InvarGenT: Implementation

BY ŁUKASZ STAFINIAK

Institute of Computer Science University of Wrocław

Abstract

InvarGenT is a proof-of-concept system for invariant generation by full type inference with Guarded Algebraic Data Types and existential types encoded as automatically generated GADTs. This implementation documentation focuses on source code, refers to separate technical reports on theory and algorithms.

1 Data Structures and Concrete Syntax

Following [1], we have the following nodes in the abstract syntax of patterns and expressions:

- p-Empty. 0: Pattern that never matches. Concrete syntax: !. Constructor: Zero.
- p-Wild. 1: Pattern that always matches. Concrete syntax: _. Constructor: One.
- p-And. $p_1 \wedge p_2$: Conjunctive pattern. Concrete syntax: e.g. p1 as p2. Constructor: PAnd.
- p-Var. x: Pattern variable. Concrete syntax: lower-case identifier e.g. x. Constructor: PVar.
- p-Cstr. $Kp_1...p_n$: Constructor pattern. Concrete syntax: e.g. K (p1, p2). Constructor:
- Var. x: Variable. Concrete syntax: lower-case identifier e.g. x. Constructor: Var. External functions are represented as variables in global environment.
- Cstr. $Ke_1...e_n$: Constructor expression. Concrete syntax: e.g. K (e1, e2). Constructor: Cons.
- App. $e_1 e_2$: Application. Concrete syntax: e.g. x y. Constructor: App.
- LetRec. letrec $x = e_1$ in e_2 : Recursive definition. Concrete syntax: e.g. let rec f = function ... in ... Constructor: Letrec.
- Abs. $\lambda(c_1...c_n)$: Function defined by cases. Concrete syntax: for single branching via fun keyword, e.g. fun x y -> f x y translates as $\lambda(x.\lambda(y.(fx)y))$; for multiple branching via match keyword, e.g. match e with ... translates as $\lambda(...)e$. Constructor: Lam.
- Clause. p.e: Branch of pattern matching. Concrete syntax: e.g. p -> e.
- CstrIntro. Does not figure in neither concrete nor abstract syntax. Scope of existential types is thought to retroactively cover the whole program.
- ExCases. $\lambda[K](p_1.e_1...p_n.e_n)$: Function defined by cases and abstracting over the type of result. Concrete syntax: function and ematch keywords e.g. function Nil -> ... | Cons (x,xs) -> ...; ematch 1 with ... Parsing introduces a fresh identifier for K. Constructor: ExLam.
- ExLetIn. let $p = e_1$ in e_2 : Elimination of existentially quantified type. Concrete syntax: e.g. let $v = f e \dots$ in ... Constructor: Letin.

We also have one sort-specific type of expression, numerals.

For type and formula connectives, we have ASCII and unicode syntactic variants (the difference is only in lexer). Quantified variables can be space or comma separated. The table below is analogous to information for expressions above. Existential type construct introduces a fresh identifier for K. The abstract syntax of types is not sort-safe, but type variables carry sorts which are inferred after parsing. Existential type occurrence in user code introduces a fresh identifier and an entry in global existential constructor environment extype_env.

2 Section

type variable	x	x		TVar
type constructor	List	List		TCons
number (type)	7	7		NCst
numeral (expr.)	7	7		Num
numerical sum (type)	a+b	a+b		Nadd
existential type	$\exists \alpha \beta [a \leqslant \beta].\tau$	ex a b [a<=b].t	$\exists a,b[a \leq b].t$	TExCons
type sort	$s_{ m ty}$	type		Type_sort
number sort	s_R	num		Num_sort
function type	$ au_1 \rightarrow au_2$	t1 -> t2	$t1 \rightarrow t2$	Fun
equation	a = b	a = b		Eqty
inequation	$a \leqslant b$	a <= b	$a \leq b$	Leq
conjunction	$\varphi_1 \wedge \varphi_2$	a=b && b=a	a=b ∧ b=a	built-in lists

Toplevel expressions (corresponding to structure items in OCaml) introduce types, type and value constructors, global variables with given type (external names) or inferred type (definitions).

	, , , , , , , , , , , , , , , , , , , ,	,
type constructor	newtype List : type * num	TypConstr
value constructor	newcons Cons : all n a. a * List(a,n)> List(a,n+1)	ValConstr
	$\texttt{newcons Cons} \; : \; \forall \texttt{n,a. a * List(a,n)} \; \longrightarrow \; \texttt{List(a,n+1)}$	
declaration	external filter : $\forall n,a. \ List(a,n) \rightarrow \exists k[k \le n]. List(a,k)$	PrimVal
rec. definition	let rec f =	LetRecVal
non-rec. definition	let v =	LetVal

For simplicity of theory and implementation, mutual non-nested recursion and or-patterns are not provided. For mutual recursion, nest one recursive definition inside another.

2 Generating and Normalizing Formulas

Test doc automation. Test 2.

Bibliography

[1] Łukasz Stafiniak. A gadt system for invariant inference. Manuscript, 2012. Available at: http://www.ii.uni.wroc.pl/~lukstafi/pubs/EGADTs.pdf