# Regional and Local Public Economics

#### Mengwei LIN

mengwei.lin@ub.edu

I thank Dirk Foremny, Zelda Brutti, and Candan Erdemli for useful materials compiled in previous years.

Spring 2025

### Recap: Roadmap of the Course

#### I. Theory

- 1. Income Decentralization: taxation (7 lectures) with Andreu
- 2. Expenditure Decentralization (4 lectures) with Julia
- 3. Intergovernmental **Grants** (3 lectures)

#### **II.** Application

- 4. Application 1: International Comparison (Spain, Canada, China, Germany, 4 lectures)
- 5. Application 2: **Policy** Analysis (health, education, health, transportation, etc., 4 lectures)
- III. Extension: International Fiscal Federalism (1 lecture) with Andreu

# Basics of the Unit: Intergovernmental Grants

Three lectures on "Inter-governmental Grants", discussing the following topics:

- 1. Introduction to inter-governmental grants
- 2. Economic consequences of inter-governmental grants 🌟
  - 1. Theoretical Analysis
  - 2. Numerical Exercise
- 3. A special type: equalizing grants (if time allows)

# Intergovernmental Grants

Lecture 1 Introduction: Definition and functions

March 24, 2025

Reading for this lecture: Chapter 9: "Intergovernmental grants"

State and Local Public Finance, by Ronald C. Fisher

# Today's Agenda

- 1. From decentralization to grants: why grants?
  - 1.1 Stylized facts
  - 1.2 Purposes/Functions of Grants

- 2. How to conceptualize grants?
  - Basic Framework: Characteristics → Different Types

## What are intergovernmental grants?

#### **Definition**

**Intergovernmental grants: transfers** of funds from one government to another, *most often* from a higher-level government to lower-level ones.

 not only in federal states but also in non-federal countries with multiple levels of governments

# From Decentralization to Intergovernmental Grants

- Decentralization of Income (Unit 1)
- Decentralization of Expenditure (Unit 2)
  - Optimal size for public goods/services provision

- Question 1: Local taxation enough to cover local expenditure (financial gaps)?
- Question 2: What about unequal public services within a country (inequality)?

## Fiscal Decentralization and Grants: a big picture



#### 1.1 Motivation: HALF of SNG income!

Grants and subsidies as a share of SNG revenue by income group and world region (2020)



Source: OECD (2022), 2022 Synthesis Report World Observatory on Subnational Government Finance and Investment, OECD Publishing, Paris, <a href="https://doi.org/10.1787/b80a8cdb-en">https://doi.org/10.1787/b80a8cdb-en</a>.

#### The Case of the US

#### Sources of State General Revenue

Share of total state general revenues, by source, 2020



**Source**: US Census Bureau Annual Survey of State and Local Government Finances, 1977-2020 (compiled by the Urban Institute via State and Local Finance Data: Exploring the Census of Governments; accessed 30-Sep-2022 06:07), https://state-local-finance-data.taxpolicycenter.org.

#### Sources of Local General Revenue

Share of total local general revenues, by source, 2020



**Source**: US Census Bureau Annual Survey of State and Local Government Finances, 1977-2020 (compiled by the Urban Institute via State and Local Finance Data: Exploring the Census of Governments; accessed 30-Sep-2022 06:07), https://state-local-finance-data.taxpolicycenter.org.

Source: State and Local Backgrounders, Urban Institute (2022)

#### The Case of the US

#### Sources of State and Local General Revenue

Trillions of real 2020 dollars, by source, 1977–2020



Source: US Census Bureau Annual Survey of State and Local Government Finances, 1977-2020 (compiled by the Urban Institute via State and Local Finance Data: Exploring the Census of Governments; accessed 30-Sep-2022 06:07), https://state-local-finance-data.taxpolicycenter.org.

Source: State and Local Backgrounders, Urban Institute (2022)

#### The Case of China

#### **■ SUBNATIONAL GOVERNMENT REVENUE BY CATEGORY**

| 2020                 | DOLLARS PPP /<br>INHABITANT | % GDP | % GENERAL<br>GOVERNMENT | % SUBNATIONAL GOVERNMENT |
|----------------------|-----------------------------|-------|-------------------------|--------------------------|
| Total revenue        | 3 386                       | 19.7% | 79.4%                   | 100.0%                   |
| Tax revenue          | 1 438                       | 8.4%  | 50.9%                   | 42.5%                    |
| Grants and subsidies | 1 541                       | 9.0%  | -                       | 45.5%                    |
| Tariffs and fees     | 0                           | 0.0%  | -                       | 0.0%                     |
| Income from assets   | 0                           | 0.0%  | -                       | 0.0%                     |
| Other revenues       | 408                         | 2.4%  | -                       | 12.0%                    |



Source: OECD (2020), SNG-WOFI Database

#### Europe:

The average for the OECD-European countries is 49.8%.

\* Intergovernmental transfers can also include shared taxes and, in some countries (e.g. Italy), regional budgets too.



Source: European Local Government Finances And Local Autonomy, KDZ - Centre For Public Administration Research, 2022

### 1.2 Purposes of grants

According to economic theory:

- 1. Vertical imbalances
  - 1. Close vertical fiscal gaps (VFG)
- 2. Horizontal imbalances
  - 1. Macroeconomic stabilization
  - 2. Explicit redistribution of resources among regions or localities
    - "Equalization grants"
  - 3. Improve the **efficiency** of fiscal decisions of sub-national governments
    - e.g., correcting for externalities

## Purpose 1 VFG

Fiscal Gap: the difference between revenue means and expenditure needs

- Central government (+) raises more revenue than needed
  - redistribute the excess to support SNG (-).

The existence of a VFG:

- 1. Easier and more efficient to decentralize expenditures than taxes
- 2. Necessary for the central govt to transfer funds to SNGs to fulfill its responsibility for achieving efficiency and equity, and have some political control

### Public Economic Structure by Level of Government: revenues

#### General Government Revenues across Levels of Government, 2021 and 2022



Source: OECD National Accounts Statistics (database).

# Public Economic Structure by Level of Government: expenditure

#### General Government Expenditure across Levels of Government, 2021 and 2022



Source: OECD National Accounts Statistics (database).

# Purpose 2-1 Macroeconomic Stabilization

Different regions may be affected by different shocks at different times, because

- 1) a country's economic structure is geographically heterogeneous
  - e.g., more textile industry in one area, more tourism in the other
- 2) natural phenomena can influence local economies
  - e.g., droughts, hurricanes, earthquakes
- 3) the country's demographic structure is geographically heterogeneous
  - e.g., more youth in one area, more retirees in the other

# Purpose 2-2 Inter-regional redistribution

#### So-called "equalization grants".

- How do we calculate a "fair" method to redistribute resources?
- Will those grants reach the desired objective of helping low-income residents?

#### Fiscal Capacity and Equalization, by Province (FY 2018-19)

Displays each province's own fiscal capacity, the equalization payment required to bring it up to an `average` level, and the `adjustment payment` to fix the pool of equalization paid. In 2018/19, adjustments totalled \$1.76b.



Source: Federal Equalization Workbooks, Table 1. Graph by @trevortombe

# Purpose 2-3 Spillovers and mobility

- In the presence of inter-jurisdictional externalities/spillovers, decisions of individual subnational governments can be inefficient
- Migration among communities may impose extra costs on residents

If nonresidents benefit from a good/service provided by a local government, but their benefits are not taken into account when deciding on the amount provided, **social marginal benefits** are underestimated and sub-optimally low quantity is decided for.

# Part 2 Conceptualization

SO!

Grants are important.

BUT...

What are they, specifically speaking?

How do we design them?

# Today's Agenda

1. Stylized Facts and Motivation: Why grants?

2. Basic Framework: How to conceptualize grants?

Types, Characteristics

# Conceptualization: how to categorize grants



Figure 9.3 Types of intergovernmental grants

You can categorize these grants differently, according to the most important element in your analysis!

### Scenario 1: Too many Darios

Dario is a (fiscal) resident in Madrid but comes to Barcelona every summer for a break.

He enjoys free health services here!! (Barcelona is paying for him.)

A non-negligible number of "Dario"s  $\rightarrow$  inefficient fiscal decisions of both Madrid and Barcelona

Can use inter-govt grants to "correct" for this

In-class **News Reading** (English translation in handout): <a href="https://govern.cat/salapremsa/notes-premsa/135733/boi-ruiz-demana-ana-mato-fons-compensacio-territorial-financar-atencio-sanitaria-dels-pacients-procedents-altres-comunitats-autonomes">https://govern.cat/salapremsa/notes-premsa/notes-premsa/135733/boi-ruiz-demana-ana-mato-fons-compensacio-territorial-financar-atencio-sanitaria-dels-pacients-procedents-altres-comunitats-autonomes

#### How should we design a grant?

### Type 1: Categorical grants

- Conditions on use: Categorical/Activity-specific (e.g. education, health, environment...)
- Allocated based on
  - a formula (e.g. based on local wealth, resident counts, etc.)
  - a specific project (with an associated budget)
- Amount
  - Lump-sum
  - Matching: CG covering for xx% of the actual expenditure (either w/ or w/o an upper limit)

#### Scenario 2: COVID

COVID hits the country! SNGs are facing a large mismatch between rising costs and falling revenues.

"In addition to helping these governments address the revenue losses they have experienced as a result of the crisis, it will help them cover the costs incurred due to responding to the public health emergency and provide support for a recovery..."

"Intergovernmental transfers were relatively high in 2020 because of federal spending in response to the COVID-19 pandemic. In 2020 and 2021, Congress transferred a large amount of funds to state governments as part of the <u>CARES Act</u>, the <u>Coronavirus Response and Relief Supplemental Appropriations Act</u> (part of the December 2020 omnibus bill), and the <u>American Rescue Plan</u>."

The central government will give grants to help SNGs bridge the sudden gaps in all aspects.

How should we design such a grant, according to the criteria above?

## Design your transfer to deal with COVID

In-class practice: **3-min independent** thoughts!

#### Topic: How should we design such a grant?

SNGs are facing a gap between rising costs and falling revenues due to COVID. The central government will give grants to help bridge the gaps in all aspects. How will you design such a grant, according to the criteria above?

- Within 3 minutes, describe your grant(s) in these dimensions.
- Please briefly justify for your grant design.

To have a clear mind, and know how to design a policy according a framework.

#### Discussion

#### Topic: How should we design such a grant?

SNGs are facing a gap between rising costs and falling revenues due to COVID. The central government will give grants to help bridge the gaps in all aspects. How will you design such a grant, according to the criteria above?

- Now discuss in groups of two or three.
- Compare and contrast your plan with your colleague's.

To have a structured mind, be able to compare and contrast different policy recommendations.

# What did they actually do?

"In 2020 and 2021, Congress transferred a large amount of funds to state governments as part of the <u>CARES Act</u>, the <u>Coronavirus Response and Relief Supplemental Appropriations Act</u> (part of the December 2020 omnibus bill), and the <u>American Rescue Plan</u>."

The American Rescue Plan provides \$350 billion in emergency funding for state, local, territorial, and Tribal governments:

- \$195 billion for states, (a minimum of \$500 million for each State);
- \$130 billion for local governments (a minimum of \$1.25 billion per state is provided by the statute inclusive of the amounts allocated to local governments within the state);
- \$20 billion for tribal governments; and
- \$4.5 billion for territories

### Type 2: General grants

- Conditions on use: **General/NOT** activity-specific
- Allocated based on
  - a formula
- Amount
  - Lump-sum
  - Revenue-sharing: CG transferring xx% of some income to SNG

A side note: gaps between SNG revenue and expenditure are common in real life under specific revenue and expenditure responsibility sharing schemes a country adopts (not necessarily due to shocks like COVID.)

#### Additional: in-class discussion

Many of you may think that the grant should only be spent on several important areas

- **block** grants—between general and specific grants
  - used to provide broad support in a some area(s) of expenditures (e.g. health, education)
  - recipients still decide on how to allocate the funds for this general purpose

# Summary: how to categorize grants



Figure 9.3 Types of intergovernmental grants

You can categorize these grants differently, according to the most important element in your analysis!

# Matching & Revenue-sharing grants

- Both reflect "shared responsibility".
  - R: matching rate (or sharing rate)—1 euro spent or collected by the receiving government is "matched" with R euro grant money.
  - M: share of spending financed by the grant:

$$M = R/(1 + R)$$

• Reduce marginal price (cost) of local goods/services for the recipient government

$$P = 1 - M = \frac{1}{1 + R}$$

# Takeaways today

- 1. A sense of
  - 1. how important intergovernmental grants are and
  - 2. why we need them
- 2. Important characteristics of grants & how to categorize them accordingly

# Intergovernmental Grants

Lecture 2 Effects of grants: theory

March 28, 2025

I thank Dirk Foremny, Zelda Brutti, and Candan Erdemli for useful materials compiled in previous years.

Reading for this lecture: Chapter 9: "Intergovernmental grants?"

State and Local Public Finance, by Ronald C. Fisher

# Today's Agenda

1. Basic Framework: How to conceptualize grants?

Types; Characteristics

2. Theoretical Analysis: effects of grants

Setup; Theoretical predictions

### Recall from last lecture



Figure 9.3 Types of intergovernmental grants

You can categorize these grants differently, according to the most important element in your analysis!

### Economic Thinking: How to analyze the effect of grants?

1. Effects on what?—on consumption/utility/welfare...

Therefore, we need to use what you learned before: Consumer Theory

2. How to reflect the effect?

**Equilibrium** → **Comparative Statics** (*ceteris paribus*)

### Recap: Consumer Theory

#### **Setup:**

- Commodity Set (Good 1 and Good 2)
- Budget Constraints (prices & income)—objective condition
- Indifference Curves (preference)—subjective condition

#### **Equilibrium**:

•  $e^* = (X_1^*, X_2^*; p_1, p_2, I)$ —optimal consumption level  $(X_1^*, X_2^*)$  under certain circumstances  $(p_1, p_2, I)$ 

**Comparative Statics**: How does a change in the prices  $(p_1, p_2)$  or income (I) affect the optimal level of consumption  $(X_1^*, X_2^*)$ ?

• E.g.,  $e^* = (X_1^*, X_2^*; p_1, p_2, I) \rightarrow e^{**} = (X_1^{**}, X_2^{**}; p_{11}, p_2, I)$ 

### 1. Framework: Back to consumer theory

**Commodity Set:** governmentally provided good G and a composite good X

- Budget Constraint (AF: slope representing this individual's tax price on G)
- Indifference Curves

**Equilibrium**:  $(X_0, G_0)$ 



Figure 9A.1 A comparison of matching and lump-sum grants

### |1.1 Effect of a lump-sum grant |

With a lump-sum grant, tax price (the citizen pays for each unit of public good provided by the local government) is not affected

- Budget Constraint  $AF \rightarrow BE$
- Indifference Curve (out)

Equilibrium:  $(X_0, G_0) \rightarrow (X_1, G_1)$ 



Figure 9A.1 A comparison of matching and lump-sum grants

# 1.2 Effect of an (open-ended) matching grant

With a matching grant, the price a citizen has to pay for each unit of public good provided by the local government) is reduced (because of the match: from 1 to 1-M)

• Budget Constraint  $AF \rightarrow AD$ 

**Equilibrium**:  $(X_0, G_0) \rightarrow (X_2, G_2)$ 



Figure 9A.1 A comparison of matching and lump-sum grants

### 1.2 Recall the decomposition of effects when prices change

#### Two main effects:

- Income effect:
  - ↑↑ the resources available
- Price effect ("substitution effect")
  - the product became cheaper relative to others

### In-class exercise: solution

# Decomposing the effect of an open-ended matching grant

Outline of steps

- 1. Rotate
- 2. Shift



Equilibrium:  $(X_0, G_0) \rightarrow (X_2, G_2)$ 

Figure 9A.1 A comparison of matching and lump-sum grants

### In-class exercise

# Decomposing the effect of an open-ended matching grant

Outline of steps (Illustration on white board)

- 1. Rotate
  - 1. AF out to AD (total effect)  $G_0 \rightarrow G_2$
- 2. Shift
  - 1. AD  $\rightarrow$  tangent to original U
  - 2. The tangent point  $(G_0^*)$  divides TE to income and price effects



Figure 9A.1 A comparison of matching and lump-sum grants

**Equilibrium**:  $(X_0, G_0) \to (X_0^*, G_0^*) \to (X_2, G_2)$ 

# Effects comparison: lump-sum vs (open-ended) matching

What does this imply?

(fiscal effects of lump-sum VS matching grants)



Figure 9A.1 A comparison of matching and lump-sum grants

### Theoretical Predictions

Four important relationships between different types of grants.

1. Matching grants are more stimulative than lump-sum grants.

### Recall from last lecture



Figure 9.3 Types of intergovernmental grants

You can categorize these grants differently, according to the most important element in your analysis!

### Sidenote: What about a CLOSE-ENDED matching grant?

The budget line facing the consumer is now ACE

- Beyond consumption level  $G_2$ , the price of additional units of G returns to the original price with no grant.
- The utility maximizing bundle is at C; the consumer takes advantage of the full matching potential of the closed- ended grant.



Figure 9A.1 A comparison of matching and lump-sum grants

### Theoretical Predictions

Two important relationships between different types of grants.

- 1. Matching grants are more stimulative than lump-sum grants. (numerical example next lecture)
  - increase government expenditure on the aided service by a greater amount than an "equal size"
    lump-sum grant
- 2. Categorical lump-sum grants may be no different than general grants.

### 3) Categorical lump-sum grants may be no different than general grants

A **general** lump-sum grant:  $ZV \rightarrow YW$  (green arrow on the graph); money received can be spent on anything.

A **categorical** lump-sum grant of the same size:  $ZV \rightarrow ZXW$  (red arrow on the graph); money received must be spent on the aided category.

 But the local government can react strategically.



### Recall from last lecture



Figure 9.3 Types of intergovernmental grants

You can categorize these grants differently, according to the most important element in your analysis!

### **Fungibility**

Suppose your parents give you a gift of €200, which they insist must be spent on books.

Even if you always obey your parents, does this mean you will spend €100 **more** on books this semester?

#### Not necessarily!

If you normally spend €200 per semester on books (own money), you might:

- increase it to €250 (the €100 gift, €150 own money) and
- shift your own €50 that would have been spent on books to some fancy meals.

### How would you design a grant to avoid fungibility?

- a expenditure target on the specified service
- a requirement for maintenance of local effort on the specified service

• ...

### Takeaways

- 1. Using consumer theory as a framework to analyze grants
- 2. Relationships among different types of grants

# Intergovernmental Grants

Lecture 3 Effects of grants: numerical exercise

April 7, 2025

Reading for this lecture: Chapter 9: "Intergovernmental grants?"

State and Local Public Finance, by Ronald C. Fisher

### Today's Agenda

- 1. Effects of grants
  - 1. Recap: Theoretical Predictions
  - 2. Numerical example: matching vs lump-sum grants (important!)
- 2. Problems of grants (empirical findings)
  - 1. Flypaper effect

### Recap: types of grants



Figure 9.3 Types of intergovernmental grants

You can categorize these grants differently, according to the most important element in your analysis!

# Recap: Modeling the effects of grants



Figure 9A.1 A comparison of matching and lump-sum grants

### Recall: Theoretical Predictions

- 1. Matching grants are more stimulative than lump-sum grants.
- 2. Categorical lump-sum grants may be no different than general grants.
- 3. Matching grants provide tax relief.
- 4. Tax effort grants are matching.

### Extension 1: Close-ended matching grants

The budget line facing the consumer is now **ACE** 

- Beyond consumption level  $G_2$ , the price of additional units of G returns to the original price with no grant.
- The utility maximizing bundle is at C; the consumer takes advantage of the full matching potential of the closed- ended grant



Figure 9A.1 A comparison of matching and lump-sum grants

### Extension 2: Same results but with demand curves

#### **Lump-sum** - only income effect (E0 to E1)

 increases the recipient's utility more because the choice of consumption mix is not distorted by a price change.

#### **Matching** - income + substitution effects (E0 to E2)

"equal size" lump-sum grant

- more effective at increasing consumption of G than an equal-size lump-sum grant:
- increase government expenditure on the aided service by a greater amount than an



Figure 9.4 Income and price effects of a grant

"equal size": a lump-sum grant large enough to allow the government the same expenditure as selected with the matching grant.

# Exercise: A numerical example—theoretical prediction 1 (A)

1. Matching grants are more stimulative than lump-sum grants.

#### Question

**PART A:** Assume initial spending and taxes of \$1,000 per capita and the price elasticity of demand for government expenditure equal to -0.5, a matching grant providing \$0.50 for each \$1 of local tax.

- 1) What is the reduced tax price (i.e., marginal cost)? How large is this decrease in percentage?
- 2) What is the level of spending on public goods after receiving the grant? How large is this increase in percentage?
- 3) What is the per-capita grant received?
- 4) To finance the remaining expenditure, what should the per-capita local taxes be?

### Exercise: A numerical example—theoretical prediction 1

**PART A:** Assume initial spending and taxes of \$1,000 per capita and a price elasticity of demand for government expenditure equal to -0.5, a matching grant providing \$.50 for each \$1 of local tax.

1) What is the reduced tax price (i.e., marginal cost)? How large is this decrease in percentage?

**Answer**: The share of spending financed by the grant M = R/(1+R) = 0.5/(1+0.5) = 1/3, and reduce marginal price P = 1 - M = \$0.67, or a 33% decrease.

2) What is the level of spending on public goods after receiving the grant? How large is this increase in percentage?

**Answer**: Given the price elasticity of demand of 0.5, per-capita expenditure will increase by  $(-0.33) \times (-0.5) = 16.5\%$ , from \$1,000 to \$1,165.

# Exercise: A numerical example—theoretical prediction 1

**PART A:** Assume initial spending and taxes of \$1,000 per capita and a price elasticity of demand for government expenditure equal to -0.5, a matching grant providing \$.50 for each \$1 of local tax.

3) What is the per-capita grant received?

**Answer**:  $1{,}165 \times 1/3 = $388.33$ .

4) To finance the remaining expenditure, what should the per-capita local taxes be?

**Answer**: 1,165 - 388.33 = \$776.67

Therefore, the effect of the matching grant is to increase per-capita expenditure by \$165 and to decrease local tax by \$223.33.

# Exercise: A numerical example—theoretical prediction 1 (B)

"Matching grants are more stimulative than lump-sum grants."

#### Question

**PART B:** If this jurisdiction received a lump-sum grant equal to \$388.33 per capita and assuming per capita income of \$5,000 and an income elasticity of 0.5.

- 1) What is the level of spending on public goods after receiving the grant?
- 2) To finance the remaining expenditure, what should the per-capita local taxes be?
- 3) How are these effects compared to those in PART A?

# Exercise: A numerical example—theoretical prediction 1

**PART B:** If this jurisdiction received a lump-sum grant equal to \$388.33 per capita and assuming per capita income of \$5,000 and an income elasticity of 0.5.

1) What is the level of spending on public goods after receiving the grant?

**Answer**: Increase in per-capita income is 388.33/5,000 = 7.76%. Percentage change of spending on public goods  $7.76 \times 0.5 = 3.88\%$ , from \$1,000 to \$1,038.80.

2) To finance the remaining expenditure, what should the per-capita local taxes be?

**Answer**: 1,038.80 - 388.33 = \$650.47.

# Exercise: A numerical example—theoretical prediction 1 (A vs B)

**PART A:** Assume initial spending and taxes of \$1,000 per capita and a price elasticity of demand for government expenditure equal to -0.5, a matching grant providing \$.50 for each \$1 of local tax.

**PART B:** If this jurisdiction received a lump-sum grant equal to \$388.33 per capita and assuming per capita income of \$5,000 and an income elasticity of 0.5.

3) How are these effects compared to those in PART A?

| Answer: |                                 | A: Matching grant | B: Lump-sum grant |  |
|---------|---------------------------------|-------------------|-------------------|--|
|         | per-capita expenditure increase | \$165.00          | \$38.80           |  |
|         | per-capita local tax decrease   | \$223.33          | \$349.53          |  |

### Exercise: A numerical example—theoretical prediction 1

Table 9.2 Expenditure effects of matching and lump-sum grants

| Initial fiscal circumstance   | S                                             |         |                                          |                            |  |
|-------------------------------|-----------------------------------------------|---------|------------------------------------------|----------------------------|--|
| Per capita expenditure \$1,00 |                                               | \$1,000 |                                          |                            |  |
| 1 1                           |                                               | \$1,000 |                                          |                            |  |
| 1                             |                                               | -0.5    | •                                        |                            |  |
| ·                             |                                               | 0.5     | 0.5                                      |                            |  |
| Per capita income             |                                               | \$5,000 |                                          |                            |  |
| Grant conditions and eff      | ects                                          |         |                                          |                            |  |
| Matching grants               |                                               |         | Lump-sum grants                          |                            |  |
| Matching rate                 | 0.50 (\$.50 for each<br>\$1.00 of each tax)   |         | Per capita grant amount                  | \$388.33                   |  |
| Tax price with grant          | \$0.67<br>(\$1.00/\$1.00 + \$.50)             |         | Percentage increase in per capita income | 7.76%<br>(\$388.33/\$5000) |  |
| Percentage decrease in price  | 33%                                           |         |                                          | ,                          |  |
| 16.5%                         | Percentage increase in per capita expenditure |         |                                          | 3.88%                      |  |
| \$1,165.00                    | Per capita expenditure with grant             |         | \$1,038.80                               |                            |  |
| 388.33                        | Per capita grant                              |         | 388.33                                   |                            |  |
| 776.67                        | Per capita local tax                          |         | 650.47                                   |                            |  |
| 165.00                        | Increase in per capita expenditure            |         | 38.80                                    |                            |  |
| 223.33                        | Decrease in local tax                         |         | 349.53                                   |                            |  |
| 388.33                        | Sum = grant amount                            |         | 388.33                                   |                            |  |

### What about close-ended matching grants?

**PART C**: Suppose that a matching grant of \$0.50 is offered for each \$1 of local expenditure up to a maximum local expenditure of \$1,000 per capita. **The maximum grant is \$500 per capita**.

Local Tax Price = 
$$\begin{cases} \$0.67, & \text{if local per capita expenditure} < \$1,000 \text{ (as in PART A)} \\ \$1.00, & \text{if local per capita expenditure} > \$1,000 \text{ (as in PART B)} \end{cases}$$

A government spending \$1,500 per capita on the specific aided function (composed of \$1,000 in local money and \$500 of grant) can increase per capita expenditure by \$1 with an extra \$.67 of local money. Once total per capita expenditure reaches \$1,500, the grant is at its maximum and is, therefore, a lump-sum grant.

### An **important** question for you to think

#### Question

Suppose that a matching grant of \$0.50 is offered for each \$1 of local expenditure up to a maximum local expenditure of \$1,000 per capita. The maximum grant is \$500 per capita. The income elasticity of the demand for government expenditure is 0.5 and the price elasticity of demand for government expenditure is equal to -0.5.

- (I) What will be the effects (per-capita expenditure increase and local tax reduction) if the government originally spends \$900 per-capita?
- (II) Assuming a capita income of \$5,000, what will be the effects if the government originally spends \$2,000 per-capita on this specific program?

### Theoretical Predictions

- 1. Matching grants:
  - 1. are more stimulative than lump-sum grants.
  - 2. provide tax relief.
- 2. Categorical lump-sum grants may be no different than general grants.

### 1.2 Matching grants provide tax relief

In the PART A of our example, the price elasticity of demand for the aided service is less than one (inelastic). Therefore, expenditures will increase by less than 33 percent, and local taxes can decline.

#### A: Matching grant

| per-capita <b>expenditure increase</b> | \$388.33 |
|----------------------------------------|----------|
| per-capita <b>local tax decrease</b>   | \$223.33 |

This \$223.33

- → goes towards reducing local taxes (tax relief!!!)
- → or could be used on different goods / services

### Theoretical Predictions

- 1. Matching grants:
  - 1. are more stimulative than lump-sum grants.
  - 2. provide tax relief.
  - 3. Tax effort grants are matching.
- 2. Categorical lump-sum grants may be no different than general grants.

# 1.3 Tax effort grants are matching (not lump-sum).

**Tax effort**: usually measured by <u>tax revenue / income (%)</u> or <u>tax / taxable value</u> (%).

Revenue-sharing: a higher tax effort by a subnational government generates a larger grant

#### Total amount of grant funds is fixed.

A recipient jurisdiction can increase its revenue-sharing grant by increasing taxes at a greater rate than other jurisdictions.

### Revenue-sharing grant: an example

Table 9.3 Sample revenue sharing program

In effect, a "competition" between two jurisdictions

| Feature                                                   | Jurisdiction A   | Jurisdiction B |
|-----------------------------------------------------------|------------------|----------------|
| Population                                                | 50               | 50             |
| Property tax                                              | \$500            | \$500          |
| Taxable value                                             | \$5,000          | \$10,000       |
| Effective tax rate – tax effort                           | 10%              | 5%             |
| Relative tax effort                                       | 1.50             | 0.75           |
| $\frac{T_{i} / V_{i}}{\Sigma \left(T_{i} / V_{i}\right)}$ |                  |                |
| Grant share                                               | 66.7%            | 33.3%          |
| $RTE_i \times POP_i$                                      |                  |                |
| $\overline{\Sigma\left(RTE_{i}\times POP_{i}\right)}$     |                  |                |
| Grant (fund = \$100)                                      | \$66.70          | \$33.30        |
| Effect of property tax change                             |                  |                |
| New property tax                                          | \$500            | \$600          |
| New relative tax effort                                   | 1.36             | 0.82           |
| New grant share                                           | 62.5%            | 37.5%          |
| New grant amount                                          | \$62.50          | \$37.50        |
| Change in grant                                           | <b>-</b> \$ 4.20 | + \$4.20       |
| Percentage change in grant                                | - 6.3%           | + 12.6%        |
| Price of tax increase                                     | NA               | \$0.96         |

### Deepening a bit the analysis: absolute value of elasticity

Table 9.2 Expenditure effects of matching and lump-sum grants

If |e| < 1, the expenditure increase from a matching grant is **smaller** than the grant  $\frac{A}{A}$  (388.33<165)

Room for tax relief

| Initial fiscal circumstance                                                                                               | S                                           |                                          |                            |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|----------------------------|
| Per capita expenditure<br>Per capita local tax<br>Price elasticity of dem<br>Income elasticity of de<br>Per capita income | \$1,000<br>and -0.5                         |                                          |                            |
| Grant conditions and eff                                                                                                  | ects                                        |                                          |                            |
| Matching grants                                                                                                           |                                             | Lump-sum grants                          |                            |
| Matching rate                                                                                                             | 0.50 (\$.50 for each<br>\$1.00 of each tax) | Per capita grant<br>amount               | \$388.33                   |
| Tax price with grant                                                                                                      | \$0.67<br>(\$1.00/\$1.00 + \$.50)           | Percentage increase in per capita income | 7.76%<br>(\$388.33/\$5000) |
| Percentage decrease in price                                                                                              | 33%                                         |                                          |                            |
| 16.5%                                                                                                                     | Percentage increase in per capita expen     | 3.88%                                    |                            |
| <b>\$1,165.</b> 00                                                                                                        | Per capita expenditure with grant           |                                          | \$1,038.80                 |
| 388.33                                                                                                                    | Per capita grant                            |                                          | 388.33                     |
| 776.67                                                                                                                    | Per capita local tax                        |                                          | 650.47                     |
| 165.00                                                                                                                    | Increase in per capita expenditure          |                                          | 38.80                      |
| 223.33                                                                                                                    | Decrease in local tax                       |                                          | 349.53                     |
| 388.33                                                                                                                    | Sum = grant amount                          |                                          | 388.33                     |

### Empirical findings

- 1. Open-ended categorical matching grants do seem to increase expenditures on the aided category and do so by a larger amount than equal-size specific lump-sum grants (as predicted by theory).
  - the estimated price elasticities for most subnational government services are less than one (in absolute value)
- 2. There is some evidence that close-ended categorical matching grants sometimes have greater expenditure effects than open-ended matching grants (contrary to theory)
- 3. Lump-sum grants cause an increase in government expenditures (in most cases smaller than the grant; estimates with wide variance).
- 4. An additional \$1 of lump-sum g rant money has a greater effect on recipient government expenditure than a \$1 increase in residents' incomes.

### Flypaper effect

Theoretically, unconditional grants should be equivalent to increasing directly local residents' income by the same amount (by reducing its own contribution)

But in reality, money paid to a government tends to "stick" in the public sector.

e.g.,

**\$1 of increased income** typically increases SNG expenditure by about \$0.05 to \$.10;

**\$1** in lump-sum general grant appears to increase SNG expenditure by \$0.25 to \$0.50.



### Flypaper effect

**Implication**: A \$1 grant will have very different allocation effects than a \$1 tax decrease by the granting government (which increases income by \$1)

**Main explanation**: bureaucrats seek to maximize the size of their budget.

• **Debate**: reflection of important characteristics of political behavior **or** incorrect or imprecise economic analysis.

(For further discussion, see "Is grant money different than tax money" in Chapter 9 of the Fisher book)



### Takeaways

- 1. Using the demand curve concepts to quantify effects
- 2. the effects of lump-sum and matching grants: expenditure increase and tax relief
- 3. Lump-sum categorical and general grants may be equivalent, in the presence of fungibility
- 4. Competition among jurisdictions over tax-sharing grants
- 5. Flypaper effect

# Summary of the Unit