Университет ИТМО

Лабораторная работа №3 «Симплекс-метод линейного программирования»

Выполнил: Федюкович С. А.

Факультет: МТУ "Академия ЛИМТУ"

Группа: S3100

Проверила: Авксентьева Е. Ю.

Санкт-Петербург

Теоретические основы лабораторной работы

Симплекс-метод является основным в линейном программировании. Решение задачи начинается с рассмотрений одной из вершин многогранника условий (задаваемого системой условий задачи). Если исследуемая вершина не соответствует максимуму (минимуму), то переходят к соседней, увеличивая значение функции цели при решении задачи на максимум и уменьшая при решении задачи на минимум. Таким образом, переход от одной вершины к другой улучшает значение функции цели. Так как число вершин многогранника ограничено, то за конечное число шагов гарантируется нахождение оптимального значения или установление того факта, что задача неразрешима.

Симплекс-метод основан на теореме, которая называется фундаментальной теоремой симплексметода: если среди оптимальных планов задачи линейного программирования в канонической форме есть хотя бы одно решение системы ограничений, то хотя бы одно из них является базисным, а их количество ограничено.

Симплекс-метод вносит определенный порядок как при нахождении базисного решения, так и при переходе к другим базисным решениям. Его идея состоит в следующем: находится любое базисное решение, если оно является допустимым, то оно же проверяется на оптимальности. Если оно не оптимально, то осуществляется переход к другому, обязательно допустимому базисному решению.

Симплекс-метод гарантирует, что при этом новом решении линейная форма, если и не достигнет оптимума, то приблизится к нему. С новым допустимым базисным решением поступают так же, пока не находят решение, которое является оптимальным.

Если первое найденное базисное решение окажется недопустимым, то с помощью симплексметода осуществляется переход к другим базисным решениям, которые приближают нас к области допустимых решений, пока на каком-то шаге решения либо базисное решение окажется допустимым и к нему применяют алгоритм симплекс-метода, либо мы убеждаемся в противоречивости системы ограничений.

Таким образом, применение симплекс-метода распадается на два этапа: нахождение допустимого базисного решения системы ограничений или установление факта ее несовместности и нахождение оптимального решения.

Решение задания

Задача

Для изготовления n видов изделий $U_1, U_2, ..., U_n$ необходимы ресурсы m видов: трудовые, материальные, финансовые и др. Известно необходимое количество отдельного i-ro ресурса для изготовления каждого j-ro изделия. Назовем эту величину нормой расхода. Пусть определено количество каждого вида ресурса, которым предприятие располагает в данный момент. Известна прибыль Π_j , получаемая предприятием от изготовления каждого j-ro изделия. Требуется определить, какие изделия и в каком количестве должно изготавливать предприятие, чтобы обеспечить получение максимальной прибыли. Необходимая исходная информация представлена в таблице:

Используемые	Изготавливаемые изделия				Наличие
ресурсы	И1	И2	Из	И ₄	ресурсов
Трудовые	3	5	2	7	15
Материальные	4	3	3	5	9
Финансовые	5	6	4	8	30
Π рибыль Π_j	40	50	30	20	

Решение

Составим математическую модель задачи: Через x_1, x_2, x_3, x_4 обозначим соответствующее количество изделий U_1, U_2, U_3, U_4 . Тогда задача будет заключаться в поиске максимума функции:

$$F = 40x_1 + 50x_2 + 30x_3 + 20x_4 \to max$$

При выполении следующих ограничений:

$$\begin{cases} 3x_1 + 5x_2 + 2x_3 + 7x_4 \le 15, \\ 4x_1 + 3x_2 + 3x_3 + 5x_4 \le 9, \\ 5x_1 + 6x_2 + 4x_3 + 8x_4 \le 30. \\ x_j \ge 0, j = 1...4 \end{cases}$$

Обратим систему неравенств в систему уравнений, прибавив к каждой левой части неравенств добавочные неотрицательные переменные: x_5, x_6, x_7 . В условиях данной задачи переменные будут содержать остаток сырья каждого вида после выполнения плана:

$$\begin{cases} 3x_1 + 5x_2 + 2x_3 + 7x_4 + x_5 = 15, \\ 4x_1 + 3x_2 + 3x_3 + 5x_4 + x_6 = 9, \\ 5x_1 + 6x_2 + 4x_3 + 8x_4 + x_7 = 30. \\ x_j \ge 0, j = 1...7 \end{cases}$$

Найдём любое базисное решение, приняв основными переменные x_5, x_6, x_7 , и приравняв переменные x_1, x_2, x_3, x_4 к нулю. Тогда получим решение (0; 0; 0; 0; 15; 9; 30), являющееся допустимым. Составим первую симплекс таблицу:

Базисные переменные	Свободные члены	x_5	x_6	x_7	x_1	x_2	x_3	x_4
x_5	15	1	0	0	3	5	2	7
x_6	9	0	1	0	4	3	3	5
x_7	30	0	0	1	5	6	4	8
F	0	0	0	0	-40	-50	-30	-20

$$X_1 = min\left\{\frac{30}{6}; \frac{9}{3}; \frac{15}{3}\right\} = min\left\{5; 3; 5\right\} = 3$$

Базисные переменные	Свободные члены	x_5	x_6	x_7	x_1	x_2	x_3	x_4
x_5	0	1	-5/3	0	-11/3	0	-3	-4/3
x_2	3	0	1/3	0	4/3	1	1	5/3
x_7	12	0	-2	1	-3	0	-2	-2
F	150	0	50/3	0	80/3	0	20	190/3

Последняя строка таблицы не содержит отрицательных элементов, а значит, что мы нашли оптимальное решение (0;3;0;0;0;12).

Ответ: требуется произвести $\rm H_3$ в количестве трёх штук, заработав на продаже которых мы получим 150.