O O DE LA Data science with R 5 0855 PARIS · DELAYEI 5 0915 NEW YORK **Brigitte Mueller** https://github.com/mbbrigitte/Ruby_Talk_Material

How to compare evaporation datasets?

Mueller et al. GRL, 2011

How to compare 30 datasets?

Hierarchical clustering

How to compare datasets?

Create some data

```
x <- rnorm(30)
y <- rnorm(30)
plot(x,y)</pre>
```


datamatrix <- cbind(x,y)</pre>

X

Calculate the distances and the clusters

```
distmatrix <- dist(datamatrix)
fit <- hclust(distmatrix, method="ward.D")
plot(fit)</pre>
```

Cluster Dendrogram

distmatrix hclust (*, "ward.D")

>> require "rinruby"

- Reads definition of RinRuby class into Ruby interpreter
- Creates instance of RinRuby class named R
- eval instance method passes R commands contained in the supplied string
 - >> sample_size = 10
 - >> R.eval "x <- rnorm(#{sample_size})"
 - >> R.eval "summary(x)"

produces the following:

Min. 1st Qu. Median Mean 3rd Qu. Max. -1.88900 -0.84930 -0.45220 -0.49290 -0.06069 0.78160

More info: https://sites.google.com/a/ddahl.org/rinruby-users/documentation

Target

Binary prediction: Delayed 0/1 Arriving late (= 15 minutes)

50% accuracy

Goal 70% accuracy

Clean, explore, tidy

Clean, explore, tidy

Clean, explore, tidy

Split into training and testing data

Training data

Testing data

- Clean, explore, tidy

- Split into training and testing data

Train your model

Test your model

Use your model with new data

Data

Prepared for you, tidied and saved as **train.csv** test.csv

Download at

https://github.com/mbbrigitte/Ruby Talk Material

Data

What variables are in the files? Check with

read.csv(filename) names(data)

ARR_DEL15, DAY_OF_WEEK, CARRIER, DEST, ORIGIN, DEP_TIME_BLK

Code: Set-up

```
install.packages('caret')
library(caret)
```

Code: Read data

```
trainData <- read.csv('train.csv',sep=',', header=TRUE)
testData <- read.csv('test.csv',sep=',', header=TRUE)</pre>
```

- Clean, explore, tidy

- Split into training and testing data

Train your model

Test your model

Use your model with new data

Select algorithm

- Classification algorithm
- Start simple
- If performance not that good, improve
 - Ensemble algorithms
 - Select more important variables from the data
 - Include additional predictor variables
 - Feature-engineering

Logistic regression

Regression that predicts a categorical value

Train

```
library(caret)
```

```
logisticRegModel <- train(ARR_DEL15 ~ .,
data=trainData, method = 'glm', family =
'binomial')</pre>
```

Dot: 'all available variables, i.e. all columns', glm gene ralized linear regression. Family binomial for logistic regression.

- Clean, explore, tidy

- Split into training and testing data

Train your model

Test your model

Use your model with new data

Predict and test

Use your model and the test data to check how well we predict flight arrival delays.

logRegConfMat

```
## Confusion Matrix and Statistics
            Reference
##
## Prediction
             7465 2273
##
       0
              65 94
       1
##
##
##
           Accuracy: 0.7638
            95% CI: (0.7553, 0.7721)
##
     No Information Rate: 0.7608
##
     P-Value [Acc > NIR] : 0.2513
##
##
##
            Kappa: 0.0457
## Mcnemar's Test P-Value: <2e-16
##
         Sensitivity: 0.99137
##
         Specificity: 0.03971
##
       Pos Pred Value: 0.76658
##
       Neg Pred Value: 0.59119
##
##
          Prevalence: 0.76084
##
       Detection Rate: 0.75427
    Detection Prevalence: 0.98393
##
      Balanced Accuracy: 0.51554
##
##
      'Positive' Class: 0
##
```

```
## Confusion Matrix and Statistics
            Reference
##
## Prediction
             7465 2273
##
       0
              65 94
       1
##
##
##
           Accuracy : 0.7638
            95% CI: (0.7553, 0.7721)
##
     No Information Rate: 0.7608
##
     P-Value [Acc > NIR] : 0.2513
##
##
##
            Kappa: 0.0457
## Mcnemar's Test P-Value: <2e-16
##
##
         Sensitivity: 0.99137
         Specificity: 0.03971
##
        Pos Pred Value: 0.76658
##
        Neg Pred Value: 0.59119
##
##
          Prevalence: 0.76084
##
       Detection Rate: 0.75427
    Detection Prevalence: 0.98393
##
      Balanced Accuracy: 0.51554
##
##
      'Positive' Class: 0
##
```


Specificity is low - Improve model

```
names(getModelInfo())
logisticRegModel <- train(ARR_DEL15 ~ .,
data=trainData, method = 'glm', family =
'binomial')</pre>
```


Next steps

- Try basics yourself
 - Improve model used with data in this talk
 - Titanic dataset: http://amunategui.github.io/binary-outcome-modeling/
 - https://www.datacamp.com/courses/kaggle-tutorialon-machine-learing-the-sinking-of-the-titanic
- Try advanced methods
 - Kaggle
- Find your own dataset
- Learn more about machine learning and R:

Further reading

Elements of Statistical Learning, Hastie et al. 2009, Springer:

Available for fee

http://statweb.stanford.edu/~tibs/Ele
mStatLearn/

Picture sources

- http://www.tronviggroup.com/open-source-evolution/ (world with people)
- http://twit88.com/blog/2011/03/01/open-source-ide-for-r/ (R IDE)
- http://www.dailymail.co.uk (Coin toss)
- http://www.theanalysisfactor.com/r-glm-plotting/ (log. Regression figure)

Do it yourself

- Download and install R https://convenient) and RStudio
 https://www.rstudio.com/ if you want to (it is convenient)
- Download the train.csv and test.csv files from Github
 https://github.com/mbbrigitte/Ruby Talk Material
- Use theRmd files in R or just browse the code with themd file in your explorer

R: Packages and functions

Lots of statistical packages (libraries)

```
install.packages('caret')
library(caret)
```

- Run line by line or write programms with ending .R
 source("foo.R")
- Function

```
myfun<- function(arg1, arg2, ...)
    w=arg1^2
    return(arg2 + w)
    }
    myfun(arg=3,arg2=5)</pre>
```

R: Subsetting

Matrix

```
mat <- matrix(data=c(9,2,3,4,5,6),ncol=3)
mat[1,2] #output is 3
mat[2,] #output is 2,4,6
```

• Lists:

```
L = list(one=1, two=c(1,2), five=seq(0, 1,length=5))
L$five #output 0.00 0.25 0.50 0.75 1.00
```

Original data source

OFFICE OF THE ASSISTANT SECRETARY FOR RESEARCH AND TECHNOLOGY

About OST-R | Press Room | Programs | OST-R Publications | Library | Contact Us

Bureau of Transportation Statistics

Search

BTS Press Room Data and Statistics * Subject Areas **External Links** About BTS Publications

OST-R > BTS

Results from evaporation dataset clustering

Example with gbm instead of glm method, i.e. boosted tree model: see

http://topepo.github.io/caret/training.html

```
fitControl <- trainControl(method = 'repe
atedcv', number = 10, repeats = 10)</pre>
```

```
gbmFit1 <- train(ARR_DEL15 ~ ., data=trai
nData, method = 'gbm',trControl = fitCont
rol,verbose = FALSE)</pre>
```