Complementaria Moderna Taller 7

Sergio Montoya Ramírez

April 28, 2023

Contents

	r regumas	rage 2
1.1	Átomo de Hidrógeno	2
1.2	2 Spin y Efectos Magnéticos	3
Chapter 2	Contexto	Page 5
Chapter 3	A gradecimientos	Page 6

Chapter 1

Preguntas

1.1 Átomo de Hidrógeno

Question 1

Considere un átomo muónico, el cual corresponde a un núcleo con un protón y un muón girando a su alrededor. Si la carga del muón es $q_{\mu}=-e$ y es 207 veces más pesado que un electrón. Calcule:

- El radio de Böhr
- La energía para el n-ésimo estado
- \bullet Para n=1, cómo se compara esta energía con la obtenida para un átomo de Hidrógeno?

Solution:

Question 2

Un átomo de Hidrógeno se encuentra en el estado

$$\psi_{2,1,-1} = Nre^{-\frac{r}{a_0}}Y_{1,-1}(\theta,\phi).$$

- Encuentre la constante de normalización
- Cuál es la probabilidad de encontrar el átomo en $r=a_0,\;\theta=\frac{\pi}{4}$ y $\phi=\frac{\pi}{3}$?

Solution:

Question 3

En t=0 se encuentra que la función de onda para cierto átomo de Hidrógeno es:

$$\psi(t=0) = \frac{1}{\sqrt{10}} \left[2\psi_{100} + \psi_{210} + \sqrt{2}\psi_{211} + \sqrt{3}\psi_{21-1} \right].$$

- Cual es el valor esperado del Hamiltoniano?
- Cual es la probabilidad de encontrar el atomo con $\ell=1, m_\ell=1$?
- Cuál es la probabilidad de encontrar el átomo a 10^{-10} cm del protón?
- Calcule $\psi(t)$

Solution:

Question 4

Un atomo de hidrogeno se encuentra en el estado

$$\psi(t=0) = \frac{1}{2} \left(\psi_{211} + \psi_{21-1} \right).$$

- Encuentre una expresión para $\psi(t)$
- Encuentre el valor esperado de la energia potencial. De el resultado analitico y tambien el numerico en electronvoltios.

Solution:

Question 5

Desde las expresiones vistas en la complementaria para las soluciones radial y angular a la ecuación de Schrödinger:

- Construya la función de onda ψ_{433}
- ullet Encuentre el valor esperado de r para este estado

Solution:

1.2 Spin y Efectos Magnéticos

Question 6

Los estados de spin para un electron libre, en una base donde \hat{S}_z es diagonal, son $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ con valores propios $\pm \frac{\hbar}{2}$ respectivamente. Usando esta base, encuentre una función propia de \hat{S}_y que posea valor propio $-\frac{\hbar}{2}$. Recuerde que $\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

Solution:

Question 7

Construya las matrices de spin para s = 1.

Solution:

Question 8

Los quarks tienen spin $\frac{1}{2}$. Tres quarks ligados juntos forman un baryon. Un quark y un antiquark ligados juntos forman un mesón. Asumir que los quarks están en el estado base (momento angular orbital es 0)

- Cuales son los posibles valores de spin para los baryones?
- Cuales son los posibles valores de spin para los mesones?

Solution:

Question 9

Un dia que usted ésta en un ascensor, una persona misteriosa le entrega el siguiente spinor:

$$|\chi\rangle = A \begin{pmatrix} 3\\4i \end{pmatrix}.$$

- Normalice el Ket.
- Calcule los valores esperados de las tres matrices de Pauli sobre este estado.
- \bullet Si usted hace una medición de S_x que valores espera encontrar y con que probabilidades?

Solution:

Question 10

Un electron está en reposo en un campo magnético oscilante $\vec{B}=B_0\cos(\omega t)\hat{z}$

- Encuentre la matriz asociada al Hamiltoniano.
- El electron empieza (en t = 0) en el estado de spin arriba con respecto al eje x. Determine el estado para tiempos subsecuentes.
- $\bullet\,$ Encontrar la probabilidad de medir $-\frac{\hbar}{2}$ se se realiza una medición de S_z

Solution:

Chapter 2

Contexto

Chapter 3

Agradecimientos