1.	(005100) 利用反证法证明: 若 $x,y>0$, 且 $x+y>2$, 则 $\frac{1+y}{x}$ 和 $\frac{1+x}{y}$ 中至少有一个小于 2 .						
2.	(005101) 利用反证法证明: 若 $0 < a < 1, b > 0,$ 且 $a^b = b^a,$ 则 $a = b.$						
3.	(005102) 若 $a>0,$ $b>0,$ 且 $a^3+b^3=2,$ 试分别利用 $x^3+y^3+z^3\geq 3xyz(x,y,z\geq 0)$ 构造方程, 并利用判别式以及反证法证明: $a+b\leq 2.$						
4.	(005103) 下列函数中,最小值为 $A. \ x + \frac{1}{x}$ $C. \ \log_a x + \log_x a(a>0, \ x$		B. $\frac{x^2 + 2}{\sqrt{x^2 + 1}}$ D. $3^x + 3^{-x}(x > 0)$				
5.	5. (005104) 若 $\log_{\sqrt{2}} x + \log_{\sqrt{2}} y = 4$, 则 $x + y$ 的最小值是 ().						
	A. 8	B. $4\sqrt{2}$	C. 4	D. 2			
6.	$a_{(005105)}$ 若 a,b 均为大于 1 的正数, 且 $ab=100$, 则 $\lg a \cdot \lg b$ 的最大值是 ().						
	A. 0	B. 1	C. 2	D. $\frac{5}{2}$			
7.	. (005106) 若实数 x 与 y 满足 $x+y-4=0$, 则 x^2+y^2 的最小值是 ().						
	A. 4	B. 6	C. 8	D. 10			
8.	. (005107) 若非负实数 a,b 满足 $2a+3b=10,$ 则 $\sqrt{3b}+\sqrt{2a}$ 的最大值是 ().						
	A. $\sqrt{10}$	B. $2\sqrt{5}$	C. 5	D. 10			
9.	. (005108) 若 $x > 1$, 则 $\frac{x^2 - 2x + 2}{2x - 2}$ 有 ().						
	A. 最小值 1	B. 最大值 1	C. 最小值 -1	D. 最大值 -1			
10.	(005109) 若 $x, y \in \mathbf{R}^+$, 且 $x^2 + y^2 = 1$, 则 $x + y$ 的最大值是						
11.	(005110) 若 $x+2y=2\sqrt{2}a(x>0,y>0,a>1),$ 则 $\log_a x+\log_a y$ 的最大值是						
12.	(005111) 若 $x > 1$, 则 $2 + 3x + 3$	$-rac{4}{x-1}$ 的最小值	, 此时 $x =$				
13.	(005112) 若 $x > 0$, 则 $x + \frac{1}{x} +$	$\frac{16x}{x^2+1}$ 的最小值是	,此时 $x =$				
14.	(005113) 若正数 a, b 满足 $a^2 + \frac{b}{a}$	$\frac{a^2}{2} = 1$, 则 $a\sqrt{1+b^2}$ 的最大化	直为,此时 <i>a</i> =	, b =			
15.	(005114) 若 $x > 0$,则 $3x + \frac{12}{x^2}$	的最小值是,此	公时 x =				

16. (005115) 若 $0 < x < \frac{1}{3}$,则 $x^2(1-3x)$ 的最大值是______,此时 x =______.

18. (005118) 若正数 x, y, z 满足 5x + 2y + z = 100, 则 $\lg x + \lg y + \lg z$ 的最大值是______.

17. (005116) 若 xy > 0, 且 $x^2y = 2$, 则 $xy + x^2$ 的最小值是_____.

19. (005119) 若 $\frac{x^2}{4} + y^2 = x$, 则 $x^2 + y^2$ 有 ().

A. 最小值 0, 最大值 16 B. 最小值 $-\frac{1}{3}$, 最大值 0 C. 最小值 0, 最大值 1 D. 最小值 1, 最大值 2

20. (005121) 若 x > 0, 则 $\frac{x}{x^3 + 2}$ 的最大值是 ().

A. 5

В. 3

C. 1

D. $\frac{1}{3}$

21. (005122) 若正数 a, b 满足 ab - (a + b) = 1, 则 a + b 的最小值是 ().

A. $2 + 2\sqrt{2}$

B. $2\sqrt{2} - 2$

C. $\sqrt{5} + 2$

D. $\sqrt{5} - 2$

22. (005127) 若 x, y > 0, 求 $\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x+y}}$ 的最大值.

23. (005128) 已知正常数 a, b 和正变数 x, y 满足 a + b = 10, $\frac{a}{x} + \frac{b}{y} = 1$, x + y 的最小值为 18, 求 a, b 的值.

24. (005129) 已知 $x^2 + y^2 = 1$, 求 (1 + xy)(1 - xy) 的最大值和最小值.

25. (005130) 已知 $x^2 + y^2 = 3$, $a^2 + b^2 = 4$, 求 ax + by 的最大值和最小值.

26. (005131) 已知 $\sqrt{1-y^2} + y\sqrt{1-x^2} = 1$, 求 x+y 的最大值和最小值.

27. (005132) 已知函数 $f(x) = \frac{2^{x+3}}{4^x + 8}$.

(1) 求 f(x) 的最大值;

(2) 对于任意实数 a, b, 求证: $f(a) < b^2 - 4b + \frac{11}{2}$.

28. (005133) 若直角三角形的周长为 1, 求它的面积的最大值.

29. (005134) 若直角三角形的内切圆半径为 1, 求它的面积的最小值.

30. (005135) 若球半径为 R, 试求它的内接圆柱的最大体积. 请指出下向解法的错误, 并给出正确的解答.

解: 设圆柱底面半径为 r, 则 $4r^2=4R^2-h^2$, 而 $V_=\pi r^2h=\frac{\pi}{4}(4R^2-h^2)h=\frac{\pi}{4}(2R+h)(2R-h)=\frac{\pi}{8}(2R+h)(4R-2h)h\leq \frac{\pi}{8}(\frac{2R+h+4R-2h+h}{3})^3=\frac{\pi}{8}(2R)^3=\pi R^3$. 所以所求最大体积为 πR^3 .

31. (005136) 在 $\triangle ABC$ 中,已知 BC=a,CA=b,AB=c, $\angle ACB=\theta$. 现将 $\triangle ABC$ 分别以 BC, CA, AB 所在 直线为轴旋转一周,设所得三个旋转体的体积依次为 V_1,V_2,V_3 .

(1) 设 $T = \frac{V_3}{V_1 + V_2}$, 试用 a, b, c 表示 T;

(2) 若 θ 为定值,并令 $\frac{a+b}{c}=x$,将 $T=\frac{V_3}{V_1+V_2}$ 表示为 x 的函数,写出这个函数的定义域,并求这个函数的最大值 M;

(3) 若 $\theta \in [\frac{\pi}{3}, \pi)$, 求 (2) 中 M 的最大值.

32. (005137) 已知 $A(0,\sqrt{3}a)$, B(-a,0), C(a,0) 是等边 $\triangle ABC$ 的顶点, 点 M,N 分别在边 AB, BC 上, 且将 $\triangle ABC$ 的面积两等分, 记 N 的横坐标为 x, |MN|=y.

(1) 写出 y = f(x) 的表达式;

(2) 求 y = f(x) 的最小值.

33.	(005139) 已知关于 x 的不等式 的解集.	$ax^2 + bx + c > 0$ 的解集是 {	$\{x \alpha < x < \beta\}$,其中 $0 < \alpha < \beta$	$(\beta, / \!\!\!\!/ x cx^2 + bx + a < 0)$			
34.	(005140) 解不等式 $(x+1)^2(x$	$-1)(x-4)^3 > 0.$					
35.	$_{(005141)}$ 解不等式 $\frac{3x^2 - 14x}{x^2 - 6x}$	$\frac{+14}{+8} \ge 1.$					
36.	(005142) 解不等式 $\sqrt{x^2 - 3x}$ -	$\overline{-2} > x - 3.$					
37.	(005143) 解不等式 $\sqrt{2x-1}$ <	x-2.					
38.	(005144) 解不等式 $ x^2 - 4 \le 1$	x+2.					
39.	(005145) 解不等式 $ x^2 - \frac{1}{2} >$	2x.					
40.	40. (005146) 解关于 x 的不等式 $ \log_a x < \log_a (ax^2) - 2(0 < a < 1)$.						
41. $_{(005147)}$ 若关于 x 的不等式 $2x-1>a(x-2)$ 的解集是 ${\bf R},$ 则实数 a 的取值范围是 $($).							
	A. $a > 2$	B. $a = 2$	C. $a < 2$	D. a 不存在			
42.	(005148) 若关于 x 的不等式 a	$x^2 + bx - 2 > 0$ 的解集是 (-	$-\infty, -\frac{1}{2}) \cup (\frac{1}{3}, +\infty)$,则 $ab $ 等	等于 ().			
	A24	B. 24	C. 14	D14			
43.	(005149) 若关于 x 的不等式 (0	$(a-2)x^2 + 2(a-2)x - 4 < 0 \ $	十一切实数 x 恒成立, 则实数	a 的取值范围是 ().			
	A. $(-\infty, 2]$	B. $(-\infty, -2)$	C. $(-2,2]$	D. $(-2,2)$			

44. (005151) 若关于 x 的不等式 (a+b)x+2a-3b<0 的解集是 $\{x|x<-\frac{1}{3}\}$, 则 (a-3b)x+b-2a>0 的解集

45. (005152) 若不等式 $\frac{2x^2+2kx+k}{4x^2+6x+3} < 1$ 对一切 $x \in \mathbb{R}$ 恒成立, 则实数 k 的取值范围是______.

46. (005153) 若关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集是 $\{x|3 < x < 5\}$, 则不等式 $cx^2 + bx + a < 0$ 的解集

47. (005154) 若关于 x 的不等式 $\frac{x-a}{x^2-3x+2} \ge 0$ 的解集是 $\{x|1 < x \le ax > 2\}$, 则实数 a 的取值范围是______

48. (005155) 不等式 $(x+2)(x+1)^2(x-1)^3(x-3) > 0$ 的解集为:______.

49. (005156) 不等式 $\frac{(x-1)^2(x+2)}{(x-3)(x-4)} \le 0$ 的解集为:_____.

50. (005157) 不等式 $x+1 \leq \frac{4}{x+1}$ 的解集为:______.

51. (005158) 若不等式 $f(x) \geq 0$ 的解集为 [1,2], 不等式 $g(x) \geq 0$ 的解集为 \varnothing , 则不等式 $\frac{f(x)}{g(x)}$ 的解集是 (

 $A. \varnothing$

B. $(-\infty, 1) \cup (2, +\infty)$ C. [1, 2)

D. R

- 52. (005159) 若关于 x 的不等式 $ax^2-bx+c<0$ 的解集为 $(-\infty,\alpha)\cup(\beta,+\infty)$,其中 $\alpha<\beta<0$,则不等式 $cx^2 + bx + a > 0$ 的解集为 (
 - A. $(\frac{1}{\beta}, \frac{1}{\alpha})$
- B. $(\frac{1}{2}, \frac{1}{8})$
- C. $(-\frac{1}{\beta}, -\frac{1}{\alpha})$ D. $(-\frac{1}{\alpha}, -\frac{1}{\beta})$
- 53. (005160) 解关于 x 的不等式: $m^2x 1 < x + m$.
- 54. (005161) 解关于 x 的不等式: $x^2 ax 2a^2 < 0$.
- 55. (005162) 已知关于 x 的不等式 $\sqrt{x} > ax + \frac{3}{2}$ 的解集是 $\{x | 4 < x < b\}$, 求 a, b 的值.
- 56. (005163) 已知 x = 3 是不等式 ax > b 解集中的元素, 求实数 a, b 应满足的条件.
- 57. (005164) 已知集合 $\{x|x<-2$ 或 $x>3\}$ 是集合 $\{x|2ax^2+(2-ab)x-b>0\}$ 的子集, 求实数 a,b 的取值范围.
- 58. (005165) 已知集合 $A = \{x | \frac{2x-1}{x^2+3x+2} > 0\}, B = \{x | x^2+ax+b \le 0\},$ 且 $A \cap B = \{x | \frac{1}{2} < x \le 3\},$ 求实数 a,b的取值范围.
- 59. (005166) 已知集合 $A=\{x|(x+2)(x+1)(2x-1)>0\},\ B=\{x|x^2+ax+b\leq 0\},\$ 且 $A\cup B=\{x|x+2>0\},$ $A \cap B = \{x | \frac{1}{2} < x \le 3\}$, 求实数 a, b 的值.
- 60. (005167) 已知关于 x 的不等式 $x^2 ax 6a \le 0$ 有解, 且解 x_1, x_2 满足 $|x_1 x_2| \le 5$, 求实数 a 的取值范围.
- 61. (005168) 已知关于 x 的方程 $3x^2 + x \log_{\frac{1}{2}}^2 a + 2 \log_{\frac{1}{2}} a = 0$ 的两根 x_1, x_2 满足条件 $-1 < x_1 < 0 < x_2 < 1$, 求实 数 a 的取值范围.
- 62. (005169) 已知关于 x 的方程 $x^2 + (m^2 1)x + m 2 = 0$ 的一个根比 -1 小, 另一个根比 1 大, 求参数 m 的取 值范围.
- 63. (005170) 已知集合 $A = \{x | x a > 0\}, B = \{x | x^2 2ax 3a^2 < 0\}, 求 A \cap B 与 A \cup B$.
- 64. (005171) 不等式 $\sqrt{x+3} > -1$ 的解集是 (
 - A. $\{x|x > -2\}$
- B. $\{x|x > -3\}$
- C. Ø

D. R

- 65. (005172) 不等式 $(x-1)\sqrt{x+2} \ge 0$ 的解集是 (
 - A. $\{x | x > 1\}$
- B. $\{x | x > 1\}$
- C. $\{x|x \ge 1$ **o** $\mathbf{x} = -2\}$ D. $\{x|x > 1$ **o** $\mathbf{x} = -2\}$
- 66. (005173) 与不等式 $\sqrt{(x-4)(x+3)} \le 1$ 的解完全相同的不等式是 (

- A. $|(x-4)(x+3)| \le 1$ B. $|(x-4)(x+3)| \le 1$ C. $|\lg[(x-4)(x+3)]| \le 0$ D. $0 \le (x-4)(x+3) \le 1$
- 67. (005174) 解不等式: $\sqrt{x-5} + 4x 3 > 3x + 1 + \sqrt{x-5}$.
- 68. (005175) 解不等式: $\sqrt{x^2+1} > \sqrt{x^2-x+3}$.
- 69. (005176) 解不等式: $(x-4)\sqrt{x^2-3x-4} \ge 0$.
- 70. (005177) 解不等式: $\frac{x+1}{x+4}\sqrt{\frac{x+3}{1-x}} < 0$.

- 71. (005178) 解不等式: $\sqrt{x+2} + \sqrt{x-5} \ge \sqrt{5-x}$.
- 72. (005179) 解不等式: $\sqrt{x-6} + \sqrt{x-3} \ge \sqrt{3-x}$.
- 73. (005180) 解不等式: $\sqrt{2-x} < x$.
- 74. (005181) 解不等式: $\sqrt{4-x^2} < x+1$.
- 75. (005182) 解不等式: $\sqrt{3-2x} > x$.
- 76. (005183) 解不等式: $\sqrt{(x-1)(2-x)} > 4-3x$.
- 77. (005184) 不等式 $\sqrt{4-x^2} + \frac{|x|}{x} \ge 0$ 的解集是 (
 - A. [-2, 2]

- B. $[-\sqrt{3}, 0) \cup (0, 2]$ C. $[-2, 0] \cup (0, 2]$ D. $[-\sqrt{3}, 0) \cup (0, \sqrt{3}]$
- 78. (005185) 已知关于 x 的不等式 $\sqrt{2x-x^2} > kx$ 的解集是 $\{x|0 < x \le 2\}$, 则实数 k 的取值范围是 (
 - A. k < 0
- B. $k \ge 0$
- C. 0 < k < 2
- D. $-\frac{1}{2} < k < 0$

- 79. (005186) 解不等式: $\sqrt{2x-4} \sqrt{x+5} < 1$.
- 80. (005187) 解不等式: $\sqrt{x^2 5x 6} < |x 3|$.
- 81. (005188) 解不等式: $|2\sqrt{x+3}-x+1| < 1$.
- 82. (005189) 解关于 x 的不等式: $\sqrt{a(a-x)} > a 2x(a > 0)$.