LP n° 7 **Titre**: Dynamique relativiste

Présentée par : Jean-Baptiste Bourjade Rapport écrit par : Vincent LUSSET

Correcteur: Richard Monier & Alexis Brès **Date**: 19/12/2018

Bibliographie de la leçon :						
Titre	Auteurs	Éditeur	Année			

			<i>,</i> .	•	•
D	an	α	747	пι	\sim
		(16	- 1	ш	

Niveau choisi pour la leçon: L3

Pré-requis:

- cinématique relativiste
- espace de Minkowski
- quadrivecteurs
- dynamique classique

Introduction:

Création de la cinématique relativiste → modèle encore incohérent ; exemple : PFD newtonien permet d'accélérer indéfiniment, ce qui briserait la causalité

Modèle de dynamique relativiste : non-démontré, loi fondamentale, mais cohérent avec toutes les observations

I - PFD relativiste et conséquences

1) PFD généralisés

On souhaite garder la forme du PFD ($\Sigma f = dp/dt$), en utilisant des quadrivecteurs

Première étape, définir la 4-vitesse; V = dX/dt ne convient pas, car ce n'est pas un quadrivecteur (dt dépend du référentiel) => $U = dX/d\tau = (\gamma c, \gamma v)$

(NDLR: 4-vecteurs en majuscules)

A partir de là, on peut définir le 4-vecteur impulsion : P = mU

On pose : $F = dP/d\tau = \gamma dP/dt = \gamma$

On montre:

- ♦ si β → 0, on retrouve le PFD newtonien
- \blacklozenge si $\beta \rightarrow 1$, on a : $\Sigma \mathbf{f} = \gamma \mathbf{ma}$

2) Masse relative et masse propre

L'expression précédente donne γm la masse relative, où m est la masse propre, invariant relativiste

On voit que si $v \to c$, $\gamma \to infini donc <math>a \to 0$: illustre le fait qu'on ne peut pas atteindre la vitesse de la lumière

3) Energie totale et énergie de masse

Puissance des forces : $\Sigma \mathbf{f} \cdot \mathbf{v} = \gamma d\mathbf{p}/dt \cdot \mathbf{v} \Rightarrow dP^2/dt = d(mc^2)^2/dt = 0 \Rightarrow PdP/dt = 0$

=> (après calculs) $\Sigma \mathbf{f} \cdot \mathbf{v} = d(\gamma m_0 c^2)/dt$; or $\Sigma \mathbf{f} \cdot \mathbf{v} = -dEp/dt + P_{nc}$

=> $d(\gamma m_0 c^2 + Ep)/dt = P_{nc}$: énergie relativiste

♦ si $\beta \rightarrow 0$, par DL on obtient : $d(m_0c^2 + 1/2 m_0v^2 + Ep)/dt = P_{nc}$: on a un terme supplémentaire, mc^2 , qu'on appelle énergie de masse

=> par analogie, on pose $Ec = (\gamma-1)m_0c^2$ et on a : $d(m_0c^2 + Ec + Ep)/dt = P_{nc}$

On peut poser : $E = mc^2$ avec $m = \gamma m_0$: masse variable (formule d'Einstein)

Si E augmente. l'inertie augmente

Transparent tableau des ordres de grandeur des énergies de masse vs énergie chimique et physique ; en particulier, variation de masse lors d'une réaction chimique négligeable

4) Particule de masse nulle/vitesse = c

Si on revient sur $E = \gamma m_0 c^2$, on a l'impression que si $m_0 = 0$, on a E = 0; mais si v = c, $\gamma = infini =>$ on peut avoir des particules de masse nulle allant à la vitesse c

On a alors : $P^2(E/c)^2 - p^2 = m_0^2 c^2 = 0$

En utilisant la relation de Planck, pour un photon on peut poser : $P = (h_{bar}\omega/c, h_{bar}k)$

II - Force de Lorentz et relativité

1) Enoncé

 $d\mathbf{p}/dt = q(\mathbf{E} + \mathbf{v}^B)$

2) Particule dans un champ E uniforme

(après calculs) Le PFD conduit à : $\mathbf{v} = \mathbf{p} \mathbf{c} / \operatorname{sgrt}(\mathbf{m}_0^2 \mathbf{c}^2 + \mathbf{p}^2)$

(calculs complexes des expressions de v_x et v_y , puis de x(t) et y(t))

Si on fait un DL de l'expression de v_x à t petit, on obtient une expression linéaire, ce qui correspond au cas newtonien, attendu

Si on fait tendre t vers l'infini, on a $v_x \rightarrow c$ (attendu aussi)

Par contre, on a dans ce cas $v_y \rightarrow 0$

A partir de là, on peut créer des accélérateurs

Transparent : animation d'un accélérateur linéaire ; très utilisés, en particulier dans le domaine médical

3) Particule dans un champ B uniforme

Comme la force ne travaille pas, on ne va pas changer γ , donc v est constant

On peut montrer qu'on trouve une orbite circulaire avec : R = p/qB

Transparent: synchrotron

Cas du LHC : $R = E\beta/cqB \sim 2.8$ km, soit la moitié de la valeur réelle, mais dans le LHC le champ B n'est pas présent partout. Avec B = 7 T, v diffère de c d'un écart relatif de10⁻⁸; si on voulait passer à 10⁻¹⁰ il faudrait multiplier E et R par 10

III - Collision de particules relativistes

1) Lois de conservation

Soit 2 particules qui arrivent dans une zone de choc, et deux qui en sortent ; si ce sont les mêmes particules, collision élastique, sinon, collision inélastique. Sans savoir exactement ce qui se passe dans la zone, on a des lois de conservation : $\Sigma E = 0$ et $\Sigma p = 0$

Exemple : désintégration β^+ : $p \rightarrow n + e^+ + v_e \rightarrow$ découverte du neutrino

2) Énergie de seuil

Parfois, création de paires particules-antiparticules ; respecte les lois de conservation E utilisée pour créer de l'énergie de masse

E_{seuil} = E_{minimale} des particules crées dans le référentiel du centre de masse

Transparent : animation application : tomographie par émission de positrons (PET scan)

Questions posées par l'enseignant

- ♦ comment parle-t-on de causalité en relativité ? (cône de lumière)
- ♦ y-a-t'il une différence entre référentiel galiléen et référentiel inertiel ? (non)
- ♦ un quadrivecteur a-t-il toujours une norme constante ? (la norme d'un quadrivecteur doit être un scalaire, invariant lors d'un changement de référentiel, oui)
- ♦ que représente le 3-vecteur **f** ? (force dans le référentiel d'observation) Y-a-t'il une contrainte

dessus, ou est-ce juste la force classique?

- ♦ pourquoi y-a-t'il un terme dy/dt, alors qu'on est dans un référentiel en translation uniforme ?
- ♦ le terme m_0c^2 n'est-il pas juste une constante à ajouter à Ep?
- ♦ tableau des valeurs d'énergie de masse : 10 TeV du LHC = 3 mg à 1 m.s⁻¹, n'est-ce pas ridicule ? (non car sur peu de particules)
- ♦ qu'est-ce qu'on a comme particule de masse nulle ? (photon...)
- expression de la force de Lorentz identique à la mécanique classique : quelle motivation ? Pourquoi pas de terme dépendant de γ ?
- ◆ **E** et **B** sont les composantes d'un 4-vecteur ? (4-vecteur potentiel, tenseur EM)
- ♦ pourquoi est-il naturel de parler d'EM quand on fait une leçon de relativité ? (l'EM s'exerce avec un temps de retard qui s'exprime en fonction de c, donc candidat naturel pour illustrer ; la relativité est construite pour l'EM)
- expériences montrant que dans un champ E, la vitesse sature ? (accélérateur linéaire)
- ♦ pourquoi on a surtout des accélérateurs circulaires ? (plus facile d'accélérer, sur plusieurs tours ; pour une énergie finale équivalente il faut un linéaire très long, donc très cher)
- \bullet que représente la loi de conservation $\Sigma E = 0$? (somme des énergies initiales = somme des énergies finales)
- ♦ collision β⁺ : pourquoi inélastique ? (pas les mêmes particules avant et après)
- ♦ quid des accélérateurs avec cible fixe ? (on peut montrer que c'est moins efficace énergétiquement)
- ♦ peut-on toujours définir un référentiel du centre de masse ? (oui, référentiel dans lequel la somme des impulsions vaut 0 → défini même si les masses sont nulles)
- pourquoi la conservation de l'énergie et de l'impulsion sont-elles conservées en relativité ? (invariance et symétrie par translation dans le temps et dans l'espace ; NB : ce n'est plus toujours le cas dans la théorie de l'interaction faible, mais cela n'entre pas dans le cadre de cette leçon)
- ♦ principe de l'effet Compton ? Quels rayons utilisés ? (rayons X) Quels intérêts de cette expérience ? (preuve de l'existence des photons + vérification des équations de relativité)

Commentaires donnés par l'enseignant

- ♦ il faut absolument faire plus de schémas, avec des axes, référentiels, etc ; et prendre le temps de plus expliquer, et ne pas partir dans les calculs lourds directement
- ♦ il faut également faire des graphiques d'exploitation des formules trouvées et citer des applications (expérience de Bertozzi; récemment, boson de Higgs)
- ♦ attention à bien gérer son temps pour faire une conclusion ; également avoir le temps de traiter la principale application, les collisions (partie III)
- ♦ essayer d'exploiter l'accès à internet pour des animations illustratives (ex : lors des collisions, ou la saturation de la vitesse)
- ♦ si Compton traité, lui consacrer au moins 5'
- ♦ le 4-vecteur énergie-impulsion doit être introduit avant, pas au milieu de la leçon
- ♦ mieux poser les notations (P, p, p)
- ♦ enlever l'espace de Minkowski des prérequis
- ♦ on doit s'attendre à des questions portant sur l'autre leçon de relativité (et réciproquement quand on fait la leçon de cinématique relativiste, s'attendre à des questions de dynamique relativiste)
- ♦ bien donner des ordres de grandeur dès que possible
- ♦ autre particule de masse nulle : gluon (ne pas parler du graviton, d'existence non prouvée)
- ♦ la masse relative est un concept plutôt dépassé, préférable de ne pas l'aborder

٠

Partie réservée au correcteur

Avis sur le plan présenté

Le plan est standard, mais il faut mieux gérer le temps.

Concepts clés de la leçon

Généralisation des lois de la dynamique, quadri-vecteur énergie impulsion, énergie

Concepts secondaires mais intéressants

Collisions, mouvement dans le champ (E,B)

Expériences possibles (en particulier pour l'agrégation docteur)

Essayer de trouver des simulations, animations, ...

Points délicats dans la leçon

Quadrivecteurs (utilisation, définition, notation)

Bibliographie conseillée

Introduction à la relativité restreinte, D. Langlois Introduction à la relativité restreinte, J. Hladik Polycopié de cours je JM Raimond (en ligne)