Sensor de Presión Barométrica ICP-10111

Especificaciones Técnicas Completas y Documentación de Hardware

Equipo de Ingeniería DevLab 2025-07-18

> DevLab Electronics Versión: v1.0

Contents

1	Doc	rumentación de Hardware	4
	1.1	Descripción General	4
	1.2	Características Principales	4
2	Har	dware	4
	2.1	Especificaciones Técnicas	4
		2.1.1 Especificaciones del Sensor	4
			4
	2.2		5
	2.3	Dimensiones	5
	2.4	Topología	5
	2.5	Interfaces de Comunicación	5
		2.5.1 Interfaz I2C	5
		2.5.2 Especificaciones de Interfaz Digital	5
	2.6		6
			6
		•	6
	2.7		6
			6
			6
	2.8		7
	2.9	Seguridad y Cumplimiento	7
		2.9.1 Certificaciones	7
		2.9.2 Características de Seguridad	7
	2.10	Referencias	7
	2.11	Información de Pedidos	8
	2.12	Características Físicas	8
		2.12.1 Información del Encapsulado	8
		2.12.2 Especificaciones Ambientales	8
	2.13	Soporte de Software	8
		2.13.1 Entorno de Desarrollo	8
		2.13.2 Librerías Principales	9
	2.14	Aplicaciones	9
	2.15	Seguridad y Cumplimiento	9
		2.15.1 Certificaciones	9
		2.15.2 Características de Seguridad	0
	2.16		0
	2.17	Historial de Revisiones	0
	2.18	Esquemáticos	.0

List of Figures

1	Diagrama de Pines	5
2	Dimensiones	5
3	Topología	5
4	Dimensiones Físicas	8
5	Vista Superior	8
6	Vista Inferior	8
7	Esquemático del Circuito	10

List of Tables

1 Documentación de Hardware

1.1 Descripción General

El módulo sensor de presión barométrica ICP-10111 es un sensor ambiental compacto con capacidades integradas de monitoreo ambiental, diseñado para aplicaciones IoT y mediciones atmosféricas precisas.

1.2 Características Principales

- Sensor de presión ICP-10111 (Alta precisión)
- Sensor ambiental BME688 (Temperatura, humedad, gas)
- Modos de bajo consumo energético
- Conectividad I2C/QWIIC
- Factor de forma compacto con orificios castellanos

2 Hardware

2.1 Especificaciones Técnicas

2.1.1 Especificaciones del Sensor

Parámetro	Valor	Unidad	Notas
Rango de Presión	300-1250	hPa	Presión absoluta
Precisión de Presión	± 0.4	hPa	A 25 \check{r} C
Rango de Temperatura	-40 a + 85	$\check{\mathrm{r}}\mathrm{C}$	Rango de operación
Rango de Humedad	0-100	%RH	Humedad relativa
Interfaz	I2C	-	Compatible QWIIC

2.1.2 Especificaciones de Alimentación

Parámetro	Mín	Típ	Máx	Unidad	Condiciones
Voltaje de Alimentación	3.0	3.3	5.0	V	Operación Normal
Corriente Activa	-	1.2	2.0	mA	Medición continua
Corriente en Reposo	-	0.1	0.5	ţA	Modo standby
Salida del Regulador	-	1.8	-	V	LDO interno

Diagrama de Pines

Figure 1: Diagrama de Pines

Dimensiones

Figure 2: Dimensiones

2.2 Distribución de Pines

Etiqueta	Función	Notas
VCC	Alimentación	3.3V o 5V
GND	Tierra	Tierra común para todos los componentes
SDA	Datos I2C	Línea de datos serie
SCL	Reloj I2C	Línea de reloj serie

2.3 Dimensiones

2.4 Topología

Ref.	Descripción
IC1	Sensor de Presión Barométrica ICP-10111
IC2	Sensor Ambiental BME688
L1	LED de Encendido
U1	Regulador ME6206A18XG $1.8V$
JP1	Orificios Castellanos de 2.54 mm
J1	Conector QWIIC (JST paso 1 mm) para I2C

2.5 Interfaces de Comunicación

2.5.1 Interfaz I2C

• **Dirección**: 0x63 (ICP-10111), 0x77 (BME688)

• Velocidad: Estándar (100 kHz), Rápido (400 kHz)

• Características: Conector compatible QWIIC

• Resistencias Pull-up: 4.7k integradas

2.5.2 Especificaciones de Interfaz Digital

• Niveles Lógicos: Compatible CMOS 3.3V

• Entrada Alta: 2.0V mínimo

Topología

Figure 3: Topología

• Entrada Baja: 0.8V máximo

• Corriente de Salida: 4mA típico

2.6 Características Físicas

2.6.1 Información del Encapsulado

Parámetro	Valor	Unidad
Tipo de Encapsulado	PCB Personalizado	-
Dimensiones	$25.4 \pm 15.24 \pm 3.2$	mm
Montaje	Orificios castellanos	Paso 2.54mm
Peso	2.1	g

2.6.2 Especificaciones Ambientales

Parámetro	Mín	Máx	Unidad	Condiciones
Temperatura de Operación	-40	+85	řC	Precisión completa
Temperatura de Almacenamiento	-55	+125	řC	-
Humedad	0	100	%HR	Sin condensación
Rango de Presión	300	1250	hPa	Presión absoluta

2.7 Soporte de Software

2.7.1 Entorno de Desarrollo

• Arduino IDE: Soporte completo de librería

• ESP-IDF: Integración de driver nativo

• PlatformIO: Soporte multiplataforma

• CircuitPython: Librería Python disponible

2.7.2 Librerías Principales

• Driver del sensor de presión ICP-10111

• Librería del sensor ambiental BME688

• Protocolos de comunicación I2C

• Filtrado y calibración de datos

2.8 Aplicaciones

El módulo ICP-10111 es ideal para:

1. Monitoreo Meteorológico

- Medición de presión atmosférica
- Determinación de altitud
- Sistemas de predicción meteorológica

2. Sensores Ambientales IoT

- Automatización de edificios inteligentes
- Monitoreo agrícola
- Evaluación de calidad del aire

3. Dispositivos Portátiles

- Rastreadores de fitness
- Dispositivos de navegación al aire libre
- Control de altitud de drones

2.9 Seguridad y Cumplimiento

2.9.1 Certificaciones

- RoHS: Cumple con directiva de la UE
- REACH: Cumple con regulación de la UE
- CE: Compatibilidad electromagnética

2.9.2 Características de Seguridad

- Protección ESD: ś2kV HBM en todos los pines
- Protección de Polaridad Inversa: Integrada
- Protección Térmica: Monitoreo de rango de operación

2.10 Referencias

- Hoja de Datos ICP-10111
- Hoja de Datos BME688
- Hoja de Datos Regulador ME6206

Dimensiones Físicas

Figure 4: Dimensiones Físicas

Vista Superior

Figure 5: Vista Superior

2.11 Información de Pedidos

Número de Parte	Descripción	Empaque	MOQ
ICP10111-001	Módulo Estándar	Individual	1
ICP10111-DEV	Kit de Desarrollo	Caja de Kit	1
ICP10111-BULK	Pedido en Lote	Bandeja	100

2.12 Características Físicas

2.12.1 Información del Encapsulado

Parámetro	Valor	Unidad
Tipo de Encapsulado	QFN-48	_
Dimensiones	$6 \ge 6 \ge 0.9$	mm
Separación de Pines	0.4	mm
Peso	0.5	g

2.12.2 Especificaciones Ambientales

Parámetro	Mín	Máx	Unidad	Condiciones
Temperatura de Operación	-40	+85	$\check{\rm r}{\rm C}$	Grado comercial
Temperatura de Almacenamiento	-55	+125	řC	-
Humedad	10	95	$\%\mathrm{HR}$	Sin condensación

2.13 Soporte de Software

2.13.1 Entorno de Desarrollo

• Arduino IDE: Soporte completo con núcleo ESP32

• ESP-IDF: Framework nativo de Espressif

Vista Inferior

Figure 6: Vista Inferior

- PlatformIO: Soporte IDE multiplataforma
- MicroPython: Soporte Python para desarrollo rápido

2.13.2 Librerías Principales

- Conectividad WiFi & Bluetooth
- Sistema operativo en tiempo real FreeRTOS
- Capa de abstracción de hardware (HAL)
- Soporte de actualización por aire (OTA)

2.14 Aplicaciones

El módulo DevLab es ideal para:

1. Sensores y Actuadores IoT

- Monitoreo ambiental
- Dispositivos domóticos
- Automatización industrial

2. Prototipado y Desarrollo

- Pruebas de concepto rápidas
- Proyectos educativos
- Aplicaciones de investigación

3. Productos Comerciales

- Electrodomésticos inteligentes
- Dispositivos vestibles
- Iluminación conectada

2.15 Seguridad y Cumplimiento

2.15.1 Certificaciones

- FCC: Parte 15.247 (USA)
- **CE**: EN 300 328, EN 301 489 (Europa)
- **IC**: RSS-210 (Canadá)

Esquemático del Circuito

Figure 7: Esquemático del Circuito

2.15.2 Características de Seguridad

• Protección ESD: ś2kV HBM en todos los pines

• Inmunidad Latch-up: ś100mA

• Protección Térmica: Apagado térmico automático

2.16 Información de Pedidos

Número de Parte	Descripción	Empaque	MOQ
DEVLAB-001	Módulo Estándar	Bandeja	100
DEVLAB-001R	Compatible RoHS	Tape & Reel	1000
DEVLAB-DEV	Kit de Desarrollo	Caja Individual	1

2.17 Historial de Revisiones

Versión	Fecha	Cambios
1.0	2025-07-18	Lanzamiento inicial

2.18 Esquemáticos

Para soporte técnico e información adicional, visita nuestro sitio web o contacta a nuestro equipo de ingeniería.