NB.06.F3

July 23, 2024

1 Proposition

Let t be a line of \mathbb{P}^2 . * If t is not tangent to the isotropic conic, $t \subseteq \text{Eig}(C)$ for a cubic C if and only $C = t^2 \ell$, where ℓ is any line of the plane. * If t is tangent to the isotropic conic (in a point $\sim P$), $t \subseteq \text{Eig}(C)$ for a cubic C if and only if

$$C = t^2 \ell + \lambda C(r_0),$$

where ℓ is any line of the plane, $\lambda \in \mathbb{C}$, r_0 is any fixed line passing through P different from t and $C(r_0)$ is defined by

$$C(r) = \left(r^2 - 3\left(a^2 + b^2 + c^2\right)\mathcal{Q}\mathrm{iso}\right)r$$

Moreover, if t is tangent to the isotropic conic at P, any cubic C with $t \subseteq \text{Eig}(C)$ is singular in P and t is one of the tangents C in P.

```
[1]: load("basic_functions.sage")
```

- 1.1 If a cubic C has an eigenline t tangent to the isotropic conic, then the equation of C is F_1 , so we have a linear system of cubics of dimension 3.
- 1.2 This linear system is of the form $t^2\ell + \lambda C(r)$ for any fixed line r different from t. Hence the family of cubics F_1 and the family of cubics $t^2\ell + \lambda C(r)$ coincide.

We define the point P_1 and the line tg1, tangent to Ciso in P_1 , the eigenpoint locus of the generic cubic F of the plane

```
[2]: P1 = vector((1, ii, 0))
tg1 = x+ii*y
eigF = eig(F)
```

In order to have that the points of tg1 are eigenpoints, we substitute x = -iy into eigF and we get a list of three equations that have to be satisfied for all values of x

We construct the list eqs of equations in a_0, \dots, a_9 that must be satisfied in order to have tg1 eigenline:

In order to obtain the cubics F_1 which have tg1 as eigenline, we reduce F w.r.t. the ideal (eqs).

```
[5]: F1 = S.ideal(eqs).reduce(F)
```

 F_1 has the variables $x, y, z, a_2, a_3, a_6, a_9$, hence is a linear space of dimension 3 in \mathbb{P}^9 generated by four cubics which are the polynomials G_1, G_2, G_3, G_4 below:

```
[6]: assert(F1.variables() == (x, y, z, a2, a3, a6, a9))

G1, G2, G3, G4 = (
   F1.coefficient(a2), F1.coefficient(a3),
   F1.coefficient(a6), F1.coefficient(a9)
)
```

We define four other cubics which are H_1 , H_2 , H_3 as follows:

```
[7]: H1, H2, H3 = x*tg1^2, y*tg1^2, z*tg1^2
```

and H_4 , constructed in this way: we take the generic line r passing through the point P_1 , (which is l_1tg1+l_2z) and H_4 is the corresponding cubic whose eigenpoints are the two tangent lines to Ciso in the points $r \cap Ciso$, which is given by C(r), i.e. the formula $(r^2 - 3(a^2 + b^2 + c^2)Ciso)r$ (where $a = l_1, b = il_1, c = il_2$)

```
[8]: r = 11*tg1+12*z
H4 = r*(r^2-3*(r.coefficient(x)^2+r.coefficient(y)^2+r.coefficient(z)^2)*Ciso)
```

We verify that H_1, H_2, H_3, H_4 are 4 linearly independent cubics, i.e. we see that the rank of the matrix N_1 below is always 4 (unless $l_2 = 0$, i.e. unless tg1 = r)

```
[9]: N1 = matrix([[hh.coefficient(mn) for mn in mon] for hh in [H1, H2, H3, H4]])
JN1 = S.ideal(N1.minors(4))
assert(JN1.radical() == S.ideal(12)) ## N1 has always rank 4
```

We verify that the linear space generated by G_1, G_2, G_3, G_4 coincides with the linear space generated by H_1, H_2, H_3, H_4

```
).rank() == 4
```

- 1.3 All the cubics F_1 are singular in P_1 and that tg1 is tangent to F_1 in P_1 .
- 1.4 We assume a_9 not zero, since if $a_9 = 0$, F_1 is reducible of the form $t^2\ell$, where t is the line tg1

In order to describe F_1 , we first determine when F_1 splits into a line and a conic. The line necessarily passes through P_1 , hence is the line r above. A generic point of r is $(u_1l_2, u_2l_2, -l_1(u_1+iu_2),$ hence we define the point p_3 :

```
[12]: p3 = vector(S, (u1*12, u2*12, -l1*(u1+ii*u2)))
assert(r.subs(substitution(p3)) == 0)
```

Now we impose that, for all u_1 and u_2 , the point p_3 is a zero of F_1 . With this substitution F_1 splits into $(u_1 + iu_2)^2$ and another factor, linear in u_1 and u_2 and we want that for all u_1 and u_2 this factor is zero:

```
[13]: ff1 = F1.subs(substitution(p3))
   assert(ff1.quo_rem((u1+ii*u2)^2)[1] == 0)
   ff2 = ff1.quo_rem((u1+ii*u2)^2)[0]
   assert(ff2.degree(u1) ==1)
   assert(ff2.degree(u2) == 1)
   jf1 = S.ideal(ff2.coefficient(u1), ff2.coefficient(u2))
```

The ideal jf1 is the ideal of the conditions on the parameters of F_1 (which are a_2, a_3, a_6, a_9) in order to have that $V(F_1)$ splits into the line r and a conic. We can saturate it w.r.t. a_9 and l_2 . We get an ideal jf2 which is generated by the three polynomials h_1, h_2, h_3 below:

```
[14]: 

jf2 = jf1.saturation(a9*12)[0]

h1 = 12*a2 + (3*ii)*12*a3 + 3*11*a9

h2 = 11*a2^2 + (6*ii)*11*a2*a3 - 9*11*a3^2 + (-9*ii)*12*a3*a9 - 9*11*a6*a9

h3 = a2^3 + (9*ii)*a2^2*a3 - 27*a2*a3^2 + (-27*ii)*a3^3 - 9*a2*a6*a9 + (-27*ii)*a3*a6*a9 + (27*ii)*a3*a9^2

assert(S.ideal(h1, h2, h3).saturation(a9)[0] == jf2)
```

The meaning of the above computation is the following: $V(F_1)$ contains a line r iff a_2, a_3, a_6, a_9 satisfy the condition $h_3 = 0$. (The values of l_1 and l_2 which determine the line r can be computed from the linear system obtained from h_1 and h_2). Hence:

 F_1 splits into the product of a linear factor and a quadratic factor iff $h_3(a_2, a_3, a_6, a_9) = 0$.

Now a similar computation: we want to see when a line passing thorugh P_1 is tangent to the cubic $V(F_1)$ in P_1 . Again, the line is the line r above, we consider the ideal generated by F_1 and r and we study it. We compute its primary decomposition and we get two ideals: the radical of the first is the point P_1 , the second is generated by two poynomials g_1 and g_2 linear in x, y, z (up to an admissible saturation) $(g_1 \text{ is } r)$ and g_1, g_2 give therefore a further point of intersectrion of r with the cubic $V(F_1)$:

At this point we know that the third intersection of the line r with $V(F_1)$ is given by the linear system $g_1 = 0, g_2 = 0$. We want that this point (for suitable values of l_1 and l_2) is again the point P_1 . In this way we determine when r is tangent to $V(F_1)$. Since g_1 is r, it always contain P_1 . The only condition that has to be verified is that P_1 annihilates g_2 . This condition is $f = l_2a_2 + 3il_2a_3 + 3l_1a_9 = 0$:

```
[16]: assert(g1.subs(substitution(P1)) == 0)
f = 12*a2 + (3*ii)*12*a3 + 3*11*a9
assert(g2.subs(substitution(P1)) == 12 * f)
```

Hence we obtain that r is tangent in P_1 to $V(F_1)$ when l_1, l_2 are such that f = 0. The tangent is r_2 (we do not get tg1, because we exclude the case $l_2 = 0$):

```
[17]: r2 = r.subs({l1:f.coefficient(l2), l2: -f.coefficient(l1)})
```

In general, the line r_2 is the second tangent in P_1 to the cubic. To verify this, we study the ideal generated by F_1 and r_2 . Its primary decomposition (after saturation w.r.t. a_9) has two components, the first is the triple point P_1 , the second contains the polynomial h_3 , which means that it appears only when F_1 is reducible.

Hence, when F_1 is irreducible, $V(F_1)$ has two tangents in P_1 , which are: tg1 and r2. We want to

see when they are coincident, i.e. when P_1 is a cusp. Here we see that this happens iff $a_9 = 0$, i.e. iff the cubic is splits into $t^2\ell$, where t is the line tg1. Therefore:

If $V(F_1)$ is irreducible, it has two distinct tangents tg1 and r_2 , so the point P_1 is never a cusp for the cubic.

```
[19]: coinc_l = S.ideal(matrix([[tg1.coefficient(vr) for vr in [x, y, z]], [r2.

-coefficient(vr) for vr in [x, y, z]]).minors(2))

assert(coinc_l.groebner_basis() == [a9])

assert(F1.subs(a9=0).quo_rem((x+ii*y)^2)[1] == 0)
```

When $V(F_1)$ is reducible, i.e. when $h_3=0$, F_1 splits into the product of r_2 and a conic. We can easily verify this, since h_3 is linear in a_6 , so the equation $h_3=0$ can be solved w.r.t. a_6

```
[20]: assert(h3.degree(a6) == 1)
st = {a6: -h3.subs(a6=0)/h3.coefficient(a6)}
F2 = S(numerator(F1.subs(st)))
assert(F2.quo_rem(r2)[1] == 0)
```