Week of 10/30 Deliverables

Red Lemurs

Deliverables

- Lemur library alpha
 - o <u>notebook</u>
- Run Eric's pipeline on fMRI data
 - Notebook, Literature Scoping
- Fitting AR(1)
 - https://github.com/NeuroDataDesign/lemur-f17s18/blob/master/docs/vidurkailash/ndd-lemurs-10-29.pdf

Distance Between EEG Scans notebook

Pairwise Distance Heatmap

Given n observations $X = \{x_1, x_2, \dots, x_n\}$ where each x_i is a $d \times T$ EEG scan, given the distance function $f: X \times X \to \mathbb{R}$, $f(x_i, x_j) = \|(x_i x_i^T) - (x_j x_j^T)\|_F$, we define a distance $D \in \mathbb{R}^{n \times n}, D_{ij} = f(x_i, x_j).$

from lemur.distance.functions import FroMetric, ErosMetric dataset.setDistanceMetric(FroMetric) dmp = lpl.DistanceMatrixPlotter(dataset)

HBNB EEG - Distance Matrix

observations

(labels are viewed by hovering over matrix cells)

Visualizing the Pairwise Distances in 2D

notebook

2 Dimensional TSNE Scatter

Given the (n x n) distance matrix, perform TSNE and plot first colorized by subject, then colorized by task.

Visualizing the Pairwise Distances in 2D

notebook

2 Dimensional MDS Scatter

Given the (n x n) distance matrix, perform MDS and plot first colorized by subject, then colorized by task.

Visualizing the Pairwise Distances in 2D

notebook 2 Dimensional PCA Scatter

Given the $(n \times n)$ distance matrix, we consider each column to be an observation for each of the n data points. We perform PCA on the $(n \times n)$ distance matrix, and project the $(n \times n)$ matrix onto the first two principal components. This gives a 2d representation for each of the n points based on its dissimilarity to other points.

Visualizing Spectral Info of the Pairwise **Distance Graph** notebook

Raw Heatmap of the Left Eigenvectors of the Distance Matrix

We perform PCA on the (n x n) distance matrix, then plot the U matrix (the left singular vectors).

Scree Plot

A scree plot of the spectrum of the singular value decomposition of the (n x n) distance matrix.

Left Eigenvector Matrix

Other Misc. Plots notebook

Parallel Coordinate Plot

Parallel Coordinate plot where coordinate i is the projection of the (n x n) distance matrix onto its i'th singular vector.

Other Misc. Plots notebook

Pairs Plot of 3 T SNE dimensions

(T SNE with the precomputed metric set as the (n x n) distance matrix)

Pairs Plot of 5 MDS dimensions

(MDS with the precomputed metric set as the (n x n) distance matrix)

MDS Pairs Plotter

Other Misc. Plots notebook

4 Subjects 2 Paradigms

Subject NDARAA075AMK

Plotting Single Trials of EEG Data notebook

Raw Heatmap

Raw Eigenvectors Heatmap

If there are more than 100 dimensions, then we first project the data onto the top k PCs, where k is the number of the PC which makes the cumulative varianced explained go over 0.9.

HBNB EEG - sub 000 - task 006 - Heatmap Plot

HBNB EEG - sub 000 - task 006 - Eigenvector Matrix

Plotting Single Trials of EEG Data notebook

Eigenvectors Pairs Plot

Pairs plot of data points projected onto the first 5 PCs. If the number of points is > 1000, we use hex binned plots instead of raw scatter plots. Hex bins are log scale colorized.

HBNB EEG - sub_000 - task_006 - Eigenvectors Pairs Plot

Run Eric's pipeline on fMRI data Notebook

Time Series Plot

AR(1) Fitting

AR(1) fitting for 15 time series. Within each paradigm - calculate norm of pairwise distance matrices and then averaged them. Between each paradigm - average all matrices for each paradigm and then calculate pairwise distances. Distance is much higher for within than between.

Sprint 1 Progress

- Scope problems from literature
 - EEG Biomarkers
 - fMRI Biomarkers (connectivity)
 - Analysis of survey data (p-factor)
- Lemur Alpha Library
 - Need more modality specific plots for single data point to single plot (spatial + temporal)
 - Flattened EEG Heatmap
 - Graph of fMRI connectivity between ROIs
 - Iterate on aggregate plots, add Energy Distance and AR as a metric.
- Lemur Demo Notebook
 - Need to run on fMRI data also, run on larger datasets (15+ EEG subjects)
- Uniform plotting aesthetic & API
 - API examples in demo notebook, all plotly except 1-2 plots which will be switched over.