Limiti notevoli esponenziali 1) $\lim_{x \to +\infty} \left(1 + \frac{1}{n}\right)^x = e \lim_{n \to +\infty} n^2 sen \frac{1}{n^2} = 1$ $2)\lim\left(1+\frac{1}{x}\right)^{x}=e$ $3) \lim_{x \to +\infty} \left(1 + \frac{a}{r}\right)^x = e^a$ 4) $\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^{nx} = e^{na}$

$$5) \lim_{x \to -\infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e}$$

6)
$$\lim_{x \to 0} (1 + ax)^{\frac{1}{x}} = e^a$$

7)
$$\lim_{x \to 0} \lg_a (1+x)^{\frac{1}{x}} = \frac{1}{\lg_a a}$$

$$8)\lim_{x\to 0}\frac{\lg_e(1+x)}{x}=1$$

9)
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$10)\lim_{x\to 0} \frac{(1+x)^a - 1}{x} = a$$

11)
$$\lim_{x \to 0} \frac{(1+x)^a - 1}{ax} = 1$$

12) $\lim_{x \to 0} x^r \lg_a x = 0 \quad \forall a \in \mathbb{R}^+ - (1), \forall r \in \mathbb{R}^+$

13)
$$\lim_{x \to 0} \frac{\lg_a x}{1} = 0 \quad \forall a \in \mathbb{R}^+ - (1), \forall r \in \mathbb{R}^+$$

$$\lim_{x \to 0} \frac{1}{x^r} = 0 \quad \forall a \in K^+ - (1), \forall r \in K^-$$

15)
$$\lim_{r \to -\infty} |x|^r a^x = \lim_{x \to -\infty} a^x \quad \forall a \in \mathbb{R}^+ - (1), \forall r \in \mathbb{R}^+$$

16)
$$\lim_{x \to +\infty} \frac{e^{-x}}{x^{r}} = \lim_{x \to +\infty} a^{x} \ \forall r \in \mathbb{R}^{+}$$

17)
$$\lim_{x \to +\infty} \frac{x}{e^x} = \lim_{x \to +\infty} a^x \forall r \in \mathbb{R}^+$$

18)
$$\lim_{x \to -\infty} e^x x^r = 0 \quad \forall r \in \mathbb{R}^+$$

$\lim_{x \to 0} \frac{senx}{x} = 1$
$\lim_{x \to 0} \frac{senax}{bx} = \frac{a}{b}$
$\lim_{x \to 0} \frac{tgx}{x} = 1$
$\lim_{x \to 0} \frac{tgax}{bx} = \frac{a}{b}$
$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$
$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$
$\lim_{x \to 0} \frac{arcsenx}{x} = 1$
$\lim_{x \to 0} \frac{arcsen\ ax}{bx} = \frac{a}{b}$
$\lim_{x \to 0} \frac{arctg \ x}{x} = 1$
$0)\lim_{x\to 0}\frac{arctg\ ax}{bx} = \frac{a}{b}$
$\lim_{x \to 0} \frac{x - senx}{x^3} = \frac{1}{6}$
$\lim_{x \to 0} \frac{x - arctgx}{x^3} = \frac{1}{3}$

Limiti notevoli logaritmici

13)
$$\lim_{x \to 0} \frac{|\mathbf{g}_{a}|^{x}}{x'} = 0 \quad \forall a \in \mathbb{R}^{+} - (1), \forall r \in \mathbb{R}^{+}$$
14)
$$\lim_{x \to \infty} x' = \lim_{x \to +\infty} a^{x} \quad \forall a \in \mathbb{R}^{+} - (1), \forall r \in \mathbb{R}^{+}$$

$$\lim_{n \to \infty} \frac{n^{a}}{a^{n}} = 0 \lim_{n \to \infty} \frac{n! \cdot a^{n}}{n^{n}} = 0$$

$$\lim_{n\to+\infty}\frac{a^n}{n!}=0\lim_{n\to+\infty}\frac{a^n}{n^n}=0$$

$$\lim_{n \to +\infty} \left(1 + \frac{3}{n^2 + n^4} \right)^{\frac{n^2 + n^4}{3}} = e$$

$$\left(1 + x \right)^{\alpha} - 1$$

$$\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha$$

 $\lim_{n \to \infty} \frac{a_n + 1}{a_n} = \frac{\rightarrow}{\rightarrow} \begin{cases} 1 & a_n \to 0 \\ \rightarrow & > 1 & a_n \to \infty \end{cases}$

 $\lim \frac{a_1 + a_2 + \dots a_n}{a_1 + a_2 + \dots a_n} = \lim a_1$

$\lim \quad \underline{x^n + bx^{n-1} + c} \quad n > a = \pm \infty$ $x \rightarrow \pm \infty$ $x^a + bx^{a-1} + c$ n = a = rapp.coeff.

FORME INDETERMINATE 0/0 mettere in evidenza num, e den.

∞/∞ mettere in evidenza + 00 - 00 razz 0 mcd

	$n \to \infty$ $n \to \infty$
0 · ∞ trasformo in ∞/∞ o in 0/0 capovolgendo	Teorema della media geometrica:
esempi $n/\infty = 0 n/0 = \infty \qquad \infty/n = \infty 0/n = 0$	$\lim_{n\to\infty} \sqrt[n]{a_1+a_2+a_n} = \lim_{n\to\infty} a_n$
$\infty/0 = \infty$ $\infty^3/\infty^3 = 1$ (stessa potenza)	

REGOLA DE L'HOPITAL:

la regola de l'Hopital si applica nelle forme $\infty/\infty~o~0/0$

0·∞ capovolgere

+∞-∞ MCD o razionalizzazione

Talvolta può essere utile ricondurre alle identità:

$$f - g = f\left(1 - \frac{g}{f}\right) = g\left(\frac{f}{g} - 1\right)$$

Derivate di funzioni:	
D : costante $k \to 0$	$D:\arccos x \to -\frac{1}{\sqrt{1-x^2}}$
$D: x^n \to nx^{n-1}$	$D: \arccos x \to -\frac{1}{\sqrt{1-x^2}}$ $D: arctg \ x \to \frac{1}{1+x^2}$
$D: \sqrt{x} \to \frac{1}{2\sqrt{x}}$	$D: \operatorname{arccotg} x \to -\frac{1}{1+x^2}$
$D: \sqrt[n]{x^m} \to \frac{m}{n^n\sqrt[n]{x^{n-m}}}$	$D: a^x \to a^x \log_e a$
$D: sen x \to \cos x$	$D: e^x \to e^x$
$D:\cos x \to -senx$	$D: \log_a x \to \frac{1}{x} \log_a e$ $D: \ln x \to \frac{1}{x}$
$D: tgx \to \frac{1}{\cos^2 x}$	$D: \ln x \to \frac{1}{x}$
$D: tgx \to \frac{1}{\cos^2 x}$ $D: \cot gx \to -\frac{1}{sen^2 x}$	$D: x^x \to x^x (\log x + 1)$
$D: \arcsin x \to \frac{1}{\sqrt{1-x^2}}$	$D: \operatorname{arctg} f(x) \to \frac{1}{1 + [f(x)^2]} \cdot f'(x)$
$D: [f(x)]^m \to m[f(x)]^{m-1} \cdot f'(x)$	$D: \operatorname{arctg} f(x) \to \frac{1}{1 + \left[f(x)^2 \right]} \cdot f'(x)$ $D: \operatorname{arccotg} f(x) \to -\frac{1}{1 + \left[f(x)^2 \right]} \cdot f'(x)$
$D: \sqrt{f(x)} \to \frac{1}{2\sqrt{f(x)}} \cdot f'(x)$	$D: e^{f(x)} \to e^{f(x)} \cdot f'(x)$
$D: \sqrt[n]{[f(x)]^m} \to \frac{mf'(x)}{n\sqrt[n]{[f(x)]^{n-m}}}$	$D: \mathbf{a}^{f(x)} \to \mathbf{a}^{f(x)} \cdot f'(x) \cdot \log_a e$
$D: sen f(x) \to cos f(x) \cdot f'(x)$	$D: \log f(x) \to \frac{1}{f(x)} \cdot f'(x)$
$D: \cos f(x) \to -senf(x) \cdot f'(x)$	$D: \log_a f(x) \to \frac{1}{f(x)} \cdot f'(x) \cdot \log_a e$
$D: tg \ f(x) \to \frac{1}{\cos^2 f(x)} \cdot f'(x)$	$D: [f(x)]^{g(x)} \to [f(x)]^{g(x)}.$ $\left[g'(x)\log f(x) + g(x)\frac{f'(x)}{f(x)}\right]$
$D: \cot f(x) \to -\frac{1}{sen^2 f(x)} \cdot f'(x)$	$D: [f(g(x))] \to f'[g(x)] \cdot g'(x)$
$D: \cot g f(x) \to -\frac{1}{sen^2 f(x)} \cdot f'(x)$ $D: arcsen f(x) \to \frac{1}{\sqrt{1 - [f(x)]^2}} \cdot f'(x)$	$D: [f(x) \cdot g(x)] \to f'(x) \cdot g(x) + f(x) \cdot g'(x)$
$D:\arccos f(x) \to -\frac{1}{\sqrt{1-[f(x)]^2}} \cdot f$	$D: \left[\frac{f(x)}{g(x)}\right] \to \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$

FUNZIONI FRATTE:

Q(x) = quoziente R(x) = resto g(x) = divisore

1° caso $\Delta > 0$ Bisogna scomporre il denominatore come prodotto, trovare il valore dei parametri A e B e separare l'integrale

2° caso $\Delta = 0$ 1) Scompongo il denominatore facendolo diventare quadrato di binomio e lo elevo ad una potenza negativa (-2)

2) Se il numeratore contiene la x uso i parametri A e B (come nel

 3° caso $\Delta < 0.1$) Riconduco l'integrale alla Formula n^{\bullet} 1.

2) Se il numeratore contiene la x (es. $\int \frac{px+q}{ax^2+bx+c} dx$) allora lo

$$\frac{px + q}{ax^2 + bx + c} = \frac{\frac{p}{2a} \left(2ax + \frac{2aq}{p} \right)}{ax^2 + bx + c} = \frac{p}{2a} \left[\frac{2ax + b + \frac{2aq}{p} - b}{ax^2 + bx + c} \right]$$

```
3) \int \frac{1}{-} dx = \log|x| + C
6) \int \frac{1}{\cos^2 x} dx = tgx + C
\frac{1}{11 \int f(x)^{\alpha} \cdot f'(x) dx} = \frac{1}{\alpha + 1} [f(x)]^{\alpha + 1} + C
2) \int \frac{f'(x)}{f(x)} dx = \log |f(x)| + C
3) \int e^{f(x)} \cdot f'(x) dx = e^{f(x)} + C
 4) \int \cos f(x) \cdot f'(x) dx = senf(x) + C
5)\int senf(x) \cdot f'(x) dx = -\cos f(x) + C
6) \int \frac{f'(x)}{\cos^2 f(x)} dx = tgf(x) + C
7) \int \frac{f'(x)}{\sqrt{1 - f^2(x)}} dx = arcsenf(x) + C
8) \int \frac{f'(x)}{1 + f^2(x)} dx = arctgf(x) + C
9) \int \frac{f'(x)}{\sqrt{1+f^2(x)}} dx = \log(f(x) + \sqrt{1+f^2(x)}) + C
10) \int \frac{f'(x)}{\sqrt{f^2(x)-1}} dx = \log(f(x) + \sqrt{f^2(x)-1}) + C
11) \int \frac{f'(x)}{1 - f^2(x)} dx = \frac{1}{2} \log \frac{1 + f(x)}{1 - f(x)} + C
 Revola di decomposizione in somma.
```

$$\int a \cdot f(x) \pm b \cdot g(x) dx = a \int f(x) dx \pm b \int g(x) dx$$

Prima formula di sostituzione:

$$\int f(\phi(x)) \cdot \phi'(x) dx = \left[\int f(t) dt \right]_{t=\phi(x)}$$

$$\int f'(x) \cdot g(x) \ dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$$

$$\int f(x) \cdot g(x) dx = F(x) \cdot g(x) - \int F(x) \cdot g'(x) dx$$
dove $F(x)$ è una primitiva immediata di $f(x)$

 $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{1-x^2}} dx = arcsenx + C$ $9) \int \frac{1}{1+x^2} dx = arctgx + C$ $10) \int \frac{1}{\sqrt{1+x^2}} dx = \log(x + \sqrt{1+x^2}) + C$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^k + o((x-x_0)^n)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{\sqrt{x^2}} \frac{(x-x_0)^k + o((x-x_0)^n)}{k!} (x-x_0)^n + o((x-x_0)^n)$ $2)senx = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$ 3) $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots + (-1)^n \cdot \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$ 4) $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{2} - \dots + (-1)^{n+1} \cdot \frac{x^n}{2} + o(x^n)$ $5)\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n \cdot x^n + o(x^n)$ 6) $\frac{1}{\sqrt{1+x}} = 1 - \frac{x}{2} + \frac{3}{8}x^2 + ... + (-1)^n \cdot \frac{(2n-1)!!}{(2n)!!} \cdot x^n + o(x^n)$ $7)\sqrt{x+1} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - ...(-1)^{n+1} \cdot \frac{(2n-3)!!}{(2n)!!} \cdot x^n + o(x^n)$ $8)\frac{1}{1+x^2} = 1 - x^2 + x^4 - \dots + (-1)^n \cdot x^{2n} + o(x^{2n+1})$ 9) $\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{3}{8}x^4 + ... + \frac{(2n-1)!!}{(2n)!!} \cdot x^{2n} + o(x^{2n+1})$ $10)\frac{1}{\sqrt{1-x}} = 1 + \frac{x}{2} + \frac{3}{8}x^2 + \dots + \frac{(2n-1)!!}{(2n)!!} \cdot x^n + o(x^n)$ $11) arctgx = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \cdot \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$ $12)arcsenx = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \dots + \frac{(2n-1)!!}{(2n)!!} \cdot \frac{x^{2n+1}}{(2n+1)} + o(x^{2n+2})$ 13) $\arccos x = \frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3}{40}x^5 - \dots - \frac{(2n-1)!!}{(2n)!!} \cdot \frac{x^{2n+1}}{(2n+1)} + \circ (x^{2n+2})$ 14) $\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{7}{315}x^7 + o(x^8)$ Fattoriali: 3!=6; 4!=24; 5!=120; 6!=720

> Formulario Analisi Matematica I Pag. 1/2

> > by www.giuseppechierchia.it

7.	,		0	T ()	0 (16)	
gradi	rad	Sen	Cos	Tg (sen/cos)	Cotg (1/tg)	\perp
0	0	0	1	0	±∞	
18	π/10 0.314	$\frac{1}{4}(\sqrt{5}-1)$	$\frac{1}{4} \left(\sqrt{10 + 2\sqrt{5}} \right)$	$\sqrt{1-\frac{2}{5}\sqrt{5}}$	$\sqrt{5+2\sqrt{5}}$	
30	$\pi/6$ 0.523	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	
45	$\pi/4$ 0.785	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	
60	$\pi/3$ 1.047	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	
72	$\frac{2\pi/5}{1.256}$	$\frac{1}{4}\bigg(\sqrt{10+2\sqrt{5}}\;\bigg)$	$\frac{\sqrt{5}-1}{4}$	$\sqrt{5+2\sqrt{5}}$	$\sqrt{1-\frac{2}{5}\sqrt{5}}$	
90	$\pi/2$ 1.57	1	0	±∞	0	
180	π 3.1415	0	-1	0	±∞	
270	$3\pi/2$ 4.712	-1	0	±∞	0	
360	2π 6.283	0	1	0	±∞	

Angoli associati:

	(2	/		(2	,		
Formule goniometrich	e				sottrazione	Formu	e di triplicazione
Formule di addizione					= senx cos y - s	sen3x	$= 3senx - 4sen^3x$
sen(x + y) = senx cos	y + senx	cos y	cos	(x-y):	$=\cos x\cos y + i$		$= 4\cos^3 x - 3\cos x$
$\cos(x+y) = \cos x \cos x$	y – senx	seny	te((x - y) =	$\frac{tgx - tgy}{1 + tgx \cdot tgy}$	tar -	$\frac{3tgx - tg^3x}{}$
$tg(x+y) = \frac{tgx + tgy}{1 - tgx \cdot tgy}$	-		-0 ($1 + tgx \cdot tgy$	igx =	$1-3tg^2x$
$1-tgx \cdot tgy$							

		duplicazione:	Formule di prostafere	si:	
۱	sen2x = 2	2senx cos x			x+y $x-y$
	$\cos(2x) =$	$\cos^2 x - sen^2 x = 1 - 2\operatorname{sen}^2$	$2x = 2\cos^2 x - 1$	senx + seny = 2sen	$\frac{1}{2}\cos\frac{\pi}{2}$
		$sen^2x = \frac{1 - \cos 2x}{2}; \cos^2$	$x = \frac{1 + \cos 2x}{2}$	$senx - seny = 2\cos\theta$	$s\frac{x+y}{2}sen\frac{x-y}{2}$
	$tg 2x = \frac{1}{1}$	$\frac{2tgx}{-tg^2x}$		$\cos x + \cos y = 2\cos x$	$\cos \frac{x+y}{2} \cos \frac{x-y}{2}$
				$\cos x - \cos y = -2s$	$en\frac{x+y}{2}sen\frac{x-y}{2}$

Formule di Werner:	Formule di bisezione:	Relaz. fond. della trig.
$senx \cdot seny = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$	$\left sen \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}} \right $	$sen^2\alpha + \cos^2\alpha = 1$
$\cos x \cdot \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$	$\int \cos \frac{x}{x} = \pm \sqrt{\frac{1 + \cos x}{1 + \cos x}}$	$sen^2\alpha = 1 - \cos^2\alpha$
1r () ()	2 2 2	$\cos^2\alpha = 1 - sen^2\alpha$
$senx \cdot \cos y = \frac{1}{2} [sen(x+y) + sen(x-y)]$	$tg\frac{x}{2} = \pm \sqrt{\frac{1-\cos x}{1+\cos x}} = \frac{senx}{1+\cos x} = \frac{1-\cos x}{1+\cos x}$	<u>r</u>
	$2 \sqrt{1+\cos x} + \cos x = \sin x$	

Funz.	Dom.	interv. Graf.	Cod.	Monotonia
Sen	-∞;+∞	$-\pi/2$; (3/2) π	-1;+1	oscillante
Cos	-∞;+∞	-π ; π	-1;+1	oscillante
Tg	-∞;+∞	$-\pi/2$; $\pi/2$	-∞;+∞	monotona
Cotg	-∞;+∞	0; π	-∞;+∞	decrescente
Arcsen	-1;+1	-1;+1	$-\pi/2$; + $\pi/2$	monotona
Arccos	-1;+1	-1;+1	0 ; π	decrescente
Arctg	-00:+00	-∞:+∞	$-\pi/2:+\pi/2$	monotona

f pari f(-x) = f(x)	Tipi di discontinuità:	Punto angoloso: sia x0 un punto non
f dispari $f(-x) = -f(x)$	1ª specie: La funzione fa un salto	appartenente al dominio D(y'). xo è un punto
3 3 3 3 3	$\lim_{x \to x_{o^{-}}} = l_1 \qquad \neq \qquad \lim_{x \to x_{o^{+}}} = l_2$	angoloso se:
y'= 0 Massimi e minimi	$x \rightarrow x_{0^{-}}$ $x \rightarrow x_{0^{+}}$	$\lim_{x \to x_{0^{+}}} f'(x) = l \text{e} \lim_{x \to x_{0^{-}}} f'(x) = l_{1}$
y'> 0 Intervalli crescenti (crescenza)	2ª specie: uno dei due limiti va all'infini	0
y'< 0 Intervalli decrescenti (decrescenza)	3ª specie: discontinuità di tipo eliminabi	
	finito il limite	$\lim_{x \to x_{o+}} f'(x) = +\infty \text{e} \lim_{x \to x_{o-}} f'(x) = -\infty$
y''= 0 Punti di flesso	ed x0 non appartiene al domini	$x \rightarrow x_{0^+}$ $x \rightarrow x_{0^-}$
y''> 0 Concavità verso l'alto	$\lim_{x \to x_0} f(x) = l$	
y''< 0 Concavità verso il basso		
	Asintoti obliqui: y = m x + q Quando il limite	$\lim_{x \to \infty} f(x) = \pm \infty$
Retta tangente in un punto		x→±∞
$y-f(x \circ) = f'(x \circ) (x - x \circ)$	Allora è necessario trovare gli eventuali asintoto	
$y = f(x_0) + f'(x_0)(x - x_0)$	$m = \lim_{x \to \pm \infty} \frac{f(x)}{x} q = \lim_{x \to \pm \infty} [f(x) - mx]$	
derivabilità → continuità	Qualora entrambi i limiti esistano e siano finiti c	

retta $\mathbf{v} = \mathbf{m} \mathbf{x} + \mathbf{q} \hat{\mathbf{e}}$ un asintoto obliquo della funzione

Consideriamo una successione an di numeri reali La somma dei primi n termini della successione detta somma parziale si indica con:

$$s_n = a_1 + a_2 + ... a_n = \sum_{n=1}^{n} a_n$$

continuità ≠ derivabilità

tale successione prende il nome di serie di termine generale an

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \sum_{n=1}^{n} a_n$$

il termine a primo membro si legge somma o serie per k che va da 1 a +∞. di ak

da 1 a + ∞ , di a_k 1) se il limite per n \rightarrow + ∞ di a_h esiste ed è un numero finito si dice $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \frac{1-h^n}{1-h}$ che la serie è convergente

2) se il limite di s₁ vale +∞ oppure -∞ , si dice che la serie è divergente.

Una serie divergente o convergente si dice regolare. 3) Se non esiste il limite per n→+∞ di s₁ si dice che la serie è indeterminata

Il carattere di una serie è la sua proprietà di essere convergen o divergente oppure indeterminata.

Condizione necessaria ma non sufficiente per la convergenza di una

serie: se la serie $\sum_{K=1}^{\infty} a_n$ è convergente allora la successione antende a

zero per n→+∞

se la serie converge: → il limite della successione an tende a

ma non è vero il contrario

se il limite della successione è diverso da zero → allora la serie necessariamente diverge.

Proprietà sulle serie:

PROPOSIZIONE 1) se le serie di termine generale ak e bk sono regolari allora anche la serie di termine generale (ak + bk) è

$$\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$$

PROPOSIZIONE 2) se la serie di termine generale ak è regolare, anche la serie di termine generale c • ak è regolare per ogni c app. a R.

$$\sum_{k=0}^{\infty} c \cdot a_{k} = c \cdot \sum_{k=0}^{\infty} a_{k}$$

Una serie è a **termini non negativi** se per ogni n ∈ N risulta a.

Una serie è a termini positivi se a, >0 per ogni n.

Teorema sulle serie a termini non negativi: una serie a termini non negativi non può essere indeterminata. È quindi convergente oppure divergente positivamente.

SERIE GEOMETRICA (potenze di un numero)

$$\sum_{k=0}^{\infty} x^k = 1 + h + h^2 + \dots + h^n \dots$$

numero h si dice ragione della serie geometrica. er conoscere il carattere della serie vediamo la soma parziale

Per conoscere il carattere della serie vediamo la soma parziale
$$s_n = 1 + h + h^2 + ... + h^{n-1} = \frac{1 \cdot h^n}{1 - h}$$
per la regola di ruffini si ha ciò

noltiplicando e dividendo per (1-h) carattere della serie è quindi dato dal limit

la serie converge a
$$\frac{1}{1-h}$$
 per -1 > h > 1

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - h^n}{1 - h} = \begin{cases} \text{la serie diverge per } h \ge 1 \\ \text{la serie è indetermin ata per h} \le -1 \end{cases}$$

SERIE ARMONICA (diverge positivamente)

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

SERIE ARMONICA GENERALIZZATA:

$$+\frac{1}{2^{\alpha}} + ... + \frac{1}{n^{\alpha}} + ... \begin{cases} \text{converge se } \alpha > 1 \\ \text{diverge se } \alpha \le 1 \end{cases}$$

CRITERIO DEL RAPPORTO: solo per le succ. a termini positivi Sia an una successione a termini positivi e supponiamo che esista il limite:

sista il limine: allora si ha che
$$=\lim_{n\to +\infty} \frac{a_{n+1}}{a_n} \qquad \qquad l<1 \quad \Rightarrow \quad \sum_{k=1}^{\infty} a_k < +\infty \quad \text{conve}$$

$$l > 1$$
 $\Rightarrow \sum_{k=1}^{\infty} a_k = +\infty$ diverge

nel caso il limite è = 1 non possiamo dire nulla riguardo al carattere

solo per le succ. a termini positivi

Sia an una **successione a termini non negativi** e supponiamo che

$$l=\lim_{n\to +\infty} \sqrt[n]{a_n}$$
 allora se: $l<1$ \Rightarrow $\sum_{k=1}^{\infty} a_k < +\infty$ converge

l > 1 $\Rightarrow \sum_{k=1}^{\infty} a_k = +\infty$ diverge nel caso il limite è = 1 non possiamo dire nulla riguardo al carattere della serie

CRITERIO DI LEIBENIZ (si usa per le serie a segni altern

$$\sum_{n=1}^{\infty} (-1)^n \cdot a_n \qquad a_n \ge 0$$

$$\lim a_n = 0 \quad a_n \ge a_n + 1 \quad \forall n$$

auindi la serie converae

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$ax^2 + bx + c > 0$$

$$\Delta > 0 \quad x1 < 0 \quad U \quad x2 > 0$$

$$\Delta = 0 \quad \forall x \in R \quad (x1 = x2)$$

$$\Delta < 0 \quad \forall x \in R \quad (x1 = x2)$$

$$\Delta < 0 \quad x1 \quad x2 \quad con \quad x1 < x2$$

$$\Delta = 0 \quad x1 \quad x2 \quad con \quad x1 < x2$$

$$\Delta < 0 \quad N.S. \text{ reade}$$

$$ax^2 + bx + c < 0 \\
 \Delta > 0 \quad x1 < x < 2$$

$$\Delta = 0 \quad N.S. \text{ reade}$$

$$\Delta < 0 \quad N.S. \text{ reade}$$

```
Proprietà delle potenze.
 1) a^{n+m} = a^n \cdot a^m
 2) (a^n)^m = a^{n \cdot m}
 3) a^0 = 1
|5| a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^m = \left(a^m\right)^{\frac{1}{n}} = \sqrt[n]{a^m}
 Es.: 4^x - 2^{2x+1} \rightarrow 2^{2x} - 2^{2x} \cdot 2
 \rightarrow 2^{2x}(1-2)
```


$x^2 - sx + p$ Prodotti notevoli $(a^2-b^2)=(a+b)(a-b)$ $(a^3-b^3)=(a-b)(a^2+ab+b^2)$

$(a^4-b^4)=(a^2-b^2)(a^2+b^2)$ $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$

Regola di Ruffini $(2x^4-18x^2-x+3) \div (x-d)$ Nel nostro caso d = 3: il divisore è (x-3) 2 0 -18 -1 3

Formulario Analisi Matematica I