

Grafos e Algoritmos Computacionais: Motivação

Aula 1

Prof. André Britto

Terminologia Básica de Grafos

Grafo

Um **grafo** G consiste num conjunto VG de elementos chamados **vértices**, num conjunto aG de elementos chamados **arestas**, juntamente com uma **função de incidência** ψ_G que associa a cada aresta dois vértices não necessariamente distintos chamados **extremos** da aresta.

Terminologia Básica de Grafos

Representação Geométrica

- vértices → pontos ou círculos
- arestas → linhas
- função de incidência → quais pontos serão ligados pelas linhas

Exemplo:

Representação geométrica do grafo com função de incidência do exemplo anterior.

<u>Algoritmos em grafos</u> ⊂ <u>Teoria dos grafos</u>

- Meta: Encontrar algoritmos eficientes para resolver problemas em grafos.
- Aplicações: Diversas áreas: matemática, computação, química, engenharia elétrica, engenharia de tráfego, economia, eletrônica, etc...
- Histórico: Marco inicial →problema das pontes de Königsberg (resolvido por Euler em 1736).

Histórico

O problema das pontes de Königsberg

 A cidade de Königsberg está situada no rio Pregel e compreende duas ilhas e as margens do rio. Existem 7 (sete) pontes ligando as partes da cidade.

Pontes de Königsberg.

<u>Histórico</u> - O problema das pontes de Königsberg

Pergunta:

É possível determinar um trajeto que passe por todas as pontes usando-as somente uma vez, e de tal forma que o ponto inicial e final coincidam?

Esquema simplificado das pontes de Königsberg.

Pergunta:

É possível determinar um trajeto que passe por todas as pontes usando-as somente uma vez, e de tal forma que o ponto inicial e final coincidam?

Euler provou que isso não é possível utilizando um grafo.

Representação do problema através de um grafo.

Cada ponte é uma <u>aresta</u> e cada pedaço de terra é um <u>vértice</u>. O objetivo agora seria percorrer todas as arestas do grafo, cada aresta apenas uma vez, começando e terminando no mesmo vértice.

Ideia da prova

Para não haver repetição de arestas seria necessário que tivéssemos o mesmo número de arestas para entrar e para sair. Ou seja, um número total <u>par</u> de arestas em cada vértice. Metade das arestas seria usada para chegar e a outra metade para sair.

O grafo do problema tem todos os vértices com número ímpar de arestas e portanto não é possível realizar o trajeto desejado.

Em meados do século XIX surgem três tópicos de interesse isolados:

- O problema das 4 cores;
- O problema do ciclo Hamiltoniano;
- A teoria das árvores.

Problema das 4 cores

É possível colorir países em um mapa arbitrário plano usando apenas 4 cores distintas, tais que países fronteiriços possuam cores diferentes?

Exemplo de coloração.

<u>História</u>

- O problema foi formulado em 1850 por De Morgan. Kempe em 1879 lançou a primeira "prova".
- Mais tarde Heawood em 1890 mostrou que a prova era falha e também que 5 cores são suficientes para resolver o problema.
- O problema das 4 cores foi provado com o uso do computador, por Appel e Haken em 1977.

Problema do ciclo Hamiltoniano

Sejam *n* cidades. Cada par de cidades pode ser adjacente ou não. Partindo-se de uma cidade qualquer, podemos determinar um trajeto que passe em cada cidade uma vez e retorne ao ponto inicial da partida, e tal que cada par de cidades consecutivas no trajeto seja sempre adjacente?

Grafos com e sem ciclos Hamiltonianos.

Problema do ciclo Hamiltoniano

- Até hoje não foi encontrado um algoritmo eficiente para resolvê-lo. É possível examinar todas as possibilidades de caminhos, mas essa solução é exponencial. Também não são provadas condições necessárias e suficientes de existência da ciclo Hamiltoniano.
- É um dos problemas "NP-completos".

<u>História</u>

William Hamilton em 1859 inventou um quebra cabeça:
 "Travel arround the world".

História

William Hamilton em 1859 inventou um quebra cabeça:
 "Travel arround the world".

Problema do ciclo Hamiltoniano

Para casa:

Procure o ciclo
 Hamiltoniano neste
 quebra-cabeça:

Dodecaedro com 20 vértices representando 20 cidades do mundo.

Teoria das árvores

- Kirchhoff 1847 (circuitos elétricos).
- Cayley aplicou esta teoria para a química orgânica.

Exemplos:

Árvore de família;

Teoria das árvores

Exemplos

- Árvores das moléculas;
- Modelagem de circuitos elétricos.

Aplicações na Computação

- Inteligência Artificial
 - Problemas de busca
 - Estratégia de jogos
 - Representação de conhecimento

Estratégia de jogo.

Aplicações na Computação

- Sistemas Operacionais
 - Deadlock

Exemplo de deadlock.

Aplicações na Computação

Arquitetura de Computadores

- Co-design → particionamento.
- Síntese de circuitos → escalonamento de operações em unidades funcionais.

Redes

Pontos críticos em redes.

Representação de um ponto crítico.

Representação de Grafos no Computador

	V 1	V 2	V 3	V4	V 5
V1	0	1	0	0	1
V 2	1	0	1	1	1
V 3	0	1	0	1	1
V 4	0	1	1	0	1
V 5	1	1	1	1	0

Matriz de adjacência

Representação de Grafos no Computador

	a 1	a 2	a 3	a 4	a 5	a 6
V1	1	1	0	0	0	0
V 2	0	1	0	1	0	1
V 3	0	0	0	1	1	0
V 4	0	0	1	0	1	1
V 5	1	0	1	0	0	0

Matriz de incidência

Representação de Grafos no Computador

Conceitos que é necessário revisar

- Estruturas de dados
- Técnicas de provas de teoremas
- Complexidade de algoritmo

Leitura para próxima aua

- Capítulo 1 do Bondy J. A. e Murty U. S. R., Graph Theory with Applications, Elsevier, 1976. (até a seção 1.5)
- Capítulo 1 do Grafos: conceitos, algoritmos e aplicações. Goldbarg, E. e
 Goldbarg M. Elsevier, 2012.
- Seções 2.1, 2.2 do Szwarcfiter, J. L., Grafos e Algoritmos Computacionais, Ed. Campus, 1983.