Introduction to Computer Science:

Data Representation

Mar. 2020

Honguk Woo

• How many ones are there in 642?

Positional Notation

How many ones are there in 642?

$$600 + 40 + 2$$

or is it

$$384 + 32 + 2$$

or maybe...

$$1536 + 64 + 2$$

Positional Notation

- The base of a number determines the number of different digit symbols and the values of digit positions
- Positional notation: the rightmost digit represent its value multiplied by the base to the 0th power ..., the next digits by the 1st power, ...

```
• 6 \times 10^2 = 6 \times 100 = 600
+ 4 \times 10^1 = 4 \times 10 = 40
+ 2 \times 10^0 = 2 \times 1 = 2
= 642 in base 10
```

Positional Notation

What if 642 has the base of 13?

$$6 \times 13^{2} = 6 \times 169 = 1014$$

+ $4 \times 13^{1} = 4 \times 13 = 52$
+ $2 \times 13^{0} = 2 \times 1 = 2$
= 1068 in base 10

642 in base 13 is equivalent to 1068 in base 10

Binary

Binary is base 2 and has 2 digit symbols:

0,1

Decimal is base 10 and has 10 digit symbols:

 For a number to exist in a given base, it can only contain the digits in that base, which range from 0 up to (but not including) the base

Binary: Arithmetic

- Recall that there are only 2 digit symbols in binary, 0 and 1
- 0 + 0 = 0, 1 + 0 = 1
- 1 + 1 is 0 with a carry
- This rule is applied to every column

101111 1010111 +1001011 10100010

Binary to Octal (base 8)

- Mark groups of three (from right)
- Convert each group

10101011 is 253 in base 8

Binary to Hexadecimal

- Base 16 has 16 digits
 - 10 (0~9) plus 6 distinct symbols : A, B, C, D, E, F
- Mark groups of four (from right)
- Convert each group

10101011 is AB in base 16

Power-of-2 number system

BINARY	OCTAL	DECIMAL
0	0	0
1	1	1
10	2	2
11	3	3
100	4	4
101	5	5
110	6	6
111	7	7
1000	10	8
1001	11	9
1010	12	10

Why Don't Computers Use Base 10?

- Base 10 Number Representation
 - That's why fingers are known as "digits"
 - Natural representation for financial transactions
 - Floating point number cannot exactly represent \$1.20
 - Even carries through in scientific notation
 - 1.5213 X 10⁴
- Implementing Electronically
 - Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
 - Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
 - Messy to implement digital logic functions
 - Addition, multiplication, etc.

- Computers have storage units called binary digits or bits
- Base 2 Number Representation
- Electronic Implementation
 - · Easy to store with bistable elements
 - · Reliably transmitted on noisy and inaccurate wires
 - Low Voltage = 0, High Voltage = 1

· Straightforward implementation of arithmetic functions

Encoding Byte Values

• Byte = 8 bits

- Binary 00000000_2 to 11111111_2
- Decimal: 0_{10} to 255_{10}
- Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B or 0xfa1d37b

Hex Decimal Binary

0	0	0000
1	1	0001
1 2 3	1 2 3	0010
3		0011
4	4 5	0100
5	15)	0101
6 7	6 7	0110
		0111
8	8	1000
9	9	1001
А	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

- Each bit can be either 0 or 1, so it can represent a choice between two possibilities (or "two things")
- Two bits can represent four things

How many things can three bits represent?

How many things can four bits represent?

How many things can eight bits represent?

1 Bit	2 Bits	3 Bits	4 Bits	5 Bits
0	00	000	0000	00000
1	01	001	0001	00001
	10	010	0010	00010
	11	011	0011	00011
		100	0100	00100
		101	0101	00101
		110	0110	00110
		111	0111	00111
			1000	01000
			1001	01001
			1010	01010
			1011	01011
			1100	01100
			1101	01101
			1110	01110
			1111	01111
				10000
				10001
				10010
				10011
				10100
				10101
				10110
				10111
				11000
				11001
				11010
				11011
				11100
				11101
				11110
				11111

15

- How many bits are needed to represent 32 things? One hundred things?
- How many things can n bits represent? Why?
- What happens every time you increase the number of bits by one?

Representing Numbers

- Mapping binary code to numbers
 - Positive numbers seem ok
 - What about negative numbers, and real numbers?

8-bit Binary Representation	Numbers
0111111	127
01111110	126
	•••
0000011	3
0000010	2
0000001	1
0000000	0

Signed-magnitude number representation

- Used by humans
- The sign represents the ordering (the negatives come before the positives in ascending order)
- The digits represent the magnitude (the distance from zero)

How do we represent singed binary numbers if all we have is a bund of 1s or 0s?

8-bit binary word:

00110101 = 53

10110101 = -53

- Signed magnitude number Problem:
 - Two zeroes (positive and negative)
 - No problem for humans, but would cause unnecessary complexity in computers
- Solution: Represent integers by associating them with natural numbers
 - Half the natural numbers will represent themselves
 - The other half will represent negative integers

- Using two decimal digits (0~99), we can
 - let 0 through 49 represent 0 through 49
 - let 50 through 99 represent -50 through -1

• Called ten's complement representation, because we can use this formula to compute the representation of a negative number

Negative(I) = $10^k - I$, where k is the number of digits

• For example, -3 is Negative(3), so using two digits, its representation is Negative(3) = 100 - 3 = 97

Two's Complement

- (The binary number line is easier to read when written vertically)
- Remember our table showing how to represent natural numbers
- Do you notice something interesting about the left-most bit ?

Encoding Integers: Two's Complement

• w-bit vector : $[x_{w-1}, x_{w-2},, x_0]$

Unsigned (0, positive)

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

- e.g., 4bit binary -> integer
 - 1111
 - Unsigned :
 - Two's Complement :

Two's Complement (negative, 0, positive)

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

$$Sign Bit \atop \text{(most significant bit)}$$

Range of unsigned integers

• Unsigned, 4 bits

```
1111 (15, max)
:
:
0111 (7)
:
:
0000 (0, min)
```

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Range of integers

• Two's complement, 4 bits

```
0111 (7, max)
:
:
0000 (0)
1111 (-1)
:
:
1000 (-8, min)
```

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Two's Complement

Addition and subtraction are the same

```
-127 10000001
+ 1 0000001
-126 10000010
```

What if the computed value won't fit?

Number Overflow

• If each value is stored using 8 bits, then 127 + 3 overflows:

```
01111111
+ 00000011
10000010
```

- Apparently, 127 + 3 is -126. Remember when we said we would always fail in our attempt to map an infinite world onto a finite machine?
- Most computers use 32 or 64 bits for integers, but there are always infinitely many that aren't represented

Real Numbers

• Real numbers are numbers with a whole (integer) part and a **fractional** part (either of which may be zero)

104.32

0.999999

357.0

3.14159

• In decimal, positions to the right of the decimal point are the tenths, hundredths, thousandths, etc.:

$$10^{-1}$$
, 10^{-2} , 10^{-3} ...

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{=-i}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

```
Value Representation
5 3/4 101.11<sub>2</sub>
2 7/8 10.111<sub>2</sub>
1 7/16 1.0111<sub>2</sub>
63/64 0.111111<sub>2</sub>
```

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111..., just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0ε

Fractional Binary Numbers: Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

Value	Representation
1/3	$0.01010101[01]{2}$
1/5	$0.001100110011[0011]{2}$
1/10	0.0001100110011[0011]2

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large ones?)

Representing Real Numbers

Scientific notation

- A form of floating-point representation in which the decimal point is kept to the right of the leftmost digit
- 12001.32708 is 1.200132708E+4 in scientific notation (E+4 is how computers display $x10^4$)
- What is 123.332 in scientific notation?
- What is 0.0034 in scientific notation?

Floating Point Representation

Numerical Form:

$$(-1)^s * M * 2^E$$

- Sign bit s determines whether number is negative or positive
- Significand (fraction, mantissa) M normally a fractional value in range [1,2)
- Exponent E weights value by power of two

Encoding

- MSB is sign bit s
- exp field encodes E (Exponent, but is not equal to E)
- frac field encodes M (Mantissa, but is not equal to M)

IEEE Floating Point Number

• Single precision: 32 bits

• Double precision: 64 bits

S	ехр	frac
1	11-bits	52-bits

s exp frac

1 8-bits 23-bits

 $v = (-1)^s M 2^E$

- Value: float F = 15213.0;
 - Numerical form $15213_{10} = 11101101101101_2$

 $= 1.1101101101101_2 \times 2^{13}$

•Is
$$(x + y) + z = x + (y + z)$$
?

$$(1e20 + -1e20) + 3.14 --> 3.14$$

Representing Text

The number of characters to represent is finite,
 so list them all and assign each a binary string

Character set

- A list of characters and the codes used to represent each one
- Computer manufacturers agreed to standardize

The ASCII Character Set

- ASCII stands for American Standard Code for Information Interchange
- ASCII originally used seven bits to represent each character, allowing for 128 unique characters
- Later extended ASCII evolved so that all eight bits were used
- How many characters could be represented?

ASCII Character Set Mapping

0	[MULL]	20	[SPACE]	40	(9)	60	
	[START OF HEADING]	21 22		41	A	61	a
2	[START OF TEXT]	22		42	В	62	b
	[END OF TEXT]	23	#	43	C	63	C
	[END OF TRANSMISSION]				D		d
	[ENQUIRY]	25 26	%	45	E	65	e
	[ACKNOWLEDGE]	26	Æ	45 46	F	66	•
	[BELL]	27		47	G	67	g
	[BACKSPACE]	26	(48	н	68	h
	[HORIZONTAL TAB]						
	[LONE FEED]	2A 2B		4A 4B	1	6A	J
	[VERTICAL TAB]	28	+		K	6B	k
C	[FORM FEED]	2C		4C	L.	6C	1
D	[CARRIAGE RETURN]	20		40	M	6D	m
	[SHIFT OUT]				N		
	(SHIFT IN)	2F 30	I	4F	0	6F	a
10	[DATA LINK ESCAPE]	30	0	50	P	70	P
11	[DEVICE CONTROL 1]	31	1	51	Q	71	q
12	[DEVICE CONTROL 2]	32	2	52	R	70 71 72	r e
	[DEVICE CONTROL 3]		3				
14	[DEVICE CONTROL 4]	34	4	54	T	74	£
15	[NEGATIVE ACKNOWLEDGE]	35	5	55	U	74 75	u
16	[SYNCHRONOUS IDLE]	36	6	56	V	76	¥
17	[ENG OF TRANS, BLOCK]	37	7	57	W	77	W
	[CANCEL]				Х		x
19	[END OF MEDIUM]	39	9	59 5A	Y	79 7A 7B 7C	У
1A	[SUBSTITUTE]	ЭА		5A	Z	7A	Z
18	[ESCAPE]	3B	1	5B		78	£
10	[FILE SEPARATOR]	3C	<	5C	1	7C	
	[GROUP SEPARATOR]				1		}
1E	[RECORD SEPARATOR]	3E	>	5E		7E	2
1F	[LINIT SEPARATOR]	3F	7	5F		7F	[DEL]

The Unicode Character Set

- ASCII is not enough for international use
- One Unicode mapping uses 16 bits per character
- The first 256 characters correspond exactly to the extended ASCII character set

The Unicode Character Set

Code (Hex)	Character	Source
0041	Α	English (Latin)
042F	Я	Russian (Cyrillic)
0E09	ฉ	Thai
13EA	æ9	Cherokee
211E	P_{χ}	Letterlike symbols
21CC	÷	Arrows
282F	• • • • • • • • • • • • • • • • • • • •	Braille
345F	梹	Chinese/Japanese/ Korean (common)

FIGURE 3.6 A few characters in the Unicode character set

Example Data Representations

Sizes of C Objects (in Bytes)

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
pointer	4	8	8

Accessing Words in Memory

- Addresses specify Byte locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

32-bit Words	64-bit Words	Bytes	Addr.
A ddr			0000
Addr =			0001
0000			0002
	Addr =		0003
	0000		0004
Addr =			0005
0004			0006
			0007
			0008
Addr =			0009
0008	Addr		0010
	=		0011
	0008		0012
Addr =			0013
0012			0014
			0015
			43

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

&	0	1
0	0	0
1	0	1

- Not
 - $^{\sim}$ A = 1 when A=0

~	
0	1
1	0

A&B = 1 when both A=1 and B=1 • A|B = 1 when either A=1 or B=1

	0	1
0	0	1
1	1	1

- Exclusive-Or (Xor)
 - $A^B = 1$ when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

Boolean Algebra

- Operate on Bit Vectors
 - Operations applied bit-wise

All of the Properties of Boolean Algebra Apply

Discussion

```
(1e20 + -1e20) + 3.14 --> 3.14
1e20 + (-1e20 + 3.14) --> 0
```

Why do we have these results?

```
(gdb) print (1e20 + -1e20) + 3.14

$5 = 3.1400000000000001

(gdb) print 1e20 + (-1e20 + 3.14)

$6 = 0

(gdb) print 3.14

$7 = 3.1400000000000001

(gdb)
```