Practica 7. Ecuaciones Diferenciales Ordinarias IV: El péndulo invertido y el esquema de Velocidad de Verlet

Dr. Ramón Carrillo Bastos

Física Computacional

1. El péndulo invertido.

Considere el movimiento de un péndulo invertido: una masa m fija al final de una barra rígida de longitud l. La barra está fija en un pivote movil de acuerdo a $h(t) = h_0 \cos \omega t$ como se muestra en la Fig. 1.

Figura 1: Péndulo invertido.

Considere el carro fijo, (1) desmuestre que la ecuación de movimiento es

$$l\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + \omega^2 h_0 \sin\theta \cos(\omega t) - g\sin\theta = 0. \tag{1}$$

donde l es la longitud del brazo, ω la frecuencia de movimeinto del pistón g es la aceleración a la gravedad y m es la masa.

2. Esquema de velocidad de verlet

El esquema de velocidad de Verlet está definido como

$$\mathbf{r}_{n+1} = \mathbf{r}_n + \tau \mathbf{v}_n + \frac{1}{2} \tau^2 \mathbf{a}_n. \tag{2}$$

$$\mathbf{v}_{n+1} = \mathbf{v}_n + \frac{\tau}{2} \left(\mathbf{a}_n - \mathbf{a}_{n+1} \right), \tag{3}$$

(2) demuestre analiticamente que los valores de \mathbf{r}_n dados en este esquema coinciden con los calculados con el método standard de Verlet.

3. Simulación del péndulo invertido.

- 1. Implemente en un código en Python la solución numérica del péndulo simple con el Esquema de velocidad de Verlet.
 - a) Analice el movimiento cuando $h_0 = 0$ y demuestre que para ciertos condiciones iniciales se recuperan las trayectorias del péndulo simple en aproximación de bajas energías. Compare sus resultados con los obtenidos en la práctica pasada.
 - 1) ϕ vs t si $\phi_m = 10$ grados, $\tau = 0.1$ y se calculan 300 pasos.
 - 2) ϕ vs t si $\phi_m = 10$ grados, $\tau = 0.05$ y se calculan 600 pasos.
 - 3) ϕ vs t si $\phi_m=170$ grados, $\tau=0.05$ y se calculan 600 pasos. Compare las graficas con las de Euler, Euler-Cromer y Verlet, discuta sus resultados.
 - b) Analice los casos
 - 1) Tome $h_0 \approx 0.1l$ y analice los siguiente casos

$$a' \ \omega \ll \sqrt{\frac{g}{l}}$$

 $b' \ \omega \approx \sqrt{\frac{g}{l}}$

$$c' \ \omega \gg \sqrt{\frac{g}{l}}$$

Discuta sus resultados.

- c) Modifique sus programas para que se grafique $\omega(t)$ y $\phi(t)$, estos es una gráfica del espacio fase. En vez de correr su programa para un número fijo de pasos, modifiquelo para que corrar durante el tiempo equivalente a un periodo. Dibuje para angulos iniciales de 10, 45, 90, 120 y 170 grados. Note como la forma de órbita cambia como función del ángulo inicial.
- d) Para el caso donde $\omega \gg \sqrt{\frac{g}{l}}$ existen soluciones estable en la posición superior, es decir alrededor de $\theta \approx 0$.