

Capstone Project – 4 Start-up Funding Prediction

Is this startup ready for funding?Let's find out!

Apprehending the goal!

There has been a staggering growth in investments in young age startups in the last 5 years. A lot of big VC firms are increasingly getting interested in the startup funding space. We are given a task to predict whether a startup will get a funding in the next three months using app traction data and startup details.

Data Pallete

General Features

- UUID- (Unique Identifier)
- Month
- Application Category
- Avg Session Time
- Total Session Time
- Open Rate
- Reach
- Funding Ind

Features for funded Start-ups

- Business models
- City
- Company Stage
- Founded year
- Latest funded date
- Monthly Active Users
- Total Funding
- Uninstall Rate

Approaching the Problem

- Dropped the features which were only provided for funded startups.
- Taking entire dataset.
- As, we want to predict whether start-up will be funded in next 3 months, we took the last 3 months as prediction months and made the month before 3 months as th training month.

Data Cleaning

Removing features that were only present for Funded startups & Missing Values Imputation UUID with count less than 4

According to the approach discussed above, UUID with less that 4 months data is removed

Removing Duplicates

> No. of Duplicates: 89412

Imputing missing values by creating a class that would go for each UUID then by Category and apply back fill(limit-1) & forward fill(limit-1) and remaining with mean of that UUID and category.

UUID	Application Category	
х	Business	1
х	Business	1
х	Business	1
у	Entertainment	2
у	Entertainment	2
у	Entertainment	2

Initial Data size

(1502175, 20)

Feature Engineering

Avg_Session_Time_Prev3: The average-session time upto 3rd last month.

Open_Rate_Prev3: The open rate-upto 3rd last month.

Reach_Prev3: The reach upto 3rd-last month.

Total_Session_Time_Prev3: The total____session time upto 3rd last month.

Feature Engineering(Contd.)

Avg_Session_Time_change_3: The expected change in average session time after 3 months.

Avg_Session_Time_change_2: The expected change in average session time after 2 months.

Avg_Session_Time_change_1: The expected change in average session time after 1 month.

Open_Rate_change_3: The expected change in open rate after 3 months.

Open_Rate_change_2: The expected change in open rate after 2 months.

Feature Engineering(Contd.)

Open_Rate_change_1 : The expected change in open rate after 1 month.

Reach_change_3: The expected change in Reach after 3 months.

Reach_change_2: The expected change in Reach after 2 months.

Reach_change_1: The expected change in Reach after 1 month.

Total_Session_Time_change_3: The expected change in total session time after 3 months.

Feature Engineering(Contd.)

Total_Session_Time_change_2: The expected change in total session time after 2 months.

Total_Session_Time_change_1: The expected change in total session time after 1 month.

Times_Funded_prev: Number of time the startup got funded earlier.

Investor_Interest: The percentage of interest, the investor shows.

Funded: Dependent variable indicating whether startup will get funded in next 3 months.

Data Pre-processing for Model

Applying ML Algorithms

Stochastic Gradient Descent

Training acc	uracy Score ccuracy Score		84292843775 30674627929	
	precision	recall	f1-score	support
0	1.00	1.00	1.00	22270
1	1.00	1.00	1.00	22614
accuracy			1.00	44884
macro avg	1.00	1.00	1.00	44884
weighted avg	1.00	1.00	1.00	44884

model	train_accuracy	train_precision	train_recall	train_fl_score	train_tn +p +n	train_auc_roc	test_accuracy	test_precision	test_recall	test_fl_score	test_tn tp tn tp	test_auc_roc
SGD	0.998429	0.996865	1.0	0.99843	[89582, 282, 0, 89672]	0.998431	0.998307	0.996639	1.0	0.998317	[22270, 76, 0, 22538]	0.998299

Applying ML Algorithms

Decision Tree Classifier (Cost Complexity Pruning)

Applying ML Algorithms

Performance of Decision Tree Classifier

model	train_accuracy	train_precision	train_recall	train_fl_score	train_tn fp fn tp	train_auc_roc	test_accuracy	test_precision	test_recall	test_fl_score	test_tn fp fn tp	test_auc_roc
Decision Tree	0.999983	1.0	0.999967	0.999983	[89864, 0, 3, 89669]	0.999983	0.993873	0.990742	0.997116	0.993919	[22136, 210, 65, 22473]	0.993859

Performance of Gradient Boosting Classifier

model	train_accuracy	train_precision	train_recall	train_fl_score	train_tn fp fn tp	train_auc_roc	test_accuracy	test_precision	test_recall	test_fl_score	test_tn fp fn tp	test_auc_roc
GBM	0.947983	0.96379	0.930826	0.947021	[86728, 3136, 6203, 83469]	0.947964	0.944925	0.963418	0.925459	0.944057	[21554, 792, 1680, 20858]	0.945008

Performance of XG Boost Classifier

model	train_accuracy	train_precision	train_recall	train_fl_score	train_tn fp fn tp	train_auc_roc	test_accuracy	test_precision	test_recall	test_fl_score	test_tn fp fn tp	test_auc_roc
XGB	0.94156	0.959718	0.921681	0.940315	[86395, 3469, 7023, 82649]	0.941539	0.94214	0.960552	0.922664	0.941227	[21492, 854, 1743, 20795]	0.942223

Feature Importance

Cat Boost

Training Classification Report

Test Classification Report

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	1.00	0.99	1.00	78727	0	1.00	0.99	1.00	33483
1	0.99	1.00	1.00	78367	1	0.99	1.00	1.00	33843
accuracy			1.00	157094	accuracy			1.00	67326
macro avg	1.00	1.00	1.00	157094	macro avg	1.00	1.00	1.00	67326
eighted avg	1.00	1.00	1.00	157094	weighted avg	1.00	1.00	1.00	67326

Cat Boost

Confusion Matrix for Training data

Confusion Matrix for Test data

Cat Boost

Revisiting the Problem

- Periodic Investment
- Apply with other Domain/ Category
- Age of company
- Relations with investors
- Considering other features while investing more than once.

Never Funded (Cat Boost)

Training Classification Report

precision	recal	l f1-scor	e suppor	t
78412	0	1.00	0.99	1.00
	1	0.99	1.00	1.00
78180				
accura 156592	СА			1.00
macro a 156592	vg	1.00	1.00	1.00
weighted a	vg	1.00	1.00	1.00

Test Classification Report

precision	recal	l f1-score	e suppor	t
33440	0	1.00	0.99	1.00
33672	1	0.99	1.00	1.00
accura 67112 macro a	-	1.00	1.00	1.00
67112 weighted a ^e 67112		1.00	1.00	1.00

Never Funded (Cat Boost)

Confusion Matrix for Training data

Confusion Matrix for Test data

Feature Importance

Funded Previously (Cat Boost)

Training Classification Report

precision	recall	f1-score	e support	5
0 245	1	.00	1.00	1.00
1 256	1	.00	1.00	1.00
accuracy				1.00
501 macro avo		.00	1.00	1.00
501 weighted avg		.00	1.00	1.00
501				

Test Classification Report

precision	recall	f1-score	support	
(113	0 0	.96	0.96	0.96
	1 0	.96	0.96	0.96
accuracy 215	У			0.96
macro avo	g 0	.96	0.96	0.96
weighted avo	g 0	.96	0.96	0.96

Funded Previously (Cat Boost)

Confusion Matrix for Training data

Confusion Matrix for Test data

Feature Importance

Conclusion

- As the Exploratory Data Analysis suggests, maximum seeding funding is given to startups.
- In the year, 2020 total amount of funding was maximum.
- The Category which got funding for maximum number of times was Education.
- Maximum funding was given to Bangalore based startups.
- As we had other more feature for startups that were funded once, for this problem we suggest to build two separate ML systems. (Even can do multiclass classification)
- Cat Boost was performing well overall. So optimal model would be same for both ML systems.

Challenges

- The dataset was too large to handle.
 - There were plenty of missing values.
 - We had to build relevant features to approach the problem statement.
 - As the dataset was very large, it took great deal of time to prepare the training dataset.
 - Due to lack of time we were unable to make good model for startups that were already funded.

Q & A