

STATG019 – Selected Topics in Statistics 2015

Lecture 5

Unsupervised Kernel Methods

<u> </u>		
Ш		

Response	Average	Total
String kernels: combinatorial kernels for text mining, document classification and genome analysis	12 %	4
Graph kernels: combinatorial kernels on graphs and between graphs for learning molecules, or biological and social networks	9%	3
Kernel quantile regression: predicting the median and other quantiles in non-linear distributional data, e.g. population analysis	3 %	1
Kernel CCA: finding highly correlating non-linear features in high-dimensional data, e.g. time series	Today	5
Kernel k-means: non-linear clustering with kernels	9%	3
More on novelty and outlier detection with kernels	6 %	2
Vapnik-Chervonenkis learning theory; the VC inequality and the main ideas behind its proof	9%	3
Cross-validation techniques in general and for kernels in particular	9%	3
Kernel on-line learning: how to modify kernel methods to cope with sequential data; algorithmic techniques and learning guarantees	12 %	4
Kernels for big data: how to cope with huge data sets; kernel Hebbian, Nyström approximation, sub-sampling, inducing variables	12%	4

Kernel Canonical Correlation Analysis

Canonical Correlation Analysis (Hotelling, 1936)

Input: data points $(x_1, y_1), \ldots, (x_N, y_N) \in \mathbb{R}^n \times \mathbb{R}^m$ unsupervised: neither x_i nor y_i are interpreted as labels but as two equitable classes of covariates (for readability assume centered data, i.e. $\sum_{i=1}^N x_i = \sum_{i=1}^N y_i = 0$)

Output: Linear features from both covariate classes with high correlation between each other

Mathematically: coordinates $v \in \mathbb{R}^n$ and $w \in \mathbb{R}^m$ maximizing correlation between $\langle v, x_i \rangle$ and $\langle w, y_i \rangle$

$$v, \boldsymbol{w} = \operatorname*{argmax}_{v, \boldsymbol{w}} |\operatorname{corr}(\boldsymbol{X} v, \boldsymbol{Y} \boldsymbol{w})| = \operatorname*{argmax}_{v, \boldsymbol{w}} \frac{\left(v^\top \boldsymbol{X}^\top \boldsymbol{Y} \boldsymbol{w}\right)^2}{v^\top \boldsymbol{X}^\top \boldsymbol{X} v \cdot \boldsymbol{w}^\top \boldsymbol{Y}^\top \boldsymbol{Y} \boldsymbol{w}}$$

Remarks: optimal v, w are non-unique

for maximizers v, w and $\alpha, \beta \in \mathbb{R}$, scaled directions $\alpha v, \beta w$ are also maximizers

Good idea: posit ||v|| = ||w|| = 1 Better idea:

Better idea: posit ||Xv|| = ||Yw|| = 1

Yields quadratic program (quadratically constrained):

$$v, w = \operatorname*{argmax}_{v, w} v^{\top} X^{\top} Y w = \operatorname*{argmax}_{v, w} \left(v^{\top} X^{\top} Y w \right)^2$$
 s.t. $v^{\top} X^{\top} X v = 1$ $w^{\top} Y^{\top} Y w = 1$

features

Canonical Correlation Analysis (Hotelling, 1936)

Input: data points $(x_1, y_1), \ldots, (x_N, y_N) \in \mathbb{R}^n \times \mathbb{R}^m$ *unsupervised:* neither x_i nor y_i are interpreted as labels but as two equitable classes of covariates

Output: coordinates $v \in \mathbb{R}^n$ and $w \in \mathbb{R}^m$ maximizing correlation between $\langle v, x_i \rangle$ and $\langle w, y_i \rangle$

2D projections of the 4D data

Quadratic program (quadratically constrained):

$$v, \mathbf{w} = \operatorname*{argmax}_{v, \mathbf{w}} v^{\top} X^{\top} Y \mathbf{w} = \operatorname*{argmax}_{v, \mathbf{w}} \left(v^{\top} X^{\top} Y \mathbf{w} \right)^2 \text{ s.t. } v^{\top} X^{\top} X v = 1$$

Solution by the Lagrangian approach:

$$L(\lambda_v, \lambda_w, v, w) = v^\top X^\top Y w - \frac{\lambda_v}{2} (Xv)^\top (Xv) - \frac{\lambda_w}{2} (Yw)^\top (Yw) + \frac{\lambda_v + \lambda_w}{2}$$

$$\frac{\partial L}{\partial v} = X^\top Y w - \lambda_v X^\top X v \qquad \frac{\partial L}{\partial w} = Y^\top X v - \lambda_w Y^\top Y w$$

$$v^\top \frac{\partial L}{\partial v} - w^\top \frac{\partial L}{\partial w} = \lambda_w w Y^\top Y w - \lambda_v v X^\top X v = \lambda_w - \lambda_v$$

$$\downarrow 0 \text{ for extremum (program is smooth, so no boundary cases)}$$

computation implies: $v^{\top}X^{\top}Yw = \lambda_v = \lambda_w =: \lambda$, and maximizer v, w must satisfy

$$(X^{\top}X)^{-1}X^{\top}Y(Y^{\top}Y)^{-1}Y^{\top}X \cdot v = \lambda^{2}v$$
$$(Y^{\top}Y)^{-1}Y^{\top}X(X^{\top}X)^{-1}X^{\top}Y \cdot w = \lambda^{2}w$$

generalized eigenvalue problem can be efficiently solved

Canonical Correlation Analysis

Input: data points $(x_1, y_1), \dots, (x_N, y_N) \in \mathbb{R}^n \times \mathbb{R}^m$

Output: coordinates $v \in \mathbb{R}^n$ and $w \in \mathbb{R}^m$ maximizing correlation between $\langle v, x_i \rangle$ and $\langle w, y_i \rangle$

Generalized eigenvalue problem

$$(X^{\top}X)^{-1}X^{\top}Y(Y^{\top}Y)^{-1}Y^{\top}X \cdot v = \lambda^{2}v$$
$$(Y^{\top}Y)^{-1}Y^{\top}X(X^{\top}X)^{-1}X^{\top}Y \cdot w = \lambda^{2}w$$

Observe: maximizer v, w must satisfy: $v \in \text{rowspan } X, \ w \in \text{rowspan } Y$ writing a = Xv and b = Yw, one obtains:

$$X(X^{\top}X)^{-1}X^{\top}Y(Y^{\top}Y)^{-1}Y^{\top} \cdot a = \lambda^{2}a = \mathcal{P}_{X}\mathcal{P}_{Y} \cdot a$$
$$Y(Y^{\top}Y)^{-1}Y^{\top}X(X^{\top}X)^{-1}X^{\top} \cdot b = \lambda^{2}b = \mathcal{P}_{Y}\mathcal{P}_{X} \cdot b$$

where \mathcal{P}_A denotes projection on colspan A (not rowspan A!)

so a,b,λ^2 are *leading* left and right singular vector and value to $\mathcal{P}_X\mathcal{P}_Y$ other left/right singular vectors: "canonical components"

Kernelization: from properties of the pseudo-inverse (see lecture 4):

$$\mathcal{P}_X = XX^\top (XX^\top XX^\top)^+ XX^\top \qquad \text{... does not work since assumption} \\ = K_{XX}K_{XX}^{-2}K_{XX} = I \text{ for Gauss kernel} \qquad a = Xv, b = Yw \text{ does not kernelize well}$$

Kernel Canonical Correlation Analysis

(Akaho, 2001) (Fyfe, Lai, 2001)

Input: data points $(x_1, y_1), \ldots, (x_N, y_N) \in \mathbb{R}^n \times \mathbb{R}^m$

Output: coordinates $v \in \mathcal{F}$ and $w \in \mathcal{F}$

maximizing correlation between $\langle v, \phi(x_i) \rangle$ and $\langle w, \phi(y_i) \rangle$

Kernelization: use that $v = X^{\top} \alpha$, $w = Y^{\top} \beta$ (representer thm)

thus
$$X(X^{\top}X)^{-1}X^{\top}Y(Y^{\top}Y)^{-1}Y^{\top}XX^{\top}\alpha = \lambda^2XX^{\top}\alpha$$
 $Y(Y^{\top}Y)^{-1}Y^{\top}X(X^{\top}X)^{-1}X^{\top}YY^{\top}\beta = \lambda^2YY^{\top}\beta$

from properties of pseudo-inverse: $X(X^{\top}X)^{-1}X^{\top} = XX^{\top}(XX^{\top}XX^{\top})^{+}XX^{\top}$

yields:
$$\begin{pmatrix} 0 & K_{XX}K_{YY} \\ K_{YY}K_{XX} & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \lambda^2 \begin{pmatrix} K_{XX}^2 & 0 \\ 0 & K_{YY}^2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Shrinkage regularization:

replace K_{AA}^{2+} by $(K_{AA}^2 + \gamma_A I)^{-1}$ this maximizes $\frac{\langle u, v \rangle^2}{(\|u\|^2 + \gamma \|\alpha\|)(\|v\|^2 + \gamma \|\beta\|)}$ eigenvalue problem:

$$\begin{pmatrix} 0 & K_{XX}K_{YY} \\ K_{XX}K_{YY} & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \lambda^2 \begin{pmatrix} K_{XX}^2 + \gamma_X K_{XX} \\ 0 & K^2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & K_{XX}K_{YY} \\ K_{YY}K_{XX} & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \lambda^2 \begin{pmatrix} K_{XX}^2 + \gamma_X K_{XX} & 0 \\ 0 & K_{YY}^2 + \gamma_Y K_{YY} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Temporal kernel CCA: multidimensional time series x(t), y(t)

(Bießmann et al, 2009) rows of Y are y(t) rows of X are [x(t), x(t+1), x(t+2), ...]

$$\alpha(\tau) = \text{part of } \alpha \qquad \qquad \lambda = \lambda(\tau) \text{ "canonical correlogram"} \qquad \tau^* = \operatorname*{argmax}_{\tau>0} \lambda(\tau)$$

Kernel k-means

K-means clustering (Steinhaus, 1957)

Input: data points $x_1, \ldots, x_N \in \mathbb{R}^n$ (unlabelled)

Output: cluster labels $y_1, \ldots, y_N \in \{c_1, \ldots, c_{\cluster}\}$ (this is the "K"

Main idea: cluster label = "color" of closest cluster mean

Algorithmic idea: double iteration (EM-type)

- **1.** cluster labels $y_1, \ldots, y_N \leftarrow$ closest cluster mean color
- **2.** recompute cluster means $\mu(c_1), \ldots, \mu(c_K)$ (plus various initialization strategies)

Good news: converges, since every step decreases non-negative loss $D(y) = \sum_{i=1}^{N} \|x_i - \mu(y_i)\|^2$

Bad news: in general to a local minimum

Sort-of-good news: (Aloise, 2009)

cluster

assignment

Doing notably better is NP-hard

Reformulation as single-step iteration:

$$||x - \mu(c_i)||^2 = x^\top x - \frac{2}{\#C_i} \sum_{z' \in C_i} x^\top z' + \frac{1}{\#C_i^2} \sum_{z,z' \in C_i} z^\top z'$$
 where C_i is cluster i

allows (1.) without explicit computation of means (2.)

Directly Kernelizable

Spectral relaxation (Dhillon et al, 2004)

Input: data matrix $X \in \mathbb{R}^{N \times n}$ rows = pts x_1, \dots, x_N

Output: cluster labels $y_1, \ldots, y_N \in \{c_1, \ldots, c_K\}$

K-means loss:
$$D(y) = \sum_{i=1}^{N} ||x_i - \mu(y_i)||^2$$

if there was only one cluster:

$$D(y) = \left\| X^\top \left(I - \frac{\mathbb{1} \mathbb{1}^\top}{N} \right) \right\|_F^2 = \operatorname{Tr}(XX^\top) - \frac{\mathbb{1}^\top}{\sqrt{N}} XX^\top \frac{\mathbb{1}}{\sqrt{N}} \quad \text{where } \mathbb{1} \text{ is the vector of ones } XX^\top = \mathbb{1}^T$$

in general,write C_i for the i-th cluster, let $U \in \mathbb{R}^{K \times N}, \ U_{ij} := \left\{ \begin{array}{ll} \frac{1}{\sqrt{\#C_i}}, & \text{if } x_j \in C_i \\ 0 & \text{otherwise} \end{array} \right.$

$$D(y) = \|X\|_F^2 - \|ZX\|_F^2 = \operatorname{Tr}(XX^\top) - \operatorname{Tr}\left(U(XX^\top)U^\top\right) = \operatorname{Tr}(K_{XX}) - \operatorname{Tr}\left(UK_{XX}U^\top\right)$$

Observation: $U^{\top}U = I$ and U enters only in the second term

Relaxation: consider *all* orthogonal U, not only those of special form (as defined above)

Then
$$\underset{U}{\operatorname{argmin}} D(U) = \underset{U}{\operatorname{argmax}} \operatorname{Tr}(UK_{XX}U) = \operatorname{first} K \text{ eigenvectors of } K_{XX}$$

Relation to other clustering/unsupervised learning algorithms: replace K_{XX} by

$$W^{1/2}K_{XX}W^{1/2}$$
 W weights $D^{1/2}AD^{1/2}$ A adjacency/similarity matrix $D=\mathrm{diag}(A\cdot 1)$ weighted spectral K-means normalized cut/spectral clustering

THE END

(of kernels)