Q. Consider the following grammar.

```
E \rightarrow T print{" E-T is reduced"}

E \rightarrow E + T print{"E + T is reduce"}

T \rightarrow F print{"F is reduce"}

T \rightarrow T * F print{" T*F reduce"}

F \rightarrow a print{ "a is reduce , value is" a.val}

F \rightarrow b print{ "b is reduce , value is" bs.val}

F \rightarrow (E)
```

consider 'a' as integer and 'b' as float number. Following are the NFA for integer and float number.

Following are the table for integer and float NFA.

Present State	[0-9]
0	1
1	1

For float

Present State	[0-9]	
0	0	1
1	2	-
2	2	_

Following is LALR parsing table for this grammar.

LR table										
C+ c+ c		ACTION						GOTO		
State	+	*	a	b	()	\$	E	T	F
0			s3	s4	s5				1	2
1	acc	s 6				acc	acc			
2	r2	r2				r2	r2			
3	r4	r4				r4	r4			
4	r5	r5				r5	r5			
5			s 3	s 4	s 5			7	1	2
6			s 3	s 4	s 5					8
7	s <mark>10</mark>					s9				
8	r3	r3				r3	r3			
9	r6	r6				r6	r6			
10			s 3	s 4	s 5				11	2
11	r1	s6				r1				

- → You are required to do following tasks.
- 1. Save all these tables in files , you can name as per your choice and can also use any pattern for table.
- 2. You need to read input from input.txt and identify tokens. (For example for input 35 + 45.5 tokens will be a+b.)

- 3. You need to parse identified tokens using LALR-1 parser. And each action should be printed (either it is shift, reduce etc).
- 4. You also need to execute corresponding semantic rules against each reduction.