

Projekt Danica

KOLEGIJ: STROJNO UČENJE, AK. GOD: 2018./19.

TIM: IVAN MIOŠIĆ, IVAN LAZARIĆ, MARTA HAN, AL DEPOPE

Opis problema i motivacija

- Plavom bojom označene su jezgre stanica, a rozi signali predstavljaju upalni proces
- Cilj: izbrojati jezgre u kojima se odvija upalni proces
- Detekcija zaraženih stanica na slici čest je problem u medicini

Skup podataka

- Dataset se sastoji od 141 slike dimenzija 1360x1024 piksela
- Skup za treniranje sastoji se od 119, a skup za testiranje od 22 slike
- Dijelimo svaku sliku na 256 manjih, dimenzija 85x64 piksela

Konvolucijske neuronske mreže

- CNN-ovi se od klasičnih neuronskih mreža razlikuju u tri značajke:
 - Lokalna receptivna polja:
 - Ulazi su (za sliku) 2D polja piksela. Povezana podslika slike je spojena s neuronom u idućoj mreži koristeći konvoluciju.
 - Zajedničke težine:
 - U jednom sloju, težine između polja i neurona su jednake. Time se postiže translacijska invarijantnost (odnosno detektiramo iste feature na svim mjestima u slici).
 - Glasanje (pooling):
 - Metoda izbora najznačajnijih značajki.

Tipičan oblik CNN-a

Implementacija

- Neuronsku mrežu smo implementirali u Pythonu koristeći pakete TensorFlow i Keras
- U istraživanju smo varirali izgled mreže, no uvijek smo promatrali mreže koje se sastoje od nekoliko konvolucijskih slojeva nakon kojih slijedi nekoliko gustih slojeva
- Za optimiziranje težina smo u početku koristili SGD, kasnije smo se prebacili na Adam
- Preko L2 regularizacije smo pokušali sprječiti overfittanje
- Variranje aktivacijskih funkcija nije postiglo mnogo, dobili smo slične rezultate sa `relu` i
 `sigmoid`

Analiza rezultata

MAE (Mean Absolute Error)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| \approx 49.04$$

MSE (Mean Square Error)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \approx 9090$$

RMSE (Root Mean Square Error)

$$RMSE = \sqrt{MSE} \approx 95.34$$

R² (koeficijent determinacije)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} \approx 0.39$$

Relativna odstupanja

Moguća poboljšanja u budućnosti

- Proširivanje dataseta novi primjeri za učenje i testiranje ili transformacije postojećih slika
 - Moguće je uzimati slučajne dijelove slike → time trening skup praktički postaje proizvoljno velik
 - Rotacijama slike umjetno povećati dataset
- Promatranje samo podskupa ulazne slike
- Dublja mreža i više namještanja hiperparametara
- Drugi pristupi rješavanju:
 - Ansambli neuronskih mreža
 - Pametniji feature extraction + random forest

Hvala na pozornosti!

