### Matemática Discreta

### Teoria dos Números e Aritmética Modular

Profa. Helena Caseli helenacaseli@ufscar.br

### Objetivos desta aula

- Apresentar alguns conceitos, propriedades e teoremas relativos aos inteiros
  - Divisibilidade
  - Máximo divisor comum
  - Números relativamente primos
  - Fatoração de primos
- Capacitar o aluno a utilizar os conceitos da teoria dos números para modelar e resolver problemas computacionais

### Objetivos desta aula

- Apresentar a aritmética modular
  - ullet O conjunto  $\mathbb{Z}_{r}$
  - Adição modular e multiplicação modular e suas propriedades
  - Subtração modular
  - Inverso modular e  $\mathbb{Z}_n^*$
  - Divisão modular
- Capacitar o aluno a utilizar os conceitos da aritmética modular para modelar e resolver problemas computacionais

# Problema #13

Liste os elementos do conjunto

#### Divisibilidade



Fonte: https://pixabay.com/

- Sejam a e b dois inteiros com b ≠ 0. Dizemos que b divide a se há um inteiro c tal que a = bc
  - Denotamos b|a

```
      a
      =
      12
      e
      b
      =
      3

      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
      I
```

#### Divisibilidade

- Teorema da Divisão
  - Sejam  $a, b \in \mathbb{Z}$  com b > 0. Então, existem inteiros q e r tais que

$$a = qb + re \ 0 \le r < b$$

- Além disso, existe <u>um único par de tais inteiros (q, r)</u> que satisfaz essas condições
  - O inteiro q é chamado quociente e o inteiro r é chamado resto
  - → O resto nunca é negativo e só é igual a 0 se b|a
  - $\Rightarrow$  a div b = q

e

 $a \mod b = r$ 

### Máximo Divisor Comum (MDC)



Fonte: https://pixabay.com/

- O máximo divisor comum de  $a, b \in \mathbb{Z}$  é o maior inteiro que divide a e b
  - Denotamos mdc(a,b)

- Máximo Divisor Comum (MDC)
  - Sejam  $a, b \in \mathbb{Z}$ . Dizemos que um inteiro d é o máximo divisor comum de a e b se
    - d é um divisor comum de a e b, e
    - se c é um divisor comum de a e b, então  $c \le d$
    - Se existir o mdc(a, b) então ele é único

- mdc(54,8) a = 54 e b = 8 54 = 8q + r q = 6 e r = 6 mdc(8,6)
- Máximo Divisor Comum (MDC)
  - Algoritmo de Euclides
    - Proposição
      - Sejam a e b inteiros positivos com b ≠ 0, então mdc(a, b) = mdc(b, a mod b)
    - Entrada: dois inteiros positivos a e b
    - Passos
      - Dividir a por b e armazenar o resto em r
      - Se r = 0 retorna b
      - Senão calcular o mdc(b, r)
    - Saída: o b utilizado no último cálculo de mdc
    - Quando a < b, a primeira iteração do algoritmo de Euclides apenas inverte a ordem dos valores

### Números relativamente primos



Fonte: https://pixabay.com/

- Sejam a e b inteiros
- Dizemos que a e b são relativamente primos (ou primos entre si) se e somente se mdc(a, b) = 1

### Fatoração em primos

- Teorema Fundamental da Aritmética
  - Seja n um número inteiro positivo
    - Então n se fatora (decompõe) em um produto de números primos
    - Além disso, essa fatoração é única a menos da ordem dos primos
  - Exemplos

#### Aritmética modular



Fonte: https://pixabay.com/

 É o estudo das operações básicas (adição, subtração, multiplicação e divisão) no contexto dos números inteiros módulo n

#### Aritmética modular

- O conjunto  $\mathbb{Z}_n$ 
  - O conjunto  $\mathbb{Z}_n$ , onde n é um inteiro positivo, é o conjunto de todos os números naturais de 0 a n-1, inclusive:

$$\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$$

Exemplos

$$\mathbb{Z}_1 = \{0\}$$
  $\mathbb{Z}_2 = \{0, 1\}$   $\mathbb{Z}_3 = \{0, 1, 2\}$   $\mathbb{Z}_4 = \{0, 1, 2, 3\}$   $\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 

Define o contexto no qual as operações da aritmética modular serão realizadas

- Adição (⊕) e multiplicação (⊗) modulares
  - Sejam n um inteiro positivo e  $a, b \in \mathbb{Z}_n$ . Definimos

```
a \oplus b = (a + b) \mod n (adição modular)

a \otimes b = (a * b) \mod n (multiplicação modular)
```

- "a soma modular de a e b no contexto  $Z_n$  é igual ao resto da divisão inteira da soma de a e b por n"
- → "o produto modular de a e b no contexto Z<sub>n</sub> é igual ao resto da divisão inteira do produto de a e b por n"

#### Aritmética modular

Exemplos – adição (⊕) e multiplicação (⊗)

• Se 
$$n = 10$$
,  $\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 

• 
$$5 \oplus 5 = (5 + 5) \mod 10 = 10 \mod 10 = 0$$

$$\bullet$$
 9  $\oplus$  8 = (9 + 8) mod 10 = 17 mod 10 = 7

• 
$$5 \otimes 5 = (5 * 5) \mod 10 = 25 \mod 10 = 5$$

• 
$$9 \otimes 8 = (9 * 8) \mod 10 = 72 \mod 10 = 2$$

### Aritmética modular

- Analogia do relógio
  - → 11 horas + 8 horas = (11+8) mod 12 = 19 mod 12 = 7



 Por isso a aritmética modular também é chamada de aritmética do relógio ou circular



- Exemplos adição (⊕) e multiplicação (⊗)

• Se 
$$n = 7$$
,  $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ 

- **■** 5 ⊕ 5 = ?
- **■** 3 ⊕ 6 = **?**
- **■** 5 ⊗ 5 = **?**
- **■** 3 ⊗ 6 = **?**



- Exemplos adição (⊕) e multiplicação (⊗)

• Se 
$$n = 7$$
,  $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ 

- $5 \oplus 5 = (5 + 5) \mod 7 = 10 \mod 7 = 3$
- $\bullet$  3  $\oplus$  6 = (3 + 6) mod 7 = 9 mod 7 = 2
- $5 \otimes 5 = (5 * 5) \mod 7 = 25 \mod 7 = 4$
- $\bullet$  3  $\otimes$  6 = (3 \* 6) mod 7 = 18 mod 7 = 4

- Propriedades das operações
  - Fechamento
    - Sejam a,  $b \in \mathbb{Z}_n$ . Então  $a \oplus b$  e  $a \otimes b \in \mathbb{Z}_n$
    - Essa propriedade diz que o resultado da soma ou da multiplicação modular entre elementos de um dado contexto também está no mesmo contexto
  - Elemento identidade
    - Para todo  $a \in \mathbb{Z}_n$

$$a\oplus 0 = a$$
,  $a\otimes 1 = a e a\otimes 0 = 0$ 

- Propriedades das operações
  - Comutatividade
    - Para todos a, b  $\in \mathbb{Z}_n$  $a \oplus b = b \oplus a \in a \otimes b = b \otimes a$
  - Associatividade
    - Para todos os valores a, b, c  $\in \mathbb{Z}_n$  $a \oplus (b \oplus c) = (a \oplus b) \oplus c \in a \otimes (b \otimes c) = (a \otimes b) \otimes c$
  - Distributividade
    - Para todos os valores a, b, c  $\in \mathbb{Z}_n$  $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$

- Proposição
  - Seja n um inteiro positivo e sejam a,  $b \in \mathbb{Z}_n$ . Então, existe <u>um e um só</u>  $x \in \mathbb{Z}_n$  tal que  $a = b \oplus x$
  - Exemplo
    - Considere o contexto  $\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
    - Qual é o valor de x que satisfaz a equação 6 = 2⊕x?
       R. 2⊕4 = 6
    - Qual é o valor de x que satisfaz a equação 7 = 2⊕x?
       R. 2⊕5 = 7

- Proposição
  - Seja n um inteiro positivo e sejam a,  $b \in \mathbb{Z}_n$ . Então, existe <u>um e um só</u>  $x \in \mathbb{Z}_n$  tal que  $a = b \oplus x$ 
    - O mesmo não pode ser afirmado sobre a multiplicação modular
  - Exemplo
    - Considere o contexto  $\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
    - Qual é o valor de x que satisfaz a equação  $2 \otimes x = 6$ ? R.  $2 \otimes 3 = 6$  e que  $2 \otimes 8 = 6$ . Assim, x pode ser 3 ou 8
    - Qual é o valor de x que satisfaz a equação 2⊗x = 7?
       R. não há valores para x que resolvam essa equação

- Subtração (Θ) modular
  - Seja n um inteiro positivo e sejam a, b  $\in \mathbb{Z}_n$
  - Então,

$$a \ominus b = (a-b) \mod n$$

- → Ou, alternativamente, definimos a  $\Theta$  b como o único valor  $x \in \mathbb{Z}_n$  tal que  $a = b \oplus x$
- Exemplos
  - Se n = 10,  $\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 
    - $3 \Theta 2 = 1$  (é a solução para  $3 = 2 \oplus x$ )
    - 4 → 9 = 5 (é a solução para 4 = 9 ⊕ x)

- Inverso (a<sup>-1</sup>) modular
  - Sejam n um inteiro positivo e a  $\in \mathbb{Z}_n$ . O inverso de a é um elemento b  $\in \mathbb{Z}_n$  tal que

$$a \otimes b = 1$$

- → O inverso de um elemento a é denotado por a<sup>-1</sup>
- Um elemento de  $\mathbb{Z}_n$  que tenha inverso é chamado inversível
- $\rightarrow$  Nem todos os elementos de  $\mathbb{Z}_n$  têm inverso
- → Se o inverso existir, esse inverso é <u>único</u>

#### Aritmética modular

- Inverso (a<sup>-1</sup>) modular
  - Exemplos
    - Em  $\mathbb{Z}_{10}$  = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
    - O inverso de 2 é o elemento  $x \in \mathbb{Z}_{10}$  tal que  $2 \otimes x = 1$

#### R. 2 não tem inverso

• O inverso do elemento 3 é o elemento  $x \in \mathbb{Z}_{10}$  tal que  $3 \otimes x = 1$ 

R. Podemos verificar que  $3 \otimes 7 = (3*7) \mod 10 = 21 \mod 10 = 1$ 

Logo, x = 7 é o inverso de 3 em  $Z_{10}$ . Escrevemos  $3^{-1} = 7$ 

- Inverso (a<sup>-1</sup>) modular
  - Se calcularmos o inverso de todos os elementos de  $\mathbb{Z}_{10}$ , vamos verificar que:
    - 0 não tem inverso
    - Os elementos 2, 4, 5, 6 e 8 não têm inversos
    - Os elementos 1, 3, 7 e 9 têm inversos, e esse inverso é único
  - Das afirmações colocadas, concluímos que os elementos de  $\mathbb{Z}_{10}$  que têm inverso são exatamente aqueles que são relativamente primos com 10



#### Aritmética modular

• No contexto  $\mathbb{Z}_9$  = {0, 1, 2, 3, 4, 5, 6, 7, 8}, diga quais são os elementos invertíveis em  $\mathbb{Z}_9$  e quais não são



- No contexto  $\mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ , diga quais são os elementos invertíveis em  $\mathbb{Z}_9$  e quais não são
  - Os elementos invertíveis em  $\mathbb{Z}_9$  são 1, 2, 4, 5, 7 e 8, todos relativamente primos com 9
  - Os elementos não invertíveis em Z<sub>9</sub> são 0, 3 e 6

#### Aritmética modular

- Definição ( $\mathbb{Z}^*_n$ )
  - Seja n um inteiro positivo. Definimos

$$\mathbb{Z}^*_n = \{ a \in \mathbb{Z}_n \mid \operatorname{mdc}(a, n) = 1 \}$$

- Exemplo
  - $\mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$
  - Elementos invertíveis em Z<sub>9</sub> são: 1, 2, 4, 5, 7, 8

$$\mathbb{Z}^*_9 = \{1, 2, 4, 5, 7, 8\}$$

Inversos

$$2^{-1} = 5$$

$$4^{-1} = 7$$

$$5^{-1} = 2$$

$$7^{-1} = 4$$

$$8^{-1} = 8$$

- Divisão (∅) modular
  - Seja n um inteiro positivo e seja b um elemento invertível de  $\mathbb{Z}_n$
  - Seja a  $\in \mathbb{Z}_n$  arbitrário
  - Então, definimos a divisão modular como

$$a \oslash b = a \otimes b^{-1}$$

- Exemplo
  - Em  $\mathbb{Z}_{10}$ ,  $2 \oslash 7$  é calculado com base em  $7^{-1}$
  - $-7^{-1}=3$
  - **•** 2⊘7 = 2 ⊗ 3 = 6

# Problema #13

Liste os elementos do conjunto

$$\mathbb{Z}_{_{14}}^{\star}$$

### Problema #13

Liste os elementos do conjunto

$$\mathbb{Z}_{14}^* = \{ 1, 3, 5, 9, 11, 13 \}$$