Let h be the maximum number of penny-to-penny connections on the vertices of a hexagonal lattice, and let t(n) be the analogous sequence on the vertices of a triangular lattice.

Figure 1: An example for h(12) = 13 and t(6) = 9

Question. What is a combinatorial proof that h(2n) - t(n) = A216256(n).

Note. A216256 is

$$\underbrace{1}_{1},\underbrace{2}_{1},\underbrace{3,3}_{2},\underbrace{4,4,4}_{3},\underbrace{5,5,5}_{3},\underbrace{6,6,6,6}_{4},\underbrace{7,7,7,7,7}_{5},\underbrace{8,8,8,8,8}_{5},\underbrace{9,9,9,9,9,9}_{6},\dots$$

Related.

1. https://oeis.org/A216256

 $2. \ t(n)$: https://oeis.org/A047932

 $3.\ h(n)$: https://oeis.org/A263135