(4) Mechanics

In order to compare the means of two populations, independent random samples of 400 observations are selected from each population, with the following results:

Sample 1 Sample 2
$$\bar{x}_1 = 5,275$$
 $\bar{x}_2 = 5,240$ $s_1 = 150$ $s_2 = 200$

- (a) Use a 95% confidence interval to estimate the difference between the population means $(\mu_1 \mu_2)$. Interpret the confidence interval.
- (b) Test the null hypothesis $H_0: (\mu_1 \mu_2) = 0$ versus the alternative hypothesis $H_1: (\mu_1 \mu_2) \neq 0$. Give the *p*-value of the test, and interpret the result.
- (c) Suppose the test in the previous part were conducted with the alternative hypothesis $H_1: (\mu_1 \mu_2) > 0$. How would your answer change?
- (d) Test the null hypothesis $H_0: (\mu_1 \mu_2) = 25$ versus the alternative $H_1: (\mu_1 \mu_2) \neq 25$. Give the *p*-value, and interpret the result. Compare your answer with that obtained from the test conducted in part (b).
- (e) What assumptions are necessary to ensure the validity of the inferential procedures applied in parts (a)-(d)?

We approximate the distance by $\hat{p} := \overline{X_1 - X_2} = \overline{X_1} - \overline{X_2} = \frac{35}{100} = \frac{7}{100}$ Since $N_1 = N_2 = 400 \ge 30$ is large we use the procedure from slide 32 in lecture 11. Assuming that X_1 is a sample of $N(p_1, \overline{D_1}^2)$ and X_2 a sample of $N(p_2, \overline{D_2}^2)$ random

Assuming that X_1 is a sample of $N(p_1, 0_1^2)$ and X_2 a sample of $N(p_2, 0_2)$ rander variables, we obtain approximally $Z_n := (X_1 - X_2 - p_1) \left(\frac{S_1^2}{p_1} + \frac{S_2^2}{N_2}\right)^{-1/2} \sim N(0, 1)$

a) The formula for the confidence interval was derived on slide 32 of lecture 11.

The confidence interval is given by $[\bar{x}_1 - \bar{x}_2 + \bar{z}_{\alpha_{12}} \sqrt{5^{2}_{N_1} + 5^{2}_{N_2}}, \bar{x}_1 - \bar{x}_2 - \bar{z}_{\alpha_{12}} \sqrt{5^{2}_{N_1} + 5^{2}_{N_2}}]$ which is approximately [10,5,59,5), on interval restered around 35.

b) $2 \mathbb{P}(z_{p} < -\hat{\mu} (\frac{s_{1}^{2}}{n_{1}} + \frac{s_{1}^{2}}{n_{1}})^{-\frac{1}{2}}) \approx 0.005$ c) $\mathbb{P}(z_{p} < -\hat{\mu} (\frac{s_{1}^{2}}{n_{1}} + \frac{s_{1}^{2}}{n_{1}})^{-\frac{1}{2}}) \approx 0.0025$ We reject the

o()21P(2, <-(\hat{\hat{n}}-25)(\frac{52}{n_1}+\frac{52}{n_2})^{-\frac{7}{2}}) ≈ 0.424 → when do not reject to.

e) Assumptions were already stated in the beginning.