X	Dimension Reduction:	
	$\begin{array}{ccc} & & & & \\ & &$,
	$\mathcal{R}^d \longrightarrow \mathcal{R}^k$	d >> K
	We want to preserve the structure in a	the data: e.g. distance pairwise
*	SVD, or Singular Value Decomposition A = U \(\sum_{mxn} \) T mxn mxm mxn nxn	1
•	orthogonal orthogonal	Eigenvalue and Eigenvector
	$A = U \geq V^{T}$	Eigenvector
	mxn mxm mxn nxn	$A \times = \lambda \times $
		"only for square matrix" A = Vdiag(1) V- eigen eigen eigen vdues
X	SVD and rank-k approximation.	V
	A = 1/ \(\sim \)	
	MXK KXX KXN	2
	MXK KXK KXh comp. PC-A [Thitipp] A priging	LAxis 2
/		Principal Component I
Exam Gare	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 4 \end{bmatrix}$	<u>*</u>
∾ [$[1,2,4]$ W/ $[\frac{1}{2}]$ as lassis.	M) INFAD Cidence
	1/3 Cost. Project high dim to low-din	- A SUISPAIK

Correlated ft -> Uncorrelated ft
$\overline{x}_i - (\overline{v} \cdot \overline{x}_i) \cdot \overline{V}$
V.X: Let V, Vz Vd be the d principal components
$V_i \cdot V_i = I$
Assume data is centered,
$ \int_{M} \left\{ \left[\left \left \right \right \right] \right\}_{M \times n}, X_{1} \cdots X_{n} \in \mathbb{R}^{m} $
(Objective): Final vector that maximizes sample variance of
the projected data.
$\sum_{i=1}^{\infty} (V^{T} x_{i})^{2} = V \times X^{T} V$
$\Rightarrow max v^T x x^T v$
v s.t. $v^T v = 1$
Laprangian: max vtxxtv-xvtv
$\frac{d}{dv} = 0 \qquad \text{fxx} v - \lambda v = 0$
$(xx^{T} - \lambda L)\nu = 0$
$(\times \times^T) V = \lambda V$ So V are eigenvectors.
$A \times = \lambda \times A \times$

Steps: 1) Data matrix A: each row is a sample / data point 2) Center data by subtracting mean A-Ā 3 Compute SUD of A: A = U \sum_{mxn} T mxn mxn nxn Sort values in 5, top K in V are principal components 5 project data to those axis [V]k. A mxn $A \cdot [V]_{R} = A_{m \times R}$ X Multidimensional Scaling or MPS Setup: Enstead of giving the raw deta matrix, we are given their similarity measure Can we find those dota in t-dimensional space? Ly get avordinates Jet's soy we have nxn matrix D. s.t. dij = (x; -x;)2 $\int = \frac{x_{1}}{x_{2}} \left(\frac{(x_{1} - x_{2})^{2} (x_{1} - x_{3})^{2}}{(x_{1} - x_{3})^{2} (x_{1} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{1} - x_{3})^{2} (x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{3})^{2} (x_{2} - x_{3})^{2}}{(x_{1} - x_{3})^{2} (x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{1} - x_{3})^{2} (x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{1} - x_{3})^{2} (x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_{1} - x_{2})^{2} (x_{2} - x_{3})^{2}}{(x_{2} - x_{3})^{2}} \right) \\
 \times \left(\frac{(x_$ $\begin{cases} x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix}$ $-i \int_{x_i}^{z_i} = (x_i - x_j)^2 = x_i^2 - 2x_i x_j + x_j^2$

n objects pairwise distances in p-dimension positions of those points up to sotation translation

Compute Gram motinx

Compute positions given

$$\beta = x^T x$$

 $d_{ij}^2 = b_{ii} + b_{ij} - 2b_{ij}$

 $b_{ij} = -\frac{1}{2} \left(d_{ij}^2 - \sum d_{ij}^2 - \sum d_{ij}^2 + \sum d_{ij}^2 \right), \text{ so we pot }$

We need to find X

 $B = X^T X = V \sum V^T$, Because B is innor product

sympetiic, positre definite

 $X = \sqrt{\sum_{n \in \mathbb{N}}^{-1}}$ $\approx \sqrt{\sum_{n \in \mathbb{N}}^{-1}}$ $\approx \sqrt{\sum_{n \in \mathbb{N}}^{-1}}$ how many regenue for s to keep.

If objects are Euclidean rectors, and Euclidean distances, 11 x; -x; 1/2 = dij

Valid X Netric Space $A > B > C > A \Rightarrow non-metric$ $A > B , B > C , A > C \Rightarrow metric MDS doesn't require distances to be metric.$