Tutorial Gmsh 4.6.0 Módulo de Gmsh-API

Steven Vanegas Giraldo

Universidad Nacional de Colombia Sede Manizales 2020

Gmsh-API

Gmsh-API es una interfaz de programación de aplicaciones.

- Lenguaje C.
- Lenguaje C++.
- Lenguaje Python.
- Lenguaje Julia.

▶ Link

www.anaconda.com/products/individual

Descarga de Gmsh-API

Se puede usar **pip**, sistema de gestion de paquetes en Python.

Instalar:

pip install gmsh_api

Se puede importar el módulo en Python:

import gmsh_api.gmsh as gmsh

Inicializar el módulo de Gmsh-API

Siempre se debe inicializar y finalizar el módulo. Para inicializar:

gmsh.initialize()

Para finalizar:

gmsh.finalize()

Abrir archivos de malla

Para abrir el archivo de malla:

gmsh.open(nombre_archivo)

Este comando nos permite acceder a la información de la malla generada en el archivo.

Obtener los nodos de la malla

eti_n, coor_n, para_coor = gmsh.model.mesh.getNodes(dim, eti)

Parámetros de entrada:

- dim: dimensión de la entidad (entero positivo)
- eti: etiqueta numérica de la entidad (entero >= 1)

Parámetros de salida:

- eti_n: etiquetas numéricas de los nodos (empiezan desde 1)
- coor_n: coordenadas de los nodos
- para_coor: coordenadas paramétricas del modelo interno de Gmsh

Obtener los nodos de la malla

Si **eti** es negativo se retornará las variables de salida de todas las entidades de dimensión **dim**. Si ambas son negativas se retornará las variables de salida de todos los nodos presentes en la malla.

Si no se ingresan parámetros de entrada, se retornará las variables de salida de todos los nodos en la malla.

Obtener los nodos de la malla

 eti_n: es un array con un tamaño igual al número de nodos de la malla

coor_n: es un array con un tamaño igual a 3 veces el número de nodos de la malla

Obtener los nodos de un tipo de elemento

eti_n, coor_n, para_coor = gmsh.model.mesh.getNodesByElementType(tipo_e, eti)

Parámetros de entrada:

- tipo_e: número que indica el tipo de elemento
- eti: etiqueta numérica de la entidad (entero >= 1)

Parámetros de salida:

- eti_n: etiquetas numéricas de los nodos
- coor_n: coordenadas de los nodos
- para_coor: coordenadas paramétricas del modelo interno de Gmsh

Obtener los nodos de un tipo de elemento

Si no ingresa **eti** se retorna las variables de salida de todos los elementos especificados por **tipo_e**.

eti_n: es un array con un tamaño igual al número de elementos finitos (n_{ef}) por el número de nodos (n) que tiene el elemento finito especificado por tipo_e

coor_n: es un array con un tamaño igual a n * n_{ef} * 3 es el número de nodos del elemento finito tratado.

Obtener elementos por tipo

eti_elementos, eti_nodos = gmsh.model.mesh.getElementsByType(tipo_elemento, eti)

Parámetros de entrada:

- tipo_elemento: tipo de elemento clasificado por Gmsh
- eti: etiqueta numérica de la entidad donde se encuentra este tipo de elemento

Parámetros de salida:

- eti_elementos: etiquetas numéricas del elementos buscar
- eti_nodos: etiquetas numéricas de los nodos que conforman los elementos

eti_elementos no empieza en 1, tiene en cuenta todos los elementos creados

Obtener los nodos de elementos un grupo físio

eti_n, coor_n = gmsh.model.mesh.getNodesForPhysicalGroup(dim_gf, eti_gf)

Parámetros de entrada:

- dim_gf: dimensión del grupo físico seleccionado
- eti_gf: etiqueta numérica del grupo físico seleccionado (entero >= 1)

Parámetros de salida:

- eti_n: etiquetas numéricas de los nodos de los elementos del grupo físico seleccionado
- coor_n: coordenadas de los nodos de los elementos del grupo físico seleccionado

eti_elementos = gmsh.model.mesh.getElementsByCoordinates(x, y, z, dim, exacto)

Parámetros de entrada:

- x, y, z: las coordenadas x, y, z donde está localizado el elemento
- dim: dimensión del elemento a buscar
- exacto: variable booleana que me indica si se usa o no una tolerancia en la búsqueda

Parámetros de salida:

eti_elementos: etiquetas numéricas del elementos buscar