Estadística. Grupo m3

Contraste de Karlin-Rubin

RVM creciente

Razón de verosimilitud monótona creciente en $T(x_1, \ldots, x_n)$

a) Contraste $H_0: \theta \leq \theta_0$ frente a $H_1: \theta > \theta_0$

$$\phi = \begin{cases} 1 & \text{si} \quad T(x_1, \dots, x_n) > c \\ a & \text{si} \quad T(x_1, \dots, x_n) = c \\ 0 & \text{si} \quad T(x_1, \dots, x_n) < c \end{cases}$$

$$E_{\theta_0}(\phi) = \alpha$$

RVM creciente

Razón de verosimilitud monótona creciente en $T(x_1, \ldots, x_n)$

b) Contraste $H_0: \theta \geq \theta_0$ frente a $H_1: \theta < \theta_0$

$$\phi = \begin{cases} 1 & \text{si} \quad T(x_1, \dots, x_n) < c \\ a & \text{si} \quad T(x_1, \dots, x_n) = c \\ 0 & \text{si} \quad T(x_1, \dots, x_n) > c \end{cases}$$

$$E_{\theta_0}(\phi) = \alpha$$

RVM decreciente

Razón de verosimilitud monótona decreciente en $T(x_1, \ldots, x_n)$

a) Contraste $H_0: \theta \leq \theta_0$ frente a $H_1: \theta > \theta_0$

$$\phi = \begin{cases} 1 & \text{si} \quad T(x_1, \dots, x_n) < c \\ a & \text{si} \quad T(x_1, \dots, x_n) = c \\ 0 & \text{si} \quad T(x_1, \dots, x_n) > c \end{cases}$$

$$E_{\theta_0}(\phi) = \alpha$$

RVM decreciente

Razón de verosimilitud monótona decreciente en $T(x_1, \ldots, x_n)$

b) Contraste $H_0: \theta \geq \theta_0$ frente a $H_1: \theta < \theta_0$

$$\phi = \begin{cases} 1 & \text{si} \quad T(x_1, \dots, x_n) > c \\ a & \text{si} \quad T(x_1, \dots, x_n) = c \\ 0 & \text{si} \quad T(x_1, \dots, x_n) < c \end{cases}$$

$$E_{\theta_0}(\phi) = \alpha$$

