1

MSCS 446 Numerical Analysis I Written Assignment 7 Adhere to the Homework Guidelines

Dr. Keith Wojciechowski

- 1. (N) In the Jupyter notebook **HW7_template.ipynb** is data (x_i, y_i) generated from an unknown function. Use inverse interpolation, reversing the roles of x and y in the data, to estimate the zero of the function.
- 2. (N) In the Jupyter notebook **HW7_template.ipynb** is data (x_i, f_i) and (x_i, g_i) generated from two unknown functions using the same nodes x_i . Use inverse interpolation to estimate the point of intersection, (x^*, y^*) , of the graphs of the functions. You need to be careful with this data when you reverse the roles of x and y because the function is not one-to-one. So you will need to truncate the data using slicing.

Note that once you locate the zero, you are not finished! Whereas in problem 1 the zero was x^* and $y^* = 0$ but in this problem $y^* \neq 0$. It is the *interpolated* value of f or g at x^* , i.e. you need to interpolate the values $f(x^*)$ or $g(x^*)$ once you estimate x^* .

- 3. (A) Write the Newton form of the interpolating polynomial of degree at most 2 that interpolates f(x) at x_0 , x_1 , and x_2 , where $x_0 < x_1 < x_2$ and show directly that $p_2''(x) = 2f[x_0, x_1, x_2]$.
- 4. (A) Show that the maximum interpolation error is bounded by $\frac{1}{8}h^2M$ for linear interpolation of f(x) with nodes $\{x_0, x_1\}$ where $h = x_1 x_0$ and $M = \max_{x_0 \le x \le x_1} |f''(x)|$.

5. (N) If
$$x_k = \cos \left[\frac{(2k+1)}{2n+2} \pi \right]$$
, then

$$\left| \prod_{k=0}^{n} (x - x_k) \right| \le \frac{1}{2^n}$$

for all x in [-1,1]. Carry out a numerical experiment to test the given inequality for n=3,7,15. What is the relevance of this question to polynomial interpolation?