1 Количество вентилей, участвующих в коммутации

Фаза k+1 отстает от фазы k на угол $\varphi=360^\circ/m$, где m-пульсность схемы. Примем $\alpha=68^\circ$ и $\gamma=24^\circ$.

Рис. 1: m = 12, $\alpha = 68^{\circ}$, $\gamma = 25^{\circ}$

Рис. 2: m = 12, $\alpha = 68^{\circ} \ \gamma = 28.5^{\circ}$

На рис.1 коммутация для $\gamma=25^\circ$ и на рис.3 коммутация для $\gamma=28.5^\circ$. При дальнейшем увеличении γ займет весь интервал $\frac{360^\circ}{m}$, т.е. практически весь интервал ток проходит через два вентиля. При дальнейшем увеличении γ коммутация затронет 3 фазы. И сам процесс будет выглядеть так: коммутация вентилей 2 фаз \Rightarrow коммутация вентилей 3 фаз \Rightarrow 2 фазы \Rightarrow 3 фазы.

С дальнейшим увеличением угла γ коммутация затронет 4 фазы: 3 фазы \Rightarrow 4 фазы \Rightarrow 3 фазы \Rightarrow 4 фазы.

Для m=12 для угла γ каждые 30° происходит вовлечение в коммутацию следующего вентиля. Для неуправляемых вентилей $\alpha=0$. Возможно ли одновременное включение m-1 вентиля? Ответ – нет, может гореть около половины вентилей [1].

Список литературы

[1] Электромагнитные процессы в системах с мощными выпрямительными установками. Костенко М.П., Нейман Л.Р., Блавдзевич Г.Н. М.;Л. Изд-во АН СССР. 1946. 110 с.

Рис. 3: $m=12,\,\alpha=68^\circ,\,\gamma=38.5^\circ$