Φ едеральное государственное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Лабораторная работа № 6 «Работа с системой компьютерной вёрстки Т_ЕХ» Вариант 65

Выполнил: Зыков Андрей Алексеевич

Группа: Р3106

Проверил: Соколов И.Д.,

Преподаватель практики факультета ПИиКТ

начинаем с кубика 2.

средним геометриеским имеем

$$A \ge \frac{a+b+\frac{b^2}{4a}}{b-a} = \frac{4a^2+4ab+b^2}{4a(b-a)} = \frac{9a^2+6ax+x^2}{4ax} = \frac{3}{2} + \frac{9a^2+x^2}{4ax} \ge \frac{3}{2} + \frac{\sqrt{9a^2 \cdot x^2}}{2ax} = \frac{3}{2} + \frac{3}{2} = 3,$$

причем равенство A=3 достиаетс, если $c=\frac{b^2}{4a}$ и x=3a, т.е. при b=c=4a.

Следовательно, данное выражение принимает свое наименьшее значение, равное трем, когда

 $f(x) = ax^2 + 4ax + 4a = a(x+2)^2$, где a - произвольное положительное число.

Замечание. Пусть $g(t) = \frac{(t+2)^2}{4(t-1)}$. Нетрудно проверить, что $g(\frac{b}{a}) = \frac{4a^2+4ab+b^2}{4a(b-a)}$. Следовательно, наименьшее значение А можно найти, исследовав функцию g(t) на экстремум при t>1

6. Обозначим $\vec{AD} = \vec{a}, \vec{AB} = \vec{b}, \vec{DE} = \vec{c}$ и $\vec{BF} = \vec{d}$ (рис.14).

Puc.14 Тогда $\vec{DF}=\vec{b}+\vec{d}-\vec{a}$, $\vec{AE}=\vec{a}+\vec{c}$, $\vec{AF}=\vec{b}+\vec{d}$, $\vec{BE}=\vec{a}+\vec{c}-\vec{b}.$ По условию $DF\bot AE$ и $AD\bot DE$, поэтому

$$(\vec{b}+\vec{d}-\vec{a})\cdot(\vec{a}+\vec{c})=0,\,(\vec{b}+\vec{d})\cdot(\vec{a}+\vec{c})-|\vec{a}|^2=0.$$
 Так как $AB\perp BF$, то

Так как
$$AB \perp BF$$
, то $\vec{AF} \cdot \vec{BE} = (\vec{b} + \vec{d}) \cdot (\vec{a} + \vec{c} - \vec{b}) = (\vec{b} + \vec{d}) \cdot (\vec{a} + \vec{c}) - |\vec{b}|^2$. Отсюда в силу условия $|\vec{b}| = \vec{a}$ следует, что $\vec{AF} \cdot \vec{BE} = 0$, т.е. $AF \perp BE$.

7. Выберем в ожерелье какой-нибудь кубик и отметим его номером 1. Затем занумеруем остальные кубики по порядку, двигаясь вдоль нити в одном из двух возможных направлений. В кубике с номером n обозначим через n_1 ту вершину, которая примыкает к предыдущему кубику, а через n_2 - вершину, а через n_2 - вершину, примыкающую к следующему кубику(рис.15). Так как ожерелье замкнутое, то первый кубик следует за N^3 -м.

Puc.15 Puc.16

а) Докажем, что при четном N требуемая упаковка возможна. Выберем систему координат, направив оси вдоль ребер коробки и взяв в качестве единицы длины ребро кубика (рис.16).

Составим столбец высотой N из кубиков с номерами 1, N^3 , N^3-1 , ..., N^3-N^2+2 , поместив вершину 1_1 в точку с координатами (1,0,1), а вершину 1_2 в точку с координатами 0,1,0.

Заметим, что последняя вершина этого столбца, т.е. $(N^3-N^2+2)_1$, имеет координаты (0,1,N). Оставшиеся N^3-N кубиков будем укладывать в виде «змеек». 1) Первый (нижний) слой - рис.17. В клетках проставлены номера кубиков. Укладывать слой

N^2	N+1		$\rightarrow 2N-1$
	3N-2	·	$\stackrel{\downarrow}{2N}$
	3N-1	$\rightarrow \cdots$	
$\stackrel{ }{{}{}}$			$3N^2 - N + 1$
1	N^2		$N^2 - N + 2$

Puc.17 Вершина $(N^2)_2$ имеет координаты (1,0,1), т.е. $(N^2)_2 = 1_1$.

2) Второй слой - рис.18. Здесь вершины $(2N^2-1)_2$ и $(N^3)_1$ имеют координаты (0,1,2), т.е. $(2N^2-1)_2=(N^3)_1$

	•	•	$N^2 + 2N - 1$	$N^2 + 2N - 2$
				Î
$2N^2 - 1$. ↓	$\frac{N^2}{N} + 3N - 3$	$N^2 + N$ \uparrow
N^2	$N^2 + 1$			$N^2 + N - 1$

Puc.18

3) В третьем слое расположение кубиков с номерами $2N^2, \dots, 3N^2 - 2$ повторяет расположение кубиков с номерами $2, \ldots, N^2$ в первом слое, и т.д. Заметим, что в каждом слое координаты вершины «1» кубика из столбца совпадают с координатами вершины «2» последнего кубика из змейки. Следовательно, в N-м слое координаты вершин $(N^3 - N + 2)_1$ и $(N^3 - N + 1)_2$ совпадают. Что и требовалось доказать. б) Если ожерелье упаковано в коробку, то вершины «1» \vec{x} и «2» любого кубика имеют различные по четности абсциссы. Значит, сумма этих двух координат для каждого кубика - нечетное число. Следовательно, в случае N=2k+1 сумма всех абсписс отмеченных вершин - также нечетное число. Но каждая абсцисса повторяется дважды: для n_2 и для $(n+1)_1$. Значит, указанная сумма должна быть четной. Таким образом, при нечетном N упаковать ожерелье в коробку невозможно.