Data processing for the aircraft weather avoidance model

Yutian Pang

Arizona State University

September 21, 2018

Overview

- Introduction
 - Background
 - Previous Work
 - Database
- Methods
 - Data Parsers
 - Process the Data
- Outcome
- 4 Future Work

Background

Convective Weather plays as a significant impediment to Air Traffic Management systems and sometimes leads to the unnecessary delays of an aircraft. It is report that 70% of delays in the NAS are caused by weather, and of those delays, 60% are specifically accounted for by convective weather[Clifford, S.F., et al., 2003]. Algorithms to solve this problem is a key part on design of next generation of ATM systems.

Erzberger[Erzberger, H., et al., 2010] proposed a weather cell avoidance algorithm which is first fitting a polygon to the boundary of the weather cell, then find the path around the polygon.

Previous Work

We are trying to learn the rule of weather avoidance used in the society from the historical record in a few database. We made up some data depending on the rules stated previously then learn the model from it.

Network Configuration							
Layer number	Layer Type						
1	3x3-Conv-32						
2	3x3-Conv-32						
3	2x2-maxpool						
4	3x3-conv-64						
5	3x3-conv-64						
6	2x2-maxpool						
7	3x3-conv-128						
8	3x3-conv-128						
9	2x2-maxpool						
10	512-fc						
11	64-fc						
12	2-sigmoid						

Database

The data is download from the Sherlock ATM Data Warehouse which is a integrated system which can store and process raw data received from different facilities. It includes a few data sources for flight data, airport data and weather data[MoreInfo].

We only need two of them,

- Processed FAA Flight Data
- CIWS[D.Klingle-Wilson and J.Evans, 2005](Corridor Integrated Weather Systems) data

FAA

The FAA source will need you to specify a date, time range and area to download the data. It will put everything in a single csv file. The file will contain time, callsign, real trajectory data and flight plans.

10610	•	************				*******	********		w	************		-	-	0.0	
15214	3	1491456005.307	13358 16	320	904 0/NCT	AIG200	VRD029	1	37.5473	-122.1502	5	32	10	0.5	#
15215	3	1491456009.917	13358 16	320	904 0/NCT	AIG200	VRD029	1	37.54917	-122.1559	5	31	8	0.5	¥
15216	3	1491456014.527	13358 16	520	904 0/NCT	AIG200	VRD029	1	37.55097	-122.1615	6	30	1	0.5	V
15217	2	1491435093	13569 27	733	611 0/ZDC		AAL1362	1	B738	KIAD	KLAX	(1	IAC		
15218	4	1491429927	13569		611 0/ZDC	EH	AAL1362	1	B738	KIAD	KLAX	N			KIAD.BUNZZ3.RAMAY.Q72.HACKS.J149.EMPTY.J80.VHP.KK60k
15219	4	1491431640	13569 36	342	611 0/ZDC	AH	AAL1362	1	B738	KIAD	KLAX	(N		,	KIAD.BUNZZ3.RAMAY.Q72.HACKS.J149.EMPTY.J80.VHP.KK60k
15220	4	1491433331	13569 36	542	611 0/ZDC	AH	AAL1362	1	B738	KIAD	KLA)	(N			KIAD*.MCRAY2.MCRAY.J518.LEPEW.J64.HLC.J64.TBC,.JASSE.(
15221	4	1491433991.35	13569 36	42	611 0/PCT	AIG200	AAL1362	1	B738	IAD	MCR				¥?
15222	4	1491435100	13569 36	342	0/IAD	0xE02	AAL1362	1	B738	?	?	N			?
15223	4	1491435105	13569 36	342	0/IAD	0xE02	AAL1362	1	B738	?	?	N			?
15224	4	1491435117	13569 36	542	0/IAD	0xE02	AAL1362	1	B738	?	?	N			?
15225	4	1491435171	13569 36	42	0/IAD	0xE02	AAL1362	1	B738	?	?	N			?
15226	4	1491435195	13569 36	342	0/IAD	0xE02	AAL1362	1	B738	?	?	N			?
15227	4	1491435309	13569 36	342	0/IAD	0xE02	AAL1362	1	B738	?	?	N			?
15228	4	1491435321	13569 36	342	0/IAD	0xE02	AAL1362	1	B738	?	?	N			?
15229	4	1491435698	13569 36	542	265 0/ZOB	EH	AAL1362	1	B738	EMI289069	KLAX	(N		360	KIAD*.MCRAY2.MCRAY.J518.LEPEW.J64.HLC.J64.TBC,.JASSE.C
15230	4	1491435699	13569 36	342	0/IAD	0xE02	AAL1362	1	B738	?	?	N			?
15231	4	1491435736	13569 36	342	265 0/ZOB	AH	AAL1362	1	B738	EMI289069	KLAX	N		360	KIAD*.MCRAY2.MCRAY.J518.LEPEW.J64.HLC.J64.TBCJASSE.(
15232	4	1491435783	13569 36	342	0/IAD	0xE02	AAL1362	1	B738	?	?	N			?
15233	4	1491436939	13569 36	342	265 0/ZOB	AH	AAL1362	1	B738	EMI289069	KLAX	(N		340	KIAD*.MCRAY2.MCRAY.J518.LEPEW.J64.HLC.J64.TBC,.JASSE.C
15234	4	1491437714	13569 36	342	377 0/ZAU	EH	AAL1362	1	B738	FWA091022	KLAX	N		340	KIAD* /.MCRAY.J518.LEPEW.J64.HLC.J64.TBCJASSE.Q90.DNE

CIWS

There are two key weather features available from CIWS,

- EchoTop
- VIL(vertically integated liquid)

They are in a similar format which contains the values received from facilities within the United States Air Space.

ciws.EchoTop.20170405T000000Z.nc
ciws.EchoTop.20170405T000230Z.nc
ciws.EchoTop.20170405T000500Z.nc
ciws.EchoTop.20170405T000730Z.nc
ciws.EchoTop.20170405T001000Z.nc
ciws.EchoTop.20170405T001230Z.nc

Data Parsers Created

FAA Parser

CIWS Parser

Flight CallSign Parser

FAA Parser

Algorithm 1 FAA Parser Algorithm

```
1: Initial New Flight Plan, Change Time, Trajectory
  for chunk in datafile do
      Clean? and NaN
3:
      if CallSign Match then
4.
        return row indices
5:
        if New Flight Plan then
6:
7:
          Append New Flight Plan and Change Time
        else if Trajectory then
8.
          Append Trajectory
9:
        end if
10.
      end if
11.
12. end for
13: return New Flight Plan, Change Time, Trajectory
14: Save CSV
```

CIWS Parser

Algorithm 2 CIWS Parser Algorithm

- 1: Switch Unix Time
- 2: Search Nearest Value in the Directory
- 3: Load Corresponding Data File
- 4: if Given Start and End Index of Latitude and Longitude then
- 5: Crop, Resize, Normalize
- 6: end if
- 7: Plot
- 8: Save Figure

Flight CallSign Parser

Algorithm 3 Flight CallSign Parser Algorithm

- 1: Load CSV
- 2: Initial CallSign
- 3: for chunk in csvfile do
- 4: Take out the CallSign Column
- 5: Remove Repeated Rows and Clean Irrelevant Entries
- 6: Append CallSign
- 7: end for
- 8: Write

Put Them Together

Algorithm 4 Fetch Data

- 1: Initial NATS Environment
- 2: for Row in CallSign do
- 3: Get Flight Plan Coordinate from NATS
- 4: **for** Point in Trajectory **do**
- 5: Find Closest Waypoint in the Flight Plan Coordinates
- 6: Calculate Maximum Deviation
- 7: **if** Maximum Deviation Exceed Threshold **then**
 - return Corresponding Waypoint, Point
- 9: end if

8:

- 10: Merge Waypoint if needed
- 11: end for
- 12: Find Indices of Latitude and Longitude Based on Waypoint Returned
- 13: Extend Labels
- 14: Save Point who has Maximum Distance as Y train
- 15: Call CIWS Parser to save X train
- 16: Reload FAA Engine
- 17: end for

Outcome

X train comes with a set of numpy arrays and Y train contains the coordinates of three waypoints each row.

(a) X train

(b) Y train

Figure: Data Format

Plot

Figure: a

Figure: c

Figure: b

Figure: d

Future Work

Due to this issue, there is still a few thing to modify,

- Change the weather data search algorithm
- Process VIL data
- Train the model using current dataset

References

Clifford, S.F., et al.

Weather Forecasting Accuracy for FAA Traffic Flow Management *The National Academies Press*, Washington, DC, 2003, pp. 2.

Erzberger, Heinz and Lauderdale, Todd A and Chu, Yung-Cheng.

Automated conflict resolution, arrival management and weather avoidance for ATM

27th International Congress of the Aeronautical Sciences, Nice, France, 19-24

D.Klingle-Wilson and J.Evans.

Description of the Corridor Integrated Weather System (CIWS) Weather Products *Project Report Prepared for the FAA*, Washington, DC.

End