WHAT IS CLAIMED IS:

1	1. A disk recording apparatus for a rewritable optical disk, the disk
2	recording apparatus comprising:
3	a first timing detector having a first timing synchronized with a wobble
4	reproduction signal of the rewritable optical disk;
5	a second timing detector having a second timing synchronized with a track
6	reproduction signal of the rewritable optical disk;
7	a phase difference detector configured to detect a phase difference between the
8	first timing and the second timing; and
9	a controller configured to determine a recording area based on the detected
10	phase difference.
1	2. A disk recording apparatus according to claim 1, wherein the controller
1	
2	is configured to control writing of data on the determined recording area of the optical disk.
1	3. A disk recording apparatus according to claim 1,
2	wherein the phase difference between the first timing and the second timing is
3	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
4	length on an optical disk;
5	wherein, if $ y > w $ is established as a relationship between the detected
6	phase difference yT and a preset permissible cycle error value wT of a sync signal detected in
7	the track reproduction signal and w is a positive number, the controller is configured to
8	control writing of data on a recording area using a preset reserved area or an empty area on
9	the optical disk; and
10	wherein, if $ y \le w $ is established, the controller is configured to control
11	writing of data to a target track on the optical disk.
•	A distance which appearing according to aloim 1
1	4. A disk recording apparatus according to claim 1, wherein the phase difference between the first timing and the second timing is
2	-
3	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
4	length on an optical disk;
5	wherein the controller is configured to employ the detected phase difference to
6	calculate an amount n of error data relative to the track reproduction signal, n being a natural
7	number;

8	wherein, if $n > m$ is established as a relationship between the amount n of error
9	data and a preset permissible amount m of error data, m being a natural number, the
10	controller is configured to control writing of data on a recording area using a preset reserved
11	area or an empty area on the optical disk; and
12	wherein, if $n \le m$ is established, the controller is configured to control writing
13	of data to a target track on the optical disk.
1	5. A disk recording apparatus according to claim 1, wherein if the
2	controller determines that the recording area for writing the data is a preset reserved area or
3	an empty area on the optical disk, the controller is configured to control the writing of the
4	data using the first timing synchronized with the wobble reproduction signal of the rewritable
5	optical disk.
1	6. A disk recording apparatus according to claim 1,
2	wherein if the controller determines that the recording area for writing the data
3	is a target track on the optical disk, the controller is configured to control a selector to select a
4	recording timing based on the detected phase difference, and to record data on a recording
5	track in accordance with the selected timing;
6	wherein the phase difference between the first timing and the second timing is
7	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
8	length on an optical disk;
9	wherein, if $ y > w $ is established as a relationship between the detected
10	phase difference yT and a preset permissible cycle error value wT of a sync signal detected in
11	the track reproduction signal and w is a positive number, the controller is configured to select
12	the second timing; and
13	wherein, if $ y \le w $ is established, the controller is configured to select the
14	first timing.
1	7. A disk recording apparatus according to claim 1,
2	wherein if the controller determines that the recording area for writing the data
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

track in accordance with the selected timing;

3

4

5

is a target track on the optical disk, the controller is configured to control a selector to select a

recording timing based on the detected phase difference, and to record data on a recording

6	wherein the phase difference between the first timing and the second timing is
7	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
8	length on an optical disk;
9	wherein the controller is configured to employ the detected phase difference to
10	calculate an amount n of error data relative to the track reproduction signal, n being a natural
11	number;
12	wherein, if $n > m$ is established as a relationship between the amount n of error
13	data and a preset permissible amount m of error data, m being a natural number, the
14	controller is configured to select the second timing; and
15	wherein, if $n \le m$ is established, the controller is configured to select the first
16	timing.
1	8. A disk recording apparatus for a rewritable optical disk, the disk
2	recording apparatus comprising:
3	a first timing detector having a first timing synchronized with a wobble
4	reproduction signal of the rewritable optical disk;
5	a second timing detector having a second timing synchronized with a track
6	reproduction signal of the rewritable optical disk;
7	a phase difference detector configured to detect a phase difference between the
8	first timing and the second timing;
9	a selector configured to select a timing between the first timing and the second
10	timing; and
11	a controller configured to control the selector to select the timing based on the
12	detected phase difference, and to record data on a recording track in accordance with the
13	selected timing.
1	9. A disk recording apparatus according to claim 8,
2	wherein the phase difference between the first timing and the second timing is
3	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
4	length on an optical disk;
5	wherein, if $ y > w $ is established as a relationship between the detected
6	phase difference yT and a preset permissible cycle error value wT of a sync signal detected in
7	the track reproduction signal and w is a positive number, the controller is configured to select
Q	the second timing: and

9	wherein, if $ y \le w $ is established, the controller is configured to select the
10	first timing.
1	10. A disk recording apparatus according to claim 8,
2	wherein the phase difference between the first timing and the second timing is
3	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
4	length on an optical disk;
5	wherein the controller is configured to employ the detected phase difference to
6	calculate an amount n of error data relative to the track reproduction signal, n being a natural
7	number;
8	wherein, if n > m is established as a relationship between the amount n of error
9	data and a preset permissible amount m of error data, m being a natural number, the
10	controller is configured to select the second timing; and
11	wherein, if $n \le m$ is established, the controller is configured to select the first
12	timing.
1	11. A disk recording method for a rewritable optical disk, the method
2	comprising:
3	detecting a phase difference between a first timing synchronized with a
4	wobble reproduction signal of the rewritable optical disk and a second timing synchronized
5	with a track reproduction signal of the rewritable optical disk; and
6	determining a recording area for target data to be written based on the detected
7	phase difference.
1	12. A disk recording method according to claim 11, further comprising
2	controlling the determined recording area to write the target data therein.
1	13. A disk recording method according to claim 11,
2	wherein the phase difference between the first timing and the second timing is
3	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
4	length on an optical disk;
5	wherein, if $ y > w $ is established as a relationship between the detected
6	phase difference yT and a preset permissible cycle error value wT of a sync signal detected in
7	the track reproduction signal and w is a positive number, the target data is written on a
8	recording area using a preset reserved area or an empty area on the optical disk; and

10	on the optical disk.
1	14. A disk recording method according to claim 11,
2	wherein the phase difference between the first timing and the second timing is
3	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
4	length on an optical disk;
5	further comprising employing the detected phase difference to calculate an
6	amount n of error data relative to the track reproduction signal, n being a natural number;
7	wherein, if $n > m$ is established as a relationship between the amount n of error
8	data and a preset permissible amount m of error data, m being a natural number, the target
9	data is written on a recording area using a preset reserved area or an empty area on the optical
10	disk; and
11	wherein, if $n \le m$ is established, the target data is written on a target track on
12	the optical disk.
1	15. A disk recording method according to claim 11, wherein if the
2	recording area for the target data to be written is determined to be a preset reserved area or an
3	empty area on the optical disk, controlling the writing of the target data using the first timing
4	synchronized with the wobble reproduction signal of the rewritable optical disk.
1	16. A disk recording method according to claim 11, further comprising, if
2	the recording area for the target data to be written is determined to be a target track on the
3	optical disk, selecting a recording timing between the first timing and the second timing
4	based on the detected phase difference;
5	wherein the phase difference between the first timing and the second timing is
6	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
7	length on an optical disk;
8	wherein, if $ y > w $ is established as a relationship between the detected
9	phase difference yT and a preset permissible cycle error value wT of a sync signal detected in
10	the track reproduction signal and w is a positive number, the second timing is selected as the
11	recording timing; and
12	wherein, if $ y \le w $ is established, the first timing is selected as the
13	recording timing

wherein, if $|y| \le |w|$ is established, the target data is written to a target track

1	17. A disk recording method according to claim 11, further comprising, if
2	the recording area for the target data to be written is determined to be a target track on the
3	optical disk, selecting a recording timing between the first timing and the second timing
4	based on the detected phase difference;
5	wherein the phase difference between the first timing and the second timing is
6	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
7	length on an optical disk;
8	further comprising employing the detected phase difference to calculate an
9	amount n of error data relative to the track reproduction signal, n being a natural number;
10	wherein, if $n > m$ is established as a relationship between the amount n of error
11	data and a preset permissible amount m of error data, m being a natural number, the second
12	timing is selected as the recording timing; and
13	wherein, if $n \le m$ is established, the first timing is selected as the recording
14	timing.
1	18. A disk recording method for a rewritable optical disk, the method
2	comprising:
3	detecting a phase difference between a first timing synchronized with a
4	wobble reproduction signal of the rewritable optical disk and a second timing synchronized
5	with a track reproduction signal of the rewritable optical disk;
6	selecting a recording timing between the first timing and the second timing
7	based on the detected phase difference; and
8	recording data to the rewritable optical disk in accordance with the selected
9	recording timing.
1	19. A disk recording method according to claim 18,
2	wherein the phase difference between the first timing and the second timing is
3	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
4	length on an optical disk;
5	wherein, if $ y > w $ is established as a relationship between the detected
6	phase difference yT and a preset permissible cycle error value wT of a sync signal detected in
7	the track reproduction signal and w is a positive number, the second timing is selected as the
8	recording timing; and

9	wherein, if $ y \le w $ is established, the first timing is selected as the
10	recording timing.
1	20. A disk recording method according to claim 18,
2	wherein the phase difference between the first timing and the second timing is
3	yT, y is a positive number, and T is a channel bit which is a basic unit for a recording mark
4	length on an optical disk;
5	further comprising employing the detected phase difference to calculate an
6	amount n of error data relative to the track reproduction signal, n being a natural number;
7	wherein, if n > m is established as a relationship between the amount n of error
8	data and a preset permissible amount m of error data, m being a natural number, the second
9	timing is selected as the recording timing; and
0	wherein, if $n \le m$ is established, the first timing is selected as the recording
1	timing.