Package 'GENEAcore'

April 1, 2025
Title Pre-Processing of 'GENEActiv' Data
Version 1.0.0
Date 2025-03-24
Maintainer Jia Ying Chua <jiayingc@activinsights.com></jiayingc@activinsights.com>
Description Analytics to read in and segment raw 'GENEActiv' accelerometer data into epochs and events. For more details on the 'GENEActiv' device, see https://activinsights.com/resources/geneactiv-support-1-2/ .
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.3.2
Imports changepoint, signal, methods
Suggests knitr, rmarkdown, testthat (>= 3.0.0), GENEAread (>= 2.0.10), GENEAclassify
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Joss Langford [aut], Ian Long [aut], Jia Ying Chua [aut, cre], Activinsights Ltd [cph]
Repository CRAN
Date/Publication 2025-04-01 16:30:10 UTC
Contents
aggregateEpochs aggregateEvents aggregatePeriods apply_AGSA apply_calibration

2 aggregateEpochs

	apply_degrees
	apply_ENMO
	apply_radians
	apply_updown
	binfile_summary
	calc_autocalparams
	createEventMapping
	create_MPI
	create_summary
	detect_nonmovement
	detect_transitions
	geneacore
	get_decimal_places
	get_UniqueBinFileIdentifier
	MPI_summary
	new_cut_times
	sample_binfile
	stepCounter
Index	22

 ${\tt aggregateEpochs}$

Aggregate Epochs

Description

Aggregate Epochs

Usage

```
aggregateEpochs(
  time_series,
  measure = "AGSA",
  time = "timestamp",
  sample_frequency,
  duration = NA,
  first_epoch_timestamp = NA,
  fun = mean
)
```

Arguments

time_series Data frame to be aggregated.

measure Name of the measure columns to be included.

time Name of the time column.

sample_frequency

Measurement frequency of data.

aggregateEvents 3

```
duration Time duration to aggregate in each epoch.

first_epoch_timestamp

Time to start the first epoch, defaults to first record.

fun Function to apply on aggregation, defaults to mean.
```

Details

Wrapper function that calls aggregatePeriods for epochs (duration of fixed length).

Value

Data frame of aggregated epochs.

Examples

```
timestamp <- c(</pre>
  1619424004, 1619424005, 1619424006, 1619424007,
  1619424008, 1619424009, 1619424010, 1619424011,
  1619424012, 1619424013, 1619424014, 1619424015
)
value <- c(</pre>
  0.729614366, 1.729115871, 0.804973546, 2.510181118,
  2.23764038, 0.613203747, 0.681953275, 0.089566943,
  0.021042388, 2.4780338, 2.437488989, 2.632635727
)
data <- data.frame(timestamp, value)</pre>
aggregated <- aggregateEpochs(data,</pre>
  duration = 5,
  measure = "value",
  sample_frequency = 1,
  first_epoch_timestamp = 1619424005,
  time = "timestamp"
)
```

aggregate Events

Aggregate Events

Description

Aggregate Events

```
aggregateEvents(
  time_series,
  measure = "AGSA",
  time = "timestamp",
  sample_frequency,
  events = NA,
```

4 aggregateEvents

```
start_time = "start",
end_time = "end",
fun = mean
)
```

Arguments

time_series Data frame to be aggregated.

measure Name of the measure columns to be included.

time Name of the time column.

sample_frequency

Measurement frequency of data.

events Data frame containing the start and end index of each event.

start_time Name of the column in events containing the start index of the events.

Name of the column in events containing the end index of the events.

fun Function to apply on aggregation, defaults to mean.

Details

Wrapper function that calls aggregatePeriods for events (duration of variable length).

Value

Data frame of aggregated events.

```
timestamp <- c(</pre>
  1619424004, 1619424005, 1619424006, 1619424007,
  1619424008, 1619424009, 1619424010, 1619424011,
  1619424012, 1619424013, 1619424014, 1619424015
)
value <- c(</pre>
  0.729614366, 1.729115871, 0.804973546, 2.510181118,
  2.23764038, 0.613203747, 0.681953275, 0.089566943,
  0.021042388, 2.4780338, 2.437488989, 2.632635727
)
data <- data.frame(timestamp, value)</pre>
event_start <- c(1, 5, 10)
event_end <- c(4, 9, 12)
aggregated_events <- aggregateEvents(data,</pre>
  events = data.frame(start = event_start, end = event_end),
  measure = "value",
  time = "timestamp".
  start_time = "start",
  end_time = "end",
  sample_frequency = 1,
  fun = sum
)
```

aggregatePeriods 5

aggregatePeriods Aggregate Periods

Description

Generalised aggregation function generates distinct epochs or events outputs based on the initial parameters provided.

Usage

```
aggregatePeriods(
  time_series,
  measure = "AGSA",
  time = "timestamp",
  sample_frequency,
  duration = NA,
  first_epoch_timestamp = NA,
  events = NA,
  start_time = "start",
  end_time = "end",
  fun = mean
)
```

Arguments

time_series Data frame to be aggregated.

measure Name of the measure columns to be included.

time Name of the time column.

sample_frequency

Frequency of data.

duration Time duration to aggregate in each epoch.

 ${\tt first_epoch_timestamp}$

Time to start the first epoch, defaults to first record.

events Data frame containing the start and end index of each event.

start_time Name of the column in events containing the start index of the events.

end_time Name of the column in events containing the end index of the events.

fun Function to apply on aggregation, defaults to mean.

Value

Data frame of aggregated epochs or events.

6 apply_calibration

apply_AGSA

Apply Absolute Gravity-Subtracted Acceleration (AGSA)

Description

Apply Absolute Gravity-Subtracted Acceleration (AGSA)

Usage

```
apply_AGSA(x)
```

Arguments

Χ

Calibrated acceleration data frame.

Value

Measure column appended to end of calibrated data frame.

Examples

```
x \leftarrow c(0.14268, 0.21757, -0.529, -0.36383)

y \leftarrow c(0.26385, 0.27295, 0.29220, 0.79510)

z \leftarrow c(0.27722, 0.20296, 0.35092, 0.27459)

calibrated \leftarrow data.frame(x, y, z)

calibrated \leftarrow apply_AGSA(calibrated)
```

apply_calibration

Apply Calibration

Description

Apply Calibration

Usage

```
apply_calibration(sensor_data, cal_params, measurement_device, use_temp = TRUE)
```

Arguments

```
sensor_data Raw sensor-level data from a bin file in the form (x, y, z, light, button, temp).

cal_params Calibration parameters for acceleration and light from MPI.

measurement_device
```

Name of the measurement device used "GENEActiv 1.1" or "GENEActiv 1.2".

use_temp Allows auto-calibration to be run with and without temperature compensation.

apply_degrees 7

Details

Function to apply calibration to sensor-level data from a bin file.

Value

Data frame of calibrated sensor data.

Examples

```
cal_params <- list(</pre>
  scale = c(1.015, 1.017, 1.027),
  offset = c(0.00128, 0.0383, 0.0138),
  temperatureoffset = c(0, 0, 0),
  error = NA,
  lightdenominator = 48,
  lightnumerator = 911
)
rawdata <- data.frame(</pre>
  time = c(rep(1726650857, 5)),
  x = c(0.2421875, 0.24609375, 0.25390625, 0.24609375, 0.23828125),
  y = c(-0.04296875, -0.04687500, -0.03515625, -0.03125000, -0.04296875),
  z = c(-0.9453125, -0.9453125, -0.9531250, -0.9531250, -0.9609375),
  light = c(rep(22, 5)),
  button = c(rep(0, 5)),
  temp = c(rep(21.3, 5)),
  volts = c(rep(4.0896, 5))
)
calibrated <- apply_calibration(rawdata, cal_params, "GENEActiv 1.1")</pre>
```

apply_degrees

Apply Rotation (degrees)

Description

```
Apply Rotation (degrees)
```

Usage

```
apply_degrees(x)
```

Arguments

Х

Calibrated acceleration data frame.

Value

Measure column appended to end of calibrated data frame.

8 apply_radians

Examples

```
x \leftarrow c(0.14268, 0.21757, -0.529, -0.36383) y \leftarrow c(0.26385, 0.27295, 0.29220, 0.79510) z \leftarrow c(0.27722, 0.20296, 0.35092, 0.27459) calibrated \leftarrow data.frame(x, y, z) calibrated \leftarrow apply_degrees(calibrated)
```

apply_ENMO

Apply Euclidean Norm Minus One (ENMO)

Description

Apply Euclidean Norm Minus One (ENMO)

Usage

```
apply_ENMO(x)
```

Arguments

x

Calibrated acceleration data frame.

Value

Measure column appended to end of calibrated data frame.

Examples

```
x \leftarrow c(0.14268, 0.21757, -0.529, -0.36383)

y \leftarrow c(0.26385, 0.27295, 0.29220, 0.79510)

z \leftarrow c(0.27722, 0.20296, 0.35092, 0.27459)

calibrated \leftarrow data.frame(x, y, z)

calibrated \leftarrow apply_ENMO(calibrated)
```

apply_radians

Apply Rotation (radians)

Description

Apply Rotation (radians)

```
apply_radians(x)
```

apply_updown 9

Arguments

x Calibrated acceleration data frame.

Value

Measure column appended to end of calibrated data frame.

Examples

```
x \leftarrow c(0.14268, 0.21757, -0.529, -0.36383)

y \leftarrow c(0.26385, 0.27295, 0.29220, 0.79510)

z \leftarrow c(0.27722, 0.20296, 0.35092, 0.27459)

calibrated \leftarrow data.frame(x, y, z)

calibrated \leftarrow apply_radians(calibrated)
```

apply_updown

Apply Elevation (updown)

Description

Apply Elevation (updown)

Usage

```
apply_updown(x)
```

Arguments

Χ

Calibrated acceleration data frame.

Value

Measure column appended to end of calibrated data frame.

```
x \leftarrow c(0.14268, 0.21757, -0.529, -0.36383)

y \leftarrow c(0.26385, 0.27295, 0.29220, 0.79510)

z \leftarrow c(0.27722, 0.20296, 0.35092, 0.27459)

calibrated \leftarrow data.frame(x, y, z)

calibrated \leftarrow apply_updown(calibrated)
```

10 calc_autocalparams

binfile_summary

Bin File Summary

Description

Bin File Summary

Usage

```
binfile_summary(input, recursive = TRUE)
```

Arguments

input

Bin file path.

recursive

TRUE applies the operation to all nested elements.

Details

Wrapper function that calls create_summary for bin files only.

Value

Data frame of bin file or MPI summary.

calc_autocalparams

Calculate Auto-calibration Parameters

Description

Function to calculate auto-calibration parameters from known still points from a bin file that create a unitary sphere.

```
calc_autocalparams(
  binfile,
  binfile_path,
  output_folder,
  sphere_points,
  use_temp = TRUE,
  spherecrit = 0.3,
  maxiter = 500,
  tol = 1e-13
)
```

createEventMapping 11

Arguments

binfile Text lines read from an open connection to a bin file. Path to the bin file to be processed. binfile_path output_folder Path to the folder containing GENEAcore run outputs and Measurement Period Information (MPI) files. List of points that populate a unitary sphere and their associated temperature in sphere_points the form (x,y,z,temp). Allows auto-calibration to be run with and without temperature compensation. use_temp The minimum required acceleration value for each axis in both directions for spherecrit auto-calibration to be reliable. maxiter The maximum number of sphere fit iterations attempted during auto-calibration.

The limit of incremental sphere fit improvements before auto-calibration is con-

sidered complete.

Value

tol

List of auto-calibration parameters within the measurement period information (MPI).

Examples

```
binfile_path <- system.file("inst/extdata/10Hz_calibration_file.bin", package = "GENEAcore")
output_folder <- "."
con <- file(binfile_path, "r")
binfile <- readLines(con, skipNul = TRUE)
close(con)
MPI <- create_MPI(binfile, binfile_path, output_folder)
nonmovement_list <- detect_nonmovement(binfile, binfile_path, output_folder)
MPI <- calc_autocalparams(binfile, binfile_path, output_folder, nonmovement_list$sphere_points)</pre>
```

createEventMapping

Create Event Mapping

Description

Create Event Mapping

Usage

```
createEventMapping(events, start_time, end_time, max_row_number)
```

Arguments

events Data frame containing the start and end index of each event.

Start_time Name of the column in events containing the start index of the events.

Name of the column in events containing the end index of the events.

max_row_number Number of rows in the source vector the events describe

12 create_MPI

Details

Enumerate a vector to identify which event each measurement belongs to.

Value

List of mapped events.

Examples

```
events <- data.frame(
   "start" = c(1, 5, 10, 15),
   "end" = c(4, 9, 14, 19)
)
time_series <- rnorm(25)
period_number <- createEventMapping(events, "start", "end", length(time_series))</pre>
```

create_MPI

Create Measurement Period Information

Description

Create Measurement Period Information

Usage

```
create_MPI(binfile, binfile_path, output_folder, out_rds = TRUE)
```

Arguments

binfile Text lines read from an open connection to a bin file.

binfile_path Path to the bin file to be processed.

output_folder Folder to write MPI file in.

out_rds Allows RDS output to be saved during MPI creation.

Details

Function to create measurement period information (MPI) from a GENEActiv bin file

Value

List of measurement period information.

```
binfile_path <- system.file("inst/extdata/20Hz_file.bin", package = "GENEAcore")
con <- file(binfile_path, "r")
binfile <- readLines(con, skipNul = TRUE)
close(con)
MPI <- create_MPI(binfile)</pre>
```

create_summary 13

create_summary

Create Summary

Description

Create Summary

Usage

```
create_summary(input, path_type, recursive)
```

Arguments

input Input type of either a bin file path, MPI path or an MPI object.

path_type The file type within the folder to create summary for.
recursive TRUE applies the operation to all nested elements.

Details

Function to create a summary of key information of a bin file or MPI path.

Value

Data frame of bin file or MPI summary.

detect_nonmovement

Detect Non-movement

Description

Detect Non-movement

```
detect_nonmovement(
  binfile,
  binfile_path,
  output_folder,
  still_seconds = 120,
  sd_threshold = 0.011,
  temp_seconds = 240,
  border_seconds = 300,
  long_still_seconds = 120 * 60,
  delta_temp_threshold = -0.7,
  posture_changes_max = 2,
  non_move_duration_max = 12 * 60 * 60
)
```

14 detect_nonmovement

Arguments

binfile Text lines read from an open connection to a bin file. binfile_path Path to the bin file to be processed. output_folder Path to the folder containing GENEAcore run outputs and Measurement Period Information (MPI) files. still_seconds The number of seconds included in the rolling standard deviation calculation for stillness to determine the shortest detection duration. sd_threshold The threshold applied to the rolling standard deviation of combined acceleration to determine stillness. The number of seconds included in the rolling temperature difference calculatemp_seconds tion or non-wear which also determines the shortest detection duration. border_seconds The minimum number of seconds of a still event to be classed as a new bout.

border_seconds The minimum number of seconds of a still event to be classed as a new bout. long_still_seconds

The minimum number of seconds of a still bout that is classed as non-wear.

delta_temp_threshold

The threshold applied to the rolling temperature difference to determine nonwear.

posture_changes_max

The maximum number of adjoining events that make up a single bout.

non_move_duration_max

The maximum number of seconds of a still bout to be classed as non-movement. Still bouts with a duration longer than this number is automatically classed as non-wear.

Details

Function to detect non-movement bouts, non-wear events and points in a 1Hz downsampled bin file.

Value

List of sphere points, non-movement bouts and non-wear events.

```
binfile_path <- system.file("inst/extdata/20Hz_file.bin", package = "GENEAcore")
con <- file(binfile_path, "r")
binfile <- readLines(con, skipNul = TRUE)
close(con)
output_folder <- "."
MPI <- create_MPI(binfile, binfile_path, output_folder)
MPI <- detect_nonmovement(binfile, binfile_path, output_folder)</pre>
```

15 detect_transitions

detect_transitions

Detect Transitions

Description

Detect Transitions

Usage

```
detect_transitions(
  binfile,
 binfile_path,
 output_folder,
 minimum_event_duration = 3,
 x_{cpt_penalty} = 20,
 y_cpt_penalty = 30,
  z_{cpt_penalty} = 20,
 CutTime24Hr = "15:00"
)
```

Arguments

binfile

binfile_path Path to the bin file to be processed. output_folder Path to the folder containing GENEAcore run outputs and Measurement Period Information (MPI) files. minimum_event_duration The minimum interval between changepoint transitions. The manual penalty value applied in the PELT changepoint algorithm for the x x_cpt_penalty axis, see cpt.var. The manual penalty value applied in the PELT changepoint algorithm for the y y_cpt_penalty axis, see cpt.var.

Text lines read from an open connection to a bin file.

The manual penalty value applied in the PELT changepoint algorithm for the z z_cpt_penalty

axis, see cpt.var.

CutTime24Hr Time in 24h to split the days up by.

Details

Function to detect mean and variance changepoints in 1Hz acceleration data from a bin file.

Value

List of time, index and day number of each transition within the measurement period information.

16 geneacore

Examples

```
binfile_path <- system.file("inst/extdata/20Hz_file.bin", package = "GENEAcore")
con <- file(binfile_path, "r")
binfile <- readLines(con, skipNul = TRUE)
close(con)
output_folder <- "."
MPI <- create_MPI(binfile, binfile_path, output_folder)
MPI <- detect_transitions(binfile, binfile_path, output_folder)</pre>
```

geneacore

Main GENEAcore Function

Description

Main GENEAcore Function

Usage

```
geneacore(
  data_folder = data_folder,
  CutTime24Hr = "15:00",
  output_epochs = TRUE,
  epoch_duration = 1,
  output_events = TRUE,
  output_steps = FALSE,
  output_csv = FALSE,
  timer = FALSE
)
```

Arguments

data_folder Folder that contains raw data bin files to process.

CutTime24Hr Time in 24h to split the days up by.

output_epochs Create epoch outputs.

epoch_duration Specify duration of fixed epochs.

output_events Create event outputs.

output_steps Include step counts and stepping rate outputs.

output_csv Allows CSV output to be saved during epoch and event processing.

timer Print elapsed times of each process.

Value

RDS and CSV of Measurement Period Information, Epoch measures and Event measures.

get_decimal_places 17

get_decimal_places

Get Decimal Places

Description

Get Decimal Places

Usage

```
get_decimal_places(column)
```

Arguments

column

Aggregated data frame column.

Details

Function to determine the number of decimal places based on column name.

Value

Decimal place integer.

Examples

```
epochs_df <- data.frame(
   "x.mean" = c(0.1111, 0.1222, 0.1333, 0.1444),
   "y.mean" = c(0.2111, 0.2222, 0.2333, 0.2444),
   "light.mean" = c(1.25, 1.73, 1.99, 2.02)
)
dp <- get_decimal_places(epochs_df[1])</pre>
```

```
get_UniqueBinFileIdentifier
```

Generate Unique Bin File Identifier

Description

Generate Unique Bin File Identifier

Usage

```
get_UniqueBinFileIdentifier(binfile)
```

Arguments

binfile

Text lines read from an open connection to a bin file.

MPI_summary

Details

Function to create a UniqueBinFileIdentifier from a GENEActiv bin file.

Value

Single string identifier.

Examples

```
binfile_path <- system.file("inst/extdata/20Hz_file.bin", package = "GENEAcore")
con <- file(binfile_path, "r")
binfile <- readLines(con, skipNul = TRUE)
close(con)
UniqueBinFileIdentifier <- get_UniqueBinFileIdentifier(binfile)</pre>
```

MPI_summary

MPI Summary

Description

MPI Summary

Usage

```
MPI_summary(input, recursive = TRUE)
```

Arguments

input MPI path.

recursive TRUE applies the operation to all nested elements.

Details

Wrapper function that calls create_summary for MPI only.

Value

Data frame of MPI summary.

new_cut_times 19

new_cut_times

New Cut Times

Description

New Cut Times

Usage

```
new_cut_times(df)
```

Arguments

df

Cut Times data frame.

Details

Add the timestamps, indexes and day numbers of the cut times and their ends.

Value

Data frame with added cut times.

Examples

```
CutTimes_df <- data.frame(
   time = c(1731421000, 1731421100, 1731421362, 1731421480, 1731421525),
   index = c(56, 1, 230, 1, 400), day = c(1, 2, 2, 3, 3)
)
CutTimes_df <- new_cut_times(CutTimes_df)</pre>
```

sample_binfile

Sample Bin File

Description

Sample Bin File

```
sample_binfile(
  binfile,
  binfile_path,
  output_folder,
  start_time = NULL,
  end_time = NULL,
  downsample = TRUE,
  output_csv = FALSE
)
```

20 stepCounter

Arguments

binfile	Text lines read from an open connection to a bin file.
binfile_path	Path to the bin file to be processed.
output_folder	Path to the folder containing GENEAcore run outputs and Measurement Period Information (MPI) files.
start_time	Time stamp to start the read from, default start of file.
end_time	Time stamp to end the read from, default end of file.
downsample	Logical to determine whether to downsample the file, default TRUE.
output_csv	Allow outputs of bin file sampling to be saved as CSV.

Details

Function to read in a GENEActiv bin file with option to downsample to 1Hz.

Value

List of 1Hz downsampled data or raw sample data.

Examples

```
binfile_path <- system.file("inst/extdata/20Hz_file.bin", package = "GENEAcore")
output_folder <- "."
con <- file(binfile_path, "r")
binfile <- readLines(con, skipNul = TRUE)
close(con)
measurements <- sample_binfile(binfile, binfile_path, output_folder)</pre>
```

stepCounter

Step Counter

Description

Function to calculate the number and variance of the steps in the data.

```
stepCounter(
  StepData,
  samplefreq = 100,
  filterorder = 2,
  boundaries = c(0.5, 5),
  Rp = 3,
  hysteresis = 0.05,
  fun = c("GENEAcount", "mean", "sd")
)
```

stepCounter 21

Arguments

StepData	The data to use for calculating the steps. This should either an AccData object or a vector.
samplefreq	The sampling frequency of the data, in hertz, when calculating the step number (default 100).
filterorder	single integer, order of the Chebyshev bandpass filter, passed to argument n of cheby1.
boundaries	length 2 numeric vector specifying lower and upper bounds of Chebychev filter (default c(0.5, 5) Hz), passed to argument W of butter or cheby1.
Rp	the decibel level that the cheby filter takes, see cheby1.
hysteresis	The hysteresis applied after zero crossing. (default 100mg)
fun	character vector naming functions by which to summarize steps. "count" is an internally implemented summarizing function that returns step count.

Value

Returns a vector with length fun.

```
d1 <- sin(seq(0.1, 100, 0.1))/2 + rnorm(1000)/10 + 1
Steps4 = stepCounter(d1)
length(Steps4)
mean(Steps4)
sd(Steps4)
plot(Steps4)</pre>
```

Index

```
{\it aggregateEpochs}, {\it 2}
aggregateEvents, 3
aggregatePeriods, 5
apply_AGSA, 6
apply_calibration, 6
apply_degrees, 7
apply_ENMO, 8
{\tt apply\_radians}, {\tt 8}
apply_updown, 9
\verb|binfile_summary|, 10
butter, 21
calc_autocalparams, 10
cheby1, 21
cpt.var, 15
create_MPI, 12
create_summary, 13
{\tt createEventMapping}, 11
detect_nonmovement, 13
detect_transitions, 15
geneacore, 16
get_decimal_places, 17
get_UniqueBinFileIdentifier, 17
MPI_summary, 18
new_cut_times, 19
sample_binfile, 19
stepCounter, 20
```