Чаевые [medium/hard]

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Костя решил доставлять обеды сотрудникам на удаленке. Всего есть n сотрудников, i-й из которых обедает в момент времени a_i , и на доставку обеда ему нужно b_i минут (затем Костя мгновенно возвращается в офис и готов доставлять следующий обед). Если обед доставлен сотруднику за T минут до планируемого обеда, Костя получает T монет в качестве чаевых. И, наоборот, если обед приезжает через T минут после планируемого времени обеда, Косте приходит штраф в размере T монет. Костя не может начать развозить заказы до момента времени 0.

От вас требуется составить такой план доставки обедов, чтобы Костя получил максимальное количество монет. Затем требуется q раз обновить план при меняющемся пожелании какого-либо из сотрудников (обновленных числах a_i, b_i).

Формат входных данных

В первой строке через пробел заданы два числа n и q $(1 \le n, q \le 20\,000)$ — количество сотрудников и количество изменений плана.

В следующих n строках вводится пара чисел a_i, b_i ($0 \le a_i \le 100\,000, 1 \le b_i \le 100\,000$) — описание доставки для i-го сотрудника.

В следующих q строках вводятся описания запросов, состоящие из трех чисел i, A, B $(1 \le i \le n, 0 \le A \le 100\,000, 1 \le B \le 100\,000)$ — индекс сотрудника, данные для которого меняются, и новые значения a_i, b_i .

Формат выходных данных

Выведите q+1 строку — максимальное количество монет, которые Костя может заработать для каждого плана доставки. Обратите внимание, что возможна ситуация, когда Костя заработает отрицательное количество монет.

Пример

стандартный ввод	стандартный вывод
2 1	2
2 1	-1
4 2	
1 3 4	

Замечание

В примере из условия в комании работает 2 сотрудника. Первый начинает обедать в момент времени $a_1=2$, а второй – в $a_2=4$. Костя сначала за 1 единицу времени успеет отвезти обед первого сотрудника, а затем за еще 2 единицы времени доставит обед второму сотруднику. Обоим сотрудникам обед будет доставлен на минуту раньше ожидаемого времени, за что Костя получит 1+1=2 монеты чаевыми.

Когда первый сотрудник изменит параметры своего обеда на $a_1 = 3, b_1 = 4$, Костя физически не может успеть развезти первый обед вовремя. Оптимальным вариантом будет сначала отвезти обед второго сотрудника, получить за него чаевые, и затем отвезти обед первого сотрудника, получив штраф. Общий заработок составит 2-3=-1 монету.