1 Definições Elementares

Definição 1.1. Sejam $f: X \to X$ uma função, $p \in X$ e $n \ge 1$. Dizemos que p é um ponto periódico com período n, se $f^n(p) = p$. Se $f^k(p) \ne p$ para todo $1 \le k < n$, então n é chamado de período principal. Em particular, se n = 1, dizemos que p é um ponto fixo.

Definição 1.2. Sejam $f: X \to X$ uma função, $p \in X$ e $n \ge 1$. Dizemos que p é um ponto eventualmente periódico com período n, se existe m > 1 tal que $f^k(p) = f^{k+n}(p)$ para todo $k \ge m$. Em particular, se n = 1, dizemos que p é um ponto eventualmente fixo.

Definição 1.3. Sejam $f: X \to X$ uma função e $x \in X$. O conjunto

$$\mathcal{O}(x) = \{x, f(x), f^2(x), \dots\}$$

é a *órbita de x*.

Definição 1.4. Sejam $f: X \to X$ uma função, p um ponto periódico período n e $x \in X$. Dizemos que x tende assintoticamente para p se $\lim_{k\to\infty} f^{kn}(x) = p$. O conjunto dos pontos que tendem assintoticamente para p, denotado por $W^s(p)$, é chamado chamado de conjunto estável de p. Dizemos que x tende assintoticamente para infinito se $\lim_{k\to\infty} |f^k(x)| = \infty$. O conjunto dos pontos que tendem assintoticamente para infinito, denotado por $W^s(\infty)$, é chamado de conjunto estável do infinito.

Proposição 1.5. Sejam $f: X \to X$ uma função e p_1 , p_2 pontos periódicos distintos. $Então\ W^s(p_1) \cap W^s(p_2) = \emptyset$.

Demonstração. Sejam n_1 , n_2 os períodos de p_1 , p_2 , respectivamente. Suponha que exista $x \in W^s(p_1) \cap W^s(p_2)$. Sabemos que $|f^{kn_1}(x) - p_1| \to 0$ e $|f^{kn_2}(x) - p_2| \to 0$, quando $k \to \infty$. Desse modo, dado $\varepsilon > 0$ existe $N \ge 1$ tal que $|f^{kn_1}(x) - p_1| < \frac{\varepsilon}{2}$ e $|f^{kn_2}(x) - p_2| < \frac{\varepsilon}{2}$ para todo k > N. Portanto, $|p_1 - p_2| = |p_1 - f^{kn_1n_2}(x) + f^{kn_1n_2}(x) - p_2| \le |f^{kn_2n_1}(x) - p_1| + |f^{kn_1n_2}(x) - p_2| < \varepsilon$. Temos então que p = q, pois ε é arbitrário. Absurdo.

2 Implicações da Diferenciabilidade

Proposição 2.1. Seja $f: I \to \mathbb{R}$ uma função contínua. Se $f(I) \subset I$ ou $f(I) \supset I$, então f possui ponto fixo.

Demonstração. Seja I=[a,b]. Suponha que $f(I)\subset I$. Considere a função contínua g(x)=f(x)-x definida em I. Como $f(a),f(b)\in I$, temos que $g(a)=f(a)-a\geq 0$ e $g(b)=f(b)-b\leq 0$. Pelo Teorema do Valor Intermediário, existe $p\in I$ tal que g(p)=f(p)-p=0. Desse modo, p é ponto fixo de f.

Suponha que $f(I) \supset I$. Por definição, existem $c, d \in I$ tais que f(c) = a ef(d) = b. Considere a função contínua g(x) = f(x) - x definida em I. Temos que $g(c) = a - c \le 0$ e $g(d) = b - d \ge 0$. Pelo Teorema do Valor Intermediário, existe $p \in I$ tal que g(p) = f(p) - p = 0. Desse modo, p é ponto fixo de f.

Teorema 2.2. Seja $f: I \to I$ uma função diferenciável. Se |f'(x)| < 1 para todo $x \in I$, então f admite um único ponto fixo e |f(x) - f(y)| < |x - y| para todo $x, y \in I$ distintos.

Demonstração. Sejam $x, y \in I$, x < y. Pelo Teorema do Valor Médio, existe $c \in [x, y]$ tal que f(x) - f(y) = f'(c)(x - y). Portanto, |f(x) - f(y)| = |f'(c)||x - y| < |x - y|.

Pela Proposição 2.1, f admite um ponto fixo p. Suponha que exista um ponto fixo q diferente de p. Então, pela primeira parte da demonstração, |p-q|=|f(p)-f(q)|<|p-q|. Absurdo.

Definição 2.3. Sejam $f: I \to I$ uma função diferenciável e p um ponto periódico com período principal n. Dizemos que p é um ponto hiperbólico se $|(f^n)'(p)| \neq 1$. Se $|(f^n)'(p)| > 1$, dizemos que p é um ponto atrator e se $|(f^n)'(p)| < 1$, dizemos que p é um ponto repulsor. Dizemos que p é um ponto não hiperbólico se $|(f^n)'(p)| = 1$.

Teorema 2.4. Sejam $f: I \to I$ uma função C^1 e p um ponto periódico com período principal n. Se p é um ponto hiperbólico atrator, existe uma vizinhança de p contida em $W^s(p)$. Se p é um ponto hiperbólico repulsor, existe uma vizinhança U de p tal que, se $x \in U$ e $x \neq p$, $f^{kn}(x) \notin U$ para algum $k \geq 1$.

Demonstração. Suponha que p é um ponto hiperbólico atrator. Como f' é contínua, existe $\varepsilon > 0$ tal que $|(f^n)'(x)| \le \lambda < 1$ para todo $x \in (p - \varepsilon, p + \varepsilon)$. Pelo Teorema do Valor Médio, se $x \in U$ então $|f^n(x) - p| = |f^n(x) - f^n(p)| \le \lambda |x - p|$. Por indução, $|f^{kn}(x) - p| \le \lambda^k |x - p|$. Desse modo, $f^{kn}(x) \to p$ quando $k \to \infty$.

Suponha que p é ponto hiperbólico repulsor. De maneira análoga, existe $\varepsilon > 0$ tal que $|(f^n)'(x)| \ge \lambda > 1$ para todo $x \in (p - \varepsilon, p + \varepsilon)$. Fixado $x \in (p - \varepsilon, p + \varepsilon)$, $x \ne p$, suponha que $f^{kn}(x) \in (p - \varepsilon, p + \varepsilon)$ para todo $k \ge 1$. Pelo Teorema do Valor Médio, $|f^{kn}(x) - p| \ge \lambda^k |x - p|$ para todo $k \ge 1$. Absurdo, pois $\lambda^k |x - p| \to \infty$ quando $k \to \infty$.

Observação. A segunda parte do teorema afirma que existe uma vizinhança de p tal que todo ponto diferente de p nessa vizinhança é movida para fora dela após um número de iterações da f. Observe o ponto pode voltar para vizinhança após mais um número finito de iterações da f, pois sabermos que o valor absoluto da derivada é maior que 1 apenas nessa vizinhança.

3 Função Logística I: Estudo Inicial

Durante essa seção e as próximas, estudaremos a dinâmica da função logística, que é dada por $F(x) = \mu x (1-x)$ para $\mu > 0$.

Proposição 3.1. Se $\mu > 1$, então

1.
$$F(1) = F(0) = 0$$
 e $F(\frac{1}{\mu}) = F(p_{\mu}) = p_{\mu}$, onde $p_{\mu} = \frac{\mu - 1}{\mu}$.

- 2. $0 < p_{\mu} < 1$.
- 3. o vértice da parábola de F é o ponto $(\frac{1}{2}, \frac{\mu}{4})$.

Demonstração. Aplicação direta das definições.

Proposição 3.2. Se $\mu > 1$, então $(-\infty, 0) \cup (1, \infty) \subset W^s(\infty)$.

Demonstração. Se x < 0, a sequência $(x, F(x), F^2(x), \dots)$ é estritamente decrescente pois F(x) < x. Se $(F^n(x))_n \to x_0$ quando $n \to \infty$, a continuidade de F implica que $(F^{n+1}(x))_n \to F(x_0) < x_0$. Absurdo. Portanto, $(F^n(x))_n \to -\infty$ quando $n \to \infty$. Como F(x) < 0 para todo x > 1, concluímos que $(-\infty, 0) \cup (1, \infty) \subset W^s(\infty)$.

Proposição 3.3. Se $1 < \mu < 3$, então

- 1. $0 \text{ \'e} \text{ } um \text{ } ponto \text{ } repulsor \text{ } e \text{ } p_{\mu} \text{ \'e} \text{ } um \text{ } ponto \text{ } atrator.$
- 2. $\lim_{n\to\infty} F^n(x) = p_\mu \text{ para todo } x \in (0,1).$

Demonstração. A primeira parte é verdadeira pois $|F'(0)| = \mu > 1$ e $|F'(p_{\mu})| = |2-\mu| < 1$, quando $1 < \mu < 3$.

Falta provar o item 2.
$$\Box$$

Desse modo, conhecemos completamente a dinâmica de F quando $1 < \mu < 3$:

$$W^{s}(0) = \{0, 1\}, W^{s}(p_{u}) = (0, 1) \in W^{s}(\infty) = (-\infty, 0) \cup (1, \infty).$$

4 Função Logística II: Conjuntos de Cantor

Se $\mu > 4$, então $F\left(\frac{1}{2}\right) = \frac{\mu}{4} > 1$, ou seja, existem pontos em [0,1] que não permanecem em [0,1] após uma iteração de F. Em vista da Proposição 3.2, a dinâmica de F em tais pontos é determinada, pois pertencem ao conjunto $W^s(\infty)$. De modo mais geral, se um ponto de [0,1] não permanece em [0,1] após um número finito de iterações, então ele pertence ao conjunto $W^s(\infty)$.

Desse modo, considere o conjunto $\Lambda_n = \{x \in [0,1] : F^n(x) \in [0,1]\}$, que é formado pelos pontos que permanecem em [0,1] após n iterações de F, e considere o conjunto $\Lambda = \bigcap_{n=0}^{\infty} \Lambda_n = \{x \in [0,1] : F^n(x) \in [0,1] \text{ para todo } n \geq 1\}$, que é formado pelos pontos de [0,1] que sempre permanecem em [0,1] por iterações de F. Observe que $\Lambda_n \supset \Lambda_{n+1}$, para todo $n \geq 1$, pois se $F^{n+1}(x) = F(F^n(x)) \in [0,1]$, então $F^n(x) \in [0,1]$.

Proposição 4.1. Se $\mu > 4$, então

1.
$$\Lambda_1 = [0, x_1] \cup [x_2, 1]$$
, onde $x_1 = \frac{1}{2} - \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$ e $x_2 = \frac{1}{2} + \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$.

- 2. Λ_n é a união de 2^n intervalos fechados disjuntos.
- 3. $F^n: I \to [0,1]$ é bijetora, onde I é qualquer um dos 2^n intervalos fechados disjuntos que formam Λ_n .

Demonstração. Analisando F' observamos que F é estritamente crescente no intervalo $\left[0,\frac{1}{2}\right]$ e estritamente decrescente no intervalo $\left[\frac{1}{2},1\right]$. Como F(0)=F(1)=0 e $F\left(\frac{1}{2}\right)>1$, o Teorema do Valor Intermediário garante que existem $x_1\in \left(0,\frac{1}{2}\right)$ e $x_2\in \left(\frac{1}{2},1\right)$ tais que $F(x_1)=F(x_2)=1$. Os valores de x_1 e x_2 são encontrados resolvendo a equação de segundo grau $\mu x(1-x)=1$. Logo, $F([0,x_1])=F([x_2,1])=[0,1]$ e F(x)>1 para todo $x\in (x_1,x_2)$. Portanto, $\Lambda_1=[0,x_1]\cup [x_2,1]$ e o item 1 está demonstrado.

A demonstração dos itens 2 e 3 será feita por indução. De acordo com a primeira parte, Λ_1 é a união de $2^1 = 2$ intervalos fechados disjuntos e F restrita é cada um desses intervalos é uma bijeção com o intervalo [0, 1].

Suponha que Λ_{k-1} é a união de 2^{k-1} intervalos fechados disjuntos de modo que F^{k-1} : $[a,b] \to [0,1]$ é bijetora para todo intervalo [a,b] que forma Λ_{k-1} . Sendo F^{k-1} bijetora, $(F^{k-1})'(x) > 0$ ou $(F^{k-1})'(x) < 0$ para todo $x \in [a,b]$. Como as demonstrações para os dois casos são análogas, podemos supor que $(F^{k-1})'(x) > 0$.

Como F^{k-1} é estritamente crescente, o Teorema do Valor Intermediário afirma que existem únicos $\overline{x_1}, \overline{x_2} \in (a, b)$ tais que

(a)
$$a < \overline{x_1} < \overline{x_2} < b$$
,

(b)
$$F^{k-1}([a, \overline{x_1}]) = [0, x_1],$$

(c)
$$F^{k-1}((\overline{x_1}, \overline{x_2})) = (x_1, x_2) e$$

(d)
$$F^{k-1}([\overline{x_2}, 1]) = [x_2, 1].$$

As condições acima garantem que os intervalos $[a, \overline{x_1}]$, $[\overline{x_2}, b]$ são disjuntos e que $F^k(x) = F(F^{k-1}(x)) > 1$ para todo $x \in (\overline{x_1}, \overline{x_2})$. Também, temos que $F^k([a, \overline{x_1}]) = F([0, x_1]) = [0, 1]$ e, analogamente, $F^k([\overline{x_2}, 1]) = [0, 1]$. Além disso,

$$(F^k)'([a,\overline{x_1}]) = F'(F^{k-1}([a,\overline{x_1}]))(F^{k-1})'([a,\overline{x_1}]) = F'([0,x_1])(F^{k-1})'([a,\overline{x_1}]) > 0$$

e, analogamente,

$$(F^k)'([\overline{x_2}, 1]) = F'([x_2, 1])(F^{k-1})'([\overline{x_2}, 1]) < 0.$$

Logo, F^k é uma bijeção entre $[a, \overline{x_1}]$ e [0, 1] e entre $[\overline{x_2}, 1]$ e [0, 1].

Portanto, a partir de cada intervalo fechado de Λ_{k-1} , construímos dois novos intervalos fechados disjuntos tais que F^k restrita em cada um desses intervalos é um bijeção com [0,1] e, dessa maneira, esses intervalos estão contidos em Λ_k . Desse modo, se Λ_{k-1} é formado por 2^{k-1} intervalos fechados disjuntos, então Λ_k é formado por $2 \times 2^{k-1} = 2^k$ intervalos fechados disjuntos. Assim, o resultado está provado.

Definição 4.2 (Conjunto de Cantor). Um conjunto $\Gamma \subset \mathbb{R}$ não vazio é um *conjunto de Cantor* se

- 1. Γ é fechado e limitado,
- 2. Γ não possui intervalos e
- 3. Todo ponto de Γ é um ponto de acumulação de Γ .

Lema 4.3. Se $\mu > 2 + \sqrt{5}$, então

- 1. existe $\lambda > 1$ tal que $|F'(x)| > \lambda$ para todo $x \in \Lambda_1$.
- 2. o tamanho de cada intervalo fechado em Λ_n é menor que $\frac{1}{\lambda^n}$.
- 3. dados $x \in \Lambda$ e $\varepsilon > 0$, existe um intervalo fechado $I \subset \Lambda_n$, para algum $n \geq 1$, que contém x e cujo tamanho é menor que ε tal que $F^n : I \to [0, 1]$ é bijetora.
- Demonstração. 1. Inicialmente, observamos que $\mu^2 4\mu > 1$ quando $\mu > 2 + \sqrt{5}$. Desse modo, $F'(x_1) = \sqrt{\mu^2 4\mu} > 1$ e $F'(x_2) = -\sqrt{\mu^2 4\mu} < -1$, onde x_1 e x_2 são como na Proposição 4.1. Observamos também que F' é estritamente decrescente, pois $F''(x) = -2\mu < 0$. Portanto, $F'(x) \geq F'(x_1) > 1$ para todo $x \in [0, x_1]$ e $F'(x) \leq F'(x_2) < -1$ para todo $x \in [x_2, 1]$. De acordo com a Proposição 4.1, $\Lambda_1 = [0, x_1] \cup [x_2, 1]$ e, desse modo, |F'(x)| > 1 para todo $x \in \Lambda_1$. Sendo F' contínua e Λ_1 compacto, existe $\lambda > 1$ tal que $|F'(x)| > \lambda$ para todo $x \in \Lambda_1$.

2. De acordo com a Proposição 4.1, Λ_n é formado pela união de 2^n intervalos disjuntos. Seja [a,b] um desses intervalos. Se $x \in [a,b]$, em particular $F^k(x) \in \Lambda_1$ para todo $0 \le k < n$. Desse modo, de acordo com o item anterior, temos que $(F^n)'(x) = F'(F^{n-1}(x)) \times F'(F^{n-2}(x)) \times \cdots \times F'(x) > \lambda^n$.

Pelo Teorema do Valor Médio, existe $c \in [a, b]$ tal que

$$|F^n(b) - F^n(a)| = |(F^n)'(c)||b - a| > \lambda^n|b - a|$$

Como $F^n:[a,b]\to [0,1]$ é contínua e bijetora, temos que $|F^n(b)-F^n(a)|=1$. Desse modo, $|b-a|<\frac{1}{\lambda^n}$ e a afirmação está provada.

3. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $n \ge 1$ tal que $\frac{1}{\lambda^n} < \varepsilon$, onde $\lambda > 1$ é como no primeiro item. Em particular, $x \in \Lambda_n$. Seja I um dos intervalos que formam Λ_n e que contém x. Pelo item anterior, o tamanho de I é menor que ε . Além disso, pela Proposição 4.1, $F^n: I \to [0,1]$ é bijetora e, portanto, a afirmação está provada.

Teorema 4.4. Se $\mu > 2 + \sqrt{5}$, então Λ é um conjunto de Cantor.

Demonstração. Λ é não vazio pois $0 \in \Lambda$, é limitado pois $\Lambda_1 \subset [0,1]$ e é fechado pois é intersecção de conjuntos fechados.

Agora, suponha que Λ contém algum intervalo. Então, existem $x,y \in I, x < y$, tais que $[x,y] \subset \Lambda$. Seja k tal que $\frac{1}{\lambda^k} < |x-y|$. Em particular, $[x,y] \subset \Lambda_k$. Mas, de acordo com o Lema 4.3, os intervalos de Λ_k possuem tamanho menor que $\frac{1}{\lambda^k}$. Absurdo e, portanto, Λ não possui intervalos.

Por fim, observe que, se x é um ponto extremo de algum intervalo de Λ_n , então $x \in \Lambda$ pois $F^{n+1}(x) = 0$. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Em particular, $x \in \Lambda_k$ e, portanto, x é elemento de algum intervalo cujo tamanho é menor que ε , de acordo com o Lema 4.3. Portanto, existe $y \in \Lambda$ ponto extremo do intervalo que contém x tal que $|x - y| < \varepsilon$. Como ε é arbitrário, concluímos que x é um ponto de acumulação de Λ . \square

Observação.O Teorema 4.4 é válido para $4<\mu\leq 2+\sqrt{5},$ porém a demonstração é mais difícil.

5 Função Logística III: Caos

Proposição 5.1. Se $\mu > 2 + \sqrt{5}$, então o conjunto de pontos periódicos de $F : \Lambda \to \Lambda$ é denso em Λ .

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. De acordo com o Lema 4.3, o intervalo fechado $I \subset \Lambda_k$ que contém x possui tamanho menor que ε . Pela Proposição 4.1, $F^k : I \to [0,1]$ é bijetora. Como $F^k(I) \supset I$, a Proposição 2.1 afirma que existe $y \in I$ tal que $F^k(y) = y$. Observando que $y \in \Lambda$ e $|x - y| < \varepsilon$, o resultado está provado. \square

Definição 5.2. Seja $f: D \to D$ uma função. Dizemos que f é topologicamente transitiva se dados $x, y \in D$ e $\varepsilon > 0$, existem $z \in D$ e $k \ge 1$ tais que $|z - x| < \varepsilon$ e $|f^k(z) - y| < \varepsilon$.

Proposição 5.3. Se $\mu > 2 + \sqrt{5}$, então $F : \Lambda \to \Lambda$ é topologicamente transitiva.

Demonstração. Sejam $x, y \in \Lambda$ e $\varepsilon > 0$. Existe $k \geq 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. De acordo com o Lema 4.3, o tamanho de cada intervalo fechado em Λ_k é menor que $\frac{1}{\lambda^k}$ e, portanto, menor que ε . Como $x \in \Lambda_k$, existe um intervalo $[a, b] \subset \Lambda_k$ que contém x. Pela Proposição 4.1, $F^k : [a, b] \to [0, 1]$ é bijetora e, pelo Teorema do Valor Intermediário, existe $z \in [a, b]$ tal que $F^k(z) = y$. Observando que $z \in \Lambda$, concluímos que F é topologicamente transitiva.

Definição 5.4. Seja $f: D \to D$ uma função. Dizemos que f depende sensivelmente das condições iniciais se para algum $\delta > 0$, dados $x \in D$ e $\varepsilon > 0$, existem $y \in D$ e $k \ge 1$ tais que $|x - y| < \varepsilon$ e $|f^k(x) - f^k(y)| > \delta$.

Proposição 5.5. Se $\mu > 2 + \sqrt{5}$, então $F : \Lambda \to \Lambda$ depende sensivelmente das condições iniciais.

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Como na demonstração da Proposição anterior, seja I o intervalo fechado contido em Λ_k que contém x e cujo tamanho é menor que ε . Como $F^k: I \to [0,1]$ é um bijeção, então $F^k(a) = 0$ e $F^k(b) = 1$, onde a e b são pontos extremos de I. Como $F(\frac{1}{2}) > 1$ e $x \in \Lambda$, segue que $F^k(x) \in [0,\frac{1}{2}) \cup (\frac{1}{2},1]$. Se $F^k(x) \in [0,\frac{1}{2})$, então $|F^k(x) - F^k(b)| = |F^k(x) - 1| > \frac{1}{2}$ e se $F^k(x) \in (\frac{1}{2},1]$, então $|F^k(x) - F^k(a)| = |F^k(x)| > \frac{1}{2}$. Observando que $|x - a| < \varepsilon$ e $|x - b| < \varepsilon$, temos o resultado para $\delta = \frac{1}{2}$.

Definição 5.6. Seja $f: D \to D$ uma função. Dizemos que $f \in ca\'otica$ se

- 1. O conjunto de pontos periódicos de f é denso em D.
- 2. f é topologicamente transitiva.
- 3. f depende sensivelmente das condições iniciais.

Teorema 5.7. $Se \ \mu > 2 + \sqrt{5}$, $ent\~ao \ F : \Lambda \to \Lambda \ \'e \ ca\'otica.$ $Demonstra\~c\~ao. \ O \ resultado \ segue \ das \ Proposi\~c\~oes \ 5.1, \ 5.3 \ e \ 5.5. \ \Box$ $Observa\~c\~ao. \ O \ Teorema \ 5.7 \ \'e \ v\'alido \ para \ 4 < \mu \le 2 + \sqrt{5}, \ por\'em \ a \ demonstra\~c\~ao \ \'e \ mais \ difícil.$ $Teorema \ 5.8. \ Se \ D \ \'e \ um \ subconjunto \ infinito \ de \ \mathbb{R} \ e \ f : D \to D \ \'e \ uma \ fun\~c\~ao \ topologicamente \ transitiva \ cujo \ conjunto \ de \ pontos \ peri\'odicos \ \'e \ denso, \ ent\~ao \ f \ \'e \ ca\'otica.$ $Demonstra\~c\~ao. \ Por \ demonstra\~c$

6 Função Logística IV: Conjugação Topológica

Definição 6.1. Sejam $f: A \to A$, $g: B \to B$ e $\tau: A \to B$ funções. Dizemos que f e g são topologicamente conjugadas por τ , se τ é um homeomorfismo tal que $\tau \circ f = g \circ \tau$.

Proposição 6.2. Sejam $f: A \to A$, $g: B \to B$ e $\tau: A \to B$ funções. Se f e g são topologicamente conjugadas por τ , então

- 1. $g \ e \ f \ s\~{a}o \ topologicamente \ conjugadas \ por \ \tau^{-1}$.
- 2. $\tau \circ f^n = q^n \circ \tau \text{ para todo } n > 1.$
- 3. p é ponto periódico de f se e somente se $\tau(p)$ é ponto periódico de g. Além disso, os períodos principais de p e $\tau(p)$ são iguais.
- 4. $W^s(\tau(p)) = \tau(W^s(p))$, se p é um ponto periódico de f.
- 5. o conjunto de pontos periódicos de f é denso se e somente se o conjunto de pontos periódicos de g é denso.
- 6. f é topologicamente transitiva se e somente se g é topologicamente transitiva.
- Demonstração. 1. Como τ é um homeomorfismo, a função inversa τ^{-1} existe e também é um homeomorfismo. Além disso, $\tau \circ f = g \circ \tau$ implica que $f \circ \tau^{-1} = \tau^{-1} \circ g$. Portanto, τ^{-1} é conjugação topológica de g e f.
 - 2. Por definição, a afirmação é verdadeira quando n=1. Suponha que $\tau \circ f^{n-1}=g^{n-1}\circ \tau$. Desse modo, $\tau \circ f^n=\tau \circ f^{n-1}\circ f=g^{n-1}\circ \tau \circ f=g^{n-1}\circ g\circ \tau=g^n\circ \tau$. Portanto, a afirmação é verdadeira para todo $n\geq 1$.
 - 3. Suponha que p é um ponto periódico de f com período principal n. Desse modo, $g^n(\tau(p)) = \tau(f^n(p)) = \tau(p)$. Se $k = 1, \ldots, n-1$, então $g^k(\tau(p)) = \tau(f^k(p)) \neq \tau(p)$, pois $f^k(p) \neq p$ e τ é injetora. Portanto, $\tau(p)$ é um ponto periódico de g com período principal n. A outra implicação é demonstrada de maneira análoga.
 - 4. Suponha que p é um ponto periódico com período n. Se $x \in W^s(\tau(p))$, então $\lim_{k\to\infty} g^{kn}(x) = \tau(p)$. Como τ^{-1} é contínua, temos $\lim_{k\to\infty} f^{kn}(\tau^{-1}(x)) = \lim_{k\to\infty} \tau^{-1}(g^{kn}(x)) = p$. Então, $x \in \tau(W^s(p))$ pois $\tau^{-1}(x) \in W^s(p)$.
 - Por outro lado, se $\tau(x) \in \tau(W^s(p))$, então $\lim_{k\to\infty} f^{kn}(x) = p$. Como τ é contínua, temos $\lim_{k\to\infty} g^{kn}(\tau(x)) = \lim_{k\to\infty} \tau(f^{kn}(x)) = \tau(p)$ e, portanto, $\tau(x) \in W^s(\tau(p))$.
 - 5. Se o conjunto Per(f) dos pontos periódicos de f é denso em A, então $\tau(Per(f))$ é denso em B pois τ é um homeomorfismo. Como $\tau(Per(f)) = Per(g)$, temos que Per(g) é denso em B. A outra implicação é demonstrada de maneira análoga.

6. Inicialmente, sendo τ é contínua, dado $\varepsilon > 0$ existe $\delta > 0$ de modo que, se $z \in A$, $|x-z| < \delta$ e $|y-f^n(z)| < \delta$, então $|\tau(x) - \tau(z)| < \varepsilon$ e $|\tau(y) - \tau(f^n(z))|$, onde $n \ge 1$ é fixado.

Se $x', y' \in B$, existem $x, y \in A$ tais que $\tau(x) = x'$ e $\tau(y) = y'$. Como f é topologicamente transitiva, existe $z \in A$ tal que $|x - z| < \delta$ e $|y - f^n(z)| < \delta$ para algum $n \ge 1$. Portanto, $|\tau(x) - \tau(z)| < \varepsilon$ e $|\tau(y) - \tau(f^n(z))| < \varepsilon$. Se $\tau(z) = z'$, então $|x' - z'| < \varepsilon$ e $|y' - g^n(z')| < \varepsilon$ e, portanto, g é topologicamente transitiva. A outra implicação é demonstrada de maneira análoga.

Lema 6.3. A função $T:[0,1] \rightarrow [0,1]$, dada por

$$T(x) = \begin{cases} 2x, & x \in [0, \frac{1}{2}] \\ 2 - 2x, & x \in [\frac{1}{2}, 1] \end{cases}$$

é caótica.

 $\begin{array}{l} \textit{Demonstração}. \text{ Inicialmente, provaremos por indução que } T^n: \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \to [0,1] \text{ \'e uma função linear bijetora para todo } 0 \leq k < 2^n. \text{ Pela definição de } T, \text{ a afirmação \'e verdadeira quando } n = 1. \text{ Suponha que } T^{n-1}: \left[\frac{k}{2^{n-1}}, \frac{k+1}{2^{n-1}}\right] \to [0,1] \text{ \'e uma função linear bijetora para todo } 0 \leq k < 2^{n-1}. \text{ Fixado } k, \text{ podemos supor que } T^{n-1}\left(\frac{k}{2^{n-1}}\right) = 0 \text{ e } T^{n-1}\left(\frac{k+1}{2^{n-1}}\right) = 1. \\ \text{O caso em que } T^{n-1}\left(\frac{k}{2^{n-1}}\right) = 1 \text{ e } T^{n-1}\left(\frac{k+1}{2^{n-1}}\right) = 0 \text{ \'e tratado de maneira análoga. Temos que } T^{n-1}(\overline{x}) = \frac{1}{2}, \text{ onde } \overline{x} = \frac{2k+1}{2^n} \text{ \'e o ponto m\'edio do intervalo } \left[\frac{k}{2^{n-1}}, \frac{k+1}{2^{n-1}}\right]. \text{ Portanto, } T^n(\overline{x}) = T(T^{n-1}(\overline{x})) = T\left(\frac{1}{2}\right) = 1, \ T^n\left(\frac{k}{2^{n-1}}\right) = T(0) = 0 \text{ e } T^n\left(\frac{k+1}{2^{n-1}}\right) = T(1) = 0. \\ \text{Desse modo, } T^n: \left[\frac{k}{2^{n-1}}, \overline{x}\right] \to [0,1] \text{ e } T^n: \left[\overline{x}, \frac{k+1}{2^{n-1}}\right] \to [0,1] \text{ são funções lineares(pois são composições de funções lineares) e bijetoras para todo <math>0 \leq k < 2^{n-1}. \text{ Observando que } \left[\frac{k}{2^{n-1}}, \overline{x}\right] = \left[\frac{2k}{2^n}, \frac{2k+1}{2^{n-1}}\right] = \left[\frac{2k+1}{2^n}, \frac{2k+2}{2^n}\right], \text{ concluímos que que } T^n: \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \to [0,1] \text{ \'e uma função linear bijetora para todo } 0 \leq k < 2^n \text{ e, portanto, a afirmação está provada.} \end{cases}$

Para provar que T é caótica, seja $\varepsilon > 0$. Pelo afirmação do parágrafo anterior, existem $n \ge 1$ e $I = \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$ tais que $\frac{1}{2^n} < \varepsilon$, $x \in I$ e $T^n : I \to [0,1]$ é bijetora.

Seja $x \in [0,1]$. Como $T(I) \supset I$, a Proposição 2.1 afirma que existe $p \in I$ tal que $T^n(p) = p$. Observando que $|x-p| \le \frac{1}{2^n} < \varepsilon$, concluímos que o conjunto de pontos periódicos de T é denso em [0,1].

Sejam $x, y \in [0, 1]$. Como $T^n : I \to [0, 1]$ é sobrejetora, existe $z \in I$ tal que $T^n(z) = y$. Observando que $|z - x| \le \frac{1}{2^n} < \varepsilon$ e $|T^n(z) - y| = 0 < \varepsilon$, concluímos que T é topologicamente transitiva.

Seja $x \in [0,1]$. Como $T^n: I \to [0,1]$ é sobrejetora, existem $a,b \in I$ tais que $T^n(a) = 0$ e $T^n(b) = 1$. Se $T^n(x) \in [0,\frac{1}{2}]$, então $|T^n(x) - T^(b)| = |T^n(x) - 1| \ge \frac{1}{2}$ e se $T^n(x) \in [\frac{1}{2},1]$, então $|T^n(x) - T^n(a)| = |T^n(x)| \ge \frac{1}{2}$. Observando que $|x - a| \le \frac{1}{2^n} < \varepsilon$ e $|x - b| \le \frac{1}{2^n} < \varepsilon$, concluímos que T depende sensivelmente das condições iniciais.

Teorema 6.4. Se $\mu = 4$, então F é caótica.

Demonstração. Seja $\tau(x) = \mathrm{sen}^2\left(\frac{\pi x}{2}\right)$ definida no intervalo [0,1]. τ é homeomorfismo pois τ' existe em [0,1] e $\tau' > 0$ em (0,1).

Se
$$x \in \left[0, \frac{1}{2}\right]$$
, então

$$\tau \circ T(x) = \tau(2x) = \operatorname{sen}^2(\pi x)$$

e se $x \in \left[\frac{1}{2}, 1\right]$, então

$$\tau \circ T(x) = \tau(2 - 2x) = \sin^2(\pi - \pi x) = (\sin(\pi)\cos(\pi x) - \sin(\pi x)\cos(\pi x))^2 = \sin^2(\pi x)$$

Por outro lado,

$$F \circ \tau(x) = 4\operatorname{sen}^2\left(\frac{\pi x}{2}\right)\left(1 - \operatorname{sen}^2\left(\frac{\pi x}{2}\right)\right) = 4\operatorname{sen}^2\left(\frac{\pi x}{2}\right)\operatorname{cos}^2\left(\frac{\pi x}{2}\right) = \operatorname{sen}^2(\pi x)$$

Desse modo, $\tau \circ T = F \circ \tau$. Portanto, de acordo com o Teorema 5.7, a Proposição 6.2 e o Lema 6.3, F é caótica.

7 Função Logística V: Dinâmica Simbólica

Definição 7.1. $\Sigma_2 = \{s = (s_0 s_1 s_2 \dots) : s_k = 0 \text{ ou } s_k = 1 \text{ para todo } k \geq 0\}$ é o espaço das sequências de 0 e 1.

Proposição 7.2. A função $d: \Sigma_2 \times \Sigma_2 \to \mathbb{R}$, dada por

$$d(s,t) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k}$$

 \acute{e} uma distância em Σ_2 .

Demonstração. Inicialmente, observamos que a função d é bem definida pois

$$d(s,t) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k} \le \sum_{k=0}^{\infty} \frac{1}{2^k} = 2$$

Além disso, é fácil verificar que as propriedades de uma distância são válidas em d, isto é,

- (a) $d(s,t) \ge 0$
- (b) d(s,t) = 0 se e somente se s = t
- (c) d(s,t) = d(t,s)
- (d) d(s,t) < d(s,r) + d(r,t)

para todo $r, s, t \in \Sigma_2$. Portando, d é uma distância e a afirmação está provada.

Proposição 7.3. Sejam $s = (s_0 s_1 s_2 \dots), t = (t_0 t_1 t_2 \dots) \in \Sigma_2$. Se $s_k = t_k$ para todo $0 \le k \le n$, então $d(s,t) \le \frac{1}{2^n}$. Por outro lado, se $d(s,t) < \frac{1}{2^n}$, então $s_k = t_k$ para todo $0 \le k \le n$.

Demonstração. Suponha que $s_k = t_k$ para todo $0 \le k \le n$. Desse modo,

$$d(s,t) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k} = \sum_{k=n+1}^{\infty} \frac{|s_k - t_k|}{2^k} \le \sum_{k=n+1}^{\infty} \frac{1}{2^k} = \frac{1}{2^n}$$

Por outro lado, se $s_i \neq t_i$ para algum $0 \leq i \leq n$, então

$$d(s,t) = \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k} \ge \frac{1}{2^i} \ge \frac{1}{2^n}$$

Portanto, se $s_k = t_k$ para todo $0 \le k \le n$, concluímos que $d(s,t) < \frac{1}{2^n}$.

Definição 7.4. A função $\sigma: \Sigma_2 \to \Sigma_2$, dada por $\sigma(s_0s_1s_2...) = (s_1s_2s_3...)$, é chamada de função shift.

Proposição 7.5. σ é contínua.

Demonstração. Sejam $s=(s_0s_1s_2\dots)\in\Sigma_2,\ \varepsilon>0$ e $n\geq 1$ tal que $\frac{1}{2^n}<\varepsilon$. Se $t=(t_0t_1t_2\dots)\in\Sigma_2$ e $d(s,t)<\frac{1}{2^{n+1}}$, então $s_k=t_k$ para todo $0\leq k\leq n+1$, de acordo com a Proposição 7.3. Como $\sigma(s)=(s_1s_2s_3\dots)$ e $\sigma(t)=(t_1t_2t_3\dots)$, temos que as primeiras n+1 entradas de $\sigma(s)$ e $\sigma(t)$ são iguais. Novamente, utilizando a Proposição 7.3, temos que $d(\sigma(s),\sigma(t))\leq\frac{1}{2^n}<\varepsilon$. Como s é um ponto arbitrário em Σ_2 , concluímos que σ é contínua.

Proposição 7.6. Se σ é a função shift, então

- 1. existem 2^n pontos periódicos com período n.
- 2. existe um ponto cuja órbita é densa.
- 3. o conjunto dos pontos periódicos é denso.
- 4. o conjunto dos pontos não periódicos que são eventualmente periódicos é denso.
- 5. o conjunto dos pontos que não são periódicos e nem eventualmente periódicos é denso.

Demonstração. 1. Se $s = (s_0 s_1 s_2 \dots)$ é um ponto periódico com período n, então

$$\sigma^k(\sigma^n(s)) = (s_{n+k}s_{n+k+1}s_{n+k+2}\dots) = (s_ks_{k+1}s_{k+2}\dots) = \sigma^k(s)$$

para todo $k \geq 0$. Desse modo, s é formado pela repetição das entradas $s_0 s_1 \dots s_{n-1}$. Pelo Princípio Fundamental da Contagem, existem 2^n sequências distintas para $s_0 s_1 \dots s_{n-1}$ e, portanto, a afirmação está provada.

- 2. Considere o ponto $s^* = (0\,1\,00\,01\,10\,11\,000\,001\dots)$ formado por todos os blocos de tamanho 1, depois por todos os blocos de tamanho 2, e assim sucessivamente.
 - Sejam $s \in \Sigma_2$, $\varepsilon > 0$ e $n \ge 1$ tal que $\frac{1}{2^n} < \varepsilon$. É fácil ver que existe $k \ge 0$ de modo que $\sigma^k(s^*)$ e s são iguais nas primeiras n+1 entradas. De acordo com a Proposição 7.3, $d(s, \sigma^k(s^*)) \le \frac{1}{2^n} < \varepsilon$ e, portanto, a afirmação está provada.
- 3. Sejam $s=(s_0s_1s_2\dots)\in\Sigma_2,\ \varepsilon>0$ e $n\geq 1$ tal que $\frac{1}{2^n}<\varepsilon$. Considere o ponto periódico t com período n+1 formado pela repetição da sequência $s_0s_1s_2\dots s_n$. De acordo com a Proposição 7.3, $d(s,t)\leq\frac{1}{2^n}<\varepsilon$ e, portanto, a afirmação está provada.

8 Teorema de Sharkovsky

Ao longo dessa seção, f denotará uma função contínua de um intervalo em \mathbb{R} , onde o intervalo não precisa ser fechado ou limitado.

Definição 8.1. Se $I_0, I_1, \ldots, I_{n-1}$ são intervalos fechados, n > 1,

- 1. dizemos que I_0 cobre I_1 , e denotamos por $I_0 \longrightarrow I_1$, se $f(I_0) \supset I_1$.
- 2. dizemos que $I_0, I_1, \ldots, I_{n-1}$ é um caminho entre I_0 e I_{n-1} , e denotamos por $I_0 \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_{n-1}$, se $f(I_i) \supset I_{i+1}$, $i = 0, \ldots, n-2$.
- 3. dizemos que $I_0, I_1, \ldots, I_{n-1}$ é um ciclo entre I_0 e I_{n-1} , e denotamos por $I_0 \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_{n-1} \longrightarrow I_0$, se $f(I_i) \supset I_{i+1}$, $i = 0, \ldots, n-2$, e $f(I_{n-1}) \supset I_0$.

Lema 8.2. Se $I_0 \longrightarrow I_1$, então $f(I'_0) = I_1$ para algum intervalo fechado $I'_0 \subset I_1$.

Demonstração. Se $I_0 = [a, b]$ e $I_1 = [c, d]$, pelo Teorema do Valor Intermediário, existem $p, q \in I_0$ tais que f(p) = c e f(q) = d. Suponha que $p \le q$ e defina $I'_0 = [a', b']$, onde

$$b' = \inf\{x \in [p, q] : f(x) = d\} \in a' = \sup\{x \in [p, b'] : f(x) = c\}$$

Sendo f contínua temos que f(a') = c e f(b') = d e, desse modo, $f(I'_0) \supset I_1$. Se f(x) < c para algum $x \in I'_0$, existe $y \in [x, b']$ tal que f(y) = c, o que é um absurdo pois nesse caso y > a'. Absurdo análogo ocorre se f(x) > d para algum $x \in I'_0$. Portanto, $f(I'_0) = I_1$.

Lema 8.3. Se $J_0 \longrightarrow J_1 \longrightarrow \cdots \longrightarrow J_{n-1} \longrightarrow J_0$, então existe $p \in J_0$ tal que $f^k(p) \in J_k$, para todo $k = 1, \ldots, n-1$, $e f^n(p) = p$.

Demonstração. De acordo com as hipóteses e com a Proposição anterior, temos as seguintes implicações:

$$J_0 \longrightarrow J_1 \Rightarrow \text{ existe } J_0' \subset J_0 \text{ tal que } f(J_0') = J_1$$

$$J_1 \longrightarrow J_2 \Rightarrow \text{ existe } J_1' \subset J_0' \text{ tal que } f^2(J_1') = J_2$$

$$\vdots$$

$$J_{n-2} \longrightarrow J_{n-1} \Rightarrow \text{ existe } J_{n-2}' \subset J_{n-3}' \text{ tal que } f^{n-1}(J_{n-2}') = J_{n-1}$$

$$J_{n-1} \longrightarrow J_0 \Rightarrow \text{ existe } J_{n-1}' \subset J_{n-2}' \text{ tal que } f^n(J_{n-1}') = J_0$$

Construímos então uma sequência de n intervalos fechados $J_0 \supset J'_0 \supset J'_1 \supset \cdots \supset J'_{n-1}$ tal que $f^k(J'_{k-1}) = J_k$, para todo $k = 1, \ldots, n-1$, e $f^n(J'_{n-1}) = J_0$. Como $J_0 \supset J'_{n-1}$, existe $p \in J'_{n-1}$ tal que $f^n(p) = p$. Em particular, $p \in J_0$ e $f^k(p) \in J_k$, para todo $k = 1, \ldots, n-1$.

Teorema 8.4. Se f admite ponto periódico de período principal 3, então f admite ponto periódico de período principal n, para todo $n \ge 1$.

Demonstração. Sejam p um ponto periódico de período principal 3 e $p_1 < p_2 < p_3$ os pontos da órbita de p e suponha que $f(p_1) = p_2$ e $f(p_2) = p_3$. O outro caso possível, em que $f(p_1) = p_3$ e $f(p_3) = p_2$, é demonstrado de maneira análoga. Definindo $I_1 = [p_1, p_2]$ e $I_2 = [p_2, p_3]$, temos que $I_1 \longrightarrow I_2$, $I_2 \longrightarrow I_1$ e $I_2 \longrightarrow I_2$.

- (a) n = 1: Como $I_2 \longrightarrow I_2$, existe $p \in I_2$ tal que f(p) = p.
- (b) n = 2: Como $I_1 \longrightarrow I_2 \longrightarrow I_1$, existe $p \in I_1$ tal que $f(p) \in I_2$ e $f^2(p) = p$. Se f(p) = p, então $p \in I_1 \cap I_2 = \{p_2\}$, o que é um absurdo pois p_2 possui período principal 3. Desse modo, o período principal de p é 2.
- (c) n > 3: Se $I_2 \longrightarrow \cdots \longrightarrow I_2 \longrightarrow I_1 \longrightarrow I_2$ é um ciclo de tamanho n, existe $p \in I_2$ tal que $f^k(p) \in I_2$, para todo $k = 1, \ldots, n-2, f^{n-1}(p) \in I_1$ e $f^n(p) = p$. Se $f^{n-1}(p) = p$, então $p \in I_1 \cap I_2 = \{p_2\}$, o que é um absurdo pois implica que $f(p) = p_3 \in I_1$. Se $f^k(p) = p$ para algum $k = 1, \ldots, n-2$ implica que $f^k(p) \in I_2$, para todo $k \ge 1$. Em particular, $f^{n-1}(p) \in I_1 \cap I_2 = \{p_2\}$ e, portanto, $p = f^n(p) = p_3$, o que é um absurdo pois implica que $f(p) = p_1 \in I_2$.

Desse modo, o resultado está provado.

Para demonstrar os seguintes Lemas, supomos que f admite um ponto periódico p de período principal n > 1. Seja $\mathcal{O}(p) = \{p_1 < p_2 < \cdots < p_n\}$ a órbita de p. Vamos definir n-1 intervalos fechados da forma $[p_i, p_{i+1}]$, que serão denotados por $I_1, I_2, \ldots, I_{n-1}$, com propriedades que permitam demonstrar o Teorema de Shakovsky.

Lema 8.5. Existe $k = 1, \ldots, n-1$ tal que $[p_k, p_{k+1}] \longrightarrow [p_k, p_{k+1}]$.

Demonstração. Seja $p_k = \max\{p_i \in \mathcal{O}(p) : f(p_i) > p_i\}$. Observe que $p_k < p_n$. Pela definição de p_k e por $f(p_{k+1}) \neq p_{k+1}$, temos que $f(p_k) > p_k$ e $f(p_{k+1}) < p_{k+1}$. Portanto, $[p_k, p_{k+1}] \longrightarrow [p_k, p_{k+1}]$.

O intervalo encontrado no Lema anterior será denotado por I_1 . Portanto, $I_1 \longrightarrow I_1$.

Lema 8.6. Existe um caminho entre I_1 e $[p_i, p_{i+1}]$, para todo i = 1, ..., n-1.

Demonstração. Para cada $n \geq 1$, defina \mathcal{U}_n como a união dos intervalos da forma $[p_i, p_{i+1}]$ tal que existe um caminho de tamanho n entre I_1 e $[p_i, p_{i+1}]$.

Se $[p_i, p_{i+1}]$ é um intervalo de \mathcal{U}_n , então existe um caminho de tamanho n entre I_1 e $[p_i, p_{i+1}]$. Adicionando $I_1 \longrightarrow I_1$ ao início do caminho formamos um caminho de tamanho n+1 entre I_1 e $[p_i, p_{i+1}]$. Portanto, $[p_i, p_{i+1}]$ é um intervalo de \mathcal{U}_{n+1} e, desse modo, $\mathcal{U}_n \subset \mathcal{U}_{n+1}$. Observe que se $\mathcal{U}_n \neq \mathcal{U}_{n+1}$, existe um intervalo $[p_i, p_{i+1}]$ de \mathcal{U}_n tal que $f([p_i, p_{i+1}] \cap \mathcal{O}(p)) \nsubseteq \mathcal{U}_n$.

Como $\mathcal{O}(p)$ é finita e $\mathcal{U}_1 \subset \mathcal{U}_2 \subset \cdots$, existe $k \geq 1$ tal que $\mathcal{U}_k = \mathcal{U}_{k+1}$. De acordo com a observação anterior, $f([p_i, p_{i+1}] \cap \mathcal{O}(p)) \subset \mathcal{U}_k$ para todo intervalo $[p_i, p_{i+1}]$ de \mathcal{U}_k , ou seja, $f(\mathcal{U}_k \cap \mathcal{O}(p)) \subset \mathcal{U}_k$. Desse modo, $f(\mathcal{U}_k \cap \mathcal{O}(p)) = \mathcal{U}_k \cap \mathcal{O}(p)$. Como o único subconjunto de $\mathcal{O}(p)$ estável por f é ele próprio, segue que $\mathcal{U}_k \cap \mathcal{O}(p) = \mathcal{O}(p)$. Assim, $\mathcal{U}_k = [p_1, p_n]$ e o resultado está provado.

Lema 8.7. Se não existe $[p_i, p_{i+1}] \neq I_1$ tal que $[p_i, p_{i+1}] \longrightarrow I_1$, então

- 1. f é uma bijeção entre os pontos de $\mathcal{O}(p)$ à esquerda e à direita de I_1
- 2. n é par
- 3. f admite um ponto de período 2

Demonstração. Seja $I_1 = [p_k, p_{k+1}]$ e considere os conjuntos $\mathcal{O}_1 = \{p_1, \dots, p_k\}$ e $\mathcal{O}_2 = \{p_{k+1}, \dots, p_n\}$.

- 1. Se f calculada em algum ponto de \mathcal{O}_1 permanece em \mathcal{O}_1 , considere $p_j = \max\{p_i \in \mathcal{O}_1 : f(p_i) \in \mathcal{O}_1\}$. Por definição de p_j , temos $f(p_j) \leq p_k$ e $f(p_{j+1}) \geq p_{k+1}$. Além disso, $p_j < p_k$. Desse modo, $[p_j, p_{j+1}] \neq I_1$ e $[p_j, p_{j+1}] \longrightarrow I_1$, o que é um absurdo. Logo, todo ponto de \mathcal{O}_1 é levado em \mathcal{O}_2 por f. Analogamente, mostra-se que todo ponto de \mathcal{O}_2 é levado em \mathcal{O}_1 por f. Assim, existe uma bijeção entre \mathcal{O}_1 e \mathcal{O}_2 .
- 2. Em particular, o tamanho de \mathcal{O}_1 e \mathcal{O}_2 são iguais. Desse modo, n é par.
- 3. Como $[p_1, p_k] \longrightarrow [p_{k+1}, p_n]$ e $[p_{k+1}, p_n] \longrightarrow [p_1, p_k]$, existe $p \in [p_1, p_k]$ tal que $f^2(p) = p$. Como os intervalos são disjuntos, segue que o período principal de $p \notin 2$.

Desse modo, as afirmações estão provadas.

Lema 8.8. Se n > 1 é impar e f não admite ponto de período impar menor que n, então existe um ciclo $I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_{n-1} \longrightarrow I_1$ tal que

- 1. se $I_i \longrightarrow I_{i+j}$ então j=1
- 2. $I_{n-1} \longrightarrow I_j$, para todo j < n-1 ímpar

Demonstração. Inicialmente, vamos provar a existência do ciclo de tamanho n-1. De acordo com os dois Lemas anteriores, existe um intervalo da forma $[p_i, p_{i+1}]$ diferente de I_1 tal que $[p_i, p_{i+1}] \longrightarrow I_1$ (se esse intervalo não existe, então n é par) e existe um caminho entre I_1 e $[p_i, p_{i+1}]$. Portanto, existe um ciclo começando em I_1 diferente de $I_1 \longrightarrow I_1$. Observe que o tamanho desse ciclo pode ser arbitrariamente grande já que $I_1 \longrightarrow I_1$. Suponha que o menor ciclo dessa forma possui tamanho k e o denote por $I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_k \longrightarrow I_1$.

Suponha que k < n-1. Então $I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_k \longrightarrow I_1$ ou $I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_k \longrightarrow I_1 \longrightarrow I_1$ é um ciclo de tamanho ímpar m menor que n. Desse modo, $f^m(p) = p$ para algum $p \in I_1$, o que é um absurdo pois f não admite ponto periódico de período ímpar menor que n.

Pela minimalidade do ciclo, a propriedade 1. é verdadeira. Para provar a propriedade 2., seja $I_1 = [p_k, p_{k+1}]$. Pela definição de I_1 , temos que $f(p_k) \ge p_{k+1}$ e $f(p_{k+1}) \le p_k$. Como o período de p é maior que 2, então $f(p_k) > f(p_{k+1})$ ou $f(p_{k+1}) < p_k$. Suponha que $f(p_k) > f(p_{k+1})$. O outro caso é demonstrado de maneira análoga.

Pela propriedade 1., sabemos que I_1 cobre somente ele mesmo e I_2 . Desse modo, $f(p_k) = p_{k+2}$ e $f(p_{k+1}) = p_k$, e portanto $I_2 = [p_{k+1}, p_{k+2}]$. Como I_2 cobre somente I_3 , e já sabendo que $f(p_{k+1}) = p_k$, temos que $f(p_{k+2}) = p_{k-1}$ e portanto $I_3 = [p_{k-1}, p_k]$. Prosseguindo desse modo, observamos que os intervalos estão distribuídos de maneira simétrica em relação à I_1 . Em particular, $I_{n-1} = [p_{n-1}, p_n]$ com $f(p_{n-1}) = p_1$ e $f(p_n) = p_{k+1}$. Desse modo, $f(I_{n-1}) \supset [p_1, p_{k+1}]$ e a afirmação está provada.

Definição 8.9. O Ordenação de Sharkovsky é definida por

$$3 \triangleright 5 \triangleright 7 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \cdots \triangleright 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright 2^2 \cdot 7 \triangleright \cdots \triangleright 2^n \cdot 3 \triangleright 2^n \cdot 5 \triangleright 2^n \cdot 7 \triangleright \cdots \triangleright 2^2 \triangleright 2 \triangleright 1$$

ou seja, é formada inicialmente pelos ímpares maiores que 1 em ordem crescente; depois pelos ímpares maiores que 1, multiplicados por 2, em ordem crescente; depois pelos ímpares maiores que 1, multiplicados por 2², em ordem crescente; e assim sucessivamente. Por fim, a ordem é formada por todas as potências de 2 em ordem decrescente.

Teorema 8.10 (Sharkovsky). Se f admite ponto de período principal n, então f admite ponto de período principal m, para todo $m \triangleleft n$.

Demonstração. Suponha que f admite ponto de período principal n. Vamos provar o teorema nos seguintes casos:

(a) se n > 1 ímpar e f não admite ponto periódico de período ímpar menor que nPelo Lema anterior, podemos construir o ciclo

$$I_1 \longrightarrow I_2 \longrightarrow \cdots \longrightarrow I_{n-1} \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_1$$

de tamanho m, para todo m > n. Desse modo, existe $p \in I_1$ tal que $f^k(p) \in I_{k+1}$ se $k = 1, \ldots, n-2, f^k(p) \in I_1$ se $k = n-1, \ldots, m-1$ e $f^m(p) = p$.

Se $f^k(p) = p$ para algum k = 1, ..., n - 2, então $p \in I_1 \cap I_{k+1}$ e, portanto, p não existe ou possui período principal n > k, o que é um absurdo. Analogamente, $f^k(p) \neq p$ para k = n - 1, ..., m - 1. Portanto, o período principal de p é m.

Ainda de acordo com o Lema anterior, podemos construir ciclos da forma

$$I_{n-1} \longrightarrow I_{n-2} \longrightarrow I_{n-1}$$

$$I_{n-1} \longrightarrow I_{n-4} \longrightarrow I_{n-3} \longrightarrow I_{n-2} \longrightarrow I_{n-1}$$

$$\vdots$$

que permitem mostrar a existência de ponto de período principal m < n, m par.

(b) se $n = 2^m$, com $m \ge 1$

Seja $k=2^l$ com l < m e considere $g=f^{\frac{k}{2}}$. Temos que g admite um ponto de período principal 2^{m-l+1} . Como g admite um ponto de período principal par ≥ 2 , segue que g admite ponto de período principal 2^l .

(c) se $n = p2^m$, com $m \ge 1$ e p impar

Seja $g = f^{2^m}$. Vamos mostrar inicialmente que f admite ponto de período principal $q2^m$, q par. Temos que g admite ponto de período principal p ímpar. Pelo item (a), g admite ponto de período principal q par. Logo, f admite ponto de período principal $q2^m$, q par.

Agora, vamos mostrar que f admite ponto de período principal $q2^m$, q>p ímpar. Pelo item (a), g admite ponto de período principal q>p ímpar. Desse modo, f admite ponto de período principal $q2^{m-i}$ para algum $i=0,\ldots,m$. Se i=0, está mostrado. Se i>0, pelo parágrafo anterior, f admite ponto de período principal $2^i(q2^{m-i})=q2^m$ e, portanto, a afirmação está provada.

Por fim, vamos mostrar que f admite ponto de período principal 2^l , com l < k. Sabemos que f admite ponto de período principal $q2^k$, q par. Em particular, tomando q = 2, concluímos que f admite ponto de período principal 2^l , com l < k.

Observando que as afirmações anteriores esgotam as possibilidades na ordenação de Sharkovsky, concluímos a demonstração do teorema. \Box

Teorema 8.11. Para todo $n \ge 1$ existe uma função f que admite ponto periódico de período principal n e que não admite ponto de período principal m se $m \triangleright n$.

Demonstração. Seja $T:[0,1] \to [0,1]$ a função dada por T(x) = 1 - |2x - 1| e considere a família de funções $T_h(x) = \min\{h, T(x)\}$ definidas em [0,1], com o parâmetro h variando em [0,1]. Observe que $T_1 = T$, pois $T(x) \le 1$ para todo $x \in [0,1]$. Além disso, observando o gráfico de T_1 concluímos que a função possui 2^k pontos periódicos de período k e assim podemos definir, para cada $k \ge 1$,

 $h(k) = \min\{\max\{\mathcal{O} : \mathcal{O} \text{ \'e uma \'orbita de tamanho } n \text{ de } T_1\}\}$

A ideia principal da prova consiste no fato de que h(k) desempenha os papéis de parâmetro, máximo e ponto de uma órbita de $T_{h(k)}$. As seguintes afirmações tornarão preciso esse fato.

- (a) Se $\mathcal{O} \subset [0, h)$ é uma órbita de T_h , então \mathcal{O} é uma órbita de T_1 . Se $p \in \mathcal{O}$ então $T_h(p) \in [0, h)$. Desse modo, $T_h(p) = \min\{h, T(p)\} = T(p) = T_1(p)$, ou seja, T_h e T_1 coincidem em \mathcal{O} e, portanto, \mathcal{O} é uma órbita de T_1 .
- (b) Se $\mathcal{O} \subset [0, h]$ é uma órbita de T_1 , então \mathcal{O} é uma órbita de T_h . Se $p \in \mathcal{O}$ então $T_1(p) \in [0, h]$. Desse modo, $T_h(p) = \min\{h, T(p)\} = \min\{h, T_1(p)\} = T_1(p)$, ou seja, T_h e T_1 coincidem em \mathcal{O} e, portanto, \mathcal{O} é uma órbita de T_h .
- (c) $T_{h(k)}$ possui uma órbita $\mathcal{O} \in [0, h(k))$ de tamanho l se e somente se h(k) > h(l). Se $T_{h(k)}$ possui uma órbita $\mathcal{O} \in [0, h(k))$ de tamanho l, então \mathcal{O} é uma órbita de T_1 por (a) e, pela definição de h(l), concluímos que h(l) < h(k). Por outro lado, se h(l) < h(k), então T_1 possui uma órbita $\mathcal{O} \subset [0, h(l)] \subset [0, h(k)]$ de tamanho l e, desse modo, \mathcal{O} é uma órbita de $T_{h(k)}$ por (b).
- (d) A órbita de T_1 que contém h(k) é uma órbita de tamanho k de $T_{h(k)}$. Além disso, todas as outras órbitas de $T_{h(k)}$ estão em [0, h(k)). Pela definição de h(k), T_1 possui uma órbita $\mathcal{O} \subset [0, h(k)]$ de tamanho k e, portanto,

Para demonstrar a segunda parte, basta observar que h(k) é o valor máximo de $T_{h(k)}$ e, desse modo, toda órbita de $T_{h(k)}$ está contida em [0, h(k)]. Em particular, se a órbita não contém h(k), então ela está contida em [0, h(k)).

(e) $k \triangleright l$ se o somente se h(k) > h(l).

 \mathcal{O} é uma órbita de $T_{h(k)}$ por (b).

Suponha que $k \triangleright l$. Por (d), $T_{h(k)}$ possui uma órbita de tamanho k. De acordo com o Teorema de Sharkovsky e com (d), $T_{h(k)}$ admite uma órbita de tamanho l contida em [0, h(k)). Desse modo, h(k) > h(l) por (c).

Por outro lado, suponha que h(k) > h(l). Caso l > k, a demonstração no parágrafo anterior implicaria que h(k) < h(l), contrariando a hipótese. Desse modo, k > l.

Assim, para cada $n \geq 1$, $T_{h(n)}$ possui órbita de tamanho n. Além disso, se $m \triangleright n$ então h(m) > h(n) por (e) e, portanto, $T_{h(n)}$ não possui órbita de tamanho m por (c).

9 Derivada de Schwarz

Definição 9.1. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^{∞} . A derivada de Schwarz de f é a função S_f definida por

$$S_f(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left(\frac{f''(x)}{f'(x)}\right)^2$$

para todo x tal que $f'(x) \neq 0$.

Exemplo 9.2. 1. Se $f(x) = F_{\mu}(x)$, então $S_f(x) = \frac{-6}{(1-2x)^2} < 0$ para todo $x \neq \frac{1}{2}$.

- 2. Se $f(x) = e^x$, então $S_f(x) = -\frac{1}{2} < 0$ para todo x.
- 3. Se $f(x) = \operatorname{sen} x$, então $S_f(x) = -1 \frac{3}{2}(\tan^2 x) < 0$ para todo x.

Lema 9.3. Se $S_f < 0$, então $S_{f^n} < 0$ para todo $n \ge 1$.

Demonstração. Se $S_f < 0$ e $S_g < 0$, vamos provar que $S_{f \circ g} < 0$. Pela Regra da Cadeia,

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

$$(f \circ g)''(x) = f''(g(x))(g'(x))^2 + f'(g(x))g''(x)$$

$$(f \circ g)'''(x) = f'''(g(x))(g'(x))^3 + 3f''(g(x))g''(x)g'(x) + f'(g(x))g'''(x)$$

Desse modo,

$$S_{f \circ g}(x) = \frac{(f \circ g)'''(x)}{(f \circ g)'(x)} - \frac{3}{2} \left(\frac{(f \circ g)''(x)}{(f \circ g)'(x)} \right)^{2}$$

$$= \frac{f'''(g(x))(g'(x))^{2}}{f'(g(x))} + 3\frac{f''(g(x))g''(x)}{f'(g(x))} + \frac{g'''(x)}{g'(x)} - \frac{3}{2} \left(\frac{f''(g(x))g'(x)}{f'(g(x))} + \frac{g''(x)}{g'(x)} \right)^{2}$$

$$= S_{f}(g(x))(g'(x))^{2} + S_{g}(x) < 0$$

para todo x tal que $(f \circ g)'(x) \neq 0$. Por indução, $S_{f^n} < 0$ para todo $n \geq 1$.

Lema 9.4. Se $S_f < 0$ e x_0 é ponto de mínimo local de f', então $f'(x_0) \le 0$.

Demonstração. Se $f'(x_0) \neq 0$, então $S_f(x_0) = \frac{f'''(x_0)}{f'(x_0)} - \frac{3}{2} \frac{f''(x_0)}{f'(x_0)} < 0$. Sendo x_0 ponto de mínimo local de f', temos que $f''(x_0) = 0$ e $f'''(x_0) \geq 0$. Portanto, $f'(x_0) < 0$.

Lema 9.5. Se $S_f < 0$ e a < b < c são pontos fixos de f, com $f'(b) \le 1$, então f possui ponto crítico em (a, c).

Demonstração. Pelo Teorema do Valor Médio, existem $r \in (a,b)$ e $s \in (b,c)$ tais que f'(r) = f'(s) = 1. Sendo f' contínua, f' restrita ao intervalo [r,s] possui mínimo global. Como $b \in (r,s)$ e $f'(b) \leq 1$, temos que f' possui mínimo local em (r,s). Utilizando Lema anterior e o Teorema do Valor Intermediário, a demonstração está concluída.

Lema 9.6. Se $S_f < 0$ e a < b < c < d são pontos fixos de f, então f possui ponto crítico em (a, d).

Demonstração. Se $f'(b) \leq 1$ ou $f'(c) \leq 1$, o resultado é verdadeiro pelo Lema anterior. Se f'(b) > 1 e f'(c) > 1, existem $r, t \in (b, c)$ tais que r < t, f(r) > r e f(t) < t. Pelo Teorema do Valor Médio, existe $s \in (r, t)$ tal que f'(s) < 1. Portanto, f' possui mínimo local em (b, c). Utilizando Lema 9.4 e o Teorema do Valor Intermediário, a demonstração está concluída.

Lema 9.7. Se f possui finitos pontos críticos, então f^n possui finitos pontos críticos para todo $n \ge 1$.

Demonstração. Pelo Teorema do Valor Médio, f possui ponto crítico entre dois elementos de $f^{-1}(c)$. Como f possui finitos pontos críticos, $f^{-1}(c)$ é finito. Além disso, se $f^{-k}(c)$ é finito, então $f^{-(k+1)}(c) = \{x \in \mathbb{R} : f(f^k(x)) = c\}$ é finito pois $f^{-1}(c)$ é finito e, por hipótese de indução, $f^{-k}(c_i)$ é finito para cada $c_i \in f^{-1}(c)$. Portanto, $f^{-n}(c)$ é finito para todo $n \geq 1$.

Temos que $(f^n)'(x) = \prod_{k=0}^{n-1} f'(f^k(x)) = 0$ se e somente se $f^k(x)$ é ponto crítico de f para algum $k = 1, \ldots, n-1$. Assim, o conjunto de pontos críticos de f^n é finito pois é dado pela união dos conjuntos $\bigcup_{k=0}^{n-1} f^{-k}(c_i)$, onde c_i é ponto crítico de f.

Observe que o Lema anterior, ao contrário dos outros, não exige que $S_f < 0$.

Teorema 9.8 (Singer). Se $S_f < 0$ e f possui n pontos críticos, então f possui no máximo n+2 órbitas periódicas não repulsoras.

Demonstração. Sejam p um ponto periódico não repulsor de f de período m e $g = f^m$. Desse modo, p é um ponto fixo não repulsor de g, ou seja, g(p) = p e $|g'(p)| \le 1$. Seja K a componente conexa de $B(p) = \{x : \lim_{k \to \infty} g^k(x) = p\}$ que contém p.

Suponha que K é limitado e |g'(p)| < 1. Vamos mostrar que K é aberto, $g(K) \subset K$ e q preserva os pontos extremos de K.

Como |g'(p)| < 1, p é um ponto atrator e, portanto, existe uma vizinhança V de p contida em B(p). Além disso, $g(\bar{V}) \subset V$. Sendo g contínua, $g^{-n}(V)$ é um aberto que contém p para todo $n \geq 1$. Como $g^n(p) = p \in V$, considere $g^{-n}(V)^*$ a componente conexa de $g^{-n}(V)$ que contém p.

Observe que, se $x \in K$, existe $n \ge 1$ tal que $g^n(x) \in V$. Desse modo, podemos escrever $K = \bigcup_{n=0}^{\infty} g^{-n}(V)^*$. Portanto, K é aberto e, por construção, $g(K) \subset K$.

Seja a um ponto extremo de K e suponha que $g(a) \in K$. Desse modo, existe uma vizinhança V de g(a) contida em K. Sendo g contínua, $g^{-1}(V)$ é uma vizinhança de a contida B(p), o que contraria o fato de K ser a componente conexa de B(p) que contém p. Como $g(K) \subset K$ e g é contínua, concluímos que g preserva os pontos extremos de K.

Desse modo, escrevendo K = (a, b), ocorre um dos três casos abaixo. Vamos mostrar que em cada caso, g possui ponto crítico em K. Observe que $S_q < 0$.

- a) Se g(a) = a e g(b) = b, g possui ponto crítico em K pelo Lema 9.5.
- b) Se g(a) = b e g(b) = a, considerando $h = g^2$ e utilizando novamente o Lema 9.5, h possui ponto crítico em K. Como $g(K) \subset K$, g possui ponto crítico em K.
- c) Se g(a) = g(b), g possui ponto crítico em K pelo Teorema do Valor Médio.

Suponha que K é limitado e |g'(p)| = 1. Pelo Lema anterior, g possui finitos pontos fixos e, portanto, são isolados.

Se g'(p) = 1 e, para x numa vizinhança de p, g(x) > x quando x > p e g(x) < x quando x < p, então $g'(x^*) > 0$, para x^* próximo de p, é um mínimo local de g' maior que zero, o que contradiz o Lema 9.4. Se g'(p) = -1, basta considerar $h = g^2$ e obter o mesmo resultado. Portanto, p é atrator em pelo menos um dos lados. Desse modo, K é um intervalo não trivial, $g(K) \subset K$ e g preserva os pontos extremos de K. Assim, é possível concluir de maneira análoga que g possui ponto crítico em K.

Pela Regra da Cadeia, se g possui ponto crítico $x_0 \in K$, então $f^i(x_0)$ é ponto crítico de f para algum $i = 0, \ldots, m-1$. Desse modo, se p é um ponto periódico não repulsor de f cujo intervalo associado K é limitado, então K possui pelo menos um ponto crítico e, como existem n pontos críticos, existem no máximo n intervalos K limitados. Não é possível obter a mesma conclusão se K não é limitado, mas observando que existem no máximo dois intervalos desse tipo, a demonstração está concluída.

Corolário 9.9. $F_{\mu}(x) = \mu x(1-x)$, $\mu > 0$, possui no máximo 1 órbita periódica não repulsora.

Demonstração. Observe que F_{μ} possui um único ponto crítico em $\frac{1}{2}$. Pelo Teorema de Singer, F_{μ} possui no máximo 3 órbitas periódicas não repulsoras. Se p é ponto fixo de F_{μ} e observando que $\lim_{n\to\infty} |F_{\mu}^n(x)| = \infty$ quando |x| é suficientemente grande, concluímos que B(p) é limitado. Portanto, F_{μ} possui no máximo 1 órbita periódica não repulsora. \square

Considere a função $F_4(x) = 4x(1-x)$, $x \in [0,1]$. O ponto crítico de F_4 é eventualmente fixo em 0, que por sua vez é um ponto repulsor. Pelo Corolário acima, todas as órbitas periódicas de F_4 são repulsoras. Utilizando o fato que $S_{F_4} < 0$ é possível mostrar ainda que F_4 é caótica.

Se $q = \frac{1}{4}$ e $p = \frac{3}{4}$, então F(q) = p e F(p) = p. Defina J = [q, p) e $J' = \left(q, \frac{1}{2}\right) \cup \left(\frac{1}{2}, p\right)$. Observe que $F_4(J') = (p, 1)$, ou seja, $F_4(x) \notin J$ quando $x \in J'$.

Afirmação. Se $x \in J'$, existe $n \ge 2$ tal que $F_4^n(x) \in J$.

Demonstração. Como $F_4^2(J')=(0,p)$, basta mostrar que se $x\in(0,q)$, então $F_4^n(x)\in J$ para algum $n\geq 1$.

Seja $x \in (0,q)$ e suponha que $F_4^n(x) < q$ para todo $n \ge 1$. Observando que F_4 é estritamente crescente em (0,q], a sequência $(F_4^n(x))_n$ é monótona limitada e, portanto, possui um limite $L \le q$. Sendo F_4 contínua,

$$L = \lim_{n \to \infty} F_4^n(x) = \lim_{n \to \infty} F_4^{n+1}(x) = \lim_{n \to \infty} F_4(F_4^n(x)) = F_4(L)$$

o que é um absurdo. Portanto, a demonstração está concluída.

Com base na afirmação anterior, podemos definir

$$\phi(x) = \min\{n \ge 2 : F_4^n(x) \in J\}$$

para todo $x \in J'$, ou seja, $\phi(x)$ é a menor iterada de F_4 em x que retorna para J. Assim, é possível construir a função R, denominada a função de primeiro retorno de F_4 em J. Precisamente, $R: J' \to J$ é dada por

$$R(x) = F_4^{\phi(x)}(x)$$

Também podemos definir os intervalos

$$I_n^- = \left\{ x \in \left(q, \frac{1}{2} \right) : \phi(x) = n \right\}$$
$$I_n^+ = \left\{ x \in \left(\frac{1}{2}, p \right) : \phi(x) = n \right\}$$

para todo $n \geq 2$. Esses intervalos possuem propriedades que estão retratadas na Afirmação abaixo.

Afirmação. Para todo $n \geq 2$,

$$i. \ \ I_n^- \ \acute{e} \ da \ forma \ (l_n, r_n], \ (F_4^n)'(I_n^-) < 0, \ F_4^n(l_n) = p, \ F_4^n(r_n) = q \ e \ r_n = l_{n+1}.$$

ii.
$$I_n^+ \notin da \text{ forma } [l_n, r_n), (F_4^n)'(I_n^+) > 0, F_4^n(l_n) = q, F_4^n(r_n) = p \text{ } e \text{ } l_n = r_{n+1}.$$

Demonstração. Considere a função T, o Tent Map. Temos que T e F_4 são conjugados topologicamente por $\tau(x) = \sin^2\left(\frac{\pi}{2}x\right)$, ou seja, $\tau \circ T = F_4 \circ \tau$ em [0,1]. Desse modo, bastar demonstrar um resultado análogo para T. Vamos provar a afirmação ii. A prova da afirmação i é análoga.

Temos que $T\left(\frac{1}{3}\right) = \frac{2}{3}$ e $T\left(\frac{2}{3}\right) = \frac{2}{3}$. Portanto, definimos $J = \left[\frac{1}{3}, \frac{2}{3}\right)$ como sendo o intervalo análogo para T. Além disso, é fácil ver por indução que $T^n : \left[\frac{1}{2}, \frac{1}{2} + \frac{1}{2^n}\right] \to [0, 1]$ é uma função linear estritamente crescente para todo $n \geq 2$.

Observe que $T^n\left(\frac{1}{2} + \frac{1}{2^{n+1}}\right) = \frac{1}{2}$. Desse modo, existem $l_n \in \left(\frac{1}{2}, \frac{1}{2} + \frac{1}{2^{n+1}}\right)$ e $r_n \in \left(\frac{1}{2} + \frac{1}{2^{n+1}}, \frac{1}{2} + \frac{1}{2^n}\right)$ tais que $T^n(l_n) = \frac{1}{3}$ e $T^n(r_n) = \frac{2}{3}$. Definindo $I_n^+ = [l_n, r_n)$, temos que $T^n(x) \in J$ se o somente se $x \in I_n^+$.

Fazendo a mesma construção para T^{n+1} , encontramos $r_{n+1} \in \left(\frac{1}{2}, \frac{1}{2} + \frac{1}{2^{n+1}}\right)$ tal que $T^{n+1}(r_{n+1}) = \frac{2}{3}$. Como $l_n \in \left(\frac{1}{2}, \frac{1}{2} + \frac{1}{2^{n+1}}\right)$ e $T^{n+1}(l_n) = T\left(\frac{1}{3}\right) = \frac{2}{3} = T^{n+1}(r_{n+1})$, concluímos que $l_n = r_{n+1}$.

Afirmação. Se $S_f < 0$ e f' não se anula no intervalo limitado I, então o mínimo de f' em I ocorre em algum ponto extremo de I.

Demonstração. Como $S_f = S_{-f}$, podemos considerar f'(I) > 0 sem perda de generalidade. Se f' possui um ponto de mínimo x_0 no interior de I, então $f'(x_0) \leq 0$ de acordo com o Lema 9.4, o que é um absurdo.

Por definição, R(x) é o primeiro retorno de x em J para cada $x \in J'$ e, portanto, $F_4(x), F_4^2(x), \dots, F_4^{\phi(x)-1}(x)$ não pertencem à J. Desse modo, $R'(x) = (F_4^{\phi(x)})'(x) = \prod_{k=0}^{\phi(x)-1} F_4'(F_4^k(x)) \neq 0$. Porém, como está demonstrado na Afirmação seguinte, é possível concluir mais sobre a derivada de R.

Afirmação. |R'(x)| > 1 para todo $x \in J'$.

Demonstração. Sejam $I_n^+ = [l_n, r_n)$ e $W_n = (\frac{1}{2}, l_n)$, $n \ge 2$. Vamos provar que $(F_4^n)'(I_n^+) > 1$. A demostração de que $(F_4^n)'(I_n^-) < -1$ é feita de maneira análoga. De acordo com a Afirmação anterior, para mostrar que $(F_4^n)'(I_n^+) > 1$ é suficiente mostrar que $(F_4^n)'(l_n) > 1$ e $(F_4^n)'(r_n) > 1$.

Observe que $F_4^n(I_n^+) = J$ e $F_4^n(W_n) \supset (0,q)$ para todo $n \geq 2$. Como os tamanhos de I_n^+ e W_n são menores que $\frac{1}{4}$, o Teorema do Valor Médio afirma que existem $x_n' \in W_n$ e $x_n \in (l_n, r_n)$ tais que $(F_4^n)'(x_n') > 1$ e $(F_4^n)'(x_n) > 1$. Como $l_n \in (x_n', x_n)$ e $(F_4^n)'$ não pode assumir mínimo local positivo em (x_n', x_n) , temos que $(F_4^n)'(l_n) > 1$.

Por outro lado, $(F_4^n)'(r_n) = F_4'(F_4^{n-1}(r_n))(F_4^{n-1})'(r_n) = F_4'(q)(F_4^{n-1})'(l_{n-1}) > 1$, pois ambos os termos são maiores que 1.

Desse modo, |R'(x)| > 1 para todo $x \in J'$.

Afirmação. Se U é um intervalo em [0,1], então existe $n \ge 1$ tal que $F_4^n(U) \supset [0,1]$.

Demonstração. Seja U um intervalo aberto em [0,1]. Como $|F_4'(x)| > 1$ para todo $x \notin J$, existe $U_0 \subset U$ e $n \ge 1$ tal que $V = F_4^n(U_0) \subset J$. Como |R'(x)| > 1 para todo $x \in J'$, existe $V_0 \subset V$ e $m \ge 1$ tal que $R^m(V_0)$ contém algum ponto de descontinuidade de R. Portanto, existe $k \ge 1$ tal que $p \in F_4^k(V_0)$. Por fim, como é possível estender qualquer vizinhança de p por iteração de F_4 até cobrir [0,1], existe $l \ge 1$ tal que $F_4^{k+l}(V_0) \supset [0,1]$.

Afirmação. F_4 é caótica.

Demonstração. Seja U, V um intervalos abertos em [0, 1]. Pela Afirmação anterior, existe $n \ge 1$ tal que $F_4^n(U) \supset [0, 1]$.

O conjunto conjunto de pontos periódicos de F_4 é denso em [0,1]. De fato, $F_4^n(U) \supset U$ e, portanto, existe $x \in U$ tal que $F_4^n(x) = x$.

 F_4 é transitiva topologicamente. De fato, $F_4^n(U)\supset V$ e, portanto, existe $x\in U$ tal que $F_4^n(x)\in V.$

 F_4 depende sensivelmente das condições iniciais. De fato, $F_4^n(U)\supset [0,1]$ e, portanto, existem $x,y\in U$ tais que $|F_4^n(x)-F_4^n(y)|=|1-0|\geq 1$.

10 Bifurcação

Ao longo de seção, f_{λ} representará uma família parametrizada de funções no parâmetro λ de modo que a função

$$G(x,\lambda) = f_{\lambda}(x),$$

definida num aberto de \mathbb{R}^2 , seja de classe \mathcal{C}^{∞} nas variáveis $x \in \lambda$.

Teorema 10.1 (Função Implícita). Sejam $U \subset \mathbb{R}^2$ um aberto $e F : U \to \mathbb{R}$ uma função de classe C^k , $1 \le k \le \infty$. Suponha que

- 1. $F(x_0, y_0) = c$
- 2. $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$

Então existem uma vizinhança I de x_0 e uma função $f: I \to \mathbb{R}$ de classe \mathcal{C}^k tais que

- 1. $f(x_0) = y_0$
- 2. $F(x, f(x)) = c \text{ para todo } x \in I$

Teorema 10.2. Seja f_{λ} uma família parametrizada de funções. Suponha que

- 1. $f_{\lambda_0}(x_0) = x_0$
- 2. $f'_{\lambda_0}(x_0) \neq 1$

Então existem vizinhanças I e J de λ_0 e x_0 , respectivamente, e uma função $p: I \to J$ de classe C^{∞} tais que

- 1. $p(\lambda_0) = x_0$
- 2. $f_{\lambda}(p(\lambda)) = p(\lambda)$ para todo $\lambda \in I$

Além disso, f_{λ} não possui outros pontos fixos em J.

Demonstração. Seja $G(x,\lambda)=f_{\lambda}(x)-x$. Observe que x é ponto fixo de f_{λ} se e somente se $G(x,\lambda)=0$.

Pelo Teorema da Função Implícita, como $G(x_0, \lambda_0) = 0$ e

$$\frac{\partial G}{\partial x}(x_0, \lambda_0) = f'_{\lambda_0}(x_0) - 1 \neq 0,$$

existem vizinhanças I e J de λ_0 e x_0 , respectivamente, e uma função $p:I\to J$ de classe \mathcal{C}^{∞} tal que $p(\lambda_0)=x_0$ e $G(p(\lambda),\lambda)=0$ para todo $\lambda\in I$.

Além disso, para cada $\lambda \in I$ está associado um único $x \in J$ e, portanto, $x \in J$ e $G(x,\lambda) = 0$ se e somente se $x = p(\lambda)$.

De acordo com o Teorema anterior, se x_0 é um ponto fixo hiperbólico de f_{λ_0} , então f_{λ} possui um único ponto fixo numa vizinhança de x_0 para cada λ numa vizinhança de λ_0 .

Utilizando a notação do Teorema anterior, considere a função $g_{\lambda}(x) = f_{\lambda}(x + p(\lambda)) - p(\lambda)$. Observe que $g_{\lambda}(0) = f(p(\lambda)) - p(\lambda) = 0$ para todo $\lambda \in I$, ou seja, 0 é ponto fixo de g_{λ} para todo $\lambda \in I$. Além disso, f_{λ} e g_{λ} são topologicamente conjugadas por $h_{\lambda}(x) = x - p(\lambda)$.

Teorema 10.3 (Bifurcação Tangente). Suponha que

- 1. $f_{\lambda_0}(0) = 0$
- 2. $f'_{\lambda_0}(0) = 1$
- 3. $f_{\lambda_0}''(0) \neq 0$
- 4. $\frac{\partial f_{\lambda}}{\partial \lambda}|_{\lambda=\lambda_0}(0) \neq 0$

Então existem uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que

- 1. $p(0) = \lambda_0$
- 2. $f_{p(x)}(x) = x$

Além disso, p'(0) = 0 e $p''(0) \neq 0$.

Demonstração. Considere a função $G(x,\lambda) = f_{\lambda}(x) - x$. Observe que x é um ponto fixo de f_{λ} se e somente se $G(x,\lambda) = 0$.

Pelo Teorema da Função Implícita, como $G(0, \lambda_0) = 0$ e

$$\frac{\partial G}{\partial \lambda}(0,\lambda_0) = \frac{\partial f_{\lambda}}{\partial \lambda}|_{\lambda = \lambda_0}(0) \neq 0,$$

existem uma vizinhança I de 0 e uma função $p:I\to\mathbb{R}$ tais que $p(0)=\lambda_0$ e G(x,p(x))=0 para todo $x\in I$.

Além disso, pela Regra da Cadeia, é válido que

$$p'(0) = -\frac{\frac{\partial G}{\partial x}(0, \lambda_0)}{\frac{\partial G}{\partial \lambda}(0, \lambda_0)} = -\frac{f'_{\lambda_0}(0) - 1}{\frac{\partial f_{\lambda_0}}{\partial \lambda}|_{\lambda = \lambda_0}(0)} = 0$$

e

$$p''(0) = -\frac{\frac{\partial^2 G}{\partial x^2}(0, \lambda_0) \frac{\partial G}{\partial \lambda}(0, \lambda_0) - \frac{\partial G}{\partial x}(0, \lambda_0) \frac{\partial^2 G}{\partial x \partial \lambda}(0, \lambda_0)}{\left(\frac{\partial G}{\partial \lambda}(0, \lambda_0)\right)^2} = -\frac{\frac{\partial^2 G}{\partial x^2}(x, \lambda_0)}{\frac{\partial f_{\lambda}}{\partial \lambda}|_{\lambda = \lambda_0}(0)} \neq 0$$

No Teorema anterior, se p''(0) > 0, então a concavidade de p é para cima. Esboçando o gráfico de p, podemos observar que f não possui pontos fixos para $\lambda < \lambda_0$, possui um único ponto fixo para $\lambda = \lambda_0$ e possui dois pontos fixos para $\lambda > \lambda_0$. Se p''(0) < 0, a concavidade de p é para baixo e a conclusão é análoga, invertendo os sentidos.

Teorema 10.4 (Bifurcação com Duplicação de Período). Suponha que

1. $f_{\lambda_0}(0)=0$ para todo λ numa vizinhança de λ_0

2.
$$f'_{\lambda_0}(0) = -1$$

3.
$$\frac{\partial (f_{\lambda}^2)'}{\partial \lambda}|_{\lambda=\lambda_0}(0) \neq 0$$

4.
$$S_{f_{\lambda_0}}(0) \neq 0$$

Então existem uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que

1.
$$p(0) = \lambda_0$$

2.
$$f_{p(x)}(x) \neq x \text{ para todo } x \in I$$

3.
$$f_{n(x)}^2(x) = x \text{ para todo } x \in I$$

Além disso, p'(0) = 0 e $p''(0) \neq 0$.

Demonstração. Seja $G(x,\lambda)=f_{\lambda}^2(x)-x$. Sendo $G(0,\lambda)=0$ para todo λ numa vizinhança de λ_0 , temos que

$$\frac{\partial G}{\partial \lambda}(0, \lambda_0) = 0$$

e, portanto, não podemos utilizar o Teorema da Função Implícita diretamente. Seja

$$H(x,\lambda) = \begin{cases} \frac{G(x,\lambda)}{x} & \text{se } x \neq 0\\ \frac{\partial G}{\partial x}(0,\lambda) & \text{se } x = 0 \end{cases}$$

Desse modo, H é de classe \mathcal{C}^{∞} e são válidas as igualdades

(I)
$$H(0,\lambda_0) = \frac{\partial G}{\partial x}(0,\lambda_0) = (f_{\lambda_0}^2)'(0) - 1 = f_{\lambda_0}'(f_{\lambda_0}(0))f_{\lambda_0}'(0) - 1 = 0$$

(II)
$$\frac{\partial H}{\partial \lambda}(0,\lambda_0) = \frac{\partial}{\partial \lambda} \left(\frac{\partial G}{\partial x}(0,\lambda) \right) |_{\lambda=\lambda_0} = \frac{\partial}{\partial \lambda} ((f_{\lambda}^2)'(0)-1) |_{\lambda=\lambda_0} = \frac{\partial (f_{\lambda}^2)'}{\partial \lambda} |_{\lambda=\lambda_0}(0) \neq 0$$

(III)
$$\frac{\partial H}{\partial x}(0,\lambda_0) = \frac{1}{2} \frac{\partial^2 G}{\partial x^2}(0,\lambda_0)$$

(IV)
$$\frac{\partial^2 H}{\partial x^2}(0,\lambda_0) = \frac{1}{3} \frac{\partial^3 G}{\partial x^3}(0,\lambda_0)$$

Para provar as igualdades (III) e (IV), observe que podemos escrever

$$G(x,\lambda) = G(0,\lambda) + x\frac{\partial G}{\partial x}(0,\lambda) + \frac{x^2}{2}\frac{\partial^2 G}{\partial x^2}(0,\lambda) + \frac{x^3}{6}\frac{\partial^3 G}{\partial x^3}(0,\lambda) + \cdots$$

para todo x numa vizinhança de 0 e para λ fixado numa vizinhança de λ_0 , utilizando a Série de Taylor. Sendo $G(0,\lambda)=0$, podemos escrever

$$H(x,\lambda) = \frac{\partial G}{\partial x}(0,\lambda) + \frac{x}{2}\frac{\partial^2 G}{\partial x^2}(0,\lambda) + \frac{x^2}{6}\frac{\partial^3 G}{\partial x^3}(0,\lambda) + \cdots$$

para $x \neq 0$ nessa vizinhança. Portanto, H é de classe \mathcal{C}^{∞} . Escrevendo a Série de Taylor de H numa vizinhança de 0 e igualando os termos correspondentes, concluímos que $\frac{\partial H}{\partial x}(0,\lambda_0) = \frac{1}{2}\frac{\partial^2 G}{\partial x^2}(0,\lambda_0)$ e $\frac{1}{2}\frac{\partial^2 H}{\partial x^2}(0,\lambda_0) = \frac{1}{6}\frac{\partial^3 G}{\partial x^3}(0,\lambda_0)$.

Pelas igualdades (I) e (II), e pelo Teorema da Função Implícita, existem uma vizinhança I de 0 e uma função $p: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} tais que $p(0) = \lambda_0$ e H(x, p(x)) = 0 para todo $x \in I$. Em particular, se $x \neq 0$,

$$0 = \frac{G(x, p(x))}{r} = \frac{f_{p(x)}^{2}(x) - x}{r}$$

ou seja, $f_{p(x)}^2(x) = x$ para todo $x \in I$. Além disso, pelo Teorema 10.2, f_{λ} possui um único ponto fixo numa vizinhança de 0 e, portanto, podemos considerar que $f_{p(x)}(x) \neq x$ para todo $x \in I$, $x \neq 0$.

Como

$$\frac{\partial^2 G}{\partial x^2}(0,\lambda_0) = (f_{\lambda_0})''(x)|_{x=0}
= [f'_{\lambda_0}(f_{\lambda_0}(x))f'_{\lambda_0}(x)]'|_{x=0}
= [f''_{\lambda_0}(f_{\lambda_0}(x))(f'_{\lambda_0}(x))^2 + f'_{\lambda_0}(f_{\lambda_0}(x))f''_{\lambda_0}(x)]|_{x=0}
= f''_{\lambda_0}(f_{\lambda_0}(0)) - f''_{\lambda_0}(0) = 0$$

temos que

$$p'(0) = -\frac{\frac{\partial H}{\partial x}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = -\frac{1}{2} \frac{\frac{\partial^2 G}{\partial x^2}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = 0$$

Por fim,

$$\begin{split} \frac{\partial^3 G}{\partial x^3}(0,\lambda_0) &= [f_{\lambda_0}''(f_{\lambda_0}(x))(f_{\lambda_0}'(x))^2 + f_{\lambda_0}'(f_{\lambda_0}(x))f_{\lambda_0}''(x)]'|_{x=0} \\ &= [f_{\lambda_0}'''(f_{\lambda_0}(x))(f_{\lambda_0}'(x))^3 + 2f_{\lambda_0}''(f_{\lambda_0}(x))f_{\lambda_0}''(x)f_{\lambda_0}'(x) + f_{\lambda_0}''(f_{\lambda_0}(x))f_{\lambda_0}''(x)f_{\lambda_0}''(x) \\ &+ f_{\lambda_0}'(f_{\lambda_0}(x))f_{\lambda_0}'''(x)]|_{x=0} \\ &= f_{\lambda_0}'''(0)(f_{\lambda_0}'(0))^3 + 2(f_{\lambda_0}''(0))^2 f_{\lambda_0}'(0) + (f_{\lambda_0}''(0))^2 f_{\lambda_0}'(0) + f_{\lambda_0}'(0)f_{\lambda_0}'''(0) \\ &= -2f_{\lambda_0}'''(0) - 3(f_{\lambda_0}''(0))^2 \\ &= 2\frac{f_{\lambda_0}'''(0)}{f_{\lambda_0}'(0)} - 3\left(\frac{f_{\lambda_0}''(0)}{f_{\lambda_0}'(0)}\right)^2 = 2S_{f_{\lambda_0}}(0) \end{split}$$

e, portanto,

$$p''(0) = -\frac{\frac{\partial^2 H}{\partial x^2}(0, \lambda_0)\frac{\partial H}{\partial \lambda}(0, \lambda_0)}{\left(\frac{\partial H}{\partial \lambda}(0, \lambda_0)\right)^2} = -\frac{1}{3}\frac{\frac{\partial^3 G}{\partial x^3}(0, \lambda_0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} = -\frac{2}{3}\frac{S_{f_{\lambda_0}}(0)}{\frac{\partial H}{\partial \lambda}(0, \lambda_0)} \neq 0.$$

11 Subshift

Seja $N \geq 2$. Definimos o conjunto Σ_N formado pelas sequências de números naturais limitados entre 1 e N. Precisamente,

$$\Sigma_N = \{(x_n)_{n=0}^{\infty} \in \mathbb{N}^{\mathbb{N}} : 1 \le x_n \le N \text{ para todo } n \ge 0\}.$$

Definimos também a função $d_N: \Sigma_N \times \Sigma_N \to \mathbb{R}$ que é dada por

$$d_N(x,y) = \sum_{i=0}^{\infty} \frac{|x_i - y_i|}{N^i},$$

onde $x=(x_n)_{n=0}^{\infty}$ e $y=(y_n)_{n=0}^{\infty}$. Como $\sum_{i=0}^{\infty}\frac{N-1}{N^i}<\infty$, temos que d_N está bem definida.

Proposição 11.1. (Σ_N, d_N) é um espaço métrico.

Demonstração. Se $x=(x_n)_{n=0}^{\infty}, y=(y_n)_{n=0}^{\infty}, z=(z_n)_{n=0}^{\infty}\in\Sigma_N$, então

- 1. $d_N(x,y) \ge 0$, pois $|x_i y_i| \ge 0$ para todo $i \ge 0$.
- 2. $d_N(x,y) = d_N(y,x)$, pois $|x_i y_i| = |y_i x_i|$ para todo $i \ge 0$.
- 3. $d_N(x,z) \le d_N(x,y) + d_N(y,z)$, pois $|x_i z_i| = |x_i y_i + y_i z_i| \le |x_i y_i| + |y_i z_i|$ para todo $i \ge 0$.

Desse modo, d_N é uma distância em Σ_N e (Σ_N, d_N) é um espaço métrico.

Proposição 11.2. Sejam $x = (x_n)_{n=0}^{\infty}, y = (y_n)_{n=0}^{\infty} \in \Sigma_N$.

- 1. Se $x_i = y_i$ para todo $0 \le i \le k$, então $d_N(x, y) \le \frac{1}{N^k}$.
- 2. Se $d_N(x,y) < \frac{1}{N^k}$, então $x_i = y_i$ para todo $0 \le i \le k$.

Demonstração. 1. Se $x_i = y_i$ para todo $0 \le i \le k$, então

$$d_N(x,y) \le \sum_{i=k+1}^{\infty} \frac{N-1}{N^i} = \frac{N-1}{N^{k+1}} \sum_{i=0}^{\infty} \frac{1}{N^i} = \frac{N-1}{N^{k+1}} \frac{N}{N-1} = \frac{1}{N^k}.$$

2. Se $x_j \neq y_j$ para algum $0 \leq j \leq k$, então

$$d_N(x,y) \ge \frac{1}{N^j} \ge \frac{1}{N^k}.$$

Definimos a função shift $\sigma: \Sigma_N \to \Sigma_N$ que é dada por $\sigma(x) = (x_n)_{n=1}^{\infty}$ para todo $x = (x_n)_{n=0}^{\infty} \in \Sigma_N$, isto é, $\sigma(x_0, x_1, \dots) = (x_1, x_2, \dots)$.

Proposição 11.3. σ é contínua.

Demonstração. Sejam $\varepsilon > 0$ e $x = (x_n)_{n=0}^{\infty} \in \Sigma_N$. Seja $k \ge 1$ tal que $\frac{1}{N^k} < \varepsilon$ e defina $\delta = \frac{1}{N^{k+1}}$.

Pela Proposição anterior, se $y = (y_n)_{n=0}^{\infty} \in \Sigma_N$ e $d_N(x,y) < \delta$, então $x_i = y_i$ para todo $i = 0, \dots, k+1$. Desse modo, $\sigma(x)$ e $\sigma(y)$ coincidem nas k primeiras entradas. Utilizando a Proposição anterior novamente, concluímos que $d_N(\sigma(x), \sigma(y)) \leq \frac{1}{N^k} < \varepsilon$.

Seja $A = (a_{ij})_{1 \leq i,j \leq N}$ uma matriz quadrada de ordem N tal que $a_{ij} \in \{0,1\}$ para todo $1 \leq i,j \leq N$. Dizemos que A é uma matriz de transição. Definimos o conjunto Σ_A como

$$\Sigma_A = \{(x_n)_{n=0}^{\infty} \in \Sigma_N : a_{x_i x_{i+1}} = 1 \text{ para todo } i \ge 0\}.$$

Seja $x = (x_n)_{n=0}^{\infty} \in \Sigma_A$. Observando que $a_{x_i x_{i+1}} = 1$ para todo $i \geq 1$, temos que $\sigma(x) = (x_n)_{n=1}^{\infty} \in \Sigma_A$. Desse modo, podemos definir a função $\sigma_A : \Sigma_A \to \Sigma_A$ como sendo a restrição de σ em Σ_A . Dizemos que σ_A é o subshift definido por A.

Proposição 11.4. Σ_A é um subconjunto fechado de Σ_N .

Demonstração. Seja $(x_n)_{n=0}^{\infty}$ uma sequência de elementos em Σ_A convergente para $x = (\xi_n)_{n=0}^{\infty} \in \Sigma_N$. Observe que a sequência $(x_n)_{n=0}^{\infty}$ é uma sequência de sequências, pois cada x_n é elemento de Σ_N .

Suponha que $x \notin \Sigma_A$. Então, existe $j \geq 0$ tal que $a_{\xi_j \xi_{j+1}} = 0$. Por outro lado, pela definição de convergência, existe $n_0 \geq 0$ tal que $d(x_{n_0}, x) < \frac{1}{N^{j+1}}$ e, portanto, as j+2 primeiras entradas de x e x_{n_0} são iguais. Escrevendo $x_{n_0} = (\eta_n)_{n=0}^{\infty}$, concluímos que $a_{\eta_j \eta_{j+1}} = a_{\xi_j \xi_{j+1}} = 0$. Absurdo, pois $x_{n_0} \in \Sigma_A$.

No restante dessa seção vamos estudar a dinâmica da função quadrática $F_{\mu}(x) = \mu x(1-x)$, onde o parâmetro $\mu = 3.839$ está fixado. Será omitido μ na notação da função e escreveremos apenas F.

Sejam a=0.149888, $\varepsilon=10^{-3}$ e $I=(a-\varepsilon,a+\varepsilon)$. Através de cálculos é possível mostrar que $F^3(I) \subset I$ e $|(F^3)'(I)| \leq |(F^3)'(a-\varepsilon)| < 1$ e, portanto, o intervalo I possui um ponto periódico atrator de F de período 3. Se a_1 , a_2 e a_3 são os elementos dessa órbita em ordem crescente, então

$$a_1 \simeq 0.149888, \ a_2 \simeq 0.489149$$
 e $a_3 \simeq 0.959299$.

De acordo com o Teorema de Sharkovsky, F possui infinitos pontos periódicos. Além disso, de acordo com o Teorema de Singer, essa é a única órbita atratora de F.

De modo análogo, concluímos que F possui outra órbita de tamanho 3. Se b_1 , b_2 e b_3 são os elementos dessa órbita em ordem crescente, então

$$b_1 \simeq 0.169040, b_2 \simeq 0.539247 \text{ e } b_3 \simeq 0.953837.$$

Observando o gráfico de F^3 , concluímos que para cada b_i , existe b'_i no lado oposto de b_i em relação ao ponto a_i tal que $F^3(b'_i) = b_i$. Defina $A_1 = (b'_1, b_1)$, $A_2 = (b'_2, b_2)$ e $A_3 = (b_3, b'_3)$. Cada A_i é exatamente o intervalo maximal contendo a_i utilizado na demonstração do Teorema de Singer.

Figura: Gráfico de F^3 com os pontos a_1 , a_2 e a_3 assinalados.

Sendo F^3 simétrica em relação ao ponto $\frac{1}{2}$, temos que $F(b'_2) = F(b_2) = b_3$. Além disso, $F(b'_1) = b'_2$ e $F(b'_3) = b'_1$.

★ Essas duas últimas igualdades parecem verdadeiras, mas não consegui provar. Ao menos é consistente, pois implica que $b'_3 \rightarrow b'_1 \rightarrow b'_2 \rightarrow b_3 \rightarrow b_1 \rightarrow b_2$ e, portanto, $F^3(b'_i) = b_i$. Tentei mostrar utilizando imagens inversas, mas cada imagem inversa possui dois elementos e eu não consigo construir uma regra sobre qual escolher. ★

Desse modo, F mapeia, de forma monótona, A_1 em A_2 e A_3 em A_1 . Observando que o máximo de F em A_2 é $F\left(\frac{1}{2}\right) = 0.95975 < b'_3$, concluímos que $F(A_2) \subset A_3$.

Sabemos que se $x \notin [0,1]$, então $\lim_{n\to\infty} F^n(x) = -\infty$. Além disso, o único ponto periódico de A_i é a_i e todos os pontos em A_i tendem para a órbita de a_i . Desse modo, todos os outros pontos periódicos de F residem no complemento de $A_1 \cup A_2 \cup A_3$ em [0,1], que é formado por quatro intervalos fechados. Sejam $I_0 = [0,b_1']$, $I_1 = [b_1,b_2']$, $I_2 = [b_2,b_3]$ e $I_3 = [b_3',1]$ tais intervalos. A Proposição a seguir nos permite dizer mais.

Proposição 11.5. Se $x \notin \{0, a_1, a_2, a_3\}$ é um ponto periódico de F, então $x \in I_1 \cup I_2$.

Demonstração. Observando que F é monótona em cada I_k , temos que $F(I_0) = I_0 \cup A_1 \cup I_1$, $F(I_1) = I_2$, $F(I_2) = I_1 \cup A_2 \cup I_2$ e $F(I_3) = I_0$. Desse modo, se $x \in I_1 \cup I_2$ é periódico, então órbita de x permanece em $I_1 \cup I_2$.

Por outro lado, se $x \in I_0 - \{0\}$, existe um menor $n \ge 1$ tal que $F^n(x) \notin I_0$. Se $F^n(x) \in A_1$, então x não pode ser periódico, pois o único ponto periódico de A_1 é a_1 .

Se $F^n(x) \in I_1$, então x não pode ser periódico, pois caso contrário a órbita de x estaria contida em $I_1 \cup I_2$ e nunca retornaria para I_0 .

Finalmente, se $x \in I_3$, então $F(x) \in I_0$ e a análise segue como no parágrafo anterior.

Defina o conjunto Λ como

$$\Lambda = \{ x \in I_1 \cup I_2 : F^n(x) \in I_1 \cup I_2 \text{ para todo } n \ge 1 \}.$$

Pela Proposição anterior, todos os pontos periódicos de F estão em Λ , com exceção dos pontos $0, a_1, a_2$ e a_3 .

Lema 11.6. Existe $N \ge 1$ tal que $|(F^n)'(\Lambda)| > 1$ para todo $n \ge N$.

Demonstração. Como F'' < 0, temos que F' é estritamente decrescente. Sendo $F'\left(\frac{1}{2}\right) = 0$, concluímos que A_2 é uma vizinhança da única raiz de F'. Além disso, $|(F^3)'(b_2)| = |(F^3)'(b_2')| \simeq 0.3$. Desse modo, $|F'(I_1 \cup I_2)| \geq \nu$ para algum $\nu \in (0, 1)$.

Observando o gráfico de F^3 , concluímos que o subconjunto de $I_1 \cup I_2$ no qual $|F'| \leq 1$ é formado por três intervalos fechados. Sejam B_1 , B_2 e B_3 tais intervalos, numerados da esquerda para direita. Utilizando a simetria do gráfico de F^3 e o fato de que $(F^3)'(b_1) > 1$, temos que $F^3(B_3) \subset A_1$ e, portanto, $B_3 \cap \Lambda = \emptyset$.

Por outro lado, $B_2 \subset [0.661, 0.683]$, já que $(F^3)'(0.661) > 1$ e $(F^3)'(0.683) < -1$. Desse modo, $F(B_2) \subset A_3$. Utilizando novamente a simetria do gráfico de F^3 , concluímos que $F(B_1) \subset A_3$. Portanto, $B_1 \cap \Lambda = \emptyset$ e $B_2 \cap \Lambda = \emptyset$. Assim, $|(F^3)'(\Lambda)| \geq \lambda$ para algum $\lambda > 1$. Observe que se $x \in \Lambda$ e $L \geq 1$, então

$$\left| \left(F^{3L} \right)'(x) \right| = \prod_{i=0}^{L-1} \left| \left(F^3 \right)' \left(F^{3i}(x) \right) \right| \ge \lambda^L.$$

Finalmente, sejam $x \in \Lambda$ e $K \ge 1$ tal que $\nu^2 \lambda^K > 1$. Se N = 3K e $n \ge N$, podemos escrever $n = 3L + \alpha$, onde $L \ge K$ e $\alpha \in \{0, 1, 2\}$. Desse modo,

i. se $\alpha = 0$, então

$$\left| \left(F^n \right)'(x) \right| = \left| \left(F^{3L} \right)'(x) \right| \ge \lambda^L \ge \lambda^K > 1.$$

ii. se $\alpha = 1$, então

$$\left| \left(F^n \right)'(x) \right| = \left| F' \left(F^{3L}(x) \right) \right| \left| \left(F^{3L} \right)'(x) \right| \ge \nu \lambda^L > \nu^2 \lambda^K > 1.$$

iii. se $\alpha = 2$, então

$$\left|\left(F^{n}\right)'(x)\right|=\left|F'\left(F^{3L+1}(x)\right)\right|\left|F'\left(F^{3L}(x)\right)\right|\left|\left(F^{3L}\right)'(x)\right|\geq\nu^{2}\lambda^{L}\geq\nu^{2}\lambda^{K}>1.$$

Para as demonstrações dos próximos resultados, vamos considerar a matriz de transição

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

Podemos definir a função $S: \Lambda \to \Sigma_A$ por $S(x) = (x_n)_{n=0}^{\infty}$, onde $x_i = 1$ se $F^i(x) \in I_1$ e $x_i = 2$ se $F^i(x) \in I_2$ para todo $i \geq 0$. Observe que está S bem definida, pois $F(I_1) = I_2$ e $F(I_2) \subset I_1 \cup I_2$ e, portanto, $a_{x_i x_{i+1}} = 1$ para todo $i \geq 0$.

Lema 11.7. A não contém intervalos.

Demonstração. Suponha que Λ contém algum intervalo e sejam $a, b \in \Lambda$, com a < b, tais que $[a, b] \subset \Lambda$. Utilizando a notação do Lema anterior, seja $k \geq N$ tal que $(b-a)\nu^N \lambda^{k-N} > 1$. Pelo Teorema do Valor Médio, existe $c \in [a, b]$ tal que

$$|F^{k}(b) - F^{k}(a)| = |(F^{k})'(c)|(b - a)$$

$$= \left| \prod_{i=0}^{k-1} F'(F^{i}(c)) \right| (b - a)$$

$$= \left| \prod_{i=0}^{N-1} F'(F^{i}(c)) \right| \left| \prod_{i=N}^{k-1} F'(F^{i}(c)) \right| (b - a)$$

$$> \nu^{N} \lambda^{k-N} (b - a) > 1$$

e, portanto, $F^k(a)$ ou $F^k(b)$ não é elemento de [0,1], o que é um absurdo.

Proposição 11.8. S é um homeomorfismo.

Demonstração. i. S é injetora:

Sejam $x, y \in \Lambda$, com x < y, e suponha que S(x) = S(y). Desse modo, $F^n(x)$ e $F^n(y)$ está no mesmo lado em relação ao ponto crítico $\frac{1}{2}$ e, portanto, F é monótona no intervalo J_n , cujos pontos extremos são $F^n(x)$ e $F^n(y)$, para todo $n \ge 0$. Desse modo, se $z \in [x, y]$, então $F^n(z) \in J_n \subset I_1 \cup I_2$ para todo $n \ge 0$ e, portanto, $z \in \Lambda$. Mas isso implica que $[x, y] \subset \Lambda$, o que é um absurdo.

ii. S é sobrejetora:

Seja $(x_n)_{n=0}^{\infty} \in \Sigma_A$. Vamos provar que existe $x \in \Lambda$ tal que $S(x) = (x_n)_{n=0}^{\infty}$. Inicialmente, para cada $n \geq 0$, considere

$$I_{x_0\cdots x_n} = \{x \in [0,1] : x \in I_{x_0}, \dots, F^n(x) \in I_{x_n}\}.$$

Observe que $x \in I_{x_0 \dots x_n}$ se, e somente se, $x \in I_{x_0}$ e $F(x) \in \{y \in [0,1] : y \in I_{x_1}, \dots, F^{n-1}(y) \in I_{x_n}\}$. Desse modo, $I_{x_0 \dots x_n} = I_{x_0} \cap F^{-1}(I_{x_1 \dots x_n})$.

Assim, por indução, é possível concluir que $I_{x_0\cdots x_n}$ é um intervalo fechado não vazio. Além disso, $I_{x_0\cdots x_n}=I_{x_0\cdots x_{n-1}}\cap F^{-n}(I_{x_n})\subset I_{x_0\cdots x_{n-1}}$.

Desse modo, $(I_{x_0\cdots x_n})_{n=0}^{\infty}$ é uma sequência de intervalos encaixantes fechados e não vazios e, portanto, existe $x\in \bigcap_{n=0}^{\infty}I_{x_0\cdots x_n}$. Como $F^i(x)\in I_{x_i}$ para todo $i\geq 0$, concluímos que $S(x)=(x_n)_{n=0}^{\infty}$. Observe que $x\in \bigcap_{n=0}^{\infty}I_{x_0\cdots x_n}$ é único, pois S é injetora.

iii. S é contínua:

Seja $x \in \Lambda$, com $S(x) = (x_n)_{n=0}^{\infty}$. Sejam também $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{N^k} < \varepsilon$.

Como $I_{x_0...x_k}$ um intervalo fechado e $x \in I_{x_0...x_k}$, tome $\delta > 0$ tal que $y \in \Lambda$ e $|x-y| < \delta$ implica que $y \in I_{x_0...x_k}$. Desse modo, S(x) e S(y) são iguais nas primeiras k+1 entradas e, portanto, $d_N(S(x), S(y)) \leq \frac{1}{N^k} < \varepsilon$.

Teorema 11.9. $S \circ F|_{\Lambda} = \sigma_A \circ S$.

Demonstração. Seja $x \in \Lambda$. Utilizando a notação da Proposição anterior, se $S(x) = (x_n)_{n=0}^{\infty}$, então x é o único elemento de $\bigcap_{n=0}^{\infty} I_{x_0 \cdots x_n}$.

Podemos escrever $I_{x_0...x_n} = I_{x_0} \cap F^{-1}(I_{x_1}) \cap \cdots \cap F^{-n}(I_{x_n})$. Se $x_0 = 1$, então $x_1 = 2$ e, portanto, $F(I_{x_0}) = I_{x_1}$. Se $x_0 = 2$, então $F(I_{x_0}) = I_1 \cup A_2 \cup I_2$. Em ambos os casos, $F(I_{x_0}) \supset I_{x_1}$ e, desse modo,

$$F(I_{x_0...x_n}) = I_{x_1} \cap \cdots \cap F^{-n+1}(I_{x_n}).$$

Portanto,

$$S \circ F|_{\Lambda}(x) = S(F(\bigcap_{n=0}^{\infty} I_{x_0 \cdots x_n}))$$
$$= S(\bigcap_{n=1}^{\infty} I_{x_1 \cdots x_n})$$
$$= (x_n)_{n=1}^{\infty} = \sigma \circ S(x)$$

Proposição 11.10. Seja A uma matriz de transição de ordem N. Então σ_A possui $Tr(A^k)$ pontos periódicos de período k.

Demonstração. Observe que $x = (x_n)_{n=0}^{\infty} \in \Sigma_N$ é um ponto periódico de período k de σ se, e somente se, $x_i = x_{i+k}$ para todo $i \geq 0$, ou seja,

$$x = (x_0, x_1, \dots, x_{k-1}, x_0, x_1, \dots, x_{k-1}, \dots).$$

อาเ

Desse modo, $x \in \Sigma_A$ se, e somente se, $a_{x_0x_1} = a_{x_1x_2} = \cdots = a_{x_{k-1}x_0} = 1$ e, portanto,

$$\begin{cases} a_{x_0 x_1} a_{x_1 x_2} \dots a_{x_{k-1} x_0} = 1, & \text{se } x \in \Sigma_A \\ a_{x_0 x_1} a_{x_1 x_2} \dots a_{x_{k-1} x_0} = 0, & \text{se } x \notin \Sigma_A \end{cases}$$

Assim, a quantidade de pontos periódicos de período k de σ_A é dada por

$$\sum_{1 \le x_0, \dots, x_{k-1} \le N} a_{x_0 x_1} a_{x_1 x_2} \dots a_{x_{k-1} x_0}.$$

Por outro lado, utilizando a definição de multiplicação de matrizes podemos mostrar por indução que $A^k=(c_{ij})_{1\leq i,j\leq N},$ onde

$$c_{ij} = \sum_{1 \le x_1, \dots, x_{k-1} \le N} a_{ix_1} a_{x_1 x_2} \dots a_{x_{k-1} j}$$

e, portanto,

$$\operatorname{Tr}(A^k) = \sum_{x_0=1}^N c_{x_0 x_0} = \sum_{1 \le x_0, \dots, x_{k-1} \le N} a_{x_0 x_1} a_{x_1 x_2} \dots a_{x_{k-1} x_0}.$$

12 Estabilidade Estrutural

Definição 12.1. Sejam $f, g: D \to \mathbb{R}$ funções de classe \mathcal{C}^k . A \mathcal{C}^k -distância entre f e g é definida por

$$d_k(f,g) = \sup_{x \in D} \left\{ |f(x) - g(x)|, |f'(x) - g'(x)|, \dots, |f^{(k)}(x) - g^{(k)}(x)| \right\}$$

Definição 12.2. Seja $f: D \to \mathbb{R}$ uma função de classe \mathcal{C}^k . Dizemos que $f \in \mathcal{C}^k$ -estável se existe $\varepsilon > 0$ tal que se $g: D \to \mathbb{R}$ é de classe \mathcal{C}^k e $d_k(f,g) < \varepsilon$, então f e g são topologicamente conjugadas.

Exemplo 12.3. Seja $L: \mathbb{R} \to \mathbb{R}$ a função definida por $L(x) = \frac{x}{2}$. Se $g: \mathbb{R} \to \mathbb{R}$ é uma função de classe C^1 com $d_1(L,g) < \frac{1}{2}$, vamos mostrar que L e g são topologicamente conjugadas.

Inicialmente, g possui pelo menos 1 ponto fixo. Como $\left|\frac{x}{2} - g(x)\right| < \frac{1}{2}$ para todo $x \in \mathbb{R}$, temos que $-\frac{1}{2} < \frac{x}{2} - g(x) < \frac{1}{2}$ e, portanto, $-\frac{1}{2} - \frac{x}{2} < g(x) - x < \frac{1}{2} - \frac{x}{2}$. Definindo h(x) = g(x) - x, temos que 0 < h(-1) < 1 e -1 < h(1) < 0. Pelo Teorema do Valor Intermediário, existe $x_0 \in (-1, 1)$ tal que $h(x_0) = 0$ e, portanto, $g(x_0) = x_0$.

Além disso, g possui no máximo 1 ponto fixo. Como $\left|\frac{1}{2} - g'(x)\right| < \frac{1}{2}$ para todo $x \in \mathbb{R}$, temos que 0 < g'(x) < 1. De acordo com o Teorema do Valor Médio, se g possui 2 pontos fixos, então existe x_0 tal que $g'(x_0) = 1$, o que é um absurdo.

Seja $J = [-10, -5) \cup (5, 10]$. Observe que se $x \in \mathbb{R} - \{0\}$, então existe um único $n_x \in \mathbb{Z}$ tal que $L^{n_x}(x) \in J$. Analogamente, se $x \in \mathbb{R}$ e x não é ponto fixo de g, então existe um único n_x tal que $g^{n_x}(x) \in [-10, g(-10)) \cup (g(10), 10]$.

Seja h uma função tal que $h|_{[-10,-5]}$ é um homeomorfismo crescente entre [-10,-5] e [-10,g(-10)] e $h|_{[5,10]}$ é um homeomorfismo crescente entre [5,10] e [g(10),10].

Seja $x \in \mathbb{R} - \{0\}$. Como $L^{n_x}(x) \in J$, temos que $h \circ L^{n_x}(x)$ está bem definido. Sendo g um homeomorfismo, $g^{-n_x} \circ h \circ L^{n_x}(x)$ também está bem definido. Defina $h(x) = g^{-n_x} \circ h \circ L^{n_x}(x)$ para todo $x \in \mathbb{R} - \{0\}$. Observe que se $x \in J$, então $n_x = 0$ e, portanto, está bem definida em J. Por fim, defina h(0) como sendo o ponto fixo de g. Resta mostrar que $h \circ L(x) = g \circ h(x)$ para todo $x \in \mathbb{R}$.

Se $x \neq 0$, então $h(x) = g^{-n_x} \circ h \circ L^{n_x}(x)$. Se y = L(x), então $y \neq 0$ e $L^{n_x-1}(y) = L^{n_x-1}(L(x)) = L^{n_x}(x) \in J$, ou seja, $n_y = n_x - 1$. Desse modo,

$$h \circ L(x) = h(y) = g^{-n_y} \circ h \circ L^{n_y}(y) = g \circ g^{-n_x} \circ h \circ L^{n_x}(x) = g \circ h(x)$$

e g(h(0)) = h(0) = h(L(0)).

Assim, $h \circ L = g \circ h$. Além disso, h é um homeomorfismo pois é composição de homeomorfismos. Desse modo, L e g são topologicamente conjugadas e, portanto, L é \mathcal{C}^1 -estável.

Finalmente, vamos estudar a estabilidade estrutural da função quadrática $F_{\mu}(x) = \mu x(1-x)$ para $\mu > 2 + \sqrt{5}$.

Relembrando, 0 e $p_{\mu} = \frac{\mu-1}{\mu}$ são os únicos pontos fixos de F_{μ} . Além disso, F_{μ} possui um único ponto crítico em $\frac{1}{2}$, é estritamente crescente em $\left(-\infty,\frac{1}{2}\right)$ e é estritamente decrescente em $\left(\frac{1}{2},\infty\right)$. Sendo $F_{\mu}\left(\frac{1}{2}\right) > 1$, temos que $F_{\mu}^{-1}(1)$ possui dois elementos. Denotando tais elementos por y_0 e y_1 , com $y_0 < y_1$, temos que $|F'_{\mu}(x)| > 1$ para todo $x \in [0,y_0] \cup [y_1,1]$.

Além disso, $\lim_{n\to\infty} F_{\mu}^n(x) = -\infty$ para todo $x \notin [0, y_0] \cup [y_1, 1]$ e, desse modo, estudamos a dinâmica de F_{μ} restrita ao conjunto $\Lambda = \{x \in [0, 1] : F_{\mu}^n(x) \in [0, 1] \text{ para todo } n \geq 1\}$. Por fim, mostramos que $F_{\mu}|_{\Lambda}$ é topologicamente conjugada com a função σ em Σ_2 .

Teorema 12.4. Se $\mu > 2 + \sqrt{5}$, então F_{μ} é C^2 -estável.

Demonstração. Vamos mostrar que existe $\varepsilon > 0$ tal que se g é de classe \mathcal{C}^2 e $d_2(F_\mu, g) < \varepsilon$, então F_μ e g são topologicamente conjugadas.

Seja $\varepsilon_1 > 0$ tal que $d_2(F_\mu, g) < \varepsilon_1$ implica que g'' < 0 e, portanto, que a concavidade de g é para baixo. Existe ε_1 com essa propriedade pois $F''_\mu = -2\mu$.

Seja $0 < \varepsilon_2 < \varepsilon_1$ tal que $d_2(F_\mu, g) < \varepsilon_2$ implica que g possui dois pontos fixos $\alpha < \beta$ com $g'(\alpha) > 1$ e $g'(\beta) < -1$. Existe ε_2 com essa propriedade pois F_μ possui os pontos fixos 0 e p_μ com $F'_\mu(0) > 1$ e $F'_\mu(p_\mu) < -1$.

Pelo Teorema do Valor Médio, temos que g possui um ponto crítico $c \in (\alpha, \beta)$. Sendo g'' < 0, o ponto crítico de g é único. Além disso, g é estritamente crescente em $(-\infty, c)$ e estritamente decrescente em (c, ∞) . Desse modo, existe $\alpha' \in (c, \infty)$ tal que $g(\alpha') = \alpha$.

Por fim, seja $0 < \varepsilon < \varepsilon_2$ tal que $d_2(F_\mu, g) < \varepsilon$ implica que $g^{-1}(\alpha')$ possui os elementos x_0 e x_1 , com $x_0 < x_1$, e que |g'(x)| > 1 para todo $x \in [\alpha, x_0] \cup [x_1, \alpha']$.

Desse modo, se $d_2(F_\mu, g) < \varepsilon$, então os gráficos de g e F_μ possuem as mesmas propriedades. Em particular, $\lim_{n\to\infty} g(x) = -\infty$ para todo $x \notin [\alpha, x_0] \cup [x_1, \alpha']$. De modo análogo ao feito para F_μ restrita ao conjunto Λ , é possível mostrar que g restrita ao conjunto $\Lambda_g = \{x \in [\alpha, \alpha'] : g^n(x) \in [\alpha, \alpha'] \text{ para todo } n \geq 1\}$ é topologicamente conjugada com a função σ de Σ_2 . Portanto, por transitividade, F_μ e g são topologicamente conjugadas.

Teorema 12.5 (Hartman). Seja p um ponto fixo hiperbólico de f e suponha que $f'(p) = \lambda \neq 0$. Então existem vizinhanças U de p e V de 0 e um homeomorfismo $h: U \to V$ que conjuga as funções $f|_U$ e $L(x) = \lambda x$, $x \in V$.

13 Princípio da Contração

Definição 13.1. Seja $f:[0,1] \to [0,1]$ uma função contínua. Dizemos que um intervalo $J \subset [0,1]$ é errante se

- 1. J não está contido na base de atração de um ponto periódico atrator.
- 2. $f^n(J) \cap f^m(J) = \emptyset$ para todo n > m > 0.

Lema 13.2. (Princípio da Contração) Seja J um intervalo tal que

$$\inf_{n>0}|f^n(J)|=0.$$

Então J é um intervalo errante ou está contido na base de atração de um ponto periódico atrator.

Demonstração. Seja

$$X = \bigcup_{n=0}^{\infty} f^n(J).$$

Primeiramente, suponha que $f^n(U) \cap U = \emptyset$ para todo $n \geq 1$ e para todo conexo U em X. Sendo f contínua, $f^m(J)$ é conexo em X para todo $m \geq 0$ e, portanto, $f^k(f^m(J)) \cap f^m(J) = \emptyset$ para todo $k \geq 1$. Desse modo, $f^n(J) \cap f^m(J) = \emptyset$ para todo $n > m \geq 0$. Assim, pela Definição 13.1, J é um intervalo errante ou está contido em na base de atração de um ponto periódico atrator.

Na sequência, dados um intervalo J e $\delta > 0$, definiremos o intervalo J_{δ} como

$$J_{\delta} = (\inf J - \delta |J|, \sup J + \delta |J|).$$

Lema 13.3. Seja $f:[0,1] \to [0,1]$ contínua e suponha que $x \mapsto \log |Df(x)|$ é Lipschitz com contante K. Então existe $\delta > 0$ com a seguinte propriedade. Se J e T são intervalos em [0,1] tais que $J, \ldots, f^{n-1}(J)$ são dois a dois disjuntos para algum $n \ge 1$ e $J \subset T \subset J_{\delta}$, então

$$\frac{|Df^k(x)|}{|Df^k(y)|} \le \exp(2K) \ para \ todo \ x, y \in T$$

e

$$|f^k(T)| \le 2|f^k(J)|$$

 $para\ todo\ k=0,\ldots,n.$

Demonstração. Seja $\delta < \frac{1}{2} \exp(-2K)$. Por definição,

$$\left|\log |Df(x)| - \log |Df(y)|\right| \le K|x - y| \le K \le 2K$$
 para todo $x, y \in T$.

Suponha que

$$\left| \log |Df^i(x)| - \log |Df^i(y)| \right| \le 2K \text{ para todo } x, y \in T$$

para todo $1 \le i < k \le n$.

Pelo Teorema do Valor Médio,

$$|f^{i}(T)| = |f^{i}(J)| + |f^{i}(T - J)| = |f^{i}(J)| + |Df^{i}(z)||T - J|$$

para algum $z \in T - J$. Utilizando a definição de δ , temos que

$$|f^{i}(T)| \le |f^{i}(J)| + \exp(2K) \frac{|f^{i}(J)|}{|J|} |T - J| \le |f^{i}(J)| (1 + 2\delta \exp(2K)) \le 2|f^{i}(J)|.$$

•• aqui não entendi porque $|Df^i(z)| \leq \exp(2K) \frac{|f^i(J)|}{|J|}$ •• Além disso, sendo $J, \ldots, f^{n-1}(J)$ dois a dois disjuntos, temos que

$$\sum_{i=0}^{k-1} |f^i(T)| \le \sum_{i=0}^{k-1} 2|f^i(J)| \le 2$$

e, portanto, utilizando a Regra da Cadeia e a definição de K, concluímos que

$$\left| \log |Df^{k}(x)| - \log |Df^{k}(y)| \right| = \left| \log \prod_{i=0}^{k-1} |Df(f^{i}(x))| - \log \prod_{i=0}^{k-1} |Df(f^{i}(y))| \right|$$

$$\leq \sum_{i=0}^{k-1} \left| \log |Df(f^{i}(x))| - \log |Df(f^{i}(y))| \right|$$

$$\leq \sum_{i=0}^{k-1} |f^{i}(T)| K \leq 2K$$

para todo $x, y \in T$.

Suponha que $J \subset [0,1]$ é um intervalo errante. Então, a sequência $(f^n(J))_{n\geq 0}$ é formada por intervalos dois a dois disjuntos em [0,1] e, portanto,

$$\sum_{n=0}^{\infty} |f^n(J)| \le 1.$$

Sendo a série convergente, concluímos que $|f^n(J)| \to 0$ quando $n \to \infty$.

Corolário 13.4. Seja $f:[0,1] \to [0,1]$ contínua e suponha que $x \mapsto \log |Df(x)|$ é Lipschitz. Então f não possui intervalos errantes.

Demonstração. Suponha que f possua intervalos errantes e seja J um intervalo errante maximal, ou seja, não existem intervalos errantes contidos estritamente em J. Sendo todas as iteradas de J disjuntas, pelo Lema anterior temos que

$$|f^k(J_\delta)| \le 2|f^k(J)|$$

para todo $k \geq 0$. Em particular, J_{δ} não está contido na base de atração de um ponto periódico atrator e $|f^k(J_{\delta})| \to 0$ quando $n \to \infty$. Desse modo, J_{δ} é um intervalo errante que contém estritamente J. Sendo J um intervalo errante maximal, obtemos uma contradição.

14 Teoria Kneading

Definição 14.1. A função $f: I \to I$ é unimodal se

- 1. f(0) = f(1) = 0.
- 2. f possui um único ponto crítico em (0,1).

No restante dessa seção, estudaremos uma função $f:I\to I$ unimodal cujo ponto crítico será denotado por c.

Definição 14.2. O itinerário de $x \in I$ é a sequência $S(x) = (s_0 s_1 s_2 \dots)$, onde

$$s_i = \begin{cases} 0 & \text{se } f^i(x) < c \\ 1 & \text{se } f^i(x) > c \\ C & \text{se } f^i(x) = c \end{cases}$$

Definição 14.3. A sequência kneading de f é a sequência K(f) = S(f(c)), ou seja, é o itinerário de f(c).

Sejam $s = (s_0, s_1, s_2, ...)$ e $t = (t_0, t_1, t_2, ...)$ duas sequências. Dizemos que s e t são n-discrepantes se $s_i = t_i$ para todo $0 \le i < n$ e $s_n \ne t_n$. Definimos $\tau_n(s)$ como a quantidade de elementos em $\{s_0, ..., s_{n-1}\}$ que são iguais à 1.

Definição 14.4. Suponha que s e t são n-discrepantes. Dizemos que $s \prec t$ se

- 1. n = 0 e $s_0 < t_0$.
- 2. $\tau_{n-1}(s)$ é par e $s_n < t_n$.
- 3. $\tau_{n-1}(s)$ é impar e $s_n > t_n$.

Teorema 14.5. Sejam $x, y \in I$.

- 1. Se $S(x) \prec S(y)$, então x < y.
- 2. Se x < y, então $S(x) \prec S(y)$.

Demonstração. O primeiro item será provado por indução em n, onde S(x) e S(y) são n-discrepantes e, por contra-positiva, o segundo item segue imediatamente do primeiro. Seja $S(x) = (s_0, s_1, s_2, \dots)$ e $S(y) = (t_0, t_1, t_2, \dots)$.

Se S(x) e S(y) são 0-discrepantes e $S(x) \prec S(y)$, então x < y. Suponha que essa propriedade é válida quando as sequências são (n-1)-discrepantes.

Se S(x) e S(y) são n - discrepantes, $n \ge 1$, então as sequências

$$S(f(x)) = (s_1, s_2, s_3, \dots) \in S(f(y)) = (t_1, t_2, t_3, \dots)$$

são (n-1)-discrepantes. Se $s_0 = t_0 = 0$, então $S(f(x)) \prec S(f(y))$ pois a quantidade de elementos iguais à 1 antes da discrepância permanece inalterada e portanto, f(x) < f(y) por hipótese de indução. Sendo f estritamente crescente em [0,c), concluímos que x < y. Analogamente, se $s_0 = t_0 = 1$, então $S(f(x)) \succ S(f(y))$ pois a quantidade de elementos iguais à 1 antes da discrepância é diminuída em uma unidade e, portanto, f(x) > f(y) por hipótese de indução. Sendo f estritamente decrescente em (c,1], concluímos que x > y. Por fim, se $s_0 = t_0 = C$, então x = y = c.

Lema 14.6. Seja $s=(s_0,s_1,s_2,\dots)$ e suponha que $s_i\neq C$ para todo $0\leq i\leq n$. Então, o conjunto

$$\{x \in I : S(x)_i = s_i \text{ para todo } 0 \le i \le n\}$$

é um aberto em I.

Demonstração. Seja $x \in I$ tal que $S(x)_i = s_i$ para todo $0 \le i \le n$ e, portanto, $f^i(x) \in [0,c) \cup (c,1]$ para todo $0 \le i \le n$. Para cada $0 \le i \le n$, seja

$$V_i = \begin{cases} [0, c) & \text{se } f^i(x) < c \\ (c, 1] & \text{se } f^i(x) > c \end{cases}$$

Observe que cada V_i é aberto em I. Pela continuidade de f^i , cada $f^{-i}(V_i)$ é aberto em I. Definindo $V = \bigcap_{i=0}^n f^{-i}(V_i)$, temos que V é aberto e se $y \in V$, então $S(y)_i = s_i$ para todo $0 \le i \le n$.

Teorema 14.7. Suponha que $f: I \to I$ é unimodal e c não é periódico. Se t é uma sequência tal que $\sigma^n(t) \prec K(f)$ para todo $n \geq 1$, então t é f-admissível.