cBioPortal Tutorial #5: Onco Query Language (OQL)

Use OQL to refine your queries

Tutorial Objectives

- Introduce Onco Query Language (OQL)
- Explain the basic rules of OQL
- Show the utility of OQL with several examples

Onco Query Language (OQL) Overview

What is OQL?

OQL defines the specific types of alterations to be considered when running a query.

Why is OQL necessary or useful?

When you run a query on one or more genes, OQL defines which genomic alterations count towards a sample being altered.

What does that actually mean?

Let's look at an example. On the next slide is a query for IDH1, IDH2, EGFR and TP53 in the TCGA LGG PanCan Atlas Dataset.

This query looks for samples with alterations in IDH1, IDH2, EGFR and TP53. We can see that the presence of any of four different alterations (Amplification, Deep Deletion, Mutation or Structural Variant) define a sample as having an alteration in a query gene.

But how were those four types of alterations selected? How do we know if an alteration isn't present in the data or just isn't being examined in this query?

For example, are there samples with shallow deletions in any of the query genes?

If you hover over a gene name, you can see the specific alterations which were included in the query: "MUT", "FUSION", "AMP", "HOMDEL". These are the default OQL options and will highlight any mutation, fusion/structural variant, amplification or homozygous/deep deletion in the query gene.

Note: Not all studies have all datatypes, for example many studies do not have fusion/structural variant calls.

So let's come back to this question: are there samples with shallow deletions in any of the query genes?

Shallow deletions were not included in the OQL for this query, so there may be shallow deletions affecting these genes, but we won't see them because the query didn't look for them.

What if we want to include shallow deletions? How do we do that? Let's learn how to use OQL!

The Rules of OQL

OQL uses keywords to define the alterations to include in a query. To the right is a table defining the general keywords (top) and the modifiers which can be applied to certain keywords (bottom). The complete specifications can be found here.

OQL Keywords

Users can define specific subsets of genetic alterations for five data types:

Data Type	Keywords and Syntax	Default*
Mutations	MUT All non-synonymous mutations MUT = <pre> MUT = <pre> MUT = <mutation type=""> Acceptable values are: MISSENSE, NONSENSE, NONSTART, NONSTOP, FRAMESHIFT, INFRAME, SPLICE, TRUNC </mutation></pre></pre>	MUT
Fusions	FUSION All fusions (note that many studies lack fusion data)	FUSION
Copy Number Alterations	AMP Amplifications HOMDEL Deep Deletions GAIN Gains HETLOSS Shallow Deletions Comparison operators can also be used with CNA (e.g. CNA >= GAIN is the same as AMP GAIN)	AMP HOMDEL
mRNA Expression	EXP < $-x$ mRNA expression is less than x standard deviations (SD) below the mean EXP > x mRNA expression is greater than x SD above the mean The comparison operators <= and >= also work	
Protein/phosphoprotein level	PROT < $-x$ Protein expression is less than x standard deviations (SD) below the mean PROT > x Protein expression is greater than x SD above the mean The comparison operators <= and >= also work	PROT >= 2 PROT <= -2

^{*} These are the default OQL keywords used for each data type when a gene is queried without any explicit OQL

OQL modifiers

Mutations and copy number alterations can be further refined using modifiers:

Keyword	Applicable Data Type	Explanation
DRIVER	Mutations Fusions Copy Number Alterations	Include only mutations, fusions and copy number alterations which are driver events, as defined in OncoPrint (default: OncoKB and CancerHotspots).
GERMLINE	Mutations	Include only mutations that are defined as germline events by the study.
SOMATIC	Mutations	Include all mutations that are not defined as germline.
(a-b) (protein position range)	Mutations	Include all mutations that overlap with the protein position range a-b, where a and b are integers. If you add a * (i.e. (a-b*)) then it will only include those mutations that are fully contained inside a-b. The open-ended ranges (a-) and (-b) are also allowed.

Let's re-create our initial query. On the left is the query as we ran it before. On the right are two different ways to write the exact same query using OQL.

The general format for OQL is "GENE: ALTERATION1 ALTERATION2 ...". But as shown in the bottom example, the "DATATYPES" command allows a user to select the same set of alterations for multiple genes all at once.

Now let's adjust the default query. Let's look for gains in EGFR and shallow

deletions in TP53. Add "GAIN" and "HETLOSS" to the query:

OncoPrint now includes gains in EGFR and shallow deletions in TP53:

What if we want to look at IDH1 R132C mutations, but no other IDH1 alteration?

We can specify a specific mutation in OQL:

We then see that there are many fewer samples with mutations in IDH1 since we have limited the query to the relatively rare R132C.

We can further refine the query by removing alteration types that are not

biologically relevant, like deep deletions in IDH2 & EGFR:

OQL Example:

BRCA1/2 inactivation in ovarian cancer

Loss of BRCA1 is a common event in ovarian cancer. What percentage of samples lose BRCA1? Let's run a query to find out:

Looking at OncoPrint, we can see that 12% of cases have an alteration in each of BRCA1 and BRCA2. However, this includes amplifications, which will not result in a loss of function. We can use OQL to make the query more specific.

Modify the query to include only mutations and deep deletions:

OncoPrint now shows a more accurate estimate of the frequency of BRCA1/2 loss:

However, mutations and deletions are not the only way to decrease the levels of functional protein in a cell. DNA methylation can lead to decreased mRNA

expression. We can use the "Plots" tab to examine the relationship between DNA methylation and gene expression. Note that the lower right quadrant contains samples with low expression and high DNA methylation. We can also use OQL to identify these samples.

Modify the query to also include samples with decreased expression (don't forget to select "mRNA Expression" in the "Genomics Profiles" section):

| Control of the control

OncoPrint now shows a more accurate estimate of the frequency of BRCA1 loss:

Some mutations in the OncoPrint are variants of unknown significance. Recall from the <u>Single Study Query Tutorial</u> that mutations are annotated as "putative drivers" or "unknown significance" based on this settings menu in the header:

We can further refine the query by only including those mutations which are putative drivers, as defined by the settings menu. We can do this by:

- Adding _DRIVER to the MUT term in OQL. This will include only mutations that are putative drivers (see BRCA1 below)
- Or, replace the entire OQL string with DRIVER. This will include mutations, fusions/structural variant and copy number changes that are putative drivers (see BRCA2 below)

Enter Genes: User-defined List X ▼ Hint: Learn Onco Query Language (OQL) to write more powerful queries BRCA1: MUT_DRIVER HOMDEL EXP<-1.5 BRCA2: DRIVER

Compare the result of this latest query (top) with the previous query (bottom) and see that the mutations of unknown significance are no longer present.

This study is one of the few in cBioPortal that includes germline mutations. We can make one final adjustment to our query to ask a slightly different question: what percentage of samples have putative driver germline mutations in BRCA1/BRCA2? Note that the OQL for BRCA1 and BRCA2 are equivalent as the GERMLINE term Enter Genes: only applies to mutations.

User-defined List

X T

Hint: Learn Onco Query Language (OQL) BRCA1: MUT GERMLINE DRIVER to write more powerful queries 2 BRCA2: GERMLINE DRIVER Cancer Types Summary OncoPrint Mutual Exclusivity Plots Comparison/Survival **CN Seaments** Pathways Mutations Co-expression Download ✓ The results below are filtered by the OQL specification from your query. Add Tracks -Sort -Mutations -View -Download -D 100 % € BRCA1: MUT GERMLINE ... BRCA2: MUT GERMLINE ... **Genetic Alteration** Truncating Mutation (putative driver) Splice Mutation (putative driver) Germline Mutation No alterations Link to this page

OQL Example:

RTK pathway alterations

Alterations in RTK signaling pathway members are common in colorectal adenocarcinoma. What is the pattern of alterations across the different levels of the

signaling pathway?

Recall that RTKs (e.g. EGFR, ERBB2) activate RAS (KRAS, NRAS, HRAS) which in turn activate RAF (BRAF, ARAF, RAF1) which in turn activate MEK (MAP2K1, MAP2K2). Let's query all of these genes:

We see here an overview of each individual gene in the pathway. However, it can be informative to instead see each level of the pathway grouped together.

We can use gene tracks to group genes together in the OncoPrint. The format is

["optional track name" GENE1 GENE2 ...]: Enter Genes: User-defined List

Hint: Learn Onco Query Language (OQL) to write more powerful queries ☑

[EGFR ERBB2] ["RAS" KRAS NRAS HRAS] ["RAF" ARAF BRAF RAF1] ["MEK" MAP2K1 MAP2K2]

Gene tracks can be combined with other OQL terms, either using the DATATYPES command as shown here, or attaching OQL to genes within the square brackets.

Enter Genes:

Hint: Learn Onco Query Language (OQL) to write more powerful queries ☑

DATATYPES: DRIVER [EGFR ERBB2] ["RAS" KRAS NRAS HRAS] ["RAF" ARAF BRAF RAF1]

["MEK" MAP2K1 MAP2K2]

User-defined List

Now we can clearly visualize the pattern of mutual exclusivity of driver alterations at each level of the pathway.

Gene tracks can also be expanded to see tracks for individual genes. To expand, click the symbol next to the track.

Note that OncoPrint, Mutual Exclusivity and Group Comparison are the only tabs that currently support gene tracks. All other tabs show individual genes rather than gene tracks.

Questions? Check out the <u>OQL specification</u>, or our other tutorials, or email us at: cbioportal@googlegroups.com