1. For each of the following, indicate whether or not the inference is allowed. Yes means allowed. a,b are constants, and they do not appear in Γ and Δ .

(a)		
	T.	
	Fa	⊢ <i>Fa</i>
	Fa	$\vdash Gb \lor Fa$
3.	Fa	$\vdash \exists xGx \lor Fa$ 2, \exists I
		Yes/No
(b)		
1.	Γ	$\vdash \exists x (Gx \land Fx)$ premise
2.	$Ga \wedge Fa$	$\vdash \exists xGx$ premise
3.	Γ	$\vdash \exists xGx$ 1,2, $\exists E$
		Yes/No
(c)		
` '	Γ	$\vdash \exists x (Gx \land Fx)$ premise
	_	$\vdash \exists x Gx \land Fa$ premise
	Γ, <i>Ga / (1 a)</i>	$\vdash \exists xGx \land Fa$
5.		Yes/No
(4)		165/NO
(d)	T.	_
	Fa	⊢ <i>Fa</i>
	Fa	$\vdash Gb \lor Fa$
3.	Fa	$\vdash \exists x (Gx \lor Fa) \qquad \dots 2, \exists I$
		Yes/No
(e)		
1.	Fa	⊢ <i>Fa</i> A
2.	Fa	$\vdash Gb \lor Fa$
3.	Fa	$\vdash \exists xGx \lor Fa$
		Yes/No
(f)		
	$\forall x (Fx \supset Ga)$	$\vdash \forall x(Fx \supset Ga)$
	$\forall x (Fx \supset Ga)$	•
	,	$\vdash \forall x (Fx \supset Gx) \qquad \qquad 1, \forall L$
Э.	` ,	,

(g)	
1. Γ	$\vdash \forall x Fx$ premise
2. Δ	$\vdash \forall yGy$ premise
3. Γ,Δ	$\vdash \forall x \forall y (Fx \land Gy) \qquad \dots \dots 1,2,\land I$
	Yes/No
(h)	
1. Γ	$\vdash \forall x Fx \land Ga$ premise
2. Γ	$\vdash \forall x \forall y (Fx \land Gy) \qquad \dots \dots 1, \forall I$
	Yes/No
(i)	
1. Γ	$\vdash \forall x (Fx \land Ga)$ premise
2. Γ	$\vdash \forall y \forall x (Fx \land Gy) \qquad \dots $
	Yes/No
(j)	
1. $\Gamma, \exists x \neg Fx$	$\vdash \exists x M x$ premise
2. Δ , $\exists x \neg Fx$	$\vdash \neg \exists x M x$ premise
3. Γ, Δ	$\vdash \forall xFx$ 1,2,¬I
	Yes/No

2. Let's prove the theorems known as Quantifier Exchange. Here are the first four.

For these four, do not appeal to Quantifier Exchange anywhere. Notice we stop one step short of the actual theorem. The theorems in questions are conditionals of the form $s_1 \supset s_2$. Instead of proving that, we stop at $s_1 \vdash s_2$ because the we can get to the conditional trivially by \supset I. But the actual theorem is still the conditional!

(a) $\exists x Fx \vdash \neg \forall x \neg Fx$. The proof of this is in the readings. See if you can

()	1	e ,
reproduce it.		
` '	xFx . Add the missing annothe one in an earlier exercise	•
1. $\neg \forall x \neg Fx$	$\vdash \neg \forall x \neg Fx \qquad \dots$	A
2. $\neg \exists x F x$	$\vdash \neg \exists x Fx \qquad \dots$	A
3. <i>Fa</i>	$\vdash Fa$	
4	⊢ <u> </u>	·····
5.	$\vdash Fa \supset \exists xFx \qquad \dots$	4,⊃I
6.	⊢ <u> </u>	
7.	⊢	5,6,⊃E
8. $\neg \exists x F x$	$\vdash \neg Fa$	2,7,⊃E
9. $\neg \exists x F x$	$\vdash \forall x \neg Fx \qquad \dots$	
10	⊢	1
11	⊢	$\dots \dots 9,10,\neg I$
12. $\neg \forall x \neg Fx$	$\vdash \exists x F x \dots \dots$	

4)	$\neg \exists x \neg Fx \vdash \forall x Fx$ Prove this sequent. This was in an earlier
(d)	$\neg \exists x \neg Fx \vdash \forall x Fx \text{ . Prove this sequent. This was in an earlier cise. See if you can reproduce it.}$
d)	$\neg \exists x \neg Fx \vdash \forall x Fx \text{ . Prove this sequent. This was in an earlier of the sequent.}$
d)	$\neg\exists x\neg Fx \vdash \forall xFx \text{ . Prove this sequent. This was in an earlier cise. See if you can reproduce it.}$
d)	$\neg\exists x\neg Fx \vdash \forall xFx$. Prove this sequent. This was in an earlicise. See if you can reproduce it.
d)	$\neg\exists x\neg Fx \vdash \forall xFx$. Prove this sequent. This was in an earlicise. See if you can reproduce it.
d)	$\neg \exists x \neg Fx \vdash \forall x Fx$. Prove this sequent. This was in an earlicise. See if you can reproduce it.
d)	$\neg\exists x\neg Fx \vdash \forall xFx$. Prove this sequent. This was in an earlicise. See if you can reproduce it.
d)	$\neg\exists x \neg Fx \vdash \forall xFx$. Prove this sequent. This was in an earlicise. See if you can reproduce it.
d)	$\neg\exists x \neg Fx \vdash \forall xFx$. Prove this sequent. This was in an earlicise. See if you can reproduce it.
d)	$\neg\exists x \neg Fx \vdash \forall x Fx$. Prove this sequent. This was in an earlicise. See if you can reproduce it.
d)	$\neg\exists x \neg Fx \vdash \forall xFx$. Prove this sequent. This was in an earlicise. See if you can reproduce it.

		en in the previous question. Hint: for gives you something like a template.
(a) $\exists x \neg Fx \vdash \neg \forall xF$	$\mathcal{L}x$. Fill in the m	issing items.
1. $\exists x \neg Fx$	$\vdash \exists x \neg Fx$	
2. $\forall x F x$	$\vdash \ \forall xFx$	
3.	$\vdash \forall x F x \supset \neg \exists$	$x \neg Fx$
4. $\forall x F x$	$\vdash \neg \exists x \neg Fx$	
5. $\exists x \neg Fx, \forall x Fx$	$\vdash \exists x \neg Fx$	
6. $\exists x \neg Fx$	$\vdash \neg \forall x F x$	<u> </u>
(b) $\neg \forall x F x \vdash \exists x \neg F$	\dot{x} . Prove this so	equent.
(c) $\forall x \neg Fx \vdash \neg \exists x F$	$\mathcal{L}x$. Prove this.	

3. Let's prove the remaining theorems known as Quantifier Exchange. You

(d)	$\neg \exists x F x$	$\vdash \forall x \neg I$	Fx . Prove	this.	

tifiers. (Hint for co lot in common).	instructing proofs in this section: The proofs have a
(a) $\forall x F x \supset \forall x G x +$	– $\exists x \neg Fx \lor \forall xGx$. Add the missing annotations:
1. $\forall x Fx \supset \forall x Gx$	$x \vdash \forall x F x \supset \forall x G x \qquad \dots \dots$
2.	$\vdash (\forall x Fx \supset \forall x Gx) \supset (\neg \forall x Fx \lor \forall x Gx) \qquad . _$
3. $\forall x Fx \supset \forall x Gx$	$x \vdash \neg \forall x Fx \lor \forall x Gx$
4. $\neg \forall x F x$	$\vdash \neg \forall x F x$
5.	$\vdash \neg \forall x F x \supset \exists x \neg F x$
6. $\neg \forall x F x$	⊢ ∃ <i>x</i> ¬ <i>Fx</i>
7. $\neg \forall x F x$	$\vdash \exists x \neg Fx \lor \forall xGx$
8. $\forall xGx$	$\vdash \forall xGx$
9. $\forall xGx$	$\vdash \exists x \neg Fx \lor \forall xGx$
10 VmEm = VmCm	7 P V C
10. $\forall x F x \supset \forall x G x$	$x \vdash \exists x \neg Fx \lor \forall xGx \qquad \dots $
(b) $\forall x F x \supset \exists x G x \vdash$	$\exists x \neg Fx \lor \exists x Gx$. Prove this.
(b) $\forall x F x \supset \exists x G x \vdash$	$\exists x \neg Fx \lor \exists xGx$. Prove this.
(b) $\forall x Fx \supset \exists x Gx \vdash$	$\exists x \neg Fx \lor \exists x Gx$. Prove this.
(b) $\forall x Fx \supset \exists x Gx \vdash$	$\exists x \neg Fx \lor \exists x Gx$. Prove this.
(b) $\forall x Fx \supset \exists x Gx \vdash$	$\exists x \neg Fx \lor \exists x Gx$. Prove this.
(b) $\forall x Fx \supset \exists x Gx \vdash$	$\exists x \neg Fx \lor \exists x Gx$. Prove this.
(b) $\forall x Fx \supset \exists x Gx \vdash$	$\exists x \neg Fx \lor \exists x Gx$. Prove this.
(b) $\forall x Fx \supset \exists x Gx \vdash$	$\exists x \neg Fx \lor \exists x Gx$. Prove this.
(b) $\forall x Fx \supset \exists x Gx \vdash$	$\exists x \neg Fx \lor \exists x Gx$. Prove this.
(b) $\forall x Fx \supset \exists x Gx \vdash$	$\exists x \neg Fx \lor \exists xGx$. Prove this.
(b) $\forall x Fx \supset \exists x Gx \vdash$	$\exists x \neg Fx \lor \exists x Gx$. Prove this.
(b) $\forall x Fx \supset \exists x Gx \vdash$	$\exists x \neg Fx \lor \exists xGx$. Prove this.

4. Let's see some cases of interactions between the conditional and quan-

(c)	$\exists x Fx \supset \forall x Gx \vdash \forall x \neg Fx \lor \forall x Gx$. Prove this.
(A)	$\exists x Fx \supset \exists x Gx \vdash \forall x \neg Fx \lor \exists x Gx$. Prove this.
(u)	

_	_	4 .	
5	Bra	ckets	matter

 	 	 ٠.	 	 	 	 	 ٠.	 	 ٠.						
 	 	 ٠.	 	 	 	 	 	 	 	 	 	 	 	 	

(a)	$\exists xFx \text{ true, } \forall xGx \text{ true.}$
(b)	$\exists xFx \text{ true, } \forall xGx \text{ false.}$
(c)	$\exists xFx \text{ false, } \forall xGx \text{ true.}$
(d)	$\exists x Fx \supset \forall x Gx$ false.

	xplain why it is not possible to construct a model that fits the given secifications?
(a)	$\forall x(Fx \supset Gx)$ true, $\forall x(\neg Fx \lor Gx)$ false.
(b)	$\forall x(Fx \supset Gx)$ true, $\exists xFx$ true, $\exists xGx$ false.
(c)	$\exists xFx \text{ false, } \exists xGx \text{ false, } \exists x(Fx \vee Gx) \text{ true.}$