NLP with Deep Learning

Ki Hyun Kim

nlp.with.deep.learning@gmail.com

<Traditional NLP> vs <NLP with Deep Learning>

Traditional NLP

- 단어를 symbolic 데이터로 취급
- 여러 sub-module을 통해 전체 구성

NLP with Deep Learning

- 단어를 continuous value로 변환
- End-to-end 시스템 추구

Traditional NLP의 특징

• Symbolic 기반 접근

전통적인 심볼릭 기반 접근 방법	딥러닝 기반 접근 방법
이산적(discrete), 심볼릭 공간	연속적(continuous), 신경망 공간
사람이 인지하기 쉬움	사람이 이해하기 어려움
디버그 용이	디버깅 어려움
연산 속도 느림	연산 속도 빠름
모호성과 유의성에 취약함	모호성과 유의성에 강인함
여러 서브 모듈이 폭포수 형태를 취하므로 특징 추출에 노력이 필요함	end-to-end 모델을 통한 성능 개선과 시스템 간소화 기능

- 여러 단계의 Sub-module 구성
 - 무거움
 - 각 모듈의 오류가 이후 모듈에 영향을 끼침 (error propagation)

쉬어가기: 경험담

NLP System with Deep Learning

Paradigm Shift in Natural Language Processing

- 효율적인 Embedding을 통한 성능 개선
 - 단어, 문장, 컨텍스트 임베딩
- End-to-end 구성으로 인한 효율/성능 개선
 - 가볍고, 빠르다.
- 결국 기계번역의 경우, 다른 분야에 비해 가장 먼저 성공적인 상용화

