ΘΕΜΑ 2

2.1. Ένα βομβαρδιστικό αεροπλάνο κινείται οριζόντια σε ύψος h πάνω από το έδαφος με σταθερή ταχύτητα \vec{v}_0 . Κάποια χρονική στιγμή t_0 αφήνεται να πέσει από το αεροπλάνο μία βόμβα. Η βόμβα φτάνει στο έδαφος μετά από χρονικό διάστημα $\Delta t = 4$ s. Το βομβαρδιστικό αεροπλάνο εξακολουθώντας την οριζόντια κίνησή του στο ίδιο ύψος h, αυξάνει την ταχύτητά του σε $2\vec{v}_0$ και τη διατηρεί σταθερή. Κάποια επόμενη χρονική στιγμή t_1 αφήνεται να πέσει από το αεροπλάνο μία δεύτερη βόμβα. Η βόμβα φτάνει στο έδαφος μετά από χρονικό διάστημα $\Delta t'$.

Αν θεωρήσουμε ότι δεν υπάρχουν τριβές και η αντίσταση του αέρα είναι αμελητέα τότε:

(a)
$$\Delta t' = 2 \text{ s}$$
 , (b) $\Delta t' = 4 \text{ s}$, (v) $\Delta t' = 8 \text{ s}$

2.1.Α. Να επιλέξετε τη σωστή απάντηση.

Μονάδες 4

2.1.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 8

2.2. Δύο ποσότητες ιδανικών αερίων με αριθμό γραμμομορίων n_1 και n_2 αντίστοιχα βρίσκονται σε δύο δοχεία ίδιου όγκου $V_1=V_2=V$. Τα δύο αέρια εκτελούν τις αντιστρεπτές ισόχωρες μεταβολές (1) και (2) που φαίνονται στο διάγραμμα.

Για τον αριθμό γραμμομορίων των δύο αερίων ισχύει:

(a)
$$n_1 > n_2$$
 , (β) $n_1 = n_2$,

(y) $n_1 < n_2$

2.2.Α. Να επιλέξετε τη σωστή απάντηση.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την απάντησή σας.

Μονάδες 9