LINEAR ALGEBRA (MA20105)

Problems Sheet-2:

Notation: \mathbb{R} will always denote the field real numbers and $\mathbb{R}^n := \mathbb{R} \times \cdots \times \mathbb{R}$ (n times).

Problems related to L.I., L.D., Bases and Dimension:

- 1. Prove that if two vectors are linearly dependent, then one of them is scalar multiple of the other.
- 2. Find three vectors in \mathbb{R}^3 which are linearly dependent, and are such that any two of them are linearly independent.
- 3. Let V be the vector space of all 2 matrices over the field \mathbb{R} . Let W_1 be the set of matrices of the form

$$\begin{bmatrix} a & -a \\ c & d, \end{bmatrix}$$

and let W_2 be the set of matrices of the form

$$\begin{bmatrix} a & b \\ -a & d \end{bmatrix}.$$

- (i) Prove that W_1 and W_2 are subspaces of V.
- (ii) Find the dimensions of W_1 , W_2 $W_1 + W_2$, and $W_1 \cap W_2$.
- 4. Show that the vectors $\alpha_1 = (1,0,-1)$, $\alpha_2 = (1,2,1)$ and $\alpha_3 = (0,-3,2)$ form a basis for \mathbb{R}^3 . Express each of the standdard basis vectors as linear combinations of α_1 , α_2 and α_3 .