Wednesday, September 7, 2016 1:36 PM

## Convex optimitation: Leature 4.

Plan for today: Gradient Descent - see how it performs as a function of different properties of f.

min: f(n)st:  $a \in \mathbb{R}^n$  or  $\mathcal{X}$ ,  $\mathcal{X} \subseteq \mathbb{R}^n$  convex set.

Basic Algorithm:  $x^{\dagger} = x - \eta \nabla f(x)$ 

1. If Africa not detired, will replace  $\nabla$ -[12)

hy Je (3f12)

2. If  $X \neq \mathbb{R}^n$  — in this core at may not even be in X.

Intition for guadratic example:

f(n) = Rx2 + bx + c need a>0

 $\lambda^{\dagger} = \lambda - 1.202 = (\lambda - 202) \lambda$ 

Need: 11-242/</ >

Graphical intition: step site lass that max curvature

f(x) = |X| no correntue => step site had be be ~ &, because  $\nabla f(\pi)$  does not nec.

in class lectures Page



If  $f(y) \ge f(x) + (g, y-x)$ If  $f(y) \ge f(x) + (g, y-x)$   $f(x) \ge f(x) + (g, y-x)$   $f(x) \ge f(x) + (g, y-x)$ Defin: Converting Det n: ("Corrette Beld fran above") B-Smooth

A convex for is called p-smooth if
its gadient is p-lipschitz. Defin: A function h:  $\mathbb{R}^n \to \mathbb{R}$  is called L = Lipschidz if  $\forall x, y$ ,  $(|x||_z = (\Sigma x_i)^2)$   $|h(x_i) - h(y_i)| \leq L ||x - y||_z.$ A gradatic gon I through o, that lies above IXI.

Mios above IXI. is 6-5mooth (=> || \( \frac{1}{2} \) || \( \frac{1} \) || \( \frac{1}{2} \) || \( \frac{1}{2} \) || \( \frac{1}{2} A convex on f: R" -> R is called x-spond consider (tex) - = llally convex. f is x-sc, if it is x-sc at Suppose:  $\left( f(x) - \frac{\alpha}{2} ||x||_2^2 \right)$  is convex. Df, + Df h(y) > h(x) + (gn, y-x) + n,y Physing in: fry - \$ 117112 = from - \$ 112112 + < gt - < x, y - x >  $f(y) \geq f(x) + \langle g^f, y - x \rangle + \langle \frac{\alpha}{2} ||y||_2^2$ + = || || || - | | ( ) | f(y) > f(2) + (gf, y-x) + \frac{\pi}{2} || n-y ||\_2^2 (onvex, ty Q: f(x) = ax2+bx+c

in class lectures Page



in class lectures Page 4

€ ∫ 11 7f 1y + + (2-y)) - 7f (y) 1 . 112-y11 at 

- 6 11x-2112 ] fxt = \$ 11x-2112

If f is convex and B-smooth

 $0 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le f ||x - y||_{x}^{2}$ 

 $f(\text{onvex}: f(y) \ge f(x) + \langle \nabla f(x), y^{-x} \rangle$ 

b-smoth: fig) < f(x) + (\forall f(z), \forall - x) + \forall 11x-7112

 $d-SC: f(y) \ge f(x) + \langle \nabla f(x), y^{-2} \rangle + \leq ||x-y||_{2}^{2}$ 



f:R→R

nor strong court

i.e. 3 pros on aro st. rel. Actins are sutisfient.

f: [a,b] -> R, 06 (a,b) XI Smooth

A I Smooth

S.C. and Smooth.

If f has 1st 2 2 derivations, or in m.v. care,  $\nabla^2 f$  defined,

what x s.c. & smoothness parameter at at pt a. ?

max is min e-values of  $\nabla^2 f(x)$ 

Back b  $f(x) = x^{4}$ .  $f''(x) = 12x^{2}$ 

 $\beta \stackrel{d}{=} \sup_{n \neq \infty} \lambda_{min}(n)$   $\beta \stackrel{d}{=} \inf_{n \neq \infty} \lambda_{min}(n)$ 

Detn: Condition # (K)

Bay a condition number (K)

Next time: Rates of Conv. for GT)

dep. on  $\chi, \beta$ .

n class lectures Page