1 Alapvető vektorműveletek, lépések

Az alábbiakban definiálunk négy darab egyváltozós vektorműveletet, amelyek mindegyike egy vektor elejét változtatja meg.

$$(a_1, a_2, \dots a_n) = (1, a_1, a_2, \dots a_n)$$

$$(1, a_2, \dots a_n) = (a_2, a_3, \dots a_n)$$

$$(a_1, a_2, \dots a_n) = (a_1 + 1, a_2, \dots a_n)$$

$$(a_1, a_2, \dots a_n) = (a_1 - 1, a_2, \dots a_n)$$

Ezen egyváltozós műveletek segítségével négy kétváltozós vektorműveletet definiálunk. Ezek mindegyike az általánosított polilogaritmusok integrálásakor alkalmazott lépések egyike. Az első kettő a sztandard lépés, illetve annak duálisa, míg a második kettő at 1-átvitel és annak duálisa.

$$(a \mid b) \longrightarrow (-a \mid +b)$$

$$(a_1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_1 - 1, a_2, \dots a_n \mid b_1 + 1, b_2, \dots, b_m)$$

$$(a \mid b) \longrightarrow (-a \mid +b)$$

$$(a_1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_1 - 1, a_2, \dots a_n \mid 1, b_1, b_2, \dots, b_m)$$

$$(a \mid b) \longrightarrow (-a \mid +b)$$

$$(1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_2, \dots a_n \mid 1, b_1, b_2, \dots, b_m)$$

$$(1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_2, \dots a_n \mid b_1 + 1, b_2, \dots, b_m)$$

Ha az $(a_1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m)$ párosban $a_1 > 1$, akkor a sztandard lépés, ha pedig $a_1 = 1$, akkor az 1-átvitel valamelyik változatát hajtjuk végre.

Szükségünk lesz még az alábbi két kétváltozós vektorműveletre, amelyek az általánosított polilogaritmusok integrálásakor az inicializálás megfelelői.

$$(\mathbf{a} \mid \mathbf{b}) \longrightarrow (\mathbf{a} \mid \mathbf{+b}) \qquad (a_1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_1, a_2, \dots a_n \mid b_1 + 1, b_2, \dots, b_m)$$

$$(\mathbf{a} \mid \mathbf{b}) \longrightarrow (\mathbf{a} \mid \mathbf{+b}) \qquad (a_1, a_2, \dots a_n \mid b_1, b_2, \dots, b_m) \longrightarrow (a_1, a_2, \dots a_n \mid 1, b_1, b_2, \dots, b_m)$$

2 Példák vizsgálata

A továbbiakban feltesszük, hogy az $\mathbf{a} = (a_1, a_2, \dots a_n)$ indexvektor minden komponense potitív, azaz $a_i > 0$ $(i = 1, 2, \dots, n)$, és mindig az \mathbf{a} vektort ürítjük.

A polilogaritmus függvények integrálásakor négy fázist különböztethetünk meg.

Inicializáció Az a, b vektorpárosból megalkotjuk az integrálási/kiürítési sor első tagját.

Sztandard lépés Az $\mathbf{a} = (a_1, a_2, \dots a_n)$ indexvektor első eleme nagyobb 1-nél és azt az $(\mathbf{a} \rfloor \mathbf{b}) \longrightarrow (-\mathbf{a} \rfloor + \mathbf{b})$, illetve $(\mathbf{a} \rfloor \mathbf{b}) \longrightarrow (-\mathbf{a} \rfloor^+ \mathbf{b})$ lépések valamelyikével (akár mind a kettővel) csökkentjük 1-gyel.

1-átvitel Az $\mathbf{a} = (1, a_2, \dots a_n)$ indexvektor első eleme elérte az 1-et, és azt az $(\mathbf{a} \rfloor \mathbf{b}) \longrightarrow (-\mathbf{a} \rfloor^+ \mathbf{b})$, illetve $(\mathbf{a} \mid \mathbf{b}) \longrightarrow (-\mathbf{a} \mid + \mathbf{b})$ lépések valamelyikével (akár mind a kettővel) átvisszük a \mathbf{b} vektorba.

1-ürítés Az a speciális 1-átvitel, amikor az a = (1) vektor egyetlen 1 elemét visszük át a b vektorba, és igy az a vektor kiürül.

Nagyon fontos fogalom még a hasadás, amikor egy lépést és annak duális párját egyszerre alkalmazzuk.

Az a sejtésünk, hogy a különböző polilogaritmikus integrálok egyértelműen meghatározzák, hogy a négy fázisban milyen lépéseket, milyen előjellel, illetve hogy azokat hasadással vagy anélkül kell-e végrehajtani. Ezen sejtésünket konkrét példák vizsgálatával kezdjük.

1. Példa: Az
$$\int \frac{\text{Li}_{(2,3)}(x) \cdot \text{Li}_{(4,1)}(x)}{x} dx$$
 integrál kiszámítása

$$\int \frac{\text{Li}_{(2,3)}(x) \cdot \text{Li}_{(4,1)}(x)}{x} dx = \text{Li}_{(2,3)}(x) \cdot \text{Li}_{(5,1)}(x) - \text{Li}_{(1,3)}(x) \cdot \text{Li}_{(6,1)}(x) + \text{Li}_{(3)}(x) \cdot \text{Li}_{(1,6,1)}(x) - \text{Li}_{(2)}(x) \cdot \text{Li}_{(2,6,1)}(x) + \text{Li}_{(1)}(x) \cdot \text{Li}_{(3,6,1)}(x) - \text{Li}_{(1,3,6,1)}(x)$$

$$(2,3 \rfloor 5,1) - (1,3 \rfloor 6,1) + (3 \rfloor 1,6,1) - (2 \rfloor 2,6,1) + (1 \rfloor 3,6,1) - (1,3,6,1)$$

Inicializálás $(a \mid b) \longrightarrow (a \mid_{+} b)$

$$(2,3); (4,1) \longrightarrow (2,3|5,1)...$$

Sztandard lépés $(a \rfloor b) \longrightarrow -(-a \rfloor_+ b)$

$$(2,3|5,1) - (1,3|6,1) + (3|1,6,1) - (2|2,6,1) + (1|3,6,1) - (1,3,6,1)$$

1-átvitel $(a \mid b) \longrightarrow -(-a \mid +b)$

$$(2,3|5,1) - (1,3|6,1) + (3|1,6,1) - (2|2,6,1) + (1|3,6,1) - (1,3,6,1)$$

1-ürítés = 1-átvitel

$$(2,3|5,1) - (1,3|6,1) + (3|1,6,1) - (2|2,6,1) + (1|3,6,1) - (1,3,6,1)$$

2. Példa: Az $\int \frac{\operatorname{Le}_{(4,1)}(x) \cdot \operatorname{Le}_{(-2,3)}(x)}{x} dx$ integrál kiszámítása

$$\int \frac{\operatorname{Le}_{(4,1)}(x) \cdot \operatorname{Le}_{(-2,3)}(x)}{x} \, \mathrm{d}x = \operatorname{Le}_{(4,1)}(x) \cdot \operatorname{Le}_{(-1,3)}(x) - \operatorname{Le}_{(3,1)}(x) \cdot \operatorname{Le}_{(0,3)}(x) + \operatorname{Le}_{(2,1)}(x) \cdot \operatorname{Le}_{(1,3)}(x) - \operatorname{Le}_{(1,1)}(x) \cdot \operatorname{Le}_{(2,3)}(x) + \operatorname{Le}_{(2,2,3)}(x)$$

$$+ \operatorname{Le}_{(1)}(x) \cdot \operatorname{Le}_{(1,2,3)}(x) - \operatorname{Le}_{(1,1,2,3)}(x) + \operatorname{Le}_{(2,2,3)}(x)$$

$$(4,1|-1,3) - (3,1|0,3) + (2,1|1,3) - (1,1|2,3) + (1|1,2,3) - (1,1,2,3) + (2,2,3)$$

Inicializálás $(a \mid b) \longrightarrow (a \mid_{+} b)$

$$(4,1); (-2,3) \longrightarrow (4,1] - 1,3) \dots$$

Sztandard lépés $(a|b) \longrightarrow -(-a|+b)$

$$(4,1|-1,3) - (3,1|0,3) + (2,1|1,3) - (1,1|2,3) + (1|1,2,3) - (1,1,2,3) + (2,2,3)$$

1-átvitel $(a \mid b) \longrightarrow -(-a \mid +b)$

$$(4,1|-1,3) - (3,1|0,3) + (2,1|1,3) - (1,1|2,3) + (1|1,2,3) - (1,1,2,3) + (2,2,3)$$

1-ürítés Hasadás: $(a|b) \longrightarrow -(-a|+b) + (-a|+b)$

$$(4,1|-1,3) - (3,1|0,3) + (2,1|1,3) - (1,1|2,3) + (1|1,2,3) - (1,1,2,3) + (2,2,3)$$

3. Példa: Az $\int \frac{\text{Li}_{(3,3)}(x) \cdot \text{Li}_{(-3,4)}(x)}{1-x} \, \mathrm{d}x$ integrál kiszámítása

$$\int \frac{\operatorname{Le}_{(3,3)}(x) \cdot \operatorname{Le}_{(-4,3)}(x)}{1-x} \, \mathrm{d}x = \operatorname{Le}_{(3,3)}(x) \cdot \operatorname{Le}_{(1,-4,3)}(x) - \operatorname{Le}_{(2,3)}(x) \cdot \operatorname{Le}_{(2,-4,3)}(x) + \operatorname{Le}_{(1,3)}(x) \cdot \operatorname{Le}_{(3,-4,3)}(x) - \operatorname{Le}_{(3,3)}(x) \cdot \operatorname{Le}_{(3,-4,3)}(x) + \operatorname{Le}_{(2)}(x) \cdot \operatorname{Le}_{(2,3,-4,3)}(x) - \operatorname{Le}_{(1)}(x) \cdot \operatorname{Le}_{(3,3,-4,3)}(x) + \operatorname{Le}_{(1,3,3,-4,3)}(x) - \operatorname{Le}_{(4,3,-4,3)}(x) - \operatorname{Le}_{(4,3,-4,3)}(x) - \operatorname{Le}_{(3,3)}(x) \cdot \operatorname{Le}_{(3,3)}(x) \cdot \operatorname{Le}_{(2,3)}(x) \cdot \operatorname{Le}_{(2,3)}(x) - \operatorname{Le}_{(1,3)}(x) \cdot \operatorname{Le}_{(1,3,-1,3)}(x) + \operatorname{Le}_{(3)}(x) \cdot \operatorname{Le}_{(1,-1,3)}(x) - \operatorname{Le}_{(2,2,-1,3)}(x) + \operatorname{Le}_{(2,2,-1,3)}(x) + \operatorname{Le}_{(3,2,-1,3)}(x) - \operatorname{Le}_{(1,3,-1,3)}(x) + \operatorname{Le}_{(4,-1,3)}(x)$$

1. feladat

2.feladat

$$-(3,3|-3,3)+(2,3|-2,3)-(1,3|-1,3)+(3|1,-1,3)-(2|2,-1,3)+(1|3,-1,3)-(1,3,-1,3)+(4,-1,3)$$

A feladat az inicializálásnál széthasad, és így lényegében két feladatot kell megoldani. (1. feladat, 2. feladat)

Inicializálás $(a \mid b) \longrightarrow (a \mid +b) - (a \mid +b)$

$$(4,1]1,-3,4)..$$

$$\nearrow (a]^{+}b)$$

$$(3,3);(-3,4)$$

$$\searrow -(a]_{+}b)$$

$$-(3,3|-3,3)$$

1. feladat

Sztandard lépés $(a|b) \longrightarrow -(a|b)$

1-átvitel $(a \mid b) \longrightarrow -(-a \mid +b)$

$$(3,3 \rfloor 1,-4,3) - (2,3 \rfloor 2,-4,3) + \textcolor{red}{(1,3 \rfloor 3,-4,3)} - (3 \rfloor 1,3,-4,3) + (2 \rfloor 2,3,-4,3) - (1 \rfloor 3,3,-4,3) + (1,3,3,-4,3) - (4,3,-4,3) + (2 \rfloor 2,3,-4,3) + (2$$

1-ürítés Hasadás: $(a|b) \longrightarrow -(-a|+b) + (-a|+b)$

$$(3,3 \rfloor 1,-4,3) - (2,3 \rfloor 2,-4,3) + (1,3 \rfloor 3,-4,3) - (3 \rfloor 1,3,-4,3) + (2 \rfloor 2,3,-4,3) - (\mathbf{1} \rfloor \mathbf{3},\mathbf{3},\mathbf{-4},\mathbf{3}) + (1,3,3,-4,3) - (4,3,-4,3)$$

2. feladat

Sztandard lépés $(a|b) \longrightarrow -(a|+b)$

$$-(3,3|-3,3) + (2,3|-2,3) - (1,3|-1,3) + (3|1,-1,3) - (2|2,-1,3) + (1|3,-1,3) - (1,3,-1,3) + (4,-1$$

1-átvitel $(a \mid b) \longrightarrow -(-a \mid +b)$

$$-(3,3|-3,3) + (2,3|-2,3) - \textcolor{red}{(1,3|-1,3)} + (3|1,-1,3) - (2|2,-1,3) + (1|3,-1,3) - (1,3,-1,3) + (4,-1,3)$$

1-ürítés Hasadás: $(a \rfloor b) \longrightarrow -(-a \rfloor + b) + (-a \rfloor + b)$

$$-(3,3|-3,3) + (2,3|-2,3) - (1,3|-1,3) + (3|1,-1,3) - (2|2,-1,3) + (1|3,-1,3) - (1,3,-1,3) + (4,-1,3)$$

Vagyis, a két feladat fázisaiban a lépések már megegyeznek.

Sokkal komplikáltabb a kiürítési feladat alakulása a következő példában, mert minden sztandard lépésnél hasadás lép fel.

4. Példa: Az $\int \frac{\operatorname{Le}_{(2,3)}(1-x) \cdot \operatorname{Le}_{(4)}(x)}{x} \, \mathrm{d}x$ integrál kiszámítása

Inicializálás $(a \mid b) \longrightarrow (a \mid_{+} b)$

Sztandard lépés Hasadás: $(a|b) \longrightarrow -(-a|+b) + (-a|+b)$

1-átvitel $(a \mid b) \longrightarrow (-a \mid +b)$

1-ürítés = 1-átvitel

3 Fázisok táblázatai

Inicializálás	$\int \frac{1}{x}$	$\int \frac{1}{1-x}$	Sztandard lépés	$L_{\boldsymbol{a}}(x)$	$L_{\boldsymbol{a}}(1-x)$
$\mathrm{Li}_{m{b}}(x)$	+b	+b	$\mathrm{Li}_{m{b}}(x)$	+b	-(+b)
$\mathrm{Li}_{\boldsymbol{b}}(1-x)$	-(+b)	$-(_{+}b)$	$\text{Li}_{\boldsymbol{b}}(1-x)$	-(+b)	$_{+}b$
$\text{Le}_{\boldsymbol{b}}(x)$	+b	^+b+b	$Le_{\boldsymbol{b}}(x)$	+b	$-\left(^{+}b{+}b\right)$
$\text{Le}_{\boldsymbol{b}}(1-x)$	-(+b-+b)	$-\left(+oldsymbol{b} ight)$	$\text{Le}_{\boldsymbol{b}}(1-x)$	-(+b-+b)	$_{+}b$

Megjegyzés: A sztandard lépés tánlázata csak annyiban különbözik az inicializálás táblázatától, hogy a második oszlopot -1-gyel megszorozzuk.

1-átvitel	$\operatorname{Li}_{\boldsymbol{a}}(x)$	$\operatorname{Li}_{\boldsymbol{a}}(1-x)$	$Le_{\boldsymbol{a}}(x)$	$\text{Le}_{\boldsymbol{a}}(1-x)$		1-ürítés	$L_{\boldsymbol{a}}(x)$	$L_{\boldsymbol{a}}(1-x)$
$Li_{\boldsymbol{b}}(x)$	+b	$-(_{+}b)$	$^{+}b + _{+}b$	$-\left(^{+}b+_{+}b\right)$	•	$\mathrm{Li}_{m{b}}(x)$	^{+}b	$-(_{+}b)$
$\mathrm{Li}_{\boldsymbol{b}}(1-x)$	-(+b)	^{+}b	$-\left(^{+}b+_{+}b\right)$	$^+b+_+b$		$\text{Li}_{\boldsymbol{b}}(1-x)$	$-(_{+}b)$	^{+}b
$\text{Le}_{\pmb{b}}(x)$	a_+-a^+	$-(_{+}b)$	^+b	$-\left(^{+}\boldsymbol{b}\right)$		$\text{Le}_{\pmb{b}}(x)$	^+b+b	$-\left(\mathbf{+}\boldsymbol{b}\right)$
$\text{Le}_{\boldsymbol{b}}(1-x)$	$-(+\boldsymbol{b})$	^+b+b	$-\left(^{+}b\right)$	^+b		$\text{Le}_{\boldsymbol{b}}(1-x)$	$-({}_{+}b)$	b^+-d^+

Megjegyzés: Az 1-ürítés tánlázata megegyezik az 1-átvitel táblázatának első két oszlopával.

Az alábbi táblázat tartalmazza az mind a 32 lehetséges esetet

		Li _a	(x)	Li _a (1 -	- x)	Lea	$\iota(x)$	Le a (1 -	- x)
	$\operatorname{Li}_{\boldsymbol{b}}(x)$	+b	+6	+b	-(+b)	+b	+6	+b	-(+b)
		+6	$+_{b}$	$-(_{+}b)$	$-\left(+b\right)$	+b++b	$+_{b}$	-(+b++b)	$-\left(\mathbf{+}\boldsymbol{b}\right)$
	$\operatorname{Li}_{\boldsymbol{b}}(1-x)$	- (+b)	-(+b)	-(+b)	^+b	- (+b)	-(+b)	-(+b)	+b
$\int \frac{1}{x}$		-(+b)	$-\left(\mathbf{+}\boldsymbol{b}\right)$	+6	$+_{m b}$	-(+b++b)	$-\left(+\boldsymbol{b}\right)$	$^{+}b + _{+}b$	+6
J - x	$Le_{\boldsymbol{b}}(x)$	+b	$_{+}b$	+b	+b-+b	+b	$_{+}b$	^+b	+b-+b
		+b-+b	$^{+}b-{}_{+}b$	-(+b)	$-\left(+b\right)$	+6	$^{+}b - ^{+}b$	-(+b)	-(+b)
	$Le_{\boldsymbol{b}}(1-x)$	-(+b-+b)	$-\left(^{+}b{+}b\right)$	-(+b-+b)	+b	-(+b-+b)	$-\left(^{+}\mathbf{b}{+}\mathbf{b}\right)$	-(+b-+b)	$_{+}b$
		-(+b)	$-\left(+\boldsymbol{b}\right)$	$^{+}b{+}b$	$^{+}b{+}b$	- (+b)	$-\left(+\mathbf{b}\right)$	+6	+b-+b
	$\operatorname{Li}_{\boldsymbol{b}}(x)$	+6	$_{+}b$	+6	-(+b)	+6	$_{+}b$	+6	-(+b)
	Πι θ (w)	+6	+6	-(+b)	$-\left(+b\right)$	+b++b	$+_{b}$	-(+b++b)	-(+b)
	$\operatorname{Li}_{\boldsymbol{b}}(1-x)$	-(+b)	-(+b)	-(+b)	+b	-(+b)	-(+b)	-(+b)	+b
$\int \frac{1}{1-x}$		-(+b)	$-\left(+\mathbf{b}\right)$	+ _b	+6	-(+b++b)	$-\left(+\mathbf{b}\right)$	+b++b	+ _b
J 1-x	$Le_{\boldsymbol{b}}(x)$	+ b -+ b	$_{+}b$	+b-+b	+b-+b	+ b -+ b	$_{+}b$	+b-+b	+b-+b
		+ b -+ b	$^{+}b - ^{+}b$	-(+b)	$-\left(+b\right)$	+6	$^{+}b - ^{+}b$	-(+b)	-(+b)
	$Le_{\boldsymbol{b}}(1-x)$	-(+b)	$-\left(^{+}b{+}b\right)$	-(+b)	+b	-(+b)	$-\left(^{+}b{+}b\right)$	-(+b)	+b
		-(+b)	$-\left(+oldsymbol{b} ight)$	+b-+b	^+b+b	-(+b)	$-\left(+oldsymbol{b} ight)$	+6	$^{+}b{+}b$

4 A polilogaritmus integrálok 10 alapesete

Elegendő az alábbi tíz esetet tisztázni, mert ezekből az összes többi tükrözéssel pozíciócserével megkapható.

LiLi (1)
$$\int \frac{\operatorname{Li}_{\boldsymbol{a}}(x) \cdot \operatorname{Li}_{\boldsymbol{b}}(x)}{x} dx$$
 (2) $\int \frac{\operatorname{Li}_{\boldsymbol{a}}(x) \cdot \operatorname{Li}_{\boldsymbol{b}}(x)}{1-x} dx$ (3) $\int \frac{\operatorname{Li}_{\boldsymbol{a}}(1-x) \cdot \operatorname{Li}_{\boldsymbol{b}}(x)}{x} dx$

LeLe (4)
$$\int \frac{\operatorname{Le}_{\boldsymbol{a}}(x) \cdot \operatorname{Le}_{\boldsymbol{b}}(x)}{x} dx$$
 (5) $\int \frac{\operatorname{Le}_{\boldsymbol{a}}(x) \cdot \operatorname{Le}_{\boldsymbol{b}}(x)}{1-x} dx$ (6) $\int \frac{\operatorname{Le}_{\boldsymbol{a}}(1-x) \cdot \operatorname{Le}_{\boldsymbol{b}}(x)}{x} dx$

$$\mathbf{LiLe} \quad (7) \int \frac{\mathrm{Li}_{\boldsymbol{a}}(x) \cdot \mathrm{Le}_{\boldsymbol{b}}(x)}{x} \, \mathrm{d}x \quad (8) \int \frac{\mathrm{Li}_{\boldsymbol{a}}(x) \cdot \mathrm{Le}_{\boldsymbol{b}}(x)}{1-x} \, \mathrm{d}x \quad (9) \int \frac{\mathrm{Li}_{\boldsymbol{a}}(1-x) \cdot \mathrm{Le}_{\boldsymbol{b}}(x)}{x} \, \mathrm{d}x \quad (10) \int \frac{\mathrm{Li}_{\boldsymbol{a}}(x) \cdot \mathrm{Le}_{\boldsymbol{b}}(1-x)}{x} \, \mathrm{d}x$$

		$\cdot \operatorname{Li}_{\boldsymbol{b}}(x)$			$\frac{\operatorname{Li}_{\boldsymbol{a}}(1-x)}{1-x}$	$\cdot \operatorname{Li}_{\boldsymbol{b}}(1-x)$		
1	+ b	x $_{m{+}}m{b}$			$-(_{+}\boldsymbol{b})$			
	+ b	^{+}b			+b			
	$\underline{\operatorname{Li}_{\boldsymbol{a}}(x)}$	$\frac{\cdot \operatorname{Li}_{\boldsymbol{b}}(x)}{-x}$			$\underline{\operatorname{Li}_{\boldsymbol{a}}(1-x)}$	$\cdot \operatorname{Li}_{\boldsymbol{b}}(1-x)$		
2	+ b	$-x$ $+\boldsymbol{b}$			-(+b)	x		
	+ b	$+_{m{b}}$			+6			
	$\underline{\operatorname{Li}_{\boldsymbol{a}}(1-s)}$	$(x) \cdot \text{Li}_{\boldsymbol{b}}(x)$	$\frac{\operatorname{Li}_{\boldsymbol{b}}(1-x)}{x}$	$\cdot \operatorname{Li}_{\boldsymbol{a}}(x)$	$\frac{\operatorname{Li}_{\boldsymbol{a}}(x)\cdot\operatorname{I}}{1-}$	$\operatorname{Li}_{\boldsymbol{b}}(1-x)$	$\frac{\operatorname{Li}_{\boldsymbol{b}}(x) \cdot \operatorname{Li}_{\boldsymbol{b}}(x)}{1 - }$	$\mathbf{i}_{\boldsymbol{a}}(1-x)$
3	+b	x - (+b)	-(+b)	-(+b)	$-(+\boldsymbol{b})$	$-x$ $-(+\mathbf{b})$	+ b	
		$-(_{+}b)$	-(+b)		$-(_{m{+}}m{b})$		-(+b)	
	$\frac{\operatorname{Le}_{\boldsymbol{a}}(x)}{x}$	$\cdot \operatorname{Le}_{\boldsymbol{b}}(x)$			$\frac{\operatorname{Le}_{\boldsymbol{a}}(1-x)}{1}$	$\frac{\cdot \operatorname{Le}_{\boldsymbol{b}}(1-x)}{-x}$		
4		^{+}b			-(+b)			
		^+b+b				^+b+b		
	$\frac{\operatorname{Le}_{\boldsymbol{a}}(x)}{1}$	$\cdot \operatorname{Le}_{\boldsymbol{b}}(x)$			$\frac{\operatorname{Le}_{\boldsymbol{a}}(1-x)}{x}$	$\cdot \operatorname{Le}_{\boldsymbol{b}} 1 - (x)$		
5	+b-+b				$-(+b-+b)^{2}$	* + b		
	+6	^+b+b				^+b+b		
	$\underline{\operatorname{Le}_{\boldsymbol{a}}(1-x)\cdot\operatorname{Le}_{\boldsymbol{b}}(x)}_{x}$		$\frac{\operatorname{Le}_{\boldsymbol{b}}(1-x)\cdot\operatorname{Le}_{\boldsymbol{a}}(x)}{x}$					
	$\frac{\operatorname{Le}_{\boldsymbol{a}}(1-s)}{s}$	$\frac{(x) \cdot \text{Le}_{\boldsymbol{b}}(x)}{x}$	$\frac{\operatorname{Le}_{\boldsymbol{b}}(1-x)}{x}$	$\cdot \operatorname{Le}_{\boldsymbol{a}}(x)$	$\frac{\operatorname{Le}_{\boldsymbol{a}}(x)\cdot\operatorname{I}}{1-}$	$\operatorname{Le}_{\boldsymbol{b}}(1-x)$	$\frac{\operatorname{Le}_{\boldsymbol{b}}(x)\cdot\operatorname{L}}{1-}$	$e_{\boldsymbol{a}}(1-x)$
6	^+b	$-\left(^{+}b{+}b ight)$	-(+b-+b)	$-\left(^{+}b{+}b\right)$	$-(_{+}b)$	$-\left(^{+}b-{}_{+}b ight)$	a_+-b^+	$-\left(^{+}b{+}b\right)$
6	^+b	$-\left(^{+}b{+}b ight)$	$ \frac{\operatorname{Le}_{\boldsymbol{b}}(1-x)}{x} \\ -(^{+}\boldsymbol{b}{+}\boldsymbol{b}) \\ -(^{+}\boldsymbol{b}) $	$-\left(^{+}b{+}b\right)$	$-(_{+}b)$	$-\left(^{+}b-{}_{+}b ight)$	a_+-b^+	$-\left(^{+}b{+}b\right)$
6	$+b$ $-(+b)$ $\underline{\operatorname{Li}_{\boldsymbol{a}}(x)}$	$-(+b-+b)$ $-(+b)$ $\cdot \operatorname{Le}_{\boldsymbol{b}}(x)$ x	$-(^{+}b{+}b)$ $-(^{+}b)$ $\frac{\text{Li}_{b}(x) \cdot I}{x}$	$-(+b - +b)$ $-(+b)$ $Le_{a}(x)$	$-(+\mathbf{b})$ $-(+\mathbf{b})$ $\underline{\text{Li}_{\mathbf{a}}(1-x)}$	$-(+b-+b)$ $-(+b)$ $\cdot \operatorname{Le}_{b}(1-x)$ $-x$	$ \begin{array}{c c} +b - +b \\ -(+b) \\ \hline \underline{\operatorname{Li}_{b}(1-x)} \\ 1 - \\ \end{array} $	$-(+\mathbf{b} - +\mathbf{b})$ $-(+\mathbf{b})$ $-(+\mathbf{b})$ $-(+\mathbf{a})$ $-x$
6 7	$+b$ $-(+b)$ $\underline{\operatorname{Li}_{\boldsymbol{a}}(x)}$	$-(+b-+b)$ $-(+b)$ $\cdot \operatorname{Le}_{\boldsymbol{b}}(x)$ x	$-(^{+}b{+}b)$ $-(^{+}b)$ $\frac{\text{Li}_{b}(x) \cdot I}{x}$	$-(+b - +b)$ $-(+b)$ $Le_{a}(x)$	$-(+\mathbf{b})$ $-(+\mathbf{b})$ $\underline{\text{Li}_{\mathbf{a}}(1-x)}$	$-(+b-+b)$ $-(+b)$ $\cdot \operatorname{Le}_{b}(1-x)$ $-x$	$ \begin{array}{c c} +b - +b \\ -(+b) \\ \hline \underline{\operatorname{Li}_{b}(1-x)} \\ 1 - \\ \end{array} $	$-(+\mathbf{b} - +\mathbf{b})$ $-(+\mathbf{b})$ $-(+\mathbf{b})$ $-(+\mathbf{a})$ $-x$
	$+b$ $-(+b)$ $\underline{\operatorname{Li}_{\boldsymbol{a}}(x)}$	$-(+b-+b)$ $-(+b)$ $\cdot \operatorname{Le}_{\boldsymbol{b}}(x)$ x	-(+b-+b) $-(+b)$	$-(+b - +b)$ $-(+b)$ $Le_{a}(x)$	$-(+\mathbf{b})$ $-(+\mathbf{b})$ $\underline{\text{Li}_{\mathbf{a}}(1-x)}$	$-(+b-+b)$ $-(+b)$ $\cdot \operatorname{Le}_{b}(1-x)$ $-x$	+b-+b $-(+b)$	$-(+\mathbf{b} - +\mathbf{b})$ $-(+\mathbf{b})$ $-(+\mathbf{b})$ $-(+\mathbf{a})$ $-x$
	$ \begin{array}{c} +b \\ -(+b) \\ \hline \underline{\text{Li}_{a}(x)} \\ +b \\ +b-+b \end{array} $	-(+b-+b) $-(+b)$ $+b$ $+b-+b$	$-(+b-+b)$ $-(+b)$ $\frac{\text{Li}_{\boldsymbol{b}}(x)\cdot \mathbf{I}}{x}$ $+b$ $+b++b$	-(+b-+b) $-(+b)$ $-(ab)$ $+b$ $+b$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \end{array} $	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline -(+b) \\ \hline -x \\ +b \\ +b \end{array} $
	$ \begin{array}{c} +b \\ -(+b) \\ \hline & \underline{\text{Li}_{a}(x)} \\ +b \\ +b-+b \\ \hline & \underline{\text{Li}_{a}(x)} \\ +b-+b \end{array} $	$-(+b-+b)$ $-(+b)$ $\frac{\cdot \operatorname{Le}_{b}(x)}{x}$ $+b$ $\frac{\cdot \operatorname{Le}_{b}(x)}{\cdot \operatorname{Le}_{b}(x)}$ $+b$	$-(+b-+b)$ $-(+b)$ $\frac{\operatorname{Li}_{\boldsymbol{b}}(x)\cdot \operatorname{I}}{x}$ $+b$ $+b++b$ $\frac{\operatorname{Li}_{\boldsymbol{b}}(x)\cdot \operatorname{I}}{1-}$ $+b$	-(+b-+b) $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+b$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{1-(+b-+b)}$	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline \begin{array}{c} -(+b) \\ \hline \begin{array}{c} +b \\ +b-+b \\ \hline \begin{array}{c} +b \\ +b \end{array} \end{array} $	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \end{array} $	$ \frac{-(+b-+b)}{-(+b)} $ $ \frac{-(+b)}{-x} $ $ +b $ $ \frac{-b}{x} $ $ \frac{-b}{x} $ $ \frac{-b}{x} $
7	$ \begin{array}{c} +b \\ -(+b) \\ \hline & \underline{\text{Li}_{a}(x)} \\ +b \\ +b-+b \\ \hline & \underline{\text{Li}_{a}(x)} \\ +b-+b \end{array} $	$-(+b-+b)$ $-(+b)$ $\frac{\cdot \operatorname{Le}_{b}(x)}{x}$ $+b$ $\frac{\cdot \operatorname{Le}_{b}(x)}{\cdot \operatorname{Le}_{b}(x)}$ $+b$	$-(^{+}b{+}b)$ $-(^{+}b)$ $\frac{\text{Li}_{b}(x) \cdot I}{x}$	-(+b-+b) $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+b$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{1-(+b-+b)}$	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline \begin{array}{c} -(+b) \\ \hline \begin{array}{c} +b \\ +b-+b \\ \hline \begin{array}{c} +b \\ +b \end{array} \end{array} $	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \end{array} $	$ \frac{-(+b-+b)}{-(+b)} $ $ \frac{-(+b)}{-x} $ $ +b $ $ \frac{-b}{x} $ $ \frac{-b}{x} $ $ \frac{-b}{x} $
7	$+b$ $-(+b)$ $\frac{\text{Li}_{a}(x)}{+b}$ $+b-+b$ $\frac{\text{Li}_{a}(x)}{1}$ $+b-+b$ $+b-+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $+b-+b$	$-(+b-+b)$ $-(+b)$ $\frac{\text{Li}_{b}(x) \cdot \text{I}}{x}$ $+b$ $+b++b$ $\frac{\text{Li}_{b}(x) \cdot \text{I}}{1-}$ $+b$ $+b++b$	-(+b-+b) $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+b$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{-(+b-+b)}$ $+b-+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $+b-+b$	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \end{array} $	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline -(+b) \\ \hline -(+b) \\ \hline +b \\ +b \\ \hline +b \\ +b \\ +b \end{array} $
7	$+b$ $-(+b)$ $\frac{\text{Li}_{a}(x)}{+b}$ $+b-+b$ $\frac{\text{Li}_{a}(x)}{1}$ $+b-+b$ $+b-+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $+b-+b$	$-(+b-+b)$ $-(+b)$ $\frac{\operatorname{Li}_{\boldsymbol{b}}(x)\cdot \operatorname{I}}{x}$ $+b$ $+b++b$ $\frac{\operatorname{Li}_{\boldsymbol{b}}(x)\cdot \operatorname{I}}{1-}$ $+b$	-(+b-+b) $-(+b)$ $+b$ $+b$ $+b$ $+b$ $+b$	$-(+b)$ $-(+b)$ $\frac{\text{Li}_{a}(1-x)}{1-(+b)}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{-(+b-+b)}$ $+b-+b$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $+b-+b$	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(x) \cdot \text{Le}} \\ \hline \underline{\text{Li}_{b}(x) \cdot \text{Le}} \\ 1 - \\ \hline \end{array} $	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline -(+b) \\ \underline{\text{Le}_{a}(1-x)} \\ +b \\ +b \\ \hline +b \\ +b \\ -(a) \\ $
7 	$+b$ $-(+b)$ $\frac{\text{Li}_{a}(x)}{+b}$ $+b-+b$ $\frac{\text{Li}_{a}(x)}{1}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{+b}$ $+b$ $-(+b)$	$-(+b-+b)$ $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $x) \cdot \operatorname{Le}_{b}(x)$ $+b$ $+(b-+b)$ $x) \cdot \operatorname{Le}_{b}(x)$ x $-(+b-+b)$ $-(+b)$	$-(+b-+b)$ $-(+b)$ $\frac{\text{Li}_{b}(x) \cdot \text{I}_{x}}{x}$ $+b$ $+b++b$ $\frac{\text{Li}_{b}(x) \cdot \text{I}_{x}}{1-}$ $+b$ $+b++b$ $\frac{\text{Li}_{b}(1-x)}{x}$ $-(+b)$ $-(+b++b)$	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $-(+b)$ $-(+b)$	$-(+b)$ $-(+b)$ $\frac{\operatorname{Li}_{a}(1-x)}{1-}$ $-(+b)$ $+b-+b$ $\frac{\operatorname{Li}_{a}(1-x)}{2}$ $-(+b-+b)$ $+b-+b$ $\frac{\operatorname{Li}_{a}(x)\cdot\operatorname{Li}_{a}}{1-}$ $-(+b)$ $-(+b)$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $+b-+b$ $+(1-x)$ x $+b$ $+(1-x)$ x $-(+b-+b)$ $-(+b)$	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(x) \cdot \text{Le}} \\ +b \\ -(+b + +b) \\ \hline \end{array} $	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline -(+b) \\ \hline -(+b) \\ \hline -(+b) \\ +b \\ \hline -(+b) \\ -(+b) \\ -(+b) \end{array} $
7 	$+b$ $-(+b)$ $\frac{\text{Li}_{a}(x)}{+b}$ $+b-+b$ $\frac{\text{Li}_{a}(x)}{1}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{+b}$ $+b$ $-(+b)$	$-(+b-+b)$ $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $x) \cdot \operatorname{Le}_{b}(x)$ $+b$ $+(b-+b)$ $x) \cdot \operatorname{Le}_{b}(x)$ x $-(+b-+b)$ $-(+b)$	$-(+b-+b)$ $-(+b)$ $\frac{\text{Li}_{b}(x) \cdot \text{I}_{x}}{x}$ $+b$ $+b++b$ $\frac{\text{Li}_{b}(x) \cdot \text{I}_{x}}{1-}$ $+b$ $+b++b$ $\frac{\text{Li}_{b}(1-x)}{x}$ $-(+b)$ $-(+b++b)$	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $-(+b)$ $-(+b)$	$-(+b)$ $-(+b)$ $\frac{\operatorname{Li}_{a}(1-x)}{1-}$ $-(+b)$ $+b-+b$ $\frac{\operatorname{Li}_{a}(1-x)}{2}$ $-(+b-+b)$ $+b-+b$ $\frac{\operatorname{Li}_{a}(x)\cdot\operatorname{Li}_{a}}{1-}$ $-(+b)$ $-(+b)$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $+b-+b$ $+(1-x)$ x $+b$ $+(1-x)$ x $-(+b-+b)$ $-(+b)$	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(x) \cdot \text{Le}} \\ +b \\ -(+b + +b) \\ \hline \end{array} $	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline -(+b) \\ \hline -(+b) \\ \hline -(+b) \\ +b \\ \hline -(+b) \\ -(+b) \\ -(+b) \end{array} $
7 	$+b$ $-(+b)$ $\frac{\text{Li}_{a}(x)}{+b}$ $+b-+b$ $\frac{\text{Li}_{a}(x)}{1}$ $+b-+b$ $\frac{\text{Li}_{a}(1-x)}{+b}$ $+b$ $-(+b)$	$-(+b-+b)$ $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $x) \cdot \operatorname{Le}_{b}(x)$ $+b$ $+(b-+b)$ $x) \cdot \operatorname{Le}_{b}(x)$ x $-(+b-+b)$ $-(+b)$	$-(+b-+b)$ $-(+b)$ $\frac{\text{Li}_{b}(x) \cdot \text{I}_{x}}{x}$ $+b$ $+b++b$ $\frac{\text{Li}_{b}(x) \cdot \text{I}_{x}}{1-}$ $+b$ $+b++b$ $\frac{\text{Li}_{b}(1-x)}{x}$ $-(+b)$	-(+b-+b) $-(+b)$ $-(+b)$ $+b$ $+b$ $+b$ $+b$ $-(+b)$ $-(+b)$	$-(+b)$ $-(+b)$ $\frac{\operatorname{Li}_{a}(1-x)}{1-}$ $-(+b)$ $+b-+b$ $\frac{\operatorname{Li}_{a}(1-x)}{2}$ $-(+b-+b)$ $+b-+b$ $\frac{\operatorname{Li}_{a}(x)\cdot\operatorname{Li}_{a}}{1-}$ $-(+b)$ $-(+b)$	-(+b-+b) $-(+b)$ $+b$ $+b-+b$ $+b-+b$ $+b-+b$ $+(1-x)$ x $+b$ $+(1-x)$ x $-(+b-+b)$ $-(+b)$	$ \begin{array}{c} +b - +b \\ -(+b) \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(1-x) \cdot} \\ -(+b) \\ +b + +b \\ \hline \underline{\text{Li}_{b}(x) \cdot \text{Le}} \\ +b \\ -(+b + +b) \\ \hline \end{array} $	$ \begin{array}{c} -(+b-+b) \\ -(+b) \\ \hline -(+b) \\ \hline -(+b) \\ \hline -(+b) \\ +b \\ \hline -(+b) \\ -(+b) \\ -(+b) \end{array} $