Automotive MLCCAutomotive

GENERAL DESCRIPTON

AVX Corporation has supported the Automotive Industry requirments for Multilayer Ceramic Capacitors consistently for more than 10 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

As part of our sustained investment in capacity and state of the art technology, we are now transitioning from the established Pd/Ag electrode system to a Base Metal Electrode system (BME).

AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers including:

- X7R dielectric components containing BME electrode and copper terminations with a Ni/Sn plated overcoat
- X7R dielectric components, BME electrode with epoxy finish for conductive glue mounting

HOW TO ORDE

Contact factory for availability of Tolerance Options for Specific Part Numbers.

NOTE: Contact factory for non-specified capacitance values 0402 case size available in T termination only.

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product.
Dicing	Side & End Margins = 0.003" min	Side & End Margins = 0.004" min Cover Layers = 0.003" min
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

All Tests have Accept/Reject Criteria 0/1

Automotive MLCC NP0/X7R Dielectric

FLEXITERM FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

b) Temperature Cycle testing

FLEXITERM® has the ability to withstand at least 1000 cycles between -55°C and +125°C

Automotive MLCC-NP0 Capacitance Range

		04	02		06	03				0805					12	06		
Solde	ring	Reflow	/Wave		Reflow	/Wave			F	Reflow/Wav	re				Reflov	v/Wave		
		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
100	10pF	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
120	12	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
150	15	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
180	18	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
220	22	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
270	27	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
330	33	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
390	39	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
470	47			G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
510	51			G	G	G	G	J	J	J	N	N	J	J	J	J		
560	56			G	G	G	G	J	J	J	N	N	J	J	J	J		
680	68			G	G	G	G	J	J	J	N	N	J	J	J	J		
820	82			G	G	G	G	J	J	J	N	N	J	J	J	J		
101	100			G	G	G	G	J	J	J	N	N	J	J	J	J		
121	120			G	G	G		J	J	J	N	N	J	J	J	J		
151	150			G	G	G		J	J	J	N	N	J	J	J	J		
	180			G	G	G		J	J	J	N	N	J	J	J	J		
221	220			G	G	G		J	J	J	N	N	J	J	J	J		
	270			G	G	G		J	J	J	N	N	J	J	J	J		
331	330			G	G	G		J	J	J	N	N	J	J	J	J		
391	390			G	G			J	J	J			J	J	J	J		
471	470			G	G			J	J	J			J	J	J	J		
561	560			G	G			J	J	J			J	J	J	J		
681	680			G	G			J	J	J			J	J	J	J		
	820							J	J	J			J	J	J	J		
102	1000							J	J	J			J	J	J	J		
122	1200																	
152	1500																	
182	1800																	
222	2200																	
272	2700																	
332	3300																	
	3900																	
472	4700																	
103	10nF																	
		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
		04	02		06	03				0805					12	:06		

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

Automotive MLCC - X7R Capacitance Range

		(0402	2				060	3					0	805			Г			120	6			Г	12	10		18	812	2220		
Sc	oldering	Refl	ow/W	/ave			Ret	flow/V	Vave					Reflo	w/Wa	ve				Re	eflow/	Wave				Reflo	w On	ly	Reflo	w Only	Ref	low (Only
		16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
221	Cap 220	С	С	С											С																		
271	(pF) 270	С	С	С																													
331	330	С	С	С																													
391	390	С	С	С																													
471	470	С	С	С																													
561	560	С	С	С																													
681	680	С	С	С																													
821	820	С	С	С																													
102	1000	С	С	С	G	G	G	G	G	G	Ð	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
182	1800	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
222	2200	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
332	3300	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
472	4700	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103	Cap 0.01	С			G	G	G	G	G	G	Ð	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
123	(F) 0.012	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
153	0.015	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
183	0.018	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
223	0.022	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
273	0.027	С			G	G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
333	0.033	С			G	G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
473	0.047				G	G	G	G				J	J	J	N	N	N	J	J	J	М	М	М		K	K	K	K	K	K			
563	0.056				G	G	G	G				J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
683	0.068				G	G	G	G				J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
823	0.082				G	G	G	G				J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
104	0.1				G	G	G	G				J	J	М	N			J	J	J	М	Р	Р		K	K	K	М	K	K			
124	0.12				G							J	J	Ν	N			J	J	М	M	Q	Q		K	K	K	Р	K	K			
154	0.15				G							М	N	N	N			J	J	М	M	Q	Q		K	K	K	Р	K	K			
224	0.22				G							М	N	N	N			J	М	M	Q	Q	Q		М	М	М	Р	М	М			
334	0.33											N	N	N	N			J	М	Р	Q				Р	Р	Р	Q	Х	Х	$oxed{\Box}$		
474	0.47											N	N	N	N			М	М	Р	Q				Р	Р	Р	Q	Х	Х	$ldsymbol{\sqcup}$		
684	0.68											N	N	N				М	Q	Q	Q				Р	Р	Q	X	Х	Х			
105	1											N	N	N				М	Q	Q	Q				Р	Q	Q	X	Х	Х	\vdash	Z	Z
155	1.5																	Q	Q	Q	Q				Р	Q	Z	Z	Х	Х	\vdash	Z	Z
225	2.2																	Q	Q	Q	Q				Х	Z	Z	Z	Z	Z	\vdash	Z	Z
335	3.3																	Q	Q	Q					Х	Z	Z	Z	Z		\sqcup	Z	Z
475	4.7																	Q	Q	Q					Х	Z	Z	Z	Z			Z	Z
106	10																	<u> </u>							Z	Z	Z		Z		Z	Z	Z
226	22																								<u> </u>						Z		
			25V	_	10V	16V	25V			200V	250V	16V	25V			200V	250V	16V	25V	50V	_	200V	250V	500V	16V			100V	_		25V		
			0402					0603	3			0805				<u> </u>			120	6			oxdot	12	210		1812		2220				

Letter	А	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z	
Max	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	
			DADED			EMBOSSED								

Automotive MLCC - X8R Capacitance Range

	SIZE		603		805	12	
So	Idering	Reflov	v/Wave	Reflo	w/Wave	Reflow	/Wave
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	8200	G	G	J	7	J	J
103	Cap 0.01	G	G	J	7	J	J
123	(F) 0.012	G	G	J	٦	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	М	M
683	0.068	G		N	N	М	M
823	0.082			N	N	М	М
104	0.1			N	N	М	М
124	0.12			N	N	М	М
154	0.15			N	N	М	М
184	0.18			N		М	М
224	0.22			N		М	М
274	0.27					М	М
334	0.33					М	М
394	0.39					М	
474	0.47	•				М	
684	0.68						
824	0.82						
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	ne	03	O:	805	12	16

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z	
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	
			PAPER			EMBOSSED								

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

AVX:

08051C221J4T4A 06031A100B4T2A 06031A100C4T2A 06031A100D4T2A 06031A100J4T2A 06031A100K4T2A 06031A101F4T2A 06031A101J4T2A 06031A101J4T4A 06031A101K4T2A 06031A120F4T2A 06031A120G4T2A 06031A121F4T2A 06031A121G4T2A 06031A121G4T4A 06031A121J4T2A 06031A150F4T2A 06031A150J4T2A 06031A150K4T2A 06031A151F4T2A 06031A151J4T2A 06031A151J4T4A 06031A180F4T2A 06031A180J4T2A 06031A180J4T4A 06031A180K4T2A 06031A181F4T2A 06031A181J4T2A 06031A181J4T7A 06031A181K4T2A 06031A1R0C4T2A 06031A1R5D4T2A 06031A1R8B4T2A 06031A1R8B4T4A 06031A200F4T2A 06031A200J4T4A 06031A220F4T2A 06031A220J4T2A 06031A220K4T2A 06031A221J4T2A 06031A221J4T4A 06031A221K4T2A 06031A270F4T2A 06031A270J4T2A 06031A271F4T2A 06031A271J4T2A 06031A271K4T2A 06031A2R0B4T2A 06031A2R0C4T2A 06031A2R2C4T2A 06031A300J4T2A 06031A330G4T2A 06031A330J4T2A 06031A330K4T2A 06031A331F4T2A 06031A331J4T2A 06031A331K4T2A 06031A390J4T2A 06031A390K4T2A 06031A390K4T4A 06031A3R0B4T2A 06031A3R0C4T2A 06031A3R3C4T4A 06031A3R6B4T2A 06031A3R9C4T2A 06031A3R9C4T4A 06031A3R9D4T2A 06031A470J4T2A 06031A470K4T2A 06031A4R0B4T2A 06031A4R3B4T2A 06031A4R7B4T2A 06031A4R7C4T2A 06031A4R7C4T4A 06031A4R7D4T2A 06031A560F4T2A 06031A5R0B4T2A 06031A5R0B4T4A 06031A5R1D4T2A 06031A680F4T2A 06031A680F4T4A 06031A680J4T2A 06031A6R2C4T4A 06031A6R8C4T2A 06031A7R5B4T2A 06031A7R5D4T2A 06031A820F4T2A 06031A820F4T4A 06031A820J4T4A 06031A8R0D4T4A 06031A8R2C4T2A 06031A9R1D4T2A 06031AR51D4T2A 06031C102J4T2A 06031C102K4T2A 06031C102K4T4A 06031C102K4Z2A 06031C102M4T2A 06031C102M4T4A 06031C103J4T2A