1

- 1) De 0 à t₁: échelon de position, permet de décaler de "a" le chariot De t₁ à t₂: rampe, permet un déplacement à vitesse constante sur la distance b. Puis retour au départ.
- 2) 0,1s = constante de temps dominante du système électro-mécanique Intégration, car c'est la position qui est mesurée (intégrale de la vitesse).

3)
$$\frac{V_X}{E} = \frac{1}{\frac{p^2}{200} + \frac{p}{20} + 1}$$

Z = 0.35 donc : D% = 31%

 $\mathcal{E}_{P} = 0$ (intégration en BO)

 $\varepsilon_{V} = 0.05$

$$(Arg BO)_{\omega = 14,1} = -145^{\circ}$$

Donc : $M\phi = 35^{\circ}$

$$t_r.\omega_0 = 7,9$$

$$\omega_0 = 14.1$$

Donc :
$$t_r = 0.56s$$

2

1)
$$\frac{V_X}{E} = \frac{1}{\frac{p^2}{200G} + \frac{p}{20G} + 1}$$

 $Z = 1 \text{ pour } G = G_0 = 0,125$

 $\varepsilon_P = 0$ (intégration en BO)

 $\varepsilon_V = 0.4$ (plus grande que pour G = 1)

$$(Arg BO)_{\omega = 2,5} = -104^{\circ}$$

Donc: $M\varphi = 76^{\circ}$

Inconvénient : erreur de vitesse augmentée (rampe de E)

Avantage : plus grande marge de phase, donc transitoire amorti (Z = 1)

3

1) $\varepsilon_P = \varepsilon_V = 0$ (2 intégrations en BO)

En boucle ouverte :

$$\frac{20G(1+0.1p)}{0.1p^2(1+0.001p)}$$

Pour : G = 1 :

 $(Arg BO)_{\omega = 20} = -118^{\circ}$

Donc : $M\phi = 62^{\circ}$

Si : G diminue, la marge de phase diminue

Si : G augmente, la marge de phase augmente puis diminue

Pour : G = 5 :

 $(Arg BO)_{\omega = 100} = -101^{\circ}$

Donc: $M\phi = 79^{\circ}$

Réglage final : suppression de l'erreur de position et de vitesse et probablement peu de dépassement en transitoire car marge de phase assez grande.