1. An example for zombie number of Cartesian product of two graphs

Example 1. $z(P_3 \Box P_4) = 2$

Figure 1: $P_3 \square P_4$ and initial vertices

It is easy to show that $z(P_3) = z(P_4) = 1$. On each of these path graphs, zombie's initial position could be any vertex of the graph. For this example, we put the *G-zombie* and *H-zombie* ($G = P_3$ and $H = P_4$) both on vertex (1,1). We show the survivor with blue color, *H-zombie* with red, and *G-zombie* with green. *G-zombie* will try to get to the same G_i as the survivor's which is G_3 using an *H-edge*. *H-zombie* will try to get to H_3 (See figure 2).

Figure 2: First move of players

After zombies' move the survivor must move. No matter what move he makes, either G-zombie has made itself closer to H_x or H-zombie has made itself closer to G_y . In this case, H-zombie got closer to H_x . Since neither H or G-zombies share H_x or G_y with the survivor, they will still try to achieve that (See figure 3).

Now H-zombie shares the same copy of H as the survivor and it is the survivor's turn. If the survivor moves to another H_i , H-zombie will mimic the move. If the survivor makes an H-move, H-zombie will do whatever it did on a single H for capturing the survivor.

Figure 3: Second move made by zombies, third in total

This means the survivor cannot do infinite H-moves. Thus for him being able to survive he has to do infinite G-moves, which again leads to G-zombie capturing him. For other moves, you can see figure 4.

Figure 4: Other moves made by players