Lab and Exercises I

Exercise I.

Install Anaconda alongside with Python, Julia, and the Jupyter notebook.

Exercise II.

(i) Approximate the projectile ODE with Newtonian drag,

$$\partial_t x(t) = v_x(t), \qquad \partial_t v_x(t) = -\frac{1}{2} \mu \|\vec{v}\| v_x$$

$$\partial_t y(t) = v_y(t), \qquad \partial_t v_y(t) = -g - \frac{1}{2} \mu \|\vec{v}\| v_y$$

$$x(0) = x_0, \qquad v_x(0) = v_{x,0},$$

$$y(0) = y_0, \qquad v_y(0) = v_{y,0},$$

with the forward Euler time-stepping scheme. Run your simulation for as long as $y(t^*) > 0$ and visualize the trajectories. Test your implementation by computing the trajectory for different initial conditions

$$x_0 = 0$$
, $y_0 = 0$, $v_{x,0} = s_0 \cos(\alpha)$, $v_{y,0} = s_0 \sin(\alpha)$,

by varying angle α , initial speed s_0 and time step sizes τ .

(ii) Can you come up with an algorithm that finds the optimal angle α for given initial speed s_0 , gravity constant g and drag coefficient μ (by maximizing the horizontal distance travelled)?

Exercise III.

Approximate the Lorenz system,

$$\partial_t x(t) = \sigma(y(t) - x(t)), \quad \partial_t y(t) = x(\rho - z(t)), \quad \partial_t z(t) = x(t)y(t) - \beta z(t),$$

with a time-stepping method of your choosing. Here, we have set $\sigma = 10$, $\beta = 8/3$, $\rho = 28$. For a chosen time step size τ first compute the approximation $\left\{x_{\tau/2}^n, y_{\tau/2}^n, z_{\tau}^n\right\}_0^N$ and then half the step size and compute the approximation $\left\{x_{\tau/2}^n, y_{\tau/2}^n, z_{\tau/2}^n\right\}_0^{2N}$. By comparing x_{τ}^N with $x_{\tau/2}^{2N}$ you can assess the quality of your approximation: What is the largest final time T that you can use where you still have a reasonable quality?