APPROXIMATE BAYESIAN COMPUTATION FOR ARCHIMEDEAN COPULA MODELS

Roopali Singh

Department of Statistics Pennsylvania State University

APPROXIMATE BAYESIAN COMPUTING (ABC)

$$\pi(\theta|y) \propto p(y|\theta)\pi(\theta)$$

Problem: How to perform Bayesian inference when the likelihood function $p(y|\theta)$ is computationally intractable?

Solution: If we can easily simulate from the likelihood, ABC methods provide a possible way.

$$\pi_{\mathsf{ABC}}(\theta|\mathsf{y}) \propto \int \mathcal{I}(||\mathsf{y}^* - \mathsf{y}|| < \epsilon)\pi(\theta|\mathsf{y}^*)\mathsf{d}\mathsf{y}^* pprox \pi(\theta|\mathsf{y})$$

1

MOTIVATION: ARCHIMEDEAN COPULA MODELS

J-dimensional copula: $C(u_1,\ldots,u_J)=P(U_1\leq u_1,\ldots,U_J\leq u_J)$ where U_1,\ldots,U_J are uniform random variables and $C:[0,1]^j\to[0,1].$

J-dimensional Archimedean copula:

 $\psi(C(u_1,\ldots,u_J);\theta)=\psi(u_1;\theta)+\ldots+\psi(u_J;\theta)$ where θ is an association parameter describing the strength of the dependence between U_j 's, and ψ is a generator function specific to each Archimedean copula such that $\psi:[0,1]\to[0,\infty)$.

,

GUMBEL HOUGAARD COPULA

Gumbel Hougaard copula generator function:

$$\psi(\mathsf{u}) = (-\log(\mathsf{u}))^{\theta}, \ \theta \in [1, \infty)$$

So its distribution function is,

$$C(u_1,...,u_n) = \psi^{-1}(\psi(u_1) + ... + \psi(u_n)) = \exp\{-((-\log(u_1))^{\theta} + ... + (-\log(u_n))^{\theta})^{1/\theta}\}$$

Using ABC to estimate θ is possible because,

- · likelihood is unavailable
- · it easy to simulate from the model

3

ABC ALGORITHMS

Requirements:

- · a proposal, q(.)
- · the observed data, y
- · a distance function, ||.||
- · a tolerance level, ϵ

Rejection Sampling (Sisson et al. 2018)

- 1. Simulate $\theta^* \sim q(.)$
- 2. Simulate $y \sim p(.|\theta^*)$
- 3. if $||y y_{\text{obs}}|| < \epsilon$ then accept θ^* with probability $\frac{\pi(\theta^*)}{\mathsf{Kq}(\theta^*)}$.
- 4. Repeat above steps N times.

MCMC (Marjoram et al. 2003)

- 1. Simulate $\theta^* \sim q(.)$
- 2. Simulate $y \sim p(.|\theta^*)$
- 3. if $||y y_{\text{obs}}|| < \epsilon$ then accept θ^* with probability $\min\{1, \frac{\pi(\theta^*)q(\theta|\theta^*)}{\pi(\theta)q(\theta^*|\theta)}\}$ else stay at θ .
- 4. Repeat above steps N times.

ŀ

CHALLENGES OF ABC

- · Should we use the entire dataset y or an appropriate summary statistic, s?
- · Choice of distance function and summary statistic.
- · Computationally expensive?
- · Choice of tolerance level and other tuning parameters.

ABC MCMC: SIMULATION STUDY

- Prior on θ is Gamma(shape=1, scale=2) truncated at 1.
- · Proposal is a random walk i.e. $N(\theta^{(i-1)}, \sigma^2)$ truncated at 1.
- · Tolerance, ϵ and σ^2 are chosen such that the **acceptance rate was 20-35%**.
- Absolute difference is used as the distance function for two dimensions and for more than 2, Frobenius norm is used.
- · For each simulation, y_{obs} consisted of 100 data points.
- · Number of simulations = 100 and N=10000.

Dimensions:	2		3		5	
Summary statistic	Estimate	MSE	Estimate	MSE	Estimate	MSE
Spearman's rank $ ho$	3.06	1.32	2.94	1.12	2.19	0.07
Kendall's $ au$	2.60	0.47	2.55	0.39	2.16	0.05

Table: Results from ABC MCMC algorithm for Gumbel-Hougaard Copula with $\theta=2$.

ABC MCMC WITH KERNEL FUNCTION

Kernel function:
$$K_{\epsilon}(u) = \frac{1}{\epsilon}K(\frac{u}{\epsilon})$$
 where $K(u) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}$

Previously: Accept θ^* with probability min $\{1, \frac{\pi(\theta^*)q(\theta|\theta^*)}{\pi(\theta)q(\theta^*|\theta)}\}$.

Now: Accept θ^* with probability min $\{1, \frac{K_{\epsilon}(||\mathbf{s}^* - \mathbf{s}_{obs}||)\pi(\theta^*)q(\theta^!\theta^*)}{K_{\epsilon}(||\mathbf{s}^{(i-1)} - \mathbf{s}_{obs}||)\pi(\theta)q(\theta^*|\theta)}\}$.

Dimension	Estimate	MSE	
2	2.24	0.12	
3	2.14	0.09	
5	2.18	0.10	

Table: Results from ABC MCMC algorithm (using Kendall's τ) with kernel function for Gumbel Hougaard Copula with $\theta=2$.

Note: Smoothing functions are discussed in Sisson et al. 2018 for ABC Rejection algorithms and something similar in Fernhead and Prangle 2011.

7

CONCLUSION

- · For large data sets, using y_{obs} instead of summary statistic is not advisable due to computational costs.
- ABC MCMC requires a lot of tuning to run well. If possible, a different ABC algorithm can be preferred.
- · Kendall's au estimates better than Spearman's rank correlation.
- Estimation for higher dimensional copula works better because there is more information for a single parameter.
- · ABC MCMC with kernel function seems like a better approach in this case, at least for lower dimensional copula.