Mounting Google Drive to Access Files

```
from google.colab import drive
drive.mount('/content/drive')
```

🕁 Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=Tru

Install required libraries

```
# Install pyarrow for reading Parquet files
!pip install pyarrow
```

Install Hugging Face libraries: transformers, datasets, and evaluate !pip install -q transformers datasets evaluate

Requirement already satisfied: pyarrow in /usr/local/lib/python3.11/dist-packages (18.1.0)

Imports

```
# Data handling and numerical operations
import pandas as pd
import numpy as np
```

PyTorch for deep learning import torch

Visualization libraries import seaborn as sns import matplotlib.pyplot as plt

Hugging Face tools for datasets and transformers from datasets import Dataset from transformers import BertTokenizerFast, BertForSequenceClassification from transformers import DataCollatorWithPadding, Trainer, TrainingArguments

Evaluation tools import evaluate from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

Load alternate AG News Parquet files

```
# Set file paths for training and test Parquet files stored in Google Drive
train_path = "/content/drive/MyDrive/Colab Notebooks/Ass_2/train-00000-of-00001 (2).parquet"
test_path = "/content/drive/MyDrive/Colab Notebooks/Ass_2/test-00000-of-00001 (1).parquet"
```

Load the Parquet files into pandas DataFrames train_df = pd.read_parquet(train_path) test_df = pd.read_parquet(test_path)

Print the number of samples in each dataset print("Train Size:", len(train_df)) print("Test Size:", len(test_df))

Display the first few rows of the training data train_df.head()

→ Train Size: 120000 Test Size: 7600

	text	label
0	Wall St. Bears Claw Back Into the Black (Reute	2
1	Carlyle Looks Toward Commercial Aerospace (Reu	2
2	Oil and Economy Cloud Stocks' Outlook (Reuters	2
3	Iraq Halts Oil Exports from Main Southern Pipe	2

Class labels

```
# Define the names for each class label
label_names = ['World', 'Sports', 'Business', 'Sci/Tech']
```

EDA: Visualizing the Class Distribution with Counts on Bars

Tokenizer

```
# Load BERT tokenizer
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
# Tokenize the text and cut off if too long
def tokenize_function(example):
    return tokenizer(example["text"], truncation=True)
```

```
Convert to HF Dataset and tokenize
# Change pandas data to Hugging Face Dataset
train_dataset = Dataset.from_pandas(train_df)
test_dataset = Dataset.from_pandas(test_df)
# Apply tokenizer to the data in batches
train_dataset = train_dataset.map(tokenize_function, batched=True)
test_dataset = test_dataset.map(tokenize_function, batched=True)
     Map: 100%
                                                         120000/120000 [00:08<00:00, 10983.85 examples/s]
Load BERT model
# Load pre-trained BERT with a classification head for 4 classes
\verb|model| = BertForSequenceClassification.from\_pretrained("bert-base-uncased", num\_labels=4)|
5 Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are new
     You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Define accuracy metric
```

```
# Load accuracy metric from evaluate library
accuracy = evaluate.load("accuracy")
# Define a function to compute accuracy from model predictions
def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1) # Get predicted class
    return accuracy.compute(predictions=predictions, references=labels)
```

Training arguments

```
# Set training parameters:
# - Save and evaluate model after each epoch
# - Batch size of 16 for training and evaluation
# - Learning rate 2e-5
# - Train for 3 epochs
# - Apply weight decay for regularization
# - Load best model at the end
# - Disable external logging (like WandB)
training_args = TrainingArguments(
    output_dir="./results",
    eval strategy="epoch",
    save_strategy="epoch",
    logging_dir="./logs",
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    learning_rate=2e-5,
    num_train_epochs=3,
    weight_decay=0.01,
    load_best_model_at_end=True,
    report_to=[]
)
# Create a Trainer object to handle training and evaluation
# It uses the model, training arguments, datasets, padding, and metrics defined earlier
trainer = Trainer(
   model=model.
    args=training_args,
    train dataset=train dataset,
    eval_dataset=test_dataset,
    data_collator=DataCollatorWithPadding(tokenizer),
    compute_metrics=compute_metrics
```

Train the model

 $\mbox{\tt\#}$ Start training the model using the Trainer trainer.train()

Evaluate on test set

- # Evaluate the trained model on the test dataset
 metrics = trainer.evaluate(test_dataset)
- # Print the accuracy score on the test data
 print("Test Accuracy:", metrics["eval_accuracy"])

4

Predict on test set

- # Get model predictions on the test dataset
 predictions = trainer.predict(test_dataset)
 logits = predictions.predictions
- # Convert logits to predicted class labels
 predicted_labels = np.argmax(logits, axis=-1)
- # Add predicted labels and class names to the test DataFrame
 test_df["predicted_label"] = predicted_labels
 test_df["predicted_class"] = test_df["predicted_label"].map(lambda x: label_names[x])

test_df["true_class"] = test_df["label"].map(lambda x: label_names[x])

Display 10 random samples with their text, true class, and predicted class
test_df[["text", "true_class", "predicted_class"]].sample(10)

→ ▼		text	true_class	predicted_class
	7094	Fan v Fan: Manchester City-Tottenham Hotspur T	Sports	Sports
	1017	Paris Tourists Search for Key to 'Da Vinci Cod	World	Sci/Tech
	2850	Net firms: Don't tax VoIP The Spanish-American	Sci/Tech	Sci/Tech
	1452	Dependent species risk extinction The global e	Sci/Tech	Sci/Tech
	457	EDS Is Charter Member of Siebel BPO Alliance (Sci/Tech	Sci/Tech
	6256	Campbell 9 Pct. Profit #39;Hmmm Hmmm Good #39	Business	Business
	6281	Forgoing stiff upper lip, Charles jousts with	World	World
	4999	Profit Plunges at International Game Tech Inte	Business	Business
	2941	Salvaging Genesis Despite a seemingly calamito	Sci/Tech	Sci/Tech
	4			

Confusion matrix

Compute the confusion matrix comparing true and predicted labels
cm = confusion_matrix(test_df["label"], test_df["predicted_label"])

Create a plot for the confusion matrix with class labels
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=label_names)
Display the confusion matrix with a blue color map
disp.plot(cmap="Blues")
plt.title("Confusion Matrix - AG News Alternate Test Set")
plt.show()

