CS M151B HW1

Terry Ye

1 1.5

1.1 a

Instructions per second is $\frac{frequency}{CPI}$ For P1 is $\frac{3G}{1.5}$ For P2 is $\frac{2.5G}{1.0}$ For P3 is $\frac{4.0G}{2.2}$ So instructions per second: P2 > P1 > P3 P2 has the highest performance.

1.2 b

Number of cycles:

P1: $10*3*10^9 = 3*10^{10}$ P2: $10*2.5*10^9 = 2.5*10^{10}$ P3: $10*4.0*10^9 = 4*10^{10}$ Number of instructions:

P1: $3 * 10^{10}/1.5 = 2 * 10^{10}$ P2: $2.5 * 10^{10}/1.0 = 2.5 * 10^{10}$ P3: $4 * 10^{10}/2.2 = 1.8 * 10^{10}$

1.3 c

0.7/1.2 = 0.583

So the clock rate should be increased to 1/0.583 = 171.4% of before.

P1: 5.14GHzP2: 4.29GHzP3: 6.86GHz

2 1.6

2.1 a

P1: CPI = 0.1*1+0.2*2+0.5*3+0.2*3 = 2.6P2: CPI = 0.1*2+0.2*2+0.5*2+0.2*2 = 2

2.2 b

P1: cycles = $2.6*1.0*10^6 = 2.6*10^6$ P2: cycles = $2*1.0*10^6 = 2*10^6$

3 1.7

3.1 a

A: number of cycles = $1.1s/1ns = 1.1*10^9$. CPI = $\frac{1.1*10^9}{1*10^9} = 1.1$ B: number of cycles = $1.5s/1ns = 1.5*10^9$. CPI = $\frac{1.5*10^9}{1.2*10^9} = 1.25$

3.2 b

Number of cycles for A/ number of cycles for B=1.1/1.5=0.733The clock of processor running code compiler by A is faster by 1/0.733-1=36.36%.

3.3 c

The number of cycles using new compiler is $6.0*10^8*1.1 = 6.6*10^8$. Compared with using A: $\frac{1}{\frac{6.6*10^8}{1.1*10^9}}$ -1 = 66.7% Compared with using B: $\frac{1}{\frac{6.6*10^8}{1.5*10^9}}$ -1 = 127.2%

4 1.13

4.1 1.13.1

The total reduced time is 70*0.2 = 14s. So the new total time is 250-14=236s.

4.2 1.13.2

The total reduced time is 250*0.2=50s. The time for INT operation is 250-70-85-40=55s.

So INT operation needs to reduce 50/55 = 90.9%.

4.3 1.13.3

Branch instruction takes 40/250=16% of time. It is less than 20%, so by Amdahl's law, the total time cannot be reduced by 20% by reducing only branch instruction time.