Les réactions d'oxydoréduction

I. Définitions :

- Une réaction d'oxydoréduction est une réaction au cours de laquelle il y a échange d'électrons. entre le réducteur d'un couple et l'oxydant d'un second couple.
- Au cours de la réaction, le réducteur d'un des couples mis en jeu perd des électrons, alors que l'oxydant de l'autre couple gagne des électrons.
- La réduction est la demi équation relative à un couple : elle correspond à un gain d'électrons.
 L'oxydation est la demi équation relative à l'autre couple : elle correspond à une perte d'électrons.
- Si la réaction $Ox_1 + Red_2 \longrightarrow Red_1 + Ox_2$ est spontanée, la réaction $Ox_2 + Red_1 \longrightarrow Red_2 + Ox_1$ ne l'est pas.

II. Couples rédox :

1. Couple rédox :

Lorsqu'il gagne un électron, un oxydant se transforme en son réducteur conjugué. L'oxydant et le réducteur forment un couple rédox dont la représentation est Ox / Red.

On associe à ce couple la demi-équation : $Ox + ne^- = Red$

2. Couples à connaître :

Cu ²⁺ /Cu	Zn ²⁺ /Zn		I_2/I^-
Fe ²⁺ /Fe	Fe ³⁺ /Fe ²⁺	2	Cl ₂ /Cl ⁻
Al ³⁺ /Al	NO_3^-/NO_2	SO ₄ ²⁻ /SO ₂	$\mathrm{H}^+\!/\mathrm{H}_2$
Pb ²⁺ /Pb	2.	$S_4O_6^{2-}/S_2O_3^{2-}$	H_2O_2/H_2O
Mg^{2+}/Mg	MnO_4^{-7}/Mn^{2+}		O_2/H_2O
Ag^+/Ag	$Cr_2O_7^{2-}/Cr^{3+}$		

- 3. Méthode : établir la demi-équation relative à un couple rédox
 - Equilibrer les éléments autre que O et H
 - Equilibrer l'élément O en ajoutant le nombre de molécules H₂O nécessaires
 - Equilibrer l'élément H en ajoutant le nombre nécessaire de H⁺
 - Ajouter le nombre d'électrons nécessaires pour avoir le même nombre de charges de chaque côté

4. Applications

$$Cu^{2+}/Cu$$
 $Cu^{2+}_{(aq)} + 2e^{-} = Cu_{(s)}$
 Fe^{2+}/Fe $Fe^{2+}_{(aq)} + 2e^{-} = Fe_{(s)}$
 Al^{3+}/Al $Al^{3+}_{(aq)} + 3e^{-} = Al_{(s)}$
 Pb^{2+}/Pb $Pb^{2+}_{(aq)} + 2e^{-} = Pb_{(s)}$

$$\begin{array}{llll} Mg^{2+}/Mg & Mg^{2+}_{\quad (aq)} + 2e^- = Mg_{(s)} \\ Ag^+/Ag & Ag^+_{\quad (aq)} + e^- = Ag_{(s)} \\ Zn^{2+}/Zn & Zn^{2+}_{\quad (aq)} + 2e^- = Zn_{(s)} \\ Fe^{3+}/Fe^{2+} & Fe^{3+}_{\quad (aq)} + e^- = Fe^{2+}_{\quad (aq)} \\ NO_3^-/NO_2 & NO_3^-_{\quad (aq)} + 2H^+_{\quad (aq)} + e^- = NO_{2(g)} + H_2O_{(l)} \\ MnO_4^-/Mn^{2+} & MnO_4^-_{\quad (aq)} + 8H^+_{\quad (aq)} + 5e^- = Mn^{2+}_{\quad (aq)} + 4H_2O_{(l)} \\ Cr_2O_7^{2-}/Cr^{3+} & Cr_2O_7^{2-}_{\quad (aq)} + 14H^+_{\quad (aq)} + 6e^- = 2Cr^{3+}_{\quad (aq)} + 7H_2O_{(l)} \\ SO_4^{2-}/SO_2 & SO_4^{2-}_{\quad (aq)} + 4H^+_{\quad (aq)} + 2e^- = SO_{2-(g)} + 2H_2O_{(l)} \\ S_4O_6^{2-}/S_2O_3^{2-} & S_4O_6^{2-}_{\quad (aq)} + 2e^- = 2S_2O_3^{2-}_{\quad (aq)} \\ I_2/I & I_{2(aq)} + 2e^- = 2I^-_{\quad (aq)} \\ Cl_2/CI & Cl_{2(g)} + 2e^- = 2Cl^-_{\quad (aq)} \\ H^+/H_2 & 2H^+_{\quad (aq)} + 2e^- = H_{2(g)} \\ H_2O_2/H_2O & H_2O_{2-(aq)} + 2H^+_{\quad (aq)} + 2e^- = 2H_2O_{(l)} \\ O_2/H_2O & O_{2-(g)} + 4H^+_{\quad (aq)} + 4e^- = 2H_2O_{(l)} \end{array}$$

III. <u>Les couples de l'eau :</u>

1. L'eau en tant qu'oxydant : couple H₂O/H₂

- en milieu neutre ou basique : couple H_2O/H_2 : $2 H_2O + 2 e^- = H_2 + 2 OH^-$

- en milieu acide : équivalent au couple H^+/H_2 : $2 H^+ + 2 e^- = H_2$

2. L'eau en tant que réducteur : couple O₂/H₂O

- en milieu acide : couple O_2/H_2O : $O_2 + 4 H^+ + 4 e^- = H_2O$

- en milieu neutre ou basique : couple équivalent : O_2/OH^- : $O_2 + 2 H_2O + 4 e^- = 4 OH^-$

IV. Exercices:

1. Réaction du fer sur l'eau iodée :

L'eau iodée est une solution de diiode dans l'eau : elle est colorée en jaune brun. Si l'on introduit de la limaille de fer dans un tube à essais contenant de l'eau iodée, on observe après agitation la décoloration de la solution.

Donner les couples mis en jeu dans ces réactions. En déduire l'équation de la réaction.

2. Test de mise en évidence du dioxyde de soufre :

Pour s'assurer que le dioxyde de soufre s'est formé, on le met en présence d'une bande de papier-filtre imbibé d'une solution acide de permanganate de potassium. Justifier ce mode opératoire en expliquant quelle réaction a lieu.

3. Stabilité de l'eau de chlore :

L'eau de chlore est une solution de dichlore dans l'eau. Cette solution n'est pas stable car le dichlore réagit très lentement avec l'eau. Etablir l'équation de la réaction qui a lieu en faisant intervenir les couples rédox appropriés.

Soit une eau de chlore de concentration initialement 0,1mol/L de dichlore. Quelle sera la composition de la solution en ions Cl⁻ au bout d'un temps très long ?

4. Pluies acides:

De nombreux combustibles utilisés dans l'industrie contiennent des produits soufrés. Lors de leur combustion, l'élément soufre se retrouve se retrouve sous forme de dioxyde de soufre ; il est alors rejeté avec les fumées et peut se dissoudre dans les gouttelettes d'eau en suspension dans l'air. SO₂ n'est pas stable dans l'atmosphère. Ecrire l'équation de la réaction qui a lieu. Quel est le produit formé ?

5. Epuration des rejets industriels :

Ecrire l'équation de la réaction qui a lieu entre les ions dichromate $Cr_2O_7^{2-}$ et le dioxyde de soufre SO_2 . Une usine produit $100m^3$ par jour d'eaux résiduelles contenant 52mg/L d'élément chrome sous forme d'ions dichromate. Quelle masse de dioxyde de soufre faut-il injecter pour réduire la totalité des ions dichromate contenus dans ces eaux ?

Les ions chrome sont éliminés de la solution par précipitation de l'hydroxyde correspondant. Quelle est la masse de chaux (hydroxyde de calcium) journellement nécessaire à cette précipitation.