Exam Note Sheet

Michael B. Nattinger

August 29, 2020

1 Real Analysis

1.1 Theorems

Bolzano-Weierstrass Theorem: Every bounded real sequence contains at least one convergent subsequence.

Monotone Convergence Theorem: Every increasing sequence of real numbers that is bounded above converges. Every decreasing sequence of real numbers that is bounded below converges.

Every real sequence contains either a decreasing subsequence or increasing subsequence or possibly both.

A set is closed if and only if every convergent sequence contained in A has its limit in A.

 $\lim_{x\to x_0} f(x) = y_0$ if and only if for any sequence $\{x_n\} \in X$ such that $x_n \to x_0$ and $x_n \neq x_0$, the sequence $\{f(x_n)\}$ converges to y_0 .

A function f is continuous at x_0 if and only if one of the following equivalent statements is true:

- $f(x_0)$ is defined and either x_0 is an isolated point or x_0 is a limit point of X and $\lim_{x\to x_0} f(x) = f(x_0)$.
- For any sequence $\{x_n\}$ s.t. $x_n \to x_0$, the sequence $\{f(x_n)\}$ converges to $f(x_0)$.

Let (X, d) be a metric space.

- \emptyset , X are simultaneously open and closed in X;
- the union of an arbtrary collection of open sets is open;
- the intersection of a finite collection of closed sets is closed;
- the union of a finite collection of closed sets is closed;
- the intersection of an arbitrary collection of closed sets is closed.

A function f is continuous iff for any closed set C, the set $f^{-1}(C)$ is closed. A function f is continuous iff for any open set A, the set $f^{-1}(A)$ is open.

Supremum Property: Every nonempty set of real numbers that is bounded above has a supremum, and the supremum is a real number. (Not generally the case for all numbers e.g. sets that would be bounded by irrational numbers in the reals do not have a supremum when they are instead defined in the rationals)

Extreme Value Theorem: Let $f : [a, b] \to \mathbb{R}$ be continuous. Then f attains its maximum and minimum on [a, b].

Intermediate Value Theorem: Let $f : [a, b] \to \mathbb{R}$ be a continuous function. Then for any $\gamma \in [f(a), f(b)]$ there exists $c \in [a, b]$ s.t. $f(c) = \gamma$.

Let f be monotonically increasing. Then one-sided limits exist for all x. Moreover, $\sup\{f(s)|a < s < x\} = f(x^- \le f(x) \le f(x^+) = \inf\{f(s)|x < s < b\}.$

Contraction Mapping Theorem: Let (X,d) be a nonempty complete metric space and $T: X \to X$ a contraction with modulus $\beta < 1$. Then T has a unique fixed point x_0 . Additionally, $\forall x_0 \in X$ the sequence $\{x_n\}$, where $x_n = T^n(x_0) = T(T(\dots T(x_0)\dots))$ converges to x_0 .

Continuous dependence of the fixed point on parameters: Let (X,d) and (Ω,ρ) be two metric spaces and $T: X \times \Omega \to X$. For each $\omega \in \Omega$, let $T_{\omega}: X \to X$ be defined by $T_{\omega}(x) = T(x,\omega)$. Suppose (X,d) is complete, T is continuous in ω , and $\exists \beta < 1$ such that T_{ω} is a contraction of modulus β for all $\omega \in \Omega$. Then the fixed point function $x^*: \Omega \to X$ defined by $x^*(\omega) = T_{\omega}(x^*(\omega))$ is continuous.

Blackwell's Sufficient Conditions: Let B(X) be the set of all bounded functions from $X \to \mathbb{R}$ with metric $d_{\infty}(f,g) = \sup_{x \in X} |f(x) - g(x)|$. Let $T: B(X) \to B(X)$ satisfy:

- (monotonicity) if $f(x) \leq g(x) \ \forall x \in X$, then $(T(f))(x) \leq (T(g))(x) \ \forall x \in X$.
- (discounting) $\exists \beta \in (0,1)$ s.t. for every $a \geq 0$ and $x \in X$, $(T(f+a))(x) \leq (T(f))(x) + \beta a$.

Then T is a contraction with modulus β .

Any closed subset of a compact space is compact. If A is a compact subset of a metric space, then A is closed and bounded.

Heine-Borel Theorem: If $A \subset \mathbb{R}^m$, then A is compact if and only if A is closed and bounded.

Let (X,d) and (Y,ρ) be metric spaces. If $f:X\to Y$ is continuous and C is a compact set in (X,d) then f(C) is compact in (Y,ρ) .

Extreme Value Theorem: If C is a compact set in a metric space (X,d) and $f:C\to\mathbb{R}$ is continuous, then f is bounded on C and attains its maximum and minimum.

Let (X,d) and (Y,ρ) be metric spaces, $C \subset X$ compact, $f: C \to Y$ continuous. Then f is uniformly continuous on C.

1.2 Space definitions

A **metric** on a set X is a function $d: X \times X \to \mathbb{R}^+$ s.t. $\forall x, y, z \in X$,

- $d(x,y) \ge 0$, with equality $\iff x = y$;
- d(x,y) = d(y,x);
- $d(x,z) \leq d(x,y) + d(y,z)$.

A **metric space** is a pair (X, d), where X is a set and d is a metric on X. Examples include Euclidean space.

In a metric space, (X, d), an **open ball** is $B_{\epsilon}(x) = \{y \in X | d(x, y) < \epsilon\}$ and a **closed ball** is $B_{\epsilon}[x] = \{y \in X | d(x, y) \le \epsilon\}$.

A sequence in a set X is a function $s : \mathbb{N} \to X$, denoted $\{s_n\}$, where $s_n = s(n)$. A sequence x_n in a metric space (X, d) converges to $x \in X$ if $\forall \epsilon > 0, \exists N(\epsilon) > 0$ s.t. $\forall n > N(\epsilon) \ d(x_n, x) < \epsilon$. We write $x_n \to x$ or $\lim_{n \to \infty} x_n = x$.

A subset $s \subset X$ in a metric space (X,d) is **bounded** if $\exists x \in X, \beta \in \mathbb{R} s.t. \forall s \in S, d(x,s) < \beta$. Every convergent sequence in a metric space is bounded.

Let (X, d) be a metric space. A set $A \subset X$ is **open** if $\forall x \in A \exists \epsilon > 0 s.t. B_{\epsilon}(x) \subset A$. A set $C \subset X$ is **closed** if its complement is open. This depends on the metric space. [0, 1] is not open in (\mathbb{R}, d_E) but is open in $([0, 1], d_E)$.

Let (X, d), and $A \in X$. $x \in X$ is a **limit point** of A if $\forall \epsilon > 0$, $(B_{\epsilon}(x) \setminus \{x\}) \cap A \neq \emptyset$. Let $(X, d), (Y, \rho)$ be two metric spaces, $A \subset X, f : A \to Y, x_0$ =limit point of A. f has a limit y_0 as x approaches x_0 if $\forall \epsilon > 0 \exists \delta > 0 s.t.$ if $x \in A$ and $0 < d(x, x_0) < \delta$, then $\rho(f(x), y_0) < \epsilon$.

A function is **continuous** at x_0 if $\forall \epsilon > 0 \exists \delta > 0$ s.t. if $d(x, x_0) < \delta$, then $\rho(f(x), f(x^0)) < \epsilon$. (δ can vary for different x^0 and ϵ)

A function f is continuous if it is continuous at every point of its domain.

A function is uniformly continuous if $\forall \epsilon > 0 \exists \delta > 0$ s.t. $ifd(x, x_0) < \delta$, then $\rho(f(x), f(x_0)) < \epsilon$. Note: delta depends only on epsilon!

Let $(X,d), (Y,\rho)$ be two metric spaces, $f: X \to Y, E \subset X$. Then f is **Lipschitz** on E if $\exists K > 0$ s.t. $\rho(f(x), f(y)) \leq Kd(x,y) \forall x,y \in E$. f is **locally Lipschitz** on E if $\forall x \in E \exists \epsilon > 0$ s.t. f is Lipschitz on $B_{\epsilon}(x) \cap E$.

Suppose X is bounded above. The supremum of X, supX, is the smallest upper bound for X, i.e. supX satisfies

- $sup X > x \ \forall x \in X$;
- $\forall y < sup X \exists x \in X \text{ s.t. } x > y.$

And infimum is similarly defined.

A sequence is **Cauchy** if $\forall \epsilon > 0 \exists N > 0$ s.t. if m, n > N then $d(x_n, x_m) < \epsilon$. Every convergent sequence in a metric space is Cauchy.

A metric space is **complete** if every Cauchy sequence contained in X converges to some point in X. Euclidean space is complete. If (X, d) is a complete metric space and $Y \subset X$, then (Y, d) is complete if and only if Y is closed.

A function from a metric space to itself is called an **operator**. An operator is a contraction of modulus β if $\beta < 1$ and $d(T(x), T(y)) \leq \beta d(x, y) \ \forall x, y \in X$. Every contraction is uniformly continuous.

A collection of sets $U = \{u_{\lambda} | \lambda \in \Lambda\}$ in a metric space is an open cover of the set A if U_{λ} is open for all $\lambda \in \Lambda$ and $A \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$.

A set A in a metric space is **compact** if every open cover of A contains a finite subcover of A. To prove something is compact, find a way to reduce any general open cover into a finite subcover. To prove something is not compact, find an infinite subcover which cannot be reduced in this way.

2 Linear Algebra

A **vector space** V is a collection of vectors, which may be added together and multiplied by scalars, satisfying the following conditions:

- $\forall x, y, z \in V, (x + y) + z = x + (y + z);$
- $\forall x, y \in V, x + y = y + x;$
- $\exists \vec{0} \in V \text{ s.t. } \forall x \in V, x + \vec{0} = \vec{0} + x = x;$
- $\forall x \in V \exists (-x) \in V \text{ s.t. } x + (-x) = \vec{0};$
- $\forall \alpha \in \mathbb{R}, x, y \in V, \alpha(x+y) = \alpha x + \alpha y;$
- $\forall \alpha, \beta \in \mathbb{R}, x \in V, (\alpha + \beta)x = \alpha x + \beta x;$
- $\forall \alpha, \beta \in \mathbb{R}, x \in V, (\alpha \beta)x = \alpha(\beta x);$
- $\forall x \in V, 1x = x$.

A set spans V if $V = \operatorname{span} W$ where a span is a linear combination of a set of vectors. A set is linearly independent if $\nexists x_1, \ldots, x_n \in X, a_1, \ldots, a_n \in \mathbb{R}$ s.t. $\sum a_i \neq 0$ and $\sum a_i x_i = \vec{0}$.

Alternatively, if $a_i x_i = \vec{0}$ implies $a_1 = \cdots = a_n = 0$ then X is linearly independent. A **basis** is of V is a set of linearly independent vectors in V that spans V.

Let B be a basis for V and enumerate elements of B by a set Λ so that $B = \{v_{\lambda} | \lambda \in \Lambda\}$. Then every vector $x \in V$ has a unique representation as a linear combination of elements of B with finitely many nonzero coefficients.

Every vector space has a basis. Any two bases of a vector space have the same cardinality.

If V is a vector space and $W \subset V$ is linearly independent, then there exists a linearly independent set B such that $W \subset B \subset \operatorname{span} B = V$

Let V be a vector space. The dimension of V is the cardinality of any basis of V. $\dim \mathbb{R}^n = n$.

Suppose $\dim V = n \in \mathbb{N}. If W \subset Vand|W| > n$, where |W| denotes the cardinality of W, then W is linearly dependent.

Suppose $\dim V = n$ and $W \subset V, |W| = n$. Then, if W is linearly independent, then $\operatorname{span} W = V$, so W is a basis of V; if $\operatorname{span} W = V$, then W is linearly independent, so W is a basis of V.

Let X and Y be two vector spaces. We say that $T: X \to Y$ is a linear transformation if for all $x_1, x_2 \in X$, $a_1, a_2 \in \mathbb{R}$, $T(a_1x_1 + a_2x_2) = a_1T(x_1) + a_2T(x_2)$.

If L(X,Y) is the set of all linear transformations from X to Y, then L(X,Y) is a vector space.

If $R: X \to Y, S: Y \to Z$ then $R \circ S: X \to Y$ is a linear transformation.

Let $T \in L(X,Y)$. Im $T : \{T(x) | x\}$

inX} and $kerT := \{x \in X | T(x) = \vec{0}\}$, and the rank of T is rankT := dim(Im(T)).

If $T \in L(X,Y)$, then ImT and kerT are vector subspaces of Y and X, respectively.

Let X be a finite-dimensional vector space and $T \in L(X, Y)$.

Then $\dim X = \dim(\ker T) + \operatorname{rank} T = \dim(\ker T) + \dim(\operatorname{Im} T)$.

 $T \in L(X,Y)$ is invertible if there exists a function $S:Y \to X$ such that S(T(x)) = $x \forall x \in X, T(S(y)) = y \forall y \in Y$. The transformation S is called the inverse of T and is denoted T^{-1} .

T is invertible means:

- T is one-to-one: $\forall x_1 \neq x_2, T(x_1) \neq T(x_2)$.
- T is onto: $\forall y \in Y \exists x \in X \text{ s.t. } T(x) = u.$

If $T \in L(X,Y)$ is invertible, then $T^{-1} \in L(Y,X)$

 $T \in L(X,Y)$ is one-to-one if and only if $\ker T = 0$.

Two vector spaces X and Y are isomorphic if there exists an invertible linear function from X to Y. A function with these properties is called an isomorphism.

Let X and Y be two vector spaces, and let V be a basis for X. Then a linear transformation $T: X \to Y$ is completely defined by its value on V:

- Given any set $\{y_{\lambda} | \lambda \in \Lambda\} \subset Y$, $\exists T \in L(X,Y)$ s.t. $T(v_{\lambda}) = y_{\lambda}$ for all $\lambda \in \Lambda$.
- If $S, T \in L(X, Y)$ and $S(v_{\lambda}) = T(v_{\lambda})$ for all $\lambda \in \Lambda$, then S = T.

Two vectors spaces X and Y are isomorphic iff $\dim X = \dim Y$. If $\dim X = n$, then X is isomorphic to \mathbb{R}^n .

Let $V = \{v_1, \dots, v_n\} \in X$ is a basis of X. Then $\forall x \in X$ has a unique representation

$$x = \sum_{i=1}^{n} a_i v_i$$
. Then $crd_V(x) = \begin{pmatrix} a_1 \\ \dots \\ a_n \end{pmatrix} \in \mathbb{R}^n$ is an isomorphism from X to \mathbb{R}^n .

Let V, W be bases of X, Y. Then $\forall y \in Y$ has a unique representation $y = \sum_{i=1}^{m} a_i w_i$,

e.g.
$$T(v_1) = \sum_{i=1}^{m} a_{i1} w_i, \dots, T(v_n) = \sum_{i=1}^{m} a_{in} w_i$$
. Then,
$$\text{mtx}_{W,V}(T) = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ \dots & \dots & \dots & \dots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix} \text{ is an isomorphism from } L(X,Y) \text{ to } M_{m \times n}.$$

Example: Let
$$X=Y=\mathbb{R}^2, V=\{\begin{pmatrix}1\\0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}\}, W=\{\begin{pmatrix}1\\1\end{pmatrix}\begin{pmatrix}-1\\1\end{pmatrix}\}, T(x)=x.$$
 Then, $\max_{W,V}=\begin{pmatrix}0.5&0.5\\-0.5&0.5\end{pmatrix}=(W^{-1})T(V).$
$$\max_{W,V}(T)\max_{V,U}(S)=\max_{W,U}(T\circ S)$$

$$\dim X=n, T\in L(X,X). \ \max_{V}(T)=\max_{V,V}(T).$$

$$\max_{V}(T)=P^{-1}\max_{W}(T)P, \ \text{where}\ P=\max_{W,V}(id).$$
 $A,B\in M_{n\times n}$ are similar if $A=P^{-1}BP$ for some invertible matrix P . If $\dim X=n$, then

- if $T \in L(X,X)$, then any two matrix representations of T are similar.
- ullet two similar matrices represent the same linear transformation T, relative to suitable bases.