AD-A192 311 5y

Technical Document 1209 Volume 2 January 1988

WANTAL OCEAN SYSTEMS CENTER San Disgo. California OST 182-1800. Antenna Heights for the Optimum Utilization of the **Oceanic Evaporation Duct**

Part III: Results from the Mediterranean Measurements

> J. H. Richter H. V. Hitney

Approved for public release, distribution is unlimited.

7

NAVAL OCEAN SYSTEMS CENTER

San Diego, California 92152-5000

E. G. SCHWEIZER, CAPT, USN
Commander

R. M. HILLYER Technical Director

ADMINISTRATIVE INFORMATION

This reissue of Naval Electronics Laboratory Center (NELC) Technical Notes 2031, 2371, and 2569 was funded by the Office of Naval Technology, Arlington, VA 22217. The authors are currently members of the Marine Sciences and Technology Department, Naval Ocean Systems Center, San Diego, CA 92152-5000.

Released by H.V. Hitney, Head Tropospheric Branch Under authority of J.H. Richter, Head Ocean and Atmospheric Sciences Division

REPORT DOCUMENTATION PAGE							
1a. REPORT SECURITY CLASSIFICATION			1b. RESTRICTIVE MANUARISS				
UNCLASSIF							
2a. SECURITY CLAS	SIFICATION AUTHOR	ΠY		3 DISTRIBUTION/AVAILABI	LITY OF REPORT		1
2b. DECLASSIFICATI	ON/DOWNGRADING	SCHEDULE		Approved for pu	blic release; dis	stribution is un	limited.
A PERFORMING OF	GANZATION REPORT	(YUMBERIS)		5 MONITORING CRGANZA	TION REPORT NUMBER	S)	
NOSC TD	1209, Vol. 2						
64. NAME OF PERF	ORMING ORGANIZAT	ION	6h. OFFICE SYMBOL (d applicable)	7a. NAME OF MONITORING	ORGANIZATION		
Naval Ocean	Systems Ce	nter	Code 54				
Sc. ADDRESS (Cay,	State and ZIP Codel			7b. ADDRESS (City, State an	d ZIP Codel		
	CA 92152-50		1 8b. OFFICE SYMBOL	9 PROCUREMENT INSTRUM	SENT IDENTIFICATION M	UMBER	
			(d applicable)				1
Office of Ch	val Technolo ief of Naval	Research		<u> </u>			
8c. ADDRESS ICAY,	State and ZIP Codel			10. SOURCE OF FUNDING N			
				PROGRAM ELEMENT NO	PROJECT NO	TASK NO	AGENCY ACCESSION NO
Ariington, V	/A 22217			62435N	2701.4	RA35G80/	
	ocurry Chardestony			62435N	N01A	RU35G80	DN888 715
Late III: H	esults from t	OR THE OPTIMU	M UTILIZATION OF	F THE OCEANIC	EVAPCRATIO	N DUCT	
12. PERSONAL AUT	HOR(S)						
J.H. Richter	and H.V. H	itney	4	-4 DATE OF REPORT (Year.		15 PAGE COU	<u></u>
		-ROM	;5	January 1988	Mentr. Delj	291	"' {
16 SUPPLEMENTAR	Y NOTATION						
Volume 2 of been reissue	f 2; first pub d as a forma	lished as an inform I NCSC Technical	nal working documen Document approved	t with limited district for unlimited district.	ribution, NEL	C Technical N	ote 2569 has
17 COSATI CODES			18. SUBJECT TERMS /Continue	on reverse if necessary and ide	ntify by block number)		
FIELD	GROUP	SUB-GROUP	>Evaporation ducting	g			
 			Propagation Questr	`			
'9 ABSTRACT (Con	tinue on reverse if ne	cessary and identify by block m	L`				
Extensive evaporation ducting measurements were conducted in the Eastern Mediterranean. The purpose of the measurements was to provide data for model validations and to determine if existing climatologies could be used for estimating the probability of occurrence for evaporation ducting conditions.							
	PROPUNUMITED	SAME AS RPT	OTIC USERS	UNCLASSIFIE			
228 NAME OF RES	PONSIBLE INDIVIDUA			22b TELEPHONE /incude		22c. OFFICE SYMBO	
J.H. Richter				(619) 553-3053		Code 54	

SECURITY CLASSIFICATION OF THIS PAGE (When Date Second)	
•	
	<u> </u>
DD FORM 1473, 84 JAN	UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

外

10

TX.

88

N.

00

88

小田田

四四四

25.55

χ. Σ

ផ្ទ

FOREWORD

In the early 1970s, a series of extensive evaporation ducting measurements was conducted in different ocean areas. The purpose of the measurements was to provide data for model validations and to determine if existing climatologies could be used for estimating the probability of occurrence for evaporation ducting conditions. Both objectives were successfully met and documented in Naval Electronics Laboratory Center (NELC) Technical Notes 2031, 2371, and 2569. (NELC was a predecessor of the Naval Ocean Systems Center.)

Technical Notes carry a limited distribution statement and cannot be referenced in documents approved for unlimited distribution. Because the information in Technical Notes 2031, 2371, and 2569 is still extensively used, the Technical Notes have been reissued in this NOSC Technical Document approved for unlimited distribution. As a formal, Center-approved publication, this Technical Document can be referenced.

This reissue is presented in two volumes. Volume 1 presents Part 1: Results from the Pacific Measurements (formerly NELC TN 2031) and Part II: Results from the Key West Measurements (formerly NELC TN 2371). Volume 2 presents Part III: Results from the Mediterranean Measurements (formerly NELC TN 2569).

sion For			
GRA&I	V		
TAB			
ounced			
Justification			
Distribution/			
Availability Codes			
Avail and	i/or		
Special	L		
	GRA&I TAB ounced fication_ ibution/ lability		

Part III: Results from the Mediterranean Measurements

CONTENTS

		PAG
	SUMMARY	1
ı.	BACKGROUND	3
II.	OBJECTIVES	4
III.	APPROACH	5
IV.	RESULTS	6
	A. Propagation Measurements	6
	B. Meteorological Comparisons	15
٧.	CONCLUSIONS	21
VI.	RECOMMENDATIONS	23
VII.	REFERENCES	24
VIII.	FIGURES	25
IX.	TABLES	200
x.	APPENDICES	266
	A. Detection Range Calculations	267
	B. Radiosonde Profiles	271
ΥT	ACKNOW EDGEMENT	202

医炎炎炎型 医防线线炎

SUMMARY

Radio propagation measurements in the 1-40 GHz frequency range were performed during 1972 in the Eastern Mediterranean. A propagation link between the islands of Mykonos and Naxos in the Aegean Sea was operated during four measurement periods, each lasting approximately two weeks. The receiver terminal was equipped with vertically spaced antennas in order to obtain information on optimum shipboard antenna heights. The measurements showed that evaporation ducting is an important phenomenon, in particular for frequencies above S-band. For example, signal enhancements from evaporation ducting were measured 99% of the time for X-band frequencies. It was determined that the evaporation duct strongly affects propagation for all shipboard antenna heights. Under conditions of strong ducting, low sited antennas (e.g. 15 feet above mean sea level) may receive higher signals than more conventional antenna heights (e.g. 60-70 feet above msl). For all measurements in the Mediterranean the low sited X-band antenna received equal or higher signals than the high antenna 47.4% of the time. During 20% of the time signals received at the low sited X-band antenna exceeded those received on the high sited antenna by 10 dB. From the measurements one may conclude that the optimum location for an antenna is high on the ship. When economics justify two antennas, an advantage can be obtained with both a high and low antenna.

The evaporation ducting effect appears to have a broad maximum in the X- to Ku-band frequency range. Atmospheric absorption and sea surface roughness apparently counteract the effectiveness of the duct expected at higher frequencies.

Ü,

সন্ চন্দ্ৰ

Simple meteorological measurements were found to be quite sufficient to describe ducting conditions. Horizontal homogeneity of the duct was found to be good for the propagation path used in this investigation. Ducting effects deduced from long term meteorological averages compared well with the actual measurements, permitting estimates of ducting conditions to be made for any oceanic area for which such statistical meteorological data are available.

TO COLUMN TO SERVICE AND SERVI

I. BACKGROUND

Parts I and II of this series of reports (references 1 and 2) described microwave propagation measurements in the oceanic evaporation duct performed off the California and Florida coast. Ducting conditions were found to be significantly different in the two areas. At X-band antenna reversals (i.e. an antenna 64' above mean sea level received less signal strength than an antenna at 16' above mean sea level) occurred less than 10% of the time in California and 60% of the time in Florida. The apparent dependency of ducting conditions on geographic locations makes it important for Naval operations to be able to estimate occurrence and effects of ducting in various oceanic areas. As it is impractical to perform long term measurements in all oceanic areas of interest, one has to rely on available meteorological statistics. Available statistical meteorological data (from sources like the National Weather Records Center in Ashville, North Carolina) were not gathered with the accuracy one would like to describe evaporation duct parameters. However, one can hope that in the absence of any constant bias in the data the averages of long term statistical data are of sufficient quality to make reliable judgements of evaporation ducting conditions. In order to check this assumption, it was decided to perform extensive measurements during one year in a strategically important area which encounters a wide range of ducting conditions. The Mediterranean meets these conditions and two islands in the Aegean Sea were selected for the measurements. In order to encounter the full range of seasonal variations, measurements were performed in four different seasons during 1972.

の対

18 18

II. BJECTIVES

THE PROPERTY OF THE PARTY OF

Perform extensive radio propagation measurements in the microwave range in the Mediterranean. Compare the measurements with calculations based on in situ meteorological measurements and long term meteorological statistics, and assess the influence of the evaporation duct on various shipboard antenna heights.

III. APPROACH

Following the approach described in reference 1, a propagation link was established between the islands of Mykonos and Naxos in the Aegean Sea. The transmitter was placed on the island of Naxos. The geographical location of the propagation path is shown in figure 1. The UTM coordinates (zone 35) for the transmitter and receiver sites were 4108.35; 355.70 and 4143.32; 351.65 respectively. The links were operated during four different periods each of which lasted for two weeks. Table 1 lists frequencies and duration of the various measurement periods. The block diagrams for transmitters and receivers are given in references i-3. Table 2 compiles the propagation link characteristics for all five frequencies used during the Mediterranean measurements. Three vertically spaced antennas were used for L-, S-, X-, and Ku-band and two for Ka-band. Figure 2 shows the receiving terminal at Ornos Beach, Mykonos. The equipment was housed in the trailer to the left of the mast. Figure 3 shows some of the receiving equipment inside the trailer. The upper row of receivers and recorders was for L-, S-, X-, and Ku-band while the equipment of the lower shelf belonged to the Ka-band receiving system described in reference 3. Figure 4 shows the transmitting antennas at Naxos. The 3' antenna to the right radiated at L-, S-, and X-band frequencies, the 1.5' center antenna at Kuband and the 3' antenna to the left at Ka-band frequencies. Commercial power was used during all measurement periods at Naxos and during the summer and fall periods at Mykonos. In the winter and spring periods, diesel generators were used at Mykonos.

IV. RESULTS

A. Propagation Measurements

Figures 5-134 and tables 3-62 show the results of the measurements in graphical and tabular form. The time indicated on the figures is eastern European standard time. Grouping was done by measurement period and frequency. Figures 5-11 summarize the L-band measurements for the winter period. The upper part of figure 5 gives the path loss as a function of time for the high L-band antenna. The upper parts of figures 6 and 7 show path loss for the middle and the low antennas. Two dashed reference lines in this presentation represent free space path loss and path loss due to diffraction assuming a standard atmosphere. The L-band path loss values for all three antenna heights stay close to the diffraction field value which means that the evaporation duct heights encountered have little influence on L-band frequencies. The lower part of figures 5-7 shows the path loss difference for different antenna configurations. Positive differences mean higher signals on the higher antennas and negative values higher signals on the lower antennas. In all three cases (high-low, midlow, high mid) the higher antenna received higher signals than the lower antenna. This is what one would expect if evaporation ducting is not a significant factor influencing propagation conditions. Fading for the three antenna heights is plotted in figure 8. Fading is here defined as the maximum deviation from the mean signal during a five minute period. Rapid fluctuations were suppressed by a four second time constant in the In figure 8, fading increases with decreasing antenna height or, in other words, higher fluctuations were observed for the weaker signals. Except for path loss, the information graphically displayed in

> 22. Nr

figures 5-8 is presented in tabular form in table 3. The upper portion of this table gives the percentage of time the difference between an antenna pair exceeds a certain value in dB. As an example, signals received on the high antenna during the February measurement period exceeded those received on the low antenna by more than 15 dB during 54.5% of the time. The lower portion of table 3 lists for the three antennas the percentage of time certain fading values in dB were exceeded. As an example, the fading observed on the high antenna exceeded 3 dB during 0.6% of the time. Figures 9-11 present the statistical information in graphic form. Figure 9 shows the percentage of occurrence of path loss values in 5 dB intervals. The distribution shifts toward higher path loss values with decreasing antenna height. Fading distributions in 0.5 dB intervals are displayed in figure 10. The numerical values of figures 9 and 10 are listed in table 4. Figure 11 shows the frequency distribution of path loss difference between antennas plotted for 2 dB intervals. The path loss differences are aiways positive and are highest for maximum antenna separation. Table 5 contains the corresponding numerical values.

Figures 12-18 and tables 6-8 contain the S-band propagation measurements for the winter period. Path loss values as shown in the upper portions of the figures are consistently above diffraction field values which means that S-band frequencies were apparently influenced by ducting conditions. However, the path loss differences between antennas are almost always positive, i.e. received signal strength increased with antenna height. One may conclude that ducting conditions were not strong enough to cause trapping of 10 cm waves. Fading in figure 15 follows the

 \mathbf{z}

B

N

B

অ

same trend observed at L-band frequencies, it increases with decreasing antenna height (or decreasing signals).

While L-band frequencies were apparently not affected by ducting conditions, and S-band frequencies only moderately so, there is a strong influence on propagation of X-band frequencies as evidenced in figures 19-28 and tables 9-12. The upper portions of figures 19-21 show that observed path loss values approach and even become less than the free space path loss value. Also, the differences between path loss values measured at the three different antenna heights frequently assume negative values, i.e. higher signals are observed on antennas closer to the surface. The statistical comparison of antenna performance in table 9 shows that during 49.3% of the time the high antenna observed higher signals than the low In other words, for the ducting conditions encountered during this measurement period, none of the three antenna heights showed a distince advantage over the other. Also, the fading (figure 22 and table 9) is quite similar for all antennas. Figures 23-25 show the frequency distributions of path loss, fading, and path loss differences. The spread of path loss difference values is largest for the maximum antenna separation (high-low) and smallest for the antennas which are closest to each other (mid-low). This spread is both an indication of stronger ducting effects on lower antennas and spatial decorrelation between antennas.

The format for presenting the data shown so far has been carefully chosen to provide a systems designer with the maximum information on systems performance under varying ducting conditions and the relative merits of antennas at different heights. Path loss was chosen as the primary

parameter in this format. While path loss represents an excellent quantity independent of specific systems parameters, it was realized that this very independence might limit its usefulness under specific operational circumstances. Therefore, it was attempted to translate propagation conditions into an operationally important parameter for judging radar performance. The parameter chosen was detection range. Surveillance radar performance is often described by the range a target with a specified radar cross section (e.g. one square meter) can be detected under free space propagation conditions. All of the calculations presented here assume a free space detection range of 200 nautical miles at 9.6 GHz and all detection range figures thus have units of nautical miles. The procedure for the detection range calculations is described in Appendix A. Figure 26 shows the frequency distribution of detection range calculated for the propagation conditions encountered during the winter measurement period. In the absence of any ducting the detection ranges would have been 16, 14, and 12 nautical miles for the high, middle, and low antenna respectively. Figure 26 illustrates the fact that detection ranges due to ducting are significantly extended a large percentage of the time. It also shows that extreme extensions of detection ranges are obtained for the lowest antenna under conditions of strong ducting. The mean detection ranges were 28 n miles for the high and the middle antenna and 31 n miles for the low antenna. These mean detection ranges represent range extensions compared to no ducting of 75%, 100%, and 158% for the high, middle, and low antenna respectively. Figure 27 shows the cumulative distribution of detection range. In analogy to the path loss difference presentations of figure 25, detection range differences are plotted in figure 28. The

£Z Œŝ

abscissa in this presentation is in nautical miles and the graphs show the percentage of time for which one antenna exceeds the detection range of another antenna by a certain value. Positive values mean longer detection ranges for the higher antenna and negative values longer detection ranges for the lower antenna.

The spring measurements were conducted during 18 April to 1 May 1972. Power and equipment failures caused the loss of some data during the period. The path loss curves for the three L-band antennas in figures 29-31 show more variation compared to the winter period. In particular, during the second half of the spring period the signals vary between free space and diffraction values which is an indication of highly variable atmospheric refractive conditions. The higher variability is also reflected in the fading of figure 32. S-band frequencies are even more affected as seen from the path loss curves for the three antenna heights in figures 36-39. Free space values are exceeded for over 20% of the time for the high antenna, 14% for the middle antenna and 11% for the low antenna. Signal reversals between high and low antenna occurred during 4.4% of the time (table 16). Also for S-band frequencies the fading was somewhat higher than during the winter period. The path loss values measured during the spring period for X-band frequencies exceed free space values 70% of the time at the high antenna and 57% of the time at the middle and low antennas (figures 43-45). However these low path loss (or high signal) values are accompanied by strong fading (figure 46). The low antenna received higher signals than the high antenna 27.9% of the time. It is interesting to note that even though atmospheric refractive condition caused higher signals compared to the winter period,

antenna reversals occurred less frequently in the spring period than in winter. A qualitative explanation will be given later in discussion of meteorological measurements. Path loss in terms of detection range is shown in figures 50 and 51. The interval of 190-200 nautical miles in figure 50 includes all detection ranges exceeding 200 nautical miles. The mean detection ranges calculated from the presentation in figure 50 for the three antenna heights are 113 n mi. (high), 94 n mi (mid), 98 n mi (low).

The summer measurement period from 31 July - 14 August 1972 also encountered strong ducting conditions. L-band signals again varied between diffraction and free space values (figures 53-55) and exhibited deep fading during periods of high signal enhancement. During 1% of the time did the signal received on the low antenna equal or exceed that received on the high antenna (table 23). S-band signals (figures 60-62) during this period were consistently enhanced and exceeded the free space path loss value a significant portion of the time. The low antenna received equal or higher signals than the high antenna during 8.6% of the time (table 26). The most dramatic effect of the ducting conditions during the summer measurement period was experienced for X-band frequencies. Signals on the lower antenna fell below free space values only 7% of the time which is an indication of unusually persistent ducting conditions. Signals received on the lower antenna equaled or exceeded those received on the higher antenna 93% of the time. Figure 70 shows a decrease of fading with antenna height which may be interpreted as a result of more complete trapping of energy for the lower antenna. The higher signals on the low antenna are of course reflected in longer detection ranges of

E

X

图

figures 74 and 75. The median detection range for the high antenna is 40 n mi, for the middle antenna 70 n mi, and 148 n mi for the low antenna. (Median rather than mean detection range was used because of the large number of cases in the 200 n mi and above category). During the summer period an additional frequency (Ku-band) was added to the propagation link and the path loss values are shown in figures 77-79. Using free space path loss values as a reference, Ku-band is less enhanced than X-band which may be an indication that ducting is accompanied by losses from rough boundaries. Figure 80 also shows that deep fading was encountered for all antenna heights.

The last measurement period during fall (5-21 November 1972) gave for L-band frequencies quite similar results compared with the winter period. Path loss values (figures 84-86) are generally around diffraction field values and show little variation apart from a brief period around 16 November. Path loss values for S-band (figures 91-93) show a greater variation, occasionally even exceeding free space and diffraction values. Also X-band signals were quite variable (figures 98-100). Signals on the lower antenna equaled or exceeded those received on the high antenna during 14.2% of the time. The mean detection ranges were 47, 46 and 42 n mi for the high, middle, and low antenna respectively. The path loss values for Ku-band are shown in figures 108-110. The lower antenna received equal or higher signals compared to the high antenna during 56.5% of the time. An additional frequency in Ka-band (37.44 GHz) was added to the propagation link in the fall measurement period. This frequency extension into the mm-wave band provided some interesting insight into frequency dependency of

ducting. While ducting should increase with increasing frequency, absorption and roughness of the boundaries (noteably sea surface roughness) became more important for higher frequencies. Therefore, not all of the signal enhancements expected from ducting will be realized. Estimates of signal losses due to atmospheric absorption and sea surface roughness are given in reference 4. The path loss values for Ka-band shown in figures 115 and 116 (only two antenna heights at 8.6 and 3.6 m above msl were used) do not reach or exceed free space values as it was observed for X- and Ku-band frequencies. Nontheless, the received signal levels were consistently high and most of the time within 30-65 dB above the value one would expect without ducting. Figure 115 shows path loss as a function of time for the receiving antenna located at 8.6 m above msl. The received signal levels are consistently above the diffraction values, most of the time 30-45 dB, but not quite as high as the signals on the lower antenna. A comparison of the signal levels of the two vertically spaced receiving antennas shows that the lower antenna receives higher signals a larger percentage of the time. difference in the path loss values is plotted in figure 115. The zero level on the ordinate represents equal power on both antennas. Positive values indicate higher signals on the higher antenna and negative values higher signals on the lower antenna. The information in figure 115 is also expressed in table 49 which gives the percentage of time the path loss difference received on the two antennas exceeds a certain value. For example, the higher antenna received signals at least 10 dB larger than the lower antenna 1.8% of the time; likewise, the lower antenna exceeded the signal levels received on the higher antenna 65.7% of the time. Figure 117 shows the fading observed on both receiving antennas. Fading is here defined as maximum peak

图

K

 \mathbf{z}

to peak deviation from the mean signal level during a 7.5 minute interval. Again a four second time constant at the recorder suppressed rapid fluctu-Table 49 also lists the percentage of time fading exceeds certain The percentages for the lower antenna are slightly less than dB values. for the higher antenna. The lesser fading on the lower antenna may be explained by the more complete trapping of electromagnetic energy close to the water surface. The path loss information of figures 115 and 116 may be represented as a frequency distribution for path loss intervals. is done in figure 118 for 5 dB intervals. The antenna labelled "mid" is the one at 8.6 m, the one labelled low at 3.6 m above mean sea level. distribution curve for the lower antenna is shifted toward the left for lower path loss values (higher signals) compared to the higher antenna. Table 50 contains the numerical values plotted in figure 118. The frequency distributions of path loss difference between the two vertically spaced antennas and the fading for each antenna are shown in figure 119, the corresponding numerical values are listed in table 51.

The foregoing description of propagation conditions encountered during four observational periods distributed over one calendar year underlined the strong variability of ducting conditions. As mentioned earlier, one objective of this measurement program was to encounter a wide range of evaporation ducting conditions. Another objective was an attempt to gather enough information to permit a comparison of the data with long term meteorological statistics. To facilitate such a comparison, the data were averaged for all seasons. Figure 190 shows the frequency distributions of path loss for the three L-band antennas. Likewise, fading and path loss differences between

antennas are averaged in figures 121 and 122. The corresponding numerical values are listed in tables 52 and 53. The S-band data are averaged in figures 123-125 and tables 54 and 55. Table 56 shows the percentage of time path loss differences between high and low X-band antennas exceed certain dB values. For example, for all seasons combined, signals received on the high antenna exceeded those received on the low antenna during 52.6% of the time. During 20% of the time the signal received at the low X-band antenna exceeded that received at the high antenna by 10 dB. The frequency distributions of path loss for X-band in figure 126 show again the wider spread for the low antenna. The detection ranges for the hypothetical 200 n mi free space detection range radar are shown in figures 129 and 130. The mean detection ranges calculated from this presentation are 60, 61, and 79 n mi for the high, middle, and low antenna respectively. Figures 132-134 show the Ku-band data averaged for the summer and fall season.

B. Meteorological Comparisons

Three aspects were pursued in the meteorological phase of the program. First, the complex processes in the oceanic boundary layer demand sophisticated measurements for their detailed description; however, only simple meteorological measurements can be performed under operational conditions and only simple meteorological measurements are routinely performed by meteorological offices around the world. Therefore, the assessment of evaporation ducting effects on radio propagation becomes practical only if simple measurements can be used to estimate ducting phenomena. For this reason, it was decided to use routinely obtained data from a meteorological station of the Greek Weather Service on Naxos. The data consisted

of surface temperature and humidity measurements taken every three acura and water temperatures measured twice daily. Figures 135-146 show the air-sea temperature difference, air temperature, relative humidity, wind speed, and duct height calculated from these measurements for the four measurement periods. Duct height δ was calculated according to the following formulas (log-linear profile):

$$\delta = -\left[\frac{0.0013 \left(\ln \frac{z_1}{z_0} + \frac{z_1}{L^{\dagger}}\right)}{\phi_A - \phi_S} + \frac{\alpha}{L^{\dagger}}\right]^{-1} \text{ cm}$$

$$\phi_{A} = \frac{77.6}{T_{A}} \left[1000 + \frac{4810}{T_{A}} e \right]$$

$$\phi_{S} = \frac{77.6}{T_{SW}} \left[1000 + \frac{4810}{T_{SW}} e_{SW} \right]$$

$$L' = \frac{\frac{(u \cdot 51.4444)^2}{980 (T_A - T_{SW})/T_{SW}} - zz_1}{\ln(z_1/z_0)}$$
 cm

$$z_1 = 500 \text{ cm}$$

$$z_0 = 0.0015$$
 cm

$$\alpha = 2.0$$

u = wind speed in knots

 $T_{\Lambda} = air temperature in Kelvin$

 T_{SW} = sea water surface temperature in Kelvin

e = partial vapor pressure in mb

 e_{SW} = saturated vapor pressure at sea surface in mb

Conditions of thermal stability with bulk Richardson's numbers exceeding 0.1 were eliminated for duct height calculations. Bulk Richardson's number is given by

$$R_{ib} = 6.4 \frac{T_A - T_{SW}}{u^2}$$

T in Kelvin, u in knots

The meteorological measurements at Naxos have several limitations. They are measured over land and may not be representative of open sea conditions, being measurements taken at one point they do not permit any statement about the horizontal extent of ducting conditions, and they do not include elevated refractive layers which may affect propagation conditions. These potential error sources were addressed in the second aspect of the meteorological program. During the fall measurement period a meteorological ground station was established at the receiver site in Mykonos and measurements shown in figures 147 and 148 were taken similar to the ones at Naxos. Figure 149 shows duct heights calculated from the Naxos and the Mykonos measurements. Duct heights for both places agree remarkably well considering the serious short-comings pointed out earlier. Both the questions of horizontal homogeneity and duct heights over open water were investigated by performing measurements from a small fishing

W

boat travelling along the propagation path. Duct heights were calculated from sea water temperate, air temperature, relative humidity, and wind speed measurements using the above formulas. Figures 130-156 show duct heights versus range. The measurements at the end points of the propagation path (asterisks) are the previously described data from Naxos and Mykonos. Date and time interval during which the measurements were performed are marked on the figures (EEST = eastern European standard time). In general ducting conditions appeared horizontally homogeneous. Duct height changes which were observed may have been temporal rather than spatial changes as the measurements along the path extended for several hours. Figure 157 shows a comparison between duct heights measured at Mykonos, Naxos, and along the path. The dotted areas represent the range of duct heights measured along the path for the time during which the measurements were taken. The agreement between the various duct heights is, again, considered excellent. During the fall measurement period radiosondes were launched from the receiver station at Mykonos. This was done to check for the presence and influence of elevated layers. radiosondes (403 MHz system) were tracked optically for wind information. No significant layers were observed that occurred low enough to influence propagation conditions along the Naxos - Mykonos path. The individual profiles are included in Appendix B.

Figures 158-161 are overlays of measured path loss values for the low X-band antenna in each of the four measurement periods and Juct neights calculated from the Naxos meteorological data. In general, there is an excellent agreement in the trend between path loss and duct height. The

agreement is particularly good for the winter and fall periods. The agreement in the trend between duct heights and path loss might be improved by using different models to calculate duct height for thermally stable and unstable conditions. Those models are described in reference 5. Figure 162 shows the measured path loss for the low X-band antenna during the fall period and path loss values calculated from the Naxos duct height (indicated by circles). The relationship between duct height and path loss for the geometry under consideration shown in figure 163, has been calculated with NELC's full wave solution wave guide computer program which will be described in a report which is presently under preparation. The general agreement between calculated and measured path loss values in figure 162 is very good if one considers the shortcomings of the meteorological measurements. The correlation coefficient between calculated values and corresponding measured values was claculated to be 9.63. If one eliminates in this comparison duct heights associated with wind speeds of less than 5 knots, the correlation coefficient increases to 0.71. (The elimination of duct heights for wind speeds less than 5 knots may be justified on the basis that wind measurements in this range are quite unreliable but may have a strong influence on atmospheric stability and duct height). Both correlation coefficients 0.63 and 0.71 are significant at the 99% level. This means there is only a 1% probability that the data are actually uncorrelated. One may conclude that the comparison between the meteorological and radio data shows that simple in situ meteorological measurements are quite adequate to estimate propagation conditions.

Ø

Œ

The third aspect of the meteorological phase of this program was to check the usefulness of available long-term meteorological statistics to predict radio propagation conditions. Only if this can be done, can successfull predictions of ducting conditions be made without actually performing extensive measurements. Figure 164 is the frequency distribution of duct height based on five years of meteorological averages and the duct height distributions based on the Naxos meteorological measurements taken during the four measurement periods in 1972. The agreement between the two distributions is considered quite good. These duct height distributions may also be used to estimate antenna reversals, i.e., the percentage of time the low antenna receives equal or higher signals than the high antenna. From a family of height-gain functions generated with the previously mentioned waveguide program it was concluded that reversals would be expected for duct heights between 10 and 30 m. Table 62 shows that for individual seasons calculated and measured values may differ appreciably. One really would not expect a specific two week period to be identical with a five year seasonal average. However, all measured data averaged (thereby forming a larger sample size) compare quite favorably with the average for the entire five year period. Based on these and similar previous comparisons for the California off-shore area (reference 1), one may conclude that long term meteorological statistics are quite useful in estimating average ducting conditions for oceanic areas.

V. CONCLUSIONS

Extensive radio propagation measurements in the Mediterranean have shown that evaporation ducting is an important phenomenon in particular for frequencies above S-band. For example, signal enhancements from evaporation ducting have been measured 99% of the time for X-band frequencies. It was determined that the evaporation duct strongly affects all shipboard antenna heights. Under conditions of strong ducting, low sited antennas (e.g. 15 feet above mean sea level) may receive higher signals than more conventional antenna heights (e.g. 60-70 feet above msl). For all measurements in the Mediterranean the low sited X-band antenna received equal or higher signals than the high antenna 47.4% of the time. During 20% of the time signals received at the low sited X-band antenna exceeded those received on the high sited antenna by 10 dB. From the measurements one may conclude that the optimum location for an antenna is high on the ship. When economics justify two antennas, an advantage can be obtained with both a high and low antenna.

The evaporation ducting effect appears to have a broad maximum in the X- to Ku-bani frequency range. Atmospheric absorption and sea surface roughness apparently counteract the effectiveness of the duct expected at higher frequencies.

Simple meteorological measurements were found to be quite sufficient to describe ducting conditions. Horizontal homogeneity of the duct was found to be good for the propagation path used in this investigation. Ducting effects deduced from long term meteorological averages compared well

Ø.

(4)

with the average of all measurements for the year permitting estimates of average ducting conditions to be made for any oceanic area for which such statistical meteorological data are available.

VI. RECOMMENDATIONS

The path loss information obtained from the propagation measurements had been translated in this report into detection range information for X-band. Hypothetical radar parameters were assumed for this purpose. Target height versus detection range plots for various ground based duct heights can be generated for actual radars (reference 6). Those curves could be easily used under operational conditions in connection with simple meteorological measurements performed on board ship and in connection with duct height distributions calculated from long term meteorological averages. It is, therefore, recommended to apply this technique to a suitable surface surveillance radar (e.g. SPS ~ 55) and conduct an evaluation under operational conditions.

Ŋ

怒

M

VII. REFERENCES

- Richter, J. H. and H. V. Hitney, "Antenna heights for optimum utilization of the oceanic surface evaporation duct", Part I: Results from the Pacific measurements, NELC TN 2031, 4 May 1972.
- Richter, J. H. and H. V. Hitney, "Antenna heights for optimum utilization of the oceanic surface evaporation duct", Part II: Results from the Key West measurements, NELC TN 2371, 10 May 1973.
- Richter, J. H., H. V. Hitney, K. D. Anderson, and M. L. Phares,
 "Propagation measurements of 37 GHz in the oceanic surface evaporation duct", NELC TN 2422, 3 July 1973.
- 4. Hitney, H. V., "Propagation Calculations of 37 GHz in the oceanic evaporation duct", NELC TN 2421, 3 July 1973.
- Jeske, H., "The state of radar-range prediction over sea", AGARD
 Conference Proceedings No. 70, Part II, p. 50.1 50.10, February 1971.
- 6. Hitney, H. V., "The influence of the oceanic surface evaporation duct on detection range for a 3.3 GHz radar", NELC TN 2322, 15 March 1973.

VIII. FIGURES

		PAGE
1.	Geographic location of propagation path	36
2.	Receiving terminal at Ornos Beach, Mykonos	37
3.	Receiving equipment	38
4.	Transmitting antennas at Naxos	39
WIN	TER PERIOD (8-22 FEBRUARY 1972)	
5.	Path loss for high L-band antenna and path loss difference	
	high-low antenna	40
6.	Path loss for middle L-band antenna and path loss difference	
	mid-low antenna	41
7.	Path loss for low L-band antenna and path loss difference	
	high-mid antenna	42
8.	Fading L-band	43
9.	Frequency distributions of path loss for L-band	44
10.	Frequency distributions of fading L-band	45
1.1.	Frequency distributions of path loss differences between	
	antennas for L-band	46
12.	Path loss for high S-band antenna and path loss difference	
	high-low antenna	47
13.	Path loss for middle S-band antenna and path loss difference	
	mid-low antenna	48
14.	Path loss for low S-band antenna and path loss difference	
	high-mid antenna	49

25 25

X

88

X

X X

自死

. 22 23

		PAGE
15.	Fading S-band	50
16.	Frequency distributions of path loss for S-band	51
17.	Frequency distributions of fading for S-band	52
18.	Frequency distributions of path loss differences between	
	antennas for S-band	53
19.	Path loss for high X-band antenna and path loss difference	
	high-low antenna	54
20.	Path loss middle X-band antenna and path loss difference	
	mid-low antenna	55
21.	Path loss low X-band antenna and path loss difference high-	
	mid antenna	56
22.	Fading X-band	57
23.	Frequency distribution of path loss for X-band	58
24.	Frequency distribution of fading X-band	59
25.	Frequency distribution of differences between antennas for	
	X-band	60
26.	Frequency distribution of detection range for X-band	61
27.	Cumulative distribution of detection range for X-band	62
28.	Frequency distribution of detection range differences between	
	antennas for X-band	63
SPRI	ING PERIOD (18-28 APRIL 1972)	
29.	Path loss for high L-band antenna and path loss difference	
	high-low antenna	64

555 EE 555

A) W

		PAGE
30.	Path loss for middle L-band antenna and path loss difference	
	mid-low antenna	65
31.	Path loss for low L-band antenna and path loss difference	
	high-mid antenna	66
32.	Fading L-band	67
33.	Frequency distributions of path loss for L-band	68
34.	Frequency distributions of fading L-band	69
35.	Frequency distributions of path loss differences between	
	antennas for L-band	70
36.	Path loss for high S-band antenna and path loss difference	
	high-low antenna	71
37.	Path loss for middle S-band antenna and path loss difference	
	mid-low antenna	72
38.	Path loss for low S-band antenna and path loss difference	
	high-mid antenna	73
39.	Fading S-band	74
40.	Frequency distributions of path loss for S-band	75
41.	Frequency distributions of fading for S-band	76
42.	Frequency distributions of path loss differences between	
	antennas for S-band	77
43.	Path loss for high X-band antenna and path loss difference	
	high-low antenna	78
44.	Path loss middle X-band antenna and path loss difference	
	mid-low antenna	79

X

a Ž

17.00

图符

8

22.23

X

N N

ह्य ह्या

		PAGE
45.	Path loss low X-band antenna and path loss difference high-	
	mid antenna	80
46.	Fading X-band	81
47.	Frequency distribution of path loss for X-band	82
48.	Frequency distribution of fading X-band	83
49.	Frequency distribution of differences between antennas for	
	X-band	84
50.	Frequency distribution of detection range for X-band	85
51.	Cumulative distribution of detection range for X-band	86
52.	Frequency distribution of detection range differences between	
	antennas for X-band	87
SUMM	MER PERIOD (31 JULY - 14 AUGUST 1972)	
53.	Path loss for high L-band antenna and path loss difference	
	high-low antenna	88
54.	Path loss for middle L-band antenna and path loss difference	
	mid-low antenna	89
55.	Path loss for low L-band antenna and path loss difference	
	high-mid antenna	90
56.	Fading L-band	91
57.	Frequency distributions of path loss for L-band	92
58.	Frequency distributions of fading L-band	93
59.	Frequency distributions of path loss differences between	
	antennas for L-band	94
	•	

		PAGE
50.	Path loss for high S-band antenna and path loss difference	
	high-low antenna	95
51.	Path loss for middle S-band antenna and path loss difference	
	mid-low antenna	96
52.	Path loss for low S-band antenna and path loss difference	
	high-mid antenna	97
53.	Fading S-band	98
54.	Frequency distributions of path loss for S-band	99
55.	Frequency distributions of fading for S-band	100
56.	Frequency distributions of path loss differences between	
	antennas for S-band	101
67.	Path loss for high X-band antenna and path loss difference	
	high-low antenna	102
68.	Path loss middle X-band antenna and path loss difference	
	mid-low antenna	103
69.	Path loss low X-band antenna and path loss difference high-	
	mid antenna	104
70.	Fading X-band	105
71.	Frequency distribution of path loss for X-band	106
72.	Frequency distribution of fading X-band	107
73.	Frequency distribution of differences between antennas for	
	X-band	108
74.	Frequency distribution of detection range for X-band	109
75.	Cumulative distribution of detection range for X-band	110

ini Fer

Ŕ

X

X

		PAGE
76.	Frequency distribution of detection range differences between	
	antennas for X-band	111
77.	Path loss for high Ku-band antenna and path loss difference	
	high-low antenna	112
78.	Path loss for mid Ku-band antenna and path loss difference mid-	
	low antenna	113
79.	Path loss for low Ku-band antenna and path loss difference	
	high-mid antenna	114
80.	Fading Ku-band	115
81.	Frequency distributions of path loss for Ku-band	116
82.	Frequency distributions of fading for Ku-band	117
83.	Frequency distributions of path loss differences between	
	antennas for Ku-band	118
FALL	PERIOD (7-21 NOVEMBER 1972)	
84.	Path loss for high L-band antenna and path loss difference	
	high-low antenna	119
85.	Path loss for middle L-band antenna and path loss difference	
	mid-low antenna	120
86.	Path loss for low L-band antenna and path loss difference	
	high-mid antenna	121
87.	Fading L-band	122
88.	Frequency distributions of path loss for L-hand	123
89.	Frequency distributions of fading L-band	124

ivi ivi

X

Z.

	•	PAGE
90.	Frequency distributions of path loss differences between	
	antennas for L-band	125
91.	Path loss for high S-band antenna and path loss difference	
	nigh-low antenna	126
92.	Path loss for middle S-band antenna and path loss difference	
	mid-low antenna	127
93.	Path loss for low S-band antenna and path loss difference	
	high-mid antenna	128
94.	Fading S-band	129
95.	Frequency distributions of path loss for S-band	130
96.	Frequency distributions of fading for S-band	131
97.	Frequency distributions of path loss differences between	
	antennas for S-band	132
98.	Path loss for high X-band antenna and path loss difference	•
	high-low antenna	133
99.	Path loss middle X-band antenna and path loss difference	
	mid-low antenna	134
100.	Path loss low X-band antenna and path loss difference high-	
	mid antenna	135
101.	Fading X-band	136
102.	Frequency distribution of path loss for X-band	137
103.	Frequency distribution of fading X-band	138
104.	Frequency distribution of differences between antennas for	
	X-band	139

N N

灰公尾

87

Ţ,

Š.

が当

		<u> </u>
105.	Frequency distribution of detection range for X-band	140
106.	Cumulative distribution of detection range for X-band	141
107.	Frequency distribution of detection range differences between	
	antennas for X-band	142
108.	Path loss for high Ku-band antenna and path loss difference	
	high-low antenna	143
109.	Path loss for mid Ku-band antenna and path loss difference mid-	
	low antenna	144
110.	Path loss for low Ku-band antenna and path loss difference	
	high-mid antenna	145
111.	Fading Ku-band	146
112.	Frequency distributions of path loss for Ku-band	147
113.	Frequency distributions of fading for Ku-band	148
114.	Frequency distributions of path loss differences between	
	antennas for Ku-band	149
115.	Path loss for middle Ka-band antenna and path loss difference	
	mid-low antenna	150
116.	Path loss for low Ka-band antenna	151
117.	Fading Ka-band	152
118.	Frequency distribution of path loss for Ka-band	153
119.	Frequency distributions of path loss difference between	
	antennas and fading for Ka-pand	154

		PAGE
ALL S	EASONS COMBINED	
120.	Frequency distributions of path loss for L-band	155
121.	Frequency distributions of fading L-band	156
122.	Frequency distributions of path loss differences between	
	antennas for L-band	157
123.	Frequency distributions of path loss for S-band	158
124.	Frequency distributions of fading for S-band	159
125.	Frequency distributions of path loss differences between	
	antennas for S-band	160
126.	Frequency distribution of path loss for X-band	161
127.	Frequency distribution of fading X-band	162
128.	Frequency distribution of differences between antennas for	
	X-band	163
129.	Frequency distribution of detaction range for X-band	164
130.	Cumulative distribution of detection range for X-band	165
131.	Frequency distribution of detection range differences between	
	antennas for X-band	166
132.	Frequency distributions of path loss for Ku-band	167
133.	Frequency distributions of fading for Ku-band	168
134.	Frequency distributions of path loss differences between	
	antennas for Ku-band	169

Ŵ

8

N.

N.

100

<u>UX</u>

		FAGE
METEOROLOGICAL MEASUREMENTS		
135.	Meteorological measurements at Naxos, winter period	170
136.	Meteorological measurements at Naxos, winter period	171
137.	Duct heights calculated from meteorological measurements	
	at Naxos, winter period	172
138.	Meteorological measurements at Naxos, spring period	173
139.	Meteorological measurements at Naxos, spring period	174
140.	Duct heights calculated from meteorological measurements	
	at Naxos, spring period	175
141.	Meteorological measurements at Naxos, summer period	176
142.	Meteorological measurements at Naxos, summer period	177
143.	Duct heights calculated from meteorological measurements	
	at Naxos, summer period	178
144.	Meteorological measurements at Naxos, fall period	179
145.	Meteorological measurements at Naxos, fall period	180
146.	Duct heights calculated from meteorological measurements	
	at Naxos, fall period	181
147.	Meteorological measurements at Mykonos, fall period	182
148.	Meteorological measurements at Mykonos, fall period	183
149.	Duct heights calculated from meteorological measurements	
	at Naxos and at Mykonos	184
150.	Duct height measurements along the propagation path	185
151.	Duct height measurements along the propagation path	186
152.	Duct height measurements along the propagation path	187

		PAGE
153.	Duct height measurements along the propagation path	188
154.	Duct height measurements along the propagation path	189
155.	Duct height measurements along the propagation path	190
156.	Duct height measurements along the propagation path	191
157.	Duct heights calculated from meteorological measurements	
	at Naxos and at Mykonos (crosses) and along the propaga-	
	tion path (shaded areas)	192
158.	Path loss for low X-band antenna and duct height, winter	
	period	193
159.	Path loss for low X-band antenna and duct height, spring	
	period	194
160.	Path loss for low X-band antenna and duct height, summer	
	period	195
161.	Path loss for low X-band antenna and duct height, fall	
	period	196
162.	Measured path loss for low X-band antenna during fall	
	period (solid line) and calculated path loss from Naxos	
	duct heights (circles)	197
163.	Duct height-path loss relationship for low X-band antenna	198
164.	Duct height distribution from Naxos measurements and from	
	five year meteorological averages for the area of the	
	nronagation math	199

8

X

2

XXX

N.

W

X

%

公司

X

高区

Z.

Figure 1. Geographic location of propagation path

W.

N N

N.

X

XX

X

经

是

X.

N N

Figure 1. Receiving terminal at Ornos Beach, Mykonos

*스*츠 ^万፺

N

N.

Ø

N.

S

8

多

Puth loss for high L-band antenna and path loss difference high-low antenna Figure 5.

L BAND, NAXOS TO NYMONOS, GREECE

FEBRUARY 1972

X M (A) TO See B

R

W W

000

例

が

登

Path loss for middle L-band antenna and path loss difference mid-low antenna Figure 6.

FEBRURAY 1972

L BAND, NAXOS IS MYNONOS, CHEECE

D

图

京 次

83

S.

8

Ŋ.

公公

77. 70.

ix N

Path loss for low L-band antenna and path loss difference high-mid antenna FEBRURRY 1972 L BRND, NAXGS TO MYHONOS, GREECE Figure 7.

W S

N W

%

L BRAD, NAXOS TO NYKOAUS, URESUE

FEBRUARY 1972

Figure 8. Fading L-band

W

B

O

8

公公

B

部

2

亞圖

555

X

00%

ned Artistation of the Artistation of the State of the St

300

X

X

53

Figure 12. Path loss for high S-band antenna and path loss difference high-low antenna

FEBHURRY 1972

O BRIES, NEXUG TO REPORTED DEEDE

公

(X)

m M

X

77 70

官

हरू (द

M

网络

136 020

Path loss for middle S-band antenna and path loss difference mid-low antenna Figure 13.

FEBRUANY 1972

S BAND, NAXON TO MYNCHOW, CHEECE

Path loss for low S-band antenna and path loss difference high-mid ancenna FEBRUARY 1972 S GAND, NAXOS TO HYKONOS, BREECE Figure 14.

四

8

(A)

N.

000

四回

3

区

87

空

M

S 6840, MRXOS TE NYNCAUS, GREECE FEBRURHY 1872 Figure 15. Fading S-band

X

8

8

8

器

88

S.

X

88

W W

N B

W

K

2000

M S

同员

K K

Y

W

图

贸

¥, Œ

Frequency distributions of fading for S-band Figure 17.

N.

が認

8

N

1

TX.

8

C.M.

88

四四

Š.

W

(Y) (X)

(A) 500

Path loss for high X-band antenna and path loss difference high-low antenna FEBRURAY 1072 X BAND, NHXBS TO MYNEWUS, BREECE

Path loss middle X-band antenna and path loss difference mid-low antenna FEBRUANT 1072 X BRIG, JAXUS TO ATHORUS, BAEECE Figure 20.

W

回

K

W.

N.

ZZ ZZ

Path loss low X-band antenna and path loss difference high-mid antenna FEBRURAY 1972 X 6840, KEXUS 10 ATROARD, GAEECE Figure 21.

X BAND, ARXAS TO HYKANSS, GREECE FEBRURAY 1972

Figure 22. Fading X-band

ÇĄ.

KK.

N. C.

0

XX

XX XX

の

X

83

W.

30

W.

XX

83

S. Control

EV,

N.

X X

S. C.

200

N.

S. C.

N N N

NY.

ij

PARAMAMATAN INTERPRETATION OF THE TRANSPORT OF THE ALCOHOLOGICAL AND ALCOHOLOGICAL PROPERTY OF THE PARAMATAN IN

Path loss for high L-band antenna and path loss difference high-low antenna APRIL 1972 L BAND, NAXOS TO HYNCHISS, GREECE Figure 29.

Ø

77

283

Figure 30. Path loss for middle L-band antenna and path loss difference mid-low antenna

APAIL 1872

L BRIG, NAXIS TO HYKMUIS, GREEKE

N

X

Œ

N

XX ...

図図

200

M

8

回的

N.

同対

N

Z.

Path loss for low L-band antenna and path loss difference high-mid untenna APAIL 1872 L BRND, NAXUS TO HTHORICS, GREECE Figure 31.

8

N

L SAND, NAKUS 18 HYKANGS, GREECE Figure 32. Fading L-band

APRIL. 1972

ξ<u>Χ.</u>

Frequency distributions of fading L-band

ĒΩ

2

60 (3)

Ž

S

j) SO.

Path loss for high S-band antenna and path loss difference high-low antenna Figure 3o.

& GRIU, NAXOS TU HTHUNDS, GREECE

RPHIL 1872

8

ee To

V.

四個四個

X X

历效

. 전

Figure 37. Path Loss for middle S-band antenna and path loss difference mid-low antenna APR: 1, 1972 S BRIED, MAXIE TO ATHY, 15, GAEECE

S BAND, NAXUS TO NYACHUS, GREECE APAIL 1972 Figure 38. Path loss for low S-band antenna and path loss difference high-mid antenna

88

Ŋ

がある。

373

S BRHD, HAXAS TO MINGELS, GREECE RPHIL 1972 Figure 39. Fading S-band

不能

X

S.

图图

X

XX

N.

N.

N N

M

Frequency distributions of path loss differences between antennas for S-band Figure 42.

Figure 43. Path loss for high X-band antenna and path loss difference high-low antenna

APRIL 1872

X BAFD, NAXOS 10 HYKONGS, GREECE

区区 8 M M で 2000 E CE

Į,

8

30

8

0

8

家奶

X

Figure 44. Path loss middle X-band antenna and path loss difference mid-low antenna RPHIL 1972 X BAND, NAXOO TU HYNONOS, GREECE

X

X

ŔŶ

888

W

8

愈就

X

a Ti

Path loss low X-band antenna and path loss difference high-mid antenna APAIL 1872 X SAND, NAXUS TO NYHUNCS, CHEECE

W

A

N

X SinD, MAXOS TO KTACNUS, CREECE
.
Figure 46. Fading X-band

APRIL 1872

N. Company

N.

N

W

8

T

M

B

W

77

50

40

N.

問記

公司的

Ŋ

3

S

0

がは

and the state of t

Angular di managan da

200

N.

Œ,

N N

NY NY

國区区

X

<u>a</u>

N N

N N

N.

W

の電響

图区

N

33.

Š.

SE SE

ւ ճռան, NKX13 ւ ԱՐԱՐԱԿՑ, ՆԴԵԵՐԸ RUGUST 1972 Path loss for high L-band untemna and path loss difference high-low antenna Figure 53.

N

N N

N.

NO.

B

Path loss for middle L-band antenna and path loss difference mid-low antenna คิบธบรูร 1972 L UBILD, NEXUS TO HYKUNGS, GREECE

Path loss for low Laband untenna and path loss difference high-mid antenna August 1972 L'ARNO, HAXOS TONNYRANDS, BREECE

的

M

8

N

DOTO THE STATE OF THE STATE OF

No.

d

8

M

M

郊

8

8

R

图

N

B

S

2

Elgure 60. Path loss for middie Saband antenna and path loss difference mid-low antenna

S BRND, NAXAS 18 AYNGHUS, GREECE

RUGUST 1972

THE STREET

Į,

N

M

N.

四

Path loss for low Saband antenna and path loss difference high-mid antenna

Figure 63. Frading Seband

DO.

K

W

M

H

8

M

N

B

B

の

网络

N

Ŋ,

W

N

0

Path loss for high X-band untenna and path loss difference high-low antenna X SAND, HEXUS TO MYNCHOS, SEEECE

M W

N N

M

的

Path loss middle X-band antenna and path loss difference mid-low antenna Figure 68.

X BAND, WAXES TO HYNORES, GREECE

Path loss low X-band antenna and path loss difference high-mid antenna August 1872 A BAHA, NAXAS TO HYNOLOS, BREECE

图

图图

X

W

8

X BELLD. NAXOS 10 NYMBHUG, GREECE RUGUST

Fading X-band

Figure 70.

M

S.

8

Prequency distribution of differences between antennas for X-band Figure 73.

*>

図版・

200

1000

W

O.

N

图图

四

3

S

B

Figure 77. Path loss for high Ku-band antenna and path loss difference high-low antenna KULBAND, NAXOS TO KYKOKOS, GREECE

N.

X

L

Figure /8. Puth loss for mid Ku-band antenna and path loss difference mid-low untenna KU BRKU, "NRXES TO MYKENUS, WHEECE

Path loss for low Ku-band untenna and path loss difference high-mid antenna AUGUST 1872 KU GRAD, NAXOS 10 HTHUPOS, GREECE

W.

C C

N.

N

N₂

NU ALAD, NEXTS TO ATTORNEY, GREEVE

AUGUST 1072

是

8

N N

N

從

五

Frequency distributions of path loss differences between antennas for Ku-band Figure 83

No.

N

L BAND, MAXES TO NYKONUS, GREECE NUVENBER 1972 Figure 84. Path loss for high L-band antenna and path loss difference high-low antenna L BAND, AAXUS TO NYKONUS, DHEECE

Figure 85. Path loss for middle L-band antenna and path loss difference mid-low antenna NUVERBER 1972 L BRID, NEXAS 14 HYRCHAS, GREECE

X X

N.

N.

X

数

Figure 86. Path loss for low L-band antenna and path loss difference high-mid antenna NOVERBER 1972 L BAND, NAXOS TO ATHOROS, GÄEECE

多

8

國

L britt, nexts to mykuids, greece. nevenber 1872 Figure 87. Fading L-band

W.

水

W.

() ()

K

图

X

巴北

Figure 91. Puth loss for high S-band antenna and path loss difference high-low antenna NOVERBER 1972 & BRIDE, NAXUS TOWNYNCHES, SMEECE

X

N.

6.6

8

N E

E

Figure 92. Path loss for middle S-band antenna and path loss difference mid-low antenna NOVENBER 1972 S JANO, WANCE TO HTHOMES, ORECCE

Path loss for low S-band antenna and path loss difference mid-low antenna HUVEABER 1972 S BRND, NEXOS TO STRANGS, CHEECE bigure 93.

S DEBOT NEXUS TOTAL MEDICE ... NAVERBER 1972

R

No.

B

別

Ø

Z Ž

X

X

8

X

20

S.

追

8

Ü

No.

88

N. S.

N

Frequency distributions of path loss differences between antennas to. S-band Figure 97.

8

W.

S.

認

原於

Path Loss for high X-band antenna and path loss difference high-low antenna

NOVERSER 1872

X GRUD, HAXES TH HYACHUS, GREKEE

國國

Path loss middle X-band antenna and path loss difference mid-low antenna NOVEHBER 1912 X BRIID, KHXOS TO MYKONOS, GREECE Figure 99.

;;; ()

W.

及

8

學是

Path loss low X-band antenna and path loss difference high-mid antenna HOVENBER 1972 X BAND, NAXUS TO HYKONUS, GREECE

X 55ND, RAXOS 10 NYRONGS, SAEECE NOVEMBER 1872 Figure 101. Fading X-band

XX

N

NO NO NO

阿止

のの

3

S

8

及

N

N.

X

Path loss for high Ku-band antenna and path loss difference high-low untenna NOVEHBER 1972 KU BAND, INNOV 14 HYKOMAS, GREECE Figure 108.

Path loss for mid Ku-band antenna and path loss difference mid-low antenna NOVERBER 1872 KU BHAU, HAXUS TO ATRONUS, GAEECE Figure 109.

X

N. N.

W. W.

N.

Path loss for low Ku-band antenna and path loss difference high-mid antenna NOVEHBER 1972 Figure 110.

HU BANG, NAXOS TO HTKOHUS, GREECE

AU BRUG, NEADS TO HYSCHOS, GREECE NOVERSER 1972 Figure 111. Fading Ku-band

XX

N.

图

X

X.

N.

X

N Z

8

TY E

XX

图

N.

W.

Si N

CARRIED .

Z

関ル

X.

E

Pigure 115. Puth loss for middle Ka-band antenna and path loss difference mid-low antenna KA BAND, NAXOS TO ATROLUS, GREEUE

*

.

0.00

双

W.

N.

M

AR BRID, HRXUS TO HINDINGS, CHEECE

Figure 116. Path loss for low Ka-band antenna

Figure 117. Fading Ka-band

KA GAND, NAXDS TO ATRONDS, BAEECE

四四

N.

网

W.

3

A. A.

Figure 118. Frequency distribution of path loss for Ka-band

Figure 119. Frequency distributions of path loss difference between antennas mu fading for Ka-band

THE PERSON AND THE PROPERTY OF THE PERSON AND A STATE OF THE PERSON ASSESSED AND A STATE OF THE PERSON AS A STATE OF THE

T

R

愿

X

N

W

F

K

五

No.

正

88

W

8

202

W

E.

图

88

N.

R

放

88

X

W.

反

N V

8

8

8

N

8

区

D.

Î

企

図

8

N.

8

E.

変

88

is:

DIX.

MIN TO

SK SC

意义

800

N.

No.

W.

W.

是

Figure 135. Meteorological measurements at Naxos, winter period

e e

ä

8

的

E.

图

Pigure 136. Meteorological measurements at Naxos, winter period

Duct heights calculated from meteorological measurements at Naxos, winter period Figure 137.

X

8

80

Figure 138. Meteorological measurements at Naxos, spring period

Figure 139. Meteorological measurements at Naxos, apring period

X

8

E SO

图 E

Figure 140. Duct heights calculated from meteorological measurements at Naxos, spring.period

Figure 141. Meteorological measurements at Naxos, summer period

W.

V

多

No.

E.

Pigure 142. Meteorological measurements at Naxos, summer period

C

\$¹

Figure 143. Duet heights calculated from meteorological measurements at Naxos, summer period

(E.

S.

S.

8

W.

X

N N

E.

Figure 144. Meteorological measurements at Naxos, fall period

Figure 145. Meteorological measurements at Naxos, fall period

1

1X)

88

Figure 146. Duct heights calculated from meteorological measurements at Naxos, fall period

Figure 147. Meteorological measurements at Mykonos, fall period

.

8

8

Figure 148. Meteorological measurements at Mykonos, fall period

Figure 149. Duct heights calculated from meteorological measurements at Naxos and at Mykonos

的

(t)

77

8

Figure 150. Duct height measurements along the propagation path

D

2

N.

8

の公

%

ø

Figure 151. Duct height measurements along the propagation path

Figure 152. Duct height measurements along the propagation path

Figure 153. Duct height measurements along the propagation path

Figure 154. Duct height measurements along the propagation path

Figure 155. Duct height measurements along the propagation path

Figure 156. Cuck height measurements along the propagation path

10

N

88

C.

変

X

Duct heights calculated from meteorological measurements at Naxos and at Mykonos (crosses) and along the propagation puth (shaded areas) 118ure 157.

四流

X

X

N N

33 N N

7. 1.3.

公

8

N) 80

X

O,

W. 灵业 X N. 四四四 100 E . K. **1000** 800

Ŋ

O V

Mussured path loss for low X-band antenna during Fall period (solid line) and calculated path loss from Naxos duct heights (circles) Figure 162.

88

n,

Figure 163. Duct height-path loss relationship for low X-band antenna

Figure 164. Duct height distribution from Naxos measurements and from five year meteorological averages for the area of the propagation path

N.

IX. **TABLES PAGE** 204 1. Measurement periods and frequencies 205 Propagation link characteristics WINTER PERIOD (8-22 FEBRUARY 1972) 206 Statistical presentation for L-band 3. 207 Frequency distributions of path loss and fading for L-band Frequency distributions of path loss differences between 208 antennas for L-band 209 6. Statistical presentation for S-band 210 7. Frequency distributions of path loss and fading for S-band 8. Frequency distributions of path loss differences between 211 antennas for S-band 212 9. Statistical presentation for X-band 213 10. Frequency distributions of path loss and fading for X-band 11. Frequency distributions of path loss difference and detection 214 range for X-band 12. Cumulative distribution of detection range and frequency distribution of detection range differences for X-band 215 SPRING PERIOD (18-28 APRIL 1972) 216 13. Statistical presentation for L-band 217

14. Frequency distributions of path loss and fading for L-band

15. Frequency distributions of path loss differences between

antennas for L-band

218

		201 PAGE
16.	Statistical presentation for S-band	219
17.	Frequency distributions of path loss and fading for S-band	220
18.	Frequency distributions of path loss differences between	
	antennas for S-band	221
19.	Statistical presentation for X-band	222
20.	Frequency distributions of path loss and fading for X-band	223
21.	Frequency distributions of path loss difference and detection	
	range for X-band	224
22.	Cumulative distribution of detection range and frequency	
	distribution of detection range differences for X-band	225
SUMM	MER PERIOD (31 JULY - 14 AUGUST 1972)	
23.	Statistical presentation for L-band	226
24.	Frequency distributions of path loss and fading for L-band	227
25.	Frequency distributions of path loss differences between	
	antennas for L-band	228
26.	Statistical presentation for S-band	229
27.	Frequency distributions of path loss and fading for S-band	2 30
28.	Frequency distributions of path loss differences between	
	antennas for S-band	231
29.	Statistical presentation for X-band	232
30.	Frequency distributions of path loss and fading for X-band	233
31.	Frequency discributions of path loss difference and detection	
	renge for V-hand	234

N.

8

X

Z

8

Ä

88

图

N. Co.

200

X E

		PAGE
32.	Cumulative distribution of detection range and frequency	
	distribution of detection range differences for X-band	235
33.	Statistical presentation Ku-band	236
34.	Frequency distributions of path loss and fading for Ku-band	237
35.	Frequency distributions of path loss differences between	
	antennas for Ku-band	238
WINT	CER PERIOD (7-21 NOVEMBER 1972)	
36.	Statistical presentation for L-band	239
37.	Frequency distributions of path loss and fading for L-band	240
38.	Frequency distributions of path Joss differences between	
	antennas for L-band	241
39.	Statistical presentation for S-band	242
40.	Frequency distributions of path loss and fading for S-band	243
41.	Frequency distributions of path loss differences between	
	antennas for S-band	244
42.	Statistical presentation for X-band	245
43.	Frequency distributions of path loss and fading for X-band	246
44.	Frequency distributions of path loss difference and detection	
	range for X-band	247
45.	Cumulative distribution of detection range and frequency	
	distribution of detection range differences for X-band	248
46.	Statistical presentation Ku-band	249
47.	Frequency distributions of path loss and Fading for Ku-hand	250

		PAGE
48.	Frequency distributions of path loss differences between	
	antennas for Ku-band	251
49.	Statistical presentation for Ka-band	252
50.	Frequency distribution of path loss for Ka-band	253
51.	Frequency distributions of path loss difference and fading	
	for Ka-band	254
ALL	SEASONS COMBINED	
52.	Frequency distributions of path loss and fading for L-band	255
53.	Frequency distributions of path loss differences between	
	antennas for L-band	256
54.	Frequency distributions of path loss and fading for S-band	257
55.	Frequency distributions of path loss differences between	
	antennas for S-band	258
56.	Percentage of time path loss differences between high	
	and low X-band antennas exceed certain dB values	259
57.	Frequency distributions of path loss and fading for X-band	260
58.	Frequency distributions of path loss difference and detection	
	range for X-band	261
59.	Cumulative distribution of detection range and frequency	
	distribution of detection range differences for X-band	262
50.	Frequency distributions of path loss and fading for Ku-band	263
61.	Frequency distributions of path loss differences between	
	antennas for Ku-band	264
62.	Calculated and measured antenna reversals	265

 \overline{M}

E E

X

X

3

N E

8

配置

X

S.

E CO

E CO

\$ 3

iù iù

Fall	7-21 November 1972	8490 (36-38)	91–97 (39–41)	98–107 (42–45)	108-114 (46-48)	115-119 (49-51)
Summer	18 April - 1 May 1972 31 July - 14 August 1972	53-59 (23-25)	60-66 (26-28	67–76 (29–32)	77~83 (33–35)	•
Spring	18 April - 1 May 1972	29-35 (13-15)	36-42 (16~18)	43–52 (19–22)	•	***
Winter	8-22 February 1972	5-11 (3-5)	12-18 (6-8)	19-28 (9-12)	4	
Period	bates	L-band (1.0426 GHz)	S-band (3.0075 GHz)	X-band (9.624 GHz)	Ku-band (17.9648 GHz)	Ka-band (17.44 GHz)

Measurement periods and frequencies with corresponding figure and table (in parenthesis) numbers. Table 1.

Frequency band		1	တ	×	Ku	Ka
Frequency in GHz		1.0426	3.0075	9.624	17.9648	37.44
Path length in km		35.2	35.2	35.2	35.2	35.2
Transmitter height in m above msl		8.4	8.4	4.8	4.5	5.1
Receiving antenna heights in m above msl	high mid low	19.2 10.0 4.9	19.2 10.0 4.9	19.2 10.0 4.9	17.8 9.5 4.3	8 E 9 6
Max measurable puth loss in dB		184	195	203	200	223
Atmospheric absorption over path in dB		.14	. 32	.67	2.75	4.9
Calculated path loss for bestandard atmospheric conditions (absorption included) in dB	high mid low	154 161 167	163 172 178	173 183 191	183 196 205	216 223

B

图

N E

Table 2. Propagation link characteristics

HIGH-MID	0.1 % > 20.0 08 0.1 % > 15.0 08 4.8 % > 10.0 08 99.4 % > 3.0 08 100.0 % > -3.0 08 100.0 % > -3.0 08	0 % > -15.0
MOT-GIM	0.0 % > 20.0 DB 0.0 % > 15.0 UB 0.9 % > 10.0 DB 65.1 % > 6.0 DB 97.0 % > 3.0 DB 99.9 % > -3.0 DB 99.9 % > -6.0 DB	* > -15.0 * > -20.0
HIGH-LOW	54.5 % > 20.0 DB 54.5 % > 15.0 DB 100.0 % > 6.0 DB 100.0 % > 3.0 DB 100.0 % > -3.0 DB 100.0 % > -3.0 DB 100.0 % > -3.0 DB	% > -15.0 % > -20.0

FADING LOW	4 > 20.0 4 > 15.0	0.0 % > 10.0 08	0.9 < %						TOTAL ENTRIES = 1253
FADING MIDDLE	% > 20.0 % > 15.0	0.0 % > 10.0 DB 0.0 % > 8.0 DB	0.9 < %	8 > 5.0	1.8 % > 4.0 UB	3.0	46.4 % > 2.0 08	8 > 1.0	TOTAL ENTRIES = 1253
FADING HIGH	% > 20.0 % > 15.0	0.0 % > 10.0 UB	0.0	2.0	0.4 4.8	3.0	2 % > 2.0	0.1	TOTAL ENTRIES = 1253

Statistical presentation for L-band Table 3.

وغراجز

<u>.</u> 27

X

1000

SO SE

区

:

!

**	_ PATH LOSS	"%"HICH"	3.MID		
	120.0 TO 125.0	0.0	0.0	0.0	
	125.0 TO 130.0	0.0	0.0	0.0	
	130°C, TO, 135°O,	<u></u> 3	0.0		
	135.0 TO 140.0	0.0	0.0	0.0	
_	140.0 TO 145.0		0.0	0.0	
	145.0 TO 150.0	6.6	0.0	0.0	
	150.0 TO 155.0	45.1	0.2	0.0	-
	155.0 TO 150.0	47.9	16.1	0.0	
	160.0 TO 165.0	0.4	63.5	11.3	
	165.0 TO 170.0	0.0	20.0	40.7	
	170.0 TO 175.0	0•0	0.0	45.8	
	175.0 TO 180.0	0.0	0.1	2.2	
	180.0 TO 135.0	0.0	0.0	0.0	
	185.0 TO 190.0	0.0	0.0	0.0	
	190.0 TO 195.0	0.0	0.0	0.0	
	195.0 TG 200.0	0.0	0.0	0.0	
	200.0 TO 205.0	0.0	0.0	0.0	
	205.0 TO 210.0	0.0	0.0	0.0	
	210.0 TO 215.0	0.0		0.0	
	215.0 TO 220.0	0.0	0.0	0.0	
	ENTRIES	1253	1253	1253	

X

X

图图

FADING		g High	Z MID	% LGW	
0.0 70	0.5	0.0	0.0	0.2	
0.5 TO	1.0	9.1	2.5	0.2	
1.0 70	i.5	30.6	16.6	19.2	
1.5 TO	2.0	45.2	30.3	19.0	
2.0 10	2.5	10.7	23.5	5.9	
2.5 TO	3.0	3.8	16.9	17.9	
3.0 70	3.5	0.2	6.6	23.7	
3.5 TO	4.0	0.3	1.8	3.0	
4.0 TO	4.5	0.0	1.4	0.9	
4.5 TO	5.0	0.1	0.0	0.0	
5.0 TO	5.5	ີ່ວ.ດ	0.4	7.7	
5.5 TC	5.0	0.0	0.0	0.0	•
6.0 TO	6.5	0.0	0.0	0.2	
6.5 TC	7.0	ე. ა	9.0	2.3	
7.0 TO	7.5	0.0	0.0	7.0	
7.5 TO	8.0	0.0	0.0	0.0	
8.) TC	3.5	0.0	0.0	0.0	
8.5 TO	9.0	0.0	0.0	0.0	
~.ġ`⊤ <u>@</u>	9.5	0.0	0.0	0.0	
9.5 TO	10.0	0.0	0.0	0.0	
EMTRIES		1253	1253	1253	

Frequency distributions of path loss and fading for L-band Table 4.

ΩĶ

RY 1972	HIGH-MID	0.0 % > 20.0 DB	\$ > 10.0	0.9	% > 3.0	0.0	0.5.	, v , v	\$.> -20.0	TOTAL ENTRIES = 1216	FADING LOW	> 20.0	% > 15.0	0.01 < %	8 < 8	90 0*9 < % 8*0	2 > 2.0	4.0	3.0	. 2 2 2 2	% > 1.0	TUTAL ENTRIES = 1216
S BAND, NAXUS TO MYKUNUS, CREECE FEBRUARY	MID-LUW	2 > 20.0 2 > 15.0	\$ > 10.0	0.9	2 > 3.0	0.0	10.0	^	\$ > -23.0	TUIAL ENTRIES = 1216	FAUING MIDDLE	> 20.0	4 > 15.0	% > 10.Ü	O•3 < %	^ ~	0.0	O *	6 V 3.C	0.5	۷ × ۲۰۰۵ × ۶	TUTAL ENTRIES = 1216
S BAND NAX	HIGH-LUM	2.6 % > 20.0 0d	^ >0	0.0 < + 5	3.0	100 to 6 to	0,01	100.0 6 7 -15.0	_100:0' 6'>'-20.0'03'		 PAUTIC HIGH	^ %	6 > 15.0	2 > 10.0	٠. د.		6 V V V V V V V V V V V V V V V V V V V	^ ;•	, ,	^ -? G	10 0 N V V V V V V V V V V V V V V V V V	TUTAL ENTRIES = 1210

Table 6. Statistical presentation for S-band

						210
, .	PATH LOS	<u>,</u>	* HIGH	dim &	S LON	
	120.0 TO 1.		0.0	0.0	9.0	
	125.0 TO 1.		0.0	0.0	0.0	
****	130.0 TU 1		ຼິ່ງ•ູ່ຽ	0.0	0.0	
	135.0 TO 1		0.0	0.0	0.0	
	140.0 TO 1	45.0	1.2	U•0	0.0	
	145.0 TO 1	ວບ•ບື	31.7	J.9	0.0	
	150.0 TO 1	55.0	50 ∙ 8	21.5	0.0	
• • • ••	155.0 TO 1	_	14.0	50.2	÷.7	
	160.0 TO 1		2.1	23.1	7.6	
	165.0 TO 1		G-2	3.9	49.2	
	170.0 TO 1		0.0	.0.2	31.7	
	175.0 TO 1		0.0	0.0	10.6	
	180.0 TU_1	S5.0	0.0	0.0	0.3	
	185.0 TO 1	40.0	0.0	0.0	U. 0	
	190.0 TJ 1		0.0	0.0	0.0	
	195.0 TO 2		0.0	0.0	0.0	
	200.0 TO 2		0.0	0.0	0.0	
	205.0 TO 2		0.0	0.0	0.0	
	210.0 TO 2		0.0	0.0	0.0	
	215.0 TO 2	20.0	0.0	0.0	0.0	
****	ENTRIES	· • · · · · · · · · · · · · · · · · · ·	1216	1216	1210	and the same and the same same of the
						 •• • •
	FADING	· · · · · · · · · · · · · · · · · · ·	* HIGH	3 MID	% LOW	
	0.0 TO	0.5	0.0	- J.O	0.0	
	0.5 TO	1.0	2.5	1.2	6.1	
	1.0 TO	1.5	17.8	9.5	15.9	
	1.5 TO	2.3	25.7	17.5	9.4	
-	2.0 TO	2.5				
*			21.6	26.2	11.7	
	2.5 [0	3.0	21.5	27.3	31.0	
	3.0 10	3.5	3.9	5.5	7.4	
	3.5 TO	4.0	5.5	9.4	9.8	
	4.0 TO	4.5	1.2	2.4	2.5	
	4.5 10	5.0	0.3	0.5	0.7	
	5.0 TO	5.5	0.0	0.2	4.1	
	5.5 TO	6.0	0.0	0.1	0.6	
	6.0 10					
		6.5	0.0	U.0	0.4	
	6.5 TO	7.0	0.0	0.0	0.2	sametal same same
	7.3 TO	7.5	ີ່ ນັ•ນ	7.0	- J.o	
	7.5 TO	3.0	U.U	J.0	0.1	
	"8.0 TU	3.5	0.0	0.0	0.1	
	8.5 TO	9.0	0.0	0.0	0.0	
	9.0 TO	9.5	0.0	0.0		
	9.5 10	10.0	0.0	0.0	<u></u> 0.0	
	ENTRIES		1216	1216	1216	
·	Table 7	Fraguera	m dicembre	ions of path loss		
	-aute /.	3-band	y distribut	Lons of Jack Loss	10. ZHIDS DIE	
		- · •				
	 .					

X

32

双处

EXX

日

<u>%</u>

200

8

Ņ

A 5.4PH9	A MATTER NAMES TO NYKONOS, GREECE	YKONOS,	GREECE	FEBRUARY 1972	1972			
W. J-H., IH		110-F ON			HIGH-MID	410		
0.9 \$ > 20.0 DB		0.0 %			0.0	A 87	20.0	DB
> 15,5		\$ O * O	> 15.0 DB		0.2	№	15.0	Dв
10.4		.J. 1 .Y.	> 10.9 DB		8.0	∧	10.0	ЭB
7.9		1.2 %	AU 0.4 <		6.2	^ %	6.0	03
> 3.0		5. C	> 3.0 08		25.9	۸ بو	3.0	ОВ
40.3 5 > 0.0 08		28.1 %	80 0°0 <		52.2	30 ✓	0.0	DB
V - 3.0		35.0 ×	> -3.0 DB		92.3	^ ≫	-3.0	0.9
C • 0 - 0		4 5.66	> -6.0 03		98.5	نو م	-6.0	DB
V -10.7		% 6°6n	> -10.0 DB		100.0	≯	-10.0	OB
> -15ac	→	100.0 %	-15.0		100.0	¥. ∨	-15.0	OB
199.0 % > -20.0 08		< % 0°901	-20.0		100.0	<u>ب</u>	-20.0	90
COTAL FUTPLES = 1202	L	FIJTAL EN	ENTRIES = 1202	32	TOTAL		ENTRIES = 1202	1202

FOLIO GLIGH	FADING MIDDLE	FADING LOW	
	0°07'	20.0	
6.0 6 > 15.0 DB	% V 15.0	x > 15.0	. ~
0.1 % > 10.0 08	0.1 % > 10.0 08	0.0 % > 10.0 08	
Λ 	G•6: ∧ %	4 8 0	~
^	0.3 < %	0.9	_
	ره. ۲ × ۲.	% > 5°C	_
	つき へい	3 > 4.0	_
13.6 7 > 3.0 85	3.0	× > 3°0	
	> 2.0	2.0	
	55 > 1.3	3 > 1.0	
CHALL THAIRS - 1232	TOLINE POTMIES = 1202	TOTAL ENTRIES = 1202	202

Table 9. Statistical presentation for X-band

		~					
3		PATH LC	SS	% AIGH	CIN &	で LOW	
	1	.20.0 TC	125.0	0.0	0.0	ე.ა	
2		25.0 TO		J. 7	0.0	0.0	
		30.0 TO		7.0	0.0	3.0	
		.35.3 TO		0.000	0.0	3.6	
		40.0 TO		0.8	2.2	9.3	
	1	45.0 TU		31.1	33.0	33.6	
	1	56.0 TO		49.4	35.0	24.7	
6		35%0 TO	0.00 د	12.0	17.2	16.6	
	. 1	0T 0.00.	105.0	3.5	7.1	8.2	
	1	65.0 TO	170.0	2.3	2.5	2.6	
•		70.0 TO		0.5	1.6	2.1	
		75.J TO		0.2	1.1	1.4	
		01 0.06.		0.2	0.2	0.2	
8		85.0 TC		0.0	0.1	J.0	
		90.0 TO		Ŭ . €	9.1	0.1	
		95.3 To		0.0		0.2	• • • • •
9		OU.O TO		0.0	Ú. Ú	0.0	
		135.3 TO		·	0.0	0.0	
		10.0 70		0.0	0.0	2.0	
		15.0 TO		~o.ŭ	0.0	0.0	
•	-			0.5	5.5	C.5	
_		TENTRIES		1202	1202	1202	
6							
				•			
9		FADING	~.	g HIGH	3 MID	% LOW	
	* * * * * ** *** ****	O.J TO	J.5	∞ ∵ ⊙∵ ⊙	· ₀ .5	ა აა	
		C.5 TO	1.7	11.0	6.7	2.9	
		1.0 TG	1.5	18.0	17.4	3.4	
		1.5 TO	2. Ú	18.4	14.1	14.3	
		2.0 TO	2.5	25.0	22.4	13.4	
		2.5 TO	3.0	12.9	17.5	21.9	
		3.0 TO		7.0	9.0	13.7	
8		3.5 TU	4.0	3.0	5.1	8.0	
	•	4.0 TO	4.5	2.0"	3.2	6.0	
		4.5 TO	5.0	0.7	2.9	2.1	
		5.0 TO	5:5	- " 0.5	0.6	1.6	
		5.5 TO	6.0	5.2	0.4	1.5	
		6.00 TO	6.5	0.2	0.4-	0.4	
②		5.5 T?	7.)	2.:	0.2	J•2	
_		7.0 70	7.5	⊍. 2	0.1	3.2	
		7.5 TO	8.0	0.1	0.0	0.1	
©		8.0 TO	3.5	0.1	0.0	0.0	
_		9.5 TO		ن. 1	0.3	0.0	
	-	9.0 TO		0.1	0.0	5.1	-
•		9.5 TO		J. 1	ٕ2	J.2	
8		ENTRIES		1202	1202	1232	
•							
8	2.		requency		ons of pach lo	ess and facing fo	or

)

阿阿

8

8

	DIFFERENCE	3 HIGH-LOW	GIM-HDIH &	3 MID-LOW
	-29.0 TO -13.0	a.j	0.0).C
	-13.0 TO -16.0	ċ•0	0.0	0.0
	-16.0 TO -14.0		0.0	0.0
	-14.3 TO -12.0		0.0	0.1
	-12.0 TO -1J.J		0.0	0.0
	-10.) TO -3.0		0.3	J. 2
	-d.0 TO -6.0		1.2	0.5
	-6.3 TO -4.9		2.7	4.2
	-4.0 TO -2.0		14.4	23.5
	-2.0 TO J.0		20.3	41.6
	0.0 TO 2.0		25.2	17.7
	2.0 TO 4.0		17.7	9.3
	4.0 TO 6.0		11.3	1.7
	6.0 TD 8.0		4.7	J.6
•	118.0 TO 10.3		0.8	Q•6
	10.0 TO 12.0		0.4	າ.ບ
	12.0 TO 14.0	0.5	0.2	0. 0
	14.0 TO 16.0	0∙3	0.1	0.1
	16.0 TO 18.0	9.2	0.1	0.0
	18.0 TO 20.0	J•0	0.1	0.0
• •	ENTRIES	1292	1202	1202
	DET PANGE	4 HIGH	3 MID	3 L34
	0.0 TO 10.0	u. 3	0.0	0.0
• •	10.0 (0 2).0		11.9	14.1
	20.J TO 30.0		52.4	39.8
	30.0 TO 40.0		30.5 "	28.4
	40.0 TO 50.0	1.0	4.8	11.5
	50.0 TO 60.0	0.2	"0 . 3	3.1
	40.0 th 70.0		0.0	1.0
	70.0 TO 30.0	0∙0	0.0	0.9
	0.0° OT 0.08	0.0	0.0	1.2
	90.0 TO 100.0		0•0	J•0
•	100.0 TO 110.0		0.0	0.0
	110.0 TO 120.7			٠٠- ٠٠٠ م
	120.0 TO 137.0		ა. ა	ე•ე
	130.0 TO 140.0		0.0	0.0
	140.0 TO 150.0		0.0	0.0
	150.0 TO 160.0		0.0	0. 0
	160.0 TO 170.0		٥.٠	
	170.0 70 130.7		0.0	·
	130.0 TO 190.0	9.0	0.0	0.0
	190.0 TO 200.0	0.0	0.3	7.0
	ENTRIES	1202	1202	1202

Table 11. Frequency distributions of path loss difference and detection range for X-band

...:

E. L

XX

χŢ,

DET RANGE	3> HIGH	. S> MID	%> FOM
16.9	100.0	100.0	100.0
20.0	93.4	88.1	35.9
30.0	31.9	35.7	45.1
40.0	1.3	5.2	17.7
50.0	0.3	0.3	6.2
66.3	9.1	0.0	3.2
70.)	0.0	0.0	2.2
80.0	0.0	0.0	1.2
90.0	0.0	0.0	J.Ü
100.0	5.° 0	0.0	0.0
110.C	9.0	0.0	2.0
120.0	0.0	0.0	2.0
130.0	0.0	0.0	0.0
140.0	o.o	0.0	3.0
150.3	0.0	0.0	0.0
160.0	0.5	0.0	·
170.0	0.0	0.0	0.0
130.0	0.0	0.0	0.0
190.3	0.0	0.0	0.0
200.0	···· 5.3 ···	0.0	J.0
23000	3.0	30,	•••
ENTRIES	1252	1202	1202
TOET RANGETDIFF	TE HIGH-LOW	3 HIGH-4ID	\$ 410-LOW
-50.0 TO -45.0		··· 0.0	
-45.0 TO -43.0	0.3	0.0	2.3
-40.0 TO -35.0	0.5	0.0	0.4
-35.0 TO -30.0	0.2	0.0	1.0
÷30.0 TC −25.0		0.1	0.3
-25.0 TO -20.0	1.2	0.2	0.7
-20.0 TO -15.0	2.7	1.3	1.4
-15.0 TO -10.0	7.1	1.7	4.4
"=10.0 TO ==5.0	15.1	7.9	13.3
-5.0 TC 0.0	20.4	27.6	48.0
- 0.0 TO 5.0	42.3	··· ··· 50.3	29.5
5.0 TO 10.0	5. 6	8.9	J.2
T0.3 T0 15.3	J.7	1.6	5.0
15.0 70 20.0	3.1	0.2	0.2
20.0 TO 25.0	9.0	0.2	0.0
25.0 TO 30.0	υ•)	0.0	0.3
30.0 TG 35.0	0.0	0.0	0.0
35.0 TO 40.0	0.0	0.3	0.0
40.0 TO 45.0	3.5 ···· ··	0.0	3.0
45.) TO 50.0	0.5	0.0	J.0
	- 55,	•• /	J • J
ENT3152	1292	1202	1202

Table 11. Cumulative distribution of detection range and frequency distribution of detection range differences for %-band

图

N

X

W

四四

2000

· W

W.W.

8

en W

HIGH-LUS	MID-LOW	HIGH-MID
0.62 < % c.	4 > 20.0	.0 * > 20.0
	3 4 7 15.	0 % > 15
.5 % > 10.0	0.01 < 4 6.	.8 % > 10.0
6 % > 6.0	5.0 0.0	0.9 < % 5.
.0 .4 3.0	0.8 < 4.2.	.9 % > 3.0
0.0	.5 % > 0.0	0.0 < % 1.
× > -3.0	.5 % > -3.0	.5 % > -3.0
0.0- < % 0.	0.0- < % 6.	0.9- < * 2.
0.01- < 3 0.	.0 % > -10.0	0.01- < 2.0.0
8 > -15.0	4 > -15.0	0.01 4 > -15.0
0.65-< 9.0.	00.05 - 20.0	.0 % > -20.0
TOTAL GMIRIOS = 729	JUTAL ENTRIES = 749	TOTAL ENTRIES = 737
FAUING HIUN	FADING MIDULE	FADING LOW
0 % > 20.0	.0.4 > 20.	.0 % > 20.0
0.01 < 2 0.	.0 4 > 15.0	.1 % > 15.0
6 V 10.0	.0 2 > 10.0	.5 % > 10.0
O*C	0.8 7 8.0	0.8 < % 4.
0.3 4 % 5.0	0.0 < % 0.	3.0 % > 6.0
3.7 4 > 5.0 08	80 0°5 < % 8°5	14.5 % > 5.0 DB
0.4 6.8 5.0	1.3 6 > 4.0	0.5 % > 4.0
3.0 6 > 3.0	.4 % > 3.0	6.2 % > 3.0
9.5 4 2.0	0.5 < 3.0	1.8 % > 2.0
7.2 6 > 1.0	0.8 4 × 1.0	0.8 % > 1.0
folial Calmina a 752	10TAL ENTRIES = 758	TOTAL ENTRIES = 754

APRIL 1972

L BAMD, NAXOS TO MYRUNUS, GREECE

Table 13. Statistical presentation for L-band

PATH LCSS					ed diploy o although with our easier.	
125.0 TO 130.0		PATH LCSS	&_ HIGH	E MID	%_LOW	
125.0 TO 130.0					0.3	
135.0 TO 140.0 12.5 9.2 7.7 140.0 TO 149.0 21.0 11.9 10.9 149.0 TO 150.0 25.3 14.0 10.3 150.0 TO 155.0 15.0 22.0 12.7 155.0 TO 160.0 2.7 24.5 24.4 160.0 TO 165.0 0.0 0.0 0.0 3.2 170.0 TO 175.0 0.0 0.0 0.0 3.2 170.0 TO 175.0 0.0 0.0 0.0 0.0 180.0 TO 185.0 0.0 0.0 0.0 0.0 180.0 TO 185.0 0.0 0.0 0.0 0.0 180.0 TO 185.0 0.0 0.0 0.0 0.0 199.0 TO 199.0 0.0 0.0 0.0 0.0 199.0 TO 205.0 0.0 0.0 0.0 0.0 200.0 TO 205.0 0.0 0.0 0.0 0.0 210.0 TO 220.0 0.0 0.0 0.0 0.0 215.0 TO 25.0 0.0 0.0 0.0 0.0 0.0 215.0 TO 25.0 0.0 0.0 0.0 0.0 0.0 25.0 TO 25.5 0.0 0.1 0.0 0.3 0.0 25.0 TO 5.5 0.0 0.1 0.0 0.3 0.5		125.0 TO 130	•0 გ.ბ	5 . 0	0.5	
135.0 TO 140.0 12.5 9.2 7.7 140.0 TO 149.0 21.0 11.9 10.9 149.0 TO 150.0 25.3 14.0 10.3 150.0 TO 155.0 15.0 22.0 12.7 155.0 TO 160.0 2.7 24.5 24.4 160.0 TO 165.0 0.0 0.0 0.0 3.2 170.0 TO 175.0 0.0 0.0 0.0 3.2 170.0 TO 175.0 0.0 0.0 0.0 0.0 180.0 TO 185.0 0.0 0.0 0.0 0.0 180.0 TO 185.0 0.0 0.0 0.0 0.0 180.0 TO 185.0 0.0 0.0 0.0 0.0 199.0 TO 199.0 0.0 0.0 0.0 0.0 199.0 TO 205.0 0.0 0.0 0.0 0.0 200.0 TO 205.0 0.0 0.0 0.0 0.0 210.0 TO 220.0 0.0 0.0 0.0 0.0 215.0 TO 25.0 0.0 0.0 0.0 0.0 0.0 215.0 TO 25.0 0.0 0.0 0.0 0.0 0.0 25.0 TO 25.5 0.0 0.1 0.0 0.3 0.0 25.0 TO 5.5 0.0 0.1 0.0 0.3 0.5		_130.0 TO 135	•09•3	7.8	4.8	
149.0 TO 150.0 25.3 14.0 10.3 150.0 TO 155.0 15.0 22.0 12.7 155.0 TO 100.0 2.7 24.5 24.4 160.0 TO 105.0 0.0 0.0 4.2 25.2 165.0 TO 175.0 0.0 0.0 0.0 3.2 170.0 TO 175.0 0.0 0.0 0.0 3.2 170.0 TO 175.0 0.0 0.0 0.0 0.0 3.2 170.0 TO 175.0 0.0 0.0 0.0 0.0 0.0 180.0 TO 180.0 0.0 0.0 0.0 0.0 0.0 180.0 TO 190.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		135.0 TO 1+0	.0 12.5	9-2	7•7	
150.0 TO 155.0 15.0 22.0 12.7 155.0 TO 100.0 2.7 24.5 24.4 160.0 TO 105.0 0.0 4.2 25.2 165.0 TO 170.0 0.0 0.0 3.2 170.0 TO 175.0 0.0 0.0 0.0 175.0 TO 180.0 0.0 0.0 0.0 180.0 TO 185.0 0.0 0.0 0.0 180.0 TO 195.0 0.0 0.0 0.0 180.0 TO 195.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 200.0 TO 205.0 0.0 0.0 0.0 200.0 TO 205.0 0.0 0.0 0.0 210.0 TO 222.0 0.0 0.0 0.0 211.0 TO 222.0 0.0 0.0 0.0 215.0 TO 223.0 0.0 0.0 0.0 255.0 TO 2.5 7.7 0.4 0.4 0.5 TO 1.0 26.1 13.9 8.8 1.0 TO 1.5 36.0 33.0 26.0 1.5 TO 2.0 4.7 2.1 1.5 2.0 TO 2.5 7.2 9.5 9.8 2.5 TO 3.0 11.0 17.8 17.4 3.0 TO 3.5 0.7 0.3 2.4 3.5 TO 4.0 4.3 4.2 6.2 4.0 TO 4.5 2.4 3.2 3.4 4.5 TO 5.0 0.1 0.0 0.3 5.0 TO 5.5 2.4 6.5 9.4 5.5 TO 5.0 0.1 0.0 0.3 5.0 TO 5.5 2.4 6.5 9.4 5.5 TO 5.0 0.1 0.3 1.5 6.0 TO 6.5 0.5 1.5 2.5 6.0 TO 7.5 0.0 0.1 0.3 1.5 6.0 TO 7.5 0.0 0.1 0.3 0.5 7.5 TO 8.0 0.1 0.3 0.5 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.5 ENTRIES 752 758 754 ENTRIES 752 758 754						
155.0 TO 100.0 2.7 24.5 24.4 160.0 TO 105.0 0.0 4.2 25.2 165.0 TO 170.0 0.0 0.0 3.2 170.0 TO 175.0 0.0 0.0 0.0 175.0 TO 130.0 0.0 0.0 0.0 180.0 TO 185.0 0.0 0.0 0.0 180.0 TO 185.0 0.0 0.0 0.0 190.0 TO 190.0 0.0 0.0 0.0 190.0 TO 190.0 0.0 0.0 0.0 200.0 TO 205.0 0.0 0.0 0.0 200.0 TO 205.0 0.0 0.0 0.0 210.0 TO 215.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 ENTRIES 752 758 754 FADING						
160.0 TO 10 165.0 0.0 4.2 25.2 165.0 TO 170.0 0.0 0.0 0.0 170.0 TO 175.0 0.0 0.0 0.0 180.0 TO 135.0 0.0 0.0 0.0 180.0 TO 135.0 0.0 0.0 0.0 185.0 TO 190.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 200.0 TO 205.0 0.0 0.0 0.0 200.0 TO 205.0 0.0 0.0 0.0 210.9 TO 215.0 0.0 0.0 0.0 215.0 TO 223.0 0.0 0.0 0.0 ENTRIES 752 758 754 FADING * HIGH						
165.0 TU 170.0 0.0 0.0 0.0 3.2 170.0 TU 175.0 0.0 0.0 0.0 0.0 0.0 175.0 TU 130.0 0.0 0.0 0.0 0.0 0.0 180.0 TU 130.0 0.0 0.0 0.0 0.0 0.0 180.0 TU 190.0 0.0 0.0 0.0 0.0 0.0 0.0 190.0 TU 195.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 195.0 TU 200.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0				24.5		
170.0 TO 175.0 0.0 0.0 0.0 0.0 0.0 175.0 TO 130.0 0.0 0.0 0.0 0.0 0.0 180.0 TO 135.0 0.0 0.0 0.0 0.0 0.0 180.0 TO 135.0 0.0 0.0 0.0 0.0 0.0 185.0 TO 190.0 0.0 0.0 0.0 0.0 0.0 0.0 195.0 TO 195.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		160.0 10 105	•00•0			
175.0 TU 130.0 0.0 0.0 0.0 0.0 0.0 180.0 TU 135.0 TU 190.0 0.0 0.0 0.0 0.0 0.0 0.0 190.0 TU 195.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
180.0 TO 185.0						
185.0 TO 190.0						
190.0 TO 195.0 0.0 0.0 0.0 0.0 199.0 TO 200.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0						
195.0 TO 205.0 0.0 0.0 0.0 0.0 200.0 10 205.0 TO 205.0 0.0 0.0 0.0 0.0 0.0 205.0 TO 210.0 0.0 0.0 0.0 0.0 210.0 TO 215.0 0.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0						
200.0 TO 205.0 0.0 0.0 0.0 0.0 205.0 TO 210.0 TO 210.0 0.0 0.0 0.0 0.0 0.0 210.0 TO 215.0 0.0 0.0 0.0 0.0 0.0 0.0 215.0 TO 229.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
205.0 TU 215.0 0.0 0.0 0.0 0.0 215.0 TU 229.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						
210.0 TO 215.0 0.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		200.0 10 205	•0			
ENTRIES 752 758 754 FADING						
FADING		210.9 10 215	•00•0			
FADING		213.0 10 229	•0 0•5	0.0		
FADING		ENTRIES	752	758	754	
0.0 TO 0.5 1.7 0.4 0.4 0.5 TO 1.0 26.1 13.9 8.8 1.0 TO 1.5 36.0 33.0 26.0 1.5 TO 2.0 4.7 2.1 1.5 2.0 TO 2.5 7.2 9.5 9.8 2.5 TO 3.0 11.0 17.8 17.4 3.0 TO 3.5 0.7 0.3 2.4 3.5 TO 4.0 4.3 4.2 6.2 4.0 TO 4.5 2.4 3.2 3.4 4.5 TO 5.0 0.1 0.0 0.3 5.0 TO 5.5 2.4 6.5 9.4 5.5 TO 5.0 0.1 0.3 1.5 6.0 TU 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.1 0.3 1.5 6.0 TU 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.1 0.5 7.5 TO 3.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.1 0.5 7.5 TO 3.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4						
0.5 TO 1.0 26.1 13.9 8.8 1.0 TO 1.5 36.0 33.0 26.0 1.5 TO 2.0 4.7 2.1 1.5 2.0 TO 2.5 7.2 9.5 9.8 2.5 TO 3.0 11.0 17.8 17.4 3.0 TO 3.5 0.7 0.3 2.4 3.5 TO 4.0 4.3 4.2 6.2 4.0 TO 4.5 2.4 3.2 3.4 4.5 TO 5.0 0.1 0.0 0.3 5.0 TO 5.5 2.4 6.5 9.4 5.5 TO 5.0 0.1 0.3 1.5 6.0 TO 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.1 0.3 1.5 6.0 TO 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.1 0.5 7.5 TO 3.0 0.1 0.5 8.6 TO 7.5 0.0 0.1 0.5 8.6 TO 7.5 0.0 0.1 0.5 8.7 TO 7.5 0.0 0.1 0.5 8.7 TO 7.5 0.0 0.1 0.5 8.5 TO 9.0 0.3 0.5 8.5 TO 9.0 0.3 0.5 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.5 9.5 TO 10.0 1.7 2.9 3.4		0.0 TO 0	•5 1.7	0.4	0.4	
1.0 TO 1.5 36.0 33.0 26.0 1.5 TO 2.0 4.7 2.1 1.5 2.0 TO 2.5 7.2 9.5 9.8 2.5 TO 3.0 11.0 17.8 17.4 3.0 TO 3.5 0.7 0.3 2.4 3.5 TO 4.0 4.3 4.2 6.2 4.0 TO 4.5 2.4 3.2 3.4 4.5 TO 5.0 0.1 0.0 0.3 5.0 TO 5.5 2.4 6.5 9.4 5.5 TO 5.0 0.1 0.3 1.5 6.0 TO 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.1 0.3 1.5 6.0 TO 7.5 0.0 0.1 0.3 1.5 7.5 TO 3.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.1 0.5 7.5 TO 3.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4			.0 26.1	13.9	8.8	
2.0 TO 2.5			•5· 35•ù	33.0	26.0	
2.5 TO 3.0 11.0 17.8 17.4 3.0 TO 3.5 0.7 0.3 2.4 3.5 TO 4.0 4.3 4.2 6.2 4.0 TO 4.5 2.4 3.2 3.4 4.5 TO 5.0 0.1 0.0 0.3 5.0 TO 5.5 2.4 6.5 9.4 5.5 TO 5.0 0.1 0.3 1.5 6.0 TU 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.1 0.5 7.5 TO 3.0 0.0 0.3 0.0 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4			• • • • • • • • • • • • • • • • • • • •			
3.0 TO 3.5 0.7 0.3 2.4 3.5 TO 4.0 4.3 4.2 6.2 4.0 TO 4.5 2.4 3.2 3.4 4.5 TO 5.0 0.1 0.0 0.3 5.0 TO 5.5 2.4 6.5 9.4 5.5 TO 5.0 0.1 0.3 1.5 6.0 TO 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.1 0.5 7.0 TO 7.5 0.0 0.1 0.5 7.5 TO 3.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.5 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.5 9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 758 754						
3.5 TO 4.0 4.3 4.2 6.2 4.0 TO 4.5 2.4 3.2 3.4 4.5 TO 5.0 0.1 0.0 0.3 5.0 TO 5.5 2.4 6.5 9.4 5.5 TO 5.0 0.1 0.3 1.5 6.0 TO 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.1 0.5 7.5 TO 8.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.5 7.5 TO 9.0 0.3 0.5 9.5 TO 9.0 0.3 0.5 9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 758 754					~	
4.0 TO 4.5 2.4 3.2 3.4 4.5 TO 5.0 0.1 0.0 0.3 5.0 TO 5.5 2.4 6.5 9.4 5.5 TO 5.0 0.1 0.3 1.5 6.0 TU 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.4 0.4 7.0 TO 7.5 0.0 0.1 0.5 7.5 TO 3.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.5 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 758 754						
4.5 TO 5.0 0.1 0.0 0.3 5.0 TO 5.5 2.4 6.5 9.4 5.5 TO 5.0 0.1 0.3 1.5 6.0 TU 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.4 0.4 7.0 TO 7.5 0.0 0.1 0.5 7.5 TO 3.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.0 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4						
5.0 TO 5.5						
5.5 TO 5.0 0.1 0.3 1.5 6.0 TO 6.5 0.5 1.5 2.5 0.5 TO 7.0 0.0 0.4 0.4 7.0 TO 7.5 0.0 0.1 0.5 7.5 TO 8.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.0 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 758 754	,					
6.0 TU 6.5 0.5 1.5 2.5 0.5 TO 7.0 U.0 0.4 0.4 7.0 TO 7.5 0.0 0.1 0.5 7.5 TO 8.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.0 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 758 754						
0.5 TO 7.0 0.0 0.4 0.4 7.0 TO 7.5 0.0 0.1 0.5 7.5 TO 8.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.0 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 758 754						
7.0 TO 7.5 0.0 0.1 0.5 7.5 TO 3.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.0 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 758 754						
7.5 TO 3.0 1.3 3.0 5.2 8.0 TO 8.5 0.0 0.3 0.0 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 758 754						
8.0 TO 8.5 0.0 0.3 0.0 8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 758 754						
8.5 TO 9.0 0.3 0.5 0.7 9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 758 754						
9.0 TO 9.5 0.0 0.3 0.3 9.5 TO 10.0 1.7 2.9 3.4						
9.5 TO 10.0 1.7 2.9 3.4 ENTRIES 752 754						
ENTRIES 752 758 754						
					7 • • • • • • • • • • • • • • • • • • •	
Table 14. Frequency distributions of path loss and fading for L-band			752	. 758	754	
		ENTRIES				
				ions of path loss	and fading for L	;and

N

0

W.

S.

DIFFERENCE	る HIGH-LOW	# HIGH-MID	4 MID-LOW	
-20.0 TÓ -1d.		0.0	0.0	
-18.0 TO -10.		0.0	0.0	
-16.0 TO -14.		0.0	0.0	
-14.0 TU -12.				
-12.0 Tú -10.		0.0	0.0	
-10.0 TO -8.		0.1	0 <u>.</u> 0	
-8.J TO -0.		0.1 0.0	0.1	
-4.0 TO -2.		0.3	0.3	<u> </u>
-2.0 TO U.		0.1	1.7	
0.0 TO 2.		1.9	2.9	
2.0 0 4.		9.6	18.2	
4.0 TO 6.		25.1	45.4	
6.0 TO 8.		54.3	25.4	
	0 15.1	7.9	3.7	
10.0 TU 12.		2.6	0.8	
12.0 TO 14.		0.9	0.5	
14.0 TO 16.		0.0	0.4	
16.0 TO 18.		0.0	0.1	
18.0 TU 20.	0 1.1	U.O	0.0	
ENTRIES	729	737	.749	_
	A		n managamana angga sia atra 144 ya sangga anga sa sangga s	
	en e	ratinggap agy name direktin sa papiratingga tinggap direkting		
•				
		ns of path loss	differences between	
ante	nnas for L-band			
* *************************************	- 	**************************************	and the state of the	

X

### HIGH-MID ###################################			7	CONTRO	מו אמאא				10111							
## > 20.0 DB	HIGH-	FOW				7-0 I W	LOW				Ī	I-H91	410			
## 5 6.0 00 8 83.9 # 5 6.0 DB 86.8 # 5 8.0 DB 93.5 # 5 9.0 DB 97.5 # 5 9.0 DB			3 4 3				96 36 38	_	000	0.8 0.8 0.8		• • •		000	000	90 90 08 0
# > 0.0 0B 93.5 % > 0.0 0B 97.5 % > -3.0 0B 99.0 % > -10.0 0B 99.9 % > -20.0 0B 90.0 % > -20.0 0B						÷.	36 36	^^		១០ ១ឧ	.	• •				90
# 5 - 6.0 DB	_		÷ .			61	3 6 3		0.	90		•		0	0 0	80
# > -10.0 DB			6 9				€ 8€	•	i .	2 8 8	,. J•	• •		9		a C
# > -15.0 08	_		10.			3	₩	1	0	90	υ.	•		10	0	80
G HIGH C HIGH	33		15.			000	3 4 34	1 1	60	08 08	J. J.	• •		15		90
### FADING MIDDLE ##################################	 	ENT	IES	706		 			S	707	11	}	H H	RIES	11	169
x > 20.0 DB 0.0 x > 15.0 DB 0.0 x > 15.0 DB x > 10.0 DB 0.0 x > 15.0 DB 0.0 x > 15.0 DB x > 10.0 DB 0.0 x > 10.0 DB 0.0 x > 10.0 DB x > 0.0 Ud 0.0 x > 0.0 DB 0.0 x > 1.0 x > 1.0 x > 1.0 DB x > 5.0 DB 5.2 x > 5.0 DB 8.0 x > 15.3 x > 15.0 DB x > 2.0 DB 45.1 x > 2.0 DB 59.3 x > 10.0 DB x > 2.0 DB 45.1 x > 2.0 DB 59.3 x > 10.0 DB x > 1.0 DB 45.1 x > 2.0 DB 59.3 x > 10.0 DB	FADIN	C HIG	.			FADII		1001	тi		.	ADIN		3		•
4 10.0 08 4 5 6 4 7 1 6 4 7 1 8 7 1 8 7 1 8 7 1 8 7 1 8 7 1 8 7 1 8 7 1 8 7 1 8 7 1 8 7 1 8 7 1 8 7 1 8 8 9 8 9 8 9 </td <td>•</td> <td>₩ :</td> <td>÷ .</td> <td>3</td> <td></td> <td>•</td> <td>₩ ;</td> <td>-</td> <td>9</td> <td>90</td> <td></td> <td>•</td> <td></td> <td>0 4</td> <td>0</td> <td>00</td>	•	₩ :	÷ .	3		•	₩ ;	-	9	90		•		0 4	0	00
4 0.8 4 8.0 08 1.1 4 3.1 4 4.0 08 3.1 4 4.0 08 3.1 4 4.0 08 3.1 4 4.0 08 3.1 4 4.0 08 8.0 4 8.0 4 8.0 4 8.0 4 8.0 4 8.0 4 8.0 4 8.0 4 8.0 6 <	• :	e 74	· =			• (e 36			9 6		•		n c		9 4
\$\frac{2}{8}\$ > 6.0 08 \$\frac{1.6}{8}\$ > 6.0 08 \$\frac{3.1}{8}\$ > 8.0 \frac{8}{8}\$ >	•	34	, z			•	96		3	90		•		8	0	B
\$ > 5.0 0B \$ 5.2 % > 5.0 0B \$ 8.0 % > \$ > 4.0 0B \$ 15.3 % > \$ 15.3 % > \$ > 4.0 0B \$ 19.8 % > \$ 3.0 0B \$ 27.1 % > \$ > 2.0 0B \$ 45.1 % > \$ 2.0 0B \$ 59.3 % > \$ > 1.0 0B \$ 53.5 % > \$ 1.0 0B \$ 90.6 % > \$ > 1.0 0B \$ 1.0 0B \$ 1.0 0B \$ 1.0 0B	•	94	•			•	≎ •	^	•	90		•			0	98
%> 4.0 DB	•	ንዋ	•			•	54	۸	•	DB		•			0	90
# > 3.0 08	•	5•₽	•			•	96	٨	•	80		3			0	98
%> 2.0 08	4.	30	,	90		6	₩	۸	•	กิเร	•	7.			0	9
\$> 1.0 08 90.6 \$> ENTRIES = 774 TOTAL ENTRIES	4	96	•	Ωß		3.	×	^	•	DB	 1	6			0	90
ENTRIES = 736 TOTAL ENTRIES = 774 TOTAL ENTRIE	÷	36		Ď.		÷,	:	^	•	08	,	ċ			0.	98
	TOFAL		'n	746		LOTAL			S	774	1.0	DIAL	ENT	RIES	(\$	196

X

观

Table 16. Statistical presentation for S-band

	ATH L	oss	% HIGH	.Z MID	% LOW	
120	0.0 TO	125.0	15.6	9.7	8.2	
		130.0	5.0	4.3	3.0	
		135.0	5.3	4.7	4.3	
13	5.0 TO	140.0	14.5	4.7	4.8	
140	0.0 TO	145.0	24.0	12.7	5.4	
14	5.0 TO	150.0	26.7	25.5	10.9	
159	0.0 TO	155.0	4.1	29.5	23.4	
15	5.0 TO	100.0	4.6	6.1	22.4	
160	0.0 TO	165.0	0.0	3.1	13.4	
16	5.0 TO	1/0.0	0.0	0.0	4.3	
176	0.0 TO	175.0	0.1	0.0	0.0	
17	5.0 TO	130.0	0.0	0.0	0.0	
		135.0	0.0	0.0	0.0	
		190.0	· • · · · · · · · · · · · · · · · · · ·	0.0	0.0	
		195.0	0.3	0.0	0.0	
		ັ200.ປີ	0.0	0.0	0.0	_ , , , , , , , , , , , , , , , , , , ,
		205.0	0.0	0.0	0.0	
20	5.0 TÜ	210.0	0.0	0.0	0.0	
		215.0	0.0	0.0	0.0	
21:	5.0 TO	220.0	0.0	0.0	0.0	
	ENTRIE	s	786	774	796	
	FADING		# HIGH	T MID	* LOW	
	0.0 to	0.5	0.0	0.0	₹ LOW	
	0.0 TO	0.5 1.0	0.0 19.8	0.0 16.5	% LOw 0.0 8.9	
	0.0 TO 0.5 TO 1.0 TO	0.5 1.0 1.5	0.0 19.8 	0.0 16.5 22.4	0.0 8.9 14.2	
	0.0 TO 0.5 TO 1.0 TO	0.5 1.0 1.5 2.0	0.0 19.8 33.7 8.8	0.0 16.5 22.4 8.3	0.0 8.9 14.2 10.2	
	0.0 TO 0.5 TO 1.0 TO 1.5 TO 2.0 TU	0.5 1.0 1.5 2.0 2.5	0.0 19.8 33.7 8.8 13.5	0.0 16.5 22.4 8.3 27.5	0.0 8.9 14.2 10.2 26.1	
	0.0 TO 0.5 TO 1.0 TO 1.5 TO 2.0 TU 2.5 TO	0.5 1.0 1.5 2.0 2.5 3.0	0.0 19.8 33.7 8.8 13.5 8.1	0.0 16.5 22.4 8.3 27.5 5.0	0.0 8.9 14.2 10.2 26.1 13.1	
	0.0 TO 0.5 TO 1.0 TO 1.5 TO 2.0 TU 2.5 TO 3.0 TO	0.5 1.0 1.5 2.0 2.5 3.0	0.0 19.8 33.7 8.8 13.5 8.1	0.0 16.5 22.4 8.3 27.5 5.0	0.0 8.9 14.2 10.2 26.1 13.1	
	0.0 TO 0.5 TO 1.0 TO 1.5 TO 2.0 TO 2.5 TO 3.0 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0	0.0 19.8 33.7 8.8 13.5 8.1 3.3	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4	0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.3	
	0.0 TO 0.5 TO 1.0 TO 1.5 TO 2.0 TO 2.5 TO 3.0 TO 4.0 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5	0.0 19.8 33.7 8.8 13.5 8.1 3.8 4.5	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2	\$ LOW 0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.8	
	0.0 TO 0.5 TO 1.0 TO 1.5 TO 2.0 TO 2.5 TO 3.0 TO 4.0 TO 4.5 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0	0.0 19.8 33.7 8.8 13.5 8.1 3.3 4.5 3.3	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2 0.9	0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.8 8.4	
	0.0 TO 0.5 TO 1.0 TO 1.5 TO 2.0 TO 2.5 TO 3.0 TO 4.0 TO 4.5 TO 5.0 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0	0.0 19.8 33.7 8.8 13.5 8.1 3.3 4.5 3.3 0.5	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2 0.9	0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.8 8.4 1.5	
	0.0 TO 0.5 TO 1.0 TO 2.0 TO 2.5 TO 3.0 TO 3.5 TO 4.0 TO 4.5 TO 5.5 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0	0.0 19.8 33.7 8.8 13.5 8.1 3.3 4.5 3.3 0.5	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2 0.9	8 LOW 0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.8 8.4 1.5 3.3 3.6	
	0.0 TO 0.5 TO 1.0 TO 1.5 TO 2.0 TO 2.5 TO 3.0 TO 3.5 TO 4.5 TO 5.0 TO 5.5 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0	0.0 19.6 33.7 8.8 13.5 8.1 3.3 4.5 3.3 0.5 1.7	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2 0.9 2.3 1.9	* LOW 0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.8 8.4 1.5 3.3 3.6 0.8	
	0.0 TO 0.5 TO 1.0 TO 2.0 TO 2.5 TO 3.0 TO 3.5 TO 4.5 TO 5.5 TO 6.5 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0	0.0 19.6 33.7 8.8 13.5 8.1 3.3 4.5 3.3 0.5 1.7 0.8	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2 0.9 2.3 1.9	* LOW 0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.8 8.4 1.5 3.3 3.6 0.8 0.4	
	0.0 TO 0.5 TO 1.0 TO 2.0 TO 2.5 TO 3.0 TO 3.5 TO 4.5 TO 5.5 TO 6.5 TO 6.5 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0	0.0 19.6 33.7 8.8 13.5 8.1 3.3 4.5 3.3 0.5 1.7 0.8	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2 0.9 2.3 1.9 0.8 0.1	8 LOW 0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.8 8.4 1.5 3.3 3.6 0.8 0.4 0.5	
	0.0 TO 0.5 TO 1.5 TO 2.0 TO 2.5 TO 3.5 TO 4.0 TO 5.5 TO 5.5 TO 6.5 TO 7.0 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0. 7.0 7.5 8.0	0.0 19.6 33.7 8.8 13.5 8.1 3.3 4.5 3.3 0.5 1.7 0.8 1.0 0.0	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2 0.9 2.3 1.9 0.8 0.1	\$ LOW 0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.3 8.4 1.5 3.3 3.6 0.8 0.4 0.5 0.8	
	0.0 TO 0.5 TO 1.0 TO 2.0 TO 2.5 TO 2.5 TO 3.5 TO 4.0 TO 5.5 TO 5.5 TO 7.0 TO 7.5 TO 8.0 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.5 8.0	0.0 19.8 33.7 8.8 13.5 8.1 3.3 4.5 3.3 0.5 1.7 0.8 1.0 0.0	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2 0.9 2.3 1.9 0.8 0.1	# LOW 0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.3 8.4 1.5 3.3 3.6 0.8 0.4 0.5 0.8 0.0	
	0.0 TO 0.5 TO 1.0 TO 2.0 TO 2.5 TO 3.0 TO 3.5 TO 4.5 TO 5.5 TO 5.5 TO 7.0 TO 8.0 TO 8.0 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.5 8.0 8.5 9.0	0.0 19.8 33.7 8.8 13.5 8.1 3.3 4.5 3.3 0.5 1.7 0.8 1.0 0.0	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2 0.9 2.3 1.9 0.8 0.1 0.3 0.3	8 LOW 0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.8 8.4 1.5 3.3 3.6 0.8 0.4 0.5 0.8 0.0 0.1	
	0.0 TO 0.5 TO 1.0 TO 2.0 TO 2.5 TO 2.5 TO 3.5 TO 4.0 TO 5.5 TO 5.5 TO 7.0 TO 7.5 TO 8.0 TO	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0.5 7.0 7.5 8.0 8.5 9.0	0.0 19.8 33.7 8.8 13.5 8.1 3.3 4.5 3.3 0.5 1.7 0.8 1.0 0.0	0.0 16.5 22.4 8.3 27.5 5.0 3.2 3.4 6.2 0.9 2.3 1.9 0.8 0.1	# LOW 0.0 8.9 14.2 10.2 26.1 13.1 3.4 3.3 8.4 1.5 3.3 3.6 0.8 0.4 0.5 0.8 0.0	

	***			E.APRIL 1972.		221
··-	 DIFF	ERENCE	% HIGH-LOW	≉ HIGH-MID	% MID-LOW	
	-20.0	TO -13.0	J.0	0.1	0.0	
			0.0		0.0	
•	-16.0	TO -14.0	0.1	0.1	0.0	
					0.0	
		TO -10.0	0.3	0.6 0.1	0.3 0.4	
		TO -6.0	0.3	0.3	0∙3	
	_		· · ·		0.8	
	-4.0	TO -2.0	1.1	0.7	1.1	
		10 0.0		1.4		
		TO 2.0	1.8	4.2	4.5	
	2.0 4.0	··· -	2.4	12•0 29•7	38.0	
			6.7		29.7	
	3.0		14.7	7.1	5.1	
	10.0	TU _12.0		1.9		
	12.0		25.8	1.2	0.3	
				0.7	0.4	
		TO 18.0	2.3	0.3	0.1	
	19-0	TO 20.0	2.7	0.1	0.4	
	ENTR	IES.	<u>706</u>	691	707	
						
	Table I			s of path loss d	ifferences between	
	Täble I		cy distribution s for S-band	s of path loss d	ifferences between	
	Table 1			s of path loss d	ifferences between	
	Täble 1			s of path loss d	ifferences between	
	Täble 1			s of path loss d	ifferences between	
	Table I			s of path loss d	ifferences between	
	Täble I			s of path loss d	ifferences between	
	Täble 1			s of path loss d	ifferences between	
	Täble 1			s of path loss d	ifferences between	
	Täble I			s of path loss d	ifferences between	
	Table I			s of path loss d	ifferences between	
	Table I					
	Table 1			s of path loss d		

N.

R

8

N

87

E

N.

Cia int

8

000

图

77. 80

555

No.

N N

jšči TSC

> 20	0 % > 50.0	.4 % > 20.0
0.21 < % >	2 % > 15.0	.1 8 > 15.0
2 > 10.0	0 % > 10.0	2.9 % > 10.0
0.6 < 8.0	3.7 % > 6.0 DB	0.9
0.8 \ 8.0	13 > 3.0	4.1 % > 3.0
O*C < % 1	0°0	0.0 < % 9.0
0.6- < 2.6	6 % > -3.0	7.5 % > -3.0
0.9- < 2.2	0.9- < % 6'	0.9- < 3.8.2
1 % > -10,0	9 % > -10.0	5.6 % > -10.0
0.4 % > -15.0	6 % > -15.0	8.6 % > -15.0
> -20.0	7 % > -20.0	9.6 '\$ > -20.
TOTAL ENTRIES - 1058	TOTAL ENTRIES = 1063	TUTAL ENTRIES = 106
FADINS HIGH	FADTRIG MIDDLE	FADING LOW
1 < > 20.0	.0 % > 20.	.0 4 > 20.0
7 8 7 15.0	.2 % > 15.0	·4 4 > 15.0
2 % > 10,6	.8 % > 10.0	.1 4 > 10.0
W W 8.0	0.8 < % 1.	•3 % > ⋅ 8•0
12.5 % > 6.0 00	7.3 % > 6.0 OB	6.2 % > 6.0 08
つ ペ ボ 1 * 5	*4 % Y 2°0	.5 % > 5.0
0.2 6 7 4.5	6.6 4 4.0	5.8 6 7 4.0
	.3 % > 3.0	•7 % > 3•0
1.5 % > 2.0	.0.2 < 2.0	7.7 4 > 2.0
5,2 % > 1.	.0 .8 > 1.0	.7 % > 1.0
TOTAL ENTRIES - 1069	THIAL ENTRIES = 1071	TOTAL ENTHIES = 1005

APRIL 1972

X HAND, MAXOS TO MYKONUS, GREECE

•	PATH LOSS	3 HIGH	OIF \$	\$ LOW
	120.0 TO 125.0	3.9	.	1, ,
©	125.0 TO 125.0	19.7	3. ≎	14.4
	130.0 TO 135.0		15.0	11.5
	135.3 TO 140.0	23.7	15.ö	11.7
©		17.1	15.2	13.1
		16.5	14.0	11.4
	145.0 [0 150.0	5.9	11.1	10.7
	150.3 70 155.3	7.5	8.5	10.0
	155.0 77 160.0	3.2	7∙5	10.4
	160.0 TC 135.3	2.1	4.4	2.3
_	165.3 79 173.3	0.3	3.6	3.1
❷	17C.J TO 175.J	J.0	1.0	J.6
	175.0 TO 180.0	0.0	0.2	∵. 3
_	180.0 TO 135.0	J.:i	Ŭ•J	მ•მ
6	185.0 TO 190.0	0.0	0.0	0.0
	190.J TG 195.0	0.0	0.0	J.0
	195.0 TC 200.0	0.0	⊙. ⊃	0.0
©	200.0 TO 205.0	0.0	0.0	0.0
	205.0 TO 21J.0	0.0	0.0	3.6
	210.0 10 213.0	3. 3	0.0	0.0
•	215.0 TO 220.0	0.0	0.0	0.0
		300	5.5	3.0
	ENTRIES -	1059	1071	1065
9		•••	• • • •	1303
	r for an management of the com-	•		
O	FADING	3 HIGH	3 MID	% LOW
_				• • •
_	0.0 TO 0.5	0.5	0.2	J.2
@	0.5 TO 1.)	14.3	19.7	9.1
	1.5	14.3	13. ó	12.5
	1.5 TO 2.0	29.2	27.9	33.2
&	2.U TO 2.5	· 5•5	7.3	5.4
	2.5 TO 3.0	7.3	11.7	9.9
	3.0 TO 3.5	6.1	9.5	15.4
6	3.5 TO 4.0	1.5	2.1	1.3
	4.0 TO 4.5	2.1	2.7	3.7
	4.5 TO 5.0	1.1	1.1	2.5
e	5.0 TO 5.5.		2.9	
	5.5 TO 6.0	1.5		2.4
	6.5 TO - 6.5		2.9	1.1
&	5.5 TO 7.0		0.7	3.6
₩		1.1	9∙7	1.7
		2.2	1.1	1.1
	7.5 TO 3.3	0.7	0.6	0.5
•	3.C TO 3.5	1.7	1.5	1.1
-	8.5 TO 9.0	0.2	0.0	0.1
	9.5 Tu 79.5	1.8	0.5	7 7 0.0
•	9.5 TO 10.0	3.9	2.1	1.1
•	ENTRIES	1.069	1071	1065
ව	• •			

N N

N H

Table 10. Frequency distributions of path loss and fading for K-band

8

8

X

W W

DET RANGE	#> HIGH	CIM <2	3> LOW
10.0	100.0	100.0	190.0
20.0	77.6	92.3	93.4
30.0	36.3	74.5	72.7
40.0	81.7	65.3	64.2
50•0	74.7	60.5	59.9
60.0	72.J	56.2	57.J
70.0	67. 3	54.1	54.5
30.0	63.1	49.5	50.7
90.0	61.0	47.8	48.5
100.0	58.5	44.4	45.4
110.0	54.2	41.0	42.5
120.)	50.0	37.2	39.3
130.0	45•4	32.9	36.4
140.0	40.9	29.7	34.ó
150.0	33.5	27.5	32.9
150.0	30.3	23•∻	29.7
170.0	24.6	20.3	27.5
130.0	25.1	16.7	25.2
190.0	16.0	12.7	22.3
200.0	-0.0	-0.0	-0.0
ENTRIES	1057	1057	1057
••• • • •			•
DET RANGE DIFF	ี่ # HIGH-L าพ	GIV-HDIH %	3 MID-LOW
-50.0 TO -45.0 +45.0 TO -40.0	15.7	8.3	15.9
-50.0 TO -45.0	15.7	8.3 1.4	15.9 1.5
-50.0 TO -45.0 +45.0 TO -40.0	15.7	9.3 1.4 0.7	15.9 1.5 2.4
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0	15.7 1.2 1.7	8.3 1.4 0.7 0.7	15.9 1.5 2.4 1.8
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0	15.7 1.2 1.7 1.0	8.3 1.4 0.7 0.7 0.9	15.9 1.5 2.4 1.8 2.0
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -30.0 TO -25.0	15.7 1.2 1.7 1.0 0.9	8.3 1.4 0.7 0.7	15.9 1.5 2.4 1.8 2.0 3.1
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -36.6 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -10.0	15.7 1.2 1.7 1.0 0.9	8.3 1.4 0.7 0.7 0.9 1.3	15.9 1.5 2.4 1.8 2.0 3.1 2.5
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -30.6 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0	15.7 1.2 1.7 1.0 0.9 0.9	8.3 1.4 0.7 0.7 0.7 0.9 1.3	15.9 1.5 2.4 1.8 2.0 3.1
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -30.0 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -10.0 -5.0 TO 0.0	15.7 1.2 1.7 1.0 0.9 0.9 0.0 1.0 0.7	8.3 1.4 0.7 0.7 0.9 1.3 1.5	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -30.0 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -5.0 -5.0 TO -5.0	15.7 1.2 1.7 1.0 0.9 0.9 1.0 0.7	8.3 1.4 0.7 0.7 0.9 1.3 	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0 4.5
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -30.0 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -5.0 -5.0 TO -5.0 5.0 TO 10.0	15.7 1.2 1.7 1.0 0.9 0.9 1.0 0.7 2.1 2.2	8.3 1.4 0.7 0.7 0.9 1.3 1.5 1.0 1.2 2.0 12.2 5.5	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0 4.5 24.1
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -30.0 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -10.0 -5.0 TO -5.0 -5.0 TO -5.0 5.0 TO 10.0 10.0 TO 15.0	15.7 1.2 1.7 1.0 0.9 0.9 1.0 0.7 2.1 2.2 17.8 4.1 4.7	8.3 1.4 0.7 0.7 0.9 1.3 1.5 1.0 1.2 2.0 12.2 5.5	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0 4.5 24.1
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -30.0 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -5.0 -5.0 TO -5.0 5.0 TO 10.0 10.0 TO 15.0	15.7 1.2 1.7 1.0 0.9 0.0 1.0 0.7 2.1 2.2 13.8 4.1 4.7 5.9	8.3 1.4 0.7 0.7 0.9 1.3 	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0 4.5 24.1 17.9 4.7
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -36.6 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -10.0 -5.0 TO -5.0 -5.0 TO -0.0 -5.0 TO -5.0	15.7 1.2 1.7 1.0 0.9 0.9 1.0 0.7 2.1 2.2 13.8 4.1 4.7 5.9 5.1	8.3 1.4 0.7 0.7 0.9 1.3 	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0 4.5 24.1 17.9 4.7 3.4 2.3 2.3
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -36.6 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -10.0 -5.0 TO -5.0 -5.0 TO -0.0 -5.0 TO -5.0	15.7 1.2 1.7 1.0 0.9 0.0 1.0 0.7 2.1 2.2 13.8 4.1 4.7 5.0 5.0	8.3 1.4 0.7 0.7 0.9 1.3 	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0 4.5 24.1 17.9 4.7 3.4 2.3 2.1
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -36.6 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -10.0 -5.0 TO -5.0 -5.0 TO -0.0 -5.0 TO -5.0	15.7 1.2 1.7 1.0 0.9 0.0 1.0 0.7 2.1 2.2 13.8 4.1 4.7 5.0 5.0 4.7	8.3 1.4 0.7 0.7 0.9 1.3 1.5 1.0 1.2 2.0 12.2 5.5 5.1 9.7 3.3 6.1 7.1	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0 4.5 24.1 17.9 4.7 3.4 2.6 2.0
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -36.6 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -10.0 -10.0 TO -5.0 -5.0 TO 0.0 -5.0 TO 10.0 15.0 TO 15.0 15.0 TO 20.0 26.0 TO 25.0 27.0 TO 30.0 30.0 TO 35.0 35.0 TO 40.0	15.7 1.2 1.7 1.0 0.9 0.9 1.0 0.7 2.1 2.2 13.8 4.1 4.7 5.0 5.0 4.7 2.6	8.3 1.4 0.7 0.7 0.9 1.3 1.5 1.0 1.2 2.0 12.2 5.5 5.1 9.7 3.3 6.1 7.1	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0 4.5 24.1 17.9 4.7 3.4 2.2 1.0 1.2 0
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -36.0 TO -25.0 -25.0 TO -20.0 -20.0 TO -10.0 -10.0 TO -5.0 -5.0 TO -0.0 -5.0 TO -5.0 5.0 TO 10.0 15.0 TO 5.0 25.0 TO 35.0 25.0 TO 35.0 35.0 TO 40.0 40.0 TO 45.0	15.7 1.2 1.7 1.0 0.9 0.9 1.0 0.7 2.1 2.2 13.8 4.1 4.7 5.0 5.0 4.7 2.6 4.1	8.3 1.4 0.7 0.7 0.9 1.3 1.5 1.0 1.2 2.0 12.2 5.5 	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0 4.5 24.1 17.9 4.7 3.4 2.3 2.1 0 1.2 0 1.3
-50.0 TO -45.0 +45.0 TO -40.0 -40.0 TO -35.0 -35.0 TO -30.0 -36.6 TO -25.0 -25.0 TO -20.0 -20.0 TO -15.0 -15.0 TO -10.0 -10.0 TO -5.0 -5.0 TO 0.0 -5.0 TO 10.0 15.0 TO 15.0 15.0 TO 20.0 26.0 TO 25.0 27.0 TO 30.0 30.0 TO 35.0 35.0 TO 40.0	15.7 1.2 1.7 1.0 0.9 0.9 1.0 0.7 2.1 2.2 13.8 4.1 4.7 5.0 5.0 4.7 2.6	8.3 1.4 0.7 0.7 0.9 1.3 1.5 1.0 1.2 2.0 12.2 5.5 5.1 9.7 3.3 6.1 7.1	15.9 1.5 2.4 1.8 2.0 3.1 2.5 4.0 4.5 24.1 17.9 4.7 3.4 2.2 1.0 1.2 0

Table 12. Jumulative distribution of detection range and frequency distribution of detection range differences for N-band

X

(SZ) ical

88

000

N.

88

8

E C

Ø

Ø

が変

K SO

ह्य स्थ

ST 1972	HIGH-MID	0.0 % > 20.0 DB 0.0 % > 15.0 DB 0.9 % > 10.0 DB 11.9 % > 6.0 DB 68.1 % > 3.0 DB 56.4 % > -3.0 DB 58.8 % > -3.0 DB 99.9 % > -6.0 DB 100.0 % > -10.0 DB 100.0 % > -15.0 DB	TOTAL ENTRIES = 970 FADING LOW	日の日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	TOTAL ENTRIES = 974
XOS 10 MYKUNDS, GREECE AUGUST	MID-LUW	0.0 % > 20.0 DB 0.0 % > 15.0 DB 0.7 % > 10.0 DB 6.9 % > 6.0 DB 67.9 % > 3.0 DB 97.0 % > 0.0 DB 99.7 % > -3.0 DB 100.0 % > -10.0 DB 100.0 % > -15.0 DB	TOTAL ENTRIES = 971 FADING MIUDLE	VVVVVVV W W W W W W W W W W W W W W W W W W W	TOTAL ENTRIES = 975
L BAND, NAXUS	HICH-FOM	0.0 % > < 0.0 08 0.6 % > < 15.0 08 30.5 % > 15.0 08 70.5 % > 5.0 08 70.6 % > 5.0 0.0 80 0.0 < % > 5.0 08 100.0 < % > 5.0 08 100.0 < % > 5.0 08 100.0 % > < % 0.00 100.0 % >	TUTAL ENTRIES = 968 FADING HIGH	**************************************	FOTAL ENTRILS - 975

Table 23. Statistical presentation for L-band

				~	27
••	PATH LOSS	- ₹ HIGH	a MID .	% LOW	
	TAIN LOSS	9 172011	0 11.10		
	120.0 TO 125.0	5.0	2.1	0∙8	
	125.0 TO 130.0	4.3	4.0	2.3	
	130.0 TO 135.0	4.9	4.9	3.3	
	135.0 TO 149.0	6.1	4.2	4.4	
	140.0 TO 145.0	28.8	7.1	5.4	
	145.0 TO 150.0	36.5	26.1	4.7	
	150.0 TO 155.0	14.1	49.4	35.1	
•	155.0 TO 160.0	ů.3	1.9	42.9	
	160.0 TO 165.0	0.0	0.3	1.0	
	165.0 TO 170.0	0.0	0.0	ი.ე	
	170.0 TO 175.0	0.0	0.0	0.0	
	175.0 10 180.0	ບໍ•ູປ	0.0	0.0	
	180.0 TO 185.0	0.0	0.0	0.0	
	185.0 TO 19J.0	0.0	0.0	3.0	
	190.) TÜ 195.0 .		0.0	0 • C	
	195.0 TO 200.0	0.0	0.0	0.0	
	200.0 TO 205.0	0.0	0.0	0.0	
	205.0 TC 210.0	0.0	0.0	0.0	
				0.0	
	210.0 TO 215.0	0.0	0.0		-
	215.C TO 220.0	0.0	G• O	0∙ 0	
- comprisers also	ENTRIES	975	975	974	
	FADING	"K" HIGH	GIM \$	Z LOW	
	0.0 TO 0.5	1.1	0.2		
	0.5 TO 1.0	15.0	9.6	6.6	
	1.0 TQ 1.5	18.2	21.6	13.0	-
	1.5 TO 2.0	28.6	26.7	25.0	
	2.0 TO 2.5	6.1	3.9	5.5	-
	2.5 TO 3.0	10.1	13.1	14.1	
	3.0 TO 3.5	5.5	9.2	10.8	
	3.5 TC 4.0	4.9		9.0	
	4.0 TO 4.5	1.3	. 6.1 0.8	3.3	
		0.3	0.6	- 0 • 4 ·	-
	5.0 TC 5.5	3.8	2.9	6.0	
	5.5 TO 6.0	1.1	0.4	3.7	
	6.0 TO 5.5	2.5	3.0	2.1	
	6.5 TO 7.0	0.3	0.0	2.2. 2.3	
	7.0 10 7.5	0.0	0.0	0.0	
	7.5 TO 8.0	0.5	0.8	0.7	
	8.0 TO 8.5	0.1	0.3	າ. ວ	
	_ 8.5 TO _9.0_	0.3	0.5	0.3	
	~••• מז 0••	0.0	0.1	Ŭ•0	
	9.5 TO 10.0	0.3	0.4	1.2	
		975	975	974	

DIFFER	ENCE	3 HIGH-LJM	# HIGH-MID	WCJ-CIM %
-20.0 TO	-18.0	0.0	0.0	6.0
-18.0 TO	-16.3	0.0	0.0	0.0
-16.0 TO	-14.0	0.0	0.9	G.C
-14°C TO	-12.0	0.0	0.0	0.0
-12.0 TO	-10.0	0.0	0.0	
-10.0 TO	-8.0	C.ŭ	0.1	0.1
-8.0 TO	-6.0	0.0	0.0	0.2
±6.0 ™0		0.1	ܕ6	0.i
-4.J TO		0.3	0.6	0.3
-2.0 TO	0.0	0.6	1.3	2.3
0.0 TO	2.0	1.5	5.4	3.3
2.0 TO	4.0	1.8	38.0	39.1
4.0 TO		24.5	42.0	37.3
6.0 TO	8.0	16.3	10.1	14.3
8.0 10	10.0	23.6	0.8	1.8
10.0 TO	12.9	27.ŭ	0.7	0.5
12.0 TO	14.0	2.7	0.3	ე∙2
14.0 TO		0.7	0.0	0.0
16.0 TO		0.3	0.0	0.0
18.0 TO	20.0	0.1	0.0	0.0
ENTRIE	s	968	970	971

Table 25. Frequency distributions of path loss differences between antennas for L-band

EZS EXS

8

N N

T.

rri W

	0.2 % > 20.0 uB	0.2 % > 20.0 DB
5 V 10.0	2 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	10.0
< × × ·	7 % 7	0.9
	8 > 3.0	8 > 3.0
0.0 1.0) · O	0.0
` ^~	と ト ・3・0	0.8- 4.8
÷.•	% V -c.0	0.9- < % 8
	. > -10°0	1 % > -10.0
:3	0 - 15.U	3 % > -15.0
^ ``	% > -20.0	4 > -20.0
10fst antriks = 1277	TUTAL ENTRIES = 1275	TOTAL ENTRIES = 12
FADDio idigit	LADULE	FADING LOW
	. \	\$ > 20.0
^ ~?	U. 41 4 3	2 % > 15.0
3°(·1 < 3 1	i > 10.0	5 % > 10.0
^ :•	γ γ Ο•Ω	O • 3
\ 22	د. د.	0.7 < % 7
^ '2	O.Y. V.S.	0 % \ 2.0
^	0.4 4.0	0 * 7 * 0
S. D. S. C. S. C. S.	8.0 4 > 3.0 03	11.0 % > 3.0 UB
۸	0.2 < 3	8.6 % > 2.6
^	0.1 < % 0.0	0.7 < 38 5

10

N.

8

X

00

N

SI SI

%

Table 26. Statistical presentation for S-band

V.

22.2

E E

88

N N

200

四四

1

N.

M

K

5.0 TO	140.0 145.0 150.0 155.0 160.0 175.0 180.0 185.0 190.0 200.0 215.0 215.0 220.0	36.4 19.1 30.6 10.5 3.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25.4 12.5 14.1 29.7 13.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6		21.9 9.9 8.4 13.7 23.3 12.0 4.4 1.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 TO	135.0 140.0 145.0 150.0 155.0 160.0 170.0 175.0 180.0 195.0 200.0 205.0 215.0 220.0	30.6 10.5 3.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.1 29.7 13.0 4.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		8.4 13.7 23.3 12.0 4.4 1.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	
5.0 TO	140.0 145.0 150.0 155.0 160.0 170.0 175.0 180.0 190.0 195.0 200.0 215.0 215.0 220.0	10.5 3.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	29.7 13.0 4.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		13.7 23.3 12.0 4.4 1.1 0.1 0.1 0.1 0.0 6.0 0.0 0.0 0.0 0.0	
0.0 TO 0.0 TO	145.0 150.0 155.0 160.0 170.0 175.0 180.0 195.0 200.0 205.0 210.0 215.0	3.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13.6 4.6 1.2 0.6 0.6 0.6 0.6 0.6 0.6 0.6		23.3 12.0 4.4 1.1 0.1 0.1 0.0 6.0 0.0 0.0 0.0 0.0	
5.0 TO 0.0 TO	150.0 155.0 160.0 170.0 170.0 175.0 180.0 195.0 200.0 205.0 210.0 215.0	0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		12.0 4.4 1.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0	
5.0 TO	155.0 160.0 170.0 170.0 175.0 180.0 185.0 190.0 295.0 210.0 215.0 220.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		4.4 1.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0	
5.0 TO	160.0 170.0 170.0 175.0 180.0 185.0 190.0 295.0 210.0 215.0 220.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		1.1 9.1 9.1 9.1 9.0 9.0 9.0 9.0 9.0	
0.0 TO 5.0 TO 6.0 TO	105.0 170.0 175.0 180.0 185.0 190.0 195.0 200.0 205.0 210.0 215.0 220.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0))))	0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	
5.0 TO 5.0 TO 6.0 TO	170.0 175.0 180.0 185.0 190.0 195.0 200.0 235.0 210.0 215.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.0 TO 5.0 TO 6.0 TO	175.0 180.0 185.0 190.0 195.0 200.0 235.0 210.0 215.0 220.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0)))))))	0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
5.0 TO 5.0 TO 5.0 TO 5.0 TO 5.0 TO 5.0 TO 5.0 TO	180.0 185.0 190.0 195.0 200.0 235.0 210.0 215.0 220.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6 0.6))))))))	0.0 0.0 0.0 0.0 0.0 0.0 0.0	
5.0 TO 5.0 TO 5.0 TO 5.0 TO 5.0 TO 5.0 TO	185.0 190.0 195.0 200.0 235.0 210.0 215.0 223.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0)))))) 	0.0 0.0 0.0 0.0 0.0 0.0	
5.0 TO 5.0 TO 5.0 TO 5.0 TO 5.0 TO 5.0 TO	185.0 190.0 195.0 200.0 235.0 210.0 215.0 223.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0)))))) 	0.0 0.0 0.0 0.0 0.0 0.0	
5.0 TO 5.0 TO 5.0 TO 5.0 TO 5.0 TO 5.0 TO	195.0 200.0 235.0 210.0 215.0 223.0	0.0 0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6 0.6))))) 	0.0 0.0 0.0 0.0 0.0	
0.0 TO 0.0 TO 0.0 TO 0.0 TO 0.0 TO	195.0 200.0 235.0 210.0 215.0 223.0	0.0 0.0 0.0 0.0 0.0	0.6 0.6 0.6 0.6))))))	0.0 0.0 0.0 0.0 0.0	<u>.</u> .
0.0 TO 0.0 TO 0.0 TO 0.0 TO	200.0 205.0 210.0 215.0 220.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0)"	0.0 0.0 0.0 0.0	
0.0 TO 5.0 TO 0.0 TO 5.0 TO	205.0 210.0 215.0 220.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0)))	0.0 0.0	
0.0 TO 0.0 TO 0.0 TO	210.0 215.0 223.0	0.0	0.0)	3.0 3.0	
0.0 TO 0.0 TO	215.0 223.0	0.0 0.0	0.0)	0.0	
OT C.	223.0	0.0	0.0			
				,	3.0	
NTRIE	s	1279	1281			
					1281	· · · · · -
				 -	-	
ADING		& HIGH	S MIC) 1	s LCW	
		0.2			0.1	•••
					7.6	
L.O TO		45.7	39.7	7	31.3	
L.5 TO	2.0	13.3	11.2	2	11.0	
		19.3	16.4	•	26.5	
2.5 TO	3.0	9.0	10.7	7	11.4	
07 C.8	3.5	1.8	- 2.9	• • • • • • • • • • • • • • • • • • • •	4.4	• ,
	4.0	1.7			1.3	
	4.5				3.6	
					0.2	
5.5 TO	6.0	0.5				
5.0 TO	6.5	. U.O			_	
5.5 TO	7.0	2.1				
*•> 'U	10.0	IJ•Z	U• a	4	U.f	
ENTPIE	S	1279	1231	L	1281	
	0.0 TO 0.5 TO 1.0 TO 2.0 TO 2.0 TO 3.5 TO 3.5 TO 5.5 TO 6.5 TO 7.5 TO 8.5 TO 8.5 TO 8.5 TO	0.5 TO 1.9 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.5 TO 4.0 4.5 TO 5.0 5.5 TO 6.0 6.0 TO 6.5 6.5 TO 7.5 6.5 TO 7.5 7.5 TO 8.0 8.5 TO 9.0 9.5 TO 9.5 9.5 TO 10.0 ENTRIES	0.0 TO 0.5 0.2 0.5 TO 1.0 16.2 1.0 TO 1.5 45.7 1.5 TO 2.0 13.3 2.0 TO 2.5 10.3 2.5 TO 3.0 9.0 3.0 TO 3.5 1.8 3.5 TO 4.0 1.7 4.0 TO 4.5 0.6 4.5 TO 5.0 0.2 5.0 TO 5.5 0.0 5.5 TO 6.0 0.5 6.0 TO 6.5 0.0 6.5 TO 7.0 0.1 7.0 TC 7.5 0.1 7.5 TO 8.0 0.0 8.0 TO 8.5 0.1 8.5 TO 9.0 0.0 9.0 TO 9.5 0.1 9.5 TO 10.0 0.2 ENTRIES 1279	0.0 TO 0.5 0.2 0.0 0.5 TO 1.0 16.2 14.0 1.0 TO 1.5 45.7 39.7 1.5 TO 2.0 13.3 11.2 2.0 TO 2.5 10.3 16.4 2.5 TO 3.0 9.0 10.7 3.0 TO 3.5 1.8 2.9 3.5 TO 4.0 1.7 1.5 4.0 TO 4.5 0.6 1.9 4.5 TO 5.0 0.2 0.2 5.0 TO 5.5 0.0 0.2 5.5 TO 6.0 0.5 0.5 6.0 TO 6.5 0.0 0.5 6.0 TO 6.5 0.0 0.1 7.5 TO 8.0 0.0 0.0 8.0 TO 8.5 0.1 0.2 8.5 TO 9.0 0.0 0.0 9.0 TO 9.5 0.1 0.2 ENTRIES 1279 1231	0.0 TO 0.5 0.2 0.0 0.5 TO 1.0 16.2 14.0 1.0 TO 1.5 45.7 39.7 1.5 TO 2.0 13.3 11.2 2.0 TO 2.5 10.3 16.4 2.5 TO 3.0 9.0 10.7 3.0 TO 3.5 1.8 2.9 3.5 TO 4.0 1.7 1.5 4.0 TO 4.5 0.6 1.9 4.5 TO 5.0 0.2 0.2 5.0 TO 5.5 0.0 0.2 5.5 TO 6.0 0.5 6.0 TO 6.5 0.0 0.1 6.5 TO 7.0 0.1 0.2 7.0 TC 7.5 0.1 0.2 7.5 TO 8.0 0.0 0.0 8.0 TO 8.5 0.1 0.2 8.5 TO 9.0 0.0 0.0 9.0 TO 9.5 0.1 0.2 9.0 TO 9.5 0.1 0.2 ENTRIES 1279 1231	0.0 TO 0.5 0.2 0.0 9.1 0.5 TO 1.0 16.2 14.0 7.6 1.0 TO 1.5 45.7 39.7 31.3 1.5 TO 2.0 13.3 11.2 11.6 2.0 TO 2.5 10.3 16.4 26.5 2.5 TO 3.0 9.0 10.7 11.4 3.0 TO 3.5 1.8 2.9 4.4 3.5 TO 4.0 1.7 1.5 1.3 4.0 TO 4.5 0.6 1.9 3.6 4.5 TO 5.0 0.2 0.2 0.2 5.0 TO 5.5 0.0 0.2 0.2 5.0 TO 6.5 0.0 0.2 0.1 5.5 TO 6.0 0.5 0.5 6.0 TO 6.5 0.0 0.1 0.2 7.0 TC 7.5 0.1 0.2 0.2 7.5 TO 8.0 0.0 0.0 0.0 0.0 8.0 TO 8.5 0.1 0.2 0.2 8.5 TO 9.0 0.0 0.0 0.0 0.0 9.0 TO 9.5 0.1 0.2 0.2 9.0 TO 9.5 0.1 0.2 0.2 9.0 TO 9.5 0.1 0.2 0.2 9.5 TO 10.0 0.2 0.0 9.5 TO 10.0 0.2 0.2 0.2 9.5 TO 10.0 0.2 0.2 0.2 9.5 TO 10.0 0.2 0.2 0.2

	<u>.</u> s	BAND, GREECI	E AUGUST 1972	· · · · · · · · · · · · · · · · · · ·	231
	DIFFERENCE	ช HIGH−LOW	% HIGH-MID	WCJ-CIM &	
may as a se	-20.0 TO -18.0	9.1	0.0	9.2	
	-18.0 TO -16.0		0.0		
** ************************************	-16.0 TO -14.0	0.2	0.1	0.2	
	-14.0 TO -12.0		0.2		
	-12.0 TO -10.0	0.5	0.2	0.7	
	-10.0 TO8.0	_ 0.9).5	
	-8.0 TO -6.5	0.9	1.3	1.2	
	-6.0 TO -4.0		1.3		
	-4.0 TO -2.0 -2.0 TO 0.0	1.8 2.5	2.5	2.C	
• •	0.0 TD 2.0	4.9	3.4 6.3	10.2	
	2.0 TO 4.0			27.5	
• • •	4.0 TO 6.0	7.7	31.7	39•4	
	6.0 TO 8.0	11.6	28.3	8.4	
	8.0 TO 10.0	20.5	9.0	1.8	<u>-</u>
•• •	10.0 TO 12.0	26.3	. 1.5 <u></u>	0.8	
	12.0 TO 14.0	11.7	0.5	U • D	
	_ 14.0 TO 16.0	3.6 0.6	0.2	C•2 _	
	16.0 TO 18.0 18.3 TO 20.0		0.1 0.3	0•0 0•2	
	10.01020.0_				
	ENTRIES	1277	1278	1279	
				·· <u></u> ·	4
* 45 96 - 6 - 600	an age of the second of the se				
	- •	• ~			
•					
	Table 28. Frequen	cy distributions	s of path loss di	ifferences betw	een
		s for S-band			
	•		•	*****	
				·	
					_
		·			
	•				
•	• • • • • • • • • • • • • • • • • • • •				· · · · · ·
		•			
		<u>-</u>	••••		

N N

N.

8

EZS.

8

8

000

N

13. 13.

88

X

X

1 1972	HIGH-MID	0.0 % > 20.0 DB 0.0 % > 15.0 DB 0.5 % > 10.0 DB 3.4 % > 6.0 DB 8.9 % > 3.0 DB 42.4 % > -3.0 DB 62.1 % > -6.0 DB 83.9 % > -10.0 DB 96.8 % > -15.0 DB 96.1 % > -15.0 DB	FADING LOW	0.1 % > 20.0 Db 0.4 % > 15.0 DB 3.7 % > 10.0 DB 6.3 % > 6.0 DB 15.4 % > 6.0 DB 19.8 % > 5.0 DB 63.0 % > 5.0 DB 63.0 % > 3.0 DB 87.8 % > 2.0 DB 87.8 % > 1.0 DB	
TO MYKONDS, GREECE AUGUST	MID-LOW	0.0 % > 20.0 UB 0.1 % > 15.0 DB 0.2 % > 10.0 DB 1.1 % > 6.0 DB 3.0 % > 3.0 UB 7.7 % > 0.0 UB 16.4 % > -3.0 DB 31.2 % > -10.0 DB 92.0 % > -15.0 UB 99.1 % > -20.0 UB	TOTAL ENTRIES = 1281FADING MIDDLE	0.2 % > 20.0 08 0.2 % > 15.0 08 2.8 % > 10.0 08 7.8 % > 6.0 08 20.0 % > 6.0 08 29.8 % > 6.0 08 50.1 % > 5.0 08 94.1 % > 2.0 08 94.1 % > 2.0 08 100.0 % > 1.0 08	
X BAND, NAXUS T	HIGH-LOW	0.0 % > 20.0 UB 0.6 % > 10.0 UB 0.9 % > 10.0 UB 0.9 % > 6.0 DB 3.1 % > 3.0 JB 7.0 % > -3.0 DB 10.4 % > -5.0 DB 19.2 % > -6.0 DB 58.5 % > -10.0 UB 62.9 % > -15.0 UB	TOFAL ENTRIES - 1278 FADING HIGH	2.2 % > 20.0 DB 3.3 % > 15.0 DB 9.7 & > 10.0 DB 17.7 % > 4.0 DB 33.1 % > 6.0 DB 41.4 % > 5.0 DB 60.5 % > 5.0 DB 74.9 % > 3.0 DB 14.3 % > 2.0 DB 99.9 % > 1.0 DB	

Table 29. Statistical presentation for X-band

8

88

從

X

120.0 TO 125.0 0.2 0.2 0.5 125.0 TO 135.0 2.2 3.1 26.4 130.0 TO 135.0 9.8 14.8 52.7 135.0 TO 140.0 14.0 23.9 22.4 140.0 TO 145.0 18.7 27.1 10.2 145.0 TO 155.0 24.0 24.1 0.9 150.0 TO 155.0 23.8 5.8 0.5 155.0 TO 160.0 5.2 0.9 0.7 160.0 TO 165.0 1.2 0.1 0.1 165.0 TO 170.0 0.9 0.0 0.0 175.0 TO 135.0 0.1 0.0 0.0 175.0 TO 135.0 0.1 0.0 0.0 135.0 TO 195.0 0.0 0.1 0.0 0.0 135.0 TO 195.0 0.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 205.0 TO 205.0 0.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 0.0 215.0 TO 25.5 4.2 3.4 5.3 2.5 TO 3.0 11.8 19.9 17.0 3.0 TO 3.5 10.1 10.2 20.9 5.5 TO 4.0 6.0 7.3 4.7 4.0 TO 4.5 TIT.7 14.1 9.6 4.5 TO 5.0 5.0 5.2 5.9 2.5 6.0 TO 5.5 5.0 5.2 5.9 2.5 6.0 TO 5.5 5.0 5.2 5.9 2.5 8.0 TO 5.5 TO 5.5 5.0 5.2 5.9 2.5 8.0 TO 5.5 TO 7.0 5.2 5.9 2.5 8.0 TO 5.5 TO 7.0 5.1 0.0 0.2 9.0 7.7 5.5 TO 5.5 2.9 3.4 5.3 2.5 TO 7.0 5.5 5.7 3.9 10.2 7.7 5.5 TO 8.0 2.7 1.7 14.1 9.6 4.5 TO 5.0 5.2 5.9 2.5 8.0 TO 5.5 5.0 5.2 5.9 2.5 8.0 TO 5.5 5.0 5.2 5.9 2.5 8.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 7.5 5.8 3.4 1.2 8.5 TO 7.0 5.5 1.7 0.6 0.3 9.5 TO 10.0 1.0 0.0 0.0 9.5 TO 10.0 0.0 0.0 9.5 TO 10.0 0.0 0.0 0.0 0.0 9.5 TO 10.0 0.0 0.0 0.0 0.0 9.5 TO 10.0 0.0 0.0 0.0 0.0 0.0 9.5 TO 10.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 TO 10.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 TO 10.0 0.0 0.0 0.0 0.0 0.0 0.0 9.5 TO 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		PATH LOSS	% HIGH	3 MID	% LOM
125.0 TO 135.0 2.2 3.1 26.4 130.0 TO 135.0 9.8 14.8 52.7 135.5 TO 140.0 14.0 23.9 22.4 140.0 TO 145.0 18.7 27.1 10.2 145.0 TO 155.0 24.0 24.1 0.9 150.0 TO 155.0 23.8 5.8 0.5 155.0 TO 165.0 1.2 0.1 0.1 165.0 TO 165.0 1.2 0.1 0.1 165.0 TO 170.0 0.1 0.0 0.0 175.0 TO 149.0 0.1 0.0 0.0 175.0 TO 149.0 0.1 0.0 0.0 175.0 TO 149.0 0.1 0.0 0.0 136.0 TO 165.0 0.0 0.0 0.0 136.0 TO 195.0 0.0 0.0 0.0 136.0 TO 195.0 0.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 200.0 TO 195.0 0.0 0.0 0.0 0.0 205.0 TO 215.0 0.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 0.0 2.5 TO 3.0 11.8 19.9 17.0 3.0 TO 3.5 10.1 1.8 19.9 17.0 3.0 TO 4.0 6.0 7.3 4.7 4.0 TO 4.5 TIT.7 14.1 9.6 4.5 TO 5.0 2.9 3.6 7.2 5.5 TO 5.0 2.9 3.6 7.2 5.5 TO 5.0 2.9 3.6 7.2 5.5 TO 5.0 2.9 3.6 7.2 5.5 TO 5.0 3.0		120.0 TO 125.0	0.2	0.2	5. 5
130.0 TO 135.0		125.0 TO 130.0	2.2	3.1	26.4
135.0 TO 149.0 14.0 23.9 22.4 140.0 TC 145.0 18.7 27.1 10.2 145.0 TO 150.5 24.0 24.1 0.9 150.0 TO 155.0 23.8 5.8 0.5 155.0 TO 160.0 5.2 0.9 0.2 160.0 TO 165.0 1.2 0.1 0.1 165.0 TO 170.0 0.9 0.0 0.1 170.0 TO 175.0 0.1 0.0 0.0 175.0 TO 135.0 0.1 0.0 0.0 190.0 TO 135.0 0.0 0.1 0.0 0.0 190.0 TO 135.0 0.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 195.0 TO 205.0 0.0 0.0 0.0 0.0 205.0 TO 205.0 0.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 0.0 215.0 TO 25.0 0.0 0.0 0.0 0.0 0.0 0.0 215.0 TO 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					
140.5 TC 145.0					
145.0 TO 155.0 24.0 24.1 3.9 150.0 TO 155.0 23.8 5.8 3.5 155.0 TO 166.0 5.2 0.9 3.2 160.0 TO 165.0 1.2 0.1 0.1 165.0 TO 179.0 0.1 0.0 3.1 170.0 TO 175.0 0.1 0.0 3.0 175.0 TO 180.0 0.1 0.0 0.0 135.0 TO 180.0 0.1 0.0 0.0 135.0 TO 180.0 0.1 0.0 0.0 135.0 TO 190.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 255.0 TO 205.0 TO 205.0 0.0 0.0 0.0 0.0 255.0 TO 213.0 0.0 0.0 0.0 0.0 255.0 TO 213.0 0.0 0.0 0.0 0.0 215.0 TO 223.0 0.0 0.0 0.0 0.0 0.0 215.0 TO 223.0 0.0 0.0 0.0 0.0 0.0 0.0 215.0 TO 223.0 0.0					
150.0 TO 155.0 23.8 5.8 3.5 155.0 TO 160.0 5.2 0.9 0.7 160.0 TO 165.0 1.2 0.1 0.1 165.0 TO 170.3 0.9 0.0 0.1 170.0 TO 159.0 0.1 0.0 0.9 175.0 TO 189.0 0.1 0.0 0.9 126.0 TO 185.0 0.1 0.0 0.0 126.0 TO 185.0 0.0 0.0 0.0 126.0 TO 195.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 205.0 TO 205.0 0.0 0.0 0.0 205.0 TO 210.0 0.0 0.0 0.0 210.0 TO 220.0 0.0 0.0 0.0 210.0 TO 220.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 225.0 TO 25.0 0.0 0.0 0.0 225.0 TO 220.0 0.0 0.0 0.0 225.0 TO 220.0 0.0 0.0 0.0 226.0 TO 25.0 0.0 0.0 0.0 227.0 TO 25.0 0.0 0.0 0.0 228.0 TO 25.0 0.0 0.0 0.0 229.0 TO 25.0 0.0 0.0 0.0 240.0 TO 25.0 0.0 0.0 0.0 250.0 TO 35.0 0.0 0.0 0.0 250.0 TO					
155.0 TO 1602.0					
160.0 TO 165.0					
165.0 Td 170.0 0.9 0.0 0.1 170.0 TS 175.0 0.1 0.0 0.0 0.0 175.0 TO 130.0 0.1 0.0 0.0 120.0 TO 135.0 TO 135.0 0.0 0.0 0.0 0.0 120.0 TO 135.0 TO 190.0 0.0 0.0 0.0 0.0 195.0 TO 250.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					
170.0 TO 175.0 0.1 0.0 0.0 175.0 0.1 175.0 TO 130.0 0.1 0.0 0.0 190.0 TO 135.0 0.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 0.0 195.0 TO 205.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					
175.0 TO 180.0 0.1 0.0 0.0 1.0 120.0 TO 185.1 0.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 0.0 190.0 TO 205.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					
190.0 TO 135.0 0.0 0.0 0.0 135.0 TO 135.0 TO 190.0 0.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 0.0 190.0 TO 205.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					
135.0 TO 190.0 0.0 0.0 0.0 190.0 TO 195.0 0.0 0.0 0.0 0.0 0.0 195.0 TO 195.0 0.0 0.0 0.0 0.0 0.0 200.0 TO 205.0 0.0 0.0 0.0 0.0 205.0 TO 210.0 0.0 0.0 0.0 0.0 210.0 TO 215.0 0.0 0.0 0.0 0.0 215.0 TO 220.0 0.0		175.0 TO 130.0	0.1	0.0	0.0
190.0 TO 195.0 0.0 0.0 0.0 0.0 195.0 TO 205.0 0.0 0.0 0.0 0.0 0.0 205.0 TO 215.0 0.0 0.0 0.0 0.0 205.0 TO 215.0 0.0 0.0 0.0 0.0 210.0 TO 215.0 0.0 0.0 0.0 0.0 210.0 TO 220.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		190.0 TO 135.)	9.G	0.0	ე•ე
190.0 TO 195.0 0.0 0.0 0.0 0.0 195.0 TO 205.0 0.0 0.0 0.0 0.0 0.0 205.0 TO 215.0 0.0 0.0 0.0 0.0 205.0 TO 215.0 0.0 0.0 0.0 0.0 210.0 TO 215.0 0.0 0.0 0.0 0.0 210.0 TO 220.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		"135.0 TO 190.0	0.5	0.0	0.0
195.0 TC 205.0 0.0 0.0 0.0 0.0 205.0 TC 205.0 0.0 0.0 0.0 0.0 205.0 TC 210.0 0.0 0.0 0.0 0.0 210.0 TO 215.0 0.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0					
200.6 TC 205.J U.0 0.0 0.0 0.0 205.C TC 210.0 J.0 0.0 0.0 0.0 0.0 210.0 TO 215.0 0.0 0.0 0.0 0.0 0.0 215.0 TC 220.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0					
205.0 TO 210.0 0.0 0.0 0.0 210.0 TO 215.0 0.0 0.0 0.0 0.0 0.0 0.0 215.0 TO 220.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0					
210.0 TO 215.0					
215.0 TO 229.0 0.0 0.0 0.0 0.0 0.0 ENTRIES 1292 1294 1282 FADING 7. HIGH 4 MID 5.00 0.0 TO 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 TO 1.0 0.1 0.0 0.0 0.4 1.0 TO 1.5 1.0 0.1 0.0 0.4 1.0 TO 1.5 1.0 0.1 0.0 0.4 1.0 TO 1.5 1.0 0.1 0.0 0.4 1.0 TO 2.5 4.2 3.4 5.3 2.5 TO 3.0 11.0 19.9 17.0 3.0 TO 3.5 10.1 10.2 20.9 3.5 TO 4.0 6.6 7.3 4.7 4.0 TO 4.5 17.7 14.1 9.6 4.5 TO 5.0 2.9 3.6 7.2 5.0 TO 5.0 2.9 3.6 7.2 5.0 TO 5.0 0.0 5.2 5.9 2.5 6.0 TO 5.5 0.0 5.2 5.9 2.5 6.0 TO 5.5 0.0 5.2 5.9 2.5 6.0 TO 5.5 0.0 5.2 5.9 2.5 8.6 TO 7.0 3.5 2.7 3.4 2.7 5.5 TO 6.6 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.6 TO 7.0 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.7 0.5 0.0 0.2 9.0 TO 7.5 10 0.0 0.2 9.0 TO 7.5 10 0.0 0.0 0.3 9.5 TO 10.0 10.3 3.6 4.8					
FADING % HIGH & MID % LOW 0.5 TO 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 TO 1.0 0.1 0.0 0.0 0.4 1.0 TO 1.5 1.0 0.0 2.6 4.7 1.5 TO 2.0 3.9 2.0 4.0 2.0 TO 2.5 4.2 3.4 5.3 2.5 TO 3.0 11.0 10.0 10.2 20.9 3.5 TO 4.0 6.0 7.3 4.7 4.0 TO 4.5 17.7 14.1 9.6 4.5 TO 5.0 2.9 3.6 7.2 5.5 TO 5.0 5.0 2.9 3.6 7.2 5.5 TO 5.0 5.0 2.9 3.6 7.2 5.5 TO 5.0 5.0 5.2 5.9 2.5 6.0 TO 6.5 2.7 3.4 2.7 5.5 TO 7.0 6.6 3.5 0.4 7.0 10.7 5.5 TO 7.0 5.1 2.9 3.4 7.0 10.7 5.5 TO 7.0 5.1 2.9 3.4 7.0 10.7 5.5 TO 7.0 5.1 2.9 3.4 7.0 TO 7.5 6.6 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.6 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 1.7 0.6 0.3 9.5 TO 10.0 10.0 0.3 9.5 TO 10.0 10.0 10.0 0.3 9.5 TO 10.0 10.0 10.0 0.3 9.5 TO 10.0 10.0 10.0 3.6 4.8					
FADING 7, HIGH 4 MID 5, LOW 0.0 0.0 0.0 0.5 TO 1.0 0.1 0.0 0.0 0.4 1.0 TO 1.5 1.0 0.1 0.0 0.4 1.0 TO 1.5 1.0 0.0 0.4 1.0 TO 1.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		215.0 10 225.0	i*•U	0.0	0.0
0.0 TO 0.5 0.0 0.0 0.0 0.0 0.5 TO 1.0 0.1 0.0 0.4 1.0 TO 1.5 1.0 0.6 4.7 1.5 TO 2.0 3.9 2.0 4.6 2.0 TO 2.5 4.2 3.4 5.3 2.5 TO 3.0 11.8 19.9 17.0 3.0 TO 3.5 10.1 10.2 20.9 3.5 TO 4.0 6.6 7.3 4.7 4.0 TO 4.5 TI.7 14.1 9.6 4.5 TO 5.0 2.8 3.6 7.2 7.7 5.5 TO 5.0 5.0 3.9 10.2 7.7 5.5 TO 5.0 5.2 5.9 2.5 6.0 TO 6.5 2.7 3.4 2.7 2.5 6.6 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 1.7 0.6 0.3 9.5 TO 10.0 10.8 3.6 4.8 4.8	****	ENTRIES	1292	1294	1282
0.5 TO 1.0 0.1 0.0 0.4 1.0 TO 1.5 1.0 2.6 4.7 1.5 TO 2.0 3.9 2.0 4.6 2.0 TO 2.5 4.2 3.4 5.3 2.5 TO 3.0 11.8 19.9 17.0 3.0 TO 3.5 10.1 10.2 20.9 3.5 TO 4.0 6.6 7.3 4.7 4.0 TO 4.5 TI.7 14.1 9.6 4.5 TO 5.0 2.8 3.6 7.2 5.0 TO 5.5 8.9 10.2 7.7 5.5 TO 5.0 6.6 5.9 2.5 6.0 TO 6.5 2.7 3.4 7.0 TO 7.5 6.6 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.3 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 1.7 0.6 0.2 9.0 TO 7.5 1.7 0.6 0.3 9.5 TO 10.0 10.8 3.6 4.8		- FADING	. "S HICH	4 MIO	. 2 FO4
1.0 TO 1.5 1.0 2.6 4.7 1.5 TO 2.0 3.9 2.0 4.0 2.0 TO 2.5 4.2 3.4 5.3 2.5 TO 3.0 11.8 19.9 17.0 3.0 TO 3.5 10.1 10.2 20.9 3.5 TO 4.0 6.C 7.3 4.7 4.0 TO 4.5 II.7 14.1 9.6 4.5 TO 5.0 2.8 3.6 7.2 5.0 TO 5.5 8.9 10.2 7.7 5.5 TO 5.0 6.2 5.9 2.5 6.0 TO 6.5 2.7 3.4 2.7 5.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 1.7 0.6 0.3 9.5 TO 10.0 10.8 3.6 4.8	 				
1.5 TO 2.0 3.9 2.0 4.0 2.0 TO 2.5 4.2 3.4 5.3 2.5 TO 3.0 11.8 19.9 17.0 3.0 TO 3.5 10.1 10.2 20.9 3.5 TO 4.0 6.0 7.3 4.7 4.0 TO 4.5 II.7 14.1 9.6 4.5 TO 5.0 2.9 3.6 7.2 5.0 TO 5.5 8.9 10.2 7.7 5.5 TO 5.0 6.2 5.9 2.5 6.0 TO 6.5 2.7 3.4 2.7 6.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 1.7 0.5 0.3 9.5 TO 10.0 10.3 3.6 4.8	<u>.</u>		· · · · · · · · · · · · · · · · · · ·	0.0	
2.0 TO 2.5 4.2 3.4 5.3 2.5 TO 3.0 11.8 19.9 17.0 3.0 TO 3.5 10.1 10.2 20.9 3.5 TO 4.0 6.6 7.3 4.7 4.0 TO 4.5 TI.7 14.1 9.6 4.5 TO 5.0 2.8 3.6 7.2 5.0 TO 5.5 8.9 10.2 7.7 5.5 TO 5.0 6.2 5.9 2.5 6.0 TO 6.5 2.7 3.4 2.7 6.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.6 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 10.8 3.6 4.8	 	0.0 TO 0.57 0.5 TO 1.0	0.0	0.0	უ.e ე.4
2.5 TO 3.0 11.8 19.9 17.0 3.0 TO 3.5 10.1 10.2 20.9 3.5 TO 4.0 6.C 7.3 4.7 4.0 TO 4.5 II.7 14.1 9.6 4.5 TO 5.0 2.8 3.6 7.2 5.0 TO 5.5 8.9 10.2 7.7 5.5 TO 5.0 6.2 5.9 2.5 6.0 TO 6.5 2.7 3.4 2.7 5.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.6 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.3 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 1.7 0.5 0.3 9.5 TO 10.0 10.8 3.6 4.8		0.0 TO 0.5 0.5 TO 1.0 1.0 TO 1.5	0.0	0.0 0.0 	0.0 0.4 4.7
3.0 TO 3.5 10.1 10.2 20.9 3.5 TO 4.0 6.0 7.3 4.7 4.0 TO 4.5 II.7 14.1 9.6 4.5 TO 5.0 2.8 3.6 7.2 5.0 TO 5.5 8.9 10.2 7.7 5.5 TO 5.0 6.5 2.7 3.4 2.7 5.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.3 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 11.7 0.5 0.3 9.5 TO 10.0 10.8 3.6 4.8		0.0 TO 0.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0	0.0 0.1 1.0 3.9	0.0 0.0 2.5 2.0	7).0 7).4 4.7 4.0
3.5 TO 4.0 6.6 7.3 4.7 4.0 TO 4.5 II.7 14.1 9.6 4.5 TO 5.0 2.8 3.6 7.2 5.0 TO 5.5 3.9 10.2 7.7 5.5 TO 5.0 6.5 2.7 3.4 2.7 5.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 1.7 0.6 0.3 9.5 TO 10.0 10.8 3.6 4.8		0.0 TO 0.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5	0.1 1.0 3.9 4.2	0.0 0.0 2.6 2.0 3.4	7).0 7.4 4.7 4.6 5.3
4.0 TO 4.5 TT.7 14.1 9.6 4.5 TO 5.0 2.8 3.6 7.2 5.0 TO 5.5 8.9 10.2 7.7 5.5 TO 5.0 6.2 5.9 2.5 6.0 TO 6.5 2.7 3.4 2.7 6.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 11.7 0.5 0.3 9.5 TO 10.0 10.8 3.6 4.8		3.0 TO 3.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0	0.0 0.1 1.0 3.9 4.2 11.8	0.0 0.0 2.6 2.6 3.4 19.9	7.0 7.4 4.7 4.6 5.3 17.0
4.5 TO 5.0 2.8 3.6 7.2 5.0 TO 5.5 3.9 10.2 7.7 5.5 TO 5.0 6.2 5.9 2.5 6.0 TO 6.5 2.7 3.4 2.7 5.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 1.7 0.6 0.3 9.5 TO 10.0 10.8 3.6 4.8	 	3.0 TO 3.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5	0.0 0.1 1.0 3.9 4.2 11.0	0.0 0.0 2.5 2.0 3.4 19.9	7.0 7.4 4.7 4.6 5.3 17.0 20.9
5.0 TO 5.5 3.9 10.2 7.7 5.5 TO 5.0 5.2 5.9 2.5 6.0 TO 6.5 2.7 3.4 2.7 6.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 1.7 0.6 9.5 TO 10.0 10.8 3.6 4.8		3.0 TO 3.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0	0.0 0.1 1.0 3.9 4.2 11.8	0.0 0.0 2.6 2.0 3.4 19.9 10.2 7.3	7.0 7.4 4.7 4.0 5.3 17.0 20.9 4.7
5.5 TC 5.0 6.2 5.9 2.5 6.0 TO 6.5 2.7 3.4 2.7 5.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.8 3.5 0.4 7.5 TC 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 1.7 0.5 0.3 9.5 TC 10.0 10.8 3.6 4.8		0.0 TO 0.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.6	0.0 0.0 2.6 2.0 3.4 19.9 10.2 7.3	7).0 7).4 4.7 4.6 5.3 17.0 20.9 4.7 9.6
6.0 TO 6.5 2.7 3.4 2.7 5.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.8 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 TO 10.3 3.6 0.3 9.5 TO 10.0 10.8 3.6 4.8		0.0 TO 0.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.6 11.7 2.8	0.0 0.0 2.6 2.0 3.4 19.9 10.2 7.3 14.1 3.6	7.0 7.4 4.7 4.6 5.3 17.0 20.9 4.7 9.6 7.2
5.5 TO 7.0 3.1 2.9 3.4 7.0 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.3 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 11.7 0.6 9.5 TO 10.0 10.8 3.6 4.8		0.0 TO 0.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0	0.0 0.1 1.0 3.9 4.2 11.0 10.1 6.0 11.7 2.8 3.9	0.0 0.0 2.6 2.6 3.4 19.9 10.2 7.3 14.1 3.6	7.0 20.4 4.7 4.6 5.3 17.0 20.9 4.7 9.6 7.2 7.7
7.3 TO 7.5 6.8 3.5 0.4 7.5 TO 8.0 2.7 1.9 2.5 8.0 TO 3.5 2.3 3.4 1.2 8.5 TO 9.0 2.5 1.0 0.2 9.0 TO 7.5 11.7 0.6 0.3 9.5 TO 13.3 10.8 3.6 4.8		0.0 TO 0.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.6 TI.7 2.8 3.9 5.2	0.0 0.0 2.6 2.6 3.4 19.9 10.2 7.3 14.1 3.6 10.2 5.9	7.0 20.9 4.7 9.6 7.2 7.7 2.5
7.5 TC 8.0 2.7 1.9 2.5 8.0 TO 3.5 72.8 3.4 1.2 8.5 TD 9.0 2.5 1.0 0.2 9.0 TO 79.5 71.7 7 0.5 0.3 9.5 TC 10.0 10.8 3.6 4.8		0.0 TO 0.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 5.0	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.6 11.7 2.8 3.9 5.2 2.7	0.0 0.0 2.6 2.6 3.4 19.9 10.2 7.3 14.1 3.6 10.2 5.9	7.0 20.9 4.7 9.6 7.2 7.7 2.5
8.5 TD 9.0 2.5 1.0 0.2 79.0 TO 79.5 11.7 TO 0.6 0.3 9.5 TO 10.0 10.8 3.6 4.8		3.0 TO 3.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 5.0 6.0 TO 6.5 5.5 TO 7.0	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.6 11.7 2.8 3.9 5.2 2.7 3.1	0.0 0.0 2.6 2.6 3.4 19.9 10.2 7.3 14.1 3.6 10.2 5.9	7.0 20.9 4.7 9.6 7.2 7.7 2.5
8.5 TD 9.0 2.5 1.0 0.2 "9.0 TO 79.5 11.7 1 0.6 0.3 9.5 TO 10.0 10.8 3.6 4.8		3.0 TO 3.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.5 TO 5.0 6.0 TO 6.5 5.5 TO 7.0 7.0 TO 7.5	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.6 11.7 2.8 3.9 5.2 2.7 3.1 6.6	0.0 0.0 2.6 2.6 2.0 3.4 19.9 10.2 7.3 14.1 3.6 10.2 5.9	7.0 20.9 4.7 9.6 7.2 7.7 2.5
8.5 TD 9.0 2.5 1.0 0.2 "9.0 TO 79.5 11.7 1 0.6 0.3 9.5 TO 10.0 10.8 3.6 4.8		3.0 TO 3.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.5 TO 5.0 6.0 TO 6.5 5.5 TO 7.0 7.0 TO 7.5	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.6 11.7 2.8 3.9 5.2 2.7 3.1 6.6	0.0 0.0 2.6 2.6 2.0 3.4 19.9 10.2 7.3 14.1 3.6 10.2 5.9 3.4 2.9 3.5	7.0 7.4 4.7 4.0 5.3 17.0 20.9 4.7 9.6 7.2 7.7 2.5 2.7
9.5 TO 10.0 10.8 3.6 4.8		3.0 TO 3.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.5 5.5 TO 5.0 6.0 TO 6.5 5.5 TO 7.0 7.5 TO 8.0 8.0 TO 3.5	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.0 11.7 2.8 3.9 6.2 2.7 3.1 6.6 2.7 2.3	0.0 0.0 2.6 2.6 2.0 3.4 19.9 10.2 7.3 14.1 3.6 10.2 5.9 3.4 2.9 3.5 1.9	7.0 7.4 4.7 4.0 5.3 17.0 20.9 4.7 9.6 7.2 7.7 2.5 2.5 3.4 0.4 2.5
9.5 TO 10.0 10.8 3.6 4.8		3.0 TO 3.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.5 5.5 TO 5.0 6.0 TO 6.5 5.5 TO 7.0 7.5 TO 8.0 8.0 TO 3.5	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.0 11.7 2.8 3.9 6.2 2.7 3.1 6.6 2.7 2.3	0.0 0.0 2.6 2.6 2.0 3.4 19.9 10.2 7.3 14.1 3.6 10.2 5.9 3.4 2.9 3.5 1.9 3.4	7.0 7.4 4.7 4.0 5.3 17.0 20.9 4.7 9.6 7.2 7.7 2.5 2.7 3.4 0.4 2.5 1.2
		3.0 TO 3.5 0.5 TO 1.0 1.0 TO 2.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 5.0 6.0 TO 6.5 5.5 TO 7.0 7.5 TO 8.0 8.0 TO 3.5 8.5 TO 9.0	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.6 II.7 2.8 3.9 6.2 2.7 3.1 6.6 2.7 2.8 2.7	0.0 0.0 2.6 2.6 3.4 19.9 10.2 7.3 14.1 3.6 10.2 5.9 3.4 2.9 3.5 1.9 3.4	7.0 20.9 4.7 9.6 7.2 7.7 2.5 2.5 2.5 2.5 1.2 0.4
1202		3.0 TO 3.5 0.5 TO 1.0 1.0 TO 2.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 5.0 6.0 TO 6.5 5.5 TO 7.0 7.5 TO 8.0 8.0 TO 3.5 8.5 TO 9.0	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.6 II.7 2.8 3.9 6.2 2.7 3.1 6.6 2.7 2.8 2.7	0.0 0.0 2.6 2.0 3.4 19.9 10.2 7.3 14.1 3.6 10.2 5.9 3.4 2.9 3.5 1.9 3.4	7.0 20.9 4.7 9.6 7.2 7.7 2.5 2.5 2.7 3.4 0.4 2.5 1.2 0.2
		3.0 TO 3.5 0.5 TO 1.0 1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.5 TO 5.0 5.5 TO 5.0 6.0 TO 6.5 5.5 TO 7.0 7.5 TO 8.0 8.6 TO 3.5 8.7 TO 7.5 7.5 TO 8.0 8.7 TO 7.5 7.5 TO 8.0 8.7 TO 7.5 7.5 TO 8.0 8.7 TO 7.5 7.5 TO 7.5 7.5 TO 7.5 7.5 TO 7.5 7.5 TO 8.0 8.7 TO 7.5 7.5 TO 7.5	0.0 0.1 1.0 3.9 4.2 11.8 10.1 6.6 11.7 2.8 3.9 6.2 2.7 3.1 6.6 2.7 2.3 2.5 1.7 10.8	0.0 0.0 2.6 2.0 3.4 19.9 10.2 7.3 14.1 3.6 10.2 5.9 3.4 2.9 3.5 1.9 3.4	7.0 20.9 4.7 9.6 7.2 7.7 2.5 2.7 3.4 0.4 2.5 1.2 0.2 0.3 4.8

```
3
                    DIFFERENCE
                                   M HIGH-LOW
                                                 GIP-HDIH &
                                                              # MID-LOW
                  -20.0 TO -13.0
                                      25.0
                                                     1.1
                                                                   2.1
                                     6.7
                  -18.0 TO -13.0
                                                    1.5
                                                                  3.1
                  -16.3 TC -14.3
                                      3.0
                                                    1.8
                                                                  5.5
3
                  -14.0 TO -12.0
                                     10.6
                                                    4.2
                                                                  13.1
                  -12.0 TO -10.0
                                     10.3
                                                    7.3
                                                                  13.2
                  -10.0 TJ
                            -3.0
                                     11.2
                                                     9.0
                                                                  19.7
                   -8.0 TO
                             -6.0
                                      7.5
                                                    12.0
                                     7.5
                                  7.5
7.0
3.9
2.2
3.2
1.5
1.5
0.1
0.2
                   -6.0 TO
                            -4.0
                                                    11.9
                   -4.0 TO
                            -2.0
                                                    15.4
}
                   -2.0 TO
                            0.0
                                                    12.2
                                                                  5.7
                    0.0 TO
                              2.0
                                                     9.0
                                                                   3.5
                    2.0 TO
                             4.1
                                                    7.7
                                                                   2.7
)
                    4.0 TO
                              6.)
                                                    3.5
                                                                   0.7
                             3.0
                  _ 6.0 TO
                                                    2.1
                                                                   2.7
                                                   0.9
                    8.0 TO
                             13.0
                                                                   0.2
                   10.0 TO
)
                             12.0
                                                     0.3
                                                                   0.1
                   12.0 TO
                             14.0
                                       0.2
                                                    0.2
                                                                   0.0
                                       J.1
                   14.3 TO
                             16.0
                                                    0.0
                                                                   0.0
                   16.0 TO
                             18.)
                                       0.0
                                                                   0.0
                   18.J TO 20.0
                                                                   J.1
                              1278
                                                    1289
                                                                  1291
                               g HIGH
                                                  3 MID
                                                                 % LOW
                             10.0
                                       0.0
                    J.0 TO
                                                    0.0
                                                                   0.0
                   10.0 TO
                            2).)
                                                    0.1
                                  . 2.2
                                                                   0.2
                                  23.3
20.6
9.5
3.3
                   29.1 TO
                            30.0
                                                    6.5
                                                                   0.8
                   30.0 TO
                                                    15.3
                   40.0 TO
                            50.0
                                                    13.5
                   50.0 TO
                            50.0
                                                    8.8
                                                                   2.9
                                  4.3
3.9
4.4
                   CT 0.03
                             73.0
                                                    6.1
                                                                   3.1
                   70.0 TO
                             80.0
                                                   4.3
                   80.3 TO
                            90.0
                                                    4.9
                                                                   4.2
                                       3.4
                   90.0 TO 100.0
                                                     4.2
                  100.0 TO 110.0
                                       2.1
                                                     5.4
                  110.3 TO 120.5
                                       3.3
                                                     5.6
                  120.0 70 150.0
                                                     6.1
                                       2.3
                  133.0 70 1+3.0
                                                    5.2
                                                                   5.5
                  140.0 TO 150.0
                                       2.7
                                                     3.8
                                                                   9.9
                  150.0 TO 160.0
                                       2. ?
                                                     2.4
                  160.0 TC 170.0
                                       0.7
                                                     2.0
                                                                  5.5
                  170.0 TO 130.0
                                                     1.2
                                                                  7.0
                  180.0 TO 190.1
                                       2.5
                                                     Ü.9
                                                                  5.4
                  196.0 TO 200.)
                                       1.1
                                                                  23.4
                    ENTRIES
                                      1277
                                                    1277
                                                                  1277
```

Table 31. Frequency distributions of path loss difference and detection range for X-band

Ċ.

X

8

W.

0

	• •	••		• •	
②	DET RA	NGE	3> HIGH	2> 410	\$> FOM
	10.0)	100.0	100.0	103.3
•	20.0		97.3	99.9	99.8
8	30.0		69.0	93.3	99.1
	40.0			- 77.1	93.4
6	50.0		38.9	53.6	96.5
	50.0		35.1	54.7	93.6
	70.0		30.3	43.6	90.4
3	80.0	•	27.0	43.9	33∙2
•	99.0)	22.6	38.9	83.9
	100.0		19.2	34.7	79.6
6	110.0		17.1	29.3	74.4
8	120.0		13.8	23.6	67.5
_	130.0		11.5	17.5	62.8
0	140.5		9.1	12.3	57.3
	150.0		6.3	8.5	47.4
	1607.)	4.3	6.0	41.3
6	170.0		3.5	4.0	35.8
•	180.0		- 1.6	2.8	29.8
	190.0		1.1	1.9	23.4
Δ					
•	200.0	;	-0.0	-0.0	- 0•0
@	- ENTRIE	S	1277	1277	1277
0	-50.0 T		77.3	# HIGH-HID	% MID-LOW
②	-45.U TO		2.7	3.1	2.8
	-40.0 TO		2.4	3.6	3.2
		-30.0	2.2	4.2	2.0
•		25.0			
8			2.0	4.7	3.1
	-25.0 T3		1.8	6.9	2.4
	-20.0 TS		1.5	6.9	2.7
(3)	-15.€ T6		1.1	9.0	1.8
_	-10.0 TO	3 7-5.0	ີ : 0.6	9.2	1.4
		J.J	0.6	7.7	1.5
@			- I.ò		1.6
•			1.3	4.0	1.5
		15.3		2.4	5.9 -
^					
Ð			j., 5	3.3	3.0
		25.0	3.3	0.6	7.6
_		30.7	· 2	1.4	3.4
9		35.0	∂. 3	1.3	J•5
-	35 • i) Ti	3 40.0	J.2	1.2	J•2
	" 4C.0 TI	45.0	·· 0.4	0.9	ე∙2
0	45.0 T	50.0	a.9	2.7	1.2
_	mai monte	- ,-		1077	1 7 7 7
8	ENTRI	= 5	1277	1277	1277
•					
	Table 32. Cu	mulative	distribution :	f ierection range	and frequency
S					

distribution of detection range differences for K-band

Q¥ be

X

8

8

T.C.

X

00

8

N N

XXX

8

8

33 88

88

3K) TS

AUGUST 1972	HIGH-MID	\$ > 20.0	0.0 % > 15.0 DB	% > 10°0	0.9 < 2	4 > 3.0	0.0		% > -6.0	\$ > -10.0			TOTAL ENTRIES = 771
MD. NAKUS TU TYKÜMUS, GREEGE AL	MJJ-CIM	> 20.0	0.8 % > 15.0 UR	0.01 < %	× > 6.0	0°8	つ。 つ へ か	> -3.0	5. 4. V X	3 > −10°0	0.61- < 5	99.9 % > -20.0 08	TOTAL ENTAIES = 767
KU BARDI NAK.	H13H-154	0.0 % > 20 08	۸	۶. ۷	^ :	^	^ ;:	46.0°5 - < 5 - 6.55	^	20 0*7 TH A 7 5***C		48.7 % > -20.00	FOLD ENTRIES = 770

FADING HEAR	FADING MIDDLE	FADING LOW
^	£ > 20.0	20.0
5.4 6 7 15.0 FB	10.5 % > 15.0 03	9.3 % > 15.0 DA
35.0 " > 10.0 FB	% > 10.0	U 10.0
^ \	0°0 4÷	0.8
<u>^</u>	0.0	C. 0
^ ≥.	× > 5.0	ς > 5 ₀ Ο
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.4 / 5	0.4
100000000000000000000000000000000000000	÷ > 3.0	3.0
	2,0	2 > 2.0
100-1 3 2 2 1-1 13	% > 1. 0	3 > 1.0
1131 - Clarentel	CTC = SHINING TOLEY	TO THE STATE OF TH

Table 33. Statistical presentation Ku-band

PATH LO	SS	3 HIGH	a wid	# LOW
120.0 TO	125.0	0.0	0.0	0.0
125.0 TO	130.0	0.0	0.0	0.0
130.0 TO	135.0	0.4	1.2	0.5
135.0 TO	140.0	1.8	10.1	5.7
140.0 TD	145.0	9.5	22.8	16.1
145.0 TO	150.0	19.6	13.0	15.8
150.0 TO	155.0	15.6	7.1	14.2
155.0 TO	100.0	12.9	10.4	18.3
160.0 TO	165.0	14.5	11.5	17.1
165.9 TO	170.0	12.4	14.4	8.9
170.0 TO	175.0	9.8	7.1	2.8
175.0 TO	180.0	2.1	1.7	0.4
180.0 TO	185.0	1.3	0.3	0.0
185.0 TO	190.0	0.1	0.5	0.1
190.0 TO	195.0	0.1	0.0	0.0
195.0 TO	200.0	0.0	0.0	0.0
200.0 TO	205.0	0.0	0.0	0.0
205.0 TO	210.0	0.0	0.0	0.0
210.0 TO	215.0	0.0	0.0	0.0
215.0 TO		0.0	0.0	0.0
ENTRIES		777	772	772

FADING		% HIGH	& WID	% FOM
0.0 TO	0.5	0.0	0.0	0.0
0.5 TO	1.0	0.0	0.0	0.0
1.0 TO	1.5	0.0	0.0	0.0
1. TO	2.0	0.0	0.0	0.3
2.0 TO	2.5	0.0	0.9	0.0
2.5 TO	3.0	0.0	0.5	1.2
3.0 TO	3.5	0.0	0,1	1.3
3.5 TO	4.0	0.4	1.0	3.0
4.0 TO	4.5	1.2	2.2	2.2
4.5 TO	5.0	0.0	0.3	0.0
5.0 TO	5.5	3.7 "	3.1	4.0
5.5 TO	6.0	4.5	4.4	4.0
6.0 TO	6•5 T	7.7	6.6	··· 5•2
6.5 TO	7.0	4.5	3.6	3.2
7.0 TO	7.5	5.8	4.0	3.5
7.5 TO	8.0	4.1	5.6	8.0
8.0 TO	8.5	8.6	4.7	2.8
8.5 TO	9.0	9.0	8.4	6.1
9.0 TO	9.5	3 • 3	2.7	3.0
9.5 TO	10.0	47.1	51.8	52.2
ENTRIES		777	772	772

Table 34. Frequency distributions of path loss and fading for Ku-band

Ū

DIFFERENCE	% HIGH-LOW	g HIGH-MID	3 MID-LOW
-20.0 TO -18.0	1.8	0.0	0.3
-18.0 TO -16.0	1.4	0.4	1.2
-16.0 TO -14.0	3.6	1.2	1.4
-14.J TO -12.9	4.3	2.2	2.5
-12.0 TO -10.0	4.8	4.3	3.3
-10.0 70 -8.0	6.1	8.4	4.2
-8.0 10 -6.0	7.8	16.1	6.5
-6.0 TO -4.0	13.4	16.2	8.7
-4.0 TO -2.0	11.6	14.0	9.6
-2.0 TO 0.0	16.4	10.2	14.6
0.0 TO 2.0	10.6	10.6	9.0
2.0 TO 4.0	7.1	7.0	10.2
4.0 TO 6.0	5.5	4.2	8.6
6.0 TO 8.0	2.5	2.3	8.0
8.0 TO 10.0	1.7	2•3	5.7
10.0 TO 12.0	0.6	0.4	2.5
12.0 TO 14.0	0.4	0.1	2.1
14.0 TO 16.0	0.3	0.0	1.0
16.0 TC 18.0	0.1	0.0	0.7
18.0 TO 20.0	0.0	0.0	0•0
ENTRIES	770	771	767

Table 35. Frequency distributions of path loss differences between antennas for Ku-band

MIO-LUM HIGH-MID	34	15-0 DB				0.0	# 9.75 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	5 - 3.0 UB 100.0 %	2 -0.0 DB 100.0 4	-0 × > -10.0 DB 100.0 x >	-20.0 UB 100.0 %	TUTAL ENTRIES = 1405 TOTAL ENTRIE	FADING MIDDLE FADING LOW	and or no				* N · W · W · W · W · W · W · W · W · W ·	5.0.0 V	4.0 UB 20.05	6 > 3.0 in	5.5 6 > 2.0 LB	.42 Dis Dis
HI GH-1. Dv		0.51 <>	¬ ^;;	,; \	· · · · · · · · · · · · · · · · · · ·	3°0	1 4 7				• 07	FOTAL CNIKES - 1.04	Fablac algn	, c	: 1	۸ س	٠ ،- ر	٠,5	ر ا ا	2 C * * · · · · · ·	~ /	C	`.

T.

7

X X

Table 36. Statistical presentation for L-band

X

Ċ

PATH LOS	3 # HIGH	OIM F	% LON	
120.0 TO 1 125.0 TO 1 130.0 TO 1 135.0 TO 1 140.0 TO 1 145.0 TO 1 155.0 TO 1 155.0 TO 1 165.0 TO 1 170.0 TO 1 175.0 TO 2	25.0 0.0 30.0 0.0 35.0 0.0 40.0 0.1 45.0 1.1 50.0 0.8 55.0 12.9 50.7 55.9 65.0 26.8 70.0 2.4 75.0 0.0 30.0 0.0 85.0 0.0 85.	0.0 0.0 0.0 0.1 0.3 0.6 0.9 14.3 55.4 28.0 0.4 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.7 2.8 3.8 44.5 48.3 1.9 9.0 0.0 0.0	
205.0 TO 2 210.0 TO 2		0.0	0.0	
215.0 TO 2		0.0 0.0	0•0 0•0	
ENTRIES	1405	1405	1406	
FABING	₹ HIGH	g MID	% LOW	
0.0 TO 0.5 TC 1.0 TO 1.5 TC 2.0 TO 2.5 TO 3.5 TO 4.0 TO 4.5 TO 5.0 TO 5.0 TO 6.0 TO 6.0 TO 7.0 TO 8.5 TO 8.6 TO 7.5 TC 8.7 TO 8.7 TO 8.8 TO 8.9 TO 8.0 TO	1.0 17.7 1.5 24.2 2.0 35.7 2.5 7.1 3.0 9.5 3.5 1.4 4.0 0.9 4.5 0.6 5.0 0.6 5.5 0.2	2.2 5.7 10.2 34.3 13.5 19.1 3.6 3.6 2.1 2.4 0.5 1.0 0.3 0.3 0.0 0.0 0.0 0.0 0.4 0.1		•••

Nable 37. Frequency distributions of path loss and fading for laband

DIFFERENCE	% HIGH-LOW	GIM-HDIH &	3 410-FCM
-20.1 TO -18.3	0.0	0.0	0.0
-18.0 TO -16.0	0.9	0.0	9 . 0
-16.5 TG -14.0		0.0	0.0
-14.0 TO -12.0	0.0	0.0	ე. ე
+12.0 TO -10.0)• ·)	0.3	0. 0
-10.0 TC -3.7	0.0	0.0	9.0
-3.0 TC -6.0	J.0	0.0	0.3
-6.0 TO -4.0	0.0	_ 0.0	0.0
-4.9 TC -2.9	. O. O	0.1	0.1
-2.0 TO 0.0	∂.Q	0.3	0.1
0.0 TO 2.0	ე• ე	0.6	0.6
2.0 TO 4.0	0.3	12.2	2.4
4.0 TO 6.J	0.5	80.1	8.5
6.3 TO 8.0	4.3	5.9	74.9
8.U TO 10.0	4.5	0.6	11.7
10.0 TD 12.3	44.9	0.1	1.4
12.0 TO 14.0	40.7	0.1	0.1
14.3 TO 16.3	3.6	0.0	0.1
16.0 TC 18.0	1.0	0.0	0.0
_13.0 TO 20.0	0.1	0.0	0.0
ENTRIES	1404	1403	1405

Table 38. Frequency distributions of path loss differences between antennas for L-band

22.22

1572
NUVEMBER
uhteit
YNUNGS
<u>:</u>
NAXI'S
hAMD,
v:

HIGH-MIE	0.03 < \$0.0	0.1 % > 15.0	lid 0.0 8 > 10.0 UB	56.7 % > 6.0	58.5 × × 3.0	0.0 < % 0.50	100.0 % > -3.0	100.0 % > -6.0	100.0 % > -10.0	3 V - 15.0	100.0 2 > -20.0	254 TOTAL ENTRIES = 1255
MIU-LC*	> 20.0	7 15.0))	7 3.0	0.0	V -3.U	∨	0.01- <	100.0 % > -10.0 D		fOTAL CMTRIES = 1254
hlon-Loa	0.6 % > 70.0 DA	٠.		×:		٠.	م:	1000 < . 0.201	٠:	; =	100.000 < 0.000	Telat Folklis = 1251

	CAUINO FIDDLE	LAUING LOW
0.0 8 > 70.0 B3	0.07	
2.0 2.0 4.0 4.0 0.0	15.0	
1.0 6 / 10.0 05	0.0 0 0.0	0.4 % > 10.0
^	J	
0.0 % > % 0.0	6.0	
^	5.0	
^) ,r	
f. , , ,	 0 • č	
	7.7	
35.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.		

Table 39. Statistical presentation for S-band

Ni U

N.

ř.

N. N.

_ X

SSS

X

H

ρū

	PATH LOSS	3 HIGH	a MID	% LOW	
	120.0 TO 125.0	0.0	0.)	9.0	
	125.0 TO 130.0	0.6	0.4	0.0	
	130.0 TO 135.0	ܕ6	0.4	J.6	
	135.0 TO 140.0	2.6	0.2	•	
	140.0 70 145.0	6.4	0.7	0. 2 0. 3	
	145.0 TC 150.0	20.2		9.2	
	150.0 TO 155.0		6.5	2.1	
		33•2	11.7	5.6	
	155.0 TO 100.0	26.5	29.4	12.1	
	160.0 TO 105.0	11.7	35.1	36.0	
	165.0 TO 170.0	0.1	13.4	28.3	
	170.0 TC 175.0	0.0	2.1	12.6	
	175.0 TO 180.0	9.0	J• 0	1.3	
	100.0 TO 135.0	0.0	0.0	0.0	
	185.0 TO 190.0	0.0	0.0	0.0	
	190.0 TO 195.0	0.0 <u>_</u>	0.0	0.0	.
	195.0 79 200.0	$0 \bullet 0$	0.0	0.0	
	200.0 TO 205.0	0.0	0.0	0.0	
	205.0 Th 210.0	0.0	0.0	0.0	
	210.0 TO 215.0	9.0	0.0	0.0	
	215.0 TO 220.0	0.0	0.0	0.0	
	ENTRIES	1265	1257	1265	
	FADING	₹ HIGH	% MID	ሄ LOW	_
	0.0 TO 0.5	0.6	0.5	0.5	_
	0.5 TO 1.0	14.5	7.2	1.6	
	1.17 TO 1.5	29.3	16.4	10.5	
_	1.5 TO 2.0	14.5	14.3	12.5	
	2.0 TO 2.5	23.2	15.8	9.1	
	2.5 TO 3.0	11.1	21.2	25.9	
	3.0 TO 3.5	5.2	12.8	13.0	
	3.5 TO 4.0	2.6	7.6	5.1	
	4.0 TO 4.5	0.0	1.4	5. 9	
	4.5 TO 5.0	0.0	0.2	2.1	
	5.0 TO 5.5	0.1	1.2	6.2	
	5.5 TO 6.9	3.0	0.2	3.4	
	6.0 TO 6.5	" 0•0 —	0.2	1.3	
	9.5 70 7.0	2.0	0.3	0.1	
	7.5 TO 7.5	3.0	ŭ. 3	3.5	
	7.5 TO 8.0	3.3	0.2	0.6	
	8.0 TO 8.5	0.û	0.0	0.0	
	8.5 TO 9.)	9.9	0.1	1.3	
•	9.0 TO 9.5	0.0	0.0	0.0	
	9.5 TO 10.9	0. 0	0.0		
			U •0	J.5	
	ENTRIES	1265	1257	1265	

Table 40. Frequency distributions of path loss and fading for 3-band

DIFFERENCE	# HIGH-LOW	s HIGH-WID	3 MID-FCM
-20.0 TC -18.7	់ ទ	0.0	0.0
-18.0 TC -10.3		0.0	0.0
-16.0 TO -14.0	0.0	0.0	ე. ა
-14.0 TO -12.0	ე. 0	0.0	0.0
-12.0 TO -10.0	0.0	0.0	9.0
-10.0 TO -8.0	o.g	0.0	り・ ¹
-3.0 TG -6.0	ა. ი	0.0	0.1
-6:0 TO -4.0	0.1	0.0	J•2
-4.0 TP -2.0	0.0	0.0	0•∂
-2.0 TO 0.0	2.1	0.1	ა∙5
0.0 TO 2.0	0.2	0.7	2.4
2.0 TC 4.0	9. 2	4.3	35 •3
4.0 TC 6.0	1.1	34.3	52.8
6.0 TO 8.0	5.4	53.3	3.1
3.0 73 10.0	24.6	6.1	0.3
10.3 TC 12.0	50.4	0.5	0∙ 2
12.C TO 14.0	16.0	0.1	0.C
14.0 TO 16.0	1.4	0.1	0.0
16.0 TO 18.0	0.6	0.0	J•0
18.C T) 20.0	0.0	0.0	0.0
ENTRIES	1261	1255	1254

Frequency distributions of path loss differences between antennas for S-band

V.

1972	HIGH-MID	0.0 % > 20.0 DB	0.61 . 4 2 7	0.01 < % 1	7 % > 6.0	2 % > 3.0	0.0 < % 9	0 % > -3.0	0.9- < 12	8 % > -10.0	8 % > -15.0	0 % > -50.0	TOTAL ENTRIES = 1247	FADING LOW	.0 % > 20.0	.0 % > 15.0	0.01 < 3 0.	.1 % > 8.0	80 0°9 < 2 5°0	.8 % > 5.0	0.4 < 2.9.	7.4 % > 3.0	.2 % > 2.0	8.6 % 1.0	TOTAL FNTRIES = 1250	
NAXOS TO MYKONOS, GREECE NOVEMBER	HO7-OIW	0.0 % > 20.0 DB	15.0	0.01 < 2 +	0.0	3.0	0.0 4%	6 > -3.0	0.9- < 3.5	.3 % > - ki).0	0.61- < 2.0.	% > -20.0	TOTAL ENTRIES = 1248	FADING MIDDLE	> 20.0	\$ \ 15	? ^ >	0.2	0.1 % > 6.0 u8	0°9 ^ 2°	4 4.0	× × 3.0	~ ~ <i>∻</i>	u > 1.0	TOTAL ENTRICS = 1248	
X BAND, NA	HIGH-L'03	> 23.0	0.61 < 2 /	5 2 > 10.0	3 8 > 6.0	3 % > 3.0	0.0 < 3.8	6 % > -3.0	0.9- < % /	4 % > -10.0	4 2 4 - 15.0	5 > -20·0	TOTAL ENTRIES - 1249	ногие итен		0.4 \ 15.0	10.0	^ ~	bu 0.0 V % v.c.	^	0.4 4.3	3.0	2.5	A 24 1	TOTAL ENTRIES = 1251	

THE STATE OF

吸吸

8

N

Table 42. Statistical presentation for X-band

出

N. N.

Table 43. Frequency distributions of path loss and fading for X-band

1243

1250

1251

ENTRIES

N

B

N. C.

X,

8

N C

O

			% HIGH-AID	,
	-20.0 TO -18.0	J•5	0.0	ა.ა
	18.0 TC -16.0		0.1	J.0
	-16.0 TO -14.0	1.2	0.2	0.1
	-14.0 TO -12.0	1.2	1.0	0.0
	-12.0 TO -10.0	1.4	J• 9	3.1
	-10.0 TO -8.0	1.6	1.3	9.2
	-8.3 TO -6.0	2.1	2.5	1.1
	-6.0 TO -4.0	1.8	2.2	1.4
	-4.0 TO -2.0	2.0	3.4	3.3
•	-2.0 TO 0.0	1.8	7.5	5.0
	0.0 TC 2.0	5 8	16.1	11.2
	2.0 TO 4.0	7.1	17.6	14.6
–	4.0 TC 6.3	7.5	19.1	29.6
	6.0 TO 8.0	11.2	17.0	20.0
	8.0 TO 10.0	13.7	7.5	9.6
	8.0 TO 8.0 8.0 TO 10.0 10.0 TO 12.0	9.2	1.9	2.1
	12.0 TO 14.0		1.3	2•1 9•9
	14.0 TO 16.5		0.2	0.9 0.2
	16.0 TC 18.0		0.0	0.4
-	18.0 [0] 20.0	5.0	0.1 _	J.3
	ENTRIES	1249	1247	1248
	DET RANGE	# HIGH	3 MID	_3_LCV
	0.0 TC 10.0		0.0	J.0
	10.3 TO 20.0		23.7	33• i
	20.3 TO 30.7	32.5	28.1	25.5
	30.0 TO 40.0	21.6	12.3	3.0
	40.7 TO 50.0	ð°ú	6.3	5.2
	50.0 TO 60.0		4.3	2.1
	60.0 TO 70.0	2.2	4.1	1.3
	70.0 TO 30.0		2.3	1.5
			2.6	2.9
	90.0 TO 100.0	7.1	2.9	3.4
•	100.0 TO 110.0	3.4	3.4	1.4
	110.0 TO 120.0	3.4	1.5	1.7
	121.0 TC 130.0		3.2	1.5
	130.0 TO 140.0		1.5	1.7
	140.0 TG 150.0		1.0	J.5
	150.0 TO 160.0		1.4	1.6
			0.2	1.0
•-	160.9 TO 170.9 170.0 TO 180.0	0.2	0.0	
	180.0 TO 190.0	0.3		1.0
	190.0 TO 200.0		C.1 0.4	0.1 0.5
	ENTRIES	1247	1247	1247

盗

区区

A X

河

8

Ŋ

Ņ.)

DET RANGE	%> HIGH	סויי <ז	3> LUW
HET KANGE	32 117.90	32 10	97 CON
10.0	100.0	120.5	100.0
20.0	92.9	76.3	61.9
30.0	60.4	48.1	35.4
40.0	38.3	35.3	27.4
50 . C	28.9	28.9	22.2
60.0	24.4	24.6	20.1
70.€	22.1	20.5	13.8
80.0	19.1	18.2	17.2
93.0	. 15.2	15.6	14.4
19 C. C	8.2	12.7	11.0
110.0	4.8	9.3	9.5
120.0	1.4	7.8	7.9
130.0	. 0.7	4.6	5.3
140.G	0.7	3.0	4.7
150.C	_ ••3	2.0	4.2
160.0	0.2	9.6	2.5
170.0	0.2	0.5	1.6
130.0	0.0	0.5	0.6
190.0	0.0	0.4	0.5
200.0	0.0	0.0	0.0
ENTRIES	1247	1247	1247
DET RANGE DIFF	S HIGH-LOW	THIGH-MID	3 MID-LOW
-50.0 TO -45.0	g . ē	·-· 5 3	
-45.0 TO -40.0	0.4	5.2	1.8
-40.0 TO -35.0		0.8	0.7
-35.0 TO -30.0	1.0 0.2	1.4	0.3
-30.) TC -25.0		·).ġ
-25.0 TO -20.0	0.6	0.5	1.1 1.0
-20.0 TG -15.0 T	0.3	1.6	0.5
-15.3 TC -10.0	0.3	1.4	1.3
-10.0 TC -5.0	···0• 3	1.8	1.9
-5.0 TO 0.0	1.1	4.3	1.6
0.0 TO 5.0	— 10.3	35.0	47.5
5.0 TO 10.0	33.3	27.3	21.9
10.0 10 115.5	17.1	- 8.5	5.9
15.0 70 20.0	3.1	4.1	5•4
20.0 TC 25.0	3.4	2.2	غ∙د ث∙د
25.0 TC 30.0	3.0	0.6	1.5
30.0 TC 35.0	2.1	0.8	1.4
35.0 TO 40.0	2.2	0.6	2.9
40.0 TC 45.2	1.3	0.3	0.2
45.0 TO 50.0	4.1	1.1	3.2
ENTRIES	1247	1247	1247
- · · · · · · · · · · · · · · · · · · ·		A 4 T I	46 T I

Table -5. Lumulative distribution of detection range and frequency distribution of detection range differences for I-pand

V V V V V V V V V V V V V V V V V V V	0.0 % > 20.0 PB 0.4 % > 15.0 DB 3.8 % > 16.0 DB 13.1 % > 6.0 DB 27.9 % > 3.0 FB 44.1 % > 0.0 DB 62.6 % > -3.0 PB 75.5 % > -15.0 DB 95.2 % > -15.0 DB 95.2 % > -15.0 DB 98.4 % > -20.0 DB	0.0 % > 20.0 DB 0.0 % > 15.0 DB 1.1 % > 10.0 DB 5.6 % > 6.0 DB 18.0 % > 3.0 DB 43.1 % > 0.0 UB 66.2 % > -3.0 DB 95.1 % > -10.0 DB 99.0 % > -15.0 DB 99.9 % > -20.0 DB
7		ENTRIES = 0
		ENTRIES II
 C C	3 > 6.0 ba 3.0 b	ENTRIES II
2		######################################
7	# > 0.0 08 # > -13.0 08 # > -10.0 08 # > -15.0 08 # > -20.0 08 # > -20.0 08	######################################
7 V 19,000 00 00 00 00 00 00 00 00 00 00 00 00	# > -3.0 58 # > -0.6 03 # > -15.0 58 # > -15.0 58 # > -20.0 58 # > -20.0 58	**************************************
7	# > -6.6 P3 # > -15.0 D3 # > -15.0 D8 # > -20.0 D8 FNTRIES = 29	** > 15.0 D
x > -1>0 0x	3 > +15.0 58 7 > -15.0 58 3 > -20.0 08 FNTRIES = 29	* > -10.0 D
	* > -15.0 58 * > -20.0 58 FNTRIES = 29	* > -15.0 D
	* > -20.0 08 FNTRICS = 29	# > - 15.0 p
> -20.0 00	FNTQLES = 39	ENTRIES =
FOTAL ENTRIES = 998 TO		
FARITY HIGH	ADISG MIDDLE	FADING LOW
20.00	50	0 % > 20 0
€ 1.5. O 10.	0.61 43.0	
2 > 1) 2 0 0)	1 2 > 10.0	
	6 2 > 5.0	
1.3 ^ >	C.9 Vin 9.	0 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
PG '- '- '- '- '- '- '- '- '- '- '- '-	7 7 5.0	25 0
11, 1 . 5	0.4 4 %	6 > 4.0
· · · · · · · · · · · · · · · · · · ·	< % 7°	5.4 \$ > 3.0
	0°°	2.0
1., ,	> 1.0	7.4.

8

C.

188 180

100

80

X

XX

8

然

Table 46. Statistical presentation Ku-band

			· · • • ·			••
	PATH L	:ss	द भाउम	3 MID	3 LOW	
	120.7 TO	125.6	2.0	0.0	0.0	
	125.J TO		0.0	0.0		
	130.0 TC		ა . ე	0.0		
•	135.9 TS					
			0.1	0.8		
	140.0 TO		4.0	10.4		
	145.3 TC		24.0	35.5		
	150.0 TC		33.3	21.4		
	155.0 TC		21.5	16.3	9.9	
	160.0 TD		10.5	6.8	7.3	
	165.0 TJ		. 4.4	4.0	5.2	
	170.3 TO	175.0	1.3	3.0	3.6	
	175.0 TO	180.0	ე. 8	1.4	2.8	
	180.0 TO	135.0	0.1	0.3	2.0	
	185.0 TO		0.1	0.0	0.9	
	190.0 TC		0.0	0.0	0.3	
	195.0 TO		0.0	0.0	0.0	
	230.0 TO		0.0			
				_ 0.0		
	205.0 TO		0.0	0.0		
	210.0 TO		0.0	0.0		
	215.0 TO	220.0	٥.¢	0. 0	9•6	
	ENTRIES	·- · ·	1001	998	998	
		-				
	. =:		• • • • • • • • •		- •	
	FADING		% HISH	CIM E	3 LUW	
	0.0 TO	C.5	2.6	···· 2.3	2.3	
	C.5 TO	1.0	1.4	0.7		
	1.0 TO	1.5	20.0	20.2		•
	1.5 10	2.0	5.1	5.3		
	2.0 70		0.0	1.5	+•3	•
	2.5 TG		44.9	44.7	47.3	
	3.C TO	3-5	1.8	3.9		• •
	3.5 TO		14.0	12.9		
	4.0 TO				11.6	
	4.5 TO		0.4	0.4	2.9	
		- 5.0	C.1	0.4	1.1	
	5.0 10		3.8	3.8	1.0	
-	5.5 TG		0.1	0.1	·)•0	
	OT C.6		5.4	2.9	1.2	
	6.5 TO		ე.ე	ິງ.ວ).2	
	7.0 10	7.5	0.0	C.)	ა•მ	
	7.5 TO	3.0	0.1	0.1	0.2	
	8.0 TO		0.0	0.0	0.0	
	8.5 TO		0.0	C. C	0.0	
	9.0 TO		j.4 · · ·	0.5	0.0	**
	9.5 TO		0.0	0.1	9.0 9.0	
	, , ,	F-9 - 9	9.0	0.1	9.0	
	EUTRIES	5	1001	998	3 98	

Table 47. Frequency distributions of path loss and fading for lu-pand

图

图

8

E S

DIFFERENCE	и нісн-гом	3 HIGH-MID	S MID-LTW
-20.0 TO -18.0	5.9	0.3	2.3
-18.0 TC -16.0	4.2	0.4	1.4
-16.0 TO -14.0	3.6	0.9	2.1
-14.3 TO -12.0	5.2	1.1	3.7
-12.0 TO -10.0	5.2	2.2	3.8
-10.0 70 -3.0	5. 5	3.9	5.4
-3.J TO -6.0	o • 8	6.3	4.8
-6.0 TC -4.0	7.0	12.3	8.8
-4.0 TC -2.0	5.7	14.0	7.4
-2.0 TC 0.0	5.3	14.9	11.1
0.0 TO 2.0	5.8	15.9	13.1
2.0 TO 4.0	17.9	13.3	12.7
4.0 TC 6.0	5.4	7.6	10.1
6.0 TO 3.0	5.3	4.1	6.Ū
8.0 TO 10.0	4.9	1.0	3.2
10.0 TO 12.0	3.3	0.3	1.8
12.0 TO 14.J	1.7	0.2	1.2
14.0 TO 15.0	1.3	0.1	0.7
16.0 TO 18.0	1.8	0 • ũ	0.1
13.0 TQ 20.0	1.5	0.0	9.1
FNT RI ES	998	993	998
	-		
		•	
	·	• .	
•			

Table 48. Frequency distributions of path loss differences between antennas for Ku-band

<u> 100</u>

_ T

四公

魚点

S.

V.

N. W.

```
A. MID-LOW
               20.0 DB
     0.0 % >
     0.3 % >
               15.0 DB
               10.0 08
     6.7 % >
               6.0 DB
    17.1 % >
                3.0 DB
    34.3
               U.0 08
         4 >
              -3.0 DB
    49.6 3 >
    56.1 % >
              -6.0 D8
    83.0 % > -10.0 08
    94.8 % > -15.0 DB
    99.4 % > -20.0 DB
```

TOTAL ENTRIES = 1146

B. FALING	MIDOLE		C. FADING	6 LUW	
0.0	男 > 20.0	DS	. 0.0	% >	20.0 DB
0.2	3 > 15.0	ΰB	0.2	3 >	15.0 DE
1.6	2 > 10.0	Dā	. 0.4	6 >	10.0 DE
	% > 6.C		1.2	<i>3</i> >	30 O.3
7.4	₹> 6.0	วย	5.9	3 >	6.C DB
	も > 5.0		9.6	ኔ >	5.0 DR
17.2	# > 4.0	Ca	12.5	6 >	4.0 03
29.3	٥٠٥ خ م	03	20.6	ረ >	3.0 08
53.6	3 > 2.0	CB	48.1	٠ × ١	2.0 Db
91.0	3.> 1.0	DB	86.6	₹ >_	1.0 06
ΤΠΤΔΙ	FNTRIES =	1154	TCTAL	ENTR	IFS = 115

Table 49. Statistical presentation for Ka-band

KA BAND, GREECE NEVEMBER 1972

PATH LCSS	& MID	6 Lün
120.0 TO 125.0	0.0	0.0
125.0 TO 130.0	0.0	0.0
130.0 TU 135.0	0.0	0.0
135.J TÜ 140.J	C. 0	0.0
140.0 TO 145.0	0.0	J. 0
145.0 TJ 150.J	0. 0	0.0
150.0 TO 105.0	0.0	0.0
155.0 TO 100.0	0.1	∵. 3
160.0 TJ 165.0	1.2	15.7
165.0 TO 1/0.0	21.5	33.2
170.0 Tū 175.0	30.8	26.8
175.0 TJ 130.0	29.5	14.9
0.כנן 10 0.061	13.1	6•ô
135.0 TJ 150.0	3.0	1.6
190.0 TO 195.0	0.3	0∙ 4
195.0 TU 200.0	9.1	0.3
200.0 TO 200.0	· 0.0	0.0
205.0 TO 210.0	ن ₄0	0.0
210.0 TO 215.0	U. 0	0.0
215.0 TO 220.0	0.0	0.0
ENTRIES	1154	1155 .

Table 50. Frequency distribution of path loss for Ka-band

DIFFERENCE	# 410-Fn"	
-20.0 TO -10.3	2.1	
-13.0 TO -16.J	1.8	
-16.0 TO -1+.3	3.2	, ,
-14.0 TU -12.0	3.9	
-12.0 TU -10.0	5∙8	
-10.0 10 -6.0	7.2	
0.0- CT 0.6-	9.5	
-0.0 TO -4.0	10.0	
-4.0 TO -2.3	10.9	
-2.0 TO 0.0	10.5	
0.0 TO 2.0	12.7	
2.0 TD 4.0	10.1	
4.0 TO 6.0	4.7	
0.b CT 0.0	2.9	
8.0 TO 13.0	1.9	
10.0 TO 12.0	1.2	
12.0 TO 14.0	0.2	•
14.0 Tû 10.0	0.3	
16.C TO 18.0	û.2	
18.0 TO 20.0	0.0	
1010 10 2010		
ENTRIES	1140	

FADING		% MID	3 LOW	
0.0 TU	0.5	ů•7	2.2	
0.5 TU	1.0	7• 9	10.2	
1.0 TO	1.5	27.1	28 . 6.	
1.5 TJ	2.3	10.5	10.7	
2.0 TO	2.5	8.9	6.5	
2.5 TU	3.3	15.5	21.2	
3.0 TO	3.5	5.9	4.0	
3.5 Tu	4.0	0. 2	4.3	
4.0 TO	4.5	3.0	2.2	
4.5 TO	5.0	0.0	0.0	·
5.0 TO	5.5	2.9	i.ó	
5.5 TU	6.3	4.0	2.7	
5.0 TO	3.5	2.2	2.7	
6•5 Ti	7.0	0. 0	1.0	
7.0 TO	7•ゔ	0.0	0.0	
7.5 TJ	3.0	0. 7	0.3	
8.0 TO	ყ∙2	U•5	0.3	
3.5 TJ	9.0	0.6	0.0	
9.0 TJ	4.5	1.0	3.3	
9.5 TJ	10.0	1.8	0.5	
entale?		.154	.150	

Table 31. Frequency distributions or path loss difference and fading for Ma-band

NO.

W.

PATH LCSS	% HIGH	CIMID	% FOM
120.0 TO 125.0	1.0	0.6).2
125.0 10 130.0	2.4	1.3	0.6
130.0 TO 135.0	2.7	2.4	1.5
135.0 TG 140.0	3.6	2.6	2.3
140.0 TO 1+5.0	10.4	3.7	3.1
145.0 TO 150.0	14.6	8.4	2.8
150.0 TB 155.0	22.3	15.2	10.2
155.0 TO 160.0	32.2	13.8	14.0
160.0 TO 155.0	8.7	36.6	9.0
165.0 TU 170.0	0 • 3	14.7	26.4
170.0 TO 175.0	0.0	0.1	29.6
175.0 TO 180.0	₩. €	0.0	1.2
180.0 10 135.0	0.0	0.0	0.0
185.3 TO 170.0	0.0	0.0	9.0
190.0 TO 195.0	0. 0	0.0	0.0
195.0 TO 270.0	ე•ი	0.0	0.0
200.0 TO 205.0	0.0	0.0	J.0
205.0 TO 210.0	0.0	0.0	0.0
210.0 TC 215.0	0.0	0.0	0.0
215.0 TC 220.0	:) 👵 😂	ი. ა). 0
ENTRIES	4385	4391	4387
FADING	3 HISH	4 MID	% LOW
o".o ⊤e ` ⊺o.5	1.3	0.3	5.7
0.5 TO 1.0	16.1	7.1	4.0
1.0 0 1.5	26.7	18.5	13.€
1.5 TC 2.3	31.5	25.9	17.1
2.0 TO 2.5	7.9	13.5	7.9
2.5 TO 3.0	8.3	16.9	23.1
3.0 TO 3.5	1.8	5.1	11.2
3.5 TO 4.0	2.2	3.7	7.5
4.0 TO 4.5	ີ 0.0	1.3	2.6
4.5 TO 5.0	0.3	0.9	1.3
5.0 TO 5.5	1.3	2.0	5.6
5.5 TO 6.3	0.3	0.5	1.2
6.0 Tr 5.5	0.5	1.0	~1.3
3.5 7 7.3	0.1	0.3	
7.1 7. 7.5	7 • ·	3 🗸 🧷	
	:••-	2.1	3.3
7.5 TO 3.0	:•·. 0•3	0.1 0.7	1.5
8.J TO 8.5	:•½ 0•3 0•0	0.1 0.7 0.0	1.5
8.0 TO 8.5 8.5 TO 9.0	0.3 0.0 0.1	0.7 0.0 0.3	1.5 0.1 0.3
8.3 TO 8.5 8.5 TO 9.5 9.0 TO 9.5	0.3 0.0 0.0 0.1 0.0	0.7 0.0 0.0 0.3 0.1	1.5 0.1 0.3 0.3
8.0 TO 8.5 8.5 TO 9.0	0.3 0.0 0.1	0.7 0.0 0.3	1.5 0.1 0.3
8.3 TO 8.5 8.5 TO 9.5 9.0 TO 9.5	0.3 0.0 0.0 0.1 0.0	0.7 0.0 0.0 0.3 0.1	1.5 0.1 0.3 0.3

Table 32. Frequency distributions of path loss and fading for L-pand

DIFFERENCE	3 HIGH-L 34	ж итси-мго	3 MID-LOW
29.0 Tr =13.0	0.0	0,0	J. C
18.0 TC -15.0	0.0	0.0).0
16.0 TO -14.0	·	- · · · · · · · · · · · · · · · · · · ·	0.0
14.0 TO -12.0	0.0	0.0	0.0
12.0 70 -10.0	0.0	0.0	J.0
17.0 TO -3.0	9.0	9. J	J•0
-8.0 TO -5.0	0.0	9.0	0.1
-6.0 TC -4.)	0.0	0.1	J.1
-4.0 TO -2.0	J. 1	0.2	J•2
-2.0 70 0.0	ე•2	0.4	0.9
0.0 TO 2.3	ù. 4	1.3	1.4
2.0 TO 4.0	0.7	14.1	16.9
4.0 TO 6.0	5.8	39.4	24.4
5.0 TO 8.0	0.5	18.9	43.9
``G.CITET 0.P	9.2	22.7	P.CI
10.9 TO 12.5	28.6	1.9). 9
12.0 TC 14.J	24.3	~ ~ 0•3	0.2
14.0 TC 15.0	12.5	0.0	0.1
16.0 TO 13.0	10.7	. 0.0	0.0
19.0 TC 20.0	1.1	0.0	0.0
ENTRIES	4354	4353	4373
		_	

Table 53. Frequency distributions of path loss differences between antennas for L-band

			·- ·- ·-			
	PATH LCS	5	% HIGH	# MID	% LOW .	_
	120 0 TC 1	25.0	12.0	8.9	7.6	
	120.0 TG 13				3•3	-
	125.0 TO 1.		6.4 9.7	4•4 4•9	3.3	
	_130•0, TO 1: _135•0 TO 1		5.6	9.3	6.2	
	140.0 TO 14			6.1	7.5	
	145.0 TO 1		18.8	7.5	5.9	
	150.0 TO 1		23.5	14.4	7.2	
	155.0 TO 1		11.9	22.7	7.7	•
	160.0 TO 1		3.8	16.5	14.4	
	165.0 TO 1		0.1	4.8	21.7	
	170.0 TO 1		0.0	0.7	12.0	
	175.0 TO 1		0.0	0.0	3.2	
	180.0 TO 1		. 0.0	0.0	0.1	
	185.0 TO 1		0.0	0.0	0.0	
	190.0 TO 1		0.0	_0.0	0.0	
	195.0 TO 2		0.0	0.0	0.0	
				0.0	0.0	
	200.0 TO 2			0.0	0.0	
	210.0 TG 2			0.0	0.0	
	215.0 TO 2		0.0	0.0	0.0	••
	215.0 10 2	20.0	0.0	0.0	3.0	
	ENTRIES		4546	4528	4558	
AM 14006101 -0144 MARINER	FADING		% нібн	% MID	% LOW	
	· 0.0 TO	0.5	0.2	0.1	0.2	—
	0.5 TC	1.0	12.7	_ 9•1	5.7	
	1.0 TO	1.5	31.3	22.2	18.4	
	1.5 TO	2.0	16.1	13.4	11.0	
	2.0 TO	2.5	17.5	20.8	17.6	
	2•5 TO .	3.0	12.8	17.1	21.0	
	3.0 TO	3.5	3.7	6.4	7.4	
	3.5 TO	4.0	3.5	5.6	5•0	
	4.0 TO	4.5	1.1	2.6	4.8	
	4.5 TO	5.0	0.2	0.4	1.1	
	5.0 TO	5.5	0.3	0.9	3.4	
	5.5 TO	6.0	0.3	0.6	1.9	
	6.0 TC	6.5	0.2	0.2	0.7	
	6.5 TO	7.0	0.0	0.1	0.2	
	7.0 70	7.5	0-1	9.1	2.3	
	7•5 TO	8.J	0.0	0.1	0.3	. .
	07 0.8	8.5	0.0	0.1	0.1	
	8.5 TO	9•0	0.0	0.1	0.4	
	9.0 TC	9.5	0• 0	0.0	0.1	
	_ 9.5 TD	10.0	0.1	0.1	0.4	
	ENTRIES		4546	4528	4558	
	70010 27			s of path loss	.na -241.na -251	5=02DC
	_aule :4. :	-educate)	· dracyngrion	ra nr harri mag	and "annith TOE !	سامستون ر
	•					

W.

Ş.

	DIFFERENCE	% HIGH-LOW	% HIGH-MID	3 WID-FOM	
	-20.0 TO -13.0	- 0.0	0.0	0.0	
	-18.0 TO -16.0	0.0	0.0	0.0	
	-16.0 TO -14.0	0.1	0.0	0.0	
	-14.0 TO -12.0	0.1	0.1	0.1	
	-12.0 TO -10.0	0.2	0.2		
	-10.0 TO -3.0	0.4	0.2	0.2	
•	-8.0 TO -6.0	0.3	0.5	0.4	
	-6.0 TO -4.0	0.3	0.5	0.7	
	-4.0 TO -2.0	0.7	0.9	0.8	
	-2.0 TO 0.0	1.0	1.3	1.9	
	0.0 TO 2.0	1.7	2.8	4.3	
	2.0 TO 4.0	1.8	7.0	20.0	
	4.0 TO 6.0	2.9	35.6	32.3	
	6.0 TO 8.0	5.9	42.1	9.8	
	8.0 TO 10.0	15.2	6.8	2.0	
	10.0 TO 12.0	26.3	1.1	15.6	
	12.0 TO 14.0	12.2	0.5	11.0	
	14.0 TO 16.0	3.0	0.2	0.5	
	16.0 TO 18.9	15.3	0.1	0.0	
	18.0 TO 20.0		0.1	0.2	
	ENTRIES	4460 <u></u>	4440	4456 <u>_</u>	· · · · · · · · · · · · · · · · · · ·
	ENTRIES	4460	4440	4456 	
	ENTRIES	4460		4456	
	Table 55. Frequen		of path loss di		en
	Table 55. Frequen	cy distributions			en
	Table 55. Frequen	cy distributions			en
	Table 55. Frequen	cy distributions			en
	Table 55. Frequen	cy distributions			en
	Table 55. Frequen	cy distributions			en
	Table 55. Frequen	cy distributions	of path loss di		en
	Table 55. Frequen	cy distributions			en
	Table 55. Frequen	cy distributions	of path loss di		en

% > dB	February	April	August	November	Total
20	0.0	0.5	0.0	2.5	0.8
15	0.2	3.4	0.0	14.7	4.6
10	1.2	13.2	0.6	40.5	13.9
6	7.7	36.5	0.9	65.3	27.2
3	25.1	57.2	3.1	75.3	39.4
0	49.3	72.1	7.0	85.8	52.6
-3	72.5	79.5	10.8	88.6	61.8
- 6	93.9	85.7	19.2	91.7	71.6
-10	98.4	91.1	38.5	95.4	80.0
-15	100.0	96.4	63.9	98.4	89.1
- 20	100.0	98.6	82.9	99.8	95.1
Number of Observations	1202	1058	1278	1249	4787

Table 56. Percentage of time path loss differences between high and low X-band antennas exceed certain dB values

<u>~</u>

ii.

<u>交</u> 二

(2) (3)

XXX

8

1

S S

N.

K

021H L105	3 -10H	GIM 8	s LOV.	
120.0 70 125.0	ŋ . a	€.9	4.9	
125.0 T: 130.0	4.3	4.3	۷ . ۹	
130.0 TO 135.0	9.1	9.0	12.7	-
135.0 TC 140.0	12.1	12.7	11.9	
140.0 TC 145.0	13.3	14.5	9.0	
145.0 TC 150.0	22.3	21.3	13.7	•
150.0 TO 155.0	25.5	16.4	11.3	
150.0 77 150.0	a . 3	9.6	13.1	
160.0 75 165.0	2.5	5.7	5.∪	
165.0 T. 170.0	1.3	3.3	4.5	-
170.0 TO 175.)	0.8	1.1	3.2	
175.) TO 180.0	7.1			
		0.7	1.2	
180.0 TO 185.0	0.0	C • 4	0.4	-
185.0 70 190.0	9.0	0.2	0.3	
190.0 TC 195.0	∩	0.0).1	
195.0 TC 200.0	0.0	0.0	:0.3	
200.0 TO 205.0	0.0	0.0	9.2	
205.0 TC 210.0	0.0	0.0	0.0	
210.0 TF 215.0	6.0	0.0	9.0	
215.0 TO 220.0	0.0	J. U).]	
		0.0	7.	
FMTRIES	4814	4815	4799	•
FADING	ंड भारम	רוא ג	% L 714	
0.0 70 0.5	า ี ดูโล ี้ำ	9.2	5.5	
0.5 TC 1.0	11.3	10.2	ತ•6	
1.0 TC 1.5	11.5	11.9	10.4	-
1.5 TO 2.7	15.0	13.9	14.8	
2.0 TC 2.5	ڌ ه ه	9.2	3.7	
2.5 TO 3.0	10.1	13.9	14.9	
3.0 TC 3.5	6.1	3.4	14.0	
3.5 TJ 4.0	2.3	3.3		
4.0 TB 4.5			3.5	
		5.4	5•2	
4.5 70 5.0	1.2	2.0	3.1	
5.0 TC 5.5	3.3	3.6	3.0	
5.5 TO _6.0	2.1	2.3	1.3	•
5.5 TC 6.5	1.0	1.2	1.0	
1.5 TO 7.)	1.1	2.3	: . 4	
7.3 ** 7.5	2.4	1.2	`• '	
7.5 TG 3.0	1.0	. 0.6	2.8	
8.0 TO 8.5	1.2	1.2	0.6	
3.5 TC 9.7	0.7	0.3	0.1	
9,0 70 9.5	ن. ن. م	0.3	3.1	
9.5 TO 10.3	3.4	1.5	1.6	
	J ⊕ ¬	1.7	1 . ^	
		L •	1	

Table 37. Frequency distributions of path loss and fading for Amband

DIFFERENCE	з нісн-гом	" HIGH-MI"	4 NIO-FOM	
-20.0 TO -13.0	7.2	0.5	9.7	
-15.0 75 -16.0	2.1	0.5	9.9	
-16.0 TO -14.0	2.3	0.7	1.6	
-14.0 TO -12.0	3.6	1.5	2.9	
-12.0 TO -10.0	4.1	2.4	4.2	
-10.0 TO -8.0	4.2	3.1	7. €	
-8.0 TY -5.0	4.0	4.3	5.5	
-6.1 TO -4.1)	5.7	5.2		
-4.9 TO -2.)	6.9	9.5	6.1	
-2.0 TO 0.0	5.9 5.5		11.3 19.7	
-2.0 TO 0.0	7.4	11.4		
	9.2	14.0	13.0	
	8.6	15.)	9.2	
4.0 TO 6.0		13.0	9.0	
6.0 TO 3.9	7.1	8.3	6.0	
8.0 TO 10.0	5.4	5.6	2.3	
10.5 TC 12.0	3.9	1.9	0.7	
12.0 TG 14.0		1.3	0.3	
14.7 TO 16.0		0.5	J.1	
16.0 TO 18.0		0.2	•)•1	
18.0 TO 20.0	1.6	7,2	0.1	
ENTRIES	4737	4803	4794	
DET PANGE	४ सारम	3 MIO	s_Lex	-
0.) TO 10.0	2.0	0.3	9.3	
10.0 TO 20.0	4.6	10.7	15.3	
20.0 70 30.0	34.0	26.2	21.7	
30.0 TO 40.0	19.9	17.4	11.3	
40.0 TO 50.0	6.9	7.5	5.7	
50.0 TO 00.0	2.9	4.5	2.7	
60.0 TO 70.0	2.7	3.2	2.0	
70.0 TO 30.0	2.8	2.9	2.1	
30.0 10 99.0	2.6	2.4	2.7	
90.0 TO 100.0	3.3	2.6	2.7	
100.3 TO 113.9		.3.1	2.4	
110.0 70 122.0	2.7	2.7	2.3	
120.0 77 (30.)	1.9	3.4	3.a	
100.0 Th 1-U.)	1.7	2.5	2.3	
14000 Tol 15000	2.5	1.3	3.2	
150.0 TO 150.0	1.3	1.9	2.8	
100.0 TO 170.0	1.4	1.3	2.2	
170.0 17 130.0	1.5	1.1	2.7	
130.) TO 190.0	1.0	1.1	2.1	
199.) ** 2.6.0	3.9	3.4	11.3	
व्यक्ति । इ	4793	4733	+733	

Table 38. Frequency distributions of path loss difference and tetection range for K-band

	•	-		-	-
	DET PANGE	*> HIGH	4> "[]	3> FOR	
	10.0	100.0	100.0	1 20.0	
•	20.0	95.4	39.1	35.0	
	30.0	61.4	62.9	63.3	
	40.0	41.4	45.5	52.1	
	50.0	34.5	38.0	46.3	
	60.3	31.7	33.5	43.6	
	70.0	29.0	30.3	41.6	
	30.0	26.1	27.4	39.6	
	90.)	23.5	25.0	35 . 9	
	100.0	20.2	22.4	34.1	
	113.3	17.8	19.3	31.7	
	120.0	15.1	15.6	29.4	
	130.0	13.3	13.2	25.5	
	140.7				
		11.6	10.6	24.2	
	150,0	9.2		21.0	
	160.)	7.9	6.9	13.3	
	170.0	5.5	5.7	15.1	
	130.0	4.9	4.5	13.4	
	190.0	5.3	3.4	11.3	
	270.0	-0.0	-0.0	-0•C	
	"ENTRIES	4793	[~] 4783	4733	•
- - 	DET RANGE DIFF -50.0 F0 -45.0 -45.0 F0 -45.0 -40.0 F0 -35.0 -35.1 F0 -30.0 -30.0 F0 -25.0 -25.0 F0 -27.0 -15.0 F0 -10.0 -10.0 F0 -5.0 -5.0 F0 -5.0 0.0 FF 5.0	27.0 1.2 1.4 0.9 1.0 1.1 1.5 2.3 4.6 6.1 16.3	* HIGH-4IJ	22.9 1.4 1.6 1.4 1.7 1.8 1.7 2.8 5.2 13.3 24.2	
	15.0 TF 10.0	11.5	11.6	7.2	
	10.7 TC 15.0 15.2 TC 20.7	5•8 3•3	4.4	2.5 2.2	
	20.0 Tr 25.0	2.2	1.5	1.5	
	25.0 Th 30.0	1.9	1.9	3.8	
	30.3 10 35.0	1.8	2.1) . g	
	35.0 TC 40.0		1.2	0.4	
-	40.0 TO 45.0	·1 • 2 - 1 • 5 -		0.3	-
	45.2 7 50.1	o•3	.6.7	1.2	
	F4*f1:5	4783	4783	4783	

Table 59. Cumulative distribution of detection range and frequency distribution of detection range differences for X-pand

ÜL.

	PATH LOSS	% HIGH	& MID	Z LOW	
• •	• •				
	120.0 TO 125.0	_0•0	0.0	0.0	
	125.0 TO 130.0	0.0	0.0	0.0	
	130.0 TO_135.0_	0.2	0.5	0.9	
	135.0 TO 140.0	0.8	4.9	9.0	
	140.0 TJ 145.0	_ 6.4	15.8	22.8	
	145.0 TÜ 150.0	22.0	25.0	15.3	
	150.0 10 155.0	25.5	15.2	13.0	
	155.J T3 160.U	17.7	7•ذ	13.ó	
	160.0 TO 105.0	12.3	8.9	11.9	
	165.0 TO 170.0	7.9	8.5	6.8	
	170.0 TO 175.0	5•0	4.3	3.3	
•	175.0 TO 180.0	1.3	1.5	1.8	
	180.0 10 165.0	0.6	0.3	1.1	
• •	185.0 TJ 190.0	0.1	0.2	0.6	
	190.0 TD 195.0	0.1	0.0	0.0	
	195.0 TO 200.0	0.0	0.0	0.0	
	200.0 10 205.0	0.0	0.0	0.0	
	205.0 TO 210.0	0.0	0.0	0.0	
	210.0 TO 215.0		0.0	0.0	
	215.0 TO 220.0	G.0	0.0	0.0	
	ENTRIES	1776	1770	1770	
	FADING	% HIGH	% MID	* LOW	
	0.0 TJ 0.5	1.5	1.3	1 - 3	
	0.5 TO 1.0	0.8	0.4	0.2	
	" 1.0 TO 1.5	11.2	0.4	0.2 8.5	
	1.0 TO 1.5 1.5 TO 2.0	11.2	0.4 11.4 3.0	0.2 8.5 3.3	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5	11.2 2.9 0.0	0.4 11.4 3.0 1.3	0.2 8.5 3.3 2.3	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0	11.2 2.9 0.0 25.3	0.4 11.4 3.0 1.3 25.4	0.2 8.5 3.3 2.3 27.2	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5	11.2 2.9 0.0 25.3	0.4 11.4 3.0 1.3 25.4 2.3	0.2 8.5 3.3 2.3 27.2 4.2	
·	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0	11.2 2.9 0.0 25.3 1.0 8.0	0.4 11.4 3.0 1.3 25.4 2.3 7.7	0.2 8.5 3.3 2.3 27.2 4.2 7.9	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5	11.2 2.9 0.0 25.3 1.0 8.0 0.7	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6	
·	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TU 3.5 3.5 TU 4.0 4.0 TO 4.5 4.5 TO 5.0	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6 2.7	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5 2.0	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0 6.4	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0 6.0 TO 6.5 6.5 TJ 7.0	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0 6.4 2.0	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5 2.0 4.5	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8 2.9 1.5	
-	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0 6.0 TO 6.5 6.5 TJ 7.0 7.0 TO 7.5	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0 6.4 2.0 2.5	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5 2.0 4.5	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8 2.9 1.5	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TU 3.5 3.5 TU 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0 6.0 TU 6.5 6.5 TJ 7.0 7.0 TO 7.5 7.5 TU 8.0	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0 6.4 2.0 2.5 1.9	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5 2.0 4.5 1.5	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8 2.9 1.5	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0 6.0 TO 5.5 5.5 TJ 7.0 7.0 TO 7.5 7.5 TU 8.0 8.0 TO 8.5	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0 6.4 2.0 2.5 1.9 3.8	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5 2.0 4.5 1.3 2.5 2.0	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8 2.9 1.5 1.5 3.6	
-	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0 6.0 TO 6.5 6.5 TJ 7.0 7.0 TO 7.5 7.5 TU 8.0 8.0 TO 8.5 8.5 TO 9.0	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0 6.4 2.0 2.5 1.9 3.8 3.9	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5 2.0 4.5 1.3 2.5 2.0 3.7	0.2 8.5 3.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8 2.9 1.5 1.5 3.6	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TU 3.5 3.5 TU 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0 6.0 TO 6.5 6.3 TJ 7.0 7.0 TO 7.5 7.5 TU 8.0 8.0 TO 8.5 8.5 TU 9.0 9.0 TO 9.5	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0 6.4 2.0 2.5 1.9 3.8 3.9	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5 2.0 4.5 1.5 1.5 1.5 2.0 3.7 1.5	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8 2.9 1.5 1.5 3.6 1.2 2.7 1.3	
-	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0 6.0 TO 6.5 6.5 TJ 7.0 7.0 TO 7.5 7.5 TU 8.0 8.0 TO 8.5 8.5 TO 9.0	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0 6.4 2.0 2.5 1.9 3.8 3.9	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5 2.0 4.5 1.3 2.5 2.0 3.7	0.2 8.5 3.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8 2.9 1.5 1.5 3.6	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TU 3.5 3.5 TU 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0 6.0 TO 6.5 6.3 TJ 7.0 7.0 TO 7.5 7.5 TU 8.0 8.0 TO 8.5 8.5 TU 9.0 9.0 TO 9.5	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0 6.4 2.0 2.5 1.9 3.8 3.9	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5 2.0 4.5 1.5 1.5 1.5 2.0 3.7 1.5	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8 2.9 1.5 1.5 3.6 1.2 2.7 1.3	
	1.0 TO 1.5 1.5 TO 2.0 2.0 TO 2.5 2.5 TO 3.0 3.0 TO 3.5 3.5 TO 4.0 4.0 TO 4.5 4.5 TO 5.0 5.0 TO 5.5 5.5 TO 0.0 6.0 TO 6.5 6.3 TJ 7.0 7.0 TO 7.5 7.5 TU 8.0 8.0 TO 8.5 8.5 TO 9.0 9.0 TO 9.5 9.5 TO 10.0	11.2 2.9 0.0 25.3 1.0 8.0 0.7 0.1 3.8 2.0 6.4 2.0 2.5 1.9 3.8 3.9 1.7 20.6	0.4 11.4 3.0 1.3 25.4 2.3 7.7 1.2 0.3 3.5 2.0 4.5 1.5 1.5 2.7 1.70	0.2 8.5 3.3 2.3 27.2 4.2 7.9 2.6 0.6 2.7 1.8 2.9 1.5 1.5 3.6 1.2 2.7 1.3 22.8	

er Te

Season	Calculated Reversals in % (10 < 6 < 30 m)	Measured Reversals in %
Winter	41	51
Spring	36	28
Summer	33	93
Fall	48	14
Year Average	39	47

Table 62. Calculated and measured antenna reversals

E

W.

B

X. APPENDICES

A. Detection Range Calculations

An important consideration in interpreting path loss results is the implied maximum range of detection for some assumed radar and target. technique has been developed that directly relates the measured path loss at 19 nautical miles for all three antenna heights to predicted detection range. The radar that is assumed is one which can just detect the target at 200 nautical miles in free space. All detection range results presented here are for this same radar and target combination. shows the theoretical dependence of path loss on range for all three antenna heights at 9.6 GHz for a variety of duct heights. These calculations are the results of a full wave computer solution using realistic log-linear distributions of refractive index in the boundary layer. The free space path loss at 200 nautical miles at 9.6 GHz is 163.5 dB and is indicated in Figure A 1 as a threshold. Any case for which the path loss is less than this threshold is defined as being detectable and any case for which the path loss is greater than this threshold is defined as being undetectable. Thus the maximum range of detection for any of the sample duct heights shown in Figure A 1 is the range at which the path loss first exceeds the 200 nautical mile free space threshold. From the curves in Figure A 1 it is therefore possible to relate certain discrete path loss values at 19 nautical miles to detection range. Figure A 2 shows a tabulation and a plot of these path loss values versus the corresponding detection range for each duct height and antenna height of Figure A 1. The solid curve in Figure A 2 is an empirical fit given by the relation

$$R = 6 - 338/(136-L)$$
 $L \ge 142$ (1)

$$R = 1397 - 9.4L$$
 $L < 142$ (2)

where R is detection range in nautical miles and L is path loss in dB. This fit is considered to be conservative since it will normally underestimate the detection range for low path loss values as shown in the table. It will also normally underestimate the detection range for higher path loss values which are due to higher order modal interference as exemplified by the one point for the high antenna which does not fit the curve. It is interesting to note that equations (1) and (2) are independent of antenna height thus making the computation of detection range quite simple. The frequency distributions of detection range shown in this report were prepared by simply calculating the detection range using the above equations on a measurement by measurement basis for all three antenna heights and then distributing them for each measurement period. This procedure has only been carried out for the X-band measurements because of the higher sensitivity of X-band to the evaporation duct but could easily be extended to the other frequencies as well.

Figure A 1. Calculated path loss mercus range for the three antenna heights

双

8

	High Antenna		Mid Ani	tenna	Low Antenna	
Duct Height (Feet)	Path Loss (dB)	Det. Range (Nau. mi.)	Path Loss	Det. Range	Path Loss	Det. Range
0	173	16	184	14	192	12
9.4	163	19	170	16	176	14
18.9	156	23	158	22	161	21
28.4	147	35	145	37	149	34
37.9	140	87	138	97	138	97
47.3	142	200+	134	290 +	132	20 0+
76.→	158	39	14 i	200+	129	200 +

Figure A 2. Path loss at 19 nautical miles versus detection range

B. Radiosonde Profiles

Radiosonde profiles were obtained using 403 MHz transmitters and Beukers receivers. They were optically tracked for wind information. The individual profiles with the launch time in GMT are listed in the following presentation which is self explanatory. Some of the profiles for the ?

November 1972, 0751 Z launch are shown twice. In the second presentation the original chart recorder trace was read in very small increments and with maximum resolution. This was done in order to show that small fluctuations ignored in the first presentation did not represent significant refractive changes.

M.

EZ EZ

N.

四 震

SX

N.E

₹

NA NA

hz.

200

200

8

X

W

FY IS

No.

7000

13) -

XI. ACKNOWLEDGEMENT

The measurement program and the data analysis in this report involved many people. The conscientious effort and enthusiasm of the following people were essential for the successful outcome of the project: K. D. Anderson, L. J. Goodson, W. K. Horner, Dr. D. R. Jensen, M. L. Phares, and J. F. Theisen.

The measurements were conducted with the assistance of University of Athens personnel. We thank Professor Anastassiadis for his support and C. Dragatsis, D. Mavrakis, and S. Prionas for their help during the program.

Also gratefully acknowledged is the assistance and support of the Naval Communication Station in Greece. Captain Brabant took a personal interest in our program and gave us assistance through the entire measurement period. Final thanks go to the 7206th Support Group USAFE in Athens who provided disbursing support and use of their facilities.