日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年11月28日

出 願 番 号 Application Number:

特願2002-346080

[ST. 10/C]:

[J P 2 0 0 2 - 3 4 6 0 8 0]

出 願 Applicant(s):

人

京セラ株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年 9月19日

【書類名】

特許願

【整理番号】

27937

【あて先】

特許庁長官殿

【国際特許分類】

H05K 3/46

【発明者】

【住所又は居所】

鹿児島県国分市山下町1番4号 京セラ株式会社総合研

究所内

【氏名】

立野 周一

【発明者】

【住所又は居所】

鹿児島県国分市山下町1番4号 京セラ株式会社総合研

究所内

【氏名】

深水 則光

【発明者】

【住所又は居所】

鹿児島県国分市山下町1番4号 京セラ株式会社総合研

究所内

【氏名】

井本 晃

【発明者】

【住所又は居所】

鹿児島県国分市山下町1番4号 京セラ株式会社総合研

究所内

【氏名】

平原 誠一郎

【特許出願人】

【識別番号】

000006633

【住所又は居所】

京都府京都市伏見区竹田鳥羽殿町6番地

【氏名又は名称】

京セラ株式会社

【代表者】

西口 泰夫

【手数料の表示】

【予納台帳番号】

005337

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】明細書

【発明の名称】複合シート、積層部品およびそれらの製造方法

【特許請求の範囲】

【請求項1】少なくともセラミック材料と、有機樹脂とを含有する複合材からなるセラミック層の一部に、金属箔からなる導体パターン層が前記セラミック層を貫通して形成されていることを特徴とする複合シート。

【請求項 2 】前記セラミック層および前記導体パターン層の厚みが 50μ m以下であることを特徴とする請求項 1 記載の複合シート。

【請求項3】光透過可能なキャリアフィルム上に設けられていることを特徴と する請求項1または請求項2記載の複合シート。

【請求項4】(a)光透過可能なキャリアフィルム表面に、金属箔からなる導体パターンを形成する工程と、

- (b) 前記導体パターン層を形成したキャリアフィルム上に、少なくとも光硬化 可能なモノマーおよびセラミック材料を含有する光硬化スラリーを、前記導体パ ターン層の厚さ以上の厚さに塗布して光硬化セラミック層を形成する工程と、
- (c) 前記キャリアフィルムの裏面より、光を照射して、前記導体パターン層形成以外の領域の光硬化セラミック層を光硬化させる工程と、
- (d) 現像液を付与して、前記光硬化セラミック層の前記導体パターン層表面を含む非光硬化部を溶化、除去することによって、光硬化セラミック層と導体パターン層からなる複合シートを作製する工程と、

を具備することを特徴とする複合シートの製造方法。

【請求項5】前記(d)工程後に、

(e) 前記キャリアフィルムから、前記導体パターン層および光硬化セラミック層を剥離する工程を具備する請求項4記載の複合シートの製造方法。

【請求項6】セラミック層の一部に、金属箔からなる導体パターン層が前記セラミック層を貫通して形成されてなる複合体の積層焼結体からなり、前記積層焼結体中において、前記複合体の各導体パターン層による積層によって3次元的回路が形成されてなることを特徴とする積層部品。

【請求項7】前記導体パターン層を厚み方向に互いに接触するように前記複合

体を積層することによって、ビア導体が形成されてなることを特徴とする請求項 6記載の積層部品。

【請求項8】前記複合体が、請求項1または請求項2記載の複合シートの焼結 体からなることを特徴とする請求項6または請求項7記載の積層部品。

【請求項9】少なくともセラミック材料と、有機樹脂とを含有する複合材からなるセラミック層の一部に、金属箔からなる導体パターン層が該セラミック層を 貫通して形成されてなる複合シートを複数層作製し、これらを積層することによって、前記導体パターン層が3次元的に接続してなる積層体を作製した後、これを焼成することを特徴とする積層部品の製造方法。

【請求項10】前記セラミック層および前記導体パターン層の厚みが 50μ m 以下であり、その厚み差が導体パターン層の厚みの20%以下であることを特徴 とする請求項9記載の積層部品の製造方法。

【請求項11】前記複合シートが、請求項1または請求項2記載の複合シートからなることを特徴とする請求項9または請求項10記載の積層部品の製造方法。

【請求項12】(a)光透過可能なキャリアフィルム表面に、金属箔からなる 導体パターンを形成する工程と、

- (b) 前記導体パターン層を形成したキャリアフィルム上に、少なくとも光硬化 可能なモノマーおよびセラミック材料を含有する光硬化スラリーを、前記導体パ ターン層の厚さ以上の厚さに塗布して光硬化セラミック層を形成する工程と、
- (c) 前記キャリアフィルムの裏面より、光を照射して、前記導体パターン層形成以外の領域の光硬化セラミック層を光硬化させる工程と、
- (d) 現像液を付与して、前記光硬化セラミック層の前記導体パターン層表面を含む非光硬化部を溶化、除去することによって、光硬化セラミック層と導体パターン層からなる複合シートを作製する工程と、
- (e) 前記キャリアフィルムから、前記導体パターン層および光硬化セラミック層を剥離する工程と、
 - (f) (a) ~ (e) によって作製された複数の複合シートを積層する工程と、
 - (g)前記積層体を焼成する工程と、

を具備することを特徴とする積層部品の製造方法。

【請求項13】(a)光透過可能なキャリアフィルム表面に、金属箔からなる 導体パターンを形成する工程と、

- (b) 前記導体パターン層を形成したキャリアフィルム上に、少なくとも光硬化可能なモノマー、光重合開始剤、およびセラミック材料を含有する光硬化スラリーを、前記導体パターン層の厚さ以上の厚さに塗布して光硬化セラミック層を形成する工程と、
- (c) 前記キャリアフィルムの裏面より、光を照射して、前記導体パターン層形成以外の領域の光硬化セラミック層を光硬化させる工程と、
- (d) 現像液を付与して、前記光硬化セラミック層の前記導体パターン層表面を含む非光硬化部を溶化、除去することによって、光硬化セラミック層と導体パターン層からなる複合シートを作製する工程と、
- (h) (a) ~ (d) 工程を経て、他のキャリアフィルムの表面に他の複合シート形成する工程と、
- (i) 前記(d) 工程後の複合シートの表面に、前記他の複合シートを積層する 工程と、
- (j)必要に応じ、上記(h)(i)工程を繰り返すことによって任意の層数の 積層体を形成する工程と、
 - (k)前記積層体を焼成する工程と、

を具備することを特徴とする積層部品の製造方法。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1\]$

【発明の属する技術分野】

本発明は、移動体通信機等に使用されるセラミック積層部品、積層基板などに 適した複合シートおよびそれを用いた積層部品と、それらの製造方法に関するも のである。

[0002]

【従来技術】

近年、電子機器は小型軽量化、携帯化が進んでおり、それに用いられる回路ブ

ロックも、小型化、複合モジュール化が押し進められており、セラミック多層基板などの積層部品の高密度化と小型化が進められている。

[0003]

一方、従来のセラミック多層基板は、通常、グリーンシート法と呼ばれる製造方法により製造されるものである。このグリーンシート法は、絶縁層となるセラミック粉末を含有するスラリーを用いてドクターブレード法などによってグリーンシートを作製し、次に、このグリーンシートにビアホール導体となる位置にNCパンチや金型などで貫通穴を形成し、導体ペーストを用いて、内部や表面の配線のパターンを印刷するとともに、前記貫通穴に導体ペーストを充填してビアホール導体を形成した後、同様にして作製した複数のグリーンシートを積層し、この積層体を一括同時焼成する製造方法である。

[0004]

このグリーンシート法においても、高精度化、さらには高密度化への要求に対して、絶縁層である配線導体層間の絶縁層厚みの薄層化とともに、配線導体層については低損失、低抵抗値を実現するため、配線導体層の厚みを厚くすることが求められている。

[0005]

ところが、従来のグリーンシート法などの製造方法においては、この絶縁層厚 みの薄層化と配線導体層の厚膜化という、2つの要求を同時に満たそうとすると 、配線導体層が形成されている部分と形成されていない部分とで、配線導体層の 厚み分の段差が必然的に発生してしまう。

$[0\ 0\ 0\ 6]$

この段差によって、積層不良(デラミネーション)が発生したり、無理に加圧 して段差を埋めたとしても絶縁層に部分的な密度差が生じて、焼成後に変形する といった問題があり、絶縁層厚みの薄層化と配線導体層の厚みの厚膜化を同時に 満たすには、限界があった。

[0007]

また、ビア導体などの垂直導体を形成するためには、グリーンシートに対して パンチングなどによって貫通穴を形成する穴あけ工程が不可欠であり、配線導体 層を形成する印刷工程に対して付加的な工程となっていた。

[0008]

そこで、このような配線導体層の厚みによる段差の形成を抑制するために、キャリアフィルム上に、光硬化性セラミック材料からなるスラリーを塗布して絶縁層を形成し、この絶縁層に所定のパターンに露光、現像することによって開口を形成し、この開口内に導電性ペーストを充填する。また、その表面に、上記と同様に、光硬化性セラミック絶縁層形成、露光、現像、導体ペースト充填を繰り返すことによって、導体による段差の形成のない多層基板を形成することが特許文献1にて提案されている。

[0009]

【特許文献1】

特開平9-181450号

[0010]

【発明が解決しようとする課題】

しかしながら、上記の特許文献1記載の方法によれば、実質的には、回路形成を1層ごと順次行う必要がある、つまり工程数が非常に多くしかも工程を並列して行うことが不可能であるために、製造に長時間を要するものであった。しかも、貫通穴への導体ペースト充填にあたっては、所定のスクリーンと開口とを精度よく位置合わせする必要があった。さらに、貫通穴への導体ペーストの充填にあたり、ビアなどの小さな径や、線幅の小さいパターン形成用の貫通穴へのペーストの充填が不十分となりやすく、貫通穴内でペーストが充填されない巣が形成されやすいなども問題があった。

[0011]

また、導体ペーストを貫通穴内に充填し、乾燥すると、溶剤成分が揮散してしまうために、中心部が凹部となるような変形が発生しやすく、これによって充填 不良や接続不良などが発生しやすいなどの問題があった。

 $[0\ 0\ 1\ 2]$

本発明は、上記のような従来の方法における問題を解消し、絶縁層厚みの薄層 化と配線導体層の厚みの厚膜化を同時に満たすとともに、導体層工程を簡略化且 つ短縮化が可能で導体層中への巣や変形の発生を抑制した複合シートとその製造方法、並びに積層部品とその製造方法を提供することを目的とするものである。

[0013]

【課題を解決するための手段】

本発明の複合シートは、少なくともセラミック材料と、有機樹脂とを含有する複合材からなるセラミック層の一部に、金属箔からなる導体パターン層が前記セラミック層を貫通して形成された複合シートを用いることによって、貫通穴形成/導体ペーストの充填の必要なく、複合シートを積層するのみで3次元的な回路を自由に形成できることを見出し本発明に至った。

[0014]

即ち、本発明の複合シートは、少なくともセラミック材料と、有機樹脂とを含有する複合材からなるセラミック層の一部に、金属箔からなる導体パターン層が 前記セラミック層を貫通して形成されていることを特徴とする。

[0015]

なお、このセラミック層および前記導体パターン層の厚みは 5 0 μ m以下であることを特徴とする。

$[0\ 0\ 1\ 6\]$

また、この複合シートは、光透過可能なキャリアフィルム上に設けられていることによって、複合シートの厚みが薄い場合でもその取り扱いを容易に行なうことができる。

[0017]

また、この複合シートは、(a)光透過可能なキャリアフィルム表面に、金属箔からなる導体パターンを形成する工程と、(b)前記導体パターン層を形成したキャリアフィルム上に、少なくとも光硬化可能なモノマーおよびセラミック材料を含有する光硬化スラリーを、前記導体パターン層の厚さ以上の厚さに塗布して光硬化セラミック層を形成する工程と、(c)前記キャリアフィルムの裏面より、光を照射して、前記導体パターン層形成以外の領域の光硬化セラミック層を光硬化させる工程と、

(d) 現像液を付与して、前記光硬化セラミック層の前記導体パターン層表面を

含む非光硬化部を溶化、除去することによって、光硬化セラミック層と導体パターン層からなる複合シートを作製する工程と、を具備することを特徴とするものである。なお、複合シートの製造方法によれば、前記(d)工程後に、(e)前記キャリアフィルムから、前記導体パターン層および光硬化セラミック層を剥離する工程を具備してもよい。

[0018]

また、本発明の積層部品は、セラミック層の一部に、金属箔からなる導体パターン層が前記セラミック層を貫通して形成されてなる複合体の積層焼結体からなり、前記積層焼結体中において、前記複合体の各導体パターン層による積層によって3次元的回路が形成されてなることを特徴とするものであり、また、前記導体パターン層を厚み方向に互いに接触するように前記複合体を積層することによって、貫通穴に導体ペーストを充填することなく、ビア導体を形成することができる。

[0019]

また、本発明の積層部品の製造方法は、少なくともセラミック材料と、有機樹脂とを含有する複合材からなるセラミック層の一部に、金属箔からなる導体パターン層が該セラミック層を貫通して形成されてなる複合シートを複数層作製し、これらを積層することによって、前記導体パターン層が3次元的に接続してなる積層体を作製した後、これを焼成することを特徴とするものであり、特に前記セラミック層および前記導体パターン層の厚みが50μm以下であり、その厚み差が導体パターン層の厚みの20%以下であることが望ましい。

[0020]

さらに、本発明の積層部品の製造方法は、(a)光透過可能なキャリアフィルム表面に、金属箔からなる導体パターンを形成する工程と、

- (b) 前記導体パターン層を形成したキャリアフィルム上に、少なくとも光硬化 可能なモノマーおよびセラミック材料を含有する光硬化スラリーを、前記導体パ ターン層の厚さ以上の厚さに塗布して光硬化セラミック層を形成する工程と、

- ・(d) 現像液を付与して、前記光硬化セラミック層の前記導体パターン層表面を含む非光硬化部を溶化、除去することによって、光硬化セラミック層と導体パターン層からなる複合シートを作製する工程と、
 - (e) 前記キャリアフィルムから、前記導体パターン層および光硬化セラミック層を剥離する工程と、
 - (f) (a) ~ (e) によって作製された複数の複合シートを積層する工程と、
 - (g) 前記積層体を焼成する工程と、

を具備することを特徴とするものである。

[0021]

さらに、他の方法によれば、(a)光透過可能なキャリアフィルム表面に、金属箔からなる導体パターンを形成する工程と、

- (b) 前記導体パターン層を形成したキャリアフィルム上に、少なくとも光硬化可能なモノマー、光重合開始剤、およびセラミック材料を含有する光硬化スラリーを、前記導体パターン層の厚さ以上の厚さに塗布して光硬化セラミック層を形成する工程と、
- (c) 前記キャリアフィルムの裏面より、光を照射して、前記導体パターン層形成以外の領域の光硬化セラミック層を光硬化させる工程と、
- (d) 現像液を付与して、前記光硬化セラミック層の前記導体パターン層表面を含む非光硬化部を溶化、除去することによって、光硬化セラミック層と導体パターン層からなる複合シートを作製する工程と、
- (h) (a) ~ (d) 工程を経て、他のキャリアフィルムの表面に他の複合シート形成する工程と、
- (i)前記(d)工程後の複合シートの表面に、前記他の複合シートを積層する 工程と、
- (j)必要に応じ、上記(h)(i)工程を繰り返すことによって任意の層数の 積層体を形成する工程と、
 - (k) 前記積層体を焼成する工程と、

を具備することを特徴とするものである。

[0022]

本発明によれば、セラミック層の一部に、金属箔からなる導体パターン層が前記セラミック層を貫通して形成された複合シートまたはこれを焼結した複合体を単一ユニットとしこれを積層することによって、3次元的な回路を形成するものであり、平面導体およびビア導体をすべて金属箔によって形成することができる

[0023]

そのために、金属箔による精度の高いパターンを具備するとともに、従来の貫通穴へのペーストの充填不良などに伴う導体層中における巣の発生等を防止することができる。

[0024]

また、絶縁層の形成にあたり、本発明によれば、金属箔からなる導体パターン 自体をマスクとして用い、光硬化セラミック層の全面塗布と、キャリアフィルム の裏面からの全面露光によって形成することができるために、従来、不可欠であ ったマスクなどを使用する必要がなく、安価に且つ容易に光硬化性セラミック絶 縁層と導体層からなる複合シートを作製することができる。

[0025]

しかも、このような複合シートの形成は、その層数に合わせて、各キャリアフィルム上で並列して形成することができることから、必要な層数の複合シートを作製した後に、それらを一括して積層後、焼成することによって、大幅に工程を簡略化することができる。 .

[0026]

また、所定の複合シートの表面に、単に他の複合シートを必要な層数で積み重ねることによっても所定の多層回路基板を作製することができる。

[0027]

このように、本発明によれば、金属箔からなる導体パターン層を具備しつつも 、積層時に配線導体層の厚み分の段差が発生することがなく、デラミネーション の発生や、無理な加圧による変形などの問題も無く、容易に配線導体層間の絶縁 層の厚みの薄層化と、配線導体層の厚みの厚膜化を両立することができ、高密度 かつ高精度に内蔵することのできるセラミック多層基板などの積層部品の得るこ とができる。

[0028]

【発明の実施の形態】

図1に、本発明の積層部品の一例として、一般的なセラミック多層回路基板の(a)概略斜視図、(b)複合シートの概略断面図、および(c)(a)の概略断面図を示した。

[0029]

図1のセラミック多層回路基板1によれば、セラミック焼結体からなる絶縁基板2の表面、裏面および内部には、平面導体となる配線導体層3が形成されている。また、表面に形成された配線導体層3には、IC、インダクタ、抵抗、コンデンサなどのチップ部品4が半田によって実装され、裏面の配線導体層3は、マザーボードなどに実装するための端子電極として機能するものである。

[0030]

また、内部には、上記平面導体を形成する配線導体層3同士を接続するビア導体5が形成されている。

[0031]

本発明における上記セラミック多層回路基板1は、図1 (b) に示すように、少なくともセラミック材料を含有するセラミック層2 a の一部に、少なくとも金属粉末と有機バインダとを含有する導体パターン層3 a が該セラミック層2 a を貫通して形成されてなる複合シートAの積層物を焼成して形成されたものである

[0032]

より具体的には、セラミック層 2 a および導体パターン層 3 a の厚みは、いずれも 5 0 μ m以下、特に 4 0 μ m以下、さらには 3 0 μ m以下の薄層によって形成されており、セラミック層 2 a および導体パターン層 3 a の厚み差が導体パターン層 3 a の厚みの 2 0 %以下、特に 1 0 %以下、さらには、5 %以下であることが、または厚み差が 5 μ m以下、さらには 3 μ m以下であることによって、導体パターン層 3 a 自体の厚みによるセラミック層 2 a との段差が実質的に抑制される。

[0033]

また、導体パターン層 3 a はセラミック層 2 a を平面方向に伸びることによって平面回路となる配線導体層 3 を形成している。また、部分的に導体パターン層 3 a を厚み方向に積み上げることによりビア導体 5 が形成されている。

[0034]

本発明によれば、所望の回路形成のために上記の複合シートAは、10~300層、特に30~200層、さらには40~100層程度積層されることによってセラミック多層回路基板1を形成している。

[0035]

[0036]

用いられる(2)の混合物や、(3)のガラス組成物としては、 SiO_2-B a $O-AI_2O_3$ 系、 $SiO_2-B_2O_3$ 系、 $SiO_2-B_2O_3$ 不、 $SiO_2-B_2O_3$ -AI $_2O_3$ 系、 SiO_2 -AI $_2O_3$ -アルカリ金属酸化物系、さらにはこれらの系にアルカリ金属酸化物、ZnO、PbO、Pb、 ZrO_2 、 TiO_2 等を配合した組成物が挙げられる。(3)におけるセラミックフィラーとしては、 AI_2O_3 、 SiO_2 、 ZrD_3 、 ZrD_4 、 ZrD_4 、 ZrD_5 、 ZrD_6 、 ZrD_6 、 ZrD_6 、 ZrD_6 、 ZrD_7 、 ZrD_7

[0037]

一方、導体パターン層は、セラミック材料の焼成温度に応じて種々組み合わせ られ、例えば、セラミック材料が前記(1)の場合、タングステン、モリブデン

[0038]

1

セラミック材料が前記(2)の場合、銅、銀、金、アルミニウムの群から選ば れる少なくとも1種を主成分とする導体材料が好適に用いられる。

[0039]

上記の導体材料には、セラミック材料と同時焼成する上で、セラミック材料を 構成する成分を含有することが望ましい。

[0040]

上記のようなセラミック多層回路基板などの積層部品の形成するにあたり、本発明によれば、まず、少なくともセラミック材料を含有するセラミック層2aの一部に、金属箔からなる導体パターン層3aが前記セラミック層2aを貫通して形成されてなる複合シートAを作製する。

[0041]

この複合シートAを作製するにあたり、まず、セラミック層2aを形成するために、少なくとも光硬化可能なモノマーおよび前述したセラミック材料を含有する光硬化スラリーを調製する。スラリー調製にあたっては、望ましくは、セラミック粉末に、光硬化可能なモノマーと、光重合開始剤と、有機バインダと、可塑剤とを、有機溶剤に混合し、ボールミルで混練して調製する。

[0042]

光硬化成分としては、光硬化可能なモノマーや光重合開始剤などが挙げられる

[0043]

光硬化可能なモノマーとしては、低温で短時間の焼成工程に対応するために、 熱分解性に優れたものであることが望ましい。また、光硬化可能なモノマーは、 スリップ材の塗布・乾燥後の露光によって光重合される必要があり、遊離ラジカ ルの形成、連鎖生長付加重合が可能で、2級もしくは3級炭素を有したモノマー が好ましく、例えば少なくとも1つの重合可能なエチレン系基を有するブチルア クリレート等のアルキルアクリレートおよびそれらに対応するアルキルメタクリ レート等が挙げられる。また、テトラエチレングリコールジアクリレート等のポリエチレングリコールジアクリレートおよびそれらに対応するメタクリレートも有効である。また、光重合開始剤としては、ベンゾフェノン類、アシロインエステル類化合物などが挙げられる。

[0044]

また、有機バインダも、光硬化可能なモノマーと同様に熱分解性が良好であることが望まれ、同時にスリップの粘性を決めるものであるため、固形分との濡れ性も考慮することが必要である。本発明によれば、アクリル酸もしくはメタクリル酸系重合体のようなカルボキシル基、アルコール性水酸基を備えたエチレン性不飽和化合物が好ましい。

[0045]

有機溶剤としては、エチルカルビトールアセテート、ブチルセロソルブ、3メトキシブチルアセテートの群から選ばれる少なくとも1種が挙げられる。

[0046]

各成分の含有量は、セラミック粉末100質量部あたり、光硬化モノマー及び 光重合開始剤を5~20質量部、有機バインダを10~40質量部、可塑剤を1~5質量部、有機溶剤を50~100質量部の割合が適当である。

[0047]

次に、上記の光硬化スラリーおよび導体ペーストを用いて以下の工程によって 、複合シートを形成する。

$[0\ 0\ 4\ 8]$

まず、図2 (a) に示すように、樹脂フィルムなどからなる光透過可能なキャリアフィルム10上に、金属箔からなる導体パターン層11を形成する。この金属箔からなる導体パターン層11を形成する方法としては、キャリアフィルム10の全面に金属箔を貼付した後、レジスト塗布、露光、現像、エッチング処理を施すことによってパターン化する。

[0049]

ここで用いる金属箔としては、電解メッキ法によって形成されたものであることが望ましく、さらには一方の表面は、表面粗さRzが2μm以上のマット面と

、表面粗さRzが 1μ m以下のシャイニー面から構成されることが望ましく、表面用の配線導体層を形成する場合、最終的にマット面が基板の内側を向くようにシャイニー面をキャリアフィルム10に接着する。また、内層用配線導体層としては、マット面をキャリアフィルム10に接着し、パターン形成後にシャイニー面を表面粗さRaが 2μ m以上になるように粗化処理することが望ましい。これによって、金属箔とセラミック絶縁層との密着性を高めることができる。

[0050]

次に、図2(b)に示すように、前記光硬化スラリーを、例えばドクターブレード法にて前記導体パターン層11の厚さ以上の厚さに塗布して所定の厚みで全面に塗布して光硬化セラミック層12を形成する。

[0051]

そして、図2(c)に示すように、キャリアフィルム10の裏面より例えば超高圧水銀灯を光源として用いて露光を行う。この露光によって、導体パターン層11形成以外の領域の光硬化セラミック層12を光硬化させる。この露光工程においては、光硬化セラミック層12は、導体パターン層11形成以外の領域の光硬化セラミック層12は、導体パターン層11は紫外線を通過しなら反応がおこり不溶化部を形成するが、導体パターン層11は紫外線を通過しないために、導体パターン層11上に形成されている光硬化セラミック層12は、光硬化可能なモノマーの光重合反応がおこらない溶化部となる。また、このときの露光量は、実質的に不溶化部の厚みが、導体パターン層11の厚みと同じになるように露光量が調整されることが望ましい。

[0052]

その後、この光硬化セラミック層 1 2 全体を現像処理する。現像処理は、光硬化セラミック層 1 2 の溶化部を現像液で除去するもので、具体的には、例えば、トリエタノールアミン水溶液などを現像液として用いてスプレー現像、洗浄、乾燥を行う。この処理により、図 2 (d)に示すように、キャリアフィルム 1 0 上には、導体パターン層 1 1 と光硬化セラミック層 1 2 とが実質的に同一厚みで一体化した複合シートAが形成される。

[0053]

なお、この複合シートAは、キャリアフィルム10から複合シートAを剥離することによって、図2(e)に示すような複合シートA単体を得ることができる。

[0054]

次に、この複合シートAを用いて図1のセラミック多層回路基板のような積層 部品を製造する方法について以下に説明すると、まず、前記図2(a)~(e)に従い、光硬化セラミック層12と所定のパターンの導体パターン層11が形成された複数の複合シートA1~A14を作製する。

[0055]

そして、図3(a)(b)に示すように、これらの複合シートA1~A14を 位置あわせしながら、重ね合わせ一括して圧着することによって積層体13を形 成する。なお、圧着時には、複合シートA中の有機バインダのガラス転移点以上 の温度をかけながら行なうことが望ましい。また、複合シートA間に有機系接着 剤を塗布して圧着してもよい。

[0056]

なお、一括して積層する場合、すべてキャリアフィルム10を剥がして積層してもよいが、圧着時の最下面と最上面の取り扱いを考慮すれば、最下面と最上面のみは、キャリアフィルム10から剥がすことなく、図3(a)に示すように、積層、圧着した後に、キャリアフィルム10を剥がすことによって、図3(b)のような積層体13を形成することができる。

[0057]

そして、この積層体13を、所定の温度で焼成することによって、導体パターン層11によって3次元的な回路が形成された積層部品を形成することができる。なお、焼成にあたっては、作製された積層体13を脱バイ工程で、成形体中に含まれている有機バインダ、光硬化可能なモノマーを消失し、焼成工程にて窒素などの不活性雰囲気中で用いられたセラミック材料および導体材料が十分に焼成することのできる温度で焼成され、相対密度95%以上に緻密化される。

[0058]

また、積層部品を製造する他の方法としては、図4 (h) に示すように、図2

(d) にて形成されたキャリアフィルム 10 が付着したままの他の複合シートA '2を作製する。そして、図 4 (i-1),図 4 (i-2)に示すように、キャリアフィルム 10 の表面に形成された複合シート A '1 の表面に、キャリアフィルム 10 の表面に形成された複合シート A '2 を反転させて積層圧着し、複合シート A '2 側のキャリアフィルム 10 を剥離する。

[0059]

次に、図4(j)に示すように、この複合シートA'2の表面に、同様にしてキャリアフィルム10の表面に形成された複合シートA'3を反転させて積層圧着し、複合シートA'3側のキャリアフィルム10を剥離する。これを繰り返すことによって、図4(k)に示すように、所望の層数の積層体13を形成することができる。その後、この積層体13を前記と同様にして焼成することによって、積層部品を作製することができる。

[0060]

また、焼成にあたっては、金属箔で配線導体層を形成する場合、金属箔の配線 導体層自体は焼成収縮しないために、平面方向の収縮を抑制しながら焼成する必 要がある。そのため、図3(a)に示すように、積層体13の焼成温度では難焼 結性のセラミック材料を主成分とする拘束シート14を積層体13の両面又は片 面に加圧積層する。

$[0\ 0\ 6\ 1]$

この拘束シート14は、難焼結性セラミック材料を主体とする無機成分に、有機バインダ、可塑剤、有機溶剤等を加えたスラリーをシート状に成形して得られる。例えば、積層体13におけるセラミック材料が1050℃以下で焼成可能な低温焼成セラミックスからなる場合、難焼結性セラミック材料としては、具体的には1050℃以下の温度で緻密化しないような、A12〇3、SiO2、MgO、ZrO2、BN、TiO2の群から選ばれる少なくとも1種および/またはこれらの複合酸化物(例えばフォルステライト(Mg2SiO4)、エンスタタイト(MgSiO3))等の粉末を主成分とするセラミック材料を用いる。

[0062]

そしてこの拘束シート14とともに積層体13を焼成した後に、拘束シート1

 $4 \, \epsilon$ 、 $A \, I_{\, 2} O_{\, 3}$ 、 $S \, i \, O_{\, 2}$ 、 $M \, g \, O$ 、 $Z \, r \, O_{\, 2}$ から選ばれる少なくとも $1 \, \bar{q}$ を含む 低粒を空気と共に 0. $0 \, 5 \sim 0$. $5 \, M \, P \, a \, o$ 圧力で吹き付けるなどの手法によっ て除去することによって焼結した多層回路基板を得ることができる。

[0063]

このように拘束シートを用いて焼成すると、焼成時の収縮が拘束シート14に よって厚さ方向だけに抑えられているので、積層体13の一辺の長さの収縮率を 0.5%以下に抑えることができる。

[0064]

このようにして作製された多層基板に対しては、必要に応じて、表面処理として、さらに、基板表面に厚膜抵抗膜や厚膜保護膜の印刷・焼きつけ、メッキ処理、さらに I Cチップを含む電子部品 4 の接合を行うことによってセラミック回路 基板を作製することができる。

[0065]

また、表面の配線導体層3は、焼成された積層体の表面に、印刷・乾燥し、所 定雰囲気で焼きつけを行っても良い。

[0066]

さらに、セラミック多層回路基板 1 の表面に形成される表面配線導体層 3 、端子電極の表面には、半田との濡れ性を改善するために、ニッケル、金などのメッキ層が $1\sim3~\mu$ mの厚みで形成される。

[0067]

【実施例】

実施例1

先ず、厚さ 100μ mのPET(ポリエチルテレフタレート)からなる光透過可能なキャリアフィルム上に、厚さが 18μ m、表面粗さRzが 5μ mのマット面と、表面粗さRzが 0.8μ mのシャイニー面からなる銅箔を用い、このシャイニー面をPET側に貼付した後、フォトエッチングによって、最小線幅が 25μ mの表層用回路パターンを形成した。また、上記と同じPETフィルムに対してマット面をPET側に貼付した後、フォトエッチングによって、最小線幅が 25μ mの表層用回路パターンと、直径が 100μ mのビア用導体を有する導体パ

ターン層を形成した後、シャイニー面を表面粗さ R a が 2 μ m以上に粗化処理して内層用回路パターンを形成した。

[0068]

この上に、感光性スラリーをドクターブレード法により塗布乾燥し、導体パターン層の存在しない場所での乾燥後の厚みが28 μ mとなる様、光硬化セラミック層を形成した。

[0069]

感光性スラリーは、セラミック原料粉末100質量部と、光硬化可能なモノマー(ポリオキシエチル化トリメチロールプロパントリアクリレート)8質量部と、有機バインダ(アルキルメタクリレート)35質量部と、可塑剤を3質量部、有機溶剤(エチルカルビトールアセテート)に混合し、ボールミルで混練して作製した。

[0070]

セラミック原料粉末は、0.95モル $MgTiO_3-0.05$ モル $CaTiO_3$ で表される主成分100質量部に対して、 BeB_2O_3 換算で10質量部、LieLi CO_3 換算で5質量部添加したものを用いた。

[0071]

次に、キャリアフィルムの裏面側より光硬化セラミック層の裏面に、超高圧水銀灯(照度 $30\,\mathrm{mW/c\,m^2}$)を光源として2秒間全面露光した。そして希釈濃度2.5%のトリエタノールアミン水溶液を現像液として用いて30秒間スプレー現像を行った。この後、現像後の純水洗浄の後、乾燥を行った。

[0072]

こうして、出来上がった光硬化セラミック層は、電極層上の溶化部が現像により除去され電極層が露出して、その結果、厚みが $20~\mu$ mの電極層と、厚みが $20~\mu$ mの光硬化セラミック層とが一体化した複合シートを作製することができた

[0073]

同様に、内部配線導体層用、表面配線導体層用およびビア導体用の導体パターン層を具備した延べ50層の複合シートを作製した。

上記のようにして作製した複合シートより、キャリアフィルムを剥離し、順番 に位置合わせを行いながら、積層を行った。

[0075]

他方、平均粒径 2μ mのアルミナを主成分とするセラミック粉末 9 0 質量%と平均粒径 5μ mのガラス粉末 1 0 質量%の組成物からなる厚さ $2 5 0 \mu$ mの拘束 シートを作製した。そして、この拘束シートを前記積層体の最上面と最下面に配置し、プレス機を用いて、プレス圧1トン、温度 $6 0 \mathbb{C}$ にて5分間プレスを行い、積層体を圧着した。

[0076]

その後、大気中で300℃で4時間で脱バインダ処理した後、900℃大気中で6時間焼成を行った。その後、拘束シートを $A1_2O_3$ 砥粒を空気と共に0.2 MPaの圧力で吹き付けることで除去し、セラミック多層回路基板を作製した。

[0077]

作製した多層回路基板については、導体パターン層自体の厚みによる段差は全くなく、絶縁層間のデラミネーションもなかった。また、平面導体パターン層間の接続にあたり、金属箔からなる導体パターン層を3層以上垂直方向に積層することによって、ビア導体を形成したが、このビア導体を含む回路における電気的接続についても全く問題は無かった。

[0078]

実施例2

実施例1で、作製した、電極用、内部配線導体層用、表面配線導体層用および ビア導体用の導体パターン層を具備した延べ70層の複合シートを作製した。

[0079]

まず電極用の複合シート上に、ビア導体用の複合シートをキャリアフィルムごと反転させて、複合シート同士を接触させて、位置合わせを行いながら載置する。続いて、プレス機を用いて、プレス圧1トン、温度60℃にて1分間プレスを行い、前記電極用の複合シート上とビア導体用の複合シートとを圧着した後、ビア導体用の複合シート側のキャリアフィルムを剥離した。

続いて、再び別のビア導体用複合シート、内部配線導体層用の複合シート、表面配線導体層用の複合シートを同じように反転させて、位置合わせを行いながら載置し、プレス機を用いて順次圧着した。

[0081]

その後、大気中で300℃で4時間で脱バインダ処理した後、900℃大気中で6時間焼成を行い、セラミック多層回路基板を作製した。

[0082]

作製した多層回路基板については、導体パターン層自体の厚みによる段差は全くなく、絶縁層間のデラミネーションもなかった。また、平面導体パターン層間の接続にあたり、金属箔からなる導体パターン層を3層以上垂直方向に積層することによって、ビア導体を形成したが、このビア導体を含む回路における電気的接続についても全く問題は無かった。

[0083]

【発明の効果】

以上詳述したように、本発明によれば、複合シートが導体パターン層とセラミック層とが実質的に同一厚みで導体パターン層がセラミック層を貫通して設けられているために、導体パターン層自体の厚みによる段差が発生せず、デラミネーションの発生や、無理な加圧による変形などの問題が無く、セラミック絶縁層の厚みの薄層化とともに、配線導体層の厚膜化を同時に行なうことができる。しかも、ビア導体や配線導体層の形成をすべて金属箔によって形成することができるために、従来のような貫通穴内へのペーストの充填不良などによる巣の発生を防止することができる。

[0084]

さらには、複合シート形成にあたり感光性スラリーを用い、しかも印刷塗布された導体パターン層をマスクとして利用しているために、格別なマスクを作製する必要がなく、しかも各層の形成を平行的に行うことができるために、製造コストの低減を図ることができるとともに、再現よく導体パターン層とセラミック層とが一体化した複合シートを作製することができる。

また、積層部品を作製するにあたり、平面導体パターン層のみならず、ビア導体を導体パターン層とセラミック層とが一体化した複合シートによる積層によって形成することができるために、従来のような貫通穴形成、導体ペースト充填によるビア導体の形成が不要となり、単純に複合シートの一括積層、あるいは順次積層のみで3次元的な回路を有する多層回路基板などの積層部品を容易に形成することができる。

【図面の簡単な説明】

【図1】

本発明の積層部品の一例としてセラミック多層回路基板の(a)概略斜視図と、(b)複合シートの概略断面図と、(c)(a)の概略断面図を示す。

図2

本発明の複合シートの作製方法を説明するための工程図である。

【図3】

本発明の積層部品を作製する方法を説明ための工程図である。

【図4】

本発明の積層部品を作製する他の方法を説明ための工程図である。

【符号の説明】

- A 複合シート
- 1 セラミック多層回路基板
- 2 絶縁基板
- 3 配線導体層
- 4 チップ部品
- 5 ビア導体
- 1 0
- 10 キャリアフィルム
- 11 導体パターン層
- 12 光硬化セラミック層
- A 複合シート

【書類名】図面

【図1】

【図2】

【図3】

【図4】

【要約】

【課題】絶縁層厚みの薄層化と配線導体層の厚みの厚膜化を同時に満たすとともに、導体層工程を簡略化且つ短縮化が可能で導体層中への巣や変形の発生を抑制した複合シートとその製造方法、並びに積層部品とその製造方法を提供する。

【解決手段】光透過可能なキャリアフィルム10表面に、金属箔からなる導体パターン層11を形成し、その上に、光硬化スラリーを導体パターン層11の厚さ以上の厚さに塗布して光硬化セラミック層12を形成した後、キャリアフィルム10の裏面より光を照射して、導体パターン層11形成以外の領域の光硬化セラミック層12を光硬化させ、現像して光硬化セラミック層12と導体パターン層11からなる複合シートAを作製する。そして、この複合シートAを積層して、平面導体層とビア導体5による3次元的な回路を有する多層回路基板1などの積層部品を形成する。

【選択図】図2

ページ: 1/E

認定・付加情報

特許出願の番号

特願2002-346080

受付番号

5 0 2 0 1 8 0 3 5 6 2

書類名

特許願

担当官

第四担当上席 0093

作成日

平成14年11月29日

<認定情報・付加情報>

【提出日】

平成14年11月28日

特願2002-346080

出願人履歴情報

識別番号

[000006633]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

住 所

京都府京都市山科区東野北井ノ上町5番地の22

氏 名

京セラ株式会社

2. 変更年月日

1998年 8月21日

[変更理由]

住所変更

住 所

京都府京都市伏見区竹田鳥羽殿町6番地

氏 名

京セラ株式会社