Visual-Semantic Graph Attention Network for Human-Object Interaction Detection

Zhijun Liang, Yisheng Guan, and Juan Rojas Guangdong University of Technonlogy 2020

> 인공지능 연구실 석사과정 구자봉

문제 정의:

HOI(Human Object Interaction)

이미지에서 오브젝트 디텍션, 인간과 상호작용이 큰 객체쌍을 선택, 술어(상관관계)를 찾는 것이 목적

Instance Detection Interaction Inference

문제 제기:

왼쪽은 명확히 <human,lick,knife>임, 오른쪽은 오브젝트 두개의 쌍으로는 조금 애매함 <human,hold,knife>, <human,?,cake>

목표:

비주얼정보(이미지)와 시맨틱정보(의미론적)가 모두 포함된 그래프 기반 모델을 통해 HOI 문제 접근

Recurrent Neural Network(RNN):

RNN (Recurrent Neural Network)

Graph Neural Network(GNN):

자기 자신을 주위의 노드들과 과거 자신의 feature 를 입력으로 새로운 자신을 임베딩하여 만듬

$$rac{h_u^{k-1}}{|\{u|\{u,v\}\in E\}|}+B_k h_v^{k-1})$$

Graph Convolutional Network(GCN):

$$h_v^k = \sigma(W_k \sum_{\{u | \{u,v\} \in E\} \cup \{v\}}$$

$$h_v^k = \sigma(W_k \sum_{\{u | \{u,v\} \in E\} \cup \{v\}} rac{h_u^{k-1}}{\sqrt{|\{w | \{v,w\} \in E\}||\{w | \{u,w\} \in E\}|}})$$

Graph Attention Networks(GATs):

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

Learning Human-Object Interactions by Graph Parsing Neural Networks (GPNN):

Detecting Human-Object Interactions via Functional Generalization

(human, eat, __

Visual-Semantic Graph Attention Network for Human-Object Interaction Detection(VS-GATs)

VS-GATs 목표 정의

$$G = (V, E)$$
 그래프 정의 $e_{i,j} = (v_i, v_j) \in E$

image I class labels \mathbf{R}

이미지와 라벨 주어짐

$$P(\mathbf{R}, G_C, G_V, G_S \mid I) = P(G_V, G_S \mid I)$$

$$P(G_C \mid G_V, G_S, I)$$

$$P(R \mid G_C, G_V, G_S, I).$$

이미지와 라벨 주어졌을 때 Visual Graph와 Semantic Graph를 만들 고, 둘을 컨켓하여 Combine Graph 생성, 이를 통해 R 유추

VS-GATs 피쳐

Visual Features:

FasterRCNN (RestNet-50-FPN)에서 오브젝트 추출 ROI pooling layer의 Feature를 사용함

Spatial Features:

$$s_{rs} = \left[\frac{x_i}{W}, \frac{y_i}{H}, \frac{x_j}{W}, \frac{y_j}{H}, \frac{A}{A^I} \right]$$

$$s_{rp} = \left[(\frac{x_i - x_i'}{x_j' - x_i'}), (\frac{y_i - y_i'}{y_j' - y_i'}), \log(\frac{x_j - x_i}{x_j' - x_i'}), \right]$$

$$\log(\frac{y_{j}-y_{i}}{y_{j}^{'}-y_{i}^{'}}), \frac{x_{c}-x_{c}^{'}}{W}, \frac{y_{c}-y_{c}^{'}}{H}$$

Objec Detection

Feature Extraction

Semantic Features:

Original Semantic Graph

word2vec vectors 300D 사용하여 유사도에 따

른 Feature 사용

VS-GATs의 Visual GATs 수식

FasterRCNN, ROI 풀링 피쳐로 초기 노드피쳐 와 에찌피쳐를 사용하여 그래프 생성

$$\mathbf{h}_{e_{ij}} = f_{edge}([\mathbf{h}_{v_i}, \mathbf{s}_{ij}, \mathbf{h}_{v_j}])$$

스페셜 피쳐와 노드피쳐를 사용해에찌함수를 사용해 히 든피쳐를 만듬

$$\mathbf{z}_{h_i} = \sum_{j \in \mathcal{N}_i} \alpha_{ij} (\mathbf{h}_{v_j} \oplus \mathbf{h}_{e_{ij}})$$

주위의 모든 노드와 히든피쳐를 계산한 값들을 다 더함

$$\tilde{\mathbf{h}}_{v_i} = f_{update}([\mathbf{h}_{v_i}, \mathbf{z}_{h_i}])$$

자신을 업데이트 함

VS-GATs의 Semantic GATs 수식

Word2vec 300D를 통해 유사도 피쳐를 사용하여 그래프 생성

$$\alpha'_{ij} = softmax(f'_{attn}(f'_{edge}([\mathbf{w}_i, \mathbf{w}_j]))).$$

비쥬얼 그래프에서 사용된 에찌 함수와 어텐션 함수로 에 찌의 가중치 연산

$$\mathbf{z}_{w_i} = \sum_{j \in N_i} \alpha'_{ij} \mathbf{w}_j.$$

주위의 모든 노드와 히든피쳐를 계산한 값들을 다 더함

$$\tilde{\mathbf{w}}_i = f'_{update}([\mathbf{w}_i, \mathbf{z}_{w_i}]).$$

자신을 업데이트 함

VS-GATs의 Combined GATs

VS-GATs의 Readout and Inference 수식

가장 강하게 연결된 사람과 객체 쌍이 선택 되면 다중 분류 문제임

$$\mathbf{S}_a = sigmoid(f_{readout}(a))$$

$$\mathbf{S}_{\mathbf{R}} = s_h * s_o * \mathbf{S}_{\mathbf{a}}.$$

VS-GATs의 Training

$$\mathcal{L} = \sum_{i} \sum_{j} BCE(\mathbf{S}_{a_{ji}}, Y_{ji}^{label})$$

멀티 클래스 크로스 엔트로피 사용

Dataset

HICO-DET Images 47,776 (38,118, 9,658) Objects 80 (airplane, apple...) Verbs 117 (carry, catch...) HOI 600 (airplane – board, direct, exit, fly...)

HOI Remark >= 150k

실험 HICO-DET

Method	Object Detector	Full(600)	Rare(138)↑	Non-Rare(462)↑
InteractNet [9]	Faster R-CNN with ResNet-50-FPN	9.94	7.16	10.77
GPNN [28]	Deformable ConvNets [7]	13.11	9.34	14.23
iCAN [8]	Faster R-CNN with ResNet-50-FPN	14.84	10.45	16.15
Xu et al. [36]	Faster R-CNN with ResNet-50-FPN	14.70	13.26	15.13
Gupta et al. [12]	Faster R-CNN with ResNet-152	17.18	12.17	18.68
Li et al. $RP_{T2}C_D$ [18]	Faster R-CNN with ResNet-50-FPN	17.22	13.51	18.32
PMFNet [34]	Faster R-CNN with ResNet-50-FPN	17.46	15.65	18.00
Peyre et al. [26]	Faster R-CNN with ResNet-50-FPN	19.40	14.60	20.90
Ours(VS-GATs)	Faster R-CNN with ResNet-50-FPN	19.66	15.79	20.81

Table 1. mAP performance comparison with SOTA on the HICO-DET test set.

실험

실험 with out 절제실험

Method	Full [†]	Rare↑	Non-Rare↑
Ours(VS-GATs)	19.66	15.79	20.81
$01 G_V$ only $02 G_S$ only	18.81	13.96	20.26
	14.61	11.76	15.46
03 w/o attention 04 w/o spatial features in G_C	19.01	14.12	20.47
	18.52	14.28	19.78
05 Message passing in G_C	19.23	14.31	20.70
06 Unified V-S graph	19.39	14.84	20.75

Table 2. mAP performance for various ablation studies.

결론

주요 사람 – 오브젝트의 인터렉션뿐만 아니라 subsidiary relations 도 활용한 연구를 진행함

Q&A

