Math: Big-O/ Θ/Ω Notation

Definition 1. Let f, g be functions from $\mathbb{R}^+ \to \mathbb{R}^+$. Then,

- 1. If $\lim_{x\to\infty} \frac{f(x)}{g(x)} < \infty$, then we say f = O(g).
- 2. If $\lim_{x\to\infty} \frac{f(x)}{g(x)} > 0$, then we say $f = \Omega(g)$.
- 3. We say that $f = \Theta(g)$ if both f = O(g) and $f = \Omega(g)$.

Intuitively, you should think of O as \leq , Ω as \geq , and Θ as =.

Example 1.

$$1. \ f(x) = x$$

$$g(x) = x^2$$

2.
$$f(x) = x^2$$

$$g(x) = x$$

3.
$$f(x) = x^2 + 2x + 5$$

$$g(x) = x$$

4.
$$f(x) = x^2 + 2x + 5$$

$$g(x) = x^2$$

$$5. \ f(x) = x^2 + 2x + 5$$

$$g(x) = x^3$$

Example 2. You should memorize the relationship between the following functions:

Example 3. Complete each equation below by adding the symbol O if f = O(g), Ω if $f = \Omega(g)$, or Θ if $f = \Theta(g)$. The first row is completed for you as an example.

f(n)		g(n)
1	=	O(n)
$3n\log n$	=	n^2
1	=	1/n
$\log_2 n$	=	$\log_3 n$
$\log n$	=	$\frac{1}{\log n}$
$5\cdot 10^{30}$	=	$\log n$
$\log n$	=	$\log(n^2)$
2^n	=	3^n
$\frac{1}{n}$	=	$\sqrt{\frac{1}{n}}$
$\log n$	=	$(\log n)^2$

Example 4. Simplify the following expressions:

1.
$$O(8n^3 + n^2)$$

2.
$$O\left((7n)^3 + 5n^2 \log n + \log n\right)$$

3.
$$O(100000000000)$$

4.
$$O\left(\log n + 1000000000000\right)$$

$$5. \ O\left(\frac{1}{n} + \frac{1}{n^2}\right)$$