Gene Network Analyze and Prediction Tool Version 2.1.5

iGEM USTC-Software

Chapter 1

USTC-Software 2013

We are USTC-Software, a team from University of Science and Technology of China. We will be competing in iGem 2013!

Introduction

Our application aims to simulate genetic networks. The application analyzes the stability of genetic networks after introduction of exogenous genes. Meanwhile, given the original network and specific purposes, the application traces the regulative process back and gives possible regulative patterns.

gNAP: Genetic Network Analyse and Predict

This software contains four parts, dealing with separate functions in forward and backward modeling of GRN(Genetic Regulatory Network) analyse.

- 1. Start
- 2. Monitor
- 3. Result
- 4. Display

Start

Start is used to prepare for the later analysis and prediction. In this part, users could input their database downloaded on Internet and sequences of exogenous gene which is needed to analyse. Also, if not input sequence in **Start**, users could also use the "Predict" function in next part.

Monitor

Monitor undertakes several functions of our software as the core methods of **gNAP**. First of them is **Analyse** function which figure out the network change when input an exogenous gene. In the same time a score presenting stability of new **GRN** by statist stable time and value variation for lots of times. **Analyse** result could be saw intuitively in **Result** part next. Secondly, **Predict** function use target gene expression to figure out possible interaction whose result could also receive in **Result**.

Result

Result is a output part which contains all results of operations used. It is easy to read each gene's information and changing consequence in this part. What's more, all gene information could be output in SBOL.

2 USTC-Software 2013

Display

Display is the data visualization part of our software. To reach a more vivid output data, this part had been written in JAVA. There are three parts in **Display**: ShowRegulation, ShowChange and ShowNetwork.

This software can be built on Windows, Linux and MacOS operating platform.

For more information, please refer to our wiki page.

Source Files

gNAP floder contains the command line source files in **Code** floder and GUI source files. The command line source files are written in C++ language and visualization parts are written in Java language. Both of them can be complied across platforms.

The GUI source files are written in C++ language with Qt Creator, it can also be compiled across platforms using Qt 5.1.0, which can be found here.

Database

The example database has been put into **data** floder and it can also be downloaded from RegulonDB, which can be found here.

The data which used in **gNAP** is flexible. All database in those form could be read in our software.

Contacts

For any questions, feel free to contact:

Chenkun Wang(ustckun@gmail.com)

Jinyang Li(jinyangustc@gmail.com)

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

denci_tim
GenelM
GetReady
GRN
ModleNetwork
PSO
RandomSequence
Generate a random amino aicd sequence at a specific length
SBOL
Creat SBOL files outside based on gene information
Sequence

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

define.h	
Define the class define	27
GenelM.cpp	
Statments of funcions of the class GeneIM	29
GenelM.h	
	30
GetReady.cpp	
Statments of funcions of the class GetReady	30
GetReady.h	
	31
GRN.cpp	
	32
GRN.h	
	32
	??
PSO.cpp	
	33
PSO.h	_
	34
RandSeq.cpp	_
	34
RandSeq.h Define the class RandSeq	25
·	35
SBOL.cpp Statments of funcions of the class SBOL	35
SBOL.h	υĊ
	36
Sequence.cpp	J
	37
Sequence.h	0,
	37
·	??

6 File Index

Chapter 4

Class Documentation

4.1 denci_tim Class Reference

Public Attributes

- double * an
- denci_tim * next

The documentation for this class was generated from the following file:

· ModleNetwork.cpp

4.2 GenelM Class Reference

```
#include <GeneIM.h>
```

Public Member Functions

- void getGeneInformation (map< string, string > dict)
- void getPromoterIF (map< string, string > dict)
- string getID ()
- string getGeneSequence ()
- string getPromoterSequence ()
- string getPromoterName ()
- string getGeneTrueName ()
- int getLeftPosition ()
- int getRightPosition ()
- void putName ()

Put gene name into gene_name[10].

• void putInPromoterName (string promoter)

Put promoter name into promoter_name.

• int getRNA ()

Get those genes which are not expressed into amino acid but RNA.

- char * getGeneName ()
- string getGeneDescription ()

Public Attributes

· int gene_number

The number of gene in GRN.

• char * name

Name used to store name in TF-TF file temporary.

• char gene_name [10]

Private Attributes

· string iD

ID in RegulonDB.

· string gene_sequence

Gene sequence.

• int left_position

Gene left position.

· int right_position

Gene right position.

string gene_description

Gene description which contains the gene expression products.

· string promoter name

Promoter name.

· string promoter_sequence

Promoter sequence.

· string true name

Gene name which distinct capital and small letter.

int RNA

Represent to RNA or not by yes(1), no(0)

4.2.1 Detailed Description

A class which contain one gene information such as gene name, gene position, gene ID, gene sequence, gene description, promoter name and promoter sequence.

1. Get gene information.

Get gene information in map of gene info and input them into corresponding variable.

2. Get promoter information.

Get promoter information in map of promoter which is constructed by gene position in TU.

3. Find RNA gene.

Some genes are not expressed to amino acid but RNA or tRNA. Avoid of aligning the AAS of RNA sequence, we find out the RNA gene.

4.2.2 Member Function Documentation

4.2.2.1 string GenelM::getGeneDescription ()

Get gene description

Returns

gene description

4.2 GenelM Class Reference 9

4.2.2.2 void GenelM::getGeneInformation (map < string, string > dict)

Get gene information from map of gene info constructed in class GetReady

Parameters

```
map of gene info
```

```
See Also
```

```
GetReady
4.2.2.3 char * GeneIM::getGeneName ( )
Get gene name for finding
Returns
      Gene name
4.2.2.4 string GenelM::getGeneSequence ( )
Get gene sequence
Returns
      gene sequence
4.2.2.5 string GenelM::getGeneTrueName ( )
Get gene name which distinct capital and small letter
Returns
      Gene name
4.2.2.6 string GenelM::getID ( )
Get ID of gene in RegulonDB
Returns
      ID of gene
4.2.2.7 int GenelM::getLeftPosition()
Get gene left position which mean the position of gene
Returns
      left position of gene
4.2.2.8 void GenelM::getPromoterIF ( \max < \text{string}, \text{string} > \textit{dict} )
```

Get promoter information from map of promoter sequence also constructed in class GetReady

Parameters

Map of promoter sequence

See Also

GetReady

4.2.2.9 string GenelM::getPromoterName ()

Get promoter name

Returns

promoter name

4.2.2.10 string GenelM::getPromoterSequence ()

Get promoter sequence

Returns

promoter sequence

4.2.2.11 int GenelM::getRightPosition ()

Get gene right position

Returns

right position of gene

4.2.3 Member Data Documentation

4.2.3.1 char GenelM::gene_name[10]

contain gene name which not distinct capital and small letter It is used to find the right gene in map The documentation for this class was generated from the following files:

- · GenelM.h
- GenelM.cpp

4.3 GetReady Class Reference

```
#include <GetReady.h>
```

Public Member Functions

- void getRegulationMatrix (GeneIM temp_gene_IM[], string TF_TF_address, string TF_Gene_address)
- int getGeneAmount ()
- int getTFAmount ()

- map< string, string > mapTFIM (string Gene_IM_address)
- map< string, string > mapPromoter (string promoters address)
- void readTUPosition (string TU_position_address)

a vector contains the position of each TU

- void getGenePromoter (GeneIM temp_gene_IM[])
- void inputUncertainGene ()

Public Attributes

double ** originalGRN

Original GRN matrix.

vector< int > TU position

a vector contains the promoter name of each promoter

vector< string > promoter_name_dict

a vector contains the promoter name of each promoter

Private Member Functions

- void readTFTF (GeneIM temp_gene_IM[], double **old_GRN, string TF_TF_address)
- void readTFGene (GeneIM temp gene IM[], double **old GRN, string TF Gene address)
- void addTF (GeneIM temp_gene_IM[], string TF Gene_address)

Private Attributes

vector< int > uncertain row

Get row number of uncertain genes.

vector< int > uncertain_column

Get column number of uncertain genes.

· int gene amount

Gene number of GRN.

• int TF_amount

Transcription Factor number of GRN.

int unknow

Uncertain gene number.

ofstream uncertain

Output stream of uncertain genes.

4.3.1 Detailed Description

Input the database files downloaded and get ready to fullfill all information needed to calculate.

1. Get gene regulatory network.

Get gene regulatory network from gene to gene interaction files like TF-TF and TF-Gene database on RegulonDB. Build a matrix which contains active(1),repressive(-1),uncertain(2),unknow or no interaction(0).

2. Map genes' and promoters' information.

Use map function to build a map of genes' information and promoters' detail preparing for getting sequence, position and so on.

3. Ensure the uncertain genes.

When build regulatory matrix, there will be some uncertain interactions such as "ada->ada" which has both active and repressive interaction based on the environment outside. An "uncertain" is output for users to make sure those uncertain interactions as needed.

4.3.2 Member Function Documentation

4.3.2.1 void GetReady::addTF (GeneIM temp_gene_IM[], string TF_Gene_address) [private]

Add TF not included in TF-TF regualtion

Some trandcription factors are not included in TF-TF regualtion but included in TF-Gene regulation.

Parameters

array	of GenelM's object
file	address of TF-Gene regualtion file

4.3.2.2 int GetReady::getGeneAmount ()

Get the amount of all genes in GRN

Returns

number of genes

4.3.2.3 void GetReady::getGenePromoter (GeneIM temp_gene_IM[])

Get promoter name and sequence

Use gene position to confirm the TU which contains it. Search promoter name in promoter info map and get its sequence.

Parameters

array	of GeneIM's object
,	,

See Also

GenelM

4.3.2.4 void GetReady::getRegulationMatrix (GeneIM temp_gene_IM[], string TF_TF_address, string TF_Gene_address)

Build **GRN** matrix

Parameters

array	of GenelM's objects
file	address of TF-TF file
file	address of TF-Gene file

See Also

GeneIM readTFTF readTFGene addTF

4.3.2.5 int GetReady::getTFAmount ()

Get the amount of TFs in GRN

Returns

number of transcription factors

4.3.2.6 void GetReady::inputUncertainGene ()

Ensure uncertain genes interaction

File named "uncertain" having been output in getRegulationMatrix function is read to change the original matrix. Users make sure the interaction and change those uncertain genes in that file.

4.3.2.7 map < string, string > GetReady::mapPromoter (string promoters_address)

Get transcription unit position

This position is used to ensure the promoter to each gene.

Parameters

C1	11 (TI): (C)
tile tile	address of TU into file

4.3.2.8 map < string, string > GetReady::mapTFIM (string Gene_IM_address)

Construct genes' information map

Parameters

file	address of gene info file

Returns

map of gene info whose flag is gene name

4.3.2.9 void GetReady::readTFGene (GeneIM temp_gene_IM[], double ** old_GRN, string TF_Gene_address)

[private]

Build TF-Gene GRN

Parameters

array	of GenelM's object
original	GRN matrix
file	address of TF-Gene regulation file

4.3.2.10 void GetReady::readTFTF (GenelM temp_gene_IM[], double ** old_GRN, string TF_TF_address) [private]

Build TF-TF GRN and get TF name

Parameters

array	of GeneIM's object
original	GRN matrix

4.4 GRN Class Reference 15

file address of TF-TF regulation file

The documentation for this class was generated from the following files:

- · GetReady.h
- · GetReady.cpp

4.4 GRN Class Reference

#include <GRN.h>

Public Member Functions

- void initialize GRN (double **old GRN, int num row, int num column)
- void construct_new_GRN (Sequence reg_unit[])
- double AminoAcidSeqAlignment (std::string query, int query_size, std::string subject, int subject_size)
- double DNASeqAlignment (std::string query, int query_size, std::string subject, int subject_size)
- void load_matrix_BLOSUM ()

Public Attributes

double ** new_GRN
 New GRN matrix.

Private Member Functions

- int AminoAcidSequenceAlignScore (char t, char s)
- int DNASequenceAlignScore (char t, char s)
- double get_max_value (double a, double b, double c)
- int get_index_of_BLOSUM50 (char s)

Private Attributes

· int number row

The number of rows of original GRN.

int number_column

The number of columns of original GRN.

int BLOSUM [20][20]

The substitution matrix.

4.4.1 Detailed Description

Calculate sequence simialrity and construct new GRN.

1. Get original Gene Regulatory Network matrix.

Get original GRN matrix from the object of class [FIXME] and add a new row and column in the end to be filled in the new relationship.

2. Get sequence simialrity.

Get sequence similarity by sequence alignment using dynamic planning with the substituion matrix BLOSU-M 50.

3. Predict exogenous gene regulatory behavior.

Using simialrity vector and regulatory vectors predict the behavior of exogenous gene. And fill the correlations in GRN.

4.4.2 Member Function Documentation

4.4.2.1 double GRN::AminoAcidSeqAlignment (std::string query, int query_size, std::string subject, int subject_size)

Align amino aicd sequence.

Parameters

query	The query amino acid sequence.
query_size	The length of query amino acid sequence.
subject	The subject amino acid sequence.
subject_size	The length of subject amino acid sequence.

Returns

Precentage similarity of the two amino acid sequences.

See Also

DNASeqAlignment

4.4.2.2 int GRN::AminoAcidSequenceAlignScore (char t, char s) [private]

Score a aligment of two amino acids.

One amino acid comes from the query sequence. Another comes from the subject sequence. The socre will be filled in the socre matrix of dynamic planning.

Parameters

t	t An amino acid comes from the subject sequence.	
S	s An amino acid comes from the query sequence.	

Returns

The score of the alignment.

See Also

DNASequenceAlignScore AminoAcidSeqAlignment

Note

The alignment score is dependent on the substitution matrix.

4.4.2.3 void GRN::construct_new_GRN (Sequence reg_unit[])

Construct the new GRN with exogenous gene's row and column filled.

4.4 GRN Class Reference 17

Parameters

reg_unit	The object array of class Sequence.	Contains original RU sequences and the query se-
	quences.	

See Also

Sequence

4.4.2.4 double GRN::DNASeqAlignment (std::string query, int query_size, std::string subject, int subject_size)

Align DNA sequence.

Parameters

query	The query DNA sequence.
query_size	The length of query DNA sequence.
subject	The subject DNA sequence.
subject_size	The length of subject DNA sequence.

Returns

Percentage simialrity of the two DNA sequence.

See Also

AminoAcidSeqAlignment

4.4.2.5 int GRN::DNASequenceAlignScore (char t, char s) [private]

Score a algnment of two DNAs. One DNA comes from the query sequence. Another comes from the subject sequence. The socre will be filled in the socre matrix of dynamic planning.

Parameters

t	A DNA comes from the subject sequence.
S	A DNA comes from the query sequence.

Returns

The score of the alignment.

See Also

AminoAcidSequenceAlignScore DNASeqAlignment

4.4.2.6 int GRN::get_index_of_BLOSUM50 (char s) [private]

Get the index of BLOSUM_50.

Parameters

s	An amino acid.
-	

Returns

The index of the amino acid in BLOSUM_50.

4.4.2.7 double GRN::get_max_value(double a, double b, double c) [private]

Find the biggest value.

Returns

The biggest value of the input.

4.4.2.8 void GRN::initialize_GRN (double ** old_GRN, int num_row, int num_column)

Initialize the object.

Parameters

old_0	V Original GRN.	
num	The numbers of rows of original GRN.	
num_col	n The numbers of column of orginal GRN.	

See Also

[FIXME]

4.4.2.9 void GRN::load_matrix_BLOSUM ()

Read the substitution matrix BLOSUM_50.

The documentation for this class was generated from the following files:

- GRN.h
- GRN.cpp

4.5 ModleNetwork Class Reference

Public Member Functions

- void **Network_1** (double **ReguMatrix, int nx, int ny)
- void Network_2 (double **Matr, int nx, int ny)

Public Attributes

- double ** MaxMa
- double * value

4.6 PSO Class Reference 19

Private Member Functions

- void RandMatrix (double **a, double **b, const int nx, const int ny)
- double FaNexVal (double **Matr, double a[], const int nx, const int i, double p[], double q[], double nn[], double r[])

Private Attributes

- double * p
- double * q
- double * r
- double * nn

The documentation for this class was generated from the following files:

- · ModleNetwork.h
- · ModleNetwork.cpp

4.6 PSO Class Reference

```
#include <PSO.h>
```

Public Member Functions

- PSO (ModleNetwork New, int row, int column)
- void getPrediction (ModleNetwork New, int row, int column)
- void getRange (int row, int column, ModleNetwork cal)
- void Filter (int row, int column)

Public Attributes

double target [GENEAM]

Target gene which needed to change.

- vector< double > toPick
- vector< double > edPick
- double random_max [GENEAM]
- double random_min [GENEAM]

Private Member Functions

- int getMinLine (double A[GENEAM], int column)
- double getFitness (vector< double > row column matrix, ModleNetwork New, int row, int column)
- double getVariance (double A[GENEAM])
- double random (double min, double max)

Private Attributes

double ** temp_GRN

Store GRN in this vector and easy using.

4.6.1 Detailed Description

Use PSO to predict interactions between gene needed to put into GRN and original network.

PSO is Particle Swarm Optimization which is be used to find the best regulation fitting to users' goal.

4.6.2 Constructor & Destructor Documentation

4.6.2.1 PSO::PSO (ModleNetwork New, int row, int column)

Initialize the PSO object Using class ModleNetwork to figure out the starting value of each genes.

Parameters

an	object of class ModleNetwork
row	number of GRN
column	number of GRN

See Also

ModleNetwork

4.6.3 Member Function Documentation

4.6.3.1 void PSO::Filter (int row, int column)

Filt predicted regualtion Classify the interactions to different degrees.

Parameters

row	number of GRN
column	number of GRN

4.6.3.2 double PSO::getFitness (vector< double > row_column_matrix , ModleNetwork New, int row, int column) [private]

Get fitness for each new regulation

Parameters

а	vector which contains the interactions between new gene and original genes
an	object of class ModleNetwork
row	number of GRN
column	number of GRN

Returns

the variance of prediction

See Also

getVariance

4.6.3.3 int PSO::getMinLine (double A[GENEAM], int column) [private]

Find out the minimum number in an array

4.6 PSO Class Reference 21

Parameters

variance	for different particles in PSO method
particle	number

Returns

this minimum line number

4.6.3.4 void PSO::getPrediction (ModleNetwork New, int row, int column)

Main function which use PSO method to predict interactions This function using getMinLine(), getFitness(), get-Variance() and random().

Parameters

an	object of class ModleNetwork
row	number of GRN
column	number of GRN

See Also

ModleNetwork getMinLine getFitness getVariance random

4.6.3.5 void PSO::getRange (int row, int column, ModleNetwork cal)

Get range of each gene's strength of expression Use random regulation to figure out the Maximum and Minimum expression strength. Those range have been put into random max and random min.

Parameters

row	number of GRN
column	number of GRN
an	object of class ModleNetwork

See Also

ModleNetwork

4.6.3.6 double PSO::getVariance (double A[GENEAM]) [private]

Figure out the variance between target and prediction

Parameters

gene expression strength array

Returns

the variance between prediction and users' goal

4.6.3.7 double PSO::random (double min, double max) [private]

Produce a random "double" figure from "min" to "max"

Parameters

Random's	lower limit
Random's	higher limit

Returns

random figure

4.6.4 Member Data Documentation

4.6.4.1 vector<double> PSO::edPick

New gene is interacted by genes in original GRN This vector contain the strength of interaction

4.6.4.2 double PSO::random_max[GENEAM]

Max expression value of genes in original GRN These value is used to set the users' target genes which need high expression.

4.6.4.3 double PSO::random_min[GENEAM]

Min expression value of genes in original GRN These value is used to set the users' target genes which need low expression.

4.6.4.4 vector<double> PSO::toPick

New gene interact to genes in original GRN This vector contain the strength of interaction

The documentation for this class was generated from the following files:

- PSO.h
- PSO.cpp

4.7 RandomSequence Class Reference

Generate a random amino aicd sequence at a specific length.

#include <RandSeq.h>

Public Member Functions

· void generate_random_amino_acid_sequence (int length)

Public Attributes

• std::string random_amino_acid_sequence

Private Member Functions

char GenerateRandomAminoAcid ()

4.8 SBOL Class Reference 23

4.7.1 Detailed Description

Generate a random amino aicd sequence at a specific length.

The documentation for this class was generated from the following files:

- · RandSeq.h
- · RandSeq.cpp

4.8 SBOL Class Reference

Creat SBOL files outside based on gene information.

```
#include <SBOL.h>
```

Public Member Functions

• void CreatSBOL (string gene_name, string ID, string left, string right, string description, string seq)

Private Member Functions

- string Combine (string title, string detail)
- string FormartStart (string a)
- string FormartEnd (string b)

Private Attributes

· string head

head of SBOL files

4.8.1 Detailed Description

Creat SBOL files outside based on gene information.

4.8.2 Member Function Documentation

4.8.2.1 string SBOL::Combine (string title, string detail) [private]

Combine SBOL detail and its lable

Parameters

lable	of info
lable	of detail about lable

Returns

string in the formart of lable and detail

4.8.2.2 void SBOL::CreatSBOL (string gene_name, string ID, string left, string right, string description, string seq)

Create SBOL files named by gene name

Parameters

string	of gene name
string	of RegulonDB ID
string	of left position
string	of right position
string	of gene description
string	of gene sequence

4.8.2.3 string SBOL::FormartEnd (string b) [private]

Formart of End lable

Parameters

	string	of lable in each line
--	--------	-----------------------

Returns

string contain both lable and end form

4.8.2.4 string SBOL::FormartStart (string a) [private]

Formart of Start lable

Parameters

string	of lable in each line

Returns

string contain both lable and start form

The documentation for this class was generated from the following files:

- SBOL.h
- SBOL.cpp

4.9 Sequence Class Reference

#include <Sequence.h>

Public Member Functions

- void initialize_Sequence (int RU_number, std::string promoter, int p_size, std::string gene, int g_size)
- void Translation ()

Public Attributes

• std::string gene_sequence

The protein coding sequence(DNA) of an regulation unit(RU).

• std::string promoter_sequence

The promoter sequence of the regulation unit(RU).

std::string amino_acid_sequence

The translation product(amino acid sequence) of the RU.

· int regulation_unit_number

Number of the RU.

• int gene_size

The length of protein coding DNA sequence.

· int promoter size

The length of promoter sequence.

• int amino_acid_sequence_size

The length of amino acid sequence.

Private Member Functions

• int Translate (char s)

4.9.1 Detailed Description

Store promoter and protein coding sequence and construct regulation unit.

An object of class Sequence is a "regualtion unit". It contains a promoter sequence, a protein coding sequence, the corresponding amino acid sequence, and thier lengths. An RU is identified by a number which is also stored in the object.

4.9.2 Member Function Documentation

4.9.2.1 void Sequence::initialize_Sequence (int RU_number, std::string promoter, int p_size, std::string gene, int g_size)

Initializes an object.

Initialize an object and translates the gene sequence into amino acid sequence. Get the length of the amino acid sequence.

Parameters

RU_number	The number of the RU.
promoter	The promoter sequence of the RU.
p_size	The length of the promoter sequence.
gene	The protein coding sequence.
g_size	The length of the protein coding sequence.

See Also

GRN

4.9.2.2 void Sequence::Translation ()

Translates gene sequence into amino acid sequence.

Some explain of the transcription and translation process:

1. Actually, the protein expression process is:

DNA -> mRNA (i.e. transcription);\ mRNA -> protein (i.e. translation).

- 2.DNA has double strands, but only one strand takes part in transcription.
- Codons are the sequence messages carried by mRNA;

Take initiation codon "AUG" for example:

- —ATG—: DNA strand which doesn't take part in transcription process;
- —TAC—: DNA strand which exactlly takes part in transcription proess;
- —AUG—: mRNA strand which carries codons. In this case, it carries initiation codon, i.e. "AUG";
- —TAC—: tRNA which also carries amino acid Methionine(M);
- 4.Owing to the DNA sequences that our database provided are the UNEXPRESSION strands, the translation process of the program can just use DNA sequence without the simulation of transcription process.

The documentation for this class was generated from the following files:

- Sequence.h
- Sequence.cpp

Chapter 5

File Documentation

5.1 define.h File Reference

Define the class define.

Macros

- #define TFScale 220
- #define GENEAM 1800

The maximum gene amount which could contain in database.

- #define NN 100
- #define PETS 128
- #define STEP (1.0/PETS)
- #define MAXTIME 100
- #define INITIALVALUE 2.5
- #define PARTICLENUM 30
- #define minAccu 0.01
- #define Pmin -1
- #define Pmax 1
- #define Vmin -0.01
- #define Vmax 0.01

5.1.1 Detailed Description

Define the class define. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China All rights reserved.

Version

1.0

Author

Wang Chenkun

28 File Documentation

```
Date
```

September 2nd, 2013

This .h file is used to define some statistic value of factors in most command line.

The maximum TF amount which could contain in database

5.1.2 Macro Definition Documentation

5.1.2.1 #define INITIALVALUE 2.5

Initial value of each gene in modle

See Also

ModleNetwork

5.1.2.2 #define MAXTIME 100

Interactions of PSO

See Also

PSO

5.1.2.3 #define minAccu 0.01

Minimum accuracy of PSO

See Also

PSO

5.1.2.4 #define NN 100

Interactions of ModleNetwork's score

See Also

ModleNetwork

5.1.2.5 #define PARTICLENUM 30

Partical number of PSO method

See Also

PSO

5.1.2.6 #define PETS 128

Pets of solving differential equations

See Also

ModleNetwork

```
5.1.2.7 #define Pmax 1

Maximum position value of each partical in PSO

See Also
PSO

5.1.2.8 #define Pmin -1

Minimum position value of each partical in PSO

See Also
PSO
```

5.1.2.9 #define STEP (1.0/PETS)

Step of solving differential equations

See Also

ModleNetwork

5.1.2.10 #define Vmax 0.01

Maximum velocity value of each partical in PSO

See Also

PSO

5.1.2.11 #define Vmin -0.01

Minimun velocity value of each partical in PSO

See Also

PSO

5.2 GenelM.cpp File Reference

Statments of funcions of the class GeneIM.

```
#include "GeneIM.h"
```

5.2.1 Detailed Description

Statments of funcions of the class GenelM. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China

All rights reserved.

30 File Documentation

Version

1.0

Author

Wang Chenkun

Date

September 2nd, 2013

5.3 GenelM.h File Reference

Define the class GeneIM.

```
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <map>
#include "define.h"
```

Classes

• class GeneIM

5.3.1 Detailed Description

Define the class GenelM. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China

All rights reserved.

Version

1.0

Author

Wang Chenkun

Date

September 2nd, 2013

5.4 GetReady.cpp File Reference

Statments of funcions of the class GetReady.

```
#include "GeneIM.h"
#include "GetReady.h"
```

5.4.1 Detailed Description

Statments of funcions of the class GetReady. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China

All rights reserved.

Version

1.0

Author

Wang Chenkun

Date

September 2nd, 2013

5.5 GetReady.h File Reference

Define the class GetReady.

```
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <algorithm>
#include <map>
#include <cstring>
#include "define.h"
#include "strlwr.h"
```

Classes

class GetReady

5.5.1 Detailed Description

Define the class GetReady. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China

All rights reserved.

Version

1.0

Author

Wang Chenkun

32 File Documentation

Date

September 2nd, 2013

5.6 GRN.cpp File Reference

Statements of functions of the class GRN.

```
#include "GRN.h"
#include "RandSeq.h"
#include <vector>
#include <string>
#include <fstream>
#include <ctime>
#include <cmath>
#include <stdlib.h>
```

Macros

• #define GAP -8

Linear gap penalty of amino acid sequence alignment.

• #define GAP_2 -1

Linear gap penalty of DNA sequence alignment.

• #define RAND_SCALE 100

The number of generated random sequences.

#define SIGMA_NUM 0.2

Filter control determins the range of similary to be filtered.

5.6.1 Detailed Description

Statements of functions of the class GRN. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China

All rights reserved.

Version

1.0

Author

Li Jinyang

Date

July 26, 2013

5.7 GRN.h File Reference

Define the class GRN.

```
#include <iostream>
#include <vector>
#include <fstream>
#include <cmath>
#include "Sequence.h"
```

Classes

• class GRN

5.7.1 Detailed Description

Define the class GRN. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China All rights reserved.

Version

1.0

Author

Li Jinyang

Date

July 26, 2013

5.8 PSO.cpp File Reference

Statments of funcions of the class PSO.

```
#include "PSO.h"
```

5.8.1 Detailed Description

Statments of funcions of the class PSO. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China All rights reserved.

Version

1.0

Author

Wang Chenkun

34 File Documentation

Date

September 2nd, 2013

5.9 PSO.h File Reference

Define the class PSO.

```
#include <vector>
#include <cstdlib>
#include "define.h"
#include "ModleNetwork.h"
```

Classes

class PSO

5.9.1 Detailed Description

Define the class PSO. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China

All rights reserved.

Version

1.0

Author

Wang Chenkun

Date

September 2nd, 2013

5.10 RandSeq.cpp File Reference

Statements of functions of class RandSeq.

```
#include "RandSeq.h"
#include <iostream>
#include <ctime>
#include "stdlib.h"
```

5.10.1 Detailed Description

Statements of functions of class RandSeq. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China

All rights reserved.

Version

1.0

Author

Li Jinyang

Date

Aug. 9, 2013

5.11 RandSeq.h File Reference

Define the class RandSeq.

```
#include <iostream>
```

Classes

• class RandomSequence

Generate a random amino aicd sequence at a specific length.

5.11.1 Detailed Description

Define the class RandSeq. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China

All rights reserved.

Generate a random amino acid sequence at a specific length.

Version

1.0

Author

Li Jinyang

Date

Aug. 9, 2013

5.12 SBOL.cpp File Reference

Statments of funcions of the class SBOL.

```
#include "SBOL.h"
```

36 File Documentation

5.12.1 Detailed Description

Statments of funcions of the class SBOL. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China All rights reserved.

Version

1.0

Author

Wang Chenkun

Date

September 2nd, 2013

5.13 SBOL.h File Reference

Define the class SBOL.

```
#include <fstream>
#include <iostream>
#include <string>
```

Classes

• class SBOL

Creat SBOL files outside based on gene information.

5.13.1 Detailed Description

Define the class SBOL. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China All rights reserved.

Version

1.0

Author

Wang Chenkun

Date

September 2nd, 2013

5.14 Sequence.cpp File Reference

Statments of funcions of the class Sequence.

```
#include "Sequence.h"
```

5.14.1 Detailed Description

Statments of funcions of the class Sequence. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China

All rights reserved.

Version

1.0

Author

Li Jinyang

Date

July 26, 2013

5.15 Sequence.h File Reference

Define the class Sequence.

```
#include <iostream>
```

Classes

· class Sequence

5.15.1 Detailed Description

Define the class Sequence. COPYRIGHT NOTICE

Distribute under BSD License

Copyright (c) 2013, iGEM Software Team of University of Science and Technology of China

All rights reserved.

Achieve the construction of a regulation unit. The object contains a a promoter sequence, the length of the promoter sequence, a protein coding sequence, the length of the promoter sequence, the amino acid sequence translated from the protein coding sequence, and the length of the amino acid sequence. The regulation unit is identified by a number which is alse stored in the object.

Version

1.0

38 File Documentation

Author

Li Jinyang

Date

July 26, 2013