Corrigendum for "Characterizing domains of finite *-character" Tiberiu Dumitrescu and Muhammad Zafrullah

There is some confusion in lines 8-15 of the proof of Theorem 1. In the following we offer a fix to clear the confusion and give a rationale for the fix.

The fix: Read the proof from the sentence that starts from line 8 as follows: Let S be the family of sets of mutually *-comaximal homogeneous members of Γ containing I. Then S is nonempty by $(\sharp\sharp)$. Obviously S is partially ordered under inclusion. Let $A_{n_1} \subset A_{n_2} \subset ... \subset A_{n_r} \subset ...$ be an ascending chain of sets in S. Consider $T = \bigcup A_{n_r}$. We claim that the members of T are mutually *-comaximal. For take $x,y\in T$, then $x,y\in A_{n_i}$, for some i, and hence are *-comaximal. Having established this we note that by (\sharp) , T must be finite and hence must be equal to one of the A_{n_j} . Thus by Zorn's Lemma, S must have a maximal element $U = \{V_1, V_2, ..., V_n\}$. Disregard the next two sentences and read on from: Next let M_i be the maximal *-ideal....

Rationale for the Fix: Using sets of mutually *-comaximal elements would entail some unwanted maximal elements as the following example shows: Let $x=2^25^2$ in Z the ring of integers. Then $\mathcal{S}=\{\{(2^25^2)\},\{(25^2)\},\{(2^25)\},\{(2^2)\},\{$