DIVISION OF MINERAL ENGINEERING

MIN350S - INTRODUCTION TO MINING

INSTRUCTOR: PROFESSOR W. F. BAWDEN

FINAL EXAM - DECEMBER 2001

TOTAL MARKS = 114

PLEASE ANSWER ALL QUESTIONS. NOTE THAT QUESTION 2 IS TO BE ANSWERED ON THE EXAM SHEET. SIGN THIS SHEET AND RETURN IT WITH YOUR EXAM

QUESTION # 1: [10 MARKS]

A new undergound mine has been designed to use diesel powered six cubic meter ST-6 scooptrams, which will muck ore from a drawpoint to an ore pass, at a total distance of 200 m. The scooptram will haul 150 m on a level drift and then 50 m at a 15% grade. The material being mined is a lead-zinc ore grading between 12-15% and having an S.G. of 3.088 tonnes per cubic meter. Job conditions for loading and dumping are average and for blasting fragmentation is poor. The rated tramming capacity of the scooptram is 12.4 tonnes per bucket. Assume that the effective operating hour is 50 minutes to account for various delays.

- (i) Determine the hourly production capability of the scooptram.
- (ii) How many scooptrams are required if a daily production rate of 6,000 tonnes is required working 2 8 hour shifts? [Note: Utilize the data sheets appended at the end of the exam]

QUESTION # 2: [NOTE: HAND THIS PAGE IN WITH YOUR EXAM AND PUT YOUR NAME AND STUDENT NUMBER AT THE TOP] [10 MARKS]

The figure below shows a transverse section through an orebody showing a net present value block model. The blocks are equidimentional [25 m on each side]. Final pit slopes are to be at 45 degrees. It is planned to mine this orebody using open pit mining techniques. Using a manual floating cone technique determine the following:

- (i) the ultimate pit outline for this section,
- (ii) the overall stripping ratio for this section, and
- (iii) state what assumption is necessary in order to calculate (ii).

-1	-1	-1	-1	-1	-1	-1	-1	-1_	l	-1	- 1	-1	[- <u>i</u> -	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	2]	1	- l	-1	-1	- 1	-1	- 1	- <u>1</u>	-1
-1	-1	-1	-1	- 1	-1	<u> - 1 </u>	2	3	2	4	1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1_	- 1	-1	-1	-1	4	1	2	5	2	1	-1	- i	-1	-1	-1	-1
-1_	<u>- 1</u>	-1	- 1	-1	-1	5	4	2	3	2	1_	-1	-1	-1	-1	-1	-1	-1
-1	- 1	-1	-1	-1	-1	2	3	2	11	1	2	1	1	-1	-1	-1	-1	-1
-]	-1	-1	- 1	-1	-1	3	4	3	2	4	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1_	2	5	3	5	1	-1	-1	- 1	-1	-1	- 1	-1
-1	<u>- 1</u>	-1	- <u>1</u>	- l	- l	- l_	-1	<u>-</u> 1_	3	[2]	1	1	4	1	- 1	-1	-1	-1
-1	-1	-1	-1	-1	- l	-1_	1	-1	- 1	3	- l	-1	-1_	<u>- i</u>	-1	-1	-1	- l

Show the final pit outline and how this was determined on the section provided above. Hand this page in with your final exam.

QUESTION # 3: [30 MARKS]

- (a) Consider a tabular orebody 30 meters thick [hangingwall to footwall] and dipping about 80 degrees on average. A main production shaft has been sunk in the footwall about 100 meters distant from the orebody and main levels have been established at 100 meter vertical intervals. Sublevels have been established at 25 meter vertical intervals and all levels are interconnected by a spiral ramp. Haulage levels have been established in the footwall 25 meters from the ore. Transverse blasthole open stoping is planned to be used as the primary mining method for this orebody. It is planned to double lift the stopes. Describe the additional detailed development that will be required in order to access, develop, blast and muck an individual stope in this mine. You may use both written descriptions and sketches to illustrate your answer.
- (b) As noted in Question 3 (a) the mine plans to produce ore from underground using a shaft hoisting system. Assume that the mining will be conduced on the 500 level [i.e. 500 m below surface] and that the bottom of the shaft is at the 1500 m level [i.e. 1500 m below surface]. Skip pockets have been established at the 1500 m level. How do you recommend the ore be moved from the stope and delivered to the concentrator on surface? Describe all key infrastructure that you will require to accomplish this. You may use hand descriptions and sketches to illustrate your answer.

QUESTION # 4: [10 MARKS]

- (a) What are the five core elements of the 'Five Point Safety System'?
- (b) What is the safety role of the supervisor at a mine?
- (c) How do you reconcile safety at a mine site versus the need to reduce costs?

Student name: ----- Student number: -----

QUESTION # 5: [14 MARKS]

An open pit mine operator wishes to utilize the newest 320 tonne Caterpillar heavy haul trucks in order to optimize haulage efficiency. In order to maximize haul truck efficiency it has been proposed to incorporate a passing lane in the permanent haulage ramp on the final high wall of the mine. The truck width is 4.2 meters. The pit is designed with 15 meter bench heights with safety berm widths of $1/3^{rd}$ the bench height. The bench face angle is 70: Please evaluate the following:

- (i) What is the minimum haul road width?
- (ii) What is the impact of the haul road on the Overall Stripping Ratio of a 450m deep transverse section of the pit where the haul road is located at a depth of 300 meters? The pit bottom is 50 meters wide and both highwall slope angles are the same. The ore is 50 meters wide and is vertical. S.G ore. = S.G. waste.
- (iii) What are the overall slope angle and the inter-ramp slope angles?

QUESTION # 6: [40 MARKS]

Briefly [using a few sentences or a short paragraph] answer the following questions;

- (i) What is the difference between 'entry' and 'non-entry' mining methods?
- (ii) What is 'superelevation rate' on a haul road in an open pit?
- (iii) In open pit mining how is access to the next lower bench initially developed?
- (iv) How is caving established in block cave mining and what is the principal advantage of this method?
- (v) In open stope mining what are two major causes of mining versus geological dilution?
- (vi) For open pit mining define the 'cut-off-stripping-ratio'.
- (vii) What are the differences between 'room and pillar' and 'post-pillar cut and fill' mining?
- (viii) What is backfill and why is it used in underground mines?
- (ix) What is the impact of radial end sections on the stripping ratio in an open pit mine?
- (x) Define 'geological resource' and 'mining reserve'.
- (xi) What is an Alimak Raise Climber'?

Underground Equipment Selection Scooptrams & Haulage Trucks Material Weight and Volume

	"IN BANK" \	WEIGHTS
SPECIFIC GRAVITY	lbe/y 3	kg/m ³
1.6	2694	1597
1.7	2862	1697
1.8	3030	1798
1.9	3199	1896
2.0	3367	1996
2.1	3536	2096
2.2	3704	2196
2.3	3872	2295
2.4	4041	2395
2.5	4209	2495
2.6	4377	2595
[2. <u>7</u> {	4546	2695
2.8	4714	2794
2.9	4882	2894
3.0	5051	2994
3.1	5219	3094
3.2	5387	3193
3.3	5556	3293
3.4	5724	3393
3.5	5892	3493

MATERIAL	AVER WEIGHT		*	SWELL	AVERAGE		
WALL ETTINE	1bs/y 3	kg/m ³	SWELL	FACTOR	Iba/y ³	kg/m	
ASBESTOS	5000	2964	51	0.66	3300	1956	
BARITES	7250	4298	56	0.64	4640	2750	
BASALT	5000	2964	51	0.66	3300	1956	
BAUXITE DRY	2900	1719	33	0.75	2175	1289	
BAUXITE WET	4300	2548	45	0.69	2967	1759	
COAL, ANTHRACITE COAL, BITUMINOUS CONCRETE MIX, WET COPPER ORE	2300 1700 4500	1363 1006 2667	35 35 45	0.74 0.74 0.69	1702 1258 3650 3105	1009 746 2164 1841	
DOLOMITE	4200	2490	61	0.62	2604	1544	
GRANITE	4400	2608	60	0.63	2772	1643	
GYPSUM	4600	2727	60	0.63	2898	1718	
IRON ORE, MEMATTIE	6600	3912	51	0.66	4356	2582	
IRON ORE, MAGNITE	7500	4446	65	0.65	4875	2890	
LEAD ORE 30%	6000	3557	50	0.67	4020	2383	
LEAD ZINC 16%-7%	5200	3082	50	0.67	3484	2065	
LIMESTONE	4300	2549	70	0.59	2537	1604	
POTASH	3500	2074	60	0,63	2205	1307	
PYRITE	6700	3971	50	0,67	4489	2661	
SANDSTONE	4140	2454	50	0.67	2774	1644	
SHALE	2800	1660	33	0.75	2100	1245	
SLATE	4725	2801	30	0.77	3638	2156	
TACONITE	4700	2786	54	0.65	3055	1811	
URANIUM ORE	4200	2490	40		2982	1768	

Underground Equipment Selection Scooptrams & Haulage Trucks

Bucket Actual Capacity

BUCKET FILL FACTORS									
BLASTING FRAGMENTATION	FILL FACTOR	JOB CONDITIONS							
GOOD	1.00	EXCELLENT							
_AVERAGE	0.95	AVERAGE							
POOR	0,90	SEVERE							

Underground Equipment Selection Scooptrams & Haulage Trucks

Cycle Times

• Fixed Time - portion of the production cycle spent in Loading and Dumping the bucket and the maneuvering to accomplish those functions

CONDITIONS CONDITIONS	TIME MINUTES
EXCELLENT	0.80
AVERAGE	1.10
SEVERE	1.40

Underground Equipment Selection Scooptrams & Haulage Trucks

Cycle Times

• Variable Time - portion of the production cycle spent in Tramming. May contain elements of both level an on grade haulage. Estimates of the average speeds should be made for each element including allowances for Job Conditions

	_ ^^\	/ERAG	E TRA	MHM	G SPE	EDS.	LEVEL	, NEA	R LEV	ΈL
			DI	Electric						
Job Conditions	HST-1A ST-1-3A moh km/h			3-1/2 ST-		58 to [-13 un/h	-13 EHS			2D to F-BA lunth
EXCELLENT	3.0	4.8	5.0	6.1	6.0	9.7	3.0	4.8	3.5	5.6
AVERAGE_	20	32	4.0	6.4	4.8	7.7	2.0	32	2.3	3.7
SEYERE	12	1.9	2.5	4.0	2.9	4.7	_1.0_	16	1.2	1.0
NOTE: Electri	cal vet	icles s	e rated	Ø 50h	Z.					

Ground Surface	Rolling Resistance
Asphalt	1.5%
Concrete	1.5%
Dirt-Smooth, hard, dry; well-maintained;	
free of loose material	2.0%
Dirt-Dry, but not firmly packed; some	
loose material	3.0%
Dirt-Soft, unplowed; poorly maintained	4.0%
Dirt-Soft, plowed	8.0%
Dirt-Unpacked fills	8.0%
Dirt-Deeply rutted	16.0%
Gravel-Well compacted; dry; free of	
loose material	2.0%
Gravel-Not firmly compacted; but dry	3.0%
Gravel-Loose	10.0%
Mud-With firm base	4.0%
Mud-With soft, spongy base	16.0%
Sand-Loose	10.0%
Snow-Packed	2.5%
Snow-To 4" depth; loose	4.5%

Scooptram Tramming Speeds

Maximun	n Spe	TABI		KILOMI D: Est	ETERS Imated			ds Don	wn n Car	ade
Popular Booptrem Model	5% Load Up	- 2.9* Empty Down		Empty	15% Load Up	- 8.5° Empty Down	20% Load Up	11.3° Empty Down	2125% Locoad UUp	- 14.0° Emph Down
Hardrock										
HST-1A	12.2	12,2	8.3	10:2	6.4	7.8	3.1	644	4.4.3	5.6
ST-1.3A	9.2	9.7	4.0	7.5	3,9	4.0	34	3.5	2.29	2.7
ST-20	9.8	13.4	6,8	0.5		5.6	40	4.2	227	4.3
57-3-1/2	12.9	17.2	8.4	0.2	4.5	8.1	4.0	64	3.3.7	4.3
ST-58	12.9	19.3	84	128	6,3	8.5	4.5	8.2	4.4.0	4.5
ST-5H	11,9	18.4	7.6	11,3	5.6	7.6	40	84	3.3.7	5.2
ST-6C	11.9	18.0		10,9	5.6	7.2	43	63	3 3.5	5.6
ST-8A	12.9	18.2	.8.2	121	6.9	8.1	4.3	7.1	3.3.9	5.9
ST-13	10.6	16.0	6.6	- 8.6	3.8	6.7	37	38	3.3.5	3.5