Practice Problems in R

Peter Sun

September 30-31, 2021

Contents

1	Pra	ctice 1	: Generalized Boosted Regression and Propensity Score Weighting	2
	1.1	Proble	em 1: Generalized Boosted Regression	2
		1.1.1	Description of Dataset	2
		1.1.2	Load Packages	
		1.1.3	Load and Randomly Shuffle Data	2
		1.1.4	Generate Propensity Scores	2
		1.1.5	Histograms of Propensity Scores	4
		1.1.6	Boxplots of Propensity Scores	Ę
	1.2	Proble	em 2: Propensity Score Weighting	6
		1.2.1	Estimate ATE and ATT Weights	6
		1.2.2	Outcome Analysis with ATE and ATT Weights	6
		1.2.3	Check Imbalance	7
		1.2.4	Alternative Solution with the WeightIt Package	10
2	Pra	ctice 2	2: Matching Estimators	13
	2.1	Load I	Data	13
	2.2	Breuse	ch-Pagan Test for Heteroskedasticity	13
	2.3	Match	ing Estimators	14
		2.3.1	Define Outcome (Y), Treatment Index (Tr), and Variables to Match On (X)	14
		2.3.2	Define Function for Matching	14
		2.3.3	Get All Estimators	14
3	Apı	oendix	: Replicating Stata's Robust Standard Errors	15

1 Practice 1: Generalized Boosted Regression and Propensity Score Weighting

1.1 Problem 1: Generalized Boosted Regression

1.1.1 Description of Dataset

The dependent variable is re78 or earnings in 1978 (in thousands of 1978 \$). The binary treatment variable is t (1 = treated; 0 = control). And the covariates are:

- age: Age (in years)
- educ: Years of education
- black: African-American
- hisp: Hispanic
- married: Married
- u74: Unemployed in 1974
- u75: Unemployed in 1975
- re74: Earnings in 1974 (in thousands of 1978 \$)
- re75: Earnings in 1975 (in thousands of 1978 \$)

1.1.2 Load Packages

```
library(tidyverse)
library(haven)
library(sjlabelled)
library(lmtest)
library(gbm)
library(modelr)
library(broom)
library(sandwich)
library(sandwich)
library(weightIt)
library(Matching)
library(kableExtra)
select <- dplyr::select</pre>
```

1.1.3 Load and Randomly Shuffle Data

```
d <- read_dta("data/ldw_exper.dta") %>%
  haven::zap_formats() %>%
  sjlabelled::remove_all_labels() %>%
  as_tibble()
set.seed(1000)
d2 <- d %>%
  add_column(runif = runif(nrow(.))) %>%
  arrange(runif)
```

1.1.4 Generate Propensity Scores

1.1.5 Histograms of Propensity Scores

Histograms of Estimated Propensity Scores

1.1.6 Boxplots of Propensity Scores

Boxplots of Estimated Propensity Scores

1.2 Problem 2: Propensity Score Weighting

1.2.1 Estimate ATE and ATT Weights

1.2.2 Outcome Analysis with ATE and ATT Weights

```
# Define outcome formula
f = as.formula(re78 \sim t + age + educ + black + hisp + married + re74 + re75 +
           u74 + u75)
# Weighted OLS with R-Generated Propensity Scores
m2 <- lm(f, data = d5, weights = ate_w)</pre>
tidy(lmtest::coeftest(m2, vcov. = vcovHC(m2, "HC1"))) %>% filter(term == "t") # ATE
## # A tibble: 1 x 5
    term estimate std.error statistic p.value
##
              <dbl>
     <chr>
                        <dbl>
                                   <dbl>
                                           <dbl>
               1.65
                        0.655
                                    2.52 0.0122
## 1 t
m3 \leftarrow lm(f, data = d5, weights = att w)
tidy(lmtest::coeftest(m3, vcov. = vcovHC(m3, "HC1"))) %% filter(term == "t") # ATT
## # A tibble: 1 x 5
     term estimate std.error statistic p.value
##
     <chr>>
              <dbl>
                         <dbl>
                                   <dbl>
                                          <dh1>
## 1 t
               1.72
                         0.663
                                    2.60 0.00965
# Weighted OLS with Stata-Generated Propensity Scores (Identical Results)
m2.stata <- lm(f, data = d5, weights = stata_ate_w)</pre>
tidy(lmtest::coeftest(m2.stata, vcov. = vcovHC(m2.stata, "HC1"))) %%
filter(term == "t") # ATE
## # A tibble: 1 x 5
    term estimate std.error statistic p.value
##
     <chr>>
              <dbl>
                         <dbl>
                                   <dbl>
                                           <dbl>
                        0.656
                                    2.48 0.0135
               1.63
m3.stata <- lm(f, data = d5, weights = stata_att_w)</pre>
tidy(lmtest::coeftest(m3.stata, vcov. = vcovHC(m3.stata, "HC1"))) %>%
 filter(term == "t") # ATT
```

1.2.3 Check Imbalance

We can use logistic regression and OLS regression to check the imbalance of categorical and continuous covariates, respectively:

```
# Categorical Covariates
i1 <- glm(black ~ t, family = quasibinomial, data = d5, weights = stata_ate_w)
i2 <- glm(hisp ~ t, family = quasibinomial, data = d5, weights = stata_ate_w)
i3 <- glm(married ~ t, family = quasibinomial, data = d5, weights = stata ate w)
i4 <- glm(u74 ~ t, family = quasibinomial, data = d5, weights = stata_ate_w)
i5 <- glm(u75 ~ t, family = quasibinomial, data = d5, weights = stata_ate_w)
robustse(i1, coef = "odd.ratio")
robustse(i2, coef = "odd.ratio")
robustse(i3, coef = "odd.ratio")
robustse(i4, coef = "odd.ratio")
robustse(i5, coef = "odd.ratio")
# Continuous Covariates
i6 <- lm(age ~ t, data = d5, weights = stata_ate_w)</pre>
i7 <- lm(educ ~ t, data = d5, weights = stata ate w)
i8 <- lm(re74 ~ t, data = d5, weights = stata_ate_w)
i9 <- lm(re75 ~ t, data = d5, weights = stata_ate_w)
lmtest::coeftest(i6, vcov. = vcovHC(i6, "HC1"))
lmtest::coeftest(i7, vcov. = vcovHC(i7, "HC1"))
lmtest::coeftest(i8, vcov. = vcovHC(i8, "HC1"))
lmtest::coeftest(i9, vcov. = vcovHC(i9, "HC1"))
# Alternative Hypothesis Tests
library(survey)
i.svy <- svydesign(~1, weights = d5$stata_ate_w, data = d5)
survey::svychisq(~black + t, design = i.svy)
survey::svychisq(~hisp + t, design = i.svy)
survey::svychisq(~married + t, design = i.svy)
survey::svychisq(~u74 + t, design = i.svy)
survey::svychisq(~u75 + t, design = i.svy)
survey::svyttest(age ~ t, design = i.svy)
survey::svyttest(educ ~ t, design = i.svy)
survey::svyttest(re74 ~ t, design = i.svy)
survey::svyttest(re75 ~ t, design = i.svy)
# Standardized Mean Differences
cobalt::bal.tab(
  d5 %>% select(black, hisp, married, u74, u75, age, educ, re74, re75),
 treat = d5$t,
 weights = d5$stata_ate_w,
 abs = T,
  s.d.denom = "pooled"
```

Function to check imbalance for all of the covariates (see the Appendix for the custom function robustse() that is used to replicate the robust standard errors in Stata):

```
# Function to Check Imbalance
check_bal <- function(var, weight, type) {</pre>
  if(type == "categorical") {
    m <- glm(as.formula(pasteO(var, "~t")),</pre>
     family = quasibinomial,
     data = d5,
     weights = weight
    )
    m %>%
      tidy() %>%
      mutate(odds.ratio = exp(estimate), variable = var) %>%
      mutate(or.se = robustse(m, coef = "odd.ratio")[,2]) %>%
      mutate(statistic = robustse(m, coef = "odd.ratio")[,3]) %>%
      mutate(p.value = robustse(m, coef = "odd.ratio")[,4]) %>%
      select(variable, term, odds.ratio, or.se, statistic, p.value)
  } else if(type == "continuous") {
    m <- lm(as.formula(paste0(var, "~t")),</pre>
            data = d5,
            weights = weight)
    lmtest::coeftest(m, vcov. = vcovHC(m, "HC1")) %>%
      tidy() %>%
      add_column(var, .before = "term")
  }
}
format_bal <- function(df) {</pre>
  df %>%
    filter(term != "(Intercept)") %>%
    kbl(booktabs = T, digits = 7) %>%
    kable_styling(position = "center") %>%
    kable_styling(latex_options = c("striped", "HOLD_position"))
}
# Categorical Variables
cat_vars <- c("black", "hisp", "married", "u74", "u75")</pre>
format bal(map dfr(cat vars, check bal, d5$stata ate w, "categorical"))
```

variable	term	odds.ratio	or.se	statistic	p.value
black	t	1.0997119	0.2872935	0.3638291	0.7159856
hisp	\mathbf{t}	0.5680117	0.2106900	-1.5248703	0.1272914
married	\mathbf{t}	1.2388627	0.3163250	0.8388736	0.4015402
u74	\mathbf{t}	0.8907275	0.1929677	-0.5341418	0.5932434
u75	t	0.7896914	0.1590241	-1.1725044	0.2409946

```
format_bal(map_dfr(cat_vars, check_bal, d5$stata_att_w, "categorical"))
```

variable	term	odds.ratio	or.se	statistic	p.value
black	t	1.0785012	0.2815619	0.2894740	0.7722186
hisp	\mathbf{t}	0.5688118	0.2106633	-1.5234109	0.1276559
married	\mathbf{t}	1.2497739	0.3193590	0.8725380	0.3829149
u74	\mathbf{t}	0.8616888	0.1868079	-0.6866516	0.4923023
u75	\mathbf{t}	0.7639094	0.1539378	-1.3364198	0.1814121

```
# Continuous Variables
cont_vars <- c("age", "educ", "re74", "re75")
format_bal(map_dfr(cont_vars, check_bal, d5$stata_ate_w, "continuous"))</pre>
```

var	term	estimate	std.error	statistic	p.value
age	t	0.5085618	0.6801859	0.7476806	0.4550495
educ	\mathbf{t}	0.1629619	0.1762747	0.9244774	0.3557411
re74	t	-0.1742469	0.4893238	-0.3560973	0.7219372
re75	\mathbf{t}	0.1288075	0.2977874	0.4325485	0.6655533

format_bal(map_dfr(cont_vars, check_bal, d5\$stata_att_w, "continuous"))

var	term	estimate	std.error	statistic	p.value
age	t	0.5532783	0.6945403	0.7966107	0.4261038
educ	\mathbf{t}	0.1874483	0.1813631	1.0335526	0.3019093
re74	\mathbf{t}	-0.0963895	0.5091306	-0.1893218	0.8499273
re75	\mathbf{t}	0.1832357	0.3088324	0.5933178	0.5532713

Similar results can be obtained using the R-generated propensity score weights:

```
# With R-generated weights
format_bal(map_dfr(cat_vars, check_bal, d5$ate_w, "categorical"))
format_bal(map_dfr(cat_vars, check_bal, d5$att_w, "categorical"))
format_bal(map_dfr(cont_vars, check_bal, d5$ate_w, "continuous"))
format_bal(map_dfr(cont_vars, check_bal, d5$att_w, "continuous"))
```

1.2.4 Alternative Solution with the WeightIt Package

Use GBM to estimate ATE and ATT:

```
set.seed(1000)
w1.out <- WeightIt::weightit(</pre>
 formula = t ~ age + educ + black + hisp + married + re74 +
                 re75 + u74 + u75,
 data = d2,
 method = "gbm",
 distribution = "bernoulli",
 stop.method = "es.mean",
 n.trees = 1000,
 nTrain = 0.8 * nrow(d2),
 interaction.depth = 4,
 shrinkage = 0.0005,
 estimand = "ATE")
set.seed(1000)
w2.out <- WeightIt::weightit(</pre>
 formula = t ~ age + educ + black + hisp + married + re74 +
                 re75 + u74 + u75,
 data = d2,
 method = "gbm",
 distribution = "bernoulli",
 stop.method = "es.mean",
 n.trees = 1000,
 nTrain = 0.8 * nrow(d2),
 interaction.depth = 4,
 shrinkage = 0.0005,
 estimand = "ATT")
```

Assess balance with the cobalt package:

```
cobalt::love.plot(w1.out, thresholds = c(m = .1), binary = "std", abs = T) +
labs(title = "Covariate Balance (ATE)")
```



```
cobalt::love.plot(w2.out, thresholds = c(m = .1), binary = "std", abs = T) +
  labs(title = "Covariate Balance (ATT)")
```


Covariate Balance (ATT)

For the outcome analysis, the ATE and ATT weights can be obtained with w1.out\$weights (ATE) and w2.out\$weights (ATT):

```
m2.weightit <- lm(f, data = d2, weights = w1.out$weights)
tidy(lmtest::coeftest(m2.weightit, vcov. = vcovHC(m2.weightit, "HC1"))) %>%
  filter(term == "t")
```

```
## # A tibble: 1 x 5
##
     term estimate std.error statistic p.value
##
     <chr>
              <dbl>
                         <dbl>
                                   <dbl>
                                           <dbl>
               1.57
                         0.646
                                    2.43 0.0155
## 1 t
```

2 Practice 2: Matching Estimators

2.1 Load Data

```
p2.d <- read_dta("data/prac2.dta") %>%
  haven::zap_formats() %>%
  sjlabelled::remove_all_labels() %>%
  as_tibble()
```

2.2 Breusch-Pagan Test for Heteroskedasticity

The homoscedasticity assumption is not valid (e.g., p-value of the test for age97 is < .05), indicating that the conditional variance of the outcome variable was not constant across levels of child's age, therefore a robust estimation of variance is warranted.

Table 1: Results of Breusch-Pagan Tests for Heteroskedasticity

variable	statistic	df	p.value
kuse	1.78	1	0.18
male	0.86	1	0.35
black	1.15	1	0.28
age97	8.55	1	0.00
pcged97	4.43	1	0.04
mratio96	6.85	1	0.01
pcg_adc	0.60	1	0.44

2.3 Matching Estimators

2.3.1 Define Outcome (Y), Treatment Index (Tr), and Variables to Match On (X)

```
Y <- p2.d$lwss97
Tr <- p2.d$kuse
X <- select(p2.d, male, black, age97, pcged97, mratio96, pcg_adc)
```

2.3.2 Define Function for Matching

2.3.3 Get All Estimators

```
tribble(
  ~estimator, ~estimand, ~sample,
  "SATE", "ATE", T,
 "PATE", "ATE", F,
 "SATT", "ATT", T,
 "PATT", "ATT", F,
  "SATC", "ATC", T,
 "PATC", "ATC", F
) %>%
  rowwise() %>%
 mutate(match = list(get_match(estimand, sample))) %>%
 tidyr::unnest_wider(match) %>%
  select(-estimand, -sample) %>%
 kbl(booktabs = T, linesep = "") %>%
  kable_styling(position = "center") %>%
  kable_styling(latex_options = c("striped", "hold_position"))
```

estimator	est	se	t.stat	p
SATE	-5.448863	1.646936	-3.3084850	0.0009380
PATE	-5.448863	1.652232	-3.2978811	0.0009742
SATT	-1.277287	1.683284	-0.7588067	0.4479682
PATT	-1.277287	1.695820	-0.7531973	0.4513314
SATC	-7.016781	1.965677	-3.5696503	0.0003575
PATC	-7.016781	1.969424	-3.5628594	0.0003668

3 Appendix: Replicating Stata's Robust Standard Errors

Custom function by Jorge Cimentada that is used to replicate the robust standard errors in Stata: 1

```
robustse <- function(x, coef = c("logit", "odd.ratio", "probs")) {</pre>
  suppressMessages(suppressWarnings(library(lmtest)))
  suppressMessages(suppressWarnings(library(sandwich)))
  sandwich1 <- function(object, ...) {</pre>
    sandwich(object) *
      nobs(object) / (nobs(object) - 1)
  # Function calculates SE's
  mod1 <- coeftest(x, vcov = sandwich1)</pre>
  # apply the function over the variance-covariance matrix
  if (coef == "logit") {
   return(mod1) # return logit with robust SE's
  } else if (coef == "odd.ratio") {
    mod1[, 1] <- exp(mod1[, 1]) # return odd ratios with robust SE's</pre>
    mod1[, 2] <- mod1[, 1] * mod1[, 2]
    return(mod1)
  } else {
    mod1[, 1] <- (mod1[, 1] / 4) # return probabilites with robust SE's</pre>
    mod1[, 2] <- mod1[, 2] / 4
    return(mod1)
  }
}
```

 $^{^{1}} https://cimentadaj.github.io/blog/2016-09-19-obtaining-robust-standard-errors-and-odds-ratios/obtaining-robust-standard-errors-and-odds-ratios-for-logistic-regression-in-r/$