EGENSKAPER HOS DUBBELINTEGRALER.

Vi antar att f och g ar **begränsade** och **integrerbara** funktioner på givna mätbara (kvadrerbara) områden och att a, b ar konstanter. Då gäller:

E1.
$$\iint_D f(x,y)dxdy = 0$$
 om arean(D) =0 (dvs. om D är en nollmängd)

E2i.
$$\iint_D 1 dxdy = arean(D)$$

E2ii.
$$\iint_D a \, dx dy = a \cdot arean(D)$$

E3. Om
$$f(x,y) \le 0$$
 då är $\iint_D f(x,y) dx dy \le 0$

E4i. Om
$$f(x,y) \ge 0$$
 då är $\iint_D f(x,y) dx dy \ge 0$

I detta fall (alltså endast om f(x, y) är en icke-negativ funktion)

gäller

$$Volymen(K) = \iint_D f(x,y)dxdy$$

där $K = \{(x, y, z): (x, y) \in D, 0 \le z \le f(x, y)\}$ d.v.s. K består av punkter som ligger mellan definitionsmängden D och ytan z = f(x, y) (se bilden ovan).

E4ii. Om kroppen K består av punkter som ligger ovanpå D mellan två ytor

$$f_1(x,y)$$
 och $f_2(x,y)$ där $f_1(x,y) \le f_2(x,y)$ dvs

$$f_1(x,y)$$
 och $f_2(x,y)$ där $f_1(x,y) \le f_2(x,y)$ dvs $K = \{(x,y,z)\colon (x,y)\in D, \quad f_1(x,y)\le z\le f_2(x,y)\}$ då gäller

$$Volymen(K) = \iint_{D} [f_{2}(x,y) - f_{1}(x,y)] dxdy$$

E5. (monotonicitet)

Om
$$f(x,y) \le g(x,y)$$
 för alla $(x,y) \in D$ då är $\iint_D f(x,y) dx dy \le \iint_D g(x,y) dx dy$

E6.

$$\left|\iint_{D} f(x,y)dxdy\right| \leq \iint_{D} |f(x,y)|dxdy$$

E7. (additivitet)

$$\iint\limits_{D_1 \cup D_2} f(x,y) dx dy = \iint\limits_{D_1} f(x,y) dx dy + \iint\limits_{D_2} f(x,y) dx dy \ om \ D_1 \ och \ D_2 \ \ddot{a}r \ disjunkta.$$

E8. (linearitet)

$$\iint_{D} (af(x,y) + bg(x,y)) dxdy = a \iint_{D} f(x,y) dxdy + b \iint_{D} g(x,y) dxdy$$

Uppgift 1. Bestäm värdet av integralen

- a) $\iint_D \sin(x^2 + 3y^2) dxdy$ där D är sträckan mellan punkterna A(0.0) och B(1,1).
- b) $\iint_D e^{(5x^2+3y^2)} dxdy$ där D är cirkellinjen $\{(x,y), x^2+y^2=1\}$. (Lägg märke till att D består av de punkter som ligger på cirkellinjen $x^2+y^2=1$ och **inte** på hela cirkelskivan. Därmed är arean(D)=0)

Lösning: a)

Eftersom arean(D)=0 har vi, enligt egenskapen **E1** att $\iint_D \sin(x^2 + 3y^2) dx dy = 0$.

b)
$$\iint_D e^{(5x^2 + 3y^2)} dx dy = 0$$
 eftersom arean(D) =0

Uppgift 2. Bestäm och rita en integrationsmängd D så att integralen

$$\iint_D (4-x^2-y^2) dx dy$$
 blir störst. (Du behöver inte beräkna integralen.)

Tips. Använd egenskaper E3, E4 och E7.

Lösning: Vi väljer det största område där integranden $4 - x^2 - y^2 \ge 0$.

$$4 - x^2 - y^2 \ge 0 \Rightarrow x^2 + y^2 \le 4$$

Alltså väljer vi D = cirkeln som definieras av $x^2 + y^2 \le 4$.

Förklaring:

Låt E vara ett godtyckligt integrationsområde och $f(x, y) = 4 - x^2 - y^2$.

Vi ska visa att

$$\iint\limits_{\mathbb{R}} f(x,y)dxdy \ge \iint\limits_{\mathbb{R}} f(x,y)dxdy$$

i) Först antar vi att Eär en delmängd av D.

Då gäller $D=E \cup F$ (där $F=D \setminus E$ se nedanstående figur) och , enligt E7,

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{E} f(x,y)dxdy + \iint\limits_{F} f(x,y)dxdy$$

Eftersom $f(x,y) \ge 0$ på D är alla ovanstående integraler icke-negativa (egenskap **E4**) och därför är

$$\iint\limits_{D} f(x,y)dxdy \ge \iint\limits_{E} f(x,y)dxdy$$

ii) Allmänt fall. Låt E vara ett godtyckligt integrationsområde.

och
$$E_1 = E \cap D$$
, $E_2 = E \setminus E_1$
Då är $E = E_1 U E_2$ (se figuren) och

$$\iint\limits_{E} f(x,y)dxdy = \iint\limits_{E_{1}} f(x,y)dxdy + \iint\limits_{E_{2}} f(x,y)dxdy$$

 $\operatorname{där} f(x, y) \ge 0$ om (x, y) ligger i E_1 och

 $f(x,y) \le 0$ om (x,y) ligger i E_2 .

Därför $\iint_{E_1} f(x,y) dx dy \ge 0$ och $\iint_{E_2} f(x,y) dx dy \le 0$ som medför att

$$\iint\limits_{E} f(x,y) dx dy \leq \iint\limits_{E_{1}} f(x,y) dx dy \leq (enligt \, i) \leq \iint\limits_{D} f(x,y) dx dy$$

Vi har därmed visat att $\iint_D f(x,y)dxdy \ge \iint_E f(x,y)dxdy$ för ett godtyckligt integrationsområde E.

Alltså $\iint_D f(x,y)dxdy$ är störst om vi väljer D så att D består av de punkter som satisfierar olikheten

$$f(x,y) \geq 0$$

Anmärkning. Ovanstående lösning är inte entydig. Om K är en mängd som har arean =0 (så kallade nollmängd)

och $D' = D \setminus K$ (eller $D' = D \cup K$) så har dubbelintegral över D' samma värde som dubbelintegral över D.

Uppgift 3. Bestäm och rita en integrationsmängd D så att integralen. $\iint_D (1 - \frac{x^2}{9} - \frac{y^2}{4}) dx dy$ blir störst. (Du behöver inte beräkna integralen.)

Svar:
$$1 - \frac{x^2}{9} - \frac{y^2}{4} \ge 0 \Rightarrow \frac{x^2}{9} + \frac{y^2}{4} \le 1$$

dvs D är det elliptiskt område som definieras av $\frac{x^2}{9} + \frac{y^2}{4} \le 1$. (Samma förklaring som i Uppgift 2.)

Uppgift 3. a) Bestäm och rita en integrationsmängd D som ligger inuti kvadraten K

$$-1 \le x \le 1$$
, $-1 \le y \le 1$

så att integralen $\iint_D (y - x^2) dx dy$ blir störst.

b) Beräkna integralen för detta D.

Svar a) D består av de punkter som ligger i kvadraten K och som satisfierar

$$y - x^2 \ge 0$$
 eller $y \ge x^2$ (Samma förklaring som i Uppgift 2.)

b)

$$\int_{-1}^{1} dx \int_{x^{2}}^{1} (y - x^{2}) dy = \int_{-1}^{1} \left[\frac{y^{2}}{2} - x^{2} y \right]_{x^{2}}^{1} dx = \int_{-1}^{1} \left[\frac{1}{2} - x^{2} + \frac{x^{4}}{2} \right] dx = \frac{8}{15}$$

Uppgift 4. Om vi vet att $\iint_D f(x,y)dxdy = 38$ där **D** är (sluten) kvadrat $0 \le x \le 2$, $0 \le y \le 2$ bestäm $\iint_E f(x,y)dxdy$ då **E** definieras av

- a) 0 < x < 2, 0 < y < 2 (öppen mängd),
- b) $0 \le x < 2$, $0 \le y < 2$ (varken öppen eller sluten mängd),

Lösning a) Skillnaden mellan mängderna D och E består av randpunkter som vi betecknar med R dvs $R = D \setminus E$. Då är arean(R)=0 och därför $\iint_R f(x,y)dxdy = 0$.

 $D = E \cup R$, arean R = 0.

Vi har

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{E} f(x,y)dxdy + \iint\limits_{R} f(x,y)dxdy = \iint\limits_{E} f(x,y)dxdy + 0 = \iint\limits_{E} f(x,y)dxdy$$

Alltså $\iint_E f(x,y)dxdy = \iint_D f(x,y)dxdy = 38$ (enligt antagande)

Svar a) 38

b)

 $D = E \cup R$, arean R = 0.

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{E} f(x,y)dxdy + \iint\limits_{R} f(x,y)dxdy = \iint\limits_{E} f(x,y)dxdy + 0 = \iint\limits_{E} f(x,y)dxdy$$

Alltså $\iint_E f(x,y)dxdy = \iint_D f(x,y)dxdy = 38$ (enligt antagande)

Svar b) 38

Uppgift 5. Beräkna volymen av den kropp som definieras av

a)
$$K = \{(x, y, z): 0 \le x \le 1, 0 \le y \le 2, 0 \le z \le e^{3x+2y+1} \}$$

b)
$$K = \{(x, y, z): 0 \le x \le 1, 0 \le y \le 2, e^x + 2x + 3y + 1 \le z \le e^x + 2x + 3y + 5\}$$

Svar:

a) Funktionen $z = f(x, y) = e^{3x+2y+1}$ är icke-negativ på D. Därför

$$Volymen(K) = \iint_{D} f(x,y)dxdy = \int_{0}^{1} dx \int_{0}^{2} e^{3x+2y+1} dy = \dots = \frac{1}{6} e^{-\frac{1}{6}} e^{-\frac{1}{6$$

b) Vi betecknar
$$f_1(x, y) = e^x + 2x + 3y + 1$$
, $f_2(x, y) = e^x + 2x + 3y + 5$

Kroppen K ligger mellan två ytor $f_1(x,y)$ och $f_2(x,y)$ där $f_1(x,y) < f_2(x,y)$ på D.

$$Volymen(K) = \iint_{D} [f_{2}(x,y) - f_{1}(x,y)] dxdy = \iint_{D} 4dxdy = 4 Arean(D) = 4 \cdot 2 = 8$$

Ovanstående egenskaper kan enkelt bevisas med hjälp av dubbelintegralens definition (Riemannsummor). Som ett exempel bevisar vi E2 i nedanstående uppgift.

Uppgift 6. Bevisa ovanstående egenskap E2:

$$\iint_D 1 \, dx dy = arean(D) \, .$$

Bevis:

Enligt antagande är f(x, y) = 1 för $(x, y) \in D$. Vi delar integrationsområde (definitionsområde) D i ändligt antal mätbara, ej överlappande, delmängder D_i och i varje D_i väljer en godtycklig punkt (x_i, y_i) .

För tillhörande Riemannsumma gäller

$$\sum_{i} f(x_i, y_i) Arean(D_i) = \sum_{i} 1 \cdot Arean(D_i) = \sum_{i} Arean(D_i) = Arean(D)$$

Alltså har varje Riemannsumma konstant värde = Arean(D).

Därför dubbelintegral har också samma värde Arean(D).

$$\iint\limits_{D} f(x,y) \, dxdy \stackrel{\text{def}}{=} \lim_{\substack{\max diam(D_i) \to 0}} \sum_{i} f(x_i, y_i) Arean(D_i)$$

 $\lim_{\max_i diam(D_i) \to 0} \sum_i 1Arean(D_i) = \lim Arean(D) = arean(D)$, vad skulle bevisas.