SVKM'S NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: MCA

Year: I

Semester: I

Batch:

2014-15

Academic Year: 2014-2015

Subject:

Date:

Database Management System

11/06/2015

Marks:

Time:

Durations:

Re-Examination

Instruction: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

NB:

- 1) Question No. 1 is compulsory.
- 2) Out of remaining questions, attempt any 4 questions.
- 3) In all 5 questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 1a. Draw ERD for online Railway Ticket Reservation system. Convert ERD into tables. Make assumptions wherever possible.
- 1b. Explain with appropriate examples (Any Three)

6

- 1. Super key
 - 2. Projection operation in relational Algebra
 - 3. Left outer join
 - 4. Partial participation
 - 5. Logical level independence
- 2a. Write the SQL statement of given queries:

6

Person(driver id, name, address)

Car(license, model, year)

Accident(report number, date, location)

Owns(driver id, license)

<u>Participated(report_number, license, driver_id, damage_amount)</u>

- 1. Add a new accident to the database; assume any values for required attributes
- 2. Delete all accident details which occurred 1 year before the current date
- 3. Update the model from 'Swift' to 'Swift Desire' after 2013.
- 4. Display the location and the driver name who were involved in accidents whose damage amount is more than a lac
- Display the driver name and car model which was involved in an accident on a particular day. Say 10/10/2013
- 2b. List five responsibilities of a database-management system. For each responsibility, explain the problems that would arise if the responsibility were not discharged.

Ja.	rot the given schema	0
	Employee(fname,mint,lname, <u>ssn,</u> bdate,address,sex,salary,super_ssn,dno)	
	Department(dname, dno, mgr_ssn, mgr_start_date)	
	Project(pname, pnumber, plocation, dnum).	
	Give the relational algebra expressions for the following queries	
	1. Select the employees who work in department no 4 and make over 25000 per year	
	2. Display the employee first name, bdate and salary of department number 5. Use	
	rename operation for this query	
	3. Write an expression to count the number of employees in every department	
	4. Retrieve the name and address of all employees who work for research department	
	5. For every project located in Mumbai list the project number, the controlling	
	department number, and the department manager's last name, address and birthdate	
3b.	What is a schedule? Characterize schedules based on recoverability?	6
4a.	Consider the relational schema of the relation SCHEDULE shown below.	6
	SCHEDULE(Student-id, Class-no, Student-name, Student-Major, Class-Time, Building-room,	
	Instructor). Assume the following functional dependencies	
	Student-id->Student-name	
	Student-id->Student-major	
	Class-no→Class-time	
	Class no→Building-Room	
	Class-no→Instructor	
	What is the highest normal form of this relation? What type of data anomalies does this relation	
	have? Give examples. Also convert the relation to the next higher normal form	
4b.	What is a trigger? What are the types of trigger?	6
5a.	What is RAID Technology? How is reliability improved using RAID	6
		6
5b.	Give the difference between 3Nf and BCNF with example .	0
6a.	Explain the following terms:	6
	1. Transaction	
	2. Durability	
	3. Concurrency	
	4. Serializability	
6b.	Explain lock based protocols?	6
7.	Write short notes on any 4:-	12
	1. Shadow paging	
	2. Aggregate functions in sql	
	3. DML	
	4. Data constraints	
	5. Lossless join dependency	