This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 90305978.0

(a) Int. Cl.5. CO7K 5/02, A61K 37/64

② Date of filing: 31.05.90

The title of the invention has been amended (Guidelines for Examination in the EPO, A-III, 7.3).

- ② Priority: 06.06.89 GB 8912989 08.08.89 GB 8918073 08.12.89 GB 8927875
- Date of publication of application: 06.02.91 Bulletin 91/06
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- Applicant: Beecham Group p.l.c.
 SB House Great West Road

Brentford Middlesex TW8 9BD(GB)

- 2 Inventor: Smith, Stephen Allan, Beecham Pharmaceuticals
 Coldharbour Road, The Pinnacles
 Harlow, Essex CM19 5AD(GB)
 Inventor: Ham, Peter, of Beecham Pharmaceuticals
 Coldharbour Road, The Pinnacles
 Harlow, Essex CM19 5AD(GB)
- (4) Representative: Jones, Pauline et al SmithKline Beecham, Corporate Patents, Great Burgh, Yew Tree Bottom Road Epsom, Surrey KT18 5XQ(GB)

- (S) Renin inhibitory peptides.
- A compound of formula (I), or a pharmaceutically acceptable salt thereof:

Ra ECONHCHCONHCHCHCH(CH₂) p
$$\begin{pmatrix} CH \\ I \\ I \end{pmatrix}$$
 A(CH₂) s R₄ OH $\begin{pmatrix} CH_2 \\ I \\ R_2 \end{pmatrix}$ Q (I)

wherein

either Z_1 is absent and Z_2 , Z_3 , Z_4 and Z_5 and the carbon atoms to which Z_2 and Z_5 are attached, form a 6-membered non-aromatic heterocyclic ring; or

 Z_1 , Z_2 , Z_3 , Z_4 , Z_5 and the carbon atoms to which Z_1 and Z_5 are attached, form a 7-membered non-aromatic heterocyclic ring;

E is absent or is $(CH_2)_n$ or $CH(CH_2)_{n-1}$ wherein n is 1 to 4;

A is -COHN-, -NHCO-, -COO-, -S(O),- wherein r is 0, 1 or 2, or -CH2-;

p is 0, 1 or 2;

s is 0, 1, 2, 3 or 4;

q is 0 or 1;

R₂ is hydrogen, C1-6 alkyl or, when A is -CH2-, hydroxy;

 R_{a} and R_{b} are independently selected from hydrogen or a substituent;

R₁ is CH₂R₉ wherein R₉ is optionally substituted aryl or heteroaryl;

 R_2 is $CHR_{10}R_{11}$ wherein R_{10} is hydrogen or methyl and R_{11} is C_{1-6} alkyl, C_{3-8} cycloalkyl, optionally substituted aryl or heteroaryl, or R_{11} is amino, C_{2-7} alkanoylamino, 2-oxopyrrolidinyl, 2-oxopiperidinyl or C_{1-6} alkoxycarbonylamino;

 R_3 is CH_2R_{12} wherein R_{12} is C_{1-6} alkyl, C_{3-8} cycloalkyl or phenyl;

 R_4 is C_{1-6} alkyl, C_{3-8} cycloalkyl, a saturated or unsaturated heterocyclic ring linked through carbon, hydroxy, C_{1-6} alkoxy, C_{1-7} alkanoyloxy, amino, C_{1-7} alkanoylamino, amino substituted by one or two C_{1-6} alkyl groups, C_{1-6} alkylsulphonyl, carboxy, C_{1-6} alkoxycarbonyl, benzyloxycarbonyl, aminocarbonyl or $CH(NHR_{13})CO_2R_{14}$ wherein R_{13} is hydrogen or C_{1-6} alkanoyl and R_{14} is hydrogen or C_{1-6} alkyl; or (when s is 2 to 4) R_4 is a saturated or unsaturated heterocyclic ring linked through nitrogen; and the dashed line represents an optional bond (when E is present); which are renin inhibitors.

NOVEL COMPOUNDS

The invention relates to novel compounds having pharmacological activity, to processes for their preparation, to pharmaceutical preparations containing them and to their use in medicine.

Renin is a natural enzyme, disorders in relation to which are implicated in many cases of hypertension. It is released into the blood from the kidney, and cleaves from a blood glycoprotein a decapeptide known as angiotensin-I. Circulating angiotensin-I is cleaved in plasma, and in lung, kidney and other tissues to an octapeptide, angiotensin-II, which raises blood pressure both directly by causing arteriolar constriction and indirectly by stimulating release of the sodium-retaining hormone aldosterone from the adrenal gland and thus causing a rise in extracellular fluid volume. The latter effect is caused by angiotensin-II itself or a heptapeptide cleavage product angiotensin-III.

Inhibitors of renin have been described as useful in the treatment of hypertension.

A group of compounds has now been discovered, which inhibit the enzyme renin and therefore have potential blood pressure lowering activity, useful in the treatment of hypertension. Compounds having an associated mechanism of action have also been described as possessing anti-retroviral activity and the present compounds may therefore be of potential use in the treatment of diseases caused by retroviruses including human immunodeficiency virus (HIV-1 and 2) and HTLV I and II. They may also be of potential use in the treatment of other cardiovascular disorders, such as congestive heart failure, and have beneficial effects on learning and memory and mood elevation activity, of potential use in the treatment of CNS disorders such as Alzheimer's disease and depression; they may also be of potential use in the treatment of glaucoma.

Accordingly, the present invention provides a compound of formula (I), or a pharmaceutically acceptable salt thereof:

Ra ECONHCHCONHCHCH(CH₂) p
$$\begin{pmatrix} CH \\ I \\ I \\ I \end{pmatrix}$$
 SR₄

So b

$$Z_1 = Z_2$$

(I)

wherein

10

20

either Z_1 is absent and Z_2 , Z_3 , Z_4 and Z_5 and the carbon atoms to which Z_2 and Z_5 are attached, form a 6-membered non-aromatic heterocyclic ring; or

 Z_1 , Z_2 , Z_3 , Z_4 , Z_5 and the carbon atoms to which Z_1 and Z_5 are attached, form a 7-membered non-aromatic heterocyclic ring;

E is absent or is (CH₂)_n or CH(CH₂)_{n-1} wherein n is 1 to 4;

A is -CONH-, -NHCO-, -COO-, -S(O),- wherein r is 0, 1 or 2, or -CH2-;

p is 0, 1 or 2;

s is 0, 1, 2, 3 or 4;

q is 0 or 1;

 R_z is hydrogen, C_{1-6} alkyl or, when A is -CH₂-, hydroxy;

Ra and Rb are independently selected from hydrogen or a substituent;

R₁ is CH₂R₉ wherein R₉ is optionally substituted aryl or heteroaryl;

 R_2 is CHR₁₀R₁₁ wherein R₁₀ is hydrogen or methyl and R₁₁ is C₁₋₆ alkyl, C₃₋₈ cycloalkyl, optionally substituted aryl or heteroaryl, or R₁₁ is amino, C₂₋₇ alkanoylamino, 2-oxopyrrolidinyl, 2-oxopiperidinyl or C₁₋₆ alkoxycarbonylamino;

 R_3 is CH_2R_{12} wherein R_{12} is C_{1-6} alkyl, C_{3-8} cycloalkyl or phenyl;

 R_4 is C_{1-6} alkyl, C_{3-8} cycloalkyl, a saturated or unsaturated heterocyclic ring linked through carbon, hydroxy, C_{1-6} alkoxy, C_{1-7} alkanoyloxy, amino, C_{1-7} alkanoylamino, amino substituted by one or two C_{1-6} alkyl groups, C_{1-6} alkylsulphonyl, carboxy, C_{1-6} alkoxycarbonyl, benzyloxycarbonyl, aminocarbonyl or CH-

 $(NHR_{13})CO_2R_{14}$ wherein R_{13} is hydrogen or C_{1-6} alkanoyi and R_{14} is hydrogen or C_{1-6} alkyl; or (when s is 2 to 4) R_4 is a saturated or unsaturated heterocyclic ring linked through nitrogen; and the dashed line represents an optional bond (when E is present).

When Z₁ is absent:

5

20

Values of Z_2 , Z_3 , Z_4 and Z_5 include wherein one of Z_2 , Z_3 , Z_4 and Z_5 is attached to E and is N, CH or C (wherein the optional exocyclic bond is present); another of Z_2 , Z_3 , Z_4 and Z_5 is O, S, SO, SO₂ or NR wherein R is hydrogen or C_{1-6} alkyl; another of Z_2 , Z_3 , Z_4 and Z_5 is O, S, SO, SO₂, NR or CH₂; and the other of Z_2 , Z_3 , Z_4 and Z_5 is S, SO, SO₂, NR, CH₂ or C=O provided that, one of Z_2 and Z_3 , one of Z_3 and Z_4 , or one of Z_4 and Z_5 is CH₂, CH or C when the other is S or O, or is CH₂, CH, C, NR or N when the other is SO or SO₂; or Z_3/Z_4 is SO, SO₂ or C=O when one of Z_2/Z_3 and Z_4/Z_5 is N or and the other is O, S, N or NR; or $Z_2-Z_3-Z_4-Z_5$ is -NRCOCON< or >NCOCONR-; or Z_2/Z_5 is CO, Z_3/Z_4 is O and $Z_4,Z_5/Z_2,Z_3$ are CH and CH₂.

i.e. the following are excluded in Z2 to Z5:-

- i) adjacent same heteroatoms (O, S, N) except N-N; but no N-N-N;
- iii) SO_x-SO_y or O-S_y (x and y are 0-2);
- iv) O-CO, S-C-O, S-C-S;
- v) CO-SO or CO-SO2;
- vi) two heteroatoms (O, S, N) separated by a Z when CO unless one of them is N;
- vii) more than two of Z_2 to Z_5 is CO.

Examples of Z2, Z3, Z4 and Z5 therefore include

55

45

Preferably Z_2 is SO₂ or O, Z_3 is CH₂, Z_4 is CH₂, Z_5 is CH and E is attached at Z_5 ; or Z_2 is SO₂, Z_3 is CH, Z_4 is CO, and Z_5 is N and E is attached at Z_5 .

When Z₁ is present:

40

45

50

55

Heterocyclic ring heteroatoms for Z_1 to Z_5 are selected from oxygen, sulphur, SO, SO₂, nitrogen or N-alkyl. The ring may include unsaturation (C = C) or a carbon attached to exocyclic oxo (C = 0).

Examples of Z₁, Z₂, Z₃, Z₄ and Z₅ then include

wherein X is O, S, SO, SO₂, NH, N-C₁₋₆ alkyl or CH₂.

Preferably E is attached at a nitrogen atom.

20

35

45

55

Suitable examples of R_a and R_b include a moiety selected from halogen, C_{1-6} alkyl, C_{1-6} alkoxy, nitro, cyano, SH, SO₃H, CHO, C_{1-6} alkyl substituted by hydroxy, C_{1-6} alkanoyloxy, optionally substituted amino or by C_{1-7} alkanoylamino, a group NR_5R_6 , $SO_2NR_5R_6$, CO_2R_5 , $NHCONR_5R_6$ or $NHCOR_5$ wherein R_5 is hydrogen, C_{1-6} alkyl or optionally substituted benzyl and R_6 is hydrogen or C_{1-6} alkyl, a group $S(O)_mR_7$ wherein m is 0, 1 or 2 and R_7 is hydrogen or C_{1-6} alkyl optionally substituted by amino, acylamino, protected amino, or CO_2H or a pharmaceutically acceptable ester (such as a C_{1-6} alkyl ester) thereof; or a group $CH=NR_8$ wherein R_8 is C_{1-6} alkyl optionally substituted by amino or hydroxy. R_a or R_b may also be a mercapto substituent such that the resulting compound is a disulphide.

Suitable examples of substituents in optionally substituted amino groups in R_b/R_b then include one or two groups independently selected from C_{1-6} alkyl or C_{1-6} alkyl substituted by carboxy, C_{1-6} alkoxycarbonyl, hydroxy or amino group.

Alternatively, NR_5R_6 or other substituted amino groups in R_a/R_b may be pyrrolidinyl, piperidinyl, morpholinyl or piperazinyl optionally N-substituted by C_{1-6} alkyl.

Suitable acyl groups in R_7 when C_{1-6} alkyl substituted by acylamino, include C_{1-7} alkanoyl, or optionally substituted benzoyl. Suitable protecting groups in protected amino include benzyloxycarbonyl and t-butyloxycarbonyl.

Preferably one of R_a and R_b is hydrogen and the other is CH_2NH_2 , CO_2H , $CH_2NHCH_2CO_2H$ or $SO_2CH_2CO_2H$, attached at carbon atom a or b depicted in formula (I).

In regard to values of A and p and q, reference is hereby made to the following literature:-

```
1. J. Med. Chem. 1988, 31, 1918
```

$$(p = 1, q = 0, A = -CONH-)$$

2. J. Med. Chem. 1987, 30, 1224

$$(p = 2, q = 0, A = -NH\overline{CO}-)$$

3. J. Med. Chem. 1987, 31, 701

$$(p = 0, q = 0, A = -COO-)$$

4. J. Med. Chem. 1987, 31, 1839

$$(p = 1, q = 1, A = -CONH-)$$

5. J. Med. Chem. 1987, 30, 1729 and refs. therein

$$(p = 2, q = 1, A = S(O)_r)$$

6. WO 88/05050

$$(p = 0, q = 1, A = CH_2, R_z = OH)$$

7. EP-A-172346

$$(p = 0, q = 1, A = CH_2, R_z = H)$$

Suitable values of R₉ and R₁₁ when aryl include phenyl or naphthyl and when heteroaryl, include a 5or 6-membered monocyclic or 9- or 10- membered bicyclic of which 5- or 6- membered monocyclic

heteroaryl is preferred. In addition, 5- or 6-membered monocyclic or 9- or 10-membered bicyclic heteroaryl preferably contains one, two or three heteroatoms which are selected from the class of oxygen, nitrogen and sulphur and which, in the case of there being more than one heteroatom, are the same or different. Examples of 5-or 6-membered monocyclic heteroaryl containing one, two or three heteroatoms which are selected from the class of oxygen, nitrogen and sulphur include furyl, thienyl, pyrryl, oxazolyl, thiazolyl, imidazolyl and thiadlazolyl, and pyridyl, pyridazyl, pyrimidyl, pyrazolyl and triazolyl. Preferred examples of such groups include furanyl, thienyl, pyrryl and pyridyl, in particular 2- and 3-furanyl, 2- and 3-pyrryl, 2- and 3-thienyl, and 2-, 3- and 4-pyridyl. Examples of 9- or 10-membered bicyclic heteroaryl containing one, two or three heteroatoms which are selected from the class of oxygen, nitrogen and sulphur include benzofuranyl, benzothienyl, indolyl and indazolyl, quinolyl and isoquinolyl, and quinazolyl. Examples of such groups include 2- and 3-benzofuranyl, 2- and 3-benzothienyl, and 2- and 3-indolyl, and 2- and 3-quinolyl and, for R₁₁, 4-benzimidazolyl.

Suitable examples of groups or atoms for optional substitution of R_5 when benzyl and R_9 and R_{11} include one, two or three substituents independently selected from C_{1-4} alkyl, C_{1-4} alkoxy, halo (such as fluoro, chloro, bromo), hydroxy, nitro, and cyano.

Preferred examples of R₃ include phenyl and naphthyl, and preferred examples of R₁₁ when aryl or heteroaryl include phenyl, imidazol-4-yl and -2-yl, pyrazol-1-yl and 4-methylpyrazol-1-yl.

Preferably the amino acid residue containing R2 is Leu, \$-pyrazolylalanine or His.

Abbreviations which may be used herein are as follows:

2	ľ	,

25

Amino Acid Residue	Abbreviations
histidine isoleucine leucine 1-naphthylalanine norleucine phenylalanine	His Ile Leu NAIa NIe Phe

30

35

40

The α -amino acid components are in the (S)-configuration (or L-form).

In a particular aspect, the present invention provides a compound of formula (IA) or a pharmaceutically acceptable salt thereof:

R_a (CH₂)_nCO-X-Y-NH-CHR₃¹-CHOH-CH₂CONH(CH₂)_SR₄¹
(S) (S)
$$z_{1}-z_{2}$$
(IA)

45

wherein

X is Phe;

Y is Leu or His;

R₃¹ is cyclohexylmethyl;

 R_{4}^{-1} is C_{4-5} alkyl and s is 0 or s is 2 to 4 and R_{4}^{-1} is carboxy or a saturated or unsaturated heterocyclic ring;

the remaining variables are as defined in formula (I).

Suitable values for alkyl groups in R_a , R_b , R_z , R and R_z to R_{12} in formulae (I) and (IA) include methyl, ethyl, n - and iso -propyl, n -, sec -, iso - and tert -butyl, n -, iso -, sec -, tert - and neo -pentyl. C_{3-8} cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.

Suitable values for R_b and R_b halo include fluoro, chloro, bromo and iodo, preferably chloro or bromo.

Preferably R4 or R41 when alkyl is iso -butyl.

Suitable exampl s of R₄ when monocyclic heteroaryl include those listed for R₅ and R₁₁, preferably 3-pyridyl or an N-oxide thereof, or 1-imidazolyl.

When R₄ is a saturated heterocyclic ring, suitable examples include piperidinyl, pyrrolidinyl, piperazinyl and morpholinyl; optionally N-substituted by C₁₋₆ alkyl group(s), or as an N-oxide thereof.

The right hand sequence in formula (I) and (IA) is preferably 4(S)-amino-5-cyclohexyl-3(S)-hydroxy-pentanoic acid (ACHPA), from the amino acid containing R_3 or R_3^{-1} , to NH(CH₂)_sR₄.

Preferably n is 1, 2 or 3.

40

50

The water was a standard

Preferably E is attached at Zs.

Pharmaceutically acceptable salts include acid addition salts which may be, for example, salts with inorganic acids such, for example, as hydrochloric acid, hydrobromic acid, orthophosphoric acid or sulphuric acid, or organic acids such, for example, as methanesulphonic acid, toluenesulphonic acid, acetic acid, trifluoroacetic acid, propionic acid, lactic acid, citric acid, tartaric acid, fumaric acid, malic acid, succinic acid, salicylic acid or acetylsalicylic acid.

Pharmaceutically acceptable salts may also include alkali metal salts, for example sodium or potassium, alkaline earth metal salts such as calcium or magnesium and ammonium or substituted ammonium salts, for example those with lower alkylamines such as triethylamine, hydroxy-lower alkylamines such as 2-hydroxyethyl)-amine or tris-(2-hydroxyethyl)-amine.

It will be appreciated that the compounds of the invention may exist as solvates, such as hydrates, and these are included whenever, a compound of formula (I) or a salt thereof, is herein referred to.

The compounds of formula (i) and (IA) wherein E is attached to $Z_1/Z_2/Z_3/Z_4/Z_5$ when CH, have at least one asymmetric centre in addition to those attached to R_1 and R_2 (in X and Y) and R_3 and those indicated in formula (IA), and are therefore capable of existing in more than one stereoisomeric form. The invention extends to each of these forms and to mixtures thereof. Preferably the configuration at the carbon atoms bearing R_1 , R_2 and R_3 is the (S)-configuration.

It will be appreciated that, when the optional bond depicted in formula (I) is present, the compounds are capable of existing in E and Z (<u>trans</u> and <u>cis</u>) forms. The invention extends to each of these forms and to mixtures thereof.

The compounds of the invention are preferably in pharmaceutically acceptable form. By pharmaceutically acceptable form is meant, inter alia, of a pharmaceutically acceptable level of purity excluding normal pharmaceutical additives such as diluents and carriers, and including no material considered toxic at normal dosage levels. A pharmaceutically acceptable level of purity will generally be at least 50% excluding normal pharmaceutical additives, preferably 75%, more preferably 90% and still more preferably 95%.

A compound of the invention may be prepared by those methods known in the art for the synthesis of compounds of analogous structure, such as peptides, and in this regard reference is made, by way of illustration only, to the literature reference: S.R. Pettit, "Synthetic Peptides" (Elsevier Scientific Publishing Co. 1976).

The present invention also provides a compound of the present invention which has been prepared synthetically.

A compound of the present invention may, for example, be formed by the sequential coupling of appropriate amino acids with the acid of formula (II):

$$\begin{array}{c} R_{a}' \qquad \qquad \text{ECO}_{2}H \\ \\ Z_{5}Z_{4} \\ \\ Z_{1}-Z_{2} \end{array} \qquad . \tag{III)}$$

wherein R_a' and R_b' are R_a and R_b respectively or groups or atoms convertible thereto; or by the initial preparation and subsequent coupling of peptide subunits with the acid of formula (II), the subunits themselves prepared in stepwise manner; in either case classical solution chemistry methods analogous to those used in peptide synthesis, may be employed.

The coupling reactions may be effected by, for example, activating the reacting carboxyl group of th

acid of formula (II) or amino acid, and reacting this with the amino group of the substrate unit. Details of suitable, optional activating and protecting (masking) groups and of suitable reaction conditions (for the coupling reactions and for the introduction and removal of protecting groups) giving, preferably, the minimum of racemisation, may be found in the above-referenced literature.

It will be appreciated that, when A is other than -CONH- or -COO-, the C-terminus group is other than an amino acid, in which case the coupling is carried out with an appropriate other precursor, as described in the aforementioned literature references 2., 5., 6. and 7.

Accordingly, the present invention further provides a process for the preparation of a compound of formula (I) or a pharmaceutically acceptable salt thereof which comprises reacting a reagent of the formula (III):

wherein R_a' and R_b' are R_a and R_b respectively or groups or atoms convertible thereto; A¹ is absent or represents an appropriate amino acid or dipeptide unit; J is OH or a leaving group; and the remaining variables are as hereinbefore defined; with a reagent of the formula (IV):

$$R_3$$

H - A^2 - NHCHCH(CH₂)_P CH A(CH₂)_SR₄

OH
 R_z
q

(IV)

wherein

15

20

35

 A^2 is absent or represents an appropriate amino acid or dipeptide unit, such that $A^1 + A^2$ is -NHCHR₁CONHCHR₂CO-; and the remaining variables are as hereinbefore defined; and thereafter, if desired or necessary deprotecting (within A^1 or A^2) of the products, and/or converting Z_1 , Z_2 , Z_3 , Z_4 or Z_5 to other Z_1 , Z_2 , Z_3 , Z_4 or Z_5 , R_a / R_b to R_a and/or R_b and/or forming a pharmaceutically acceptable salt thereof

Suitable examples of J when a leaving group include halo, such as chloro or bromo, and other suitable groups which are displaceable by an amino nucleophile, such as C_{1-6} alkoxycarbonyloxy.

It is generally preferred, especially when A¹ is not absent, however, that J is OH, and a suitable coupling reagent or dehydrating catalyst is used to effect the reaction, such as N,N-dicyclohexylcar-bodiimide and those described in the Descriptions and Examples hereinafter.

Deprotection of A¹ and/or A² takes place conventionally, in accordance with the particular protecting group(s) employed.

Pharmaceutically acceptable salts may be formed conventionally.

 Z_1 , Z_2 , Z_3 , Z_4 or Z_5 when S or SO may be converted to SO or SO₂ respectively (or S to SO₂) by conventional oxidation methods, such as those described hereinafter for conversion (vi) for R_a/R_b .

It will be apparent that compounds of the formula (I) containing an R_a R_b group which is other than R_a/R_b and which is convertible to R_a/R_b group, are useful novel intermediates. A number of such conversions is possible, not only for the final product compounds of formula (1) when R_b/R_b are other than R_b/R_b , but also within R_b/R_b , and also for their intermediates as follows:

(i) a hydrogen substituent is convertible to a nitro substituent by nitration;

(ii) a nitro substituent is convertible to an amino substituent by reduction;

5

10

15

20

25

30

45

50

7.4

- (iii) a C1-7 acylamino substituent is convertible to an amino substituent by deacylation;
- (iv) an amino substituent is convertible to a C_{1-7} acylamino substituent by acylation with a carboxylic acid derivative;
- (v) a hydrogen substituent is convertible to a halogen substituent by halogenation;
- (vi) an C_{1-6} alkylsulphinyl substituent is convertible to a C_{1-6} alkylsulphinyl or C_{1-6} alkylsulphonyl substituent respectively, by oxidation;
- (vii) an amino, aminosulphonyl, or NHCONH2 substituent is convertible to a corresponding substituent which is substituted by one or two alkyl groups, by N-alkylation;
- (viii) an amino substituent is convertible to a group NHCONH₂, by reaction with potassium cyanate and acid;
- (ix) a hydrogen substituent is convertible to an aminosulphonyl substituent by treatment with $CISO_3H$ followed by HNR_5R_6 ;
- (x) a cyano substituent may be converted to an aminomethyl substituent by reduction;
- (xi) a bromo substituent may be converted to a cyano substituent by reaction with copper(I) cyanide.

Conversions (i) to (xi) are only exemplary and are not exhaustive of the possibilities. It will be appreciated that it is often desirable to carry out these conversions at an earlier stage, in the intermediate acid of formula (II), especially in regard to conversion (iii).

In regard to (i), nitration is carried out in accordance with known procedures.

In regard to (ii), the reduction is carried out with a suitable reducing agent, such as that suitable for reducing nitroanisole to aminoanisole.

In regard to (iii), deacylation is carried out by treatment with a base, such as an alkali metal hydroxide.

In regard to (iv), the acylation is carried out with an acylating agent, such as the corresponding acid or acid chloride. Formylation is carried out with the free acid.

In regard to (v), halogenation is carried out with conventional halogenating agents.

In regard to (vi), oxidation is carried out at below ambient temperatures in a non-aqueous solvent, such as a chlorinated hydrocarbon, in the presence of an organic peracid, such as 3-chloroperoxybenzoic acid, or in water in the presence of a soluble strong inorganic oxidant, such as an alkali metal permanganate or with aqueous hydrogen peroxide.

In regard to (vii), alkylation is carried out with a corresponding alkylating agent such as the chloride or bromide under conventional conditions.

In regard to (viii), conversion to a ureido derivative is carried out by reaction with potassium cyanate in acidic methanol, at ambient temperature.

In regard to (ix), the mixing with CISO₃H takes place at low temperatures around 0°C and allowed to warm to ambient temperature. The subsequent reaction with the amine takes place at ambient temperature, in a solvent such as ethanol.

In regard to (x), the reduction takes place by reaction with sodium borohydride/cobalt chloride; or platinum oxide/hydrogen.

In regard to (xi), the reaction takes place under conventional conditions.

Compounds of the general formulae (II) and (III) may themselves be prepared by standard techniques analogous to those described above.

The acids of formula (II) are either known compounds or are prepared by analogous methods to these and for structurally similar known compounds.

The preparation of the amino acid of formula (V):

$$H_2N$$
-CHR₃¹-CHOH-CH₂CO₂H (V)
(S) (S)

is described in J. Med. Chem 1985, 28, 1779-1790.

As regards the appropriate corresponding intermediates to those of formula (V), including those wherein A is other than -CONH-, reference is hereby made to the literature references 2. to 7. listed hereinbefore.

It will be appreciated that protected forms of compounds of the present invention are novel intermediates and form an aspect of the invention.

A particularly suitable method of preparation of the compounds of the present invention are as described in the Description and Examples hereinafter. The couplings may be carried out sequentially

beginning by coupling the acid of formula (II) with, for example, phenylalanine or 1-naphthylalanine, followed by coupling with Y, for example, leucine or histidine, and finally, coupling with the amino acid of formula (V). In a preferred aspect, however, either the acid of formula (II) is coupled with a tripeptide unit formed between the amino acid of formula (V); leucine, histidine or other R₂ containing amino acid; and phenylalanine or naphthylalanine; or alternatively the acid of formula (II) is coupled with phenylalanine or naphthylalanine and this is coupled with a dipeptide unit formed between the R₂ containing amino acid and the amino acid of formula (V).

As mentioned previously the compounds of the invention have been found to be renin inhibitors, and therefore they are of potential use in the treatment of hypertension. They may also be of potential use in the other diseases and disorders hereinbefore referred to.

The present invention also provides a pharmaceutical composition which comprises a compound of formula (I) or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier. In particular, the present invention provides an anti-hypertensive pharmaceutical composition which comprises an anti-hypertensive effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

The compositions are preferably adapted for oral administration. However, they may be adapted for other modes of administration, for example parenteral administration for patients suffering from heart failure. Other alternative modes of administration include sublingual or transdermal administration.

The compositions may be in the form of tablets, capsules, powders, granules, lozenges, suppositories, reconstitutable powders, or liquid preparations, such as oral or sterile parenteral solutions or suspensions.

In order to obtain consistency of administration it is preferred that a composition of the invention is in the form of a unit dose.

Unit dose presentation forms for oral administration may be tablets and capsules and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone; fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricants, for example magnesium stearate; disintegrants, for example starch, polyvinylpyrrolidone, sodium starch glycollate or microcrystalline cellulose; or pharmaceutically acceptable wetting agents such as sodium lauryl sulphate.

The solid oral compositions may be prepared by conventional methods of blending, filling or tabletting. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are of course conventional in the art. The tablets may be coated according to methods well known in normal pharmaceutical practice, in particular with an enteric coating.

Oral liquid preparations may be in the form of, for example, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminium stearate gel, hydrogenated edible fats; emulsifying agents, for example lecithin, sorbitan monocleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil, fractionated coconut oil, oily esters such as esters of glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl phydroxybenzoate or sorbic acid; and if desired conventional flavouring or colouring agents.

For parenteral administration, fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle, and, depending on the concentration used, can be either suspended or dissolved in the vehicle. In preparing solutions the compound can be dissolved in water for injection and filter sterilized before filling into a suitable vial or ampoule and sealing. Advantageously, adjuvants such as a local anaesthetic, a preservative and buffering agents can be dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum. Parenteral suspensions are prepared in substantially the same manner, except that the compound is suspended in the vehicle instead of being dissolved, and sterilization cannot be accomplished by filtration. The compound can be sterilized by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.

The compositions may contain from 0.1% to 99% by weight, preferably from 10-60% by weight, of the active material, depending on the method of administration.

The present invention further provides a method of prophylaxis or treatment of hypertension in mammals including man, which comprises administering to the suffering mammal an anti-hypertensively effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.

An effective amount will depend on the relative efficacy of the compounds of the present invention, the severity of the hypertension being treated and the weight of the sufferer. However, a unit dose form of a

composition of the invention may contain from 0.1 to 500 mg of a compound of the invention and more usually from 1 to 100 mg, for example 2 to 50 mg such as 2, 3, 4, 5, 10, 20 or 30mg. Such compositions may be administered from 1 to 6 times a day, more usually from 2 to 4 times a day, in a manner such that the daily dose is from 1 to 1000mg for a 70 kg human adult and more particularly from 5 to 500 mg.

No toxicological effects are indicated at the aforementioned dosage ranges.

The present invention further provides a compound of formula (I) or a pharmaceutically acceptable salt thereof for use in the treatment or prophylaxis of hypertension.

The following Description relates to the preparation of intermediates and the following Examples relate to the preparation of compounds of formula (I).

The following Tabulations show the structures prepared. The following notations may be employed:-

	4(S)-amino-5-cyclohexyl-3(S)-hydroxypentanoic acid isobutylamide	ACHPAA
15	4(S)-amino-5-cyclohexyl-3(S)-hydroxypentanoic acid 4(S)-amino-5-cyclohexyl-3(S)-hydroxypentanoic acid 3-(1-imidazolyl)propylamide	ACHPA ACHPA-API
	Trifluoroacetate Salt	TFA
	Benzyloxycarbonyl	CBZ
	tert -Butyloxycarbonyl	BOC
	Point of attachment of E	*

Tabulated Structures : 1

R_a¹ Z₅ Z₄ Z₃ Z₁ Z₂ Z₃

	۹

5

	Desc.	Ra ¹	z ₁ ·	z ₂	Z ₃	24	25	n	Rc
15							 		
	D1(b)	н	-	o	СН2	CH ₂	СН*	1	OEt
	D1(C)	н	-	0	CH ₂	CH ₂	CH*	1	он
20	D2(C)	. H ₃ C	-	o	CH ₂	СО	N*	1	Оме
20	D2(d)	H ₃ C	-	0	CH ₂	CO	И×	1	ОН
	D5(d)	Н	_	so ₂	CH ₂	CH ₂	CH*	1	он
	D6(C)	NC	-	0	CH ₂	co	N*	2	Оме
25	D6(d)	NC	-	o	CH ₂	со	N*	2	ОН
	D7(a)	н	-	s	CH ₂	co	И×	2	оме
	D7 (b)	н	-	s	CH ₂	CO -	И*	2	он
	D8(a)	н	-	SO ₂	CH ₂	co	И*	2	Оме
30	D8(b)	н	-	SO ₂	CH ₂	co	Иж	2	OH .
	D10(b)	BOC-HNH2C	-	0	CH ₂	CO	N*	2	Оме
	D10(C)	BOC-HNH2C	-	0	CH ₂	CO	И*	2	ОН
35	D11	н	-	CH ₂	CH ₂	И*	CH ₂	2	ОН
	D13(f)	PhCH ₂ O ₂ C	-	0	CH ₂	CO	И×	2	он
	D14(f)	PhCH2O2CH2C	-	0	CH ₂	CO	N*	2	ОН
	D15(a)	н	s	CH ₂	CH ₂	CO	Иж	2	0 ^t Bu
40	D15(b)	н	s	CH ₂	CH ₂	CO	N*	2	OH
	D16(a)	н	SO ₂	CH ₂	CH ₂	CO	N*	2	O ^t Bu
	D16(b)	н	so ₂	CH ₂	CH ₂	co	И×	2	ОН
45	D17(C)	NC	-	s	CH ₂	CO .	N*	2	Оме
	D17(d)	BOC-HNH2C	-	s	CH ₂	CO	И*	2	Оме
	D17(e)	BOC-HNH2C	-	s	CH ₂	CO	N*	2	Он

50

Tabulated Structures: 2

COG COG

Desc./Ex.No.	z ₂ ¹	· G	Salt/solvate
D1(a)	0	OEt	
D5(b)	so ₂	OEt	
D5(c)	SO ₂	ОН	
E3	SO ₂	PheLeuACHPAA	0.5H ₂ O

Tabulated Structures: 3

Desc. No	Ral	z ₁	z ₂	z ₃	Z4	z ₅
D2(b)	H ₃ C	_	0	CH ₂	со	NH
D5(a)	н	-	so ₂	CH ₂	CH ₂	СО
D6(b)	NC	-	0	CH ₂	co	NH
D10(a)	BOC-HNH2C	_	0	CH ₂	co	NH
D13(c)	tBuO2CCH2O2C	_	0	CH ₂	co	NH
D13(d)	HO ₂ C	-	0	CH ₂	со	NH
D13(e)	PhCH ₂ O ₂ C	-	0	CH ₂	co	NH
D14(C)	tBuO2CCH2O2CH2C	-	0	CH ₂	co	NH
D14(d)	HO2CH2C	-	0	CH ₂	CO	NH
D14(e)	PhCH2O2CH2C	-	0	CH ₂	co	NH
D17(b)	NC	-	S	CH ₂	co	NH

	Tabulated Str	ructures : 4	
	R _d -ACH	PA-R _e	
Desc. No.	R _d	Re	Salt/Solvate
D3(a) D3(b) D4(a) D4(b) D4(c) D9(a) D9(b) D9(c) D12(a)	BOC-Phe-Leu Phe-Leu CBZ-Phe-Leu Phe-Leu BOC CBZ-Phe-Leu Phe-Leu BOC-Phe-Leu	NH ⁱ Bu NH ⁱ Bu NH ⁱ Bu NH ⁱ Bu NH ⁱ Bu API API API	TFA CH₃CO₂H 0.5H₂O
D12(b)	Phe-Leu	API	2TFA

Tabulated Structures : 5

Desc. No.	Rf	Rg	Rh
D2(a)	H ₃ C	NHCOCH ₂ Cl	ОН
D6(a)	NC	NO ₂	OCH2CO2tBu
D13(a)	t _{BuO2} CCH ₂ O ₂ C	NO ₂	OCH2CO2tBu
D13(b)	t _{BuO2} CCH ₂ O ₂ C	NH ₂	OCH2CO2tBu
D14(a)	tBuO2CH2CO2CH2C	NO ₂	OCH2CO2tBu
D14(b)	t _{BuO2} CH ₂ CO ₂ CH ₂ C	NH ₂	OCH2CO2tBu
D17(a)	NC	NO ₂	SCH2CO2Et

16

and the second of the second of the second

EP 0 411 751 A1

(Contd.)
ᅃ
Structures
ed
냁
Tabul

Ex. No.	Ral	z_1	22	Z3	42	25	ď	R1	Salt/solvate
11.3	HANHAC	'	0	CH ₂	8	, *N	2	PheLeuACHPA-API	3TFA
E12	, H	ı	CH2	CH2	××	CH ₂	7	PheLeuACHPA-API	
E13a	Ħ		N. H.	8	*	S		PheLeuACHPA-API	
E13b	H	ı	HN	8	*H	တ	-	PheLeuACHPA-API	2H20.HCl
E14	PhCH ₂ 0 ₂ C	ı	0	CH2	8	×	7	PheLeuACHPA-API	
E15a	HO2C	ı	0	CH ₂	8	×××	7	PheLeuACHPA-API	
E15b	HO2C	ı	0	CH ₂	8	×N	2	PheLeuACHPA-API	2.5H2O.HCl
E16	PhCH202CH2C	ı	0	CH2	8	*N	7	PheLeuACHPA-API	
E17a	HO2CH2C	,	0	CH2	8	×N	7	PheLeuACHPA-API	
E17b	HO2CH2C	ı	0	CH2	8	*N	7	PheLeuACHPA-API	HCl
E18	H	ഗ	CH2	CH2	8	*N	7	PheLeuACHPA-API	0.5CHCl ₃
E19a	Ħ	s0 ₂	CH2	CH2	8	×N	7	PheLeuACHPA-API	2.5H2O
E19b	H	S0 ₂	CH2	CH2	8	*N	7	PheLeuACHPA-API	1.5H2O.HCl
E20	BOC-HNH2C	1	ഗ	CH2	8	×Z	7	PheLeuACHPA-API	
E21	H ₂ NH ₂ C	1	တ	CH2	8	*N	7	PheLeuACHPA-API	2TFA
E22	H ₂ NH ₂ C	ı	202	CH2	8	*N	7	PheLeuACHPA-API	ZTFA

Description 1

5

(a) Ethyl chromanylidene-4-acetate

Sodium hydride (80% in mineral oil, 1.11g) was stirred under nitrogen in dry dimethoxyethane (50ml) as triethyl phosphonoacetate (6.7ml) was added dropwise over 25 min. After stirring for a further 20 min, 4-chromanone (4.58g) was added dropwise in dry dimethoxyethane (15ml). The solution was stirred for 16h and poured into water. The product was extracted into ether, dried (Na₂SO₄), and evaporated in vacuo. Chromatography on silica gel using 20% ethyl acetate in petroleum ether (b.p.60-80°C) gave the title compound (1.83g) as a colourless oil. NMR showed this to be a ca 2:1 mixture of isomers.

NMR (δ)(CDCl₃): 1.3 (3H,m), 2.65 (dt)(minor) and 3.4 (dt)(major) (2H), 4.1-4.4 (4H,m), 5.7(s) (minor) and 6.35(s)(major)(1H), 6.8-7.0 (2H,m), 7.25 (1H,m), 7.8 (dd)(major) and 7.8(dd)(minor)(1H).

(b) Ethyl chromanyl-4-acetate

20

Ethyl chromanylidene-4-acetate (1.82g) was hydrogenated over 10% palladium on charcoal (0.52g) in ethanol (50ml) for 1h. Catalyst was filtered off, and the filtrate was evaporated in vacuo, giving the title compound (1.71g) as a colourless oil.

NMR (δ) (CDCl₃): 1.3 (3H,t), 1.85 (1H,m), 2.15 (1H, m), 2.5 (1H) and 2.8 (1H) (ABX), 3.35 (1H, m), 4.2 (2H, q), 6.75-6.9 (2H, m), 7.1 (2H, m).

(c) Chromanyl-4-acetic acid

30

Ethyl chromanyl-4-acetate (1.71g) and 10% aqueous sodium hydroxide (4.3ml) were dissolved in ethanol (20ml), and left to stand for 2h. The mixture was diluted with water, washed with chloroform, acidified (5M hydrochloric acid), and extracted with ethyl acetate. The extract was dried (Na₂SO₄) and evaporated in vacuo, giving the title compound (1.33g) as a white solid.

NMR (8) (CDCl3): 1.9 (1H, m), 2.2 (1H, m), 2.6 (1H) and 2.9 (1H) (ABX), 3.4 (1H, m), 4.2 (2H, m), 6.75-6.9 (2H, m), 7.1 (2H, m).

Description 2

40

(a) 2-(Chloroacetylamino)-4-methylphenol

2-Amino-4-methylphenol (5.00g) and pyridine (6.6ml) were stirred in dichloromethane (100ml) in ice, as chloroacetyl chloride (3.4ml) was added dropwise. The mixture was stirred for 16h, when water (100 ml) was added. After stirring for a further 0.5h, the layers were separated. The aqueous portion was acidified (5M hydrochloric acid) and extracted with chloroform, and then filtered. The grey solid so isolated was washed with water and dried in vacuo. Recrystallisation from methanol/chloroform then gave the title compound (2.08g) as an off-white powder.

NMR (δ) (DMSOd₆/CDCl₃): 2.2 (3H,s), 4.25 (2H,s), 6.75(2H,m), 7.25(1H, b), 8.8-9.5(2H,b).

50

(b) 2,3-Dihydro-6-methyl-3-oxo-4H-1,4-benzoxazine

To a suspension of 2-(chloroacetylamino)-4-methylphenol (3.24g) in ethanol (35ml) was added sodium hydroxide (0.85g) in water (5ml). The mixture was swirled until homogeneous, left to stand for 2h, and diluted with water (500ml). Filtration and drying in vacuo then gave the title compund (2.41g) as a slightly pink solid.

NMR (δ) (DMSOd₆) 2.25(3H,s), 4.55(2H,s), 6.6-6.95(3H,m), 10.65(1H, b).

(c) Methyl 2,3-dihydro-6-methyl-3-oxo-4H-1,4-benzoxazine-4-acetate

2,3-Dihydro-6-methyl-3-oxo-4H-1,4-benzoxazine (2.70g), anhydrous potassium carbonate (3.43g) and methyl bromoacetate (2.0ml) were stirred in dry dimethylformamide (DMF) (20ml) for 16h. The mixture was diluted with ethyl acetate (200ml), washed with water and brine, dried (Na₂SO₄) and evaporated in vacuo . Recrystallisation from chloroform/petroleum ether (b.p.60-80°C) then gave the title compound (2.41g) as white needles.

NMR (5) (CDCl₃): 2.3(3H,s), 3.75(3H,s), 4.4-4.8(4H,m), 6.4-6.9(3H,m).

10

(d) 2,3-Dihydro-6-methyl-3-oxo-4H-1,4-benzoxazine-4-acetic acid

This material was formed from methyl 2,3-dihydro-6-methyl-3-oxo-4H-1,4-benzoxazine-4-acetate (1.70g), following the procedure of Description 1(c), but with methanol as solvent. This gave the title compound (1.23g).

NMR (δ)(DMSOd₆): 2.3(3H,s), 4.65(4H, 2xs), 6.7-7.0(3H,m).

Description 3

20

(a) BOC-Phe-Leu-ACHPA isobutylamide

BOC-Phe-Leu-OH (1.48g), 1-hydroxybenzotriazole (HOBT) (0.53g) and ACHPA isobutylamide (1.06g) ¹ were stirred at 0°C in dry dimethylformamide (DMF) (10ml). 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (DEC) (0.75g) was added, and the mixture was stirred for 18h, warming to ambient temperature. The mixture was diluted with ethyl acetate, washed with aqueous citric acid, water, aqueous sodium hydrogen carbonate and brine, dried (Na₂SO₄) and evaporated in vacuo . Chromatography on silica gel using methanol/chloroform (0-2% methanol, gradient) gave the title compound (1.91g). NMR (δ) (CDCl₃): 0.7-2.3 (31 H,m) 2.8-3.2(4H,m), 3.8-4.3(4H,m), 6.4-7.4(8H,m).

(b) Phe-Leu-ACHPA isobutylamide .CF₃CO₂H

BOC-Phe-Leu-ACHPA isobutylamide (2.32g) was dissolved with stirring in trifluoroacetic acid (10ml) at 0°C. After 1h, solvent was removed in vacuo, and the residue was triturated with ether to give the title compound.

NMR (δ) (CDCl₃): 0.6-2.5 (31H,m), 2.8-3.3(4H,m), 3.7-4.4(4H,m), 7.0-8.0(8H,m).

1

40

Description 4

(a) CBZ-Phe-Leu-ACHPA isobutylamide

15

This material was formed from CBZ-Phe-Leu-OH (4.13g), following the procedure of Description 3(a). The crude product was purified by chromatography on silica gel using methanol/chloroform (0-3% methanol, gradient). This gave the title compound (6.40g) as a light brown solid. NMR (δ) (CDCl₃): 0.75-1.85 (29H,m), 2.3(2H,m), 2.9-3.15 (4H,m), 4.0(2H,m), 4.3-4.5(2H,m), 5.05(2H,s), 5.5-(1H,d), 6.5-6.85(3H,m), 7.1-7.4(11H,m).

(b) Phe-Leu-ACHPA isobutylamide .CH3CO2H

This material was formed from CBZ-Phe-Leu-ACHPA isobutylamide (6.4g) following the procedure of Description 1(b), but using ethanol/acetic acid as solvent. This gave the title compound (7.4g), still

J. Med. Chem. 1985, 28 , 1779-1790.

containing residual acetic acid.

NMR (δ) (CDCl₃): 0.8-1.85(29H,m), 2.05(m), 2.35(2H,m), 2.9-3.2(4H,m), 3.95(2H,m), 4.15(1H,m), 4.3(1H,m), 7.25(5H,m), 8.0(b).

(c) Phe-Leu-ACHPA isobutylamide

Phe-Leu-ACHPA isobutylamide .CH $_3$ CO $_2$ H (7.4g) was dissolved in ethyl acetate and extracted into aqueous citric acid. The extract was basified with sodium carbonate, and the product was isolated by extraction into chloroform, drying (Na $_2$ SO $_4$) and evaporation in vacuo . This gave the title compound (3.2g). NMR (δ) (CDCl $_3$): 0.7-1.0 (13H,m), 1.0-1.9(16H,m), 2.3(2H,ABX), 2.75(1H,dd), 3.05(2H,m), 3.2(1H,dd), 3.65-(1H,dd), 3.95(2H,m), 4.35(1H,m), 6.5(1H,d), 6.6(1H,t), 7.15-7.35(6H,m), 7.7(1H,d).

15 Description 5

20

25

35

45

50

55

(a) Thiachroman-4-one 1,1-dioxide

Thiachroman-4-one (10.23g) was stirred in glacial acetic acid (50ml). Aqueous hydrogen peroxide (30%, 19.4ml) was added, and the mixture was brought to gentle reflux over 0.5h. After a further 0.5h at reflux, the mixture was cooled and poured into water (IL). The precipitate was filtered off, washed with water, and dried in vacuo, giving the title compound (10.00g) as a white solid.

NMR (δ) (CDCl₃): 3.4(2H,t), 3.7(2H,t), 7.8(2H,m), 8.0(1H,dd), 8.15(1H,dd).

(b) Ethyl thiachromanylidene-4-acetate 1,1-dioxide

Thiachroman-4-one 1,1-dioxide (2.44g) and (carbethoxymethylene)triphenylphosphorane (4.76g) were stirred at reflux in dry toluene (100ml) for 20h. Solvent was removed in vacuo, giving a brown solid, which was chromatographed on silica gel using ethyl acetate/petroleum ether (bp 60-80°C) (20-40% ethyl acetate, gradient). This gave the title compound (0.21g) as a yellow oil contaminated with ca 20% of starting material

NMR (5) (CDCl₃): 1.3(3H,t), 3.4(2H,t), 3.9(2H,td), 4.25(2H,q), 6.4(1H,s), 7.5-7.8(3H,m), 8.0(1H,m).

(c) Thiachromanylidene-4-acetic acid 1,1-dioxide

This material was formed from ethyl thiachromanylidene-4-acetate 1,1-dioxide (0.21g), following the procedure of Description 1(c). This gave the title compound (0.16g) as a yellow foam. NMR (δ) (DMSOd_{δ}) 3.4(m), 4.2(2H,m), 6.3(1H,t), 7.6-7.9(4H,m), 12.4(1H,b)

(d) Thiachromanyl-4-acetic acid 1,1-dioxide

This material was formed from thiachromanylidene-4-acetic acid 1,1-dioxide (0.11g), following the procedure of Description 1(b). This gave the title compound (0.09g) as a yellow foam. NMR (δ) (CD₃OD/CDCl₃) 1.25(2H,m), 2.45(m), 2.7(2H,m), 3.4-3.7(m), 7.4-7.9(4H,m).

Description 6

(a) tert-Butyl (4-cyano-2-nitrophenoxy)acetate

4-Cyano-2-nitrophenol ² (3.12g), sodium hydroxide (1.22g), benzyltributylammonium bromide (0.34g)

² Proc. Roy. Soc. (London) SerB, Vol 133, 30 (1946)

and tert-butyl bromoacetate (5.6ml) were stirred vigorously at reflux in a mixture of water (100ml) and 1,2-dichloroethane (100ml) for 16h. The mixture was cooled, acidified (5M hydrochloric acid) and separated. The aqueous portion was extracted with dichloromethane, and the combined organics were dried (Na₂SO₄) and evaporated in vacuo. Chromatography on silica gel using ethyl acetate/petroleum ether (bp 60-80°C) (10-40% ethyl acetate, gradient) gave the title compound (4.26g) as a cream solid, mp 121-3°C. NMR (δ) (CDCl₃): 1.5(9H,s), 4.75(2H,s), 7.05(1H,d), 7.8(1H,dd), 8.2(1H,d).

(b) 6-Cyano-2,3-dihydro-3-oxo-4H-1,4-benzoxazine

tert-Butyl (4-cyano-2-nitrophenoxy)acetate (5.33g) was stirred in glacial acetic acid (100ml) at 40°C as iron (electrolytic, 4x3.2g portions) was added over 2h. After a further 1h, the mixture was evaporated in vacuo, and the residue was suspended in water (500ml). Filtration and drying in vacuo then gave the title compound (2.74g) as a grey solid.

NMR (δ) (DMSOd₆): 4.75(2H,s), 7.0-7.5(3H,m), 12.0(1H,b).

(c) Methyl 6-cyano-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoate

This material was formed from 6-cyano-2,3-dihydro-3-oxo-4H-1,4-benzoxazine (0.26g) and methyl acrylate (0.14ml), following the procedure of Description 2(c). This gave the title compound (0.35g) as a colourless oil.

NMR (δ) (CDCl₃): 2;7(2H,t) 3.7(3H,s), 4.25(2H,t), 4.7(2H,s), 7.05(1H,d), 7.3-7.4(2H,m).

(d) 6-Cyano-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoic acid

This material was formed from methyl 6-cyano-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoate (0.35g), following the procedure of Description 1(c). This gave the title compound (0.25g) as a white powder. NMR (δ) (CDCl₃/DMSOd₅): 2.65(2H,t), 4.2(2H,t), 4.7(2H,s), 7.1(1H,d), 7.35(1H,dd), 7.55(1H,d).

Description 7

35

10

(a) Methyl 2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoate

This material was formed from 2,3-dihydro-3-oxo-4H-1,4-benzothiazine (2.00g), following the procedure of Description 6(c). This gave the title compound (2.97g) as a green-brown oil.

NMR (δ) (CDCl₃): 2.7(2H,t), 3.4(2H,s), 3.7(3H,s), 4.3(2H,t), 7.05(1H,dt), 7.15(1H,dd), 7.25(1H,dt), 7.35(1H,dd).

(b) 2,3-Dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoic acid

This material was formed from methyl 2,3-dihydro-3-oxo- 4H-1,4-benzothiazine-4-propanoate (0.19g), following the procedure of Description 1(c). This gave the title compound (0.14g) as a light yellow solid. NMR (δ) (CDCl₃/DMSOd₆): 2.6(2H,t), 3.4(2H,s), 4.2(2H,t), 7.0(1H,m), 7.2-7.4(3H,m).

Description 8

(a) Methyl 2,3-dihydro-1,1,3-trioxo-4H-1,4-benzothiazine-4-propanoate

Methyl 2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoate (0.10g) (Description 7(a)) and 3-chloroperoxybenzoic acid (50-55% grade, 0.29g) were stirred in dichloromethan (5ml) for 40 min. The mixture was then diluted with ethyl acetate (50ml), washed with 5% aqueous sodium hydrogen carbonate, dried (Na₂SO₄) and evaporated in vacuo . Chromatography on silica gel using ethyl acetate/petroleum ether

(b.p. 60-80°C) (20-100% ethyl acetate, gradient) then gave the title compound (0.10g) as a white solid. NMR (δ) (CDCl₃); 2.75(2H,t), 3.7(3H,s), 4.25(2H,s), 4.35(2H,t), 7.4(2H,m), 7.7(1H,dt), 8.0(1H,dd).

(b) 2,3-Dihydro-1,1,3-trioxo-4H-1,4-benzothiazine-4-propanoic acid

This material was formed from methyl 2,3-dihydro-1,1,3-trioxo-4H-1,4-benzothiazine-4-propanoate (0.10g), following the procedure of Description 1(c). This gave the title compound (0.05g) as a white solid. NMR (δ) (CDCl₃/DMSOd₆): 2.65(2H,t), 4.3(2H,t), 4.55(2H,s), 7.4(1H,t), 7.55(1H,d), 7.75(1H,t), 7.9(1H,d).

Description 9

10

20

40

50

a) BOC-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from BOC-ACHPA-OH ³ (0.21g) and 1-(3-aminopropyl)imidazole (0.086 ml), following the procedure of Description 3(a), but omitting the citric acid wash. This gave the title compound (0.18g) as an oil.

b) CBZ-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide .0.5H2O

BOC-ACHPA 3-(1-imidazolyl)propylamide (0.18g) was dissolved in dichloromethane (4 ml), and cooled in ice. TFA (4 ml) was added. The mixture was swirled and left to stand at ambient temperature for 0.5h, and then evaporated, dissolved in dry DMF (3 ml) and cooled in ice. CBZ-Phe-Leu-OH (0.19g) and HOBT (0.062g) were stirred at 0°C in dry DMF (3 ml), and DEC (0.088g) was added. This mixture was stirred at 0°C for 15 min, and then DIPEA (0.22 ml) and the amine trifluoroacetate solution, prepared above, were added. After stirring for 16h, with warming to ambient temperature, the work up procedure of Description 9-(a) was followed. The crude product was chromatographed on silica gel using methanol/chloroform (0-10% methanol, gradient). This gave the title compound (0.195g) as a white solld.

NMR (δ) (CDCl₃): 0.75-0.1 (7H, m), 1.05-2.5 (20H, m), 2.9-3.4 (4H, m), 3.9-4.1 (4H, m), 4.15-4.5 (2H, m), 5.0-5.15 (2H, m), 5.45 (b), 6.35-6.65 (2H, m), 6.9-7.1 (3H, m), 7.1-7.45 (10H, m), 7.5-7.8 (1H, m).

Analysis: C₄₀H₅₆N₆O₆.0.5H₂O requires C,66.2; H,7.9; N,11.6%. Found: C,65.9; H,7.7; N,11.3%.

M.S. (m/z) (FAB) (M+1) = 717 (consistent with m.w. = 716).

c) Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from CBZ-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide (3.0g), following the procedure of Description 1(b). The crude product was chromatographed on silica gel using methanol/chloroform (0-16% methanol, gradient). This gave the title compound (1.4g) as a light yellow powder.

NMR (δ) (DMSOd_{δ}): 0.7-1.9 (24H,m), 2.1 (2H,m), 2.55-2.7 (1H,m), 3.0 (3H,m), 3.8 (2H,m), 3.9 (2H,t), 4.3 (1H,q), 4.9 (1H,m), 6.85 (1H,b), 7.1-7.3 (6H,m), 7.4-7.8 (4H,m), 8.2 (1H,d).

Description 10

a) 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine

6-Cyano-2,3-dihydro-3-oxo-4H-1,4-benzoxazine (0.18g) (Description 6(b)) was hydrogenated over platinum dioxide (0.05g) in ethyl acetate (25 ml) containing di-tert-butyldicarbonate (0.23g) for 70h. Catalyst was filtered off, and the filtrate was evaporated. The crude product was chromatographed on silica gel using ethyl acetate/petroleum ether (b.p. 60-80°C) (50-100% ethyl acetate, gradient). This gave the title compound

³J. Med. Chem. 1985, 28 , 1779-1790.

(0.18g) as a white solid. NMR (δ) (DMSOd₆): 1.35(9H,s), 4.0(2H,d), 4.5(2H,s), 6.75(2H,m), 6.85(1H,d), 7.35(1H,t), 10.7(1H,s).

b) Methyl 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoate

This material was formed from 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine (0.17g), following the procedure of Description 6(c). This gave the title compound (0.24g) as a light yellow solid. NMR (δ) (CDCl₃): 1.45(9H,s), 2.7(2H,t), 3.7(3H,s), 4.25(4H,m), 4.6(2H,s), 4.9(1H,b), 6.95(3H,m).

c) 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoic acid

This material was formed from methyl 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoate (0.23g), following the procedure of Description 1(c). This gave the title compound (0.19g) as a light yellow solid.

NMR (δ) (CDCl₃): 1.45(9H,s), 2.75(2H,t), 4.25(2H,m), 4.6(2H,s), 5.05(1H,b), 6.9(2H,m), 7.05(1H,b).

20 Description 11

10

30

50

3-(1,2,3,4-Tetrahydroisoquinolin-2-yl)propanoic acid

This material ws formed from ethyl 3-(1,2,3,4-tetrahydroisoquinolin-2-yl)propanoate ⁴(3.00g) following the procedure of Description 1(c). Removal of the solvent from the acidified reaction mixture gave an orange oil which was triturated with methanol/chloroform to give the title compound (2.69g) as a purple semi-solid.

NMR (δ) (DMSOd₆): 2.4-2.5(2H,m), 2.6-2.8(6H,m), 3.6(2H,bs), 7.0-7.2(4H,m).

Description 12

a) BOC-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from BOC-ACHPA 3-(1-imidazolyl)propylamide (1.53g) (Description 9(a)) and BOC-Phe-Leu-OH (1.60g), following the procedure of Description 9(b). The crude product was chromatographed on silica gel using methanol/chloroform (0-10% methanol, gradient). This gave the title compound (1.95g).

NMR (δ) (CDCl₃): 0.7-1.05(8H,m), 1.05-1.9(2H,m), 2.0(2H,m), 2.2-2.5(2H,m), 2.9-3.6(5H,m), 3.9-4.5(6H,m), 5.1(b), 6.4(b), 6.6(bd), 7.0(1H,s), 7.05(1H,s), 7.15-7.4(m), 7.65(1H,s).

b) Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide .2(CF3CO2H)

To a solution of BOC-Phe-Leu-ACHPA 3-(1-imidazolyl)-propylamide (0.60g) in dichloromethane (6 ml) was added trifluoroacetic acid (6 ml). The mixture was stirred for 1 h, and evaporated. Trituration with ether/pentane and filtration then gave the title compound (0.62g) as a white solid.

Description 13

a) tert-Butyl (4-(tert-butoxycarbonylmethoxycarbonyl)-2-nitrophenoxy)acetate

*Coll. Czech. Chem. Commun. 43 , (1983), 1759.

4-Hydroxy-3-nitrobenzoic acid (5.00g), tert-butyl bromoacetate (11.8 ml), sodium hydroxide (2.57g) and benzyltributylammonium bromide (0.52g) were stirred at reflux in water (50 ml) and 1,2-dichloroethane (50 ml) for 16h, then cooled to room temperature. After separation, the aqueous phase was acidified to pH 0 (5M hydrochloric acid) and extracted with chloroform (100 ml). The combined organics were dried (Na₂SO₄) and solvents removed in vacuo . The crude product was dissolved in ether, washed with 10% sodium hydroxide solution, dried (Na₂SO₄), and solvent was removed in vacuo . The crude product (9.46g) was purified by chromatography on silica gel using ethyl acetate/petroleum ether (b.p. 60-80°C) to give the title compound (8.03g) as a slightly coloured oil.

NMR (δ) (CDCl₃): 1.5 (18H,2xs), 4.7 (4H,s), 7.0 (1H,dd), 8.2 (1H,dd), 8.6 (1H,d).

10

b) tert-Butyl (2-amino-4-(tert-butoxycarbonylmethoxycarbonyl)phenoxy)acetate

This material was formed from tert-butyl (4-(tertbutoxycarbonylmethoxycarbonyl)-2-nitrophenoxy)acetate (4.20g) following the procedure of Description 1(b). This gave the title compound (3.96g) as a semi-solid. NMR (δ) (CDCl₃): 1.5 (18H,s), 4.6 (2H,s), 4.7 (2H,s), 6.7 (1H,m), 7.5 (2H,m).

c) 6-(tert-Butoxycarbonylmethoxycarbonyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine

tert-Butyl (2-amino-4-(tert-butoxycarbonylmethoxycarbonyl)phenoxy)acetate (3.96g) was heated at reflux in xylene for 48 h. After cooling to room temperature; solvent was removed in vacuo. The residues were triturated with petroleum ether (b.p. 60-80°C) to give the title compound (2.22g) as a light grey solid. NMR (δ) (CDCl₃): 1.5 (9H,s), 4.7 (4H,2xs), 7.0 (1H,d), 7.6 (1H,d), 7.8 (1H,dd), 8.5 (1H,bs).

25

20

d) 6-Carboxy-2,3-dihydro-3-oxo-4H-1,4-benzoxazine

6-(tert-Butoxycarbonylmethoxycarbonyl-2,3-dihydro-3-oxo-4H-1,4-benzoxazine (2.11g) was stirred in ethanol (15 ml) with 10% sodium hydroxide solution (6.8 ml). The solution was diluted with water (50 ml) and washed with chloroform (2x20 ml), acidified to pH 0 (5M hydrochloric acid), then extracted with chloroform (3x20 ml) and ethyl acetate (2x20 ml). The combined organics were dried (Na₂SO₄) and solvents removed in vacuo to give the title compound (0.80g) as a white solid. NMR (δ) (DMSOd₅): 4.6 (2H,s), 7.0 (1H,m), 7.5 (2H,m), 10.9 (1H,bs).

35

e) 6-Benzyloxycarbonyl-2,3-dihydro-3-oxo-4H-1,4-benzoxazine

6-Carboxy-2,3-dihydro-3-oxo-4H-1,4-benzoxazine (0.17g) was stirred with DEC (0.17g), benzyl alcohol (0.1 ml) and 4-dimethylaminopyridine (0.012g) in DMF (5 ml) for 16h. The solution was diluted with ethyl acetate (50 ml) and washed with water (3x15 ml). The combined organics were dried (Na₂SO₄) and solvents removed in vacuo to give the title compound (0.21g).

NMR (δ) (CDCl₃): 4.7 (2H,s), 5.35 (2H,s), 7.0 (1H,d), 7.3-7.5 (5H,m), 7.6 (1H,d), 7.7 (1H,dd), 8.4 (1H,bs).

.

f) 6-Benzyloxycarbonyl-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoic acid

This material was formed from 6-benzyloxycarbonyl-2,3-dihydro-3-oxo-4H-1,4-benzoxazine (0.85g) and tert-butyl acrylate (0.81g), following the procedure of Description 6(c). The crude product was stirred for 3h in dichloromethane (10 ml) and trifluoroacetic acid (10 ml). Removal of solvents gave the title compound (0.59g) as a white solid.

NMR (δ) (DMSOd₆): 2.6 (2H,t), 4.2 (2H,t), 4.7 (2H,s), 5.4 (2H,s), 7.1 (1H,m), 7.3-7.5 (5H,m), 7.7 (1H,m), 7.8 (1H,m).

55

Description 14

a) tert-Butyl (4-(tert-butoxycarbonylmethoxycarbonylmethyl)-2-nitrophenoxy)acetate

This material was formed from 4-hydroxy-3-nitrophenylacetic acid (1.00g) following the procedure of Description 13(a). The crude product was purified by column chromatography on silica gel using ethyl acetate/petroleum ether (b.p. 60-80°C) (0-30% ethyl acetate, gradient). The title compound (1.85g) was isolated as an oil.

NMR (δ) (CDCl₃): 1.5 (18H,2xs), 3.7 (2H,s), 4.5 (2H,s), 4.6 (2H,s), 6.9 (1H,d), 7.5 (1H,dd), 7.8 (1H,d).

o b) tert-Butyl (2-amino-4-(tert-butoxycarbonylmethoxycarbonylmethyl)phenoxy)acetate

This material was formed from tert-butyl(4-(tert-butoxycarbonylmethoxycarbonylmethyl)-2-nitrophenoxy)-acetate (1.85g) following the procedure of Description 1(b). This gave the title compound (1.50g) as a semi-solid.

15 NMR (δ) (CDCl₃): 1.5 (18H,2xs), 3.6 (2H,s), 4.5 (4H,2xs), 6.7 (2H,m), 6.9 (1H,s).

c) 6-(tert-Butoxycarbonylmethoxycarbonylmethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine

This material was formed from tert-butyl (2-amino-4-(tert-butoxycarbonylmethoxycarbonylmethyl)-phenoxy)acetate (1.50g) following the procedure of Description 13(c) but with a reaction time of 16h. The title compound (1.04g) was isolated as a white solid.

NMR (δ) (CDCl₃): 15 (9H,s), 3.7 (1H,s), 4.5 (2H,s), 4.6 (2H,s), 6.8 (1H,s), 6.9 (1H,m).

d) 6-(Carboxymethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine

This material was formed from 6-(tert-butoxycarbonylmethoxycarbonylmethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine (1.04g) following the procedure of Description 13(d). The title compound (0.39g) was isolated as a semi-solid.

NMR (δ) (DMSOd₆): 3.5 (2H,s), 4.6 (2H,s), 6.8 (2H,m), 6.9 (1H,m), 10.7 (1H,bs), 12.4 (1H,bs).

e) 6-(Benzyloxycarbonylmethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine

This material was formed from 6-(carboxymethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine (0.39g) following the procedure of Description 13(e). The title compound (0.36g) was isolated as an oil. NMR (δ) (CDCl₃): 3.6 (2H,s), 4.6 (2H,s), 5.2 (2H,s), 6.8 (1H,m), 6.9 (2H,m), 7.3-7.4 (5H,m), 8.5 (1H,bs).

6-(Benzyloxycarbonylmethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoic acid

This material was formed from 6-(benzyloxycarbonylmethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine (0.36g) following the procedure of Description 13(f). The title compound (0.11g) was isolated as a white solid

NMR (δ) (CDCl₃): 2.7 (2H,t), 3.6 (2H,s), 4.2 (2H,t), 4.6 (2H,s), 5.1 (2H,s), 6.9 (3H,m), 7.2-7.4 (5H,m).

Description 15

25

35

40

50

a) tert-Butyl 3,4-dihydro-4-oxo-1,5-benzothiazepine-5(2H)-propanoate

This material was formed from 2,3-dihydro-1,5-benzothiazepin-4(5H)one ^s (0.62g) and tert-butyl acrylate (2 ml) following the procedure of Description 6(c), giving the title compound (0.68g) as a white solid. NMR (δ) (CDCl₂): 1.3 (9H,s), 2.4-2.6 (3H,m), 2.6-2.8 (1H,m), 3.3-3.4 (2H,m), 3.6-3.7 (1H,m), 4.4-4.6 (1H,m),

Synth . Commun . 15(7), 623.

いってはなっておからかも

7.2 (1H,m), 7.3 (1H,dd), 7.5 (1H,m), 7.6 (1H,dd).

b) 3,4-Dihydro-4-oxo-1,5-benzothiazepine-5(2H)-propancic acid

tert-Butyl 3,4-dihydro-4-oxo-1,5-benzothiazepine-5(2H)-propanoate (0.13g) was stirred in trifluoroacetic acid (20 ml) and dichloromethane (20 ml) for 3h. Removal of the solvent followed by trituration with ether gave the title compound (0.092g) as a white solid.

NMR (δ) (CDCl₃): 2.4-2.7 (3H,m), 2.7-3.0 (1H,m), 3.2-3.4 (2H,m), 3.6-3.8 (1H,m), 4.4-4.6 (1H,m), 7.2-7.3 (2H,m), 7.4-7.5 (1H,m), 7.6 (1H,m).

Description 16

5

15

a) tert-Butyl 3,4-dihydro-1,1,4-trioxo-1,5-benzothiazepine-5(2H)-propanoate

tert-Butyl 3,4-dihydro-4-oxo-1,5-benzothiazepine-5(2H)-propanoate (Description 15(a)) (0.52g) was stirred with 3-chloroperoxybenzoic acid (MCPBA) (70%, 0.83g) in dry dichloromethane for 16h. Solvent was removed in vacuo to give the crude product. This was purified by column chromatography on silica gel using ethyl acetate/petroleum ether (b.p. 60-80°C) (0-65% ethyl acetate, gradient) to give the title compound (0.45g) as a white solid.

NMR (δ) (CDCl₃): 1.4(9H,s), 2.5-2.9(4H,m), 3.4-3.6(1H,m), 3.8-3.9(2H,m), 4.4-4.5(1H,m), 7.4-7.5(2H,m), 7.7-7.8(1H,m), 8.0-8.1(1H,dd).

b) 3,4-Dihydro-1,1,4-trloxo-1,5-benzothiazepine-5(2H)-propanoic acid

This material was formed from tert-butyl 3,4-dihydro-1,1,4-trioxo-1,5-benzothiazepine-5(2H)-propanoate (0.45g), following the procedure of Description 15(b). The title compound (0.3g) was isolated as a white solid

NMR (δ) (DMSOd₆): 2.5-2.7(m), 3.6-3.9(3H,m), 4.1-4.3(1H,m), 7.5-7.6(1H,m), 7.7-7.9(3H,m).

35 Description 17

a) Ethyl (4-cyano-2-nitrophenyl)thioacetate

This material was formed from 4-chloro-3-nitrobenzonitrile (5.00g) and ethyl mercaptoacetate (4.50 ml), following the procedure of Description 2(c). This gave the title compound (6.98g) as a green solid. NMR (δ) (CDCl₃): 1.3(3H,t), 3.8(2H,s), 4.2(2H,q), 7.7(1H,d), 7.8(1H,dd), 8.6(1H,d).

b) 6-Cyano-2,3-dihydro-3-oxo-4H-1,4-benzothiazine

Ethyl (4-cyano-2-nitrophenyl)thioacetate (2.6g) was refluxed with iron powder (2.01g) in acetic acid (100 ml) for 1h. After cooling to room temperature the solution was poured onto ice (200 ml), then extracted with chloroform (5x50 ml). The combined organic phases were washed with sodium hydrogen carbonate solution (3x50 ml), dried (Na₂SO₄), and solvents were removed in vacuo. The title compound (1.52g) was isolated as a pale yellow solid.

NMR (δ) (DMSOd₆/CDCl₃): 3.35(2H,s), 7.1(1H,dd), 7.2(1H,d), 7.3(1H,d), 10.7(1H,bs).

c) Methyl 6-cyano-2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoate

This material was formed from 6-cyano-2,3-dihydro-3-oxo-4H-1,4-benzothiazine (0.57g), following the procedure of Description 6(c). This gave the title compound (0.75g) as a yellow solid.

NMR (δ) (CDCl₃): 2.7(2H,t), 3.4(2H,s), 3.7(3H,s), 4.3(2H,t), 7.3(1H,dd), 7.4(1H,d), 7.5(1H,d).

d) Methyl 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoate

Methyl 6-cyano-2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoate (0.75g) was dissolved with heating in methanol (10 ml), and stirred as cobalt (II) chloride.6H₂0 (1.29g) and sodium borohydride (0.46g) were added. The resultant black suspension was stirred for 30 min, partitioned between chloroform and water, acidified with 5M hydrochloric acid, basified with aqueous ammonia (sp.gr.0.88), and separated. The aqueous portion was further extracted with chloroform, and the combined organics were dried (Na₂SO₄) and evaporated in vacuo.

Di-tert-butyldicarbonate (0.59g) was added, and the mixture was dissolved in chloroform (10 ml), left to stand for 16h, and evaporated in vacuo. Chromatography on silica gel using ethyl acetate/petroleum ether (b.p. 60-80°C) (20-60% ethyl acetate, gradient) then gave the title compound (0.32g) as a yellow solid. NMR (δ) (CDCl₃): 1.45(9H,s), 2.7(2H,t), 3.35(2H,s), 3.65(3H,s), 4.3(4H,m), 4.95(1H,b), 6.95(1H,dd), 7.1(1H,d), 7.3(1H,d).

e) 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoic acid

This material was formed from methyl 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoate (0.30g), following the procedure of Description 1(c). The crude product was dissolved in ether, filtered, evaporated, and triturated in 10% ethyl acetate/petroleum ether (b.p. 60-80°C), giving the title compound (0.27g) as a yellow powder.

NMR (3) (CDCl₂): 1.45(9H,s), 2.75(2H,t), 3.4(2H,s), 4.3(4H,m), 6.95(1H,bm), 7.15(1H,bs), 7.3(1H,d).

Example 1

5

20

30

Chromanyl-4-acetyl-Phe-Leu-ACHPA isobutylamide .0.5H2O

Chromanyl-4-acetic acid (0.052g) and 1-hydroxybenzotriazole (HOBT) (0.040g) were stirred in dry dimethylformamide (DMF) (3ml) in ice. 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (DEC) (0.052g) was added, and the mixture was stirred for 15 min. N,N-Diisopropylethylamine (DIPEA) (0.12ml) and Phe-Leu-ACHPA isobutylamide .CH₃CO₂H (0.129g) (Description 4(b)) were added. The mixture was stirred for 16h, warming to ambient temperature, diluted with ethyl acetate, washed with 5% aqueous citric acid, water, 5% aqueous sodium hydrogen carbonate and brine, dried (Na₂SO₄) and evaporated in vacuo. Chromatography on silica gel using methanol/chloroform (0-5% methanol, gradient) gave the title compound (0.076g) as a white solid.

NMR (δ) (DMSOd₆): 0.7-1.0(13H,m), 1.0-1.4(7H,m), 1.4-1.8(10H,m), 2.0-2.25(3H,m), 2.5(m), 2.65-3.1(6H,m), 3.75-4.1(4H,m), 4.35(1H,m), 4.65(1H,m), 4.8-5.0(1H,m), 6.7(1H,dd), 6.75(1H,m), 7.05(2H,m), 7.1-7.4(6H,m), 7.7(1H,m), 8.1-8.3(2H,m).

Analysis: $C_{41}H_{60}N_4O_6.0.5H_2O$ required C, 69.0; H, 8.6; N, 7.8%. Found: C, 69.3; H, 8.5; N, 7.8% M.S. (m/z) (FAB) (M + 1) = 705 (consistent with m.w. = 704).

Example 2

50

2,3-Dihydro-6-methyl-3-oxo-4H-1,4-benzoxazine-4-acetyl-Phe-Leu-ACHPA isobutylamide .H2O

This material was formed from 2,3-dihydro-6-methyl-3-oxo-4H-1,4-benzoxazine-4-acetic acid (0.041g) and Phe-Leu-ACHPA isobutylamide .CF₃CO₂H (0.100g) (Description 3(b)), following the procedure of Example 1. The crude product was chromatographed on silica gel using methanol/chloroform (0-5% methanol, gradient). This gave the title compound (0.107g) as a white solid. NMR (δ) (DMSOd₆): 0.7-1.0(13H,m), 1.0-1.8(16H,m), 2.1(2H,m), 2.2(3H,s), 2.7-3.1(4H,m), 3.75-3.9(2H,m), 4.3-4.65(6H,m), 4.8-4.9(1H,m), 6.5-6.6(1H,m), 6.75(1H,d), 6.85(1H,d), 7.15-7.55(6H,m), 7.7(1H,m), 8.15-8.25-

(1H,m), 8.45-8.55(1H,m).

Analysis: $C_{41}H_{59}N_5O_7.H_2O$ requires C,65.5; H, 8.2; N, 9.3%. Found: C, 65.4; H, 7.9; N, 9.3%. M.S. (m/z) (FAB) (M + 1) 734 (consistent with m.w. = 733).

Example 3

5

10

20

1,1-Dioxothiachromanylidene-4-acetyl-Phe-Leu-ACHPA isobutylamide .0.5H2O

This method was formed from thiachromanylidene-4-acetic acid 1,1-dioxide (0.050g) (Description 5(c)) and Phe-Leu-ACHPA isobutylamide (0.098g) (Description 4(c)), following the procedure of Description 3(a). The crude product was chromatographed on silica gel using methanol/chloroform (0-5% methanol, gradient). This gave the title compound (0.100g) as a yellow-brown solid.

NMḤ (δ) (DMSOd $_6$): 0.7-1.0(14H,m), 1.0-1.8(15H,m), 2.1(2H,m), 2.7-2.9(4H,m), 3.05(1H,dd), 3.4(2H,m), 3.8-(2H,m), 4.1(2H,m), 4.3(1H,m), 4.6(1H,m), 4.9(1H,m), 6.0(1H,t), 7.1-7.4(7H,m), 7.55(2H,m), 7.7(1H,bs), 7.85-(1H,m), 8.2(1H,bd), 8.35(1H,bd).

Analysis: $C_{41}H_{58}N_4O_7S.0.5H_2O$ requires C,64.8; H,7.8; N,7.4%. Found: C,64.8; H,7.8; N,7.2%. M.S. (m/z) (FAB) (M+1) = 751 (consistent with m.w. = 750).

Example 4

1,1-Dioxothiachromanyl-4-acetyl-Phe-Leu-ACHPA isobutylamide .0.5H2O

This material was formed from thiachromanyl-4-acetic acid 1,1-dioxide (0.068g) (Description 5(d)), following the procedure of Example 3. The crude product was chromatographed on silica gel using methanol/chloroform (0-5% methanol, gradient). This gave the title compound (0.075g) as a yellow solid.

NMR (δ) (DMSOd₅): 0.7-1.0(13H,m), 1.0-1.4(7H,m), 1.4-1.8(10H,m), 1.9-2.25(3H,m), 2.4-2.6(m), 2.7(1H,m), 2.9(2H,m), 3.0-3.2(1H,m), 3.2-3.6(m), 3.85(2H,m), 4.3(1H,m), 4.65(0.5H,m), 4.75(0.5H,m), 4.9(1H,m), 7.15-7.4(7H,m) 7.4-7.6(2H,m), 7.6-7.8(2H,m), 8.1-8.4(2H,m).

Analysis: $C_{41}H_{60}N_4O_7S.0.5H_2O$ requires C,64.6; H,8.1; N,7.4%. Found C,64.5; H,8.0; N,7.5%. M.S. (m/z) (FAB) (M+1) 753 (consistent with m.w. = 752).

35

Example 5

40 6-Cyano-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA isobutylamide .0.5H₂O

This material was formed from 6-cyano-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoic acid (0.078g) (Description 6(d)), following the procedure of Description 3(a). The crude product was chromatographed on silica gel using methanol/chloroform (0-5% methanol, gradient). This gave the title compound (0.21g) as a white solid.

NMR (δ) (DMSOd₆): 0.7-1.0(13H,m), 1.0-1.45(7H,m), 1.45-1.8(9H,m), 2.1(2H,m), 2.4(2H,t), 2.7(1H,dd), 2.85-(2H,m), 3.0(1H,dd), 3.8(3H,m), 4.0(1H,m), 4.3(1H,m), 4.6(1H,m), 4.75(2H,s), 4.9(1H,d), 7.1-7.35(7H,m), 7.5-(1H,dd), 7.6(1H,d), 7.7(1H,t), 8.15(1H,d), 8.25(1H,d).

Analysis: C₄₂H₅₈N₆O₇.0.5H₂O requires C,65.7; H,7.7; N,10.9%. Found: C,65.8; H,7.8; N,11.3%.

60 M.S. (m/z) (FAB) (M+1) = 759 (consistent with m.w. = 758).

Example 6

55

2,3-Dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA isobutylamide .0.5H₂O

This material was formed from 2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoic acid (0.051g)

(Description 7(b)), following the procedure of Description 3(a). The crude product was chromatographed on silica gel using methanol/chloroform (0-5% methanol, gradient). This gave the title compound (0.11g) as a white solid.

NMR (δ) (DMSOd_{δ}): 0.7-10(13H,m), 1.0-1.4(7H,m), 1.4-1.8(9H,m), 2.1(2H,m), 2.4(2H,m), 2.7(1H,dd), 2.85-(2H,m), 3.0(1H,dd), 3.45(2H,s), 3.8-3.9(3H,m), 4.0(1H,m), 4.3(1H,m), 4.55(1H,m) 4.85(1H,d), 7.05(1H,m), 7.1-7.35(8H,m), 7.4(1H,d), 7.7(1H,t), 8.1(1H,d), 8.25(1H,d).

Analysis: $C_{4.1}H_{5.9}N_5O_6S.0.5H_2O$ requires C,64.9; H,8.0; N,9.2%. Found C,64,8; H,8.0; N,9.1%. M.S. (m/z) (FAB) (M+1) = 750 (consistent with m.w. = 749).

Example 7

10

15

25

2,3-Dihydro-1,1,3-trioxo-4H-1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA Isobutylamide .0.5H2O

This material was formed from 2,3-dihydro-1,1,3-trioxo-4H-1,4-benzothiazine-4-propanoic acid (0.044g) (Description 8(b)), following the procedure of Description 3(a). The crude product was chromatographed on silica gel using methanol/chloroform (0-5% methanol, gradient). This gave the title compound (0.076g) as a white solid.

NMR (δ) (DMSOd $_{\delta}$): 0.7-1.0(13H,m), 1.0-1.8(16H,m), 2.1(2H,m), 2.4(2H,m), 2.7(1H,dd), 2.85(2H,m), 3.0-(1H,dd), 3.8(2H,m), 3.95(1H,m), 4.1(1H,m), 4.3(1H,m), 4.55(1H,m), 4.75(2H,s), 4.85(1H,d), 7.1-7.25(5H,m), 7.3(1H,d), 7.4(1H,t), 7.55(1H,d), 7.7(1H,t), 7.75(1H,t), 7.9(1H,d), 8.15(1H,d), 8.3(1H,d). Analysis: $C_{4.1}H_{5.9}N_5O_8S.0.5H_2O$ requires C,62.3; H,7.7; N,8.9%. Found C,62.3; H,7.7; N,8.6%. M.S. (m/z) (FAB) (M+1) = 782 (consistent with m.w. = 781).

Example 8a

2,3-Dihydro-1,1,3-trioxo-4H-1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from 2,3-dihydro-1,1,3-trioxo-4H-1,4-benzothiazine-4-propanoic acid (0.048g) (Description 8(b)) and Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide .2CF₃CO₂H (0.084g) (Description 12(b)-), following the procedure of Example 1, but omitting the wash with citric acid. The crude product was chromatographed on silica gel using methanol/chloroform (0-10% methanol, gradient). This gave the title compound (0.078g) as a white solid.

NMR (δ) (DMSOd₅): 0.7-1.0 (8H,m), 1.0-1.85 (16H,m), 2.0-2.25 (2H,m), 2.4 (2H,m), 2.75 (1H,m), 2.9-3.1

NMH (8) (DMSOds): 0.7-1.0 (6H,m), 1.0-1.85 (10H,m), 2.5 (2L-1,m), 2.7 (2H,m), 6.85 (1H,2xs), 7.1-7.25 (3H,m), 3.85 (2H,b), 3.9-4.2 (4H,m), 4.2-4.35 (1H,m), 4.55 (1H,m), 4.75-4.9 (3H,m), 6.85 (1H,2xs), 7.1-7.25 (6H,m), 7.25-7.6 (4H,m), 7.75 (2H,m), 7.9 (1H,d), 8.2 (1H,2xd), 8.3 (d) and 8.45 (d)(1H).

Analysis: $C_{43}H_{59}N_7O_8S.1.5H_2O$ requires C,60.0; H,7.3; N,11.4%. Found: C,60.1; H,7.1; N,11.1%. M.S. (m/z) (FAB) (M+1) = 834 (consistent with m.w. = 833).

45 Example 8b

2,3-Dihydro-1,1,3-trioxo-4H-1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide .HCl

The corresponding free base (Example 8a) (0.065g) was dissolved in methanol (2 ml), acidified with a slight excess of 5M hydrochloric acid, diluted with water (40 ml), and immediately freeze-dried. This gave the title compound (0.065g) as a light white powder.

55 Example 9

2,3-Dioxo-1,2,3,4-tetrahydroquinoxaline-1-acetyl-Phe-Leu-ACHPA isobutylamide .H2O

This material was formed from 3-oxo-1,2,3,4-tetrahydroquinoxaline-1-acetic acid (0.043g) ⁶, following the procedure of Example 1. The crude product was chromatographed on silica gel using methanol/chloroform (0-15% methanol, gradient). This gave the title compound (0.050g) as a light yellow solid.

NMR (δ) (DMSOd₆): 0.7-1.0 (13H,m), 1.0-1.4 (7H,m), 1.4-1.8 (9H,m), 2.1 (2H,m), 2.75 (1H,dd), 2.85 (2H,m), 3.05 (1H,dd), 3.8 (2H,m), 4.3 (1H,q), 4.6 (2H,m), 4.8 (1H,d), 4.9 (1H,d), 6.65 (1H,d), 7.0 (1H,m), 7.1-7.3 (7H,m), 7.35 (1H,d), 7.7 (1H,t), 8.2 (1H,d), 8.6 (1H,d), 12.05 (1H,b).

Analysis: $C_{40}H_{56}N_6O_7.H_2O$ requires C,64.0; H,7.8%. Found: C,64.0; H,7.7%.

M.S. (m/z) (FAB) (M + 1) 733 (consistent with m.w. = 732).

Example 10

15

6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)-propylamide 0.5 CHCl₃

This material was formed from 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoic acid (0.15g) (Description 10(c)), following the procedure of Example 8a. The crude product was chromatographed on silica gel using methanol/chloroform (0-10% methanol, gradient). This gave the title compound (0.21g) as a light yellow solid.

NMR (δ) (DMSOd $_{\delta}$): 0.8 (2H,m), 0.9 (6H,2xdd), 1.0-1.45 (14H,m), 1.45-1.9 (11H,m), 2.1 (2H,m), 2.4 (2H,t), 2.75 (1H,dd), 2.9-3.1 (3H,m), 3.75-3.9 (3H,m), 3.9-4.05 (3H,m), 4.1 (2H,d), 4.3 (1H,q), 4.5-4.65 (3H,m), 4.9 (1H,d), 6.85 (2H,m), 6.95 (1H,m), 7.0 (1H,s), 7.15 (2H,m), 7.25 (4H,m), 7.35 (2H,m), 7.6 (1H,s), 7.75 (1H,t), 8.2 (1H,d), 8.25 (1H,d), 8.3 (1H,s).

Analysis: $C_{49}H_{70}N_8O_9.0.5$ CHCl₃ requires C,61.0; H,7.3; N,11.5%. Found: C,60.9; H,7.3; N,11.5%. M.S. (m/z) (FAB) (M + 1) 915 (consistent with m.w. = 914).

30

Example 11

6-(Aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA propylamide .3CF₃CO₂H

3-(1imidazolyl)-

6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide (0.19g) (Example 10) was dissolved in dichloromethane (3 ml). TFA (3 ml) was added, and the mixture was left to stand for 0.5h, evaporated, dissolved in water (25 ml), and freeze-dried. This gave the title compound (0.22g) as a fluffy white solid.

NMR (δ) (DMSOd₆): 0.7-1.0 (8H,m), 1.0-1.45 (7H,m), 1.45-1.7 (6H,m), 1.75 (1H,d), 1.9 (2H,m), 2.1 (2H,m), 2.45 (2H,m), 2.7 (1H,dd), 3.0 (3H,m), 3.85 (3H,m), 4.0 (3H,m), 4.2 (2H,t), 4.3 (1H,q), 4.55 (1H,m), 4.65 (2H,s), 4.9 (1H,b), 7.05 (2H,m), 7.1-7.3 (6H,m), 7.4 (1H,d), 7.7 (1H,s), 7.75 (1H,s), 7.85 (1H,t), 8.15 (3H,b), 8.25 (2H,t), 9.05 (1H,s), 14.5 (b).

Analysis: $C_{44}H_{52}N_8O_7.3C_2HO_2F_3$ requires C,51.9; H,5.7; N,9.7%. Found: C,52.3; H,5.8; N,9.8%. M.S. (m/z) (FAB) (M + 1) = 815 (consistent with m.w. of free base = 814).

Example 12

50

3-(1,2,3,4-Tetrahydroisoquinolin-2-yl)propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from 3-(1,2,3,4-tetrahydroisoquinolin-2-yl)propanoic acid (Description 11) (0.077g) following the procedure of Example 8a. The crude product was purified by chromatograpy on silica gel using methanol/chloroform (0-10% methanol, gradient) to give the title compound (0.11g) as a white

N. Borthakur et al., Ind. J. Chem. 20B , 822 (1981).

solid.

NMR (δ) (DMSOd₆): 0.7-0.9 (8H,m), 1.0-1.7 (16H,m), 1.7-1.9 (4H,m), 2.0-2.2 (2H,m), 2.3 (2H,t), 2.5-2.8 (6H,m), 2.9-3.1 (3H,m), 3.5 (2H,m), 3.9-4.0 (2H,t), 4.3 (1H,m), 4.5 (1H,m), 4.9 (1H,m), 6.9 (1H,s), 7.0-7.4 (11H,m), 7.6 (1H,s), 7.7 (1H,t), 8.1 (1H,d), 8.3 (1H,d).

M.S. (m/z) (FAB) (M+1) = 770 (consistent with m.w. = 769.

Example 13a

10

2,3-Dihydro-3-oxo-4H-1,4-benzothiazine-2-acetyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from 2,3-dihydro-3-oxo-4H-benzothiazine-2-acetic acid 7(0.11g), following the procedure of Example 8a. The crude product was chromatographed on silica gel using methanol/chloroform (0-8% methanol, gradient). This gave the title compound (0.28g). NMR (5) (DMSOd₆): 0.7-1.9 (24H,m), 2.1 (2H,m), 2.35 (1H,m), 2.6-2.85 (2H,m), 3.0 (3H,m), 3.75 (1H,m), 3.85 (2H,bs), 3.95 (2H,t), 4.3 (1H,m), 4.55 (1H,m), 4.8-4.9 (1H,2xd), 6.85 (1H,s), 7.0 (2H,m), 7.1-7.35 (9H,m), 7.6 (1H,s), 7.75 (1H,m), 8.05 (1H,m), 8.35 (1H,m), 10.6 (1H,s). M.S. (m/z) (FAB) (M+1) = 788 (consistent with m.w. = 787).

20

Example 13b

2,3-Dihydro-3-oxo-4H-1,4-benzothiazine-2-acetyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide.HCI.2H₂O

This material was formed from the corresponding free base (Example 13a) (0.27g), following the procedure of Example 8b. This gave the title compound (0.27g) as a white powder. NMR (δ) (DMSOd₆): 0.7-1.8 (22H,m), 1.9 (2H,m), 2.1 (2H,m), 2.35 (1H,m), 2.6-3.2 (5H,m), 3.75 (1H,m), 3.85 30 (2H,bs), 4.2 (2H,t), 4.3 (1H,m), 4.5 (1H,m), 7.0 (2H,m), 7.1-7.4 (8H,m), 7.7 (1H,s), 7.8 (1H,s), 7.85 (1H,m), 8.1 (1H,m), 8.3-8.5 (1H,m), 9.1 (1H,s), 10.6 (1H,s), 14.5 (1H,b). Analysis: C₄₂H₅₇N₇O₅S.HCl.2H₂O requires C,58.6; H,7.3; N,11.4%. Found: C,58.5; H,6.9; N,11.3%.

Example 14

6-Benzyloxycarbonyl-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from 6-benzyloxycarbonyl-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoic acid (Description 13(f)) (0.20g) following the procedure of Example 8a. The crude product was purified by chromatography on silica gel using methanol/chloroform (0-5% methanol, gradient) to give the title compound (0.26g) as a white solid.

NMR (δ) (DMSOd₆): 0.6-1.8 (24H,m), 1.9 (2H,t), 2.1 (2H,d), 2.4 (2H,m), 2.7 (1H,m), 3.0 (3H,m), 3.7-4.7 (13H,m), 5.5 (2H,s), 7.0-7.5 (13H,m), 7.6 (2H,m), 7.7 (1H,m M.S. (m/z) (FAB) (M+1) = 920 (consistent with m.w. = 919.

Example 15a

6-Carboxy-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from 6-benzyloxycarbonyl-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide (Example 14) (0.25g), following the procedure of Description

' Ind. J. Chem. Vol.22B, 868 (1983).

1(b). Removal of solvent gave the title compound (0.20g) as a white solid. NMR (δ) (DMSOd₆): 0.7-1.9 (24H,m), 2.1 (2H,m), 2.4-2.6 (3H,m), 2.6-2.8 (1H,m), 2.9-3.1 (4H,m), 3.8-4.0 (3H,m), 4.0-4.1 (3H,m), 4.3 (1H,m), 4.6 (1H,m), 4.7 (2H,s), 4.9 (1H,bs), 7.1 (2H,m), 7.1-7.4 (7H,m), 7.6 (2H,m), 7.8 (1H,m), 7.9 (1H,s), 8.2 (1H,d), 8.3 (1H,m). M.S. (m/z) (FAB) (M + 1) = 830 (consistent with m.w. = 829).

Example 15b

6-Carboxy-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide .HCI.2.5H2O

This material was formed from the corresponding free base (Example 15a) (0.19g), following the procedure of Example 8b to give the title compound (0.17g) as a white solid. NMR (δ) (DMSOd₆): 0.6-1.8 (25H,m), 1.9 (2H,t), 2.1 (2H,m), 2.4 (2H,m), 2.7 (1H,m), 3.0 (3H,m), 3.8-4.7 (13H,m), 7.0-7.9 (13H,m), 8.2 (1H,d), 8.3 (1H,d), 9.1 (1H,s), 14.6 (1H,bs). Analysis: C44H59N7O9.HCl.2.5H2O requires C,58.0; H,7.2; N,10.8%. Found: C,57.6; H,6.7; N,10.5%.

Example 16

20

35

50

6-(Benzyloxycarbonylmethyl-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from 6-(benzyloxycarbonylmethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4propanoic acid (Description 14(f)) (0.11g), following the procedure of Example 8a. The title compound (0.13g) was isolated as a white solid. NMR (δ) (DMSOd₆): 0.6-1.9 (24H,m), 1.9 (2H,t), 2.1 (2H,m), 2.4 (2H,m), 2.8 (1H,m), 3.1 (3H,m), 3.5 (2H,s), 3.7-3.9 (3H,m), 4.0 (1H,m), 4.2 (2H,m), 4.3 (1H,m), 4.5 (3H,m), 5.5 (2H,s), 7.0-7.6 (15H,m), 7.7 (1H,m), 7.9 (1H,s), 8.2 (1H,d), 8.3-8.4 (2H,m). M.S. (m/z) (FAB) (M + 1) 934 (consistent with m.w. = 933).

Example 17a

6-(Carboxymethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from 6-(benzyloxycarbonylmethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide (Example 16) (0.12g), following the procedure of Description 1(b). The title compound (0.090g) was isolated as a brown solid. NMR (δ) (DMSOd₆): 0.8-1.9 (24H,m), 2.1 (2H,m), 2.3-2.4 (2H,m), 2.7-2.8 (1H,m), 2.9-3.1 (4H,m), 3.5 (2H,m),

3.7-3.9 (3H,m), 3.9-4.0 (3H,m), 4.0-4.3 (3H,m), 4.5 (3H,m), 6.8-6.9 (3H,m), 7.0 (1H,s), 7.1-7.4 (6H,m), 7.6 (1H,m), 7.7 (1H,m), 8.1-8.4 (2H,m). M.S. (m/z) (FAB) (M+1) = 844 (consistent with m.w. = 843).

Example 17b

3-(1-imidazolyl)-6-(Carboxvmethyl)-2,3-dihydro-3-oxo-4H-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA propylamide .HCl 55

This material was formed from the corresponding free base (Example 17a) (0.085g), following the procedure of Exampl 8(b). The title compound (0.086g) was isolated as a light brown solid.

NMR (δ) (DMSOd₆): 0.6-1.8 (24H,m), 1.9 (2H,m), 2.1 (2H,m), 2.4 (2H,m), 2.7 (1H,m), 3.5 (2H,s), 3.7-3.9 (3H,m), 4.0 (1H,m), 4.2 (2H,t), 4.3 (1H,m), 4.5 (3H,m), 6.9-7.5 (13H,m), 7.7 (1H,s), 7.8 (1H,s), 7.9 (1H,m), 8.3 (1H,m), 8.4 (1H,m), 14.4 (1H,bs).

5 Example 18

3-(1-imidazolyl)propylamide.0.5-3,4-Dihydro-4-oxo-1,5-benzothiazepine-5(2H)-propanoyl-Phe-Leu-ACHPA (CHCl₃)

This material was formed from 3,4-dihydro-4-oxo-1,5-benzothiazepine-5(2H)-propanoic acid (Description 15(b)) (0.12g) following the procedure of Example 8a. The crude product was purified by chromatography on silica gel using methanol/chloroform (0-10% methanol, gradient) to give the title compound (0.18g) as a

NMR (δ) (DMSOd₆): 0.6-1.9 (27H,m), 2.0-2.2 (2H,m), 2.2-2.6 (3H,m), 2.6-3.1 (4H,m), 3.1-3.6 (2H,m), 3.8-3.9 (2H,m), 3.9-4.0 (2H,m), 4.0-4.3 (4H,m), 4.4-4.5 (1H,m), 4.8-4.9 (1H,m), 6.9 (1H,s), 7.4-7.5 (2H,m), 7.6 (2H,m), 7.7 (1H,m), 8.1 (1H,d), 8.2 (1H,m), 8.3 (1H,s).

Analysis: C44H61N7O6S.0.5(CHCl3) requires C,61.0; H,7.1; N,11.2%. Found: C,60.7; H,7.1; N,11.1%.

20 M.S. (m/z) (FAB) (M+1) = 816 (consistent with m.w. = 815).

Example 19a

3,4-Dihydro-1,1,4-trioxo-1,5-benzothiazepine-5(2H)-propanoyl-Phe-Leu-ACHPA propylamide.2.5H₂O

3-(1-imidazolyl)-

This material was formed from 3,4-dihydro-1,1,4-trioxo-1,5-benzothiazepine-5(2H)-propanoic acid (Description 16(b)) (0.15g), following the procedure of Example 8a. The crude product was purified by chromatography on silica gel using methanol/chloroform (0-10% methanol, gradient) to give the title compound (0.11g) as a slightly coloured solid.

NMR (δ) (DMSOd₆): 0.6-1.9(27H,m), 2.0-2.2(2H,m), 2.4-2.6(1H,m), 2.6-2.8(1H,m), 2.8-3.2(3H,m), 3.6-4.0-(6H,m), 4.2-4.4(1H,m), 4.4-4.5(1H,m), 4.8-4.9(1H,m), 6.9(1H,s), 7.1-7.3(8H,m), 7.5-7.9(5H,m), 7.9(1H,dd), 8.1-(1H,d), 8.2(1H,m).

Analysis: C₄₄H₆₁N₇O₈S.2.5H₂O requires C,59.2; H,7.4; N,11.0%. Found: C,59.4; H,7.0; N,10.7%. M.S. (m/z) (FAB) (M + 1) = 848 (consistent with m.w. = 847).

Example 19b

45

3,4-Dihydro-1,1,4-trioxo-1,6-benzothiazepine-5(2H)-propanoyl-Phe-Leu-ACHPA propylamide.HCl.1.5H2O

3-(1-imidazolyl)-

This material was formed from the corresponding free base (Example 19a) (0.10g), following the procedure of Example 8(b). This gave the title compound (0.09g) as a slightly coloured solid. NMR (δ) (DMSOd₆): 0.6-1.8(27H,m), 1.9(2H,m), 2.1(2H,m), 2.7(1H,m), 2.8-3.1(4H,m), 3.5-3.9(4H,m), 3.9-4.6-(10H,m), 7.1-7.3(7H,m), 7.6(1H,t), 7.7(2H,m), 7.8-8.0(3H,m), 8.1-8.4(2H,m), 9.1(1H,s), 14.5(1H,bs).

Analysis: C₄₄H₆₁N₇O₈S.HCl.1.5H₂O requires C,58.0; H,7.2; N,10.8%. Found: C,57.9; H,6.9; N,10.5%.

Example 20

6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide

This material was formed from 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoic acid (Description 17(e)) (0.20g), following the procedure of Example 8(a). The crude product was chromatographed on silica gel using methanol/chloroform (0-8%) methanol, gradient). This gave the title compound (0.17g) as a white powder.

NMR (δ) (CDCl₃): 0.7-1.0(8H,m), 1.0-1.85(23H,m), 2.0(2H,m), 2.3-2.7(4H,m), 2.95-3.7(8H,m), 4.05(4H,m), 4.2-4.5(6H,m), 5.6(1H,bt), 6.8-7.1(4H,m), 7.1-7.8(m).

M.S. (m/z) (FAB) (M+1) = 931 (consistent with m.w. = 930).

o Example 21

15

20

6-(Arminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)-propylamide .2CF₃CO₂H

This material was formed from 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4H-1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide (Example 20) (0.15g), following the procedure of Example 11. This gave the title compound (0.14g) as a fluffy white solid.

M.S. (m/z) (FAB) (M+1)=831 (consistent with m.w. of free base = 830).

Example 22

6-(Aminomethyl)-2,3-dihydro-1,1,3-trioxo-4H-1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-im-idazolyl)Propylamide .2CF3CO2H

This material was formed from the compound of Description 17(d), by successive S-oxidation (Description 8(a)), hydrolysis (Description 1(c)), peptide coupling (Example 8 a) and N-deprotection (Example 11).

Biological Data

In vitro human renin inhibition

Renin inhibitory activity was estimated as the percentage change in renin activity in human plasma in the presence and absence of compound. The source of plasma was blood taken from healthy volunteers. Renin activity was defined by the difference in angiotensin I levels between two halves of a sample, one incubated at 37° and the other at 4° for 2 h. Angiotensin I levels were measured using a ¹²⁵ I- angiotensin I radioimmunoassay kit (NEN/DuPont, Stevenage). Results were calculated as the mean of at least two, duplicate determinations and IC₅₀ values were calculated by linear regression analysis of at least three concentrations of compound.

The results were as follows:

Compound	IC₅o (nm)
E1	47
E2	220
E7	13
E11	25
E15	42
E18	8
E19	22

55

50

Claims

1. A compound of formula (I), or a pharmaceutically acceptable sait thereof:

10

15

5

wherein

either Z_1 is absent and Z_2 , Z_3 , Z_4 and Z_5 and the carbon atoms to which Z_2 and Z_5 are attached, form a 6membered non-aromatic heterocyclic ring; or

 Z_1 , Z_2 , Z_3 , Z_4 , Z_5 and the carbon atoms to which Z_1 and Z_5 are attached, form a 7-membered nonaromatic heterocyclic ring;

E is absent or is (CH2)n or CH(CH2)n-1 wherein n is 1 to 4;

A is -CONH-, -NHCO-, -COO-, -S(O),- wherein r is 0, 1 or 2, or -CH2-;

p is 0, 1 or 2;

s is 0, 1, 2, 3 or 4;

q is 0 or 1;

 R_z is hydrogen, C_{1-6} alkyl or, when A is -CH₂-, hydroxy;

 R_{a} and R_{b} are independently selected from hydrogen or a substituent;

 R_1 is CH_2R_9 wherein R_9 is optionally substituted aryl or heteroaryl;

R₂ is CHR₁₀R₁₁ wherein R₁₀ is hydrogen or methyl and R₁₁ is C₁₋₆ alkyl, C₃₋₈ cycloalkyl, optionally substituted aryl or heteroaryl, or R₁₁ is amino, C₂₋₇ alkanoylamino, 2-oxopyrrolidinyl, 2-oxopiperidinyl or C₁₋₆ alkoxycarbonylamino;

 R_3 is CH_2R_{12} wherein R_{12} is C_{1-6} alkyl, C_{3-8} cycloalkyl or phenyl;

 R_4 is C_{1-6} alkyl, C_{3-8} cycloalkyl, a saturated or unsaturated heterocyclic ring linked through carbon, hydroxy, C_{1-6} alkoxy, C_{1-7} alkanoyloxy, amino, C_{1-7} alkanoylamino, amino substituted by one or two C_{1-6} alkyl groups, C1-6 alkylsulphonyl, carboxy, C1-6 alkoxycarbonyl, benzyloxycarbonyl, aminocarbonyl or CH-(NHR₁₃)CO₂R₁₄ wherein R₁₃ is hydrogen or C₁₋₆ alkanoyl and R₁₄ is hydrogen or C₁₋₆ alkyl; or (when s is 2 to 4) R₄ is a saturated or unsaturated heterocyclic ring linked through nitrogen; and

the dashed line represents an optional bond (when E is present).

2. A compound according to claim 1 wherein Z2 is SO2 or O, Z3 is CH2, Z4 is CH2, Z5 is CH and E is attached at Z_5 ; or Z_2 is SO_2 , Z_3 is CH, Z_4 is CO, and Z_5 is N and E is attached at Z_5 .

3. A compound according to claim 1 wherein Z₁ is present and Z₁, Z₂, Z₃, Z₄ and Z₅ are selected from:

45

50

wherein X is O, S, SO₂, NH, N-C₁₋₆ alkyl or CH₂.

4. A compound according to any one of claims 1 to 3 wherein one of R_a and R_b is hydrogen and the other is CH₂NH₂, CO₂H, CH₂NHCH₂CO₂H or SO₂CH₂CO₂H.

5. A compound according to any one of claims 1 to 4 wherein the amino acid residue containing R_2 is Leu, β -pyrazolylalanine or His.

 $CH_2)_nCO-X-Y-NH-CHR_3^1-CHOH-CH_2CONH(CH_2)_SR_4^1$

6. A compound according to claim 1 of formula (IA) or a pharmaceutically acceptable salt thereof:

....

30

40

wherein X is Phe;

Y is Leu or His;

R₃¹ is cyclohexylmethyl;

R₄¹ is C₄₋₅ alkyl and s is 0 or s is 2 to 4 and R₄¹ is carboxy or a saturated or unsaturated heterocyclic ring; and

the remaining variables are as defined in claim 1.

7. A compound according to any one of claims 1 to 6 wherein E is $(CH_2)_n$ wherein n is 1, 2 or 3 and E is attached at Z_4 or Z_5 .

8. A compound according to any one of claims 1 to 7 wherein the sequence from the amino acid containing R₃ or R₃¹ to NH(CH₂)_sR₄, is 4(S)amino-5-cyclohexyl-3(S)-hydroxypentanoic acid (ACHPA).

9. A compound according to any one of claims 1 to 8 wherein s is 0 and R₄ is isobutyl or s is 2, 3 or 4 and R₄ is 1-imidazolyl, 2-imidazolyl, 4-morpholinyl, 2-oxopyrrolidin-1-yl, 2-pyridyl, 2-pyridyl-N-oxide, 3-pyridyl, hydroxyethyl, acetylamino, 4-methylpiperazin-1-yl, piperazin-1-yl or dimethylamino.

10. A compound selected from the group consisting of: chromanyl-4-acetyl-Phe-Leu-ACHPA isobutylamide,

2,3-dihydro-6-methyl-3-oxo-4 H -1,4-benzoxazine-4-acetyl-Phe-Leu-ACHPA isobutylamide,

1.1-dioxothiachromanylidene-4-acetyl-Phe-Leu-ACHPA isobutylamide,

1,1-dioxothiachromanyl-4-acetyl-Phe-Leu-ACHPA isobutylamide,

6-cyano-2,3-dihydro-3-oxo-4 H -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA isobutylamide,

2,3-dihydro-3-oxo-4 H -1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA isobutylamide,

2,3-dihydro-1,1,3-trioxo-4 H -1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA isobutylamide,

2,3-dihydro-1,1,3-trioxo-4 H -1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,

2,3-dioxo-1,2,3,4-tetrahydroquinoxaline-1-acetyl-Phe-Leu-ACHPA isobutylamide,

-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-im-6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4 H idazolyl)propylamide,

-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)-6-(aminomethyl)-2,3-dihydro-3-oxo-4

propylamide,

3-(1,2,3,4-tetrahydroisoquinolin-2-yl)propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,

2,3-dihydro-3-oxo-4 H -1,4-benzothiazine-2-acetyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,

6-benzyloxycarbonyl-2,3-dihydro-3-oxo-4 H -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide.

-1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)-6-carboxy-2,3-dihydro-3-oxo-4 propylamide,

6-(benzyloxycarbonylmethyl)-2,3-dihydro-3-oxo-4 H -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-im-

idazolyl)propylamide, 6-(carboxymethyl)-2,3-dihydro-3-oxo-4 H -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)-

propylamide,

35

40

50

55

3,4-dihydro-4-oxo-1,5-benzothiazepine-5(2 H⁻)-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,

3,4-dihydro-1,1,4-trioxo-1,5-benzothiazepine-5(2 H)-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide, 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4 H -1,4-benzo-thiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-im-

idazolyi)propylamide, 6-(aminomethyl)-2,3-dihydro-3-oxo-4 H -1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)-

propylamide and

H -1,4-benzothiazine-4-propanoyi-Phe-Leu-ACHPA 3-(1-im-6-(aminomethyl)-2,3-dihydro-1,1,3-trioxo-4 idazolyl)propylamide.

11. A process for the preparation of a compound according to claim 1, which process comprises reacting a reagent of the formula (III):

$$\begin{array}{c}
R_{a} \\
\downarrow \\
Z_{5} \\
\downarrow Z_{4} \\
\downarrow \\
Z_{1} \\
\downarrow Z_{2}
\end{array}$$
(III)

wherein Ra and Rb are Ra and Rb respectively or groups or atoms convertible thereto; A1 is absent or represents an appropriate amino acid or dipeptide unit; J is OH or a leaving group; and the remaining variables are as defined in claim 1; with a reagent of the formula (IV):

wherein A² is absent or represents an appropriate amino acid or dipeptide unit, such that A¹ + A² is

-NHCHR₁CONHCHR₂CO-, and the remaining variables are as defined in claim 1; and thereafter, if desired or necessary deprot cting (within A^1 or A^2) of the products, and/or converting Z_1 , Z_2 , Z_3 , Z_4 or Z_5 to other Z_1 , Z_2 Z_3 , Z_4 or Z_5 , R_a'/R_b to R_a and/or R_b and/or forming a pharmaceutically acceptable salt thereof.

- 12. A pharmaceutical composition comprising a compound according to any one of claims 1 to 10, and a pharmaceutically acceptable carrier.
- 13. A compound according to any one of claims 1 to 10 for use as an active therapeutic substance.
- 14. A compound according to any one of claims 1 to 10 for use in the treatment of hypertension.
- 15. Use of a compound according to any one of claims 1 to 10 in the manufacture of a medicament for use in the treatment of hypertension.

Claims for the following Contracting State: ES

1. A process for the preparation of a compound of formula (I), or a pharmaceutically acceptable salt thereof:

R₁ R₂ R₃

R_a ECONHCHCONHCHCH(CH₂) p (CH₂) s R₄

OH R₂ q z_1 (I)

wherein

10

15

either Z_1 is absent and Z_2 , Z_3 , Z_4 and Z_5 and the carbon atoms to which Z_2 and Z_5 are attached, form a 6-membered non-aromatic heterocyclic ring; or

30 Z₁, Z₂, Z₃, Z₄, Z₅ and the carbon atoms to which Z₁ and Z₅ are attached, form a 7-membered non-aromatic heterocyclic ring;

E is absent or is (CH₂)_n or CH(CH₂)_{n-1} wherein n is 1 to 4;

A is -COHN-, -NHCO-, -COO-, -S(O), wherein r is 0, 1 or 2, or -CH2-;

p is 0, 1 or 2;

35 s is 0, 1, 2, 3 or 4;

q is 0 or 1;

 R_z is hydrogen, C_{1-6} alkyl or, when A is -CH₂-, hydroxy;

Ra and Rb are independently selected from hydrogen or a substituent;

R₁ is CH₂R₉ wherein R₉ is optionally substituted aryl or heteroaryl;

R₂ is CHR₁₀R₁₁ wherein R₁₀ is hydrogen or methyl and R₁₁ is C₁₋₆ alkyl, C₃₋₈ cycloalkyl, optionally substituted anyl or heteroaryl, or R₁₁ is amino, C₂₋₇ alkanoylamino, 2-oxopyrrolidinyl, 2-oxopiperidinyl or C₁₋₆ alkoxycarbonylamino;

 R_3 is CH_2R_{12} wherein R_{12} is C_{1-6} alkyl, C_{3-8} cycloalkyl or phenyl;

R₄ is C₁₋₆ alkyl, C₃₋₈ cycloalkyl, a saturated or unsaturated heterocyclic ring linked through carbon, hydroxy, C₁₋₆ alkoxy, C₁₋₇ alkanoyloxy, amino, C₁₋₇ alkanoylamino, amino substituted by one or two C₁₋₆ alkyl groups, C₁₋₆ alkylsulphonyl, carboxy, C₁₋₆ alkoxycarbonyl, benzyloxycarbonyl, aminocarbonyl or CH-(NHR₁₃)CO₂R₁₄ wherein R₁₃ is hydrogen or C₁₋₆ alkanoyl and R₁₄ is hydrogen or C₁₋₅ alkyl; or (when s is 2 to 4) R₄ is a saturated or unsaturated heterocyclic ring linked through nitrogen; and

the dashed line represents an optional bond (when E is present);

50 which process comprises reacting a reagent of the formula (III):

10

5

wherein R_a and R_b are R_a and R_b respectively or groups or atoms convertible thereto; A^t is absent or represents an appropriate amino acid or dipeptide unit; J is OH or a leaving group; and the remaining variables are as defined; with a reagent of the formula (IV):

15

20

25

wherein

A² is absent or represents an appropriate amino acid or dipeptide unit, such that A¹ + A² is -NHCHR₁CONHCHR₂CO-, and the remaining variables are as defined; and thereafter, if desired or necessary deprotecting (within A¹ or A²) of the products, and/or converting Z₁, Z₂, Z₃, Z₄ or Z₅ to other Z₁, Z₂, Z₃, Z₄ or Z₅, R_a/R_b to R_a and/or R_b and/or R_b

2. A process according to claim 1 wherein Z_2 is SO_2 or O, Z_3 is CH_2 , Z_4 is CH_2 , Z_5 is CH and E is attached at Z_5 ; or Z_2 is SO_2 , Z_3 is CH, Z_4 is CO, and Z_5 is N and E is attached at Z_5 .

3. A process according to claim 1 wherein Z₁ is present and Z₁, Z₂, Z₃, Z₄ and Z₅ are selected from:

35

55

wherein X is O, S, SO₂, NH, N-C₁₋₆ alkyl or CH_2 .

4. A process according to any one of claims 1 to 3 wherein one of Ra and Rb is hydrogen and the other is

CH2NH2, CO2H, CH2NHCH2CO2H or SO2CH2CO2H.

- 5. A process according to any one of claims 1 to 4 wherein the amino acid residue containing R_2 is Leu, β -pyrazolylalanine or His.
- 6. A process according to claim 1 for the preparation of a compound of formula (IA) or a pharmaceutically acceptable salt thereof:

Ra (CH₂)_nCO-X-Y-NH-CHR₃¹-CHOH-CH₂CONH(CH₂)_SR₄¹
(S) (S)

$$z_1$$

wherein

10

15

X is Phe;

Y is Leu or His;

R₃1 is cyclohexylmethyl;

 R_4^{-1} is C_{4-5} alkyl and s is 0 or s is 2 to 4 and R_4^{-1} is carboxy or a saturated or unsaturated heterocyclic ring;

the remaining variables are as defined in claim 1.

- 7. A process according to any one of claims 1 to 6 wherein E is $(CH_2)_n$ wherein n is 1, 2 or 3 and E is attached at Z₄ or Z₅.
 - 8. A process according to any one of claims 1 to 7 wherein the sequence from the amino acid containing R_3 or R_3^1 to NH(CH₂)_s R_4 , is 4(S)-amino-5-cyclohexyl-3(S)-hydroxypentanoic acid (ACHPA).
 - 9. A process according to any one of claims 1 to 8 wherein s is 0 and R₄ is isobutyl or s is 2, 3 or 4 and R₄ is 1-imidazolyl, 2-imidazolyl, 4-morpholinyl, 2-oxopyrrolidin-1-yl, 2-pyridyl, 2-pyridyl-N-oxide, 3-pyridyl, hydroxyethyl, acetylamino, 4-methylpiperazin-1-yl, piperazin-1-yl or dimethylamino.
 - 10. A process according to claim 1 for the preparation of compound selected from the group consisting of: chromanyl-4-acetyl-Phe-Leu-ACHPA isobutylamide,
 - 2,3-dihydro-6-methyl-3-oxo-4 H -1,4-benzoxazine-4-acetyl-Phe-Leu-ACHPA isobutylamide,
 - 1,1-dioxothiachromanylidene-4-acetyl-Phe-Leu-ACHPA isobutylamide,
 - 1,1-dioxothiachromanyl-4-acetyl-Phe-Leu-ACHPA isobutylamide,
 - 6-cyano-2,3-dihydro-3-oxo-4 H -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA isobutylamide,
 - 2,3-dihydro-3-oxo-4 H -1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA isobutylamide,
 - 2,3-dihydro-1,1,3-trioxo-4 H -1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA isobutylamide,
 - 2,3-dihydro-1,1,3-trioxo-4 H -1,4-benzothiazine-4-propanoyi-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,
 - 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline-1-acetyl-Phe-Leu-ACHPA isobutylamide,
 - 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4 H -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,
 - 6-(aminomethyl)-2,3-dihydro-3-oxo-4 H -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)-propylamide,
- 3-(1,2,3,4-tetrahydroisoquinolin-2-yl)propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,
 - 2,3-dihydro-3-oxo-4 H -1,4-benzothiazine-2-acetyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,
 - 6-benzyloxycarbonyl-2,3-dihydro-3-oxo-4 H -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)-propylamide,
- 6-carboxy-2,3-dihydro-3-oxo-4 <u>H</u> -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,
 - 6-(benzyloxycarbonylmethyl)-2,3-dihydro-3-oxo-4 H -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-im-idazolyl)propylamide,
 - 6-(carboxymethyl)-2,3-dihydro-3-oxo-4 H -1,4-benzoxazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)-propylamide,
 - 3,4-dihydro-4-oxo-1,5-benzothiazepine-5(2 H)-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide.
 3,4-dihydro-1,1,4-trioxo-1,5-benzothiazepine-5(2 H)-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,
 6-(BOC-aminomethyl)-2,3-dihydro-3-oxo-4 H -1,4-benzo-thiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidazolyl)propylamide,

	6-(aminomethyl)-2,3-dihydro-3-oxo-4 H -1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-imidaz propylamide and						
	6-(aminomethyl)-2,3-dihydro-1,1,3-trioxo-4 H -1,4-benzothiazine-4-propanoyl-Phe-Leu-ACHPA 3-(1-IIII-						
5	11. Use of a compound of formula (I) as defined in any one of claims 1 to 10 or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for use in the treatment of hypertension.						
10							
15	•						
20							
25							
30							
35							
00							
40							
45							
50							
	·						

EUROPEAN SEARCH REPORT

EP 90 30 5978

	DOCUMENTS CONSIDER			
Category	Citation of document with indication of relevant gassages	n, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 5)
Υ	WO-A-8 803 022 (PFIZER * Page 3 - page 9, summ		1	C 07 K 5/02 A 61 K 37/64
Y	PEPTIDES: PROCEEDINGS O AMERICAN PEPTIDE SYMPOS Missouri, 23rd - 28th M G.R. MARSHALL, 1987, pa ESCOM, Leiden, NL; D.J. "Renin inhibitors based dipeptide analogs: Incr through systematic incl functionality" * Whole document *	F THE TENTH IUM, St. Louis, ay 1987, ed. ges 474-475, KEMPF et al.: on novel eased efficacy	1	TECHNICAL FIELDS SEARCHED (Int. Cl.5) C 07 K A 61 K
	The present search report has been dra	wn up for all claims	_	
	Piace of search	Date of completion of the search		Examiner
THE	HAGUE	17-09-1990	KORS	NER S.E.
X : part Y : part doct A : tech	CATEGORY OF CITED DOCUMENTS itcularly relevant if taken alone itcularly relevant if combined with another ument of the same category innological background i-written disclosure	E : earlier patent of after the filing D : document cite L : document cite	iple underlying the document, but public date in the application for other reasons	shed on, or

EPO PORM ISOS 03.82 (MMOI)