# Class 15: Pertussis mini-project

Youn Soo Na (PID: A1704731)

# **Background**

Pertussis, a.k.a. whooping cough, is a highly infectious launch disease cuased by the bacteria B. Pertussis

The CDC tracks pertussis case numbers per year. Let's have a closer look at this data: We will use the datapasta R package to "scrape" this data into R.

Q1. With the help of the R "addin" package datapasta assign the CDC pertussis case number data to a data frame called cdc and use ggplot to make a plot of cases numbers over time.

```
library(ggplot2)
library(datapasta)
cdc <- data.frame(</pre>
                            Year = c(1922L,
                                       1923L,1924L,1925L,1926L,1927L,1928L,
                                       1929L, 1930L, 1931L, 1932L, 1933L, 1934L, 1935L,
                                       1936L,1937L,1938L,1939L,1940L,1941L,
                                       1942L, 1943L, 1944L, 1945L, 1946L, 1947L, 1948L,
                                       1949L,1950L,1951L,1952L,1953L,1954L,
                                       1955L,1956L,1957L,1958L,1959L,1960L,
                                       1961L, 1962L, 1963L, 1964L, 1965L, 1966L, 1967L,
                                       1968L,1969L,1970L,1971L,1972L,1973L,
                                       1974L, 1975L, 1976L, 1977L, 1978L, 1979L, 1980L,
                                       1981L, 1982L, 1983L, 1984L, 1985L, 1986L,
                                       1987L, 1988L, 1989L, 1990L, 1991L, 1992L, 1993L,
                                       1994L, 1995L, 1996L, 1997L, 1998L, 1999L,
                                       2000L,2001L,2002L,2003L,2004L,2005L,
                                       2006L, 2007L, 2008L, 2009L, 2010L, 2011L, 2012L,
                                       2013L,2014L,2015L,2016L,2017L,2018L,
```

```
2019L, 2020L, 2021L, 2022L),
  No..Reported.Pertussis.Cases = c(107473,
                                    164191, 165418, 152003, 202210, 181411,
                                    161799, 197371, 166914, 172559, 215343, 179135,
                                    265269, 180518, 147237, 214652, 227319, 103188,
                                    183866,222202,191383,191890,109873,
                                    133792,109860,156517,74715,69479,120718,
                                    68687,45030,37129,60886,62786,31732,28295,
                                    32148,40005,14809,11468,17749,17135,
                                    13005,6799,7717,9718,4810,3285,4249,
                                    3036,3287,1759,2402,1738,1010,2177,2063,
                                    1623,1730,1248,1895,2463,2276,3589,
                                    4195,2823,3450,4157,4570,2719,4083,6586,
                                    4617,5137,7796,6564,7405,7298,7867,
                                    7580,9771,11647,25827,25616,15632,10454,
                                    13278, 16858, 27550, 18719, 48277, 28639,
                                    32971,20762,17972,18975,15609,18617,6124,
                                    2116,3044)
)
baseplot <- ggplot(cdc, aes(Year, No..Reported.Pertussis.Cases)) +</pre>
  geom_point() +
  geom_line() +
  labs(x="Year", y = "Number of Cases", title = "Number of Pertussis Cases by Year (1922-202)
baseplot
```

# Number of Pertussis Cases by Year (1922–2022)



Add some landmark development as annotation to our plot. We include the first whole-cell (wP) vaccine roll-out in 1946.

```
baseplot +
  geom_vline(xintercept = 1946, linetype = "dashed", col = "red") +
  geom_text(aes(x = 1948, y = 1, label = "wP"), color = "red", vjust = -30)
```

Warning in geom\_text(aes(x = 1948, y = 1, label = "wP"), color = "red", : All aesthetics have i Please consider using `annotate()` or provide this layer with data containing a single row.

# Number of Pertussis Cases by Year (1922–2022)



Let's add the switch to acellular vaccine (aP). > Q2. Using the ggplot geom\_vline() function add lines to your previous plot for the 1946 introduction of the wP vaccine and the 1996 switch to aP vaccine (see example in the hint below). What do you notice?

```
baseplot +
  geom_vline(xintercept = 1946, linetype = "dashed", col = "red") +
  geom_vline(xintercept = 1996, linetype = "dashed", col = "blue") +
  geom_text(aes(x = 1998, y = 1, label = "aP"), color = "blue", vjust = -30)+
  geom_text(aes(x = 1948, y = 1, label = "wP"), color = "red", vjust = -30) +
  theme_test()
```

Warning in geom\_text(aes(x = 1998, y = 1, label = "aP"), color = "blue", : All aesthetics has i Please consider using `annotate()` or provide this layer with data containing a single row.

Warning in geom\_text(aes(x = 1948, y = 1, label = "wP"), color = "red", : All aesthetics have i Please consider using `annotate()` or provide this layer with data containing a single row.

# Number of Pertussis Cases by Year (1922–2022)



Q3. Describe what happened after the introduction of the aP vaccine? Do you have a possible explanation for the observed trend?

We went from  $\sim 200,000$  cases pre-wP vaccine to  $\sim 1,000$  cases in 1976.

The US switched to the aP vaccine in 1995. We start to see a big increase in 2004 to  $\sim$ 26,000 cases.

There is a ~10 year lag from aP roll-out to increasing case numbers. This holds true of other countries like Japan, UK, etc. It seems that something about the aP vaccine that has a immune response that does not last as long as the wP vaccine.

**Key Question:** Why does the aP vaccine induced immunity wane faster than that of the wP vaccine?

#### CMI-PB

The CMI-PB (Computation Models of Immunity Pertussis Boost) makes available lost of data about the immune response to Pertussis booster vaccination.

Critically, it tracks wP and aP individuals over time to see how their immune response changes.

CMI-PB make all their data freely available via JSON format tables from their databas.

Let's read the first one of these tables:

```
library(jsonlite)
subject <- read_json("https://www.cmi-pb.org/api/v5/subject", simplifyVector = T)
head(subject)</pre>
```

```
subject_id infancy_vac biological_sex
                                                      ethnicity race
1
           1
                      wP
                                  Female Not Hispanic or Latino White
           2
2
                      wP
                                  Female Not Hispanic or Latino White
3
           3
                      wΡ
                                  Female
                                                         Unknown White
4
           4
                      wP
                                    Male Not Hispanic or Latino Asian
5
           5
                      wP
                                    Male Not Hispanic or Latino Asian
6
           6
                      wP
                                  Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                    dataset
     1986-01-01
                   2016-09-12 2020_dataset
                   2019-01-28 2020_dataset
2
     1968-01-01
3
     1983-01-01
                   2016-10-10 2020_dataset
4
    1988-01-01
                   2016-08-29 2020_dataset
     1991-01-01
                   2016-08-29 2020_dataset
5
6
     1988-01-01
                   2016-10-10 2020_dataset
```

Q1. How many subjects are there in this dataset?

```
nrow(subject)
```

[1] 172

Q4. How many aP and wP infancy vaccinated subjects are in the dataset?

```
table(subject$infancy_vac)
```

aP wP 87 85

Q5. How many Male and Female subjects/patients are in the dataset?

```
table(subject$biological_sex)
```

Female Male 112 60

Q6. What is the breakdown of race and biological sex (e.g. number of Asian females, White males etc...)?

# table(subject\$race, subject\$biological\_sex)

|                                           | ${\tt Female}$ | Male |
|-------------------------------------------|----------------|------|
| American Indian/Alaska Native             | 0              | 1    |
| Asian                                     | 32             | 12   |
| Black or African American                 | 2              | 3    |
| More Than One Race                        | 15             | 4    |
| Native Hawaiian or Other Pacific Islander | 1              | 1    |
| Unknown or Not Reported                   | 14             | 7    |
| White                                     | 48             | 32   |

Q. Does this do a good job of representing the US populus?

No way

Let's get more data from CMI-PB, this time about the specimens collected.

```
specimen <- read_json("https://cmi-pb.org/api/v5/specimen", simplifyVector = T)</pre>
```

Now we can join (merge) these two tables subject and specimen to make one new meta table with the combined data.

# library(dplyr)

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
```

#### meta <- inner\_join(subject, specimen)</pre>

Joining with `by = join\_by(subject\_id)`

#### head(meta)

```
subject_id infancy_vac biological_sex
                                                       ethnicity race
1
           1
                      wP
                                  Female Not Hispanic or Latino White
2
           1
                      wP
                                  Female Not Hispanic or Latino White
3
           1
                      wΡ
                                  Female Not Hispanic or Latino White
           1
4
                      wP
                                  Female Not Hispanic or Latino White
5
           1
                      wP
                                  Female Not Hispanic or Latino White
           1
                      wP
                                  Female Not Hispanic or Latino White
                                    dataset specimen_id
 year_of_birth date_of_boost
     1986-01-01
                   2016-09-12 2020_dataset
                                                       1
1
2
                   2016-09-12 2020_dataset
                                                       2
     1986-01-01
3
     1986-01-01
                   2016-09-12 2020_dataset
                                                       3
                                                       4
4
     1986-01-01
                   2016-09-12 2020 dataset
                   2016-09-12 2020_dataset
                                                       5
5
     1986-01-01
     1986-01-01
                   2016-09-12 2020_dataset
 actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                             -3
                                                             0
                                                                        Blood
2
                              1
                                                             1
                                                                        Blood
3
                              3
                                                             3
                                                                        Blood
4
                              7
                                                             7
                                                                        Blood
5
                             11
                                                            14
                                                                        Blood
6
                             32
                                                            30
                                                                        Blood
 visit
1
      1
2
      2
3
      3
4
      4
5
      5
6
      6
```

Now read an "experiment data" table from CMI-PB

```
abdata <- read_json("https://www.cmi-pb.org/api/v5/plasma_ab_titer", simplifyVector = T)
head(abdata)</pre>
```

```
specimen_id isotype is_antigen_specific antigen
                                                            MFI MFI_normalised
            1
                                      FALSE
                                              Total 1110.21154
                                                                       2.493425
1
                   IgE
2
            1
                   IgE
                                      FALSE
                                              Total 2708.91616
                                                                       2.493425
3
            1
                   IgG
                                       TRUE
                                                 PT
                                                       68.56614
                                                                       3.736992
4
            1
                   IgG
                                       TRUE
                                                PRN
                                                     332.12718
                                                                       2.602350
5
            1
                   IgG
                                       TRUE
                                                FHA 1887.12263
                                                                      34.050956
6
            1
                   IgE
                                       TRUE
                                                ACT
                                                        0.10000
                                                                       1.000000
   unit lower_limit_of_detection
1 UG/ML
                         2.096133
2 IU/ML
                        29.170000
3 IU/ML
                         0.530000
4 IU/ML
                         6.205949
5 IU/ML
                         4.679535
6 IU/ML
                         2.816431
```

One more join to do of meta and abdata to associate all the metadata about the individual and their race, biological sex, and infancy vaccination status together with Antibody levels...

```
ab <- inner_join(abdata, meta)</pre>
```

Joining with `by = join\_by(specimen\_id)`

#### head(ab)

|   | specimen id  | isotype  | is antigen  | specific   | antigen  | MFI          | MFI_normalised |
|---|--------------|----------|-------------|------------|----------|--------------|----------------|
| 1 | 1 1          | IgE      | _ 0 -       | FALSE      | _        | 1110.21154   |                |
| 2 | 1            | IgE      |             | FALSE      | Total    | 2708.91616   | 2.493425       |
| 3 | 1            | IgG      |             | TRUE       | PT       | 68.56614     | 3.736992       |
| 4 | 1            | IgG      |             | TRUE       | PRN      | 332.12718    | 2.602350       |
| 5 | 1            | IgG      |             | TRUE       | FHA      | 1887.12263   | 34.050956      |
| 6 | 1            | IgE      |             | TRUE       | ACT      | 0.10000      | 1.000000       |
|   | unit lower_  | limit_of | f_detection | subject_i  | d infand | cy_vac biol  | ogical_sex     |
| 1 | UG/ML        |          | 2.096133    |            | 1        | wP           | Female         |
| 2 | IU/ML        |          | 29.170000   |            | 1        | wP           | Female         |
| 3 | IU/ML        |          | 0.530000    |            | 1        | wP           | Female         |
| 4 | IU/ML        |          | 6.205949    |            | 1        | wP           | Female         |
| 5 | IU/ML        |          | 4.679535    |            | 1        | wP           | Female         |
| 6 | IU/ML        |          | 2.816431    |            | 1        | wP           | Female         |
|   |              | ethnic   | ity race ye | ear_of_bir | th date_ | _of_boost    | dataset        |
| 1 | Not Hispanio | or Lat   | ino White   | 1986-01-   | 01 20    | 016-09-12 20 | 020_dataset    |
| 2 | Not Hispanio | or Lat:  | ino White   | 1986-01-   | 01 20    | 016-09-12 20 | 020_dataset    |
|   |              |          |             |            |          |              |                |

```
3 Not Hispanic or Latino White
                                   1986-01-01
                                                  2016-09-12 2020_dataset
4 Not Hispanic or Latino White
                                   1986-01-01
                                                  2016-09-12 2020_dataset
5 Not Hispanic or Latino White
                                                  2016-09-12 2020_dataset
                                   1986-01-01
6 Not Hispanic or Latino White
                                   1986-01-01
                                                  2016-09-12 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
1
                             -3
                                                                        Blood
2
                             -3
                                                             0
                                                                        Blood
3
                             -3
                                                             0
                                                                        Blood
4
                             -3
                                                             0
                                                                        Blood
5
                             -3
                                                                        Blood
                                                             0
6
                             -3
                                                             0
                                                                        Blood
  visit
      1
2
      1
3
      1
4
      1
5
      1
      1
```

Q. Hwo many Ab measurements do we have?

### nrow(ab)

[1] 52576

How many isotypes

## table(ab\$isotype)

```
IgE IgG IgG1 IgG2 IgG3 IgG4
6698 5389 10117 10124 10124 10124
```

How many antigens?

# table(ab\$antigen)

| OVA  | Measles | LOS  | LOLP1 | FIM2/3 | FHA   | FELD1 | DT   | BETV1 | ACT  |
|------|---------|------|-------|--------|-------|-------|------|-------|------|
| 4978 | 1970    | 1970 | 1970  | 4978   | 5372  | 1970  | 4978 | 1970  | 1970 |
|      |         |      |       | TT     | Total | PTM   | PT   | PRN   | PD1  |
|      |         |      |       | 4978   | 788   | 1970  | 5372 | 5372  | 1970 |

Let's focus in on IgG - one of the main antibody types responsive to bacteria or virial infections

```
igg <- filter(ab, isotype == "IgG")
head(igg)</pre>
```

|   | specimen_id  | isotvpe    | is antigen | specific an  | tigen   | MFI        | MFI_normalised |
|---|--------------|------------|------------|--------------|---------|------------|----------------|
| 1 | 1            | IgG        |            | TRUE         | PT      | 68.56614   | <del>-</del>   |
| 2 | 1            | IgG        |            | TRUE         | PRN     | 332.12718  |                |
| 3 | 1            | IgG        |            | TRUE         |         | 1887.12263 |                |
| 4 | 19           | IgG        |            | TRUE         | PT      | 20.11607   |                |
| 5 | 19           | IgG        |            | TRUE         | PRN     | 976.67419  | 7.652635       |
| 6 | 19           | IgG        |            | TRUE         | FHA     | 60.76626   | 1.096457       |
|   | unit lower_  | _limit_of  | _detection | subject_id   | infancy | y_vac biol | ogical_sex     |
| 1 | IU/ML        |            | 0.530000   | 1            |         | wP         | Female         |
| 2 | IU/ML        |            | 6.205949   | 1            |         | wP         | Female         |
| 3 | IU/ML        |            | 4.679535   | 1            |         | wP         | Female         |
| 4 | IU/ML        |            | 0.530000   | 3            |         | wP         | Female         |
| 5 | IU/ML        |            | 6.205949   | 3            |         | wP         | Female         |
| 6 | IU/ML        |            | 4.679535   | 3            |         | wP         | Female         |
|   |              | ethnicit   | ty race y  | ear_of_birth | date_d  | of_boost   | dataset        |
| 1 | Not Hispanio | or Latin   | no White   | 1986-01-01   | . 201   | 16-09-12 2 | 020_dataset    |
| 2 | Not Hispanio | or Latin   | no White   | 1986-01-01   | . 201   | 16-09-12 2 | 020_dataset    |
| 3 | Not Hispanio |            |            | 1986-01-01   | . 201   | 16-09-12 2 | 020_dataset    |
| 4 |              | Unknov     | wn White   | 1983-01-01   | . 201   | 16-10-10 2 | 020_dataset    |
| 5 |              |            | wn White   | 1983-01-01   |         |            | 020_dataset    |
| 6 |              |            | wn White   | 1983-01-01   |         |            | 020_dataset    |
|   | actual_day_r | relative_t | _          | lanned_day_r | elative | e_to_boost | specimen_type  |
| 1 |              |            | -3         |              |         | 0          | Blood          |
| 2 |              |            | -3         |              |         | 0          | Blood          |
| 3 |              |            | -3         |              |         | 0          | Blood          |
| 4 |              |            | -3         |              |         | 0          | Blood          |
| 5 |              |            | -3         |              |         | 0          | Blood          |
| 6 |              |            | -3         |              |         | 0          | Blood          |
|   | visit        |            |            |              |         |            |                |
| 1 | 1            |            |            |              |         |            |                |
| 2 | 1            |            |            |              |         |            |                |
| 3 | 1            |            |            |              |         |            |                |
| 4 | 1            |            |            |              |         |            |                |
| 5 | 1            |            |            |              |         |            |                |
| 6 | 1            |            |            |              |         |            |                |

Make a first plot of MFI (Mean Flourescence Intensity - a measure of how much is detected) for each antigen.

```
ggplot(igg, aes(MFI_normalised, antigen, col = infancy_vac)) +
geom_boxplot()
```



```
ggplot(igg, aes(MFI_normalised, antigen, col = infancy_vac)) +
  geom_boxplot() +
  facet_wrap(~visit)
```



# table(igg\$visit)

```
1 2 3 4 5 6 7 8 9 10 11 12
902 902 930 559 559 540 525 150 147 133 21 21
```

Exclude visits 8~12. Focus on the first 7 visits. Looks like we don't have data yet for all subjects in terms of visits 8 onwards. So let's exclude these.

```
igg_7 <- filter(igg, visit %in% 1:7)
table(igg_7$visit)</pre>
```

1 2 3 4 5 6 7 902 902 930 559 559 540 525

```
ggplot(igg_7, aes(MFI_normalised, antigen, col = infancy_vac)) +
geom_boxplot() +
facet_wrap(~visit, ncol = 2)
```



Let's try a different plot. First focus on one antigen, start with PT (Pertussis Toxin) and plot visit or time on the x-axis and MFI\_normalised on the y-axis.

```
igg_7 %>%
filter(antigen == "PT", dataset == "2020_dataset") %>%
ggplot() +
aes(planned_day_relative_to_boost, MFI_normalised, group = subject_id) +
geom_point() +
geom_line(alpha = 0.2)
```



Must filter to a single year.

2021 dataset IgG PT
Dashed lines indicate day 0 (pre-boost) and 14 (apparent peak levels)



Let's finish here for today. We are beginning to see some interesting differences between aP and wP individuals. There is likely lots of other interesting things to find in this dataset...

library(lubridate)