Global Signals in Time-Series Data

Dr. Abbie Stevens

Michigan State University & University of Michigan

alstev@pa.msu.edu

@abigailstev

github.com/abigailstev

Outline

- Poisson noise, flicker noise, red noise
- Red noise pretending to be a cool signal
- Broadband/band-limited noise
- AGN reverberation
- Light echoes
- Orbital modulation
- Multi-wavelength jet physics
- Grab-bag of time domain science
- Things to worry about: deadtime and pile-up

Poisson noise (a form of "white noise")

- In power spectra: $P \sim v^{\alpha}$, $\alpha = 0$
- Not correlated on any timescale

Flicker noise

- In power spectra: $P \sim v^{\alpha}$, $\alpha = -1$
- Correlated on medium-short timescales (short "memory")

Red noise (random walk)

- In power spectra: $P \sim v^{\alpha}$, $\alpha = -2$
- Correlated on long timescales (long "memory")
- Ornstein-Uhlenbeck: ~red noise + friction: tends towards a mean value over long time

Beware of red noise!

- Cannot apply standard peak-finding algorithms, since those assume white noise (see Vaughan & Uttley '06)
- Bigger issue for SMBHs than stellar BHs due to timescales

Red noise

White/Poisson noise

Data looks periodic!

Data looks periodic!

Uneven sampling, gappy data, only 1.5 cycles

Data looks periodic! (but it isn't)

Uneven sampling, gappy data, only 1.5 cycles

Sampling a random red noise process in same way can look like a "periodic" signal

Broadband/band-limited noise

- Accretion-induced variability
- Across mass scales: protostars to AGN!

Heil+15b

Rms-flux relation

rms= $\sqrt{\sum_{\nu_1}^{\nu_2}}\langle P(\nu_i)\rangle\Delta\nu$ (use Poisson-noise-subtracted power!!) for a frequency range v_1 to v_2

• Positive linear relation in accreting sources! Slope changes

with observed spectrum

0.125-1 Hz rms-flux $0.125-1 \text{ Hz rms (count s}^{-1})$ 5500 3500 4000 4500 5000 6000 flux (count s^{-1})

Wide-range analysis and thorough explanation: Heil+12 Applied to AGN: Vaughan+11

Rms-flux relation

rms= $\sqrt{\sum_{\nu_1}^{\nu_2} \langle P(\nu_i) \rangle \Delta \nu}$ (use Poisson-noise-subtracted power!!) for a frequency range ν_1 to ν_2

• Positive linear relation in accreting sources! Slope changes with observed spectrum Wide-range analysis and thorough explanation: Heil+12

Signals in time series • Abbie Stevens

Uttley+McHardy01; Uttley+05

Rms-flux relation

rms= $\sqrt{\sum_{\nu_1}^{\nu_2} \langle P(\nu_i) \rangle \Delta \nu}$ (use Poisson-noise-subtracted power!!) for a frequency range ν_1 to ν_2

• Positive linear relation in accreting sources!

Log-normal flux distribution

- For small equal-length segments, plot flux histogram
- Log-normal: positive skewness

Also seen in:

- NIR observations of Sgr A* (an SMBH; Witzel+18)
- Optical observations of Sco X-1 (a neutron star; Scaringi+15a)
- Cataclysmic variables (white dwarfs; Scaringi+14)

AGN reverberation

Reverberation mapping: looking for "self" similarities between simultaneous light curves of different energies with cross spectral data products

Blandford+McKee82; Uttley+14 review; see work by, e.g., Barth, Cackett, Fabian, Kara, Reynolds, Wilkins, Zoghbi

AGN reverberation

Reverberation mapping: looking for "self" similarities between simultaneous light curves of different energies with cross spectral data products

Blandford+McKee82; Uttley+14 review; see work by, e.g., Barth, Cackett, Fabian, Kara, Reynolds, Wilkins, Zoghbi

AGN reverberation

- 1H0707-495 (NLS1)
- 1.3Ms of XMM data

AGN reverberation modeling

• Impulse response function or transfer function

Blandford+McKee82; Uttley+14 review; see work by, e.g., Barth, Cackett, Fabian, Kara, Reynolds, Wilkins, Zoghbi

AGN reverberation me Energy (keV) Energy (keV) Energy (keV) 0.010 0.02 0.01 0.00 Flux 0.006 0.004 0.002 0.000 0.02 0.01 0 20 60 80 100 0.00 40 0.015 Time (GM/c^3) Flux 0.010 0.005 0.000 Energy (keV) Energy (keV) 20 40 60 80 100 0 Time (GM/c^3) Energy (keV) Energy (keV) 0.020 0.015 0.010 0.005 0.000 Flux 0.015 0.010 0.005 0.000 0.015 Flux 0.005 0.005 0.000 20 40 60 80 100 0 0.005 Time (GM/c^3) 0.000

Blandford+McKee82; Uttley+14 review; see work by, e.g., Barth, Cackett, Fabian, Kara, Reynolds, Wilkins, Zoghbi

Signals in time series • Abbie Stevens

40

Time (GM/c³)

60

80

100

0

20

• Bright impulse or flare, light is scattered by dust

Signals in time series • Abbie Stevens

Heinz+16

• Bright impulse or flare, light is scattered by dust

Heinz+15

• Bright impulse or flare, light is scattered by dust

Signals in time series • Abbie Stevens

RA (J2000)

Heinz+16

• Bright impulse or flare, light is scattered by dust

Signals in time series • Abbie Stevens

Heinz+15

• Bright impulse or flare, light is scattered by dust

• Dust-echo tomography – map precise distance and composition of dust in ISM

Signals in time series • Abbie Stevens

Corrales+19

• Cepstrum ("echogram"): Fourier technique to look for light echoes in a single light curve

$$Cep = IFT(log(FT(signal)))$$

Scaringi+15a

Also used in analyzing sunspots, earthquake tremors, human speech

Orbital binary motion in X-ray binaries

 Optical <u>radial velocity</u> measurements of companion star

■ Power spectra of multiple epochs, multiple instruments, 10-60ks exposures

Ellipsoidal modulations

Phase 0.75

- Companion star in close orbit with a compact object
- <u>Double-peaked light curve in one</u> orbital period

Seward+Charles10 Phase 0.50 Phase 0.25 Phase 0.00

Analyzed with time-domain

Cantrell+10

photometry

Signals in time series • Abbie Stevens

Auto- and cross-correlation

• Correlate a light curve with itself or other light curves (same signal in a different energy band)

• Reverberation/reprocessing, accretion-ejection relation

WARNING: Errors are correlated between time bins! Need to use covariance matrix or bootstrapping see e.g. Emmanoulopoulous+10

See Edelson+Krolik88; see also papers by e.g. Casares, Gandhi, Hynes, Plotkin, Shahbaz, Veledina

Signals in time series • Abbie Stevens

Machine learning for BH variability

• GRS 1915+105: microquasar with 14 distinct variability states

Machine learning for BH variability

- GRS 1915+105: microquasar with 14 distinct variability states
- How are the different variability patterns related?
 - Machine learning!

Machine learning for BH variability

States correlate with themselves (if in state χ , 85.9% of the time it stays in state χ)

Some states are more prone to transition to other states

Some states never transition to other states

Final state

Signals in time series • Abbie Stevens

Huppenkothen+17

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Other cool time-domain science

- Asteroid rotation curves
- Eclipsing stellar binaries
- Flares and starspots; coronal mass ejections and sunspots
- Heartbeat stars
- Recurrent novae in white dwarfs
- Fast radio bursts
- Tidal disruption events
- Proper motion/parallax
- ...and more!

Things to sometimes worry about

- <u>Deadtime</u> occurs with X-ray detectors if your (bright) source is emitting photons faster than your detector can handle. Once some chip of the detector has detected a photon, it can't detect another photon until it reads out its existing photon detection through the electronics. It's called 'deadtime' because the detector is effectively dead for that brief readout period.
 - Measurable as deviation from expected Poisson noise power-law at high frequencies in the power spectrum
 - Accumulates over an observation; for a few ks observation, could have several seconds of deadtime to adjust the exposure time by
- Pile-up is a sibling of deadtime that affects spectra

Summary

- A lot of cool science happens in the time domain
- <u>Techniques</u>: power spectra, lags, cepstrum, auto/cross -correlation and -covariance, radial velocity of spectral lines, time-domain spectroscopy, photometry, imaging
- Understand assumptions of models, techniques; question your own assumptions about data, process
- It's possible to get over-excited about the signal processing literature; keep the physics/science in mind when considering analysis routes
- When in doubt, simulate!
- Thesis introductions are great to read for an overview of topics/ techniques

