General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

QUARTERLY RESEARCH REPORT TO THE NASA MANNED SPACECRAFT CENTER

THE MEASUREMENT OF RADIATION EXPOSURE OF ASTRONAUTS BY RADIOCHEMICAL TECHNIQUES

April 2, 1973 through June 30, 1973

by

R. L. Brodzinski

July 15, 1973

Pacific Northwest Laboratories Richland, Washington 99352

---NOTICE---

This report was prepared as an account of work sponsored by the United States conveniment. Neither the United States conveniment, Neither the United States aroms beergy Commission, not any of these employers, nor any of these confractors, subcomfractors, or these employers, makes any warrants, express or implied, or assumes any legal liability or responsibility for the secondary, completeness of uniformations, apparatus, product or process disclosed, or represents that its one would not infringe privately owned rights.

9

BNWL-1183 15

TABLE OF CONTENTS

	Page No
List of Tables	iii
Abstract	1
Determination of the Radionuclide Content of Feces and Urine from Astronauts Engaged in Space Flight	3
Neutron Activation Analysis of Feces and Urine from Astronauts Engaged in Space Flight	6
Expenditures	16
References	18
Distribution	19

*

LIST OF TABLES

		Page No
I.	Radioactivity in Urine from Apollo 17 Astronauts	4
II.	Na, K, Rb, and Cs Concentrations in Urine Samples from Apollo 17 Astronauts	7
III.	Ca, Sr, and Ba Concentrations in Urine Samples from Apollo 17 Astronauts	8
IV.	Cr, Fe, and Co Concentrations in Urine Samples from Apollo 17 Astronauts	9
v.	Ag, Au, Zn, Cd, and Hg Concentrations in Urine Samples from Apollo 17 Astronauts	10
VI.	Sn, As, Sb, Se, and Br Concentrations in Urine Samples from Apollo 17 Astronauts	11
VII.	Sc, La, Sm, Eu, and Tb Concentrations in Urine Samples from Apollo 17 Astronauts	12
VIII.	Hf, Ta, and Th Concentrations in Urine Samples from Apollo 17 Astronauts	13
IX.	Expenditures	16

QUARTERLY RESEARCH REPORT TO THE NASA MANNED SPACECRAFT CENTER

THE MEASUREMENT OF RADIATION EXPOSURE OF ASTRONAUTS BY RADIOCHEMICAL TECHNIQUES

April 2, 1973 through June 30, 1973

R. L. Brodzinski

ABSTRACT

A cosmic radiation dose to the Apollo 17 crew of <1.3 R was calculated from the specific activities of ²⁴Na in their postflight urine specimens. The specific activities of ⁴²K, ⁵¹Cr, ⁶⁰Co, and ¹²⁴Sb, introduced by injection into the astronauts, are extremely high in these specimens. The ⁵⁹Fe and ¹³⁷Cs levels are also reported and appear to be normal.

The concentrations of Na, K, Rb, Cs, Ca, Sr, Ba, Cr, Fe, Co, Ag, Au, Zn, Cd, Hg, Sn, As, Sb, Se, Br, Sc, La, Sm, Eu, Tb, Hf, Ta, and Th were measured in urine specimens from the Apollo 17 astronauts by neutron activation analysis. Strontium, barium, gold, cadmium, lanthanum, samarium, europium, terbium, thorium, and tin are reported for the first time. The concentrations or excretion rates of bromine and the alkali metals exhibit significantly reduced postflight levels and are generally lower than values observed for previous missions. Chromium concentrations reflect radiochromium injections. High levels of arsenic are present in the postflight specimens. No urinary loss of body calcium is evident. Excretion of iron and scandium is similar

to earlier missions. Antimony, silver, hafnium, and tantalum elimination rates are lower than previously encountered, and cobalt, zinc, and iron levels are lower than normally anticipated.

THE MEASUREMENT OF RADIATION EXPOSURE OF ASTRONAUTS BY RADIOCHEMICAL TECHNIQUES

Determination of the Radionuclide Content of Feces and Urine from Astronauts Engaged in Space Flight

Astronauts engaged in space flight are subjected to cosmic radiation which induces radioactive isotopes in their bodies. The radiation dose received from cosmic particles can be determined from the quantities of these induced radionuclides. (1)

The concentrations of these induced activities can be ascertained by direct whole-body counting of the astronauts or by indirect measurement such as counting that fraction of the radionuclides excreted in feces and urine. The latter approach has been used on all manned Apollo missions. In addition to the induced activities, several fallout, injected, and naturally occurring radioisotopes have been measured; variations in their concentrations may be indicative of changes in the biological life processes encountered in the space environment.

The concentrations of the radioisotopes listed in Table I have been normalized by dividing each decay-corrected disintegration rate by the weight of the respective stable element. All samples were handled according to procedures described earlier. (1) A cosmic radiation dose to the Apollo 17 crew of <1.3 R was calculated by comparing the postflight ²⁴Na concentrations in their urine to those in the urine of radiotherapy patients. (2) Since ²⁴Na is short-lived compared to the duration of the mission, this

TABLE I

RADIOACTIVITY IN URINE FROM APOLLO 17 ASTRONAUTS

	Flight	dis/min 24 Na	dis/min 42 K	ы	dis/min 59 Fe		dis/min 124sb	dis/min 137 Cs
Astronaut	Period		per g K		per q Fe	oo b red	per g Sb	per g Cs
CDR	F-30						(3.57:0.27)-108	(1.76.0.28).10 ⁷
CMF	F-30			.9.9.107		(1.9.0.7).10 ⁷	(4.2.0.9).107	(3.22.0.36).10 ⁷
LMP	F-30			(1.66.0.03).109	2.1-106			(1.78.0.23).10 ⁷
CDR	F-15			(5.07.0.03).10 ¹⁰			(4.7.1.0)·10 ⁷	(2.8.1.9).10 ⁶
CMP	F-15			(9.69.0.01) · 10 ¹⁰				(1.28.0.58).10 ⁷
LMP	F-15			$(8.39 \cdot 0.15) \cdot 10^{10}$.3.6.10 ⁵		(2.4:1.3)·10 ⁷	(1.65.0.22).10 ⁷
CDR	F-5			,6.0.10 ¹⁰				(2.88±0.96)-10 ⁷
CMP	F-5			$(1.296\pm0.004)\cdot10^{10}$ $\cdot 3.0\cdot10^{6}$	10 ,3.0.106	$(1.1:0.4)\cdot10^{7}$		(4.01.0.56)-10 ⁷
LMP	F -5			.3.4-10 ¹⁰			(3.9±1.7) -10 ⁷	$(1.15 \pm 0.24) \cdot 10^{7}$
CDR	R+0	°680	(2.34.0.01)-106	$(2.34 \cdot 0.01) \cdot 10^{6} (1.480 \cdot 0.004) \cdot 10^{11}$	11	(4.67:0.1°)·10 ⁸	(4.67:0.1°)·10 ⁸ (1.62·0.14)·10 ⁸	(1.87:0.28)·10 ⁷
CMP	R+0	<1000	(2.49:0.02)·10 ⁶	$(2.49;0.02)\cdot10^{6}$ (6.00:0.03)·10 ¹⁰		$(5.84 \pm 0.18) \cdot 10^{8} (1.5 \pm 0.3) \cdot 10^{8}$	(1.5±0.3)·10 ⁸	(1.19:0.52) 110 ⁷
LMP	R+0	·880	>4.2·10 ⁶	(9.91±0.03)·10 ¹⁰		2.26:0.04).109	2.26:0.04).10 ⁹ (3.96:0.31).10 ⁸ (2.39:0.28).10 ⁷	(2.39±0.28) -10 ⁷

calculation assumes a constant radiation exposure throughout the mission. This value is somewhat more reliable than reported earlier $^{(3)}$ due to the more accurate normalization methods used here. However, due to the probability of postflight injection of uncertain amounts of 24 Na, only an upper limit for the radiation dose can be calculated by this technique.

The specific activities given for ⁴²K again reflect the postflight injection of this radiotracer; those of ⁵¹Cr show injection of this isotope between F-30 and F-15, as well as postflight. The contamination of the radiochromium tracer with ⁶⁰Co and ¹²⁴Sb is also demonstrated by these data. Particular attention is called to the unprecedented high levels of postflight ⁶⁰Co. The specific activities reported for ⁵⁹Fe and ¹³⁷Cs appear normal and are similar to values obtained for earlier missions.

Neutron Activation Analysis of Feces and Urine from Astronauts Engaged in Space Flight

This program was initiated in an attempt to foresee any possible metabolic changes in astronauts caused by conditions of weightlessness and prolonged physical inactivity which might have been manifested by an uptake or loss of an element or elements by their bodies. The primary concern had been the terrestrially observed phenomenon of osteoporosis (loss of skeletal calcium); although changes in the uptake and excretion rates of other essential microconstituents of the body, such as Co, Fe, Se, and the alkali metals, were also important.

The concentrations of Na, K, Rb, Cs, Ca, Sr, Ba, Cr, Fe, Co, Ag, Au, Zn, Cd, Hg, Sn, As, Sb, Se, Br, Sc, La, Sm, Eu, Tb, Hf, Ta, and Th have been measured in the preflight and postflight urine specimens from the Apollo 17 astronauts by the previously described technique of neutron activation analysis. (1,4,5)

These results and the corresponding daily excretion rates are reported in Tables II through VIII.

The urinary concentrations of Sr, Ba, Au, Cd, La, Sr, Eu, Tb, and Th have not been measured previously; the significance of the data is not immediately apparent. The concentrations and excretion rates of Sn are also reported for the first time; these data reflect normally expected excretion patterns (6) as do the data for Hg and Se.

As in earlier missions (7) reduced postflight excretion of the alkali metals and bromine is demonstrated. The Na

TABLE II

NA, K, Rb, and Cs CONCENTRATIONS IN URINE SAMPLES FROM APOLLO 17 ASTRONAUTS

		£4 ;	Na		×		Rb	Cs	
Astronaut	Flight	mg/ml	g/day	1/day mg/ml g/day	g/day	.g/ml	mg/day	ng/ml	.g/day
CDR	F-30	1.88	2.82	47 •	.2.1	0.782	1.17	2.59	3.89
CMD	F-30	1.40	2.79	1.3	£2.6	0.856	1.70	2.25	4.48
LMP	F-30	1.90	3.28	<1.7	.3.0	1.13	1.95	2.96	5.11
CDR	F-15	1.86	1.95	÷1.5	-1.6	1.82	1.88	5.10	5.28
CMP	F-15	1.12	3.14	-1.2	÷3.3	0.762	2.13	2.30	6.44
LMP	F-15	1.38	2.69	₩.T.	÷2.8	1.23	2.40	3.76	7.33
CDR	က မ	1.06	0.413	1.1°	-0.43	1.09	0.425	3.31	1.29
CMP	F-5	0.320	0.650	0.774	1.57	0.792	1.61	1.68	3.41
LMP	E4 LC:	1.03	1.50	<1.1	÷1.6	1.64	2.39	3.50	5.09
CDR	R+0	0.292	0.457	0.500	0.783	0.589	0.922	2.26	3.54
CMP	R+0	0.280	0.911	0.356	1.16	0.429	1.40	1.54	5.01
LMP	R+0	0.928	0.627	41.1	.0.72	1.60	1.08	4.84	3.27

TABLE III

Ca, Sr, AND Ba CONCENTRATIONS IN

URINE SAMPLES FROM APOLLO 17 ASTRONAUTS

	Flight		a		r	Ва	a
Astronaut	Period	µg/ml	mg/day	ng/ml	μg/day	ng/ml	mg/day
CDR	F-30	< 78	<120	<55	<83	<110	<0.16
CMP	F-30	< 72	<140	< 68	<130	< 470	<0.94
LMP	F-30	< 84	<140	< 4 4	<75	< 780	<1.3
CDR	F-15	<81	<83	< 68	<71	<130	<0.13
CMP	F-15	< 66	< 1.80	< 42	<120	< 260	<0.73
LMP	F-15	< 72	< 140	< 43	< 84	<610	<1.2
CDR	F-5	< 60	<23	<65	<25	<110	<0.044
CMP	F-5	<110	< 220	<37	<75	<210	<0.43
LMP	F-5	< 55	< 81	< 60	< 87	<130	<0.19
CDR	R+0	< 93	<150	< 47	< 74	<77	<0.12
CMP	R+0	<110	< 340	<33	<110	<180	<0.59
LMP	R+0	< 55	< 37	<73	< 49	<150	<0.10

TABLE IV

Cr, Fe, AND CO CONCENTRATIONS IN

URINE SAMPLES FROM APOLLO 17 ASTRONAUTS

	Flight	C	r		Fe	C	o
Astronaut	Period	ng/ml	μg/day	ng/ml	μg/day	pg/ml	ng/day
CDR	F-30	<3.2	<4.8	< 29	< 4 4	207	311
CMP	F-30	<3.6	<7.2	< 54	<110	149	297
LMP	F-30	4.81	8.30	< 36	< 62	184	317
CDR	F-15	28.4	29.4	< 30	<31	271	280
CMP	F-15	8.81	24.7	< 30	<83 -	146	409
LMP	F-15	16.3	31.8	< 39	< 76	170	332
CDR	F-5	<2.7	< 1.0	134	52.3	310	121
CMP	F-5	6.68	13.6	<31	< 64	310	629
LMP	F-5	<2.5	<3.7	< 28	< 41	246	358
CDR	R+0	15.3	23.9	90.2	141	153	239
CMP	R+0	20.4	66.4	< 26	<83	212	690
LMP	R+0	59.3	40.1	< 32	<21	300	203

TABLE V

Ag, Au, Zn, Cd, AND HG CONCENTRATIONS IN URINE SAMPLES FROM APOLLO 17 ASTRONAUTS

H	ug/day	·1.0	¢1.6	<0.85	.0.87	· 1.4	.1.0	÷0.32	<0.85	<1.1	€0.93	.1.3	<0.62
	pg/m1	069>	<820	<500	· 840	. 490	<510	< 810	<420	<730	<590	<410	<910
	ng/day	∘160	<190	~200	<120	< 250	<220	< 38	<130	<130	88 °	<190	<70
Cg	ng/m1	°100	96 *	<120	<120	⊹91	<110	96	< 64	<91	<56	€29	<100
c	ng/day	509	583	863	463	6 4 6	902	112	591	940	598	878	199
uZ	ng/m1	339	293	200	467	339	362	288	291	646	382	270	978
Āu	ug/day	<1.7	.2.0	.2.1	<1.3	<2.7	.2.1	<0.38	<1.7	<1.3	41.1	<2.4	<0.69
⋖	na/m1	<1.1	<1.0	<1.2	<1.2	<0°96	<1.1	%0°98	<0.82	<0.92	<0.71	<0.75	<1.0
	ng/day	<24	⊹97	<77>	<50	<160	59.7	×78	<73	¢79	<120	<220	< 4 2
Aq	pg/m1	<16	·49	<45	< 4 8	<57	30.6	<200	<36	<5 4	· 80	29	< 62
Flight	Period	F-30	F-30	F-30	F-15	F-15	F-15	F-5	F-5	F-5	R+0	R+0	R+0
	Astronaut	CDR	CMP	LMP	CDR	CMP	LMP	CDR	CMP	TWD	CDR	CMP	IMP

TABLE VI

Sr, As, Sb, Se, AND Br CONCENTRATIONS IN URINE SAMPLES FROM APOLLO 17 ASTRONAUTS

Br mg/day			6 3.55			3.55	28 0.362	78 1.38	1.39	.87 0.293	20 0.716	03 0.610
m/ B				2.32		1.82	0.928	0.678	0.954	0.187	0.220	0.903
Se na/dav	75.		33.3		42.6		11.5		38.4	24.7		21.9
m/pu	0 66	16.0	19.3	37.7	15.2	12.6	29.6	86.8	26.4	15.8	9.56	32.4
Sb day	666	617	317	366	333	335	94.8	398	198	444	465	216
u/ba	140	310	184	354	119	172	243	196	136	284	143	320
As ad/day	187 /6 d	, 9 <u>8</u>	· 59	33	69>	°.55	0.6	÷16	<33	362	5 194	492
m/ m/	200	, 2 3 , 2 8	₩ (C) ∵	<32	.25	< 28	₹53	·8·1	<23	231	59.5	728
Sn ng/day	0012	×150	< 65	<100	<120	< 81	<37	<81	<120	<110	<130	< 70
m/bu	.70	×7.4	÷38	< 97	<45	< 42	46 ³	×40	< 83	< 70	<39	<100
Flight Period		F-30	F-30	F-15	F-15	F-15	F-5	F-5	ਜ ਨ	R+0	R+0	R+0
Astronaut	ga	GWD	LMP	CDR	CMP	LMP	CDR	CMP	LMP	CDR	CMP	TWD

TABLE VII

Sc, La, Sm, Eu, AND Th CONCENTRATIONS IN URINE SAMPLES FROM APOLLO 17 "STRONAUTS

	Flight	0,	Sc	La	La	i	Sm	ng		đ.	
Astronaut	Period	pd/m1	ng/day	ng/ml	ug/day	ng/ml	ug/day	pd/ml	ng/day	pg/m1	ng/day
CDR	F-30	<5.5	< 8.3	<4.3	< 6.5	<0.80	<1.2	6.9	·10	110	.160
CMP	F-30	<2.9	<5.8	<4.1	<8.2	<0.71	41.4	·8.1	<16	110	.210
LMP	F-30	<5.1	8.8 [^]	< 5.0	9 .8 ≎	:0.95	.1.6	¢5.3	· 9.2	÷ 56	. 97
CDR	F-15	6.9>	<7.2	< 4. 5	<4.7	€0.91	40.94	8.8	 9.1	∘130	÷130
CMP	F-15	×4.4		<3.7	<10	<0.75	<2.1	÷5,9	¢16	· 64	180
IMP	F-15	<5.1		<4.3	<8.3	<0.82	<1.6	< 6.2	÷12	·61	-120
CDR	F-5	<6.3		<3 .4	< 1.3	<0.89	<0.35	÷7.2	·2.8	÷130	67
CMP	F-5	< 4. 0		<3.0	< 6.1	<0.28	<0.58	6.5.9	<12	÷57	.120
LMP	ቹ፡ የ	8.9>		<3.1	۰ 4 ۰6	<0.85	41.2	÷7.6	<11	·110	√160
COR	R+0	<5.3		<2.6	< 4. 0	<0.28	<0.43	÷7.1	, 11	¢92	140
CMP	R+0	<4.1	<13		<9.5	<0.27	<0.87	<5.5	¢18	.55	.180
LMP	R+0	< 5 .3	<3.6		<2.0	<1.0	69.0	9.7.	< 5.1	<140	· 94

URINE SAMPLES FROM APOLLO 17 ASTRONAUTS

TABLE VIII

Hf, Ta, AND Th CONCENTRATIONS IN

	Flight	Н	f	T	a	T	h
Astronaut	Period	pg/ml	ng/day	pg/ml	ng/day	pg/ml	ng/day
CDR	F-30	< 140	<210	< 86	<130	<230	<350
CMP	F-30	<180	< 350	<100	< 200	< 360	<720
LMP	F-30	<120	< 200	< 64	<110	<270	< 470
CDR	F-15	<170	<180	<86	<89	<280	<290
CMP	F-15	<110	< 300	< 55	<150	<210	<600
LMP	F-15	<120	< 240	< 62	<120	< 260	<510
CDR	F-5	<160	< 6.4	<81	<32	<270	<100
CMP	F-5	<97	< 200	< 54	<110	<180	< 370
LMP	F-5	<150	<220	< 70	<100	<250	< 370
CDR	R+0	<120	<190	<63	<99	<190	< 300
CMP	R+0	<91	<290	< 57	<190	<170	< 560
LMP	R+0	<190	<130	<85	<57	<310	<210

concentrations and the bromine elimination rates exhibit a decline for the period from thirty days prior to the mission to immediately after the mission. The Na and Cs concentrations are uniformly lowest for the CMP, while the Br excretion rates are uniformly lowest for the CDR. The elimination of Na, K, Rt, Cs, and Br is generally lower than observed for previous missions (4,7-9) and is significantly lower than normal, (6) particularly in the F-5 and R+O specimens.

The opposite effect is observed in the urinary excretion rates and concentrations of Cr and As. The elimination of chromium vacillates from low values on F-30 and F-5 to high values on F-15 and R+O and is generally higher than previously observed values. These peak excretion periods reflect the injection of radiochromium tracers into the astronauts. The daily excretion rates of arsenic are extraordinarily high in the postflight specimens, but it is uncertain whether the presence of this element is from assimilation during the mission or from contamination present in the injections.

No loss of body calcium via urinary excretion is evident from these data. In fact, the CDR F-5 and LMP R+0 specimens exhibit the lowest excretion rates of calcium ever observed and are well below normally expected rates. (6)

The iron and scandium concentrations and excretion rates are similar to those observed for previous missions those of iron remain below normal values. (6) The rates of Co and Zn, however, are generally lower than values reported for previous

missions, as well as being lower than normal. (6) The concentrations and excretion rates of Sb, Ag, Hf, and Ta show a similar decline from levels of earlier missions.

In summary, the well-characterized reduction in postflight excretion of bromine and the alkali metals is demonstrated, chromium excretion reflects the injection of radiochromium tracers, arsenic is at extraordinarly high levels in the postflight specimens, and no significant loss of any essential element has been determined for the Apollo 17 astronauts through urinary elimination.

EXPENDITURES

Table IX lists the expenditures according to the task and the total cost incurred from April 2, 1973 through June 30, 1973.

Table IX

EXPENDITURES

Task	Expenditures
Determination of the Radionuclide Content of Feces and Urine from Astronauts Engaged in Space Flight	\$ 704
Neutron Activation Analysis of Feces and Urine from Astronauts Engaged in Space Flight	2,883
TOTAL COSTS	\$ 3,587

REFERENCES

- 1. R. L. Brodzinski, H. E. Palmer, and L. A. Rancitelli,

 The Measurement of Radiation Exposure of Astronauts by

 Radiochemical Techniques, BNWL-1183 1, Battelle Memorial

 Institute, Pacific Northwest Laboratories, Richland,

 Washington (1969).
- 2. R. L. Brodzinski, unpublished data, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington.
- 3. R. L. Brodzinski, The Measurement of Radiation Exposure of Astronauts by Radiochemical Techniques, BNWL-1183 14, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington (1973).
- 4. R. L. Brodzinski, L. A. Rancitelli, and W. A. Haller, The Measurement of Radiation Exposure of Astronauts by Radio-chemical Techniques, BNWL-1183 4, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington (1970).
- 5. R. L. Brodzinski and L. A. Rancitelli, The Measurement of Radiation Exposure of Astronauts by Radiochemical Techniques, BNWL-1183 2, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington (1969).
- 6. Biology Data Book, P. L. Altman and D. S. Dittmer, eds., W. B. Saunders Co., Philadelphia, 1964.
- 7. R. L. Brodzinski, The Measurement of Radiation Exposure of Astronauts by Radiochemical Techniques, BNWL-1183 13, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington (1973).
- 8. R. L. Brodzinski and W. A. Haller, The Measurement of Radiation Exposure of Astronauts by Radiochemical Techniques, BNWL-1183 5, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington (1970).
- 9. R. L. Brodzinski, The Measurement of Radiation Exposure of Astronauts by Radiochemical Techniques, BNWL-1183 12, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington (1972).