Recommendation System

Zining Wang, Jiayu Yao, Qiyang Li

1. Intro & Background

Recommendation System

Water A Town Control of the Control

Problem

- User, Movie → Rating(1-5)
- Given: History ratings dataset
- Given: User & Movie information
- Objective: Predict ratings and reduce error

Applications

- Recommend different movies to different users
- Find top 10 favorite movies
- Personalized recommendations

Rating Matrix $(M \times N)$

5

3

5

4

2

1

?

3

3

Dataset

Dataset:

- 1 M dataset by Grouplens
- 6040 users, 3952 movies
- User id, movie id, ratings
- Additional user and movie information

Based Similar Svd

user id

(uid)

2. Methods

Recommendation System

Methods:

- Global Average/Movie Average/User Average/Combined Average
- Weighted K Nearest Neighbor (KNN)
- Singular Vector Decomposition (SVD)
- XGBoost
- Ensemble/Hybrid Recommendation System Methodology
- Novel ideas...

Only Using Average...

- Predict every rating by global average/movie average/user average
- Baseline Model

KNN

Item-based KNN

- •Intuition: each individual will rate similar movie similarly
- Pearson Correlation
- Distance Metric Pearson Distance d=1-w

Weighted KNN

• Take weighted average

w	$\sum_{u\in U} (r_{u,i} - \bar{r}_i)(r_{u,j} - \bar{r}_j)$
w _{i,j} –	$\sqrt{\sum_{u\in U}(r_{u,i}-\bar{r}_i)^2\sum_{u\in U}(r_{u,j}-\bar{r}_j)^2}$

SVD

Simple SVD

- Factorized the movie-user matrix
- Impute missing values with average

SVD + bias

- Incorporate user/movie bias
- Randomly initialize matrices
- Set default user/movie bias vectors
- Use gradient descent to find P,Q and bias
- Update for certain iterations

$$\begin{split} \min_{\mathcal{Q},P} \sum_{(x,i) \in R} & \left(r_{xi} - (\mu + b_x + b_i + q_i \ p_x) \right)^2 \\ & + \left(\lambda_1 \sum_i \left\| q_i \right\|^2 + \lambda_2 \sum_x \left\| p_x \right\|^2 + \lambda_3 \sum_x \left\| b_x \right\|^2 + \lambda_4 \sum_i \left\| b_i \right\|^2 \right) \\ & \text{regularization} \end{split}$$

 λ is selected via gridsearch on a validation set

$$\min_{P,Q} \sum_{(i,x)\in\mathbb{R}} (r_{xi} - q_i \cdot p_x)^2$$

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Mean rating user x

Bias for movie i

User-Movie interaction

Models Using Additional Information

- Additional Information
- •User: Gender, Age, Occupation, Zip Code, Timestamp
- •Movie: Year, Genre (Action, Drama, Horror, etc.), Number of Rating

KNN

Distance Metric: Hamming (N_unequal(x, y) / N_tot)

Tree Models

XGBoost

3. Experimental Results

Preprocessing Techniques

- Dummy Code
- Imputation

Animation	Children's	Comedy	Crime	Documentary	Drama	:	year_1	year_2	year_3	year_4	year_5	year_6	year_7	year_8	year_9	popularity
1.0	1.0	1.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1648.0
0.0	1.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	578.0
0.0	0.0	1.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	384.0

	0	gender_F	gender_M	age_1	age_18	age_25	age_35	age_45	age_50	age_56	 zip_code_0	zip_code_1	zip_code_2	zip_code_3	zip_code
0	1	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	1.0
1	2	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	 0.0	0.0	0.0	0.0	0.0
2	3	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0
3	4	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	 1.0	0.0	0.0	0.0	0.0
4	5	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0

Plots

Plots

Train/Test Split

- 80% train (cross validation), 20% test
- Same train/test set for all methods
- Why?

Evaluation Metrics

- root mean square error (RMSE)
- Why?

Result Comparison

• Test RMSE

4. Discussion

Key Challenges

- Preprocessing user/movie info
- Deal with missing values
- Defining distance metrics for KNN
- Running time and complexity

Problems

- How to get dummy variables for zip code?
- Imputation for missing values
- How to incorporate temporal information

Next step

- Explore smart ways to preprocess data
- Ensemble
- Try advanced models (if we have time..)

5.Q & A

Thank you!

