Carlingford High School **2015**

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Name:					
Teacher (circle):	Cheng,	Gong,	White,	Lobejko,	Wilson

Mathematics

- General Instructions
- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total Marks - 100

Section I Pages 2-4

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II Pages 5 – 14

90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section

	Q1-10	Q11	Q12	Q13	Q14	Q15	Q16	Total
Multiple								
Choice	/10							/10
Arithmetic &								
Algebra		/4				/3		/7
Functions		/2	/2	/6				/10
Series		/2		/3			/7	/12
Logs &								
Exponentials					/10			/10
Trig			/2		/5	/4		/11
Geometry		/2		/4				/6
Calculus		/5	/11	/2		/8	/8	/34
Total	/10	/15	/15	/15	/15	/15	/15	/100

Section I

10 marks

Attempt Questions 1 – 10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

 $1. \qquad \left(\frac{2a}{3b}\right)^{-5} = ?$

- (A) $\frac{2a^5}{3b^5}$
- (B) $\frac{3b^5}{2a^5}$
- (C) $\frac{243b^5}{32a^5}$
- (D) $\frac{1}{243b^5}$

2. Let α and β be the solutions of $2x^2 - 5x - 9 = 0$. Find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$.

- (A) $-\frac{9}{2}$
- (B) $-\frac{9}{5}$
- (C) $-\frac{5}{9}$
- (D) $\frac{5}{2}$

- 3. Find $\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2}$.
 - (A) \sqrt{x}
 - (B) 3
 - (C) $\frac{3}{x}$
 - (D) 0
- 4. The period and amplitude of $y = 3 \cos 2x$ is:
 - (A) Amplitude = 2, Period = $\frac{2\pi}{3}$
 - (B) Amplitude = 3, Period = π
 - (C) Amplitude = π , Period = 3
 - (D) Amplitude = $\frac{2\pi}{3}$, Period = 2
- 5. The centre and radius given by the circle $x^2 + 2x + y^2 + 4y 5 = 0$ is
 - (A) centre = (-1,-2) and radius = 10
 - (B) centre = (1,2) and radius = 10
 - (C) centre = (-1,-2) and radius = $\sqrt{10}$
 - (D) centre = (1,2) and radius = $\sqrt{10}$
- 6. When simplified fully $\cos^2\left(\frac{\pi}{2} \theta\right) \cot\theta$ is:
 - (A) $\cos^2 \theta \cot \theta$
 - (B) $\sin \theta \cos \theta$
 - (C) $\frac{\sin^3 \theta}{\cos \theta}$
 - (D) $\sin^2 \theta \cot \theta$

- 7. Find the $\int_{2}^{7} \frac{5}{x} dx$.
 - (A) $5(\ln 7 \ln 2)$
 - (B) $\frac{1}{5}(\ln 7 \ln 2)$
 - (C) $\frac{5}{49} \frac{5}{4}$
 - (D) 0
- 8. The equation of the normal to the curve $x^2 = 4y$ at the point where x = 2 is:
 - (A) y = 1
 - (B) x y 1 = 0
 - (C) y = -1
 - (D) y + x 3 = 0
- 9. Find the value of $\log_5 200 3 \log_5 2$.
 - (A) 1.4
 - (B) 2.0
 - (C) 3.2
 - (D) 2.5
- 10. Solve $|5x+4| \le 6$
 - $(A) \qquad \frac{-2}{5} \le x \le 2$
 - (B) $x \ge \frac{2}{5} \text{ or } x \le -2$
 - $(C) \qquad -2 \le x \le \frac{2}{5}$
 - (D) $x \ge 2 \text{ or } x \le \frac{-2}{5}$

End of Section I

Section II

90 marks

Attempt Questions 11 – 16.

Allow about 2 hours and 45 minutes for this section.

Answer each question in a *separate* writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a new writing booklet.

(a) Solve
$$x^2 - 2x - 7 = 0$$
, expressing your answer in simplest surd form.

(b) Find
$$\int \frac{3x}{x^2 + 1} dx$$
.

$$\frac{2}{\sqrt{7}+3} - \frac{3\sqrt{7}}{\sqrt{7}-3}$$

(d) Find the value of x (correct to the nearest mm), given \triangle ABC is similar to \triangle ADE.

(e) Find the coordinates of the vertex and focus of the parabola $x^2 - 5y + 5 = 0$.

Question 11 continues on page 6

Question 11 (continued)

- (f) Find the sum of the 10^{th} to the 30^{th} terms of the arithmetic series 5 + 9 + 13 + ...
- (g) Evaluate $\int_0^{\ln 6} e^x dx$.
- (h) Shade the following regions bounded by the curves $y < \sqrt{4 (x 2)^2}$ and $y > \frac{x^2}{2}$.

Question 12 (15 marks) Use a new writing booklet.

(a) Differentiate:

(i)
$$y = \sin^2(4x)$$
.

(ii)
$$y = x^3 e^{3x}$$
.

(iii)
$$y = \frac{e^x}{(x+3)^2}$$
. (Full simplification of your answer is not required.)

(b) Solve
$$\sqrt{3} \cos x = \sin x$$
 for $0 \le \theta \le 2\pi$.

(c) Use Simpson's Rule with four equal subintervals to find an approximation for
$$\int_0^1 \tan x \, dx.$$

(d) Find a primitive of
$$3 + \frac{1}{x}$$
.

(e) Find the values of A, B and C if
$$3x^2 + x + 1 \equiv A(x-1)(x+2) + B(x+1) + C$$
.

- (f) A curve has the equation $y = x \cos x$.
 - (i) Show that $P\left(\frac{\pi}{2}, 0\right)$ is the first point to the right of the origin where the curve crosses the *x* axis.

1

(ii) Find the equation of the tangent at point *P*.

Question 13 (15 marks) Use a new writing booklet.

(a) In the figure below, $EF \parallel BC$ and $CD \parallel FG$.

Prove that $\frac{AE}{AB} = \frac{AG}{AD}$

2

(b) In the diagram below AF is a straight line, $\angle B = 74^{\circ}$, $\angle E = 59^{\circ}$, $\angle BCF = 137^{\circ}$ and $\angle BCE = 15^{\circ}$.

Prove that AB||DE

2

Question 13 continues on page 9

Question 13 (continued)

- (c) Jack drops a super bouncy ball from the top of a 56 m building on to a concrete surface below. Its first rebound is 42 m, and each subsequent rebound is three quarters the height of the previous one.
 - (i) How high will it rise on the fifth rebound?
 - (ii) How far will it travel in total?
- (d) For the domain $0 \le x \le 6$, a function y = f(x) satisfies f'(x) < 0 and f''(x) < 0. Sketch a possible graph of y = f(x) in this domain.
- (e) The points $A(\pi, 1)$, $B(5\pi, 3)$ and $C(\pi, 5)$ form an isosceles triangle, with AB = BC.

- (i) Find the midpoint of AB.
- (ii) Show that the equation of the line which is perpendicular to *AB* and which passes through point *C* is: $y + 2\pi x 5 2\pi^2 = 0$

1

- (iii) Calculate the distance AB.
- (iv) Using the distances AB, BC and AC, or otherwise, find $\angle CAB$ to the nearest degree.

Question 14 (15 marks)	Use a new	writing	booklet.
------------------------	-----------	---------	----------

(a)	Connor buys a new car, which begins to depreciate immediately. The value (\$V) of the car after t years is given by $V = A e^{-kt}$							
	Where	A - is the initial value						
		k – constant of depreciation						
		t - time in years						
	If the ca	ar is worth \$30 000 after 5 years and \$18 000 after 10 years, find the following:						
	(i)	The depreciation constant k	2					
	(ii)	The initial value of the car	1					
	(iii)	How many whole years will it take before the car's value falls below \$1 000?	2					
(b)	turns du 380 kilo	A plane leaves an airport (A) and travels due north $\sqrt{3} x$ kilometres to a point K and then turns due west and travels a further x kilometres until it reaches a point P which is 380 kilometres from A. Due to storms the plane is then diverted to a new airport (B) which is 200 kilometres on a bearing of 280° from A.						
	(i)	Draw a diagram and label it to show the above information.	1					
	(ii)	Find the exact distance AK .	1					
	(iii)	Show that the plane needs to travel 294 kilometres from P to the new airport (B) .	2					
	(iv)	Hence or otherwise find the bearing (to the nearest degree) on which the plane flies from P to B .	1					

Question 14 continues on page 11

Question 14 (continued)

(c) The diagram shows a shaded region which is bounded by the curve $y = \ln(2x - 5)$, the x axis and the line x = 6.

The curve $y = \ln(2x - 5)$ intersect the x axis at A and the line x = 6 at B.

- (i) Show that the coordinates of points A and B are (3, 0) and $(6, \ln 7)$ respectively.
- (ii) Show that if $y = \ln(2x 5)$, then $x = \frac{e^y + 5}{2}$.

1

3

(iii) Hence find the exact area of the shaded region.

Question 15 (15 marks) Use a new writing booklet.

(a) Greg has a one hectare (Ha) block of land. He is going to fence off three identical rectangular plots within his block for his three children. Each plot will measure *x* m by *y* m as shown in the diagram below. He will retain the remainder of the block for himself and his wife. Greg can only afford 300 m of fencing to go around the children's plots.

(i) Show $y = 75 - \frac{3x}{2}$.

(ii)

3

(iii) Find the maximum area of one of the children's blocks.

1

1

(iv) How much of Greg's 1 Ha block is left for him and his wife?

Find the value of x for which the area will be a maximum.

1

Question 15 continues on page 13

Question 15 (continued)

(b)

In the diagram, *ABCD* represents a garden. The sector *BCD* has centre *B* and $\angle DBC = \frac{5\pi}{6}$.

The points A, B and C lie on a straight line and AB=AD=3 metres

- (i) Show that $\angle DAB = \frac{2\pi}{3}$.
- (ii) Find the length of *BD*.

2

3

(c) A pond has 50 litres of water. Water is taken out of the pond in the rate $\frac{dv}{dt} = 5 + 2t \quad L/min$

Find a formula to give the volume of the water in the pond after t minutes.

(d) Find the value of n such that:

 $\frac{10^{3n} \times 25^{n+2}}{8^n} = 1$

Question 16 (15 marks) Use the Question 14 writing booklet.

- (a) The relation $x^2 4x + y^2 = 5$ is rotated about the x-axis to form a solid. Find the exact volume of this solid of revolution.
 - 2

- (b) For the curve $y = x^3(3-x)$
 - (i) Find any stationary points and determine their nature.

- 3
- (ii) Draw a sketch of the curve showing the stationary points, inflexion points and intercepts on the axes.
- 3
- (c) Georgina borrows \$650 000 to purchase her first home. She takes out a loan over 30 years, to be repaid in equal monthly instalments. The interest rate is 5.4% per annum reducible, calculated monthly.
 - (i) Show that the amount, $\$A_n$, owing after the *n*th repayment is given by the formula:

$$A_n = 650\ 000(1.0045)^n - M\left(1 + 1.0045 + 1.0045^2 + \dots + 1.0045^{n-1}\right)$$

(ii) Find the monthly repayment required to repay the loan in 30 years.

- 2
- (iii) Georgina wants pay the loan off in less than 30 years. If she can afford to pay \$5 000 per month, how many months will it take her to pay off the home loan?
- 2

1

(iv) How much will Georgina save in interest if she pays \$5 000 per month?

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Trial HSC Examination 2015

Mathematics Course

Teacher _____

c O

D O

	Se	ction I – Mult	iple Choice Aı	nswer Sheet		
	t 15 minutes for ternative A, B, C o		swers the questic	on. Fill in the res	ponse oval comp	letely.
Sample:	2 + 4 =	(A) 2 A O	(B) 6 B ●	(C) 8	(D) 9 D O	
If you think y	ou have made a	mistake, put a c	ross through the	incorrect answer	and fill in the ne	ew.

В

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

			A 👅		B Correct	c O	D O
1.	A 🔘	$B \bigcirc$	c \bigcirc	$D \bigcirc$			
2.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$			
3.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$			
4.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$			
5.	$A \bigcirc$	$B \bigcirc$	C \bigcirc	$D \bigcirc$			
6.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$			
7.	$A \bigcirc$	$B \bigcirc$	C \bigcirc	$D \bigcirc$			
8.	$A \bigcirc$	$B \bigcirc$	C \bigcirc	$D \bigcirc$			
9.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$			
10.	$A \bigcirc$	$B \bigcirc$	c \bigcirc	$D \bigcirc$			