

DeepSentiment:

Tweet Sentiment Analysis using BERT-based models & LLMs

— By Carl May and Dhyey Mavani

Introduction

- Tweets are seems to have at least some predictive power and influence in the financial markets and our world!
- Goal: Analyze predictive accuracy of BERT-based models, and LLM-based deep learning methods in the task of predicting sentiment of tweets.

Data & Preprocessing

- Our dataset comprises tweets extracted from the TweetEval benchmark, specifically focusing on the sentiment subset.
 - Training data: 45615 tweets
 - Validation data: 2000 tweets
 - Testing data: 12284 tweets
- Preprocessing:
 - Removing special characters
 & unnecessary words
 - Expanding contractions

Models

Transformers, Transformers everywhere!

- naive-bayes
- bert-base-uncased
- roberta-base
- phi-3 mini (few shot)

Results & Analysis

Comparative Metrics for Sentiment Classification on the Test Set: BERT / RoBERTa				
	Precision	Recall	F1	
Negative	0.69 / 0.59	0.61 / 0.80	0.65 / 0.68	
Neutral	0.65 / 0.71	0.73 / 0.55	0.69 / 0.62	
Positive	0.64 / 0.63	0.57 / 0.60	0.61 / 0.61	

Naive Bayes Sentiment Analysis Confusion Matrix				
Negative	216	3377	379	
Test Neutral	49	4972	916	
Positive	2	1150	1223	
	Negative	Neutral Predicted	Positive	

Model	Sentiment Classification Accuracy on the Test set
BERT	0.655
RoBERTa	0.644
Naive Bayes	0.52
Phi-3*	0.418

Future Work

- Exploring the comparative efficacy of zero/one/few-shot learning and different LLMs
- Fine tuning some other hyperparameters using a more powerful & efficient compute resource
- Having a multi-agent LLM framework with an orchestrator and some specialised agents to better suit our task
- Using Generative Adversarial Networks (GANs) to predict tweet sentiments

References

[1] TweetEval Benchmark and Associated Papers:

https://github.com/cardiffnlp/tweeteval

[2] BERTweet Paper:

https://paperswithcode.com/paper/bertweet-a-pre-trained-language-model-for

[3] Hugging Face's FacebookAl/RoBERTa-base Model:

https://huggingface.co/FacebookAl/roberta-base

[4] V. Mahalakshmi, P. Shenbagavalli, S. Raguvaran, V. Rajakumareswaran, E. Sivaraman, Twitter sentiment analysis using conditional generative adversarial network, International Journal of Cognitive Computing in Engineering, Volume 5, 2024, Pages 161-169, ISSN 2666-3074,

https://doi.org/10.1016/j.ijcce.2024.03.002.

[5] Hugging Face's Microsoft/Phi-3-mini-128k-instruct : https://huggingface.co/microsoft/Phi-3-mini-128k-instruct

