TIM 1: Espacios de medida

1.1. Álgebras y σ -álgebras

- 1. Sea \mathcal{F} una colección finita de $\mathcal{P}(X)$. Demostrar que \mathcal{F} es σ -álgebra si y sólo si \mathcal{F} es álgebra.
- **2**. Sea $X = \{a, b, c, d\}$, comprobar que \mathcal{F} es una σ -álgebra sobre X, donde

$$\mathcal{F} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\}.$$

- 3. Sean $A, B \subset X$. Describir la σ -álgebra generada por $\mathcal{C} = \{A, B\}$, es decir, $\sigma(\mathcal{C})$.
- **4**. Una colección de conjuntos $\mathcal{F} \subset \mathcal{P}(X)$ es un álgebra si y sólo si $X \in \mathcal{F}$ y \mathcal{F} es cerrada para diferencias (es decir, $A \setminus B \in \mathcal{F}$ siempre que $A, B \in \mathcal{F}$).
- **5**. Supongamos que $X \in \mathcal{F}$ y que \mathcal{F} es cerrada para la complementación y para uniones finitas disjuntas. Demostrar que \mathcal{F} no es necesariamente un álgebra.
- 6. Sea $\mathcal{F} \subset \mathcal{P}(\mathbb{R})$. Demostrar que \mathcal{F} es una σ -álgebra si y sólo si es un álgebra cerrada para uniones numerables disjuntas.
- 7. Demostrar que \mathcal{F} es una σ -álgebra sobre X si y sólo si \mathcal{F} cumple
 - (a) $X \in \mathcal{F}$
 - (b) \mathcal{F} es cerrada para diferencias.
 - (c) \mathcal{F} es cerrada para uniones numerables disjuntas.
- 8. Sea $\mathcal{F} \subset \mathcal{P}(\mathbb{R})$ la familia constituida por todos los conjuntos A tales que $x \in A$ si y sólo si $x+1 \in A$. Probar que \mathcal{F} es una σ -álgebra y que $\{x\} \notin \mathcal{F}$, para todo $x \in \mathbb{R}$.
- **9**. Se consideran las siguientes colecciones de $\mathcal{P}(X)$:

$$\mathcal{F}_1 = \{A \subset X : A \text{ es finito } \circ \mathbb{C}A \text{ es finito}\},\$$

 $\mathcal{F}_2 = \{A \subset X : A \text{ es numerable } \circ \mathbb{C}A \text{ es numerable}\},\$
 $\mathcal{F}_3 = \{A \subset X : A \subset B \circ \mathbb{C}A \subset B\},\$ donde $B \subset X \text{ es fijo.}$

(a) Demostrar que \mathcal{F}_1 es σ -álgebra cuando y sólo cuando X es finito.

- (b) Demostrar que \mathcal{F}_2 y \mathcal{F}_3 son σ -álgebras.
- 10. Demuestra o da un contraejemplo para las siguientes afirmaciones.
 - (a) La unión de álgebras no es necesariamente un álgebra.
 - (b) Si $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ y cada \mathcal{F}_n es un álgebra, entonces $\bigcup_{n>1} \mathcal{F}_n$ es un álgebra.
 - (c) La unión de σ -álgebras no es necesariamente una σ -álgebra incluso cuando $\mathcal F$ no es finito.
 - (d) Si $\{\mathcal{F}_n\}$ es una colección creciente de σ -álgebras $(\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots)$, la unión $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ puede no ser una σ -álgebra.

Sugerencia: Para los apartados (c) y (d) se puede usar el conjunto de los números naturales y σ -álgebras del tipo \mathcal{F}_3 del problema anterior.

- 11. Sea X un conjunto no vacío. Describir $\sigma(\mathcal{H})$, donde
 - (a) $\mathcal{H} = \{A_1, A_2, \dots\}$ es una partición (numerable) de X, es decir, los elementos de \mathcal{H} son dos a dos disjuntos y la unión de todos ellos es X.
 - (b) \mathcal{H} es la colección de los subconjuntos finitos de X. Distinguir si X es numerable o no.
- 12. Sea $\mathcal{E} \subset \mathcal{P}(X)$ no vacío y $B \subset X$ fijo. Consideramos el conjunto de trazas

$$\mathcal{E}_B = \{ A \cap B : A \in \mathcal{E} \}.$$

Queremos demostrar que $\sigma(\mathcal{E}_B) = \sigma(\mathcal{E})_B$ (sobre B). Para ello Demostrar:

- (a) $\sigma(\mathcal{E})_B$ es una σ -álgebra sobre B y por tanto $\sigma(\mathcal{E}_B) \subset \sigma(\mathcal{E})_B$.
- (b) $\mathcal{F} = \{ A \in \sigma(\mathcal{E}) : A \cap B \in \sigma(\mathcal{E}_B) \}$ es una σ -álgebra sobre X y por tanto $\mathcal{F} = \sigma(\mathcal{E})$.
- (c) Finalmente, $\sigma(\mathcal{E}_B) = \sigma(\mathcal{E})_B$.
- 13. Demostrar que cada una de las siguientes colecciones de intervalos genera la σ -álgebra boreliana usual sobre la recta real:

$$\{ [a,b[:a,b\in\mathbb{Q}], \{a,b]:a,b\in\mathbb{Q} \}, \{ [a,b[:a,b\in\mathbb{Q}], \{a,b]:a,b\in\mathbb{Q} \}. \}$$

$$\{] \leftarrow, a] : a \in \mathbb{Q}\}, \qquad \{] \leftarrow, a[: a \in \mathbb{Q}\}, \qquad \{[a, \rightarrow [: a \in \mathbb{Q}\}, \qquad \{]a, \rightarrow [: a \in \mathbb{Q}\}.$$

14. Sea (X, \mathcal{F}) un espacio medible y $f, g: (X, \mathcal{F}) \to \mathbb{R}$ funciones reales tales que los conjuntos

$$\{x \in X : f(x) > \lambda\}, \{x \in X : g(x) > \lambda\} \in \mathcal{F}, \text{ para todo } \lambda \in \mathbb{R}.$$

Demostrar que los siguientes conjuntos también pertenecen a \mathcal{F}

$$\{x \in X : f(x) \le \lambda\}, \{x \in X : f(x) = \lambda\}, \{x \in X : f(x) < g(x)\}.$$

1.2. Espacios de medida

- **15**. Sea (X, \mathcal{F}, μ) un espacio de medida finito y $A \in \mathcal{F}$ tal que $\mu(A) = \mu(X)$. Probar que $\mu(B) = \mu(A \cap B)$, para todo $B \in \mathcal{F}$.
- **16**. Sea (X, \mathcal{F}, μ) un espacio de medida. Demostrar que $\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B)$, para todo $A, B \in \mathcal{F}$.
- 17. Sea X un conjunto infinito no numerable. Sobre la σ -álgebra \mathcal{F} formada por los subconjuntos numerables o cuyo complementario es numerable, se define la aplicación

$$\mu(A) = \begin{cases} 0 & \text{si } A \text{ numerable,} \\ 1 & \text{si } \mathbb{C}A \text{ numerable.} \end{cases}$$

Demostrar que μ es una medida de probabilidad sobre (X, \mathcal{F}) .

- 18. Sea (X, \mathcal{F}, μ) un espacio de medida y $B \in \mathcal{F}$ un conjunto medible fijo. Consideramos la σ -álgebra $\mathcal{F} \cap B$ (ver el problema 12). Demostrar que la aplicación $\mu_B : \mathcal{F} \cap B \to [0, \infty]$ definida mediante $\mu_B(C) = \mu(C)$ es una medida sobre $(B, \mathcal{F} \cap B)$ llamada la restricción de μ a B.
- 19. Sea (X, \mathcal{F}, μ) un espacio de medida σ -finito. Demostrar que existe una partición de X, $\{B_n\}$ (los B_n son disjuntos y $\bigcup B_n = X$), tal que $\mu(B_n) < \infty$, para todo n.
- **20**. Sea X un conjunto numerable. Definimos para $A \subset X$

$$\mu(A) = \begin{cases} 0 & \text{si } A \text{ es finito} \\ \infty & \text{si } A \text{ es infinito} \end{cases}$$

- (a) Probar que μ es finitamente aditiva, pero no numerablemente aditiva.
- (b) Encontrar $\{A_n\} \subset \mathcal{P}(X)$ tal que $A_n \uparrow X$ y $\mu(A_n) = 0$, para todo n.

- **21**. Sea (X, \mathcal{F}, μ) un espacio de medida σ -finito. Sea \mathcal{G} una sub- σ -álgebra de \mathcal{F} , y ν la restricción de μ a \mathcal{G} . Probar con un ejemplo que (X, \mathcal{G}, ν) no es necesariamente σ -finito.
- **22**. Sea X un conjunto numerable y $f:X\to [0,\infty]$ una función positiva. Definimos

$$\mu(A) = \sum_{x \in A} f(x), \quad A \subset X \quad (\mu(\emptyset) = 0).$$

Demostrar que μ es una medida sobre $(X, \mathcal{P}(X))$. ¿Es σ -finita?

23. Sea X un conjunto arbitrario (posiblemente no numerable) y $f: X \to [0, \infty]$ una función positiva. Se define la suma de f(x) en X mediante

$$\sum_{x \in X} f(x) = \sup \left\{ \sum_{x \in F} f(x) : F \subset X \text{ y } F \text{ finito} \right\}.$$

Consideramos el conjunto $A = \{x \in X : f(x) > 0\}.$

- (a) Si A no es numerable, Demostrar que $\sum_{x \in X} f(x) = \infty$. Sugerencia: $A = \bigcup_{n=1}^{\infty} A_n$ con $A_n = \{x \in X : f(x) > 1/n\}$, luego existirá un A_n no numerable.
- (b) Si A es numerable, entonces $\sum_{x \in X} f(x) = \sum_{n=1}^{\infty} f(b(n))$, donde $b : \mathbb{N} \to A$ es cualquier biyección (entre \mathbb{N} y A) y la suma de la derecha se entiende como una serie usual. Sugerencia: Si $B_N = b(\{1, \dots, N\})$, cualquier F finito de A está contenido en algún B_N .
- (c) Demostrar que $\mu(B) = \sum_{x \in B} f(x)$, para $B \subset X$ es una medida sobre $(X, \mathcal{P}(X))$.

1.3. Medidas exteriores. Extensión de medidas

24. Dado un conjunto X, consideramos la aplicación

$$\mu^*(A) = \begin{cases} 0 & \text{si } A = \emptyset, \\ 1 & \text{si } A \neq \emptyset. \end{cases}$$

Demostrar que μ^* es una medida exterior y hallar los conjuntos μ^* -medibles.

25. Sea X un conjunto no numerable. Consideramos la aplicación

$$\mu^*(A) = \begin{cases} 0 & \text{si } A \text{ es numerable,} \\ 1 & \text{si } A \text{ es no numerable.} \end{cases}$$

Demostrar que μ^* es una medida exterior y hallar los conjuntos μ^* -medibles.

1.4. La medida de Lebesgue

26. Sea $A \in \mathcal{L}(\mathbb{R})$. Demostrar que m(A) = 0 si y sólo si para cada $\epsilon > 0$ existe una sucesión de intervalos $\{I_n\}$ tal que $A \subset \bigcup_{n=1}^{\infty} I_n$ y la suma de sus longitudes es menor que ϵ .

27. Sea $A \in \mathcal{L}(\mathbb{R})$ con m(A) > 0. Demostrar que para cualquier $\alpha < 1$, existe un intervalo abierto I verificando que $m(I \cap A) > \alpha m(I)$.

Sugerencia: Tener en cuenta que $m(A) = \inf \left\{ \sum_{j=1}^{\infty} m((a_j, b_j)) : A \subset \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}.$

28. Sea $f:[0,\infty)\to\mathbb{R}$ definida mediante

$$f(0) = 0,$$
 y $f(x) = x \sin \frac{1}{x},$ para $x > 0.$

Calcular la medida de Lebesgue del conjunto $A = \{x \in [0, 1/\pi] : f(x) \ge 0\}.$ Ayuda: Recordad que $\sum_{n=1}^{\infty} (-1)^{n+1}/n = \log 2$.

- **29**. Sea H un espacio afín n-1 dimensional de \mathbb{R}^n . Demostrar que m(H)=0.
- **30**. Sean $v_1, \ldots, v_n \in \mathbb{R}^n$. Calcular m(A), donde $A = \{x = \lambda_1 v_1 + \cdots + \lambda_n v_n : 0 \le \lambda_j \le 1\}$.
- **31**. Sea U un abierto acotado de \mathbb{R}^n . Supongamos que $\overline{U} \subset \lambda U$, para todo $\lambda > 1$. Demostrar que ∂U (la frontera de U) es medible Borel y que $m(\partial U) = 0$.

1.5. Medidas de Lebesgue-Stieltjes

- **32**. Sea F una función creciente y continua por la derecha y m_F la medida de Lebesgue-Stieltjes asociada. Demostrar que:

 - (a) $m_F(\{a\}) = F(a) F(a^-)$. (c) $m_F([a,b]) = F(b) F(a^-)$.
 - (b) $m_F([a,b]) = F(b^-) F(a^-)$. (d) $m_F([a,b]) = F(b^-) F(a)$.
- 33. Sea F una función no decreciente y continua por la derecha. Demostrar que el conjunto $A = \{x : m_F(\{x\}) > 0\}$ es numerable. En particular, Demostrar que el conjunto de puntos de discontinuidad de una función creciente tiene medida de Lebesgue cero.
- **34**. Consideramos la función

$$F(x) = \begin{cases} 0 & \text{si } x < 1\\ x & \text{si } 1 \le x < 3\\ 5 & \text{si } x \ge 3 \end{cases}$$

- (a) Comprobar que F es no decreciente y continua por la derecha.
- (b) Consideramos m_F , la medida de Lebesgue-Stieltjes asociada a F. Calcular:
 - (1) $m_F(\{1\})$.
- (3) $m_{\rm F}((1,3])$.
- (5) $m_F([1,3])$.

- (2) $m_F(\{2\})$.
- $(4) m_F((1,3)).$
- (6) $m_F([1,3))$.

35. Dar un ejemplo de una función de distribución F (es decir, creciente y continua por la derecha) tal que

$$m_F(|a,b|) < F(b) - F(a) < m_F([a,b]),$$

para algún $a \vee b$, siendo m_F la medida de Lebesgue-Stieltjes asociada a F.

36. Sea F(x) la función dada por

$$F(x) = \begin{cases} 0 & \text{si } x \in (-\infty, -1), \\ 1+x & \text{si } x \in [-1, 0), \\ 2+x^2 & \text{si } x \in [0, 2), \\ 9 & \text{si } x \in [2, \infty). \end{cases}$$

Calcular la medida de Lebesgue-Stieltjes correspondiente a F de los siguientes conjuntos:

(a)
$$A_1 = \{2\}.$$

(c)
$$A_3 = (-1, 0] \cup (1, 2)$$
.

(c)
$$A_3 = (-1, 0] \cup (1, 2)$$
. (e) $A_5 = \{x \in \mathbb{R} : |x| + 2x^2 > 1\}$.

(b)
$$A_2 = [-1/2, 3)$$

(b)
$$A_2 = [-1/2, 3)$$
. (d) $A_4 = [0, 1/2) \cup (1, 2]$.

1.6. El conjunto de Cantor

37. Sea G el conjunto de los números reales que se pueden representar en la forma

$$\sum_{n=1}^{\infty} c_n/5^n, \text{ donde } c_n \in \{0,4\} \text{ para todo } n.$$

Probar que m(G) = 0. ¿Cuál es el cardinal de G?

38. Demuestra por reducción al absurdo que el conjunto de Cantor no es numerable. Para ello, supongamos que $C = \{c_1, c_2, \dots\}$ donde cada $c_n \ (n \ge 1)$ puede ser escrito de forma única en base 3 como

$$c_n = 0, c_1^n c_2^n c_3^n c_4^n \cdots$$
, con $c_i^n \in \{0, 2\}$, $i = 1, 2, \dots$

Sugerencia: Usa el argumento de la diagonal de Cantor para encontrar un $c \in C - \{c_1, c_2, \dots\}$.

39. Consideramos $F(x) = \log(1+x)$ $(x \ge 0)$, y sea m_F la medida de Lebesgue-Stieltjes asociada a F. Calcular $m_F(C)$, donde C es el conjunto de Cantor.

Sugerencia 1: El conjunto de Cantor está contenido en 2^n intervalos de longitud $1/3^n$.

Sugerencia 2: Relacionar la medida m_F con m.

TIM 2: Integración en espacios de medida

2.1. Funciones medibles

40. Sea $\mathcal{F} = \{\emptyset, (-\infty, 0], (0, \infty), \mathbb{R}\}$ y sea $f : \mathbb{R} \to \mathbb{R}$ la función definida mediante

$$f(x) = \begin{cases} 0, & \text{si } x \in (-\infty, 0], \\ 1, & \text{si } x \in (0, 1], \\ 2, & \text{si } x \in (1, \infty). \end{cases}$$

- (a) ¿Es la función f \mathcal{F} -medible?
- (b) Describir todas las funciones medibles $f:(\mathbb{R},\mathcal{F})\to\mathbb{R}$.

41. Sea (X, \mathcal{F}) un espacio medible y $f, g: X \to \mathbb{R}$. Demuestra o encuentra un contraejemplo para las siguientes afirmaciones:

- (a) Si |f| es medible, entonces f es medible.
- (b) Si f^2 es medible, entonces f es medible.
- (c) Si f + g es medible, entonces f es medible o g es medible.
- (d) Si $f \cdot g$ es medible, entonces f es medible o g es medible.

42. Demostrar que una función real f es medible si y sólo si f^2 y $\{f>0\}$ son medibles.

43. Sea $f:[a,b]\to\mathbb{R}$ una función medible tal que f es diferenciable a.e. Demostrar que existe una función medible en [a,b] que es igual a f' a.e.

44. Probar que $f = \sup\{f_i : i \in I\}$ no es necesariamente medible aunque cada f_i lo sea.

45. Sea (X, \mathcal{F}, μ) un espacio de medida σ -finita y $f: X \to [0, \infty]$ una función medible. Probar que existe una sucesión $\{h_n\}$ de funciones simples con soporte (conjunto de puntos donde la función no es cero) de medida finita tal que $0 \le h_n \uparrow f$. ¿Es esta propiedad cierta si μ no es σ -finita?

Sugerencia: Si h es simple y $K \in \mathcal{F}$, $h1_K$ es simple y su soporte está contenido en K.

2.2. Límite superior e inferior

- **46**. Encontrar lím sup A_n y lím inf A_n en los siguientes casos:
 - (a) $A_n = A$, si n es par y $A_n = B$, si n es impar.

- (b) $A_n = (-2 1/n, 1]$, si n es par y $A_n = [-1, 2 + 1/n)$, si n es impar.
- (c) $A_n = [0, a_n)$, siendo $a_n = 2 + (-1)^n (1 + 1/n)$.
- (d) $A_n \uparrow A \circ A_n \downarrow A$.
- (e) Los A_n son disjuntos dos a dos.
- 47. Sean A_n y B_n subconjuntos de X. Demostrar:
 - (a) $(\limsup A_n) \cap (\limsup B_n) \supset \limsup (A_n \cap B_n)$.
 - (b) $(\limsup A_n) \cup (\limsup B_n) = \limsup (A_n \cup B_n).$
 - (c) $(\liminf A_n) \cap (\liminf B_n) = \liminf (A_n \cap B_n).$
 - (d) $(\liminf A_n) \cup (\liminf B_n) \subset \liminf (A_n \cup B_n)$.
 - (e) En (a) y (d), las inclusiones opuestas no son ciertas en general.
 - (f) $\limsup A_n \liminf A_n = \limsup (A_n A_{n+1}) = \limsup (A_{n+1} A_n).$
 - (g) Si $A_n \to A$ y $B_n \to B$, entonces $A_n \cup B_n \to A \cup B$ y $A_n \cap B_n \to A \cap B$.
- 48. Probar que $1_{\liminf A_n} = \liminf 1_{A_n}$ y $1_{\limsup A_n} = \limsup 1_{A_n}$.
- **49**. Supongamos que $\mu(\cup A_n) < \infty$. Demostrar que

$$\mu(\liminf A_n) \le \liminf \mu(A_n) \le \limsup \mu(A_n) \le \mu(\limsup A_n).$$

¿En cuál de estas desigualdades se utiliza la hipótesis del enunciado? Encontrar un ejemplo en $(\mathbb{R}, \mathcal{B}, m)$ donde los A_n sean intervalos y todas las desigualdades anteriores sean estrictas.

- **50**. Sea μ la medida de contar en $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. Construir una sucesión A_n tal que lím sup $A_n = \emptyset$, pero lím $\mu(A_n) \neq 0$.
- **51**. Sean $\{A_n\}$ conjuntos medibles tales que $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Demostrar que $\mu(\limsup A_n) = 0$. En otras palabras, casi todo elemento $x \in X$ pertenece a lo sumo a un número finito de los A_n . Dicho de otro modo, el conjunto de los puntos $x \in X$ que pertenecen a infinitos de los A_n tiene medida cero. Este resultado se conoce como el *Primer lema de Borel-Cantelli*.
- **52**. Supongamos que lím $\mu(A_n) = 0$ y $\sum_{n=1}^{\infty} \mu(A_n \cap A_{n+1}^c) < \infty$. Demostrar que se verifica $\mu(\limsup A_n) = 0$.

Sugerencia: Tener en cuenta el apartado (f) del problema 47.

2.3. Integral de una función medible

53. Sea $f: X \to \mathbb{R}$ una función medible con $f(X) = \{0, 1, 2, \dots\}$. Demostrar que

$$\int_X f \, d\mu = \sum_{n=1}^\infty \mu(\{f \ge n\}).$$

- **54**. Sea f una función medible e integrable. Demostrar que si f está acotada, entonces f^2 es también integrable. Si f no está acotada el resultado no es cierto en general. Encontrar un contraejemplo en este caso.
- **55**. Sea (X, \mathcal{F}, μ) un espacio de medida y $f \in \mathcal{L}^1(\mu)$. Demostrar que para cada $\epsilon > 0$ existe un $\delta > 0$ tal que

$$\left| \int_A f \, d\mu \right| < \epsilon$$
, siempre que $A \in \mathcal{F}$ y $\mu(A) < \delta$.

Sugerencia: Proceder por reducción al absurdo. Tomar una sucesión A_n con $\mu(A_n) < 1/2^n$ que no verifique el enunciado. Considerar $B = \limsup A_n$ y usar el primer lemma de Borel-Cantelli para llegar a una contradicción.

56. Consideramos la función

$$f(x) = \begin{cases} 0, & \text{si } x \in \mathbb{Q}, \\ \left\lfloor \frac{1}{x} \right\rfloor, & \text{si } x \in \mathbb{R} - \mathbb{Q}, \end{cases}$$

donde $\lfloor \cdot \rfloor$ es la función suelo o parte entera. Demostrar que f es medible y calcular $\int_{(0,1)} f$.

57. Sea (X, \mathcal{F}, μ) espacio de medida y $f: X \to \overline{\mathbb{R}}$ una función medible. Demostrar la desigualdad de Chebyshev, es decir, para $\epsilon > 0$ y $\alpha > 0$, se verifica

$$\mu(\{|f| \ge \epsilon\}) \le \frac{1}{\epsilon^{\alpha}} \int_X |f|^{\alpha} d\mu.$$

- **58**. Consideramos la medida delta de Dirac (concentrada en el punto a) sobre el espacio medible $(X, \mathcal{P}(X))$, es decir, $\delta_a(A) = 1_A(a)$, para $A \subset X$ y $f: X \to \overline{\mathbb{R}}$.
 - (a) ¿Cuáles son las funciones medibles en este espacio?
 - (b) Calcular su integral de una función medible cualquiera f.
 - (c) ¿Cuáles son los funciones integrables en este espacio de medida?

- **59**. En $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}))$ consideramos μ la medida de contar, es decir, $\mu(A) = \operatorname{card}(A)$.
 - (a) ¿Qué funciones son integrables? ¿Cuánto vale su integral?
 - (b) Demostrar que si $f_n \to f$ en $\mathcal{L}^1(\mu)$, entonces $f_n \to f$ (puntualmente).
 - (c) Consideramos la sucesión

$$f_n(k) = \begin{cases} 1/n, & \text{si } 1 \le k \le n, \\ 0, & \text{en otro caso.} \end{cases}$$

Demostrar que f_n converge uniformemente, pero no converge en $\mathcal{L}^1(\mu)$. Recordatorio: $\{f_n\}$ converge uniformemente a f sobre el conjunto D si para cada $\epsilon > 0$ existe un n_0 tal que para todo $n \geq n_0$, se tiene que $|f_n(x) - f(x)| < \epsilon$, para todo $x \in D$.

(d) Probar que la sucesión

$$f_n(k) = \begin{cases} 1/k, & \text{si } 1 \le k \le n, \\ 0, & \text{en otro caso,} \end{cases}$$

está en $\mathcal{L}^1(\mu)$ y converge uniformemente a una función que no está en $\mathcal{L}^1(\mu)$.

- **60**. Si f es una función medible en un espacio completo y f = g a.e., se tiene que g es medible y $\int f d\mu = \int g d\mu$.
- **61**. Calcular la integral de Lebesgue sobre el conjunto $[0, \pi/2]$ de las siguientes funciones:
 - (a) $f(x) = \sin x$.

(b)
$$f(x) = \begin{cases} \sin x, & \text{si } x \in \mathbb{Q}, \\ \cos x, & \text{si } x \notin \mathbb{Q}. \end{cases}$$

(c)
$$f(x) = \begin{cases} \sin x, & \text{si } \cos x \in \mathbb{Q}, \\ \sin^2 x, & \text{si } \cos x \notin \mathbb{Q}. \end{cases}$$

- **62**. Calcular la integral de Lebesgue sobre $(0, \infty)$ de las siguientes funciones:
 - (a) $f(x) = e^{-\lfloor x \rfloor}$.
 - (b) $f(x) = \frac{1}{|x+1||x+2|}$.
 - (c) $f(x) = \frac{1}{|x|!}$.

63. Definimos $f:[0,1] \to \mathbb{R}$ de la siguiente forma: $f(x) = \infty$, si $x \in C$, donde C es el conjunto ternario de Cantor en [0,1]; f(x) = n en cada intervalo del complementario de C de longitud $\frac{1}{3^n}$. Demostrar que f es medible Lebesgue y calcular $\int_0^1 f(x) \, dx$.

2 4. Paso al límite bajo el signo integral

- **64**. Sean $f_{2n-1} = 1_{[0,1)}$ y $f_{2n} = 1_{[1,2]}$, para $n = 1, 2, \ldots$ Comprobar que se verifica la desigual-dad estricta en el Lema de Fatou (para funciones positivas).
- **65.** Sea $f_n = \min\{f, n\}$, donde $f \ge 0$ medible. Demostrar que $\int f_n d\mu \uparrow \int f d\mu$.
- **66**. Sea (X, \mathcal{F}, μ) un espacio de medida finito. Demostrar que si $\{f_n\} \subset \mathcal{L}^1(\mu)$ verifica que f_n converge uniformemente en X a la función f, entonces $f \in L^1(\mu)$ y $\int f_n d\mu \to \int f d\mu$.
- **67**. Probar con un contraejemplo que $f_n \to f$ uniformemente en \mathbb{R} no implica necesariamente que lím $\int_{\mathbb{R}} f_n = \int_{\mathbb{R}} f$.

Sugerencia: Considerar $f_n(x) = a_n/(1+|x|)$ si $|x| \le n$ y $f_n(x) = 0$ si |x| > n, para una sucesión $a_n \downarrow 0$ apropiadamente elegida.

68. Sea $f_n: \mathbb{R} \to \mathbb{R}$ la función definida mediante

$$f_n(x) = \begin{cases} n, & \text{si } 0 < x \le \frac{1}{n}, \\ 0, & \text{en otro caso.} \end{cases}$$

Comprobar que f_n verifica el lema de Fatou (para funciones positivas) con desigualdad estricta.

- **69**. Sea f integrable sobre (X, \mathcal{F}, μ) y $\{E_n\} \subset \mathcal{F}$ tal que $E_n \downarrow E$, con $\mu(E) = 0$. Demostrar que lím $\int_{E_n} f d\mu = 0$. ¿Se pueden rebajar la hipótesis sobre f del enunciado?
- **70**. Sea $A \in \mathcal{F}$ y f > 0 medible e integrable. Comprobar que lím $\int_A f^{1/n} d\mu = \mu(A)$. Sugerencia: Usa (y vuelve a usar) el TCM.
- **71**. Sea $f: X \to [0, \infty]$ una función medible tal que $\int f d\mu = c \in (0, \infty)$. Demostrar que para $\alpha > 0$, se verifica

$$\lim_{n \to \infty} \int_X n \log \left[1 + \left(\frac{f}{n} \right)^{\alpha} \right] d\mu = \begin{cases} \infty, & \text{si } 0 < \alpha < 1, \\ c, & \text{si } \alpha = 1, \\ 0, & \text{si } \alpha > 1. \end{cases}$$

Sugerencias: Recordar que $\log(1+x) \sim x$, cuando $x \to 0$. Además, para $\alpha \ge 1$ los integrandos están mayorados por αf . Cuando $\alpha < 1$ se puede usar el lema de Fatou.

72. Comprobar la siguiente identidad:

$$\int_0^1 \frac{x^{1/3}}{1-x} \log \frac{1}{x} dx = 9 \sum_{n=0}^\infty \frac{1}{(3n+4)^2}.$$

73. Demostrar que

$$\int_0^1 \left(\frac{\log x}{1-x}\right)^2 dx = \frac{\pi^2}{3}.$$

Sugerencia: Desarrollar en serie de potencias la función $1/(1-x)^2$.

74. Sea $f:\mathbb{R}\to\mathbb{R}$ medible e integrable y consideramos $F:\mathbb{R}\to\mathbb{R}$ definida mediante

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

- (a) Probar que F(x) es continua.
- (b) Demostrar que si $x_1 < x_2 < x_3 < \cdots$, entonces $\sum_k |F(x_{k+1}) F(x_k)| \le \int_{\mathbb{R}} |f|$.

75. Para $x \geq 0$ y $n \geq 2$, comprobar que se verifica la desigualdad

$$\left(1 + \frac{x}{n}\right)^n \ge \frac{x^2}{4}.$$

Usar esta desigualdad para calcular el siguiente límite

$$\lim_{n \to \infty} \int_0^\infty \frac{dx}{(1 + \frac{x}{n})^n x^{\frac{1}{n}}}.$$

76. Consideramos la sucesión de funciones dadas por

$$f_n(x) = \frac{nx - 1}{(1 + x \log n)(1 + x^2 n \log n)}, \quad x \in (0, 1].$$

Comprobar que $\lim_{n\to\infty} f_n(x) = 0$ y, sin embargo, $\lim_{n\to\infty} \int_0^1 f_n(x) \, dx = \frac{1}{2}$. Sugerencia: Observar que $f_n(x) = \frac{-1}{x \log n + 1} + \frac{nx}{(n \log n)x^2 + 1}$.

77. Calcular directamente el límite:

$$L(a) = \lim_{n \to \infty} \int_{a}^{\infty} \frac{n}{1 + n^2 x^2} dx$$

distinguiendo los casos a>0, a=0 y a<0. ¿En cuáles de estos tres casos podemos aplicar algún teorema de paso al límite bajo el signo integral? En esos casos, ¿qué teorema o teoremas de convergencia son aplicables?

78. Calcular el siguiente límite

$$\lim_{n\to\infty} \int_0^\infty \frac{1+nx^2}{(1+x^2)^n} \, dx.$$

79. Para $t \in \mathbb{R}$, defimos

$$\varphi(t) = \int_0^\infty e^{-x^2} \cos(tx) \, dx.$$

Probar que $\varphi(t) = \frac{\sqrt{\pi}}{2} \, e^{-t^2/4}$ de las siguientes dos formas:

- (a) Justificar que $\varphi'(t) = -\frac{1}{2}t\varphi(t)$ e integrar.
- (b) Expandir el coseno en serie de potencias e integrar, justificando el paso al límite.

2 4. Espacios producto y teorema de Fubini

80. Demostrar que si (X, \mathcal{F}, μ) e (Y, \mathcal{G}, ν) son espacios de medida completos, el espacio producto $(X \times Y, \mathcal{F} \otimes \mathcal{G}, \mu \times \nu)$ no tiene por qué ser completo.

Sugerencia: Considerar $E = A \times B$, donde $\emptyset \neq A \in \mathcal{F}$ y $\mu(A) = 0$ y $B \subset Y$ con $B \notin \mathcal{G}$.

- 81. Sea μ la medida de contar sobre $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.
 - (a) Demostrar que la medida producto $\mu \times \mu$ coincide con la medida de contar en $\mathcal{P}(\mathbb{N} \times \mathbb{N})$.
 - (b) Consideramos la función

$$f(m,n) = \begin{cases} 1, & \text{si } m = n, \\ -1, & \text{si } m = n+1, \\ 0, & \text{en otro caso.} \end{cases}$$

Comprobar que las sumas iteradas

$$\sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} f(m,n) \right) \quad \text{y} \quad \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} f(m,n) \right)$$

existen, pero son distintas. ¿Contradice esto el teorema de Fubini?

- **82**. Sean $f: X \to \mathbb{R}$ \mathcal{F} -medible y $g: Y \to \mathbb{R}$ \mathcal{G} -medible. Si $h: \mathbb{R}^2 \to \mathbb{R}$ es medible Borel, entonces la función H(x,y) = h(f(x),g(y)) es $\mathcal{F} \otimes \mathcal{G}$ -medible.
- 83. Sean (X, \mathcal{F}, μ) y (Y, \mathcal{G}, ν) espacios de medida σ -finitos. Para funciones $f: X \to \mathbb{R}$ \mathcal{F} -medible y $g: Y \to \mathbb{R}$ \mathcal{G} -medible se considera la función h(x, y) = f(x)g(y).
 - (a) DeDemostrar que h es $\mathcal{F} \otimes \mathcal{G}$ -medible.
 - (b) Demostrar que si $f \in \mathcal{L}^1(\mu)$ y $g \in \mathcal{L}^1(\nu)$ entonces $h \in \mathcal{L}^1(\mu \times \nu)$ y

$$\int_{X\times Y} h(x,y) \, d(\mu \times \nu)(x,y) \, = \, \left(\int_X f(x) \, d\mu(x)\right) \, \left(\int_Y g(y) \, d\nu(y)\right).$$

- 84. Sean (X, \mathcal{F}, m) e (Y, \mathcal{G}, ν) , donde X = Y = [0, 1], $\mathcal{F} = \mathcal{B}(X)$, $\mathcal{G} = \mathcal{P}(Y)$, m es la medida de Lebesgue y ν es la medida de contar. Consideramos el espacio producto $(X \times Y, \mathcal{F} \otimes \mathcal{G}, m \times \nu)$ y el conjunto $D = \{(x, x) : x \in [0, 1]\}$.
 - (a) Demostrar que $D \in \mathcal{F} \otimes \mathcal{G}$. Sugerencia: $D = \bigcap_{1}^{\infty} D_{n}$ con $D_{n} = \bigcup_{j=1}^{n} \left[\frac{j-1}{n}, \frac{j}{n} \right] \times \left[\frac{j-1}{n}, \frac{j}{n} \right]$.
 - (b) Comprobar que

$$\int_Y \left(\int_X 1_D(x,y) dm(x) \right) d\nu(y) = 0 \qquad \text{y} \qquad \int_X \left(\int_Y 1_D(x,y) d\nu(y) \right) dm(x) = 1.$$

(c) Demostrar que $(m \times \nu)(D) = \infty$. Sugerencia: Tener en cuenta que

$$(m \times \nu)(D) = \inf \left\{ \sum_{j=1}^{\infty} m(A_j) \nu(B_j) : A_j \in \mathcal{F}, B_j \in \mathcal{G} \ y \ D \subset \bigcup_{j=1}^{\infty} A_j \times B_j \right\}.$$

- (d) ¿Contradice este ejercicio el teorema de Fubini-Tonelli?
- 85. Consideramos $f:\mathbb{R}^2 \to \mathbb{R}$ definida mediante

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2}, & \text{si } (x,y) \in [-1,1]^2 - \{(0,0)\}, \\ 0, & \text{en otro caso.} \end{cases}$$

Demostrar que sus integrales iteradas existen y valen cero. ¿Es f integrable?

86. Sea m > 0 y $f: \mathbb{R}^2 \to \mathbb{R}$ definida mediante

$$f(x,y) = \begin{cases} \frac{y^2 \sin^2 x}{x^2 (x^2 + y^2)(x^2 + y^2 + m^2)}, & \text{si } x \neq 0, \\ 0, & \text{en otro caso.} \end{cases}$$

Demostrar que f es integrable.

Sugerencia: Demostrar que $|f(x,y)| \le f_1(x)f_2(y)$, con f_1, f_2 integrables.

87. Sea $f: [-1,1] \to [0,\infty]$ una función positiva e integrable. Definimos, para $x \in (0,1]$,

$$g(x) = \frac{1}{x} \int_{-x}^{x} f(t) dt.$$

(a) Probar que $g \in \mathcal{L}^1[0,1]$ si y sólo si $f(t) \log(1/|t|)$ es integrable en [-1,1] y, en ese caso,

$$\int_0^1 g(x) \, dx = \int_{-1}^1 f(t) \log(1/|t|) \, dt.$$

- (b) Si f es integrable, pero no es positiva, ¿qué implicaciones del "si y sólo si" se mantienen?
- 88. Sean $f, g : \mathbb{R} \to \mathbb{R}$ funciones medibles Borel e integrables en \mathbb{R} .
 - (a) Probar que la función $(x,y) \mapsto f(x-y)$ es $\mathcal{B}(\mathbb{R}^2)$ -medible.
 - (b) Probar que la convolución de f y g, $(f*g)(x) := \int_{\mathbb{R}} f(x-y)g(y) dy$, está bien definida en casi todo $x \in \mathbb{R}$ y, además, $f*g \in \mathcal{L}^1$. Sugerencia: Usar el Teorema de Fubini-Tonelli.
- 89. Consideramos la función $S:[0,\infty)\to\mathbb{R}$ dada por

$$S(T) = \int_0^T \frac{\sin x}{x} \, dx.$$

- (a) Demostrar que S es uniformemente continua. Es decir, $\sup_{T\in[0,\infty)}|S(T+h)-S(T)|\to 0$, cuando $h\to 0$.
- (b) $\lim_{T\to\infty} S(T) = \pi/2$. Sugerencia: Usar que $1/x = \int_0^\infty e^{-xt} dt$ (para x > 0), el teorema de Fubini y el TCD. Por favor, comprobar que todos los teoremas se aplican correctamente.

- (c) S está acotada.
- (d) La función $f(x) = \sin x/x$ no es integrable en $(0, \infty)$, es decir,

$$\int_0^\infty \left| \frac{\sin x}{x} \right| \, dx = \infty.$$

Sugerencia: Demostrar que $\int_{n\pi}^{(n+1)\pi} \left| \frac{\sin x}{x} \right| dx \ge \frac{2}{(n+1)\pi}$.

90. Demostrar que la función $f(x,y) = e^{-y}\sin(2xy)$ es integrable para $(x,y) \in [0,1] \times [0,\infty)$, y deducir el valor de la integral

$$\int_0^\infty \frac{\sin^2 y}{y} e^{-y} \, dy.$$

Sugerencia: Calcular la integral $\int_0^1 \sin(2xy) dx$.

91. Consideramos la función definida por

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2}, & \text{si } (x,y) \in [-1,1]^2 - \{(0,0)\}, \\ 0, & \text{en otro caso.} \end{cases}$$

Demostrar que las integrales iteradas de f son iguales, pero f no es integrable.

2 5. Integración en coordenadas polares

- 92. Sean Γ y β las funciones gamma y beta de Euler, respectivamente.
 - (a) Integrando por partes muestra la ecuación funcional de Γ : $\Gamma(p+1)=p\Gamma(p)$, para p>0.
 - (b) Haz un cambio de variable adecuado para ver que

$$\Gamma(p) = 2 \int_0^\infty u^{2p-1} e^{-u^2} du.$$

- (c) Muestra que $\Gamma(1/2) = \sqrt{\pi}$. Sugerencia: Calcula $\Gamma(1/2)^2$ usando la expresión del apartado (b), el Teorema de Fubini y el cambio a coordenadas polares en el plano.
- (d) Haz un cambio de variable adecuado para ver que

$$\beta(p,q) = 2 \int_0^{\pi/2} \sin^{2p-1} v \, \cos^{2q-1} v \, dv.$$

(e) Muestra que

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

Sugerencia: Usa la sugerencia del apartado (c) y (d) para calcular $\Gamma(p)\Gamma(q)$.

93. En $(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n), m)$, determinar para qué valores de α existen y son finitas las siguientes integrales y calcular su valor en ese caso.

(a)
$$\int_{\mathbb{R}^n} \frac{dx}{(1+||x||^2)^{\alpha}}$$
.

(b)
$$\int_{\{\|x\| < R\}} \|x\|^{\alpha} dx$$
, para $R > 0$.

(c)
$$\int_{\{\|x\|<1\}} \frac{x_1^2 - x_2^2 + x_3^2 - \dots + (-1)^{n+1} x_n^2}{\|x\|^{\alpha}} dx.$$