ZFS 分层架构设计

Z

Table of Contents

Contents

- 早期架构
- 子系统整体架构
- SPA
- VDEV
- ZIO
- ARC

- L2ARC
- TOL
- DMU
- ZAP
- DSL
- ZIL
- ZVOL
- ZPL

ZFS 在设计之初源自于 Sun 内部多次重写 UFS 的尝试,背负了重构 Solaris 诸多内核子系统的重任,从而不同于 Linux 的文件系统只负责文件系统的功能而把其余功能(比如内存脏页管理, IO调度)交给内核更底层的子系统, ZFS 的整体设计更层次化并更独立,很多部分可能和 Linux 内核已有的子系统有功能重叠。

这篇笔记试图从 ZFS 的早期开发历程开始,记录一下 ZFS 分层架构中各个子系统之间的分工。 也有几段 OpenZFS Summit 视频佐以记录那段历史。

The Birth of ZFS by Jeff Bonwick

Story Time (Q&A) with Matt and Jeff

ZFS First Mount by Mark Shellenbaum

ZFS past & future by Mark Maybee

早期架构

早期 ZFS 在开发时大体可以分为上下三层,分别是 ZPL, DMU 和 SPA ,这三层分别由三组人负责。

最初在 Sun 内部带领 ZFS 开发的是 Jeff Bonwick,他首先有了对 ZFS 整体架构的构思,然后游说 Sun 高层,亲自组建起了 ZFS 开发团队,招募了当时刚从大学毕业的 Matt Ahrens。作为和 Sun 高层谈妥的条件,Jeff 也必须负责 Solaris 整体的 Storage & Filesystem

Team ,于是他也从 Solaris 的 Storage Team 抽调了UFS 部分的负责人 Mark Shellenbaum 和 Mark Maybee 来开发 ZFS 。而如今 Jeff 成立了独立公司继续开拓服务器存储领域, Matt 是 OpenZFS 项目的负责人,两位 Mark 则留在了 Sun/Oracle 成为了 Oracle ZFS 分支的维护者。

在开发早期,作为分工, Jeff 负责 ZFS 设计中最底层的 SPA ,提供多个存储设备组成的存储池抽象; Matt 负责 ZFS 设计中最至关重要的 DMU 引擎,在块设备基础上提供具有事务语义的对象存储; 而两位 Mark 负责 ZFS 设计中直接面向用户的 ZPL ,在 DMU 基础上提供完整 POSIX 文件系统语义。

子系统整体架构

首先 ZFS 整体架构如下图,其中圆圈是 ZFS 给内核层的外部接口,方框是 ZFS 内部子系统:

接下来从底层往上介绍一下各个子系统的全称和职能。

SPA

Storage Pool Allocator

从内核提供的多个块设备中抽象出存储池的子系统。 SPA 进一步分为 ZIO 和 VDEV 两大部分。

SPA 对 DMU 提供的接口不同于传统的块设备接口,完全利用了 CoW FS 对写入位置不敏感的特点。 传统的块设备接口通常是写入时指定一个写入地址,把缓冲区写到磁盘指定的位置上,而 DMU 可以让 SPA 做两种操作:

- 1. write , DMU 交给 SPA 一个数据块的内存指针, SPA 负责找设备写入这个数据块,然后返回给 DMU 一个 block pointer。
- 2. read ,DMU 交给 SPA 一个 block pointer ,SPA 读取设备并返回给 DMU 完整的数据块。

VDEV

Virtual DEVice

作用相当于 Linux 内核的 Device Mapper 层或者 FreeBSD GEOM 层,提供 Stripe/Mirror/RAIDZ 之类的 多设备存储池管理和抽象。 ZFS 中的 vdev 形成一个树状结构,在树的底层是从内核提供的物理设备, 其上是虚拟的块设备。每个虚拟块设备对上对下都是块设备接口,除了底层的物理设备之外,位于中间层的 vdev 需要负责地址映射、容量转换等计算过程。

ZIO

ZFS I/O

作用相当于内核的 IO scheduler 和 pagecache write back 机制。 ZIO 内部使用流水线和事件驱动机制,避免让上层的 ZFS 线程阻塞等待在 IO 操作上。 ZIO 把一个上层的写请求转换成多个写操作,负责把这些写操作合并到 transaction group 提交事务组。 ZIO 也负责将读写请求按同步还是异步分成不同的读写优先级并实施优先级调度,在 OpenZFS 项目 wiki 页有一篇描述 ZIO 调度 的细节。

除了调度之外,ZIO 层还负责在读写流水线中拆解和拼装数据块。上层 DMU 交给 SPA 的数据块有固定大小,目前默认是 128KiB ,pool 整体的参数可以调整块大小在 8KiB 到 8MiB 之间。ZIO 拿到整块大小的数据块之后,在流水线中可以对数据块做如下操作:

- 1. 用压缩算法,压缩/解压数据块。
- 2. 查询 dedup table,对数据块去重。
- 3. 如果底层分配器不能分配完整的 128KiB (或别的大小),那么尝试分配多个小块,多个用 512B 的指针间接块连起多个小块的 gang block 拼成一个大块。

可见经过 ZIO 流水线之后,数据块不再是统一大小,这使得 ZFS 用在 4K 对齐的磁盘或者 SSD 上有了一些新的挑战。

ARC

Adaptive Replacement Cache

作用相当于 Linux/Solaris/FreeBSD 中传统的 page/buffer cache 。 和传统 pagecache 使用 LRU (Least Recently Used) 之类的算法剔除缓存页不同,

ARC 算法试图在 LRU 和 LFU(Least Frequently Used) 之间寻找平衡,从而复制大文件之类的线性大量 IO 操作不至于让缓存失效率猛增。

不过 ZFS 采用它自有的 ARC 一个显著缺点在于,不能和内核已有的 pagecache 机制相互配合,尤其在 系统内存压力很大的情况下,内核与 ZFS 无关的其余部分可能难以通知 ARC 释放内存。所以 ARC 是 ZFS 消耗内存的大户之一(另一个是可选的 dedup table),也是 ZFS性能调优 的重中之重。

和很多传言所说的不同,ARC 的内存压力问题不仅在 Linux 内核会有,在 FreeBSD 和 Solaris/Illumos 上也是同样,这个在 ZFS First Mount by Mark Shellenbaum 的问答环节 16:37 左右有提到。其中Mark Shellenbaum 提到 Matt 觉得让 ARC 并入现有pagecache 子系统的工作量太大,难以实现。

L2ARC

Level 2 Adaptive Replacement Cache

这是用 ARC 算法实现的二级缓存,存在于高速存储设备上。通常 ZFS 可以配置一块 SSD 作为高速缓存,减轻内存 ARC 的负担并增加缓存命中率。

TOL

Transactional Object Layer

这一部分子系统在数据块的基础上提供一个事务性的对象语义层。最主要的部分是 DMU 层。

DMU

Data Management Unit

在块的基础上提供「对象」的抽象。每个「对象」 可以是一个文件,或者是别的 ZFS 内部需要记录的东 西。

DMU 这个名字最初是 Jeff 想类比于操作系统中内存管理的 MMU(Memory Management Unit), Jeff 希望 ZFS 中增加和删除文件就像内存分配一样简单,增加和移除块设备就像增加内存一样简单,由 DMU 负责从存储池中分配和释放数据块,对上提供事务性语义,管理员不需要管理文件存储在什么存储设备上。 这里事务性语义指对文件的修改要么完全成功,要么完全失败,不会处于中间状态,这靠 DMU 的 CoW 语义实现。

DMU 实现了对象级别的 CoW 语义,从而任何经过了 DMU 做读写的子系统都具有了 CoW 的特征, 这不仅包括文件、文件夹这些 ZPL 层需要的东西,也包括文件系统内部用的 spacemap 之类的设施。 相反,不经过DMU 的子系统则可能没法保证事务语义。这里一个特例是 ZIL,一定程度上绕过了 DMU 直接写日志。说一定程度是因为 ZIL 仍然靠 DMU 来扩展长度,当一个块写满日志之后需要等 DMU 分配一个新块,在分配好的块内写日志则不需要经过 DMU。

上面提到 SPA 的时候也讲了 DMU 和 SPA 之间不同于普通块设备抽象的接口,这使得 DMU 按整块的大小分配空间。当对象的大小超过一个固定的块大小时(4K~8M,默认128K),DMU 采用了传统 Unix 文件系统的间接块(indirect block)的方案,不同于更现代的文件系统如 ext4/xfs/btrfs/ntfs/hfs+ 这些使用 extent 记录连续的物理地址分配。间接块简单来说就是写满了block pointer 的块组成的树状结构。 DMU 采用间接块而不是 extent,使得 ZFS 的空间分配更趋向碎片化。

ZAP

ZFS Attribute Processor

在 DMU 提供的「对象」抽象基础上提供紧凑的 name/value 映射存储,从而文件夹内容列表、文件扩展属性之类的都是基于 ZAP 来存。 ZAP 在内部分为两种存储表达: microZAP 和 fatZAP 。

一个 microZAP 占用一整块数据块,能存 name 长度小于 50 字符并且 value 是 uint64_t 的表项, 每个表项 64 字节。 fatZAP 则是个树状结构,能存更多更复杂的东西。可见 microZAP 非常适合表述一个普通大小的文件夹里面包含到很多普通文件 inode (ZFS 是 dnode)的引用。

在 ZFS First Mount by Mark Shellenbaum 中提到,最初 ZPL 中关于文件的所有属性(包括访问时间、权限、大小之类所有文件都有的)都是基于 ZAP 来存,然后文件夹内容列表有另一种数据结构 ZDS ,后来常见的文件属性在 ZPL 有了专用的紧凑数据结构,而 ZDS 则渐渐融入了 ZAP 。

DSL

Dataset and Snapshot Layer,数据集和快照层。

ZIL

ZFS Intent Log ,记录两次完整事务语义提交之间的 log ,用来加速实现 fsync 之类的保证。

ZVOL

ZFS VOLume

有点像 loopback block device ,暴露一个块设备的接口,其上可以创建别的 FS 。对 ZFS 而言实现 ZVOL 的意义在于它是比文件更简单的接口所以一开始先实现的它,而且 早期 Solaris 没有 sparse 文件的时候可以用它模拟很大的块设备,测试 Solaris UFS 对 TB 级存储的支持情况。

ZPL

ZFS Posix Layer ,提供符合 POSIX 文件系统的语义,也就是包括文件、目录这些抽象以及 inode 属性、权限那些,对一个普通 FS 而言用户直接接触的部分。