times 10^4 \hat{j})$ N/C
 - b. 1.34×10^5 N/C, 136° ccw from the +x-axis

31.
$$\frac{1}{4\pi\epsilon_0 L^2} (\sqrt{2} - 1)(\hat{i} + \hat{j})$$

33. a.
$$\frac{2qx}{4\pi\epsilon_0(x^2 + s^2/4)^{3/2}}$$

b. 0 N/C, 768,000 N/C, 576,000 N/C, 358,000 N/C, 158,000 N/C

35. a.
$$\frac{2q}{4\pi\epsilon_0} \left[\frac{1}{x^2} - \frac{x}{(x^2 + d^2)^{3/2}} \right] \hat{i}$$

$$37. \ \frac{1}{4\pi\epsilon_0} \frac{8\lambda d}{4y^2 + d^2}$$

- 39. −0.056 nC
- 41. $\frac{Q}{4\pi\epsilon_0} \frac{1}{x\sqrt{x^2 + L^2}} \hat{i} \frac{Q}{4\pi\epsilon_0 Lx} \left(1 \frac{x}{\sqrt{x^2 + L^2}}\right) \hat{j}$

43. a.
$$\frac{R}{\sqrt{2}}$$
 b. $\frac{2}{3\sqrt{3}} \frac{Q}{4\pi\epsilon_0 R^2}$

45. c.
$$\frac{1}{4\pi\epsilon_0} \frac{2Q}{\pi R^2} (\hat{i} + \hat{j})$$

- 47. 1.41×10^5 N/C
- 49. 2.2 mm
- 51. 1.19×10^7 m/s

51. 1.19 × 10° m/s
53. a.
$$\frac{\frac{4}{3}\pi r^3 \rho g + qE}{6\pi \eta r}$$
 b. 0.067 mm/s c. 0.049 mm/s
55. 6.56×10^{15} Hz

- 57. a. $\frac{\text{C}^2 \text{ s}^2}{\text{kg}}$ b. $\left(\frac{1}{4\pi\epsilon_0}\right)^2 \frac{2q^2\alpha}{r^5}$, toward ion
- 61. b. $\frac{R}{\sqrt{3}}$
- 63. $4.2 \times 10^{-4} \text{ N}$

65. a.

b.
$$\frac{4Q}{L^2}$$
 c. $\frac{8Q}{4\pi\epsilon_0 L^2} \left[1 - \frac{x}{\sqrt{x^2 + L^2/4}} \right]$

67. a.
$$\frac{2\eta}{4\pi\epsilon_0} \ln \left(\frac{2x+L}{2x-L} \right) \hat{i}$$

η $\overline{\pi \varepsilon_0}$ η $2\pi\varepsilon_0$

2L

3L

4L

69. -2.3 nC/m

0

71. a. $k = \frac{qQ}{4\pi\epsilon_0 R^3}$ c. $2.0 \times 10^{12} \text{ Hz}$

Chapter 27

$$\vec{E} = \vec{0} \text{ N/C}$$

- 7. Into the front face of the cube; field strength must exceed 5 N/C
- 9. $1.0 \text{ N m}^2/\text{C}$
- 11. 1.4×10^3 N/C
- 13. a. $0.0 \text{ N m}^2/\text{C}$ b. $3.0 \times 10^{-2} \text{ N m}^2/\text{C}$
- 15. $3.5 \times 10^{-4} \,\mathrm{N}\,\mathrm{m}^2/\mathrm{C}$
- 19. +2q, +q, -3q
- 21. 0.11 kN m²/C
- 23. $-1.00 \text{ N m}^2/\text{C}$
- 25. $2.7 \times 10^{-5} \text{ C/m}^2$
- 27. a. $\vec{E} = (25\hat{k})$ kN/C, upward from the plate b. 0.0 N/C c. 2.5 kN/C, downward from the plate
- 29. a. $-0.39 \text{ N m}^2/\text{C}$, $0.23 \text{ N m}^2/\text{C}$, $0.39 \text{ N m}^2/\text{C}$, $-0.23 \text{ N m}^2/\text{C}$ b. $0 \text{ N m}^2/\text{C}$
- 31. a. $-3.5 \text{ N m}^2/\text{C}$ b. $1.2 \text{ N m}^2/\text{C}$
- 33. $0.19 \text{ kN m}^2/\text{C}$
- 35. a. 2.0 kN/C b. $0.25 \text{ kN m}^2/\text{C}$ c. 2.2 nC
- 37. a. −100 nC b. +50 nC