Exercice 2.1 On se place dans l'espace euclidien \mathbb{R}^2 . On pose

$$a = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad c = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

- a) Utiliser le procédé de Gram-Schmidt pour les vecteurs $\{a, b\}$.
- b) Faire de même avec $\{b,a\}$. Qu'observe-t-on par rapport à la question précédente ?
- c) Que se passe-t-il quand on utilise le procédé de Gram-Schmidt pour les vecteurs $\{a, b, c\}$?

Exercice 2.2 Dans l'espace euclidien \mathbb{R}^n correspondant, appliquer l'orthonormalisation de Gram-Scmidt aux vecteurs suivants.

1.
$$\begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix}$

2.
$$\begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 25 \\ 0 \\ 25 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ 3. $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$

3.
$$\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix}$

4.
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

5.
$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \\ -1 \end{pmatrix}$$

$$6. \quad \begin{pmatrix} 1 \\ 7 \\ 1 \\ 7 \end{pmatrix}, \begin{pmatrix} 0 \\ 7 \\ 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 8 \\ 1 \\ 6 \end{pmatrix}$$

Exercice 2.3 On munit l'espace des polynômes $\mathbb{R}[X]$ du produit scalaire défini par

$$\forall (P,Q) \in \mathbb{R}[X]^2, \quad \langle P|Q \rangle = \int_{-1}^1 P(t)Q(t)dt.$$

- 1) Calculer, pour $(k, l) \in \mathbb{N}^2$, le produit scalaire $\langle X^k | X^l \rangle$.
- 2) Donner une base orthonormée de Vect $\{1, X, X^2\}$.
- 3) Facultatif Retrouver pourquoi on a bien défini un produit scalaire sur $\mathbb{R}[X]$.

Exercice 2.4 Dans l'espace euclidien \mathbb{R}^3 on considère l'espace vectoriel V d'équation cartésienne x + y + z = 0.

- a) Donner (sans calculs !) une base de l'orthogonal de V.
- b) A partir de l'équation cartésienne de V, montrer que $\{(-1,1,0),(-1,0,1)\}$ est une base de Vet en déduire une base orthogonale de V.
- c) Ecrire dans la base canonique les matrices représentatives de projections orthogonales sur V et
- d) En utilisant le résultat du 4. dans l'exercice 2.2, retrouver une base orthogonale de V.

Exercice 2.5 Dans l'espace euclidien \mathbb{R}^4 on considère l'espace vectoriel V engendré par les vecteurs $a = (1, -1, 0, 0)^T$ et $b = (3, 1, 1, 0)^T$.

1. Trouver un système d'équations cartésiennes de V^{\perp} .

- 2. En déduire une base de V^{\perp} . Calculer alors une base orthonormée de V^{\perp} .
- 3. Trouver un système d'équations cartésiennes de V
- 4. Si $c = (0, 0, 0, 1)^T$ et $d = (0, 0, 1, 1)^T$, montrer que $\mathcal{B} = \{a, b, c, d\}$ est une base de \mathbb{R}^4 .
- 5. En utilisant le procédé de Gram-Schmidt sur \mathcal{B} , on trouve la base orthogonale

$$\mathcal{B}' = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -2/9 \\ -2/9 \\ 8/9 \\ 0 \end{pmatrix} \right\}.$$

En déduire rapidement des réponses aux questions 1,2 et 3.

6. Facultatif Appliquer le procédé de Gram-Scmidt pour retrouver \mathcal{B}' .

Exercice 2.6 Dans \mathbb{R}^3 on considère le plan P d'équation cartésienne x + y - 2z = 0.

- 1. Donner un vecteur qui engendre P^{\perp} .
- 2. Soit $v = (x, y, z)^T \in \mathbb{R}^3$, calculer son projeté orthogonal sur P^{\perp} puis en déduire celui sur P.
- 3. Trouver la distance euclidienne de (1,1,1) au plan P.
- 4. Ecrire dans la base canonique les matrices représentatives de projections orthogonales sur P et P^{\perp} .

Exercice 2.7 En utilisant les résultats de l'exercice 2.3, calculer

$$\inf_{(a,b,c)\in\mathbb{R}^3} \int_{-1}^1 (t^3 - at^2 - bt - c)^2 dt.$$

Exercice 2.8 Soit E un espace euclidien et F, G deux sous-espaces vectoriels de E.

- 1. Montrer que $F^{\perp} \cap G^{\perp} = (F+G)^{\perp}$.
- 2. En déduire que $F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$.
- 3. * On suppose que $E=F\oplus G$. Montrer que F^{\perp} et G^{\perp} sont en somme directe puis que $E=F^{\perp}\oplus G^{\perp}$.

Exercice 2.9 On se place dans l'espace vectoriel $\mathbb{R}_2[X]$.

- 1) Question préliminaire : Si $P \in \mathbb{R}_2[X]$ est tel que P(1) = P'(1) = P''(1) = 0, montrer, en résolvant un système, que P est le polynôme nul.
- 2) Pour tous P, Q dans $\mathbb{R}_2[X]$, on pose

$$f(P,Q) = P(1)Q(1) + P'(1)Q'(1) + P''(1)Q''(1).$$

Montrer que f est un produit scalaire sur $\mathbb{R}_2[X]$.

- 3) Grâce au procédé de Gram-Schmidt, orthonormaliser la base $\{1, X, X^2\}$. On note $\{U_1, U_2, U_3\}$ la base obtenue.
- 4) Vérifier que pour tout $P \in \mathbb{R}^2[X]$, $f(U_1, P) = P(1)$, $f(U_2, P) = P'(1)$, $f(U_3, P) = P''(1)$. Comment s'appelle l'écriture de P dans la base $\{U_1, U_2, U_3\}$.
- 5) * Facultatif Généraliser ces résultats à $\mathbb{R}_n[X]$ et en remplaçant 1 par un nombre réel a quelconque (On pourra s'aider dès le départ de la formule de Taylor).