Exercise 1:

Consider the following Bayesian network BN:

Use inference by enumeration to compute the following probabilities:

- (a) $P(dog \mid loudnoise, likeschappi)$.
- (b) $P(loudnoise \mid \neg likeschappi)$.

Include intermediate steps at a level of granularity as in the lecture slides examples. In particular, for each of (a) and (b), state what the query variable, evidence, and hidden variables are; and write down which probabilities provided in BN can be combined how to obtain the demanded probability P.

Exercise 2:

Consider the running example of the lecture with the following probability tables:

Burglary

<i>i</i>		ι		J
.1 .9		.1		.9
			Ala	arm
Burglary	Earthquake	;	t	f
t	t		.9	.1
t	f		.8	.2
f	t		.5	.5
f	f		.1	.9

	JohnCalls	
Alarm	t	f
t	.8	.2
f	.1	.9

	MaryCalls	
Alarm	t	f
t	.7	.3
f	.1	.9

Earthquake

Use Variable Elimination to determine the conditional probability $P(MC \mid B = t)$. For each step indicate the operations that are performed over the previous factors and what new factor is computed.

Exercise 3:

^{*} Complete Exercise 8.10 in PM.

Exercise 4:

Consider the network defined by the two binary variables A and B, where A is the parent of B. Assume that the conditional probability tables are given as P(A) = (0.1, 0.9) and

$$\begin{array}{c|cc} & A \\ & a_1 & a_2 \\ \hline b_1 & 0.05 & 0.2 \\ b_2 & 0.95 & 0.8 \\ \end{array}$$

- i) Assume that you want to estimate $P(b_1)$ using sampling. How many samples would be required if you only accept an error larger than 0.15 in 10% of the cases?
- ii) Generate two random samples, using the following list of random numbers (any time that you use a random number pick one from the list): 0.5, 0.3, 0.01, 0.8.
- iii) Suppose that after sampling 10 states, you got $(A = a_2, B = b_2)$ 3 times, and $(A = a_1, B = b_2)$,6 times, and $(A = a_1, B = b_1)$ once. Estimate $P(B = b_1)$
- iv) (Optional) Implement the network above in Hugin and use Hugin to sample the number of cases that you calculated in step (i); use the function 'Simulate cases' under 'File'. Use the sampled cases to estimate $P(b_1)$ and compare the result with Hugin. Feel free to use a spreadsheet for the counting.
- v) Assume that you want to use rejection sampling to estimate $P(A|B=b_1)$. How many samples do you expect you would have to generate in order to end up (after rejection) with a sample set of 1000 cases for estimating the probability.

Exercise 5:

Complete Exercise 8.6(a-b) in PM.

Exercise 6:

Consider the insemination example from Section 3.1.13 in BNDG:

Let the probabilities be as in Table 1 (Ho = y means that hormonal changes have taken place) P(Pr) = (0.87, 0.13).

	Pr = y	Pr = n		Ho = y	Ho = n
Ho = y	0.9	0.01	BT = y	0.7	0.1
Ho = n	0.1	0.99	BT = n	0.3	0.9

	Ho = y	Ho = n
UT = y	0.8	0.1
UT = n	0.2	0.9

Table 1: Tables for Exercise 6.

- i) What is P(Pr | BT = n, UT = n)?
- ii) Construct a naive Bayes model. Determine the conditional probabilities for the model by making inference queries in the model above using Hugin. What is P(Pr | BT = n, UT = n) in this model and how does it compare to the result you got above? Try to (qualitatively) account for any differences.
- iii) (Optional) Verify your solution modelling both BNs in Hugin.