Lliurament 7: Integrals de funcions i les seves aplicacions

Matemàtiques II

Josep Mulet Pol

Àmbit científic

IEDIB

https://iedib.net/

Aquesta obra està subjecta a les condicions de llicència CREATIVE COMMONS no comercial i compartir igual.

Edició ET_EX: ® Josep Mulet Pol

Versió: 20-02-2025
Reconeixement-NoComercial-Compartirigual 4.0 Internacional

Índex

1	Primitives o integral indefinida			
	1.1	Taula de primitives	5	
	1.2	Primitives per substitució	7	
	1.3	Integració per parts	9	
	1.4	Primitives de funcions racionals	11	
	1.5	Integrals tipus arc tangent	14	
2	La i	a integral definida 15		
	2.1	Àrea sota una funció	18	
	2.2	Àrea entre dues funcions	21	
	2.3	Teorema fonamental del càlcul	24	

1. Primitives o integral indefinida

Concepte de primitiva

En el lliurament anterior varem aprendre a derivar funcions. Ja saps que la derivada de x^2 és 2x i ho escrivim com $(x^2)' = 2x$.

Ara volem expressar-ho a l'inrevés, deim que la primitiva de 2x és x^2 i ho expressam amb la notació

$$\int 2x \, dx = x^2 \tag{1}$$

i es llegeix com: " Integral de 2x diferencial d' x és igual a x^2 ". La primitiva respon a la pregunta: " Quina funció derivada dóna 2x?"

Més exemple són:

$$\int 1 dx = x \qquad perquè \quad (x)' = 1$$

$$\int 3x^2 dx = x^3 \qquad perquè \quad (x^3)' = 3x^2$$

$$\int \cos x dx = \sin x \qquad perquè \quad (\sin x)' = \cos x$$

$$\int \frac{1}{x} dx = \ln|x| \qquad perquè \quad (\ln|x|)' = \frac{1}{x}$$

$$\dots \dots \dots \dots$$
(2)

A partir d'aquests exemples, podem deduir la definició de la primitiva d'una funció

F(x) és una **primitiva** (o integral indefinida) d'una funció f(x) si

$$\int f(x) dx = F(x) \quad perquè \quad F'(x) = f(x) \tag{3}$$

>

Vídeo 7.1: Concepte de primitiva

https://www.youtube.com/watch?v=A8uGpdgv0Qs

Constant d'integració

Si F(x) és una primitiva de la funció f(x), F(x) + C, on C és una constant, també ho és.

Per aquest motiu quan calculam primitives, hem de recordar afegir la **constant d'integració** al final. Els exemples anteriors els podrem escriure com

$$\int 1 dx = x + C \qquad perquè \quad (x + C)' = 1$$

$$\int 3x^2 dx = x^3 + C \qquad perquè \quad (x^3 + C)' = 3x^2$$

$$\int \cos x dx = \sin x + C \qquad perquè \quad (\sin x + C)' = \cos x$$

$$\int \frac{1}{x} dx = \ln|x| + C \qquad perquè \quad (\ln|x| + C)' = \frac{1}{x}$$

$$\dots \qquad \dots \qquad \dots$$
(4)

Propietats de les primitives

• La integral d'una suma és la suma d'integrals: $\int (f(x)+g(x))\ dx = \int f(x)\,dx + \int g(x)dx$

Exemple:
$$\int \left(\frac{1}{x} + 4x^3\right) dx = \int \frac{1}{x} dx + \int 4x^3 dx = \ln|x| + x^4 + C$$

Fixeu-vos que no cal escriure dues constants d'integració.

• La integral d'una constant per una funció, la constant surt defora de la integral: $\int k f(x) dx = k \int f(x) dx$

Exemple:
$$\int 3\cos x \, dx = 3 \int \cos x \, dx = 3\sin x + C$$

1.1 Taula de primitives

La primera passa que cal fer a l'hora de calcular una primitiva és comprovar si es tracta d'una funció elemental coneguda. La primera columna de la taula següent resumeix les anomenades **integrals immediates**, les quals es poden escriure directament sense necessitat de fer cap càlcul. Observeu que s'obtenen a partir del procés "contrari" de derivar.

Taula 1: Integrals immediates

Funcions elementals	Funcions compostes
$\int dx = x + C$	$\int g'(x)dx = g(x) + C$
$\int x^n dx = \frac{x^{n+1}}{n+1} + C \text{ si } n \neq -1$	$\int [g(x)]^n g'(x) dx = \frac{[g(x)]^{n+1}}{n+1} + C$
$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{1}{g(x)} g'(x) dx = \ln g(x) + C$
$\int \sin x dx = -\cos x + C$	$\int \sin g(x) g'(x) dx = -\cos g(x) + C$
$\int \cos x dx = \sin x + C$	$\int \cos g(x) g'(x) dx = \sin g(x) + C$
$\int [1 + \operatorname{tg}^2 x] dx = \operatorname{tg} x + C$	$\int [1 + \operatorname{tg}^2 g(x)] g'(x) dx = \operatorname{tg} g(x) + C$
$\int e^x dx = e^x + C$	$\int e^{g(x)} g'(x) dx = e^{g(x)} + C$
$\int a^x dx = \frac{a^x}{\ln a} + C$	$\int a^{g(x)} g'(x) dx = \frac{a^{g(x)}}{\ln a} + C$
$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$	$\int \frac{1}{\sqrt{1 - [g(x)]^2}} g'(x) dx = \arcsin g(x) + C$
$\int \frac{1}{1+x^2} dx = \arctan x + C$	$\int \frac{1}{1 + [g(x)]^2} g'(x) dx = \operatorname{arctg} g(x) + C$

Notau que a la integral de 1/x, el logaritme Neperià apareix en valor absolut.

Utilitza la taula d'integrals immediates per calcular

a)
$$\int \left(\frac{4}{1+x^2} - \frac{5}{x}\right) dx$$

b)
$$\int (2e^x + \sin x) \, dx$$

c)
$$\int (1 + \operatorname{tg}^2 x) \, dx$$

d)
$$\int \sqrt[3]{x} \, dx$$

a)
$$\int (\frac{4}{1+x^2} - \frac{5}{x}) dx = 4 \arctan |x| + C$$

b)
$$\int (2e^x + \sin x) dx = 2e^x - \cos x + C$$

c)
$$\int (1 + \lg^2 x) \, dx = \lg x + C$$

d)
$$\int \sqrt[3]{x} \, dx = \int x^{1/3} \, dx = \frac{x^{1/3+1}}{1/3+1} + C = \frac{3}{4} \sqrt[3]{x^4} + C$$

En aquest cas hem utilitzat la fórmula de la integral d'una potència

La segona columna de la taula anterior s'anomenen **integrals quasiimmediates** i es caracteritzen pel fet que apareix la derivada de la funció t acompanyant el dx. Aquestes integrals provenen de la derivada d'una funció composta (regla de la cadena)

Exemples:

•
$$\int \cos(x^2 + x + 1) \cdot (2x + 1) \frac{dx}{g'} = \sin(x^2 + x + 1) + C$$

•
$$\int \frac{1}{\sin x} \cdot \cos x \, dx = \ln|\sin x| + C$$

•
$$\int \frac{1}{1 + (e^x)^2} \cdot e^x \, dx = \operatorname{arctg} e^x + C$$

Provau de derivar els membres de la dreta, aplicant la regla de la cadena, i comprovau que obteniu la funció inicial.

Vídeo 7.2: *Integrals quasi-immediates* https://www.youtube.com/watch?v=GVji1blqjX4

En alguns casos, cal manipular lleugerament l'expressió per aconseguir que quedi exactament la derivada de la funció g. Bàsicament, pot ser necessari multiplicar o dividir per algun nombre.

A la integral $\int e^{x^2+1} \cdot (x) dx$, si anomenam $g=x^2+1$, necessitam que aparegui g'(x)=2x junt amb dx. Com veim falta el nombre 2 que podem arreglar multiplicant i dividint per aquest nombre. La integral queda com a

$$\int e^{x^2+1} \cdot (2x) \cdot \frac{1}{2} \, dx,$$

El factor $\frac{1}{2}$ és una constant i la podem treure fora de la primitiva.

$$\frac{1}{2} \int e^g \cdot dg = \frac{1}{2} e^g + C = \frac{1}{2} e^{x^2 + 1} + C$$

No patiu si no acabau d'identificar aquest tipus d'integrals perquè, a continuació, veurem un mètode més general (**integració per substitució**) per resoldre-les.

Exercicis

- **1.** Calculau la primitiva $\int \sqrt[5]{\frac{1}{x}}$. Indicació: Expressa la funció com una potència i integra la potència.
- **2.** Calculau la primitiva $\int \left(2^x 5\cos x + \frac{3}{x}\right) dx$.

1.2 Primitives per substitució

Imaginem que ens demanen fer la integral $\int \sin(5x^2 + 1) x \, dx$. En color blau hem marcat la funció composta t i, en vermell, una funció que és semblant a la derivada de t.

Per fer aquesta integral farem un **canvi de variables** . Visualitzeu el següent vídeo on s'explica el mètode.

>

Vídeo 7.3: *Integrals per substitució* https://www.youtube.com/watch?v=Q6i-b7HSAX4

Resum de passes a seguir: $\int \sin(5x^2 + 1) \cdot x \, dx$

- 1. Anomenarem $t = 5x^2 + 1$
- 2. Derivam els dos membres i multiplicam pel diferencial corresponent a la variable que derivam: 1dt=10xdx. D'aquí deduïm que $x\,dx=\frac{1}{10}\,dt$ i ho substituïm dins la integral

$$\int \sin(t) \frac{1}{10} dt = \frac{1}{10} \int \sin(t) dt = \cdots$$

IMPORTANT: Per saber si hem fet be el canvi de variables al final ha de quedar una integral que sapiguem fer. Així mateix, només ens pot quedar la variable t; la x ha de desaparèixer completament.

3. La darrera integral és immediata i val

$$\cdots = \frac{1}{10} \int \sin t \, dt = -\frac{1}{10} \cos t + C$$

4. Finalment, desfeim el canviant la variable t per la seva expressió:

$$= -\frac{1}{10}\cos(5x^2 + 1) + C$$

5. Feim la comprovació: $\left(-\frac{1}{10}\cos(5x^2+1)+C\right)'=\sin(5x^2+1)\cdot x$

Exercicis

3. Calculau les primitives de les següents funcions, aplicant el canvi de variables que s'indica en cada cas.

a)
$$\int \frac{1}{2x-3} dx$$
 fent el canvi $t = 2x - 3$

b)
$$\int xe^{-x^2} dx$$
 fent el canvi $t = -x^2$

c)
$$\int \frac{\cos x}{1 + \sin^2 x} dx$$
 fent el canvi $t = \sin x$

1.3 Integració per parts

Imaginem que volem integrar un producte de funcions $u\cdot v'$ on la funció u és fàcil de derivar i la funció v' fàcil d'integrar. En tal cas empram la regla d'integració per parts

Regla d'integració per parts

$$\int u \cdot dv = v \cdot u - \int v \cdot du \tag{5}$$

on hem expressat $du=u^{\prime}dx$ i $dv=v^{\prime}dx$

Una regla mnemotècnica de recordar-se'n és recitar la frase: " S usana, u n d ia v entoso, v ió u n s oldado v estido d e u niforme"

La regla d'integració per parts s'utilitza en integrals de la forma

•
$$\int x^n \cdot a^x dx$$

•
$$\int \left\{ \begin{array}{c} \sin x \\ \cos x \end{array} \right\} \cdot a^x \, dx$$

•
$$\int x^n \cdot \left\{ \begin{array}{c} \sin x \\ \cos x \end{array} \right\} dx$$

•
$$\int x^n \cdot \left\{ \begin{array}{c} \arcsin x \\ \arctan x \end{array} \right\} dx$$

•
$$\int x^n \cdot \log_b x \, dx$$

En aquest vídeo s'explica la regla d'integració per parts:

Vídeo 7.4: *Mètode d'integració per parts* https://www.youtube.com/watch?v=lQQvE1lux4Q

Calcula
$$\int x \ln x \, dx$$

En aquesta integral $\ln x$ és fàcil de derivar i x d'integrar, per tant, feim les assigna-

Exemple 3

Calcula
$$\int \arctan x \, dx$$

Sembla que, en aquest cas, no hi ha producte de funcions quan realment el producte es pot expressar com $\operatorname{arctg} x \cdot 1$. Feim aquesta assignació en el mètode d'integració per parts

$$\int \operatorname{arctg} x \cdot 1 dx = \left\{ \begin{array}{l} u = \operatorname{arctg} x \to du = \frac{1}{1+x^2} dx \\ dv = 1 dx \to v = x \end{array} \right\}$$
$$= x \cdot \operatorname{arctg} x - \int \frac{1}{1+x^2} \cdot x dx = \cdots$$

Aquesta darrera integral és quasi-immediata, multiplicam i dividim entre 2

$$= x \cdot \arctan x - \frac{1}{2} \int \frac{1}{1+x^2} \cdot 2x dx = x \cdot \arctan x - \frac{1}{2} \ln(1+x^2) + C$$

Exercicis

- **4.** Calculeu $\int x \cdot e^x dx$ utilitzant la tècnica d'integració per parts.
- **5.** Calculeu $\int x^2 \cdot \ln x \, dx$ utilitzant la tècnica d'integració per parts.

1.4 Primitives de funcions racionals

Anomenam integral racional, a la integral del quocient de dos polinomis: $\int \frac{P(x)}{Q(x)} \, dx$

Procediment:

• La primera passa és comprovar els graus del numerador i el denominador. Si grau $P(x) \geq \operatorname{grau} Q(x)$ haurem de fer la divisió de polinomis i utilitzar la següent fórmula:

$$\underbrace{P(x)}_{R(x)} \qquad \frac{|Q(x)|}{C(x)} \qquad \rightarrow \qquad P(x) = C(x) \cdot Q(x) + R(x) \qquad \text{(6)}$$

Si la comprovació de la divisió anterior la dividim tota entre Q(x) trobam

$$\frac{P(x)}{Q(x)} = C(x) + \frac{R(x)}{Q(x)} \tag{7}$$

• Calculam les solucions de l'equació Q(x) = 0 i miram si estan repetides (arrels múltiples) o no (arrels simples).

Exemple 4

Calcula
$$\int \frac{x^2+1}{x+2} dx$$

Com el el grau del numerador és més gran o igual que el denominador, efectuam la divisió de polinomis

$$\begin{array}{ccc}
x^2 + 1 & \underline{|x+2|} \\
5 & x-2
\end{array} \to \frac{x^2 + 1}{x+2} = x - 2 + \frac{5}{x+2}$$
(8)

$$\int \frac{x^2 + 1}{x + 2} = \int (x - 2) \, dx + \int \frac{5}{x + 2} \, dx = \frac{x^2}{2} - 2x + 5 \ln|x + 2| + C$$

Exemple d'arrels simples

Volem calcular
$$\int \frac{x-2}{x^2+x} dx$$

No cal efectuar la divisió perquè el grau del denominador supera al numerador. Resolem l'equació: $x^2+x=0 \to x=0, -1$. Cap d'elles està repetida i diem que són arrels simples. La factorització del denominador és Q(x)=x(x+1)=

Intentarem fer la descomposició següent

$$\frac{x-2}{x^2+x} = \frac{A}{x} + \frac{B}{x+1} \tag{9}$$

Efectuam la suma del segon membre

$$\frac{x-2}{x^2+x} = \frac{A(x+1) + Bx}{x(x+1)} \tag{10}$$

Donat que els denominadors són iguals, els numeradors també ho han d'ésser

$$x - 2 = A(x+1) + Bx (11)$$

Ara donam dos valors a x i intentam trobar que valen A i B

- Si x = 0: -2 = A
- Si x = -1: $-3 = -B \rightarrow B = 3$

Amb això hem aconseguit separar la integral en dues que si sabem fer:

$$\int \frac{x-2}{x^2+x} = \int \frac{-2}{x} \, dx + \int \frac{3}{x+1} \, dx = \cdots$$
 (12)

Cadascuna de les integrals és un logaritme Neperià

$$\dots = -2\ln|x| + 3\ln|x+1| + C \tag{13}$$

Vídeo 7.5: *Integració de funcions racionals* https://www.youtube.com/watch?v=klKHcqcA9Bw

Exemple d'arrels múltiples

PBAU

El cas d'arrels múltiples es deixa com ampliació.

Volem calcular
$$\int \frac{2x+5}{(x+3)^3} \, dx$$

No cal efectuar la divisió perquè el grau del denominador supera al del numerador. Resolem l'equació: $(x+3)^3=0 \to \text{t\'e l'arrel } x=-3$ amb multiplicitat 3 (està repetida tres vegades).

En el cas de multiplicitat major a 1, es fa la descomposició de la forma següent

$$\frac{2x+5}{(x+3)^3} = \frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{B}{(x+3)^3}$$
 (14)

és a dir, afegim tants de termes com multiplicitat tingui l'arrel.

Efectuam la suma del segon membre

$$\frac{2x+5}{(x+3)^3} = \frac{A(x+3)^2 + B(x+3) + C}{(x+3)^3}$$
 (15)

Donat que els denominadors són iguals, els numeradors també ho han d'ésser

$$2x + 5 = A(x+3)^2 + B(x+3) + C$$
(16)

Ara donam tres valors a x per determinar els paràmetres A, B i C

- Si x = -3: -1 = C
- Si x = -2: $1 = A + B + C \rightarrow A + B = 2$
- Si x = -4: $-3 = A B + C \rightarrow A B = -2$

Resolem el sistema d'equacions per A i B i trobam que A=0 i B=2. Amb això hem aconseguit separar la integral en dues integrals més senzilles:

$$\int \frac{2x+5}{(x+3)^3} = 0 + \int \frac{2}{(x+3)^2} dx + \int \frac{-1}{(x+3)^3} dx = \cdots$$
 (17)

Cadascuna de les integrals és de tipus potència, perquè $\frac{1}{(x+3)^n}=(x+3)^{-n}$

i la seva integral és $\frac{(x+3)^{-n+1}}{-n+1}$

$$\dots = 2\frac{(x+3)^{-1}}{-1} - 1\frac{(x+3)^{-2}}{-2} + C \tag{18}$$

la qual es pot arreglar com

$$\dots = -\frac{2}{x+3} + \frac{1}{2(x+3)^2} + C \tag{19}$$

Exercicis

6. Calculau les següents integrals racionals:

$$a) \int \frac{x^2}{x-1} \, dx$$

$$\mathbf{b)} \int \frac{1}{x \cdot (x-2)} \, dx$$

7. Calculau la integral
$$\int \frac{2x^2 + 1}{x^3 + 4x^2 + 4x} dx$$

1.5 Integrals tipus arc tangent

El denominador d'una funció racional del tipus $\frac{1}{1+x^2}$ no té arrels simples ni múltiples, sinó complexes. Per això no es pot descomposar en fraccions simples tal com hem vist en l'apartat anterior.

En comptes d'això, sabem que la primitiva $\int \frac{1}{1+x^2} dx$ és immediata i val l'arc tangent de x. Per tant, integrals de la forma

$$\int \frac{1}{1+ax^2} \, dx$$

deim que són **tipus arc tangent** . De fet, la integral anterior es pot resoldre fent el canvi de variables $t = \sqrt{ax}$.

$$\int \frac{1}{1+ax^2} dx = \begin{cases} t = \sqrt{a} x \\ dt = \sqrt{a} dx \to dx = \frac{dt}{\sqrt{a}} \end{cases} =$$
$$= \int \frac{1}{1+t^2} \frac{dt}{\sqrt{a}} = \frac{1}{\sqrt{a}} \int \frac{1}{1+t^2} dt = \frac{1}{\sqrt{a}} \arctan \sqrt{a}x + C$$

En el vídeo següent trobareu alguns exemples més d'aquest tipus d'integral:

Vídeo 7.6: *Integrals tipus arc tangent* https://www.youtube.com/watch?v=7cXfAgA9Vqs

Exemple 5

Calcula
$$\int \frac{1}{1+9x^2} \, dx$$

D'acord amb la fórmula que hem obtingut, substituïm que a=9. La integral queda $\frac{1}{3} \mathrm{arctg}\,(3x) + C$

2. La integral definida

Introducció

Hi ha infinitat de funcions extretes del món real (científic, econòmic, ...) per a les quals té especial importància l' àrea davall del seu gràfic. En aquesta secció veurem com la integral definida proporciona aquesta àrea.

Problema de l'àrea sota una funció

Considerem una aixeta que té un cabal de 10 litres/minut. Quants de litres haurà tret al cap de 5 minuts? La resposta és tan fàcil com dir $10 \, \frac{l}{min} \cdot 5 \, \text{min} = 50 \, l$. Intentem, però, entendre aquest resultat gràficament representant la funció y=10 a l'interval $t \in [0,5]$.

Comprovam que l'àrea que queda davall la funció correspon al volum d'aigua extret.

Suposem ara que la aixeta perd pressió i el seu cabal disminueix amb el temps segons la funció $y=\frac{30}{t+3}$ litres/minut. Fixeu-vos que quan t=0, el cabal és de 10 l/min com abans, però passats t=3 minuts, el cabal s'ha reduït a la meitat. Ens feim la mateixa pregunta que abans, quants de litres haurà tret al cap de 5 minuts? La solució ja no és tan evident com abans perquè la funció no és constant. No obstant això, sabem que el volum d'aigua correspon a l'àrea que queda per davall de la funció.

Llavors, com podem calcular l'àrea que queda per davall d'una funció qualsevol? La resposta ens la proporciona la **integral definida** .

Si $f(x) \ge 0$ l'àrea que queda per davall de la funció s'indica com

$$\int_{a}^{b} f(x) \, dx \tag{20}$$

i es llegeix com integral definida entre a i b . a i b també s'anomenen **extrems** d'integració .

La integral definida d'una funció és un nombre real.

Regla de Barrow

Si F(x) és una primitiva qualsevol de la funció f(x):

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a) \tag{21}$$

A la pràctica, per calcular una integral definida, primer calculam la primitiva i després l'avaluam als extrems d'integració i restam els dos resultats. Donat que restam els dos resultats, no cal afegir la constant d'integració a la primitiva.

Atenció : La integral definida té signe depenent del signe que tengui la funció en aquell interval.

Calcula:
a)
$$\int_{2}^{5} (3x^2 - 2x + 3) dx$$

b)
$$\int_{1}^{e} \frac{1}{x} dx$$

c)
$$\int_{0}^{\pi} \sin x dx$$

c)
$$\int_0^{\pi} \sin x dx$$

a)
$$\int_{2}^{5} (3x^2 - 2x + 3)dx = F(5) - F(2) = 115 - 10 = 105$$

$$F(x) = \int (3x^2 - 2x + 3)dx = x^3 - x^2 + 3x$$

$$F(5) = 5^3 - 5^2 + 3 \cdot 5 = 115$$

$$F(2) = 2^3 - 2^2 + 3 \cdot 2 = 10$$

b)
$$\int_{1}^{e} \frac{1}{x} dx = F(e) - F(1) = 1 - 0 = 1$$

$$F(x) = \int \frac{1}{x} dx = \ln x$$

$$F(e) = \ln e = 1$$

$$F(1) = \ln 1 = 0$$

c)
$$\int_0^{\pi} \sin x dx = F(\pi) - F(0) = 1 - (-1) = 2$$

$$F(x) = \int \sin x dx = -\cos x$$

$$F(\pi) = -\cos \pi = -(-1) = 1$$

$$F(0) = -\cos 0 = -1$$

D'aquesta regla se'n deriven una sèrie de propietats

•
$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$

•
$$\int_a^a f(x)dx = 0$$

• Si
$$a < c < b$$
, $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$

- Si f(x) és una funció parell, $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$
- Si f(x) és una funció senar, $\int_{-a}^{a} f(x)dx = 0$

Exercicis

- **8.** Calcula la integral definida $\int_{1}^{2} 3x^{2} dx$
- 9. Calcula la integral definida $\int_{-\pi/2}^{\pi/2} \cos x \, dx$

2.1 Àrea sota una funció

Per calcular l'àrea que queda compresa entre una funció f(x) i l'eix OX entre les abscisses x=a i x=b, necessitam saber si la funció presenta canvis de signe. Resulta molt útil fer una gràfica de la funció en l'interval que demanen.

- 1. Resolem l'equació f(x)=0. Suposem que trobam les arrels x_1,x_2,x_3,\cdots
- 2. Representam gràficament la funció i el recinte
- 3. Calculam el signe de la funció dins cada interval (x_i, x_{i+1})
- 4. Cercam la primitiva de f(x)
- 5. Cercam la integral definida dins cada interval
 - Si el resultat de la integral és negatiu, prenen el valor absolut de la integral
- 6. Sumam les àrees dels diferents intervals
- Vídeo 7.7: Àrea davall d'una funció https://www.youtube.com/watch?v=xgIXBzAHKWo

Tot seguit mostram com s'aplica aquest procediment exemples

Calcula l'àrea compresa entre la funció $f(x)=\cos x$, l'eix OX i les rectes verticals $x=-\pi/2$ i $x=\pi/2$.

Dibuixam el recinte del qual volem l'àrea

La funció sempre és positiva a l'interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Una primitiva de la funció és $\int \cos x \, dx = \sin x$

Calculam la integral definida:

$$A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x dx = F(\pi/2) - F(-\pi/2) = 1 - (-1) = 2$$
$$F(x) = \int \cos x dx = \sin x$$

$$F(\pi/2) = \sin(\frac{\pi}{2}) = 1$$

$$F(-\pi/2) = \sin(-\frac{\pi}{2}) = -1$$

Noteu que donat que l'interval i la funció són simètrics, també haguéssim pogut calcular l'àrea com

$$A = 2\int_0^{\frac{\pi}{2}} \cos x dx = 2(1-0) = 2$$

Calcula l'àrea compresa entre la funció $f(x) = -x^2 + x$, l'eix OX i les rectes verticals x = -1 i x = 2.

Començam cercant el punts de tall de la funció amb l'eix OX

$$-x^2 + x = 0 \to \begin{cases} x = 0 \\ x = 1 \end{cases}$$
 (22)

Dibuixam el recinte del qual volem l'àrea

Donat que la funció presenta canvis de signe, necessitam separar l'àrea en 3 parts: A_1 , A_2 i A_3 . En el primer i darrer interval la funció és negativa i, per tant, l'àrea serà la integral canviada de signe.

Una primitiva de la funció és $F(x) = \int f(x) dx = -\frac{x^3}{3} + \frac{x^2}{2}$

Calculam la integral definida a cada interval per separat:

•
$$I_1 = \int_{-1}^{0} f(x)dx = F(0) - F(-1) = 0 - \frac{5}{6} = -\frac{5}{6}$$

• $I_2 = \int_{0}^{1} f(x)dx = F(1) - F(0) = \frac{1}{6} - 0 = \frac{1}{6}$

•
$$I_2 = \int_0^1 f(x)dx = F(1) - F(0) = \frac{1}{6} - 0 = \frac{1}{6}$$

•
$$I_3 = \int_1^2 f(x)dx = F(2) - F(1) = -\frac{2}{3} - \frac{1}{6} = -\frac{5}{6}$$

Els valors de la primitiva que em emprat són:
$$F(-1) = -\frac{(-1)^3}{3} + \frac{(-1)^2}{2} = \frac{5}{6}$$

$$F(0) = -\frac{0^3}{3} + \frac{0^2}{2} = 0$$

$$F(1) = -\frac{1^3}{3} + \frac{1^2}{2} = \frac{1}{6}$$

$$F(2) = -\frac{2^3}{3} + \frac{2^2}{2} = -\frac{2}{3}$$

L'àrea total és
$$A_T=A_1+A_2+A_3=-I_1+I_2-I_3=\frac{5}{6}+\frac{1}{6}+\frac{5}{6}=\frac{11}{6}$$

Comprovau que l'àrea sempre vos doni un nombre positiu!

Exercicis

- **10.** EXAMEN Calculau l'àrea davall la funció $y=\frac{1}{2\sqrt{x}}$, l'eix OX i les rectes x=1, x=9. Representau gràficament el recinte.
- **11.** Calculau l'àrea davall la funció $y=x^2-4$, l'eix OX i les rectes x=-1, x=2. Representau gràficament el recinte.

2.2 Àrea entre dues funcions

Per calcular l'àrea compresa entre dues funcions f(x) i g(x), seguirem el següent procediment

- 1. Cercam els punts on les dues funcions es tallen f(x) = g(x)
- 2. Representam gràficament les funcions f(x) i g(x) i el recinte del qual volem calcular l'àrea
- 3. Calculam la primitiva de f(x) g(x)
- 4. Calculam les integrals $\int_{x_i}^{x_{i+1}} |f(x) g(x)| \, dx$. El valor absolut fa que el resultat final sempre sigui positiu.
- 5. Escrivim l'àrea total com la suma de les integrals del pas anterior
- Vídeo 7.8: Àrea entre dues funcions https://www.youtube.com/watch?v=0BhTptZv5PQ

Calcula l'àrea compresa entre les funcions f(x)=x i $g(x)=x^2$

Començam trobant els punts de tall

$$x = x^2 \to x(x-1) = 0 \to \begin{cases} x = 0 \\ x = 1 \end{cases}$$
 (23)

Dibuixam el recinte format per la recta i la paràbola

Cercam la primitiva $F(x)=\int (x-x^2)dx=\frac{x}{2}-\frac{x^3}{3}$ Finalment, cercam la integral definida

Finalment, cercain in integral definition
$$A = \int_0^1 (x - x^2) \, dx = F(1) - F(0) = \frac{1}{6} - 0 = \frac{1}{6}$$

$$F(1) = \frac{1}{2} - \frac{1^3}{3} = \frac{1}{6}$$

$$F(0) = 0$$

Com que l'integral ja dona un nombre positiu, no cal canviar-ne el signe.

Calcula l'àrea compresa entre les funcions $f(x) = \sqrt{x}$ i $g(x) = \frac{x+1}{2}$ i l'eix OX.

Començam trobant els punts de tall

$$\sqrt{x} = \frac{x+1}{2} \to x = \frac{(x+1)^2}{4} \to x = 1$$
 (24)

Dibuixam el recinte format per la funció radical, la recta i l'eix OX

Cercam l'àrea de cada regió per separat
$$A_1=\int_{-1}^0\frac{x+1}{2}\,dx=F_1(0)-F_1(-1)=0-(-\tfrac{1}{4})=\tfrac{1}{4}$$

$$F_1(x)=\frac{x^2}{4}+\frac{x}{2}$$

$$F_1(0)=0$$

$$F_1(-1)=\frac{(-1)^2}{4}+\frac{-1}{2}=\frac{-1}{4}$$

$$A_2 = \int_0^1 \left(\frac{x+1}{2} - \sqrt{x} \right) dx = F_2(1) - F_2(0) = \frac{1}{12} - 0 = \frac{1}{12}$$

$$F_2(x) = \frac{x^2}{4} + \frac{x}{2} - \frac{2}{3}\sqrt{x^3}$$

$$F_2(1) = \frac{1^2}{4} + \frac{1}{2} - \frac{2}{3}\sqrt{1^3} = \frac{1}{12}$$

$$F_2(0) = 0$$

Finalment, l'àrea total és $A = A_1 + A_2 = \frac{1}{4} + \frac{1}{12} = \frac{1}{3}$

Exercicis

12. EXAMEN Calculau l'àrea compresa entre les funcions $y = x^2$ i y =x + 2. Representau el recinte gràficament.

2.3 Teorema fonamental del càlcul

Com hem dit a la introducció hi ha una estreta relació entre integració (càlcul de l'àrea davall una corba) i la derivació.

La funció àrea

Donada una funció f(x), contínua en [a,b], podem calcular $\int_a^c f(x)dx$ per a tot nombre $c \in [a,b]$.

Consideram la nova funció $F(x)=\int_a^x f(t)\,dt$ per a $x\in[a,b]$, que és l'àrea davall f entre a i x.

© Simulació 9: https://www.geogebra.org/m/at39zggt : *Desplaçau* el punt X per generar la funció àrea

És fàcil comprovar que F(a)=0 i F(b) és la integral entre a i b. Llavors, la funció F(x) diu com canvia l'àrea a mesura que augmentam l'abscissa x. Si la funció f(x) és positiva, la funció àrea creix, mentre que si f(x) és negativa, la funció àrea decreix. Això ens duu a pensar que la derivada de la funció àrea ha d'estar relacionada amb la f(x). Aquesta relació l'expressam com un teorema.

Teorema fonamental del càlcul

Si f(x) és una funció contínua en [a,b], aleshores la funció $F(x)=\int_a^x f(t)dt$, per a $x\in [a,b]$ és derivable i, a més, compleix F'(x)=f(x).

Efectivament, comprovem que la funció $f(x) = \sin x$ per a $x \in [0, \pi]$ com-

pleix el teorema. Per això, ens construïm la funció àrea

$$F(x) = \int_0^x \sin t dt = -\cos t \Big|_0^x = -\cos x - (-\cos 0) = 1 - \cos x$$

Podem comprovar que $F(0)=1-\cos 0=1-1=0$ i $F(\pi)=1-\cos \pi=0$ 1-(-1)=2. Per qualsevol altre valor x, la funció F(x) dóna l'àrea entre 0 el valor d'abscissa x.

Si derivam la funció àrea $F'(x) = -(-\sin x) = \sin x$ cosa que assegura el teorema fonamental del càlcul, ja que F'(x) = f(x).

Exemple 11

Calcula els màxims i mínims de la funció $F(x) = \int_1^x (t^3 - 4t) dt$ definida per a $x \ge 1$.

Començam calculant una primitiva de la funció

$$\int (t^3 - 4t) dt = \frac{t^4}{4} - 2t^2$$

Calculam la funció
$$F(x)$$
:
$$F(x) = \int_1^x (t^3 - t) \, dt = \frac{t^4}{4} - 2t^2 \bigg]_1^x = \left(\frac{x^4}{4} - 2x^2\right) - \left(\frac{1^4}{4} - 2\right) = \frac{x^4}{4} - 2x^2 + \frac{7}{4}$$
 Per calcular els extrems (màxims i mínims) de la funció necessitam calcular-ne la

Per calcular els extrems (màxims i mínims) de la funció necessitam calcular-ne la derivada

$$F'(x) = x^3 - 4x$$

Fixeu-vos que aquest resultat l'haguéssim pogut trobar més fàcilment aplicant el Teorema fonamental del càlcul $F'(x) = f(x) = x^3 - 4x$

Per trobar els extrems igualam la derivada a zero, $x^3-4x=0 \rightarrow x=0, x=\pm 2$ Calculam la segona derivada $F''(x) = 3x^2 - 4$

- x = -2, x = 0: No serveixen, queda fora del domini de la funció F
- x=2: $F''(2)=8>0 \rightarrow \text{mínim relatiu}$

Per calcular l'ordenada del mínim, necessitam haver calculat la funció F(x)

•
$$x = 2$$
: $F(2) = \frac{-9}{4}$