The mandi Package

 $Paul\ J.\ Heafner\ ({\tt heafnerj@gmail.com})$

February 25, 2021

Version v3.0.0e dated 2021-02-25 **PLEASE DO NOT DISTRIBUTE THIS VERSION.**

Contents

Acknowledgements	3
Change History	4
List of GlowScript Programs	5
List of VPython Programs	5
List of Figures	5
1 Introduction 1.1 Loading the Package	6 6 6 6
2 Intelligent Commands for Physical Quantities and Constants 2.1 Physical Quantities 2.1.1 Typesetting Physical Quantities 2.1.2 Checking Physical Quantities 2.1.3 Commands For Predefined Physical Quantities 2.1.4 Defining and Redefining Your Own Physical Quantities 2.1.5 Setting Global Units 2.1.6 Setting Units for a Single Instance 2.1.7 Setting Units in an Environment 2.2 Physical Constants 2.2.1 Typesetting Physical Constants 2.2.2 Checking Physical Constants 2.2.3 Commands For Predefined Physical Constants 2.2.4 Defining and Redefining Your Own Physical Constants 2.2.5 Setting Global Precision 2.2.6 Setting Precision for a Single Instance 2.2.7 Setting Precision in an Environment	7 7 7 7 7 17 17 18 18 19 19 24 25 25 25
3 GlowScript and VPython Program Listings 3.1 The glowscriptblock Environment	25 25 28 30
4 Commands for Writing Physics Problem Solutions 4.1 Introductory Needs	30 30 32 32 37 37
5 Commands Specific to Matter & Interactions 5.1 The Momentum Principle 5.2 The Energy Principle 5.3 The Angular Momentum Principle 5.4 Other Expressions	41 41 42 43
6 Source Code	46
7 Index	67

Acknowledgements

TO BE COMPLETED

Change History

v3.0.0e									
General: Initial release									6

List	of GlowScript Programs	
1	A GlowScript program	27
List	of VPython Programs	
1	A VPython program	29
List	of Figures	
$\frac{1}{2}$	Image shown 20 percent actual size	

1 Introduction

This is the documentation for the mandi,¹ which is designed primarily for students in introductory physics courses. This document serves to document what commands mandi provides and does not necessarily fully demonstrate how students would use them. There is a separate document that serves that purpose.

1.1 Loading the Package

Load mandi as you would any package in your preamble.

\usepackage[options]{mandi}

1.2 The Package Version

\mandiversion

Typesets the current version and build date.

The version is \mandiversion\ and is a stable build.

The version is v3.0.0e dated 2021-02-25 and is a stable build.

1.3 Package Options

N 2021-01-30 N 2021-01-30 units=\langle type of unit\rangle
preciseconstants=\langle boolean\rangle

(initially unspecified, set to **alternate**) (initially unspecified, set to **false**)

Now mandi uses a key-value interface for options. The units key can be set to base, derived, or alternate. The preciseconstants key is always either true or false.

1.4 The mandisetup Command

N 2021-02-17

\mandisetup{\langle options \rangle}

Command to set package options on the fly after loadtime. This can be done in the preamble or inside the \begin{document}...\end{document} environment.

\mandisetup{units=base}

 $^{^{1}}$ The package name can be pronounced either with two syllables, to rhyme with candy, or with three syllables, as M and I.

2 Intelligent Commands for Physical Quantities and Constants

2.1 Physical Quantities

2.1.1 Typesetting Physical Quantities

Typesetting physical quantities and constants using semantically appropriate names, along with the correct SI units, is the core function of mandi. Take momentum as the prototypical physical quantity in an introductory physics course.

N 2021-02-24

```
\label{local_momentum} $$\operatorname{magnitude}$ $$\operatorname{constant}(c_1,\ldots,c_n)$$ $$\operatorname{constant}(c_1,\ldots,c_n)$$
```

Command for momentum and its vector variant. The default units will depend on the options passed to mandi at load time. Alternate units are the default. Other units can be forced as demonstrated. The vector variant can take more than three components. Note the other variants for the quantity's value and units.

```
5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
\momentum{5}
\momentumvalue{5}
                                                                                                 5 \,\mathrm{m}\cdot\mathrm{kg}\cdot\mathrm{s}^{-1}
\momentumbaseunits{5}
                                                                                                 5 \, \text{N} \cdot \text{s}
\momentumderivedunits{5}
                                                                                                 5 \,\mathrm{kg} \cdot \mathrm{m} \,/\,\mathrm{s}
\momentumalternateunits{5}
                                                                                                 m \cdot kg \cdot s^{-1}
\momentumonlybaseunits
\momentumonlyderivedunits
                                                                                                 N \cdot s
\momentumonlyalternateunits \\
                                                                                                 kg \cdot m / s
\vectormomentum{2,3,4}
                                                                                                 \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
\momentumvector{2,3,4}
\momentum{\mivector{2,3,4}}
                                                                                                 \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
                                                                                                 \langle 2, 3, 4 \rangle \text{ kg} \cdot \text{m} / \text{s}
```

Commands that include the name of a physical quantity typeset units, so they shouldn't be used for algebraic or symbolic values of components. For example, one shouldn't use $\mbox{vectormomentum}(\mbox{mv}_x,\mbox{mv}_y,\mbox{mv}_z)$ but instead the generic $\mbox{mivector}(\mbox{mv}_x,\mbox{mv}_y,\mbox{mv}_z)$ instead.

2.1.2 Checking Physical Quantities

N 2021-02-16

$\checkquantity{\langle name \rangle}$

Command to check and typeset the command, base units, derived units, and alternate units of a defined physical quantity.

2.1.3 Commands For Predefined Physical Quantities

Every other defined physical quantity can be treated similarly. Just replace momentum with the quantity's name. Obviously, the variants that begin with \vector will not be defined for scalar quantities. Here are all the physical quantities, with all their units, defined in mandi. Remember that units are not present with symbolic (algebraic) quantities, so do not use the \vector variants of these commands for symbolic components. Use \mivector \(^{P.31}\) instead.

N 2021-02-24	\acceleration{ $\langle magnitude \rangle$ } $\langle c_1,, c_n \rangle$	c 11		
W 2021-02-24	$\langle c_1,, \rangle$			
	name	$\begin{array}{c} {\rm base} \\ {\rm m\cdot s^{-2}} \end{array}$	derived N/kg	alternate m/s ²
	$\adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\mbox{\mbox{\backslash}}}} \adjustlength{\mbox{\mbox{\mbox{\backslash}}}} \adjustlength{\mbox{\mbox{\mbox{\backslash}}}} \adjustlength{\mbox{\mbox{\mbox{\backslash}}}} \adjustlength{\mbox{\mbox{\mbox{\backslash}}}} \adjustlength{\mbox{\mbox{\backslash}}} \adjustlength{\mbox{\backslash}} \mbox{$$			
	name \amount	base mol	derived mol	alternate mol
N 2021-02-24	\(magn\) \angularaccelerationvector \vectorangularacceleration	$\{\langle c_1, \dots, c_n \rangle\}$		
	${\rm name} \\ {\bf \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	base rad·s ⁻²	$\frac{\text{derived}}{\text{rad}/\text{s}^2}$	$\begin{array}{c} \text{alternate} \\ \text{rad} / \text{s}^2 \end{array}$
	(magnitue	<i>de</i> }}		
	name \angularfrequency	base $rad \cdot s^{-1}$	derived rad/s	alternate rad/s
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , c_n \rangle $\}$		
	name \angularimpulse	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-1} \end{array}$	$\begin{array}{c} \text{derived} \\ \text{kg} \cdot \text{m}^2 / \text{s} \end{array}$	$\begin{array}{c} alternate \\ kg \cdot m^2 / s \end{array}$
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , $c_n \rangle \}$		
	name \angularmomentum	$\begin{array}{c} {\rm base} \\ {\rm m^2 \cdot kg \cdot s^{-1}} \end{array}$	$\begin{array}{c} \text{derived} \\ \text{kg} \cdot \text{m}^2 / \text{s} \end{array}$	alternate $kg \cdot m^2 / s$
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\ldots, c_n\rangle\}$		
	name \angularvelocity	$\begin{array}{c} \text{base} \\ \text{rad} \cdot \text{s}^{-1} \end{array}$	derived rad/s	alternate rad/s
	$\area{(magnitude)}$			

\current{\(\dagmagnitude\)\}

	name \current	base A	derived A	alternate A
N 2021-02-24	$\label{lem:currentdensity} $$ \operatorname{currentdensity}(ang nitudity) $$ \operatorname{currentdensity}(c_1) $$ \operatorname{currentdensity}(c_1) $$$	$,\ldots,c_{n}\rangle\}$		
	$\begin{array}{c} \text{name} \\ \texttt{\setminus currentdensity} \end{array}$	$\begin{array}{c} base \\ m^{-2} \cdot A \end{array}$		$\begin{array}{c} {\rm alternate} \\ {\rm A}/{\rm m}^2 \end{array}$
	\dielectricconstant{\langer{mag}}	$nitude$)}		
	name \dielectricconstant	base	derived	alternate
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , $c_n \rangle \}$		
	name \displacement	base m	derived m	alternate m
	$\delta agnitude \$			
	name \duration	base s	derived s	alternate s
N 2021-02-24	\electricdipolemoment{\(m\) \electricdipolemomentvect} \vectorelectricdipolemome	$\mathtt{tor}\{\langle c_1, \dots, c_n \rangle\}$		
	name	$\begin{array}{c} {\rm base} \\ {m \cdot s \cdot A} \end{array}$		$\begin{array}{c} \text{alternate} \\ \text{C} \cdot \text{m} \end{array}$
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , $c_n \rangle \}$		
	name	$\begin{array}{c} {\rm base} \\ {m \cdot kg \cdot s^{-3} \cdot A^{-1}} \end{array}$	derived V/m	alternate N/C
	\electricflux{\(magnitude\)}	}		
	name	base $m^3 \cdot kg \cdot s^{-3} \cdot A^{-1}$	derived V·m	alternate $N \cdot m^2 / C$
	<magn< th=""><th>uuae)}</th><th></th><th></th></magn<>	uuae)}		

	name \electricpotential	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$	derived V	alternate J/C
	\(magnity)	ude }}		
	name	$\begin{array}{c} \text{base} \\ s^{-1} \end{array}$	derived e/s	alternate e/s
	$\ensuremath{\mbox{emf}\{\langle magnitude \rangle\}}$			
	name \emf	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-1} \end{array}$	derived V	alternate J/C
	$\ensuremath{\mbox{energy}} \{\ensuremath{\mbox{magnitude}}\}$			
	name \energy	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \end{array}$	derived J	alternate J
	(magnitude	2)}		
	name \energydensity	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived J/m³	alternate J/m³
N 2021-02-24	$\label{eq:constraint} $$\operatorname{cnergyflux}((magnitude)) $$ \operatorname{constraint}((c_1,\ldots, \constraint)) $$ \operatorname{constraint}((c_1,\ldots, \constraint)) $$ $$ \operatorname{constraint}((c_1,\ldots, \constraint)) $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$			
	name \energyflux	base $kg \cdot s^{-3}$	derived W/m²	alternate W/m²
	\entropy{(magnitude)}			
	name \entropy	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \cdot K^{-1} \end{array}$	derived J/K	alternate J/K
N 2021-02-24	$\label{eq:constraint} $$ \operatorname{constant}(c_1,\dots,c_n) $$ \operatorname{constant}(c_1,\dots,c_n) $$$			
	name \force	$\begin{array}{c} \text{base} \\ m \cdot kg \cdot s^{-2} \end{array}$	derived N	alternate N
	\frequency{(magnitude)}			
	name	$\begin{array}{c} \text{base} \\ \text{s}^{-1} \end{array}$	derived Hz	alternate Hz

N 2021-02-24	\(\magnine{\magnine{magnin	$\{\langle c_1,\ldots,c_n\rangle\}$		
	name \gravitationalfield	$\begin{array}{c} {\rm base} \\ {\rm m\cdot s^{-2}} \end{array}$	derived N/kg	alternate N/kg
	<	$magnitude$ }}		
	name	base $m^2 \cdot s^{-2}$	derived J/kg	$\begin{array}{c} \text{alternate} \\ \text{J/kg} \end{array}$
N 2021-02-24	$\label{eq:constraint} $$ \displaystyle \operatorname{(magnitude)} $$ \operatorname{(c_1, \dots, c_n)} $$ \operatorname{(c_1, \dots, c_n)} $$$			
	name \impulse	$\begin{array}{c} base \\ m \cdot kg \cdot s^{-1} \end{array}$	derived N·s	
	$\label{limits} $$ \indexofrefraction {\mbox{\langle magnitude}$} $$	$itude \rangle \}$		
	name \indexofrefraction	base	derived	alternate
	\inductance{\langle magnitude \range}			
	name \inductance	$\begin{array}{c} {\rm base} \\ m^2 \cdot kg \cdot s^{-2} \cdot A^{-2} \end{array}$	derived H	$\begin{array}{c} \text{alternate} \\ \text{V} \cdot \text{s} / \text{A} \end{array}$
	(mag	$gnitude$ }}		
	${\rm name} \\ {\tt linearchargedensity}$	$\begin{array}{c} base \\ m^{-1} \cdot s \cdot A \end{array}$	derived C/m	alternate C/m
	$\verb \linearmassdensity \{ \langle magnification ma$	itude angle brace		
	${\rm name} \\ \verb \linearmassdensity $	$\begin{array}{c} \text{base} \\ m^{-1} \cdot kg \end{array}$	derived kg/m	alternate kg/m
	$\label{luminous} {\mbox{\mbox{\mbox{\langle magnitude}\rangle}}$			
	name \luminous	base cd	derived cd	alternate cd

 $\verb|\magneticcharge| \{\langle magnitude \rangle\}|$

	name	base m·A	$\operatorname*{derived}_{m \cdot A}$	
N 2021-02-24	(n\magneticdipolemomentvectormagneticdipolemomentvectormagneticdipolemoment)	$ctor\{\langle c_1, \dots, c_n \rangle\}$		
	${\rm name} \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c} base \\ m^2 \cdot A \end{array}$		alternate J/T
N 2021-02-24	$\label{local_magnetic} $$\max_{magneticfield}(magnitud) $$\operatorname{cormagneticfield}(c_1) $$$	$,\ldots,c_{n}\rangle\}$		
	${\rm name} \\ {\tt \ \ } \\ {\tt \ \ \ \ \ } \\ {\tt \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ {\tt \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	base $kg \cdot s^{-2} \cdot A^{-1}$	derived T	$\begin{array}{c} \text{alternate} \\ \text{N/C} \cdot (\text{m/s}) \end{array}$
	\(magnitude\)) }		
	name \magneticflux	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \cdot A^{-1} \end{array}$		$\begin{array}{c} \text{alternate} \\ \text{V} \cdot \text{s} \end{array}$
	$\mbox{\mbox{$\mbox{mass}${(magnitude)}$}}$			
	name \mass	base kg	derived kg	alternate kg
	$\mbox{\mbox{$\mbox{mobility}{($\it magnitude)}$}}$			
	name	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-4} \cdot A^{-1} \end{array}$	$\begin{array}{l} derived \\ m^2 / V \cdot s \end{array}$	$\begin{array}{c} {\rm alternate} \\ {\rm (m/s)/(N/C)} \end{array}$
	$\verb \momentofinertia {\momentofinertia } (magniteria \momentofinertia) $	ude }}		
	${\rm name} \\ {\tt \ \ \ \ \ \ }$	$\begin{array}{c} base \\ m^2 \cdot kg \end{array}$	$\begin{array}{c} \text{derived} \\ \text{J} \cdot \text{s}^2 \end{array}$	
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:			
	name \momentum	$\begin{array}{c} base \\ m \cdot kg \cdot s^{-1} \end{array}$	derived N·s	$\begin{array}{c} alternate \\ kg \cdot m / s \end{array}$
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	\ldots , $c_n \rangle \}$		

${ m name}$ \relativepermeability	base	derived	alternate
<r< td=""><td>$nagnitude angle \}$</td><td></td><td></td></r<>	$nagnitude angle \}$		
${ m name}$	base	derived	alternate
\resistance{\langer(magnitude)}			
name \resistance	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-3} \cdot A^{-2} \end{array}$	derived V/A	$_{\Omega}^{\rm alternate}$
\resistivity{(magnitude)}	}		
name \resistivity	$\begin{array}{c} base \\ m^3 \cdot kg \cdot s^{-3} \cdot A^{-2} \end{array}$	$\frac{\mathrm{derived}}{\Omega \cdot \mathtt{m}}$	$\begin{array}{c} alternate \\ (V / m) / (A / m^2) \end{array}$
$\sl \mbox{solidangle} {\mbox{\sl} (magnitude)}$			
name \solidangle	$\begin{array}{c} base \\ m^2 \cdot m^{-2} \end{array}$	derived sr	alternate sr
<r< td=""><td>$nagnitude$}</td><td></td><td></td></r<>	$nagnitude$ }		
name \specificheatcapacity	$\begin{array}{c} \text{base} \\ \text{m}^2 \cdot \text{s}^{-2} \cdot \text{K}^{-1} \end{array}$	derived J/K·kg	$\frac{\text{alternate}}{\text{J/K} \cdot \text{kg}}$
\springstiffness{\langle magnite}	ude }		
name \springstiffness	base $kg \cdot s^{-2}$	derived N/m	alternate N/m
\springstretch{\langle} (magnitud	(e)}		
name \springstretch	base m	derived m	alternate m
\stress{\(magnitude\)}			
name \stress	$\begin{array}{c} base \\ m^{-1} \cdot kg \cdot s^{-2} \end{array}$	derived Pa	alternate N/m²
$\operatorname{\table}(magnitude)$			
name \strain	base	derived	alternate

	<pre>\temperature{(magnitude)}</pre>			
	name \temperature	base K	derived K	alternate K
N 2021-02-24	$\label{eq:condition} $$ \operatorname{cond}(c_1,\ldots,c_n) $$ \operatorname{cond}(c_1,\ldots,c_n) $$$			
	name \torque	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \end{array}$	$ \frac{\mathrm{derived}}{\mathtt{N} \cdot \mathtt{m}} $	$\begin{array}{c} \text{alternate} \\ \text{N}\cdot \text{m} \end{array}$
N 2021-02-24 N 2021-02-24	$\label{eq:continuous} $$\operatorname{coity}(\operatorname{magnitude}) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ \operatorname{coity}(c_1,\ldots,c_n) $$ $			
	name \velocity	$\begin{array}{c} {\rm base} \\ {\rm m\cdot s^{-1}} \end{array}$	derived m/s	alternate m/s
	name \velocityc	base c	derived	$_{\rm c}^{\rm alternate}$
	$\volume{(magnitude)}$			
	name \volume	base m ³	$_{m^{3}}^{\mathrm{derived}}$	
	$\verb \volumechargedensity \{ (magnited to the context of the contex$	ude }}		
	name \volumechargedensity	$\begin{array}{c} base \\ m^{-3} \cdot s \cdot A \end{array}$	derived C/m³	$\begin{array}{c} {\rm alternate} \\ {\rm C/m^3} \end{array}$
	$\verb \volumemassdensity \{ (magnitud \\$	$ e\rangle$		
	name \volumemassdensity	base m ⁻³ ⋅kg	derived kg/m³	$\begin{array}{c} \text{alternate} \\ \text{kg/m}^3 \end{array}$
	\wavelength{(magnitude)}			
	name \wavelength	base m	derived m	alternate m
N 2021-02-24	$\label{eq:wavenumber} $$ \operatorname{magnitude} $$ \operatorname{constant}(c_1,\dots,c_n) $$ \operatorname{constant}(c_1,\dots,c_n) $$$			

name \wavenumber	base m ⁻¹	derived /m	alternate /m
$\work{(magnitude)}$			
name \work	$\begin{array}{c} base \\ m^2 \cdot kg \cdot s^{-2} \end{array}$	derived J	
$\verb \youngsmodulus \langle magnitude $	e)}		
name \youngsmodulus	base $m^{-1} \cdot kg \cdot s^{-2}$	derived Pa	$\begin{array}{c} {\rm alternate} \\ {\rm N}/{\rm m}^2 \end{array}$

2.1.4 Defining and Redefining Your Own Physical Quantities

N 2021-02-16 N 2021-02-21

```
\newscalarquantity{\(name\)}{\(base units\)}[\(derived units\)][\(alternate units\)]
\renewscalarquantity{\(name\)}{\(base units\)}[\(derived units\)][\(alternate units\)]
```

Command to define/redefine a new/existing scalar quantity. If the derived or alternate units are omitted, they are defined to be the same as the base units. Do not use both this command and \newvectorquantity or \renewvectorquantity to define/redefine a quantity.

N 2021-02-16 N 2021-02-21

```
\newvectorquantity{\(\(\alpha me\)\}\) [\(\delta e units\)] [\(\delta e units\)] [\(\delta e units\)] [\(\delta e units\)] [\(\delta e units\)]
```

Command to define/redefine a new/existing vector quantity. If the derived or alternate units are omitted, they are defined to be the same as the base units. Do not use both this command and \newscalarquantity or \renewscalarquantity to define/redefine a quantity.

2.1.5 Setting Global Units

```
\alwaysusebaseunits
\alwaysusederivedunits
\alwaysusealternateunits
```

Modal commands (switches) for setting the default unit form for the entire document. When mandi is loaded, one of these three commands is executed depending on whether the optional units key is provided. See the section on loading the package for details. Alternate units are the default because they are the most likely ones to be seen in introductory physics textbooks.

2.1.6 Setting Units for a Single Instance

```
\hereusebaseunits{\(\content\)}
\hereusedalternateunits{\(\content\)}
```

Commands for setting the unit form on the fly for a single instance. The example uses momentum and the Coulomb constant, but they work for any defined quantity and constant.

```
\label{eq:continuous_series} $$ \end{array} $$ 5 \m \cdot kg \cdot s^{-1}$ $$ N \cdot s$ $$ 5 \m \cdot kg \cdot s^{-1}$ $$ N \cdot s$ $$ hereuseal ternate units {\momentum{5}} $$ $$ 5 \m \cdot kg \cdot s^{-1}$ $$ S \m \cdot kg \cdot s^{-1}$ $$ 10^{5} \m \cdot kg \cdot s^{
```

2.1.7 Setting Units in an Environment

Inside these environments units are changed for the duration of the environment regardless of the global default setting.

```
\momentum{5}
                             11
\oofpez
\begin{usebaseunits}
                                                                                                       5 \, \mathrm{kg} \cdot \mathrm{m} \, / \, \mathrm{s}
                                                                                                       9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
   \momentum{5} \\
   \oofpez
                                                                                                       5\,\mathrm{m}\cdot\mathrm{kg}\cdot\mathrm{s}^{-1}
\end{usebaseunits}
                                                                                                       9 \times 10^9 \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^{-4} \cdot \mathrm{A}^{-2}
\begin{usederivedunits}
   \momentum{5} \\
                                                                                                       5 \, \text{N} \cdot \text{s}
   \oofpez
                                                                                                       9 \times 10^9 \, \text{m} \, / \, \text{F}
\end{usederivedunits}
                                                                                                       5\,\mathrm{kg}\cdot\mathrm{m} / s
\begin{usealternateunits}
                                                                                                       9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
   \momentum{5} \\
\end{usealternateunits}
```

2.2 Physical Constants

2.2.1 Typesetting Physical Constants

Take the quantity $\frac{1}{4\pi\epsilon_o}$, sometimes called the Coulomb constant, as the prototypical physical constant in an introductory physics course. Here are all the ways to access this quantity in mandi. As you can see, these commands are almost identical to the corresponding commands for physical quantities.

\oofpez

Command for the Coulomb constant. The constant's numerical precision and default units will depend on the options passed to mandi at load time. Alternate units and approximate numerical values are the defaults. Other units can be forced as demonstrated.

```
9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
                                                                                        9 \times 10^{9}
\oofpez
\oofpezapproximatevalue
                                                                                        8.987551787 \times 10^9
\oofpezprecisevalue
\oofpezmathsymbol
                                                                                        9 \times 10^9 \,\mathrm{m}^3 \cdot \mathrm{kg} \cdot \mathrm{s}^{-4} \cdot \mathrm{A}^{-2}
\oofpezbaseunits
\oofpezderivedunits
                                                                                        9 \times 10^9 \, \text{m} \, / \, \text{F}
\oofpezalternateunits
                                                                                        9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \,/\,\mathrm{C}^2
\oofpezonlybaseunits
                                                                                        m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}
\oofpezonlyderivedunits
\oofpezonlyalternateunits
                                                                                        m / F
                                                                                        N \cdot m^2 / C^2
```

2.2.2 Checking Physical Constants

N 2021-02-16

N 2021-02-02

$\checkconstant{\langle name \rangle}$

\awomadro

Command to check and typeset the constant's name, base units, derived units, alternate units, mathematical symbol, approximate value, and precise value.

2.2.3 Commands For Predefined Physical Constants

Every other defined physical constant can be treated similarly. Just replace oofpez with the constant's name. Unfortunately, there is no universal agreement on the names of every constant so consult the next section for the names that have been used. Here are all the physical constants, with all their units, defined in mandi. The constants $\colon=0.20$ and $\colon=0.2$

\avogadro			
$\begin{array}{c} \text{name} \\ \texttt{\abel{avogadro}} \\ \text{symbol} \\ N_A \end{array}$	base mol^{-1} approximate 6×10^{23}	derived / mol precise $6.022140857 \times 10^{23}$	alternate / mol
\biotsavartconstant			
name \\dotsavartconstant \\symbol \\ \frac{\mu_o}{4\pi} \end{ar}	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	derived H/m precise 10 ⁻⁷	alternate T·m/A
\bohrradius			
$\begin{array}{c} \text{name} \\ \texttt{\bohrradius} \\ \text{symbol} \\ a_0 \end{array}$	base m approximate 5.3×10^{-11}	derived m precise $5.2917721067 \times 10^{-11}$	alternate m

\boltzmann			
$\begin{array}{c} \text{name} \\ \texttt{\boltzmann} \\ \text{symbol} \\ k_B \end{array}$	base $m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}$ approximate 1.4×10^{-23}	derived J/K precise $1.38064852 \times 10^{-23}$	alternate J/K
\coulombconstant			
name \coulombconstant symbol $\frac{1}{4\pi\epsilon_o}$	base $m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}$ approximate 9×10^9	derived $_{m/F}$ precise $8.9875517873681764 \times 10^{9}$	alternate $N \cdot m^2 / C^2$
\earthmass			
$\begin{array}{c} \text{name} \\ \texttt{\setminus earthmass} \\ \text{symbol} \\ M_{\texttt{Earth}} \end{array}$	base kg approximate 6.0×10^{24}	derived kg precise 5.97237 × 10 ²⁴	alternate kg
\earthmoondistance			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ \ } \\ \text{symbol} \\ \\ d_{\text{EM}} \end{array}$	base m approximate 3.8×10^8	derived m precise 3.81550×10^8	alternate m
\earthradius			
$\begin{array}{c} \text{name} \\ \texttt{\earthradius} \\ \text{symbol} \\ R_{\text{Earth}} \end{array}$	base m approximate 6.4×10^6	derived m precise 6.371 × 10 ⁶	alternate m
\earthsundistance			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ \ } \\ \text{symbol} \\ d_{\texttt{ES}} \end{array}$	base m approximate 1.5×10^{11}	derived m precise 1.496×10^{11}	alternate m
\electroncharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ q_e \end{array}$	base $A \cdot s$ approximate -1.6×10^{-19}	derived C precise $-1.6021766208 \times 10^{-19}$	alternate C

N 2021-02-02

\electronCharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \texttt{\ }$	base A·s approximate -1.6×10^{-19}	derived C precise $-1.6021766208 \times 10^{-19}$	alternate C
\electronmass			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ m_e \end{array}$	base kg approximate 9.1×10^{-31}	derived kg precise $9.10938356 \times 10^{-31}$	alternate kg
\elementarycharge			
$\begin{array}{c} \text{name} \\ \texttt{\ \ } \\ \texttt{\ } \\ \text{symbol} \\ e \end{array}$	base A·s approximate 1.6×10^{-19}	derived C precise $1.6021766208 \times 10^{-19}$	alternate C
\finestructure			
$\begin{array}{c} \text{name} \\ \texttt{\finestructure} \\ \text{symbol} \\ \alpha \end{array}$	base approximate $\frac{1}{137}$	derived precise $7.2973525664 \times 10^{-3}$	alternate
\hydrogenmass			
$\begin{array}{c} \text{name} \\ \texttt{\hydrogenmass} \\ \text{symbol} \\ m_H \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.6737236 \times 10^{-27}$	alternate kg
\moonearthdistance			
$\begin{array}{c} \text{name} \\ \texttt{\moonearthdistance} \\ \text{symbol} \\ d_{\text{ME}} \end{array}$	base m approximate 3.8×10^8	derived m precise 3.81550×10^8	alternate m
\moonmass			
$\begin{array}{c} \text{name} \\ \texttt{\begin{tabular}{l} hoonmass \\ symbol \\ $M_{\textbf{Moon}}$ \\ \end{array}}$	base kg approximate 7.3×10^{22}	derived kg precise 7.342×10^{22}	alternate kg

\moonradius			
$\begin{array}{c} \text{name} \\ \texttt{\begin{tabular}{l} \textbf{moonradius} \\ \textbf{symbol} \\ R_{\textbf{Moon}} \end{array}} \end{array}$	base m approximate 1.7×10^6	derived m precise 1.7371×10^6	alternate m
\mzofp			
name \mzofp symbol	base approximate	derived precise	alternate
\neutronmass			
$\begin{array}{c} \text{name} \\ \texttt{\neutronmass} \\ \text{symbol} \\ m_n \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.674927471 \times 10^{-27}$	alternate kg
\oofpez			
name \oofpez symbol $\frac{1}{4\pi\epsilon_o}$	base $m^3 \cdot kg \cdot s^{-4} \cdot A^{-2}$ approximate 9×10^9	derived m/F precise 8.987551787×10^9	$\begin{array}{c} alternate \\ N \cdot m^2 \ / \ C^2 \end{array}$
\oofpezcs			
name \cofpezcs symbol $\frac{1}{4\pi\epsilon_o c^2}$	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate 10^{-7}	$\begin{array}{c} \text{derived} \\ \text{T} \cdot \text{m}^2 \\ \text{precise} \\ 10^{-7} \end{array}$	alternate $N \cdot s^2 / C^2$
\planck			
name \planck symbol h	base $m^2 \cdot kg \cdot s^{-1}$ approximate 6.6×10^{-34}	derived J·s precise $6.626070040 \times 10^{-34}$	
\planckbar			
name \planckbar symbol ħ	base $m^2 \cdot kg \cdot s^{-1}$ approximate 1.1×10^{-34}	derived J·s precise $1.054571800 \times 10^{-34}$	$\begin{array}{c} \text{alternate} \\ \text{J} \cdot \text{s} \end{array}$

\planckc			
name \planckc	$\begin{array}{c} base \\ m^3 \cdot kg \cdot s^{-2} \end{array}$	derived J·m	$ \begin{array}{c} \text{alternate} \\ \text{J} \cdot \text{m} \end{array} $
$\begin{array}{c} \text{symbol} \\ hc \end{array}$	approximate 2.0×10^{-25}	precise $1.98644568 \times 10^{-25}$	
\protoncharge			
$\begin{array}{c} \text{name} \\ \texttt{\protoncharge} \\ \text{symbol} \\ q_p \end{array}$	base A·s approximate $+1.6 \times 10^{-19}$	derived C precise $+1.6021766208 \times 10^{-19}$	alternate C
\protonCharge			
$\begin{array}{c} \text{name} \\ \texttt{\protonCharge} \\ \text{symbol} \\ Q_p \end{array}$	base $A \cdot s$ approximate $+1.6 \times 10^{-19}$	derived C precise $+1.6021766208 \times 10^{-19}$	alternate C
\protonmass			
$\begin{array}{c} \text{name} \\ \texttt{\protonmass} \\ \text{symbol} \\ m_p \end{array}$	base kg approximate 1.7×10^{-27}	derived kg precise $1.672621898 \times 10^{-27}$	alternate kg
\rydberg			
$\begin{array}{c} \text{name} \\ \texttt{\t rydberg} \\ \text{symbol} \\ R_{\scriptscriptstyle \infty} \end{array}$	base m^{-1} approximate 1.1×10^7	derived ${\rm m}^{-1}$ precise 1.0973731568508 × 10 ⁷	$_{\rm m^{-1}}^{\rm alternate}$
\speedoflight			
$\begin{array}{c} \text{name} \\ \texttt{\symbol} \\ c \end{array}$	base $m \cdot s^{-1}$ approximate 3×10^8	derived m/s precise 2.99792458×10^8	alternate m/s
\stefanboltzmann			
$\begin{array}{c} \text{name} \\ \texttt{\stefanboltzmann} \\ \text{symbol} \\ \sigma \end{array}$	base $kg \cdot s^{-3} \cdot K^{-4}$ approximate 5.7×10^{-8}	derived $W/m^2 \cdot K^4$ precise 5.670367×10^{-8}	alternate $W/m^2 \cdot K^4$

\sunearthdistance			
$\begin{array}{c} \text{name} \\ \texttt{\sunearthdistance} \\ \text{symbol} \\ d_{\text{SE}} \end{array}$	base m approximate 1.5×10^{11}	derived m precise 1.496×10^{11}	alternate m
\sunradius			
$\begin{array}{c} \text{name} \\ \texttt{\setminus sunradius} \\ \text{symbol} \\ R_{\texttt{Sun}} \end{array}$	base m approximate 7.0×10^8	derived m precise 6.957×10^8	alternate m
\surfacegravfield			
$\begin{array}{c} \text{name} \\ \texttt{\surfacegravfield} \\ \text{symbol} \\ g \end{array}$	base $m \cdot s^{-2}$ approximate 9.8	derived N/kg precise 9.807	alternate N/kg
\vacuumpermeability			
$\begin{array}{c} \text{name} \\ \texttt{\vacuumpermeability} \\ \text{symbol} \\ \mu_o \end{array}$	base $m \cdot kg \cdot s^{-2} \cdot A^{-2}$ approximate $4\pi \times 10^{-7}$	derived H/m precise $4\pi \times 10^{-7}$	alternate T·m/A
\vacuumpermittivity			
$\begin{array}{c} \text{name} \\ \texttt{\backward} \\ \text{symbol} \\ \epsilon_o \end{array}$	base $m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$ approximate 9×10^{-12}	derived F/m precise $8.854187817 \times 10^{-12}$	alternate $C^2 / N \cdot m^2$

2.2.4 Defining and Redefining Your Own Physical Constants

N 2021-02-16

N 2021-02-21

\newphysicalconstant{\(name\)}{\(approximate value\)}{\(precise value\)}{\(base units\)} \[\(derived units\) \] \[\(approximate value\)}{\(approximate value\)}{\(approximate value\)}{\(approximate value\)}{\(approximate value\)} \[\(approximate units\) \] \[\(approximate units\) \] \[\(approximate units\) \]

Command to define/redefine a new/existing physical constant. If the derived or alternate units are omitted, they are defined to be the same as the base units.

2.2.5 Setting Global Precision

N 2021-02-16 N 2021-02-16

```
\alwaysuseapproximateconstants \alwaysusepreciseconstants
```

Modal commands (switches) for setting the default precision for the entire document. The default with the package is loaded is set by the presence or absence of the preciseconstants P.6 key.

2.2.6 Setting Precision for a Single Instance

N 2021-02-16 N 2021-02-16

```
\hereuseapproximateconstants{\langle content \rangle} \hereusepreciseconstants{\langle content \rangle}
```

Commands for setting the precision on the fly for a single instance.

2.2.7 Setting Precision in an Environment

N 2021-02-16

N 2021-02-16

Inside these environments precision is changed for the duration of the environment regardless of the global default setting.

```
\begin{use approximate constants} & 9\times10^9\,\mathrm{N\cdot m^2/C^2} \\ \mathrm{lond}_{\mathrm{use approximate constants}} & 9\times10^9\,\mathrm{N\cdot m^2/C^2} \\ \mathrm{long}_{\mathrm{use precise constants}} & 9\times10^9\,\mathrm{long}_{\mathrm{use precise constants}} &
```

3 GlowScript and VPython Program Listings

3.1 The glowscriptblock Environment

U 2021-02-11

```
\begin{glowscriptblock} [\langle options \rangle] (\langle link \rangle) \{\langle caption \rangle \} \end{glowscriptblock}
```

Code placed here is nicely formatted and optionally linked to its source on GlowScript.org. Clicking anywhere in the code window will open the link in the default browser. A caption is mandatory, and

a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly. For convenience, https:// is automatically prepended to the URL and can thus be omitted.

```
\begin{glowscriptblock}(tinyurl.com/y3lnqyn3){A \texttt{GlowScript} Program}
GlowScript 3.0 vpython
scene.width = 400
scene.height = 760
# constants and data
g = 9.8  # m/s^2
mball = 0.03 \# kg
Lo = 0.26 # m
ks = 1.8
             # N/m
deltat = 0.01 # s
# objects (origin is at ceiling)
ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,
             width=0.2)
ball = sphere(pos=vector(0,-0.3,0),radius=0.025,
             color=color.orange)
spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos,
              color=color.cyan,thickness=0.003,coils=40,
              radius=0.010)
# initial values
pball = mball * vector(0,0,0)
                                   # kg m/s
Fgrav = mball * g * vector(0,-1,0) # N
t = 0
# improve the display
scene.autoscale = False
                              # turn off automatic camera zoom
scene.center = vector(0,-Lo,0) # move camera down
scene.waitfor('click')
                              # wait for a mouse click
# initial calculation loop
# calculation loop
while t < 10:
   rate(100)
    # we need the stretch
    s = mag(ball.pos) - Lo
    # we need the spring force
    Fspring = ks * s * -norm(spring.axis)
    Fnet = Fgrav + Fspring
    pball = pball + Fnet * deltat
    ball.pos = ball.pos + (pball / mball) * deltat
    spring.axis = ball.pos - ceiling.pos
    t = t + deltat
\end{glowscriptblock}
```

GlowScript Program 1: A GlowScript program 1 GlowScript 3.0 vpython 2 scene.width = 4003 scene.height = 7604 # constants and data g = 9.8# m/s^2 mball = 0.03 # kgLo = 0.26 # m ks = 1.8# N/m **deltat = 0.01** # s 10 11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0), radius=0.025, color=color.orange) 16 17 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, color=color.cyan,thickness=0.003,coils=40, 18 radius=**0.010**) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 # turn off automatic camera zoom scene.autoscale = False 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 # calculation loop 32 while t < 10: 33 rate(100) 34 # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 Fnet = Fgrav + Fspring 39 pball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\GlowScript\ program \ref{gs:1} is nice. It's called \nameref{gs:1} and is on page \pageref{gs:1}.

GlowScript program 1 is nice. It's called A GlowScript program and is on page 27.
```

3.2 The vpythonfile Command

U 2021-02-11

\vpythonfile[\langle options \rangle] \{\langle file \rangle \} \{\langle caption \rangle \}

Command to load and typeset a VPython program. The file is read from $\{\langle file \rangle\}$. Clicking anywhere in the code window can optionally open a link, passed as an option, in the default browser. A caption is mandatory, and a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly. For convenience, https:// is automatically prepended to the URL and can thus be omitted.

VPython Program 1: A VPython program from vpython import * scene.width = 4003 scene.height = 7604 # constants and data 6 g = 9.8# m/s^2 mball = 0.03 # kgLo = 0.26 # m ks = 1.8# N/m deltat = 0.01 # s11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0), radius=0.025, color=color.orange) 16 17 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, color=color.cyan,thickness=0.003,coils=40, 18 radius=0.010) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 # turn off automatic camera zoom scene.autoscale = False 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 # calculation loop 32 while t < 10: 33 rate(100) 34 # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 39 Fnet = Fgrav + Fspringpball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\text{VPython\ program \ref{vp:1} is nice. It's called \nameref{vp:1} and is on page \pageref{vp:1}.}

VPython program 1 is nice. It's called A VPython program and is on page 29.
```

3.3 The glowscriptinline and vpythoninline Commands

```
U 2021-02-15
U 2021-02-15
```

```
\glowscriptinline{\langle GlowScript code \rangle}
\vpythoninline{\langle VPython code \rangle}
```

Typesets a small, in-line snippet of code. The snippet should be less than one line long.

```
\GlowScript\ programs begin with \glowscriptinline{GlowScript 3.0 VPython} and \VPython\ programs begin with \vpythoninline{from vpython import *}.

GlowScript programs begin with GlowScript 3.0 VPython and VPython programs begin with from vpython import *.
```

4 Commands for Writing Physics Problem Solutions

4.1 Introductory Needs

mandi provides a collection of commands physics students can use for writing problem solutions. This new version focuses on the most frequently needed tools. These commands should always be used in math mode.

4.1.1 Traditional Vector Notation

```
\ensuremath{\vec{\langle symbol\rangle}[\langle labels\rangle]} (use this variant for boldface notation) 
\ensuremath{\vec*{\langle symbol\rangle}[\langle labels\rangle]} (use this variant for arrow notation)
```

Powerful and intelligent command for symbolic vector notation. The mandatory argument is the symbol for the vector quantity. The optional label(s) consists of superscripts and/or subscripts and can be mathematical or textual in nature. If textual, be sure to wrap them in \symup{...} for proper typesetting. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels can be arbitrarily mixed, and order doesn't matter.

```
\zerovec (use this variant for boldface notation)
\zerovec* (use this variant for arrow notation)
```

Command for typesetting the zero vector. The starred version gives arrow notation whereas without the star you get boldface notation.

```
\(\zerovec \)\\\\(\zerovec*\)
```

```
\Dvec{\(symbol\)} \( \text{use this variant for boldface notation} \)
\( \text{\(symbol\)} \)
\( \text{use this variant for arrow notation} \)
```

Command for typesetting the change in a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported so if you need the symbol for the change in a subscripted or superscripted vector, just put \changein in front of it. This command must be used in math mode.

```
\(\Dvec{r}\\)\\\\\(\Dvec*{r}\\)
```

```
\dirvec{\langle symbol\rangle} \( \text{use this variant for boldface notation} \\ \dirvec*{\langle symbol\rangle} \( \text{use this variant for arrow notation} \)
```

Command for typesetting the direction of a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported.

```
\( \dirvec{r} \) \\ \( \dirvec*{r} \) \widehat{r}
```

```
\magvec{(symbol)} (use this variant for boldface notation)
\magvec*{(symbol)} (use this variant for arrow notation)
```

Command for type setting the magnitude of a vector. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels are not yet supported.

```
\(\magvec{r}\)\\\\(\magvec*{r}\)
```

Typesets a vector as either numeric or symbolic components with an optional unit (for numerical components only). There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma. The notation mirrors that of $Matter\ \mathcal{E}$ Interactions.

```
N 2021-02-21
N 2021-02-21
```

```
 \begin{array}{l} \texttt{\direction}[\langle delimiter \rangle] \{\langle c_1, \dots, c_n \rangle\} \\ \texttt{\dunitvector}[\langle delimiter \rangle] \{\langle c_1, \dots, c_n \rangle\} \end{array}
```

Semantic aliases for \mivector → P. 31.

4.1.2 Coordinate-Free and Index Notation

Beyond the current level of introductory physics, we need intelligent commands for typesetting vector and tensor symbols and components suitable for both coordinate-free and index notations.

```
      \veccomp{(symbol)}
      (use this variant for coordinate-free vector notation)

      \veccomp*{(symbol)}
      (use this variant for index vector notation)

      \tencomp*{(symbol)}
      (use this variant for coordinate-free tensor notation)

      \tencomp*{(symbol)}
      (use this variant for index tensor notation)
```

Conforms to ISO 80000-2 notation.

```
\(\veccomp{r}\)\\
\(\veccomp*{r}\)\\
r\\(\tencomp*{r}\)\\
r\\(\tencomp*{r}\)\\
r
```

4.1.3 Problems and Annoted Problem Solutions

```
N 2021-02-03
```

.....

N 2021-02-03

Provides an environment for stating physics problems. Each problem will begin on a new page. See the examples for how to handle single and multiple part problems.

```
\begin{physicsproblem}{Problem 1}
This is a physics problem with no parts.
\end{physicsproblem}

Problem 1
This is a physics problem with no parts.
```

```
\begin{physicsproblem}{Problem 2}
This is a physics problem with multiple parts.
The list is vertical.
\begin{parts}
  \problempart This is the first part.
  \problempart This is the second part.
  \problempart This is the third part.
  \end{parts}
\end{parts}
\end{physicsproblem}
```

Problem 2

This is a physics problem with multiple parts. The list is vertical.

- (a) This is the first part.
- (b) This is the second part.
- (c) This is the third part.

```
\begin{physicsproblem*}{Problem 3}
  This is a physics problem with multiple parts.
  The list is in-line.
  \begin{parts}
    \problempart This is the first part.
    \problempart This is the second part.
    \problempart This is the third part.
  \end{parts}
\end{parts}
\end{physicsproblem*}
```

Problem 3

This is a physics problem with multiple parts. The list is in-line. (a) This is the first part. (b) This is the second part. (c) This is the third part.

U 2021-02-02

U 2021-02-02

This environment is only for mathematical solutions. The starred variant omits numbering of steps. See the examples.

```
(1)
                                                                          x = y + z
\begin{physicssolution}
 x &= y + z \\
                                                                                                    (2)
                                                                          z = x - y
 z &= x - y \\
                                                                          y = x - z
                                                                                                    (3)
 y &= x - z
\end{physicssolution}
\begin{physicssolution*}
 x &= y + z \\
 z &= x - y \\
                                                                          x = y + z
 y &= x - z
\end{physicssolution*}
                                                                          z = x - y
                                                                          y = x - z
```

U 2012-02-02

\reason{\(\text{reason}\)}

Provides an annotation in a step-by-step solution. Keep reasons short and to the point. Wrap mathematical content in math mode.

```
(4)
                                                                x = y + z
                                                                              This is a reason.
\begin{physicssolution}
  x \&= y + z \geq \{This is a reason.\}
                                                                                                                 (5)
                                                                z = x - y
                                                                              This is a reason too.
  z &= x - y \cdot (This is a reason too.) \ y &= x - z \reason{final answer}
                                                                                                                 (6)
                                                                y = x - z
                                                                              final answer
\end{physicssolution}
\begin{physicssolution*}
  x &= y + z \reason{This is a reason.}
  z &= x - y \reason{This is a reason too.} \\
y &= x - z \reason{final answer}
                                                                 x = y + z
                                                                                This is a reason.
\end{physicssolution*}
                                                                 z = x - y
                                                                                 This is a reason too.
                                                                 y = x - z
                                                                                 final answer
```

When writing solutions, remember that the physics solution $^{\rightarrow P.33}$ environment is *only* for mathematical content, not textual content or explanations.

```
\begin{physicsproblem}{Combined Problem and Solution}

This is an interesting physics problem.
\begin{physicssolution}

The solution goes here.
\end{physicssolution}

\end{physicsproblem}
```

```
\begin{physicsproblem}{Combined Multipart Problem with Solutions}
 This is a physics problem with multiple parts.
 \begin{parts}
   \problempart This is the first part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
    \problempart This is the second part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
    \problempart This is the third part.
      \begin{physicssolution}
       The solution goes here.
     \end{physicssolution}
 \end{parts}
\end{physicsproblem}
```

N 2021-02-06

Hilites the desired target, which can be an entire mathematical expression or a part thereof. The default color is magenta and the default shape is a rectangle.

```
(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}
(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}
(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}
(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}
(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}
```

```
\begin{align*}
  \Dvec{p} &= \vec{F}_{\sumup{net}}\,\Delta t \\
  \hilite[orange]{\Dvec{p}}[circle] &= \vec{F}_{\symup{net}}\,\Delta t \\
  \Delta\vec{p} &= \hilite[yellow!50]{\vec{F}_{\symup{net}}}[rounded rectangle]\,\Delta t \\
  \Delta\vec{p} &= \vec{F}_{\symup{net}}\,\hilite[olive!50]{\Delta t}[rectangle] \\
  \Delta\vec{p} &= \hilite[cyan!50]{\vec{F}_{\symup{net}}\,\Delta t}[ellipse] \\
  \hilite{\Delta\vec{p}}[rectangle] &= \vec{F}_{\symup{net}}\,\Delta t\\
  \end{align*}
```

$$\Delta p = F_{\text{net}} \Delta t$$

U 2021-02-04

$\label{label} $$ \mbox{image [(options)] {(caption)}}{(label)}{(image)} $$$

Simplified interface for importing an image. The images are treated as floats, so they may not appear at the most logically intuitive place.

\image[scale=0.20]{example-image-1x1}{Image shown 20 percent actual size.}{reffig1}

1×1

Figure 1: Image shown 20 percent actual size.

Figure \ref{reffig1} is nice. It's captioned \nameref{reffig1} and is on page \pageref{reffig1}.

Figure 1 is nice. It's captioned Image shown 20 percent actual size and is on page 36.

\image[scale=0.20,angle=45]{example-image-1x1}{Image shown 20 percent actual size and)
\(\text{(rotated.)}{reffig1} \)

Figure 2: Image shown 20 percent actual size and rotated.

Figure \ref{reffig2} is nice. It's captioned \nameref{reffig2} and is on page \pageref{reffig2}.

Figure 2 is nice. It's captioned Image shown 20 percent actual size and rotated and is on page 36.

4.2 Intermediate and Advanced Needs

Typesets column vectors and row vectors as numeric or symbolic components. There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma.

```
\valence{\langle index\rangle} {\langle index\rangle} \valence*{\langle index\rangle} {\langle index\rangle}
```

Typesets tensor valence. The starred variant typesets it horizontally.

```
\contraction{\langle slot, slot \rangle} \contraction*{\langle slot, slot \rangle}
```

Typesets tensor contraction in coordinate-free notation. There is no standard on this so we assert one here.

```
\(\contraction{1,2} \) \\ \(\contraction*{1,2} \) \\ C_{1,2}
```

```
\slot[(vector)]
\slot*[(vector)]
```

An intelligent slot command for coordinate-free vector and tensor notation. The starred variants suppress the underscore.

```
\( (\slot) \) \\
\( (\slot[\vec{a}]) \) \\
\( (\slot*) \) \\
\( (\slot*[\vec{a}]) \) \\
( a)
```

4.3 Useful Math Commands

```
\tento{(number)}
\timestento{(number)}
```

\xtento{\(\lamber\rangle\)}

Commands for powers of ten and scientific notation.

```
\tento{-4} \\
3\timestento{8} \\
3\xtento{8} \\
3 \times 10^8
```

\changein

Semantic alias for \Delta.

```
\doublebars[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                              (double bars)
N 2021-02-21
N 2021-02-21
                         \doublebars*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                           (double bars for fractions)
                         \singlebars[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                                                                                                                                                               (single bars)
N 2021-02-21
                         \singlebars*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                             (single bars for fractions)
N 2021-02-21
                         \anglebrackets[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                          (angle brackets)
N 2021-02-21
                         \anglebrackets*[\langlesize\rangle] \{\langlequantity\rangle}
                                                                                                                                       (angle brackets for fractions)
N 2021-02-21
                         \parentheses[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                              (parentheses)
N 2021-02-21
                         \parentheses*[\langle size \rangle] {\langle quantity \rangle}
                                                                                                                                           (parentheses for fractions)
N 2021-02-21
                         \squarebrackets[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                        (square brackets)
                         \squarebrackets*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                     (square brackets for fractions)
N 2021-02-21
N 2021-02-21
                         \curlybraces[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                             (curly braces)
N 2021-02-21
                                                                                                                                          (curly braces for fractions)
                         \curlybraces*[\langle size \rangle] \{\langle quantity \rangle\}
```

If no argument is given, a placeholder is provided. Sizers like \big,\Big,\bigg, and \Bigg can be optionally specified. Beginners are encouraged not to use them. See the mathtools package documentation for details.

```
|\cdot|
\[\singlebars{} \]
\[\singlebars{x} \]
\[\singlebars*{\frac{x}{3}} \]
\[\singlebars[\Bigg]{\frac{x}{3}} \]
                                                                                                                                             |x|
                                                                                                                                            \left|\frac{x}{3}\right|
                                                                                                                                            (·)
                                                                                                                                            \langle a \rangle
\[ \anglebrackets{} \]
\[ \anglebrackets{\vec{a}} \]
\[ \anglebrackets*{\frac{\vec{a}}{3}} \]
(·)
\[ \parentheses{\} \]
\[ \parentheses{\x} \]
\[ \parentheses*{\frac{\x}{3}} \]
\[ \parentheses[\Bigg]{\frac{\x}{3}} \]
                                                                                                                                            (x)
                                                                                                                                           \left(\frac{x}{3}\right)
                                                                                                                                            [·]
\[ \squarebrackets{} \]
\[ \squarebrackets{x} \]
\[ \squarebrackets*{\frac{x}{3}} \]
                                                                                                                                            [x]
\[ \qquad \] \ \[ \squarebrackets[\Bigg]{\frac{x}{3}} \]
```

```
N 2021-02-21
N 2021-02-21
N 2021-02-21
N 2021-02-21
N 2021-02-21
N 2021-02-21
```

Semantic aliases.

5 Commands Specific to Matter & Interactions

mandi comes with an accessory package mandiexp which includes commands specific to *Matter & Interactions*². The commands are primarily for typesetting mathematical expressions used in the text. Use of mandiexp is optional and so must be manually loaded by including the line \usepackage{mandiexp} in your document's preamble.

5.1 The Momentum Principle

```
\lhsmomentumprinciple
                                                                 (LHS of delta form, bold vectors)
                                                                 (RHS of delta form, bold vectors)
\rhsmomentumprinciple
\lhsmomentumprincipleupdate
                                                                (LHS of update form, bold vectors)
\rhsmomentumprincipleupdate
                                                               (RHS of update form, bold vectors)
\momentumprinciple
                                                                         (delta form, bold vectors)
\momentumprincipleupdate
                                                                       (update form, bold vectors)
                                                                (LHS of delta form, arrow vectors)
\lhsmomentumprinciple*
\rhsmomentumprinciple*
                                                                (RHS of delta form, arrow vectors)
\lhsmomentumprincipleupdate*
                                                              (LHS of update form, arrow vectors)
\rhsmomentumprincipleupdate*
                                                              (RHS of update form, arrow vectors)
\momentumprinciple*
                                                                       (delta form, arrow vectors)
\momentumprincipleupdate*
                                                                      (update form, arrow vectors)
```

Variants of command for typesetting the momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta oldsymbol{p}_{	ext{svs}}
                                                                                                \mathbf{F}_{\text{sys,net}} \Delta t
\(\lhsmomentumprinciple\)
                                                               11
                                                                                                \boldsymbol{p}_{\mathrm{sys,final}}
\(\rhsmomentumprinciple\)
                                                               //
                                                                                               \mathbf{p}_{\mathrm{sys,initial}} + \mathbf{F}_{\mathrm{sys,net}} \Delta t

\Delta \mathbf{p}_{\mathrm{sys}} = \mathbf{F}_{\mathrm{sys,net}} \Delta t
\(\lhsmomentumprincipleupdate\)
\(\rhsmomentumprincipleupdate\)
\(\momentumprinciple\)
                                                                                               p_{\text{sys,final}} = p_{\text{sys,initial}} + F_{\text{sys,net}} \Delta t
                                                               //
\(\momentumprincipleupdate\)
                                                                                                \Delta \overline{p}_{\mathrm{sys}}
\(\lhsmomentumprinciple*\)
\(\rhsmomentumprinciple*\)
                                                                                               \vec{F}_{\rm sys,net} \Delta t
\( \lhsmomentumprincipleupdate* \)
                                                                                                \vec{p}_{\text{sys,final}}
\(\rhsmomentumprincipleupdate*\)\\
                                                                                               \vec{p}_{\text{sys,initial}} + \vec{F}_{\text{sys,net}} \Delta t
\( \momentumprinciple* \)
                                                               11
\(\momentumprincipleupdate* \)
                                                                                               \Delta \vec{p}_{\text{sys}} = \vec{F}_{\text{sys,net}} \Delta t
                                                                                               \overrightarrow{p}_{\text{sys,final}} = \overrightarrow{p}_{\text{sys,initial}} + \overrightarrow{F}_{\text{sys,net}} \Delta t
```

5.2 The Energy Principle

```
\lhsenergyprinciple (LHS of delta form) \rhsenergyprinciple[\((\rho\) process...\)] (RHS of delta form) \lhsenergyprincipleupdate (LHS of update form)
```

²See Matter & Interactions and https://matterandinteractions.org/ for details

```
\label{lem:continuous} $$ \energyprincipleupdate [ (+process...) ] $$ (RHS of update form) $$ (delta form) $$ (energyprincipleupdate [ (+process...) ] $$ (update form) $$ (update form) $$ (energyprincipleupdate [ (+process...) ] $$ (update form) $$ (update fo
```

Variants of command for typesetting the energy principle.

```
\Delta E_{\rm sys}
                                                                                       W_{\rm ext}
\( \lhsenergyprinciple \)
\(\rhsenergyprinciple\)
                                                                                        W_{\text{ext}} + Q
\(\rhsenergyprinciple[+Q]\)
                                                                                       \Delta E_{\rm sys} = W_{\rm ext}
\Delta E_{\rm sys} = W_{\rm ext} + Q
\( \energyprinciple \)
\( \energyprinciple[+Q] \)
\(\lhsenergyprincipleupdate\)
                                                                                        E_{\rm sys,final}
                                                                                       E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext}
E_{\rm sys,initial} + W_{\rm ext} + Q
E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext}
E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext} + Q
\(\rhsenergyprincipleupdate\)
\(\rhsenergyprincipleupdate[+Q]\)
\(\energyprincipleupdate\)
\(\energyprincipleupdate[+Q]\)
```

5.3 The Angular Momentum Principle

```
(LHS of delta form, bold vectors)
\lhsangularmomentumprinciple
\rhsangularmomentumprinciple
                                                                (RHS of delta form, bold vectors)
\lhsangularmomentumprincipleupdate
                                                              (LHS of update form, bold vectors)
\rhsangularmomentumprincipleupdate
                                                              (RHS of update form, bold vectors)
\angularmomentumprinciple
                                                                       (delta form, bold vectors)
                                                                      (update form, bold vectors)
\angularmomentumprincipleupdate
\lhsangularmomentumprinciple*
                                                               (LHS of delta form, arrow vectors)
\rhsangularmomentumprinciple*
                                                               (RHS of delta form, arrow vectors)
\lhsangularmomentumprincipleupdate*
                                                             (LHS of update form, arrow vectors)
\rhsangularmomentumprincipleupdate*
                                                             (RHS of update form, arrow vectors)
\angularmomentumprinciple*
                                                                      (delta form, arrow vectors)
\angularmomentumprincipleupdate*
                                                                    (update form, arrow vectors)
```

Variants of command for typesetting the angular momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta \mathbf{L}_{A, \mathrm{sys, net}}
                                                                                                          	au_{A, 	ext{sys,net}} \Delta t
                                                                                                          \mathbf{L}_{A, \mathrm{sys, final}}^{I, I, I}
\(\lhsangularmomentumprinciple\)
                                                                                    //
\(\rhsangularmomentumprinciple\)
                                                                                                          \boldsymbol{L}_{A, \mathrm{sys,initial}} + \boldsymbol{\tau}_{A, \mathrm{sys,net}} \Delta t
\(\lhsangularmomentumprincipleupdate\)
                                                                                    //
                                                                                                          \Delta \mathbf{L}_{A, \mathrm{sys, net}} = \boldsymbol{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\rhsangularmomentumprincipleupdate\)
                                                                                                          \mathbf{L}_{A, \mathrm{sys, final}} = \mathbf{L}_{A, \mathrm{sys, initial}} + \boldsymbol{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\angularmomentumprinciple\)
                                                                                    //
\( \angularmomentumprincipleupdate \)
\( \lhsangularmomentumprinciple* \)
                                                                                    //
                                                                                                          \Delta \overline{L}_{A, \mathrm{sys, net}}
\(\rhsangularmomentumprinciple*\)
                                                                                                           \overrightarrow{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\lhsangularmomentumprincipleupdate*\)\\
                                                                                                          \overrightarrow{L}_{A, \rm sys, final}
\(\rhsangularmomentumprincipleupdate* \) \\
                                                                                                          \vec{L}_{A, \text{sys, final}}^{A, \text{sys, final}} + \vec{\tau}_{A, \text{sys, net}} \Delta t
\Delta \vec{L}_{A, \text{sys, net}} = \vec{\tau}_{A, \text{sys, net}} \Delta t
\vec{L}_{A, \text{sys, final}} = \vec{L}_{A, \text{sys, initial}} + \vec{\tau}_{A, \text{sys, net}} \Delta t
\( \angularmomentumprinciple* \)
\(\angularmomentumprincipleupdate* \)
```

5.4 Other Expressions

N 2021-02-13

$\ensuremath{\mbox{energyof}} \{\langle label \rangle\} [\langle label \rangle]$

Generic symbol for the energy of some entity.

<pre>\(\energyof{\symup{electron}} \) \\ \(\energyof{\symup{electron}}[\symup{final}] \)</pre>	$E_{ m electron} \ E_{ m electron,final}$
--	---

N 2021-02-13

\systemenergy $[\langle label \rangle]$

Symbol for system energy.

<pre>\(\systemenergy \) \\ \(\systemenergy[\symup{final}] \)</pre>	$E_{ m sys} \ E_{ m sys,final}$
--	---------------------------------

N 2021-02-13

$\protect\$ \protect $\protect\$ \prot

Symbol for particle energy.

<pre>\(\particleenergy \) \\ \(\particleenergy[\symup{final}] \)</pre>	$E_{ m particle} \ E_{ m particle,final}$
--	---

N 2021-02-13

$\rule (label)$

Symbol for rest energy.

```
\(\restenergy\)\\ \(\restenergy[\symup{final}]\) E_{\rm rest} = E_{\rm rest,final}
```

N 2021-02-13

$\time lenergy [\langle label \rangle]$

Symbol for internal energy.

<pre>\(\internalenergy \) \\ \(\internalenergy[\symup{final}] \)</pre>	$E_{ m internal} \ E_{ m internal, final}$
--	--

N 2021-02-13

\chemicalenergy $[\langle label \rangle]$

Symbol for chemical energy.

<pre>\(\chemicalenergy \) \\ \(\chemicalenergy[\symup{final}] \)</pre>	$E_{ m chem} \ E_{ m chem,final}$
--	-----------------------------------

N 2021-02-13

$\text{ \text{thermalenergy} [($label)$]}$

Symbol for thermal energy.

N 2021-02-13

\photonenergy [$\langle label \rangle$]

Symbol for photon energy.

<pre>\(\photonenergy \) \\ \(\photonenergy[\symup{final}] \)</pre>	$E_{ m photon} \ E_{ m photon,final}$
--	---------------------------------------

N 2021-02-13

N 2021-02-13

Symbol for translational kinetic energy. The starred variant gives ${\cal E}$ notation.

<pre>\(\translationalkineticenergy \) \\ \(\translationalkineticenergy[\symup{initial}] \) \\ \(\translationalkineticenergy* \) \\ \(\translationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m trans}$ $K_{ m trans,initial}$ $E_{ m K}$ $E_{ m K,initial}$
---	---

N 2021-02-13 N 2021-02-13

$\triangledown \triangledown \triangledown$

$\triangle \triangle \tri$

Symbol for rotational kinetic energy. The starred variant gives E notation.

<pre>\(\rotationalkineticenergy \) \\ \(\rotationalkineticenergy[\symup{initial}] \) \\ \(\rotationalkineticenergy* \) \\ \(\rotationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m rot} \ K_{ m rot,initial} \ E_{ m rot} \ E_{ m rot,initial}$
---	---

N 2021-02-13

N 2021-02-13

Symbol for vibrational kinetic energy. The starred variant gives E notation.

<pre>\(\vibrationalkineticenergy \) \\ \(\vibrationalkineticenergy[\symup{initial}] \) \\ \(\vibrationalkineticenergy* \) \\ \(\vibrationalkineticenergy*[\symup{initial}] \)</pre>	$K_{ m vib}$ $K_{ m vib,initial}$ $E_{ m vib}$ $E_{ m vib,initial}$
---	---

N 2021-02-13

$\gravitationalpotentialenergy[\langle label\rangle]$

Symbol for gravitational potential energy.

<pre>\(\gravitationalpotentialenergy \) \\ \(\gravitationalpotentialenergy[\symup{final}] \)</pre>	$U_{f g}$ $U_{f g, final}$	
--	----------------------------	--

N 2021-02-13

$\ensuremath{\mbox{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\sim}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\mbox{\sim}}}\ensuremath{\mbox{\sim}}\e$

Symbol for electric potential energy.

```
\( \electricpotentialenergy \) \\ \( \electricpotentialenergy[\symup{final}] \) U_{\rm e} = U_{\rm e,final}
```

N 2021-02-13

\springpotentialenergy [$\langle label \rangle$]

Symbol for spring potential energy.

```
\(\springpotentialenergy \) \\ \(\springpotentialenergy[\symup{final}] \) U_{\rm S} = U_{\rm S,final}
```

6 Source Code

31 \RequirePackage{nicematrix}

33 \RequirePackage{tensor}

36 \RequirePackage{hyperref}

34 \RequirePackage{tikz}

37 \RequireLuaTeX

32 \RequirePackage[most]{tcolorbox}

35 \usetikzlibrary{shapes,fit,tikzmark}

Definine the package version and date for global use, exploiting the fact that in a .sty file there is now no need for \makeatletter and \makeatother. This simplifies defining internal commands, with @ in the name, that are not for the user to know about.

```
1 \def\mandi@Version{3.0.0e}
2 \def\mandi@Date{2021-02-25}
3 \NeedsTeXFormat{LaTeX2e}[1999/12/01]
4 \providecommand\DeclareRelease[3]{}
5 \providecommand\DeclareCurrentRelease[2]{}
6 \DeclareRelease{v3.0.0e}{2021-02-25}{mandi.sty}
7 \DeclareCurrentRelease{v\mandi@Version}{\mandi@Date}
8 \ProvidesPackage{mandi}[\mandi@Date\space v\mandi@Version\space Macros for introductory physics]
   Define a convenient package version command.
9 \newcommand*{\mandiversion}{v\mandi@Version\space dated \mandi@Date}
   Set up the fonts to be consistent with ISO 80000-2 notation. The unicode-math package loads the fontspec and xparse
packages. Note that xparse is now part of the IATFX kernel. Because unicode-math is required, all documents using mandi
must be compiled with an engine that supports Unicode. We recommend LuaLATEX.
10 \RequirePackage{unicode-math}
11 \unimathsetup{math-style=ISO}
12 \unimathsetup{warnings-off={mathtools-colon,mathtools-overbracket}}
13 \setmathfont[Scale=MatchLowercase] {TeX Gyre DejaVu Math} % single-storey g everywhere. Based on Arev.
   Use normal math letters from Latin Modern Math for familiarity with textbooks.
14 \setmathfont[Scale=MatchLowercase,range=it/]{Latin Modern Math}
   Borrow mathscr and mathbfscr from XITS Math.
See https://tex.stackexchange.com/a/120073/218142.
15 \setmathfont[Scale=MatchLowercase, range={\mathscr, \mathbfscr}]{XITS Math}
   Get original and bold mathcal fonts.
See https://tex.stackexchange.com/a/21742/218142.
16 \setmathfont[Scale=MatchLowercase,range={\mathcal,\mathbfcal},StylisticSet=1]{XITS Math}
   Borrow Greek letters from Latin Modern Math.
17 \setmathfont[Scale=MatchLowercase,range=
                                               it/{greek,Greek}]{Latin Modern Math}
18 \setmathfont[Scale=MatchLowercase, range bfit/{greek,Greek}]{Latin Modern Math}
19 \setmathfont[Scale=MatchLowercase,range=
                                               up/{greek,Greek}]{Latin Modern Math}
20 \setmathfont[Scale=MatchLowercase,range= bfup/{greek,Greek}]{Latin Modern Math}
21 \setmathfont[Scale=MatchLowercase, range=bfsfup/{greek, Greek}] {Latin Modern Math}
   Load third party packages, documenting why each one is needed.
                                              % AMS goodness (don't load amssymb or amsfonts)
22 \RequirePackage{amsmath}
23 \RequirePackage[inline] {enumitem}
                                              % needed for physicsproblem environment
24 \RequirePackage{eso-pic}
                                              % needed for \hilite
25 \RequirePackage[g]{esvect}
                                              % needed for nice vector arrow, style g
26 \RequirePackage{pgfopts}
                                              % needed for key-value interface
27 \RequirePackage{array}
                                              % needed for \checkquantity and \checkconstant
28 \RequirePackage{iftex}
                                              % needed for requiring LuaLaTeX
29 \RequirePackage{makebox}
                                              % needed for consistent \dirvect; \makebox
30 \RequirePackage{mathtools}
                                              % needed for paired delimiters; extends amsmath
```

% needed for column and row vectors

% needed for program listings

% needed for index notation

% needed for \hilite

% needed for \hilite

% require this engine

% load last

Need to tweak the esvect package fonts to get the correct font size. Code provided by @egreg. See https://tex.stackexchange.com/a/566676.

```
38 \DeclareFontFamily{U}{esvect}{}
39 \DeclareFontShape{U}{esvect}{m}{n}{%
   <-5.5> vect5
    <5.5-6.5> vect6
41
   <6.5-7.5> vect7
42
   <7.5-8.5> vect8
43
    <8.5-9.5> vect9
44
    <9.5-> vect10
45
46 }{}%
47 \directlua{%
  luaotfload.add_colorscheme("colordigits",
     {["8000FF"] = {"one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "zero"}})
49
50 }%
51 \newfontfamily\colordigits{DejaVuSansMono} [RawFeature={color=colordigits}]
```

Set up a color scheme and a new code environment for listings. The new colors are more restful on the eye. All listing commands now use tcolorbox.

See https://tex.stackexchange.com/a/529421/218142.

```
52 \newfontfamily{\gsfontfamily}{DejaVuSansMono}
                                                     % new font for listings
53 \definecolor{gsbggray}
                              {rgb}{0.90,0.90,0.90} % background gray
54 \definecolor{gsgray}
                              {rgb}{0.30,0.30,0.30} % gray
55 \definecolor{gsgreen}
                              {rgb}{0.00,0.60,0.00} % green
56 \definecolor{gsorange}
                              {rgb}{0.80,0.45,0.12} % orange
57 \definecolor{gspeach}
                              \{rgb\}\{1.00,0.90,0.71\} % peach
58 \definecolor{gspearl}
                              {rgb}{0.94,0.92,0.84} % pearl
59 \definecolor{gsplum}
                              \{rgb\}\{0.74,0.46,0.70\} % plum
60 \lstdefinestyle{vpython}{%
                                                     % style for listings
    backgroundcolor=\color{gsbggray},%
                                                     % background color
    basicstyle=\colordigits\footnotesize,%
                                                     % default style
62
                                                     % break at whitespace
63
    breakatwhitespace=true%
64
    breaklines=true,%
                                                     % break long lines
    captionpos=b,%
                                                     % position caption
65
                                                     % STILL DON'T UNDERSTAND THIS
    classoffset=1,%
66
    commentstyle=\color{gsgray},%
                                                     % font for comments
67
    deletekeywords={print},%
                                                     % delete keywords from the given language
68
    emph={self,cls,@classmethod,@property},%
                                                     % words to emphasize
69
    emphstyle=\color{gsorange}\itshape,%
70
                                                     % font for emphasis
    escapeinside={(*0}{0*)},%
                                                     % add LaTeX within your code
    frame=tb,%
                                                     % frame style
72
    framerule=2.0pt,%
                                                     % frame thickness
73
    framexleftmargin=5pt,%
                                                     % extra frame left margin
74
                                                      % style for identifiers
    %identifierstyle=\sffamily,%
75
    keywordstyle=\gsfontfamily\color{gsplum},%
                                                     % color for keywords
76
    language=Python,%
                                                     % select language
77
    linewidth=\linewidth,%
                                                     % width of listings
78
                                                     % VPython/GlowScript specific keywords
79
    morekeywords={%
      __future__,abs,acos,align,ambient,angle,append,append_to_caption,%
80
      append_to_title,arange,arrow,asin,astuple,atan,atan2,attach_arrow,%
81
      attach_trail,autoscale,axis,background,billboard,bind,black,blue,border,%
82
      bounding_box,box,bumpaxis,bumpmap,bumpmaps,camera,canvas,caption,capture,%
83
84
      ceil,center,clear,clear_trail,click,clone,CoffeeScript,coils,color,combin,%
      comp, compound, cone, convex, cos, cross, curve, cyan, cylinder, data, degrees, del, %
85
      delete, depth, descender, diff_angle, digits, division, dot, draw_complete, %
86
      ellipsoid, emissive, end_face_color, equals, explog, extrusion, faces, factorial, %
87
      False, floor, follow, font, format, forward, fov, frame, gcurve, gdisplay, gdots, %
88
      get_library,get_selected,ghbars,global,GlowScript,graph,graphs,green,gvbars,%
89
```

```
hat, headlength, headwidth, height, helix, hsv to rgb, index, interval, keydown, %
90
       kevup.label.length.lights.line.linecolor.linewidth.logx.logv.lower left.%
91
       lower_right, mag, mag2, magenta, make_trail, marker_color, markers, material, %
92
       max,min,mouse,mousedown,mousemove,mouseup,newball,norm,normal,objects,%
93
       offset, one, opacity, orange, origin, path, pause, pi, pixel_to_world, pixels, plot, %
94
       points, pos, pow, pps, print, print_function, print_options, proj, purple, pyramid, %
95
96
       quad, radians, radius, random, rate, ray, read_local_file, readonly, red, redraw, %
       retain, rgb to hsv, ring, rotate, round, scene, scroll, shaftwidth, shape, shapes, %
97
       shininess, show end face, show_start_face, sign, sin, size, size units, sleep, %
98
       smooth, space, sphere, sqrt, start, start face_color, stop, tan, text, textpos, %
99
       texture, textures, thickness, title, trail_color, trail_object, trail_radius, %
100
       trail_type,triangle,trigger,True,twist,unbind,up,upper_left,upper_right,%
101
       userpan, userspin, userzoom, vec, vector, vertex, vertical_spacing, visible, %
102
       visual, vpython, VPython, waitfor, white, width, world, xtitle, yellow, yoffset, %
103
       ytitle%
104
     },%
105
                                                        % additional keywords
     morekeywords={print,None,TypeError},%
106
     morestring=[b]{"""},%
                                                        % treat triple quotes as strings
107
     numbers=left,%
                                                        % where to put line numbers
     numbersep=10pt,%
                                                        % how far line numbers are from code
     numberstyle=\bfseries\tiny,%
                                                        % set to 'none' for no line numbers
110
     showstringspaces=false,%
                                                        % show spaces in strings
111
     showtabs=false,%
                                                        % show tabs within strings
112
     stringstyle=\gsfontfamily\color{gsgreen},%
                                                        % color for strings
113
                                                        % how to typeset quotes
     upquote=true,%
114
115 }%
    Introduce a new, more intelligent glowscriptblock P. 25 environment.
116 \NewTCBListing[auto counter,list inside=gsprogs]{glowscriptblock}{ O{} D(){glowscript.org} m }{%
117
     breakable.%
     center,%
118
     code = \newpage,%
119
    %derivpeach,%
     enhanced, %
121
     hyperurl interior = https://#2,%
122
    label = {gs:\thetcbcounter},%
123
     left = 8mm, %
124
     list entry = \thetcbcounter~~~#3,%
125
126
     listing only,%
     listing style = vpython,%
127
     nameref = #3,%
128
     title = \texttt{GlowScript} Program \thetcbcounter: #3,%
130
    width = 0.9\textwidth,%
131
    #1,
132 }%
    A new command for generating a list of GlowScript programs.
133 \NewDocumentCommand{\listofglowscriptprograms}{}{\tcblistof[\section*]{gsprogs}
     {List of \texttt{GlowScript} Programs}}%
    Introduce a new, more intelligent \protect\operatorname{\below}{vpythonfile}^{\to\,P.\,28} command.
135 \NewTCBInputListing[auto counter,list inside=vpprogs]{\vpythonfile}{ 0{} m m }{%
136
    breakable,%
137
     center,%
138
     code = \newpage,%
139
     %derivgray,%
140
     enhanced, %
     hyperurl interior = https://,%
141
     label = {vp:\thetcbcounter},%
```

```
143
     left = 8mm, %
     list entry = \thetcbcounter~~~#3,%
144
     listing file = \{#2\},%
145
     listing only,%
146
     listing style = vpython,%
147
     nameref = #3,%
148
     title = \texttt{VPython} Program \thetcbcounter: #3,%
     width = 0.9\textwidth,%
     #1,%
151
152 }%
    A new command for generating a list of VPython programs.
153 \NewDocumentCommand{\listofvpythonprograms}{}{\tcblistof[\section*]{vpprogs}
     {List of \texttt{VPython} Programs}}%
    Introduce a new \glowscriptinline \, P. 30 command.
155 \DeclareTotalTCBox{\glowscriptinline}{ m }{%
     bottom = Opt,%
156
     bottomrule = 0.0mm,%
158
     boxsep = 1.0mm,%
     colback = gsbggray,%
159
     colframe = gsbggray,%
160
     left = Opt,%
161
     leftrule = 0.0mm,%
162
     nobeforeafter,%
163
     right = Opt,%
164
     rightrule = 0.0mm,%
165
166
     sharp corners,%
     tcbox raise base,%
167
     top = Opt,%
168
     toprule = 0.0mm,%
169
170 }{\lstinline[style = vpython]{#1}}%
    Define \vpythoninline \frac{1}{2}P. 30, a semantic alias for VPython in-line listings.
```

171 \NewDocumentCommand{\vpythoninline}{}{\glowscriptinline}%

Define units to be used with the unit engine. All single letter macros are now gone. We basically absorbed and adapted the now outdated Slunits package. We make use of \symup{...} from the unicode-math package.

```
172 \NewDocumentCommand{\per}{}{\nsuremath{\,/\,}}
173 \NewDocumentCommand{\usk}{}{\ensuremath{\,\cdot\,}}
174 \NewDocumentCommand{\unit}{ m m }{\ensuremath{{#1}\;{#2}}}
175 \NewDocumentCommand{\ampere}{}{\ensuremath{\symup{A}}}}
176 \NewDocumentCommand{\atomicmassunit}{}{\ensuremath{\symup{u}}}}
177 \NewDocumentCommand{\candela}{}{\ensuremath{\symup{cd}}}}
178 \NewDocumentCommand{\coulomb}{}{\ensuremath{\symup{C}}}}
179 \NewDocumentCommand{\degree}{}{\ensuremath{^{\circ}}}
180 \NewDocumentCommand{\electronvolt}{}{\ensuremath{\symup{eV}}}}
181 \NewDocumentCommand{\farad}{}{\ensuremath{\symup{F}}}
182 \NewDocumentCommand{\henry}{}{\ensuremath{\symup{H}}}}
183 \NewDocumentCommand{\hertz}{}{\ensuremath{\symup{Hz}}}}
184 \NewDocumentCommand{\joule}{}{\ensuremath{\symup{J}}}}
185 \NewDocumentCommand{\kelvin}{}{\ensuremath{\symup{K}}}}
186 \NewDocumentCommand{\kilogram}{}{\ensuremath{\symup{kg}}}
187 \NewDocumentCommand{\lightspeed}{}{\ensuremath{\symup{c}}}
188 \MewDocumentCommand{\meter}{}{\nsuremath{\symup{m}}}
189 \NewDocumentCommand{\metre}{}{\meter}
190 \NewDocumentCommand{\mole}{}{\ensuremath{\symup{mol}}}
191 \NewDocumentCommand{\newton}{}{\ensuremath{\symup{N}}}}
192 \NewDocumentCommand{\ohm}{}{\ensuremath{\symup\Omega}}
```

```
193 \NewDocumentCommand{\pascal}{}{\ensuremath{\symup{Pa}}}
194 \NewDocumentCommand{\radian}{}{\ensuremath{\symup{rad}}}}
195 \NewDocumentCommand{\second}{}{\ensuremath{\symup{s}}}
196 \NewDocumentCommand{\siemens}{}{\ensuremath{\symup{S}}}}
197 \NewDocumentCommand{\steradian}{}{\ensuremath{\symup{sr}}}
198 \NewDocumentCommand{\tesla}{}\ensuremath{\symup{T}}}
199 \NewDocumentCommand{\volt}{}{\ensuremath{\symup{V}}}}
200 \NewDocumentCommand{\watt}{}{\ensuremath{\symup{W}}}}
201 \NewDocumentCommand{\weber}{}{\ensuremath{\symup{Wb}}}
202 \NewDocumentCommand{\square}{ m }{\ensuremath{{#1}^2}}
                                                                     % prefix
203 \NewDocumentCommand{\cubic}{ m }{\ensuremath{{#1}^3}}
                                                                     % prefix
204 \NewDocumentCommand{\quartic}{ m }{\ensuremath{{#1}^4}}
                                                                     % prefix
205 \NewDocumentCommand{\reciprocal}{ m }{\ensuremath{{#1}^{-1}}}
                                                                     % prefix
                                                                               -1
206 \NewDocumentCommand{\reciprocalsquare}{ m }{\censuremath{{#1}^{-2}}}
                                                                     % prefix
                                                                     % prefix
207 \NewDocumentCommand{\reciprocalcubic}{ m }{\ensuremath{{#1}^{-3}}}
208 \NewDocumentCommand{\reciprocalquartic}{ m }{\ensuremath{{#1}^{-4}}} % prefix -4
209 \NewDocumentCommand{\squared}{}{\ensuremath{^2}}
                                                                     % postfix 2
210 \NewDocumentCommand{\cubed}{}{\ensuremath{^3}}
                                                                     % postfix 3
% postfix 4
212 \NewDocumentCommand{\reciprocaled}{}{\ensuremath{^{-1}}}
                                                                     % postfix -1
213 \ensuremath{^{-2}}
                                                                     % postfix -2
214 \ensuremath{^{-3}}
                                                                     % postfix -3
215 \MewDocumentCommand{\reciprocalquarted}{}{\newDocumenth{^{-}\{-4\}}}
                                                                     % postfix -4
216 \NewDocumentCommand{\emptyunit}{}{\ensuremath{\mdlgwhtsquare}}
    The core unit engine has been completely rewritten in expl3 for both clarity and power.
    Generic internal selectors.
217 \newcommand*{\mandi@selectunits}{}
218 \newcommand*{\mandi@selectprecision}{}
    Specific internal selectors.
219 \newcommand*{\mandi@selectapproximate}[2]{#1}
                                                  % really \@firstoftwo
220 \newcommand*{\mandi@selectprecise}[2]{#2}
                                                  % really \@secondoftwo
221 \newcommand*{\mandi@selectbaseunits}[3]{#1}
                                                  % really \Offirstofthree
222 \newcommand*{\mandi@selectderivedunits}[3]{#2}
                                                  % really \@secondofthree
223 \newcommand*{\mandi@selectalternateunits}[3]{#3} % really \@thirdofthree
    Document level global switches.
224 \NewDocumentCommand{\alwaysusebaseunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectbaseunits}}%
226 \NewDocumentCommand{\alwaysusederivedunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectderivedunits}}%
228 \NewDocumentCommand{\alwaysusealternateunits}{}
     {\renewcommand*{\mandi@selectunits}{\mandi@selectalternateunits}}%
230 \NewDocumentCommand{\alwaysuseapproximateconstants}{}
     {\renewcommand*{\mandi@selectprecision}{\mandi@selectapproximate}}%
232 \NewDocumentCommand{\alwaysusepreciseconstants}{}
    {\renewcommand*{\mandi@selectprecision}{\mandi@selectprecise}}%
233
    Document level localized variants.
235 \NewDocumentCommand{\hereusederivedunits}{ m }{\begingroup\alwaysusederivedunits#1\endgroup}%
236 \NewDocumentCommand{\hereusealternateunits}{ m }{\begingroup\alwaysusealternateunits#1\endgroup}%
237 \NewDocumentCommand{\hereuseapproximateconstants}{ m }{\begingroup\alwaysuseapproximateconstants#1\endgroup}%
238 \NewDocumentCommand{\hereusepreciseconstants}{ m }{\begingroup\alwaysusepreciseconstants#1\endgroup}%
    Document level environments.
239 \NewDocumentEnvironment{usebaseunits}{}{\alwaysusebaseunits}{}%
240 \NewDocumentEnvironment{usederivedunits}{}{\alwaysusederivedunits}{}%
```

```
241 \NewDocumentEnvironment{usealternateunits}{}{\alwaysusealternateunits}{}}
242 \NewDocumentEnvironment{useapproximateconstants}{}{\alwaysuseapproximateconstants}{}}
243 \NewDocumentEnvironment{usepreciseconstants}{}{\alwaysusepreciseconstants}{}}
    Defining a new scalar quantity:
244 \NewDocumentCommand{\newscalarquantity}{ m m 0{#2} 0{#2} }{%
     \expandafter\newcommand\csname #1\endcsname[1]{##1\,\mandi@selectunits{#2}{#3}{#4}}%
     \expandafter\newcommand\csname #1value\endcsname[1]{##1}%
246
     \expandafter\newcommand\csname #1baseunits\endcsname[1]{##1\,\mandi@selectbaseunits{#2}{#3}{#4}}%
247
     \expandafter\newcommand\csname #1derivedunits\endcsname[1]{##1\,\mandi@selectderivedunits{#2}{#3}{#4}}%
248
     \expandafter\newcommand\csname #1alternateunits\endcsname[1]{##1\,\mandi@selectalternateunits{#2}{#3}{#4}}%
249
     \expandafter\newcommand\csname #1onlybaseunits\endcsname{\mandi@selectbaseunits{#2}{#3}{#4}}%
250
251
     \expandafter\newcommand\csname #1onlyderivedunits\endcsname{\mandi@selectderivedunits{#2}{#3}{#4}}%
     \expandafter\newcommand\csname #1onlyalternateunits\endcsname{\mandi@selectalternateunits{#2}{#3}{#4}}%
252
253 }%
    Redefining a new scalar quantity:
254 \NewDocumentCommand{\renewscalarquantity}{ m m 0{#2} 0{#2} }{%
     \expandafter\renewcommand\csname #1\endcsname[1]{##1\,\mandi@selectunits{#2}{#3}{#4}}%
255
256
     \expandafter\renewcommand\csname #1value\endcsname[1]{##1}%
     \expandafter\renewcommand\csname #1baseunits\endcsname[1]{##1\,\mandi@selectbaseunits{#2}{#3}{#4}}%
257
     \expandafter\renewcommand\csname #1derivedunits\endcsname[1]{##1\,\mandi@selectderivedunits{#2}{#3}{#4}}%
258
     \expandafter\renewcommand\csname #1alternateunits\endcsname[1]{##1\,\mandi@selectalternateunits{#2}{#3}{#4}}%
259
     \expandafter\renewcommand\csname #1onlybaseunits\endcsname{\mandi@selectbaseunits{#2}{#3}{#4}}%
260
     \expandafter\renewcommand\csname #1onlyderivedunits\endcsname{\mandi@selectderivedunits{#2}{#3}{#4}}%
261
262
     \expandafter\renewcommand\csname #1onlyalternateunits\endcsname{\mandi@selectalternateunits{#2}{#3}{#4}}%
263 }%
    Defining a new vector quantity. Note that a corresponding scalar is also defined.
264 \NewDocumentCommand{\newvectorquantity}{ m m 0{#2} 0{#2} }{%
265
     266
     \expandafter\newcommand\csname vector#1\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
267
     \expandafter\newcommand\csname #1vector\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
268 }%
    Redefining a new vector quantity. Note that a corresponding scalar is also redefined.
269 \NewDocumentCommand{\renewvectorquantity}{ m m 0{#2} 0{#2} }{%
     \renewscalarquantity{#1}{#2}[#3][#4]
     \expandafter\renewcommand\csname vector#1\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
271
272
     \expandafter\renewcommand\csname #1vector\endcsname[1]{\expandafter\csname #1\endcsname{\mivector{##1}}}%
273 }%
    Defining a new physical constant:
275
     \expandafter\newcommand\csname #1\endcsname
276
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectunits{#5}{#6}{#7}}%
     \expandafter\newcommand\csname #1mathsymbol\endcsname{\ensuremath{#2}}%
277
278
     \expandafter\newcommand\csname #1approximatevalue\endcsname{\ensuremath{#3}}%
     \expandafter\newcommand\csname #1precisevalue\endcsname{\ensuremath{#4}}%
279
     \expandafter\newcommand\csname #1baseunits\endcsname
280
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectbaseunits{#5}{#6}{#7}}%
281
282
     \expandafter\newcommand\csname #1derivedunits\endcsname
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectderivedunits{#5}{#6}{#7}}%
283
     \expandafter\newcommand\csname #1alternateunits\endcsname
284
       {\mandi@selectprecision{#3}{#4}\,\mandi@selectalternateunits{#5}{#6}{#7}}%
285
     \expandafter\newcommand\csname #1onlybaseunits\endcsname
286
       {\mandi@selectbaseunits{#5}{#6}{#7}}%
287
288
     \expandafter\newcommand\csname #1onlyderivedunits\endcsname
```

289

{\mandi@selectderivedunits{#5}{#6}{#7}}%

```
\expandafter\newcommand\csname #1onlyalternateunits\endcsname
290
291
            {\mandi@selectalternateunits{#5}{#6}{#7}}%
292 }%
       Redefining a new physical constant:
293 \NewDocumentCommand{\renewphysicalconstant}{ m m m m 0{#5} 0{#5} }{%
        \expandafter\renewcommand\csname #1\endcsname
            {\modi@selectprecision{#3}{#4}\,\modi@selectunits{#5}{#6}{#7}}%
295
         \expandafter\renewcommand\csname #1mathsymbol\endcsname{\ensuremath{#2}}%
296
         \expandafter\renewcommand\csname #1approximatevalue\endcsname{\ensuremath{#3}}%
297
         \expandafter\renewcommand\csname #1precisevalue\endcsname{\ensuremath{#4}}%
298
         \expandafter\renewcommand\csname #1baseunits\endcsname
299
            300
         \expandafter\renewcommand\csname #1derivedunits\endcsname
301
            {\modelectprecision{#3}{#4}\,\modelectderivedunits{#5}{#6}{#7}}%
302
303
         \expandafter\renewcommand\csname #1alternateunits\endcsname
304
            {\mandi@selectprecision{#3}{#4}\,\mandi@selectalternateunits{#5}{#6}{#7}}%
         \expandafter\renewcommand\csname #1onlybaseunits\endcsname
305
            {\main} {\ma
306
         \expandafter\renewcommand\csname #1onlyderivedunits\endcsname
307
            {\mandi@selectderivedunits{#5}{#6}{#7}}%
308
         \expandafter\renewcommand\csname #1onlyalternateunits\endcsname
309
            {\mandi@selectalternateunits{#5}{#6}{#7}}%
310
311 }%
       mandi now has a key-value interface, implemented with pgfopts and pgfkeys. There are two options:
 units P.6, with values base, derived, or alternate selects the default form of units
 preciseconstants \stackrel{\rightarrow}{} P. 6, with values true and false, selects precise numerical values for constants rather than approximate
 values.
       First, define the keys. The key handlers require certain commands defined by the unit engine, and thus must be defined
 and processed after the unit engine code.
312 \newif\ifusingpreciseconstants
313 \pgfkeys{%
        /mandi/options/.cd,
314
        initial@setup/.style={%
315
            /mandi/options/buffered@units/.initial=alternate,%
316
317
        },%
        initial@setup,%
        preciseconstants/.is if=usingpreciseconstants,%
319
        units/.is choice,%
320
        units/.default=derived,%
321
        units/alternate/.style={/mandi/options/buffered@units=alternate},%
322
323
        units/base/.style={/mandi/options/buffered@units=base},%
324
        units/derived/.style={/mandi/options/buffered@units=derived},%
325 }%
       Process the options.
326 \ProcessPgfPackageOptions{/mandi/options}
       Write a banner to the console showing the options in use. The value of the units ^{\rightarrow P.6} key is used in situ to set the
 default units.
327 \newcommand*{\mandi@linetwo}{\typeout{mandi: Loadtime options...}}
328 \newcommand*{\mandi@do@setup}{%
         \typeout{}%
        \typeout{mandi: You are using mandi \mandiversion.}%
330
        \mandi@linetwo
331
        \csname alwaysuse\pgfkeysvalueof{/mandi/options/buffered@units}units\endcsname%
332
         \typeout{mandi: You will get \pgfkeysvalueof{/mandi/options/buffered@units}\space units.}%
333
```

\ifusingpreciseconstants

334

```
335  \alwaysusepreciseconstants
336  \typeout{mandi: You will get precise constants.}%
337  \else
338  \alwaysuseapproximateconstants
339  \typeout{mandi: You will get approximate constants.}%
340  \fi
341  \typeout{}%
342 }%
343 \mandi@do@setup
```

Define a setup command that overrides the loadtime options when called with new options. A new banner is written to the console.

```
344 \NewDocumentCommand{\mandisetup}{ m }{%

345 \IfValueT{#1}{%

346 \pgfqkeys{/mandi/options}{#1}

347 \renewcommand*{\mandi@linetwo}{\typeout{mandi: mandisetup options...}}

348 \mandi@do@setup

349 }%

350 }%
```

Define every quantity we need in introductory physics, alphabetically for convenience. This is really the core feature of mandi that no other package offers. There are commands for quantities that have no dimensions or units, and these quantities are defined for semantic completeness.

```
351 \newvectorquantity{acceleration}%
     {\meter\usk\second\reciprocalsquared}%
352
353
     [\newton\per\kilogram]%
     [\meter\per\second\squared]%
355 \newscalarquantity{amount}%
     {\mole}%
357 \newvectorquantity{angularacceleration}%
     {\radian\usk\second\reciprocalsquared}%
359
     [\radian\per\second\squared]%
     [\radian\per\second\squared]%
361 \newscalarquantity{angularfrequency}%
     {\radian\usk\reciprocal\second}%
362
     [\radian\per\second]%
363
     [\radian\per\second]%
364
365 %\ifmandi@rotradians
     \newphysicalquantity{angularimpulse}%
366 %
367 %
        {\meter\squared\usk\kilogram\usk\reciprocal\second\usk\reciprocal\radian}%
368 %
        [\joule\usk\second\per\radian]%
        [\newton\usk\meter\usk\second\per\radian]%
369 %
      \newphysicalquantity{angularmomentum}%
370 %
        {\meter\squared\usk\kilogram\usk\reciprocal\second\usk\reciprocal\radian}%
371 %
        [\kilogram\usk\meter\squared\per(\second\usk\radian)]%
372 %
373 %
        [\newton\usk\meter\usk\second\per\radian]%
374 %\else
     \newvectorquantity{angularimpulse}%
375
       {\meter\squared\usk\kilogram\usk\reciprocal\second}%
376
       [\kilogram\usk\meter\squared\per\second]% % also \joule\usk\second
377
       [\kilogram\usk\meter\squared\per\second]% % also \newton\usk\meter\usk\second
378
     \newvectorquantity{angularmomentum}%
379
       {\meter\squared\usk\kilogram\usk\reciprocal\second}%
380
381
       [\kilogram\usk\meter\squared\per\second]% % also \joule\usk\second
       [\kilogram\usk\meter\squared\per\second]% % also \newton\usk\meter\usk\second
382
383 %\fi
384 \newvectorquantity{angularvelocity}%
     {\radian\usk\reciprocal\second}%
385
     [\radian\per\second]%
386
```

```
[\radian\per\second]%
387
388 \newscalarquantity{area}%
     {\meter\squared}%
389
390 \newscalarquantity{areamassdensity}%
     {\meter\reciprocalsquared\usk\kilogram}%
391
     [\kilogram\per\meter\squared]%
392
     [\kilogram\per\meter\squared]%
394 \newscalarquantity{areachargedensity}%
     {\reciprocalsquare\meter\usk\second\usk\ampere}%
395
     [\coulomb\per\square\meter]%
396
     [\coulomb\per\square\meter]%
397
398 \newscalarquantity{capacitance}%
     {\reciprocalsquare\meter\usk\reciprocal\kilogram\usk\quartic\second\usk\square\ampere}%
     [\farad]%
400
     [\coulomb\per\volt]% % also \coulomb\squared\per\newton\usk\meter, \second\per\ohm
401
402 \newscalarquantity{charge}%
     {\ampere\usk\second}%
403
     [\coulomb]%
404
     [\coulomb]% % also \farad\usk\volt
406 \newvectorquantity{cmagneticfield}%
     {\meter\usk\kilogram\usk\second\reciprocalcubed\usk\reciprocal\ampere}%
407
     [\volt\per\meter]%
408
     [\newton\per\coulomb]%
409
410 \newscalarquantity{conductance}%
     {\reciprocalsquare\meter\usk\reciprocal\kilogram\usk\cubic\second\usk\square\ampere}}
411
412
     [\siemens]%
     [\ampere\per\volt]%
414 \newscalarquantity{conductivity}%
     {\reciprocalcubic\meter\usk\reciprocal\kilogram\usk\cubic\second\usk\square\ampere}}
415
     [\siemens\per\meter]%
416
     [(\ampere\per\square\meter)\per(\volt\per\meter)]%
417
418 \newscalarquantity{conventionalcurrent}%
     {\ampere}%
     [\coulomb\per\second]%
420
     [\ampere]%
421
422 \newscalarquantity{current}%
     {\ampere}%
424 \newscalarquantity{currentdensity}%
     {\reciprocalsquare\meter\usk\ampere}%
     [\coulomb\usk\second\per\square\meter]%
427
     [\ampere\per\square\meter]%
428 \newscalarquantity{dielectricconstant}%
     {}%
429
430 \newvectorquantity{displacement}%
     {\meter}
431
432 \newscalarquantity{duration}%
     {\second}%
434 \newvectorquantity{electricdipolemoment}%
     {\meter\usk\second\usk\ampere}%
435
     [\coulomb\usk\meter]%
436
     [\coulomb\usk\meter]%
437
438 \newvectorquantity{electricfield}%
     {\meter\usk\kilogram\usk\second\reciprocalcubed\usk\reciprocal\ampere}%
     [\volt\per\meter]%
440
     [\newton\per\coulomb]%
441
442 \newscalarquantity{electricflux}%
     {\meter\cubed\usk\kilogram\usk\second\reciprocalcubed\usk\reciprocal\ampere}%
443
444
     [\volt\usk\meter]%
445
     [\newton\usk\meter\squared\per\coulomb]%
```

```
446 \newscalarquantity{electricpotential}%
     {\square\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocal\ampere}%
447
     [\volt]%
448
     [\joule\per\coulomb]%
449
450 \newscalarquantity{electroncurrent}%
     {\reciprocal\second}%
451
452
     [\ensuremath{\symup{e}}\per\second]%
     [\ensuremath{\symup{e}}\per\second]%
453
454 \newscalarquantity{emf}%
     {\square\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocal\ampere}%
455
     [\volt]%
456
     [\joule\per\coulomb]%
457
458 \newscalarquantity{energy}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalsquared}%
     [\joule]% % also \newton\usk\meter
460
     [\joule]%
461
462 \newscalarquantity{energydensity}%
     {\meter\reciprocaled\usk\kilogram\usk\reciprocalsquare\second}%
     [\joule\per\cubic\meter]%
464
465
     [\joule\per\cubic\meter]%
466 \newscalarquantity{energyflux}%
     {\kilogram\usk\second\reciprocalcubed}%
467
     [\watt\per\meter\squared]%
468
     [\watt\per\meter\squared]%
469
470 \newscalarquantity{entropy}%
     {\meter\squared\usk\reciprocal\kelvin}%
471
     [\joule\per\kelvin]%
472
     [\joule\per\kelvin]%
473
474 \newvectorquantity{force}%
     {\meter\usk\kilogram\usk\second\reciprocalsquared}%
475
     [\newton]%
476
     [\newton]% % also \kilogram\usk\meter\per\second\squared
478 \newscalarquantity{frequency}%
     {\reciprocal\second}%
479
     [\hertz]%
480
     [\hertz]%
481
482 \newvectorquantity{gravitationalfield}%
     {\meter\usk\second\reciprocalsquared}%
483
     [\newton\per\kilogram]%
     [\newton\per\kilogram]%
486 \newscalarquantity{gravitationalpotential}%
     {\square\meter\usk\reciprocalsquare\second}%
487
     [\joule\per\kilogram]%
488
     [\joule\per\kilogram]%
489
490 \newvectorquantity{impulse}%
     {\meter\usk\kilogram\usk\reciprocal\second}%
     [\newton\usk\second]%
492
     [\newton\usk\second]%
493
494 \newscalarquantity{indexofrefraction}%
495
496 \newscalarquantity{inductance}%
     {\square\meter\usk\kilogram\usk\reciprocalsquare\second\usk\reciprocalsquare\ampere}%
497
     [\volt\usk\second\per\ampere]% % also \square\meter\usk\kilogram\per\coulomb\squared, \Wb\per\ampere
499
500 \newscalarquantity{linearchargedensity}%
     {\reciprocal\meter\usk\second\usk\ampere}%
501
     [\coulomb\per\meter]%
502
503
     [\coulomb\per\meter]%
504 \newscalarquantity{linearmassdensity}%
```

```
{\reciprocal\meter\usk\kilogram}%
505
506
     [\kilogram\per\meter]%
     [\kilogram\per\meter]%
507
508 \newscalarquantity{luminous}%
     {\candela}%
510 \newscalarquantity{magneticcharge}%
     {\meter\usk\ampere}%
512 \newvectorquantity{magneticdipolemoment}%
     {\square\meter\usk\ampere}%
     [\ampere\usk\square\meter]%
514
     [\joule\per\tesla]%
516 \newvectorquantity{magneticfield}%
     {\kilogram\usk\second\reciprocalsquared\usk\reciprocal\ampere}%
     [\tesla]%
518
     [\newton\per\coulomb\usk(\meter\per\second)]% % also \Wb\per\meter\squared
519
520 \newscalarquantity{magneticflux}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalsquared\usk\reciprocal\ampere}%
521
     [\tesla\usk\meter\squared]%
522
     [\volt\usk\second]% % also \Wb and \joule\per\ampere
524 \newscalarquantity{mass}%
     {\kilogram}%
526 \newscalarquantity{mobility}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalquarted\usk\reciprocal\ampere}%
527
     [\meter\squared\per\volt\usk\second]%
528
     [(\meter\per\second)\per(\newton\per\coulomb)]%
529
530 \newscalarquantity{momentofinertia}%
     {\meter\squared\usk\kilogram}%
531
     [\joule\usk\second\squared]%
532
     [\kilogram\usk\meter\squared]%
533
534 \newvectorquantity{momentum}%
     {\meter\usk\kilogram\usk\reciprocal\second}%
     [\newton\usk\second]%
537
     [\kilogram\usk\meter\per\second]%
538 \newvectorquantity{momentumflux}%
     {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
     [\newton\per\meter\squared]%
540
     [\newton\per\meter\squared]%
541
542 \newscalarquantity{numberdensity}%
     {\reciprocalcubic\meter}%
     [\per\cubic\meter]%
545
     [\per\cubic\meter]%
546 \newscalarquantity{permeability}%
     {\meter\usk\kilogram\usk\second\reciprocalsquared\\uk\ampere\reciprocalsquared\\%
547
     [\tesla\usk\meter\per\ampere]%
548
549
     [\henry\per\meter]%
550 \newscalarquantity{permittivity}%
551
     {\meter\reciprocalcubed\usk\reciprocal\kilogram\usk\second\reciprocalquarted\usk\ampere\squared}%
552
     [\farad\per\meter]%
     [\coulomb\squared\per\newton\usk\meter\squared]%
553
554 \newscalar
quantity{planeangle}%
     {\meter\usk\reciprocal\meter}%
555
     [\radian]%
556
     [\radian]%
558 \newscalarquantity{polarizability}%
     {\reciprocal\kilogram\usk\second\quarted\usk\square\ampere}%
559
560
     [\coulomb\usk\square\meter\per\volt]%
     [\coulomb\usk\meter\per(\newton\per\coulomb)]%
561
562 \newscalarquantity{power}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalcubed}%
```

```
[\watt]%
564
     [\joule\per\second]%
565
566 \newvectorquantity{poynting}%
     {\kilogram\usk\second\reciprocalcubed}%
567
     [\watt\per\meter\squared]%
568
     [\watt\per\meter\squared]%
570 \newscalarquantity{pressure}%
     {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
     [\pascal]%
572
     [\newton\per\meter\squared]%
573
574 \newscalarquantity{relativepermeability}
576 \newscalarquantity{relativepermittivity}%
577
578 \newscalarquantity{resistance}%
     {\square\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocalsquare\ampere}}
     [\volt\per\ampere]%
580
     [\ohm]%
581
582 \newscalarquantity{resistivity}%
     {\cubic\meter\usk\kilogram\usk\reciprocalcubic\second\usk\reciprocalsquare\ampere}}
     [\ohm\usk\meter]%
584
     [(\volt\per\meter)\per(\ampere\per\square\meter)]%
585
586 \newscalarquantity{solidangle}%
     {\meter\squared\usk\reciprocalsquare\meter}%
587
     [\steradian]%
588
     [\steradian]%
589
590 \newscalarquantity{specificheatcapacity}%
     {\meter\squared\usk\second\reciprocalsquared\usk\reciprocal\kelvin}%
591
     [\joule\per\kelvin\usk\kilogram]%
592
     [\joule\per\kelvin\usk\kilogram]
593
594 \newscalarquantity{springstiffness}%
     {\kilogram\usk\second\reciprocalsquared}%
596
     [\newton\per\meter]%
     [\newton\per\meter]%
598 \newscalarquantity{springstretch}% % This is really just a displacement.
    {\meter}%
600 \verb|\newscalarquantity{stress}| \%
    {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
601
602
     [\pascal]%
     [\newton\per\meter\squared]%
604 \newscalarquantity{strain}%
605
    {}%
606 \newscalarquantity{temperature}%
    {\kelvin}%
608 %\ifmandi@rotradians
609 % \newphysicalquantity{torque}%
        {\meter\squared\usk\reciprocal\radian}%
610 %
        [\newton\usk\meter\per\radian]%
611 %
612 %
        [\newton\usk\meter\per\radian]%
613 %\else
     \newvectorquantity{torque}%
614
       {\meter\squared\usk\kilogram\usk\second\reciprocalsquared}%
615
       [\newton\usk\meter]%
616
       [\newton\usk\meter]%
617
618 %\fi
619 \newvectorquantity{velocity}%
     {\meter\usk\reciprocal\second}%
620
     [\meter\per\second]%
621
622
     [\meter\per\second]%
```

```
623 \newvectorquantity{velocityc}%
624
     {\lightspeed}%
     []%
625
     [\lightspeed]%
626
627 \newscalarquantity{volume}%
    {\cubic\meter}%
629 \newscalarquantity{volumechargedensity}%
     {\reciprocalcubic\meter\usk\second\usk\ampere}%
     [\coulomb\per\cubic\meter]%
     [\coulomb\per\cubic\meter]%
632
633 \newscalarquantity{volumemassdensity}%
    {\meter\reciprocalcubed\usk\kilogram}%
     [\kilogram\per\meter\cubed]%
     [\kilogram\per\meter\cubed]%
637 \newscalarquantity{wavelength}% % This is really just a displacement.
    {\meter}%
638
639 \newvectorquantity{wavenumber}%
    {\reciprocal\meter}%
     [\per\meter]%
641
     [\per\meter]%
643 \newscalarquantity{work}%
     {\meter\squared\usk\kilogram\usk\second\reciprocalsquared}%
     [\joule]%
645
     [\newton\usk\meter]%
646
647 \newscalarquantity{youngsmodulus}% % This is really just a stress.
     {\reciprocal\meter\usk\kilogram\usk\second\reciprocalsquared}%
     [\pascal]%
649
     [\newton\per\meter\squared]%
650
    Define physical constants for introductory physics, again alphabetically for convenience.
651 \newphysicalconstant{avogadro}%
    {N_A}
653
    {6\timestento{23}}{6.022140857\timestento{23}}%
    {\reciprocal\mole}%
654
     [\per\mole]%
655
     [\per\mole]%
657 \mbox{ newphysicalconstant{biotsavartconstant}} % % alias for $$ \mbox{mzofp} $
    {\frac{\mu_o}{4\pi}}%
     {\left(-7\right)}{\left(-7\right)}%
     {\meter\usk\kilogram\usk\second\reciprocalsquared\\uk\ampere\reciprocalsquared}\%
661
     [\henry\per\meter]%
     [\tesla\usk\meter\per\ampere]%
663 \newphysicalconstant{bohrradius}%
    {a_0}%
664
    {5.3\timestento{-11}}{5.2917721067\timestento{-11}}%
665
    {\meter}%
667 \newphysicalconstant{boltzmann}%
    \{k_B\}\%
    {1.4\times -23}{1.38064852\times -23}%
669
     {\meter\squared\usk\kilogram\usk\reciprocalsquare\second\usk\reciprocal\kelvin}%
670
     [\joule\per\kelvin]%
671
672
     [\joule\per\kelvin]%
673 \newphysicalconstant{coulombconstant}% % alias for \oofpez
     {\frac{1}{4\pi\epsilon_o}}%
674
675
     {9\times 19}{8.9875517873681764\times 19}%
676
     {\meter\cubed\usk\kilogram\usk\reciprocalquartic\second\usk\ampere\reciprocalsquared}%
677
     [\meter\per\farad]%
     [\newton\usk\meter\squared\per\coulomb\squared]%
679 \newphysicalconstant{earthmass}%
```

```
{M {\symup{Earth}}}%
680
     \{6.0 \times \{24\}\} \{5.97237 \times \{24\}\} \%
681
     {\kilogram}%
682
683 \newphysicalconstant{earthmoondistance}%
     {d_{\sim}EM}}
684
     {3.8\times 1550\times 8}
685
    {\meter}%
687 \newphysicalconstant{earthradius}%
     {R_{\symup{Earth}}}%
     \{6.4 \times \{6.4 \} \{6.371 \times \{6.371 \} \} 
689
     {\meter}%
690
691 \newphysicalconstant{earthsundistance}%
     {d_{\symup{ES}}}%
     \{1.5\timestento\{11\}\}\{1.496\timestento\{11\}\}\%
     {\meter}%
694
695 \newphysicalconstant{electroncharge}%
    {q_e}%
696
     {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
697
698
     {\ampere\usk\second}%
     [\coulomb]%
     [\coulomb]%
701 \newphysicalconstant{electronCharge}%
702
     {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
703
     {\ampere\usk\second}%
704
     [\coulomb]%
705
     [\coulomb]%
707 \newphysicalconstant{electronmass}%
     {m_e}%
708
     {9.1\times -31}
709
     {\kilogram}%
711 \newphysicalconstant{elementarycharge}%
    {e}%
     {1.6}\times{-19}}{1.6021766208}\times{-19}}%
713
     {\ampere\usk\second}%
714
     [\coulomb]%
715
     [\coulomb]%
716
717 \newphysicalconstant{finestructure}%
     {\alpha}%
     {\frac{1}{137}}{7.2973525664\times{-3}}%
719
720
721 \newphysicalconstant{hydrogenmass}%
    {m_H}%
722
    {1.7}\times{-27}}{1.6737236}\times{-27}}%
723
724
     {\kilogram}%
725 \newphysicalconstant{moonearthdistance}%
     {d_{\symup{ME}}}%
     {3.8\times \{3.8\times \{3.81550\times \{8\}\}\}}
727
     {\meter}%
729 \newphysicalconstant{moonmass}%
     {M_{\symup{Moon}}}%
730
     {7.3\times \{7.3\times \{22\}\}}{7.342\times \{22\}}%
731
     {\kilogram}%
733 \newphysicalconstant{moonradius}%
734
     {R_{\symup{Moon}}}%
735
     {1.7\times 6}}{1.7371\times 6}}
     {\meter}%
737 \newphysicalconstant{neutronmass}%
    {m_n}
```

```
{1.7}\times{0.674927471}\times{0.674927471}
739
    {\kilogram}%
740
741 \newphysicalconstant{oofpez}%
    {\frac{1}{4\pi\epsilon_o}}%
    {9}\times{9}\times{9}
743
    {\meter\cubed\usk\kilogram\usk\reciprocalquartic\second\usk\ampere\reciprocalsquared}%
744
745
    [\meter\per\farad]%
    [\newton\usk\meter\squared\per\coulomb\squared]%
746
747 \newphysicalconstant{oofpezcs}%
    {\frac{1}{4\pi\epsilon_o c^2}}%
    {\left(-7\right)}{\left(-7\right)}
749
    {\meter\usk\kilogram\usk\second\reciprocalsquared\usk\ampere\reciprocalsquared}%
750
     [\tesla\usk\meter\squared]%
     [\newton\usk\second\squared\per\coulomb\squared]%
753 \newphysicalconstant{planck}%
    {h}%
754
    \{6.6\timestento\{-34\}\}\{6.626070040\timestento\{-34\}\}\%
755
    {\meter\squared\usk\kilogram\usk\reciprocal\second}%
756
     [\joule\usk\second]%
758
     [\joule\usk\second]%
759 \newphysicalconstant{planckbar}%
    {\hslash}%
    {1.1\times -34}}{1.054571800\times -34}}%
761
     {\meter\squared\usk\kilogram\usk\reciprocal\second}%
762
     [\joule\usk\second]%
763
     [\joule\usk\second]
764
765 \newphysicalconstant{planckc}%
766
    {2.0\times {-25}}{1.98644568\times {-25}}%
767
    {\meter\cubed\usk\kilogram\usk\reciprocalsquare\second}%
768
    [\joule\usk\meter]%
769
     [\joule\usk\meter]%
771 \newphysicalconstant{protoncharge}%
772
    {q_p}%
    {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
773
    {\ampere\usk\second}%
774
     [\coulomb]%
775
    [\coulomb]%
777 \newphysicalconstant{protonCharge}%
778
    {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
779
    {\ampere\usk\second}%
780
781
     [\coulomb]%
     [\coulomb]%
782
783 \newphysicalconstant{protonmass}%
    \{1.7\timestento\{-27\}\}\{1.672621898\timestento\{-27\}\}\%
    {\kilogram}%
787 \newphysicalconstant{rydberg}%
    {R_{\left( \right)}}
788
    {1.1\times 10973731568508\times 107}
789
    {\reciprocal\meter}%
791 \newphysicalconstant{speedoflight}%
    {c}%
792
793
    {3\neq 0}
794
    {\meter\usk\reciprocal\second}%
795
    [\meter\per\second]%
796
     [\meter\per\second]
797 \newphysicalconstant{stefanboltzmann}%
```

```
{\sigma}%
798
     {5.7\timestento{-8}}{5.670367\timestento{-8}}%
799
     {\kilogram\usk\second\reciprocalcubed\usk\kelvin\reciprocalquarted}%
800
     [\watt\per\meter\squared\usk\kelvin\quarted]%
801
     [\watt\per\meter\squared\usk\kelvin\quarted]
802
803 \newphysicalconstant{sunearthdistance}%
     {d_{\symup{SE}}}%
     {1.5\timestento{11}}{1.496\timestento{11}}%
805
     {\meter}%
806
807 \newphysicalconstant{sunmass}%
     {M_{\scriptstyle symup}}
808
     {2.0\times \{30\}}{1.98855\times \{30\}}%
809
     {\kilogram}%
811 \newphysicalconstant{sunradius}%
     {R_{symup{Sun}}}
812
     {7.0\times \{6.957\times \{8\}\}}
813
     {\meter}%
815 \newphysicalconstant{surfacegravfield}%
     {g}%
817
     {9.8}{9.807}%
     {\meter\usk\second\reciprocalsquared}%
818
     [\newton\per\kilogram]%
819
     [\newton\per\kilogram]%
820
821 \newphysicalconstant{universalgrav}%
     {G}%
822
     \{6.7\timestento\{-11\}\}\{6.67408\timestento\{-11\}\}\%
823
     {\meter\cubed\usk\reciprocal\kilogram\usk\second\reciprocalsquared}%
     [\newton\usk\meter\squared\per\kilogram\squared]%% also \joule\usk\meter\per\kilogram\squared
825
     [\newton\usk\meter\squared\per\kilogram\squared]%
826
827 \newphysicalconstant{vacuumpermeability}%
     {\mu_o}%
828
     {4\pi -7}}{4\pi -7}}{4\pi -7}}%
829
     {\meter\usk\kilogram\usk\second\reciprocalsquared\usk\ampere\reciprocalsquared}%
     [\henry\per\meter]%
831
     [\tesla\usk\meter\per\ampere]%
832
833 \newphysicalconstant{vacuumpermittivity}%
     {\epsilon_o}%
834
     {9 \times (-12)}{8.854187817 \times (-12)}%
835
     {\meter\reciprocalcubed\usk\reciprocal\kilogram\usk\second\quarted\usk\ampere\squared}%
836
     [\farad\per\meter]%
837
     [\coulomb\squared\per\newton\usk\meter\squared]%
    A better, intelligent coordinate-free \vec<sup>→P.30</sup> command. Note the use of the e{_^} type of optional argument. This
character has a different catcode and is treated as a mathematical entity.
See https://tex.stackexchange.com/q/554706/218142.
See also https://tex.stackexchange.com/a/531037/218142.
```

accounts for much of the flexibility and power of this command. Also note the use of the TFX primitives \sb{} and \sp{}. Why doesn't it work when I put spaces around #3 or #4? Because outside of \ExplSyntaxOn...\ExplSyntaxOff, the _

```
839 \RenewDocumentCommand{\vec}{ s m e{_^} }{%
    \ensuremath{%
840
      % Note the \, used to make superscript look better.
841
      \IfBooleanTF {#1}
                            % check for *
842
        {\vv{#2}% % * gives an arrow
843
844
          % Use \sp{} primitive for superscript.
845
          % Adjust superscript for the arrow.
          846
        }%
847
        {\symbfit} % no * gives us bold
848
          \% Use \sp{} primitive for superscript.
849
```

```
% No superscript adjustment needed.
850
             \sp{\IfValueT{#4}{#4}\vphantom{\smash[t]{\big|}}}
851
852
       \% Use \sb{} primitive for subscript.
853
       \st {\IfValueT{#3}{#3}\vphantom{\smash[b]{|}}}
854
855
     }%
856 }%
    The zero vector.
857 \NewDocumentCommand{\zerovec}{ s }{%
     \IfBooleanTF {#1}
858
       {\vv{0}}%
859
860
       {\symbfup{0}}%
861 }%
    A command for the change in a vector.
862 \NewDocumentCommand{\Dvec}{ s m }{%
     \Delta
863
     \IfBooleanTF{#1}
864
865
       {\vec*}%
       {\vec}%
866
     {#2}
867
868 }%
```

A command for the direction of a vector. We use a slight tweak is needed to get uniform hats that requires the makebox package.

See https://tex.stackexchange.com/a/391204/218142.

```
869 \NewDocumentCommand{\dirvec}{ s m }{%
     \widetilde{\mbox{(w\)}}{\%}
       \ensuremath{%
871
         \IfBooleanTF{#1}%
872
            {#2}%
873
            {\symbfit{#2}}%
874
         }%
875
876
       }%
     }%
877
878 }%
```

A command for the magnitude of a vector.

```
879 \NewDocumentCommand{\magvec}{ s m }{%

880 \doublebars{%

881 \IfBooleanTF{#1}

882 {\vec*}%

883 {\vec}%

884 {#2}

885 }%
```

Intelligent commands for typesetting vector and tensor symbols and components suitable for use with both coordinate-free and index notations. Use starred form for index notation, unstarred form for coordinate-free.

```
887 \NewDocumentCommand{\veccomp}{ s m }{%
     % Consider renaming this to \vectorsym.
888
     \IfBooleanTF{#1}
889
890
     {\%} We have a *.
       \ensuremath{\symnormal{#2}}%
891
892
     {% We don't have a *.
893
       \ensuremath{\symbfit{#2}}%
894
895
     }%
```

```
896 }%
897 \NewDocumentCommand{\tencomp}{ s m }{%
     % Consider renaming this to \tensororsym.
898
     \IfBooleanTF{#1}
899
     {\%} We have a *.
900
       \ensuremath{\symsfit{#2}}%
901
902
     {% We don't have a *.
903
       \ensuremath{\symbfsfit{#2}}%
904
     }%
905
906 }%
    An environment for problem statements. The starred version allows for in-line lists.
907 \NewDocumentEnvironment{physicsproblem}{ m }{%
     \newpage%
908
     \section*{#1}%
909
     \newlist{parts}{enumerate}{2}%
910
     \setlist[parts]{label=\bfseries(\alph*)}}%
911
913 \NewDocumentEnvironment{physicsproblem*}{ m }{%
914
     \newpage%
     \section*{#1}%
915
     \newlist{parts}{enumerate*}{2}%
916
     \setlist[parts]{label=\bfseries(\alph*)}}%
917
918
     {}%
919 \NewDocumentCommand{\problempart}{}{\item}%
    An environment for problem solutions.
920 \NewDocumentEnvironment{physicssolution}{ +b }{%
     % Make equation numbering consecutive through the document.
921
     \begin{align}
922
923
       #1
924
     \end{align}
926 \NewDocumentEnvironment{physicssolution*}{ +b }{%
     \% Make equation numbering consecutive through the document.
927
     \begin{align*}
928
       #1
929
930
     \end{align*}
931 }{}%
    A simplified command for importing images.
932 \NewDocumentCommand{\image}{ O{scale=1} m m m }{%
     \begin{figure}[ht!]
933
       \begin{center}%
934
935
         \includegraphics[#1]{#2}%
       \end{center}%
936
       \caption{#3}%
937
       \label{#4}%
938
     \end{figure}%
939
940 }%
    See https://tex.stackexchange.com/q/570223/218142.
941 \NewDocumentCommand{\reason}{ 0{4cm} m }{&&\begin{minipage}{#1}\raggedright\small #2\end{minipage}}
    Notation for column and row vectors. \mivector→P.31 is a workhorse command.
 Orginal code provided by @egreg.
 See https://tex.stackexchange.com/a/39054/218142.
942 \ExplSyntaxOn
```

```
943 \NewDocumentCommand{\mivector}{ O{,} m o }%
944 {%
      \mi vector:nn { #1 } { #2 }
945
      \IfValueT{#3}{\; {#3}}
946
947 }%
948 \seq_new:N \l__mi_list_seq
949 \cs_new_protected:Npn \mi_vector:nn #1 #2
950 {%
     \ensuremath{%
951
       \seq_set_split:Nnn \l__mi_list_seq { , } { #2 }
952
       \int_compare:nF { \seq_count:N \l__mi_list_seq = 1 } { \left\langle }
953
       \seq_use: Nnnn \l__mi_list_seq { #1 } { #1 } { #1 }
954
       \int_compare:nF { \seq_count:N \l__mi_list_seq = 1 } { \right\rangle }
955
956
957 }%
958 \NewDocumentCommand{\colvec}{ O{,} m }{%
     \vector_main:nnnn { p } { \\ } { #1 } { #2 }
959
960 }%
961 \NewDocumentCommand{\rowvec}{ O{,} m }{%
     \vector_main:nnnn { p } { & } { #1 } { #2 }
963 }%
964 \seq_new:N \l__vector_arg_seq
965 \cs_new_protected:Npn \vector_main:nnnn #1 #2 #3 #4 {%
     \seq_set_split:Nnn \l__vector_arg_seq { #3 } { #4 }
     \begin{#1NiceMatrix}[r]
967
       \seq_use:Nnnn \l__vector_arg_seq { #2 } { #2 } { #2 }
968
     \end{#1NiceMatrix}
969
970 }%
971 \ExplSyntaxOff
    Commands for scientific notation.
972 \NewDocumentCommand{\tento}{ m }{\currenath{10^{#1}}}
973 \NewDocumentCommand{\timestento}{ m }{\ensuremath{\;\times\;\tento{#1}}}
974 \NewDocumentCommand{\xtento}{ m }{\column{times}, \tento{#1}}}
975 \NewDocumentCommand{\changein}{}{\Delta}
    Intelligent delimiters provided via the mathtools package. Use the starred versions for fractions. You can supply optional
sizes. Note that default placeholders are used when the argument is empty.
976 \DeclarePairedDelimiterX{\doublebars}[1]{\\\rvert}{\\rvert}{\\rvert}{\\rvert}{\\rvert}}
977 \DeclarePairedDelimiterX{\singlebars}[1]{\lvert}{\rvert}{\ifblank{#1}}{\:\cdot\:}{#1}}
978 \DeclarePairedDelimiterX{\anglebrackets}[1]{\langle}{\rangle}{\ifblank{#1}{\:\cdot\:}{#1}}
979 \DeclarePairedDelimiterX{\parentheses} [1] \{()\} \\ \ifblank \{#1\} \\ \cdot\\:\} \{#1\}
980 \DeclarePairedDelimiterX{\squarebrackets}[1]{\lbrack}{\rbrack}{\ifblank{#1}{\:\cdot\:}{#1}}}
981 \DeclarePairedDelimiterX{\curlybraces}[1]{\lbrace}{\rbrace}{\ifblank{#1}{\:\cdot\:}{#1}}
    Some semantic aliases.
982 \NewDocumentCommand{\magnitude}{}{\doublebars}
983 \NewDocumentCommand{\norm}{}{\doublebars}
984 \NewDocumentCommand{\absolutevalue}{}{\singlebars}
985 \NewDocumentCommand{\direction}{}{\mivector}
986 \NewDocumentCommand{\unitvector}{}{\mivector}
    Command for highlighting parts of, or entire, mathematical expressions.
Original code by anonymous user @abcdefg, modified by me.
See https://texample.net/tikz/examples/beamer-arrows/.
See also https://tex.stackexchange.com/a/406084/218142.
See also https://tex.stackexchange.com/a/570858/218142.
See also https://tex.stackexchange.com/a/570789/218142.
See also https://tex.stackexchange.com/a/79659/218142.
```

```
See also https://tex.stackexchange.com/q/375032/218142.
 See also https://tex.stackexchange.com/a/571744/218142.
987 \newcounter{tikzhighlightnode}
988 \NewDocumentCommand{\hilite}{ O{magenta!60} m O{rectangle} }{%
      \stepcounter{tikzhighlightnode}%
      \tikzmarknode{highlighted-node-\number\value{tikzhighlightnode}}{#2}%
990
      \edef\temp{%
991
        \noexpand\AddToShipoutPictureBG{%
992
          \noexpand\begin{tikzpicture}[overlay,remember picture]%
993
          \noexpand\iftikzmarkoncurrentpage{highlighted-node-\number\value{tikzhighlightnode}}%
994
           \noexpand\node[inner sep=1.0pt,fill=#1,#3,fit=(highlighted-node-\number\value{tikzhighlightnode})]{};%
995
          \noexpand\fi
996
997
          \noexpand\end{tikzpicture}%
998
        }%
      }%
999
1000
      \temp%
1001 }%
     Intelligent slot command for coordinate-free tensor notation.
1002 \NewDocumentCommand{\slot}{ s d[] }{%
      % d[] must be used because of the way consecutive optional
      \% arguments are handled. See xparse docs for details.
1004
      \IfBooleanTF{#1}
1005
1006
      \{\%\ We have a *.
        \IfValueTF{#2}
1007
1008
        {% Insert a vector, but don't show the slot.
          \smash{\makebox[1.5em]{\ensuremath{#2}}}
1009
1010
        }%
        {% No vector, no slot.
1011
          \smash{\makebox[1.5em]{\ensuremath{}}}
1012
1013
        }%
      }%
1014
      {% We don't have a *.
1015
        \IfValueTF{#2}
1016
        {% Insert a vector and show the slot.
1017
          \underline{\smash{\makebox[1.5em]{\ensuremath{#2}}}}
1018
1019
        {% No vector; just show the slot.
1020
1021
          \underline{\smash{\makebox[1.5em]{\ensuremath{}}}}
1022
1023
     }%
1024 }%
     Intelligent notation for contraction on pairs of slots.
1025 \NewDocumentCommand{\contraction}{ s m }{\%
      \IfBooleanTF{#1}
1026
      {\mathbf C}}\ We have a *.
1027
      {\sc {\sc We don't have a *.}}
1028
     _{#2}
1029
1030 }%
     Intelligent differential (exterior derivative) operator.
1031 \NewDocumentCommand{\dd}{ s }{%
      \mathop{}\!
1032
      \IfBooleanTF{#1}
1033
      {\symbfsfup{d}}% We have a *.
1034
      {\simeq d} We don't have a *.
1036 }%
```

Command to typeset tensor valence.

```
1037 \NewDocumentCommand{\valence}{ s m m }{% 1038 \IfBooleanTF{#1} 1039 {(#2,#3)} 1040 {\binom{#2}{#3}} 1041 }%
```

Diagnostic commands to provide sanity checks on commands that represent physical quantities and constants.

```
1042 \NewDocumentCommand{\checkquantity}{ m }{%
1043
      % Works for both scalar and vector quantities.
1044
      \begin{center}
        \begin{tabular}{>{\centering}p{4cm} >{\centering}p{3cm} >{\centering}p{4cm} >{\centering}p{3cm}}
1045
          name & base & derived & alternate \tabularnewline
1046
1047
          \ttfamily\small{\expandafter\string\csname #1\endcsname} &
          \small{\csname #1onlybaseunits\endcsname} &
1048
          \small{\csname #1onlyderivedunits\endcsname} &
1049
          \small{\csname #1onlyalternateunits\endcsname}
1050
        \end{tabular}
1051
      \end{center}
1052
1053 }%
1054 \NewDocumentCommand{\checkconstant}{ m }{%
      \begin{center}
1055
        \begin{tabular}{>{\centering}p{4cm} >{\centering}p{3cm}} >{\centering}p{4cm} >{\centering}p{3cm}}
1056
          name & base & derived & alternate \tabularnewline
1057
          \ttfamily\small{\expandafter\string\csname #1\endcsname} &
1058
          \small{\csname #1onlybaseunits\endcsname} &
1059
          \small{\csname #1onlyderivedunits\endcsname} &
1060
          \small{\csname #1onlyalternateunits\endcsname} \tabularnewline
1061
          symbol & approximate & precise \tabularnewline
1062
          \small{\csname #1mathsymbol\endcsname} &
1063
          \small{\csname #1approximatevalue\endcsname} &
1064
          \small{\csname #1precisevalue\endcsname} \tabularnewline
1065
1066
        \end{tabular}
1067
      \end{center}
1068 }%
```

7 Index

Page numbers refer to page where the corresponding entry is documented and/or referenced.

rage numbers refer to page where the corresponding en	nity is documented and/or referenced.
A	\cmagneticfieldvector 9
\absolutevalue 40	\colvec 37
\absolutevalue* 40	\conductance 9
\acceleration 8	\conductivity 9
\accelerationvector 8	\contraction 37
alternate value 6, 52	\contraction* 37
\alwaysusealternateunits 17	$\verb \conventionalcurrent 9$
\alwaysuseapproximateconstants $\dots 25$	\coulombconstant 20
$\aligned \aligned \$	\curlybraces
\alwaysusederivedunits 17	\curlybraces* 38
\alwaysusepreciseconstants $\dots 25$	\current 9
\amount 8	\currentdensity 10
\anglebrackets 38	\currentdensityvector
\anglebrackets* 38	
\angularacceleration 8	D
\angularaccelerationvector 8	derived value
\angularfrequency 8	\dielectricconstant 10
\angularimpulse 8	\direction 32
\angularimpulsevector 8	\dirvec 31
\angularmomentum 8	\dirvec* 31
\angularmomentumprinciple 42	\displacement 10
\angularmomentumprinciple* 42	\displacementvector 10
\angularmomentumprincipleupdate 42	\doublebars 38
\angularmomentumprincipleupdate* 42	\doublebars* 38
\angularmomentumvector 8	\duration 10
\angularvelocity 8	\Dvec 31
\angularvelocityvector 8	\Dvec* 31
\area 8	
\areachargedensity 9	${f E}$
\areamassdensity 9	\earthmass 20
\avogadro 19	\earthmoondistance 20
	\earthradius 20
В	\earthsundistance 20
base value 6, 52	\electricdipolemoment 10
\biotsavartconstant 19	\electricdipolemomentvector 10
\bohrradius 19	\electricfield 10
\boltzmann 20	\electricfieldvector 10
	\electricflux 10
\mathbf{C}	\electricpotential 10
\capacitance 9	\electric potential energy $\dots 45$
\changein 38	\electronCharge 21
\charge 9	\electroncharge 20
\checkconstant 19	\electroncurrent 11
\checkquantity	\electronmass 21
\chemicalenergy 44	\elementarycharge 21
$\verb \cmagneticfield 9 $	\emf 11

\energy 11	K
\energydensity 11	Keys
\energyflux 11	preciseconstants 6
\energyfluxvector 11	units 6
\energyof 43	
\energyprinciple 42	${f L}$
\energyprincipleupdate 42	\lhsangularmomentumprinciple 42
\entropy 11	\lhsangularmomentumprinciple* 42
Environments	\lhsangularmomentumprincipleupdate 42
glowscriptblock	\lhsangularmomentumprincipleupdate* 42
physicsproblem 32	\lhsenergyprinciple 41
physicsproblem* 32	\lhsenergyprincipleupdate $\dots \dots \dots \dots \dots \dots 41$
physicssolution 33	\lhsmomentumprinciple 41
physicssolution* 33	\lhsmomentumprinciple* 41
usealternateunits	\lhsmomentumprincipleupdate 41
useapproximateconstants $\dots 25$	\lhsmomentumprincipleupdate* 41
usebaseunits	\linearchargedensity 12
usederivedunits	\linearmassdensity 12
usepreciseconstants	\luminous 12
${f F}$	${f M}$
false value	\magneticcharge 12
\finestructure 21	\magneticdipolemoment 13
\force 11	\magneticdipolemomentvector 13
\forcevector 11	\magneticfield 13
\frequency 11	\magneticfieldvector 13
• •	\magneticflux 13
\mathbf{G}	\magnitude 40
glowscriptblock environment	\magnitude* 40
\glowscriptinline 30	\magvec 31
\gravitationalfield 12	\magvec* 31
\gravitationalfieldvector 12	\mandisetup 6
\gravitationalpotential 12	\mandiversion 6
$\verb \gravitational potential energy$	\mass 13
	\mivector 31
Н	\mobility 13
\hereuseapproximateconstants 25	\momentofinertia 13
\hereusebaseunits	\momentum 7, 13
\hereusedalternateunits	\momentumflux 13
\hereusederivedunits 17	\momentumfluxvector 13
\hereusepreciseconstants	\momentumprinciple 41
\hilite	\momentumprinciple* 41
\hydrogenmass 21	\momentumprincipleupdate 41
т	\momentumprincipleupdate* 41
I Vimana	\momentumvector 7
\image	\momentumvectordemo 13
\impulse	\moonearthdistance
\impulsevector	\moonmass 21
\indexorrefraction	\moonradius 22
\internalenergy 44	\mzofp 22

N	\rhsangularmomentumprincipleupdate* 42
\neutronmass 22	\rhsenergyprinciple
\newphysicalconstant	\rhsenergyprincipleupdate 42
\newscalarquantity 17	\rhsmomentumprinciple 41
\newvectorquantity 17	\rhsmomentumprinciple* 41
\norm 40	\rhsmomentumprincipleupdate 41
\norm* 40	\rhsmomentumprincipleupdate* 41
\numberdensity 14	\rotationalkineticenergy 44
·	\rotationalkineticenergy* 44
0	\rowvec 37
\oofpez 18, 22	\rydberg 23
\oofpezcs 22	, ,
	${f S}$
P	\singlebars 38
\parentheses 38	\singlebars* 38
\parentheses*	\slot 37
\particleenergy 43	\slot* 37
\permeability 14	\solidangle 15
\permittivity 14	\specificheatcapacity 15
\photonenergy 44	\speedoflight 23
physicsproblem environment 32	\springpotentialenergy 45
physicsproblem* environment 32	\springstiffness 15
physicssolution environment 33	\springstretch 15
physicssolution* environment	\squarebrackets 38
\planck 22	\squarebrackets* 38
\planckbar 22	\stefanboltzmann 23
\planckc 23	\strain 15
\planeangle 14	\stress 15
\polarizability 14	\sunearthdistance 24
\power 14	\sunradius 24
\poynting 14	\surfacegravfield 24
\poyntingvector 14	\systemenergy 43
preciseconstants key 6	, si
\pressure 14	${f T}$
\protonCharge 23	\temperature 16
\protoncharge 23	\tencomp 32
\protonmass 23	\tencomp* 32
	\tento 37
R	\thermalenergy 44
\reason 34	\timestento 37
\relativepermeability 14	\torque 16
$\verb \relativepermittivity 15$	\torquevector 16
\renewphysicalconstant 24	\translationalkineticenergy 44
\renewscalarquantity 17	\translationalkineticenergy* 44
\renewvectorquantity 17	true value
\resistance 15	
$\verb \resistivity $	${f U}$
\restenergy 43	units key 6
$\verb \rhsangularmomentumprinciple 42$	\unitvector 32
$\verb \rhsangularmomentumprinciple* 42$	usealternateunits environment 18
\rhsangularmomentumprincipleupdate 42	useapproximateconstants environment 25

usebaseunits environment									18
usederivedunits environment									18
usepreciseconstants environr	ner	$^{\mathrm{t}}$							25
${f V}$									
\vacuumpermeability			 •			•			24
\vacuumpermittivity									24
\valence			 •			•			37
\valence*				•					37
Values									
alternate								,	52
base				•				,	52
derived								,	52
false								,	52
true	• •		 •	•	•	•	•	6,	52
\vec									30
\vec*									30
\veccomp									32
\veccomp*									
\vectoracceleration									
\vectorangularacceleration									
\vectorangularimpulse									
\vectorangularmomentum									
\vectorangularvelocity									
\vectorcmagneticfield									
\vectorcurrentdensity									10
\vectordisplacement									10
\vectorelectricdipolemoment									10
\vectorelectricfield									10
\vectorenergyflux									11
\vectorforce									11
\vectorgravitationalfield									12
\vectorimpulse									12
\vectormagneticdipolemoment									13
\vectormagneticfield									13
\vectormomentum								,	13
\vectormomentumflux									13
\vectorpoynting									14
\vectortorque									16
\vectorvelocity									16
\vectorvelocityc									16
\vectorwavenumber									16
\velocity									16
\velocityc									16
\velocitycvector									16
\velocityvector									16
\vibrationalkineticenergy									45
\vibrationalkineticenergy*									45
\volume									16
\volumechargedensity			 •		٠	•		•	16

\volumemassdens \vpythonfile . \vpythoninline												28
	w											
\wavelength												16
\wavenumber												16
\wavenumbervect	or											16
\work												17
	X											
\xtento												38
	\mathbf{Y}											
\youngsmodulus												17
	${f z}$											
\zerovec												30