Examples of bimonoids in species

Swapneel Mahajan

http://www.math.iitb.ac.in/~swapneel

1 Species characteristic of chambers

Define the species x by

(1)
$$\times [F] := \begin{cases} \mathbb{k} & \text{if } F \text{ is a chamber,} \\ 0 & \text{otherwise.} \end{cases}$$

The maps $\beta_{G,F}$ are defined to be the identity. This is the species characteristic of chambers.

The k-th Cauchy power of \times is given by

$$\text{(2)} \quad \mathsf{x}^k[F] := \begin{cases} \bigoplus_{C:\, C \geq F} \mathbb{k} & \text{if F has corank $k-1$,} \\ 0 & \text{otherwise.} \end{cases}$$

In the first alternative, there is one copy of \mathbbm{k} for each chamber greater than F.

Equivalently, in terms of flats, the species \times can be defined by

$$\text{(3)} \qquad \mathsf{x}[Y] := \begin{cases} \mathbb{k} & \text{if } Y \text{ is the maximum flat,} \\ 0 & \text{otherwise.} \end{cases}$$

The k-th commutative Cauchy power of \times is given by

$$\mathsf{(4)} \qquad \mathsf{x}^{\underline{k}}[\mathrm{Y}] := \begin{cases} \mathbb{k} & \text{if } \mathrm{Y} \text{ has corank } k-1, \\ 0 & \text{otherwise.} \end{cases}$$

2 Exponential species

2.1 Exponential set-species

The exponential set-species E is defined by

$$E[A] := \{*\}$$

for any face A. In other words, each A-component is a singleton. For faces A and B of the same support, there is a unique map

$$\beta_{B,A}: \mathrm{E}[A] \to \mathrm{E}[B].$$

The exponential set-species \boldsymbol{E} is the terminal object in the category of set-species.

2.2 Exponential species

The exponential species E is defined by

$$\mathsf{E}[A] := \Bbbk$$

for any face A. For faces A and B of the same support, define

$$\beta_{B,A}: \mathsf{E}[A] \to \mathsf{E}[B]$$

to be the identity map $\mathbb{k} \to \mathbb{k}$.

This is the linearization of the exponential set-species.

In terms of flats, the exponential species E can be defined by

$$\mathsf{E}[X] := \Bbbk$$

for any flat X.

Observe from (4) that

(5)
$$E = x + x^{2} + x^{3} + \dots,$$

the sum of all commutative Cauchy powers of \boldsymbol{x} .

2.3 Exponential bimonoid

For the exponential species E, define

$$\mu_A^F : \mathsf{E}[F] \to \mathsf{E}[A] \quad \text{and} \quad \Delta_A^F : \mathsf{E}[A] \to \mathsf{E}[F]$$

to be the identity maps $\mathbb{k} \to \mathbb{k}$ for all $F \geq A$.

This turns E into a bimonoid.

We call it the exponential bimonoid.

For clarity, let us write ${\rm H}_A$ for the basis element $1\in {\mathsf E}[A].$ By this convention,

$$eta_{B,A}(\mathtt{H}_A)=\mathtt{H}_B,\quad \mu_A^F(\mathtt{H}_F)=\mathtt{H}_A\quad ext{and}\quad \Delta_A^F(\mathtt{H}_A)=\mathtt{H}_F.$$

Observe that E is bicommutative. So one can express all the above using flats instead of faces as follows. We let $\mathsf{E}[X] := \Bbbk$ for any flat X, and

$$\mu_Z^X : \mathsf{E}[X] \to \mathsf{E}[Z] \quad \text{and} \quad \Delta_Z^X : \mathsf{E}[Z] \to \mathsf{E}[X]$$

be the identity maps for all $X \geq Z$. The basis element in $\mathsf{E}[Z]$ may now be denoted H_Z .

The exponential bimonoid E is self-dual. The self-duality is via the canonical identification of \Bbbk with \Bbbk^* .

2.4 Primitive part

The primitive part of E is given by

$$\mathcal{P}(\mathsf{E}) = \mathsf{x}.$$

Explicitly, the components $\mathsf{E}[C]$, as C varies over chambers, are primitive, while the remaining components do not contain any nonzero primitives.

Let us now consider the primitive filtration of E.

The first term $\mathcal{P}_1(\mathsf{E})$ equals the primitive part $\mathcal{P}(\mathsf{E})$.

The second term $\mathcal{P}_2(\mathsf{E})$ is the species, which is \Bbbk on chambers and panels, and 0 otherwise.

In general, $\mathcal{P}_k(\mathsf{E})$ is the species, which is \Bbbk on faces with corank at most k-1, and 0 otherwise.

Observe that this can be expressed as

$$\mathcal{P}_k(\mathsf{E}) = \mathsf{x} + \mathsf{x}^{\underline{2}} + \dots + \mathsf{x}^{\underline{k}},$$

the sum of the first k commutative Cauchy powers of x.

2.5 (Co)freeness

The exponential bimonoid E is free as a commutative monoid and cofree as a cocommutative comonoid, both on the species x.

Further, E is the free commutative bimonoid on x viewed as a trivial comonoid, and it is the cofree cocommutative bimonoid on x viewed as a trivial monoid.

In other words, there is an isomorphism of bimonoids

$$\mathsf{E} \stackrel{\cong}{\longrightarrow} \mathcal{S}(\mathsf{x}) = \mathcal{S}^{\vee}(\mathsf{x})$$

which on the Z-component, send H_Z to $1 \in x[\top]$.

The formula for the primitive filtration of E given above can now also be seen as a consequence of cofreeness.

3 Species of chambers

3.1 Species of chambers

The set-species of chambers Γ is defined by setting $\Gamma[A]$ to be the set of chambers greater than A. For clarity, we denote an element of $\Gamma[A]$ by C/A instead of just C. For A and B of the same support, define

$$\beta_{B,A}: \Gamma[A] \to \Gamma[B], \quad C/A \mapsto BC/B.$$

The species of chambers Γ is obtained by linearizing the set-species of chambers. Explicitly, $\Gamma[A]$ is the linear span of chambers greater than A. We use the letter H for the canonical basis of $\Gamma[A]$. For A and B of the same support, we write

$$\beta_{B,A}: \Gamma[A] \to \Gamma[B], \quad \mathbb{H}_{C/A} \mapsto \mathbb{H}_{BC/B}.$$

We claim that

$$\Gamma = x + x^2 + x^3 + \dots,$$

the sum of all Cauchy powers of x.

By (2), the F component of the rhs is a vector space with basis indexed by chambers C greater than F, and we identify this with the H-basis of $\Gamma[F]$.

Compare and contrast (6) with (5).

3.2 Bimonoid of chambers

The species Γ carries the structure of a bimonoid.

The product and coproduct are defined by

(7)
$$\mu_A^F: \Gamma[F] \to \Gamma[A] \qquad \Delta_A^F: \Gamma[A] \to \Gamma[F] \\ \mathrm{H}_{C/F} \mapsto \mathrm{H}_{C/A} \qquad \mathrm{H}_{C/A} \mapsto \mathrm{H}_{FC/F}.$$

Illustrative pictures for the product and coproduct are shown below.

The bimonoid axiom is checked below.

Here F and G are faces both greater than A, while C is a chamber greater than F.

An illustrative picture is shown below, with A as the central face.

The bimonoid Γ is cocommutative but not commutative. Hence it cannot be self-dual.

3.3 q-bimonoid of chambers

More generally, for any scalar q, the species of chambers carries the structure of a q-bimonoid which we denote by Γ_q .

The product and coproduct are defined by

(8)

$$\mu_A^F : \Gamma_q[F] \to \Gamma_q[A] \qquad \Delta_A^F : \Gamma_q[A] \to \Gamma_q[F]$$

$$\mathsf{H}_{C/F} \mapsto \mathsf{H}_{C/A} \qquad \qquad \mathsf{H}_{C/A} \mapsto q^{\mathrm{dist}(C,FC)} \mathsf{H}_{FC/F}.$$

Note that for q=1, we have $\Gamma_1=\Gamma$, the bimonoid of chambers.

The q-bimonoid axiom is checked below. It generalizes the previous calculation.

We used that
$$dist(C, GC) = dist(C, FGC) + dist(FGC, GC)$$
.

3.4 Dual bimonoid

Let Γ^* denote the bimonoid dual to Γ .

Let M denote the basis which is dual to the H-basis.

The product and coproduct of Γ^* are obtained by dualizing formulas (7).

They are given by

$$\mu_A^F: \Gamma^*[F] \to \Gamma^*[A] \qquad \Delta_A^F: \Gamma^*[A] \to \Gamma^*[F]$$

$$\mathsf{M}_{D/F} \mapsto \sum_{\substack{C: C \geq A \\ FC = D}} \mathsf{M}_{C/A} \qquad \mathsf{M}_{C/A} \mapsto \begin{cases} \mathsf{M}_{C/F} & \text{if } F \leq C, \\ 0 & \text{otherwise.} \end{cases}$$

3.5 Dual q-bimonoid

More generally, let Γ_q^* denote the q-bimonoid dual to Γ_q .

Dualizing formulas (8), observe that its product and coproduct are given by

$$\mu_A^F: \Gamma_q^*[F] \to \Gamma_q^*[A] \qquad \qquad \Delta_A^F: \Gamma_q^*[A] \to \Gamma_q^*[F]$$

$$\mathsf{M}_{D/F} \mapsto \sum_{\substack{C: C \geq A \\ FC = D}} q^{\mathrm{dist}(FC,C)} \mathsf{M}_{C/A} \qquad \mathsf{M}_{C/A} \mapsto \begin{cases} \mathsf{M}_{C/F} \\ 0 \end{cases}$$

In contrast to Γ_q , the scalar q now appears in the product as opposed to the coproduct.

3.6 Primitive part

Observe from the coproduct formula (10) that

$$\mathcal{P}(\Gamma_q^*) = \mathsf{x}.$$

Explicitly, the components $\Gamma_q^*[C]$, as C varies over chambers, are primitive, while the remaining components do not contain any nonzero primitives.

Let us now consider the primitive filtration of Γ_q^* .

The first term $\mathcal{P}_1(\Gamma_q^*)$ equals the primitive part $\mathcal{P}(\Gamma_q^*)$.

The second term $\mathcal{P}_2(\Gamma_q^*)$ is the species whose F-component is $\Gamma_q^*[F]$ if F is either a chamber or a panel, and 0 otherwise.

In general, $\mathcal{P}_k(\Gamma_q^*)$ is the species whose F-component is $\Gamma_q^*[F]$ if F has corank at most k-1, and 0 otherwise.

Observe that this can be expressed as

$$\mathcal{P}_k(\Gamma_q^*) = \mathbf{x} + \mathbf{x}^2 + \dots + \mathbf{x}^k,$$

the sum of the first k Cauchy powers of x.

Mention:

The primitive part of Γ is the Lie species.

For q not a root of unity,

$$\mathcal{P}(\Gamma_q) = \mathsf{x}.$$

3.7 (Co)freeness

The q-bimonoid of chambers Γ_q is free as a monoid on the species x. Further, it is the free q-bimonoid on x viewed as a trivial comonoid.

More precisely, there is an isomorphism of q-bimonoids

$$\Gamma_q \xrightarrow{\cong} \mathcal{T}_q(\mathbf{x}), \qquad \mathbf{H}_{C/A} \mapsto 1 \in \mathbf{x}[C].$$

This can be checked using the (co)product formulas of $\mathcal{T}_q(\mathbf{x})$.

Dually, Γ_q^* is cofree as a comonoid on the species \times . Further, it is the cofree q-bimonoid on \times viewed as a trivial monoid.

More precisely, there is an isomorphism of q-bimonoids

$$\Gamma_q^* \xrightarrow{\cong} \mathcal{T}_q^{\vee}(\mathsf{x}), \qquad \mathsf{M}_{C/A} \mapsto 1 \in \mathsf{x}[C].$$

This can also be checked directly using the (co)product formulas of $\mathcal{T}_q^\vee(\mathbf{x})$.

The formula for the primitive filtration of Γ_q^* given above can also be seen as a consequence of cofreeness.

3.8 q-norm

Consider the map

(11)
$$\Gamma_q \to \Gamma_q^*, \qquad \operatorname{H}_{C/A} \mapsto \sum_{D: D \geq A} q^{\operatorname{dist}(C,D)} \operatorname{M}_{D/A}.$$

It is a self-dual morphism of q-bimonoids. It arises from the freeness of Γ_q and the cofreeness of Γ_q^* .

Nontrivial fact: This map is an isomorphism whenever q is not a root of unity, and in this case, the bimonoid Γ_q is self-dual.

Can you check this fact for the rank-one arrangement?

The cases q=0 and q=1 of (11) are discussed in more detail below.

3.9 0-bimonoid

Let q=0. Observe that the product and coproduct of Γ_0 are given by:

$$\begin{split} \mu_A^F : \Gamma_0[F] &\to \Gamma_0[A] \quad \Delta_A^F : \Gamma_0[A] \to \Gamma_0[F] \\ & \quad \mathrm{H}_{C/F} \mapsto \mathrm{H}_{C/A} \qquad \qquad \mathrm{H}_{C/A} \mapsto \begin{cases} \mathrm{H}_{C/F} & \text{if } F \leq C, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

This is free as a monoid and cofree as a comonoid, both on the species x, which is its primitive part.

Also note that the product and coproduct of Γ_0^* are given by the same formulas (with M replacing H). In other words, the map

$$\Gamma_0 \to \Gamma_0^*, \qquad \operatorname{H}_{C/A} \mapsto \operatorname{M}_{C/A}$$

is a morphism of 0-bimonoids, implying that Γ_0 is self-dual. The above map is the case q=0 of the map (11).

3.10 Abelianization

There is a close connection between the species of chambers and the exponential species as follows.

The map $\pi:\Gamma\to\mathsf{E}$ given by

$$\pi_A: \Gamma[A] \to \mathsf{E}[A], \qquad \mathsf{H}_{C/A} \mapsto \mathsf{H}_A$$

is a surjective morphism of bimonoids.

This follows since the product and coproduct of Γ take a basis element to another basis element (rather than a sum as is the case for Γ^*).

The kernel of π_A is the subspace spanned by elements of the form

$$\mathbf{H}_{C/A} - \mathbf{H}_{D/A}$$

as C and D vary over chambers in A. These are precisely elements of the form (??), thus π is the abelianization map.

Note that the kernel of π equals the kernel of the morphism of bimonoids

$$\Gamma o \Gamma^*, \qquad \mathrm{H}_{C/A} \mapsto \sum_{D:\, D \geq A} \mathrm{M}_{D/A}.$$

This map is the case q=1 of the map (11). Its image is one-dimensional. This yields the following commutative diagram of bimonoids.

(12)
$$\begin{array}{ccc}
\Gamma & \longrightarrow \Gamma^* \\
\pi & \uparrow \pi^* \\
E & \longrightarrow E^*
\end{array}$$

4 Species of flats

4.1 Species of flats

Define a set-species Π as follows. For any flat X, let $\Pi[X]$ be the set of all flats greater than X. Equivalently, it is the set of flats of \mathcal{A}_X .

We denote the linearization of Π by Π . This is the species of flats. Let H denote its canonical basis.

We claim that

(13)
$$\Pi = E + E^{2} + E^{3} + \dots,$$

the sum of all commutative Cauchy powers of the exponential species E.

Explicitly, the Z-component of the rhs is $\bigoplus_{X\geq Z} \mathsf{E}[X]$. This is a vector space with basis indexed by flats X greater than Z, and we identify this with the H-basis of $\Pi[Z]$.

4.2 Bimonoid of flats

The species of flats Π carries the structure of a bicommutative bimonoid, with the product and coproduct given by

(14)

$$\mu_{Z}^{Y}: \Pi[Y] \to \Pi[Z]$$
 $\Delta_{Z}^{Y}: \Pi[Z] \to \Pi[Y]$
 $H_{X/Y} \mapsto H_{X/Z}$ $H_{X/Z} \mapsto H_{X\vee Y/Y}.$

The bicommutative bimonoid axiom is checked below.

4.3 Birkhoff algebra

The bimonoid of flats Π also carries an internal structure.

For each flat Z, the component $\Pi[Z]$ is an algebra with product in the H-basis given by

(15)
$$H_{X/Z} \cdot H_{Y/Z} = H_{X \vee Y/Z}.$$

The unit element is $H_{\rm Z/Z}$.

This algebra can be identified with the Birkhoff algebra of the arrangement \mathcal{A}_Z .

4.4 Dual bimonoid

Let Π^* denote the bimonoid dual to Π .

Let M be the basis which is dual to H.

The product and coproduct in the M-basis is given by

$$\mu_{\mathbf{Z}}^{\mathbf{Y}}: \Pi^*[\mathbf{Y}] \to \Pi^*[\mathbf{Z}] \qquad \Delta_{\mathbf{Z}}^{\mathbf{Y}}: \Pi^*[\mathbf{Z}] \to \Pi^*[\mathbf{Y}]$$

$$\mathtt{M}_{W/Y} \mapsto \sum_{\substack{X:\, X \geq Z, \\ X \vee Y = W}} \mathtt{M}_{X/Z} \qquad \mathtt{M}_{X/Z} \mapsto \begin{cases} \mathtt{M}_{X/Y} & \text{if } X \geq Y, \\ 0 & \text{otherwise.} \end{cases}$$

4.5 Primitive part

Observe from the coproduct formula (16) in the M-basis that

(17)
$$\mathcal{P}(\Pi^*) = \mathsf{E}.$$

Each component $\mathcal{P}(\Pi^*)[Z]$ is one-dimensional, and is spanned by $\mathtt{M}_{Z/Z}.$

More generally, the primitive filtration of Π^* can be expressed as

$$\mathcal{P}_k(\Pi^*) = \mathsf{E} + \mathsf{E}^{\underline{2}} + \dots + \mathsf{E}^{\underline{k}},$$

the sum of the first k commutative Cauchy powers of E.

4.6 (Co)freeness

The bimonoid Π is the free commutative bimonoid on E, viewed as a comonoid.

Dually, Π^* is the cofree cocommutative bimonoid on E, viewed as a monoid.

More precisely, there are isomorphisms of bimonoids

(18)
$$\Pi \xrightarrow{\cong} \mathcal{S}(E)$$
 and $\Pi^* \xrightarrow{\cong} \mathcal{S}^{\vee}(E)$.

On the Z-component, the first map sends ${\tt H}_{X/Z}$ to ${\tt H}_X,$ while the second map sends ${\tt M}_{X/Z}$ to ${\tt H}_X.$

4.7 Self-duality

Is ∏ self-dual?

Yes.

In fact, every finite-dimensional bicommutative bimonoid is self-dual.

This is a consequence of the Borel-Hopf theorem.

See notes for more details.

5 Species of faces

5.1 Species of faces

For any face A, let $\Sigma[A]$ denote the set of faces greater than A. For faces A and B with the same support, there is a bijection

$$\beta_{B,A}: \Sigma[A] \to \Sigma[B], \qquad F/A \mapsto BF/B.$$

Thus, Σ is a set-species.

We denote the linearization of Σ by Σ . This is the species of faces. Explicitly, $\Sigma[A]$ is the linear span of the set of faces greater than A. We use the letter H for the canonical basis of $\Sigma[A]$. For faces A and B of the same support, we write

$$\beta_{B,A}: \Sigma[A] \to \Sigma[B], \quad \mathsf{H}_{F/A} \mapsto \mathsf{H}_{BF/B}.$$

We claim that

(19)
$$\Sigma = E + E^2 + E^3 + \dots,$$

the sum of all Cauchy powers of the exponential species E.

Explicitly, the A-component of the rhs is $\bigoplus_{F\geq A} \mathsf{E}[F]$. This is a vector space with basis indexed by faces F greater than A, and we identify this with the H-basis of $\Sigma[A]$.

5.2 Bimonoid of faces

The species Σ carries the structure of a bimonoid. The product and coproduct are defined by

(20)
$$\mu_A^F : \Sigma[F] \to \Sigma[A] \qquad \Delta_A^G : \Sigma[A] \to \Sigma[G]$$

$$\mathsf{H}_{K/F} \mapsto \mathsf{H}_{K/A} \qquad \qquad \mathsf{H}_{K/A} \mapsto \mathsf{H}_{GK/G}.$$

5.3 q-bimonoid of faces

More generally, for any scalar q, the species of faces carries the structure of a q-bimonoid which we denote by Σ_q . The product and coproduct are defined by (21)

$$\begin{split} \mu_A^F : \Sigma_q[F] &\to \Sigma_q[A] \qquad \Delta_A^G : \Sigma_q[A] \to \Sigma_q[G] \\ & \text{H}_{K/F} \mapsto \text{H}_{K/A} \qquad \qquad \text{H}_{K/A} \mapsto q^{\text{dist}(K,G)} \text{H}_{GK/G} \end{split}$$

Note that for q=1, we have $\Sigma_1=\Sigma$, the bimonoid of faces.

5.4 Tits algebra

The bimonoid of faces Σ also carries an internal structure.

For each face A, the component $\Sigma[A]$ is an algebra with product in the H-basis given by

The unit element is $H_{A/A}$.

This algebra can be identified with the Tits algebra of the arrangement \mathcal{A}_A .

5.5 Dual bimonoid

Let Σ^* denote the bimonoid dual to Σ .

Let M denote the basis which is dual to the H-basis.

The product and coproduct of Σ^* are obtained by dualizing formulas (20). They are given by

$$\mu_A^G: \Sigma^*[G] \to \Sigma^*[A] \qquad \Delta_A^F: \Sigma^*[A] \to \Sigma^*[F]$$

$$\mathrm{M}_{H/G} \mapsto \sum_{\substack{K: K \geq A \\ GK = H}} \mathrm{M}_{K/A} \qquad \mathrm{M}_{K/A} \mapsto \begin{cases} \mathrm{M}_{K/F} & \text{if } F \leq K \\ 0 & \text{otherwise.} \end{cases}$$

5.6 Dual q-bimonoid

Let Σ_q^* denote the q-bimonoid dual to Σ_q .

Dualizing formulas (21), its product and coproduct are given by

$$\mu_A^G: \Sigma_q^*[G] \to \Sigma_q^*[A] \qquad \qquad \Delta_A^F: \Sigma_q^*[A] \to \Sigma_q^*[F]$$

$$\mathbb{M}_{H/G} \mapsto \sum_{\substack{K: K \geq A \\ GK = H}} q^{\mathrm{dist}(H,K)} \mathbb{M}_{K/A} \qquad \mathbb{M}_{K/A} \mapsto \begin{cases} \mathbb{M}_{K/F} & \text{if } 0 \\ 0 & \text{of } 0 \end{cases}$$

5.7 Primitive part

We deduce from the coproduct formula (24) in the M-basis that

$$\mathcal{P}(\Sigma_q^*) = \mathsf{E}.$$

Each component $\mathcal{P}(\Sigma_q^*)[F]$ is one-dimensional, and is spanned by $\mathbf{M}_{F/F}$. More generally, the primitive filtration of Σ_q^* can be expressed as

$$\mathcal{P}(\Sigma_q^*) = \mathsf{E} + \mathsf{E}^2 + \dots + \mathsf{E}^k,$$

the sum of the first k Cauchy powers of E .

Mention:

The primitive part of Σ is the Zie species.

For q not a root of unity,

$$\mathcal{P}(\mathsf{\Sigma}_q) = \mathsf{E}.$$

5.8 (Co)freeness

The q-bimonoid Σ_q is the free q-bimonoid on E, viewed as a comonoid.

Dually, Σ_q^* is the cofree q-bimonoid on E, viewed as a monoid.

More precisely, there are isomorphisms of q-bimonoids

(25)
$$\Sigma_q \xrightarrow{\cong} \mathcal{T}_q(\mathsf{E}) \text{ and } \Sigma_q^* \xrightarrow{\cong} \mathcal{T}_q^{\vee}(\mathsf{E}).$$

On the A-component, the first map sends ${\rm H}_{F/A}$ to ${\rm H}_F$, while the second map sends ${\rm M}_{F/A}$ to ${\rm H}_F$.