Kernel Herding

1. Finite-dimensional Kernel Herding

1.1 Setting.

Let $X = \{-1, 1\}^d$ and

$$\mathcal{H} := \{ f : X \to \mathbb{R} \mid f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}, \text{ and } \Phi(x) = (x, xx^T) \}.$$

The feature map $\Phi(x) = (x, xx^T)$ is composed of x and of all of its pairwise products $xx^T, x \in X$.

For $f, g \in \mathcal{H}$,

$$\langle f, g \rangle_{\mathcal{H}} := \sum_{i=1}^{d} f_i(x) f_i(x)$$

defines inner product. Thus, $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ is a Hilbert space. Moreover, the Hilbert space \mathcal{H} is also a RKHS with reproducing kernel $k(x, y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}}$ for $x, y \in \mathcal{X}$. Indeed,

$$k(x,y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}} = \sum_{i=1}^{d} \Phi_i(x) \Phi_i(y) = \langle x, y \rangle_2.$$
 (1.1)

And for $t \in \mathcal{X}$,

$$\Phi(t)(x) = k(t, x) \in \mathcal{H}.$$

is a feature map $\Phi: X \to \mathcal{H}$ for the kernel k such that

$$k(x, y) = \langle k(z, x), k(z, y) \rangle_{\mathcal{H}}$$

for $x, y, z \in \mathcal{X}$.

We denote $\mathcal{M} \subset \mathcal{H}$ the marginal polytope as $\mathcal{M} = \text{conv}(\{\Phi(x) \mid x \in \mathcal{X}\})$. In this setting, we compute the expectation

$$\mu(t) := \mathbb{E}_{p(x)} \Phi(x)(t) = \sum_{i=1}^{2^d} p(x_i) \Phi(x_i)(t) \in \mathcal{M}.$$

such that $\sum_{i=1}^{2^d} p(y_i) = 1$ where $x_i \in \{-1, 1\}^d$. Then

$$\langle \mu, \mu \rangle_{\mathcal{H}} = \left\langle \sum_{i=1}^{2^{d}} p(x_{i})k(t, x_{i}), \sum_{j=1}^{2^{d}} p(x_{j})k(t, x_{j}) \right\rangle_{\mathcal{H}}$$

$$= \sum_{i=1}^{2^{d}} \sum_{j=1}^{2^{d}} p(x_{i})p(x_{j}) \left\langle k(t, x_{i}), k(t, x_{j}) \right\rangle_{\mathcal{H}}$$

$$= \sum_{i=1}^{2^{d}} \sum_{j=1}^{2^{d}} p(x_{i})p(x_{j})k(x_{i}, x_{j})$$

$$= \sum_{i=1}^{2^{d}} \sum_{j=1}^{2^{d}} p(x_{i})p(x_{j})\langle x_{i}, x_{j} \rangle_{2}.$$

Let $f(x) = \sum_n w_n k(t_n, x)$ and $g(x) = \sum_m w_m k(t_m, x)$, where $t_n, t_m \in \mathcal{X}$ are distinct points such that $k(t_n, x)$ corresponds to a vertex of \mathcal{M} . Then,

$$\begin{split} \langle f,g \rangle_{\mathcal{H}} &= \sum_{n} \sum_{m} w_{n} w_{m} k(t_{n},t_{m}) \\ &= \sum_{n} \sum_{m} w_{n} w_{m} \langle t_{n},t_{m} \rangle_{2}. \end{split}$$

Finally, we have

$$\langle f, \mu \rangle_{\mathcal{H}} = \left\langle \sum_{n} w_{n} k(t_{n}, x), \sum_{j=1}^{2^{d}} p(x_{j}) k(t, x_{j}) \right\rangle_{\mathcal{H}}$$

$$= \sum_{n} \sum_{i=1}^{2^{d}} w_{n} p(x_{i}) k(t_{n}, x_{i})$$

$$= \sum_{n} \sum_{i=1}^{2^{d}} w_{n} p(x_{i}) \langle t_{n}, x_{i} \rangle_{2}.$$

1.2 Experimental Results.

The convergence rate for finite Kernel with any distribution $\mu \in \operatorname{interior}(\mathcal{M})$ is $\frac{1}{T^2}$ for open loop step-size $\gamma_t = \frac{2}{t+2}$ and FW with short step converges linearly.

Figure 1: Solving (OPT-KH) with FW with short step (FW-SS) and open loop step-size rules of the form $\gamma_t = \frac{2}{t+2}$ (FW-OL) with uniform distribution (left) and non-uniform distribution (right) for dimension 2.

- 2. Infinite-dimensional Kernel Herding
- 2.1 Matern's Kernel

References