MoskaliovYV 25112024-192714

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Задан двухполюсник на рисунке 1, причём R1 = 140.27 Om.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 2 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=0.5\text{-}0.56\mathrm{i}$.

Рисунок 3 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.4	0.608	123.1	2.474	40.6	0.106	48.4	0.232	-67.2
2.5	0.617	120.7	2.370	38.5	0.109	47.5	0.229	-69.6
2.6	0.628	118.4	2.269	36.2	0.112	46.6	0.226	-72.1
2.7	0.633	116.1	2.181	33.9	0.116	45.6	0.224	-74.8
2.8	0.639	113.9	2.096	31.5	0.119	44.6	0.222	-77.5
2.9	0.647	111.8	2.021	29.6	0.122	43.7	0.219	-80.3
3.0	0.655	109.7	1.948	27.5	0.126	42.9	0.217	-83.1
3.1	0.660	107.7	1.882	25.7	0.129	41.9	0.215	-86.1
3.2	0.667	105.7	1.819	23.9	0.132	40.9	0.213	-89.1
3.3	0.674	103.8	1.757	21.9	0.135	40.0	0.212	-92.2
3.4	0.682	101.9	1.698	19.7	0.138	39.1	0.212	-95.3

и частоты $f_{\mbox{\tiny H}}=2.7$ ГГц, $f_{\mbox{\tiny B}}=3.3$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}}$, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

- 1) 0.9 дБ
- 2) 1.1 дБ
- 3) 1.9 дБ
- 4) 3.3 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
7.4	0.542	137.1	3.645	26.7	0.103	39.2	0.145	-153.9
7.6	0.550	135.4	3.539	24.8	0.106	38.3	0.137	-159.7
7.8	0.561	133.8	3.443	22.8	0.110	37.2	0.132	-167.3
8.0	0.573	132.2	3.352	20.7	0.113	36.2	0.129	-175.3
8.2	0.582	130.6	3.247	18.7	0.115	34.6	0.133	175.1
8.4	0.592	129.0	3.146	16.5	0.118	33.1	0.141	166.3
8.6	0.601	127.5	3.048	14.5	0.120	31.7	0.151	157.8
8.8	0.608	126.0	2.951	12.7	0.122	30.3	0.163	149.6
9.0	0.616	124.6	2.858	10.8	0.124	29.0	0.177	142.7
9.2	0.624	123.2	2.776	9.5	0.125	27.7	0.196	136.7
9.4	0.633	121.8	2.695	8.2	0.127	26.4	0.216	131.8

и частоты $f_{\scriptscriptstyle \rm H}=7.6~\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=9~\Gamma\Gamma$ ц. **Найти** модуль s_{21} в д ${\rm B}$ на частоте $f_{\scriptscriptstyle \rm B}$.

- 1) 9.1 дБ
- 2) -18.1 дБ
- 3) -15 дБ
- 4) -4.2 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.353	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Найти точку (см. рисунок 5), соответствующую s_{11} на частоте 2 $\Gamma\Gamma$ ц.

Рисунок 5 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.541	158.9	4.991	69.9	0.059	56.3	0.265	-45.4
1.5	0.555	149.0	4.004	61.8	0.071	55.3	0.255	-49.1
1.8	0.572	139.6	3.324	54.4	0.083	53.4	0.247	-54.4
2.1	0.588	131.0	2.836	47.5	0.094	50.9	0.240	-60.3
2.4	0.608	123.1	2.474	40.6	0.106	48.4	0.232	-67.2
2.7	0.633	116.1	2.181	33.9	0.116	45.6	0.224	-74.8
3.0	0.655	109.7	1.948	27.5	0.126	42.9	0.217	-83.1
3.3	0.674	103.8	1.757	21.9	0.135	40.0	0.212	-92.2
3.6	0.696	98.3	1.592	15.8	0.144	37.3	0.211	-101.7

и частоты $f_{\mbox{\tiny H}}=1.2$ ГГц, $f_{\mbox{\tiny B}}=3.6$ ГГц.

Найти обратные потери по выходу на $f_{\scriptscriptstyle \mathrm{B}}.$

- 1) 13.5 дБ
- 2) 6.8 дБ
- 3) 5.8 дБ
- 4) 11.5 дБ