第九讲同态基本定理

陈建文

November 5, 2022

定义1. 设 (G_1, \circ) 与 $(G_2, *)$ 为两个群,如果存在一个从 G_1 到 G_2 的映射 ϕ ,使得 $\forall a, b \in G_1$,

$$\phi(a \circ b) = \phi(a) * \phi(b)$$

则称 G_1 与 G_2 同态, ϕ 称为从 G_1 到 G_2 的一个同态(homomorphism)。如果同态 ϕ 是满射,则称 ϕ 为从 G_1 到 G_2 的一个满同态,此时称 G_1 与 G_2 为满同态,并记为 $G_1 \sim G_2$ 。类似的,如果同态 ϕ 为单射,则称 ϕ 为单同态。

定理1. 设(G_1 , \circ)与(G_2 , *)为两个群, e_1 和 e_2 分别为其单位元, ϕ 为从 G_1 到 G_2 的 同态,则

$$\phi(e_1) = e_2$$

 $\forall a \in G_1 \phi(a^{-1}) = (\phi(a))^{-1}$

证明. 由 $\phi(e_1) = \phi(e_1 \circ e_1) = \phi(e_1) * \phi(e_1)$ 知 $\phi(e_1) = e_2 \circ \forall a \in G_1, \phi(a^{-1}) * \phi(a) = \phi(a^{-1} \circ a) = \phi(e_1) = e_2, 从而(\phi(a))^{-1} = \phi(a^{-1}) \circ$

定理2. 设 (G_1, \circ) 为一个群, $(G_2, *)$ 为一个代数系。如果存在一个满射 $\phi: G_1 \to G_2$ 使得 $\forall a, b \in G_1$

$$\phi(a \circ b) = \phi(a) * \phi(b)$$

则 $(G_2,*)$ 为一个群。

证明. 验证 $\forall x, y, z \in G_2, (x*y)*z = x*(y*z)$: 由 ϕ 为满射知 $\exists a, b, c \in G_1$ 使得 $\phi(a) = x, \phi(b) = y, \phi(c) = z$, 从而 $(x*y)*z = (\phi(a)*\phi(b))*\phi(c) = \phi(a \circ b)*\phi(c) = \phi((a \circ b) \circ c)$, $x*(y*z) = \phi(a)*(\phi(b)*\phi(c)) = \phi(a)*\phi(b \circ c) = \phi(a \circ (b \circ c))$, (x*y)*z = x*(y*z), 这验证了在 G_2 中*运算满足结合律。

 $\forall x \in G_2$,由 ϕ 为满射知 $\exists a \in G_1$ 使得 $\phi(a) = x$,于是 $\phi(e) * x = \phi(e) * \phi(a) = \phi(e \circ a) = \phi(a) = x \circ$

 $\forall x \in G_2$,由 ϕ 为满射知 $\exists a \in G_1$ 使得 $\phi(a) = x$,于是 $\phi(a^{-1}) * \phi(a) = \phi(a^{-1} \circ a) = \phi(e_1) \circ$

例. 设 $n \in Z^+$, $Z'_n = \{0,1,\cdots,n-1\}$, 在 Z'_n 上定义运算" \oplus "如下: $i \oplus j = (i+j) \bmod n$, 令 $f: Z \to Z'_n$, $\forall m \in Z, f(m) = m \bmod n$, 则f为从Z到 Z'_n 的满射,并且 $\forall a,b \in Z$, $f(a+b) = f(a) \oplus f(b)$,从而 (Z'_n,\oplus) 为一个群。

证明. f显然为从Z到 Z'_n 的满射。要证 $\forall a,b \in Z$, $f(a+b) = f(a) \oplus f(b)$,就是要证 $(a+b) \bmod n = ((a \bmod n) + (b \bmod n)) \bmod n$,此式显然成立。

定理3. 设 ϕ 为从群(G_1, \circ)到群($G_2, *$)的同态,则

- (1) 如果H为 G_1 的子群,那么 $\phi(H)$ 为 G_2 的子群;
- (2) 如果H为 G_2 的子群,那么 $\phi^{-1}(H)$ 为 G_1 的子群;
- (3) 如果N为 G_1 的正规子群,那 $\Delta_{\phi}(N)$ 为 $\phi(G_1)$ 的正规子群;
- (4) 如果N为 $\phi(G_1)$ 的正规子群,那么 $\phi^{-1}(N)$ 为 G_1 的正规子群;

证明. 以下设 G_1 的单位元为 e_1 , G_2 的单位元为 e_2 。

(1) $e_2 = \phi(e_1) \in \phi(H)$, 从而 $\phi(H)$ 非空。

 $\forall x, y \in \phi(H)$, $\exists a, b \in H$ 使得 $x = \phi(a)$, $y = \phi(b)$, 则 $x * y^{-1} = \phi(a) * \phi(b)^{-1} = \phi(a) * \phi(b^{-1}) = \phi(a \circ b^{-1}) \in \phi(H)$ 。

以上验证了 $\phi(H)$ 为 G_2 的子群。

(2) 由 $\phi(e_1) = e_2 \in H$ 知 $e_1 \in \phi^{-1}(H)$,从而 $\phi^{-1}(H)$ 非空。

以下证明 $\forall a, b \in \phi^{-1}(H), \ a \circ b^{-1} \in \phi^{-1}(H), \ \mathbb{P}\phi(a \circ b^{-1}) \in H$ 。

 $\forall a,b \in \phi^{-1}(H), \ \, \mathbb{U}\phi(a) \in H, \ \, \phi(b) \in H, \ \, \mathbb{M} \overline{\mathrm{m}}\phi(a \circ b^{-1}) = \phi(a) * \phi(b^{-1}) = \phi(a) * \phi(b^{-1}) = \phi(a) * \phi(b)^{-1} \in H, \ \, \mathrm{T} 是 a \circ b^{-1} \in \phi^{-1}(H) \circ b^{-1} = \phi(a) * \phi(b)^{-1} \in H, \ \, \mathrm{T} \ge 0$

这验证了 $\phi^{-1}(H)$ 为 G_1 的子群。

(3) $\phi(N)$ 显然为 $\phi(G_1)$ 的子群。

以下证明 $\forall h \in \phi(N), \forall g \in \phi(G_1), g * h * g^{-1} \in \phi(N)$ 。

 $\forall h \in \phi(N)$, $\exists b \in N$ 使得 $h = \phi(b)$, $\forall g \in \phi(G_1)$, $\exists a \in G_1$, 使得 $g = \phi(a)$ 。于是, $g*h*g^{-1} = \phi(a)*\phi(b)*\phi(a)^{-1} = \phi(a\circ b)*\phi(a^{-1}) = \phi(a\circ b\circ a^{-1}) \in \phi(N)$, 因此 $\phi(N)$ 为 G_2 的正规子群。

(4) 由 (2) 知 $\phi^{-1}(N)$ 为 G_1 的子群。

要证 $\phi^{-1}(N)$ 为 G_1 的正规子群,就是要证 $\forall g \in \phi^{-1}(N), \forall a \in G_1, a \circ g \circ a^{-1} \in \phi^{-1}(N), \ \ \overline{m}\phi(a \circ g \circ a^{-1}) = \phi(a) * \phi(g) * \phi(a^{-1}) = \phi(a) * \phi(g) * \phi(a)^{-1} \in N,$ 从 $\overline{m}a \circ g \circ a^{-1} \in \phi^{-1}(N), \$ 结论得证。

定义2. 设 ϕ 为从群 (G_1, \circ) 到群 $(G_2, *)$ 的一个同态, e_2 为 G_2 的单位元,则 G_1 的子群 $\phi^{-1}(e_2)$ 称为同态 ϕ 的核,记为 $Ker\phi \circ \phi(G_1)$ 称为 ϕ 在 G_1 下的同态像。

定**理4.** 设 ϕ 为从群 (G_1, \circ) 到群 $(G_2, *)$ 的一个同态,则 $Ker \phi$ 为群 G_1 的正规子群。

定理5. 设N为G的一个正规子群, ϕ 为从G到G/N的一个映射, $\forall x \in G\phi(x) = xN$,则 ϕ 为从G到G/N的一个满同态, $Ker\phi = N$ 。

证明. $\forall x,y \in G, \phi(xy) = (xy)N = (xN)(yN) = \phi(x)\phi(y)$,这验证了 ϕ 为从G到G/N的一个同态。

 ϕ 显然为从G到G/N的满射,因此 ϕ 为从G到G/N的满同态。

 $\forall g \in G, g \in Ker\phi \Leftrightarrow \phi(g) = N \Leftrightarrow gN = N \Leftrightarrow g \in N \circ \Box$

定理6 (群的同态基本定理). 设 ϕ 为从群 (G_1, \circ) 到群 $(G_2, *)$ 的同态,则 $G_1/KerG_1 \cong \phi(G_1)$ 。

证明. 记 $K = KerG_1 \circ \diamondsuit f : G_1/K \to \phi(G_1), \ \forall gK \in G_1/K, f(gK) = \phi(g) \circ \forall g_1, g_2 \in G_1, \ \text{如果} g_1K = g_2K, \ \text{则} g_1^{-1}g_2 \in K, \ \text{从而} \phi(g_1^{-1} \circ g_2) = e_2, \ \mathbb{P}\phi(g_1)^{-1} * \phi(g_2) = e_2, \ \mathbb{F}\mathcal{E}\phi(g_1) = \phi(g_2), \ \text{所以} f(g_1K) = f(g_2K), \ \text{这验证了} f 为映射。$

f为单射,这是因为 $\forall g_1K, g_2K \in G_1/K$,如果 $f(g_1K) = f(g_2K)$,则 $\phi(g_1) = \phi(g_2)$,从而 $\phi(g_1)^{-1} * \phi(g_2) = e_2$,即 $\phi(g_1^{-1}) * \phi(g_2) = e_2$,因此 $\phi(g_1^{-1} \circ g_2) = e_2$,于是 $g_1^{-1} \circ g_2 \in K$,所以 $g_1K = g_2K \circ$

于是 $g_1^{-1} \circ g_2 \in K$,所以 $g_1K = g_2K \circ f$ 为满射,这是因为 $\forall g_2 \in \phi(G_1)$, $\exists g_1 \in G_1$ 使得 $\phi(g_1) = g_2$,于是 $f(g_1K) = \phi(g_1) = g_2 \circ$

 $\forall g_1K, g_2K \in G_1/K, \ f((g_1K)(g_2K)) = f((g_1 \circ g_2)K) = \phi(g_1 \circ g_2) = \phi(g_1) * \phi(g_2) = f(g_1K) * f(g_2K), \ 因此 f 为从 G_1/K 到 \phi(G_1) 的 同构。$

课后作业题:

练习1. 设G为m阶循环群, \bar{G} 为n阶循环群,试证: $G \sim \bar{G}$ 当且仅当n|m。

练习2. 设G为一个循环群,H为群G的子群,试证: G/H也为循环群。