Complexity Analysis & Sorting

Sorting Revisited

- The time complexity of the selection sort algorithm is $O(N^2)$.
- Its execution time is long when N is large enough.
- Is it possible to solve the sorting problem *more efficiently*?

Sorting using Recursion

- In a $O(N^2)$ time algorithm, doubling N increases the running time by a factor of four.
- The reverse is also true: *halving* N *decreases* the running time by the same factor of *four*.
- This suggests that *dividing* an array in half and *recursively* sorting the subarrays might reduce the sorting time.

Divide-and-Conquer

- Recall the divide-and-conquer approach.
 - *Divide* the problem into smaller pieces.
 - (*Divide* an array in half.)
 - Tackle each sub-task either directly or by recursion.
 - (Recursively sort each subarray.)
 - *Combine* the solutions of the parts to form the solution of the whole.
 - (*Merge* two sorted subarrays to one sorted array.)

The Merge Sort Algorithm

array 56 25 37 58 95 19 73 30

- An array of size 0 or 1 must already be sorted.
- When n > 1,
 - divide the array into two subarrays of smaller size;

recursively sort each subarray;

• merge the sorted subarrays back into the original array.

Merge Sort Implementation

```
void MergeSort(int *array, int n) {
                                             A test to stop
   int n1, n2, *arr1, *arr2;
                                              or continue
   if (n > 1)
                     // size of 1st subarray
      n1 = n / 2;
      n2 = n - n1;
                     // size of 2nd subarray
      arr1 = (int *)malloc(n1 * sizeof(int));
      arr2 = (int *)malloc(n2 * sizeof(int));
      Divide(array, arr1, n1, arr2, n2);
                                             Two recursive
      MergeSort(arr1, n1); --
                                            calls to continue
      MergeSort(arr2, n2);
      Merge(array, arr1, n1, arr2, n2);
                                               recursion
      free (arr1);
      free (arr2);
```

An *end case* to terminate the recursion (nothing to do)

Merge Sort Implementation (Divide)

```
void Divide(int *array, int *arr1, int n1, int *arr2, int n2) {
   int i;
   for (i = 0; i < n1; i++)
        arr1[i] = array[i];
   for (i = 0; i < n2; i++)
        arr2[i] = array[i + n1];
}</pre>
```

- The front half of array is placed in arr1.
- The rear half of array is placed in arr2.

Merge two sorted arrays arr1 and arr2 to one sorted array array.

Merging Two Arrays: Implementation (Merge)

```
void Merge(int *array, int *arr1, int n1, int *arr2, int n2) {
   int p1 = 0, p2 = 0, p = 0;

while (p1 < n1 && p2 < n2) {
    if (arr1[p1] <= arr2[p2])
        array[p++] = arr1[p1++];
   else
        array[p++] = arr2[p2++];
}

while (p1 < n1)
   array[p++] = arr1[p1++];

while (p2 < n2)
   array[p++] = arr2[p2++];
}</pre>
```

Merging Two Arrays: Implementation

• p1, p2, and p are indices to the arrays arr1, arr2, and array

respectively.

```
int p1 = 0, p2 = 0, p = 0;
while (p1 < n1 && p2 < n2) {
   if (arr1[p1] <= arr2[p2])
      array[p++] = arr1[p1++];
   else
      array[p++] = arr2[p2++];
}</pre>
```



```
while (p1 < n1 && p2 < n2) {
   if (arr1[p1] <= arr2[p2]);
      array[p++] = arr1[p1++];
   else
      array[p++] = arr2[p2++];
}</pre>
```

Copy either arr1 [p1] Or arr2 [p2], whichever smaller, to array [p].

And advance the pointer of that array.


```
while (p1 < n1 \&\& p2 < n2) {
   if (arr1[p1] <= arr2[p2])</pre>
                                   Copy either arr1[p1] or arr2[p2],
      array[p++] = arr1[p1++];
                                    whichever smaller, to array[p].
   else
      array[p++] = arr2[p2++];
                                        array[p++] = arr1[p1++];
        25 37 56 58
   arr1
                                         array
             p1
                              19 | 25
         | 19 | 30 | 73 | 95 |
                                      p
            p2
                                        array[p++] = arr2[p2++];
        25 37 56 58
   arr1
                                         array
            p1
                                 25 30
                              19
         19 30 73 95
   arr2
                                          p
                p2
```



```
while (p1 < n1)
      array[p++] = arr1[p1++];
                                   Flush the remaining elements
  while (p2 < n2)
                                   of either arr1 or arr2 to array.
      array[p++] = arr2[p2++];
                                     array[p++] = arr2[p2++];
         37 | 56 | 58
     25
arr1
                                      array
                    p1
                              25 | 30
                                         56 | 58 | 73
                           19
                                      37
         30 | 73 |
                95
                                                     p
                 p2
                                     array[p++] = arr2[p2++];
            56
         37
                58
arr1
                    p1
                                         56 | 58 | 73
                              25
                                  30
                                     37
                           19
     19 30 73 95
arr2
                                                         p
                    p2
                                   Done and sorted!
```

17

Merge Sort Implementation

Merge Sort: Example Run

How Efficient is Merge Sort?

 To know the time complexity of merge sort, we first need to know those of Divide and Merge.

```
n1 + n2 = N.
Thus, time complexity is O(N).
```

Efficiency of Merge Sort

```
void Merge(int array, int *arr1, int n1, int *arr2, int n2) {
   int p1 = 0, p2 = 0, p = 0;

while (p1 < n1 && p2 < n2) {
   if (arr1[p1] <= arr2[p2])
        array[p++] = arr1[p1++];
   else
        array[p++] = arr2[p2++];
}

while (p1 < n1)
   array[p++] = arr1[p1++];

while (p2 < n2)
   array[p++] = arr2[p2++];
}</pre>
These statements are executed exactly N
times in all loops.
```

Efficiency of Merge Sort

Recursive Decomposition

Computational Complexity of Merge Sort

- The time spent at each level is O(N).
- There are totally k levels where $2^k = N$, i.e., $k = log_2 N$
- Hence, the time complexity of merge sort is $O(N \log_2 N)$
- We usually omit the logarithmic base in writing complexities. That is, we usually write:

 $O(N \log N)$

N^2 vs $N \log N$

• $N \log N$ grows much slower than N^2 .

N	N^2	N log N
10	100	33
100	10,000	664
1,000	1,000,000	9,966
10,000	100,000,000	132,877
100,000	10,000,000,000	1,660,964

Selection Sort vs Merge Sort

N	S. Sort	M. Sort
IN	Time (s)	Time (s)
10,000	0.265	< 0.001
20,000	1.061	0.015
40,000	4.260	0.031
100,000	26.797	0.062
110,000	32.557	0.078
120,000	38.721	0.093
140,000	54.142	0.093
200,000	110.032	0.109
1,000,000	2663.429	0.625

Common Complexity Classes

Big-O	Name	Example
O(1)	constant	Returning the 1st element
		in an array
O(log N)	logarithmic	Binary search in a sorted array
O(N)	linear	Linear search in an array
O(N log N)	N log N	Merge sort
$O(N^2)$	quadratic	Selection sort
O(N ³)	cubic	Conventional matrix
		multiplication
O(2 ^N)	exponential	Tower of Hanoi

Common Complexity Classes

Common Complexity Classes

Quicksort

- Besides merge sort, *Quicksort* is another sorting algorithm that makes use of recursion.
- It mainly differs from merge sort in the way to dividing up the array.

The Quicksort Algorithm

The Quicksort Algorithm

- An array of size 0 or 1 must already be sorted.
- Otherwise,
 - Choose a pivot to rearrange the array elements so that
 - small values are moved toward the beginning
 - large values are moved toward the end;
 - Recursively sort each subarray.

The Quicksort Algorithm

- Unlike merge sort, Quicksort does not require
 - merging the subarrays;
 - using additional space to store the subarrays.
- Any array element can be chosen as the pivot. The simplest choice is the first element in the array.

Partitioning an Array

We use 2 indices 1h and rh to the array.

• During partitioning, rh moves left and 1h moves right until they meet each other.

Partitioning an Array

- rh: moves left until array [rh] < pivot or meets lh.
- 1h: moves right until array [1h] ≥ pivot or meets rh.

Partitioning an Array

• Repeat the two processes (moving and swapping) until 1h meets rh.

rh moves left until array[rh] < pivot or meets 1h.
1h moves right until array[1h] > pivot or meets rh.

Move rh and lh.

• Swap array[lh] and array[rh].

rh moves left until array[rh] < pivot or meets 1h.
1h moves right until array[1h] ≥ pivot or meets rh.</pre>

Move rh and lh.

• 1h meets rh. Now swap array [1h] and array [0] (the pivot).


```
int Partition(int *array, int n) {
               int lh = 1, rh, pivot, temp;
               pivot = array[0];
               rh = n - 1;
               do {
rh
                  while (lh < rh && array[rh] >= pivot)
moves
                      rh--;
left.
                  while (lh < rh && array[lh] < pivot)</pre>
1h
                      lh++;
moves
                                                          Swap array[1h]
                   if (lh != rh) {
right.
                                                           and array[rh].
                      temp = array[lh];
                      array[lh] = array[rh];
                                                            Exit loop when
                      array[rh] = temp;
                                                              lh == rh.
               } while (lh != rh);
                                                           Special case:
               if (array[lh] >= pivot)
                                                             pivot is the
                   return 0;
                                                          smallest element.
Returns the
               array[0] = array[lh];
                                                           Swap array[0]
position of
               array[lh] = pivot;
 the pivot.
                                                           and array[1h].
               return lh;
```

Quicksort Implementation

Using the Partition function, Quicksort can be implemented very easily.

Quicksort: Example Run

Computational Complexity of Quicksort

• To know the time complexity of Quicksort, we first need to know that of Partition.

Computational Complexity of Quicksort

```
void Quicksort(int *array, int n) {
  int p;

  if (n > 1) {
    p = Partition(array, n);
    Quicksort(array, p);
    Quicksort(array + p + 1, n - p - 1);
  }
}
```

Quicksort: Average Case

- In average case, the left and right subarrays have equal size.
- There are at most $\log N$ levels. Each level executes in O(N) time. Thus, average case time complexity is $O(N \log N)$.

Quicksort: Worst Case

- In the worst case, one subarray is much larger than the other.
- There are O(N) levels. Each level executes in O(N) time. Thus, worst case time complexity is $O(N^2)$.

Quicksort: Worst Case

• The worst case happens when the input array is already sorted.

Selection Sort, Merge Sort, and Quicksort

• In practice, Quicksort is faster than most other sorting algorithms.

N	Sel. Sort	Merge Sort	Quicksort
IN	Time (s)	Time (s)	Time (s)
40,000	4.260	0.031	0.015
100,000	26.797	0.062	0.015
200,000	110.032	0.109	0.046
400,000	444.961	0.235	0.094
1,000,000	2663.429	0.625	0.313
2,000,000	> 10000	1.296	0.766