Polytech' Nice Sophia - Antipolis PeiP 2

2016/2017

FEUILLE DE T.D. 4

EXERCICES D'ANALYSE – Normes, Boules ouvertes, Boules fermées, Sphères.

Les notations sont celles du cours.

Exercice 1.

Soit $u = (x, y, z) \in E = \mathbb{R}^3$. On considère les applications suivantes :

$$\mathcal{N}_1: u \to |x| + |y| + |z|$$
 et $\mathcal{N}_\infty: u \to \max(|x|, |y|, |z|)$.

1. Montrer que \mathcal{N}_1 et \mathcal{N}_∞ définissent des normes sur E.

On note à présent \mathcal{N}_1 par $\|.\|_1$ et \mathcal{N}_{∞} par $\|.\|_{\infty}$.

- 2. Calculer $\mathcal{N}_1(u)$ et $\mathcal{N}_{\infty}(u)$ pour u=(1,-2,1). Même question pour v=(-2,3,-2).
- 3. Montrer que : $\forall u \in E$, $||u||_{\infty} \le ||u||_{1} \le 3 ||u||_{\infty}$. Donner des exemples de vecteurs u pour lesquels $||u||_{\infty} = ||u||_{1}$.

Exercice 2.

Soient a et b deux réels tels que a < b. On pose I = [a, b] et $E = \mathcal{C}(I, \mathbb{K})$ l'espace vectoriel des fonctions continues de I dans \mathbb{K} , avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1. Montrer que les applications suivantes sont des nomes sur E:

$$\mathcal{N}_{\infty}: f \to \sup_{t \in I} |f(t)|$$
 et $\mathcal{N}_1: f \to \int_a^b |f(t)| \ dt$.

On note à présent \mathcal{N}_1 par $\|.\|_1$ et \mathcal{N}_{∞} par $\|.\|_{\infty}$.

2. Montrer que : $\forall f \in E$, $||f||_1 \le (b-a)||f||_{\infty}$.

Dans la suite, on pose : a = 0, b = 1.

- 3. Soit f(t) = 2t 1. Calculer $||f||_1$ et $||f||_{\infty}$.
- 4. Soit $(f_n)_{n \in \mathbb{N}^*}$ la suite d'éléments de E définie pour tout $n \in \mathbb{N}^*$ et tout $t \in I$ par :

$$\begin{cases} f_n(0) = 1; \\ f_n\left(\frac{1}{n}\right) = f_n(1) = 0; \\ f_n \text{ affine sur } [0,1/n] \text{ et } \left[\frac{1}{n},1\right]. \end{cases}$$

Calculer $||f_n||_1$ et $||f_n||_{\infty}$ ainsi que leurs limites lorsque $n \to \infty$.

5. Existe-t-il un réel k > 0 tel que : $\forall f_n \in E$, $||f_n||_{\infty} \le k ||f_n||_1$?

Exercice 3.

Représenter graphiquement les boules ouvertes, les boules fermées et la sphère de rayon R, centrées en (0,0) pour les normes $\|.\|_1$ et $\|.\|_\infty$ de \mathbb{R}^2 .

Exercice 4.

L'application $\mathcal{N}: (x, y) \to |5x + 3y|$ est-elle une norme sur \mathbb{R}^2 ?

Exercice 5.(DM2 à rendre le 6/10/16)

On considère l'espace vectoriel E des fonctions de classe $C^2([0,2\pi])$ vérifiant :

$$\forall f \in E, f(0) = f'(0) = 0.$$

On définit les applications suivantes, pour tout $f \in E$:

$$\mathcal{N}_{1}(f) = \sup_{[0,2\pi]} |f(x)| + \sup_{[0,2\pi]} |f''(x)| ;$$

$$\mathcal{N}_{2}(f) = \sup_{[0,2\pi]} |f(x) + f''(x)| ;$$

$$\mathcal{N}(f) = \sup_{[0,2\pi]} |f(x)| .$$

- 1) Montrer que les applications \mathcal{N}_1 , \mathcal{N}_2 et \mathcal{N} définissent des normes sur E.
- 2) Montrer que \mathcal{N}_1 et \mathcal{N}_2 sont équivalentes.
- 3) La norme ${\mathcal N}$ est-elle équivalente à l'une des deux autres normes ?