Classification with Decision Trees

Brian Kim

Motivation

Suppose a car company wants to decide which cars to buy ad time for in the next Super Bowl. They have a dataset of cars promoted in past Super Bowl ads, and information about the **miles per gallon** (mpg) and **horsepower** (hp) of each car. In addition, they know which ad campaigns were deemed "Successful" or "Unsuccessful." Which cars should the company buy ad time for?

Motivation

Suppose a car company wants to decide which cars to buy ad time for in the next Super Bowl. They have a dataset of cars promoted in past Super Bowl ads, and information about the **miles per** gallon (mpg) and **horsepower** (hp) of each car. In addition, they know which ad campaigns were deemed "Successful" or "Unsuccessful." Which cars should the company buy ad time for?

At its heart, this is a **prediction** problem. In order to **decide which cars to buy ad time for**, we want to use **data from previous ad campaigns** to make a **prediction** on which cars will have successful ad campaigns.

Prediction

To do this, we'll use a machine learning technique called decision trees. More specifically, this is a subset of machine learning called supervised learning.

Two branches of machine learning:

- Unsupervised Learning is when you have no outcome variable and are trying to create groupings based on the data.
- Supervised Learning is when you have an outcome variable, and you try to make a prediction about future data points.

What is Machine Learning?

Machine learning is when a machine (that is, a computer) improves on a task with respect to some performance measure.

In the case of **supervised learning** for Super Bowl car advertisements, we want to develop a way to **improve** how well we **predict future successful car advertisements**.

General Supervised Learning Framework

In supervised learning, we are focused on finding the relationship between a **label** y and **features** x.

$$y = f(x)$$

"Learning" is finding a function f that minimizes future error in recovering y.

In our case, we will use decision trees to find that function f to minimize future error when trying to determine success of car advertisement campaigns (y) based on MPG and HP (x)

Visualizing the Data

How it Works

Rough outline of the tree building algorithm

- Consider each feature (in this case, horsepower and MPG).
- Order the values in each feature.
- Compute a measure of how well a partition would split the data for each possible break between values.
- Make the split that maximizes this value.
- Repeat until you reach a stopping criteria.

Tree Diagram

Partitioning

Partitioning

Partitioning

Tuning a Tree

Note that there are multiple places where we need to make decisions on parameters for building a tree.

- Measure for optimal splitting (Gini impurity, information gain).
- Minimum node size for stopping splits.
- Max depth

How should we determine each of these parameters?

By using a training set and a testing set.