Deep Learning in Computer Vision

Mask R-CNN for Instance Segmentation

Instructor: Dr. Mehrandezh

Student: Marzieh Zamani

Mask R-CNN for Instance Segmentation

- Applications:
 - Segmenting and masking skin lesions

Segmenting and masking round pills

From Object Detection to Segmentation

Object detection:

- Detecting objects in an image
- Output: bounding box coordinates and class labels

Segmentation:

- Partitioning an image into parts
- No understanding of the resulting segmented image parts
- Output: pixel-wise mask for all object classes

Semantic Segmentation vs. Instance Segmentation

- Semantic segmentation treats multiple objects of the same class as a single entity;
- Instance segmentation treats multiple objects of the same class as distinct individual objects (or instances).

(d) Instance segmentation

Faster R-CNN

- Stage 1 (RPN) => Proposal ROI
- Stage 2 => Object Bounding-Box & Class

Mask R-CNN=Faster R-CNN + FCN

Mask R-CNN=Faster R-CNN + FCN

- Mask R-CNN=>
 - Class labels
 - Object bounding box
 - Pixel-wise masks

Faster R-CNN

Mask R-CNN

Output mask

Mask RCNN for Segmenting Skin Lesion

- Melanoma is also the deadliest form of skin cancer
- ► Early detection of melanoma => survival rates of 95%.

Mask RCNN for Segmenting Skin Lesion

- Dataset: The International Skin Imaging Collaboration (ISIC) Skin Lesion (2018)
 - Training_Input: 2594 images of skin lesions
 - Training_GroundTruth: 2594 corresponding masks

Mask RCNN for Segmenting Skin Lesion

Dataset: The ISIC Skin Lesion (2018)

Usage	Number of Images	Source Dataset
Training	80% x 2000 = 1600	ISIC Skin Lesion Dataset (2018)
Evaluation	20% x 2000 = 400	ISIC Skin Lesion Dataset (2018)
Prediction	594	ISIC Skin Lesion Dataset (2018)

Training Mask RCNN for Segmenting Skin Lesion

- Initial weights from mask_rcnn_coco.h5
- Training Head (20 epochs)
- Training all layers (20 epochs)
 - Unsatisfactory due to memory shortage

Mask RCNN for Segmenting Skin Lesion => Results

Mask RCNN for Segmenting Skin Lesion => Remarks

Remarks from results:

- These 6 images of skin lesions and their corresponding masks have been selected form prediction dataset in a way to represent the best and worst performances of Mask RCNN
- Results 1 to 4 show the significant ability of Mask RCNN network for segmenting skin lesions;
- On the other hand, results 5, and 6 show that the mask precision would suffer for challenging skin lesions (e.g. when highly scattered, covered by hair or etc.)

Mask RCNN for Segmentation of Round Pills

- Over 3.3 million injuries and deaths / year due to the incorrect pill being taken.
- > => the National Library of Medicine's (NLM) pill identification challenge

Mask RCNN for Segmenting Round Pills

- Dataset: The National Library of Medicine's (NLM)
 2016 pill identification challenge
 - Consumer-quality Images
 - Reference Images
 - Ground Truth Table

Mask RCNN for Segmenting Round Pills

Used Datasets

Usage	Number of Images	Source Dataset	Sample Image
Training	75% x 60 = 45	NLM (2016) pill dataset- Reference Images	
Evaluation	25% x 60 = 15	NLM (2016) pill dataset- Reference Images	7663
Prediction	100	NLM (2016) pill dataset- Consumer-quality Images	
Prediction	20	Google Images Search Results	3

Mask RCNN for Segmenting Round Pills

Annotating images in VGG Image Annotator (VIA)

Training Mask RCNN for Segmenting Round Pills

- Initial weights from mask_rcnn_coco.h5
- Training Head (10 epochs)
- Training all layers (10 epochs)
 - Unsatisfactory due to memory shortage

Mask RCNN for Segmenting Round Pills => Predicting Consumer-quality Images

Mask RCNN for Segmenting Round Pills => Predicting Consumer-quality Images

Remarks from results:

- Mask RCNN is successfully segmenting and masking pills from Consumer-quality Images;
- However, the problem is that it mistakenly detects non-round pills as round.

Mask RCNN for Segmenting Round Pills => Predicting Images from Internet

Mask RCNN for Segmenting Round Pills => Predicting Images from Internet

Remarks from results:

- Mask RCNN precision is significantly lower when applied to images of pills in hands;
- For 30% of images, Mask RCNN is able to segment all round pills; However, for the remaining 70% (such as the result 6) segmentation is not satisfactory.

Required software and libraries for implementation of Mask RCNN 2.1

Hardware/Software/Library	Version	Useful Link
Operating System	Windows 10	
GPU	GEFORCE	
	GTX 1660 Ti	
Visual Studio	2017	https://docs.nvidia.com/cuda/archive/10.0/cuda-installation-
	(RTW and all	guide-microsoft-windows/index.html
	updates)	
NVIDIA CUDA	10.0	https://www.tensorflow.org/install/source_windows#gpu
NVIDIA cuDNN	7.4	https://www.tensorflow.org/install/source_windows#gpu
Python	3.6	
tensorflow_gpu	1.13.1	
Keras	2.2.2	
opencv-python		
opency-contrib-python		
imgaug		
ipython		
imutils		
Mask RCNN	2.1	https://github.com/matterport/Mask_RCNN

References

- Deep Learning for Computer Vision with Python (Bonus Bundle) by Dr. Adrian Rosebrock
- https://developers.arcgis.com/python/guide/howmaskrcnn-works/
- https://towardsdatascience.com/semantic-segmentationpopular-architectures-dff0a75f39d0
- https://challenge.isic-archive.com/data#2018
- https://github.com/matterport/Mask_RCNN
- https://pir.nlm.nih.gov/challenge/submission.html

Thanks to

Behnam, and Amir and specially Niloufar for sharing her satisfactory configuration with me.

Thanks for your attention

Questions are welcome