Medical Vision Seminar

——Wei Lou

DiNTS: Differentiable Neural Network Topology Search for 3D Medical Image Segmentation (CVPR2021)

— Yufan He, Dong Yang, Holger Roth, Can Zhao, Daguang Xu Johns Hopkins University, NVIDIA

Aim: Design a good 3-D medical image segmentation network automatically.

1. Background

Differentiable Neural Network Architecture Search

Richard Shin* & Charles Packer* & Dawn Song
University of California, Berkeley
(DARTS), (ICLR 2018)

1.1 Neural Network Architecture Search (NAS)

Fig. 1 An example of manual designed network architecture

Fig. 2 An example of searched network architecture

1.2 Three key components of NAS (Search Space; Search Strategy; Evaluation Metrics)

• **Search Space**: Topology structure; Layer numbers; Connections; Operations (conv, pooling, skip...) and parameters (stride, channels, height, width, activation functions...);

Fig.3 Search Space. (Left) Topology; (Right) Operations and connections.

1.2 Three key components of NAS (Search Space; Search Strategy; Evaluation Metrics)

• Search Strategy: Reinforcement Learning; Random Search; Genetic Algorithm; Differentiable Search Algorithm.

Definition of search space:

From node i to node j, o represents different operations, x represents features.

$$x^{(j)} = \sum_{i < j} o^{(i,j)}(x^{(i)})$$

Continuous relaxation:

Define continuous weights α_i for each operation o_i . Relax discrete operations to continuous using Softmax activation function:

$$ar{o}_{(i,j)}(x) = \sum_{o \in O} rac{exp(lpha_{o,(i,j)})}{\sum_{o \in O} exp(lpha_{o,(i,j)})} o(x)$$

$$\alpha = [\alpha_{1(i,j)} \dots \alpha_{|O|,(i,j)}]$$

Bi-level optimization problem:

Evaluation Metrics: Performance; Efficiency...
$$min_{\alpha}L_{val}(w^*(\alpha),\alpha)$$
 $s.t$ $w^*(\alpha) = argmin_w L_{train}(w,\alpha)$

1.3 Conclusion: DARTS training pipeline

Fig.4 Typical NAS training process

- 1. Define a search space
- 2. Continuous relaxation
- 3. Optimization
- 4. Operation selection / Discretization

2. Related Work

Auto-DeepLab:

Hierarchical Neural Architecture Search for Semantic Image Segmentation

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua,
Alan Yuille, Li Fei-Fei
Johns Hopkins University, Google, Stanford University

2.1 Auto-DeepLab (CVPR 2019)

Fig.5 Search Space. (Right) Outer network level; (Left) Inner cell level

Key Contribution:

1. Two level hierarchical architecture search space (inner cell level / outer network level): Inner cell level: Operations inside convolutional module.

Outer network level: Topology path among cells.

Fig.6 Searched result

2.2 Remain problems (NAS; Medical image segmentation)

Fig.7 Limitation of formal single-path discrete model

Fig.8 Different medical images

- (1) Current single-path discrete model can result in a large 'discretization gap' with searched continuous model.
- (2) NAS based methods usually cost tremendous training time and memory usage.
- (3) Manually designed networks, like U-Net, are less likely to be optimal for different type of medical images.

3. Method

DiNTS: Differentiable Neural Network Topology Search for 3D Medical Image Segmentation
—— Yufan He, Dong Yang, Holger Roth, Can Zhao, Daguang Xu
Johns Hopkins University, NVIDIA
(CVPR2021)

3 Overall

- 3.1 Network Topology Search Space 网络搜索空间
- 3.2 Continuous Relaxation and Discretization 连续松弛和离散化操作
- 3.3 Discretization with topology constraints 用拓扑算法来进行离散操作
- 3.4 Bridging the Discretization Gap 缓解离散-连续转化Gap
- 3.5 Memory Budget Constraints 控制内存的消耗
- 3.6 Optimization

3.1 Network Topology Search Space

Fig.8 Left: Topology search space; Right: Cell search space

Outer network search space:

Layer number: L = 12.

Input for layer 0: D = 4 feature map of different scale.

Input for layer i: E = 4 nodes * j=3 inputs

(upsampling/no change/downsampling) – 2 (first/end

node).

Edge: Each edge contains a cell and a spatial operation.

Output: Summation of edge outputs.

Inner cell operations:

Note that the spatial operations are not included in cells P3D: Pseudo 3D

- (1) skip connection (2) 3x3x3 3D convolution
- (3) P3D 3x3x1: 3x3x1 followed by 1x1x3 convolution
- (4) P3D 3x1x3: 3x1x3 followed by 1x3x1 convolution
- (5) P3D 1x3x3: 1x3x3 followed by 3x1x1 convolution

3.2 Continuous Relaxation and Discretization

3.2.1 Cell Space Relaxation follow the same method with DARTS.

$$egin{aligned} ar{o}_{(i,j)}(x) &= \sum_{o \in O} rac{exp(lpha_{o,(i,j)})}{\sum_{o \in O} exp(lpha_{o,(i,j)})} o(x) \ &lpha &= [lpha_{1(i,j)} \ldots lpha_{|O|,(i,j)}] \end{aligned}$$

3.2.2 Network Topology Space Relaxation.

- 1. D feature nodes of each layer are combined as a 'super feature node' s_i
- 2. From s_{i-1} to s_i , there are M = E^2 -1 connection pattern cp.
- 3. Define the input connection operation to s_i with connection pattern cp_j as c_j^i , it also includes cell operations on the selected edges in cp_j .
- 4. Associate a variable η_j^i to the connection operation c_j^i .

Goal: Select one connection pattern to connect super feature nodes.

$$s_{i} = \sum_{j=1}^{M} (\eta_{j}^{i} * c_{j}^{i}(s_{i-1})) \quad i = 1 \cdots, L$$

$$\sum_{j=1}^{M} \eta_{j}^{i} = 1, \eta_{j} \ge 0 \quad \forall i, j$$
(1)

3.3 Discretization with topology constraints

A directed graph G contains L*M+2 nodes. Each input edge cost is $-\log \eta_i^i$. Those L nodes on the shortest path from source to sink in G represents the optimal connection operations (Dijkstra Algorithm). For cell operations, simply use the operation with the largest α .

Fig.9 Derive discrete architecture

Why we need topology constraints —— Because some connection pattern may not feasible (gray nodes in Fig. 9)

I: Array of selected input connection pattern indexes (whole path)

F(j): All the feasible output connection pattern with input pattern j

p(I): Distribution of input connection pattern indexes

$$p(I) = \begin{cases} \prod_{i=1}^{L} \eta_i^{I(i)}, & \forall i : \quad I(i+1) \in \mathcal{F}(I(i)) \\ 0, & \text{else.} \end{cases}$$
 (3)

$$p(I) = \begin{cases} \prod_{i=1}^{L} \eta_i^{I(i)}, & \forall i : I(i+1) \in \mathcal{F}(I(i)) \\ 0, & \text{else.} \end{cases}$$
(3)
$$I = \underset{I}{\operatorname{argmin}} \sum_{i=1}^{L} -\log(\eta_i^{I(i)}), \forall i : I(i+1) \in \mathcal{F}(I(i))$$
(4)

3.4 Bridging the Discretization Gap

3.4.1 Encourage binarization of α and η .

$$\mathcal{L}_{\alpha} = \frac{-1}{L * E * N} \sum_{i=1}^{L} \sum_{e=1}^{E} \sum_{n=1}^{N} \alpha_{n}^{i,e} * log(\alpha_{n}^{i,e})$$

$$\mathcal{L}_{\eta} = \frac{-1}{L * M} \sum_{i=1}^{L} \sum_{j=1}^{M} \eta_{j}^{i} * log(\eta_{j}^{i})$$
(5)

3.4.2 Try to constraint the network to build feasible connection patterns.

$$p_{in}^{i}(a) = \sum_{j \in F_{in}(a)} \eta_{j}^{i}, \quad p_{out}^{i}(a) = \sum_{j \in F_{out}(a)} \eta_{j}^{i+1}$$
 (6)

$$p_{in}^{i}(a) = \sum_{j \in F_{in}(a)} \eta_{j}^{i}, \quad p_{out}^{i}(a) = \sum_{j \in F_{out}(a)} \eta_{j}^{i+1}$$
(6)

$$\mathcal{L}_{tp} = -\sum_{i=1}^{L-1} \sum_{a \in \mathcal{A}} (p_{in}^{i}(a) \log(p_{out}^{i}(a)) +$$

$$(1 - p_{in}^{i}(a)) \log(1 - p_{out}^{i}(a)))$$
(7)

a: Indication function of length D, a(i) = 1 if i-th node of a super feature node is activated.

 $F_{\rm in}(a)/F_{out}$: All feasible input and output connection pattern indexes for activated a.

 p_{in}^{i} (a): The probability that the activation pattern for s_{i} is a. p_{out}^{i} (a): The probability that the s_{i} with pattern a is feasible. L_{tp} : By minimizing L_{tp} , the search stage is aware of topology constraints and encourages all the super feature nodes to be topologically feasible.

3.5 **Memory Budget Constraints**

Reason: For segmentation tasks, the searched model is usually retrained under different training setting (input size, filter number, datasets). The memory budget normally huge in 3D image training tasks.

Solution: Consider memory usage in architecture search

$$M_e = \sum_{i=1}^{L} \sum_{j=1}^{M} \eta_j^i * (\sum_{e=1}^{E} M^{i,e} * cp_j(e))$$
 $M^{i,e} = \sum_{n=1}^{N} \alpha_n^{i,e} M_n.$

$$M_{a} = \sum_{i=1}^{L} \sum_{j=1}^{M} *(\sum_{e=1}^{E} (\sum_{n=1}^{N} M_{n}) * cp_{j}(e))$$

$$\mathcal{L}_{m} = |M_{e}/M_{a} - \sigma|_{1}$$

 M_n : Estimate memory usage for operation O_n M_e : Expected memory usage of searched model M_a : Maximum memory usage of whole model σ : Memory budget

3.6 Optimization

- 1. Split the training data into train1 and train2.
- 2. The optimization using 2 different loss alternately.

Optimize network weight w using L_seg (DICE + cross-entropy loss) with train1; Optimize architecture weights α and η using L_arch with train2:

$$\mathcal{L}_{arch} = \mathcal{L}_{seg} + t/t_{all} * (\mathcal{L}_{\alpha} + \mathcal{L}_{\eta} + \lambda * \mathcal{L}_{tp} + \mathcal{L}_{m})$$

 t/t_{all} : current iteration / total iterations; $\lambda = 0.001$;

$$\mathcal{L}_{\alpha} = \frac{-1}{L * E * N} \sum_{i=1}^{L} \sum_{e=1}^{E} \sum_{n=1}^{N} \alpha_{n}^{i,e} * log(\alpha_{n}^{i,e})$$

$$\mathcal{L}_{\eta} = \frac{-1}{L * M} \sum_{i=1}^{L} \sum_{j=1}^{M} \eta_j^i * log(\eta_j^i)$$

$$\mathcal{L}_{tp} = -\sum_{i=1}^{L-1} \sum_{a \in \mathcal{A}} (p_{in}^{i}(a) \log(p_{out}^{i}(a)) + (1 - p_{in}^{i}(a)) \log(1 - p_{out}^{i}(a)))$$

$$\mathcal{L}_m = |M_e/M_a - \sigma|_1$$

4. Experiments

4.1 Training and Testing datasets:

MSD dataset has ten segmentation tasks (CT/MRI Liver/Brain/Hippocampus(海马体)/Lung/Prostate(前列腺)/Cardiac(心脏)/Pancreas (胰腺)/ Colon(结肠)/ Hepatic(肝脏)/ Spleen(脾脏))

Numbers: 131/70; 484/266; 263/131; 64/32; 32/16; 20/10; 282/139; 126/64; 303/140; 41/20.

Training set for search: Pancreas dataset (282 3D CT images).

Testing set: All the testing set of ten tasks.

4.2 Evaluation Metrics (time/efficiency)

Table 1. Comparison of FLOPs, Parameters and Retraining GPU memory usage and the 5-Fold cross validation Dice-Sørensen score of our searched architectures on Pancreas dataset

Mode1	FLOPs (G)	Params. (M)	Memory (MB)	DSC1	DSC2	Avg.
3D UNet [6] (nn-UNet)	658	18	9176	-		-
Attention UNet [28]	1163	104	13465	0.0	-	2
C2FNAS [45]	151	17	5730	-	-	12
DiNTS (σ=0.2)	146	163	5787	77.94	48.07	63.00
DiNTS (σ=0.5)	308	147	10110	80.20	52.25	66.23
DiNTS (σ=0.8)	334	152	13018	80.06	52.53	66,29

• Search Time: DiNTS/C2FNAS 5.8 GPU(V100) days / 333 GPU(V100) days

• FLOPS/Params/Memory: No advantage but achieve 3D NAS successfully.

4.2 Evaluation Metrics (performance)

Segmentation performance:

MSD challenge champion nnUNet: ensembles 2D/3D/Cascaded-3D Unet on different tasks, hand-crafted hyper-parameters.

Latest NAS SOTA on MSD dataset: C2FNAS

Results:

DiNTS is better on bigger dataset (Pancrease, Brain, Colon), worse on smaller dataset (Heart (10), Prostate (16), Spleen(20)). DiNTS outperforms manual-designed and NAS SOTA with best average performance for all ten tasks.

Metric	Brain								
	DSC1	DSC2	DSC3	Avg.	NSD1	NSD2	NSD3	Avg.	
CerebriuDIKU [30]	69.52	43.11	66.74	59.79	88.25	68.98	88.90	82.04	
NVDLMED [41]	67.52	45.00	68.01	60.18	86.99	69.77	89.82	82.19	
Kim et al [15]	67.40	45.75	68.26	60.47	86.65	72.03	90.28	82.99	
nnUNet [14]	68.04	46.81	68.46	61.10	87.51	72.47	90.78	83.59	
C2FNAS [45]	67.62	48.60	69.72	61.98	87.61	72.87	91.16	83.88	
DiNTS	69.28	48.65	69.75	62.56	89.33	73.16	91.69	84.73	

Metric	Heart		Liver						
	DSC1	NSD1	DSC1	DSC2	Avg.	NSD1	NSD2	Avg.	
CerebriuDIKU [30]	89.47	90.63	94.27	57.25	75.76	96.68	72.60	84.64	
NVDLMED [41]	92.46	95.57	95.06	71.40	83.23	98.26	87.16	92.71	
Kim et al [15]	93.11	96.44	94.25	72.96	83.605	96.76	88.58	92.67	
nnUNet [14]	93.30	96.74	95.75	75.97	85.86	98.55	90.65	94.60	
C2FNAS [45]	92.49	95.81	94.98	72.89	83.94	98.38	89.15	93.77	
DiNTS	92.99	96.35	95.35	74.62	84.99	98.69	91.02	94.86	

Metric	Lu	ing		Hippocampus						
	DSC1	NSD1	DSC1	DSC2	Avg.	NSD1	NSD2	Avg.		
CerebriuDIKU [30]	58.71	56.10	89.68	88.31	89.00	97.42	97.42	97.42		
NVDLMED [41]	52.15	50.23	87.97	86.71	87.34	96.07	96.59	96.33		
Kim et al [15]	63.10	62.51	90.11	88.72	89.42	97.77	97.73	97.75		
nnUNet [14]	73.97	76.02	90.23	88.69	89.46	97.79	97.53	97.66		
C2FNAS [45]	70.44	72.22	89.37	87.96	88.67	97.27	97.35	97.31		
DiNTS	74.75	77.02	89.91	88.41	89.16	97.76	97.56	97.66		

Metric	Spleen		Prostate						
	DSC1	NSD1	DSC1	DSC2	Avg.	NSD1	NSD2	Avg.	
CerebriuDIKU [30]	95.00	98.00	69.11	86.34	77.73	94.72	97.90	96.31	
NVDLMED [41]	96.01	99.72	69.36	86.66	78.01	92.96	97.45	95.21	
Kim et al [15]	91.92	94.83	72.64	89.02	80.83	95.05	98.03	96.54	
nnUNet [14]	97.43	99.89	76.59	89.62	83.11	96.27	98.85	97.56	
C2FNAS [45]	96.28	97.66	74.88	88.75	81.82	98.79	95.12	96.96	
DiNTS	96.98	99.83	75.37	89.25	82.31	95.96	98.82	97.39	

	Co	lon	Hepatic Vessels						
Metric	DSC1	NSD1	DSC1	DSC2	Avg.	NSD1	NSD2	Avg.	
CerebriuDIKU [30]	28.00	43.00	59.00	38.00	48.50	79.00	44.00	61.50	
NVDLMED [41]	55.63	66.47	61.74	61.37	61.56	81.61	68.82	75.22	
Kim et al [15]	49.32	62.21	62.34	68.63	65.485	83.22	78.43	80.825	
nnUNet [14]	58.33	68.43	66.46	71.78	69.12	84.43	80.72	82.58	
C2FNAS [45]	58.90	72.56	64.30	71.00	67.65	83.78	80.66	82.22	
DiNTS	59.21	70.34	64.50	71.76	68.13	83.98	81.03	82.51	

Metric			Pan	creas			Overall			
	DSC1	DSC2	Avg.	NSD1	NSD2	Avg.	DSC	NSD		
CerebriuDIKU [30]	71.23	24.98	48.11	91.57	46.43	69.00	67.01	77.86	36	
NVDLMED [41]	77.97	44.49	61.23	94.43	63.45	78.94	72.78	83.26		
Kim et al [15]	80.61	51.75	66.18	95.83	73.09	84.46	74.34	85.12		
nnUNet [14]	81.64	52.78	67.21	96.14	71.47	83.8	77.89	88.09		
C2FNAS [45]	80.76	54.41	67.59	96.16	75.58	85.87	76.97	87.83		
DiNTS	81.02	55.35	68.19	96.26	75.90	86.08	77.93	88.68	-	