Zeitdiskrete Fourier-Transformation (DTFT)

Zeitdiskrete Fourier-Transformation

- Zeitdiskrete Fourier-Transformation, Discrete-Time Fourier Transform,
 DTFT: hat für Zahlenfolgen die gleiche Bedeutung wie die Fourier-Transformation für zeitkontinuierliche Signale.
- Wir entwickeln die DTFT aus der Fourier-Transformation für ideal abgetastete Funktionen $x_a(t)$.

Zeitdiskrete Fourier-Transformierte \longleftarrow Fourier-Transformierte $X_a(j\omega)$ von x_n

■ Die DTFT ordnet einer Folge x_n ein periodisches, kontinuierliches Spektrum zu.

Entwicklung der DTFT aus der Fourier-Transformation

Zusammenhang zwischen Folge x_n und ideal abgetasteter Funktion $x_a(t)$:

$$x_{a}(t) = \sum_{n=-\infty} x_{n} \cdot \delta(t - nT)$$

$$\downarrow^{\sigma} \mathcal{F}$$

$$X_{a}(j\omega) = \int_{-\infty}^{\infty} x_{a}(t)e^{-j\omega t}dt = \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x_{n}\delta(t - nT)e^{-j\omega t}dt$$

$$= \sum_{n=-\infty}^{\infty} x_{n} \int_{-\infty}^{\infty} \delta(t - nT)e^{-j\omega nT}dt =$$

$$= \sum_{n=-\infty}^{\infty} x_{n}e^{-j\omega nT} \int_{-\infty}^{\infty} \delta(t - nT)dt$$

$$= \sum_{n=-\infty}^{\infty} x_{n}e^{-j\omega nT} \underbrace{\int_{-\infty}^{\infty} \delta(t - nT)dt}_{=1}$$

Entwicklung der DTFT aus der Fourier-Transformation

Fourier-Transformierte:

$$X_{\mathsf{a}}(j\omega) = \sum_{n=-\infty}^{\infty} x_n e^{-j\omega nT}$$

• Wir ersetzen $\Omega = \omega T$:

$$X_{\mathsf{a}}(j\omega)|_{\Omega=\omega T} = \sum_{n=-\infty}^{\infty} x_n e^{-j\Omega n} =: X(j\Omega)$$

Zeitdiskrete Fourier-Transformierte

 Ω : diskrete Kreisfrequenz, ω normiert auf die Abtastfrequenz 1/T, dimensionslos

■ Die zeitdiskrete Fourier-Transformierte ist die Fourier-Transformierte der ideal abgetasteten Funktion $x_a(t)$ mit Variablensubstitution $\Omega = \omega T$.

Zeitdiskrete Fourier-Transformation, DTFT

■ Zeitdiskrete Fourier-Transformierte der Folge x_n :

$$X(j\Omega) = \sum_{n=-\infty}^{\infty} x_n e^{-j\Omega n}, \quad \Omega = \omega T$$

- Die DTFT ordnet der reellen oder komplexen Folge x_n eine Funktion $X(j\Omega)$ der reellen Variablen Ω zu. Die Zuordnung ist eindeutig.
- Schreibweisen: $X(j\Omega) = \mathcal{F}\{x_n\}$ $x_n = \mathcal{F}^{-1}\{X(j\Omega)\}$ $x_n \circ \longrightarrow X(j\Omega)$ $X(j\Omega) \bullet \longrightarrow x_n$
- Beachte die Ähnlichkeit zur z-Transformation:

$$X(z) = \sum_{n=0}^{\infty} x_n z^{-n}$$

Periodizität der zeitdiskreten Fourier-Transformierten

$$X(j\Omega) = \sum_{n=-\infty}^{\infty} x_n e^{-j\Omega n}, \quad \Omega = \omega T$$

Periodizität: $X(j\Omega)$ ist periodisch mit $\Omega = 2\pi$,

$$\mathrm{denn} \ e^{-j(\Omega+2\pi)n} = e^{-j\Omega n} \underbrace{e^{-j2\pi n}}_{=1} = e^{-j\Omega n}$$

Grundperiode: $-\pi \leq \Omega \leq \pi$

oft gibt man nur die Grundperiode von $X(j\Omega)$ an.

$$X_{\mathsf{a}}(j\omega) = \sum_{n=-\infty}^{\infty} x_n e^{-j\omega nT}$$

Periodizität: $X_a(j\omega)$ ist periodisch mit $\omega = 2\pi/T$

Grundperiode: $-\pi/T \le \omega \le \pi/T$.

Übersicht abgetasteter und periodischer Signale und ihrer Spektren, Fourier-Transformation

abgetastet in t

periodisch fortgesetzt in $\,\omega\,$

Übersicht abgetasteter und periodischer Signale und ihrer Spektren, Fourier-Transformation

periodisch fortgesetzt in t

abgetastet in t periodisch fortgesetzt in t

abgetastet in ω (Linienspektrum)

periodisch fortgesetzt in ω abgetastet in ω (periodisches Linienspektrum)

Übersicht abgetasteter und periodischer Signale und ihrer Spektren, "passende" Transformationen

Übersicht abgetasteter und periodischer Signale und ihrer Spektren, "passende" Transformationen

Übersicht Transformationen für abgetastete und periodische Signale

		Zeitbereich				
		kontinuierlich	diskret (periodisches Spektrum)			
Frequenzbereich	kontinuierlich	Fourier-Transformation	Zeitdiskrete Fourier-Transformation (DTFT)			
	diskret (periodisches Signal)	Fourier-Reihe	Diskrete Fourier-Transformation (DFT)			

Inverse zeitdiskrete Fourier-Transformation

$$x_n = \mathcal{F}^{-1}\{X(j\Omega)\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(j\Omega)e^{j\Omega n}d\Omega$$

■ Die Folge x_n entsteht also durch eine gewichtete Überlagerung von Exponentialfunktionen $e^{j\Omega n}$. Die Spektralwerte $X(j\Omega)$ sind die Gewichtsfaktoren.

Beweis der Inversen Zeitdiskreten Fourier-Transformation

Beweis durch Einsetzen:

$$x_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{l=-\infty}^{\infty} x_{l} e^{-j\Omega l} e^{j\Omega n} d\Omega$$

$$= \sum_{l=-\infty}^{\infty} x_{l} \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\Omega(n-l)} d\Omega$$

$$= \sum_{l=-\infty}^{\infty} x_{l} \cdot \frac{1}{2\pi} \left[\frac{1}{j(n-l)} e^{j\Omega(n-l)} \right]_{-\pi}^{\pi}$$

$$= \sum_{l=-\infty}^{\infty} x_{l} \cdot \frac{1}{2\pi j(n-l)} \left(e^{j\pi(n-l)} - e^{-j\pi(n-l)} \right)$$

$$= \sum_{l=-\infty}^{\infty} x_{l} \cdot \frac{\sin((n-l)\pi)}{(n-l)\pi}$$

$$= 1 \text{ für } n = l \text{ und 0 sonst}$$

 $= x_n$

Verbindung zur Fourier-Transformierten kontinuierlicher Signale

• Wenn das diskrete Signal durch Abtastung eines kontinuierlichen Signals x(t) entstanden ist, gilt:

 $\text{mit } \omega T = \Omega : X(j\Omega) = \frac{1}{T} \left| \sum_{k=0}^{\infty} \left| X(j\omega_k) \right|_{\omega_k = \frac{\Omega - 2\pi k}{T}} \right|$

Verbindung zur Fourier-Transformierten kontinuierlicher Signale

■ Beachte: Diese Zusammenhänge zwischen $X_a(j\omega)$ bzw. $X(j\Omega)$ und $X(j\omega)$ gelten auch, wenn das Abtasttheorem *nicht* eingehalten wird, sofern die dadurch entstehenden Überfaltungen berücksichtigt werden.

In diesem Fall entspricht jedoch die Grundperiode des resultierenden Spektrums $X_{\bf a}(j\omega)$ bzw. $X(j\Omega)$ nicht dem Spektrum $X(j\omega)$ des kontinuierlichen Signals.

- \longrightarrow Zwei Möglichkeiten zur Berechnung von $X(j\Omega)$:
 - 1. direkt über die Transformationsformel
 - 2. aus der Fourier-Transformierten $X(j\omega)$ einer entsprechenden kontinuierlichen Zeitfunktion x(t) mit $x_n = x(nT)$

Beispiel: Zeitdiskrete Fourier-Transformierte der Cosinusfolge

$$x(t) = \cos(\omega_0 t) \quad \stackrel{\mathcal{F}}{\circ} \quad X(j\omega) = \pi \left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \right]$$

$$\downarrow \text{ Abtastung } \quad \text{DTFT}$$

$$x_n = \cos(\omega_0 nT) \quad \stackrel{\bullet}{\circ} \quad X(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j\omega_k\right) \big|_{\omega_k = \frac{\Omega - 2\pi k}{T}}$$

$$= \cos(\Omega_0 n)$$

$$\text{mit } \Omega_0 = \omega_0 T$$

$$X(j\Omega) = \frac{\pi}{T} \sum_{k=-\infty}^{\infty} \left[\delta\left(\frac{\Omega + \Omega_0 - 2\pi k}{T}\right) + \delta\left(\frac{\Omega - \Omega_0 - 2\pi k}{T}\right) \right]$$

$$= \pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega + \Omega_0 - 2\pi k) + \delta(\Omega - \Omega_0 - 2\pi k) \right]$$

$$\text{mit } \delta(ax) = \frac{1}{|a|} \delta(x)$$

Beispiel: Zeitdiskrete Fourier-Transformierte der Cosinusfolge

$$x(t) = \cos(\omega_0 t)$$

$$\frac{2\pi}{\omega_0}$$

$$X(j\Omega) = \pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega + \Omega_0 - 2\pi k) + \delta(\Omega - \Omega_0 - 2\pi k) \right]$$

Beispiel: Zeitdiskrete Fourier-Transformierte des diskreten Delta-Kamms

Beweis durch Einsetzen:

$$x_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(j\Omega)e^{j\Omega n} d\Omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} 2\pi \sum_{k=-\infty}^{\infty} \delta(\Omega - 2\pi k)e^{j\Omega n} d\Omega$$

$$= \sum_{k=-\infty}^{\infty} \int_{-\pi}^{\pi} \delta(\Omega - 2\pi k)e^{j2\pi kn} d\Omega = \sum_{k=-\infty}^{\infty} e^{j2\pi kn} \int_{-\pi}^{\pi} \delta(\Omega - 2\pi k)d\Omega = 1$$

$$= \begin{cases} 1 & \text{für } k = 0 \\ 0 & \text{sonst} \end{cases}$$

DTFT: Eigenschaften und Rechenregeln

- Die Eigenschaften der DTFT entsprechen weitgehend denen der Fourier-Transformation, z.B.
 - Linearität,
 - Zeit und Frequenzverschiebung,
 - Skalierung, Maßstabsänderung
 - Symmetrie-Eigenschaften.
- Von zentraler Bedeutung ist wieder die Faltungsregel:

$$x_n * y_n = \sum_{k=-\infty}^{\infty} x_k y_{n-k} \quad \bigcirc - \bullet \quad X(j\Omega) \cdot Y(j\Omega)$$

Systembeschreibung mittels DTFT

Spektrum des Eingangssignals Frequenzgang des Systems

Spektrum des Ausgangssignals

Beispiel: Mittelungsfilter mit harmonischer Schwingung am Eingang

$$x_n = \cos(\Omega_0 n) \qquad h_n = \frac{1}{3}(\delta_{n+1} + \delta_n + \delta_{n-1}) \qquad y_n$$

digitales Filter, berechnet gleitenden Mittelwert der Länge 3 (symmetrisch, akausal)

Frequenzgang des Filters:

$$H(j\Omega) = \sum_{n = -\infty}^{\infty} h_n e^{-j\Omega n} = \sum_{n = -1}^{1} \frac{1}{3} e^{-j\Omega n}$$
$$= \frac{1}{3} \left[e^{j\Omega} + 1 + e^{-j\Omega} \right] = \frac{1}{3} \left[1 + 2\cos(\Omega) \right]$$

periodisch in Ω mit Periode 2π

Ω	0	$\pi/3$	$2\pi/3$	π
$\cos(\Omega)$	1	1/2	-1/2	-1
$H(j\Omega)$	1	2/3	0	-1/3

Beispiel: Mittelungsfilter mit harmonischer Schwingung am Eingang

- Darstellung des Frequenzgangs $H(j\Omega)$ nach Betrag und Phase: (für Grundperiode $-\pi \leq \Omega < \pi$)
- Amplitudengang, Betragsfrequenzgang:

$$|H(j\Omega)| = \frac{1}{3}|1 + 2\cos(\Omega)|$$

Tiefpasscharakter

■ Phasengang:

$$\arg(H(j\Omega)) = \begin{cases} 0 & \text{für } |\Omega| \leq \frac{2\pi}{3} \\ -\pi & \text{für } -\pi \leq \Omega < -\frac{2\pi}{3} \\ \pi & \text{für } \frac{2\pi}{3} < \Omega < \pi \end{cases} \xrightarrow{-\pi} \frac{1}{3} \frac{\pi}{3} \frac{\pi}{3} \frac{2\pi}{3} \frac{\pi}{3}$$
 ungerade in Ω

Beispiel: Mittelungsfilter mit harmonischer Schwingung am Eingang

Spektrum des Eingangssignals:

$$X(j\Omega) = \pi \sum_{k=-\infty}^{\infty} \left[\delta(\Omega + \Omega_0 - 2\pi k) + \delta(\Omega - \Omega_0 - 2\pi k) \right]$$

Grundperiode: für $-\pi \leq \Omega < \pi$:

$$X(j\Omega) = \pi \left[\delta(\Omega + \Omega_0) + \delta(\Omega - \Omega_0) \right]$$

■ Spektrum des Ausgangssignals für $-\pi \leq \Omega < \pi$:

$$Y(j\Omega) = X(j\Omega) \cdot H(j\Omega)$$

$$= \pi \left[H(-j\Omega_0) \delta(\Omega + \Omega_0) + H(j\Omega_0) \delta(\Omega - \Omega_0) \right]$$
und da $H(j\Omega)$ eine gerade Funktion ist
$$= \pi H(j\Omega_0) \left[\delta(\Omega + \Omega_0) + \delta(\Omega - \Omega_0) \right]$$

$$y_n=H(j\Omega_0)\cos(\Omega_0 n)=rac{1}{3}\left[1+2\cos(\Omega_0)\right]\cos(\Omega_0 n)=H(j\Omega_0)\cdot x_n$$
 Ausgangsfolge

Beispiel: Mittelungsfilter mit harmonischer **Schwingung am Eingang**

$$x_n = \cos(\Omega_0 n)$$

$$\Omega_0 = 0 : y_n = x_n$$

$$\Omega_0 = \frac{\pi}{3} : y_n = \frac{2}{3}x_n$$

$$\Omega_0 = \frac{2\pi}{3} : y_n = 0$$

$$\Omega_0 = 0 : y_n = x_n$$
 $\Omega_0 = \frac{\pi}{3} : y_n = \frac{2}{3}x_n$ $\Omega_0 = \frac{2\pi}{3} : y_n = 0$ $\Omega_0 = \pi : y_n = -\frac{1}{3}x_n$

Komplexe Exponentialfolgen als Eingangsfolgen diskreter LTI-Systeme

aus der Fourier-Transformierten der entsprechenden kontinuierlichen Zeitfunktion

$$x(t) = e^{j\omega_0 t}$$

$$X(j\omega) = 2\pi \cdot \delta(\omega - \omega_0)$$

Ausgangsfolge y_n entspricht bis auf eine Skalierung mit $H(j\Omega_0)$ der Eingangsfolge x_n

→ komplexe Exponentialfolgen sind Eigenfolgen der LTI-Systeme

Rücktransformation

Möglichkeiten zur Bestimmung der Folge x_n , d.h. der Rücktransformierten aus $X(j\Omega)$:

- Einsetzen in Definitionsgleichung,
- mit Hilfe von Transformationstabellen oder
- durch Koeffizientenvergleich.

Beispiel Koeffizientenvergleich:

$$\begin{split} H(j\Omega) &= \sum_{n=-\infty}^{\infty} h_n e^{-j\Omega n} = \frac{1}{3} [1 + 2\cos(\Omega)] \\ &= \frac{1}{3} + \frac{1}{3} \left(e^{j\Omega} + e^{-j\Omega} \right) = \frac{1}{3} \cdot e^{-j\Omega(-1)} + \frac{1}{3} \cdot e^{-j\Omega 0} + \frac{1}{3} \cdot e^{-j\Omega(+1)} \\ \Rightarrow h_n &= \left\{ \begin{array}{ll} \frac{1}{3} & \text{für } n = -1, \ 0, \ 1 \ \text{und} \\ 0 & \text{sonst} \end{array} \right. \end{split}$$

Parsevalsches Theorem für diskrete Signale

$$\mathsf{E}_x^{\mathsf{diskret}} = \sum_{n=-\infty}^{\infty} |x_n|^2 = \tfrac{1}{2\pi} \int_{-\pi}^{\pi} |X(j\Omega)|^2 d\Omega = \mathsf{Signalenergie}$$

Tusammenhang zur Energie des zugehörigen kontinuierlichen Signals x(t):

$$\mathsf{E}_{x}^{\mathsf{kontin.}} = \int_{-\infty}^{\infty} |x(t)|^{2} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^{2} d\omega$$

Bei Einhaltung des Abtasttheorems ist x(t) auf π/T bandbegrenzt \to

$$\mathsf{E}_{x}^{\mathsf{kontin.}} = \frac{1}{2\pi} \int_{-\frac{\pi}{T}}^{\frac{\pi}{T}} |X(j\omega)|^2 d\omega = \frac{T^2}{2\pi} \int_{-\pi}^{\pi} |X(j\Omega)|^2 \frac{d\Omega}{T} = T \cdot \mathsf{E}_{x}^{\mathsf{diskret}}$$

$$\begin{array}{l} \text{mit } X(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j\omega_k\right)|_{\omega_k = \frac{\Omega - 2\pi k}{T}} \\ \text{und } \Omega = \omega T, \quad d\omega = \frac{1}{T} d\Omega, \; \omega = \pm \frac{\pi}{T} \to \Omega = \pm \pi \end{array}$$

und
$$\Omega=\omega T,\quad d\omega=rac{1}{T}d\Omega,\; \omega=\pmrac{\pi}{T} o\Omega=\pm\pi$$