Practice Problem

For the regular expression (aa)* | (ab)*, construct an NFA using the method discussed in class, convert that NFA and then minimize the resulting DFA.

RE (aa)* | (ab)* to NFA

Convert NFA for (aa)* | (ab)* to a DFA

$$q_0 = \varepsilon - closure(\{s_0\}) = \{s_0, s_1, s_7, s_2, s_6, s_8, s_{12}, s_{13}\} = \{s_0, s_1, s_2, s_6, s_7, s_8, s_{12}, s_{13}\} / start \quad state, final \quad state \}$$

$$T[q_0, a] = \varepsilon - closure(\{s_3, s_9\}) = \{s_3, s_9, s_4, s_{10}\} == \{s_3, s_4, s_9, s_{10}\} = q_1$$

 $T[q_0, b] = \varepsilon - closure(\{\}) = \{\} = q_s$

$$T[q_{1},a] = \varepsilon - closure(\{s_{5}\}) = \{s_{5},s_{2},s_{6},s_{13}\} = \{s_{2},s_{5},s_{6},s_{13}\} = q_{2} /\!/ \quad final \quad state$$

$$T[q_{1},b] = \varepsilon - closure(\{s_{11}\}) = \{s_{11},s_{8},s_{12},s_{13}\} = \{s_{8},s_{11},s_{12},s_{13}\} = q_{3} /\!/ \quad final \quad state$$

$$T[q_2, a] = \varepsilon - closure(\{s_3\}) = \{s_3, s_4\} = q_4$$

$$T[q_2,b] = \varepsilon - closure(\{\}) = \{\} = q_e$$

$$T[q_3, a] = \varepsilon - closure(\{s_9\}) = \{s_9, s_{10}\} = q_5$$

 $T[q_3, b] = \varepsilon - closure(\{\}) = \{\} = q_s$

$$T[q_4, a] = \varepsilon - closure(\{s_5\}) = q_2$$

$$T[q_4,b] = \varepsilon - closure(\{\}) = \{\} = q_e$$

$$T[q_5, a] = \varepsilon - closure(\{\}) = \{\} = q_e$$

$$T[q_5,b] = \varepsilon - closure(\{s_{11}\}) = q_3$$

DFA for (aa)* | (ab)*

	a	b
q_0	q_1	q_e
q_1	q_2	q_3
q_2	q_4	q_e
q_3	q_5	q_e
q_4	q_2	q_e
q_5	q_e	q_3

Minimize the DFA

p_0	a
q_0	p_1
q_2	p_1
q_3	p_1

p_0	<i>b</i>
q_0	p_e
q_2	p_e
q_3	p_e

p_{I}	a
q_1	p_0
q_4	p_0
q_5	p_e

No change

No change

partition p_1 into $p_1 = \{q_5\}$ and $p_2 = \{q_1, q_4\}$

$$p_0 = \{q_0, q_2, q_3\}$$

$$p_1 = \{q_5\}$$

$$p_2 = \{q_1, q_4\}$$

p_0	a
q_0	p_2
q_2	p_2
q_3	p_1

partition p_0 into p_0 ={ q_3 } and p_3 ={ q_0 , q_2 }

$$p_0 = \{q_3\}
 p_1 = \{q_5\}
 p_2 = \{q_1, q_4\}
 p_3 = \{q_0, q_2\}$$

p_2	a
q_1	p_3
q_4	p_3

p_2	b
q_1	p_0
q_4	p_e

No change

partition
$$p_2$$

into $p_2 = \{q_1\}$ and $p_4 = \{q_4\}$

p_3	a
q_0	p_2
q_2	p_4

partition p_3 into $p_3=\{q_0\}$ and $p_5=\{q_2\}$

