Sistemi Elettronici, Tecnologie e Misure Appello del 15/2/2019

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
С						
d						

- 1. Un amplificatore operazionale con prodotto banda-guadagno pari a 1MHz, resistenze d'ingresso e uscita trascurabili (cioè $R_{\rm in,d} \to \infty, R_{\rm in,cm} \to \infty, R_{\rm out} = 0$), è utilizzato in un amplificatore di tensione invertente con amplificazione di tensione in banda -9. La banda dell'amplificatore di tensione invertente è pari a:
 - (a) 900Hz
 - (b) 10MHz
 - (c) 100kHz
 - (d) 90kHz
- 2. In un circuito contenente un diodo ideale D siè fatta l'ipotesi che il diodo sia in conduzione. L'ipotesi è verificata se:
 - (a) $v_{\rm D} < 0$
 - (b) $v_{\rm D} > 0$
 - (c) $i_{\rm D} > 0$
 - (d) $i_{\rm D} < 0$
- 3. In uno stadio amplificatore MOS source comune, descritto dai parametri $A_{\rm v}$, $R_{\rm in}$ e $R_{\rm out}$:
 - (a) è sempre $A_{\rm v} < 0$ (stadio invertente)
 - (b) $R_{\rm in}$ dipende dalla transconduttanza $g_{\rm m}$ del transistore MOS
 - (c) $R_{\rm out}$ dipende dalla transconduttanza $g_{\rm m}$ del transistore MOS
 - (d) l'ingresso è applicato al terminale di gate e l'uscita è prevelata al terminale di source del transistore
- 4. In un amplificatore differenziale:
 - (a) se il CMRR è infinito, la tensione d'uscita non dipende dalla tensione di modo comune in ingresso
 - (b) se il CMRR è nullo, la tensione d'uscita non dipende dalla tensione di modo comune in ingresso
 - (c) se il CMRR è finito, la tensione d'uscita non dipende dalla tensione di modo comune in ingresso
 - (d) se il CMRR è finito, la tensione d'uscita non dipende dalla tensione di modo differenziale in ingresso
- 5. Un amplificatore di transresistenza è ottenuto collegando in cascata un amplificatore di corrente descritto dai parametri $A_{\rm i,1}, R_{\rm in,1}, R_{\rm out,1}$, (tutti finiti e non nulli) ed un amplificatore di transresistenza descritto dai parametri $R_{\rm m,2}$ finito e non nullo, $R_{\rm in,2}=0$, $R_{\rm out,2}=0$. La transresisrenza complessiva R_m della cascata dei due stadi è data da
 - (a) $A_{i,1}R_{in,1}$
 - (b) $R_{m,2}$
 - (c) $A_{i,1}R_{m,2}\frac{R_{\text{out},1}}{R_{\text{in},1}+R_{\text{out},1}}$
 - (d) $A_{i,1}R_{m,2}$
- 6. In un integratore invertente basato su operazionale ideale (indicare quale delle seguenti affermazioni è errata):
 - (a) è presente un condensatore C collegato tra ingresso invertente ed uscita
 - (b) l'impedenza d'ingresso del circuito è capacitiva ed è pari all'impedenza del condensatore C che compare nella rete di retroazione
 - (c) la resistenza d'uscita in continua è nulla
 - (d) la resistenza d'ingresso vista dalla sorgente in continua è finita e non nulla

Esercizio n. 1

Con riferimento al circuito in figura:

- 1. verificare il funzionamento del transistore MOS in regione di saturazione;
- 2. nel limite statico (C aperto), determinare in condizioni di piccolo segnale: $A_{\rm v}=v_{\rm out}/v_{\rm in}$, $R_{\rm in}$ e $R_{\rm out}$ come indicato in figura (sono richieste le espressioni analitiche ed i valori numerici);
- 3. assumendo C=10nF, calcolare la funzione di trasferimento in frequenza $A_{\rm v}(s)=V_{\rm out}(s)/V_{\rm in}(s)$ e tracciarne il diagramma di Bode in modulo e fase;
- 4. alla frequenza $f=500~{\rm kHz}$ l'amplificatore viene collegato a una sorgente di tensione con resistenza di sorgente pari a $R_{\rm s}=100\Omega$ ed a un carico $R_{\rm L}=20~{\rm k}\Omega$. Quale sarà il guadagno di tensione dello stadio in queste condizioni?

Esercizio 2.

Nel circuito in figura si assuma $R_1 \dots R_8 = R = 10 \mathrm{k}\Omega$ e si determini:

- 1. a tensione d'uscita $v_{\rm OUT}$, assumendo che gli amplificatori operazionali siano ideali (sono richieste: l'espressione simbolica di $v_{\rm OUT}$ in funzione di $R_1, \dots R_8$ e l'espressione di $v_{\rm OUT}$ ottenuta sostituendo i valori numerici delle resistenze);
- l'intervallo dei valori che può assumere l'errore in continua sulla tensione d'uscita v_{OUT}, assumendo che l'input offset voltage massimo (in modulo) riportato sui dati di targa di tutti gli operazionali presenti sia pari a 5mV e che input bias current ed input offset current siano sempre trascurabili;
- 3. le resistenze equivalenti $R_{\rm eq1}$ ed $R_{\rm eq2}$ viste ai capi dei generatori di corrente i_1 ed i_2 , assumendo che gli operazionali siano ideali.