MA 1971 Exercise Set 2 Answers

Hubert J. Farnsworth

April 6, 2021

- 1. Let $x \in (A \cap B)^c$. Then $x \notin A \cap B$, which means $x \notin A$ of $x \notin B$. Equivalently, $x \in A^c$ or B^c . Thus $x \in A^c \cup B^c$. Therefore $(A \cap B)^c \subseteq A^c \cup B^c$. Each of these steps is reversible. Therefore we have also $(A \cap B)^c \supseteq A^c \cup B^c$.
- 2. Let $x \in A$. Since $A \subset B$, $x \in B$. Since $B \subset C$, $x \in C$. Therefore $A \subset C$.

3.

$$A_U^c = [0,3) \cup [7,10], \quad A_{\mathbb{R}}^c = (-\infty,3) \cup [7,\infty), \quad B_U^c = [0,3) \cup (3,6) \cup (6,9) \cup (9,10]$$

4. Consider the following counterexample. Let $A = \{a\}, B = \{b\}$ so that $A \cup B = \{a, b\}$.

$$\mathcal{P}(A) = \{\emptyset, \{a\}\}$$

$$\mathcal{P}(B) = \{\emptyset, \{b\}\}$$

$$\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{a\}, \{b\}\}\}$$

$$\mathcal{P}(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\}$$

$$\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$$

5. (a) Base case: $\frac{1(1+1)}{2}=1=\sum_{i=1}^{1}i$. Inductive step: Suppose for $k\in\mathbb{Z}^+$ that $\sum_{i=1}^{k}i=\frac{k(k+1)}{2}$. Then,

$$\sum_{i=1}^{k+1} i = k+1 + \sum_{i=1}^{k} i = k+1 + \frac{k(k+1)}{2} = \frac{2(k+1) + k(k+1)}{2} = \frac{(k+1)((k+1) + 1)}{2}.$$

The claim holds by the principle of induction.

(b) Base case: $\frac{1(1+1)(2+1)}{6} = 1 = 1^2 = \sum_{i=1}^{1} i^2$. Inductive step: Suppose for $k \in \mathbb{Z}^+$ that $\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$. Then,

$$\begin{split} \sum_{i=1}^{k+1} i^2 &= (k+1)^2 + \sum_{i=1}^k i^2 = (k+1)^2 + \frac{k(k+1)(2k+1)}{6} \\ &= \frac{6(k+1)^2 + k(k+1)(2k+1)}{6} \\ &= \frac{(k+1)[6(k+1) + 2k^2 + k]}{6} \\ &= \frac{(k+1)[2k^2 + 7k + 6]}{6} \\ &= \frac{(k+1)[2k(k+2) + 3(k+2)]}{6} \\ &= \frac{(k+1)(k+2)(2k+3)}{6} \\ &= \frac{(k+1)((k+1) + 1)(2(k+1) + 1)}{6} \end{split}$$

The claim holds by the principle of induction.

6. (a) Claim: For any positive integer n, $6 \mid (n^3 - n)$.

Proof (Induction with two base cases):

Base case: $6 \mid (1^3 - 1)$ since $1^3 - 1 = 0$ and $6 \mid 0$. Also, $6 \mid (2^3 - 2)$ since $2^3 - 2 = 6$ and $6 = 6 \cdot 1 \implies 6 \mid 1$.

Inductive step: Suppose for some $k \in \mathbb{Z}^+$ that $6 \mid k^3 - k$. Then $k^3 - k = 6j$ for some integer j. Consider the case for k + 2.

$$(k+2)^3 - (k+2) = k^3 + 6k^2 + 12k + 8 - (k+2) = k^3 - k + 6k^2 + 12k + 6 = 6j + 6(k^2 + 2k + 1)$$
.

Thus $(k+2)^3 - (k+2) = 6(j+k^2+2k+1)$, which shows that $6 \mid [(k+2)^3 - (k+2)]$.

(b) **Lemma** For any $n \in \mathbb{Z}^+$, $6 \mid 3n(n+1)$.

Proof (Induction):

Base case: For $6 \mid 3(1)(1+1)$ since 3(1)(1+1) = 6.

Inductive step: Suppose for some $k \in \mathbb{Z}^+$ that $6 \mid 3k(k+1)$. Then $3k(k+1) = 3k^2 + 3k = 6j$ for some integer j. Consider the case for k+1.

$$3(k+1)(k+2) = 3k^2 + 9k + 6 = 3k^2 + 3k + 6k + 6 = 6(j+k+1)$$
.

The lemma holds by the principle of induction.

Claim: For any positive integer n, $6 \mid (n^3 - n)$.

Proof (Induction): Base case: $6 \mid (1^3 - 1)$ since $1^3 - 1 = 0$ and $6 \mid 0$.

Inductive step: Suppose for some $k \in \mathbb{Z}^+$ that $6 \mid (k^3 - k)$. Then $k^3 - k = 6j$ for some integer j. Consider the case for k + 1.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1) = k^3 - k + 3k^2 + 3k = 6i + 6l = 6(i+1)$$

where we used the inductive hypothesis to get $k^3 - k = 6j$ and the lemma to get $3k^2 + 3k = 6l$ for some integer l. This shows that $6 \mid [(k+1)^3 - (k+1)]$ and so the claim holds by the principle of induction.

7. Let A and B be sets such that $A \subset B$ and Q(x) be the predicate $Q(x) = x \notin A$. By Axiom III (specification), there exists a set S such that

$$S = \{x \in B \mid Q(x) \text{ is true}\} = \{x \in B \mid x \notin A\} =: A_B^c.$$

8. Proof: Suppose there exists a set S such that S contains all sets. We have seen that $|\mathcal{P}(S)| = 2^{|S|} > |S|$. But since $\mathcal{P}(S)$ is also a set, this would imply that $|\mathcal{P}(S)| \leq |S|$. Thus we have the contradiction, $|\mathcal{P}(S)| < |\mathcal{P}(S)|$.

Proof: Suppose there exists a set S that contains all sets. By Axiom III, there exists a set $B = \{s \in S \mid s \not\in s\}$. Since S contains all sets, $B \in S$. If $B \in B$, then by definition of B, $B \notin B$. But if $B \notin B$, then since $B \in S$ and $B \notin B$, we have $B \in B$. Therefore, if there exists a set S containing all sets, there must exists a set S such that $S \in B$ and $S \notin B$. Since $S \in B$ and $S \notin B$ is impossible, there cannot exist a set S containing all sets.

- 9. No, $\emptyset \neq \{\emptyset\}$. By Axiom II, two sets are equal iff they contain the same elements. However, $|\emptyset| = 0$ while $|\{\emptyset\}| = 1$. Since \emptyset and $\{\emptyset\}$ do not even contain the same number of elements, it is impossible for these two sets to contain the same elements.
- 10. In lecture, we used Axioms I,II, and III to prove that there exists uniquely the empty set \emptyset . Taking $A = B = \emptyset$ in Axiom IV (pairing), there exists a set \mathcal{C} such that $\emptyset \in \mathcal{C}$. Using Axiom III, we obtain the existence of the set $\{\emptyset\} = \{X \in \mathcal{C} \mid X = \emptyset\}$. Thus we have proved the existence of the sets \emptyset and $\{\emptyset\}$. Taking $A = \emptyset$ and $B = \{\emptyset\}$ in Axiom IV, there exists a set \mathcal{C} such that \emptyset , $\{\emptyset\} \in \mathcal{C}$. Using Axiom III, we obtain $\{\emptyset, \{\emptyset\}\} = \{X \in \mathcal{C} \mid X = \emptyset \lor X = \{\emptyset\}\}$. Taking $A = B = \{\emptyset\}$ in Axiom IV, there exists a set \mathcal{C} such that $\{\emptyset\} \in \mathcal{C}$. Then by Axiom III there exists the set $\{\{\emptyset\}\} = \{X \in \mathcal{C} \mid X = \{\emptyset\}\}$. Then similarly, by applying Axiom IV and III as we just did but with $A = B = \{\{\emptyset\}\}$ we obtain the existence of the set $\{\{\{\emptyset\}\}\}\}$.

Take $A = \{\emptyset, \{\emptyset\}\}$ and $B = \{\{\{\emptyset\}\}\}\}$. By Axiom IV there exists a set $\mathcal C$ such that $\{\emptyset, \{\emptyset\}\}\} \in \mathcal C$ and $\{\{\{\emptyset\}\}\}\} \in \mathcal C$. By Axiom III, there exists a set

$$\mathcal{A} = \{ \ \{\emptyset, \{\emptyset\}\}, \{\{\{\emptyset\}\}\} \ \} = \{ \ X \in \mathcal{C} \mid X = \{\emptyset, \{\emptyset\}\} \ \lor \ X = \{\{\{\emptyset\}\}\}\} \ \}$$

By Axiom V (unioning), there exists a set $\cup A$ such that,

$$\cup \mathcal{A} = \{ x \in A \mid A \in \mathcal{A} \} = \{ \emptyset, \{\emptyset\}, \{\{\emptyset\}\} \} \}.$$