CALORIMETRO delle mescolanze

Esperimentazioni I a.a. 2023-2024

OBIETTIVI

- Tarare il calorimetro, ovvero determinare la massa equivalente del calorimetro me
- Misurare il calore specifico cx di un corpo solido

N.B.: L'intera procedura sarà eseguita **2 volte**: la prima sotto la guida del tutor, la seconda dopo aver effettuato una analisi preliminare dei risultati ottenuti

Il calorimetro

"Sistema catorimetro"

- Fra sistema e ambiente possono esserci scambi energetici attraverso:
 - lavoro (variazione di volume)
 - calore scambiato

$$\Rightarrow \Delta U = Q - L$$

- Quando non ci sono questi scambi, il sistema viene detto isolato e la quantità complessiva di energia resta costante
- Ovvero: l'energia interna di un sistema termodinamico isolato
 è costante (ΔU = 0)

Il principio 'zero'

Quando due corpi a temperatura diversa sono messi a contatto, il calore passa naturalmente dal corpo più caldo a quello più freddo, fino al raggiungimento dell'equilibrio termico

La quantità di calore assorbita dal corpo freddo è uguale alla quantità di calore ceduta dal corpo caldo:

$$\Rightarrow$$
 | Q_{ced} | = | Q_{ass} |

Legge fondamentale calorimetria

$$Q = C \Delta T = m c \Delta T$$

dove C è la capacità termica del corpo, m la sua massa, c il suo calore specifico, ΔT la variazione di T a seguito dell'assorbimento di una quantità di calore Q

- E La capacità termica in generale <u>non dipende solo dalla natura e</u> dalla massa del corpo, ma da tutta la trasformazione con cui avviene il passaggio dallo stato iniziale a quello finale (C_p e C_V)
 - Per i corpi solidi però C_p ≃ C_V

Il calore specifico

- In conseguenza ad un assorbimento di calore il corpo varia la sua temperatura
- Il calore specifico è il rapporto fra la quantità di calore assorbito e la variazione di temperatura dell'unità di massa del corpo
- E' una caratteristica del materiale
- Si misura in [J K-1 kg-1] oppure [cal g-1 °C-1]
 - 1 cal = quantità di calore che produce la variazione di un 1 °C (fra 14,5 e 15,5 °C) in 1 g di acqua

Il calorimetro

- Il sistema è composto:
 - dal calorimetro (composto da tanti pezzi differenti) e dall'acqua che viene posta al suo interno, ambedue a temperatura T₁ (~ 14-15 °C)
 - \odot dal **corpo**, a temperatura iniziale T_2 (\sim 80-90 °C, > T_1), che viene inserito nell'acqua del calorimetro

- Il sistema è composto:
 - dal calorimetro (composto da tanti pezzi differenti) e dall'acqua che viene posta al suo interno, ambedue a temperatura T₁ (~ 14-15 °C)
 - \odot dal **corpo**, a temperatura iniziale T_2 (\sim 80-90 °C, > T_1), che viene inserito nell'acqua del calorimetro
- Nel contatto fra corpo (caldo) ed acqua (fredda) il calore passa dal corpo all'acqua ed ambedue si portano ad una temperatura T_e:

- Il sistema è composto:
 - dal calorimetro (composto da tanti pezzi differenti) e dall'acqua che viene posta al suo interno, ambedue a temperatura T₁ (~ 14-15 °C)
 - \odot dal **corpo**, a temperatura iniziale T_2 (\sim 80-90 °C, > T_1), che viene inserito nell'acqua del calorimetro
- Nel contatto fra corpo (caldo) ed acqua (fredda) il calore passa dal corpo all'acqua ed **ambedue** si portano ad una temperatura T_e:

$$Q_{ced} = m_c c_x (T_e - T_2)$$

- Il sistema è composto:
 - dal calorimetro (composto da tanti pezzi differenti) e dall'acqua che viene posta al suo interno, ambedue a temperatura T₁ (~ 14-15 °C)
 - \odot dal **corpo**, a temperatura iniziale T_2 (\sim 80-90 °C, > T_1), che viene inserito nell'acqua del calorimetro
- Nel contatto fra corpo (caldo) ed acqua (fredda) il calore passa dal corpo all'acqua ed **ambedue** si portano ad una temperatura T_e:

$$Q_{ced} = m_c c_x (T_e - T_2)$$

$$Q_{ass} = \sum_{e} m_{cal} c_{cal} (T_e - T_1) + m_a c_a (T_e - T_1)$$

- Il sistema è composto:
 - dal calorimetro (composto da tanti pezzi differenti) e dall'acqua che viene posta al suo interno, ambedue a temperatura T₁ (~ 14-15 °C)
 - \odot dal **corpo**, a temperatura iniziale T_2 (\sim 80-90 °C, > T_1), che viene inserito nell'acqua del calorimetro
- Nel contatto fra corpo (caldo) ed acqua (fredda) il calore passa dal corpo all'acqua ed **ambedue** si portano ad una temperatura T_e:

$$Q_{ced} = m_c c_x (T_e - T_2)$$

$$Q_{ass} = \sum m_{cal} c_{cal} (T_e - T_1) + m_a c_a (T_e - T_1) = \left(\sum m_{cal} c_{cal} + m_a c_a\right) (T_e - T_1)$$

- Il sistema è composto:
 - dal calorimetro (composto da tanti pezzi differenti) e dall'acqua che viene posta al suo interno, ambedue a temperatura T₁ (~ 14-15 °C)
 - \odot dal **corpo**, a temperatura iniziale T_2 (\sim 80-90 °C, > T_1), che viene inserito nell'acqua del calorimetro
- Nel contatto fra corpo (caldo) ed acqua (fredda) il calore passa dal corpo all'acqua ed **ambedue** si portano ad una temperatura T_e:

$$\begin{split} Q_{ced} &= m_c c_x (T_e - T_2) &\rightarrow Q_{ced} < 0 \\ Q_{ass} &= \bigg(\sum m_{cal} c_{cal} + m_a c_a \bigg) (T_e - T_1) &\rightarrow Q_{ass} > 0 \end{split}$$

- Il sistema è composto:
 - dal calorimetro (composto da tanti pezzi differenti) e dall'acqua che viene posta al suo interno, ambedue a temperatura T₁ (~ 14-15 °C)
 - \odot dal **corpo**, a temperatura iniziale T_2 (\sim 80-90 °C, > T_1), che viene inserito nell'acqua del calorimetro
- Nel contatto fra corpo (caldo) ed acqua (fredda) il calore passa dal corpo all'acqua ed **ambedue** si portano ad una temperatura T_e:

$$\begin{split} Q_{ced} &= m_c c_x (T_e - T_2) &\rightarrow Q_{ced} < 0 \\ Q_{ass} &= \bigg(\sum m_{cal} c_{cal} + m_a c_a \bigg) (T_e - T_1) &\rightarrow Q_{ass} > 0 \end{split}$$

Assumendo che il sistema sia isolato: $|Q_{ced}| = |Q_{ass}|$

$$|Q_{ced}| = |Q_{ass}| \rightarrow m_c c_x (T_2 - T_e) = \left(\sum m_{cal} c_{cal} + m_a c_a\right) (T_e - T_1)$$

$$|Q_{ced}| = |Q_{ass}| \to m_c c_x (T_2 - T_e) = \left(\sum m_{cal} c_{cal} + m_a c_a\right) (T_e - T_1)$$

L'equazione che descrive l'equilibrio energetico contiene:

$$|Q_{ced}| = |Q_{ass}| \to m_c c_x (T_2 - T_e) = \left(\sum m_{cal} c_{cal} + m_a c_a\right) (T_e - T_1)$$

- L'equazione che descrive l'equilibrio energetico contiene:
 - alcune grandezze note o misurabili:
 - le temperature iniziali T₁ del calorimetro e dell'acqua
 - la temperatura iniziale T₂ del corpo
 - la temperatura di equilibrio T_e
 - la massa dell'acqua m_a
 - il calore specifico dell'acqua: c_a=1 cal g⁻¹ °C⁻¹

- $|Q_{ced}| = |Q_{ass}| \to m_c c_x (T_2 T_e) = \left(\sum m_{cal} c_{cal} + m_a c_a\right) (T_e T_1)$
- L'equazione che descrive l'equilibrio energetico contiene:
 - alcune grandezze note o misurabili:
 - le temperature iniziali T₁ del calorimetro e dell'acqua
 - la temperatura iniziale T₂ del corpo
 - la temperatura di equilibrio T_e
 - la massa dell'acqua m_a
 - il calore specifico dell'acqua: c_a=1 cal g⁻¹ °C⁻¹
 - e due incognite:

- $|Q_{ced}| = |Q_{ass}| \rightarrow m(c_x)T_2 T_e) = \left(\sum m_{cal}c_{cal} + m_ac_a\right)(T_e T_1)$
- L'equazione che descrive l'equilibrio energetico contiene:
 - alcune grandezze note o misurabili:
 - le temperature iniziali T₁ del calorimetro e dell'acqua
 - la temperatura iniziale T₂ del corpo
 - la temperatura di equilibrio T_e
 - la massa dell'acqua m_a
 - il calore specifico dell'acqua: c_a=1 cal g⁻¹ °C⁻¹
 - e due incognite:
 - il calore specifico del corpo c_x

$$|Q_{ced}| = |Q_{ass}| \to m(c_x)T_2 - T_e) = \left(\sum m_{cal}c_{cal} + m_ac_a\right)(T_e - T_1)$$

- L'equazione che descrive l'equilibrio energetico contiene:
 - alcune grandezze note o misurabili:
 - le temperature iniziali T₁ del calorimetro e dell'acqua
 - la temperatura iniziale T₂ del corpo
 - la temperatura di equilibrio T_e
 - la massa dell'acqua m_a
 - il calore specifico dell'acqua: c_a=1 cal g⁻¹ °C⁻¹
 - e due incognite:
 - il calore specifico del corpo c_x
 - la capacità termica del calorimetro C_{cal}=Σm_{cal}C_{cal}

Capacità termica del calorimetro

Il calorimetro è composto di tanti pezzi diversi, anche come materiale → la capacità termica del calorimetro è la somma della capacità termica di tutti i pezzi di cui è composto...

Capacità termica del calorimetro

Il calorimetro è composto di tanti pezzi diversi, anche come materiale → la capacità termica del calorimetro è la somma della capacità termica di tutti i pezzi di cui è composto...

Per ricavare il valore di C_{cal} si ricorre all'uso della "massa equivalente", ovvero la quantità d'acqua m_e che ha la stessa capacità termica del calorimetro:

$$C_{cal} = \sum m_{cal} c_{cal} = m_e c_a$$

Viene misurata in modo sperimentale

- Viene misurata in modo sperimentale
- Si riparta da equilibrio energetico e si introduca m_e: $\sum m_{cal}c_{cal} = m_ec_a$

$$\rightarrow m_c c_x (T_2 - T_e) = (m_e c_a + m_a c_a)(T_e - T_1)$$

- Viene misurata in modo sperimentale
- Si riparta da equilibrio energetico e si introduca me: $\sum m_{cal}c_{cal} = m_e c_a$ $\rightarrow m_c c_x (T_2 - T_e) = (m_e c_a + m_a c_a)(T_e - T_1)$
- Al posto del corpo uso una quantità nota d'acqua $\mathbf{m'_a}$ (~100 g) a temperatura $\mathbf{T'_2}$ (~60-70°C, >T'₁) → l'unica incognita sarà $\mathbf{m_e}$:

- Viene misurata in modo sperimentale
- Si riparta da equilibrio energetico e si introduca me: $\sum m_{cal}c_{cal} = m_ec_a$ $\rightarrow m_cc_x(T_2 - T_e) = (m_ec_a + m_ac_a)(T_e - T_1)$
- Al posto del corpo uso una quantità nota d'acqua m'_a (~100 g) a temperatura T'₂ (~60-70°C, >T'₁)→ l'unica incognita sarà m_e:

$$m_a'c_a(T_2' - T_e') = (m_ec_a + m_ac_a)(T_e' - T_1')$$

- Viene misurata in modo sperimentale
- Si riparta da equilibrio energetico e si introduca m_e: $\sum m_{cal}c_{cal} = m_ec_a$ $\rightarrow m_cc_x(T_2 - T_e) = (m_ec_a + m_ac_a)(T_e - T_1)$
- Al posto del corpo uso una quantità nota d'acqua m'_a (~100 g) a temperatura T'₂ (~60-70°C, >T'₁)→ l'unica incognita sarà m_e:

$$m'_a c_a (T'_2 - T'_e) = (m_e c_a + m_a c_a)(T'_e - T'_1)$$

$$m_e(T'_e - T'_1) = m'_a(T'_2 - T'_e) - m_a(T'_e - T'_1)$$

- Viene misurata in modo sperimentale
- Si riparta da equilibrio energetico e si introduca me: $\sum m_{cal}c_{cal} = m_e c_a$ $\rightarrow m_c c_x (T_2 - T_e) = (m_e c_a + m_a c_a)(T_e - T_1)$
- Al posto del corpo uso una quantità nota d'acqua m'_a (~100 g) a temperatura T'₂ (~60-70°C, >T'₁)→ l'unica incognita sarà m_e:

$$\begin{split} m_a' c_a(T_2' - T_e') &= (m_e c_a + m_a c_a)(T_e' - T_1') \\ m_e(T_e' - T_1') &= m_a'(T_2' - T_e') - m_a(T_e' - T_1') \\ & \to m_e = \frac{m_a'(T_2' - T_e')}{T_e' - T_1'} - m_a \end{split}$$

Il calore specifico del corpo

 Il valore della me¹ca sostituisce la capacità termica del calorimetro
 Ccal nel suo complesso

 $\stackrel{>}{\Rightarrow}$ E' quindi possibile misurare sperimentalmente \mathbf{C}_{cal} e delle due incognite iniziali resta solo il calore specifico del corpo $\mathbf{c}_{\mathbf{x}}$

Il calore specifico del corpo

- Il valore della me¹ca sostituisce la capacità termica del calorimetro
 Ccal nel suo complesso
- $\[\]$ E' quindi possibile misurare sperimentalmente \mathbf{C}_{cal} e delle due incognite iniziali resta solo il calore specifico del corpo $\mathbf{c}_{\mathbf{x}}$
- Una volta misurata me, è possibile calcolare cx:

$$m_c c_x (T_2 - T_e) = (m_e c_a + m_a c_a)(T_e - T_1)$$

Il calore specifico del corpo

- Il valore della me¹ca sostituisce la capacità termica del calorimetro
 Ccal nel suo complesso
- $\stackrel{>}{\triangleright}$ E' quindi possibile misurare sperimentalmente \mathbf{C}_{cal} e delle due incognite iniziali resta solo il calore specifico del corpo $\mathbf{c}_{\mathbf{x}}$
- Una volta misurata me, è possibile calcolare cx:

$$m_{c}c_{x}(T_{2} - T_{e}) = (m_{e}c_{a} + m_{a}c_{a})(T_{e} - T_{1})$$

$$c_{x} = \frac{(m_{e} + m_{a})c_{a}(T_{e} - T_{1})}{m_{c}(T_{2} - T_{e})}$$

n	t(s)	<u>(± s)</u>	T (°C) (±0,01 °C)
1	0,	misurazioni ogni minuto	14,20
2	60		14,21
3	120		14,23
4	180		14,26
5	241		14,24
6	301		14,31
7	360		14,35
8	420		14,37
9	480		14,40
10	557		14,42
11	626	t ₀ (istante precedente all'inserimento dell'oggetto)	14,46 T ₁
12	637	misurazioni ogni 5 s	14,50
13	644		15,70
14	649		16,16
15	655		16,30
16	658		16,37
17	663		16,45
18	668		16,50
19	673		16,54
20	678		16,56
21	682		16,59
22	687		16,60
23	692		16,61
24	696		16,61
25	701		16,62
26	706		16,63
27	711		16,63
28	715		16,63
29	721		16,63
30	725		16,64
31	729	misurazioni ogni minuto	16,64
32	796		16,59
33	855		16,60
34	915		16,63
35	974		16,67

n	t (s) (± s)		T (°C) (±0,01 °C)
1	0 misuraz	zioni ogni minuto	14,20
2	60	-	14,21
3	120		14,23
4	180		14,26
5	241		14,24
6	301		14,31
7	360		14,35
8	420		14,37
9	480		14,40
10	557		14,42
11		te precedente all'inserimento dell'oggetto)	14,4 T ₁
12		razioni ogni 5 s	14,50
13	644		15,70
14	649		16,16
15	655		16,30
16	658		16,37
17	663		16,45
18	668		16,50
19	673		16,54
20	678		16,56
21	682		16,59
22	687		16,60
23	692		16,61
24	696		16,61
25	701		16,62
26	706		16,63
27	711		16,63
28	715		16,63
29	721		16,63
30	725		16,64
31		azioni ogni minuto	16,64
32	796		16,59
33	855		16,60
34	915		16,63
35	974		16,67

Dati sperimentali immersione massa di acqua calda

n	t(s) (± s)	T (°C) (±0,01
1	0 misurazioni ogni minuto	16,99
2	61.	16,97
3	120	16,99
4	180	17,00
5	240	17,01
6	300	17,03
7	360	17,09
8	420	17,10
9	480	17,11
10	540	17,12
11	600 t ₀ (istante precedente all'inserimento dell'acqua)	17,13 T ₁ '
12	695 misurazioni ogni 5 s	17,55
13	702	18,15
14	706	18,25
15	710	18,37
16	716	18,42
17	720	18,43
18	725	18,43
19	730	18,45
20	735	18,45
21	740	18,46
22	745	18,46
23	750	18,47
24	755	18,47
25	760	18,47
26	765	18,47
27	770	18,47
28	775	18,47
29	780 misurazioni ogni minuto	18,47
30	840	18,48
31	900	18,49
32	960	18,49
33	1020	18,50
34	1080	18,51
35	1140	18,51
36	1200.	18,52
37	1260,	18,53

Dati sperimentali immersione massa di acqua calda

n	t(s) (± s)	T (°C) (±0,01
1	0 misurazioni ogni minuto	16,99
2	61	16,97
3	120	16,99
4	180	17,00
5	240	17,01
6	300	17,03
7	360	17,09
8	420	17,10
9	480	17,11
10	540	17,12
11	600 t ₀ (istante precedente all'inserimento dell'acqua)	17,1 T ₁ '
12	695 misurazioni ogni 5 s	17,55
13	702	18,15
14	706	18,25
15	710	18,37
16	716	18,42
17	720	18,43
18	725	18,43
19	730	18,45
20	735	18,45
21	740	18,46
22	745	18,46
23	750	18,47
24	755	18,47
25	760	18,47
26	765	18,47
27	770	18,47
28	775	18,47
29	780 misurazioni ogni minuto	18,47
30	840	18,48
31	900	18,49
32	960	18,49
33	1020	18,50
34	1080	18,51
35	1140	18,51
36	1200.	18,52
37	1260,	18,53

Dati sperimentali immersione massa di acqua calda

Come determinare Te correzione per tempi brevi

Come determinare Te correzione per tempi brevi

- La temperatura di equilibrio T_e viene ricavata dal fit dei dati sperimentali
- E' l'intersezione tra il fit di T(t) dopo il raggiungimento della situazione d'equilibrio e la retta x=t₁ (istante di inserimento corpo caldo)

Come determinare Te correzione per tempi brevi

- La temperatura di equilibrio T_e viene ricavata dal fit dei dati sperimentali
- E' l'intersezione tra il fit di T(t) dopo il raggiungimento della situazione d'equilibrio e la retta x=t₁ (istante di inserimento corpo caldo)

- L'errore può essere determinato:
 - propagando l'errore (e considerando anche la covarianza)
 - ponendo t=0 l'istante di inserimento del corpo caldo. L'errore su T risulta direttamente dall'errore sull'intercetta della retta

Dati sperimentali

Dati sperimentali

Ripetizione dell'esperienza

- Nel corso dell'esperienza il tutor fornisce alcuni suggerimenti riguardo alle grandezze sperimentali da utilizzare (massa d'acqua, temperatura del corpo e dell'acqua...)
- Partendo dai risultati ottenuti, determinare gli errori relativi dei vari termini che contribuiscono all'incertezza associata a c_x e a m_e e individuare il/i contributo/i preponderanti

Ripetizione dell'esperienza

- Nel corso dell'esperienza il tutor fornisce alcuni suggerimenti riguardo alle grandezze sperimentali da utilizzare (massa d'acqua, temperatura del corpo e dell'acqua...)
- Partendo dai risultati ottenuti, determinare gli errori relativi dei vari termini che contribuiscono all'incertezza associata a c_x e a m_e e individuare il/i contributo/i preponderanti
- Variare le condizioni sperimentali per tentare di diminuire le incertezze associate a c_x e a m_e e ripetere l'intera esperienza
- Confrontare i risultati ottenuti nelle 2 esecuzioni, verificando:
 - la compatibilità tra i valori di cx e me ottenuti nelle 2 esecuzioni

Come valutare errori in lab (in prima approssimazione)

- Ricordando che: $c_x = \frac{(m_e + m_a)c_a(T_e T_1)}{m_c(T_2 T_e)}$, considerare le nuove variabili $\Delta T_1 = (T_e T_1)$, $\Delta T_1 = (T_2 T_e)$, $M = (m_a + m_e)$ e calcolare i relativi errori:
 - considerare come errore assoluto delle T l'errore di sensibilità del termometro
 - come prima stima, assumere un errore relativo del 20% per me
 (poi lo si calcolerà in maniera rigorosa con propagazione errori)
- Calcolare l'errore relativo su cx

Errori sistematici

Effetto dell'agitatore:

- Finora è stato trascurato l'effetto dell'agitatore, tenuto in movimento per tutto l'esperimento da un motorino elettrico (P = 3 W).
- Facendo l'ipotesi (assurda) che tutta l'energia elettrica sia convertita in calore, qual è il ΔT indotto dal movimento dell'agitatore in un Δt=1 minuto?
- Si deve tenere conto di questo effetto? Se sì in che modo?
- Discutere l'influenza della variazione in aria della T del corpo e/o acqua prima dell'immissione nel calorimetro.