Aufgabe 1

Sei $\underline{A} = (A, \sqsubseteq)$ eine Struktur, wobei die Relation \sqsubseteq eine Halbordnung ist und es in A bzgl. \sqsubseteq ein minimales Element \bot gibt.

Zeigen Sie, dass aus der Endlichkeit von A folgt, dass A ein cpo ist.

Lösungsvorschlag Hinnerk:

Es müssen drei Bedingungen erfüllt sein, damit eine Struktur A ein cpo ist:

- a) ⊑ ist Halbordnung.
- b) In A existiert ein minimales Element.
- c) Zu jeder Kette $K \subseteq A$ existiert eine kleinste obere Schranke.

Aus der Aufgabenstellung folgt, dass Bedingung 1 (\sqsubseteq ist Halbordnungsrelation) und 2 (es gibt minimales Elemement \bot) erfüllt sind. Um die Endlichkeit von A zu beweisen, müssen wir also zeigen, dass zu jeder Kette $K \sqsubseteq A$ eine kleinste obere Schranke existiert. Aus der Endlichkeit von A folgt, dass es ein Element \top gibt, für das gilt: $\top \ge x$ für alle $x \in A$. Aus der Definition der oberen Schranke folgt, dass es eine obere Schranke gibt, wenn ein größtes Element existiert. Daraus folgt wiederum, dass es eine kleinste obere Schranke für jede Kette $K \subseteq A$ geben muss.

Aufgabe 2

Gegeben sei eine halbgeordnete Menge A, die sich grafisch wie folgt darstellen lässt:

a) Ist A ein cpo?

Lösungsvorschlag Hinnerk:

Ja, alle Kritierien sind erfüllt.

b) Ist A eine Kette?

Lösungsvorschlag Hinnerk:

Nein, die mittleren drei Elemente stehen nicht in Relation zu einander, die oberen zwei ebenso wenig.

c) Existiert eine kleinste obere Schranke von A in A?

Lösungsvorschlag Hinnerk:

Nein, da die beiden oberen Elemente augenscheinlich auf einer Höhe liegen.

Aufgabe 3

Finden Sie zwei Beispiele für Halbordnungen (A, \sqsubseteq) , die ein minimales Element besitzen aber keine cpo's sind.

Lösungsvorschlag Hinnerk:

a) $f(x) = \sqrt{x}$ für $x \in \mathbb{R}$ (Besitzt minimales Element o, ist aber nach oben nicht beschränkt.

b) $f(x) = x \text{ für } x \in \mathbb{N} \text{ (wie oben).}$

Aufgabe 4

Finden Sie ein Beispiel für eine nicht triviale, rekursive Funktionsgleichung, die mehr als eine Lösung hat. **Lösungsvorschlag Hinnerk:**

 $f(x) = \begin{cases} x, & \text{wenn } f(x) \mod 2 = x \\ 0, & \text{wenn } f(x) \mod 2 \neq x \end{cases}$ Macht das Sinn? Ist das zu Trivial? (Für 1 ist es 1, für alle anderen Werte ist es 0)