目录

第	一部分	数列的极限	2
第	二部分	函数的极限	3
第	三部分	极限运算法则	4
1	若 $f(x)>$	$g(x)$, 则 $\lim f(x) \ge \lim g(x) \leftarrow$ 注意: 是大于等于 \geqslant !	4
第	四部分	极限的规律	4
2	2.1 对于2.2 对于	顶的最高次数" >分母上"项的最高次数",则该分式的极限= ∞ . 反之,则极限=0 $\frac{a \cdot x^m}{b \cdot x^n}$,若 $m > n$,即:分子的值 >分母的值.则函数极限值 = ∞	5
第	五部分	几个重要的极限	6
3	$\lim_{x\to 0} \frac{\sin x}{\sin x}$	$\frac{\ln x}{x} = 1$	6
4	$\lim_{x\to\infty} (1$	$(1+\frac{1}{x})^x = e$	6
5	$\lim_{x\to 0} (1$	$+x)^{\frac{1}{x}} = e$	7

函数

2022年12月7日

第一部分 数列的极限

即: 给定①任意一个极小值 ε , ②一个确定的极限值L, ③一个数列 x_i (里面的元素值不断变小). \rightarrow 则随着数列 x_i 中item的增长, 必定会有一个 item项(比如第n项),该"item项的值 x_n "与"极限值L"的距离,必定会小于"极小值 ε "与"极限值L"之间的距离 (这个距离其实就是 ε 本身).

例

有数列 $x_n=\frac{(-1)^n}{(n+1)^2}$ 的极限是0. 问: 该数列取到哪一项item 时, 它与"极限0"之间的距离, 就小于"任意小的数 ϵ "了呢?

即,问的就是:该数列与0之间的距离,要小于ε.

$$\left| 数列 \frac{(-1)^n}{(n+1)^2} - 极限值0 \right| < \varepsilon$$

$$\left| \frac{1}{(n+1)^2} \right| < \varepsilon$$

$$(n+1)^2 > \frac{1}{\varepsilon}$$

$$n+1 > \frac{1}{\sqrt{\varepsilon}}$$

$$n > \frac{1}{\sqrt{\varepsilon}} - 1$$

为了保证n 为正数(而非有小数点), n就取 $\left(\frac{1}{\sqrt{\varepsilon}}-1\right)+1$

第二部分 函数的极限

第三部分 极限运算法则

$$\lim(x \pm y) = \lim x \pm \lim y$$
$$\lim(x \cdot y) = \lim x \cdot \lim y$$

$$\begin{split} & \lim(\frac{x}{y}) = \frac{\lim x}{\lim y} \\ & \lim(常数C \cdot y) = 常数C \cdot \lim y \end{split}$$

$$\lim y^n = (\lim y)^n$$
$$\lim y^{\frac{1}{n}} = (\lim y)^{\frac{1}{n}}$$

 $\lim(常数C) = 常数C$

1 若 f(x)>g(x), 则 $\lim f(x) \ge \lim g(x) \leftarrow$ 注意: 是大于等于 \ge !

这个定理也就是说: 虽然一个函数, 可能大于另一个函数, 但它们的极限, 是有可能相等的.

第四部分 极限的规律

- 2 分子上"项的最高次数" >分母上"项的最高次数",则该分式的极限= ∞.反 之,则极限=0
- 一个函数若是"分数" $\frac{a \cdot x^m}{b \cdot x^n}$, 则其极限, 只看它分子分母上的"最高次数"的情况:
- 2.1 对于 $\frac{a \cdot x^m}{b \cdot x^n}$, 若 m >n, 即: 分子的值 >分母的值. 则函数极限值 = ∞
- 2.2 对于 $\frac{a \cdot x^m}{b \cdot x^n}$, 若 m=n, 则函数极限值 = $\frac{a}{b}$

例

$$\lim_{x\to\infty}\frac{3x^3+4x^2+2}{7x^3+5x^2-3}=\lim_{x\to\infty}\frac{\frac{3x^3+4x^2+2}{x^3}}{\frac{7x^3+5x^2-3}{x^3}}=\lim_{x\to\infty}\frac{3+\frac{4}{x}+\frac{2}{x^3}}{7+\frac{5}{x}-\frac{3}{x^3}}=\frac{3+0-0}{7-0+0}=\frac{3}{7}$$

$$\lim_{x\to\infty}\frac{3x^3+4x^2+2}{7x^3+5x^2-3}=\lim_{x\to\infty}\frac{3+\frac{4}{x}+\frac{2}{x^3}}{7+\frac{5}{x}-\frac{3}{x^3}}=\frac{3+0-0}{7-0+0}=\frac{3}{7}$$

规律: 当满足① $x\to\infty$, ②分子分母的最高次的次数相同, 比如本例最高都是 x^3 次, 则: 极限值, 就取分子分母最高次的系数之比. 如本例就取 $\frac{3x^3}{7x^3}$ 的系数, 即 3/7 , 这个就是极限值了.

2.3 对于 $\frac{a \cdot x^m}{b \cdot x^n}$, 若 n >m, 即: 分子的值 <分母的值. 则函数极限值=0

例

$$\lim_{x \to \infty} \frac{3x^2 - 2x - 1}{2x^3 - x^2 + 5} = \lim_{x \to \infty} \frac{\frac{3x^2 - 2x - 1}{x^3}}{\frac{2x^3 - x^2 + 5}{x^3}} = \lim_{x \to \infty} \frac{\frac{\frac{3}{x} + \frac{2}{x^2} - \frac{1}{x^3}}{2 - \frac{1}{x} + \frac{5}{x^3}}}{\frac{2}{x^3 - x^2 + 5}} = \frac{0 + 0 - 0}{2 - 0 + 0} = 0$$

$$\lim_{x \to \infty} \frac{3x^2 - 2x - 1}{2x^3 - x^2 + 5} = \lim_{x \to \infty} \frac{\frac{3x^2 - 2x - 1}{x^3}}{2 - \frac{1}{x} + \frac{5}{x^3}} = \frac{0 + 0 - 0}{2 - 0 + 0} = 0$$

规律: 当满足① $x \to \infty$, ②分母的最高次的次数, 要比分子的最高次次数还大时, 比如本例"分母的最高次次数"是 x^3 , 而"分子的最高次次数"只有 x^2 , 则: 极限就是0.

第五部分 几个重要的极限

$$3 \quad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

其实, 它的骨架本质, 是这种形式的: $\lim_{\square \to 0} \frac{\sin}{\square}$

$$4 \quad \lim_{x \to \infty} (1 + \frac{1}{x})^x = e$$

这个公式其实就是"复利"的终值计算公式: $\lim_{n\to\infty}(1+\frac{1}{n})^n=e\approx 2.71828$

注意: 该公式的本质是: $\lim_{n\to\infty} (1+\frac{1}{\square})^\square = e$. \leftarrow 即两个"方框 \square "处的数字必须完全相同! 注意: 使用该极限公式时, 中间必须是加号+. 如果题目给出的不是加号, 你也要把它先变换成加号.

即:

这里必须是加号
$$\frac{\mathrm{ion}}{x}(1+\frac{1}{x})^x=e$$
 ion ion

$$5 \quad \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$