Physics 2211 - Lab 4 Oscillations

Advaith Menon¹

¹Computer Engineering Georgia Institute of Technology

March 13th, 2024

Introduction

Aim of the experiment

Prerequisites

Newton's Second Law Hooke's Law **Energy Principle** Initial Conditions

Experiment

Formulae Code

Conclusion

Introduction

Aim of the experiment

Prerequisites

Newton's Second Law Hooke's Law Energy Principle Initial Conditions

Experiment

Formulae Code

Conclusion

Aim

Purpose of this lab assignment

- Analyze the motion of a mass oscillating under the effect of spring force and gravity
- Verify the energy principle for this system.

Introduction

Aim of the experiment

Prerequisites

Newton's Second Law Hooke's Law Energy Principle Initial Conditions

Experiment

Formulae Code

Conclusion

Newton's Second Law

Quantitative analysis of motion

"The net force acting on a body is defined as the change in its momentum per unit time."

$$\vec{F}_{net} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} \tag{1}$$

where,

- \vec{F}_{net} = Net force acting on a body
- m = Mass of the body
- $\Delta \vec{p} = m \times \Delta \vec{v} =$ Change in momentum

For this experiment, we turn this into the **update** form:

$$\vec{p_f} = \vec{p_i} + \vec{F}_{net} \times \Delta t$$

Dividing by m on both sides:

$$\vec{v_f} = \vec{v_i} + \frac{\vec{F}_{net}}{m} \cdot \Delta t$$

Hooke's Law

Measuring spring forces

"The magnitude of the force exerted by a stretched spring is directly proportional to its change in length."

$$\vec{F}_s = -k \left(L - L_0 \right) \hat{L} \tag{3}$$

where,

- \vec{F}_s = The vector force exerted by the spring.
- L = The current length of the spring (scalar).
- $\hat{L}=$ The unit vector pointing from the fixed end of the spring to the free end.
- L_0 = The natural length of the spring.

Energy Principle

"The change in energy of a system is equivalent to the external work done on it."

$$\Delta E = W_{ext} \tag{4}$$

where,

- ΔE = Change in energy of the system.
- W_{ext} = The external work done by the surroundings.

Initial Conditions

- Mass of ball, $m = 4.02 \times 10^{-1} \text{ m}$
- Initial position of ball, $\vec{r}_{ball} = \langle -1.20 \times 10^{-1}, -6.33 \times 10^{-1}, 0 \rangle$ m
- Initial velocity of ball, $\vec{v}_{ball} = \langle 0, 0, 0 \rangle \text{ ms}^{-1}$
- Stiffness of spring, $k = 6.83 \times 10^0 \text{ Nm}$
- Relaxed length of spring, $L_0 = 1.23 \times 10^{-1} \text{ m}$

System and Surroundings

• System: Ball + Spring + Earth

ŏ•00

• Surroundings: Everything else

00**0**0

Diagram

Free-Body Diagram of Spring

0000

Just after it's released

Introduction

Aim of the experiment

Prerequisites

Newton's Second Law Hooke's Law Energy Principle Initial Conditions

Experiment

Formulae Code

Conclusion

Formulae

•
$$\vec{F}_{grav} = \langle 0, -m \cdot g, 0 \rangle$$

•
$$\vec{L} = \vec{r}_{ball} - \langle 0, 0, 0 \rangle$$

•
$$s = |\vec{L}| - L_0$$

•
$$\vec{F}_{spring} = -k_s s \hat{L}$$

•
$$\vec{F}_{net} = \vec{F}_{spring} + \vec{F}_{grav}$$

Velocity and position update

•
$$K = \frac{1}{2} m_{ball} |\vec{v}_{ball}|^2$$

•
$$U_g = m_{ball} g \left(\vec{r}_{ball} \bullet \hat{j} \right)$$

•
$$U_s = \frac{1}{2}k_s s^2$$

Conditions alone

```
# System mass
ball.m = .402
deltat = 1/210 #choose this
ball.pos = vector(X[0],Y[0],0)
ball.vel = vector(0, 0, 0)
# Spring constant
k s = 6.83
# Relaxed length of spring
L0 = .123
L = ball.pos - spring.pos
Lhat = L/mag(L)
s = mag(L) - L0
# compute the system energies
K = 0.5 * ball.m * mag(ball.vel) ** 2 # kinetic energy
Ug = ball.m * g * ball.pos.y # gravitational potential energy
Us = 0.5 * k s * s**2 # spring potential energy
E = K + Us + Ug # total energy
# Calculate gravitational force
Fgrav = vector(0, -ball.m * q, 0)
# Calculate spring force on mass by spring
```


Continued

```
# Calculate the net force
Fnet = Fspring + Fgrav
# Apply the Momentum Principle
ball.vel = ball.vel + Fnet / ball.m * deltat
ball.pos = ball.pos + ball.vel * deltat
# Update the spring
L = ball.pos - spring.pos
Lhat = hat(L)
s = mag(L) - L0
spring.axis = L
trail.append(pos=ball.pos)
# Calculate energy changes
K = 0.5 * ball.m * mag(ball.vel) **2
deltaK = K - K i; print (deltaK)
Ug = ball.m * g * ball.pos.y
deltaUg = Ug - Ug_i
Us = 0.5 * k * s * s * 2
deltaUs = Us - Us i
E = K + Uq + Us
deltaE = E - E i
```


Energy graphs

Introduction

Aim of the experiment

Prerequisites

Newton's Second Law Hooke's Law Energy Principle Initial Conditions

Experiment

Formulae Code

Conclusion

What does it mean?

Validity of Energy Principle

- Q: For your model system, is the energy principle satisfied? Justify your answer by discussing briefly your plots of energy changes.
- $W_{ext} = 0 \implies \Delta E = 0$, hence valid

What does it mean?

Oscillation Period

- Q: Using the data you obtained in Tracker, make two separate estimates of oscillation periods: first, by estimating the period of oscillation from the x position data and second, by estimating the period of oscillation from the y position data. Compare the two estimates and discuss.
- Time period is the difference between two successive crests/trough in the x-t graph - stems from the definition "the time taken for one complete to-and-fro oscillation.
- $T_x = 1.425 \text{ s}$
- $T_y = 1.330 \text{ s}$
- Difference because there are two different SHM's in two directions - x and y.
- Other causes could be drag and tracker inaccuracy.

