ETL Implementation For Bicycle Ride Share System Provider

By,

Aditya K Kulthe

MES Institute Of Management And Career Courses, Pune.

Mca:-III Div:-B

Sem :- VI

Roll No :- 1912024

Seat No :- 15284

Date :- 22/09/2022

"If you torture the data long enough, it will confess to anything."

- British Economist Ronald Coase

Project Scope

Due exponential growth in a data now a day it is fuel for company to make data driven business decision. In this project I would like to implement ETL flow for bicycle ride share system provider company to make data driven business decision.

The current condition of the department of bicycle ride sharing systems provider in analyzing and processing its data is as follow:-

- Each information system has its own data.
- The data is in a flat file format (.csv), the data is scattered in each information system, **redundancy in** data is still occurring in the analysis and decision-making.
- The executives of the bicycle ride sharing system provider had to do a recap of data from each information system **for improving the performance** of the company by providing **the accurate and up to date data** to generate **strategic decisions**.

- ✓ The aim of bicycle ride share system provider is to be a significant player in its chosen markets.
- ✓ Their expertise, service and execution skills will differentiate the strategic business unit (SBU) from its peers.
- ✓ The project is required in order to help the decision makers of the company to make an EFFECTIVE DECISION.
- Effective decisions are choices that move an organization closer to an agreed-on set of goals in a timely manner.
- ✓ Effective decision making is important at all organizational levels. Timely Foundation And Feedback Information is needed as part of that effective decision-making. Therefore, we need to make business intelligence available throughout the organization.

Project Workflow

- 1. **Extraction Phase :-** In this phase of project I extracted sensor generated open source bicycle ride share (.csv files) data for five different cities in US like <u>Chicago</u>, <u>New York</u>, <u>New Jersey City</u>, <u>Washington DC</u>, <u>Boston</u>. Data is from year 2017 to 2020 store on AWS S3 bucket to the system for ETL purpose.
- 2. **Transformation Phase :-** In this phase of project I perform all data preprocessing and cleaning operations (**Python panda library**) on all extracted bicycle ride share data. Data preprocessing include handling missing & duplicate data also transforming data in proper format so it is useful for query and analysis purpose.
- **3. Load Phase :-** In this phase of project I load all transformed data in relational database system(MySQL). The data which load into relational database system is useful for company to make data driven business decision using KPI's like

KPI – Key Performance Indicators

Popular times of travel:-

Most common month

KPI – Key Performance Indicators

Popular station:

Most common start station

KPI – Key Performance Indicators

Trip duration:

Popular trip duration.

User info:-

- Counts of each user type
- Counts of each gender

Use Case Diagram

Business Use Case Diagram

Activity Diagram (Extract)

Activity Diagram (Transform)

Activity Diagram (Load)

Design Of Target System

Table Specifications

Table 1
Chicago

Field Name	Data Type
trip_id	int
start_time	datetime
end_time	datetime
bikeid	int
tripduration	time
from_station_id	int
from_staion_name	varchar(20)
to_station_id	int
to_station_name	varchar(20)
usertype	char(20)
gender	char(20)
birthyear	year

Table 2

New York

Field Name	Data Type
tripduration	time
starttime	datetime
stoptime	datetime
start station id	int
start station name	varchar(20)
start station latitude	float
start station longitude	float
end station id	int
end station name	varchar(20)
end station latitude	float
end station longitude	float
bikeid	int
usertype	char(20)
Birth year	year
gender	int

Table 3
Washington DC

Field Name	Data Type
Duration	time
Start date	datetime
End date	datetime
Start station number	int
Start station	char(20)
End station number	int
End station	char(20)
Bike number	varchar(20)
Member Type	char(20)

Table 4
New Jersey City

Field Name	Data Type
tripduration	time
starttime	datetime
stoptime	datetime
start station id	int
start station name	varchar(20)
start station latitude	float
start station longitude	float
end station id	int
end station name	varchar(20)
end station latitude	float
end station longitude	float
bikeid	int
usertype	char(20)
birth year	year
gender	int

Table 5
Boston

Field Name	Data Type
tripduration	time
starttime	datetime
stoptime	datetime
start station id	int
start station name	varchar(20)
start station latitude	float
start station longitude	float
end station id	int
end station name	varchar(20)
end station latitude	float
end station longitude	float
bikeid	int
usertype	char(20)
birth year	year
gender	int

Technology

- Operating System :- Windows 10 Professional
- **RDBMS**:- MySQL
- Language:- Python (Panda library for data ETL purpose)
- **BI Tool**:- Microsoft Power BI for reporting purpose

Power BI Dashboard

Bike Ride Analysis

Boston

Chicago

New Jersey

New York

Washington DC

Year

□ 2017
□ 2018

15M User_Count

Streeter Dr & Grand Ave

Popular_Start_Station

Thursday

Popular_Day_For_Journey

6

Most_Frequent_Tripduration_In_Min

▶ Home

Boston

Chicago

New Jersey

New York

Washington DC

Year

- 2018
- 2019

58M

User-Count

Pershing Square North

Popular-Start-Station

Wednesday

Popular-Day-For-Journey

5

Most-Frequent-Tripduration-In-Min

Home

Boston

Chicago

New Jersey

New York

Washington DC

+

Thank You!

Q & A