Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Versuch Dia- und Paramagnetismus Protokoll

Praktikant: Michael Lohmann

Felix Kurtz

E-Mail: m.lohmann@stud.uni-goettingen.de

felix.kurtz@stud.uni-goettingen.de

Betreuer: Björn Klaas

Versuchsdatum: 09.09.2014

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	3
2	Theorie	3
3	Durchführung	3
4	Auswertung	3
5	Diskussion	3
Lit	teratur	3

1 Einleitung

Magnetismus ist eine der wichtigsten Methoden, um elektrische Daten zu speichern. So basieren herkömmliche Festplatten auf diesem Prinzip. Um dies zu vermessen, kann man den zu untersuchenden Stoff in ein vorhandenes Magnetfeld führen und die Auswirkungen beobachten.

2 Theorie

Die Ausbreitung von Magnetfeldern in Materie erfolgt nach den MAXWELL-Gleichungen durch

$$\vec{B} = \mu_0 \vec{H} + \mu_0 \vec{M} \approx \mu_0 \mu_r \vec{H} \text{ und}$$
 (1)

$$\mu_r = 1 + \chi \tag{2}$$

[Dem 12]

3 Durchführung

Zunächst wird die Schaltung aus Abb. 2 aufgebaut. Dabei schaltet man eine Spule auf zwei Polschuhen über einen Widerstand

4 Auswertung

5 Diskussion

Literatur

[Dem12] Demtröder, W.: Experimentalphysik 2, Elektrizität und Optik. Springer-Verlag, Berlin Heidelberg, 6. Auflage, 2012, ISBN 978-3-642-29943-8.

Abbildung 1: Aufbau der Waage zur Bestimmung der Kräfte.

Abbildung 2: Schaltkreis zur Bestimmung von Dia- und Paramagnetismus.

Abbildung 3: Auswertung von Versuch 1

Abbildung 4: Auswertung von Versuch 3

Abbildung 5: Auswertung von Versuch 6 erster Teil

Abbildung 6: Auswertung von Versuch 6 zweiter Teil

Abbildung 7: Auswertung von Versuch 7