Nonlinear Optimization Lecture 10 Garrick Aden-Buie

Tuesday, February 16, 2016

Last Time Review

- f convex: $\bar{x} \min \Leftrightarrow \nabla f(\bar{x})^T (x \bar{x}) \ge 0 \ \forall x \in S$
- \bullet *D* feasible directions
- F improving directions
- $F_0: \nabla f(\bar{x})^T d < 0$
- \bar{x} local min $\Rightarrow F \cap D = \emptyset$
 - The converse is true (\Leftarrow) when f is pseudoconvex

Lemma

min
$$f(x)$$

s.t $g_i(x) \le 0$ $i = 1, ..., m$

Let
$$S = \{x \in \mathbb{R}^n : g_i(x) \le 0, i = 1, ..., m\}, \bar{x} \in S$$

Define $I = \{i : g_i(\bar{x}) = 0\}$, called the *index set for binding constraints*. There are m number of inequality constraints but some of them are binding (active, tight) but some of them are non-binding.

Assume that $g_i : i \in I$ are differentiable at \bar{x} . And that $g_i : i \notin I$ are continuous at \bar{x} .

 $G_0 = \{d : [\nabla g_i(\bar{x})]^T d < 0 \ \forall i \in I\}$ for all binding constraints.

Then (this is the lemma) $G_0 \subset D^1$.

Note that $\nabla g_i(\bar{x})d$ gives the descent direction for g_i .

Remark. If $g_i : i \in I$ strictly pseudoconvex at \bar{x} , then $G_0 = D$.

• Convexity not needed for the following, just differentiability

$$-F_0 \subset F$$
$$-G_0 \subset G$$

•
$$\bar{x} \text{ local min} \Rightarrow F \cap D = \emptyset$$

 $\Rightarrow F_0 \cap G_0 = \emptyset$

 $^{^{1}}D$ is the set of all feasible directions, but G_{0} is a limited set of feasible directions from boundary points.

Figure 1: Illustration of the lemma.

Theorems of Alternatives

Farkas' Lemma (Theorem 2.4.5 in textbook)

Given, $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, then exactly one of the following is true (I $\Leftrightarrow \neg$ II).

I. $Ax \le 0$, $c^t x > 0$ for some $x \in \mathbb{R}^n$ - Inner-product of Ax is less than 0, $c^T x > 0$ implies that c and x have an acute angle.

- II. $A^T y = c, \ y \ge 0$ for some $y \in \mathbb{R}^m$
 - c can be represented as a linear combination of the row vectors of A, and $y \ge 0$ means that it must be a non-negative linear combination.

Remark. This is directly related to \bar{x} local min $\Rightarrow F_0 \cap G_0 = \emptyset$

Gordon's Lemma

Exactly one of the following is true:

I. Ax < 0 for some $x \in \mathbb{R}^n$

II. $A^T y = 0$ for some $y \ge 0, y \ne 0, y \in \mathbb{R}^m$

Proof. I. Let

Figure 2: Illustration of Farkas' Lemma

Figure 3: Illustration of Gordon's Lemma

$$e = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^m$$

$$\hat{c} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$\hat{A} = \begin{bmatrix} A & e \end{bmatrix}$$

$$\hat{x} = \begin{bmatrix} x \\ s \end{bmatrix}$$

Farkas' lemma: I.

$$\hat{A}\hat{x} \le 0, \hat{c}^T\hat{x} > 0 \Rightarrow \begin{bmatrix} A & e \end{bmatrix} \begin{bmatrix} x \\ s \end{bmatrix} = Ax + es \le 0$$

But notice then that Ax < 0, which is equivalent to system I from Gordon's lemma.

For II, let

$$\hat{A}^T y = \hat{c}, \ y \ge 0 \Rightarrow \begin{bmatrix} A & e \end{bmatrix}^T y = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \Rightarrow A^T y = 0, \ e^T y = 1$$

So Farkas' system II and Gordon's system II are equivalent.

Fritz-John Optimality Conditions

Theorem

min
$$f(x)$$

s.t $g_i(x) \le 0$ $i = 1, ..., m$

- $g_i : i \in I$ differentiable at \bar{x}
- $g_i : i \notin I$ continuous at \bar{x}
- f differentiable at \bar{x}

If \bar{x} local min, then $\exists u_0, u_1 : i \in I$ such that

$$u_0 \nabla f(\bar{x}) + \sum_{i \in I} u_i \nabla g_i(\bar{x}) = 0$$

for $u_0, u_1 : i \in I \ge 0$ and $(u_0, u_1 : i \in I) \ne 0^2$.

²There are many u_i and at least one of them must be non-zero and they are non-negative.

Furthermore, if g_i is differentiable at \bar{x} for i = 1, ..., m, then we can say that if \bar{x} is a local minimum, then $\exists u_i : i = 0, 1, ..., m$ such that

$$u_0 \nabla f(\bar{x}) + \sum_{i=1}^m u_i \nabla g_i(\bar{x}) = 0$$
$$u_i g_i(\bar{x}) = 0 \quad i = 1, \dots, m$$
$$u_i \ge 0 \quad i = 0, 1, \dots, m$$
$$(u_i : 0, 1, \dots, m) \ne 0$$

Lines 3 and 4 above are called complimentary conditions.

Proof. Let

$$A = \begin{bmatrix} \nabla f(\bar{x})^T \\ \nabla g_i(\bar{x})^T & i \in I \end{bmatrix}$$

Using Gordon's lemma, system I, where we use d instead of x. System I implies that $\exists d \colon Ad < 0, \nabla f(\bar{x})^T d < 0$ and $\nabla g_i(\bar{x})^T d < 0 \ \forall i \in I$.

This means that $\exists d : d \in F_0, \exists d : d \in G_0$. Then $\exists d : d \in F_0 \cap G_0$. And then finally, this means that $F_0 \cap G_0 \neq \emptyset$.

System II says that $\Rightarrow y \colon y = \neq 0, \ A^T y = 0.$ Let

$$y = \begin{bmatrix} u_0 \\ u_i \colon i \in I \end{bmatrix}$$

$$A^T y = u_0 \nabla f(\bar{x}) + \sum_{i \in I} u_i \nabla g_i(\bar{x}) = 0$$

$$u_i \ge 0 \quad i = 0, 1, \dots, m$$

$$(u_i \colon 0, 1, \dots, m) \ne 0$$

Then $\Rightarrow \bar{x}$ is a Fritz-John point (but we don't know if it's a local minimum or not yet).

Summarizing, I: $F_0 \cap G_0 \neq \emptyset$ and II: \bar{x} Fritz-John point.

$$ar{x}$$
 local min $\Rightarrow F \cap D = \emptyset$
 $\Rightarrow F_0 \cap G_0 = \emptyset$
 \Leftrightarrow not I
 \Leftrightarrow II
 $\Leftrightarrow \bar{x}$ is a F-J point

Karush-Kuhn-Tucker (KKT) Conditions

$$\min \quad f(x)$$
s.t $g_i(x) \le 0 \quad i = 1, \dots, m$

Let \bar{x} feasible and $f, g_i : i \in I$ are differentiable at \bar{x} and $g_i : i \notin I$ are continuous at \bar{x}

If $\nabla g_i(\bar{x})$: $i \in I$ are linearly independent and \bar{x} is a local minimum, then $\exists u_i : i \in I$ such that

$$\nabla f(\bar{x}) + \sum_{i \in I} \nabla g_i(\bar{x}) = 0$$

where $u_i \geq 0 \ \forall i$.

Now we can say that if \bar{x} is a local minimum $\Leftrightarrow \bar{x}$ is a Fritz-John point and $\Leftrightarrow \bar{x}$ is a KKT point under constraint qualtifications.

If $g_i \; \forall i=1,\ldots,m$ are differentiable, KKT conditions are

$$\nabla f(\bar{x}) + \sum_{i \in I}^{m} u_i \nabla g_i(\bar{x}) = 0$$

$$u_i g_i(\bar{x}) = 0 \quad \forall i = 1, \dots, m$$

$$u_i \ge 0 \quad \forall i = 1, \dots, m$$
 \bar{x} is feasible