

Deep Learning Domain Adaptation

Vasileios Ilias Drouzas Giannis Trantalidis

Professor: Themos Stafylakis

Contents

- ➤ Domain Adaptation
- ➤ Datasets: MNIST, SVHN, USPS
- > Pre-processing
- ➤ Simple CNN
- > DANN
- **≻**CORAL
- > ADDA
- ➤ Benchmarking Results
- ➤ Baseline scores
- ➤ Conclusions & Future Work

Datasets - MNIST

- ***MNIST**
- Collection of handwritten digits
- 60000 examples
- Centered digits
- Grayscale images

Datasets - SVHN

- **SVHN** (Street View House Numbers)
- House Numbers
- ♦32 x 32 pixels RGB
- *73257 examples
- Non-centered digits
- ***3 RGB channels**

Label: 1 Label: 9 Label: 2 Label: 3 Label: 2
Label: 5 Label: 2 Label: 1 Label: 0 Label: 6

Datasets - USPS

- **&** U.S. Postal Service
- Digit dataset automatically scanned from envelopes
- ♦16×16 pixel grayscale images
- \$9,298 samples

Pre - processing

- ❖Padded the MNIST images to 32x32 in order to match SVHN's dimensions
- MNIST: Repeat the single grayscale channel three times to create a 3-channel image
- ♦ Normalize to [-1,1]

Algorithms

Simple CNN (Source only)

- We start with a very simple convolutional neural network with:
 - A convolutional layer: input 3 channels, output 16 channels, 3x3 kernel
 - Max pooling layer
 - Fully connected layer
- CrossEntropyLoss
- Adam optimizer (learning rate: 0.001)

DANN (2014)

- Learn domain-invariant features
- Feature Extractor extracts features from input data.
- Domain classifier that encourages the feature extractor to produce features that are indistinguishable between source and target domains. (Using Gradient Reversal Layer after the feature extractor)

DANN (1/2)

- Feature Extractor
 - Convolutional layers
 - > ReLU activations
 - Max pooling layers
 - Batch Normalization
- Label Classifier
 - > Fully Connected Layers (classification)
 - ReLU activations
 - Batch Normalization
 - Output layer

10

DANN (2/2)

- Domain Classifier
 - Gradient Reversal layer
 - > Fully Connected layers
 - Sigmoid Activation function
 - Batch Normalization

DANN: Examples of wrong predictions

CORAL

- Deep CORAL loss (minimizes domain shift)
- Aligns covariances of source & target domains
- Squared frobenius norm between batch covariances
- Normalize the loss

$$\ell_{CORAL} = \frac{1}{4d^2} \|C_S - C_T\|_F^2$$

ADDA (2017)

- 1. Pre-train a source encoder CNN
- 2. Adversarial adaptation by learning a target encoder CNN such that a discriminator cant distinguish source vs target encoding

Discriminator trained to distinguish source vs target features - target encoder updates weights so that

Benchmarking - Results

Algorithm	MNIST → SVHN	SVHN → MNIST	MNIST → USPS	USPS → MNIST
Source Only	20.96%	51.63%	58.15%	32.50%
DANN	23.91%	66.71%	87.74%	76.66%
CORAL	22.87%	62.96%	86.35%	62.82%

State-of-the-art scores

Methods	Source Target	MNIST USPS	USPS MNIST	SVHN MNIST	MNIST SVHN
Source Only		78.9	57.1±1.7	60.1±1.1	20.23±1.8
w/o augmentation					
CORAL [43]		81.7	-	63.1	-
MMD [48]		81.1	-	71.1	-
DANN [10]		85.1	73.0 ± 2.0	73.9	35.7
DSN [2]		91.3	-	82.7	-
CoGAN [25]		91.2	89.1 ± 0.8	-	-
ADDA [49]		89.4 ± 0.2	90.1 ± 0.8	76.0 ± 1.8	-
DRCN [11]		91.8 ± 0.1	73.7 ± 0.1	82.0 ± 0.2	40.1 ± 0.1
ATT [37]		-	-	86.20	52.8
ADA [13]		-	-	97.6	-
AutoDIAL [3]		97.96	97.51	89.12	10.78
SBADA-GAN [35]		97.6	95.0	76.1	61.1
GAM [16]		95.7 ± 0.5	98.0 ± 0.5	74.6 ± 1.1	-
MECA [32]		-	-	95.2	-
DWT		99.09 ±0.09	98.79 ±0.05	97.75 ±0.10	28.92 ± 1.9
Target Only		96.5	99.2	99.5	96.7

Source:

https://arxiv.org/pdf/190 3.03215v2