

Problems to solve

Have Billboard 100 hit songs changed from the 2000's to 2010's in their song length?

Does vulgarity have an effect on a song's popularity?

Does the tempo of a song affect its peak rank on the Billboard 100?

Is there a relationship between the "musicality" of songs and how high they chart on the Billboard 100?

Data

Billboard

- Scraped songs from billboard top 100 for 2003-2018
 - Name, artist, chart ranking, duration on chart, peak rank, etc

- Used Spotify API to gain additional info
 - Bpm, vulgarity, valence, duration, etc.

=

1 Changes in Song Length in Hit Songs from 2000's to 2010's

Hypotheses:

- **Null:** No difference in length between recent and older songs
- Alternative: A difference exists in length between old and recent songs

Chi-Squared Test

- Independent Variable: Whether song is recent (2010's) or old (2000's)
- Dependent Variable: Length of song in milliseconds

Results:

- Test statistic = 130
- P-value = 5.0e-22
- Reject null hypothesis and conclude that there is a difference in length between recent and older songs

Changes in popularity in between explicit and clean songs

Hypotheses:

- Null: No difference in popularity between clean and explicit songs
- Alternative: A difference exists in popularity between clean and explicit songs

Two Sample T-Test

- Independent Variable: Whether song is explicit or clean
- Dependent Variable: Spotify popularity of song

Results:

- Test statistic = 12.5
- P-value = 2.5e-35
- Reject null hypothesis and conclude that a difference exists in popularity between clean and explicit songs

Tempo of a Song vs Peak Chart Rank

Hypotheses:

- **Null**: Songs with a fast tempo (> 120 bpm) do not reach a higher rank on the Billboard 100 charts than slow tempo songs (< 120 bpm)
- **Alternative**: There is a relationship between song tempo (fast vs slow) and how high it charts

- **Dependent Variable**: Peak rank
 - **Note**: Peak rank was not normally distributed, so a mean sampling distribution was created (n=100)
- **Independent Variables**: Release Season (categorical)

Tempo of a Song vs Peak Chart Rank

Conclusion

- T-Statistic = 0.0586
- P-Value = 0.95322
- Accept the Null Hypothesis There is no difference in how high a slow song charts on the Billboard 100 compared to a fast song

ANOVA

- Dependent Variable: Peak rank
- Independent Variables: Musicality
 - Danceability
 - Energy
 - Key
 - Loudness
 - Mode
 - Speechiness
 - Acousticness
 - Liveness
 - Valence

	Sum of Squares	dof	F-Test Statistic	p-value
danceability	32011.721	1.0	36.033	0.000
nergy 🖈	23360.131	1.0	26.295	0.000
key_	1347.310	1.0	1.517	0.218
loudness	5124.551	1.0	5.768	0.016
mode	512.385	1.0	0.577	0.448
speechiness	607.476	1.0	0.684	0.408
acousticness	25704.644	1.0	28.934	0.000
liveness	17.857	1.0	0.020	0.887 🔕
xalence	9366.742	1.0	10.544	0.001
Residual	5047821.815	5682.0	NaN	NaN

Hypotheses:

- **Null**: There is **no relationship** between the "musicality" of a song and how high it charts
- Alternative: There exists a relationship between the musicality of a song and how high it charts

OLS Regression Results					
Dep. Variable:	peak_rank	R-squared:	0.023		
Model:	OLS	Adj. R-squared:	0.021		
Method:	Least Squares	F-statistic:	14.81		
Date:	Fri, 04 Oct 2019	Prob (F-statistic):	5.01e-24		
Time:	09:44:25	Log-Likelihood:	-27394.		
No. Observations:	5692	AIC:	5.481e+04		
Df Residuals:	5682	BIC:	5.487e+04		
Df Model:	9				
Covariance Type:	nonrobust				

Conclusion:

• While we rejected the null hypothesis that there is no relationship between the "musicality" of a track and how high it reaches on the charts, the size of the effect (adjusted R-squared) appears to be too small to take advantage of. Only 2 % of the peak chart rank can be explained by the "musicality" of a song.

Thank you. Any questions?

