Lagrange Multipliers and the Karush-Kuhn-Tucker conditions

March 20, 2012

Goal:

Want to find the maximum or minimum of a function subject to some constraints.

Formal Statement of Problem:

Given functions f, g_1, \ldots, g_m and h_1, \ldots, h_l defined on some domain $\Omega \subset \mathbf{R}^n$ the optimization problem has the form

 $\min_{\mathbf{x} \in \Omega} f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0 \ \forall i$ and $h_j(\mathbf{x}) = 0 \ \forall j$

In these notes...

We will derive/state sufficient and necessary for (local) optimality when there are

- no constraints,
- 2 only equality constraints,
- 3 only inequality constraints,
- 4 equality and inequality constraints.

Unconstrained Optimization

Unconstrained Minimization

Assume:

Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function.

Necessary and sufficient conditions for a local minimum:

 \mathbf{x}^* is a local minimum of $f(\mathbf{x})$ if and only if

1 f has zero gradient at \mathbf{x}^* :

$$oldsymbol{
abla}_{\mathbf{x}}f(\mathbf{x}^*)=\mathbf{0}$$

2 and the Hessian of f at \mathbf{w}^* is positive semi-definite:

$$\mathbf{v}^t \left(\nabla^2 f(\mathbf{x}^*) \right) \mathbf{v} \ge \mathbf{0}, \ \forall \mathbf{v} \in \mathbb{R}^n$$

where

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \dots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n^2} \end{pmatrix}$$

Unconstrained Maximization

Assume:

Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function.

Necessary and sufficient conditions for local maximum:

 \mathbf{x}^* is a local maximum of $f(\mathbf{x})$ if and only if

1 f has zero gradient at \mathbf{x}^* :

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$

2 and the Hessian of f at \mathbf{x}^* is negative semi-definite:

$$\mathbf{v}^t \left(\nabla^2 f(\mathbf{x}^*) \right) \mathbf{v} \le \mathbf{0}, \ \forall \mathbf{v} \in \mathbb{R}^n$$

where

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n^2} \end{pmatrix}$$

Equality Constraints

Constrained Optimization:

Tutorial Example

Problem:

This is the constrained optimization problem we want to solve

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$
 subject to $h(\mathbf{x}) = 0$

where

$$f(\mathbf{x}) = x_1 + x_2 \text{ and } h(\mathbf{x}) = x_1^2 + x_2^2 - 2$$

Tutorial example - Cost function

$$f(\mathbf{x}) = x_1 + x_2$$

Tutorial example - Feasible region

$$h(\mathbf{x}) = x_1^2 + x_2^2 - 2$$

Given a point $x_{\scriptscriptstyle F}$ on the constraint surface

Given a point $x_{\scriptscriptstyle F}$ on the constraint surface

Find $\delta \mathbf{x}$ s.t. $h(\mathbf{x}_{\text{F}} + \alpha \delta \mathbf{x}) = 0$ and $f(\mathbf{x}_{\text{F}} + \alpha \delta \mathbf{x}) < f(\mathbf{x}_{\text{F}})$?

Condition to decrease the cost function

At any point $\tilde{\mathbf{x}}$ the direction of steepest descent of the cost function $f(\mathbf{x})$ is given by $-\nabla_{\mathbf{x}} f(\tilde{\mathbf{x}})$.

Condition to decrease the cost function

To move $\delta {\bf x}$ from ${\bf x}$ such that $f({\bf x}+\delta {\bf x}) < f({\bf x})$ must have

$$\delta \mathbf{x} \cdot (-\nabla_{\mathbf{x}} f(\mathbf{x})) > 0$$

Condition to remain on the constraint surface

Normals to the constraint surface are given by $\nabla_{\mathbf{x}} h(\mathbf{x})$

Condition to remain on the constraint surface

Note the direction of the normal is arbitrary as the constraint be imposed as either $h(\mathbf{x})=0$ or $-h(\mathbf{x})=0$

Condition to remain on the constraint surface

To move a small $\delta \mathbf{x}$ from \mathbf{x} and remain on the constraint surface we have to move in a direction orthogonal to $\nabla_{\mathbf{x}} h(\mathbf{x})$.

To summarize...

If x_E lies on the constraint surface:

- setting $\delta \mathbf{x}$ orthogonal to $\nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}})$ ensures $h(\mathbf{x}_{\mathsf{F}} + \delta \mathbf{x}) = 0$.
- And $f(\mathbf{x}_{\text{F}} + \delta \mathbf{x}) < f(\mathbf{x}_{\text{F}})$ only if

$$\delta \mathbf{x} \cdot (-\nabla_{\mathbf{x}} f(\mathbf{x}_{\mathsf{F}})) > 0$$

Condition for a local optimum

Consider the case when

$$\nabla_{\mathbf{x}} f(\mathbf{x}_{\mathsf{F}}) = \mu \nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}})$$

where μ is a scalar.

When this occurs

• If $\delta {f x}$ is orthogonal to $abla_{f x} h({f x}_{{\scriptscriptstyle\mathsf{F}}})$ then

$$\delta \mathbf{x} \cdot (-\nabla_{\mathbf{x}_{\mathsf{F}}} f(\mathbf{x})) = -\delta \mathbf{x} \cdot \mu \nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}}) = 0$$

 Cannot move from x_F to remain on the constraint surface and decrease (or increase) the cost function.

This case corresponds to a constrained local optimum!

Condition for a local optimum

Consider the case when

$$\nabla_{\mathbf{x}} f(\mathbf{x}_{\mathsf{F}}) = \mu \nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}})$$

where μ is a scalar.

When this occurs

• If $\delta \mathbf{x}$ is orthogonal to $\nabla_{\mathbf{x}} h(\mathbf{x}_{\text{F}})$ then

$$\delta \mathbf{x} \cdot (-\nabla_{\mathbf{x}_{\mathsf{F}}} f(\mathbf{x})) = -\delta \mathbf{x} \cdot \mu \nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}}) = 0$$

 Cannot move from x_F to remain on the constraint surface and decrease (or increase) the cost function.

This case corresponds to a constrained local optimum!

Condition for a local optimum

A constrained local optimum occurs at \mathbf{x}^* when $\nabla_{\mathbf{x}} f(\mathbf{x}^*)$ and $\nabla_{\mathbf{x}} h(\mathbf{x}^*)$ are parallel that is

$$\nabla_{\mathbf{x}} f(\mathbf{x}^*) = \mu \nabla_{\mathbf{x}} h(\mathbf{x}^*)$$

From this fact Lagrange Multipliers make sense

Remember our constrained optimization problem is

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$
 subject to $h(\mathbf{x}) = 0$

Define the Lagrangian as

$$\mathcal{L}(\mathbf{x}, \mu) = f(\mathbf{x}) + \mu h(\mathbf{x})$$

Then \mathbf{x}^* a local minimum \iff there exists a unique μ^* s.t.

- $\nabla_{\mu} \mathcal{L}(\mathbf{x}^*, \mu^*) = 0$
- $\mathbf{3} \ \mathbf{y}^t (\nabla^2_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \mu^*)) \mathbf{y} \geq 0 \quad \forall \mathbf{y} \ \text{s.t.} \ \nabla_{\mathbf{x}} h(\mathbf{x}^*)^t \mathbf{y} = 0$

From this fact Lagrange Multipliers make sense

Remember our constrained optimization problem is

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$
 subject to $h(\mathbf{x}) = 0$

Define the **Lagrangian** as note $\mathcal{L}(\mathbf{x}^*, \mu^*) = f(\mathbf{x}^*)$

$$\left(\mathcal{L}(\mathbf{x}, \mu) = f(\mathbf{x}) + \mu h(\mathbf{x}) \right)$$

Then \mathbf{x}^* a local minimum \iff there exists a unique μ^* s.t.

- 2 $\nabla_{\mu} \mathcal{L}(\mathbf{x}^*, \mu^*) = 0$ \leftarrow encodes the equality constraint $h(\mathbf{x}^*) = 0$
- $\mathbf{3} \ \mathbf{y}^t (\nabla^2_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \mu^*)) \mathbf{y} \geq 0 \quad \forall \mathbf{y} \ \text{s.t.} \ \nabla_{\mathbf{x}} h(\mathbf{x}^*)^t \mathbf{y} = 0$

Positive definite Hessian tells us we have a local minimum

The case of multiple equality constraints

The constrained optimization problem is

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$
 subject to $h_i(\mathbf{x}) = 0$ for $i = 1, \dots, l$

Construct the Lagrangian (introduce a multiplier for each constraint)

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{l} \mu_i \, h_i(\mathbf{x}) = f(\mathbf{x}) + \boldsymbol{\mu}^t \, \mathbf{h}(\mathbf{x})$$

Then \mathbf{x}^* a local minimum \iff there exists a unique $\boldsymbol{\mu}^*$ s.t.

- $\mathbf{3} \ \mathbf{y}^t (\nabla^2_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \mu^*)) \mathbf{y} \geq 0 \quad \forall \mathbf{y} \ \text{s.t.} \ \nabla_{\mathbf{x}} h(\mathbf{x}^*)^t \mathbf{y} = 0$

Constrained Optimization: Inequality Constraints

Tutorial Example - Case 1

Problem:

Consider this constrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$
 subject to $g(\mathbf{x}) \leq 0$

where

$$f({\bf x}) = x_1^2 + x_2^2 \ {\bf and} \ g({\bf x}) = x_1^2 + x_2^2 - 1$$

Tutorial example - Cost function

$$f(\mathbf{x}) = x_1^2 + x_2^2$$

Tutorial example - Feasible region

$$g(\mathbf{x}) = x_1^2 + x_2^2 - 1$$

Remember \mathbf{x}_{F} denotes a feasible point.

当f(x)在可行域之内时, f(x)本身的极小值, 在经过g(x)约束之后, 还是原来的那个值, 也就是说, 这g(x)这个约束条件没有起到作用

... Necessary and sufficient conditions for a constrained local minimum are the same as for an unconstrained local minimum.

$$\nabla_{\mathbf{x}} f(\mathbf{x}_{\text{F}}) = \mathbf{0} \quad \text{and} \quad \nabla_{\mathbf{x}\mathbf{x}} f(\mathbf{x}_{\text{F}}) \text{ is positive definite}$$

This Tutorial Example has an inactive constraint

Problem:

Our constrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$
 subject to $g(\mathbf{x}) \leq 0$

where

$$f(\mathbf{x}) = x_1^2 + x_2^2$$
 and $g(\mathbf{x}) = x_1^2 + x_2^2 - 1$

Constraint is not active at the local minimum ($g(\mathbf{x}^*) < 0$):

Therefore the local minimum is identified by the same conditions as in the unconstrained case.

Tutorial Example - Case 2

Problem:

This is the constrained optimization problem we want to solve

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$
 subject to $g(\mathbf{x}) \leq 0$

where

$$f(\mathbf{x}) = (x_1 - 1.1)^2 + (x_2 - 1.1)^2$$
 and $g(\mathbf{x}) = x_1^2 + x_2^2 - 1$

Tutorial example - Cost function

$$f(\mathbf{x}) = (x_1 - 1.1)^2 + (x_2 - 1.1)^2$$

Tutorial example - Feasible region

$$g(\mathbf{x}) = x_1^2 + x_2^2 - 1$$

Remember x_F denotes a feasible point.

: the constrained local minimum occurs on the surface of the constraint surface.

 \therefore Effectively have an optimization problem with an **equality** constraint: $g(\mathbf{x}) = 0$.

Given an equality constraint

A local optimum occurs when $\nabla_{\mathbf{x}} f(\mathbf{x})$ and $\nabla_{\mathbf{x}} g(\mathbf{x})$ are parallel:

$$-\nabla_{\mathbf{x}} f(\mathbf{x}) = \lambda \nabla_{\mathbf{x}} g(\mathbf{x})$$

Want a constrained local minimum...

... Constrained local minimum occurs when $-\nabla_{\mathbf{x}} f(\mathbf{x})$ and $\nabla_{\mathbf{x}} g(\mathbf{x})$ point in the same direction:

$$-\nabla_{\mathbf{x}}\,f(\mathbf{x}) = \lambda\nabla_{\mathbf{x}}\,g(\mathbf{x}) \quad \text{and} \quad \lambda > 0$$

Want a constrained local minimum...

... Constrained local minimum occurs when $-\nabla_{\mathbf{x}} f(\mathbf{x})$ and $\nabla_{\mathbf{x}} g(\mathbf{x})$ point in the same direction:

$$-\nabla_{\mathbf{x}}\,f(\mathbf{x}) = \lambda\nabla_{\mathbf{x}}\,g(\mathbf{x}) \quad \text{and} \quad \lambda > 0$$

Summary of optimization with one inequality constraint

Given

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$
 subject to $g(\mathbf{x}) \leq 0$

If \mathbf{x}^{\ast} corresponds to a constrained local minimum then

Case 1:

Unconstrained local minimum occurs **in** the feasible **region**.

- 1 $g(\mathbf{x}^*) < 0$
- $\nabla_{\mathbf{x}} f(\mathbf{x}^*) = \mathbf{0}$
- 3 $\nabla_{\mathbf{x}\mathbf{x}} f(\mathbf{x}^*)$ is a positive semi-definite matrix.

Case 2:

Unconstrained local minimum lies **outside** the feasible region.

第二种,极值

度负方向与约 面梯度方向一

- $\mathbf{0} \ g(\mathbf{x}^*) = 0$
- 3 $\mathbf{y}^t \nabla_{\mathbf{x}\mathbf{x}} L(\mathbf{x}^*) \mathbf{y} \ge 0$ for all \mathbf{y} orthogonal to $\nabla_{\mathbf{x}} g(\mathbf{x}^*)$.

第一种情况,退化为直接求f(x)的极小值,等价将lambda置为0

Karush-Kuhn-Tucker conditions encode these conditions

Given the optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$
 subject to $g(\mathbf{x}) \leq 0$

Define the **Lagrangian** as

$$f+lamb^*g=L$$

满足下方条件时,即有 f 的 $\mathcal{L}(\mathbf{x},\lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})$ 负梯度方向与约束面梯度方向一致

Then \mathbf{x}^* a local minimum \iff there exists a unique λ^* s.t.

- case1:看做lambda为0,所以有lambda*g=0

- **2** $\lambda^* > 0$
- $3 \lambda^* g(\mathbf{x}^*) = 0$
- 4 $q(\mathbf{x}^*) < 0$ case2:极值只能发生在约束面上,所以必有g=0
- **5** Plus positive definite constraints on $\nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \lambda^*)$.

These are the KKT conditions.

Let's check what the KKT conditions imply

Case 1 - Inactive constraint:

- When $\lambda^* = 0$ then have $\mathcal{L}(\mathbf{x}^*, \lambda^*) = f(\mathbf{x}^*)$.
- Condition KKT $1 \implies \nabla_{\mathbf{x}} f(\mathbf{x}^*) = \mathbf{0}$.
- Condition KKT 4 \implies \mathbf{x}^* is a feasible point.

Case 2 - Active constraint:

- When $\lambda^* > 0$ then have $\mathcal{L}(\mathbf{x}^*, \lambda^*) = f(\mathbf{x}^*) + \lambda^* g(\mathbf{x}^*)$.
- Condition KKT 1 $\implies \nabla_{\mathbf{x}} f(\mathbf{x}^*) = -\lambda^* \nabla_{\mathbf{x}} g(\mathbf{x}^*).$
- Condition KKT 3 $\Longrightarrow g(\mathbf{x}^*) = 0$.
- Condition KKT 3 also $\implies \mathcal{L}(\mathbf{x}^*, \lambda^*) = f(\mathbf{x}^*).$

KKT conditions for multiple inequality constraints

Given the optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$
 subject to $g_j(\mathbf{x}) \leq 0$ for $j = 1, \dots, m$

Define the Lagrangian as

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{j=1}^{m} \lambda_j g_j(\mathbf{x}) = f(\mathbf{x}) + \boldsymbol{\lambda}^t \mathbf{g}(\mathbf{x})$$

Then \mathbf{x}^* a local minimum \iff there exists a unique $\boldsymbol{\lambda}^*$ s.t.

- $2 \lambda_i^* \ge 0 \text{ for } j = 1, \dots, m$
- **3** $\lambda_{j}^{*} g(\mathbf{x}^{*}) = 0$ for j = 1, ..., m
- **4** $g_i(\mathbf{x}^*) \le 0$ for j = 1, ..., m
- **5** Plus positive definite constraints on $\nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*)$.

KKT for multiple equality & inequality constraints

Given the constrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x})$$

subject to

$$h_i(\mathbf{x}) = 0 \text{ for } i = 1, \dots, l \text{ and } g_j(\mathbf{x}) \leq 0 \text{ for } j = 1, \dots, m$$

Define the Lagrangian as

$$oxed{\mathcal{L}(\mathbf{x},oldsymbol{\mu},oldsymbol{\lambda}) = f(\mathbf{x}) + oldsymbol{\mu}^t \, \mathbf{h}(\mathbf{x}) + oldsymbol{\lambda}^t \, \mathbf{g}(\mathbf{x})}$$

Then x^* a local minimum \iff there exists a unique λ^* s.t.

- **2** $\lambda_i^* > 0$ for i = 1, ..., m
- 3 $\lambda_i^* g_i(\mathbf{x}^*) = 0 \text{ for } j = 1, \dots, m$
- **4** $q_i(\mathbf{x}^*) < 0 \text{ for } i = 1, \dots, m$
- **6** $h(x^*) = 0$
- 6 Plus positive definite constraints on $\nabla_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*)$.