UNIVERSIDADE FEDERAL DA PARAÍBA - DEPARTAMENTO DE COMPUTAÇÃO CIEI	
	Período 2023.2
Aluno(a):	Matrícula:

Exercícios valendo 4/10 da prova escrita da Unidade 1

Lembrete. As listas de exercícios têm peso de 30% da nota. Sendo assim, a nota máxima nestes exercícios é 2,8.

Responda se cada uma das afirmações a seguir é falsa ou verdadeira. Justifique a resposta de cada item.

- (a) Se $\{a_n\}$ é uma sequência de termos positivos convergente para **2**, então a sequência alternada $\{(-1)^n a_n\}$ é divergente.
- (b) Se $\{a_n\}$ é uma sequência divergente, então toda subsequência de $\{a_n\}$ também é divergente.
- (c) Se $\{a_n\}$ é uma sequência divergente, então $\{a_n\}$ deve possuir uma subsequência não limitada.
- (d) Se uma seqência $\{a_n\}$ possui duas subsequências convergindo para um mesmo limite \mathbf{L} , então $\{a_n\}$ também é convergente para \mathbf{L} .
- (e) Se $\{a_n\}$ é uma sequência estritamente decrescente e limitada inferiormente, então o seu limite **L** deve ser **zero**.
- (f) Se $\{a_n\}$ é uma sequência de termos positivos, se $\{b_n\}$ é uma sequência convergente para **zero** e se $a_n \leq b_n$, $\forall n \in \mathbb{N}$, então $\{a_n\}$ também é convergente para **zero**.
- (g) Se $\{a_n\}$ é uma sequência limitada, então $\{a_n\}$ possui ao menos um ponto de acumulação \mathbf{A} .
- (h) A sequência $\{a_n\}$ de termo geral $a_n = \left(\left[1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right] \ln(n)\right)$ que define a constante de Euler-Mascheroni é limitada.
- (I) A sequência $\{a_n\}$ de termo geral $a_n = \sqrt{n^2 + 1} \sqrt{n}$ é convergente.
- (J) A sequência $\{a_n\}$ de termo geral $a_n = ln(n) e^{-n}$ converge para **zero**.