

CUADRIPOLOS CARGADOS

IMPEDANCIA ITERATIVA

Se carga solo uno de los extremos del cuadripolo. Cuando se carga un cuadripolo con su impedancia iterativa de entrada, el mismo valor se obtiene como impedancia de salida y si se carga con su impedancia iterativa de salida, el mismo valor se obtiene como impedancia de entrada.

IMPEDANCIA IMAGEN

Se cargan ambos extremos del cuadripolo simultáneamente.

IMPEDANCIA CARACTERÍSTICA

Se produce en cuadripolos simétricos. Partiendo de la impedancia imagen podemos obtener la impedancia característica.

$$Z_O = \sqrt{\frac{A*B}{C*D}} = \sqrt{\frac{B*D}{A*C}}$$

Pero A = D pues Z_{11} = Z_{22} , por lo tanto:

$$Z_O = \sqrt{\frac{B}{C}}$$

Se puede verificar idéntico resultado a partir de las expresiones de impedancia iterativa en un cuadripolo simétrico donde A = D.

$$Z_{K1} = \frac{-(A - D)^{0}}{2C} \pm \sqrt{\left[\frac{(A - D)^{0}}{2C}\right]^{2} + \frac{B}{C}} = \sqrt{\frac{B}{C}} \qquad Z_{K2} = \frac{-(D - A)^{0}}{2C} \pm \sqrt{\left[\frac{(D - A)^{0}}{2C}\right]^{2} + \frac{B}{C}} = \sqrt{\frac{B}{C}}$$

<u>FUNCION DE PROPAGACIÓN DE TENSIÓN Y DE CORRIENTE EN</u> <u>CUADRIPOLOS PASIVOS</u>

FUNCION DE PROPAGACIÓN DE TENSIÓN

Partimos de la primera ecuación que define a los parametros de Transmisión Directa (ABCD):

$$E_{IN} = A * E_{OUT} + B * I_{OUT}$$

Recordando que $I_{OUT} = E_{OUT} / Z_{OUT}$, reemplazamos

$$E_{IN} = A * E_{OUT} + B * \frac{E_{OUT}}{Z_{OUT}}$$

Despejamos E_{OUT} y pasamos al otro miembro dividiendo:

Función de Propagación de Tensión =

$$\frac{E_{IN}}{E_{OUT}} = A + \frac{B}{Z_{OUT}}$$

FUNCION DE PROPAGACIÓN DE CORRIENTE

Partimos de la segunda ecuación que define a los parametros de Transmisión Directa (ABCD):

$$I_{IN} = C * E_{OUT} + D * I_{OUT}$$

Recordando que $E_{OUT} = I_{OUT} * Z_{OUT}$, reemplazamos

$$I_{IN} = C * I_{OUT} * Z_{OUT} + D * I_{OUT}$$

Despejamos I_{OUT} y pasamos al otro miembro dividiendo :

Función de Propagación de Corriente =

$$\frac{I_{IN}}{I_{OUT}} = C * Z_{OUT} + D$$

FUNCION DE PROPAGACIÓN DE TENSIÓN DE CUADRIPOLO CARGADO CON IMPEDANCIA ITERATIVA DE SALIDA (Z_{K2})

Partimos de :

$$\boxed{\frac{E_{IN}}{E_{OUT}} = A + \frac{B}{Z_{OUT}}}$$

Dado que
$$Z_{OUT} = Z_{K2} = -\frac{(D-A)}{2C} + \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}}$$
 reemplazamos :

$$\frac{E_{IN}}{E_{OUT}} = A + \frac{B}{-\frac{(D-A)}{2C} + \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}}}$$

Racionalizando:

$$\frac{E_{IN}}{E_{OUT}} = A + \frac{B}{\left[-\frac{(D-A)}{2C} + \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}}\right]} \times \frac{\left[-\frac{(D-A)}{2C} - \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}}\right]}{\left[-\frac{(D-A)}{2C} - \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}}\right]}$$

Efectuando los productos en el denominador:

$$\frac{E_{IN}}{E_{OUT}} = A + \frac{B \left[-\frac{(D-A)}{2C} - \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}} \right]}{\left[\frac{(D-A)}{2C} \right]^2 + \left[\frac{(D-A)}{2C} \times \sqrt{-} \right] - \left[\frac{(D-A)}{2C} \times \sqrt{-} \right] - \left[\frac{(D-A)}{2C} \right]^2 - \frac{B}{C}}$$

Simplificando:

$$\frac{E_{IN}}{E_{OUT}} = A + \frac{B\left[-\frac{(D-A)}{2C} - \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}}\right]}{\left[\frac{(D-A)}{2C}\right]^2 + \left[\frac{(D-A)}{2C} \times \sqrt{-}\right] - \left[\frac{(D-A)}{2C}\right]^2 - \frac{B}{C}}$$

Simplificamos las B en numerador y denominador y pasamos C multiplicando al numerador recordando que tiene signo negativo :

$$\frac{E_{IN}}{E_{OUT}} = A + \frac{B\left[-\frac{(D-A)}{2C} - \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}}\right]}{-\frac{B}{C}} = A + \left\{C \times \left[+\frac{(D-A)}{2C} + \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}}\right]\right\}$$

Operamos, multiplicando por C el corchete y simplificando:

$$\frac{E_{IN}}{E_{OUT}} = A + \left\{ C \times \left[+ \frac{(D-A)}{2C} + \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B \times C}{C}} \right] \right\} =$$

$$\frac{E_{IN}}{E_{OUT}} = A + \frac{(D-A)}{2} + \sqrt{\left[\frac{(D-A)}{2}\right]^2 + B \times C}$$

Recordando que $\Delta_{ABCD} = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = A \times D - B \times C = 1 \rightarrow \text{reemplazamos} \rightarrow B \times C = A \times D - 1$ en la última expresión y desarrollamos el cuadrado dentro de la raiz :

$$\frac{E_{IN}}{E_{OUT}} = A + \frac{(D-A)}{2} + \sqrt{\frac{D^2 - 2 A D + A^2}{4} + A \times D - 1}$$

$$\frac{E_{IN}}{E_{OUT}} = \frac{2 \times A}{2} + \frac{(D-A)}{2} + \sqrt{\frac{D^2 - 2AD + A^2}{4} + \frac{4 \times AD}{4} - 1}$$

$$\frac{E_{IN}}{E_{OUT}} = \frac{2 \times A}{2} - \frac{A}{2} + \frac{D}{2} + \sqrt{\frac{D^2 + 2 A D + A^2}{4} - 1}$$

Finalmente:

$$\frac{E_{IN}}{E_{OUT}} = \frac{(A+D)}{2} + \sqrt{\left[\frac{(A+D)}{2}\right]^2 - 1}$$

Recordando que si $U = \cosh \theta \rightarrow \sqrt{U^2 - 1} = senh \theta$

$$\frac{(A+D)}{2} = \cosh \gamma \qquad y \qquad \sqrt{\left[\frac{(A+D)}{2}\right]^2 - 1} = \operatorname{senh} \gamma$$

$$\frac{E_{IN}}{E_{OUT}} = \frac{(A+D)}{2} + \sqrt{\left[\frac{(A+D)}{2}\right]^2 - 1} = \cosh \gamma + \operatorname{senh} \gamma = e^{\gamma} = e^{\alpha + j\beta} = e^{\alpha} \times e^{j\beta}$$

Donde Y es la constante de propagación.

α es la constante de atenuación que se mide en [neper].

 β es la constante de fase. Recordar que si el circuito del cuadripolo es resistivo puro $\beta = 0$.

Además si $\alpha = 1[\text{neper}] \rightarrow 20 \log_{10} e^1 = 8,686 \text{ [dB]}$

FUNCION DE PROPAGACIÓN DE CORRIENTE DE CUADRIPOLO CARGADO CON IMPEDANCIA ITERATIVA DE SALIDA (Z_{K2})

Partimos de :

$$\frac{I_{IN}}{I_{OUT}} = C \bullet Z_{OUT} + D$$

Dado que $Z_{OUT} = Z_{K2} = -\frac{(D-A)}{2C} + \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}}$ reemplazamos :

$$\frac{I_{IN}}{I_{OUT}} = C \times \left[-\frac{(D-A)}{2C} + \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B}{C}} \right] + D$$

Operamos multiplicando por C el corchete y simplificando:

$$\frac{I_{IN}}{I_{OUT}} = C \times \left[-\frac{(D-A)}{2C} + \sqrt{\left(\frac{(D-A)}{2C}\right)^2 + \frac{B \times C}{C}} \right] + D$$

Ordenando:

$$\frac{I_{IN}}{I_{OUT}} = D - \frac{(D-A)}{2} + \sqrt{\left(\frac{(D-A)}{2}\right)^2 + B \times C}$$

Realizando una operación similar a la realizada para obtener la función de propagación de tensiones y recordando que $\Delta_{ABCD} = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = A \times D - B \times C = 1 \rightarrow B \times C = A \times D - 1$

Reemplazamos en la última expresión y operamos el cuadrado dentro de la raiz :

$$\frac{I_{IN}}{I_{OUT}} = D - \frac{D - A}{2} + \sqrt{\frac{D^2 - 2AD + A^2}{4} + A \times D - 1}$$

$$\frac{I_{IN}}{I_{OUT}} = \frac{2 \times D}{2} + \frac{(D - A)}{2} + \sqrt{\frac{D^2 - 2AD + A^2}{4} + \frac{4 \times A \times D}{4} - 1}$$

$$\frac{I_{IN}}{I_{OUT}} = \frac{2 \times D}{2} - \frac{D}{2} + \frac{A}{2} + \sqrt{\frac{D^2 + 2AD + A^2}{4} - 1}$$

$$\frac{I_{IN}}{I_{OUT}} = \frac{(A + D)}{2} + \sqrt{\left[\frac{(A + D)}{2}\right]^2 - 1}$$

Recordando que si $U = \cosh \theta \rightarrow \sqrt{U^2 - 1} = senh \theta$

$$\frac{I_{IN}}{I_{OUT}} = \frac{E_{IN}}{E_{OUT}} = \frac{(A+D)}{2} + \sqrt{\left[\frac{(A+D)}{2}\right]^2 - 1} = \cosh \gamma + \operatorname{senh} \gamma = e^{\gamma} = e^{\alpha + j\beta} = e^{\alpha} \times e^{j\beta}$$

FUNCION DE PROPAGACIÓN DE TENSIÓN DE CUADRIPOLO CARGADO CON IMPEDANCIA IMAGEN DE SALIDA (Z_{im2})

Partimos de :

$$\boxed{\frac{E_{IN}}{E_{OUT}} = A + \frac{B}{Z_{OUT}}}$$

Dado que $Z_{OUT} = Z_{im2} = \sqrt{\frac{B \times D}{A \times C}}$ reemplazamos :

$$\frac{E_{IN}}{E_{OUT}} = A + \frac{B}{\sqrt{\frac{B \times D}{A \times C}}} = A + \frac{\sqrt{B^2}}{\sqrt{\frac{B \times D}{A \times C}}}$$

Ordenando:

$$\frac{E_{IN}}{E_{OUT}} = A + \sqrt{\frac{A \times B \times C}{D}} = A + \sqrt{\frac{A}{D} \times B \times C}$$

Recordando que $\Delta_{ABCD} = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = A \times D - B \times C = 1 \rightarrow \text{reemplazamos} \rightarrow B \times C = (A \times D) - 1$

$$\frac{E_{IN}}{E_{OUT}} = A + \sqrt{\frac{A}{D} \times (A \times D - 1)} = A + \sqrt{\frac{A}{D} \times \sqrt{(A \times D) - 1}}$$

Realizamos el siguiente artilugio:

$$\frac{E_{IN}}{E_{OUT}} = \sqrt{A} \times \sqrt{A} \times \frac{\sqrt{D}}{\sqrt{D}} + \sqrt{\frac{A}{D}} \times \sqrt{(A \times D) - 1}$$

Finalmente

$$\frac{E_{IN}}{E_{OUT}} = \sqrt{\frac{A}{D}} \times \left[\sqrt{A \times D} + \sqrt{(A \times D) - 1} \right]$$

Recordando que si $U = \cosh \theta \rightarrow \sqrt{U^2 - 1} = senh \theta$

$$\sqrt{A \times D} = \cosh \theta$$
 y $\sqrt{(A \times D) - 1} = senh \theta$

$$\frac{E_{IN}}{E_{OUT}} = \sqrt{\frac{A}{D}} \times \left[\sqrt{A \times D} + \sqrt{(A \times D) - 1} \right] = \sqrt{\frac{A}{D}} \times \left(\cosh \theta + senh \theta \right) = e^{\gamma} = e^{\alpha + j\beta} = e^{\alpha} \times e^{j\beta}$$

Pero $\sqrt{\frac{A}{D}} = \sqrt{\frac{Z_{im1}}{Z_{im2}}}$ de donde tenemos que:

$$\frac{E_{IN}}{E_{OUT}} = \sqrt{\frac{Z_{im1}}{Z_{im2}}} \times \left[\sqrt{A \times D} + \sqrt{(A \times D) - 1} \right] = \sqrt{\frac{Z_{im1}}{Z_{im2}}} \times \left(\cosh \theta + senh \theta \right) = e^{\gamma}$$

FUNCION DE PROPAGACIÓN DE CORRIENTE DE CUADRIPOLO CARGADO CON IMPEDANCIA IMAGEN DE SALIDA (Z_{im2})

Partimos de :

$$\boxed{\frac{I_{IN}}{I_{OUT}} = C \bullet Z_{OUT} + D}$$

Dado que $Z_{OUT} = Z_{im2} = \sqrt{\frac{B \times D}{A \times C}}$ reemplazamos :

$$\frac{I_{IN}}{I_{OUT}} = C \times \sqrt{\frac{B \times D}{A \times C}} + D = D + \sqrt{C^2} \times \sqrt{\frac{B \times D}{A \times C}} +$$

Ordenando:

$$\frac{I_{IN}}{I} = D + \sqrt{\frac{D \times B \times C}{A}} = D + \sqrt{\frac{D}{A} \times B \times C}$$

Recordando que $\Delta_{ABCD} = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = A \times D - B \times C = 1 \rightarrow \text{reemplazamos} \rightarrow B \times C = (A \times D) - 1$

$$\frac{I_{IN}}{I_{OUT}} = D + \sqrt{\frac{D}{A} \times (A \times D - 1)} = D + \sqrt{\frac{D}{A} \times \sqrt{(A \times D) - 1}}$$

Realizamos el siguiente artilugio:

$$\frac{I_{IN}}{I_{OUT}} = \sqrt{D} \times \sqrt{D} \times \frac{\sqrt{A}}{\sqrt{A}} + \sqrt{\frac{D}{A}} \times \sqrt{(A \times D) - 1}$$

Finalmente:

$$\frac{I_{IN}}{I_{OUT}} = \sqrt{\frac{D}{A}} \times \left[\sqrt{A \times D} + \sqrt{(A \times D) - 1} \right]$$

Recordando que si $U = \cosh \theta \rightarrow \sqrt{U^2 - 1} = senh \theta$

$$\sqrt{A \times D} = \cosh \theta$$
 y $\sqrt{(A \times D) - 1} = senh \theta$

$$\frac{I_{IN}}{I_{OUT}} = \sqrt{\frac{D}{A}} \times \left[\sqrt{A \times D} + \sqrt{(A \times D) - 1} \right] = \sqrt{\frac{D}{A}} \times \left(\cosh \theta + senh \theta \right) = e^{\gamma} = e^{\alpha + j\beta} = e^{\alpha} \times e^{j\beta}$$

Pero $\sqrt{\frac{D}{A}} = \sqrt{\frac{Z_{im2}}{Z_{im1}}}$ de donde tenemos que:

$$\frac{I_{IN}}{I_{OUT}} = \sqrt{\frac{Z_{im2}}{Z_{im1}}} \times \left[\sqrt{A \times D} + \sqrt{(A \times D) - 1} \right] = \sqrt{\frac{Z_{im2}}{Z_{im1}}} \times \left(\cosh \theta + senh \theta \right) = e^{\gamma}$$

FUNCION DE PROPAGACIÓN DE TENSIÓN DE CUADRIPOLO CARGADO CON IMPEDANCIA CARACTERÍSTICA (\mathbf{Z}_0)

Partimos de :

$$\boxed{\frac{E_{IN}}{E_{OUT}} = A + \frac{B}{Z_{OUT}}}$$

Dado que $Z_{OUT} = Z_O = \sqrt{\frac{B}{c}}$ reemplazamos :

$$\frac{E_{IN}}{E_{OUT}} = A + \frac{B}{\sqrt{\frac{B}{A}}} = A + \frac{\sqrt{B^2}}{\sqrt{\frac{B}{C}}}$$

Ordenando:

$$\frac{E_{IN}}{E_{OUT}} = A + \sqrt{B \times C} = A + \sqrt{B \times C}$$

Recordando que $\Delta_{ABCD} = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = A \times D - B \times C = 1 \rightarrow \text{reemplazamos} \rightarrow B \times C = (A \times D) - 1$

 $\frac{E_{IN}}{E_{OUT}} = A + \sqrt{(A \times D - 1)}$, pero en cuadripolos simétricos A = D por lo tanto :

$$\frac{E_{IN}}{E_{OUT}} = A + \sqrt{A^2 - 1}$$

Recordando que si $U = \cosh \theta \rightarrow \sqrt{U^2 - 1} = senh \theta$

$$A = \cosh \theta$$
 y $\sqrt{A^2 - 1} = senh \theta$

$$\frac{E_{IN}}{E_{OUT}} = A + \sqrt{A^2 - 1} = (\cosh \gamma + senh \gamma) = e^{\gamma} = e^{\alpha + j\beta} = e^{\alpha} \times e^{j\beta}$$

FUNCION DE PROPAGACIÓN DE CORRIENTE DE CUADRIPOLO CARGADO CON IMPEDANCIA CARACTERÍSTICA (Z_O)

Partimos de :

$$\overline{I_{IN} \over I_{OUT}} = C \bullet Z_{OUT} + D$$

Dado que $Z_{OUT} = Z_{im2} = \sqrt{\frac{B}{c}}$ reemplazamos :

$$\frac{I_{IN}}{I_{OUT}} = C \times \sqrt{\frac{B}{C}} + D = \sqrt{C^2} \times \sqrt{\frac{B}{C}} + D$$

Ordenando:

$$\frac{I_{IN}}{I_{OUT}} = D + \sqrt{B \times C}$$

Pagina 8 de 12

Recordando que $\Delta_{ABCD} = \begin{vmatrix} A & B \\ C & D \end{vmatrix} = A \times D - B \times C = 1 \rightarrow \text{reemplazamos} \rightarrow B \times C = (A \times D) - 1$

 $\frac{I_{IN}}{I_{OUT}} = D + \sqrt{(A \times D - 1)}$, pero en cuadripolos simétricos A = D, por lo tanto :

$$\frac{I_{IN}}{I_{OUT}} = A + \sqrt{A^2 - 1}$$

Recordando que si $U = \cosh \theta \rightarrow \sqrt{U^2 - 1} = senh \theta$

$$A = \cosh \theta$$
 y $\sqrt{A^2 - 1} = senh \theta$

$$\frac{I_{IN}}{I_{OUT}} = \frac{E_{IN}}{E_{OUT}} = A + \sqrt{A^2 - 1} = (\cosh \gamma + \operatorname{senh} \gamma) = e^{\gamma} = e^{\alpha + j\beta} = e^{\alpha} \times e^{j\beta}$$

CONCLUSIONES:

Para $Z_{OUT} = Z_{K2}$

$$\left|\frac{I_{IN}}{I_{OUT}}\right|_{Z_{K2}} = \left|\frac{E_{IN}}{E_{OUT}}\right|_{Z_{K2}} = \frac{(A+D)}{2} + \sqrt{\left[\frac{(A+D)}{2}\right]^2 - 1} = \cosh \gamma + \operatorname{senh} \gamma = e^{\gamma} = e^{\alpha + j\beta} = e^{\alpha} \times e^{j\beta}$$

Para $Z_{OUT} = Z_{IM2}$

$$\left|\frac{E_{IN}}{E_{OUT}}\right|_{Z_{IM2}} = \sqrt{\frac{Z_{im1}}{Z_{im2}}} \times \left[\sqrt{A \times D} + \sqrt{(A \times D) - 1}\right] = \sqrt{\frac{Z_{im1}}{Z_{im2}}} \times \left(\cosh \theta + \operatorname{senh} \theta\right) = e^{\gamma}$$

Para $Z_{OUT} = Z_{IM2}$

$$\left|\frac{I_{IN}}{I_{OUT}}\right|_{Z_{IM2}} = \sqrt{\frac{Z_{im2}}{Z_{im1}}} \times \left[\sqrt{A \times D} + \sqrt{(A \times D) - 1}\right] = \sqrt{\frac{Z_{im2}}{Z_{im1}}} \times \left(\cosh \theta + \operatorname{senh} \theta\right) = e^{\gamma}$$

Para $Z_{OUT} = Z_O$ ó para el caso de un cuadripolo simétrico, dado que A = D y $Z_{IM1} = Z_{IM2} = Z_O$, todos los casos se reducen a :

$$\frac{I_{IN}}{I_{OUT}} = \frac{E_{IN}}{E_{OUT}} = A + \sqrt{A^2 - 1} = (\cosh \gamma + \operatorname{senh} \gamma) = e^{\gamma} = e^{\alpha + j\beta} = e^{\alpha} \times e^{j\beta}$$

EJEMPLOS DE CALCULO DE CUADRIPOLOS CARGADOS

EJEMPLO 1:

Valor de Z1 [Ohms]? 7500 Valor de Z2 [Ohms]? 2750 Valor de Z3 [Ohms]? 11500

PARAMETROS IMPEDANCIA

Z11 = Z1 + Z2 = 10250 [Ohms] Z12 = Z21 = Z2 = 2750 [Ohms] Z22 = Z2 + Z3 = 14250 [Ohms]

$AZ = Z11*Z22-Z12*Z21 = 138500000 [\Omega]$

PARAMETROS TRANSMISION DIRECTA

A = Z11/Z21 = 3.7273 [Adim] B = AZ/Z21 = 50363.6364 [Ohms^2] C = 1/Z21 = 0.00036364 [Mho] D = Z22/Z21 = 5.1818 [Adim]

CALCULO DE LA IMPEDANCIA ITERATIVA

 $ZK1 = (-(A-D)/(2*C))+sqrt(((A-D)/(2*C))^2+(B/C)) = 13937.3364 [Ohms]$ $ZK2 = (-(D-A)/(2*C))+sqrt(((D-A)/(2*C))^2+(B/C)) = 9937.3364 [Ohms]$

CALCULO DE LA IMPEDANCIA IMAGEN

ZIM1 = sqrt((A*B)/(C*D)) = 9981.1225 [Ohms] ZIM2 = sqrt((B*D)/(A*C)) = 13876.1947 [Ohms]

COMPROBACION DE LA FUNCION DE PROPAGACIÓN EN BASE ITERATIVA

<u>Fun_Prop_Zit_COMP</u> = <u>Ein/Eout</u> <u>Fun_Prop_Zit_COMP</u> = Z1+(Z2*(Z3+ZK2)/(Z2+Z3+ZK2))/(Z2*(Z3+ZK2)/(Z2+Z3+ZK2))*ZK2/(Z3+ZK2)

Fun Prop Zit COMP = 8.7954 [Adim]

COMPROBACION DE LA FUNCION DE PROPAGACIÓN EN BASE IMAGEN

Fun_Prop_Zim_COMP = Ein/Eout Fun_Prop_Zim_COMP = (Z1+(Z2*(Z3+ZIM2))/(Z2+Z3+ZIM2)))/((Z2*(Z3+ZIM2)/(Z2+Z3+ZIM2))*(ZIM2/(Z3+ZIM2)))

Fun Prop Zim COMP = 7.3568 [Adim]

EJEMPLO 2:

Valor de Z1 [Ohms] ? 12500 Valor de Z2 [Ohms] ? 3000 Valor de Z3 [Ohms] ? 6500

PARAMETROS IMPEDANCIA

Z11 = Z1 + Z2 = 15500 [Ohms] Z12 = Z21 = Z2 = 3000 [Ohms] Z22 = Z2 + Z3 = 9500 [Ohms] AZ = Z11*Z22-Z12*Z21 = 138250000 [Ohms^2] A = Z11/Z21 = 5.1667 [Adim] B = AZ/Z21 = 46083.3333 [Ohms^2] C = 1/Z21 = 0.00033333 [Mho]

D = Z22/Z21 = 3.1667 [Adim]

PARAMETROS TRANSMISION DIRECTA

CALCULO DE LA IMPEDANCIA ITERATIVA

 $ZK1 = (-(A-D)/(2*C))+sqrt(((A-D)/(2*C))^2+(B/C)) = 9134.6611 [Ohms]$ $ZK2 = (-(D-A)/(2*C))+sqrt(((D-A)/(2*C))^2+(B/C)) = 15134.6611 [Ohms]$

CALCULO DE LA IMPEDANCIA IMAGEN

ZIM1 = sqrt((A*B)/(C*D)) = 15018.8478 [Ohms]ZIM2 = sqrt((B*D)/(A*C)) = 9205.1003 [Ohms]

CALCULO DE LA FUNCION DE PROPAGACIÓN EN BASE ITERATIVA

Fun Prop It= $((A+D)/2)+sqrt(((A+D)/2)^2-1)$

Fun Prop ZIt=8.2116 [Adim]

CALCULO DE LA FUNCION DE PROPAGACIÓN EN BASE IMAGEN

 $\underline{Fun_Prop_Im} = \underline{sqrt}(A/D)*((\underline{sqrt}(A*D)) + \underline{sqrt}((A*D)-1))$

Fun_Prop_Zlm=10.1729 [Adim]

COMPROBACION DE LA FUNCION DE PROPAGACIÓN EN BASE ITERATIVA

Fun_Prop_Zit_COMP = Ein/Eout

Fun_Prop_Zit_COMP = Z1+(Z2*(Z3+ZK2)/(Z2+Z3+ZK2))/(Z2*(Z3+ZK2)/(Z2+Z3+ZK2))*ZK2/(Z3+ZK2)

Fun Prop Zit COMP = 8.2116 [Adim]

COMPROBACION DE LA FUNCION DE PROPAGACIÓN EN BASE IMAGEN

Fun Prop Zim COMP = Ein/Eout

<u>Fun_Prop_Zim_COMP</u> = (Z1+(Z2*(Z3+ZIM2))/(Z2+Z3+ZIM2))/((Z2*(Z3+ZIM2))/(Z2+Z3+ZIM2))*(ZIM2/(Z3+ZIM2)))</u>

Fun Prop Zim COMP = 10.1729 [Adim]

Ingenierio Electrónico

EJEMPLO 3:

Valor de Z1 [Ohms] ? 4500 Valor de Z2 [Ohms] ? 8750 Valor de Z3 [Ohms] ? 4500

CUADRIPOLO SIMETRICO

PARAMETROS IMPEDANCIA

Z11 = Z1 + Z2 = 13250 [Ohms] Z12 = Z21 = Z2 = 8750 [Ohms] Z22 = Z2 + Z3 = 13250 [Ohms] AZ = Z11*Z22-Z12*Z21 = 99000000 [Ohms^2]

PARAMETROS TRANSMISION DIRECTA

A = Z11/Z21 = 1.5143 [Adim] B = AZ/Z21 = 11314.2857 [Ohms^2] C = 1/Z21 = 0.00011429 [Mhos] D = Z22/Z21 = 1.5143 [Adim]

CALCULO DE LA IMPEDANCIA CARACTERISTICA

Zo = sqrt(B/C) = 9949.8744 [Ohms]

CALCULO DE LA FUNCION DE PROPAGACIÓN EN BASE CARACTERISTICA

 $Fun_Prop_Zo = A+sqrt(A^2-1)$

Fun Prop Zo = 2.6514 [Adim]

COMPROBACION DE LA FUNCION DE PROPAGACIÓN EN BASE CARACTERISTICA

Fun_Prop_Zo_COMP = Ein/Eout

 $Fun_{prop_{20}} COMP = Z1 + (Z2*(Z3+Z0)/(Z2+Z3+Z0))/(Z2*(Z3+Z0)/(Z2+Z3+Z0))*ZO/(Z3+Z0)$

Fun_Prop_Zo_COMP = 2.6514 [Adim]