- 데이터베이스
  - DBMS (DataBase Management System)
  - 여러 사람들이 공유하고 사용할 목적으로 통합 관리되는 정보의 집합
  - 파일 시스템의 문제를 해결하기 위해 제시된 소프트웨어
  - 파일 / DBMS 차이점

| 구분   | 장점                                                              | 단점                                     |
|------|-----------------------------------------------------------------|----------------------------------------|
| 파일   | 비용이 따로 들지 않음<br>백업 쉬움<br>전문지식 필요없음                              | 중복 데이터 존재<br>데이터 공유 어려움<br>보안 취약       |
| DBMS | 중복 데이터 최소화<br>데이터 동시 공유<br>보안 향상<br>데이터 독립성 확보<br>무결성 유지<br>표준화 | 많은 비용 필요<br>데이터 백업 복잡<br>데이터베이스 전문가 필요 |

## ■ 데이터베이스

● DBMS 데이터 관리



## ■ 데이터베이스

- 파일 시스템 데이터 관리
  - 응용 프로그램마다 필요한 데이터를 별도의 파일로 관리
  - 판매자, 관리자 등 사용하려는 대상마다 파일 각각 존재



중복 데이터 존재

## ■ 데이터베이스

## ● 주요 기능

- 정의: 데이터베이스 구조를 정의하거나 수정

- 조작:데이터 삽입 / 조회 / 수정 / 삭제 작업

- 제어: 데이터를 항상 정확하고 안전하게 유지

## ● 관계형 DBMS

- 테이블 형태로 구성

- Oracle, MS-SQL, Access, MySQL, MariaDB...

| 아이디    | 비밀번호 | 이름  | 연락처         | 주소      | 적립금  |
|--------|------|-----|-------------|---------|------|
| apple  | 1234 | 정소화 | 02-111-1111 | 서울시 마포구 | 1000 |
| banana | 9876 | 김선우 | 02-222-2222 | 경기도 부천시 | 500  |

- 데이터베이스 사용자
  - 데이터베이스를 이용하기 위해 접근하는 모든 사람
  - 데이터베이스 관리자 (DBA: DataBase Administrator)
    - 시스템 운영 / 관리
    - ─ 데이터베이스 구성 요소 선정, 스키마 정의, 저장 구조 및 접근 방법 결정※ 스키마: 데이터베이스에 저장되는 데이터 구조와 제약조건을 정의한 것
    - 제약조건 정의, 보안 및 접근 권한 정책 결정, 성능 감시 및 분석
  - 개발자
    - 데이터 언어 (SQL) 을 이용하여 응용프로그램 개발
  - 최종 사용자
    - 데이터 언어 (SQL) 을 이용하여 데이터 조작

- 데이터 언어
  - 사용자와 데이터베이스 관리 시스템 간의 통신 수단
  - 사용 목적에 따라 구분
  - 데이터 정의어 (DDL : Data Definition Language)
    - 스키마를 정의(생성)하거나 수정 또는 삭제하기 위해 사용
  - 데이터 조작어 (DML: Data Manipulation Language)
    - 데이터의 삽입 / 조회 / 수정 / 삭제 처리를 위해 사용
  - 데이터 제어어 (DCL : Data Control Language)
    - 내부적으로 필요한 규칙이나 기법을 정의하기 위해 사용
    - 무결성 : 정확하고 유효한 데이터만 유지
    - 보안 : 허가된 사용자에게만 데이터 조작 권한 부여
    - 회복 : 장애 여부와 관계없이 데이터 일관성 유지
    - 동시성 제어 : 동시 공유 지원

- 데이터 모델링
  - 현실 세계에 존재하는 데이터를 컴퓨터 세계의 데이터베이스로 변환하는 과정
  - 개념적 데이터 모델
    - 사람이 이해하는 현실 세계를 개념적 구조로 표현
  - 논리적 데이터 모델
    - 데이터베이스의 논리적 구조로 표현



- 데이터 모델링
  - 개체-관계 모델 (E-R Model: Entity-Relationship Model)
    - 데이터 간의 관계를 개체를 이용하여 표현 ex) 학생 ↔ 교수, 책 ↔ 출판사, 제품 ↔ 제조사
  - 개체-관계 다이어그램 (E-R Diagram: Entity-Relationship Diagram)
    - 개체-관계 모델을 이용한 모델링 결과를 그림으로 표현





## ■ 데이터 모델링

- 개체 (Entity)
  - 현실 세계에서 사람이나 사물과 같이 구별되는 모든 것
  - 다른 개체와 구별되는 이름을 가지고 있고,
    각 개체만의 고유한 특성이나 상태, 즉 속성을 하나 이상 가지고 있음
    ex) 서점에 필요한 개체: 고객, 책
    학교에 필요한 개체: 학과, 과목
- 속성 (attribute)
  - 개체나 관계가 가지고 있는 고유의 특성
  - 의미있는 데이터의 가장 작은 논리적 단위

- 관계형 데이터베이스의 계층 구조
  - 기본 4계층 구조



- 관계형 데이터베이스의 계층 구조
  - MySQL 계층 구조



● Oracle 계층 구조



## ■ 관계 데이터 모델의 기본 용어

| 고객아이디    | 고객이름     | 나이  | 등급       | 직업       | 적립금  |     |
|----------|----------|-----|----------|----------|------|-----|
| CHAR(20) | CHAR(20) | INT | CHAR(10) | CHAR(10) | INT  | 도메인 |
| apple    | 김현준      | 20  | gold     | 학생       | 1000 | 튜플  |
| banana   | 정소화      | 25  | vip      | 간호사      | 2500 |     |
| carrot   | 원유선      | 28  | gold     | 교사       | 4500 |     |
| orange   | 정지영      | 22  | silver   | 학생       | 0    |     |

- 릴레이션 (relation)
  - 하나의 개체에 관한 데이터를 2차원 테이블의 구조로 저장한 것

속성

- 속성 (attiribute)
  - 릴레이션의 열, 필드
- 튜플 (tuple)
  - 릴레이션의 행, 레코드
- 도메인 (domain)
  - 하나의 속성이 가질 수 있는 모든 값의 집합, 데이터 타입

## ■ 관계 데이터 모델의 기본 용어

차수 6

|          |          | •   | -        |          |       |
|----------|----------|-----|----------|----------|-------|
| 고객아이디    | 고객이름     | 나이  | 등급       | 직업       | 적립금   |
| CHAR(20) | CHAR(20) | INT | CHAR(10) | CHAR(10) | INT - |
| apple    | 김현준      | 20  | gold     | 학생       | 1000  |
| banana   | 정소화      | 25  | vip      | 간호사      | 2500  |
| carrot   | 원유선      | 28  | gold     | 교사       | 4500  |
| orange   | 정지영      | 22  | silver   | 학생       | 0     |

카디널리티 4

- 차수 (degree)
  - 하나의 릴레이션에서 속성의 전체 개수
- 카디널리티 (cardinality)
  - 하나의 릴레이션에서 튜플의 전체 개수

- 릴레이션의 특성
  - 튜플의 유일성
    - 하나의 릴레이션에는 동일한 튜플 존재할 수 없음
  - 튜플의 무순서
    - 하나의 릴레이션에서 튜플 사이의 순서는 무의미
  - 속성의 무순서
    - 하나의 릴레이션에서 속성 사이의 순서는 무의미
  - 속성의 원자성
    - 속성의 값으로 원자 값만 사용 가능

# ■ 키 (Key)

- 릴레이션에서 튜플들을 유일하게 구별하는 속성 또는 속성의 집합
- 키의 특성
  - 유일성 : 모든 튜플은 서로 다른 키를 가져야 됨
  - 최소성 : 꼭 필요한 최소한의 속성들로 구성



- 키의 종류
  - 슈퍼키 (super key)
    - 유일성을 만족하는 속성 또는 속성의 집합
  - 후보키 (candidate key)
    - 유일성과 최소성을 만족하는 속성 또는 속성의 집합
  - 기본키 (super key)
    - 후보키 중에서 기본적으로 사용하기 위해 선택한 키
  - 대체키 (alternate key)
    - 기본키로 선택되지 못한 후보키
  - 외래키 (foreign key)
    - 다른 릴레이션의 기본키를 참조하는 속성 또는 속성의 집합



## ■ 키의 종류

### 기본키

| 고객아이디  | 고객이름 | 나이 | 등급     | 직업  | 적립금  | 주소                |
|--------|------|----|--------|-----|------|-------------------|
| apple  | 김현준  | 20 | gold   | 학생  | 1000 | 서울시 구로구 고척동 11-1  |
| banana | 정소화  | 25 | vip    | 간호사 | 2500 | 부천시 원미구 상동 2-5    |
| carrot | 원유선  | 28 | gold   | 교사  | 4500 | 서울시 영등포구 대림동 10-2 |
| orange | 정지영  | 22 | silver | 학생  | 0    | 서울시 마포구 상수동 54-1  |

- 슈퍼키 (super key)
  - (고객아이디), (고객아이디 / 고객이름), (고객이름 / 나이 / 직업 / 주소), …
- 후보키 (candidate key)
  - (고객아이디), (고객이름 / 주소)
- 기본키 (super key)
  - (고객아이디)
- 대체키 (alternate key)
  - (고객이름 / 주소)

## ■ 키의 종류

#### 고객 릴레이션

| 고객이름 | 나이                | 등급                         | 직업                                       | 적립금                                                |
|------|-------------------|----------------------------|------------------------------------------|----------------------------------------------------|
| 김현준  | 20                | gold                       | 학생                                       | 1000                                               |
| 정소화  | 25                | vip                        | 간호사                                      | 2500                                               |
| 원유선  | 28                | gold                       | 교사                                       | 4500                                               |
| 정지영  | 22                | silver                     | 학생                                       | 0                                                  |
|      | 김현준<br>정소화<br>원유선 | 김현준 20<br>정소화 25<br>원유선 28 | 김현준 20 gold<br>정소화 25 vip<br>원유선 28 gold | 김현준 20 gold 학생<br>정소화 25 vip 간호사<br>원유선 28 gold 교사 |

#### 주문 릴레이션

| <u>주문번호</u> | 주문고객   | 주문제품  | 수량 | 단가   | 주문일자       |
|-------------|--------|-------|----|------|------------|
| 1001        | apple  | 진짜우동  | 10 | 2000 | 2013-01-01 |
| 1002        | carrot | 맛있는파이 | 5  | 500  | 2013-01-10 |
| 1003        | banana | 그대로만두 | 11 | 4500 | 2013-01-11 |

# ● 외래키 (foreign key)

- 주문 릴레이션의 (주문고객) : 고객 릴레이션의 기본키를 참조
- 기존 기본키와의 속성명이 달라도 무관하지만 도메인은 같아야 됨

- 무결성 제약조건 (integrity constraint)
  - 데이터의 무결성을 보장하고 일관된 상태로 유지하기 위한 규칙※ 무결성: 데이터를 정확하고 유효하게 유지 (결함이 없는 상태)
  - 개체 무결성 제약조건

- 기본키를 구성하는 모든 속성은

NULL 값을 가질 수 없음

사용불가

|      | <u>고객아이디</u> | 고객이름 | 나이 | 등급     | 직업  | 적립금  |
|------|--------------|------|----|--------|-----|------|
|      | apple        | 김현준  | 20 | gold   | 학생  | 1000 |
| 사용불가 | NULL         | 정소화  | 25 | vip    | 간호사 | 2500 |
|      | carrot       | 원유선  | 28 | gold   | 교사  | 4500 |
| 사용불가 | NULL         | 정지영  | 22 | silver | 학생  | 0    |

- 참조 무결성 제약조건
  - 외래키는 참조할 수 없는 값을 가질 수 없음
  - 기본키로 존재하지 않는 값은 외래키로 사용 불가 (NULL 제외)

고객 릴레이션

| 고객아이디  | 고객이름 | 나이 | 등급     | 직업  | 적립금  |
|--------|------|----|--------|-----|------|
| apple  | 김현준  | 20 | gold   | 학생  | 1000 |
| banana | 정소화  | 25 | vip    | 간호사 | 2500 |
| carrot | 원유선  | 28 | gold   | 교사  | 4500 |
| orange | 정지영  | 22 | silver | 학생  | 0    |

주문 릴레이션

사용불가

| <u>주문번호</u> | 주문고객   | 주문제품  | 수량 | 단가   | 주문일자       |
|-------------|--------|-------|----|------|------------|
| 1001        | cherry | 진짜우동  | 10 | 2000 | 2013-01-01 |
| 1002        | carrot | 맛있는파이 | 5  | 500  | 2013-01-10 |
| 1003        | banana | 그대로만두 | 11 | 4500 | 2013-01-11 |
|             |        |       |    |      |            |