"Wealth Distribution and Monetary Policy"

Valerio Pieroni

IDEA, UAB and BSE

Introduction

How does wealth inequality shape the transmission of monetary policy to household consumption?

- Existing studies mostly emphasize the role of low-liquidity households.
- Most of these households are in the bottom 50% of the wealth distribution.
- In advanced economies wealth is highly concentrated at the top.
- Macroeconomic impact of top wealth groups?

Contribution

• Use the joint distribution of income and wealth to quantify the impact of different wealth groups on the aggregate consumption response to MP.

Methods:

- Quantitative HANK model.
- Calibrate and validate the model with US micro data (SCF and PSID).
- Leverage the model to analyze the impact of different wealth groups on:
 - Aggregate consumption response to monetary policy.
 - Transmission mechanism of monetary policy.

Findings

- 1. Heterogeneous income and consumption responses across wealth groups:
 - Households at the tails of the wealth distribution exhibit the largest responses.
- 2. Top wealth groups substantially shape aggregate consumption response.
 - Top 10 explains more than one-third of the aggregate response.
 - Wealthy households show large responses to monetary policy shocks.
 - Have sizable consumption shares.
- 3. Top wealth groups matter for the propagation of monetary policy:
 - Interest income channel and persistence of labor income channel.

Literature

- Quantitative work on monetary policy and household heterogeneity: Kaplan, Moll, and Violante (2018), Gornemann, Kuester, and Nakajima (2021), Auclert, Rognlie, and Straub (2020).
- Interactions between inequality and monetary policy: Luetticke (2021), Bilbiie, Kanzig, and Surico (2019), Auclert (2019).
- Literature on wealth inequality: Castañeda, Díaz-Giménez, and Ríos-Rull (2003), Poschke, Kaymak, and Leung (2021).
- Heterogeneous agent economies: Alves, Kaplan, Moll, and Violante (2020), Debortoli and Galì (2022), Bilbiie (2021).
- Empirical work on effects of monetary policy across wealth distribution: Holm, Paul, and Tischbirek (2020), Slacaleky, Tristani, and Violante (2020).

Model

Households

• Markets are incomplete, given states $x=(a,e,\rho)$ households solve

$$\max_{(c_t, n_t)} \mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t, n_t) dt,$$
s.t. $da_t = (w_t e_t n_t + r_t a_t + d_t - c_t) dt,$

$$a_t \ge -\phi.$$
(H.1)

- Let ψ_t be the cross-sectional distribution over the state space X.
- ullet Total firms' profits D_t are distributed across households according to

$$d_t = \left(e_t / \int_X e_t d\psi_t\right) D_t.$$

• High-income households receive a larger share of profits.

Firms

• The representative firm solve

$$\max_{Y_{it}} p_t Y_t - \int_0^1 p_{it} Y_{it} di, \quad \text{s.t.} \quad Y_t = \left(\int_0^1 Y_{it}^{\frac{\varepsilon - 1}{\varepsilon}} di \right)^{\frac{\varepsilon}{\varepsilon - 1}}.$$
 (F.1)

• Input producers solve

$$\min_{K_{it}, N_{it}} w_t N_{it} + r_t^k K_{it}, \quad \text{s.t.} \quad Y_{it} = F(K_{it}, N_{it}), \tag{F.2}$$

$$\max_{\dot{p}_{it}} \int_{0}^{\infty} \left[\exp\left(-\int_{0}^{t} i_{s} ds\right) \left((p_{it} - m_{it})Y_{it} - \Phi_{t}\left(\frac{\dot{p}_{it}}{p_{it}}\right)\right) \right] dt$$
 (F.3)
$$\text{s.t. } Y_{it} = \left(\frac{p_{it}}{p_{t}}\right)^{-\varepsilon} Y_{t}.$$

• $\mu = \varepsilon/(\varepsilon - 1)$ with $\varepsilon > 1$, m_{it} , i_t are nominal marginal costs and interest rate.

Financial sector and monetary policy

- The investment fund owns the economy capital stock K_t
- The fund rents capital to the input producers and invests in new capital.
- Let $\iota_t = I_t/K_t$, the investment problem is

$$V_0 := \max_{\iota_t} \int_0^\infty \left[\exp\left(-\int_0^t r_s ds\right) \left((r_t^k - \iota_t) K_t - \chi_t(\iota_t) \right) \right] dt$$
 (F.4)
$$\text{s.t. } \dot{K}_t = (\iota_t - \delta) K_t.$$

- The market value of capital is given by $V_t = q_t K_t$.
- Taylor rule $i_t = r + \phi_{\pi} \pi_t + v_t$ with an interest rate policy $v_t = e^{-\eta t} v_0$.

Equilibrium

Definition 1. The equilibrium is (c_t, da_t, n_t) , $(K_t, N_t, Y_t, I_t, C_t, R_t)$, $(r_t, r_t^k, q_t, w_t, \pi_t)$:

- 1. Households solve (H.1).
- 2. Firms solve (F.1), (F.2), (F.3), (F.4).
- 3. Markets clear

$$V_t = \int_X a_t d\psi_t,$$

$$N_t = \int_X e_t n_t d\psi_t.$$

- 4. Monetary policy follows a Taylor rule.
- 5. The sequence of distributions satisfies aggregate consistency conditions.

Recursive formulation using PDEs solved numerically with global methods.

Parametrization

Calibration strategy

- Two challenges:
 - Match wealth distribution including its Pareto tail.
 - Jointly match aggregate wealth holdings and average MPC.
- To match micro evidence combine:
 - Extraordinary earning states as in Castañeda, Díaz-Giménez, and Ríos-Rull (2003), Poschke, Kaymak, and Leung (2021).
 - Ex-ante heterogeneous discount rates ρ_1, ρ_2 with proportions p_1, p_2 .
- Functional forms: CRRA utility function, Cobb-Douglas production function, quadratic (ivestment and price) adjustment costs.

Data

- Calibration is carried out at quarterly time frequency for the US economy.
- The main data source is the Survey of Consumer Finances (SCF) in 2004.¹
- Earnings: wages and self-employment income.
- Wealth: net worth without home equity.

¹In particular, the extract from the SCF 2004 in Kaplan, Moll, and Violante (2018).

Calibration

- Externally calibrated: Preferences, technology and New Keynesian block.
- Internally calibrated parameters: $\rho_1, \rho_2, p_1, e_1, e_2, \lambda_1, \lambda_2, \theta_1, \kappa$.
- Targeted moments:
 - Wealth-output ratio, aggregate return to wealth.
 - Gini coefficients of earnings, income, and wealth.
 - Top 0,1%,1% earning shares.
 - Overall fraction of low-liquidity households.
 - Peak of investment to output response about 2.

(table) (H2M)

Model fit

Table 1: Targeted statistics

Targeted Statistics	Data	Model
Wealth-output ratio	2.55	2.8
Aggregate return on wealth	.065	.055
Fraction with $a = \phi$	0.3	0.27
Gini wealth	0.88	0.88
Gini earnings	0.59	0.59
Gini income	0.61	0.59
Top 0.1% earnings share	6	6
Top 1% earnings share	16	14

(model fit)

Top shares

Marginal distributions

Capital income shares

- The model generates realistic capital income shares across wealth groups.
- Limitation: share of the top 1% in the model too high. (JointDist)

Marginal propensities to consume

- Average fraction of a transfer consumed in a quarter or in a year
 - I find 13% over one quarter and 50% over a year out of a \$500 transfer.
 - Quantitative HANK models at lower bound of empirical estimates.²

²Respectively Gornemann, Kuester, and Nakajima (2021), Hagedorn, Manovskii, and Mitman (2019), Kaplan, Moll, and Violante (2018) find 15% (Q), 33% (Y), 12% (Q), 40% (Y), and 16% (Q) 33% (Y). These studies typically set a quarterly empirical benchmark 15%-25% out of transfers between \$500 and \$1000 (Parker, Souleles, Johnson, and McClelland (2013), Broda and Parker (2014), Fagereng, Holm, and Natvik (2021)).

Quantitative Analysis

Macro responses to monetary policy

• 25 basis point or 1% annualized interest rate cut, $v_0 = -.0025$.

Heterogeneous responses to monetary policy

Aggregate consumption

- Households at the top have a large impact on the aggregate response.
- The response at the top is 0.16% without the top 1%.

Monetary policy transmission

$$dC_t = \int_0^\infty \frac{\partial C_t}{\partial r_s} dr_s ds + \int_0^\infty \frac{\partial C_t}{\partial w_s} dw_s ds.$$

Conclusions

Main messages:

- Wealth concentration at the top matters for aggregate dynamics:
- Wealthy households substantial impact on aggregate consumption response.
- Top wealth groups shape transmission channels of monetary policy.

Extensions:

• Additional channels relevant at the top, e.g. dividends and capital gains.

Thank you!

References

- Aguiar, Mark, Mark Bils, and Corina Boar (2021). "Who Are the Hand-to-Mouth?" Working Papers.
- Alves, Felipe, Greg Kaplan, Benjamin Moll, and Gianluca Violante (2020). "A Further Look at the Propagation of Monetary Policy Shocks in HANK".
- Auclert, Adrien (2019). "Monetary Policy and the Redistribution Channel". In: *American Economic Review* 109 (6), pp. 2333–2367.
- Auclert, Adrien, Matthew Rognlie, and Ludwig Straub (2020). "Micro Jumps, Macro Humps: Monetary Policy and Business Cycles in an Estimated HANK Model". Working Papers.
- Bilbiie, Florin (2021). "Monetary Policy and Heterogeneity: An Analytical Framework". Working Papers.

- Bilbiie, Florin, Diego Kanzig, and Paolo Surico (2019). "Capital, Income Inequality, and Consumption: the Missing Link". Working Papers.
- Broda, Christian and Jonathan Parker (2014). "The Economic Stimulus Payments of 2008 and the Aggregate Demand for Consumption." In: *Journal of Monetary Economics* 68 (S), S20–S36.
- Castañeda, Ana, Javier Díaz-Giménez, and José-Vícotr Ríos-Rull (2003). "Accounting for the U.S. Earnings and Wealth Inequality". In: *Journal of Political Economy* 111 (4), pp. 818–857.
- Debortoli, Davide and Jordi Galì (2022). "Idiosyncratic Income Risk and Aggregate Fluctuations". Working paper.
- Fagereng, Andreas, Martin Holm, and Gisle J. Natvik (2021). "MPC Heterogeneity and Household Balance Sheets." Working Papers.

- Gornemann, Nils, Keith Kuester, and Makoto Nakajima (2021). "Doves for the Rich, Hawks for the Poor? Distributional Consequences of Systematic Monetary Policy". Working Papers.
- Hagedorn, Marcus, Iourii Manovskii, and Kurt Mitman (2019). "The Fiscal Multiplier". Working Papers.
- Holm, Martin, Pascal Paul, and Andreas Tischbirek (2020). "The Transmission of Monetary Policy under the Microscope". Working Papers.
- Kaplan, Greg, Benjamin Moll, and Gianluca Violante (2018). "Monetary Policy According to HANK". In: *American Economic Review* 108 (5), pp. 697–743.
- Luetticke, Ralph (2021). "Transmission of Monetary Policy with Heterogeneity in Household Portfolios". In: *American Economic Journal: Macroeconomics* 13 (2), pp. 1–25.

- Parker, Jonathan, Nicholas Souleles, David Johnson, and Robert McClelland (2013). "Consumer Spending and the Economic Stimulus Payments of 2008." In: *American Economic Review* 103 (6), pp. 2530–53.
- Poschke, Markus, Barış Kaymak, and David Leung (2021). "Accounting for wealth concentration in the US". Working Papers.
- Slacaleky, Jiri, Oreste Tristani, and Gianluca Violante (2020). "Household Balance Sheet Channels of Monetary Policy: A Back of the Envelope Calculation for the Euro Area". In: *Journal of Economic Dynamics and Control* 115.
- Weidner, Justin, Greg Kaplan, and Gianluca Violante (2014). "The Wealthy-Hand-to-Mouth". In: *Brookings Papers on Economic Activity* 45 (1), pp. 77–153.

Appendices

Table 2: Model parameters

Parameter	Description	Value	Source
Households			
γ	CRRA/Inverse IES	1	External
u	Frisch elasticity of labor supply	1	External
ρ_1,ρ_2	Individual discount rates (p.a.)	8%, 14%	Internally calibrated
ϕ	Borrowing limit	0.5	External
λ_e	Arrival rate normal states	1	External
$ u_e$	Mean reversion coeff.	0.0263	External
σ_e	S. d. of innovations	0.2	External
$ heta_1$	Transition probability to e_1	0.6	Internally calibrated
λ_1	Arrival rate top states	0.00045	Internally calibrated
λ_2	Arrival rate leave top states	0.8	Internally calibrated
e_1,e_2	Top earnings states	50, 350	Internally calibrated
p_1	Fraction of patient types	0.1	Internally calibrated

Table 3: Model parameters

Parameter	Description	Value	Source
Firms and policy			
heta	Capital elasticity	0.33	External
δ	Depreciation rate (p.a.)	5%	External
Ψ	Price adjustment cost	100	PC slope of 0.1
arepsilon	Intermediate goods elasticity	10	Profit share of 0.1
κ	Investment adjustment cost	16	Internally calibrated
ϕ_π	Taylor coeff.	1.25	External

Variables definition

- Assets: durables net of real estate, deposits, bonds, public and private equity.
- Liabilities: overdraft debt and consumer credit.
- Earnings: wages and business income.
- Income: sum of earnings, interest and dividend income, and capital gains.
- Consumption: food at home and away from home, trips, recreation activities, education, child care, health, clothing, insurance, and utilities.

Low-liquidity households

- Let b be liquid asset holdings, y monthly income, $\phi = y$.
- A low liquidity household has either

$$b \ge 0$$
 and $b \le y/2$,

$$b < 0$$
 and $b \le y/2 - \phi = -y/2$.

- Capture kinks in budget set around zero and ϕ .
- 1/2 is due to the assumption that resources are consumed at constant rate.
- Overstate low-liwquidity households if use before tax income.
- Understate low-liquidity households if start period with positive savings.

Low-liquidity households across the wealth distribution

	Bottom 30	Bottom 50	Next 40	Top 10
Between shares	47	71	25	4
Within shares	70	50	20	13
vvitilli sitares	70	30	20	13

- I find that in the SCF 36% of the households are liquidity constrained.³
- Shares of low-liquidity households between and within each wealth decile.
- These numbers do not substantially change if I include home equity.

³Aguiar, Bils, and Boar (2021) using PSID find 40%, Weidner, Kaplan, and Violante (2014) find 30%.

Labor income process

Labor income risk e_t follows a Poisson process:

- Households switch between normal states
 - Arrival rate λ_e , conditional distribution F_e , stationary distribution ϕ_e .
 - \bullet F_e is characterized by a stochastic transition matrix.
 - This matrix follows from an AR(1) process with parameters $1 \nu_e, \sigma_e$.
- Jumps from normal states to extraordinary states e_1, e_2
 - Arrival rate λ_1 and transition probabilities θ_1, θ_2 .
 - Switch back to normal at rate λ_2 and draw a new state from ϕ_e .

Income dynamics

• The estimated kurtosis is around 9 in the model and 17.8 in the data.

Wealth distribution

- Wealth relative to average earnings.
- Fraction households close to a=0 approximately 26% in model and data.

Wealth distribution

Wealth statistics	Data	Model	Wealth statistics	Data	Model
Mean wealth	4.2	4.7	90th percentile	7.3	8
Median wealth	0.3	0.2	95th percentile	14.2	14.9
75th percentile	2	2.2	99th percentile	66.8	58.8

Model fit

The discount rates ρ_1, ρ_2 imply respectively

- Discount factors of 0.98, 0.96.
- Each preference type represent 10%, 90% of the population.

Labor income process:

- Top states e_1 , e_2 are 27, 193 times the average of the process.
- Only 0.03%, 0.02% of the households are in these states.

Joint distributions

- The model generates realistic joint distributions.
- Limitations: shares of the top 1% and consumption at the bottom.