

UC MERCED SCIENCE AND ENGINEERING 2

STRUCTURAL DESIGN CRITERIA

R&C Job No. 2008092S

September 10

Rutherford & Chekene Consulting Engineers 55 Second Street, Suite 600 San Francisco, CA 94105

415-568-4400

Copyright © 2010 by Rutherford & Chekene

1. INTRODUCTION

The construction project consists of two structures with a shared basement. The two structures make up the 3-story laboratory and office buildings, comprised of wet research laboratory space, robotic and analytical research laboratory space, research support space, and office administrative support space. The overall plan dimensions of the buildings are approximately 326' wide by 131' long for a total of about 100,000ft² of space. The story heights are approximately 18'-0" from Basement to Level L1 and 15'-" for each story above.

The approximate overall dimensions and the elevations of all the levels are provided in the table below:

Overall building dimensions, levels and elevations:

Level	Approx. Overall Dimensions	Overall Area	Elevation	Absolute Elevation
Roof (West)	200ft by 75ft	15,000 sq ft	45'-0"	300'-0"
Roof (East)	100ft by 100ft	10,000 sq ft	45'-0"	300'-0"
Level 3 (West)	200ft by 75ft	15,000 sq ft	30'-0"	285'-0"
Level 3 (East)	100ft by 100ft	10,000 sq ft	30'-0"	285'-0"
Level 2 (West)	200ft by 75ft	15,000 sq ft	15'-0"	270'-0"
Level 2 (East)	100ft by 100ft	10,000 sq ft	15'-0"	270'-0"
Level 1 (West)	200ft by 75ft	15,000 sq ft	0'-0"	255'-0"
Level 1 (East)	100ft by 100ft	10,000 sq ft	0'-0"	255'-0"
Basement (West)	250ft by 60ft	15,000 sq ft	-18'-0"	237'-0"
Basement (East)	100ft by 100ft	10,000 sq ft	-18'-0"	237′-0″

2. GOVERNING CODES, STANDARDS AND SPECIFICATIONS

2.1. Governing Code

California Building Code (CBC), 2007 edition, including California Amendments.

2.2. Reference Standards

American Society of Civil Engineers/Structural Engineering Institute (ASCE/SEI)

Minimum Design Loads for Buildings and Other Structures, 7-05

American Institute of Steel Construction (AISC)

Specification for Structural Steel Buildings, 360-05

Seismic Provisions for Structural Steel Buildings, 341-05

American Concrete Institute (ACI)

Building Code Requirements for Structural Concrete, 318-05

American Welding Society (AWS)

Structural Welding Code, D1.1-06

2.3. Material Specifications

2.3.1. Concrete

f'c = 4000 psi (Light Weight Concrete) fill over metal deck

f'c = 4000 psi (Normal Weight Concrete) fill over metal deck, grade beams, footings

f'c = 4000 psi (Normal Weight Concrete) shotcrete, cast-in-place walls

f'c = 4000 psi (Normal Weight Concrete) slabs on grade. columns, suspended slabs

2.3.2. Reinforcing Steel

ASTM A615, Grade 60, typical

ASTM A706, Grade 60 for all welded bars

ASTM A185 for welded wire fabric

2.3.3. Structural Steel

ASTM A992, Grade 50 for all wide flange shapes

ASTM A36 for all channels and angles

ASTM A572, Grade 50 or ASTM A36 for all plates, as noted

ASTM A500, Grade B for all square or rectangular tubes

ASTM A500, Grade C for all round tubes

ASTM A53, Grade B for all pipes

ASTM F1554, Grade 36, for gravity columns anchor bolts

ASTM F1554, Grade 105, for frame columns anchor bolts

ASTM A325 or A490 for high strength bolts, as noted.

E70XX for welding electrodes

ASTM A446 for metal deck

AISC Steel Tips Publication "Seismic Design of Buckling-Restrained Braced Frames" dated July 2004

3. STRUCTURAL ENGINEERING DESIGN APPROACH

3.1. Overview

The structural engineering analysis, design and documentation for the UC Merced Science and Engineering 2 is to be performed using a Building Information Modeling (BIM) central database for coordination of the design drawings and structural models. The building structural gravity and lateral analysis is performed using both RAM and ETABS analysis and design software packages, respectively. The foundation system consisting of spread footings and basement retaining walls is designed using MathCAD and Excel spreadsheets.

3.2. Structural Systems Description

The gravity system consists of concrete fill over metal deck supported by wide flange composite beams and columns from Level 1 to Roof.

The lateral system consists of Buckling Restrained Braced Frames (BRBF) with moment-resisting beam-column connections and Steel Special Moment Resisting Frames (SMRF). The lateral system in the basement area consists of special reinforced concrete shear walls (SRCSW).

The foundation system consists of isolated spread footings supporting both gravity system columns as well as lateral system columns and strip footings supporting bearing and retaining walls. Lateral system spread footings in net tension will have soil anchors to resist uplift.

Non-frame Beams	
 Required strength vs. design strength 	RAM
- Deflection checks	RAM and by hand
 Vibration checks Laboratory Areas Office Areas 	Excel Spreadsheet
Non-frame Columns	
 Required strength vs. design strength 	RAM
 Column Deformation Compatibility Checks 	Excel Spreadsheet
- Base plate	RAM BASEPLATE/MathCAD
LATERAL FORCE RESISTING SYSTEM (LFRS)	
 Required strength vs. design strength at design base shear 	RAM
 Required strength vs. design strength at amplified seismic load 	RAM
- Irregularity checks	Excel spreadsheet
- Interstory drift ratio checks	RAM/Excel spreadsheet
 BRB size selection (based on lower bound yield strength) 	RAM
 BRBF column and beam capacity design 	Excel spreadsheet
 Unbalanced force check due to V-type and inverted V-type bracing Frame column base plates at amplified seismic loads 	Excel spreadsheet RAM BASEPLATE/MathCAD
 Frame column anchor rods and horizontal rebar at amplified seismic loads 	By hand or Excel spreadsheet
FOUNDATION DESIGN	By hand or Excel spreadsheet
DIAPHRAGM DESIGN	7 7 40 1-90 10 1
- Loading	By hand or MCAD
 Required strength 	RAM
 Design strength 	By hand or MCAD
STEEL COLLECTOR DESIGN	Control of the Control
LoadingRequired strength	By hand or Excel spreadsheet By hand or
- Design strength	Excel spreadsheet By hand or Excel spreadsheet

3.3. Flat Load Tables

The building flat load tables are summarized in the following tables.

1. LABOR	ATORY SPACE	
ITEM	DESCRIPTION	LOAD (PSF)
DEAD LOAD:		
Concrete Fill (Wet Wt of conc @ 150pcf)	4.5" NWC	69
Steel Deck	18 ga W2	3
Allowance for Additional Fill	10% of Fill	7
Ceiling, Mech, Misc.	Includes Fireproofing	14
Partitions	= =	10
Cabinetry and Lab Equipment		20
SUPERIMPOSED DEAD LOAD TOTAL	L	51
DEAD LOAD TOTAL (Applied to Anal	ysis Models)	123
Framing Self-Weight	RAM Determines	0
Cabinetry and Lab Equipment	Reduced as not over entire area	-10
SEISMIC DEAD LOAD TOTAL (for Ve	rification)	113
LIVE LOAD (Applied to Analysis Mode	els):	
Construction Live Load	reducible	20
Typical Live Load	reducible	100

^a Live load for areas are reducible in accordance with CBC.

2. NON-LABORATO	ORY (OFFICE) SPACE	
ITEM	DESCRIPTION	LOAD (PSF)
DEAD LOAD:		
Concrete Fill (Wet Wt of conc @ 150pcf)	4.5" NWC	69
Steel Deck	18 ga W2	3
Allowance for Additional Fill	10% of Fill	7
Ceiling, Mech, Misc.	Includes Fireproofing	14
Partitions		20
SUPERIMPOSED DEAD LOAD TOTAL		41
DEAD LOAD TOTAL (Applied to Analys	is Models)	113
Framing Self-Weight	Estimate	0
8	(Negative to reduce from 20	
Partitions (Seismic)	psf)	-10
SEISMIC DEAD LOAD TOTAL (for Veri	fication)	103
LIVE LOAD (Applied to Analysis Models	s):	
Construction Live Load	reducible	20
Typical Live Load	reducible	100
Corridor and Stairs Live Load	reducible	100

^a Live load for areas are reducible in accordance with CBC.

3. EXTERIOR DECK	OVER BASEMENT SPACE	
ITEM	DESCRIPTION	LOAD (PSF)
DEAD LOAD:		
Concrete Fill (Conc @ 150pcf)	9" NWC	133
Steel Deck	18 ga W2	3
Allowance for Additional Fill	10% of Fill	13
Ceiling, Mech, WP, Rigid Ins., Misc.	Includes Fireproofing	15
Partitions		0
6" Topping Slab		75
SUPERIMPOSED DEAD LOAD TOTAL		103
DEAD LOAD TOTAL (Applied to Analy	sis Models)	239
Framing Self-Weight	RAM Determines	0
SEISMIC DEAD LOAD TOTAL (at dyna	mic base)	0
LIVE LOAD (Applied to Analysis Model	s):	
Construction Live Load	reducible	20
Typical Live Load	unreducible	150

^a Live load for areas are reducible in accordance with CBC.

4. ROOF (I	NON-MECHANICAL)	
ITEM	DESCRIPTION	LOAD (PSF)
DEAD LOAD:		
Concrete Fill (Wet Wt of conc @		
150pcf)	3.5" NWC	,56
Steel Deck	18 ga W2	3
Allowance for Additional Fill	10% of Fill	6
Ceiling, Mech, Misc.	Includes Fireproofing	14
Partitions		0
Mech Equip (Misc)		20
SUPERIMPOSED DEAD LOAD TOT	AL	40
DEAD LOAD TOTAL (Applied to An	alysis Models)	99
Framing Self-Weight		0
Partitions		5
	Negative as mech. Not over entire	
Mechanical	area	-10
SEISMIC DEAD LOAD TOTAL (for V	Verification)	94
LIVE LOAD (Applied to Analysis Mo	dels):	
Construction Live Load	reducible	20
Typical Live Load	reducible	20

^a Live load for roof areas are reducible in accordance with CBC.

5. ROOF (UNDER	MECHANICAL EQUIP) GRAVITY	
ITEM	DESCRIPTION	LOAD (PSF)
DEAD LOAD:		
Concrete Fill (Wet Wt of conc @		
150pcf)	3.5" NWC	56
Steel Deck	18 ga W2	3
Allowance for Additional Fill	10% of Fill	6
Ceiling, Mech, Misc.	Includes Fireproofing	14
Partitions		0
		V
Mech Equip (See detailed calc)	includes concrete slab & curbs	175
SUPERIMPOSED DEAD LOAD TO	OTAL	195
DEAD LOAD TOTAL (Applied to	Analysis Models)	254
Framing Self-Weight	RAM Determines	
Partitions		5
	Negative as Mech. Not over entire	
Mechanical	area	-110
SEISMIC DEAD LOAD TOTAL (S	EE SEISMIC)	149
LIVE LOAD (Applied to Analysis	Models):	
Construction Live Load	reducible	20
Typical Live Load	reducible	20

^a Live load for roof areas are reducible in accordance with CBC.

6, BRID	GE (LEVELS 2 - 3)	
ITEM	DESCRIPTION	LOAD (PSF)
DEAD LOAD:		
Concrete Fill (Wet Wt of conc @ 150pcf) Steel Deck Allowance for Additional Fill	4.5" NWC 18 ga W2 10% of Fill	69 3 7
Ceiling, Mech, Misc. Partitions	Includes Fireproofing	14 0
SUPERIMPOSED DEAD LOAD TOT	AL	21
DEAD LOAD TOTAL (Applied to Ar	nalysis Models)	93
Framing Self-Weight	RAM Determines Negative as mech. Not over entire	0
Ceiling, Mech, Misc.	area	-4
SEISMIC DEAD LOAD TOTAL (for	Verification)	89
LIVE LOAD (Applied to Analysis Mo	odels):	
Construction Live Load	reducible	20
Typical Live Load	reducible	100

^a Live load for roof areas are reducible in accordance with CBC.

3.4. Cladding and Mechanical Loads

The cladding of the building consists of stucco veneer, precast panels, and curtain walls. The cladding load is considered to be 15psf for stucco veneer, 15psf for precast panels, and 15psf for curtain walls. These loads are applied as line loads on the beams supporting the cladding. The perimeter cladding load due to the stucco veneer is present at all floor levels along Grid A of the west building. All of the curtain wall loads are supported at Level 2 and do not impart gravity loads at the levels above. The Roof Level has a perimeter "eyebrow" that has been considered 15psf. Below is a diagram for the perimeter cladding loads at Level 2.

The mechanical equipment is located at the roof and the weight of the mechanical equipment in the load tables includes the weight of the curbs and the slab. The equipment weights from the mechanical engineer are shown in the figure below and the detailed calc is also included.

			1	100				1	MECHAN	ICAL EQUIPM	ENT & CONC	CRETE PAD I	OAD CALC				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Mech Unit	Location		Factor for Unknowns		Length (ft)	Width (ft)	Area (sq ft)	Perimeter (ft)	Effective Equip Wt (psf)	Concrete Slab thickness (inch)		Perimeter Curb Depth (inch)		Effective Area w/o perimeter curb (sq ft)	Concrete Slab Wt w/o perimeter curb (kip)	Total Slab Wt incl perimeter curb (psf)	
AHUI		34000	1.15	39.10	30	15	450	90	86.9	12	12	18	20.3	364.0	54.6	166.3	253.2
AHU2		34000	1.15	39.10	30	16	480	92	81.5	12	12	18	20.7	392.0	58.8	165.6	247.1
AHU3		28100	1.15	32.32	44	8	352	104	91.8	12	12	18	23.4	252.0	37.8	173.9	265.7
AHU4		52500	1.15	60.38	50	14	700	128	86.3	12	12	18	28.8	576.0	86.4	164.6	250.8
EFI		2500	1.15	2.88	11	8	88	38	32.7	12	12	18	8.6	54.0	8.1	189.2	221.9
EF2		2500	1.15	2.88	11	8	88	38	32.7	12	12	18	8.6	54.0	8.1	189.2	221.9
EF3 .		500	1.15	0.58	3	3	9	12	63.9	12	12	18	2.7	1.0	0.2	316.7	380.6
EF4		300	1.15	0.35	3	3	9	12	38.3	12	12	18	2.7	1.0	0.2	316.7	355.0
EF5		300	1.15	0.35	3	3	9	12	38.3	12	12	18	2.7	1.0	0.2	316.7	355.0
EF6		500	1.15	0.58	3	3	9	12	63.9	12	12	18	2.7	1.0	0.2	316.7	380.6
CT1		29000	1.15	33,35	18	12	216	60	154.4	12	12	18	13.5	160.0	24.0	173.6	328.0
CT2		29000	1.15	33.35	18	12	216	60	154.4	12	12	18	13.5	160.0	24.0	173.6	328.0

4. GRAVITY FRAMING SYSTEM DESIGN

4.1. Load Combinations

The following load combinations are per 2007 CBC Section 1605 are used for the gravity framing design.

- 1.4DL
- 1.2DL+1.6LL

4.2. Gravity Beam Design

4.2.1. General

Gravity beams will be designed using RAM software, v14.03.

5. LATERAL FORCE RESISTING SYSTEM DESIGN & ANALYSIS

5.1. Seismic Design Parameters

5.1.1. Mapped Site Parameters

The seismic parameters for the site based on the code seismic parameters for equivalent static analysis are listed in the following table.

Global Building Seismic Design Parameter per ASCE7-05			
Seismic Occupancy Category (All buildings)	III		
Short Period MCE at 0.2s, S _S	0.508g		
1.0s Period MCE, S ₁	0.223g		
Soil Profile Type, Site Class	D		
Short Period Site Coefficient at 0.2s, Fa	1.394		
Long Period Site Coefficient at 1.0s, F _v			
Adjusted Short Period MCE, S _{MS}	0.708g		
Adjusted 1.0s Period MCE, S _{M1}	0.436g		
Design Spectral Response Acceleration Parameter at Short Period, S _{DS}	0.472g		
Design Spectral Response Acceleration Parameter at 1.0s Period, S _{D1}	0.290g		
Seismic Design Category	D		
Importance Factor	1.25		
Vertical Seismic Load Component E _v = 0.2S _{DS} D	0.266D		
Cs (BRBF & SMRF)	0.074g		

5.1.2. <u>Design Response Spectrum</u>

The period and acceleration of the Design Spectral Response Curve is tabulated below. per ASCE 7 Section 11.4.5.

Period (seconds)	Spectral Response Acceleration (g)
0.000	0.189
0.010	0.212
0.030	0.258
0.050	0.304
0.070	0.350
0.090	0.396
0.110	0.442
0.123	0.472
0.300	0.472
0.616	0.472
0.700	0.415
0.800	0.363
0.900	0.323
1.000	0.291
1.500	0.194
2.000	0.145

