INSTITUT NATIONAL DE LA PROPRIÈTÉ INDUSTRIELLE

PARIS

(1) N° de publication :

2741 907

(21) N° d'enregistrement national :

95 14465

(51) Int Cf : E 21 8 7/20, 17/00, 33/14, 43/10, E 21 0 5/01

(12)

DEMANDE DE BREVET D'INVENTION

AT

- (2) Death dis obsepte: 30,11.85.
- இ அங்கின் :

- Demandour(s): OFFILELEX SOCIETE ANONYME --
- (4) Dom do la misa à disposition du public da la damando : CA.CR.97 Sullata 97/20.
- (Ed) Liebo dos documentos estás dens la repport de recitarche prédictivaire: Ce demier n'a pas dés établi à in date du publication de la demande.
- (SD) Résidences à d'autres documents resilences apparentée :
- D SYNTENTO): LEIGHTON JAMES & SALTEL JEAN LOUIS.
- (79) Titulaire(a):
- (74) Mandetsiro : REGIMBEAU.

PROCEDE ET METALLATION DE FORAGE ET DE CHEMBAGE D'UN PUITS, NOTAMMENT D'UN PUITS DE FORAGE PETROLIER, AU MOYEN DE TRONCORS TUBULAIRES ABOUTES INSTIALEMENT SCUPLES, ET CURCES IN SITU.

CONCIS IN SITU.

(57) Conformirment à l'invention, le chemisege du publis est réliés à su moyen de plasseure précumes (4) conditionent aboutairs, qué cont inflisiement souples et replées eur elles-mêmes pour présenter un encombrement redai tablés qui existrise isur descerte à travers le tronçon (2) déjà les précentes ent une portion d'administé bases élamés, qui permet l'ambohament avec recouvement des présentes; le accelement d'une présentement des présentes; le accelement d'une présentement des consentement faisent intervenir un olment (6) qui est introduit à la base de la présente, à l'intérieur de la présente en partie du trou, après quoi en polymétice la présente pour la réglatifier.

Chambage des puits de pétruie.

PROCEDE ET INSTALLATION DE FORAGE ET DE CHEMISAGE D'UN PUITS, NOTAMMENT D'UN PUITS DE FORAGE PETROLIER, AU MOYEN DE TRONÇONS TUBULAIRES ABOUTES INITIALEMENT SOUPLES, ET DURCIS <u>IN SITU</u>

La présente invention concerne un procédé pour forer et cheminer un puits, notamment un puits de forage pétrolier, au moyen d'un ensemble de tronçons tabulaires ou préformes - similaires, initialement souples, aptes à être repliées longitudinalement aux elles-mèmes pour être latroduites dans le puits, puis à être dépliées radialement sous l'effet d'une pression interne pour prendre une forme cylindrique, et enfin à être rigidifiées ja nits par polymérisation de less paroi, l'encombrement transversed d'une préforme repliée étant de dimension maximale sensiblement inférieure à son diamètre interne à l'état déplié, et lessites préformes possédant une portion d'extrémité dont le diamètre - après dépliement - est légèrement supérieur à celui de la préforme, ce qui permet leus jonction bout-à-bout par emboîtement, avec recouvrement de ladite portion d'extrémité.

Ainsi, en recourant à ce type de préforme, qui est connue en soi - notamment par le document WO-A-94/21887 - il est possible d'obtenir un chemisage d'un diamètre constant sur toute la longueur du puits.

A cet égard, il convient de rappeler qu'avec des chemisages (ou subages) traditionnels constitués par des tubes en acier, on est obligé d'utiliser des tronçous subulaires bilescopiques, à dismètre décroissant en direction du fond du puits, ce qui pose des problèmes d'installation et d'exploitation altérieure du puits.

L'objectif de l'invention est de proposer un procédé de forage et de chemissage du puits, à l'aide de préformes du type mentionné ci-dessus, qui puisse être mis en ocuvre de manière simple et rapide, à faible coût.

Pour cela, et conformément à l'invention, on commence par metire en place un premier tronçon, du côté de l'entrée du puits, la portion d'extrémité élargie de ce ironçon étant tournée vers le bas.

Le procédé selon l'invention comprend les étapes suivantes :

- a) on fait passer axialement, de haut en bas, à travers ledit tronçon, un outil de forage, et on fore au-dessous et dans le prolongement de ce tronçon un trou de forme et de profondeur adaptées pour recevoir le tronçon suivant;
 - b) on retire l'outil de forage;

10

15

25

30

c) on introduit une préforme, à l'état replié, à l'intérieur du puits en la faixant traverser le trouçon déjà en place, et on la positionne converablement à l'intérieur

du trou, su portion d'extrémité haute venant se placer à l'intérieur de la portion d'extrémité élurgie du tronçon ;

d) on introduit un ciment fluide au fond du trou, autour de la portion d'extrémité hause de la préforme;

e) on introduit un fluide sous pression, de densité supérieure à la densité du ciment, à l'intérieur de la préforme afin de la déplier radialement, progressivement de bas en haut, autour de la préforme, contre la paroi du trou :

5

25

() sont en maintenant la préforme sous pression interne, on en chauffe la parti pour la polymérica;

4) le ciment nyant pris, et la préforme ayant durci pour constituer un prospon nabulaire rigide de chemisage, on retire axialement les omillages ayant servi su gouillage et à la polymérisation de la préforme, ainsi qu'à la distribution du ciment;

h) ca réithre l'opération pour les tronçons suivants, jusqu'à obtenir la longueur de cuits chemisé soubsitée.

Lorsque, comme cela sera expliqué plus loin, la préforme présente des réserves de résine aptes à migrer vers l'extérieur pour former des verrous annulaires d'étanchéisé, le positionnement de ces verrous est réalisé au début de l'étape I ci-dessus.

De manière particulièrement avantageuse, on utilise un outil de forage du genre trépan, apte à occuper sélectivement trois états de contraction radiale, à savoir un premier état d'escombrement minimal, lui permettant de passer à l'intérieur du trouçon déjà en place, un second état, d'encombrement intermédiaire, pour le forage de la partie principale du trou et un troisième état, d'encombrement maximal, pour le forage de la partie du trou destinée à recevoir la portion étargie de la préforme.

Dans un mode de réalisation préférentiel, l'outillage servant au gonflage et à la polymérisation de la préforme, ainsi qu'à la distribution du ciment, compressé une tête à double valve placée en partie basse de la préforme, et apre à distributes affectivement un fluide de gonflage à l'intérieur de la préforme et un ciment fluide à l'extérieur de celle-ci.

L'installation de l'orage et de cheminage, qui fait également partie de la présents invention, servest à la mise en ceuvre de ce procédé, est remarquable par le fait qu'elle comprese, en tête de puits :

une bobine de stockage et de réception, à l'état enroulé, de ladite

une tête surplombant l'entrée du puits, apte à permettre le guidage et l'introduction, dans le puits, de la présonne et des différents cutillages servant au sorage du puits einsi qu'eu gonslage et à la polymérisation de la présonne;

des bobines de stockage à l'état enroulé de tubes métalliques élastiquement déformables apies à l'aire descendre et remonter lesdits outillages dans le puits, l'un de ces tubes contenant un câble servant à l'alimentation de la préforme en courant électrique;

- un générateur de courant électrique.

D'autres caractéristiques et avantages de l'invention apparaîtront de la description et des dessites annexés qui en représentent, à simple titre d'exemples non limitatifs un mode de mise en ocuvre préféré, ainsi que l'installation correspondante.

Sur ces dessins :

5

10

15

20

30

35

- les figures 1 à 4 sont des vues schématiques, en coupe axiale, montrant les différentes dupes de l'opération de forage de la partie de puits qui doit recevoir la préforme ;

- la figure 5 est une vue schématique d'une préforme et de l'outillage dont elle est exlicaire, avant mise en place, dans le puits ;

- les figures 6 et 7 sont des vues partielles de l'extrémité basse de la préferenz, destinées à illustrer le principe de la double valve dont est pourvue la tête d'estillage;

- les figures 8 à 15 illustrent les différentes étapes de mise en place d'une préferme au bout d'un ronçon déjà en place ;

la figure 16 représente schématiquement, en coupe axiale, un puits chesaisé par trois trospons conxisux aboutés;

- la figure 17 est une vue schématique montrant les différents matériels constitutifs de l'installation, situés en surface (tête de puits);

- les figures 18 à 30 - à échelle plus petite - illustrent le fonctionnement de l'installation au cours des différentes étapes du chemisage.

La figure 1 représents l'extrémité basse d'un puits vertical en cours de forage et de chemisage. Ca puits, incomplètement foré, comporte un chemisage déjà en place sous forme d'un tube cylindrique rigide 2 présentant une portion d'extrémité basse 20 élargie.

Le diamètre D de cette partie 20 est légèrement plus grand que le diamètre d de la partie principale 2, si bien qu'il est possible d'emboîter les uns dans les autres des trospons 2, avec recouvrement des parties d'extrésaité 20.

Le tronçon de chemisage 2 est scellé dans le puits par un ciment périphérique 200.

Nous allors maintenant décrire de quelle manière va être mis en place, à l'aide du procédé de l'invention, le tronçon suivant, destiné à être abouté au tronçon 2.

Pour cela, comme illustré aux figures 1 à 4, on commence par forer un trou destiné à recevoir ce tronçon.

A cet esset on utilise un outil de songe 1, du genre trépan, qui a la particularité de pouvoir être rétracté ou dilaté radialement, dans trois états d'encombrement différents.

Dans un premier état, illustré à la figure 1, l'outil est rétracté au maximum de telle manière que sa plus grande dimension transversale autorise son libre passage à l'intérieur du troppes 2, axialement à travers celui-ci.

Dans cet ital, son encombrement est donc plus petit que d.

De manière connue, l'ossil de fomge 1 est fixé à l'extrémité d'une tige inbulaire 10, qui porte la moteur d'entraînement (non représenté) de l'outil en rotation, et les organes assurant son déploisment ou sa contraction radiale.

10

15

20

25

30

Comme on le verre plus loin, la tige 10 est montée à l'extrémité d'un tabe métallique apre à être caronté sur un tambour récepteur disposé en surface, en tête de puits.

Dans un second état de déploiement radial, illustré à la figure 2, la partie compante 12 de l'outil possède un diamètre de travail sensiblement égal à D.

L'outil ayant été descendu axialement dans le puits, à travers le tubage 2 déjà en place, on preveque ce déploiement radial au diamètre D lorsqu'il est arrivé à l'intérieur de la portion élargie 20. On actionne alors l'outil en rotation, sout en poursuivant su descente comme illustré par la flèche F₁ à la figure 1.

On réalise sinsi le forage d'un trou cylindrique au dismètre D, coaxial au trouçon 2, dans le prolongement de celui-ci, dans le sol S.

La profondeur de forage correspond à la longueur du tronçon que l'on souhaite mettre en place.

L'outil (presède des organes de coupe additionnels 11 qui peuvent être déployés radialement à un dismètre supérieur à D, afin de pouvoir recevoir la portion élargie du trompon à mettre en place.

Comme illustré à la figure 3, par remontée de l'outil selon F2, on réalise ainsi un élargissement du trou 3 sur une certaine hauteur.

A la figure 4 on a désigné par la référence 30 la parci de la partie principale du trou 3, par la référence 31 la parti de sa portion élargie et par la référence 32 la portion basse du trou, dont le diamètre D est le même que celui de la partie 30.

La préforme 4 représentée schématiquement à la figure 5 est du même type 5 général que celle décrite en détail dans le WO-A-9-4/21887 déjà cité.

Néanmoins, elle est dépourvue dans se partie basse d'un organe obturateur gonflable, du fait qu'en a affaire à un trou borgne; de plus, la préforme 4 possède une portion d'extrémisé basse 40 de section élargie.

La préforme 4 est supportée par une tige tubulaire 5 en acier, enroulable sur un tambour de stockage situé en surface, et qui parmet de la faire descendre à l'intérieur du puits, et de lui fournir les fluides de cimentation et de gonflage, ainsi que l'énergie électrique pour la polymérisation de la préforme, par l'intermédiaire d'un dispositif de recoordement 500 relié à un conduit central (axial) 50 disposé à l'intérieur de la préforme et se recoordement en partie basse de celle-ci à une tête de distribution 51.

Co type do tige d'actor carculable est communent désignée dans le métier par le terror angiais "CGLED TUBING" - en abrégé "CT." -.

Comme cela est décrit dans le WO-A-94/21887 déjà cité, la préforme est commée à ses extrémités haute et basse, de manière étanche, par des manchons arrachables estion décompables en fin d'opération.

La tête distributrice 51 possède une double valve 52, 53, actionnable affectivement (depuis la station).

Comme illustré aux figures 6 et 7, la valve 52 permet de distribuer un fluide de gonflage à l'intérieur de la préforme (flèches I), tandis que la valve 53 permet de distribuer un ciracat fluide à la base de la préforme, à l'extérieur de calle-ci (flèches I).

Comme illustré à la figure 8, la préforme 4 - qui se trouve initialement à l'état redislement replié - est descendue dans le trou 3 axialement, du haut vers le bas, à travers le trouçon de chessimge 2 déjà en place.

Bien ensenda, pour que ceci soit possible, il est nécessaire que l'encombrement transversal de la préforme repliée soit inférieur su diamètre interne de la préforme dépliée, qui correspond à calui du tubage 2 déjà en place.

Lorsque la préforme est repliée sur elle-même, elle présente une section en "U" ou en forme d'escargot - comme illestré par exemple aux figures 6A et 6B, respectivement du document WO-A-94/25655; lorsqu'elle est dépliée elle présente une section circulaire.

La préforme 4 est positionnée dans le trou 3 de telle manière que sa portion d'extrémité plus large 40 es trouve en regard de l'élargissement de puits 31 ; la longueur du trou 3 est déterminée pour que, dans cette position, la portion supérieure de la préforme se trouve en regard de l'élargissement 20 du mbage déjà en place.

On procède alors à l'injection d'une dose de ciment liquide 6 à la base de la préforme, via la valve 53 (flèches J. figure 9).

Le ciment est chaisi pour avoir une densité voisine - voire légèrement supérieure - de celle de la boue liquide 7 se trouvant dans le puits.

10

15

20

25

30

35

/

_

•

L'arrivée de ciment à la base de la présonne chasse donc cette boue vers le

Comme illustré à la figure 10, on procède ensuite au gonflage de la présonne, en injectant un fluide sous pression à l'intérieur de celle-ci, via la valve 52 (flèches I).

haut

35

Il a'agit soit d'un liquide introduit de l'extérieur (depuis la tête de puits) par le conduit 5 dans la préforme, soit d'un liquide (esu, boue ou pétrole) présent dans le poitre et pompé dans la préforme.

Le liquide de goullage en avantagement choss pour avoir une dennié légèrement supérieure à culte du ciment et de le bous entourant la préforme, si bien que le goullage va sa faire progressivement du bas vers le haut, comme symbolisé par les flèches G à la figure 10.

A défent, la progression du gonflage du bas vers le hant peut être contrôlée en prévoyant, le long de la préferase, une série de bagues de contention frangibles, dont le seuil de rupture est adapté à ce seus de progression.

Le ciment est par conséquent resculé également de bas en haut contre la paroi du puits, comme symbolisé par la sièche 31, tandis que la boue 7 se trouve chassée vers le haut.

De préférence le volume de ciment périphérique n'est pas suffisant pour anteindre la partie haute de la préforme, de manière à assurer une liaison sans ciment dans la zone de jonction entre les portions d'extrémité des deux tronçons 2 et 4 (voir figure 11).

De préférence, la préforme 4 possède une paroi en résine polymérizable à chaud, prise en sandwich entre une peau intérieure et une peau extérieure élastiques, et munie, côté intérieur, d'une réserve contenant de la résine apre à migrer vers l'extérieur pour former des bourrelets annulaires favorisant l'ancrage et l'étanchéité du tubage contre la paroi de puits.

Une préforme de ce genre est décrite dans la demande de brevet français 94 08691 déposée le 7 juillet 1994 par la demanderesse, et dans son extension internationale PCT/FR 95/00902.

Ces verrous annulaires, répartis tout le long de la préforme sont référencés 9; de préférence il est prévu une densité plus grande de verrous (c'est-à-dire un écartement plus saible entre les verrous) aux extrémités haute et basse de la préforme, de manière à assurer une bonne étanchéité dans la liaison bout-à-bout des différents tronçons.

Le chausTage et la polymérisation de la présonne sont réalisés une sois le gonslage terminé, la pression de gonslage étant maintenue à l'intérieur de la présonne.

A titre indicatif, la pression interne est de l'ordre de 15 bars.

Le chauffage de la préforme peut se faire soit en introduisant un fluide chaud à l'intérieur de la préforme, soit par réaction chimique exothermique, soit encore de préférence - par effet Josle, su moyen de résistances électriques (fils chauffants) disposées dans la paroi de la préforme ou à proximité de celle-ci, et alimentées en courant électrique depuis la tête de puis, via la tige - "Coiled Tubing" - 5.

A titre indicatif, la température nécessaire à la polyreérisation est de l'ordre de 110 à 140°C, et la durée de cette étape est de l'ordre de six à huit beures.

Lorsque la polyméricales des verreus 9 et de la parti de préforms est 10 serminée, et que le ciment 6 a fait en prime (figure 12), on retire l'outillage 500, 50, 51 (fieche K. figure 13).

On installe sions un cutil de crope (501) à l'extrémité du tube 5, et en découpe le manchon d'étanonéisé de l'extrémité haute de la présonne (polymérisée) 4' (figure 14), qu'on arrache ensuite. On opèra de la même manière pour le manchon inférieur.

On obtient alors un tronçon de chemisage rigide d' qui prolonge conxistement le tubage précédent 2 (voir figure 15).

L'opération qui vient d'être détrite est bien sût réliérée, tronçon après tronçon, afin d'obtenir la profendeur de puits chemisé souhaitée.

Dans un mode de réalisation possible de la préforme, celle-ci a une fime composée à 30% de réaise épony et à 70% de fibres de verre, sette fime syant une épaisseur de l'ordre de 14mm; les penux intérieure et extérieure, en caoulchour synthétique, ont respectivement une épaisseur de 2mm et de 6mm environ.

A titre indicatif, la portion principale de la préforme 4 possède, à l'étes déplié, un diamètre intérieur de l'ordre de 140mm et un diamètre extérieur de l'ordre de 184mm, tandis que la portion élargie 40 possède un diamètre intérieur de l'ordre de 188mm et un diamètre extérieur de l'ordre de 236mm.

Les portions 30-32 et 31 du puits ont des diamètres moyens de l'ordre de 197mm et de 244,5mm, respectivement.

La longueur des différents tronçons peut meturellement être très variable ; à simple titre indicatif, la longueur d'une préforme peut être de l'ordre de 500m.

La figure 16 représente un puits P chemisé par un ensemble de trois tronçons 2A, 2B et 2C aboutés et cimentés.

La figure 17 représente schématiquement une installation de tête de puits qui permet de mettre en œuvre le procédé selon l'invention.

Sur cette sigure, la tête de puits, résérencée 55, est équipée d'une structure métallique (châssis) 100 entourant la tête de puits.

20

30

35

Cette structure 100 porte un injecteur 101 pourvu d'un sabot d'appui 102, et servant à supporter et à pousser les différents matériels lorsqu'ils sont descendus dans le puits ou retirés de celui-ci ; elle se trouve à l'aplomb de l'entrée du puits.

On a désigné par la référence 54 un tambour de stockage sur lequel est enroulée la préforme; elle est supportée par un wagonnet.

La référence 540 désigne un sabet de support et de guidage de la préforme à l'entrée du puits.

Les références 56 et 57 désignent des tembours sur lesquels sont enroulés et stockés respectivement les tubes "C.T." (Colled Tubing) 560 et 5.

Le tube 560 mit à supporter et à déplacer l'outil de forage ; le tube 5 (comme déjà dit) sent à supporter la préforme, à amener les fluides de gouffage et de cimentation à la préforme, et à la connecter à une source de courant électrique (pour la polymérisation).

L'électricité est fournie par un généraleur électrique SA.

10

15

20

30

35

La référence 59 désigne une catine de contrôle de l'opération.

De manière classique, l'entrée du puits à forer est initialement garnie d'un cuvelage 550.

Le trépan 1 est adapté à l'extrémité du tube 560, lequel est déroulé du tambour récepteur 56, supporté et guidé par le sabot 102, puis poussé par l'injecteur 101 (voir figure 18).

On procède alors au forage du trou, de forme étagée 3, destiné à recevoir le premier tronçon (figure 19).

Après mise en piace de la préforme, cimeatation et mise au rond, et cellin polymérisation in aitu de celle-ci, via un conducteur électrique 580 relié au générateur 58, on retire le conduit central (50), le mise 3 auquel il est attaché s'enroulant sur le tambour 54 (vide) sur laquelle était initialement stockée la préforme (figure 20).

La préforme se trouve aboutée, de manière étancha, au cuvelage 550.

On défait ensuite les connexions hydraulique et électrique avec la préforme, on installe et on scelle de manière étanche autour de la tête du puits un appareillage de sécurité ad-hoc A, occi par une technique conventionnelle (figure 21).

A l'aide de l'outil de coupe 501, porté par le tube 5, on découpe les manchons d'étanchéité hant et bus (figure 22).

L'émpe suivente consiste à forer la section suivante, pour obtenir un trou étagé 3 prolongeant le tronçon 2 (figure 23).

Ensuite, ou calibre les diamètres et ou vérifie l'alignement du tronçon 2 et du trou 3, à l'aide d'un instrument approprié 1000 (figure 24).

On met en place une nouvelle préforme (figure 25).

On la fait descendre dans le puits, et en la positionne convenablement dans le trou 3. On la connecte au tube 5, et en procède au gonflage, à la cimentation, et à la polymérisation (figure 26).

On retire le conduit central 50, qu'on remonte et qu'on enroule sur le tambour récepteur 54 (figures 27 et 28).

On suspend l'outil de coupe 501 au tabe 5, et on le descend pour découper les manchons d'extrémité (figure 29).

On obtient siesi deux tronçons rigides aboutés 2A, 2B (figure 30).

REVENDICATIONS

- 1. Procédé pour forer et chemiser un puits, notamment un puits de forage pétrolier, au moyen d'un ensemble de tronçons tubulaires ou préformes similaires, initialement souples, aptes à être repliées longitudinalement sur elles-mêmes pour être introduites dans le puits, puis à être dépliées radialement sous l'effet d'une pression interne pour prendre une forme cylindrique, et enfin à être rigidifiées in situ pur polymérissation de leur paroi, l'encombrement transversal d'une préforme repliée étant de dimension maximale sensiblement inférieure à son diamètre interne à l'état déplié, et lesdites préformes (4) possédant une portion d'extrésniéé (40) dont le diamètre après déplieures en légèrement supérieur à culvi du raste de la préforme, ce qui permet leur jonction bout-à-bout pur emboîlement avec recouvrement de ladite portion d'extrémité (40), caractérisé par le fait que, un premier tronçes (2) ayant été mis en place du côté de l'entrée du puits, sa portion d'extrémité dargie (40) sournée vers le bas,
- a) ou fait passer axialement, de haut en bas à travers ledit tronçon (2), un outil de forage (1), et on fore au-dessous et dans le prolongement de ce tronçon (2) un trou (3) de forme et de profondeur adaptées pour recevoir le tronçon suivant;
 - b) on retire l'outil de focage (1);

15

- c) en introduit une préferme (d), à l'étai replié, à l'intérieur du puits en la faisant traverser le tronçon (2) déjà en place, et on la positionne convensblement à l'intérieur du trou (3), sa portion d'extrémité haute venant se placer à l'intérieur de la portion d'extrémité élargie (40) du tronçon (2);
- d) on introduit un ciment fluide (6) au fond du trou (3), autour de la portion d'extrémité basse de la préforme ;
- e) on introduit an fluide sous pression (8), de densité supérieure à la densité du ciment (6), à l'intérieur de la préforme (4) afin de la déplier radialement, progressivement de bas en haut, en resoulant le cissent, également de bas en haut, autour de la présonne, coatre la paroi du trou (3):
- f) tout en maintenant la préforme sous pression interne, on en chauffe la peroi pour la polymériser :
- g) le ciment ayant pris, et la préforme ayant durci pour constituer un tronçon tubulaire rigide de chemisage (4'), on retire avialement les outillages ayant servi au gonflage et à la polymérisation de la préforme, ainsi qu'à la distribution du ciment;
- b) on réitère l'opération pour les tronçons suivants, jusqu'à obtenir la longueur de puits chemisé souhaitée.
- 2. Procédé selon revendication 1, caractérisé par le fait qu'on utilise un outil de forage (1) du genre trépan, apte à occuper sélectivement trois états de contraction

radiale, à savoir un premier état d'encombrement minimal, lui permettant de passer à l'intérieur du tronçon (2) déjà en place, un second état, d'encombrement intermédiaire, pour le forage de la partie principale (30) du trou (3) et un troisième état, d'encombrement maximal, pour le forage de la partie (31) du trou (3) destinée à recevoir la portion élargie de la partier (4).

3. Procédé selon la revendication 1 ou 2, caractérisé par le fait que tedit outillage comprend une tête (51) à double vaive (52, 53) placée en partie basse de la présonne (4), et apre à distribuer sélectivement un livide de gonslage (8) à l'intérieur de la présonne (4) et un ciment fluide (7) à l'extérieur de ceile-ci.

4. Installation de forage et de chemizage, destinée à la mise en œuvre du procédé seion l'une des revendications 1 à 3, caractérinée par la fait qu'elle comprend, en tête du cuits:

10

15

- une bobine (54) de stockage et de réception, à l'état surculé, de ladite préferme (4);

- une tête (101) surplombant l'entrée (55) du puits, apte à permettre le guidage et l'introduction dans le puits de la présonne (4) et des différents cutillages servant su songe du puits ainsi qu'au gonslage et à la polymérisation de la présonne;

- des bobines (56, 57) de stockage à l'étal enroulé de tabes métalliques élastiquement déformables (560, 5) aptes à l'aire descendre et remonter les dits outillages dans le puits, l'un (5) de ces tubes contenant un calole servant à l'alimentation de la patforme en courant électrique;

- un aémérateur de courant électrique (59).

. .

10/12

14. J

19. FRENCH REPUBLIC

11. Publication No.:
(to be used only when ordering reproductions)

2 741 907

NATIONAL INSTITUTE OF INDUSTRIAL PROPERTY

21. National Registration No.:

95 14465

PARIS

51. Int CI⁵: E 21 B 7/20, 17/00, 33/14, 43/10, E 21 D 5/00

12.

APPLICATION FOR PATENT

A1

- 22. Date of filing: 11/30/95
- 30. Priority:
- 43. Date application made available to the public: 6/6/97 Bulletin 97/23
- 56. List of documents cited in the preliminary search report: Search had not been made by the date of publication of the application.
- 60. References to other related national documents:

- 71. Applicant(s): DRILLFLEX SOCIÉTÉ ANONYME-FR.
- 72. inventor(s): JAMES LEIGHTON AND JEAN-LOUIS SALTEL.
- 73. Holder(s):
- 74. Attorney(s): REGIMBEAU.
- 54. PROCEDURE AND INSTALLATION FOR DRILLING AND LINING A WELL, PARTICULARLY OIL WELL DRILLING, BY MEANS OF INITIALLY FLEXIBLE, ABUTTED TUBULAR SECTIONS, AND HARDENED IN SITU.
- 57. According to the invention, the lining of the well is accomplished by means of several preforms (4) coaxially abutted, which are initially flexible and folded back on themselves in order to have radially small overall dimensions which allow them to descend through the section (2) aiready in place; the preforms have a widened lower end which allows them to be nested with overlapping of the preforms; a preform is sealed in a hole made in advance, through the section already in place, this sealing process using a cement (6) which is inserted in the base of the preform; by the subsequent insertion of a fluid under pressure inside the preform, the cement is forced from bottom to top against the wall of the hole, after which the preform is polymerized to harden it.

Lining for oil wells.

[vertical text in left margin:] FR 2 741 907 - Al

[diagram]

PROCEDURE AND INSTALLATION FOR DRILLING AND LINING A WELL, PARTICULARLY OIL WELL DRILLING, BY MEANS OF INITIALLY FLEXIBLE, ABUTTED TUBULAR SECTIONS, AND HARDENED *IN SITU*.

The present invention concerns a process for drilling and lining a well, particularly oil well drilling, by means of a set of tubular sections—or preforms—that are similar, initially flexible, suitable for being folded longitudinally back on themselves in order to be inserted into the well, then radially unfolded under the effect of an internal pressure in order to take a cylindrical shape, and finally to be hardened in situ by polymerization of their walls, the maximum dimension of the overall transverse dimensions of a folded preform being substantially less at its inside diameter when unfolded, and said preforms having an end portion the diameter of which—after unfolding—is slightly greater than that of the preform, which makes it possible for them to be joined end-to-end by nesting, with overlapping of said end portion.

Thus, by using this type of preform, which is known, particularly through document WO-A-94/21887, a lining can be obtained with constant diameter for the whole length of the well.

In this regard, it should be remembered that with traditional linings (or well casings) composed of steel pipe, telescopic tubular sections have to be used, with diameter decreasing toward the bottom of the well, which poses problems of installation and subsequent operation of the well.

The objective of the invention is to propose a process of drilling and lining the well, using preforms of the type mentioned above, which process can be implemented easily and quickly, at low cost.

To accomplish this, and according to the invention, a first section is put in place at the well head, the enlarged end portion of this section being turned downward.

The process according to the invention includes the following steps:

- a) a drill tool is passed axially downward through said section, and a hole is bored with a shape and depth suitable for receiving the next section, beneath and as an extension of this section;
 - b) the drill tool is removed;

10

15

20

25

c) a preform, in folded form, is inserted inside the well, causing it to pass through the section already in place, and it is suitably positioned inside the hole, its top end being placed inside the enlarged end of the section;

- d) a fluid cement is introduced at the bottom of the hole, around the lower end of the preform;
- e) a fluid with a density greater than the density of the cement is introduced under pressure, inside the preform in order to open it out radially, progressively from bottom to top, by forcing the cement, also from bottom to top, around the preform, against the wall of the hole:
- f) while keeping the preform under internal pressure, the wall thereof is heated to polymerize it;
- g) when the cement has set and the preform has hardened to constitute a rigid tubular section of lining, the tools that were used for inflation and polymerization of the preform, as well as the distribution of the cement, are withdrawn;

10

15

20

25

h) the operation is repeated for the subsequent sections, until the desired depth of the lined well is obtained.

When, as will be explained further on, the preform has resin reserves that can migrate toward the exterior to form ring-shaped seal interlocks; these interlocks are put in position at the beginning of step f) above.

In one particularly advantageous way, a drill bit is used that can selectively have three conditions of radial contraction, the first condition being of minimal size, allowing it to pass through the interior of the section already in place, a second condition of intermediate size for drilling the main part of the hole, and a third condition of maximum size for drilling the part of the hole intended to receive the enlarged portion of the preform.

In one preferred embodiment, the tool used to inflate and polymerize the preform, as well as to distribute the cement, comprises a head with a double valve placed at the lower part of the preform, and suitable for selectively distributing an inflating fluid inside the preform and a fluid cement outside it.

The drilling and lining installation, which is also a part of the present invention and is used to implement this process, is notable in that it comprises, at the well head:

- a spool for storing and receiving the preform, in coiled form;
- a head that hangs over the entry to the well, suitable for allowing the preform and the various tools for drilling, as well as for the inflation and polymerization of the preform, to be guided and inserted into the well:

- spools for storing elastically deformable metal pipe in coiled form, suitable for lowering and raising said tools in the well, with one of these pipes containing a wire used to provide the preform with electrical current;
 - an electric current generator.

Other characteristics and advantages of the invention will appear from the description and appended drawings which represent, by way of non-limiting example, one preferred embodiment, as well as the corresponding installation.

In these drawings:

5

10

15

20

25

30

- figures 1 to 4 are diagrammane views, in axial cross section, showing the various stages of the drilling operation in the part of the well that receives the preform;
- figure 5 is a diagrammatic view of a preform and of the tooling to which it is attached, before being placed in the well;
- figures 6 and 7 are partial view of the lower end of the preform, intended to illustrate the principle of the double valve with which the tool head is fitted;
- figures 8 to 15 illustrate the different steps to install a preform at the end of a section already in place;
- figure 16 diagrammatically represents, in axial cross section, a well lined with three coaxially abutted sections;
- figure 17 is a diagrammatical view showing the different materials that comprise the installation, located at the surface (well head);
 - figures 18 to 30—on a smaller scale—illustrate the operation of the installation during the different steps of the lining process.

Figure 1 represents the lower end of a vertical well being bored and lined. This well, incompletely drilled, has a lining already in place in the form of a rigid cylindrical pipe 2 having one enlarged lower end 20.

The diameter D of this part 20 is slightly larger than the diameter d of the main part 2, so the sections 2 can be nested together with overlapping of the end parts 20.

The lining section 2 is sealed in the well by a peripheral cement 200.

We shall now describe how the next section, intended to abut the section 2, will be installed with the aid of the process according to the invention.

To do this, as illustrated in figures 1 to 4, a hole intended to receive this section is drilled.

For this purpose, a drill bit 1 is used, which has the special feature of being able to be radially expanded or retracted in three configurations of different overall dimensions.

In a first condition, illustrated in figure 1, the tool is fully retracted so that its largest transversal dimension allows it to pass freely inside the section 2.

5

10

15

20

25

30

In this condition, its overall dimension is therefore smaller than D.

In a known way, the drilling tool ! is attached to the end of a tubular shank 10, which carries the motor (not shown) to drive the tool in rotation, and the components that provide for its radial deployment or contraction.

As will be seen further on, the shank 10 is mounted on the end of a metal tube suitable for being coiled onto a receiving drum placed on the surface at the well head.

In a second condition of radial deployment, illustrated in figure 2, the cutting part 12 of the tool has a working diameter substantially equal to D.

When the tool has been axially lowered into the well through the casing 2 already in place, it is radially deployed to the diameter D when it reaches the inside of the enlarged portion 20. The tool is then caused to rotate while continuing its descent as illustrated by the arrow $\mathbf{F_1}$ in figure 1.

A cylindrical hole with the diameter D, coaxial to the section 2, is thus drilled in the ground S.

The drilling depth corresponds to the length of the section to be installed.

The tool 1 has additional cutting devices 11 that can be radially deployed to a diameter greater than **D**, in order to be able to receive the enlarged portion of the section the be put in place.

As illustrated in figure 3, by raising the tool in the direction F_2 , the hole 3 is enlarged for a certain distance.

In figure 4, reference 30 designates the wall of the main part of the hole 3, reference 31 the wall of the expanded portion, and reference 32 the bottom of the hole the diameter **D** of which is the same as that of 30.

The preform 4, represented diagrammatically in figure 5, is of the same general type described in detail in WO-A-94/21887 cited above.

However, because this is a blind hole, the preform has no inflatable plug at its bottom; moreover, the preform 4 has a lower end 40 with expanded cross section.

The preform 4 is supported by steel tubing 5 that can be coiled onto a storage drum located at the surface, which makes it possible to lower the preform into the well and to supply the cementation and inflation fluids, as well as the electrical energy for the polymerization of the preform, by means of a connection device 500 connected to a central conduit (axial) 50 arranged inside the preform and connecting at the bottom thereof to a distribution head 51.

This type of steel tubing which can be formed into coils is currently known in the art by the English term "COILED TUBING," abbreviated "C.T."

Like the one cited in WO-A-94/21887 already cited, the preform is plugged and sealed at its upper and lower ends by sleeves that can be torn off or cut off at the end of the operation.

The distribution head 51 has a double valve 52, 53 that can be selectively activated (from the surface).

As illustrated in figures 6 and 7, the valve 52 allows an inflation fluid to be distributed inside the preform (arrows I), while the valve 53 allows a fluid cement to be distributed at the base of the preform, outside of it (arrows J).

As illustrated in figure 8, the preform 4—which is initially radially folded—is lowered axially into the hole 3, from top to bottom, through the section of lining 2 already in place.

For this to be possible, of course, the transverse size of the folded preform must be smaller than the inside diameter of the unfolded preform, which corresponds to that of the casing 2 already in place

When the preform is folded onto itself, it has a U-shaped or spiral cross section, as illustrated for example in figures 6A and 6B, respectively, of document WO-A-94/25655; when it is unfolded, it has a circular cross section.

The preform 4 is positioned in the hole 3 so that its larger end 40 is facing the enlarged portion 31 of the well; the length of the hole 3 is determined so that, in this position, the upper portion of the preform is facing the widened part 20 of the casing already in place.

A dose of liquid cement 6 is then injected at the base of the preform through the valve 53 (arrows J, figure 9).

The cement is selected to have a density close to—even slightly greater than—that of the liquid mud 7 found in the well.

10

15

25

20

30

When this cement arrives at the base of the preform, it forces the mud toward the top.

As illustrated in figure 10, the preform is then inflated by injecting a fluid under pressure into it, through the valve 52 (arrows I).

This can be either a liquid introduced from the outside (from the well head) through the conduit 5 in the preform, or a liquid (water, mud or oil) already present in the well and pumped into the preform.

5

10

15

20

25

30

The inflating liquid is advantageously selected to have a density slightly greater than that of the cement and mud surrounding the preform, so that the inflation occurs progressively from the bottom toward the top, as symbolized by the arrows **H** in figure 10.

If not, the progress of the inflation from bostom to top can be controlled by providing a series of frangible containing rings that have a breaking point suitable for this direction of progression.

The cement is therefore also forced from bottom to top against the wall of the well, as symbolized by the arrow **H**, while the mud 7 is forced upward.

Preferably, there is not enough volume of peripheral cement to reach the top of the preform, in order to ensure a bonding without cement at the area of juncture between the end portions of the two sections 2 and 4 (see figure 11).

Preferably, preform 4 has a resin wall that can be heat polymerized sandwiched between elastic internal and external skins, and provided, on the inner side, with a reserve containing resin that can migrate toward the outside to form ring-shaped flanges that help to anchor and seal the casing against the wall of the well.

A preform of this type is described in the French patent application 94 08691, filed by the applicant on July 7, 1994, and in its international extension PCT/FR 95/00902.

These ring-shaped interlocks, distributed along the preform, are referenced as 9. Preferably, the interlocks are higher in density (i.e., smaller separation between the interlocks) at the upper and lower ends of the preform, in order to ensure a good seal in the end-to-end connection of the different sections.

The heating and polymerization of the preform are done once the inflation is completed, the inflation pressure being maintained inside the preform.

By way of example, the internal pressure is approximately 15 bars.

The preform can be heated by introducing a hot fluid inside it, or by exothermal chemical reaction, or preferably by induction, using electrical resistances (heating elements) arranged in the wall of the preform or in the proximity thereof, and supplied with electrical current from the well head via the coiled tubing 5.

By way of example, the temperature needed for polymerization is approximately 110° to 140°C, and the length of this stage is approximately six to eight hours.

When the polymerization of the interlocks 9 and the preform wall is completed, and the cement 6 has set (figure 12), the tools 500, 50, 51 (arrow K, figure 13), are removed.

10

15

20

25

30

A cutting tool (501) is then installed at the end of the tubing 5, and the sealing sleeve at the upper end of the preform (polymerized) 4' (figure 14), is cut off and removed. The lower sleeve is removed in the same way.

A section of lining 4' is thus obtained, which coaxially extends the preceding casing 2 (see figure 15).

The operation that has just been described is of course repeated, section after section, in order to obtain the desired depth of lined well.

In one possible embodiment of the preform, it has a core composed of 30% epoxy resin and 70% fiberglass, this core having a thickness of about 14 mm; the internal and external skin of synthetic rubber have a thickness of about 2 mm and 6 mm, respectively.

By way of example, the main portion of the preform 4 has, when unfolded, an inside diameter of about 140 mm and an outside diameter of about 184 mm, while the expanded portion 40 has an inside diameter of about 188 mm and an outside diameter of about 236 mm.

The portions 30-32 and 31 of the well have average diameters of about 197 mm and 244.5 mm, respectively.

The length of the different sections can obviously vary greatly; by way of example only, the length of a preform can be approximately 500 m.

Figure 16 represents a well P lined with an assembly of three sections 2A, 2B and 2C, abutted and cemented.

Figure 17 diagrammatically represents a well head installation that allows the process according to the invention to be implemented.

In this figure, the wellhead, reference 55, is equipped with a metal structure (frame) 100 surrounding the well head.

This structure 100 carries an injector 101 furnished with a drag brake 102, used to hold and push the different materials when they are lowered into the well or pulled out of it; it is in line with the entry to the well.

The reference 54 designates a storage drum on which the preform is coiled; it is mounted on a tramcar.

The reference 540 designates a support and guide plate for the preform at the entry to the well.

The references 56 and 57 designate drums on which the C.T. (coiled tubing) 560 and 5 are coiled and stored, respectively.

The tubing 560 is used to hold and move the drill tool; the tubing 5 (as already mentioned) holds the preform, feeds the inflating and cementing fluids to the preform, and connects it to a source of electrical current (for the polymerization).

The electricity is furnished by an electric generator 58.

10

15

20

25

30

The reference 59 designates a control cabin for the operation.

The entry to the well to be drilled is initially furnished in the conventional way with a casing 550.

The drill bit 1 is fitted to the end of the tubing 560, which is uncoiled from the receiving drum 56, supported and guided by the plate 102, then pushed by the injector 101 (see figure 18).

Drilling then proceeds to the multistage hole 3, which is to receive the first section (figure 19).

After the preform is put in place, cemented and inflated, and when it has been polymerized <u>in situ</u> via an electrical conductor 580 connected to the generator 58, the central conduit (50) and the tubing 5 to which it is attached are removed, coiling it onto the drum 54 (empty) on which the preform was initially stored (figure 20).

The preform is abutted against and sealed to the casing 550.

The hydraulic and electrical connections to the preform are then disconnected, and an appropriate safety device A is installed and sealed around the well head by a conventional technique (figure 21).

Using a cutting tool 501 carried by the tubing 5, the top and bottom sealing sleeves are cut off (figure 22).

The next step consists of drilling the next section to obtain a multistage hole 3 extending the section 2 (figure 23).

Next, the diameters are measured and the alignment of the section 2 and the hole 3 are verified using an appropriate instrument 1000 (figure 24).

A new preform is then put in place (figure 25).

5

(0

It is lowered into the well and suitably positioned in the hole 3. It is then connected to the tubing 5, after which it is inflated, cemented and polymerized (figure 26).

The central conduit 50 is removed by raising and coiling it onto the receiving drum 54 (figures 27 and 28).

The cutting tool 501 is suspended from the tubing 5 and lowered to cut the end sleeves (figure 29).

Two rigid, abutted sections 2A, 2B are thus obtained (figure 30).

CLAIMS

- 1. Process for drilling and lining a well, particularly oil well drilling, by means of a set of tubular sections—or preforms—that are similar, initially flexible, suitable for being folded longitudinally back on themselves in order to be inserted into the well, then radially unfolded under the effect of an internal pressure in order to take a cylindrical shape, and finally to be hardened *in situ* by polymerization of their walls, the maximum dimension of the overall transverse dimensions of a folded preform being substantially less at its inside diameter when unfolded, and said preforms (4) having an end portion (40) the diameter of which—after unfolding—is slightly greater than that of the preform, which makes it possible for them to be joined end-to-end by nesting, with overlapping of said end portion (40), characterized by the fact that a first section (2) having been put in place from the entry of the well, its enlarged end portion (40) turned downward.
- a) a drill tool (1) is passed axially downward through said section (2), and a hole (3) is bored with a shape and depth suitable for receiving the next section, beneath and as an extension of this section (2);
 - b) the drill tool (1) is removed;

5

10

15

20

25

30

- c) a preform (4), in folded form, is inserted inside the well, causing it to pass through the section (2) already in place, and it is suitably positioned inside the hole (3), its top end being placed inside the enlarged end (40) of the section (2);
- d) a fluid cement (6) is introduced at the bottom of the hole (3), around the lower end of the preform;
- e) a fluid (8) with a density greater than the density of the cement (6) is introduced under pressure, inside the preform (4) in order to open it out radially, progressively from bottom to top, by forcing the cement, also from bottom to top, around the preform, against the wall of the hole (3);
- f) while keeping the preform under internal pressure, the wall thereof is heated to polymerize it;
- g) when the cement has set and the preform has hardened to constitute a rigid tubular section of lining (4'), the tools that were used for inflation and polymerization of the preform, as well as the distribution of the cement, are withdrawn;
- h) the operation is repeated for the subsequent sections, until the desired depth of the lined well is obtained.

- 2. Process according to claim 1, characterized by the fact that a drill bit (1) is used that can selectively have three conditions of radial contraction, the first condition being of minimal size, allowing it to pass through the interior of the section (2) already in place, a second condition of intermediate size for drilling the main part (30) of the hole (3), and a third condition of maximal size for drilling the part (31) of the hole (3) intended to receive the enlarged portion of the preform (4).
- 3. Process according to claim 1 or 2, characterized by the fact that said tool comprises a head (51) with a double valve (52, 53) placed at the lower part of the preform (4), and suitable for selectively distributing an inflating fluid (8) inside the preform (4) and a fluid cement (7) [sic] outside it.
- 4. Drilling and lining installation, used to implement the process according to any of claims 1 to 3, characterized by the fact that it comprises, at the well head:
 - a spool (54) for storing and receiving the said preform (4), in coiled form;
- a head (101) that hangs over the entry (55) to the well, suitable for allowing the preform (4) and the various tools for drilling, as well as for the inflation and polymerization of the preform, to be guided and inserted into the well;
- spools (56, 57) for storing elastically deformable metal pipe in coiled form (560, 5), suitable for lowering and raising said tools in the well, with one (5) of these pipes containing a wire used to provide the preform with electrical current;
 - an electric current generator (59).

5

10

15

20

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, a true and accurate translation performed by professional translators of Patent 2 741 907 from French to English.

TransPerfect Translations, Inc. 3600 One Houston Center

1221 McKinney Houston, TX 77010

Sworn to before me this 9th day of October 2001.

Signature, Notary Public

MARIA A. SERNA NOTARY PUBLIC ... u.d for the State of Taxes 2001/018310n axpinsa 03-22-2008

OFFICIAL SEAL

Stamp, Notary Public

Harris County

Houston, TX

возтон 881253813 CHIC450 DALLAS CETROIT FRANKFURE HOUSTON CONDUM LOS ANGELES MIAMI MINNEAPOLIS NEW YORK 24015 PHILADELPHIA SAFE DIEGO AN FRANCISCO

SEATTLE

WASHINGTON DC

ATLANTS