Intestinal microflora-improving agent				
Patent Number:	□ <u>US4710379</u> ,			
Publication date:	1987-12-01 1/10/86			
Inventor(s):	KAWAI YASUO (JP); SHIMOHASHI HIROTAKA (JP)			
Applicant(s):	ADVANCE KAIHATSU KENKYUSHO (JP)			
Requested Patent:	☐ <u>JP61005022</u>			
Application Number:	US19860938348 19861204			
Priority Number(s):	JP19840124584 19840619			
IPC Classification:				
EC Classification:	A61K35/74			
Equivalents:	CA1246445,			
Abstract				
An intestinal microflora-improving agent containing, as an effective component, bacterial cells and/or the water-soluble extracts therefrom, obtained from microorganisms belonging to the genus Streptococcus.				
Data supplied from the esp@cenet database - I2				

® 日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A) 昭61-5022

(a) Int Cl.4

識別記号

庁内整理番号

43公開 昭和61年(1986)1月10日

A 61 K 35/74

7138-4C

審査請求 未請求 発明の数 1 (全9頁)

②特 願 昭59-124584

②出 願 昭59(1984)6月19日

砂発 明 者 河 合

康 雄

厚木市毛利台2の8の12

切発明者 下橋 博隆

小平市小川町1の877

の出 願 人 株式会社 アドバンス

東京都中央区日本橋小舟町5番7号

開発研究所

明細響

1. 発明の名称

腸内細菌叢改善剤

- 2. 特許請求の範囲
- (1) 有効成分として<u>Streptococcus</u> 属に属する微生物の菌体及 び/又はその水抽出物を含有することを特徴とする腸内細菌叢 改善剤。
- (2) 前記微生物がStreptococcus faecalis, S. faecium, S. avium, S. salivarius, S. durans, S. bovis, 及びS. equinus より成る群より選択される1種又は2種以上の微生物であることを更に特徴とする特許請求の範囲第(1)項に記載の腸内細菌叢改善剤。
- 3. 発明の詳細な説明

本発明は、新規腸内細菌叢改善剤に関する

ヒトの賜管内には約300種,100兆個の陽内細菌が存在するといわれ、宿主(ヒト)における意義は極めて大きいことが明らかになりつつある。例えば腸内細菌と老化との関わりについてこれまで行なわれてきた基礎的な研究の結果から、腸内細菌が各臓器の酵素活性や物質代謝に影響を及ぼし、また老化に伴なう贈質

の蓄積を抑制したり、肝臓の解毒機能の低下を抑制したりすることが、明らかになっている。ロ,2,3,4,4

その他、腸内細菌叢の宿主に於ける役割の重要性を示す研究が 数多く為されている。5~15

これら諸研究からも明らかな通り、多くの場合において、宿主の健康状態が腸内細菌叢中の有害細菌の通常レベルを越えた増殖によって損なわれ、Streptococcus, Lactobacillus, Bifido-bacterium等の有用細菌の増殖によって維持され、あるいは向上する事実が示されていることから、腸管内での有用細菌の選択的増殖を達成することは、各種成人病等の予防・治療の観点から極めて重要と云い得る。

本発明者等は、人腸管に於いて有用細菌とされているStrepto-coccus, Lactobacillus, Bifidobacterium等の腸管内での増殖につき鋭意研究の結果、Streptococcus属に属する微生物の菌体或いは、その水抽出物が有用細菌の増殖を効果的に促進することを知見し、本発明を完成するに至った。

以下、本発明に使用する微生物,本発明剤の調製法,同剤の生理学的作用等につき詳細に分説する。

微生物

Streptococcus属に属する各種微生物が使用され得、就中、

⑩ 日本国特許庁(JP)

①特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭61-5022

@Int.Cl.4

識別記号

庁内整理番号 7138-4C ❸公開 昭和61年(1986)1月10日

A 61 K 35/74

審査請求 未請求 発明の数 1 (全9頁)

匈発明の名称 腸内細菌叢改善剤

②特 願 昭59-124584

②出 願 昭59(1984)6月19日

砂発明者 河合

康 雄

厚木市毛利台2の8の12

砂発明 者

楯 博隆

小平市小川町1の877

⑪出 願 人 株式会社 アドバンス

東京都中央区日本橋小舟町5番7号

開発研究所

明 細

1、発明の名称

腸内細菌叢改萼剤

- 2. 特許請求の範囲
- (1) 有効成分としてStreptococcus 属に属する微生物の菌体及 び/又はその水抽出物を含有することを特徴とする腸内細菌養 改善剤。
- (2) 前記微生物が<u>Streptococcus</u> <u>faecalis</u>, <u>S. faecius</u>, <u>S. avius</u>, <u>S. salivarius</u>, <u>S. durans</u>, <u>S. bovis</u>, 及 <u>US. equinus</u> より成る群より選択される1種又は2種以上の 微生物であることを更に特徴とする特許請求の範囲第(1)項に 記穀の副内細菌叢改善剤。
- 3. 発明の詳細な説明

本発明は、新規腸内細菌叢改善剤に関する

ヒトの勝管内には約300種、100兆個の腸内細菌が存在するといわれ、宿主(ヒト)における意義は極めて大きいことが明らかになりつつある。例えば腸内細菌と老化との関わりについてこれまで行なわれてきた基礎的な研究の結果から、腸内細菌が各臓器の酵素活性や物質代謝に影響を及ぼし、また老化に伴なう脂質

の蓄積を抑制したり、肝臓の解毒機能の低下を抑制したりすることが、明らかになっている。ロ,2,2,1,1

その他、腸内細菌叢の宿主に於ける役割の重要性を示す研究が 数多く為されている。タ ~ ロ

これら諸研究からも明らかな通り、多くの場合において、宿主の健康状態が腸内細菌叢中の有害細菌の通常レベルを越えた増殖によって損なわれ、Streptococcus, Lactobacillus, Bifidobacterium等の有用細菌の増殖によって維持され、あるいは向上する事実が示されていることから、腸管内での有用細菌の遊択的増殖を達成することは、各種成人病等の予防・治療の観点から極めて重要と云い得る。

本発明者等は、人題管に於いて有用細菌とされているStrepto-coccus, Lactobacillus, Bifidobacterium等の腸管内での増殖につき鋭意研究の結果、Streptococcus属に属する微生物の苗体或いは、その水抽出物が有用細菌の増殖を効果的に促進することを知見し、本発明を完成するに至った。

以下、本発明に使用する微生物,本発明剤の鋼製法,同剤の生理学的作用等につき詳細に分説する。

微生物

Streptococcus属に属する各種微生物が使用され得、就中、

Streptococcus faecalis, 同 faecium, 同 avium, 同 salivarius, 同 durans, 同 mitis, 同 bovis, 及び同 equinus を好適なものとして例示し得る。更に本発明に於いて最も有用な具体的菌体例を微工研受託番号と共に表示すれば記の通りである。

<u>第 1 表</u>

苗株	受託1	5号	
Streptococcus	faccium ADV1009	FERM	BP - 298
Streptococcus	faccalis ADV9001	*	* −297
<i>u</i> . <i>n</i>	avium AD2003		≠ −298
# #	salivarius ADV10001		≠ −299
" "	durans ADV3001	,	w -300
" "	mitis ADV7001	#	≈ −301
" "	equinus ADV8001	#	# -302

菌学的性質

本発明で使用の微生物は同一分類菌につき公知各文献の示すも のと同一の菌学的諸性質を有する。

すなわち、本発明後生物の菌学的性質及び培養条件等に関しては 下記請文献が参照される。

1) Bergey's Manual of Determinative Bacteriology,

8th ed., 490-509(1974)

- 2) Int. J. Syst. Bact. 16 114(1966)
- 3) Microbiol. Immunol, 25(3), 257-269(1981)
- 4) J. Clin. Pathol. 33 53-57(1980)
- 5) J. General Microbiol., <u>128</u> 713-720 (1982)
- 6) Applied Microbiol., <u>23(6)</u> 1131-1139 (1972)

ここで、前出各種菌株につきその主な菌学的性状を要約して表示 すれば次の通りである。

(以下余白)

쑔	2	表

苗株	ADV 1009	ADV 9001	AD	ADV	ADV 3001	ADV 7001	ADV 8001
性状			2003	10001			
細胞形状	球状	球状	珠状	球状	珠状	球状	球状
グラム染色性	+	+	+	+	+	+	+
溶血性	a	α	α	α	a	æ	Œ
10℃での増殖	+	+	±	_	+	-	-
4.5℃での増殖	+	+	+	±	+	±	+
50℃での増殖	+	·			+	-	-
60℃30分での熱耐性	+	+	+	_	+	-	-
pH9.6培地での増殖	+	+	+		+	_	-
ノチレンブルー還元性	+	+		_	+	-	
ゼラチンの液化 ·	-	-	-	_	_	_	-
NaCl添加(6.5%)培地での増殖	+	+		_	+	_	-
胆汁添加(40%)培地での増殖	+	+	+	_	+	_	+
アンモニア産生	+	+	ND	-	+	±	-
馬尿酸水解性	-	±	-	-	+	_	-
テルライト添加培地での増殖	-	+	-	N D	-	N D	-
TTC [*] 添 加培地での増殖 炭素源からの 酸生産性	-	+	-	N D	-	N D	
グルコース	+	+	+	+	+	+	+
エスクリン	±	+	+	+	±	ND	+
イヌリン	-	-		+	_	_	±
ラクトース	+	+	+	±	+	±	-
グリセロール	-	+	±	-	_	_	_
アラビノース・	+	-	+	-	_	-	_
メレジトース	-	+	±	ND	_	ND	-
ソルビトール	-	+	.+	-	-	_	-
血清(群抗原)	D	Ď	Q(D) K	D	-	D
(* 2,3,5-トリフェニルテ		-		,) F)	_		_

本発明剤の削製方法

1. 加熱処理菌体調製例

前記各徽生物等の菌株をロゴサ液体培地(註)5ℓに接種し、37℃にて10時間好気的に静置培養して生菌数10°/mℓの培養液をつくり、得られた培養液を12,000rpmの連線速心分離に付し菌体を集め、生理食塩水で洗浄した後、生理食塩水に懸濁して菌液50mℓ(10°/mℓ)を得る。得られた生菌体菌液を26に生理食塩水で2回洗浄した後、蒸留水若しくは生理食塩水(0.85% NaCl水溶液)に懸濁して得られる菌液50mℓ(10°/mℓ)を115℃で10分間加熱し、菌体懸濁液を得る。この菌体懸濁液を凍結乾燥あるいは減圧乾燥して菌末を得る。

2. 水抽出物の鋼製例

- a) 前記採集菌体を蒸留水若しくは生理食塩水(0.85% NaCl水溶液)15mlに懸濁して得られる菌液(2×10''/ml)を115℃で10分間加熱(オートクレーブ)し、菌体の破壊と熱水抽出とを併せ行なう。
 - 得られた抽出懸瀾液を遠心分離処理(2,000G×20分) するとその上清として本発明の有効成分が与えられる。
- b) 前項a)に示す菌液を超音波破壊処理(15KC,60分)

し、得られた抽出感濁液を遠心分離処理(20,000~ 25,000G,30分)するとその上積として本発明の有効成分が得られる。

尚、抽出溶媒としては上配蒸留水若しくは生理食塩水の みならず所定pH値に調整された各種製衡液等も適宜使用 され得る。

- c) 前記採集旗体を0~130℃、好適には80~120℃ のはん照内で10分~数10時間水抽出し、遠心分離処理 するとその上滑として本発明の有効成分が与えられる。
- d) 前記採集菌体を沸点以下のはん囲内で10分~数10時間水-アルコール(メタノール,エタノール等の低級アルコール)混合乃至単独溶媒系で抽出処理し、遠心分離処理するとその上清として本発明の有効成分が与えられる。

尚、水とアルコールとの混合比は通常、水/アルコール = 0~10(重量比)のはん囲内である。

更に、溶媒におけるアルコールがメタノール乃至これを含むものである場合は、上清からこれを除去したものを有効 成分とする。

上記a)乃至d)の各工程或いはこれらの組合せにより得られる本発明有効成分は、液状のままもしくは凍結乾燥。減

圧乾燥粉末等として使用に供される。

(註)

ロゴサ液体培地の組成

蒸留水1ℓ中に

トリプチケース	10g
酵母エキス	5 g
トリプトース	3 g
K,HPO.	3 g
KH ₂ PO ₄	3 g
クエン酸三アンモニウム	2 g
ツイーン80	1 g
グルコース	20 g
システイン塩酸塩	0.2g
* 塩類溶液	5 m <i>l</i>

(pH7, 121℃ 15分間加熱滅菌)

*塩類溶液蒸留水100mlに

$M_8SO_4 \cdot 7H_2O$	11.58
FeSO. · 7 H2O	0.688
MnSO. · 2 H2O	2.4g

生理学的作用

1. 薬理作用の概要

本発明剤は腸内有用細菌の選択的増殖を促進し、その結果 当該細菌機を効果的に改善する生理学的作用を有する。すな わち、本発明剤を非能常者に経口的に投与した場合、

Bifidobacterium, Lactobacillus, Streptococcus 等の有用 細菌の健常レベルまでの増殖を効果的に達成するものである。 例えば、後記各実験例に示す様に Bifidobacterium,

Lactobacillus, 及び Streptococcus の菌数が健常者に於ける夫に比べ極度に少ない異常な腸内菌叢であっても本発明剤の投与により、正常な菌数レベル(糞便1g当り、<u>Bifidobacterium</u>:10⁶~10¹¹個程度、<u>Lactobacillus</u>:10⁵~10⁴個程度、<u>Streptococcus</u>:10⁶~10⁴個程度)に 増殖させることが可能である。

2. 急性毒性

後記実験例に示す通り本発明剤のLD、値は、菌体より成るものの場合、6×10¹³個/マウス(腹腔内投与)以上、熱水抽出物の場合、2.6×10¹⁰個/マウス(腹腔内投与)以上である。又、経口投与の場合、いずれの場合も実質的に無 批作である。

用法・用量

尚、本発明剤は、経口等の手段で適用され得、その用量は通常 10⁷~10¹⁵個/kg体重、より好ましくは、10⁸~10¹²個/ kg体重程度であり、その剤型としては生理食塩水等への懸濁液剤、 凍結乾燥等による粉末剤、錠剤、カプセル剤等々、通常の剤型を 適当なキャリア、増量剤、希釈剤等と共に適宜選択使用される。

以下に実験例を示し、本発明剤につき更に詳細に説明する。

実験例1

菌末の製造

Streptococcus faecalis ADV9001を前述のロゴサ液体培地5ℓに接種し、37℃にて1夜前培養し、これを同培地に0.1%になるように接種し、更に10時間好気的に静置培養して生菌数10°/мℓの培養液をつくり、得られた培養液を12,000rpmの連続遠心分離に付し菌体を集めた。さらに生理食塩水で2回洗浄した後、蒸留水若しくは生理食塩水(0.85% NaCl水溶液)に懸濁して得られる菌液50mℓ(10"/мℓ)を115℃で10分間加熱し、菌体懸濁液を得た。これを凍結乾燥処理して死菌体菌末を得た。

実験例2 (增殖促進効果1)

下記微生物の本発明剤(本実験例ではS. faecalis ADV

9001の加熱処理菌体の凍結乾燥粉末)添加による in vitre 増殖促進効果を調べた。

Bisidobacterium adolescentis RIMD 0232001

Lactobacillus salivarius (人間管より分離)

Lactobacillus casei I I.D 8 9 2

Lactobacillus acidophilus IID893

Streptococcus faecalis AD9001

Streptococcus faecalis AD9002

Streptococcus durans AD3001

Streptococcus bovis AD4002

Streptococcus faecium AD1003

Streptococcus avium AD2002

実験例1で得られたS. faecalis ADV9001菌末を添加 し、115℃,15分間オートクレーブで加熱滅菌した下記第 3表に示す様な培地に各菌株を夫々接種し、それらの生菌数を 経時的に測定した。尚、比較例として S. faecalis ADV 9001 菌末の代りにBacteroides fragilis ss fragilis RIMD0230001,E. coli IAM12390115°C. 10分加熱処理菌体の凍結乾燥粉末、及び酵母エキス添加によ る各階株の増殖についても調べた。

微生物

Bisidobacterium PBS(phosphate buffered saline) ?

10倍希釈したVLG培地

グルコース1 mg/ml, トリプチケース5 Lactobacillus

mg/ml添加したPBS

Streptococcus PBS(第1乃至6図)又はグルコース1

mg/ml添加したPBS

結果を第1乃至15図に示す。

又、実験例1と同様の方法で調整した S. faecium ADV 1009凍結乾燥崩末による増殖促進効果についても調べたと ころ、第16図乃至18図に示す通り S. faecalis ADV 9001添加による場合と略同等の結果が得られた。

上記第1図乃至18図中級軸は生遊数(log/ml)、横軸は培 養時間(hr)を表す。各図についての使用菌株、記号に関しては、 第4表に示す通りである。

各図より明らかである様に上述のいずれの微生物においても S. faecalis ADV9001及US. faecium ADV10 0 9 菌末添加による顕著な増殖促進効果が認められた。

第 4 丧

Ø	使用菌株		記	号	
		٨	В	С	D
1	S. faecalis AD9001				
2	S. faecalis AD9002	S. faecalis ADV9001	S. faccalis ADV9001	S. faccalis ADV9001	荫 末 無添加
3	S. faecium AD1003	請末 lmg∕mℓ	菌末 5mg/ml	剪末 10mg/m/	
4	S. avium AD2002	添加	添加	添加	
5	S. durans AD3001				
6	S. bovis AD4002				
7	L. salivarius				
8	L. casei				
9	L. acidophilus				
10	<u>B</u> .				
	adolescentis		L	I	: 統〈。

Ø	使用菌株		記	号	
		A	В	С	D
11	<u>L</u> .				
	salivarius	S, faccalis	Bacteroides	E, coli	解母
12	L. casei	ADV9001	苗末	苗末	エキス
		菌末1mg/ml	las/af	lmg/ml	lug/al
13	S. faecalis AD9001	添加	添加	添加	添加
14	В.	同上菌末	同上菌末	同上的末	同上エキス
ĺ	adolescentis	5mg/ml	5mg/ml	5mg/ml	5mg/wl
15	L. acidophilus	同上	同上	同上	同上
16	S. faccalis AD9001	S.faccium	S. faecium	S. faecium	菌末
17	S. avium AD2001	ADV1009	ADV1.009	ADV1009	無添加
18	S. faccium AD1003	菌末1mg/ml 添加	菌末5mg/ml 添加	遊末10mg/mℓ 添加	

実験例3 (増殖効果2)

S. faecium ADV1009菌体熱水抽出物添加によるS. faecalis AD9001の増殖促進について関べたすなわち、前配実験例と同様の方法で得たS. faecium ADV1009菌末をPBSに5mg/mlとなる様に懸濁し、これを115℃10分間加熱し、菌体の破壊と熱水抽出とを併せ行なった。得られた抽出懸濁液を3,000rpm、15分間遠心分離に付し、上摘と沈凌に分け、沈凌は再度PBSに懸濁した。両者を培地としてS. faecalis AD9001の生菌数を経時的に測定した。結果は第19図に示す。図中Aは上情、Bは沈凌を夫々添加した場合を、CはPBSのみを培地とした場合(積輸:時間(hr), 縦軸:生菌数(log/ml))を示す。上瀆(熱水抽出物)は前記実験例中の加熱処理菌体凍結乾燥粉末添加の場合と同程度の増殖傾向を示し、沈凌の場合は、増殖の程度が比較的低かった。

実験例4 (臨床試験)

実験例1で製造した<u>Streptococcus</u> <u>faecalis</u> ADV9001間末を遺伝型と思われる高脂血者(29才男性)及び健常者(23~42才男性5名)に60mg/日経口投与し、 その糞便 隣職に於ける総菌数、 <u>Streptococcus</u>, <u>Lactobacillus</u>, Bifidobacterium, Bacteroides, Enterobacteriacese, Staphylococcus, Clostridium(lecithinase-positive)及び Fungusの生菌数を上記菌来投与開始後8週間遡定した。 結果を第20図(高脂血症者の場合)及び第21図(健常者の平均値)に示す。図中Aは総菌数、Bは Streptococcus, Cは Lactobacillus, Dは Bifidobacterium, Eは Bacteroides, Fは Enterobacteriaceae の生菌数を夫々示し、縦軸は生菌数 (log/ml), 機軸は投与日数(週)を示す。又、横軸左下の矢印で示した位置には、菌来投与開始前の各生菌数の測定値を示す。 Staphylococcus, Clostridium, 及び Fungusの生菌数測定値

図より、高脂血者の糞便菌器に於いて、健常者と比較して極 婚に少数であった<u>Bifidobacterium</u>, <u>Lactobacillus</u>, 及び <u>Streptococcus</u>等の乳酸菌群が投与後8週間で健常者の値に近 プミ、総菌数が増加したことが明らかである。

に関しては、いずれの被験者の場合に於いても苗末投与開始前

と開始後で、有意な差が認められなかったので、図示しなかっ

尚、S. faccium ADV1009及びS. svium AD20 03の加熱処理菌体凍結乾燥粉末についても、上記と同様の臨 床試験を行ない、略同等の結果が得られた。

実験例5 (急性毒性)

ICR系マウス(雄6週令, 平均体重30.0±0.6g)を使用し、前記第1表のStreptococcus属微生物7株の加熱処理菌体及び熱水抽出物のLDs。値(Behrens-Kärber法)を測定した。すなわち、各菌株の加熱処理菌体及び熱水抽出物をマウスに履腔内投与し、14日間その生死を観察し、第5表(加熱処理菌体の場合)及び6表(熱水抽出物の場合)に示す様な結果が得られた。

又、連日経口投与では、いずれの場合でも実質的に無毒性で あった。

第 5 丧

S. faccium ADV1009	6,3×10°
S. faccalis ADV9001	3.8×10*
S. avium AD2003	4.2×10°
S. salivarius ADV10001	3.6×10°
S. durans ADV3001	8.9×10°
S. milis ADV7001	6.7×10°
S. equinus ADV 8 0 0 1	6.5×10°

(単位: 菌体個数/マウス)

第6表

S. faccium ADV 1 0 0 9	7.1
S, faccalis ADV 9001	6.8
S. avium AD2003	7.2
S. salivarius ADV10001	6.3
S. durans ADV 3 0 0 1	0.1
S. mitis ADV 7 0 0 1	8.6
S. equinus ADV8001	8.2
(単位: mg/マ	ゥカス)

製剤例

た.

- 1. 前配鋼製例に従って得られたS. フェシウムADV1009 加熱処理菌体の凍結乾燥物60mg(菌体数6×10)。個に相当)を精製でんぷん末940mgと均一に混合、打錠して経口投与用錠剤とした、この錠剤は体重60kgの成人における用量10,個/kg体重に相当する。
- 2. 上記凍結乾燥物600mgを精製でんぷん末400mgと混合、 打錠したものは、同様に用量10 mg/kg体重に相当する。 このように、本発明剤は前記用量に基づいて、強体と薬学的 に許容され得る担体とを混合して所定の活性を有する所望の 剤型とすることができる。

参考文献

- 1) Yazawa, K. et al Mechanisms of Ageing and Development, 17, 173 (1981)
- 2) Kawai, Y. et al Mechanisms of Ageing and Development, 16, 149 (1981)
- Kawai, Y. et al Infection and Immunity
 19, 3, 771 (1978)
- 4) Kawai, Y. The American Journal of Clinical Nutrition 32, 187 (1979)
- 5) Freter, R. Am. J. Clin. Nutr. 27, 1049 (1974)
- 6) Gorbach, S. L. Gastroenterology, 60, 1110 (1971)
- 7) Savage, D. C. Am. J. Clin. Nutr. 25, 1372 (1972)
- 8) de Dombal. F. T., et al Gut, 10, 270 (1969)
- 9) Donaldson, R. M., Jr. New Engl. J. Med., 270, 938(1964)
- 10) Gordon, H. A., et al Bacteriol. Rev., 35,

390(1971)

- Taniguchi, T., et al Microbiol. [maunol.,
 22, 793(1978)
- 12) Elyssen, H., Proc. Nutr. Soc., 32 59 (1973)
- 13) Wostmann, B. S. et al, J. Germfree Life Gnotobiol., 5, 4 (1975)
- 14) Phear, E. A., et al Br. J. Exp. Pathol., 37 253 (1965)
- 15) Wolpert, E. et al Lancet, ii, 1387 (1971)

4. 図面の簡単な説明

添付第1図乃至21図は、本発明の実験説明図である。

特許出顧人 株式会社アドバンス開発研究所

(44)

第 20 図

