Principles of Constraint Programming

Krzysztof R. Apt

Chapter 2
Constraint Satisfaction Problems:
Examples

Objectives

- Define formally Constraint Satisfaction Problems (CSP),
- **Modeling**: representation of a problem as a CSP.
- Clarify various aspects of modeling:
 - in general several natural representations exist,
 - some representations straightforward, some non-trivial,
 - some representations rely on a "background" theory.
- Show the generality of the notion of a CSP.

Constraint Satisfaction Problems (CSP)

Given:

- Variables $Y := y_1, ..., y_k$,
- Domains D_1, \ldots, D_k ,

Constraint C on Y: subset of $D_1 \times \ldots \times D_k$.

Given:

- Variables $x_1, ..., x_n,$
- Domains D_1, \ldots, D_n ,

Constraint Satisfaction Problem (CSP):

$$\{C : x_1 \in D_1, ..., x_n \in D_n\}$$

 \mathcal{C} – constraints, each on a subsequence of x_1, \ldots, x_n .

$$(d_1, ..., d_n) \in D_1 \times ... \times D_n \text{ is a solution}$$
 to

$$\{\mathcal{C} : x_1 \in D_1, \dots, x_n \in D_n\}$$

if for every constraint $C \in \mathcal{C}$ on x_{i_1}, \ldots, x_{i_m}

$$(d_{i_1}, \dots, d_{i_m}) \in C.$$

Example: SEND + MORE = MONEY

Replace each letter by a different digit so that

$$\frac{SEND}{+\ MORE} \\ \frac{+\ MONEY}{}$$

is a correct sum.

Unique solution:

$$\begin{array}{r}
 9567 \\
 + 1085 \\
 \hline
 10652
 \end{array}$$

Variables: S, E, N, D, M, O, R, Y

Domains:

$$[1..9]$$
 for S, M ,

[0..9] for E, N, D, O, R, Y.

Alternatives for Equality Constraints

1. 1 equality constraint.

2. 5 equality constraints.

Use "carry" variables $C_1, ..., C_4 \in [0..1]$:

$$D + E = 10 \cdot C_1 + Y,$$

$$C_1 + N + R = 10 \cdot C_2 + E,$$

$$C_2 + E + O = 10 \cdot C_3 + N,$$

$$C_3 + S + M = 10 \cdot C_4 + O,$$

$$C_4 = M.$$

Alternatives for Disequality Constraints

1. 28 disequality constraints.

$$x \neq y \text{ for } x, y \in \{S, E, N, D, M, O, R, Y\},$$

 $x \prec y.$

2. A single constraint for disequalities.

For variables
$$x_1, ..., x_n$$
 with domains $D_1, ..., D_n$:
$$all_different(x_1, ..., x_n)$$

$$:= \{(d_1, ..., d_n) \mid d_i \neq d_j \text{ for } i \neq j\}.$$

Use

$$\mathtt{all_different}(S, E, N, D, M, O, R, Y).$$

3. Modeling it as an IP problem.

For $x, y \in \{S, E, N, D, MO, R, Y\}$ transform $x \neq y$ to

$$x - y \le 10 - 11z_{x,y},$$

 $y - x \le 11z_{x,y} - 1,$
where $z_{x,y} \in [0..1].$

Disadvantage: 28 new variables.

N Queens

Problem Place n queens on the $n \cdot n$ chess board so that they do not attack each other.

Variables: x_1, \ldots, x_n ,

Domains: [1..n],

Constraints:

For $i \in [1..n - 1]$ and $j \in [i + 1..n]$:

- $x_i \neq x_j$ (rows),
- $x_i x_j \neq i j$ (South-West – North-East diagonals),
- $x_i x_j \neq j i$ (North-West – South-East diagonals).

Zebra Puzzle

A small street has five differently **colored** houses on it.

Five men of different **nationalities** live in these five **houses**.

Each man has a different **profession**, each man likes a different **drink**, and each has a different **pet animal**.

Zebra puzzle, ctd

The Englishman lives in the red house.

The Spaniard has a dog.

The Japanese is a painter.

The Italian drinks tea.

The Norwegian lives in the first house on the left.

The owner of the green house drinks coffee.

The green house is on the right of the white house.

The sculptor breeds snails.

The diplomat lives in the yellow house.

They drink milk in the middle house.

The Norwegian lives next door to the blue house.

The violinist drinks fruit juice.

The fox is in the house next to the doctor's.

The horse is in the house next to the diplomat's.

Who has the zebra and who drinks water?

Zebra puzzle, ctd

25 Variables:

- nationality: english, spaniard, japanese, italian, norwegian,
- pet: dog, snails, fox, horse, zebra,
- profession: painter, sculptor, diplomat, violinist, doctor,
- drink: tea, coffee, milk, juice, water,
- colour: red, green, white, yellow, blue.

Domains: [1...5].

Constraints:

Constraints, ctd

- The Englishman lives in the red house:
 english = red,
- The Spaniard has a dog:
 spaniard = dog,
- The Japanese is a painter:japanese = painter,
- The Italian drinks tea:
 italian = tea,
- The Norwegian lives in the first house on the left:
 - norwegian = 1,
- The owner of the green house drinks coffee: **green** = **coffee**,
- The green house is on the right of the white house:
 - green = white + 1,

Constraints, ctd

• The sculptor breeds snails:

```
sculptor = snails,
```

- The diplomat lives in the yellow house:
 diplomat = yellow,
- They drink milk in the middle house: $\mathbf{milk} = 3$,
- The Norwegian lives next door to the blue house:

$$|\mathbf{norwegian} - \mathbf{blue}| = 1,$$

- The violinist drinks fruit juice:
 violinist = juice,
- The fox is in the house next to the doctor's: $|\mathbf{fox} \mathbf{doctor}| = 1,$
- The horse is in the house next to the diplomat's:

$$|\mathbf{horse} - \mathbf{diplomat}| = 1.$$

Crossword Puzzles

Fill the crossword grid with the words from:

- HOSES, LASER, SAILS, SHEET, STEER,
- HEEL, HIKE, KEEL, KNOT, LINE,
- AFT, ALE, EEL, LEE, TIE.

Variables: $x_1, ..., x_8,$

Domains: $x_7 \in \{AFT, ALE, EEL, LEE, TIE\}$, etc.

Constraints: one per crossing

$$C_{1,2} := \{ (\text{HOSES, SAILS}), (\text{HOSES, SHEET}), \\ (\text{HOSES, STEER}), (\text{LASER, SAILS}), \\ (\text{LASER, SHEET}), (\text{LASER, STEER}) \} .$$

etc.

Unique Solution

Qualitative Temporal Reasoning

Consider the following problem.

The **meeting** ran non-stop the whole day.

Each person stayed at the meeting for a continuous period of time.

The **meeting** began while **Mr Jones** was present and finished while **Ms White** was present.

Ms White arrived after the meeting has began.

In turn, **Director Smith** was also present but he arrived after **Jones** had left.

Mr Brown talked to Ms White in presence of Smith.

Could possibly **Jones** and **White** have talked during this meeting?

13 Temporal Relations (Allen '83)

The Composition Table

• Consider three events, A, B and C.

Known: Temporal relations

- -AB between A and B,
- -BC between B and C.

Question: What is the temporal relation BC between A and C?

- \bullet Allen '83 defined a 13 \times 13 table.
- Example: if A overlaps B and B is before C, then A is before C.

This yields entry

allen(overlaps, before, before).

In total 409 entries.

Composition Table, part 1

	before	after	meets	met-by	overlaps	overlby
before	before	TEMP	before	before meets overlaps starts during	before	before meets overlaps starts during
after	TEMP	after	during finishes after met-by overlby	after	during finishes after met-by overlby	after
meets	before	after met-by overlby started-by contains	before	finishes finished-by equals	before	overlaps starts during
met-by	before overlaps meets contains finished-by	after	starts started-by equals	after	during finishes overlby	after
overlaps	before	after met-by overlby started-by contains	before	overlby started-by contains	before meets overlaps	R-OVERLAP
overlby	before meets overlaps contains finished-by	after	overlaps contains finished-by	after	R-OVERLAP	after met-by overlby
starts	before	after	before	met-by	before meets overlaps	during finishes overlby
started-by	before meets overlaps contains finished-by	after	overlaps contains finished-by	met-by	overlaps contains finished-by	overlby
during	before	after	before	after	before meets overlaps starts during	during finishes after met-by overlby
contains	before meets overlaps contains finished-by	after met-by overlby contains started-by	overlaps contains finished-by	overlby started-by contains	overlaps contains finished-by	overlby started-by contains
finishes	before	after	meets	after	overlaps starts during	after met-by overlby
finished-by	before	after met-by overlby started-by contains	meets	overlby started-by contains	overlaps	overlby started-by contains
equals	before	after	meets	met-by	overlaps	overlby

The Composition Table, part 2

	starts	started-by	during	contains	finishes	finished-by	equals
before	before	before	before meets overlaps starts during	before	before meets overlaps starts during	before	before
after	during finishes after met-by overlby	after	during finishes after met-by overlby	after	after	after	after
meets	meets	meets	overlaps starts during	before	overlaps starts during	before	meets
met-by	during finishes overlby	after	during finishes overlby	after	met-by	met-by	met-by
overlaps	overlaps	overlaps contains finished-by	overlaps starts during	before meets overlaps contains finished-by	overlaps starts during	before meets overlaps	overlaps
overlby	during finishes overlby	after met-by overlby	during finishes overlby	after meets overlby started-by contains	overlby	overlby started-by contains	overlby
starts	starts	starts started-by equals	during	before meets overlaps contains finished-by	during	before meets overlaps	starts
started-by	starts started-by equals	started-by	during finishes overlby	contains	overlby	contains	started-by
during	during	during finishes after met-by overlby	during	TEMP	during	before meets overlaps starts during	during
contains	overlaps contains finished-by	contains	R-OVERLAP	contains	overlby contains started-by	contains	contains
finishes	during	after met-by overlby	during	after met-by overlby started-by contains	finishes	finishes finished-by equals	finishes
finished-by	overlaps	contains	overlaps starts during	contains	finishes finished-by equals	finished-by	finished-by
equals	starts	started-by	during	contains	finishes	finished-by	equals

Representation as a $\overline{\text{CSP}}$

- 5 events:
 - -M (meeting),
 - J (Jones's presence),
 - -B (Brown's presence),
 - -S (Smith's presence),
 - W (White's presence).
- This yields 10 variables, each associated with an ordered pair of events and each with a domain:

 $REAL\text{-}OVERLAP := TEMP - \{ \text{before, after, meets, met-by} \}$

- $-x_{\mathtt{J},\mathtt{M}} \in \{\mathtt{overlaps}, \mathtt{contains}, \mathtt{finished-by}\},$
- $-x_{\mathtt{M},\mathtt{W}} \in \{\mathtt{overlaps}\},\$
- $-x_{M,S} \in REAL\text{-}OVERLAP,$
- $-x_{\mathtt{J},\mathtt{S}} \in \{\mathtt{before}\},\$
- $-x_{B,S} \in REAL\text{-}OVERLAP,$
- $-x_{BW} \in REAL\text{-}OVERLAP$
- $-x_{S.W} \in REAL\text{-}OVERLAP$,
- $-x_{\text{J.B}}, x_{\text{J.W}}, x_{\text{M.B}} \in TEMP.$

Final question

Use rather

 $-x_{J,W} \in REAL\text{-}OVERLAP.$

Is the above CSP consistent?

Constraints

- allen: the composition table as a ternary relation (409 entries).
- For each ordered triple A,B,C of the events a constraint $C_{A,B,C}$ on the variables $x_{A,B}$, $x_{B,C}$, $x_{A,C}$:

$$C_{A,B,C} := allen \cap (D_{A,B} \times D_{B,C} \times D_{A,C}).$$

where

$$x_{A,B} \in D_{A,B}$$

$$x_{\mathsf{B},\mathsf{C}} \in D_{\mathsf{B},\mathsf{C}},$$

$$x_{A,C} \in D_{A,C}$$
.

• In total 10 constraints.

Qualitative Spatial Reasoning

Consider the following problem.

Two houses are connected by a **road**. The **first house** is surrounded by its **garden** or is adjacent to its boundary while the **second house** is surrounded by its **garden**.

What can we conclude about the relation between the second garden and the road?

8 Spatial Relations

The composition table for RCC8

	disjoint	meet	equal	inside	coveredby	contains	covers	overlap
disjoint	RCC8	disjoint meet inside coveredby overlap	disjoint	disjoint meet inside coveredby overlap	disjoint meet inside coveredby overlap	disjoint	disjoint	disjoint meet inside coveredby overlap
meet	disjoint meet contains covers overlap	disjoint meet equal coveredby covers overlap	meet	inside coveredby overlap	meet inside	disjoint	disjoint meet	disjoint meet inside coveredby overlap
equal inside	disjoint disjoint	meet disjoint	equal inside	inside inside	inside	contains RCC8	disjoint meet inside coveredby overlap	overlap disjoint meet inside coveredby overlap
coveredby	disjoint	disjoint meet	coveredby	inside	inside coveredby	disjoint meet contains covers overlap	disjoint meet equal coveredby covers overlap	disjoint meet overlap coveredby overlap
contains	disjoint meet contains covers overlap	contains covers overlap	contains	equal inside coveredby contains covers overlap	contains covers overlap	contains	contains	contains covers overlap
covers	disjoint meet contains covers overlap	meet contains covers overlap	covers	inside coveredby overlap	equal coveredby covers overlap	contains	contains covers	contains covers overlap
overlap	disjoint meet contains covers overlap	disjoint meet contains covers overlap	overlap	inside coveredby overlap	inside coveredby overlap	disjoint meet contains covers overlap	disjoint meet contains covers overlap	RCC8

Representation as a CSP

- 5 spatial objects:
 - -H1 (house 1),
 - -G1 (garden 1),
 - -H2 (house 2),
 - -G2 (garden 2),
 - -R (road).
- 10 variables with domains, each associated with an ordered pair of spatial objects:
 - $-x_{\text{H1,G1}} \in \{\text{inside,coveredby}\},\$
 - $-x_{\text{H2.G2}} \in \{\text{inside}\},\$
 - $-x_{\text{H1,H2}} \in \{\text{disjoint}\},\$
 - $-x_{\text{H1,R}} \in \{\text{meet}\},\$
 - $-x_{\text{H2,R}} \in \{\text{meet}\},\$
 - $-x_{G1,G2} \in \{\text{disjoint,meet}\},\$
 - $-x_{\text{H1,G2}} \in \{\text{disjoint,meet}\},\$
 - $-x_{G1,H2} \in \{\text{disjoint,meet}\},\$
 - $-x_{G1,R} \in RCC8$,
 - $-x_{G2.R} \in RCC8.$

Constraints

- S_3 : the composition table as a ternary relation (193 triples).
- For each ordered triple A,B,C of the objects a constraint $C_{A,B,C}$ on the variables $x_{A,B}, x_{B,C}, x_{A,C}$:

$$C_{A,B,C} := S_3 \cap (D_{A,B} \times D_{B,C} \times D_{A,C}).$$

where

$$x_{A,B} \in D_{A,B}$$

$$x_{\mathsf{B},\mathsf{C}} \in D_{\mathsf{B},\mathsf{C}},$$

$$x_{A,C} \in D_{A,C}$$
.

• In total 10 constraints.

Analysis of Polyhedral Scenes

Four labels

- +, mark **convex** edges, (takes 270 degrees to rotate)
- –, mark concave edges,(takes 90 degrees to rotate)
- → and ← mark boundary edges
 (formed by two planes one of which is hidden).

Examples

Legal Junctions

Representation as a CSP

Variables: edges,

Domains: $\{+,-,\rightarrow,\leftarrow\}$,

Constraints: junctions.

Four type of constraints: L, fork, T, and arrow.

Example:

$$L := \{(\rightarrow, \leftarrow), (\leftarrow, \rightarrow), (+, \rightarrow), (\leftarrow, \rightarrow), (\leftarrow, \rightarrow), (\leftarrow, \rightarrow), (\leftarrow, \rightarrow), (\rightarrow, \rightarrow)\}.$$

Cube as a CSP:

arrow(AC, AE, AB), fork(BA, BF, BD), L(CA, CD), arrow(DG, DC, DB), L(EF, EA), arrow(FE, FG, FB),L(GD, GF).

Representation as a CSP, ctd

Also needed

$$edge := \{(+,+), (-,-), (\to, \leftarrow), (\leftarrow, \to)\}.$$

edge captures the complementary character of \rightarrow and \leftarrow .

Nine constraints:

```
edge(AB, BA),
edge(AC, CA),
edge(CD, DC),
edge(BD, DB),
edge(AE, EA),
edge(EF, FE),
edge(BF, FB),
edge(FG, GF),
edge(DG, GD).
```

Constrained Optimization Problems

- Given:
 - a CSP

$$\mathcal{P} := \langle \mathcal{C} ; x_1 \in D_1, \dots, x_n \in D_n \rangle,$$

— a function

$$obj: Sol \rightarrow \mathcal{R}$$

- (\mathcal{P}, obj) a constrained optimization problem (COP).
- Task: Find a solution d to \mathcal{P} for which the value obj(d) is optimal (below: maximal).

Example: Knapsack Problem

Given: a knapsack of a fixed volume and n objects, each with a volume and a value. Find a collection of these objects with maximal total value that fits in the knapsack.

Representation as a COP:

Given: knapsack volume v and n objects with volumes $a_1, ..., a_n$ and values $b_1, ..., b_n$.

Variables: x_1, \ldots, x_n ,

Domains: $\{0, 1\}$,

Constraint:

$$\sum_{i=1}^{n} a_i \cdot x_i \le v,$$

Objective function:

$$\sum_{i=1}^{n} b_i \cdot x_i.$$

Example: Golomb Ruler

- Golomb ruler with m marks: an ordered sequence of m natural numbers such that the distance between any two elements in this sequence is **unique**.
- The largest element of a Golomb ruler is its length.
- An optimum Golomb ruler with m marks: a Golomb ruler with m marks with a minimal length.

Optimum Golomb Ruler with 5 marks

is a Golomb ruler with 5 marks. Indeed, the distances are:

- for elements one apart: 1, 3, 5, 2,
- for elements two apart: 4, 8, 7,
- for elements three apart: 9, 10,
- for elements four apart: 11.

0,1,4,9,11 is an optimum Golomb ruler with 5 marks.

Largest known optimum Golomb ruler has 21 marks and is of length 333.

Representations as a COP

Fix m.

- Pair: two numbers i, j such that $1 \le i < j \le m$.
- \bullet Pairs i, j and k, l are
 - **different** if $i \neq k$ or $j \neq l$,
 - **disjoint** if $i \neq k$ and $j \neq l$.
- Example:
 - 1,3 and 1,4 are different but not disjoint.
 - 1,3 and 2,4 are disjoint (and so different).

Representation 1

Variables: x_1, \ldots, x_m ,

Domains: \mathcal{N} ,

Constraints:

- $x_i < x_{i+1} \text{ for } i \in [1..m-1],$
- $x_j x_i \neq x_l x_k$ for all different pairs i, j and k, l.

Objective function: $-x_n$.

Representations as a COP, ctd

Representation 2

Constraints:

- $x_i < x_{i+1} \text{ for } i \in [1..m-1],$
- $x_j x_i \neq x_l x_k$ for all disjoint pairs i, j and k, l.

Representation 3

Variables: $x_1, ..., x_m, z_{i,j}$ for each pair i, j, \ldots, z_m

Domains:

 \mathcal{N} for x_1, \ldots, x_m , $\mathcal{N} \setminus \{0\}$ for $z_{i,j}$,

Constraints:

- $z_{i,j} = x_j x_i$ for each pair i, j,
- $z_{i,j} \neq z_{k,l}$ for all different pairs i, j and k, l.

We can replace here "different" by "disjoint".

Representation 4

Replace the disequality constraints by a single all_different constraint on the variables $z_{i,j}$.

Different Representations as CSP

Less Contrived Examples

- A Microcode Label Assignment Problem
 - CSP representation: 187 finite integer domain variables,
 - IP representation: 2024 Boolean variables,
- A Packing Problem
 - -CSP representation: 7 finite integer domain variables, 2 constraints,
 - IP representation: 42 Boolean variables,18 constraints,
- A Golf Scheduling Problem
 - -CP representation: 176 variables,
 - IP representation 1: 2574 variables,
 - -IP representation 2: 592 variables.

Objectives

- Define formally Constraint Satisfaction Problems (CSP),
- **Modeling**: representation of a problem as a CSP.
- Clarify various aspects of modeling:
 - in general several natural representations exist,
 - some representations straightforward, some non-trivial,
 - some representations rely on a "background" theory.
- Show the generality of the notion of a CSP.