

Adatbázistervezés

Tervezés lépései

- Meghatározzuk a tárolandó adatok körét, azok egymás közötti kapcsolatait és az adatbázissal szemben felmerülő igényeket (fogalmi séma - Conceptual schema)
- Rendszer tervezés, melynek eredménye az adatbázis logikai modellje.
- Fizikai szinten képezzük le a logikai adatbázis modellt az alkalmazott szoftver és hardver függvényében.

Bevezető fogalmak

- funkcionális függőség
- reláció kulcs
- redundancia

- Adatok között akkor áll fenn funkcionális kapcsolat, ha egy vagy több adat konkrét értékéből más adatok egyértelműen következnek.
- Például a személyi szám és a név között funkcionális kapcsolat áll fenn, mivel minden embernek különböző személyi száma van.
- Ezt a SZEMÉLYI_SZÁM -> NÉV kifejezéssel jelöljük vagy pedig egy diagrammal. Funkcionális függőség diagram:

 A funkcionális függőség bal oldalát a függőség meghatározójának nevezzük

- Az adatok közötti funkcionális függőségek az adatok természetéből következnek. A tervezés során nagyon fontos.
- A funkcionális függőség jobb oldalán több attribútum is állhat: AUTÓ_RENDSZÁM -> TIPUS, TULAJDONOS

 Előfordulhat, hogy két attribútum kölcsönösen függ egymástól: FÉRJ_SZEM_SZÁMA <-> FELESÉG_SZEM_SZÁMA.

- A funkcionális függőség bal oldalán több attribútum is megjelenhet, melyek együttesen határozzák meg a jobb oldalon szereplő attribútum értékét.
- Például hőmérsékletet mérünk különböző helyeken és időben úgy, hogy a helyszínek között azonosak is lehetnek:

HELY, IDŐPONT -> HŐMÉRSÉKLET.

- A funkcionális függőségek speciális esete a <u>teljes</u> funkcionális függőség.
- Erről akkor beszélhetünk, ha a meghatározó oldalon nincsen felesleges attribútum. Például a RENDSZÁM, TÍPUS -> SZÍN funkcionális függőség nem teljes funkcionális függőség,

mivel a rendszám már egyértelműen meghatározza a kocsi színét, ehhez nincs szükség a típusra is.

 A funkcionális függőség bevezetése után a relációk egy másik, matematikai jelölése:

reláció_név=({attribútumok},{funkcionális függőségek

listája})

• Például:

Személyi szám	Név	Munkahely

SZEMÉLYEK=({SZEMÉLYI_SZÁM, NÉV, MUNKAHELY}, {SZEMÉLYI_SZÁM -> NÉV, SZEMÉLYI_SZÁM -> MUNKAHELY}) írható le a funkcionális függőségekkel együtt, feltételezve, hogy mindenkinek csak egy munkahelye van.

Adatok közötti többértékű függőség

- Az adatok között fennálló kapcsolatok közül nem mindegyik fejezhető ki a funkcionális függőség segítségével. Például minden embernek lehet több szakmája, illetve ugyanazzal a szakmával több ember is rendelkezhet. Ebben az esetben egyik irányban sincs egyértelmű függőség.
- Ez egy többértékű függőség, az egyik attribútumhoz egy másik attribútum csoportja, halmaza kapcsolódik:

SZEMÉLYI_SZÁM ->> SZAKMA

bővítve: SZEMÉLYI SZÁM ->> SZAKMA. OKLEVÉL KELTE

Adatok közötti többértékű függőség

- A funkcionális és a többértékű függőség között kapcsolat van.
 Nagyon gyakran ugyanazt a függőségi kapcsolatot kifejezhetjük funkcionális és többértékű függőséggel is.
- Egy üzemben különböző termékeket gyártanak, melyek mindegyike többfajta alkatrészből tevődik össze. Szeretnénk nyilvántartani termékenként a felhasznált alkatrészek mennyiségét. Ezt leírhatjuk funkcionális függőség segítségével:

TERMÉK_AZONOSÍTÓ, ALKATRÉSZ_AZONOSÍTÓ -> MENNYISÉG, többértékű függőséggel is: TERMÉK AZONOSÍTÓ ->> ALKATRÉSZ AZONOSÍTÓ,

MENNYISÉG.

 A funkcionális függőségeket mindig előnyben kell részesíteni a többértékű függőséggel szemben.

Reláció kulcs fogalma

- A reláció kulcs a reláció egy sorát azonosítja egyértelműen.
- A reláció definíció szerint- nem tartalmazhat két azonos sort, ezért minden relációban létezik kulcs
- A reláció kulcsnak a következő feltételeket kell teljesítenie
 - az attribútumok egy olyan csoportja, melyek csak egy sort azonosítanak (egyértelműség)
 - a kulcsban szereplő attribútumok egyetlen részhalmaza sem alkot kulcsot
 - a kulcsban szereplő attribútumok értéke nem lehet definiálatlan (NULL)

Reláció kulcs fogalma

SZEMÉLY_ADATOK=({ SZEMÉLYI_SZÁM, SZÜL_ÉV, NÉV}).

Diák			
Személyi szám	Születési év	Név	

 NAPLÓ=({SZEMÉLYI_SZÁM, TANTÁRGY, DÁTUM, OSZTÁLYZAT)}

Napló			
Személyi szám	Tantárgy	Dátum	Osztályzat

Reláció kulcs fogalma

 Léteznek olyan relációk is, melyekben nem csak egy, hanem több kulcs is található.
 KONZULTÁCIÓ=({TANÁR, IDŐPONT, DIÁK)}

Konzultáció		
Tanár	Időpont	Diák

- Egy személy egy időberi csak egy nelyen tartozkodnat. igy küles lehet a TANÁR, IDŐPONT és a DIÁK, IDŐPONT attribútumok is
- Vegyük észre azt, hogy a kulcsok nem önkényes döntések következtében alakulnak ki, hanem az adatok természetéből következnek, mint a funkcionális vagy a többértékű függőség.

- A logikai adatbázis tervezés egyik fő célja a redundanciák megszüntetése.
- Redundanciáról akkor beszélünk, ha valamely tényt vagy a többi adatból levezethető mennyiséget ismételten (többszörösen) tároljuk az adatbázisban.
- A redundancia, a szükségtelen tároló terület lefoglalása mellett, komplikált adatbázis frissítési és karbantartási műveletekhez vezet, melyek könnyen az adatbázis inkonzisztenciáját okozhatják.
- Egy adatbázis akkor inkonzisztens, ha egymásnak ellentmondó tényeket tartalmaz.
- A fizikai tervezés során az adatbázis műveletek gyorsítása érdekében esetleg redundáns attribútumokat is bevezetünk.

Redundanciát tartalmazó reláció:

Tanár	Tantárgy	Össz_óraszám	Tanított_órák
Kiss Péter	Adatbázis kezelés	64	12
Nagy Andrea	Matematika	32	8
Szabó Miklós	Adatbázis kezelés	64	4
Kovács Rita	Matematika	32	5
	Angol	48	

 A fenti relációban a tantárgyak össz óraszámát annyiszor tároljuk, ahány tanár tanítja az adott tantárgyat. A példa kedvéért feltételeztük, hogy egy tantárgyat több tanár is tanít. A redundancia a következő hátrányokkal jár.

Tanár	Tantárgy	Össz_óraszám	Tanított_órák
Kiss Péter	Adatbázis kezelés	64	12
Nagy Andrea	Matematika	32	8
Szabó Miklós	Adatbázis kezelés	64	4
Kovács Rita	Matematika	32	5
	Angol	48	

- Ha egy tantárgy össz óraszáma megváltozik több helyen kell módosítani a relációban.
- Valahányszor egy új tanár kerül be a relációba ugyanannak a tantárgynak az előző soraiból kell elővenni az össz óraszám adatot.
- Az utolsó sorban szereplő tantárgy (angol) esetén még nem került kitöltésre a tanár személye. Új tanárnak a listára történő felvételekor ezt az esetet másként kell kezelni. Ilyenkor csak két üres értéket (tanár, tanított órák) kell átírni.

 A redundanciát meg kell különböztetni az értékek duplikált (többszörös) tárolásától.

• A duplikált adattárolásra szükségünk lehet a relációkban, míg a

redunda<u>nciát el kell kerülni.</u>

Termék	Alkatrész	Darab
Nyomtató	papír adagoló	1
Nyomtató	64Kb memória	2
Számítógép	1.2 MB floppy	1
Számítógép	1 MB memória	4

- A táblázat a termék oszlopban többször tartalmazza a nyomtató és számítógép adatokat. Ez azonban nem okoz redundanciát, mivel egy termék több alkatrészből is állhat, így nem ugyanannak a ténynek a többszörös tárolásáról van szó, hanem egy másik tényt fejezünk ki, melyhez elengedhetetlen a duplikált tárolás.
- A redundancia fordul elő akkor is, ha levezett vagy levezethető mennyiségeket tárolunk a relációkban.

Redundancia megszüntetése, a relációk normál alakjai

- A logikai tervezés célja egy redundancia mentes reláció rendszer, relációs adatbázis.
- A reláció elmélet módszereket tartalmaz a redundancia megszüntetésére, az úgynevezett normál formák segítségével.
- Öt normál formát különböztetünk meg.
- A különböző normál formák egymásra épülnek, a második normál formában levő reláció első normál formában is van.
- A tervezés során a legmagasabb normál forma elérése a cél.
- Az első három normál forma a funkcionális függőségekben található redundanciák, míg a negyedik és ötödik a többértékű függőségekből adódó redundanciák megszüntetésére koncentrál.

Redundancia megszüntetése, a relációk normál alakjai

Még két fogalom:

- Elsődleges attribútumnak nevezzük azokat az attribútumokat, melyek legalább egy reláció kulcsban szerepelnek.
- A többi attribútumot nem elsődlegesnek nevezzük.

Első normál forma (1NF)

 Egy reláció első normál formában van, ha minden attribútuma egyszerű, nem összetett adat.

Szakkör	Tanár	ir Diákok	
		Név	Osztály
Számítástechnika	Nagy Pál	Kiss Rita	III.b
		Álmos Éva	II.c
		Név	Osztály
Video	Gál János	Réz Ede	I.a
		Vas Ferenc	II.b

C--1-1-2-21-

Szakkörök

Szakkör	Tanár	Diák	Osztály
Számítástechnika	Nagy Pál	Kiss Rita	III.b
Számítástechnika	Nagy Pál	Álmos Éva	II.c
Video	Gál János	Réz Ede	I.a
Video	Gál János	Vas Ferenc	II.b

Első normál forma (1NF)

- Annak eldöntése, hogy egy attribútumot egyszerűnek vagy összetettnek tekintünk nem mindig egyértelmű, az adatok felhasználásától is függ.
- A döntéseink során, hogy egy vagy több attribútumot tervezünk az adat tárolására, tartsuk szem előtt egyszerűbb több oszlopból egyet csinálni, mint egy oszlop tartalmát több részre vágni.
- Például egy vagy két attribútumban tároljuk a személyek vezeték és keresztnevét. Amennyiben a nevek között nem akarunk külön-külön kereszt és vezetéknév szerint keresni, akkor elfogadható lehet az egy mezőben tárolás.

- Az első normál forma nem elegendő feltétel a redundanciák megszüntetésére.
- Egy reláció második normál alakjában nem tartalmazhat tényeket a reláció kulcs egy részére vonatkozóan.
- A második normál forma definíciója két feltétellel írható le.
- 1. A reláció első normál formában van
- 2. A reláció minden nem elsődleges attribútuma teljes funkcionális függőségben van az összes reláció kulccsal

 KONFERENCIA = ({TEREM, IDŐPONT, ELŐADÁS, FÉRŐHELY}, {TEREM, IDŐPONT-> ELŐADÁS, TEREM-

>FÉRŐ

T7		c		•
K	on	ıteı	rer	ıcia

Terem	Időpont	Előadás	Férőhely
В	10:00	Mitológia	250
A	8:30	Irodalom	130
В	11:30	Szinház	250
A	11:00	Festészet	130
A	13:15	Régészet	130

Konferencia

Terem	Időpont	Előadás
В	10:00	Mitológia
A	8:30	Irodalom
В	11:30	Szinház
A	11:00	Festészet
A	13:15	Régészet

Termek

Terem	Férőhely
A	130
В	250

- A reláció kulcsa a TEREM, IDŐPONT attribútumok, ezek a reláció elsődleges attribútumai.
- A másodlagos attribútumok (ELŐADÁS, FÉRŐHELY) közül a FÉRŐHELY csak a reláció kulcs egy részétől függ, ezért nincs második normál formában.
- A felbontás után keletkezett két reláció már második normál formában van.
 KONFERENCIA = ({TEREM, IDŐPONT, ELŐADÁS}, {TEREM, IDŐPONT-> ELŐADÁS})
 TERMEK = (TEREM, FÉRŐHELY}, {TEREM-> FÉRŐHELY}).

Másik példa

Hőmérsékletek

Terem	Időpont	Hőmérséklet	Radiátor
213	98.11.18	23	2
213	98.11.24	22	2
213	98.12.05	21	2
214	98.12.05	21	3
214	98.12.15	20	3

Konferencia

Terem	Időpont	Hőmérséklet
213	98.11.18	23
	98.11.24	22
213	98.12.05	21
214	98.12.05	21
214	98.12.15	20

Termek

Terem	Radiátor
213	2
214	3

Harmadik normál forma (3NF)

- A második normál formájú relációkban nem lehetnek olyan tények, amelyek a reláció kulcs részeihez kapcsolódnak.
- Azonban ennek ellenére is lehet bennük redundancia, ha olyan tényeket tartalmaznak, amelyek a nem elsődleges attribútumokkal állnak kapcsolatban.
- Ezt a lehetőséget szünteti meg a harmadik normál forma.
- Egy reláció harmadik normál formában van, ha
- 1. A reláció második normál formában van.
- 2. A reláció nem tartalmaz funkcionális függőséget a nem elsődleges attribútumok között.

Harmadik normál forma (3NF)

Szakkörök

Szakkör Tanár		Születési év	
Képzőművész	Sár Izodor	1943	
Iparművész	Sár Izodor	1943	
Karate	Erős János	1972	

Szakkörök

Szakkör	Tanár	
Képzőművész	Sár Izodor	
Iparművész	Sár Izodor	
Karate	Erős János	

Tanárok

Tanár	Születési év		
Erős János	1972		
Sár Izodor	1943		

Harmadik normál forma (3NF)

- Eretedi:
 SZAKKÖRÖK = ({SZAKKÖR, TANÁR, SZÜLETÉSI ÉV},
 {SZAKKÖR-> TANÁR, SZÜLETÉSI ÉV, TANÁR->SZÜLETÉSI ÉV}).
- Felbontás után a nem elsődleges attribútumok közötti függőséget kivettük az eredeti relációból: SZAKKÖRÖK = ({SZAKKÖR, TANÁR}, {SZAKKÖR->TANÁR}) TANÁROK = ({TANÁR, SZÜLETÉSI ÉV}, {TANÁR->SZÜLETÉSI ÉV}).

Boyce/Codd normál forma (BCNF)

- A normál formák tárgyalása során eddig olyan relációkra mutattunk példákat, melyeknek csak egy reláció kulcsa van.
- A normál formák definíciója alkalmazható a több kulccsal rendelkező relációkra is.
- Ebben az esetben minden attribútum, mely valamely kulcsnak a része, elsődleges attribútum, de ez az attribútum függhet egy másik, ezt nem tartalmazó kulcs részétől.
- Ha ez a helyzet fennáll, redundanciát tartalmaz a reláció.
 Ennek a felismerése vezetett a harmadik normál forma egy szigorúbb definíciójához, a Boyce/Codd normál formához:
- 1. A reláció harmadik normál formában van
- 2. Minden elsődleges attribútum teljes funkcionális függőségben van azokkal a kulcsokkal, melyeknek nem része

Boyce/Codd normál forma (BCNF)

- Funkciónális függőségek
 Tanár, Félév -> Tantárgy, Tantárgy, Félév -> Tanár
- A relációnak két kulcsa van: (Tanár, Időpont, Félév) és a (Tantárgy, Időpont, Félév)

Tantárgyak					
Tanár	Időpont	Tantárgy	Félév	Diák_szám	
Kiss Pál	93/1	Adatbázis	1	17	
Jó Péter	93/1	Unix	1	21	
Kiss Pál		Adatbázis	2	32	
Jó Péter		Unix	2	19	
KissPál	93/1	Adatbázis	3	25	

Tantárgyak

Időpont	Tantárgy	Félév	Diák_szám
93/1	Adatbázis	1	17
93/1	Unix	1	21
93/2	Adatbázis	2	32
93/2	Unix	2	19
93/1	Adatbázis	3	25

Tanárok

Tanar	Időpont	Tantárgy
Kiss Pál	93/1	Adatbázis
Jó Péter	93/1	Unix
Kiss Pál	93/2	Adatbázis

Negyedik normál forma (4NF)

- Sajnos még a Boyce/Codd normál forma is tartalmazhat redundanciát.
- Mindeddig csak a funkcionális függőségeket vizsgáltuk, a többértékű függőségeket nem.
- A további két normál forma a többértékű függőségekből adódó redundancia kiszűrését szolgálja.
- Egy reláció negyedik normál formában van:
- 1. Harmadik normál formában van és
- egy X->>Y többértékű függőséget tartalmazó relációban csak az X és Y-ban megtalálható attribútumokat tartalmazza.

Negyedik normál forma (4NF)

Egy relációban tároljuk a személyek, és barátaik nevét valamint hobbiját. Minden személynek több barátja és több hobbija is lehet.

Bará	itok-hobbik			
Személy	Barát	Hobbi		
Nagy József	Elek Attila	foci		
Nagy József	Varga Attila	foci		
Kiss Péter	Kiss Pál	sakk		
Kiss Péter	Kiss Pál	video		
Ba	ırát		Hobbi	<u>i</u>
Személy	Barát	Szei	mély	Hobbi
Nagy József	Elek Attila	Nagy	József	foci
Nagy József	Varga Attila	Kiss F	Péter	sakk
Kiss Péter	Kiss Pál	Kiss F	Péter	video

Negyedik normál forma (4NF)

- Csak egy kulcs van és nincsenek nem elsődleges attribútumok.
- Ezek alapján a reláció harmadik, sőt Boyce/Codd normál formában van.
- Mégis tartalmaz redundanciát, ugyanaz a személy-barát illetve személy-hobby kapcsolat többször is szerepelhet.
- A reláció két többértékű függőséget tartalmaz:
 Személy->>Barát és Személy->>Hobbi.
- A negyedik normál forma szabályait kielégítő két relációra felbontva a redundancia megszüntethető.

- Hosszú ideig a negyedik normál formát tartották a normalizálás utolsó lépésének.
- A többértékű függőségek külön relációkban tárolásával azonban információt veszthetünk.
- Ennek bemutatására nézzünk egy példát. Egy számítógépes ismeretek oktatására szakosodott Kft. több jól képzett tanárral rendelkezik. A tanárok többfajta tanfolyam oktatására is alkalmasak. A tanfolyamok az ország különböző részeiben kerülnek megtartásra. Ezek alapján állítsuk össze a Tanár-Tanfolyam-Helyszín relációt. Ebben a relációban csupán azt kívánjuk tárolni, hogy hol és milyen tanfolyamokat tartottak a tanárok, feltételezzük, hogy ugyanazon a helyszínen egyfajta tanfolyam csak egyszer kerül megtartásra.

 A következő függőségeket írhatjuk fel: Tanár->>Tanfolyam Tanár->>Helyszín Tanfolyam-

TC / C	D C 1			,
Tanár-T	Tantol	lvam-J	He	vszin
		,,		,,

Tanár	Tanfolyam	Helyszín
Nagy Éva	Adatbázis I.	Szeged
Kiss Pál	Adatbázis I.	Győr
Nagy Éva	Adatbázis II.	Pécs
Kiss Pál	Adatbázis I.	Pécs

Tanár_Tanfolyam

Tanár	Tanfolyam	
Nagy Éva	Adatbázis I.	
Kiss Pál	Adatbázis I.	
Nagy Éva	Adatbázis II.	

Tanfolyam-Helyszín

Tanfolyam	Helyszín	
Adatbázis I.	Szeged	
Adatbázis I.	Győr	
Adatbázis II.	Pécs	
Adatbázis I.	Pécs	

Tanár-Helyszín

Tanár	Helyszín		
Nagy Éva	Szeged		
Kiss Pál	Győr		
Nagy Éva	Pécs		
Kiss Pál	Pécs		

- Az egyetlen reláció kulcs tartalmazza az összes attribútumot (Tanár, Tanfolyam, Helyszín), ebből következik, hogy Boyce/Codd normál formában van a reláció
- Mégis tartalmaz redundanciát: két sorban is megtalálható, hogy Kiss Pál Adatbázis I. tanfolyamot tanít.
- A relációt felbontva két csak egy többértékű függőséget tartalmazó - relációra, (Tanár, Tanfolyam) és (Tanár, Helyszín), a redundancia megszüntetésével információt is vesztünk.
- A felbontás után már nem tudjuk, hogy a tanár melyik tantárgyát oktatja az adott helyszínen.
- Az eredeti relációt három relációra felbontva kapjuk meg az ötödik normál formát.

- Az ötödik normál formának megfelelő felbontás eredményeképpen a tárolandó adatmennyiség megnövekszik, a reláció három táblára bontásával.
- Általában célszerűbb egy újabb oszlop bevezetésével csak két táblára bontani a relációt.

Tanfolyamok		Tanfolyam_tanár	
Tanfolyam	Helyszín	Tanár	ID
Adatbázis I.	Szeged	Nagy Éva	1
Adatbázis I.	Győr	Kiss Pál	2
Adatbázis II.	Pécs	Nagy Éva	3
Adatbázis I.	Pécs	Kiss Pál	4
	Tanfolyam Adatbázis I. Adatbázis I. Adatbázis II.		TanfolyamHelyszínTanárAdatbázis I.SzegedNagy ÉvaAdatbázis I.GyőrKiss PálAdatbázis II.PécsNagy Éva

Adatbázis tervezés összefoglalása

- A normál formák tárgyalása végén megjegyezzük, hogy a harmadik normál formáig mindenféleképpen érdemes normalizálni a relációkat.
- Ez a redundanciák nagy részét kiszűri. Azok az esetek, melyekben a negyedik illetve az ötödik normál formák alkalmazására van szükség, ritkábban fordulnak elő.
- Az ötödik normál forma esetén a redundancia megszüntetése nagyobb tároló terület felhasználásával lehetséges csak. Így általában az adatbázis tervezője döntheti el, hogy az ötödik normál formát és a nagyobb adatbázist vagy a redundanciát és a komplikáltabb frissítési, módosítási algoritmusokat választja.

Adatbázis tervezés összefoglalása

- 1. Egyed-kapcsolat modell.
- 2. Relációs adatbázis séma (1NF).
- 3. Relációsémák normalizálása (2NF ... 5NF).
- 4. Szükség esetén az egyed-kapcsolat modell módosítása a normalizálás szerint.