TITANTION TO ACCO.

НД 42- 12807-06 № с. 1

ТОРГОВОЕ НАЗВАНИЕ ПРЕПАРАТА

АКВА МАРИС

ЛЕКАРСТВЕННАЯ ФОРМА

Капли назальные для детей

МЕЖДУНАРОДНОЕ НЕПАТЕНТОВАННОЕ НАЗВАНИЕ ИЛИ ГРУППИРОВОЧНОЕ НАЗВАНИЕ

ЗАЯВИТЕЛЬ РЕГИСТРАЦИИ

АО «Ядран» Галенский Лабораторий - Хорватия

ПРОИЗВОДИТЕЛЬ

АО «Ядран» Галенский Лабораторий - Хорватия

ФАСОВЩИК (ПЕРВИЧНАЯ УПАКОВКА)

АО «Ядран» Галенский Лабораторий - Хорватия

УПАКОВЩИК (ВТОРИЧНАЯ/ТРЕТИЧНАЯ УПАКОВКА)

АО «Ядран» Галенский Лабораторий - Хорватия

11 TANT TOO TIME TAND I

нд 42- 12807-06 с. 2

ВЫПУСКАЮЩИЙ КОНТРОЛЬ КАЧЕСТВА

АО «Ядран» Галенский Лабораторий - Хорватия

ЗАЯВИТЕЛЬ (в ФГУ «НЦ ЭСМП»)

АО «Ядран» Галенский Лабораторий - Хорватия

СПЕЦИФИКАЦИЯ

АКВА МАРИС

капли назальные для детей

АО «Ядран» Галенский Лабораторий, Хорватия

Показатель	Метод	Норма
1	2	3
Описание	Органолептический	Прозрачный бесцветный раствор без запаха.
Подлинность	ГФ XI, выпуск 1, стр.159	
Na ⁺	А. Реакция осаждения с раствором цинк-уранилацетата Б. Ионообменная хромато-	Положительная Соответствует стандарту
. 24	графия А. Реакция осаждения с рас-	Положительная
Ca ²⁺	твором оксалата аммония Б. Ионообменная хроматография	Соответствует стандарту
Mg^{2+}	А. Реакция осаждения с раствором хлорида аммония, раствором аммиака и раствором фосфата натрия.	Положительная
	Б. Ионообменная хроматография	Соответствует стандарту
CI	А. Реакция осаждения с разведенной азотной кислотой и с раствором нитрата серебра	Положительная
	Б. Ионообменная хромато-графия	Соответствует стандарту
	А. Реакция осаждения с раствором хлорида бария Б. Ионообменная хромато-	Положительная
SO ₄ ²⁻	графия	Соответствует стандарту

11 1/01/02/1/02-1/000/

нд 42-12807-06

<u>c. 4</u>

1	2	
pH	<u>2</u> ΓΦΧΙ,	3
p.i.	1 ' '	От 6,0 до 8,5
Стерильность	(потенциометрический) ГФ XI	
Стерильность	ΙΨΧΙ	Раствор должен быть стериль-
Изотоничность	F& VI	ным
изотоничность	ГФ XI,	Температура затвердевания
	(криоскопический)	раствора должна быть ниже
		температуры затвердевания
II		воды на 0,4-0,7°С.
Извлекаемый объем	ГФ XI	Не менее номинального
Количественное опре-		
деление		
No +	TT	
Na +	Ионообменная хроматогра-	не менее 2,50 мг/мл
Ca ²⁺	фия	не менее 0.08 мг/мл
Mg ²⁺ Cl ⁻ SO ₄ ²⁻		не менее 0,35 мг/мл
C1 SO 2-		не менее 5,50 мг/мл
504		не менее 0,60 мг/мл
HCO ₃ -	титриметрический	не менее 0,03 мг/мл
Упаковка		По 10 мл препарата в поли-
		этиленовом флаконе - капель-
		нице с соответствующей вин-
		товой нарезкой. По одному
		флакону-капельнице с инст-
		рукцией по применению по-
		мещают в картонную пачку.
Маркировка		В соответствии с НД
Хранение		При температуре не выше
		25°C.
Срок годности		25 C. 2 года

<u>нд 42-</u> 12807-06 с. 5

Нормативная документация

АКВА МАРИС

Капли назальные для детей

АО «Ядран» Галенский Лабораторий, Хорватия

Состав препарата:

Вода Адриатического моря (Внутренняя спецификация) - 30 % Вода очищенная (ЕФ 1997) 70 %

Методы анализа

Внешний вид.

Прозрачный бесцветный раствор без запаха.

Метод – органолептический.

Подлинность.

НАТРИЙ

- А. 1 мл испытуемого раствора подкисляют разведенной уксусной кислотой, прибавляют 0,5 мл раствора цинка-уранилацетата. Образуется желтый кристаллический осадок (ГФ XI, вып. 1, c.159).
- Б. Метод ионообменной хроматографии в условиях количественного определения. Время удерживания основного пика на хроматограмме испытуемого раствора должно соответствовать времени удерживания основного пика на хроматограмме стандартного раствора.

КАЛЬЦИЙ

А. К 1 мл испытуемого раствора прибавляют 1 мл раствора оксалата аммония; образуется белый осадок, нерастворимый в разведенной уксусной кислоте и растворе аммиака, растворимый в разведенных минеральных кислотах ($\Gamma\Phi$ XI, вып. 1, с.159).

Б. Метод ионообменной хроматографии в условиях количественного определения. Время удерживания основного пика на хроматограмме испытуемого раствора должно соответствовать времени удерживания основного пика на хроматограмме стандартного раствора.

МАГНИЙ

А. К 1 мл испытуемого раствора прибавляют 1 мл раствора хлорида аммония, 1 мл раствора аммиака и 0,5 мл фосфата натрия; образуется белый кристаллический осадок, растворимый в разведенных минеральных кислотах и уксусной кислоте (ГФ XI, вып. 1, с.159).

Б. Метод ионообменной хроматографии в условиях количественного определения. Время удерживания основного пика на хроматограмме испытуемого раствора должно соответствовать времени удерживания основного пика на хроматограмме стандартного раствора.

ХЛОРИДЫ

А. К 2 мл испытуемого раствора прибавляют 0,5 мл разведенной азотной кислоты и 0,5 мл раствора нитрата серебра; образуется белый творожистый осадок, нерастворимый в разведенной азотной кислоте и растворимый в растворе аммиака (ГФ XI, вып. 1, с.159).

Б. Метод ионообменной хроматографии в условиях количественного определения. Время удерживания основного пика на хроматограмме испытуемого раствора должно соответствовать времени удерживания основного пика на хроматограмме стандартного раствора.

нд 42-12807-06 с. 7

СУЛЬФАТЫ

А. К 2 мл испытуемого раствора прибавляют 0,5 мл раствора хлорида

бария; образуется белый осадок, нерастворимый в разведенных мине-

ральных кислотах ($\Gamma\Phi$ XI, вып. 1, с.159).

Б. Метод ионообменной хроматографии в условиях количественного

определения. Время удерживания основного пика на хроматограмме

испытуемого раствора должно соответствовать времени удерживания

основного пика на хроматограмме стандартного раствора.

<u>PH.</u>

<u>Норма:</u> от 6,0 до 8,5

Определение проводят в соответствии с требованиями ГФ X1, (вып.1, с.113)

потенциометрическим методом.

Стерильность.

Норма: Раствор должен быть стерильным.

Испытание проводят в соответствии с требованиями ГФ XI, вып. 2, с. 187.

Изотоничность.

Норма: температура затвердевания раствора должна быть ниже температу-

ры затвердевания воды на $0,4^{\circ}-0,7^{\circ}$ С.

Определение изотоничности проводят в соответствии с требования-

ми ГФ XI, вып. 1, с. 20.

11 INU13031/UZ-13VOV/

НД 42-12807-06 с. 8

Извлекаемый объем.

<u>Норма</u>: Не менее номинального ($\Gamma\Phi$ XI, вып. 2, с.140).

Количественное определение.

Норма:

содержание Na^+ - не менее 2,50 мг/мл содержание Ca^{2+} - не менее 0,08 мг/мл содержание Mg^{2+} - не менее 0,35 мг/мл содержание Cl^- - не менее 5,50 мг/мл содержание $\mathrm{SO_4}^{2-}$ - не менее 0,60 мг/мл

Оборудование и реактивы:

- нитрат натрия, нитрат кальция, нитрат магния
- хлорид натрия, сульфат натрия
- натрия гидрокарбонат, раствор 2,0 ммоль/л
- натрия карбонат, раствор 1,3 ммоль/л
- азотная кислота, раствор 0,5 М, раствор 0,1 М
- деминерализованная вода с проводимостью не более $0.05 \mu S$
- мембранный фильтр с размером пор 0,2 мкм (Sartorius, Minisart)
- система для ионообменной хроматографии Metrohm 1999
- стандартное лабораторное оборудование

1. Определение катионов (Na⁺, Ca ²⁺, Mg ²⁺)

Присутствие ионов натрия, кальция, магния определяют методом ионообменной хроматографии с прямым измерением проводимости при соблюдении следующих условий (возможно использование аналогичного оборудования).

11100771-70/11/06/10/111

нд 42- 12807-06 с. 9

Hacoc	IC Pump 709 Metrohm
Детектор	IC Detector 732 Metrohm
Дозатор	IC Sample Processor 766 Metrohm
Колонка	Metrosep Cation 1-2,6.1010.000
Элюент	Раствор винной кислоты (4 ммоль/л): раствор
	дипиколиновой кислоты (пиридин- 2,6 – ди-
	карбоновая кислота, 1 ммоль/л)
Скорость потока	1,0 мл/мин
Объем инъектирова-	100 мкл
кин	
Интервал	500 μS
Предел показаний	100 μS
шкалы	
Температура	20±1°C
Время выполнения	15 мин.

Стандартные растворы катионов:

Стандартный раствор натрия нитрата (Merck № 170251).

Содержимое ампулы разводят 0,5 M раствором кислоты азотной до концентрации $1000 \, \mathrm{Mr/n}$.

Стандартный раствор кальция нитрата (Merck № 170258) .

Содержимое ампулы разводят 0,5 M раствором кислоты азотной до концентрации $1000 \, \mathrm{Mr/n}$.

Стандартный раствор магния нитрата (Merck № 170254) .

Содержимое ампулы разводят 0,5 M раствором кислоты азотной до концентрации $1000 \, \mathrm{Mr/n}$.

Приготовление раствора для оценки эффективности хроматографической системы (System Suitability).

Смешивают стандартные растворы катионов в соотношении 1:1:1. 100 мкл раствора инжектируют в хроматограф и регистрируют хроматограмму. На хроматограмме должно быть три пика. Вычисляют разрешение (R) между пиками, которое должно быть не менее 1,5 R вычисляют по формуле:

$$R = \begin{cases} \frac{2(t_2 - t_1)}{W_2 + W_1}, \\ \end{cases}$$

где t_2 и t_1 - время удерживания соседних пиков на хроматограмме; W_2 и W_1 - ширина соответствующих пиков у основания

Испытуемые растворы:

Раствор для определения иона натрия (Na⁺).

В мерную колбу вместимостью 100 мл переносят 5 мл образца препарата и доводят деминерализованной водой до метки. 5 мл полученного раствора

переносят пипеткой в мерную колбу вместимостью 100 мл, доводят деминерализованной водой до метки.

Раствор для определения иона кальция (Ca^{2+}).

В мерную колбу вместимостью 50 мл переносят 5 мл образца препарата и доводят деминерализованной водой до метки. 10 мл полученного раствора переносят пипеткой в мерную колбу вместимостью 100 мл, доводят деминерализованной водой до метки.

TACTOCTION TOCOC

НД 42- 12807-06 с.11

Раствор для определения иона магния (Mg^{2+}) .

В мерную колбу вместимостью 500 мл переносят 5 мл образца препарата и доводят деминерализованной водой до метки. 10 мл полученного раствора переносят пипеткой в мерную колбу вместимостью 100 мл, доводят деминерализованной водой до метки.

Полученные испытуемые растворы фильтруют через фильтр с диаметром пор 0.20 мкм (Sartorius, Minisart или аналогичный) и доводят рН с помощью раствора кислоты азотной (0,1 M) до 3-4.

<u>2. Определение анионов (Cl $^{-}$, SO₄ $^{2-}$).</u>

Хлориды и сульфаты определяют методом ионообменной хроматографии с измерением проводимости после химического подавления.

Условия анализа (возможно использование аналогичного оборудования)

Hacoc	IC Pump 709 Metrohm
Детектор	IC Detector 732 Metrohm
Дозатор	IC Sample Processor 766 Metrohm
Колонка	Metrosep Anion Dual 2,6.1006.100
Подавитель	Metrohm Supressor Module 753 Metrohm
Элюент	Раствор натрия гидрокарбоната (2,0 ммоль/л):
	раствор натрия карбоната (1,3 ммоль/л)
Скорость потока	0,8 мл/мин
Объем детектирования	100 мкл
Интервал	200 μS
Предел показаний	50 μS
шкалы	
Температура	20±1°C.
Время выполнения	20 мин.

11 INVIJOJI/V4-1JVVV/

<u>НД 42- 12807-06 с. 12</u>

Стандартные растворы анионов:

Стандартный раствор натрия хлорида (Merck № 109927).

Приготавливают раствор натрия хлорида в воде с концентрацией ионов хлора 1000 мг/мл.

Стандартный раствор натрия сульфата.

Приготавливают раствор натрия сульфата (Merck № 119813) в воде с концентрацией ионов ${\rm SO_4}^{2\text{-}}\,1000~{\rm Mг/Mл}.$

Приготовление раствора для оценки эффективности хроматографической системы (System Suitability).

Смешивают стандартные растворы анионов с в соотношении 1:1. 100 мкл раствора инжектируют в хроматограф и регистрируют хроматограмму. На хроматограмме должно быть три пика. Вычисляют разрешение (R) между пиками, которое должно быть не менее 1,5 R вычисляют по формуле (см. определение катионов).

Испытуемые растворы:

Раствор для определения хлоридов (Cl⁻).

В мерную колбу вместимостью 500 мл переносят 5 мл образца препарата и доводят деминерализованной водой до метки. 10 мл полученного раствора переносят пипеткой в мерную колбу вместимостью 100 мл, доводят деминерализованной водой до метки.

Раствор для определения сульфатов (SO_4^{2-}).

В мерную колбу вместимостью 50 мл переносят 5 мл образца препарата и доводят деминерализованной водой до метки. 10 мл полученного раствора переносят пипеткой в мерную колбу вместимостью 100 мл, доводят деминерализованной водой до метки.

11 Nu13631/U2-13U6U/ 1 2 8 0 7 - 0 6 (с. 13

Полученные испытуемые растворы фильтруют через фильтр с диаметром пор 0.20 мкм (Sartorius, Minisart или аналогичный).

Методика хроматографического анализа.

Регулируют чувствительность системы таким образом, чтобы высота основного пика на хроматограмме стандартных растворов составляла не менее 50 % полной шкалы отклонения пера самописца (определение содержания активного вещества).

Проводят калибровку с использованием стандартного раствора, инъецируют по 100 мкл испытуемого раствора и рассчитывают содержание отдельных ионов.

3. Определение гидрокарбонатов (НСО₃⁻).

Норма:

содержание HCO_3^- - не менее 0,03~мг/мл

Гидрокарбонаты определяют методом титрования.

Методика.

100 мл препарата помещают в коническую колбу, добавляют 2 мл раствора метилового оранжевого (500 мг в 1000 мл воды очищенной) и титруют раствором кислоты серной (0,01 М) до изменения окраски от желтой до розовой. 1 мл раствора кислоты серной (0,01 М) соответствует 1,22 мг НСО.

Описание приготовления 0,01 М раствора кислоты серной.

В стеклянный стакан емкостью 150 мл налить 100 мл воды очищенной, добавить 0,98г концентрированной серной кислоты и перемешать. Пере-

11 INU13031/U4-13U0U/

<u>НД 42- 12807 - 06 7 с. 14</u>

нести в мерную колбу вместимостью 1л, долить до метки и перемешать. В результате получается 0,01 M раствор кислоты серной.

Упаковка.

По 10 мл препарата в полиэтиленовом флаконе - капельнице с соответствующей винтовой нарезкой. По одному флакону-капельнице с инструкцией по применению помещают в картонную пачку.

Маркировка.

<u>На первичной упаковке (флаконе - капельнице) на русском языке указывают:</u>

название препарата, лекарственную форму, объем содержимого упаковки, название фирмы-производителя, ее товарный знак, страну, номер серии, дату производства, «годен до».

На вторичной упаковке (картонной пачке) на русском языке указывают:

название препарата, лекарственную форму, объем содержимого упаковки, надписи: «Изотонический стерильный раствор воды Адриатического моря с натуральными микроэлементами», «Не содержит консервантов», состав препарата, показания к применению, способ применения: «Применять по инструкции», условия хранения с предупредительной надписью: «в недоступном для детей месте», условия отпуска из аптек, регистрационный номер, название фирмы-производителя, ее товарный знак, адрес, страну, номер серии, дату производства, «годен до», штрих-код.

На вторичной упаковке (картонной пачке) на английском языке дополнительно указывают:

название препарата, лекарственную форму, объем содержимого упаковки, надписи: «Изотонический стерильный раствор воды Адриатического моря с натуральными микроэлементами», «Не содержит консервантов», состав

TTTVULUULIUM TUVUV

препарата, показания к применению, способ применения, условия хранения, условия отпуска из аптек, название фирмы-производителя, адрес, страну.

<u>Хранение.</u> Хранить при температуре не выше 25°С.

Срок годности. 2 года.

Фирма гарантирует безвозмездную поставку стандартных образцов при контроле препарата в случае его поставки в РФ.

Глава Представительства

А. Белавич

Директор Института стандартизации и контроля лекарственных средств, профессор

F)

В.Л. Багирова

ИНСТРУКЦИЯ по применению лекарственного препарата АКВА МАРИС

Регистрационный номер:

Торговое название препарата АКВА МАРИС

Лекарственная форма

Спрей назальный дозированный Капли назальные для детей

Состав

100 мл раствора содержат 30 мл воды Адриатического моря с натуральными микроэлементами и 70 мл воды очищенной.

Не содержит консервантов.

Присутствие ионов:

- не менее 2,50 мг/мл; Na^{+} Ca²⁺ - не менее 0,08 мг/мл; Mg^{2+} - не менее $0.35 \, \text{мг/мл};$ C1- не менее $5,50 \, \text{мг/мл};$ SO_4^{2-} - не менее $0,60 \, \text{мг/мл};$ HCO_3^- - не менее 0,03 мг/мл.

Описание

Бесцветный прозрачный раствор без запаха.

Фармакотерапевтическая группа

Средство лечения заболеваний носа.

Код АТХ: R01AX10

Фармакологические свойства

Стерилизованная, изотоническая морская вода, способствует поддержанию нормального физиологического состояния слизистой оболочки полости носа.

Препарат способствует разжижению слизи и нормализации ее выработки в бокаловидных клетках слизистой оболочки носовой полости.

Микроэлементы, входящие в состав препарата, улучшают функцию мерцательного эпителия, оказывают противовоспалительное, очищающее, стимулирующее, восстановительное действие на слизистую оболочку полости носа.

При аллергических и вазомоторных ринитах препарат способствует смыванию и удалению аллергенов и гаптенов со слизистой носа, уменьшению местного воспалительного процесса. Аква Марис, применяемый с гигиеническими целями, способствует очищению слизистой от осевшей на ней уличной и комнатной пыли.

Показания к применению

- острые и хронические воспалительные заболевания полости носа, придаточных пазух и носоглотки;
- аденоиды;
- послеоперационный период (после операций на полости носа);

- аллергические и вазомоторные риниты (особенно у лиц, предрасположенных или страдающих повышенной чувствительностью к лекарственным препаратам, в том числе у беременных женщин и в период лактации);
- профилактика инфекций полости носа в осенне-зимний период (в том числе у беременных женщин и в период лактации);
- сухость слизистой оболочки полости носа; сохранение физиологических характеристик слизистой оболочки полости носа в измененных микроклиматических условиях у лиц, живущих и работающих в помещениях с кондиционированным воздухом и/или центральным отоплением; у людей, слизистая оболочка верхних дыхательных путей которых постоянно подвергается вредным воздействиям (курильщики, водители автотранспорта, люди, работающие в горячих и запыленных цехах, а также находящиеся в регионах с суровыми климатическими условиями).

Противопоказания

Повышенная чувствительность к компонентам препарата. Детский возраст до 1 года (для спрея назального дозированного).

Способ применения и дозы:

С лечебными целями:

Аква Марис капли назальные для детей:

детям с 1 дня жизни: 4 раза в день по 2 капли в каждый носовой ход;

Аква Марис спрей назальный дозированный:

- детям с 1 года до 7 лет: 4 раза в день по два впрыскивания в каждый носовой ход;
- детям с 7 до 16 лет: 4 -6 раз в день по два впрыскивания в каждый носовой ход;
- взрослым: 4 8 раз в день по два три впрыскивания в каждый носовой ход. Курс лечения во всех случаях составляет 2-4 недели (на усмотрение лечащего врача). Рекомендуется повторить курс через месяц.

С гигиеническими целями:

Аква Марис капли назальные для детей:

детям с 1 дня жизни проводить туалет в виде закапывания капель Аква Марис 2-3раза в день по 1-2 капли в каждый носовой ход;

Аква Марис спрей назальный дозированный:

- детям с 1 года до 7 лет: 1 3 раза в день по одному двум впрыскиваниям в каждый носовой ход;
- детям с 7 до 16 лет: 2 4 раз в день по два впрыскивания в каждый носовой ход;
- взрослым: 3 6 раз в день по два три впрыскивания в каждый носовой ход.

Для размягчения и удаления загрязняющих скоплений и носовых выделений:

Аква Марис впрыскивают или закапывают в каждый носовой ход столько, сколько требует ситуация, устраняя вытекающий избыток жидкости с помощью ваты или носового платка. Процедура может быть повторена многократно до тех пор, пока скопления загрязняющих частиц не будут успешно размягчены и удалены.

Побочные действия

Возможны аллергические реакции.

Передозировка

Случаи передозировки не отмечены.

Взаимодействие с другими лекарственными средствами

Так как препарат не оказывает системного воздействия на организм, взаимодействия с другими лекарственными препаратами не отмечено. Возможно применение с другими лекарственными средствами, используемыми для лечения насморка.

Особые указания

Новорожденным, во избежание риска инфицирования среднего уха закапывать раствор в полость носа с осторожностью, с минимальным нажатием на флакон.

Форма выпуска

Спрей назальный дозированный.

По 30 мл (30,36 г) препарата во флаконе из нейтрального стекла коричневого цвета, снабженном дозирующим устройством, распылительной головкой и защитной крышкой из пропилена. По одному флакону с инструкцией по применению помещают в картонную пачку. Капли назальные для детей.

По 10 мл препарата в полиэтиленовом флаконе - капельнице с соответствующей винтовой нарезкой. По одному флакону-капельнице с инструкцией по применению помещают в кар-

Условия хранения

Хранить при температуре не выше 25°С. Хранить в недоступном для детей месте.

Срок годности

2 года.

Не использовать после истечения срока годности.

Использовать в течение 45 дней после вскрытия флакона.

Условия отпуска из аптек

Без рецепта.

Производитель

AO «Ядран» Галенский Лабораторий 51000 Пулац б/н, Риека, Хорватия.

Претензии к качеству препарата следует направлять в адрес Представительства АО «Ядран» Галенский Лабораторий:

119330, г. Москва, Ломоносовский пр-т, д.38, оф.3

тел./факс (495) 970-18-82, 970-18-83

Директор ИДКЭЛС

С.В.Буданов

Глава Представительства

АО «Ядран» Галенский Лабораторий,

Хорватия

А.Белавич