L04 Edges, Corners, and Blobs

Slides from Svetlana Lazebnik

Winter in Kraków photographed by Marcin Ryczek

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Origin of Edges

Edges are caused by a variety of factors:

An edge is a place of rapid change in the image intensity function

Derivatives with Convolution

For 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement the above as convolution, what would be the associated filter?

Partial Derivatives of an Image

Which shows changes with respect to x?

Finite Difference Filters

Other approximations of derivative filters

Prewitt

$$M_{\chi} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$M_y = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Sobel

$$M_{\chi} = \begin{array}{c|ccc} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{array}$$

$$M_y = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Image Gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \mathbf{0}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid increase in intensity.

How does this direction relate to the direction of the edge?

The gradient direction is given by $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

The edge strength is given by the gradient magnitude $\|\nabla f\| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial u})^2}$

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Application: Gradient-Domain Image Editing

Goal: solve for pixel values in the target region to match gradients of the source region while keeping background pixels the same

P. Perez, M. Gangnet, A. Blake, Poisson Image Editing, SIGGRAPH 2003

Effects of Noise

Consider a single row or column of the image

Where is the edge?

Source: S. Seitz

12

Solution: Smooth First

To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Derivative Theorem of Convolution

- Differentiation is convolution, and convolution is associative:
- This saves us one operation:

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

14

Derivative of Gaussian Filters

Which one finds horizontal/vertical edges?

Derivative of Gaussian Filters

Are these filters separable?

Recall: Separability of the Gaussian Filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Scale of Gaussian Derivative Filter

Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales"

Review: Smoothing vs. Derivative Filters

Smoothing filters

- Gaussian: remove "high-frequency" components; "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - **One:** constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - **Zero:** no response in constant regions
- High absolute value at points of high contrast

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

original image

norm of the gradient

thresholding

-Threshold

How to turn these thick regions of the gradient into curves?

thresholding

Non-Maximum Suppression

Check if pixel is local maximum along gradient direction, select single max across width of the edge

requires checking interpolated pixels p and r

Problem:
pixels along
this edge
didn't
survive the
thresholding

thinning (non-maximum suppression)

Hysteresis Thresholding

Use a high threshold to start edge curves, and a low threshold to continue them.

27

Hysteresis Thresholding

original image

high threshold (strong edges)

low threshold (weak edges)

hysteresis threshold

Source: L. Fei-Fei

Recap: Canny Edge Detector

- 1. Compute x and y gradient images
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Image Gradients vs. Meaningful Contours

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Data-Driven Edge Detection

P. Dollar and L. Zitnick, Structured forests for fast edge detection, ICCV 2013

Corners

Slides are from Svetlana Lazebnik

Feature Extraction: Corners

Why Extract Features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Why Extract Features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features

Step 2: match features

Why Extract Features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features

Step 2: match features

Step 3: align images

Characteristics of Good Features

Repeatability

 The same feature can be found in several images despite geometric and photometric transformations

Saliency

- Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels

Locality

 A feature occupies a relatively small area of the image; robust to clutter and occlusion

Applications

Feature points are used for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Indexing and database retrieval
- Object recognition

A Hard Feature Matching Problem

NASA Mars Rover images

Answer Below (Look for Tiny Colored Squares ...)

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Corner Detection: Basic Idea

We should easily recognize the point by looking through a small window Shifting a window in *any direction* should give *a large change* in intensity

"flat" region:
no change in all
directions

"edge": no change along the edge direction

"corner":
significant change in
all directions

Change in appearance of window W for the shift [u, v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

Change in appearance of window W for the shift [u, v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

Change in appearance of window W for the shift [u, v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

We want to find out how this function behaves for small shifts

• First-order Taylor approximation for small motions [u, v]:

$$I(x+u, y+v) \approx I(x, y) + I_x u + I_y v$$

• Let's plug this into E(u, v):

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

The quadratic approximation can be written as

$$E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a second moment matrix computed from image derivatives:

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

- The surface E(u, v) is locally approximated by a quadratic form. Let's try to understand its shape.
 - Specifically, in which directions does it have the smallest/greatest change?

$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

E(u, v)

First, consider the axis-aligned case (gradients are either horizontal or vertical)

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

If either *a* or *b* is close to 0, then this is **not** a corner, so look for locations where both are large.

Consider a horizontal "slice" of
$$E(u, v)$$
: $\begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = \text{const}$

This is the equation of an ellipse.

Consider a horizontal "slice" of E(u, v):

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = \text{const}$$

This is the equation of an ellipse.

Diagonalization of M:

$$M = R^{-1} \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Visualization of Second Moment Matrices

Visualization of Second Moment Matrices

Interpreting the Eigenvalues

Classification of image points using eigenvalues of *M*.

53

Corner Response Function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 α : constant (0.04 to 0.06)

The Harris Corner Detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel:

$$M = \begin{bmatrix} \sum_{x,y} w(x,y)I_x^2 & \sum_{x,y} w(x,y)I_xI_y \\ \sum_{x,y} w(x,y)I_xI_y & \sum_{x,y} w(x,y)I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

The Harris Corner Detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*

Compute corner response *R*

The Harris Corner Detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*
- 4. Threshold *R*
- 5. Find local maxima of response function (nonmaximum suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Find points with large corner response: R >threshold

Take only the points of local maxima of *R*

Invariance and Covariance

We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations

- **Invariance:** image is transformed and corner locations do not change
- Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Activity

Is Harris corner detection invariant to

- 1. Affine intensity changes I = a I + b
- 2. Image translation
- 3. Image rotation
- 4. Image scaling

Affine Intensity Change

$$I \quad a I + b$$

?

Only derivatives are used => invariance to intensity shift I + b

Intensity scaling: I a I

Partially invariant to affine intensity change

Image Translation

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image Rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

All points will be classified as edges

Corner location is not covariant to scaling!

Blob Detection

Slides from Svetlana Lazebnik

Blob Detection

Feature Detection with Scale Selection

We want to extract features with characteristic scale that is *covariant* with the image transformation

Blob Detection: Basic idea

To detect blobs, convolve the image with a "blob filter" at multiple scales and look for extrema of filter response in the resulting *scale space*.

Blob Detection: Basic Idea

Find maxima *and minima* of blob filter response in space and scale

Blob Filter

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Recall: Edge Detection

Edge Detection, Take 2

From Edges to Blobs

- Edge = ripple
- Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

Scale Selection

- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:

Scale Normalization

The response of a derivative of Gaussian filter to a perfect step edge decreases as $\boldsymbol{\sigma}$ increases

Scale Normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as $\boldsymbol{\sigma}$ increases
- ullet To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Effect of Scale Normalization

Blob Detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Scale-normalized:
$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Scale Selection

At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?

Scale Selection

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
- To get maximum response, the zeros of the Laplacian have to be aligned with the circle
- The Laplacian is given by (up to scale):

• Therefore, the maximum response occurs at $(x^2+y^2-2\sigma^2)\,e^{-(x^2+y^2)/2\sigma^2}$

Characteristic Scale

We define the characteristic scale of a blob as the scale that produces peak of Laplacian response in the blob center

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> International Journal of Computer Vision **30** (2): pp 77--116.

Scale-Space Blob Detector

1. Convolve image with scale-normalized Laplacian at several scales

Scale-Space Blob Detector: Example

Scale-Space Blob Detector: Example

sigma = 11.9912

Scale-Space Blob Detector

- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space

Scale-Space Blob Detector: Example

Coin Detection Problem.

Assume that we are given an image containing more than one each of quarters, dimes, nickels, and pennies. Also, you are given template images of these coins in a standard 300x300 canvas.

Your task is to detect each coin and tell me the amount of money represented in the image.

Then, tell me what the assumptions are.

Efficient Implementation

Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)

Efficient Implementation

From Feature Detection to Feature Description

- Scaled and rotated versions of the same neighborhood will give rise to blobs that are related by the same transformation
- What to do if we want to compare the appearance of these image regions?
 - *Normalization*: transform these regions into same-size circles
 - Problem: rotational ambiguity

Eliminating Rotation Ambiguity

- To assign a unique orientation to circular image windows:
 - Create histogram of local gradient directions in the patch
 - Assign canonical orientation at peak of smoothed histogram

SIFT Features

Detected features with characteristic scales and orientations:

From Feature Detection to Feature Description

Detection is *covariant*.

features(transform(image)) = transform(features(image))

Description is *invariant*.

SIFT Descriptors

Properties of SIFT

Extraordinarily robust detection and description technique

- Can handle changes in viewpoint
 - Up to about 60 degree out-of-plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night
- Fast and efficient—can run in real time
- Lots of code available

Affine adaptation

Affine transformation approximates viewpoint changes for roughly planar objects and roughly orthographic cameras

Affine Adaptation

Consider the second moment matrix of the window containing the blob:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Recall:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const} \qquad (\lambda_{\text{max}})^{-1/2}$$

This ellipse visualizes the "characteristic shape" of the window

Affine Adaptation Example

Scale-invariant regions (blobs)

Affine Adaptation Example

Affine-adapted blobs