Query Tuning

CS5226 Lecture 2

Query Tuning

- Eliminating redundant DISTINCT
- Rewriting nested queries

Review: Relational Algebra

- \bullet $\pi_S R$ = projection of relation R onto the set of columns in S
- $\rightarrow \pi_{S}^{all}R$ = projection of relation R onto the set of columns in S (duplicates preserved)
- $\sigma_p R$ = selection of relation R
 - p = predicate to filter qualifying rows from R
- ► ⊎ = union with duplicates preserved (SQL's union all)
- ightharpoonup columns in X, where X is a relation or predicate

Review: Relational Algebra (cont.)

- \triangleright R \times S = cross product
- $ightharpoonup R \bowtie_{p} S = inner-join$
- ▶ $R \ltimes_p S = \text{left semi-join}$
- ► $R \bowtie_p S = \text{right semi-join}$
- ▶ $R \triangleright_p S = \text{anti-join}$
- ▶ $R \bowtie_p S = \text{left outer-join (LOJ)}$
- ▶ $R \bowtie_p S = \text{right outer-join (ROJ)}$
- ▶ $R \bowtie_p S = \text{full outer-join (FOJ)}$

Review: Functional Dependencies

- Functional dependencies (FDs) are constraints on schemas that specify that the values for a certain set of attributes determine unique values for another set of attributes
- ▶ Let α and β denote subsets of attributes of a relational schema R (i.e., α , β ⊆ columns(R))
- We use $\alpha \to \beta$ to denote that α functionally determines β (or β functionally depends on α)

Review: Functional Dependencies (cont.)

- Let $\pi_{\alpha}(t)$ denote the projection of α on tuple t
- Let r be a relation instance of relation schema R
- ▶ r satisfies FD $\alpha \to \beta$ if for every pair of tuples t_1 and t_2 in r such that $\pi_{\alpha}(t_1) = \pi_{\alpha}(t_2)$, it is also true that $\pi_{\beta}(t_1) = \pi_{\beta}(t_2)$
- ▶ A FD $\alpha \to \beta$ holds on R iff for any relation instance r of R, r satisfies $\alpha \to \beta$

Review: Functional Dependencies (cont.)

Consider the following relation instance r:

Module	Prof	Room	Building	Time
CS101	Turing	LT 1	CS	0800
CS400	Turing	LT 1	cs	1400
MU300	Bach	LT 2	Math	1400
MA200	Newton	LT 2	Math	1000
CS101	Turing	LT 2	Math	1200

- r satisfies Room → Building
- r does not satisfy Prof → Module

Review: Functional Dependencies (cont.)

- A set of attributes α is a superkey of schema R if for every instance r of R, r has no duplicate values for α
- α is a superkey of R iff $\alpha \to columns(R)$
- α is a key of R if α is a superkey of R and no proper subset of α is a superkey of R

Review: Reasoning about FDs

- Let F be a set of FDs and f be an FD
- ► F logically implies (or implies) f if every relation instance of R that satisfies the FDs F also satisfies the FD f

Inference Rules for FDs

- ▶ Let $\alpha, \beta, \gamma \subseteq columns(R)$
- ▶ Reflexivity: If $\beta \subseteq \alpha$, then $\alpha \to \beta$
- ▶ Augmentation: If $\alpha \to \beta$, then $\alpha \gamma \to \beta \gamma$
- ▶ Transitivity: If $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- ▶ Union: If $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- ▶ Decomposition: If $\alpha \to \beta$, then $\alpha \to \beta'$ for any $\beta' \subseteq \beta$

Review: Reasoning about FDs (cont.)

- ▶ Let $\alpha \subseteq columns(R)$
- ▶ Let F be a set of FDs that hold on R
- ► The closure of α (with respect to F), denoted by α^+ , is the set of attributes that are functionally determined by α with respect to F

$$\alpha^+ = \{ A \in columns(R) \mid F \text{ implies } \alpha \to A \}$$

• F implies $\alpha \to \beta$ if and only if $\beta \subseteq \alpha^+$ (w.r.t. F)

Review: Reasoning about FDs (cont.)

```
Input: \alpha, F
Output: \alpha^+ (w.r.t. F)
\alpha^+ = \alpha
stop = false
repeat
      if (there exists some FD \beta \to \gamma \in F such that \beta \subseteq \alpha^+ and \gamma \notin \alpha^+) then
           \alpha^+ = \alpha^+ \cup \gamma
      else
           stop = true
until (stop)
return \alpha^+
```

Eliminating Redundant DISTINCT

- ► Customer (<u>cust#</u>, cname, country)
- ► SalesRep (rep#, sname, country)
- SalesOffice (country, address, phone)

Eliminating Redundant DISTINCT

- ► **R**(A,B,C)
- **► S**(<u>D</u>,E,F)
- 1. select distinct B from R
- 2. select distinct A, B from R
- 3. select distinct A, D, E from R, S
- 4. select distinct A, E from R, S
- 5. select distinct A, E from R, S where A = F
- 6. select distinct A, E from R, S where B = D

SPJ Queries

A SPJ query is a query of the form

$$\pi_{\mathcal{S}}^{all}\sigma_{p}(R_{1}\times\cdots\times R_{n})$$

- $S \subseteq \bigcup_{i=1}^{n} columns(R_i)$
- ▶ $p = p_1 \land \cdots \land p_m$ where each p_i is of the form "A op c" or "A op A'"
 - op is a comparison operator
 - c is a constant
 - $A, A' \in \bigcup_{i=1} columns(R_i)$

Eliminating Redundant DISTINCT

- ▶ Let $Q = \pi_S^{all} \sigma_p(R_1 \times \cdots \times R_n)$ be a SPJ query
- Let F be the set of FDs defined as follows:
 - ▶ For each FD $X \to Y$ that holds on $R_1, \dots, R_n, X \to Y \in F$
 - ▶ For each selection predicate A = c in p,

$$\{A' \rightarrow A \mid A' \in \bigcup_{i=1}^n columns(R_i)\} \subseteq F$$

For each equality join predicate A = A' in p, $\{A \rightarrow A', A' \rightarrow A\} \subset F$

If S is a superkey of $\sigma_p(R_1 \times \cdots \times R_n)$ wrt F, then the result of Q has no duplicates

Example

- ► **R**(<u>A</u>,B,C)
- **► S**(<u>D</u>,E,F)
- ► **T**(<u>G</u>,H)

```
select distinct B, D
from R, S, T
where A = E
and C = H
and G = 10
```

Rewriting of Nested Queries

- ► Customer (<u>cust#</u>, cname, country)
- ► Order (order#, cust#, date, totalprice)

Nested Queries

- A nested query is a query containing some subquery
- A subquery in a nested query is also called an inner query which is contained in an outer query
- ► A correlated nested query is a nested query where there is a subquery that is <u>dependent</u> on the tuple referenced in its outer query

Subqueries in SQL

Used as a scalar expression in SELECT clause

Subqueries in SQL (cont.)

Used as a derived table in FROM clause

Subqueries in SQL (cont.)

Used as a scalar expression in WHERE / HAVING clause

Classification of nested queries

- Is the nested query correlated or uncorrelated?
- Does the subquery involve aggregation?

Classification of nested queries (cont.)

select order#

```
from Order

Where cust# in (select cust#
from Customer
where country = "Singapore")

select order#

from Order
where totalprice = (select max(totalprice) from Order)
```

Classification of nested queries (cont.)

24

How to unnest subqueries?

```
select cname
                                     select
                                              cname
from
       Customer c
                                     from
                                              Customer c join Order o
where 1000 <
                                              on c cust# = 0.cust#
       (select sum(o.totalprice)
                                     group by c.cust#, c.cname
        from
               Order o
                                     having
                                              1000 < sum(o.totalprice)
        where o.cust# = c.cust#)
```

- Transform subqueries into relational algebra expressions
 - Using a new relational operator: apply operator
- Apply rewriting rules to eliminate apply operator

More Relational Algebra

 $G_{A,F}$ R = group by on relation R

- ► *A* = set of grouping columns
- ► *F* = set of aggregate functions

More Relational Algebra (cont.)

 G_E^1 R = scalar aggregation on relation R

- ► F = set of aggregate functions
- \mathcal{G}_F^1 R returns exactly one row

```
select order#
from Order
where totalprice >
          (select sum(totalprice)
          from Customer c join Order o
               on c.cust# = o.cust#
          where cname = "IBM"
          )
```

```
\mathcal{G}_{T=sum(totalprice)}^{1}
\sigma_{cname="IBM"}
\sigma_{customer.cust\#=Order.cust\#}
Customer Order
```

More Relational Algebra (cont.)

- $ightharpoonup \mathcal{G}_{AF}\emptyset = \emptyset$
- \mathcal{G}_{F}^{1} R returns exactly one row
- ▶ Thus, $\mathcal{G}_{\emptyset,F}$ $R \neq \mathcal{G}_F^1$ R

$$\mathcal{G}_{\mathsf{F}}^1 \, R = \left\{ egin{array}{ll} \mathcal{G}_{\emptyset,\mathsf{F}} \, R & ext{if } R
eq \emptyset \ (\mathcal{F}_1(\emptyset),\cdots,\mathcal{F}_n(\emptyset)) & ext{otherwise} \end{array}
ight.$$

where
$$F = \{F_1, \cdots, F_n\}$$

More Relational Algebra (cont.)

If R is an empty relation, then

Query	Result
SELECT COUNT(A) FROM R	0
SELECT COUNT(*) FROM R	0
SELECT MIN(A) FROM R	NULL
SELECT MAX(A) FROM R	NULL
SELECT SUM(A) FROM R	NULL
SELECT AVG(A) FROM R	NULL

Parameterized Relational Expression

```
E(c) = PRE with parameter c \in Customer

select cname

from Customer c

where 1000 < E(c)
```

Parameterized Relational Expression

Eliminating PRE

- ► Customer' = Customer + additional column T
 - T = E(c)
- Customer' = $\biguplus_{c \in Customer} (\{c\} \times E(c))$

Eliminating PRE (cont.)
$$Customer' = \biguplus (\{c\} \times E(c))$$

ullet $E(c) = \mathcal{G}_{T=sum(totalprice)}^1(\sigma_{cust\#=c.cust\#}(Order))$

Customer

cust#	cname	country
1	Alice	
2	Bob	
3	Carol	

Order

J. 3.0.					
order#	cust#	date	totalprice		
100	2		3000		
201	2		5000		
460	3		4000		
500	3		1000		

Customer'

cust#	cname	country	Т
1	Alice		null
2	Bob		8000
3	Carol		5000

Apply Operator \mathcal{A}^{\otimes}

$$R \mathcal{A}^{\otimes} E = \biguplus_{r \in R} (\{r\} \otimes E(r))$$

- R = relational expression
- ightharpoonup E(r) = parameterized relational expression, $r \in R$
- \triangleright \otimes = relational operator that combines R and E(r)
 - $\triangleright \otimes \in \{\times, \bowtie, \ltimes, \rtimes, \triangleright, \bowtie, \bowtie, \bowtie\}$

Eliminating PRE with apply operator

Customer' =
$$\biguplus_{c \in Customer} (\{c\} \times E(c))$$

= Customer $\mathcal{A}^{\times} E$

CS5226: Sem 2, 2012/13 Rewriting of Nested Queries 35

Push down apply operator

Rewriting rule: $R \mathcal{A}^{\times} (\mathcal{G}_F^1 E) = \mathcal{G}_{columns(R),F'} (R \mathcal{A}^{LOJ} E)$

Example 1

Customer

cust#	cname
1	l Alice
•	7
2	Bob
_	D00
3	Carol
3	Caron

Order

	0.40.	
order#	cust#	totalprice
100	2	3000
201	2	5000
460	3	4000
500	3	1000

Customer \mathcal{A}^{\times} $\mathcal{G}_{\mathsf{T=sum(totalprice)}}^{\mathsf{1}}$ $\sigma_{\mathsf{cust}\#=\mathsf{c.cust}\#}$ (Order)

cust#	cname	Т		
1	Alice	null		
2	Bob	8000		
3	Carol	5000		

R = Customer $A^{LOJ} \sigma_{cust\#=c.cust\#}$ (Order)

		$cust_{TT} - c.cust_{TT}$			•
	cust#	cname	order#	totalprice	
ĺ	1	Alice	null	null	
	2	Bob	100	3000	
	2	Bob	201	5000	
	3	Carol	460	4000	
	3	Carol	500	1000	

$\pi_{\mathsf{cust}\#,\mathsf{cname},\mathsf{T}}($

$\mathcal{G}_{ extsf{columns}(extsf{Customer}), extsf{T}= extsf{sum}(extsf{totalprice})}$					
	cust#	cname	Т		
→	1	Alice	null		
	2	Bob	8000		
	3	Carol	5000		

Rewriting rule to push down apply

$$R \mathcal{A}^{\times} (\mathcal{G}_{F}^{1} E) = \mathcal{G}_{columns(R),F'} (R \mathcal{A}^{LOJ} E)$$
iff

- (1) R must contain a key, and
- (2) F' contains aggregates in F expressed over a single column

Example: If F is COUNT(*), then F' is COUNT(A) for some non-nullable column A from E

Example 2

select cname from Customer c where 2 <
(select count(*) from Order o where o.cust# = c.cust#)</pre>

Example 2 (cont.)

Customer \mathcal{A}^{\times} $\mathcal{G}_{\mathsf{T=count}(*)}^{\mathsf{1}}$ $\sigma_{\mathsf{cust}\#=\mathsf{c.cust}\#}$ (Order)

Customer

cust#	cname
1	Alice
2	Bob

Order

order#	cust#	date	totalprice		
100	2	2012-05-03	3000		
201	2	null	5000		

cust#	cname	Т
1	Alice	0
2	Bob	2

R = Customer $A^{LOJ} \sigma_{cust\#=c,cust\#}$ (Order)

cust#	cname	order#	date	totalprice
1	Alice	null	null	null
2	Bob	100	2012-05-03	3000
2	Bob	201	null	5000

$\pi_{\mathsf{cust}\#,\mathsf{cname},\mathsf{T}}($

\mathcal{G}_{colum}	ns(Custom	er),T=count(order∌	_{#)} (R))
	cust#	cname	Т	

cust#	cname	Т
1	Alice	0
2	Bob	2

ım	ne, i (9columns(Customer),T=		
	cust#	cname	Т
	1	Alice	1
	2	Bob	2

$\pi_{\mathsf{cust}\#,\mathsf{cname},\mathsf{T}}($

 $\mathcal{G}_{\text{columns}(\text{Customer}), \text{T}=\text{count}(\text{date})}(\text{R}))$

cust#	cname	Т
1	Alice	0
2	Bob	1

Eliminate apply operator

Rewriting rule: $R \mathcal{A}^{\otimes} (\sigma_p E) = R \otimes_p E$ E must not have any parameter that refers to R

Simplify LOJ to inner join

Therefore ...

```
select cname
from Customer c
where 1000 <
       (select sum(o.totalprice)
        from Order o
        where o.cust# = c.cust#)
select cname
from
       (select
                 cname, sum(totalprice) as T
        from
                 Customer c join Order o
                 on c.cust# = o.cust#
        group by cust#, cname)
where 1000 < T
```

43

Therefore ...

select cname

having 1000 < sum(o.totalprice)</pre>

group by c.cust#, c.cname

43

Rewriting rules for apply operator

- 1. $R \mathcal{A}^{\otimes} E = R \otimes_{true} E$
- 2. $R \mathcal{A}^{\otimes} (\sigma_p E) = R \otimes_p E$
- 3. $R \mathcal{A}^{\times}(\sigma_{p}E) = \sigma_{p}(R \mathcal{A}^{\times}E)$
- 4. $R \mathcal{A}^{\times}(\pi_{\nu}E) = \pi_{\nu \cup columns(R)}(R \mathcal{A}^{\times}E)$
- 5. $R \mathcal{A}^{\times} (E_1 \cup E_2) = (R \mathcal{A}^{\times} E_1) \cup (R \mathcal{A}^{\times} E_2)$
- 6. $R \mathcal{A}^{\times} (E_1 E_2) = (R \mathcal{A}^{\times} E_1) (R \mathcal{A}^{\times} E_2)$

Rules 1 & 2 require that E must not have any parameter that refers to R

Rewriting rules for apply operator (cont.)

- 7. $R \mathcal{A}^{\times} (E_1 \times E_2) = (R \mathcal{A}^{\times} E_1) \bowtie_{R.key} (R \mathcal{A}^{\times} E_2)$
- 8. $R \mathcal{A}^{\times} (\mathcal{G}_{A,F} E) = \mathcal{G}_{A \cup columns(R),F} (R \mathcal{A}^{\times} E)$
- 9. $R \mathcal{A}^{\times} (\mathcal{G}_{F}^{1} E) = \mathcal{G}_{columns(R),F'} (R \mathcal{A}^{LOJ} E)$

- Rules 7 to 9 require that R contains a key (denoted by R.key)
- ▶ In Rule 7, $\bowtie_{R,kev}$ denote an equality join on R.key

References

Required Readings

- Section 4.6 (Query Tuning) of Shasha & Bonnet's book
- C.A. Galindo-Legaria, M.M. Joshi, Orthogonal optimization of subqueries and aggregation, SIGMOD 2001