

## **SU** (1) 1011236

3(5) B 01 J 23/22; C 07 C 11/02

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

## ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

BCECO103HAR MATERITHO. TEXHERECHAR AMSTONRAGA

(21) 3339705/23-04

(22) 21.09.81 (46) 15.04.83 Бюл. № 14 (72) В.И.Никонов, С.В.Адельсон, Ф.Г.Жагфаров, Е.М.Рудык, Г.П.Креинина и Т.Н.Мухина

(71) Московский ордена Октябрьской Революции и ордена Трудового Красного Знамени институт нефтехимической и газовой промышленности им. И.М.Губкина

(53) 66.097.3(088.8) (56) 1. Авторское свидетельство СССР № 882597, кл. С 07 С 4/06, 1979.

2. Авторское свидетельство СССР по заявке 3275768/23-04, кл. В 01 J 23/10, 1981.

3. Авторское свидетельство СССР по заявке 2984901/23-04, кл. С 01 G 11/04, В 01 J 23/22, 1980 (прототип).

(54)(57) катализатор для пиролиза УГЛЕВОДОРОДНОГО СЫРЬЯ, содержащий ванадат калия, промотор и синтетический корунд, отличающий ся тем, что, с целью снижения коксуемости и повышения активности катализатора, в качестве промотора он содержит окись бора при следующем соотношении компонентов, мас. %:

Ванадат

калия

Окись

бора

Синтетический корунд

-1.0 - 3.0

5,0-6,5

Остальное

Изобретение относится к катализаторам для процесса пиролиза угле-

водородного сырья.

известен ванадиевый катализатор. для пиролиза нефтяного сырья, содержащий 1,3 - 5,5 мас. ванадата калия, 5 нанесенный на синтетический корунд. на данном катализаторе в процессе каталитического пиролиза прямогонного бензина ромашкинской нефти при  $750^{\circ}$ С, объемной скорости подачи бензина 2,5 ч $^{\circ}$ 1, подачи водяного пара 25 мас.% от массы бензина, выход этилена. 37,6 мас.%, пропилена 14,2 мас.%, бутадиена 5,8 мас.% на сырье [1].

Недостатками этого катализатора являются низкий выход этилена и сравнительно большое образование в процессе пиролиза продуктов уплотнения, кокса 0,5(мас.% в расчете на. 20

Известен катализатор для пиролиза углеводородного сырья, содержащий 8 - 12 мас. % окиси индия, 3-5 мас. % окиси калия и фаянсовый носитель [2].25

Недостатком этого катализатора является увеличенная коксуемость (3,9 мас.% за 4 ч работы) в процес-

се пиролиза.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому является катализатор для пиролиза углеводородного сырья, содержащий ванадат калия, промотор, в качестве которого катализатор содержит углекислый калий, и синтетический корунд, при следующем соотношении компонентов мас. %:

| Ванадат    |         |   |    |
|------------|---------|---|----|
| калия      | 3,5-6,5 | • |    |
| Сульфат    |         |   | 40 |
| калия      | 0,1-3,0 |   |    |
| Commonwood |         |   |    |

Остальное [3]. кий корунд

Недостатки этого катализатора высокая коксуемость и низкая активность в процессе пиролиза. Так, при  $780^{\circ}$ C и времени контакта 0,1 с, массовом отношении водяной пар : бенэин 1:1, выход этилена составляет 40,5 мас.% пропилена 13,8 мас.%, бу- 50 тилена 5,0 мас.%, а содержание кокса катализатора 0,2 мас. в на пропущенное сырье или 1,5 мас.% на катализатор.

Цель изобретения - снижение коксуемости и повышение активности катализатора для пиролиза углеводородного сырья.

Указанная цель достигается катализатором - углеводородного сырья, содержащим ванадат калия, промотор окись бора и синтетический корунд при следующем соотношении компонентов, мас.%:

Ванадат калия

5,0-6,5

Окись бора Синтетичес-

кий корунд

1,0-3,0

Остальное

Использование предлагаемого катализатора дает возможность реализовать следующие его преимущества. Активность катализатора увеличивается, о чем свидетельствует повышение выхода непредельных углеводородов C<sub>2</sub>-C<sub>4</sub> 64,2 - 64,4 мас. % (против 62,5 мас. % известного катализатора). Коксуемость снижается до 0,10 - 0,15 мас.% на сырье или 1,0 - 1,15 мас.% на катализатор и 15 по истечении 5 ч работы она состав-ляет 0,06 - 0,07 или 0,5-1,1 мас.%, на сырье или катализатор, соответственно. Для известного катализатора коксуемость после 5 ч работы составляет 0,08 мас.% на сырье или 1,2 мас. в на катализатор.

Предлагаемый катализатор без регенерации и потери активности про-

работал свыше 800 ч.

Катализатор готовят следующим мовравом.

30

35

65

Синтетический корундовый носитель, содержащий, мас. %:

| OMICE   |           |
|---------|-----------|
| кремния | 0,5-2,5   |
| Окись   | - 4 - 4-  |
| же́леза | 0,1-0,15  |
| Окись   |           |
| титана  | 0,01-0,25 |
| Окись   |           |
| кальция | 0,01-0,15 |
| Окись   |           |
| магния  | 0,01-0,15 |
| Окись   | •         |
| калия   | 0,01-0,15 |
| Окись   | •         |
| натрия  | 0,01-0,15 |
| Альфа - | •         |
| окись ' |           |

Остальное, алюминия прокаливают при 750 - 780°C в муфельной печи 6 ч. Охлажденный до комнатной температуры корундовый носитель загружают в водяный раствор, содержащий 20% ванадата калия и 0,4 - 3,7% борной кислоты и выдерживают в растворе 1,0 - 5,0 ч при 60-90°С с перемешиванием.

Полученную катализаторную массу отделяют от раствора, после чего сушат 4 ч при 90 - 100°С.

После сушки катализатор прокаливают в муфельной печи в течение 5,0 - 6,0 ч при 750 - 760°C.

пример 1 (сравнительный). Синтетический корундовый носитель, содержащий, мас. %:

| OKE | ісь кремния | 0,5  |
|-----|-------------|------|
| Оки | ісь железа  | 0,01 |
| Оки | ісь титана  | 0,01 |
| Оки | ісь кальция | 0,01 |
| OK  | ись магния  | 0,01 |

| Окись калия         | 0,01                      | •     |
|---------------------|---------------------------|-------|
| Окись натрия        | 0,01                      | :     |
| Альфа - окись       |                           |       |
|                     | 99.44                     | •     |
| алюминия            | שבתסת ה אמילסתד           |       |
| Прокаливают при     | 120 C B WAMENIE           | 5     |
| ной печи 6 ч. Охлаж | денныи до ком-            | -     |
| натной температуры  | корундовый носи-          |       |
| тепь загружают в во | дный раствор, со-         | •     |
| пержаний 20% ванада | та калия и 0,4%           |       |
|                     | TODAY PANT R DACT         | •     |
| воре в течение 4 ч  | при 60°С с пере-          | 10    |
| мешиванием. Получен | ную катализаторну         | 7Ю    |
| мешиванием. получен | POTRODA FOCTO             |       |
| массу отделяют от р | OOO BOOKS CURIN           |       |
| чего сушат 4 ч при  | 90 C. HOCHE CYMK          | 2     |
| катализатор прокали | Bawr 6 4 Hpu 730          | . 4.5 |
| Катализатор, пол    | <b>гученны</b> и указанны | M. 13 |
| способом имеет сост | raв, мас.:                |       |
| Ванадат калия       | 3,5                       |       |
|                     | ^ ^                       |       |

Ванадат калия 3,5 Окись бора 0,1 Синтетический

корунд Остальное при мер 2.Условия приготов-ления аналогичны примеру 1 за исключением того, что корундовый носитель пропитывают в водной растворе, содержащем 20% КVO3 и 1,3% борной кислоты.

Катализатор имеет состав, мас. %:
Ванадат калия 5,0
Окись бора 1,0
Синтетический

корунд Остальное при м е р 3. Условия приготовления аналогичны примеру 1 за исключением того, что корундовый носитель, имеет состав, мас. 8:

ОКИСЬ КРЕМНИЯ
ОКИСЬ ЖЕЛЕЗА
ОКИСЬ ТИТАНА
ОКИСЬ ТИТАНА
ОКИСЬ КАЛЬЦИЯ
ОКИСЬ МАГНИЯ
ОКИСЬ КАЛИЯ
ОКИСЬ КАЛИЯ
ОКИСЬ НАТОИЯ
0,15

Окись натрия 0,15 пропитывают в водном растворе, содержащем 20% ванадата калия и 3,7% борной кислоты.

Катализатор имеет состав, мас.%: Ванадат калия 6,5 Окись бора 3,0

Синтетический корунд Остальное. Результаты испытания предлагаемого катализатора в сравнении с известными представлены в таблице.

Результаты каталитического пиролиза прямогонного бензина  $t = 780^{\circ}\text{C}$ , время контакта 0,1 с, массовое соотношение водяной пар : бензин 1:1

20

|                                                                                       | Выход на пропущенное сырье, мас. % |                       |      |                               |       | ac.% |      |         |
|---------------------------------------------------------------------------------------|------------------------------------|-----------------------|------|-------------------------------|-------|------|------|---------|
| Катализа-<br>тор                                                                      | H <sub>2</sub>                     | СН4.                  | C2H6 | С <sub>2</sub> Н <sub>4</sub> | C3 H8 | C2H2 | C3H4 | C4 H 10 |
|                                                                                       |                                    | 00                    |      |                               | •     | •    |      | - 1     |
| Известный<br>1                                                                        |                                    |                       |      | 37,6                          |       | . •  | 14,2 |         |
| Известный<br>3                                                                        | 1,3                                | 16,1                  | 1,66 | 40,5                          | 0,4   | 0,3  | 13,8 | 0,1     |
| По примеру<br>1                                                                       | 1,2                                | 14,8                  | 2,3  | 37,0                          | 0,4   | 0,1  | 13,0 | 0,2     |
| По примеру<br>2                                                                       | 1,3                                | 13,0                  | 3,5  | 40,5                          | 0,4   | 0,2  | 15,9 | 0,1     |
| По примеру                                                                            | 1,2                                | 14,6                  | 2,2  | 40,9                          | 0,4   | 0,2  | 14,9 | 0,2     |
| • •                                                                                   | . •                                | Сравнительные примеры |      |                               |       |      |      |         |
| 5% КVO <sub>3</sub> -<br>0,5% В <sub>2</sub> О <sub>3</sub><br>синтети-<br>ческий ко- | ••                                 |                       |      |                               |       | •    |      | * •     |
| рунд - ос-<br>тальное                                                                 | 1,2                                | 14,0                  | 2,0  | 35,0                          | 0,4   | 0,1  | 13,6 | 0,2     |
| 6% KVO <sub>3</sub> - 3,5% B <sub>2</sub> O <sub>3</sub> синтети-                     |                                    | •                     |      |                               |       |      |      |         |
| ческий ко-<br>рунд - ос-<br>тальное                                                   | 1.2                                | 14.8                  | 2;2  | 40,0                          | 0,4   | 0,2  | 14,0 | 0,2     |

|                                                                         | Выход на пропущенное сырью, мас. %, |      |                            |                                                        |          |  |  |
|-------------------------------------------------------------------------|-------------------------------------|------|----------------------------|--------------------------------------------------------|----------|--|--|
| Катализа-<br>тор                                                        | C <sub>4</sub>                      | C4H6 | Непре-<br>дель-<br>ных уг- | Коксуемость (содер-<br>жание кокса,мас.%<br>через 5 ч) |          |  |  |
|                                                                         |                                     |      | леводо-<br>родов           | На катали-<br>затор                                    | На сырье |  |  |
|                                                                         |                                     |      |                            |                                                        |          |  |  |
| известный<br>1                                                          |                                     | 5,8  |                            | 2,0                                                    | 0,2      |  |  |
| Известный<br>3                                                          | 3,2                                 | 5,0  | 62,5                       | 1,2                                                    | 0,08     |  |  |
| По примеру<br>1                                                         | 2,7                                 | 4,7  | 57,5                       | 1,3                                                    | 0,13     |  |  |
| По примеру<br>2                                                         | 3,0                                 | 5,0  | 64,4                       | 1,1                                                    | 0,07     |  |  |
| По примеру<br>3                                                         | 3,2                                 | 5,0  | 64,2                       | 0,5                                                    | 0,06     |  |  |
| 5% К О -<br>0,5% В О<br>синтети-<br>ческий ко-<br>рунд - ос-<br>тальное | 2,5                                 | 4,5  | 55,7                       | . :<br>. <u>-</u>                                      | 0,3      |  |  |
| 6% К О -<br>3,5% В О<br>синтети-<br>ческий ко-<br>рунд - ос-            | *                                   |      |                            | · · · · · · · · · · · · · · · · · · ·                  | x - 1    |  |  |
| тальное                                                                 | 3,2                                 | 4,9  | 62,3                       | <b>-</b> .                                             | 0,1      |  |  |

Составитель Т. Белослюдова Редактор И. Касарда Техред л.Пекарь Техред д.Пекарь Корректор В. Бутяга Заказ 2623/9 Тираж 535 Подпис ВНИИПИ Государственного комитета СССР . Подписное по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5 Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

1011236