

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Química Nivel Medio Prueba 2

Miércoles 10 de noviembre de 2021 (tarde)

Nún	nero	de c	onvo	cator	ia de	l alur	nno	

1 hora 15 minutos

Instrucciones para los alumnos

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Escriba sus respuestas en las casillas provistas a tal efecto.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del cuadernillo de datos de Química para esta prueba.
- La puntuación máxima para esta prueba de examen es [50 puntos].

465504

-2- 8821-6129

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

16FP02

[3]

Conteste todas las preguntas. Escriba sus respuestas en las casillas provistas a tal efecto.

Una muestra de 4,406 g de un compuesto que contiene solo C, H y O se hizo arder con exceso de oxígeno. Se produjeron 8,802 g de CO₂ y 3,604 g de H₂O.
 (a) Determine la fórmula empírica del compuesto usando la sección 6 del cuadernillo de datos.

(b) Determine la fórmula molecular de este compuesto si su masa molar es 88,12g mol⁻¹. Si no obtuvo respuesta en (a), use CS pero esta no es la respuesta correcta. [1]

-4- 8821-6129

(Pregunta 1: continuación)

Los siguientes espectros muestran los espectros infrarrojos del 1-propanol, el propanal y el ácido propanoico.

(Pregunta 1: continuación)

(c) Identifique cada compuesto a partir de los espectros dados, use absorciones comprendidas de rango de 1700 cm⁻¹ a 3500 cm⁻¹. Explique la razón de su elección, haciendo referencia a la sección 26 del cuadernillo de datos.

[3]

Espectro	Identidad	Razón
Α		
В		
С		

2.	Explique el aumento general de la tendencia de las energías de primera ionización de los elementos del periodo 3, del Na al Ar.	[2]

LITE	31010	blanco es un alótropo de fósforo y existe como P ₄ .	
(a)	(i)	Dibuje aproximadamente la estructura de Lewis (representación de electrones mediante puntos) de la molécula de P ₄ , solo con enlaces simples.	[1]
	(ii)	Escriba una ecuación para la reacción del fósforo blanco, (P_4) , con cloro gaseoso para formar tricloruro de fósforo (PCl_3) .	[1]
(b)	(i)	Deduzca la geometría molecular y del dominio electrónico usando la TRPEV, y estime el ángulo del enlace Cl-P-Cl en el PCl ₃ .	[3]
Geo	metría	a del dominio electrónico:	
Geo	metría	a molecular:	
Áng	ulo de	enlace:	
	(ii)	Explique la polaridad del PCl ₃ .	[1]
	(a) (b) Geo	(a) (i) (ii) (b) (i) Geometría Ángulo de	(a) (i) Dibuje aproximadamente la estructura de Lewis (representación de electrones mediante puntos) de la molécula de P ₄ , solo con enlaces simples. (ii) Escriba una ecuación para la reacción del fósforo blanco, (P ₄), con cloro gaseoso para formar tricloruro de fósforo (PCl ₃). (b) (i) Deduzca la geometría molecular y del dominio electrónico usando la TRPEV, y estime el ángulo del enlace CL–P–Cl en el PCl ₃ . Geometría del dominio electrónico: Geometría molecular:

(Pregunta 3: continuación)

(c) Existe un equilibrio entre el PCl₃ y el PCl₅.

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$

(i) Calcule la variación de entalpía estándar (ΔH^{\ominus}) para la reacción directa en kJ mol⁻¹.

$$\Delta H_{f}^{\ominus} PCl_{3}(g) = -306.4 \text{ kJ mol}^{-1}$$

$$\Delta H_{f}^{\ominus} PCl_{5}(g) = -398.9 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$
 [1]

.....

- (ii) Indique la expresión de la constante de equilibrio, $K_{\rm c}$, para esta reacción. [1]
 - (iii) Indique, dando una razón, el efecto de un aumento de temperatura sobre la posición de este equilibrio. [1]

4.	El 1-cloro	pentano reacciona con hidróxido de sodio acuoso.	
	(a) (i)	Identifique el tipo de reacción.	[1]
	(ii)	Resuma el rol del ion hidróxido en esta reacción.	[1]
	(iii)	Sugiera, dando una razón, por qué el 1-yodopentano reacciona más rápido que el 1-cloropentano en las mismas condiciones. Use la sección 11 del cuadernillo de datos para coherencia.	[2]

(Pregunta 4: continuación)

- (b) La reacción se repitió a menor temperatura.
 - (i) Dibuje aproximadamente curvas de distribución de energía rotuladas de Maxwell–Boltzmann a la temperatura original (T₁) y la nueva temperatura menor (T₂).

[2]

/:::	:\	and the first terminal and the contract of	and the second of the second o	I : : :
(11	I) — Explique el efecto de dismin	illir ia temperatilira s	sonre la velocidad de	ia reacción 12
("	 Explique el efecto de dismin 	ian la terriperatara e	Jobi e la velocidad de	la reacción. [2]

– 10 **–** 8821-6129

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

5.	El á	cido fosfórico, H ₃ PO ₄ , puede sufrir neutralización en etapas, formando especies anfiprótica:	S.
	(a)	Formule una ecuación para la reacción de un mol de ácido fosfórico con un mol de hidróxido de sodio.	[1]
	(b)	Formule dos ecuaciones para mostrar la naturaleza anfiprótica del H ₂ PO ₄ ⁻ .	[2]
	(c)	Calcule la concentración de $\rm H_3PO_4$ si $25,00\rm cm^3$ son neutralizados completamente por la adición de $28,40\rm cm^3$ de NaOH $0,5000\rm moldm^{-3}$.	[2]
	(d)	Resuma la razón por la cual se considera que el hidróxido de sodio es una base de Brønsted–Lowry.	[1]

(a)	Resuma qué mide la DBO.	[1]
(b)	Un alumno disolvió $0,1240\pm0,0001$ g de ${\rm Na_2S_2O_3}$ para preparar $1000,0\pm0,4{\rm cm^3}$ de solución para usar en el método Winkler.	
	Determine la incertidumbre porcentual en la concentración molar.	[2]
(c)	Una muestra de agua de 25,00 cm ³ se trató de acuerdo con el método Winkler.	
	Etapa I: $2Mn^{2+}(aq) + O_2(g) + 4OH^-(aq) \rightarrow 2MnO_2(s) + 2H_2O(l)$	
	Etapa II: $MnO_2(s) + 2I^-(aq) + 4H^+(aq) \rightarrow Mn^{2+}(aq) + I_2(aq) + 2H_2O(l)$	
	Etapa III: $2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow 2I^-(aq) + S_4O_6^{2-}(aq)$	
	El yodo producido se tituló con 37,50 cm 3 de Na $_2$ S $_2$ O $_3$ 5,000 \times 10 $^{-4}$ mol dm $^{-3}$.	
	(i) Calcule la cantidad, en moles de Na ₂ S ₂ O ₃ usada en la titulación.	[1]
	(ii) Deduzca la relación molar del ${\rm O_2}$ consumido en la etapa I con respecto al ${\rm S_2O_3}^{2-}$ usado en la etapa III.	[1]

gunta	6: continuacion)	
	(iii) Calcule la concentración de oxígeno disuelto en la muestra, en mol dm ⁻³ .	[2]
	(iv) Las tres etapas del método Winkler son reacciones rédox.	
	Deduzca la semiecuación de reducción para la etapa II.	[1]
Los a	Determine la entalpía molar de combustión de un alcano si $8,75 \times 10^{-4}$ moles arden,	ro:
	elevando la temperatura de 20,0 g de agua en 57,3 C.	[2]
(b)	Formule ecuaciones para las dos etapas de propagación y una etapa de terminación en la formación de cloroetano a partir de etano.	[3]
	Los :	(iv) Las tres etapas del método Winkler son reacciones rédox. Deduzca la semiecuación de reducción para la etapa II. Los alcanos sufren combustión y sustitución. (a) Determine la entalpía molar de combustión de un alcano si 8,75 × 10 ⁻⁴ moles arden, elevando la temperatura de 20,0 g de agua en 57,3°C.

8. Una delgada lámina de oro fue bombardeada con núcleos de helio (⁴He²⁺) a gran velocidad y la mayoría la atravesó sin desviarse, pero algunos se desviaron ampliamente de su trayectoria. El diagrama ilustra este experimento histórico.

(a) Sugiera qué conclusión sobre el átomo de oro se puede extraer de este experimento. [2]

La may	oría del ⁴	He ²⁺ atra	vesó sin	desviars	e:			
Muy po	cos ⁴ He ²	se des	/iaron an	npliament	te de su tra	ayectoria:		
Muy po	cos ⁴ He ²	* se des	/iaron an	npliament	te de su tra	ayectoria:	 	
Muy po	cos ⁴ He ²	* se des\	viaron an	npliament	te de su tra	ayectoria:	 	

[2]

(Pregunta 8: continuación)

Experimentos posteriores demostraron que los electrones existen en niveles (b) energéticos ocupando varias formas orbitales.

[e 1s, 2s y 2p.	Dibuje diagramas
2p	2s	1s
[ción electrónica del cobre.	(ii) Indique la configui

Fuentes:

1. (c) NIST Mass Spectrometry Data Center Collection © 2021 copyright by the U.S. Secretary of Commerce on behalf of the United States of America [derechos de autor del Secretario de Comercio de los Estados Unidos en nombre de los Estados Unidos de América]. Todos los derechos reservados. https://webbook.nist.gov/cgi/cbook.cgi?ID=C71238&Un its=SI&Type=IRSPEC&Index=3#IR-SPEC consultado el 6 de mayo de 2020]. Fuente adaptada.

NIST Mass Spectrometry Data Center Collection © 2021 copyright by the U.S. Secretary of Commerce on behalf of the United States of America [derechos de autor del Secretario de Comercio de los Estados Unidos en nombre de los Estados Unidos de América]. Todos los derechos reservados. https://webbook.nist.gov/cgi/cbook.cgi?ID=C79094&Un its=SI&Mask=80#IR-Spec [consultado el 6 de mayo de 2020]. Fuente adaptada.

NIST Mass Spectrometry Data Center Collection © 2021 copyright by the U.S. Secretary of Commerce on behalf of the United States of America [derechos de autor del Secretario de Comercio de los Estados Unidos en nombre de los Estados Unidos de América]. Todos los derechos reservados. https://webbook.nist.gov/cgi/cbook.cgi?Name=propanal&Units=SI&cIR=on&cTZ=on#IRSpec [consultado el 6 de mayo de 2020]. Fuente adaptada.

8. Figura de *PPLATO / FLAP (Flexible Learning Approach To Physics)*, *http://www.met.reading.ac.uk/pplato2/h-flap/phys8_1.html#top* 1996 The Open University y The University of Reading.

Los demás textos, gráficos e ilustraciones: © Organización del Bachillerato Internacional, 2021

