

DINÂMICA

Sábia Belle C. de Oliveira¹, Rogério Pereira de Sousa²

O que é?

Dinâmica é a área da física que estuda a mecânica, os movimentos e as causas dessa mudança, com ela determina-se diferentes tipos de forças que podem ser aplicadas em um determinado objeto pela sua massa. Pela teoria de Newton, se construiu a relação entre a massa de um corpo e seu movimento.

O Êfísico disponibiliza os três princípios da dinâmica com suas individualidades, sendo elas as três Leis de Newton: *1^a Lei de Newton* – Princípio da Inércia, *2^a Lei de Newton* – Princípio Fundamental da Dinâmica e a *3^a Lei de Newton* – Princípio da Ação e Reação. E a Força Peso e Força Elástica.

Fórmulas

Ao todo na dinâmica contém 20 fórmulas. Dividida em 2 fórmulas do Princípio Fundamental da Dinâmica, 17 do Princípio da Ação e Reação e uma fórmula geral para a Força Resultante. O Princípio da Inércia não possui uma fórmula.

Força Resultante – É a soma de todas as forças presentes em um corpo. Pode ser calculada através da expressão:

$$\vec{F} = força\,resultante$$

$$\vec{F} = \sum_{i=1}^{n} \vec{F_i} = \vec{F_1} + \vec{F_2} + \dots + \vec{F_n}$$

$$\sum_{i=1}^{n} \vec{F_i} = soma\,de\,todas$$
 as forças aplicadas

Figura 1: fórmula da força resultante

Fonte: Só Física, 2019

A força resultante pode ser calculada apenas com a soma de todas as forças aplicadas sobre um determinado objeto. Não se torna necessária o cálculo no sistema.

¹ Pós-Graduanda em Desenvolvimento de Sistemas Computacionais, IFTO - Campus Araguatins, sabiabelle976@gmail.com

² Mestre em Engenharia de Produção e Sistemas, Universidade do Vale do Rio dos Sinos, rogerio.pereira@ifto.edu.br

1ª Lei de Newton (**Princípio da Inércia**) – Um corpo em movimento tende a continuar em movimento, um corpo em repouso tende a continuar em repouso.

A 1º Lei de Newton não há aplicação de cálculos e expressões.

2ª Lei de Newton (Princípio Fundamental da Dinâmica) — A força escalar resultante na Segunda Lei de Newton se determinar pela massa vezes aceleração. Pode ser calculada através da expressão:

	F = força escalar resultante
F = ma	m = massa
	a = aceleração escalar

Figura 2 : fórmula da força escalar resultante **Fonte**: Só Física, 2019

A 2º Lei de Newton pode ser calculada de 3(três) formas distintas, ou seja, quando se procura a força: $\Box = \Box \times \Box$, a aceleração: $\Box = \frac{\Box}{\Box}$ e a massa: $\Box = \frac{\Box}{\Box}$. Todas as 3(três) formas de cálculo pode ser realizada na parte de cálculos do sistema.

3ª Lei de Newton (Princípio da Ação e Reação) — A expressão matemática indica que a força aplicada no objeto A pelo objeto B é igual a força aplicada no objeto B pelo objeto A. Pode ser calculada através da expressão:

$$\overrightarrow{F_{a,b}}=\overrightarrow{F_{b,a}}$$
 = $\overrightarrow{F_{b,a}}$ = $\overrightarrow{F_{b,a}}$ = $força$ aplicada em a, por b $\overrightarrow{F_{b,a}}=força$ aplicada em b, por a

Figura 3: fórmula da força aplicada

Fonte: Só Física, 2019

A 3º Lei de Newton não há necessidade da aplicação de cálculos e expressões.

Peso de um corpo – Essa expressão tem como sua função determinar a Força Peso de um corpo pela sua massa vezes a gravidade. Essa força é a força com que a Terra atrai os corpos. Pode ser calculada através da expressão:

	$ec{P}=forçapeso$
$ec{P}=mec{g}$	m = massa
	$ec{g}=gravidade$

Figura 4: fórmula da força peso

Fonte: Só Física, 2019

A fórmula da força peso pode ser calculada de 2(duas) formas distintas, ou seja, quando se procura a força: $\square = \square \times \square$ e a massa: $\square = \frac{\square}{\square}$. Todas as 2(duas) formas de cálculo pode ser realizada na parte de cálculos do sistema.

Força de atrito estático - É a força oposta a tendência do movimento. A expressão tem como função determinar a força de atrito através do coeficiente de atrito estático vezes a força normal aplicada. Pode ser calculada através da expressão:

$$F_{AT} = Força\,de\,atrito$$

$$F_{AT} = \mu_{est}N \qquad \qquad \mu_{est} = coeficiente\,de\,atrito\,est\'atico$$

$$N = Força\,normal$$

Figura 5: fórmula da força de atrito estático

Fonte: Só Física, 2019

A fórmula da força de atrito estático pode ser calculada de 2(duas) formas distintas, ou seja, quando se procura a força: $\Box_{\Box\Box} = \Box_{\Box} \times \Box$ e o coeficiente de atrito estático: $\mu_{\Box} = \frac{\Box_{\Box\Box}}{\Box}$. Todas as 2(duas) formas de cálculo pode ser realizada na parte de cálculos do sistema.

Força de atrito dinâmico – A expressão tem como função determinar a força de atrito através do coeficiente de atrito dinâmico vezes a força normal aplicada. Pode ser calculada através da expressão:

Figura 6: fórmula da força de atrito dinâmico

Fonte: Só Física, 2019

A fórmula da força de atrito dinâmico pode ser calculada de 2(duas) formas distintas, ou seja, quando se procura a força: $\Box_{\Box\Box} = \Box_{\Box} \times \Box$ e o coeficiente de atrito dinâmico: $\mu_{\Box} = \frac{\Box_{\Box\Box}}{\Box}$. Todas as 2(duas) formas de cálculo pode ser realizada na parte de cálculos do sistema.

Lei de Hooke (Força Elástica) – A força Elástica analisa a deformação de um corpo elástico. A expressão determina a força escalar resultante através da constante elástica da mola vezes a elongação da mola. Pode ser calculada através da expressão:

Figura 7: fórmula da força elástica escalar resultante

Fonte: Só Física, 2019

A fórmula da Lei de Hooke (Força Elástica) pode ser calculada de 3(três) formas distintas, ou seja, quando se procura a força: $\square = \square \times \square$, a constante elástica da mola: $\square = \frac{\square}{\square}$ e a elongação da mola: $\square = \frac{\square}{\square}$. Todas as 3(três) formas de cálculo pode ser realizada na parte de cálculos do sistema.

Exercícios

As questões aqui disponibilizadas são exemplos das que se encontram no Moodle do êfísico, foram retiradas de vestibulares como: Vunesp, PUCCamp-SP, AFA, Uneb-BA e de sites como o Só Física e o G1. Neste documento contém apenas 5(cinco) questões de exemplo com resolução.

1. (PUC-RIO 2009) Dois blocos A e B cujas massas são mA= 5,0 kg e mB= 10,0 kg estão posicionados como mostra a figura ao lado. Sabendo que a superfície de contato entre A e B possui o coeficiente de atrito estático μ = 0,3 e que B desliza sobre uma superfície sem atrito, determine a aceleração máxima que pode ser aplicada ao sistema, ao puxarmos uma corda amarrada ao bloco B com força F, sem que haja escorregamento do bloco A sobre o bloco B. Considere g = 10,0 m/s².

a) 7.0 m/s^2

b) 6.0 m/s^2

c) 5.0 m/s^2

d) 3.0 m/s^2

Resolução: Letra E.

$$\Box_{\Box\Box} = \Box_{\Box} \times \Box$$

$$\Box_{\Box\Box} = 0.3 \times 5 \times 10$$

$$\Box_{\Box\Box} = 0.3 \times 50$$

$$\Box_{\Box\Box} = 15$$

$$\Box \times \Box = 15$$

$$5 \times \Box = 15$$

$$\Box = \frac{15}{5}$$

$$\Box = 3 \Box / \Box^{2}$$

2. Um bloco de madeira com massa de 10 kg é submetido a uma força F que tenta colocá-lo em movimento. Sabendo que o coeficiente de atrito estático entre o bloco e a superfície é 0,6, calcule o valor da força F necessária para colocar o bloco na situação de iminência do movimento. Considere g = 10 m/s².

a) 62 N

b) 68 N

c) 66 N

d) 60 N

Resolução:

Letra D.

Dados: $m = 10 \text{ kg} / \mu_e = 0.6 / g = 10 \text{ m/s}^2$

O bloco entrará na iminência do movimento quando a força F for igual à força de atrito estático.

$$\begin{array}{c|c} \square_{\square\square} = N \;.\; \mu_e \\ \square_{\square\square} = m \;.\; g \;. \mu_e \\ \square_{\square\square} = 10 \;.\; 10 \;.\; 0,6 \\ \square_{\square\square} = 60 \; N \end{array}$$

3. Um bloco com massa de 3 kg está em movimento com aceleração constante na superfície de uma mesa. Sabendo que o coeficiente de atrito dinâmico entre o bloco e a mesa é 0,4, calcule a força de atrito entre os dois. Considere g = 10 m/s².

a) 32 N

b) 25 N

c) 12 N

d) 18 N

Resolução:

Letra C.

Dados: $m = 3 \text{ Kg} / \mu_d = 0.4 / g = 10 \text{ m/s}^2$

Utilizamos a equação:

$$\begin{split} F_{atd} &= N \;.\; \mu_d \\ N &= P \\ N &= m.g \\ F_{atd} &= N \;.\; \mu_d \\ F_{atd} &= m \;.\; g \;.\; \mu_d \\ F_{atd} &= 3 \;.\; 10 \;.0,4 \\ F_{atd} &= 12 \;N \end{split}$$

4. (Mackenzie-SP) Quando o astronauta Neil Armstrong desceu do módulo lunar e pisou na Lua, em 20 de julho de 1969, a sua massa total, incluindo seu corpo,

trajes especiais e equipamento de sobrevivência, era de aproximadamente 300 kg. O campo gravitacional lunar é cerca de 1/6 do campo gravitacional terrestre. Se a aceleração da gravidade na Terra é aproximadamente 10,0 m/s2, podemos afirmar que:

- a) A massa total de Armstrong na Lua é de 300 kg e seu peso é 500 N.
- b) A massa total de Armstrong na Terra é de 50,0 kg e seu peso é 3000 N.
- c) A massa total de Armstrong na Terra é de 300 kg e seu peso é 500 N.
- d) A massa total de Armstrong na Lua é de 50,0 kg e seu peso é 3000 N.
- e) O peso de Armstrong na Lua e na Terra são iguais.

Resolução:

Letra A.

A massa total do astronauta e de seu equipamento é a mesma na Lua. A mudança de local gera alterações na força peso, e não no valor da massa dos corpos. Por meio da definição de força peso, pode-se definir o peso do astronauta na lua:

$$\Box = \Box \times \Box$$

$$\Box = \Box \times \frac{1}{6} \times \Box$$

$$\Box = 300 \times \frac{1}{6} \times 10$$

$$\Box = 500 \Box$$

- 5. **(UFMG)** Um corpo de massa m está sujeito à ação de uma força F que o desloca segundo um eixo vertical em sentido contrário ao da gravidade. Se esse corpo se move com velocidade constante, é porque:
 - a) a força F é maior do que a da gravidade.
 - b) a força resultante sobre o corpo é nula.
 - c) a força F é menor do que a gravidade.
 - d) a diferença entre os módulos das duas forças é diferente de zero.
 - e) a afirmação da questão está errada, pois qualquer que seja F o corpo estará acelerado porque sempre existe a aceleração da gravidade.

Resolução:

Letra B.

A Segunda lei de Newton mostra que, se não existir aceleração, não há aplicação de força resultante para os movimentos

retilíneos. Como o corpo move-se com velocidade constante, podemos afirmar que a força resultante que atua sobre ele é nula.

REFERÊNCIAS

Só Física. **Fórmulas de Dinâmica**. Virtuous Tecnologia da Informação, 2008-2019. Disponível em: http://www.sofisica.com.br/conteudos/FormulasEDicas/formulas.php. Acesso em: 06/12/2019.

JÚNIOR, Joab Silas Silva. **Exercícios sobre a força peso.** Mundo Educação: Joab Silas da Silva Júnior, 2017. Disponível em: https://exercicios.mundoeducacao.bol.uol.com.br/exercicios-fisica/exercicios-sobreforca-peso.htm#resposta-4800. Acesso em: 7 dez. 2019.

Lei de Hooke. **Toda Matéria**, 28 ago. 2017. Disponível em: https://www.todamateria.com.br/lei-de-hooke/. Acesso em: 7 dez. 2019.

JÚNIOR, Joab Silas da Silva. **Exercícios Sobre Segunda Lei De Newton.** Mundo Educação, 15 abr. 2016. Disponível em: https://exercicios.mundoeducacao.bol.uol.com.br/exercicios-fisica/exercicios-sobre-segunda-lei-newton.htm. Acesso em: 7 dez. 2019.

TEIXEIRA, Mariane Mendes. **EXERCÍCIOS SOBRE FORÇA DE ATRITO**. Brasil Escola: Mariane Mendes Teixeira, 24 jul. 2014. Disponível em: https://exercicios.brasilescola.uol.com.br/exercicios-fisica/exercicios-sobre-forca-atrito.htm. Acesso em: 8 dez. 2019.