

Wirtschaftsmathematik

Prof. Dr. Stefan Böcker, FRM

3. Juni 2025

Wirgeben Impulse

Outline

- 1 Einführung in die Finanzmathematik
- 2 Funktionen
- 3 Lineare Gleichungssysteme
- 4 Lineare Optimierung

Leitgedanken der Finanzmathematik

- Der Wert einer Zahlung ist abhängig vom Zeitpunkt, zu dem diese zu leisten ist.
- Es gilt stets das Äquivalenzprinzip.
- Das Gerüst der klassischen Finanzmathematik wird aus **ganz wenigen Formeln** gebildet.
- In der klassischen Finanzmathematik gibt es einfache, mittelschwere und relativ kompliziert zu lösende Probleme. Die größte Schwierigkeit ist in der Regel die **Modellierung**.
- Ein grafisches Schema bringt fast immer Klarheit.
- Das wichtigste Konzept ist das der **Rendite**, auch **Effektiv- oder Realzins** genannt.
- Die klassische Finanzmathematik läßt sich klar umreißen. Das wichtigste Konzept ist das des Zinssatzes.

Begriffe

Kapital Geldbetrag, der angelegt bzw. jemand anderem überlassen wird.

Laufzeit Dauer der Überlassung/Anlage

Zinsen Vergütung für die Kapitalüberlassung innerhalb einer Zinsperiode

Zinsperiode er vereinbarten Verzinsung zugrunde liegender Zeitrahmen; meist ein Jahr, oftmals kürzer (Monat, Quartal, Halbjahr), selten länger

Zinssatz insbetrag in Geldeinheiten (GE), der für ein Kapital von 100 GE in einer Zinsperiode zu zahlen ist; auch Zinsfuß genannt.

Zeitwert der von der Zeit abhängige Wert des Kapitals

Notation

Folgende Notation wird (in der Regel) im folgenden benutzt:

Kapital K_t ist das Kapital zum Zeitpunkt t

Zinssatz $i = \frac{p}{100}$, wobei p der Zinssatz/Zinsfuß in Prozent ist

Aufzinsungsfaktor
$$q = (1 + i) = (1 + \frac{p}{100})$$

Zinsen Z_t Zinsen für den Zeitraum t.

Damit gelten folgende Zusammenhänge:

armit genteri forgeriae zasammermang								
	р	i	q					
р	р	100i	100(q - 1)					
i	<u>p</u> 100	i	q — 1					
9	$1 + \frac{p}{100}$	1 + i	q					

Lineare Verzinsung

Zinsformel Zinsen hängen proportional vom Kapital K, der Laufzeit t und dem Zinssatz i ab:

$$Z_t = K \cdot i \cdot t$$

Laufzeit In Deutschland wird meist das Jahr zu 360 Tagen und der Monat zu 30 Zinstagen gerechnet. Daher kann man meist $t = \frac{T}{360}$ setzen, wobei T die Anzahl an Tagen ist.

$$Z_T = K \cdot i \cdot \frac{T}{360}$$

6

Beispiele (1/3)

- Frage Welche Zinsen fallen an, wenn ein Kapital von 3500 € vom 3. März bis zum 18. August eines Jahres bei einem Zinssatz von 3.25 % p.a. angelegt wird?
- Antwort Da 165 = 27 + 30 + 30 + 30 + 30 + 18 Zinstage zugrunde zu legen sind, ergibt sich aus der Zinsformel

$$Z_{165} = 3500 \epsilon \cdot \frac{3.25}{100} \frac{165}{360} = 52.135416667 \epsilon \approx 52.14 \epsilon$$

7

Beispiele (2/3)

Frage Wie hoch ist ein Kredit, für den in einem halben Jahr bei 8 % Jahreszinsen 657.44 € Zinsen zu zahlen sind?

Antwort Durch Umstellen der Zinsformel ermittelt man:

$$K = Z_T \frac{100}{p} \frac{360}{T} = 657.44 \in \frac{100}{8} \frac{360}{180} = 16436 \in$$

Beispiele (3/3)

Frage Ein Wertpapier über 5000 €, das mit einem Kupon (Nominalzins) von 6.25 % ausgestattet ist, wurde einige Zeit nach dem Emissionsdatum erworben. Es sind Stückzinsen in Höhe von 36.46 € zu zahlen. Wieviele Zinstage wurden dabei berechnet?

Antwort Umstellen der Zinsformel führt auf

$$T = \frac{Z_T \cdot 100 \cdot 360}{K \cdot p} = \frac{36.46 \cdot 100 \cdot 360}{5000 \cdot 6.25} = 42 \text{ (Tage)}$$

9

Zeitwert

Zeitwert Da sich das Kapital K_t zum Zeitpunkt t aus dem Anfangskapital K_0 zuzüglich der im Zeitraum t angefallenen Zinsen Z_t ergibt, also

$$$$$
 $K_{t} = K_{0} + Z_{t}$

\$\$

gilt, folgt aus der Zinsformel eine sehr wichtige Formel der Finanzmathematik, die **Endwertformel bei linearer Verzinsung**

$$K_t = K_0 + Z_t = K_0 + K_0 \cdot i \cdot t = K_0 (1 + i \cdot t) = K_0 \left(1 + \frac{p}{100} \cdot t\right)$$

Barwert : Man kann durch Umstellen der Endwertformel auch den Barwert K_0 einer zukünftigen Zahlung K_t berechnen

$$K_0 = \frac{K_t}{1 + i \cdot t}$$

Beispiele

Frage In einem halben Jahr ist eine Forderung von 8000 € fällig. Wie viel ist bei einer Sofortzahlung zu leisten, wenn mit einem kalkulatorischen Zins von i= 5 % gerechnet wird?

Antwort Aus der Barwertformel ergibt sich

$$K_0 = \frac{8000}{1 + 0.05 \cdot \frac{1}{2}} \in = 7804.88 \in$$

Äquivalenzprinzip und Barwert

Äquivalenzprinzip

Das Äquivalenzprinzip nutzt man in der Finanzmathematik meist in der Form eines Barwert-Vergleichs, indem die Barwerte von Zahlungen, die zu verschiedenen Zeitpunkten geleistet werden, berechnet werden.

Beispiel: Äquivalenzprinzip und Barwert (1/2)

Aufgabe Beim Verkauf einer Maschine werden dem Käufer zwei Angebote gemacht: Entweder 9000 € in 30 Tagen oder 9085 € in 90 Tagen.

Welches Angebot ist günstiger, wenn jährlich mit 6 % bzw. mit 3 % verzinst wird? Bei welchem Zinssatz ergibt sich Gleichheit?

Lösung (1/2)

Bei einer Verzinsung von 6 % ergeben sich folgende Barwerte:

$$K_0^{30} = \frac{9000}{1 + 0.06 \cdot \frac{30}{360}} = 8955.22$$
 $K_0^{90} = \frac{9085}{1 + 0.06 \cdot \frac{90}{360}} = 8950.74$

Das zweite Angebot ist also bei 6 % günstiger.

Bei einer Verzinsung von 3 % ergeben sich folgende Barwerte:

$$K_0^{30} = \frac{9000}{1 + 0.03 \cdot \frac{30}{360}} = 8977.55$$
 $K_0^{90} = \frac{9085}{1 + 0.03 \cdot \frac{90}{360}} = 9017.37$

Das erste Angebot ist also bei 3 % günstiger.

Beispiel: Äquivalenzprinzip und Barwert (2/2)

Lösung (2/2) Gleichheit der Angebote

Gleichwertigkeit beider Angebote bedeutet Gleichheit der Barwerte und führt so auf die Gleichung

$$\frac{9000}{1+i\cdot\frac{30}{360}} = \frac{9085}{1+i\cdot\frac{90}{360}} \Leftrightarrow 9000\cdot\left(1+i\frac{1}{4}\right) = 9085\left(1+i\frac{1}{12}\right)$$

Daraus folgt i = 0.0569 = 5.69%

Berechnung von Zinssatz und Laufzeit

Zinssatz- und Laufzeitberechnung

Man kann aus der Endwertformel bei linearer Verzinsung sowohl den Zinssatz als auch die Laufzeit berechnen:

$$i = \frac{1}{t} \left(\frac{K_t}{K_0} - 1 \right)$$
 $t = \frac{1}{i} \left(\frac{K_t}{K_0} - 1 \right)$

Beispiel

Frage In welcher Zeit wächst eine Spareinlage von 1200 € bei 2.8 % jährlicher Verzinsung auf 1225.20 € an?

Antwort

$$t = \frac{1}{0.028} \left(\frac{1225.20}{1200} - 1 \right) = 0.75 = \frac{3}{4}$$

Rentenrechnung

Tilgungsrechnung

Investitionsrechnung

Outline

- 1 Einführung in die Finanzmathematik
- 2 Funktionen
- 3 Lineare Gleichungssysteme
- 4 Lineare Optimierung

Funktionsbegriff

Darstellung von Funktionen

Einige Beispiele

Eigenschaften von reellen Funktionen

Wichtige Funktionen

Ableitung einer Funktion

Outline

- 1 Einführung in die Finanzmathematil
- 2 Funktionen
- 3 Lineare Gleichungssysteme
- 4 Lineare Optimierung

Grundlagen zu linearen Gleichungssystemen

Gauß-Algorithmus

Matrizenrechnung

Outline

- 1 Einführung in die Finanzmathematil
- 2 Funktionen
- 3 Lineare Gleichungssysteme
- 4 Lineare Optimierung

Problemdarstellung und grafische Lösung

Simplex-Algorithmus

Allgemeines lineares Optimierungsproblem

Use \alert to highlight some text

Squared Paper

squared{} (or \kariert{}) can be used to produce squared paper

Squared Paper

(or) can be used to produce lined paper								

Slide with R output

summary(cars)

```
## Speed dist
## Min. : 4.0 Min. : 2
## 1st Qu.:12.0 1st Qu.: 26
## Median :15.0 Median : 36
## Mean :15.4 Mean : 43
## 3rd Qu.:19.0 3rd Qu.: 56
## Max. :25.0 Max. :120
```

Slide with mathematics

Quantile score for observation y. For 0 :

$$S(y_t, q_t(p)) = \begin{cases} p(y_t - q_t(p)) & \text{if } y_t \ge q_t(p) \\ (1 - p)(q_t(p) - y_t) & \text{if } y_t < q_t(p) \end{cases}$$

Average score over all percentiles gives the best distribution forecast:

QS =
$$\frac{1}{99T} \sum_{p=1}^{99} \sum_{t=1}^{T} S(q_t(p), y_t)$$

R Table

A simple knitr::kable example:

Tabelle 1: (Parts of) the mtcars dataset

	mpg	cyl	disp	hp	drat	wt	qsec
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02
Datsun 710	22.8	4	108	93	3.85	2.320	18.61
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44

Resources

For more information:

- See the RMarkdown repository for more on RMarkdown
- See the binb repository for more on binb
- See the binb vignettes for more examples.