Aluno: Marcelo Barros de Azevedo Vieira

```
In [102... import numpy as np
         import pandas as pd
         import sys
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn.cluster import KMeans
         from sklearn.decomposition import PCA
         from sklearn.datasets import make blobs, make moons
         from sklearn.preprocessing import StandardScaler
         from yellowbrick.cluster import SilhouetteVisualizer
         from sklearn.cluster import DBSCAN
         from sklearn.preprocessing import StandardScaler
         from yellowbrick.cluster import KElbowVisualizer
         from sklearn.pipeline import Pipeline
         from sklearn.impute import SimpleImputer
         from sklearn import preprocessing
         from sklearn.cluster import DBSCAN
         from scipy.spatial.distance import euclidean
         import scipy.cluster.hierarchy as sch
```

1. Versão do Python: 3.13.1

```
In [103... print(f"Versão do Python: {sys.version}")

Versão do Python: 3.13.1 | packaged by conda-forge | (main, Dec 5 2024, 2 1:09:18) [Clang 18.1.8 ]
```

2. Demonstrando que esta sendo utilizado o ambiente anaconda

```
In [104... !conda info
```

/Users/marcelodeazevedo/miniconda3/lib/python3.12/site-packages/conda/bas e/context.py:201: FutureWarning: Adding 'defaults' to channel list implicitly is deprecated and will be removed in 25.3.

To remove this warning, please choose a default channel explicitly with conda's regular configuration system, e.g. by adding 'defaults' to the list of channels:

conda config --add channels defaults

For more information see https://docs.conda.io/projects/conda/en/stable/user-quide/configuration/use-condarc.html

deprecated.topic(

active environment : clusterizacao

active env location : /Users/marcelodeazevedo/miniconda3/envs/clusteri

zacao

shell level : 2

user config file : /Users/marcelodeazevedo/.condarc

populated config files:

conda version : 24.11.1

conda-build version : not installed
 python version : 3.12.4.final.0

solver : libmamba (default)

virtual packages : __archspec=1=m1

__conda=24.11.1=0

__osx=15.2=0 __unix=0=0

base environment : /Users/marcelodeazevedo/miniconda3 (writable)
conda av data dir : /Users/marcelodeazevedo/miniconda3/etc/conda

conda av metadata url : None

channel URLs: https://repo.anaconda.com/pkgs/main/osx-arm64

https://repo.anaconda.com/pkgs/main/noarch https://repo.anaconda.com/pkgs/r/osx-arm64 https://repo.anaconda.com/pkgs/r/noarch

package cache : /Users/marcelodeazevedo/miniconda3/pkgs

/Users/marcelodeazevedo/.conda/pkgs

envs directories : /Users/marcelodeazevedo/miniconda3/envs

/Users/marcelodeazevedo/.conda/envs

platform : osx-arm64

user-agent: conda/24.11.1 requests/2.32.3 CPython/3.12.4 Dar win/24.2.0 OSX/15.2 solver/libmamba conda-libmamba-solver/24.7.0 libmambap y/1.5.8 aau/0.4.4 c/CO3i7I_7soBQdtRRQNdUJA s/UHS8R5GL9VcVp3DSpV0uvg e/mfYW ItyiRHJdgnt46_VILA

UID:GID : 501:20
netrc file : None
offline mode : False

3.Bibliotecas utilizadas no ambiente virtual anadonda:

packages in environment at /Users/marcelodeazevedo/miniconda3/envs/clust
erizacao:

#			
# Name	Version	Build	Channel
anyio	4.7.0	pyhd8ed1ab_0	conda-forge
appnope	0.1.4	pyhd8ed1ab_1	conda-forge
argon2-cffi	23.1.0	pyhd8ed1ab_1	conda-forge
argon2-cffi-bindings	21.2.0	py313h20a7fcf_5	conda-forge
arrow	1.3.0	-	
asttokens	3.0.0	pyhd8ed1ab_1	conda-forge
		pyhd8ed1ab_1	conda-forge
async-lru	2.0.4	pyhd8ed1ab_1	conda-forge
attrs	24.2.0	pyh71513ae_1	conda-forge
babel	2.16.0	pyhd8ed1ab_1	conda-forge
beautifulsoup4	4.12.3	pyha770c72_1	conda-forge
bleach	6.2.0	pyhd8ed1ab_1	conda-forge
brotli-python	1.1.0	py313h3579c5c_2	conda-forge
bzip2	1.0.8	h99b78c6_7	conda-forge
ca-certificates	2024.12.14	hf0a4a13_0	conda-forge
cached-property	1.5.2	hd8ed1ab_1	conda-forge
cached_property	1.5.2	pyha770c72_1	conda-forge
certifi	2024.8.30	pyhd8ed1ab_0	conda-forge
cffi	1.17.1	py313hc845a76_0	conda-forge
charset-normalizer	3.4.0	pyhd8ed1ab_1	conda-forge
COMM	0.2.2	pyhd8ed1ab_1	conda-forge
contourpy	1.3.1	pypi_0	pypi
cycler	0.12.1	pypi_0	pypi
debugpy	1.8.11	py313h928ef07_0	conda-forge
decorator	5.1.1	pyhd8ed1ab_1	conda-forge
defusedxml	0.7.1	pyhd8ed1ab_0	conda-forge
entrypoints	0.4	pyhd8ed1ab_1	conda-forge
exceptiongroup	1.2.2	pyhd8ed1ab_1	conda-forge
executing	2.1.0	pyhd8ed1ab_1	conda-forge
fonttools	4.55.3	pypi_0	pypi
fqdn	1.5.1	pyhd8ed1ab_1	conda-forge
h11	0.14.0	pyhd8ed1ab_1	conda-forge
h2	4.1.0	pyhd8ed1ab_1	conda-forge
hpack	4.0.0	pyhd8ed1ab_1	conda-forge
httpcore	1.0.7	pyh29332c3_1	conda-forge
httpx	0.28.1	pyhd8ed1ab_0	conda-forge
hyperframe	6.0.1	pyhd8ed1ab_1	conda-forge
idna	3.10	pyhd8ed1ab_1	conda-forge
importlib-metadata	8.5.0	pyha770c72_1	conda-forge
importlib_resources	6.4.5	pyhd8ed1ab_1	conda-forge
ipykernel	6.29.5	pyh57ce528_0	conda-forge
ipython	8.30.0	pyh707e725_0	conda-forge
isoduration	20.11.0	pyhd8ed1ab_1	conda-forge
jedi	0.19.2	pyhd8ed1ab_1	conda-forge
jinja2	3.1.4	pyhd8ed1ab_1	conda-forge
joblib	1.4.2	pypi_0	pypi
json5	0.10.0	pyhd8ed1ab_1	conda-forge
jsonpointer	3.0.0	py313h8f79df9_1	conda-forge
jsonschema	4.23.0	pyhd8ed1ab_1	conda-forge
jsonschema-specifications		pyhd8ed1ab_1	conda-forge
jsonschema-with-format-no	ngpl 4.23.0	hd8ed1a	b_1 conda-for
ge	2.2.5	. 1 10 14 1 4	
jupyter-lsp	2.2.5	pyhd8ed1ab_1	conda-forge
jupyter_client	8.6.3	pyhd8ed1ab_1	conda-forge
jupyter_core	5.7.2	pyh31011fe_1	conda-forge
jupyter_events	0.10.0	pyhd8ed1ab_1	conda-forge
jupyter_server	2.14.2	pyhd8ed1ab_1	conda-forge

<pre>jupyter_server_terminals</pre>	0.5.3	pyhd8ed1ab_1	conda-forge
jupyterlab	4.3.3	pyhd8ed1ab_0	conda-forge
jupyterlab_pygments	0.3.0	pyhd8ed1ab_2	conda-forge
jupyterlab_server	2.27.3	pyhd8ed1ab_1	conda-forge
			-
kiwisolver	1.4.7	pypi_0	pypi
krb5	1.21.3	h237132a_0	conda-forge
libcxx	19.1.5	ha82da77_0	conda-forge
libedit	3.1.20191231	hc8eb9b7 2	conda-forge
libexpat	2.6.4	h286801f_0	conda-forge
libffi	3.4.2	h3422bc3_5	conda-forge
			_
liblzma	5.6.3	h39f12f2_1	conda-forge
libmpdec	4.0.0	h99b78c6_0	conda-forge
libsodium	1.0.20	h99b78c6_0	conda-forge
libsqlite	3.47.2	h3f77e49_0	conda-forge
libzlib	1.3.1	h8359307_2	conda-forge
markupsafe	3.0.2	py313ha9b7d5b_1	conda-forge
•			-
matplotlib	3.10.0	pypi_0	рурі
matplotlib—inline	0.1.7	pyhd8ed1ab_1	conda-forge
mistune	3.0.2	pyhd8ed1ab_1	conda-forge
nbclient	0.10.1	pyhd8ed1ab_0	conda-forge
nbconvert-core	7.16.4	pyhff2d567_2	conda-forge
nbformat	5.10.4	pyhd8ed1ab_1	conda-forge
	6.5		-
ncurses		h7bae524_1	conda-forge
nest—asyncio	1.6.0	pyhd8ed1ab_1	conda-forge
notebook-shim	0.2.4	pyhd8ed1ab_1	conda-forge
numpy	2.2.0	pypi_0	pypi
openssl	3.4.0	h39f12f2_0	conda-forge
overrides	7.7.0	pyhd8ed1ab_0	conda-forge
	24.2		-
packaging		pyhd8ed1ab_2	conda-forge
pandas	2.2.3	pypi_0	pypi
pandocfilters	1.5.0	pyhd8ed1ab_0	conda-forge
parso	0.8.4	pyhd8ed1ab_1	conda-forge
pexpect	4.9.0	pyhd8ed1ab_1	conda-forge
pickleshare	0.7.5	pyhd8ed1ab_1004	conda-forge
pillow	11.0.0	pyndocalab_1001 pypi_0	pypi
•			
pip	24.3.1	pyh145f28c_0	conda-forge
pkgutil-resolve-name	1.3.10	pyhd8ed1ab_2	conda-forge
platformdirs	4.3.6	pyhd8ed1ab_1	conda-forge
prometheus_client	0.21.1	pyhd8ed1ab_0	conda-forge
prompt-toolkit	3.0.48	pyha770c72_1	conda-forge
psutil	6.1.0	py313h63a2874_0	conda-forge
ptyprocess	0.7.0	pyhd8ed1ab_1	conda-forge
			-
pure_eval	0.2.3	pyhd8ed1ab_1	conda-forge
pycparser	2.22	pyh29332c3_1	conda-forge
pygments	2.18.0	pyhd8ed1ab_1	conda-forge
pyobjc-core	10.3.2	py313hb6afeec_0	conda-forge
pyobjc-framework-cocoa	10.3.2	py313hb6afeec_0	conda-forge
pyparsing	3.2.0	pypi_0	pypi
	1.7.1	pyha55dd90_7	
pysocks			conda-forge
python	3.13.1	h4f43103_102_cp313	conda-forg
e			
python-dateutil	2.9.0.post0	pyhff2d567_1	conda-forge
python-fastjsonschema	2.21.1	pyhd8ed1ab_0	conda-forge
python-json-logger	2.0.7	pyhd8ed1ab_0	conda-forge
python_abi	3.13	5_cp313	conda-forge
	2024.2	pyhd8ed1ab_1	conda-forge
pytz			-
pyyaml	6.0.2	py313h20a7fcf_1	conda-forge
pyzmq	26.2.0	py313h0e8b002_3	conda-forge
readline	8.2	h92ec313_1	conda-forge
referencing	0.35.1	pyhd8ed1ab_1	conda-forge
J.		.,	3 -

requests	2.32.3	pyhd8ed1ab_1	conda-forge
rfc3339-validator	0.1.4	pyhd8ed1ab_1	conda-forge
rfc3986-validator	0.1.1	pyh9f0ad1d_0	conda-forge
rpds-py	0.22.3	py313hdde674f_0	conda-forge
scikit-learn	1.6.0	pypi_0	pypi
scipy	1.14.1	pypi_0	pypi
seaborn	0.13.2	pypi_0	pypi
send2trash	1.8.3	pyh31c8845_1	conda-forge
setuptools	75.6.0	pyhff2d567_1	conda-forge
six	1.17.0	pyhd8ed1ab_0	conda-forge
sniffio	1.3.1	pyhd8ed1ab_1	conda-forge
soupsieve	2.5	pyhd8ed1ab_1	conda-forge
stack_data	0.6.3	pyhd8ed1ab_1	conda-forge
terminado	0.18.1	pyh31c8845_0	conda-forge
threadpoolctl	3.5.0	pypi_0	pypi
tinycss2	1.4.0	pyhd8ed1ab_0	conda-forge
tk	8.6.13	h5083fa2_1	conda-forge
tomli	2.2.1	pyhd8ed1ab_1	conda-forge
tornado	6.4.2	py313h90d716c_0	conda-forge
traitlets	5.14.3	pyhd8ed1ab_1	conda-forge
types-python-dateutil	2.9.0.20241206	pyhd8ed1ab_0	conda-forge
typing-extensions	4.12.2	hd8ed1ab_1	conda-forge
typing_extensions	4.12.2	pyha770c72_1	conda-forge
typing_utils	0.1.0	pyhd8ed1ab_1	conda-forge
tzdata	2024.2	pypi_0	pypi
uri-template	1.3.0	pyhd8ed1ab_1	conda-forge
urllib3	2.2.3	pyhd8ed1ab_1	conda-forge
wcwidth	0.2.13	pyhd8ed1ab_1	conda-forge
webcolors	24.11.1	pyhd8ed1ab_0	conda-forge
webencodings	0.5.1	pyhd8ed1ab_3	conda-forge
websocket-client	1.8.0	pyhd8ed1ab_1	conda-forge
yaml	0.2.5	h3422bc3_2	conda-forge
yellowbrick	1.5	pypi_0	pypi
zeromq	4.3.5	hc1bb282_7	conda-forge
zipp	3.21.0	pyhd8ed1ab_1	conda-forge
zstandard	0.23.0	py313hf2da073_1	conda-forge
zstd	1.5.6	hb46c0d2_0	conda-forge

Arquivo com as bibliotecas instaladas

In [106... !conda list > requirements.txt

Printscreen do ambiente onde o projeto está sendo executado

GitHub do Projeto

https://github.com/marcelobazevedo/validacao_modelos_clusterizacao

1.Escolha da Base de Dados

A Base de dados escolhida foi a California Housing Prices, disponível em https://www.kaggle.com/datasets/camnugent/california-housing-prices/data

2. Justificativa para a escolha da base de dados

O dataset "California Housing Prices" de 1990 é amplamente utilizado em projetos de aprendizado de máquina e análise de dados devido à sua relevância educacional, metodológica e histórica, mesmo com dados antigos. Ele é ideal para introduzir conceitos fundamentais como regressão, engenharia de features e aprendizado supervisionado, graças à sua estrutura clara e

documentação acessível. Além disso, muitos padrões subjacentes aos preços de imóveis, como localização, renda e densidade populacional, permanecem válidos e generalizáveis para diferentes contextos.

Seu uso é também justificado pela possibilidade de estudos históricos e comparativos, como a análise das condições do mercado imobiliário em 1990 frente a dados atuais, permitindo explorar mudanças urbanas e socioeconômicas ao longo do tempo. Por ser simplificado, o dataset oferece um ambiente controlado para aprendizado e prática antes de lidar com datasets mais complexos, consolidando habilidades analíticas essenciais.

Portanto, sua utilização é valiosa não apenas como exercício de modelagem teórica e prática, mas também para desenvolver insights generalizáveis e transferíveis para problemas modernos.

In [107	<pre>df = pd.read_csv('file/housing.csv') df.reset_index(inplace=True, drop=True)</pre>							
In [108…	df							
Out[108		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	po	
	0	-122.23	37.88	41.0	880.0	129.0		
	1	-122.22	37.86	21.0	7099.0	1106.0		
	2	-122.24	37.85	52.0	1467.0	190.0		
	3	-122.25	37.85	52.0	1274.0	235.0		
	4	-122.25	37.85	52.0	1627.0	280.0		
	•••							
	20635	-121.09	39.48	25.0	1665.0	374.0		
	20636	-121.21	39.49	18.0	697.0	150.0		
	20637	-121.22	39.43	17.0	2254.0	485.0		
	20638	-121.32	39.43	18.0	1860.0	409.0		
	20639	-121.24	39.37	16.0	2785.0	616.0		

20640 rows × 10 columns

3. Gráfico de Faixa dinâmica e o que deve ser feito com os dados antes da clusterização

Normalizar os dados, transformar números do tipo float para inteiros e buscar e corrigir valores nulos

In [110... df.info()

0

200000 400000

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	<pre>median_house_value</pre>	20640 non-null	float64
9	ocean_proximity	20640 non-null	object
_			

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

In [111... df.describe().T

Out[111		count	mean	std	min	:
	longitude	20640.0	-119.569704	2.003532	-124.3500	-121.8
	latitude	20640.0	35.631861	2.135952	32.5400	33.9
	housing_median_age	20640.0	28.639486	12.585558	1.0000	18.0
	total_rooms	20640.0	2635.763081	2181.615252	2.0000	1447.7
	total_bedrooms	20433.0	537.870553	421.385070	1.0000	296.0
	population	20640.0	1425.476744	1132.462122	3.0000	787.0
	households	20640.0	499.539680	382.329753	1.0000	280.0
	median_income	20640.0	3.870671	1.899822	0.4999	2.5
	median_house_value	20640.0	206855.816909	115395.615874	14999.0000	119600.0

In [112... data.shape

Out[112... (20640, 7)

Identificação de valores nulos

In [113... print(data.isnull().sum()) housing_median_age 0 0 total_rooms total_bedrooms 207 population 0 households 0 0 median_income median_house_value 0 dtype: int64

Correção dos valos nulos

Tranformando dados do tipo float em int

```
In [116... data['housing_median_age'] = data['housing_median_age'].astype('int')
    data['total_rooms'] = data['total_rooms'].astype('int')
    data['total_bedrooms'] = data['total_bedrooms'].astype('int')
    data['population'] = data['population'].astype('int')
    data['households'] = data['households'].astype('int')
    data['median_income'] = data['median_income'].astype('int')
    data['median_house_value'] = data['median_house_value'].astype('int')
```

In [117... data

housing_median_age	total_rooms	total_bedrooms	population	households
41	880	129	322	126
21	7099	1106	2401	1138
52	1467	190	496	177
52	1274	235	558	219
52	1627	280	565	259
25	1665	374	845	330
18	697	150	356	114
17	2254	485	1007	433
18	1860	409	741	349
16	2785	616	1387	530
	41 21 52 52 52 25 18 17	41 880 21 7099 52 1467 52 1274 52 1627 25 1665 18 697 17 2254 18 1860	41 880 129 21 7099 1106 52 1467 190 52 1274 235 52 1627 280 25 1665 374 18 697 150 17 2254 485 18 1860 409	21 7099 1106 2401 52 1467 190 496 52 1274 235 558 52 1627 280 565 25 1665 374 845 18 697 150 356 17 2254 485 1007 18 1860 409 741

20433 rows × 7 columns

Normalização dos dados

```
In [119...
          x = data.values
Out[119... array([[
                        41,
                                880,
                                         129, ...,
                                                       126,
                                                                   8, 452600],
                                                                   8, 358500],
                        21,
                               7099,
                                        1106, ...,
                                                       1138,
                   [
                        52,
                               1467,
                                                       177,
                                                                   7, 352100],
                                         190, ...,
                   [
                        17,
                                         485, ...,
                               2254,
                                                       433,
                                                                   1,
                                                                       92300],
                   [
                        18,
                               1860,
                                                                   1,
                                                                       84700],
                                         409, ...,
                                                        349,
                   [
                        16,
                               2785,
                                         616, ...,
                                                       530,
                                                                       89400]],
                 shape=(20433, 7))
          scaler = StandardScaler()
In [120...
          X = scaler.fit_transform(x)
```

Clusterização

k-means

```
In [121...
         #indice de silhueta
         km = KMeans(n_clusters=2).fit(x)
         fig, ax = plt.subplots(1, 1, figsize=(5, 4))
         visualizer = SilhouetteVisualizer(km, ax=ax, colors='yellowbrick')
         visualizer.fit(x)
         visualizer.show();
         km = KMeans(n_clusters=5).fit(x)
         fig, ax = plt.subplots(1, 1, figsize=(5, 4))
         visualizer = SilhouetteVisualizer(km, ax=ax, colors='yellowbrick')
         visualizer.fit(x)
         visualizer.show();
         km = KMeans(n_clusters=4).fit(x)
         fig, ax = plt.subplots(1, 1, figsize=(5, 4))
         visualizer = SilhouetteVisualizer(km, ax=ax, colors='yellowbrick')
         visualizer.fit(x)
         visualizer.show();
         km = KMeans(n_clusters=3).fit(x)
         fig, ax = plt.subplots(1, 1, figsize=(5, 4))
         visualizer = SilhouetteVisualizer(km, ax=ax, colors='yellowbrick')
         visualizer.fit(x)
         visualizer.show();
```

Silhouette Plot of KMeans Clustering for 20433 Samples in 2 Centers

Silhouette Plot of KMeans Clustering for 20433 Samples in 5 Centers

Silhouette Plot of KMeans Clustering for 20433 Samples in 4 Centers

Silhouette Plot of KMeans Clustering for 20433 Samples in 3 Centers

Justificar o número de clusters

A diferença mais marcante entre os gráficos está no tamanho das silhuetas de cada um. Observa-se que, com 2 clusters, há uma maior discrepância nos tamanhos das silhuetas, indicando uma menor consistência na formação dos grupos. Por outro

lado, com 4 clusters, os tamanhos das silhuetas são mais uniformes, o que sugere que esta configuração proporciona uma divisão mais equilibrada e coesa dos dados, sendo, portanto, a melhor escolha para a quantidade de clusters.

1. K-means

```
kmeans=KMeans(n_clusters=4,random_state=10) #init='k-means++',
          y=kmeans.fit_predict(X)
          У
Out[122... array([0, 3, 0, ..., 2, 2, 2], shape=(20433,), dtype=int32)
In [123... data['Cluster']=y
          data.groupby('Cluster').mean()
Out [123...
                  housing_median_age total_rooms total_bedrooms
                                                                      population
                                                                                  househ
          Cluster
               0
                             31.282156 2390.799592
                                                        407.264946 1029.524683
                                                                                  389.40
               1
                             13.816872 11907.697531
                                                       2310.693416 5927.767490
                                                                                 2099.370
               2
                             31.514947 1676.651601
                                                        366.838434 1020.807384
                                                                                  341.135
               3
                            20.036122 4353.580750
                                                        919.498019 2380.515031
                                                                                  846.112
In [124... ### Clusters 0,1,2 e 3
          df_0=data[data['Cluster']==0]
          df_1=data[data['Cluster']==1]
          df_2=data[data['Cluster']==2]
          df_3=data[data['Cluster']==3]
In [125... | df_0.head(3)
Out [125...
             housing_median_age total_rooms total_bedrooms population households me
          0
                              41
                                         880
                                                         129
                                                                    322
                                                                                 126
          2
                              52
                                        1467
                                                         190
                                                                    496
                                                                                 177
          3
                              52
                                         1274
                                                         235
                                                                    558
                                                                                 219
          df_1.head(3)
In [126...
               housing_median_age total_rooms total_bedrooms population households I
Out [126...
           95
                                36
                                          5329
                                                           2477
                                                                      3469
                                                                                  2323
          283
                                22
                                                          2048
                                                                                  1967
                                          12842
                                                                      4985
          508
                                14
                                           7355
                                                          2408
                                                                      3100
                                                                                  2051
```

```
import numpy as np
In [127...
         from sklearn.metrics import pairwise_distances
         def DBCV(X, labels, metric='euclidean'):
             Density-Based Clustering Validation (DBCV).
             Calcula a métrica de validação baseada em densidade para clusters ger
             def core distance(point, neighbors, metric):
                 distances = pairwise_distances([point], neighbors, metric=metric)
                 return np.min(distances[distances > 0])
             def reachability_distance(p, o, neighbors, metric):
                 return max(core_distance(p, neighbors, metric), np.linalg.norm(p
             def cluster density(X cluster, metric):
                 n = len(X_cluster)
                 distances = pairwise_distances(X_cluster, metric=metric)
                 return np.sum(distances) / (n * (n - 1))
             clusters = np.unique(labels)
             total_density = 0
             for cluster in clusters:
                 if cluster == -1: # Ignore noise
                     continue
                 cluster_points = X[labels == cluster]
                 density = cluster_density(cluster_points, metric)
                 total_density += density
             return total_density / len(clusters)
```

2. DBScan

```
P2
                       P1
Out[129...
              0 -0.017062 -0.000235
                 0.001782 -0.004042
              2 -0.014778 -0.000756
              3 -0.014986 -0.000337
              4 -0.014079 -0.000837
          20428
                  0.005517 -0.001245
          20429 -0.008732 -0.000447
          20430
                 0.008321 -0.002719
          20431
                 0.005041 -0.003352
          20432 0.016689 -0.002132
         20433 rows × 2 columns
In [130... | db=DBSCAN(eps=0.5,min_samples=10).fit(data)
         labels=db.labels_
In [131... from matplotlib import colormaps
         cmap=colormaps.get_cmap('Spectral').resampled(10)
         plt.scatter(x[:, 0], x[:, 1],
                     c= labels.astype(float), edgecolor='none', alpha=0.5,
                     cmap=cmap)
         plt.xlabel('component 1')
         plt.ylabel('component 2')
         plt.colorbar(label="Label Color Scale")
```

plt.show()

Compare os dois resultados, aponte as semelhanças e diferenças e interprete

K-means recuperou 4 grupos distintos já o dbscan não conseguiu recuperar

K-means

- facil de ser implementado e interpretado
- é mais escalavel mais eficiente
- requer que o usuario diga inicialmente o nº de clusters *sensivel a outliers

DBScan

- simples e facil de ser implementado
- não requer que o usuario diga p nº de cluster *não é sensivel a outlires

O algoritmo K-means é um método de aprendizado de máquina supervisionado que determina o número de centróides kk, atribuindo cada ponto de dados ao cluster mais próximo e buscando minimizar a distância total dos pontos aos centróides. Em contraste, o DBSCAN (Density-Based Spatial Clustering of Applications with Noise) é baseado na densidade de pontos, identificando clusters como conjuntos densos de pontos conectados. Ele é capaz de dividir regiões densas em clusters, encontrando agrupamentos com formas arbitrárias, mesmo em bases de dados com ruído.

Além do índice de silhueta, outras duas métricas de validação foram utilizadas para comparar os resultados:

Dendrograma - O dendrograma é uma representação gráfica em forma de árvore que demonstra os agrupamentos formados a cada etapa do processo hierárquico e seus níveis de similaridade. Analisando o dendrograma, é possível identificar que os dados foram agrupados em quatro grandes grupos, representando bem as divisões naturais do conjunto de dados.

KElbowVisualizer - O método do cotovelo, representado pelo KElbowVisualizer, avalia a proximidade dos pontos dentro de cada cluster. Observando o gráfico gerado, o ponto ideal para kk é indicado em 3 ou 4 clusters, com k=4k=4 apresentando o melhor desempenho em termos de tempo de resposta e consistência do algoritmo.

Comparação com o Índice de Silhueta

 O índice de silhueta mede a qualidade dos clusters considerando a distância entre os centróides e os pontos que os cercam. Ao analisar os gráficos, k=4k=4 apresentou silhuetas mais uniformes e bem distribuídas, indicando uma melhor configuração de agrupamento.

Validação para DBSCAN

Para o algoritmo DBSCAN, uma métrica mais adequada é o DBCV (Density-Based Cluster Validation), que avalia a qualidade dos clusters com base na densidade dos pontos e não apenas na distância. Essa métrica é particularmente útil para bases de dados com ruído, pois captura a forma dos agrupamentos e considera variações de densidade.

Com base nos resultados das métricas de validação analisadas (índice de silhueta, dendrograma e KElbowVisualizer), o valor ideal para k nos agrupamentos é 4. Essa escolha oferece a melhor combinação de consistência entre os clusters e eficiência na resposta do algoritmo.

```
In [132... df=data.drop(['Cluster'],axis=1)
In [133... plt.figure(figsize=(14, 5))
    plt.grid(False)
    dendrogram = sch.dendrogram(sch.linkage(df, method='ward')) #, labels=df.
```

```
plt.title('Dendrogram')
plt.ylabel('Euclidean Distance')
```

Out[133... Text(0, 0.5, 'Euclidean Distance')


```
In [134... Wcss=[]
    for i in range(1,11):
        kmeans=KMeans(n_clusters=i,init='k-means++',random_state=9)
        kmeans.fit(x)
        Wcss.append(kmeans.inertia_)
    print(Wcss)
```

[272394861195557.38, 85139069740659.94, 38736688028295.42, 21111318378341. 402, 12269251877454.537, 8758499004866.465, 6471603906594.477, 49237636503 77.528, 3785972457034.5024, 3163284787015.993]

```
In [135... sns.set()
   plt.plot(range(1,11),Wcss)
   plt.title('Método do Cotovelo')
   plt.xlabel('Número Clusters')
   plt.ylabel('WCSS')
   plt.show()
```



```
In [136... from yellowbrick.cluster import KElbowVisualizer
el = KElbowVisualizer(KMeans(), k=10)
el.fit(df)
el.show();
```


O Índice de Silhueta é adequado para escolher o número de Clusters no

DBSCAN?

Resposta: Quando não existem rótulos disponíveis, é comum recorrer a métricas objetivas, como o Silhouette Score, para avaliar e decidir sobre o resultado final de um agrupamento. O Silhouette Score é uma métrica que mede a coesão e separação dos clusters, com valores variando entre -1 e 1. No entanto, ele não considera o ruído no cálculo e baseia-se exclusivamente em distâncias.

Como o DBSCAN é um algoritmo baseado em densidade, a dependência de distâncias viola um pressuposto fundamental desse método. Ignorar o ruído no cálculo da métrica compromete a avaliação da qualidade dos clusters em técnicas baseadas em densidade.

Portanto, métricas como o Silhouette Score não são **adequadas para medir a qualidade dos agrupamentos** gerados pelo DBSCAN.

Medidas de Similaridade

- 1. Definição do Problema Um problema apresenta 10 séries temporais distintas, que precisam ser agrupadas em 3 grupos com base no critério de similaridade, utilizando o valor máximo da correlação cruzada entre elas. Passos para calcular a similaridade:
- Etapa 1: Para cada par de séries temporais, aplicar um deslocamento (lag) em unidades de tempo.
- Etapa 2: A cada deslocamento, calcular a correlação de Pearson entre as duas séries.
- Etapa 3: Repetir o processo de deslocamento e cálculo da correlação até obter uma curva de correlação cruzada para cada par de séries.
- Etapa 4: Identificar o ponto de maior correlação na curva, que representará o valor máximo de correlação cruzada entre as séries.
- Etapa 5: Usar os valores máximos de correlação como métrica de similaridade entre as séries temporais.

Algoritmo de Clusterização

Algoritmo sugerido: KNN (K-Nearest Neighbors)

- O KNN é adequado para estimar densidades, verificando regiões de alta e baixa densidade. Ele fornece um índice de similaridade baseado em distância com valores que variam de -1 a 1.
- Justificativa: É eficaz para dados onde a proximidade entre os valores de similaridade determina o agrupamento.

Algoritmo sugerido: DTWclust (Dynamic Time Warping Clustering)

- O DTWclust utiliza técnicas relacionadas à distância dinâmica e oferece implementações de agrupamentos particionais e hierárquicos.
- Justificativa: Ele pode ser facilmente personalizado com métricas de distância específicas e definições de centróides, sendo uma escolha robusta para séries temporais.

Caso de Uso

 Um exemplo de aplicação seria agrupar séries temporais relacionadas ao clima, como padrões anuais de temperatura, ou ciclos de compra e venda em diferentes períodos de tempo. Esses dados podem ser usados para identificar tendências sazonais ou comportamentais.

Outra Estratégia para Medir Similaridade

1. Definição da Estratégia Medir a similaridade entre séries temporais com base no comportamento de subida e descida em relação ao tempo.

Passos para implementar a estratégia:

- Etapa 1: Identificar o movimento das séries temporais (variações positivas ou negativas ao longo do tempo).
- Etapa 2: Normalizar as séries temporais para reduzir o impacto de valores extremos.
- Etapa 3: Agrupar os movimentos das séries com base na sincronia entre elas, comparando os padrões de subida e descida ao longo do tempo.
- Etapa 4: Utilizar a correlação de Pearson como métrica de similaridade para quantificar o alinhamento dos movimentos.
- Etapa 5: Utilizar o valor máximo de correlação (entre -1 e 1) para identificar o grau de similaridade entre as séries.

Essa abordagem considera a sincronia do comportamento das séries temporais, independentemente do ruído ou deslocamentos, permitindo uma análise mais contextual das similaridades.