Math 302/600 Spring 2017 Homework #11

Due May 2, Tue in class

Note: For any Euclidean space \mathbb{R}^n , consider the usual metric induced by the Euclidean norm $\|\cdot\|_2$ on \mathbb{R}^n , unless otherwise stated.

- 1. Let $f_n(x) = x^n/(1+x^n)$, and $A = [0, \infty)$.
 - (1) Show that (f_n) converges pointwise on A, and find the limit function f_* ;
 - (2) Let $a \in (0,1)$. Show that (f_n) converges uniformly on [0,a] to f_* ;
 - (3) Show that (f_n) does not converge uniformly on [0,1] to f_* .
- 2. Let $f_n(x) = \sin(nx)/(1 + nx)$, and $A = [0, \infty)$.
 - (1) Show that (f_n) converges pointwise on A, and find the limit function f_* ;
 - (2) Let a > 0. Show that (f_n) converges uniformly on $[a, \infty)$ to f_* ;
 - (3) Show that (f_n) does not converge uniformly on A to f_* .
- 3. Let a sequence of *continuous* functions (f_n) converge pointwise to f_* on a *compact* set A. If f_* is *continuous* on A, does it imply that (f_n) always converges uniformly to f_* on A? If so, prove it; otherwise, give a counterexample. (*Hint*: consider the sequence (f_n) in Problem 2 on the interval $[0, 2\pi]$.)
- 4. Let $f_n : \mathbb{R} \to \mathbb{R}$ and $g_n : \mathbb{R} \to \mathbb{R}$ be two sequences of functions that converge uniformly on the set A to f_* and g_* , respectively. Show that $(f_n + g_n)$ converges uniformly on A to $f_* + g_*$.
- 5. Let $f_n(x) = x + 1/n$, $x \in \mathbb{R}$.
 - (1) Show that (f_n) converges pointwise on \mathbb{R} , and find the limit function f_* ;
 - (2) Show that (f_n) converges uniformly to f_* on \mathbb{R} ;
 - (3) Show that (f_n^2) does not converge uniformly to f_*^2 on \mathbb{R} .
 - \star This problem shows that the product of uniformly convergent sequences of functions need not be uniformly convergent.

The following extra problem(s) are for Math 600 students only:

6. Let $f_n : \mathbb{R} \to \mathbb{R}$ and $g_n : \mathbb{R} \to \mathbb{R}$ be two sequences of bounded functions that converge uniformly on the set A to f_* and g_* , respectively. Show that $(f_n \cdot g_n)$ converges uniformly to $f_* \cdot g_*$ on A.