

Ecole d'Ingénierie Filières : CPI

Classe: 1ère année

Cours: Algorithmique

Professeur: EL ARAKI Mounir

Date: 10/05/2016

Type: A

DATE	: 10/05/2016
NOM	:
PRENOM	:

Contrôle N° 2

(Durée: 2h)

Exercice 1: (4 pts)

Donner le résultat de l'algorithme suivant.

```
Algorithme Exercice_1
Variables T: Tableau[6, 3] d' Entier
      k, m: Entier
Début
     Pour k \leftarrow 0 à 5 Faire
      Pour m \leftarrow 0 à 2 Faire
        T[k, m] \leftarrow (k+1) * (m-1)
      FinPour
    FinPour
    Pour k \leftarrow 0 à 2 Faire
     Pour m ← 2 à 4 Faire
        Ecrire(T(m, k))
     FinPour
     Ecrire('\n')
    FinPour
Fin
```


Ecole d'Ingénierie Filières : CPI

Classe: 1ère année

Cours: Algorithmique

Professeur: EL ARAKI Mounir

Date: 10/05/2016

Type: A

Exercice 2 : Somme de deux tableaux (4 pts)

Ecrire un algorithme qui réserve un tableau de dimension Nmax = 1000. En prenant de l'utilisateur le nombre d'éléments à remplir, ce tableau est rempli à partir de deux tableaux de même longueur préalablement saisi par l'utilisateur. Le nouveau tableau sera la somme des éléments des deux tableaux de départ.

Tableau 1:									
2	5	4	6	8	23	3	1	4	9
Tableau 2:									
9	4	6	3	3	3	2	78	9	0
									_
Résultat :									
11	9	10	9	11	26	5	79	13	9

Exercice 3: Recherche de la position du maximum d'un tableau 2D (4 pts)

Soit un tableau de deux dimensions T[100,100] préalablement rempli d'entiers. Ecrire un algorithme qui recherche et affiche la position i et j de la valeur maximale du tableau. L'algorithme affiche aussi cette valeur.

Exercice 4 : Recherche de la première et la dernière occurrence (4 pts)

Ecrire un algorithme qui réserve un tableau de dimension Nmax = 1000, puis le remplit d'entiers tout en prenant de l'utilisateur le nombre d'éléments à remplir et en vérifiant que cette valeur est inférieure à Nmax.

Une fois le remplissage est terminé, le programme doit chercher, parmi les éléments introduits, la **position** de la **première** et de la **dernière occurrence** d'une valeur entière X donnée par l'utilisateur. Si l'élément X ne figure pas dans le tableau on doit le signaler à l'utilisateur à travers un message.

Ecole d'Ingénierie Filières : CPI

Classe: 1ère année

Cours: Algorithmique

Professeur: EL ARAKI Mounir

Date: 10/05/2016

Type: A

Exercice 5: (4 pts)

On suppose qu'un tableau T de taille Nmax = 1000 est rempli de N éléments entiers. Ecrire un algorithme qui met dans T[i] la valeur T[i] + T[i+1] si i est impair et la valeur T[i] - T[i-1] si i est pair, avec T[0] inchangé. Votre algorithme doit utiliser dans la soustraction la valeur originale de l'élément T[i-1].

Tableau T:										
2	5	4	6	8	23	3	1	4	9	
									,	
Résultat '	Т:									
2	9	-1	14	2	26	-20	5	3	9	