BASIC LINEAR DESIGN

Hank Zumbahlen Editor

© 2007 Analog Devices, Inc.

All Rights Reserved

Preface:

This work is based on the work of many other individuals who have been involved with applications and Analog Devices since the company started in 1965. Much of the material that appears in this work is based on work that has appeared in other forms. My major job function in this case was one of editor. The list of people I would like to credit for doing the pioneering work include: Walt Kester, Walt Jung, Paul Brokaw, James Bryant, Chuck Kitchin, and many other members of Analog Devices technical community.

In addition many others contributed to the production of this edition by helping out with the production of this book by providing invaluable assistance by proofreading and providing commentary. I especially want to thank Walt Kester, Bob Marwin and Judith Douville, who also did the indexing.

Again, many thanks to those involved in this project

Hank Zumbahlen Senior Staff Applications Engineer

Copyright © 2007 Analog Devices, Inc.

ISBN 0-916550-28-1

All rights reserved. This book, or any parts thereof, may not be reproduced in any form without the permission of the copyright owner. The information furnished by Analog Devices, Inc. is believed to be accurate and reliable. However no responsibility for its use is assumed by Analog Devices, Inc. for its use.

Analog Devices, Inc. makes no representation that the interconnections of its circuits as described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

TABLE OF CONTENTS

CHAPTER 1: THE OP AMP

SECTION 1.1: OP AMP OPERATION

SECTION 1.2: OP AMP SPECIFICATIONS

SECTION 1.2: AC SPECIFICATIONS

SECTION 1.3: HOW TO READ DATA SHEETS

SECTION 1.4: CHOOSING AN OP AMP

CHAPTER 2: OTHER LINEAR CIRCUITS

SECTION 2.1: BUFFER AMPLIFIERS

SECTION 2.2: GAIN BLOCKS

SECTION 2.3: INSTRUMENTATION AMPLIFIERS

SECTION 2.4: DIFFERENTIAL AMPLIFIERS

SECTION 2.5: ISOLATION AMPLIFIERS

SECTION 2.6: DIGITAL ISOLATION TECHNIQUES

SECTION 2.7: ACTIVE FEEDBACK AMPLIFIERS

SECTION 2.8: LOGARITHMIC AMPLIFIERS

SECTION 2.9: HIGH SPEED CLAMPING AMPLIFIERS

SECTION 2.10: COMPARATORS

SECTION 2.11: ANALOG MULTIPLIERS

SECTION 2.12: RMS TO DC CONVERTERS

SECTION 2.13: PROGRAMMABLE GAIN AMPLIFIERS

SECTION 2.14: AUDIO AMPLIFIERS

SECTION 2.15: AUTO-ZERO AMPLIFIERS

CHAPTER 3: SENSORS

SECTION 3.1: POSITIONAL SENSORS

SECTION 3.2: TEMPERATURE SENSORS

SECTION 3.3: CHARGE COUPLED DEVICES (CCDs)

SECTION 3.4: BRIDGE CIRCUITS

SECTION 3.5: STRAIN, FORCE, PRESSURE

AND FLOW MEASUREMENT

CHAPTER 4 RF/IF CIRCUITS

SECTION 4.1: MIXERS

SECTION 4.2: MODULATORS

SECTION 4.3: ANALOG MULTIPLIERS

SECTION 4.4: LOGARITHMIC AMPLIFIERS

SECTION 4.5: TRU-POWER DETECTORS

SECTION 4.6: VARIABLE GAIN AMPLIFIER

SECTION 4.7: DIRECT DIGITAL SYNTHESIS

SECTION 4.8: PHASE LOCKED LOOPS

CHAPTER 5: FUNDAMENTALS OF SAMPLED DATA SYSTEMS

SECTION 5.1: CODING AND QUANTIZING

SECTION 5.2: SAMPLING THEORY

CHAPTER 6: CONVERTERS

SECTION 6.1: DIGITAL-TO-ANALOG CONVERTER

ARCHITECTURES

SECTION 6.2: ANALOG-TO-DIGITAL CONVERTER

ARCHITECTURES

SECTION 6.3: SIGMA-DELTA (ΣΔ) CONVERTERS

SECTION 6.4: DEFINING THE SPECIFICATIONS

SECTION 6.5: DAC AND ADC STATIC TRANSFER FUNCTIONS

AND DC ERRORS

SECTION 6.6: DATA CONVERTER AC ERRORS

SECTION 6.7: TIMING SPECIFICATIONS

SECTION 6.8: HOW TO READ A DATA SHEET

SECTION 6.9: CHOOSING A DATA CONVERTER

CHAPTER 7: DATA CONVERTER SUPPORT CIRCUITS

SECTION 7.1: VOLTAGE REFERENCES

SECTION 7.2: ANALOG SWITCHES AND MULTIPLEXERS

SECTION 7.3: SAMPLE-AND-HOLD CIRCUITS

SECTION 7.4: CLOCK GENERATION AND DISTRIBUTION

CHAPTER 8 ANALOG FILTERS

SECTION 8.1: INTRODUCTION

SECTION 8.2: THE TRANSFER FUNCTION

SECTION 8.3: TIME DOMAIN RESPONSE

SECTION 8.4: STANDARD RESPONSES

SECTION 8.5: FREQUENCY TRANSFORMATION

SECTION 8.6: FILTER REALIZATIONS

SECTION 8.7: PRACTICAL PROBLEMS IN FILTER

IMPLEMENTATION

SECTION 8.8: DESIGN EXAMPLES

CHAPTER 9: POWER MANAGEMENT

SECTION 9.1: LINEAR VOLTAGE REGULATORS

SECTION 9.2: SWITCH MODE REGULATORS

SECTION 9.3: SWITCHED CAPACITOR VOLTAGE

CONVERTERS

CHAPTER 10: PASSIVE COMPONENTS

SECTION 10.1: CAPACITORS

SECTION 10.2: RESISTORS AND POTENTIOMETERS

SECTION 10.3: INDUCTORS

CHAPTER 11: OVERVOLTAGE EFFECTS ON ANALOG INTEGRATED CIRCUITS

SECTION 11.1: OVERVOLTAGE EFFECTS

SECTION 11.2: ELECTROSTATIC DISCHARGE (ESD)

SECTION 11.3: EMI/RFI CONSIDERATIONS

CHAPTER 12: PRINTED CIRCUIT BOARD (PCB)

DESIGN ISSUES

SECTION 12.1: PARTITIONING

SECTION 12.2: TRACES

SECTION 12.3: GROUNDING

SECTION 12.4: DECOUPLING

CHAPTER 12: PRINTED CIRCUIT BOARD (PCB)

DESIGN ISSUES (cont)

SECTION 12.5: THERMAL MANAGEMENT

CHAPTER 13: DESIGN DEVELOPMENT TOOLS

SECTION 13.1: SIMULATION

SECTION 13.2: ON-LINE TOOLS AND WIZARDS

SECTION 13.3: EVALUATION BOARDS AND PROTOTYPING