

Alternating group lasso for block-term tensor decomposition with application to ECG source separation

J. H. de M. Goulart et al., 2020

I. Introduction

I. Introduction

- Biomedical Application: Atrial activity extraction during a persistent Atrial Fibrillation (AF).
- Blind Source Separation (BSS)
 - Matrix Approach
 - Principal component analysis (PCA)
 - Independent component analysis (ICA)
 - Tensor Approach
 - **BTD**-Gauss Newton (ALS-NLS or ELS)
 - AGL and its Constrained Version, CAGL

Matrix Approach

$$\mathbf{Y} = \mathbf{M} \times \mathbf{S}$$

$$= \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \ddots & \vdots \\ m_{K,1} & \dots & m_{K,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \ddots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \ddots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \ddots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \ddots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \ddots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \vdots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \dots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \dots \\ m_{1,1} & \dots & m_{1,R} \end{bmatrix} \times \begin{bmatrix} m_{1,1} & \dots & m_{1,R} \\ \vdots & \dots & \dots \\ m_{1,1} & \dots & \dots \\ m_{1,1} & \dots & \dots \end{bmatrix}$$

Figure : Classic model for BSS.

Tensor Approach

Figure : **BTD** model for **BSS**.

Lucas Abdalah

II. Tensor-Based Separation of Sums of Complex Exponentials

A. Low-rank Hankel source model

Discrete-time signals that can be modeled as linear combination of exponentials

- The signal s(n) is represented by an all-pole model
- Mapped onto a Hankel matrix *H*s
- Hankel matrix has rank at most min{L,M}¹

$$s(n) = \sum_{l=1}^{L} \alpha \exp(\zeta_l n), \quad n = 0, \dots, N-1,$$

¹D. L. Boley, et. al (1997): "Vandermonde factorization of a Hankel matrix," in Proc. Workshop Scientific Comput.

A. Low-rank Hankel source model

Hankel Matrix and Vandermonde Decomposition:

 Since the sources can be expressed as low-rank Hankel matrices, the signal separation can be performed via BTD.

$$\mathbf{H}_s = \mathbf{V}_s \operatorname{Diag}(\alpha_1, \dots, \alpha_L) \mathbf{V}_s^\mathsf{T}$$

$$\mathbf{V}_s \triangleq \begin{bmatrix} 1 & \dots & 1 \\ \exp(\zeta_1) & \dots & \exp(\zeta_L) \\ \vdots & & \vdots \\ \exp(\zeta_1(M-1)) & \dots & \exp(\zeta_L(M-1)) \end{bmatrix} \in \mathbb{C}^{M \times L}$$

Figure: Hankel mapping.

B. Separation of linear mixture via BTD

Spatial diversity plays an essential role on source estimation

- Each observed signal (Y) is mapped onto a structured Hankel Matrix
- Where we stack each these matrices in the 3rd-mode of the tensor data $(M \times M \times K)$

Figure: Tensor built of data Hankel matrices.

B. Separation of linear mixture via BTD

Source estimation and its associated Hankel matrix

- Each Hankel Matrix has rank Lr
- The data tensor **y** consists of a sum of *R* blocks
- Each block is given by the tensor (outer) product of a low-rank Hankel matrix and a vector

Figure: Structured-BTD model for BSS.

C. Approximate BTD

Existence and Uniqueness

- Fixed structure
- Prior Knowledge of (R, Lr)
- Complex values and require additional constraints (as a structured matrix)

$$f(\mathbf{A}, \mathbf{B}, \mathbf{X}) \triangleq \left\| \mathbf{\mathcal{Y}} - \sum_{r=1}^{R} \left(\mathbf{A}_r \mathbf{B}_r^\mathsf{T} \right) \otimes \mathbf{x}_r \right\|_F^2$$

$$\min_{(\mathbf{A}, \mathbf{B}, \mathbf{X}) \in \mathcal{S}} f(\mathbf{A}, \mathbf{B}, \mathbf{X})$$

D. Shortcomings of the standard least-squares approach

Blocks and rank remarks

- Flexibility regarding the ranks Lr of the blocks (which can be very different from one another)
- Rank Inversion and overestimation
- Set of possible ranks is restricted (it becomes more severe as the number of blocks grows)

Figure: BTD model for BSS.

III. Alternating Group Lasso Algorithm for BTD

A. Problem formulation

Constrained Alternating Group Lasso (CAGL) Approach

- Non-fixed structure minimizing F(A, B, X) ensuring the Hankel structure
- Penalization term (γ) and g(A, B, X) limiting the multilinear ranks and number of blocks
- Allows simultaneous estimation of (R, Lr) and model factors

$$F(\mathbf{A}, \mathbf{B}, \mathbf{X}) \triangleq f(\mathbf{A}, \mathbf{B}, \mathbf{X}) + \gamma g(\mathbf{A}, \mathbf{B}, \mathbf{X})$$

$$g(\mathbf{A}, \mathbf{B}, \mathbf{X}) \triangleq \|\mathbf{A}\|_{2,1} + \|\mathbf{B}\|_{2,1} + \|\mathbf{X}\|_{2,1}$$

$$\min_{(\mathbf{A},\mathbf{B},\mathbf{X})\in\mathcal{S}} F(\mathbf{A},\mathbf{B},\mathbf{X})$$

B. Algorithm for unconstrained blocks

AGL Algorithm

• Solve Group Lasso Subproblems, where the factor **A** is estimated depending on $\mathbf{B}^{(t-1)}$ and $\mathbf{X}^{(t-1)}$

```
Data tensor \mathcal{Y}, penalty parameter \gamma, proximal term weight \tau,
   Inputs:
                   initial point (\mathbf{A}^{(0)}, \mathbf{B}^{(0)}, \mathbf{X}^{(0)})
                   Approximate BTD factors (A, B, X)
  Outputs:
 1: t \leftarrow 1
2: while stopping criteria not met do
        Solve group lasso subproblem (12) to obtain \mathbf{A}^{(t)} from \mathbf{A}^{(t-1)},
        \mathbf{B}^{(t-1)} and \mathbf{X}^{(t-1)}
        Solve group lasso subproblem in B analogous to (12) to obtain \mathbf{B}^{(t)}
         from \mathbf{A}^{(t)}, \mathbf{B}^{(t-1)} and \mathbf{X}^{(t-1)}
         Solve group lasso subproblem in X analogous to (12) to obtain \mathbf{X}^{(t)}
         from \mathbf{A}^{(t)}, \mathbf{B}^{(t)} and \mathbf{X}^{(t-1)}
10:
        t \leftarrow t + 1
```

Table I: Pseudocode for the unconstrained AGL algorithm (lines 5–8 must be omitted).

C. Handling linear constraints in \mathbf{H}_r

CAGL Algorithm

Structured low-rank approximation (SRLA)

```
Data tensor \mathcal{Y}, penalty parameter \gamma, proximal term weight \tau,
   Inputs:
                         initial point (\mathbf{A}^{(0)}, \mathbf{B}^{(0)}, \mathbf{X}^{(0)})
                         Approximate BTD factors (A, B, X)
 Outputs:
1: t \leftarrow 1
2: while stopping criteria not met do
          Solve group lasso subproblem (12) to obtain A^{(t)} from A^{(t-1)}.
           \mathbf{R}^{(t-1)} and \mathbf{X}^{(t-1)}
          Solve group lasso subproblem in B analogous to (12) to obtain \mathbf{B}^{(t)}
           from \mathbf{A}^{(t)}, \mathbf{B}^{(t-1)} and \mathbf{X}^{(t-1)}
          for r = 1, \ldots, R do
             L_r^{(t)} \leftarrow \operatorname{rank}\left(\mathbf{A}_r^{(t)}(\mathbf{B}^{(t)})_r^\mathsf{T}\right)
               \begin{aligned} &(\mathbf{A}_r^{(t)}, \mathbf{B}_r^{(t)}) \leftarrow \mathtt{slra}(\mathbf{A}_r^{(t)}(\mathbf{B}_r^{(t)})^\mathsf{T}, L_r^{(t)}) \\ &(\mathbf{A}_r^{(t)}, \mathbf{B}_r^{(t)}) \leftarrow ([\mathbf{A}_r^{(t)} \ \mathbf{0}_{I \times L - L_r^{(t)}}], [\mathbf{B}_r^{(t)} \ \mathbf{0}_{I \times L - L_r^{(t)}}]) \end{aligned} 
           Solve group lasso subproblem in X analogous to (12) to obtain \mathbf{X}^{(t)}
           from \mathbf{A}^{(t)}, \mathbf{B}^{(t)} and \mathbf{X}^{(t-1)}
          t \leftarrow t + 1
```

 $\hat{\mathbf{H}}_r pprox \hat{\mathbf{A}}_r \hat{\mathbf{B}}_r^\mathsf{T} \in \mathcal{U}$

Table I: Pseudocode for constrained AGL algorithm.

IV. Numerical Evaluation on Random Block Term Decomposition Models

Experiment Setup

- A, B, X and N in an i.i.d. fashion from the standard normal distribution.
- Algebraic method with rank estimates $L_1 = L_2 = L_3 = L$
- AGL is run from this initial solution and using $y = y\theta$
- Apply a γ-sweeping procedure inspired by solution-path techniques
- Overestimation and true parameters
- SNR of 20 dB

$$\mathbf{y}_0 = \sum_{r=1}^R (\mathbf{A}_r \mathbf{B}_r^\mathsf{T}) \otimes \mathbf{x}_r$$

$$\mathbf{y} = \mathbf{y}_0 + \sigma_{\mathbf{N}} \mathbf{N}$$

$$\text{NMSE}(\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{X}}) \triangleq \frac{1}{R} \sum_{r=1}^{R} \frac{\|(\mathbf{A}_r \mathbf{B}_r^\mathsf{T}) \otimes \mathbf{x}_r - (\hat{\mathbf{A}}_r \hat{\mathbf{B}}_r^\mathsf{T}) \otimes \hat{\mathbf{x}}_r\|_F^2}{\|(\mathbf{A}_r \mathbf{B}_r^\mathsf{T}) \otimes \mathbf{x}_r\|_F^2}$$

<u>Figure 1</u>: Empirical CDFs of NMSE over estimated blocks by AGL and BTD-GN for 500 realizations.

Figure: Empirical CDFs of NMSE over estimated blocks by BTD-GN for 500 realizations.

	AGL (3, 6)	AGL (5, 8)	BTD-GN (6, 5, 4)	BTD-GN (6, 6, 6)	
ECDF < 0.01	83%	80%	58.8%	58.8%	
True model detection	97.6%	87.6%	-	-	
Rank Inversion			51%	-	

07-07-2022

Experiment Setup

- A, B, X and N in an i.i.d. fashion from the standard normal distribution.
- Constrained to employ an arbitrarily initial solution (random)
- AGL is run from this initial solution and using $\gamma = \gamma \theta$
- Same γ-sweeping procedure
- For BTD-GN and AGL, 30 and 12 initializations taken, respectively
- SNR of 10 dB

Constrained Scenario

 All algorithms are followed by Cadzow's algorithm to enforce the low-rank Hankel constrain

<u>Figure 2</u>: Empirical CDFs of NMSE over estimated blocks by AGL and BTD-GN for 500 realizations, with 12 and 30 initializations, respectively. The best solution among is chosen.

Figure 3: Proportion of block ranks estimated by AGL and CAGL with SNR = 10dB.

V. Experimental Results with ECG Data

A. Tensor representation of ECG signals

Experimental Setup

• Each ECG lead mapped onto a Hankel matrix. Stack in the data tensor 3rd-mode.

Stridh Model

- Sum real ventricular activity and a signal that mimics the sawtooth pattern (AF)
- Random spatial signature and Additive white Gaussian noise (AWGN)

$$\mathbf{Y} = \mathbf{V} + \alpha \mathbf{x} \mathbf{s}^\mathsf{T} + \mathbf{N} \in \mathbb{R}^{12 \times N}$$

$$s(n) = -\sum_{p=1}^{P} a_p(n) \sin(p \theta(n))$$

Model	P	\overline{a}	Δa	f_a	F_s	f_0	Δf	$\overline{F_f}$
1	5	150	50	0.08	1000	6	0.2	0.10
2	3	60	18	0.50	1000	8	0.3	0.23

Table III: Parameters of the synthetic AA signal model.

<u>Figure 5</u>: Examples of generated semi-synthetic models

BTD-GN vs CAGL

- **BTD-GN**: Produces good results with a proper combination of *R*, *L* and initial point.
- **CAGL**: Only requires choosing a reasonable range for γ , and behaves much more robustly with regard to initialization.

<u>Figure 6</u>: Empirical distribution of rank chosen by **CAGL** for the **AA** source and of rank L yielding the best **AA** extraction for **BTD-GN** with different numbers of blocks R.

<u>Figure 7</u>: Histogram of computed correlation coefficient ρ (in absolute value) between true and estimated AA sources.

C. Real AF data

12-lead ECG recordings

- Cardiology Department of Princess Grace Hospital
- Very short ECG segments: 1.08 to 1.40 seconds (Largest TQ interval)
- Zero-phase forward-backward Type-II Chebyshev bandpass filter (cutoff: 0.5 and 40 Hz)

TABLE IV: Block ranks of the ECG sources extracted by CAGL and characteristics of the potential AA sources.

Patient	Non-AA source ranks	AA source	SC (%)	DF (Hz)	$\hat{\kappa}$	AA source rank
1	3, 9, 10, 16, 18	1	80.23	6.44	163.69	8
2	28, 32	1	59.36	6.20	116.77	29
		2	82.05	6.20	163.77	12
3	21, 27, 29	1	66.13	6.20	132.29	20
4	8, 16, 20	1	74.51	5.96	196.16	10
5	32, 38, 39	1	91.70	5.72	348.42	10
		2	78.63	5.01	166.95	21

Table IV: Block ranks of the **ECG** sources extracted by **CAGL** and characteristics of the potential **AA** sources.

C. Real AF data

<u>Figure 8</u>: Results produced by CAGL with real-world ECG data: observed and estimated signals at lead V1. Estimated **AA** signals are vertically shifted for ease of visualization.

C. Real AF data

Figure 9: Results produced by CAGL with ECG data from Patients 2 and 5.

VI. Conclusion

VI. Conclusion

Contributions

- Allows simultaneous estimation of model parameters and factors
- The resulting subproblems can be solved by existing group lasso method
- Experimental results show that AGL approach and its constrained version is much more robust with respect to initialization than the conventional least-squares approach

Clinical Impact

- Extract AA by using a structured low-rank approximation method
- Without the need of choosing structural parameters a priori

Further Work

- How to automatically tune γ in practice (CAGL)
- Physiological interpretation of characteristics and spatial signatures diversity
- Multiple atrial sources analysis and enlarge database of AF patients

Supplementary Material

Algorithm for unconstrained blocks

AGL e CAGL

• Solve Group Lasso Subproblems, where $w_{\mathbf{A}^{(t)}}(\mathbf{A})$ is a linear map depending on $\mathbf{B}^{(t-1)}$ and $\mathbf{X}^{(t-1)}$

$$\min_{\mathbf{A} \in \mathbb{C}^{I \times LR}} \frac{1}{2} \| \mathbf{\mathcal{Y}} - \mathbf{\mathcal{W}}_{\mathbf{A}}^{(t)}(\mathbf{A}) \|_F^2 + \gamma \| \mathbf{A} \|_{2,1} + \frac{\tau}{2} \| \mathbf{A} - \hat{\mathbf{A}}^{(t-1)} \|_F^2$$

```
Data tensor y, penalty parameter \gamma, proximal term weight \tau,
  Inputs:
                        initial point (\mathbf{A}^{(0)}, \mathbf{B}^{(0)}, \mathbf{X}^{(0)})
                        Approximate BTD factors (A, B, X)
 Outputs:
1: t \leftarrow 1
2: while stopping criteria not met do
         Solve group lasso subproblem (12) to obtain \mathbf{A}^{(t)} from \mathbf{A}^{(t-1)},
           \mathbf{B}^{(t-1)} and \mathbf{X}^{(t-1)}
         Solve group lasso subproblem in B analogous to (12) to obtain \mathbf{B}^{(t)}
           from \mathbf{A}^{(t)}, \mathbf{B}^{(t-1)} and \mathbf{X}^{(t-1)}
         for r = 1, \ldots, R do
          L_r^{(t)} \leftarrow \operatorname{rank}\left(\mathbf{A}_r^{(t)}(\mathbf{B}^{(t)})_r^\mathsf{T}\right)
        \begin{array}{l} (\mathbf{A}_r^{(t)}, \mathbf{B}_r^{(t)}) \leftarrow \mathtt{slra}(\mathbf{A}_r^{(t)}(\mathbf{B}_r^{(t)})^\mathsf{T}, L_r^{(t)}) \\ (\mathbf{A}_r^{(t)}, \mathbf{B}_r^{(t)}) \leftarrow ([\mathbf{A}_r^{(t)} \ \mathbf{0}_{I \times L - L_r^{(t)}}], [\mathbf{B}_r^{(t)} \ \mathbf{0}_{I \times L - L_r^{(t)}}]) \end{array} 
          Solve group lasso subproblem in X analogous to (12) to obtain \mathbf{X}^{(t)}
           from \mathbf{A}^{(t)}, \mathbf{B}^{(t)} and \mathbf{X}^{(t-1)}
     t \leftarrow t + 1
```

Table I: Pseudocode for the unconstrained AGL algorithm (lines 5–8 must be omitted).

Constrained BTD: Further Results

<u>Figure 4</u>: Median NMSE over estimated blocks attained by AGL and BTD-GN for 500 realizations of a noisy random BTD model in the unconstrained and (Hankel-)constrained scenarios.

Cadzow's Algorithm (CA)

- Performs alternating projections onto the Hankel subspace with rank bounded by a prescribed value.
- Approximations provided by CA are not (locally) optimal, but they are often satisfying in practice.

Data matrix Y, target rank L, tolerance ϵ_{CA} and maximum **Inputs:**

number of iterations T_{CA}

Low-rank Hankel approximation H of Y **Outputs:**

```
1: Initialization: t \leftarrow 1, \mathbf{H}^{(0)} \leftarrow \mathbf{Y}
```

2: for $t = 1, 2, \dots$ do 3: $\mathbf{H}^{(t)} \leftarrow \mathcal{P}_{\mathcal{H}}(\mathbf{H}^{(t-1)})$

Compute the SVD: $\mathbf{H}^{(t)} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$

Truncate the computed SVD at rank $L: \mathbf{H}^{(t)} \leftarrow \mathbf{U}_L \mathbf{\Sigma}_L \mathbf{V}_L^\mathsf{T}$

if $\|\mathbf{H}^{(t)} - \mathbf{H}^{(t-1)}\|_F < \epsilon_{\text{CA}} \|\mathbf{H}^{(t-1)}\|_F$ or $t = T_{\text{CA}}$ then

break for loop and output $H = H^{(t)}$

Table II: Pseudocode for the Cadzow's algorithm.

Stridh Model

Details

- Sum real ventricular activity and a signal that mimics the sawtooth pattern (AF)
- Random spatial signature and Additive white Gaussian noise (AWGN)

$$\mathbf{Y} = \mathbf{V} + \alpha \mathbf{x} \mathbf{s}^\mathsf{T} + \mathbf{N} \in \mathbb{R}^{12 \times N}$$

$$s(n) = -\sum_{p=1}^{P} a_p(n) \sin(p \theta(n))$$

$$a_p(n) = \frac{2}{p\pi} \left[a + \Delta a \sin\left(2\pi \frac{f_a}{F_s}n\right) \right]$$
$$\theta(n) = 2\pi \frac{f_0}{F_s}n + \left(\frac{\Delta f}{F_f}\right) \sin\left(2\pi \frac{F_f}{F_s}n\right)$$

Table III: Parameters of the synthetic AA signal model.