

ANALYTICAL HIERARCHY PROCESS

Lutfi Hakim, S.Pd., M.T.

Overview

Pada topik ini, kita akan mempelajari:

- Overview AHP
- Tahapan AHP
- Contoh Kasus
- Kuis

Overview

- AHP dikembangkan oleh Prof. Thomas L. Saaty (Guru Besar Matematika University of Pittsburgh) pada tahun 1970
- AHP merupakan metode pengambilan keputusan yang melibatkan sejumlah kriteria dan alternatif yang dipilih berdasarkan pertimbangan semua kriteria terkait
- Setiap kriteria memiliki derajat kepentingan yang berbeda-beda
- Setiap alternatif memiliki preferensi yang berbeda-beda menurut masingmasing kriteria yang digunakan
- Tiga prinsip utama AHP: decomposition, comparative judgement, & logical consistency

Tahapan Metode AHP

Dekomposisi masalah / penyusunan hierarki

Penilaian / pembobotan untuk membandingkan elemen-elemen

Penyusunan matriks dan uji konsistensi

Penetapan prioritas pada masing-masing hierarki

Sintesis (iterasi matriks) dari prioritas dan penetapan alternatif terbaik

Menyusun Hierarki

Penilaian / Pembandingan Elemen

- Antar-kriteria (heirarki II) maupun antar-alternatif pada masing-masing kriteria (hierarki III) dibandingkan satu sama lain
- Hasil perbandingan berupa suatu nilai yang menunjukkan tingkat kepentingan kriteria/alternatif tersebut terhadap kriteria/alternatif pembandingnya
- Dalam hal ini berlaku aksioma reciprocal
 - Jika A 5 kali lebih penting dari B, maka tingkat kepentingan B adalah
 1/5 kali dari A
 - Jika sama penting antara A dan B, maka A dan B sama-sama bernilai 1

Penyusunan Matriks Perbandingan

	E1	E2	E 3	E4
E1	1	B_1	B_2	B_3
E2	A_1	1	B_4	B_5
E3	A_2	A_4	1	B_6
E4	A_3	A_5	A_6	1
Т	T_1	T_2	T_3	T_4

- A_1, \dots, A_n menunjukkan nilai perbandingan tingkat antar-elemen (kriteria maupun alternatif)
- B_1, \dots, B_n merupakan "kebalikan" dari nilai A_1, \dots, A_n (aksioma reciprocal)
 - $B_1 = \frac{1}{A_1}$
 - $B_2 = \frac{1}{A_2}$
 - dst
- Penjumlahan nilai-nilai dalam satu kolom yang sama akan menghasilkan vektor nilai total kolom (T)

Normalisasi Matriks Perbandingan

	E1	E2	E 3	E4
E1	1	B_1	B_2	B_3
E2	A_1	1	B_4	B_5
E 3	A_2	A_4	1	B_6
E4	A_3	A_5	A_6	1
Т	T_1	T_2	T_3	T_4

Normalisasi nilai-nilai pada matriks perbandingan diperoleh dengan membagi masing-masing nilai dengan total nilai pada kolomnya (vektor *T*)

	E1	E2	E 3	E4
E1	n_{11}	n_{12}	n_{13}	n_{14}
E2	n_{21}	n_{22}	n_{23}	n_{24}
E3	n_{31}	n_{32}	n_{33}	n_{34}
E4	n_{41}	n_{42}	n_{43}	n_{44}

•
$$n_{11} = \frac{1}{T_1}$$

•
$$n_{21} = \frac{A_1}{T_1}$$

•
$$n_{23} = {}^{B_4}/_{T_3}$$

dst

Perhitungan Nilai Bobot

	E1	E2	E3	E4	PV	W
E1	n_{11}	n_{12}	n_{13}	n_{14}	P_1	W_1
E2	n_{21}	n_{22}	n_{23}	n_{24}	P_2	W_2
E3	n ₃₁	n ₃₂	n_{33}	n_{34}	P_3	W_3
E4	n_{41}	n_{42}	n_{43}	n_{44}	P_4	W_4

Nilai prioritas vektor (PV) diperoleh dengan menjumlahkan semua nilai hasil normalisasi yang berada dalam satu baris yang sama

$$P_i = \sum n_{ij}$$

Nilai bobot/preferensi tiap elemen (W) diperoleh dari pembagian nilai PV dengan jumlah elemen yang terlibat $W_i = \frac{P_i}{N}$

$$W_i = \frac{P_i}{N}$$

Perhitungan Nilai Eigen

• Nilai eigen (λ) diperoleh melalui operasi perkalian matriks antara vektor nilai bobot (**W**) dengan vektor nilai total kolom (**T**)

Uji Konsistensi

- Untuk mengetahui kekonsistenan suatu matriks perbandingan yang digunakan pada AHP, dapat digunakan nilai Consistency Index (CI) dan Consistency Ratio (CR)
- CI dihitung berdasarkan nilai eigen (λ) dan jumlah kriteria (N) yang digunakan melalui formula:

$$CI = \frac{\lambda - N}{N - 1}$$

• CR didapatkan dari hasil perbandingan antara CI dengan nilai **Random** Consistency Index (RI) untuk jumlah elemen yang sama dengan jumlah kriteria yang digunakan

$$CR = \frac{CI}{RI}$$

Uji Konsistensi

Tabel RI										
n	1	2	3	4	5	6	7	8	9	10
RI	0	0	0,58	0,9	1,12	1,24	1,32	1,41	1,45	1,49

• Suatu matriks perbandingan dinyatakan konsisten jika $CR \leq 0$, 1

Contoh Kasus

- Seseorang ingin membeli sebuah rumah di Kota Semarang.
- Kriteria yang digunakan untuk mengambil keputusan antara lain:
 - Lokasi (L)
 - Harga (H)
 - Desain (D)
 - Fasilitas (F)
- Terdapat 4 alternatif lokasi pilihan, yaitu:
 - Taman Bukit Asri (TBA)
 - Bukit Semarang Baru (BSB)
 - Ciputra Sunindo (CS)
 - Tlogosari Regency (TR)

Hierarki Kasus

Nilai Perbandingan

Misal
ditetapkan
nilai
perbandingan
yang
digunakan
adalah
sebagai
berikut:

Nilai	Keterangan
1	Kriteria/Alternatif A sama penting dengan kriteria/alternatif B
2	A mendekati sedikit lebih penting dari B
3	A sedikit lebih penting dari B
4	A mendekati lebih penting dari B
5	A lebih penting dari B
6	A mendekati sangat penting dari B
7	A sangat penting dari B
8	A mendekati mutlak sangat penting dari B
9	A mutlak sangat penting dari B

Matriks Perbandingan Kriteria

Diasumsikan nilai perbandingan yang diperoleh untuk tiap kriteria adalah sebagai berikut:

- H:L = 2 → harga mendekati sedikit lebih penting dari lokasi
- D:L = 3 → desain sedikit lebih penting dari lokasi
- F:L = 5 \rightarrow fasilitas lebih penting dari lokasi
- D:H = 3 \rightarrow desain sedikit lebih penting dari harga
- F:H = 4 → fasilitas mendekati lebih penting dari harga
- F:D = 2 → fasilitas mendekati sedikit lebih penting dari desain

	L	Н	D	F
L	1	1/2	1/3	1/5
Н	2	1	1/3	1/4
D	3	3	1	1/2
F	5	4	2	1
Total	11	8,5	3,6667	1,95

Normalisasi Matriks Perbandingan Kriteria

T 11 8,5 3,6667 1,95

	L	н	D	F
L	1 / 11	0,5 / 8,5	0,3333 / 3,6667	0,2 / 1,95
н	2/11	1 / 8,5	0,3333 / 3,6667	0,25 / 1,95
D	3/11	3 / 8,5	1 / 3,6667	0,5 / 1,95
F	5 / 11	4 / 8,5	2 / 3,6667	1 / 1,95

	L	Н	D	F
L	0,0909	0,0588	0,0909	0,1026
Н	0,1818	0,1176	0,0909	0,1282
D	0,2727	0,3529	0,2727	0,2564
F	0,4545	0,4706	0,5454	0,5128

Bobot Kriteria

	L	н	D	F
L	0,0909	0,0588	0,0909	0,1026
Н	0,1818	0,1176	0,0909	0,1282
D	0,2727	0,3529	0,2727	0,2564
F	0,4545	0,4706	0,5454	0,5128

W	PV
0,0858	0,3432
0,1296	0,5186
0,2887	1,1548
0,4959	1,9834

Uji Konsistensi Perbandingan Kriteria

T 11 8,5 3,6667 1,95

W

0,0858

0,1296

0,2887

0,4959

$$\lambda = (11 \cdot 0.0858) + (8.5 \cdot 0.1296) + (3.6667 \cdot 0.2887) + (1.95 \cdot 0.4959)$$

$$= 0.9438 + 1.1019 + 1.0586 + 0.9669$$

$$= 4.0713$$

$$CI = \frac{4,0713-4}{4-1} = 0,0238$$

$$CR = \frac{0.0238}{0.9} = 0.0264 \Rightarrow \text{konsisten}$$

Perbandingan Alternatif

- Untuk tiap kriteria, masing-masing alternatif dibandingkan
- Proses sama seperti melakukan perbandingan antar-kriteria
 - Buat matriks perbandingannya
 - Lakukan normalisasi matriks
 - Hitung nilai bobot

Perbandingan Alternatif pada Kriteria Lokasi

	ТВА	BSB	CS	TR
TBA	1	0,3333	0,3333	0,3333
BSB	3	1	1	2
CS	3	1	1	2
TR	3	0,5	0,5	1

	ТВА	BSB	CS	TR	PV	W
TBA	0,1	0,1176	0,1176	0,0625	0,3978	0,994
BSB	0,3	0,3529	0,3529	0,375	1,3809	0,3452
cs	0,3	0,3529	0,3529	0,375	1,3809	0,3452
TR	0,3	0,1765	0,1765	0,1875	0,8404	0,2101

Perbandingan Alternatif pada Kriteria Harga

	TBA	BSB	CS	TR
TBA	1	0,3333	0,25	0,3333
BSB	3	1	1	0,5
CS	4	1	1	0,5
TR	3	2	2	1

	ТВА	BSB	cs	TR	PV	W
TBA	0,0909	0,0769	0,0588	0,1429	0,3695	0,0924
BSB	0,2727	0,2308	0,2353	0,2143	0,9531	0,2383
CS	0,3636	0,2308	0,2353	0,2143	1,0439	0,2609
TR	0,2727	0,4615	0,4706	0,4286	1,6334	0,4084

Perbandingan Alternatif pada Kriteria Desain

	ТВА	BSB	CS	TR
ТВА	1	0,2	0,25	0,25
BSB	5	1	0,6667	2
CS	4	1,5	1	2
TR	4	0,5	0,5	1

	ТВА	BSB	CS	TR	PV	W
TBA	0,0714	0,0625	0,1034	0,0476	0,2849	0,0712
BSB	0,3571	0,3125	0,2759	0,3809	1,3265	0,3316
CS	0,2857	0,4688	0,4138	0,3809	1,5492	0,3873
TR	0,2857	0,1563	0,4139	0,1905	0,8393	0,2098

Perbandingan Alternatif pada Kriteria Fasilitas

	ТВА	BSB	cs	TR
TBA	1	5	5	4
BSB	0,2	1	1	2
CS	0,2	1	1	2
TR	0,25	0,5	0,5	1

	ТВА	BSB	CS	TR	PV	W
TBA	0.6061	0.6667	0.6667	0.4444	2.3838	0.5959
BSB	0.1212	0.1333	0.1333	0.2222	0.6101	0.1525
CS	0.1212	0.1333	0.1333	0.2222	0.6101	0.1525
TR	0.1515	0.0667	0.0667	0.1111	0.3959	0.0989

Matriks Skor (Bobot) Alternatif

• Nilai bobot masing-masing alternatif pada tiap kriteria dikumpulkan ke dalam satu matriks $(\mathbf{W_A})$

	L	Н	D	F
TBA	0,994	0,0924	0,0712	0,5959
BSB	0,3452	0,2383	0,3316	0,1525
cs	0,3452	0,2609	0,3873	0,1525
TR	0,2101	0,4084	0,2098	0,0989

Skor Akhir Tiap Alternatif

- Matriks skor alternatif (W_A)
 dikalikan dengan vektor bobot
 kriteria (W) akan menghasilkan
 sebuah vektor skor akhir (S)
- Alternatif pemilik skor tertinggilah yang dinyatakan sebagai alternatif terpilih

	L	Н	D	F
ТВА	0,994	0,0924	0,0712	0,5959
BSB	0,3452	0,2383	0,3316	0,1525
CS	0,3452	0,2609	0,3873	0,1525
TR	0,2101	0,4084	0,2098	0,0989

W	Α	S
0,0858	TBA	0.336
0,1296	BSB	0.231
0,2887	CS	0.250
0,4959	TR	0.180

Hands-on

- ANALYTICAL HIERARCHY PROCESS

AHP dikembangkan oleh Prof. Thomas L. Saaty (Guru Besar Matematika University of Pittsburgh) pada tahun 1970. AHP merupakan metode pengambilan keputusan yang melibatkan sejumlah kriteria dan alternatif yang dipilih berdasarkan pertimbangan semua kriteria terkait. Setiap kriteria memiliki derajat kepentingan yang berbeda-beda. Setiap alternatif memiliki preferensi yang berbeda-beda menurut masing-masing kriteria yang digunakan. Tiga prinsip utama AHP: decomposition, comparative judgement, & logical consistency

Nilai Pembanding

Pada saat membandingkan dua buah kriteria maupun aternatif pada AHP, dapat digunakan nilai pembanding misalnya sebagai berikut:

Nilai	Keterangan
1	Kriteria/Alternatif A sama penting dengan kriteria/alternatif B
2	A mendekati sedikit lebih penting dari B
3	A sedikit lebih penting dari B
Λ	A mandalati labih nanting dari D

https://colab.research.google.com/drive/1xZdr2gfeOh6nng_ttgpSuGHVm2-kvPGP?usp=sharing

Kuis: Deskripsi

- Seseorang ingin membeli sebuah mobil sesuai dengan kriteria yang diinginkan, yaitu style (S), keandalan (K), dan konsumsi bahan bakar (B)
- Pilihan mobil yang menjadi alternatif antara lain:
 - A1 : Avanza
 - A2 : Xenia
 - A3 : Ertiga
 - A4 : Grand Livina
- Dengan menggunakan AHP, tentukanlah mobil yang akan dipilih untuk dibeli

Kuis: Susunan Hierarki

Kuis: Perbandingan Kriteria

- Keandalan : style 👈 2
- Konsumsi bahan bakar : style → 1/3
- Konsumsi bahan bakar : keandalan → 1/4

Kuis: Perbandingan Alternatif Pada Tiap Kriteria

Style	Keandalan	Konsumsi Bahan Bakar
 Xenia : Avanza → ½ 	 Xenia : Avanza → ½ 	 Xenia : Avanza → ½
• Ertiga : Avanza → 3	 Ertiga : Avanza → 4 	 Ertiga : Avanza → 2
 Grand Livina : Avanza → 4 	 Grand Livina : Avanza → 3 	 Grand Livina : Avanza → ¼
• Ertiga : Xenia → 2	• Ertiga : Xenia → 5	 Ertiga : Xenia → 1,5
Grand Livina : Xenia → 5	 Grand Livina : Xenia → 4 	 Grand Livina : Xenia → 1/3
Grand Livina : Ertiga → ½	• Grand Livina : Ertiga → 1/3	 Grand Livina : Ertiga → ¼

