◢ (오염물질 저감) VOC 저감 시스템 및 저감방법

기술분야	희망 이전 유형			
대기오염/미세먼지/악취 저감	라이센스			

순번	특허번호	명칭	권리상태		
1	18/232290	VOC 및 질소산화물 저감 시스템, 및 저감방법	등록유지		
2	17/432063	VOC 및 질소산회물 저감 시스템, 및 저감방	등록유지		
3	10-0019694	VOC 저감 시스템 및 VOC 저감 방법	등록유지		
4	10-0020244	질소산회물 저감을 위한 펄스 제어 시스템, 이를 사용한 질소산화물 저감방법, 및 이를 포함한 내연기관	등록유지		
5	10-0043043	휘발성유기화합물 저감 시스템 및 저감 방법	등록유지		

- 본 기술은 전기를 사용하여 대기오염 물질 저감에 필요한 촉매를 직접/즉시 발열하여 활성화하는 장치 및 방법에 관한 발명임
- 촉매 활성화 온도에 도달하는 시간이 수초~수십초 이내로 짧아 급격히 변동하는 대기오염 물질을 효율적으로 저감할 수 있음
- 특히, 자동차의 Stop and Go 기능, 하이브리드 자동차 등에서 발생하는 엔진 미작동 시 배출될 수 있는 냉간 NOx 저감, 공장에서 불규칙하게 배출되는 VOCs 저감에 효과적인 기술임

기술 특장점

기존 기술 하계

기술 차별점

촉매 활성화에 시간이 오래 걸려 냉간시동시나 실시간으로 변하는 오염물질 농도에 대응이 어 려움 짧은 펄스의 순간적인 에너지 공급으로 촉매를 활성화하여 오염물질의 즉각적인 저감이 가능 활성 부위인 촉매만을 선택적으로 가열하여 높은 에너지 효율을 확보

= 즉각적인 활성화

= 냉간시동 대응

= 높은 에너지 효율로 운전 비용 최소화

적용 분야

1순위	2순위	3순위		
자동차	고정원 저감 설비	공기정화기		
NOx 저감	VOC 저감	실내 악취 제거		

시장 동향

- NOx 및 VOC 저감은 '지속가능성'에 대한 글로벌 트렌드 확산으로 기존의 화학산업이나 석유산업 뿐 아니라 아니라 프린팅, 페인트, 운송, 기기, 반도체 산업 등 다양한 산업 분야에서 관심과 수요가 높아지고 있음
- VOC 저감 촉매 시장은 연평균 4.58%의 성장으로 2032년 3.5 billion USD에 이를 것으로 예상되며, 자동차 촉매 시장은 연평균 5.84%의 성장으로 2032년 34.5 billion USD의 시장을 형성할 것으로 예상 상

기술 완성도 (TRL)

시작품 제작 및 파일럿 규모 실증평가

					•			
1	2	3	4	5	6	7	8	9
기초연구		실	실험		시작품		상용화	

기술보유기관

기관명 | 한국화학연구원

담당자 | 심형훈

연락처 | 042-860-7078

이메일 | hhsim@krict.re.kr

기술중개기관 센터명 |

연락처 |

