Roulement d'un tronc d'arbre

Un tronc d'arbre cylindrique de rayon R=10 cm, de longueur L=1,5 m et de masse m=30 kg, se déplace sur la surface plane. L'axe du cylindre est dans la direction x, la vitesse linéaire initiale de son centre de masse est $\vec{v}_c(0)=(0,20,0)^T$ cm/s et la vitesse angulaire initiale du cylindre autour de son centre de masse est $\vec{\omega}(0)=(-2,0,0)^T$ rad/s.

La force et le moment de force de frottement (autour du centre de masse de l'arbre) dus au glissement sont

$$ec{F}_g = -\mu_g mg rac{ec{v}}{|ec{v}|} \ ec{ au}_g = (ec{r}_{ ext{contact}} - ec{r}_c) imes ec{F}_g$$

avec μ_g le coefficient de frottement pour le glissement. Ici, \vec{r}_{contact} est le point où la force de frottement est appliquée. Il correspond à la position du point de contact entre le tronc d'arbre et la surface tout juste sous le centre de masse \vec{r}_c du tronc d'arbre. Le moment de force au roulement est

$$\vec{\tau}_g = -\mu_r mgd \frac{\vec{\omega}}{|\vec{\omega}|}$$

où μ_r est le coefficient de frottement au roulement et d=R/10.

- (a) Donnez les équations du mouvement que vous devrez résoudre pour déterminer la vitesse en y du centre de masse du tronc d'arbre au temps t ($v_y(t)$) et sa vitesse angulaire en x ($\omega_x(t)$) dans le cas où le tronc d'arbre glisse sur la surface et dans le cas où il roule sur cette même surface.
- (b) Déterminez si initialement le tronc d'arbre roule ou glisse sur la surface.
- (c) Résolvez, en utilisant la méthode de Euler avec $\Delta t=0.1$ s, les équations du mouvement appropriées et déterminez la vitesse linéaire en y et la vitesse angulaire en x du tronc d'arbre au temps t=0.1 s. Les coefficients de frottement sont $\mu_g=0.5$ et $\mu_r=0.1$ et l'accélération due à la gravité est g=9.8 m/s².

Solution

(a) Donnez les équations du mouvement que vous devrez résoudre pour déterminer la vitesse en y du centre de masse du tronc d'arbre au temps t ($v_y(t)$) et sa vitesse angulaire en x ($\omega_x(t)$) dans le cas où le tronc d'arbre glisse sur la surface et dans le cas où il roule sur cette même surface.

Glissement

Pour le centre de masse du tronc d'arbre, la vitesse linéaire en z et en x est nulle et donc la force dans ces directions est nulle. On aura donc

$$\vec{F}_g = -\mu_g mg \frac{v_y}{|v_y|} (0, 1, 0)$$

L'équation du mouvement pour $v_u(t)$ devient alors

$$\frac{dv_y(t)}{dt} = -\mu_g g \frac{v_y(t)}{|v_y(t)|} \tag{2.1}$$

Pour la rotation, le moment de force au glissement et au roulement sont donnés par

$$\begin{split} \vec{\tau}_g &= (0,0,-R) \times \left(0,-\mu_g mg \frac{v_{y,c}}{|v_{y,c}|},0\right) = -\mu_g mg R \frac{v_{y,c}}{|v_{y,c}|}(1,0,0) \\ \vec{\tau}_r &= -\mu_r mg d \frac{\omega_x}{|\omega_x|}(1,0,0) \end{split}$$

et

$$\tau_x = -\mu_g mgR \frac{v_{y,c}}{|v_{y,c}|} - \mu_r mgd \frac{\omega_x}{|\omega_x|} = -mgR \left(\mu_g \frac{v_{y,c}}{|v_{y,c}|} + \frac{\mu_r}{10} \frac{\omega_x}{|\omega_x|} \right)$$

 $\operatorname{car} d = R/10$. En utilisant le moment d'inertie d'un cylindre plein autour de son axe x

$$I_{xx} = \frac{mR^2}{2}$$

On obtient l'accélération angulaire autour de l'axe des x

$$\alpha_x = \frac{2}{mR^2} \left(\tau_z - (\tilde{\boldsymbol{\omega}} \boldsymbol{I} \vec{\omega})_x \right) = -\frac{2g}{R} \left(\mu_g \frac{v_{y,c}}{|v_{y,c}|} + 0.1 \mu_r \frac{\omega_x}{|\omega_x|} \right)$$

où $\tilde{\omega} I \vec{\omega}$ est nul, car les vitesses angulaires en y et z sont nulles. L'équation du mouvement pour $\omega_x(t)$ est alors

$$\frac{d\omega_x(t)}{dt} = -\frac{2g}{R} \left(\mu_g \frac{v_{y,c}}{|v_{y,c}|} + 0.1 \mu_r \frac{\omega_x}{|\omega_x|} \right)$$
 (2.2)

Roulement

Lorsque le tronc d'arbre roule, la force de frottement et le moment de force dus au frottement disparaissent. Il nous reste donc seulement l'équation suivante

$$\frac{d\omega_x(t)}{dt} = -\frac{0.2g\mu_r}{R} \frac{\omega_x}{|\omega_x|}$$
 (2.3)

La vitesse du centre de masse est ensuite donnée par

$$v_y(t) = -\vec{\omega}(t) \times \vec{r}_{contact} = -R\omega_x(t)$$
 (2.4)

(b) Déterminez si initialement le tronc d'arbre roule ou glisse sur la surface.

La balle roulera sur la table si sa vitesse de déplacement due au roulement est identique à la vitesse de son centre de masse. La vitesse de déplacement due au roulement est donnée par

$$v_y(t_0) = -R\omega_x(0) = 20 \text{ cm/s}$$

Donc la balle roule sur la table, car cette vitesse est égale à celle du centre de masse.

(c) Résolvez, en utilisant la méthode de Euler avec $\Delta t = 0.1$ s, les équations du mouvement appropriées et déterminez la vitesse linéaire en y et la vitesse angulaire en x du tronc d'arbre au temps t = 0.1 s. Les coefficients de frottement sont $\mu_g = 0.5$ et $\mu_r = 0.1$ et l'accélération due à la gravité est g = 9.8 m/s².

Comme le tronc d'arbre roule, on utilisera donc l'équation 2.3 pour déterminer la vitesse angulaire et l'équation 2.4 pour la vitesse du centre de masse de l'arbre. On aura donc

$$\omega_x(t_0 + \Delta t) = \omega_x(t_0) + \alpha_x(t)|_{t_0} \Delta t$$

En utilisant les données du problème, on a

$$\omega_x(0) = -2 \text{ rad/s}$$

$$\alpha_x(0) = -\frac{0.2g\mu_r}{R} \frac{\omega_x(0)}{|\omega_x(0)|} = \frac{0.2 \times 9.8 \times 0.1}{0.1} = 1.96 \text{ rad/s}^2$$

La vitesse angulaire à t = 0.1 s sera donc

$$\omega_x(0.1) = -1.804 \, rad/s$$

et la vitesse du centre de masse sera

$$v_n(0.1) = 18.04 \text{ cm/s}$$