L'absence diminue les médiocres passions et augmente les grandes, comme le vent éteint les bougies et allume le feu. (La Rochefoucauld)

Exercice 1 Déterminer la limite quand n tend vers $+\infty$ de $I_n = \int_0^{+\infty} e^{-t^n} dt$.

Exercice 2 (trick d'écriture) Soit $n \in \mathbb{N}$. Montrer que pour tout $x \in [0, n]$, $\left(1 - \frac{x}{n}\right)^n \leqslant e^{-x}$. En déduire la limite de $I_n = \int_0^n \left(1 - \frac{x}{n}\right)^n dx$ lorsque n tend vers $+\infty$.

Exercice 3 Soit $f:[0,1]\to\mathbb{R}$ continue. Déterminer

$$\lim_{n \to +\infty} \int_0^1 n f(t) e^{-nt} dt$$

Exercice 4 On pose, pour $n \ge 1$, $I_n = \int_0^1 \frac{\mathrm{d}t}{1 + t^n}$.

- 1. Déterminer $\ell = \lim_{n \to +\infty} I_n$.
- 2. Déterminer un équivalent de ℓI_n .

Exercice 5

- 1. Démontrer que $\int_0^{+\infty} \frac{t}{e^t 1} dt = \sum_{n \ge 1} \frac{1}{n^2}.$
- 2. Démontrer que, pour tout réel a, on a $\int_0^{+\infty} \frac{\mathrm{e}^{-t} \sin(at)}{1 \mathrm{e}^{-t}} \, \mathrm{d}t = \sum_{n=1}^{+\infty} \frac{a}{a^2 + n^2}.$

Exercice 6 (Subtilité...)

- 1. Montrer que pour tout x > 0: $\frac{\cos(x)}{1 + e^x} = \sum_{n=1}^{+\infty} u_n(x)$ avec $u_n(x) = (-1)^n \cos(x) e^{-nx}$.
- 2. Le théorème d'intégration terme à terme s'applique-t-il?
- 3. Intégrer terme à terme en appliquant le théorème de convergence dominée à la suite des sommes partielles.

Exercice 7 On pose, pour $x \in \mathbb{R}$, $F(x) = \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$.

- 1. Justifier que F est bien définie sur \mathbb{R} et étudier sa parité.
- 2. Justifier que F est \mathcal{C}^1 et donner une expression de F'(x) pour tout $x \in \mathbb{R}$.
- 3. Calculer F'(x).
- 4. En déduire une expression simplifiée de F(x).

Exercice 8 Montrer que $g(x) = \int_0^1 \frac{\ln(1+xt)}{t} dt$ définit une fonction sur]-1,1[au moins. Montrer que g est développable en série entière sur]-1,1[et en déduire g' sur]-1,1[.

Exercice 9 (technique!)

- 1. Soit $a \in \mathbb{C}$. Redémontrer que $\int_0^{+\infty} e^{-at} dt$ converge absolument ssi $\Re(a) > 0$ et préciser sa valeur.
- 2. Déterminer l'ensemble de définition de $g: x \mapsto \int_0^{+\infty} \frac{1 e^{xt}}{t} e^t dt$, expliciter sa dérivée et déterminer g.

Exercice 10 On pose $f(x) = \int_0^{+\infty} e^{-t^2} \cos(xt) dt$.

- 1. Montrer que f est définie et de classe C^1 sur \mathbb{R} .
- 2. Montrer que f vérifie 2f'(x) + xf(x) = 0 pour tout réel x.
- 3. En déduire f (on pourra noter $I = \int_0^{+\infty} e^{-t^2} dt$).

Exercice 11 (Après un développement en série entière)

Démontrer que
$$\int_0^{+\infty} \cos(\sqrt{x}) e^{-x} dx = \sum_{n=0}^{+\infty} (-1)^n \frac{n!}{(2n)!}.$$

Exercice 12 (fonction Γ d'Euler) On note $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$.

- 1. Vérifier que Γ est définie sur \mathbb{R}_+^* et que pour tout x > 0 : $\Gamma(x+1) = x\Gamma(x)$. En déduire $\Gamma(n)$ pour $n \in \mathbb{N}^*$.
- 2. Montrer que Γ est de classe C^1 sur \mathbb{R}_+^* et préciser sa dérivée.
- 3. Donner un équivalent de Γ en 0.
- 4. Montrer qu'en fait Γ est de classe C^{∞} sur \mathbb{R}_{+}^{*} .
- 5. Préciser la limite de Γ en $+\infty$ et esquisser son graphe. On pourra préciser $\Gamma(1/2)$ en posant $t=u^2$.

Exercice 13 On pose $F(x) = \int_0^{+\infty} \frac{dt}{1+t^x}$.

- 1. Déterminer le domaine de définition de F et démontrer que F est continue sur ce domaine de définition.
- 2. Démontrer que F est de classe \mathcal{C}^1 sur $]1, +\infty[$ et démontrer que, pour tout x>1,

$$F'(x) = \int_{1}^{+\infty} \frac{t^{x} \ln(t)}{(1+t^{x})^{2}} \left(\frac{1}{t^{2}} - 1\right) dt.$$

En déduire le sens de variation de F.

- 3. Déterminer la limite de F en $+\infty$.
- 4. On suppose que F admet une limite ℓ en 1^+ . Démontrer que pour tout A>0 et tout x>1, on a $\ell\geqslant \int_1^A \frac{dt}{1+t^x}$. En déduire que $\lim_{x\to 1^+} F(x)=+\infty$.

Exercice 14 (transformée de Fourier)

- 1. Soit $f: \mathbb{R} \to \mathbb{C}$ intégrable sur \mathbb{R} , montrer que sa transformée de Fourier $\hat{f}: x \mapsto \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$ est définie et continue sur \mathbb{R} .
- 2. On suppose de plus f de classe C^1 et telle que f' soit intégrable sur \mathbb{R} . Exprimer $\widehat{f}'(x)$ en fonction de $\widehat{f}(x)$ pour x réel.
- 3. On suppose ici que f et $g: x \mapsto xf(x)$ sont intégrables sur \mathbb{R} . Montrer que \widehat{f} est dérivable sur \mathbb{R} et exprimer sa dérivée à l'aide de \widehat{g} .