SUNG- 2002.11.13 *DE 10253112-A1 2002.11.13 2002-1053112(+2002DE-1053112) (2004.06.03) C12N 9/02, A01H 5/00, C12N 15/53, C12P 23/00 B05 D16 E15 (D13) SUNGENE GMBH & CO KGAA 2004-489014/47

Production of ketocarotenoids with low hydroxylated by-product content, for use e.g. in pigmenting feedstuffs, by culturing genetically modified organisms having modified ketolase activity C2004-182265

SAUER M, FLACHMANN R, KLEBSATTEL M, SCHOPFER C R Addnl. Data:

NOVELTY

specific sequence (A) of 258 aminoacids (given in the specification as SEQ. ID. NO. 2) or a mutant sequence of (A), provided that (A') has Production of ketocarotenoids (I) involves culturing genetically (compared with wild strains) due to a ketolase (II) containing a modified organisms having modified ketolase (KLA) activity at least 42% homology with (A).

DETAILED DESCRIPTION

Production of ketocarotenoids (I) involves culturing genetically (compared with wild strains) due to a ketolase (II) containing a modified organisms having modified ketolase (KLA) activity

10-E4A, 10-F2) D(3-G1, 3-H1, 5-C, 5-H8, 5-H12B2, 5-H14A, 5-B(3-A, 4-E2E, 4-F1E, 4-F8E, 4-F9E, 4-F10E, 4-L5CE, H14B3) E(10-E4C, 10-E4F, 10-F2A1, 11-M) .9 specific sequence (A) of 258 aminoacids (given in the specification as SEQ. ID. NO. 2) or a sequence (A) derived from (A) by substitution, insertion or deletion of amino acids, provided that (A') has at least

42% homology with (A). INDEPENDENT CLAIMS are included for:

genetically modified organisms which:

(a) show increased KLA activity compared with wild strains (or into which KLA activity is introduced if the wild strain has no KLA activity), having KLA activity due to (II); and/or

(b) contain at least one transgenic nucleic acid encoding (A) or (A') or at least two endogenous nucleic acid sequences encoding (II);

(2) new ketolases (II'), which contain:

(a) a specific sequence (Ai) of 262 aminoacids (SEQ. ID. NO. 8) or a deletion, provided that (Ai') has at least 70% homology with (Ai) and that a specific sequence of 262 aminoacids (SEQ. ID. NO. 4) sequence (Ai') derived from (Ai) by substitution, insertion or

(b) a specific sequence (Aii) of 253 aminoacids (SEQ. ID. NO. 6) or a is excluded

DE 10253112-A+

sequence (Aii') derived from (Aii) by substitution, insertion or deletion, provided that (Aii') has at least 70% homology with (Aii);

- (c) a specific sequence (Aiii) of 253 aminoacids (SEQ. ID. NO. 12) or a sequence (Aiii') derived from (Aiii) by substitution, insertion or deletion, provided that (Aiii') has at least 70% homology with (Aiii) and that SEQ. ID. NO. 4 is excluded; or
- (d) a specific sequence (Aiv) of 267 aminoacids (SEQ. ID. NO. 49) or a sequence (Aiv') derived from (Aiv) by substitution, insertion or deletion, provided that (Aiv') has at least 50% homology with (Aiv) and that a specific sequence of 267 aminoacids (SEQ. ID. NO. 47) is excluded, where all the sequences are defined in the specification;
 - (3) nucleic acids encoding (II'), provided that a specific sequence of 762 bases (SEQ. ID. NO. 5; sequence defined in the specification) is excluded; and
- (4) the use as ketolase of proteins which contain SEQ. ID. NO. 4 (or a derived sequence having at least 70% homology with SEQ. ID. NO. 6 (or a derived sequence having at least 55% homology with SEQ. ID. No. 6) or SEQ. ID. NO. 47 (or a derived sequence having at least 50% homology with SEQ. ID. No. 6) are sequences are defined in the specification.

USE

(I) are natural antioxidants and pigments, especially useful (particularly in the case of (Ia)) as pigmenting additives in animal feed, specifically feed for trout, salmon or shrimps. The use of the (I)-producing genetically modified organisms (specifically microorganisms or plants) is claimed as feedstuffs or foodstuffs, in the production of (I)-containing extracts or for producing feed or food supplements.

<u>ADVANTAGE</u>

The process provides large amounts of (I) having a low content of hydroxylated by-products, especially in the case of (Ia).

SPECIFIC COMPOUNDS

Eight compounds (I) are specifically claimed, e.g. astaxanthin (Ia).

EXAMPLE

DNA encoding the whole primary ketolase sequence from *Nostoc* sp. strain PCC7120 was isolated, amplified by PCR and used to produce a plasmid pNOSTF-G. A plasmid pMCL-Crt-YIBZ/idi/gps,

DE 10253112-A+/1

2004-489014/47

for the synthesis of zeaxanthin in Escherichia coli, was constructed in 3 stages via the intermediate stages pMCL-CrtYIBZ and pMCL-CrtYIBX/idi, using the high copy number plasmid vector pMCL200. Escherichia coli strain TOP10 was transformed with the plasmids pNOSTFG and pMCL-Crt-YIBZ/idi/gps to give carotenoid producing strain, which provided a culture supernatant containing 491 ng/ml astaxanthin (i.e. the required ketocarotenoid (Ia) as main product). For comparison, a supernatant obtained using a strain producing a ketolase from Haematococcus pluvialis gave a culture supernatant containing 13 ng/ml (Ia), 102 ng/ml adoxanthin and 120 ng zeaxanthin (i.e. the hydroxylated by-product zeaxanthin as main product).

TECHNOLOGY FOCUS

Biotechnology - Preferred Organisms: The starting microorganisms produce carotenoids (naturally or by genetic supplementation), and are specifically microorganisms (especially bacteria, yeasts, algae or fungi) or plants. Specified in the claims are 23 preferred types of microorganisms (e.g. Escherichia, Flavobacterium, Nostoc,

Syneochocystis, Hansenula, Fusarium and Dunaliella); 28 preferred families of plants (e.g. Ranunculaceae, Cannabaceae, Brassiceae, Amaranthaceae, Solanaceae and Lamiaceae); and about 100 preferred genera of plants (e.g. Acacia, Calendula, Gentiana, Helianthus, Linum, Rhododendron, Spartium and Zinnia.

Preferred Process: Nucleic acids encoding (II) are introduced into the host organisms, preferably nucleic acids containing a specific sequence of 777 bases (SEQ. ID. NO. 1) from Nostoc sp. strain PCC7120. The modified microorganisms additionally show elevated hydroxylase and/or β-cyclase activity, preferably due to expression of at least one nucleic acid encoding hydroxylase and/or β-cyclase, especially using:

(a) a nucleic acid encoding a hydroxylase having specific sequence of 322 amino acids (SEQ. ID. NO. 16) (or a derived sequence having at least 20% homology), the nucleic acid preferably having a specific sequence of 1608 bases (SEQ. ID. NO. 15) from Haematococcus pluvialis; and/or

having puvians, among (b) a nucleic acid encoding a β-cyclase having specific sequence of 500 aminoacids (SEQ. ID. NO. 18) (or a derived sequence having

DE 10253112-A+/2

DE 10253112-A/3 at least 20% homology), the nucleic acid preferably having a specific sequence of 1650 bases (SEQ. ID. NO. 17) from *Lycopersicon esculentum*.

All sequences are defined in the specification.

The genetically modified organism is cultured, the organism is harvested and (I) is recovered from the product.

(101pp2400DwgNo.0/6)

(12)

Offenlegungsschrift

(21) Aktenzeichen: 102 53 112.9

(22) Anmeldetag: 13.11.2002 (43) Offenlegungstag: 03.06.2004 (51) Int CI.7: C12N 9/02

C12N 15/53, C12P 23/00, A01H 5/00

(71) Anmelder:

SunGene GmbH & Co. KGaA, 06466 Gatersleben,

(72) Erfinder:

Sauer, Matt, Dr., 06484 Quedlinburg, DE; Flachmann, Ralf, Dr., 06484 Quedlinburg, DE; Klebsattel, Martin, 06484 Quedlinburg, DE; Schopfer, Christel Renate, Dr., 06484 Quedlinburg, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: Verfahren zur Herstellung von Ketocarotinoiden in genetisch veränderten Organismen

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen, die im Vergleich zum Wildtyp eine veränderte Ketolase-Aktivität aufweisen, die genetisch veränderten Organismen sowie deren Verwendung als Nahrungs- und Futtermittel und zur Herstellung von Ketocarotinoidextrakten.

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen, die im Vergleich zum Wildtyp eine veränderte Ketolase-Aktivität aufweisen, die genetisch veränderten Organismen, sowie deren Verwendung als Nahrungs- und Futtermittel und zur Herstellung von Ketocarotinoidextrakten.

[0002] Carotinoide werden de novo in Bakterien, Algen, Pilzen und Pflanzen synthetisiert. Ketocarotinoide, also Carotinoide, die mindestens eine Keto-Gruppe enthalten, wie beispielsweise Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin sind natürliche Antioxidantien und Pigmente, die von einigen Algen und Mikroorganismen als Sekundärmetabolite produziert werden.

[0003] Aufgrund ihrer farbgebenden Eigenschaften werden die Ketocarotinoide und insbesondere Astaxanthin als Pigmentierhilfsstoffe in der Tierernährung, insbesondere in der Forellen-, Lachs- und Shrimpszucht verwendet.

[0004] Die Herstellung von Astaxanthin erfolgt heutzutage größtenteils durch chemische Syntheseverfahren. Natürliche Ketocarotinoide, wie beispielsweise natürliches Astaxanthin, werden heutzutage in biotechnologischen Verfahren in kleinen Mengen durch Kultivierung von Algen, beispielsweise Haematococcus pluvialis oder durch Fermentation von gentechnologisch optimierten Mikroorganismen und anschließender Isolierung gewonnen.

[0005] Ein wirtschaftliches biotechnologisches Verfahren zur Herstellung von natürlichen Ketocarotinoiden ist daher von großer Bedeutung.

[0006] Nukleinsäuren kodierend eine Ketolase und die entsprechenden Proteinsequenzen sind aus verschiedenen Organismen isoliert und annotiert worden, wie beispielsweise Nukleinsäuren kodierend eine Ketolase aus Agrobacterium aurantiacum (EP 735 137, Accession NO: D58420), aus Alcaligenes sp. PC-1 (EP 735137, Accession NO: D58422), Haematococcus pluvialis Flotow em. Wille und Haematoccus pluvialis, NIES-144 (EP 725137, WO 98/18910 und Lotan et al, FEBS Letters 1995, 364, 125–128, Accession NO: X86782 und D45881), Paracoccus marcusii (Accession NO: Y15112), Synechocystis sp. Strain PC6803 (Accession NO: NP_442491), Bradyrhizobium sp. (Accession NO: AF218415) und Nostoc sp. PCC 7120 (Kaneko et al, DNA Res. 2001, 8 (5), 205–213; Accession NO: AP003592, BAB74888).

[0007] EP 735 137 beschreibt die Herstellung von Xanthophyllen in Mikroorganismen, wie beispielsweise F. coli durch Einbringen von Ketolase-Genen (crtW) aus Agrobacterium aurantiacum oder Alcaligenes sp. PC-1 in Mikroorganismen.

[0008] Aus EP 725 137, WO 98/18910, Kajiwara et al. (Plant Mol. Biol. 1995, 29, 343–352) und Hirschberg et al. (FEBS Letters 1995, 364, 125–128) ist es bekannt, Astaxanthin durch Einbringen von Ketolase-Genen aus Haematococcus pluvialis (crtW, crtO oder bkt) in E. coli herzustellen.

[0009] Hirschberg et al. (FEBS Letters 1997, 404, 129–134) beschreiben die Herstellung von Astaxanthin in Synechococcus durch Einbringen von Ketolase-Genen (crtO) aus Haematococcus pluvialis. Sandmann et al. (Photochemistry and Photobiology 2001, 73 (5), 551–55) beschreiben ein analoges Verfahren, das jedoch zur Herstellung von Canthaxanthin führt und nur Spuren Astaxanthin liefert.

[0010] WO 98/18910 und Hirschberg et al. (Nature Siotechnology 2000, 18 (8), 888–892) beschreiben die Synthese von Ketocarotinoiden in Nektarien von Tabakblüten durch Einbringen des Ketolase-Gens aus Haematococcus pluvialis (crtO) in Tabak.

[0011] WO 01/20011 beschreibt ein DNA Konstrukt zur Produktion von Ketocarotinoiden, insbesondere Astaxanthin, in Samen von Ölsaatpflanzen wie Raps, Sonnenblume, Sojabohne und Senf unter Verwendung eines Samen-spezifischen Promotors und einer Ketolase aus Haematococcus pluvialis.

[0012] Alle im Stand der Technik beschriebenen Verfahren zur Herstellung von Ketocarotinoiden und insbesondere die beschriebenen Verfahren zur Herstellung von Astaxanthin weisen den Nachteil auf, daß die transgenen Organismen eine große Menge an hydroxylierten Nebenprodukten, wie beispielsweise Zeaxanthin und Adonixanthin liefern.

[0013] Der Erfindung lag daher die Aufgabe zugrunde, ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen zur Verfügung zu stellen, bzw. weitere genetisch veränderte Organismen, die Ketocarotinoide herstellen, zur Verfügung zu stellen, die die vorstehend beschriebenen Nachteile des Standes der Technik in geringerem Maße oder nicht mehr aufweisen.

[0014] Demgemäß wurde ein Verfahren zur Herstellung von Ketocarotinoiden gefunden, indem man genetisch veränderte Organismen kultiviert, die im Vergleich zum Wildtyp eine veränderte Ketolase-Aktivität aufweisen und die veränderte Ketolase-Aktivität durch eine Ketolase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

[0015] Die erfindungsgemäßen Organismen wie beispielsweise Mikroorganismen oder Pflanzen sind vor-

zugsweise als Ausgangsorganismen natürlicherweise in der Lage, Carotinoide wie beispielsweise β -Carotin oder Zeaxanthin herzustellen, oder können durch genetische Veränderung, wie beispielsweise Umregulierung von Stoffwechselwegen oder Komplementierung in die Lage versetzt werden, Carotinoide wie beispielsweise β -Carotin oder Zeaxanthin herzustellen.

[0016] Einige Organismen sind als Ausgangs- oder Wildtyporganismen bereits in der Lage, Ketocarotinoide wie beispielsweise Astaxanthin oder Canthaxanthin herzustellen. Diese Organismen, wie beispielsweise Haematococcus pluvialis, Paracoccus marcusii, Xanthophyllomyces dendrorhous, Bacillus circulans, Chlorococcum, Phaffia rhodozyma, Adonisröschen, Neochloris wimmeri, Protosiphon botryoides, Scotiellopsis oocystiformis, Scenedesmus vacuolatus, Chlorela zofingiensis, Ankistrodesmus braunii, Euglena sanguinea, Bacillus atrophaeus, Blakeslea weisen bereits als Ausgangs- oder Wildtyporganismus eine Ketolase-Aktivität auf.

[0017] In einer Ausführungsform des erfindungsgemäßen Verfahrens werden daher als Ausgangsorganismen Organismen verwendet, die bereits als Wildtyp oder Ausgangsorganismus eine Ketolaseaktivität aufweisen. In dieser Ausführungsform bewirkt die genetische Veränderung eine Erhöhung der Ketolase-Aktivität im Vergleich zum Wildtyp oder Ausgangsorganismus.

[0018] Unter Ketolase-Aktivität wird die Enzymaktivität einer Ketolase verstanden.

7

[0019] Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β-lonon-Ring von Carotinoiden eine Keto-Gruppe einzuführen.

[0020] Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, β-Carotin in Canthaxanthin umzuwandeln.

[0021] Dementsprechend wird unter Ketolase-Aktivität die in einer bestimmten Zeit durch das Protein Ketolase umgesetzte Menge β-Carotin bzw. gebildete Menge Canthaxanthin verstanden.

[0022] Bei einer erhöhten Ketolase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Ketolase die umgesetzte Menge β-Carotin bzw. die gebildete Menge Canthaxanthin erhöht.

[0023] Vorzugsweise beträgt diese Erhöhung der Ketolase-Aktivität mindestens 5%, weiter bevorzugt mindestens 20%, weiter bevorzugt mindestens 50%, weiter bevorzugt mindestens 100%, bevorzugter mindestens 300%, noch bevorzugter mindestens 500%, insbesondere mindestens 600% der Ketolase-Aktivität des Wildtyps.

[0024] Unter dem Begriff "Wildtyp" wird erfindungsgemäß der entsprechende Ausgangsorganismus verstanden.

[0025] Je nach Zusammenhang kann unter dem Begriff "Organismus" der Ausgangsorganismus (Wildtyp) oder ein erfindungsgemäßer, genetisch veränderter Organismus oder beides verstanden werden.

[0026] Vorzugsweise und insbesondere in Fällen, in denen der Organismus oder der Wildtyp nicht eindeutig zugeordnet werden kann, wird unter "Wildtyp" für die Erhöhung oder Verursachung der Ketolase-Aktivität, für die nachstehend beschriebene Erhöhung der Hydroxylase-Aktivität, für die nachstehend beschriebene Erhöhung der β-Cyclase-Aktivität und die Erhöhung des Gehalts an Ketocarotinoiden jeweils ein Referenzorganismus verstanden.

[0027] Dieser Referenzorganimus ist für Mikroorganismen, die bereits als Wildtyp eine Ketolase Aktivität aufweisen, vorzugsweise Haematococcus pluvialis.

[0028] Dieser Referenzorganismus ist für Mikroorganismen, die als Wildtyp keine Ketolase Aktivität aufweisen, vorzugsweise Blakeslea.

[0029] Dieser Referenzorganismus ist für Pflanzen, die bereits als Wildtyp eine Ketolase-Aktivität aufweisen, vorzugsweise Adonis aestivalis, Adonis flammeus oder Adonis annuus, besonders bevorzugt Adonis aestivalis.

[0030] Dieser Referenzorganismus ist für Pflanzen, die als Wildtyp keine Ketolase-Aktivität in Blütenblätter aufweisen, vorzugsweise Tagetes erecta, Tagetes patula, Tagetes lucida, Tagetes pringlei, Tagetes palmeri, Tagetes minuta oder Tagetes campanulata, besonders bevorzugt Tagetes erecta.

[0031] Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:

[0032] Die Bestimmung der Ketolase-Aktivität in Pflanzen- oder Mikroorganismenmaterial erfolgt in Anlehnung an die Methode von Frazer et al., (J. Biol. Chem. 272 (10): 6128–6135, 1997). Die Ketolase-Aktivität in pflanzlichen oder Mikroorganismus-Extrakten wird mit den Substraten β-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojalecithin) und Detergens (Natriumcholat) bestimmt. Substrat/Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.

[0033] Die Erhöhung der Ketolase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Translations- und Proteinebene oder durch Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, gegenüber dem Wildtyp, beispielsweise durch Induzierung des Ketolase-Gens durch Aktivatoren oder durch Einbringen von Nukleinsäuren, kodierend eine Ketolase, in den Organismus.

[0034] Unter Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, wird erfindungsge-

Ÿ

mäß in dieser Ausführungsform auch die Manipulation der Expression der Organismen eigenen endogenen Ketolasen verstanden. Dies kann beispielsweise durch Veränderung der Promotor DNA-Sequenz für Ketolase kodierende Gene erreicht werden. Eine solche Veränderung, die eine veränderte oder vorzugsweise erhöhte Expressionsrate mindestens eines endogenen Ketolase Gens zur Folge hat, kann durch Deletion oder Insertion von DNA Sequenzen erfolgen.

[0035] Es ist wie vorstehend beschrieben möglich, die Expression mindestens einer endogenen Ketolase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.

[0036] Des weiteren kann eine erhöhte Expression mindestens eines endogenen Ketolase-Gens dadurch erzielt werden, dass ein im Wildtyporganismus nicht vorkommendes oder modifiziertes Regulatorprotein mit dem Promotor dieser Gene in Wechselwirkung tritt.

[0037] Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA-Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.

[0038] In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Ketolase-Aktivität gegenüber dem Wildtyp durch die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

[0039] In einer weiter bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, in die Organismen, wobei die Ketolasen die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz enthalten, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

[0040] In den erfindungsgemäßen transgenen Organismen liegt also in dieser Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Ketolase-Gen vor, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

[0041] In dieser Ausführungsform weist der erfindungsgemäße genetisch veränderte Organismus dementsprechend mindestens eine exogene (= heterologe) Nukleinsäure, kodierend eine Ketolase, auf oder mindestens zwei endogene Nukleinsäuren, kodierend eine Ketolase, auf, wobei die Ketolasen die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz enthalten, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

[0042] In einer anderen, bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden als Ausgangsorganismen Organismen verwendet, die als Wildtyp keine Ketolaseaktivität aufweisen.

[0043] In dieser bevorzugten Ausführungsform verursacht die genetische Veränderung die Ketolase-Aktivität in den Organismen. Der erfindungsgemäße genetisch veränderte Organismus weist somit in dieser bevorzugten Ausführungsform im Vergleich zum genetisch nicht veränderten Wildtyp eine Ketolase-Aktivität auf und ist somit vorzugsweise in der Lage, transgen eine Ketolase zu exprimieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

[0044] In dieser bevorzugten Ausführungsform erfolgt die Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, analog zu der vorstehend beschriebenen Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, vorzugsweise durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, in den Ausgangsorganismus.

[0045] Dazu kann in beiden Ausführungsformen prinzipiell jede Nukleinsäuren, die eine Ketolase kodiert, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, verwendet werden.

[0046] Die Verwendung der erfindungsgemäßen Nukleinsäuren, kodierend eine Ketolase, führt im erfindungsgemäßen Verfahren überraschenderweise zu Ketocarotinoiden mit einer geringeren Menge an hydroxylierten Nebenprodukten als bei der Verwendung der im Stand der Technik verwendeten Ketolase-Gene.

[0047] Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cD-NA-Sequenz sein.

[0048] Bei genomischen Ketolase-Sequenzen aus eukaryotischen Quellen, die Introns enthalten, sind für den Fall, dass der Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entspre-

chenden Ketolase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen wie die entsprechenden cDNAs zu verwenden.

[0049] Beispiele für Nukleinsäuren, kodierend eine Ketolase, und die entsprechenden Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, die im erfindungsgemäßen Verfahren vorteilhaft verwendet werden können, sind beispielsweise Sequenzen aus

Nostoc sp. Strain PCC7120 (Accession NO: AP003592, BAB74888; Nukleinsäure: SEQ ID NO: 1, Protein SEQ ID NO: 2),

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No. NZ AABC01000195, Basenpaar 55,604 bis 55,392 (SEQ ID NO: 3); Protein: Acc.-No. ZP 00111258 (SEQ ID NO: 4) (als putatives Protein annotiert) oder

Nostoc punctiforme ATTC 29133, Nukleinsäure: Acc.-No. NZ AABC01000196, Basenpaar 140,571 bis 139,810 (SEQ ID NO: 5), Protein: (SEQ ID NO: 6) (nicht annotiert),

Synechococcus sp. WH 8102, Nukleinsäure: Acc.-No. NZ_AABD01000001, Basenpaar 1,354,725–1,355,528 (SEQ ID NO: 46), Protein: Acc.-No. ZP,00115639 (SEQ ID NO: 47) (als putatives Protein annotiert).

oder von diesen Sequenzen abgeleitete Ketolasesequenzen wie beispielsweise die Ketolasen der Sequenz SEQ ID NO: 8 oder 10 und die entsprechenden kodierenden Nukleinsäuresequenzen SEQ ID NO: 7 oder SEQ ID NO: 9, die beispielsweise durch Variation/Mutation aus der Sequenz SEQ ID NO: 4 bzw. SEQ ID NO: 3 hervorgehen,

die Ketolasen der Sequenz SEQ ID NO: 12 oder 14 und die entsprechenden kodierenden Nukleinsäuresequenzen SEQ ID NO: 11 oder SEQ ID NO: 13, die beispielsweise durch Variation/Mutation aus der Sequenz SEQ ID NO: 6 bzw. SEQ ID NO: 5 hervorgehen, oder

die Ketolasen der Sequenz SEQ ID NO: 49 oder 51 und die entsprechenden kodierenden Nukleinsäuresequenzen SEQ ID NO: 48 oder SEQ ID NO: 50, die beispielsweise durch Variation bzw. Mutation aus der Sequenz SEQ ID NO: 47 bzw. SEQ ID NO: 46 hervorgehen.

[0050] Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der vorstehend beschriebenen Sequenzen SEQ ID NO: 2 leicht auffinden.

[0051] Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID NO: 1 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.

[0052] Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen erfolgen.

[0053] Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31–9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1–6.3.6 beschrieben.

[0054] Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50_C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50_C, bevorzugt bei 65_C) (20X SSC: 0,3 M Natriumcitrat, 3 M Natriumchlorid, pH 7.0).

[0055] Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten Bedingungen bei 65°C angehoben werden.

[0056] Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50% Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.

[0057] Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:

- (1) Hybridiserungsbedingungen mit zum Beispiel
- (i) 4X SSC bei 65°C, oder

1

- (ii) 6X SSC bei 45°C, oder
- (iii) 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder
- (iv) 6X SSC, 0.5% SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68°C, oder
- (v) 6X SSC, 0.5% SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50% Formamid bei 42°C, oder
- (vi) 50% Formamid, 4X SSC bei 42 C, oder
- (vii) 50% (vol/vol) Formamid, 0.1% Rinderserumalbumin, 0.1% Ficoll, 0.1% Polyvinylpyrrolidon, 50 mM Na-

triumphosphatpuffer pH 6.5, 750 mM NaCl, 75 mM Natriumcitrat bei 42°C, oder

- (viii) 2X oder 4X SSC bei 50°C (moderate Bedingungen), oder
- (ix) 30 bis 40% Formamid, 2X oder 4X SSC bei 42° (moderate Bedingungen).
- (2) Waschschritte für jeweils 10 Minuten mit zum Beispiel
- (i) 0.015 M NaCl/0.0015 M Natriumcitrat/0.1% SDS bei 50°C, oder
- (ii) 0.1X SSC bei 65°C, oder
- (iii) 0.1X SSC, 0.5% SDS bei 68°C, oder
- (iv) 0.1X SSC, 0.5% SDS, 50% Formamid bei 42°C, oder
- (v) 0.2X SSC, 0.1% SDS bei 42°C, oder
- (vi) 2X SSC bei 65°C (moderate Bedingungen).

[0058] In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man Nukleinsäuren ein, die eine Ketolase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50%, vorzugsweise mindestens 60%, vorzugsweise mindestens 65%, vorzugsweise mindestens 70%, bevorzugter mindestens 75%, bevorzugter mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95%, besonders bevorzugt mindestens 98% auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 aufweist.

[0059] Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz, die ausgehend von der Sequenz SEQ ID NO: 2 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

[0060] Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gln durch Asn, Val durch Ile, Leu durch Ile, er durch Thr. [0061] Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen. [0062] Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.

[0063] Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Vector NTI Suite 7.1 Software der Firma Informax (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer.

[0064] Comput Appl. Biosci. 1989 Apr; 5 (2): 151-1) unter Einstellung folgender Parameter berechnet wird:

Multiple alignment parameter:

Gap opening penalty	10
Gap extension penalty	10
Gap separation penalty range	8
Gap separation penalty	off
% identity for alignment delay	40
Residue specific gaps	off
Hydrophilic residue gap	off
Transition weighing	0
Hansilon weighing	

Pairwise alignment parameter:

FAST algorithm on Gap penalty 3 Number of best diagonals 5 K-tuple size 1 Window size 5

[0065] Unter einer Ketolase, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ ID NO: 2 aufweist, wird dementsprechend eine Ketolase verstanden, die bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO: 2, insbesondere nach obigen Programmlogarithmus mit obigem Parametersatz eine Identität von mindestens 42% aufweist.

[0066] Beispielsweise weist nach obigen Programmlogarithmus mit obigem Parametersatz die Sequenz der Ketolase aus Nostoc punctiforme ATTC 29133 (SEQ ID NO: 4) mit der Sequenz der Ketolase aus Nostoc sp. Strain PCC7120 (SEQ ID NO: 2) eine Identität von 65% auf.

[0067] Die Sequenz der zweiten Ketolase aus Nostoc punctiforme ATTC 29133 (SEQ ID NO: 6) weist mit der Sequenz der Ketolase aus Nostoc sp. Strain PCC7120 (SEQ ID NO: 2) beispielsweise eine Identität von 58% auf

[0068] Die Sequenz der Ketolase aus Synechococcus sp. WH 8102 (SEQ ID NO: 47) weist mit der Sequenz der Ketolase aus Nostoc sp. Strain PCC7120 (SEQ ID NO: 2) beispielsweise eine Identität von 44% auf.

[0069] Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

[0070] Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismusspezifischen "codon usage" häufig verwendet werden. Die "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

[0071] In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO: 1, in den Organismus ein.

[0072] Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, S. 896–897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

[0073] Die Sequenz der Ketolase aus Nostoc sp. Strain PCC7120 (SEQ ID NO: 2) weist mit den Sequenzen der Ketolasen die in den Verfahren des Standes der Technik verwendet werden eine Identität von 39% (Agrobacterium aurantiacum (EP 735 137, Accession NO: D58420), 40% (Alcaligenes sp. PC-1 (EP 735137, Accession NO: D58422) und 20 bis 21% (Haematococcus pluvialis Flotow em. Wille und Haematoccus pluvialis, NIES-144 (EP 725137, WO 98/18910 und Lotan et al, FEBS Letters 1995, 364, 125–128, Accession NO: X86782 und D45881) auf.

[0074] In einer bevorzugten Ausführungsform werden Organismen kultiviert, die gegenüber dem Wildtyp zusätzlich zur erhöhten Ketolase-Aktivität eine erhöhte Hydroxylase-Aktivität und/oder β-Cyclase-Aktivität aufweisen.

[0075] Unter Hydroxylase-Aktivität wird die Enzymaktivität einer Hydroxylase verstanden.

[0076] Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β-lonon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.

[0077] Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, β-Carotin in Zeaxanthin oder Canthaxanthin in Astaxanthin umzuwandeln.

[0078] Dementsprechend wird unter Hydroxylase-Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge β-Carotin oder Canthaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.

[0079] Bei einer erhöhten Hydroxylase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein Hydroxylase die umgesetzte Menge β-Carotin oder Canthaxantin bzw. die gebildete Menge Zeaxanthin oder Astaxanthin erhöht.

[0080] Vorzugsweise beträgt diese Erhöhung der Hydroxylase-Aktivität mindestens 5%, weiter bevorzugt mindestens 20%, weiter bevorzugt mindestens 50%, weiter bevorzugt mindestens 100%, bevorzugter mindestens 300%, noch bevorzugter mindestens 500%, insbesondere mindestens 600% der Hydroxylase-Aktivität des Wildtyps.

[0081] Unter β-Cyclase-Aktivität wird die Enzymaktivität einer β-Cyclase verstanden.

[0082] Unter einer β-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen β-lonon-Ring zu überführen.

[0083] Insbesondere wird unter einer β-Cyclase ein Protein verstanden, das die enzymatische Aktivität aufweist, γ-Carotin in β-Carotin umzuwandeln.

[0084] Dementsprechend wird unter β -Cyclase-Aktivität die in einer bestimmten Zeit durch das Protein β -Cyclase umgesetzte Menge γ -Carotin bzw. gebildete Menge β -Carotin verstanden.

[0085] Bei einer erhöhten β-Cyclase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein β-Cyclase die umgesetzte Menge an Lycopin bzw. γ-Carotin oder die gebildete Menge an γ-Carotin aus Lycopin bzw. die gebildete Menge an β-Carotin aus γ-Carotin erhöht.

[0086] Vorzugsweise beträgt diese Erhöhung der β -Cyclase-Aktivität mindestens 5%, weiter bevorzugt mindestens 20%, weiter bevorzugt mindestens 50%, weiter bevorzugt mindestens 100%, bevorzugter mindestens 300%, noch bevorzugter mindestens 500%, insbesondere mindestens 600% der β -Cyclase-Aktivität des Wildtyps.

[0087] Die Bestimmung der Hydroxylase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen: Die Aktivität der

Hydroxylase wird nach Bouvier et al. (Biochim. Biophys. Acta 1391 (1998), 320-328) in vitro bestimmt. Es wird zu einer bestimmten Menge an Organismusextrakt Ferredoxin, Ferredoxin-NADP Oxidoreductase, Katalase, NADPH sowie β-Carotin mit Mono- und Digalaktosylglyzeriden zugegeben.

[0088] Besonders bevorzugt erfolgt die Bestimmung der Hydroxylase-Aktivität unter folgenden Bedingungen nach Bouvier, Keller, d'Harlingue und Camara (Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.; Biochim. Biophys. Acta 1391 (1998), 320–328):

[0089] Der in-vitro Assay wird in einem Volumen von 0.250 ml durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6), 0.025 mg Ferredoxin von Spinat, 0.5 Einheiten Ferredoxin-NADP+ Oxidoreduktase von Spinat, 0.25 mM NADPH, 0.010 mg beta-Carotin (in 0.1 mg Tween 80 emulgiert), 0.05 mM einer Mischung von Mono- und Digalaktosylglyzeriden (1:1), 1 Einheit Katalyse, 200 Mono- und Digalaktosylglyzeriden (1:1), 0.2 mg Rinderserumalbumin und Organismusextrakt in unterschiedlichem Volumen. Die Reaktionsmischung wird 2 Stunden bei 30°C inkubiert. Die Reaktionsprodukte werden mit organischem Lösungsmittel wie Aceton oder Chloroform/Methanol (2:1) extrahiert und mittels HPLC bestimmt.

[0090] Die Bestimmung der β-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Organismen und in Wildtyp- bzw. Referenzorganismen erfolgt vorzugsweise unter folgenden Bedingungen:

[0091] Die Aktivität der β-Cyclase wird nach Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185 (1) (1992) 9–15) in vitro bestimmt. Es werden zu einer bestimmten Menge an Organismusextrakt Kaliumphosphat als Puffer (pH 7.6), Lycopin als Substrat, Stromaprotein von Paprika, NADP+, NADPH und ATP zugegeben.

[0092] Besonders bevorzugt erfolgt die Bestimmung der β-Cyclase-Aktivität unter folgenden Bedingungen nach Bouvier, d'Harlingue und Camara (Molecular Analysis of carotenoid cyclae inhibition; Arch. Biochem. Biophys. 346 (1) (1997) 53–64): Der in-vitro Assay wird in einem Volumen von 250 μl Volumen durchgeführt. Der Ansatz enthält 50 mM Kaliumphosphat (pH 7.6), unterschiedliche Mengen an Organismusextrakt, 20 nM Lycopin, 250 μg an chromoplastidärem Stromaprotein aus Paprika, 0.2 mM NADP+, 0.2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 10 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach einer Reaktionszeit von 60 Minuten bei 30°C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.

[0093] Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fraser und Sandmann (Biochem. Biophys. Res. Comm. 185 (1) (1992) 9–15).

[0094] Die Erhöhung der Hydroxylase-Aktivität und/oder β-Cyclase-Aktivität kann durch verschiedene Wege erfolgen, beispielsweise durch Ausschalten von hemmenden Regulationsmechanismen auf Expressions- und Proteinebene oder durch Erhöhung der Genexpression von Nukleinsäuren, kodierend eine Hydroxylase, und/oder von Nukleinsäuren, kodierend eine β-Cyclase, gegenüber dem Wildtyp.

[0095] Die Erhöhung der Genexpression der Nukleinsäuren, kodierend eine Hydroxylase, und/oder die Erhöhung der Genexpression der Nukleinsäure, kodierend eine β -Cyclase, gegenüber dem Wildtyp kann ebenfalls durch verschiedene Wege erfolgen, beispielsweise durch Induzierung des Hydroxylase-Gens und/oder β -Cyclase-Gens durch Aktivatoren oder durch Einbringen von einer oder mehrerer Hydroxylase-Genkopien und/oder β -Cyclase-Genkopien, also durch Einbringen mindestens einer Nukleinsäure, kodierend eine Hydroxylase, und/oder mindestens einer Nukleinsäure, kodierend eine β -Cyclase, in den Organismus.

[0096] Unter Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Hydroxylase und/oder β-Cyclase, wird erfindungsgemäß auch die Manipulation der Expression der Organismus eigenen endogenen Hydroxylase und/oder β-Cyclase verstanden.

[0097] Dies kann beispielsweise durch Veränderung der Promotor DNA-Sequenz für Hydroxylasen und/oder β-Cyclasen kodierende Gene erreicht werden. Eine solche Veränderung, die eine erhöhte Expressionsrate des Gens zur Folge hat, kann beispielsweise durch Deletion oder Insertion von DNA Sequenzen erfolgen.

[0098] Es ist, wie vorstehend beschrieben, möglich, die Expression der endogenen Hydroxylase und/oder β-Cyclase durch die Applikation exogener Stimuli zu verändern. Dies kann durch besondere physiologische Bedingungen, also durch die Applikation von Fremdsubstanzen erfolgen.

[0099] Des weiteren kann eine veränderte bzw. erhöhte Expression eines endogenen Hydroxylase- und/oder β-Cyclase-Gens dadurch erzielt werden, dass ein im nicht transformierten Organismus nicht vorkommendes Regulator-Protein mit dem Promotor dieses Gens in Wechselwirkung tritt.

[0100] Solch ein Regulator kann ein chimäres Protein darstellen, welches aus einer DNA-Bindedomäne und einer Transkriptionsaktivator-Domäne besteht, wie beispielsweise in WO 96/06166 beschrieben.

[0101] In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine Hydroxylase, und/oder die Erhöhung der Genexpression einer Nukleinsäure, kodierend eine β-Cyclase, durch Einbringen von mindestens einer Nukleinsäure, kodierend eine Hydroxylase, und/oder durch Einbringen von mindestens einer Nukleinsäure, kodierend eine β-Cyclase, in den Organismus.

[0102] Dazu kann prinzipiell jedes Hydroxylase-Gen bzw. jedes β -Cyclase-Gen, also jede Nukleinsäure, die eine Hydroxylase und jede Nukleinsäure, die eine β -Cyclase kodiert, verwendet werden.

[0103] Bei genomischen Hydroxylase- bzw. β-Cyclase-Nukleinsäure-Sequenzen aus eukaryotischen Quellen, die Introns enthalten, sind für den Fall, dass der Wirtsorganismus nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechende Hydroxylase bzw. β-Cyclase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs, zu verwenden.

[0104] Ein Beispiel für ein Hydroxylase-Gen ist eine Nukleinsäure, kodierend eine Hydroxylase, aus Haematococcus pluvialis, Accession AX038729, WO 0061764); (Nukleinsäure: SEQ ID NO: 15, Protein: SEQ ID NO: 16).

[0105] Ein Beispiel für ein β-Cyclase-Gen ist eine Nukleinsäure, kodierend eine β-Cyclase aus Tomate (Accession X86452).(Nukleinsäure: SEQ ID NO: 17, Protein: SEQ ID NO: 18).

[0106] In den erfindungsgemäßen bevorzugten transgenen Organismen liegt also in dieser bevorzugten Ausführungsform gegenüber dem Wildtyp mindestens ein weiteres Hydroxylase-Gen und/oder β-Cyclase-Gen vor. [0107] In dieser bevorzugten Ausführungsform weist der genetisch veränderte Organismus beispielsweise mindestens eine exogene Nukleinsäure, kodierend eine Hydroxylase, oder mindestens zwei endogene Nukleinsäuren, kodierend eine Hydroxylase und/oder mindestens eine exogene Nukleinsäure, kodierend eine β-Cyclase, oder mindestens zwei endogene Nukleinsäuren, kodierend eine β-Cyclase, auf.

[0108] Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als Hydroxylase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30%, vorzugsweise mindestens 50%, bevorzugter mindestens 70%, noch bevorzugter mindestens 90%, am bevorzugtesten mindestens 95% auf Aminosäureebene mit der Sequenz SEQ ID NO: 16, und die die enzymatische Eigenschaft einer Hydroxylase aufweisen.

[0109] Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID. NO: 16 leicht auffinden.

[0110] Weitere Beispiele für Hydroxylasen und Hydroxylase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 15 aus verschiedenen Organismen deren genomische Sequenz nicht bekannt ist, wie vorstehend beschrieben, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

[0111] In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der Hydroxylase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der Hydroxylase der Sequenz SEQ ID NO: 16.

[0112] Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

[0113] Bevorzugt werden dafür solche Kodons verwendet, die entsprechend des Organismusspezifischen "codon usage" häufig verwendet werden. Dieser "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

[0114] In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 15, in den Organismus ein.

[0115] Bevorzugt verwendet man in vorstehend beschriebener bevorzugter Ausführungsform als β-Cyclase-Gene Nukleinsäuren, die Proteine kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 18 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 30%, vorzugsweise mindestens 50%, bevorzugter mindestens 70%, noch bevorzugter mindestens 90%, am bevorzugtesten mindestens 95% auf Aminosäureebene mit der Sequenz SEQ ID NO: 18, und die die enzymatische Eigenschaft einer β-Cyclase aufweisen.

[0116] Weitere Beispiele für β-Cyclasen und β-Cyclase-Gene lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, wie vorstehend beschrieben durch Homologievergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit der SEQ ID NO: 18 leicht auffinden.

[0117] Weitere Beispiele für β -Cyclasen und β -Cyclase-Gene lassen sich weiterhin beispielsweise ausgehend von der Sequenz SEQ ID NO: 17 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungs- und PCR-Techniken in an sich bekannter Weise leicht auffinden.

[0118] In einer weiter besonders bevorzugten Ausführungsform werden zur Erhöhung der β-Cyclase-Aktivität Nukleinsäuren in Organismen eingebracht, die Proteine kodieren, enthaltend die Aminosäuresequenz der β-Cyclase der Sequenz SEQ. ID. NO: 18.

[0119] Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

[0120] Bevorzugt werden dafür solche Kodons verwendet, die entsprechend des Organismusspezifischen "codon usage" häufig verwendet werden. Dieser "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

- [0121] In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ. ID. NO: 17 in den Organismus ein.
- [0122] Alle vorstehend erwähnten Hydroxylase-Gene oder β-Cyclase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896–897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lecken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.
- [0123] Besonders bevorzugt werden im erfindungsgemäßen Verfahren genetisch veränderte Organismen mit folgende Kombinationen genetischer Veränderungen verwendet:
- Genetisch veränderte Organismen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität und eine erhöhte Hydroxylase-Aktivität aufweisen,
- genetisch veränderte Organismen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität und eine erhöhte R-Cyclase-Aktivität aufweisen und
- genetisch veränderte Organismen, die im Vergleich zum Wildtyp eine erhöhte oder verursachte Ketolase-Aktivität und eine erhöhte Hydroxylase-Aktivität und eine erhöhte R-Cyclase-Aktivität aufweisen.
- [0124] Die Herstellung dieser genetisch veränderten Organismen kann, wie nachstehend beschrieben, beispielsweise durch Einbringen einzelner Nukleinsäurekonstrukte (Expressionskassetten) oder durch Einbringen von Mehrfachkonstrukten erfolgen, die bis zu zwei oder drei der beschriebenen Aktivitäten enthalten.
- [0125] Unter Organismen werden erfindungsgemäß vorzugsweise Organismen verstanden, die als Wildtypoder Ausgangsorganismen natürlicherweise oder durch genetische Komplementierung und/oder Umregulierung der Stoffwechselwege in der Lage sind, Carotinoide, insbesondere (3-Carotin und/oder Zeaxanthin und/oder Neoxanthin und/oder Violaxanthin und/oder Lutein herzustellen.
- [0126] Weiter bevorzugte Organismen weisen als Wildtyp- oder Ausgangsorganismen bereits eine Hydroxylase-Aktivität auf und sind somit als Wildtyp- oder Ausgangsorganismen in der Lage, Zeaxanthin herzustellen. [0127] Bevorzugte Organismen sind Pflanzen oder Mikroorganismen, wie beispielsweise Bakterien, Hefen, Algen oder Pilze.
- [0128] Als Bakterien können sowohl Bakterien verwendet werden, die aufgrund des Einbringens von Genen der Carotinoidbiosynthese eines Carotinoid-produzierenden Organismus in der Lage sind, Xanthophylle zu synthetisieren, wie beispielsweise Bakterien der Gattung Escherichia, die beispielsweise crt-Gene aus Erwinia enthalten, als auch Bakterien, die von sich aus in der Lage sind, Xanthophylle zu synthetisieren wie beispielsweise Bakterien der Gattung Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc oder Cyanobakterien der Gattung Synechocystis.
- [0129] Bevorzugte Bakterien sind Escherichia co1i, Erwinia herhicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534, das Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii oder Paracoccus carotinifaciens.
- [0130] Bevorzugte Hefen sind Candida, Saccharomyces, Hansenula, Pichia oder Phaffia. Besonders bevorzugte Hefen sind Xanthophyllomyces dendrorhous oder Phaffia rhodozyma.
- [0131] Bevorzugte Pilze sind Aspergillus, Trichodemta, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium oder weitere in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze.
- [0132] Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella. Besonders bevorzugte Algen sind Haematococcus puvialis oder Dunaliella bardawil.
- [0133] Weitere brauchbare Mikroorganismen und deren Herstellung zur Durchführung des erfindungsgemäßen Verfahrens sind beispielsweise aus der DE-A-199 16 140 bekannt, worauf hiermit Bezug genommen wird. [0134] Besonders bevorzugte Pflanzen sind Pflanzen ausgewählt aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Brassicaceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae, Malvaceae, Illiaceae oder Lamiaceae.
- [0135] Ganz besonders bevorzugte Pflanzen sind ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes errecta, Tagetes patula, Acacia, Aconitum, Adonis, Amica, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Grocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gertiera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Labumum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus,

Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia, besonders bevorzugt ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrisanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum oder Adonis.

[0136] Im erfindungsgemäßen Verfahren zur Herstellung von Ketocarotinoiden wird vorzugsweise dem Kultivierungsschritt der genetisch veränderten Organismen ein Ernten der Organismen und weiter bevorzugt zusätzlich ein Isolieren von Ketocarotinoiden aus den Organismen angeschlossen.

[0137] Das Ernten der Organismen erfolgt in an sich bekannter Weise dem jeweiligen Organismus entsprechend. Mikroorganismen, wie Bakterien, Hefen, Algen oder Pilze oder Pflanzenzellen, die durch Fermentation in flüßigen Nährmedien kultiviert werden, können beispielsweise durch Zentrifugieren, Dekantieren oder Filtrieren abgetrennt werden. Pflanzen werden in an sich bekannter Weise auf Nährböden gezogen und entsprechend geerntet.

[0138] Die Kultivierung der genetisch veränderten Mikroorganismen erfolgt bevorzugt in Gegenwart von Sauerstoff bei einer Kultivierungstemperatur von mindestens etwa 20°C, wie z.B. 20°C bis 40°C, und einem pH-Wert von etwa 6 bis 9. Bei genetisch veränderten Mikroorganismen erfolgt vorzugsweise zunächst die Kultivierung der Mikroorganismen in Gegenwart von Sauerstoff und in einem Komplexmedium, wie z.B. TB- oder LB- Medium bei einer Kultivierungstemperatur von etwa 20°C oder mehr, und einem pH-Wert von etwa 6 bis 9, bis eine ausreichende Zelldichte erreicht ist. Um die Oxidationsreaktion besser steuem zu können, bevorzugt man die Verwendung eines induzierbaren Promotors. Die Kultivierung wird nach Induktion der Ketolase-expression in Gegenwart von Sauerstoff, z.B. 12 Stunden bis 3 Tage, fortgesetzt.

[0139] Die Isolierung der Ketocarotinoide aus der geernteten Biomasse erfolgt in an sich bekannter Weise, beispielsweise durch Extraktion und gegebenenfalls weiterer chemische oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie.

[0140] Wie nachstehend erwähnt, können die Ketocarotinoide in den erfindungsgemäßen, genetisch veränderten Pflanzen vorzugsweise in verschiedenen Pflanzengeweben, wie beispielsweise Samen, Blätter, Früchte, Blüten, insbesondere in Blütenblättern spezifisch hergestellt werden.

[0141] Die Isolierung von Ketocarotinoiden aus den geernteten Blütenblättern erfolgt in an sich bekannter Weise, beispielsweise durch Trocknung und anschließender Extraktion und gegebenenfalls weiterer chemischer oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie. Die Isolierung von Ketocarotinoiden aus den Blütenblättern erfolgt beispielsweise bevorzugt durch organische Lösungsmittel wie Aceton, Hexan, Ether oder tert.-Methylbutylether.

[0142] Weitere Isolierverfahren von Ketocarotinoiden, insbesondere aus Blütenblättern, sind beispielsweise in Egger und Kleinig (Phytochemistry (1967) 6, 437–440) und Egger (Phytochemistry (1965) 4, 609–618) beschrieben.

[0143] Vorzugsweise sind die Ketocarotinoide ausgewählt aus der Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.

[0144] Ein besonders bevorzugtes Ketocarotinoid ist Astaxanthin.

[0145] Je nach verwendetem Organismus fallen die Ketocarotinoide in freier Form oder als Fettsäureester an. [0146] In Blütenblättern von Pflanzen fallen die Ketocarotinlide im erfindungsgemäßen Verfahren in Form ihrer Mono- oder Diester mit Fettsäuren an. Einige nachgewiesene Fettsäuren sind z.B. Myristinsäure, Palmitinsäure, Stearinsäure, Ölsäure, Linolensäure, und Laurinsäure (Kamata und Simpson (1987) Comp. Biochem.

Physiol. Vol. 86B(3), 587-591).

[0147] Die Herstellung der Ketocarotinoide kann in der ganzen Pflanze oder in einer bevorzugten Ausführungsform spezifisch in Pflanzengeweben, die Chromoplasten enthalten, erfolgen. Bevorzugte Pflanzengewebe sind beispielsweise Wurzeln, Samen, Blätter, Früchte, Blüten und insbesondere Nektarien und Blütenblätter, die auch Petalen bezeichnet werden.

[0148] In einer besonderes bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Blüten die höchste Expressionsrate einer Ketolase aufweisen.

[0149] Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines blütenspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktionell verknüpft mit einem blütenspezifischen Promotor in die Pflanze eingebracht.

[0150] In einer weiteren, besonderes bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Früchten die höchste Expressionsrate einer Ketolase aufweisen.

[0151] Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines

fruchtspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktionell verknüpft mit einem fruchtspezifischen Promotor in die Pflanze eingebracht.

[0152] In einer weiteren, besonderes bevorzugten, Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Samen die höchste Expressionsrate einer Ketolase aufweisen.

[0153] Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines samenspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt funktionell verknüpft mit einem samenspezifischen Promotor in die Pflanze eingebracht.

[0154] Das Targeting in die Chromplasten erfolgt durch ein funktionell verknüpftes plastidäres Transitpeptid. [0155] Im folgenden wird exemplarisch die Herstellung genetisch veränderter Pflanzen mit erhöhter oder verursachter Ketolase-Aktivität beschrieben. Die Erhöhung weiterer Aktivitäten, wie beispielsweise der Hydroxylase-Aktivität und/oder der β-Cyclase-Aktivität kann analog unter Verwendung von Nukleinsäuresequenzen, kodierend eine Hydroxylase bzw. β-Cyclase anstelle von Nukleinsäuresequenzen, kodierend eine Ketolase, erfolgen. Die Transformation kann bei den Kombinationen von genetischen Veränderungen einzeln oder durch Mehrfachkonstrukte erfolgen.

[0156] Die Herstellung der transgenen Pflanzen erfolgt vorzugsweise durch Transformation der Ausgangspflanzen, mit einem Nukleinsäurekonstrukt, das die vorstehend beschriebenen Nukleinsäuren, kodierend eine Ketolase enthält, die mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten.

[0157] Diese Nukleinsäurekonstrukte, in denen die kodierende Nukleinsäuresequenz mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten, werden im folgenden auch Expressionskassetten genannt.

[0158] Vorzugsweise enthalten die Regulationssignale einen oder mehrere Promotoren, die die Transkription und Translation in Pflanzen gewährleisten.

[0159] Die Expressionskassetten beinhaften Regulationssignale, also regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, das jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.

[0160] Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekonstrukte, Expressionskassetten und Vektoren für Pflanzen und Verfahren zur Herstellung von transgenen Pflanzen, sowie die transgenen Pflanzen selbst beschrieben.

[0161] Die zur operativen Verknüpfung bevorzugten, aber nicht darauf beschränkten Sequenzen, sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärkern wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693–8711).

[0162] Als Promotor der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann.

[0163] "Konstitutiver" Promotor meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten.

[0164] Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21: 285–294; Odell et al. (1985) Nature 313: 810–812; Shewmaker et al. (1985) Virology 140: 281–288; Gardner et al. (1986) Plant Mol Biol 6: 221–228), der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8: 2195–2202), den Triose-Phosphat Translokator (TPT) Promotor aus Arabidopsis thaliana Acc.-No. AB006698, Basenpaar 53242 bis 55281; das Gen beginnend ab by 55282 ist mit "phosphate/triose-phosphate translocator" annotiert, oder den 34S Promoter aus Figwort mosaic virus Acc.-No. X16673, Basenpaar 1 bis 554.

[0165] Ein weiterer geeigneter konstitutiver Promotor ist der pds Promoter (Pecker et al. (1992) Proc. Natl. Acad. Sci USA 89: 4962–4966) oder der "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor

Ť

(Holtort S et al. (1995) Plant Mol Biol 29: 637–649), der Ubiquitin 1 Promotor (Christessen et al. (1992) Plant Mol Biol 18: 675–689; Bruce et al. (1989) Proc Natl Acad Sci USA 86: 9692–9696), der Smas Promotor, der Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), der Pnit-Promoter (Y07648.L, Hillebrand et al. (1998), Plant. Mol. Biol. 36, 89–99, Hillebrand et al. (1996), Gene, 170, 197–200) sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist. [0166] Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48: 89–108), durch den die Expression des Ketolase-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22: 361–366), ein durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388186), ein durch Tetrazyklin-induzierbarer Promotor (Gatr et al. (1992) Plant J 2: 397–404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.

[0167] Ferner sind Promotoren bevorzugt, die durch Biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRP1-Gens (Ward et al. (1993) Plant Mol Biol 22: 361–366), der hitreinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierbare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814), der licht-induzierbare PPDK Promotor oder der verwundungsinduzierte pinll-Promoter (EP 375091).

[0168] Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Pathogenbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR-Proteinen, b-1,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89: 245–254; Uknes, et al. (1992) The Plant Cell 4: 645-656; Van Loon (1985) Plant Mol Viral 4: 111–116; Marineau et al. (1987) Plant Mol Biol 9: 335–342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2: 325–342; Somssich et al. (1986) Proc Natl Acad Sci USA 83: 2427–2430; Somssich et al. (1988) Mol Gen Genetics 2: 93–98; Chen et al. (1996) Plant J 10: 955–966; Zhang and Sing (1994) Proc Natl Acad Sci USA 91: 2507–2511; Warner, et al. (1993) Plant J 3: 191–201; Siebertz et al. (1989) Plant Cell 1: 961–968 (1989).

[0169] Umfasst sind auch verwundungsinduzierbare Promotoren wie der des pinll-Gens (Ryan (1990) Ann Rev Phytopath 28: 425–449; Duan et al. (1996) Nat Biotech 14: 494–498), des wun1 und wun2-Gens (US 5,428,148), des win1- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215: 200–208), des Systemin-Gens (McGurl et al. (1992) Science 225: 1570–1573), des WIP1-Gens (Rohmeier et al. (1993) Plant Mol Biol 22: 783–792; Ekelkamp et al. (1993) FEBS Letters 323: 73–76), des MPI-Gens (Corderok et al. (1994) The Plant J 6 (2): 141–150) und dergleichen.

[0170] Weitere geeignete Promotoren sind beispielsweise fruchtreifung-spezifische Promotoren, wie beispielsweise der Fruchtreifung-spezifische Promotor aus Tomate (WO 94/21794, EP 409 625). Entwicklungsabhängige Promotoren schließt zum Teil die gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß entwicklungsabhängig erfolgt.

[0171] Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Ketocarotinoiden bzw. dessen Vorstufen stattfindet. Bevorzugt sind beispielsweise Promotoren mit Spezifitäten für die Antheren, Ovarien, Petalen, Sepalen, Blüten, Blätter, Stengel, Samen und Wurzeln und Kombinationen hieraus.

[0172] Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren sind beispielsweise der Patatin-Promotor Klasse I (B33) oder der Promotor des Cathepsin D Inhibitors aus Kartoffel.

[0173] Blattspezifische Promotoren sind beispielsweise der Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), der SSU Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphatcarboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EM-BO J 8: 2445–2451).

[0174] Blütenspezifische Promotoren sind beispielsweise der Phytoen-Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593), der AP3 Promoter aus Arabidopsis thaliana (siehe Beispiel 5), der CHRC-Promoter (Chromoplast-specific carotenoidassociated protein (CHRC) gehe promoter aus Cucumis sativus Acc.-No. AF099501, Basenpaar 1 bis 1532), der EPSP Synthase Promotor (5-enolpyruvylshikimate-3-phosphate synthase gene promoter aus Petunia hybrida, Acc.-No. M37029, Basenpaar 1 bis 1788), der PDS Promotor (Phytoene desaturase gene promoter aus Solanum lycopersicum, Acc.-No. U46919, Basenpaar 1 bis 2078), der DFR-A Promotor (Dihydroflavonol 4-reductase gene A promoter aus Petunia hybrida, Acc.-No. X79723, Basenpaar 32 bis 1902) oder der FBP1 Promotor (Floral Binding Protein 1 gene promoter aus Petunia hybrida, Acc.-No. L10115, Basenpaar 52 bis 1069).

[0175] Antheren-spezifische Promotoren sind beispielsweise der 5126-Promotor (US 5,689,049, US 5,689,051), der glob-I Promotor oder der g-Zein Promotor.

[0176] Samen-spezifische Promotoren sind beispielsweise der ACP05-Promotor (Acyl-carrier-Protein Gen, WO9218634), die Promotoren AtS1 und AtS3 von Arabidopsis (WO 9920775), der LeB4-Promotor von Vicia faba (WO 9729200 und US 06403371), der Napin-Promotor von Brassica napus (US 5608152; EP 255378;

US 5420034), der SBP-Promotor von Vicia faba (DE 9903432) oder die Maispromotoren End1 und End2 (WO 0011177).

[0177] Weitere zur Expression in Pflanzen geeignete Promotoren sind beschrieben in Rogers et al. (1987) Meth in Enrymol 153: 253–277; Schardl et al. (1987) Gene 61: 1–11 und Berger et al. (1989) Proc Natl Acad Sci USA 86: 8402–8406).

[0178] Besonders bevorzugt im erfindungsgemäßen Verfahren sind konstitutive, samenspezifische, fruchtspezifische, blütenspezifische und insbesondere blütenblattspezifische Promotoren.

[0179] Die vorliegende Erfindung betrifft daher insbesondere ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen blütenspezifischen oder insbesondere einen blütenblattspezifischen Promotor und eine Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

[0180] Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion eines geeigneten Promotors mit einer vorstehend beschriebenen Nukleinsäure, kodierend eine Ketolase, und vorzugsweise einer zwischen Promotor und Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein plastidenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987), beschrieben sind.

[0181] Die vorzugsweise insertierte Nukleinsäuren, kodierend ein plastidäres Transitpeptid, gewährleisten die Lokalisation in Plastiden und insbesondere in Chromoplasten.

[0182] Es können auch Expressionskassetten verwendet werden, deren Nukleinsäure-Sequenz für ein Ketolase-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chromoplasten spezifische Transitpeptide, welche nach Translokation der Ketolase in die Chromoplasten vom Ketolase-Teil enzymatisch abgespalten werden.

[0183] Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Nicotiana tabacum Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco (rbcS) oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat Isomerase-2) oder dessen funktionellem Äquivalent abgeleitet ist.

[0184] Besonders bevorzugt sind Nukleinsäure-Sequenzen von drei Kassetten des Plastiden-Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als Kpnl/BamHI Fragmente mit einem ATG-Codon in der Ncol Schnittstelle:

pTP09

pTP10

pTP11

[0185] Weitere Beispiele für ein plastidäres Transitpeptid sind das Transitpeptid der plastidären Isopentenyl-pyrophosphat Isomerase-2 (IPP-2) aus Arabisopsis thaliana und das Transitpeptid der kleinen Untereinheit der Ribulosebisphosphat Carboxylase (rbcS) aus Erbse (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cassette for targeting foreign proteins into the chloroplasts. Nucl. Acids Res. 16: 11380). [0186] Die erfindungsgemäßen Nukleinsäuren können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure-Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten verschiedener Organismen bestehen.

[0187] Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukleotid-Sequenzen mit Kodons, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden.

[0188] Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

[0189] Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.

[0190] Beispiele für einen Terminator sind der 35S-Terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), der nos Terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet. 1982; 1 (6): 561–73) oder der ocs Terminator (Gielen, J, de Beuckeleer, M, Seurinck, J, Debroek, N, de Greve, H, Lemmers, M, van Montagu, M, Schell, J (1984)

The complete sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAchS. EMBO J. 3: 835–846).

[0191] Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in vitro-Mutagenese, "primer-repair", Restriktion oder Ligation verwendet werden.

[0192] Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden. [0193] Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente.

[0194] Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet.

[0195] Dazu können an sich bekannte Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.

[0196] Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone – die sogenannte "particle bombardment" Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der, vorstehend beschriebene, durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128–143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205–225) beschrieben.

[0197] Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) oder besonders bevorzugt pSUN2, pSUN3, pSUN4 oder pSUNS (WO 02/00900).

[0198] Mit einem Expressionsplasmid transformierte Agrobakterien können in bekannter Weise zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

[0199] Zur bevorzugten Herstellung von genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette, die eine Ketolase exprimiert, in einen Vektor, beispielsweise pBin19 oder insbesondere pSUNS und pSUN3 kloniert, der geeignet ist, in Agrobacterium tumefaciens transformiert zu werden. Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

[0200] Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15–38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein in die Expressionskassette integriertes Gen für die Expression einer Nukleinsäure, kodierend eine Ketolase, enthalten.

[0201] Zur Transformation einer Wirtspflanze mit einer für eine Ketolase kodierenden Nukleinsäure wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71–119 (1993) beschrieben.

[0202] Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in E. coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a. pJIT117 (Guerineau et al. (1988) Nucl. Acids Res. 16: 11380), pBR332, pUC-Serien, M13mp-Serien und pACYC184. Besonders geeignet sind binäre Vektoren, die sowohl in E. coli als auch in Agrobakterien replizieren können.

[0203] Im folgenden wird die Herstellung der erfindungsgemäßen gentisch veränderten Mikroorganismen näher beschrieben:

[0204] Die vorstehend beschriebenen Nukleinsäuren, kodierend eine Ketolase oder β-Hydroxylase oder β-Cyclase sind vorzugsweise in Expressionskonstrukte eingebaut, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäßes Enzym kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte.

[0205] Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz. Unter

einer "operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.

[0206] Beispiele für operativ verknüpfbare Sequenzen sind Targeting-Sequenzen sowie Translationsverstärker, Enhancer, Polyadenylierungssignale und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen.

[0207] Zusätzlich zu den artifiziellen Regulationssequenzen kann die natürliche Regulationssequenz vor dem eigentlichen Strukturgen noch vorhanden sein. Durch genetische Veränderung kann diese natürliche Regulation gegebenenfalls ausgeschaltet und die Expression der Gene erhöht oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor das Strukturgen insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Statt dessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert oder verringert wird. Die Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.

[0208] Beispiele für brauchbare Promotoren in Mikroorganismen sind: cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, lambda-PR- oder im lambda-PL-Promotor, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden; sowie die gram-positiven Promotoren amy und SPO2 oder die Hefepromotoren ADC1, MFa , AC, P-60, CYC1, GAPDH. Besonders bevorzugt ist die Verwendung induzierbarer Promotoren, wie z.B. licht- und insbesondere temperaturinduzierbarer Promotoren, wie der P.P.-Promotor.

[0209] Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.

[0210] Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nukleinsäuresequenzen und die Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.

[0211] Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder erniedrigen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

[0212] Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit den vorstehend beschriebenen Nukleinsäuresequenzen, kodierend eine Ketolase, β-Hydroxylase oder β-Cyclase sowie einem Terminator- oder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.

[0213] Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pouwels P. H. et al., Hrsg, Elsevier, Amsterdam – New York – Oxford, 1985) entnommen werden. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannte Vektoren, wie beispielsweise Phagen, Viren, wie SV40, CMV, Baculovirus und Adenovirus, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.

[0214] Als Beispiele für geeignete Expressionsvektoren können genannt werden:

[0215] Übliche Fusionsexpressionsvektoren, wie pGEX (Pharmacia Biotech Inc; Smith, D.B. und Johnson, K.S. (1988) Gene 67: 31–40), pMAL (New England Biolabs, Beverly, MA) und pRIT 5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.

[0216] Nicht-Fusionsprotein-Expressionsvektoren wie pTrc (Amann et al., (1988) Gene 69: 301–315) und pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60–89) oder pBluescript und pUC-Vektoren.

[0217] Hefe-Expressionsvektor zur Expression in der Hefe S. cerevisiae, wie pYepSec1 (Baldari et al., (1987) Embo J. 6: 229–234), pMFa (Kurjan und Herskowitz (1982) Cell 30: 933–943), pJRY88 (Schultz et al. (1987) Gene 54: 113–123) sowie pYES2 (Invitrogen Corporation, San Diego, CA).

[0218] Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel,

C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Hrsg., S. 1–28, Cambridge University Press: Cambridge. [0219] Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (bspw. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al., (1983) Mol. Cell Biol.. 3: 2156–2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170: 31–39).

[0220] Weitere geeignete Expressionssysteme für prokaryontische und eukaryotische Zellen sind in Kapitel 16 und 17 von Sambrook, J., Fritsch, E.F. und Maniatis, T., Molecular cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989 beschrieben

[0221] Mit Hilfe der erfindungsgemäßen Expressionskonstrukte bzw. Vektoren sind genetisch veränderte Mikroorganismen herstellbar, welche beispielsweise mit wenigstens einem erfindungsgemäßen Vektor transformiert sind.

[0222] Vorteilhafterweise werden die oben beschriebenen erfindungsgemäßen rekombinanten Konstrukte in ein geeignetes Wirtssystem eingebracht und exprimiert. Dabei werden vorzugsweise dem Fachmann bekannte geläufige Klonierungs- und Transfektionsmethoden, wie beispielsweise Co-Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und dergleichen, verwendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem zur Expression ro bringen. Geeignete Systeme werden beispielsweise in Current Protocols in Molecular Biology, F. Ausubel et al., Hrsg., Wiley Interscience, New York 1997, beschrieben. [0223] Die Selektion erfolgreich transformierter Organismen kann durch Markergene erfolgen, die ebenfalls im Vektor oder in der Expressionskassette enthalten sind. Beispiele für solche Markergene sind Gene für Antibiotikaresistenz und für Enzyme, die eine farbgebende Reaktion katalysieren, die ein Anfärben der transformierten Zelle bewirkt. Diese können dann mittels automatischer Zellsortierung selektiert werden.

[0224] Erfolgreich mit einem Vektor transformierte Mikroorganismen, die ein entsprechendes Antibiotikaresistenzgen (z.B. G418 oder Hygromycin) tragen, lassen sich durch entsprechende Antibiotika-enthaltende Medien oder Nährböden selektieren. Markerproteine, die an der Zelloberfläche präsentiert werden, können zur Selektion mittels Affinitätschromatographie genutzt werden.

[0225] Die Kombination aus den Wirtsorganismen und den zu den Organismen passenden Vektoren, wie Plasmide, Viren oder Phagen, wie beispielsweise Plasmide mit dem RNA-Polymerase/Promoter-System, die Phagen 8 oder andere temperente Phagen oder Transposons und/oder weiteren vorteilhaften regulatorischen Sequenzen bildet ein Expressionssystem.

[0226] Die Erfindung betrifft ferner ein Verfahren zur Herstellung von genetisch veränderten Organismen, dadurch gekennzeichnet, das man ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen Promotor und Nukleinsäuren, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, und gegebenenfalls einen Terminator in das Genom des Ausgangsorganismus oder extrachromosomal in den Ausgangsorganismus einführt.

[0227] Die Erfindung betrifft ferner die genetisch veränderten Organismen, wobei die genetische Veränderung die Aktivität einer Ketolase

A für den Fall, dass der Wildtyporganismus bereits eine Ketolase-Aktivität aufweist, gegenüber dem Wildtyp erhöht und

B für den Fall, dass der Wildtyporganismus keine Ketolase-Aktivität aufweist, gegenüber dem Wildtyp verursacht

und die nach A erhöhte oder nach B verursachte Ketolase-Aktivität durch eine Ketolase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

[0228] Wie vorstehend ausgeführt erfolgt die Erhöhung oder Verursachung der Ketolase-Aktivität gegenüber dem Wildtyp vorzugsweise durch eine Erhöhung oder Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

[0229] In einer weiter bevorzugten Ausführungsform erfolgt, wie vorstehend ausgeführt, die Erhöhung oder Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, durch Einbringen von Nukleinsäuren, kodierend eine Ketolase, in die Pflanzen und damit vorzugsweise durch Überexpression oder transgene Expression von Nukleinsäuren, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.

[0230] Die Erfindung betrifft ferner einen genetisch veränderten Organismus, enthaltend mindestens eine

transgene Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist. Dies ist der Fall, wenn der Ausgangsorganismus keine Ketolase oder eine endogen Ketolase aufweist und eine transgene Ketolase überexprimiert wird.

[0231] Die Erfindung betrifft ferner einen genetisch veränderten Organismus, enthaltend mindestens zwei endogene Nukleinsäuren, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist. Dies ist der Fall, wenn der Ausgangsorganismus eine endogen Ketolase aufweist und die endogene Ketolase überexprimiert wird.

[0232] Besonders bevorzugte, genetisch veränderte Organismen weisen, wie vorstehend erwähnt, zusätzlich eine erhöhte Hydroxlase-Aktivität und/oder β-Cyclase-Aktivität gegenüber einem Wildtyporganismus auf. Weiter bevorzugte Ausführungsformen sind vorstehend im erfindungsgemäßen Verfahren beschrieben.

[0233] Unter Organismen werden erfindungsgemäß vorzugsweise Organismen verstanden, die als Wildtypoder Ausgangsorganismen natürlicherweise oder durch genetische Komplementierung und/oder Umregulierung der Stoffwechselwege in der Lage sind, Carotinoide, insbesondere β-Carotin und/oder Zeaxanthin und/oder Neoxanthin und/oder Violaxanthin und/oder Lutein herzustellen.

[0234] Weiter bevorzugte Organismen weisen als Wildtyp- oder Ausgangsorganismen bereits eine Hydroxylase-Aktivität auf und sind somit als Wildtyp- oder Ausgangsorganismen in der Lage, Zeaxanthin herzustellen. [0235] Bevorzugte Organismen sind Pflanzen oder Mikroorganismen, wie beispielsweise Bakterien, Hefen, Algen oder Pilze.

[0236] Als Bakterien können sowohl Bakterien verwendet werden, die aufgrund des Einbringens von Genen der Carotinoidbiosynthese eines Carotinoid-produzierenden Organismus in der Lage sind, Xanthophylle zu synthetisieren, wie beispielsweise Bakterien der Gattung Escherichia, die beispielsweise crt-Gene aus Erwinia enthalten, als auch Bakterien, die von sich aus in der Lage sind, Xanthophylle zu synthetisieren wie beispielsweise Bakterien der Gattung Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc oder Cyanobakterien der Gattung Synechocystis.

[0237] Bevorzugte Bakterien sind Escherichia coli, Erwinia herbicola, Erwinia uredovora, Agrobacterium aurantiacum, Alcaligenes sp. PC-1, Flavobacterium sp. strain R1534, das Cyanobacterium Synechocystis sp. PCC6803, Paracoccus marcusii oder Paracoccus carotinifaciens.

[0238] Bevorzugte Hefen sind Candida, Saccharomyces, Hansenula, Pichia oder Phaffia. Besonders bevorzugte Hefen sind Xanthophyllomyces dendrorhous oder Phaffia rhodozyma.

[0239] Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium oder weitere in Indian Chem. Engr. Section B. Vol. 37, No. 1, 2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze.

[0240] Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus, Phaedactylum tricornatum, Volvox oder Dunaliella. Besonders bevorzugte Algen sind Haematococcus puvialis oder Dunaliella bardawil.

[0241] Weitere brauchbare Mikroorganismen und deren Herstellung zur Durchführung des erfindungsgemäßen Verfahrens sind beispielsweise aus der DE-A-199 16 140 bekannt, worauf hiermit Bezug genommen wird. [0242] Besonders bevorzugte Pflanzen sind Pflanzen ausgewählt aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Brassicaceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae, Malvaceae, Illiaceae oder Lamiaceae.

[0243] Ganz besonders bevorzugte Pflanzen sind ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes errecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aquilegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoens, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia, besonders bevorzugt ausgewählt aus der Gruppe der Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium, Tropaeolum oder Adonis.

[0244] Ganz besonders bevorzugte genetisch veränderte Pflanzen sind ausgewählt aus den Pflanzengattun-

gen Marigold, Tagetes erecta, Tagetes patula, Adonis, Lycopersicon, Rosa, Calendula, Physalis, Medicago, Helianthus, Chrysanthemum, Aster, Tulipa, Narcissus, Petunia, Geranium oder Tropaeolum, wobei die genetisch veränderte Pflanze mindestens eine transgene Nukleinsäure, kodierend eine Ketolase, enthält.

[0245] Die transgenen Pflanzen, deren Vermehrungsgut, sowie deren Pflanzenzellen, -gewebe oder -teile, insbesondere deren Früchte, Samen, Blüten und Blütenblätter sind ein weiterer Gegenstand der vorliegenden Erfindung.

[0246] Die genetisch veränderten Pflanzen können, wie vorstehend beschrieben, zur Herstellung von Ketocarotinoiden, insbesondere Astaxanthin verwendet werden.

[0247] Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Organismen, insbesondere Pflanzen oder Pflanzenteile, wie insbesondere Blütenblätter mit erhöhtem Gehalt an Ketocarotinoiden, insbesondere Astaxanthin können auch beispielsweise direkt oder nach an sich bekannter Prozessierung als Nahrungsmittel oder Futtermittel oder als Futter- und Nahrungsergänzungsmittel verwendet werden.

[0248] Ferner können die genetisch veränderten Organismen zur Herstellung von Ketocarotinoidhaltigen Extrakten der Organismen und/oder zur Herstellung von Futter- und Nahrungsergänzungsmitteln verwendet werden.

[0249] Die genetisch veränderten Organismen weisen im Vergleich zum Wildtyp einen erhöhten Gehalt an Ketocarotinoiden auf.

[0250] Unter einem erhöhten Gehalt an Ketocarotinoiden wird in der Regel ein erhöhter Gehalt an Gesamt-Ketocarotinoid verstanden.

[0251] Unter einem erhöhten Gehalt an Ketocarotinoiden wird aber auch insbesondere ein veränderter Gehalt der bevorzugten Ketocarotinoide verstanden, ohne dass zwangsläufig der Gesamt-Carotinoidgehalt erhöht sein muss.

[0252] In einer besonders bevorzugten Ausführungsform weisen die erfindungsgemäßen, genetisch veränderten Pflanzen im Vergleich zum Wildtyp einen erhöhten Gehalt an Astaxanthin auf.

[0253] Unter einem erhöhten Gehalt wird in diesem Fall auch ein verursachter Gehalt an Ketocarotinoiden, bzw. Astaxanthin verstanden.

[0254] Die Erfindung betrifft ferner die neuen Ketolasen sowie die neuen Nukleinsäuren, die diese kodieren. [0255] Insbesondere betrifft die Erfindung Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 8 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70%, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 8 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 4 nicht enthalten ist. Die Sequenz SEQ ID NO: 4 ist, wie vorstehend erwähnt, als putatives Protein in Datenbanken annotiert.

[0256] Ferner betrifft die Erfindung Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 6 aufweist. Die Sequenz SEQ ID NO: 6 ist, wie vorstehend erwähnt, in Datenbanken nicht annotiert.

[0257] In einer weiteren Ausführungsform betrifft die Erfindung Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70%, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 6 nicht enthalten ist.

[0258] Ferner betrifft die Erfindung Ketolasen, enthaltend die Aminosäuresequenz SEQ. ID. NO. 49 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50%, vorzugsweise mindestens 60%, besonders bevorzugt mindestens 70%, bevorzugter mindestens 80%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 49 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 47 nicht enthalten ist. Die Sequenz SEQ ID NO: 47 ist, wie vorstehend erwähnt, als putatives Protein in Datenbanken annotiert.

[0259] Die Erfindung betrifft ferner Nukleinsäuren, kodierend ein vorstehend beschriebenes Protein, mit der Maßgabe, dass die Nukleinsäure nicht die Sequenz SEQ ID NO: 5 enthält.

[0260] Überraschenderweise wurde gefunden, dass ein Protein enthaltend die Aminosäuresequenz SEQ. ID. NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70%, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 4 und die Eigenschaft einer Ketolase aufweist, eine Eigenschaft als Ketolase aufweist.

[0261] Die Erfindung betrifft daher auch die Verwendung eines Proteins, enthaltend die Aminosäuresequenz

SEQ. ID. NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70%, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 4 und die Eigenschaft einer Ketolase aufweist, als Ketolase.

[0262] Ferner wurde überraschenderweise gefunden, dass ein Protein enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 65%, vorzugsweise mindestens 70%, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 6 und die Eigenschaft einer Ketolase aufweist, eine Egenschaft als Ketolase aufweist.

[0263] Die Erfindung betrifft daher auch die Verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 65%, vorzugsweise mindestens 70%, vorzugsweise mindestens 75%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 6 und die Eigenschaft einer Ketolase aufweist, als Ketolase.

[0264] Ferner wurde überraschenderweise gefunden, dass ein Protein enthaltend die Aminosäuresequenz SEQ. ID. NO. 47 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50%, vorzugsweise mindestens 60%, vorzugsweise mindestens 60%, bevorzugter mindestens 85%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 47 und die Eigenschaft einer Ketolase aufweist, eine Egenschaft als Ketolase aufweist.

[0265] Die Erfindung betrifft daher auch die Verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO. 47 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50%, vorzugsweise mindestens 60%, vorzugsweise mindestens 70%, besonders bevorzugt mindestens 80%, bevorzugter mindestens 85%, bevorzugter mindestens 90%, bevorzugter mindestens 95% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 47 und die Eigenschaft einer Ketolase aufweist, als Ketolase.

[0266] Im Vergleich zu den Verfahren des Standes der Technik, liefert das erfindungsgemäße Verfahren eine höhere Menge an Ketocarotinoide, insbesondere Astaxanthin mit einer geringeren Menge an hydroxylierten Nebenprodukten.

[0267] Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:

Allgemeine Experimentelle Bedingungen: Sequenzanalyse rekombinanter DNA

[0268] Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463–5467).

Beispiel 1:

[0269] Amplifikation einer DNA, die die gesamte Primärsequenz der Ketolase aus Nostoc sp. PCC 7120 codiert

[0270] Die DNA, die für die Ketolase aus Nostoc PCC 7120 kodiert, wurde mittels PCR aus Nostoc PCC 7120 (Stamm der "Pasteur Culture Collection of Cyanobacterium") amplifiziert.

[0271] Für die Präparation von genomischer DNA aus einer Suspensionskultur von Nostoc PCC 7120, die 1 Woche mit Dauerlicht und konstantem Schütteln (150 rpm) at 25°C in BG 11-Medium (1.5 g/l NaNO3, 0.04 g/l K2PO4 × 3H2O, 0.075 g/l MgSO4 × H2O, 0.036 g/l CaCl2 × 2H2O, 0.006 g/l citric acid, 0.006 g/l Ferric ammonium citrate, 0.001 g/l EDTA disodium magnesium, 0.04 g/l Na2CO3, 1 ml trace metal mix AS+Co (2.86 g/l H3BO3, 1.81 g/l MnCl2 × 4H2O, 0.222 g/l ZnSO4 × 7H2O, 0.39 g/l NaMoO4 × 2H2O, 0.079 g/l CuSO4 × 5H2O, 0.0494 g/l Co(NO3)2 × 6H2O) gewachsen war, wurden die Zellen durch Zentrifugation geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert.

Protokoll für DNA Isolation aus Nostoc PCC7120:

[0272] sAus einer 10 ml Flüssigkultur wurden die Bakterienzellen durch 10minütige Zentrifugation bei 8 000 rpm pelletiert. Anschließend wurden die Bakterienzellen in flüssigem Stickstoff mit einem Mörser zerstoßen und gemahlen. Das Zellmaterial wurde in 1 ml 10 mM Tris HCl (pH 7.5) resuspendiert und in ein Eppendorf Reaktionsgefäß (2 ml Volumen) überführt. Nach Zugabe von 100 µl Proteinase K (Konzentration: 20 mg/ml)

wurde die Zellsuspension für 3 Stunden bei 37°C inkubiert. Anschließend wurde die Suspension mit 500 µl Phenol extrahiert. Nach 5minütiger Zentrifugation bei 13 000 upm wurde die obere, wässrige Phase in ein neues 2 ml-Eppendort Reaktionsgefäß überführt. Die Extraktion mit Phenol wurde 3 mal wiederholt. Die DNA wurde durch Zugabe von 1110 Volumen 3 M Natriumacetat (pH 5.2) und 0.6 Volumen Isopropanol gefällt und anschließend mit 70% Ethanol gewaschen. Das DNA-Pellet wurde bei Raumtemperatur getrocknet, in 25 µl Wasser aufgenommen und unter Erhitzung auf 65°C gelöst.

[0273] Die Nukleinsäure, kodierend eine Ketolase aus Nostoc PCC 7120, wurde mittels "polymerase chain reaction" (PCR) aus Nostoc PCC 7120 unter Verwendung eines sense-spezifischen Primers (NOSTF, SEQ ID No. 19) und eines antisense-spezifischen Primers (NOSTG SEQ ID No. 20) amplifiziert.

[0274] Die PCR-Bedingungen waren die folgenden:

[0275] Die PCR zur Amplifikation der DNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 1 µl einer Nostoc PCC 7120 DNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM NOSTF (SEQ ID No. 19)
- 0.2 mM NOSTG (SEQ ID No. 20)
- 5 μl 10X PCR-Puffer (TAKARA)
- 0.25 µl R Taq Polymerase (TAKARA)
- 25.8 µl Aq. Dest.

[0276] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

35X 94°C 1 Minute

55°C 1 Minuten

72°C 3 Minuten

1X 72°C 10 Minuten

[0277] Die PCR-Amplifikation mit SEQ ID No. 19 und SEQ ID No. 20 resultierte in einem 805 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 21). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-T (Promega) kloniert und der Klon pNOSTF-G erhalten.

[0278] Sequenzierung des Klons pNOSTF-G mit dem M13F- und dem M13R-Primer bestätigte eine Sequenz, welche mit der DNA-Sequenz des Datenbankeintrages AP003592 identisch ist. Diese Nukleotidsequenz wurde in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentiert somit die Nukleotidsequenz im verwendeten Nostoc PCC 7120.

[0279] Dieser Klon pNOSTF-G wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet. Die Klonierung erfolgte durch Isolierung des 1027 Bp SphI-Fragmentes aus pGEM-T und Ligierung in den SphI geschnittenen Vektor pJIT117. Der Klon, der die Ketolase von Nostoc in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcS Transitpeptid enthält, heisst pJNOST.

Beispiel 2:

[0280] Konstruktion des Plasmides pMCL-CrtYIBZ/idi/gps für die Synthese von Zeaxanthin in E. coli Die Konstruktion von pMCL-CrtYIBZ/idi/gps erfolgte in drei Schritten über die Zwischenstufen pMCL-CrtYIBZ und pM-CL-CrtYIBZ/idi. Als Vektor wurde das mit high-copy-number Vektoren kompatible Plasmid pMCL200 verwendet (Nakano, Y., Yoshida, Y., Yamashita, Y. und Koga, T.; Construction of a series of pACYC-derived plasmid vectors; Gene 162 (1995), 157–158).

Beispiel 2.1.: Konstruktion von pMCL-CrtYIBZ

[0281] Die Biosynthesegene crtY, crtB, crtI und crtZ entstammen dem Bakterium Erwinia uredovora und wurden mittels PCR amplifiziert. Genomische DNA von Erwinia uredovora (DSM 30080) wurde von der Deutschen Sammlung von Mikroorganismen und Zellkuturen (DSMZ, Braunschweig) innerhalb eines Service-Dienstes präpariert. Die PCR-Reaktion wurde entsprechend den Angaben des Herstellers durchgeführt (Roche, Long Template PCR: Procedure for amplification of 5–20 kb targets with the expand long template PCR system). Die PCR-Bedingungen für die Amplifikation des Biosyntheseclusters von Erwinia uredovora waren die folgenden:

Master Mix 1:

– 1.75 μl dNTPs (Endkonzentration 350 μM)

- 0.3 µM Primer Crt1 (SEQ ID No. 22)
- 0.3 µM Primer Crt2 (SEQ ID No. 23)
- 250-500 ng genomische DNA von DSM 30080

[0282] Aq. Dest. bis zu einem Gesamtvolumen von 50 µl

Master Mix 2:

- 5 µl 10x PCR Puffer 1 (Endkonzentration 1x, mit 1.75 mM Mg2+)
- 10x PCR Puffer 2 (Endkonzentration 1x, mit 2.25 mM Mg2+)
- 10x PCR Puffer 3 (Endkonzentration 1x, mit 2.25 mM Mg2+)
- 0.75 µl Expand Long Template Enzyme Mix (Endkonzentration 2.6 Units)

[0283] Aq. Dest. bis zu einem Gesamtvolumen von 50 µl

[0284] Die beiden Ansätze "Master Mix 1" und "Master Mix 2" wurden zusammenpipetiert. Die PCR wurde in einem Gesamtvolumen von 50 µl unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

30X 94°C 30 Sekunden

58°C 1 Minute

68°C 4 Minuten

1X 72°C 10 Minuten

[0285] Die PCR-Amplifikation mit SEQ ID No. 22 und SEQ ID No. 23 resultierte in einem Fragment (SEQ ID NO: 24), das für die Gene CrtY (Protein: SEQ ID NO: 25}, Crt1 (Protein: SEQ ID NO: 26), crt8 (Protein: SEQ ID NO: 27) und CrtZ (iDNA) kodiert. Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR2.1 (Invitrogen) kloniert und der Klon pCR2.1-CrtYIBZ erhalten.

[0286] Das Plasmid pCR2.1-CrtYIBZ wurde Sall und HindIII geschnitten, das resultierende Sall/HindIII-Fragment isoliert und durch Ligierung in den Sall/HindIII geschnittenen Vektor pMCL200 transferiert. Das in pMCL 200 klonierte Sall/HindIII Fragment aus pCR2.1-CrtYIßZ ist 4624 Bp lang, kodiert für die Gene CrtY, CrtI, crtB und CrtZ und entspricht der Sequenz von Position 2295 bis 6918 in D90087 (SEQ ID No. 24). Der resultierende Klon heisst pMCL-CrtYIBZ.

Beispiel 2.2.: Konstruktion von pMCL-CrtYIBZ/idi

[0287] Das Gen idi (Isopentenyldiphosphat-Isomerase; IPP-Isomerase) wurde aus E. coli mittels PCR amplifiziert. Die Nukleinsaure, kodierend das gesamte idi Gen mit idi-Promotor und Ribosomenbindestelle, wurde aus E. coli mittels "polymerase chain reaction" (PCR) unter Verwendung eines sense-spezifischen Primers (5-idi SEQ ID No. 28) und eines antisense-spezifischen Primers (3'-idi SEQ ID No. 29) amplifiziert.

[0288] Die PCR-Bedingungen waren die folgenden: Die PCR zur Amplifikation der DNA erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 1 µl einer E. coli TOP10- Suspension
- 0.25 mM dNTPs
- 0.2 mM 5'-idi (SEQ ID No. 28)
- 0.2 mM 3'-idi (SEQ ID No. 29)
- 5 µl 10X PCR-Puffer (TAKARA)
- 0.25 µl R Taq Polymerase (TAKARA)
- 28.8 µl Aq. Dest.

[0289] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

20X 94°C 1 Minute

62°C 1 Minute

72°C 1 Minute

1X 72°C 10 Minuten

[0290] Die PCR-Amplifikation mit SEQ ID No. 28 und SEQ ID No. 29 resultierte in einem 679 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 30). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pCR2.1 (Invitrogen) kloniert und der Klon pCR2.1-idi erhalten.

[0291] Sequenzierung des Klons pCR2.1-idi bestätigte eine Sequenz, die sich nicht von der publizierten Sequenz AE000372 in Position 8774 bis Position 9440 unterscheidet. Diese Region umfaßt die Promotor-Region, die potentielle Ribosomenbindestelle und den gesamten "open reading frame" für die IPP-Isomerase. Das in

pCR2.1-idi klonierte Fragment hat durch das Einfügen einer Xhol-Schnittstelle am 5'-Ende und einer Sall-Schnittstelle am 3'-Ende des idi-Gens eine Gesamtlänge von 679 Bp.

[0292] Dieser Klon wurde daher für die Klonierung des idi-Gens in den Vektor pMCL-CrtYIBZ verwendet. Die Klonierung erfolgte durch Isolierung des Xhol/Sall-Fragmentes aus pCR2.1-idi und Ligierung in den Xhol/Sall geschnittenen Vektor pMCL-CrtYIBZ. Der resultierende Klon heisst pMCL-CrtYIBZ/idi.

Beispiel 2.3.: Konstruktion von pMCL-CrtYIBZ/idi/gps

[0293] Das Gen gps (Geranylgeranylpyrophosphat-Synthase; GGPP-Synthase) wurde aus Archaeoglobus fulgidus mittels PCR amplifiziert. Die Nukleinsäure, kodierend gps aus Archaeoglobus fulgidus, wurde mittels "polymerase chain reaction" (PCR) unter Verwendung eines sense-spezifischen Primers (5'-gps SEQ ID No. 32) und eines antisense-spezifischen Primers (3'-gps SEQ ID No. 33) amplifiziert.

[0294] Die DNA von Archaeoglobus fulgidus wurde von der Deutschen Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig) innerhalb eines Service-Dienstes präpariert. Die PCR-Bedingungen waren die folgenden:

[0295] Die PCR zur Amplifikation der DNA, die für ein GGPP-Synthase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 1 µl einer Archaeoglobus fulgidus-DNA
- 0.25 mM dNTPs
- 0.2 mM 5'-gps (SEQ ID No. 32)
- 0.2 mM 3'-gps (SEQ ID No. 33)
- 5 µl 10X PCR-Puffer (TAKARA)
- 0.25 μl R Taq Polymerase (TAKARA)
- 28.8 µl Aq. Dest.

[0296] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

20X 94°C 1 Minute

56°C 1 Minute

72°C 1 Minute

1X 72°C 10 Minuten

[0297] Das mittels PCR und den Primern SEQ ID No. 32 und SEQ ID No. 33 amplifizierte DNA-Fragment wurde mit an sich bekannten Methoden aus dem Agarosegel eluiert und mit den Restriktionsenzymen Ncol und HindIII geschnitten. Daraus resultiert ein 962 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 34). Unter Verwendung von Standardmethoden wurde das Ncol/HindIII geschnittene Amplifikat in den Vektor pCB97-30 kloniert und der Klon pCB-gps erhalten.

[0298] Sequenzierung des Klons pCB-gps bestätigte eine Sequenz für die GGPP-Synthase aus A. fulgidus, die sich von der publizierten Sequenz AF120272 in einem Nukleotid unterscheidet. Durch das Einfügen einer Ncol-Schnittstelle im gps-Gen wurde das zweite Kodon der GGPP-Synthase verändert. In der publizierten Sequenz AF120272 kodiert CTG (Position 4-6) für Leucin. Durch die Amplifikation mit den beiden Primern SEQ ID No. 32 und SEQ ID No. 33 wurde dieses zweite Kodon in GTG verändert, welches für Valin kodiert.

[0299] Der Klon pCB-gps wurde daher für die Klonierung des gps-Gens in den Vektor pMCL-CrtYIBZ/idi verwendet. Die Klonierung erfolgte durch Isolierung des Kpnl/Xhol-Fragmentes aus pCB-gps und Ligierung in den Kpnl und Xhol geschnittenen Vektor pMCL-CrtYIBZ/idi. Das klonierte Kpnl/Xhol-Fragment (SEQ ID No. 34) trägt den Prrn16-Promotor zusammen mit einer minimalen 5'-UTR-Sequenz von rbcL, den ersten 6 Kodons von rbcL, die die GGPP-Synthase N-terminal verlängern, und 3' vom gps-Gen die psbA-Sequenz. Der N-Terminus der GGPP-Synthase hat somit anstelle der natürlichen Aminosäure-Abfolge mit Met-Leu-Lys-Glu (Aminosäure 1 bis 4 aus AF120272) die veränderte Aminosäure-Abfolge Met-Thr-Pro-Gln-Thr-Ala-Mei-Val-Lys-Glu. Daraus resultiert, dass die rekombinante GGPP-Synthase, beginnend mit Lys in Position 3 (in AF120272) identisch ist und keine weiteren Änderungen in der Aminosäuresequenz aufweist. Die rbcL- und psbA-Sequenzen wurden gemäß einer Referenz nach Eibl et al. (Plant J. 19. (1999), 1–13) verwendet. Der resultierende Klon heisst pMCL-CrtYIBZlidi/gps.

Beispiel 3:

Biotransformation von Zeaxanthin in rekombinanten E. coli-Stämmen

[0300] Zur Zeaxanthin-Biotransformation wurden rekombinante E. coli-Stämme hergestellt, welche durch heterologe Komplementation zur Zeaxanthin-Produktion befähigt sind. Stämme von E. coli TOP10 wurden als Wirtszellen für die Komplementations-Experimente mit den Plasmiden pNOSTF-G und pMCL-CrtYIBZ/idi/gps

verwendet.

[0301] Um E. coli-Stämme herzustellen, die die Synthese von Zeaxanthin in hoher Konzentration ermöglichen, wurde das Plasmid pMCL-CrtYlBZ/idi/gps konstruiert. Das Plasmid trägt die Bioynthesegene crtY, crt8, crtl und crtY von Erwinia uredovora, das Gen gps (für Geranylgeranylpyrophoshat-Synthastase) aus Archaeoglobus fulgidus und das Gen idi (Isopentenyldiphosphat-Isomerase) aus E. coli. Mit diesem Konstrukt wurden limitierende Schritte für eine hohe Akkumulation von Carotinoiden und deren biosynthtischen Vorstufen beseitigt. Dies wurde zuvor von Wang et al. in ähnlicher Weise mit mehreren Plasmiden beschrieben (Wang, C.-W., Oh, M.-K. und Liao, J.C.; Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli, Biotechnology and Bioengineering 62 (1999), 235–241).

[0302] Kulturen von E.coli TOP10 wurden in an sich bekannter Weise mit den beiden Plasmiden pNOSTF-G und pMCL-CrtYIBZ/idi/gps transformiert und in LB-Medium bei 30°C bzw. 37°C über Nacht kultiviert. Ampicillin (50 μg/ml), Chloramphenicol (50 μg/ml) und Isopiopyl-β-thiogalactosid (1 mmol) wurden in an sich üblicher Weise ebenfalls über Nacht zugegeben.

[0303] Zur Isolierung der Carotinoide aus den rekombinanten Stämmen wurden die Zellen mit Aceton extrahiert, das organische Lösungsmittel zur Trockne eingedampft und die Carotinoide mittels HPLC über eine C30-Säule aufgetrennt. Folgende Verfahrensbedingungen wurden eingestellt.

[0304] Trennsäule: Prontosil C30-Säule, 250 × 4,6 mm, (Bischoff, Leonberg)

Flussrate: 1.0 ml/min

Eluenten: Laufmittel A - 100% Methanol

Laufmittel B - 80% Methanol, 0.2% Ammoniumacetat

Laufmittel C - 100% t-Butvl-methylether

Gradientprofil:

Zeit	Flussrate	% Laufmittel A	% Laufmittel B	% Laufmittel C
1.00	1.0	95.0	5.0	0
1.05	1.0	80.0	5.0	15.0
14.00	1.0	42.0	5.0	53.0
14.05	1.0	95.0	5.0	0
17.00	1.0	95.0	5.0	0
18.00	1.0	95.0	5.0	0

Detektion: 300-500 nm

[0305] Die Spektren wurden direkt aus den Elutionspeaks unter Verwendung eines Photodiodenarraydetektors bestimmt. Die isolierten Substanzen wurden über ihre Absorptionsspektren und ihre Retentionszeiten im Vergleich zu Standardproben identifiziert.

[0306] **Abb.** 1 zeigt die chromatographische Analyse einer Probe erhalten aus einem mit pNOSTF-G und pM-CL-CrtYIBZ/idi/gps transformierten E. coli-Stamm. Es zeigt sich, daß dieser Stamm aufgrund der heterologen Komplementation verschiedene Ketocarotinoide synthetisieren kann. Mit zunehmender Retentionszeit werden Astaxanthin (Peak 1), Adonirubin (Peak 2) und Canthaxanthin (Peak 3) eluiert.

Beispiel 3.1

Vergleichsbeispiel

[0307] Analog zu den vorhergehenden Beispielen wurde als Vergleichsbeispiel ein E.coli-Stamm hergestellt, der eine Ketolase aus Haematococcus pluvialis Flotow em. Wille exprimiert. Dazu wurde die cDNA die für die gesamte Primärsequenz der Ketolase aus Haematococcus pluvialis Flotow em. Wille codiert amplifiziert und gemäß Beispiel 1 in den gleichen Expressionsvektor kloniert.

[0308] Die cDNA, die für die Ketolase aus Haematococcus pluvialis codiert, wurde mittels PCR aus Haematococcus pluvialis (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen") Suspensionskultur amplifiziert. Für die Präparation von Total-RNA aus einer Suspensionskultur von Haematococcus pluvialis (Stamm 192.80), die 2 Wochen mit indirektem Tageslicht bei Raumtemperatur in Haematococcus-Medium (1.2 g/l Natriumacetat, 2 g/l Hefeextrakt, 0.2 g/l MgCl2 × 6H2O, 0.02 CaCl2 × 2H2O; pH 6.8; nach Autoklavieren Zugabe von 400 mg/l L-Asparagin, 10 mg/l FeSO4 × H20) gewachsen war, wurden die Zellen geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert. Anschließend wurden 100 mg der gefrorenen, pul-

verisierten Algenzellen in ein Reaktionsgefäß überführt und in 0.8 ml Trizol-Puffer (LifeTechnologies) aufgenommen. Die Suspension wurde mit 0.2 ml Chloroform extrahiert. Nach 15 minütiger Zentrifugation bei 12 000 g wurde der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert. Die RNA wurde mit einem Volumen Isopropanol gefällt, mit 75% Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-Konzentration wurde photometrisch bestimmt.

[0309] Für die cDNA-Synthese wurden 2.5 µg Gesamt-RNA für 10 min bei 60_C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-to-go-you-prime-beads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers PR1 (gcaagctcga cagctacaaa cc) in cDNA umgeschrieben.

[0310] Die Nukleinsäure codierend eine Ketolase aus Haematococcus pluvialis (Stamm 192.80) wurde mittels polymerase chain reaction (PCR) aus Haematococcus pluvialis unter Verwendung eines sense spezifischen Primers PR2 (gaagcatgca gctagcagcg acag) und eines antisense spezifischen Primers PR1 amplifiziert. [0311] Die PCR-Bedingungen waren die folgenden:

[0312] Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz codiert, erfolgte in einem 50 ml Reaktionsansatz, in dem enthalten war:

- 4 ml einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM PR1
- 0.2 mM PR2
- 5 ml 10X PCR-Puffer (TAKARA)
- 0.25 ml R Taq Polymerase (TAKARA)
- 25.8 ml Aq. Dest.

[0313] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94 C 2 Minuten

35X 94 C 1 Minute

53 C 2 Minuten

72 C_3 Minuten

1X 72 C 10 Minuten

agctgtcgag ·cttgc

[0314] Die PCR-Amplifikation mit PR1 und PR2 resultierte in einem 1155 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz codiert:

```
60
gaagcatgca gctagcagcg acagtaatgt tggagcagct taccggaagc gctgaggcac
tcaaggagaa ggagaaggag gttgcaggca gctctgacgt gttgcgtaca tgggcgaccc
                                                                           120
agtactcgct tccgtcagag gagtcagacg cggcccgccc gggactgaag aatgcctaca
                                                                           180
                                                                           240
agecaceace treegacaca aagggeatea caatggeget agetgteate ggeteetggg
ccgcagtgtt cctccacgcc atttttcaaa tcaagcttcc gacctccttg gaccagctgc
                                                                           300
                                                                           360
actggctgcc cgtgtcagat gccacagctc agctggttag cggcagcagc agcctgctgc
acatcgtcgt agtattcttt gtcctggagt tcctgtacac aggccttttt atcaccacgc
                                                                           420
atgatgctat gcatggcacc atcgccatga gaaacaggca gcttaatgac ttcttgggca
                                                                           480
                                                                           540
gagtatgcat ctccttgtac gcctggtttg attacaacat gctgcaccgc aagcattggg
agcaccacaa ccacactggc gaggtgggca aggaccctga cttccacagg ggaaaccctg
                                                                           600
                                                                           660
geattgtgcc ctggtttgcc agcttcatgt ccagctacat gtcgatgtgg cagtttgcgc
gcctcgcatg gtggacggtg gtcatgcagc tgctgggtgc gccaatggcg aacctgctgg tgttcatggc ggccgcgccc atcctgtccg ccttccgctt gttctacttt ggcacgtaca
                                                                           720
                                                                           780
                                                                           840
tgccccacaa gcctgagcct ggcgccgcgt caggctcttc accagccgtc atgaactggt
ggaagtegeg cactageeag gegteegace tggteagett tetgaeetge taccaetteg
                                                                           900
                                                                           960
acctgcactg ggagcaccac cgctggccct ttgccccctg gtgggagctg cccaactgcc
gccgcctgtc tggccgaggt ctggttcctg cctagctgga cacactgcag tgggccctgc
                                                                          1020
tgccagctgg gcatgcaggt tgtggcagga ctgggtgagg tgaaaagctg caggcgctgc
                                                                          1080
tgccggacac gctgcatggg ctaccctgtg tagctgccgc cactagggga gggggtttgt
                                                                          1140
```

[0315] Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKET02 erhalten.

[0316] Sequenzierung des Klons pGKET02 mü dem T7- und dem SP6-Primer bestätigte eine Sequenz, die sich lediglich in den drei Codons 73, 114 und 119 in je einer Base von der publizierten Sequenz X86782 unterscheidet. Diese Nukleotidaustausche wurden in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentieren somit die Nukleotidsequenz im verwendeten Haematococcus pluvialis Stamm 192.80.

[0317] Dieser Klon wurde für die Klonierung in den unter Beispiel 1 beschriebenen Expressionsvektor ver-

wendet. Die Klonierung erfolgte analog wie in Beispiel 1 beschrieben. Die Transformation der E.coli Stämme, deren Kultivierung und die Analyse des Carotinoidprofils erfolgte wie in Beispiel 3 beschrieben.

[0318] **Abb.** 2 zeigt die chromatographische Analyse einer Probe erhalten aus einem mit diesem Expressionsvektor und pMCL-CrtYIBZ/idilgps transformierten E. coli-Stamm. Unter Verwendung einer Ketolase aus Haematococcus pluvialis, wie beispielsweise in EP 725137 beschrieben, eluieren mit zunehmender Retentionszeit Astaxanthin (Peak 1), Adonixanthin (Peak 2) und nicht umgesetztes Zeaxanthin (Peak 3). Dieses Carotinoidprofil wurde bereits in EP 0725137 beschrieben.

[0319] Tabelle 1 zeigt einen Vergleich der bakteriell produzierten Carotinoidmengen:

[0320] Tabelle 1: Vergleich der bakteriellen Ketocarotinoid-Synthese bei Verwendung zweier verschiedener Ketolasen, der erfindungsgemäßen Ketolase aus Nostoc sp. Strain PCC7120 (Beispiel 3) und der Ketolase aus Haematococcus pluvialis als Vergleichsbeispiel (Beispiel 3.1). Carotinoidmengen sind in ng/ml Kulturflüssigkeit angegeben.

Ketolase aus	Astaxanthin	Adonirubin	Adonixanthin	Canthaxanthin	Zeaxanthin
Haematococcus pluvialis	13		102		738
Flotow em. Wille					
(Vergleichsbeispiel)				}	1
Nostoc sp. Strain	491	186	 	120	
PCC7120					

[0321] Die erfindungsgemäße Expression der Ketolase aus Nostoc sp. Strain PCC7120 führt zu einem Carotinoidmuster, welches sich von dem Carotinoidmuster nach Expression einer Ketolase aus Haematococcus pluvialis deutlich unterscheidet. Während die Ketolase aus dem Stand der Technik nur sehr unvollständig das gewünschte Ketocarotinoid Astaxanthin liefert, ist Astaxanthin bei der Verwendung der erfindungsgemäßen Ketolase das Hauptprodukt. Im erfindungsgemäßen Verfahren treten hydroxylierte Nebenprodukte in einer deutlich geringeren Menge auf.

Beispiel 4:

[0322] Herstellung von Expressionsvektoren zur konstitutiven Expression der Nostoc sp. PCC 7120 Ketolase in Lycopersicon esculentum und Tagetes erecta.

[0323] Die Expression der Ketolase aus Nostoc in L. esculenumt und in Tagetes erecta erfolgte unter Kontrolle des konstitutiven Promoters FNR (Ferredoxin NADPH Oxidoreductase) aus Arabidopsis thaliana. Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240: 709–715).

[0324] Das DNA Fragment, das die FNR Promotorregion –635 bis –1 aus Arabidopsis thaliana beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Arabidopsis thaliana isoliert) sowie der Primer FNR-1 (SEQ ID No.38) und FNR-2 (SEQ ID No. 39) hergestellt.

[0325] Die PCR-Bedingungen waren die folgenden:

[0326] Die PCR zur Amplifikation der DNA, die das FNR-Promotortragment FNR1-2 (-635 bis -1) beinhaltet, erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 100 ng genomischer DNA aus A. thaliana
- 0.25 mM dNTPs
- 0.2 mM FNR-1 (SEQ ID No. 38)
- 0.2 mM FNR-2 (SEQ ID No. 39)
- 5 μl 10X PCR-Puffer (Stratagene)
- 0.25 µl Pfu Polymerase (Stratagene)
- 28.8 µl Aq. Dest.

[0327] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

1X 72°C 10 Minuten

[0328] Das 653 bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pFNR erhalten.

[0329] Sequenzierung des Klons pFNR bestätigte eine Sequenz, die mit einem Sequenzabschnitt auf Chromosom 5 von Arabidopsis thaliana (Datenbankeintrag AB011474) von Position 70127 bis 69493 überein-

stimmt. Das Gen beginnt bei Basenpaar 69492 und ist mit "Ferredoxin-NADP+ Reductase" annotiert.

[0330] Dieser Klon heisst pFNR und wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

[0331] Die Klonierung erfolgte durch Isolierung des 635 by Sacl-HindIII Fragmentes aus pFNR und Ligierung in den Sacl-HindIII geschnittenen Vektor pJIT117. Der Klon, der den Promoter FNR anstelle des ursprünglichen Promoters d35S enthält, heisst pJITFNR.

[0332] Zur Herstellung einer Expressionskassette pJFNRNOST wurde das 805 by SpHI-Fragment NOSTF-G (in Beispiel 1 beschrieben) in den SpHI geschnittenen Vektor pJITFNR kloniert. Der Klon, der das Fragment NOSTF-G in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heisst pJF-NRNOST.

[0333] Die Herstellung einer Expressionskassette für die Agrobacterium vermittelte Transformation der Ketolase aus Nostoc in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02/00900). [0334] Zur Herstellung des Expressionsvektors pS3FNRNOST wurde das 2.4 Kb SacI-Xhol Fragment (partialle SacI Hydrolyse) aus pJFNRNOST mit dem SacI-Xhol geschnittenen Vektor pSUN3 ligiert (Abb. 3, Konstruktkarte). In der Abb. 3 beinhaltet Fragment FNR-Promotor den FNR Promotor (655 bp), Fragment rbcS TransitPeptid das rbcS Transitpeptid aus Erbse (204 bp), Fragment Nost Ketolase (799 bp) die gesamte Primärsequenz, kodierend für die Nostoc Ketolase, Fragment 35S Terminator (761 bp) das Polyadenylierungssignal von CaMV.

[0335] Die Herstellung einer Expressionskassette für die Agrobacterium-vermittelte Transformation des Expressionsvektor mit der Ketolase aus Nostoc in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

[0336] Zur Herstellung des Tagetes-Expressionsvektors pSSFNRNOST wurde das 2.4 Kb Sacl-Xhol Fragment (partielle Sacl Hydrolyse) aus pJFNRNOST mit dem Sacl-Xhol geschnittenen Vektor pSUNS ligiert (**Abb.** 4, Konstruktkarte). In der **Abb.** 4 beinhaltet Fragment FNR Promotor den duplizierten FNR Promotor (655 bp), Fragment rbcS Transit Peptid das rbcS Transitpeptid aus Erbse (204 bp), Fragment Nost Ketolase (799 bp) die gesamte Primärsequenz, kodierend für die Nostoc Ketolase, Fragment 35S Terminator (761 bp) das Polyadenylierungssignal von CaMV.

Beispiel 5:

Herstellung von Expressionsvektoren zur blütenspezifischen Expression der Nostoc sp. PCC 7120 Ketolase in Lycopersicon esculentum und Tagetes erecta.

[0337] Die Expression der Ketolase aus Nostoc in L. esculentum und Tagetes erecta erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240: 709–715). Die Expression erfolgte unter Kontrolle einer modifizierten Version AP3P des blütenspezifischen Promoters AP3 aus Arabidopsis thaliana (AL132971: Nukleotidregion 9298–10200; Hill et al. (1998) Development 125: 1711–1721).

[0338] Das DNA Fragment, das die AP3 Promoterregion –902 bis +15 aus Arabidopsis thaliana beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Arabidopsis thaliana isoliert) sowie der Primer AP3-1 (SEQ ID No. 41) und AP3-2 (SEQ ID No. 42) hergestellt.

[0339] Die PCR-Bedingungen waren die folgenden:

[0340] Die PCR zur Amplifikation der DNA, die das AP3-Promoterfragment (–902 bis +15) beinhaltet, erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 100 ng genomischer DNA aus A.thaliana
- 0.25 mM dNTPs
- 0.2 mM AP3-1 (SEQ ID No. 41)
- 0.2 mM AP3-2 (SEQ ID No. 42)
- 5 µl 10X PCR-Puffer (Stratagene)
- 0.25 µl Pfu Polymerase (Stratagene)
- 28.8 µl Aq. Dest.

[0341] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

1X 72°C 10 Minuten

[0342] Das 929 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pAP3 erhalten.

[0343] Sequenzierung des Klons pAP3 bestätigte eine Sequenz, die sich lediglich in durch eine Insertion (ein

G in Position 9765 der Sequenz AL132971) und einen Basenaustausch (ein G statt ein A in Position 9726 der Sequenz AL132971) von der publizierten AP3 Sequenz (AL132971, Nukleotidregion 9298-10200) unterscheidet. Diese Nukleotidunterschiede wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die tatsächliche Nukleotidsequenz in den verwendeten Arabidopsis thaliana Pflanzen. [0344] Die modifizierte Version AP3P wurde mittels rekombinanter PCR unter Verwendung des Plasmids pAP3 hergestellt. Die Region 10200-9771 wurde mit den Primern AP3-1 (SEQ ID No. 41) und Primem AP3-4 (SEQ ID No. 44) amplifiziert (Amplifikat A1/4), die Region 9526-9285 wurde mit den AP3-3 (SEQ ID No. 43) und AP3-2 (SEQ ID No. 42) amplifiziert (Amplifikat A2/3).

[0345] Die PCR-Bedingungen waren die folgenden:

[0346] Die PCR-Reaktionen zur Amplifikation der DNA-Fragmente, die die Regionen Region 10200-9771 und Region 9526-9285 des AP3 Promoters beinhalten, erfolgte in 50 µl Reaktionsansätzen, in denen enthalten war:

- 100 ng AP3 Amplifikat (oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM sense Primer (AP3-1 SEQ ID No. 41 bzw. AP3-3 SEQ ID No. 43)
- 0.2 mM antisense Primer (AP3-4 SEQ ID No. 44 bzw. AP3-2 SEQ ID No. 42)
- 5 µl 10X PCR-Puffer (Stratagene)
- 0.25 µl Pfu Taq Polymerase (Stratagene)
- 28.8 μl Aq. Dest.

[0347] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

1X 72°C 10 Minuten

[0348] Die rekombinante PCR beinhaltet Annealing der sich über eine Sequenz von 25 Nukleotiden überlappenden Amplifikate A1/4 und A2/3, Vervollständigung zu einem Doppelstrang und anschließende Amplifizierung. Dadurch entsteht eine modifizierte Version des AP3 Promoters, AP3P, in dem die Positionen 9670-9526 deletiert sind. Die Denaturierung (5 min bei 95°C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40°C) beider Amplifikate A1/4 und A2/3 erfolgte in einem 17.6 µl Reaktionsansatz, in dem enthalten war:

- 0.5 ug A1/4 Amplifikat
- 0.25 ug A2/3 Amplifikat

[0349] Das Auffüllen der 3'-Enden (30 min bei 30°C) erfolgte in einem 20 µl Reaktionsansatz, in dem enthalten war:

- 17.6 μl A1/4 und A2/3-Annealingsreaktion (hergestellt wie oben beschrieben)
- 50 uM dNTPs
- 2 µl 1X Klenow Puffer
- 2U Klenow Enrym

[0350] Die Nukleinsäure kodierend für die modifizierte Promoterversion AP3P wurde mittels PCR unter Verwendung eines sense spezifischen Primers (AP3-1 SEQ ID No. 41) und eines antisense spezifischen Primers (AP3-2 SEQ ID No. 42) amplifiziert.

[0351] Die PCR-Bedingungen waren die folgenden:

[0352] Die PCR zur Amplifikation des AP3P Fragmentes erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 1 µl Annealingsreaktion (hergestellt wie oben beschrieben)
- 0.25 mM dNTPs
- 0.2 mM AP3-1(SEQ ID No. 41)
- 0.2 mM AP3-2 (SEQ ID No. 42)
- 5 µl 10X PCR-Puffer (Stratagene)
- 0.25 µl Pfu Tag Polymerase (Stratagene)
- 28.8 µl Aq. Dest.

[0353] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X 94°C 2 Minuten

35X 94°C 1 Minute

50°C 1 Minute

72°C 1 Minute

1X 72°C 10 Minuten

[0354] Die PCR-Amplifikation mit SEQ ID No. 41 (AP3-1) und SEQ ID No. 42 (AP3-2) resultierte in einem 783 Bp Fragment, das für die modifizierte Promoterversion AP3P kodiert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert und das Plasmid pAP3P erhalten. Sequenzierungen mit den Primern T7 und M13 bestätigten eine zur Sequenz AL132971, Region 10200-9298 identische Sequenz, wobei die interne Region 9285-9526 deletiert wurde. Diese Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

[0355] Die Klonierung erfolgte durch Isolierung des 783 Bp Sacl-HindIII Fragmentes aus pAP3P und Ligierung in den Sacl-HindIII geschnittenen Vektor pJIT117. Der Klon, der den Promoter AP3P anstelle des ursprünglichen Promoters d35S enthält, heisst pJITAP3P. Zur Herstellung einer Expressionskassette pJAP3NOST wurde das 805 Bp SpHI-Fragment NOSTF-G (in Beispiel 1 beschrieben) in den SpHI geschnittenen Vektor pJITAP3P kloniert. Der Klon, der das Fragment NOSTF-G in der korrekten Orientierung als N-terminate Fusion mit dem rbcS Transitpeptid enthält, heisst pJAP3PNOST.

[0356] Die Herstellung eines Expressionsvektors für die Agrobacterium-vermittelte Transformation der AP3P-kontrollierten Ketolase aus Nostoc in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WO02100900).

[0357] Zur Herstellung des Expressionsvektors pS3AP3PNOST wurde das 2.6 KB bp Sacl-Xhol Fragment (partielle Sacl Hydrolyse) aus pJAP3NOST mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert (**Abb.** 5, Konstruktkarte). In der **Abb.** 5 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (783 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (207 bp), Fragment NOSTF-G (792 bp) die gesamte Primärsequenz kodierend für die Nostoc Ketolase, Fragment term (795 bp) das Polyadenylierungssignal von CaMV. [0358] Die Herstellung einer Expressionsvektors für die Agrobacterium-vermittelte Transformation der AP3P-kontrollierten Ketolase aus Nostoc in Tagetes erecta erfolgte unter der Verwendung des binären Vektors pSUN5 (WO02/00900).

[0359] Zur Herstellung des Expressionsvektors pS5AP3PNOST wurde das 2.6 KB bp Sacl-Xhol (partielle Sacl Hydrolyse) Fragment aus pS5AP3PNOST mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (**Abb.** 6, Konstruktkarte). In der **Abb.** 6 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (783 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (207 bp), Fragment NOSTF-G (792 bp) die gesamte Primärsequenz codierend für die Nostoc Ketolase, Fragment term (795 bp) das Polyadenylierungssignal von CaMV.

Beispiel 6:

Herstellung transgener Lycopersicon esculentum Pflanzen

[0360] Transformation und Regeneration von Tomatenpflanzen erfolgte nach der publizierten Methode von Ling und Mitarbeitern (Plant Cell Reports (1998), 17: 843–847). Für die Varietät Microtom wurde mit höherer Kanamycin-Konzentration (100 mg/L) selektioniert.

[0361] Als Ausgangsexplantat für die Transformation dienten Kotyledonen und Hypokotyle sieben bis zehn Tage alter Keimlinge der Linie Microtom. Für die Keimung wurde das Kulturmedium nach Murashige und Skoog (1962: Murashige and Skoog, 1962, Physiol. Plant 15, 473-) mit 2% Saccharose, pH 6, 1 verwendet. Die Keimung fand bei 21°C bei wenig Licht (20–100 μE) statt. Nach sieben bis zehn Tagen wurden die Kotyledonen quer geteilt und die Hypokotyle in ca. 5-10 mm lange Abschnitte geschnitten und auf das Medium MSBN (MS, pH 6,1, 3% Saccharose + 1 mg/l BAP, 0,1 mg/l NAA) gelegt, das am Vortag mit suspensionskultivierten Tomatenzellen beschickt wurde. Die Tomatenzellen wurden luftblasenfrei mit sterilem Filterpapier abgedeckt. Die Vorkultur der Explantate auf dem beschriebenen Medium erfolgte für drei bis fünf Tage. Zellen des Stammes Agrobakterium tumefaciens LBA4404 wurden einzeln mit den Plasmiden pS3FNRNOST und pS3AP3NOST transformiert. Von den einzelnen mit den Binärvektoren pS3FNRNOST und pS3AP3NOST transformierten Agrobakterium-Stämmen wurde jeweils eine Übernachtkultur in YEB Medium mit Kanamycin (20 mg/l) bei 28°C kultiviert und die Zellen zentrifugiert. Das Bakterienpellet wurde mitflüssigem MS Medium (3% Saccharose, pH 6,1) resuspendiert und auf eine optische Dichte von 0,3 (bei 600 nm) eingestellt. Die vorkultivierten Explantate wurden in die Suspension überführt und für 30 Minuten bei Zimmertemperatur unter leichtem Schütteln inkubiert. Anschließend wurden die Explantate mit sterilem Filterpapier getrocknet und für die dreitägige Co-Kultur (21°C) auf ihr Vorkulturmedium zurück gelegt.

[0362] Nach der Co-kultur wurden die Explantate auf MSZ2 Medium (MS pH 6,1 + 3% Saccharose, 2 mg/l Zeatin, 100 mg/l Kanamycin, 160 mg/l Timentin) transferiert und für die selektive Regeneration bei 21°C unter Schwachlicht Bedingungen (20–100 µE, Lichtrhythmus 16h/8h) aufbewahrt. Aller zwei bis drei Wochen erfolgte der Transfer der Explantate bis sich Sprosse bilden. Kleine Sprosse konnten vom Explantat abgetrennt werden und auf MS (pH 6,1 + 3% Saccharose) 160 mg/l Timentin, 30 mg/l Kanamycin, 0,1 mg/l IAA bewurzelt werden. Bewurzelte Pflanzen wurden ins Gewächshaus überführt.

[0363] Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Expressionskonst-

rukten folgende Linien erhalten:

Mit pS3FNRNOST wurde erhalten: ms 101-1, ms101-2, ms101-3 Mit pS3AP3NOST wurde erhalten: ms 102-1, ms102-2, ms102-3

Beispiel 7:

Herstellung transgener Tagetes Pflanzen

[0364] Tagetessamen werden sterilisiert und auf Keimungsmedium (MS-Medium; Murashige and Skoog, Physiol. Plant. 15 (1962), 473–497) pH 5,8, 2% Saccharose) aufgelegt. Die Keimung erfolgt in einem Temperatur/Licht/Zeitintervall von 18–28°C/20–200 μ E/3–16 Wochen, bevorzugt jedoch bei 21°C, 20–70 μ E, für 4–8 Wochen.

[0365] Alle Blätter der sich bis dahin entwickelten in vitro Pflanzen werden geerntet und quer zur Mittelrippe geschnitten. Die dadurch entstehenden Blattexplantate mit einer Größe von 10–60 mm² werden im Verlaufe der Präparation in flüssigem MS – Medium bei Raumtemperatur für maximal 2 h aufbewahrt.

[0366] Ein beliebiger Agrobakterium tumefaciens Stamm, bevorzugt aber ein supervirulenter Stamm, wie z.B. EHA105 mit einem entsprechenden Binärplasmid, das ein Selektionsmarkergen (bevorzugt bar oder pat) sowie ein oder mehrere Trait- oder Reportergene tragen kann wird (pS5FNRNOST und pS5AP3NOST), über Nacht angezogen und für die Co-Kultivierung mit dem Blattmaterial verwendet. Die Anzucht des Bakterienstammes kann wie folgt erfolgen: Eine Einzelkolonie des entsprechenden Stammes wird in YEB (0,1% Hefe-extrakt, 0,5% Rindfleischextrakt, 0,5% Pepton, 0,5% Saccharose, 0,5% Magnesiumsulfat × 7 H_2O) mit 25 mg/l Kanamycin angeimpft und bei 28°C für 16 bis 20 h angezogen. Anschließend wird die Bakteriensuspension durch Zentrifugation bei 6000 g für 10 min geerntet und derart in flüssigem MS Medium resuspendiert, daß eine OD_{600} von ca. 0,1 bis 0,8 entstand. Diese Suspension wird fuer die C-Kultivierung mit dem Blattmaterial verwendet.

[0367] Unmittelbar vor der Co-Kultivierung wird das MS-Medium, in dem die Blätter aufbewahrt worden sind, durch die Bakteriensuspension ersetzt. Die Inkubation der Blättchen in der Agrobakteriensuspension erfolgte für 30 min unter leichtem Schütteln bei Raumtemperatur. Anschließend werden die infizierten Explantate auf ein mit Agar (z.B. 0,8% Plant Agar (Duchefa, NL) verfestigtes MS-Medium mit Wachstumsregulatoren, wie beispielsweise 3 mg/l Benzylaminopurin (BAP) sowie 1 mg/l Indolylessigsäure (IAA) aufgelegt. Die Orientierung der Blätter auf dem Medium ist bedeutungslos. Die Kultivierung der Explantate findet für 1 bis 8 Tage, bevorzugt aber für 6 Tage statt, dabei können folgende Bedingungen angewendet werden: Lichtintensität: 30–80 µMol/m2 × sec, Temperatur: 22–24°C, hellldunkel Wechsel von 16/8 Stunden. Anschließend werden die co-kultivierten Explantate auf frisches MS-Medium, bevorzugt mit den gleichen Wachstumsregulatoren übertragen, wobei dieses zweite Medium zusätzlich ein Antibiotikum zur Unterdrückung des Bakterienwachstums enthält. Timentin in einer Konzentration von 200 bis 500 mg/l ist für diesen Zweck sehr geeignet. Als zweite selektive Komponente wird eine für die Selektion des Transformationserfolges eingesetzt. Phosphinothricin in einer Konzentration von 1 bis 5 mg/l selektiert sehr effizient, aber auch andere selektive Komponenten gemäß des zu verwendenden Verfahrens sind denkbar.

[0368] Nach jeweils ein bis drei Wochen erfolgt der Transfer der Explantate auf frisches Medium bis sich Sproßknospen und kleine Sprosse entwickeln, die dann auf das gleiche Basalmedium einschließlich Timentin und PPT oder alternative Komponenten mit Wachstumsregulatoren, nämlich z.B. 0,5 mg/l Indolylbuttersäure (IBA) und 0,5 mg/l Gibberillinsäure GA₃, zur Bewurzelung übertragen werden. Bewurzelte Sprosse können ins Gewächshaus überführt werden.

[0369] Zusätzlich zu der beschriebenen Methode sind folgende vorteilhafte Modifikationen möglich:

[0370] Bevor die Explantate mit den Bakterien infiziert werden, können sie für 1 bis 12 Tage, bevorzugt 3–4, auf das oben beschriebene Medium für die Co-Kultur vorinkubiert werden. Anschließend erfolgt die Infektion, Co-Kultur und selektive Regeneration wie oben beschrieben.

[0371] Der pH Wert für die Regeneration (normalerweise 5,8) kann auf pH 5,2 gesenkt werden. Dadurch wird die Kontrolle des Agrobakterienwachstums verbessert.

[0372] Die Zugabe von AgNO₃ (3–10 mg/l) zum Regenerationsmedium verbessert den Zustand der Kultur einschließlich der Regeneration selbst.

[0373] Komponenten, die die Phenolbildung reduzieren und dem Fachmann bekannt sind, wie z.B. Zitronensäure, Ascorbinsäure, PVP u.v.a.m., wirken sich positiv auf die Kultur aus.

[0374] Für das gesamte Verfahren kann auch flüssiges Kulturmedium Verwendung finden. Die Kultur kann auch auf handelsüblichen Trägern, die auf dem flüssigen Medium positioniert werden inkubiert werden.

[0375] Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Expressionskonstrukten folgende Linien erhalten:

[0376] Mit pSSFNRNOST wurde beispielsweise erhalten: ms 103-1, ms103-2, ms103-3, mit pS5AP3NOST wurde beispielsweise erhalten: ms 104-1, ms104-2, ms104-3

Beispiel 9

Charakterisierung der transgenen Pflanzenblüten

Beispiel 9.1

Trennung von Carotinoidestern in Blütenblättern ti-ansgener Pflanzen

Allgemeine Arbeitsvorschrift:

[0377] Die Blütenblätter der transgenen Pflanzen werden in flüssigem Stickstoff gemörsert und das Petalenpulver (etwa 40 mg) mit 100% Aceton extrahiert (dreimal je 500 µl). Das Lösungsmittel wird evaporiert und die Carotinoide in 100–200 µl Petrolether/Aceton (5:1, v/v) resuspendiert.

[0378] Die Carotinoide werden in konzentrierter Form mittels Dünnschicht-Chromatographie (TLC) auf Silica60 F254-Platten (Merck) in einem organischen Laufmittel (Petrolether/Aceton; 5:1) entsprechend ihrer Phobizität aufgetrennt. Gelbe (Xanthophyllester), rote (Ketocarotinoidester) und orange Banden (Mischung aus Xanthophyll- und Ketocarotinoidestern)auf der TLC werden ausgekratzt.

[0379] Die an Silica gebundenen Carotinoide werden dreimal mit 500 µl Aceton eluiert, das Lösungsmittel evaporiert und die Carotinoide mittels HPLC aufgetrennt und identifiziert.

[0380] Mittels einer C30-reverse phase-Säule kann zwischen Mono- und Diestern der Carotinoide unterschieden werden. HPLC-Laufbedingungen waren nahezu identisch mit einer publizierten Methode (Frazer et al.(2000), Plant Journal 24 (4): 551–558). Folgende Verfahrensbedingungen wurden eingestellt.

[0381] Trennsäule: Prontosil C30-Säule, 250 × 4,6 mm, (Bischoff, Leonberg)

Flussrate: 1.0 ml/min

Eluenten: Laufmittel A - 100% Methanol

Laufmittel B - 80% Methanol, 0.2% Ammoniumacetat

Laufmittel C - 100% t-Butyl-methylether

Gradientprofil:

Zeit	Flussrate	% Laufmittel A	% Laufmittel B	% Laufmittel C
12.0	1.0	95.0	5.0	0
12.1	1.0	80.0	5.0	15.0
22.0	1.0	76.0	5.0	19.0
22.0	1.0	66.5	5.0	28.5
38.0	1.0	15.0	5.0	80.0
45.0	1.0	95.0	5.0	0
46.0	1.0	95.0	5.0	0
46.1	1.0	95.0	5.0	0

Detektion: 300-500 nm

[0382] Eine Identifzierung der Carotinoide ist aufgrund der UV-VIS-Spektren möglich.

[0383] Petalenmaterial der transgenen Tomatenpflanzen wird gemörsert und mit Aceton extrahiert. Extrahierte Carotinoide werden mittels TLC aufgetrennt. In den Linien können Mono- und Diester von Ketocarotinoiden detektiert werden; die Monoester sind in deutlich geringerer Konzentration als die Diester vorhanden.

Beispiel 10

Enzymatische Hydrolyse von Carotinoidestern und Identifizierung der Carotinoide Allgemeine Arbeitsvorschrift

[0384] Gemörsertes Petalenmaterial (30–100 mg Frischgewicht) wird mit 100% Aceton (dreimal 500 µl; jeweils etwa 15 Minuten schütteln) extrahiert. Das Lösungsmittel wird evaporiert. Carotinoide werden anschließend in 495 µl Aceton aufgenommen, 4,95 ml Kalium-phosphatpuffer (100 mM, pH 7.4) zugegeben und gut gemischt. Danach erfolgt die Zugabe von ca. 17 mg Bile-Salze (Sigma) und 149 µl einer NaCl/CaCl2-Lösung (3M NaCl und 75 mM CaCl2). Die Suspension wird für 30 Minuten bei 37C inkubiert. Für die enzymatische

Hydrolyse der Carotinoidester wird 595 µl einer Lipaselösung (50 mg/ml Lipase Typ7 von Candida rugosa(Sigma)) zugegeben und unter Schütteln bei 37C inkubiert. Nach etwa 21 Stunden erfolgte nochmals eine Zugabe von 595 µl Lipase mit erneuter Inkubation von mindestens 5 Stunden bei 37C. Anschließend werden etwa ca. 700 mg Na2SO4 × 10H2O in der Lösung gelöst. Nach Zugabe von 1800 µl Petrolether werden die Carotinoide durch kräftig Mischen in die organische Phase extrahiert. Dieses Ausschütteln wird solange wiederholt, bis die organische Phase frablos bleibt. Die Petroletherfraktionen werden vereinigt und der Petrolether evaporiert. Freie Carotinoide werden in 100–120 µl Aceton aufgenommen. Mittels HPLC und C30-reverse phase-Säule können freie Carotinoide aufgrund von Retentionszeit und UV-VIS-Spektren identifiziert werden.

SEQUENCE LISTING

<110> SunGene GmbH & Co. KGaA

<120> Verfahren zur Herstellung von Ketocarotinoiden in genetisch veränderten Organismen

<130> 20020636

<160> 51

<170> PatentIn version 3.1

<210> 1

<211> 777

<212> DNA

<213> Nostoc sp. Strain PCC7120

<220>

<221> CDS

<222> (1)..(777)

<223>

<400> 1 atg gtt cag met Val Gln 1	tgt caa cca Cys Gln Pro 5	tca tct ctg Ser Ser Leu	cat tca gaa His Ser Glu 10	aaa ctg g Lys Leu \	,-9	48
ttg tca tcg Leu Ser Ser	aca atc aga Thr Ile Arg 20	gat gat aaa Asp Asp Lys 25	aat att aat Asn Ile Asn	aag ggt a Lys Gly 3 30		96
att gcc tgc Ile Ala Cys 35	ttt atc tta Phe Ile Leu	ttt tta tgg Phe Leu Trp 40	gca att agt Ala Ile Ser	tta atc 1 Leu Ile I 45		.44
ctc tca ata Leu Ser Ile 50	gat aca tcc Asp Thr Ser	ata att cat Ile Ile His 55	aag agc tta Lys Ser Leu 60	attaggt a Leu Gly :		.92
atg ctt tgg Met Leu Trp 65	cag acc tto Gln Thr Phe 70	tta tat aca Leu Tyr Thr	ggt tta tti Gly Leu Phe 75	t att act o		40
gat gcc atg Asp Ala Met	cac ggc gta ніs Gly Val	gtt tat ccc Val Tyr Pro	aaa aat cco Lys Asn Pro	c aga ata a o Arg Ile a	aat aat 2 Asn Asn	288

	85	90	95
ttt ata ggt aag Phe Ile Gly Lys 100	Leu Thr Leu Ile L	tg tat gga cta ctc cc eu Tyr Gly Leu Leu Pro 05 110	o Tyr Lys
gat tta ttg aaa Asp Leu Leu Lys 115	aaa cat tgg tta c Lys His Trp Leu H 120	ac cac gga cat cct gg is His Gly His Pro Gly 125	t act gat 384 y Thr Asp
tta gac cct gat Leu Asp Pro Asp 130	tat tac aat ggt c Tyr Tyr Asn Gly H 135	at ccc caa aac ttc tt is Pro Gln Asn Phe Pho 140	t ctt tgg 432 e Leu Trp
tat cta cat ttt Tyr Leu His Phe 145	atg aag tct tat t Met Lys Ser Tyr T 150	gg cga tgg acg caa at rp Arg Trp Thr Gln Il 155	t ttc gga 480 e Phe Gly 160
tta gtg atg att Leu Val Met Ile	ttt cat gga ctt a Phe His Gly Leu L 165	aa aat ctg gtg cat at ys Asn Leu Val His Il 170	a cca gaa 528 e Pro Glu 175
aat aat tta att Asn Asn Leu Ile 180	lle Phe Trp Met I	ta cct tct att tta ag le Pro Ser Ile Leu Se .85 19	r ser Val
caa cta ttt tat Gln Leu Phe Tyr 195	ttt ggt aca ttt t Phe Gly Thr Phe L 200	tg cct cat aaa aag ct eu Pro His Lys Lys Le 205	a gaa ggt 624 u Glu Gly
ggt tat act aac Gly Tyr Thr Asn 210	ccc cat tgt gcg c Pro His Cys Ala A 215	gc agt atc cca tta cc irg Ser Ile Pro Leu Pro 220	t ctt ttt 672 o Leu Phe
tgg tct ttt gtt Trp Ser Phe Val 225	act tgt tat cac t Thr Cys Tyr His P 230	tc ggc tac cac aag ga he Gly Tyr His Lys Gl 235	a cat cac 720 u His His 240
gaa tac cct caa Glu Tyr Pro Gln	ctt cct tgg tgg a Leu Pro Trp Trp L 245	aa tta cct gaa gct ca ys Leu Pro Glu Ala Hi 250	c aaa ata 768 s Lys Ile 255
tct tta taa Ser Leu			777
<210> 2			
<211> 258			
<212> PRT			
<213> Nostoc s	sp. Strain PCC7120		
<400> 2			
Met Val Gln Cys 1	Gln Pro Ser Ser (5	eu His Ser Glu Lys Le 10	u Val Leu 15
Leu Ser Ser Thr 20	· Ile Arg Asp Asp I	ys Asn Ile Asn Lys Gl 25 30	y Ile Phe
Ile Ala Cys Phe	e Ile Leu Phe Leu	Trp Ala Ile Ser Leu Il	e Leu Leu

)

35

Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu Leu Gly Ile Ala 50 60 Met Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His 65 70 75 Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro Arg Ile Asn Asn 90 95 Phe Ile Gly Lys Leu Thr Leu Ile Leu Tyr Gly Leu Leu Pro Tyr Lys
100 105 110 Asp Leu Leu Lys Lys His Trp Leu His His Gly His Pro Gly Thr Asp 115 120 125 Leu Asp Pro Asp Tyr Tyr Asn Gly His Pro Gln Asn Phe Phe Leu Trp 130 135 140 Tyr Leu His Phe Met Lys Ser Tyr Trp Arg Trp Thr Gln Ile Phe Gly 145 150 155 Leu Val Met Ile Phe His Gly Leu Lys Asn Leu Val His Ile Pro Glu 165 170 175 Asn Asn Leu Ile Ile Phe Trp Met Ile Pro Ser Ile Leu Ser Ser Val 180 185 190 Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Lys Lys Leu Glu Gly 195 200 Gly Tyr Thr Asn Pro His Cys Ala Arg Ser Ile Pro Leu Pro Leu Phe 210 220 Trp Ser Phe Val Thr Cys Tyr His Phe Gly Tyr His Lys Glu His His 225 230 235 Glu Tyr Pro Gln Leu Pro Trp Trp Lys Leu Pro Glu Ala His Lys Ile 245 250 255

Ser Leu

<210> 3

<211> 789

<212> DNA

<213> Nostoc punctiforme

<220> <221> CDS <222> (1)..(789) <223>

<400> 3							40
ttg aat ttt Met Asn Phe 1	Cys Asp Ly 5	s Pro Val	ser Tyr 10	Tyr Val	Ala Ile	gag caa Glu Gln 15	48
tta agt gct Leu Ser Ala	aaa gaa ga Lys Glu As 20	t act gtt p Thr Val	tgg ggg Trp Gly 25	ctg gtg Leu Val	att gtc Ile val 30	ata gta Ile Val	96
att att agt Ile Ile Ser 35	ctt tgg gt Leu Trp Va	a gct agt l Ala Ser 40	ttg gct Leu Ala	ttt tta Phe Leu	cta gct Leu Ala 45	att aat Ile Asn	144
tat gcc aaa Tyr Ala Lys 50	gtc cca at Val Pro Il	t tgg ttg e Trp Leu 55	ata cct Ile Pro	att gca Ile Ala 60	ata gtt Ile Val	tgg caa Trp Gln	192
atg ttc ctt Met Phe Leu 65	tat aca gg Tyr Thr G1 70	y Leu Phe	att act Ile Thr	gca cat Ala His 75	gat gct Asp Ala	atg cat Met His 80	240
ggg tca gtt Gly Ser Val	tat cgt aa Tyr Arg Ly 85	a aat ccc s Asn Pro	aaa att Lys Ile 90	aat aat Asn Asn	ttt atc Phe Ile	ggt tca Gly Ser 95	288
cta gct gta Leu Ala Val	gcg ctt ta Ala Leu Ty 100	c gct gtg r Ala Val	ttt cca Phe Pro 105	tat caa Tyr Gln	cag atg Gln Met 110	tta aag Leu Lys	336
aat cat tgc Asn His Cys 115	tta cat ca Leu His Hi	t cgt cat s Arg His 120	cct gct Pro Ala	agc gaa Ser Glu	gtt gac Val Asp 125	cca gat Pro Asp	384
ttt cat gat Phe His Asp 130	ggt aag ag Gly Lys Ar	a aca aac g Thr Asn 135	gct att Ala Ile	ttc tgg Phe Trp 140	tat ctc Tyr Leu	cat ttc His Phe	432
atg ata gaa Met Ile Glu 145	tac tcc ag Tyr Ser Se 15	r Trp Gln	cag tta Gln Leu	ata gta Ile Val 155	cta act Leu Thr	atc cta Ile Leu 160	480
ttt aat tta Phe Asn Leu	gct aaa ta Ala Lys Ty 165	c gtt ttg r Val Leu	cac atc His Ile 170	cat caa His Gln	ata aat Ile Asn	ctc atc Leu Ile 175	528
tta ttt tgg Leu Phe Trp	agt att co Ser Ile Pr 180	t cca att o Pro Ile	tta agt Leu Ser 185	tcc att Ser Ile	caa ctg Gln Leu 190	ttt tat Phe Tyr	576
ttc gga aca Phe Gly Thr 195	ttt ttg co Phe Leu Pr	t cat cga o His Arg 200	Ğlu Pro	aag aaa Lys Lys	gga tat Gly Tyr 205	gtt tat Val Tyr	624
ccc cat tgc Pro His Cys 210							672

gct tgc tac cac ttt ggt tat cat gaa gaa cat cat gag tat ccc cat Ala Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 720 gta cct tgg tgg caa ctt cca tct gta tat aag cag aga gta ttc aac Val Pro Trp Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn 245 250 255 768 789 aat tca gta acc aat tcg taa Asn Ser Val Thr Asn Ser

<210>

<211> 262

<212> PRT

<213> Nostoc punctiforme

<400> 4 Met Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln 1 10 15 Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val Ile Val 20 25 30 Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn 35 40 45 Tyr Ala Lys Val Pro Ile Trp Leu Ile Pro Ile Ala Ile Val Trp Gln
50 60 Met Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His Asp Ala Met His 65 70 75 80 Gly Ser Val Tyr Arg Lys Asn Pro Lys Ile Asn Asn Phe Ile Gly Ser 85 90 95 Leu Ala Val Ala Leu Tyr Ala Val Phe Pro Tyr Gln Gln Met Leu Lys 100 105 110 Asn His Cys Leu His His Arg His Pro Ala Ser Glu Val Asp Pro Asp 115 120 125 Phe His Asp Gly Lys Arg Thr Asn Ala Ile Phe Trp Tyr Leu His Phe 130 140 Met Ile Glu Tyr Ser Ser Trp Gln Gln Leu Ile Val Leu Thr Ile Leu 145 150 155 160 Phe Asn Leu Ala Lys Tyr Val Leu His Ile His Gln Ile Asn Leu Ile 165 170 175

Leu	Phe	Trp	ser 180	Ile	Pro	Pro	Ile	Leu 185	Ser	Ser	Ile	Gln	Leu 190	Phe	Tyr	
Phe	Gly	Thr 195	Phe	Leu	Pro	His	Arg 200	Glu	Pro	Lys	Lys	G]y 205	туг	Val	Tyr	
Pro	His 210	Cys	Ser	Gln	Thr	Ile 215	Lys	Leu	Pro	Thr	Phe 220	Leu	Ser	Phe	Ile	
Ala 225	Cys	Туг	His	Phe	Gly 230	Tyr	His	Glu	Glu	His 235	His	Glu	Туг	Pro	His 240	
val	Pro	Trp	Тгр	G]n 245	Leu	Pro	Ser	val	Туг 250	Lys	Gln	Arg	val	Phe 255	Asn	
Asn	Ser	val	Thr 260	Asn	Ser											
<210)> !	5														
<21	i حا	762														
<21	2> [DNA														
<21	3> 1	Nosto	oc pu	uncti	iforn	ne										
<220)>															
<22:) حا	CDS														
<222	2> ((1).	. (762	2)												
<223	3>															
<400)> :	5														
gtg Met 1	atc Ile	cag Gln	tta Leu	gaa Glu 5	caa Gln	cca Pro	ctc Leu	agt Ser	cat His 10	caa Gln	gca Ala	aaa Lys	ctg Leu	act Thr 15	cca Pro	48
gta Val	ctg Leu	aga Arg	agt Ser 20	aaa Lys	tct Ser	cag Gln	ttt Phe	aag Lys 25	ggg Gly	ctt Leu	ttc Phe	att Ile	gct Ala 30	att Ile	gtc Val	96
att Ile	gtt Val	agc Ser 35	gca Ala	tgg Trp	gtc Val	att Ile	agc Ser 40	ctg Leu	agt Ser	tta Leu	tta Leu	ctt Leu 45	tcc ser	ctt Leu	gac Asp	144
atc Ile	tca Ser 50	aag Lys	cta Leu	aaa Lys	ttt Phe	tgg Trp 55	atg Met	tta Leu	ttg Leu	cct Pro	gtt Val 60	ata Ile	cta Leu	tgg Trp	caa Gln	192
			tat Tyr													240
ggc Gly	gta Val	gta Val	ttt Phe	ccc Pro	caa Gln	aac Asn	acc Thr	aag Lys	att Ile	aat Asn	cat His	ttg Leu	att Ile	gga Glv	aca Thr	288

85	90		95
ttg acc cta tcc ctt tat g Leu Thr Leu Ser Leu Tyr G 100	ggt ctt tta cca Gly Leu Leu Pro 105	tat caa aaa cta Tyr Gln Lys Leu 110	ttg aaa 336 Leu Lys
aaa cat tgg tta cac cac c Lys His Trp Leu His His H 115	cac aat cca gca His Asn Pro Ala 120	agc tca ata gac Ser Ser Ile Asp 125	ccg gat 384 Pro Asp
ttt cac aat ggt aaa cac c Phe His Asn Gly Lys His G 130	caa agt ttc ttt 31n Ser Phe Phe L35	gct tgg tat ttt Ala Trp Tyr Phe 140	cat ttt 432 His Phe
atg aaa ggt tac tgg agt t Met Lys Gly Tyr Trp Ser 1 145	tgg ggg caa ata rrp Gly Gln Ile	att gcg ttg act Ile Ala Leu Thr 155	att att 480 Ile Ile 160
tat aac ttt gct aaa tac a Tyr Asn Phe Ala Lys Tyr 1 165	ata ctc cat atc Tle Leu His Ile 170	cca agt gat aat Pro Ser Asp Asn	cta act 528 Leu Thr 175
tac ttt tgg gtg cta ccc t Tyr Phe Trp Val Leu Pro S 180	tcg ctt tta agt Ser Leu Leu Ser 185	tca tta caa tta Ser Leu Gln Leu 190	ttc tat 576 Phe Tyr
ttt ggt act ttt tta ccc o Phe Gly Thr Phe Leu Pro H 195	cat agt gaa cca His Ser Glu Pro 200	ata ggg ggt tat Ile Gly Gly Tyr 205	gtt cag 624 Val Gln
cct cat tgt gcc caa aca a Pro His Cys Ala Gln Thr 1 210	att agc cgt cct Ile Ser Arg Pro 215	att tgg tgg tca Ile Trp Trp Ser 220	ttt atc 672 Phe Ile
acg tgc tat cat ttt ggc t Thr Cys Tyr His Phe Gly 1 225 230	tac cac gag gaa Tyr His Glu Glu	cat cac gaa tat His His Glu Tyr 235	cct cat 720 Pro His 240
att tct tgg tgg cag tta o Ile Ser Trp Trp Gln Leu F 245	cca gaa att tac Pro Glu Ile Tyr 250	aaa gca aaa tag Lys Ala Lys	762
<210> 6			
<211> 253			
<212> PRT			
<213> Nostoc punctiforme	e		
<400> 6			
Met Ile Gln Leu Glu Gln I 1 5	Pro Leu Ser His 10	Gln Ala Lys Leu	Thr Pro 15
Val Leu Arg Ser Lys Ser (20	Gln Phe Lys Gly 25	Leu Phe Ile Ala 30	Ile Val
Ile Val Ser Ala Trp Val : 35	Ile Ser Leu Ser 40	Leu Leu Ser 45	Leu Asp
Ile Ser Lys Leu Lys Phe	Trp Met Leu Leu	Pro Val Ile Leu	Trp Gln

50

a Tlo The com wie Ace Ala Mot Wi

60

Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser His Asp Ala Met His 65 70 75 80

Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn His Leu Ile Gly Thr 85 90 95

Leu Thr Leu Ser Leu Tyr Gly Leu Leu Pro Tyr Gln Lys Leu Leu Lys 100 105 110

Lys His Trp Leu His His His Asn Pro Ala Ser Ser Ile Asp Pro Asp 115 120 125

Phe His Asn Gly Lys His Gln Ser Phe Phe Ala Trp Tyr Phe His Phe 130 140

Met Lys Gly Tyr Trp Ser Trp Gly Gln Ile Ile Ala Leu Thr Ile Ile 145 150 155 160

Tyr Asn Phe Ala Lys Tyr Ile Leu His Ile Pro Ser Asp Asn Leu Thr 165 170 175

Tyr Phe Trp Val Leu Pro Ser Leu Leu Ser Ser Leu Gln Leu Phe Tyr 180 185 190

Phe Gly Thr Phe Leu Pro His Ser Glu Pro Ile Gly Gly Tyr Val Gln 195 200

Pro His Cys Ala Gln Thr Ile Ser Arg Pro Ile Trp Trp Ser Phe Ile 210 215 220

Thr Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240

Ile Ser Trp Trp Gln Leu Pro Glu Ile Tyr Lys Ala Lys 245 250

<210> 7

<211> 789

<212> DNA

<213> Künstliche Sequenz

<220>

<221> CDS

<222> (1)..(789)

<223>

<400 atg Met 1			tgt Cys	gat Asp 5	aaa Lys	cca Pro	gtt Val	agc Ser	tat Tyr 10	tat Tyr	gtt Val	gca Ala	ata Ile	gag Glu 15	caa Gln	48
tta Leu	agt Ser	gct Ala	aaa Lys 20	gaa Glu	gat Asp	act Thr	gtt Val	tgg Trp 25	999 Gly	ctg Leu	gtg Val	att Ile	gtc Val 30	ata Ile	gta Val	96
att Ile	att Ile	agt Ser 35	ctt Leu	tgg Trp	gta val	gct Ala	agt Ser 40	ttg Leu	gct Ala	ttt Phe	tta Leu	cta Leu 45	gct Ala	att Ile	aat Asn	144
tat Tyr	gcc Ala 50	aaa Lys	att Ile	cat His	aag Lys	tgg Trp 55	ttg Leu	ata Ile	cct Pro	att Ile	gca Ala 60	ata Ile	gtt Val	tgg Trp	caa Gln	192
atg Met 65	ttc Phe	ctt Leu	tat Tyr	aca Thr	ggg Gly 70	cta Leu	ttt Phe	att Ile	act Thr	gca Ala 75	cat His	gat Asp	gct Ala	atg Met	cat His 80	240
ggg Gly	tca Ser	gtt Val	tat Tyr	cgt Arg 85	aaa Lys	aat Asn	ccc Pro	aaa Lys	att Ile 90	aat Asn	aat Asn	ttt Phe	atc Ile	ggt Gly 95	tca Ser	288
cta Leu	gct Ala	gta Val	gcg Ala 100	ctt Leu	tac Tyr	gct Ala	gtg Val	ttt Phe 105	cca Pro	tat Tyr	caa Gln	cag Gln	atg Met 110	tta Leu	aag Lys	336
aat Asn	cat His	tgc Cys 115	Leu	cat His	cat His	cgt Arg	cat His 120	Pro	gct Ala	agc Ser	gaa Glu	gtt Val 125	Mah	cca Pro	gat Asp	384
ttt Phe	cat His 130	Asp	ggt Gly	aag Lys	aga Arg	aca Thr 135	ASII	gct Ala	att Ile	ttc Phe	tgg Trp 140	, ,,,,	ctc Leu	cat His	ttc Phe	432
atg Met 145	: Ile	gaa Glu	tac ı Tyr	tcc Ser	agt Ser 150	Trp	caa Gln	cag Gln	tta Leu	ata Ile 155	vai	cta Leu	act Thr	ato Ile	cta Leu 160	480
ttt Phe	aat Asr	tta Lei	a gct u Ala	aaa Lys 165	Tyr	gtt Val	ttg Leu	cac His	ato 170	: mıs	caa Glr	ata n Ile	aat Asr	Leu 175	atc Ile	528
tta Lei	a tti u Phe	t tg	g ag1 p Sei 180	ŢĨĨe	cct Pro	cca Pro	att Ile	e Lei	ı ser	tco Ser	. Tif	t caa e Glr	t ctg 1 Lei 190	, P110	t tat e Tyr	576
Pho	e Gly	7 Th 19	r Pho 5	e Lei	i Pro	HIS	200)	, Pro	Lys	э ∟у:	20	5 '9'	vu	t tat l Tyr	624
Pro	c ca b Hi: 21	s Cy	c ag s Se	c caa r Glr	a aca n Thr	ata 110 21	s ra:	a tte	g cca	a act	r Pho	E FE	g tca	a tt r Ph	t atc e Ile	672
A1. 22	a Cy 5	s Ty	r Hi	s Pno	230)	r H 1:	SGI	u Gi	23	5	3 (1)	u .y		c cat o His 240	720
gt Va	a cc 1 Pr	t tg o Tr	g tg p Tr	g caa p Gl 24	n Lei	t cc	a tc o Se	t gt r Va	a ta 1 Ty 25	L LY	g ca s Gl	g ag n Ar	a gt g Va	a tt 1 Ph 25	c aac e Asn 5	768

aat tca gta acc aat tcg taa Asn Ser Val Thr Asn Ser 260

<210> 8

<211> 262

<212> PRT

<213> Künstliche Sequenz

<400> 8

Met Asn Phe Cys Asp Lys Pro Val Ser Tyr Tyr Val Ala Ile Glu Gln 10 15

Leu Ser Ala Lys Glu Asp Thr Val Trp Gly Leu Val Ile Val 20 25 30

Ile Ile Ser Leu Trp Val Ala Ser Leu Ala Phe Leu Leu Ala Ile Asn 40 45

Tyr Ala Lys Ile His Lys Trp Leu Ile Pro Ile Ala Ile Val Trp Gln 50 60

Met Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His Asp Ala Met His 65 70 75 80

Gly Ser Val Tyr Arg Lys Asn Pro Lys Ile Asn Asn Phe Ile Gly Ser 85 90 95

Leu Ala Val Ala Leu Tyr Ala Val Phe Pro Tyr Gln Gln Met Leu Lys $100 \hspace{1cm} 105 \hspace{1cm} 110$

Asn His Cys Leu His His Arg His Pro Ala Ser Glu Val Asp Pro Asp 115 120 125

Phe His Asp Gly Lys Arg Thr Asn Ala Ile Phe Trp Tyr Leu His Phe 130 135 140

Met Ile Glu Tyr Ser Ser Trp Gln Gln Leu Ile Val Leu Thr Ile Leu 145 150 155 160

Phe Asn Leu Ala Lys Tyr Val Leu His Ile His Gln Ile Asn Leu Ile 165 170 175

Leu Phe Trp Ser Ile Pro Pro Ile Leu Ser Ser Ile Gln Leu Phe Tyr 180 185 190

Phe Gly Thr Phe Leu Pro His Arg Glu Pro Lys Lys Gly Tyr Val Tyr 195 200 205

Pro His Cys Ser Gln Thr Ile Lys Leu Pro Thr Phe Leu Ser Phe Ile

Ala Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 240

Val Pro Trp Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn 255

Asn Ser Val Thr Asn Ser

<210> 9

<211> 789

<212> DNA

<213> Künstliche Sequenz

<220>

<221> CDS

<222> (1)..(789)

<223>

<400> 9 atg aat ttt Met Asn Phe 1	tgt gat aaa Cys Asp Lys 5	cca gtt agc Pro Val Ser	tat tat gtt g Tyr Tyr Val A 10	ca ata gag caa la Ile Glu Gln 15	48
tta agt gct Leu Ser Ala	aaa gaa gat Lys Glu Asp 20	act gtt tgg Thr Val Trp 25	ggg ctg gtg at Gly Leu Val I	tt gtc ata gta le Val Ile Val 30	96
att att agt Ile Ile Ser 35	ctt tgg gta Leu Trp Val	gct agt ttg Ala Ser Leu 40	gct ttt tta co Ala Phe Leu Le 4	eu Ala Ile Asn	144
tat gcc aaa Tyr Ala Lys 50	gtc cca att Val Pro Ile	tgg ttg ata Trp Leu Ile 55	cct att gca a Pro Ile Ala I 60	ta gtt tgg caa le val Trp Gln	192
atg ttc ctt Met Phe Leu 65	tat aca ggg Tyr Thr Gly 70	cta ttt att Leu Phe Ile	act gca cat ga Thr Ala His As 75	at gct atg cat sp Ala Met His 80	240
ggg tca gtt Gly Ser Val	tat cgt aaa Tyr Arg Lys 85	aat ccc aaa Asn Pro Lys	att aat aat t Ile Asn Asn P 90	tt atc ggt tca he Ile Gly Ser 95	288
cta gct gta Leu Ala Val	gcg ctt tac Ala Leu Tyr 100	gct gtg ttt Ala Val Phe 105	cca tat caa c Pro Tyr Gln G	ag atg tta aag ln Met Leu Lys 110	336
			gct agc gat to Ala Ser Asp L		

115		120	125		
ttt cat gat ggt Phe His Asp Gly 130	aag aga aca Lys Arg Thr 135	aac gct att Asn Ala Ile	ttc tgg tat Phe Trp Tyr 140	ctc cat ttc Leu His Phe	432
atg ata gaa tad Met Ile Glu Tyr 145					480
ttt aat tta gct Phe Asn Leu Ala			His Gln Ile		528
tta ttt tgg ag1 Leu Phe Trp Sei 180	Ile Pro Pro	att tta agt Ile Leu Ser 185	tcc att caa Ser Ile Gln	ctg ttt tat Leu Phe Tyr 190	576
ttc gga aca tt1 Phe Gly Thr Phe 195					624
ccc cat tgc ago Pro His Cys Ser 210	caa aca ata Gln Thr Ile 215	aaa ttg cca Lys Leu Pro	act ttt ttg Thr Phe Leu 220	tca ttt atc Ser Phe Ile	672
gct tgc tac cac Ala Cys Tyr His 225	ttt ggt tat Phe Gly Tyr 230	cat gaa gaa His Glu Glu	cat cat gag His His Glu 235	tat ccc cat Tyr Pro His 240	720
gta cct tgg tgg Val Pro Trp Trp	caa ctt cca Gln Leu Pro 245	tct gta tat Ser Val Tyr 250	aag cag aga Lys Gln Arg	gta ttc aac Val Phe Asn 255	768
aat tca gta acc Asn Ser Val Thr 260	Asn Ser				789
<210> 10					
<211> 262					
<212> PRT					
<213> Künstlid	the Sequenz				
<400> 10					
Met Asn Phe Cys 1	Asp Lys Pro 5	Val Ser Tyr 10	Tyr Val Ala	Ile Glu Gln 15	
Leu Ser Ala Lys 20	Glu Asp Thr	Val Trp Gly 25	Leu Val Ile	Val Ile Val 30	
Ile Ile Ser Leu 35	ı Trp Val Ala	Ser Leu Ala 40	Phe Leu Leu 45	Ala Ile Asn	
Tyr Ala Lys Val	Pro Ile Trp 55	Leu Ile Pro	Ile Ala Ile 60	Val Trp Gln	
Met Phe Leu Tyr	Thr Gly Leu	Phe Ile Thr	Ala His Asp	Ala Met His	

80

65 70 . 75

Gly Ser Val Tyr Arg Lys Asn Pro Lys Ile Asn Asn Phe Ile Gly Ser 85 90 95

Leu Ala Val Ala Leu Tyr Ala Val Phe Pro Tyr Gln Gln Met Leu Lys 100 105 110

Asn His Cys Leu His His Arg His Pro Ala Ser Asp Leu Asp Pro Asp 125

Phe His Asp Gly Lys Arg Thr Asn Ala Ile Phe Trp Tyr Leu His Phe 130 135 140

Met Ile Glu Tyr Ser Ser Trp Gln Gln Leu Ile Val Leu Thr Ile Leu 145 150 155 160

Phe Asn Leu Ala Lys Tyr Val Leu His Ile His Gln Ile Asn Leu Ile 165 170 175

Leu Phe Trp Ser Ile Pro Pro Ile Leu Ser Ser Ile Gln Leu Phe Tyr 180 185 190

Phe Gly Thr Phe Leu Pro His Arg Glu Pro Lys Lys Gly Tyr Val Tyr 195 200 205

Pro His Cys Ser Gln Thr Ile Lys Leu Pro Thr Phe Leu Ser Phe Ile 210 215 220

Ala Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 235 240

Val Pro Trp Gln Leu Pro Ser Val Tyr Lys Gln Arg Val Phe Asn 245 250 255

Asn Ser Val Thr Asn Ser 260

<210> 11

<211> 762

<212> DNA

<213> Künstliche Sequenz

<220>

<221> CDS

<222> (1)..(762)

<223>

	0> :							_								40
				gaa Glu 5												48
gta Val	ctg Leu	aga Arg	agt Ser 20	aaa Lys	tct Ser	cag Gln	ttt Phe	aag Lys 25	ggg Gly	ctt Leu	ttc Phe	att Ile	gct Ala 30	att Ile	gtc val	96
att Ile	gtt Val	agc Ser 35	gca Ala	tgg Trp	gtc Val	att Ile	agc Ser 40	ctg Leu	agt Ser	tta Leu	tta Leu	ctt Leu 45	tcc Ser	ctt Leu	gac Asp	144
				cat His												192
				acg Thr												240
				ccc Pro 85												288
ttg Leu	acc Thr	cta Leu	tcc Ser 100	ctt Leu	tat Tyr	ggt Gly	ctt Leu	tta Leu 105	cca Pro	tat Tyr	caa Gln	aaa Lys	cta Leu 110	ttg Leu	aaa Lys	336
aaa Lys	cat His	tgg Trp 115	tta Leu	cac His	cac His	cac His	aat Asn 120	cca Pro	gca Ala	agc Ser	tca Ser	ata Ile 125	gac Asp	ccg Pro	gat Asp	384
ttt Phe	cac His 130	aat Asn	ggt Gly	aaa Lys	cac His	caa Gln 135	agt Ser	ttc Phe	ttt Phe	gct Ala	tgg Trp 140	tat Tyr	ttt Phe	cat His	ttt Phe	432
atg Met 145	aaa Lys	ggt Gly	tac Tyr	tgg Trp	agt Ser 150	tgg Trp	ggg Gly	caa Gln	ata Ile	att Ile 155	gcg Ala	ttg Leu	act Thr	att Ile	att Ile 160	480
tat Tyr	aac Asn	ttt Phe	gct Ala	aaa Lys 165	tac Tyr	ata Ile	ctc Leu	cat His	atc Ile 170	cca Pro	agt Ser	gat Asp	aat Asn	cta Leu 175	act Thr	528
tac Tyr	ttt Phe	tgg Trp	gtg Val 180	cta Leu	Pro	ser	Leu	Leu	agt Ser	Ser	Leu	Gln	tta Leu 190	ttc Phe	tat Tyr	576
ttt Phe	ggt Gly	act Thr 195	ttt Phe	tta Leu	ccc Pro	cat His	agt Ser 200	gaa Glu	cca Pro	ata Ile	ggg Gly	ggt Gly 205	tat Tyr	gtt Val	cag Gln	624
cct Pro	cat His 210	tgt Cys	gcc Ala	caa Gln	aca Thr	att Ile 215	agc Ser	cgt Arg	cct Pro	att Ile	tgg Trp 220	tgg Trp	tca Ser	ttt Phe	atc Ile	672
acg Thr 225	tgc Cys	tat Tyr	cat His	ttt Phe	ggc Gly 230	tac Tyr	cac His	gag Glu	gaa Glu	cat His 235	cac His	gaa Glu	tat Tyr	cct Pro	cat His 240	720
att Ile	tct Ser	tgg Trp	tgg Trp	cag Gln 245	tta Leu	cca Pro	gaa Glu	att Ile	tac Tyr 250	aaa Lys	gca Ala	aaa Lys	tag			762

<210> 12

<211> 253

<212> PRT

<213> Künstliche Sequenz

<400> 12

Met Ile Gln Leu Glu Gln Pro Leu Ser His Gln Ala Lys Leu Thr Pro 1 10 15

Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu Phe Ile Ala Ile Val 20 25 30

Ile Val Ser Ala Trp Val Ile Ser Leu Ser Leu Leu Ser Leu Asp 35 40 45

Ile Ser Lys Ile His Lys Trp Met Leu Leu Pro Val Ile Leu Trp Gln 50 60

Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser His Asp Ala Met His 65 70 75 80

Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn His Leu Ile Gly Thr 85 90 95

Leu Thr Leu Ser Leu Tyr Gly Leu Leu Pro Tyr Gln Lys Leu Leu Lys 100 105 110

Lys His Trp Leu His His Asn Pro Ala Ser Ser Ile Asp Pro Asp 115 120 125

Phe His Asn Gly Lys His Gln Ser Phe Phe Ala Trp Tyr Phe His Phe 130 135 140

Met Lys Gly Tyr Trp Ser Trp Gly Gln Ile Ile Ala Leu Thr Ile Ile 145 150 155 160

Tyr Asn Phe Ala Lys Tyr Ile Leu His Ile Pro Ser Asp Asn Leu Thr 165 170 175

Tyr Phe Trp Val Leu Pro Ser Leu Leu Ser Ser Leu Gln Leu Phe Tyr 180 185 190

Phe Gly Thr Phe Leu Pro His Ser Glu Pro Ile Gly Gly Tyr Val Gln 195 200 205

Pro His Cys Ala Gln Thr Ile Ser Arg Pro Ile Trp Trp Ser Phe Ile 210 215 220

Thr Cys Tyr His Phe Gly Tyr His Glu Glu His His Glu Tyr Pro His 225 230 235 240 Ile Ser Trp Trp Gln Leu Pro Glu Ile Tyr Lys Ala Lys 245 250 <210> 13 <211> 762 <212> DNA <213> Künstliche Sequenz <220> <221> CDS <222> (1)..(762)<223> <400> 13 atg atc cag tta gaa caa cca ctc agt cat caa gca aaa ctg act cca Met Ile Gln Leu Glu Gln Pro Leu Ser His Gln Ala Lys Leu Thr Pro 1 5 10 15 48 gta ctg aga agt aaa tct cag ttt aag ggg ctt ttc att gct att gtc Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu Phe Ile Ala Ile Val 20 25 30 96 att gtt agc gca tgg gtc att agc ctg agt tta tta ctt tcc ctt gac Ile Val Ser Ala Trp Val Ile Ser Leu Ser Leu Leu Ser Leu Asp 35 40 45 144 atc tca aag cta aaa ttt tgg atg tta ttg cct gtt ata cta tgg caa Ile Ser Lys Leu Lys Phe Trp Met Leu Leu Pro Val Ile Leu Trp Gln 50 55 60 192 aca ttt tta tat acg gga tta ttt att aca tct cat gat gcc atg cat Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser His Asp Ala Met His 65 70 75 80 240 ggc gta gta ttt ccc caa aac acc aag att aat cat ttg att gga aca Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn His Leu Ile Gly Thr 85 90 95288 ttg acc cta tcc ctt tat ggt ctt tta cca tat caa aaa cta ttg aaa Leu Thr Leu Ser Leu Tyr Gly Leu Leu Pro Tyr Gln Lys Leu Leu Lys 100 105 110 336 aaa cat tgg tta cac cac cac aat cca gca agc gat tta gac ccg gat Lys His Trp Leu His His His Asn Pro Ala Ser Asp Leu Asp Pro Asp 115 120 125 384 ttt cac aat ggt aaa cac caa agt ttc ttt gct tgg tat ttt cat ttt 432 Phe His Asn Gly Lys His Gln Ser Phe Phe Ala Trp Tyr Phe His Phe 480 atg aaa ggt tac tgg agt tgg ggg caa ata att gcg ttg act att att Met Lys Gly Tyr Trp Ser Trp Gly Gln Ile Ile Ala Leu Thr Ile Ile

145		150	1	L55	160
tat aac Tyr Asn	ttt gct aaa Phe Ala Lys 165	Tyr Ile Leu	cat atc c His Ile P 170	cca agt gat aat Pro Ser Asp Asn	cta act 528 Leu Thr 175
tac ttt Tyr Phe	tgg gtg cta Trp Val Leu 180	ccc tcg ctt Pro Ser Leu	tta agt t Leu Ser S 185	tca tta caa tta Ser Leu Gln Leu 190	ttc tat 576 Phe Tyr
ttt ggt Phe Gly	act ttt tta Thr Phe Leu 195	ccc cat agt Pro His Ser 200	gaa cca a Glu Pro I	ata ggg ggt tat Ile Gly Gly Tyr 205	gtt cag 624 Val Gln
cct cat Pro His 210	tgt gcc caa Cys Ala Gln	aca att agc Thr Ile Ser 215	cgt cct a Arg Pro I	att tgg tgg tca lle Trp Trp Ser 220	ttt atc 672 Phe Ile
acg tgc Thr Cys 225	tat cat ttt Tyr His Phe	ggc tac cac Gly Tyr His 230	Glu Glu H	cat cac gaa tat His His Glu Tyr 235	cct cat 720 Pro His 240
att tct Ile Ser	tgg tgg cag Trp Trp Gln 245	Leu Pro Glu	att tac a Ile Tyr L 250	aaa gca aaa tag _ys Ala Lys	762

<210> 14

<211> 253

<212> PRT

<213> Künstliche Sequenz

<400> 14

Met Ile Gln Leu Glu Gln Pro Leu Ser His Gln Ala Lys Leu Thr Pro 1 10 15

Val Leu Arg Ser Lys Ser Gln Phe Lys Gly Leu Phe Ile Ala Ile Val 20 25 30

Ile Val Ser Ala Trp Val Ile Ser Leu Ser Leu Leu Leu Ser Leu Asp 35 40 45

Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ser His Asp Ala Met His 65 70 75 80

Gly Val Val Phe Pro Gln Asn Thr Lys Ile Asn His Leu Ile Gly Thr 85 90 95

Leu Thr Leu Ser Leu Tyr Gly Leu Leu Pro Tyr Gln Lys Leu Leu Lys 100 105 110

Lys His Trp Leu His His Asn Pro Ala Ser Asp Leu Asp Pro Asp

	115					120					125				
Phe Hi 13		Gly	Lys	His	Gln 135	Ser	Phe	Phe	Ala	Trp 140	Туг	Phe	His	Phe	
Met Ly 145	s Gly	Туг	Trp	Ser 150	Trp	Gly	Gln	Ile	Ile 155	Ala	Leu	Thr	Ile	11e 160	
Tyr As	n Phe	Ala	Lys 165	Туг	Ile	Leu	His	Ile 170	Pro	Ser	Asp	Asn	Leu 175	Thr	
Tyr Ph	e Trp	val 180	Leu	Pro	Ser	Leu	Leu 185	Ser	Ser	Leu	Gln	Leu 190	Phe	Tyr	
Phe G1	y Thr 195		Leu	Pro	His	Ser 200	Glu	Pro	Ile	Gly	G]y 205	Tyr	va1	Gln	
Pro Hi 21		Ala	Gln	Thr	Ile 215	Ser	Arg	Pro	Ile	Trp 220	Trp	Ser	Phe	Ile	
Thr Cy 225	s Tyr	His	Phe	Gly 230	Туг	His	Glu	Glu	Нis 235	His	Glu	Tyr	Pro	His 240	<i>.</i>
Ile Se	r Trp	Trp	G]n 245	Leu	Pro	Glu	Ile	Tyr 250	Lys	Ala	Lys				
<210>	15														
<211>	1608														
<212>	DNA														
<213>	Haem	atoc	occu	s pl	uvia	lis									
<220>															
<221>	CDS														
<222>	(3).	. (97	1)												
<223>															
<400> ct aca Thr 1		cac : His	aag Lys	ccc (Pro 1	gtg : val :	agc (Ser (ggt (Gly /	47a :	agc (Ser /	gct (Ala (ctg (Leu l	ccc (Pro I	His :	atc Ile 15	47
ggc cc Gly Pr	a cct o Pro	cct Pro	cat His 20	ctc Leu	cat His	cgg Arg	tca Ser	ttt Phe 25	gct Ala	gct Ala	acc Thr	acg Thr	atg Met 30	ctg Leu	95
tcg aa Ser Ly	g ctg s Leu	cag Gln 35	tca Ser	atc Ile	agc Ser	gtc Val	aag Lys 40	gcc Ala	cgc Arg	cgc Arg	gtt Val	gaa Glu 45	cta Leu	gcc Ala	143

cgc Arg	gac Asp	atc Ile 50	acg Thr	cgg Arg	ccc Pro	aaa Lys	gtc Val 55	tgc Cys	ctg Leu	cat His	gct Ala	cag Gln 60	cgg Arg	tgc Cys	tcg Ser	•	191
tta Leu	gtt val 65	cgg Arg	ctg Leu	cga Arg	gtg vai	gca Ala 70	gca Ala	cca Pro	cag Gln	aca Thr	gag Glu 75	gag Glu	gcg Ala	ctg Leu	gga Gly		239
acc Thr 80	gtg val	cag Gln	gct Ala	gcc Ala	ggc Gly 85	gcg Ala	ggc Gly	gat Asp	gag Glu	cac His 90	agc ser	gcc Ala	gat Asp	gta Val	gca Ala 95		287
ctc Leu	cag Gln	cag Gln	ctt Leu	gac Asp 100	cgg Arg	gct Ala	atc Ile	gca Ala	gag Glu 105	cgt Arg	cgt Arg	gcc Ala	cgg Arg	cgc Arg 110	aaa Lys		335
cgg Arg	gag Glu	cag Gln	ctg Leu 115	tca Ser	tac Tyr	cag Gln	gct Ala	gcc Ala 120	gcc Ala	att Ile	gca Ala	gca Ala	tca Ser 125	att Ile	ggc Gly		383
gtg Val	tca Ser	ggc Gly 130	att Ile	gcc Ala	atc Ile	ttc Phe	gcc Ala 135	acc Thr	tac Tyr	ctg Leu	aga Arg	ttt Phe 140	gcc Ala	atg Met	cac His		431
atg Met	acc Thr 145	gtg Val	ggc Gly	ggc Gly	gca Ala	gtg val 150	cca Pro	tgg Trp	ggt Gly	gaa Glu	gtg Val 155	gct Ala	ggc Gly	act Thr	ctc Leu		479
ctc Leu 160	ttg Leu	gtg val	gtt val	ggt Gly	ggc Gly 165	gcg Ala	ctc Leu	ggc Gly	atg Met	gag Glu 170	atg Met	tat Tyr	gcc Ala	cgc Arg	tat Tyr 175		527
	cac His																575
	agc Ser																623
ttt Phe	gca Ala	atc Ile 210	atc Ile	aat Asn	gga Gly	ctg Leu	ccc Pro 215	gcc Ala	atg Met	ctc Leu	ctg Leu	tgt Cys 220	acc Thr	ttt Phe	ggc Gly		671
ttc Phe	tgg Trp 225	ctg Leu	ccc Pro	aac Asn	gtc val	ctg Leu 230	ggg Gly	gcg Ala	gcc Ala	tgc Cys	ttt Phe 235	gga Gly	gcg Ala	ggg Gly	ctg Leu		719
	atc Ile																767
	cac His																815
	cgc Arg																863
ggc Gly	gcg Ala	ccc Pro 290	tgg Trp	ggt Gly	atg Met	ttc Phe	ttg Leu 295	ggt Gly	cca Pro	cag Gln	gag Glu	ctg Leu 300	cag Gln	cac His	att Ile		911
cca Pro	ggt Gly 305	gcg Ala	gcg Ala	gag Glu	gag Glu	gtg val 310	gag Glu	cga Arg	ctg Leu	gtc val	ctg Leu 315	gaa Glu	ctg L eu	gac Asp	tgg Trp	•	959

1011

DE 102 53 112 A1 2004.06.03
tcc aag cgg tag ggtgcggaac caggcacgct ggtttcacac ctcatgcctg Ser Lys Arg 320
tgataaggtg tggctagagc gatgcgtgtg agacgggtat gtcacggtcg actggtctga
tggccaatgg catcggccat gtctggtcat cacgggctgg ttgcctgggt gaaggtgatg
cacatcatca tgtgcggttg gaggggctgg cacagtgtgg gctgaactgg agcagttgtc
caggctggcg ttgaatcagt gagggtttgt gattggcggt tgtgaagcaa tgactccgcc
catattctat ttgtgggagc tgagatgatg gcatgcttgg gatgtgcatg gatcatggta
gtgcagcaaa ctatattcac ctagggctgt tggtaggatc aggtgaggcc ttgcacattg
catgatgtac tcgtcatggt gtgttggtga gaggatggat gtggatggat gtgtattctc
agacgtagac cttgactgga ggcttgatcg agagagtggg ccgtattctt tgagagggga
ggctcgtgcc agaaatggtg agtggatgac tgtgacgctg tacattgcag gcaggtgaga
tgcactgtct cgattgtaaa atacattcag atgcaaaaaa aaaaaaaaa aaaaaaa
<210> 16
<211> 322
<212> PRT
<213> Haematococcus pluvialis
<400> 16
Thr Phe His Lys Pro Val Ser Gly Ala Ser Ala Leu Pro His Ile Gly 1 10 15
Pro Pro Pro His Leu His Arg Ser Phe Ala Ala Thr Thr Met Leu Ser 20 25 30
Lys Leu Gln Ser Ile Ser Val Lys Ala Arg Arg Val Glu Leu Ala Arg 35 40 45
Asp Ile Thr Arg Pro Lys Val Cys Leu His Ala Gln Arg Cys Ser Leu 50 60
Val Arg Leu Arg Val Ala Ala Pro Gln Thr Glu Glu Ala Leu Gly Thr 65 70 75 80

Val Gln Ala Ala Gly Ala Gly Asp Glu His Ser Ala Asp Val Ala Leu 85 90 95

Gln Gln Leu Asp Arg Ala Ile Ala Glu Arg Arg Ala Arg Arg Lys Arg 100 105 110

Glu Gln Leu Ser Tyr Gln Ala Ala Ala Ile Ala Ala Ser Ile Gly Val 115 120 125

Ser Gly Ile Ala Ile Phe Ala Thr Tyr Leu Arg Phe Ala Met His Met 130 140 Thr Val Gly Gly Ala Val Pro Trp Gly Glu Val Ala Gly Thr Leu Leu 145 150 155 160 Leu Val Val Gly Gly Ala Leu Gly Met Glu Met Tyr Ala Arg Tyr Ala 165 170 175 His Lys Ala Ile Trp His Glu Ser Pro Leu Gly Trp Leu Leu His Lys 180 185 190 Ser His His Thr Pro Arg Thr Gly Pro Phe Glu Ala Asn Asp Leu Phe 195 200 205 Ala Ile Ile Asn Gly Leu Pro Ala Met Leu Leu Cys Thr Phe Gly Phe 210 220 Trp Leu Pro Asn Val Leu Gly Ala Ala Cys Phe Gly Ala Gly Leu Gly 225 230 240 Ile Thr Leu Tyr Gly Met Ala Tyr Met Phe Val His Asp Gly Leu Val 245 250 255 His Arg Arg Phe Pro Thr Gly Pro Ile Ala Gly Leu Pro Tyr Met Lys 260 270

Arg Leu Thr Val Ala His Gln Leu His His Ser Gly Lys Tyr Gly Gly 280 285

Ala Pro Trp Gly Met Phe Leu Gly Pro Gln Glu Leu Gln His Ile Pro 290 295 300

Gly Ala Ala Glu Glu Val Glu Arg Leu Val Leu Glu Leu Asp Trp Ser 305 310 315

Lys Arg

<210> 17

<211> 1650

<212> DNA

<213> Lycopersicon esculentum

<220>

<221> CDS

<222> (112)..(1614)

ggca		ı/ gga a	acti	ttc	tc to	ttca	actag	cto	jttta	acat	gct1	tgaaa	att 1	tcaag	gatttt	60
agga	accc	cat 1	tgaa	agtti	tt c1	tgaa	aacaa	a ata	ittad	cct	gtt	gaaa	aa g	• :	g gat t Asp	117
					cca Pro											165
ggt Gly	ttt Phe 20	gct Ala	gtt Val	aaa Lys	gct Ala	agt Ser 25	acc Thr	ttt Phe	aga Arg	tct Ser	gag Glu 30	aag Lys	cat His	cat His	aat Asn	213
					ttt Phe 40											261
aag Lys	ggt Gly	agt Ser	agt Ser	agt Ser 55	gct Ala	ctt Leu	tta Leu	gag Glu	ctt Leu 60	gta Val	cct Pro	gag Glu	acc Thr	aaa Lys 65	aag Lys	309
gag Glu	aat Asn	ctt Leu	gat Asp 70	ttt Phe	gag Glu	ctt Leu	cct Pro	atg Met 75	tat Tyr	gac Asp	cct Pro	tca Ser	aaa Lys 80	999 Gly	gtt Val	357
gtt Val	gtg Val	gat Asp 85	ctt Leu	gct Ala	gtg Val	gtt Val	ggt Gly 90	ggt Gly	ggc Gly	cct Pro	gca Ala	gga Gly 95	ctt Leu	gct Ala	gtt Val	405
gca Ala	cag Gln 100	caa Gln	gtt Val	tct Ser	gaa Glu	gca Ala 105	gga Gly	ctc Leu	tct Ser	gtt Val	tgt Cys 110	tca Ser	att Ile	gat Asp	ccg Pro	453
aat Asn 115	cct Pro	aaa Lys	ttg Leu	ata Ile	tgg Trp 120	cct Pro	aat Asn	aac Asn	tat Tyr	ggt Gly 125	gtt Val	tgg Trp	gtg Val	gat Asp	gaa Glu 130	501
ttt Phe	gag Glu	gct Ala	atg Met	gac Asp 135	ttg Leu	tta Leu	gat Asp	tgt Cys	cta Leu 140	gat Asp	gct Ala	acc Thr	tgg Trp	tct Ser 145	ggt Gly	549
gca Ala	gca Ala	gtg Val	tac Tyr 150	att Ile	gat Asp	gat Asp	aat Asn	acg Thr 155	gct Ala	aaa Lys	gat Asp	ctt Leu	cat His 160	aga Arg	cct Pro	597
					cgg Arg											645
tgt Cys	ata Ile 180	atg Met	aat Asn	ggt Gly	gtt val	aaa Lys 185	ttc Phe	cac His	caa Gìn	gcc Ala	aaa Lys 190	gtt Val	ata Ile	aag Lys	gtg Val	693
att Ile 195	cat His	gag Glu	gaa Glu	tcg Ser	aaa Lys 200	tcc Ser	atg Met	ttg Leu	ata Ile	tgc Cys 205	aat Asn	gat Asp	ggt Gly	att Ile	act Thr 210	741
att Ile	cag Gln	gca Ala	acg Thr	gtg Val 215	gtg Val	ctc Leu	gat Asp	gca Ala	act Thr 220	ggc Gly	ttc Phe	tct Ser	aga Arg	tct Ser 225	Ctt Leu	789

gtt Val	cag Gln	tat Tyr	gat Asp 230	aag Lys	cct Pro	tat Tyr	aac Asn	ccc Pro 235	ggg Gly	tat Tyr	caa Gln	gtt Val	gct Ala 240	tat Tyr	ggc Gly	837
att Ile	ttg Leu	gct Ala 245	gaa Glu	gtg val	gaa Glu	gag Glu	cac His 250	ccc Pro	ttt Phe	gat Asp	gta Val	aac Asn 255	aag Lys	atg Met	gtt Val	885
ttc Phe	atg Met 260	gat Asp	tgg Trp	cga Arg	gat Asp	tct Ser 265	cat His	ttg Leu	aag Lys	aac Asn	aat Asn 270	act Thr	gat Asp	ctc Leu	aag Lys	933
gag Glu 275	aga Arg	aat Asn	agt Ser	aga Arg	ata Ile 280	cca Pro	act Thr	ttt Phe	ctt Leu	tat Tyr 285	gca Ala	atg Met	cca Pro	ttt Phe	tca Ser 290	981
tcc Ser	aac Asn	agg Arg	ata Ile	ttt Phe 295	ctt Leu	gaa Glu	gaa Glu	aca Thr	tca Ser 300	ctc Leu	gta val	gct Ala	cgt Arg	cct Pro 305	ggc Gly	1029
ttg Leu	cgt Arg	ata Ile	gat Asp 310	gat Asp	att Ile	caa Gln	gaa Glu	cga Arg 315	atg Met	gtg Val	gct Ala	cgt Arg	tta Leu 320	aac Asn	cat His	1077
ttg Leu	ggg Gly	ata Ile 325	aaa Lys	gtg val	aag Lys	agc Ser	att Ile 330	gaa Glu	gaa Glu	gat Asp	gaa Glu	cat His 335	tgt Cys	cta Leu	ata Ile	1125
cca Pro	atg Met 340	ggt Gly	ggt Gly	cca Pro	ctt Leu	cca Pro 345	gta Val	tta Leu	cct Pro	cag Gln	aga Arg 350	gtc val	gtt val	gga Gly	atc Ile	1173
ggt Gly 355	ggt Gly	aca Thr	gct Ala	ggc Gly	atg Met 360	gtt Val	cat His	cca Pro	tcc Ser	acc Thr 365	ggt Gly	tat Tyr	atg Met	gtg val	gca Ala 370	1221
agg Arg	aca Thr	cta Leu	gct Ala	gcg Ala 375	gct Ala	cct Pro	gtt Val	gtt Val	gcc Ala 380	aat Asn	gcc Ala	ata Ile	att Ile	caa Gln 385	tac Tyr	1269
ctc Leu	ggt Gly	tct Ser	gaa Glu 390	aga Arg	agt Ser	cat His	tcg Ser	ggt Gly 395	aat Asn	gaa Glu	tta Leu	tcc Ser	aca Thr 400	gct Ala	gtt Val	1317
tgg Trp	aaa Lys	gat Asp 405	ttg Leu	tgg Trp	cct Pro	ata Ile	gag Glu 410	agg Arg	aga Arg	cgt Arg	caa Gln	aga Arg 415	gag Glu	ttc Phe	ttc Phe	1365
tgc Cys	ttc Phe 420	ggt Gly	atg Met	gat Asp	att Ile	ctt Leu 425	ctg Leu	aag Lys	ctt Leu	gat Asp	tta Leu 430	cct Pro	gct Ala	aca Thr	aga Arg	1413
agg Arg 435	ttc Phe	ttt Phe	gat Asp	gca Ala	ttc Phe 440	ttt Phe	gac Asp	tta Leu	gaa Glu	cct Pro 445	cgt Arg	tat Tyr	tgg Trp	cat His	ggc Gly 450	1461
ttc Phe	tta Leu	tcg Ser	tct Ser	cga Arg 455	ttg Leu	ttt Phe	cta Leu	cct Pro	gaa Glu 460	ctc Leu	ata Ile	gtt Val	ttt Phe	ggg GTy 465	ctg Leu	1509
tct Ser	cta Leu	ttc Phe	tct Ser 470	His	gct Ala	tca Ser	aat Asn	act Thr 475	tct Ser	aga Arg	ttt Phe	gag Glu	ata Ile 480	atg Met	aca Thr	1557
aag Lys	gga Gly	act Thr 485	٧a٦	cca Pro	tta Leu	gta Val	aat Asn 490	Met	atc Ile	aac Asn	aat Asn	ttg Leu 495	tta Leu	cag Gln	gat Asp	1605

1650

aaa gaa tga atccgagtaa ttcggaatct tgtccaatct cgtgcc Lys Glu 500

<210> 18

<211> 500

<212> PRT

<213> Lycopersicon esculentum

<400> 18

Met Asp Thr Leu Leu Lys Thr Pro Asn Asn Leu Glu Phe Leu Asn Pro 10 15

His His Gly Phe Ala Val Lys Ala Ser Thr Phe Arg Ser Glu Lys His
20 25 30

His Asn Phe Gly Ser Arg Lys Phe Cys Glu Thr Leu Gly Arg Ser Val 35 40 45

Cys Val Lys Gly Ser Ser Ser Ala Leu Leu Glu Leu Val Pro Glu Thr 50 60

Lys Lys Glu Asn Leu Asp Phe Glu Leu Pro Met Tyr Asp Pro Ser Lys 70 75 80

Gly Val Val Asp Leu Ala Val Val Gly Gly Pro Ala Gly Leu 85 90 95

Ala Val Ala Gln Gln Val Ser Glu Ala Gly Leu Ser Val Cys Ser Ile 100 105 110

Asp Pro Asn Pro Lys Leu Ile Trp Pro Asn Asn Tyr Gly Val Trp Val 115 120 125

Asp Glu Phe Glu Ala Met Asp Leu Leu Asp Cys Leu Asp Ala Thr Trp 130 135 140

Ser Gly Ala Ala Val Tyr Ile Asp Asp Asn Thr Ala Lys Asp Leu His 145 150 155 160

Arg Pro Tyr Gly Arg Val Asn Arg Lys Gln Leu Lys Ser Lys Met Met 165 170 175

Gln Lys Cys Ile Met Asn Gly Val Lys Phe His Gln Ala Lys Val Ile 180 185 190

Lys Val Ile His Glu Glu Ser Lys Ser Met Leu Ile Cys Asn Asp Gly 195 200 205

lle Thr Ile Gln Ala Thr Val Val Leu Asp Ala Thr Gly Phe Ser Arg 210 215 220 Ser Leu Val Gln Tyr Asp Lys Pro Tyr Asn Pro Gly Tyr Gln Val Ala 225 230 235 240 Tyr Gly Ile Leu Ala Glu Val Glu Glu His Pro Phe Asp Val Asn Lys 245 250 255 Met Val Phe Met Asp Trp Arg Asp Ser His Leu Lys Asn Asn Thr Asp 260 265 270 Leu Lys Glu Arg Asn Ser Arg Ile Pro Thr Phe Leu Tyr Ala Met Pro 275 280 285 Phe Ser Ser Asn Arg Ile Phe Leu Glu Glu Thr Ser Leu Val Ala Arg 290 295 300 Pro Gly Leu Arg Ile Asp Asp Ile Gln Glu Arg Met Val Ala Arg Leu 305 310 315 Asn His Leu Gly Ile Lys Val Lys Ser Ile Glu Glu Asp Glu His Cys 325 330 335 Leu Ile Pro Met Gly Gly Pro Leu Pro Val Leu Pro Gln Arg Val Val 340 350 Gly Ile Gly Gly Thr Ala Gly Met Val His Pro Ser Thr Gly Tyr Met 355 360 365 Val Ala Arg Thr Leu Ala Ala Ala Pro Val Val Ala Asn Ala Ile Ile 370 375 380 Gln Tyr Leu Gly Ser Glu Arg Ser His Ser Gly Asn Glu Leu Ser Thr 385 390 395 400 Ala Val Trp Lys Asp Leu Trp Pro Ile Glu Arg Arg Gln Arg Glu 405 410 415 Phe Phe Cys Phe Gly Met Asp Ile Leu Leu Lys Leu Asp Leu Pro Ala 420 430 Thr Arg Arg Phe Phe Asp Ala Phe Phe Asp Leu Glu Pro Arg Tyr Trp
435 440 445 His Gly Phe Leu Ser Ser Arg Leu Phe Leu Pro Glu Leu Ile Val Phe 450 455 460 Gly Leu Ser Leu Phe Ser His Ala Ser Asn Thr Ser Arg Phe Glu Ile 465 470 475 480

```
Met Thr Lys Gly Thr Val Pro Leu Val Asn Met Ile Asn Asn Leu Leu 485 490 495
Gln Asp Lys Glu
500
<210>
       19
<211> 33
<212> DNA
<213> Künstliche Sequenz
<220>
<221> primer_bind
<222>
      (1)..(33)
<223>
<400> 19
gcatgctcta gaccttataa agatattttg tga
                                                                        33
<210> 20
<211>
       33
<212> DNA
<213> Künstliche Sequenz
<220>
<221> primer_bind
<222>
      (1)..(33)
<223>
<400> 20
gcatgcatct agaaatggtt cagtgtcaac cat
                                                                        33
<210> 21
<211> 805
<212> DNA
<213> Nostoc sp. Strain PCC7120
<220>
```

<221> variation

<212> DNA

<222>	(T).	. (805)					
<223>							
<400> gcatgca	21 atct a	agaaatggtt	cagtgtcaac	catcatctct	gcattcagaa	aaactggtgt	60
tattgt	catc	gacaatcaga	gatgataaaa	atattaataa	gggtatattt	attgcctgct	120
ttatct	tatt 1	tttatgggca	attagtttaa	tcttattact	ctcaatagat	acatccataa	180
ttcataa	agag (cttattaggt	atagccatgc	tttggcagac	cttcttatat	acaggtttat	240
ttatta	ctgc 1	tcatgatgcc	atgcacggcg	tagtttatcc	caaaaatccc	agaataaata	300
atttta	tagg 1	taagctcact	ctaatcttgt	atggactact	cccttataaa	gatttattga	360
aaaaaca	attg	gttacaccac	ggacatcctg	gtactgattt	agaccctgat	tattacaatg	420
gtcatco	ccca a	aaacttcttt	ctttggtatc	tacattttat	gaagtcttat	tggcgatgga	480
cgcaaat	tttt (cggattagtg	atgattttc	atggacttaa	aaatctggtg	catataccag	540
aaaataa	attt a	aattatattt	tggatgatac	cttctatttt	aagttcagta	caactatttt	600
attttg	gtac a	atttttgcct	cataaaaagc	tagaaggtgg	ttatactaac	ccccattgtg	660
cgcgca	gtat	cccattacct	cttttttggt	cttttgttac	ttgttatcac	ttcggctacc	720
acaagga	aaca '	tcacgaatac	cctcaacttc	cttggtggaa	attacctgaa	gctcacaaaa	780
tatctt	tata a	aggtctagag	catgc				805
<210>	22						
<211>	24						
<212>	DNA						
<213>	Küns	tliche Sequ	uenz			•	
<220>							
<221>	prim	er_bind				•	
<222>	(1).	. (24)					
<223>							
<400> aggtac		cggtctgcca	atcc				24
<210>	23						
<211>	26						

26

<213> Künstliche Sequenz <220> <221> primer_bind <222> (1)..(26) <223> <400> 23 aagcttgacc tgattatcag cacggt <210> 24 <211> 4624 <212> DNA <213> Erwinia uredovora <220> <221> CDS <222> (128)..(1267) <223> <220> <221> CDS <222> (1288)..(2766) <223> <220> <221> CDS <222> (2802)..(3689) <223> <220> <221> iDNA <222> (3631)..(4158)

<223>

<400 gtc		24 ttc a	agca	gcgca	at g	gcga	aaat	c ca	gaca	gccc	ttc	gttt	ggc	aggg	ggcacc	60
atg	gccg	ctg (ccga	tatc	at t	gagc	aggti	t at	gtgc	accg	gtc	agcc	tgt	ctta	agtggg	120
agc	ggct				cat His											169
gcg Ala 15	aat Asn	ggc Gly	ctt Leu	atc Ile	gcc Ala 20	ctg Leu	cgt Arg	ctt Leu	cag Gln	cag Gln 25	cag Gln	caa Gln	cct Pro	gat Asp	atg Met 30	217
cgt Arg	att Ile	ttg Leu	ctt Leu	atc Ile 35	gac Asp	gcc Ala	gca Ala	ccc Pro	cag Gln 40	gcg Ala	ggc Gly	ggg Gly	aat Asn	cat His 45	acg Thr	265
tgg Trp	tca Ser	ttt Phe	cac His 50	cac His	gat Asp	gat Asp	ttg Leu	act Thr 55	gag Glu	agc Ser	caa Gln	cat His	cgt Arg 60	tgg Trp	ata Ile	313
gct Ala	ccg Pro	ctg Leu 65	gtg val	gtt Val	cat His	cac His	tgg Trp 70	ccc Pro	gac Asp	tat Tyr	cag Gln	gta Val 75	cgc Arg	ttt Phe	CCC Pro	361
aca Thr	cgc Arg 80	cgt Arg	cgt Arg	aag Lys	ctg Leu	aac Asn 85	agc Ser	ggc Gly	tac Tyr	ttt Phe	tgt Cys 90	att Ile	act Thr	tct Ser	cag Gln	409
cgt Arg 95	ttc Phe	gct Ala	gag Glu	gtt Val	tta Leu 100	cag Gln	cga Arg	cag Gln	ttt Phe	ggc Gly 105	ccg Pro	cac His	ttg Leu	tgg Trp	atg Met 110	457
gat Asp	acc Thr	gcg Ala	gtc val	gca Ala 115	gag Glu	gtt Val	aat Asn	gcg Ala	gaa Glu 120	tct Ser	gtt Val	cgg Arg	ttg Leu	aaa Lys 125	aag Lys	505
ggt Gly	cag Gln	gtt Val	atc Ile 130	ggt Gly	gcc Ala	cgc Arg	gcg Ala	gtg Val 135	att Ile	gac Asp	ggg Gly	cgg Arg	ggt Gly 140	tat Tyr	gcg Ala	553
gca Ala	aat Asn	tca Ser 145	gca Ala	ctg Leu	agc Ser	gtg Val	ggc Gly 150	ttc Phe	cag Gln	gcg Ala	ttt Phe	att Ile 155	ggc Gly	cag Gln	gaa Glu	601
tgg Trp	cga Arg 160	ttg Leu	agc Ser	cac His	ccg Pro	cat His 165	ggt Gly	tta Leu	tcg Ser	tct Ser	ccc Pro 170	att Ile	atc Ile	atg Met	gat Asp	649
gcc Ala 175	acg Thr	gtc Val	gat Asp	cag Gln	caa Gln 180	aat Asn	ggt Gly	tat Tyr	cgc Arg	ttc Phe 185	gtg Val	tac Tyr	agc Ser	ctg Leu	ccg Pro 190	697
ctc Leu	tcg Ser	ccg Pro	acc Thr	aga Arg 195	ttg Leu	tta Leu	att Ile	gaa Glu	gac Asp 200	acg Thr	cac His	tat Tyr	att Ile	gat Asp 205	aat Asn	745
gcg Ala	aca Thr	tta Leu	gat Asp 210	cct Pro	gaa Glu	tgc Cys	gcg Ala	cgg Arg 215	caa Gln	aat Asn	att Ile	tgc Cys	gac Asp 220	tat Tyr	gcc Ala	793
gcg Ala	caa Gln	cag G1n 225	ggt Gly	tgg Trp	cag Gln	ctt Leu	cag Gln 230	aca Thr	ctg Leu	ctg Leu	cga Arg	gaa Glu 235	gaa Glu	cag Gln	ggc Gly	841
gcc Ala	tta Leu	CCC	att Ile	act Thr	ctg	tcg Ser	ggc	aat Asn	gcc ala	gac	gca Ala	ttc	tgg	cag	cag	889

2	240					245					250					
cgc c Arg P 255																937
acc g Thr G	gc t	tat 1 Tyr 9	tca Ser	ctg Leu 275	ccg Pro	ctg Leu	gcg Ala	gtt val	gcc Ala 280	gtg val	gcc Ala	gac Asp	cgc Arg	ctg Leu 285	agt Ser	985
gca c Ala L	ctt g .eu A	Sp \	gtc val 290	ttt Phe	acg Thr	tcg Ser	gcc Ala	tca Ser 295	att Ile	cac His	cat His	gcc Ala	att Ile 300	acg Thr	cat His	1033
ttt g Phe A	lla A	gc g Arg d 805	gag Glu	cgc Arg	tgg Trp	cag Gln	cag Gln 310	cag Gln	ggc Gly	ttt Phe	ttc Phe	cgc Arg 315	atg Met	ctg Leu	aat Asn	1081
cgc a Arg M 3	etg c Met L B20	tg 1 .eu f	ttt Phe	tta Leu	gcc Ala	gga Gly 325	ccc Pro	gcc Ala	gat Asp	tca Ser	cgc Arg 330	tgg Trp	cgg Arg	gtt val	atg Met	1129
cag c Gln A 335	gt t Arg P	tt 1 Phe 1	tat Tyr	ggt Gly	tta Leu 340	cct Pro	gaa Glu	gat Asp	tta Leu	att Ile 345	gcc Ala	cgt Arg	ttt Phe	tat Tyr	gcg Ala 350	1177
gga a Gly L	aa c .ys L	etc a	acg Thr	ctg Leu 355	acc Thr	gat Asp	cgg Arg	cta Leu	cgt Arg 360	att Ile	ctg Leu	agc Ser	ggc Gly	aag Lys 365	ccg Pro	1225
cct g Pro V	jtt c /al P	, co	gta /al 370	tta Leu	gca Ala	gca Ala	ttg Leu	caa G1n 375	gcc Ala	att Ile	atg Met	acg Thr	act Thr 380			1267
		-											_			
catcg	jttaa	_		acta	ac at Me	g aa et Ly	a co /s Pr	a ac o Th	t ac ir Th 38	ir Va	a at	t gg e Gl	gt go	a go la G		1320
catcg ggt g Gly G	igc c	tg g	agcg gca	ctg	qca	et Ly att	s Pr cat	o Th cta	r Th 38 caa	ir Va 35 gct	al Il aca	le G1 aaa	ly Ā] atc	a 63 39 ccc	y Phe 00 atc	1320 1368
ggt g	gc c ily L tg c	tg cleu A	agcg gca Ala 395	ctg Leu caa	gca Ala	att Ile	cgt Arg aaa	cta Leu 400	caa Gln	gct Ala	gcg Ala	ggg Gly act	atc Ile 405	ccc Pro	y Phe 00 gtc Val	
ggt g Gly G tta c Leu L gag g	gc call call call call call call call ca	tg ceu A	agcg gca ala 395 gaa 31u	ctg Leu caa Gln	gca Ala cgt Arg	att Ile gat Asp	cgt Arg aaa Lys 415	cta Leu 400 ccc Pro	caa Gln ggc Gly	gct Ala ggt Gly	gcg Ala cgg Arg	ggg Gly gct Ala 420	atc Ile 405 tat Tyr	ccc Pro gtc Val	y Phe 00 gtc val tac Tyr	1368
ggt g Gly G tta c Leu L gag g	ggc college co	ttg cleu A	agcg gca Ala 395 gaa Glu ggg	ctg Leu caa Gln ttt Phe	gca Ala cgt Arg acc Thr	att Ile gat Asp ttt Phe 430	cgt Arg aaa Lys 415 gat Asp	cta Leu 400 CCC Pro gca Ala	caa Gln ggc Gly ggc Gly	gct Ala ggt Gly ccg Pro	gcg Ala cgg Arg acg Thr 435	ggg Gly gct Ala 420 gtt Val	atc Ile 405 tat Tyr atc Ile	gtc Val	y Phe gtc val tac Tyr gat Asp	1368 1416
ggt g Gly G tta c Leu L gag g Glu A 4 ccc a Pro S	ggc college co	ttg get in control of the control of	agcg gca ala 395 gaa Glu ggg att	ctg Leu caa Gln ttt Phe gaa Glu ctg	gca Ala cgt Arg acc Thr gaa Glu 445 ctg	att Ile gat Asp ttt Phe 430 ctg Leu ccg	cgt Arg aaa Lys 415 gat Asp ttt Phe	cta Leu 400 CCC Pro gca Ala gca Ala	caa Gln ggc Gly ggc Ctg ctg	gct Ala ggt Gly ccg Pro gca Ala 450	gcg Ala cgg Arg acg Thr 435 gga Gly	ggg Gly gct Ala 420 gtt val aaa Lys	atc Ile 405 tat Tyr atc Ile cag Gln	gtc Pro gtc Val acc Thr tta Leu	y Phe O gtc Val tac Tyr gat Asp aaa Lys 455 tgg	1368 1416 1464
ggt g Gly G tta C Leu L gag g Glu A ccc a Pro S 440 gag t	ggc college co	tt general strain of the strai	agcg gca ala 395 gaa galu ggg att le	ctg Leu caa Gln ttt Phe gaa Glu ctg Leu 460 gtc	gca Ala cgt Arg acc Thr gaa Glu 445 ctg Leu	att Ile gat Asp ttt Phe 430 ctg Leu ccg Pro	cgt Arg aaa Lys 415 gat Asp ttt Phe gtt Val	cta Leu 400 CCC Pro gca Ala gca Ala	caa Gln ggc Gly ggc Ctg Leu ccg Pro 465	gct Ala ggt CCg Pro gca Ala 450 ttt Phe gat	gcg Ala cgg Arg acg Thr 435 gga Gly tac Tyr	ggg Gly gct Ala 420 gtt Val aaa Lys cgc Arg	atc Ile 405 tat Tyr atc Ile cag Gln ctg Leu	gtc Pro gtc Val acc Thr tta Leu tgt Cys 470 ctc	y Phe 00 gtc Val tac Tyr gat Asp aaa Lys 455 tgg Trp	1368 1416 1464 1512
ggt g Gly G tta C Leu L gag g Glu A ccc a Pro S 440 gag t Glu T	ggc Clay Clay Clay Clay Clay Clay Clay Clay	tg general strength of the str	agcg gca agcg agca agcg agca agcg agca a agca a agca a a a	ctg Leu caa Gln ttt Phe gaa Glu ctg Leu 460 gtc Val	gca Ala cgt Arg acc Thr gaa 445 ctg Leu ttt	att Ly att Ile gat Asp ttt Phe 430 ctg Pro aat Asn aat	cgt Arg aaa Lys 415 gat Asp ttt Phe gtt Val tac Tyr	cta Leu 400 CCC Pro gca Ala gca Ala acg Thr gat 480 Cgc	caa Gln ggc Gly ggc Ctg Leu ccg Pro 465 aac Asn	gct Ala ggt Gly ccg Pro gca 450 ttt Phe gat Asp	gcg Ala cgg Arg acg Thr 435 gga Gly tac Tyr	ggg Gly gct Ala 420 gtt Val aaa Lys cgc Arg acc Thr	atc Ile 405 tat Tyr atc Ile cag Gln ctg Leu cgg 485 tat	gtc Pro gtc Val acc Thr tta Leu tgt Cys 470 ctc Leu	y Phe O O C C C C C C C C C C C C C C C C C	1368 1416 1464 1512 1560

	505					510					515					
ggt Gly 520	act Thr	gtc Val	cct Pro	ttt Phe	tta Leu 525	tcg Ser	ttc Phe	aga Arg	gac Asp	atg Met 530	ctt Leu	cgc Arg	gcc Ala	gca Ala	cct Pro 535	1752
caa Gln	ctg Leu	gcg Ala	aaa Lys	ctg Leu 540	cag Gln	gca Ala	tgg Trp	aga Arg	agc ser 545	gtt val	tac Tyr	agt Ser	aag Lys	gtt val 550	gcc Ala	1800
agt Ser	tac Tyr	atc Ile	gaa Glu 555	gat Asp	gaa Glu	cat His	ctg Leu	cgc Arg 560	cag Gln	gcg Ala	ttt Phe	tct Ser	ttc Phe 565	cac His	tcg Ser	1848
ctg Leu	ttg Leu	gtg Val 570	ggc Gly	ggc Gly	aat Asn	ccc Pro	ttc Phe 575	gcc Ala	acc Thr	tca Ser	tcc Ser	att Ile 580	tat Tyr	acg Thr	ttg Leu	1896
ata Ile	cac His 585	gcg Ala	ctg Leu	gag Glu	cgt Arg	gag Glu 590	tgg Trp	ggc Gly	gtc Val	tgg Trp	ttt Phe 595	ccg Pro	cgt Arg	ggc Gly	ggc Gly	1944
acc Thr 600	ggc Gly	gca Ala	tta Leu	gtt Val	cag Gln 605	ggg Gly	atg Met	ata Ile	aag Lys	ctg Leu 610	ttt Phe	cag Gln	gat Asp	ctg Leu	ggt Gly 615	1992
ggc Gly	gaa Glu	gtc Val	gtg Val	tta Leu 620	aac Asn	gcc Ala	aga Arg	gtc Val	agc ser 625	cat His	atg Met	gaa Glu	acg Thr	aca Thr 630	gga Gly	2040
aac Asn	aag Lys	att Ile	gaa Glu 635	gcc Ala	gtg val	cat His	tta Leu	gag Glu 640	gac Asp	ggt Gly	cgc Arg	agg Arg	ttc Phe 645	ctg Leu	acg Thr	2088
caa Gln	gcc Ala	gtc Val 650	gcg Ala	tca Ser	aat Asn	gca Ala	gat Asp 655	gtg Val	gtt Val	cat His	acc Thr	tat Tyr 660	cgc Arg	gac Asp	ctg Leu	2136
tta Leu	agc ser 665	cag Gln	cac His	cct Pro	gcc Ala	gcg Ala 670	gtt val	aag Lys	cag Gln	tcc Ser	aac Asn 675	aaa Lys	ctg Leu	cag Gln	act Thr	2184
			agt Ser													2232
cat His	cat His	gat Asp	cag Gln	ctc Leu 700	gcg Ala	cat His	cac His	acg Thr	gtt Val 705	tgt Cys	ttc Phe	ggc Gly	ccg Pro	cgt Arg 710	tac Tyr	2280
cgc Arg	gag Glu	ctg Leu	att Ile 715	gac Asp	gaa Glu	att Ile	ttt Phe	aat Asn 720	cat His	gat Asp	ggc Gly	ctc Leu	gca Ala 725	gag Glu	gac Asp	2328
ttc Phe	tca Ser	ctt Leu 730	tat Tyr	ctg Leu	cac His	gcg Ala	CCC Pro 735	tgt Cys	gtc Val	acg Thr	gat Asp	tcg Ser 740	tca Ser	ctg Leu	gcg Ala	2376
cct Pro	gaa Glu 745	ggt Gly	tgc Cys	ggc Gly	agt Ser	tac Tyr 750	tat Tyr	gtg val	ttg L e u	gcg Ala	ccg Pro 755	gtg va l	ccg Pro	cat His	tta Leu	2424
ggc Gly 760	acc Thr	gcg Ala	aac Asn	ctc Leu	gac Asp 765	tgg Trp	acg Thr	gtt val	gag Glu	999 Gly 770	cca Pro	aaa Lys	cta Leu	cgc Arg	gac Asp 775	2472
cgt Arg	att Ile	ttt Phe	gcg Ala	tac Tyr	ctt Leu	gag Glu	cag Gln	cat His	tac Tyr	atg Met	cct Pro	ggc Gly	tta Leu	cgg Arg	agt Ser	2520

780	785 790
cag ctg gtc acg cac cgg atg ttt acg Gln Leu Val Thr His Arg Met Phe Thr 795 800	Pro Phe Asp Phe Arg Asp Gln
ctt aat gcc tat cat ggc tca gcc ttt	tct gtg gag ccc gtt ctt acc 2616
Leu Asn Ala Tyr His Gly Ser Ala Phe	Ser Val Glu Pro Val Leu Thr
810 815	820
cag agc gcc tgg ttt cgg ccg cat aac	cgc gat aaa acc att act aat 2664
Gln Ser Ala Trp Phe Arg Pro His Asn	Arg Asp Lys Thr Ile Thr Asn
825	835
ctc tac ctg gtc ggc gca ggc acg cat	ccc ggc gca ggc att cct ggc 2712
Leu Tyr Leu Val Gly Ala Gly Thr His	Pro Gly Ala Gly Ile Pro Gly
840 845	850 855
gtc atc ggc tcg gca aaa gcg aca gca	ggt ttg atg ctg gag gat ctg 2760
Val Ile Gly Ser Ala Lys Ala Thr Ala	Gly Leu Met Leu Glu Asp Leu
860	865 870
att tga ataatccgtc gttactcaat catgo Ile	ggtcg aaacg atg gca gtt ggc 2813 Met Ala Val Gly 875
tcg aaa agt ttt gcg aca gcc tca aag Ser Lys Ser Phe Ala Thr Ala Ser Lys 880 885	Leu Phe Asp Ala Lys Thr Arg
cgc agc gta ctg atg ctc tac gcc tgg	tgc cgc cat tgt gac gat gtt 2909
Arg Ser Val Leu Met Leu Tyr Ala Trp	Cys Arg His Cys Asp Asp Val
895 900	905
att gac gat cag acg ctg ggc ttt cag	gcc cgg cag cct gcc tta caa 2957
Ile Asp Asp Gln Thr Leu Gly Phe Gln	Ala Arg Gln Pro Ala Leu Gln
910 915	920
acg ccc gaa caa cgt ctg atg caa ctt	gag atg aaa acg cgc cag gcc 3005
Thr Pro Glu Gln Arg Leu Met Gln Leu	Glu Met Lys Thr Arg Gln Ala
925 930	935 940
tat gca gga tcg cag atg cac gaa ccg	gcg ttt gcg gct ttt cag gaa 3053
Tyr Ala Gly Ser Gln Met His Glu Pro	Ala Phe Ala Ala Phe Gln Glu
945	950 955
gtg gct atg gct cat gat atc gcc ccg Val Ala Met Ala His Asp Ile Ala Pro 960 965	Ala Tyr Ala Phe Asp His Leu
gaa ggc ttc gcc atg gat gta cgc gaa	gcg caa tac agc caa ctg gat 3149
Glu Gly Phe Ala Met Asp Val Arg Glu	Ala Gln Tyr Ser Gln Leu Asp
975 980	985
gat acg ctg cgc tat tgc tat cac gtt	gca ggc gtt gtc ggc ttg atg 3197
Asp Thr Leu Arg Tyr Cys Tyr His Val	Ala Gly Val Val Gly Leu Met
990 995	1000
atg gcg caa atc atg ggc gtg cgg g	at aac gcc acg ctg gac cgc 3242
Met Ala Gln Ile Met Gly Val Arg A	sp Asn Ala Thr Leu Asp Arg
1005 1010	1015
	ag ttg acc aat att gct cgc 3287 in Leu Thr Asn Ile Ala Arg 1030
gat att gtg gac gat gcg cat gcg g	gc cgc tgt tat ctg ccg gca 3332
Asp Ile Val Asp Asp Ala His Ala G	ily Arg Cys Tyr Leu Pro Ala

1035					1040					1045						
				cat His	gaa Glu 1055	ggt Gly	ctg Leu	aac Asn	aaa Lys	gag Glu 1060			gcg Ala			3377
cct Pro 1065	gaa Glu	aac Asn	cgt Arg	cag Gln	gcg Ala 1070	ctg Leu	agc Ser	cgt Arg	atc Ile	gcc Ala 1075			ttg Leu			3422
cag Gln 1080	gaa Glu	gca Ala	gaa Glu	cct Pro	tac Tyr 1085	tat Tyr	ttg Leu	tct Ser	gcc Ala	aca Thr 1090			ctg Leu			3467
					tcc ser 1100	gcc Ala	tgg Trp	gca Ala	atc Ile	gct Ala 1105			aag Lys			3512
gtt Val 1110	tac Tyr	cgg Arg	aaa Lys	ata Ile	ggt Gly 1115	gtc val	aaa Lys	gtt Val	gaa Glu	cag Gln 1120	gcc Ala	ggt Gly	cag Gln	caa Gln		3557
				cgg Arg		tca Ser	acg Thr	acc Thr	acg Thr	ccc Pro 1135			tta Leu			3602
				gcc Ala	tct Ser 1145	ggt Gly	cag Gln	gcc Ala	ctt Leu	act Thr 1150			atg Met			3647
				cgc Arg					tgg Trp			ccg Pro				3689
tagcg	ccat	g to	cttt	cccg	gagc	gtcg	cct	gaagt	ttttg	ga ca	9999	cggc	gcat	tagagga	a	3749
agcca	aaag	ga aa	acaca	aacct	t tct	ttgc	cc 1	tgac	ggcgt	tg at	gcata	acgg	tgc	gccata	t	3809
acaac	cgtt	t ga	aggta	agcco	ttg	cgtg	gaa 1	tata	gcgga	aa tg	gccaa	acgt	tgat	gcacca	3	3869
gcccg	tcgt	g ca	acca	taaaa	a taga	agtaa	atc (cata	cgcc	gt ca	tacci	tgcg	ccaa	atccact	t	3929
ggagc	ggc	a ca	attc	ctgta	a ctg	ccca	gat a	aaat	cagca	ag ga	tcga	taat	gcag	gcaaaaa	a	3989
ccacg	gcat	ta a	agato	cgtta	a act	tcaa	acg	cacc	ttta	cg cg	gttc	atga	tgt	gaaagat	t	4049
gccat	ccc	ca a	cccc	agcc	g tgc	atga	tgt a	attt	gtgt	gc ca	gtgc	agca	atca	acttcca	a	4109
tgcca	atca	ac g	gtaa	cgaaa	a acg	atca	999	catt	ccaa	at cc	acaa	cata	atti	tctccg	9	4169
tagag	acgt	tc t	ggca	gcag	g ctt	aagga	att (caat	ttta	ac ag	agat [.]	tagc	cga	tctggc	g	4229
gcggg	jaagg	gg a	aaaa	ggcg	c gcc	agaaa	agg (cgcg	ccag	gg at	caga	agtc	ggct	tttcaga	a	4289
accac	acgo	gt a	gttg	gctti	t acc	tgca	cga :	acat	ggtc	ca gt	gcat	cgtt	gati	tttcga	C	4349
atcgg	gaaq	gt a	ctcc	actgi	t cgg	cgca	ata '	tctg	tacg	gc ca	gcca	gctt	cag	cagtga	a	4409
cgcag	ctg	cg ca	aggt	gaac	c ggt	tgaa	gaa	cccg	tcac	gg cg	cggt	cgcc	taa	aatcag	g	4469
ctgaa	agco	cg g	gcac	gtca	a acg	gctt	cag	tacg	gcac	cc ac	ggta	tgga	act	taccgc	9	4529
aggcg	jccag	gg g	ccgc	aaag:	t agg	gttg	cca	gtcg	agat	cg ac	ggcg	accg	tgc	tgataa	t	4589
caggt	caa	ac t	ggcc	cgcc	a ggc	tttt	taa	agct	t							4624

<210> 25

<211> 380

<212> PRT

<213> Erwinia uredovora

<400> 25

Met Gln Pro His Tyr Asp Leu Ile Leu Val Gly Ala Gly Leu Ala Asn 1 10 15

Gly Leu Ile Ala Leu Arg Leu Gln Gln Gln Gln Pro Asp Met Arg Ile 20 25 30

Leu Leu Ile Asp Ala Ala Pro Gln Ala Gly Gly Asn His Thr Trp Ser

Phe His His Asp Asp Leu Thr Glu Ser Gln His Arg Trp Ile Ala Pro 50 60

Leu Val Val His His Trp Pro Asp Tyr Gln Val Arg Phe Pro Thr Arg 65 70 75 80

Arg Arg Lys Leu Asn Ser Gly Tyr Phe Cys Ile Thr Ser Gln Arg Phe 85 90 95

Ala Glu Val Leu Gln Arg Gln Phe Gly Pro His Leu Trp Met Asp Thr 100 105 110

Ala Val Ala Glu Val Asn Ala Glu Ser Val Arg Leu Lys Lys Gly Gln 115 120 125

Val Ile Gly Ala Arg Ala Val Ile Asp Gly Arg Gly Tyr Ala Ala Asn 130 140

Ser Ala Leu Ser Val Gly Phe Gln Ala Phe Ile Gly Gln Glu Trp Arg 145 150 155 160

Leu Ser His Pro His Gly Leu Ser Ser Pro Ile Ile Met Asp Ala Thr 165 170 175

Val Asp Gln Gln Asn Gly Tyr Arg Phe Val Tyr Ser Leu Pro Leu Ser 180 185 190

Pro Thr Arg Leu Leu Ile Glu Asp Thr His Tyr Ile Asp Asn Ala Thr 195 200 205

Leu Asp Pro Glu Cys Ala Arg Gln Asn Ile Cys Asp Tyr Ala Ala Gln 210 220

Gln Gly Trp Gln Leu Gln Thr Leu Leu Arg Glu Glu Gln Gly Ala Leu

240

225 230 235

Pro Ile Thr Leu Ser Gly Asn Ala Asp Ala Phe Trp Gln Gln Arg Pro 245 250 255

Leu Ala Cys Ser Gly Leu Arg Ala Gly Leu Phe His Pro Thr Thr Gly 260 265 270

Tyr Ser Leu Pro Leu Ala Val Ala Val Ala Asp Arg Leu Ser Ala Leu 275 280 285

Asp Val Phe Thr Ser Ala Ser Ile His His Ala Ile Thr His Phe Ala 290 295 300

Arg Glu Arg Trp Gln Gln Gln Gly Phe Phe Arg Met Leu Asn Arg Met 305 310 315

Leu Phe Leu Ala Gly Pro Ala Asp Ser Arg Trp Arg Val Met Gln Arg 325 330 335

Phe Tyr Gly Leu Pro Glu Asp Leu Ile Ala Arg Phe Tyr Ala Gly Lys 340 345 350

Leu Thr Leu Thr Asp Arg Leu Arg Ile Leu Ser Gly Lys Pro Pro Val 355 360 365

Pro Val Leu Ala Ala Leu Gln Ala Ile Met Thr Thr 370 375 380

<210> 26

<211> 492

<212> PRT

<213> Erwinia uredovora

<400> 26

Met Lys Pro Thr Thr Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu
1 5 10 15

Ala Ile Arg Leu Gln Ala Ala Gly Ile Pro Val Leu Leu Glu Gln
20 25 30

Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Tyr Glu Asp Gln Gly Phe

Thr Phe Asp Ala Gly Pro Thr Val Ile Thr Asp Pro Ser Ala Ile Glu 50 60

Glu Leu Phe Ala Leu Ala Gly Lys Gln Leu Lys Glu Tyr Val Glu Leu

65 70 75 80

Leu Pro Val Thr Pro Phe Tyr Arg Leu Cys Trp Glu Ser Gly Lys Val 85 90 95 Phe Asn Tyr Asp Asn Asp Gln Thr Arg Leu Glu Ala Gln Ile Gln Gln 105 110 Phe Asn Pro Arg Asp Val Glu Gly Tyr Arg Gln Phe Leu Asp Tyr Ser 115 120 125 Arg Ala Val Phe Lys Glu Gly Tyr Leu Lys Leu Gly Thr Val Pro Phe 130 140 Leu Ser Phe Arg Asp Met Leu Arg Ala Ala Pro Gln Leu Ala Lys Leu 145 150 155 160 Gln Ala Trp Arg Ser Val Tyr Ser Lys Val Ala Ser Tyr Ile Glu Asp 165 170 175 Glu His Leu Arg Gln Ala Phe Ser Phe His Ser Leu Leu Val Gly Gly 180 185 190 Asn Pro Phe Ala Thr Ser Ser Ile Tyr Thr Leu Ile His Ala Leu Glu 195 200 205 Arg Glu Trp Gly Val Trp Phe Pro Arg Gly Gly Thr Gly Ala Leu Val 210 220 Gln Gly Met Ile Lys Leu Phe Gln Asp Leu Gly Gly Glu Val Val Leu 225 230 235 240 Asn Ala Arg Val Ser His Met Glu Thr Thr Gly Asn Lys Ile Glu Ala 245 250 255 Val His Leu Glu Asp Gly Arg Arg Phe Leu Thr Gln Ala Val Ala Ser 260 265 270 Asn Ala Asp Val Val His Thr Tyr Arg Asp Leu Leu Ser Gln His Pro 275 280 285 Ala Ala Val Lys Gln Ser Asn Lys Leu Gln Thr Lys Arg Met Ser Asn 290 300 Ser Leu Phe Val Leu Tyr Phe Gly Leu Asn His His Asp Gln Leu 305 315 320 Ala His His Thr Val Cys Phe Gly Pro Arg Tyr Arg Glu Leu Ile Asp 325 330 335

Glu Ile Phe Asn His Asp Gly Leu Ala Glu Asp Phe Ser Leu Tyr Leu

340

345

350

His Ala Pro Cys Val Thr Asp Ser Ser Leu Ala Pro Glu Gly Cys Gly Ser Tyr Tyr Val Leu Ala Pro 375 Val Pro His Leu Gly Thr Ala Asn Leu Asp Trp Thr Val Glu Gly Pro Lys Leu Arg Asp Arg Ile Phe Ala Tyr 400 Leu Glu Gln His Tyr Met Pro Gly Leu Arg Ser Gln Leu Val Thr His Arg Met Phe Thr 420 Pro Phe Asp Phe Arg Asp Gln Leu Asn Ala Tyr His Gly Ser Ala Phe Ser Val Glu Pro Val Leu Thr Gln Ser Ala Trp Phe Arg Pro His Asn Arg Asp Lys Thr Ile Thr Asn Leu Tyr Leu Val Gly

Ala Gly Thr His Pro Gly Ala Gly Ile Pro Gly Val Ile Gly Ser Ala 465 470 475 480

Lys Ala Thr Ala Gly Leu Met Leu Glu Asp Leu Ile 485 490

<210> 27

<211> 296

<212> PRT

<213> Erwinia uredovora

<400> 27

Met Ala Val Gly Ser Lys Ser Phe Ala Thr Ala Ser Lys Leu Phe Asp 1 10 15

Ala Lys Thr Arg Arg Ser Val Leu Met Leu Tyr Ala Trp Cys Arg His 20 25 30

Cys Asp Asp Val Ile Asp Asp Gln Thr Leu Gly Phe Gln Ala Arg Gln 35 40

Pro Ala Leu Gln Thr Pro Glu Gln Arg Leu Met Gln Leu Glu Met Lys 50 60

Thr Arg Gln Ala Tyr Ala Gly Ser Gln Met His Glu Pro Ala Phe Ala

65 70 75 80

Ala Phe Gln Glu Val Ala Met Ala His Asp Ile Ala Pro Ala Tyr Ala 85 90 95

Phe Asp His Leu Glu Gly Phe Ala Met Asp Val Arg Glu Ala Gln Tyr 100 105 110

Ser Gln Leu Asp Asp Thr Leu Arg Tyr Cys Tyr His Val Ala Gly Val 115 120 125

Val Gly Leu Met Met Ala Gln Ile Met Gly Val Arg Asp Asn Ala Thr 130 140

Leu Asp Arg Ala Cys Asp Leu Gly Leu Ala Phe Gln Leu Thr Asn Ile 145 150 155 160

Ala Arg Asp Ile Val Asp Asp Ala His Ala Gly Arg Cys Tyr Leu Pro 165 170 175

Ala Ser Trp Leu Glu His Glu Gly Leu Asn Lys Glu Asn Tyr Ala Ala 180 185 190

Pro Glu Asn Arg Gln Ala Leu Ser Arg Ile Ala Arg Arg Leu Val Gln 195 200 205

Glu Ala Glu Pro Tyr Tyr Leu Ser Ala Thr Ala Gly Leu Ala Gly Leu 210 215 220

Pro Leu Arg Ser Ala Trp Ala Ile Ala Thr Ala Lys Gln Val Tyr Arg 225 230 235

Lys Ile Gly Val Lys Val Glu Gln Ala Gly Gln Gln Ala Trp Asp Gln
245 250 255

Arg Gln Ser Thr Thr Pro Glu Lys Leu Thr Leu Leu Leu Ala Ala 260 265 270

Ser Gly Gln Ala Leu Thr Ser Arg Met Arg Ala His Pro Pro Arg Pro 275 280 285

Ala His Leu Trp Gln Arg Pro Leu 290 295

<210> 28

<211> 32

<212> DNA

<213> Künstliche Seguenz

```
<220>
 <221> primer_bind
 <222>
        (1)..(32)
 <223>
 <400> 28
 tttttctcga gcgataaacg ctcacttggt ta
                                                                                    32
<210>
        29
<211>
        32
<212> DNA
<213> Künstliche Sequenz
<220>
<221> primer_bind
<222>
        (1)..(32)
<223>
<400> 29
tttttgtcga cacgttatgc tcacaacccc gg
                                                                                    32
<210>
        30
<211>
        679
<212> DNA
<213> Escherichia coli
<220>
<221> CDS
<222>
        (87)..(635)
<223>
<400> 30
ctcgagcgat aaacgctcac ttggttaatc atttcactct tcaattatct ataatgatga
                                                                                    60
gtgatcagaa ttacatgtga gaaatt atg caa acg gaa cac gtc att tta ttg
Met Gln Thr Glu His Val Ile Leu Leu
1
                                                                                  113
aat gca cag gga gtt ccc acg ggt acg ctg gaa aag tat gcc gca cac
Asn Ala Gln Gly Val Pro Thr Gly Thr Leu Glu Lys Tyr Ala Ala His
                                                                                  161
```

10	15	20	25
acg gca gac acc cgc Thr Ala Asp Thr Arg 30	tta cat ctc gcg ttc Leu His Leu Ala Phe 35	tcc agt tgg ctg ttt Ser Ser Trp Leu Phe 40	aat 209 Asn
gcc aaa gga caa tta Ala Lys Gly Gln Leu 45	tta gtt acc cgc cgc Leu Val Thr Arg Arg 50	gca ctg agc aaa aaa Ala Leu Ser Lys Lys 55	gca 257 Ala
tgg cct ggc gtg tgg Trp Pro Gly Val Trp 60	act aac tcg gtt tgt Thr Asn Ser Val Cys 65	ggg cac cca caa ctg Gly His Pro Gln Leu 70	gga 305 Gly
gaa agc aac gaa gac Glu Ser Asn Glu Asp 75	gca gtg atc cgc cgt Ala Val Ile Arg Arg 80	tgc cgt tat gag ctt Cys Arg Tyr Glu Leu 85	ggc 353 i Gly
	cct gaa tct atc tat Pro Glu Ser Ile Tyr 95		
gcc acc gat ccg agt Ala Thr Asp Pro Ser 110	ggc att gtg gaa aat Gly Ile Val Glu Asn 115	Glu Val Cys Pro Val	Phe
gcc gca cgc acc act Ala Ala Arg Thr Thr 125	agt gcg tta cag atc Ser Ala Leu Gln Ile 130	aat gat gat gaa gtg Asn Asp Asp Glu Val 135	atg 497 Met
	gat tta gca gat gta Asp Leu Ala Asp Val 145		
acg ccg tgg gcg ttc Thr Pro Trp Ala Phe 155	agt ccg tgg atg gtg Ser Pro Trp Met Val 160	atg cag gcg aca aat Met Gln Ala Thr Asn 165	cgc 593 Arg
	tta tct gca ttt acc Leu Ser Ala Phe Thr 175		635
aaaaaccccg acatttgc	cg gggttgtgag cataac	gtgt cgac	679
<210> 31			
<211> 182			
<212> PRT			
<213> Escherichia	coli		
<400> 31			
Met Gln Thr Glu His 1 5	Val Ile Leu Leu Asn 10	Ala Gln Gly Val Pro 15) Thr
Gly Thr Leu Glu Lys 20	Tyr Ala Ala His Thr 25	Ala Asp Thr Arg Leu 30	ı His
Leu Ala Phe Ser Ser 35	Trp Leu Phe Asn Ala 40	Lys Gly Gln Leu Leu 45	val ُ د

Thr Arg Arg Ala Leu Ser Lys Lys Ala Trp Pro Gly Val Trp Thr Asn 50 55 60

Ser Val Cys Gly His Pro Gln Leu Gly Glu Ser Asn Glu Asp Ala Val 65 70 75 80

Ile Arg Arg Cys Arg Tyr Glu Leu Gly Val Glu Ile Thr Pro Pro Glu 85 90 95

Ser Ile Tyr Pro Asp Phe Arg Tyr Arg Ala Thr Asp Pro Ser Gly Ile 100 105 110

Val Glu Asn Glu Val Cys Pro Val Phe Ala Ala Arg Thr Thr Ser Ala 115 120 125

Leu Gln Ile Asn Asp Asp Glu Val Met Asp Tyr Gln Trp Cys Asp Leu 130 135 140

Ala Asp Val Leu His Gly Ile Asp Ala Thr Pro Trp Ala Phe Ser Pro 145 150 155 160

Trp Met Val Met Gln Ala Thr Asn Arg Glu Ala Arg Lys Arg Leu Ser 165 170 175

Ala Phe Thr Gln Leu Lys 180

<210> 32

<211> 31

<212> DNA

<213> Künstliche Sequenz

<220>

<221> primer_bind

<222> (1)..(31)

<223>

<400> 32 tttttccatg gtgaaggagg aaatagcgaa a

31

<210> 33

<211> 32

<212> DNA

<213> Künstliche Sequenz

<220>

<221>	primer_bind												
<222>	(1)(32)											
<223>													
<400> tttta		cacttt	t tcttg	taacc	aa						32		
<210>	34												
<211>	962												
<212>	DNA												
<213>	Archae	oglobus	fulgid	us									
<220>													
	CDS												
	(3)(956)											
<223>													
	gtg aa		gaa ata ilu Ile i		s Arg A				sn L		47		
gcc at Ala Il	t gaa g e Glu G	ag ctt lu Leu 20	ctg ccc Leu Pro	gaa a Glu A	gg gag rg Glu 25	ccg at Pro I	tt gga le Gly	ctc Leu	tac Tyr 30	aaa Lys	95		
gcc gc Ala Al	a Arg H	at ctg is Leu 5	atc aaa Ile Lys	Ala G	gt ggc ly Gly O	aag ag Lys Ai	gg cta rg Leu	agg Arg 45	cct Pro	gta Val	143		
ata ag Ile Se	ctc ter Leu L 50	ta gca eu Ala	gtc gaa Val Glu	gcc c Ala L 55	tt ggg eu Gly	aaa ga Lys As	ac tac sp Tyr 60	aga Arg	aag Lys	att Ile	191		
atc co Ile Pr 65	o Ala A	ct gtc la Val	agc att Ser Ile 70	gaa a Glu T	ca atc hr Ile	cac as His As	sn Phe	acc Thr	ctc Leu	gtg Val	239		
cat ga His As 80	c gac a p Asp I	ta atg le Met	gac agg Asp Arg 85	gac g Asp G	ag atg lu Met	agg ag Arg Al 90	gg gga rg Gly	gtt Val	ccg Pro	acg Thr 95	287		
gta ca Val Hi	c agg g s Arg V	tt tat al Tyr 100	ggg gaa Gly Glu	gcg a Ala T	cg gcc hr Ala 105	att t	ta gca eu Ala	ggc Gly	gac Asp 110	aca Thr	335		
ctc tt Leu Ph	t gct g e Ala G	aa gcc lu Ala	ttc aag Phe Lys	ctg c	tg aca eu Thr	aag t	gc gat ys Asp	gtt Val	gag Glu	agc Ser	383		

115		120	125
gag gga atc aga Glu Gly Ile Arg 130	aaa gct aca gaa Lys Ala Thr Glu 135	atg ctt tcg gac gtt Met Leu Ser Asp Val 140	tgc ata aaa 431 Cys Ile Lys
		atg agc ttt gag aaa Met Ser Phe Glu Lys 155	
gtt tcc gag gag Val Ser Glu Glu 160	gag tat ctc agg Glu Tyr Leu Arg 165	atg gtc gag ctg aag Met Val Glu Leu Lys 170	acc gga gtg 527 Thr Gly Val 175
ctg att gca gct Leu Ile Ala Ala	tct gca gca tta Ser Ala Ala Leu 180	cct gcg gtg ctt ttt Pro Ala Val Leu Phe 185	ggg gag agc 575 Gly Glu Ser 190
gag gaa att gta Glu Glu Ile Val 195	Lys Ala Leu Trp	gac tac gga gtt ctt Asp Tyr Gly Val Leu 200	agc ggt att 623 Ser Gly Ile 205
		ctt gac ctg act gag Leu Asp Leu Thr Glu 220	
aag gac tgg gga Lys Asp Trp Gly 225	agc gac ctg ctt Ser Asp Leu Leu 230	aaa ggg aag aaa acc Lys Gly Lys Lys Thr 235	ctg att gtc 719 Leu Ile Val
ata aag gcg ttc Ile Lys Ala Phe 240	gaa aag gga gtg Glu Lys Gly Val 245	aag cta aag acg ttt Lys Leu Lys Thr Phe 250	gga aag gaa 767 Gly Lys Glu 255
aag gcg gac gtc Lys Ala Asp Val	tct gag att aga Ser Glu Ile Arg 260	gat gat atc gaa aag Asp Asp Ile Glu Lys 265	tta aga gag 815 Leu Arg Glu 270
tgt ggt gcg att Cys Gly Ala Ile 275	Asp Tyr Ala Ala	agc atg gca aga aag Ser Met Ala Arg Lys 280	atg gct gaa 863 Met Ala Glu 285
		ctg cct gaa agc aaa Leu Pro Glu Ser Lys 300	
aca ctg ctg gaa Thr Leu Leu Glu 305	ctt acc gac ttc Leu Thr Asp Phe 310	ttg gtt aca aga aaa Leu Val Thr Arg Lys 315	aag tga 956 Lys
aagctt			962
<210> 35			
<211> 317			
<212> PRT			
<213> Archaeog	lobus fulgidus		
<400> 35			
Met Val Lys Glu 1	Glu Ile Ala Lys 5	Arg Ala Glu Ile Ile 10	Asn Lys Ala 15

Ile Glu Glu Leu Leu Pro Glu Arg Glu Pro Ile Gly Leu Tyr Lys Ala 20 25 30 Ala Arg His Leu Ile Lys Ala Gly Gly Lys Arg Leu Arg Pro Val Ile 35 40 45 Ser Leu Leu Ala Val Glu Ala Leu Gly Lys Asp Tyr Arg Lys Ile Ile 50 60 Pro Ala Ala Val Ser Ile Glu Thr Ile His Asn Phe Thr Leu Val His 65 70 75 80 Asp Asp Ile Met Asp Arg Asp Glu Met Arg Arg Gly Val Pro Thr Val 85 90 95 His Arg Val Tyr Gly Glu Ala Thr Ala Ile Leu Ala Gly Asp Thr Leu 100 105 110 Phe Ala Glu Ala Phe Lys Leu Leu Thr Lys Cys Asp Val Glu Ser Glu 115 120 125 Gly Ile Arg Lys Ala Thr Glu Met Leu Ser Asp Val Cys Ile Lys Ile 130 140 Cys Glu Gly Gln Tyr Tyr Asp Met Ser Phe Glu Lys Lys Glu Ser Val 145 150 155 160 Ser Glu Glu Tyr Leu Arg Met Val Glu Leu Lys Thr Gly Val Leu 165 170 175 Ile Ala Ala Ser Ala Ala Leu Pro Ala Val Leu Phe Gly Glu Ser Glu 180 185 190 Glu Ile Val Lys Ala Leu Trp Asp Tyr Gly Val Leu Ser Gly Ile Gly
195 200 205 Phe Gln Ile Gln Asp Asp Leu Leu Asp Leu Thr Glu Glu Thr Gly Lys 210 220 Asp Trp Gly Ser Asp Leu Leu Lys Gly Lys Lys Thr Leu Ile Val Ile 225 230 235 240 Lys Ala Phe Glu Lys Gly Val Lys Leu Lys Thr Phe Gly Lys Glu Lys 250 255 Ala Asp Val Ser Glu Ile Arg Asp Asp Ile Glu Lys Leu Arg Glu Cys 260 265 270 Gly Ala Ile Asp Tyr Ala Ala Ser Met Ala Arg Lys Met Ala Glu Glu 275 280 285

Ala Lys Arg Lys Leu Glu Val Leu Pro Glu Ser Lys Ala Lys Glu Thr 290 295 300

Leu Leu Glu Leu Thr Asp Phe Leu Val Thr Arg Lys Lys 305 310 315

<210> 36

<211> 1293

<212> DNA

<213> Archaeoglobus fulgidus

<220>

<221> CDS

<222> (206)..(1159)

<223>

<400	<i>></i> 3	36														
		-	gccag	gtgag	gc go	gcgt	taata	a cga	actca	acta	tagg	ggcga	aat 1	tggg1	accgg	60
gcco	cccc	ctc g	gacgo	cgt	g ti	caat	tgaga	a atg	ggata	aaga	ggct	tcgt	ggg a	attga	acgtga	120
9999	gcag	99g a	atggo	ctata	at ti	ctg	ggago	gaa	actc	999	cgag	ggate	cta e	gttgi	aggga	180
ggga	ittca	atg a	acaco	cacaa	aa ca	agcc	atg Met 1	gtg val	aag Lys	gag Glu		ata Ile		aaa Lys		232
gcc Ala 10	gaa Glu	ata Ile	atc Ile	aac Asn	aaa Lys 15	gcc Ala	att Ile	gaa Glu	gag Glu	ctt Leu 20	ctg Leu	ccc Pro	gaa Glu	agg Arg	gag Glu 25	280
ccg Pro	att Ile	gga Gly	ctc Leu	tac Tyr 30	aaa Lys	gcc Ala	gca Ala	agg Arg	cat His 35	ctg Leu	atc Ile	aaa Lys	gca Ala	ggt Gly 40	ggc Gly	328
	agg Arg		agg Arg 45		gta Val											376
			aga Arg											aca Thr		424
cac His	aac Asn 75	ttc Phe	acc Thr	ctc Leu	gtg val	cat His 80	gac Asp	gac Asp	ata Ile	atg Met	gac Asp 85	agg Arg		gag Glu		472
agg Arg 90	agg Arg		gtt Val						gtt Val	tat Tyr 100	ggg Gly	gaa Glu	gcg Ala	acg Thr	gcc Ala 105	520
att Ile	tta Leu	gca Ala	ggc Gly	gac Asp 110	aca Thr	ctc Leu	ttt Phe	gct Ala	gaa Glu 115	gcc Ala	ttc Phe	aag Lys	ctg Leu	ctg Leu 120	aca Thr	568

<210> 37

<211> 317

<212> PRT

<213> Archaeoglobus fulgidus

<400> 37

Met Val Lys Glu Glu Ile Ala Lys Arg Ala Glu Ile Ile Asn Lys Ala 1 10 15 Ile Glu Glu Leu Leu Pro Glu Arg Glu Pro Ile Gly Leu Tyr Lys Ala 20 25 30 Ala Arg His Leu Ile Lys Ala Gly Gly Lys Arg Leu Arg Pro Val Ile
35 40 45 Ser Leu Leu Ala Val Glu Ala Leu Gly Lys Asp Tyr Arg Lys Ile Ile 50 60 Pro Ala Ala Val Ser Ile Glu Thr Ile His Asn Phe Thr Leu Val His 65 70 75 80 Asp Asp Ile Met Asp Arg Asp Glu Met Arg Arg Gly Val Pro Thr Val 85 90 95 His Arg Val Tyr Gly Glu Ala Thr Ala Ile Leu Ala Gly Asp Thr Leu 100 105 110 Phe Ala Glu Ala Phe Lys Leu Leu Thr Lys Cys Asp Val Glu Ser Glu 115 120 125 Gly Ile Arg Lys Ala Thr Glu Met Leu Ser Asp Val Cys Ile Lys Ile 130 135 140 Cys Glu Gly Gln Tyr Tyr Asp Met Ser Phe Glu Lys Lys Glu Ser Val 145 150 160 Ser Glu Glu Tyr Leu Arg Met Val Glu Leu Lys Thr Gly Val Leu 165 170 175 Ile Ala Ala Ser Ala Ala Leu Pro Ala Val Leu Phe Gly Glu Ser Glu 180 185 190 Glu Ile Val Lys Ala Leu Trp Asp Tyr Gly Val Leu Ser Gly Ile Gly 195 200 205 Phe Gln Ile Gln Asp Asp Leu Leu Asp Leu Thr Glu Glu Thr Gly Lys 210 220 Asp Trp Gly Ser Asp Leu Leu Lys Gly Lys Lys Thr Leu Ile Val Ile 225 230 235 240 Lys Ala Phe Glu Lys Gly Val Lys Leu Lys Thr Phe Gly Lys Glu Lys 255 Ala Asp Val Ser Glu Ile Arg Asp Asp Ile Glu Lys Leu Arg Glu Cys 260 265 270

```
Gly Ala Ile Asp Tyr Ala Ala Ser Met Ala Arg Lys Met Ala Glu Glu 275 280 285
Ala Lys Arg Lys Leu Glu Val Leu Pro Glu Ser Lys Ala Lys Glu Thr 290 295 300
Leu Leu Glu Leu Thr Asp Phe Leu Val Thr Arg Lys Lys 305 315
<210>
       38
<211>
       35
<212> DNA
<213> Künstliche Sequenz
<220>
<221> primer_bind
<222>
      (1)..(35)
<223>
<400> 38
gagctcttca ttatttcgat tttgatttcg tgacc
                                                                          35
<210> 39
<211> 44
<212> DNA
<213> Künstliche Sequenz
<220>
<221> primer_bind
<222>
       (1)..(44)
<223>
<400> 39
aagcttgagc tcggttgatc agaagaagaa gaagaagatg aact
                                                                          44
<210> 40
<211> 653
<212> DNA
<213> Arabidopsis thaliana
```

<220>	
<221> promoter	
<222> (1)(653)	
<223>	
<400> 40	-
gagctcttca ttatttcgat tttgatttcg tgaccagcga acgcagaata ccttgttgtg	60
taatacttta cccgtgtaaa tcaaaaacaa aaaggctttt gagctttttg tagttgaatt	120
tctctggctg atcttttctg tacagattca tatatctgca gagacgatat cattgattat	180
ttgagcttct tttgaactat ttcgtgtaat ttgggatgag agctctatgt atgtgtgtaa	240
actttgaaga caacaagaaa ggtaacaagt gagggaggga tgactccatg tcaaaataga	300
tgtcataaga ggcccatcaa taagtgcttg agcccattag ctagcccagt aactaccaga	360
ttgtgagatg gatgtgtgaa cagtttttt tttgatgtag gactgaaatg tgaacaacag	420
gcgcatgaaa ggctaaatta ggacaatgat aagcagaaat aacttatcct ctctaacact	480
tggcctcaca ttgcccttca cacaatccac acacatccaa tcacaacctc atcatatatc	540
tcccgctaat cttttttct ttgatctttt tttttttgct tattatttt ttgactttga	600
tctcccatca gttcatcttc ttcttcttct tctgatcaac cgagctcaag ctt	653
<210> 41	
<211> 28	
<212> DNA	
<213> Künstliche Sequenz	
<220>	
<222> (1)(28)	
<223>	
400 41	
<400> 41 gagctcactc actgatttcc attgcttg	28
-210 42	
<210> 42	
<211> 30	
<212> DNA	
<213> Künstliche Sequenz	

<220>		
<221>	primer_bind	
<222>	(1)(30)	
<223>		
•		
<400>	42 gagc tctttgttga agagatttgg	30
uugeee	gage terrigiting agagatring	,,,
<210>	43	
<211>	37	
<212>	DNA	
<213>	Künstliche Sequenz	
<220>		
	primer_bind	
	(1)(37)	
<223>		
<400> cgccgt	43 taag tcgatgtccg ttgatttaaa cagtgtc	37
.210		
<210>		
<211> <212>		
	Künstliche Sequenz	
\Z13>	kunstriche sequenz	
<220>		
	primer_bind	
	(1)(34)	
<223>		
<400>	44	
	ggac atcgacttaa cggcgtttgt aaac	34
<210>	45	

```
<212>
       DNA
      Arabidopsis thaliana
<213>
<220>
<221>
       promoter
<222>
      (1)..(783)
<223>
<400> 45
gagctcactc actgatttcc attgcttgaa aattgatgat gaactaagat caatccatgt
                                                                       60
tagtttcaaa acaacagtaa ctgtggccaa cttagttttg aaacaacact aactggtcga
                                                                      120
agcaaaaaga aaaaagagtt tcatcatata tctgatttga tggactgttt ggagttagga
                                                                      180
ccaaacatta tctacaaaca aagacttttc tcctaacttg tgattccttc ttaaacccta
                                                                      240
ggggtaatat tctatttcc aaggatcttt agttaaaggc aaatccggga aattattgta
                                                                      300
atcatttggg gaaacatata aaagatttga gttagatgga agtgacgatt aatccaaaca
                                                                      360
tatatatctc tttcttctta tttcccaaat taacagacaa aagtagaata ttggctttta
                                                                      420
acaccaatat aaaaacttgc ttcacaccta aacacttttg tttactttag ggtaagtgca
                                                                      480
aaaagccaac caaatccacc tgcactgatt tgacgtttac aaacgccgtt aagtcqatqt
                                                                      540
ccgttgattt aaacagtgtc ttgtaattaa aaaaatcagt ttacataaat ggaaaattta
                                                                      600
tcacttagtt ttcatcaact tctgaactta cctttcatgg attaggcaat actttccatt
                                                                      660
tttagtaact caagtggacc ctttacttct tcaactccat ctctctctt ctatttcact
                                                                      720
tctttcttct cattatatct cttgtcctct ccaccaaatc tcttcaacaa agagctcaag
                                                                      780
ctt
                                                                      783
<210>
       46
<211>
       804
<212>
       DNA
<213>
       Synechococcus WH8102
<220>
<221>
      CDS
<222>
       (1)..(804)
<223>
<400>
      46
```

atg Met 1	aaa Lys	acg Thr	aca Thr	aga Arg 5	tct Ser	att Ile	tcg Ser	tgg Trp	cca Pro 10	tcg Ser	act Thr	tgc Cys	tgg Trp	cat His 15	cac His	48
cag Gln	ccg Pro	agt Ser	tgc Cys 20	tca Ser	agc Ser	tgg Trp	gtg val	gca Ala 25	aat Asn	gag Glu	ttc Phe	agc Ser	cct Pro 30	cag Gln	gcc Ala	96
ctc Leu	aaa Lys	ggg Gly 35	ttg Leu	gct Ala	ctg Leu	gct Ala	ggt Gly 40	ctg Leu	att Ile	gga Gly	tca Ser	gcc Ala 45	tgg Trp	ctg Leu	ctc Leu	144
tcc Ser	ctg Leu 50	ggc Gly	ctg Leu	agc Ser	tac Tyr	acc Thr 55	ctg L eu	cca Pro	ctt Leu	gat Asp	cag Gln 60	acg Thr	cct Pro	ggg Gly	ctg Leu	192
ttg Leu 65	att Ile	ggc Gly	agc Ser	ttg Leu	att Ile 70	ctg Leu	ctc Leu	aga Arg	gca Ala	ttt Phe 75	ctg Leu	cac His	acc Thr	ggg Gly	ctg Leu 80	240
ttc Phe	atc Ile	gtt Val	gcc Ala	cac His 85	gat Asp	tcc Ser	atg Met	cac His	gcc Ala 90	agt Ser	ctg Leu	gtt Val	ccg Pro	ggt Gly 95	cat His	288
				cgc Arg												336
				gag Glu												384
				ttc Phe												432
aac Asn 145	atc Ile	cta Leu	gat Asp	tgg Trp	tat Tyr 150	gtt Val	cac His	ttc Phe	atg Met	ggc Gly 155	aac Asn	tat Tyr	ctg Leu	ggc Gly	atg Met 160	480
cgg Arg	caa Gln	ctg Leu	tta Leu	aat Asn 165	cta Leu	agc Ser	tgt Cys	ctt Leu	tgg Trp 170	ctg Leu	gcg Ala	cta Leu	atc Ile	att Ile 175	ctc Leu	528
aac Asn	ggt Gly	tct Ser	gat Asp 180	ctc Leu	cct Pro	gct Ala	cag Gln	atc Ile 185	atg Met	cat His	ctg Leu	ctg Leu	ttg Leu 190	ttc Phe	agc Ser	576
				atc Ile												624
tgg Trp	tta Leu 210	CCC Pro	cac His	cga Arg	cgt Arg	ggg Gly 215	gcc Ala	acg Thr	aca Thr	cga Arg	ccg Pro 220	ggc Gly	gtg Val	aca Thr	acg Thr	672
				ttg Leu												720
				cgt Arg 245												768
				ctt Leu							tga					804

<210> 47

<211> 267

<212> PRT

<213> Synechococcus WH8102

<400> 47

Met Lys Thr Thr Arg Ser Ile Ser Trp Pro Ser Thr Cys Trp His His 10 15

Gln Pro Ser Cys Ser Ser Trp Val Ala Asn Glu Phe Ser Pro Gln Ala 20 25 30

Leu Lys Gly Leu Ala Leu Ala Gly Leu Ile Gly Ser Ala Trp Leu Leu 35 40 45

Ser Leu Gly Leu Ser Tyr Thr Leu Pro Leu Asp Gln Thr Pro Gly Leu 50 60

Leu Ile Gly Ser Leu Ile Leu Leu Arg Ala Phe Leu His Thr Gly Leu 65 70 75 80

Phe Ile Val Ala His Asp Ser Met His Ala Ser Leu Val Pro Gly His 85 90 95

Pro Gly Leu Asn Arg Trp Ile Gly Lys Val Tyr Leu Leu Val Tyr Ala 100 105 110

Gly Leu Ser Tyr Glu Arg Cys Ser Arg Asn His Arg Arg His His Leu 115 120 125

Ala Pro Glu Thr Phe Gln Asp Pro Asp Tyr Gln Arg Cys Thr Asn Asn 130 135 140

Asn Ile Leu Asp Trp Tyr Val His Phe Met Gly Asn Tyr Leu Gly Met 145 150 155 160

Arg Gln Leu Leu Asn Leu Ser Cys Leu Trp Leu Ala Leu Ile Ile Leu 165 170 175

Asn Gly Ser Asp Leu Pro Ala Gln Ile Met His Leu Leu Phe Ser 180 185 190

Val Leu Pro Leu Ile Ile Ser Ser Cys Gln Leu Phe Leu Val Gly Thr 195 200 205

Trp Leu Pro His Arg Arg Gly Ala Thr Thr Arg Pro Gly Val Thr Thr 210 215 220

Arg Ser Leu Ala Leu His Pro Ala Leu Ser Phe Ala Ala Cys Tyr Asn 235 230 235 Phe Gly Tyr His Arg Glu His His Glu Ser Pro Ser Thr Pro Trp Phe 245 250 255 Gln Leu Pro Gln Leu Arg Asn Glu Ser Phe Thr <210> 48 <211> 804 <212> DNA <213> Künstliche Variante <220> <221> CDS (1)..(804) <222> <223> <400> atg aaa acg aca aga tct att tcg tgg cca tcg act tgc tgg cat cac Met Lys Thr Thr Arg Ser Ile Ser Trp Pro Ser Thr Cys Trp His His 1 15 48 cag ccg agt tgc tca agc tgg gtg gca aat gag ttc agc cct cag gcc Gln Pro Ser Cys Ser Ser Trp Val Ala Asn Glu Phe Ser Pro Gln Ala 20 25 30 96 ctc aaa ggg ttg gct ctg gct ggt ctg att gga tca gcc tgg ctc Leu Lys Gly Leu Ala Leu Ala Gly Leu Ile Gly Ser Ala Trp Leu Leu 35 40 45 144 tcc ctg ggc ctg agc tac acc ctg cca ctt gat cag acg cct ggg ctg Ser Leu Gly Leu Ser Tyr Thr Leu Pro Leu Asp Gln Thr Pro Gly Leu 50 55 60 192 ttg att ggc agc ttg att ctg tgg cag acc ttt ctg cac acc ggg ctg Leu Ile Gly Ser Leu Ile Leu Trp Gln Thr Phe Leu His Thr Gly Leu 65 70 75 80 240 ttc atc gtt gcc cac gat tcc atg cac gcc agt ctg gtt ccg ggt cat Phe Ile Val Ala His Asp Ser Met His Ala Ser Leu Val Pro Gly His 85 90 95 288 336 ggc ttg tct tat gag cgt tgt tcc cgc aac cac aga cgt cat cac ctg Gly Leu Ser Tyr Glu Arg Cys Ser Arg Asn His Arg Arg His His Leu 115 120 384

432

gca ccg gag acg ttc cag gat cct gac tac caa cgt tgc acc aat aac Ala Pro Glu Thr Phe Gln Asp Pro Asp Tyr Gln Arg Cys Thr Asn Asn

130	135		140	
aac atc cta gat Asn Ile Leu Asp 145	tgg tat gtt Trp Tyr Val 150	cac ttc atg ggc His Phe Met Gly 155	aac tat ctg ggc atg 48 Asn Tyr Leu Gly Met 160	0
cgg caa ctg tta Arg Gln Leu Leu	aat cta agc Asn Leu Ser 165	tgt ctt tgg ctg Cys Leu Trp Leu 170	gcg cta atc att ctc 52 Ala Leu Ile Ile Leu 175	8.
aac ggt tct gat Asn Gly Ser Asp 180	ctc cct gct Leu Pro Ala	cag atc atg cat Gln Ile Met His 185	ctg ctg ttg ttc agc 57 Leu Leu Leu Phe Ser 190	'6
gtt ctg ccg ttg Val Leu Pro Leu 195	atc atc agt Ile Ile Ser	tcc tgt caa ttg ser Cys Gln Leu 200	ttt cta gtg gga acc 62 Phe Leu Val Gly Thr 205	4
tgg tta ccc cac Trp Leu Pro His 210	cga cgt ggg Arg Arg Gly 215	gcc acg aca cga Ala Thr Thr Arg	ccg ggc gtg aca acg 67 Pro Gly Val Thr Thr 220	'2
cgc agc ctg gct Arg Ser Leu Ala 225	ttg cat cca Leu His Pro 230	gcc ctc tct ttc Ala Leu Ser Phe 235	gca gct tgt tac aac 72 Ala Ala Cys Tyr Asn 240	:0
ttt ggc tat cat Phe Gly Tyr His	cgt gaa cat Arg Glu His 245	cat gaa tcg cct His Glu Ser Pro 250	t tcc aca ccc tgg ttt 76 Ser Thr Pro Trp Phe 255	58
cag ctg cca caa Gln Leu Pro Gln 260	Leu Arg Asn	gaa tca ttc act Glu Ser Phe Thr 265	t tga 80)4
<210> 49				
<21 1> 267				
<211> 267 <212> PRT				
<212> PRT	he Variante			
<212> PRT	he Variante			
<212> PRT <213> Künstlic <400> 49		Ser Trp Pro Ser 10	r Thr Cys Trp His His 15	
<212> PRT <213> Künstlic <400> 49 Met Lys Thr Thr 1	Arg Ser Ile 5	10	r Thr Cys Trp His His 15 u Phe Ser Pro Gln Ala 30	
<212> PRT <213> Künstlic <400> 49 Met Lys Thr Thr 1 Gln Pro Ser Cys 20	Arg Ser Ile 5 Ser Ser Trp	Val Ala Asn Glu 25	u Phe Ser Pro Gln Ala	
<212> PRT <213> Künstlic <400> 49 Met Lys Thr Thr 1 Gln Pro Ser Cys 20 Leu Lys Gly Leu 35	Arg Ser Ile 5 Ser Ser Trp Ala Leu Ala	Val Ala Asn Glu 25 Gly Leu Ile Gly 40	u Phe Ser Pro Gln Ala 30 y Ser Ala Trp Leu Leu	
<212> PRT <213> Künstlic <400> 49 Met Lys Thr Thr 1 Gln Pro Ser Cys 20 Leu Lys Gly Leu 35 Ser Leu Gly Leu 50	Arg Ser Ile S Ser Ser Trp Ala Leu Ala Ser Tyr Thr	Val Ala Asn Glu 25 Gly Leu Ile Gly 40 Leu Pro Leu Asp	u Phe Ser Pro Gln Ala 30 y Ser Ala Trp Leu Leu 45 p Gln Thr Pro Gly Leu 60 e Leu His Thr Gly Leu	

85 90 95

Pro Gly Leu Asn Arg Trp Ile Gly Lys Val Tyr Leu Leu Val Tyr Ala 100 105 110

Gly Leu Ser Tyr Glu Arg Cys Ser Arg Asn His Arg Arg His His Leu 115 120 125

Ala Pro Glu Thr Phe Gln Asp Pro Asp Tyr Gln Arg Cys Thr Asn Asn 130 140

Asn Ile Leu Asp Trp Tyr Val His Phe Met Gly Asn Tyr Leu Gly Met 145 150 150 160

Arg Gln Leu Leu Asn Leu Ser Cys Leu Trp Leu Ala Leu Ile Ile Leu 165 170 175

Asn Gly Ser Asp Leu Pro Ala Gln Ile Met His Leu Leu Leu Phe Ser 180 185 190

Val Leu Pro Leu Ile Ile Ser Ser Cys Gln Leu Phe Leu Val Gly Thr 195 200 205

Trp Leu Pro His Arg Arg Gly Ala Thr Thr Arg Pro Gly Val Thr Thr 210 215 220

Arg Ser Leu Ala Leu His Pro Ala Leu Ser Phe Ala Ala Cys Tyr Asn 225 230 235

Phe Gly Tyr His Arg Glu His His Glu Ser Pro Ser Thr Pro Trp Phe 245 250 255

Gln Leu Pro Gln Leu Arg Asn Glu Ser Phe Thr 260 265

<210> 50

<211> 804

<212> DNA

<213> Künstliche Variante

<220>

<221> CDS

<222> (1)..(804)

<223>

<400> 50

atg Met 1	aaa Lys	acg Thr	aca Thr	aga Arg 5	tct Ser	att Ile	tcg Ser	tgg Trp	cca Pro 10	tcg Ser	act Thr	tgc Cys	tgg Trp	cat His 15	cac His		48
cag Gln	ccg Pro	agt Ser	tgc Cys 20	tca Ser	agc Ser	tgg Trp	gtg Val	gca Ala 25	aat Asn	gag Glu	ttc Phe	agc Ser	cct Pro 30	cag Gln	gcc Ala		96
ctc Leu	aaa Lys	ggg Gly 35	ttg Leu	gct Ala	ctg Leu	gct Ala	ggt Gly 40	ctg Leu	att Ile	gga Gly	tca Ser	gcc Ala 45	tgg Trp	ctg Leu	ctc Leu	•	144
tcc Ser	ctg Leu 50	ggc Gly	ctg Leu	agc Ser	tac Tyr	acc Thr 55	ctg Leu	cca Pro	ctt Leu	gat Asp	cag Gln 60	acg Thr	cct Pro	ggg Gly	ctg Leu	•	192
ttg Leu 65	att Ile	ggc Gly	agc Ser	ttg Leu	att Ile 70	ctg Leu	ctc Leu	aga Arg	gca Ala	ttt Phe 75	ctg Leu	cac His	acc Thr	ggg Gly	ctg Leu 80	7	240
ttc Phe	atc Ile	gtt Val	gcc Ala	cac His 85	gat Asp	tcc ser	atg Met	cac His	gcc Ala 90	agt Ser	ctg Leu	gtt Val	ccg Pro	ggt Gly 95	cat His	;	288
ccc Pro	gga Gly	ttg Leu	aac Asn 100	cgc Arg	tgg Trp	atc Ile	ggc Gly	aaa Lys 105	gtg Val	tat Tyr	ttg Leu	ttg Leu	gtg Val 110	tat Tyr	gca Ala	:	336
ggc Gly	ttg Leu	tct Ser 115	tat Tyr	gag Glu	cgt Arg	tgt Cys	tcc Ser 120	cgc Arg	aac Asn	cac His	aga Arg	cgt Arg 125	cat His	cac His	gga Gly		384
cat His	cct Pro 130	ggt Gly	act Thr	gat Asp	tta Leu	gat Asp 135	cct Pro	gac Asp	tac Tyr	caa Gln	cgt Arg 140	tgc Cys	acc Thr	aat Asn	aac Asn	. ,	432
aac Asn 145	atc Ile	cta Leu	gat Asp	tgg Trp	tat Tyr 150	gtt Val	cac His	ttc Phe	atg Met	ggc Gly 155	aac Asn	tat Tyr	ctg Leu	ggc Gly	atg Met 160		480
cgg Arg	caa Gln	ctg Leu	tta Leu	aat Asn 165	Leu	agc Ser	tgt Cys	ctt Leu	tgg Trp 170	ctg Leu	gcg Ala	cta Leu	atc Ile	att Ile 175	ctc Leu		528
aac Asn	ggt Gly	tct Ser	gat Asp 180	Leu	cct Pro	gct Ala	cag Gln	atc Ile 185	atg Met	cat His	ctg Leu	ctg Leu	ttg Leu 190	Pne	agc Ser		576
gtt val	ctg Leu	ccg Pro 195	Leu	atc Ile	atc	agt Ser	tcc Ser 200	Cys	caa Gln	ttg Leu	ttt Phe	cta Leu 205	va i	gga Gly	acc Thr		624
tgg Trp	tta Leu 210	Pro	cac His	cga Arg	cgt	999 Gly 215	gcc	acg Thr	aca Thr	cga Arg	ccg Pro 220	Gly	gtg val	aca Thr	acg Thr		672
cgc Arg 225	Ser	ctg	gct Ala	ttg Leu	cat His 230	Pro	gcc	ctc	tct Ser	Phe 235	Ala	gct Ala	tgt Cys	tac Tyr	aac Asn 240		720
ttt Phe	ggc	tat Tyr	cat His	cgt Arg 245	Glu	cat His	cat His	gaa Glu	tcg Ser 250	Pro	tcc Ser	aca Thr	ccc Pro	tgg Trp 255	ttt Phe		768
cag	ctg Leu	cca Pro	caa Glr 260	Leu	cga Arg	aat Asn	gaa	tca Ser 265	ttc Phe	act Thr	tga						804

<210> 51

<211> 267

<212> PRT

<213> Künstliche Variante

<400> 51

Met Lys Thr Thr Arg Ser Ile Ser Trp Pro Ser Thr Cys Trp His His 1 10 15

Gln Pro Ser Cys Ser Ser Trp Val Ala Asn Glu Phe Ser Pro Gln Ala 20 25 30

Leu Lys Gly Leu Ala Leu Ala Gly Leu Ile Gly Ser Ala Trp Leu Leu 35 40 45

Ser Leu Gly Leu Ser Tyr Thr Leu Pro Leu Asp Gln Thr Pro Gly Leu 50 60

Leu Ile Gly Ser Leu Ile Leu Leu Arg Ala Phe Leu His Thr Gly Leu 65 70 75 80

Phe Ile Val Ala His Asp Ser Met His Ala Ser Leu Val Pro Gly His 85 90 95

Pro Gly Leu Asn Arg Trp Ile Gly Lys Val Tyr Leu Leu Val Tyr Ala 100 105 110

Gly Leu Ser Tyr Glu Arg Cys Ser Arg Asn His Arg Arg His His Gly 115 120 125

His Pro Gly Thr Asp Leu Asp Pro Asp Tyr Gln Arg Cys Thr Asn Asn 130 135 140

Asn Ile Leu Asp Trp Tyr Val His Phe Met Gly Asn Tyr Leu Gly Met 145 150 150 160

Arg Gln Leu Leu Asn Leu Ser Cys Leu Trp Leu Ala Leu Ile Ile Leu 165 170 175

Asn Gly Ser Asp Leu Pro Ala Gln Ile Met His Leu Leu Phe Ser 180 185 190

Val Leu Pro Leu Ile Ile Ser Ser Cys Gln Leu Phe Leu Val Gly Thr 195 200 205

Trp Leu Pro His Arg Arg Gly Ala Thr Thr Arg Pro Gly Val Thr Thr 210 220

Arg Ser Leu Ala Leu His Pro Ala Leu Ser Phe Ala Ala Cys Tyr Asn 225 230 235 240

Phe Gly Tyr His Arg Glu His His Glu Ser Pro Ser Thr Pro Trp Phe 245 250 255

Gln Leu Pro Gln Leu Arg Asn Glu Ser Phe Thr 260 265

Patentansprüche

- 1. Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Organismen, die im Vergleich zum Wildtyp eine veränderte Ketolase-Aktivität aufweisen, und die veränderte Ketolase-Aktivität durch eine Ketolase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man Organismen verwendet, die als Wildtyp bereits eine Ketolase-Aktivität aufweisen, und die genetische Veränderung eine Erhöhung der Ketolase-Aktivität im Vergleich zum Wildtyp bewirkt.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man zur Erhöhung der Ketolase-Aktivität die Genexpression einer Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, gegenüber dem Wildtyp erhöht.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression Nukleinsäuren in den Organismus einbringt, die Ketolasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man Organismen verwendet, die als Wildtyp keine Ketolase-Aktivität aufweisen und die genetische Veränderung eine Ketolase-Aktivität im Vergleich zum Wildtyp verursacht.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man genetisch veränderte Organismen verwendet, die transgen eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, exprimieren.
- 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass man zur Verursachung der Genexpression Nukleinsäuren in die Organismen einbringt, die Ketolasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- 8. Verfahren nach Anspruch 5 oder 7, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ. ID. NO. 1 einbringt.
- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Organismen zusätzlich gegenüber dem Wildtyp eine erhöhte Aktivität mindestens einer der Aktivitäten, ausgewählt aus der Gruppe Hydroxylase-Aktivität und β-Cyclase-Aktivität, aufweisen.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man zur zusätzlichen Erhöhung mindestens einer der Aktivitäten, die Genexpression mindestens einer Nukleinsäure ausgewählt aus der Gruppe Nukleinsäuren, kodierend eine Hydroxylase, und Nukleinsäuren, kodierend eine β-Cyclase, gegenüber dem Wildtyp erhöht.

- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man zur Erhöhung der Genexpression mindestens eine Nukleinsäure ausgewählt aus der Gruppe, Nukleinsäuren kodierend eine Hydroxylase und Nukleinsäuren kodierend eine β-Cyclase in den Organismus einbringt.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass man als Nukleinsäure, kodierend eine Hydroxylase, Nukleinsäuren einbringt, die eine Hydroxylase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20% auf Aminosäureebene mit der Sequenz SEQ ID NO: 16 aufweist.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 15 einbringt.
- 14. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass man als Nukleinsäure, kodierend eine β-Cyclase, Nukleinsäuren einbringt, die eine β-Cyclase kodieren, enthaltend die Aminosäuresequenz SEQ ID NO: 18 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20% auf Aminosäureebene mit der Sequenz SEQ ID NO: 18 aufweist.
- 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO: 17 einbringt.
- 16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass man nach dem Kultivieren die genetisch veränderten Organismen erntet und anschließend die Ketocarotinoide aus den Organismen isoliert.
- 17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet daß man als Organismus einen Organismus verwendet, der als Ausgangsorganismus natürlicherweise oder durch genetische Komplementierung oder Umregulierung von Stoffwecheselwegen in der Lage ist, Carotinoide herzustellen.
- 18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß man als Organismen Mikroorganismen oder Pflanzen verwendet.
- 19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß man als Mikroorganismen Bakterien, Hefen, Algen oder Pilze verwendet.
- 20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die Mikroorganismen ausgwählt sind aus der Gruppe Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc, Cyanobakterien der Gattung Synechocystis, Candida, Saccharomyces, Hansenula, Phaffia, Pichia, Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium, Haematococcus, Phaedactylum tricomatum, Volvox oder Dunaliella.
 - 21. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß man als Organismus Pflanzen verwendet.
- 22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze, ausgewählt aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Brassiceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae, Malvaceae, Illiaceae oder Lamiaceae verwendet.
- 23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze, ausgewählt aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtria, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Labumum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola

oder Zinnia verwendet.

- 24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die Ketocarotinoide ausgewählt sind aus der Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.
- 25. Genetisch veränderter Organismus, wobei die genetische Veränderung die Aktivität einer Ketolase A für den Fall, dass der Wildtyporganismus bereits eine Ketolase-Aktivität aufweist, gegenüber dem Wildtyperhöht und
- B für den Fall, dass der Wildtyporganismus keine Ketolase-Aktivität aufweist, gegenüber dem Wildtyp verursacht
- und die nach A erhöhte oder nach B verursachte Ketolase-Aktivität durch eine Ketolase verursacht wird, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- 26. Genetisch veränderter Organismus nach Anspruch 25, dadurch gekennzeichnet, dass die Erhöhung oder Verursachung der Ketolase-Aktivität durch eine Erhöhung oder Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist, gegenüber dem Wildtyp bewirkt wird.
- 27. Genetisch veränderter Organismuse nach Anspruch 26, dadurch gekennzeichnet, dass man zur Erhöhung oder Verursachung der Genexpression Nukleinsäuren in den Organismus einbringt, die Ketolasen kodieren, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- 28. Genetisch veränderter Organismus, enthaltend mindestens eine transgene Nukleinsäure, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- 29. Genetisch veränderter Organismus, enthaltend mindestens zwei endogene Nukleinsäuren, kodierend eine Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 42% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 2 aufweist.
- 30. Genetisch veränderter Organismus nach einem der Ansprüche 25 bis 29, dadurch gekennzeichnet, dass die genetische Veränderung zusätzlich mindestens eine der Aktivitäten, ausgewählt aus der Gruppe Hydroxlase-Aktivität und β-Cyclase-Aktivität gegenüber dem Wildtypp erhöht.
- 31. Genetisch veränderter Organismus nach einem der Ansprüche 25 bis 30, dadurch gekennzeichnet daß er als Ausgangsorganismus natürlicherweise oder durch genetische Komplementierung in der Lage ist, Carotinoide herzustellen.
- 32. Genetisch veränderter Organismus nach einem der Ansprüche 25 bis 31, ausgewählt aus der Gruppe Mikroorganismen oder Pflanzen.
- 33. Genetisch veränderter Mikroorganismus nach Anspruch 32, dadurch gekennzeichnet, daß die Mikroorganismen ausgewählt sind aus der Gruppe Bakterien, Hefen, Algen oder Pilze.
- 34. Genetisch veränderter Mikroorganismus nach Anspruch 33, dadurch gekennzeichnet, daß die Mikroorganismen ausgwählt sind aus der Gruppe Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Paracoccus, Nostoc, Cyanobakterien der Gattung Synechocystis, Candida, Saccharomyces, Hansenula, Pichia, Aspergillus, Trichoderma, Ashbya, Neurospora, Blakeslea, Phycomyces, Fusarium, Haematococcus, Phaedactylum tricomatum, Volvox oder Dunaliella.
 - 35. Genetisch veränderte Pflanze nach Anspruch 32, dadurch gekennzeichnet, dass die Pflanzen ausge-

wählt sind aus den Familien Ranunculaceae, Berberidaceae, Papaveraceae, Cannabaceae, Rosaceae, Fabaceae, Linaceae, Vitaceae, Brassiceae, Cucurbitaceae, Primulaceae, Caryophyllaceae, Amaranthaceae, Gentianaceae, Geraniaceae, Caprifoliaceae, Oleaceae, Tropaeolaceae, Solanaceae, Scrophulariaceae, Asteraceae, Liliaceae, Amaryllidaceae, Poaceae, Orchidaceae, Malvaceae, Illiaceae oder Lamiaceae verwendet.

- 36. Genetisch veränderte Pflanze nach Anspruch 35, dadurch gekennzeichnet, dass Pflanzen ausgewählt sind aus den Pflanzengattungen Marigold, Tagetes erecta, Tagetes patula, Acacia, Aconitum, Adonis, Arnica, Aqulegia, Aster, Astragalus, Bignonia, Calendula, Caltha, Campanula, Canna, Centaurea, Cheiranthus, Chrysanthemum, Citrus, Crepis, Crocus, Curcurbita, Cytisus, Delonia, Delphinium, Dianthus, Dimorphotheca, Doronicum, Eschscholtzia, Forsythia, Fremontia, Gazania, Gelsemium, Genista, Gentiana, Geranium, Gerbera, Geum, Grevillea, Helenium, Helianthus, Hepatica, Heracleum, Hisbiscus, Heliopsis, Hypericum, Hypochoeris, Impatiens, Iris, Jacaranda, Kerria, Laburnum, Lathyrus, Leontodon, Lilium, Linum, Lotus, Lycopersicon, Lysimachia, Maratia, Medicago, Mimulus, Narcissus, Oenothera, Osmanthus, Petunia, Photinia, Physalis, Phyteuma, Potentilla, Pyracantha, Ranunculus, Rhododendron, Rosa, Rudbeckia, Senecio, Silene, Silphium, Sinapsis, Sorbus, Spartium, Tecoma, Torenia, Tragopogon, Trollius, Tropaeolum, Tulipa, Tussilago, Ulex, Viola oder Zinnia verwendet.
- 37. Verwendung der genetisch veränderten Organismen nach einem der Ansprüche 25 bis 36 als Futteroder Nahrungsmittel.
- 38. Verwendung der genetisch veränderten Organismen nach einem der Ansprüche 25 bis 36 zur Herstellung von Ketocarotinoid-haltigen Extrakten oder zur Herstellung von Futter- und Nahrungsergänzungsmittel.
- 39. Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 8 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 8 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 4 nicht enthalten ist.
- 40. Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 6 aufweist.
- 41. Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 12 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 12 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 6 nicht enthalten ist.
- 42. Ketolase, enthaltend die Aminosäuresequenz SEQ. ID. NO. 49 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 49 aufweist, mit der Maßgabe, dass die Aminosäuresequenzen SEQ ID NO: 47 nicht enthalten ist.
- 43. Nukleinsäure, kodierend ein Protein gemäß einem der Ansprüche 39 bis 42, mit der Maßgabe, dass die Sequenz SEQ ID NO: 5 nicht enthalten ist.
- 44. Verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO. 4 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 70% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 4 und die Eigenschaft einer Ketolase aufweist, als Ketolase.
- 45. Verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO. 6 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 65% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 6 und die Eigenschaft einer Ketolase aufweist, als Ketolase.
- 46. Verwendung eines Proteins, enthaltend die Aminosäuresequenz SEQ. ID. NO. 47 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 50% auf Aminosäureebene mit der Sequenz SEQ. ID. NO. 47 und die Eigenschaft einer Ketolase aufweist, als Ketolase.

Es folgen 6 Blatt Zeichnungen

Anhängende Zeichnungen

Abbildung 5

Abbildung 6

THIS PAGE BLANK (USPTO)