Master Plan - Isak Hammer Solving Cahn-Hilliard Equation using CutCIP

	Phase 1	Phase 2	Phase 3	Phase 4	Report
Estimated time	2-3 Weeks	4-5 Weeks	2 Weeks	3 Weeks	
Problem	CutDG for $-\Delta u = f$	CutCIP for $\Delta^2 u = f$	$\partial_t u + \Delta^2 u = g$	$\partial_t u + \Delta^2 u + f(u) = g$	
Goals	 Analysis ☐ Coercivity ☐ Boundedness Implementation ☐ L² convergence ☐ H¹ convergence 		 Analysis BDF analysis Implementation L²L² convergence L²H¹ convergence 	• Implementation \Box Fixed point method \Box L^2L^2 convergence \Box L^2H^1 convergence	□ Introduction □ CutDG $-\Delta u = f$ □ Formulation □ Closed and bounded □ Numerical exp. □ CutCIP for $\Delta^2 u = f$ □ Formulation □ Closed and bounded □ A priori Estimates □ Numerical exp. □ CutCIP for $\partial_t u + \Delta^2 u = g$ □ Time discretization □ Numerical Experiments □ CutCIP for $\partial_t u + \Delta^2 u + f(u) = g$ □ Fixed point methods □ Numerical experiments
Comments	Mostly based on (Gürkan and Massing, 2019)	† Not prioritized			
Digression		2nd order mixed formulation	2nd order mixed formulation	2nd order mixed formulation	

	Master Plan									
	January	February	March	April	May	June				
Introduction										
Phase 1										
Phase 2										
Phase 3										
Phase 4										
Final										

References

Gürkan, Ceren and André Massing (2019). "A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems". In: Computer Methods in Applied Mechanics and Engineering 348, pp. 466–499.