

Schrodinger Wave Equation

Dr Rajeshkumar Mohanraman

Assistant Professor Grade 1 School of Advanced Sciences VIT Vellore

Schrodinger Wave Equation

Schrodinger v	vave equation	describes the	e behaviour	of a par	ticle in a fie	eld of
force or the cl	hange of a phy	sical quantit	ty over time	e. Erwin S	Schrödinger	who
developed the	equation was	even awarde	d the Nobel	Prize in	1933.	

□ Schrodinger wave equation is a mathematical expression describing the energy and position of the electron in space and time, taking into account the matter wave nature of the electron inside an atom.

The wave Equation (Schrodinger's equation)- time dependent

Fundamental equation of Quantum Mechanics (like second law motion of Newtonian mechanics F=ma) Is a wave equation in the variable ψ

For standing wave equation in classical

$$y = A \cos (\omega t - kx)$$

Let us consider the wave equivalent of a Free Particle in a straight path at constant speed

This wave is described by general solution

$$y = A \cos (\omega t - kx) - i A \sin (\omega t - kx)$$

(If undamped, monochromatic harmonic wave in + x direction) 2 can be written in the form

$$y = Ae^{-i(\omega t - kx)}$$

Only real part of (2) has significance in the case of waves in a stretched string. 'y' means displacement , imaginary is discarded as irrelevant.

In quantum mechanics the wave function 'ψ' corresponds to the wave variable 'y' of wave motion in general.

However, ψ - is not measureable quantity and may therefore be complex

Wave equation

$$\Psi\left(x,t\right) = e^{i(kx-\omega t)}$$

Schrodinger time dependent wave equation

Wave equation

$$\Psi\left(x,t\right) = e^{i(kx-\omega t)}$$

$$\lambda = \frac{h}{p} \Rightarrow k = \frac{2\pi}{\lambda} = \frac{2\pi p}{h} = \frac{p}{\hbar}$$

From Planck's

$$E = h\nu$$

$$E = h \frac{\omega}{2\pi} = \hbar \omega$$
 $E/\hbar = \omega$

$$\Psi(x,t) = e^{i\left(\frac{p}{\hbar}x - \frac{E}{\hbar}t\right)}$$

Wave equation
$$\psi = A \sin \frac{2\pi}{\lambda} (vt - x)$$
 From de Broglie
$$\lambda = \frac{h}{p} \Rightarrow k = \frac{2\pi}{\lambda} = \frac{2\pi p}{h} = \frac{p}{\hbar}$$

$$= A \sin \left(\frac{2\pi vt}{\lambda} - \frac{2\pi x}{\lambda} x\right)$$

$$= A \sin \left(\omega t - kx\right)$$

$$\psi\left(x,t\right) = e^{i\left(\frac{p}{\hbar}x - \frac{E}{\hbar}t\right)} \qquad \frac{\partial \psi}{\partial x} = i \frac{p\psi}{\hbar}$$

$$\frac{\partial^2 \psi}{\partial x^2} = \frac{\partial}{\partial x} \left(i \frac{p}{\hbar} \psi\right) = i \frac{p}{\hbar} \frac{\partial \psi}{\partial x} = \left(i \frac{p}{\hbar}\right)^2 \psi = -\frac{p^2}{\hbar^2} \psi$$

$$p^2 \psi = -\hbar^2 \frac{\partial^2 \psi}{\partial x^2}$$

$$\frac{\partial \psi}{\partial t} = -i \frac{E}{\hbar} \psi \Rightarrow E \psi = -\frac{\hbar}{i} \frac{\partial \psi}{\partial t} \Rightarrow E \psi = i\hbar \frac{\partial \psi}{\partial t}$$
Total Energy,
$$E = \frac{p^2}{2m} + V(x) \qquad E \psi = \frac{p^2}{2m} \psi + V(x) \psi$$

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V \psi(x) \qquad \text{Time dependent Schrödinger}$$

 $i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right) + V\psi(x, y, z)$

Time independent Schrödinger wave equation

 $\psi(\;x,\,y,\,z,\,t)$ be the wave function for de Broglie waves .

The differential equation of wave given as

$$\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}\right) - \frac{1}{u^2} \frac{\partial^2 \psi}{\partial t^2} = 0$$

The solution of differential equation in terms of time as below:

$$\psi(x, y, z, t) = \psi_{\alpha}(x, y, z,) e^{-i\omega t}$$

Differentiating twice w.r.t. time t $\frac{\partial^2 \psi}{\partial t^2} = -\omega^2 \psi_0 e^{-i\omega t}$ Or $\frac{\partial^2 \psi}{\partial t^2} = -\omega^2 \psi$

$$\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}\right) + \frac{\omega^2}{u^2}\psi = 0 \qquad \omega = 2\pi v = 2\pi \frac{u}{\lambda}$$

$$\left(\begin{array}{ccccc} \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{\partial^2 \psi}{\partial z^2} \right) + \frac{4 \pi^2}{\lambda^2} \psi = 0$$

$$\left(\begin{array}{cccc} \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right) + \frac{4 \pi^2}{\lambda^2} \psi = 0$$

From de Broglie relation $\lambda = \frac{h}{p}$

$$\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}\right) + \frac{4\pi^2 p^2}{h^2}\psi = 0$$

Total energy = Kinetic energy + Potential energy $E = \frac{p^2}{2m} + V(x,y,z)$

$$p^2 = 2m (E-V)$$

$$\left[\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}\right) + \frac{8\pi^2 m (E - V)}{h^2}\psi = 0\right]$$

This is time independent Schrödinger wave equation

$$\nabla^2 \psi + \frac{2 m}{\hbar^2} (E - V) \psi = 0 \quad \text{where } \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \text{ and } \hbar = \frac{h}{2\pi}$$