Contents

Definition 0.1. • A set X is a **vector space** over \mathbb{K} if there exists two mappings:

$$(x,y) \in X \times X \to x + y \in X$$

 $(\alpha,x) \in \mathbb{K} \times X \to \alpha x \in X$

there exists an element of X denoted as 0 s.t. x + 0 = x for all $x \in X$, define (-x) is a vector s.t.

- A subspace of a vector space X over \mathbb{K} is any subset of X which is also a vector space over \mathbb{K} .
- Let Y and Z be two subspace of X then X is said to be the **direct sum** of Y, Z if any vector $x \in X$ can be written as

$$x = y + z$$
 $y \in Y, z \in Z$

and such a decomposition is unique.

• A subspace B is called subspace spanned by a subset A of X consisting of all finite linear combinations of vectors of A, i.e., $x \in B$ of the form $x = \sum_{i \in I} \alpha_i a_i$ where the set I is finite and $\alpha_i \in \mathbb{K}$, $a_i \in A$, we said that

$$B = \operatorname{span} A$$

- The **Hamel basis** in X is any family $\{e_i\}_{i\in I}$ of vectors $e_i \in X$ satisfying:
 - First, the family is linearly independent. It means that give any finite subfamily of $\{e_i\}_{i\in J}$ and any scalars $\alpha_j \in \mathbb{K}, j \in J$ s.t. $\sum_{j \in J} \alpha_j e_j = 0$ then $\alpha_j = 0, j \in J$.
 - Second, span $\{e_i\}_{i\in I} = X$.

Theorem 0.1. Let $X \neq \{0\}$ be a vector space.

- There exists a Hamel base of X - Let E, F be two Hamel bases of X. Then cardE = cardF.

Definition 0.2. A vector space X is finite-dimensional if there exists a finite Hamel basis of X, and its **dimension** denoted as $\dim X$.

If E is a Hamel base of X, then $\dim X = \operatorname{card} E$

Definition 0.3 (norm). Let X be a vector space over \mathbb{K} . A norm on X is a mapping $\|\cdot\|: X \to \mathbb{R}$ with: - $||x|| \ge 0$ for all $x \in X$ and ||x|| = 0 iff x = 0 - $||\alpha x|| = ||\alpha|| ||x||$ for all $\alpha \in \mathbb{K}, x \in X$ - $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$

Definition 0.4 (distance in normed vector space). Let $(X, \|\cdot\|)$ be a normed vector space, then the mapping $d: X \times X \to \mathbb{R}$ defined by d(x,y) = ||x-y|| for all $x,y \in X$ is a **distance** on X.

Proof. First we need to show that $||x|| - ||y||| \le ||x - y||$. Assume that $||x|| \ge ||y||$, then consider ||x|| = ||x - y|| + ||y||, so $||x|| - ||y|| \le ||x - y||$, as they all non-negative, $\left| \|x\| - \|y\| \right| \le \|x - y\|$ holds.

 $-d(x,y) = \|x - y\| \ge 0 - d(x,y) = 0 \implies \|x - y\| = 0 \implies x = y - d(x,y) = \|x - y\| = \|y - x\| = d(y,x) - d(x,y) = \|x - y\| = \|y - x\| = d(y,x) - d(x,y) = \|x - y\| = \|y - x\| = d(y,x) - d(x,y) = \|x - y\| = \|y - y\| = \|y$ $d(x,y) \le d(x,z) + d(y,z)$, notice that $||x-z|| + ||z-y|| \ge ||(x-z) + (z-y)|| = ||x+y||$, so for any $x,y,z \in X$, $d(x,y) \le d(x,z) + d(y,z)$

So we find that d(x,y) = ||x-y|| is truly a metric on X, so (X,d) is a metric topological space. It is also called the **norm topology** of X.

Theorem 0.2. Let X be a finite-dimensional vector space over \mathbb{K} , and let $(e_i)_{i=1}^n$ denote a basis of X:

• For each $p \in [1, \infty]$, the mapping $\|\cdot\|_p$ defined by:

$$x = \sum_{i=1}^{n} x_i e_i \in X \to ||x||_p = \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \qquad if \ p \in [1, \infty)$$

$$x = \sum_{i=1}^{n} x_i e_i \in X \to ||x||_{\infty} = \max_{1 \le i \le n} |x_i| \qquad if \ p = \infty$$

is a norm on X.

• For each $p \in [1, \infty]$, the space $(X, \|\cdot\|_p)$ is separable.

Theorem 0.3 (Holder's and Minkowski's inequalities). • Given a $p \in \mathbb{R}$ s.t. p > 1, let the real number q be defined by:

$$\frac{1}{p} + \frac{1}{q} = 1 \qquad hense \ q > 1$$

and let $(x_i)_{i=1}^{\infty}$ and $(y_i)_{i=1}^{\infty}$ be two sequences of scalers satisfying

$$\sum_{i=1}^{\infty} |x_i|^p < \infty \ and \ \sum_{i=1}^{\infty} |y_i|^q < \infty$$

Then the series $\sum_{i=1}^{\infty} |x_i y_i|$ converges and Holder's inequality holds:

$$\sum_{i=1}^{\infty} |x_i y_i| \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{\infty} |y_i|^q\right)^{1/q}$$

• Give a real number $p \ge 1$ s.t.

$$\sum_{i=1}^{\infty} |x_i|^p < \infty \ \ and \ \ \sum_{i=1}^{\infty} |y_i|^p < \infty$$

Then $\sum_{i=1}^{\infty} |x_i + y_i|^p$ converges and Minkowski's inequality holds:

$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{1/p}$$

Proof. 1. If p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\alpha\beta \le \frac{\alpha^p}{p} + \frac{\beta^q}{q}$$
 for all $\alpha > 0, \beta > 0$

To see this, note that the convexity of exponential function implies that

$$e^{\theta r + (1-\theta)s} \le \theta e^r + (1-\theta)e^s$$

for all $\theta \in (0,1)$ and $r, s \in \mathbb{R}$. Now let $\theta = \frac{1}{p}, r = p \text{Log}\alpha, s = q \text{Log}\beta$, the first inequality is proved.

2. Let $||x||_p = (\sum_{i=1}^{\infty} |x_i|^p)^{1/p}$ and $||y||_p = (\sum_{i=1}^{\infty} |y_i|^p)^{1/p}$. Let $\alpha = \frac{|x_i|}{||x||_p}$ and $\beta = \frac{|y_i|}{||y||_p}$. Then as shown above:

$$\frac{|x_iy_i|}{\|x\|_p\|y\|_q} \leq \frac{|x_i|^p}{p(\|x\|_p)^p} + \frac{|y_i|^q}{q(\|y\|_q)^q}$$

for each $i \in \mathbb{N}, i \geq 1$. Then take sum of above inequality:

$$\sum_{i=1}^{n} \left(\frac{|x_i y_i|}{\|x\|_p \|y\|_q} \right) \le \sum_{i=1}^{n} \left(\frac{|x_i|^p}{p(\|x\|_p)^p} + \frac{|y_i|^q}{q(\|y\|_q)^q} \right)$$

Notice that the right side of above:

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} \implies ||x||_p^p = \sum_{i=1}^{\infty} |x_i|^p$$

similar of $||y||_q$, so

$$\frac{\sum_{i=1}^{n}|x_{i}|^{p}}{p(\|x\|_{p})^{p}} = \frac{\sum_{i=1}^{n}|x_{i}|^{p}}{p(\sum_{i=1}^{\infty}|x_{i}|^{p})} \leq \frac{1}{p}$$

and the same as $||y||_q$, so the right side is less than $\frac{1}{p} + \frac{1}{q} = 1$, so

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q$$

holds for every $n \in \mathbb{N}$ and take the limit $n \to \infty$, the holder's inequality holds.

3. Notice that $\frac{1}{p} + \frac{1}{q} = 1 \implies p + q = pq \implies p - 1 = \frac{p}{q}$.

$$\sum_{i=1}^{n} (|x_{i}| + |y_{i}|)^{p} = \sum_{i=1}^{n} |x_{i}| (|x_{i}| + |y_{i}|)^{p-1} + \sum_{i=1}^{n} |y_{i}| (|x_{i}| + |y_{i}|)^{p-1}$$

$$\leq \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} \left(\sum_{i=1}^{n} (|x_{i}| + |y_{i}|)^{p}\right)^{1/q} + \left(\sum_{i=1}^{n} |y_{i}|^{p}\right)^{1/p} \left(\sum_{i=1}^{n} (|x_{i}| + |y_{i}|)^{p}\right)^{1/q}$$

$$= \left(\sum_{i=1}^{n} (|x_{i}| + |y_{i}|)^{p}\right)^{1/q} \left(\left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p} + \left(\sum_{i=1}^{n} |y_{i}|^{p}\right)^{1/p}\right)$$

Notice that

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} (|x_i| + |y_i|)^p\right)^{1/p}$$

so the Minkowski's inequality holds.

Proof. Now we prove that $||x||_p$ satisfies the triangle inequality.

$$||x + y||_p \le ||x||_p + ||y||_p$$

As shown above, when we prove Minkowski's inequality, before letting $n \to \infty$, we find that

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{1/p}$$

which means $||x + y||_p \le ||x||_p + ||y||_p$ holds.

Then we prove that $||x||_{\infty}$ is a norm.

$$-\|x\|_{\infty} = \max_{1 \le i \le n} |x_i| \ge 0 - \|\alpha x\|_{\infty} = \max_{1 \le i \le n} |\alpha x_i| = |\alpha| \|x\|_{\infty} - \|\alpha x\|_{\infty} = \|\alpha x\|_{\infty} - \|\alpha x\|_{\infty} = \|\alpha x\|_{\infty} - \|\alpha x\|_{\infty} = \|\alpha x\|_{\infty} - \|\alpha x\|_{\infty} - \|\alpha x\|_{\infty} - \|\alpha x\|_{\infty} = \|\alpha x\|_{\infty} - \|$$

$$||x + y||_{\infty} = \max_{1 \le i \le n} |x_i + y_i| \le \max_{1 \le i \le n} |x_i| + \max_{1 \le i \le n} |y_i|$$
$$= ||x||_{\infty} + ||y||_{\infty}$$

Notice that when p=2, $||x||_2$ is the Euclidean distance between point $x\in\mathbb{R}^n$ and 0, and the distance generated by $||x||_2$, $d(x,y)=||x-y||_2$ is the Euclidean distance between x and y.

0.0.0.1 Space C(K;Y) with K compact

Theorem 0.4. Let K be a compact topological space and let $(Y, \|\cdot\|_Y)$ be a normed vector space. Then $\mathcal{C}(K;Y)$ is a vector space with the norm $\|\cdot\|: \mathcal{C}(K;Y) \to \mathbb{R}$:

$$||f||_{\mathcal{C}} = \sup_{x \in K} ||f(x)||_{Y}$$

for each $f \in C(K;Y)$. It is called the **sup-norm** on C(K;Y).

Proof. Notice that $(Y, \|\cdot\|)$ is a metric space and a compact subset in a metric space is bounded and closed. - $\sup \|f(x)\|_Y < \infty$ and $\sup \|f(x)\|_Y \ge 0$ - $\sup \|\alpha f(x)\|_Y = |\alpha| \sup \|f(x)\|_Y$ - $\sup \|f + g\|_Y \le \sup \|f\|_Y + \sup \|g\|_Y$

Definition 0.5 (converge uniformly). A sequence $(f_n)_{n=1}^{\infty}$ of functions $f_n \in \mathcal{C}(K;Y)$ is said to **converge uniformly** if $\lim_{n\to\infty} \|f_n - f\|_{\mathcal{C}} = 0$. It means

$$\lim_{n \to \infty} \left(\sup_{x \in K} \|f_n(x) - f(x)\|_Y \right) = 0$$

Theorem 0.5. Let X be any set and let $(Y, \|\cdot\|_Y)$ be a normed vector space. Then the set $\mathcal{B}(X;Y)$ of all bounded mappings $f: X \to Y$ i.e. $f(X) \subset Y$ is a bounded subset in Y is a vector space and the function $\|\cdot\|_{\mathcal{B}}: \mathcal{B}(X;Y) \to \mathbb{R}$ defined by:

$$||f||_{\mathcal{B}} = \sup_{x \in X} ||f(x)||_{Y}$$

is a norm on $\mathcal{B}(X;Y)$.

Proof. Notice that a bounded function f over \mathbb{K} , for any $\alpha \in \mathbb{K}$, αf is still bounded and for $f, g \in \mathcal{B}(X; Y)$, f+g is still bounded.

It is easy to show that $||f||_{\mathcal{B}}$ is truly a norm on $\mathcal{B}(X;Y)$.

Definition 0.6 (local uniform convergence). Let X be a topological space and Y be a normed vector space. Then a sequence $(f_n)_{n=1}^{\infty}$ of mappings $f_n: X \to Y$ is said to converge locally uniformly to a mapping $f: X \to Y$ as $n \to \infty$ if given any $x_0 \in X$ there exists a neighborhood $V(x_0)$ of x_0 s.t.

$$\lim_{n \to \infty} \left(\sup_{x \in V(x_0)} \|f_n(x) - f(x)\|_Y \right) = 0$$

Notice that local uniform convergence and uniform convergence implies the pointwise convergence.

Theorem 0.6. Let X is a topological space and Y be a normed vector space, let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous mapping from X to Y that converges locally uniformly to a $f: X \to Y$, then f is continuous on X

Moreover, if f_n continuous at x_0 and they locally uniformly convergence to f then f is continuous at x_0 .

Proof. Assume that f is continuous at x_0 which means give $\epsilon > 0$, there exists a neighborhood $V(x_0) \in \mathcal{N}_{x_0}$ s.t. for every $x \in V(x_0)$, $||f(x_0) - f(x)||_Y \le \epsilon$.

Now suppose that $\epsilon > 0$ is given. As $(f_n) \to f$ locally uniformly. Then we can choose a $k \in \mathbb{N}$ s.t. for any $i \geq k$, we can find a neighborhood $V(x_0)$ s.t. for any $x \in V(x_0)$,

$$\sup_{x \in V(x_0)} ||f_i(x) - f(x)||_Y \le \epsilon/3$$

and as all $f_n : n \in \mathbb{N}$ is continuous at x_0 , so we can find a neighborhood of $x_0, U(x_0) \in \mathcal{N}_{\S}$, s.t. for any $x \in U(x_0)$,

$$\sup_{x \in U(x_0)} \|f_i(x) - f_i(x_0)\|_Y \le \epsilon/3$$

Then we consider the set $W(x_0) = U(x_0) \cap V(x_0) \in \mathcal{N}_{x_0}$, for any $x \in W(x_0)$:

$$||f(x) - f(x_0)||_Y \le ||f(x) - f_i(x)||_Y + ||f_i(x) - f_i(x_0)||_Y + ||f_i(x_0) - f(x_0)||_Y$$

$$\le \epsilon/3 + \epsilon/3 + \epsilon/3$$

$$= \epsilon$$

4

so if $(f_n) \to f$ locally uniformly, and f_n is continuous at x_0 for every n then f is continuous at x_0 . Moreover, if f_n is continuous at every $x \in X$ i.e. continuous at X, then f is continuous at X.

0.0.0.2 ℓ^p space and L^p space

Definition 0.7 (ℓ^p space). ℓ^p space is a normed vector space of all the infinite sequences $x = (x_i)_{i=1}^{\infty}$ of scalars $x_i \in \mathbb{K}$ that satisfy:

$$\sum_{i=1}^{\infty} |x_i|^p < \infty \quad \text{if } p \in [1, \infty)$$

$$\sup_{i>1} |x_i| < \infty \quad \text{if } p = \infty$$

For each $p \in [1, \infty]$, the set ℓ^p is a vector space with the norm $\|\cdot\|_p$:

$$x = (x_i) \in \ell^p \to ||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} \quad \text{if } p \in [1, \infty)$$
$$x = (x_i) \in \ell^\infty \to ||x||_\infty = \sup_{i \ge 1} |x_i| \quad \text{if } p = \infty$$

is a norm on ℓ^p space.

Proof. Notice that from Minkowski's inequality, when $p \in [1, \infty)$ and $\sum_{i=1}^{\infty} |x_i|^p < \infty, \sum_{i=1}^{\infty} |y_i|^p < \infty, \sum_{i=1}^{\infty} |x_i|^p = \alpha \sum_{i=1}^{\infty} |x_i|^p$ also converges, and for a finite $\alpha \in \mathbb{K}$, $\sum_{i=1}^{\infty} \alpha |x_i|^p = \alpha \sum_{i=1}^{\infty} |x_i|^p$ also converges.

And with Minkowski's inequality, we can also easily to determine that $\|\cdot\|_p$ is a norm.

Theorem 0.7. • The normed vector space ℓ^p space is separable if $p \in [1, \infty)$

• The normed vector space ℓ^p space is not separable if $p=\infty$

Proof. Let $\mathbb{K} = \mathbb{R}$, and $p \in [1, \infty)$, let

$$A = \bigcup_{n=1}^{\infty} \{ (y_i) \in \ell^p; y_i \in \mathbb{Q} \text{ for } i \le n, y_i = 0 \text{ for } i \ge n+1 \}$$

Then we show $\overline{A} = \ell^p$, notice that ℓ^p is a metric space and we only need to show that for any $x \in \ell^p$ and any $\epsilon > 0$, there exists some $y \in A$ s.t. $||x - y||_p \le \epsilon$.

Give any $x=(x_i)\in \ell^p$, there exists a $k\in\mathbb{N}$ s.t. $\sum_{i=k}^{\infty}|x_i|^p\leq \epsilon^p/2$, and there exists some $y\in A$ which means $y_i\in\mathbb{Q}$ for each i s.t. $\sum_{i=1}^{k-1}|x_i-y_i|^p\leq \epsilon^p/2$, then for these $x,y\in\ell^p$, we find that $\|x-y\|_p\leq \epsilon$.

Now give a proof of ℓ^{∞} space is not separable.

Give a set

$$B = \{(x_i) \in \ell^{\infty}; x_i = 0 \text{ or } x_i = 1, i \ge 1\}$$

is an **uncountable set** since there is a one-to-one and onto mapping:

$$(x_i) \in B \to \sum_{i=1}^{\infty} \frac{1}{2^i} x_i$$

It is one-to-one obviously and onto [0,1] by the binary representation of a real number.

Now suppose there is a $C \subset \ell^{\infty}$ s.t. $\overline{C} = \ell^{\infty}$. Then give any $x \in B$, there exists a $y(x) \in C$ s.t. $\|y(x) - x\|_{\infty} < 1/2$ then the mapping $x \in B \to y(x) \in C$ is a injection since if $x_1, x_2 \in B$ with $x_1 \neq x_2$, then $\|x_1 - x_2\|_{\infty} = 1$, now let $y(x_1) = y(x_2) = y$, we find that $\|x_1 - x_2\|_{\infty} \leq \|x_1 - y\|_{\infty} + \|y - x_2\|_{\infty}$,

then we get the contradiction. So if $x_1 \neq x_2$, $y(x_1) \neq y(x_2)$, so this mapping must be one-to-one. It means card $C \geq \text{card } B$ so C is uncountable.

Definition 0.8 $(L^p(\Omega))$. Let Ω is a open subset in \mathbb{R}^n thus measurable. Remember that the $L^1(A)$ consists of all equivalence classes of real Lebesgue-measurable functions, i.e. those measurable functions $f: \Omega \to [-\infty, \infty]$ that satisfy:

$$\int_{\Omega} |f(x)| dx < \infty$$

Notice that a function $f: \Omega \to \overline{\mathbb{R}}$ is integrable iff $\int_{\Omega} |f(x)| dx < \infty$.

Now extend this definition. Let $p \in [1, \infty)$, we let $L^p(\Omega)$ denote the set formed by all equivalence classes of measurable functions $f: \Omega \to [-\infty, \infty]$ s.t. $f' = |f|^p \in L^1(\Omega)$ which means:

$$\int_{\Omega} |f(x)|^p dx < \infty \qquad \text{for some } p \in [1, \infty)$$

Theorem 0.8 (Holder and Minkowski's inequality for functions). • Holder:

$$\frac{1}{p} + \frac{1}{q} = 1$$

$$\int_{\Omega} |f(x)|^p dx < \infty \quad and \quad \int_{\Omega} |g(x)|^q dx < \infty$$

$$\int_{\Omega} |f(x)g(x)| dx \le \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p} \left(\int_{\Omega} |g(x)|^p dx\right)^{1/q}$$

• Minkowski:

$$\int_{\Omega} |f(x)|^p dx < \infty \quad and \quad \int_{\Omega} |g(x)|^p dx < \infty$$

$$\left(\int_{\Omega} |f(x) + g(x)|^p dx \right)^{1/p} \le \left(\int_{\Omega} |f(x)|^p dx \right)^{1/p} + \left(\int_{\Omega} |g(x)|^p dx \right)^{1/p}$$

Proof. Replace the sum to integral from the sequence Holder and Minkowski's inequality.

As we defined the space $L^p(\Omega)$ above, it is easy to verify that $L^p(\Omega)$ is a vector space and $\|\cdot\|_p: f \to \mathbb{R}$ defined by:

$$||f||_p = \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p} \qquad p \in [1, \infty)$$

Now we define the space $L^{\infty}(\Omega)$.

Definition 0.9 $(L^{\infty}(\Omega) \text{ space})$. • $L^{\infty}(\Omega)$ space denote the set of all measurable functions $f: \Omega \to [\infty, \infty]$ that satisfy:

 $\inf\{C\geq 0; |f|\leq C \text{ a.e. in } \Omega\}<\infty$

• The norm $\|\cdot\|_{\infty}$ on $L^{\infty}(\Omega)$ is defined:

$$||f||_{\infty} = \inf\{C \ge 0; |f| \le C \text{ a.e. in } \Omega\}$$

Definition 0.10 (essential supremum). Give a measurable function $f: \Omega \to [-\infty, \infty]$, the extended real number

$$\inf\{C \ge 0; |f| \le C \text{ a.e. in } \Omega\} \in [0, \infty]$$

is called the **essential supremum** of f.

Notice that $L^{\infty}(\Omega)$ space consists of all equivalence class of measurable functions whose essential supremum is finite.

Theorem 0.9. Let Ω is a open subset of \mathbb{R}^n , define the space

$$C_c(\Omega) = \{ g \in C(\Omega); \text{ supp } g \text{ is compact in } \Omega \}$$

Then, for each $p \in [1, \infty)$, the subspace $C_c(\Omega)$ is dense in $L^p(\Omega)$.

Proof. To prove that $C_c(\Omega)$ is a dense set, we need to show that for every $f \in L^p(\Omega)$, give any $\epsilon > 0$, we have some $g \in C_c(\Omega)$ s.t. $||f - g||_p \le \epsilon$.

1. There exists a measurable simple function $s = s(f, \epsilon)$ s.t.

$$\mu(\lbrace x \in \Omega; s(x) \neq 0 \rbrace) < \infty \text{ and } ||f - s||_p \le \epsilon/2$$

to achieve this, assume that $f \geq 0$ then there exists a sequence of simple function with:

$$0 \le s_k \le f$$
 for all $k \ge 1$ and $(s_k) \nearrow f$ pointwise

Notice that $f \in L^p(\Omega)$, which means $\int_{\Omega} |f(x)|^p dx < \infty$. As $s_k \leq f$ holds for every $k \in \mathbb{N}$, $s_k \in L^p(\Omega)$. So $\mu(\{x \in \Omega; s_k(x) \neq 0\}) < \infty$ as the definition of the integral over a simple function.

As $(s_k) \nearrow f$, notice that $|(f - s_k)|^p \le |f|^p$ and $|f - s_k|^p \to 0$ when $k \to \infty$, using Lebesgue's dominated convergence theorem:

$$\int_{\Omega} \lim_{k \to \infty} |f - s_k|^p = \lim_{k \to \infty} \int_{\Omega} |f - s_k|^p = 0$$

so we can find some k s.t. $\int_{\Omega} |f - s_i|^p \le (\epsilon/2)^p$ for all $i \ge k$, so there exists some $s = s(f, \epsilon)$ s.t. $||f - s||_p \le \epsilon/2$.

2. Let $s = s(f, \epsilon)$ be the measurable simple function constructed in step 1. Then there exists a function $g = g(s, \epsilon) = g(f, \epsilon) \in \mathcal{C}_c(\Omega)$ s.t.

$$||s - g||_p \le \epsilon/2$$

Since $\mu(\{x \in \Omega; s(x) \neq 0\}) < \infty$, Lusin's property implies that there exists a function $g \in \mathcal{C}_c(\Omega)$ that satisfies

$$\sup_{x \in \Omega} |g(x)| \le ||s||_{\infty}$$

$$\mu(\lbrace x \in \Omega; g(x) \neq s(x) \rbrace) \leq \left(\frac{\epsilon}{4\|s\|_{\infty}}\right)^{p}$$

Then

$$||s - g||_p = \left(\int_A |s - g|^p\right)^{1/p}$$

Notice that $|s-g| \le 2||s||_{\infty}$ as $\sup |g(x)| \le ||s||_{\infty}$, and A denotes the set $\{x \in \Omega; g(x) \ne s(x)\}$, so the integral above is less than $2||s||_{\infty} \cdot \mu A \le \epsilon/2$.

As shown above, give $\epsilon > 0$ and $f \in L^p(\Omega)$ there is a $g(f, \epsilon)$ s.t. $||f - g||_p \le ||f - s_k||_p + ||s_k - g||_p \le \epsilon/2 + \epsilon/2 = \epsilon$.

Theorem 0.10. 1. $L^p(\Omega)$ is separable if $p \in [1, \infty)$ 2. $L^{\infty}(\Omega)$ is not separable.

Proof. 1. Let a $f \in L^p(\Omega)$ where $p \in [1, \infty)$ then there exists a $g = g(f, \epsilon) \in \mathcal{C}_c(\Omega)$ s.t.

$$||f - g||_p \le \epsilon/2$$

Since $K = \operatorname{supp} g$ is compact, there exists a bounded open set U s.t. $K \subset U \subset \Omega$. As U is bounded, \overline{U} is bounded too, so g is uniformly continuous on \overline{U} , then there exists $\delta_0 > 0$ s.t.

$$|g(x) - g(y)| \le \frac{\epsilon}{2(\mu(U))^{1/p}} = \epsilon'$$

for all $x, y \in \overline{U}$ s.t. $||y - x||_{\infty} < \delta_0$

As the compactness of K and the property of distance function, there exists $\delta_1 > 0$ s.t.

$$\{y \in \mathbb{R}^n; \|y - x\|_{\infty} < \delta_1\} \subset U \text{ for all } x \in K$$

Let $\delta \in \mathbb{Q}$ s.t. $0 < \delta \leq \min\{\delta_0, \delta_1\}$.

Let $(B_i)_{i \in I}$ denote the countable family formed by all open balls:

$$\left\{ y \in \mathbb{R}^n; \|x - y\|_{\infty} < \frac{\delta}{2} \text{ with } x_j = p_j \delta \text{ for some } p_j \in \mathbb{Z}, j \in [1, n] \right\}$$

Now pick the subfamily $(B_i)_{i\in I(K)}$ s.t. for any $i\in I(K)$, $B_i\cap K\neq\varnothing$. Then for each $i\in I(K)$, notice that $\delta/2$ makes sure that $\operatorname{diam}(B_i\cap K)\leq\delta\leq\delta_0$, so if $x\in K$, then $B_i\subset U$ and $|g(y_1)-g(y_2)|\leq\epsilon'$ for every $y_1,y_2\in B_i$ since the property of uniform continuous. If $x\notin K$, then as its minimum is 0, we can also pick some α_i as blow:

we pick some $\alpha_i \in \mathbb{Q}$ s.t.

$$|g(y) - \alpha_i| \le \epsilon'$$
 for all $y \in B_i$

Now we can construct a simple function:

$$h = \sum_{i \in I(K)} \alpha_i \mathbf{1}_{B_i}$$

which satisfies that $|h(x) - g(x)| \le \epsilon'$ for almost all $x \in U$ s.t.

$$||h - g||_p = \left(\int_U |h - g|^p\right)^{1/p} \le (\mu(U))^{1/p} \cdot \frac{\epsilon}{2(\mu(U))^{1/p}} = \frac{\epsilon}{2}$$

Notice that $||f - g||_p + ||g - h||_p \ge ||f - h||_p$, so $||f - h||_p \le \epsilon$ and as h is simple and $\alpha_i \in \mathbb{Q}$, so h is countable as I(K) is always a finite subset of a countable set and \mathbb{Q} is a countable set. So $L^p(\Omega)$ is separable.