See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/239198522

# An DFT studies of conformational stability, vibrational frequencies and normal mode analysis of 3-bromo-1-butene

**ARTICLE** in JOURNAL OF MOLECULAR STRUCTURE THEOCHEM · MAY 2005

Impact Factor: 1.37 · DOI: 10.1016/j.theochem.2005.01.032

| CITATION | READS |
|----------|-------|
| 1        | 10    |

#### 1 AUTHOR:



Min-Joo Lee

**Changwon National University** 

23 PUBLICATIONS 165 CITATIONS

SEE PROFILE



Journal of Molecular Structure: THEOCHEM 722 (2005) 103-110



www.elsevier.com/locate/theochem

### An DFT studies of conformational stability, vibrational frequencies and normal mode analysis of 3-bromo-1-butene

#### Min-Joo Lee\*

Department of Chemistry, College of Natural Sciences, Changwon National University, 9 Sarim-dong, Changwon, Kyungnam 641-773, South Korea

Received 21 October 2004; accepted 28 January 2005 Available online 16 March 2005

#### Abstract

The conformational stability, vibrational frequencies and corresponding normal mode analysis for all three conformers of 3-bromo-1butene,  $H_2C=CHCH(CH_3)Br$ , were investigated using the 6-311++G(d,p) basis set by the BLYP and B3LYP methods. From the calculations, the enthalpy differences ( $\Delta H$ ) between the most stable HE (hydrogen atom eclipses the double bond) and the higher energy ME (methyl group eclipses the double bond) conformations have been obtained to be 4.20 (BLYP) and 3.74 kJ mol<sup>-1</sup> (B3LYP). The same calculation yields a  $\Delta H$  of 11.25 (BLYP) and 9.64 kJ mol<sup>-1</sup> (B3LYP) between the HE and the least stable BrE (bromine atom eclipses the double bond) form. The normal mode analysis for vibrational frequencies is proposed for all three conformers using the force constants from BLYP/6-311++G(d,p) calculations. Additionally, the complete equilibrium geometries, the infrared intensities and the Raman activities were also obtained from the calculations.

© 2005 Elsevier B.V. All rights reserved.

Keywords: 3-Bromo-1-butene; Conformational stability; Enthalpy difference; Normal mode analysis

#### 1. Introduction

The conformational stabilities of 3-halo-1-butenes,  $CH_2$ = $CHCH(CH_3)X$  (X=F, Cl), have been interested to chemists because three possible conformers coexist in the fluid phases at ambient temperature [1,2]. The conformational stability among conformers of 3-fluoro-1-butene, CH<sub>2</sub>=CHCH(CH<sub>3</sub>)F, has been determined the conformer HE (hydrogen atom eclipses the double bond) for the most stable one, the conformer XE (halogen atom eclipses the double bond) for the second most one and the conformer ME (methyl group eclipses the double bond) for the least stable one [1]. However, the stability of 3-chloro-1-butene, CH<sub>2</sub>=CHCH(CH<sub>3</sub>)Cl, has been determined the HE for the most stable conformer, the ME for the second one and the XE for the least one [2].

Therefore, we were interested in investigating the conformational stability of 3-bromo-1-butene, CH<sub>2</sub>=CHCH(CH<sub>3</sub>)Br, where the bromine atom provides

E-mail address: mjlee@changwon.ac.kr.

2. Calculations In this study the density functional theory with the Becke's exchange functional (BLYP) [3] and the Becke's three parameter exchange functional [4] and correlation functional by Lee et al. [5] (B3LYP) calculations were carried out with the GAUSSIAN-98 program [6] using Gaussian-type functions. The energy minima with respect to the nuclear coordinates were obtained by the simul-

taneous relaxation of all the geometrical parameters of

the molecule using the gradient method of Pulay [7].

larger steric hindrance and weaker electronegativity than the fluorine and the chlorine atom does. To determine the conformational stability of 3-bromo-1-butene we have

carried out molecular geometry optimization calculations

for all the three conformations using the 6-311 + +G(d,p)

basis set with the BLYP and B3LYP methods. In order to provide a complete description of the molecular motions involved in the normal modes of theses conformers we have also carried out the frequency calculations using the 6-311 + +G(d,p) basis set with the BLYP and B3LYP methods. The results of this study are reported herein.

<sup>\*</sup> Tel.: +82 55 2797435; fax: +82 55 2797439.

Table 1 Structural parameters, rotational constants, dipole moments and total energies for the conformer with the  $H_6$  hydrogen atom eclipsing the double bond (HE) of 3-bromo-1-butene

| Parameter <sup>a</sup>           | BLYP/6-311+ | +G(d,p)  |          | B3LYP/6-311+ | +G(d,p)  |          |
|----------------------------------|-------------|----------|----------|--------------|----------|----------|
|                                  | HE          | ME       | BrE      | HE           | ME       | BrE      |
| $r(C_2=C_1)$                     | 1.343       | 1.343    | 1.338    | 1.332        | 1.332    | 1.328    |
| $r(C_3-C_2)$                     | 1.494       | 1.498    | 1.509    | 1.489        | 1.494    | 1.501    |
| $r(Br-C_3)$                      | 2.070       | 2.076    | 2.034    | 2.028        | 2.031    | 2.000    |
| $r(C_5-C_3)$                     | 1.530       | 1.526    | 1.537    | 1.521        | 1.517    | 1.527    |
| $r(H_6-C_3)$                     | 1.095       | 1.096    | 1.098    | 1.089        | 1.090    | 1.092    |
| $r(H_7-C_1)$                     | 1.092       | 1.090    | 1.089    | 1.086        | 1.084    | 1.083    |
| $r(H_8-C_1)$                     | 1.090       | 1.090    | 1.090    | 1.084        | 1.084    | 1.084    |
| $r(H_9-C_2)$                     | 1.094       | 1.093    | 1.098    | 1.087        | 1.086    | 1.091    |
| $r(H_{10}-C_5)$                  | 1.098       | 1.098    | 1.098    | 1.092        | 1.091    | 1.091    |
| $r(H_{11}-C_5)$                  | 1.102       | 1.102    | 1.103    | 1.095        | 1.095    | 1.096    |
| $r(H_{12}-C_5)$                  | 1.097       | 1.096    | 1.097    | 1.091        | 1.090    | 1.091    |
| $\angle (C_3 - C_2 = C_1)$       | 124.0       | 125.8    | 129.5    | 123.9        | 125.6    | 129.3    |
| $\angle (Br-C_3-C_2)$            | 107.9       | 107.2    | 113.1    | 108.2        | 107.5    | 113.1    |
| $\angle (C_5 - C_3 - C_2)$       | 114.7       | 118.0    | 113.0    | 114.2        | 117.4    | 112.6    |
| $\angle (H_6 - C_3 - C_2)$       | 111.5       | 110.3    | 109.7    | 111.0        | 109.9    | 109.3    |
| $\angle (H_7 - C_1 = C_2)$       | 121.7       | 122.7    | 121.9    | 121.8        | 122.7    | 122.0    |
| $\angle (H_8-C_1=C_2)$           | 121.4       | 120.8    | 120.6    | 121.4        | 120.7    | 120.5    |
| $\angle (H_9 - C_2 = C_1)$       | 120.1       | 119.4    | 118.9    | 120.2        | 119.5    | 118.9    |
| $\angle (H_{10}-C_5-C_3)$        | 111.3       | 111.8    | 111.0    | 111.2        | 111.6    | 110.9    |
| $\angle (H_{11}-C_5-C_3)$        | 108.8       | 109.3    | 109.1    | 108.9        | 109.4    | 109.2    |
| $\angle (H_{12}-C_5-C_3)$        | 111.3       | 110.7    | 111.2    | 111.3        | 110.6    | 111.2    |
| $\tau(Br-C_3-C_2=C_1)$           | 112.7       | -119.2   | -1.9     | 114.1        | -121.0   | -1.8     |
| $\tau(C_5-C_3-C_2=C_1)$          | -126.8      | 3.8      | 122.3    | -125.0       | 2.3      | 122.4    |
| $\tau(H_6-C_3-C_2=C_1)$          | 1.5         | 133.2    | -114.5   | 2.1          | 130.2    | -1145.0  |
| $\tau(H_7-C_1=C_2-C_3)$          | -2.5        | 1.2      | 0.3      | -2.3         | 1.2      | 0.3      |
| $\tau(H_8-C_1=C_2-C_3)$          | 177.8       | -178.5   | -179.7   | 178.0        | -178.6   | -179.7   |
| $\tau(H_9-C_2=C_1-C_3)$          | -178.1      | 179.0    | 179.7    | -178.3       | 179.0    | 179.7    |
| $\tau(H_{10}-C_5-C_3-Br)$        | 64.4        | 68.7     | 64.4     | 64.0         | 63.4     | 64.1     |
| $\tau(H_{11}-C_5-C_3-H_{10})$    | 119.2       | 120.2    | 119.2    | 119.2        | 120.2    | 119.2    |
| $\tau(H_{12}-C_5-C_3-H_{10})$    | -121.3      | -120.8   | -121.5   | -121.1       | -120.7   | -121.3   |
| A                                | 4806.2      | 5741.0   | 4217.3   | 4933.1       | 5905.2   | 4288.3   |
| B                                | 1853.5      | 1733.8   | 2271.7   | 1889.4       | 1771.2   | 2328.6   |
| C                                | 1424.0      | 1442.2   | 1568.0   | 1455.4       | 1472.6   | 1603.5   |
| $\mu$                            | 2.449       | 2.427    | 2.227    | 2.385        | 2.355    | 2.207    |
| -(E+2728)                        | 2.725409    | 2.723810 | 2.721124 | 2.817307     | 2.815883 | 2.813636 |
| $\Delta E  (\text{kJ mol}^{-1})$ | 0           | 4.20     | 11.25    | 0            | 3.74     | 9.64     |

Bond length in Å, bond angle in degrees, rotational constant (A, B, C) in MHz, dipole moment  $(\mu)$  in debye and energy (E) in hartree.

The calculated structural parameters, rotational constants, dipole moments and total energies as determined with the 6-311++G(d,p) basis set are listed in Table 1 for all three conformers.

To obtain a complete description of the molecular motions involved in the normal modes of 3-bromo-1-butene we have carried out a normal mode analysis. This analysis was performed utilizing ab initio calculations and the Wilson matrix method [8]. The force field in Cartesian coordinates was calculated by the GAUSSIAN-98 program [6] using the 6-311++G(d,p) basis set by the BLYP and B3LYP methods, which gives more accurate spectroscopic properties [9–12] of organic compounds. Internal coordinates (Table 2 and Fig. 1) were used to calculate the G and G matrixes using the structural parameters given in Table 1. Using the G matrix [8] the force field in Cartesian coordinates was converted to a force field in the desired

internal coordinates [13] and the pure ab initio vibrational frequencies were reproduced. The force constants for all the three conformers of this molecule can be obtained from the author. A set of local symmetry coordinates for various subgroups (Table 3) was used to determine the corresponding potential energy distribution (PED). The calculated frequencies of the three conformers of 3-bromo-1-butene along with the calculated infrared intensities, Raman activities, and PED are given in Tables 4–6.

#### 3. Results and discussion

#### 3.1. Conformational stability and structural differences

From the total energies obtained by BLYP/6-311++ G(d,p) and B3LYP/6-311++G(d,p) the conformational

<sup>&</sup>lt;sup>a</sup> For the definition of atom numbers, see Fig. 1.

Table 2
Internal coordinate definitions for 3-bromo-1-butene

| Definition       | Coordinate involved                               | Definition    | Coordinate involved                                                      |
|------------------|---------------------------------------------------|---------------|--------------------------------------------------------------------------|
| $\overline{R_1}$ | C=C stretch                                       | $\alpha_7$    | C <sub>2</sub> C <sub>3</sub> Br bend                                    |
| $R_2$            | C <sub>2</sub> C <sub>3</sub> stretch             | $\alpha_8$    | $C_2C_3C_5$ bend                                                         |
| $R_3$            | C <sub>2</sub> Br stretch                         | $\alpha_9$    | $C_2C_3H_6$ bend                                                         |
| $R_4$            | C <sub>3</sub> C <sub>5</sub> stretch             | $\alpha_{10}$ | BrC <sub>3</sub> C <sub>5</sub> bend                                     |
| $R_5$            | C <sub>3</sub> H <sub>6</sub> stretch             | $\alpha_{11}$ | BrC <sub>3</sub> H <sub>6</sub> bend                                     |
| $R_6$            | C <sub>1</sub> H <sub>7</sub> stretch             | $\alpha_{12}$ | $C_5C_3H_6$ bend                                                         |
| $R_7$            | C <sub>1</sub> H <sub>8</sub> stretch             | $\alpha_{13}$ | $C_3C_5H_{10}$ bend                                                      |
| $R_8$            | C <sub>2</sub> H <sub>9</sub> stretch             | $\alpha_{14}$ | $C_3C_5H_{11}$ bend                                                      |
| $R_9$            | C <sub>5</sub> H <sub>10</sub> stretch            | $\alpha_{15}$ | $C_3C_5H_{12}$ bend                                                      |
| $R_{10}$         | C <sub>5</sub> H <sub>11</sub> stretch            | $\alpha_{16}$ | $H_{10}C_5H_{11}$ bend                                                   |
| $R_{11}$         | C <sub>5</sub> H <sub>12</sub> stretch            | $\alpha_{17}$ | $H_{10}C_5H_{12}$ bend                                                   |
| $\alpha_1$       | C=CH <sub>7</sub> bend                            | $\alpha_{18}$ | $H_{11}C_5H_{12}$ bend                                                   |
| $\alpha_2$       | C=CH <sub>8</sub> bend                            | $\beta_1$     | H <sub>7</sub> C <sub>1</sub> C <sub>2</sub> H <sub>3</sub> out-of-plane |
|                  |                                                   |               | bend                                                                     |
| $\alpha_3$       | H <sub>7</sub> C <sub>1</sub> H <sub>8</sub> bend | $eta_2$       | H <sub>8</sub> C <sub>1</sub> C <sub>2</sub> H <sub>3</sub> out-of-plane |
|                  |                                                   |               | bend                                                                     |
| $lpha_4$         | C=CC <sub>3</sub> bend                            | $\beta_3$     | H <sub>9</sub> C <sub>2</sub> C <sub>1</sub> H <sub>3</sub> out-of-plane |
|                  |                                                   |               | bend                                                                     |
| $\alpha_5$       | C=CH <sub>9</sub> bend                            | $	au_1$       | CH <sub>3</sub> torsion                                                  |
| $\alpha_6$       | $C_3C_2H_9$ bend                                  | $	au_2$       | Asymmetric torsion                                                       |

For atom denotation, see Fig. 1.

stability among the conformers of 3-bromo-1-butene were determined as the HE form for the most stable, the ME the second and the BrE the third. The value of the  $\Delta H$  between the HE and ME is about 4.20 and 3.74 kJ mol<sup>-1</sup> and those between the HE and BrE from 11.25 to 9.64 kJ mol<sup>-1</sup> at the BLYP/6-311++G(d,p) and B3LYP/6-311++G(d,p), respectively. The  $\Delta H$  value between the HE and XE of 3-bromo-1-butene is significantly larger than those of 3-fluoro-1-butene [1] and 3-chloro-1-butene [2].

The most significant structural differences among the three conformers of 3-bromo-1-butene appeared on the parameters closest to the axis of internal rotation (Table 1). The bond lengths of the C–Br,  $C_3$ – $C_5$ , C– $H_6$  bonds of the molecule are the shortest for the conformations in which these bonds eclipse the double bond same as those of 3-fluoro-1-butene [1] and 3-chloro-1-butene [2]. The  $C_2$ – $C_3$  bond, which is the axis bond of internal rotation, becomes longer in the order of size eclipsing atom/group. The  $C_2$ – $C_3$ –Br bond angle of the BrE (bromine atom eclipses the double bond) form and the  $C_2$ – $C_3$ – $C_5$  angle of the ME form



Fig. 1. Structural model and atom numbering of 3-bromo-1-butene.

Table 3
Symmetry coordinates for 3-bromo-1-butene

| Description                               | Symmetry coordinate <sup>a</sup>                                                             |
|-------------------------------------------|----------------------------------------------------------------------------------------------|
| =CH <sub>2</sub> antisymmetric stretch    | $S_1 = R_6 - R_7$                                                                            |
| =CH stretch                               | $S_2 = R_8$                                                                                  |
| =CH <sub>2</sub> symmetric stretch        | $S_3 = R_6 + R_7$                                                                            |
| CH <sub>3</sub> antisymmetric stretch     | $S_4 = 2R_9 - R_{10} - R_{11}$                                                               |
| CH stretch                                | $S_5 = R_5$                                                                                  |
| CH <sub>3</sub> antisymmetric stretch     | $S_6 = R_{10} - R_{11}$                                                                      |
| CH <sub>3</sub> symmetric stretch         | $S_7 = R_9 + R_{10} + R_{11}$                                                                |
| C=C stretch                               | $S_8 = R_1$                                                                                  |
| CH <sub>3</sub> antisymmetric deformation | $S_9 = \alpha_{16} - \alpha_{17}$                                                            |
| CH <sub>3</sub> antisymmetric deformation | $S_{10} = 2\alpha_{18} - \alpha_{16} - \alpha_{17}$                                          |
| =CH <sub>2</sub> deformation              | $S_{11}=2\alpha_3-\alpha_1-\alpha_2$                                                         |
| CH <sub>3</sub> symmetric deformation     | $S_{12} = \alpha_{13} + \alpha_{14} + \alpha_{15} - \alpha_{16} - \alpha_{17} - \alpha_{18}$ |
| CH bend                                   | $S_{13} = \alpha_9 - \alpha_{12}$                                                            |
| =CH bend, in-plane                        | $S_{14} = \alpha_5 - \alpha_6$                                                               |
| CH bend                                   | $S_{15} = 2\alpha_{11} - \alpha_9 - \alpha_{12}$                                             |
| CCC antisymmetric stretch                 | $S_{16} = R_2 - R_4$                                                                         |
| CH <sub>3</sub> rock                      | $S_{17} = 2\alpha_{13} - \alpha_{14} - \alpha_{15}$                                          |
| CH <sub>3</sub> rock                      | $S_{18} = \alpha_{14} - \alpha_{15}$                                                         |
| =CH bend, out-of-plane                    | $S_{19} = \beta_3$                                                                           |
| =CH <sub>2</sub> rock                     | $S_{20} = \alpha_1 - \alpha_2$                                                               |
| =CH <sub>2</sub> twist                    | $S_{21} = \beta_1 + \beta_2$                                                                 |
| CCC symmetric stretch                     | $S_{22} = R_2 + R_4$                                                                         |
| =CH <sub>2</sub> wag                      | $S_{23} = \beta_1 - \beta_2$                                                                 |
| C=CC bend                                 | $S_{24} = 2\alpha_4 - \alpha_5 - \alpha_6$                                                   |
| CBr stretch                               | $S_{25} = R_3$                                                                               |
| CCC bend                                  | $S_{26} = \alpha_8$                                                                          |
| CBr bend                                  | $S_{27} = \alpha_7 + \alpha_{10}$                                                            |
| CH <sub>3</sub> torsion                   | $S_{28} = \gamma_1$                                                                          |
| CBr bend                                  | $S_{29} = \alpha_7 + \alpha_{10}$                                                            |
| Asymmetric torsion                        | $S_{28} = \gamma_2$                                                                          |

<sup>&</sup>lt;sup>a</sup> Not normalized.

are 3 and 6° larger than the  $C_2$ – $C_3$ – $H_6$  angle of the HE form, respectively. The  $C_1$ = $C_2$ – $C_3$  angle opens by 2 and 5° on conversion from the HE to the ME and to the BrE, respectively. When we compared the structural parameters with those of 3-fluoro-1-butene [1] and 3-chloro-1-butene [2], we could find that the angle opening of the  $C_1$ = $C_2$ – $C_3$  became larger in the order of 3-fluoro-1-butene, 3-chloro-1-butene and 3-bromo-1-butene and the  $C_3$ – $C_5$  length of the bromine compound is about 0.003 and 0.008 Å longer than that of the chlorine and the fluorine ones, respectively.

#### 3.2. Normal mode analysis

On the basis of our normal coordinate calculations, we suggested the vibrational modes of the fundamental harmonic frequencies (Tables 4–6). We shall discuss here only the modes that are at variance with a series of molecules of 3-fluoro-1-butene [1] and 3-chloro-1-butene [2]. The frequency region and order of the CH stretches and deformations are essentially the same as the modes for the equivalent molecules of 3-fluoro-1-butene [1] and 3-chloro-1-butene [2]. As an exception the order of vibrational frequency of CH stretching mode for the HE and ME conformers of bromine molecule was predicted to be located at the higher vibrational number of five than the order of

Table 4 Calculated wavenumbers (cm<sup>-1</sup>) and potential energy distributions (PED) for the conformer with the H<sub>6</sub> hydrogen atom eclipsing the double bond (HE) of 3-bromo-1-butene

| Vib. | Description                               | BLYP/6           | -311 + + G(            | d,p)                       |             |                                                        | B3LYP/           | 6-311++0               | G(d,p)                     |             |                                                                                |
|------|-------------------------------------------|------------------|------------------------|----------------------------|-------------|--------------------------------------------------------|------------------|------------------------|----------------------------|-------------|--------------------------------------------------------------------------------|
| no.  |                                           | cm <sup>-1</sup> | IR<br>int <sup>a</sup> | Raman<br>act. <sup>b</sup> | dp<br>ratio | PED                                                    | cm <sup>-1</sup> | IR<br>int <sup>a</sup> | Raman<br>act. <sup>b</sup> | dp<br>ratio | PED                                                                            |
| 1    | =CH <sub>2</sub> antisymmetric stretch    | 3140             | 11.8                   | 96.2                       | 0.60        | 96S <sub>1</sub>                                       | 3219             | 9.9                    | 86.8                       | 0.60        | 96S <sub>1</sub>                                                               |
| 2    | =CH stretch                               | 3065             | 7.4                    | 77.0                       | 0.32        | $85S_2$                                                | 3145             | 5.4                    | 74.6                       | 0.30        | 87 <i>S</i> <sub>2</sub>                                                       |
| 3    | =CH <sub>2</sub> symmetric stretch        | 3056             | 11.3                   | 116.1                      | 0.12        | $90S_{3}$                                              | 3132             | 9.6                    | 110.7                      | 0.12        | $89S_{3}$                                                                      |
| 4    | CH <sub>3</sub> antisymmetric stretch     | 3047             | 10.4                   | 42.7                       | 0.30        | 50S <sub>4</sub> , 23S <sub>6</sub> , 19S <sub>5</sub> | 3123             | 9.6                    | 34.4                       | 0.31        | 46 <i>S</i> <sub>4</sub> , 23 <i>S</i> <sub>5</sub> , 21 <i>S</i> <sub>6</sub> |
| 5    | CH stretch                                | 3031             | 4.5                    | 81.8                       | 0.49        | $64S_5$ , $26S_6$                                      | 3109             | 5.7                    | 77.1                       | 0.51        | $60S_5$ , $31S_6$                                                              |
| 6    | CH <sub>3</sub> antisymmetric stretch     | 3013             | 9.0                    | 101.1                      | 0.54        | $40S_6$ , $42S_4$ , $11S_7$                            | 3091             | 7.8                    | 92.5                       | 0.60        | $40S_6$ , $45S_4$                                                              |
| 7    | CH <sub>3</sub> symmetric stretch         | 2950             | 18.5                   | 216.1                      | 0.08        | $87S_7$ , $11S_6$                                      | 3027             | 16.7                   | 187.9                      | 0.05        | $92S_{7}$                                                                      |
| 8    | C=C stretch                               | 1626             | 2.0                    | 126.8                      | 0.18        | $68S_8$ , $16S_{11}$                                   | 1692             | 2.5                    | 114.5                      | 0.16        | $69S_8$ , $14S_{11}$                                                           |
| 9    | CH <sub>3</sub> antisymmetric deformation | 1457             | 2.5                    | 9.7                        | 0.72        | $67S_9$ , $23S_{10}$                                   | 1493             | 2.4                    | 9.1                        | 0.71        | $69S_9$ , $22S_{10}$                                                           |
| 10   | CH <sub>3</sub> antisymmetric deformation | 1449             | 9.5                    | 9.5                        | 0.61        | $65S_{10}$ , $21S_9$                                   | 1486             | 10.3                   | 8.8                        | 0.63        | $67S_{10}$ , $19S_9$                                                           |
| 11   | =CH <sub>2</sub> deformation              | 1419             | 8.5                    | 32.4                       | 0.29        | $70S_{11}$ , $12S_{14}$                                | 1456             | 9.6                    | 25.1                       | 0.29        | $71S_{11}$ , $11S_{14}$                                                        |
| 12   | CH <sub>3</sub> symmetric deformation     | 1374             | 6.7                    | 2.4                        | 0.69        | $98S_{12}$                                             | 1413             | 7.3                    | 1.4                        | 0.68        | $97S_{12}$                                                                     |
| 13   | CH bend                                   | 1299             | 2.2                    | 23.8                       | 0.34        | $53S_{13}$ , $15S_8$ , $10S_{11}$ , $10S_4$            | 1335             | 1.6                    | 20.9                       | 0.36        | $54S_{13}$ , $14S_8$ , $11S_{11}$                                              |
| 14   | =CH bend, in-plane                        | 1284             | 2.0                    | 7.6                        | 0.25        | $54S_{14}$ , $18S_{13}$ , $11S_{20}$                   | 1317             | 1.6                    | 7.7                        | 0.27        | $55S_{14}$ , $16S_{13}$ , $12S_{20}$                                           |
| 15   | CH bend                                   | 1188             | 14.3                   | 6.1                        | 0.75        | $41S_{15}$ , $14S_{20}$ , $12S_{17}$                   | 1228             | 22.6                   | 5.8                        | 0.68        | $53S_{15}$ , $11S_{20}$ , $10S_{17}$                                           |
| 16   | CCC antisymmetric stretch                 | 1140             | 37.7                   | 26.1                       | 0.34        | $18S_{16}$ , $32S_{15}$ , $21S_{18}$                   | 1182             | 32.1                   | 22.4                       | 0.37        | $19S_{16}$ , $24S_{15}$ , $20S_{18}$                                           |
| 17   | CH <sub>3</sub> rock                      | 1057             | 3.3                    | 3.8                        | 0.50        | $19S_{17}$ , $39S_{16}$ , $13S_{15}$ , $10S_{22}$      | 1097             | 2.9                    | 3.9                        | 0.47        | $20S_{17}$ , $40S_{16}$ , $11S_{22}$ , $10S_{15}$                              |
| 18   | CH <sub>3</sub> rock                      | 1004             | 31.6                   | 4.6                        | 0.32        | $45S_{18}$ , $13S_{19}$ , $13S_{20}$                   | 1038             | 36.9                   | 6.0                        | 0.36        | $42S_{18}$ , $24S_{19}$                                                        |
| 19   | =CH bend, out-of-plane                    | 988              | 12.4                   | 1.5                        | 0.68        | $68S_{19}$ , $16S_{23}$                                | 1021             | 7.0                    | 1.1                        | 0.75        | $59S_{19}$ , $17S_{23}$                                                        |
| 20   | =CH <sub>2</sub> rock                     | 952              | 7.7                    | 2.2                        | 0.23        | $21S_{20}$ , $28S_{17}$ , $15S_{16}$                   | 980              | 9.6                    | 1.7                        | 0.22        | $24S_{20}$ , $30S_{17}$ , $12S_{16}$ , $10S_{16}$                              |
| 21   | =CH <sub>2</sub> twist                    | 917              | 39.4                   | 2.5                        | 0.64        | $98S_{21}$                                             | 957              | 42.6                   | 2.7                        | 0.66        | $96S_{21}$                                                                     |
| 22   | CCC symmetric stretch                     | 838              | 10.5                   | 10.5                       | 0.60        | $58S_{22}$ , $17S_{20}$ , $13S_{17}$                   | 867              | 9.1                    | 9.1                        | 0.66        | $56S_{22}$ , $18S_{20}$ , $12S_{17}$                                           |
| 23   | =CH <sub>2</sub> wag                      | 677              | 32.6                   | 20.7                       | 0.23        | $65S_{23}$ , $11S_{19}$                                | 704              | 34.1                   | 18.3                       | 0.23        | $63S_{23}$ , $11S_{19}$                                                        |
| 24   | C=CC bend                                 | 540              | 18.0                   | 18.2                       | 0.36        | $28S_{24}$ , $23S_{27}$ , $20S_{25}$ , $11S_{22}$      | 569              | 16.8                   | 17.2                       | 0.37        | $25S_{24}$ , $25S_{25}$ , $21S_{27}$                                           |
| 25   | CBr stretch                               | 385              | 9.3                    | 27.1                       | 0.14        | $46S_{25}$ , $28S_{26}$                                | 403              | 7.6                    | 21.5                       | 0.14        | $45S_{25}$ , $27S_{26}$ , $11S_{24}$                                           |
| 26   | CCC bend                                  | 301              | 0.6                    | 2.9                        | 0.35        | $39S_{26}, 37S_{24}$                                   | 310              | 0.6                    | 2.3                        | 0.37        | $41S_{26}$ , $36S_{24}$                                                        |
| 27   | CBr bend                                  | 262              | 3.1                    | 3.0                        | 0.42        | $28S_{27}, 32S_{29}, 13S_{25}, 13S_{28}$               | 274              | 2.5                    | 2.4                        | 0.49        | $35S_{27}$ , $31S_{29}$ , $12S_{25}$                                           |
| 28   | CH <sub>3</sub> torsion                   | 240              | 0.6                    | 0.6                        | 0.28        | 81S <sub>28</sub>                                      | 251              | 1.1                    | 1.0                        | 0.30        | $69S_{28}$ , $15S_{27}$                                                        |
| 29   | CBr bend                                  | 234              | 7.9                    | 6.6                        | 0.35        | $48S_{29}$ , $15S_{25}$ , $14S_{27}$                   | 246              | 5.0                    | 4.2                        | 0.41        | $51S_{29}$ , $18S_{28}$                                                        |
| 30   | Asymmetric torsion                        | 105              | 0.1                    | 4.0                        | 0.75        | 84530                                                  | 103              | 0.1                    | 4.0                        | 0.75        | 86S <sub>30</sub>                                                              |

<sup>&</sup>lt;sup>a</sup> Calculated infrared intensities in km mol $^{-1}$ . Calculated Raman activities in Å $^4$  amu $^{-1}$ .

Table 5 Calculated wavenumbers (cm<sup>-1</sup>) and potential energy distributions (PED) for the conformer with the methyl group eclipsing the double bond (ME) of 3-bromo-1-butene

| Vib. | Description                               | BLYP/6           | -311 + + G(            | (d,p)                      |             |                                                                               |                  | 6-311++6               | G(d,p)                     |             |                                                                               |
|------|-------------------------------------------|------------------|------------------------|----------------------------|-------------|-------------------------------------------------------------------------------|------------------|------------------------|----------------------------|-------------|-------------------------------------------------------------------------------|
| no.  |                                           | cm <sup>-1</sup> | IR<br>int <sup>a</sup> | Raman<br>act. <sup>b</sup> | dp<br>ratio | PED                                                                           | cm <sup>-1</sup> | IR<br>int <sup>a</sup> | Raman<br>act. <sup>b</sup> | dp<br>ratio | PED                                                                           |
| 1    | =CH <sub>2</sub> antisymmetric stretch    | 3146             | 10.9                   | 78.3                       | 0.62        | 98S <sub>1</sub>                                                              | 3226             | 8.8                    | 70.8                       | 0.63        | 98S <sub>1</sub>                                                              |
| 2    | =CH stretch                               | 3075             | 4.0                    | 171.1                      | 0.15        | $69S_2$ , $28S_3$                                                             | 3155             | 3.7                    | 145.2                      | 0.17        | $79S_2$ , $18S_3$                                                             |
| 3    | =CH <sub>2</sub> symmetric stretch        | 3066             | 8.9                    | 39.3                       | 0.34        | $71S_3$ , $28S_2$                                                             | 3143             | 5.8                    | 49.1                       | 0.24        | $81S_3$ , $18S_2$                                                             |
| 4    | CH <sub>3</sub> antisymmetric stretch     | 3051             | 12.2                   | 48.9                       | 0.49        | $61S_4$ , $30S_6$                                                             | 3127             | 11.2                   | 47.1                       | 0.49        | $62S_4$ , $31S_6$                                                             |
| 5    | CH stretch                                | 3016             | 1.2                    | 112.2                      | 0.38        | 49S <sub>5</sub> , 30S <sub>4</sub> , 14S <sub>6</sub>                        | 3091             | 0.3                    | 107.3                      | 0.38        | $64S_5$ , $24S_4$                                                             |
| 6    | CH <sub>3</sub> antisymmetric stretch     | 3026             | 11.5                   | 47.5                       | 0.61        | 42S <sub>6</sub> , 42S <sub>5</sub>                                           | 3102             | 12.9                   | 47.7                       | 0.65        | 51S <sub>6</sub> , 28S <sub>5</sub> , 13S <sub>4</sub>                        |
| 7    | CH <sub>3</sub> symmetric stretch         | 2955             | 17.8                   | 185.0                      | 0.09        | $84S_7$ , $14S_6$                                                             | 3031             | 16.2                   | 161.6                      | 0.07        | 89S <sub>7</sub> , 10S <sub>6</sub>                                           |
| 8    | C=C stretch                               | 1626             | 3.6                    | 119.0                      | 0.19        | $67S_8$ , $18S_{11}$                                                          | 1691             | 4.4                    | 107.2                      | 0.17        | $69S_8$ , $15S_{11}$                                                          |
| 9    | CH <sub>3</sub> antisymmetric deformation | 1465             | 3.3                    | 8.5                        | 0.50        | $78S_{9}$                                                                     | 1501             | 3.3                    | 6.9                        | 0.47        | 81 <i>S</i> <sub>9</sub>                                                      |
| 10   | CH <sub>3</sub> antisymmetric deformation | 1452             | 7.2                    | 7.7                        | 0.47        | $80S_{10}$                                                                    | 1490             | 7.9                    | 7.2                        | 0.53        | $83S_{10}$                                                                    |
| 11   | =CH <sub>2</sub> deformation              | 1412             | 9.3                    | 34.3                       | 0.35        | $67S_{11}$ , $12S_{14}$                                                       | 1449             | 10.9                   | 28.0                       | 0.38        | $68S_{11}$ , $11S_{14}$                                                       |
| 12   | CH <sub>3</sub> symmetric deformation     | 1373             | 7.7                    | 4.9                        | 0.67        | $90S_{12}$                                                                    | 1413             | 8.3                    | 4.4                        | 0.59        | 86S <sub>12</sub>                                                             |
| 13   | CH bend                                   | 1334             | 3.8                    | 7.9                        | 0.46        | $67S_{13}$ , $12S_{16}$                                                       | 1371             | 2.2                    | 5.2                        | 0.49        | $64S_{13}$ , $12S_{16}$                                                       |
| 14   | =CH bend, in-plane                        | 1300             | 0.3                    | 20.3                       | 0.22        | $61S_{14}$ , $16S_8$ , $11S_{20}$                                             | 1333             | 0.3                    | 18.2                       | 0.23        | $62S_{14}$ , $16S_8$ , $11S_{20}$                                             |
| 15   | CH bend                                   | 1157             | 20.3                   | 41.4                       | 0.35        | $45S_{15}$ , $19S_{18}$ , $15S_{16}$                                          | 1203             | 32.2                   | 44.0                       | 0.36        | $62S_{15}$ , $15S_{17}$                                                       |
| 16   | CCC antisymmetric stretch                 | 1121             | 37.2                   | 14.1                       | 0.34        | $20S_{16}$ , $35S_{15}$ , $15S_{20}$                                          | 1161             | 28.7                   | 7.4                        | 0.41        | 27S <sub>16</sub> , 21S <sub>15</sub> , 16S <sub>20</sub> , 10S <sub>13</sub> |
| 17   | CH <sub>3</sub> rock                      | 1064             | 12.9                   | 2.4                        | 0.58        | $51S_{17}$ , $11S_{16}$                                                       | 1026             | 2.1                    | 4.7                        | 0.72        | 36S <sub>17</sub> , 20S <sub>20</sub>                                         |
| 18   | CH <sub>3</sub> rock                      | 998              | 3.3                    | 4.9                        | 0.74        | $23S_{18}, 32S_{19}, 13S_{23}, 11S_{20}$                                      | 1095             | 13.1                   | 2.1                        | 0.61        | $51S_{18}$                                                                    |
| 19   | =CH bend, out-of-plane                    | 992              | 7.9                    | 2.6                        | 0.72        | $46S_{19}$ , $14S_{18}$ , $11S_{20}$                                          | 1031             | 10.4                   | 2.0                        | 0.65        | $76S_{19}$ , $21S_{23}$                                                       |
| 20   | =CH <sub>2</sub> rock                     | 953              | 14.0                   | 2.1                        | 0.58        | $21S_{20}$ , $27S_{16}$ , $22S_{17}$                                          | 985              | 12.7                   | 2.4                        | 0.55        | $23S_{20}$ , $25S_{16}$ , $20S_{18}$                                          |
| 21   | =CH <sub>2</sub> twist                    | 916              | 39.4                   | 2.1                        | 0.74        | $99S_{21}$                                                                    | 957              | 43.7                   | 2.4                        | 0.74        | $99S_{21}$                                                                    |
| 22   | CCC symmetric stretch                     | 818              | 8.3                    | 14.3                       | 0.67        | $75S_{22}$                                                                    | 850              | 7.0                    | 12.0                       | 0.70        | $72S_{22}$                                                                    |
| 23   | =CH <sub>2</sub> wag                      | 677              | 30.2                   | 19.6                       | 0.32        | $59S_{23}$ , $14S_{27}$ , $13S_{19}$                                          | 705              | 31.1                   | 18.0                       | 0.33        | $60S_{23}$ , $15S_{27}$ , $12S_{19}$                                          |
| 24   | C=CC bend                                 | 543              | 11.2                   | 7.0                        | 0.18        | $40S_{24}$ , $31S_{26}$                                                       | 561              | 12.2                   | 8.4                        | 0.19        | $38S_{24}$ , $29S_{26}$ , $10S_{25}$                                          |
| 25   | CBr stretch                               | 441              | 12.5                   | 29.4                       | 0.23        | $43S_{25}$ , $33S_{27}$ , $14S_{23}$                                          | 469              | 9.5                    | 23.4                       | 0.23        | $43S_{25}$ , $26S_{27}$ , $15S_{23}$                                          |
| 26   | CCC bend                                  | 287              | 0.9                    | 5.6                        | 0.21        | 47S <sub>26</sub> , 38S <sub>24</sub>                                         | 299              | 1.1                    | 5.1                        | 0.20        | 44S <sub>26</sub> , 37S <sub>24</sub>                                         |
| 27   | CBr bend                                  | 255              | 3.9                    | 6.9                        | 0.20        | 26S <sub>27</sub> , 34S <sub>28</sub> , 21S <sub>25</sub> , 18S <sub>29</sub> | 269              | 2.2                    | 3.5                        | 0.22        | 25S <sub>27</sub> , 45S <sub>28</sub> , 13S <sub>25</sub>                     |
| 28   | CH <sub>3</sub> torsion                   | 275              | 2.6                    | 5.5                        | 0.23        | 64S <sub>28</sub> , 17S <sub>25</sub> , 11S <sub>29</sub>                     | 289              | 2.6                    | 5.0                        | 0.22        | $53S_{28}$ , $19S_{25}$ , $13S_{29}$                                          |
| 29   | CBr bend                                  | 234              | 5.9                    | 4.5                        | 0.44        | 54S <sub>29</sub> , 11S <sub>25</sub> , 11S <sub>27</sub> , 10S <sub>30</sub> | 245              | 4.3                    | 3.1                        | 0.53        | 54S <sub>29</sub> , 11S <sub>27</sub>                                         |
| 30   | Asymmetric torsion                        | 102              | 0.1                    | 2.9                        | 0.75        | 92S <sub>30</sub>                                                             | 105              | 0.2                    | 2.9                        | 0.75        | $92S_{30}$                                                                    |

a Calculated infrared intensities in km mol<sup>-1</sup>.
 b Calculated Raman activities in Å<sup>4</sup> amu<sup>-1</sup>.

Table 6 Calculated wavenumbers (cm<sup>-1</sup>) and potential energy distributions (PED) for the conformer with the bromine atom eclipsing the double bond (BrE) of 3-bromo-1-butene

| Vib. | Description                               | BLYP/6           | 5-311++                | G(d,p)                  |             |                                                                                                   | B3LYP            | /6-311+                | +G(d,p)                    |             |                                                                                                   |
|------|-------------------------------------------|------------------|------------------------|-------------------------|-------------|---------------------------------------------------------------------------------------------------|------------------|------------------------|----------------------------|-------------|---------------------------------------------------------------------------------------------------|
| no.  |                                           | cm <sup>-1</sup> | IR<br>int <sup>a</sup> | Raman act. <sup>b</sup> | dp<br>ratio | PED                                                                                               | cm <sup>-1</sup> | IR<br>int <sup>a</sup> | Raman<br>act. <sup>b</sup> | dp<br>ratio | PED                                                                                               |
| 1    | =CH <sub>2</sub> antisymmetric stretch    | 3152             | 7.0                    | 53.0                    | 0.63        | $100S_1$                                                                                          | 3232             | 5.6                    | 49.7                       | 0.63        | $100S_1$                                                                                          |
| 2    | =CH stretch                               | 3022             | 21.5                   | 179.9                   | 0.42        | $80S_2$ , $11S_6$                                                                                 | 3106             | 16.8                   | 148.4                      | 0.38        | $90S_{2}$                                                                                         |
| 3    | =CH <sub>2</sub> symmetric stretch        | 3070             | 5.9                    | 159.3                   | 0.15        | $98S_{3}$                                                                                         | 3146             | 4.2                    | 151.3                      | 0.15        | 97 <i>S</i> <sub>3</sub>                                                                          |
| 4    | CH <sub>3</sub> antisymmetric stretch     | 3049             | 15.6                   | 64.8                    | 0.59        | $69S_4$ , $29S_6$                                                                                 | 3126             | 14.3                   | 60.0                       | 0.58        | $67S_4$ , $29S_6$                                                                                 |
| 5    | CH stretch                                | 2993             | 2.0                    | 123.3                   | 0.27        | 93S <sub>5</sub>                                                                                  | 3073             | 1.4                    | 116.3                      | 0.29        | 91 <i>S</i> <sub>5</sub>                                                                          |
| 6    | CH <sub>3</sub> antisymmetric stretch     | 3017             | 8.0                    | 49.9                    | 0.24        | 47S <sub>6</sub> , 20S <sub>4</sub> , 17S <sub>2</sub> , 14S <sub>7</sub>                         | 3095             | 10.9                   | 45.6                       | 0.58        | 57S <sub>6</sub> , 24S <sub>4</sub> , 11S <sub>7</sub>                                            |
| 7    | CH <sub>3</sub> symmetric stretch         | 2950             | 22.8                   | 202.3                   | 0.08        | 84 <i>S</i> <sub>7</sub> , 13 <i>S</i> <sub>6</sub>                                               | 3026             | 21.2                   | 180.9                      | 0.06        | 89S <sub>7</sub>                                                                                  |
| 8    | C=C stretch                               | 1643             | 15.3                   | 44.5                    | 0.09        | $72S_8$ , $13S_{11}$                                                                              | 1706             | 14.4                   | 45.0                       | 0.08        | $72S_8$ , $12S_{11}$                                                                              |
| 9    | CH <sub>3</sub> antisymmetric deformation | 1459             | 3.4                    | 6.9                     | 0.75        | $70S_9$ , $21S_{10}$                                                                              | 1495             | 3.6                    | 6.5                        | 0.75        | $70S_9$ , $21S_{10}$                                                                              |
| 10   | CH <sub>3</sub> antisymmetric deformation | 1450             | 6.6                    | 10.1                    | 0.70        | $69S_{10}$ , $19S_{9}$                                                                            | 1487             | 6.9                    | 9.9                        | 0.71        | $68S_{10}$ , $20S_9$                                                                              |
| 11   | =CH <sub>2</sub> deformation              | 1403             | 9.2                    | 10.9                    | 0.34        | $79S_{11}$                                                                                        | 1441             | 10.6                   | 9.7                        | 0.36        | $79S_{11}$                                                                                        |
| 12   | CH <sub>3</sub> symmetric deformation     | 1370             | 5.7                    | 2.3                     | 0.66        | $97S_{12}$                                                                                        | 1410             | 6.7                    | 1.8                        | 0.60        | $97S_{12}$                                                                                        |
| 13   | CH bend                                   | 1285             | 4.6                    | 11.0                    | 0.40        | $76S_{13}$                                                                                        | 1324             | 6.4                    | 17.9                       | 0.29        | $43S_{13}$ , $34S_{14}$                                                                           |
| 14   | =CH bend, in-plane                        | 1291             | 3.5                    | 12.9                    | 0.21        | $66S_{14}$ , $12S_8$ , $11S_{20}$                                                                 | 1328             | 1.4                    | 4.5                        | 0.23        | $35S_{14}, 33S_{13}$                                                                              |
| 15   | CH bend                                   | 1191             | 43.0                   | 15.4                    | 0.35        | $69S_{15}$                                                                                        | 1238             | 42.8                   | 13.2                       | 0.42        | 71S <sub>15</sub>                                                                                 |
| 16   | CCC antisymmetric stretch                 | 947              | 9.4                    | 3.3                     | 0.67        | $38S_{16}$ , $21S_{18}$ , $19S_{17}$                                                              | 981              | 9.9                    | 2.7                        | 0.64        | $34S_{16}$ , $21S_{18}$ , $21S_{17}$                                                              |
| 17   | CH <sub>3</sub> rock                      | 1044             | 1.2                    | 3.6                     | 0.62        | $20S_{17}$ , $33S_{16}$ , $12S_{22}$                                                              | 1085             | 1.3                    | 4.0                        | 0.60        | $21S_{17}, 35S_{16}, 13S_{22}$                                                                    |
| 18   | CH <sub>3</sub> rock                      | 1084             | 13.9                   | 1.4                     | 0.49        | $31S_{18}$ , $11S_{15}$ , $10S_{13}$                                                              | 1119             | 14.3                   | 1.3                        | 0.56        | $31S_{18}$ , $11S_{15}$ , $10S_{13}$                                                              |
| 19   | =CH bend, out-of-plane                    | 970              | 14.7                   | 1.7                     | 0.64        | $73S_{19}, 24S_{23}$                                                                              | 1009             | 12.7                   | 1.6                        | 0.65        | $75S_{19}, 23S_{23}$                                                                              |
| 20   | =CH <sub>2</sub> rock                     | 1019             | 3.1                    | 3.4                     | 0.64        | $45S_{20}$ , $12S_{17}$ , $11S_{18}$                                                              | 1049             | 3.6                    | 2.9                        | 0.61        | $46S_{20}$ , $13S_{18}$ , $10S_{17}$                                                              |
| 21   | =CH <sub>2</sub> twist                    | 921              | 35.7                   | 1.7                     | 0.71        | $99S_{21}$                                                                                        | 962              | 40.1                   | 2.0                        | 0.73        | 97S <sub>21</sub>                                                                                 |
| 22   | CCC symmetric stretch                     | 826              | 10.0                   | 5.1                     | 0.75        | $55S_{22}$ , $11S_{20}$ , $10S_{18}$                                                              | 858              | 9.1                    | 5.1                        | 0.73        | $52S_{22}$ , $13S_{20}$ , $11S_{18}$                                                              |
| 23   | =CH <sub>2</sub> wag                      | 666              | 12.4                   | 3.2                     | 0.68        | $47S_{23}$ , $15S_{19}$                                                                           | 690              | 12.7                   | 3.3                        | 0.66        | $48S_{23}$ , $14S_{19}$                                                                           |
| 24   | C=CC bend                                 | 567              | 14.2                   | 13.6                    | 0.09        | 25S <sub>24</sub> , 21S <sub>27</sub> , 16S <sub>25</sub> , 11S <sub>22</sub> , 10S <sub>23</sub> | 590              | 14.6                   | 13.3                       | 0.10        | 23S <sub>24</sub> , 19S <sub>27</sub> , 18S <sub>25</sub> , 12S <sub>22</sub> , 11S <sub>23</sub> |
| 25   | CBr stretch                               | 413              | 8.6                    | 11.9                    | 0.37        | 51S <sub>25</sub> , 31S <sub>24</sub>                                                             | 436              | 7.8                    | 11.1                       | 0.40        | $50S_{25}$ , $33S_{24}$                                                                           |
| 26   | CCC bend                                  | 347              | 1.4                    | 2.0                     | 0.39        | $62S_{26}$ , $11S_{23}$                                                                           | 358              | 1.4                    | 1.7                        | 0.36        | $61S_{26}$ , $11S_{23}$                                                                           |
| 27   | CBr bend                                  | 277              | 1.6                    | 2.7                     | 0.35        | $16S_{27}$ , $34S_{29}$ , $20S_{28}$ , $19S_{25}$                                                 | 289              | 1.4                    | 2.3                        | 0.37        | $18S_{27}$ , $36S_{29}$ , $17S_{25}$ , $16S_{28}$                                                 |
| 28   | CH <sub>3</sub> torsion                   | 249              | 0.6                    | 0.7                     | 0.56        | $79S_{28}, 12S_{27}$                                                                              | 257              | 0.5                    | 0.5                        | 0.62        | 83S <sub>28</sub> , 11S <sub>27</sub>                                                             |
| 29   | CBr bend                                  | 200              | 0.4                    | 2.6                     | 0.44        | 42 <i>S</i> <sub>29</sub> , 24 <i>S</i> <sub>27</sub> , 23 <i>S</i> <sub>24</sub>                 | 209              | 0.3                    | 2.4                        | 0.45        | 43 <i>S</i> <sub>29</sub> , 24 <i>S</i> <sub>27</sub> , 23 <i>S</i> <sub>24</sub>                 |
| 30   | Asymmetric torsion                        | 90               | 0.1                    | 2.9                     | 0.72        | $100S_{30}$                                                                                       | 96               | 0.1                    | 2.9                        | 0.73        | $100S_{30}$                                                                                       |

 $<sup>^{</sup>a} \ \, \text{Calculated infrared intensities in km mol}^{-1}. \\ ^{b} \ \, \text{Calculated Raman activities in } \mathring{A}^{4} \, \text{amu}^{-1}.$ 

Comparison of the conformational enthalpy differences and abundances obtained for 3-X-1-butenes

| Molecule           | Method                              | HE           |            | ME           |            | XE           |            | Abundance (%) | ıce (%) |       |
|--------------------|-------------------------------------|--------------|------------|--------------|------------|--------------|------------|---------------|---------|-------|
|                    |                                     | Total energy | $\Delta H$ | Total energy | $\Delta H$ | Total energy | $\Delta H$ | HE            | ME      | XE    |
| 3-Bromo-1-butenes  | BLYP/6-311++G(d,p)                  | -2730.725409 | 0          | -2730.723810 | 4.20       | -2730.721124 | 11.25      | 84            | 15      | 1     |
|                    | B3LYP/6-311++G(d,p)                 | -2730.817307 | 0          | -2730.815883 | 3.74       | -2730.813636 | 9.64       | 81            | 18      | 2     |
| 3-Chloro-1-butenes | BLYP/6-311++G(d,p)                  | -616.785635  | 0          | -616.783900  | 1.05       | -616.782596  | 1.85       | 47            | 31      | 22    |
|                    | B3LYP/6-311++G(d,p)                 | -616.895764  | 0          | -616.894224  | 0.94       | -616.893257  | 1.52       | 45            | 31      | 24    |
|                    | IR temperance variance <sup>a</sup> |              | 0          |              | 0.90(10)   |              | 2.36(44)   | 48(2)         | 33(1)   | 19(3) |
| 3-Fluoro-1-butenes | BLYP/6-311++G(d,p)                  | -256.442042  | 0          | -256.440235  | 4.74       | -256.441154  | 2.33       | 65            | 10      | 25    |
|                    | B3LYP/6-311++G(d,p)                 | -256.540285  | 0          | -256.538737  | 4.06       | -256.539923  | 0.95       | 53            | 10      | 36    |
|                    | IR temperance variance <sup>b</sup> |              | 0          |              | 3.49(6)    |              | 1.04(7)    | 53(1)         | 13(0)   | 35(1) |

K = F, C1 and Br. Total energies in hartree,  $\Delta H$  in kJ mol<sup>-</sup> <sup>a</sup> Taken from Ref [7]

Taken from Ref. [2].

same mode in the chlorine (vib. no=6) and fluorine (vib. no=7). The out-of-plane =CH bend was predicted to be present in the higher region of  $980 \text{ cm}^{-1}$  than the same mode of chlorine and fluorine analogues ( $\sim 600 \text{ cm}^{-1}$ ). For the heavy atom modes, the CBr stretches of three conformers were predicted at the  $\sim 400 \text{ cm}^{-1}$  region and the two CBr bends at the  $\sim 260 \text{ and } 230 \text{ cm}^{-1}$  region.

## 3.3. Comparison of conformational stability of 3-halo-butenes

A review of the values of the conformational enthalpy differences obtained for 3-halo-1-butenes is summarized in Table 7. The values of the  $\Delta H$  between the HE and ME varies from 3.74 to 4.31 kJ mol<sup>-1</sup> and those between the HE and BrE from 8.37 to 11.3 kJ mol<sup>-1</sup>, depending on the choice of basis set. These  $\Delta H$  values indicate that the most stable conformer of the molecule is the HE, the second and the third are the ME and the BrE, respectively. The  $\Delta H$  between the HE and BrE of 3-bromo-1-butene is significantly larger than those of 3-fluoro-1-butene [1] and 3-chloro-1-butene [2]. This can explain the largest  $\Delta H$  value is due to the largest size of the bromine atom eclipsing the methylene hydrogen.

Utilizing the  $\Delta H$  values the abundance ratios of conformers in the gaseous phase at ambient temperature were calculated by Boltzmann distribution equation [14]

$$\frac{N_i}{N_i} = \exp(-\Delta H/RT),$$

where  $N_i$  is the number of the higher energy conformer,  $N_j$  is the number of the most stable conformer,  $\Delta H$  is the enthalpy difference between the conformers, R is the gas constant and T is the absolute temperature. The estimated concentrations of the HE, ME and FE are about 83, 15 and 3%. Therefore the BrE conformer of 3-bromo-1-butene may not be easily detected in the spectral measurement because of insufficient abundance. But the ME conformer may be present with enough abundance in the fluid phases.

#### Acknowledgements

M.-J. Lee acknowledges this research is financially supported by Changwon National University in 2004.

#### References

- J.R. Durig, S.W. Hur, T.K. Gounev, F. Fusheng, G.A. Guirgis, J. Phys. Chem. A 105 (2001) 4216.
- [2] M.J. Lee, F. Fusheng, S.W. Hur, J. Liu, T.K. Gounev, J.R. Durig, J. Raman Spectrosc. 31 (2000) 157.
- [3] A.D. Becke, Phys. Rev. A 38 (1988) 3098.
- [4] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
- [5] C. Lee, W. Yang, R.P. Parr, Phys. Rev. B 38 (1988) 785.

- [6] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN 98, Revision A.7, Gaussian Inc., Pittsburgh, PA, 1998.
- [7] P. Pulay, Mol. Phys. 17 (1969) 197.
- [8] E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations, McGraw-Hill, New York, NY, 1955 (republished by Dover, New York, NY, 1980)
- [9] S.J. Lee, Phys. Chem. 100 (1996) 13959.
- [10] B. Lee, J. So, S. Lee, Bull. Korean Chem. Soc. 17 (1996) 767.
- [11] S. Lee, J. Mol. Struct. (Theochem) 427 (1998) 267.
- [12] K. Park, S. Lee, Y. Lee, Bull. Korean Chem. Soc. 20 (1999) 809.
- [13] J.H. Schachtschneider, Vibrational Analysis of Polyatomic Molecules, Part V and VI, Technical Report Nos 231 and 57, Shell Development Co., Houston, TX, 1964 and 1965.
- [14] P.W. Atkins, Physical Chemistry, sixth ed., Oxford University Press, Oxford, UK, 1997 (Chapter 0).