"Quantitative Macroeconomics & Social Insurance - TA 4"

Valerio Pieroni

1 Income Dynamics and Life-Cycle

Consider the labor income process

$$y_{ijt} = \beta' f(X_{ijt}) + \tilde{y}_{ijt},$$
$$\tilde{y}_{ijt} = z_{ijt} + \epsilon_{ijt},$$
$$z_{ijt} = \rho z_{ij-1t-1} + \nu_{ijt}.$$

- y_{ijt} is log-income for household i with household head of age j at time t.
- $\epsilon_{ijt} \sim f_{\epsilon}, \nu_{ijt} \sim f_{\nu}$ are *iid* shocks with standard deviations $\sigma_{\nu}, \sigma_{\epsilon}$.
- Note that f_{ϵ} , f_{ν} might be non-gaussian densities.
- Two-stage estimation:
 - estimate β using fixed effects
 - estimate $\theta = (\rho, \sigma_{\nu}, \sigma_{\epsilon})$ with GMM.

Table 1: First-stage estimation

$\overline{y_{ijt}}$	(1)	(2)
Age	.128	.075
	(.078)	(.062)
Age2	002	001
	(.002)	(.001)
College	-1.672	-1.426
	(1.161)	(0.956)
High School	.749	.465
	(1.102)	(0.888)
Famsize	038***	004
N. C	(.004)	(.004)
Married	.491***	.509***
	(.018)	(.017)

Notes: Data source PSID. Fixed effects estimates. (1) before tax log-income, (2) after tax log-income. Standard errors are clustered at the household level. Sample size is 94,996 households.

Figure 1: Earnings profiles over life-cycle

Figure 2: Smoothed earnings profiles by age and marital status

Figure 3: Age-Hours Correlation

At the second stage we rely on the following moment conditions

$$n^{-1} \sum_{i} (\tilde{y}_{ijt}^{2}) - \mu^{1}(\theta),$$

$$n^{-1} \sum_{i} (\tilde{y}_{ij+1t+1}^{2}) - \mu^{2}(\theta),$$

$$n^{-1} \sum_{i} (\tilde{y}_{ijt} \tilde{y}_{ij+1t+1}) - \mu^{3}(\theta),$$

$$n^{-1} \sum_{i} (\tilde{y}_{ijt} \tilde{y}_{ij+2t+2}) - \mu^{4}(\theta).$$

• Theoretical moments $\mu^k(\theta)$ can be derived solving backward z_{ijt} .

$$\tilde{y}_{ijt} = \rho^{j-j_0+1} z_{j-(j-j_0)-1,t-(t-t_0)-1} + \sum_{s=j_0}^{j} \rho^{j-s} \nu_{j-(j-s),t-(t-s)} + \epsilon_{ijt}.$$

- We instrument all the equations with age of the household head and each equation with the sample counterparts of theoretical moments.
- Note that

$$\operatorname{Var}(\tilde{y}_{ijt}) = \sigma_z^2 + \sigma_\epsilon^2 = \frac{\sigma_\nu^2}{1 - \rho^2} + \sigma_\epsilon^2.$$

Rewrite the moment conditions as

$$E(m_i(\theta)) = E(z_i(\varepsilon_i(\theta))) = E(z_i(\tilde{y}_i^2 - \mu^2(\theta))).$$

Remarks:

- Are the instruments z_i exogenous? We want $E(z_i \epsilon_i) = E(z_i \nu_i) = 0$
- Are the instruments z_i relevant? We want $E(m_i(\theta)) = 0$ when $\theta = \theta_0$.

Note that \tilde{y}_{ijt} follows an ARMA(1,1)

$$\tilde{y}_{ijt} = \rho \tilde{y}_{ij-1t-1} + \mu_t + \epsilon_t - \rho \epsilon_{t-1}.$$

We need $|\rho| < 1$ for both stationarity and invertibility.

Table 2: Second-stage estimation

$\overline{\widetilde{y}_{ijt}}$	(1)	(2)
ρ	.930	.908
	(.011)	(.013)
σ_z^2	21.389	41.877
	(24.17)	(68.175)
$\sigma_{ u}^2$.062	.064
	(.017)	(.015)
σ^2_ϵ	.194	.148
	(.014)	(.012)

Notes: Data source PSID up to 1997. GMM estimates. (1) before tax log-income, (2) after tax log-income. Sample size is 952 households.

- 1st Stage: Before government $\sigma_{\hat{y}}^2 = .860$, after government $\sigma_{\hat{y}}^2 = .775$.
- 2nd Stage: Before $\sigma_{\hat{y}}^2 = .66$, after $\sigma_{\hat{y}}^2 = .516$.
- Persistent shocks are very persistent, almost random walk.