

IoT-based Virtual Health Determination

GROUP_3 報告人: 廖柏竣

組員:

統碩 - 711333119 蔡佳軒

統碩 — 711333121 陳彥瑾

統碩二 711233111 黃柏淞

統碩二 711233114 陳威儒

統碩二 711233122 廖柏竣

大綱

- ◆專案背景介紹
- ◆資料介紹
- ◆預期達成目標
- ◆專案執行計畫
- 甘特圖
- ◆組員分工

背景介紹 - 傳統維護方法

等故障發生才進行修理,造 成生產中斷

依賴人工記錄,容易出錯且 耗時

每月例行檢查與保養,效率 低下

使用廠商建議維修手冊,缺 乏客製化

背景介紹-痛點1

需停機修理,花費大量時間

需決定加速規測量位置

一般分析方法需要耗費額外人事成本進行評估

背景介紹 - 物聯網與大數據

機械故障與振動異常有關

及早發現 故障問題

大數據

背景介紹-痛點2

需停機修理,花費大量時間

需決定加速規測量位置

一般分析方法需要耗費額外人事成本進行評估

一般分析方式

固定頻率門檻警報

缺乏靈活性,無法適應不同情況

000

依靠人工頻譜圖分析

耗時且需專業知識,分析效率低

時域 (XYZ軸) 特徵簡單比對

分析深度不足,模型簡單

背景介紹 - 痛點3

需停機修理,花費大量時間

需決定加速規測量位置

一般分析方法需要耗費額外人事成本進行評估

資料介紹

加速規感測

振動資料: 每5秒2萬多筆資料

	Α	В	С
1	X	Y	Z
2	-0.089060468	2.00495748	-0.028111335
3	-0.110699077	1.958193458	0.003180173
4	-0.065833349	1.926956841	0.027556757
5	-0.124120761	1.904517742	0.00122153
6	-0.093342079	1.928627021	-0.016869541
7	-0.070072629	1.948517371	-0.029483824
8	-0.073925425	1.990458907	-0.035868985
9	-0.094222726	1.984325122	-0.031560127
10	-0.046564308	1.983619047	0.008525262
11	-0.059726365	1.95961285	0.022653323

反應變數

正常負荷: 80 (X軸)、 260 (Y軸) 型 型 異常負荷

健康指數

連續型

異常分數

: 與健康樣本的距離

前人研究

Ambaye, G., Boldsaikhan, E., & Krishnan, K. (2024).

➤ 利用振動資料和CNN進行機器手臂的損壞檢測

Bajarunas, K., Baptista, M. L., Goebel, K., & Chao, M. A. (2024).

➤ 健康指數的估計與剩餘使用壽命 (Remaining Useful Life, RUL) 預測

Maincer, D., et al. (2023).

➤ 機器人手臂故障診斷 - 基於 SVM 和 KNN 的方法

預期達成目標

預測未來變化

透過健康指數預測設備性能趨勢,提前規劃維護

異常檢測

利用分群技術自動識別異常振動模式

模型自由選擇

根據不同設備特性選擇最適合的分析模型

預期達成目標

馬達與惰輪側的比較

透過模型訓練與測試結果,找到最佳\最有效率的測量點

UI設計

友善且清楚的介面,可以直接獲得關鍵資訊與結果

機器學習

自動化偵測,模型準確率提升

UI設計

期待成果

智能燈號警示

線黃紅三色燈號直觀顯示設備 狀態,設定智能閾值

多樣化模型選擇與視覺化

根據分析結果推薦模型與視覺化呈現

甘特圖 (Gnatt chart)

團隊分工

Project Manager: 廖柏竣

- 組內外溝通橋樑
- 專案任務分配
- 專案進度規劃與管理
- 文件管理 (Notion)
- 協助\支援其他任務

Data Scientist: 黃柏淞、陳威儒

- > 文獻搜索與探討
- 資料觀察與清洗
- 模型訓練與測試
- 分析結果探討

視覺化工具研究

- 系統及介面設計與開發
- 使用說明書撰寫

謝謝大家!

