РК1 Ваняшкин Ю. Ю. ИУ5-24М

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

```
from sklearn.datasets import load iris
X, y = load iris(return X y=True)
print(X.shape)
(506, 13)
(150, 4)
```

Out[2]:

(506, 13)

Создание Pandas Dataframe

In [3]:

```
def make dataframe(ds function):
   ds = ds function()
   df = pd.DataFrame(data= np.c [ds['data'], ds['target']],
                    columns= list(ds['feature names']) + ['target'])
    return df
```

In [5]:

```
data = make dataframe(load iris) #Создание датафрейма
data.head()
                                    #Вывод первых 5 строк
```

Out[5]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0.0
1	4.9	3.0	1.4	0.2	0.0
2	4.7	3.2	1.3	0.2	0.0
3	4.6	3.1	1.5	0.2	0.0
4	5.0	3.6	1.4	0.2	0.0

Поиск пустых значений в колонках

In [6]:

```
for col in data.columns:
   # Количество пустых значений
   temp null count = data[data[col].isnull()].shape[0]
   print('{} - {}'.format(col, temp null count))
   #Пустых значений не обнаружено
```

```
sepal length (cm) - 0
sepal width (cm) - 0
petal length (cm) - 0
petal width (cm) - 0
target - 0
```

In [7]:

Out[7]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

Распределениие значений целевого признака

In [8]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['target'])
```

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x119936ac8>

Распределение похоже на нормальное

Парные диаграммы для понимания общей картины

In [9]:

sns.pairplot(data)

Out[9]:

<seaborn.axisgrid.PairGrid at 0x11b9f2eb8>

Находим почти линейную зависимость между значениями двух колонок

In [21]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, data=data)
```

Out[21]:

<matplotlib.axes. subplots.AxesSubplot at 0x11f982470>

In [29]:

sns.violinplot(x=data['sepal width (cm)'])

Out[29]:

<matplotlib.axes._subplots.AxesSubplot at 0x11fe6b940>

По violin plot видим, что распределение бимодальное.

In [31]:

```
sns.boxplot(y=data['sepal width (cm)'])
```

Out[31]:

<matplotlib.axes._subplots.AxesSubplot at 0x11ff3ac88>

Корреляционный анализ

Построим корреляционную матрицу

In [32]:

```
data.corr()
```

Out[32]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
sepal length (cm)	1.000000	-0.117570	0.871754	0.817941	0.782561
sepal width (cm)	-0.117570	1.000000	-0.428440	-0.366126	-0.426658
petal length (cm)	0.871754	-0.428440	1.000000	0.962865	0.949035
petal width (cm)	0.817941	-0.366126	0.962865	1.000000	0.956547
target	0.782561	-0.426658	0.949035	0.956547	1.000000

Также построим матрицу корреляций по Пирсону

In [33]:

```
# Треугольный вариант матрицы Пирсона
mask = np.zeros_like(data.corr(), dtype=np.bool)
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.1f')
```

Out[33]:

<matplotlib.axes._subplots.AxesSubplot at 0x12001e748>

Выявлена корреляция между показателями **RAD** и **TAX**

Использовав Solar correlation map, получаем ту же зависимость

In []: