HW 3 - CS754

Sahasra Ranjan - 190050102

Rahul Prajapat - 190050095

Q1

Technique used for reconstruction:

- Computed a larger basis matrix $A = [A1 \ A2]$
- Using the $l1_ls$ solver in MATLAB, reconstructed the sparse signal f1, f2 with basis A1, A2 respectively.
- ullet Parameter for the solver was selected using hit an trial method for many values. Out of which we selected the $\epsilon=10^{-3}$.

Varying σ and fixed sparsity:

Here, x-axis has the factor au. Where $\sigma = au imes avg(f_1 + f_2)$

Varying sparsity and fixed σ

varying k, fixed σ and sparsity

Q2

Paper: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples

Author: D. Needell, J. A. Tropp

Journal reference: Appl. Comput. Harmon. Anal., Vol. 26, pp. 301-321, 2008

Algorithm

$\textbf{CoSaMP}(\Phi,u,s)$

Input: Sampling matrix ϕ , noisy sample vector u, sparsity level s.

 ${f Output}$: An s-sparse approximation a of the target signal

```
1. a^0 \leftarrow 0
                                                       // Initial approximation
2. v \leftarrow u
                                                       // Current samples = input samples
3. k \leftarrow 0
4. repeat
            a. k \leftarrow k+1
            b. y \leftarrow \Phi^* v
                                                             // Form signal proxy
            c. \Omega \leftarrow supp(y_{2s})
                                                             // Identify large components
            d. T \leftarrow \Omega \cup supp(a^{k-1})
                                                             // Merge supports
            e. b|_T \leftarrow \Phi_T^\dagger u
                                                             // Signal estimation by least-squares
            f. b|_{T^c} \leftarrow 0
```

// Prune to obtain next approx

// Update current samples

until haling criterion *true*

h. $v \leftarrow u - \Phi a^k$

g. $a \leftarrow b_s$

<u>Def.</u> quasi-norm:

$$||x||_0 = |supp(x)| = |\{j: x_j \neq 0\}|$$

Def.

$$x|_T = x_i ext{ if } i \in T ext{ else } 0$$

 $x|_T$ Is treated as an element of the vector space \mathbb{C}^T . And the restriction Φ_T of the sampling matrix Φ is defined as the column sub matrix whose columns are listed in the set T.

Def. Pseudo inverse:

$$A^{\dagger} = (A^*A)^{-1}A^*$$

CoSaMP uses an approach inspired by the restricted isometry property. The sampling matrix $\mathbf{\Phi}$ has restricted isometry constant $\delta_s \ll 1$. For an s-sparse signal x, the vector $\mathbf{y} = \mathbf{\Phi}^* \mathbf{\Phi} \mathbf{x}$ serves as a proxy for the signal because the energy in each set of s components of \mathbf{y} approximates the energy in the corresponding s components of \mathbf{x} . In particular, the largest s entries of the proxy \mathbf{y} point toward the largest s entries of the signal \mathbf{x} . Since the samples have the form $\mathbf{u} = \mathbf{\Phi} \mathbf{x}$, we can obtain the proxy just by applying the matrix $\mathbf{\Phi}^*$ to the samples.

Theorem: (CoSaMP). Suppose that Φ is an $m \times N$ sampling matrix with RIC $\delta_{2s} \leq c$. Let $\mathbf{u} = \mathbf{\Phi} \mathbf{x} + \mathbf{e}$ be a vector of samples of an arbitrary signal, contaminated with arbitrary noise. For a given precision parameter η , the algorithm CoSaMP produces a 2s-sparse approximation \mathbf{a} that satisfies

$$||\mathbf{x} - \mathbf{a}||_2 \leq C \cdot \max \left\{ \eta, rac{1}{\sqrt{s}} ||\mathbf{x} - \mathbf{x_s}||_1 + ||\mathbf{e}||_2
ight\}$$

Where \mathbf{x}_s is a best s-sparse approximation to \mathbf{x} . The running time is $\mathcal{O}(\mathcal{L} \cdot \log(||\mathbf{x}||_2/\eta))$, where \mathcal{L} bound the cost of a matrix-vector multiply with $\mathbf{\Phi}$ or $\mathbf{\Phi}^*$ The working storage use is $\mathcal{O}(N)$

Q3

Note: D_i is the i^{th} column of dictionary D

• Derivative filter is applied via convolution of an image *I* with a derivation kernel.

 $\hat{I} = K * I$, we use vectorized I for our dictionary representation .

This convolution can be represented by a matrix A as convolution is a linear operation, s.t., $vec(\hat{I}) = A. \, vec(I)$

$$vec(I) = DS \Rightarrow A. vec(I) = ADS$$

$$AD = [AD_1|AD_2|\dots|AD_n]$$

$$\therefore \hat{D} = [AD_1 | AD_2 | \dots | AD_n]$$

So our new dictionary \hat{D} is obtained by applying the same derivative filter on the columns of the old dictionary D.

• Rotating an image means re-positioning the cells of that image.

So a rotated version of a vectorized image I can be computed by multiplying it by a certain matrix, rotated $(I) = \hat{I} = RI$, where each row and column in R have at most 1 non-zero element whose value is 1.

Rotation by lpha can be denoted as $I_lpha=R_lpha I$, similarly rotation by eta can be denoted as $I_eta=R_eta I$

$$I = DS$$

$$I_{lpha}=R_{lpha}I=R_{lpha}DS$$

$$R_{lpha}D = [R_{lpha}D_1|R_{lpha}D_2|\dots|R_{lpha}D_n]$$

$$\therefore D^{\alpha} = [R_{\alpha}D_1|R_{\alpha}D_2|\dots|R_{\alpha}D_n]$$

Similarly,
$$D^{eta} = [R_{eta}D_1|R_{eta}D_2|\dots|R_{eta}D_n]$$

As some images are rotated by α while some by β , we need both D^{α} and D^{β} .

$$\therefore \hat{D} = [D^{lpha}|D^{eta}]$$

So our new dictionary \hat{D} is obtained by column concatenation of two dictionaries which are obtained by rotating each column of the old dictionary D (considering it as an image) by α and by β respectively.

 $ullet \quad I_{new}^i(x,y) = lpha(I_{old}^i(x,y))^2 + eta(I_{old}^i(x,y)) + \gamma$

Let the vectorized form of our image be *X*.

$$X = DS$$

$$X_i = D^i$$
. S , where D^i is the i^{th} row of D .

$$X_i^2 = (\sum_j D_{ji} S_j)^2$$

$$X_{i}^{2} = \sum_{j} D_{ji}^{2} S_{j}^{2} + 2 \sum_{x,y,x>y} D_{xi} D_{yi} S_{x} S_{y}$$

 \therefore Dictionary D^{sq} for squared signal:

$$D^{sq} = [D^s|D^q]$$
, where

 $D^s = [D_1^2 | D_2^2 | \dots | D_n^2], D_i^2$ is the column vector obtained by squaring elements of D_i

$$D^q = 2[D_1D_2|D_1D_3|\dots|D1D_n|D_2D_3|D_2D_4|\dots|D_2D_n|\dots|D_{n-1}D_n],$$

 D_iD_j is the column vector obtained by element wise product of D_i

and D_i

$$aX + b = aDS + b$$

 $aDS + b = [aD|b\mathbf{1}]S'$, $\mathbf{1}$ is the column vector with every element being 1 and S' is S row concatenated with 1.

 \therefore Our new Dictionary \hat{D} is:

$$\hat{D} = [\alpha D^{sq} | \beta D | \gamma \mathbf{1}]$$

- A blur kernel is applied to the image, so as seen in the first part to obtain the new dictionary \hat{D} we have to apply the same blur kernel to the columns of the old dictionary D.
- *I* is our image on which convolution is to be applied

$$I^{'}=K*I, K=\sum_{i}lpha_{i}K_{i}, K_{i}$$
 is the i^{th} kernel in the set

$$K*I = \sum_i \alpha_i K_i * I$$

X is the vectorized form of I

 $vec(K_i * I) = A^i . X$, for some matrix A^i

$$X = DS$$

$$A^i$$
. $X = A^i$. DS

$$A^iD=[A^iD_1|A^iD_2|\dots|A^iD_n]$$

$$D^i = A^i D$$

$$\sum_i lpha_i K_i * I = \sum_i lpha_i A^i X = \sum_i lpha_i A^i DS = \sum_i lpha_i D^i S$$

$$\sum_i lpha_i D^i S = \sum_i D^i (lpha_i S)$$

$$\therefore vec(I^{'}) = \sum_{i} D^{i}(\alpha_{i}S)$$

$$\therefore \hat{D} = [D^1 | D^2 | \dots | D^C]$$
, where C is the cardinality of the set of kernels

So our new Dictionary \hat{D} is concatenation of dictionaries each obtained as described in the previous part for each kernel in the set.

Q4

• The solution to the following optimization problem:

$$\min_{A} \left| \left| A - A_r
ight|
ight|_F^2 ext{ where } ext{rank}(A_r) = r, r \leq \min(m,n), A \in \mathbb{R}^{m imes n}$$

is given using SVD of A as follows:

$$A_r = \sum_{i=1}^r S_{ii} u_i v_i^t, ext{ where } A = USV^T$$

- This optimization problem occurs in Image Compression.
- Instead of storing mn intensity values, we store (n+m+1)r intensity values where r is the number of stored singular values (or singular vectors). The remaining m-r singular values (and hence their singular vectors) are effectively set to 0.

- This is called as storing a low-rank (rank *r*) approximation for an image.
- SVD gives the best possible rank-r approximation of any matrix.

•

$$R^* = \min_{R} ||A - RB|| \text{ s.t. } R^TR = I \text{ } //\text{R} \text{ is orthonormal}$$

$$\min_{R} ||A - RB||_F^2 = \min_{A} trace((A - RB)^T(A - RB))$$

$$= \min_{R} trace(A^TA - 2A^TRB + B^TB)$$

$$= \max_{R} trace(A^TRB)$$

$$= \max_{R} trace(RBA^T) \text{ } //\text{trace}(FG) = \text{trace}(GF)$$

$$\text{--Let } BA^T = Q, \text{ SVD of } Q \text{ gives } Q = UDV^T$$

$$= \max_{R} trace(RUDV^T)$$

$$= \max_{R} trace(V^TRUD)$$

$$= \max_{R} trace(Z(R)D) \text{ where } Z(R) = V^TRU$$

$$= \max_{R} \sum_{i} z_{ii} d_{ii} \leq \sum_{i} d_{ii} \text{ } //Z(R)^TZ(R) = I$$
 The maximum is achieved for $Z(R) = I$, i.e,
$$V^TRU = I \Rightarrow R = VU^T$$

- This optimization problem arises in Bases learning using Union of Ortho-normal Bases.
- We represent a signal in the following way:

$$X = AS + \epsilon \ (A,S) = \min_{A,S} \left| \left| X - AS
ight|
ight|^2 + \lambda \left| \left| S
ight|
ight|_1$$

• A is an over-complete dictionary, which is assumed to be a union of ortho-normal bases, in the form

$$A = [A_1|A_2|\dots|A_M] \ orall i, 1 \leq i \leq M, A_iA_i^T = I$$

• This application of SVD is called orthogonal Procrustes problem.

Q5

<u>Hyperspectral Unmixing</u> is a procedure that decomposes the measured pixel spectrum of hyperspectral data into a collection of constituent spectral signals and a set of corresponding fractional abundances.

In general, the linear mixture model (LMM) is recognised as an acceptable model for Hyperspectral Unmixing. The LMM is describes as follows. Let $y_m[n]$ denote the hyperspectral camera's measurement at spectral band m and pixel n. Let, $y[n] = [y_1[n], y_2[n], \dots, y_M[n]]^T \in \mathbb{R}^M$, where M is the number of spectral bands. The LMM is given by:

$$y[n] = \Sigma_{i=1}^N \mathbf{a}_i s_i + \mathbf{v}[n] = \mathbf{A} s[n] + \mathbf{v}[n]$$

for $n = 1, \ldots, L$, where,

- each $\mathbf{a}_i \in \mathbb{R}^M$, $i=1,\ldots,N$ is called an *endmember signature vector*, which contains the spectral components of a specific material (indexed by i) in the scene.
- N Is the number of endmembers , or material, in the scene. $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_N] \in \mathbb{R}^{M \times N}$ Is called the *endmember matrix*.
- $s_i[n]$ describes the contribution of material i at pixel n. $s[n] = [s_1[n], \ldots, s_N[n]] \in \mathbb{R}^N$ Is called the *abundance vector* at pixel n.
- *L* Is the number of pixels
- \bullet $\mathbf{v}[n] \in \mathbb{R}^M$ is noise.

Non-negative matrix factorisation is posed as a low-rank matrix approximation problem where, given a data matrix $\mathbf{Y} \in \mathbb{R}^{M \times L}$, the task is to find a pair of non-negative matrices $\mathbf{A} \in \mathbb{R}^{M \times N}$, $\mathbf{S} \in \mathbb{R}^{N \times L}$, with $N < min\{M, L\}$, that solves

$$min_{A>0,S>0}||\mathbf{Y}-\mathbf{AS}||_F^2$$

In blind HU the connection is that the NMD factors obtained, $\bf A$ and $\bf S$, can serve as estimates of the endmembers and abundances.

$$\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_N] \in \mathbb{R}^{M imes N} \ s[n] = [s_1[n], \dots, s_N[n]] \in \mathbb{R}^N$$

In the HU equation mentioned above, y[n], s[n] are for a pixel at position n. In the NMF equation **S** and **Y** will be concatenated s[n] and y[n]. And so we can reframe hyperspectral unmixing problem into non-negative matrix factorisation problem.

$$min_{A>0.S\in S^L} ||\mathbf{Y}-\mathbf{AS}||_F^2 + \lambda \cdot g(\mathbf{A}) + \mu \cdot h(\mathbf{S})$$

Where, $\mathbf{S}^l = \{\mathbf{S}|s[n] \geq \mathbf{0}, \mathbf{1}^T\mathbf{s}[n] = 1, 1 \leq n \leq L\}$, g and h are regularisers, which vary from one work to another and $\lambda, \mu > 0$ are some constants.

MVC-NMF

$$min_{A \geq 0, S \in S^L} ||\mathbf{Y} - \mathbf{AS}||_F^2 + \lambda \cdot (\operatorname{vol}(B))^2$$

Where, vol(B) is the simplex volume corresponding to **A**, in which $b_i = C^{\dagger}(a_i - d)$ for all I This is essentially a variation of the VolMin formulation.

ICE

Iterated constrained endmember (ICE) and sparsity promoting ICE (SPICE) avoid this issue by replacing $(\text{vol}(B))^2$ with a convex surrogate, specifically, $g(\mathbf{A}) = \sum_{I=1}^{N-1} \sum_{j=i+1}^{N} ||a_i - a_j||_2^2$, which is the sum of differences between vertices.

$$min_{A \geq 0, S \in S^L} ||\mathbf{Y} - \mathbf{AS}||_F^2 + \Sigma_{I=1}^{N-1} \Sigma_{j=i+1}^N ||a_i - a_j||_2^2$$

Dictionary Learning

For the abundance regulariser h, the design principle usually follows that of sparsity.

$$min_{A>0,S\in S^L} ||\mathbf{Y}-\mathbf{AS}||_F^2 + \mu\cdot ||\mathbf{S}||_{1,1}$$

Where, $||\mathbf{S}||_{1,1} = \Sigma_{n=1}^L \Sigma_{I=1}^N |s_i[n]|$. The idea is to learn the dictionary \mathbf{A} by joint dictionary and sparse signal optimization.

$$L_{1/2}$$
-NMF

Similar to the DL optimisation techniques, $L_{1/2}$ -NMF uses a non-convex, but stronger sparsity-promoting regulariser based on the $l_{1/2}$ quasi norm. Apart from sparsity, exploitation of spatial contextual information via TV regularisation may be used.

$$min_{A \geq 0, S \in S^L} ||\mathbf{Y} - \mathbf{AS}||_F^2 + \mu \cdot ||\mathbf{S}||_{1/2, 1/2}^{1/2}$$