

Accelerating Biomedical Research with BioNeMo & Parabricks

陳映嘉 Ying-Ja Chen, Solutions Architect, Healthcare & Life Sciences

Genomics Projects Will Exceed 40 Exabytes in the Next Decade

As sequencing becomes less expensive, the data deluge grows

"Our ability to sequence DNA has far outpaced our ability to decipher the information it contains, so genomic data science will be a vibrant field of research for many years to come."

National Human Genome Research Institute

Biomedical Research and Drug Discovery Is at an Inflection Point

Computer Aided Drug Discovery is Expanding Exponentially

Al is Transforming the Drug Discovery Process

Deep learning is an essential tool for modern R&D

Gene Expression Prediction, scRNA analysis

Accelerated cryo-em & protein structure prediction

Knowledge synthesis from scientific literature

Active-learning virtual screening

Al powered molecular property prediction & generation

Drug-target interaction prediction

NLP for Clinical trial matching

Adverse event monitoring

Histopathology/Radiology/OMICS biomarker ID

Lab in a Loop: Al to Transform Drug Discovery and Development

Aviv Regev, Head of Genentech Research and Early Development

Generative AI Is Used to Design Biologics

Antibody Foundation Models | Post-processing Analysis

Antibody LLM based on ESM-1nv in BioNeMo

Downstream processing by RAPIDS, e.g., UMAP

20_{sec/} structure

Faster protein structure prediction

Faster posttraining analysis

From onboarding to first pretrained protein LLM

Christopher Langmead Director, Digital Biologics Discovery

NVIDIA AI Enterprise RAPIDS for data post-processing

NVIDIA Clara for Healthcare and Life Sciences

World's Largest Data Industry | 36% CAGR by 2025

NVIDIA CLARA

PARABRICKS Genomics

ISAAC Robotics

HOLOSCAN Instruments

BIONEMO Biomolecules

MONAI Imaging

NEMO Natural Language

BioNeMo Framework Supports Optimized Biomolecular Models

Proteins | Small Molecules | Genomics

ESM-1 | ESM-2 Protein LLMs

MegaMolBART Generative Chemistry Model

ProtT5Protein Sequence Generation

DiffDock | EquiDock
Docking Prediction

NEW: OpenFold
3D Protein Structure Prediction

NEW: DNABERT DNA Sequence Model

NEW: MolMIM
Molecular Generation

BETA: GeneformerSingle Cell Expression Model

Optimizing OpenFold Training for Drug Discovery

6x performance improvement in MLPerf HPC v3.0 Benchmark over baseline

- Training time to reach 0.9 IDDT-Cα
 - AlphaFold2: 7 days
 - 1056 H100s: 12.4 hrs
 - 2080 H100s: 10 hrs
- MLPerf HPC v3.0 benchmark results
 - OpenFold partial training task finished in 7.51 min, 6x faster than baseline

Build Generative AI Virtual Screening Workflows with NVIDIA NIM

Use composable NVIDIA NIMS to build workflows for CADD applications

NVIDIA Parabricks for Alignment & Variant Calling

Speed, Scale, Accuracy

Universal Analysis

Industry-standard tools for all major sequencers, ported to GPU

Up to 100x Acceleration

Up to 100x faster for WGS compared to CPU-only

Up to 50% Lower Cost

Up to 50% lower compute cost for WGS compared to CPU-only

Higher Accuracy with Al

The power of deep learning for customized high accuracy analysis

A Universal Analysis Solution

Short-Read Processing and Quality Control BAM/CRAM VCF/gVCF Element illumına Biosciences MGI SINGULAR **ThermoFisher** SCIENTIFIC

Germline Analysis from 18 hours to 10 minutes

108x Acceleration using H100s Dynamic Programming Core

"By pairing NVIDIA DGX A100 with NVIDIA Parabricks, we have been able to reduce our WGS data processing by four months. Processing time per individual user has also been shortened from more than 30 hours to just one to two hours."

- Sissades Tongsima, Director of the NBT

NATIONAL BIOBANK OF THAILAND ACCELERATES GENOMIC ANALYSIS BY 30X

Challenge

The National Biobank of Thailand (NBT) is the leading HPC facility and computational science R&D center in the ASEAN region.

Tasked with analyzing massive genome sequencing data from over **50,000**0 individuals.

Their goal was to perform whole genome sequencing (WGS) to help accurately identify causative mutations and rare variants.

Solution

NBT leveraged **NVIDIA Parabricks** for genomic analysis on NVIDIA DGX A100, processing 5 PB of data in parallel with speed and accuracy.

The solution accelerated genomic analysis <u>from 30</u> hours per individual to 1-2 hours.

NBT was able to reduce the whole genome sequencing (WGS) by 4 months, leading to faster genomic discoveries. NBT continues to use DGX A100 for their AI related projects.

NVIDIA DGX A100

Unprecedented compute performance in the world's first 5 petaFLOPS AI system

NVIDIA Parabricks

Computational genomic analysis framework supporting DNA & RNA

93%

Reduction in WGS data processing time per individual

30x

Faster genomic analysis vs CPU

NEW: Single Cell & Spatial Omics Workflow

Build generative foundation models | Segment at high accuracy | Extract morphology embeddings

BioNeMo Microservices Activates Partner Ecosystem

Hosting Partners building models with BioNeMo and contributing as NVIDIA NIMS

Recursion

Phenom-Beta model for cell morphology

- Phenom-Beta: First vision transformer model targeting cellular data
 - RxRx3 dataset: 17,063 CRISPR-KO genes, 2.2M HUVEC cell images, 1674 compounds, 8 dilutions
- BioHive-1 Supercomputer with NVIDIA DGX SuperPod reference architecture
 - 500 NVIDIA H100 TensorCore GPUs

NVIDIA NIM - A New Layer on the NVIDIA Clara Stack

NIC / DPU

CPU

GPU

SWITCH

Summary

Start accelerating your biomedical research with BioNeMo & Parabricks

- Technology is reshaping biomedical research
- BioNeMo provides a suite to tools for DNA, proteins, small molecules, and single-cell / spatial omics analysis
- Parabricks accelerates genome sequencing analysis to <10 min / WGS
- Join world-class leaders like Genentech, Amgen, National BioBank of Thailand in the Al accelerated biodiscovery journey!

