MOwNiT – Funkcje sklejane

Przygotował: Szymon Budziak

Problem:

Dla poniższej funkcji:

$$f(x) = x^2 - m \cdot \cos\left(\frac{\pi x}{k}\right)$$

k=1, m=10, [-7, 7]

wyznaczyć interpolacyjną funkcję sklejaną trzeciego stopnia oraz drugiego stopnia. Dla obu rodzajów funkcji (2-go i 3-go stopnia) należy wykonać obliczenia dla co najmniej dwóch różnych warunków brzegowych. Podobnie jak poprzednio określić dokładność interpolacji – dla różnej liczby przedziałów i dla różnych warunków brzegowych. Porównać interpolację funkcjami sklejanymi drugiego i trzeciego stopnia. Graficznie zilustrować interesujące przypadki. Opisać dokładnie przyjęte warunki brzegowe.

Wykres funkcji

Wykres 1: Wykres funkcji podanej w problemie

Interpolacja funkcją sklejaną 3-go stopnia

Do interpolacji funkcją sklejaną 3-go stopnia został użyty wzór:

$$\begin{split} S_i(x) &= a_i + b_i(x - x_i) + c_i \cdot (x - x_i)^2 + d_i \cdot (x - x_i)^3 \ dla \ i \in [1, \ ..., \ n-1] \\ \text{gdzie każdy segment } S_i(x) \text{ jest interpolującym wielomianem drugiego rzędu w} \\ \text{przedziale } [x_i, x_{i+1}]. \end{split}$$

Wypisując takie warunki dla każdego z "wewnętrznych" punktów interpolacji i dodając warunki brzegowe można stworzyć układ równań i go rozwiązywać.

Aby była to funkcja sklejana 3-go stopnia, musi ona spełniać następujące warunki:

1)
$$S_i(x_{i+1}) = f(x_{i+1})$$

2)
$$S_i(x_{i+1}) = S_{i+1}(x_{i+1})$$

3)
$$S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1})$$

4)
$$S_i''(x_{i+1}) = S_{i+1}''(x_{i+1})$$

Funkcja $S_i(x)$ jest funkcją sześcienną, więc $S_i''(x)$ jest liniowa na przedziale $[x_i, x_{i+1}]$.

Wprowadzamy oznaczenie: $h_i = x_{i+1} - x_i$, teraz funkcję $S_i''(x)$ możemy zapisać w

postaci liniowej zależności:

$$S_i''(x) = S_i''(x_i) \frac{x_{i+1} - x_i}{h_i} + S_i''(x_{i+1}) \frac{x - x_i}{h_i}$$

Po scałkowaniu dwukrotnie tej funkcji otrzymujemy:

$$S_{i}(x) = \frac{S_{i}^{"}(x_{i})}{6h_{i}} (x_{i+1} - x)^{3} + \frac{S_{i}^{"}(x_{i+1})}{6h_{i}} (x - x_{i})^{3} + C(x - x_{i}) + D(x_{i+1} - x)$$

gdzie C i D to stałe całkowania.

Korzystając teraz z warunków interpolacji:

$$S_{i}(x_{i}) = y_{i} \text{ oraz } S_{i}(x_{i+1}) = y_{i+1}$$

możemy wyliczyć C i D. Po wyliczeniu C oraz D z warunków interpolacji mamy:

$$S_{i}(x) = \frac{S_{i}^{"}(x_{i})}{6h_{i}} (x_{i+1} - x)^{3} + \frac{S_{i}^{"}(x_{i+1})}{6h_{i}} (x - x_{i})^{3} + (\frac{y_{i+1}}{h_{i}} - \frac{S_{i}^{"}(x_{i+1})h_{i}}{6})(x - x_{i}) + (\frac{y_{i}}{h_{i}} - \frac{S_{i}^{"}(x_{i})h_{i}}{6})(x_{i+1} - x)$$

W powyższym wzorze nie znamy $S_i^{"}(x)$ dlatego aby je wyliczyć korzystamy z warunku ciągłości pierwszej pochodnej. Różniczkujemy więc $S_i(x)$

$$S'_{i}(x) = -\frac{h_{i}}{3}S''_{i}(x_{i}) - \frac{h_{i}}{3}S''_{i}(x_{i+1}) - \frac{y_{i}}{h_{i}} + \frac{y_{i+1}}{h_{i}}$$

Dla przejrzystości wprowadzamy symbole:

$$\sigma_i = \frac{1}{6}S_i''(x_i)$$
 oraz $\Delta_i = \frac{y_{i+1} - y_i}{h_i}$

wtedy otrzymujemy:

$$S'_{i}(x_{i}) = -2\sigma_{i}h_{i} - \sigma_{i+1}h_{i} + \Delta_{i}$$

$$S'_{i}(x_{i}) = \Delta_{i} - h_{i}(\sigma_{i+1} + 2\sigma_{i})$$

Natomiast z drugiej strony:

$$S'_{i-1}(x_i) = \Delta_{i-1} + h_{i-1}(2\sigma_i + \sigma_{i-1})$$

Z warunku ciągłości:

$$S'_{i-1}(x_i) = S'_{i}(x_i)$$

$$\Delta_{i-1} + h_{i-1}(2\sigma_i + \sigma_{i-1}) = \Delta_i - h_i(\sigma_{i+1} + 2\sigma_i)$$

Takim sposobem otrzymujemy układ n-2 równań liniowych (dla punktów pośrednich):

$$h_{i-1}\sigma_{i-1} + 2(h_{i-1} + h_i)\sigma_i + h_i\sigma_{i+1} = \Delta_i - \Delta_{i-1} dla \ i \in [2, 3, ..., n-1]$$

Ale ponieważ mamy n niewiadomych σ_i konieczne jest określenie dwóch dodatkowych warunków.

Warunki brzegowe:

1) Cubic Function:

 $\mathcal{C}_1(x)$ - funkcja sześcienna przechodząca przez pierwsze 4 punkty

 $C_n(x)$ - funkcja sześcienna funkcja sześcienna przez ostatnie 4 punkty Wynika z tego, że:

$$S'''(x_1) = C_1''' \text{ oraz } S'''(x_n) = C_n'''$$

Stałe $C_1^{"}$ i $C_n^{"}$ mogą być określone bez znajomości $C_1(x)$ i $C_n(x)$:

$$\Delta_{i}^{(1)} = \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}}, \, \Delta_{i}^{(2)} = \frac{\Delta_{i+1}^{(1)} - \Delta_{i}^{(1)}}{x_{i+2} - x_{i}}, \, \Delta_{i}^{(3)} = \frac{\Delta_{i+1}^{(2)} - \Delta_{i}^{(2)}}{x_{i+3} - x_{i}}$$

Różniczkując wzór na S''(x) w przedziale $[x_{i'}, x_{i+1}]$ otrzymujemy:

$$S'''(x_1) = C'''(x_1) = \frac{6}{h_1} (\sigma_2 - \sigma_1) = 6\Delta_1^{(3)}$$
$$S'''(x_n) = C'''(x_n) = \frac{6}{h_{n-1}} (\sigma_n - \sigma_{n-1}) = 6\Delta_{n-3}^{(3)}$$

po przekształceniu otrzymujemy 2 brakujące równania:

$$-h_{1}\sigma_{1} + h_{1}\sigma_{2} = h_{1}^{2}\Delta_{1}^{(3)}$$

$$h_{n-1}\sigma_{n-1} - h_{n-1}\sigma_{n} = -h_{n-1}^{2}\Delta_{n-3}^{(3)}$$

Ostatecznie nasz układ po uwzględnieniu warunku brzegowego możemy zapisać w następującej postaci:

$$\begin{bmatrix} -h_1 & h_1 & 0 & 0 & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 \\ 0 & h_2 & 2(h_2 + h_3) & h_3 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & h_{n-1} & -h_{n-1} \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} h_1^2 \Delta_1^{(3)} \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ -h_{n-1}^2 \Delta_{n-3}^{(3)} \end{bmatrix}$$

2) Natural Spline (Free Boundary):

$$S''(x_1) = S''(x_n) = 0$$

Korzystając z podstawienia $\sigma_i=\frac{1}{6}S_i^{"}(x_i)$ i uwzględniając powyższe równanie, otrzymujemy:

$$S''(x_1) = S_1''(x_1) = 0 <=> \sigma_1 = 0$$

 $S''(x_n) = S_n''(x_n) = 0 <=> \sigma_n = 0$

Dzięki temu otrzymujemy 2 wartości niewiadomych ($\sigma_1=\sigma_n=0$), dlatego możemy rozwiązać układ n-2 równań po dodaniu właśnie tych dwóch. Mamy wtedy układ n

równań o postaci:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ h_1 & 2(h_1 + h_2) & h_2 & 0 & 0 \\ 0 & h_2 & 2(h_2 + h_3) & h_3 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \vdots \\ \sigma_{n-1} \\ \sigma_n \end{bmatrix} = \begin{bmatrix} 0 \\ \Delta_2 - \Delta_1 \\ \Delta_3 - \Delta_2 \\ \vdots \\ \Delta_{n-1} - \Delta_{n-2} \\ 0 \end{bmatrix}$$

Interpolacyjna funkcja sklejana 3-go stopnia została zaimplementowana i porównana dla dwóch funkcji. Pierwsza z biblioteki SciPy interpolate. Cubic Spline w której jako argument możemy podać rodzaj warunków brzegowych które chcemy użyć. W tej funkcji zostały użyte warunki brzegowe "natural" oraz "clamped" (funkcja nie posiadała warunku "cubic"). Druga funkcja to własna implementacja interpolacyjnej funkcji sklejanej 3-go stopnia zgodnie z powyżej wyprowadzonymi wzorami na funkcję oraz na warunki brzegowe, które zostały użyte, czyli warunek brzegowy "natural" oraz "cubic".

Przykładowe wykresy dla funkcji z biblioteki Scipy interpolate.CubicSpline oraz z własnej implementacji CubicSpline

Wykres 2: Wykres interpolacji 3-go stopnia z biblioteki SciPy funkcji sklejanej dla 5 węzłów interpolacji i warunku brzegowego "natural"

Wykres 3: Wykres interpolacji 3-go stopnia z biblioteki SciPy funkcji sklejanej dla 15 węzłów interpolacji i warunku brzegowego "natural"

Wykres 4: Wykres interpolacji 3-go stopnia z biblioteki SciPy funkcji sklejanej dla 30 węzłów interpolacji i warunku brzegowego "natural"

Wykres 5: Wykres interpolacji 3-go stopnia z biblioteki SciPy funkcji sklejanej dla 8 węzłów interpolacji i warunku brzegowego "clamped"

Wykres 6: Wykres interpolacji 3-go stopnia z biblioteki SciPy funkcji sklejanej dla 20 węzłów interpolacji i warunku brzegowego "clamped"

Wykres 7: Wykres interpolacji 3-go stopnia z biblioteki SciPy funkcji sklejanej dla 50 węzłów interpolacji i warunku brzegowego "clamped"

Wykres 8: Wykres interpolacji 3-go stopnia własnej implementacji funkcji sklejanej dla 5 węzłów interpolacji i warunku brzegowego "natural"

Wykres 9: Wykres interpolacji 3-go stopnia własnej implementacji funkcji sklejanej dla 15 węzłów interpolacji i warunku brzegowego "natural"

Wykres 10: Wykres interpolacji 3-go stopnia własnej implementacji funkcji sklejanej dla 30 węzłów interpolacji i warunku brzegowego "natural"

Wykres 11: Wykres interpolacji 3-go stopnia własnej implementacji funkcji sklejanej dla 7 węzłów interpolacji i warunku brzegowego "cubic"

Wykres 12: Wykres interpolacji 3-go stopnia własnej implementacji funkcji sklejanej dla 18 węzłów interpolacji i warunku brzegowego "cubic"

Wykres 13: Wykres interpolacji 3-go stopnia własnej implementacji funkcji sklejanej dla 40 węzłów interpolacji i warunku brzegowego "cubic"

Interpolacja funkcją sklejaną 2-go stopnia

Do interpolacji funkcją sklejaną 2-go stopnia został użyty wzór:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 \, dla \, i \in [0, \, ..., \, n-1]$$
gdzie każdy segment $S_i(x)$ jest interpolującym wielomianem drugiego rzędu w przedziale $[x_i, \, x_{i+1}].$

Aby była to funkcja sklejana 2-go stopnia, musi ona spełniać następujące warunki:

1)
$$S_i(x_i) = y_i dla i \in [0, 1, ..., n - 1]$$

2)
$$S_{i+1}(x_{i+1}) = S_i(x_{i+1}) dla i \in [0, 1, ..., n-2]$$

$$3) \frac{d}{dx} S_{i+1}(x_{i+1}) = \frac{d}{dx} S_i(x_{i+1}) dla i \in [0, 1, ..., n-2]$$

Korzystając z warunku 1) otrzymujemy:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 = a_i$$

 $y_i = a_i$

Następnie używając warunku 3) otrzymujemy:

$$b_{i+1} + 2c_{i+1}(x_{i+1} - x_{i+1}) = b_i + 2c_i(x_{i+1} - x_i)$$

$$= c_i = \frac{b_{i+1} - b_i}{2(x_{i+1} - x_i)}$$

Teraz korzystając z warunków 1) oraz 2) otrzymujemy:

$$y_{i+1} = y_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2$$
$$=> b_i + b_{i+1} = 2\frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

Z przesunięciem indeksów i -> (i - 1) otrzymujemy:

$$b_{i-1} + b_i = 2\gamma_i$$
$$\gamma_i = \frac{\gamma_i - \gamma_{i-1}}{x_i - x_{i-1}}$$

Jedynymi niewiadomymi w równaniu są teraz wartości współczynników b_i , ponieważ współczynniki a_i obliczamy znając wartości b_i a c_i są nam znane. Aby rozwiązać równanie zapisujemy powyższe równanie w postaci macierzowej:

$$\begin{pmatrix} 1 & 1 & & & 0 \\ & 1 & 1 & & \\ & & \ddots & \ddots & \\ 0 & & & 1 & 1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} 2\gamma_1 \\ 2\gamma_2 \\ \vdots \\ 2\gamma_{n-1} \end{pmatrix}$$

Co można zapisać w innej postaci jako:

$$b_{1} + b_{2} = 2\gamma_{2}$$

$$b_{2} + b_{3} = 2\gamma_{3}$$
...
$$b_{n-2} + b_{n-1} = 2\gamma_{n-1}$$

$$b_{n-1} + b_{n} = 2\gamma_{n}$$

Układ ten ma n niewiadomych, o n-1 równaniach. Brakujące równanie wstawimy korzystając z warunku brzegowego.

Warunki brzegowe:

1) Natural Spline (Free Boundary):

$$S'_1(x_1) = 0 \text{ lub } S'_{n-1}(x_n) = 0$$

Korzystając z różniczki obliczonej względem x:

$$S_i'(x) = 2a_i(x - x_i) + b_i$$

Otrzymujemy:

$$2a_{1}(x_{1} - x_{1}) + b_{1} = 0$$
$$b_{1} = 0$$

Zauważmy teraz, że dzięki tak policzonemu warunkowi brzegowemu, podstawiając go do naszego wcześniej wyznaczonego równania otrzymamy:

$$b_{1} = 0$$

$$b_{1} + b_{2} = 2\gamma_{2} -> b_{2} = 2\gamma_{2}$$

$$b_{2} + b_{3} = 2\gamma_{3} -> b_{3} = 2\gamma_{3} - b_{2} = 2(\gamma_{3} - \gamma_{2})$$

$$b_{n-1} + b_n = 2\gamma_n -> b_n = 2(\gamma_n - \gamma_{n-1} + \gamma_{n-2} + \gamma_{n-3} -...)$$

Pozostałe współczynniki obliczamy z wcześniej wyznaczonych wzorów.

2) Clamped Boundary (Free Boundary):

W tym warunku brzegowym przyjmujemy, że jedna z pierwszych pochodnych na krańcach jest znana lub jest ona przybliżona przy pomocy ilorazów różnicowych:

$$S'_{1}(x_{1}) = f'_{1} \text{ lub } S'_{n-1}(x_{n}) = f'_{n-1}$$

Aby wyznaczyć przybliżoną wartość pochodnej, najlepiej skorzystać z ilorazu różnicowego:

$$S'_1(x_1) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{y_2 - y_1}{x_1 - x_1}$$

Możemy teraz przekształcić to równanie do postaci:

$$2a_1(x_2 - x_1) + b_1 = \frac{y_2 - y_1}{x_1 - x_1} <=> b_1 = \frac{y_2 - y_1}{x_1 - x_1}$$

Otrzymujemy teraz układ równań:

$$\begin{aligned} b_1 &= \gamma_2 \\ b_1 + b_2 &= 2\gamma_2 -> b_2 = 2\gamma_2 - b_1 = \gamma_2 \\ b_2 + b_3 &= 2\gamma_3 -> b_3 = 2\gamma_3 - b_2 = 2\gamma_3 - \gamma_2 \\ & \dots \\ b_{n-1} + b_n = 2\gamma_n -> b_n = 2(\gamma_n - \gamma_{n-1} + \gamma_{n-2} + \gamma_{n-3} - \dots) \end{aligned}$$

W przypadku interpolacji 2-go stopnia zostały użyte i porównane dwie funkcje. Pierwsza z biblioteki SciPy interpolate.interp1d(kind="quadratic"), która jako parametr przyjmuje rodzaj interpolacji i podana została quadratic z racji że sprawdzamy interpolację 2-go stopnia. Druga funkcja to własna implementacja interpolacji funkcji sklejanej 2-go stopnia zgodnie z powyżej wyprowadzonymi wzorami.

Przykładowe wykresy dla funkcji z biblioteki SciPy interpolate.interp1d(kind="quadratic") oraz z własnej implementacji QuadraticSpline Scipy Quadratic Spline on 6 nodes

Wykres 14: Wykres interpolacji 2-go stopnia z biblioteki SciPy funkcji sklejanej dla 6 węzłów interpolacji

Wykres 15: Wykres interpolacji 2-go stopnia z biblioteki SciPy funkcji sklejanej dla 17 węzłów interpolacji

Wykres 16: Wykres interpolacji 2-go stopnia z biblioteki SciPy funkcji sklejanej dla 35 węzłów interpolacji

Wykres 17: Wykres interpolacji 2-go stopnia własnej implementacji funkcji sklejanej dla 4 węzłów interpolacji i warunku brzegowego "natural"

Wykres 18: Wykres interpolacji 2-go stopnia własnej implementacji funkcji sklejanej dla 20 węzłów interpolacji i warunku brzegowego "natural"

Wykres 19: Wykres interpolacji 2-go stopnia własnej implementacji funkcji sklejanej dla 35 węzłów interpolacji i warunku brzegowego "natural"

Wykres 20: Wykres interpolacji 2-go stopnia własnej implementacji funkcji sklejanej dla 5 węzłów interpolacji i warunku brzegowego "clamped"

Wykres 21: Wykres interpolacji 2-go stopnia własnej implementacji funkcji sklejanej dla 14 węzłów interpolacji i warunku brzegowego "clamped"

Wykres 22: Wykres interpolacji 2-go stopnia własnej implementacji funkcji sklejanej dla 40 węzłów interpolacji i warunku brzegowego "clamped"

Błędy obliczeniowe

Błędy obliczeniowe zostały wykonane dla błędu maksymalnego punktów (maksymalny błąd z wartości bezwzględnej różnicy pomiędzy kolejnymi punktami) oraz dla błędu sumy kwadratów punktów (suma kwadratów różnic kolejnych punktów). Liczby węzłów jakie zostały wzięte pod uwagę to: 4, 5, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 100, 150, 200. Błędy obliczeniowe zostały policzone dla interpolacji 3-go i 2-go stopnia oraz dla warunków brzegowych natural, cubic dla interpolacji 3-go stopnia i natural, clamped dla interpolacji 2-go stopnia.

n	cubic natural max error	cubic natural sum square error	cubic cubic max error	cubic cubic sum square error	quadratic natural max error	quadratic natural sum square error	quadratic clamped max error	quadratic clamped sum square error
4	18,0931	88770,6254	25,7402	121278,6492	34,8143	419330,8664	22,5592	132957,3964
5	18,8908	96977,2575	19,1850	87627,9201	29,2712	183483,8881	19,6519	103699,1693
7	18,9961	99423,1191	19,1515	98463,9230	27,0817	135696,9435	19,2067	100168,7213
10	19,8336	95664,4153	19,8368	96728,4194	25,7986	135771,1214	20,8794	101118,0801
15	5,9490	2564,9495	12,5414	8837,6848	138,5584	3746392,9078	130,3114	3136503,4078
20	4,4214	2446,9062	6,4380	3533,1224	7,0324	10930,5846	8,4573	11936,6986
30	1,4779	92,6609	1,2398	43,2920	2,2044	1662,3214	2,8212	2866,9447
50	0,4308	4,0040	0,1459	0,4296	1,0540	535,8747	0,9752	452,2525
70	0,2053	0,6433	0,0420	0,0267	0,7223	269,0169	0,4939	123,1319
80	0,1552	0,3184	0,0267	0,0086	0,6259	205,1118	0,3757	72,8425
100	0,0974	0,1000	0,0120	0,0013	0,4980	130,5558	0,2406	30,1068
150	0,0415	0,0126	0,0025	0,0000	0,3294	57,6241	0,1065	5,9783
200	0,0236	0,0029	0,0008	0,0000	0,2464	32,3040	0,0597	1,8911
500	0,0035	0,0000	0,0000	0,0000	0,0982	5,1375	0,0095	0,0482

Tabela 1: Błąd obliczeniowy dla interpolacji 3-go i 2-go stopnia

Dzięki max error oraz sum square error możemy znaleźć najlepszy wielomian (jego stopień) który interpoluje naszą funkcję. Rozpatrzyliśmy to dla interpolacji funkcji sklejanej **3-go** oraz **2-go** stopnia i dla warunków brzegowych **natural**, **cubic** i **clamped**. W naszym przypadku jest to wielomian stopnia **n = 500**. Możemy zauważyć, że błąd zmniejsza się wraz z coraz większą liczbą punktów interpolacji. Możemy wysunąć więc wniosek, że nie występuje efekt Rungego w przypadku interpolacji funkcją sklejaną 2-go oraz 3-go stopnia.

Wykres 23: Wykres interpolacji 2-go stopnia własnej implementacji funkcji sklejanej dla 500 węzłów interpolacji i warunku brzegowego "clamped"

Wykres 24: Wykres interpolacji 3-go stopnia własnej implementacji funkcji sklejanej dla 500 węzłów interpolacji i warunku brzegowego "cubic"

Możemy zauważyć, że wykresy są identyczne dla tak dużej liczby węzłów interpolacji (500) bez względu na to czy jest to interpolacja funkcją sklejaną 2-go czy 3-go stopnia oraz bez względu na użyte warunki brzegowe, tutaj do wizualizacji zostały użyte "clamped" dla funkcji sklejanej 2-go stopnia oraz "cubic" dla 3-go stopnia.

Literatura:

- [1] Wykłady nr 3 dr Rycerz z przedmiotu MOwNiT
- [2] Wikipedia na temat interpolacji funkcjami sklejanymi 2-go oraz 3-go stopnia
- [3] "Worksheet 5: Spline Interpolation Solutions" artykuł o interpolacji funkcjami sklejanymi z uniwersytetu w Stuttgart