

WEST**Freeform Search**

Database:

Term:

Display: **Documents in Display Format:** Starting with Number

Generate: Hit List Hit Count Image

Search History**Today's Date: 10/1/2001**

<u>DB Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
USPT,EPAB,DWPI	18 not att	6	<u>L9</u>
USPT,EPAB,DWPI	muta\$8 near10 (recombinase\$1 near5 site\$1)	16	<u>L8</u>
USPT,EPAB,DWPI	l6 not (lox or att)	213	<u>L7</u>
USPT,EPAB,DWPI	muta\$8 near10 (recombin\$5 adj3 site\$1)	344	<u>L6</u>
USPT,EPAB,DWPI	l3 not lox	483	<u>L5</u>
USPT,EPAB,DWPI	l1 not lox	690	<u>L4</u>
USPT,EPAB,DWPI	l1 not att	508	<u>L3</u>
USPT,EPAB,DWPI	l1 near10 att	5	<u>L2</u>
USPT,EPAB,DWPI	muta\$8 near10 (recombin\$5 near5 site\$1)	742	<u>L1</u>

L10 ANSWER 2 OF 3 CAPLUS COPYRIG 2001 ACS

AN 1987:97068 CAPLUS

DN 106:97068

TI Mutational analysis of integrase arm-type binding sites of bacteriophage lambda. Integration and excision involve distinct interactions of integrase with arm-type sites

AU Bauer, Carl E.; Hesse, Steven D.; Gumpert, Richard I.; Gardner, Jeffrey F.

CS Dep. Microbiol., Univ. Illinois, Urbana, IL, 61801, USA

SO J. Mol. Biol. (1986), 192(3), 513-27

CODEN: JMOBAK; ISSN: 0022-2836

DT Journal

LA English

AB Integrative recombination between specific attachment (att) regions of the bacteriophage lambda genome (attP) and the Escherichia coli genome (attB) results in a prophage flanked by the hybrid recombinant sites attL and attR. Each att site contains sequences to which proteins involved in recombination bind. Using site-directed mutagenesis, a related set of point mutations was constructed within each of the five Int arm-type binding sites located within attP, attL and attR. Footprint analyses of binding demonstrate that mutating the arm-type sites significantly disrupts the binding of Int. **Recombination** analyses of **mutant att** sites in vivo and in vitro demonstrate that only three wild-type arm-type sites within attP are required for efficient integrative recombination. Similar analyses demonstrate that efficient excision can occur with two other different sets of wild-type arm-type sites in attL and attR. Integrative and excisive recombination may involve interactions of Int with distinct and different subsets of arm-type sites.

AN 1997:504771 CAPLUS

DN 127:215643

TI Molecular engineering with the FRT sequence of the yeast 2. μ m plasmid:
[cir.degree.] segregant enrichment by counterselection for 2. μ m
site-specific recombination

AU Storici, Francesca; Bruschi, Carlo V.

CS Microbiology Group, ICGEB, AREA Science Park, Padriciano 99, I-34012,
Trieste, Italy

SO Gene (1997), 195(2), 245-255 *sh2147*
CODEN: GENED6; ISSN: 0378-1119

PB Elsevier

DT Journal

LA English

IT 195130-43-9

RL: BUU (Biological use, unclassified); PRP (Properties); BIOL (Biological
study); USES (Uses)

(BglII site-contg. **mutant FRT** sequence; mol.

engineering with FRT sequence of yeast 2. μ m plasmid: [cir.degree.]
segregant enrichment by counterselection for 2. μ m site-specific
recombination)

IT 195130-42-8

RL: BUU (Biological use, unclassified); PRP (Properties); BIOL (Biological
study); USES (Uses)

(XhoI site-contg. **mutant FRT** sequence; mol.

engineering with FRT sequence of yeast 2. μ m plasmid: [cir.degree.]
segregant enrichment by counterselection for 2. μ m site-specific
recombination)

OK

L13 ANSWER 10 OF 11 CAPLUS COPYRIGHT 2001 ACS DUPLICATE 5
AN 1994:647354 CAPLUS
DN 121:247354
TI Use of Mutated FLP Recognition Target (FRT) Sites for the Exchange of Expression Cassettes at Defined Chromosomal Loci
AU Schlaake, Thomas; Bode, Juergen
CS Gesellschaft fuer Biotechnologische Forschung mbH, Braunschweig-Stoeckheim, D-38124, Germany
SO Biochemistry (1994), 33(43), 12746-51
CODEN: BICAW; ISSN: 0006-2960
DT Journal
LA English
AB Using the FLP/FRT system for site-specific recombination and the wild-type recognition site (FRT) in conjunction with certain **mutant** FRT sites, it becomes possible to provoke, with high yield, a double-reciprocal crossover event in cultured mammalian cells. It is demonstrated that this technol. enables a targeting of expression cassettes to appropriate chromosomal ref. sites in the recipient cell to improve the concepts of reverse genetics. The design of **mutant** FRT sites promoting such a process will be delineated. Our results show that the five spacer mutations tested are functional as the wild-type but differ in the extent of their cross-recombination, which has to be minimized for their simultaneous usage.
IT Mammal
(FLP/FRT system for site-specific recombination and the wild-type recognition site (FRT) with certain **mutant** FRT sites cause, with high yield, a double-reciprocal crossover event in cultured mammalian cells)
IT Recombination, genetic
(double-reciprocal; FLP/FRT system for site-specific recombination and the wild-type recognition site (FRT) with certain **mutant** FRT sites cause, with high yield, a double-reciprocal crossover event in cultured mammalian cells)
IT Recombination, genetic
(site-specific, FLP/FRT system for site-specific recombination and the wild-type recognition site (FRT) with certain **mutant** FRT sites cause, with high yield, a double-reciprocal crossover event in cultured mammalian cells)

=>

QF501.052

L9 . ANSWER 22 OF 24 CAPLUS COPYRIGHT 2001 ACS
AN 1982:434047 CAPLUS
DN 97:34047
TI Biochemical analysis of att-defective mutants of the phage lambda site-specific recombination system
AU Ross, Wilma; Shulman, Marc; Landy, Arthur
CS Div. Biol. Med., Brown Univ., Providence, RI, 02912, USA
SO J. Mol. Biol. (1982), 156(3), 505-29
CODEN: JMOBAK; ISSN: 0022-2836
DT Journal
LA English
ST phage lambda **att mutant** sequence; DNA sequence lambda **att mutant**; recombination site specific lambda att; protein gene int binding lambda

L9 ANSWER 24 OF 24 CAPLUS COPYRIGHT 2001 ACS
AN 1971:136879 CAPLUS
DN 74:136879
TI Deletion mutants of bacteriophage lambda. II. Genetic properties of att-defective mutants
AU Parkinson, John S.
CS Div. Biol., California Inst. Technol., Pasadena, Calif., USA
SO J. Mol. Biol. (1971), 56(2), 385-401
CODEN: JMOBAK
DT Journal
LA English
AB Viable, integration-defective deletion mutants of phage .lambda. were exmd. with the technique of Int-promoted recombination between phages. The types of mutants found and their properties are consistent with a 3-component model of att.phi.. The results show that att.phi. contains a unique locus for integration cross-overs which is bordered on each side by recognition sequences essential for normal integration. The role of these recognition sequences in integration was studied by analyzing the pattern of Int-promoted recombination between phage contg. various types of **mutant att** sites. It was found that the integration system of .lambda. can function with a variety of defective att sites; however, no simple pattern could be deduced from these results. Evidently, the .lambda. integration system is considerably more complex than was at first believed, and very unlike systems of generalized recombination.

=>