life.augmented

TSX56x, TSX56xA

Micropower, wide bandwidth (900 kHz), 16 V CMOS operational amplifiers

Datasheet - production data

Features

- Low power consumption: 235 μA typ. at 5 V
- Supply voltage: 3 V to 16 V
- Gain bandwidth product: 900 kHz typ.
- Low offset voltage
 - "A" version: 600 μV max.
 - Standard version: 1 mV max.
- Low input bias current: 1 pA typ.
- High tolerance to ESD: 4 kV
- Wide temperature range: -40 to 125 °C
- Automotive qualification
- Tiny packages available: SOT23-5, DFN8 2 mm x 2 mm, MiniSO8, QFN16 3 mm x 3 mm, and TSSOP14

Benefits

 Power savings in power-conscious applications Easy interfacing with high impedance sensors

Related topics

- See TSX63x series for reduced power consumption (45 mA, 200 kHz)
- See TSX92x series for higher gain bandwidth products (10 MHz)

Applications

- Industrial and automotive signal conditioning
- Active filtering
- Medical instrumentation
- High impedance sensors

Description

The TSX56x, TSX56xA series of operational amplifiers benefit from STMicroelectronics® 16 V CMOS technology to offer state-of-the-art accuracy and performance in the smallest industrial packages. The TSX56x, TSX56xA have pinouts compatible with industrial standards and offer an outstanding speed/power consumption ratio, 900 kHz gain bandwidth product while consuming only 250 μA at 16 V. Such features make the TSX56x, TSX56xA ideal for sensor interfaces and industrial signal conditioning. The wide temperature range and high ESD tolerance ease use in harsh automotive applications.

Table 1: Device summary

Version	Standard V _{IO}	Enhanced V _{IO}
Single	TSX561	TSX561A
Dual	TSX562	TSX562A
Quad	TSX564	TSX564A

February 2017 DocID023274 Rev 5 1/28

Contents

1	Pinout i	nformation	3
2	Absolut	e maximum ratings and operating conditions	4
3	Electric	al characteristics	6
4	Electric	al characteristic curves	12
5	Applica	tion information	16
	5.1	Operating voltages	16
	5.2	Rail-to-rail input	16
	5.3	Input offset voltage drift over temperature	16
	5.4	Long term input offset voltage drift	17
	5.5	PCB layouts	18
	5.6	Macromodel	18
6	Package	e information	19
	6.1	SOT23-5 package information	20
	6.2	DFN8 2x2 package information	21
	6.3	MiniSO8 package information	22
	6.4	QFN16 3x3 package information	23
	6.5	TSSOP14 package information	25
7	Orderin	g information	26
8	Revisio	n history	27

TSX56x, TSX56xA Pinout information

1 Pinout information

Figure 1: Pin connections for each package (top view)

2 Absolute maximum ratings and operating conditions

Table 2: Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit	
Vcc	Supply voltage (1)	18		
Vid	Differential input voltage (2)	±Vcc	V	
Vin	Input voltage (3)	(Vcc-) - 0.2 to (Vcc+) + 0.2		
l _{in}	Input current (4)		10	mA
T _{stg}	Storage temperature		-65 to 150	ိုင
Tj	Maximum junction temperature		150	C
		SOT23-5	250	
		DFN8 2x2	120	°C/W
R _{thja}	Thermal resistance junction-to-ambient (5) (6)	MiniSO8	190	
	,,	QFN16 3x3	80	
		TSSOP14	100	
D	Thermal resistance	DFN8 2x2	33	
R _{thjc}	junction-to-case	QFN16 3x3	30	
	HBM: human body model (7)		4	kV
FCD	MM: machine model for TSX561 (8)		200	
ESD	MM: machine model for TSX562 and T	100	V	
	CDM: charged device model (9)	1.5	kV	
	Latch-up immunity		200	mA

⁽¹⁾All voltage values, except the differential voltage are with respect to the network ground terminal.

⁽²⁾The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.

 $^{^{(3)}}V_{cc}$ - V_{in} must not exceed 18 V, Vin must not exceed 18 V

 $[\]ensuremath{^{(4)}}\xspace$ Input current must be limited by a resistor in series with the inputs.

⁽⁵⁾Rth are typical values.

⁽⁶⁾Short-circuits can cause excessive heating and destructive dissipation.

⁽⁷⁾Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

 $^{^{(8)}}$ Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

⁽⁹⁾Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 3: Operating conditions

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	3 to 16	W
Vicm	Common-mode input voltage range	(Vcc-) - 0.1 to (Vcc+) + 0.1	V
Toper	Operating free-air temperature range	-40 to 125	°C

Electrical characteristics TSX56x, TSX56xA

3 Electrical characteristics

Table 4: Electrical characteristics at $V_{CC+}=3.3~V$ with $V_{CC-}=0~V$, $V_{icm}=V_{CC}/2$, $T_{amb}=25~^{\circ}$ C, and $R_L=10~k\Omega$ connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
- ,		DC performance		- 71		
		TSX56xA, T = 25 °C			600	
		TSX56xA, -40 °C < T < 125 °C			1800	μV
V_{io}	Offset voltage	TSX56x, T = 25 °C			1	
		TSX56x, -40 °C < T < 125 °C			2.2	mV
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		2	12	μV/°C
	Input bias current,	T = 25 °C		1	100 (2)	-
l _{ib}	$V_{out} = V_{CC}/2$	-40 °C < T < 125 °C		1	200 (2)	
	Input offset current,	T = 25 °C		1	100 (2)	pА
l _{io}	Vout = Vcc/2	-40 °C < T < 125 °C		1	200 (2)	
	Common mode rejection	T = 25 °C	63	80		
CMR1	ratio, CMR = 20 log $ (\Delta V_{ic}/\Delta V_{io}), \ V_{ic} = -0.1 \ V \text{ to} $ $ V_{CC} - 1.5 \ V, \ V_{out} = V_{CC}/2, $ $ R_L > 1 \ M\Omega $	-40 °C < T < 125 °C	59			
	Common mode rejection	T = 25 °C	47	66		
CMR2	ratio, CMR = 20 log ($\Delta V_{ic}/\Delta V_{io}$), V_{ic} = -0.1 V to V_{CC} + 0.1 V, V_{out} = $V_{CC}/2$, R_L > 1 M Ω	-40 °C < T < 125 °C	45			dB
	Large signal voltage gain,	T = 25 °C	85			
A_{vd}	$V_{\text{out}} = 0.5 \text{ V to (V}_{\text{CC}} - 0.5 \text{ V}),$ $R_{\text{L}} > 1 \text{ M}\Omega$	-40 °C < T < 125 °C	83			
\/	High-level output voltage,	T = 25 °C			70	
V _{OH}	$V_{OH} = V_{CC} - V_{out}$	-40 °C < T < 125 °C			100	mV
Vol	Low-level output voltage	T = 25 °C			70	IIIV
VOL	Low-level output voltage	-40 °C < T < 125 °C			100	
	I_{sink} , $V_{out} = V_{CC}$	T = 25 °C	4.3	5.3		
lout	Isink, Vout — VCC	-40 °C < T < 125 °C	2.5			mA
lout	I _{source} , V _{out} = 0 V	T = 25 °C	3.3	4.3		ША
	Isource, Vout – O V	-40 °C < T < 125 °C	2.5			
	Supply current, per	T = 25 °C		220	300	_
Icc	channel, $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$	-40 °C < T < 125 °C			350	μΑ
		AC performance				
GBP	Gain bandwidth product		600	800		I.L.I.
Fu	Unity gain frequency	D. = 10 k0 C: 100 pF		690		kHz
фm	Phase margin	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		55		Degrees
Gm	Gain margin			9		dB

TSX56x, TSX56xA

Electrical characteristics

Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit	
SR	Slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$		1		V/µs	
	Equivalent input noise	f = 1 kHz		55		nV/√Hz	
e n	voltage density	f = 10 kHz		29		IIV/ VIIZ	
∫en	Low-frequency peak-to- peak input noise	Bandwidth, f = 0.1 to 10 Hz		16		μVpp	
THD+N	Total harmonic distortion + noise	Follower configuration, $f_{in} = 1$ kHz, $R_L = 100$ k Ω , $V_{icm} = (V_{CC} - 1.5 \text{ V})/2$, $BW = 22$ kHz, $V_{out} = 1$ V_{pp}		0.004		%	

⁽¹⁾See Section 5.3: "Input offset voltage drift over temperature"

⁽²⁾Guaranteed by design

Electrical characteristics TSX56x, TSX56xA

Table 5: Electrical characteristics at $V_{CC+}=5$ V with $V_{CC-}=0$ V, $V_{icm}=V_{CC}/2$, $T_{amb}=25$ ° C, and $R_L=10$ k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance				
		TSX56xA, T = 25 °C			600	
		TSX56xA, -40 °C < T < 125 °C			1800	μV
V_{io}	Offset voltage	TSX56x, T = 25 °C			1	
		TSX56x, -40 °C < T < 125 °C			2.2	mV
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		2	12	μV/°C
ΔV_{io}	Long-term input offset voltage drift	T = 25 °C ⁽²⁾		5		nV/ √month
	Input bias current,	T = 25 °C		1	100 (3)	
l _{ib}	$V_{out} = V_{CC}/2$	-40 °C < T < 125 °C		1	200 (3)	A
	Input offset current,	T = 25 °C		1	100 (3)	рA
lio	$V_{out} = V_{CC}/2$	-40 °C < T < 125 °C		1	200 (3)	
	Common mode rejection	T = 25 °C	66	84		
CMR1	ratio, CMR = 20 log (Δ V _{ic} / Δ V _{io}), V _{ic} = -0.1 V to V _{CC} - 1.5 V, V _{out} = V _{CC} /2, R _L > 1 M Ω	-40 °C < T < 125 °C	63			
	Common mode rejection	T = 25 °C	50	69		
CMR2	ratio, CMR = 20 log $ (\Delta V_{ic}/\Delta V_{io}), \ V_{ic} = -0.1 \ V \ to \\ V_{CC} + 0.1 \ V, \ V_{out} = V_{CC}/2, \\ R_L > 1 \ M\Omega $	-40 °C < T < 125 °C	47			dB
	Large signal voltage gain,	T = 25 °C	85			
A_{vd}	$V_{out} = 0.5 \text{ V to (Vcc - 0.5 V)},$ $R_L > 1 \text{ M}\Omega$	-40 °C < T < 125 °C	83			
V_{OH}	High-level output voltage,	R_L = 10 k Ω , T = 25 °C			70	
VOH	$V_{OH} = V_{CC} - V_{out}$	R_L = 10 k Ω , -40 °C < T < 125 °C			100	mV
Vol	Low-level output voltage	R_L = 10 k Ω , T = 25 °C			70	IIIV
VOL	Low-level output voltage	R_L = 10 k Ω , -40 °C < T < 125 °C			100	
	lsink	$V_{out} = V_{CC}, T = 25 ^{\circ}C$	11	14		
lout	ISHK	$V_{out} = V_{CC}$, -40 °C < T < 125 °C	8			mA
Tout	Isource	$V_{out} = 0 \text{ V}, T = 25 ^{\circ}\text{C}$	9	12		1117 (
	isouice	$V_{out} = 0 \text{ V}, -40 \text{ °C} < T < 125 \text{ °C}$	7			
	Supply current, per	T = 25 °C		235	350	
Icc	channel, $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$	-40 °C < T < 125 °C			400	μΑ
		AC performance	1	1	_	
GBP	Gain bandwidth product		700	850		kHz
Fu	Unity gain frequency	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		730		131 14
φm	Phase margin	11. 10 132, OL - 100 pi		55		Degrees
G_{m}	Gain margin			9		dB

8/28 DocID023274 Rev 5

TSX56x, TSX56xA

Electrical characteristics

Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit
SR	Slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$		1.1		V/µs
	Equivalent input noise	f = 1 kHz		55		nV/√Hz
e _n	voltage density	f = 10 kHz		29		IIV/ VIIZ
∫en	Low-frequency peak-to- peak input noise			15		μVpp
THD+N	Total harmonic distortion + noise	Follower configuration, $f_{in} = 1 \text{ kHz}$, $R_L = 100 \text{ k}\Omega$, $V_{icm} = (V_{CC} - 1.5 \text{ V})/2$, $BW = 22 \text{ kHz}$, $V_{out} = 2 \text{ V}_{pp}$		0.002		%

⁽¹⁾See Section 5.3: "Input offset voltage drift over temperature"

 $^{^{(2)}}$ Typical value is based on the V_{io} drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.

⁽³⁾Guaranteed by design

Electrical characteristics TSX56x, TSX56xA

Table 6: Electrical characteristics at $V_{CC+}=16$ V with $V_{CC-}=0$ V, $V_{icm}=V_{CC}/2$, $T_{amb}=25$ ° C, and $R_L=10$ k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		DC performance					
		TSX56xA, T = 25 °C			600	.,	
.,	0" , "	TSX56xA, -40 °C < T < 125 °C			1800	μV	
V_{io}	Offset voltage	TSX56x, T = 25 °C			1		
		TSX56x, -40 °C < T < 125 °C			2.2	mV	
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		2	12	μV/°C	
ΔV_{io}	Long-term input offset voltage drift	T = 25 °C ⁽²⁾		1.6		nV/ √month	
L.	Input bias current,	T = 25 °C		1	100 (3)		
l _{ib}	$V_{out} = V_{CC}/2$	-40 °C < T < 125 °C		1	200 (3)	nΛ	
I.	Input offset current,	T = 25 °C		1	100 ⁽³⁾	рA	
l _{io}	V _{out} = V _{CC} /2	-40 °C < T < 125 °C		1	200 (3)		
	Common mode rejection	T = 25 °C	76	95			
CMR1	ratio, CMR = 20 log $ (\Delta V_{ic}/\Delta V_{io}), \ V_{ic} = -0.1 \ V to \\ V_{CC} - 1.5 \ V, \ V_{out} = V_{CC}/2, \\ R_L > 1 \ M\Omega $	-40 °C < T < 125 °C	72				
	Common mode rejection ratio, CMR = 20 log ($\Delta V_{ic}/\Delta V_{io}$), V_{ic} = -0.1 V to V_{CC} + 0.1 V, V_{out} = $V_{CC}/2$, R_L > 1 $M\Omega$	T = 25 °C	60	78			
CMR2		-40 °C < T < 125 °C	56			dB	
	Common mode rejection	T = 25 °C	76	90			
SVR	ratio, 20 log ($\Delta V_{CC}/\Delta V_{io}$), $V_{CC} = 3 \text{ V to 16 V}$, $V_{out} = V_{icm} = V_{CC}/2$	-40 °C < T < 125 °C	72				
	Large signal voltage gain,	T = 25 °C	85				
A_{vd}	$V_{out} = 0.5 \text{ V to (Vcc - 0.5 V)},$ $R_L > 1 \text{ M}\Omega$	-40 °C < T < 125 °C	83				
Vон	High-level output voltage,	R_L = 10 k Ω , T = 25 °C			70		
VOH	$V_{OH} = V_{CC} - V_{out}$	R_L = 10 k Ω , -40 °C < T < 125 °C			100	mV	
V_{OL}	Low-level output voltage	R_L = 10 k Ω , T = 25 °C			70	IIIV	
VOL	Low-level output voltage	$R_L = 10 \text{ k}\Omega$, -40 °C < T < 125 °C			100		
	l _{sink}	$V_{out} = V_{CC}, T = 25 ^{\circ}C$	40	92			
lout	ISITIK	$V_{out} = V_{CC}$, -40 °C < T < 125 °C	35			mA	
TOUT	Isource	V _{out} = 0 V, T = 25 °C	30	90		IIIA	
	isource	V _{out} = 0 V, -40 °C < T < 125 °C	25				
	Supply current, per	T = 25 °C		250	360		
Icc	channel, $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$	-40 °C < T < 125 °C			400	μA	

TSX56x, TSX56xA

Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
	AC performance									
GBP	Gain bandwidth product		750	900		I.L.				
Fu	Unity gain frequency	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		750		kHz				
φm	Phase margin	$R_{L} = 10 \text{ kgz}, C_{L} = 100 \text{ pr}$		55		Degrees				
Gm	Gain margin			9		dB				
SR	Slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$		1.1		V/µs				
_	Equivalent input noise	f = 1 kHz		48		nV/√Hz				
e _n	voltage density	f = 10 kHz		27		NV/VHZ				
∫en	Low-frequency peak-to- peak input noise Bandwidth, f = 0.1 to 10 Hz			15		μ∨рр				
THD+N	Total harmonic distortion + noise	Follower configuration, $f_{in} = 1$ kHz, $R_L = 100$ k Ω , $V_{icm} = (V_{CC} - 1.5 \text{ V})/2$, $BW = 22$ kHz, $V_{out} = 5$ V_{pp}		0.000 5		%				

⁽¹⁾See Section 5.3: "Input offset voltage drift over temperature"

 $^{^{(2)}}$ Typical value is based on the V_{io} drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.

⁽³⁾Guaranteed by design

4 Electrical characteristic curves

Figure 21: Distortion and noise vs. amplitude at $V_{icm} = V_{cc}/2$ and $V_{cc} = 12 \text{ V}$ 10⁰

V_{CC} = 12 V, V_{icm} = 6 V f = 1 kHz, BW = 22 kHz R_L = 100 kΩ, T = 25 °C Follower

10⁻³

10⁻⁴

0.01

0.1

10

Output amplitude (V_{pp})

5 Application information

5.1 Operating voltages

The amplifiers of the TSX56x and TSX56xA series can operate from 3 V to 16 V. Their parameters are fully specified at 3.3 V, 5 V, and 16 V power supplies. However, the parameters are very stable in the full V_{CC} range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to 125 ° C.

5.2 Rail-to-rail input

The TSX56x and TSX56xA devices are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from (V_{CC} -) - 0.1 V to (V_{CC} +) + 0.1 V.

However, the performance of these devices is clearly optimized for the PMOS differential pairs (which means from (V_{CC}) - 0.1 V to (V_{CC}) - 1.5 V).

Beyond (V_{CC} +) - 1.5 V, the operational amplifiers are still functional but with degraded performance, as can be observed in the electrical characteristics section of this datasheet (mainly V_{io} and GBP). These performances are suitable for a number of applications that need to be rail-to-rail.

The devices are designed to prevent phase reversal.

5.3 Input offset voltage drift over temperature

The maximum input voltage drift over the temperature variation is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effects of temperature variations.

The maximum input voltage drift over temperature is computed using Equation 1.

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \max \left| \frac{V_{io}(T) - V_{io}(25 \, ^{\circ}C)}{T - 25 \, ^{\circ}C} \right|$$

Where T = -40 °C and 125 °C.

The datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 2.

5.4 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using *Equation 2*.

Equation 2

$$A_{FV} = e^{\beta \cdot (V_S - V_U)}$$

Where:

AFV is the voltage acceleration factor

 β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)

Vs is the stress voltage used for the accelerated test

V_U is the voltage used for the application

The temperature acceleration is driven by the Arrhenius model, and is defined in *Equation 3*.

Equation 3

$$A_{FT} = e^{\frac{E_a}{k} \cdot \left(\frac{1}{T_U} - \frac{1}{T_S}\right)}$$

Where:

AFT is the temperature acceleration factor

Ea is the activation energy of the technology based on the failure rate

k is the Boltzmann constant (8.6173 x 10⁻⁵ eV.K⁻¹)

 T_U is the temperature of the die when V_U is used (K)

T_S is the temperature of the die under temperature stress (K)

The final acceleration factor, A_F, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (*Equation 4*).

Equation 4

$$A_F = A_{FT} \times A_{FV}$$

 A_F is calculated using the temperature and voltage defined in the mission profile of the product. The A_F value can then be used in *Equation 5* to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

Equation 5

Months =
$$A_F \times 1000 \text{ h} \times 12 \text{ months} / (24 \text{ h} \times 365.25 \text{ days})$$

To evaluate the op amp reliability, a follower stress condition is used where V_{CC} is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).

The V_{io} drift (in μV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see *Equation 6*).

Equation 6

$$V_{CC} = maxV_{op}$$
 with $V_{icm} = V_{CC}/2$

The long term drift parameter (ΔV_{io}), estimating the reliability performance of the product, is obtained using the ratio of the V_{io} (input offset voltage value) drift over the square root of the calculated number of months (*Equation* 7).

Equation 7

$$\Delta V_{io} = \frac{V_{io} drift}{\sqrt{(month s)}}$$

Where V_{io} drift is the measured drift value in the specified test conditions after 1000 h stress duration.

5.5 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

5.6 Macromodel

Accurate macromodels of the TSX56x, TSX56xA devices are available on the STMicroelectronics' website at: **www.st.com**. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSX56x and TSX56xA operational amplifiers. They emulate the nominal performance of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, *but they do not replace on-board measurements*.

TSX56x, TSX56xA Package information

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

6.1 SOT23-5 package information

AA2

AA2

E

F

Figure 23: SOT23-5 package outline

Table 7: SOT23-5 mechanical data

	Dimensions								
Ref.		Millimete	rs	Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	0.90	1.20	1.45	0.035	0.047	0.057			
A1			0.15			0.006			
A2	0.90	1.05	1.30	0.035	0.041	0.051			
В	0.35	0.40	0.50	0.014	0.016	0.020			
С	0.09	0.15	0.20	0.004	0.006	0.008			
D	2.80	2.90	3.00	0.110	0.114	0.118			
D1		1.90			0.075				
е		0.95			0.037				
Е	2.60	2.80	3.00	0.102	0.110	0.118			
F	1.50	1.60	1.75	0.059	0.063	0.069			
L	0.10	0.35	0.60	0.004	0.014	0.024			
K	0 degrees		10 degrees	0 degrees		10 degrees			

6.2 DFN8 2x2 package information

D Þ В PIN 1 INDEX AREA Ш 0.10 C 2x TOP VIEW // 0.10 C SIDE VIEW 0.08 C е b (8 plcs) PIN 1 INDEX AREA **♦** 0.10**%** C A B Pin#1 ID BOTTOM VIEW

Figure 24: DFN8 2x2 package outline

Table 8: DFN8 2x2 mechanical data

	Dimensions									
Ref.		Millimeters								
	Min.	Тур.	Max.	Min.	Тур.	Max.				
А	0.70	0.75	0.80	0.028	0.030	0.031				
A1	0.00	0.02	0.05	0.000	0.001	0.002				
b	0.15	0.20	0.25	0.006	0.008	0.010				
D		2.00			0.079					
Е		2.00			0.079					
е		0.50			0.020					
L	0.045	0.55	0.65	0.018	0.022	0.026				

6.3 MiniSO8 package information

Figure 25: MiniSO8 package outline

Table 9: MiniSO8 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.1			0.043	
A1	0		0.15	0		0.006	
A2	0.75	0.85	0.95	0.030	0.033	0.037	
b	0.22		0.40	0.009		0.016	
С	0.08		0.23	0.003		0.009	
D	2.80	3.00	3.20	0.11	0.118	0.126	
Е	4.65	4.90	5.15	0.183	0.193	0.203	
E1	2.80	3.00	3.10	0.11	0.118	0.122	
е		0.65			0.026		
L	0.40	0.60	0.80	0.016	0.024	0.031	
L1		0.95			0.037		
L2		0.25			0.010		
k	0°		8°	0°		8°	
ccc			0.10			0.004	

TSX56x, TSX56xA Package information

6.4 QFN16 3x3 package information

BOTTOM VIEW

bbb(M) C A B bbb(M) C

Ф

Figure 26: QFN16 3x3 package outline

Pin#1 ID R0.11

Table 10: QFN16 3x3 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.50		0.65	0.020		0.026	
A1	0		0.05	0		0.002	
b	0.18	0.25	0.30	0.007	0.010	0.012	
D		3.00			0.118		
Е		3.00			0.118		
е		0.50			0.020		
L	0.30		0.50	0.012		0.020	
aaa			0.15			0.006	
bbb			0.10			0.004	
ccc			0.10			0.004	
ddd			0.05			0.002	
eee			0.08			0.003	

6.5 TSSOP14 package information

PIN 1 IDENTIFICATION

PIN 1 IDENTIFICATION

PIN 1 IDENTIFICATION

PIN 2 IDENTIFICATION

PIN 1 IDENTIFICATION

Figure 27: TSSOP14 package outline

Table 11: TSSOP14 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.20			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.90	5.00	5.10	0.193	0.197	0.201	
Е	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.176	
е		0.65			0.0256		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00			0.039		
k	0°		8°	0°		8°	
aaa			0.10			0.004	

Ordering information TSX56x, TSX56xA

7 Ordering information

Table 12: Order codes

Order code	Temperature range	Channel number	Package	Packaging	Marking
TSX561ILT	-40 to 125 °C	1	SOT23-5		
TSX562IQ2T		2	DFN8 2x2		K23
TSX562IST		2	MiniSO8		N23
TSX564IQ4T		4	QFN16 3x3		
TSX564IPT		4	TSSOP14		TSX5641
TSX561IYLT (1)	-40 to 125 °C automotive grade	1	SOT23-5	Tape and reel	K116
TSX562IYST (1)		2	MiniSO8		
TSX564IYPT (1)	grade	4	TSSOP14		TSX5641Y
TSX561AILT		1	SOT23-5		K117
TSX562AIST	-40 to 125 °C	2	MiniSO8		
TSX564AIPT		4	TSSOP14		TSX564AI
TSX561AIYLT (1)	-40 to 125 °C automotive grade	1	SOT23-5		1/440
TSX562AIYST (1)		2	MiniSO8		K118
TSX564AIYPT (1)	automonio grado	4	TSSOP14		TSX564AIY

 $^{^{(1)}}$ Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent

TSX56x, TSX56xA Revision history

8 Revision history

Table 13: Document revision history

Date	Revision	Changes
06-Aug-2012	1	Initial release.
18-Sep-2012	2	Added TSX562, TSX564, TSX562A, and TSX564A devices. Updated Features, Description, Figure 1, Table 1 (added DFN8, MiniSO8, QFN16, and TSSOP14 package). Updated Table 1 (updated ESD MM values). Updated Table 4 and Table 5 (added footnotes), Section 5 (added Figure 24 to Figure 28 and Table 8 to Table 12), Table 13 (added dual and quad devices). Minor corrections throughout document.
23-May-2013	3	Replaced the silhouette, pinout, package diagram, and mechanical data of the DFN8 2x2 and QFN16 3x3 packages. Added Benefits and Related products. Table 1: updated R _{thja} values and added R _{thjc} values for DFN8 2x2 and QFN16 3x3. Updated Section 4.3, Section 4.4, and Section 4.6 Replaced Figure 23: SOT23-5 package mechanical drawing and Table 7: SOT23-5 package mechanical data.
09-Aug-2013	4	Added SO8 package for dual version TSX562 and TSX562A. Table 2: updated for SO8 package Table 13: added order codes TSX562IDT, TSX562IYDT, TSX562AIDT, TSX562AIYDT; updated automotive grade status.
07-Feb-2017	5	Removed SO8 package Table 8: "DFN8 2x2 mechanical data": removed "N" Table 11: "TSSOP14 mechanical data": added "L" and " L1" in inches; updated "aaa" in inches. Table 12: "Order codes": removed TSX562IDT, TSX562IYDT, TSX562AIDT, TSX562AIYDT. Updated terminology

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

