Lovely Professional University

Phagwara, Panjab

School of Computer Applications

Project Topic

Prediction of Loan Approval by using Machine Learning with Detailed Analysis, Graphs/Figures, and Reports

Submitted To:- Sumit Jaswal (30272)

Anurag Mittal(12209102) Sukhdeep Kaur(12209123) Ekhlakh Ahmad(12209166)

```
import pandas as pd
df2 = pd.read_csv("ProjectPy2.csv")
df2.head(50)
```

#no of missing values df2.isnull().sum() Loan_ID 0 Gender 13 Married 3 Dependents 15 Education 0 Self_Employed 32 ApplicantIncome 0 CoapplicantIncome LoanAmount 22 Loan_Amount_Term 14 Credit_History 50 0 Property_Area Loan_Status 0

```
#type of data
type(df2)
```

pandas.core.frame.DataFrame

```
# no of rwos and coloums
df2.shape
```

(614, 13)

dtype: int64

statistical measurment df2.describe()

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

drop a missing values df2 = df2.dropna()

df2.isnull().sum()	
Loan_ID	0
Gender	0
Married	0
Dependents	0
Education	0
Self_Employed	0
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	0
Loan_Amount_Term	0
Credit_History	0
Property_Area	0
Loan_Status	0
dtype: int64	

```
In [9]:
         df2['Dependents'].value_counts()
               274
 Out[9]:
                85
                80
         1
         3+
                41
         Name: Dependents, dtype: int64
In [10]: df2 = df2.replace(to_replace='3+' , value = 4)
In [11]: df2['Dependents'].value_counts()
              274
Out[11]:
               85
         1
               80
               41
         Name: Dependents, dtype: int64
In [12]: df2.replace({"Loan_Status":{'N':0 ,'Y':1}},inplace=True)
  In [14]: import seaborn as sns
           sns.countplot(x='Education',hue='Loan_Status',data=df2)
           <Axes: xlabel='Education', ylabel='count'>
  Out[14]:
```



```
In [15]: sns.countplot(x="Married",hue="Loan_Status",data=df2)
```


[16]: sns.countplot(x="Gender",hue="Loan_Status",data=df2)

:[16]: <Axes: xlabel='Gender', ylabel='count'>

:

In [18]:	<pre># convert categrical colums to numerical values df2.replace({"Married":{'Yes':1,'No':0},"Gender":{'Male':1,'Female':0}},inplace=True)</pre>													
In [19]:	df2	2.head(10)											
Out[19]:		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_
	1	LP001003	1	1	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	
	2	LP001005	1	1	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	
	3	LP001006	1	1	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	
	4	LP001008	1	0	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	

```
In [20]: df2.replace({"Self_Employed":{'No':0,'Yes':1}},inplace=True)
In [21]: df2.head(20)
Out[21]:
            Loan_ID Gender Married Dependents Education Self_Employed Applicantincome Coapplicantincome LoanAmount Loan_Amount_Term Credit_History Property_Area Loan_
         1 LP001003
                                          1 Graduate
                                                                          4583
                                                                                         1508.0
                                                                                                     128.0
                                                                                                                    360.0
                                                                                                                                  1.0
                                                                                                                                             Rural
         2 LP001005
                                          0 Graduate
                                                                          3000
                                                                                           0.0
                                                                                                      66.0
                                                                                                                    360.0
                                                                                                                                  1.0
                                                                                                                                            Urban
                                                 Not
         3 LP001006
                                                                                         2358.0
                                                                          2583
                                                                                                     120.0
                                                                                                                    360.0
                                                                                                                                  1.0
                                                                                                                                            Urban
                                             Graduate
         4 LP001008
                                          0 Graduate
                                                                          6000
                                                                                          0.0
                                                                                                     141.0
                                                                                                                    360.0
                                                                                                                                  1.0
                                                                                                                                            Urban
         5 LP001011
                                          2 Graduate
                                                                          5417
                                                                                         4196.0
                                                                                                     267.0
                                                                                                                    360.0
                                                                                                                                  1.0
                                                                                                                                            Urban
                                                 Not
          6 LP001013
                                                                          2333
                                                                                         1516.0
                                                                                                      95.0
                                                                                                                    360.0
                                                                                                                                  1.0
                                                                                                                                            Urban
                                             Graduate
In [22]: df2.replace({"Property_Area":{'Rural':0,'Urban':2,'Semiurban':1}},inplace=True)
In [23]: df2.replace({"Education":{'Graduate':1,'Not Graduate':0}},inplace=True)
In [24]: df2.head(10)
Out[24]:
            Loan_ID Gender Married Dependents Education Self_Employed Applicantincome Coapplicantincome LoanAmount Loan_Amount_Term Credit_History Property_Area Loan_
         1 LP001003
                                                               0
                                                                          4583
                                                                                         1508.0
                                                                                                     128.0
                                                                                                                    360.0
                                                                                                                                  1.0
                                                                                                                                               0
         2 LP001005
                                                                                                                                  1.0
                                                                          3000
                                                                                           0.0
                                                                                                     66.0
                                                                                                                    360.0
         3 LP001006
                                          0
                                                   0
                                                               0
                                                                          2583
                                                                                         2358.0
                                                                                                     120.0
                                                                                                                    360.0
                                                                                                                                  1.0
                                                                                                                                               2
         4 LP001008
                                                                          6000
                                                                                           0.0
                                                                                                     141.0
                                                                                                                    360.0
                                                                                                                                  1.0
         5 LP001011
                                                                          5417
                                                                                         4196.0
                                                                                                     267.0
                                                                                                                    360.0
                                                                                                                                  1.0
 In [25]: # Separating the data and lable
                    X = df2.drop(columns=['Loan_ID', 'Loan_Status'],axis=1)
                    Y = df2['Loan_Status']
 In [26]: print(X)
                    print(Y)
```

	Gender	Married Dep	endents	Education	Self_Employ	ed Applicant	Income	١
1	1	1	1	1		0	4583	
2	1	1	0	1		1	3000	
3	1	1	0	0		0	2583	
4	1	0	0	1		0	6000	
5	1	1	2	1		1	5417	
609	0	0	0	1		0	2900	
610	1	1	4	1		0	4106	
611	1	1	1	1		0	8072	
612	1	1	2	1		0	7583	
613	0	0	0	1		1	4583	
	Coappl:	icantIncome	LoanAmou	nt Loan_A	mount_Term (Credit_History	/ \	
1		1508.0	128	.0	360.0	1.0	3	
2		0.0	66	.0	360.0	1.0	3	
3		2358.0	120	.0	360.0	1.0	3	
4		0.0	141	.0	360.0	1.0	3	
5		4196.0	267	.0	360.0	1.0	9	
609		0.0	71	.0	360.0	1.0	9	
610		0.0	40	.0	180.0	1.0	9	
611		240.0	253	.0	360.0	1.0	9	
612		0.0	187	.0	360.0	1.0	9	
613		0.0	133	.0	360.0	0.0	9	

```
Property_Area
   1
   2
                       2
   3
                       2
                       2
   4
   5
                       2
   609
                       0
   610
                       0
   611
                       2
                       2
   612
   613
                       1
   [480 rows x 11 columns]
   1
   2
           1
   3
   4
           1
   609
           1
   610
           1
   611
           1
   612
           1
   613
           0
   Name: Loan_Status, Length: 480, dtype: int64
 name: coan_scacas; congent too; acypet ancoa
: # Train test split
  from sklearn.model_selection import train_test_split
 X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.1,stratify=Y,random_state=2)
 print(X.shape, X_train.shape, X_test.shape)
  (480, 11) (432, 11) (48, 11)
 #Supprot Vector Machine
  from sklearn import svm
  from sklearn.metrics import accuracy_score
  classifier = svm.SVC(kernel = 'linear')
 classifier.fit(X train, Y train)
            SVC
SVC(kernel='linear')
```

```
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
```

```
print("Accuracy on data",training_data_accuracy)
```

Accuracy on data 0.7986111111111112

```
X_test_prediction = classifier.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
```

```
print("Accuracy on test data",test_data_accuracy)
```

Accuracy on test data 0.833333333333333333