Arquitetura de Computadores e Sistemas Operacionais

- Sistemas de Numeração
 - Métodos para expressar quantidades (números)
- Números, símbolos, algarismos e dígitos
 - Qual é a diferença entre eles?

Números

- É uma uma ideia, um conceito abstrato a quantidade
- Base para a contagem de objetos

Símbolos

- Pictograma (marca visual ou gráfica) para representar ideias: '2 carros'
- 'C' símbolo para representar um caractere (representar fonemas e palavras)
- '2' símbolo para representar (numeral) a ideia de quantidade/valor

Algarismos

Símbolos usados para a representação (numeral) de números

Dígitos

- Está relacionado à posição dos algarismos num numeral
- Um salário de '6 digitos'
- Sistema de numeração posicional
- Que sistema nós usamos?
 - Existem outros sístemas?

Sistema de numeração decimal

• Potências de 10:

$$-10^{\circ} = 1$$

$$-10^1 = 10$$

$$-10^2 = 100$$

$$-10^3 = 1000$$

– ...

• $1926 = 1 \times 10^3 + 9 \times 10^2 + 2 \times 10^1 + 6 \times 10^0$

- Sistema de Numeração Decimal
 - Potências de Base 10

Teorema fundamental da numeração

$$N = d_{n-1}x b^{n-1} + ... + d_1x b^1 + d_0x b^0$$

- Onde, d é um dígito, n é a posição e b é a base.
- Relaciona um número (quantidade) expressa em um sistema de numeração qualquer com o número equivalente no sistema decimal
- Vale para qualquer sistema de numeração posicional

$$- 256_{(base 10)} = 2 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$$

$$- 12348_{\text{(base 10)}} = 1 \times 10^4 + 2 \times 10^3 + 3 \times 10^2 + 4 \times 10^1 + 8 \times 10^0$$

$$-$$
 100_(base2) = 1 x 2² + 0 x 2¹ + 0 X 2⁰ = 4

$$-$$
 101_(base2) = 1 x 2² + 0 x 2¹ + 1 X 2⁰ = 5

$$-24_{\text{(base 8)}} = 2 \times 8^1 + 4 \times 8^0 = 16 + 4 = 20$$

$$-$$
 16_(base8) = 1 x 8¹ + 6 x 8⁰ = 8 + 6 = 14

$$- 16_{(base16)} = 1 \times 16^{1} + 6 \times 16^{0} = 16 + 6 = 22$$

-
$$21A_{(base16)} = 2 \times 16^2 + 1 \times 16^1 + A \times 16^0 = 512 + 16 + 10 = 538$$

Sistema de numeração posicionais

- Os sistemas que veremos a seguir são posicionais (decimal, octal, hexadecimal e binário)
- Quanto mais à direita, menor o peso
 - Cada peso = potência da respectiva base (10, 8, 16, 2)
- Dígito mais à direita = menos significativo
- Dígito mais à esquerda = mais significativo

Sistema de Numeração Decimal

- Base 10 (quantidade de símbolos = 10)
- Algarismos Indo-Arábicos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Cada dígito tem uma correspondente potência de base 10 (10°, 10¹, 10², 10³, ...)
- Número $1258 = 1 \times 10^3 + 2 \times 10^2 + 5 \times 10^1 + 8 \times 10^0 = 1000 + 200 + 50 + 8 = 1258$

- Decomponha os números a seguir:
 - 362
 - 75
 - 50
 - 2022
 - Escrevam em um editor de texto (quer não tiver lápis e papel)

Sistema de Numeração Octal

- Base 8 (quantidade de símbolos = 8)
- Algarismos = {0, 1, 2, 3, 4, 5, 6, 7}
- Cada dígito tem uma correspondente potência de base 8 (8º, 8¹, 8², 8³, ...)
- Número $3254_8 = 3 \times 8^3 + 2 \times 8^2 + 5 \times 8^1 + 4 \times 8^0 = 1536 + 128 + 40 + 4 = 1708_{10}$

- Converta para decimal os números a seguir:
 - 3628
 - **-** 75₈
 - 50₈
 - 20228
 - Escrevam em um editor de texto (quer não tiver lápis e papel)
 - Não usar conversor de bases!

Sistema de Numeração Hexadecimal

- Base 16 (quantidade de símbolos = 16)
- Algarismos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
- Cada dígito tem uma correspondente potência de base 16 (16°, 16¹, 16², 16³, ...)
- Número $109B4_{16} = 1 \times 16^4 + 0 \times 16^3 + 9 \times 16^2 + B \times 16^1 + 4 \times 16^0 = 65536 + 0 + 2304 + 176 + 4 = 68020_{10}$
- Número ABC₁₆ = A x 16^2 + B x 16^1 + C x 16^0 = 2560 + 176 + 12 = 2748₁₀

- Converta para decimal os números a seguir:
 - 362₁₆
 - 75₁₆
 - 50₁₆
 - 202F₁₆
 - Escrevam em um editor de texto (quer não tiver lápis e papel)
 - Não usar conversor de bases!

Sistema de Numeração Binário

- Base 2 (quantidade de símbolos = 2)
- Algarismos = {0, 1}
- Cada dígito tem uma correspondente potência de base 2 (2º, 2¹, 2², 2³, 2⁴, ...)
- Número $11011_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 16 + 8 + 0 + 2 + 1 = 27_{10}$

- Converta para decimal os números a seguir:
 - **111**₁₆
 - 1001₂
 - 111010₁₆
 - Escrevam em um editor de texto (quer não tiver lápis e papel)
 - Não usar conversor de bases!

• Sistema de Numeração Binário

- Por que usar números binários?
- Representam dois estados nos circuitos lógicos (eletrônicos)
- Representações frequentes:
 - corrente elétrica
 - Tensão
 - Posição de chaves (aberta e fechada)
 - Ligado e desligado
 - Valores lógicos (Verdadeiro e Falso)

• Sistema de Numeração Binário

- Mais utilizado em processamento de dados digitais
- Como se conta em decimal?
- Como se conta em binário?
- E em octal e hexadecimal?

- Sistemas de Numeração
 - Tabela de referência

Decimal	Binário	Hexadecimal	Octal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	В	13
12	1100	С	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

- Conversão entre bases (Sistemas de Numeração)
 - Como converter número decimal para outras bases?
 - Resposta: com divisões sucessivas pela respectiva base!!!
 - (base na qual o número está representado)
 - Como converter 48745 para as outras bases?

- Por que usar os sistemas de numeração octal e hexadecimal?
- Resposta: são formas mais compactas de representação dos números binários
- Cada dígito octal corresponde a 3 dígitos binários (1/3 do tamanho)
- Cada dígito hexadecimal corresponde a 4 dígitos binários (¼ do tamanho)
- Tanto a base octal, quanto a hexadecimal são múltiplas da base binária

• Aritmética binária e das outras bases

_

- O que um bit?
- O que um byte?
- E uma palavra (em uma arquitetura de um processador)?

