

FAST NEURAL NETWORK ADAPTATION VIA PARAMETER REMAPPING AND ARCHITECTURE SEARCH

报告人: 陈宇航

时间: 2020年8月13日

Outline

- Motivation
- Method
- Search space
- Experiments

motivation

NAS for detection and segmentation can improve accuracy but one major challenge is:

The ImageNet pre-training of the search space(super net) representation or the searched networks incurs huge computational cost.

contribution:

propose a Fast Neural Network Adaptation (FNA) method to adapt both architecture and parameters of a seed network to become a network with different depth, width, or kernels via Parameter Remapping.

Outline

- Motivation
- Method
- Search space
- Experiments

Method

Method

kernel size settings{3,5,7} Expansion ratios {1,3,6} skip_connection

$$\overline{o}^{(i)}(x) = \sum_{o \in O} \frac{exp(\alpha_o^{(i)})}{\sum_{o' \in O} exp(\alpha_{o'}^{(i)})} o(x),$$

Outline

- Motivation
- Method
- Experiments

Method		OS	iters	Params	MAdds	mIOU(%)
MobileNetV2 (Sandler et al., 2018)				2.57M	24.52B	75.5
DPC (Chen et al., 2018a)	DeepLabv3	16	100K	2.51M	24.69B	75.4(75.7)
FNA	_			2.47M	24.17B	76.6
Auto-DeepLab-S (Liu et al., 2019a)		8	500K	10.15M	333.25B	75.2
FNA	DeepLabv3+	16	100K	5.71M	210.11B	77.2
FNA	_	8	100K	5.71M	313.87B	78.0

Method	Total Cost	ArchAdapt Cost	ParamAdapt Cost
DPC (Chen et al., 2018a) Auto-DeepLab-S (Liu et al., 2019a)	62.2K GHs 244.0 GHs	62.2K GHs 72.0 GHs	30.0* GHs 172.0 [†] GHs
FNA	35.8 GHs	1.4 GHs	34.4 GHs

Method	Params	MAdds	mAP(%)	
ShuffleNetV2-20 (Chen et al., 2019b)		13.19M	132.76B	32.1
MobileNetV2 (Sandler et al., 2018)	RetinaNet	11.49M	133.05B	32.8
DetNAS (Chen et al., 2019b)	Remarket	13.41M	133.26B	33.3
FNA		11.73M	133.03B	33.9
MobileNetV2 (Sandler et al., 2018)		4.3M	0.8B	22.1
Mnasnet-92 (Tan et al., 2018)	SSDLite	5.3M	1.0B	22.9
FNA		4.6M	0.9B	23.3

Method	Total Cost	Super Network			Target Network	
Method	Iotal Cost	Pre-training	Finetuning	Search	Pre-training	Finetuning
DetNAS (Chen et al., 2019b)	68 GDs	12 GDs	12 GDs	20 GDs	12 GDs	12 GDs
FNA (RetinaNet)	9.2 GDs	-	-	6 GDs	-	3.2 GDs
FNA (SSDLite)	21.6 GDs	-	-	6.6 GDs	-	15 GDs

Row Num	Method	MAdds(B)	mIOU(%)
(1)	Remap \rightarrow ArchAdapt \rightarrow Remap \rightarrow ParamAdapt (FNA)	24.17	76.6
(2)	RandInit \rightarrow ArchAdapt \rightarrow Remap \rightarrow ParamAdapt	24.29	76.0
(3)	Remap \rightarrow ArchAdapt \rightarrow RandInit \rightarrow ParamAdapt	24.17	73.0
(4)	$RandInit \rightarrow ArchAdapt \rightarrow RandInit \rightarrow ParamAdapt$	24.29	72.4
(5)	$Remap \rightarrow ArchAdapt \rightarrow Retrain \rightarrow ParamAdapt$	24.17	76.5

Row Num	Method	MAdds(B)	mAP(%)
(1)	DetNAS (Chen et al., 2019b)	133.26	33.3
(2)	Remap \rightarrow DiffSearch \rightarrow Remap \rightarrow ParamAdapt (FNA)	133.03	33.9
(3)	$Remap \rightarrow RandSearch \rightarrow Remap \rightarrow ParamAdapt$	133.11	33.5
(4)	$RandInit \rightarrow RandSearch \rightarrow Remap \rightarrow ParamAdapt$	133.08	31.5
(5)	$Remap \rightarrow RandSearch \rightarrow RandInit \rightarrow ParamAdapt$	133.11	25.3
(6)	$RandInit \rightarrow RandSearch \rightarrow RandInit \rightarrow ParamAdapt$	133.08	24.9

Channel:

$$egin{aligned} W_s &= (W_s^{(1)} \dots W_s^{(p)}) \ W_n &= (W_n^{(1)} \dots W_n^{(q)}), \ y_i &\leftarrow \gamma rac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} + eta, \ x_i &= (x_i^{(1)} \dots x_i^{(p)}), \ |\gamma| &= (|\gamma^{(1)}| \dots |\gamma^{(p)}|). \end{aligned}$$

Algorithm 1: Weights Remapping Function

Input: the seed weights W_s and the new weights W_n , the reference vector v

- 1 // get indices of topk values of the vector
- $a \leftarrow topk\text{-}indices(v, k = q)$
- 3 // sort the indices
- 4 sort(a)
- $for i \in {1, 2, ..., q do}$
- $oldsymbol{W}_n^{(i)} = W_s^{(oldsymbol{a}[i])}$
- 7 end

Output: W_n with remapped values

$$std(\boldsymbol{W}_{s}^{(1)}) \dots std(\boldsymbol{W}_{s}^{(p)})$$

 $(||\boldsymbol{W}_{s}^{(1)}||_{1} \dots ||\boldsymbol{W}_{s}^{(p)}||_{1}).$

Figure 3: Parameter Remapping on the kernel-level with a dilation setting.

Table 7: Study the methods of Parameter Remapping.

Method	Width-BN	Width-Std	Width-L1	Kernel-Dilate	FNA
mIOU(%)	75.8	75.8	75.3	75.6	76.6

The End!