1 Experimento com Sinais

Com sinais de ECG e sEMG posicionamos em cada coluna de uma matriz um pulso do sinal de ECG ou uma bulha do EMG dinâmico. Na matriz de dados: separar 70% para cálculo de T e 30% das realizações para testes.

O principal objetivo é fazer a análise de componentes principais. Obter a matriz da transformada de Kahunen-Loève. Alguns resultados esperados:

- Observar visualmente a concentração da informação em poucos coeficientes.
- Quantificar l_0 (qtd. não nulos), l_1 (soma dos módulos)
- Fazer um experimento de compressão de sinais por transformadas:
 - Calcular differentes transformadas do vetor de teste (DFT, DCT, DST, DWT);
 - Zerar os N_b com $N_a = N N_b$ coeficientes de menor magnitude;
 - Obter a transformada inversa;
 - Computar a relação sinal-erro (SER);
 - Plotar a relação SER em função de N_a .

2 Processos Estocásticos em Domínio Contínuo e em Domínio Discreto de Duração Infinita

Considere um experimento aleatório cujos resultados possíveis são elementos do espaço amostral S. Um processo Estocástico \mathbf{X} é uma função que associa resultados do experimento a sinais em tempo contínuo ou discreto:

$$\mathbf{X}: S \to E_s$$

com E_s é um espaço de sinais.

Por exemplo, podemos ter E_s como o conjuntos de todos os sinais em tempo contínuo $x_c: \mathbb{R} \to \mathbb{R}$

Podemos ter ainda E_s como o conjunto de todos os sinais em tempo discreto $x: \mathbb{Z} \to R$. Por fim, podemos ter ainda E_s como o conjunto de todos os sinais em tempo discreto com duração $N: x: \{0,1,2,3,\ldots,N\} \to \mathbb{R}$. É idêntico (isometria) ao caso do vetor aleatório estabelecido anteriormente.

2.1 Observaç $ilde{a}$ o

Dado um processo estocástico em tempo contínuo, podemos definir uma função que atua sobre cada sinal E_s , gerando um novo sinal, ou um vetor, ou um único número:

- ullet $g:E_s \to E_s^{'}$ um novo espaço de sinais
- $g: E_s \to \mathbb{R}^N$ espaço de vetores N-dimensionais
- $g: E_s \to \mathbb{R}$ conjunto de números

Essas funções induzem um novo processo aleatório $Y = g(\mathbf{X}_c)$.