Multi-Model Based Incident Prediction and Risk Assessment in Dynamic Cybersecurity Protection for Industrial Control Systems

Zhang Qi qiqi@hust.edu.cn

October 12, 2015

Automation School, Huazhong University of Science and Technology, Wuhan.

Outlines

Architecture

Hazardous Incident Prediction

The Bayesian Network Based Knowledge Modeling

Incident Prediction

Dynamic Risk Assessment

Decouple of Incident Consequences

Classification of Incident Consequences

Quantification of Incident Consequences

Calculation of Dynamic Risk

Simulation

Simulation Platform

Simulation and Result Analysis

Conclusion and Prospect

Conclusion

Prospect

Architecture

Multiple Models

Attack Model

Function Model

Incident Model

Hazardous Incident Prediction

In this paper, the Bayesian network is used to model the relationship between attacks and resources.

In this paper, the Bayesian network is used to model the relationship between attacks and resources.

In this paper, the Bayesian network is used to model the relationship between attacks and resources.

In this paper, the Bayesian network is used to model the relationship between attacks and resources.

In this paper, the Bayesian network is used to model the relationship between attacks and resources.

ļ

Function Tree Analysis is widely used to analyze the stability of control system, a typical function tree is shown in following figure.

Function Tree Analysis is widely used to analyze the stability of control system, a typical function tree is shown in following figure.

Function Tree Analysis is widely used to analyze the stability of control system, a typical function tree is shown in following figure.

$$F_1 = F_2 F_3 F_4 F_5$$

Function Tree Analysis is widely used to analyze the stability of control system, a typical function tree is shown in following figure.

$$F_1 = F_2 F_3 F_4 F_5$$

Function Tree Analysis is widely used to analyze the stability of control system, a typical function tree is shown in following figure.

$$F_2 = F_6 F_7 \overline{F_8} F_9$$

;

Function Tree Analysis is widely used to analyze the stability of control system, a typical function tree is shown in following figure.

$$F_2 = F_6 F_7 \overline{F_8} F_9$$

Function Tree Analysis is widely used to analyze the stability of control system, a typical function tree is shown in following figure.

$$F_5 = F_{10} + F_{11} + F_{12} + F_{13}$$

Function Tree Analysis is widely used to analyze the stability of control system, a typical function tree is shown in following figure.

$$F_5 = F_{10} + F_{11} + F_{12} + F_{13}$$

To simplify the inference, the function tree is converted into Bayesian network, which is shown in following figure.

To simplify the inference, the function tree is converted into Bayesian network, which is shown in following figure.

To simplify the inference, the function tree is converted into Bayesian network, which is shown in following figure.

To simplify the inference, the function tree is converted into Bayesian network, which is shown in following figure.

To simplify the inference, the function tree is converted into Bayesian network, which is shown in following figure.

To simplify the inference, the function tree is converted into Bayesian network, which is shown in following figure.

To simplify the inference, the function tree is converted into Bayesian network, which is shown in following figure.

To simplify the inference, the function tree is converted into Bayesian network, which is shown in following figure.

To simplify the inference, the function tree is converted into Bayesian network, which is shown in following figure.

Function Level

Function Level

Function Level

The conditional probability table of the Bayesian network contains more information than the logical gate of the fault tree.

The occurrence of one incident may cause another incidents, in this paper, the Bayesian network is also used to model the causal relationship amongst the potential incidents.

A typical Bayesian network of incident is shown in following figure.

The occurrence of one incident may cause another incidents, in this paper, the Bayesian network is also used to model the causal relationship amongst the potential incidents.

A typical Bayesian network of incident is shown in following figure.

The occurrence of one incident may cause another incidents, in this paper, the Bayesian network is also used to model the causal relationship amongst the potential incidents.

A typical Bayesian network of incident is shown in following figure.

В

The occurrence of one incident may cause another incidents, in this paper, the Bayesian network is also used to model the causal relationship amongst the potential incidents.

A typical Bayesian network of incident is shown in following figure.

В

The occurrence of one incident may cause another incidents, in this paper, the Bayesian network is also used to model the causal relationship amongst the potential incidents.

A typical Bayesian network of incident is shown in following figure.

В

Information Transfer between Levels

The cyber attacks can lead to system function failures, and the function failures may cause the industrial incidents. To analyze the risk propagation, an information transfer is necessary between the three aforementioned layers.

The following figures show two kind of information transfer.

Information Transfer between Levels

The cyber attacks can lead to system function failures, and the function failures may cause the industrial incidents. To analyze the risk propagation, an information transfer is necessary between the three aforementioned layers.

The following figures show two kind of information transfer.

Collection of Evidence

There are two kind of evidence need to be collected:

- **Attack Evidence**, contains the attack information, such as attack time, attack type, attack object, etc.
- Anomaly Evidence, contains the information about the anomaly, such as function failure, function restoration, incident occurrence, etc.

Collection of Evidence

There are two kind of evidence need to be collected:

- **Attack Evidence**, contains the attack information, such as attack time, attack type, attack object, etc.
- Anomaly Evidence, contains the information about the anomaly, such as function failure, function restoration, incident occurrence, etc.

For each evidence, there exists a corresponding node in the multilevel Bayesian network. When the intrusion detection system or the monitoring system finds an evidence, the corresponding node will be marked in the multi-level Bayesian network.

The left figure shows a typical multi-level Bayesian network.

The left figure shows a typical multi-level Bayesian network.

Assuming that the evidence list is

$$a_1, a_6, f_1$$

The left figure shows a typical multi-level Bayesian network.

Assuming that the evidence list is

$$a_1, a_6, f_1$$

Then the nodes a_1 , a_6 , and f_1 are marked with **red** dashed circles.

The left figure shows a typical multi-level Bayesian network.

Assuming that the evidence list is

$$a_1, a_6, f_1$$

Then the nodes a_1 , a_6 , and f_1 are marked with **red** dashed circles.

Finally, the algorithm named Probability Propagation in Trees of Clusters (PPTC) can calculate the probabilities of all the hazardous incidents.

Dynamic Risk Assessment

for each incident e_i , analyze its consequence and generate a consequence set

$$\boldsymbol{c}_i = (c_1, c_2, \cdots, c_n).$$

The meaning of c_i is that the occurring of the incident e_i will threaten the elements in consequence set c_i .

For example, the incident e_i is an explosion of a reactor, which may cause worker casualties, air pollution, facilities damages, and products loss. The consequence set of e_i is

 $c_i = (workers, air, facilities, products).$

For each $c_j' \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$.

For each $c_j' \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$. So, for each $c_j' \in C'$, we can find the incident set

$$\boldsymbol{e}_j=(e_{i_1},e_{i_2},\cdots,e_{i_n}).$$

For each $c'_j \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$. So, for each $c_i' \in C'$, we can find the incident set

$$\boldsymbol{e}_j=(e_{i_1},e_{i_2},\cdots,e_{i_n}).$$

For each incident e_k of the incident set e_j , the corresponding consequence set c_k satisfies the following condition:

$$c'_j \subseteq c_k$$
.

For each $c'_j \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$. So, for each $c_i' \in C'$, we can find the incident set

$$e_j = (e_{i_1}, e_{i_2}, \cdots, e_{i_n}).$$

For each incident e_k of the incident set e_j , the corresponding consequence set e_k satisfies the following condition:

$$c'_j \subseteq c_k$$
.

Therefore, the parent nodes of the auxiliary node x_j are incident nodes $e_{i_1}, e_{i_2}, \dots, e_{i_n}$.

For each auxiliary node x_j , generate a conditional probability table. A typical conditional probability table of auxiliary node x_j is shown as following table.

$H(e_{i_1})$	Т	T	Т		F	F	F
$H(e_{i_2})$	Т	T	T		F	F	F
$H(e_{i_3})$	Т	T	T		F	F	F
÷	:	:	:	٠٠.	:	:	:
$H(e_{i_{n-2}})$	Т	T	T		F	F	F
$H(e_{i_{n-1}})$	Т	T	F		T	F	F
$H(e_{i_n})$	Т	F	F		F	Т	F
$H(x_j)$	1	1	1		1	1	0
$\overline{H}(x_j)$	0	0	0		0	0	1

Classification of Incident Consequences

In this paper, there are three main kinds of incident consequences to be considered:

· Harm to Humans:

- temporary harm,
- permanent disability,
- fatality.

· Environmental Pollution:

- air pollution,
- soil contamination,
- water pollution.

· Property Loss:

- damage of materials,
- damage of products,
- damage of equipment.

Quantification of Incident Consequences

· Harm to Humans Q_H :

If the decision-maker would like to increase the cost of an investment by Δc to reduce the probability of a fatality by Δp ,

$$Q_H = \Delta c / \Delta p$$
.

· Environmental Pollution Q_E :

The monetary loss of environmental pollution is defined as

$$Q_E = Penalty + Compensation + Harness Cost.$$

· Property Loss Q_P :

The cost of replacement is used to quantify the loss of property Q_P , such as the loss of materials, products, and equipment.

Calculation of Dynamic Risk

Due to the following two reasons:

- there is no overlapping between the consequences of any two auxiliary nodes x_i and x_j , $i \neq j$,
- · the auxiliary nodes contain all the consequences of incidents,

the dynamic cybersecurity risk can be defined as

$$\mathscr{R} = \sum_{i=1}^{m'} p(x_i) q(x_i),$$

where

- · $p(x_i)$ is the occurrence probability of the auxiliary node x_i ,
- · $q(x_i)$ is the monetary loss of the auxiliary node x_i .

The simulation object is a chemical reactor whose control structure is shown as the following figure.

_ Legend				
HDS	Historical data server			
ES	Engineer station			
G1	Gateway of Ethernet			
G2	Gateway of CANBUS			
G3	Gateway of CANBUS			
PLC1	Controller of V1 and V2			
PLC2	Data collection of P, T and L			
PLC3	Controller of M			
PLC4	Controller of SW			
PLC5	Controller of V4			
PLC6	Controller of V3			
V1	Valve of material			
V2	Valve of another material			
V3	Valve of product			
V4	Valve of pressure reducing			
M	Motor of B			
SW	Switch of H			
Р	Pressure sensor			
T	Temperature sensor			
L	Liquid level sensor			
В	Blender			
Н	Heater			

The simulation platform is implemented in Matlab, which consists of three modules: an evidence generator, an incident prediction module, and a risk assessment module.

The multi-level Bayesian network of the chemical reactor is shown as following figure.

- a₁ Network Scanning
- a₂ Vulnerability scanning
- $a_{\scriptscriptstyle 3}~$ Buffer overflow attack on HDS
- a₄ FTP attack on HDS
- a₅ Brute force attack on HDS
- a₆ DoS attack on HDS
- a_7 Buffer overflow attack on ES a_8 Privilege escalation attack on ES
- a₉ Spoofing attack on ES
- a₁₀ DoS attack on PLC1
- a₁₁ DoS attack on PLC2
 a₁₂ DoS attack on PLC3
- a₁₃ DoS attack on PLC4
- a₁₄ DoS attack on PLC5
- a₁₅ DoS attack on PLC6
 a₁₆ Reconfigure PLC1
- a₁₇ Reconfigure PLC2
- a₁₈ Reconfigure PLC3
- a_{19} Reconfigure PLC4 a_{20} Reconfigure PLC5
- a₂₁ Reconfigure PLC6
 a₂₂ Man-in-the-middle attack on PLC1
- a₂₃ Man-in-the-middle attack on PLC2
- a_{24} Man-in-the-middle attack on PLC3 a_{25} – Man-in-the-middle attack on PLC4
- a₂₅ = Man-in-the-middle attack on PLC4
 a₂₆ = Man-in-the-middle attack on PLC5
- a₂₇ = Man-in-the-middle attack on PLC6
- r_1 IP addresses of HDS and ES r_2 - Buffer overflow vulnerability
- r_2 Buffer overflow vulnerability
- r_4 Login vulnerability
- r₅ Buffer overflow vulnerability

- r_6 Authentication vulnerability
- r_7 Administrator authority of HDS
- r_8 Crash of HDS
- $r_9\,$ Administrator authority of ES
- f_1 Traffic control of V1
- f₂ Traffic control of V2 f₃ - Traffic control of V3
- f_4 Pressure reducing
- f_5 Heating function f_6 Mixing function
- f₇ Liquid level sensation
- f_8 Temperature sensation
- f₉ Pressure sensation
- f_{10} Liquid level control f_{11} Temperature control
- f_{12} Pressure control
- $e_{\scriptscriptstyle 1}\,$ Excessive liquid level
- $e_2\,$ Low liquid level
- e₃ Temperature anomaly e₄ - Excessive pressure
- e₄ Excessive pressure e₅ - Heater dry fired
- e₆ Reactor explosion
- e₇ Liquid overflow
- e_8 Blender stop x_1 Production damaged
- x2 Tank damaged
- x_3 Heater damaged x_4 Sensors damaged
- x_4 Sensors damag x_5 - Staff_{1,4} injured
- x_6 Staff_{5.9} injured
- x_7 Water pollution
- x_8 Air pollution

The list of evidences is shown as following table.

Start	End	Description	Symbol
50	60	IP sweep	$L(a_1)$
75	110	Vulnerability scanning	$L(a_2)$
120	180	DoS attack to HDS	$L(a_6)$
157	171	IP address spoofing	$L(a_9)$
259	261	Reconfigure PLC5	$L(a_{20})$
266	378	Switch function of V4 failed	$F(f_4)$
286	390	Pressure reduce function failed	$F(f_{12})$
310	400	Pressure is excessive	$H(e_4)$

The quantification of consequences is shown as following table.

Incident Symbol	Description of Incident	Quantification of Consequence(\$)	
x_1	Product damaged	50,000	
x_2	Tank damaged	500,000	
x_3	Heater damaged	10,000	
x_4	Sensors damaged	10,000	
x_5	Staff ₁₋₄ injured	800,000	
x_6	Staff ₅₋₉ injured	1,000,000	
x_7	Water pollution	200,000	
x_8	Air pollution	200,000	

In the previous simulation, the curve of the cybersecurity risk is shown as the **red** line in the following figure.

To validate the ability to deal with the unknown attacks, the attack knowledge about attack as and attack as is removed from the multilevel Bayesian network.

Then an identical multi-step attack on the system is launched to the system. The new cybersecurity risk curve is shown the dashed line in the following figure.

We repeat the first simulation 5,000 times, and the execution time of 5,000 calculations is recorded. This simulation is run on a machine with Intel Pentium processor G3220 (3M Cache, 3.00GHz) and 4GB DDR3 memory. The following figure shows the distribution of the 5,000 execution times.

Some parameters of the following figure:

 \cdot The average execution time of a risk assessment is 94.1ms.

Some parameters of the following figure:

- The average execution time of a risk assessment is 94.1ms.
- The minimum execution time of a risk assessment is 89.9ms.

Some parameters of the following figure:

- The average execution time of a risk assessment is 94.1ms.
- The minimum execution time of a risk assessment is 89.9ms.
- The maximum execution time of a risk assessment is 131.6ms.

Finally, 25 multi-level Bayesian networks with different node sizes are adopted to show the possible upper/lower bounds and the scalability of our approach.

In the following figure, the fitting line

$$y = 0.0019x - 0.0175$$

matches well with the correlation coefficient r = 0.9987.

This means that the execution time of the risk assessment scales linearly with the increase of the node size of the multi-level Bayesian network.

Conclusion and Prospect

 By considering the characteristics of ICSs, a novel multi-level Bayesian network was proposed, which integrated a knowledge of attack, system function, and hazardous incident.

- By considering the characteristics of ICSs, a novel multi-level Bayesian network was proposed, which integrated a knowledge of attack, system function, and hazardous incident.
- The attack knowledge and system knowledge were combined to analyze the potential impact of attacks, so the proposed approach had the ability of assessing the risk caused by unknown attacks.

- By considering the characteristics of ICSs, a novel multi-level Bayesian network was proposed, which integrated a knowledge of attack, system function, and hazardous incident.
- The attack knowledge and system knowledge were combined to analyze the potential impact of attacks, so the proposed approach had the ability of assessing the risk caused by unknown attacks.
- A unified quantification approach for a variety of consequences of industrial accidents was introduced. Furthermore, the proposed approach could eliminate the error of risk caused by the overlapping amongst hazardous incidents.

- By considering the characteristics of ICSs, a novel multi-level Bayesian network was proposed, which integrated a knowledge of attack, system function, and hazardous incident.
- The attack knowledge and system knowledge were combined to analyze the potential impact of attacks, so the proposed approach had the ability of assessing the risk caused by unknown attacks.
- A unified quantification approach for a variety of consequences of industrial accidents was introduced. Furthermore, the proposed approach could eliminate the error of risk caused by the overlapping amongst hazardous incidents.
- By using a simplified chemical reactor control system in Matlab environment, the designed dynamic risk assessment approach was verified.

Prospect

There are some shortcomings of the proposed risk assessment approach need to be improved.

· Current research work has no ability for self-learning.

Prospect

There are some shortcomings of the proposed risk assessment approach need to be improved.

- · Current research work has no ability for self-learning.
- The sub-second computation time cannot meet some hard realtime systems requirements.

Prospect

There are some shortcomings of the proposed risk assessment approach need to be improved.

- · Current research work has no ability for self-learning.
- The sub-second computation time cannot meet some hard realtime systems requirements.

In the future, a dynamic cybersecurity risk assessment, which can automatically adjust the conditional probability and structure of the multi-level Bayesian network by analyzing the real-time data, will be researched, and several approximate inference methods will be attempted in the risk assessment.

Thank You!

Thank You!

You can obtain this slide from my Github:

zqmillet@github.com:Presentation.for.Loughborough.University

Thank You!

You can obtain this slide from my Github: zqmillet@github.com:Presentation.for.Loughborough.University

And I have pushed the code of the simulation to my Github, too. zqmillet@github.com:Multi-level.Bayesian.Network

Any Questions?