Topološke lastnosti grup Seminar

Gašper Rotar Fakulteta za matematiko in fiziko

4. april 2020

1 Uvod

V tej seminarski bomo obravnavali uporabe topoloških pristopov za študij lastnosti grup.

2 Dva preprosta izreka

Trditev 1 Naj bo G grupa in $\Delta(G) = \{(g,g) \mid g \in G\} \subseteq G \times G$. Grupa G je komutativna natanko takrat, ko je $\Delta(G)$ podgrupa edinka grupe G, $\Delta(G) \triangleleft G$.

Dokaz:

(⇒) Ker je G komutativna je seveda tudi $G \times G$ komutativna. Torej je vsaka njena podgrupa edinka. Zdaj je trebna le še pokazati, da je $\Delta(G) \le G \times G$, kar je enostavno. Naj bosta $a = (\alpha, \alpha), b = (\beta, \beta) \in \Delta(G)$, potem:

$$a + b = (\alpha, \alpha) + (\beta, \beta) = (\alpha + \beta, \alpha + \beta) \in \Delta(G),$$

$$(\alpha, \alpha) + (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1).$$

Vidimo, da je $\Delta(G)$ zaprta za opreacijo, inverz (α, α) pa je $(\alpha^{-1}, \alpha^{-1}) \in \Delta(G)$, torej zaprta tudi za invertiranje.

(\Leftarrow) Naj bosta α, β elementa grupe G z enoto 1. Potem so $(\alpha, 1), (\alpha^{-1}, 1), (\beta, \beta) \in G \times G$ in $(\alpha, 1)^{-1} = (\alpha^{-1}, 1)$ ter $(\beta, \beta) \in \Delta(G)$. Potem lahko izračunamo:

$$(\alpha, 1) \cdot (\beta, \beta) \cdot (\alpha^{-1}, 1) = (\alpha \beta \alpha^{-1}, \beta).$$

Ker je $\Delta(G)$ ednika je zaprta za invertiranje, torej je $\alpha\beta\alpha^{-1}=\beta\Rightarrow\alpha\beta=\beta\alpha$