

FAST CMOS BUFFER CLOCK/DRIVER

IDT49FCT805/A

FEATURES:

- 0.5 MICRON CMOS Technology
- Guaranteed low skew < 700ps (max.)
- Low duty cycle distortion < 1ns (max.)
- Low CMOS power levels
- TTL compatible inputs and outputs
- Rail-to-rail output voltage swing
- High drive: -24mA IOH, +64mA IOL
- Two independent output banks with 3-state control
- 1:5 fanout per bank
- "Heartbeat" monitor output
- Available in SOIC and SSOP packages

DESCRIPTION:

The 49FCT805 is a non-inverting buffer/clock driver built using advanced dual metal CMOS technology. Each bank consists of two banks of drivers. Each bank drives five output buffers from a standard TTL compatible input. These devices feature a "heart-beat" monitor for diagnostics and PLL driving. The MON output is identical to all other outputs and complies with the output specifications in this document.

The 49FCT805 offers low capacitance inputs and hysteresis. Rail-to-rail output swing improves noise margin and allows easy interface with CMOS inputs.

FUNCTIONAL BLOCK DIAGRAM

COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

JANUARY 2001

PIN CONFIGURATION

SOIC/ SSOP TOP VIEW

NOTE:

1. Pin 8 is not internally connected on devices with a "K" prefix in the date code. On older devices, pin 8 is internally connected to GND. To insure compatibility with all products, pin 8 should be connected to GND at the board level.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
Іоит	DC Output Current	-60 to +120	mA

NOTE:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Input and Vcc terminals.
- 3. Output and I/O terminals.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF

NOTE

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
$\overline{OE}_A, \overline{OE}_B$	3-State Output Enable Inputs (Active LOW)
INA, INB	Clock Inputs
OAn, OBn	Clock Outputs
MON	Monitor Output

FUNCTION TABLE(1)

In	puts	Outputs			
ŌΕa, ŌΕβ	INA, INB	OAn, OBn	MON		
L	L	L	L		
L	Н	Н	Н		
Н	L	Z	L		
Н	Н	Z	Н		

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: VLC = 0.2V; VHC = VCC - 0.2V

Commercial: TA = 0° C to +70°C, Industrial: TA = -40°C to +85°C, Vcc = $5.0V \pm 5\%$

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Le	Guaranteed Logic HIGH Level		_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW Le	vel	_	_	0.8	V
lih	Input HIGH Current	Vcc = Max.	VI = VCC	_	_	±1	μA
lıL	Input LOW Current	Vcc = Max.	VI = GND	_	_	±1	μA
lozн	Off State (HIGH Z) Output Current	Vcc = Max.	Vo = Vcc	_	_	±1	μA
lozL			Vo = GNS	_	_	±1	
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18mA	Vcc = Min., lin = -18mA		-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max. ⁽³⁾ , Vo = GND	Vcc = Max. ⁽³⁾ , Vo = GND		-120	_	mA
Vон	Output HIGH Voltage	Vcc = 3V, Vin = VLc or VHC	VCC = 3V, VIN = VLC or VHC, IOH = -32µA		Vcc	_	V
		Vcc = Min.	Ioh = -300µ A	VHC	Vcc	_	
		VIN = VIH or VIL	IOH = -15mA	3.6	4.3	_	
			IOH = -24mA	2.4	3.8	_	
Vol	Output LOW Voltage	Vcc = 3V, Vin = Vlc or VHc, lol = 300µA		_	GND	V LC	V
		Vcc = Min.	IoL = 300mA	_	GND	V LC	
		VIN = VIH or VIL	IOL = 64mA	_	0.3	0.55	
VH	Input Hysteresis for all inputs	_			200	_	mV
Icc	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc			5	500	μA

NOTES:

- 1. For conditions shown as max. or min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Cor	nditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	$VCC = Max.$ $VIN = 3.4V^{(3)}$		_	1	2.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	$V_{CC} = Max.$ Outputs Open $\overline{OE}_A = \overline{OE}_B = GND$ 50% Duty Cycle	VIN = VCC VIN = GND	_	0.15	0.2	mA/ MHz/bit
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fo = 10MHz	VIN = VCC VIN = GND	_	1.5	2.5	mA
		50% Duty Cycle $\overline{OE}_A = \overline{OE}_B = Vcc$ Mon. Output Toggling	V _{IN} = 3.4V V _{IN} = GND	_	2	3.8	
		Vcc = Max. Outputs Open fo = 2.5MHz	VIN = VCC VIN = GND	_	4.1	6 ⁽⁵⁾	-
		50% Duty Cycle $\overline{OE}_A = \overline{OE}_B = GND$ Eleven Outputs Toggling	VIN = 3.4V VIN = GND	_	5.1	8.5 ⁽⁵⁾	

NOTES:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $Ic = Icc + \Delta Icc DhNT + Icco (foNo)$
 - Icc = Quiescent Current (IccL, IccH, and Iccz)
 - Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)
 - DH = Duty Cycle for TTL Inputs High
 - N⊤ = Number of TTL Inputs at DH
 - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - fo = Output Frequency
 - No = Number of Outputs at fo
 - All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (1)

			FCT	805	FCT	305A	
Symbol	Parameter	Condition ⁽²⁾	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay	CL = 50pF	1.5	5.6	1.5	5.3	ns
tphl	INA to OAn, INB to OBn	$RL = 500\Omega$					
tr	Output Rise Time		_	1.5	_	1.5	ns
tF	Output Fall Time		_	1.5	_	1.5	ns
tsk(o)	Output skew: skew between outputs of all banks of same package (inputs tied together)		_	0.7	_	0.7	ns
tsk(p)	Pulse skew: skew between opposite transitions of same output (tphl-tph)		_	1	_	1	ns
tsк(pp)	Part-to-part skew: skew between outputs of different packages at same power supply voltage, temperature, package type and speed grade		_	1.5	_	1.5	ns
tpzl tpzh	Output Enable Time OEA to OAn, OEB to OBn		1.5	8	1.5	8	ns
tPLZ tPHZ	Output Disable Time OEA to OAn, OEB to OBn		1.5	7	1.5	7	ns

NOTES:

^{1.} Propagation delay range indicated by Min. and Max. limit is due to Vcc, operating temperature, and process parameters. These propagation delay limits do not imply skew.

^{2.} See Test Circuits and Waveforms.

TEST CIRCUITS AND WAVEFORMS

TEST CIRCUITS FOR ALL OUTPUTS

PACKAGE DELAY

PULSE SKEW - tsk(p)

ENABLE AND DISABLE TIMES

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns

ENABLE AND DISABLE TIMES SWITCH POSITION

TEST	SWITCH
Disable LOW Enable LOW	Closed
Disable HIGH Enable HIGH	Open

DEFINITIONS:

- CL = Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

OUTPUT SKEW

PART-TO-PART SKEW - tsk(pp)

NOTE:

1. Package 1 and Package 2 are same device type and speed grade.

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054

for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*