介绍一下电路实验课

- 这个课主要目的是什么?
 - 验证电路理论中学习的重要内容
 - 掌握仪器的使用
 - 简单电路分析,设计,测试方法
- 电路测量的什么?
 - 电压, 电流, 频率, 相位及相位差
 - 元件参数, 电路特性。。。
- 写一个好的报告
 - 实验报告的目的是别人看了能有所收获
 - 能从报告中得到结论,而不是仅仅记录实验数据
 - 学习写实验报告的规范,写一个实验小结

实验注意事项

试验规程(安全第一):

- ▶ 接、拆线路前,一定要断开电源(先接线后合电源、先断电源后拆线)
- ▶ 导线在实验台的抽屉中,导线长短不一、注意颜色配合(建议红+黑-)
- ▶ 接线完全插进去
- > 身体不要碰到带电部分
- > 老师未要求用的仪表,不要动
- ▶ 万一出现事故,立即切断电源,保护好自己,请老师检查

实验台的整理:

- ▶ 拆线路,放到抽屉中
- ▶ 收拾垃圾、凳子归位
- ▶ 清洁卫生 (班长安排)

电工基础综合实验台简介

双通道直流稳压/稳流电源

长按电压电路旋钮是锁定模式!

设定电压电流值:

- ▶按CH1, CH1的电压显示值开始闪烁, 转动"电压调节旋钮" 即可调节电压设定值大小。
- ▶再次按CH1, 电流显示位开始闪烁, 转动"电流调节旋钮"即可调节电流设定值大小。
- ▶按"电压或电流调节旋钮",显示位循环闪烁。
- ▶如果设备进入保护状态,**按压"电压调节旋钮"超过3秒,可以解锁。**
- ▶设定电压电流值之后,按0n/0ff, on灯点亮, 即可输出。

恒压恒流模式:

- ▶ 恒压模式: 设定电压和电流值后,如果此时输出电流很小,则此时处于恒压模式,输出电压为设定电压,输出电流小于设定电流,CV灯会亮。
- ▶ 恒流模式: 设定电压和电流值后,如果此时输出电流很大,超过设定电流,为了限定输出功率不过载,会降低输出电压,使输出电流限定在设定值上。则此时处于恒流模式, CC灯会亮。

示例: **设定电压为10V,电流为0.5A,**如果输出电流为0.3A,则为10V恒压源,CV灯会亮。如果输出电流为0.6A,则为0.5A恒流源,CC灯会亮。

数字万用表DMM6500

实验一 直流电路实验

一、实验目的

- 1. 了解电工实验台的基本结构,掌握直流稳压电源以及直流电压表、电流 表的正确使用方法,学会使用电流测量插头。
 - 2. 加深对基尔霍夫定律的理解, 验证基尔霍夫定律的正确性。
- 3. 加深对戴维南定理、叠加定理的理解,学习线性含源二端网络等效参数的测量方法。

二、仪器设备

1.	直流电路实验专用挂件	一块
2.	电阻	若干
3.	程控直流稳压电源UNI-T UTP8303M(双路)	一台
4.	直流数字电流表	一只
5.	直流数字电压表	一只

三、实验简介

1. 实验电路如图1-1所示,只要将虚线对应的器件接上,且 S_1 拨到"D"端、 S_2 拨到"E"端,电路即可正常工作。

2. 基尔霍夫定律的验证

对于电路中任一节点,有 \(\subseteq \text{I=0}\),推广到电路中任一假想闭合面,仍有 \(\subseteq \text{I=0}\),

1、基尔霍夫定律的验证

- (1) 在实验台上找到直流实验专用挂件 (见图 1-1),将 S_1 、 S_2 拨到悬空位 T_1 。
- (2) 将电源电流调节旋钮顺时针调到最大(例如 1A),调节电压调节旋钮, 使输出电压为 8V,作为 U_{S1} ,接到 D、H 处;选出 20Ω 电阻作为 R_L , 接到 E、F 处;其余虚线短接。
- (3) S1拨到 D 处, S2拨到 E 处, 即接成图 1-5 所示的电路。
- (4) 测量 I_A、I_B、I_C填入表 1-1 中。 测量 U_{DB}、U_{EF}、U_{FH}、U_{ED},填入表 1-1 中。

提示: 所有需要测量的电压,均以直流电压表为准,不以直流稳压电源上的表头指示为准。

表 1-1

	读				¥	ð	计	算	
I,	Ą	$I_{\mathbb{B}}$	Ic	U_{DB}	U_{BF}	U_{FH}	U_{HD}	$\sum I$	$\sum U$

实验一 直流电路实验

一、实验目的

- 1. 了解电工实验台的基本结构;掌握直流稳压电源以及直流电压表、电流 表的正确使用方法;学会使用电流测量插头。
 - 2. 加深对基尔霍夫定律的理解, 验证基尔霍夫定律的正确性。
- 3. 加深对戴维南定理、叠加定理的理解,学习线性含源二端网络等效参数的测量方法。

二、仪器设备

直流电路实验专用挂件 一块
 电阻 若干
 程控直流稳压电源UNI-T UTP8303M(双路) 一台
 直流数字电流表 一只
 直流数字电压表 一只

三、实验简介

1. 实验电路如图1-1所示,只要将虚线对应的器件接上,且 S_1 拨到"D"端、 S_2 拨到"E"端,电路即可正常工作。

2. 基尔霍夫定律的验证 对于电路中任一节点,有 ΣΙ=0,推广到电路中任一假想闭合面,仍有 ΣΙ=0,

2、戴维南定理的研究

- (1) 保持图 1-5 对以上实验内容连线不变,断开 $E \times F$ 支路,测出开路电压 U_{OC} ,填入表 1-2 中。
- (2)分别用"实验简介"中介绍的两种测 R_S 的方法,测出 R_S ,填入表 1-2 中。
- (3) 由测得的等效参数将电路接成图 1-4 的形式。因实验台上的可调电阻 误差较大,可用一个固定电阻 R 近似等效 $R_L + R_S$ 。图 1-6 电路在实验 台上的连接方法如图 1-7 所示。由图 1-7 电路测量电流 I_{RL} (即 I_B),填入表 1-2 中。

表 1-2

.,		Rs		,
Uoc	方法一测	方法二测	平均值	$I_{ m B}$

Rs的测定

方法一:

令含源二端网络中独立源 U_{S1} =0(S_1 拨到 H 点),在 E、F 端加一已知电压 U_r

测得端钮上电流 I_B ,则 $R_S=U/I_B$ 。

方法二:

当端钮处允许短路(本电路可以短路)时,(S1拨到 D点、S2拨到 F点),

测出端钮的短路电流 IBS,则 RS=Uoc/IBS。

实验一 直流电路实验

一、实验目的

- 1. 了解电工实验台的基本结构,掌握直流稳压电源以及直流电压表、电流 表的正确使用方法,学会使用电流测量插头。
 - 2. 加深对基尔霍夫定律的理解, 验证基尔霍夫定律的正确性。
- 3. 加深对戴维南定理、叠加定理的理解,学习线性含源二端网络等效参数的测量方法。

二、仪器设备

 1. 直流电路实验专用挂件
 一块

 2. 电阻
 若干

 3. 程控直流稳压电源UNI-T UTP8303M(双路)
 一台

 4. 直流数字电流表
 一只

5. 直流数字电压表

三、实验简介

1. 实验电路如图1-1所示,只要将虚线对应的器件接上,且 S_1 拨到"D"端、 S_2 拨到"E"端,电路即可正常工作。

一只

2. 基尔霍夫定律的验证

对于电路中任一节点,有 \sum I=0,推广到电路中任一假想闭合面,仍有 \sum I=0,

3、叠加定理的研究

- (1) 将图 1-1 中 D、H 支路接独立电源 $U_{S1}(U_{S1}=8V)$, E、F 支路接独立电源 $U_{S2}(U_{S2}=8V)$, 其他虚线短接, S_1 拨到"D"端、 S_2 拨到"E"端,如图 1-8 所示。
- (2) 测 /B, 填入表 1-3 中。
- (3) 分别令 U_{S1} 单独作用(将图 1-8 中 S_2 拨到 F 端)、 U_{S2} 单独作用(将图 1-8 中 S_2 拨到 E 端、 S_1 拨到 H 端)时,测量 I_B 、 I_B' ,填入表 1-3 中,比较 I_B' + I_B'' 与 I_B 的大小,验证叠加定理是否成立。

表 1-3

I_{B}	$I_{ m B}^{'}$	$I_{ m B}^{''}$	$I_{ m B}^{'}+I_{ m B}^{''}$

第二次课

本次课的目的是熟悉信号发生器和示波器的操作,看学习通视频学习操作方法

示波器操作:

- ▶ (1) 输入耦合方式 DC AC 接地
- ▶ (2) 工作方式的选择 Y—T Y—X
- ▶ (3) 扫描线 (Y—T工作方式时)
- ➤ (4) Y轴灵敏度选择 (mV/div)
- ▶ (5) 扫描速度的选择 (ms/div us/div s/div)
- ▶ (6) 坐标原点
- ▶ (7) 光标功能 (cursor)
- > (8) 共地问题
- ▶ (9) 校正方波
- ▶ (10) 测量功能 (measure)
- ➤ (11)自动设置 (autoset)
- ➤ (12)触发(triger)

第二次课

实验二 一阶 RC 电路的暂态过程

一、实验目的

- 1. 观测 RC 电路的矩形脉冲响应, 学习时间常数的测定方法。
- 2. 研究电路参数改变对暂态过程的影响。
- 3. 解 RC 电路的实际应用。
- 4. 学习函数发生器、示波器的使用方法。

二、仪器设备

- 1. 函数发生器 一台
- 2. 双踪数字示波器 一台
- 3. 电阻、电容 若干

三、实验简介

1. RC 电路的矩形脉冲响应

电路从一个稳态变化到另一个稳态的过程称为过渡过程或暂态过程,暂态过程产生的原因是电路中有储能元件的存在。当电感电压 u_L 或电容电流 i_C 为有限值时,电感电流或电容电压不能跃变,故暂态过程是一个渐变过程。

将周期性矩形脉冲电压加在 RC 串联电路上,电容 C 通过电阻 R 充电、放电的过程重复出现。

以充电为例: 若 t=0 时,电容电压 $u_{\rm C}$ 的初始值为零,矩形脉冲跃升为幅值 U,电容 C 通过电阻 R 充电,有 $u_{\rm C}=U$ ($1-{\rm e}^{-t/\tau}$),其中 $\tau={\rm RC}$ 。当 $t=\tau$ 时, $u_{\rm C}=0.632$ U。所以在实验中,只要测得零状态响应 $u_{\rm C}=0.632U$ 时对应的时间,即为电路的时间常数。

- 2. RC 电路的应用
 - (1) RC 微分电路和 RC 耦合电路

微分电路和耦合电路在形式上完全一样,如图 2-1 所示。二者的区别在于电路参数不同。

设输入脉冲的宽度为 t_P , 当 $t << t_P$ 时, 电路为微分电路, 表现在输出端 u_O 为尖脉冲。

当 $\tau >> t_P$ 时,图 2-1 电路则为耦合电路。由于电容有隔直传交作用,故表现在输出端 u_0 为输入直流方波的交流分量(即:输入直流,输出交流)。

(2) RC 积分电路

将图 2-1 电路中电容和电阻交换位置且满足 $t>>t_P$,则电路为积分电路,输出电压 u_O 近似正比于输入电压对时间的积分。在实际应用中,常采用这种电路将矩形波转换成三角波。

1. RC 电路的暂态过程

(1) 实验电路原理图如图 2-6 所示。

图 2-6 在实验台上的连接方法如图 2-7 所示。提示:函数发生器与示波器要共地。(**注意红、黑线接法**)

图 2-7

(2) 实验步骤

- ① 按图 2-7 连接好实验线路。
- ② 设置函数发生器。选择函数发生器的 CH1 输出波形为正方波,频率为 200Hz,峰峰值 V_{PP} =6 V_{o}

- ③ 观察并记录波形。用示波器的 CH1 和 CH2 通道分别观察 u_i 和 u_o 的波形,然后在表 2-1 中记录 u_i 和 u_o 的波形图和参数。
- ④用示波器光标测定一阶电路的时间常数,将结果标注在波形图上,并填在表 2-1 中。对应原理图如图 2-9 所示。

表 2-1

波形名称	参数	波形图
RC 暂态过程 ui、uo波形	τ 的理论值: τ 的实测值:	<i>u</i> ₁ , <i>u</i> ₀

2、微分电路

(1) 实验电路如图 2-10 所示。

- (2) u_i为正方波,频率为 200Hz,峰峰值 V_{p-p}=6V。
- (3) 观察波形
- ①用示波器的两个通道观察 ui 和 uo的波形,并画在表 2-1 中。

图 2-11

②用示波器的两个通道观察 ui 和 uc 的波形,并画在表 2-1 中。

提示:由于示波器与函数发生器必须共地,观察 uc 时,可将输入 ui 反向(如图 2-12)或者电阻和电容交换位置后再观察。

表 2-1

波形名称	参数	波形图
微分电路波形	R=10kΩ C=0.01μF	u_i , u_o u_i , u_c t

第二次课

3、耦合电路

(1) 实验电路如图所示。

- (2) u_i 为正方波,频率为 200Hz,峰峰值 $V_{p-p}=6V$ 。
- (3) 观察波形
- ①用示波器的两个通道观察 ui 和 uo 的波形, 并画在表 2-1 中。
- ②用示波器的两个通道观察 ui 和 uc 的波形,并画在表 2-1 中。

注意: 所有实验的波形或者结果先记录在表 2-1 中,待老师检查无误之后,课后再写入实验报告。

表 2-1

波形名称	参数	波形图
耦合电路波形	R=10kΩ C=1μF	# ₁

第二次课

实验三 交流电路中的三元件特性

一、实验目的

- 3. 测定 R、L、C元件在交流电路中对频率的响应。
- 4. 观察 R、L、C 元件在交流电路中电压、电流的相位关系。

二、仪器设备

1. 函数发生器 一台

2. 双踪数字示波器 一台

3. 交流数字电流表 一只

4. 电阻、电容、电感元件 若干

三、实验简介

- 1. 在交流电路中,R、L、C 三元件对频率的响应是不同的,三元件所表现出的阻抗(模)为: R = U/I、 $X_L = U/I = 2\pi J L$ 、 $X_C = U/I = 1/(2\pi f C)$ 即: 电阻的阻抗与频率无关,而电容、电感的阻抗是频率的函数。
- 2. 在正弦交流电路中,三元件两端电压与流过该元件的电流有一定的相位 关系。理论上电阻元件电压与电流同相;纯电感元件电压超前电流 90°; 纯电容元件电压滞后电流 90°。实际使用中, R、C一般可近似为理想元件,而电感元件由导线绕成,含有一定的电阻,与理想元件相差较大,电压超前于电流但小于 90°。
- 3. 观察三元件电压与电流的波形时,均要在元件中串联一个很小的采样电阻,原因是由于示波器不能直接测电流,只能测电压,所以将电流的变化通过采样电阻上的电压变化来体现。(采样电阻上的电压与电流同相位)
- 4. 利用示波器测相位差的方法 若测两同频率波形的相位差 φ ,测出对应 φ 的时间差 Δt ,以及正弦信号的周期 T,最后计算: φ =(360°) * Δt /T

四、实验内容及步骤

- 1、三元件的频率响应
- (1) 实验电路如图 3-1 所示。
- (2) 函数发生器的信号要求:

函数发生器从 CH_1 输出端输出正弦波,保证元件两端电压有效值为 $4V_0$ (即图 3-1 中 a、b 两点的电压峰峰值 U_{p-p} =11.31V)

提示: 这里" U_{p-p} =11.31V"是由示波器测得的峰峰值,而不是函数发生器屏幕显示的 U_{p-p} 值。

图 3-1

- (3) 按表 3-1 要求调整频率,记录电流值。
- (4) 将 R 换成 L 、 C , 重复做两次将电流记录在表 3-1 中。

提示:每调整一次频率,都要观察示波器测量的 U_{p-p} 是否等于 11.31V,若不 等于就要调整函数发生器的输出,保持元件两端(即ab两端)电压峰峰值为 11.31V。

实验三 交流电路中的三元件特性

一、实验目的

- 3. 测定 R、L、C元件在交流电路中对频率的响应。
- 4. 观察 R、L、C 元件在交流电路中电压、电流的相位关系。

二、仪器设备

- 1. 函数发生器 一台
- 2. 双踪数字示波器 一台
- 3. 交流数字电流表 一只
- 4. 电阻、电容、电感元件 若干

三、实验简介

- 1. 在交流电路中,R、L、C 三元件对频率的响应是不同的,三元件所表现出的阻抗(模)为: R = U/I、 $X_L = U/I = 2\pi J L$ 、 $X_C = U/I = 1/(2\pi f C)$ 即: 电阻的阻抗与频率无关,而电容、电感的阻抗是频率的函数。
- 2. 在正弦交流电路中,三元件两端电压与流过该元件的电流有一定的相位 关系。理论上电阻元件电压与电流同相;纯电感元件电压超前电流 90°; 纯电容元件电压滞后电流 90°。实际使用中, R、C一般可近似为理想元件,而电感元件由导线绕成,含有一定的电阻,与理想元件相差较大,电压超前于电流但小于 90°。
- 3. 观察三元件电压与电流的波形时,均要在元件中串联一个很小的采样电阻,原因是由于示波器不能直接测电流,只能测电压,所以将电流的变化通过采样电阻上的电压变化来体现。(采样电阻上的电压与电流同相位)
- 4. 利用示波器测相位差的方法 若测两同频率波形的相位差 φ ,测出对应 φ 的时间差 Δt ,以及正弦信号的周期 T,最后计算: φ =(360°) * Δt /T

表 3-1

频率(Hz) 数据		50	80	110	140	170	200
	$I_{\rm R}({ m mA})$						
测量值	I _L (mA)						
	$I_{\mathbb{C}}(mA)$						
	R						
计算值	$X_{\rm L}$						
	$X_{\mathbb{C}}$						

表 3-2

元件	f(Hz)	幅值 $U_{ m R}/U_{ m C}/U_{ m L}$	φ	波形
R=200Ω	70			$u_{\rm R}$ $u_{\rm r}$
C=2uF	70			<i>u</i> _C <i>u</i> _r <i>t</i>
L=100mH	1000			$u_{\rm L}$, $u_{\rm r}$

注: 必须保证 CH₁ 和 CH₂ 波形的 t 轴重合再记录波形,从标注的波形参数 中可获知正弦量的三要素。CH₁ 和 CH₂ 波形的垂直分辨率不同,可采用 双纵坐标轴分别标注 CH₁ 和 CH₂ 的电压值。

第三次课

实验四 交流串、并联电路研究

一、实验目的

- 1、研究串联电路各部分电压关系及串联谐振。
- 2、研究并联电路各支路电流关系及并联谐振。
- 3、电路功率因数提高的方法。

二、仪器设备

1、函数发生器 —台 2、双踪数字示波器 —台 3、交流数字电流表、电压表 各一只 4、电阻、电容、电感元件 若干

三、实验简介

1、 串联电路

当交流电加在 R、L、C 申联电路上,则各元件上通过相同电流。由于电感、电容的阻抗均为频率的函数,且电感电压超前电流 90°、电容电压滞后电流 90°,所以,当改变电路参数或改变交流电的频率时,若满足 $\dot{U}_L = -\dot{U}_C$ 、则电容和电感的作用相互抵消,电路呈电阻性,这时电路中阻抗最小、电流最大,即电路出现串联谐振。本实验是通过调整交流电的频率实现谐振的。

实际电路中,因元件为非理想元件,特别是电感元件包含有一定量的电阻,一般将电感元件看着一个电阻与理想电感串联的形式,这时测得的电感两端电压包含有电阻电压分量,称其为 \dot{U}_{rL} 。显然 \dot{U}_{rL} 超前电流小于 90°,但只要 \dot{U}_{rL} 在虚轴上的投影等于一 \dot{U}_C 时,电路同样出现谐振。此时 $I=\frac{U}{R+r}$ (r 为电感元件中所含的电阻)。

2、并联谐振

电路中当交流电加在 L、C 并联电路两端,由于两元件电压相同,流过电感的电流 \dot{I}_L 与流过电容的电流 \dot{I}_C 分别滞后和超前电压 90° ,即 \dot{I}_L 与 \dot{I}_C 相位相反。当改变电路参数或改变电源频率,满足 $\dot{I}_L=-\dot{I}_C$ 时,电路出现并联谐振。

实际电路中,由于电感元件含有电阻,称流过电感的电流为 \dot{I}_{rL} ,显然 \dot{I}_{rL} 滞后电压小于 90°,但只要 \dot{I}_{rL} 在虚轴上的投影等于一 \dot{I}_{C} 时,电路同样出现谐振。这时电路

四、实验内容及步骤

- 1、串联谐振
- (1) 实验电路如图 4-1 所示。具体在实验台上连线方法参照前面实验,即借助测试孔和电流插座,这样,接线和测量都很方便。
- (2)调节函数发生器的输出电压为正弦波,保证 a、b 两端电压有效值为 5V。按表 4-1 逐步改变频率,并保持 a、b 两端电压有效值为 5V 不变,记下不同频率时的电流,填入表 4-1 中。

提示: 这里 "5V" 由示波器或交流电压表测得,不是函数发生器的显示 U。值。 本次实验的所有电压、电流均以交流电压表、电流表读数为准。

(3) 根据 *u、i* 波形同相方法寻找谐振频率 (200 Ω 电阻波形与电流波形同相)。 按表 4-1 规定的频率调节函数发生器的输出频率,观察波形,确定谐振频率, 并记录谐振时的电流。

表4-1

法 带	f(Hz)	200 300	$f_{\rm o}$ =	300	400	500
读 数	I(mA)	1 12 1 2	11241.00			
计 算	$ Z (\Omega)$			11 11 11 11	15/19/2	

(4) 在谐振时, 测出 $U_{\rm R}$ 、 $U_{\rm rL}$ 、 $U_{\rm C}$ 各值,填在表 4-2 中。

表4-2

f	U	I_0	$U_{\rm R}$	UrL	Uc
$f_{\rm o}$	5V				

第三次课

实验四 交流串、并联电路研究

一、实验目的

- 1、研究串联电路各部分电压关系及串联谐振。
- 2、研究并联电路各支路电流关系及并联谐振。
- 3、电路功率因数提高的方法。

二、仪器设备

 1、函数发生器
 一台

 2、双踪数字示波器
 一台

 3、交流数字电流表、电压表
 各一只

 4、电阻、电容、电感元件
 若干

三、实验简介

1、 串联电路

当交流电加在 R、L、C 串联电路上,则各元件上通过相同电流。由于电感、电容的阻抗均为频率的函数,且电感电压超前电流 90° 、电容电压滞后电流 90° ,所以,当改变电路参数或改变交流电的频率时,若满足 $\dot{U}_L = -\dot{U}_C$ 、则电容和电感的作用相互抵消,电路呈电阻性,这时电路中阻抗最小、电流最大,即电路出现串联谐振。本实验是通过调整交流电的频率实现谐振的。

实际电路中,因元件为非理想元件,特别是电感元件包含有一定量的电阻,一般将电感元件看着一个电阻与理想电感串联的形式,这时测得的电感两端电压包含有电阻电压分量,称其为 \dot{U}_{rL} 。显然 \dot{U}_{rL} 超前电流小于 90°,但只要 \dot{U}_{rL} 在虚轴上的投影等于一 \dot{U}_C 时,电路同样出现谐振。此时 $I=\frac{U}{R+r}$ (r为电感元件中所含的电阻)。

2、并联谐振

电路中当交流电加在 L、C 并联电路两端,由于两元件电压相同,流过电感的电流 \dot{I}_L 与流过电容的电流 \dot{I}_C 分别滞后和超前电压 90° ,即 \dot{I}_L 与 \dot{I}_C 相位相反。当改变电路参数或改变电源频率,满足 $\dot{I}_L=-\dot{I}_C$ 时,电路出现并联谐振。

实际电路中,由于电感元件含有电阻,称流过电感的电流为 \dot{I}_{rt} ,显然 \dot{I}_{rt} 滞后电压小于 90°,但只要 \dot{I}_{rt} 在虚轴上的投影等于一 \dot{I}_{c} 时,电路同样出现谐振。这时电路

2、并联谐振

(1) 实验电路如图 4-2 所示。具体在实验台上连线方法参照前面实验,即借助测试孔和电流插座。

(2) 根据并联谐振时,阻抗最大,电流最小方法寻找谐振频率。 调节函数发生器的输出电压为正弦波,按表 4-3 逐步改变频率,并保持 a、 b 两端电压有效值为 5V 不变,记下不同频率时的电流,填入表 4-3 中。注 意寻找谐振频率。

表4-3

法 粉	f(Hz)	200	250	f_{o} =	350	400
读 数	I(mA)					
计 算	$ z _{(\Omega)}$					

第三次课

实验四 交流串、并联电路研究

一、实验目的

- 1、研究串联电路各部分电压关系及串联谐振。
- 2、研究并联电路各支路电流关系及并联谐振。
- 3、电路功率因数提高的方法。

二、仪器设备

1、函数发生器 ——台 2、双踪数字示波器 ——台 3、交流数字电流表、电压表 各一只 4、电阻、电容、电感元件 若干

三、实验简介

1、 串联电路

当交流电加在 R、L、C 串联电路上,则各元件上通过相同电流。由于电感、电容的阻抗均为频率的函数,且电感电压超前电流 90° 、电容电压滞后电流 90° ,所以,当改变电路参数或改变交流电的频率时,若满足 $\dot{U}_L = -\dot{U}_C$ 、则电容和电感的作用相互抵消,电路呈电阻性,这时电路中阻抗最小、电流最大,即电路出现串联谐振。本实验是通过调整交流电的频率实现谐振的。

实际电路中,因元件为非理想元件,特别是电感元件包含有一定量的电阻,一般将电感元件看着一个电阻与理想电感串联的形式,这时测得的电感两端电压包含有电阻电压分量,称其为 \dot{U}_{rL} 。显然 \dot{U}_{rL} 超前电流小于 90°,但只要 \dot{U}_{rL} 在虚轴上的投影等于一 \dot{U}_C 时,电路同样出现谐振。此时 $I=\frac{U}{R+r}$ (r为电感元件中所含的电阻)。

2、并联谐振

电路中当交流电加在 L、C 并联电路两端,由于两元件电压相同,流过电感的电流 \dot{I}_L 与流过电容的电流 \dot{I}_C 分别滞后和超前电压 90° ,即 \dot{I}_L 与 \dot{I}_C 相位相反。当改变电路参数或改变电源频率,满足 $\dot{I}_L=-\dot{I}_C$ 时,电路出现并联谐振。

实际电路中,由于电感元件含有电阻,称流过电感的电流为 \dot{I}_n ,显然 \dot{I}_n 滞后电压小于 90°,但只要 \dot{I}_n 在虚轴上的投影等于一 \dot{I}_C 时,电路同样出现谐振。这时电路

3、功率因数的提高

(1) 实验电路如图 4-3 实线部分。在实验台上连线方法如图 4-4 所示。

(2)调节函数发生器的输出电压为正弦波,保持 a、b 两端电压有效值为 5V 不变,完成表 4-4 规定的各项测量数据。

提示:由于实验台元件参数的分散性,表 4-4 中,电容 2 μ F、10 μ F 仅为参考值。例如,有部分实验台将 2 μ F 改为 1 μ F 时,功率因数提高较明显。同样,也可将 10 μ F 电容改为 4.7 μ F 尝试。

表4-4

f(Hz)	U(V)	C	I(mA)	IrL(mA)	Ic(mA)
200	- 5	未接			/
200	5	2μF	- 18	-	
200	5	10μF	生 7	M. Jet	- (3)

三相电路研究 实验五

一、实验目的

- 1、三相负载作星形接法时电路中各电压、电流的研究及中线的作用。
- 2、用两表法测试三相三线制电路功率(仅以负载接成星形为例)。
- 3、三相负载作三角形接法时电路中各电压、电流的研究。

二、仪器设备

1、 三相电路实验负载挂件 2、 对称可调三相交流电源 二只 3、 多功能交流数字表 4、电流插头

三、实验简介

1、实验负载挂件

实验负载挂件为三相负载,其中A相、B相负载完全相同,如图 5-1(a)所示 C相负载如图 5-1 (b) 所示。

当改变负载上的开关状态 (通、断)时,可使三相负载对称(例如,让各相负载 灯全亮),也可使负载不对称(有些相负载灯全亮,另些相则不然);可使负载为阻性 (让电容断开),也可使负载为容性(让电容合上);还可使负载为星形时有中线、无 中线等等。

图 5-1

2、电源及负载的连接方式

本实验中,电源均采用星形连接。负载有星形、三角形两种连接方式。

当负载为星形连接时,可以有中线——即三相四线制;也可以无中线——即三相 三线制。三相四线制与三相三线制间的切换,通过中线上的开关状态实现。当负载为

操作说明:

> 按"输电"按钮才 通电,右侧对应相 仪表偏转, 未偏转 可更换保险管(限 流为1A)。

白耦变压器:

接线 - 检查调压器回零--输电--实验、记录数据

-调压器回零

断电--拆线

四、实验内容及步骤

- 1. 将三相电源接成星形
- 断开三相调压器开关,将三相调压器手柄旋转到 0V 位置。
- 按图 5-2 原理图接线。图 5-2 在实验台上接线方法如图 5-3 所示。

提示:本实验各项内容电源均按星形接法

实验五 三相电路研究

一、实验目的

- 1、三相负载作星形接法时电路中各电压、电流的研究及中线的作用。
- 2、用两表法测试三相三线制电路功率(仅以负载接成星形为例)。
- 3、三相负载作三角形接法时电路中各电压、电流的研究。

二、仪器设备

三、实验简介

1、 实验负载挂件

实验负载挂件为三相负载,其中A相、B相负载完全相同,如图5-1(a)所示。 C相负载如图5-1(b)所示。

图 5-1

当改变负载上的开关状态(通、断)时,可使三相负载对称(例如,让各相负载 灯全亮),也可使负载不对称(有些相负载灯全亮,另些相则不然);可使负载为阻性 (让电容断开),也可使负载为容性(让电容合上);还可使负载为星形时有中线、无 中线等等。

2、电源及负载的连接方式

本实验中,电源均采用星形连接。负载有星形、三角形两种连接方式。

当负载为星形连接时,可以有中线——即三相四线制;也可以无中线——即三相三线制。三相四线制与三相三线制间的切换,通过中线上的开关状态实现。当负载为

2. 负载为星形接法

- (1) 三相电源仍处于断开状态。
- (2)图 5-4为原理电路。图 5-4在 实验台上的接线方法如图 5-5 所示。
- (3) 合上三相调压器开关,按 RESRT 键, 用交流多功能表测量电源**线电压**, 通过调节手柄,使**线电压**为 220V。
- (4) 按表 5-1 所示的各要求测试对应

数据。

图 5-4

图 5-5

表5-1 负载为星形接法

数	值				读		数					计	算
负载连接		U_{AB}	U_{BC}	U_{CA}	UAX	U_{BY}	$U_{\rm CZ}$	I_A	I_B	Ic	$I_{\rm NN'}$	$U_{\rm BC}/U_{\rm BY}$	P
对称	有中线												
(各相灯全亮)	无中线		4								7		_
不对称 (A相灯全亮, B、	有中线	-	100	74									/
C相各炮二盏灯)	无中线	-		1						1	7		_

三相电路研究 实验五

一、实验目的

- 1、三相负载作星形接法时电路中各电压、电流的研究及中线的作用。
- 2、用两表法测试三相三线制电路功率(仅以负载接成星形为例)。
- 3、三相负载作三角形接法时电路中各电压、电流的研究。

二、仪器设备

1,	三相电路实验负载挂件	一块
2,	对称可调三相交流电源	一台
3,	多功能交流数字表	二只
4,	电流插头	一个

三、实验简介

1、实验负载挂件

实验负载挂件为三相负载,其中A相、B相负载完全相同,如图 5-1 (a)所示。 C相负载如图 5-1 (b) 所示。

图 5-1

当改变负载上的开关状态 (通、断)时,可使三相负载对称(例如,让各相负载 灯全亮),也可使负载不对称(有些相负载灯全亮,另些相则不然);可使负载为阻性 (让电容断开),也可使负载为容性(让电容合上);还可使负载为星形时有中线、无 中线等等。

2、电源及负载的连接方式

本实验中,电源均采用星形连接。负载有星形、三角形两种连接方式。

当负载为星形连接时,可以有中线——即三相四线制;也可以无中线——即三相 三线制。三相四线制与三相三线制间的切换,通过中线上的开关状态实现。当负载为

2. 两表法测功率

- (1) 断开三相调压器开关,电源接法保持不变,负载接法保持不变但断开中线 N-N'
- (2) 按图 5-6 所示原理电路连线。图 5-6 在实验台上的连线方法如图 5-7 所示。

(A相灯全亮, B

(3) 合上三相调压器开关,按表 5-2 所示的各要求测量对应功率。

表5-2 负载为星形接法 数值 读 数 计 算 负载连接 P_1 P 对称 (各相灯全亮) 不对称

图 5-6

图 5-7

实验五 三相电路研究

一、实验目的

- 1、三相负载作星形接法时电路中各电压、电流的研究及中线的作用。
- 2、用两表法测试三相三线制电路功率(仅以负载接成星形为例)。
- 3、三相负载作三角形接法时电路中各电压、电流的研究。

二、仪器设备

 1、三相电路实验负载挂件
 一块

 2、对称可调三相交流电源
 一台

 3、多功能交流数字表
 二只

 4、电流插头
 一个

三、实验简介

1、实验负载挂件

实验负载挂件为三相负载,其中A相、B相负载完全相同,如图5-1(a)所示。 C相负载如图5-1(b)所示。

图 5-1

当改变负载上的开关状态(通、断)时,可使三相负载对称(例如,让各相负载 灯全亮),也可使负载不对称(有些相负载灯全亮,另些相则不然);可使负载为阻性 (让电容断开),也可使负载为容性(让电容合上);还可使负载为星形时有中线、无 中线等等。

2、电源及负载的连接方式

本实验中,电源均采用星形连接。负载有星形、三角形两种连接方式。

当负载为星形连接时,可以有中线——即三相四线制;也可以无中线——即三相三线制。三相四线制与三相三线制间的切换,通过中线上的开关状态实现。当负载为

3、负载为三角形接法

- (1) 断开三相调压器开关,电源接法保持不变,拆下功率表,中线仍断开。
- (2) 负载按图 5-8 所示的原理电路连线。图 5-8 在实验台上的连线方法如图 5-9 所示。
- (3) 按表 5-3 所示的各要求测试对应数据。

表5-3 负载为三角形接法

数值	读数								计	算
负载连接	$U_{\!\scriptscriptstyle AB}$	$U_{ m BC}$	U_{CA}	$U_{\!\scriptscriptstyle m AX}$	$U_{ m BY}$	$U_{\rm CZ}$	I_{B}	I_{BY}	$I_{\rm B}/I_{\rm BY}$	P
对称		- 200	31						W	
(各相灯全亮)	A		St. Lipi							
不对称 (A相灯全亮, B、 C相各熄二盏灯)		(36)	DELE SERI			9			/	/

泰克PA1000功率分析仪

- ①电压输入端子: 最大 600V (有效值)
- ②电流输入端子:最大 20A (有效值)
- ③小信号电流输入端子: 最大 1A (有效值)
- ④外接电流传感器的输入接口

添加测量量

按 MENU 键,上下键选中测量菜单 Measurements,(按 ▶)进入。通过上下键选择要测量的物理量,通过 √ (或×)来添加(或删除)物理量,通过选择 OK 键确认,最后按 MENU 键进入测量界面。

使用说明:

> 进入测量页面

Menu → Measurements → **回确认**

▶ 电流输入20A/1A端子要与设置匹配:

Menu \rightarrow inputs \rightarrow shunts: 20 or 1A

> 功率表恢复出厂设置:

Menu \rightarrow user configuration \rightarrow load default