

Technologies for Internet of things(IOT)

Mayur Tulsibhai Lakhani

Automotive Software Engineering

Matriculation number: 485315

Supervisors:

Prof. Dr. Wolfram Hardt

Dipl. Inf. René Schmidt

Prof. Dr. Uranchimeg Tudevdagva

Tuesday, 15.06.2021 www.tu-chemnitz.de Technologies for IOT

Contents

- Motivation & Introduction
- IOT Based Ecosystem
- Cloud Computing and its challenges
- Edge Computing for real time
- Computing paradigms
- Introduction to IOT based Transparent Computing
- Transparent Computing Architecture
- Further Direction
- Conclusion

Motivation

"Anything that can be connected, will be connected"

- Jason Morgen

3

Access to data/collection of new data

Connectivity

Improves efficiency

Reducing Labour Cost

Track & Monitor

Improve Customer Experience

Source: https://www.capgemini.com/pl-pl/service/intelligent-industry/solutions-for-the-5g-and-iot-edge-computing-revolution/

Introduction

Total number of device connections (incl. Non-IoT)

20.0Bn in 2019- expected to grow 13% to 41.2Bn in 2025

Note: Non-IoT includes all mobile phones, tablets, PCs, laptops, and fixed line phones. IoT includes all consumer and B2B devices connected – see IoT break-down for further details

Source(s): IoT Analytics - Cellular IoT & LPWA Connectivity Market Tracker 2010-25

Figure: Number of Global Active connection of IOT device[1]

Tuesday, 15.06.2021 Technologies for IOT 4 www.tu-chemnitz.de

IOT based Ecosystem

Figure: IOT based Ecosystem[2]

Tuesday, 15.06.2021 Technologies for IOT 5 www.tu-chemnitz.de

Cloud computing and challenges in IOT

Figure: Cloud computing[3] Source: Google

www.tu-chemnitz.de

- Most of IOT data are un-structured or semi-structured
- Massive amount of quickly/emerging data by AI(Artificial Intelligence)
- Real time processing for Big Data

Cloud computing and challenges in IOT

Ubiquitous accessibility and connectivity

for heterogeneous objects/ services at various volume of users

Dynamic management/orchestration

users which comes from billion devices and produces massive amount of data

Maximum resource utilization

sharing of IOT resources such as app, objects, platform

Real - time

personalization of the user and services

services based on user experience and preference

Virtualization of IOT devices

access to advanced resources/ specialized hardware, including GPUs, sensors etc.

Portability of the services, interoperability, Accountability

migration of the server to follow mobile users, cloud/IOT service infrastructure, Services and data hosted and executed on the borders

Edge computing for real time

Scalability

(Ability to scale the application through various edge controller technologies)

Governance

(Keeps all data locally, – Encrypt all user data at storage)

Security

(Infrastructure verifications, Securing secrets/keys)

Performance and Constrained Environment

Latency(L), Performance(H), resource utilization(Less)

Edge App

(Traffic Redirection, Providing contextual provisioning information)

Figure: Edge computing Architecture and its Benefits [4,13]

Tuesday, 15.06.2021 Technologies for IOT 8 www.tu-chemnitz.de

Comparison of Several Computing paradigms

Paradigms	Virtualization	Location for computing	Location for storage
Cloud Computing	Hypervisor and containers	Centralized cloud server	Centralized cloud server
Edge Computing	Hypervisor and containers	Edge servers	Edge servers
Transparent Computing	Meta OS	Proximal end	Transparent server

Table: Comparison of several computing paradigms[5]

- FOG & Cloudlet → processes data → nearby edge server → decrease latency
- Can not solve heterogeneous hardware & provision cross platform services

IOT based Transparent computing

- Decouple the software stack from the hardware
- Client can select desired service OnDemand
- Eliminating the concerns of installation, management & upgrade of services → client devices
- No concerns about underlying OS

- MRBP: Multi-OS Remote Booting Protocol
- NSAP: Network Service Access Protocol

Spatio - Temporal Extension Von Neumann architecture

Figure: Extended von Neumann architecture [7]

Problems of Von Neumann Architecture:

- 5 main components: control unit, arithmetic logical unit, memory, input, output
- Consists only local storage, small limited size embedded device
- Maintenance of programs, malware detection, management routines
- Hard disk failure or system failure

MetaOS

MRBP client MRPB server

Figure: Interaction procedure of Multi - OS MRBP

Figure: Building blocks of TC

MRBP: Multi - OS remote booting protocol

Functionalities of Meta OS

- Meta OS contains two protocols, i.e., MRBP and NSAP
- MRBP sends a boot request to the server
- Once it found specific OS the one which user selects it downloads and startup the NSAP (Network service access point) to enable virtual I/O for terminal.
- 4VP: 4 Virtual Layers 2 Protocol
- UEFI: Unified Extensible Firmware Interface
- MRBP: Multi-OS Remote Booting Protocol
- NSAP: Network Service Access Protocol
- UEFI: Unified extensible Firmware interface

Figure: Functionalities of meta OS [5]

Tuesday, 15.06.2021 Technologies for IOT 13 www.tu-chemnitz.de

Transparent Computation Architecture for PCs

JITC: just in time computing

Technologies for IOT

www.tu-chemnitz.de

Future Direction and Conclusion

- Designing an adaptive data transmission protocol while Transparent computing under high-speed network is still open issue.
- Heterogenous data collection by heterogeneous IOT devices needs to extract unstructured or semi structured data
- Security for Transparent Computing Based IoT Platforms
- Designing better battery life for IOT devices
- Cross platform integration needs well-design open API interface
- Edge servers can be used to provide enhanced security for transparent terminals.
- Transparent computing based IOT architecture is fitting for lightweight, heterogeneous, low processing IOT devices using the edge and cloud technologies.

References

- 1. iot-analytics.com, "state of the IOT 2018: Number of IOT devices now at 7B Market accelerating". Available: https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/ [Online Accessed on: 03.06.2021]
- smuva.com, "smart world" 2021. Available: https://smuva.com/ioto/knowledge/smart-world/. [Online Accessed on: 03.06.2021]
- 3. J. Wu, L. Ping, X. Ge, Y. Wang and J. Fu, "Cloud Storage as the Infrastructure of Cloud Computing," 2010 International Conference on Intelligent Computing and Cognitive Informatics, 2010, pp. 380-383, doi: 10.1109/ICICCI.2010.119
- 4. W. Shi et al., "Edge Computing: Vision and Challenges," IEEE Internet of Things., vol. 3, no. 5, 2016, pp. 637–46.

Tuesday, 15.06.2021 Technologies for IOT 16 www.tu-chemnitz.de

References

- 5. Y. Zhang, S. Duan, D. Zhang and J. Ren, "Transparent Computing: Development and Current Status," in Chinese Journal of Electronics, vol. 29, no. 5, pp. 793-811, 9 2020, doi: 10.1049/cie.2020.07.001.
- 6. Y. Zhang, K. Guo, J. Ren, Y. Zhou, J. Wang and J. Chen, "Transparent Computing: A Promising Network Computing Paradigm," in Computing in Science & Engineering, vol. 19, no. 1, pp. 7-20, Jan.-Feb. 2017, doi: 10.1109/MCSE.2017.17.
- 7. Y. Zhang and Y. Zhou, "Transparent computing: Spatio-temporal extension on von Neumann architecture for cloud services," in Tsinghua Science and Technology, vol. 18, no. 1, pp. 10-21, Feb. 2013, doi: 10.1109/TST.2013.6449403. [von number architecture]
- C. Martín Fernández, M. Díaz Rodríguez and B. Rubio Muñoz, "An Edge Computing Architecture in the Internet of Things," 2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC), Singapore, 2018, pp. 99-102, doi: 10.1109/ISORC.2018.00021.

References

- 9. J. Ren, H. Guo, C. Xu and Y. Zhang, "Serving at the Edge: A Scalable IoT Architecture Based on Transparent Computing," in IEEE Network, vol. 31, no. 5, pp. 96-105, 2017, doi: 10.1109/MNET.2017.1700030.
- 10. Zhang, Y., Yang, L. T., Zhou, Y., & Kuang, W. (2010). Information security underlying transparent computing: Impacts, visions and challenges. Web Intelligence and Agent Systems: An International Journal, 8(2), 203-217, doi:10.3233/WIA-2010-0187
- 11. Capgemini.com. "Solutions for the 5G and IoT Edge computing revolution". Available: https://www.capgemini.com/pl-pl/service/intelligent-industry/solutions-for-the-5g-and-iot-edge-computing-revolution/. [Online Accessed on: 14.06.2021]
- 12. A. R. Biswas and R. Giaffreda, "IoT and cloud convergence: Opportunities and challenges," 2014 IEEE World Forum on Internet of Things (WF-IoT), 2014, pp. 375-376, doi: 10.1109/WF-IoT.2014.6803194
- 13. Alibabacloud.com. "What Is Edge Computing?". Available: https://www.alibabacloud.com/knowledge/what-is-edge-computing . [Online Accessed on: 14.06.2021]

Thank you!

Tuesday, 15.06.2021 Technologies for IOT 19 www.tu-chemnitz.de