

Shape

Semester 2, 2021 Kris Ehinger

Shape in object recognition

greyscale

silhouette

edges

texture

How difficult would it be for a CNN to classify this type of image? 1 (very easy) – 5 (very difficult)

Outline

- Shape skeletons
- Contour representations
- Face models

Learning outcomes

- Explain what a topological skeleton is and how it is computed
- Explain a method for detecting shape contour (active contours/snakes)
- Explain methods for modelling face shape and their applications

Shape

Images: Hemera

Models of shape

- Models of 2D shape are usually based on either:
 - The bounding contour of the shape (segments, angles)
 - The internal structure of the shape (branches)

Shape skeletons

Shape skeleton

- Topological skeleton = thinnest possible version of a shape
- Formed of lines that are equidistant from the boundaries of the shape

Geometrical description

 The skeleton points are the centrepoints of the largest discs that can be fit inside the shape

• If the shape was painted with a circular brush (of variable radius), the skeleton would be the path of the brush

Skeletonisation algorithm

 Grassfire transform – algorithm for shrinking or thinning a shape

 For each pixel within the shape, compute distance to closest boundary; peaks in the distance map are the skeleton

Brightness = Distance to closest boundary (Manhattan)

Practice: Shape skeleton

• What is the skeleton?

Skeleton representation

- Skeleton + distance to boundary at each skeleton pixel is a compact, invertible representation of shape
- To "inflate" skeleton, place a disc at each skeleton pixel (radius = distance to boundary at that pixel)

Application: Shape recognition

- Shape skeletons are easily converted to graphs
- Graph representation can be used for shape matching, pose recognition

Application: 2D->3D

 Shape skeletons can also be used as the basis for a simple 3D model – just "inflate" with spheres instead of disks

Application: 2D->3D

Week 8, Lecture 2 COMP90086 Computer Vision 17

Drawbacks to skeletons

• Shape must be segmented from background

Drawbacks to skeletons

- Shape must be segmented from background
- Small changes in shape boundary produce large changes in skeleton

Summary

- Shape skeletons represent the internal structure of shapes
- Skeleton representations work well to model shapes that have a skeleton-like structure
 - Human/animal figures
 - Written characters
 - Paths/networks (e.g., city roads, blood vessels)

Contour representations

Automatic contour detection?

Active contours (snakes)

- Parametric model that fits itself to object boundary
- "Shrink wraps" around object to capture shape

Active contour algorithm

- Initialise contour outside object boundary
- On each step, allow each point on the contour to shift 1 pixel in any direction:
 - Shift to minimize a loss (or energy) function: $E_{total} = \alpha E_{elasticity} + \beta E_{stiffness} + E_{edge}$
- Repeat until loss does not change

Active contour algorithm

$$E_{total} = \alpha E_{elasticity} + \beta E_{stiffness} + E_{edge}$$

- $E_{elasticity}$ is based on contour length, penalises longer contours
- $E_{stiffness}$ is based on contour curvature, lowest for straight contour segments
- E_{edge} is based on image gradient at contour locations, lowest where image gradient is highest
- α , β are free parameters

Application: Segmentation

 Active contours are used for segmentation and tracking, particularly in medical image analysis

Image: Kass, Witkin, & Terzopoulos (1988)

Animation: Y. Boykov

Drawbacks to active contours

- Requires initialisation (often from a human annotator)
- May not fit shape correctly
 - Trade-off between elasticity/smoothness and edgematching – may fail to fit concavities in complex shapes
 - Difficult to detect shapes in clutter

Drawbacks to active contours

Summary

- Active contours fit a shape boundary
- Tries to find an optimal shape which is both well-fit to the edges and fairly simple (smooth, compact)
- Works well to segment objects with uniform appearance, moving objects

Face models

Face models

- It's difficult to develop a general-purpose model of shape that can represent all possible shapes well
- However, it is possible to develop parametric models for particular classes of shape
- One very widely-studied class of shapes is the human face

Eigenfaces

- If faces are aligned, pixel luminance values are sufficient to capture face shape
- Simple pixel-based model: eigenfaces

Eigenfaces algorithm

- Each face is represented as a vector to the mean face image
- Parameters of face shape are obtained from PCA of face vectors

685 faces Vector from mean face to face B

Eigenfaces algorithm

Principal components of face vectors:

Eigenfaces

- Problem: Usually we can't assume faces appear in consistent alignment (or consistent lighting)!
- To model faces under real-world conditions, we need models that can consider shape/pose

- Label corresponding landmark points in each image
- Warp images onto the mean shape to get shapefree texture

Image with labeled landmarks

Shape-free textures

 Obtain "shape," "texture," and "appearance" (shape+texture) parameters through PCA

Principal components 1-2 of shape (mean ±3 sd)

Principal components 1-2 of texture (mean ±3 sd)

Principal components 1-4 of appearance (mean ±3 sd)

- To fit the model to a new face, use gradient descent to minimize difference between model and image
- Applications: face synthesis, face segmentation

- Active appearance models separate shape and texture
 - Allows alignment of facial features, even when images are not aligned
- Problem: Shape is represented using 2D contours
 - Can't separate face shape vs. pose
 - Can't separate surface colour vs. lighting

3D face models

3D version of active appearance model: morphable
3D mesh + texture map

Parameters based on PCA of a large 3D dataset

3D face matching

Extract texture from original, using 3D model to correct for lighting

3D face model results

Application: Facial recognition

 Most recognition algorithms use a shape model to align faces as a first step

Application: Facial recognition

- Once faces are aligned, a standard CNN pipeline can be trained for face recognition
- Why is alignment critical for CNNs?

Summary

- Face models are one of the main applications of shape representation in computer vision
- Current state-of-the-art algorithms are based on 3D face models
- Applications:
 - Facial recognition
 - Computer graphics (movie CGI, video games)
 - Zoom filters:)

Summary

- Although shape is not required for category-level object recognition, shape is important for finegrained recognition and separating out effects of lighting and pose
- 2D shapes are typically represented in terms of skeleton structure or bounding contours
- 3D shape models have been developed for specific recognition problems (mainly faces and body pose)