Grados en Informática Métodos Estadísticos Junio 2021

- Tiempo: 3 horas.
- Dejar DNI encima de la mesa. Apagar y guardar el MÓVIL.
- Todos los cálculos se deben hacer utilizando al menos 4 decimales.
- Se procurará no escribir nada en las tablas proporcionadas para el examen.

APELLIDOS, NOMBRE:

DNI:

1. a) Consideremos la siguiente tabla asociada a una variable estadística bidimensional

- (I) Usar el método de los mínimos cuadrados para determinar el sistema de ecuaciones normales del modelo $y=a\cdot\left(\frac{b}{3}\right)^{4x^2}$. (1 punto)
- (II) Hallar a y b del ajuste. (1.25 puntos)
- b) Si se ajustan los siguientes datos

$X \backslash Y$	0	1	2
-2	10	21	0
-1	0	30	25
1	20	0	15

a la parábola $y = \frac{x^2}{2}$. ¿Cuál es el error cuadrático medio asociada a ella? (1 punto)

- c) Con los datos del apartado b) calcular el rango intercuartílico de la variable condicionada $Y/_{X\geq -1}$. (0.75 puntos)
- 2. Una empresa fabrica dos tipos de dispositivos (A y B). El número de dispositivos de tipo A fabricados en un día sigue una normal de media 200 y varianza 16 y los de tipo B sigue una normal de media 205 y varianza 9.
 - a) Calcular la probabilidad de que la diferencia entre la cantidad de dispositivos fabricados de cada tipo sea mayor que 4. (0.75 puntos)
 - b) Calcular la probabilidad de que la diferencia entre la cantidad de dispositivos fabricados de tipo A y los de tipo B sea menor que 4 sabiendo que el número de dispositivos fabricados de tipo A es mayor que los de tipo B. (0.75 puntos)
 - c) En el 2020, el 8% de los dispositivos fabricados fueron defectuosos. El número de dispositivos defectuosos representa el 21% de los dispositivos de tipo A y el 1% de los dispositivos de tipo B. Calcular la probabilidad de que habiéndose obtenido un dispositivo defectuoso sea del tipo A. (0.75 puntos)
 - d) Esta empresa tiene 10 sucursales que fabrican dispositivos de tipo A de forma independiente. Todas ellas siguen una normal de media 200 y varianza 16. En verano, la empresa premia a las sucursales que fabrican más de 210 dispositivos al día. ¿cuál es la probabilidad de premiar al menos a 2 sucursales? (0.75 puntos)

3. Se está haciendo un estudio sobre diabetes. Se toma una muestra de 12 pacientes en una ciudad A y en otra ciudad B se toma una muestra de 7 en la zona costera y 8 en la zona del interior. Los datos obtenidos son:

Ciudad A:
$$\bar{x}_A = 16, s_A = 3$$

Zona costera de la ciudad B: $\bar{x}_C = 15$, $s_C = 2.7$

Zona interior de la ciudad B: $\bar{x}_I = 17$, $s_I = 2$

- a) Hallar un intervalo de confianza al 95 % para la diferencia de medias entre las dos ciudades, bajo la hipótesis de normalidad de los datos. (1.5 puntos)
- b) Se puede afirmar al 90 % que, referido a la diabetes, la media de la ciudad A duplica la media de la ciudad B. (1.5 puntos)

DATOS ÚTILES:

1. Función de distribución de una normal tipificada (media 0, desviación típica 1)

					-		\	,		-	,		
-2.5	-2.3	-2.0	-1.8	-1.7	-1.6	-1.5	-1.4	-1.2	-1.0	-0.8	-0.3	-0.2	
0.0062	0.0107	0.0228	0.0359	0.0446	0.0548	0.0668	0.0808	0.1151	0.1587	0.2119	0.3821	0.4207	

2. Función cuantil (inversa de distribución) de una t-student

	grados de libertad								
cuantil	21	22	23	24	25	26	27	28	
0.95	1.721	1.717	1.714	1.711	1.708	1.706	1.703	1.701	
0.975	2.080	2.074	2.069	2.064	2.060	2.056	2.052	2.048	
0.9	1.323	1.321	1.319	1.318	1.316	1.315	1.314	1.313	

3. Función cuantil (inversa de distribución) de una F de Fisher para diversos grados de libertad (denotado por g.l.).

Cuantil 0.025

g.l.1/g.l.2	11	12	13	14	15
11	0.2879	0.2916	0.2948	0.2977	0.3003
12	0.3011	0.3051	0.3087	0.3119	0.3147
13	0.3127	0.3171	0.3210	0.3245	0.3276
14	0.3231	0.3279	0.3320	0.3357	0.3391
15	0.3325	0.3375	0.3419	0.3458	0.3494

Cuantil 0.05

g.l.1/g.l.2	11	12	13	14	15
11	0.3549	0.3587	0.3621	0.3651	0.3678
12	0.3680	0.3722	0.3759	0.3792	0.3821
13	0.3796	0.3841	0.3881	0.3916	0.3948
14	0.3898	0.3946	0.3988	0.4026	0.4060
15	0.3080	0.4040	0.4085	0.4125	0.4161

Cuantil 0.95

g.l.1/g.l.2	11	12	13	14	15
11	2.8179	2.7173	2.6347	2.5655	2.5068
12	2.7876	2.6866	2.6037	2.5342	2.4753
13	2.7614	2.6602	2.5769	2.5073	2.4481
14	2.7386	2.6371	2.5536	2.4837	2.4244
1 5	0.7100	0.0100	0.5991	0.4020	0.4094

Cuantil 0.975

g.l.1/g.l.2	11	12	13	14	15
11	3.4737	3.3215	3.1975	3.0946	3.0078
12	3.4296	3.2773	3.1532	3.0502	2.9633
13	3.3917	3.2393	3.1150	3.0119	2.9249
14	3.3588	3.2062	3.0819	2.9786	2.8915
15	3.3299	3.1772	3.0527	2.9493	2.8621