Experiment 1.4

Student Name: Jatin UID: 20BCS5951

Branch: BE-CSE **Section/Group:** 20BCS_DM605/B

Semester: 6th Subject Code: 20CSP-376

Aim:

Demonstration of FP Growth algorithm on supermarket data.

Objective:

Association rule mining finds interesting associations and relationships among large sets of data items. This rule shows how frequently a itemset occurs in a transaction. Given a set of transactions, we can find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

Code and Output:

Creating Records

setwd("D:\\ Data Mining")

library("arules")

data("Mushroom")

Fp output <- fim4r(Mushroom, method = "fpgrowth", target = "rules", supp = 60, conf = 50)

Applying Operation

Fp output

inspect(Fp_output [1:5])

Data_File<- as(Fp_output,"data.frame")

write.csv(Data_File, file="DM_Exp_2.csv")

OUTPUT:

```
setwd("D:\\Data Mining")
  library("arules")
  data("Mushroom")
 Fp_output <- fim4r(Mushroom, method = "fpgrowth", target = "rules", supp = 60, conf = 50)
> Fp output
set of 594 rules
> inspect(Fp_output [1:5])
    1hs
                          rhs
                                                         confidence lift count
                                              support
                        => {VeilType=partial} 1.0000000 1.0000000 1
   {}
                                                                         8124
    {VeilColor=white}
                       => {VeilType=partial} 0.9753816 1.0000000
[2]
                                                                    1
                                                                         7924
   {VeilType=partial} => {VeilColor=white} 0.9753816 0.9753816
[3]
                                                                    1
                                                                         7924
[4] {}
                        => {VeilColor=white} 0.9753816 0.9753816 1
                                                                         7924
[5] {GillAttached=free} => {VeilType=partial} 0.9741507 1.0000000
                                                                         7914
> Data_File<- as(Fp_output,"data.frame")</pre>
 write.csv(Data_File, file="DM_Exp_2.csv")
```


Observations & Conclusion:

The "fim4r" function is used to mine frequent itemsets and generate association rules using the "fpgrowth" method with a minimum support of 60% and minimum confidence of 50%. The output of the function is stored in the "Fp_output" variable, which is then inspected using the "inspect" function to display the first five association rules.

Learning outcomes (What I have learnt):

- 1. Association rule mining: Students can learn how to use different methods, such as Apriori or FP-Growth, to mine frequent itemsets and generate association rules.
- 2. Minimum support and confidence: The code uses the minimum support and minimum confidence parameters to filter out weak rules and ensure that only meaningful rules