Maurício Zahn

Introdução aos espaços de Banach

TEXTO DE MENSAGEM...

 $Dedicamos\ este\ trabalho\ a\ ...$

Prefácio

Este livro

Maurício Zahn

Conteúdo

1	l Primeiros conceitos				
	1.1	Sequências	1		
	1.2	Primeiros conceitos	1		
	1.3	Limite de sequência	3		
	1.4	Sequências monótonas e limitadas	7		
	1.5	Sequência de Cauchy	14		
	1.6	Espaços métricos	17		
	1.7	Espaços normados e de Banach	20		
Ín	${f dice}$	Remissivo	33		
\mathbf{R}	eferê	ncias bibliográficas	37		

Capítulo 1

Primeiros conceitos

1.1 Sequências

Vamos definir um tipo especial de função, chamado sequência, bem como suas principais propriedades de convergência¹. Tal definição será extremamente importante para o capítulo seguinte. Comecemos com a definição de sequência.

1.2 Primeiros conceitos

Definição 1.1 Sequência é uma função $f: \mathbb{N} \to \mathbb{R}$ cujo domínio é o conjunto $\mathbb{N} = \{1, 2, 3, ..., n, ...\}$ de todos os naturais.

Os números f(n) da imagem de uma sequência são chamadas de elementos da sequência. Podemos denotar os elementos da sequência por f(n) ou f_n .

Como o domínio de uma sequência é sempre o conjunto dos naturais, simples-

mente consideramos a expressão que a define. **Exemplo.** Se $f(n)=\frac{n}{2n+1}$, então $f(1)=\frac{1}{3},\,f(2)=\frac{2}{3},\,f(3)=\frac{3}{7},\,f(4)=\frac{4}{9}$ e assim por diante. A figura abaixo ilustra o gráfico desta sequência.

¹Para ver mais propriedades recomendamos a leitura de textos de Análise, tais como [?] ou [?].

O elementos da sequência representada acima, podem ser escritos como

$$\frac{1}{3}, \ \frac{2}{5}, \ \frac{3}{7}, \ \frac{4}{9}, ..., \frac{n}{2n+1}, ...$$

Como o domínio de toda sequência é o mesmo, as notações $\{f(n)\}$ ou (f_n) podem ser usadas para denotar uma sequência.

Obs.: Dizemos que uma sequência $a_1, a_2, ..., a_n, ...$ é igual à sequência $b_1, b_2, ..., b_n, ...$ se e somente se $a_i = b_i$ para todo *i* inteiro positivo.

Exemplos. A sequência $\left\{\frac{1}{n}\right\}$ tem como elementos $1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...$

A sequência $f(n) = \begin{cases} 1, & \text{se } n \text{ \'e impar} \\ \frac{2}{n+2}, & \text{se } n \text{ for par} \end{cases}$ tem como elementos $1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \dots$

Note que os elementos destas sequências são os mesmos, no entanto, as sequências são diferentes.

Definição 1.2 Seja (x_n) uma sequência. Tomando-se alguns índices $n_1 <$ $n_2 < n_3 < \dots$ definimos, a partir da sequência dada, uma subsequência. Notamos uma subsequência da sequência (x_n) por (x_{n_k}) .

Exemplo. Dada a sequência $x_n = (-1)^n$ temos $x_1 = x_3 = x_5 = \dots = x_{2n-1} = x_n$ $\dots = -1$ e $x_2 = x_4 = x_6 = \dots = x_{2n} = \dots = 1$, ou seja, destacamos da sequência original duas subsequências: a subsequência (x_{2n-1}) dos termos ímpares e a subsequência (x_{2n}) dos termos pares.

1.3 Limite de sequência

Como sequências são funções, podemos indagar sobre os seus limites. Porém, como a sequência (a_n) está definida para valores inteiros de n, o único limite que faz sentido é o de a_n quando $n \to +\infty$.

Note que os elementos da sequência $\left\{\frac{n}{2n+1}\right\}$ estão cada vez mais próximos de $\frac{1}{2}$, embora nenhum elemento da sequência assuma o valor $\frac{1}{2}$. Intuitivamente vemos que podemos obter um elemento da sequência tão próximo de $\frac{1}{2}$ quanto desejarmos, bastando tomar o número de elementos suficientemente grande. Expressando de outra forma, temos que $\left|\frac{n}{2n+1} - \frac{1}{2}\right|$ pode se tornar menor que qualquer número positivo ε , contanto que n seja suficientemente grande. Por isso, dizemos que o limite da sequência $\frac{n}{2n+1}$ é $\frac{1}{2}$.

Definição 1.3 A sequência $\{a_n\}$ tem um limite L se para qualquer $\varepsilon > 0$ existir um número N > 0, tal que se n for um inteiro e se $n \geq N$, então $|a_n - L| < \varepsilon$ e escrevemos

$$\lim_{n+\infty} a_n = L$$

Em símbolos:

$$\lim_{n\to +\infty} a_n = L \Leftrightarrow \forall \varepsilon > 0, \exists N > 0 \ \text{tal que} \ \forall n \geq N \Rightarrow |a_n - L| < \varepsilon.$$

Em algumas ocasiões vamos utilizar a notação $x_n \to L$, que significa $\lim_{n \to +\infty} x_n = L$.

Vejamos um exemplo de aplicação.

Exemplo. Prove que a sequência $\left\{\frac{n}{2n+1}\right\}$ tem limite $\frac{1}{2}$.

Solução. Precisamos mostrar que para todo $\epsilon>0,\ \exists N>0,$ tal que para n inteiro

$$n > N \Rightarrow \left| \frac{n}{2n+1} - \frac{1}{2} \right| < \epsilon$$
 (1.1)

Note que

$$\left| \frac{n}{2n+1} - \frac{1}{2} \right| < \epsilon \quad \Rightarrow \quad \left| \frac{2n-2n-1}{2(2n+1)} \right| < \epsilon$$

$$\Rightarrow \quad \left| \frac{-1}{4n+2} \right| < \epsilon$$

$$\Rightarrow \quad \frac{1}{4n+2} < \epsilon$$

$$\Rightarrow \quad n > \frac{1-2\epsilon}{4\epsilon}$$

Para que a afirmação 1.1 seja válida, tomamos $N = \left\lfloor \frac{1-2\epsilon}{4\epsilon} \right\rfloor + 1$, onde $\left\lfloor \right\rfloor$ denota a parte inteira da fração no seu interior. Então, $\forall n \geq N$, temos $\left\lfloor \frac{n}{2n+1} - \frac{1}{2} \right\rfloor < \epsilon$.

Note que no caso de $\epsilon=\frac{1}{16},$ então $N=\lfloor\frac{7}{2}\rfloor+1=4.$ Assim, se tomarmos n=5, teremos

$$\left| \frac{n}{2n+1} - \frac{1}{2} \right| = \left| \frac{5}{11} - \frac{1}{2} \right| = \frac{9}{22} < \frac{1}{16}$$

O estabelecido prova que a sequência tem limite.

As propriedades de limites de sequências são análogas às propriedades de limites de funções, estudadas no capítulo 2. Vamos enunciá-las aqui, mas faremos a demonstração de algumas apenas, visto que são poucas as adequações a serem feitas.

Proposição 1.4 O limite de uma sequência, se existir, é único.

Demonstração. Por absurdo, seja (x_n) sequência tal que $\lim_{n\to\infty} x_n = a$ e $\lim_{n\to\infty} x_n = b$, com $a\neq b$.

Assim, tome $\varepsilon = \frac{|b-a|}{2} > 0$.

Disso, de $\lim_{n\to\infty} x_n = a$, segue que $\exists n_0 \in \mathbb{N}$ tal que, $\forall n \geq n_0 \Rightarrow |x_n - a| < \frac{\varepsilon}{2}$. Ainda, se $\lim_{n\to\infty} x_n = b$, segue que $\exists n_1 \in \mathbb{N}$ tal que, $\forall n \geq n_1 \Rightarrow |x_n - b| < \frac{\varepsilon}{2}$. Tomando $\widetilde{n} = \max\{n_0, n_1\}$, segue que valem $|x_n - a| < \frac{\varepsilon}{2}$ e $|x_n - b| < \frac{\varepsilon}{2}$. Disso, $\forall n \geq \widetilde{n}$, temos

$$|b-a| = |b-x_n + x_n - a| \le |x_n - b| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon = \frac{|b-a|}{2}$$

$$\Rightarrow 1 < \frac{1}{2}. \quad \text{(Absurdo!)}$$

Portanto, a = b.

Proposição 1.5 (Propriedades aritméticas dos limites de sequências) Sejam (x_n) $e(y_n)$ duas sequências tais que $\lim_{n\to\infty} x_n = a$ $e\lim_{n\to\infty} y_n = b$, então

(i)
$$\lim_{n \to \infty} (x_n + y_n) = a + b;$$

(ii)
$$\lim_{n \to \infty} (x_n - y_n) = a - b;$$

(iii)
$$\lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b;$$

(iv)
$$\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{a}{b}$$
, desde que $b\neq 0$.

Demonstração de (i). Dado $\varepsilon > 0$.

Como $\lim_{n\to\infty} x_n = a$, segue que $\exists n_0 \in \mathbb{N}$ tal que, $\forall n \geq n_0 \Rightarrow |x_n-1| < \frac{\varepsilon}{2}$. Como $\lim_{n\to\infty} y_n = b$, segue que $\exists n_1 \in \mathbb{N}$ tal que, $\forall n \geq n_1 \Rightarrow |y_n-b| < \frac{\varepsilon}{2}$. Tomando $\tilde{n} = \max\{n_0, n_1\} > 0$ temos que, $\forall n \geq \tilde{n}$ valem as duas desigualdades acima e daí

$$|(x_n - y_n) - (a+b)| = |x_n - a + y_n - b| \le |x_n - a| + |y_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

ou seja, para $\varepsilon > 0$ determinamos $\tilde{n} \in \mathbb{N}$ tal que,

$$\forall n \geq \tilde{n} \Rightarrow |(x_n + y_n) - (a + b)| < \varepsilon,$$

isto é, vale (i).

Definição 1.6 Se a sequência $\{a_n\}$ tiver um limite, dizemos que ela é convergente, e a_n converge para o limite. Se a sequência não for convergente, ela é dita divergente.

Exemplo. Determine se a sequência $\left\{n \operatorname{sen} \frac{\pi}{n}\right\}$ é convergente.

Solução. Como sen $\frac{\pi}{n}$ e $\frac{1}{n}$ tendem a zero quando n tende a infinito, lembrando do primeiro limite notável, temos

$$\lim_{n\to +\infty} n \operatorname{sen} \frac{\pi}{n} = \lim_{n\to +\infty} \frac{\operatorname{sen} \frac{\pi}{n}}{\frac{1}{n}} = \lim_{n\to +\infty} \frac{\pi \operatorname{sen} \frac{\pi}{n}}{\frac{\pi}{n}} = \pi.$$

Logo, $\lim_{n \to +\infty} f(n) = \pi$, se n for inteiro positivo. Dessa forma, a sequência dada é convergente e converge para π .

Exercícios

1. Prove que cada limite a seguir existe, encontrando um $\varepsilon > 0$ e um $n_0 \in \mathbb{N}$ adequados.

(a)
$$\lim_{n \to +\infty} \frac{2n-1}{3-5n} = -\frac{2}{5}$$
 (b) $\lim_{n \to +\infty} \frac{n}{3n-1} = \frac{1}{3}$ (c) $\lim_{n \to +\infty} \sqrt{n+1} - \sqrt{n} = 0$ (d) $\lim_{n \to +\infty} \frac{2-4n}{4n-7} = -1$

(b)
$$\lim_{n \to +\infty} \frac{n}{3n-1} = \frac{1}{3}$$

(c)
$$\lim_{n \to +\infty} \sqrt{n+1} - \sqrt{n} = 0$$

(d)
$$\lim_{n \to +\infty} \frac{2 - 4n}{4n - 7} = -1$$

2. Prove o seguinte teorema, versão para sequências do Teorema do Sanduíche:

Teorema. Sejam (x_n) , (y_n) e (z_n) sequências tais que $x_n \leq y_n \leq z_n$, $\forall n \in \mathbb{N}. \ Se \lim_{n \to +\infty} x_n = \lim_{n \to +\infty} z_n = a, \ ent \tilde{a}o \lim_{n \to +\infty} y_n = a.$

3. Utilize o teorema anterior para provar que

(a)
$$\frac{\cos n}{n} \to 0$$

(b)
$$\frac{n!}{n^n} \to 0$$

- 4. Sendo $a,b \geq 0$, mostre que $\lim_{n \to +\infty} \sqrt[n]{a^n + b^n} = \max\{a,b\}$.
- 5. Seja (a_n) uma sequência de números positivos convergindo para um número r > 0. Prove que $\sqrt[n]{a_n} \to 1$ (use o teorema do Sanduíche).

1.4 Sequências monótonas e limitadas

Definição 1.7 Dizemos que uma sequência (a_n) é

- (i) crescente, se $a_n \leq a_{n+1}$ para todo n;
- (ii) decrescente, se $a_n \ge a_{n+1}$ para todo n.

Chamamos de monótona uma sequência que seja crescente ou decrescente. Se $a_n < a_{n+1}$ a sequência é estritamente crescente e se $a_n > a_{n+1}$ a sequência é estritamente decrescente.

Exemplo. Determine se a sequência $\left\{\frac{n}{2n+1}\right\}$ é crescente, decrescente ou não monótona.

Solução. Sabemos que os quatro primeiros elementos desta sequência são $\frac{1}{3}$, $\frac{2}{5}$, $\frac{3}{7}$, $\frac{4}{9}$,... o que nos leva a considerar que a sequência pode ser crescente. Assim, temos:

$$a_n \le a_{n+1}$$
 \Rightarrow $\frac{n}{2n+1} \le \frac{n+1}{2(n+1)+1}$
$$\frac{n}{2n+1} \le \frac{n+1}{2n+3}$$

$$n(2n+3) \le (n+1)(2n+1)$$

$$2n^2 + 3n \le 2n^2 + 3n + 1$$

Como a desigualdade acima é válida para qualquer $n \in \mathbb{Z}^*$, concluímos que a sequência é crescente.

Definição 1.8 O número C é chamado de limitante inferior da sequência $\{a_n\}$ se $C \leq a_n$ para todo n inteiro positivo, e o número D é chamado de limitante superior da sequência $\{a_n\}$ se $a_n \leq D$ para todo n inteiro positivo.

Exemplo. Considerando a sequência $\left\{\frac{n}{2n+1}\right\}$, temos que 0 é um limitante inferior da sequência e $\frac{1}{3}$ é um limitante superior da sequência.

Exemplo. Para a sequência $\left\{\frac{1}{n}\right\}$ cujos elementos são $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots$, podemos considerar 1 um limitante superior, assim como 30 também é um limitante superior. 0 é um limitante inferior.

Definição 1.9 Dizemos que uma sequência $\{a_n\}$ é limitada se, e somente se, ela tiver limitantes superior e inferior.

Ou seja, $\{a_n\}$ é dita limitada se, e somente se, $\exists a,b \in \mathbb{R}$ tais que $a \leq a_n \leq b$, $\forall n \in \mathbb{N}$.

Por exemplo a sequência $\left\{\frac{1}{n}\right\}$ tem por limitante inferior o 0, visto que $\forall n \in \mathbb{N}$, $\frac{1}{n} > 0$ e tem o 1 como um limitante superior pois $\frac{1}{n} < 1, \forall n \in \mathbb{N}$. Portanto, tal sequência é limitada.

Observamos que o fato de uma sequência ser limitada não implica que ela seja convergente. Por exemplo, a sequência dada por $a_n = (-1)^n$ é limitada, visto que seus termos são sempre -1 e 1, os ímpares e os pares, respectivamente. Portanto, $\not \equiv \lim_{n \to +\infty} a_n$. A convergência não ocorreu neste caso pois os seus termos oscilam nos seus valores. A garantia da convergência de uma sequência limitada é adicionar a hipótese da sequência, além de limitada, ser também monótona. Isto é provado no teorema que segue.

Teorema 1.10 Toda sequência monótona e limitada é convergente.

Demonstração. Seja $\{a_n\}$ uma sequência monótona e limitada. Sem perda de generalidade, suponhamos que tal sequência seja crescente, i.e., $a_n \leq a_{n+1}$, $\forall n \in \mathbb{N}$. Como $\{a_n\}$ é limitada (superiormente), por hipótese, segue que $\exists L \in \mathbb{R}$ tal que $L = \sup_{n \in \mathbb{N}} a_n$. Portanto, $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tal que $L - \varepsilon < a_{n_0} \leq L$. Afirmamos que $\lim_{n \to +\infty} a_n = L$.

De fato, sendo $\{a_n\}$ crescente temos que $\forall n \geq n_0 \Rightarrow a_n \geq a_{n_0}$, e daí, juntando

esta informação com as desigualdades montadas acima, temos

$$L - \varepsilon < a_{n_0} \le a_n < \sup_{n \in \mathbb{N}} a_n = L < L + \varepsilon,$$

ou seja, $|a_n - L| < \varepsilon$, isto $\forall \varepsilon > 0$.

Portanto, mostramos que

$$\forall \varepsilon > 0 \,\exists n_0 > 0 \, \text{ tal que } \forall n \geq n_0 \Rightarrow |a_n - L| < \varepsilon,$$

ou seja, $\lim_{n \to +\infty} a_n = L$. cqd.

Exemplo. Prove que a sequência $\left\{\frac{2^n}{n!}\right\}$ é convergente.

Solução. Os primeiros elementos desta sequência são

$$2, 2, \frac{4}{3}, \frac{2}{3}, \dots, \frac{2^n}{n!}, \frac{2^{n+1}}{(n+1)!}, \dots$$

Note que, $a_1 = a_2 > a_3 > a_4 > ...$, logo a sequência parece ser decrescente. De fato, observe que

$$a_n \ge a_{n+1}$$
 \Rightarrow $\frac{2^n}{n!} \ge \frac{2^{n+1}}{(n+1)!}$ $2^{n+1} \cdot n! \le 2^n \cdot (n+1)!$ $2^n \cdot 2^1 \cdot n! \le 2^n \cdot (n+1) \cdot n!$ $2 \le (n+1)$

Como a desigualdade acima é válida para qualquer $n \in \mathbb{N}$, concluímos que a sequência é decrescente, logo é monótona.

Ainda, a sequência dada é limitada inferiormente por $a_1 = 2$, uma vez que a ela é decrescente; e é limitada superiormente por 2, visto que

$$a_n = \frac{2^n}{n!} = \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{4} \cdot \dots \cdot \frac{2}{n} < 2 \cdot \frac{2}{2} \cdot 1 = 2.$$

Assim, como a sequência é monótona e limitada, segue que ela é convergente.

Exercícios

1. Determine se a sequência dada é crescente, decrescente ou não monótona.

(a)
$$\left\{\frac{2n-1}{4n-1}\right\}$$
 (b) $\left\{\frac{1-2n^2}{n^2}\right\}$ (c) $\left\{\frac{n^3-1}{n}\right\}$ (d) $\left\{\frac{2^n}{1+2^n}\right\}$ (e) $\left\{\frac{n!}{3^n}\right\}$ (f) $\left\{\frac{n}{2^n}\right\}$ (g) $\left\{\frac{n!}{1\cdot 3\cdot 5\cdot ...\cdot (2n-1)}\right\}$

2. Determine se a sequência dada é limitada.

(a)
$$\left\{ \frac{n^3 + 3}{n+1} \right\}$$
 (b) $\left\{ 3 - (-1)^{n-1} \right\}$

3. Prove que cada sequência a seguir é convergente.

(a)
$$\left\{ \frac{3n-1}{4n+5} \right\}$$
 (b) $\left\{ \frac{n}{3^{n+1}} \right\}$ (c) $\left\{ \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} \right\}$

Teorema 1.11 (Teorema dos intervalos fechados encaixados) Sejam $I_n = [a_n, b_n]$, $n \in \mathbb{N}$ uma sequência de intervalos fechados tais que $I_{n+1} \subset I_n$, $\forall n \in \mathbb{N}$. Então,

$$\exists c \in \mathbb{R} \ tal \ que \ c \in I_n, \ \forall n, \ ou \ seja, \ c \in \bigcup_{n=1}^{\infty} I_n.$$

Demonstração. Seja $I_n = [a_n, b_n]$ uma sequência de intervalos fechados e encaixados, ou seja, $I_{n+1} \subset I_n$, $\forall n$.

Seja $X = \{a_n : n \in \mathbb{N}\}.$

Observe que $X \neq \emptyset$ pois $a_1 \in X$.

Afirmamos que X é limitado superiormente por b_1 . De fato, seja $n \in \mathbb{N}$. Como $[a_n, b_n] \subset [a_1, b_1]$, segue que $a_n \leq b_n \leq b_1$.

Portanto, sendo X limitado superiormente, temos que $\exists c \in \mathbb{R}$ tal que $c = \sup X$.

Afirmamos também que $c \in [a_n, b_n], \forall n$. De fato, sendo $c = \sup X$, temos que c é cota superior do conjunto X e então

$$a_n \le c, \forall n.$$
 (1.2)

Afirmamos também que $\forall n,\ b_n$ é uma cota superior de X. Realmente, seja $n \in \mathbb{N}$. Assim, $\forall m \geq n$ temos $[a_m,b_m] \subset [a_n,b_n]$. Logo $a_m \leq b_m \leq b_n$, ou seja, $a_m \leq b_n,\ \forall m \geq n$.

Mas $a_1 \leq a_2 \leq ... \leq a_m \leq b_n$, donde segue que $a_m \leq b_n$, $\forall m$.

Logo, b_n é uma cota superior de X e daí temos que $b_n \ge \sup X = c$, $\forall n$.

Portanto,

$$c \le b_n, \, \forall n.$$
 (1.3)

Juntando (1.2) e (1.3) segue o resultado.

A seguir, apresentamos um importante teorema sobre sequências.

Teorema 1.12 (Teorema de Bolzano-Weierstrass) Toda sequência limitada possui subsequência convergente.

Demonstração. Seja (x_n) uma sequência limitada. Então $\exists a_1, b_1 \in \mathbb{R}, a_1$ cota inferior e a_2 cota superior de (x_n) .

Seja $I_1 = [a_1, b_1]$. Temos que $x_n \in I_1, \forall n \in \mathbb{N}$.

Dividimos I_1 em dois sub-intervalos pelo ponto médio. Escolhemos $I_2 = [a_2, b_2]$ uma das metades tal que $x_n \in I_2$, para uma infinidade de índices n. Após isto, dividimos I_2 em dois sub-intervalos ao meio. Tomamos $I_3 = [a_3, b_3]$ uma das metades tal que $x_n \in I_3$ para uma infinidade de índices n. Seguimos estas divisões recursivamente, sempre tomando-se aquele subintervalo que contém uma infinidade de índices n (se em alguma etapa de divisão em dois sub-intervalos ambos possuírem uma infinidade de termos de (x_n) , então podemos tomar qualquer um deles para fazer a nova divisão).

Obtemos desta forma uma sequência de intervalos fechados encaixados I_1, I_2, \dots onde

$$... \subset I_k \subset I_{k-1} \subset ... \subset I_2 \subset I_1$$

tais que

$$[a_{k+1}, b_{k+1}] = I_{k+1} \subset I_k = [a_k, b_k].$$

Sendo ℓ_{I_j} é o comprimento do j-ésimo subintervalo temos

$$\ell_{I_{k+1}} = \frac{1}{2}\ell_{I_k} \Leftrightarrow b_{k+1} - a_{k+1} = \frac{b_k - a_k}{2}, x_n \in I_k,$$

para uma quantidade infinita de índices n.

Pelo Teorema dos intervalos fechados encaixados temos que $\exists c \in \mathbb{R}$ tal que $c \in I_k$, $\forall k$.

Vamos mostrar que existe uma subsequência de (x_n) que tende para o número real c. Para isto, precisamos escolher índices $n_1 < n_2 > n_3 < \ldots < n_j < n_{j+1} < \ldots$, com $x_{n_j} \to c$.

Note que

- $a_n \in I_1, \forall n \in \mathbb{N}$. Então, escolhemos qualquer n_1 . Seja $n_1=1$. Temos então que $a_{n_1}=a_1 \in I_1$.
- $a_n \in I_2$, para uma infinidade de índices n. Escolhemos $n_2 \in \mathbb{N}$, $n_2 > n_1$ tal que $a_{n_2} \in I_2$.
- $a_n \in I_3$, para uma infinidade de índices n. Escolhemos $n_3 \in \mathbb{N}$, $n_3 > n_2$ tal que $a_{n_3} \in I_3$.

:

Seguindo estes raciocínios, obtemos $n_1 < n_2 < n_3 < ... < n_k < n_{k+1} < ...$ de tal forma que $x_{n_k} \in I_k, \forall k$. Temos então uma subsequência (x_{n_k}) de (x_n) . Note ainda que $x_{n_k} \in I_k$ e $c \in I_k$, isto implica que

$$|c - x_{n_k}| \le \ell_{I_k} = b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \dots = \frac{b_1 - a_1}{2^{k-1}} \to 0$$

quando $k \to +\infty$.

Portanto, (x_{n_k}) é uma subsequência de (x_n) tal que $x_{n_k} \to c$.

Uma aplicação importante do teorema acima é ajudar na demonstração do teorema do valor extremo, cuja demonstração havia sido omitida por faltar o estudo de sequências que agora já fizemos:

Teorema do valor extremo. Seja $f:[a,b] \to \mathbb{R}$ contínua no intervalo fechado [a,b]. Então f possui um valor máximo e um valor mínimo em [a,b].

Demonstração. Mostraremos apenas que f assume valor máximo em [a, b], visto que a prova da outra parte é feita analogamente.

Seja $f:[a,b]\to\mathbb{R}$ contínua. Mostremos primeiramente que f é limitada superiormente. De fato, se por absurdo f não for limitada superiormente, então, $\forall n\in\mathbb{N},\ \exists x_n\in[a,b]$ tal que $f(x_n)>n$.

Como $x_n \in [a,b], \forall n$, temos que a sequência (x_n) é limitada. Então, pelo teorema de Bolzano-Weirestrass, existe uma subsequência x_{n_k} convergente, digamos $x_{n_k} \to c$.

Portanto,

$$a \le x_{n_k} \le b, \forall n_k \Rightarrow a \le c \le b \Rightarrow c \in [a, b].$$

Assim, temos que

$$x_{n_k} \to c \in [a, b]$$
 e f é contínua em c ,

donde segue, por continuidade, que

$$f(x_{n_k}) \to c. \tag{1.4}$$

Mas $f(x_n) \to +\infty$, pois $f(x_n) > n$, $\forall n$. Em particular, $f(x_{n_k}) > n_k$, donde segue que $f(x_{n_k}) \to +\infty$, o que entra em contradição com (1.4). Absurdo! Logo, f é limitada superiormente.

Por fim, mostremos que f assume um valor máximo em [a,b]. Como mostramos acima que f é limitada superiormente, segue que existe um supremo.

Seja então
$$M = \sup_{x \in [a,b]} f(x)$$
.

Precisamos mostrar que $\exists x_0 \in [a, b]$ tal que $f(x_0) = M$.

Pela definição de supremo temos que, $\forall n \in \mathbb{N}, \exists x_n \in [a,b]$ tal que $M-\frac{1}{n} < f(x_n) \leq M$. Então, pelo Teorema do Sanduíche (teorema ??) temos que $f(x_n) \to M$.

Como $x_n \in [a, b]$ temos que a sequência (x_n) é limitada. Logo, pelo Teorema de Bolzano-Weirestrass, existe uma subsequência (x_{n_k}) convergente para um limite ℓ , i.e.,

$$x_{n_k} \to \ell, \ \ell \in [a, b].$$

Por continuidade de f segue que $f(x_{n_k}) \to f(\ell)$.

Mas
$$f(x_n) \to M$$
.

Portanto, pela unicidade do limite segue que $f(\ell) = M$, ou seja, f assume um valor máximo em [a, b].

1.5 Sequência de Cauchy

Até o presente momento de nosso estudo de sequências vimos por exemplo, que para provar que uma sequência é convergente precisávamos, a priori, conhecer o candidato a limite. Porém, nem sempre isso é possível. Nesta seção vamos apresentar um outro critério mais interessante para mostrar se uma sequência é convergente sem precisar saber para quanto ela converge. Para isto vamos definir sequência de Cauchy.

Definição 1.13 Dizemos que uma sequência (x_n) é de Cauchy se, para qualquer $\varepsilon > 0$ dado, existir um índice $n_0 \in \mathbb{N}$ tal que, para quaisquer índices $m, n \geq n_0$ implique em $|x_m - x_n| < \varepsilon$.

A idéia geométrica desta definição é bastante simples: uma sequência (x_n) chama-se de Cauchy se, dado um raio $\varepsilon > 0$, existir um índice n_0 tal que a distância entre dois termos quaisquer da sequência, a partir do índice n_0 , estarão próximos um do outro a menos de ε .

Observe na ilustração que, fixado um raio $\varepsilon > 0$, temos que a distância entre x_1 e x_2 é maior do que este ε , as distâncias entre x_1 e x_3 e entre x_2 e x_3 também são maiores do que ε , e assim por diante. Porém, a partir de um índice n_0 dois termos quaisquer da referida sequência equidistam entre si a menos de ε .

A proposição a seguir mostra um importante resultado.

Proposição 1.14 Se uma sequência (x_n) for convergente, então ela é de Cauchy.

Demonstração. Seja (x_n) uma sequência convergente e seja a o seu limite. Assim, dado $\varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tal que, $\forall n \geq n_0 \Rightarrow |x_n - a| < \frac{\varepsilon}{2}$. Desta forma, tomando $m, n \geq n_0$ temos

$$|x_m - a| < \frac{\varepsilon}{2}$$
 e $|x_n - a| < \frac{\varepsilon}{2}$.

Avaliando a distância entre x_m e x_n , temos

$$|x_m - x_n| = |x_m - a + a - x_n| \le |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Ou seja, dado $\varepsilon > 0$, mostramos que $\exists n_0 \in \mathbb{N}$ tal que, $\forall m, n \geq n_0 \Rightarrow |x_m - x_n| < \varepsilon$, ou seja, (x_n) é uma sequência de Cauchy.

Queremos provar que a recíproca da proposição acima também é verdadeira. Porém, precisamos ver alguns resultados preliminares que chamaremos de lemas.

Lema 1.15 Se (x_n) é uma sequência de Cauchy, então ela é limitada.

Demonstração. Seja (x_n) uma sequência de Cauchy e tome $\varepsilon=1$. Então, $\exists n_0 \in \mathbb{N}$ tal que, $\forall m,n \geq n_0 \Rightarrow |x_m-x_n| < 1$.

Em particular, fixando $n = n_0$ (o que é válido), segue que $\forall m \geq n_0$ temos

$$|x_m - x_{n_0}| < 1 \Leftrightarrow -1 \le x_m - x_{n_0} < 1 \Leftrightarrow x_{n_0} - 1 < x_m < x_{n_0} + 1.$$

Portanto, $x_m \in (x_{n_0} - 1, x_{n_0} + 1), \forall m \ge n_0$, ou seja, a partir do índice n_0 todos os termos da sequência (x_n) ficam no intervalo $(x_{n_0} - 1, x_{n_0} + 1)$.

Resta observar a quantidade finita de termos que ficaram fora deste intervalo, ou seja, os termos $x_1, x_2, ..., x_{n_0-1}$ e os extremos do intervalo acima $x_{n_0} - 1$ e $x_{n_0} + 1$. Para isto, defina o conjunto

$$X = \{x_1, x_2, ..., x_{n_0-1}, x_{n_0} - 1, x_{n_0} + 1\}.$$

Como X é um conjunto finito podemos destacar o menor e o maior elemento. Assim, tomamos $a = \min X$ e $b = \max X$. Desta forma, conseguimos encontrar um intervalo [a,b] tal que $x_n \in [a,b], \forall n \in \mathbb{N}$, ou seja, a sequência (x_n) de Cauchy é limitada.

Proposição 1.16 Se (x_n) é uma sequência de Cauchy, então ela é convergente.

Demontração. Seja (x_n) uma sequência de Cauchy. Pelo lema anterior segue que (x_n) é limitada. Logo, pelo Teorema de Bolzano-Weierstrass, existe uma subsequência x_{n_k} convergente, digamos, $x_{n_k} \to a$.

Afirmamos que $\lim_{n\to+\infty} x_n = a$.

De fato, primeiramente, sendo (x_n) de Cauchy, temos que dado $\varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tal que $\forall m, n \geq n_0 \Rightarrow |x_m - x_n| < \frac{\varepsilon}{2}$.

Ainda, como $x_{n_k} \to a$, temos que, para o mesmo $\varepsilon > 0$, $\exists n_1 \in \mathbb{N}$ tal que, $\forall n_k \geq n_1 \Rightarrow |x_{n_k} - a| < \frac{\varepsilon}{2}$.

Tome $\tilde{n} = \max\{n_0, n_1\}$. Então, $\forall n \geq \tilde{n}$, escolhendo um índice $n_k > \tilde{n}$, temos

$$|x_n - a| = |(x_n - x_{n_k}) - (x_{n_k} - a)| \le |x_n - x_{n_k}| + |x_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

o que prova que $\lim_{n\to+\infty} x_n = a$.

•

1.6 Espaços métricos

Definição 1.17 Seja M um conjunto não vazio. Definimos uma $m\'{e}trica~d$ em M como sendo uma aplicação $d: M \times M \to \mathbb{R}$ que goza das seguintes propriedades: para quaisquer $x, y, z \in M$, valem

- (a) $d(x,y) \ge 0$ $e d(x,y) = 0 \Leftrightarrow x = y$;
- (b) d(x, y) = d(y, x);
- (c) $d(x,z) \le d(x,y) + d(y,z)$.

A propriedade (a) chama-se positividade, a propriedade (b) chama-se simetria e a propriedade (c) chama-se desigualdade triangular.

Um conjunto não vazio M munido de uma métrica d é denotado por (M,d) e recebe o nome de *espaço métrico*. Quando não houver confusão, podemos denotar um espaço métrico (M,d) simplesmente por M, isto quando a métrica d estiver subetendida.

De um espaço métrico (M,d) podemos obter um subespaço (N,\tilde{d}) , onde $N\subset M$ e \tilde{d} é a métrica d restrita a $N\times N$, ou seja, $\tilde{d}=d|_{N\times N}$, e \tilde{d} chama-se uma $m\'{e}trica$ induzida em N por d.

A seguir, apresentamos alguns exemplos de espaços métricos.

Exemplo 1.18 A reta real \mathbb{R} , com a métrica $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida por

$$d(x,y) = |x - y|.$$

De fato, (\mathbb{R}, d) é um espaço métrico pois cumpre as três propriedades apresentadas na Definição 1.17: para todos $x, y, z \in \mathbb{R}$, valem

(a)
$$d(x,y) = |x-y| \ge 0$$
 e $d(x,y) = 0 \Leftrightarrow |x-y| = 0 \Leftrightarrow x = 0$;

(b)
$$d(x,y) = |x - y| = |y - x| = d(y,x);$$

(c)
$$d(x,y) = |x-y| = |x-z+z-y| \le |x-z| + |y-z| = d(x,z) + d(z,y)$$
.

Exemplo 1.19 Espaço euclidiano \mathbb{R}^2 munido da métrica $d:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ dada por

$$d(x,y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2},$$

onde $x=(x_1,x_2)$ e $y=(y_1,y_2)$, é um espaço métrico.

De fato, dados quaisquer $x, y, z \in \mathbb{R}^2$, onde $x = (x_1, x_2), y = (y_1, y_2)$ e $z = (z_1, z_2)$, temos

(a)
$$d(x,y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \ge 0$$
, e

$$d(x,y) = 0 \Leftrightarrow \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = 0 \Leftrightarrow (x_1 - x_2)^2 + (y_1 - y_2)^2 = 0$$

$$\Leftrightarrow x_1 = x_2 \text{ e } y_1 = y_2 \Leftrightarrow x = y.$$

(b)
$$d(x,y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = d(y,x).$$

(c) A desigualdade triangular $d(x,y) \leq d(x,z) + d(z,y)$ será provada apenas na Observação 1.31 pois precisaremos desenvolver algumas técnicas auxiliares até lá.

A métrica deste exemplo é chamada de *métrica euclidiana*.

Exemplo 1.20 Seja M um conjunto não vazio, defina a aplicação $d: M \times M \to \mathbb{R}$ por

$$d(x,y) = \begin{cases} 1 & \text{se } x \neq y \\ 0 & \text{se } x = y \end{cases}$$

É fácil ver que d define uma métrica em M, chamada de métrica zero-um.

Podemos adaptar a Definição 1.13 de sequência de Cauchy para espaços métricos da seguinte forma:

Definição 1.21 Seja $(x_n)_{n=1}^{\infty}$ uma sequência definida em um espaço métrico (M,d). Dizemos que $(x_n)_n$ é uma sequência de Cauchy em M se, para todo $\varepsilon > 0$, existir um índice $n_0 \in \mathbb{N}$, tal que, para todos $m, n > n_0$, implicar em $d(x_m, x_n) < \varepsilon$.

Todos os resultados referentes a sequências de Cauchy vistos anteriormente podem ser também facilmente adaptados para espaços métricos.

Vamos considerar um exemplo básico, mas importante. Considere M=(0,1] e $d: M\times M\to \mathbb{R}$ a métrica definida por d(x,y)=|x-y|. Considere a sequência $(x_n)_{n=1}^\infty$ definida por $x_n=\frac{1}{n}$. Observe que $(x_n)_n\subset M$.

É fácil ver que esta sequência é de Cauchy. De fato, dado $0 < \varepsilon < 1$, escolha $n_0 \in \mathbb{N}$ tal que $n_0 > \frac{1}{\varepsilon} > 0$ (por exemplo, podemos tomar como n_0 a parte inteira da fração $\frac{1}{\varepsilon} + 1$).

Assim, $\forall m,n\geq n_0,$ e sem perda de generalidade podemos assumir que $m>n\geq n_0,$ temos que

$$d(x_m, x_n) = |x_m - x_n| = \left| \frac{1}{m} - \frac{1}{n} \right| = \left| \frac{n - m}{mn} \right| = \frac{m - n}{mn} < \frac{m}{mn} = \frac{1}{n},$$

e como

$$n \ge n_0 \Rightarrow \frac{1}{n} \le \frac{1}{n_0}$$
 e $n_0 > \frac{1}{\varepsilon} \Rightarrow \frac{1}{n_0} < \varepsilon$,

segue que

$$d(x_m, x_n) < \frac{1}{n} \le \frac{1}{n_0} < \varepsilon.$$

Logo, $(x_n)_n$ é de Cauchy em M = (0,1].

No entanto, observe que $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{1}{n} = 0$, mas $0 \notin M = (0,1]$. Ou seja, temos que (x_n) é uma sequência de Cauchy em M tal que o seu limite converge para um valor que não pertence a M. Em outras palavras, concluímos que a sequência (x_n) dada não converge em M (embora convirja para um valor, mas tal valor não pertence ao espaço métrico M).

No entanto, se o conjunto M incluísse o zero, como por exemplo, se M = [0,1], o espaço métrico (M,d) com a mesma métrica dada acima seria tal que $x_n = \frac{1}{n}$, de Cauchy, fosse convergente em M.

Isso motiva a noção de completude de um espaço métrico M. Ou seja, temos a importante definição abaixo.

Definição 1.22 Dizemos que um espaço métrico (M,d) é completo se toda sequência de Cauchy em M for convergente (em M), i.e., se (x_n) é de Cauchy com $x_n \to a$, então $a \in M$.

1.7 Espaços normados e de Banach

Definição 1.23 Chama-se *norma* de um espaço vetorial X uma função $||\cdot||: X \to [0, +\infty)$ tal que, para todos $x, y \in X$ e para todo escalar λ , cumprirem as propriedades:

- (a) $||x|| \ge 0$ e $||x|| = 0 \Leftrightarrow x = 0$;
- (b) $||\lambda x|| = |\lambda| \cdot ||x||$;
- (c) $||x+y|| \le ||x|| + ||y||$. (designaldade triangular)

O espaço vetorial X munido da norma $||\cdot||$, denotado por $(X,||\cdot||)$, é chamado de *espaço vetorial normado*. Quando a norma usada em X fica perfeitamente clara e subtendida, podemos denotar simplesmente o espaço vetorial normado $(X,||\cdot||)$ por X.

Podemos induzir uma métrica de um espaço normado X a partir da aplicação d(x,y) = ||x-y||. Assim, temos que todo espaço normado é também métrico.

De fato, é fácil verificar as propriedades de métrica para a métrica induzida pela norma acima. No entanto, faremos apenas a prova da desigualdade triangular da Definição 1.17 de métrica, usando a desigualdade triangular da Definição 1.23 de norma:

$$d(x,y) = ||x - y|| = ||x - z + z - y|| \le ||x - z|| + ||z - y|| = d(x,z) + d(z,y).$$

Essa métrica induzida pela norma será muito importante para definirmos espaço de Banach mais adiante.

No que segue, vamos trabalhar com tipos especiais de espaços normados que definiremos e provaremos serem realmete normados.

Definição 1.24 Seja $1 \le p < \infty$ um número real fixado. Definimos o *espaço* ℓ_p o conjunto de todas as sequências $x = (x_n)_n = (x_1, x_2, x_3, ...)$ tal que

$$\sum_{i=1}^{\infty} |x_i|^p < \infty.$$

Por exemplo, considere o elemento $e_i = (0, 0, ..., 0, 1, 0, ...)$ a sequência infinita que assume o valor 1 na posição i e zero em todas as demais. Temos que para qualquer $p \in [1, +\infty)$, segue que $e_i \in \ell_p$, pois

$$\sum_{i=1}^{\infty} |e_i|^p = 1 < \infty.$$

Vejamos um outro exemplo mais interessante. Considere $x=(x_n)_n$, onde $x_n=\frac{1}{n}$. Ou seja, estamos dizendo que $x=(1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\ldots)$. Vamos verificar se tal x pertence a algum conjunto ℓ_p . Observe que

$$\sum_{n=1}^{\infty} |x_n|^p = \sum_{n=1}^{\infty} \left| \frac{1}{n} \right|^p = \sum_{n=1}^{\infty} \frac{1}{n^p}.$$

Tal série é conhecida como p-série, e do estudo de séries temos que a mesma converge se p > 1 e diverge se $p \le 1$.

Portanto, concluímos que $x=(1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\ldots)\in\ell_p$ se $p\in(1,\infty)$ e $x\not\in\ell_1.$

Definiremos em ℓ_p , $1 \le p < \infty$, a aplicação $||\cdot||_p : \ell_p \to [0, +\infty)$ dada por

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}},$$

e mostraremos que tal aplicação é uma norma em ℓ_p . Para isso, precisamos apresentar alguns resultados preliminares.

Definição 1.25 Seja p > 1 um número real. Definimos o número real q pondo

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Dessa forma, dizemos que p e q são $expoentes \ conjugados \ um \ do \ outro.$

Assim, por exemplo, o expoente conjugado de 2 é o próprio 2 pois $\frac{1}{2} + \frac{1}{2} = 1$. Já o expoente conjugado de 3 é $\frac{3}{2}$.

Lema 1.26 Para todo $a,b \ge 0$ e para todo $0 < \lambda < 1$, vale a desigualdade

$$a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b.$$

Demonstração. Observe que quando b=0 a desigualdade vale trivialmente. Suponha então que $b\neq 0$. Assim, dividindo a desigualdade procurada por b, temos que mostrá-la é equivalente a mostrar que

$$\left(\frac{a}{b}\right)^{\lambda} \le \lambda \left(\frac{a}{b}\right) + (1 - \lambda).$$

Escreva $t=\frac{a}{b}\geq 0$ e defina a função $f:[0,+\infty)\rightarrow \mathbb{R}$ por

$$f(t) = t^{\lambda} - \lambda t.$$

Vamos examinar seus pontos críticos. Para isso, estudemos o sinal da função derivada $f'(t) = \lambda t^{\lambda-1} - \lambda = \lambda (t^{\lambda-1} - 1)$.

É fácil ver que tal função derivada possui um ponto crítico quando t=1. Estudando o sinal da derivada, temos que se t>1, então $t^{\lambda-1}-1<0$, e então f é decrescente em $(1,+\infty)$, e se $0 \le t < 1$, temos que $t^{\lambda-1}-1>0$ e então f é crescente em [0,1).

Assim, concluímos que

• sendo f decrescente em $(1, +\infty)$, temos que $\forall t > 1$, implica em f(t) < f(1), ou seja,

$$t^{\lambda} - \lambda t < 1 - \lambda;$$

• sendo f crescente em [0,1), temos que $\forall 0 \leq t < 1$, implica em f(t) < f(1), ou seja,

$$t^{\lambda} - \lambda t < 1 - \lambda$$
.

Em qualquer dos casos, concluímos que

$$t^{\lambda} - \lambda t < 1 - \lambda, \ \forall t > 0, t \neq 1,$$

e para t=1 vale a igualdade. Portanto, concluímos que

$$t^{\lambda} - \lambda t \le 1 - \lambda, \ \forall t \ge 0,$$

Em particular, para $t = \frac{a}{b} > 0$, vale

$$\left(\frac{a}{b}\right)^{\lambda} - \lambda \left(\frac{a}{b}\right) \le 1 - \lambda,$$

que equivale a

$$a^{\lambda}b^{1-\lambda} < \lambda a + (1-\lambda)b.$$

Lema 1.27 (Desigualdade de Hölder) Dados $x = (x_i)_i$ e $y = (y_i)_i$ elementos quaisquer de ℓ_p , e q o expoente conjugado de p, então

$$\sum_{i=1}^{\infty} |x_i \cdot y_i| \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{\infty} |y_i|^q\right)^{\frac{1}{q}}.$$

Demonstração. Para simplificar a notação, vamos escrever

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} \ \ \mathrm{e} \ \ ||y||_q = \left(\sum_{i=1}^{\infty} |y_i|^q\right)^{\frac{1}{q}},$$

como é usual. Dessa forma, definimos os números

$$a = \left(\frac{|x_i|}{||x||_p}\right)^p, \ b = \left(\frac{|y_i|}{||y||_q}\right)^q \quad e \quad \lambda = \frac{1}{p}.$$

Logo, $1 - \lambda = 1 - \frac{1}{p} = \frac{1}{q}$, e assim, a desigualdade

$$a^{\lambda}b^{1-\lambda} < \lambda a + (1-\lambda)b$$

do Lema 1.26 fornece

$$\left[\left(\frac{|x_i|}{||x||_p} \right)^p \right]^{\frac{1}{p}} \cdot \left[\left(\frac{|y_i|}{||y||_q} \right)^q \right]^{\frac{1}{q}} \leq \frac{1}{p} \cdot \frac{|x_i|^p}{||x||_p^p} + \frac{1}{q} \cdot \frac{|y_i|^q}{||y||_q^q},$$

ou seja,

$$\frac{|x_i \cdot y_i|}{||x||_p \cdot ||y||_q} \leq \frac{1}{p} \cdot \frac{|x_i|^p}{||x||_p^p} + \frac{1}{q} \cdot \frac{|y_i|^q}{||y||_q^q}.$$

Como tal desigualdade é válida para todo índice i podemos somar até um certo índice n_0 e depois fazer n_0 tender ao infinito, obtendo

$$\sum_{i=1}^{\infty} \frac{|x_i \cdot y_i|}{||x||_p \cdot ||y||_q} \le \frac{1}{p} \cdot \frac{\sum_{i=1}^{\infty} |x_i|^p}{||x||_p^p} + \frac{1}{q} \cdot \frac{\sum_{i=1}^{\infty} |y_i|^q}{||y||_q^q},$$

ou seja,

$$\frac{1}{||x||_p \cdot ||y||_q} \sum_{i=1}^{\infty} |x_i \cdot y_i| \le \frac{1}{p} \cdot \frac{||x||_p^p}{||x||_p^p} + \frac{1}{q} \cdot \frac{||y||_q^q}{||y||_q^q} = \frac{1}{p} + \frac{1}{q} = 1,$$

e portanto,

$$\sum_{i=1}^{\infty} |x_i \cdot y_i| \le ||x||_p \cdot ||y||_q.$$

Lema 1.28 (Designaldade de Minkowski) Dados $p \in [1, +\infty)$ e $x = (x_i), y = (y_i) \in \ell_p$, vale a designaldade

$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{\frac{1}{p}}.$$

Demonstração. Dado $p \in [1, +\infty)$, seja $q \in [1, +\infty)$ tal que $\frac{1}{p} + \frac{1}{q} = 1$.

Como para todo $i \in \mathbb{N}$ vale

$$|x_i + y_i|^p = |x_i + y_i| \cdot |x_i + y_i|^{p-1} \le (|x_i| + |y_i|)|x_i + y_i|^{p-1} \le$$
$$\le |x_i| \cdot |x_i + y_i|^{p-1} + |y_i| \cdot |x_i + y_i|^{p-1},$$

somando de i = 1 até um certo n_0 fixado, obtemos

$$\sum_{i=1}^{n_0} |x_i + y_i|^p \le \sum_{i=1}^{n_0} |x_i| \cdot |x_i + y_i|^{p-1} + \sum_{i=1}^{n_0} |y_i| \cdot |x_i + y_i|^{p-1},$$

e para $m \geq n_0$ é válido que

$$\sum_{i=1}^{n_0} |x_i + y_i|^p \le \sum_{i=1}^m |x_i| \cdot |x_i + y_i|^{p-1} + \sum_{i=1}^m |y_i| \cdot |x_i + y_i|^{p-1}.$$

Passando $m \to \infty$, obtemos para todo $n_0 \in \mathbb{N}$ que

$$\sum_{i=1}^{n_0} |x_i + y_i|^p \le \sum_{i=1}^{\infty} |x_i| \cdot |x_i + y_i|^{p-1} + \sum_{i=1}^{\infty} |y_i| \cdot |x_i + y_i|^{p-1}.$$
 (1.5)

Usando a desigualdade de Hölder (Lema 1.27) para cada somatório à direita de (1.5), obtemos

$$\bullet \sum_{i=1}^{\infty} |x_i| \cdot |x_i + y_i|^{p-1} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{\infty} |x_i + y_i|^{(p-1)q}\right)^{\frac{1}{q}},$$

•
$$\sum_{i=1}^{\infty} |y_i| \cdot |x_i + y_i|^{p-1} \le \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{\infty} |x_i + y_i|^{(p-1)q}\right)^{\frac{1}{q}}$$
.

Levando essas duas estimativas para (1.5), obtemos

$$\sum_{i=1}^{n_0} |x_i + y_i|^p \leq \left[\left(\sum_{i=1}^{\infty} |x_i|^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} |y_i|^p \right)^{\frac{1}{p}} \right] \left(\sum_{i=1}^{\infty} |x_i + y_i|^{(p-1)q} \right)^{\frac{1}{q}}.$$

Tal desigualdade vale para todo $n_0 \in \mathbb{N}$. Assim, fazendo $n_0 \to \infty$, e notando que (p-1)q = p, obtemos

$$\sum_{i=1}^{\infty} |x_i + y_i|^p \le \left[\left(\sum_{i=1}^{\infty} |x_i|^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} |y_i|^p \right)^{\frac{1}{p}} \right] \left(\sum_{i=1}^{\infty} |x_i + y_i|^p \right)^{\frac{1}{q}},$$

e então

$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{1 - \frac{1}{q}} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{\frac{1}{p}},$$

ou seja, obtemos finalmente

$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{\frac{1}{p}}.$$

Voltando ao ponto onde definimos o espaço ℓ_p , para $1 \leq p < \infty$ (Definição 1.24), vamos mostrar que a aplicação $||\cdot||_p:\ell_p \to [0,+\infty)$ dada por

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}$$

é uma norma em ℓ_p . De fato, com exceção da desigualdade triangular, todas as demais propriedades de norma apresentadas na Definição 1.23 são facilmente demonstradas. Verifiquemos então apenas a desigualdade triangular: dados $x=(x_i)_{i\in\mathbb{N}}$ e $y=(y_i)_{i\in\mathbb{N}}$ elementos de ℓ_p , então

$$x + y = (x_1, x_2, ...) + (y_1, y_2, ...) = (x_1 + y_1, x_2 + y_2, ...) = (x_i + y_i)_{i \in \mathbb{N}},$$

e daí temos que, usando a desigualdade de Minkowski,

$$||x+y||_p = \left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{\frac{1}{p}} = ||x||_p + ||y||_p.$$

Além disso, a desigual dade triangular acima provada mostra que ℓ_p é um espaço vetorial, pois dados $x,y\in\ell_p$, temos que $||x+y||_p\leq ||x||_p+||y||_p<\infty$, ou seja, concluímos que $x+y\in\ell_p$.

Logo, para $1 \leq p < \infty$, a aplicação $||\cdot||_p : \ell_p \to [0, +\infty)$ dada por

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}$$

realmente define uma norma em ℓ_p .

Os comentários acima nos motivam definir:

Definição 1.29 Seja $p \in [1, \infty)$. O espaço $\ell_p = \ell_p(\mathbb{N})$ denota o espaço vetorial de todas as sequências de escalares $x = (x_i)_{i=1}^{\infty}$ tais que $\sum_{i=1}^{\infty} |x_i|^p < \infty$, munido com a norma

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}.$$

Naturalmente na definição acima temos que ℓ_p é um espaço vetorial normado, e deveríamos denotá-lo por $(\ell_p, ||\cdot||_p)$. No entanto, vamos escrever simplesmente ℓ_p e sua norma usual estará subtendida.

Mais adiante vamos mostrar que este espaço é o que chamaremos de espaço de Banach.

Podemos considerar as desigualdades de Hölder e de Minkowski para vetores $x=(x_1,x_2,...,x_n)\in\mathbb{R}^n,\ n\geq 1$, ou seja, sequências finitas, onde suas demonstrações podem ser facilmente adaptadas dos Lemas 1.27 e 1.28, respectivamente, ou seja dados $x=(x_1,x_2,...,x_n),y=(y_1,y_2,...,y_n)\in\mathbb{R}^n$, valem as desigualdades

$$\sum_{i=1}^{n} |x_i \cdot y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q\right)^{\frac{1}{q}}, \tag{1.6}$$

onde $\frac{1}{p} + \frac{1}{q} = 1$, e

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}.$$
 (1.7)

Isto posto, definimos:

Definição 1.30 Dados $p \in [1, +\infty)$ e $n \in \mathbb{N}$ fixados, definimos o espaço vetorial normado ℓ_p^n como sendo o espaço vetorial normado $(\mathbb{R}^n, ||\cdot||_p)$, com a norma definida por $x = (x_1, x_2, ..., x_n) \in \ell_p^n$,

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

De fato, é fácil ver que $||\cdot||_p$ realmente define uma norma e deixaremos isso para o leitor.

Apenas como uma ilustração, vamos considerar o caso n=2 e pensaremos em dois tipos de espaços: ℓ_1^2 (quando p=1) e ℓ_2^2 (quando p=2), ou seja,

- $\ell_1^2 = (\mathbb{R}^2, ||\cdot||_1)$, onde $||(x,y)||_1 = |x| + |y|$,
- $\ell_2^2 = (\mathbb{R}^2, ||\cdot||_2)$, onde $||(x,y)||_2 = (|x|^2 + |y|^2)^{\frac{1}{2}} = \sqrt{|x|^2 + |y|^2}$.

Definimos a bola centrada na origem e raio unitário ao conjunto de pontos do \mathbb{R}^2 :

$$B_0(1) = \{x \in \mathbb{R}^2 : ||x|| < 1\}.$$

No entanto, tal bola pode não ser "redonda", pois depende de qual norma é usada.

Se usarmos a norma $||\cdot||_1$, chamada de norma da soma, então

$$B_0(1) = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1\},\$$

e então $B_0(1)$ corresponde ao conjunto de todos os pontos dentro de um retângulo centrado na origem e diagonais em (1,0), (0,1), (-1,0) e (0,-1). Faça um desenho.

No entanto, se usarmos a norma $||\cdot||_2$, chamada de norma euclidiana, temos que

$$B_0(1) = \{(x,y) \in \mathbb{R}^2 : \sqrt{|x|^2 + |y|^2} < 1\}$$

corresponde ao conjunto de pontos dentro da circunferência unitária centrada na origem. Faça um desenho.

Observação 1.31 Como uma métrica d pode ser induzida de uma norma a partir da aplicação d(x,y) = ||x-y||, podemos provar a propriedade (c) do Exemplo 1.19 de métrica, bastando, para $x = (x_1, x_2)$ e $y = (y_1, y_2)$, considerar a métrica $d(x,y) = ||x-y||_2$ e usar a desigualdade (1.7) de Minkowski para sequências finitas. Assim,

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = \left(\sum_{i=1}^2 |x_i - y_i|^2\right)^{\frac{1}{2}} =$$

$$= \left(\sum_{i=1}^2 |(x_i - z_i) + (z_i - y_i)|^2\right)^{\frac{1}{2}} \le \left(\sum_{i=1}^2 |x_i - z_i|^2\right)^{\frac{1}{2}} + \left(\sum_{i=1}^2 |z_i - y_i|^2\right)^{\frac{1}{2}} =$$

$$= d(x, z) + d(z, y),$$

onde $z = (z_1, z_2) \in \mathbb{R}^2$.

Logo, realmente (\mathbb{R}^2, d) com a métrica euclidiana d é um espaço métrico. Mais geralmente, (\mathbb{R}^n, d) , para $n \in \mathbb{N}$ fixado, é um espaço métrico.

Até aqui definimos os espaços normados ℓ_p , para $1 \leq p < \infty$. Quando $p = \infty$ definimos:

Definição 1.32 Definimos $\ell_{\infty} = \ell_{\infty}(\mathbb{N})$ o espaço de todas as sequências limitadas, ou seja, o espaço das sequências $x = (x_i)_{i=1}^{\infty}$ munido da norma

$$||x||_{\infty} = \sup_{i \in \mathbb{N}} |x_i| < \infty.$$

Mostremos que a aplicação $||\cdot||_{\infty}$ definida acima é de fato é uma norma, chamada de norma do supremo: dados $x=(x_i)_i,y=(y_i)_i\in\ell_{\infty}$ e $\lambda\in\mathbb{K}$, temos

(a)
$$||x||_{\infty} = \sup_{i \in \mathbb{N}} |x_i| \ge 0$$
 e $||x||_{\infty} = 0 \Leftrightarrow \sup_{i \in \mathbb{N}} |x_i| = 0 \Leftrightarrow x_i = 0, \forall i \Leftrightarrow x = 0.$

(b)
$$||\lambda \cdot x||_{\infty} = \sup_{i \in \mathbb{N}} |\lambda \cdot x_i| = \sup_{i \in \mathbb{N}} |\lambda| \cdot |x_I| = |\lambda| \cdot \sup_{i \in \mathbb{N}} |x_i| = |\lambda| \cdot ||x||_{\infty}.$$

(c)
$$||x+y||_{\infty} = \sup_{i \in \mathbb{N}} |x_i + y_i| \le \sup_{i \in \mathbb{N}} (|x_i| + |y_i|) \le \sup_{i \in \mathbb{N}} |x_i| + \sup_{i \in \mathbb{N}} |y_i| =$$

= $||x||_{\infty} + ||y||_{\infty}$.

Da mesma forma que fizemos para os espaços ℓ_p , temos que, dados $x,y\in\ell_\infty$, então $||x||_\infty<\infty$ e $||y||_\infty<\infty$, e pela desigualdade triangular da norma,

$$||x+y||_{\infty} \le ||x||_{\infty} + ||y||_{\infty} < \infty,$$

e isso faz com que ℓ_{∞} se torne um espaço vetorial normado.

Proposição 1.33 Dados $1 \le p \le q \le \infty$ e $x \in \ell_p$. Então $||x||_q \le ||x||_p$, ou seja, a norma $||\cdot||_q$ é mais fina do que a norma $||\cdot||_p$.

Demonstração. Seja $1 \le p \le q \le \infty$ e tome $x \in \ell_p$. Vamos separar em dois casos:

 \bullet Caso 1. Se $||x||_p=1.$ Então, neste caso, temos que

$$\left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} = 1,$$

e daí segue que $|x_i| < 1$, $\forall i \in \mathbb{N}$. Assim, olhando como uma função exponencial decrescente de base $0 < |x_i| < 1$ temos que,

$$p \le q \Rightarrow |x_i|^p \ge |x_i|^q$$
,

e como tal desigualdade vale para todo $i \in \mathbb{N}$, segue que

$$\sum_{i=1}^{\infty} |x_i|^p \ge \sum_{i=1}^{\infty} |x_i|^q,$$

ou seja, $||x||_p^p \ge ||x||_q^q$, e então

$$||x||_q^q \leq ||x||_p^p = 1 \Rightarrow ||x||_q \leq 1.$$

Assim, concluímos que

$$||x||_q \le 1 = ||x||_p.$$

• Caso 2. Se $||x||_p \neq 1$ (e finito, obviamente). Neste caso, basta tomar $\tilde{x} = \frac{x}{||x||_p}$. Disso, segue que $||\tilde{x}||_p = 1$, e pelo Caso 1, para $0 \leq p \leq q \leq \infty$ temos que $||\tilde{x}||_q \leq ||\tilde{x}||_p$, e então

$$\left| \left| \frac{x}{||x||_p} \right| \right|_q \le \left| \left| \frac{x}{||x||_p} \right| \right|_p \Rightarrow \frac{1}{||x||_p} \cdot ||x||_q \le \frac{1}{||x||_p} \cdot ||x||_p \Rightarrow ||x||_q \le ||x||_p.$$

Corolário 1.34 Se $1 \le p \le q \le \infty$, então $\ell_p \subset \ell_q$.

Demonstração. De fato, dado $x \in \ell_p$, temos que $||x||_p < \infty$, e pela Proposição 1.33, sendo $p \le q$, segue que $||x||_q \le ||x||_p < \infty$, donde segue que $x \in \ell_q$.

.

Definição 1.35 Um espaço vetorial normado X chama-se um espaço de Ba-nach quando for um espaço métrico completo com a métrica d(x,y) = ||x-y||, $\forall x,y \in X$ induzida pela norma.

No que segue, apresentaremos vários exemplos de espaços de Banach.

Exemplo 1. Para $n \in \mathbb{N}$ fixado, os espaços normados $(\mathbb{R}^n, ||\cdot||)$ são espaços de Banach.

Exemplo 2. Para $1 \le p < \infty$, os espaços ℓ_p são espaços de Banach

.....

Definição 1.36 O espaço C([0,1]) denota o espaço de todas as funções contínuas de [0,1] em \mathbb{R} , munido da norma

$$||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|,$$

chamada de norma do supremo.

É fácil ver que $||\cdot||_{\infty}$ de fato define uma norma em C([0,1]) e que tal espaço é um espaço vetorial normado e deixaremos estes detalhes para o leitor. Note que como um espaço normado deveríamos denotá-lo por $C([0,1],||\cdot||_{\infty})$, mas como tal norma do supremo está subtendida em tal espaço, podemos denotá-lo simplesmente por C([0,1]).

Temos o seguinte resultado importante.

Proposição 1.37 O espaço vetorial normado C([0,1]) é um espaço de Banach.

Demonstração. Considere uma sequência de Cauchy $(f_n)_n$ de funções em C([0,1]) Precisamos mostrar que tal sequência converge para uma função f em C([0,1]) com a métrica induzida pela norma do supremo. Assim, sendo

 $(f_n)_{n\in\mathbb{N}}$ de Cauchy, temos que $\forall \varepsilon>0,\ \exists n_0\in\mathbb{N}$ tal que, $\forall m,n\geq n_0$, implica em $d(f_m,f_n)=||f_m-f_n||_\infty<\varepsilon$

Note que, $\forall t \in [0,1]$ vale que

$$|f_m(t) - f_n(t)| \le \sup_{t \in [0,1]} |f_m(t) - f_n(t)| = ||f_m - f_n||_{\infty} < \varepsilon,$$

e, portanto, temos que $\forall t \in [0,1]$, a sequência $(f_n(t))_n$ é uma sequência de Cauchy em \mathbb{R} .

Escreva $f(t) = \lim_{n \to \infty} f_n(t)$.

Vamos mostrar que f é contínua em [0,1], e daí que $f \in C([0,1])$ e que f_n converge para f uniformemente.

Como $(f_n(t))_n$ é de Cauchy, dado $\varepsilon > 0$, segue que $\exists N \in \mathbb{N}$ tal que

$$|f_m(t) - f_n(t)| < \frac{\varepsilon}{3}, \ \forall t \in [0, 1] \ \text{e} \ \forall m, n \ge N.$$
 (1.8)

Fixando $n \geq N$ e fazendo $m \rightarrow \infty$ vamos obter

$$|f(t) - f_n(t)| < \frac{\varepsilon}{3}, \ \forall n \ge N \ e \ \forall t \in [0, 1].$$
 (1.9)

Sejam $t_0 \in [0,1]$ e $\varepsilon>0$ fixados. Escolha $\delta>0$ tal que, para todo t tal que $|t-t_0|<\delta$, tenhamos

$$|f_N(t) - f_N(t_0)| < \frac{\varepsilon}{3}. \tag{1.10}$$

Então, para todo t tal que $|t-t_0| < \delta$, usando (1.8), (1.9) e (1.10) obtemos

$$|f(t) - f(t_0)| = |f(t) - f_N(t) + f_N(t) - f_N(t_0) + f_N(t_0) - f(t_0)| \le$$

$$\le |f(t) - f_N(t)| + |f_N(t) - f_N(t_0)| + |f_N(t_0) - f(t_0)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Ou seja, mostramos que

$$|f(t) - f(t_0)| < \varepsilon$$
, sempre que $|t - t_0| < \delta$,

e portanto, concluímos que f é contínua em [0,1], ou seja, $f \in C([0,1])$.

Além disso, obtemos que $f_n \to f$ uniformemente, e portanto temos que $f_n \to f$ na norma $||\cdot||_{\infty}$, o que mostra que C([0,1]) é completo.

Portanto, C([0,1]) é um espaço de Banach.

Definição 1.38 Dizemos que duas normas $||\cdot||_1$ e $||\cdot||_2$ em um espaço vetorial normado X são equivalentes quando existirem constantes positivas $K_1, K_2 > 0$ tais que, $\forall x \in X$, tivermos

$$|K_1 \cdot ||x||_1 \le ||x||_2 \le K_2 \cdot ||x||_1$$
.

Proposição 1.39 Se $||\cdot||_1$ e $||\cdot_2||$ são duas normas equivalentes em um espaço vetorial X e se $(X, ||\cdot||_1)$ for um espaço de Banach, então $(X, ||\cdot||_2)$ também é um espaço de Banach.

Demonstração. Suponha que $(X, ||\cdot||_1)$ seja um espaço de Banach em relação à norma $||\cdot||_1$ e seja $(x_n)_n$ uma sequência de Cauchy em $(X,||\cdot||_1)$. Logo, para todo $\varepsilon > 0$ segue que $\exists n_0 \in \mathbb{N}$ tal que, $\forall m, n \geq n_0$ implique em

$$d(x_m, x_n) := ||x_m - x_n||_1 < \varepsilon,$$

e como X é completo para a norma $||\cdot||_1$, segue que existe $x \in X$ tal que $x_n \to x$ na norma $||\cdot||_1$, o que equivale dizer que

$$||x_n - x||_1 \to 0.$$

Como as normas $||\cdot||_1$ e $||\cdot||_2$ são equivalentes, segue que existe K>0 tal que

$$K \cdot ||x_n - x||_2 \le ||x_n - x||_1 < \varepsilon, \ \forall n \ge n_0 \Rightarrow ||x_n - x||_2 \le \frac{\varepsilon}{K},$$

ou seja, mostramos que $x_n - x \to 0$ na norma $||\cdot||_2$, ou seja, $(x_n)_n$ também é uma sequência convergente na norma $||\cdot||_2$ e, portanto, de Cauchy. Como $x \in X$, concluímos que $(X, ||\cdot||_2)$ também é um espaço de Banach.

Índice Remissivo

 $\ell_p, 21 \\ \ell_p^n, 27$

Bolzano-Weierstrass, 11

crescente, sequência, 7

decrescente, sequência, 7 desigualdade de Minkowski, 24

espaço ℓ_p , 21 espaço de Banach, 31 espaço métrico, 17 espaço vetorial normado, 20 expoentes conjugados, 21

intervalos fechados encaixados, 10

limite de sequência, 3

métrica, 17 métrica euclidiana, 18 métrica zero-um, 18 monótona, sequência, 7

norma, 20 normas equivalentes, 33

sequência, 1 sequência de Cauchy, 14 subsequência, 2

teorema do valor extremo, 12

Bibliografia

- [Rc] CHURCHILL, R. V. Variáveis complexas e suas aplicações. Ed. McGrall-Hill do Brasil LTDA, SP, 1979.
- [La] MEDEIROS, L. A. da J. *Introdução às funções complexas*. Ed. McGrall-Hill do Brasil e LTDA, PS, 1972.
- [Ss] SHOKRANIAN, S. Variável complexa 1. Editora da UnB, 2002.
- [Rs] SILVERMAN, R. A. Complex analysis with applications. Prentice-Hall, Inc., Englewood Cliffis, New Jersey, 1974.
- [Ms] SPIEGEL, M. R. Variáveis complexas. Col. Schaum, Ed. McGraw-Hill do Brasil, LTDA, SP, 1981.