Review: Ecolgical Genetics

M.K. Lau

October 31, 2012

- 1. Ecological Genetics
 - (a) The genetics of traits important to survival and reporduction
 - (b) The study of phenotypic evolution in present-day populations
- 2. Evolutionary Processes
 - (a) mutation
 - (b) genetic drift
 - (c) migration
 - (d) natural selection
- 3. Adaptation = a trait that has evolved to help an organism deal with something in its environment
- 4. Population Genetics
 - inbreeding
 - mutation

- \bullet drift
- selection
- (a) Genetic Variation
 - $\bullet \ p + q = 1$
 - Hardy-Weinberg
 - diploid
 - sexual
 - discrete generations
 - allele freq same in both sexes
 - Mendellian segregation
 - Random mating
 - No mutation, migration, drift or selection
 - Proportions of AA, Aa and aa = p^2 , pq + pq, q^2
 - $\chi^2 = \sum \frac{(O-E)^2}{E}$
- (b) Random Mating
- (c) Nonrandom Mating
 - $\bullet \ \mbox{assortative mating} = \mbox{phenotype}$
 - Inbreeding and inbreeding coefficient $(F = \frac{H_0 H}{H_0})$
- (d) Changes in allele frequency
 - mutation
 - migration
 - genetic drift

- (e) fitness = success
 - gene action = genotype influences phenotype
 - dominance = one gene masks another
 - \bullet additivity = no trait masking and traits sum (AA = high, Aa = intermediate and aa = low)
 - frequency dependence = fitness of a trait depends on frequency of that trait in the population

5. Quantitative Genetics

- statistical abstractions for complex phenotypes
- variance
- \bullet correlation
- heritability
- (a) Mendelian Basis
- (b) Additive Variance
- (c) ANOVA
 - SS = $\sum (x_i \bar{x})^2$
 - MS = $\frac{\sum (x_i \bar{x})^2}{n-1}$
 - F = MSG / MSE
 - $\bullet \ V_P = V_G + V_E$
- (d) Heritability
 - $h_B^2 = \frac{V_G}{V_P}$
 - $h_N^2 = \frac{V_A}{V_P}$

- $\bullet \ h_N^2 = \frac{V_A}{V_A + V_D + V_I + V_E}$
- Parent Offspring regression = y=a+bx
- (e) Genetic Variation
- (f) Breeding Value = effect of an individual's genes on the value of the trait in its offspring (i.e. additivitity)
- (g) Phenotypic Plasticity
 - reaction norms = phenotype in different environments
 - quantitative trait differentiation = Qst = Fst (in common garden)
- (h) Multiple Subpopulations
- (i) Correlated Traits
 - phenotypic correlation = degree of correlation between two traits
 - Cov = $\sum_{i=1}^{n-1} \frac{\sum_{i=1}^{n-1} (Y_i \bar{Y})}{n-1}$
 - $r_{x,y} = \frac{Cov_{x,y}}{\sqrt{V_X V_Y}}$
- (j) Artificial Selection
 - $\bullet \ R = h^2 S$
- (k) QTL Mapping
- 6. Natural Selection on Phenotypes
 - (a) Chicago School
 - phenotype-fitness regression
 - directional (linear)
 - stabilizing (quadratic)
 - disruptive (quadratic)

- (b) Selective Agents and Targets = physical traits that selection acts on directly
- (c) Direct vs indirect selection
- (d) Correlational selection = trait x trait interaction and selection
- (e) Adaptation
 - multivariate breeder's equation = $\delta \bar{z} = G\beta$
- 7. The Future of Ecological Genetics
 - rapid evolution of invasive species
 - antibiotic resistance
 - endangered species small population sizes