$$\chi_{b1}(2P)$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Observed in radiative decay of the $\Upsilon(3S)$, therefore C=+. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P=+.

$\chi_{b1}(2P)$ MASS

VALUE (MeV) DOCUMENT ID

10255.46 \pm 0.22 \pm 0.50 OUR EVALUATION From γ energy below, using $\Upsilon(3S)$ mass = 10355.2 \pm 0.5 MeV

$m_{\chi_{b1}(2P)} - m_{\chi_{b0}(2P)}$

VALUE (MeV)DOCUMENT IDTECNCOMMENT23.5 \pm 0.7 \pm 0.71 HEINTZ92 CSB2 $e^+e^- \rightarrow \gamma X, \ell^+\ell^-\gamma\gamma$

¹ From the average photon energy for inclusive and exclusive events. Supersedes NARAIN 91.

γ ENERGY IN $\Upsilon(3S)$ DECAY

VALUE (MeV) TECN COMMENT **EVTS** 99.26±0.22 OUR EVALUATION Treating systematic errors as correlated **99.53±0.23 OUR AVERAGE** Error includes scale factor of 1.3. See the ideogram below. $99.15 \pm 0.07 \pm 0.25$ **ARTUSO** 05 CLEO $\Upsilon(3S) \rightarrow \gamma X$ 92B CLE2 $e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$ **CRAWFORD** 99 ± 1 169 ² HEINTZ 92 CSB2 $e^+e^- \rightarrow \gamma X$ 100.1 ± 0.4 11147 ³ HEINTZ 92 CSB2 100.2 ± 0.5 223 $99.5 \pm 0.1 \pm 0.5$ 25759 **MORRISON** 91 CLE2 $e^+e^- \rightarrow \gamma X$

WEIGHTED AVERAGE 99.53±0.23 (Error scaled by 1.3)

 γ energy in $\Upsilon(3S)$ decay (MeV)

HTTP://PDG.LBL.GOV

Page 1

$\chi_{b1}(2P)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	$\omega \Upsilon(1S)$	$(1.63^{+0.40}_{-0.34})\%$
Γ_2	$\gamma \ \varUpsilon(2S)$	$(18.1 \pm 1.9)\%$
_	$\gamma \Upsilon(1S)$	(9.9 ±1.0) %
-	$\pi\pi\chi_{b1}(1P)$	$(9.1 \pm 1.3) \times 10^{-3}$
Γ_5	$D^0 X$	(8.8 ± 1.7) %
	$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.1 \pm 1.0) \times 10^{-4}$
Γ ₇	$2\pi^+\pi^-$ K $^-$ K 0_S	$(1.1 \pm 0.5) \times 10^{-4}$
Γ ₈	$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(7.7 \pm 3.2) \times 10^{-4}$
	$2\pi^{+}2\pi^{-}2\pi^{0}$	$(5.9 \pm 2.0) \times 10^{-4}$
. 10	$2\pi^{+}2\pi^{-}$ K^{+} K^{-}	$(10 \pm 4) \times 10^{-5}$
	$2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0}$	$(5.5 \pm 1.8) \times 10^{-4}$
12	$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	$(10 \pm 4) \times 10^{-4}$
Γ_{13}	$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$(6.7 \pm 2.6) \times 10^{-4}$
Γ_{14}	$3\pi^{+}3\pi^{-}$	$(1.2 \pm 0.4) \times 10^{-4}$
Γ_{15}	$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.2 \pm 0.4) \times 10^{-3}$
Γ_{16}	$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.0 \pm 0.8) \times 10^{-4}$
	$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(6.1 \pm 2.2) \times 10^{-4}$
Γ_{18}	$4\pi^{+}4\pi^{-}$	$(1.7 \pm 0.6) \times 10^{-4}$
Γ ₁₉	$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.9 \pm 0.7) \times 10^{-3}$

$\chi_{b1}(2P)$ BRANCHING RATIOS

$\Gamma(\omega \Upsilon(1S))/\Gamma_{total}$						Γ_1/Γ
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.63^{igoplus 0.35}_{-0.31} {}^{+0.16}_{-0.15}$	32.6 +	6.9 ⁴ CRONIN-HEN 6.1	04	CLE3	$\Upsilon(3S) ightarrow$	$\gamma \omega \Upsilon (1S)$
4 Using B($\varUpsilon(3S) ightarrow$ B($\varUpsilon(1S) ightarrow \mu^+ \mu^-$	~ -		.6)%	and B($\Upsilon(1S) \rightarrow$	$\ell^+\ell^-) = 2$
$\Gamma(\gamma \Upsilon(2S))/\Gamma_{total}$						Γ_2/Γ
' (/ ' (~) / / ' total						• 2/ •
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	. 2/ -
				<u>TECN</u>	COMMENT	- 2/-
VALUE		5,6,7 LEES	14M		$rac{ extit{COMMENT}}{ au(3S)} ightarrow$	
<u>VALUE</u> 0.181±0.019 OUR AVE			14M 11J			$\gamma\gamma\mu^+\mu^-$
0.181±0.019 OUR AVE 0.211±0.017±0.019	RAGE	5,6,7 LEES		BABR	$\Upsilon(3S) \rightarrow$	$\gamma\gamma\mu^+\mu^ X\gamma$

I

 $^{^2\}text{A}$ systematic uncertainty on the energy scale of 0.9% not included. Supersedes

NARAIN 91. ³A systematic uncertainty on the energy scale of 0.9% not included. Supersedes HEINTZ 91.

- ⁵ Assuming B($\Upsilon(2S) \rightarrow \mu^{+} \mu^{-}$) = (1.93 ± 0.17)%.
- ⁶ LEES 14M quotes $\Gamma(\chi_{b1}(2P) \to \gamma \Upsilon(2S))/\Gamma_{total} \times \Gamma(\Upsilon(3S) \to \gamma \chi_{b1}(2P))/\Gamma_{total} = (2.66 \pm 0.22)\%$ combining the results from $\Upsilon(3S) \to \gamma \gamma \mu^+ \mu^-$ samples with and without photon conversions.
- ⁷ LEES 14M reports $[\Gamma(\chi_{b1}(2P) \to \gamma \Upsilon(2S))/\Gamma_{total}] \times [B(\Upsilon(3S) \to \gamma \chi_{b1}(2P))] = (2.66 \pm 0.22) \times 10^{-2}$ which we divide by our best value $B(\Upsilon(3S) \to \gamma \chi_{b1}(2P)) = (12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁸ LEES 11J reports $[\Gamma(\chi_{b1}(2P) \to \gamma \Upsilon(2S))/\Gamma_{total}] \times [B(\Upsilon(3S) \to \gamma \chi_{b1}(2P))] = (2.4 \pm 0.1 \pm 0.2) \times 10^{-2}$ which we divide by our best value $B(\Upsilon(3S) \to \gamma \chi_{b1}(2P)) = (12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁹ CRAWFORD 92B quotes B($\Upsilon(3S) \to \gamma \chi_{b1}(2P)$) ×B($\chi_{b1}(2P) \to \gamma \Upsilon(2S)$) × 2 B($\Upsilon(2S) \to \ell^+ \ell^-$) = (10.23 ± 1.20 ± 1.26) 10⁻⁴.
- ¹⁰ Recalculated by us. HEINTZ 92 quotes B($\Upsilon(3S) \to \gamma \chi_{b1}(2P)$) ×B($\chi_{b1}(2P) \to \gamma \Upsilon(2S)$) = (2.29 ± 0.23 ± 0.21) % using B($\Upsilon(2S) \to \mu^+ \mu^-$) = (1.44 ± 0.10)%. Supersedes HEINTZ 91.

TECN COMMENT

$\Gamma(\gamma \Upsilon(1S))/\Gamma_{\mathsf{total}}$

 Γ_3/Γ

0.099±0.010 OUR AVERAGE							
$0.107\!\pm\!0.006\!\pm\!0.010$	11,12,13 LEES	14M BABR	$\Upsilon(3S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}$				
$0.098 \pm 0.005 \pm 0.009$	15k ¹⁴ LEES	11J BABR	$\Upsilon(3S) \rightarrow X \gamma$				
$0.103\!\pm\!0.023\!\pm\!0.009$	^{11,15} CRAWFORD	92B CLE2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$				
$0.075 \pm 0.010 \pm 0.007$	$^{11,16}HEINTZ$	92 CSB2	$e^+e^- \rightarrow \ell^+\ell^-\gamma\gamma$				

- ¹¹ Assuming B($\Upsilon(1S) \rightarrow \mu^+ \mu^-$) = (2.48 ± 0.05)%.
- ¹² LEES 14M quotes $\Gamma(\chi_{b1}(2P) \to \gamma \Upsilon(1S))/\Gamma_{total} \times \Gamma(\Upsilon(3S) \to \gamma \chi_{b1}(2P))/\Gamma_{total} = (13.48 \pm 0.72) \times 10^{-3}$ combining the results from samples of $\Upsilon(3S) \to \gamma \gamma \mu^+ \mu^-$ with and without converted photons.
- ¹³ LEES 14M reports $[\Gamma(\chi_{b1}(2P) \to \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(3S) \to \gamma \chi_{b1}(2P))] = (13.48 \pm 0.72) \times 10^{-3}$ which we divide by our best value $B(\Upsilon(3S) \to \gamma \chi_{b1}(2P)) = (12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹⁴ LEES 11J reports $[\Gamma(\chi_{b1}(2P) \to \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(3S) \to \gamma \chi_{b1}(2P))] = (12.4 \pm 0.3 \pm 0.6) \times 10^{-3}$ which we divide by our best value $B(\Upsilon(3S) \to \gamma \chi_{b1}(2P)) = (12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ¹⁵ CRAWFORD 92B quotes B($\Upsilon(3S) \to \gamma \chi_{b1}(2P)$) ×B($\chi_{b1}(2P) \to \gamma \Upsilon(1S)$) × 2 B($\Upsilon(1S) \to \ell^+ \ell^-$) = (6.47 ± 1.12 ± 0.82) 10⁻⁴.
- ¹⁶ Recalculated by us. HEINTZ 92 quotes B($\Upsilon(3S) \rightarrow \gamma \chi_{b1}(2P)$) \times B($\chi_{b1}(2P) \rightarrow \gamma \Upsilon(1S)$) = (0.91 \pm 0.11 \pm 0.06)% using B($\Upsilon(1S) \rightarrow \mu^+\mu^-$) = (2.57 \pm 0.05)%. Supersedes HEINTZ 91.

$\Gamma(\pi\pi\chi_{b1}(1P))/\Gamma_{total}$

 Γ_4/Γ

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
9.1±1.3 OUR AVERAG	E				
$9.2\!\pm\!1.1\!\pm\!0.8$	31k	¹⁷ LEES	_		$e^+e^- \rightarrow \pi^+\pi^- X$
$8.6 \pm 2.3 \pm 2.1$		¹⁸ CAWLFIELD	06	CLE3	$\Upsilon(3S) \rightarrow 2(\gamma \pi \ell)$

¹⁷LEES 11C measures B($\Upsilon(3S) \rightarrow \chi_{b1}(2P)X$) \times B($\chi_{b1}(2P) \rightarrow \chi_{b1}(1P)\pi^+\pi^-$) = $(1.16 \pm 0.07 \pm 0.12) \times 10^{-3}$. We derive the value assuming B($\Upsilon(3S) \rightarrow \chi_{b1}(2P)X$) = B($\Upsilon(3S) \to \chi_{b1}(2P)\gamma$) = $(12.6 \pm 1.2) \times 10^{-2}$.

 18 CAWLFIELD 06 quote $\Gamma(\chi_b(2P) \rightarrow \pi\pi\chi_b(1P)) = 0.83 \pm 0.22 \pm 0.08 \pm 0.19$ keV assuming I-spin conservation, no D-wave contribution, $\Gamma(\chi_{h1}(2P))=96\pm16$ keV, and $\Gamma(\chi_{h2}(2P)) = 138 \pm 19 \text{ keV}.$

 $\Gamma(D^0X)/\Gamma_{\text{total}}$

 Γ_5/Γ

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
8.8±1.5±0.8	2243	19 BRIERE	80	CLEO	$ \gamma(3S) \rightarrow \gamma D^0 X $
¹⁹ For $p_{D0} > 2.5$ GeV	V/c.				

$\Gamma(\pi^+\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

 Γ_6/Γ

 $rac{ extit{DOCUMENT ID}}{ ext{20}}$ $rac{ extit{TECN}}{ ext{ASNER}}$ $rac{ extit{CDNMENT}}{ ext{CLEO}}$ $rac{ extit{COMMENT}}{ extit{T(3S)}}
ightarrow \gamma \pi^+ \pi^- K^+ K^- \pi^0$ $3.1\pm1.0\pm0.3$ ²⁰ ASNER 08A reports $[\Gamma(\chi_{b1}(2P) \rightarrow \pi^+\pi^-K^+K^-\pi^0)/\Gamma_{\rm total}] \times [B(\Upsilon(3S) \rightarrow \pi^+\pi^-K^-\pi^0)/\Gamma_{\rm total}] \times [B(\Upsilon(3S) \rightarrow \pi^-\pi^0)/\Gamma_{\rm total}] \times [B(\Upsilon(3S) \rightarrow \pi^$ $\gamma \chi_{b1}(2P))] = (39 \pm 8 \pm 9) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow$ $\gamma\chi_{b1}(2P))=(12.6\pm1.2)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+\pi^-K^-K^0_S)/\Gamma_{\text{total}}$

VALUE (units 10⁻⁴) EVTS $1.1\pm0.5\pm0.1$

 $\gamma \chi_{h1}(2P))] = (14 \pm 5 \pm 3) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow$ $\gamma \chi_{h1}(2P) = (12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+\pi^-K^-K^0_S2\pi^0)/\Gamma_{\text{total}}$

 Γ_{R}/Γ

DOCUMENT ID TECN COMMENT 22 ASNER 08A CLEO 7 35 3 3 22 4 5 VALUE (units 10^{-4}) EVTS $^{22}\,{\rm ASNER}$ 08A reports $[\Gamma(\chi_{b1}(2P)\ \rightarrow\ 2\pi^{+}\,\pi^{-}\,{\it K}^{-}\,{\it K}^{0}_{S}\,2\pi^{0})/\Gamma_{\rm total}]\ \times\ [{\rm B}(\varUpsilon(3S)\ \rightarrow\ T^{-}\,{\it K}^{-}\,{\it K}^{0}_{S}\,2\pi^{0})/\Gamma_{\rm total}]$ $\gamma \chi_{h1}(2P))] = (97 \pm 30 \pm 26) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow$ $\gamma\chi_{b1}(2P))=(12.6\pm1.2)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-2\pi^0)/\Gamma_{\text{total}}$

Created: 5/30/2017 17:21

 $\frac{DOCUMENT\ ID}{23\ ASNER} \qquad 08A \qquad CLEO \qquad \frac{COMMENT}{\Upsilon(3S)} \rightarrow \gamma 2\pi^{+} 2\pi^{-} 2\pi^{0} \qquad (2.8)$ VALUE (units 10^{-4}) _____ EVTS5.9±2.0±0.5

²³ ASNER 08A reports $[\Gamma(\chi_{b1}(2P) \rightarrow 2\pi^+ 2\pi^- 2\pi^0)/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \gamma \chi_{b1}(2P))] = (74 \pm 16 \pm 19) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \rightarrow \gamma \chi_{b1}(2P))$ $= (12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-K^+K^-)/\Gamma_{\text{total}}$

 Γ_{10}/Γ

 $\frac{DOCUMENT\ ID}{24\ \mathsf{ASNER}}$ 08A $\frac{TECN}{\mathsf{CLEO}}$ $\frac{COMMENT}{\varUpsilon(3S)} o \gamma 2\pi^+ 2\pi^- \kappa^+ \kappa^-$ VALUE (units 10^{-4}) EVTS $1.0\pm0.4\pm0.1$ ²⁴ ASNER 08A reports $[\Gamma(\chi_{b1}(2P) \rightarrow 2\pi^{+}2\pi^{-}K^{+}K^{-})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^{+}2\pi^{-}K^{-})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^{+}2\pi^{-}K^{-})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^{+}2\pi^{-}K^{-})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^{-}K^{+}K^{-})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^{+}2\pi^{-}K^{-}K^{-})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^{-}K^{-}K^{-}K^{-})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^{-}K^{-}K^{-}K^{-}K^{-})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^{-}K$ $\gamma\chi_{b1}(2P))]=(12\pm4\pm3)\times10^{-6}$ which we divide by our best value B($\Upsilon(3S)\to$ $\gamma \chi_{b1}(2P)) = (12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

5.5±1.7±0.5 38 25 ASNER 08A CLEO 7 (3S) $\rightarrow \gamma 2\pi^{+} 2\pi^{-} K^{+} K^{-} \pi^{0}$ ²⁵ ASNER 08A reports $[\Gamma(\chi_{b1}(2P) \rightarrow 2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow 2\pi^{+}2\pi^{-}K^{+}K^{-}\pi^{0})]$ $\gamma \chi_{h1}(2P))] = (69 \pm 13 \pm 17) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow$ $\gamma \chi_{b1}(2P))=(12.6\pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(2\pi^+2\pi^-K^+K^-2\pi^0)/\Gamma_{\text{total}}$

 $\frac{VALUE \text{ (units }10^{-4})}{9.6\pm3.5\pm0.9} \quad \frac{EVTS}{27} \quad \frac{DOCUMENT \text{ ID}}{26} \quad \frac{TECN}{08A} \quad \frac{COMMENT}{(3S)} \rightarrow \gamma 2\pi^{+} 2\pi^{-} K^{+} K^{-} 2\pi^{0}$ $^{26}\, {\rm ASNER}$ 08A reports $[\Gamma(\chi_{b1}(2P) \rightarrow ~2\pi^+\, 2\pi^-\, K^+\, K^-\, 2\pi^0)/\Gamma_{\rm total}]\, \times\, [{\rm B}(\varUpsilon(3S) \rightarrow ~2\pi^+\, 2\pi^-\, K^+\, K^-\, 2\pi^0)/\Gamma_{\rm total}]$ $\gamma \chi_{h1}(2P))] = (121 \pm 29 \pm 33) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow$ $\gamma \chi_{h1}(2P) = (12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+2\pi^-K^-K_S^0\pi^0)/\Gamma_{\text{total}}$

 Γ_{13}/Γ

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

6.7±2.5±0.6 17 27 ASNER 08A CLEO $\Upsilon(3S) \rightarrow \gamma 3\pi^{+} 2\pi^{-} K^{-} K_{S}^{0} \pi^{0}$ 27 ASNER 08A reports $[\Gamma(\chi_{b1}(2P) \rightarrow ~3\pi^{+}\,2\pi^{-}\,K^{-}\,K^{0}_{S}\,\pi^{0})/\Gamma_{\rm total}]~\times~[{\rm B}(\varUpsilon(3S) \rightarrow ...)]$ $\gamma \chi_{h1}(2P))] = (85 \pm 23 \pm 22) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow$ $\gamma \chi_{b1}(2P)) = (12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+3\pi^-)/\Gamma_{\text{total}}$

VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT

1.2±0.4±0.1

18

DOCUMENT ID

TECN COMMENT $7(3S) \rightarrow 73\pi^{+}3\pi^{-}$ ²⁸ ASNER 08A reports $[\Gamma(\chi_{b1}(2P) \rightarrow 3\pi^+3\pi^-)/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \gamma\chi_{b1}(2P))]$ = $(15 \pm 4 \pm 3) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \rightarrow \gamma\chi_{b1}(2P)) =$ $(12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+3\pi^-2\pi^0)/\Gamma_{\rm total}$

Created: 5/30/2017 17:21

 $\frac{DOCUMENT\ ID}{29}$ ASNER 08A CLEO $\frac{COMMENT}{r(3S)}
ightarrow \gamma 3\pi^{+} 3\pi^{-} 2\pi^{0}$ VALUE (units 10⁻⁴) EVTS 12±4±1 ²⁹ ASNER 08A reports $[\Gamma(\chi_{b1}(2P) \rightarrow 3\pi^{+}3\pi^{-}2\pi^{0})/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \gamma\chi_{b1}(2P))]$ = $(150 \pm 30 \pm 40) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(3S) \rightarrow \gamma\chi_{b1}(2P))$ $= (12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(3\pi^+3\pi^-K^+K^-)/\Gamma_{\text{total}}$

 Γ_{16}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$2.0\pm0.7\pm0.2$	16	³⁰ ASNER	08A	CLEO	$\Upsilon(3S) \rightarrow \gamma 3\pi^{+} 3\pi^{-} K^{+} K^{-}$
³⁰ ASNER 08A	reports	$[\Gamma(\chi_{b1}(2P) \rightarrow$	$3\pi^{+3}$	$3\pi^-K^+$	K^-)/ Γ_{total}] \times [B($\Upsilon(3S) \rightarrow$
, , cDI (), i	`	,			by our best value B($\Upsilon(3S)$ $ ightarrow$
$\gamma \chi_{b1}(2P)) =$: (12.6 ±	$\pm 1.2) \times 10^{-2}$. Or	ır first	error is	their experiment's error and our
second error i	s the sys	temátic error from	using	our best	value.

$\Gamma(3\pi^+3\pi^-K^+K^-\pi^0)/\Gamma_{\rm total}$

 Γ_{17}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$6.1 \pm 2.1 \pm 0.6$	25 31	ASNER	08A	CLEO	$\Upsilon(3S) \rightarrow \gamma 3\pi^{+} 3\pi^{-} K^{+} K^{-} \pi^{0}$
³¹ ASNER 08A	reports [$\Gamma(\chi_{b1}(2P) \rightarrow$	$3\pi^+$	$3\pi^-K^-$	$^+\kappa^-\pi^0)/\Gamma_{ ext{total}}] imes [B(\Upsilon(3S) ightarrow$
					ivide by our best value B($\Upsilon(3S) ightarrow$
					is their experiment's error and our
second error i	s the syst	tematic error fro	m usi	ng our h	nest value

$\Gamma(4\pi^+4\pi^-)/\Gamma_{\text{total}}$

 Γ_{18}/Γ

VALUE (units 10)	LVIS	DOCUMENT	D	TLCN	COMMENT	
1.7±0.6±0.2	16	32 ASNER	08A	CLEO	$\Upsilon(3S) \rightarrow$	γ 4 π ⁺ 4 π ⁻
32 ASNER 08A reports	$[\Gamma(\chi_{b1})]$	$(2P) \rightarrow 4\pi^{+} 4\pi$	$^{-})/\Gamma_{tot}$	al] × [E	$B(\Upsilon(3S) \rightarrow$	$\gamma \chi_{b1}(2P))]$
$= (22 \pm 6 \pm 5) \times 10^{-2}$	$^{-6}$ whi	ch we divide by o	ur best v	value B($\Upsilon(3S) \rightarrow \gamma$	$\gamma \chi_{b1}(2P)) =$

 $(12.6 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(4\pi^+4\pi^-2\pi^0)/\Gamma_{\text{total}}$

 Γ_{19}/Γ

Created: 5/30/2017 17:21

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID	DOCUMENT ID		COMMENT		
19±7±2	41	³³ ASNER	08A	CLEO	$\Upsilon(3S) \rightarrow \gamma 4\pi^{+} 4\pi^{-} 2\pi^{0}$)	
³³ ASNER 08A reports $[\Gamma(\chi_{b1}(2P) \rightarrow 4\pi^+ 4\pi^- 2\pi^0)/\Gamma_{total}] \times [B(\Upsilon(3S) \rightarrow \gamma \chi_{b1}(2P))]$							
= $(241 \pm 47 \pm 72) \times 10^{-6}$ which we divide by our best value B($\Upsilon(3S) \rightarrow \gamma \chi_{h1}(2P)$)							
$=(12.6\pm1.2)\times10^{-2}$. Our first error is their experiment's error and our second error							
is the systematic	error fro	m using our best v	alue.				

$\chi_{b1}(2P)$ Cross-Particle Branching Ratios

$$\Gamma(\chi_{b1}(2P) \to \gamma \, \Upsilon(1S)) / \Gamma_{total} \, \times \, \Gamma(\Upsilon(3S) \to \gamma \chi_{b1}(2P)) / \Gamma_{total} \\ \Gamma_3 / \Gamma \times \Gamma_{21}^{\Upsilon(3S)} / \Gamma^{\Upsilon(3S)}$$

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
12.4±0.3±0.6	15k	LEES	11 J	BABR	$\Upsilon(3S) \rightarrow X\gamma$

$\mathsf{B}(\chi_{b1}(2P)\to~\gamma~\varUpsilon(1S))\times~\mathsf{B}(~\varUpsilon(3S)\to~\gamma\chi_{b1}(2P))\times~\mathsf{B}(~\varUpsilon(1S)\to~\ell^+\ell^-)$

VALUE (units 10⁻⁴) EVTS DOCUMENT ID TECN COMMENT

2.9 ± 0.4 OUR AVERAGE	Erre	or includes scale fac	ctor o	f 1.9. Se	ee the ideogram below.
$3.52 + 0.28 + 0.17 \\ -0.27 - 0.18$		³⁴ LEES	14M	BABR	$\Upsilon(3S) \rightarrow \gamma \gamma \mu^{+} \mu^{-}$
$3.24 \pm 0.56 \pm 0.41$			92B	CLE2	$\Upsilon(3S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$2.34 \pm 0.28 \pm 0.15$		³⁶ HEINTZ	92	CSB2	$\Upsilon(3S) \rightarrow \gamma \gamma \ell^+ \ell^-$

³⁴ From a sample of $\Upsilon(3S) \rightarrow \gamma \gamma \mu^+ \mu^-$ with one converted photon.

³⁶ Calculated by us. HEINTZ 92 quotes B($\Upsilon(3S) \rightarrow \gamma \chi_{b1}(2P)$) ×B($\chi_{b1}(2P) \rightarrow \gamma \Upsilon(1S)$) = (0.91 ± 0.11 ± 0.06)% using B($\Upsilon(1S) \rightarrow \mu^+ \mu^-$) =(2.57 ± 0.05)%.

 $\mathsf{B}(\chi_{b1}(2P) \to \gamma \, \varUpsilon(1S)) \times \mathsf{B}(\, \varUpsilon(3S) \to \gamma \chi_{b1}(2P)) \times \mathsf{B}(\, \varUpsilon(1S) \to \ell^+ \ell^-)$ (units 10⁻⁴)

$\Gamma(\chi_{b1}(2P) \to \gamma \Upsilon(2S))/\Gamma_{total} \times \Gamma(\Upsilon(3S) \to \gamma \chi_{b1}(2P))/\Gamma_{total}$ $\Gamma_2/\Gamma \times \Gamma_{21}^{\Upsilon(3S)}/\Gamma^{\Upsilon(3S)}$

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT2.4 \pm 0.1 \pm 0.24.3kLEES11JBABR $\Upsilon(3S) \rightarrow X\gamma$

$B(\chi_{b1}(2P) \rightarrow \gamma \Upsilon(2S)) \times B(\Upsilon(3S) \rightarrow \gamma \chi_{b1}(2P)) \times B(\Upsilon(2S) \rightarrow \ell^+\ell^-)$

7.93 - 0.70 - 0.24 $7.94 + \mu$ 7.93 - 0.70 - 0.24 $1.11 + 0.60 \pm 0.63$ $1.11 + 0.60 \pm 0.6$

³⁵ CRAWFORD 92B quotes $2\times B(\Upsilon(3S)\to \gamma\chi_{bJ}(2P))$ $B(\chi_{bJ}(2P)\to \gamma\Upsilon(nS))$ $B(\Upsilon(nS)\to \ell^+\ell^-).$

 $^{^{37}}$ From a sample of $\varUpsilon(3S) \to \ \gamma \gamma \mu^+ \mu^-$ with one converted photon.

³⁸ CRAWFORD 92B quotes $2 \times \mathbb{B}(\Upsilon(3S) \to \gamma \chi_{bJ}(2P))$ $\mathbb{B}(\chi_{bJ}(2P) \to \gamma \Upsilon(\mathsf{nS}))$ $\mathbb{B}(\Upsilon(\mathsf{nS}) \to \ell^+\ell^-).$

³⁹ Calculated by us. HEINTZ 92 quotes B($\Upsilon(3S) \to \gamma \chi_{b1}(2P)$)×B($\chi_{b1}(2P) \to \gamma \Upsilon(2S)$) = (2.29 ± 0.23 ± 0.21) % usingB($\Upsilon(2S) \to \mu^+ \mu^-$) = (1.44 ± 0.10)%.

WEIGHTED AVERAGE 3.8±0.6 (Error scaled by 1.8)

 $\mathsf{B}(\chi_{b1}(2P)\to\gamma\,\varUpsilon(2S))\times\mathsf{B}(\,\varUpsilon(3S)\to\gamma\chi_{b1}(2P))\times\mathsf{B}(\,\varUpsilon(2S)\to\ell^+\ell^-)$ (units 10⁻⁴)

$$B(\chi_{b1}(2P) \rightarrow \chi_{b1}(1P)\pi^{+}\pi^{-}) \times B(\Upsilon(3S) \rightarrow \chi_{b1}(2P)X)$$

VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT1.16±0.07±0.1231kLEES11cBABR $e^+e^- \rightarrow \pi^+\pi^- X$

$B(\chi_{b2}(2P) \rightarrow pX + \overline{p}X)/B(\chi_{b1}(2P) \rightarrow pX + \overline{p}X)$

VALUEDOCUMENT IDTECNCOMMENT1.109 \pm 0.007 \pm 0.040BRIERE07CLEO $\Upsilon(3S) \rightarrow \gamma \chi_{b,I}(2P)$

$B(\chi_{b0}(2P) \rightarrow pX + \overline{p}X)/B(\chi_{b1}(2P) \rightarrow pX + \overline{p}X)$

VALUEDOCUMENT IDTECNCOMMENT1.082 \pm 0.025 \pm 0.060BRIERE07CLEO $\Upsilon(3S) \rightarrow \gamma \chi_{bJ}(2P)$

$\chi_{b1}(2P)$ REFERENCES