NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Agus Leonardi, Tay Jun Jie

Question 1

(a) We will first prove $\sup_{m\geq n}(a_m+b_m)\leq \sup_{m\geq n}a_m+\sup_{m\geq n}b_n$. Let $\sup_{m\geq n}a_m=L$ and $\sup_{m\geq n}b_m=M$. By definition, for all $m\geq n$, we have $a_m\leq L$ and $b_m\leq M$, which implies $a_m+b_m\leq L+M$ for all $m\geq n$, hence proving the claim.

By the property of limits, we have

$$\lim_{n \to \infty} \sup_{m > n} (a_m + b_m) \le \lim_{n \to \infty} \sup_{m > n} a_m + \lim_{n \to \infty} \sup_{m > n} b_n$$

hence proving the required inequality.

(b) Let $a_n = \sin n$ and $b_n = -\sin n$. Then $\limsup_{n \to \infty} (a_n + b_n) = 0$, while $\limsup_{n \to \infty} a_n = \limsup_{n \to \infty} b_n = 1$. In this case, we have strict inequality.

Question 2

(a) We will first prove that g'(0) exists implies g'(0) = 0. Suppose g'(0) exists, but $g'(0) \neq 0$. WLOG, suppose g'(0) > 0. Then there exists $\delta > 0$ such that

$$g(x) > 0, \quad \forall x \in (0, \delta)$$

$$g(x) < 0, \quad \forall x \in (-\delta, 0)$$

However, by definition, $g(x) \equiv |f(x)| \ge 0$ for all x. Hence, we have a contradiction. We conclude that g'(0) = 0.

Now, by definition of derivative,

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{g(x)}{x} = \lim_{x \to 0} \frac{|f(x)|}{x} = 0$$

Moreover, when x > 0, we have the following inequality:

$$-\frac{|f(x)|}{x} \le \frac{f(x)}{x} \le \frac{|f(x)|}{x}$$

The direction of above inequality is reversed when x < 0. Hence, by Squeeze Lemma,

$$f'(0) = \lim_{x \to 0} \frac{f(x)}{x} = 0$$

proving the statement.

(b) Suppose f'(0) exists.

One direction has been proven, i.e. if g'(0) exists then by part (i), f'(0) = 0 and g'(0) = 0. We will prove the other direction.

Now, if f'(0) = 0, then by definition of derivative, given any $\varepsilon > 0$, there exists $\delta > 0$, such that for all x such that $0 < |x| < \delta$, $\left| \frac{f(x)}{x} \right| < \varepsilon$.

Moreover, we have for all x such that $0 < |x| < \delta$,

$$\left| \frac{|f(x)|}{x} - 0 \right| = \left| \frac{f(x)}{x} \right| < \varepsilon$$

hence, proving that

$$g'(0) = \lim_{x \to 0} \frac{g(x)}{x} = \lim_{x \to 0} \frac{|f(x)|}{x} = 0$$

by definition.

Question 3

(a) We will first show that f is Riemann-integrable in [0,1], by showing that f is continuous in [0,1]. Given $\varepsilon > 0$, take $\delta = \varepsilon^2$, then for all $|x - y| < \delta$,

$$|f(x) - f(y)| \le \sqrt{|y - x|} < \sqrt{\delta} = \varepsilon$$

as required.

Now, we can apply the Riemann sum expression for f(x).

Take the equal-spaced partition of f (with norm $\frac{1}{n}$), with the right end-point of each partition interval as the sample point. Then since f is integrable, and $\lim_{n\to\infty} \frac{1}{n} = 0$, by the Theorem on Convergence of Riemann Sums,

$$\lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{i}{n}\right) \frac{1}{n} = \int_{0}^{1} f(x) dx$$

as required.

Question 4

(a) By Taylor Expansion, we have

$$\sin y = \sin 0 + \frac{\cos c}{1!}y$$

for some c between 0 and y.

As $|\cos c| \le 1$, we have $|\sin y| \le |y|$ for all $y \in \mathbb{R}$. Therefore, we have $\left|\sin \frac{x^p}{n^p}\right| \le \left|\frac{x^p}{n^p}\right|$ for all $x \in \mathbb{R}$.

To prove convergence of the required series, we will use Weierstrass M-test. Note that if p > 1,

$$\sum_{p=1}^{\infty} \left| \frac{x^p}{n^p} \right| = |x^p| \sum_{p=1}^{\infty} \frac{1}{n^p}$$

Page: 2 of 5

converges for all $x \in \mathbb{R}$ by the *p*-series test.

Hence, $\sum_{n=1}^{\infty} \sin \frac{x^p}{n^p}$ converges uniformly on [-r, r] for any r > 0 by Weierstrass M-test.

(b) By Taylor Expansion, we have

$$\sin y = \sin 0 + \frac{\cos 0}{1!}y - \frac{\sin c}{2!}y^2$$

for some c between 0 and y.

As $-1 \le \sin c \le 1$, we have $\sin y \ge y - \frac{1}{2}y^2$ for all $y \in \mathbb{R}$.

Therefore, we have

$$\sin\frac{x^p}{n^p} \ge \frac{x^p}{n^p} - \frac{1}{2}\frac{x^{2p}}{n^{2p}}$$

Now, we will show that the series

$$\sum_{n=1}^{\infty} \left(\frac{x^p}{n^p} - \frac{1}{2} \frac{x^{2p}}{n^{2p}} \right) = \sum_{n=1}^{\infty} x^p \left(\frac{1}{n^p} - \frac{1}{2} \frac{x^p}{n^{2p}} \right)$$

diverges for any $x \neq 0$.

Consider the series $\sum_{n=1}^{\infty} \left(\frac{1}{n^p} - \frac{k}{n^{2p}} \right) = \sum_{n=1}^{\infty} \frac{n^p - k}{n^{2p}}$, where $k = \frac{1}{2}x^p$.

Let
$$a_n = \frac{n^p - k}{n^{2p}}$$
 and $b_n = \frac{1}{n^p}$

If $p \in (0,1]$, we have

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} 1 - \frac{k}{n^p} = 1 > 0$$

Clearly, if p = 0, the series diverges

Moreover, if $p \in [0, 1]$, the series $\sum_{n=1}^{\infty} b_n$ diverges by p-series test.

Hence, by Limit Comparison Test, if $p \in [0,1]$, the series $\sum_{n=1}^{\infty} \sin \frac{x^p}{n^p}$ is divergent at any $x \neq 0$.

Question 5

(a) Let
$$f_n(x) = \frac{1}{n} \sin \frac{x}{\sqrt{n}}$$
.

Clearly, $f_n(x)$ are differentiable for all $x \in \mathbb{R}$.

Moreover, $\sum_{n=1}^{\infty} f_n(1)$ converges. This is because (by Question 4)

$$\left| \frac{1}{n} \sin \frac{1}{\sqrt{n}} \right| \le \left| \frac{1}{n\sqrt{n}} \right|$$

and the series $\sum_{n=1}^{\infty} \left| \frac{1}{n^{\frac{3}{2}}} \right|$ converges by the *p*-series test.

Therefore, $\sum_{n=1}^{\infty} f_n(1)$ converges by Comparison Test.

Furthermore,

$$\sum_{n=1}^{\infty} f'_n = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} \cos \frac{x}{\sqrt{n}}$$

converges uniformly. This is because

$$\left| \frac{1}{n^{\frac{3}{2}}} \cos \frac{x}{\sqrt{n}} \right| \le \frac{1}{n^{\frac{3}{2}}}$$

and $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges by *p*-series test.

Hence, the convergence of $\sum_{n=1}^{\infty} f'_n$ follows by Weierstrass M-test.

In this case, we have f(x) is uniformly convergent on \mathbb{R} and $f'(x) = \sum_{n=1}^{\infty} f'_n = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} \cos \frac{x}{\sqrt{n}}$ as required.

Question 6

(a) For x = 0, $\sum_{n=1}^{\infty} \frac{\cos \sqrt{n}x}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges. Furthermore, since cosine is even, it suffices to consider x > 0. Let x > 0 be given. Now, we note that $\cos \sqrt{n}x \ge \frac{1}{2}$ whenever

$$2k\pi - \frac{\pi}{3} \le \sqrt{n}x \le 2k\pi + \frac{\pi}{3},$$

that is,

$$\left(\frac{(6k-1)\pi}{3x}\right)^2 \le n \le \left(\frac{(6k+1)\pi}{3x}\right)^2.$$

Let $l_k = \left(\frac{(6k-1)\pi}{3x}\right)^2$, $L_k = \left(\frac{(6k+1)\pi}{3x}\right)^2$, $I_k = [l_k, L_k]$ and $\ell_k = L_k - l_k = \frac{8k\pi^2}{3x^2}$. Since $\ell_k \to \infty$ as $k \to \infty$, we deduce that $\exists N_1 \in \mathbb{N}$ such that $I_k \cap \mathbb{N} \neq \emptyset$ for every $k \ge N_1$. In addition, let $\lfloor \cdot \rfloor$, $\lceil \cdot \rceil$ and $\#I_k$ denote the floor function, ceiling function and number of integers in I_k respectively. Then $\#I_k = \lfloor L_k \rfloor - \lceil l_k \rceil + 1 > L_k - l_k - 1 = \ell_k - 1$. Now, for every $k \ge N_1$,

$$\left| \sum_{n \in I_k} \frac{\cos \sqrt{n}x}{\sqrt{n}} \right| \ge \sum_{n \in I_k} \frac{\cos \sqrt{n}x}{\sqrt{n}} \ge \frac{1}{2} \sum_{n \in I_k} \frac{1}{\sqrt{n}} \ge \frac{1}{2} \sum_{n \in I_k} \frac{1}{\sqrt{L_k}}$$
$$= \frac{1}{2} \frac{\#I_k}{\sqrt{L_k}} > \frac{1}{2} \frac{\ell_k - 1}{\sqrt{L_k}}$$

Now, $\lim_{k\to\infty} \frac{1}{\sqrt{L_k}} = 0$ and

$$\lim_{k \to \infty} \frac{\ell_k}{\sqrt{L_k}} = \lim_{k \to \infty} \frac{8k\pi^2}{3x^2} \cdot \frac{3x}{(6k+1)\pi} = \frac{4\pi}{3x}.$$

Hence, $\lim_{k\to\infty} \frac{\ell_k-1}{\sqrt{L_k}} = \frac{4\pi}{3x}$. Thus $\exists N_2 \in \mathbb{N}$ such that $\left|\frac{\ell_k-1}{\sqrt{L_k}} - \frac{4\pi}{3x}\right| < \frac{2\pi}{3x}$ whenever $k \geq N_2$. Therefore, for every $k \geq \max(N_1, N_2)$, we have

$$\left| \sum_{n \in I_k} \frac{\cos \sqrt{n}x}{\sqrt{n}} \right| > \frac{\pi}{3x}.$$

In conclusion, $\sum_{n=1}^{\infty} \frac{\cos \sqrt{n}x}{\sqrt{n}}$ fails the Cauchy Criterion and thus diverges.

(b) For
$$x = 0$$
, $\sum_{n=1}^{\infty} \frac{\sin \sqrt{n}x}{n} = 0$.

Furthermore, since sine is an odd function, we have $-\sum_{n=1}^{\infty} \frac{\sin \sqrt{n}x}{n} = \sum_{n=1}^{\infty} \frac{\sin (-\sqrt{n}x)}{n}$, hence it

suffices to consider the case where x > 0.

Let x > 0 be given and let $y_n = \sqrt{n}x$ for each $n \in \mathbb{N}$. Note that $\bigcup_{n=1}^{\infty} [y_n, y_{n+1})$ forms a partition on $[x, \infty)$. Moreover, $\lim_{n \to \infty} y_{n+1} - y_n = 0$ and $x^2 = y_{n+1}^2 - y_n^2$ for all $n \in \mathbb{N}$. Therefore,

$$\sum_{n=1}^{\infty} \frac{\sin \sqrt{n}x}{n} = x^2 \frac{\sin y_n}{y_n^2} = (y_{n+1} + y_n) \frac{\sin y_n}{y_n^2} (y_{n+1} - y_n).$$

Since $\lim_{n\to\infty} y_{n+1} - y_n = 0$, heuristically $y_{n+1} \approx y_n$ for large n. Hence, the tail sum of $\sum_{n=1}^{\infty} \frac{\sin \sqrt{n}x}{n}$ is the Riemann sum of $\int_I \frac{2\sin y}{y} dy$ over some appropriate interval I.

Page: 5 of 5

Since $\int_0^\infty \frac{\sin t}{t} dt$ converges, we conclude that $\sum_{n=1}^\infty \frac{\sin \sqrt{n}x}{n}$ converges.