Monitoria 07/04/2021 - Revisão As

as matrizes
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ e

Considere as matrizes
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ e
$$U = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. Sabendo que $PA = LU$ e que $b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$,

matrizes
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ e

ao LU) (Valor:1,0)

matrizes
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ e

1. (Decomposição LU) (Valor:1,0)

Considere as matrizes
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, $L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ e

$$Pb = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \qquad Ly = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

Y = | 1 | 2 |

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \implies \begin{cases} y_1 = 1 \\ y_2 + y_2 = 3 \Rightarrow y_2 = 2 \\ y_3 = 2 \end{cases}$$

$$0 | x_1 |$$

$$\begin{bmatrix} 1 \end{bmatrix} \quad 3x_3$$

$$\begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \qquad \begin{array}{l} 3x_3 = 2 \Rightarrow x_3 = 2/3 \\ x_2 = 2 \\ x_1 - 2x_2 = 1 \end{array}$$

$$\Rightarrow \lambda_1 = 1 + 4 = 5$$

$$\begin{bmatrix} 5 \\ 2 \\ 2/2 \end{bmatrix}$$

Portanto
$$x = \begin{bmatrix} 5 \\ 2 \\ 2/3 \end{bmatrix}$$

a) Seja ∥A∥ uma norma de matriz induzida por uma norma
vetorial. Mostre que $\ I_n\ =1$, onde I_n é a matriz identidade de ordem n .
b) Existe uma norma vetorial que induza a norma de
Frobenius? Por que sim ou por que não?
a) A definição de norma induzida é
of it altinigae are norma inauzida e
llAll = máx llAx ll
l x =1
٨
Assim:
Ini = máx Inxl
X =1
ľ
= max IIXII = 1, pols estamos extraindo
= máx IIXII = 1 , pois estamos extraindo IIXII=1 o máximo de IIXII sobre
vetures na qual IIXII = L
se loves in Indi list - T
b) Suponha que a norma de Frobenius seja induzida por alguma norma vetoral. Assim:
indicated as also a sound wheeld dear.
mon claa por algama norma veloral. 1135/m.
MANE = máx HAXII , para toda matriz A nxn
ų χu = 1
γ Λ +
Tome A = In
VInll = max VInxy
£ 11X11=7
Ω \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Pelo item (a), max Inx = 1, mas In = 1 12+12++ 12 = 1
ssim teriames on =1, abourdo p n>2 n wezes
ogo, não existe norma vetorial que induza Fromenius
20 go 1413 to 110 ma voporiai que inimed from the

2. (Norma Induzida) (Valor: 2,0)

3. (Raio Espectral) (Valor: 2,0) a) Seja A uma matriz quadrada e I_n a matriz identidade, ambas de ordem n. Mostre que , se $I_n - A$ e $I_n + A$ são matrizes singulares, isto é, não invertíveis, então 1 e −1 são autovalores, respectivamente, de $I_n - A$ e $I_n + A$. b) Mostre que se o raio espectral de A é menor do que 1 ($\rho(A)$ < 1), então I_n – A e I_n + A são invertíveis. b) Suponhemos que ρ(A) < 1, varnos mostrar que In-A e In+A são inventíveis provando que o não ε um de seus autorabres. Se le, le, ..., le são os autorabres de A, p(A) = máx 1/2/1,l/21, ..., /2n/2, ou seja, o rato espectral é o módulo do autorabor de major módulo. Se p(A) < 1, todos os autovalores de A em moidulo, são também menores do que 1, assim. 1 e -1 não são autovalores de A -1 -P(A) P(A) 1 Assim, Av + No, se N=1 on N=-1 (v autovetor correspondents) Suponha por absur do que o é autovalor de I-A; assim: 0=0(A-I) =0 1 - et de => A == 0 → 1 é autoualor de A, abourdo!

Analogamente, suponha que o é autovalor de I+A:

Temos toda informação então para calcular Condi(A) Cond((A) = ||A||, ||A-1|| = 4.2 = 8 Vamos inverter AT de outra forma: AT = \begin{aligned}
2 & 1 & 1 & Escrevemos AT ao lado de I e fazemos \\
0 & 0 & 1 & opera & \overline{\sigma} \overline $\begin{bmatrix}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}$ $\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}$ $\begin{bmatrix} L_1 = L_1/2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix}
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}$ $\begin{bmatrix}
1 & 0 & 0 & 1/2 & -1/2 & 0 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}$ $Assim (A^T)^{-1} = \begin{bmatrix}
1/2 & -1/2 & 0 \\
0 & 1 & -1 \\
0 & 1 & -1
\end{bmatrix}$ $\begin{bmatrix}
0 & 1 & -1/2 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{bmatrix}$ $\begin{bmatrix}
-3 \cdot max^{1}/2 \cdot 1 \cdot 3/2 \cdot 2^{1/2} \cdot 3 \cdot 2 \cdot 6 \\
0 & 0 & 1
\end{bmatrix}$ $Como condi (A) = 8 \quad cond_1 (A^T) = 6, conclu (nos que)$

cond, (A) & cond, (AT)