DEPARTMENT OF DEFENSE
PLASTICS TECHNICAL EVALUATION CENTER
PICATINNY ARSENAL, DOVER, N. J.

COPY NO.

:

PICATINNY ARSENAL TECHNICAL REPORT 3030

FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY

MERRILL EIG

FEBRUARY 1963

OMS 5010.11.842

DA PROJECT 593-32-007

PICATINNY ARSENAL DOVER, NEW JERSEY

19960412 033

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Deed gravely indreuned i

The findings in this report are not to be construed as an official Department of the Army position.

DISPOSITION

Destroy this report when it is no longer needed. Do not return.

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from ASTIA.

FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY

by

Merrill Eig

February 1963

Feltman Research Laboratories
Picatinny Arsenal
Dover, N. J.

Picatinny Arsenal Technical Report 3030

OMS 5010.11.842

Dept of the Army Project 593-32-007

Approved:

J. D. MATLACK Chief, Plastics and

Packaging Laboratory

TABLE OF CONTENTS

		Page	
Object		1	
Summary		1	
Conclusions		1	
Recommendation	ons	2	
Introduction			
Discussion		2	
Appendixes			
A B		15 24	
Distribution Li	ist	32	
Tables			
1 .	Composition of component parts	12	
2	Material design strength values	13	
3	Strain data submitted by Watervliet Arsenal	14	
Figures			
1	Bipod assembly (a) and yoke assembly (b)	8	
2	Schematic of elevating mechanism	9	
3	Connector	11	
4	81 mm mortar	15	
5	Schematic of force system	16	
6	Moment diagram and edge view of bipod assembly	17	
7	Force diagram	18	
8	Bipod assembly	19	
9	Assumed geometry of bipod assembly during firing	22	

		Page
Figures		
10	Cover	25
11	Tube	26
12	Housing tube connector	27
13	Bracket	28
14	Body	29
15	Case	30
16	Yoke ring	31

OBJECT

To analyze strain gage data on the bipod assembly for the 81 mm mortar and to determine the feasibility of replacing heavy metal parts with lightweight plastics.

SUMMARY

Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.

The calculated maximum stresses were as follows: a bearing stress of 20,100 psi on the case; and a 2,780 psi stress due to bending and a compressive stress of 22,880 psi for the tube housing. The cover, body, and yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress of 13,500 psi.

Rolled reinforced plastic tubing was suggested for fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown in an Appendix.

CONCLUSIONS

It may be concluded from this analysis that it is feasible to fabricate the desired components of the 81 mm mortar bipod assembly from plastic materials.

RECOMMENDATIONS

It is recommended that prototype components be fabricated and tested under actual firing conditions to determine suitability of design. It is recommended that, upon acceptance of design, molds be fabricated and a glass filled epoxy-molding material such as Scotchply 1100 be used for production of end items requiring high strength.

INTRODUCTION

The Plastics and Packaging Laboratory at Picatinny was requested by Watervliet Arsenal to analyze strain gage data obtained by Watervliet Arsenal on the bipod assembly for the 81 mm mortar and from such data, to determine the feasibility of replacing existing metal components of the mortar assembly with lightweight plastic parts. The use of high strength, lightweight plastics for this application was considered desirable as a means of lightening and making more portable an assembly designed for use and handling by infantry soldiers.

DISCUSSION

The strain gage data received from Watervliet Arsenal was obtained during actual firings of the mortar. Rectangular strain rosettes consisting of three gages laid out at 45° and 90° angles to each other were used to measure strain on the bipod legs.

Two C-7 type strain gages in series 180° apart were used to measure strain on the neck of the base plate.

It was apparent, from data on the first 10 rounds, that the forces acting on the bipod legs are almost solely axial; i.e., tend to extend or compress the legs. In such a situation, the rosette gage is not needed. Therefore, on the remaining fifteen rounds, only the strain recorded by the axial gage was used. Maximum positive and negative deflections were read and the stress values were computed as the product of strain and Young's Modulus (see Table 3, p 14).

Review of this reported strain gage data by Picatinny Arsenal indicated that the number of gages placed around the bipod legs was not sufficient for determining the actual maximum stress. Therefore, an engineering approach utilizing an iteration process was tried and successfully used (see Appendix A) to determine the maximum stress.

Determination of Tensile Bending ($\sigma_{ extsf{TB}}$) and Compressive Stresses ($\sigma_{ extsf{C}}$) in Right Leg

From the firing data reported to Picatinny Arsenal by Watervliet Arsenal, it was observed that the right leg of the bipod experienced a compressive load of 6670 psi after 11.4 milliseconds after firing (see Table 3). After 40.4 milliseconds, a stress reversal occurred in which this compressive stress changed to a tensile stress of 17,980 psi. It is important to note that the stresses reported in the data and substantiated by Watervliet Arsenal are the sums or resultants of the tensile bending stress (σ_{TB}) and the compressive stress (σ_C). It must therefore be assumed that there exists a tensile stress (due to bending) such that, when a compressive stress of 6,670 psi is added to it, the resultant is a tensile stress of 17,980 psi. The reason is that both tensile and compressive stresses can conceivably be applied simultaneously. Thus, by numerically adding the compressive and tensile stresses reported in the data, values for σ_{TB} and σ_{C} are determined (see Appendix A). For this particular example, σ_{TB} is determined to be 24,650 psi and σ_C is 6,770 psi. This procedure is continued for each of the six test rounds to determine σ_{TB} and σ_{C} for each case. Use of the maximum values of σ_{TB} and σ_{C} will represent the maximum possible loading condition which can be sensed by the right bipod leg. The values thus determined are:

$$\sigma_{\text{TB}} = 24,650 \text{ psi}$$

$$\sigma_C = 12,760 \text{ psi}$$

It is important to re-emphasize that these stress values are resultant stresses; each being the sum of a tensile bending stress and a compressive stress. Also, that it is possible to obtain these values from an infinite number of tensile and compressive stresses. For example, suppose the leg assembly is subjected simultaneously to a tensile bending stress of 37,980 psi and a compressive stress of 20,000 psi. The resultant stress would be 17,980 psi. It is seen that this is exactly the value of stress reported by the strain gage data, yet it is by no means the maximum stress,

as demonstrated, since the maximum recorded stress is a function of the time lag in applied loads. Similarly, a reverse procedure can be made to yield a negative value of stress, i.e., 6,770 psi.

In order to limit the many possible choices of bending and compressive stresses, it will be assumed, and reasonably so, that approximately 15% of the reactive force (or 12,000 lb) is transmitted to the bipod in the form of friction (F_f , see Fig 5). Having established this criterion, an iteration process will now be used to converge upon the final design stress values. This is accomplished by substituting various combinations of stresses the sum of which is a plus 17,980 psi into Equation 6 (Appendix A) until the desired value of F_f is obtained. When this condition is satisfied, the maximum design values of stresses yielding a resultant stress of a minus 6,770 psi. Similarly, when these values are substituted into Equation 6 until the desired value of F_f is obtained, a maximum value of σ_C is also obtained.

It can be shown by this iteration process that there are two sets of values that will yield $F_{\rm f}$ equal to 12,000 pounds

(a)
$$\sigma_{\rm TB} = 33,000 \text{ psi}$$
 $\sigma_{\rm C} \cdot = 16,000 \text{ psi}$

(b)
$$\sigma_{\rm TB} = 3,000 \, \rm psi$$
 $\sigma_{\rm C} = 15,760 \, \rm psi$

Since the values in (a) represent the more extreme case, these values will be used for design purposes. It is interesting to note that they are in reasonably good agreement with the maximum values determined from the data; i.e., $\sigma_{TB} = 24,650$ psi and $\sigma_{C} = 12,760$ psi.

From Equation 6, it is obvious that $\sigma_{\rm C}$ is the major contributing factor since the coefficient of $\sigma_{\rm TB}$ is very small compared to that of $\sigma_{\rm C}$. For all practical purposes, $F_{\rm f}$ is a function of $\sigma_{\rm C}$ only. This fact also agrees with the comments reported on the data, to the effect that strain rossettes are not needed since most of the stress is compressive.

Determination of σ_{TB} and σ_{C} in Left Leg

The process for determining σ_{TB} and σ_{C} for the left leg is identical to to that described for the right leg. The only difference is in the physical dimensions. The applicable parameters are listed below.

Moment of inertia (I)	.0328 in. ⁴
Length of leg (l)	27 in.
Distance from neutral axis of leg to extreme fiber (c)	.476 in.
Area (A)	.404 in. ²

Substitution of these values into Equation 5 (see Appendix A) yields the following equation for frictional force:

$$F_f = \sqrt{(26.2 \times 10^{-6}) \sigma_{TB}^2 + (.652) \sigma_C^2}$$
 (1)

Using the iteration method, the maximum design stresses are determined to be

$$\sigma_{\text{TB}} = 44,000 \text{ psi}$$

$$\sigma_{\text{C}} = 17,000 \text{ psi}$$

Here again the stresses are in reasonably good agreement with those determined from the data

$$\sigma_{\mathrm{TB}}$$
 = 27,260 psi σ_{C} = 11,890 psi

Substituting the calculated values for σ_{TB} and σ_{C} into Equation 5 (in Appendix A) yields a fricitonal force for the right and left leg respectively,

$$F_{f_R} = 12,540 \text{ lb}$$

$$F_{f_{1}} = 13,560 \text{ lb}$$

 $F_{favg}=13,050$ pounds. Note that this value does not depart significantly from the 15% (or 12,000 pounds) originally assumed. If the calculated value for σ_{C} for left and right leg is substituted into Equation 2d and 4b respectively (Appendix A) an $F_{favg}^{"}$ of 15,140 pounds is obtained.

At this point, all the forces acting on the system are known and a detailed stress analysis can be made of the various components.

Stresses Induced in Plastic Components

Hub Connection

It is contemplated that the yoke and the tube housing will be fastened to each other by bonding with an epoxy adhesive rather than by the use of screws. The applied load F_{favg} will thus induce an interfacial shear stress (see Fig 1, pg 8).

$$\sigma_{\rm sh} = \frac{F''_{\rm favg}}{A} = \frac{15,140}{\pi \text{ Dh}} = \frac{15,140}{\pi (1.6875) (1.75)} = 1,635 \text{ psi}$$

Which is well below the design value of 3000 psi for epoxy resins.

Case

Upon firing, shaft A (Fig 2, p 9) imparts a bearing load to the case, with a resulting bearing stress of

$$\sigma_{BR} = \frac{F_{favg}^{"}}{A} = \frac{15,140}{\frac{\pi}{4} (1.6895^2 - 1.375^2)} = 20,100 \text{ psi}$$

Tube Housing

The force acting on the left leg, for a calculated stress of 44,000 psi is

$$R_{f_L}' = (F_{TB})_L = \frac{\sigma_B 2I}{cl} = \frac{44,000(2)(.0328)}{(.476)(27)} = 224 \text{ lb}$$

Similarly, a stress of 33,000 psi will induce a force in the right leg of

$$R'_{f_R} = (F_{TB})_R = \frac{33,000(2)(.0498)}{(.563)(27)} = 216 \text{ lb},$$

the average force being

$$(F_{TB})_{avg} = \frac{(F_{TB})_L + (F_{TB})_R}{2} = 220 \text{ lb.}$$

The tube housing shaft B (Fig 1) will act as a solid shaft during firing since shafts A and B are coaxial. The moment of inertia is

$$I_{\rm H} = \frac{\pi}{64} \, (D)^4 = \frac{\pi}{64} \, (1.6895)^4 = .402 \, \text{in.}^4$$

The stress due to bending in the tube housing is

$$\sigma_{\rm B} = \frac{\rm Mc}{\rm I} = (F_{\rm TB})_{\rm avg} \frac{1 \, c}{\rm I} = \frac{(220) \, 6}{.402} \left(\frac{1.6895}{2}\right)$$

$$\sigma_{\rm B}$$
 = 2,780 psi

The bearing stress of 20,100 psi imparted to the case is the same compressive stress as exists in the housing. Thus the total stress in the tube housing is the sum of the bending and compressive stresses,

$$\sigma_{\rm T} = \sigma_{\rm B} + \sigma_{\rm C} = 2,780 + 20,100 = 22,880 \text{ psi.}$$

It is to be noted that the cover and body and the yoke ring components do not sense any significant stresses since the only applied load is the inertia of their own weight. However, the yoke ring must withstand a sustained shear load at temperatures of 400°-500°F for periods of 15-30 minutes.

Fig 1 Bipod assembly (a) and yoke assembly (b)

Fig 2 Schematic of elevating mechanism

Connector

The maximum moment occurs at section AA (see Fig 3), with a moment of inertia equal to

$$I_{AA} \approx \frac{1}{12}hb^3 = \frac{1}{12}\left(1\frac{9}{16}\right)\left(1\frac{5}{16}\right)^3 = .297 \text{ in.}^4$$

and section BB has a smaller moment of inertia

$$I_{BB} \approx \frac{1}{12}$$
 (.312) $\left(1\frac{5}{16}\right)^3 = .174 \text{ in.}^4$

The corresponding bending moments are

$$MAA = \left(\frac{F_{\text{favg}}^{"}}{2}\right) l_1 = \frac{15,140}{2} (1.25) = 9,460 \text{ in.-lb}$$

$$M_{BB} = \frac{15,140}{2} (.72) = 5,440 \text{ in.-lb}$$

and the bending stresses are

$$\sigma_{AA} = \frac{Mc}{I} = \frac{9,460}{.297} \left(\frac{9}{16}\right) = 17,900 \text{ psi}$$

$$\sigma_{\rm BB} = \frac{5,440}{.174} \left(\frac{9}{16}\right) = 17,650 \text{ psi}$$

The shear stress at section CC is,

$$\sigma_{\rm sh} = \frac{F_{\rm favg/2}^{"}}{A} = \frac{\frac{15,140}{2}}{3[2\{(.312)(.3)\}]} = 13,500 \text{ psi}$$

The schematic diagram of the elevating mechanism (Fig 2, p 9) indicates the required dimensions of various mating parts. These dimensions were determined in order to preclude binding within the military specifications temperature range of -65°F through 160°F.

Fig 3 Connector

In terms of stress requirements mentioned above, the bipod assembly components in question can be fabricated from plastics. A molding matesuch as a fiberglass-filled epoxy should readily fulfill all of the requirements for such plastic parts.

If fabrication of prototype parts is desired this may be accomplished by machining components from rolled tubing. The particular materials suggested for each prototype component are listed below in order of preference (1, 2, 3) on the basis of strength and thermal properties.

Comparison of design stress with the calculated stress values indicates that some of the strength requirements on the rolled tubing materials are marginal. During the analysis, however, the worst possible conditions were used in each case and it is recommended that materials with lower design stress values be test evaluated.

TABLE 1

Composition of component parts

	1		2		3		
	Reinforcement	Resin	Reinforcement	Resin	Reinforcement	Resin	
Tube	Cotton cloth	Phenolic	Asbestos	Phenolic	Paper	Phenolic	
Case	Cotton cloth	Phenolic	Asbestos	Phenolic	Paper	Phenolic	
Bracket	Paper	Phenolic	Asbestos	Phenolic	Cotton cloth	Phenolic	
Body	Paper	Phenolic	Asbestos	Phenolic	Cotton cloth	Phenolic	
Cover	Paper	Phenolic	Asbestos	Phenolic	Cotton cloth	Phenolic	
Connector	Glass	Silicone	Paper	Phenolic	Asbestos	Phenolic	
Yoke ring	Glass	Silicone*	Glass	Silicone	Glass	Silicone	

^{*}The silicone glass rolled tubing has the following physical properties:

Thermal coefficient of expansion = 1.1×10^{-5} cm/cm $^{\circ}$ C

Maximum operating temperature, continuous = 400°F

Maximum operating temperature, short time = 475° F

The reported tensile and compressive strengths for the materials listed in Table 1 are as follows:

TABLE 2

Material design strength values

Materials		Tensile strength,	Compressive strength,		
Reinforcement	Resin	psi	psi		
Paper	Phenolic	10,500	17,500		
Asbestos	Phenolic	8,500	19,000		
Cotton	Phenolic	7,500	21,000		
Glass	Silicone	30,000	15,000		

The existing parts were redesigned for plastics (see Figs 10-16 in Appendix B, pp 25-31) taking into account the thermal coefficients of expansion of the recommended plastic materials.

Watervliet Arsenal did not request fabrication and testing of the proposed plastic parts. This report, therefore, is a feasibility and design criteria study only.

TABLE 3
Strain data submitted by Watervliet Arsenal

			Gage Mounted Vertically on					
	Bipod	Angle of	Right Bipod Leg			ı	eft Bipod	Leg
Round	Traverse	Elevation,	Time,*	Strain,	Stress,**	Time,*	Strain,	Stress,**
Number	Position	degrees	ms	μ in./in.	psi	ms	μ in./in.	psi
323	Center	45	11.4	-230	-6,670	7.5	-410	-11,890
323	Center	45	40.4	620	17,980	44.6	530	15,370
324	Center	45	12.0	-210	-6,090	8.1	-230	-6,670
324	Center	45	40.2	270	7,830	28.3	320	-9 ,280
325	Max left	45	8.4	-340	-9 ,860	8.8	-390	-11,310
325	Max left	45	43.9	380	11,020	44.4	460	13,340
326	Max left	45	8.1	-310	-8,990		_	_
326	Max left	45	40.6	600	17,400	_	-	_
327	Max right	45	9.2	-400	-11,600	_	_	-
327	Max right	45	36.4	350	10,150	_	_	_
328	Max right	45	14.2	-440	-12,760	8.3	-390	-11,310
328	Max right	45	38.5	320	9,280	46.5	390	11,310
329	Center	65	16.9	-410	-11,890	11.6	-400	-11,600
329	Center	65	43.9	330	9,570	46.8	520	15,080
330	Center	65	8.4	-370	-10,730	14.1	-260	-7,540
330	Center	65	39.5	370	10,730	33.8	250	7,250
331	Max left	65	15.5	370	10,730	7.6	-620	-17,980
331	Max left	65	40.4	320	9,280	44.5	420	12,180
332	Max left	65	8.5	-350	-10,150	9.5	-420	-12,180
332	Max left	65	44.8	360	10,440	46.8	410	11,890
333	Max right	65	8.9	-390	-11,310	9.3	-380	-11,020
333	Max right	65	39.5	250	7,250	45.3	350	10,150
334	Max right	65	7.2	-250	-7,250	10.0	-290	-8,410
334	Max right	65	39.0	240	6,960	44.6	260	7,540
335	Center	73	13.8	-180	-5,220	10.1	-310	-8,990
335	Center	73	56.4	150	4,350	35.0	220	6,380

The reaction force reported at the base of the mortar barrel was 79,200 pounds.

^{*}Time from zero time (zero time = time when first deflection is recorded on right leg).

^{**}Stress = strain Y, where Y equals the stretch modulus of elasticity (29 million for gun steel).

APPENDIX A

Development of Equation for Frictional Force $(\mathbf{F_f})$

Fig 4 81 mm mortar

Fig 5 Schematic of force system

 F_R = force of recoil

 F_f = friction force

 F_f' = bending component of friction force

 $F_f^{\,\text{\tiny{N}}}=$ compressive component of friction force along center line of f — bipod assembly, in plane of bipod

Fig 6 Moment diagram and edge view of bipod assembly M_1 moment about plane of bipod assembly (x z plane) M_2 moment in plane of bipod assembly (y z plane) $\vec{M}_1 \& \vec{M}_2$ moment vectors \vec{M}_t resultant moment vector $= \vec{M}_1 + \vec{M}_2$

Fig 7 Force diagram

 F_{TB} = resultant bending force

R_f = force acting along center line of bipod in the plane of the bipod assembly

 R_f^i = component of R_f or F_f^u tending to bend bipod leg

 R_f'' = component of R_f compressing bipod leg

Considering one leg of the bipod assembly to act as a cantilever thus bearing half of the applied load, we have

Each leg will bear a load of $\frac{F_{f}^{"}}{2}$

(b) Front view

F'_f

(c) Top view

leg

Fig 8 Bipod assembly

From Figures 8 a, b, and c the following relations are readily determined

$$\left(\frac{F_f}{2}\right)^2 = \left(\frac{F_f^1}{2}\right)^2 + \left(\frac{F_f''}{2}\right)^2 \tag{2a}$$

$$\left(\frac{F_f''}{2}\right)^2 = (R_f^1)^2 + (R_f'')^2 \tag{2b}$$

$$(F_{TB})^2 = \left(\frac{F_f^1}{2}\right)^2 + (R_f^1)^2$$
 (2c)

Adding the orthogonal equations (2a), (2b) and (2c) and making the following substitutions:

$$\frac{F_{f}^{"}}{2} = F_{TB} \sin \psi \left[R_{f}^{1} = \begin{pmatrix} F_{TB} \cos \psi \\ \frac{F_{f}^{"}}{2} \sin \theta \end{pmatrix} \right] R_{f}^{"} = \frac{F_{f}^{"}}{2} \cos \theta \tag{2d}$$

we have after simplifying

$$\left(\frac{F_{f}}{2}\right)^{2} = F_{TB}^{2} + R_{f}^{"2} \tag{3}$$

The equations for bending and compressive stress for a cantilever are respectively,

$$\sigma_{TB} = \frac{M_T c}{I} = \frac{F_{TB} lc}{I}$$
 (Bending) (4a)

solving for F_{TB}

$$F_{TB} = \frac{\sigma_{TB}I}{Ic}$$

$$\sigma_{\rm c} = \frac{R_{\rm f}^{\rm u}}{A}$$
 (compressive) (4b)

solving for R"

$$R_f'' = \sigma_c A$$

1 length of bipod leg, in. distance from neutral axis to extreme fiber, in. С Ι moment of inertia of bipod leg, in.4 A cross sectional area, in.2 F_{TB} resultant force causing bending, lb compressive force applied to bipod leg, lb F_f frictional force, lb tensile stress due to bending, psi σ_{TB} stress due to compression, psi σ_{T} total stress σ_{TB} + σ_{c} , psi.

Substituting equations 4a and 4b into equation 3, we have,

$$F_{f} = 2\sqrt{\left(\frac{\sigma_{TB}I}{lc}\right)^{2} + (\sigma_{c}A)^{2}}$$
 (5)

(a) Side view

(b) Front view

Fig 9 Assumed geometry of bipod assembly during firing

Using the following values, $\rm F_f$ is determined as a function of $\sigma_{\rm T\,B}$ & $\sigma_{\rm c}$

$$I = \frac{\pi}{64} \left(D_0^4 - D_1^4 \right) = \frac{\pi}{64} \left[(1.125)^4 - (.875)^4 \right] = .0498 \text{ in.}^4$$

I = 27 in.

$$c = \frac{D_o}{2} = 0.563$$
 in.

$$A = \frac{\pi}{4} (D_o^2 - D_i^2) = 0.392 \text{ in.}^2$$

Substituting these values into equation (4), the result for the right bipod leg is,

$$F_{f} = \sqrt{(42.96 \times 10^{-6}) \sigma_{TB}^{2} + (.616) \sigma_{c}^{2}}$$
 (6)

Since the geometry and dimensions of the left and right legs differ, Equation 6 is applicable to the right bipod leg only. A similar expression for the left leg is presented in the discussion (Equation 1). Equations 1 and 6 differ only in the coefficients of $\sigma_{\rm TB}$ and $\sigma_{\rm c}$.

APPENDIX B

The seven drawings contained in this appendix (Figs 10-16, pp 25-31) show how the components of the 81 mm mortar bipod would have to be changed, in design and dimensions, if they were to be manufactured from plastics. The principal changes shown are:

- a. Relaxation of certain dimensional tolerances from .002 to .003 inch.
- b. Deletion of instructions regarding surface finish.
- c. If grease cups are to be used on bracket, allowance of sufficient clearance for bonding of cups.
- d. A dimensional change of .0055 inch to leave sufficient clearance for bonding between case and housing tube connector.
- e. Elimination of four drill holes in bottom of cylindrical portion of case, because plastic parts would be bonded.
- f. Replacement of a .0615 + .005 inch hole in the case with a $\frac{1}{16}$ inch ream.
- g. A dimensional change in the yoke ring to permit a clearance of at least .005 inch for bonding of the yoke ring.

All of the drawings included are modifications of the standard metal parts drawings, to incorporate the above-listed changes.

Fig 10 Cover (Modification of Dwg 7236575

Fillets .01 max

Fig 11 Tube (Modification of Dwg 7305150)

Fig 12 Housing tube connector (Modification of Dwg 7236033)

Fig 13 Bracket (Modification of Dwg 7305463)

Fig 14 Body (Modification of Dwg 7236576)

Fig 15 Case (Modification of Dwg 7235992)

Fig 16 Yoke ring (Modification of Dwg 7305061)

DISTRIBUTION LIST

	Copy No.
Commanding Officer Picatinny Arsenal ATTN: Technical Information Section Dover, N. J.	1 - 5
Commanding Officer Army Materiel Command Detachment No. 1 (ORD) ATTN: Res Div, Dr. Peter Kosting Tempo I Dept of the Army Washington 25, D. C.	6
Commanding General Army Munitions Command ATTN: AMSMU-A AMSMU-W Picatinny Arsenal Dover, N. J.	7 8
Plastics Technical Evaluation Center ATTN: Director, Mr. H. Pebly A. Mol zon Picatinny Arsenal Dover, N. J.	9 - 10 2000 11
Commanding General Ordnance Weapons Command ATTN: ORDOW-TX Rock Island, Illinois	12 - 13
Commanding General Army Ordnance Missile Command ATTN: ORDXR-OTL, Technical Library ORDXR-OCP Redstone Arsenal Alabama	14 15 - 19

	Copy No.
Commanding Officer	
Detroit Arsenal	
ATTN: ORDMC-RMN, Mr. John Reynar	20
ORDMC-RRS, Mr. D. R. Lem	21
Center Line, Michigan	
Commanding General	
Aberdeen Proving Ground	
ATTN: Coating and Chemical Laboratory	22
Technical Library, ORDBG-LM, Bldg 313	23 - 24
Maryland	
Commanding General	
White Sands Missile Range	
ATTN: ORDES-TS-TIB	25
OM-WSWL, Director WSWL	26
ORDBS, Technical Library	27
New Mexico	
Commanding Officer	
Frankford Arsenal	
ATTN: Pitman-Dunn Labs, Dr. H. Gisser	28
Library Branch, 0270	29
Philadelphia 37, Pa.	
Commanding Officer	
Rock Island Arsenal	
ATTN: Laboratory, Mr. R. F. Shaw	30
Rock Island, Illinois	
Commanding Officer	
U. S. Army Materials Research Agency	
ATTN: RPD	31
Watertown Arsenal	
Watertown 72, Mass.	
Commanding Officer	
Springfield Armory	2.0
ATTN: Res Chem Lab, Mr. Zavarella	32
Springfield 1, Mass.	

	Copy No
Commanding Officer	
Watervliet Arsenal	
ATTN: ORDBF-RR	33
Watervliet, N. Y.	
Commanding General	
U. S. Army Ordnance Guided Missile School	
Redstone Arsenal, Alabama	34
Commanding Officer	
Ammunition Procurement & Supply Agency	
ATTN: SMUAP	35
Joliet, Illinois	
Commanding General	
Ordnance Tank-Automotive Command	
ATTN: ORDMG-11-60	36
Detroit Arsenal	
Center Line, Michigan	
Commanding Officer	
Watertown Arsenal	
ATTN: Technical Information Section	37
Watertown 72, Mass.	
Commanding Officer	
Harry Diamond Ordnance Fuze Laboratories	
ATTN: Technical Reference Section	38
A. A. Benderly	39
Connecticut Ave and Van Ness St, NW	
Washington 25, D. C.	
Commanding General	
U. S. Army Signal Research and Development	
Laboratories	
ATTN: SIG-FM/EL-PEM-1-d	40
Mr. E. Beekman	41
Fort Monmouth, N. I.	

	Copy No.
Chemical Corps Chemical Research and Development Labs ATTN: Mr. T. A. Treglia	42
Army Chemical Center, Maryland	
Chemical Corps Chemical Center and Chemical Corps Materiel Command ATTN: Mr. A. A. Cooke, CMLAM-M-ZP-44 Army Chemical Center, Maryland	43
Commanding Officer Engineer Research and Development Laboratories	
Material's Branch	
ATTN: Mr. Philip Mitton	44
Mr. S. Goldfein	45
Fort Belvoir, Virginia	
Commanding General	
Quartermaster Research and Engineering Center	// /0
ATTN: Clothing and Organic Materials Div Natick, Mass.	46 - 48
Office, Chief of Transportation	
Dept of the Army	49
ATTN: Mr. John Stolarick, TCARO-R Washington 25, D. C.	1)
U. S. Army Transportation Research Command	
Fort Eustis	50
ATTN: Mr. J. E. Forehand, Aviation Directorate	50 51
Mr. H. I. Krellen, Surface Mobility Directorate	51
Virginia	
Dept of the Navy	
Office of Naval Research	52
ATTN: Code 423)2

	Copy No.
Dept of the Navy	
Bureua of Ships	
Hull Division	
Materials Development and Applications Branch	
ATTN: Mr. J. B. Alfers, Code 634C	53
Washington 25, D. C.	
U. S. Naval Ordnance Laboratory	
ATTN: Mr. H. A. Perry	54
Mr. F. R. Barnet, Chief, Nonmetallic	55
Materials Division	
White Oak	
Silver Spring, Maryland	
Commander	
Naval Research Laboratory	
ATTN: Technical Information Officer	56
Anacostia Station	
Washington 25, D. C.	
Commander	
New York Naval Shipyard	
ATTN: R. R. Winans	
Material Laboratory (Code 948)	57
Brooklyn 1, N. Y.	
Dept of the Navy	
Bureau of Naval Weapons	
ATTN: RRMA	58
Airborne Equipment Division	59
Washington 25, D. C.	
Dept of the Navy	
Bureau of Supplies and Accounts	
ATTN: Mr. H. Lapidus	
Code S-82	60
Washington 25 D C	00

	Copy No.
Naval Weapons Station Research and Development Division ATTN: Mr. U. Cormier Yorktown, Virginia	61
Aeronautical Materials Laboratory Naval Air Materials Center ATTN: Mr. E. K. Rishel, Head, Plastics Branch Philadelphia 12, Pa.	62
Naval Weapons Laboratory ATTN: Mr. R. Tom (Code WCD) Dahlgren, Virginia	63
Dept of the Navy Bureau of Naval Weapons Research, Development Test, and Development ATTN: Mr. P. M. Goodwin, Head, Nonmetals Branch (RRMA-3) Washington 25, D. C.	64
Naval Air Development Center Aeronautical, Electronic, and Electrical Laboratory ATTN: Dr. H. R. Moore, Head, Materials and Process Branch Johnsville, Pa.	65
Commander (Code 5557) U. S. Naval Ordnance Test Station Inyokern China Lake, California	66
David Taylor Model Basin ATTN: Mr. A. R. Willner, Head, Materials Research Branch	67

	Copy No.
Commander Aeronautical Systems Division Wright-Patterson Air Force Base ATTN: Mr. R. T. Schwartz, ASRCNC	68
Mr. Peterson, ASRCNC-1 Dayton, Ohio	69
Armed Services Technical Information Agency Arlington Hall Station Arlington 12, Virginia	70 - 79
Dr. W. R. Lucas (M-S and M-M)	
George C. Marshall Space Flight Center Huntsville, Alabama	80
Sandia Corporation Sandia Base	
Albuquerque, N. M.	81
Sandia Corporation Livermore Laboratory	
ATTN: Librarian	82
P. O. Box 969 Livermore, California	
Interservice Data Exchange Program AOMC IDEP Office	
ATTN: R. A. Ham, ORDXM-RCS	83 - 84
Redstone Arsenal, Alabama	
Commanding Officer	
Watervleit Arsenal	
ATTN: ORDBB-VP Watervleit, N. Y.	85 - 89
Commander Naval Research Laboratory	
Naval Research Laboratory ATTN: Joseph Kies (Code 6210)	90
Anacostia Station	70
Washington 25, D. C.	

	Copy No.
David Taylor Model Basin	
Structural Mechanics Laboratory	
ATTN: Mr. J. Buhl (Code 732)	91
Washington 7, D. C.	
Commanding General	
Manufacturing Technique Laboratory	
Aeronautical System Division	
Chemical Engineering Branch	
Wright-Patterson Air Force Base	
ATTN: Mr. Charles Tanis	92
Dayton, Ohio	

	1. Mortars, 81 mm Materials 2. Epoxides Applications 3. Glass reinforced plastics Applications I. Eig, Merrill UNITERMS Plastics Glass fabrics Epoxides 81 mm Mortar Base Assembly Bipod Eig, M.	1. Mortars, 81 mm – Materials 2. Epoxides – Applications 3. Glass reinforced plastics – Applications I. Eig, Merrill UNITERMS Plastics Glass fabrics Epoxides 81 mm Mortar Mortar Base Assembly Bipod Eig, M.
	Feltman Research Laboratories Ficatinny Atsenal, Dover, N. J. FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY Merrill Eig Picatinny Atsenal Technical Report 3030, February 1963, 39 pp, tables, figures. DA Proj 593-2007, OMS 5010. 11.842. Unclassified Report Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.	AD Feltman Research Laboratories Picatinny Arsenal, Dover, N. J. FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY Mertill Eig Picatinny Arsenal Technical Report 3030, February 1963, 39 pp, tables, figures. DA Proj 593-32-007, OMS 5010. 11.842. Unclassified Report Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.
***************************************		1. Mortars, 81 mm – Materials 2. Epoxides – Applications 3. Glass reinforced plastics – Applications 1. Eig, Mertill UNITERMS Plastics Glass fabrics Fpoxides Sl mm Mortar Base Assembly Bipod Eig, M.
	Feltman Research Laboratories Feltman Research Laboratories Picatinny Arsenal, Dover, N. J. FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY Merrill Eig Picatinny Arsenal Technical Report 3030, February 1963, Plastics 39 pp, tables, figures. DA Proj 593-32-007, OMS 5010. Il. 842. Unclassified Report Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. Base tioned on the legs of the 81 mm mortar bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.	

:

yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress The calculated maximum stresses were as follows: a psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and bearing stress of 20, 100 psi on the case; and a 2780

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of of 13,500 psi. Rolled reinforced plastic tubing was suggested for

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from

the tubing is marginal.

plastics. The recommended design changes are shown in an Appendix.

yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress The calculated maximum stresses were as follows: a psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and bearing stress of 20, 100 psi on the case; and a 2780 of 13,500 psi.

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of Rolled reinforced plastic tubing was suggested for

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties. the tubing is marginal.

The components were redesigned for fabrication from plastics. The recommended design changes are shown an Appendix.

yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress of 13,500 psi. The calculated maximum stresses were as follows: a psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and bearing stress of 20, 100 psi on the case; and a 2780

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of Rolled reinforced plastic tubing was suggested for

the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown in an Appendix.

yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and The calculated maximum stresses were as follows: bearing stress of 20, 100 psi on the case; and a 2780 of 13,500 psi.

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of Rolled reinforced plastic tubing was suggested for

the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

plastics. The recommended design changes are shown in The components were redesigned for fabrication from an Appendix.

1. Mortars, 81 mm – Materials 2. Epoxides – Applications 3. Glass reinforced plastics – Applications I. Eig, Merrill UNITERMS Plastics Glass fabrics Epoxides 81 mm Mortar Base Assembly Bipod Eig, M.		1. Mortars, 81 mm – Materials 2. Epoxides – Applications 3. Glass reinforced plastics – Applications I. Eig, Merrill UNITERMS Plastics Glass fabrics Epoxides 81 mm Mortar Base Assembly Bipod Eig, M.
Felman Research Laboratories Picatinny Arsenal, Dover, N. J. FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY Merrill Eig Picatinny Arsenal Technical Report 3030, February 1963, 39 pp, tables, figures. DA Proj 593-32-007, OMS 5010. 11.842. Unclassified Report Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the ceritral position.		Accession No. Felman Research Laboratories Picatinny Arsenal, Dover, N. J. FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY Merrill Eig Picatinny Arsenal Technical Report 3030, February 1963, 39 pp, tables, figures, DA Proj 593-32-007, OMS 5010. 11.842. Unclassified Report Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly was accompined by analyzing this data. Once this was accompinished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.
1. Mortars, 81 mm – Materials 2. Epoxides – Applications 3. Glass reinforced plastics – Applications I. Eig, Merrill UNITERMS Plastics Glass fabrics Epoxides 81 mm Mortar Base Assembly Bipod Eig, M.		1. Mortars, 81 mm - Materials 2. Epoxides - Applications 3. Glass reinforced plastics - Applications I. Eig, Merrill UNITERMS Plastics Glass fabrics Epoxides 81 mm Mortar Mosembly Bipod Eig, M.
on No. S. USE OF PLASTIC M MORTAR BIPOD Sport 3030, February 1963, 593-32-007, OMS 5010. Iring from gages posi- n mortar bipod assembly nal by Watervliet Arsenal. d assembly were deter- Duce this was accom- cting upon components ration was used, with the d in the central position.	(over)	PLASTIC R BIPOD REPROSITION TO WAS 5010. Sages positivate Arsenal. Were detervas accomponents used, with the nitral position.

yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stres The calculated maximum stresses were as follows: a psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and bearing stress of 20, 100 psi on the case; and a 2780

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of of 13,500 psi. Rolled reinforced plastic tubing was suggested for

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties. the tubing is marginal.

plastics. The recommended design changes are shown in The components were redesigned for fabrication from an Appendix.

showed a bending stress of 17,900 psi and a shear stress 22,880 psi for the tube housing. The cover, body, and yoke ring were not significantly stressed. The connector The calculated maximum stresses were as follows: a psi stress due to bending, and a compressive stress of bearing stress of 20, 100 psi on the case; and a 2780 of 13,500 psi.

Rolled reinforced plastic tubing was suggested for fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown an Appendix.

yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress of 13,500 psi. The calculated maximum stresses were as follows: a psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and bearing stress of 20, 100 psi on the case; and a 2780

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of Rolled reinforced plastic tubing was suggested for

the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown in an Appendix. showed a bending stress of 17,900 psi and a shear stress yoke ring were not significantly stressed. The connector psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and The calculated maximum stresses were as follows: bearing stress of 20, 100 psi on the case; and a 2780 of 13,500 psi.

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength, It should be noted that the design strength of Rolled reinforced plastic tubing was suggested for

the tubing is marginal.
For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

plastics. The recommended design changes are shown in The components were redesigned for fabrication from an Appendix. 1、1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1、10分子1

		1. Mortars, 81 mm – Materials 2. Epoxides – Applications 3. Glass reinforced plastics – Applications I. Eig, Merrill UNITERMS Plastics Glass fabrics Epoxides 81 mm Mortar Basse Assembly Bipod Eig, M.
	Feltman Research Laboratories Picatinny Arsenal, Dover, N. J. FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY Merrill Eig Picatinny Arsenal Technical Report 3030, February 1963, 39 pp, tables, figures. DA Proj 593-32-007, OMS 5010. 11.842. Unclassified Report Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.	Feltman Research Laboratories Feltman Research Laboratories Picatinny Arsenal, Dover, N. J. FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY Merrill Eig Picatinny Arsenal Technical Report 3030, February 1963, 39 pp, tables, figures, DA Proj 593-32-007, OMS 5010. 11.842. Unclassified Report Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s, 81 mm – rials les – Application reinforced tics – Application errill INITERMS vics	1. Mortars, 81 mm — Materials 2. Epoxides — Applications 3. Glass reinforced plastics — Applications I. Eig, Merrill UNITERMS Plastics Glass fabrics Epoxides 81 mm Mortar Assembly Bipod Eig, M.
	Feltman Research Laboratories Picatinny Arsenal, Dover, N. J. FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY Merrill Eig Picatinny Arsenal Technical Report 3030, February 1963, Plastics 39 pp, tables, figures. DA Proj 593-32-007, OMS 5010. Glass fall 11.842. Unclassified Report Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. Base The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.	AD Feltman Research Laboratories Picatinny Arsenal, Dover, N. J. FEASIBILITY STUDY ON THE USE OF PLASTIC COMPONENTS FOR THE 81 MM MORTAR BIPOD ASSEMBLY Merrill Eig Picatinny Arsenal Technical Report 3030, February 1963, 39 pp, tables, figures. DA Proj 593-32-007, OMS 5010. 11.842. Unclassified Report Strain data obtained during firing from gages positioned on the legs of the 81 mm mortar bipod assembly was reported to Picatinny Arsenal by Watervliet Arsenal. The forces exerted on the bipod assembly were determined by analyzing this data. Once this was accomplished the individual forces acting upon components could be calculated. A 45° elevation was used, with the bipod traverse assembly located in the central position.
:		

yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress The calculated maximum stresses were as follows: a psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and bearing stress of 20, 100 psi on the case; and a 2780

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of of 13,500 psi. Rolled reinforced plastic tubing was suggested for

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from the tubing is marginal.

plastics. The recommended design changes are shown in an Appendix.

yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress The calculated maximum stresses were as follows: a bearing stress of 20, 100 psi on the case; and a 2780 psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and of 13,500 psi.

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of Rolled reinforced plastic tubing was suggested for

the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown an Appendix.

showed a bending stress of 17,900 psi and a shear stress yoke ring were not significantly stressed. The connector The calculated maximum stresses were as follows: a psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and bearing stress of 20, 100 psi on the case; and a 2780

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength, It should be noted that the design strength of of 13,500 psi. Rolled reinforced plastic tubing was suggested for

the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown in an Appendix.

yoke ring were not significantly stressed. The connector showed a bending stress of 17,900 psi and a shear stress psi stress due to bending, and a compressive stress of 22,880 psi for the tube housing. The cover, body, and The calculated maximum stresses were as follows: bearing stress of 20, 100 psi on the case; and a 2780 of 13,500 psi.

fabrication of prototype components, as it can be easily machined to the desired shapes and has the required strength. It should be noted that the design strength of Rolled reinforced plastic tubing was suggested for

the tubing is marginal.

For end items, a glass-filled epoxy compression molding compound such as Scotchply 1100 would have the desired strength and other required physical properties.

The components were redesigned for fabrication from plastics. The recommended design changes are shown in

an Appendix.