STATE LIBRARY OF PENNSYLVANIA PY G345/4.3 W57 Groundwater resources of the L

O 0001 00201419 7

GROUNDWATER RESOURCES OF THE LOWER SUSQUEHANNA RIVER BASIN, PENNSYLVANIA

by Larry E. Taylor
Pennsylvania Geological Survey
William H. Werkheiser
Susquehanna River Basin Commission

Prepared by the Pennsylvania Geological Survey in cooperation with the Susquehanna River Basin Commission

PENNSYLVANIA GEOLOGICAL SURVEY

FOURTH SERIES

HARRISB''C

1984

03-49-978-7

Copyright 1984 by the Commonwealth of Pennsylvania

Quotations from this book may be published if credit is given to the Pennsylvania Geological Survey

PY G345/4.3 W57 c.1 Taylor, Larry E. Groundwater resources of t Groundwater resources of t Lower Susquehanna River

> This project has been financed on a cost-sharing basis with federal funds from the U.S. Water Resources Council

> > ISBN: 0-8182-0057-X

ADDITIONAL COPIES
OF THIS PUBLICATION MAY BE PURCHASED FROM
STATE BOOK STORE, P.O. BOX 1365
HARRISBURG, PENNSYLVANIA 17105

CONTENTS

Pa	age
Abstract	1
Introduction	2
Purpose and scope	2
Location and description of the area	4
Acknowledgements	6
Water use	6
Hydrology	7
Water budgets	14
Precipitation (P)	16
Streamflow $(R_g + R_s)$	20
Evapotranspiration (ET)	23
Estimate of areal availability of groundwater	24
Hydrogeology	27
Geologic setting	27
Occurrence and movement of groundwater	28
Factors that influence the yield of wells	32
Lithology	32
Topography	36
Geologic structure	36
Groundwater quality	38
Specific conductance and total dissolved solids	38
Hardness	50
Iron and manganese	51
Hydrogen sulfide	52
Nitrate	52
Trace metals	52
Water-quality problems	53
Stratigraphy and water-bearing properties of the rocks	54
	54
	68
	68
	71
	71
Trimmers Rock Formation	74
	75
	76

Tuscarora, Juniata, and Bald Eagle Formations	81 82	
Coburn Formation through Loysburg Formation		
Bellefonte and Axemann Formations	83 84	
Management of water supplies		
Groundwater-quantity management		
Conclusions		
Sources of information about water		
References		
Glossary	90	
ILLUSTRATIONS		
FIGURES		
Frontispiece. View of the state capital, Harrisburg, looking north.	viii	
Figure 1. Map showing the location of the Pennsylvania portion		
of the Susquehanna River basin, the Lower Susquehanna River basin, and the three additional report areas	2	
2. Map showing areas covered by detailed groundwater	has	
studies in the Lower Susquehanna River basin	3	
3. Map showing the physiographic provinces and sections		
in the Lower Susquehanna River basin	5	
4. Diagram showing percentage of land use by category (1974)	6	
5. Diagram showing the annual hydrologic cycle for the	6	
Lower Susquehanna River basin	15	
6. Map showing the location of drainage basins used for		
water-budget analysis in this report, and the location of		
other basins for which there is published water-budget	1.0	
information	16	
Susquehanna River basin	19	

Keyser and Tonoloway Formations.....

Wills Creek Formation

Bloomsburg and Mifflintown Formations.....

Clinton Group.....

Page

77

78

80

81

		Page
Figures 8-15.	Graphs showing—	
8.	Percent frequency distribution of annual precipitation	
	at Shamokin and Spring Grove	20
9.	Percent frequency distribution of annual runoff from	
	East Mahantango Creek near Dalmatia (1930-80)	23
10.	Percent frequency distribution of annual runoff from	
	West Conewago Creek near Manchester (1931–80)	24
11.	Mean temperature and precipitation at Selinsgrove and	
	mean water level in well Sn-130 (1975-80)	29
12.	Mean monthly depth to water in well Sn-130	30
13.	Percent frequency distribution of nondomestic well	
	yields from the Appalachian Mountain section,	
	grouped according to dominant rock type	35
14.	Percent frequency distribution of nondomestic well	
	yields from the Appalachian Mountain section,	
	grouped according to topographic setting	37
15.	Specific conductance versus dissolved solids for north-	
	ern Dauphin County	50
16.	Index of detailed geologic mapping in the Lower Sus-	
	quehanna River basin	65
17.		
	ported well yields from the Mauch Chunk Formation	69
18.	Stiff diagram of the median chemical character of	
	groundwater from the Mauch Chunk Formation	70
19.	Graph showing percent frequency distribution of re-	
	ported well yields from the Catskill Formation	72
20.	Stiff diagram of the median chemical character of	
	groundwater from the Catskill Formation	73
21.	Stiff diagram of the median chemical character of	
	groundwater from the Trimmers Rock Formation	74
22.	Graph showing percent frequency distribution of non-	
	domestic well yields from the Keyser and Tonoloway	
	Formations, undivided, and the Wills Creek Formation	79

PLATE

(in envelope)

Plate 1. Geologic map of the Lower Susquehanna River basin, Pennsylvania, showing the locations of selected wells and springs.

TABLES

Table	1. Groundwater investigations in the Lower Susquehanna	u,
rabic	River basin	
	2. County and basin population totals and projections for the	
	Lower Susquehanna River basin	
	3. Water use for 1970 in the Lower Susquehanna River basin	
	4. Public water suppliers utilizing groundwater	
	5. Industries using more than 100,000 gallons of groundwater	
	per day	
	6. Mineral extraction and processing sites withdrawing more	
	than 100,000 gallons of groundwater per day	
	7. Water budgets for major stream basins	
	8. Summary of streamflow and groundwater contributions to	
	streamflow for the Lower Susquehanna River basin	
	9. Summary of evapotranspiration (water loss) estimates for	
	the Lower Susquehanna River basin	
1	0. Estimate of average annual groundwater recharge by hy-	
	drogeologic unit	1
1	1. Depth to water in different topographic settings, by hydro-	
	geologic unit	2
1	2. Summary of data on water-bearing zones	3
1	3. Source and significance of selected dissolved constituents	
	and properties of groundwater	2
1	4. Median chemical analyses of groundwater by aquifer and	
	physiographic location	4
1	5. Summary of chemical-quality characteristics of groundwa-	
	ter from predominantly calcareous and predominantly	
	noncalcareous rock units in the Valley and Ridge physio-	
	graphic province	4
1	6. Summary of field water-quality measurements from the	
	Valley and Ridge physiographic province	4
1	7. Stratigraphy and water-bearing properties of the rock units	
	south of Blue Mountain	4
1	8. Summary of well construction and yield data in the Appa-	
	lachian Mountain section	6
1	9 Chemical analyses of groundwater	(

		Page
Table 20.	Record of wells	103
21.	Record of springs	130

View of the state capital, Harrisburg, looking north. The Capitol dome is visible in the lower left. The Susquehanna River emerges from the Susquehanna water gap (shown in the right-center of the photograph) and flows south (from right to left). Blue Mountain, through which the gap is cut, is the southernmost ridge in the Appalachian Mountain section of the Valley and Ridge physiographic province. Harrisburg is located in the Great Valley section of the Valley and Ridge province.

GROUNDWATER RESOURCES OF THE LOWER SUSQUEHANNA RIVER BASIN, PENNSYLVANIA

by

Larry E. Taylor and William H. Werkheiser

ABSTRACT

The Lower Susquehanna River basin has abundant water resources resulting from a yearly average of approximately 40 inches of precipitation. About 45 percent (18 inches) runs off the land surface directly as overland runoff and streamflow. Roughly 25 percent (10 inches) is recharged to the groundwater system and eventually provides the baseflow to streams, and the remaining 55 percent (22 inches) is lost to evapotranspiration.

Groundwater use was estimated to be about 127 million gallons per day in 1970. Even considering projected increases in use, only a small fraction of the total available resource is being utilized.

The aquifers in the basin are extremely diverse with respect to rock type and structural setting. Most rock units yield sufficient quantities of water to wells for domestic use. Geologic and topographic criteria must be used to locate larger supplies.

The mean recharge to the groundwater system ranges between 215 and 520 gallons per minute per square mile. The lowest values are for the metamorphic rocks in eastern Lancaster and western Chester Counties. The highest recharge is to the carbonate rocks of the eastern Great Valley.

Groundwater quality is generally adequate for most uses. The most troublesome natural constituents in groundwater are iron and manganese; more than 33 percent of the analyzed samples had concentrations that exceeded the recommended limit of the U.S. Environmental Protection Agency for one or both of these constituents.

Major types and sources of groundwater contamination in the basin are bacterial organisms and nitrates from on-lot sewage systems, acid mine drainage, excessive nitrates from agricultural activities, hydrocarbons from buried storage tanks and industrial processes, chlorinated solvents from degreasing operations, and leachate from landfills.

INTRODUCTION

PURPOSE AND SCOPE

This report is one of four prepared by the Pennsylvania Geological Survey as part of the three-year Special Groundwater Study of the Susquehanna River basin by the Susquehanna River Basin Commission in cooperation with various state and federal agencies. The respective areas covered by the reports are shown in Figure 1.

Figure 1. Location of the Pennsylvania portion of the Susquehanna River basin, the Lower Susquehanna River basin, and the three additional report areas.

The reports are designed to make the large volume of data collected during the comparatively short duration of the project available to the public as rapidly as possible, and as a result they contain only a minimum of interpretation. This up-to-date information and data on the quantity and quality of groundwater within the report areas should assist in the optimum development and utilization of the resource and form the basis for detailed investigations to follow.

The part of the basin south of Blue Mountain has been the subject of numerous groundwater investigations (Blue Mountain forms the approximate northern boundary of the Great Valley section shown in Figure 3). The areas covered by the respective studies are shown in Figure 2 and the titles are listed in Table 1. Additionally, a regional numerical flow model of the southern basin and a detailed numerical flow model for part of Lancaster County were prepared by the U.S. Geological Survey as a part of the Special

Figure 2. Areas covered by detailed groundwater studies in the Lower Susquehanna River basin.

Table 1. Groundwater Investigations in the Lower Susquehanna River Basin

(See Figure 2 for locations and see reference section (p. 87) for complete bibliographic information)

Pennsylvania	
Geological Surve	y
Water Resource	
Report number	Title
W 18	Hydrogeology of the Carbonate Rocks of the Lebanon Valley, Pennsylvania
W 21	Hydrology of the New Oxford Formation in Adams and York Counties, Pennsylvania
W 23	Hydrology of the New Oxford Formation in Lancaster County, Pennsylvania
W 24	Geology and Hydrology of the Martinsburg Formation in Dauphin County, Pennsylvania
W 25	Hydrology of the Metamorphic and Igneous Rocks of Central Chester County, Pennsylvania
W 26	Hydrogeology of the Carbonate Rocks of the Lancaster 15-Minute Quadrangle, Southeastern Pennsylvania
W 42	Ground-Water Resources of Central and Southern York County, Pennsylvania
W 43	Summary Ground-Water Resources of Lancaster County, Pennsylvania
W 44	Geology and Groundwater Resources of Northern Berks County, Pennsylvania
W 49	Groundwater Resources of the Gettysburg and Hammer Creek Formations, Southeastern Pennsylvania

Table 1. (Continued)

Pennsylvania	
Geological Surve	
Water Resource	
Report number	Title
W 50	Groundwater and Geology of the Cumberland Valley, Cumberland County, Pennsylvania
W 52	Summary Groundwater Resources of Adams County, Pennsylvania
W 53	Groundwater Resources in the Cumberland and Contiguous Valleys of Franklin County, Pennsylvania
W 55	Summary Groundwater Resources of Lebanon County, Pennsylvania
77-67 ^a	Ground-Water Resources of Chester County, Pennsylvania

^a U.S. Geological Survey Water Resources Investigations number.

Groundwater Study (Gerhart and Lazorchick, in preparation). Because this part of the basin has been covered in detail by prior studies, much of the emphasis in the report that follows is on the region to the north of Blue Mountain.

LOCATION AND DESCRIPTION OF THE AREA

The portion of the Susquehanna River basin covered by this report drains an area of about 5,606 square miles in south-central Pennsylvania. All or most of Cumberland, Dauphin, Lancaster, Lebanon, Snyder, and York Counties, along with parts of Adams, Berks, Centre, Chester, Columbia, Franklin, Juniata, Northumberland, Mifflin, Perry, Schuylkill, and Union Counties are included.

The northern part of the area is mountainous, consisting of a series of roughly northeast-southwest trending ridges. South of Blue Mountain the terrain consists predominantly of gently rolling lowlands. South Mountain, which has a maximum elevation of about 2,100 feet, interrupts this lowland in Adams and Cumberland Counties. Because of this contrasting topography and geology, the region has been subdivided into six physiographic units as shown in Figure 3.

Several important industrial centers having populations in excess of 20,000 are located within the basin. They are, in order of decreasing population, Harrisburg, Lancaster, York, Lebanon, and Carlisle. Harrisburg, the state capital, also has a significant population employed in government-related activities. Agriculture is an important economic activity throughout the rural parts of the basin. Population totals by county are given in Table 2. The overall land use within the Lower Susquehanna River basin is shown in Figure 4. Although this is the most populous region within the Susquehanna River basin, only 8 percent of the land can be classified as urban or built-up, which attests to the rural nature of this locale.

Figure 3. Physiographic provinces and sections in the Lower Susquehanna River basin.

Table 2. County and Basin Population Totals and Projections for the Lower Susquehanna River Basin

(Modified from Pennsylvania Department of Environmental Resources, 1980a, b)

County	1970	1990	Percent increase
Adams	57,053a	67,941	19.1
Centre	99,601	123,027	23.5
Cumberland	158,500	196,618	24.0
Dauphin	224,101	256,803	14.6
Lancaster	320,818	379,085	18.2
Lebanon	99,861	116,345	16.5
Northumberland	99,270	104,107	4.9
Perry	28,681	31,864	11.1
Snyder	29,333	39,309	34.0
Schuylkill	160,089	183,939	14.9
Union	28,669	33,142	15.6
York	273,236	351,436	28.6
Basin totals	1,313,332	1,593,300	21.3

^a Total for county even if only partly within the basin. Counties having a very small area in the basin are not listed.

Figure 4. Percentage of land use by category (1974). Data are from Pennsylvania Department of Environmental Resources (1980a, b).

ACKNOWLEDGEMENTS

The writers are grateful to the many well owners who allowed their wells to be tested and sampled. The U.S. Geological Survey, the Susquehanna River Basin Commission, and the Bureau of Laboratories within the Pennsylvania Department of Environmental Resources provided valuable input and data to the project. James Gerhart of the U.S. Geological Survey supervised the collection of water-quality samples in the lower part of the basin and also provided valuable guidance in retrieving water-quality data from the U.S. Geological Survey's computerized data-storage system.

Valuable assistance in the field-data-collection phase of the project was provided by Mary Lou Kriz, Nancy S. duPont, and Philip J. Walsh, Jr., of the Susquehanna River Basin Commission.

WATER USE

Total water use in the Lower Susquehanna River basin was estimated to be about 1,762 Mgal/d (million gallons per day) in 1970 (Pennsylvania Department of Environmental Resources, 1980a, b). More than 1,400 Mgal/d represents surface-water use for power generation. About 36 percent of the remaining water use is obtained from underground sources. Mineral producers are the largest users of groundwater, followed by industrial, domestic, and public users, in that order (Table 3).

Table 3. Water Use for 1970 in the Lower Susquehanna River	Basin
(Modified from Pennsylvania Department of Environmental Resources, 198	0a, b)

	Withdrawals (Mgal/d)		
Type of use	Groundwater	Surface water	Total
Public supply	14.5	126.0	140.5
Domestic supply	25.4	0.0	25.4
Industrial	30.7	66.8	97.5
Mineral	40.1	10.1	50.2
Agricultural	12.0	18.2	30.2
Golf course	1.6	3.2	4.8
Institutional	2.3	1.6	3.9
Power	0.0	1,409.3	1,409.3
Totals	126.6	1,635.2	1,761.8

The major users of groundwater and their sources of supply are listed in Table 4, *Public Water Suppliers Utilizing Groundwater*, and in Table 5, *Industries Using More than 100,000 Gallons of Groundwater per Day*.

The Pennsylvania Department of Environmental Resources (1980a, b) has projected about a 13 percent per decade increase in water use from 1970 to 1990. A substantial portion of this increase will be supplied by groundwater because of its general high quality and widespread availability. Also, limitations have been placed on the use of surface water during low-flow periods, which often precludes expansion of the use of surface water where there is no upstream compensation.

About 32 percent of the groundwater presently used is withdrawn by mineral extraction and processing sites. The water is most often pumped from the quarry and discharged to a surface stream; thus the use is consumptive with respect to the groundwater system. A large proportion of this water is removed at relatively few sites, which has in some places caused severe, localized depressions on the water table. Table 6 is a list of quarrying operations withdrawing in excess of 100,000 gallons per day. Withdrawals of this magnitude can cause significant reductions in groundwater levels; however, this has not been shown to occur at most of the sites.

HYDROLOGY

The occurrence and interrelation of water in the atmosphere and on the land surface, in addition to the water in the subsurface, must be described and quantified in order to properly utilize and manage the groundwater resource. This interrelation between atmospheric water, surface water, and underground water is collectively called the hydrologic cycle and is shown diagrammatically in Figure 5.

Table 4. Public Water Suppliers Utilizing Groundwater

County	Water supplier	Groundwater sources ^a
Adams	Abbottstown Borough Arendtsville Borough Aspers Water Company Bendersville Borough Keystone Water Company (Biglerville) Charnita Water and Improvement Association East Berlin Borough Lake Heritage Utilities, Inc. Lake Meade Utilities, Inc. New Oxford Municipal Authority York Springs Borough	5 wells (Ad-72, 95, 434); 4 springs 2 wells (Ad-153, 154); 2 spring fields 3 wells (Ad-158, 159, 258); 13 springs 3 wells (Ad-160, 161, 259); 3 springs 4 wells (Ad-164, 165, 166, 394) 1 well (Ad-265) 3 wells (Ad-134, 135, 136) 2 wells (Ad-261, 262) 2 wells (Ad-83, 436) ^b 2 wells (Ad-83, 436) ^b 3 wells (Ad-83, 436) ^b 3 wells (Ad-155, 156, 157); 1 spring
Sentre Centre	Caernarvon Township Water Authority Aaronsburg Water Pipe Company Centre Hall Borough Water Department Madisonburg Water Works Penn Township Water District Rebersburg Water Company Spring Mills Water Company Woodward Water Company	4 wells (Be–557, 560, 561, 562) 2 wells (Ce–138, 139); 1 spring 8 wells (Ce–30, 31, 123, 124, 127, 128, 129, 130); 7 springs (standby) 3 springs 1 well (Ce–206) ^b 1 well (Ce–208); 1 spring 2 springs
Chester	Borough of Oxford Atglen Borough Water Department	5 wells (Ch-75, 526, 527, 2187, ° 2189) 2 wells (Ch-1061, 1062); 2 springs
Cumberland	Carlisle Barracks Carlisle Suburban Authority Center Square Water Company Forge Road Acres Water Company Grantham Water Company, Inc. Huckleberry Land Association Mechanicsburg Water Company Mt. Holly Springs Borough Authority Newville Borough Water Authority Shippensburg Rorough Water System	1 spring 2 wells (Cu–814, 815, 816, standby) ^b 1 well (Cu–252) 1 well 1 spring 1 spring 1 well (Cu–278); 1 spring ^b 1 well (Cu–396) ^b 1 spring 1 spring 1 spring

	HYDR	OLOGY	9
2 wells (Cu-456, 807) 2 wells (Cu-18, 662) 1 well (Cu-287) ^b 1 spring 1 spring	1 well (Da-489, standby); 1 spring 3 wells (Da-387, 404, 683); 1 springb 2 wells (Da-754, 756); 2 springs 1 well (Da-577); 2 springs 4 wells (Da-758, 760, 762, 764); 6 springs 11 wells (Da-80, 81, 82, 83, 84, 85, 88, 90, 91, 92, 93) 3 wells (Da-279, 281, 766) 2 wells 3 wells (Da-99, 386, 455) 7 wells (Da-22, 400, 454, 689, 691, 693, 695); 6 springs	2 wells (Da-748, 750) 1 well (Da-748, 750) 3 wells (Da-752) 3 wells (Da-31, 679, 681) 2 wells (Ln-1291, 1592) 2 wells (Ln-1285, 1286) 4 wells (Ln-214, 1596, 1597, 1598); 1 spring 3 wells (Ln-1131, 1283, 1603) 2 wells (Ln-1117, 1118); 8 springs 1 well (Ln-1305); 14 springs ^b 8 wells (Ln-1299, 1300, 1307, 1308, 1310, 1599, 1600, 1601) 1 spring 5 wells (Ln-643, 1406, 1604, 1605, 1606); 1 spring	1 well (Ln–1607); 1 spring ^b 4 wells (Ln–267, 1533, 1534, 1535) ^b
South Middleton Township Municipal Authority Summerdale Water Company White Hill Correctional Institute White Rock Water Company Williams Grove Park Company	B & J Water Company, Inc. Dauphin Consolidated Water Supply Company Elizabethville Water Company Gratz Water Company Halifax Borough Water Department Harrisburg International Airport Linglestown Water Company Loyalton Water Company Middletown Borough Water Company Middletown Borough Water Company Millersburg Area Water Authority	Penn National Turf Club Skyline Water Company Uniontown Water Company Richfield Area Joint Authority Acorn Water Works Adamstown Borough Water Department Akron Borough Municipal Water Works Bainbridge Water Authority Blue Ball Water Authority Christiana Gravity Water Company Denver Water Department East Cocalico Township Authority East Donegal Township Municipal Authority East Hempfield Township Municipal	East Petersburg Borough Authority Elizabethtown Water Company
	Dauphin	Juniata Lancaster	

Ō
\circ
4
Φ
9
O
<u> </u>

Water supplier	Groundwater sources ^a	10
Ephrata Borough Leola Water Authority Lititz Borough Water Works	2 wells (Ln-1536, 1537); 4 springs ^b 7 wells (Ln-1407, 1408, 1409, 1610, 1611, 1612, 1613) 6 wells (Ln-3, 4, 5, 6, 1594, 1595)	
Manheim Water Department Marietta Gravity Water Company	1 well (Ln-1617); 1 spring ^b 3 wells (Ln-20, 1608, 1609) ^b	
Masonic Homes Millerwille Municipal Water Authority	4 wells (Ln-123, 124, 186, 187) 4 wells (Ln-570, 571, 1280, 1540)	
Millersville State University	1 well (Ln-1282)	L
Mount Joy Borough Authority	2 wells (Ln-1538, 1539); 1 spring	OW
New Holland Borough Water Department	1 well (Ln-1291); 3 springs	ER
Northwestern Lancaster County Authority	1 well (Ln-1621)	RSI
Rheems Water Company	3 wells (Ln-96, 1410, 1615)	US
Rowenna Water Company	1 well (Ln-1602)	QL
Borough of Strasburg	14 springs	JEI
Terre Hill Borough Water Department	4 wells (Ln-1297, 1298, 1303, 1593)	НА
West Cocalico Authority	2 wells (Ln-1405, 1614)	NN
West Earl water Company	1 spling 2alls (1 = 1510 1530)	AF
western neights water Authority	5 wells (Ell-1016, 1017, 1020)	RIV
Annville Township Water Authority	3 springs	'EF
Campbelltown Water Company	2 wells (Lb-798, 799); 7 springs	RВ
Cornwall Municipal Water Authority	1 well (Lb-432); springs ^b	AS
Fredericksburg Water Authority	3 wells (Lb-442, 443, 444)	SIN
Heidelberg Township Municipal Authority	4 wells (Lb-341, 342, 412, 1106)	
Hill Crest View Cooperative Water System	2 wells (Lb-509, 510)	
Keystone Water Company	Springs	
Mount Gretna Camp Meeting Association	2 wells (Lb-433, 794)	
Mount Gretna Heights Water Company	2 wells (Lb-434, 793)	
Myerstown Water Authority	4 wells (Lb-703, 704, 705, 1055)	
Newmanstown Water Authority	1 well (Lb-699); 1 spring	
Pennsylvania Chautauqua Utility Commission	3 wells (Lb-795, 796, 797)	
Quentin Water Company	3 wells (Lb-435, 436 (standby), 1055)	
Richland Water Works	4 wells (Lb-700, 701, 702, 1025); 1 spring	
Stoney Crest Estates	2 wells (Lb-1102, 1103)	

	I well (Sn-207); 2 springs	Troxelville Water Company	
11	4 wells (Sn-18, 60, 61) 2 wells (Sn-137, 138) ^b	Selinsgrove Center Selinsgrove Municipal Waterworks	
	2 wells (Sn-144, 145)	Rolling Green Water Company	
	1 well (Sn-205); 1 spring	Perry Township Municipal Authority	
	1 well (Sn-139); 1 spring	Penns Creek Municipal Water Authority	
	4 wells (Sn-143, 146, 147)	Monroe Manor Water Company	
	2 wells (Sn-203, 204) ^b	Middleburg Municipal Authority	
	2 wells (Sn-89, 91); 1 spring	McClure Municipal Authority	
	2 wells (Sn-132, 133)	Kreamer Municipal Water Authority	
	l well	Kratzerville Municipal Water Authority	
	4 wells (Sn-228, 229, 230, 231)	Hillcrest Manor Mobile Home Park	
	2 wells (Sn-70, 71)	Freeburg Municipal Authority	
	2 wells (Sn-72, 206) ^b	Beavertown Municipal Water System	Snyder
	1 well (Sc-371) ^b	Tremont Municipal Authority	
GY	2 wells (Sc-326, 327) ^b	Tower City Borough Authority	
.Ο.	2 wells (Sc-522, 523)	Mountain Water Authority of Joliett	
KOL	4 wells (Sc-7, 8, 11, 526); 3 springs	Keystone Water Company, Frackville District	
DR	3 wells (Sc-286, 287, 323); 5 springs	Hegins Township Water Authority	
НΥ	1 well (Sc-153)	Ashland State General Hospital	
F	1 well (Sc-365); 4 springs	Ashland Borough	Schuylkill
	2 wells (Pe-77, 661)	Sunshine Hills Water Company	
	3 wells (Pe-607, 608, 609)	Liverpool Municipal Authority	
	2 wells (Pe-603, 605); 2 springs	Duncannon Municipal Water Company	
	1 well (Pe-78); 5 springs	Bloomfield Borough Water Authority	
	2 wells (Pe-75, 76); 1 spring	Blain Water Company	Perry
	1 spring	Turbotville Water Company	
	1 well (Nu-237)	Trevorton Water Company	
	1 well (Nu-236)	Shamokin Fire Control Station	
	1 well (Nu-248)	McEwensville Municipal Water Authority	
	3 wells (Nu-231, 232, 233); 4 springs	Herndon Municipal Water System	
	1 spring	Excelsior Water Association	
	3 wells (Nu-51, 234, 235)	Dalmatia Water Company	Northumberland
	3 wells (Lb-1108, 1109, 1110)	Leon Zimmerman Water Company	
	4 WUIS (LU-1107, 1107)	west Ledanon water Company	And the second s

Table 4. (Continued)

County

York

2 wells (Un-59, 01)
2 wells (Yo-1127, 1128)
1 well (Yo-1124)
3 wells (Yo-237, 238, 239)
3 wells (Yo-828, 829, 830); 9 springs
6 wells (Yo-130, 135, 150, 151, 152, 1125)
7 wells (Yo-9, 97, 832, 833, 1027, 1041, 1119)
2 wells (Yo-692, 694); 2 springs
l well (Yo-1134)
2 wells (Yo-848, 1132)
2 wells (Yo-224, 275) ^b
well (Yo-1126, standby); 10 springs
well (Yo-1141)
well (Yo-365); 1 spring
well (Yo-1129); springs
well (Yo-364); 1 spring
2 wells (Yo-1130, 1131)
5 wells (Yo-822, 823, 824, 825, 1118)
6 wells (Yo-226, 229, 231, 232, 233, 1117)
3 wells (Yo-1138, 1139, 1140)
well (Yo-602); 1 spring
well (Yo-1133)
2 wells (Yo-826, 827)
1 well (Yo-633); 7 springs
8 wells (Yo-416, 417, 418, 419, 420, 1120, 1121, 1122); 3 springs
4 wells (Yo-466, 467, 468)
7 wells (Yo-4, 5, 108, 1045, 1046, 1047, 1048)
well (Yo-1123); 7 springs
springs
wells (Yo-77, 159) ^b

^a Well numbers refer to those used on Plate 1 and Table 20. Where no well number is listed, the well data for that supplier were not readily available. b Also have surface-water sources.

Table 5. Industries Using More than 100,000 Gallons of Groundwater per Day

County	Name	Groundwater sources
Adams	Duffy-Mott Company, Inc. Knouse Foods Cooperative, Inc. Musselman Fruit Products, Pet Inc., Biglerville Plant	5 wells (Ad-295, 296, 298, 299, 450) 2 wells (Ad-357, 358) 9 wells (Ad-278, 281, 282, 283, 284, 285, 286, 287, 288)
Cumberland	Eaton-Dikeman and Company Kimberly Clark Corporation	1 well (Cu-422) 1 well (Cu-322)
Dauphin	Hershey Foods Corporation Reese Candy Company	9 wells (Da-435, 438, 439, 440, 442, 446, 451) Quarry
Lancaster	Armstrong Cork Company, Marietta Ceiling Plant Dart Container Corporation of Pennsylvania Empire Kosher Poultry Inc., Bird-In-Hand Plant Fuller Company, Manheim Plant Raybestos-Manhatten Inc. Victor F. Weaver, Inc.	1 well 6 wells (Ln-1527, 1528, 1529, 1530, 1531, 1532) 4 wells (Ln-1519, 1520, 1521, 1522) 1 well (Ln-1526) 3 wells (Ln-1523, 1524, 1525) 6 wells (Ln-1513, 1514, 1515, 1516, 1517, 1518) 3 wells (Ln-1510, 1511, 1512)
Lebanon	Aluminum Company of America Bethlehem Steel Corporation C. F. Manbeck, Inc. Grimes Poultry Processing Corporation Michters Distillery, Inc. Quaker Alloy Casting Company Sterling Drug, Inc.	4 wells (Lb-1087, 1088, 1089, 1090) 2 wells (Lb-1111, 1112) 1 well (Lb-1113) 2 wells (Lb-1101) 3 wells (Lb-713, 724, 725) 1 well (Lb-783) 1 well (Lb-704)
Schuylkill York	Penn Dye and Finishing Company, Inc. Litton Business Systems, Inc., Cole Division J. E. Baker Company Medusa Portland Cement Company	2 wells (Sc-524, 525) 1 well 1 well (Yo-725) 2 wells (Yo-726, 727)

' Well numbers refer to those used on Plate I and Table 20.

Table 6.	Mineral	Extraction	and	Processing	Sites	Withdrawing	More	than
	100,000	Gallons of C	rour	idwater per i	Day	•		

		Withdrawal	
County	Name	(gal/d)	Sources(s)
Adams	Bethlehem Steel Corp. Hanover quarry	11,732,000	Mine water
Dauphin	Pennsy Supply, Inc. Hummelstown quarry	288,000	Mine water
	Hempt Bros. Steelton quarry	120,500	Mine water
Lebanon	Bethlehem Steel Corp. Millard quarry	3,452,000	Mine water
	Calcite Quarry Corp.	9,357,000	Mine water
Northumberland	Gilberton Coal Co. Locust Summit Fine Coal Plant	350,000	Mine water
York	J. E. Baker Co. Thomasville Stone and Lime	1,429,000	Wells, mine water
	Co. Thomasville operation	2,879,000	Mine water

Quarry is located topographically in the Delaware River basin; however, a portion of the pumpage is obtained from the Susquehanna River basin.

A substantial amount of water enters the Lower Susquehanna River basin by way of the main stem of the Susquehanna River. Precipitation is the source of essentially all of the rest of the water that enters the basin. Water leaves the basin either as water vapor to the atmosphere (evapotranspiration), surface runoff, or groundwater discharge to streams. The average amounts shown on the diagram are approximations for illustrative purposes only and are not intended for use in detailed planning. Thorough discussion of the amount and variation of the components in the cycle is given in the sections that follow.

WATER BUDGETS

A water budget is a quantitative expression of the major components of the hydrologic cycle. Water that enters a basin as precipitation is balanced against water that leaves a basin as evapotranspiration and streamflow. This balance can be expressed in a simplified equation as follows.

$$P = R_s + R_g + ET \pm \Delta S$$

where

P = precipitation

R_g = groundwater discharge to streams

 R_s = surface or direct runoff

ET = water lost by evaporation and transpiration

 ΔS = change in amount of water in storage

 $(R_g + R_s = total streamflow)$

HYDROLOGY 15

Figure 5. The annual hydrologic cycle for the Lower Susquehanna River basin.

Water-budget analyses have been published for several subbasins within the Lower Susquehanna River basin (Figure 6). Two additional subbasins were selected for analysis in this study: East Mahantango Creek basin because it drains mixed lithologies in the Valley and Ridge physiographic province, and West Conewago Creek basin because it primarily drains shales and sandstones in the Triassic Lowland section of the Piedmont physiographic province.

The results of the water-budget analyses are presented in Table 7. The time period selected for analysis (1961–80) was utilized because it incorporates one of the driest periods of record (the early 60's) and one of the wettest periods of record (the 70's). Thus, the table gives nearly the full range of expected water-budget values.

Figure 6. Location of drainage basins used for water-budget analysis in this report, and location of other basins for which there is published water-budget information.

The subsequent sections contain fairly detailed descriptions of each major hydrologic component listed in Table 7, and are followed by a section that relates the baseflow information obtained in this study and other published studies to the areal availability of groundwater.

PRECIPITATION (P)

Precipitation normals for 14 weather stations were used to prepare a contour map showing the distribution of average annual precipitation (Figure 7). A linear trough in the contours which roughly follows the main valley of the Susquehanna River dominates the map. Precipitation values steadily increase away from the river to the east, reaching a high of over 45 inches in Schuylkill County. Other precipitation highs occur on South Mountain and in southern York County. The weighted average for the complete area is about 40 inches.

The contour map of average precipitation is useful for showing the typical patterns of precipitation highs and lows that occur in the basin. However, yearly precipitation at a single location often varies considerably from

Table 7. Water Budgets for Major Stream Basins

Water	Precipitation		Surface runoff	_	Groundwater discharge		Evapotranspiration FT (inches)
year	P (inches)	=	K _s (inches)	+	Rg (IllCiles) +		ET (IIICIICS)
			East Mahantango Creek Basin	Creek Basin			
			(gaging station near Dalmatia)	r Dalmatia)			
1961	37.04	11	4.86	+	12.18	+	20.00
962	42.71	11	3.93	+	8.05	+	30.73
963	36.24	Ш	2.95	+	10.49	+	22.80
964	35.80	11	89.9	+	11.11	+	18.01
965	30.17	II	1.87	+	5.57	+	22.73
996	32.82	II	3.27	+	7.75	+	21.80
196	38.50	II	4.18	+	11.89	+	22.42
896	40.01	II	5.31	+	11.24	+	23.46
696	37.46	II	3.29	+	8.66	+	25.51
970	39.54	11	7.55	+	12.67	+	19.32
971	40.67		6.04	+	12.94	+	21.69
972	55.81	11	20.57	+	17.56	+	17.68
973	48.52		6.53	+	14.49	+	27.50
974	49.52	11	6.67	+	14.73	+	28.12
975	52.11	II	13.45	+	16.06	+	22.60
926	40.83	11	4.42	+	13.16	+	23.25
977	48.64	11	10.70	+	13.79	+	24.15
826	54.64	II	11.10	+	19.19	+	24.35
626	48.61	11	10.66	+	15.74	+	22.21
0861	35.93	II	5.70	+	13.80	+	16.43
ong-term	42.28	Ш	66.9	+	12.55	+	22.74
average							

Table 7. (Continued)

Water	Precipitation		Surface fulloff		Giodilawatei dischaige		Evapolianspiration
year	P (inches)	ĮI.	R _s (inches)	+ ,	Rg (inches)	+	ET (inches)
			West Conewago Creek Basin	reek Basin			
			(gaging station near Manchester)	Manchester			
1961	41.87	II	8.27	+	8.57	+	25.03
1962	34.37	II	8.05	+	6.46	+	19.86
1963	35.28	II	6.11	+	6.73	+	22.44
1964	40.58	II	8.06	+	6.58	+	25.94
3965	30.10	II	3.99	+	4.34	+	24.77
9961	30.78	11	3.97	+	3.62	+	23.19
1961	39.89	II	90.9	+	7.32	+	26.57
8961	39.44	11	6.75	+	6.80	+	25.89
6961	32.76	II	5.28	+	5.19	+	22.29
0261	39.97	11	10.84	+	10.28	+	18.85
1971	45.53	11	7.88	+	10.45	+	27.20
1972	53.76	II	16.95	+	12.88	+	23.93
1973	45.54	11	10.07	+	11.19	+	24.28
1974	39.21	Ш	7.59	+	8.62	+	23.00
1975	51.65	II	16.57	+	11.05	+	24.03
9261	37.29	11	7.19	+	9.52	+	20.58
1977	31.40	II	7.59	+	6.90	+	16.91
8261	42.24	11	11.46	+	12.16	+	18.62
6261	46.35	11	10.83	+	10.23	+	25.29
1980	36.45	II	6.17	+	9.59	+	20.69
Long-term	39.87	11	8.48	+	8.42	+	22.97
average							
(1961-80)							

19

Figure 7. Average annual precipitation in the Lower Susquehanna River basin.

the average. Based on an analysis of long-term records for weather stations at Shamokin (51 years) and Spring Grove (47 years), annual precipitation is within 1 inch of the mean about 8 percent of the time and deviates more than 5 inches from the mean 45 percent of the time. The average range (difference between the maximum and minimum precipitation) for the two stations is 26 inches. Because of this variation caution must be exercised in using average amounts of precipitation for water-resource planning.

One technique for estimating the reliability (or variability) of precipitation is the use of frequency curves. Figure 8 shows frequency plots of annual precipitation at Shamokin and Spring Grove, the stations used in the water-budget analyses for East Mahantango Creek basin and West Conewago Creek basin, respectively.

Frequency plots can be used to estimate the recurrence interval (or probability of occurrence) for an annual precipitation amount of a particular magnitude (the recurrence interval is the inverse of the frequency expressed as a percent, multiplied by 100). Note that there is considerable difference in the 50 percent (2-year recurrence interval) precipitation values—43.0 inches at Shamokin versus 39.4 inches at Spring Grove. However, the 10 percent values are very close (about 33 inches). This suggests that, although more water is available in the Shamokin area during normal times, during dry periods the total water available at the two locations is about the same.

Figure 8. Percent frequency distribution of annual precipitation at Shamokin and Spring Grove. For clarity, not all years are shown.

STREAMFLOW $(R_g + R_s)$

Streamflow records were obtained from the U.S. Geological Survey for the two gaging stations listed in Table 7. The groundwater (R_g) and surfaceflow (R_s) components were separated from the total streamflow on hydrographs using conventional methods.

Annual groundwater flow to streams (baseflow) makes up about 65 percent of streamflow in the East Mahantango Creek basin. This percentage (between 60 and 65 percent) is typical for basins underlain by sandstone and shale of the Appalachian Mountain section of the Valley and Ridge physiographic province. Similar values were obtained for a comparable geologic setting in the Juniata River basin (Taylor and others, 1982).

HYDROLOGY 21

On the average, only about half of the streamflow in the West Conewago Creek is provided by groundwater. This is among the lowest percentages obtained in Pennsylvania and is probably due to the fact that recharge is limited by the relatively low permeability of soils developed on Triassic-age sedimentary rocks. Also, these rocks have a low storage capacity for groundwater and thus cannot sustain large baseflows.

The relationship between streamflow and baseflow has been evaluated for several small basins within the Lower Susquehanna River basin. The results of these evaluations are summarized in Table 8. Many of these analyses are for a short period of record, which limits their utility. However, in most instances the authors attempted to select typical years in order to reflect long-term average conditions.

As shown in the table, there is a wide range in the percentage of stream-flow contributed by groundwater, which is largely a result of variations in the underlying geology. The highest baseflows are sustained in the basins underlain primarily by carbonate rock: Quittapahilla Creek, Yellow Breeches Creek, and Little Conestoga Creek. Intermediate flows occur in the Conodoguinet Creek basin, which is underlain by carbonate rock but also contains a significant amount of shale bedrock, and the Muddy Creek basin, which is underlain by metamorphic rocks of the Piedmont physiographic province. The noncarbonate sedimentary rocks of the Valley and Ridge physiographic province sustain baseflows in the intermediate range (East Mahantango Creek basin). The lowest baseflows are sustained in the West Conewago Creek basin, as described previously.

The low value in the table (49 percent) for the Swatara Creek basin is probably a result of two factors: first, there is a large percentage of comparatively low permeability shale and sandstone in the basin, and, second, the baseflow separation technique used by the authors is different from that used in the other studies and may have produced a low estimate for baseflow.

Figures 9 and 10 are frequency plots of annual runoff for the two basins analyzed in this project. Also shown are baseflow frequency plots which were prepared by correlating the data in Table 7 and the total-runoff plots. Two important observations can be made from the plots. The slope of the lines gives an indication of the consistency of the resource; the steeper the slope, the more variable the flow. Although the total-runoff plots in Figures 9 and 10 have about the same slope, the base-runoff plot for West Conewago Creek is not as steep as that for East Mahantango Creek. This suggests that the groundwater resource is somewhat more reliable in the West Conewago Creek basin. However, the second observation that can be made concerns the vertical position of the lines. From this it is apparent that the base-flows are more consistent in the West Conewago Creek basin, but at a significantly lower level of flow (the median baseflow is about 30 percent lower).

Table 8. Summary of Streamflow and Groundwater Contributions to Streamflow for the Lower Susquehanna River Basin

Basin		Average	Average	Proportion of total flow
and	Period of	streamflow	groundwater	made up of groundwater
location of gage	record	(inches)	flow (inches)	flow (percent)
Little Conestoga Creek	Jan. 1964-Dec. 1964	15.3	11.6	92
at Conestoga Country Club				•
Muddy Creek near	Jan. 1969-Dec. 1970	14.4	10.0	69
Castle Fin²				
Yellow Breeches Creek near	1968-74	21.0	16.8	80
Camp Hill ³				
Conodoguinet Creek near	1968-74	19.9	13.3	67
Hogestown ³				4
Swatara Creek above	42-year composite record	23.2	11.3	49
Harper Tavern⁴				1
Quittapahilla Creek west	Oct. 1960-Sept. 1961	17.3	15.1	82
of Annville ⁵				;
West Conewago Creek near	1961–80	16.9	8.4	30
Manchester				!
East Mahantango Creek near	1961–80	19.5	12.6	65
Dalmatia				

From Meisler and Becher (1971).

² From Lloyd and Growitz (1977).

From Becher and Root (1981).

From Stuart and others (1967).

⁵ From Meisler (1963).

Figure 9. Percent frequency distribution of annual runoff from East Mahantango Creek near Dalmatia (1930–80).

EVAPOTRANSPIRATION (ET)

Evaporation from water bodies, wetted surfaces, and moist soil by direct evaporation, and vapor that escapes from living plants by the process of transpiration are collectively called evapotranspiration (ET). The amount of ET varies with the length of the growing season, the average temperature, and the amount and timing of precipitation and humidity. Consumptive losses to ET are at a minimum between the first killing frost in the fall and the active resumption of plant growth in the spring. Most of the recharge to the groundwater system occurs during this time period, as shown on the water-level curve in Figure 11.

The amount of water lost to ET is estimated by evaluating the difference between precipitation and streamflow. Any annual changes in groundwater storage (ΔS) are also included in this computed difference. However, in-

Figure 10. Percent frequency distribution of annual runoff from West Conewago Creek near Manchester (1931–80).

creases or decreases in storage essentially balance one another if a long enough period of record is used.

Table 9 is a summary of reported and calculated ET values for the Lower Susquehanna River basin. An estimated 48 to 63 percent of precipitation is lost to evapotranspiration. The values, in general, vary directly with average temperature within the basins; the percentages decrease from south to north. The anomalously low value for the Yellow Breeches Creek basin is due to the fact that it has a 100 foot higher average elevation than the adjacent Conodoguinet Creek basin (Becher and Root, 1981, p. 10).

ESTIMATE OF AREAL AVAILABILITY OF GROUNDWATER

Baseflow data can be used to calculate the average groundwater discharge per unit of land surface. If there are no significant changes in groundwater storage and if evapotranspiration directly from groundwater is assumed to be negligible, then this discharge per unit of land surface provides an esti-

Table 9. Summary of Evapotranspiration (Water Loss) Estimates for the Lower Susquehanna River Basin

Basin	Period of record	Precipitation (inches)	Evapotranspiration (inches)	Proportion of precipitation lost to evapotranspiration
Muddy Creek¹ Yellow Breeches Creek² Conodoguinet Creek² Swatara Creek³ West Conewago Creek East Mahantango Creek	1931–39	43.00	27.07	63
	1968–74	43.22	20.54	48
	1968–74	42.23	23.13	55
	42-year composite record	46.38	23.17	50
	1961–80	39.87	22.97	58
	1961–80	42.28	22.74	54

¹ From Lloyd and Growitz (1971). ² From Becher and Root (1981).

³ From Stuart and others (1967).

mate of groundwater recharge. The amount of recharge to the groundwater system is the practical upper limit of development (consumptive withdrawals) for an aquifer or basin. Withdrawals in excess of recharge can cause a progressive lowering of water levels and severely reduce the flow of streams.

The baseflow analyses performed in this report provide estimates of recharge to the diverse rock types in the Valley and Ridge physiographic province (Mahantango Creek) and the rocks of Triassic age (West Conewago Creek). Estimated average recharge to the diverse rock types in the Valley and Ridge physiographic province ranges between 184 and 635 (gal/min)/mi² (gallons per minute per square mile), and the mean is 414 (gal/min)/mi².

Estimated recharge to the rocks of Triassic age ranges from 120 to 426 (gal/min)/mi², and the mean is 278 (gal/min)/mi². These estimates are among the lowest for any rock types in Pennsylvania and suggest that recharge over a fairly large area must be captured in order to sustain large withdrawals from the Triassic rocks.

Estimates of average annual recharge for the portion of the basin south of Blue Mountain have been made by Gerhart and Lazorchick (in preparation). These estimates are based on the results of digital modeling and some baseflow analyses and are listed in Table 10. The values given in the table can be converted to gallons per minute per square mile by multiplying by 694. Note that the converted values for the rocks of the Triassic Lowland,

Table 10. Estimate of Average Annual Groundwater Recharge by Hydrogeologic Unit¹

(Modified from Gerhart and Lazorchick, in preparation)

Hydrogeologic unit	Average annual groundwater recharge ((Mgal/d)/mi²)
Shale in the western Great Valley and shale containing significant graywacke in the eastern Great Valley	0.53
Shale of the eastern Great Valley not containing significant graywacke	.44
Carbonate rocks in the eastern Great Valley	.75
Carbonate rocks in the western Great Valley	.64
Sedimentary rocks of the western Triassic Lowland section	.34
Sedimentary rocks of the eastern Triassic Lowland section	.51
Carbonate rocks of the western Conestoga Valley section	.51
Carbonate rocks of the eastern Conestoga Valley section	.70
Shale of the northern Conestoga Valley section	.53
Metamorphic rocks of the Conestoga Valley section (west of the Susquehanna River)	.31
Metamorphic rocks of the Piedmont Uplands section	.47

¹ The combination of dominant lithology and physiographic location was used to define hydrogeologic units.

236 (gal/min)/mi² in the western part and 354 (gal/min)/mi² in the eastern part, are in reasonable agreement with the 278 (gal/min)/mi² obtained in this study.

HYDROGEOLOGY

GEOLOGIC SETTING

The geology of the Lower Susquehanna River basin is characterized by a large diversity of rock types and structural settings. As a result, the area has been separated into the six physiographic provinces or sections shown in Figure 3.

The Appalachian Mountain section consists of broadly folded, Paleozoic sedimentary rocks that range in age from Ordovician to Pennsylvanian. The rock sequence is grossly divisible into a lower carbonate (nonclastic) interval overlain by two clastic intervals (sandstone and shale) which are separated by a thinner nonclastic carbonate and shale group. The lower nonclastic interval includes the Bellefonte and Axemann Formations, undivided, and the Coburn Formation through the Loysburg Formation, undivided. The lowest clastic interval includes all of the rocks from the Upper Ordovician Bald Eagle Formation through the Middle Silurian Bloomsburg Formation. This is overlain by a thinner, predominantly carbonate interval consisting of the Wills Creek, Tonoloway, Keyser, Old Port, and Onondaga Formations. The strata above the Onondaga are entirely clastic, and include the interval from the Hamilton Group to the Llewellyn Formation.

The northern portion of the Great Valley section is underlain by the Martinsburg Formation and rocks of the Hamburg sequence, which consist of folded and faulted shale, limestone, and some graywacke. The remainder of the section is underlain primarily by tightly folded and faulted carbonate rocks of Cambrian and Ordovician age. The rocks of the Great Valley do not constitute a single stratigraphic sequence because faulting has brought together rocks that were originally deposited in widely separated parts of the Appalachian basin. Thus two sets of stratigraphic names are used to describe the rocks of the Great Valley in later sections of this report.

The Blue Ridge province contains some of the oldest rocks in the basin. They consist of Precambrian volcanic rocks which are overlain by metamorphosed sedimentary rocks (the Antietam Formation through the Loudoun Formation). The geologic structure throughout the province is extremely complex.

The Triassic Lowlands section is underlain by relatively nonresistant red shale, sandstone, conglomerate, and minor amounts of limestone. Structurally, the rock layers form a monocline having a predominantly northwesterly dip of about 15 to 35 degrees. In many areas the lowland is criss-

crossed by ridges and hills formed by diabase dikes and sheets that were intruded into the sedimentary rocks.

The Conestoga Valley section is underlain chiefly by Cambrian- and Ordovician-age carbonate rocks and shale. These rocks have been subjected to severe and recurring stress throughout much of geologic history and as a result are highly folded and faulted.

The Piedmont Uplands section is primarily composed of metamorphosed sedimentary rocks but also contains some igneous rocks. The geologic structure in this section is extremely complex.

OCCURRENCE AND MOVEMENT OF GROUNDWATER

The portion of precipitation that does not run off or is not lost by evapotranspiration infiltrates the soil and moves downward through the soil and rock until it reaches the water table, below which all of the interconnected voids are filled with water. After reaching this saturated zone, the water moves slowly downward and laterally toward lower altitudes (or lower hydraulic potential) and eventually returns to the land surface, either from springs or by channel seepage to provide the baseflow to streams.

The water table fluctuates according to the relative amounts and rates of recharge to and discharge from the groundwater system. Figure 11 shows the mean monthly temperature, precipitation, and representative groundwater levels for eastern Snyder County. Precipitation ranges from more than 4 inches in May to about 2-1/2 inches in February. However, the water level in well Sn-130 shows only a marginal relationship to precipitation, whereas the level appears to be inversely related to temperature. This demonstrates the effect of evapotranspiration on recharge. Most groundwater recharge occurs after the spring thaw and prior to the onset of vigorous plant growth in April and May, and after the first killing frost in October and before the ground freezes in December. During the summer there is normally a steady decline in water levels because large evapotranspiration losses allow only a small amount of recharge to reach the saturated zone. Thus the seasonal variation in precipitation is often more critical to the groundwater resource than the annual total. A dry spring or fall may have considerable effect as opposed to a dry summer, which might have much less effect on the resource; however, some recharge is essential throughout the year.

A hydrograph of well Sn-130 (the Snyder County observation well) for the period 1975-80 is included to show typical fluctuations in the annual pattern of water levels (Figure 12). Note the steady decline in water level from May to September 1980; this represents the early stages of the 1980-81 drought. Although the July 1980 level in this well was in the normal range, the almost total lack of recharge in August and especially September triggered the onset of this relatively short term but costly drought. A record

Figure 11. Mean temperature and precipitation at Selinsgrove and mean water level in well Sn–130 (1975–80).

minimum water level in this well of 19.57 feet was reached on November 23, 1980 (period of record is June 1968 to the present). Heavy rains and an early thaw in February eased the problem; however, comparatively low water levels continued throughout the year.

The water table in the basin is subparallel to the land surface; water levels under hills are at higher altitudes than those in valleys. The depth to water varies with rock type, physiography, and precipitation. Water levels measured in domestic wells in the Appalachian Mountain section of the Valley and Ridge physiographic province have a median depth of 19 feet in valleys (170 wells), 35 feet under hillsides (342 wells), and 49 feet under hilltops (21 wells). Typical water levels for different rock types in various physiographic settings for the part of the basin south of Blue Mountain are given by Gerhart and Lazorchick (in preparation) and are listed in Table 11.

Figure 12. Mean monthly depth to water in well Sn-130.

Table 11. Depth to Water in Different Topographic Settings, by Hydrogeologic Unit (Modified from Gerhart and Lazorchick, in preparation)

	Dept	Depth to water, in feet below	elow
Hydrogeologic unit	Hilltop	land surface Hillside ^a	Vallev
Shale in the western Great Valley and shale containing significant graywacke in the eastern Great Valley	34	23	12
Shale of the eastern Great Valley not containing significant graywacke	29	23	21
Carbonate rocks in the eastern Great Valley	63 ^b	34b	15b
Calibonation respect to the Western Great Valley	83	46	18
Sedimentary 10chs of the western 1 riassic Lowland section	40	24	17
Seminary focks of the eastern 1 massic Lowland section	40	24	=
Carbonate rocks of the western Conestoga Valley section	43	28	13
Cal Dollate Tocks of the eastern Conestoga Valley section	47b	32 ^b	16 ^b
Margangal to the Holthern Conestoga Valley section	45	34	10
Meramorphic rocks of the Conestoga Valley section (west of the Susquehanna River)	40	30	6
rectained principles of the Fredhionic Uplands section	37	28	6
L			

^a The middle slope category of Gerhart and Lazorchick.

^b Average values for two of Gerhart and Lazorchick's hydrogeologic units which have been combined in this table.

FACTORS THAT INFLUENCE THE YIELD OF WELLS

The yield of a well depends largely on the size, number, distribution, and degree of interconnection of the water-filled openings penetrated by the well. These openings or water-bearing zones may be fractures, bedding-plane partings, or small voids between the grains that make up the rock.

Table 12 is a summary of available data on water-bearing zones for the northern part of the basin. Water-bearing-zone data for the southern part of the basin are available in several published reports (Figure 2). In Table 12, the numerator of the fraction indicates the number of reported waterbearing zones, and the denominator indicates the number of wells penetrating a particular depth range. In the shallowest depth range, the denominator indicates the total number of wells in that formation for which data on depth to water-bearing zones were obtained. Thus, data were obtained for 118 wells in the Catskill Formation. The value (or magnitude) of the fraction indicates the relative abundance of water-bearing zones with depth. In the Catskill Formation, water-bearing zones were most abundant in the 101- to 150-foot interval; about 89 percent of the wells in this interval penetrated a water-bearing zone. Also listed is the deepest reported water-bearing zone for each rock unit. If there are a sufficient number of deep wells this value should give an indication of the depth of groundwater circulation within the particular rock unit.

The ratio given in the table for the shallowest interval (0 to 50 feet) is somewhat misleading because the casing length and static water level were not taken into account. However, the data probably indicate the abundance of zones that provide water to wells in that interval.

Geologic factors that control the type and distribution of water-bearing zones, and thus well yields, are described in the following three sections.

Lithology

Rock type is the most important factor in determining well yield. The occurrence of both primary and secondary porosity and permeability is substantially controlled by lithology.

Lithological factors that control development of secondary openings are rock susceptibility to solution, rock susceptibility to fracturing, and size and spacing of bedding-plane partings.

Enlargement of primary and secondary openings by solution occurs mainly in the carbonate rocks, limestone and dolomite. Occasionally the permeability of sandstone units has been increased by the solution removal of calcite cement from the particles that make up the rock. The Ridgeley Member of the Old Port Formation has been known to exhibit this type of solution.

The size and spacing of fractures are a result of the response of the rock mass to the stresses placed upon it. Certain rock types, such as sandstone

Table 12. Summary of Data on Water-Bearing Zones

Ratio of number of water-bearing zones of specified depth range (numerator) to number of wells	penetrating this range (denominator)
--	--------------------------------------

					penetral	penetrating this range (denominator)				
						Depth range (feet	lge (feet)					
Group,						ı	,					
or member¹	0-50	51-100	101-150	151-200	201-250	251-300	301-350	351-400	401-450	451-500	>500	Deepest
Llewellyn	7	16	7	2	_	-	0	-				
Formation	15	15		4	"	۳	,	-		1	1	362
Pottsville	0		0	r	0)	1	•				(
Group	-	-	-		l			-	1	l	l	66
Mauch Chunk	14	80	58	18	7	5	0	-	7	0	-	
Formation	97	97	72	36	17	9	∞	5	8	· ·	- -	755
Pocono	0	2	2	2	2	0	0	0	0		. 0	ţ
Formation	m	m	3	۳	7		-	-	-	-	- -	//4
Catskill	6	29	85	40	- ¹	13	. 2	. 7	. 2	- C	· (
Formation,	118	109	95	62	43	26	=	0	4	, ,	1 ~	514
undivided ²				!)	ì	:	ò	r)	1	
Sherman Creek	7	23	31	23	9	7	-	0	2	0	_	7 1 7
Member of	51	42	39	27	19	12	5	8	7	-	-	514
Catskill Formation		,			,		,					
Member of	۽ اِ	32	87	∞	\sim	_	0	0	1	1	1	300
Catskill Formation	33	33	7.7	14	∞	4	_	_				
Brallier and	0	5	3	7	ĸ	_	-	0				0
Harrell Formations,	10	10	∞	7	S	3	3	-	l	1	l	328
Trimmers Rock	∞	20	24	23	∞	2	8	-	0	-	I	460
rormanon	51	51	38	27	12	∞	5	2	_	_)
Hamilton	24	81	43	24	=	9	-	3	1	I	1	396
Group	91	98	62	33	21	12	4	3				

Table 12. (Continued)

						Depth range (feet)	nge (feet)					
Group formation,	0-50	51-100	101-150	151-200	201-250	251-300	301-350	351-400	401-450	451-500	>500	Deepest
Onondaga and	9 4	14	10	3	0	-		-	0	-		460
Old Port Formations,	16	14	=	8	m	3	3	7	2	-		
Keyser and	17	19	12	14	5	-	0	0	0	-	I	470
Tonoloway Formations, undivided	23	17	17	17	9	ю	_	-	_	1		
Wills Creek	32	9/	42	6	8	e	0	0	0	I	I	261
Formation	74	74	33	12	9	5	1	_	_			
Bloomsburg and	12	34	11	7	4	7	0	m	-	-	m	909
Mifflintown Formations undivided	41	41	25	16	12	∞	5	S	3	7	7	
Clinton	5	13	6	1	7	2	0	7	I	I	1	363
Group	16	15	=	9	9	4	т	7				
Tuscarora	0	7	I	I	l	I	I	1	I	1		70
Formation	-	1										
Juniata	0	0	1	1	-	0	0	0	-	0	0	412
Formation	4	4	4	3	2	-	_	1	_		_	
Reedsville	6	16	∞	2	7	0	-	1	I	I	I	345
Formation	23	21	6	6	7	3	-					
Coburn Formation	∞	14	12	13	10	3	8	0	0	0	I	347
through Loysburg	28	28	20	17	12	10	5	-	-	-		

and dolomite, are more likely to undergo brittle fracture when stressed and thus have a greater abundance of fractures. Thin-bedded units within the same rock type generally have a closer fracture spacing.

Figure 13 shows the percent frequency distribution of nondomestic well yields from the Appalachian Mountain physiographic section that have been grouped according to dominant rock type. The importance of lithology is apparent. The yields from wells developed in shale are consistently

Figure 13. Percent frequency distribution of nondomestic well yields from the Appalachian Mountain section, grouped according to dominant rock type.

lower than those from other types, and the highest yields are from the carbonate rock types. However, the yields from the mixed sandstone and shale rock units are somewhat less variable than the others, as indicated by the slope of the graph, which is not quite as steep as the slopes of the others.

Topography

Several recent studies have evaluated the relationship of topography to well yield (Taylor and others, 1982; Meisler and Becher, 1971; Becher and Root, 1981; and others). All have shown a significant relationship between the topographic position of a well and well yield. Wells in higher topographic positions (hilltops and hillsides) have smaller yields than those in lower topographic positions (valleys, gullies, and draws).

Valleys and draws often form where the bedrock is most susceptible to physical or chemical weathering. Lithologic variations and weaknesses in rocks caused by bedding partings, joints, cleavage, and faults may promote rapid weathering and produce low areas in the topography. These types of geologic features often occur in high-permeability zones which yield significant amounts of water to wells.

Figure 14 is a graph showing the percent frequency distribution of non-domestic well yields from the Appalachian Mountain physiographic section that have been grouped according to topographic setting. The graph shows that valley wells are generally more productive than hillside wells which, in turn, are more productive than hilltop wells. In the high range of yields, valley wells yield nearly three times as much water as hilltop wells.

Geologic Structure

Geologic structure, which includes faults, folds, fractures, and orientation (dip) of the rock layers, often has an important influence on the yield of wells. The locations of major structures are shown on Plate 1.

Faulting may create zones of fractured rock that yield substantial amounts of water. Occasionally, however, faults are filled with clay, calcite, or quartz and may yield little or no water. This is most common with faults in carbonate rocks.

Fold hinges represent areas where considerable secondary permeability may be developed because of an increase in fracture abundance, occasional well-developed cleavage, and the presence of horizontal or nearly horizontal bedding.

Wells that penetrate fractured bedrock yield more water than those that do not penetrate any fractures. As mentioned earlier, the locations of valleys and draws are frequently controlled by fractures or fracture zones. Other features reported to be good indicators of fractured bedrock are faults and fracture traces (natural linear features observed on aerial photo-

Figure 14. Percent frequency distribution of nondomestic well yields from the Appalachian Mountain section, grouped according to topographic setting.

graphs that may be the surface expression of fracture zones in the subsurface).

Well yields generally increase with decreasing dip of strata because more of the openings that normally occur between beds (bedding-plane partings) are penetrated by a well in nearly horizontal strata than in steeply inclined strata.

GROUNDWATER QUALITY

The amount and type of dissolved mineral matter in groundwater is determined largely by the composition of the soil and rock through which the water flows and the length of time the water has been in contact with the soil and rock. Thus differences exist in the concentrations of dissolved constituents in groundwater, depending on both the geologic unit from which the water is obtained and on the position of the water within the groundwater flow system. Table 13 is a list of the principal mineral constituents that occur in the groundwater of the basin and their source and significance.

The quality of groundwater within the Lower Susquehanna River basin was evaluated using 369 samples collected from wells and springs and analyzed in the laboratory of the Department of Environmental Resources. An additional 458 analyses compiled by Koester and Miller (1982) were used to supplement the data for the rock units located to the south of Blue Mountain. Median values for each constituent analyzed are given in Table 14 by aquifer and physiographic location. A complete listing of the analyses is given in Table 19. The water quality by aquifer is discussed in the section entitled "Stratigraphy and Water-Bearing Properties of the Rocks."

The analysis of the water-quality data indicates that a major difference in quality occurs between groundwater from rock units that are primarily calcareous as compared with those that are noncalcareous. Table 15 summarizes the analyses according to dominant rock type for wells located in the Appalachian Mountain section of the Valley and Ridge province.

The median hardness from units composed mainly of limestone or calcareous shale is 180 mg/L (milligrams per liter) as compared to a median of only 64 mg/L for water from units composed predominantly of noncalcareous siltstone and sandstone. Several other constituents consistently present in greater concentrations in the calcareous units are calcium, dissolved solids, magnesium, and nitrate.

Additional information on hardness, specific conductance, and pH in the Appalachian Mountain section was obtained from the 426 field analyses summarized in Table 16. The occurrence of these and other common constituents in groundwater is described in the following sections.

SPECIFIC CONDUCTANCE AND TOTAL DISSOLVED SOLIDS

The specific conductance of groundwater depends on the amount and, to a lesser degree, type of dissolved constituents. Thus specific conductance can be used to make an approximate estimate of the total dissolved solids. Figure 15 shows the relationship between field measurements of specific conductance and laboratory measurements of total dissolved solids for northern Dauphin County. According to this relationship, the dissolved solids can be obtained by multiplying the specific conductance by 0.65 and

Table 13. Source and Significance of Selected Dissolved Constituents and Properties of Groundwater (Concentrations are in milligrams per liter (mg/L) except as indicated)

ဋ
ਰੁ
Ξ
(Concentrations are in milligrams per liter (mg/L) except as indica
idi
ğ
õ
\Box
à
Ë
Ξ.
ĭ
be
JS
ä
E.
Ξ
Ξ
آ۔
ar
JS
ō
ᆵ
Ξ
en
Š
ō
2

Constituent or property	Source or cause	Significance ²
Silica (SiO ₂)	Dissolved from practically all rocks and soils (commonly less than 30 mg/L).	Forms hard scale in pipes and boilers. When carried over in steam of high-pressure boilers it forms deposits on blades of turbines.
Aluminum (AI)	Dissolved in small quantities from aluminum-bearing rocks. Acid waters often contain large amounts.3	May be troublesome in feed waters by forming scale on boiler tubes. High concentrations generally indicate the presence of acid mine drainage or industrial waste. ³ In natural water, it rarely occurs in concentrations greater than a few tenths of a milligram per liter.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment.	On exposure to air, iron in groundwater oxidizes to a reddish-brown precipitate. More than about 0.3 mg/L stains laundry, porcelain, and utensils reddish brown. Objectionable for food processing, textile processing, beverages, ice manufacturing, brewing, and other processes. Maximum limit recommended for drinking water is 0.3 mg/L.
Manganese (Mn)	Dissolved from many rocks and soils. Often found associated with iron in natural waters, but is not as common as iron.	More than 0.2 mg/L precipitates upon oxidation. Manganese has the same undesirable characteristics as iron but is more difficult to remove. Maximum limit recommended for drinking water is 0.05 mg/L.
Cadmium (Cd)	Dissolved in small quantities from cadmium-bearing rocks. Excessive concentrations are generally due to contamination by industrial wastes from metal-plating operations.	Concentrations above 0.01 mg/L may be toxic and are considered grounds for the rejection of a water supply.
Chromium (Cr)	Dissolved in minute quantities from chromium-bearing rocks. Excessive concentrations are generally due to contamination by industrial wastes.	Maximum limit recommended for drinking water is 0.05 mg/L.

Constituent or property	Source or cause	Significance ²
Lead (Pb)	Dissolved in small quantities from lead-bearing rocks. Less than 0.01 mg/L is generally found in natural waters. Excessive concentrations can be caused by corrosion of lead plumbing.	Lead is accumulated by the body and causes sickness and even death in excessive concentrations. Maximum limit recommended for drinking water is 0.05 mg/L.
Zinc (Zn)	Dissolved from zinc-bearing rocks. May be dissolved from galvanized pipe and is present in many industrial wastes.	Concentrations greater than 30 mg/L have been known to cause nausea and fainting and may impart a metallic taste and milky appearance to water. Maximum limit recommended for drinking water is 5 mg/L.
Nickel (Ni)	Dissolved from nickel-bearing rocks, commonly associated with iron and manganese.	Nickel is considered to be relatively nontoxic to man.
Arsenic (As)	Dissolved in small quantities from arsenic-bearing rocks. Excessive concentrations are generally due to improper waste-disposal practices. Arsenic is also present in certain insecticides and herbicides.	Concentrations above 0.05 mg/L may be toxic and are considered grounds for rejection of a water supply. The typical concentration in groundwater is less than 0.001 mg/L.
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all rocks and soils, especially from limestone, dolomite, and gypsum.	Cause of most of the hardness and, in combination with bicarbonate, is the cause of scale formation in steam boilers, water heaters, and pipes (see "Hardness"). Water low in calcium and magnesium is desired in electroplating, tanning, dyeing, and textile manufacturing.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Sewage and industrial wastes are also major sources.	Concentrations of less than 50 mg/L have little effect on the usefulness of water for most purposes. More than 50 mg/L may cause foaming in steam boilers and limit the use of water for irrigation.
Alkalinity (CO3, HCO3)	The bicarbonate ion may result from atmospheric carbon dioxide and the solution of carbon dioxide produced during the decomposition of organic matter in the soil. The major source, however, is from the solution of limestone.	Bicarbonate (HCO ₃) and carbonate (CO ₃) produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot-water facilities to form scale and release corrosive carbon dioxide gas (see "Hardness").

Constituent or property	Source or cause	Significance ²
Hardness (as CaCO,)	In most waters nearly all of the hardness is due to calcium and magnesium. All of the metallic cations other than the alkali metals also cause hardness. There are two classes of hardness — carbonate (temporary) and noncarbonate (permanent). Carbonate hardness refers to the hardness resulting from cations in association with carbonate and bicarbonate; it is called temporary because it may be removed by boiling the water. Noncarbonate hardness refers to that resulting from cations in association with other anions.	Hardness consumes soap before a lather will form and deposits soap curds on bathtubs. Carbonate hardness is the cause of scale formation in boilers, water heaters, radiators, and pipes, resulting in a decrease in heat transfer and restricted flow of water. Waters of hardness up to 60 mg/L are considered soft; 61 to 120 mg/L, moderately hard; 121 to 180 mg/L, hard; and more than 180 mg/L, very hard. Very soft water that has a low pH may be corrosive to plumbing. The number of milligrams per liter divided by 17.1 yields the concentration in grains per gallon.

Dissolved solids — A measure of all of the chemical constituents dissolved in a particular water. The maximum limit recommended for drinking water is 500 mg/L, but water containing up to 1,000 mg/L may be used where less mineralized supplies are not available.

Specific conductance (micromhos at 25 ° C) — A measure of the capacity of a water to conduct an electrical current. It varies with concentration and degree of ionization of the constituents. May be used to obtain a rapid estimate of the approximate dissolved-solids content of water.

line solutions; values lower than 7.0 indicate acidic solutions. Corrosiveness of water generally increases with decreasing pH. The pH of most natpH — The negative logarithm of the hydrogen-ion concentration. A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote alkaural water ranges between 6 and 8.

Temperature — The temperature of groundwater that occurs between the water table and about 60 feet below the water table is approximately the same as the average annual air temperature (Lovering and Goode, 1963, p. 5); below this point, groundwater temperatures increase with depth about 1° F for each 50 to 100 feet.

Lloyd and Growitz (1977), p. 51-54.

Recommended drinking-water limits are from U.S. Environmental Protection Agency (1975, 1977).

Ward and Wilmoth (1968), p. 20-22.

⁴ U.S. Environmental Protection Agency (1976), p. 10.

Formations, undivided

(Quantities are in milligrams per liter unless otherwise indicated)

(nZ) aniZ		8	5	.03	ć	20.00	70.	.03			10:			0		5	3 6	3	Ξ				5	70				5	99	3
Sulfate (SO.)		4		01		· 2 •		8			5			0 5					9				91					. 71	9	
(eN) muibo?		7.2	!	0.9	0			6.9			0.01			-	:		2.0		12.0				١					÷	~	1
Potassium (K)		35 7		.40 6		0.07		.70			.50 10			30		40			< 10 32				20					0/.	5.0 2	
N sb "ON		02				. 06.		99			. 10			.20			. 02		> 20.											
			2	3.40	•	j. v	j.	9.			-:			ζ.		0,	9		0.				2.30	1			58 1	0.1	.29	
N 25, as N		ō		.00	5	7 2	70.	.01			.01			<.01		<.01	10		<.01				Ξ				5	?	10:	
N 25 , (HN		91.	:	.01	5	0.7	70.	10:			.05			.03		90.	90		.37				ō				-		.02	
Nickel (Ni)		10.		.01	5	10.		.01			.01			<.01		10.	10.		.03				10				5	2	.02	
Magnesium (Mg)		8.9		3.1	2.4	- 00 1 40	2	5.6			6.7			4.		5.1	5.1		~				15.0				10.5	<u>.</u>	3.1	
Manganese (Mn)		91.		10.	0	0.7	2	10:			=			.0		80.	60		10:				0				5		0.	
(Pb)		.002		.00	.003	.002		.003			.002			.002		.002	.002		.001				004				004		.004	
(Fe)	APPALACHIAN MOUNTAIN SECTION	66.		.05	.03	80.		90.			.26			.18		61.	.20		.03				60				80)	98.	
Hardness (CaCO ₃)	IN SE	100		95	64	57		52			19			55		9	99		7				180				155		30	
(4) sbinould	UNTA			Τ.	7	-:		=:			7:			Ξ.		-:	ų		~				-				-		2	
Dissolved solids	NNMO	139		174	122	611		115			116			93		128	136		128				206				200		87	
Chromium (C1)	4CH1/	10.		.01	<.01	.01		.01			.01			<.01		<.01	10.		.01				10:				10		.01	
Chloride (CI)	PPAL	4.0		7.0	5.0	3.5		4.0			2.0			2.5		2.0	3.0		0.9				3.0				3,5		3.0	
Calcium (Ca)	<	29.5		31.5	26.0	10.5		∞ ∞			0.11			12.0		0.91	0.91		-				46.0				35.0		13.0	
Cadmium (Cd)		100.		.00	<.001	.00		.001			.001			100.>		.001	.001		<.001				.001				.00		.00	
Alkalinity (CaCO,)		99		œ	44	65		62			78			. 88		99	99		54				160				135		61	
(IA) munimulA		90.		.03	80.	50.		.04			.05			.05		.04	.04		.07				.03				90.		90.	
(sA) vinse1A		100.		.002	.003	900		.004			.004			.001		.001	.010.		.001				.00				.001		.002	
(stinu) Hq		6.7		6.7	6.4	9.9		9.9			8.9			6.5		6.7	6.7		6.8				7.5				7.8		9.9	
Number of samples:		7		56	_	38		<u>∞</u>			13			18		23			_				7				∞		7	
30 104mijų						64.)		_			_			_		71	_													
Group, formation, or member		Liewellyn	Formation	Mauch Chunk Formation	Pocono Formation	Catskill	Formation ¹	Sherman Creek	Member of	Catskill Formation	Irish Valley	Member of	Catskill Formation	Trimmers Rock	Formation	Hamilton Group ⁴	Mahantango	Formation	Onondaga and	Old Port	Formations,	undivided	Keyser and	Tonoloway	Formations.	undivided	Wills Creek	Formation	Bloomsburg and	Mifflintown

Table 14. (Continued)

Number of samples', PH (units) Arsenic (As) Alkalinity (CaCO,) Calcium (Ca) Calcium (Ca)	2 8.2 .006 .04 139 .002 7.6 1.0	09 60. 010.	2 7.5 .008 .06 138 .002 42.0 8.0		4 /.5 <.01 .08 205 <.003 /5.0 5.5	1 7.5 <.005.08 170 <.001 33.0 10.0		13-30 7.3 <.001 .06 110 <.001 30 5.0	/ 001 60	7.2 — .004 274 <.015 124 125		7.1 <.001 .08 256 <.001 100	0-2 7.3 — 260 — 100 11	1-18 7.4 <.001 .18 233 <.003 99 18	0-1 7.3 — — 185 — 90 8.1	0-3 7.4 182 - 75 3.7	3-7 7.1 <.001 .07 232 <.001 93 7.4	3 0 7 5 001 08 103 < 001 50 63	7.3 — 190 — 63 2	0-4 7.8 - 82 - 26 1.7
Chromium (Cr) Dissolved solids Fluoride (F)	.02 187 .4	- 94 <.1	.01 208 .3	004	2. 004 10.>	<.01 2482	GREAT VALLEY SECTION (west of Susquehanna River)	<.01 211 .2	< 01 255 10 >			.01 398 .2	. 375 .2	<.01 370 .2	2843	. 2612	<.01 322 .2	2 277 10		_ 112 .2
Hardness (CaCO ₃)	45 .07	66 .12	140 .02		70: 067	10. 081	CTION a River)	130 .24	180	439 .44		320 .32	340 .15	298 .23	280 .03	230 .01	270 .05	90 086	220 ,04	72. 76
Lead (Pb)	0. 920.	<.05	.028 <.01		10. 500.>	<.005 <.01		.002		>. 0005		.007);	. 002	- <.01	- <.01	.002	, , , , ,		1
(MM) əsənsanaM (BM) muisəngaM	3.8	7.0			0.0	01 23.0		.26 12	0 0			13		.04 16	1 13	9.4	.01 11.2	01 17	.03 15	01 7 9
Nickel (Ni)	.02 .03		.02 .16	10	.01	.02 .01		.01 .12	080	<.005		.02 .03		.01 .05	1		.02 .015	07		1
N os, as N	.01	<.01	.01	10	5./	<.01	;	<.01	0 >	1		<.01	I	<.01		I	<.01	10	10:	1
N es , ON	.02		.07	1 85		2.00		.04		.58			7.6	3.5	3.84	4.4	5.9	5 2	.0	1 4
Potassium (K)	ς,		.60 8.4	1 30 3 4		1.00 2.5		1.0 8.0		1.4 42		2.6 14	2.4 3.	3.1 10	1.6 2.9	1.0 1.1	3.0 6.0	16 2	1.7 8.5	
Sulfate (SO ₄)	7 25			~		5 10		0 27		62		33	7	24	9 19	1 13	0 20		5 15	85 41
(nZ) oniZ	.02	.02	.01	0.4		.01		.02	00	1.70	1	.02	1	.18	1		=	0.5	?	, α

																, 11		O1.				-		QU.	. 11	-11	. 1												7.			
	9.		.03			.48			1	1					.02		07	2			i		1		1	.03		.04		.03			.03	.12		0.	.05		.05		6.	60.
	8.5		15	72		34	30		52	36	ì				45		41	:			91		3.9		38	25		S		24			35	17		56	57		53		51	37
	8.3		8.9	13.4		15	5.7		7.1	3					5.2		=	:			×.		3.9		7.9	0.6		5.6		9.4			4.6	7.1		0.9	9.9		9.1		6.2	5.3
	3.		œ.	4.		4	6.1		4.6	ς α	i				4.2		3.4	,		1			9.1		1.3	1.0		9.		1.1			08.	1.0		2.0	2.2		2.4		8.0	3.0
	80.		.35	1.20		4.92	5.09		5.20	99 \$	9				4.98		x 14			:	=		.72		2.3	2.49		1.9		5.31			3.5	0.91		8.71	10.1		10.1		8,33	2.9
	<.01		<.01	1		<.01	1								<.01		< 01				1				1	<.01		<.010		<.01			<.01	<.01		<.01	<.01		<.01		<.01	<.01
	.07	Š	90.	I		90:	1		1	١					.33		0.04				1		1			.01		90.		.01			90:	.01		90.	.01		90.		.05	80.
	<.01		<u>.</u>	I		10:	1		1	I					.02		00				I		1		1	10.		.02		.01			.02	.02		.02	1		.01		.04	.05
	7.4	6	8.2	20		61	16		26	15	:				33		36				7.7		1.2		18	9.5		3.4		8.1			5.5	0.91		61	12		91		24	24
	.12			.02		.01	.01		<.01	03					.04		0			5	50.		.05		ō.	<.01		.02		.01			.03	<.01		.01	<.01		<.01		.02	.01
	.002	000	.002			.003	1		1	1					<.005		.003						1			.003		.004		.001			<.005	.002		.003	.004		<.005		<.001	.002
	.28		4	.12		90:	1.		.05	0.5)				. 07		90			-	0.		1.44	NO	=	.07		60.		80.		NOI	.07	.05		80.	.02		.10		+1.	80.
(east of Susquehanna River)	110			330		310	280		290						295		300		BLUE RIDGE PROVINCE	2	9		=	TRIASSIC LOWLAND SECTION		155		64		140		CONESTOGA VALLEY SECTION	110	280		295			300		360	300
uehann			-:	0.		.2	Т.		. 2	,	ļ				-		_	•	E PRO		ο.		0.	LAND.	0	· -		Γ.		0.		ALLE	~	· ·		\ -:-	0.				4.	9:
f Susq	200		178	395		462	341		312	296	ì				367		144		RIDG	,	30		43	TOW	253	236		136		206		JGA V	200	416		387			435		430	304
(east o	<.01		V.0I			.02				1					10.>		0 >		BLUE				1	IASSIC	1	<.01		.01		0.		VEST	10:	0.		.01	<.01		.01		0.	.01
	6.3	,	9	4		30	9.1		8.9	6.5					13		61			-	C.1		1.3	TR	0.6	9.0		0.9		9.4		00	10.0	23.0		15	15		21		18	12
	34	,	36	88		86	98		75	17	:				69		0X			,	2.2		2.5		× 20	45		19		46			34	98		88	76		95		96	65
	<.001		×.00			<.001	1		-						<.001		> 00				1		1		1	<.001		<.001		<.001			<.001	<.001		<.001	<.001		<.001		<.001	×.001
	901		105	210		226	215		221	190	2				242		250			0	×		4		86	110		40		103			64	200		222	216		194		271	210
	.04		90.	I		9.	1		١	١					80.		90						1			80.		70.		70.			.07	.07		.10	10.		80.		.20	.20
	.001		00.			.002	1		1	١					<.005 .08		002 05				1		ı		1	.002		.001		.001			100.	.003		100.	.003		.002		.001	.00
	7.0		7.4	7.5		6.9	7.4		7.2	7.7	:				7.6		7.5			1	7.0		6.9		7.3	7.1		6.4		7.2			8.9	7.5		7.4	7.4		7.4		7.4	4.7
	8-9		63-97	0-3		3-5	9-0		0-3	0-7	-				2-8		7-7				0-3		0-2		0-23	18-76		6-11		5-73			8-8 8-8	1-1		5-18	1-8		6-26		1-2	
	Martinsburg	Formation	Hamburg sequence	Ontelaunee	Formation	Epler Formation	Stonehenge	Formation	Richland Formation	Millbach and	Chaoffertown	Shaellelshown	Formations,	undivided	Snitz Creek	Formation	Bullalo Springs	Formation		A 111 12 12 12 12 12 12 12 12 12 12 12 12	Antietam	Formation	Metarhyolite		Diabase	Gettysburg	Formation	Hammer Creek	Formation	New Oxlord	Formation		Cocalico Formation	Ontelaunee	Formation	Epler Formation	Stonehenge	Formation	Conestoga	Formation	Millbach Formation	Snitz Creek Formation

(nZ) zniZ		.03		.10	30			60.	90.	90.	.03	.04	50-	1	.03		1	1		.05	.04		.05	.05	1
Sulfate (SO.)		40		38	65		48	25	31	30	70	25	5.0		20	1	4.7	%;		4	5		8.0		
(Na) muibo2		8.4		5.3	36		13	5.9	2	7.2	8.0	0	3.4		9.9		24	4.2		4.7	4.5		3.9		
Potassium (K)		3.0		4.2	9.0			2.4	1.9	2.0	2.0		0.1		3.0		2.1 2	9:		9.	6:		∞.	2	
N 25 rc ON		17.6		8.13	191		7.46	9.4	4.07	5.77	3.58	2.4	.84		4.60		13.2	5.2		4.98	7.35		3.16	.10	
N 26 rt ON		<.01		<.01	10 >		1	<.01	<.01	<.01	<.01	<.01	<.01		<.01		<u> </u>			<.01	<.01		<.01	01	
N sg "HN		> 50.		> 10.	9		1	> 90.			> 10.				> 10.		I			> 50.	> 90.		> 10:		
Mickel (Mi)		.02		.02	0.0							.02			.01		ı	ı		10:	.02		.02	1	
Magnesium (Mg)		Ų.								.02					8.7		•	.5		4.2	4.2 .(3.5		
Мапдапеѕе (Мп)		.02 36		.01 30	77 70		_ 34	.01 34	.01 17		.02 6.2		.03 2		.02 8		- 10	.02		.02 4	.03 4		.02 3		
Lead (Pb)																									
	(pəni	900.		.00	0	\$	-	.003	.004	<.005	.002	.003	.013		900.					900.	.005		900.	0.	
Iron (Fe)	Contin	9.		.04	0.5	9	.15	90.	.05	.04	.10	90.	.12	LION	.08		.36	.43		60.	60.		.10	90.	
Hardness (CaCO ₃)	NOI)	395		325	250	2	300	305	240	250	95	98	20	SSEC	110		95	19		47	47		35	140	
Fluoride (F)	' SECT	~		ci	-	-	Τ.	<u>`</u>	~	<u>`</u> .		~	.1	AND	~			~		~	<u>`</u>		~	<u>`</u>	
sbilos bavlossid	LLEY	652		348	010	0/0	483	394	308	400	136	171	53	TUPL	236		188	88		87	116		98	797	
Съготит (Ст)	GA VA	.02		.01	5	5	ł	10:	.0	.01	10.	<.01	<.01	PIEDMONT UPLANDS SECTION	.01			I		.01	.01		.01	<.01	
Chloride (Cl)	CONESTOGA VALLEY SECTION (Continued)	18		6	00	66	99	22	22	24	10	14	3.0	PIEI	23		42	8.0		8.0	10		8.9	8.6	
(Salcium (Ca)	00	66		74	2	±_	78		59				5.9		24		20	9.6		8.5	9.5		8.6	46	
(b2) muimbs2		<.001		<.001	7	100:/	I	<.001	<.001	<.001	<.001	<.001	<.001		<.001		1	I		<.001	<.001		<.001	<.001	
Alkalinity (CaCO.)		270		225	3.40	240	212	235	173	198	64	41	2		36		7	11		20	13		18	96	i i
(IA) munimulA		.15		80.	00	00.		80.	90:	.07	80.	80:	.07		80.			Ī		90:	60:		80:	.03	
(sA) pinestA		.002		<.001	5	100.		.001	.001	.001	.001	.001	.001		.002			1		<.001 .06	.001		.001	.001	
(suun) Hd		7.4		9.7	,	C: /	7.5	7.6	7.8	7.8	7.4	7.0	6.1		6.3			7.1		6.1	6.4		7.2	7.6	
Number of		2-2		1-4	ć	5-5	0-3	7-18	4-11	3-8	5-10	6-14	3-15		4-4		0-2	0-3		10-23	25-65		5-15	-	
Group, formation, or member'		Snitz Creek and	Buffalo Springs Formations, undivided	Buffalo Springs	Formation	Eormation	Elbrook Formation	Ledger Formation	Kinzers Formation	Vintage Formation	Antietam Formation	Harpers Formation	Chickies Formation		Granitic gneiss	and granite	Serpentinite	Peach Bottom	Slate	Peters Creck Schist	Wissahickon	Formation	Marburg Schist	Gabbroic gneiss	and gabbro

² The first number is the number of samples analyzed in this study; the second number is the maximum number of analyses used to obtain the median for certain common constituents: pH, alkalinity, calcium, chloride, dissolved solids, fluoride, hardness, iron, manganese, magnesium, nitrate, potassium, sodium, and sulfate. The supplemental data are from Koester and Miller (1982) Only those units for which data were obtained are listed.

Includes data from the Sherman Creek and Irich Valley Members

aus and Pre

Table 15. Summary of Chemical-Quality Characteristics of Groundwater from Predominantly Calcareous and Predominantly Noncalcareous Rock Units in the Valley and Ridge Physiographic Province

	-	Predominantly 1	noncalcareous unit	nits	30 H 200 1 N	Predominant	nantly calcareous unit	ts
Number of	r ot		Concentration		Number of		Concentration	M
samples	les	Minimum	Median	Maximum	samples	Minimum	Median	Maximum
115		5.9	8.9	9.4	21	8.9	7.6	8.1
113	~	.001	.002	.048	21	.001	.001	.003
115	5	<.01	.04	.23	21	.01	90.	.10
11	15	10	89	210	21	54	160	340
Ξ	14	<.001	<.001	<.001	21	<.001	<.001	<.001
	.15	.30	14.0	65.0	21	Τ:	42.0	170
7	115	<1.0	3.0	330	21	<1.0	3.0	21
_	14	<.01	<.01	.07	21	<.01	.01	.05
_	13	2.0	130	846	21	106	200	926
=	112	<. 1.	Т.	2.2	21	·	т.	.2
Ξ	15	2	64	270	21	7	180	640
_	15	<.01	60.	2.0	20	<.01	60.	1.0
_	13	.001	.002	.026	21	.001	.004	.007
Ξ	5	<.001	.02	44.	21	<.01	.01	90.
_	15	.02	4.3	15.0	21	 	9.5	33
Ξ	14	<.01	<.01	90.	21	<.01	.01	.03
_	15	<.01	.02	90.	21	<.01	.01	.37
=	15	<.01	<.01	60.	21	<.01	<.01	<.01
Ξ	15	<.02	.38	13.0	21	.02	1.90	15.0
Ξ	14	<.01	.40	10	21	<.10	.70	3.0
11	15	1.4	7.1	110	21	.10	2.3	32.0
10	108	50	179	850	18	180	315	1,230
=	115	-	5	45	21	<\$	15	110
=	15	.001	.02	4.0	21	.01	.03	Ξ.

¹ Concentrations are in milligrams per liter, except specific conductance (micromhos) and pH (units).

Table 16. Summary of Field Water-Quality Measurements from the Valley and Ridge Physiographic Province

			-	hН			Har	Hardness			Specific	Specific conduc-	
Group,			n)	(units)			(gr)	(gr/gal)			tance (m	tance (micromhos)	
formation,	z [©]	No.		Percent ³		No.		Percent ³		No.		Percent	
or	dλ	Jo	25	50	75	Jo	25	50	75	jo	25	50	75
member'	Т	wells		(median)		wells		(median)		wells		(median)	
Llewellyn	D	8	6.1	7.4	7.8	5	4	5	∞	S	152	200	528
Formation	Z	2		7.4		7	1	4	1	7	1	190	
Mauch Chunk	Q	43	6.1	6.9	7.6	71	2	S	9	7.1	116	220	290
Formation	Z	10	5.9	6.9	7.6	11	7	3	7	7	80	120	197
Catskill	Q	7	0.9	6.3	7.3	63	3	3	5	61	120	155	205
Formation ⁴	Z	33		7.3	1	2	-	9		_	1	195	I
Sherman Creek	Q	4		6.2		31	71	33	4	31	105	150	205
Member of	Z	1	١	1	1	I	-		1	1	1	1	
Catskill Formation													
Irish Valley	Q	1		7.4	-	23	3	4	5	21	110	177	220
Member of	Z	1		7.3		I		-					1
Catskill Formation													
Brallier and	Q		I	1	1	2	2	m	4	S	135	170	205
Harrell Formations,	Z	I]	I	I		-	1	I		1		1
undivided													
Trimmers Rock	Ω	7	6.5	7.2	7.7	22	3	4	4	20	92	155	205
Formation	Z	I		1	I	2		4		7		134	
Hamilton	Q	16	6.7	7.2	7.7	39	3	4	9	39	130	185	250
Group	Z	S	6.7	7.1	7.4	m	1	10	!	7	I	228	1
Onondaga and	D	7	5.9	8.9	7.4	10	7	7	∞	10	170	285	365
Old Port	Z	_	I	7.2]	_		16	-	_	I	560	I
Formations,													
undivided													

Keyser and	Ω 2	Ξ,	7.1	7.2	7.5	20	∞	12	15	20	305	405	580
i onoloway	Z,	4	1	7.4	1	1	I	1	1	1	1		
Formations,													
undivided													
Wills Creek	О	36	7.2	7.5	7.6	48	∞		91	48	285	420	195
Formation	Z	6	7.2	7.4	7.7	7	6	10	2 -		360	400	200
Bloomsburg and	D	20	9.9	7.1	7.7	33	"			31	170	215	226
Mifflintown	Z	7	1	7.0	-	-	,	, 4	`	-	0/1	001	323
Formations,						i		-		-		190	
undivided													
Clinton	Q	2	I	7.2	J	7	4	4	7	7	120	250	270
Group	Z	4	1	7.2		1		. 1	- 1	-	21	000	77
Juniata	О	2	1	7.9	1	2	1	~	I	-		188	
Formation	Z	7	I	9.9	١	2	١	, (١	-		001	
Reedsville	О	1	1	١	I	7	7	1 1	=	٢	080	١٤	6
Formation	Z	ı	١	I	I	.	`	-	1	_	700	220	070
Coburn Formation	О	ю	I	7.5	I	6	12	9	1 7	ا ٥	305	1 5	- 029
through Loysburg	Z	1	1	I	I	۱ '	!	2 1	.)	770	010	050
Formation,												I	
undivided													

¹ Includes only those units for which data were obtained.
² D, domestic; N, nondomestic.

D. dolitestic; IN, nondomestic.
 Percentage of wells that have values less than or equal to the value shown.

4 Includes data from the Irish Valley and Sherman Creek Members.

Figure 15. Specific conductance versus dissolved solids for northern Dauphin County (dissolved solids = $0.65 \times \text{specific conductance} + 3$).

adding 3. This agrees well with factors obtained in other studies, which are generally between 0.6 and 0.65 times the specific conductance.

The recommended limit for dissolved solids in drinking water is 500 mg/L (U.S. Environmental Protection Agency, 1975), which is equivalent to a specific conductance of about 775 micromhos. Fifty-four of the 827 samples analyzed for dissolved solids in the laboratory (or about 6.5 percent) exceed the U.S. Environmental Protection Agency (EPA) limit. Less than 3 percent of the 426 field analyses of specific conductance from the Appalachian Mountain section indicate a dissolved-solids content above the limit. Most of the high values for dissolved solids are from rock units that consist primarily of the carbonate minerals (limestone and dolomite). Over 13 percent of the samples from the Conestoga Valley section, a large part of which is underlain by carbonate rocks, have more than 500 mg/L dissolved solids.

Water that contains an excessive amount of dissolved solids can be treated by a process called reverse osmosis. However, household treatment units that incorporate this process are suitable for small quantities of water and are generally practical for only a single faucet in a home.

HARDNESS

Hardness in water is a measure of the water's resistance to sudsing and is primarily caused by the presence of calcium and magnesium ions. Median

values of hardness from laboratory and field measurements are given in Tables 15 and 16, respectively. The field measurements are reported in grains per gallon (gr/gal) rather than milligrams per liter because the field method is only accurate to ± 1 gr/gal. To state the results in milligrams per liter would imply a false accuracy. The approximate milligrams per liter may be obtained by multiplying the number of grains per gallon by 17.1.

The inset on Plate 1 is a map showing the distribution of groundwater hardness within the Lower Susquehanna River basin. In general, groundwater is hardest from limestone and dolomite in the Conestoga Valley and Great Valley sections, and in some major valleys in the Appalachian Mountain section. Hard water also occurs in parts of the Triassic Lowlands. Comparatively soft water occurs under ridges, hillsides, and other areas underlain by sandstone and shale in the Appalachian Mountain section, in the Blue Ridge province, and in the Piedmont Uplands section.

If desirable, hard water may be softened by removing the minerals, primarily calcium and magnesium, that cause hardness. Ion-exchange water softeners are the most commonly used means of softening water; however, the ion-exchange process results in an increase in the sodium content of the water, which may make the water unsuitable for people on a low-sodium diet.

IRON AND MANGANESE

Iron and manganese have a similar chemical behavior and are commonly present in groundwater in small concentrations. If the concentration of iron exceeds 0.3 mg/L or the concentration of manganese exceeds 0.2 mg/L, staining of plumbing fixtures and cooking utensils may occur.

Samples containing objectionable amounts of iron were collected from almost every rock unit, but were most frequent from wells located in non-calcareous shale and sandstone. All four samples collected from the coalbearing rocks contain excessive iron and manganese. Within the non-coalbearing rocks, the shales in the Great Valley section have the most samples exceeding the recommended limits (38 percent for iron and 59 percent for manganese).

Of the 827 samples analyzed for iron and manganese, 183 (or about 22 percent) equal or exceed EPA (U.S. Environmental Protection Agency, 1975) recommended limits for iron (0.3 mg/L) and 233 (or about 28 percent) equal or exceed recommended limits for manganese (0.05 mg/L). This indicates that iron and manganese are the constituents most often present in objectionable amounts in the groundwater of the Lower Susquehanna River basin.

The best method of removal depends on the concentration and form of the iron and manganese. Commonly used treatment methods include continuous chlorination and filtration, greensand filters, water softeners, polyphosphate feeders, and aeration followed by filtration or settling (Landers, 1976).

HYDROGEN SULFIDE

Many wells are reported to produce water having the "rotten egg" odor of hydrogen sulfide. No measurements were made of this constituent, but the known occurrences appear to be sporadic and unpredictable. Rock units consisting primarily of shale, such as the Martinsburg, Reedsville, and Mahantango Formations, have the highest reported incidence of water with a "rotten egg" odor. Hydrogen sulfide is distasteful but is considered to be harmless in drinking water.

Hydrogen sulfide can be removed by aeration (exposure of as much of the water surface as possible to air) or by a combination oxidation-filtration process.

NITRATE

Nitrate generally occurs in low concentrations in groundwater unaffected or only slightly affected by human activities. The median concentration of 0.38 mg/L nitrate in water from predominantly noncalcareous rock units in the Appalachian Mountain section is considerably less than the median of 1.90 mg/L for calcareous units. This relatively high median concentration is in part due to extensive fertilization of the intensively cultivated soils overlying these rock units.

About 10 percent of the samples analyzed for nitrate equal or exceed the EPA (U.S. Environmental Protection Agency, 1975) mandatory limit for nitrate of 10 mg/L as nitrogen. The majority of these high values (39) are from the Conestoga Valley section, an area in which large portions of the land are used for agriculture.

Reverse osmosis, as described for total dissolved solids, is the most common process used for removing excessive nitrate.

TRACE METALS

Measurements were made for several potentially toxic trace metals to determine their occurrence within the Lower Susquehanna River basin. The metals tested for were arsenic, cadmium, chromium, and lead. Zinc, although not considered to be toxic to humans, has been included in this category.

No areal patterns can be ascertained from the few samples that exceed mandatory drinking water limits for these constituents. Other than zinc, most of these metals are below detectable limits in most samples; however, three chromium and four lead analyses indicate levels that are higher than the limit of 0.05 mg/L. A single sample exceeds the limit for zinc of 5 mg/L.

Most of the occurrences of these constituents are probably natural in origin because of the attempt in this study to collect samples that reflect background (or uncontaminated) groundwater quality.

WATER-QUALITY PROBLEMS

The most commonly reported groundwater-quality problems in the basin are as follows, in decreasing order of prevalence: excessive iron and manganese, hydrogen sulfide, hardness, bacterial organisms from sewage, acid mine drainage, excessive nitrates, petroleum products from buried storage tanks, chlorinated solvents from degreasing operations, and landfill leachate. Most of the occurrences are local in extent and often confined to individual wells or a small area. A large number of man-induced problems could be eliminated by the use of deeper casing and by insuring that the annular opening around the exterior of the casing is tightly sealed with cement grout.

Bacterial contamination is possible in any area where on-lot wastedisposal systems are utilized. This is especially true in communities of closely spaced homes, where some wells must unavoidably be placed downslope from leach fields on adjacent lots. Also, the shallow groundwater around urban areas is often contaminated by leakage from sewer systems.

Groundwater contaminated by acid mine drainage can generally be identified by elevated amounts of iron, sulfate, and dissolved solids, and by low pH. In the parts of the anthracite region that have been deep mined for coal, much of the groundwater is contaminated. However, in many of the less disturbed areas underlain by coal, groundwater naturally has these quality characteristics. Thus, in places, the incidence of acid mine drainage pollution is not well documented because of the difficulty in determining if the water quality is natural or a result of contamination. New federal regulations requiring sampling of wells prior to and during mining should help identify the magnitude of this problem.

Hydrocarbon contamination of groundwater is most often caused by leakage of fuel oil or gasoline from buried storage tanks. Most known instances involve only a few acres and frequently occur in places where there are high concentrations of petroleum terminals and service stations.

Chlorinated solvents have been widely used as degreasers for engines and other machined parts. These compounds, which are highly soluble in water, are often discharged with other waste water into septic systems or washed directly onto the land surface. As a result, some wells located near these sites have become contaminated. Water supplies obtained from wells contaminated by chlorinated solvents must be filtered through activated carbon, or an alternate source of potable supply must be utilized.

Although a potential source of serious problems, only a few instances of landfill leachate contamination of wells have been reported. This is partly

due to the placement of landfill sites in sparsely populated localities. The known instances of contamination are in two categories: wells drilled adjacent to abandoned landfill sites, and wells located adjacent to sites in which the leachate collection and treatment facilities do not function as designed. In all cases the contaminated wells are located in relatively close proximity to the landfill site.

STRATIGRAPHY AND WATER-BEARING PROPERTIES OF THE ROCKS

The discussion that follows is organized on the basis of physiographic regions as shown in Figure 3. The rocks occurring in the physiographic provinces and sections south of Blue Mountain are described in a general way in Table 17. For detailed descriptions the primary reference listed in Table 1 should be consulted. The water-bearing properties of the rocks of the Appalachian Mountain section are described in some detail on the following pages due to the absence of any prior studies in this region.

The geology (Plate 1) and stratigraphic nomenclature in Table 17 and in the sections that follow are from the *Geologic Map of Pennsylvania* (Berg and others, 1980). Reports containing detailed stratigraphic descriptions and large-scale geologic maps were partly employed in preparing the stratigraphic discussion and should be utilized whenever detailed information is required. Figure 16 shows the locations of the areas covered by detailed geologic reports.

Table 18 is a summary of well construction and yield data by formation in the Appalachian Mountain section. This information has been combined with geologic and water-quality data to prepare the succeeding descriptions, which are arranged in order of increasing geologic age. Medians given for water-bearing properties and water-quality data approximate the most common values obtained from randomly located wells; ranges suggest the magnitude of potential values. The number of wells having reported yields of less than 5 gal/min (gallons per minute) and greater than 100 gal/min are also given. These yield amounts (less than 5 gal/min and greater than 100 gal/min) are good indicators of the potential for development of a successful domestic- or municipal-supply well, respectively. Data on water-bearing zones are useful in estimating the maximum and minimum depths to which a well should be drilled to obtain the desired yield.

The water-quality information can be used to estimate the likelihood that the water from a given rock unit will require treatment for a particular use.

LLEWELLYN FORMATION

Stratigraphy

The Llewellyn Formation consists of gray, fine- to coarse-grained sandstone, siltstone, shale, and some conglomerate and anthracite coal. The coal

2
ountain
Ē
2
Š
9
Ž
8
of Blu
2
5
ŝ
S
==
2
¥
C
ĕ
he Rock
#
ng Properties of the
S
je
T
be
ō
م
g
÷
ea
ထူ
Z
t e
Q
5
ס
ō
>
ā
Ō
ğ
ā
tratigraphy and Water-Bearing
2
_
ple
Ω

System	Geologic unit	Geologic description	Water-bearing characteristics
		GREAT VALLEY SECTION (west of Susquehanna River) ^{1,2}	
Ordovician	Martinsburg Formation	Upper and lower members are chiefly dark-gray shale, separated by a middle member consisting of graywacke sandstone and siltstone; a thin zone of argillaceous limestone, limestone, and calcareous shale is present at the base. East of Carlisle the Martinsburg is replaced by a heterogeneous collection of rocks that were transported from their original depositional sites, consisting of red, green, and gray shale and siltstone, coarse sandstone and graywacke, limestone conglomerate, and limestone.	Yields sufficient quantities of water for small to moderate supplies; maximum reported well yield is 200 gal/min. Yielding zones are commonly less than 100 feet in depth, but occur as deep as 350 feet. Water often contains high concentrations of iron, manganese, and occasionally hydrogen sulfide.
	Chambersburg Formation	Dark-gray, thin- to medium-bedded, nodular limestone and minor units of thin argillaceous limestone.	Yields adequate amounts of water for small to moderate supplies; calculated median sustained yield is 11 gal/min. Water often contains high
	Saint Paul Group	Light-gray, thick-bedded, high-calcium limestone; medial zone of medium-gray, black-chert-bearing limestone and dolomite.	Yields ample amounts of water for small to moderate supplies; calculated median sustained yield is 82 gal/min. Water is very hard (median hardness is 18 gr/gal) and high in dissolved solids (median snerific conductance is 720 miscombos).
	Pinesburg Station Formation Rockdale Run Formation	Thick-bedded, light- to medium-gray dolomite containing interbeds of blue-gray limestone. Medium-bedded, very light gray, chert-bearing limestone that has a pinkish cast in the lower part; middle and upper portions consist of light-gray limestone; dolomite beds occur throughout the unit but are more abundant near the top.	Limited data are available; probably one of the poorer yielding units in this sequence. Very large yields are possible; calculated median sustained yield is 405 gal/min. Most yielding zones are less than 100 feet in depth. Water is very hard (median hardness is 15 gr/gal) and high in dissolved solids (median specific conductance is 650 micromhos).

System	Geologic unit	Geologic description	Water-bearing characteristics
rdovician	Stonehenge Formation	Light- to medium-gray, micrograined to micritic limestone.	Limited data are available; probably yields sufficient amounts of very hard water for small to moderate supplies.
	Stoufferstown Formation	Detrital limestone containing medium to thick beds of edgewise conglomerate; thin, siliceous seams are abundant.	Limited data are available; probably one of the poorest yielding units in the carbonate rock sequence.
ambrian	Shadygrove Formation	Light-gray to pinkish-gray micritic limestone; a few beds of sandstone, dolomitic limestone, and limestone.	Comparatively low yielding unit; median calculated sustained yield is 26 gal/min. Water is very hard (median hardness is 15 gr/gal) and high in dissolved solids (median specific conductance is 622 micromhos).
	Zullinger Formation	Medium-gray limestone and banded limestone containing siliceous seams; some thick beds of dolomite and calcareous sandstone.	Twenty percent of domestic wells rely on borehole storage to meet minimum needs; calculated median sustained yield is 82 gal/min. Water is very hard (median hardness is 14 gr/gal) and high in dissolved solids (median specific conductance is 655 micromhos).
	Elbrook Formation	Interbedded calcareous shale, argillaceous limestone, and limestone in beds a few to tens of feet thick.	Very large yields are possible; calculated median sustained yield is 218 gal/min. Yielding zones decrease significantly below a depth of 150 feet. Water is very hard (median hardness is 14 gr/gal) and high in dissolved solids (median specific conductance is 750 micromhos).
	Waynesboro Formation	Quartzitic sandstone containing thick interbeds of medium- to dark-gray, silty mudstone; probably includes some interbeds of carbonate rocks.	Limited data are available; calculated median sustained yield is 172 gal/min. Water is very hard (median hardness is 14 gr/gal) and high in dissolved solids (median specific conductance is 794 micromhos).
	Tomstown Formation	Covered with alluvium and colluvium throughout the area; massive dolomite is present in the middle	Very large yields are possible; calculated median sustained yield is 1,050 gal/min. Overlying alluvium may cause drilling and developing prob-

probably occur in the lower part and possibly in lems. Water is hard (median hardness is 6 gr/gal) and high in dissolved solids (median specific conductance is 645 micromhos).	GREAT VALLEY SECTION (east of Susquehanna River) ^{3,4,5,6}	Variable lithology; primarily gray shale with gray- wacke, siltstone, and claystone; contains some in- terbedded limestone. wells; median yields of domestic wells range from about 10 to 30 gal/min; median yield of nondomestic wells is about 60 to 70 gal/min, although some parts of the unit are reported to have a median in excess of 100 gal/min. Water is generally hard (median hardness is 6 gr/gal) and contains a moderate amount of dissolved solids (median specific conductance is 240 micromhos).	Hershey Formation—dark-gray argillaceous lime-stone; Myerstown Formation—gray, crystalline, aquifers. Water is very hard (median hardness is 14 gr/gal) and high in dissolved solids (median specific conductance is about 570 micrombos)	crystalline, thick-bedded, high- , y dolomite with interbeds of stone.	Interbedded medium-gray limestone and dolo- wite containing lenses of calcarenite. cess of 200 gal/min; some wells yield 1,000 gal/min; some wells yield 1,000
probably occu the upper part.		ariable li	lershey Fo one; Mye tin-bedder	Light-gray, finely calcium limestone. Medium-dark-gray medium-gray lime	iterbeddee ite contai
υ -					
		Hamburg sequence	Hershey and Myerstown Forma- tions, undivided	Annville Formation Ontelaunee Formation	Epler Formation
		Ordovician			

System	Geologic unit	Geologic description	Water-bearing characteristics
Ordovician	Rickenbach Formation	Gray, cherty dolomite and subordinate limestone interbeds.	Limited data are available; median yield of four domestic wells is 18 gal/min. Water is very hard (median hardness is 14 gr/gal) and high in dissolved solids (median specific conductance is 550 micrombos).
	Stonehenge Formation	Medium-gray, crystalline limestone, cherty in the upper part; limestone conglomerate near the base.	Specific-capacity data suggest that large yields are possible; median yield of six domestic wells is 20 gal/min. Water is very hard (median hardness is 14 gr/gal) and high in dissolved solids (median specific conductance is 558 micromhos).
Cambrian	Richland Formation	Gray, thick-bedded, finely crystalline dolomite containing some interbeds of limestone and chert.	Moderate to large supplies are possible; median yield of domestic wells is 11 gal/min and the reported median yield of nondomestic wells is 200 gal/min. Water is very hard (median hardness is 14 gr/gal) and high in dissolved solids (median specific conductance is 550 micromhos).
	Millbach and Schaefferstown Formations, undivided	Millbach Formation—pinkish-gray to light-gray, laminated limestone; Schaefferstown Formation—light- to medium-gray, finely crystalline limestone.	Moderate to large supplies are possible; reported median yields of domestic and nondomestic wells are 40 and 190 gal/min, respectively. Water is very hard (median hardness is 13 gr/gal) and high in dissolved solids (median specific conductance is 505 micromhos).
	Snitz Creek Formation	Medium-gray dolomite; sandstone beds are present near the top.	Yields sufficient amounts of water for small to moderate supplies, and large supplies are possible in some areas; median yield of six domestic wells is 6 gal/min. Water is very hard (median hardness is 16 gr/gal) and high in dissolved solids (median specific conductance is 545 micromhos).

9			
5	small quantities of soft water.		
	Limited areal extent; wells are likely to produce	Greenish-gray lustrous phyllite and schist,	Greenstone schist
		color, in part containing isolated crystals of feld-spar and quartz.	
5	Same as metabasalt above.	Mainly hard, dense, fine-grained rock of purplish	Metarhyolite
TIES	be needed in many wells to meet minimum domestic needs. Water is moderately soft.		:
ER	of less than 3 gal/min; supplemental storage may	massive, well-cleaved rock of fine to medium	
OP	Twenty-five percent of domestic wells have yields	Characteristically green, greenish-gray, and gray,	Metabasalt ⁸
PR		laminated graywacke.	•
١G	low.	phyllites locally interbedded with fine-grained	
RIN	Limited data are available; yields are likely to be	Dark-gray, dusky-blue, or very dusky red purple	Loudoun Formation
BEA	low because of topographic position as a ridge former,	waches, and qualities,	
R-I	Limited data are available; yields are likely to be	Sequence of quartz phyllites, quartzose gray-	weverton Formation
TE	generally hard (median hardness is 7 gr/gal).	medium-grained quartzite.	
WA	median for domestic wells is 10 gal/min. Water is	prominent interval of medium to thick-bedded,	
ND	supplies of inodefately soft water. Reported yields range from 5 to 25 gal/min: the	Graywacke siltstone and graywacke having a	Harpers Formation
YA	Limited data are available; probably yields small	Chiefly coarse-grained, quartzose sandstone; low-	Antietam Formation
\ PF		BLUE RIDGE PROVINCE?	
TIGRA	Lebanon County suggests that large yields are possible. Water is probably hard to very hard.	part.	
STRAT	Limited data are available; reported median yield of 100 gal/min for three nondomestic wells in	Predominantly gray dolomite containing considerable chert in the lower part; shaly in the upper	Leithsville Formation
:	of the nondomestic wells have yields in excess of 150 gal/min. Water is hard (median hardness is 13 gr/gal) and high in dissolved solids (median specific conductance is 550 micrombos)		
	Medians of 10 and 82 gal/min for domestic and nondomestic wells, respectively: about 25 percent	Light- to pinkish-gray limestone interbedded with light-gray dolomite.	Buffalo Springs Formation

System	Geologic unit	Geologic description	Water-bearing characteristics
		READING PRONG SECTION ⁶	
Cambrian	Hardyston Formation	Light-gray quartzite and feldspathic sandstone; conglomerate at the base.	Limited data are available; probably yields small to moderate supplies of soft to moderately hard water.
	Metadiabase Granitic gneiss	Dark-gray, fine-grained intrusives. Light, medium-grained; predominantly quartz and feldspar.	Yields small supplies that may be marginally adequate to inadequate for domestic use; many wells
	Hornblende gneiss	Dark, medium-grained; includes some rocks that are probably sedimentary in origin.	require supplemental storage to meet minimum needs. Water is soft and may be corrosive to
	Graphitic gneiss	Dominantly quartz and feldspar; contains varying amounts of graphite.	plumbing.
		TRIASSIC LOWLAND SECTION7.9.10.11	
Triassic	Diabase	Medium- to coarse-grained, dark-gray rock composed mainly of plagioclase feldspar, pyroxene, and accessory magnetite; massive, hard; darkgray on fresh surface but weathers gray or light buff.	One of the poorest aquifers in the state; yields small supplies of water that are often inadequate for domestic use; about 25 percent of the wells require supplemental storage to meet minimum needs. Water is hard (median hardness is approximately 9 gr/gal) and commonly of poor quality because of shallow circulation system in unit.
	Gettysburg Formation	Composed of five distinct dominant lithologies that are interbedded with one or more of the other lithologies. Quartz conglomerate—fanglomerate made up of poorly sorted pebbles to boulders of white vein quartz and red siltstone in a red silty sandstone matrix; limestone conglomerate—fanglomerate made up of pebbles to boulders of limestone in a matrix of red or gray sandstone or shale; sandstone—fine- to coarse-grained, red, brown, and gray sandstone (includes Heidlers-	Median yield of domestic wells from all lithologies combined is 10 gal/min. Medians for nondomestic wells range from 21 to 185 gal/min; the highest yields are from shale near Middletown and the lowest from quartz conglomerate. Water from quartz conglomerate is soft and low in dissolved solids and tends to be corrosive to plumbing. Water from the rest of the formation is generally of good quality and hard; moderately hard and very hard water are present in some areas.

טעוב ויוכוווטכון, אומוכ דיכם מוום ווומוטטוו, אוונץ

		oul interiority, smarc—ica and marcon, smry	
		mudstones and shales, containing some very fine grained sandstone interbeds; and shale conglomerate—chips of gray shale in a red sandstone ma-	
	Hammer Creek Formation	trix. Same lithologies and general descriptions as for Gettysburg Formation with the exception that the	Median yield of domestic wells from all litholo- oies combined is 20 gal/min Medians for nondo-
		Heidlersburg Member is not recognized and no	mestic wells range from 90 to 144 gal/min; the
		shale conglomerate has been identified in the	highest yields are from shale and the lowest from
		Hammer Creek Formation.	sandstone. Water quality is generally good, and the distribution of hardness is similar to that in
	New Oxford	New Oxford Formation—red mudstone and shale	the Octysburg. Reported yields range from 1 to 330 gal/min, and
	and Stockton	and fine-grained sandstone interbedded with ar-	the median yield is about 12 gal/min; yields of
	rormations	are common in the lower part: Stockton Forma-	more than moderate amounts (more than 50 gal/min) may be difficult to obtain. Water is sen-
		tion—light-gray, coarse-grained arkosic sand-	erally hard; 16 and 27 percent of the wells pro-
		stone; includes reddish-brown mudstone and	duce water exceeding the recommended limits for
		shale.	iron and manganese, respectively (U.S. Environmental Protection Agency 1975)
Ordovician ¹²	Beekmantown Group	Occurs in a small area near York Springs, Adams	Limited data are available; probably a fair to
		County. Primarily white or gray marble, some of	good aquifer that yields moderate to large quanti-
		which is coarsely crystalline and veined with calcite.	ties of very hard water.
		CONESTOGA VALLEY SECTION ^{13,14,15}	
Ordovician	Cocalico Formation	Bluish-black to dark-gray fissile shale; purple and green shale containing thin quartzite is present near the base.	Reported yields range from 1 to 100 gal/min; about half are less than 20 gal/min. Water is probably moderately hard.
	Hershey, Myerstown, and Annville	Hershey Formation—dark-gray to black, thin- bedded, argillaceous limestone; Myerstown For-	Limited areal extent; water-bearing properties are unknown.
	Formations, undivided	mation—medium- to dark-gray, platy, medium- crystalline limestone, carbonaceous at the base; Annyille Formation—light-gray, massive high	
		calcium limestone.	

System	Geologic unit	Geologic description	Water-bearing characteristics
Ordovician	Ontelaunee Formation	Gray, very finely to finely crystalline, partly laminated dolomite.	Limited areal extent; see section on "Great Valley (east of Susquehanna River)" for probable properties of aquifer.
	Epler Formation	Gray, interbedded limestone and dolomite; abundant white beds in the lower part.	Reported yields range from 1 to 600 gal/min; the median is about 30 gal/min; based on specific-capacity data the Stonehenge is the highest yield-
	Stonehenge Formation	Gray, finely crystalline limestone containing dark-gray silty laminations.	ing aquifer in the Conestoga Valley sequence. The water is very hard; high levels of nitrate are a common problem.
Ordovician and Cambrian	Conestoga Formation ¹⁶	Gray, fine- to coarse-crystalline limestone; commonly contains laminations that are clayey, graphitic, and micaceous; contains basal beds of carbonate conglomerate.	Maximum reported yield is 250 gal/min; typical sustained yield calculated from specific-capacity data is 20 gal/min; about one in four wells should yield 140 gal/min. Water is very hard; 50 percent of the wells tested in Lancaster County exceeded the recommended limit for nitrate; high dissolved
Cambrian	Richland Formation Millbach Formation Buffalo Springs Formation Snitz Creek Formation Zooks Corner Formation	Gray, interbedded limestone and dolomite; contains beds of fine conglomerate. White, pinkish-gray, and gray limestone; contains scattered interbeds of dolomite. Gray, argillaceous, silty, and sandy dolomite. White to pinkish-gray interbedded limestone and dolomite; has scattered beds of sandstone. Gray, very finely crystalline dolomite; commonly silty and sandy; contains some limestone.	Reported yields of six wells range from 2 to 30 gal/min; based on specific-capacity data these rocks are a poor source for public and industrial supplies, but are adequate for domestic use. Water is very hard (median hardness is 16 gr/gal); often contains high concentrations of nitrate and dissolved solids. Reported yields of five wells range from 3 to 105 gal/min; based on specific-capacity data this unit is a poor source for public and industrial supplies, but is adequate for domestic use. Water is very hard. Reported yields range from 2 to 550 gal/min; the median is 30 gal/min; based on specific-capacity
			uala, mis is one on the most productive against an

 about half are 10 gal/min or less. Water is soft and low in dissolved solids; high concentrations of iron are a frequent problem.	and quartz schists interbedded with quartzite.	Schist	
solids. Limited data are available; probably yields small supplies of soft water.	Dark-green serpentine mottled with light green.	Serpentinite	
at Dena are pumped at a rate of about 25 gal/min year after year. Water is soft and low in dissolved solids.	ate—greenish-gray quartz conglomerate with muscovite partings.	Conglomerate, undivided	Paleozoic
	Peach Bottom Slate—blue-black slate, finely lus-	Peach Bottom	Probably
ganese are an occasional problem.	conglomerate is often present. PIEDMONT UPLANDS SECTION ^{13,14,17,18}		
Reported yields range from 1 to 100 gal/min; about half are less than 6 gal/min. Water is soft and low in dissolved solids; high iron and man-	Massive, prominently bedded, white vitreous quartzite; in places black shiny slate containing numerous zones of quartzite; a basal quartzose	Chickies Formation	
Reported yields range from 1 to 100 gal/min, and the median is 10 gal/min. Water is soft to moderately hard and relatively low in dissolved solids.	Dark-greenish-gray phyllite; contains beds of green and gray quartzite, and some graywacke siltstone and graywacke.	Harpers Formation	
capacity data this is one of the lowest yielding units in the Conestoga Valley section. Water is soft and low in dissolved solids.			
hard to very hard. Reported yields range from 3 to 40 gal/min, and the median is about 5 gal/min; based on specific-	Fine- to medium-grained phyllitic quartzite, in places bluish pink.	Antietam Formation	
and dolomite is very hard. Limited areal extent; maximum reported yield is 300 gal/min; only rated as a fair source for large supplies based on specific-capacity data. Water is	Mostly gray, thick-bedded to massive, finely crystalline dolomite; the upper part is primarily pure fine-grained limestone.	Vintage Formation	
111 gal/min; rated as a poor aquifer for large supplies based on specific-capacity data. Water from the shale is hard and water from the limestone	sandy limestone and dolomite.		
very marc, mgn concentrations of manganese and nitrate are an occasional problem. Limited areal extent; maximum reported yield is	Gray, rusty-weathering shale and argillaceous to	Kinzers Formation	
were was estimated in nave the notemation in the same water is		AND THE RESIDENCE OF THE PARTY	

Table 17. (Continued)

System	Geologic unit	Geologic description	Water-bearing characteristics
Probably Lower Paleozoic	Wissahickon Formation	Includes the following: albite-chlorite schist—coarse- to medium-grained, grayish-blue or green schist; Marburg Schist—bluish-gray to silvery-	Reported yields range from 2 to 150 gal/min; the median is approximately 10 gal/min. Based on specific-capacity data this unit should be capable
		green, fine-grained schist; Wakefield Marble—blue, thin-bedded crystalline limestone; metavol-	of furnishing moderate to relatively large quantities (more than 100 gal/min) of water to wells. Water is soft and low in dissolved solids: high
		mica schist—contains some gneiss and some onartz-rich and feldspar-rich members.	iron and nitrate concentrations are a frequent problem.
Lower	Metamorphic and	Includes the following: pegmatite; metagabbro;	Reported yields range from 2 to 70 gal/min; the
Paleozoic	igneous rocks,	metadiabase; quartz monzonite and quartz-	median is about 10 gal/min. Water is soft and low in discolved colide
to Precamonan	מוומוו ובו בוווומובת	gneiss; gabbroic gneiss and gabbro; graphitic	וו מופפסוגים פסוומפי
		gneiss; and granitic gneiss.	

Becher and Root (1981).

² Becher and Taylor (1982).

³ Carswell and others (1968).

⁴ Meisler (1963).

⁵ Wood and MacLachlan (1978).

⁶ Royer (1983).

⁷ Taylor and Royer (1981).

⁸ Also occurs in the Pigeon Hills region of Adams and York Counties.

⁹ Wood (1980a).

¹⁰ Wood and Johnston (1964).

¹¹ Johnston (1966).

¹² Physically located in the Triassic Lowland section, but is probably an outlier from the Great Valley section.

¹³ Poth (1977).

¹⁴ Lloyd and Growitz (1977).

¹⁵ Meisler and Becher (1971). 16 Southern part of area.

¹⁸ Ma Granting and Cloto (1077) 17 Poth (1968).

Figure 16. Index of detailed geologic mapping in the Lower Susquehanna River basin.

beds are the most persistent units within the Llewellyn; the intervening strata are characterized by extreme lateral changes in thickness and lithology.

The thickness of this formation is estimated to be about 1,200 to 1,800 feet.

Water-Bearing Properties

Reported yields of 17 wells range from 3 to 100 gal/min. The median yield of 13 domestic wells is 20 gal/min. Four nondomestic wells have a median yield of 29 gal/min. A single well yields less than 5 gal/min and another has a yield greater than 100 gal/min.

Well depths range from 50 to 1,176 feet. Seven of the 17 wells inventoried in this unit have depths less than 100 feet and four had to be drilled deeper than 300 feet. The deepest reported water-bearing zone is at 362 feet.

Water Quality

Four complete chemical analyses by the Department of Environmental Resources (DER) laboratory were used to evaluate the quality of water from

Table 18. Summary of Well Construction and Yield Data in the Appalachian Mountain Section

			3	Well depth			Casi	Casing length			Dept	Depth to water			Rep	Reported well			Specifi	Specific capacity	
Group				(1001)				(1001)				(1001)			31516	(gar/ 111111)		I	(Igal)	111 // IIII	
formation,	7	o Z		Percent ³		No.		Percent ³		No.		Percent ³		o.		Percent ³		o N		Percent ³	
or member ¹	Lype	of	25	50 (median)	75 .	of	25	50 (median)	7.5	of	25	50 (medjan)	75	of	25	50 (median)	75	of	25	50 (median)	75
				(incaran)			:		;			()			-		1	,			
Llewellyn	Q	17	55	101	160	15	41	47	19	6	m	12	32	13	∞	20	20	7	.10	.34	.50
Formation	Z	2		382	1	4	I	62	1	4	I	10	I	4	I	59	I	3		60.	1
Mauch Chunk	D	147	103	145	200	136	32	41	50	128	25	3.5	50	138	œ	15	25	83	.10	.18	.36
Formation	Z	38	183	300	440	23	59	40	90	56	∞	23	54	36	50	70	120	23	.44	.85	1.6
Catskill	D	117	138	160	246	113	40	42	99	102	28	40	09	114	œ	14	20	38	.05	.12	.30
Formation ⁴	Z	26	200	300	335	2.1	21	38	99	19	20	45	118	56	25	50	78	14	.20	.53	1.5
Sherman Creek	D	51	140	180	265	50	40	42	52	43	35	48	80	50	7	12	20	20	.04	.10	.30
Member of	Z	٣	I	200	1	3		38	1	7	I	41	Ī	3	I	7	I	7	1	.55	I
Catskill Formation																					
Irish Valley	Q	43	143	151	224	42	40	41	58	40	26	35	50	43	6	15	30	12	.07	.17	.40
Member of	Z	14	200	283	410	=	16	28	40	12	45	19	135	1.5	45	55	98	œ	.35	1.1	3.5
Catskill Formation																					
Brallier and	D	6	80	166	235	6	24	41	43	6	20	50	75	6	3	5	12	2	.03	.03	.10
Harrell Forma-	Z		1	1	1		I	1	1	I	Ī	1		I	I	I	Ī	1	1	I	1
tions, undivided																					
Trimmers Rock	Q	58	101	155	204	55	38	42	09	46	20	40	62	98	œ	12	20	4	14	.20	1.1
Formation	Z	4		170	I	4	1	39		3	I	01	1	4		10	1	7		.05	1
Hamilton	Q	84	98	125	200	83	24	41	51	89	12	25	70	80	∞	15	20	56	14	.24	.52
Group	Z	-	190	260	305	10	23	40	50	10	4	17	49	Ξ	20	7.5	225	9	4.	3.2	5.6
Onondaga and	D	22	90	122	180	20	37	29	98	17	21	30	48	2.1	œ	12	23	3		5.	1
Old Port	Z	7	1	130	1	۲1	1	42	I	7		7	I	2	I	42		СĪ	1	2.1	I
Formations,																					
undivided																					
Keyser and	Q	41	72	125	197	40	28	46	96	37	Ξ	30	52	40	10	15	30	10	.30	.92	2.0
Tonoloway	Z	18	140	190	368	16	34	28	83	12	=	31	65	17	24	100	150	4		8.1	1
Formations,																					
nanalylaea	(0	1		:		;	;	,		,		,			:					
Wills Creek Formation	ΩZ	8 5	35	104	141	97	30	4 6	63	92	15	32	55	24 -	10	15	22 14	29	.18	.69	8. 4
		,)	1	:) h	>))	:	1	b b)	2	:) a)	

89.		١	1	ı	ı	I	I	17		l	
.22		45	.67	1	.22	16	23	. 5	ţ Ç	70.	
6. 1		I	١			1	I	0	2		
15		64	m	ı	_	~	. ~	-	-		
15		16	1	ı	I	87	· 1	20	3		
12 26		12	20	=	25	27	30	12	9 9		
8 15		5	1	ı	1	7	1	9	·		
52		16	5	4	3	16	S	59	v	,	
35		30	I	1	I	46	I	150	1		
22 46		16	20	42	56	20	4	90	23		
12 8		10	1	ı	I	∞	1	42			
43		Ξ	۳	-	7	12	m	25	8		
45		09	ı	1	1	48	ı	100	I		
39		33	36	50	30	30	31	50	101		
24		21	1	1	1	20		07	I		
53		16	5	ᆉ	3	17	~	53	-7		
909		235	300	1	I	158	١	300	I		
101		148	174	210	175	107	154	201	201		
79 315		66	145	1	1	89		110	1		
56		17	9	4	~	17	5	59	2		
ΩZ		Q	Z	Ω	Z	Ω	Z	Ω	Z		
Bloomsburg and Mifflintown Formations	undivided ,	Clinton	Group	Juniata	Formation	Reedsville	Formation	Coburn Formation	through Loysburg	Formation,	undivided

 2 D, domestic; N, nondomestic.
 3 Percentage of wells that have values less than or equal to the value shown.
 4 Includes data from the Irish Valley and Sherman Creek Members. 1 Includes only those units for which data were obtained.

this unit. All of the samples exceed the EPA standard for iron and manganese. One sample exceeds the limit for chloride and another for total dissolved solids. All other measured constituents are below the recommended maximum concentrations.

The results of five field analyses indicate that water from the Llewellyn is moderately soft (median hardness of 5 gr/gal) and contains a low to moderate amount of dissolved solids (median specific conductance of 200 micromhos).

Evaluation of the Aquifer

The water-bearing character of this unit is influenced greatly by mining activity. The quality of water in mine pools and in areas within close proximity to mining operations is usually too poor for most uses. In unmined areas, the Llewellyn yields sufficient quantities for domestic and small industrial or public supplies. High levels of iron and manganese are a persistent problem.

POTTSVILLE GROUP

Stratigraphy

The Pottsville Group consists of gray conglomerate, conglomeratic sandstone, sandstone, siltstone, and some anthracite coal. The Pottsville ranges in thickness from about 275 to more than 800 feet.

Evaluation of the Aquifer

Only limited data were obtained from this unit. However, based on lithological considerations and reports from nearby areas, the Pottsville Group should yield small to moderate amounts of soft to moderately hard water. High iron and manganese are probably a common problem.

MAUCH CHUNK FORMATION

Stratigraphy

The Mauch Chunk Formation consists of interbedded brownish-gray to grayish-red siltstone, claystone, and brownish-gray to pale-red, poorly cemented sandstone. The lower part contains a discontinuous nonred sequence of light-olive-gray mudstone and sandstone.

Estimated thicknesses for this unit range from about 3,700 to 4,500 feet.

Water-Bearing Properties

The distribution of reported well yields is shown in Figure 17. Yields of 176 wells range from 2 to 600 gal/min. The medians from domestic and nondomestic wells are 15 and 70 gal/min, respectively. Eleven (or 8 percent)

Figure 17. Percent frequency distribution of reported well yields from the Mauch Chunk Formation.

of the wells drilled for domestic use have yields that are less than 5 gal/min, and 13 (or 36 percent) of the nondomestic wells have yields greater than 100 gal/min.

Well depths range from 40 to 961 feet, and the medians are 145 feet for domestic wells and 300 feet for nondomestic wells. Nearly half (18 of 38) of the nondomestic wells were drilled deeper than 300 feet. The deepest reported water-bearing zone is at 552 feet.

Water Quality

Twenty-six complete analyses were used to evaluate the quality of water from this unit. Only two of the samples have iron above the recommended

limit, and a single sample has nitrate above the limit of 10 mg/L as nitrogen. The median concentration of nitrate, however, is highest in the upper part of the basin (3.4 mg/L), which is probably caused by the extensive agricultural activities in the valleys underlain by the Mauch Chunk. Water from this unit is a calcium bicarbonate type, as shown in Figure 18.

The median hardness based on 71 field analyses is 5 gr/gal, and the median specific conductance is 220 micromhos. Thus the water is relatively low in dissolved solids and moderately hard.

ANIONS

CATIONS

Figure 18. Stiff diagram of the median chemical character of ground-water from the Mauch Chunk Formation (based on 26 analyses).

Evaluation of the Aquifer

The Mauch Chunk Formation will, in general, yield sufficient water of acceptable quality for most uses. Over a third of the wells drilled for high yields produce over 100 gal/min. High levels of nitrate may be a problem in agricultural areas.

POCONO AND SPECHTY KOPF FORMATIONS

Stratigraphy

The Pocono Formation is the principal ridge former in the area and consists of light-gray to medium-dark-gray sandstone and minor siltstone. It is commonly conglomeratic at the base and in the middle.

The Spechty Kopf is primarily composed of light- to olive-gray, crossbedded sandstone and siltstone. Locally this formation has grayish-red shale near the top and conglomerate in the middle and at the base.

The combined thickness for these units ranges from about 1,100 to more than 1,700 feet.

Evaluation of the Aquifer

These units are unimportant as aquifers because of their high topographic position. Small supplies of soft water may be possible, but some failures to obtain domestic supplies are probable.

CATSKILL FORMATION

Stratigraphy

Nine members of the Catskill Formation have been identified in various parts of the basin, although no more than four are mapped at any single locality. They are the Duncannon, Clarks Ferry, Sherman Creek, Buddys Run, Irish Valley, Long Run, Beaverdam Run, Walcksville, and Towamensing Members.

The Catskill Formation consists of a succession of grayish-red sandstone, siltstone, and shale, and some gray sandstone and conglomerate. The thickness varies from 500 to 9,400 feet in the basin.

Water-Bearing Properties

Sufficient data were available to provide separate statistics for the Sherman Creek and Irish Valley Members in Tables 12, 14, 16, and 18. However, because there is little statistical difference between these members and the rest of the formation, the following discussion is for the undivided Catskill Formation.

Reported yields of 140 wells range from 3 to 200 gal/min. The median yields of domestic and nondomestic wells are 14 and 50 gal/min, respectively. About 5 percent of the wells yield less than 5 gal/min, and four wells were reported to yield 100 gal/min or more.

Figure 19 is a frequency plot of reported well yields from the Catskill Formation. In the upper half of the yield range, nondomestic wells have yields that are consistently three times greater than those drilled for domestic purposes.

Figure 19. Percent frequency distribution of reported well yields from the Catskill Formation.

Reported depths of 143 wells range from 45 to 595 feet. The median for domestic wells is 160 feet and the median for nondomestic wells is 300 feet. Eleven wells obtained sufficient water at depths of less than 100 feet, and 43 had to be drilled deeper than 300 feet to obtain the desired amount of water. The deepest reported water-bearing zone is at 514 feet.

Water Quality

Thirty-eight complete analyses were used to evaluate the quality of water from this unit. Eleven, or about 29 percent, exceed the EPA recommended limit for iron and 13, or 34 percent, exceed the limit for manganese. The water is a calcium-magnesium bicarbonate type, as shown in Figure 20.

The median hardness based on 63 field analyses is 3 gr/gal, and the median specific conductance is 155 micromhos. These data indicate that water from the Catskill Formation is soft and comparatively low in dissolved solids.

Figure 20. Stiff diagram of the median chemical character of ground-water from the Catskill Formation (based on 38 analyses).

Evaluation of the Aquifer

The Catskill Formation yields water of acceptable quality for domestic and other uses requiring small to moderate supplies. Over a third of the wells produce water that contains high concentrations of iron and manganese.

Only 15 percent of the wells drilled for maximum yield obtained over 100 gal/min. Thus, large yields are generally difficult to obtain. Wells drilled for maximum yield should be at least 300 feet deep and perhaps as deep as 600 feet.

TRIMMERS ROCK FORMATION

Stratigraphy

The Trimmers Rock Formation consists of medium-gray to olive-gray siltstone, shale, and some very fine grained sandstone. A hundred feet of dark-gray to black shale, which in some areas is mapped as the Harrell Formation, occurs at the base.

The Trimmers Rock is about 1,900 to 2,000 feet thick.

CATIONS

Water-Bearing Properties

Reported yields of 60 wells range from 3 to 100 gal/min. The median yield of domestic wells is 12 gal/min. Information was obtained on only four relatively low yielding nondomestic wells, which have a median yield of 10 gal/min. Three, or about 5 percent, of the wells have yields less than 5 gal/min.

Depths of 62 wells range from 50 to 482 feet, and the median is 155 feet

ANIONS

Figure 21. Stiff diagram of the median chemical character of groundwater from the Trimmers Rock Formation (based on 18 analyses).

for domestic wells. Nine wells obtain a sufficient amount of water from depths of less than 100 feet and four are deeper than 300 feet.

The deepest reported water-bearing zone is at 460 feet. Approximately 85 percent of the wells drilled through the 151- to 200-foot depth interval were reported to penetrate at least one water-bearing zone, which makes this the interval having the most abundant quantity of yielding zones.

Water Quality

The quality of water from this formation was evaluated using 18 laboratory analyses. Five exceed the EPA limit for iron and eight exceed the limit for manganese. Two samples have chromium levels that are slightly high. Figure 21 shows that calcium and bicarbonate are the most abundant ions in solution.

The median hardness based on 22 field analyses is 4 gr/gal, and the median specific conductance is 155 micromhos. This indicates that the water is moderately soft and comparatively low in dissolved solids.

Evaluation of the Aquifer

In the Juniata River basin the Trimmers Rock is a poor aquifer (Taylor and others, 1982). In the Lower Susquehanna River basin the rock unit is somewhat better and should yield sufficient supplies for small to moderate needs. Over a third of the wells produce water containing an excessive amount of iron or manganese.

HAMILTON GROUP

Stratigraphy

The Hamilton Group is made up of the Mahantango Formation and the Marcellus Formation. The combined unit ranges in thickness from about 1,800 to 2,100 feet.

Five members of the Mahantango Formation were described by Hoskins (1976) in the Millersburg 15-minute quadrangle. In descending order, the members and lithologies that make up the Mahantango are as follows: Sherman Ridge—olive-gray claystone, siltstone, and some fine-grained sandstone; Montebello—gray, very fine to coarse-grained sandstone and olive-gray siltstone; Fisher Ridge—dark- to medium-gray siltstone and claystone; Dalmatia—gray, very fine to fine-grained sandstone and siltstone; Turkey Ridge—medium-gray, very fine to fine-grained sandstone and minor siltstone. The total thickness ranges between 1,800 and 1,900 feet.

The Marcellus consists of black to dark-gray claystone, medium-gray siltstone, and very fine grained sandstone. Reported thicknesses range between 50 and 240 feet.

Water-Bearing Properties

Reported yields of 91 wells range from 3 to 355 gal/min. Domestic wells have a median yield of 15 gal/min and nondomestic wells have a median of 75 gal/min. The yields of five of the 11 inventoried nondomestic wells exceed 100 gal/min.

The depths of 95 wells range from 42 to 500 feet. Domestic wells have a median depth of 125 feet; 28 are less than 100 feet deep and five are less than 300 feet. The median depth of nondomestic wells is 260 feet, and four of the 11 wells are deeper than 300 feet.

Yielding-zone data were obtained on 91 wells. The deepest reported zone is at 396 feet, and the depth range in which zones are most frequently reported is 51 to 100 feet (over 90 percent of the wells have water-bearing zones in that interval).

Water Quality

Twenty-three laboratory analyses were used to evaluate the quality of water from this unit. The EPA recommended limit for iron and manganese is exceeded in nine and 16 samples, respectively. All other constituents are within drinking water standards.

Thirty-nine field analyses indicate that the water is moderately hard (median of 4 gr/gal) and contains a low to moderate amount of dissolved solids (median specific conductance of 185 micromhos).

Evaluation of the Aquifer

The Hamilton Group yields sufficient water of acceptable quality for small to moderate supplies. Over two thirds of the wells produce water containing objectionable amounts of iron and manganese, and many produce water containing hydrogen sulfide, especially from the Marcellus Formation.

Large supplies can be developed from parts of this unit, as indicated by the fact that nearly half of the wells drilled for nondomestic purposes yield over 100 gal/min.

ONONDAGA AND OLD PORT FORMATIONS

Stratigraphy

The Onondaga Formation consists of shally limestone interbedded with calcareous shale, and noncalcareous shale. The maximum thickness is about 120 feet.

The Old Port Formation is composed of a sequence of gray chert, silt-stone, claystone, medium- to coarse-grained sandstone, and shaly lime-stone. The thickness reaches a maximum of about 150 feet.

Water-Bearing Properties

Reported yields of 23 wells range between 4 and 60 gal/min. The median for domestic wells is 12 gal/min. Two nondomestic wells average 38 gal/min.

The depths of 24 wells range from 35 to 500 feet, and the median is 122 feet. The deepest reported water-bearing zone is at 460 feet.

Water Quality

The analysis of the single sample collected from these units shows all constituents to be within drinking water standards.

Results of 10 field analyses indicate that the water is hard (median of 7 gr/gal) and contains a moderate amount of dissolved solids (median specific conductance of 285 micromhos).

Evaluation of the Aquifer

This unit is too thin to be of importance as an aquifer in parts of the basin. In areas where a sufficient thickness is present, these formations yield small to moderate amounts of hard water to wells.

In the Juniata River basin, 25 percent of the wells drilled for nondomestic use in these formations have yields of 150 gal/min or more (Taylor and others, 1982). Although data are not available to confirm the availability of large supplies in the Lower Susquehanna River basin, this information from an adjacent basin suggests that larger yields should be possible.

KEYSER AND TONOLOWAY FORMATIONS

Stratigraphy

The Keyser Formation is between 100 and 200 feet thick and consists of gray limestone, argillaceous limestone, and claystone. The lower part is nodular and very fossiliferous.

The Tonoloway Formation is composed of dark- to medium-gray laminated limestone and argillaceous limestone. Reported thicknesses range from a little more than 100 feet to over 600 feet.

Water-Bearing Properties

Reported yields of 57 wells range from 1 to 410 gal/min. The median yields of domestic and nondomestic wells are 15 and 100 gal/min, respectively. Nine of the 17 wells drilled for nondomestic purposes produce 100 gal/min or more. Three wells have yields of less than 5 gal/min.

Well depths range from 40 to 503 feet. Seventeen of the 41 domestic wells are less than 100 feet deep and two are greater than 300 feet deep. One third

of the nondomestic wells are deeper than 300 feet. The medians are 125 and 190 feet for domestic and nondomestic wells, in that order.

Water-bearing zones are common to a depth of 250 feet, and the deepest reported zone occurs at 470 feet.

Water Quality

Seven complete analyses were used to evaluate the water quality. The following constituents are present in concentrations equaling or exceeding the recommended limit in single samples: iron, chromium, nitrate, and dissolved solids.

The median hardness based on 20 field analyses is 12 gr/gal, which is considered to be very hard. The water is moderately high in dissolved solids, as indicated by the median specific conductance of 430 micromhos.

Evaluation of the Aquifer

Figure 22 shows the distribution of nondomestic well yields from the Keyser and Tonoloway Formations and the underlying Wills Creek Formation. The Keyser and Tonoloway stratigraphic interval represents one of the best aquifers in the Valley and Ridge province. Sufficient quantities of water can be developed for most uses, and some very large yields are possible.

Water from these units is very hard and moderately high in dissolved solids and will require treatment for many uses. High sulfates are reported to be a problem in some localities.

WILLS CREEK FORMATION

Stratigraphy

The Wills Creek Formation consists of interbedded olive- and greenish-gray, calcareous and noncalcareous shale and argillaceous limestone. There are a few interbeds of grayish-red shale and gray, fine-grained sandstone.

The thickness approaches 600 feet throughout much of the basin.

Water-Bearing Properties

The median reported yield of 94 domestic wells is 15 gal/min. Seventeen nondomestic wells have a median yield of 20 gal/min. Yields range from 1 to 160 gal/min. Only four wells have yields less than 5 gal/min and two have yields greater than 100 gal/min.

Depths of 119 wells range from 18 to 604 feet. The median depths for domestic and nondomestic wells are 104 and 132 feet, respectively. Fifty wells, or 42 percent, are less than 100 feet deep and three had to be drilled deeper than 300 feet to obtain the desired yield.

Figure 22. Percent frequency distribution of nondomestic well yields from the Keyser and Tonoloway Formations, undivided, and the Wills Creek Formation.

The deepest reported yielding zone is at 261 feet. Every well that penetrates the 50- to 100-foot and the 101- to 150-foot depth intervals has at least one reported zone per interval.

Water Quality

Eight complete analyses were used to evaluate the groundwater quality. A single sample has an iron concentration in excess of the recommended limit. All other measured constituents are within EPA drinking water standards.

The median hardness based on 48 field analyses is 11 gr/gal, and the median specific conductance is 420 micromhos. These data indicate that the water is very hard and moderately high in dissolved solids.

Evaluation of the Aquifer

The Wills Creek Formation yields sufficient groundwater of acceptable quality for small to moderate supplies, and some larger supplies should be possible. The large proportion of shallow wells and shallow yielding zones indicates that the cost of developing a water supply should be comparatively low.

The water is hard to very hard and requires treatment for some uses.

BLOOMSBURG AND MIFFLINTOWN FORMATIONS

Stratigraphy

The Bloomsburg Formation is predominantly grayish-red shale and mudstone with some interbeds of light-gray, very fine grained sandstone. A few limestone beds may also be present. The thickness is approximately 450 feet.

The underlying Mifflintown Formation consists of dark-gray calcareous shale and interbedded medium- to dark-gray limestone. The thickness is generally between 170 and 200 feet.

Water-Bearing Properties

Reported yields of 58 wells range from 2 to 100 gal/min. The median for domestic wells is 12 gal/min, and three wells have yields of less than 5 gal/min. Data were only obtained for six nondomestic wells, which have a median yield of 26 gal/min.

Well depths range from 50 to 870 feet, and the median depths are 101 and 415 feet for domestic and nondomestic wells, respectively. The deepest reported water-bearing zone is at 606 feet.

Water Quality

Four complete analyses were used to evaluate the quality of water from these formations. Iron and manganese are present in concentrations exceeding the EPA recommended limit in two samples each.

The median hardness based on 33 field analyses is 5 gr/gal, and the median specific conductance is 215 micromhos. This indicates that the water is moderately hard and comparatively low in dissolved solids.

Evaluation of the Aquifer

These rocks generally yield sufficient groundwater for small to moderate supplies. About 45 percent of the wells obtain an adequate amount of water for domestic use from depths of 100 feet or less, which suggests an abun-

dance of shallow yielding zones. This, coupled with the ease of drilling in predominantly shale formations, should result in a relatively low cost for development of small water supplies in these formations. The high median depth of the nondomestic wells (five of the six wells inventoried are greater than 300 feet deep) suggests that large supplies are difficult to obtain.

CLINTON GROUP

Stratigraphy

Two formations make up the Clinton Group: the Keefer Formation and the underlying Rose Hill Formation. The Keefer Formation is primarily light- to dark-gray, hematitic sandstone containing interbeds of dark-gray shale and limestone. It is about 38 feet thick.

The Rose Hill Formation is light-olive-gray to brownish-gray shale containing some minor interbedded siltstone and sandstone. Layers of coarse-grained hematitic sandstone, which are grayish red to reddish black, are generally present in the medial part. Reported thicknesses for the Clinton Group range from about 575 to 950 feet.

Water-Bearing Properties

Reported yields of 21 wells range from 2 to 180 gal/min. The median for domestic wells is 12 gal/min. Well depths range from 50 to 390 feet, and the median is 148 feet for domestic wells. The deepest reported water-bearing zone is at 363 feet.

Water Quality

All constituents are within drinking water standards in the two samples collected for complete analysis. The median hardness based on seven field analyses is 4 gr/gal, and the median specific conductance is 250 micromhos. These data indicate that the water is soft to moderately hard and contains a moderate amount of dissolved solids.

Evaluation of the Aquifer

The Clinton Group yields sufficient water of acceptable quality for small and some moderate supplies. Large supplies of over 100 gal/min are difficult to obtain because of the lithologic character (predominantly shale) of the unit, and because it occurs under steep slopes and relatively high topographic positions.

TUSCARORA, JUNIATA, AND BALD EAGLE FORMATIONS

Stratigraphy

The Tuscarora, Juniata, and Bald Eagle Formations are prominent ridge and upland bench formers throughout much of the basin.

The Tuscarora Formation primarily consists of light- to medium-gray sandstone and minor quartzite, containing interbedded shale. It is about 400 to 700 feet thick.

The Juniata Formation consists of brownish- to grayish-red sandstone, some siltstone, and shale and is approximately 1,100 feet thick.

The Bald Eagle Formation is composed of 600 to 900 feet of gray to olivegray and grayish-red, fine- to coarse-grained sandstone and some conglomerate.

Evaluation of the Aquifers

Because these units generally underlie wooded ridges, there has been little attempt to develop groundwater supplies from them. Only seven wells from these units were inventoried, and only one sample was collected for complete chemical analysis. Based on this limited information and lithologic and topographic considerations, these units should provide small supplies of soft groundwater.

REEDSVILLE FORMATION

Stratigraphy

The Reedsville Formation consists of medium-gray, thin- to medium-bedded silty shale and shaly siltstone. There are a few interbeds of very fine grained sandstone. The formation is approximately 1,000 feet thick.

Water-Bearing Properties

Reported yields of 16 domestic wells range from 4 to 70 gal/min, and the median is 27 gal/min. The maximum yield from five nondomestic wells is 180 gal/min, and the median is 30 gal/min.

Well depths range from 45 to 350 feet, and the median for all wells is about 120 feet. The deepest reported yielding zone is at 345 feet.

Water Quality

The two samples that were collected from this unit have all constituents within recommended limits. The results of seven field analyses indicate that the water is hard (7 gr/gal) and contains a moderate amount of dissolved solids (320 micromhos).

Evaluation of the Aquifer

The Reedsville Formation generally yields sufficient quantities of water of acceptable quality for small to moderate supplies. Excessive iron and manganese are a problem in some areas (Taylor and others, 1982), and the water occasionally contains objectionable amounts of hydrogen sulfide.

COBURN FORMATION THROUGH LOYSBURG FORMATION

Stratigraphy

The interval from the Coburn Formation through the Loysburg Formation is a sequence of Middle to Upper Ordovician carbonate rocks approximately 1,000 to 1,200 feet thick. In descending order, the formations and lithologies that make up this stratigraphic section are as follows: Coburn Formation—medium-gray limestone; Salona Formation—very dark gray to black shaly limestone and calcareous shale; Nealmont Formation—medium-gray fossiliferous limestone; Benner Formation—light- to dark-gray, thick-bedded limestone; Snyder Formation—light- to medium-gray limestone; Hatter Formation—medium-gray argillaceous limestone; and Loysburg Formation—light- to medium-gray, medium-bedded limestone overlying laminated, alternating beds of limestone, dolomitic limestone, and dolomite.

Water-Bearing Properties

Reported yields of 34 wells range from 1 to 400 gal/min. The medians are 12 and 50 gal/min for domestic and nondomestic wells, respectively. Six of the 29 domestic wells, or about 21 percent, have yields less than 5 gal/min.

Well depths range from 45 to 350 feet, and the median is 201 feet for both domestic and nondomestic wells. The deepest reported water-bearing zone is at 320 feet.

Water Quality

Four samples were collected from these formations for complete analysis. Other than a single sample which has excessive manganese, all constituents are within drinking water standards. Nine field analyses indicate that the water is very hard (16 gr/gal) and high in dissolved solids (specific conductance is 515 micromhos).

Evaluation of the Aquifer

Insufficient data are available to evaluate the maximum potential of these units. However, a single well has a reported yield of 400 gal/min, which suggests that large yields are possible. Data from domestic wells indicate that small to moderate supplies of very hard water can be developed, but that about one in five wells will yield less than 5 gal/min.

BELLEFONTE AND AXEMANN FORMATIONS

Stratigraphy

The Bellefonte Formation is primarily medium- to thick-bedded, gray dolomite containing minor amounts of chert and sandstone. The thickness of this unit averages about 1,000 feet.

The underlying Axemann Formation is mainly limestone but contains a few thin layers of dolomite; it ranges between 50 and 200 feet in thickness.

Evaluation of the Aquifer

Because of their limited areal extent, too few data were obtained from these formations to evaluate them. In the Juniata River basin (Taylor and others, 1982), the data indicate that comparatively large supplies are obtainable from these formations, and that there should be few failures when attempting to obtain domestic supplies. The water is very hard and high in dissolved solids and requires treatment for some uses.

MANAGEMENT OF WATER SUPPLIES

GROUNDWATER-QUANTITY MANAGEMENT

Only a fraction of the total available groundwater is presently being used in the Lower Susquehanna River basin. Based on the analysis of annual streamflow, a groundwater recharge of between 160 and 330 (gal/min)/mi² can be expected about 90 percent of the time. If only 25 percent of this recharge (a conservative amount) was developed by widely spaced wells, 330 to 670 Mgal/d could be obtained without seriously affecting groundwater levels or reducing streamflow. This is roughly three to six times the estimated groundwater use in the basin in 1970.

There are, however, a few areas where water use is sufficiently intense and insufficient water supplies have been developed to preclude water shortages during moderate droughts. For example, in the 1980-81 drought, which encompassed much of eastern Pennsylvania, 23 water companies in the Lower Susquehanna River basin had to place use restrictions on their supply because of water shortages. Although there was ample recharge to the groundwater system to meet the demand, the shortages occurred because the companies had not developed sufficient excess capacity to withstand a drought of this intensity.

Most groundwater-quantity problems may be alleviated either by increasing the number of wells in order to spread pumpage over a larger area, by periodically utilizing another source of supply to allow water levels to recover, or by reducing the demand on the water system through water conservation efforts.

The Susquehanna River Basin Commission has enabling legislation which allows them to regulate some groundwater withdrawals. In September 1976 the Commission adopted a regulation requiring compensation for certain consumptive water uses during low-streamflow periods. The purposes of the regulation are protection of public health, stream-quality control, economic development, protection of fisheries, recreation, dilution and

abatement of pollution, the prevention of undue salinity, and protection of the Chesapeake Bay.

Withdrawals from surface or groundwater of 100,000 gal/d or more, from which more than 20,000 gallons are used consumptively, are covered by this regulation.

In addition, in the fall of 1978 the Commission adopted a policy on water conservation which sets forth project review criteria from which the Commission will evaluate any new or requested increase for the withdrawal of water from a surface or groundwater resource for public water-supply utilities, industries, and irrigational usage.

GROUNDWATER-QUALITY MANAGEMENT

The natural quality of groundwater in the basin is generally acceptable for most uses. Some aquifers, or zones within aquifers, contain poor-quality water that is somewhat isolated from the better quality groundwater. Wells should be constructed in such a fashion as to maintain this isolation and thus not allow poor-quality water to migrate into aquifers containing water of usable quality.

Most man-induced water-quality problems are primarily local in extent and can be minimized by constructing wells so that surface water cannot enter them. Such factors as adequate length, thickness, and type of casing in conjunction with adequate formation sealing material (usually cement grout) must be considered when constructing a well.

Point sources of groundwater contamination (hydrocarbon spills, malfunctioning septic tanks, etc.) must be identified and eliminated and their effects minimized through cleanup operations.

Nitrate contamination of groundwater as a result of heavy fertilization of croplands appears to be a problem in areas underlain by carbonate rocks and in the Piedmont Uplands section. Agricultural practices that will minimize this problem need to be pursued.

CONCLUSIONS

Groundwater use in the Lower Susquehanna River basin was about 127 Mgal/d in 1970. State Water Plan projections are for a 13 percent per decade increase in water use from 1970 to 1990, and most of the increase will come from groundwater (Pennsylvania Department of Environmental Resources, 1980a, b).

The basin has abundant water resources resulting from an average of approximately 40 inches of precipitation. Streamflow accounts for about 45 percent of annual precipitation, or about 18 inches. Groundwater flow averages about 56 percent of streamflow. About 55 percent of precipitation (22 inches) is lost annually to evapotranspiration.

Mean recharge to the groundwater system ranges between 215 and 520 (gal/min)/mi². The lowest values are for the metamorphic rocks in eastern Lancaster and western Chester Counties. The highest recharge is to the carbonate rocks of the eastern Great Valley.

Lithology, topography, and geologic structure influence the depth, size, and abundance of water-bearing zones and, thus, well yields. Rocks that consist primarily of limestone or dolomite have the highest well yields, followed by sandstone and shale in that order. Yields of valley wells are two to three times higher than yields of wells located in other topographic settings. Geologic structures that have an important influence on well yields are faults, folds, fractures, and bedrock dip.

Groundwater quality is generally adequate for most uses. Major differences in chemistry occur between water from primarily calcareous rock units and water from noncalcareous units.

Iron and manganese are the natural constituents in groundwater that most commonly exceed EPA recommended limits; more than 28 percent of the analyzed samples have excessive amounts of one or both of these constituents.

Major types and sources of groundwater contamination are bacterial organisms and nitrates from sewage, acid mine drainage, excessive nitrates from improper agricultural practices, petroleum products from buried storage tanks, chlorinated solvents from degreasing operations, and leachate from landfills.

SOURCES OF INFORMATION ABOUT WATER

A variety of information on water supplies is available from the government agencies listed below. When requesting information it is important to give an accurate location of the site for which information is desired.

The Bureau of Topographic and Geologic Survey, Department of Environmental Resources, has information on the geology of the basin and has published reports that contain detailed descriptions of the rocks that underlie the area and their hydrologic properties. Well drillers' logs and reports on new wells that have been drilled are also available.

The Bureau of Community Environmental Control, Department of Environmental Resources, can supply information on well construction requirements for public and semipublic water supplies, biological reports on well water, and information on the chemical quality of groundwater. The bureau, through various regional offices, tests water samples for bacterial pollution, and also can advise on effective corrective measures when pollution is reported.

The Division of State Water Plan, Bureau of Water Resources Management, Pennsylvania Department of Environmental Resources, has informa-

tion on water use, stream discharges, flood data, reservoir requirements, and power plant discharges.

The Pennsylvania Public Utility Commission, Bureau of Rates and Research, has information on some municipal water supplies, including source, average daily use, total annual use, and estimated future needs.

The U.S. Geological Survey, Federal Building, Harrisburg, has data on wells, springs, and streams and on the chemical quality of water.

Local well drillers and pump installers can provide prices and suggest the type of equipment needed to develop a water supply. They can also suggest the proper well diameter for the necessary pumping equipment. Pump installers can supply information concerning the size of the pump, depth of the pump setting, and the pressure-tank capacity.

If the chemical analysis of the well water indicates that treatment is necessary, commercial water-treatment companies can provide the necessary information and equipment.

REFERENCES

- Arndt, H. H. (1971), Geologic map of the Ashland quadrangle, Columbia and Schuylkill Counties, Pennsylvania, U.S. Geological Survey Geologic Quadrangle Map GQ-918, scale 1:24,000.
- (1971), Geologic map of the Mount Carmel quadrangle, Columbia, Northumberland, and Schuylkill Counties, Pennsylvania, U.S. Geological Survey Geologic Quadrangle Map GQ-919, scale 1:24,000.
- Arndt, H. H., Wood, G. H., Jr., and Schryver, R. F. (1973), Geologic map of the south half of the Shamokin quadrangle, Northumberland and Columbia Counties, Pennsylvania, U.S. Geological Survey Miscellaneous Geologic Investigations Map 1-734, scale 1:24,000.
- Becher, A. E., and Root, S. I. (1981), *Groundwater and geology of the Cumberland Valley, Cumberland County, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 50, 95 p.
- Becher, A. E., and Taylor, L. E. (1982), Groundwater resources in the Cumberland and contiguous valleys of Franklin County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 53, 67 p.
- Berg, T. M., Edmunds, W. E., Geyer, A. R., and others (1980), *Geologic map of Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Map 1, scale 1:250,000, 3 sheets.
- Carswell, L. D., Hollowell, J. R., and Platt, L. B. (1968), *Geology and hydrology of the Martinsburg Formation in Dauphin County, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 24, 54 p.
- Freedman, Jacob (1967), Geology of a portion of the Mt. Holly Springs quadrangle, Adams and Cumberland Counties, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Progress Report 169, 66 p.
- Gerhart, J. M., and Lazorchick, G. J. (in preparation), Development and use of a quasi three-dimensional ground-water flow model to evaluate the groundwater resources of the Lower Susquehanna River basin, Pennsylvania and Maryland, U.S. Geological Survey Water-Supply Paper.
 - (in preparation), Simulation of unconfined ground-water flow in secondary-permeability terrane in parts of Lancaster and Berks Counties, Pennsylvania, U.S. Geological Survey Water-Resources Investigations.

- Geyer, A. R. (1970), Geology, mineral resources and environmental geology of the Palmyra quadrangle, Lebanon and Dauphin Counties, Pennsylvania Geological Survey, 4th ser., Atlas 157d, 46 p.
- Geyer, A. R., Buckwalter, T. V., McLaughlin, D. B., and Gray, Carlyle (1963), *Geology and mineral resources of the Womelsdorf quadrangle*, Pennsylvania Geological Survey, 4th ser., Atlas 177c, 96 p.
- Geyer, A. R., Gray, Carlyle. McLaughlin, D. B., and Moseley, J. R. (1958), *Geology of the Lebanon quadrangle*, Pennsylvania Geological Survey, 4th ser., Atlas 167c, scale 1:24,000.
- Gray, Carlyle, Geyer, A. R., and McLaughlin, D. B. (1958), *Geology of the Richland quad-rangle*, Pennsylvania Geological Survey, 4th ser., Atlas 167d, scale 1:24,000.
- Hall, G. M. (1934), *Ground water in southeastern Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 2, 255 p.
- Hoskins, D. M. (1976), *Geology and mineral resources of the Millersburg 15-minute quad-rangle, Dauphin, Juniata, Northumberland, Perry, and Snyder Counties, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Atlas 146, 38 p.
- Johnston, H. E. (1966), *Hydrology of the New Oxford Formation in Lancaster County, Penn-sylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 23, 80 p.
- Jonas, A. 1., and Stose, G. W. (1926), *Geology and mineral resources of the New Holland quadrangle, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Atlas 178, 40 p.
- ______(1930), Lancaster quadrangle, Pennsylvania Geological Survey, 4th ser., Atlas 168, 106 p.
- Knopf, E. B., and Jonas, A. 1. (1929), *Geology of the McCalls Ferry-Quarryville district, Pennsylvania*, U.S. Gcological Survey Bulletin 799, 156 p.
- Koester, H. E., and Miller, D. R. (1982), Ground-water quality and data on wells and springs in Pennsylvania, Volume II—Susquehanna and Potomac River basins, U.S. Geological Survey Open-File Report 81–329, 131 p.
- Landers, R. A. (1976), *A practical handbook for individual water-supply systems in West Virginia*, West Virginia Geological and Economic Survey Educational Series, 102 p.
- Lloyd, O. B., Jr., and Growitz, D. J. (1977), *Ground-water resources of central and southern York County, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 42, 93 p.
- Lohman, S. W. (1937), *Ground water in northeastern Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 4, 312 p.
- (1938), Ground water in south-central Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 5, 315 p.
- Lovering, T. S., and Goode, H. D. (1963), *Measuring geothermal gradients in drill holes less than 60 feet deep, East Tintic district, Utah*, U.S. Geological Survey Bulletin 1172, 48 p.
- MacLachlan, D. B. (1967), Structure and stratigraphy of the limestones and dolomites of Dauphin County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., General Geology Report 44, 168 p.
- MacLachlan, D. B., Buckwalter, T. V., and McLaughlin, D. B. (1975), *Geology and mineral resources of the Sinking Spring quadrangle, Berks and Lancaster Counties, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Atlas 177d, 228 p.
- McGreevy, L. J., and Sloto, R. A. (1977), *Ground-water resources of Chester County, Penn-sylvania*, U.S. Geological Survey Water-Resources Investigations 77–67, 76 p.
- Meisler, Harold (1963), Hydrogeology of the carbonate rocks of the Lebanon Valley, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 18, 81 p.
- Meisler, Harold, and Becher, A. E. (1971), *Hydrogeology of the carbonate rocks of the Lan*caster 15-minute quadrangle, southeastern Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 26, 149 p.

- Meisler, Harold, and Longwill, S. M. (1961), *Ground-water resources of Olmsted Air Force Base, Middletown, Pennsylvania*, U.S. Geological Survey Water-Supply Paper 1539-H, 34 p.
- Pennsylvania Department of Environmental Resources, Bureau of Resources Programming (1980a), *The State Water Plan—Subbasin 6, Lower Central Susquehanna River*, Bulletin SWP-7, 162 p.
- (1980b), The State Water Plan—Subbasin 7, Lower Susquehanna River, Bulletin SWP-8, 294 p.
- Poth, C. W. (1968), Hydrology of the metamorphic and igneous rocks of central Chester County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 25, 84 p.
- ______(1977), Summary ground-water resources of Lancaster County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 43, 80 p.
- Root, S. I. (1977), Geology and mineral resources of the Harrisburg West area, Cumberland and York Counties, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Atlas 148ab, 106 p.
- ______(1978), Geology and mineral resources of the Carlisle and Mechanicsburg quadrangles, Cumberland County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Atlas 138ab, scale 1:24,000.
- Royer, D. W. (1983), Summary groundwater resources of Lebanon County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 55, 84 p.
- Seaber, P. R., and Hollyday, E. F. (1965), An appraisal of the ground-water resources of the lower Susquehanna River basin, U.S. Geological Survey Open-File Report, 75 p.
- Stiff, H. A., Jr. (1951), *The interpretation of chemical water analysis by means of patterns*, Journal of Petroleum Technology, v. 3, no. 10, p. 15–17.
- Stose, G. W., and Jonas, A. 1. (1933), Geology and mineral resources of the Middletown quadrangle, Pennsylvania, U.S. Geological Survey Bulletin 840, 86 p.
- _____ (1939), Geology and mineral resources of York County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., County Report 67, 199 p.
- Stuart, W. T., Schneider, W. J., and Crooks, J. W. (1967), Swatara Creek basin of southeast-ern Pennsylvania—An evaluation of its hydrologic system, U.S. Geological Survey Water-Supply Paper 1829, 79 p.
- Taylor, L. E., and Royer, D. W. (1981), Summary groundwater resources of Adams County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 52, 50 p.
- Taylor, L. E., Werkheiser, W. H., duPont, N. S., and Kriz, M. L. (1982), *Groundwater resources of the Juniata River basin, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 54, 131 p.
- Trexler, J. P., and Wood, G. H., Jr. (1968), *Geologic map of the Klingerstown quadrangle, Northumberland, Schuylkill, and Dauphin Counties, Pennsylvania*, U.S. Geological Survey Geologic Quadrangle Map GQ-700, scale 1:24,000.
- (1968), Geologic map of the Lykens quadrangle, Dauphin, Schuylkill, and Lebanon Counties, Pennsylvania, U.S. Geological Survey Geologic Quadrangle Map GQ-701, scale 1:24,000.
- (1968), Geologic map of the Valley View quadrangle, Schuylkill and Northumberland Counties, Pennsylvania, U.S. Geological Survey Geologic Quadrangle Map GQ-699, scale 1:24,000.
- U.S. Environmental Protection Agency (1975), *National interim primary drinking water regulations*, Federal Register, v. 40, no. 248 (December 24, 1975), p. 59566–59588.
- (1976), Quality criteria for water, Washington, D.C., U.S. Government Printing Office, 256 p.
- (1977), National secondary drinking water regulations, Federal Register, v. 42, no. 62 (March 31, 1977), Part 1, p. 17143–17147.

- Ward, P. E., and Wilmoth, B. M. (1968), *Ground-water hydrology of the Monongahela River basin in West Virginia*, West Virginia Geological and Economic Survey River Basin Bulletin 1, 54 p.
- Wood, C. R. (1980a), Groundwater resources of the Gettysburg and Hammer Creek Formations, southeastern Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 49, 87 p.
- _____ (1980b), Summary groundwater resources of Centre County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 48, 60 p.
- Wood, C. R., and MacLachlan, D. B. (1978), *Geology and groundwater resources of northern Berks County, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 44, 91 p.
- Wood, G. H., Jr. (1968), Geologic map of the Tower City quadrangle, Schuylkill, Dauphin, and Lebanon Counties, Pennsylvania, U.S. Geological Survey Geologic Quadrangle Map GQ-698, scale 1:24,000.
- Wood, G. H., Jr., and Arndt, H. H. (1969), *Geologic map of the Shenandoah quadrangle, Schuylkill County, Pennsylvania*, U.S. Geological Survey Geologic Quadrangle Map GQ-781, scale 1:24,000.
- _____ (1973), Geologic map of the Delano quadrangle, Schuylkill County, Pennsylvania, U.S. Geological Survey Geologic Quadrangle Map GQ-1054, scale 1:24,000.
- Wood, G. H., Jr., and Kehn, T. M. (1968), *Geologic map of the Pine Grove quadrangle, Schuylkill, Lebanon, and Berks Counties, Pennsylvania*, U.S. Geological Survey Geologic Quadrangle Map GQ-691, scale 1:24,000.
- _____ (1968), Geologic map of the Swatara Hill quadrangle, Schuylkill and Berks Counties, Pennsylvania, U.S. Geological Survey Geologic Quadrangle Map GQ-689, scale 1:24,000.
- Wood, G. H., Jr., and Trexler, J. P. (1968), Geologic map of the Tremont quadrangle, Schuylkill and Northumberland Counties, Pennsylvania, U.S. Geological Survey Geologic Quadrangle Map GQ-692, scale 1:24,000.
- Wood, G. H., Jr., Trexler, J. P., and Yelenosky, Andy (1968), *Geologic map of the Miners-ville quadrangle, Schuylkill County, Pennsylvania*, U.S. Geological Survey Geologic Quadrangle Map GQ-690, scale 1:24,000.
- Wood, P. R., and Johnston, H. E. (1964), *Hydrology of the New Oxford Formation in Adams and York Counties, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 21, 66 p.

GLOSSARY

- Aquifer. A formation that yields significant quantities of water to wells and springs.
- Baseflow. Discharge entering stream channels as flow from the groundwater reservoir; the fair-weather flow of streams.
- Carbonate rocks. Rocks composed dominantly of the carbonate minerals calcite and dolomite. Limestone and dolomite are the most common rocks of this type.
- Clastic. Consisting of fragments of rocks that have been moved individually from their place of origin.
- Dip of beds. The angle at which the formation or bed is inclined from the horizontal, measured at a right angle to the strike or trend of the formation or bed.

GLOSSARY 91

- *Discharge, groundwater.* The process by which water is removed from the saturated zone; also the quantity of water removed.
- *Drawdown*. The lowering of the water level in a well, caused by pumping.
- Evapotranspiration. Water removed from a land area by direct evaporation from water surfaces and moist soil, and by plant transpiration.
- Fault. A fracture or fracture zone along which there has been displacement of the two sides relative to each other. The displacement may range from a few inches to many miles.
- Formation. A fundamental unit in rock-stratigraphic classification. It is a body of rock characterized by uniform rock type; it is prevailingly tabular and is mappable at the earth's surface or traceable in the subsurface.
- Fracture. A break in the rock.
- *Groundwater reservoir*. An aquifer or a group of related aquifers underlying a given area.
- Group. A sequence of rocks consisting of two or more formations.
- Hardness. A chemical property of water, caused mostly by the presence of calcium and magnesium, which increases the amount of soap needed to produce a lather. Water that has a hardness, calculated as grains of calcium carbonate per gallon, less than 3.5 is soft; between 3.5 and 7.0 is moderately hard; between 7.0 and 10.5 is hard; and greater than 10.5 is very hard. Values may be converted to milligrams per liter by multiplying by 17. Hardness values used in this report were determined in the field by use of a Calgon Speedy kit for testing water hardness. (Use of a brand name is for identification purposes only and does not imply endorsement by the Pennsylvania Geological Survey).
- Hydrogeologic unit. A formation, part of a formation, or a group of formations in which there are similar hydrologic characteristics.
- Igneous rock. A rock that solidified from molten material.
- Metamorphic rock. A rock derived from preexisting rocks by change in mineral composition or texture caused by heat and/or pressure.
- Paleozoic Era. A span of geologic time that is between the Late Precambrian and Mesozoic Eras.
- Permeability. The capacity of a material to transmit a fluid.
- pH. The negative logarithm of the hydrogen-ion concentration. A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote alkaline solutions; values lower than 7.0 indicate acidic solutions.
- Physiographic province. A region of generally uniform topography usually related to uniform subsurface geologic structures.
- *Porosity.* The ratio of the volume of openings in a rock to its total volume, expressed as a percentage.
- Primary openings. Openings or voids existing when the rock was formed. In sedimentary rocks, openings result from the shape and nature of the original sediment and the way the particles are fitted together.

- Recharge, groundwater. The process by which water is added to the saturated zone; also the quantity of water added.
- Runoff. That part of the precipitation that appears in streams. It is the same as streamflow unaffected by diversions, dams, or other works of man.
- Saturated zone. The zone in which interconnected openings are saturated with water.
- Secondary openings. Voids produced in rocks by solution, weathering, or breaks in the rock subsequent to the original formation of the rock.
- Specific capacity. The pumping rate of a well, in gallons per minute, divided by the drawdown of the water level in the well, in feet.
- Specific conductance. A measure of the capacity of water to conduct an electrical current. It varies with concentration and degree of ionization of the constituents.
- Stream-gaging station. A gaging station where a record of discharge of a stream is obtained. Within the U.S. Geological Survey this term is used only for those gaging stations where a continuous record of discharge is obtained.
- Surface water. Water on the surface of the earth.
- *Transpiration*. The process by which vapor escapes from the living plant, principally the leaves, and enters the atmosphere.
- Water table. The upper surface of the zone of saturation, which is the zone in which openings in permeable rocks are filled with water.

.03

11 55 5

4.3 2.9 10 110

1.0

.02

0.00.0

.12 .20 .31

6.1 <.01 5.9 <.01 7.6 <.01 15 <.01

.18

.001

140 .1 100 .7 138 .2 100 1.5 126 .1 98 1.2 846 <.1 270 .78

..01 ..02 ..01

3.0 3.0 5.0

23 23 59

110 < .001 110 < .001 110 < .001 22 < .001

.03 .03 .07

00010

7.0 6.9 6.5 5.9

5/6/81 5/6/81 4/16/81 5/13/81

Sc-

		,
	(nZ) ɔniZ	
	(pO2) staffu2	
	(SN) muibo2	
	(X) murssato9	
	N 25, E0N	
	N 25 . SUN	
İ	N se ,ξHN	
	Nickel (Ni)	
	(gM) muisengeM	
	Manganese (Mn)	
	(PP)	Z
	(Fe) norI	N SECTION ATION
	Hardness (CaCO3)	40UNTAI
	(F) sbinouff	ALACHIAN MOUNTAI
	Sbifos bavfossid	APPALI
	Chromium (Cr)	
	(f) ebinofd	
	(s2) muisle2	
	(bJ) muimbsJ	
	Alkalinity (CaCO ₃)	
	(fA) munimufA	
	Arsenic (As)	
	Hq	
	noitoelloo fo etal	
	Me]] number	

	6.0000000000000000000000000000000000000	.02	.04 .11 .05 .01
	\$ 255 100 100 100 100 100 100 100 1	30	30 15 15 15 15 15 15 15 15 15 15 15 15 15
	0.000000000000000000000000000000000000	3.9	5.9 3.9 6.3 6.7 6.7 < 10 < 10
	01 v v v v v v v v v v v v v v v v v v v	ĸ,	6.
	2.16 2.80 2.40 2.40 2.40 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.6	86.	1.20 .18 3.70 2.00 .02
П	555555555555555555555555555555555555555	- 01	
Н	0.000.000.000.000.000.000.000.000.000.	<.01	.05 .01 .02 .03
		٠.01	. 02 . 02 . 01 . 02 . 01 . 01
ì	44.8.2.3.4.4.6.8.3.3.4.4.6.8.4.6.8.6.8.4.6.8.6.8.6.6.6.6.6.6	2.4	8.2 4.0 4.0 9.7 4.2
		.02	01 01 04 04 29
		.003	.001 .002 .002 .005 05
MATION	2 . 0 . 2 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .	.03 .TION	01 07 03 03
CHUNK FORMATION	66 130 130 130 140 140 140 140 130 130 130 130 130 130 130 13	FORMAT 64 FORMA	68 28 56 66 52 82 29
₩АОСН СН		POCONO .2 ATSKILI	11.2.1.1.2.1.1
MA	1112 1338 170 170 170 132 132 132 132 134 146 366 224 146 366 224 146 368 227 222 222 222 222 338 338 338 338 338 338	122	102 72 132 134 122 170 220
		·.01	
	2.0 18 7.0 88.0 88.0 66.0 19 7.0 19 7.0 10 10 10 10 10 10 10 10 10 10 10 10 10	5.0	4.0 2.0 2.0 6.0 6.0
11	288 429 429 420 420 430 444 450 460 460 460 460 460 460 460 460 460 46	56	15 12 8.9 18 12 18 3.5
	000000000000000000000000000000000000000	·. 001	001 001 001 003 003
	80 68 68 110 110 100 100 100 100 100 100 100 10	44	46 48 52 52 52 94 52
П	000000000000000000000000000000000000000	.08	08 01 .02 .05
	0001 0001 0001 0001 0001 0001 0001 000	.003	.006 .007 .002 .002 .001 .01
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.4	6.4 6.3 6.3 6.6 7.1 6.6
	5/27/81 4/15/81 4/15/81 4/15/81 4/15/81 5/6/81 5/6/81 5/6/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81 5/13/81	5/18/81	4/30/81 4/29/81 5/20/81 11/4/81 5/13/80 5/15/80
	Da- 621 626 627 627 644 644 653 663 661 661 667 70 70 70 70 70 70 70 70 70 70 70 70 70	Da- 604	0a- 638 Nu- 201 226 278 Pe- 575 Sc- 450

TABLE 19. (CONTINUED)

(ns) onis				0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01		.02 .03 .03 .02 .03 .03 .04 .23 .12 .12
Sulfate (SO4)		265 265 265 267 267 277 277 277 277 277 277 277 277		15 45 45 55 55 55 55 55 55 55 5		0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(BN) murbo2		14 7.1 8.0 15 6.6 6.6 6.0 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 6.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7		17 7.2 18 12 12 <10 <10 7.2 6.7 6.7		2.3 26 10 10 3.7 3.7 5.2 4.6 10 10 10
Potassium (K)		1.0				4 · · · · · · · · · · · · · · · · · · ·
N se , EON				1.50 1.10 1.10 1.00 1.00 1.00 1.00 1.00		
N 25 , SON		0.0000000000000000000000000000000000000		0.0000000000000000000000000000000000000		
N 26 ,EHM		0.0100000000000000000000000000000000000		001177777777777777777777777777777777777		23 25 23 25
Nickel (Ni)		0.0000000000000000000000000000000000000		,		0.0000000000000000000000000000000000000
(pM) muizenpeM		3.5 8.3 8.3 9.7 11.7 11.3 8.2 8.2 3.4 11.7 11.7 11.0 10.7 10.7		23.7.7.00 2.0.7.7.00 2.0.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.		20004440400000000000000000000000000000
(uµ) əsəuebueW	NO	0.01 0.04 0.04 0.01	NO	.02 .02 .01 .01 .06 .06 .06 .20 .20 .20		.01 .01 .02 .02 .02 .03 .04 .04
Lead (Pb)	FORMATI	000 000 000 000 000 000 000 000 000 00	FORMAT	.008 .000 .000 .000 .000 .000 .000 .000	_	
(Fe) nori	CATSKILL		CATSKILL	.26 .24 .04 .04 .11 .12 .14 .34 .31 .38 .38	FORMAT 10	000 000 000 000 000 000 000 000 000 00
Hardness (CaCO ₃)	90F	26 68 68 76 76 76 76 80 100 100 100 100 100 100 100 100 100	0F	28 20 70 100 47 47 58 60 64 64 64	ROCK F	30 62 62 62 62 63 33 78 78 78 50
(R) (R)	MEMBER	~-~	MEMBER		MMERS F	-2.1.10.5.1.15.1.5.1.5.1.5.1.5.1.5.1.5.1.5
Shifos bevfossid	IN CREEK	96 152 152 152 138 138 138 106 100 104 1140	YALLEY	110 56 130 156 156 110 130 136 116 116 170	TRIP	106 176 176 176 176 186 186 186 186 186 186 186 186 186
(ng) muimondo	SHERMAN		IRISH			0.0000000000000000000000000000000000000
Chloride (Cl)			28 50 61 61 61 62 63 63 64 64 64 64 64 64 64 64 64 64		2.0 10.0 10.0 2.0 2.0 2.0 6.0 6.0 6.0 6.0 1.0 1.0	
(ຄວີ) ຫນ່າວໂຄວີ		6.1 113 4 8 9 8 9 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7.0 3.9 18 19 9.3 16 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10	1	8.7 16.5 15.5 118 6.1 7.2 11.2 3.4
(b2) murmbe3		000000000000000000000000000000000000000		, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,
Alkalinity (CaCO ₃)		000 000 000 000 000 000 000 000 000 00		28 32 110 130 66 78 76 74 74 74 70		110 110 70 70 70 70 70 70 70 70 70 70 70 70 70
([A) munimulA		0.000000000000000000000000000000000000		00000000000000000000000000000000000000		000 000 000 000 000 000 000 000 000 00
(sA) singsaA		. 000				
Нq		000000000000000000000000000000000000000		6.2 7.3 6.2 6.3 6.9 6.9 7.1 7.1		6.3
Date of collection		5/26/81 4/16/81 4/16/81 4/16/81 4/30/81 5/20/81 5/20/81 5/20/81 5/20/81 9/23/81 9/23/81 9/23/81 9/23/81 9/23/81		5/26/81 5/26/81 5/18/81 5/6/80 5/13/80 5/14/80 5/14/80 5/13/80 5/13/80 5/18/80 5/18/80		5/26/81 4/16/81 4/16/81 5/13/81 5/22/80 9/23/81 9/24/81 10/7/81 5/6/80 5/6/80 5/6/80
Well number		0a- 611 623 623 634 642 648 675 672 673 673 675 72 875 875 875 876 877 877 877 877 878 878 878 878 878		0a- 612 613 Nu- 245 Pe- 538 627 627 627 85- 444 445 445 868 Sn- 169		03-615 04-615 04-318 1069 1069 1080 Nu-241 280 Pe-532 551 551

.12 .001 .02 .02 .02		03		1150.000.000.000.000.000.000.000.000.000		.01		.02 .02 .02 .02		0.02		.02
5 17 17 5 10		35 12 5 20 10 20	П	65 65 65 65 65 65 65 65 65 65 65 65 65 6		10		15 20 20 31 30 5	П	15 65 110 115 10 5 5 5 5		15 15 5
9.1 4.4 5.4 8.6		5.5 2.7 2.4 5.1 6.0		010 4.4 4.4 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10		32		3.2 35 <10 <10 1.6		2.6 1.9 1.8 12 .6 1.1 1.1		<10 <10 3.3 3.3
خنے منے بندن <u>ہ</u>		40.6.4.6.7		01 011 0 41 44555455544		·.1		.4 .10 .7 .6		1.0 1.0 7.7 .9		.4 .4
.01 .06 .84 .20		.02 .02 .02 .02 .39				. 02		3.50 3.50 .08 4.60 .05 2.30		2.90 .20 4.80 2.60 1.80 1.90		.02
0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	1	.02 .02				<.01		0.0000000000000000000000000000000000000		0.0000000000000000000000000000000000000		01 01 01
.09 .04 .08 .25		.03		, v 000 000 000 000 000 000 000 000 000		. 37		.01 .01 .01 .25 .06		0.0000000000000000000000000000000000000		.01
.03 .03 .01 .01		.01 .01 .01 .01				.03		02 02 03 01		0.0000000000000000000000000000000000000		.05
5.4 5.4 5.4		7.1 2.5 1.0 6.6 4.9		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		·.1		9.2 32 3.8 15 23 2.5		13 7.2 33 6.7 12 9.5 17		.7 11 2.5 3.7
. 10 . 03 . 07 . 13		.19			0.00	.01	0E0	.00 .00 .00 .00 .00 .00		2000000000	VI0E0	.02
.003 .002 .002 .004		.003			UNDIVIO	.001	UNOIVI	001 05 05 05 001 004		.004 .003 .003 .007	IS, UNOI	.005 .003 .003
4.7 .24 .19 .04 1.20	OUP	1.5 .44 .11 .16 .05	FORMATION	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	FORMATIONS,	.03	FORMATIONS	01 .12 .36 .09 .08	RMAT10N	.06 .10 .05 1.0 .10 .07	0RMAT10	.13 .23 1.5
58 35 64 67	TON GR	140 20 30 140 68 160		89 60 110 80 80 40 60 55 55 55 55 75 75 75 75 110	RT FOR	7	>	350 640 1110 180 150 260 130	EEK F0	140 1110 130 130 130 170 210	LOWN F	< 20 110 40 10
11.21.1	HAM11	7-7	HANTANGO	122112102117236111	OLO PORT	Ţ.	TONOLOWA	7277777	L5 CR	211212111	MIFFLINTOWN	.222
28 72 84 154 102		126 74 52 168 	MA	128 134 164 164 164 164 164 166 166 166 166 178 172 172 172 173 173 173 173 173 173 173 173 173 173	DNONDAGA AND C	128	R AND TO	396 976 112 206 200 252 160	MIL	200 138 464 464 160 212 200 200	G AND MI	36 164 104 70
.01					ONONO	.01	KEYSE	. 0.01 . 0.01 . 0.01 . 0.01		0.	L00M58UR	.00.
5.0 3.0 2.0 3.0		2.0 2.0 2.0 4.0 9.0		2 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0		6.0		2.0 2.0 13.0 3.0 3.0	h	2.0 2.0 2.0 3.0 1.0 1.0	80	3.0 3.0 1.0
12 3.7 12 12 16		41 5.5 7.7 41 18		28 16 16 16 9.4 9.4 2.2 2.6 6.8 11 11 11 11 11 11 11 11 11 11 11 11 11		1.		100 170 36 53 30 42 46		34 30 33 33 31 52 36 37		1.0
001 001 001 001				000000000000000000000000000000000000000		<.001				\$\tag{60}\$		001 003 001
58 24 110 72		110 18 26 118 66 66		1110 90 90 90 58 58 62 66 74 74 74 74 74 96		54		210 340 120 160 160 122 120		120 1112 1180 1110 120 160 150		8 120 22 100
.03 .07 .05		.03 .03 .08 .05		0.001 0.001	Ĭ.	.07		.03 .02 .06 .01 .01		.00 .00 .00 .00 .00 .00 .00		.03 .08 .07
0001		000000		000 000 000 000 000 000 000 000 000 00		.001		.002 .003 .003 .01 .001		000000000000000000000000000000000000000		.001 .002 .002
6.4 6.3 6.4 7.1		6.9 6.1 7.4 7.6		67.70.00.00.00.00.00.00.00.00.00.00.00.00		8.9		6.9 7.0 7.5 7.5 7.7		7.7.7.8 7.8 7.8 7.7.8 7.6 7.7.6 7.7.6		5.6 7.2 6.1
4/15/81 4/16/81 5/13/81 5/19/81 9/28/81		10/6/81 5/13/81 9/28/81 9/28/81 9/15/81		5/26/81 5/14/80 5/14/80 5/18/81 6/18/80 6/12/80 4/16/81 4/16/81 6/14/81 5/14/81 5/14/81 9/14/81 9/14/81		9/14/81		5/14/81 5/18/81 5/6/80 5/8/80 9/14/81 9/28/81		9/9/81 9/9/81 9/9/81 9/9/81 9/29/81 9/28/81 10/6/81		5/26/81 5/8/80 4/29/81 10/6/81
436 436 447 473 8n- 195		Nu- 215 5n- 152 200 215 238		03-617 04-804 04-804 04-553 05-427 56-427 433 448 448 466 469 477 50-155 1170		Sn- 211		Nu- 239 240 Pe- 534 544 5n- 175 223		5n- 164 165 177 180 225 Un- 107 175		0a- 619 Pe- 549 5c- 441 Un- 173

TABLE 19, (CONTINUED)

(nZ) oniZ		.01		.02		.01		.03		.01		.02 .02 .03 .03 .03 .03 .03		.02		1.70
Sulfate (SO4)		45		3		21		25 6.0 15 20		10		35 20 20 20 20 20 20 11 11 35 35 35 35 35 35 35 35 35 35 35 35 35	1	68		09
(sN) muibo2		100		4.7		5.7		1.8 6.6 2.3 4.6		2.5		12 4.0 12 12 6.2 6.2 2.9 3.9 9.5 13 13	1	7.6		63
(A) muissadoq		< 10		1.0		.5		2.0		1.0		<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>		5.		1.0
N 26 , EOH		.02		.16		.02		2.80 .02 .90 .8.40		2.00		4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		.22		.01
N se , SOM		·.01		01		4.01 4.01		0.		<.01		0.0000000000000000000000000000000000000		<.01		1
N 26 .EHM		.05		10.		.22		.01		.01				80.		
Илскеј (Ил.)		.03		<.01	1	<.01 .02		.01 .02 .01		.02		000000000000000000000000000000000000000		<.01		<005
(6W) whisəubeW		7.4		7.0		15		7.8 5.2 9.1 4.0		23		12 116 115 116 116 117 11 9.6 12 12 12 12		9.9		38
Manganese (Mn)		.01		.01		<.001 <.01	UN01 V 1 0 E O	.06 .06 .01		<.01		30 30 33 34 32 32 33 33 46		.03		.01
Lead (Pb)		×.05 .002		<.05		<.005	LOYSBURG FORMATION, U	<.05 <.05 <.005 <.005		<.005	N PART)	.0001		.001		<.005
(94) nor1	dh dh	.01	TION	.12	FORMATION	.02	G FORM	.08	ATION	.01	WESTER MAT10N		NCE	.08	MATION	.34
Hardness (CaCD3)	ON GROUP	< 20 70	FORMATION	99	E FORM	160	0YS8UR	300 83 180 290	E FORM	180	TION (1120 1130 200 200 130 88 88 88 8250 120 110 78 130	SEQUENCE	330	JRG FOR	460
(A) abraoufA	CLINTON	60	UNIATA	· .	REEDSVILLE	. 2		1222	BELLEFONTE FORMATION	.2	VALLEY SECTION (WESTERN MARTINSBURG FORMATION		HAMBURG	·	CHAMBERSBURG FORMATION	9.
sbrios baviossid		304		94	RE	254	TION THE	314 106 182 400	BEI	248	GREAT VALI	168 326 188 304 204 204 148 148 117 212 212 212 212 212 212 220 238		522	CHA	658
(אכן שטושטן (אר)		.03		1			URN FORMATION THROUGH	10.00.		<.01	GR	0.		<.01		<.005
(f)) ebrach	-	1.0		8.0		9	COBU	4.0 -1.0 3.0		10		7.0 39 6.0 50.0 2.0 2.0 2.0 2.0 3.0 3.0		7.4		200
(6J) mursies		1.1		8.6		44		89 21 61 99	1	33		29 36 28 20 20 33 31 27 22 22 22 24		92		120
(b3) muimbe3		<.003		<.03		<001		<.003 <.003 <.001 <.003		<.001		, , , , , , , , , , , , , , , , , , ,		<001		<.015
Alkalınıty (CaCO ₃)		210		09		190 86		230 94 180 240		170		114 110 110 110 110 110 110 110 110 110		146		240
(fA) munimufA		.05		60.		.04		.06		.08		20000000000000000000000000000000000000		.10		.004
(sA) singshA		01		.01		·.01		<.01 <.001 <.005		<.0005		, , , , , , , , , , , , , , , , , , ,		.002		1
Нq		9.4		7.9		7.8		7.6		7.5		6.9 6.9 6.9 7.0 6.9 6.9 6.9		7.6		7.2
Date of collection		5/8/80		8/1/80		8/7/80		8/6/80 8/7/80 8/10/80 10/22/80		10/22/80		6/5/81 6/16/81 6/9/81 6/9/81 6/16/81 6/5/81 6/16/81 6/16/81 6/5/81 6/5/81 6/5/81 6/5/81		6/16/81		3/10/74
Well number		e- 548 n- 241		e- 252		e- 250 276		e- 247 253 284 352		e- 291		u- 737 786 786 788 818 820 820 830 r- 498 528 528 528 606		Cu- 821		Cu- 424

	.02		. 18		.05		.08		01 46 05		11.00.00.00.00.00.00.00.00.00.00.00.00.0
	20		20		25 20		35 25	i	0 / 4 / 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		29 11 11 11 12 54 64 64 64 64 64 64 64 64 64 64 64 64 64
	< 10		13		9.3 <10 <10		8.2		10 1.5 18 4.6 1.3 8.3		9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6
	< 10		3.0		42 13 - 10		13		د خ خ خ د د د د د د د د د د د د د د د د		2
	6.82 <		5.50		16.0		13.0		. 02 . 02 . 02 . 02 . 74		6.20 .06 .06 .02 .02 .02 .02 .02 .02 .02 .02
	<.01		<.01		01 01		4.01 4.01				
	.03		.05		.01		<.01 .08		.10 .05 .16 .07		0.04 0.04 0.05 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07
	.02		.01		.02		.01		.01		
	19		24		29 14 8.3		15		6.7 6.1 15 7.6 7.7	J)	4.6 11.5 11.5 12.6 13.6 14.6 15.6 16.1 1
	.01		.01		10.0		.01		.22 .03 .35 .23 .01		005 005 005 005 005 007 007 007 007 007
	.007		. 002		003 001 002		.002	N PART)	001		0002 0002 0002 0002 0002 0003 0003 0003
GROUP	.03	FORMATION	90.	ZULLINGER FORMATION	.08	ATION	.05	(EASTER! RMATION	.09 .06 .38 .63 .04	ENCE	005 113 114 116 117 118 118 119 119 119 110 110 110 110 110
PAUL GR	320	RUN FO	300	ER FOR	2.90	ELBROOK FORMATION	310	CT 10N URG FO	120 100 230 120 100	G SEQU	230 130 130 130 150 150 160 160 160 170 170 170 170 170 170 170 170 170 17
ST. P/	-2	ROCKOALE	.2	ULLING	12.2	EL8R00	· .2	LEY SE RTINS8	5.6.1.5.5	HAMBUR	34,444444444444444444444444444444444444
	400	ROC	366	7	432		452 308	GREAT VAL	224 144 350 200 200 142		298 1766 1766 1766 1776 1776 1776 1776 1786 178
	.01		<.01		10.0		.00	9	0.0000000000000000000000000000000000000		
	16		9.0		21 30		18		4.0 8.0 3.0 2.0 6.0		13.00.00.00.00.00.00.00.00.00.00.00.00.00
	100		80		100 94 73		98		48 30 66 45 37		68 22 23 24 26 26 27 28 28 28 28 28 29 20 20 21 21 21 21 21 22 23 24 25 26 27 27 27 27 28 28 28 28 28 28 28 28 28 28
	<.001		<.003		001 001 001		<001 <001		001 001 001 001		
	270		250		240		224 220		130 66 140 110 130 88		1150 1100 1100 1100 1100 1100 1100 1100
	.08		.18		1.10		.07		03		A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	<.001		<.001		<.001 <.001 <.001		.001	1		4	
	7.1		7.0		7.0		7.5		7.1 6.6 7.0 6.7 7.0		7.87.77.77.78.89.79.79.79.79.79.79.79.79.79.79.79.79.79
	6/5/81		6/9/81		6/30/81 6/9/81 6/4/81		9/10/81 6/16/81		6/2/81 6/2/81 6/2/81 6/2/81 6/2/81		6/15/81 6/15/81 6/15/81 6/15/81 6/15/81 6/15/81 6/15/81 6/15/81 6/15/81 7/19/81 7/15/81
	Cu- 476		Cu- 419		Cu- 418 523 Fr- 666	4	Cu- 545 826		0a- 579 580 581 583 590 Lb-1022		867 886 987 886 987 886 987 886 987 886 987 886 987 887 887 887 887 887 887 887 887 887

INUED)	
(CONT	
19.	
TABLE	

(uZ) outZ		200000000000000000000000000000000000000		1.1.48		.03		60.
Sulfate (SO ₄)		30 40 40 40 40 40 40 40 40 40 40 40 40 40		25 34 20		55		28
(6M) murbo2		18.2 18.2 18.3 18.3 19.3 19.3 10.3		15 14 17		3.5		7.7
Potassium (K)		1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1. 1.1		0.1.0		2.0		5.0
N 26 , EON		3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70 5.70 5.70 5.70 5.70 6.70		1.7 4.2 15		7.60		8.4
N 26 , SON				.00.		01 01		01 01
N 26 .EHN		010101010100000000000000000000000000000		.06 .05 .06		.06		.01
Илскеј (Ил)		, , , , , , , , , , , , , , , , , , ,		.03		.02		.03
(pM) mussangeM		10 17.7 17.7 17.7 17.7 17.5 17		28 29 12		6.1		21 25
(www. asaneganeM		100 110 110 110 110 110 110 110 110 110		.01 .02 .01		.01		10:
Lead (Pb)	PART)	0002 0002 0002 0002 0003 0003 0003 0004 0004		.005		<.005 .001	z	.003
[94] Iron [Fe]	SY SECTION (EASTERN PART) SEQUENCE (CONTINUEO)	0.09 1.16 0.09 1.10 1.10 1.10 1.10 1.10 1.10 1.10	110N	.05	FORMATION	.09	FORMAT10N	.04
Hardness (CaCO ₃)	TION (180 1150 1150 1150 1150 1150 1150 1150 1	FORMATION	310 380 240	CREEK FO	240	SPRINGS	250
(A) abinoufA	EY SEC SEQUE		EPLER	2	SNITZ CRE	.2.		.55
sprins baylossid	GREAT VALLEY HAMBURG SE	310 264 264 264 264 2184 2110 222 222 242 242 242 242 242 242 242 24		406 518 534	SNI	232	SUFFALO	330
(אכן שענשטאן) (אכן)	GRE			.03		.01		.01
(f)) ebraoffd)		50 60 60 60 60 60 60 60 60 60 6		32 34 35		14		18 50
(62) mursfed		54 339 349 45 45 45 46 47 46 46 46 46 46 46 46 46 46 46 46 46 46		51 95 78		63		67
(b) murmbe)				001		<001 <001		<.001 ★.001
Alkalınıty (CaCO3)		96 100 100 100 100 100 100 100 100 100 10		210 241 190		180		180
([A) myarmu[A		0.0000000000000000000000000000000000000		.07		.04		.04
(zA) ornesia				.004		<.005 .001		<001 004
Нд		2. C.		6.9		7.6		7.5
Date of collection		77.29/81 77.29/81 77.30/81 77.30/81 77.30/81 77.30/81 81.12/81 81.12/81 81.12/81 81.12/81 81.12/81 81.12/81 81.13/81 81.		6/11/81 2/6/81 6/11/81		1/5/81		7/14/81 9/1/81
Well number		Lb- 970 971 971 973 978 978 979 979 979 979 979 970 100 100 101 101 101 101 101 101 101 1		0a- 588 Lb- 488 858		Lb- 872 953		Lb- 173 564

	005 005 003 003 003 003 003 003 003 003		.05 .03 .47 .16 .03		.03 .04 .02 .02		.04 .04 .02 .02 .03 .03		.12		.12 .04 .02 .11
	23 33 33 33 34 46 46 46 46 46 46 46 46 46 46 46 46 46		n a w w w w		2 2 0 0 2		2		17		28 80 42 16 8
			7.7 5 4.9 <5 7.6 5 4.5 5 6.4 13		8.2 < 5 9.8 10 12 10 14 < 5 13 15		2.3 35 5.7 35 4.8 10 4.6 35 4.6 < 5 2.6 < 20 7.1 45		7.1 1		5.9 2 6.0 8 64 4 5.6 1
	7.6 12 13 13 13 13 13 14.9 16 18 18 18 18 18 18 18 18 18 18 18 18 18								0 7		
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		1.0		 7 1.0 8 7.		2.0 2.0 2.0 8 8.8 8.3		i		2.0 1.0 1.0 1.0
	29 4 . 60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1.80 2.60 1.20 6.60 6.80		3.70 2.40 6.40 2.40 9.00		2.00 .44 9.20 4.8 2.80 11.0 4.20		16.0		9.70 2.90 17.0 14.0 3.00
			2000000		0.00000		0.0000000000000000000000000000000000000		<.01		.01 .01 .01 .12
	11111000000		.08 .07 .01		10.00.00.		.06 .06 .07 .07 .06		.01		90. 90. 90. 90.
			.05 .03 .01 .01		.01		.02 .02 .02 .03 .01 .01		.02		.02
	11 30 2.7.9 2.5 2.5 8.1 1.7 1.7 1.7 1.7 8.3		10 2.9 6.5 1.9 2.9 3.8		8.8 8.1 3.3 7.8		4.8 3.5 3.5 4.8 6.5 6.5 6.5 6.5		16		20 19 28 21 38
	0.0100000000000000000000000000000000000		.02 .02 .02 .01		.01.02		.02 .03 .01 .01 .01		·.01		.03
	.003 .0093 .0093 .0003 .0003 .0003 .0003 .0003 .0005 .0005		.005 .004 .008 .004 .001		.001		. 001 . 003 . 008 . 008 . 008		.002		.003 .004 .002 .003
TRIASSIC LOWLAND SECTION GETTYSBURG FORMATION	1.6 0.04 0.04 0.04 0.06 0.07 0.05 0.05 0.05 0.05	RMAT I ON	.06	4AT 10N	.03	SECTION FION	.13 .75 .03 .08 .02 .05	FORMATION	.05	NOI	.09 .03 .06 .11
OWL AND JRG FORM	130 250 250 260 150 350 1120 1140 1140 1160 80 42 42 42 370 520 520 520 520 520	CREEK FORMATION	160 29 46 74 130 64	OXFORO FOR	86 130 40 89 110	/ALLEY	140 110 91 130 110 85 84		280	FORMA	310 320 460 270 340
ASSIC (ETTYS8)	1111777171777777	HAMMER CI	-: -: -: -: -: -: -: -: -: -: -: -: -: -	EW OXF	77777	STOGA OCALIC	~~~~~~~	TELAUNEE	·	EPLE	1.1.1.6
TRI	258 258 258 258 258 258 258 180 100 526 42 66 472 524	HA	266 86 156 136 138 130	z	172 206 206 150 150 270	CONEST	208 192 200 200 200 208 182 152 296	NO	416		384 396 864 440 424
			.03 .01 .01		0.000.000		0.0000000000000000000000000000000000000		10.		0.00000
	100 100 100 100 100 100 100 100 100 100		37 4.0 6.0 8.0 6.0		4.0 8.0 7.0 3.0		9.0 13 7.0 10 21 14 6.0		23		19 20 110 14
	34 60 60 60 88 32 36 36 36 45 56 6.4 6.4 2.1 2.1 2.1		61 4.7 5.5 20 41 18		20 42 7.6 26 29		48 31 30 36 48 20 23 54		86		87 100 140 89 88
	, , , , , , , , , , , , , , , , , , ,		001 002 001 001		001 001 001				<.001		001 001 001
	130 240 110 110 110 110 230 150 46		100 22 40 36 82 52		86 130 12 100 52		100 66 82 62 48 38 38		200		230 240 260 200 250
	100 100 100 100 100 100 100 100 100 100		.20 .07 .07 .05		.08 .06 .07 .01		.06		.07		.05 .20 .10 .20
	.002 .003 .003 .003 .003 .003 .003 .003		.002		.002				.003		.001
	7.7.7.7.7.56 7.7.56 7.7.56 7.7.56 7.7.56		7.1 6.0 6.4 6.3 7.0		6.9 7.9 7.8 6.4		7.6 6.9 6.9 6.2 6.3 7.3		7.5		7.4 7.5 7.1 7.5 7.6
	6/30/81 6/30/81 6/30/81 7/6/81 7/6/81 7/6/81 9/10/81 9/10/81 8/31/81 7/14/81 7/14/81 7/16/81 8/31/81 7/16/81		6/25/81 6/29/81 6/29/81 7/14/81 7/14/81 10/7/81		7/6/81 7/6/81 7/9/81 6/25/81		7/21/81 7/21/81 8/31/81 7/13/81 6/25/81 7/21/81 11/20/80		7/13/81		7/21/81 7/21/81 6/29/81 6/29/81 6/25/81
	Ad- 481 574 575 575 577 577 579 584 584 584 1499 1099 1089		8e-1284 Ln-1441 1466 1480 1481 Lb-1096		Ad- 110 578 Ln-1508 Yo-1065 1067		Ln-1438 1440 1450 1489 1490 1497 1506		Ln-1446		Ln-1036 1436 1462 1495 1495

ABLE 19, (CONTINUE

						,												
(nZ) oniZ		.05		.05		.04		60.		.03		.10				.03		.03
Sulfate (504)		45		85 5.9 65 65 27	Ь	35		37		40		50		49 65 160		25 25 25 25 25		80 50 50
(6M) muibo2		9.1		10 26 4.8 4.9 9.1		5.3		5.3		5.3		5.8		100 240 34		6.2 14 3.7 5.3 11 4.5		2.1
(X) muissetoq		1.0		5.0 2.0 4.0 10 2.0 1.0		1.1		3.0		2.0		4.0		9.0		6.0 1.0 1.0 3.0		2.0 1.0 1.0
N 25 . EOM		12.0		31.0 5.90 .02 13.0 7.30		11.0		2.9		33.0		9.70		31 9.5 8.4		15.0 16.0 9.50 9.20 12.0 16.0		3.50
N 26 , SON		<.01				<.01	1	<.01		<.01 <.01		<.01		6.01 0.01				10.5.01
N 26 .EHN		.01		03 05 06 09		.05		.08		.00		.01		90.		0.0100000000000000000000000000000000000		90.00.00.
Міске] (Мі)		1		,		.04		.05		.02		.02		.02		100000000000000000000000000000000000000		29999
(pM) muizeneeM		26		25 14 21 21 21 5.1		16		24		31		13		69 72 61		22 35 38 29 37 50		12 34 29
(иш) әรәиебиещ		.02		000000000000000000000000000000000000000		.02		.01	UNDIVIDED	.01		.01		.05		000000000000000000000000000000000000000		0.000
(Pb)		.004		.087 .001 .002 .005 .046		.001		.002		900.	Z	.001		.002 <.001 .001		.003		.005
Iron (Fe)	FORMATION	.04	ATION	.14 .39 .07 .16	T10N	.17	MATION	.08	FORMATIONS,	<.01 .07	FORMATION	90.	MATION	1.2	NOI	002	T10N	0.00.05
Hardness (CaCD ₃)		370	CONESTOGA FORMATION	450 380 250 280 34 380	MILLBACH FORMATION	340	CREEK FORMATION	300	SPRINGS	400 390		330	CORNER FORMATION	400 570 550	FORMATION	200 280 380 330 380 380	KINZERS FORMATION	130 270 290 140
(3) abraoufa	STONEHENGE	v.	ONESTO(22.1.4.1.	ILL BACH	.2	711	9.	BUFFALO S	1.1.	BUFFALO SPRINGS	.2	KS CORM		LEOGER	7.5.1.1.4.	KINZERS	
spilos baviossiū	STC	450	S	666 502 366 468 190 486		406	SN	304	ANO	806	8UFF.	334	Z00KS	878 1500 706	_	346 424 380 440 456 554 450		200 452 490 210
(a) murmoad)		<.01		000000000000000000000000000000000000000		.01		.01	SNITZ CREEK	.02		.01		.01				0.0.00.
(F) ShinofAD		16		30 50 14 17 19 24	i	15		12	SNI	20		7.0		99 440 37		50 23 20 23 20 40		22 39
(ຍິວ) ຫນາວເຄິວ		98		140 110 58 76 76 5.1		97		65		110		8		120 130 96		41 65 62 86 83 80 71		34 66 100 41
(ԵՆ) տայրանեն		<.001				<.001		<.001		<.001 <.001	 	<.001		<.001 <.001 <.001				001 001
Alkalinity (CaCO ₃)		220		240 230 160 230 230 200		240		210		250		225		340 340 300		220 220 240 230 250 250 250		100 240 240 150
(IA) munimulA		.04		20 08 03 03		.20		.20		.20		.08		.30		.09 .08 .08 .05 .05		.09
Arsenic (As)		.003		.002 .001 .001 .005 .005		.001		.001		.002		<.001		.002		000.000		001 .002 .002
Hq		7.7		7.2		7.4		7.4		7.3		7.4		7.3		7.5		7.3
nortoelloo to etal		8/31/81		8/18/81 9/14/81 9/14/81 12/11/80 9/3/81 7/23/81		6/25/81		6/25/81		7/27/81		7/7/81		9/14/81 7/7/81 7/20/81		7/20/81 7/7/81 7/20/81 7/20/81 7/7/81 8/31/81		7/9/81 7/7/81 7/7/81 7/3/81
Mell number		Ln-1469		Ln-1425 1491 1492 1501 1503 Yo-1095		Ln-1449		Ln-1493		Ln-1485 1507		Ln- 920		Ln- 797 1459 1461		Ln-1431 1444 1453 1457 1468 1488 1505		Ln- 538 1435 1460 Yo- 347

ı		1		1	1	1		1	l				
	.08		.01		.16		.06		.03				83 .08 .05 .05 .01 .03 .03 .04 .04
	41 41 5		50 • 4 11 11 13		30 36 25 25 50 50		v v 8		35 3 5 56		26 26 11 11 11 10 35 4 4 4 4 4 5 5 6 5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		24 01 01 01 01 01 01 01 01 01 01 01 01 01
	32 2.9 7.2		21 3.8 9.1 9.1		15 25 9.9 14 8.9 8.8		1.8		3.8 11 1.6 9.3		15.2 3.9 3.9 3.9 3.5 11 11 5.7		28 1.9 10 20 8.0 11 11 3.5 2.5 3.0 4.2
	2.0		4.1.2 0.2 8.		1.0 2.0 2.0 7.0 3.0		1.0		2.0 2.0 3.0 3.0		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		2.0 .3 .6 .7 .7 .9 .9 .1.0 1.0 2.0
Ì	16.0 5.00 6.40		66 6.60 16 4.00		6.20 7.50 1.70 1.70 2.40 7.60		.84		3.30 26 .02 5.9		14.0 13.0 12.0 3.50 1.20 5.10 6.20 7.0		5.50 2.40 6.40 3.50 12.0 3.40 13.0 4.40 9.20 8.60 2.90
Ì	01 01						4.01 4.01		2.00. 100. 100. 100. 100.		000000000000000000000000000000000000000		
	0.00		10: 10: 10: 10:		001000000000000000000000000000000000000		.00		0. 0. 0. 0. 0.		005 005 011 110 110 005 005		.05 .05 .07 .07 .19 .10 .06 .06 .05 .05
	.02		01 02 01 01		.02 .02 .02 .01		0.00.		.01				,01 ,01 ,01 ,01 ,01 ,01 ,01 ,01
	38 9.1 22		10 5.2 6.8 1.7		8.1 6.9 6.8 5.4 15		1.1		.1 11 6.4 12		8.0 9.0 9.0 9.0 9.0 8.2 8.2 8.2 8.2 9.0		24 1.7 1.9 1.9 1.9 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	.02 <.01		.32		.07		.01		.01		900000000000000000000000000000000000000		.00 .004 .004 .005 .005 .003 .003
	004 <005 <005		.002		.003 .004 .003		.013	3L1	.005		.01 .004 .002 .002 .002 .003 .004		. 005 . 006 . 006 . 006 . 007 . 007 . 001 . 001
NOTE	.03	TION	46 112 009 06 26	NO LT	.02 .09 .27 .27 .03	AT 1 0N	.01	SECTION NO GRANI	.04	SCHIST	.09 .05 .09 .09 3.09	MATION	.17 .05 .05 .11 .08 .007 .007 .100 .100 .05
L UKM	430 200 270	FORM	280 44 1110 41 97	FORMATION	140 90 83 66 66 45	FORM!	< 20 12 50	LANOS 11SS AI	130 120 62 100	CREEK	69 1110 23 20 20 42 68 68 150 13	ON FOR	160 - 20 - 20 - 20 - 20 - 20 - 47 - 47 - 40 - 40 - 40
SHINIT	-: -: -:	TIETAN	1.2	HARPERS	777777	HCKIE	7.5.5	MONT UR		TERS	7777747777	SAHIC	
	570 348 262	A	342 82 182 86 126		268 228 168 174 308	5	50 34 100	PIEOMONT GRANITIC G	236 394 118 236	P	196 264 288 288 86 66 138 200 470 186	MIS	386 40 44 114 88 874 474 40 170 46 114 136 98
	.01 .01 .01		0.0.0.0.0				<.01 <.01 <.01				0.0000000000000000000000000000000000000		
	25 31 18		42 9.0 3.0 8.0 5.0		28 32 5.0 14 16		3.0		18 28 4 30		8.0 29 25 7.0 6.0 5.0 8.0 33 4.0		88 5.0 10 20 8.0 23 7.0 11 3.0 12 12 4
	87 66 47		76 6.5 34 8.9 20		42 20 22 17 17 51		3.2		47 29 15 18		22 23 24 4 4.6 4.6 32 32 32 4.2		25. 2.3 2.3 1.4 1.6 10.6 10.5 5.1 5.1 5.1 5.1
	001 001 001	!					<.001 <.001 <.001		.001.001.001.001				
	330 160 170		150 8 110 15 84		72 28 72 36 110		N 80 N		68 115 56 8		35 20 38 38 88 119 24 15	!	66 12 12 14 14 10 10 10 10
ľ	.05				.03 .03 .08 .09		.03	1	.05		.002		.02 .06 .10 .10 .09 .09 .09 .00 .00
l	001 005		0000000				.001		001 .002 .002		000.000.000.000.0000.0000.0000.0000.0000		
	7.3	1	7.3 7.5 5.9 7.6		6.9 6.9 7.0 5.7		5.8		7.3 5.9 6.7 5.7		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		00.00.00.00.00.00.00 00.00.00.00.00.00 00.00.
	7/20/81 12/11/80 7/7/81		7/23/81 6/25/81 7/30/81 6/25/81 6/25/81		8/27/81 7/23/81 6/25/81 8/27/81 8/27/81		8/27/81 7/30/81 6/25/81		7/20/81 9/14/81 9/3/81 9/14/81		7/20/81 7/20/81 7/20/81 9/14/81 9/3/81 8/4/81 7/20/81 9/1/81		7/20/81 7/20/81 12/11/80 9/3/81 8/3/81 8/3/81 12/11/80 9/1/81 9/1/81 8/25/81 8/25/81 8/27/81
	Ln-1445 1473 1500		Ad- 568 Yo- 714 1086 1113		Yo- 324 327 788 1068 1084 1090		Yo-1079 1096 1104		Ch-2420 Ln-1411 1414 1479		Ch-1726 2421 2421 1415 1416 1418 1419 1471 1478 Yo- 514		Ch-2408 Ln-1413 1413 1420 1420 1423 1423 1432 1432 1437 70-446 628 628

TABLE 19, (CONTINUED)

(uz) outz		0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09	.05
Sulfate (SO _d)		22 25 55 7 15 10 10 10 10 10 10 10 10 10 10 10 10 10	35
(6M) muibo2		7.6 19.5 19.5 19.5 10.0 1.7 1.7 1.7 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.8
(X) murezedoq		2011 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5
N ss , EON		10.0 10.0 11.0 11.0 14.60 14.60 15.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	.10
N 26 , SON		000000000000000000000000000000000000000	01
N 26 , EHN		0.05 0.01 0.01 0.01 0.01 0.01 0.02 0.03	.01
Илскеј (Ил.)		0.0000000000000000000000000000000000000	
(6M) mursangaM		2.2.1 2.2.2 2.2.2 2.2.2 2.2.3 2.2.3 2.3.3	6.9
(чу) әรәиебиеу		005 005 005 005 007 007 007 008	17
Lead (Pb)	INUEO) NUEO)		.002
(e) Iron (Fe)	PIEOMONT UPLANOS SECTION (CONTINUEO) WISSAHICKON FORMATION (CONTINUEO)	. 03 . 08 . 07 . 07 . 06 . 06 . 06 . 06 . 06 . 06 . 06 . 06	90.
Harrdness (CaCO ₃)	SECT I	<pre><1 40 </pre> <pre><1 40 </pre> <pre><1 40 </pre> <pre><1 47 </pre> <pre><1 28 </pre> <pre><1 20 </pre> <pre><1 39 </pre> <pre><1 64 </pre> <pre><1 20 </pre> <pre><1 64 </pre> <pre><1 86 </pre> <pre><2 30 </pre> <pre><2 40 </pre> <pre><2 50 </pre> <pre><2 60 </pre> <pre><2 70 </pre> <pre><2 80 </pre> <pre><2 90 </pre> <pre><2 10 <</pre>	140
(F) (F)	PLANOS KON FO	118 <.1 40 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 25 120 <.1 44 120 <.1 50 120 <.1 60 120 <.1 60 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 78 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34 120 <.1 34	
spilos pāvlossig	OMONT U	1118 142 120 224 70 78 126 192 1120 176 152 164 44 64 44	262
(сусушлиш (ск)	PIE	0.0000000000000000000000000000000000000	<.01
(I)) Sprande		10 14 14 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	9.8
(62) murs[63		9.6 6.9 6.6 6.9 4.4 4.4 1.2 1.2 1.2 6.1 1.2 6.1 6.1 1.2 6.1 6.3 6.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	46
(b3) murmbs3		, , , , , , , , , , , , , , , , , , ,	<.001
Alkalınıty (CaCO3)		24 13 13 13 13 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	96
(IA) munrmulA		00000000000000000000000000000000000000	.03
Arsenic (As)		00000000000000000000000000000000000000	.001
Hq		00000000000000000000000000000000000000	7.6
Uate of collection		8/27/81 8/37/81 8/37/81 8/37/81 8/37/81 7/37/81 8/37/81 7/37/81 8/25/81 7/23/81 7/23/81 8/25/81 7/23/81 8/25/81 8/25/81 8/25/81 8/25/81 8/25/81 8/25/81 8/25/81	8/31/81
Well number		Vo-1051 1052 1053 1054 1057 1007 1108 1111 1111 1111 1116 1055 1055 1078	Ln-1487

TABLE 20. RECORD OF WELLS

Which the well is located.
Which the well is located.
It is prefixed by a two-letter abbreviation of the county.
The lat-long is the coordinates, in degrees and minutes, of the southeast corner of a 1-minute quadrangle within which the well is located.

Jse: C, commercial; D, dewater; H, domestic; I, irrigation; M, medicinal; N, industrial; P, public supply; R, recreation;
S, stock; T, institution; U, unused, W, recharge; Z, other.

'opographic setting: F, flat; H, hilltop; S, hillside; T, terrace; V, valley flat; W, draw.

Iquifer: Qal, alluvium; Trh, Hammer Creek Formation; Trn, New Dxford Formation; Trs, Stockton Formation; Pl, Llewellyn Formation; Pp, Pottsville Group; Mmc, Mauch Chunk Formation; Mp, Pocono Formation; Dck, Catskill Formation; Dcb, Buddys Run Member; Dcd, Duncannon Member; Dcsc, Sherman Creek Member; Dciv, Irish Valley Member; Dccf, Clarks Ferry Member; Dtr, Trimmers Rock Formation; Dh, Hamilton Group; Dmh, Mahantango Formation; Dm, Marcellus Formation; Doo, Onondaga and Dld Port Formations, undivided; DSkt, Keyser and Tonoloway Formations, undivided; Swc, Wills Creek Formation; Sb, Bloomsburg Formation; Sbm, Bloomsburg and Mifflintown Formations, undivided; Sc, Clinton Group; St, Tuscarora Formation; Dj, Juniata Formation; Dbe, Bald Eagle Formation; Dr, Reedsville Formation; Om, Martinsburg Formation; Dcn, Coburn Formation through Nealmont Formation, undivided; Dbl, Benner Formation through Loysburg Formation, undivided; Dh, Hamburg sequence; Dbf, Bellefonte Formation; Oa, Axemann Formation; De, Epler Formation, Ds, Stonehenge Formation; Dcc, Conestoga Formation; Cr, Richland Formation; Cm, Millbach Formation; Cbs, Buffalo Springs Formation; Czc, Zooks Corner Formation; Cl, Ledger Formation; Cv, Vintage Formation.

.ithology: cong, conglomerate; dol, dolomite; ls, limestone; sh, shale; ss, sandstone.

itatic water level: Depth--F, flows but head is not known. Date--month/last two digits of year.

Reported yield: gal/min, gallons per minute.

ipecific capacity: (gal/min)/ft, gallons per minute per foot of drawdown.

lardness: gpg, grains per gallon.

ipecific conductance: °C, degrees Celsius.

						,	,		
b	√ell l	ocation			Oate		Alti- tude of land	Topo-	Aquifor
Numb	oer	Lat-Long	Owner	Driller	completed	Use	surface (feet)	graphic setting	Aquifer/ lithology
									BERK5
Be-	557	4009-7554		Petersheim Bros.	9/52	М	750	S	Trs/
	560	4009-7554	Auth. do.	do.	9/54	N	780	5	Trs/
	561	4009-7554	do.	do.	9/52	M	775	5	Trs/
*	562	4009-7554	do.	do.	9/63	N	752	S	Trs/
	20	1051 7741	6	//	1.016	p	1500		CENTRE
Ce-	30 31	4051-7741 4051-7741	do.	Harrisburg's Kohl Bros. do.	1 916 1 930	Р	1500 1415	S S	Obe/ss Ocn/ls
	54 123	4051-7734	Sheffield Farms Centre Hall Bor.	C. I. Yarrison	1959	N P	1100 1420	V S	Ocn/ls Or/sh
	124	4052-7739 4052-7739	do.	Lester E. Gladfelter, Jr.	1959	P	1410	5	Or/sh
	125	4051-7741	do.	R. S. Carlin Inc.	1961	Ü	1510	5	Obe/ss
	126	4051-7741	do.	do.	1961	U	1820	5	Oj/ss
	127	4051-7741	do.	do.	1961	P P	1860	S	Oj/sh
	128 130	4051-7741 4050-7741	do . do .	Kohl Bros., Inc. Oscar Oearmit	1962 1965	P	1740 1435	S S	Oj/ss Or/sh
	131	4050-7741	do.	do.	1965	Ü	1435	Š	Or/sh
	138	4054-7726	Aaronsburg Water Pipe Co.			Р	1470	5	Obe/ss
	139	4054-7726	do.			Р	1320	5	Or/sh
	140	4054-7726	do.	The second section with the second	1000	U	1320	S	Or/sh
	181 182	4052-7739 4051-7739	Centre Hall Bor. do.	do.	1968 1969	U U	1340 1300	5 V	Ocn/ls Ocn/ls
	183	4052-773B	do.	do.	1969	Ü	1265	ý	Ocn/ls
	184	4052-7739	do.	do.	1969	Ü	1350	5	Ocn/1s
	185	4051-7741	do.	R. S. Carlin Inc.	1964	Р	1725	S	0j/sh
	187	4049-7728		Russell R. Brooks	196B	W	1290	٧	Or/sh
	196	4049-7728	do.	Lester E. Gladfelter, Jr.	1953	H	1270 1300	V V	Or/sh Or/sh
	197 198	4049-7728 4049-7728	do. do.	do.	1953	Н	1300	v	Or/sh
	199	4049-7728	do.	do.	1953	H	1290	٧	Or/sh
	206	4051-7727	Penn Twp. Water Oist.		1965	Р	1180	V	Obe/ss
	208	4055-7726	Rebersburg Water Co.	Russell R. Brooks	1965 1969	P U	1 480 1 300	5 V	Ocn/ls Obl/ls
	220 232	4052-7738 4050-7364	Centre Hall Bor. Norse Paddle Co.	Harrisburg's Kohl Bros. Gilbert R. Zechman	1977	N	1200	v	0b1/1s
	242	4050-7334	A. Benton	Oscar Dearmit	1979	H	1090	v	Or/sh
	243	4051-7732	M. Battaglia	Gilbert R. Zechman	1979	H	1245	5	Ocn/ls
	244	4051-7731	R. Wender	Harry J. Long	1978	Н	1205	5 S	0cn/1s
	245	4051-7733	M. Tice	Gilbert R. Zechman	1978 1978	H	1125 1125	5	Ocn/ls Ocn/ls
	246 247	4051-7733 4051-7735	H. Glasgow R. Gorman	do. do.	1979	H	1120	5	0b1/1s
	248	4050-7737	Terry Rossman	do.		H	1200	5	0b1/1s
	249	4048-7736	5. Wilson	Oscar Dearmit	1979	H	1235	5	Ocn/sh
	250	4048-7737	Lundy	do.	1976	Н	1180	٧	Or/sh
	251	4045-7737	Elsie Byler	do.	1977	H	1815	5 S	Oj/sh
	252 253	4045-7736 4050-7736	Bruce Dugan Norse Paddle Co.	do. Gilbert R. Zechman	1979 1977	H N	16 90 1180	F	Oj/ss Ocn/ls
	254	4049-7734	H. Aukerman	Harry J. Long	1978	Н	1190	V	Ocn/sh
	276	4047-7741	Erskine Cash	Oscar Oearmit	1977	H	1355	Н	Or/sh
	277	4046-7740	J. Runkle	do.	1979	H	1250	S V	Or/sh
	278 279	4048-7739 4048-7739	Albert Outrow S. Wilson	Gilbert R. Zechman Oscar Dearmit	1974 1979	H	1160 1185	V	Or/sh Or/sh
	280	4048-7739	E. Johnson	do.	1978	H	1250	H	0r/
	281	4047-7738	J. Cole	Harry J. Long	1979	H	1265	Н	Or/
	282	4046-7740	Nathan Long	Oscar Dearmit	1978	Н	1310	H	Or/sh
	283	4047-7740	J. Cole	do.	1977	H	1300	V 5	Or/sh Ocn/sh
	284	4047-7738	5. Wilson G. Ralston	do.	1979 1979	H	1280 1 16 5	Å.	Or/sh
	285 286	4047-7740 4048-7738	W. Tucker	do. do.	1978	Н	1210	5	Ocn/sh
	287	4049-7738	do.	do.	197B	Н	1160	V	Ocn/sh
	288	4049-7738	C. Fultz	Gilbert R. Zechman	1979	H	1200	V	0b1/1s
	289	4050-7736	H. Breon	Oscar Dearmit	1979 1977	H	1185 1320	V H	Ocn/ls Ocn/ls
	290 291	4051-7738	Ted Grove Vern Coontz	Gilbert R. Zechman do.	1974	Н	1378	V	Obf/ls
	291	4050-7742 4049-7740	Kevin Burd	do.	1979	H	1 30 5	V	Ocn/
	294	4048-7741	Vinton Lingle	do.	1974	H	1322	V	0a/
	350	4058-7717	Ralph Harbeck	do.	1977	Н	1525	5	0r/
	365	4052-7734	Hoover Nall	Oscar Oearmit	1977	Н	1350 1215	5 V	Or/sh Ocn/sh
	366	4052-7733	C. Ilgen	Gilbert R. Zechman do.	1978 1978	H	1215	S	0b1/
	367 368	4053-7730 4053-7729	R. Boop John Glasgow	do.	1977	H	1190	Š	Ob1/
	369	4054-7725	M. W. Vonada	Russell R. Brooks	1975	H	1150	5	Ocn/
	370	4051-7728	Barry Kauffman	Gilbert R. Zechman	1977	Н	1210	5	Ocn/
	371	4054-7728	D. Grenoble	Oscar Dearmit	1979	H	1265 1250	H	0j/ss 0cn/
	372 373	4055-7728	Fred Sheets W. Smith	Russell R. Brooks Gilbert R. Zechman	1975 1978	H	1165	V	0b1/
	37.4 37.4	4053-7730 4055-7730	N. Grove	do.	1978	H	1305	V	0b1/1s
	375	4054-7723	N. J. Yoder	do.	1977	Н	1145	٧	Ocn/1s
			•						

					c water						
Total depth			Oepth(s)	0epth					Specific conduc-		
below land	Casi		water- bearing	below land	Oate	Reported	Specific	Hard-	tance (micro-		
surface (feet)		iameter inches)	zone(s) (feet)	surface (feet)	measured (mo/yr)	yield (gal/min)	capacity ([gal/min]/ft)	ness (9p9)	mhos at 25°C)	рН	Well number
COUNTY						_		1			
422	15	6		174	2/52	30	. 31	1		6.2	8e- 557
500 515	88 99	8	135;150;185;	55 92	7/5 4 10/59	40 50	.03	1		6.1	560 561
390	122	6	210 340;355;372	105	8/63	78	1.3	3		7.5	562
COUNTY	****		34013331372								
250		6		12		30	. 25				Ce- 30
300 107	30	6 8		12 20		50 400					31 54
154 150	17 31	8	33;67;81;107 37;83;113	4 6	10/59 10/59	30 30	. 22 . 22				123 124
235	63	6				0 16		2		7.7	125 126
175 600	21 34	6 8	412	26	4/62	22 50	.22	2		6.7 6.5	127 128
231 278	20 37	6 6	30;48;80;171 48;60	20		180 110		11		7.7	130 131
160 310	50 90	6 8		40		15 18					138 139
300	110	6 6	220;235	160	11/68	10 2	.02				140 181
300 338	50 74	6 6	140;210 160;235	90 160	1969	2 30	. 01 . 17				182 183
350 172	80 30	6 6	220;260;320	150 27	9/69	7 25	.04				184 185
98 72	48 53	6	50;81;91 54	4 16	6/68 5/53	25 10	. 98 . 91				187 196
80 63	66 51	8	71;74 51;63	1 F	5/59 4/53	50	3.4				197 198
54 128	46 15	6	47	7 15	5/53 1/65	10 80	.59				199 206
350 300	72	6		23	8/65	60	.62				208
201	69 130	6	80;130 148;196	190 70	5/69 5/77	2 30	. 02				220 232
190 276	21 119	6	185 202;245;269	157	1/79 8/80	4 20		19	480		242 243
119 151	15 40		75 44;48;120;144	35 40	7/78 11/78	10					244 245
301 201	60 40	6	160;235 74;190	58	11/78 8/80	3 35		12	390	7.48	246 247
351 75	130 40	6	299; 3 47 70	132	6/77 1/79	6 12					248 249
65 1 1 5	20 22	6 6	110	11	8/80 8/77	60 6		10	350		250 251
210 201	51 130	6 6	200 148;196	42 99	8/80 8/80	3 30		4	155	8.01	252 253
45 165	24 20	6 6	14;27 160		10/78 9/77	18 30		7	320	7.6	254 276
125 251	20 4 2	6 6	115 100;230	- 25	7/79 8/74	5 4		11	820		277 278
125 85	20 20	6 6	115 80	3 6 56	10/80 10/80	5 30		20	820		279 280
107 350	20 40	6	27;103 345	40	3/79 6/78	24 15					281 282
145 207	40 42	6	140 197	48 51	10/80 10/80	30 15		7 12	295 395	7.2	283 284
45 100	30 40	6	40 95	43	1/79	70 20		17	680		285 286
65 197	20 153	6	60 162;178;195	5 27	10/80	20 30					287
165 351	114	6	160	110	4/79 10/80	40		18	630		288 289
326	42 60	6	322;335 97;280; 3 20	199 160	10/80 10/80	7 5		13	430	7.4	290 291
37.5 22.4	61 61	6	440;462;365 115;184;213	115 100	7/75 1974	10 10		14	510		293 2 94
151 85	102 20	6	146 82	49 15	11/80 10/80	50 40		4 7	150 280		350 365
101 201	38 70	6 6	74;87 180;192	80	7/78 7/78	15 7		7	285		366 367
256 152	178 28	6 6	200;240 75;141;150	120 46	6/77 4/75	4 12	.11				36 8 3 69
201 210	4 2 50	6 6	120;170 205	150	10/77 3/79	5 20					370 371
101 201	48 91	6 6	62;84 198	39 60	11/80 10/78	20 15	.29	16	565	7.7	372 373
150 76	121 20	6 6	122;140 38;53;60	105 12	11/80 11/80	7 15		1 4 16	515 685		374 375

Well 1	ocation Lat-Long	Owner	Oriller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/ lithology
								DAUPHIN
Da- 20	4032-7654	Millersburg Home	Rulon and Cook, Inc.		Р	44D	V	Mmc/sh
21 22 31 45 379 400 431 454 577 585 592	4032-7654 4032-7755 4037-7647 4020-7654 4024-7639 4032-7655 4029-7647 4031-7657 4036-7642 4035-7637 4034-7634	Water Co. do. Millersburg Water Auth. Uniontown Water Co. J. C. Hoover Estate S. J. Asper Millersburg Water Auth. Girl Scouts of Am. Berry Springs Water Co. Gratz Bor. Auth. Williamstown Bor. Auth. Tower AuthPorter	do. do. Shiffer Bros. Harrisburo's Kohl Bros. do. Kermit S. Snyder Harrisburg's Kohl Bros Kohl Bros., Inc. Eichelberger Well Drilling, Inc.	1906 1930 1954 1961 1962 1965 1977	P P H H P T P P P	440 420 620 350 490 410 798 520 740 920 703	V V V H V S S S S	Mrnc/sh Mrnc/sh Sc/ Om/ Mrnc/sh Dcd/ Mrnc/ Mrnc/ Mrnc/ Mrnc/ss
6DD 6D1 6O2 6O3 6D4	4033-7633 4033-7633 4D35-7636 4D34-7644 4034-7637	Koppenhaver Earl Romberger Craig Solonce R. Sites Amp, Inc.	Paul T. Shiffer do. Harrisburg's Kohl Bros. Paul T. Shiffer Eichelberger Well	1972 1974 1973 1978 1975	H H H N	780 800 840 760 780	V S S S	Mmc/ Mmc/ss Mmc/sh Mp/ Mp/
605 606 607 608 611 612	4034-7635 4036-7639 4036-7644 4034-7638 4023-7648 4023-7648	Williams JrSr. H. S. Harry Unger L. E. Hoffman Pa. Game Comm. George Hetrick G. Shickley	Orilling, Inc. Kohl Bros., Inc. Paul T. Shiffer Fred C. Shiffer Harrisburg's Kohl Bros. Eichelberger Well Orilling, Inc.	1969 1972 1973 1976 1979	P H H Z H	760 700 762 760 570 525	Y S S S	Mmc/ Mmc/ Mmc/ Mmc/ Dcsc/ Dciv/
613 614 615 616 617 618 619	4022-7649 4023-7646 4023-7645 4022-7645 4023-7644 4023-7645 4023-7645 4023-7651	Robert Shaw Armand Acri Jack Leibfried Leroy Weaver 1. Cartwright Paul Moore William Good L. Coulson	Harrisburg's Kohl 8ros. do. do. do. William Lester Etnoyer Harrisburg's Kohl 8ros. John Thran Etchelberger Well	1974 1975 1975 1973 1973 1975 1974 1979	н н н н н	490 590 710 580 770 775 890 440	V H S V S S V S	Ociv/sh Ociv/ Otr/ Om/ss Oh/ss Ocsc/ Sb/sh Mmc/sh
621 622 623 624 625 626	4023-7652 4028-7645 4028-7645 4029-7642 4027-7648 4022-7655	Jane King R. Miller Roger Miller Harry Kepler Stanley Miller Oauphin National 8k.	Orilling, Inc. do. do. Harrisburg's Kohl 8ros. do. Eichelberger Well Orilling, Inc.	1976 1979 1973 1979 1973 1980	1 H H H	415 8DD 68D 830 92D 502	S V S H H	Mmc/ss Ocsc/sh Ocsc/sh Ocsc/ss Ocsc/sh Mmc/
627 628 629 630	4D22-77DD 4D23-7657 4D24-7654 4D26-7654	G. Chepolis E. Sweitzer L. Weller Timothy Shive	do. Paul T. Shiffer do. Eichelberger Well Drilling, Inc.	1980 1978 1978 1979	H H H	3DD 545 490 530	V Н S Н	Mmc/ Mmc/ Mmc/ Dcsc/ss
631 632 633 634	4D26-7654 4D25-7658 4D25-7658 4D27-7654	F. Strohecker Paul Oansels Reed Twp. Accu-Mold	Fred C. Shiffer Harrisburg's Kohl Bros. do. Eichelberger Well Drilling, Inc.	1 97 9 1 980 1 980 1 980	H H 	525 490 550 690	Н S Н S	Dcsc/ Dciv/ss Dciv/ Dcsc/
635 636 637 638	4D28-7655 4D3D-7656 4D3D-7656 4D3D-7658	Lexeen Inc. Clarence Miller Keister Constr. Strohecker Mobile Home Pk.	Paul T. Shiffer do. do. Eichelberger Well Drilling, Inc.	1978 1979 1979 1979	N H C P	395 540 390 458	V S V H	Dciv/ Dcd/ Dtr/ls Dcd/sh
639 640 641 642 643 644 645 646 647 648	4029-7653 4031-7657 4D33-7657 4D35-7656 4D28-7652 4034-7654 4031-7651 4031-7651 4D31-7652	Mae Maurer L. Koppenhaver Jeff Messimer C. Schrader Terry Kauffman D. Hartman M. Welch L. Bowers J. Nice	Paul T. Shiffer do. do. do. do. Fred C. Shiffer Harrisburg's Kohl 8ros. John Thran Fred C. Shiffer Eichelberger Well	1979 1978 1979 1978 1978 1978 1980 1979 1979 1979	H H H H H H H H H H	6D5 720 535 420 73D 55D 6D2 87D 84D 745	, V S S S S S S S S S S S S S S S S S S	Ociv/ls Mp/ Mmc/ Dcsc/ Dcsc/ Mmc/sh Mmc/ Dcd/sh Dcd/
649 650 651 652 653 654 655 656 657 658 660 661 662	4029-7652 4029-7652 4032-7649 4033-7651 4033-7647 4033-7646 4034-7645 4034-7646 4035-7648 4035-7648 4035-7648 4036-7648 4036-7648	R. Farner Farner F. Titus Roy Teter W. Leiter Paul Shiffer H. Bender Usuka 8en Crabb Steven Wise Gary Wise D. Engle G. Hostetter G. Pellas C. Mattis	Drilling, Inc. Paul T. Shiffer do. do. fred C. Shiffer Paul T. Shiffer do.	1978 1975 1978 1979 1978 1979 1978 1974 1972 1974 1979 1979 1979		565 578 710 578 662 565 602 625 580 662 638 745 682 720 725	H S S S V V V S S V S H S H V	Dciv/ Dcsc/ Mmc/

			1							
Total depth below land surface (feet)	Casing Oepth Oiameter (feet) (inches)	Oepth(s) to water- bearing zone(s) (feet)		Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9pg)	Specific conduc- tance (micro- mhos at 25°C)	рН	Well number
COUNTY	(1000)	(1000)	(1000)	(0/)//	(941//	(69017	(363)	23 07	J P1.	- Trainber
300	8		F	9/31	50					0a- 20
500	8	300;500	F	9/31	150	2.4				21
300 296	8 6		20 100		85 65	. 85 . 36				22 31
140 110	6 50 6		14	6/31	5 27	.45				45 37 9
300 300	42 8 49 6	75;175;236	13	7/62	112 27	5.6 .12	7		7.7	400 431
270 350	94 6 23 6		35	1/65	55 60	. 44 . 87				454 577
250 175	6 	65;96	22	5/77	70 30	. 57	25		5.9	585 592
112 125	44 6	80;105	30	8/72	20	.18				600
100	110 6 60 6 41 6	50;80;110 85;185	25 30 40	3/74 4/73 8/78	20 10 20	.14	1 	65	5.8	601 602 603
600	90 8	98;147;233; 477	7	5/81	56	.60	4	185		604
195 175	6 41 6	110;156;185	50 41	10/69 7/81	100 8	3	1 7	50 400	5.6 6.2	605 606
80	21	75 	20 19	6/73 7/81	11 25	2	2	80	6.0	607 608
260 75	42 6 42 6	55;140;258 47;54	22 19	8/ 7 6 5/81	12 10	.05	2	145 200		611 612
120	55 6	35;70	15	5/81	12	.13	2	102		613
160 200 150	40 6 63 6 80 6	63;95;140 160;190	50 62	5/75 5/81	8 15	.05	3	90		614 615
93 280	80 6 58 6 60 6	100;140 65;90 90;180	20 29 60	8/73 2/73 10/ 7 5	40 22 7	. 31	5	240		616 617 618
250 125	90 6 42 6	64;84;119		8/74 11/79	8 10	.03				619 620
150	43 6	142	33	5/81	10		5	175		621
125 100	42 6 40 6	48;119 52;70	7	6/79 5/81	20 7	. 10	3	170		622 623
140 340	36 6 26 6	55;125 40;90	50 205	6/79 8/73	4	.04				624 625
125 100	50 6 42 6	62;99;111	25	4/81	20		5	197	7.1	626
310 143	42 6 41 6 62 6	82 280 100;138	19 25 38	4/80 4/81 4/81	18 7 12	.03	6 6	295 220	5.3	627 628
200	55 6	172;183		6/79	35	.12	5 4	195 185	6.1	629 630
113 260	42 6 40 6	90;110 135;2 4 5	47 98	4/81 4/81	9 10	. 16 . 06	3 6	125 292		631 632
240 450	41 6 42 6	80;225 161;416;432	96 152	4/81 4/81	12 15	.08		218		633 634
267	63 6	120;230;160	30	7/78	55	.24				635
225 482 175	60 6 34 6 68 6	90;140;200 240;460 94;117;146	48 9	7/79 4/81 10/79	20 12 12	.12	5	200		6 36 6 37
143	59 6	90;140	40	7/79	30	. 30	5	195		638 639
247 205	84 6 40 6	160;240 120;200	80 38	8/78 7/79	10 15	.06				640 641
224 354	67 6 42 6	120;220 220;340	49 70	4/80 11/78	20 6	.11	2	95		642 643
102 180	29 6 50 6	90;95;98 90;160	28 50	4/81 8/79	9 12	. 18	7	319		644 645
200 150	4 0 6 27 6	190 100;128;147	85	11/79 8/79	20 5	.10				646 647
250	43 6	133;179	92	5/81	20		3	105		648
225 165 164	62 6 43 6 81 6	140;220 100;135 110;160	46 40 50	5/81 9/75	30 10	. 16		220		649 650
111 123	43 6 62 6	90;107 80;115	30 32	10/78 10/79 5/81	15 9 15	.14	6	300 210		651 652
180 205	61 6 42 6	175 180	35 40	11/79 7/78	30 10	. 19 . 21 . 06				653 654
172 155	33 6 33 6	110;160 90;140	75 35	5/81 11/72	20 25					655 656 657
218 176	49 6 38 6	100;160	50 40	5/81 4/74	10	.06	8	318		658 659
1 36 80	47 6 20 6	85;130 50;75	48 30	5/81 5/81	20 25	.33	5	240 215		660 661
168 130	42 6 103 6	120;160 125	35 65	8/78 8/79	30 20	.23	11	420		662 663

Well 1	ocation			Oate		Alti- tude of land surface	Topo- graphic	Aqui fe
Number	Lat-Long	Owner	Driller	completed	Use	(feet)	setting	
Da - 664 665 666 667 668 667 671 672 673 674 675 676 677 676 680 682 684 688 690 692 694 696 700 702 704 708 710 711 716 718 720 724 726 738 730 734 736 737 734 736 737 737 737 737 737 737 737 737 737	40 34-7649 40 36-7649 40 36-7649 40 36-7649 40 38-7650 40 37-7646 40 38-7651 40 39-7651 40 39-7651 40 39-7651 40 39-7650 40 27-7652 40 26-7650 40 27-7652 40 26-7650 40 32-7649 40 33-7649 40 33-7649 40 34-7646 40 32-7659 40 32-7659 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649 40 33-7649	O. Neagley George Ressler M. G. Henninger Edward Strohecker Charles Troutman V. Gessner Jeff Shertzer Thelma Stimley Paul Enders Norman Houser Alfred Gusler R. Thompson Gennis Snyder Tim Snyder Oonald Shadle Robin Landscapind C. K. Moore Fred Shiffer R. J. Rodichok Nevin Witmer E. R. Stroup, Jr. M. E. Weist A. J. Fitchen, Jr. R. E. Spangler Central Pa. Rifle Club Mark Hoffman Norman Knapp Lawrence Shields Luther Shearer Raymond Labree Larry Teter Robert Dunkle Elwood Smith B. S. Seiloff Harry Snyder Leroy Chubb Larry Mech Kenneth Fry Oennis Schaffner Charles Chubb Russell Snyder North Penn Co. Randy Wetzel Melvin Henninger Woodrow Mattern Harold Spaght I. Streub Thomas Pope Lester Welker Penn National Turf Club do.	Paul T. Shiffer do. Harrisburg's Kohl Bros. Paul T. Shiffer do. Fred C. Shiffer Harrisburg's Kohl Bros. Paul T. Shiffer Harrisburg's Kohl Bros. do. Paul T. Shiffer Harrisburg's Kohl Bros. do. Paul T. Shiffer do.	completed 1975 1978 1979 1972 1972 1979 1975 1978 1974 1974 1975 1976 1973 1981 1974 1974 1974 1974 1974 1974 1974 197		(feet) 602 705 682 625 702 665 938 670 760 720 685 640 601 645 630 620 685 730 580 600 550 420 480 440 440 440 440 465 460 510 550 616 535 500 598 640 550 610 730 660 725 670 665 500 520	V S S V H H S V S S S S S H W H W H S S H S S V S S S S S S S S S S S S S	Aquife 1ithol Mmc/
750 752 754 756 758 760 762 764	4023-7639 4020-7643 4033-7645 4033-7645 4027-7655 4024-7656 4027-7655	GO. Skylnne Water Co. Elizabethville Water Co. do. Hallfax Bor. Water Dept. do. do. do.	do Harrisburg's Kohl Bros. Paul T. Shiffer	1955 1931 1962 1975	P P P P	520 540 610 730 540 740 520 740	S S S S S	Om/ Oh/ Mmc/ Mmc/ Dcsc/- Dcd/ Dcd/
								JUNI
Ju- 48 51 319 320 321 322 323 325 354	4037-7700 4038-7703 4037-7704 4039-7703 4039-7702 4038-7702 4037-7701 4037-7701	Calvin Strauser O. W. Goodling M. Strausser K. Goodling G. Reichenbach M. Messimer John Watts G. Goodling C. Frymoyer	Fred C. Shiffer do. do. do. G. L. Stone do. do.	1979 1978 1978 1977 1978 1977	H H H H	480 600 880 900 760 810 500 600 520	V V S H S H V	Dmh/ Otr/ Otr/ls Otr/ls Otr/ls Otr/ls Otr/ls Otr/ls Otr/ls Omh/sh Dtr/
		-		· · · · · · · · · · · · · · · · · · ·				LANCAS
Ln-1533 1534 1535 1536 1537	4009-7036 4009-7636 4008-7635 4010-7610 4010-7610	Elizabethtown Water Co. do. do. Ephrata 8or. do.	Eichelberger Well		P P P P	500 460 480 380 400	H S S V	Trn/ Trn/ Trn/ Trh/ Trh/
1538 1539 1540	4006-7632 4006-7632 4000-7621	Mt. Joy 8or. Water Auth. do. Millersville Munic.	Drilling, Inc.		P P P	360 360 360	V V	0e/ 0e/
1591 1592 1593	4004-7604 4004-7604 4009-7602	Water Auth. Alcorn Waterworks do. Terre Hill Bor.	Sensenig and Weaver	 9/81	P P P	510 510 520	S S S	Cv/ Cv/ Trh/

				c water evel						
Total depth below	Casing	Oepth(s) to water-	Oepth below					Specific conduc- tance		
land surface	Oepth Oiameter	bearing zone(s)	land surface		Reported yield	Specific capacity	Hard- ness	(micro- mhos at		Well
(feet) 280	(feet) (inches) (feet) 140;260	(feet) 83	(mo/yr) 5/81	(gal/min) 20	([qa1/min]/ft)	(9pg)	25°C)	pH	number 0a- 664
143 140 155	42 6 84 6 33 6	140 110;140	14 40 33	5/81 9/79 5/81	50 20 30	. 45 . 20 . 25	6 5	320 205		665 666 667
155 155 114	32 6 46 6	110;140 110;140 85;94;112	30 35	5/81 12/79	15 12	. 19				668 669
285 140	50 6 63 6	160;280 95;130	97 45	5/81 11/75	8 7	. 04	3	105 215		670 671
265 180 260	60 6 42 6 40 6	160;260 79;165 75:155	94 105 48	5/81 10/74 5/81	12 12 20	.06 .16 .10	5 2 4	75 155		672 673 674
285 120	42 6 40 6	110;250;170 60;80	85 60	5/81 8/75	4 20	. 02 . 33	6 3	250 140		675 676
190 113 155	30 6 26 6 30 6	130;178 70;100 90;140	80 8 46	6/76 8/81 8/81	15 20 8	.14 .24 .07	1 5	50 280	5.5	677 678 680
247 102	61 6 51 6	85;98	28 64	8/81 8/81	8 12	.8	3 5	180 280	6.1 7.8	682 684
150 110 85	29 6 25 6 28 6	90;146 82 80	47 46 56	8/81 8/81 8/81	11 20 13	.11 .8 .6	5 3 6	300 200 2 <i>9</i> 0	7.1 6.4 7.8	686 688 690
97 170	25 6 6	50;76	32 95	8/81 8/81	13	. 5	4 5	220 320	7.1	692 694
122 100 80	76 6 42 6 30 6	60;90 50;65	26 25 9	8/81 9/81 9/81	15 40 12	. 2 . 5 . 2	3 5	140 260	7.7 6.9	696 698 700
160 200	30 6 41 6	65;148 80;150	88 56	12/71 5/74	4 12	.1				702 704
200 200 150	40 6 40 6 43 6	100;180 112;168	40 50	10/69 9/73	10 25 15	.1				706 708 710
340 180	60 6 43 6	100;180 90;160	160	9/72	2 15	.01				712 714
202 540 253	23 6 60 6 23 6	84;194 70;90 120;240	70 25	7/66 10/71	4 7 20	.03 .1 .1				716 718 720
145 87	42 6 26 6	80;135 80;84	30 30	2/75 4/75	20 4	. 2 . 2				722 724
128 145 263	28 6 41 6 20 6	90;120 87;137 180	35 40 	4/74 5/73	8 20 3	.1 .2 .01				726 728 730
185 305	24 6 47 6	85;175 190;290	30 45	8/74 8/75	30 4	. 2 . 02				732 734
155 114 108	52 6 40 6 25 6	90;140 75;90 60;95	30 70	12/72 10/73	35 20 9	.3 .8 .1				736 738 740
120 155	24 6 31 6	112 80;120	22 35	4/68 10/72	15	.1				742 7 4 4
285 300 300	19 6 38 8 8	100;175 75;190 72;96;178	60 	10/72 	30 404 	4.8 				746 748 750
400 200	54 6 8				75 50					752 754
278 300 300	50 8 62 6				70 50 70	. 58				756 758 760
390 310	37 12 84 8	135;385			73 200	.52				762 764
COUNTY										
42 44 235	15 6 15 6 41 6	100;195;230	7 132	 5/80	5 3 3	.14		170		Ju- 48 51 319
166 235	43 6 41 6	110;158 175;228	46 50	7/78 9/77	10 5	. 10	4 1	1 90 1 4 0		320 321
333 248 3 98	41 6 40 6 43 6	175;250;328 160 160	75 30 95	4/78 5/77 5/80	2 3 2	.01	 	220		322 323 325
173	42 6	110;160	60	8/79	40		4	200		354
700	6									Ln-1533
275 600	6 8				50 200					1534 1535
206 320										1536 1537
272 144 220	10 10 8				600 800 					1538 1539 1540
120 120	8 8									1591 1592
352	146 8	60;120;290; 320			275					1593

Well 1	ocation Lat-Long	Owner	Oriller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aguifer/ lithology
Ln-1594	4009-7617	Lititz Bor. Waterworks		9/68	P	360	V	0s/
1595 1596	4009-7617 4009-7611	do. Akron 8or.	Myers Bros. Drilling Centractors, Inc.	9/68 9/81	P P	360 400	V	Trn/ Trn/
1597 1598 1599 1600 1601 1602 1603 1604	4009-7611 4009-7611 4012-7607 4012-7607 4013-7605 4004-7636 4007-7603 4004-7624	do. do. E. Cocalico Twp. Auth. do. do. Rowenna Water Co. Blue Ball Water Auth. E. Hempfield Twp. Munic. Auth.	 		P P P P P	380 380 420 500 480 320 480 400	S S S S S V	Trn/ Trn/ Trh/ Trh/ Trh/ Cv/ Czc/
1605 1606	4005-7624 4003-7624	do. do.	Myers Bros. Orilling Contractors, Inc.	9/79	P P	380 420	\$ 5	Czc/ Cl/
1607 160B	4005-7620 4003-7631	E. Petersburg 8or. Auth. Marietta Gravity Water	do.	9/75 - 	P P	340 255	S V	Czc/ Cbs/
1609 1610 1611 1612 1613	4003-7631 4005-7611 4005-7611 4004-7611 4005-7612	Co. do. Leola Water Auth. do. do. do.	Kohl Bros., Inc. do. Myers Bros. Orilling Contractors, Inc.	9/77 9/79 9/80	P P P P	25S 400 410 380 420	V V V S	Cbs/ Czc/ Cl/ Czc/
1614 1615 1616 1617 1618	4016-7606 4007-7634 4007-7634 4009-7624 4005-7606	W. Cocalico Auth. Rheems Water Co. do. Manheim Water Dept. Western Heights Water Auth.		9/32	P P U P	480 440 440 400 520	S S V S	Trh/ Trh/ Trh/ Oe/ Czc/
1619 1620 1621	4005-7607 4005-7606 4010-7623	do. do. Northwestern Lancaster County Auth.	 		P P P	520 520 420	\$ \$ \$	Czc/ Czc/ Oe/
								LEBANON
Lb- 718 1025 1055 1056 1057	4031-7629 4021-7614 4016-7626 4029-7632 4028-7634	George Hoover Richland Waterworks Quentin Water Co. Union Chapel H. M. Boltz	Kohl 8ros., Inc. Fisher's Well Orilling Myers Bros. Orilling Contractors, Inc.	1966 1972 1980 1978	Н Р Р Т Н	550 \$48 612 618 675	V S S H S	Dh/sh Cr/dol Cbs/ Dtr/ Dcsc/
1058 1059 1068 1069 1070 1080 1102 1103 1104 1105	4028-7634 4027-7635 4031-7631 4031-7629 4031-7630 4029-7632 4018-7630 4021-7627 4020-7627 4017-7617	Harry Kapp F. L. Custer, Jr. Clair Wagner Narren Kessler George Gundrum Swatara St. Pk. Stoney Crest Estates do. N. Lebanon Water Co. do. Heidelberg Twp. Munic. Auth.	do. Rufus A. Light Fisher's Well Orilling do. do. Kohl Bros., Inc.	1979 1977 1977 1977 1978 1939 1981	H H H H H H B P P P P	681 740 648 620 625 482 561 \$59 \$61 \$20 610	S S S S S S S S S S S S S S S S S S S	Dcsc/ Otr/ Otr/ Otr/ Ocsc/ Dtr/ Cm/ls Cm/ls Oh/sh Oh/sh Trh/ss
1108	4021-7625	Leon Zimmerman	Myers 8ros. Orilling Contractors, Inc.	1965	Р	670	S	0h/
1109 1110	4021-762\$ 4021-7625	do. do.	do. do.	1965 1977	P P	670 670	S S	Oh/ Oh/
							NOR:	THUMBERLANO
Nu- 30 32 51 53 57 85 101 102 201 202 203 204 205 215 216 220 221 222 223 224	4051-7647 4051-7646 4038-7653 4037-7655 4042-7650 4047-7640 4047-7640 4047-7643 4047-7631 4049-7631 4049-7631 4049-7634 4046-7647 4042-7647 4042-7647 4042-7647	Sunbury Milk Prod. Co. Engee's Creamery Oalmatia Water Co. Susquehanna Stone Co. Herndon Textile Co. Monry Trevorton Water Co. do. Mt. Carmel Water Co. Trevorton H. S. Nick Mattucci Terry Mill Florien Shalango Kermit Mench Gary Troutman W. Kreischer J. Roeder Mandata Poultry Co. do. do. do. do.	Straub Harrisburg's Kohl 8ros. Clarence Hoover 8lanchard Alvin Swank & Son, Inc. do. do. This in the straight of the stra	1910 1923 1925 1912 1908 1979 1979 1979 1979 1978 1980 1979 1960 1960 1960	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	440 440 585 410 440 650 780 1100 1400 880 910 820 890 740 940 610 602 \$20 \$30 \$40 \$51 \$520 \$540 650	T V S V V S S H S S S H S S S W W W S S	Dh/ Oh/sh Swc/ls Dh/ss Dciv/ tlp/ Mmc/ Mp/ P1/ Ptmc/ Dcb/ Dcb/ Dh/ Dh/ Dciv/ Dciv/ Dciv/ Dciv/ Dciv/

Total depth below land surface (feet)	Casing Oepth Oiamet			Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity {[gal/min]/ft)	Hard- ness (9pg)	Specific conduc- tance (micro- mhos at 25°C)	рН	Well number
80 80 330	15 12 15 12 144 8	178;190;240;			 400					Ln-1594 1595 1596
435 600 190 800 280 101 300 200	8 8 8 6 6	280			130					1597 1598 1599 1600 1601 1602 1603 1604
250 200	8 160 8	90;128;171; 198			400					1605 1606
495 133	6 118 8				350					1607 1608
215 400 400 220 320	180 10 6 42 71 6 59 6	 - 82;130;252 82;121 158;289;315			350 100 200 100					1609 1610 1611 1612 1613
300 108 382 85 165	8 8 8				60 60 					1614 1615 1616 1617 1618
410 165 210	8 8 6									1619 1620 1621
COUNTY										
125 123 360 161 275	74 8 101 10 82 6 82 6	99;163;210 109;121 156;160	67 80 	10/81 8/72	80 146 8 45	1.6	1 2	35 58	5.8	Lb- 718 1025 1055 1056 1057
250 206 301 201 141 178 505 500 140 417	82 6 29 6 63 4 6 42 5 44 6 53 6 6 139 6 52 8	165 58;205 105;287 92;188 115;134 77;110;150	32	10/78	3 7 6 25 20 10 16 15 30 70	.07	4 2 2	85 67 		1058 1059 1068 1069 1070 1080 1102 1103 1104 1105 1106
302	63 6		53	10/65	15	1.5				1108
322 600	63 6 102 6	215;271;340; 390	52	10/65	12 50	1.5				1109 1110
COUNTY										
190 190 130 101 137 101 140 280 1176 190 175 150 200 174 200 150 230 300 301 340 550	400 8 8 25 6 6 6 6 6 6 8 5 6 6 7 6 6 7 6 7 6 7 6 7 6 7 8 7 2 2 10 19 10 15 10 32 8	43;135 155;185 80;160 74;138;190	48 50 F 7 7 30 35 37 31 28 31 30 8 20 118 130 175	8/30 1 930 4/81 4/81 4/81 6/79 5/81 8/80 9/60 9/60 10/60 4/62	40 75 10 20 50 20 240 5 40 12 35 30 20 25 7 13 199 55 43 62 93		17 8 3 7	125 250 75 210	7.0	Nu- 30 32 51 53 57 85 101 102 103 105 201 202 203 204 205 215 220 221 222 223 224

							_	
Well lo	ocation					Altı- tude of land	Topo-	
Number	Lat-Long	Owner	Driller	Date completed	Use	surface (feet)	graphic setting	Aguifer/ lithology
Nu- 225	4042-7647	Mandata Poultry (o		1963	N	620	S	Dciv/
226 227	4043-7635 4044-7630	C. Rhenn Clair Tobias	Paul T. Shiffer Alvin Swank & Son, Inc.	1978 1979	H	935 80\$	S S	Ocb/ Mmc/
228	4044-7630	Mandata Poultry Co.	AIVIN 5Wdik & 5011, INC.	1980	N	705	S	Dc1v/
229	4042-7647	do.	C. 15 - 4 D. 71	1980	N	745	H	Dc1v/
230 236	4049-7644 4050-7632	G. Pautsch Forest Fire Control	Gilbert R. Zechman Alvin Swank & Son, Inc.	1977 1974	H H	720 840	H V	Dh/ls Ociv/
220	1027 7666	Station	Hubler Well Drilling Co.	1978	Н	550	Н	0tr/
238 239	4037-7655 4039-7651	R. Zerbe C. Maurer	Fred C. Shiffer	1980	H	635	5	DSkt/ls
240	4039-7652	Stone Valley	do.	1979	Н	625	5	DSkt/1s
241	4038-7651	Lutheran Parish R. Zieders	Paul T. Shiffer	1978	Н	680	S	Otr/sh
242	4038-7649	P. Yost	Fred C. Shiffer	1980	1	542	H	Dosc/sh
243 244	4040-7651 4040-7647	M. Mattern G. Wolfgang	do. do.	1978 1979	H	765 910	V S	000/1s 0h/1s
245	4042-7648	M. Percaskie	Gilbert R. Zechman	1980	Н	699	S	Dciv/
277 278	4050-7637 4049-7635	C. Yerstetter F. Jaroskie	Alvın Swank & Son, Inc. Gilbert R. Zechman	1978 1978	H	750 740	V S	Ocb/sh
280	4051-7631	W. Swank	Alvın Swank & Son, Inc.	1978	H	1080	V	Dtr/
281 285	4047-7636 4047-7636	Daniel Breining Florence Schawlm	William Becker Robert L. Brosius	1967 1967	H H	890 960	V S	Mmc/sh Mmc/sh
287	4047-7638	Nevin Kerstetter	Roy Zimmerman	1968	Н	1010	S	Minc/ss
289	4045-7632	Charles Lenig	do.	1966	Н	1000	S	Mnc/sh
								PER
Pe- 16 23	4018-7708 4023-7701	Minnie Ganister Supplee-Wills-Jones			H N	680 350	W V	Dh/ Dck/
41	4027-7658	Milk Co. Edward Louden	Harrisburg's Kohl Bros.	1964	Н	415	٧	Dciv/
44	4021-7659	C. J. Ellenberger	Shiffer Bros.		Н	350	V	Minc/sh
54	4019-7729	Luke flickinger			S S	685 860	V S	Sbm/ OSkt/
55 56	4021-7729 4018-7719	Stambaugh Bros. Miles Morrison		1931	Н	685	Š	Sbm/
57 *	4020-7718	Charles Burtnett			Н	560	S	Swc /
58 \$ 9	4020-7718 4021-7718	G. K. Morrison M. H. Yohn			H	575 710	S W	Swc/sh DSkt/
60*	4021-7718	Leroy Rice			H	650	S	Swc/sh
61 64*	4022-7718 4022-7720	Greenpark Sch. Youth Development Ctr.		1924	T T	600 580	S V	Swc/
65*	4023-7717	Sunnydaie Farms, Inc.	G. R. 8losser		C	640	V	Swc/
71 72	4022-7720 4020-7720	Youth Development Ctr. Keystone Area B. S. A.	Harrisburg's Kohl 8ros.	1932 1959	U T	615 620	S S	Swc/sh Sc/
73*	4021-7721	do.	do.	1962	T	630	H	Sbm/
74	4021-7720	do.	do.	1951 1953	T P	560 800	H W	Sc/ DSkt/
7S 76	4020-7732 4020-7731	Blain Munic. Waterworks do.	Hubler Well Orilling Co.	1961	P	800	W	Swc/
77	4023-7701	Sunshine Hills Water Co.			Р	510	S	0c1v/
78	4925-7712	8loomfield 8or. Water Auth.			Р	765	W	Doo/
82	4020-7711	Samuel Warner	Harrisburg's Kohl Bros.	1964	H	490	V	Dtr/
83 84	4023 -77 20 4021- 77 20	Dr. Joseph Matunis Harry Britcher	do. do.	1963 1964	 H	670 560	\$ S	DSkt/ Sc/
85	4019-7703	Leo Hackenberger	do.	1964	Н	580	S	Dcsc/
86 88	4024-7713 4022-7711	Robert Sutch Merwin Gibble	do .	1964 1960	H H	730 575	S W	Swc/ Om/
89 *	4020-7717	C. E. Bolze		1961	H	570	V	DSkt/
90	4020-7719 4023-7717		Harrisburg's Kohl Bros. Robert D. Roher	1963 1964	H H	530 720	S S	Swc /
91 92*	4020-7718		G. R. Blosser	1964	В	555	5	Swc/
93	4021-7722	B. F. Lutz	do.	1964	H H	575 540	V	Sbm/ Sbm/
94 95*	4019-7716 4017-7716	Charles Corral William Barkley	do. do.	1 96 4 1 96 4	Н	680	Š	Dcsc/
96	4020-7718	Robert Lynn	do.	1964	H	550	S	Swc/
98 99	4021-7720 4018-7720	Dave Trostle Morse	do. do.	1964 1964	H H	580 680	V V	Swc/ Sbm/
100	4018-7719	Aaron Morrison	do.	1964	Н	705	S	Sbm/
103 104*	4024-7714 4022-7719	Mrs. M. Reader 8rinner	do. do.	1964 1964	H H	795 680	S H	Swc/sh Swc/sh
105* 106*	4020-7716 4020-7717	Robert Crozier Lester Fell	do. do.	1964 1964	H H	590 S70	V	DSkt/ Swc/sh
107	4020-7718	Annie Bell	do.	1963	Н	565	S	Swc/
108*	4022-7719	Loysville Printery	do.	1963	C H	660 665	S H	Swc/
109 110	4022-7720 4020-7718	L. W. Shumaker Paul Stum	do. do.	1 96 3 1 96 3	H	535	5	Sbm/
		Karl Kling	do.	1963	Н	675 615	V W	Dcsc/
111	4021-7717							
112	4022-7720	Jim Barclay	do.	1963 1963	H		V	DSkt/ls Swc/sh
112 113 114	4022-7720 4022-7721 4022-7720	Jim Barclay O. A. Scott Ed Martin	do. do.	1963 1963	H H	590 580	٧	Swc/sh Sbm/
112 113	4022-7720 4022 - 7721	Jim Barclay O. A. Scott	do.	1963	H	590	V	Swc/sh

*Well is not shown on Plate 1.

										,	
Total			Oepth(s)	5tatic lev					Specific		
depth below land surface (feet)	Casing Depth Diame		to water- bearing zone(s) (feet)	Depth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	5pecific capacity ([gal/min]/ft)	Hard- ness (9p9)	conduc- tance (micro- mhos at 25°C)	рН	Well number
550 184 175 595 320 401 250	40 8 62 6 43 6 7 56 41 8	6 7 7	140;180 85;118 150;211;396 73;221	137 36 60	5/63 5/81 6/79 2/77	100 7 20 45 100 12	.05	3 3	95 130 		Nu- 225 226 227 228 229 230 236
295 50 114	21 30 38	5	185;275 38;45 60;110	195 16 79	8/78 5/81 5/81	10 30 6	1.0 1.5 .27	15 27	590 1230		238 239 240
163 200 85 85 200 200 200 300 80 120 130 95	63 63 66 63 86 62 62 62 62 62 62 62 62 62 62 62 62 62	5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	150 100;135;192 68;74;80 62;78 50;62;198 65;87;106;120 65 105 90;124 90	40 45 40 38 27 40 17 35	5/81 1/80 8/78 5/81 5/81 10/78 12/81 4/67	20 7 14 14 8 8 12 3 20 15 20	. 17 . 05 . 5 . 37 4. 0	3 4 6 3 2 5 4	150 170 275 160 90 240 240	7.8 7.7 5.2	241 242 243 244 245 277 278 280 281 285 287 289
COUNTY											
70 330	21 6					18 40		7			Pe- 16 23
84 76 52 150 86 100 112 128 125 61 102 247 308 178 418 169 200 135 215 150	18 6 38 6 40 6 5 6 32 40 6 28 6 65 6	66666666666666666666666666666666666666	58;80 90;200	42 10 20 2 20 90 20 6 15 21 60 80 20 53 0	1931 1931 5/65 9/64 8/59 6/62 1/51 9/53 1/61	12 12 1 15 1 12 7 5 20 100 160 50 20 18 20 55 40 55 60	5 40 	4 16 9 20	160 590 350 380	7.0 7.5 7.7 7.8 7.7 8.0 7.3	41 44 54 55 56 57* 58 59 60* 61 64* 65* 71 72 73* 74 75 76 77
80 92 226 120 125 65 144 70 88 120 100 65 116 72 60 64 95 90 140	40 6 6 79 6 6 79 6 6 79 6 6 79	66 66 66 66 66 66	75 41;83 96;112 40;115 20;65 20;40;140 65 50;112 40;60 58;112 40;70 30;50 60 90 57;86 75;80;89; 135 47;70 42;60;70;80	20 14 10 35 35 35 12 0 9 47 30 10 15 31 10 12 9 43 42 100	10/64 11/63 9/64 6/64 5/64 9/60 11/61 9/63 9/64 12/64 11/64 10/64 10/64 10/64 5/64 5/64	40 4 2 8 8 8 36 24 12 15 15 15 10 25 7 10 25 10 30 15 15 15	.18	20 4 10 18 11 2 3	670 270 270 280 180 650 410 140 210 250	7.1 7.6 7.8 6.9 7.4 7.2 6.7 6.3	82 83 84 85 86 88 89* 90 91 92* 93 94 95* 96 98 99 100 103 104*
130 132 125 190 50 40 80 80 82 95	53 57 60 28 15 24 35 32 42 39	6 6 6 6 6 6 6 6 6 6 6 6	52;100 87;125 	35 80 76 25 0 6 19 12 50 22 65	12/63 11/63 7/65 10/63 6/65 10/63 7/65 9/63 8/63 7/65 8/63	6 12 12 15 15 15 15 10 8 25 10	.20 2.2	27 13 5 3 13 9	1075 430 270 190 450 370 120	7.3 8.2 7.9 6.3 7.9 7.7	107 108* 109 110 111 112 113 114 115* 116 117*

									77.022.201
Well lo	cation Lat-Long	Owner		Oriller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/ lithology
Pe- 118*	4020-7718	J. R. Shaffer	G. R	. 8losser	1963	Н	540	5	Swc/
		J. R. Shaffer Donald Robbinson Jim Wilt W. W. Neely Paul Crozer William Fossleman William Barkley J. E. Spotts Oavid Harris Elwood Hench John Hench Rev. Johns G. G. Wilson Jim Flanner R. D. Linn Harry Crozer Robert Ernest J. T. Patterson William Barkley Florence Wertz James Kuhn C. N. Sheaffer Raymond Peck Joe Morrow R. N. Wilt Carl 801ze Naomi Womer Marvin Emlett Aaron Morrison Mack Wilt Frank Lyons S. L. Henry Oon Lightner Neal Lightner Neal Lightner John Harris Oonald Bender Harry Keller Melvin Swegar Joe Wilson Smily Briner Jacob Shuman Edward Stambaugh Marion Shaffer F. E. Kennedy Mary Fell Emlet Bros. Ed Nace Frank Minum Sam 8altosser Harold Cirvine C. A. Shope H. Fuller Mrs. E. Reapsome W. J. Jenkins Ward Baughman Dave Harris 8anks Schiebly C. E. Brytz Richard Johnson David McAlicher Oean Shull Paul Kiner	G. R	Oriller . 8losser do.	comple ted 1963 1963 1963 1963 1963 1963 1963 1963 1963 1963 1963 1963 1961 1961 1961 1961 1961 1962 1962 1962 1962 1962 1962 1962 1960		land surface (feet) 540 685 600 590 545 580 560 560 560 670 515 590 660 640 660 575 680 680 680 680 680 680 680 680 680 680	graphic setting S V S V S S S S V S S S S V V V V S S S S S S S V V V V V S S S S S S V V V V V S	1ithology Swc/ Sbm/sh Swc/ Swc/sh Swc/ Swc/sh Swc/sh Swc/sh Swc/sh Swc/sh Swc/sh Swc/ Sbm/ Swc/ h DSkt/ Sbm/ Swc/sh Sbm/ Swc/sh Swc/sh Swc/sh Swc/
188* 189*	4020-7718 4020-7718	Aaron Morrison R. J. Keffer		do.	1 956	H C	580 515 710	S V S	OSkt/ Sbm/ Swc/sh
190 191	4021-7725 4021-7718	Harris Garage Si Oum		do.	1956 1956	H	605	S	Swc/
192 193	4020-7715 4021-7722	Milt 8ower G. M. Clouse		do. do.	1956 1956	H	575 580	S V	Swc/ Sbm/
194 195*	4019-7718 4020-7718	Carl Armstrong Aaron Morrison		do.	1956 1956	H H	585 580	W S	Swc/+ OSkt/
196	4018-7716	George Crozier		do.	1 956	Н	565	S	Doo/
1 97 1 98	4020-7714 4019-7716	Elwood Comp Mt. Zion Ch.		do. do.	1 957 1 956	H T	500 590	H H	OSkt/ Shm/
199	4019-7717	Karl Kennedy		do.	1956	H	5 30	S	Sbm/
200 202	4021-7721 4020-7718	Oewey 8aughman G. R. 8losser		do.	1956 1956	H	555 545	5	Swc/
203 204	4020-7714 4021-7724	Elwood Comp J. C. Bishop	НиБ1	do. er Well Drilling Co.	1956 1961	H	500 610	H W	DSkt/ Swc/
205	4020-7718	Reformed Ch.		. 8losser	1 96 5	T	555	S	Swc/
211 219	4018-7716 4020-7718	J. M. Sweger M. W. Lightner		do. do.	1 96 5 1 96 5	H	615 525	S V	Dcsc/ Sbm/
221 222	4021-7720 4021-7720	Perry County Home do.				T U	590 575	S W	Swc/ Swc/
223	4022-7722	C. I. Noss	John	E. Hockenberry		Н	605	Ÿ	DSkt/

			Static	water						
Total depth below land surface (feet)	Casing Depth Diameter (feet) (inches)	Oepth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)		Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (gpg)	Specific conduc- tance (micro- mhos at 25°C)	рH	Well number
200 63 60 67 75 194 162 60 51 131 152 118 96 98 43 101 87 75 100 62 114 120 62 114 120 62 130 130 130 98 62 86 75 51 100 105 95 103 100 105 95 103 100 105 95 103 100 105 96 100 105 97 97 97 97 98 98 99 99 99 90 100 105 96 100 100 100 100 100 100 100 100 100 10	38 6 19 6 30 6 32 6 23 6 24 6 38 6 39 6 31 6 61 6 19 6 131 6 61 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	43;195 40;57 40;70 65;190 65;190 65;180 45 45 45 45 60;110 65;80 47;95 22;32 60;110 65;80 63;172 52;95 20;60 98 40;64;115 70;85 103;128 70;85 103;128 70;85 103;128 70;85 103;128 70;85 103;128 70;85 103;150 55;90 50;95 48 48 40;55 40;75 90 50;95 51;90 50;95 51;90 50;95 51;90 50;95 51;90 50;95 51;90 50;95 51;90 50;95 52;38 75 90 50;95 51;90 51;90 51;90 51;90 51;90 51;90 51;90 51;90 51;90 52;48 53;40 53;40 64;115 65 65 65;100 66 67 70 67 67 67 67 67 67 67 67 67 67 67 67 67	21 17 51 16 15 16 15 40 21 8 10 95 12 27 25 60 20 21 40 40 40 40 30 53 23 16 60 22 42 43 40 60 21 78 85 85 85 85 85 85 85 85 85 8	7/63 7/65 6/63 6/63 5/63 5/63 5/63 4/63 -7/65 11/61 10/61 6/61 3/65 3/62 4/62 5/62 5/62 6/62 7/62 8/62 7/62 7/62 8/63 7/57 7/57 7/57 11/56 6/65 6/56 6/56 6/56 6/56 6/56 6/5	15 12 15 12 15 16 25 16 25 16 26 17 30 20 30 15 8 8 8 25 10 15 15 15 15 15 15 15 15 15 15 15 15 15	.13			7.8 7.0 7.1 7.7 7.2 6.6 6.6 7.5 7.7 7.5 7.5 7.5 7.5 7.5 7.5 7.7 7.7	Pe- 118* 119 120 121* 122 123 124 125 126 127 128 129 130 131 132 133 134 136 * 138 139 * 140 142 143 144 * 145 145 152 153 154 155 156 157 158 * 159 161 162 163 * 166 167 * 168 168 171 172 173 174 175 176 178 179 180 181 182 183 184 185 186 * 189 * 190 191 192 192 193 194 195 * 196 197 197 198 199 199 199 199 199 199 199 199 199

TABLE 20.

Well Section Date Description Date Description Description Date Description Date Description Date Description Date Description Description									
226 6022-7726 Abr. Mrillings Co. 1963 H 568 5 Doo/		1	Owner	Driller		Use	tude of land surface	graphic	
Age	Pe- 225 226 227 228 229 230 231 232 233 238 239 251 257 300 342 251 343 344 345 346 347 348 386 388 389 390 391 392 400 401 411 412 413 418 419 420 427 428 429 430	4022-772S 4023-7724 4023-7726 4022-7728 4024-7725 4023-7726 4024-7725 4023-7726 4024-7716 4024-7716 4024-7716 4024-7716 4020-7718 4020-7718 4020-7718 4020-7718 4020-7718 4020-7718 4020-7718 4020-7718 4020-7718 4021-7730 4021-7	Oscar Ricedorf John Milligan R. 8. Thrush Clair McMillan R. E. McMillan R. E. McMillan L. D. McMillan Theodore Latchford Harry Latchford Raymond Kint Robert Wagner do. John Stambaugh Arthur Dum W. M. McGowan William Barkley Carson Long Inst. do. do. Landisburg V. F. W. Landisburg Flem. Sch. do. West Perry JrSr. H. S. A. J. Foose J. L. Hummel Frank Hench Frank Dillman Maryetta Bolze Tom Sweger Real Lightner Mary Anthony Oon Bender Reisinger Bros. Blair Clark Jay McCoy David Thompson Mrs Grace Palm West Perry Sch. Oist. Oonald Lyons Kermit Binger H. L. Rice George Lombard Robert Gentzler K. Blumenschien Ralph Yohn, Jr. William Shuman D. I. Hess Smith Bros. James Elifritz	do. Hubler Well Orilling Co. do. do. Jack T. Walker do. Hubler Well Drilling Co. do. do. Go. Harrisburg's Kohl Bros. do. Harrisburg's Kohl Bros. do. G. R. 8losser Harrisburg's Kohl Bros. do. G. R. 8losser do. Holder Bros. do. do. do. G. R. 8losser do. Hubler Well Drilling Co. Joe Cekovich G. R. 8losser do. Harrisburg's Kohl Bros. do. do. do. do. do. do. do. do. Hubler Well Orilling Co. Joe Cekovich do. Hubler Well Orilling Co. do. G. R. 8losser do. Hubler Well Orilling Co. do. G. R. 8losser do. Hubler Well Orilling Co. do. G. R. 8losser do. Hubler Well Orilling Co. do.	1958 1963 1963 1963 1963 1963 1963 1963 1963		830 86S 685 688 765 723 700 675 675 675 770 748 830 570 820 740 780 610 610 610 645 950 800 65S 765 555 SS0 59S 59S 59S 59S 59S 59S 59S 59S 59S 59S	S S S S S V V W W V V V H W H S S S S S S S V S V S S S V S V S S S V S S V S S V S S V S S V S S V S S V S S V S S V S S S V S S V S S S V S S V S S S V S S V S S S V S S V S S S V S S V S S V S S S V S S V S S S V S S V S S S V S S V S S S V S S V S S S V S S V S S S V S S V S S S V S S V S S S V S S V S S S V S S S V S S V S S S V S S S V S S S V S S S V S S S V S S S V S S S V S S S V S S S V S S S V S	Doo/ Doo/ Doo/ Doo/ Doo/ Doo/ DSkt/ Doo/ Doo/ Doo/ Doo/ Doo/ Dh/ Dh/ Dskt/ Swc/
Harrisburg's Kohl Bros. Harrisburg's Koh	432 433	4020-7720 4020-7720	parsonage Shirley Schlosser Charles Evitts		1 966 1 966	Н	720 735	S S	Sbm/ Sbm/
531 4018-7713 F. Sawyer do. 1977 H 740 S Dh/ S32 4018-7712 R. Barrick Eichelberger Well 1979 H 629 S Otr/sh Orilling, Inc.	436 437 438 441 445* 449 451 452 453 454 455 456 457 459 460 461 463 466 505	4021-7715 4017-7716 4021-7716 4021-7716 4021-7718 4021-7718 4021-7718 4020-7718 4020-7720 4019-7721 4020-7720 4019-7721 4020-7718 4020-7718 4020-7718 4021-7726 4022-7719 4025-7710 4027-77658 4025-7700 4027-77658 4025-7700	Mrs. James Culbertson Roy Foster Walter Elman Elsie Rowe John Scheaffer Arthur Blumenschein W. A. Shields Alfred Albright Blant Bell Walter March J. D. Lightner H. A. Reifsnyder Glenn Gibble S. E. Bell J. M. Rice G. W. Goodling Harry Hartsough Mildred Smith Pa. Power & Light Co. O. Mintz L. S. Humphrey William Ickes, Sr. John Kreitzing	do. Harrisburg's Kohl Bros. G. R. Blosser Hubler Well Orilling Co. G. R. Blosser do. Harrisburg's Kohl Bros. G. R. Blosser do. do. Merle L. Gayman Joe Cekovich Joe Cekovich do. Harrisburg's Kohl Bros. do. do.	1935 1966 1935 1964 1965 1965 1965 1966 1966 1966 1966 1966		610 873 710 \$50 730 84\$ 590 670 585 700 515 710 565 575 610 1130 632 678 580 448 653 800	S	DSkt/ Doo/ Sc/ Sc/ Sc/ Sc/ Sc/ Sc/ Sc/ Shm/ Sbm/ Sbm/ Sbm/ Swc/ Swc/ Swc/ Swc/ Ociv/ Ociv/
	531 S32	4018-7713 4018-7712	F. Sawyer R. Barrick	do. Eichelberger Well Orilling, Inc.	1979	Н	629	S	Otr/sh

				Static	water vel						
Total depth below	Cas	ing	Oepth(s) to water~	Oepth below			6- 161		5pecific conduc- tance		
land surface (feet)		Olameter (inches)	- bearing zone(s) (feet)	land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9p9)	(micro- mhos at 25°C)	рH	Well number
155 318	95 34	6	60;94 165;276;302	58	1/58	4 8		7	270		Pe- 225 226
68 80	20	6	65	1	1960	30		1 17	100 740	7.0	227 228
80 170 43	18 20 13	6 6 6	18;55 150;165 41	8 10 10	10/63 7/65 9/63	50 22 10	. 34	6 15 7	255 515 300	7.4 7.1 6.4	229 230 231
93 35	50 35	6		20	9/63 12/64	10 20		2 1	120 60	5.9	232 233
46 61	17 20	6	35	4 3	8/65 8/65	15 8	. 56	10	370	6.9	238 239*
300 97 403	45 51	6 6 6		30 21	7/65 7/65 7/65	20 8		23 11	910 510	6.7	249 251 257
118 504	77	6	65;105	43	6/65	25	2			6.9	300 342
146 210	56	6 6				33 30				7.4	343 344
106 78	60 40 45	6 6		38 60	9/66 9/51	50 15 30	1.9	15	640		345 346* 347*
232 212 100	31 42	8		35 25	8/52 10/64	42 30	. 36			7.6	348 386
120 160	44 44	6	70;160 10;44	45 30	8/65	15 16					388 389*
134 104 90	35 46	6 6	38;77 85	83 42 12	12/64 12/64 5/65	6 9 12					390 391 392*
141 85	45 41	6	90;138 45;80	66 23	4/66 9/65	5 20	. 44	17	650	7.1	396 399
70 200	38 77	6	36;60 160;195	18 54	9/65 3/65	20 20					400* 402
75 198 97	21 66 45	6 6 6	45;69	18 22 5	4/66 4/66 4/66	50 11 25	2.2	25 6 6	940 280	7.2 7.6	405 406 409
64 495	19 85	6	250	10 66	5/66 5/60	30 40	1.8	11	440 360	7.0	410 411
70 141 105	54 68 43	6	65;70 90;130	35 86	6/66	12 15	1.9	8	360	7.6	412 413*
67 122	41 22	6 6 6		41 60	6/66 1964	30 2 10	1.9	3 2	175 90		418 419* 420
199 78	88 37	6 6	40;65	64 11	6/66 6/66	8 25	.25 1.3	1 4	100 210		421 422
47 63 60	21 30 50	6 6 6	40	15 23	6/66 6/66	25 10 20	. 52	6 10 7	260 470 270	7.8	427 428 429
106 223	88 27	6	45;80;95 71;190;213	25 35	7/66 8/66	10 20	.2	3		7.5	430 431
230 204 130	38 22 102	6 6 6	97;215 41;192 52;80;97;	67 57 35	8/66 8/66 8/66	13 8 15	. 2	5		7.6	432 433 434
137	70	6	120			15					436
90 100 125	40 25	6		 16		7		6 11	345 590		437 438* 441
98 75	56 22	6	90	20		25 5	1.7				445* 449
60 80	45 50	6	40,55,70	30 22	10/64 9/65	3 15		12	430		451 452
85 69 122	66 50 90	6 6	50;70 67 120	35 62	12/65 11/65 6/64	8 10 20		1	50		453 454 455
123 70	23 59	6 6		6 23	6/66 7/66	60	7.7	3 1	40		456 457
18 22 106	 27	36 40 6		5 9 29	10/66			12 21	560 1175		459 460
62 300	21 38	6 6	24;75;131;	38 22	11/66 11/66 7/67	2 34	.76	16 1 9	750 40 400		461 463 466
176	70	6	215 70;106;140; 158	40	12/65	40	1.5				505
95 100	35 40	6	70;90 95	24 35		9 30					509* 521
60 120 298	22 29 42	6 6 6	55 60;80 95;285	16 30 100	 12/77	15 20 8		3	125		524 528 530
175 200	64 98	6	70;110;160 139;152	20	12/77 12/77 6/79	8 10		 6	225		531 532
425	286	6	355		12/77	4					533

TABLE 20.

Well 1	ocation					Altı- tude of land	Торо-	
Number	Lat-Long	Owner	Oriller	Oate completed	Use	surface (feet)	graphic setting	Aquifer/ lithology
Pe- 534	4017-7709	W. Bernhisel	Eichelberger Well	1977	Н	720	S	OSkt/ls
\$3\$ 536 \$37 538	4017-7709 4019-7710 4019-7711 4018-7708	Vernon Kiner T. Close E. Seiber Harold Sierer	Orilling, Inc. Gary L. Stone do. do. Eichelberger Well Orilling, Inc.	1976 1978 1977	H H H	768 452 665 593	S V H S	DSkt/ Dcsc/ Ociv/sh Ociv/sh
\$39 540	4019-7710 4022-7708	Ed Arnold Gary McBride	Leon K. Sunday Eichelberger Well Orilling, Inc.	1 97 9 1 97 7	H	S15 555	S 5	Ocsc/sh Otr/sh
S41 S42	4021-7701 4020-7712	O. Failor James Johnston	C. E. Sunday Eichelberger Well	1978 1976	H	492 56S	S S	Ociv/sh Oh/ss
\$43 \$44 \$45 \$46 \$47 \$48 \$49 \$\$1	4019-7713 4018-7734 4018-7735 4018-7734 4016-7734 4018-7731 4023-7707	Henry Curtis Jeff Henry H. E. Williams R. Spahr Charles Groff L. Scott O. E. Rohm A. Lewis	Orilling, Inc. do. Leon K. Sunday Gary L. Stone C. E. Sunday do. do. Gary L. Stone Eichelberger Well Orilling, Inc.	1977 1977 1977 1979 1977 1979 1978 1979	H H H H H	600 74S 74S 763 765 1030 840 700	S V V V H S H	Otr/sh DSkt/ Swc/ Swc/ Swc/sh Sc/sh Sbm/ Otr/sh
552 \$\$3 \$\$4	4024-7709 4025-7709 4024-7709	C. McGarry C. Aughenbaugh P. Perkey, Jr.	do. Leon K. Sunday Enchelberger Well Ornlling, Inc.	1979 1978 1978	H H H	645 650 78S	V H H	Doo/sh Dh/sh Dh/sh
SSS 556 557 SS8 S63 S68 571 574 S75 S76 S77 578 579 580 581 S82 S83 S84 S85 S86	4023-7711 4024-7712 4024-7714 4024-7713 4032-7659 4032-7703 4033-7700 4019-7702 4021-7700 4021-7700 4021-7700 4021-7700 4021-7700 4019-7703 4019-7703 4019-7703 4019-7703 4019-7703 4019-7703	R. Morrow C. McKendrick Oavid Weller Steven Sutch R. Gordon Robert Wallis C. White Millard Sarver John Hetrick Sherwood Myers T. Feltenberger Paul Gilbert Richard Knepp H. M. Good T. Allandar Lamar Brouse Fred Ziegler John Oavis, Jr. Lee Shumaker Leonard's Skate A Rama	Leon K. Sunday do. do. do. John Thran Gary L. Stone do. do. Leon K. Sunday Gary L. Stone do. do. do. do. do. do. Sichelberger Well Orilling, lnc. Leon K. Sunday Eary L. Stone Leon K. Sunday Eary L. Stone	1979 1976 1980 1978 1978 1978 1977 1978 1979 1977 1978 1977 1978 1977 1978	H H H H H H H H H H H H H H H H H H H	700 770 780 73S 780 400 555 590 520 599 570 597 487 480 487 468	V 5 V V S S V V H S S S S S V V V	Oh/sh Oh/sh Oh/sh Oh/sh Oh/sh Oh/sh Mmc/ss Mmc/ss Ock/sh Ock/sh Ocso/ Mmc/ Mmc/ Mmc/ Otr/ Otr/ Otsc/
587 \$88 589 \$90	4020-7657 4021-7659 4021-7658 4021-7700	P. Kerr Grace Steever A. R. Myers J. Nevin White	do. do. Harrisburg's Kohl Bros. do.	1 97 9 1 97 7 1 97 6 1 97 9	H H H	\$39 364 439 360	5 V V	Ocsc/sh Mmc/ Mmc/ Mmc/
\$91	4019-7658	Lumber Co. 8ob Zimmers	Eichelberger Well	1976	Н	\$00	5	Ocsc/
\$92 593 \$94 595 596 \$97 \$98 \$99 600 603	4019-7706 4019-7706 4020-7657 4021-7658 4028-7657 4023-7702 4023-7704 4023-7704 4024-7702 4023-7701	Ron Wagner Ronald Wagner Rod Lucas Luther Byers Carl Lenig Ray Mullen, Jr. Ray Mullen, Sr. Luther Carnes Joseph Lilley Ouncannon Munic. Waterworks	Orilling, Inc. Harrisburg's Kohl 8ros. do. do. do. Gary L. Stone Gary L. 5tone Leon K. Sunday Gary L. Stone	1980 1980 1977 1977 1976 1977 1976 1977 1957	H H H H H H	6S1 S87 710 420 542 S40 490 S30 S70 42S	H S S H S S S H	Ociv/ Ociv/ Ocsc/ Mmc/ Ociv/ Ocf/sh Occf/ Occf/sh Ociv/
604 60S	4023-7701 4022-7702	do.			U P	362 360	V	Ociv/ Ock/
606 607 608 609 611 614 615 626 627 628 629 632 633 639 643	4033-7659 4035-7658 4034-7659 4034-7669 4027-7706 4027-7601 4028-7657 4019-7659 4027-7659 4027-7659 4027-7659 4027-7659 4027-7659 4027-7709 4036-7759 4025-7709	Liverpool Munic. Auth. do. do. do. do. X. Darr V. Bostdorf Jeff Miller Richard Albright R. P. Gilius Ed Oleter Joseph Falduts Charles Oowns Randell Martin 8. Owens Jeffrey Maus Hare Barkley	Harrisburg's Kohl 8ros. do. do. Joe Cekovich Gary L. 5tone Leon K. Sunday Gary L. Stone do. do. Joe Cekovich Gary L. Stone Leon K. Sunday do. do.	1968 1973 1949 1979 1978 1977 1977 1977 1977 1976 1977 1976 1978 1978 1978 1978	U P U H H H H H H H H	410 418 390 540 773 470 538 565 622 540 565 535 500 650 720 640 860	W S V H S H H S V S S S S S S S S S S S S	Mp/ Ock/ Ock/ Ock/ Ock/ Oskr/ Ossc/ Ocsc/ Ociv/

				Static							
Total			Oepth(s)	le					Specific		
depth below	Casıı	na	to water-	Oepth below					conduc- tance		
land surface		iameter	bearing zone(s)	land surface	Oate measured	Reported yield	Specific capacity	Hard- ness	(micro- mhos at		Well
(feet)	(feet) ((feet)	(feet)	(mo/yr)	(gal/min)	([9al/min]/ft)	(9pg)	25°C)	рН	number
155	148	6	155	72	5/80	45		8	260		Pe- 534
195 148	156 21	6 6	185 90;130	80 1	4/76 4/78	12 15		3	175		535 536
148 150	41 90	6 6	110;135 122;146	25 28	5/80 5/80	15 30		4	155		537 538
275 225	60 42	6 6	85;270 215	72 39	5/80 5/80	20 12		5	230		539 540
217 225	58 40	6 6	80;170 67;91	2	6/78 5/80	7 50			250		541 542
125 95	42 33	6 6	115 90	33 5	5/80 4/77	15 15		2 12	185 460		543 544
73 205	69 33	6	70 90;150	20	9/77 7/79	80					545 546
63 245	40 40	6	30 150;235	6	5/80 4/79	12 12		12 7	480 265		547 548
298 275	41 66	6	180;275 205;256	12	5/80 8/79	4 3		2 2	540 87		549 551
200	81	6	150		7/79	35					552
220 500	53 43	6	110;210 85;388	61 50	5/80 5/80	15		3	1 34 185		553 554
160	41	6	80;150	0	5/80	20					555
90 300	60 80	6	70;85 270;290	30 32	8/76 5/80	20 20		14	513		556 557
236	40	6	90;160;230	35	9/78	50					558
100 173	80 42	6 6	90 150	20 21	5/80 5/80	30 50		2 6	55 280		563 568
323 148	43 42	6 6	140;300 110:130:140	65 35	1/78 9/77	6 50		1 4	257 190		571 574
235 248	40 42	6	195;225 150;230	90 40	4/79 10/77	12 12		3	160 225		575 576
148	40	6	1 30	51	5/80	9		2	89		577
98 147	41 40	6 6	50;90 120	12 15	4/78 4/77	8 15		3	107 123		578 57 9
298 88	60 42	6 6	140 80	25 25	7/78 5/77	2 6		4 2	175 83		580 581
350	41	6	119;217;236	32	5/80	8		5	202		582
140 198	60 100	6 6	80;120 180;190	69 74	5/80 5/80	20 12		1 3	50 133		583 584
135 150	60 6	6 6	95;125 106;127	30 5	6/77 5/80	30 20		3 8	137 285		585 586
175	43	6	161	90	5/80	8		2	105		587
100 100	42 51	6 6	87;92 75;90	25	7/77 5/80	25 10		3 2	116 90		588 589
140 150	50 42	6	80;118 118;121	27	5/80 8/76	20 8		3	153		590 591
160	40	6	90;145	49	5/80	10		3	158		592
155 400	40 42	6	80;145 125;175	48 46	5/80 5/80	30 3					593 594
100	38	6	18;60;85	18	5/80	20			127		595
98 123	44 42	6 6	60;80;90 80;110	23 35	5/80 8/77	15 12		3 5	185 203		596 597
148 120	42 41	6 6	80;110 60;110	40 24	5/80 5/80	20 20		5 5	200 206		598 599
148 250	42	6		35 175	7/77	12 50	1.4	1	55		600 603
317		6		25	2/65	80	1.0				604
500	65	6	95;136;344; 360	32		50	. 54				605
350 300	52 42	8 6	80;140	30 10	2/68 12/73	118 66	. 45 . 31				606 607
100 400	19 37	6 6	298	15 105	1949	13 20	.07				608 609
200 152	102 40	6 6	120;150;170 102;140	60 25	6/78 8/79	10 20					611 614
123 205	40 42	6	110	28	5/80	40		5	268		615
173	40	6	135;155	60 35	11/77 5/80	50 20		3	133		625 626
148 148	45 40	6 6	80;90;125 80;130	50 18	8/77 5/80	10 18		3	177		627 628
176 148	40 42	6 6	120;158 70;130	51 15	5/80 5/76	14		4	183		629 632
475 195	60 45	6	110;470	45	12/78	4					633
140	60	6	80;150 115;130	80 30	7/75 4/80	5 30					639 643
500	105	6	460	100	8/77	5		8	350		644

	ocation			Oate		Alti- tude of land surface	Topo- graphic	Aquifer/
Number	Lat-Long	Owner	Oriller	completed	Use	(feet)	setting	lithology
Pe- 646 647 652 653	4025-7702 4025-7703 4023-7702 4023-7703	John Shiffer, III P. Minsker E. Bradley B. Auxt	Gary L. Stone Harrisburg's Kohl Bros. Joe Cekovich Eichelberger Well Orilling, Inc.	1977 1977 1979 1979	H H	563 562 575 485	Н S Н	Ociv/ Otr/ Ociv/
654 655 656 657 658	4022-7703 4024-7705 4024-7702 4024-7704 4024-7705	Chuck Rhodes Oale Murphy Ken Lint R. 8erger R. Finkenbinder	Leon K. Sunday Gary L. Stone Harrisburg's Kohl Bros. Leon Y. Sunday Eichelberger Well Orilling, Inc.	1978 1977 1976 1977 1978	H H H	532 702 537 603 615	S H H S	Ociv/ Otr/ Ociv/ Otr/sh Otr/
659 660	4023-7705 4026-7706	Oavid Lehman R. Miller	C. E. Sunday Eichelberger Well Orilling, Inc.	1 978 1 978	H	610 690	S S	Otr/ OSkt/
661	4024-7701	Sunshine Hills Water Co.			P P	510 410	H	Ociv/
662	4027-7708	Newport 8or. Water Auth.					W	0h/
670	4036-7701	M. Willson	Gary L. Stone	1979	S	740	S	0h/
								SCHUYLK1LL
Sc - 7 8	4046-7613 4046-7614	Mountain City Water Co. do.	Kohl Bros., Inc.	1912	P P	1420 1415	S S	Mmc/ Mmc/
9 10	4047 - 7614 4047 - 7614	do. do.	8lanchard	1915 1912	P P	1460 1460	S S	Mmc/ Mmc/
11	4047-7614 4050-7611	do. Shenandoah Citizens Water and Gas Co.	Blanchard	1904	P P	1460 1560	S V	Mmc/ Pp/
13 19	4050-7611 4048-7607	do. German Cemetery		1930	Р	1620 1700	S S	Pp/ Pp/
20 21	4050-7606 4050-7606	Wyoming Valley Water Co. do.		1910	P P	1800 1740	S W	Pp/ Pp/
47	4033-7614	Ed Banning	Ebbling & 8inner	1915	Н	710	V	0h/
82 83	4033-7615 4034-7616	F. Kirschener J. A. Freeman	do. do.	1924 1924	H W	670 660	S S	Oh/ Ociv/
B4 85	4034-7624 4034-7622	George Lehman Elias Kimtzel	do. E. J. Myers & Sons	1924	H	575 580	V	Ocsc/ Otr/ss
86	4034-7623	Ed Britz	Ebbling & Binner	1924	H P	580	s s	0h/ 0h/
87 89	4033-7622 4031-7622	Pa. Power & Light Co. H. Schnoke	Ebbling & Binner	1928	Н	560 600	S	Oh/
90 93	4031-7623 4031-7628	Elias Hope George Ooubert	do. do.	1924	H	540 480	V	Oh/ Oh/
94 99	4034-7615 4039-7628	H. A. Herring Harvey Reed	do.	1920	H	800 880	S V	Ociv/ Mmc/
116	4035-7630	Garvin 8ixler			Н	760	V	Mmc/
122 124	4038-7633 4038-7635	Mr. Schwahn Francis Matten			H	700 700	V	Mmc/ Mmc/
127 128	4039-7641 4042-7631	Samuel Reed Herb Felix			H	520 940	V S	Ocb/
152 153	4046-7619	M. L. Miller	Kohl Bros., Inc.	1931 1931	H T	1040 1000	S	Mmc/ Mmc/
156	4046-7619 4046-761B	Ashland St. Hosp. Immaculate Heart Acad.	do. do.	1925	T	1080	H	Mmc/
174 224	4047-7615 4036-7623	Fetter's Oairy Mary Mease	do.	192B	N H	960 678	V	P1/ Mmc/
225 226	4033-7619 4033-7619	John Hess G. A. Shadle		1955	H	770 785	H H	0tr/ 0tr/
227 228	4036-761B	E. H. Bretz	Kermit S. Snyder	1960	H	680 580	S	Ock/ Ock/
229	4032-7628 4031-7623	Amos Kutz Harold Wambaugh	Oavid Oeaven		H	630	V	Sb/
2 31 2 32	4038-7624 4038-7624	Lester Tobias C. A. Wetzel	John Mayernick		H	860 900	V	P1/ P1/
259 280	4046-7613 4053-7601	Metrapolitan Mirror Co. Honeybrook Water Co.			N P	1480 1740	H V	Pp/ Mmc/
281	4053-7600	do.			P P	1740 1740	V	Mmc/ Mmc/
282 286	4053-7600 4038-7631	do. Hegins Twp. Auth.		1950	Р	720	S	Mmc/
2B7 323	4038-7629 4038-7631	do. do.	Kohl Bros., Inc.	1962 1967	P P	740 780	V S	Mmc/ Mmc/
326 327	4035-7632 4035-7631	Tower City Sor. Auth. do.	Kohl Bros., Inc. do.	1 96 7 1 96 4	P P	930 935	S S	Mmc/ Mmc/
328	4035-7631	do.	do.	1964	Р	760	٧	Mmc/
330 331	4047-7614 4047-7614	Pa. Oept. of Environ- mental Resources do.		1974 1974	U	1130 1130	V	P1/ P1/
335	4046-7615	Ashland 8or.		1 980	U	1460	W	Mmc/
337 3 39	4045-7618 4046-7617	W. G. Price Malcolm Soyer	Alvin Swank & Son, Inc. William W. Reichart	1978 1968	H	1040 1080	S H	Mmc/ Mmc/
341 343	4046-7616 4046-7617	G. H. Watkins James Samelko	Alvin Swank & Son, Inc.	1980 1978	R H	1120 1080	W H	Mmc/ Mmc/
345	4046-7617	R. Wetzel		1879	н н	1040 1070	W H	Mmc/ Mmc/
347 349 351	4045-7619 4046-7619 4046-7619	Ellis Paul Anthony Baran Joseph 8aran	Kohl Bros., Inc. Kermit S. Snyder do.	1 97 7 1 97 7 1 98 1	H H	950 920	W	Mmc/ Mmc/

						1		т -	-	_	Τ .	1
Total			Oepth(s)	Statio	water vel				Specific			ŀ
Total depth below land surface (feet)	Casi Oepth O (feet) (iameter	to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9pg)	conduc- tance (micro- mhos at 25 C)	рН	Well number	
224 200 528 150	42 42 40 42	6 6 6	160;220 105;185 137	35 80 85	7/77 5/80 6/79 4/79	9 6 25 20		2 4 5 5	96 210 265		Pe- 646 647 652 653	
260 248 160 115 300	40 63 60 40 40	6 6 6 6	150;250 210;240 120;140 80;95 211;286	74 80 60 40	5/80 6/77 9/76 12/77 4/78	15 25 20 15 4		4 4	188		654 655 656 657 658	
125 125	42 81	6 6	80;90;100 88;98;116	5	5/80 4/78	20 45			193		659 660	
	41	6		69	6/64	95	1.7				661	
210	42	8	95;100;125	2	2/75	250	5.9				662	
123	45	6	80;110	18	5/80	20		1	50		670	
COUNTY												
320 452 651 520 402 510	50 40 45 35	12 8 10 8		8 8 8 8		200 350 45 95 120 400	. 92 1.6 . 39 . 82 1.0				Sc- 7 8 9 10 11 12	
560 1112 352 500 81 73 93 45 66 260 260 260 260 271 82 68.5 157 65 101 90 90 50 100 455 418 620 148 85 76 95 110 100 70 50 50 50 50 50 50 50 50 71 198 405	35 45 19 10.5 16 21 12.5 11 13.5 20 9 50 9 50 	8 10 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6		40 16 14 30 18 35 20 30 23 60 17 30 70 155 105 16 5 11	9/31 	65 20 125 5 15 12 15 26 6 10 25 6 6 5 8 8 16 8 8 20 5 5 8 8 10 6 5 7 9 10 10 10 10 10 10 10 10 10 10 10 10 10	1.0 2.7 2.6	3 4 4 2 2 5 5 2	85 170 160 75 130 120 135 200 105	6.5	13 19 20 21 47 82 83 84 85 86 87 89 90 93 94 99 116 122 124 127 128 153 156 174 224 225 227 228 229 231 232 259 280 281 282 283 286 287	
500 500	34 81 31	8 6 8	50;110;165 96;147;256; 354 38;53;85;	63 58 8	4/79 8/64 8/64	75 120 115	5.4 1.2				326 327 328	
560	87	8	160								330	
446 425 300 242 180 230 260 460 102 422	85 20 18 30 20 21 41 41	8 6 6 6 6 6	80;212 120 180 410 60;86	5 75 39 70 50 197 21 20	9/81 9/81 9/81 9/81 9/81 10/81	15 5 3 7 7 40 30		1 1 7 3 4 6 5 8 7	80 75 360 120 210 230 245 440 370	7.1 6.5 6.8 7.6 6.0 7.2 7.9	331 335 337 339 341 343 345 347 349 351	

Well	ocation Lat-Long	Owner	Driller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/ lithology
Sc- 353	4045-7620	Fountain Springs	Alvin Swank & Son, Inc.	1980	I	910	W	Mmc /
355 366 357 358 359 360 362 363 365 367 371 373 375 377 379 381 383 385 387 389 390 391 393	4046-7619 4046-7614 4046-7614 4045-7619 4046-7613 4046-7613 4046-7613 4046-7613 4046-7613 4045-7624 4037-7623 4039-7625 4039-7629 4039-7632 4039-7632 4039-7632 4039-7632 4039-7632 4039-7632 4039-7632 4039-7632 4039-7632 4038-7624 4038-7624 4038-7624 4038-7624 4038-7624 4038-7624 4038-7624 4038-7624 4038-7624 4038-7623 4046-7613	Country Club Anthony Baran Titanium Wire Corp. Melvin Johnson John Chowanski Vicki Botella Leonard Bolinsky V. P. Luscavage William George Ashland Bor. Charles Lucas Tremont Munic. Auth. J. R. Brommer D. A. Artz T. L. Catherman M. E. Wintersteen W. L. Harner Dept. of Mines Edward Miller Charles Barry Charles Zimmerman A. L. Snyder Blair Artz Russell Scheib Oan Green Jack Rich Inc. J. Makauskas	Kermit S. Snyder Kohl Bros., Inc. Alvin Swank & Son, Inc. Kermit S. Snyder do Alvin Swank & Son, Inc. Kermit S. Snyder Kermit S. Snyder Kermit S. Snyder Paul T. Shiffer Kohl Bros., Inc. Kermit S. Snyder do. do. Richard L. Kimmel Paul T. Shiffer do. Robert L. Brosius Kermit S. Snyder do.	1978 1969 1978 1969 1976 1976 1971 1980 1969 1977 1979 1973 1981 1970 1969 1970 1972 1972 1972 1972 1972	H H H H H H H P H P H H H H P H H H H H	940 1560 1065 1440 970 1490 1020 1420 940 750 720 1025 750 1030 660 760 850 850 855 910 1040 920 1040 1480	S W S S S S H W S V V H H S V V V V V S H S S S S S S H W S V V V V V V V V V V V V V V V V V V	Mmc/
402 403	4046-7614 4046-7615	Swade F. Savakınas	Charles O. Moyer C. S. Garber & Sons,	1975 1980	H	1480	H 2	Mmc/cong Mmc/ss
404 405 406 407 415	4046-7617 4047-7619 4045-7620 4049-7613 4037-7623	O. Heintzelman C. Remaley L. Fetteroff E. Schreppel W. Ochs	Inc. do. Kermit S. Snyder Paul T. Shiffer Kermit S. Snyder Myers Bros. Orilling Contractors, Inc.	1980 1981 1978 1978	Н С Н Н	1010 980 820 1650 980	S V V F S	Mmc/ P1/ss Mmc/sh Pp/ss P1/sh
416 417	4037-7623 4037-7623	R. Shott Tremont Nursing Home	do. Kermit S. Snyder	1979 1979	H T	860 800	S V	P1/ss P1/ss
418 419 420 421 422	4038-7624 4038-7624 4038-7624 4038-7624 4038-7624	C. Gauker D. Smith K. Graeff T. Bressler E. Young	Fisher's Well Drilling Kermit S. Snyder Fisher's Well Orilling do. Kermit S. Snyder	1979 1978 1980 1977 1979	H H H H	960 940 940 860 890	V V V V	Pl/sh Pl/ss Pl/sh Pl/sh Pl/ss
423 424 425 426	4039-7621 4039-7626 4039-7626 4032-7622	F. Artz R. Straub C. Dunkleberger Wesleyan Ch.	do. Fisher's Well Orilling Fred C. Shiffer Kermit S. Snyder	1980 1980 1972 1979	Н Н Н Т	980 930 880 610	S V V	P1/ss Mmc/ss Mmc/sh Dh/ss
427 428 429 430 431	40 31 - 7622 40 31 - 7623 40 31 - 7627 40 31 - 7624 40 32 - 7628	Robert Horst Richard Wheeler K. Oonton Kenneth Zearfoss H. Oonton	do. Kohl Bros., Inc. Fisher's Well Orilling Gill Enterprises, Inc.	1977 1980 1980 1978 1980	Н Н Н	580 590 520 675 520	S V V V	Dh/ss Dh/ss Dtr/ Dh/ Dtr/ls
432 433 434 435	4032-7624 4032-7624 4031-7628 4032-7628	R. Haldeman R. 8etz O. Haubenstine G. Lengle	Kohl Bros., Inc. do. Fisher's Well Drilling Kermit S. Snyder	1978 1979 1978 1978	H H H	530 520 505 570	\$ \$ \$ \$	Dh/ Dh/ Dtr/ Dcsc/ss
436	4032-7626	S. Schaffer	Myers Bros. Orilling Contractors, Inc.	1979	Н	6 90	Н	Dtr/sh
437 438 439 440	4032-7626 4037-7623 4035-7616 4035-7618	Brian Bohr Hancock Mrs. E. Tice E. Weaver	Kohl Bros., Inc. Fisher's Well Orilling Kermit S. Snyder Myers Bros. Drilling Contractors, Inc.	1979 1979 1978 1980	Н Н Н	710 890 700 625	H S S	Dtr/ Pl/sh Dh/ Dtr/sh
441 442 443 444 445	4036-7615 4035-7619 4034-7622 4033-7617 4033-7617	R. Moyer R. Stupp Hummel D. Kemmerling R. Sattazahn	Kermit S. Snyder Fisher's Well Drilling Kohl Bros., Inc. Kermit S. Snyder do.	1980 1978 1979 1978 1979	H H H H	685 690 560 695 675	\$ \$ \$ \$ \$	Sb/ Dck/ Dh/sh Dciv/ss Dciv/ss
446 447 448 449 450	4033-7618 4034-7622 4034-7619 4034-7619 4037-7615	Irvin Miller M. Varela R. Loy W. Peters G. Minnich	Fisher's Well Drilling Kohl Bros., Inc. Fisher's Well Drilling Kermit S. Snyder Myers Bros. Drilling	1980 1980 1980 1978 1980	Н Н Н Н	750 685 650 720 755	\$ \$ \$ \$ \$	Dciv/ Dtr/ Oh/ Dh/ss Dciv/ss
451 452 453 454 455	4039-7627 4038-7629 4039-7628 4039-7629 4041-7626	John Johns O. White Franklin Wolfgang L. Geist Elmer Maurer	Contractors, Inc. Harrisburg's Kohl Bros. Fred C. Shiffer do. do. do.	1978 1979 1972 1978 1972	H H H	1040 960 890 750 900	S V S V	Mmc/ss Mmc/sh Mmc/sh Mmc/sh Mmc/sh

T 1			00-45/	Static lev	water vel				Spans file		
Total depth	Canal	lan.	Oepth(s)	0epth					Specific conduc-		
below land surface	Casi Oepth (ng Diameter	water- bearing zone(s)	below land surface	Oate measured	Reported yield	Specific capacity	Hard- ness	tance (micro- mhos at		Well
(feet)	(feet)		(feet)	(feet)	(mo/yr)	(gal/min)	([gal/min]/ft)	(gpg)	25°C)	рН	number
435		8		92	10/81	70					Sc- 353
322 158	41	6	48;55	47 8	10/81 6/81	15 89	12.7	9	420	6.8	355 356
150 153	60 40	6	90 50;103	52 58	9/81 6/81	16 10	.12	3 8	120 370	7.5 6.3	357 358
125 95	34	6	55;82	35 43	10/81 6/81	30	1.0	1 4	50 280	5.2	35 9 36 0
122 185	41	6 6	42;76;108	19 78	7/81 10/81	26 20	. 32	2	98 120	4.9 7.1	362 363
40 70 500	20 56	6	5;70	33 13	12/81 10/81	60 36 18	.09	1 1 3	185 65 200	5.0 5.9 6.7	365 367 371
101 215	100	6		9	10/81 11/81	50		1 16	50 845	6.7	37.3 37.5
378 122	40	6		60 54	11/81			5	240 320	7.6	377 379
160 305	42 43	7 14	52;85;135	11 52	11/81 10/70	20 73	. 40	5	275	7.8	381 383
57 56	35 35	6 6	12;41;54 12;43;54	12 12	8/69 8/69	20 20	. 71 . 50				385 387
55 150	41 60	6	42;48;53	5 36	2/70 8/81	10	.29	1	60	8.2	389 390
190 275 350	34 34 22	6 6 6	120;175 140;250 180;220	45 60 40	6/75 8/72 11/66	6 5 3	.03				391 393 395
162 262	41 41	6	56;148 70;220	17	4/81 1/81	20 5	. 15	3	90	7.8	400 401
577 120	40	6	425;552 52;65;97	105 37	11/75	30 15	.13		 50		402 403
140	20	6	65;110;120	50	8/80	10	.11				404
382 100 110	81 64 41	6 6	120;180;362 30;60;90	6 14 22	2/81 4/81 9/78	15 25 30	. 04 . 36	2 3	78 150	7.5	405 406
125	82	6 6	77;81;99 89;117		7/80	30	. 56		150		407 415
100 302	61 68	6 6	74;92 69;130;215; 290		6/79 11/79	20 100	. 93	5	180	8.0	416 417
101 102	44 47	6	49;84 60;74	1	6/79 6/78	6 20	. 34	5	200	8.2	418 419
80 81 162	60 51 61	6 6	65 75	 28	9/80 12/77	12 20					420 421
122	38	6 6	63;80;120; 150 90;110	39	5/81 8/80	12 25	. 1				422 423
101 109	60 39	6	74;97 65;105	40	11/80 11/72	25 7	.13				424 425
300	41	6	45;65;163; 243	5	11/79	10	.05				426
18 4 12 0 102	41 22 63	6 6 6	60;183 51;97 95	8 2	4/81 6/80 2/80	60 15 20	4.0	6 23	195 820	6.7	427 428 429
221 180	87 38	6	98;212 65;120;130;	65	6/78 11/80	10 45					430 431
120	43	6	150 68;112	9	4/78	30	.28				432
100 316	23 73	6	52;87 316	5	4/81 10/78	20 100	. 22	3	110	7.6	433 434
162 225	41 102	6	80;97;128; 150 147;180;205	35 57	5/78 4/81	40 12	. 43	4	110	8.1	435 436
160	41	6	87;141	68	10/79	12	.13			*	437
321 122	47 41	6	197 42;56;100	35 12	4/81 4/81	3 20	. 24	6 3	205 115	7.5	438 439
200 102	82 41	6	161;189 44;78;90	11	1/80 4/81	20 20		2			440
321 120	55 23	6	105 63;81	 36	4/78 10/79	6 20	. 36		60		441 442 443
122 282	41 41	6	77;106 57;100;150;	25 F	9/78 5/81	40 40	.77	4 5	120 160		444 445
121	62	6	270 66;92		1 980	30					446
220 321	40 60	6	195;210 99;188;315	59 34	5/81 5/81	30 6	. 18	4 5	95 150		447 448
302 125	62 82	6 6	70;279 86;95;115; 122	7 22	7/78 5/81	20 30	.10	3	100		449 450
260 85	43 63	6 6	120;250 65;80	50 35	10/78 3/79	5 20	.02				451 452
103 122	37 44	6	82;100 86;98;115	45 64	9/72 5/81	7 18	.15	6	260 160	7.8 7.5	453 454
111	42	6	60;92;107	35	10/72	10	.16				455

Well 1 Number	ocation Lat-Long	Owner	Driller	Oate completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/ lithology
Sc- 456 457 458 459 460 461 462 463 464 465 466 457 468 469 470 471 472 473	4042-7626 4048-7622 4039-7620 4040-7640 4041-7634 4039-7640 4040-7638 4048-7620 4038-7631 4038-7631 4031-7619 4031-7620 4035-7616 4038-7616 4038-7616 4038-7616 4033-7616	Earl Kimmel James Freed R. Oonmoyer Albert Bordner Paul Neugard T. Troutman Wehry Bros. R. Long K. Stoneroad Stanley Ooe J. Machuzak Carl Gettle Glenn Hummel L. Behney H. Hillbish W. Martin O. Kintzel D. Stoltzfus	Fred C. Shiffer Alvin Swank & Son, Inc. Kermit S. Snyder Fred C. Shiffer Aul T. Shiffer do. do. Kermit S. Snyder Fred C. Shiffer Kermit S. Snyder Kent S. Snyder Kent S. Snyder Kent Sonyder Koll Bros., Inc. do. Kermit S. Snyder do. Fisher's Well Orilling Fermit S. Snyder do. Fisher's Well Orilling	1972 1977 1978 1976 1979 1979 1979 1977 1975 1974 1979 1979 1977 1977 1978 1980 1978	* + + + + + 5 + + + + + + + + + + + + +	920 920 980 790 900 700 880 880 840 850 720 695 90S 710 715 610 675 81S	S S V H H S V S S S S S H S S V F H	Mmc/ls Mmc/ Pl/sh Dcb/sh Dcb/ Dciv/sh Dcb/ Dciv/ss Mmc/ss Mmc/ss Mmc/sh Ph/ Dh/
474 475 476 477 478 479 480 481 482 483 484 485 486 487 501 502 503 504 522	4034-7619 4033-7616 4031-7621 4031-7622 4039-7631 4038-7632 4038-7635 4038-7635 4038-7635 4038-7635 4038-7633 4038-7635 4038-7635 4038-7636 4038-7636 4038-7636 4038-7636 4038-7636 4038-7636 4038-7636 4038-7636 4038-7636 4038-7636	K. Kimmel P. Riegel S. Primeau B. Klinger Conrad Rothermul J. Morris 8. Klouser D. Schlegel L. Deibert M. Bixler K. Stiely Melvin Carl G. Gonzales Robert Bowers W. Rhoades J. Andrews A. Fellin T. Gulash Mountain Water Auth. of Joliett	Kermit S. Snyder do. do. Fisher's Well Drilling Kohl 8ros., Inc. Fred C. Shiffer do. do. do. Paul T. Shiffer Harrisburg's Kohl 8ros. Fred C. Shiffer do. Alvin Swank & Son, Inc. Robert J. Shelhamer do. do.	1978 1978 1979 1979 1977 1978 1980 1978 1978 1978 1978 1980 1980 1980 1973 1979 1978 1978	H	74S 620 S90 60S 720 78S 760 720 715 720 690 825 78S 800 1100 1680 1740 1640 1450	S S S S S S S S S S S S S S S S S S S	Otr/ss Otr/ss Oh/ss Oh/ Mnc/ss Mnc/sh Mnc/ss Mnc/ss Mnc/ss
523 521	4036-7627 4033-7623	do. Penn Dye and Finishing Co.			P N	14S0 S20	S V	Pp/ Dh/
\$2\$ \$26	4033-7623 4046-7613	do. Keystone Water Co.		1973	N P	\$20 1420	V S	Oh/ Mmc/
								SNYOER
Sn- 3	4049-7651	Shamokin Dam Munic. Auth.			U	440	F	0Skt/
6 16 18	40\$0-7649 4047-7651 4048-7652	Maude Park Crystal Pure 1ce Co. Selinsgrove St. Sch. and Hosp.	Straub 		H N T	475 425 600	V V	Oh/sh DSkt/ls DSkt/
19 20 35 36 40 49 51 60	4048-7652 4048-7653 4047-7702 4048-7703 4046-7707 4042-7651 4038-7656 4048-7653 4049-7653	do. do. do. Sheffield Farms Inc. Reading Rendering Co. J. C. Stahl Estate W. F. Gross Silk Mill Smith & Fisher Selinsgrove St. Colony Selinsgrove St. Sch. and Hosp.	Harvey Keefer	1934 1921 1954 1954	T U C N C T T	600 600 500 620 620 460 400 580 S90	V H V S V F S	OSkt/ DSkt/ Swc/ Dciv/ Dskt/ Dcsc/ss Otr/ OSkt/ Dh/
70 72	4046 - 7656 4044 - 7709	Freeburg Water Auth. Beavertown Munic.		1957	P	810	Š	Sc/
76 77 79 80 81 89	4043-7720 4043-7720 4044-7721 4043-7720 4042-7719 4041-7718	Water Co. Carl Kauffman Harry Collabine Glen Berryman S. J. Gross Henry Erb McClure Water Supply Co.	Freed and Bell do. do. do. Milton H. Romig H. K. Honberger & Sons	1961 1961 1960 1960 1960 1964	Н Н Н Н	750 715 780 680 765 834	V H S V H S	Dtr/ Dh/ Dh/ Otr/ Sbm/
90	4041-7718	do.	do.	1964	Р	837	S	Sbin/
91 93 94 95 96 97 99 100 103 104	4041-7718 4043-7720 4043-7717 4044-7718 4042-7719 4043-7718 4042-7719 4042-7719 4042-7719 4042-7719	do. D. C. Boonie P. A. Wright Charles Snook C. F. Roger William Moser Snooks Restaurant Harry Pheasant John Hassinger James Wert Jack Timblin	Freed and 8ell Glibert R. Zechman do.	1942 1962 1961 1954 1960 1963 1964 1959 1959	P	828 725 700 680 780 760 660 790 760 765 765	S S S S H H H	Sbm/ Dh/ Oh/ Otr/ Otr/ Ooo/ DSkt/ Swc/ Otr/ Otr/

			5tatic lev	water el						
Total depth below land surface (feet)	Casing Oepth Oiame (feet) (inch		Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9p9)	Specific conduc- tance (micro- mhos at 25°C)	рН	Well number
145 335 123 97 300 338 307 162 88 122 120 140 242 202 161 142 102 261	38 6 53 6 41 6 355 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	80;118 60;92 180;280 185;320 140;250;300 60;67;150 50;85 43;87;103 87;114 67;107 203;238 177;194 114;127;152 55;130 65;87	40 8 25 30 40 119 40 40 40 35 32 52 70 10 	10/72 5/81 8/78 12/76 7/79 5/81 10/78 11/77 9/75 6/74 5/81 10/79 5/81 7/78 9/80 5/78 5/81	4 60 5 7 7 50 15 70 40 12 30 20 15 5 5 5 8 40 16	.04	2 9 11 2 4 6	75 385 850 50 120 165 130	8.0	5c- 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
222 122 162 321 120 80 102 96 109 80 184 130 83 112 200 120 120 220 1000	41 6 41 6 41 6 41 6 41 6 6 6 6 6 6 6 6 6	78;142;200 60;78;107 85;147 250;304 82;101 68;72 96 75;90 80;103 75 90;175 70;125 76;81 85;108 85;108 80;100 140;220	60 55 8 F 26 35 38 25 29 6 22 40 35 25	4/78 6/78 5/81 5/81 5/81 10/78 3/80 6/78 6/79 5/81 11/80 3/80 10/73	12 50 20 4 30 30 5 12 8 25 10 60 25 10 8 25 25 25 25	.15 1.4 .1736 1.2 .11 .2250 .07 1.7 .16	7 7 7 2 7 7	180 225 50 220		474 475 476 477 478 479 480 481 482 483 484 485 486 487 501 502 503 504 522
200	6				200					524 525
500 COUNTY	12									526
251	88 6		50		13					Sn- 3
73 48 225	54 6 10 10 70 10		15 5 20		4 125 150					6 16 18
150 150 151 50 158 116 54 357 308	65 10 65 10 30 8 20 6 60 10 31 6 20 6 218 10 76 10		67 61 25 10 40 36 10 108 90	9/54	100 200 60 6 150 4 10 315 355	30 .06			7.1	19 20 35 36 40 49 51 60 61
604 300	6 90 10			5/63	180				6.9	70 72
50 110 95 100 130 870	21 6 30 6 36 6 26 6 32 6 37 6	65;90;105 42;91 61;89 45;120;125	2 40 21 29 43 60	9/65 7/61 5/60 4/60 1/60	8 15 7 10 10 33	.24 .2 .1 .14	7 6 	300 245 	7.2 6.8 6.5 7.6	76 77 79 80 81 89
412	37 6	110;184;245; 367	56	9/64	8					90
315 100 279 128 110 129 147 197 149 110	53 10 17 6 21 6 80 6 88 6 80 6 158 6 20 6 20 6	65;80;95 239 120 100 120 139	F 30 53 28 10 30 20 17 45 50	7/62 1/61 5/54 4/60 9/63 9/65 12/59 12/59	100 15 8 20 12 10 1 5 8 10	1.4	11 9	430	7.3	91 93 94 95 96 97 99 100 103 104 105

TABLE 20.

Well 1	ocation Lat-Long	Owner	Oriller	Oate completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/ litholog
Sn- 106 107 109 112 115 118 120 121 122 123 130 131	4042-7721 4042-7719 4044-7719 4043-7721 4042-7719 4044-7717 4043-7720 4043-7720 4043-7720 4043-7720 4043-7755 4047-7657	Warren Ball Leon Fisher K. E. Sterling Clifford Wagner G. R. Rarick Fred Boonie Gerald Renninger John Gross James McClosky Arthur Baumgardner U. S. Geol. Survey Kreamer Munic. Water Auth.	Hubler Well Drilling Co. Gilbert R. Zechman Milton H. Romig do. Gilbert R. Zechman do. Freed and Bell do. do. Go. Gilbert R. Zechman	1962 1965 1961 1962 1964 1965 1964 1966 1965 1965 1968	H H H H H H H U U	670 740 735 720 680 700 680 720 740 740 620	V S V H S V V 5 5 5 H S	Dh/ Oh/ Dh/ Oh/ Otr/ Otr/ Otr/ Otr/ Otr/ Otr/sh Sbm/
132 133 134	4048-7657 4048-7657 4051-7649	do. do. 5hamokin Oam Munic. Auth.	R. R. Hornberger	1956 1959 1949	P P P	475 47S S00	V V	D5kt/ DSkt/ Oh/
135 136 137	40S0-7649 4050-7649 4047-7652	do. do. 5elinsgrove Munic.		1956 	P P P	460 460 560	V V S	Dh/ Dh/ D5kt/
138 139	4047-7652 4051 - 7703	Waterworks do. Penns Creek Munic. Water Auth.		1948 1955	P P	S6D 715	S 5	DSkt/ Sc/
140 141	40S1-7653 40S1-7654	Water Auth.	H. K. Homberger & 5ons		P P	700	Н	Dck/
142	4048-7651	do. 5elinsgrove 5t. Sch. and Hosp.		1948	T	680 \$75	S 5	Ock/ OSkt/
148* 149	4048-7652 4048-7652	M. Pope R. Mull	Gilbert R. Zechman do.	1980 1978	H	56D 440	V V	D5kt/ls Doo/sh
150 151 152 153 154 155 156 157 158 159 160	4050-7650 4051-7650 4050-7649 4050-7650 4039-7655 4038-7659 4040-7658 4039-7657 4042-7659 4043-7656 4043-7658	Mrs. D. Shafor 5. 5haw Warren 5human 5. Young R. Kantz R. Nipple H. Williams 5. Kerstetter J. Roush G. Stahl P. Brubaker N. Hoover	do. do. do. do. do. fred C. Shiffer Gilbert R. Zechman do. do. do. do. Hubler Drilling and	1978 1979 1977 1979 1977 1980 1978 1978 1978 1978	H H H H H H H H H	480 770 505 460 460 460 460 700 540 820 620 610	V S V V S V H S S V	Dh/sh Dcsc/ Dh/sh Dh/ls Qal/ Oh/ls Ock/sh Otr/ls Oh/sh Otr/ Dtr/
162 163 164 165 166	4039-7657 4039-7654 4043-7701 4043-7703 4043-7701	G. Wagner A. Stauffer P. Arbogast H. Hull J. Hilbert	Fred C. Shiffer Gilbert R. Zechman do. do.	1977 1980 1979 1978 1980	H H H H	480 420 600 720 620	5 V 5 S	Otr/ls Qal/ 5wc/ls Swc/sh 5wc/sh
167 168 169 170 171 172	4041-7702 4041-7701 4040-7701 4041-770S 4041-770S 4041-7706	L. Goodling M. Yerger G. Sanders O. Maneval E. Apple O. Graybill	do. do. do. do. do.	1980 1977 1977 1977 1977	H H H H	680 680 800 740 710 700	5 H S V V	Dh/sh Dtr/ Ociv/ Oh/sh DSkt/ls Swc/
173 174 17S 176 177	4042-7705 4042-7704 4042-7704 40SD-7703 4047-770S	R. Spriggle S. Leitzel E. Nornhold C. Mitchell K. Hertzler	do. do. do. do.	1981 1977 1977 1980 1980	H H H H	860 720 690 620 545	S S V V	5bm/sh Swc/ DSkt/ Otr/sh Swc/ls
178 179	4046-7706 4047-7702	H. Hassinger R. Bitting	do. Eichelberger Well Orilling, Inc.	1980 1981	H	590 530	S S	DSkt/ls Swc/
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195	4047-7702 4049-7706 4048-7706 4048-7706 4051-7701 4050-7703 4050-7703 4049-7704 4050-7703 4049-7654 4049-7654 4049-7654 4049-7652 4051-7658	do. G. Renard T. Owens T. Haire R. Loss W. Smith J. Epstein J. Herrall R. Kunkel B. Danowsky A. Webb Per-Da Bros. Hepco Constr. Inc. E. Zerbe A. Walter A. Yerger	do. Gilbert R. Zechman do.	1981 1979 1980 1981 1980 1979 1979 1977 1979 1978 1978 1978 1978	H H H H H H H H H H H H H H H H H H H	\$30 79\$ 845 990 610 720 755 610 \$7\$ 830 750 \$60 600 700 54\$	555577777757557	Swc/ Dtr/sh Dtr/ Dciv/sh Otr/ Dciv/sh Sbm/sh Otr/ DSkt/ls Dciv/sh Dtr/sh

				5tatio 1ev	water /el						
Total depth			Oepth(s) to	0epth					5pecific conduc-		
below land	Cas		water- bearing	below land	0ate	Reported	5pecific	Hard-	tance (micro-		
surface (feet)		Oiameter (inches)	zone(s) (feet)	surface (feet)	measured (mo/yr)	yield (gal/min)	capacity ([gal/min]/ft)	ness (9p9)	mhos at 25°C)	рН	Well number
44	21	6		4	4/62	10		3	160	6.2	5n- 106
197 60	155 42	6 6	187 50	50 41	2/65 10/61	10 15	1.5				107 109
94 197	24 55	6 6	185	66 30	9/62 2/64			6	310	5.9	112 115
72 100	23 28	6		15 41	11/64	8	.1		260	6.9	118 120
100 85	16 50	6	75;90 68;75	12 10	2/66 6/65	25 25	1.9				121 122
100 100	.21 .40	6	67;85 45	18 17	6/65 6/68	15 13	.38				123 130
603		6								8.3	131
240 301	24 32	6		7	2/59	150 100	2.1			7.5	1 32 1 33
301	60	8				175				7.6	134
305 450	46 40	8 10		15 20	3/56	225 190	5.5 .8			7.2	1 35 1 36
487	80	8				325					137
503 145	110 35	10 6				410				6.2	138 139
370	20	6	160;330;370	115		20				7.4	140
191 448		6 6		78 98	1/61					7.2 7.4	141 142
200	180	6	183;194	50	2/80	40					148*
126	82	6	100;104;111;	28	5/81	50		9	380		149
147 175	68 56	6	94;113;137 112;160	25 25	10/78 8/79	10 8					150 151
76 201	40 46	6 6	55;65;73 75;175;196	11 18	5/81 3/79	12		2	75 	8.3	152 153
225 129	62 31	6 6	95;124	40 25	11/77 11/80	8 25	. 50	3	150	7.80	154 155
301 201	40 60	6 6	85;240 165;185	100 90	8/78 7/78	3 7					156 157
151 350	40 42	6 6	45;120;140 80;225;338	25 7 5	7/78 5/80	20 7					158 159
101 225	34 20	6	35;49;70 200	20	5/79 1/79	50 8		3	175		160 161
93 144	28 42	6	85 72;125;140	22 50	9/81 5/80	30 7	3	4	210	7.70	162 163
76 147	49 89	6	68	4	9/81	9		5	285	7.60	164
149	102	6	112;127;135 105;115;130; 140	126 15	9/81 10/80	30 40			220	7.60	165 166
90 126	40 43	6	48;80 85;108	30 25	9/80 8/77	40 15		2	130	7.60	167 168
151 151	59 42	6 6	97;151 98;140	31 60	9/81 9/77	8 12		4	215 185	7.40 7.70	169 170
246 150	210 60	6 6	235 70;96;121;	4 0 20	9/77 4/77	35 50		7	400		171 172
126	40	6	145 71;122	5	9/81	12		7	325		173
226 176	120 100	6 6	155;220 140;169	30	3/77	3 7		7	315	7.50	174 175
201 151	40 56	6 6	70;195 89;107;128;	70 29	8/80 9/81	7 60		17	440	6.90	176 177
126 75	85 2 9	6 6	141 90;95 54;57	55 34	9/80 9/81	15 50					178 179
275	80	6	180;239;261	30	9/81	15	. 07	7	260		180
225 400	42 40	6 6	166;210 121;240;381	100	9/80	9					181 182
151 201	40 42	6 6	50;116;143 68;112;195	50 40	3/81 6/80	8 10					183 184
201 115	78 63	6 6	93;124;188 83;102;108	F 15	9/81 6/79	7 13		3	205		185 186
101 76	63 42	6	90 45;60	25 20	9/77 11/79	10 30					187 188
247 151	175 59	6	206;233 64;111;141	100 40	9/81 6/78	40 8		12	310		189 190
151 151	49 84	6	72;80;140 97;115;140	50 60	4/79 8/79	8 15					191 192
125 176	82 40	6	89;123;143	46 45	9/81 9/81	9 12		2	60 205		193 194
198 226	63 42	6	135;170 88;111;213	60	5/80	6		4	180		195 196
	_			-	-,						

						_		
	location			Oate		Altı- tude of land surface	Topo- graphic	Aquifer/
Number	Lat-Long	Owner	Oriller	completed	Use	(feet)	setting	lithology
Sn- 197 198 199 200	4050-7658 4049-7658 4052-7659 4048-7659	G. Brouse J. Hunsberger G. 8asian D. Sprenkle	Gilbert R. Zechman do. do. do.	1977 1978 1977 1978	Н Н Н	765 860 545 570	S S S	Ocsc/sh Ocsc/ Oh/sh Oh/
201 202 211	4052-7650 4053-7650 4043-7700	J. Fedder R. 8rubaker P. Rice	do. do. do.	1980 1980 1978	H H H	700 630 560	S H V	Dcsc/ Dcsc/ Doo/
212 213	4043-7659 4045-7709	H. Heintzelman R. Thomas	do. do.	1977 1981	H H	660 600	S V	Dh/ Swc/sh
214 215 216 217 218 219 220 221 222	4045-7711 4047-7710 4047-7710 4048-7708 4048-7708 4047-7710 4043-7713 4046-7712 4048-7713	P. Thomas D. Fritz D. Jay D. Benfer D. Rine C. Brouse S. Moodling W. Herman E. Grego	do .	1981 1980 1980 1977 1977 1977 1979 1978	* * * * * * * * * * * * * * * * * * *	640 720 720 720 700 710 700 610 760	V S S V V V V	Swc/sh Dh/ Dh/sh Dtr/sh Otr/sh Otr/ Sbm/sh Otr/ Swc/sh
223 224 225 226 227 236 237 238	4049-7709 4050-7708 4046-7717 4046-7717 4046-7716 4047-7659 4049-7656 4048-7656	T. Hummel R. Moyer J. Stacey P. Wenger C. Zerbe R. Bilger C. Lonq B. Long	do. do. do. do. do. do. do. do. do.	1978 1979 1979 1979 1978 1980 1979	н н я н н н	760 720 760 880 720 520 880 690	V V S S S H H	DSkt/ls Doo/sh Swc/sh Swc/ Swc/ Dh/ Dciv/sh Oh/sh
239 240	4048-7657 4047-7659	G. Yerger Keister's Auction	do. do.	1980 1978	H N	540 550	S S	Dh/ Swc/sh
241 242	4046-7658 4046-7654	A. Kissinger R. Savidge	do. do.	1978 1980	H	860 460	\$ \$	Sc/sh Oskt/ls
243 244	4046-7659 4047-7659	J. Campbell M. Fisher	do. do.	1977 1979	H	950 600	H S	Sc/ Swc/
								NOINU
Un- 17 24	4052-7659 4054-7712	Rosedale Dairy Laurelton St. Sch. and Hosp.	Kohl Bros., Inc.	1933	N P	530 985	V S	OSkt/ls Sbm/
59	4053-7659	New 8erlin Munic. Waterworks			Р	755	Н	Sc/
61	4053-7659	do.		1960	Р	680	S	Sc/
102 103	4051-7715 4051-7716	Walter Keefer Greg Ratherman	Robert H. Zimmerman Gilbert R. Zechman	1 97 8 1 97 7	H H	700 760	S H	Sbm/ Sbm/ls
104 105 106 107	4051-7717 4051-7717 4051-7718 4052-7712	H. E. Ammon George Mowery Harold Klauger O. Ott	do. do. do. do.	1978 1977 1977 1980	H H H H	730 740 835 620	V V V	Sc/sh Sc/sh Sc/sh Swc/sh
108 109 110 111 112 113 114 115 116 139 140 141 142 151 152 153 168 171 172 173 172 173 175 201	4052-7712 4052-7712 4052-7712 4052-7712 4051-7713 4051-7713 4051-7713 4052-7715 4053-7658 4053-7658 4052-7702 4053-7702 4053-7702 4053-7702 4053-7702 4053-7702 4053-7703 4054-7710 4052-7711 4053-7711	E. Wright D. Snook L. Camp C. Hoey G. Baker B. Bingaman J. Galer P. Bingaman J. O'Angelo R. Kline B. Vonada J. Keister T. Spangler G. Virchick R. Sauers Manbeck Motors D. Mack C. of Faith E. Catherman R. Boyer J. Voneida R. Schell J. Boob S. Lowry	do. do. do. do. Robert H. Zimmerman do. do. do. do. do. do. do. Silbert R. Zechman do. do. Robert H. Zimmerman Gilbert R. Zechman do. Robert H. Zimmerman do. Robert H. Zimmerman do. do. do. do.	1977 1977 1979 1978 1978 1978 1978 1978	н н н н н н н н н н н н н н н н н н н	625 630 635 640 680 690 640 720 570 510 780 980 640 760 630 665 575 750 625 730	S S S S S S S S S S S S S S S S S S S	Swc/ls Swc/ Swc/ Swc/ Swc/ Swc/ Sbm/sh Sbm/ Sc/sh Sbm/ Dh/ Sc/

				5tatic lev							
Total depth below land surface (feet)		ing Oiameter (inches)	Oepth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9p9)	5pecific conduc- tance (micro- mhos at 25°C)	рН	Well number
151	42	6	120;142	45	10/77	7					Sn- 197
523 76 151	46 40 58	6 6 6	148;216;514 45;62 60;83;107;	83 25 23	9/81 5/77 9/81	7 30 10		5 7	340 250		198 199 200
226 150 101	40 60 41	6 6 6	67;140;215 103;139 62;76;82;	60 40 22	10/81 3/80 9/81	6 25 20		-	150 180	- 7.40	201 202 211
126 151	40 40	6 6	95;115 58;70;138; 148	25 5	6/77 2/81	40 50			240	7.50 	212 213
151 151 290 76 76 76 151 176 300	67 40 51 40 42 40 42 60 40	6 6 6 6 6 6 6 6	90;133;145 128;138 89;140;280 50;65 70 41;62 142 97;168 95;210;230;	52 43 20 15 30 70 9	9/81 9/81 4/77 7/77 2/77 5/79 8/78 3/76	15 15 20 6 8 20 8		4 4	165 230 	8.00	214 215 216 217 218 219 220 221 222
271 124 176 201 122 86 151 215	242 105 79 86 82 42 46 42	6 6 6 6 6 6	285 247;262 106;115 160 150;165;187 87;118 45;63;80 50;73;124 112;137;205;	60 30 20 60 30 84	8/78 7/79 9/81 5/79 3/79 9/81	35 15 20 7 20 8 15		5 6 8	230 240 310	7.40 7.90 	223 224 225 226 227 236 237 238
226 150	42 112	6 6	213	 45	7/78	6 12					239 240
226 151	121 40	6 6	148 150;220 74;93;122;	61 5	10/81 2/80	9 10			120		241 242
300 200	60 41	6 6	143 190;275 60;120;151	120 60	3/77 3/79	5 4					243 244
COUNTY											
180 606	43 42	6 10	300;400;500;	F 8		100 42	4.5				Un- 17 24
125			606			5				7.2	59
390	40	6	40;68;150; 390			20	1.4			7.2	61
80 426	40 20	6 6	65 60;142;395; 408	40	1/78 4/77	60 15					102 103
125 76 101 76	66 40 60 40	6 6 6	98;115 52;61 66;80;96 57;62;65;	10 7 27 20	9/78 1977 11/80 9/80	30 50 15 30		3 8	65 350	7.50	104 105 106 107
76 122 151 120 165 247 105 98 198 226 126 294 400 376 148 126 148 101	40 63 105 61 21 34 42 63 83 98 43 42 21 114 20	666666666666666666666666666666666666666	45;73 90;115 114;120;143 98 143 211 48;78 77 96;172 85;165;180 95;107;120 110;280 44;224;363 97;124 114;120 60;123 50;80;97	20 20 30 70 40 30 40	4/77 10/77 6/79 8/79 11/79 6/79 11/79	25 45 20 30 12 5 8 8 12 7 5 30 5 3 5 12 60 20		7	315	7.40	108 109 110 111 112 113 114 115 116 139 140 141 142 151 152 153 168
126 123 248 98 195 170	46 44 21 18 42 21	6 6 6 6 6	62;123 85;112 72 125;159 148	15 16 5 	8/78 10/81 10/81	6 20 6 15 10 40			200		172 173 174 175 201 202

TABLE 21, RECORD OF SPRINGS

Spring number: A serial number assigned to the described spring (see Plate 1).

Location number: Oegrees, minutes, and seconds of latitude and longitude, respectively.

Oischarge: M, measured, E, estimated; R, reported.

Use: C, commercial; H, domestic; N, industrial; P, public supply; U, unused.

Aquifer: Mmc, Mauch Chunk Formation; Ooo, Onondaga and Old Port Formations, undivided; OSkt, Keyser and Tonoloway Formations, undivided; Swc, Wills Creek Formation; Sbm, Bloomsburg and Mifflintown Formations, undivided; Sc, Clinton Group; Oj, Juniata Formation; Obe, Bald Eagle Formation, Ocn, Coburn Formation through Nealmont Formation, undivided; Obl, Benner Formation through Loysburg Formation, undivided.

Spring number	Location (Lat-Long)	Owner/ Name of spring	Use	Altitude of land surface (feet)	Aquifer	Oischarge (gal/min)	Oate	Temper ature (°C)
		CENTRE COU	NTY					
Ce-Sp- 3	405300-773631	W. P. Campbell/Penns Cave Spring	С	1160	0cn	3,420 (M)	11/71	10.8
. 4	405121-773431	/Rising Spring	N	1100	061	5,400 (M)	11/76	9.5
6	405551-772611	Rebersburg Water Co./	Р	1420	0be	30 (E)	7/62	
7	405607-773123	Madisonburg Water Supply/	Р	1440	0be			
22	404735-773639	Mt. Acres Country Club/	C	1540	0j	2 (M)	11/71	11.
23	405241-772802	/Weaver Spring	i)	1060	061	3.140 (M)	6/67	
24	405213-772716	/Coburn Spring	Ü	1030	0ь1	220 (R)	9/67	10.
25	405525-772904	/Spring Bank	Ü	1212	0cn	580 (M)	6/67	10.
25	405535-772808	/Elk Creek Spring	i)	1215	0cn			
29	405608-773122	Madisonburg Water Co./	P	1470	0be	30 (E)		
30	405607-773117	Madisonburg Water Co./	P	1480	0be	35 (E)		
31	404720-773815	S. Wilson/	Н	1400	Ocn	< 2 (M)	10/80	10.5
_		PERRY COUN	ТҮ					
Pe-Sp- 2	401943-771440	Perry County Warm Springs Lodge/	C ·	500	000			17
3	402110-771240	/Falling Spring		560			10/1883	12
5	402045-773058	81ain Water Co./	Р					
7	402045-771334	/	Ü	440	000	25 (E)	9/75	13.
8	402054-771316	H. Stambaugh/	H	460	000			13.
9	402113-771347	Morris Loy/	Ü	525	OSkt	7.5(M)	10/75	12
10	401737-773530	Or. Wengert/		795	Sbm			12
		SCHUYLKILL CO	DUNTY	_				
Sc-Sp- 2	403520-763259	Rhinhart/	Р	755	Mmc			
3	403816-763037	Hegins Water Co./	Р	830	Mmc	50 (R)	10/30	
4	403729-763729	Joseph Henry/	Р	640	Mmc			
5	403819-763042	Hegins Water Co./	P	810	Mmc			
6	403729-763729	Joseph Henry/	Р	640	Mmc			
7	403520-763257	Reinhard/	Р	760	Mmc	30 (E)	9/30	13.
8	40 35 37 - 76 3 304	Philadelphia Coal and Iron/	Р	920	Mmc			
		SNYOER COU	NTY					
Sn-Sp- 1	404315-770120	Freemont Water Co./	Р	610	000	7 (E)	9/64	
2	405149-770418	Troxelville Water Co./Moyer's Spring	P	800	Sc	10	8/34	
3	405153-770353	Troxelville Water Co./ Bell's Spring	P	700	Sc	10	8/34	
4	405144-770426	Troxelville Water Co./Middlesworth Spring	P	780	Sc	10	8/34	
		UNION COUN	TY					
Un-Sp- 3	405328-770520	Chambers Estate	Н	610	Swc	250		11.5

2 W H

EXPLANATIO

	UNIT	GEOLOGIC DESCRIPTION	WATER-BEARING PROPERTIES
_		APPALACHIAN MOUNTAIN SECTIO	N
PENNSYLVANIAN	LIFWELLYN FORMATION	Gray, fine to coarse-grained sandstone, siltstone, and shale; some conglomerate and authorists coal.	Yields small to moderate supplies in unmined areas; median yields are 20 and 29 galimin for domestic and nondomestic wells, respectively. High levels of iron and manganese are a persistent problem.
PENNSYL	POTTSVILLE GROUP	Gray conglomerate, conglomeratic sandstone, sandstone, siltstone, and some nathracite coal.	Limited data are available; probably yields small to moderate amounts of saft to moderately hard water; high from and manganese are a common groblem.
	MAUCH CHUNK FORMATION	Interbedded brownish-gray to grayish-red siltstone, claystone, and brownish-gray to pale-red, poorly cemented sandstone	Median yields of 16 nml 70 gal/min for domestic and nondemestic wells, respectively; more than one third of the wells trilled for high yields produce over 100 gal/min. fligh nitrate may be a problem in agricultural areas.
MISSISSIPPIAN	POCONO FORMATION	Light-gray to medium-dark-gray sandstone and minor siltstone; com- monly conglomeratic at the base and in the middle.	
ž.	SPECHTY KOPF FORMATION	l.ighi- to olive-gray, crossizedded samistone and siltstone.	Unimportant as aquifers because of high topographic position; small supplies of soft water may be possible.
ZYZ	Part Part	Succession of grayich-red sandstone, sillstone, and shale; some gray sandstone and conglomerate.	Yields anuil to modernte supplies; meilion yields for donestie and nendomestic wells are 14 and 50 gul/min, respectively. Over one third of the wells produce water high in iron and manganese.
1	TRIMMERS ROCK FORMATION	Medium-gray to olive-gray siltatone, shale, and some very fine grained sandstone, 100 feet of dark-gray to blinck shale occurs at the base.	Median yield of domestic wells is 12 gal/min; small and some modernte-sized supplies are possible. Over one third of the wells produce water high in iron and manganese.
	HAMILTON GROUP On	Concests of the Mahantango Formation and the Marcellus Formation, Mahantango Formation—Gray, brown, and olive siltatone, light-olive gray sitly elaystone, and fine-to concre-granied siliceous sandstone, Marcellus Formation—Blinck to dark-gray elaystone, medium-gray siltatone, and very fine grained sandstone.	Median yields are 16 and 75 gul/min for domestic and nondomestic wells, respectively. Over two thirds of the wells produce water high in iron and manageness photogen salfide is often a problem, especially in the lower part of the unit.
	ONONDAGA AND OLD FORT FORMATIONS, UNDIVIDED	Onondaga Formation—Shaly limestone interbedded with calcareous shale. Old Port Formation—Sequence of gray chert, siltstone, chystone, medium: to coarse-grained sandstone, and shaly limestone.	Too thin to be of importance as an notifer in most of the basin; large yields of hard water may be possible at a few locations.
	KEYSER AND TONOLOWAY FORMATIONS, UNDIVIDED	Reyser Formation—Gray limestone, argiliaceous limestone, and chystone. Tonoloway Formation—Dark- to medium-gray laminated limestone and argillaceous limestone.	Very large yields are possible; median yields of domestic and non- domestic wells are 15 and 100 galfutin, respectively. Water is very hard; high sulfates are reported to be a problem in some localities.
	WILLS CREEK FORMATION	Olive- and greenish-gray, culcareous and nonculcareous shale and argillaceous funestone; a few interbeds of grayish-red shale and gray, fine-grained sandstone.	Median yields are 15 and 20 gal/min for domestic and nondomestic wells, respectively; large supplies may be possible. Water is hard to very hanl.
	BLOOMSBURG FORMATION So St	Bioomsburg Formation—Grayish red shale and mudstone centaining some interbeds of light-gray, very fine grained sandstone some interbeds of light-gray calcorroom shale and intribedded medium- to dark-gray line-totue.	Yields sufficient quantities for small to moderate supplies; median yield of domestic wells is 12 gal/min. Helf of the samples collected contained excessive iron and manganeso.
	CLINTON GROUP	Consists of the Recler and Rose Hill Formations. Keefer Formation—Light-to dark-gray, hematific sandstoncontaining interface) of dark-gray shale and function. Rose Illi Formation—Light-olive-gray to brownib-gray skale cost-toining some minor interbedded siltations and sandstone.	Median yield of domestic wells is 12 gall/min; large supplies are generally difficult to obtain. Water is soft to moderately hard,
_	JUNIATA FORMATION	Light to medium-gray sandstone and minor interhedded male.	
	BALD EAGLE FORMATION	Brownish to grayinh red sandstone; some siltstone and stale. Gray to olive gray and grayish red, fine- to coarse grained sandstone	Limited data are available; should provide anall supplies of soft groundwater.
	REEDSVILLE FORMATION	and some congrumerate.	Yields small to moderate supplies: median yield of 16 domestic wells
	COBURN FORMATION THROUGH NEALMONT FORMATION, UNDIVIDED	Medium-gray, thin to medium-bedded ality shale and shaly sitetone; a few interheds of very fine grained sandstone. Coburn Formation—Medium gray limestone. Salona Formation—Very dark gray to black shaly limestone and	Yields small to moderate supplies; median yield of 16 domestic wells 18 27 galfmin. Water often condains excessive from and manganese and occasionally contains objectionable amounts of hydrogen sulfide.
	BENNER FORMATION THROUGH LOYSBURG FORMATION, UNDIVIDED	calcareaus shale. Nealmont Formation—Medium rays limestone and Nealmont Formation—Medium rays limestone. Benuer Formation—Light to dealy/cray, thick-leaded linestone. Smyler Formation—Light to nedwork-gray limestone. Haster Formation—Medium gray predictions limestone. Loyaburg, Formation—Medium gray arguinecous limestone. Loyaburg, Formation—Medium gray arguinecous limestone overlying laminated, dolomitic limestone and dolomite.	Micdlan yields are 12 and 60 gal/min for domestic and nondomestic wells, respectively; small to moderate supplies can generally be developed. Water is very lined.
	BELLEFONTE FORMATION AXEMANN FORMATION	Primarily medium- to thick bedded, gray dolomite containing minor amounts of chert and sandstone.	Limited data are available; large supplies of very hard water may
	04	Mainly limestone; contains a few layers of dolomite.	ne positive.
	MARTINSBURG	GREAT VALLEY SECTION (west of Susquehaza	n River)
	One FORMATION On HAMBURG SEQUENCE ON	Chiefly dark-gray shalo (Om), separated by a middle member con- sisting of gray-wacke sandstone and sillation (Orage); a this pase of argillacous lineation occurs at the base (Om). East of Gardle, the unit is replaced by a hele-organeous sequence of rocks conducting of red, green, and gray shale and sillation (Oh), course sandstane and gray-wacke (Ohg), and limestone conglomerate and investigan (Oh).	Well yields are sufficient for small to moderate supplies; maximum reported yield is 200 galimin. Water is olien light in fron unlamninganese, and occasionally high in hydrogen sufficie.
	CHAMBERSBURG FORMATION ∞	Dark-gray, thin to medium-bedded, nodular limestone and minor units of thin, argillaceous limestone.	Yields adequate amounts of water for small to moderate supplies; calculated median sautained yield is 11 gal/min. Water often contuins high concentrations of from suit management.
	ST. PAUL GROUP	Light-gray, thick-hedded high-calcium limestone; medial zone of medium-gray, black-chert-hearing limestone and dolomite;	Yields ample amounts of water for small to moderate supplies; calculated median sustained yield is 82 gal/mln. Water is very hard and high in dissolved solids.
,	PINESBURG STATION FORMATION	Thick bedded, light- to medium-gray dolomite containing interbeds of file-gray limestone.	Limited data are avoilable; probably one of the poorer yielding units in this rock sequence.
-	ROCKDALE RUN FORMATION	stedium received. Yes a middle and upper portions chaid of pixitish cast in the lower part, middle and upper portions chaid of light-gray limestone, doctonic beds occur duroughout the unit bull and most abundant near the top.	Very large yields are possible; calculated median mutained yield is 400 galvain; meat yielding zones ure toot from 100 feet in digith Witter is very hard and high in illisedveil solids
-	STONEHENGE FORMATION	Light- to medium-gray, micrograined to micritic limestons.	Limited data are available; probably yields sufficient uncounts of very hard water for small to moderate supplies.
	SHADYGROVE FORMATION CAU	Light-gray to pinkish-gray micritic ilmestone; a few bells of sand- stone, dolomitic limestone, and limestone.	Comparatively law yielding unit; median calculated sustained yield is 26 gal/min. Water is very hard and high in dissolved solids.
1	ZULLINGER FORMATION	Medium-gray limestone and bend-1 to	Twenty percent of domestic wells require barehole sturage in meet

	UNIT	GEOLOGIC DESCRIPTION	WATER-BEARING PROPERTIES
		BLUE RIDGE PROVINCE	THE BEARING PROPERTIES
	ANTIETAM FORMATION	Chiefly coarse-grained, quartzose sandstone; lower part is dense, resistant quartzite.	
CAMBRIAN	HARPERS FORMATION HOW ALT		
CAM	WEVERTON AND LOUDOUN FORMATIONS, UNGIVIDED	Weverton Formation—Sequence of quartz phyllites, quartzoes grayweckes, and quartaited. Luddout Formation—Darkgray, dasky-blue, or very dasky nel par- ple phyllites locally interhedded with fine-grained, laminated graywacks.	
Z K	METABASALT ^A	Characteristically green, greenish-gray, and gray, massive, well- cleaved rock of fine to medium grain size.	
MBRIAN	METARHYOLITE	Mainly bard, dense, fine-grained rack of purplish color, it part con- taining isolated cryatals of field-part and quartz.	Twenty-five percent of domestic wells have yields less than 3 gal/ms supplemental storage may be needed in many wells to meet minimu domestic needs. Water is moderately soft.
PRECA	GREENSTONE SCHIST	Greenish gray, has rous phyllite and schist.	Limited areal extent; wells are likely to produce small experti-
	- Indiana	READING PRONG SECTION	soft water.
CAM- BRIAN	HARDYSTON FORMATION	Light-gray quartzite and feldspathic sandstone; conglomerate occurs at the base.	5 Limited data are available numberly valids areall to read and
	METADIABASE	Dark-gray, fine-grained intrusives.	5 Limited data are available; probably yields small to moderate su ples of soft to moderately hard water.
RIAP	GRAPHITIC GNEISS	Consists dominantly of quartz and feldspar; contains varying amounts	
PRECAMBRIAN	HORNBLENDE GNEISS	ot graphite.	Yields small supplies that may be marginally adequate to inadequate
SREC	GRANITIC GNEISS	Light, medium grained; consists predominantly of quartz and feldspar,	
	99	Dark, medium grained; includes some rocks that are probably sedimentary in origin,	
-	Om	TRIASSIC LOWLAND SECTION	
	DIABASE /s	Medium to coarse-grained, dark-gray rock composed mainly of plagioclase feldspar, pyroxene, and accessory magnetite.	Yields small supplies of water that are often inadequate for domest use; about 25 percent of the wells require supplemental storage meet maintain needs. Water is lard and commonly of poor quals because of the shallow groundwater circulation system.
TRIASSIC	GETTYSBURG FORMATION by	Includes fire distanct lithologous that are inter-bedded with one or more of the other lithologies; fandpointerate composed of poorly serder jebs to boulded roo few fire term insures and red altistion in an est silly sandstone matrix (***0) fangiomeniae composed of pelders to grant the standard matrix (***0) fangiomeniae composed of pelders to grant the standard for the standar	Median, yield of domestre wells from all lithologues combined is galmin. Median yields for nondomestic wells range from 31 to 16 galmin; the highest yields are obtained from shale near Medic two and the lowest from quarta conjournate. Water from the quarta or identification is soft and his in indicated of the state of the formation is getterfully of good quality and hard.
Ž.	HAMMER CREEK FORMATION	Panglamerate composed of pebbles to boulders of limestone in a matrix of red or gray sandstone or shale [Mt], cobble and pebble quorit conglomerate with red sandstone (Mts), and reddish frown, fine- to coarse-grained, quaritose sandstone and a few red shale interlieds (Mt).	Median prid of domestic wells from all hitologues combined to sufferin Median yields for monotonestic sells range from 981 to pullmin, the hipports yields are obtained from 981 to 3 to from sandstone. Hardress ranges from soft for the quarte or glomerate to hard and sometimes very hard for the lineasor conglomerate.
	NEW OXFORD STORWATON FORMATION The State	New Oxford Forgettion Biodimidation and Italian of the grands statistime injertes libel with arrans a uniform, oughermate and arrans best are common in the loner past (1853). Statistic formation—light regy, occurse grained trikosic sandatone, includes rediliablication transfer and shale	Reported yields range from 1 to 330 galfmin and the median is also 12 galfmin; more than moderate amounts (more than 50 galfmin) water may be difficult to obtain. Water is generally lard; 16 perce of the well-ontained excessive from and 27 percent contained contained excessive manigates.
VICIAN	BEEKMANTOWN GROUP ⁹	Occurs in a small area near York Springs, Adams County, Primarily white or gray marble, some of which is coarsely crystalline and vened with calcite	Limited data are available, probably a lace to good aquifer that yell moderate to large quantities of very hard water
		CONESTOGA VALLEY SECTION ¹⁰	
	COCALICO FORMATION	Bluish black to dark-grap fissile shale, purple and green shale con- taining thin quartitie occurs near the base	Reported yields range from 1 to 400 galunin, also it half are less than 20 galunin. Water is probably moderately hard
	HERSHEY AND MYERSTOWN FORMATIONS, UNDIVIDED	Hersbey Formation—Dark-gray to black, thin hedded, argeliacous intestine. Myerston: Formation—Medium—to tlark gray, plinty, medium crystalline liniestone, earbonaceous at the base.	Tannied areal extent, witer bearing properties are unknown
	ANNVILLE FORMATION	Light-gray, massive, high-caleium liquesione	
٠.	ONTELAUNEE FORMATION	Gray, very finely to finely crystalline, partly laminated determite-	Limited areal extent, water bearing properties are unknown
5	PLER FORMATION	Gray interledded innestrine and dolminte, abandant white leds in the lower part.	Reported yirlds range from 1 to 600 galfirm, the median is about 30 galfirm. Hased in specific capacity data, the Stoneheage is the highest yielding outfor in the Concision Valley sego into Water's tery hard, both level of a frazira one a common problem.
ł	STONEHENGE FORMATION	Gray, finely crystalline limestone contouning dark gray silty	linglical yielding aquifor in the Conestogs Valley sequence. Water is very hard, high levels of intexte are a common problem.
	CONESTOGA FORMATION	Gray, fine-to coarse-crystalline limestone, community contains beams units that are clayey, graphitic, and rurarcode; contains bead leafs of carbonate conglomerate	Maximum reported yield to 250 galimin, typeral sustained yield calculated from open fire-capacity data is 20 galimin, along one of our well should yield 140 galimin. Water is very hard, about fail of well to exceed the hint recommended for nitrate by the Environment all Protection Agency (1978).
	RICHLANO FORMATION	Gray Interbedded linestone and dolomits, contains beds of fine conglomerate	
	MILLBACH FORMATION	White in pinkish gray interbedded limestone and dolonite.	Reported yields of six wells range from 2 to 30 gallium, based on specific repartly data these rocks are a poor source for public and understanding the same and the same and the same and the same and the same same and the same same same same same same same sam
	SNITZ CREEK FORMATION	White to punkish gray, interbeshied innestone and dolorate; scattered	specific repairing that are independent for domestic use. Water 1 vers hard and other contains high concentral) and district and distri
	Cu	begs in samistone	and the second s
-	BUFFALO SPIENTS FURNATION ZOOKS CORNER FORMATION	Gray, v.ry finely crystalline dolomite; commonly ally and sandy, contains some limitations.	Reported with of free wide range from a torjote gallium, based on specific capacity data, this unit is a poor source for public and in distinal supplies, but is adequate for domettic use. Water is very hard
	LEDGER FORMATION	laghi gray, coarsely crystallane doloratis	Rejorned yielde range from 2 to 650 gabrian, the incident is 50 gabrian. Based on ajectific capacity date, the in one of the most productive aguifers in this physiographie section, about one of four set it was estimated to have the potential for producing 100 gabrian in York-Churaty Water is very hard, high concentrations of mangain or and intrinsic means one consumed problem.

SILU	BLOOMSBURG AND MIFFLINTOWN FORMATIONS, UNDIVIDED	Mtfiliniawn Fornation—Hark gray data reosaniae medium- to dark gray ilmestoru.	COMMINITION OF THE PROPERTY OF	
	CLINTON GROUP	Consists of the Receive and Rose Hill Furnactions. Review Formation—Lights bribe kerryl, hemalife samulatone containing interlesis of talk kerryl solds and insurement. Rose (Hill Formation Interlegation of Containing Con	Median yield of domestic wells is P2 galonin; lorgo aupides are generally difficult to obtain. Water is soft to moderately hard.	
	JUNIATA FORMATION	Light to median gray sandstone and inhor interbedded value. Brownish to grayish red sandstone; some alltatone and stale.	Finded data are available; should provide small supplies of self- granulwater.	-
Ì	BALD EAGLE FORMATION	Gray to olive-gray and graylsh-red, fine- to coarse-grained samistone and some congloinulate.	, and a second	
-	REEDSVILLE FORMATION	Medium-gray, thin-to medium-bedded ality shalo and alady distone; n few interheds of very fino grained samistone.	Yiehla small to modernie supplies; median yiehl ni 16 donestie wella la 27 galbrin, Waler niten contains excessive from mil manganese and occasionally contains abjectionable ormania of hydrogen solftin.	
ORDOVICIAN	COBURN FORMATION THROUGH NEALMONT FORMATION, UNDIVIDED Oon	Column Formation—Medium gray limentone. Salona Formation—Very dark gray to black shaly limentone and calcareous shale. Neuhom Formation—Medium gray limentone. Neuhom Formation—Helbit to lark-gray, limestone. Syndray Formation—Helbit to medium gray limentone. Indiret Formation—Medium gray apilaceous limentone. Loyshurg, Formation—Medium-shedded limentone oversiying lands, dolondile limentone on delongite.	Median yields new 12 mml 50 galledn for domestic and nondomestic wells, respectively; small to moderate supplies can generally bu- developed. Water is very hard.	
	BENNER FORMATION THROUGH LOYSHURG FORMATION, UNDIVIDED			
	BELLEFONTE FORMATION	Primarily medium: to thick-bedded, gray dolomite containing minor amounts of chert and samistone.	Limited data are available; large supplies of very hard water may be possible.	
	AXEMANN FORMATION	Mainly limestone; contains a few layers of indonite.		
-	an annual and an annual and an annual and an	GREAT VALLEY SECTION (west of Susquehans	a River).	
	Ong MARTINSBURO FORMATION On On HAMBURG SEQUENCE	Chiefly durlogray shale (Orn), separated by a middle member con- sisting of graywacke anotistone and sillation (Orage), a this more argillacensis instructions occur at the base (Ons). Each of Carifole, the unit in replaced by a batterogeneous sequence of recks consisting of red, green, and ergor shale and sillations (Ols), name of consisting of graywacke (Olig), and limestone conglorerate and limestone (Olig).	Well yields are sufficient for small to medicrate supplies, maximum reported yield in 200 galfrin. Water is often ingå in non and innaganese, and occasionally high in hydrogen auffole.	
NAI	CHAMBERSBURG FORMATION	Dark-gray, thin- to medium-hedded, nodular limestone mist minor units of thin, argillaceous limestone.	Yields adequate amounts of water for small to inoderate supplies, calculated medium sustained yield is 11 galatim, Water aften contains high concurrations of Iron and manganese.	
ORDOVICIAN	ST, PAUL GROUP	Light-gray, thick-beilded high-calcium limestone; meilial zone of medium-gray, black-chert-bearing limestone and indomite.	Yields ample araounts of water for small to moderate supplies, calculated median sustained yield in 82 gal/min. Water is very hard and high in dissolved solids.	
ORO	PINESBURG STATION FORMATION	Thick-beilded, light- to medium gray dolomite containing interbeds of blue-gray limitations.	Limited data are availede; probably one of the power yielding units in this rock sequence	
-	ROCKDALE RUN FORMATION	biction bedded, very "rest gray, after the rest in the sinks of all in the larver part, tailedle and upper portlant contact of light, gray binestone; tolonate beds occur throughout the nor but are most abundant near the top.	Very large yields are possible; calculated median austarned yield is 405 gal/min; most yielding zones are less than 100 feet in depth, Water is very hard and high in dissolved solids	
İ	STONEHENGE FORMATION	Light- to medium-gray, micrograined to micritic limestone.	fimited data are uvailable, printably yields sulficient amounts of very hard water for small to moderate supplies.	
	SHADYGROVE FORMATION	Light-gray to pinkish-gray micritle limentone; a few beds of sand- stone, dolomitic limestone, and limestone.	Commutatively low yielding unit, median calculated sustained yield in 26 gal/min. Water in very hard and high la dissolved solids	
	ZULLINGER FORMATION Cr	Medium-gray limestone and banded limestone containing sliceous seams; some thick beds of dolomite and calcareous sandstone	Twenty percent of domestic wells require borehole atmage to incet minimum needs; calculated median sustained yield is 82 gal/min. Water is very bard and high in dissolved solids	
RIAL	ELBROOK FORMATION	Interhedded calcareous shale, as gilluceous limestone, and limestone in beds a few feet to tens of feet thick.	Very large yields are possible, calculated median sustained yield is 218 galimin. Water is very hard and high in dissolved solids.	
CAMBRIAN	WAYNESBORO FORMATION	Quartritic sambitone containing thick interbeds of medium to dark gray sifty mudstone; probably includes some interbeds of carbonate rocks.	Lamited data are available, calculated median sustained yield is 172 gal/min. Water is very hard and high in directed soluls	
	TOMSTOWN FORMATION	Covered with alluvium and colluvium throughout the area, massave dolontee is present in the middle of the unit; limestone, substane, and claystone probably occur in the lower part and possibly in the upper part.	Very large yields are possible, calculated median sustained yield is 1,650 gol/min, overlying alluvium may cause drilling and development publiens. Water ix hard and high in dissolved solids.	
		GREAT VALLEY SECTION (east of Susquehann		
	One On HAMBURG SEQUENCE	Variable lithology, prurarily greenish gray shale (Oh), leaser arounts of graywacke (Ohg), shale containing zones of graywacke (Ohg), limestone (Oh), and andesite extrusives (Ohe).	Yeals small to undersic amounts of water, median yields of thomester, wells range from about 10 to 20 galmin, median yields of nondomester wells range from alsout 60 to 20 galmin, although some parts of the unit are reported to have a neithous juyded in excess of 100 galmin. Water is generally hard and contours a moderate amount of dissolved soluls.	
	HERSHEY AND MYERSTOWN FORMATIONS, UNDIVIDED	Hershey Formation—Dark-gray argillaceous linestone. Myerstown Formation—Gray, crystalline, thin-hedded limestone.	Limited data me available, reported to be poor inquifers. Water is very hard and high in this olved solids.	
RDOVICIAN	ANNVILLE FORMATION OF ONTELAINEE FORMATION	Light-gray, finely crystalline, thick-bedded high-calcium limestare Medium-dark-gray dolonite containing interbeds of medium-gray	Very large yields are possible; median yield of nondomestic wells is in excess of 100 galfirms, some wells yield 1,000 galfirm or more Water is very hard und very high in dissolved solids.	
ORD.	EPIER FORMATION	Interbelded medium-gray limestone and dolonite, containing calcarenite leases.	Very large yields are possible from parts of the unit, median yield if nonlomestic wells is in excess of 200 galvins, some wells yield 1,000 galvin or more. Water Is very bard ind high in dissolved solids.	
	RICKENBACH FORMATION	Gray, wherty dislocate containing subscriming lineatune laterbeds	Limited data are available; median yield of four domestic wells in 18 gallonin. Water is very hard and blab to deserved solds.	
1	STONEHENGE FORMATION	Medium-gray crystalline limestone, cherty in the upper part; limestone conglomerate is piesent near the base.	Specific-capacity ilatit suggest that large yields are possible; median yield of alx ilomestic wells is 20 gal/mm, Water is very hard and high in disolved soluis.	
	RICHLAND FORMATION	Gray, Ihick-bediled, finely crystalline dolomlie containing some in- terbeils of limestone and chert.	Moderate to large supplies are possible, median yield of ilumestic wells in 11 galfmin and median yield of nondomestic wells is 200 gal/min. Water is very hird and high in dissolved solids.	
z	MILLBACH AND SCHAEFFERSTOWN FORMATIONS, UNDIVIDED	Millingh Formation—Pinkish gray to light-gray luminated lime-stone. Schuefferstown Farmation—Light-to medium-gray, finely crystalline limestone.	Moderate to large supplies are possible; reported median yields of domestic and nonlomestic wells are 40 and 190 gallmin, respectively. Water is very hard and high in clissofved soluls.	
CAMBRIAN	SNITZ CREEK FORMATION	Mislium-gray the limite; sanilatone bests are present near the top.	Yielib sufficient immunts of water for small to moderate supplies; large supplies are possible in some areas; median yieli of aix domestic wells is 0 gal/min. Water is very hard and high in dissolved solids.	
ŏ	BUFFALO SPRINGS FORMATION	Light- to pinkish-gray limesione interbedded with light-gray dolomite.	Medians are 10 and 82 galtinin for ilomostic and nondomestic wells, respectively; about 25 percent of the nondomestic wells have yields in excess of 160 galtinin. Water is hard and high in dissolved sollids,	
	LEITHSVILLE FORMATION	Prediminantly gray isolomate with consulerable chert in the lower part, shally in the upper part.	Limited data are available, reported median yield of 100 gal/min for three numbonistic wells in Lebanim County suggests that large yields are possible. Water is probably hard to very hard.	
Alice p atlyder allyder allyder alloder atlace	dage Formation through Fourno taland Formation turbed and Formation Becker and Boot [1961] and Beck- logic data form Carswell and others (1968, Arish- logic data form Taylor and Boyer [1981], occurs in the Furcon (Illia region of Adense and Yo- jusced data Form Boyer (1961).	L uodivided. Not stotled diended verlal extent e ned Taylor (1982) er (1983), Wood and MacLachiau (1978), and Royer (1983)		

-	\$11	Parethers rate economist of sociales to Lenders of Houstone to a	Meritan yield of doncests, wells from all lithologue combined is 29 gallion. Median yields for non-discretic wells mayor from the Com-
	HAMMER CREEK FORMATION	Paughun rate composed of petbles to benders of imprisone in a matrix of red or gray sandstone of slade. It is added and petble instruction of red or gray sandstone of slade. Increased registrations from the range of failured, quartition sandstone and in few yeel shade in her for the range of failured, quartition sandstone and in few yeel shade in	Mentar yield of domestic wells from all lithologue concluded in 30 galtinon shellow; with for rand success seells range from the lot M yaltinon, the following from the lot M yaltinon, the following from the last disc lower from success; and the lowest from success; and the forest from success and following from the
	NEW OAPORIS FORMATION In Se	New Oxford Formallon—Red moditions and shale and for promise similations introlledded with arthuic conditions; composite that not profined below necessarily of block for monitors. But below Furthern 1998 took for Furnation—Inglificacy, outsing rand at howeful though modification and chain and chain the profit for the furnation.	But need ye discoupe from to institute or mand the medium relative and re- main moderation moderate amounts from their Policy of the and the application of a safe production to the above of the application of the second of the second of the second of the application of experience into and all persons contained as the contained as
VICIAN	BEEKMANTOWN GROUP	Decurs in a small area near Yurk Springs, Adams County, Francely white or gray markle, name of which is coursely crystalline and sensel with calcute.	Limited data are as when a country a fair to greek signifier that ye so incolerate to large opinities of our hard water.
_		CONESTOGA VALLEY SECTION ¹⁸	
	COCALICO FORMATION	Blundeldack to dark gray fissile shale; purple and green thate con- tioning thin quartistic occurs near the base.	Reported yields range from the 160 gallmin about talf are beaution 20 gallmin. Water is proceedly moderately hard.
,	HERSHEY AND MYERSTOWN FORMATIONS, UNDIVIDED	The they Fermition. Hark gray to black, thin-hedded, analysis of linestone. Merchanton. Mechanic to dark-gray, platy, medians crystoline linestone, carbonaceurs at the lase.	Limited area caunit, water learning properties are species.
X CALC X	ANNVILLE FORMATION	Light gray to gener, high calcium limestope,	section of the state of the sta
	ONTELAUNEE FORMATION	Gray, very funly to fixels ers tailing, partly laminated delamite	Literard word on a constraint
)	EPLER FORMATION	Heav introduction Conceptorary and dislocate objective white lock on	I mated anal erbint, water beauty property in the loss of
	0+ STOREHENGE FORMATION	De low r jart	Reported juries ringle from 1 poolers as a monored in a 30 galarin. Based in specificacy of that the survive probability high large engages. Was seen hard, high levels of satisfactors are a non-non-prosess.
	ts to the state of	Gray fited) stretalline accisions contaming dark-gray sittle laminations	set) proof pitty feach of agrees are a on a configuration of a
-	CONESTOGA FORMATION	bray five to convert the line is the examinary contains limited and large graph of the contained ballbeds of carbotic configurations.	Manmum reported youl on 200 galliens, typeed outsired calculated from the first story, data on against the conservation with story of the conservation of the conservation of the conservation of the first story and destination of the first story and the first story of the first s
	RICHLAND FORMATION	Gray interhedded lime-time and the mater contains beds of fine conglorinerate.	
	MILLBACH FORMATION	White to peaks highes into streethed in a cane and distingly	
	SNITZ CREEK FORMATION	Winte to parked egray, interhedded him the and didunite, wattered	Reported yields of an Acia range from a to 30 galerian, the specific capacity data these rocks are a poor where for point a colorizational supplies for an are adequate for donestic use. Water is constrained with months of the content of the conte
	g Cte	beds of sandstone.	hard anisothen consumes 1, th concentrations of retrate and 02 of 1.
	BUFFALO SPRINGS FORMATION	Gray, angillaceous, sity, and eardy delomite.	
	ZOOKS CORNER FORMATION	Gray, very factly expetablished the entropy of the end swifty our tains some limitation	Reported yields of five wells range from 3 to 105 gal/min; based on tiestifu-capacity data this unit is a poor source for public and in- lustrial supplies, but is adequate for domestic use. Water a very our t
CAMBRIAN	LEDGER FORMATION	Lighturay, coarsely crystalline dolorate	Beyond picks range from 2 to 30 palmin, the needs in 50 palmin Rased on the pick capacity data, this is one of the most product a squifer in the pip objectable section and it will discuss the extendated to that the pick objectable section and it is of a reality and extendated to that the pick objectable of income of productions of mangations and intrale are an excessional policy for many the intrale are an excessional policy.
U	KINZERS FORMATION	Gray, rusty-weathering shale and angillaceous to sandy limentone as a dolorate	Limited sheal extent, maximum reported yield at (1) galimin, raised as a pose upster for large suppose based on specific-agrainty lists. Water from viale is hard and exter from limestyine and dolomo surp hard.
	VINTAGE FORMATION c,	Largely gray, thick-hedded to massive, finely crystalline dolorate, upper part is primarily pure, fine grained limestone.	Limited artial extent, maximum reported yield is 3/9 gal min, rober as a fair source for ange supplies based on specific capacity data. Water is hard to very hard
	ANTIETAM FORMATION	Fines to medium grained phythtic quartitie, in places blush-pink.	Beported yields range from 3 to 10 gal min and the median is ato 2 by the min, based on specific capacity data this is one of the lower yielding units in this physiograph is section. Water is soft and e is in dissisted to dit.
	HARPERS FORMATION	Dark-greenish gray phyllite, contains beds of green and gray quarte- ite, and some graywacke sitistone and graywacke.	Reported solds range from 1 to 100 galimo and the median or, go min. Water is off, to moderately hard and relatively loss outside on the
	CHICKIES FORMATION	Massive, prominently bedded, white vitreeus quartitie, in place black shing slate confaming numerous zones of quartitite; basal quartities conglomerate is commonly present.	Reported yields range from 1 to 100 gal min, about half are less than $h(\chi)$ min. Water is soft and low in dissolved solds; $h(\chi)$ from and manganese are an occasional problem.
		PIEDMONT UPLANDS SECTION ¹¹	
	SERPENTINITE Xa	Dark green serpontine mottled with light green	Limited data are available; probably yields small supplies of ~ 0; water
ZOIC	PEACH BOTTOM SLATE AND CARDIFF CONGLOMERATE, UNDIVIDED	Peach Bottom Slate—Blue-black slate finely lustrous on deavage surfaces Cardiff Conglomerate—Greenish-gray quartz conglomerate with missionite partings	Limited area of closs (a. = p = p al apply as of al Dota are pumped at a rate of all at this galaxies), another year. Water a soft and (a. b. 10%) and solids.
PALEO	PETERS CREEK SCHIST	Series of light-greenish gray muscosite, chlorite, and quartz schists intersedded with quartate	Reported yields range from 1 to 60 gal min, about half are 10 gal min or less. Water it soft and low in dissolved solids, high concentrations of iron are a frequent problem
PROBABLY LOWER	WISSAHLCRON FORMATION AND AND AND AND AND AND AND AND AND AN	Includes the following: abite-chloric schist [Xwe], Marling Schist [Xwn]—bluish-gray to silvery-green, fine-grained schist, Walefield Marile (Xwa)—blue, this fedded, crystalline limestron; meta-volcames (Xwe), and objectisce-meta-schist (Xw.).	Reported poids more from 2 to 160 pal must the median is appraimately 10 sections. Based on preside expandy data, moderate is made to preside expandy data, moderate is described to the proposal proposal position. Based on data and data of the median decided solids, high iron and futrate concentrations are a frequent problem.
PRECAMBRIAN PRO	METAMORPHIC AND INCOME OF THE PROPERTY OF THE	facilides the following pegmatite (Appl., metagrables (Argit metadrabase (mdl. quarts monante and quarts monance gress iggmi, granodante and granodorite press (sggle, gables, gress) and galbre (ggas; graphite gness (ggl, and granite gress (ga).	Reported yields range from 2 to 70 gal min, the median is about 10 gal/min. Water is soft and low in desselved solids.

Geology and base map from Berg and others (1984) Hydrology by L. E. Tarlor and W. H. Werkheuer. 1984-02. Copyright David by Cornorowskith of Primovlynica. James H. Dolmpes, Cartisgrapher.

