Wärmepumpe

- Themen
- Wärme pumpen?
- Kostenvergleich
- Kühlschrank-Wärmepumpe
- Umweltwärme nutzen
- Wärmefluss & Kältemittel I IV
- Wärmepumpenprozess
- Prozessschritte
- Zustandsänderungen
- 1. Hauptsatz
- Animation WP-Prozess
- Phasenübergänge (Wasser)
- Folgerungen
- Kältemittel

- Enthalpie & Wärmepumpe
- Carnot
- Carnot-Wirkungsgrad η
- Carnot-Wärmepumpe η_C
- COP_{real}
- COP Erfahrungswerte
- Vorlauftemperaturen
- Heizkennlinie
- lg p, h Diagramme
- COP Internet
- Carnot: $COP_{MAX} \& COP_{real}$ von VT
- $COP_{h:1.0}$ & $COP_{h:0.65}$ & Grädigkeit von AT & VT
- COP_{h:1.0} & COP_{h:0.65} & Grädigkeit von TC-TV
- Quellen

T	h	e	n	ገ	е	r

Technik & Physik	Es soll um physikalische, technische Inhalte gehen.		
Einführung	Kostenvergleich anhand Anbieterpreise (Januar 2024).		
ldee der Wärmepumpe	Wärme aus kalter Luft gewinnen.		
Technik	 Funktion der Wärmepumpe. Aufgabe des Kältemittels Wärmepumpenprozess Vorlauftemperaturen Ig p, h-Diagramme Heizkennlinie 		
Physik	 Phasenübergänge Zustandsänderungen Enthalpie und Wärmepumpe. Carnot-Wirkungsgrad COP 		
Auswertung	COP-Berechnungen		
	<u> </u>		

Wärme pumpen?

- Wärme pumpen?
- Mit "gefühlt" kalter Außenluft heizen?
- Wie kann aus einer kalten (5 °C) Außentemperatur eine hohe Innentemperatur werden?
- Was geschieht, wenn die Außentemperatur unter 0 °C liegt?

Kostenvergleich

	Gas	Strom
Verbrauch	8000 kWh/Jahr	2800 kWh/Jahr
Kosten	15 ct/Jahr (Januar 2024)	30 ct/Jahr (Januar 2024)
Kosten	1200 €	840 €
Wärmepumpe und e	lektr. Energie (grobe Schätzun	g)
Kennzahl COP	$COP = \frac{q_{Nutz}}{W}$ gewon	nene Energie / aufgewandte Arbeit
<i>COP</i> = 3	$W_E = \frac{q_{Nutz}}{COP} W_E = \frac{8000}{3} = 3$	2666 kWh untere Grenze
<i>COP</i> = 4	$W_E = \frac{8000}{4} =$	2000 kWh anzustreben
	Brennwert (nur Gasanteil)	Wärmepumpe (nur Stromanteil)
Kosten	1200 € (15 ct/Jahr) 3200 € (40 ct/Jahr)	$Kosten_3 = 2666 \times 30 = 800 $ € $Kosten_4 = 2000 \times 30 = 600$ €
Quelle [1] und [2]		

Kühlschrank-Wärmepumpe

Umweltwärme nutzen

Absolute Temperaturskala in **Kelvin!**

Null Grad Celsius ist nur gefühlt kalt. Tatsächlich liegt eine thermische Energie analog zu 273 K vor.

Aufgabe: Aus Umweltwärme Raumwärme ernten.

Wärmefluss & Kältemittel I

Aufgabe: Wärmefluss von der warmen Luft an das kühle Kältemittel.

Wärmefluss & Kältemittel II

Aufgabe: Kältemittel von "5 °C" auf "51 °C" pumpen.

Wärmefluss & Kältemittel III

Aufgabe: Wärmefluss vom warmen Kältemittel an den kühlen Heizkreislauf.

Wärmefluss & Kältemittel IV

Wärmepumpenprozess

Prozessschritte

Schritt	Zustände	Vorgang	
1.	4 → 1	verdampfen	Zufuhr von Wärme. Phasenübergang von "flüssig → gasförmig".
II.	$1 \rightarrow 2$	verdichten	Einbringen von Arbeit (W _{elekt}). Führt zu einer Druck- und Temperaturhöhung. Wärme pumpen.
III.	$2 \rightarrow 3$	verflüssigen	Abgabe von Wärme. Phasenübergang von "gasförmig → flüssig.
IV.	3 → 4	entspannen	Drosselung des flüssigen Kältemittels. Führt zu einer Druck- und Temperatursenkung. Frei werdende Energie geht in das Kältemittel über. Keine Änderung der spez. Enthalpie des Kältemittels.

Zustandsänderungen

		(Definition für ideale Gase)	
Isobare Zustandsänderung	p = konst	Je größer die Temperatur, desto größer das Volumen.	Linien gleichen Druckes: Isobaren
Isotherme Zustandsänderung	T = konst	Je größer der Druck, desto kleiner das Volumen.	Linien gleicher Temperatur: Isothermen
Isentrope (adiabatische) Zustandsänderung	p, T ändern sich	Je größer die eingebrachte Enthalpie, desto größer Druck und Temperatur.	Linien gleicher Entropie: Isentropen
Isochore Zustandsänderung	v = konst	Je größer die Temperatur, desto größer der Druck.	Linien gleichen Volumes: Isochoren

1. Hauptsatz

Wärme und Arbeit.	Erst 1842 sprach Robert Mayer von der "Gleichwertigkeit von Wärme und Arbeit".
1. Hauptsatz der Wärmelehre ^[1]	Wärme kann aus mechanischer Arbeit erzeugt und in solche umgewandelt werden.
	Elektrische Arbeit kann in Wärme umgewandelt werden.
Wärmegleichung	Q = ΔU + W U: Innere Energie W: Arbeit

Schritt I

Schritt II

Schritt II: verdichten

 $t_2 = 51 \,^{\circ}\text{C}$ $p_1 = 13,51 \,\text{bar}$ $v_2 < v_1$

$$t_1 = 0 \, ^{\circ}C$$

 $p_1 = 2,93 \, bar$
 v_1

p, V - Diagramm

(isentroper Prozess)

 $Q = \Delta U + W_{elekt}$

U: Innere Energie

W_{elekt}: elektrische Arbeit

Annahme: Q = 0

Innere Energie:

 $\Delta U = W_{elekt}$

Vorgang

Thermodynamik

Kältemitteltemperatur auf Vorlauftemperatur (+Grädigkeit) erhöhen.

Adiabatische (isentrope) Volumenänderungsarbeit W_{elekt.}

Ohne Wärmeverluste (nicht realistisch) Q.

Temperatur erhöht sich. Druck erhöht sich.

Volumen verkleinert sich.

Quelle [5]

Schritt III

Vorgang	Abgabe von Wärme (infolge Grädigkeit).
Thermodynamik	Kältemittel Phasenübergang von "gasförmig → flüssig. Kältemittel-Temperatur bleibt konstant. Kältemittel-Druck bleibt konstant. Temperatur im Heizkreislauf erhöht sich auf VT.

Schritt IV

Schritt IV: entspannen

(isentroper Prozess)

t₃ = 51 °C R134a p₃ = 13,51 bar v₃

Vorgang

Kältemitteltemperatur auf Umlufttemperatur (-Grädigkeit) senken.

Thermodynamik

Adiabatische (isentrope) Drosselung ohne Wärmeverluste.

Frei werdende Energie geht in latente Wärme über (Isenthalpe).

Phasenübergang von flüssig nach gasförmig.

Temperatur erniedrigt sich. Druck erniedrigt sich.

Volumen erhöht sich.

Animation WP-Prozess

Phasenübergänge (Wasser)

Temperatur in °C

Energie in kJ (für 1 kg)

Phasen:

- Festkörper: Eis

- Flüssigkeit: Wasser

- Nassdampf: Wasser und Dampf

- Heißdampf: Dampf

Isotherme: t = konst

p = konst

Phasenübergänge:

1 Eis & Wasser -> Wasser

Wasser & Dampf -> Dampf

Quelle [4]

Folgerungen			
Wasser verdampfen	Um Wasser bei p=1 bar zu verdampfen:		
	spez. Enthalpie Wasser: $h_1=417J/kg$ spez. Enthalpie Wasserdampf $h_2=2673J/kg$ spez. zugeführte Energie: $\Delta h=h_2-h_1$ $\Delta h=2673-417$ $\Delta h=2256kJ/kg$		
Folgerungen Wärmepumpe			
Verdampfen	Der Wärmepumpen-Prozess macht sich, die mit dem Phasenübergang vom flüssigen in den gasförmigen Aggregatzustand des Kältemittels verbundene physikalische Eigenschaft zu Nutze, ein hohes Maß an thermische Energie aufnehmen zu können.		
Verflüssigen	Phasenübergang vom gasförmigen in den flüssigen Aggregatzustand.		

Kältemittel

Warum Wasser nicht geht!	Wasser siedet bei Umgebungsdruck erst bei 100 °C.	
	Bei ca. 1/100 bar würde Wasser erst bei 0°C sieden.	
Anforderungen	Bei geringen Temperaturen verdampfen	
	Bei höheren Temperaturen kondensieren	
	Beide Vorgänge müssen bei beherrschbaren Drücken stattfinden.	
	Die "latente" Wärme sollte möglichst groß sein.	
	Kein Treibhausgaspotenzial.	
	Kein Ozonschädigungspotenzial.	
	Optimale Betriebssicherheit (Brennbarkeit)	

Enthalpie & Wärmepumpe

Enthalpie	Die Enthalpie H ist die Summe aus innerer Energie " U " und der Volumenarbeit " pV " (oder W).
	Die Enthalpie H ist eine Zustandsgröße, wie v, p , T und U .
Verdampfer	Der Phasenübergang von "flüssig -> gasförmig", Zufuhr von Wärme, führt zu einer anwachsenden spez. Enthalpie h .
Verdichter	Die Einbringung von Arbeit ($W_{\rm elekt}$) führt zu einer anwachsenden spez. Enthalpie h .
Kondensator	Der Phasenübergang von "gasförmig -> flüssig", Abgabe von Wärme, führt zu einer abnehmenden spez. Enthalpie h .
Expansionsventil	Die Drosselung des flüssigen Kältemittels verläuft ohne Änderung der spez. Enthalpie h.

Carnot

Carnot-Wärmepumpe $\eta_{\mathcal{C}}$

$$\eta = \frac{Nutzen}{Aufwand}$$

$$\eta = \frac{q_{Nutz}}{W}$$

gewonnene Energie / aufgewandte Arbeit

$$\eta = \frac{q_{ab}}{W} \quad W = q$$

$$W = q_{ab} - q_{zu} \qquad \eta = \frac{q_{ab}}{q_{ab} - q_{zu}}$$

Theoretischer Carnot Wirkungsgrad

$$\eta_C = \frac{T_H}{T_H - T_K}$$

η ist größer als 1

T in Kelvin

COP,	ea
I	ca

COP Coefficient of Performance

COP bewertet mit Gütegrad der Wärmepumpe.

Carnot-Wirkungsgrad $\eta_C = \frac{T_H}{T_H - T_K}$

Gütegrad $\eta_{C,WP} = \frac{realer\ COP}{Carnot-Wirkungsgrad}$

Erfahrungswerte $\eta_{\textit{C,WP}} = exttt{0,45 bis} = exttt{0,55}$

 $COP_{real} = \eta_{C,WP}$

 $COP_{real} = \eta_{C,WP} \times \eta_{C}$ $COP_{real} = \eta_{C,WP} \times \frac{T_{H}}{T_{H} - T_{K}}$

COP Erfahrungswerte

Angaben von BOSCH:

- Generell liegen gute COP-Werte zwischen 3 und 5.
- Ein COP unter 3 spricht in der Regel dafür, dass die Wärmepumpe nicht wirtschaftlich arbeitet.
- Für gewöhnlich erreichen Wärmepumpen für Hochtemperatur eine geringere Leistungszahl als herkömmliche Wärmepumpen, da sie mehr Strom verbrauchen.
- Welcher COP-Wert als gut befunden wird, unterscheidet sich je nach Art der Wärmepumpe.
- Für Luftwärmepumpen gilt ein COP ab 3 als gut.
- Das bedeutet, dass eine Kilowattstunde Strom drei Kilowattstunden Wärme bereitstellt.

Quelle [7]

Vorlauftemperaturen

Quelle [8]

Heizkennlinie

Brennwertgerät

a = 17,5 °C

c = 25 °C

d (Nachtabsenkung)

e = 75 °C

AT °C	VT °C
10	39
5	46
0	54
-5	61
-10	68

lg p,h R-134a Carnot

- Wärmepumpe
- Carnot-Prozess
- Kältemittel R-134a

$$t_H = 50 \,^{\circ}C$$

 $t_K = 0 \,^{\circ}C$

lg p,h R-134a real

- Wärmepumpe
- Realer Prozess
- Kältemittel R-134a
- Einfluss von:
- Grädigkeit
- Verdichter-Wirkungsgrad

Quelle [9]

COP Internet

 COP_h über spez. Enthalpie. $\eta_{Verdichter} = 0,65$

log(p)-h Diagramm R134A

$$AT = 0 °C$$

 $VT = 54 °C$

Quelle [10]

Carnot: COP_{MAX} & COP_{real} von AT

$\eta_{C;WP}$	Gütegrad: $\eta_{C;WP} = 0.5$
COP_{MAX}	Entspricht Carnot-
	Wirkungsgrad (η _C)
COP_{real}	Bewerteter COP
AT	Außentemperatur
VT	Vorlauftemperatur

AT °C	VT °C	ΔΤ
10	39	29
5	46	41
0	54	54
-5	61	66
-10	68	78

 COP_{MAX} _____

(vom Kältemittel unabhängig)

Carnot: $COP_{MAX} \& COP_{real}$ von VT

$\eta_{C;WP}$	Gütegrad: $\eta_{C;WP} = 0.5$
COP_{MAX}	Entspricht Carnot-
	Wirkungsgrad (η _C)
COP_{real}	Bewerteter COP
AT	Außentemperatur
VT	Vorlauftemperatur

AT °C	VT °C	ΔΤ
10	39	29
5	46	41
0	54	54
-5	61	66
-10	68	78

(vom Kältemittel unabhängig)

$COP_{h;1,0}$ & $COP_{h;0,65}$ & Grädigkeit von AT

AT Außentemperatur VT Vorlauftemperatur

AT °C	VT °C	ΔΤ
10	39	29
5	46	41
0	54	54
-5	61	66
-10	68	78

Grädigkeit

Gradigkeit		
bei TC	5	
bei TV	5	
		$COP_{h;1,0}$
		$COP_{h;0,65}$
		$COP_{h;0,65;Gr\"{a}digkeit}$

$COP_{h;1,0}$ & $COP_{h;0,65}$ & Grädigkeit von VT

AT °C	VT °C	ΔΤ
10	39	29
5	46	41
0	54	54
-5	61	66
-10	68	78

Grädigkeit	
bei TC	5
bei TV	5

 $\begin{array}{cccc} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$

$COP_{h;1,0}$ & $COP_{h;0,65}$ & Grädigkeit von TC-TV

AT °C	VT °C	ΔΤ
10	39	29
5	46	41
0	54	54
-5	61	66
-10	68	78

Grädigkeit	
bei TC	5
bei TV	5

 $COP_{h;1,0}$ $COP_{h;0,65}$ $COP_{h;0,65;Gr\"{a}digkeit}$

Quellen

1	Strompreise 2024 vergleichen & bis 850 € sparen VERIVOX
2	Gaspreis aktuell: So viel kostet die Kilowattstunde NDR.de - Nachrichten - NDR Info
2	<u>Enthalpie – Wikipedia</u>
3	Kühlschrank in Physik Schülerlexikon Lernhelfer
4	Dietzel, Fritz: Technische Wärmelehre, Kamprath-Reihe
5	FS_Thermodynamik_und_Kaeltetechnik.pdf
6	https://waerme-mit-system.de/waermepumpe/
7	COP Wärmepumpe: Werte, Bedeutung, Berechnung Bosch (boschhomecomfort.com)
8	Vorlauftemperatur: Die Heizung optimal einstellen Vaillant
9	<u>Wärmepumpe – Wikipedia</u>
10	Log ph Diagramm online I TLK Energy (tlk-energy.de)
11	WÄRMEPUMPE: Wie geht das eigentlich? #58 Energie und Klima - YouTube
	W10 Wärmepumpe (tu-darmstadt.de)