## 2007-PH

## EE24BTECH11027 - satwikagv

- 35) An electromagnetic wave with  $\mathbf{E}(z,t) = E_0 \cos(\omega t kz)\hat{i}$  is traveling in free space and crosses a disc of radius 2 m placed perpendicular to the z-axis. If  $E_0 = 60Vm^{-1}$ , the average power, in Watt, crossing the disc along the z-direction is
  - a) 30

b) 60

- c) 120
- d) 270
- 36) Can the following scalar and vector potentials describe an electromagnetic field?  $\phi(\mathbf{x},t) = 3xyz - 4t$

$$\mathbf{A}(\mathbf{x},t) = (2x - \omega t)\hat{i} + (y - 2z)\hat{j} + (z - 2xe^{i\omega t})\hat{k}$$
where  $\omega$  is a constant.

- a) Yes, in the Coulomb gauge.
- c) Yes, provided  $\omega = 0$ .
- b) Yes, in the Lorentz gauge.
- d) No.
- 37) For a particle of mass m in a one-dimensional harmonic oscillator potential of the form  $V(x) = \frac{1}{2}m\omega^2 x^2$ , the first excited energy eigenstate is  $\psi(x) = xe^{-ax^2}$ . The value of a is
- b)  $\frac{m\omega}{3\hbar}$
- c)  $\frac{m\omega}{2\hbar}$

- 38) If  $[x, p] = i\hbar$ , the value of  $[x^3, p]$  is

- a)  $2i\hbar x^2$  b)  $-2i\hbar x^2$  c)  $3i\hbar x^2$  d)  $-3i\hbar x^2$
- 39) There are only three bound states for a particle mass m in a one-dimensional potential well of the form shown in the figure. The depth  $V_0$  of the potential satisfies



- a)  $\frac{2\pi^2h^2}{ma^2} < V_0 < \frac{9\pi^2h^2}{ma^2}$ b)  $\frac{\pi^2h^2}{2} < V_0 < \frac{2\pi^2h^2}{2}$

- c)  $\frac{2\pi^2h^2}{ma^2} < V_0 < \frac{8\pi^2h^2}{ma^2}$ d)  $\frac{2\pi^2h^2}{2} < V_0 < \frac{50\pi^2h^2}{2}$
- 40) An atomic state of hydrogen is represented by the following wavefunction:

$$\psi(r,\theta,\phi) = \frac{1}{\sqrt{2}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \left(1 - \frac{r}{2a_0}\right) e^{\frac{-r}{2a_0}} \cos \theta.$$

where  $a_0$  is a constant. The quantum numbers of the state are

45) A system has energy levels  $E_0, 2E_0, 3E_0, \ldots$ , where the excited states are triply degenerate. Four non interacting bosons is  $5E_0$ , the number of microstates is

c)  $S = \frac{4}{3}aVT^4, P = \frac{a}{3}T^3$ d)  $S = \frac{1}{3}aVT^4, P = \frac{4a}{3}T^4$ 

a)  $S = \frac{4}{3}aVT^4, P = \frac{a}{3}T^4$ b)  $S = \frac{1}{3}aVT^4, P = \frac{4a}{3}T^3$ 

46) In accordance with the selection rules for electric dipole transitions, the  $4^{3}P_{1}$  state of helium can decay by photo emission to the states

a) 
$$2 \, {}^{1}S_{0}$$
,  $2 \, {}^{1}P_{1}$  and  $3 \, {}^{1}D_{2}$   
b)  $3 \, {}^{1}S_{0}$ ,  $3 \, {}^{1}P_{1}$  and  $3 \, {}^{1}D_{2}$   
c)  $3 \, {}^{3}P_{2}$ ,  $3 \, {}^{3}P_{0}$  and  $3 \, {}^{3}D_{3}$   
d)  $2 \, {}^{3}S_{1}$ ,  $3 \, {}^{3}D_{2}$  and  $3 \, {}^{3}D_{1}$ 

47) If an atom is in the  ${}^3D_3$  state, the angle between the its orbital and spin angular momentum vectors (**L** and **S**) is

| 48) The hyperfine struct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ture of $Na\left(3^{2}P_{\frac{3}{2}}\right)$ wi                                                     | th nuclear spin $I = \frac{3}{2}$ | hae             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|
| 48) The hyperfine structure of $Na(3^2P_{\frac{3}{2}})$ with nuclear spin $I = \frac{3}{2}$ has                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                   |                 |
| a) 1 state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b) 2 states                                                                                          | c) 3 states                       | d) 4 states     |
| <ul> <li>49) The allowed rational energy levels of a rigid hetero-nuclear diatomic molecule are expressed as ε<sub>j</sub> = BJ (J + 1), where B is the rotational constant and J is a rotational quantum number.</li> <li>In a system of such diatomic molecules of reduced mass μ, some of the atoms of one element are replaced by a heavier isotope, such that the reduced mass is changed to 1.05μ. In the rotational spectrum of the system, the shift in the spectral line, corresponding to a transition J = 4 → J = 5, is</li> </ul> |                                                                                                      |                                   |                 |
| a) 0.475 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b) 0.50 B                                                                                            | c) 0.95 B                         | d) 1.0 <i>B</i> |
| b) four: 1 are Rama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lamental vibrational r<br>n active and 2 are inf<br>n active and 3 are inf<br>an active and 2 are in | rared active.                     | lle is          |

51) A piece of paraffin is placed in a uniform magnetic field  $H_0$ . The sample contains hydrogen nuclei of mass  $m_p$ , which interact only with external magnetic field. An additional oscillating magnetic field is applied to observe resonance absorption. If  $g_l$  is the g-factor of the hydrogen nucleus, the frequency, at which resonance absorption

c)  $\frac{g_l e H_0}{2\pi m_p}$ 

d) three: 2 are Raman active and 1 are infrared active.

b)  $\frac{3g_l e H_0}{4\pi m_p}$ 

takes place, is given by