

Fyzika

Časť: Laboratórne cvičenie

Laboratórna úloha č. 3:

MERANIE MOMENTU ZOTRVAČNOSTI METÓDOU FYZIKÁLNEHO KYVADLA

Akademický rok: 2023/2024

Laboratórna úloha č. 3: MERANIE MOMENTU FYZIKÁLNEHO KYVADLA

ZOTRVAČNOSTI METÓDOU

Naštudujte si uvedenú tému zo skrípt:

Kubliha, M. a kol. *Metodológia technického experimentu*. STU v Bratislave, MTF so sídlom v Trnave, 2007, ISBN 978-80-8096-00, **str. 52 - 53**.

Po naštudovaní danej problematiky zo skrípt si pozrite aj nasledujúce videá:

- https://www.youtube.com/watch?v=YiffYEpY6nk,
- https://www.youtube.com/watch?v=h_ZCoAldllo.

Ciel'

Určiť moment zotrvačnosti telesa komplikovaného tvaru (napr. ložiska) metódou fyzikálneho kyvadla a stanoviť neistotu merania.

OBSAH

- 1. Teoretický úvod k meraniu
- 2. Postup práce
- 3. Experimentálna časť
- 4. Záver

Moment zotrvačnosti *J* telesa vzhľadom na os rotácie je daný výrazom:

$$J = \int_{(m)} r^2 \mathrm{d}m, \qquad (1)$$

kde r je vzdialenosť hmotnostného elementu dm od osi rotácie.

Jednotka momentu zotrvačnosti: $[J]=1 \text{kg.m}^2$

Moment zotrvačnosti sa v technickej praxi často zisťuje experimentálne. Na tento účel je možné použiť **metódu fyzikálneho kyvadla**.

Fyzikálne kyvadlo je ľubovoľné teleso, ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza jeho ťažiskom.

Obr. 1 Fyzikálne kyvadlo

Obr. 1 Fyzikálne kyvadlo

Fyzikálne kyvadlo je teleso konečných rozmerov, a nie hmotný bod konajúci translačný pohyb po oblúku kružnice, preto musíme na popis jeho pohybu použiť pohybovú rovnicu telesa otáčajúceho sa okolo pevnej osi: $\tau_{\nu} = J\varepsilon$, (2) kde τ_{ν} je priemet momentu sily pôsobiacej na teleso do osi otáčania, J je moment zotrvačnosti a arepsilon je uhlové zrýchlenie určované vzhľadom na os otáčania.

Obr. 1 Fyzikálne kyvadlo

Po vychýlení z rovnovážnej polohy vykonáva teleso harmonické kmity opísané rovnicou:

$$J\frac{\mathrm{d}^2\varphi}{\mathrm{d}t^2} = -mga\sin\varphi, \quad (3)$$

kde φ je uhol vychýlenia z rovnovážnej polohy, m je hmotnosť telesa (ložiska), a je vzdialenosť osi otáčania od ťažiska, g je tiažové zrýchlenie.

Obr. 1 Fyzikálne kyvadlo

Predchádzajúca rovnica v prípade malých odchýlok (t. j. φ < 5°) prejde na tvar:

$$J\frac{\mathrm{d}^2\varphi}{\mathrm{d}t^2} = -mga\varphi. \tag{4}$$

Táto rovnica opisuje harmonický pohyb s uhlovou frekvenciou:

$$\omega = \sqrt{\frac{mga}{J}}.$$
 (5)

Obr. 1 Fyzikálne kyvadlo

Perióda pohybu fyzikálneho kyvadla (t. j. doba kmitu) potom je:

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{J}{mga}}.$$
 (6)

Z doby kmitu tohto kyvadla možno určiť moment zotrvačnosti *J*:

$$J = \frac{mga}{4\pi^2}T^2. \tag{7}$$

Ak chceme určiť moment zotrvačnosti J^* vzhľadom na os prechádzajúcu ťažiskom, môžeme použiť Steinerovu vetu, podľa ktorej

$$J^* = J - ma^2$$
. (8)

EXPERIMENTÁLNA ČASŤ

Prístroje a pomôcky: teleso komplikovanejšieho tvaru (napr. ložisko), stopky, váhy, posuvné meradlo, oceľové meradlo.

Postup práce

Teleso s neznámym momentom zotrvačnosti (ložisko) upevníme tak, že sa môže otáčať okolo vodorovnej osi (obr. 2).

Obr. 2 Ložisko

Postup práce

- 1. Vážením zistite hmotnosť m telesa (ložiska) a určte δm (neistota typu B).
- 2. Odmerajte priemer ložiska *d* (5-krát) a hodnoty zapíšte do tabuľky 1.
- 3. Vzdialenosť osi rotácie a od ťažiska vypočítajte ako rozdiel polovice vonkajšieho priemeru d ložiska a vzdialenosti z osi rotácie od vonkajšieho obvodu ložiska: $a = \frac{d}{2} z$ Výsledky zapíšte do tabuľky 2.
- 4. Stopkami odmerajte 10-krát dobu 25 kmitov telesa (ložiska) a zapíšte do tabuľky 3.

ložisko

Postup práce

- 5. Pre každé z týchto meraní určte dobu jedného kmitu telesa: $T = T_{25}/25$ a zapíšte do tab. 3.
- 6. Do vzťahu na výpočet momentu zotrvačnosti telesa: $J = \frac{mga}{4\pi^2} \overline{T}^2$.

dosaďte za dobu kmitu telesa aritmetický priemer zo všetkých meraní \overline{T} .

Postup práce

7. Pri vychýlení telesa z rovnovážnej polohy dbajte na to, aby výchylky boli malé, pretože vzťah:

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{J}{mga}}$$

pre dobu kmitu fyzikálneho kyvadla bol odvodený za predpokladu φ < 5°.

Postup práce

8. Moment zotrvačnosti telesa vzhľadom na os prechádzajúcu ťažiskom vypočítajte pomocou vzťahu (8):

$$J^* = J - ma^2.$$

Hmotnosť m telesa (ložiska) určte vážením. Určte δm (priame meranie - neistota typu B) a relatívnu neistotu merania hmotnosti:

$$\delta m_{\rm rel} = \frac{\delta m}{m}.100\%$$

Výsledok správne zaokrúhlite a zapíšte v tvare:

$$m = m \pm \delta dm$$
 a $\delta m_{\rm rel}$.

Tabuľka 1 Namerané hodnoty vonkajšieho priemeru ložiska ($\delta d_{\rm B} = 1~{\rm mm}$)

d_{i}	$\Delta d_i = \left(d_i - \overline{d}\right)$	$\Delta d_i^2 = \left(d_i - \overline{d}\right)^2$
[mm]	[mm]	$[mm^2]$
	d _i [mm]	$d_{i} \qquad \Delta d_{i} = (d_{i} - \overline{d})$ [mm]

Výpočty k tabuľke 1:

a) aritmetický priemer priemeru ložiska: \bar{d}

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

- b) odchýlka i-teho merania: $\Delta d_i = d_i \overline{d}$
- c) kvadrát odchýlky i-teho merania: $(\Delta d_i)^2 = (d_i \overline{d})^2$
- d) neistota merania priemeru ložiska priame meranie neistota typu A: $\sum_{r=1}^{n} (\Delta d_r)^2 = \sum_{r=1}^{n} (d_r \bar{d}_r)^2$

$$\delta d = \pm \sqrt{\frac{\sum_{i=1}^{n} (\Delta d_i)^2}{n(n-1)}} = \pm \sqrt{\frac{\sum_{i=1}^{n} (d_i - \overline{d})^2}{n(n-1)}}$$

- e) relatívna neistota meranej veličiny v %: $\delta d_{\text{rel}} = \frac{\delta d}{\overline{d}}.100\%$
- f) výsledok správne zaokrúhlite a zapíšte v tvare:

$$d = \overline{d} \pm \delta d$$
 a $\delta d_{\rm rel}$.

Tabuľka 2 Namerané hodnoty vzdialenosti z osi rotácie od vonkajšieho obvodu ložiska ($\delta z_{\rm B} = 0.05$ mm)

i	Ζ _i [mm]	$\Delta z_i = (z_i - \overline{z})$ [mm]	$\Delta z_i^2 = (z_i - \overline{z})^2$ [mm ²]
1.			
2.			
3.			
2. 3. 4. 5.			
5.			
Σ			

Výpočty k tabuľke 2:

a) aritmetický priemer vzdialenosti z:

$$\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$$

- b) odchýlka i-teho merania: $\Delta z_i = z_i \overline{z}$
- c) kvadrát odchýlky i-teho merania: $(\Delta z_i)^2 = (z_i \overline{z})^2$
- d) neistota merania vzdialenosti z priame meranie neistota typu A:

$$\delta z = \pm \sqrt{\frac{\sum_{i=1}^{n} (\Delta z_i)^2}{n(n-1)}} = \pm \sqrt{\frac{\sum_{i=1}^{n} (z_i - \overline{z})^2}{n(n-1)}}$$

- e) relatívna neistota meranej veličiny v %: $\delta z_{\text{rel}} = \frac{\delta z}{\overline{z}}.100\%$
- f) výsledok správne zaokrúhlite a zapíšte v tvare:

$$z = \overline{z} \pm \delta z$$
 a δz_{rel} .

Vypočítajte:

Vzdialenosť osi rotácie a od ťažiska ložiska:

$$a = \frac{\overline{d}}{2} - \overline{z}$$

Neistotu merania vzdialenosti a osi rotácie od ťažiska ložiska δa .

$$\delta a = \pm \sqrt{\left(\frac{\partial a}{\partial d} \, \delta d\right)^2 + \left(\frac{\partial a}{\partial z} \, \delta z\right)^2}$$

Relatívnu neistotu merania vzdialenosti a osi rotácie od ťažiska ložiska $\delta a_{\rm rel}$:

$$\delta a_{\rm rel} = \frac{\delta a}{\overline{a}}.100\%$$

Výsledok správne zaokrúhlite a zapíšte v tvare:

$$a = a \pm \delta a$$
 a $\delta a_{\rm rel}$.

Poznámka: Neistoty zaokrúhlite na dve platné číslice!!!

Tabuľka 3 Doba T_{25} kmitov a jedného kmitu T ložiska ($\delta T_{\rm B} = 0.01~{\rm s}$)

i	T_{25}	$T = T_{25}/25$	$\Delta T_i = (T_i - \overline{T})$	$\Delta T_i^2 = \left(T_i - \overline{T}\right)^2$
	[s]	[s]	[s]	$[s^2]$
1.				
2. 3.				
3.				
4.				
4. 5.				
6.				
7.				
8.				
9.				
10.				
Σ				

Výpočty k tabuľke 3:

- a) aritmetický priemer doby jedného kmitu: $\bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i$
- b) odchýlka i-teho merania: $\Delta T_i = T_i \overline{T}$
- c) kvadrát odchýlky i-teho merania: $(\Delta T_i)^2 = (T_i \overline{T})^2$
- d) neistota merania doby kmitu priame meranie neistota typu A:

$$\delta T = \pm \sqrt{\frac{\sum_{i=1}^{n} (\Delta T_i)^2}{n(n-1)}} = \pm \sqrt{\frac{\sum_{i=1}^{n} (T_i - \overline{T})^2}{n(n-1)}}$$

- e) relatívna neistota meranej veličiny v %: $\delta T_{\rm rel} = \frac{\delta T}{\bar{\tau}}.100\%$
- f) výsledok správne zaokrúhlite a zapíšte v tvare:

$$T = \overline{T} \pm \delta T$$
 a $\delta T_{\rm rel}$.

Moment zotrvačnosti *J* ložiska určte nepriamym meraním, t. j. výpočtom zo vzťahu:

$$J = \frac{mga}{4\pi^2} \bar{T}^2$$

$$g = 9.81 \text{ m.s}^{-2}$$

Neistotu merania momentu zotrvačnosti δJ určte metódou linearizácie pre viacrozmerný prípad:

$$\delta J = \pm \sqrt{\left(\frac{\partial J}{\partial m} \delta m\right)^{2} + \left(\frac{\partial J}{\partial a} \delta a\right)^{2} + \left(\frac{\partial J}{\partial T} \delta T\right)^{2}},$$

$$kde$$

$$\frac{\partial J}{\partial m} = \left|\frac{\partial J}{\partial m}\right| = \left|\frac{ga\overline{T}^{2}}{4\pi^{2}}\right|$$

$$\frac{\partial J}{\partial a} = \left|\frac{\partial J}{\partial a}\right| = \left|\frac{mg\overline{T}^{2}}{4\pi^{2}}\right|$$

$$\frac{\partial J}{\partial T} = \left|\frac{\partial J}{\partial T}\right| = \left|\frac{mga2\overline{T}}{4\pi^{2}}\right|$$

Relatívnu neistotu merania momentu zotrvačnosti $\delta J_{\rm rel}$ vypočítajte zo vzťahu:

$$\delta J_{\rm rel} = \frac{\delta J}{J}.100\%$$

Vypočítanú hodnotu momentu zotrvačnosti ložiska J a neistoty merania δJ , $\delta J_{\rm rel}$ správne zaokrúhlite a zapíšte v tvare: $J = J \pm \delta J$ a $\delta J_{\rm rel}$.

Moment zotrvačnosti J^* ložiska vzhľadom na os prechádzajúcu ťažiskom určte nepriamym meraním, t. j. výpočtom zo vzťahu:

$$J^* = J - ma^2.$$

Neistotu merania momentu zotrvačnosti δJ^* určte metódou linearizácie pre viacrozmerný prípad:

$$\delta J^* = \pm \sqrt{\left(\frac{\partial J^*}{\partial m} \delta m\right)^2 + \left(\frac{\partial J^*}{\partial a} \delta a\right)^2 + \left(\frac{\partial J^*}{\partial T} \delta T\right)^2},$$

$$kde$$

$$\frac{\partial J^*}{\partial m} = \left|\frac{\partial J^*}{\partial m}\right| = \left|\frac{ga\overline{T}^2}{4\pi^2} - a^2\right|$$

$$\frac{\partial J^*}{\partial a} = \left|\frac{\partial J^*}{\partial a}\right| = \left|\frac{mg\overline{T}^2}{4\pi^2} - 2ma\right|$$

$$\frac{\partial J^*}{\partial T} = \left|\frac{\partial J^*}{\partial T}\right| = \left|\frac{mga2\overline{T}}{4\pi^2}\right|$$

Relatívnu neistotu merania momentu zotrvačnosti $\delta J^*_{
m rel}$ vypočítajte zo vzťahu:

$$\delta J^*_{\text{rel}} = \frac{\delta J^*}{J^*}.100\%$$

Vypočítanú hodnotu momentu zotrvačnosti ložiska J^* a neistoty merania, δJ^* , $\delta J^*_{\rm rel}$ správne zaokrúhlite a zapíšte

v tvare:
$$J^* = J^* \pm \delta J^*$$
 a δJ^* _{rel}.

Poznámka: Neistoty zaokrúhlite na dve platné číslice!!!

Diskutujte o výsledkoch merania a formulujte záver.

V závere sa pokúste odpovedať na otázku:

Ktorú z veličín vo vzťahu: $J = \frac{mga}{4\pi^2} \bar{T}^2$ je potrebné merať najpresnejšie?

Vysvetlite, prečo.

Z merania vypracujte laboratórny protokol.

Vypracovaný protokol odovzdajte svojmu vyučujúcemu na nasledujúcej hodine.

Literatúra

- 1. Kubliha, M. a kol. (2007) *Metodológia technického experimentu*. STU v Bratislave, MTF so sídlom v Trnave, ISBN 978-80-8096-00, str. 52 53.
- Určenie momentu zotrvačnosti fyzikálnym kyvadlom, (video), [online] dostupné na: https://www.youtube.com/watch?v=YiffYEpY6nk> citované dňa 08.02.2024).
- Physical Pendulums and Moments of Inertia, (video), [online] dostupné na: https://www.youtube.com/watch?v=h_ZCoAldllo citované dňa 08.02.2024).

Ďakujem za pozornosť!