## CSC263 Week 6

Larry Zhang

#### **Announcements**

PS4 marks out, class average 70.3%

#### This week

- → QuickSort and analysis
- → Randomized QuickSort

→ Randomized algorithms in general

## QuickSort

## Background

Invented by **Tony Hoare** in 1960

Very commonly used sorting algorithm. When implemented well, can be about 2-3 times faster than merge sort and heapsort.



Invented **NULL pointer** in 1965.
Apologized for it in 2009

## QuickSort: the idea

→ **Partition** an array

pick a **pivot** (the last one)





**Recursively** partition the sub-arrays **before** and **after** the pivot.

#### **Base case:**

1 sorted

Read textbook Chapter 7 for details of the Partition operation

## Worst-case Analysis of QuickSort

**T(n)**: the total number of **comparisons** made

For simplicity, assume all elements are distinct



Claim 1. Each element in **A** can be chosen as **pivot at most once**.

A pivot never goes into a sub-array on which a recursive call is made.

Claim 2. Elements are **only** compared to **pivots**.

That's what partition is all about -- comparing with pivot.



Claim 3. Any **pair** (a, b) in A, they are compared with each other **at most once**.

The only possible one happens when **a or b** is chosen as a **pivot** and the other is compared to it; after being the pivot, the pivot one will be out of the market and never compare with anyone anymore.

So, the total number of **comparisons** is **no more than** the **total number of pairs**.

So, the total number of **comparisons** is **no more than** the **total number of pairs**.

$$T(n) \le \binom{n}{2} = \frac{n(n-1)}{2}$$

$$T(n) \in \mathcal{O}(n^2)$$

Next, show  $T(n) \in \Omega(n^2)$ 

Show 
$$T(n) \in \Omega(n^2)$$

i.e., the **worst-case** running time is **lower-bounded** by some cn<sup>2</sup>

How do you show the **tallest** person in the room is **lower-bounded** by **1 meter**?

Just find **one** person who is taller than 1m

so, just find **one input** for which the running time is some cn<sup>2</sup>

so, just find **one input** for which the running time is some **cn<sup>2</sup>** 



i.e., find one input that results in awful partitions (everything on one side).

1 2 3 4 5 6 7 8

#### **IRONY:**

The worst input for QuickSort is an already sorted array.

Remember that we always pick the last one as pivot.

### Calculate the number of comparisons

1 2 3 4 5 6 7 8

Choose pivot **A[n]**, then **n-1** comparisons

Recurse to subarray, pivot A[n-1], then n-2 comps

Recursive to subarray, pivot A[n-2], then n-3 comps

Total # of comps:

$$(n-1) + (n-2) + \dots + 1 = \frac{n(n-1)}{2}$$

## So, the worst-case runtime

$$T(n) \ge \frac{n(n-1)}{2}$$

$$T(n) \in \Omega(n^2)$$

already shown  $T(n) \in \mathcal{O}(n^2)$ 

so, 
$$T(n) \in \Theta(n^2)$$

$$T(n) \in \Theta(n^2)$$

What other sorting algorithms have **n²** worst-case running time?

(The stupidest) Bubble Sort!



(a) Is QuickSort really "quick"?

Yes, in average-case.

# **Average-case** Analysis of QuickSort

O(n log n)



## Average over what?

Sample space and input distribution

All **permutations** of array **[1, 2, ..., n]**, and each permutation appears **equally likely**.

Not the only choice of sample space, but it is a representative one.

## What to compute?

Let X be the random variable representing the **number of comparisons** performed on a sample array drawn from the sample space.

We want to compute **E[X]**.

#### An indicator random variable!

array is a permutation of [1, 2, ..., n]

$$X_{ij} = \begin{cases} 1 & \text{if the values } i \text{ and } j \text{ are compared} \\ 0 & \text{otherwise} \end{cases}$$

So the total number of comparisons:

$$X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$$
 sum over all possible pairs

$$X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$$

$$E[X] = E \left| \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij} \right|$$

$$=\sum_{i=1}\sum_{j=i+1}E[X_{ij}]$$
 because IRV

i = 1, j = i + 1

Just need to figure this out!

$$=\sum\sum \Pr(i \text{ and } j \text{ are compared})$$

Pr(i and j are compared)

Note: i < j

Think about the sorted sub-sequence

$$Z_{ij}: i, i+1, \ldots, j$$

A Clever Claim: *i* and *j* are compared if and only if, among all elements in  $Z_{ij}$ , the first element to be picked as a **pivot** is **either** *i* **or** *j*.

$$Z_{ij}: i, i+1, \ldots, j$$

Claim: *i* and *j* are compared if and only if, among all elements in  $Z_{ij}$ , the first element to be picked as a **pivot** is **either** *i* **or** *j*.

#### **Proof:**

The "only if": suppose the first one picked as pivot as some k that is between i and j,... then i and j will be separated into different partitions and will never meet each other.

The "**if**": if **i** is chosen as pivot (the **first one** among **Z**ij), then **j** will be compared to pivot **i** for sure, because nobody could have possibly separated them yet!

Similar argument for first choosing j

$$Z_{ij}:i,i+1,\ldots,j$$

Claim: *i* and *j* are compared if and only if, among all elements in  $Z_{ij}$ , the first element to be picked as a **pivot** is **either** *i* **or** *j*.

Pr(i and j are compared)

=  $Pr(i \text{ or } j \text{ is the first among } Z_{ij} \text{ chosen as pivot})$ 

$$= \frac{2}{j-i+1}$$

There are *j-i+1* numbers in *Zij*, and each of them is **equally likely** to be chosen as the first pivot.

$$X = \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij}$$

$$E[X] = E \left| \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij} \right|$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}]$$

i = 1 j = i + 1

We have figured this out!

$$=\sum \sum \Pr(i \text{ and } j \text{ are compared})$$

$$E[X] = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \Pr(i \text{ and } j \text{ are compared})$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

 $\in \mathcal{O}(n\log n)$ 

**Analysis Over!** 

Something close to

$$n\sum_{k=1}^{n} \frac{1}{k}$$

## Summary

The average-case runtime (**E[X]**) of QuickSort is **O(n log n)**.

The worst-case runtime was  $\Theta(n^2)$ .

How do we make sure to get average-case and avoid worst-case?

We do Randomization.

## CSC263 Week 6

Thursday

#### **Announcement**

- → Next week: reading week
- → Week after next week: Midterm
  - Feb 26 4-6pm, EX200 / EX300
  - ◆ 8.5"x11" aid-sheet, handwritten on one side
  - ◆ If have conflict, fill in this form by tomorrow <a href="http://www.cdf.toronto.edu/~csc263h/winter/tests.shtml">http://www.cdf.toronto.edu/~csc263h/winter/tests.shtml</a>
- → Pre-test office hour
  - ◆ Feb 26, 11-1pm, 2-4pm, BA5287
  - Also go to Francois and Michelle's office hours

## **Recap Tuesday**

### QuickSort Analysis

- $\rightarrow$  Worst-case runtime  $\Theta(n^2)$ 
  - worst input: already sorted array
- → Average-case runtime O(n log n)
  - Assume permutations of [1, 2, ..., n] chosen uniformly at random

### However, in real life...

The assumption of uniform randomness is NOT really true, because it is often impossible for us to know what the input distribution really is.

## QuickSort(A)

Ever worse, if the person who provides the inputs is **malicious**, they can totally only provide worst-inputs and guarantees worst-case runtime.



The theoretical O(nlog n) performance is no way guaranteed in real life.

## How can we get some guaranteed performance in real life?

- → We shuffle the input array "uniformly randomly", so that after shuffling the arrays look like drawn from a uniform distribution
- → Even the malicious person's always-worst inputs will be shuffled to be like uniformly distributed
- → This makes the **assumption** in the average-case analysis **true**
- → So we are guaranteed the O(n log n) expected runtime

Randomize-QuickSort(A):
 permute A uniformly randomly
 QuickSort(A)

How exactly do we perform the permutation so that we can prove that it's going to be like uniform distribution? (Read Chapter 5.3)



## Randomized Algorithms

# Use randomization to guarantee expected performance

We do it everyday.







#### Two types of randomized algorithms

"Las Vegas" algorithm

→ Deterministic **answer**, random **runtime** 

"Monte Carlo" algorithm

→ Deterministic **runtime**, random **answer** 

Randomized-QuickSort is a ... Las Vegas algorithm

# An Example of Monte Carlo Algorithm

"Equality Testing"

## The problem

Given two binary numbers  $\mathbf{x}$  and  $\mathbf{y}$ , decide whether  $\mathbf{x} = \mathbf{y}$ .



No kidding, what if the **size** of **x** and **y** are **10TB** each?

The above code needs to compare ~10<sup>14</sup> bits.

Can we do better?

Why assuming x and y are of the same length?

Let n = len(x) = len(y) be the length of x and y.

Randomly choose a **prime number**  $p \le n^2$ , then  $len(p) \le log_2(n^2) = 2log_2(n)$  then compare  $(x \mod p)$  and  $(y \mod p)$  i.e., **return**  $(x \mod p) == (y \mod p)$ 

Need to compare at most 2log(n) bits.

But, does it give the correct answer?

 $\log_2(10^{14}) \approx 46.5$ 

**Huge improvement on runtime!** 

## Does it give the correct answer?

If **(x mod p) ≠ (y mod p)**, then...

Must be  $x \neq y$ , our answer is correct **for sure**.

If  $(x \mod p) = (y \mod p)$ , then...

Could be x = y or  $x \ne y$ , so our answer **might be** correct.

**Correct with what probability?** 

What's the probability of a wrong answer?

#### Prime number theorem

In range [1, m], there are roughly m/ln(m) prime numbers.

So in range [1, n²], there are n²/ln(n²) = n²/2ln(n) prime numbers.

How many (**bad**) primes in [1,  $n^2$ ] satisfy (**x mod p**) = (**y mod p**) even if  $x \neq y$ ?

At most n

 $(x \mod p) = (y \mod p) \Leftrightarrow |x - y| \text{ is a multiple of p, i.e.,}$  p is a divisor of |x - y|.

 $|x - y| < 2^n$  (n-bit binary #) so it has no more than n prime divisors (otherwise it will be larger than  $2^n$ ).

#### **So...**

Out of the **n²/2ln(n)** prime numbers we choose from, at most **n** of them are **bad**.

If we choose a **good** prime, the algorithm gives correct answer for sure.

If we choose a **bad** prime, the algorithm may give a wrong answer.

So the prob of wrong answer is less than

$$\frac{n}{n^2/(2\ln n)} = \frac{2\ln n}{n}$$

# Error probability of our Monte Carlo algorithm

$$\Pr(\text{error}) \le \frac{2 \ln n}{n}$$

When  $n = 10^{14}$  (10TB) Pr(error)  $\leq 0.00000000000644$ 

#### **Performance comparison (n = 10TB)**

The **regular** algorithm **x** == **y** 

- → Perform 10<sup>14</sup> comparisons
- → Error probability: 0

The Monte Carlo algorithm (x mod p) == (y mod p)

- → Perform < 100 comparisons
- → Error probability: 0.000000000000644

If your boss says: "This error probability is too high!"

Run it **twice**: Perform < 200 comparisons

## Summary

#### Randomized algorithms

- → Guarantees expected performance
- → Make algorithm less vulnerable to malicious inputs

#### Monte Carlo algorithms

→ Gain time efficiency by sacrificing some correctness.

#### **Tutorial tomorrow**

A mock-up midterm test!

### Weekly feedback form

Let us know about your experience with A1 (what's good / bad), so A2 can be made more likeable!

http://goo.gl/forms/S9yie3597B