Semantic Segmentation

Pixelwise Labelling of Urban Environments

Research Question

 The ability to detect different obstacles within an urban environment

 Label each obstacle to allow potential autonomous driving systems the ability to navigate urban environments

System Architecture

Algorithm

- Images are first segmented with SLIC to get super pixels
- Superpixels are sent through a SVM classifier to classify them to into classes

SLIC

- Modified version of K-Means
- Modifications:
 - Cluster initialization
 - Optimized Distance Calculation
 - Color data used to measure distance
 - GPU Acceleration

Distance Calculation

Cluster Initialization

Color Data

- CIELAB Color Space
 - Approximates Human Vision better than RGB
 - o Better differentiation between similar colors
- "M" spatial compactness value

GPU Acceleration

Full SLIC implementation in C++/CUDA

200x performance compared to CPU

Support Vector Machine (SVM)

- SVMs are a class of machine learning models that classify data by mapping hyperplanes throughout the feature dimensions.
- Modifications:
 - Kernel Type
 - Regularization Parameters
 - Gamma Value

Parameter Tuning and Feature Selection

- SVM parameters were tuned using sklearn.model_selection, which optimized for various regularization strengths and kernel types.
- Features were selected through trial and error until the blend that offered the best efficiency and performance was found.

Sample SLIC Segmentation

SVM Sample Classifications

Average Outcome

Poor Outcome

K-Mean Sample Classification

6 Mega Clusters

TABLE I: K-Means Accuracy for Varying Mega Clusters

Number of Mega Clusters	Image 1	Image 2	Image 3
2	23.18%	25.75%	29.48%
4	31.28%	29.18%	34.90%
8	34.01%	26.47%	33.32%
16	40.27%	30.47%	38.48%
32	41.96%	32.68%	37.97%
64	40.86%	31.09%	38.86%
128	33.59%	31.06%	30.88%

Results

With the architecture previously described we were able to achieve an accuracy of 81% over 100 images. The SVM was trained on only 5 images that had representation of all classes within them.

Live Demo

Q&A

Any questions?

