massamanの卒論

指導教員

中澤 仁 村井 純 楠本 博之 中村 修 Rodney D. Van Meter 植原 啓介 三次 仁 手塚 悟 高汐 一紀

慶應義塾大学 環境情報学部 環境情報学科 鶴岡 雅能

武田 圭史

大越 匡

DSFSA(Delta Smile Facial Survey Analyzer) $2020\,{\rm \it \mp}\,1\,{\rm \it /}$

卒業論文 2020年度(令和1年度)

massamanの卒論

論文要旨

テンプレートの説明を、テンプレート自身を使って説明する。これは @kurokobo による 卒業論文のための \LaTeX アンプレートを修士論文用に改造し、さらに UTF-8 化や Makefile 等の添付をしたものである。

この部分には一般には論文のアブストラクトを書く。日本語のアブストラクトを書きたいなら、\begin{jabstract} と \end{jabstract} の間に文章を書けば、今のこのページのように体裁が勝手に整って出力される。英語のアブストラクトは \begin{eabstract} と \end{eabstract} の間に書けば、次ページのような体裁で出力される。

両方を書けば、日本語と英語の両方のアブストラクトが並んで出力される(この文書はサンブルなので両方書いてある)。ページ順序は、コマンドを書いた順序の通り。どちらか一方のみを出力したい場合は、不要な方をコマンド自体を含め削除する。

このあたりの詳細もあとで書く。基本的には、main.texを上から順にいじっていけばできるはず。

キーワード

第一印象、表情分析、表情検出, 笑顔

慶應義塾大学 環境情報学部 環境情報学科

鶴岡 雅能

Abstract Of Graduation Thesis Academic Year 2020

Graduation Thesis made by massaman

Summary

Eigo ga dekinai node Roma-ji de soreppoi hunniki wo daseruto iina.

Murippoi desu ne.

Write down your abstract here. Write down your abstract here.

Write down your abstract here. Write down your abstract here. Write down your abstract here. Write down your abstract here. Write down your abstract here. Write down your abstract here. Write down your abstract here. Write down your abstract here. Write down your abstract here. Write down your abstract here. Write down your abstract here. Write down your abstract here.

Write down your abstract here. Write down your abstract here.

Keywords

First Impression, Face Recognition, Face Analysis, Smile

Bachelor of Arts in Environment and Information Studies Keio University

Masayoshi Tsuruoka

目 次

第1章	序論	1
1.1	背景	1
	1.1.1 人と人との繋がりで構成されている社会	1
	1.1.2 コミュニケーションにおける表情の重要性	1
	1.1.3 人との繋がり形成の多様化	1
1.2	問題意識	2
	1.2.1 情報社会における情報過多	2
	1.2.2 相性が悪い人同士における生産性の低下	3
	1.2.3 断片的な表情データ	4
1.3	目的	4
1.4	仮説	4
1.5	本文書の構成	4
第2章	本研究で使用する笑顔の定義	7
2.1	人と表情に関する研究	7
	2.1.1 人の表情について	7
	2.1.2 人間関係と表情について	8
2.2	情報技術と笑顔に関する研究	8
2.3	本研究において取り扱う笑顔	6
2.4	まとめ	S
第3章	DSFSA(Delta Smile Facial Survey Analyzer) システム	11
3.1	DSFSA システムの概要	11
3.2	DSFSA の特徴	11
3.3	DSFSA の使用方法	12
	3.3.1 動画から笑顔動画データ作成および数値化	12
	3.3.2 ユーザー表情の笑顔動画データ作成および数値化	12
3.4	まとめ	13
第4章	设計	15
4.1	本システムの設計概要	15
4.2	データ収集機能	16
	421 顔検出モジュール	16

	4.2.2	笑顔検出モジュール	16
	4.2.3	画像処理モジュール	16
	4.2.4	動画作成モジュール	16
	4.2.5	データ作成モジュール	16
	4.2.6	笑顔データ選択モジュール	17
	4.2.7	表示データ作成モジュール	18
	4.2.8	順位づけモジュール	18
	4.2.9	データ保存モジュール	18
	4.2.10	選択データ表示モジュール	18
4.3	データ	分析機能	19
	4.3.1	FAU 値計算モジュール	19
	4.3.2	データプロットモジュール	19
4.4	まとめ		19
第5章	実装		21
5.1		゛ ゚ーインターフェースの実装	
0.1	5.1.1	顔検出モジュールの実装	
	5.1.2	笑顔検出モジュールの実装	
	5.1.3	画像処理モジュールの実装・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	5.1.4	動画作成モジュールの実装	
	5.1.5	表示データ作成モジュールの実装	
	5.1.6	ランキングデータ取得モジュールの実装	
	5.1.7	データ保存モジュールの実装	
		笑顔トリミングモジュールの実装	
5.2		クリプトの実装	
		csv モジュールの実装	
		データプロットモジュールの実装	
5.3			
第6章	予備実		23
6.1		作るのかかる時間	
6.2	実験の	結果・まとめ	23
第7章	評価実	験	25
		齢の 柳更	25

	7.2	評価実験の目的	25
	7.3	ORF(Open Research Forum) におけるデータ収集	25
	7.4	ユーザーの嗜好分析	25
	7.5	地震の表情の作り方と好感をもつ笑顔との相関性	25
	7.6	結果	25
	7.7	まとめ	25
第	8章	結論	27
	8.1	今後の展望	27
		8.1.1 良好な人間関係の構築へのデータ活用	27
		8.1.2 1月下旬から行う実証実験について	27
	8.2	本論文まとめ	27
謝	辞		2 8
参:	考文献		30
付	録A	付録の例	33
	A.1	ほげ	33
		A.1.1 &	33
	A.2	ほげほげ	33
		A 21	33

図目次

1.1	メラビアンの法則	2
1.2	インターネットで知り合った相手にあったことのある若者	2
1.3	インターネットで知り合った相手にあった相手にギャップを感じたことがあ	
	るか	3
1.4	インターネットで知り合った相手にがっかりしたことがあるか	3
2.1	普遍 7 表情	7
2.2	日本人の表情判断グラフ	8
2.3	SONY スマイルシャッター	9
2.4	Facial Action Unit	10
2.5	Facial Action Unit 種類	10
3.1	システムフロー	12
4.1	システム構成図	15
4.2	$MultiPIE$ のデータセットから、 λ の値を顔に反映させたもの \dots	17
4.3	点描画笑顔動画データ	18

表目次

第1章 序論

本章では、はじめに本研究における背景を述べる.ついで、問題意識を踏まえた上での目的、 製作者の仮説を述べる.最後に本論文の構成を示す.

1.1 背景

本節では、本研究の背景としと人と人との繋がりで構成されている現代社会について述べる。 ついで人との繋がり形成におけるコミュニケーション上での表情の重要性を述べ、最後に現代社会における人との関係性を構築する手段が多様化している様子を述べる.

1.1.1 人と人との繋がりで構成されている社会

ヒトは誕生から現代にかけて社会を形成し、その中で集団を作って生活を送ってきた。社会性をもつ生き物として、交友関係を広げ、協力をして日々を生きている。職場、学校、近所、そして家族など人との繋がりは必要不可欠な要素である。日本人の平均寿命は WHO の調査で 84.2 歳 [13] と言われ、1日1人と出会ったとしても 30733 人と出会うことになり、人と関わることなしに生活することは不可能である。

1.1.2 コミュニケーションにおける表情の重要性

人との関係構築をする際にはコミュニケーションが必要不可欠である. コミュニケーションにおいて非言語コミュニケーションがもっとも重要と Albert Mehrabian[10] は述べており,会話中の相手の受け取る情報量は非言語コミュニケーションが 93%を占め,その中でも視覚情報は 55%を占めると言われている. その中でも,人の表情はその人の内面を表しており相手のことを判断するときに重要な判断材料となる.

1.1.3 人との繋がり形成の多様化

直接対面でしかなかった出会いの形が, 若い世代を中心に多様化している. オンライン上での出会いが増えてきている. インターネット上で知り合った経験がある 10 20 代の若者世代は多い.[?] 目的はオンライン上で友達になったから会う, 友達になりたくて会う, 恋人探しなど様々である. マッチングアプリなど, 自身のパートナーをインターネット上のデータを

図 1.1: メラビアンの法則

基に探すサービス展開も行われており、登録者は 1000 万人を超えるものもある結婚相手を探す新しい場を提供する、婚活パーティーも増えてきており [3]、従来の出会いの方法にくらべ敷居が低くなり、多種多様な人々との出会いの機会が提供されるようになっている.

図 1.2: インターネットで知り合った相手にあったことのある若者

1.2 問題意識

前章において、人との繋がりの重要性および繋がりを形成するコミュニケーションにおける表情の重要性を述べ、現代社会における出会いの多様性について述べた.本節では、本研究おける問題意識について述べる.

1.2.1 情報社会における情報過多

人との繋がり形成の場が多様化し、出会いの入り口が広くなった分、情報量の整理がうまくいっていない. 情報過多になっているが故に、選択肢が多く全ての人にアプローチをして交友関係を構築することは不可能である. ネット上の出会い調査によると若者が相手に対してギャップを感じた割合は、男女共に 70%であり、そのギャップにがっかりした割合は男女共に 60%を超えている.[?] つまり、自分の理想とする人、自分と考えがあう人と出会える確率

は現状まだ低く, また理想や考えがあう人を見逃している可能性が非常に高い. しかし, 現状はテキストベースで判断をして自分でアプローチをかけたり, アプリケーション側で処理を行いユーザーへ情報提供をすることしかできていない.

図 1.3: インターネットで知り合った相手にあった相手にギャップを感じたことがあるか

図 1.4: インターネットで知り合った相手にがっかりしたことがあるか

1.2.2 相性が悪い人同士における生産性の低下

コミュニケーションにおいて、相手と考えが合わない場合精神的な負担が大きくなる. Mechanic はソーシャルスキルの程度と種々の具体的問題解決能力との2側面から適応行動を規定した上で、適応行動の不足は個体のストレスレベルを上昇させ疾患発症の危険度を高めることを述べた.[8] Fisher Beckfield&McFall は、ソーシャルスキル得点の低い男子大学生が、高い抑うつ反応を示していたと報告している.[9] コミュニティーにおいて考えの近い人々をグルーピングをした際にはアイスプレーキングの時間や、相手の印象を探る時間フェーズを短くすることができ、産出するもののクオリティーの向上や、時間短縮を見込める. 上記のことより、考え方の近い人や目的や嗜好が似ている人同士を引き合わせることで活動の効率化、ストレスの軽減に繋がる.

1.2.3 断片的な表情データ

人の表情は断片的なものではなく連続的なものである。表情の研究は主に画像処理によって行われており、中立の表情から笑顔になる過程については分析がほとんど行われていない。より人間の表出表現を正確に、繊細に分析する際には連続的に表情の流れの中で分析する必要がある。

1.3 目的

本研究の目的は、笑顔からお互いを分析し、人と人との繋がり作成を助長するシステムの作成である。自身の笑い方と、魅力を感じる笑い方にはどのような関係性があり、どの顔のパーツ・動きに由来するのかを分析する。人の考え方・内面は表情に顕著に現れると言われており、Associated Newspapers Ltd Part of the Daily Mail の調査によると目尻と口の動きは相手への信頼性を判断する材料となっている。[12] Bruno Leang によれば、似ている人には信頼を置きやすいと述べている。[6] 本研究における Delta Smile Facial Survey Analyzer において、ユーザーの笑顔の作り方を数値データとして取得し、データベース内の笑顔の作り方データを表示し、順位付けを行うことで笑顔の作り方による嗜好性を分析することが可能である。本システムの導入により、人と人との繋がり形成の際により最適な相手をユーザーに表示することができるようなアルゴリズムを作成することが可能になり、ユーザーにとってよりよい出会いの機会提供を助長することができる。

1.4 仮説

人相学の分野において顔のひとつひとつの形には、その人の性格が表れるとされている。それゆえに、顔が似ている人は性格が似ていることになる。また心理学の分野において、Anthony Little[1] は人間同士においては特にカップルに身体的特徴、表情が似てくる傾向があると述べている。[7] さらに、Robert Zajonc は実験で新婚当初に比べ結婚 25 年の写真ほうがお互いが似ていると結論づけている。[16] 上記の例では好意がお互いの表情を似せていることを述べている。本研究において、私は「表情が似ている人には好意を抱きやすい」との仮説を立てる。William J.Chopik はか飼い主と犬の性格は似ていることを証明した [3]。犬を迎え入れる際に人は無意識に自分の生活習慣にあった犬に惹かれる傾向があるとしている。これは人と人との関係性にも言えることなのではないかと考えた。

1.5 本文書の構成

本論文は、本章を含め全8章で構成する。本章、第1章では、本研究における背景と問題意識、目的および作成者の仮説を述べた。第2章では、関連研究をについてまとめ、本論文における用語の意味を定義する。第3章では、本研究にて作成するシステム Delta Smile Facial

Survey Analyzer の概要について説明をする。第4章では、本システムにおける設計について整理する。第5章では、本システムの実装について述べる。第6章では、予備実験について述べる。第7章では、データ収集および評価実験について述べる。第8章では、結論および今後の展望について述べる。

第2章 本研究で使用する笑顔の定義

本章では、はじめに人の表情についての関連研究ついてまとめる。ついで、情報学の分野における表情、特に笑顔に関する先行研究の例を取り上げる。最後に、本研究において取り扱う笑顔について定義する。

2.1 人と表情に関する研究

本セクションでは、人の表情についての関連研究および表情と人間関係の関連性の2つについてまとめる.

2.1.1 人の表情について

Ekman は感情を表す普遍的な基本表情があるという理論を提唱した. その表情は7つに分類され, 怒り, 嫌悪, 恐怖, 驚き, 悲しみ, 幸福に中立な表情を加えたものである.[4] 佐藤らが

図 2.1: 普遍 7 表情

日本人に対して、Ekman の基本表情が適用されるのかを実験した際には、部分的にしか日本人には適応されないことがわかったが、驚きと幸福に関する基本表情は日本人にも適合することが証明されている.[15]

図 2.2: 日本人の表情判断グラフ

2.1.2 人間関係と表情について

顔には年齢, 性別, 人種などの生物学的属性に加え, 口の動きからの発話情報, その人物の人となり, 感情, 意図, 関心などを読み取ることが可能である.[18] 人はコミュニケーションをとる際に, 会話の内容などの言語コミュニケーションに加え, 表情などの非言語コミュニケーションが行われる. 非言語コミュニケーションとは, 言葉を使わないコミュニケーションのことを指し, メラビアンによればコミュニケーションにおいて, 非言語コミュニケーションは印象情報の 93% を占める.[10] ゆえに, コミュニケーションにおいて会話内容よりも, 人の見た目や表情に意識がむく. 表情, 特に笑顔はコミュニケーションをとる際に重要な役割を担っている.

2.2 情報技術と笑顔に関する研究

近年,情報処理技術を用いて人の表情分析の研究が進められている. SONY が開発し,デジタルカメラ Cyber shot に組み込まれているスマイルシャッターなどは笑顔検出技術を用いて,システム搭載されている例である. 実用化が進んでいるが,より笑顔を検出する精度や速さが求められている.

Eduard らは口角をベースとした笑顔検出器を作成し、既存の検知方法よりも速く笑顔の 検出を可能にする手法の提案をしている.[14] 人の笑顔を顔のパーツ、特に目や口元、頬の動 きを判断材料として、画像処理技術および機械学習を用いて自動的に笑顔を検出するような

図 2.3: SONY スマイルシャッター

研究が数多く行われている. 他にも表情に現れる感情と, 実際に抱いている感情との違いを検出するような研究も行われている. 実際に人同士でも相手の内面状態を知ることは非常に難しい. 不快感を抱いていたとしても 相手に悟られないように笑顔を作るなど表情と感情が一致しないケースも数多くある. I Gede Aris Gunadi らは, 画像から機械学習を用いた作り笑顔を検出する研究 [5], Neelesh らは動画を用いて作り笑顔の検出 [2] を行うなど人の表情と内面状態との乖離を解消するような研究も進んでいる.

2.3 本研究において取り扱う笑顔

本研究では、笑顔を内面の感情ではなく表情のみを取り扱う。笑顔の作り方を分析し、表出表現による自分の表情と相手の表情への嗜好判断を行う。笑顔の分析オープンソースである OpenFace の中に含まれる、Facial Action Unit を用いて行う。 OpenFace とは Tadasら Cambridge University、MultiCamp Labが作成した表情分析を行うためのツールである。 Facial Action Unit(以下 FAU とする)は、Paul Ekman、Wallace Friesenらによって1978年に開発された分析ツールかつ表情理論に基づいた Facial Action Coding Systemを使って、客観的に顔の動きをデータとして取得することのできる基本動作を定義したものである。

FAU において, 笑顔の unit 番号は 6(眼窩部眼輪筋),7(眼瞼部眼輪筋),12(大頬骨筋),25(翼 突筋+顎二腹筋) である. この 4 つの Unit を使用して笑顔の分析を本研究では行う.

2.4 まとめ

本章では、現在行われている人の表情、特に笑顔についての先行研究について整理しした. ついで、本研究で扱う Facial Action Unit を用いて判断する笑顔について定義した. 次章では本研究において使用する、Delta Smile Facial Survey Analyzer のシステムの概要および特徴について述べる.

図 2.4: Facial Action Unit

図 2.5: Facial Action Unit 種類

第3章 DSFSA(Delta Smile Facial Survey Analyzer) システム

本章では、本研究の目的である笑顔からお互いを分析し、人と人との繋がり作成を助長するシステムを作成するための、データ収集およびデータ分析をするためのツール Delta Smile Facial Survey Analyzer(以下 DSFSA) について述べる。初めにシステムの大まかな流れを述べた後、本システムの特徴および使用方法について述べる。

3.1 DSFSA システムの概要

本システムは表情分析をするためのデータを収集するためのツールである. ユーザーの顔を検出し,トラッキングをする. ユーザーが中立の表情から笑顔になったタイミングでトラッキングを終了し,各フレームごとに画像処理をして表情の分析を行い動画としてデータベースへ保存する. Open Face の Facial Action Unit を使用して特徴量を算出した後,データベースの中にある決まったフォーマットの笑顔の作り方ので動画を 5 種類選択し,ユーザーに表示する. その際には,顔の特徴点のみを描画した動画を表示することで表情の動き以外のバイアスを軽減する. 選択した動画を 2 つずつ表示し,ユーザーに好みを選んでもらうことで動画データに順位づけを行う. ユーザーの表情データ,選ばれたデータベース内の動画を分析した表情データ,および順位づけデータを使用して,ユーザーの表情と,ユーザーの嗜好表情との関連性を分析する.

3.2 DSFSA の特徴

本システムの特徴は、中立と笑顔の表情を部分的に切り取った断片的な画像データではなく、動画の形を採用することで表情の遷移を時系列データで、笑顔の作り方を記録し、分析することが可能である。SONYが開発したスマイルシャッターのように笑顔になったタイミングをキャプチャーするシステムなど [sony のやつ] 笑顔のタイミングのみにフォーカスをあてた研究やサービス、笑顔のタイミングのみを切り取って表情分析をする研究は盛んに行われているが、動画など時系列データを使用した表情分析系の研究はまだ少ない。Bruce & Youngらは表情表出の時間的特性が感情の認知に影響を及ぼす結果を得ており [11]、感情の認識においては動画像解析による動的な特徴を抽出することが望ましいと述べている.[17] 本システムにおいては、中立表情から笑顔になるまでの表情の遷移を記録し、顔のパーツの動き、筋

図 3.1: システムフロー

肉の動きを数値化することが可能である.数値化可能な値は,顔のパーツの位置,動きがあるかないかの2極値,そして動きの強度である.

3.3 DSFSA の使用方法

2つのモードを使いわけて、笑顔の作り方を記録した動画データを作成することおよび顔パーツの動きを数値化することが可能である。また、中立の表情から笑顔になるタイミングを記録した動画データのことを以下では笑顔動画データとする。

3.3.1 動画から笑顔動画データ作成および数値化

人が映った既存の動画データから, 笑顔動画データを作成することが可能である. ユーザーに表示するための笑顔動画データを作成, 収集するために使用するモードである.

3.3.2 ユーザー表情の笑顔動画データ作成および数値化

実際にユーザーの表情の動きをトラッキングして, 笑顔動画データを作成することが可能 である. 表情と嗜好の関係性をするためのデータを収集およびユーザーの笑顔動画データを データベースに保存するためのモードである.

3.4 まとめ

本章では、笑顔動画データ作成および収集、数値化を行う本システムの概要について述べた. ついで、本システムの特徴および使用方法について説明をした. 次章では、Delta Smile Facial Survey Analyzer システムの設計について述べる.

第4章 設計

本章では、まず本研究で作成した Delta Smile Facial Survey Analyzer システムの設計概要について説明する. その後、データ収集機能における各モジュールと、データ分析機能における各モジュールの詳細について説明する.

4.1 本システムの設計概要

本研究で作成した Delta Smile Facial Survey Analyzer(以下 DSFSA) は、素材動画から笑顔動画データおよび画像処理結果を保存した CSV データの作成、ユーザーの笑顔動画データの作成、および画像処理結果を保存した CSV データを使用して、データベースにある CSV データと演算を行い、選ばれた動画データに対してユーザーに順位づけをしてもらう laptop上で動くデータ収集・分析用システムである。本システムのシステム構成図を 4.1 に示す.

図 4.1: システム構成図

4.2 データ収集機能

このセクションでは、ユーザーエンドおよびデータ収集に必要な各モジュールの役割について説明する. パソコンは Mac Book Air, Core i5, メモリ 8GB, ストレージ 256GB, OS Mojave, version 10.14.5 を使用し、web カメラは Logicool C920r, ディスプレイは eizo sx2761w を使用する.

4.2.1 顔検出モジュール

パソコンのカメラ, もしくは web カメラを起動して得た映像に対して顔の検出を行う. ユーザーの顔のみを検出, トラッキングを行い, 特定領域のみに次の処理をかけることでシステムを軽量化する.

4.2.2 笑顔検出モジュール

顔検出モジュールで検出した顔の領域に対して, ユーザーの笑顔のタイミングを検出する 処理を行う. 笑顔処理を動画全体にかけると誤検出や, 処理速度が落ちるため顔の領域のみ に判別器をかける.

4.2.3 画像処理モジュール

中立の表情から、 笑顔になるタイミングを連続時系列データでトータル 20 フレーム、 そのうち笑顔は 5 フレーム保存し、 各フレームに対して OpenFace の Facial Action Unit の処理を行う.

4.2.4 動画作成モジュール

保存したフレームをつなぎ合わせて1秒の動画を作成する. 20fps で検出し, 笑顔を連続5フレーム検出した動画を本システムの笑顔動画のフォーマットとする. このフォーマットが表情遷移を記録する上で有効であるかどうかは6章の予備実験にて評価する.

4.2.5 データ作成モジュール

動画作成と同時に、画像処理モジュールで算出した Facial Action Unit を CSV フォーマットで保存する. 笑顔動画および CSV データをユーザーごとにファイリングを行い、データベースへ笑顔動画と CSV データを紐づけて保存する.

4.2.6 笑顔データ選択モジュール

OpenFace の開発者である Tadas [1] によると,OpenFace から取得可能な p_scale パラメータは, 顔のパーツのバランスを示している. 特徴点の x, y, z の 3 点座標を使用し, 判定モデルのベースとなっている平均顔との差分 λ であり, この顔の形状と表情のアイデンティティーを示す値とされている. 以下の式, X はモデル内における顔パーツの位置データの集まりを示している.

$$X = \begin{bmatrix} X_1, & X_2, & \dots & X_n, & Y_1, & Y_2, & \dots & Y_n, & Z_1, & Z_2, & \dots & Z_n \end{bmatrix}^{\mathrm{T}}$$
 (4.1)

図 4.2: MultiPIE のデータセットから、 λ の値を顔に反映させたもの p_scale の値を算出し、自分の笑顔動画データをふくむ 5 つのデータを選ぶ.選択の基準は、

ユーザーの p_scale との差分を計算し,差分の最小値 (ユーザー自身), 第一四分位数, 中央値, 第三四分位数, 最大値を選択する.

4.2.7 表示データ作成モジュール

表情の動き以外のバイアスを削減するために、表情の動きは点描画のみで以下のようにな動画データを作成する. 顔の特徴点のみを抽出し、表情の動きのみをユーザーに提示する.

図 4.3: 点描画笑顔動画データ

4.2.8 順位づけモジュール

ディスプレイに 5 種類の動画の中の 2 種類を表示し、左右どちらの表情の動きが好みか選んでもらう。左右比較を 4 回繰り返し、各点描笑顔動画データに対して順位づけを行う。

4.2.9 データ保存モジュール

ユーザーの笑顔動画データ、FAU 算出 CVS データ、5 つの笑顔動画データへの順位づけ データ、およびユーザーの順位づけが一番高かった笑顔動画データおよびその FAU 算出 CSV データを 1 つのディレクトリに格納し保存する.

4.2.10 選択データ表示モジュール

ユーザーの笑顔動画データと、順位づけが一番高かった笑顔動画データを横にならべ動画 データとし、ユーザーに表示する.

4.3 データ分析機能

working

- **4.3.1** FAU 値計算モジュール
- 4.3.2 データプロットモジュール
- 4.4 まとめ

第5章 実装

この章では DSFSA の実装について述べる.

- 5.1 ユーザーインターフェースの実装
- 5.1.1 顔検出モジュールの実装
- 5.1.2 笑顔検出モジュールの実装
- 5.1.3 画像処理モジュールの実装
- 5.1.4 動画作成モジュールの実装
- 5.1.5 表示データ作成モジュールの実装
- 5.1.6 ランキングデータ取得モジュールの実装
- 5.1.7 データ保存モジュールの実装
- 5.1.8 笑顔トリミングモジュールの実装
- 5.2 分析スクリプトの実装
- 5.2.1 csv モジュールの実装
- 5.2.2 データプロットモジュールの実装
- 5.3 まとめ

第6章 予備実験

この章では本研究で行った予備実験について述べる.

- 6.1 表情を作るのかかる時間
- 6.2 実験の結果・まとめ

第7章 評価実験

この章では本研究で行った評価実験について述べる.

- 7.1 評価実験の概要
- 7.2 評価実験の目的
- 7.3 ORF(Open Research Forum) におけるデータ収集
- 7.4 ユーザーの嗜好分析
- 7.5 地震の表情の作り方と好感をもつ笑顔との相関性
- 7.6 結果
- 7.7 まとめ

第8章 結論

この章では本研究における結論について述べる.

- 8.1 今後の展望
- 8.1.1 良好な人間関係の構築へのデータ活用
- 8.1.2 1月下旬から行う実証実験について
- 8.2 本論文まとめ

謝辞

このテンプレートを改造するにあたって、@kurokobo とインターネット上のいくつかの修士論文などを参考にしました。感謝いたします。

参考文献

- [1] Tadas Baltrusaitis. Automatic facial expression analysis. for the Degree of Doctor of Philosophy in University of Cambridge, 2014.
- [2] Neelesh Bhakt. A novel framework for real and fake smile detection from videos. IEEE, Proceedings of the 2nd International conference on Electronics, Communication and Aerospace Technology (ICECA 2018), 2018.
- [3] chane claire. シャンクレール調査. 2019.10.
- [4] Paul Ekman. Universal facial expression of emotion. CALIFORNIA MENTAL HEALTH RESEARCH DIGEST, Vol. 8, No. 4, 1970.
- [5] I Gede Aris Gunadi. Fake smile detection using linear support vector machine. *IEEE*, 2015 International Conference on Data and Software Engineering, 2015.
- [6] Bruno Laeng. Is beauty in the face of the beholder? POLOS, Vol. 8, p. 697705, July 10.2013.
- [7] Anthony Little. Assortative mating for perceived facial personality traits, personality and individual differences. Vol. 40, pp. 973–984, April 2006.
- [8] David Mechanic. Stress, illness, and illness behavior. *Journal of Human Stress*, pp. 2–6, 09 Jul 2010.
- [9] David Mechanic. Richard m., development of competence inventory for college men and evaluation of relationships between competence and depression. *Journal of Consulting and Clinical Psychology*, p. 697705, 1982.
- [10] Albert Mehrabian. Albert mehrabian 's 7-38-55 rule of personal. 1971.
- [11] K. Okada. The bochum usc face recognition system and how it fared in the feret phase iii test. *Springer-Verlag*, 1998.
- [12] The Mail on Sunday and Metro Media Group. Associated newspapers ltd part of the daily mail.
- [13] World Health organization. World health statistics overview2019.

- [14] Eduard Royce. Smile recognition system based on lip corners identification. IEEE,2014 1st International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE), 2014.
- [15] Yoshikawa Sakiko Sato Wataru Hyniewska Sylwia, Minemoto Kazusa. Facial expressions of basic emotions in japanese laypeople. Frontiers in Psychology, Vol. 10, , 2019.
- [16] Robert Zajonc. Convergence in the physical appearance of spouses. *Motivation and Emotion*, Vol. 11, No. 4, 1987.
- [17] 高橋裕樹. 顔情報処理技術. 映像情報メディア学会誌, Vol. 61, No. 4, 2007.
- [18] 高木幸子. コミュニケーションにおける表情および身体動作の役割. Waseda University Repository, Vol. 51, , 2005.

付 録 A 付録の例

付録を無理矢理出力させるため、てきとうなことを書く。

A.1 ほげ

コマンドは本文と一緒。

A.1.1 ふー

本文と一緒。

A.2 ほげほげ

本文と一緒。

A.2.1 ふーふー

本文と一緒。