Formale Grundlagen der Informatik I 1. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach

SoSe 2014 23. April 2014

Davorin Lešnik, Daniel Günzel, Daniel Körnlein

Gruppenübung

Aufgabe G1 (Mengenoperationen)

Sei M eine Menge und $A, B, C \subseteq M$ Teilmengen.

- (a) Beweisen Sie die folgenden Aussagen.
 - i. $(A \cap B) \setminus C = (A \setminus C) \cap B$
 - ii. $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$
- (b) Welche der folgenden Mengen sind Teilmengen voneinander? Welche sind disjunkt?

$$A \setminus (B \cap C)$$
, $A \cap (M \setminus B)$, $M \setminus (A \cup B)$, $(M \setminus A) \cup (M \setminus B)$

Lösung:

- (a) i. Wir zeigen, dass $(A \cap B) \setminus C \subseteq (A \setminus C) \cap B$ und $(A \cap B) \setminus C \supseteq (A \setminus C) \cap B$.
 - (⊆) Sei $x \in (A \cap B) \setminus C$. Dann ist $x \in A$, $x \in B$ und $x \notin C$. Also haben wir $x \in A \setminus C$ und $x \in B$. Daraus folgt, dass $x \in (A \setminus C) \cap B$.
 - (⊇) Sei $x \in (A \setminus C) \cap B$. Dann ist $x \in A \setminus C$ und $x \in B$. Das erste bedeutet, dass $x \in A$ und $x \notin C$. Da $x \in A$ und $x \in B$, haben wir $x \in A \cap B$. Da also $x \notin C$, folgt $x \in (A \cap B) \setminus C$.
 - ii. Wir zeigen, dass $C \setminus (A \cap B) \subseteq (C \setminus A) \cup (C \setminus B)$ und $(C \setminus A) \cup (C \setminus B) \supseteq C \setminus (A \cap B)$.
 - (⊆) Sei $x \in C \setminus (A \cap B)$. Dann ist $x \in C$ und $x \notin A \cap B$. Da $x \notin A \cap B$, muss $x \notin A$ oder $x \notin B$ gelten (wäre beides falsch, so wäre $x \in A$ und $x \in B$ und damit $x \in A \cap B$). Falls $x \notin A$ gilt, dann $x \in C \setminus A$ und damit $x \in (C \setminus A) \cup (C \setminus B)$. Falls $x \notin B$ gilt, dann $x \in C \setminus B$ und damit $x \in (C \setminus A) \cup (C \setminus B)$. In beiden Fällen gilt also $x \in (C \setminus A) \cup (C \setminus B)$.
 - (⊇) Sei $x \in (C \setminus A) \cup (C \setminus B)$. Dann gilt entweder $x \in C \setminus A$ oder $x \in C \setminus B$. (Hier sollten wir den Beweis also via Fallunterscheidung fortführen.) Im ersten Fall gilt $x \in C$ und $x \notin A$. Letzteres bedeutet, dass $x \notin A \cap B$. Also gilt $x \in C \setminus (A \cap B)$. Im zweiten Fall beweist man analog, dass $x \in C \setminus (A \cap B)$.
- (b) Es gilt, dass $A \cap (M \setminus B) \subseteq A \setminus (B \cap C)$, $M \setminus (A \cup B) \subseteq (M \setminus A) \cup (M \setminus B)$. Weiterhin sind sowohl $M \setminus (A \cup B)$ und $A \setminus (B \cup C)$ als auch $M \setminus (A \cup B)$ und $A \cap (M \setminus B)$ disjunkt.

Aufgabe G2 (Äquivalenzrelationen, Surjektivität, Injektivität)

(a) Sei $f: A \rightarrow B$ eine beliebige Abbildung. Die Relation \sim sei auf A durch

$$x \sim y :\Leftrightarrow f(x) = f(y)$$

für x, y ∈ A definiert.

- i. Zeigen Sie, dass \sim eine Äquivalenzrelation ist.
- ii. Sei $q: A \to A/_{\sim}$ durch $q(x) := [x]_{\sim}$ definiert. Zeigen Sie, dass q surjektiv ist.
- iii. Geben Sie ein Beispiel von A, B und f an, sodass q nicht injektiv ist.
- (b) Sei *A* eine beliebige Menge. Zeigen Sie, dass für jede Äquivalenzrelation \approx auf *A* eine Menge *B* und eine Abbildung $f: A \to B$ existiert, sodass $x \approx y \iff f(x) = f(y)$ für alle $x, y \in A$ gilt.

Lösung:

- (a) i. Reflexivität von \sim bedeutet f(x) = f(x), Symmetrie bedeutet $f(x) = f(y) \implies f(y) = f(x)$ und Transitivität bedeutet $f(x) = f(y) \land f(y) = f(z) \implies f(x) = f(z)$ für alle $x, y, z \in A$. Also folgen alle diese Eigenschaften für \sim aus den entsprechenden Eigenschaften für =.
 - ii. Die Elemente von A/\sim sind die Äquivalenzklassen $[x]_\sim$, wobei $x\in A$. Um Surjektivität von q zu zeigen, müssen wir für jedes solche $[x]_\sim$ ein Element aus A finden, das mit q zu $[x]_\sim$ abgebildet wird. Das gilt, denn $q(x)=[x]_\sim$.
 - iii. Zum Beispiel $f: \{0,1\} \to \{0\}$, f(x) = 0. Weil f konstant ist, ist die einzige Äquivalenzklasse ganz $\{0,1\}$ und wir haben g(0) = g(1). Da $0 \ne 1$, ist g nicht injektiv.
- (b) Die vorherige Teilaufgabe suggeriert folgende Lösung: wir nehmen $B := A/\approx \text{ und } f(x) := [x]_{\approx}$.

Aufgabe G3 (Transitionssysteme und Wahrheitswertetafeln)

- (a) Modellieren Sie eine Verkehrsampel als endliches Transitionssystem.
- (b) Zeigen Sie anhand von Wahrheitswertetafeln, dass die folgenden aussagenlogischen Formeln äquivalent sind:

$$\neg (p \to q), \qquad p \land \neg q, \qquad (p \lor q) \land \neg q.$$

Lösung:

(a) Unterscheide z.B. die folgenden fünf Zustände:

Im Normalbetrieb wechselt die Ampel ihre Zustände in folgender Reihenfolge:

$$rot \rightarrow rot\text{-gelb} \rightarrow gr\ddot{u}n \rightarrow gelb \rightarrow rot.$$

Außerdem besitzt eine Ampel einen Nachtbetrieb:

gelb
$$\rightarrow$$
 aus \rightarrow gelb.

(b)

_ <i>p</i>	q		$p \rightarrow q$	$\neg (p \rightarrow q)$	$ \neg q$	$p \land \neg q$	$p \lor q$	$(p \lor q) \land \neg q$
0	0) [1	0	1	0	0	0
0	1	.	1	0	0	0	1	0
1	0)	0	1	1	1	1	1
1	1	.	1	0	0	0	1	0

Hausübung

Aufgabe H1 (Mengenoperationen)

(12 Punkte)

Sei M eine Menge und $A, B, C \subseteq M$ Teilmengen. Beweisen Sie die folgenden Aussagen.

- (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- (c) $M \setminus (A \cup B) = (M \setminus A) \cap (M \setminus B)$
- (d) $M \setminus (A \cap B) = (M \setminus A) \cup (M \setminus B)$.

Lösung:

- (a) (\subseteq) Wenn $x \in A \cup (B \cap C)$, dann gilt $x \in A$ oder $x \in B \cap C$. Falls, $x \in A$, dann gilt auch $x \in A \cup B$ und $x \in A \cup C$. Wenn $x \in B \cap C$, ist $x \in B$ und $x \in C$, also wiederum $x \in A \cup B$ und $x \in A \cup C$. Also ist auch $x \in (A \cup B) \cap (A \cup C)$.
 - (⊇) Sei $x \in (A \cup B) \cap (A \cup C)$. Dann ist $x \in A \cup B$ und $x \in A \cup C$. Also ist $x \in A$ oder $x \in B$ und $x \in C$. Damit ist $x \in B \cap C$ oder $x \in A$, was genau die Definition von $x \in A \cup (B \cap C)$ ist.
- (b) (\subseteq) Sei $x \in A \cap (B \cup C)$. Dann ist $x \in A$ und $x \in B \cup C$. Also ist $x \in B$ oder $x \in C$. Damit ist $x \in A \cap B$ oder $x \in A \cap C$. Somit ist $x \in (A \cap B) \cup (A \cap C)$.
 - (⊇) Sei $x \in (A \cap B) \cup (A \cap C)$. Dann ist $x \in A \cap B$ oder $x \in A \cap C$. Also ist $x \in A$ und $x \in B$ oder $x \in A$ und $x \in C$. Damit ist in jedem Fall $x \in A$ und $x \in B$ oder $x \in C$, also $x \in B \cup C$. Damit ist aber auch $x \in A \cap (B \cup C)$.
- (c) (\subseteq) Sei $x \in M \setminus (A \cup B)$. Dann ist $x \in M$ und $x \notin A \cup B$. Also ist $x \notin A$ und $x \notin B$. Dann ist $x \in M \setminus A$ und $x \in M \setminus B$. Damit ist aber auch $x \in (M \setminus A) \cap (M \setminus B)$.
 - (⊇) Sei $x \in (M \setminus A) \cap (M \setminus B)$. Dann ist $x \in M \setminus A$ und $x \in M \setminus B$. Also ist $x \in M$ und $x \notin A$ und $x \notin B$. Damit ist $x \notin A \cup B$, also $x \in M \setminus (A \cup B)$.
- (d) (\subseteq) Sei $x \in M \setminus (A \cap B)$. Dann ist $x \in M$ und $x \notin A \cap B$. Also ist $x \notin A$ oder $x \notin B$. Also ist $x \in M \setminus A$ oder $x \in M \setminus B$ und somit $x \in (M \setminus A) \cup (M \setminus B)$.
 - (⊇) Sei $x \in (M \setminus A) \cup (M \setminus B)$. Dann ist $x \in M \setminus A$ oder $x \in M \setminus B$. Also ist $x \in M$ und $x \notin A$ oder $x \in M$ und $x \notin B$. Also ist $x \notin A \cap B$ und somit $x \in M \setminus (A \cap B)$.

Bepunktung: 3 P. pro Teilaufgabe.

Aufgabe H2 (Bijektivität)

(12 Punkte)

Definiere die Funktion $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ durch

$$f(x,y) := \frac{(x+y)\cdot(x+y+1)}{2} + x.$$

Beweisen Sie, dass f eine Bijektion zwischen $\mathbb{N} \times \mathbb{N}$ und \mathbb{N} ist.

Bemerkung: Wir betrachten 0 als natürliche Zahl.

Lösung: Tabelle für *f*:

f	x = 0	x = 1	x = 2	x = 3	x = 4	
y = 0	0	2	5	9	14	
y = 1	1	4	8	13		
y=2	3	7	12			
y = 3	6	11				
y = 4	10					
:						

Eine Funktion ist genau dann bijektiv, wenn sie invertierbar ist. Wir definieren $g: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ wie folgt. Nehme ein beliebiges $n \in \mathbb{N}$. Wie aus den Matheveranstaltungen bekannt, gibt die Funktion $s: \mathbb{N} \to \mathbb{N}$, $s(k) := \frac{k \cdot (k+1)}{2}$ die Summe der Zahlen von 0 bis k an; weil s(0) = 0 gilt und s streng monoton wachsend ist, existiert ein eindeutiges $k \in \mathbb{N}$, sodass $s(k) \le n < s(k+1)$ gilt. Sei g(n) := (n-s(k), k-n+s(k)).

Wir überprüfen, dass dieses g die Inverse zu f ist.

$$f\left(g(n)\right) = \frac{(n-s(k)+k-n+s(k))\cdot(n-s(k)+k-n+s(k)+1)}{2} + n-s(k) = \frac{k\cdot(k+1)}{2} + n-s(k) = s(k)+n-s(k) = n,$$

was Surjektivität beweist.

$$g(f(x,y)) = g\left(\frac{(x+y)\cdot(x+y+1)}{2} + x\right) =$$

$$|acc|_{x=x+y} = |acc|_{x=x+y} |acc|_{x=$$

(bemerke, dass
$$k = x + y$$
, weil $\frac{(x+y)\cdot(x+y+1)}{2} \le \frac{(x+y)\cdot(x+y+1)}{2} + x < \frac{(x+y+1)\cdot(x+y+2)}{2}$)

$$= \left(\frac{(x+y)\cdot(x+y+1)}{2} + x - s(x+y), \ x+y - \frac{(x+y)\cdot(x+y+1)}{2} - x + s(x+y)\right) = (x,y),$$

was Injektivität beweist.

Bepunktung: 6 P für Surjektivität, 6 P für Injektivität.

Aufgabe H3 (Wahrheitswertetafeln)

(12 Punkte)

Man betrachte die logischen Formeln

- (i) $p \lor q$,
- (ii) $(p \land q \land r) \rightarrow \neg p$,
- (iii) $p \land (p \lor q \lor r)$,
- (iv) $(p \rightarrow q) \leftrightarrow q$.
- (a) Geben Sie die Wahrheitswertetafeln für diese Formeln an.
- (b) Geben Sie für je zwei dieser Formeln an, ob sie logisch äquivalent sind.

Lösung:

(a)

p	q	r	$p \lor q$	$p \wedge q \wedge r$	$\neg p$	$ (p \land q \land r) \rightarrow \neg p $	$p \lor q \lor r$	$p \wedge (p \vee q \vee r)$	$p \rightarrow q$	$(p \to q) \longleftrightarrow q$
0	0	0	0	0	1	1	0	0	1	0
0	0	1	0	0	1	1	1	0	1	0
0	1	0	1	0	1	1	1	0	1	1
0	1	1	1	0	1	1	1	0	1	1
1	0	0	1	0	0	1	1	1	0	1
1	0	1	1	0	0	1	1	1	0	1
1	1	0	1	0	0	1	1	1	1	1
1	1	1	1	1	0	0	1	1	1	1

Bepunktung: 8 P. (2 P. pro Formel).

(b) Aus der Wahrheitswertetafel können wir ablesen, dass nur die Formeln (i) und (iv) logisch äquivalent sind. 4 P.