Nous innovons pour votre réussite!

Espace vectorielles

(Bases orthonormales)

A. Ramadane, Ph.D.

Nous innovons pour votre réussite!

Produit scalaire et base orthonormale

rappel

$$\overrightarrow{a \cdot b} = \|a\| \|b\| \cos\theta \qquad 0 \le \theta \le \pi$$

Définition 1.7 Soit V un espace vectoriel muni d'un produit scalaire

- Deux vecteurs \vec{u} et \vec{v} sont orthogonaux si $\vec{u} \cdot \vec{v} = 0$.
- $\bullet \quad \|\vec{u}\|^2 = \vec{u} \cdot \vec{u} \ .$
- Un vecteur \vec{u} est unitaire si $\vec{u} \cdot \vec{u} = 1$.
- L'ensemble {\vec{u}_1, \vec{u}_2, ..., \vec{u}_k} de vecteurs est un ensemble orthogonal si \vec{u}_i \cdot \vec{u}_j = 0 pour tout i ≠ j. Si cet ensemble est une base, cette base est dite orthogonale.
- Un ensemble orthogonal tel que chaque vecteur est unitaire est dit orthonormal.
 Si cet ensemble est une base, c'est une base orthonormale.

base orthonormale: simplification des calculs!

Produit scalaire et base orthonormale

Nous innovons pour votre réussite!

THÉORÈME 8 Soit $S = \{\vec{v_1}, \vec{v_2}, ..., \vec{v_n}\}$ un ensemble orthogonal dans un espace vectoriel avec un produit scalaire

Alors S est un système libre

Nous innovons pour votre réussite!

DÉMONSTRATION

à montrer:
$$a_1 \vec{v_1} + a_2 \vec{v_2} + ... + a_n \vec{v_n} = \vec{0}$$
 (1)

a pour seule solution $a_1 = a_2 = ... = a_n = 0$

on effectue le produit scalaire de chaque membre de l'équation (1) par v_ℓ

$$(a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} + ... + a_n \overrightarrow{v_n}) \cdot \overrightarrow{v_\ell} = 0 \cdot \overrightarrow{v_\ell} = 0$$

$$a_\ell(\overrightarrow{v_\ell} \cdot \overrightarrow{v_\ell}) = 0$$

$$a_\ell = 0 \qquad \ell = 1, 2, ..., n$$

Produit scalaire et base orthonormale

décomposition d'un vecteur dans une base orthonormale: simplification des calculs!

THÉORÈME 9 : Soit V un espace vectoriel de dimension n muni d'un produit scalaire. Soit S = $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_n}\}$ une base orthonormale de V

Alors tout vecteur v de V peut s'écrire :

Nous innovons pour votre réussite!

DÉMONSTRATION

$$\overrightarrow{v} = c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + \dots + c_n \overrightarrow{v_n}$$

$$\overrightarrow{v} \cdot \overrightarrow{v_1} = c_1 (v_1 \cdot v_1) = c_1$$
idem pour c_2, \dots, c_n donne $c_\ell = (\overrightarrow{v} \cdot \overrightarrow{v_\ell})$ $\ell = 1, 2, \dots, n$

Nous innovons pour votre réussite!

Exemple

<u>Solution</u>

$$S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$$
 $\overrightarrow{v_1} = \overrightarrow{j}$ $\overrightarrow{v_2} = (-4/5) \ i + (3/5) \ k$ $\overrightarrow{v_3} = (3/5) \ i + (4/5) \ k$ exprimer le vecteur $\overrightarrow{v} = i + j + k$ comme une combinaison linéaire de S

·

S est une base orthonormale : vérification directe

on calcule le produit scalaire de \overrightarrow{v} avec chacun des $\overrightarrow{v_\ell}$

bases orthonormales: les meilleures!

Nous innovons pour votre réussite!

Produit scalaire et base orthonormale

THÉORÈME 10 Si B =
$$\{\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}\}$$
 est une base orthonormale de l'espace vectoriel V et si \overrightarrow{u} et \overrightarrow{v} sont des vecteurs de V
$$\overrightarrow{u} = \overrightarrow{u_1e_1} + \overrightarrow{u_2e_2} + ... + \overrightarrow{u_ne_n}$$

$$\overrightarrow{v} = \overrightarrow{v_1e_1} + \overrightarrow{v_2e_2} + ... + \overrightarrow{v_ne_n}$$
 Alors
$$\overrightarrow{u \cdot v} = \overrightarrow{u_1v_1} + \overrightarrow{u_2v_2} + ... + \overrightarrow{u_nv_n}$$

$$|\overrightarrow{u}|^2 = \overrightarrow{u_1}^2 + \overrightarrow{u_2}^2 + ... + \overrightarrow{u_n}^2$$

Nous innovons pour votre réussite!

Peut-on remplacer une base quelconque par une base orthonormale? réponse : procédé GRAM-SCHMIDT

Définition 1.8 Soit V un espace vectoriel muni d'un produit scalaire et soit W un sous-espace vectoriel de V. Le sous-ensemble

$$\{\vec{u} \in V \mid \vec{u} \cdot \vec{w} = 0, \forall \vec{w} \in W\}$$

est dit l'orthogonal de W et est noté W^{\perp} .

Nous innovons pour votre réussite!

EXEMPLE Soit V³
$$W = [i-j+2k]$$
 un sous-espace de V³

Déterminer l'espace orthogonal à W: W^{\perp}

Solution: $W^{\perp} = \{ u \in V^3 \mid u \cdot w = 0 \text{ pour tout } w \in W \}$
 $w = c(i-j+2k)$ $c \in \cdot \cdot \cdot \cdot = \text{nombres réels})$
 $u = x i + y j + z k$
 $v = c(x-y+2z) = 0$ pour tout $v = c(x-y+2z) = 0$
 $v = c(x-y+2z) = 0$ pour tout $v = c(x-y+2z) = 0$
 $v = c(x-y+2z) = 0$ pour tout $v = c(x-y+2z) = 0$

Name : name name : ptre réussite ! <u>EXEMPLE</u> suite on connait la base de W : vecteur w = i − j + 2k déterminer une base de W⊥ \overrightarrow{u} = ai + bj + ck a? b? c? → → u • w = 0 il faut a - b + 2c = 0une équation 3 inconnues : beaucoup de solutions par exemple solution 1: c = 0 donne a = bu=i+j avec a=b=1 et c=0solution 2: b = 0 donne a = -2cu = 2i - k avec c = -1 a = -2 b = 0

Nous innovons pour votre réussite!

La base de W[⊥] complète orthogonalement la base de V mais la base totale n'est pas forcément orthogonale

Théorème 11 Soit V un espace vectoriel muni d'un produit scalaire et soit W un sous-espace vectoriel de V ayant une base orthogonale $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_r\}$.

La projection orthogonale de \vec{u} sur W notée $\operatorname{proj}_{\mathbb{W}}$ \vec{u} est la somme des projections de \vec{u} sur les vecteurs de la base de W ,

$$\operatorname{proj}_{W} \vec{u} = \frac{(\vec{u} \cdot \vec{v}_{1})}{(\vec{v}_{1} \cdot \vec{v}_{1})} \vec{v}_{1} + \frac{(\vec{u} \cdot \vec{v}_{2})}{(\vec{v}_{2} \cdot \vec{v}_{2})} \vec{v}_{2} + \dots + \frac{(\vec{u} \cdot \vec{v}_{r})}{(\vec{v}_{r} \cdot \vec{v}_{r})} \vec{v}_{r}$$
(1)

et ce vecteur est unique quelle que soit la base orthogonale choisie.

Nous innovons pour votre réussite!

DÉMONSTRATION

- a) $\overrightarrow{w}_1 = \overrightarrow{proj}_W \overrightarrow{u}$ est un vecteur de W car c'est une combinaison linéaire des \overrightarrow{v}_ℓ $\ell = 1, 2,...$ r
- b) $\overrightarrow{w}_2 = \overrightarrow{u} \operatorname{proj}_{W} \overrightarrow{u}$ est un vecteur de W^{\perp} on a $\overrightarrow{w}_2 \perp \overrightarrow{v}_{\ell}$ puisque que $\overrightarrow{w}_2 \cdot \overrightarrow{v}_{\ell} = 0$ tout ℓ \overrightarrow{w} vecteur quelconque de W $\overrightarrow{w} = \overrightarrow{c}_1 \overrightarrow{v}_1 + \overrightarrow{c}_2 \overrightarrow{v}_2 + \dots + \overrightarrow{c}_r \overrightarrow{v}_r$ $\overrightarrow{w}_2 \cdot \overrightarrow{w} = \overrightarrow{c}_1 (\overrightarrow{w}_2 \cdot \overrightarrow{v}_1) + \overrightarrow{c}_2 (\overrightarrow{w}_2 \cdot \overrightarrow{v}_2) + \dots + \overrightarrow{c}_r (\overrightarrow{w}_2 \cdot \overrightarrow{v}_r) = \overrightarrow{0}$
- c) unicité de $\operatorname{proj}_W \overrightarrow{u}$: ne dépend pas de la base orthonormale choisie soient $B = \{v_1, v_2, ..., v_r^{-1}\}$ et $B' = \{v_1', .v_2', ..., v_1'\}$ 2 bases ortho de W $w_2 = u w_1$ ε W^{\perp} et $w_2 = u w_1'$ ε W^{\perp} $w_2 w_2'$ est dans W^{\perp} mais $w_2 w_2' = (u w_1) (u w_1') = w_1' w_1$ est dans W et W^{\perp} donc $w_1 w_1' = 0$ donc $w_1 = w_1'$

Nous innovons pour votre réussite!

DÉFINITION

Soit V un espace vectoriel muni d'un produit scalaire et u ε V Soit W un sous-espace de V vecteur $\overrightarrow{w}_2 = \overrightarrow{u} - \operatorname{proj}_W \overrightarrow{u}$ est orthogonal à tout vecteur de W \overrightarrow{w}_2 s'appelle la composante de \overrightarrow{u} orthogonale à W

EXEMPLE

Soit W sous-espace de V³ engendré par $\overrightarrow{v_1} = j$ et $\overrightarrow{v_2} = 3i - 4k$ projection de $\overrightarrow{u} = i + j + k$ sur W calculer le vecteur projection de \overrightarrow{u} sur W ainsi que la composante de \overrightarrow{u} dans W $^{\perp}$

Nous innovons pour votre réussite!

EXEMPLE '

Soit W sous-espace de V³ engendré par $\overrightarrow{v_1} = j$ et $\overrightarrow{v_2} = 3i - 4k$ projection de $\overrightarrow{u} = i + j + k$ sur W

$$\begin{aligned} &\text{proj}_{W} \overrightarrow{u} = c_{1} \overrightarrow{v_{1}} + c_{2} \overrightarrow{v_{2}} \\ &c_{1} = (\overrightarrow{u} \cdot \overrightarrow{v_{1}}) / (\overrightarrow{v_{1}} \cdot \overrightarrow{v_{1}}) = 1 / 1 = 1 \\ &c_{2} = (\overrightarrow{u} \cdot \overrightarrow{v_{2}}) / (\overrightarrow{v_{2}} \cdot \overrightarrow{v_{2}}) = -1 / 25 = - (1 / 25) \\ &\text{proj}_{W} \overrightarrow{u} = \overrightarrow{v_{1}} - (1 / 25) \overrightarrow{v_{2}} = (-3 / 25) \ i + j + (4 / 25) \ k \\ &\overrightarrow{u} - \text{proj}_{W} \overrightarrow{u} = (28 / 25) \ i + (21 / 25) \ k \end{aligned}$$

Nous innovons pour votre réussite!

Procédé de Gram-Schmidt

Pour appliquer le théorème 11 : il faut une base orthogonale que faire si la base n'est pas orthogonale?

RÉPONSE: on applique le procédé de Gram-Schmidt

Jorgen GRAM (1850-1916)

Erhard SCHMIDT (1876-1959)

Nous innovons pour votre réussite!

Procédé Gram-Schmidt dans V³

```
B = (b_1, b_2, b_3) une base quelconque de V^3
Construction d'une base orthogonale B' = (b'_1, b'_2, b'_3)
b'_1 = b_1 W1 = [b'_1] = [b_1] l'espace engendré par b'_1
W2 = [b'<sub>1</sub>, b'<sub>2</sub>] espace engendré par b'<sub>1</sub> et b'<sub>2</sub> où b'<sub>2</sub> \epsilon W<sub>1</sub>^{\perp}
pour avoir une base orthonormale B":
      on normalise les vecteurs b'1, b'2, b'3
```


Nous innovons pour votre réussite!

B =
$$(\overrightarrow{b_1}, \overrightarrow{b_2}, \overrightarrow{b_3})$$
 base (à vérifier) $\overrightarrow{de} \ V^3$ où $b_1 = \overrightarrow{i} + j + k$ $b_2 = i + j$ $b_3 = i$
Remplacer B par une base orthogonale B' = (b'_1, b'_2, b'_3)

Nous innovons pour votre réussite!

Procédé de Gram-Schmidt

 $B = (b_1, b_2, b_3)$ base (à vérifier) $\overrightarrow{de} V^3$ où $b_1 = \overrightarrow{i} + j + k$ $\overrightarrow{b_2} = i + j$ $b_3 = i$ Remplacer B par une base orthogonale B' = (b'₁, b'₂, b'₃) <u>étape 1</u>: $\vec{b}_1 = \vec{b}_1 = i + j + k$ W1 = $[\vec{b}_1]$ <u>étape</u> 2 : $b'_2 = b_2 - \text{proj}_{W1} b_2 = b_2 - [(b_2 \cdot b'_1) / (b'_1 \cdot b'_1)] b'_1$ $= \vec{b}_2 - (2/3) \vec{b}_1 = (i + j - 2k)/3$ $W2 = [\vec{b}_1, \vec{b}_2]$ $\underbrace{\text{étape}}_{3} : b_{3} = b_{3} - \text{proj}_{W2} b_{3} = b_{3} - [(b_{3} \cdot b_{1}) / b_{1} \cdot b_{1}] b_{1}$ - [$(b_3 \cdot b'_2) / b'_2 \cdot b'_2$] b'_2

base orthonormale B" = $((i + j + k)/\sqrt{3}, (i + j - 2k)/\sqrt{6}, (i - j)/\sqrt{2})$

Nous innovons pour votre réussite!

Procédé de Gram-Schmidt

Théorème 12 : Soit V un espace vectoriel muni d'un produit scalaire et soit $W = [\vec{u}_1 \ , \ \vec{u}_2 \ , \ \dots, \ \vec{u}_r]$ un sous-espace vectoriel de V ,

Alors tout vecteur \vec{u} de V peut s'écrire sous la forme $\vec{u} = \vec{w}_1 + \vec{w}_2$ avec $\vec{w}_1 \in W$ et $\vec{w}_2 \in W^{\perp}$.

DÉMONSTRATION

procédé GRAM-SCHMIDT à W pour obtenir la base

orthogonale
$$B = (u'_1, u'_2, ..., u'_r)$$

théorème 11 :
$$\overrightarrow{u} = \operatorname{proj}_{W} \overrightarrow{u} + (\overrightarrow{u} - \operatorname{proj}_{W} \overrightarrow{u})$$

$$= \overset{\rightarrow}{w_1} + \overset{\rightarrow}{w_2} \qquad \overset{\rightarrow}{w_1} \in W \qquad \overset{\rightarrow}{w_2} \in W^{\perp}$$

Nous innovons pour votre réussite!

vecteurs colonnes + matrice de transition

but : méthodes pour passer d'une base à une autre base

vecteurs: considérés sous format de colonnes

Définition 2.1 Une base ordonnée d'un espace vectoriel V est une suite

 $B = (\vec{b_1}, \vec{b_2}, ..., \vec{b_n})$ de vecteurs tels que l'ensemble $\{\vec{b_1}, \vec{b_2}, ..., \vec{b_n}\}$ constitue une base de V .

Tout vecteur $\vec{v} \in V$ a une représentation unique

$$\vec{v} = v_1 \vec{b}_1 + v_2 \vec{b}_2 + \dots + v_n \vec{b}_n$$

où le nombre réel v_i s'appelle la i $^{\mathsf{eme}}$ composante de \vec{v} par rapport à B .

On peut dès lors parler du vecteur colonne v constitué des composantes de ce vecteur

$$\begin{bmatrix} \vec{v} \end{bmatrix}_{B} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{bmatrix} = \begin{bmatrix} v_{1} & v_{2} & \cdots & v_{n} \end{bmatrix}^{t}.$$
'exposant' t : opération de

transposition

Nous innovons pour votre réussite!

vecteurs colonnes + matrice de transition

EXEMPLE 2.1

C = (i, j) base usuelle B = (i - j, i + j) autre base

- a) écrire u = 2i + j comme vecteur colonne dans la base usuelle
- b) écrire u comme vecteur colonne dans la base B

vecteurs colonnes + matrice de transition

Nous innovons pour votre réussite!

EXEMPLE 2.1

$$C = (i, j)$$
 base usuelle $B = (i - j, i + j)$ autre base

- a) écrire $\vec{u} = 2i + j$ comme vecteur colonne dans la base usuelle
- b) écrire u comme vecteur colonne dans la base B

SOLUTION

a) u est déjà décomposé dans la base C: [u]_C = [2 1]^t

b)
$$\overrightarrow{u} = c_1 (i - j) + c_2 (i + j) = (1/2) (i - j) + (3/2) (i + j) = 2i + j$$

$$\Rightarrow [u]_B = [(1/2) (3/2)]^t$$

vecteurs colonnes + matrice de transition

Nous innovons pour votre réussite!

propriété des vecteurs colonnes

Théorème 13 Soit V un espace vectoriel ayant pour base $B=(\vec{b}_1,\vec{b}_2,...,\vec{b}_n)$. Si \vec{u} et \vec{v} sont des vecteurs de V et c un scalaire quelconque, alors

$$\left[\vec{u}+\vec{v}\,\right]_B = \left[\vec{u}\,\right]_B + \left[\vec{v}\,\right]_B$$

et

$$[c\vec{u}]_B = c[\vec{u}]_B.$$

Matrice de transition dans V (V² ou V³)

Nous innovons pour votre réussite!

Cas de V²

2 bases ordonnées de V^2 $B = (b_1, b_2)$ $B' = (b_1, b_2)$

$$B = (b_1, b_2)$$

$$B' = (b'_1, \vec{b'}_2)$$

vecteur de V² s'écrit d'une manière unique dans chaque base

$$\overrightarrow{u} = u_1 \overrightarrow{b_1} + u_2 \overrightarrow{b_2}$$
 et $\overrightarrow{u} = u_1 \overrightarrow{b_1} + u_2 \overrightarrow{b_2}$ (1)

b'₁ et b'₂ s'exprime dans la base B : B' dans B

$$\overrightarrow{b}'_1 = a_{11} \overrightarrow{b}_1 + a_{21} \overrightarrow{b}_2$$
 (2)

$$\Rightarrow \Rightarrow \Rightarrow \Rightarrow$$

b'₂ = a₁₂ b₁ + a₂₂b₂ (3)

(2) et (3) dans (1) donne

$$\rightarrow$$
 u = $(a_{11}u'_1 + a_{12}u'_2) b_1 + (a_{21}u'_1 + a_{22}u'_2) b_2$

$$\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \begin{bmatrix}
u'_1 \\
u'_2
\end{bmatrix} \begin{bmatrix}
u'_1 \\
u'_2
\end{bmatrix}
\begin{bmatrix}
u'_1 \\
u'_2
\end{bmatrix}
\begin{bmatrix}
u'_1 \\
u'_2
\end{bmatrix}$$

$$[u]_B = {}_B P_{B'} [u]_{B'}$$

vecteurs colonnes + matrice de transition

Nous innovons pour votre réussite!

Définition 2.2 Soit $B=(\vec{b}_1,\vec{b}_2)$ et $B'=(\vec{b}_1',\vec{b}_2')$ deux bases de V^2 . Alors

$$_{B}P_{B'} = [[\vec{b}_{1}']_{B} \quad [\vec{b}_{2}']_{B}]$$

est dite la matrice de transition de B' à B , et on a

$$[\vec{u}]_B =_B P_{B'}[\vec{u}]_{B'}$$

Définition 2.3 Soit $B = (\vec{b_1}, \vec{b_2}, \vec{b_3})$ et $B' = (\vec{b_1}, \vec{b_2}, \vec{b_3})$ deux bases de V^3 .

$$_{B}P_{B'} = [[\vec{b}'_{1}]_{B} \ [\vec{b}'_{2}]_{B} \ [\vec{b}'_{3}]_{B}]$$

est dite la matrice de transition de B' à B, et on a

$$[\vec{u}]_B = {}_B P_{B'} [\vec{u}]_{B'}$$
 (1)

remarque

inversion de B et B' dans l'équation (1)

alors

$$(_{B}, P_{B})^{-1} = {}_{B}P_{B},$$

$$(_{B}P_{B'})^{-1} = _{B'}P_{B}$$

Nous innovons pour votre réussite!

EXEMPLE

B =
$$(\vec{b}_1, \vec{b}_2, \vec{b}_3)$$
 $\vec{b}_1 = i + 2j + k$ $\vec{b}_2 = 2i + 9j + 0k$ $\vec{b}_3 = 3i + 3j + 4k$
C = (i, j, k) base classique

- a) Déterminer les composantes de u = i + 2j + 3k dans la base B
- b) Écrire le vecteur v de V dans la base C si [v]_B = [3 2 1]^t

Nous innovons pour votre réussite!

SOLUTION

a)
$$_{C}P_{B} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{bmatrix}$$
 $_{B}P_{C} = (_{C}P_{B})^{-1} = \begin{bmatrix} -36 & 8 & 21 \\ 5 & -1 & -3 \\ 9 & -2 & -5 \end{bmatrix}$
 $_{[u]_{B}} = {_{B}P_{C}[u]_{C}} = [43 & -6 & -10]^{t} = 43b1 - 6b2 - 10b3$

b) $_{V}^{*} = 3b_{1}^{*} + 2b_{2}^{*} + b_{3}^{*} = 3(i + 2j + k) + 2(2i + 9j) + (3i + 3j + 4k)$
 $_{=10i + 27j + 7k}$

Nous innovons pour votre réussite!

Soit
$$B = (b_1, b_2)$$
 une base de V^2 $b_1 = (i - j) / \sqrt{2}$ $b_2 = (i + j) / \sqrt{2}$

$$C = (c_1, c_2)$$
 une base de V^2 $c_1 = i + 2j$ $c_2 = 3i - j$

Déterminer la matrice de transition BPC de C à B

Nous innovons pour votre réussite!

SOLUTION

par définition
$$_{B}P_{C} = [[c_{1}]_{B} [c_{2}]_{B}]$$

Mais B est orthonormale + théorème 9

$$\vec{c_1} = (\vec{c_1} \cdot \vec{b_1}) \vec{b_1} + (\vec{c_1} \cdot \vec{b_2}) \vec{b_2} = (-1/\sqrt{2}) \vec{b_1} + (3/\sqrt{2}) \vec{b_2}$$

$$\vec{c_2} = (\vec{c_2} \cdot \vec{b_1}) \vec{b_1} + (\vec{c_2} \cdot \vec{b_2}) \vec{b_2} = (4/\sqrt{2}) \vec{b_1} + (2/\sqrt{2}) \vec{b_2}$$

$$BP_C = (1/\sqrt{2}) \begin{bmatrix} -1 & 4 \\ 3 & 2 \end{bmatrix}$$

Nous innovons pour votre réussite!

Calcul BPB, est simplifié : si B base ortho normale si B' obtenu de B par Gram-Schmidt

REMARQUE

si on applique le procédé de Gram-Schmidt à une base B pour obtenir un base orthogonale B' ou une base orthonormale B'

ALORS toutes les <u>matrices de transition</u> entre les bases B, B' et B'' sont des <u>matrices trianqulaires supérieures</u>.

BPB' par le calcul des combinaisons linéaires des vecteurs de B' selon B : calcul simple avec diagonale principale constitué de 1

BP{B"} calcul est simplifié

Nous innovons pour votre réussite!

- B' base orthogonale obtenue de B par Gram-Schmidt
- B" base orthonormale obtenue de B par Gram-Schmidt

Déterminer BPB, et BPB,

Nous innovons pour votre réussite!

<u>SOLUTION</u>

étape 1 :
$$\vec{b}_1 = \vec{b}_1 = 1\vec{b}_1 + 0\vec{b}_2 + 0\vec{b}_3$$

étape 1 :
$$\vec{b}_{1}' = \vec{b}_{1} = 1\vec{b}_{1} + 0\vec{b}_{2} + 0\vec{b}_{3}$$

étape 2 : $\vec{b}_{2}' = \vec{b}_{2} - (2/3) \vec{b}_{1} = (-2/3) \vec{b}_{1} + 1 \vec{b}_{2} + 0 \vec{b}_{3}$

étape 3 :
$$b_{3}^{2} = b_{3} - (1/3) b_{1}^{2} - (1/2) (b_{2}^{2} - (2/3)b_{1}^{2} = 0b_{1} - (1/2)b_{2}^{2} + 1b_{3}^{2}$$

$$_{\mathsf{B}}\mathsf{P}_{\mathsf{B}}^{\mathsf{,}} = \begin{bmatrix} 1 & -2/3 & 0 \\ 0 & 1 & -1/2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$_{\mathsf{B}}\mathsf{P}_{\mathsf{B}}$$
" = $\begin{bmatrix} 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 0 & 3/\sqrt{6} & -1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} \end{bmatrix}$

avec la base orthonormale B"

