DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Lista 5 - Camada de Rede - Roteamento

ALUNO: THIAGO SANTOS DE LIRA

1) Considere a rede :

INSTITUTO FEDERAL

a) Usando o algoritmo de Dijkstra, determine o custo mínimo do nó 1 ao nó 6 e mostre o respectivo caminho.

Step	N'	D(2), p(2)	D(3),p(3)	D(4),p(4)	D(5),p(5)	D(6),p(6)
0	1	15,2	9,3	∞	8	∞
1	13	13,3		12,3	25,3	∞
2	134	13,3			18,4	33,4
3	1345	13,3				32,5

- b) Pode-se dizer a partir dos cálculos feitos qual o custo mínimo entre o nó 1 e o nó 4? Resposta: O custo mínimo entre o nó 1 e o nó 4 é de 12 steps, indo pelo caminho de 1-3-4.
- 2) Dada a rede:

INSTITUTO FEDERAL

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Lista 5 – Camada de Rede – Roteamento

a) Usando o algoritmo de Dijkstra, determine as tabelas de encaminhamento de todos os roteadores (A,B,C,D,E e F).

Step	N'	D(A), p(A)	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
1	A		3,A	∞	3,A	2,A	8
2	AE		3,A	8	3,E		3,E
3	AE						
1	В	6,B		5,B	∞	3,E	1,F
2	BF	∞		5,B	8,B	2,F	1,F
3	BFE	4,E		∞	8,B	2,F	1,F
1	С	∞	8,C		∞	∞	4,C
2	CF	∞	5,F		∞	5,E	4,C
3	CFE	7,E	5,F		12,E		

INSTITUTO FEDERAL

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Lista 5 – Camada de Rede – Roteamento

1	D	2,D	5,D	8		1,D	8
2	DE	2,D	4,E	8			2,E
3	DEF	2,D	3,F	4,F			
1	Е	2,E	3,E	8	7,E		1,E
2	EF	2,E	2,F	3,F	7,E		

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Lista 5 – Camada de Rede – Roteamento

b) Usando o algoritmo de Bellman – Ford, determine a tabela de encaminhamento do roteador A

TABELA ROTEADOR A. A para o C

INSTITUTO FEDERAL

Interação	(A,B)+dC	(A,D) + dC	(A,E) + dC	dC(C)
1	3 + inf	3 + inf	2 + inf	inf
2	3 + 5	4 + inf	3 + inf	8
3	3+5	5 + inf	3 + 2	5

A para o F

Interação	(A,B)+dF	(A,D) + dF	(A,E) + dF	dF(F)
1	$3 + \inf$	3 + inf	2 + inf	inf
2	3 + 1	4 + inf	2+1	3