EE496: COMPUTATIONAL INTELLINGENCE FS06: FUZZY CONTROLLER: MAMDANI-ASSILIAN

UGUR HALICI

METU: Department of Electrical and Electronics Engineering (EEE)

METU-Hacettepe U: Neuroscience and Neurotechnology (NSNT)

Architecture of a Fuzzy Controller

Example: Cartpole Problem (cont.)

 X_1 is partitioned into 7 fuzzy sets.

Support of fuzzy sets: intervals with length 1/4 of whole range $\rm X_1$. Similar fuzzy partitions for $\rm X_2$ and $\rm Y$.

Example: Cartpole Problem (cont.)

Next step: specify rules

if
$$\xi 1$$
 is $A^{(1)}$ and . . . and ξ_n is $A^{(n)}$ then η is B ,

 $A^{(1)},\ldots,A^{(n)}$ and B represent linguistic terms corresponding to $\mu^{(1)},\ldots,\mu^{(n)}$ and μ according to X_1,\ldots,X_n and Y.

Let the rule base consist of k rules.

Example: Cartpole Problem (cont.)

•		•			θ		,		FOR EULF EVALUATION AT PAGE 8
		nb	nm	ns	az	ps	pm	pb	INDUT
$\dot{ heta}$	nb			ps	pb				(NPUT (D, D)=(25,-4) Mps(25):03 Mpm(25)=0.6 others 0 Mns(-4)= Maz (-4)=05
	nm				pm				
	ns	nm		ns	ps	0	0		
	az	nb	nm	ns	az	g	pm	pb	
	ps				ns	ps		pm	
	pm				nm				
	pb				nb	ns			$M_{00}(-4) = 0.5$
19 rules for call θ is approximate θ is position θ		So indirated 4 cells should be considered. But 2 of them are defined as rule							

Definition of Table-based Control Function

Measurement $(x_1, \ldots, x_n) \in X_1 \times \ldots \times X_n$ is forwarded to decision logic.

Consider rule

if
$$\xi_1$$
 is $A^{(1)}$ and . . . and ξ_n is $A^{(n)}$ then η is B .

Decision logic computes degree to ξ_1, \ldots, ξ_n fulfills premise of rule.

For $1 \le v \le n$, the value $\mu^{(v)}(x_v)$ is calculated.

Combine values conjunctively by $\alpha = \min\{\mu^{(1)}, \ldots, \mu^{(n)}\}.$

For each rule R_r with $1 \le r \le k$, compute

$$\alpha_r = \min\{\mu^{(1)}_{i1,r}(x_1), \ldots, \mu^{(n)}_{in,r}(x_n)\}.$$

FOR A SINGLE RULE

Output of R_r = fuzzy set of output values.

Thus "cutting off" fuzzy set μ_{i_r} associated with conclusion of R_r at α_r .

So for input (x_1, \ldots, x_n) , R_r implies fuzzy set

nput
$$(x_1, \ldots, x_n)$$
, R_r implies fuzzy set
$$\mu^{\text{output}(R_r)}_{x_1, \ldots, x_n} : Y \to [0, 1], \qquad \text{for rule for expected}$$
$$y \mapsto \min \left\{ \mu^{(1)}_{i_{1,r}}(x_1), \ldots, \mu^{(n)}_{i_{n,r}}(x_n), \mu_{i_r}(y) \right\}.$$

If
$$\mu_{i_{1,r}}^{(1)}(x_1) = \ldots = \mu_{i_{n,r}}^{(n)}(x_n) = 1$$
, then $\mu_{x_1,\ldots,x_n}^{\text{output}(R_r)} = \mu_{i_r}$.

If for all
$$\nu \in \{1, \ldots, n\}$$
, $\mu_{i_{1,r}}^{(\nu)}(x_{\nu}) = 0$, then $\mu_{x_{1}, \ldots, x_{n}}^{\text{output}(R_{r})} = 0$.

Combination of Rules

The decision logic combines the fuzzy sets from all rules.

The **maximum** leads to the output fuzzy set

$$\begin{split} \mu^{\text{output}}_{x1,\dots,xn} \colon Y &\to [0,\,1], \\ y &\to \text{max}_{1 \leq r \leq k} \left\{ \text{min} \; \{ \mu^{(1)}_{i1,r} \, (x_1), \, \dots, \, \mu^{(n)}_{in,r} \, (xn), \, \mu_{ir} \, (y) \} \right\}. \end{split}$$

Then $\mu^{output}_{x1,...,xn}$ is passed to defuzzification interface.

Defuzzification

So far: mapping between each (n_1, \ldots, n_n) and $\mu^{output}_{x1,\ldots,xn}$.

Output = description of output value as fuzzy set.

Defuzzification interface derives crisp value from $\mu^{\text{output}}_{\text{ x1,...,xn}}$.

This step is called **defuzzification**.

Most common methods:

- max criterion,
- mean of maxima,
- center of gravity.

The Max Criterion Method

Choose an arbitrary $y \in Y$ for which $\mu^{output}_{x1,...,xn}$ reaches the maximum membership value.

Advantages:

- Applicable for arbitrary fuzzy sets.
- Applicable for arbitrary domain Y (even for Y ≠ R).

Disadvantages:

- Rather class of defuzzification strategies than single method.
- Which value of maximum membership?
- Random values and thus non-deterministic controller.
- Leads to discontinuous control actions.

The Mean of Maxima (MOM) Method

Preconditions:

- (i) Y is interval
- (ii) $Y_{\text{Max}} = \{ y \in Y \mid \forall y' \in Y : \mu_{x_1,...,x_n}^{\text{output}}(y') \leq \mu_{x_1,...,x_n}^{\text{output}}(y) \}$ is non-empty and measurable
- (iii) Y_{Max} is set of all $y \in Y$ such that $\mu_{x_1,\ldots,x_n}^{\mathsf{output}}$ is maximal

Crisp output value = mean value of Y_{Max} .

if Y_{Max} is finite:

$$\eta = \frac{1}{|Y_{\mathsf{Max}}|} \sum_{y_i \in Y_{\mathsf{Max}}} y_i$$

if Y_{Max} is infinite:

$$\eta = \frac{\int_{y \in Y_{\text{Max}}} y \, dy}{\int_{y \in Y_{\text{Max}}} dy}$$

MOM can lead to discontinuous control actions.

Center of Gravity (COG) Method

Same preconditions as MOM method.

 η = center of gravity/area of $\mu^{\text{output}}_{x1,...,xn}$

If Y is finite, then

$$\eta = \frac{\sum_{y_i \in Y} y_i \cdot \mu_{x_1, \dots, x_n}^{\text{output}}(y_i)}{\sum_{y_i \in Y} \mu_{x_1, \dots, x_n}^{\text{output}}(y_i)}.$$

If Y is infinite, then

$$\eta = \frac{\int_{y \in Y} y \cdot \mu_{x_1, \dots, x_n}^{\text{output}}(y) \, dy}{\int_{y \in Y} \mu_{x_1, \dots, x_n}^{\text{output}}(y) \, dy}.$$

Center of Gravity (COG) Method

Advantages:

- Nearly always smooth behavior,
- A certain rule does not dominate.

Disadvantage:

- No semantic justification,
- Long computation,
- Counterintuitive results possible.

Also called center of area (COA) method:

take value that splits $\mu^{output}_{x1,...,xn}$ into 2 equal parts.

Example

Task: compute η_{COG} and η_{MOM} of fuzzy set shown below.

Based on finite set Y = 0, 1, ..., 10 and infinite set Y = [0, 10].

Example for COG

Continuous and Discrete Output Space

$$\eta_{\text{COG}} = \frac{\int_{0}^{10} y \cdot \mu_{x_{1},...,x_{n}}^{\text{output}}(y) \, dy}{\int_{0}^{10} \mu_{x_{1},...,x_{n}}^{\text{output}}(y) \, dy}$$

$$= \frac{\int_{0}^{5} 0.4y \, dy + \int_{5}^{7} (0.2y - 0.6)y \, dy + \int_{7}^{10} 0.8y \, dy}{5 \cdot 0.4 + 2 \cdot \frac{0.8 + 0.4}{2} + 3 \cdot 0.8}$$

$$\approx \frac{38.7333}{5.6} \approx 6.917$$

$$\eta_{\text{COG}} = \frac{0.4 \cdot (0 + 1 + 2 + 3 + 4 + 5) + 0.6 \cdot 6 + 0.8 \cdot (7 + 8 + 9 + 10)}{0.4 \cdot 6 + 0.6 \cdot 1 + 0.8 \cdot 4}$$

$$= \frac{36.8}{6.2} \approx 5.935$$

Example for COG

Continuous and Discrete Output Space

$$\eta_{\text{MOM}} = \frac{\int_{7}^{10} y \, dy}{\int_{7}^{10} \, dy}$$

$$= \frac{50 - 24.5}{10 - 7} = \frac{25.5}{3}$$

$$= 8.5$$

$$\eta_{\text{MOM}} = \frac{7 + 8 + 9 + 10}{4}$$

$$= \frac{34}{4}$$

$$= 8.5$$

Problem Case for MOM and COG

- What would be the output of MOM or COG?
- Is this desirable or not?