第二十四次作业答案

时间: 5/27 第十四周/周二

7.1 已知
$$\alpha_1 = (1, 2, -1, 1), \alpha_2 = (2, 3, 1, -1), \alpha_3 = (-1, -1, -2, 2).$$

(1) 求 $\alpha_1, \alpha_2, \alpha_3$ 的长度及彼此间的夹角.

$$\begin{aligned} |\alpha_1| &= \sqrt{1^2 + 2^2 + (-1)^2 + 1^2} = \sqrt{1 + 4 + 1 + 1} = \sqrt{7} \\ |\alpha_2| &= \sqrt{2^2 + 3^2 + 1^2 + (-1)^2} = \sqrt{4 + 9 + 1 + 1} = \sqrt{15} \\ |\alpha_3| &= \sqrt{(-1)^2 + (-1)^2 + (-2)^2 + 2^2} = \sqrt{1 + 1 + 4 + 4} = \sqrt{10} \\ (\alpha_1, \alpha_2) &= 1 \cdot 2 + 2 \cdot 3 + (-1) \cdot 1 + 1 \cdot (-1) = 2 + 6 - 1 - 1 = 6 \\ (\alpha_1, \alpha_3) &= 1 \cdot (-1) + 2 \cdot (-1) + (-1) \cdot (-2) + 1 \cdot 2 = -1 - 2 + 2 + 2 = 1 \\ (\alpha_2, \alpha_3) &= 2 \cdot (-1) + 3 \cdot (-1) + 1 \cdot (-2) + (-1) \cdot 2 = -2 - 3 - 2 - 2 = -9 \end{aligned}$$

从而

$$\cos \theta_{12} = \frac{6}{\sqrt{7} \cdot \sqrt{15}} = \frac{6}{\sqrt{105}}$$

$$\cos \theta_{13} = \frac{1}{\sqrt{7} \cdot \sqrt{10}} = \frac{1}{\sqrt{70}}$$

$$\cos \theta_{23} = \frac{-9}{\sqrt{15} \cdot \sqrt{10}} = \frac{-9}{5\sqrt{6}}$$

(2) 求与 $\alpha_1, \alpha_2, \alpha_3$ 都正交的向量.

这个问题转化为解线性方程组:

$$\begin{cases} x + 2y - z + w = 0 \\ 2x + 3y + z - w = 0 \\ -x - y - 2z + 2w = 0 \end{cases}$$

最终可取 $\alpha_4 = (5, -3, 0, 1)$

7.2 设 x, y, z 是欧氏空间 \mathbb{R}^n 中的向量, 证明以下不等式:

(1) $|x - y| \ge |x| - |y|$;

$$LHS^{2} = |x - y|^{2} = (x - y, x - y) = |x|^{2} - 2(x, y) + |y|^{2}$$
$$RHS^{2} = (|x| - |y|)^{2} = |x|^{2} + |y|^{2} - 2|x||y|$$

由柯西-施瓦茨不等式 $|(x,y)| \le |x||y|$ 我们有

$$|x - y|^2 \ge (|x| - |y|)^2$$

再 LHS 非负,故原不等式成立

(2) $|x-y| + |y-z| \ge |x-z|$.

$$RHS = |(x - y) + (y - z)|$$

其余流程和上面一样,或者直接借助向量的"三角不等式"也可直接说明 7.3 设 x,y 是欧氏空间 \mathbb{R}^n 的两个向量,它们之间的夹角为 θ . 证明:

(1) (余弦定理) $|x - y|^2 = |x|^2 + |y|^2 - 2|x||y|\cos\theta$.

$$|x-y|^2 = (x-y, x-y) = |x|^2 - 2(x,y) + |y|^2 = |x|^2 + |y|^2 - 2|x||y|\cos\theta$$

(2) (平行四边形定理) $|x+y|^2 + |x-y|^2 = 2(|x|^2 + |y|^2)$.

$$|x + y|^2 + |x - y|^2 = (x + y, x + y) + (x - y, x - y)$$

$$= |x|^2 + 2(x, y) + |y|^2 + |x|^2 - 2(x, y) + |y|^2$$

$$= 2|x|^2 + 2|y|^2$$

(2) (菱形对角线定理) 若 |x| = |y|, $(x+y) \perp (x-y)$.

$$(x + y, x - y) = (x, x) - (x, y) + (y, x) - (y, y)$$
$$= |x|^2 - (x, y) + (y, x) - |y|^2$$
$$= |x|^2 - |y|^2 = 0$$

7.4 设 $a_1, a_2, ..., a_n$ 为 \mathbb{R}^n 的一组基, $a \in \mathbb{R}^n$. 证明: a = 0 当且仅当 $(a, a_i) = 0$, i = 1, 2, ..., n.

 \Rightarrow 若 a = 0, 则 $(a, a_i) = (0, a_i) = 0$, 对所有 i = 1, 2, ..., n 成立

 \Leftarrow 若 $(a, a_i) = 0$ 对所有 i = 1, 2, ..., n 成立,由于 $a_1, a_2, ..., a_n$ 是 \mathbb{R}^n 的一组基,

a 可表示为 $a = \sum_{i=1}^{n} c_i a_i$, 其中 c_i 为标量, 取内积:

$$(a, a_j) = \left(\sum_{i=1}^n c_i a_i, a_j\right) = \sum_{i=1}^n c_i (a_i, a_j)$$

因为 $\{a_i\}$ 是基, $(a_i, a_j) = 0$ 当 $i \neq j$, 且 $(a_i, a_i) = |a_i|^2 \neq 0$, 因此:

$$(a, a_j) = c_j |a_j|^2$$

由题设 $(a,a_j)=0$,得 $c_j|a_j|^2=0$,由于 $|a_j|^2\neq 0$,故 $c_j=0$,对所有 j 成立。因此, $a=\sum_{i=1}^n c_i a_i=0$,即 a=0

7.9 知 b 与 a_1, a_2, \ldots, a_n 都正交,证明: b 与 a_1, a_2, \ldots, a_n 的任意线性组合也正交。 b 与每个 a_i 正交,即 $(b, a_i) = 0$, $i = 1, 2, \ldots, n$ 。任意线性组合为 $c = \sum_{i=1}^n k_i a_i$,其中 k_i 为实数

$$(b,c) = \left(b, \sum_{i=1}^{n} k_i a_i\right) = \sum_{i=1}^{n} k_i (b, a_i) = \sum_{i=1}^{n} k_i \cdot 0 = 0$$

第二十五次作业答案

时间: 5/29 第十四周/周四

- 7.5 用 Schmidt 正交化方法将基标准化为正交向量:
 - (1) (0,0,1),(0,1,1),(1,1,1);

$$u_1 = v_1 = (0, 0, 1)$$

 $u_2 = (0, 1, 1) - (0, 0, 1) = (0, 1, 0)$
 $u_3 = (1, 1, 1) - (0, 0, 1) - (0, 1, 0) = (1, 0, 0)$

(2) (1,1,1,2), (1,1,-5,3), (3,2,8,-7).

$$u_1 = \left(\frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}, \frac{1}{\sqrt{7}}, \frac{2}{\sqrt{7}}\right)$$

$$u_1 = \left(-\frac{2}{\sqrt{21}}, -\frac{2}{\sqrt{21}}, -\frac{2}{\sqrt{21}}, \frac{3}{\sqrt{21}}\right)$$

$$u_1 = \left(-\frac{4}{\sqrt{186}}, -\frac{7}{\sqrt{186}}, -\frac{11}{\sqrt{186}}, 0\right)$$

7.6 设在 \mathbb{R}^3 中, 基 a_1, a_2, a_3 的度量矩阵是

$$\begin{pmatrix}
1 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 2
\end{pmatrix}$$

试求 \mathbb{R}^3 中由 a_1, a_2, a_3 表示的一组标准正交基。

度量矩阵定义: 度量矩阵 G 的元素为 $G_{ij} = (a_i, a_j)$, 于是我们有:

$$(a_1, a_1) = 1$$
, $(a_1, a_2) = 0$, $(a_1, a_3) = -1$, $(a_2, a_2) = 2$, $(a_2, a_3) = 0$, $(a_3, a_3) = 2$

所以:

$$u_1 = a_1$$
$$u_2 = \frac{1}{\sqrt{2}}a_2$$

$$u_3 = a_1 + a_3$$

7.7 证明: n 维向量空间中若任何一个正交向量组都能扩展为一组正交基。

设 V 是一个 n 维欧氏向量空间, $\{v_1, v_2, \ldots, v_k\}$ 是一个正交向量组,其中 $k \le n$,且 $v_i \ne 0$, $(v_i, v_j) = 0$ 对所有 $i \ne j$ 。

若 k=n,则 $\{v_1,v_2,\ldots,v_n\}$ 已是 V 的一组基(因为 k=n,且向量线性无关),只需标准化为正交基:令 $e_i=\frac{v_i}{|v_i|}$,则 $\{e_1,e_2,\ldots,e_n\}$ 是一组标准正交基。

若 k < n, 需扩展 $\{v_1, v_2, ..., v_k\}$ 为一组正交基:

- 由 $\{v_1, v_2, \dots, v_k\}$ 生成的子空间 $S = \text{span}\{v_1, v_2, \dots, v_k\}$, 其维数为 k.
- 由于 V 的维数为 n, 存在 S 的补空间 S^{\perp} (正交补), 且 $\dim(S^{\perp}) = n k$.
- 在 S^{\perp} 中取一组基 $\{w_{k+1}, w_{k+2}, \dots, w_n\}$ (共 n-k 个向量)。由于 $w_i \in S^{\perp}$, $(w_i, v_j) = 0$ 对所有 $i = k+1, \dots, n$ 和 $j = 1, \dots, k$ 。
- 对 $\{w_{k+1}, w_{k+2}, \dots, w_n\}$ 施密特正交化,得到正交向量组 $\{v_{k+1}, v_{k+2}, \dots, v_n\}$,使得 $(v_i, v_j) = 0$ 对所有 $i \neq j$ (包括之前的 v_1, \dots, v_k)。
- 现在 $\{v_1, v_2, ..., v_k, v_{k+1}, ..., v_n\}$ 是 V 中的一组正交向量组,共有 n 个线性 无关向量,故为一组正交基。

最后标准化:对每个 v_i , 令 $e_i = \frac{v_i}{|v_i|}$, 则 $\{e_1, e_2, \dots, e_n\}$ 是一组标准正交基。因此,任何正交向量组都能扩展为一组正交基,命题得证。

- 7.8 验证下列各组向量是正交的,并将基向量改写为标准正交基:
 - (a) (2,1,2),(1,2,-2); 添加一个 (-2,2,1), 然后标准化:

$$u_1 = \frac{1}{3}(2, 1, 2)$$

$$u_2 = \frac{1}{3}(1, 2, -2)$$

$$u_3 = \frac{1}{3}(-2, 2, 1)$$

(b) (1,1,1,2), (1,2,3,-3).

添加向量 (-5,1,2,1), (6,-57,41,5) 然后标准化:

$$u_1 = \frac{1}{\sqrt{5}}(1, 1, 1, 2)$$

$$u_2 = \frac{1}{\sqrt{23}}(1, 2, 3, -3)$$

$$u_3 = \frac{1}{\sqrt{31}}(-5, 1, 2, 1)$$

$$u_4 = \frac{1}{\sqrt{4991}}(6, -57, 41, 5)$$

7.10 设 e_1, e_2, e_3 是 \mathbb{R}^3 的一组标准正交基,令

$$a_1 = \frac{1}{3}(2e_1 + 2e_2 - e_3),$$

$$a_2 = \frac{1}{3}(2e_1 - e_2 + 2e_3),$$

$$a_3 = \frac{1}{3}(e_1 - 2e_2 - 2e_3),$$

证明 a_1, a_2, a_3 也是 \mathbb{R}^3 的一组标准正交基。

过渡矩阵为:

$$A = \frac{1}{3} \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ 1 & -2 & -2 \end{pmatrix}$$

由于 $AA^{\top}=I$ 故而 A 是正交阵。再 e_1,e_2,e_3 是一组标准正交基,故而 a_1,a_2,a_3 也是一组标准正交基

7.11 设 $e_1, e_2, ..., e_n$ 是 \mathbb{R}^n 的标准正交基, $x_1, x_2, ..., x_k$ 是 \mathbb{R}^n 中任意 k 个向量, 试证 明 $x_1, x_2, ..., x_k$ 两两正交的充分必要条件是:

$$\sum_{s=1}^{n} (x_i, e_s)(x_j, e_s) = 0, \quad i, j = 1, 2, \dots, k, \ i \neq j$$

首先,空间中任意向量都可表示成这一组标准正交基的线性组合,组合系数为内积:

$$x_i = \sum_{s=1}^n (x_i, e_s) e_s$$

则两向量内积可表示为:

$$(x_i, x_j) = \sum_{s=1}^n \sum_{t=1}^n ((x_i, e_s)e_s, (x_j, e_t), e_t)$$
$$= \sum_{s=1}^n ((x_i, e_s)e_s, (x_j, e_s), e_s)$$
$$= \sum_{s=1}^n (x_i, e_s)(x_j, e_s)$$

则 x_1, x_2, \ldots, x_k 两两正交等价于任意两个之间内积为 0,也即:

$$\sum_{s=1}^{n} (x_i, e_s)(x_j, e_s) = 0, \quad i, j = 1, 2, \dots, k, \ i \neq j$$

- 7.12 设 a_1, a_2, \ldots, a_n 是 \mathbb{R}^n 的标准正交基。证明:
 - (1) 对于任意 $a, b \in \mathbb{R}^n$, $(a, b) = \sum_{i=1}^n (a, a_i)(b, a_i)$. 同上,空间中任意向量都可表示成这一组标准正交基的线性组合,组合系数为内积:

$$a_i = \sum_{s=1}^n (x_i, e_s) e_s$$

则两向量内积可表示为:

$$(a,b) = \sum_{s=1}^{n} \sum_{t=1}^{n} ((a, e_s)e_s, (b, e_t), e_t)$$
$$= \sum_{s=1}^{n} ((a, e_s)e_s, (b, e_s), e_s)$$
$$= \sum_{s=1}^{n} (a, e_s)(b, e_s)$$

(2) 对于任意 $a \in \mathbb{R}^n$, $|a|^2 = \sum_{i=1}^n (a, a_i)^2$. 将上式的 a 换成 b 即可

第二十六次作业答案

时间: 2/25 第十五周/周二

7.13 证明二阶正交矩阵取下列两种形式之一:

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \quad \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}, \quad -\pi \le \theta < \pi$$

设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 为正交矩阵,则:

$$A^{T}A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^{2} + c^{2} & ab + cd \\ ab + cd & b^{2} + d^{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

得:

$$\begin{cases} a^2 + c^2 = 1 \\ b^2 + d^2 = 1 \\ ab + cd = 0 \\ \det(A) = ad - bc = \pm 1 \end{cases}$$

曲 $a^2 + c^2 = 1$, 设:

$$a = \cos \theta$$
, $c = \sin \theta$, $-\pi \le \theta < \pi$.

则:

$$A = \begin{pmatrix} \cos \theta & b \\ \sin \theta & d \end{pmatrix}.$$

再由 $b^2+d^2=1$ 和 $\cos\theta\cdot b+\sin\theta\cdot d=0$,向量 (b,d) 与 $(\cos\theta,\sin\theta)$ 正交。则 (b,d) 可取 $-\sin\theta,\cos\theta)$ 或 $(\sin\theta,-\cos\theta)$ 分别对应第一类和第二类变换

7.14 写出所有 3 阶正交矩阵,它们的元素是 0 或 1。

此处正交矩阵的每一行/每一列的模长均为 1,又元素之能事 0 或 1,则每一列郡只有一个 1,则所有的满足条件的正交矩阵共有 3! = 6 种,分别为对单位矩阵做不同的交换两列的变换:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

7.15 如果一个正交矩阵中每个元素都是 $\pm \frac{1}{4}$, 这个正交矩阵是几阶的?

n-阶正交矩阵 A 满足 $A^TA = I$,则其每一行和每一列的模长为 1,直接拿第一行出来进行讨论就可得到 n=16

7.16 若 a 是 \mathbb{R}^n 的单位向量,证明: $Q = I_n - 2aa^T$ 是一个正交阵。当 $a = \frac{1}{\sqrt{3}}(1,1,1)^T$ 时,具体求出 Q。

由 a 是单位向量,即 $a^Ta=1$ 。我们需要证明 $Q^TQ=I_n$,计算其转置:

$$Q^{T} = (I_{n} - 2aa^{T})^{T} = I_{n}^{T} - 2(aa^{T})^{T} = I_{n} - 2aa^{T}$$

于是:

$$QQ^{T} = (I_{n} - 2aa^{T})(I_{n} - 2aa^{T})$$

$$= I_{n} - 2aa^{T} - 2aa^{T} + 4aa^{T}aa^{T}$$

$$= I_{n} - 2aa^{T} - 2aa^{T} + 4a(a^{T}a)a^{T}$$

$$= I_{n} - 2aa^{T} - 2aa^{T} + 4aa^{T}$$

$$= I_{n}$$

 $\stackrel{\underline{}}{=} a = \frac{1}{\sqrt{3}}(1,1,1)^T$

$$aa^{T} = \begin{pmatrix} \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1\\1 & 1 & 1\\1 & 1 & 1 \end{pmatrix}$$

$$Q = I_{3} - 2aa^{T} = \begin{pmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 & 1 & 1\\1 & 1 & 1\\1 & 1 & 1 \end{pmatrix}$$

$$Q = \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3}\\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3}\\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

7.17 在什么条件下,对角矩阵是正交矩阵?

一个对角矩阵 D 是正交矩阵,当且仅当其所有对角元素 d_{ii} 满足 $d_{ii} = \pm 1$,对于 所有 i = 1, 2, ..., n,其中 n 是矩阵的阶数

$$D = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}$$

其转置 $D^T = D$,因为对角矩阵首先是对称矩阵,于是有:

$$D^{T}D = DD = \begin{pmatrix} d_{11}^{2} & 0 & \cdots & 0 \\ 0 & d_{22}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn}^{2} \end{pmatrix} = I_{n}$$

要求:

$$d_{ii}^2 = 1$$
 对于所有 $i = 1, 2, ..., n$

7.18 设 A, B 都为 n 阶正交矩阵,证明:

(1) A 的伴随矩阵 A* 也是正交矩阵;

由伴随矩阵的性质, $AA^* = \det(A)I_n$ 。因为 A 是正交矩阵,满足 $A^TA = I_n$,且 $\det(A) = \pm 1$ 。又 $A^{-1} = A^T$,而伴随矩阵定义为 $A^* = \det(A)A^{-1}$,所以:

$$A^* = \det(A)A^T = \pm A^T$$

由于 A^T 是正交矩阵 (因为 $(A^T)^TA^T = AA^T = I_n$), 检查 A^* 的正交性:

$$(A^*)^T A^* = (\pm A^T)^T (\pm A^T) = AA^T = I_n$$

因此, A* 是正交矩阵。

(2) AB 也为正交矩阵;

A 和 B 均为正交矩阵,即 $A^TA = I_n$, $B^TB = I_n$ 。验证 AB 的正交性:

$$(AB)^T(AB) = B^T A^T A B = B^T I_n B = B^T B = I_n$$

因此, AB 是正交矩阵。

(3) A^{-1} 也为正交矩阵;

A 是正交矩阵, $A^TA = I_n$, 故 $A^{-1} = A^T$, 验证 A^{-1} 的正交性:

$$(A^{-1})^T A^{-1} = (A^T)^T A^T = AA^T = I_n$$

因此, A^{-1} 是正交矩阵。

(4) A 的行列式为 ±1。

由正交矩阵定义 $A^TA = I_n$, 取行列式:

$$\det(A^T A) = \det(A^T) \det(A) = \det(A)^2 = \det(I_n) = 1$$

因此, $\det(A)^2 = 1$, 即 $\det(A) = \pm 1$ 。

7.19 给定三阶矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$
, 求 A 的 QR 分解。

先做 Schmidt 正交化:

$$u_1 = \frac{1}{\sqrt{5}} (1, 0, 2)^T$$

$$u_2 = \frac{1}{\sqrt{105}} (8, 5, -4)^T$$

$$u_3 = \frac{1}{\sqrt{21}} (-2, 4, 1)^T$$

则分解出的正交矩阵为:

$$Q = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{8}{\sqrt{105}} & -\frac{2}{\sqrt{21}} \\ 0 & \frac{5}{\sqrt{105}} & \frac{4}{\sqrt{21}} \\ \frac{2}{\sqrt{5}} & -\frac{4}{\sqrt{105}} & \frac{1}{\sqrt{21}} \end{pmatrix}$$

对应的上三角阵为:

$$R = Q^T A = \begin{pmatrix} \sqrt{5} & \frac{2}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ 0 & \sqrt{\frac{21}{5}} & \frac{6}{\sqrt{105}} \\ 0 & 0 & \frac{9}{\sqrt{21}} \end{pmatrix}$$

第二十七次作业答案

时间: 2/27 第十五周/周四

7.26 设

$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix},$$

求正交矩阵 P,使 $P^{-1}AP$ 为对角矩阵。由此求 A^k ,k 是自然数。这里 A 是实对称矩阵,一定可相似对角化,求特征方程:

$$\det(\lambda I - A) = \begin{pmatrix} \lambda - 1 & 2 & 0 \\ 2 & \lambda - 2 & 2 \\ 0 & 2 & \lambda - 3 \end{pmatrix} = 0$$

得:

$$\lambda^{3} - 6\lambda^{2} + 3\lambda + 10 = (\lambda + 1)(\lambda - 2)(\lambda - 5) = 0$$

则特征方程的解为:

$$\lambda_1 = -1, \lambda_2 = 2, \lambda_3 = 5$$

对于 $\lambda_1 = -1$:

$$(I+A)v_1 = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 3 & -2 \\ 0 & -2 & 4 \end{pmatrix} v_1 = 0$$

得 $v_1 = \frac{1}{3}(2,2,1)^T$

对于 $\lambda_2 = 2$:

$$(2I - A)v_2 = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & -1 \end{pmatrix} v_2 = 0$$

得 $v_2 = \frac{1}{3}(2, -1, -2)^T$

对于 $\lambda_3 = 5$:

$$(5I - A)v_2 = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 3 & 2 \\ 0 & 2 & 2 \end{pmatrix} v_3 = 0$$

得
$$v_3 = \frac{1}{3}(1, -2, 2)^T$$

于是有:

$$P = \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ 1 & -2 & 2 \end{pmatrix}$$
$$D = P^{T}AP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

进而:

$$A^{k} = (PDP^{T})^{k} = PD^{k}P^{T}$$

$$= \frac{1}{9} \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ 1 & -2 & 2 \end{pmatrix} \begin{pmatrix} (-1)^{k} & 0 & 0 \\ 0 & 2^{k} & 0 \\ 0 & 0 & 5^{k} \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ 1 & -2 & 2 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 2(-1)^{k} & 2^{k+1} & 5^{k} \\ 2(-1)^{k} & -2^{k} & -2(5^{k}) \\ (-1)^{k} & -2^{k+1} & 2(5^{k}) \end{pmatrix} \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ 1 & -2 & 2 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 4(-1)^{k} + 2^{k+2} + 5^{k} \\ \end{pmatrix}$$

7.27 证明: 下列三个条件中只要有两个成立, 另一个也成立。

- (1) A 是对称的;
- (2) A 是正交的;
- (3) $A^2 = I$.
 - (1) + (2) ⇒ (3)
 A 是对称的于是有 A^T = A, 再由 A 是正交的有 A^T A = A² = I
 - $(1) + (3) \Rightarrow (2)$ A 是对称的于是有 $A^T = A$, 从而 $A^2 = A^T A = I$ 得 A 是正交的
- (2) + (3) ⇒ (1)
 A 是正交的得 A^TA = I, 又 A² = I, 根据 det(A^TA) = det(A)² = 1 ≠ 0 故而 A 可逆, 于是有 A = A^T

7.28 求正交矩阵 T,使 $T^{-1}AT$ 为对角矩阵

$$(1) \ A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

解特征方程:

$$\det \begin{pmatrix} 2-\lambda & 1\\ 1 & 2-\lambda \end{pmatrix} = \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3) = 0$$

得 $\lambda_1 = 1, \lambda_2 = 3$,对应的特征向量分别是 $u_1 = \frac{1}{\sqrt{2}}(1, -1)$ 和 $u_2 = \frac{1}{\sqrt{2}}(1, 1)$ 进而此处的 T 为:

$$T = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix}$$

且满足:

$$T^T A T = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

$$(3) A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & -2 & 2 \\ 4 & 2 & 1 \end{pmatrix}$$

解特征方程:

$$\det \begin{pmatrix} 1 - \lambda & 2 & 4 \\ 2 & -2 - \lambda & 2 \\ 4 & 2 & 1 - \lambda \end{pmatrix} =$$

7.29 设 A 为 n 阶实对称矩阵,且 $A^2 = A$ 。证明:存在正交矩阵 T 使得 $T^{-1}AT = \operatorname{diag}(I_r, O)$ 。这里 $r = \operatorname{rank}(A)$

舍 A 的对应于特征值 λ 的特征向量为 x,于是有 $Ax = \lambda x$,再结合 $A^2 = A$,故 而:

$$A^2x = Ax \Rightarrow \lambda^2x = \lambda x \Rightarrow (\lambda^2 - \lambda)x = 0$$

而 $x \neq 0$,从而 $\lambda = 0$ 或1

结合定理,实对称矩阵必可相似对角化,故而 A 最终可正交相似对角化为 $\operatorname{diag}(I_k, O)$, 再两边 rank 相等,故 k=r

7.30 设 A 为 n 阶实对称矩阵。证明: $\max_{0\neq x\in\mathbb{R}^n}\frac{x^TAx}{x^Tx}=\lambda_{\max}$,这里 λ_{\max} 是 A 的最大特征值

这里可以先将表达式进行化简,鉴于 $x^Tx = ||x||^2$,我们可以用分母对分子的两个

向量进行归一化, 化简后的表达式可写作, 证明:

$$\max_{x \in \mathbb{R}^n, ||x|| = 1} x^T A x = \lambda_{\max}$$

我们将当前的这个向量 x 在 A 的各特征向量组成的基下进行展开,具体的,存在 正交矩阵 Q 使得 $Q^TAQ = \Lambda$,其中 Λ 为矩阵 A 的特征值组成的对角元素,且按 照绝对值大小降序排列,对应的单位正交特征向量为 q_1, q_2, \dots, q_n

现在将这个向量在单位正交特征向量基底下进行展开:

$$x = c_1q_1 + c_2q_2 + \dots + c_nq_n, \sum_{i=1}^n c_i = 1$$

则此时 $x^T A x = \sum_{i=1}^n \lambda_i c_i^2 \le \lambda_1 \sum_{i=1}^n c_i^2$, 等号成立当且仅当 $x = q_1$

- 7.32 设 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 n 维欧氏空间 V 的一组向量。定义其 Gram 矩阵 $G = ((\alpha_i, \alpha_j)) \in \mathbb{R}^{n \times n}$ 。
 - (1) 证明: $\alpha_1, \alpha_2, \ldots, \alpha_n$ 构成 V 的一组基当且仅当 $\det(G) \neq 0$ 。 若 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性相关,则存在不全为零的常数 c_1, c_2, \ldots, c_n ,使得 $\sum_{j=1}^n c_j \alpha_j = 0$ 。考虑二次型:

$$\mathbf{c}^{\top} G \mathbf{c} = \sum_{i,j=1}^{n} c_i(\alpha_i, \alpha_j) c_j = \left(\sum_{i=1}^{n} c_i \alpha_i, \sum_{j=1}^{n} c_j \alpha_j \right) = \| \sum_{i=1}^{n} c_i \alpha_i \|^2 = 0,$$

其中 $\mathbf{c} = (c_1, c_2, \dots, c_n)^{\top} \neq \mathbf{0}$ 。由于 G 是实对称且半正定(因为 $\mathbf{x}^{\top} G \mathbf{x} = \|\sum_{i=1}^{n} x_i \alpha_i\|^2 \geq 0$ 对所有 \mathbf{x} 成立),且 $\mathbf{c}^{\top} G \mathbf{c} = 0$ 且 $\mathbf{c} \neq \mathbf{0}$,则 $G \mathbf{c} = \mathbf{0}$ (因为 半正定矩阵满足 $\mathbf{x}^{\top} A \mathbf{x} = 0$ 蕴含 $A \mathbf{x} = \mathbf{0}$)。因此,G 奇异, $\det(G) = 0$ 。

若 $\det(G) = 0$, 则 G 奇异,存在 $\mathbf{c} \neq \mathbf{0}$ 使得 $G\mathbf{c} = \mathbf{0}$ 。设 $\beta = \sum_{j=1}^{n} c_j \alpha_j$,则:

$$(G\mathbf{c})_i = \sum_{j=1}^n (\alpha_i, \alpha_j) c_j = (\alpha_i, \beta) = 0, \quad i = 1, 2, \dots, n.$$

由于 β 是 α_j 的线性组合, $\beta \in \text{span}\{\alpha_1, \ldots, \alpha_n\}$,且 $(\alpha_i, \beta) = 0$ 对所有 i 成立,则 $(\beta, \beta) = 0$,故 $\beta = 0$ 。因此, $\sum_{j=1}^n c_j \alpha_j = 0$ 且 $\mathbf{c} \neq \mathbf{0}$,即 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性相关。

因此, $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关当且仅当 $\det(G) \neq 0$ 。由于 V 是 n 维空间,且 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是 n 个向量,线性无关当且仅当构成 V 的一组基。故 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 构成基当且仅当 $\det(G) \neq 0$ 。

(2) 设 α_i 在一组标准正交基下的坐标为 x_i , i = 1, 2, ..., n。设 $X = (x_1, ..., x_n) \in \mathbb{R}^{N \times N}$,则 $\det(G) = \det(X)^2$ 。

由于基是标准正交的,内积 (α_i,α_i) 等于坐标向量的点积:

$$(\alpha_i, \alpha_j) = x_i^{\top} x_j.$$

于是:

$$\det(G) = \det(X^{\top}X) = \det(X^{\top})\det(X) = \det(X) \cdot \det(X) = \det(X)^2$$

7.33 设 $\mathbb{R}_n[x]$ 是 n 次幂不超过 n 次的实系数多项式全体在内积 $(f(x),g(x))=\int_{-1}^1 f(x)g(x)\,dx$ 下的欧氏空间。令

$$P_0(x) = 1$$
, $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} ((x^2 - 1)^n)$, $n \ge 1$.

证明: $P_0(x), P_1(x), \dots, P_n(x)$ 构成 $\mathbb{R}_n[x]$ 的一组正交基,称 $P_n(x)$ 为 Legendre 多项式。

定义 $u_k(x) = (x^2 - 1)^k$,则 $P_k(x) = \frac{1}{2^k k!} u_k^{(k)}(x)$,其中 $u_k^{(k)}$ 表示 u_k 的 k 阶导数。需证:

(a) 当 $m \neq n$ 时, $(P_m, P_n) = 0$ (正交性) 考虑内积:

$$(P_m, P_n) = \int_{-1}^1 P_m(x) P_n(x) dx = \frac{1}{2^m m! 2^n n!} \int_{-1}^1 u_m^{(m)}(x) u_n^{(n)}(x) dx.$$

假设 m < n (若 n < m, 证明类似)。对积分 $\int_{-1}^{1} u_m^{(m)} u_n^{(n)} dx$ 进行 m 次分部积分。

第一次分部积分:

$$\int_{-1}^{1} u_m^{(m)} u_n^{(n)} dx = \left[u_m^{(m)} u_n^{(n-1)} \right]_{-1}^{1} - \int_{-1}^{1} u_m^{(m+1)} u_n^{(n-1)} dx.$$

由于 $u_n(x) = (x^2 - 1)^n$ 在 $x = \pm 1$ 处有 n 重根, 其直到 n - 1 阶导数在端点为零, 故 $u_n^{(n-1)}(\pm 1) = 0$, 边界项为零:

$$\int_{-1}^{1} u_m^{(m)} u_n^{(n)} dx = -\int_{-1}^{1} u_m^{(m+1)} u_n^{(n-1)} dx.$$

第二次分部积分:

$$\int_{-1}^{1} u_m^{(m+1)} u_n^{(n-1)} dx = \left[u_m^{(m+1)} u_n^{(n-2)} \right]_{-1}^{1} - \int_{-1}^{1} u_m^{(m+2)} u_n^{(n-2)} dx.$$

边界项 $u_n^{(n-2)}(\pm 1) = 0$, 故:

$$\int_{-1}^{1} u_m^{(m+1)} u_n^{(n-1)} dx = -\int_{-1}^{1} u_m^{(m+2)} u_n^{(n-2)} dx.$$

代入得:

$$\int_{-1}^{1} u_m^{(m)} u_n^{(n)} dx = -\left(-\int_{-1}^{1} u_m^{(m+2)} u_n^{(n-2)} dx\right) = \int_{-1}^{1} u_m^{(m+2)} u_n^{(n-2)} dx.$$

继续此过程, 经 m 次分部积分后:

$$\int_{-1}^{1} u_m^{(m)} u_n^{(n)} dx = (-1)^m \int_{-1}^{1} u_m^{(2m)} u_n^{(n-m)} dx.$$

由于 $u_m(x) = (x^2 - 1)^m$ 是 2m 次多项式,其 2m 阶导数为常数: $u_m^{(2m)}(x) = (2m)!$ 。故:

$$\int_{-1}^{1} u_m^{(m)} u_n^{(n)} dx = (-1)^m (2m)! \int_{-1}^{1} u_n^{(n-m)}(x) dx.$$

积分 $\int_{-1}^{1} u_n^{(n-m)}(x) dx = \left[u_n^{(n-m-1)}(x) \right]_{-1}^{1}$ 。由于 n-m-1 < n,有 $u_n^{(n-m-1)}(\pm 1) = 0$,故:

$$\int_{-1}^{1} u_n^{(n-m)}(x) dx = 0.$$

因此:

$$\int_{-1}^{1} u_m^{(m)} u_n^{(n)} dx = 0 \implies (P_m, P_n) = 0.$$

当 n < m 时,同理可证 $(P_m, P_n) = 0$ 。故当 $m \neq n$ 时,正交性成立

(b) 每个 $P_k \neq 0$ (非零)

计算 (P_n, P_n) :

$$(P_n, P_n) = \int_{-1}^{1} [P_n(x)]^2 dx = \frac{1}{(2^n n!)^2} \int_{-1}^{1} [u_n^{(n)}(x)]^2 dx.$$

记 $I_n = \int_{-1}^1 [u_n^{(n)}(x)]^2 dx$ 。对 I_n 进行 n 次分部积分: - 经 n 次分部积分后:

$$I_n = (-1)^n \int_{-1}^1 u_n^{(2n)} u_n^{(0)}(x) dx = (-1)^n \int_{-1}^1 u_n^{(2n)} u_n(x) dx.$$

由于 $u_n(x) = (x^2 - 1)^n$ 是 2n 次多项式, 其 2n 阶导数为常数: $u_n^{(2n)}(x) = (2n)!$ 。故:

$$I_n = (-1)^n (2n)! \int_{-1}^1 (x^2 - 1)^n dx.$$

计算积分 $\int_{-1}^{1} (x^2 - 1)^n dx$ 。 令 $x = \cos \theta$,则 $dx = -\sin \theta d\theta$,当 x = -1 时 $\theta = \pi$,当 x = 1 时 $\theta = 0$:

$$\int_{-1}^{1} (x^2 - 1)^n dx = \int_{\pi}^{0} (\cos^2 \theta - 1)^n (-\sin \theta) d\theta = \int_{0}^{\pi} (-1)^n \sin^{2n} \theta \cdot \sin \theta d\theta = (-1)^n \int_{0}^{\pi} \sin^{2n+1} \theta d\theta$$

利用 $\int_0^\pi \sin^k \theta d\theta = 2 \int_0^{\pi/2} \sin^k \theta d\theta$ 和公式 $\int_0^{\pi/2} \sin^{2n+1} \theta d\theta = \frac{2 \cdot 4 \cdots 2n}{3 \cdot 5 \cdots (2n+1)} = \frac{2^n n!}{(2n+1)!!}$, 其中 $(2n+1)!! = \frac{(2n+1)!}{2^n n!}$, 故:

$$\int_0^{\pi/2} \sin^{2n+1}\theta d\theta = \frac{2^n n! \cdot 2^n n!}{(2n+1)!} = \frac{2^{2n} (n!)^2}{(2n+1)!}.$$

因此:

$$\int_0^{\pi} \sin^{2n+1}\theta d\theta = 2 \cdot \frac{2^{2n}(n!)^2}{(2n+1)!},$$
$$\int_{-1}^1 (x^2 - 1)^n dx = (-1)^n \cdot 2 \cdot \frac{2^{2n}(n!)^2}{(2n+1)!}.$$

代入 I_n :

$$I_n = (-1)^n (2n)! \cdot (-1)^n \cdot 2 \cdot \frac{2^{2n} (n!)^2}{(2n+1)!} = (2n)! \cdot 2 \cdot \frac{2^{2n} (n!)^2}{(2n+1)(2n)!} = \frac{2^{2n+1} (n!)^2}{2n+1}.$$

于是:

$$(P_n, P_n) = \frac{1}{2^{2n}(n!)^2} \cdot \frac{2^{2n+1}(n!)^2}{2n+1} = \frac{2}{2n+1} > 0.$$

故 $P_n \neq 0$ 。

因此, $P_0(x), P_1(x), \ldots, P_n(x)$ 构成 $\mathbb{R}_n[x]$ 的一组正交基。

7.34 设 $\mathbb{R}_n[x]$ 是 n 次幂不超过 n 次的实系数多项式全体在内积 $(f(x),g(x)) = \int_{-1}^1 \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$ 下的欧氏空间。令

$$T_0(x) = 1$$
, $T_n(x) = \cos(n\arccos(x))$, $x \in [-1, 1], n \ge 1$.

证明: $T_0(x), T_1(x), \dots, T_n(x)$ 构成 $\mathbb{R}_n[x]$ 的一组正交基,称 $T_n(x)$ 为 Chebyshev 多项式。

依然证明两两正交以及均非 0:

(a) 两两正交:

考虑内积:

$$(T_m, T_n) = \int_{-1}^1 \frac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx.$$

作变量代换 $x = \cos \theta$,则 $dx = -\sin \theta d\theta$,且当 x = -1 时 $\theta = \pi$,当 x = 1 时 $\theta = 0$ 。由于 $\sqrt{1 - x^2} = \sqrt{1 - \cos^2 \theta} = |\sin \theta| = \sin \theta$ (因为 $\theta \in [0, \pi]$ 时 $\sin \theta \ge 0$),代入得:

$$(T_m, T_n) = \int_{\pi}^{0} \frac{T_m(\cos \theta) T_n(\cos \theta)}{\sin \theta} (-\sin \theta) d\theta = \int_{0}^{\pi} T_m(\cos \theta) T_n(\cos \theta) d\theta.$$

由定义 $T_k(\cos\theta) = \cos(k\theta)$, 故:

$$(T_m, T_n) = \int_0^{\pi} \cos(m\theta) \cos(n\theta) d\theta.$$

利用三角恒等式:

$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)],$$

有:

$$(T_m, T_n) = \frac{1}{2} \int_0^{\pi} [\cos((m+n)\theta) + \cos((m-n)\theta)] d\theta.$$

当 $m \neq n$ 时, m + n 和 |m - n| 均为非零整数,则:

$$\int_0^{\pi} \cos(k\theta) d\theta = \left[\frac{\sin(k\theta)}{k} \right]_0^{\pi} = \frac{\sin(k\pi)}{k} - \frac{\sin(0)}{k} = 0, \quad k \neq 0.$$

(b) 每个非零: 当 m = n 时:

$$(T_n, T_n) = \frac{1}{2} \int_0^{\pi} [\cos(2n\theta) + \cos(0)] d\theta = \frac{1}{2} \int_0^{\pi} [\cos(2n\theta) + 1] d\theta.$$

计算积分:

$$\int_0^{\pi} \cos(2n\theta) d\theta = \left[\frac{\sin(2n\theta)}{2n} \right]_0^{\pi} = 0, \quad \int_0^{\pi} 1 d\theta = \pi.$$

所以:

$$(T_n, T_n) = \begin{cases} \frac{1}{2} \int_0^{\pi} 2d\theta = \pi, & n = 0, \\ \frac{1}{2} \int_0^{\pi} 1d\theta = \frac{\pi}{2}, & n \ge 1. \end{cases} > 0.$$

故 $T_n \not\equiv 0$

因此, $T_0(x), T_1(x), \dots, T_n(x)$ 构成 $\mathbb{R}_n[x]$ 的一组正交基。

补充内容

1. 设 $n \ge 2$, $\mathbf{V} = \mathbb{F}^{n \times n}$, 定义 \mathbf{V} 上的线性变换 $\mathcal{A}: \mathbf{V} \to \mathbf{V}^T$, 求 \mathcal{A} 的特征值和特征 向量,并判断 \mathcal{A} 是否可对角化

考虑线性变换 $\mathcal{A}(X) = X^T$,其中 $X \in \mathbf{V}$ 是 $n \times n$ 矩阵。 \mathcal{A} 的特征值和特征向量可以通过求解 $\mathcal{A}(X) = \lambda X$ 得到,即:

$$X^T = \lambda X$$

转置两边:

$$(X^T)^T = (\lambda X)^T \implies X = \lambda X^T$$

代入 $\mathcal{A}(X) = X^T$, 得:

$$X^T = \lambda(\lambda X) = \lambda^2 X$$

因此,特征方程为 $\lambda^2 = 1$,解得 $\lambda = \pm 1$:

- 对于 $\lambda = 1$, $X^T = X$, 即 X 是对称矩阵。对称矩阵的集合构成 \mathbf{V} 的子空间,维度为 $\frac{n(n+1)}{2}$ 。
- 对于 $\lambda = -1$, $X^T = -X$, 即 X 是反对称矩阵(对角元素为 0)。反对称矩阵的维度为 $\frac{n(n-1)}{2}$ 。

总维度:

$$\frac{n(n+1)}{2} + \frac{n(n-1)}{2} = \frac{n^2 + n + n^2 - n}{2} = n^2 = \dim \mathbf{V}$$

因此, $\{\lambda = 1, -1\}$ 的特征空间张成整个 \mathbf{V} , \mathbf{A} 可对角化(可对角化当且仅当其不同特征值构成的特征空间的直和是整个空间)

2. 设 \mathbf{V} 是数域 \mathbb{C} 上的 n 维线性空间, \mathbf{A} 是 \mathbf{V} 上的线性变换,其中 \mathbf{V} 中任意非零 向量均为 \mathbf{A} 的特征向量,证明 \mathbf{A} 是标量变换(对应的矩阵是数量阵)

设 $\mathbf{v} \in \mathbf{V}$ 是任意非零向量,且 $\mathcal{A}(\mathbf{v}) = \lambda_{\mathbf{v}}\mathbf{v}$,其中 $\lambda_{\mathbf{v}} \in \mathbb{C}$ 取决于 \mathbf{v} 。取基 $\{e_1, e_2, \dots, e_n\}$,对于每个基向量 e_i , $\mathcal{A}(e_i) = \lambda_i e_i$ 。因为 \mathbf{V} 是 n 维, \mathcal{A} 的矩阵 在该基下为对角矩阵 $A = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ 。由于任意非零向量 $\mathbf{v} = \sum c_i e_i$ 都是 特征向量, $\mathcal{A}(\mathbf{v}) = \mu \mathbf{v}$ 应为单一 μ 。考虑 $\mathbf{v} = e_1 + e_2$, $\mathcal{A}(\mathbf{v}) = \lambda_1 e_1 + \lambda_2 e_2 = \mu(e_1 + e_2)$,则 $\lambda_1 = \lambda_2 = \mu$ 。推广到所有 e_i , $\lambda_1 = \lambda_2 = \dots = \lambda_n = \mu$ 。故 $A = \mu I_n$,A 是标量变换。

3. 设 $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ 为两个列向量,定义内积为:

$$(\mathbf{x}, \mathbf{y}) = \mathbf{x}^* \mathbf{y}$$

其中 x* 是 x 的共轭转置。内积满足以下性质:

- 非负定性: $(\mathbf{x}, \mathbf{x}) \ge 0$, 且 $(\mathbf{x}, \mathbf{x}) = 0$ 当且仅当 $\mathbf{x} = \mathbf{0}$ 。
- 共轭对称性:

$$(x,y) = \overline{(y,x)}$$

• 线性和共轭对称性: 对于任意标量 $a,b \in \mathbb{C}$ 和向量 \mathbf{z} , 有

$$(a\mathbf{x} + b\mathbf{y}, \mathbf{z}) = \overline{a}(\mathbf{x}, \mathbf{z}) + \overline{b}(\mathbf{y}, \mathbf{z}),$$

$$(\mathbf{x}, a\mathbf{y} + b\mathbf{z}) = a(\mathbf{x}, \mathbf{y}) + b(\mathbf{x}, \mathbf{z}).$$

• 线性变换的内积性质: 对于线性变换 A, 有 $(A\mathbf{x},\mathbf{y}) = (\mathbf{x},A^*\mathbf{y})$, 其中 A^* 是 A 的共轭转置。

证明以下命题

(a) 实对称矩阵的特征值全为实数。

设 A 为实对称矩阵 $(A = A^T, 且元素为实数), \lambda$ 为其特征值, $\mathbf{x} \neq \mathbf{0}$ 为对应特征向量, $\mathbf{x} \in \mathbb{R}^n$ 。根据内积性质, $(\mathbf{x}, \mathbf{x}) = \mathbf{x}^T \mathbf{x} > 0$ (因为 $\mathbf{x} \neq \mathbf{0}$)。由于 $A\mathbf{x} = \lambda \mathbf{x}$,有

$$(A\mathbf{x},\mathbf{x})=(\lambda\mathbf{x},\mathbf{x})=\lambda(\mathbf{x},\mathbf{x}).$$

又因 $A = A^T$,

$$(A\mathbf{x}, \mathbf{x}) = (A^T\mathbf{x}, \mathbf{x}) = (\mathbf{x}, A\mathbf{x}) = (\mathbf{x}, \lambda\mathbf{x}) = \overline{\lambda}(\mathbf{x}, \mathbf{x}),$$

因为 $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^* = \mathbf{x}^T$, 且 (\mathbf{x}, \mathbf{x}) 为实数。比较两式实部, $\lambda(\mathbf{x}, \mathbf{x}) = \overline{\lambda}(\mathbf{x}, \mathbf{x})$, 由于 $(\mathbf{x}, \mathbf{x}) \neq 0$,得 $\lambda = \overline{\lambda}$,故 λ 为实数。

(b) 正交矩阵的特征值模为 1。

设 A 为正交矩阵 $(A^TA = I)$, λ 为其特征值, $\mathbf{x} \neq \mathbf{0}$ 为对应特征向量。由于 $A^TA = I$, 对任意向量 \mathbf{x} , 有 $(A\mathbf{x}, A\mathbf{x}) = (\mathbf{x}, \mathbf{x})$ 。特别地, $A\mathbf{x} = \lambda \mathbf{x}$, 则

$$(A\mathbf{x}, A\mathbf{x}) = (\lambda \mathbf{x}, \lambda \mathbf{x}) = (\lambda \mathbf{x})^* (\lambda \mathbf{x}) = \overline{\lambda} \lambda (\mathbf{x}, \mathbf{x}) = |\lambda|^2 (\mathbf{x}, \mathbf{x}).$$

由 $A^T A = I$, $|\lambda|^2(\mathbf{x}, \mathbf{x}) = (\mathbf{x}, \mathbf{x})$ 。由于 $(\mathbf{x}, \mathbf{x}) > 0$,得 $|\lambda|^2 = 1$,即 $|\lambda| = 1$ 。

(c) 实反对称矩阵的特征值全是纯虚数或 0

设 A 为实反对称矩阵 $(A^T = -A, \mathbb{L} - \mathbb{R} + \mathbb{R})$, λ 为其特征值, $\mathbf{x} \neq \mathbf{0}$ 为对应特征向量, $\mathbf{x} \in \mathbb{C}^n$ (允许复特征向量)。因为 $A\mathbf{x} = \lambda \mathbf{x}$,有

$$(A\mathbf{x}, \mathbf{x}) = (\lambda \mathbf{x}, \mathbf{x}) = \lambda(\mathbf{x}, \mathbf{x}).$$

又因 $A^T = -A$,

$$(A\mathbf{x}, \mathbf{x}) = (A^T \mathbf{x}, \mathbf{x}) = (-A\mathbf{x}, \mathbf{x}) = -(\mathbf{x}, A\mathbf{x}) = -(\mathbf{x}, \lambda \mathbf{x}) = -\lambda(\mathbf{x}, \mathbf{x}).$$

比较两式, $\lambda(\mathbf{x}, \mathbf{x}) = -\lambda(\mathbf{x}, \mathbf{x})$ 。如果 $(\mathbf{x}, \mathbf{x}) \neq 0$,则 $2\lambda(\mathbf{x}, \mathbf{x}) = 0$,得 $\lambda = 0$ 。若 $\lambda \neq 0$,则 $(\mathbf{x}, \mathbf{x}) = 0$,但 $\mathbf{x} \neq \mathbf{0}$ 矛盾,除非考虑复特征向量。设 $\mathbf{x} = \mathbf{u} + i\mathbf{v}$ $(\mathbf{u}, \mathbf{v} \in \mathbb{R}^n)$,代入 $A\mathbf{x} = \lambda\mathbf{x}$,并利用 $A^T = -A$,取内积得 $(\mathbf{x}, \mathbf{x}) = 0$ 暗示 λ 纯虚。具体地,若 $\lambda = a + bi$ $(a, b \in \mathbb{R})$,则 $a(\mathbf{x}, \mathbf{x}) = 0$,故 a = 0, $\lambda = bi$ (纯虚数或 0)。

4. 有关(半)正定矩阵的几个不等式:

• 设 A 为半正定矩阵,则存在半正定矩阵 B 使得 $B^2 = A$,记 $B = A^{\frac{1}{2}}$ 设 A 为半正定矩阵, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$ 为其特征值,存在正交矩阵 P 使得

$$A = P^T \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) P.$$

设 $B = A^{\frac{1}{2}}$,则

$$B = P^T \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n}) P,$$

 $\coprod B^2 = A_{\circ}$

• Cauchy-Schwarz 不等式及广义 Cauchy-Schwarz 不等式设 $\alpha, \beta \in \mathbb{C}^n$ 为 两个列向量, G 为正定矩阵, 证明

$$(\alpha^T \beta)^2 \le (\alpha^T G^{-1} \alpha)(\beta^T G \beta).$$

考虑 G 的平方根 $G^{\frac{1}{2}}$,由于 G 正定,存在正交矩阵 P 和对角矩阵 $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$ $(\lambda_i > 0)$ 使得 $G = P^T \Lambda P$ 。设 $\tilde{\alpha} = G^{-\frac{1}{2}} \alpha$, $\tilde{\beta} = G^{\frac{1}{2}} \beta$ 。则

$$(\alpha^T \beta)^2 = ((\tilde{\alpha})^T \tilde{\beta})^2 \le ((\tilde{\alpha})^T \tilde{\alpha})((\tilde{\beta})^T \tilde{\beta}),$$

由标准 Cauchy-Schwarz 不等式 $(\mathbf{u}^T\mathbf{v})^2 \leq (\mathbf{u}^T\mathbf{u})(\mathbf{v}^T\mathbf{v})$ 成立。代入定义,得

$$(\tilde{\alpha})^T\tilde{\alpha} = \alpha^T (G^{-\frac{1}{2}})^T G^{-\frac{1}{2}} \alpha = \alpha^T G^{-1} \alpha, \quad (\tilde{\beta})^T \tilde{\beta} = \beta^T G^{\frac{1}{2}} (G^{\frac{1}{2}})^T \beta = \beta^T G \beta,$$

故 $(\alpha^T \beta)^2 \leq (\alpha^T G^{-1} \alpha)(\beta^T G \beta)$ 。特别地,若 $\alpha = cG\beta$ $(c \in \mathbb{R})$,则 $\alpha^T \beta = c\beta^T G \beta$, $\alpha^T G^{-1} \alpha = c^2 \beta^T G \beta$,等号成立。

• 正定矩阵的 Rayleigh 商/单位球面上一类二次型的极值设 A 为 $n \times n$ 正定

矩阵, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$ 为其特征值, 证明

$$\frac{\max_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x}}{\|\mathbf{x}\|^2} = \lambda_1, \quad \frac{\min_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x}}{\|\mathbf{x}\|^2} = \lambda_n.$$

设 $A = P^T \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) P$, 其中 P 为正交矩阵, λ_i 为特征值, $P^T P = I$ 。对于任意 $\mathbf{x} \neq \mathbf{0}$,设 $\mathbf{y} = P\mathbf{x}$,则 $\mathbf{y}^T \mathbf{y} = \mathbf{x}^T P^T P\mathbf{x} = \mathbf{x}^T \mathbf{x} = \|\mathbf{x}\|^2$ 。因此, $\mathbf{x}^T A\mathbf{x} = \mathbf{y}^T \operatorname{diag}(\lambda_1, \dots, \lambda_n) \mathbf{y} = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2$ 。由于 $\sum_{i=1}^n y_i^2 = \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2$,且 $\lambda_1 \geq \lambda_i \geq \lambda_n$,最大值 $\max_{\|\mathbf{x}\|=1} \mathbf{x}^T A\mathbf{x}/\|\mathbf{x}\|^2$ 由 \mathbf{x} 沿 λ_1 对应特征向量方向取得,此时 $\mathbf{y} = (y_1, 0, \dots, 0)^T$, $y_1 = 1$, $\mathbf{x}^T A\mathbf{x} = \lambda_1$ 。最小值 $\min_{\|\mathbf{x}\|=1} \mathbf{x}^T A\mathbf{x}/\|\mathbf{x}\|^2$ 由 \mathbf{x} 沿 λ_n 方向取得, $\mathbf{x}^T A\mathbf{x} = \lambda_n$ 。故 $\max_{\|\mathbf{x}\|=1} \mathbf{x}^T A\mathbf{x}/\|\mathbf{x}\|^2 = \lambda_1$, $\min_{\|\mathbf{x}\|=1} \mathbf{x}^T A\mathbf{x}/\|\mathbf{x}\|^2 = \lambda_n$ 。特别地,若 $\mathbf{y} = (1, 0, \dots, 0)^T$, $\mathbf{x} = P^T \mathbf{y}$ 沿 λ_1 特征向量, $\mathbf{x}^T A\mathbf{x} = \lambda_1$ 。 Corollary: 设 G_1, G_2 为正定矩阵, λ_{\max} 和 λ_{\min} 分别为 $G_2^{-1} G_1 G_2^{-1}$ 的最大和最小特征值,则

$$\max_{\|\mathbf{x}\|=0} \frac{\mathbf{x}^T G_1 \mathbf{x}}{\mathbf{x}^T G_2 \mathbf{x}} = \lambda_{\max}, \quad \min_{\|\mathbf{x}\|=0} \frac{\mathbf{x}^T G_1 \mathbf{x}}{\mathbf{x}^T G_2 \mathbf{x}} = \lambda_{\min}.$$

Proof: 设 $\mathbf{y} = G_2^{\frac{1}{2}}\mathbf{x}$, 则 $\mathbf{x}^TG_2\mathbf{x} = \mathbf{y}^T\mathbf{y}$ 。因此, $\frac{\mathbf{x}^TG_1\mathbf{x}}{\mathbf{x}^TG_2\mathbf{x}} = \frac{\mathbf{y}^TG_2^{-\frac{1}{2}}G_1G_2^{-\frac{1}{2}}\mathbf{y}}{\mathbf{y}^T\mathbf{y}}$ 。由于 $G_2^{-\frac{1}{2}}G_1G_2^{-\frac{1}{2}}$ 的特征值即为 λ_{\max} 和 λ_{\min} ,由 Rayleigh 商性质,最大值和最小值分别对应 λ_{\max} 和 λ_{\min} 。特别地,当 \mathbf{y} 沿最大特征向量方向时,商取 λ_{\max} 。

- 5. n 阶矩阵对称矩阵 A 满足 $A^2 = I$, 证明:
 - (a) A 可以正交相似到对角元至多出现 1 或者 -1 的对角阵设 A 为对称矩阵且 $A^2 = I$ 。由于 A 对称,存在正交矩阵 P 使得 $A = PDP^T$,其中 D 为对角矩阵,元素为 A 的特征值。因为 $A^2 = I$,有 $PDP^T \cdot PDP^T = PD^2P^T = I$ 。由于 P 正交, $P^TP = I$,因此 $D^2 = P^TIP = I$ 。设 $D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$,则 $D^2 = \operatorname{diag}(\lambda_1^2, \dots, \lambda_n^2) = I$ 。故 $\lambda_i^2 = 1$ 对所有 i 成立, $\lambda_i = \pm 1$,因此 A 的特征值全为 ± 1 。
 - (b) 存在实对称的 B 满足 $I + A = B^2$ 根据第一问的结果,存在正交矩阵 P 和对角矩阵 D 使得 $A = PDP^T$, $D = {\rm diag}(I_r, -I_{n-r})$,证明 $I + A = P(I + D)P^T = P{\rm diag}(2I_r, O_{n-r})P^T$ 即可,设 $B = (I + A)^{\frac{1}{2}}$,由于 I + A 的特征值为 2(对应 I_r)和 0(对应 O_{n-r}),直接取 $B = P{\rm diag}(\sqrt{2}I_r, O_{n-r})P^T$ 即可
- 6. 设 A 和 B 都是 $n \times n$ 的矩阵,证明 $\det(A) \det(B) \leq (\frac{1}{n} \operatorname{tr}(AB))^n$ 。 如果从特征值的角度来看,这里其实就是矩阵 AB 的特征值的算术平均值大于等于几何平均值,不过还有一个前提就是说明 AB 的特征值都是正数,这个就需要根据两个矩阵都是正定矩阵并结合内积来进行说明了

A 和 B 均为正定矩阵,即对任意非零向量 $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x}^T A \mathbf{x} > 0$ 和 $\mathbf{x}^T B \mathbf{x} > 0$ 成立。由于 A 和 B 正定,可定义内积 $(\mathbf{x}, \mathbf{y})_A = \mathbf{x}^T A \mathbf{y}$ 和 $(\mathbf{x}, \mathbf{y})_B = \mathbf{x}^T B \mathbf{y}$,两者均满足非负定性。考虑 AB,任取一个特征值 λ ,存在非零向量 \mathbf{x} 满足 $AB \mathbf{x} = \lambda \mathbf{x}$ 。两边 左乘矩阵 $\mathbf{x}^T B^T$,得

$$\mathbf{x}^T B^T A B \mathbf{x} = \lambda \mathbf{x}^T B^T \mathbf{x}$$

由于 B 对称 (假设 $B = B^T$, 正定矩阵通常对称), $\mathbf{x}^T B^T \mathbf{x} = \mathbf{x}^T B \mathbf{x} > 0$ (因 $\mathbf{x} \neq 0$)。 设 $k = \lambda_{\mathbf{x}^T B \mathbf{x}}^{\mathbf{x}^T B \mathbf{x}}$, 则 $\mathbf{x}^T B^T A B \mathbf{x} = k \mathbf{x}^T B \mathbf{x}$ 。由于 A 和 B 均为正定, $B^T A B$ 也是正定矩阵 (通过内积 $\mathbf{x}^T (B^T A B) \mathbf{x} = (B \mathbf{x})^T A (B \mathbf{x}) > 0$),故 $\mathbf{x}^T B^T A B \mathbf{x} > 0$,从而 k > 0, $\lambda > 0$ 。因此 A B 的所有特征值 $\lambda_i > 0$ 。

之后直接结合 n 个正数的算术平均大于其几何平均来说明即可

7. 矩阵 A 是正定矩阵, d_{n-1} 是 A 的 n-1 阶顺序主子式,证明 $\det(A) \le a_{nn}d_{n-1}$ 由于 A 是正定矩阵,其所有顺序主子式均为正, $d_{n-1} > 0$ 。考虑 A 的分块形式:

$$A = \begin{pmatrix} A_{11} & \mathbf{a} \\ \mathbf{a}^T & a_{nn} \end{pmatrix} = \begin{pmatrix} A_{11} & \mathbf{a} \\ 0 & a_{nn} - a^T A_{11}^{-1} a \end{pmatrix}$$

其中 A_{11} 是 $n-1 \times n-1$ 的子矩阵,**a** 是 n-1 维列向量, a_{nn} 是 A 的 (n,n) 元素。于是有:

$$\det(A) = \det(A_{11}) \cdot (a_{nn} - \mathbf{a}^T A_{11}^{-1} \mathbf{a})$$

由于 A 正定, A_{11} 也是正定矩阵,可逆,且 A_{11}^{-1} 存在。设 $\mathbf{x} = A_{11}^{-\frac{1}{2}} \mathbf{a}$,则 $\mathbf{a}^T A_{11}^{-1} \mathbf{a} = \mathbf{x}^T \mathbf{x} \geq 0$ (由内积性质)。因此, $a_{nn} - \mathbf{a}^T A_{11}^{-1} \mathbf{a} \leq a_{nn}$,且因为 A 正定, $a_{nn} - \mathbf{a}^T A_{11}^{-1} \mathbf{a} > 0$ (否则 $\det(A) \leq 0$ 矛盾)。于是:

$$\det(A) = \det(A_{11}) \cdot (a_{nn} - \mathbf{a}^T A_{11}^{-1} \mathbf{a}) \le \det(A_{11}) \cdot a_{nn}.$$

由于 $\det(A_{11}) = d_{n-1}$,有 $\det(A) \leq a_{nn}d_{n-1}$ 。当 $\mathbf{a} = \mathbf{0}$ 时,等号成立(即 A 为分块对角矩阵)。

8. 已知 A 是实对称矩阵并且 $A^2 + 3A + 2I = 0$,请写出 A 所有可能的特征值,并且证明如果 n 是奇数,那么 A 的伴随矩阵是正定的

由矩阵满足的方程可得特征值方程:

$$\lambda^2 + 3\lambda + 2 = 0$$

解该二次方程: $\lambda = -1$ 或 $\lambda = -2$ 。由于 A 是实对称矩阵,其特征值均为实数,A 的所有可能的特征值为 -1 和 -2

设 A 的伴随矩阵为 A* 则满足:

$$AA^* = \det(A)I$$

对 A 做正交相似对角化 (实对称):

$$A = P \operatorname{diag}(-I_r, -2I_{n-r})P^T \Rightarrow A^{-1} = P \operatorname{diag}(-I_r, -\frac{1}{2}I_{n-r})P^T$$

于是有:

$$A^* = \frac{1}{\det A} P \operatorname{diag}(-I_r, -\frac{1}{2}I_{n-r}) P^T$$

若n为奇数,则 det(A)为特征值乘积为负数,从而得到其伴随是正定的

9. 已知 $A \in n$ 阶正定矩阵, $\{\mathbf{a}_i\}$ 是 s 个非零向量,并且满足 $\mathbf{a}_i^T A \mathbf{a}_j = 0$,证明 $\{\mathbf{a}_i\}$ 线性无关。

这里直接上线性相关/无关的定义: 假设 $\{a_i\}$ 线性相关,存在不全为零的标量 k_1,k_2,\ldots,k_s ,使得:

$$k_1\mathbf{a}_1+k_2\mathbf{a}_2+\cdots+k_s\mathbf{a}_s=\mathbf{0}.$$

取内积两边与 A 相关联, 左乘 $\mathbf{a}_{i}^{T}A$, 得:

$$\mathbf{a}_i^T A(k_1 \mathbf{a}_1 + k_2 \mathbf{a}_2 + \dots + k_s \mathbf{a}_s) = \mathbf{a}_i^T A \mathbf{0} = 0.$$

展开:

$$\mathbf{a}_i^T A(k_1 \mathbf{a}_1 + k_2 \mathbf{a}_2 + \dots + k_s \mathbf{a}_s) = k_1 \mathbf{a}_i^T A \mathbf{a}_1 + k_2 \mathbf{a}_i^T A \mathbf{a}_2 + \dots + k_s \mathbf{a}_i^T A \mathbf{a}_s.$$

由于 $\mathbf{a}_i^T A \mathbf{a}_j = 0$ 当 $i \neq j$, 且 $\mathbf{a}_i^T A \mathbf{a}_i > 0$ (因 A 正定且 $\mathbf{a}_i \neq \mathbf{0}$), 故:

$$k_1 \mathbf{a}_i^T A \mathbf{a}_1 + \dots + k_s \mathbf{a}_i^T A \mathbf{a}_s = k_i \mathbf{a}_i^T A \mathbf{a}_i.$$

因此方程变为:

$$k_i \mathbf{a}_i^T A \mathbf{a}_i = 0$$
 对所有 $i = 1, 2, \dots, s$.

由于 $\mathbf{a}_i^T A \mathbf{a}_i > 0$,必须有 $k_i = 0$ 对所有 i。因此, $\{k_1, k_2, \dots, k_s\} = \mathbf{0}$,矛盾初始假设 $\{\mathbf{a}_i\}$ 线性相关。故 $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_s\}$ 线性无关。

补充内容(仅试题)

- 1. 设 $n \ge 2$, $\mathbf{V} = \mathbb{F}^{n \times n}$, 定义 \mathbf{V} 上的线性变换 $\mathcal{A}: \mathbf{V} \to \mathbf{V}^T$, 求 \mathcal{A} 的特征值和特征 向量,并判断 \mathcal{A} 是否可对角化
- 2. 设 \mathbf{V} 是数域 \mathbb{C} 上的 n 维线性空间, \mathbf{A} 是 \mathbf{V} 上的线性变换,其中 \mathbf{V} 中任意非零 向量均为 \mathbf{A} 的特征向量,证明 \mathbf{A} 是标量变换(对应的矩阵是数量阵)
- 3. 设 $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ 为两个列向量,定义内积为:

$$(\mathbf{x}, \mathbf{y}) = \mathbf{x}^* \mathbf{y}$$

其中 x* 是 x 的共轭转置。内积满足以下性质:

- 非负定性: $(\mathbf{x}, \mathbf{x}) \ge 0$, 且 $(\mathbf{x}, \mathbf{x}) = 0$ 当且仅当 $\mathbf{x} = \mathbf{0}$ 。
- 共轭对称性:

$$(x,y) = \overline{(y,x)}$$

• 线性和共轭对称性: 对于任意标量 $a,b \in \mathbb{C}$ 和向量 \mathbf{z} , 有

$$(a\mathbf{x} + b\mathbf{y}, \mathbf{z}) = \overline{a}(\mathbf{x}, \mathbf{z}) + \overline{b}(\mathbf{y}, \mathbf{z}),$$

$$(\mathbf{x}, a\mathbf{y} + b\mathbf{z}) = a(\mathbf{x}, \mathbf{y}) + b(\mathbf{x}, \mathbf{z}).$$

• 线性变换的内积性质: 对于线性变换 A, 有 $(A\mathbf{x},\mathbf{y}) = (\mathbf{x},A^*\mathbf{y})$, 其中 A^* 是 A 的共轭转置。

证明以下命题

- (a) 实对称矩阵的特征值全为实数。
- (b) 正交矩阵的特征值模为 1。
- (c) 实反对称矩阵的特征值全是纯虚数或 0
- 4. 有关(半)正定矩阵的几个不等式:
 - 设 A 为半正定矩阵,则存在半正定矩阵 B 使得 $B^2 = A$,记 $B = A^{\frac{1}{2}}$
 - Cauchy-Schwarz 不等式及广义 Cauchy-Schwarz 不等式设 $\alpha, \beta \in \mathbb{C}^n$ 为 两个列向量, G 为正定矩阵, 证明

$$(\alpha^T \beta)^2 \le (\alpha^T G^{-1} \alpha)(\beta^T G \beta).$$

• **正定矩阵的 Rayleigh 商/单位球面上一类二次型的极值**设 A 为 $n \times n$ 正定矩阵, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$ 为其特征值,证明

$$\frac{\max_{\|\mathbf{x}\|=1}\mathbf{x}^TA\mathbf{x}}{\|\mathbf{x}\|^2} = \lambda_1, \quad \frac{\min_{\|\mathbf{x}\|=1}\mathbf{x}^TA\mathbf{x}}{\|\mathbf{x}\|^2} = \lambda_n.$$

- 5. n 阶矩阵对称矩阵 A 满足 $A^2 = I$, 证明:
 - (a) A 可以正交相似到对角元至多出现 1 或者 -1 的对角阵
 - (b) 存在实对称的 B 满足 $I + A = B^2$
- 6. 设 A 和 B 都是 $n \times n$ 的矩阵,证明 $\det(A) \det(B) \leq (\frac{1}{n} \operatorname{tr}(AB))^n$ 。
- 7. 矩阵 A 是正定矩阵, d_{n-1} 是 A 的 n-1 阶顺序主子式, 证明 $\det(A) \leq a_{nn}d_{n-1}$
- 8. 已知 A 是实对称矩阵并且 $A^2 + 3A + 2I = 0$,请写出 A 所有可能的特征值,并且证明如果 n 是奇数,那么 A 的伴随矩阵是正定的
- 9. 已知 A 是 n 阶正定矩阵, $\{\mathbf{a}_i\}$ 是 s 个非零向量,并且满足 $\mathbf{a}_i^T A \mathbf{a}_j = 0$,证明 $\{\mathbf{a}_i\}$ 线性无关。