	Teste de Matemática A					
	2023 / 2024					
Teste N.º 4						
Matemática A						
- Waternatica A						
12.º Ano de Escolaridade						
Nome do aluno:	N º· Turma:					
Nome do aluno.	IV Iuiiila.					
Utilize apenas caneta ou esferográfica de tinta	azul ou preta.					
Não é permitido o uso de corretor. Risque aquil	o que pretende que não seja classificado.					
É permitido o uso de calculadora.						
Apresente apenas uma resposta para cada iten						
As cotações dos itens encontram-se no final do	enunciado.					
Na resposta aos itens de escolha múltipla, sele	ecione a opção correta. Escreva na folha de					
respostas o número do item e a letra que ident	ifica a opção escolhida.					
Na resposta aos restantes itens, apresente tod	dos os cálculos que tiver de efetuar e todas					
as justificações necessárias. Quando para u	m resultado não é pedida a aproximação,					

apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone:
$$\pi rg$$
 (r – raio da base; g – geratriz)

Área de uma superfície esférica:
$$4\pi r^2$$
 $(r - raio)$

Volume de uma pirâmide:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Volume de um cone:
$$\frac{1}{3} \times \text{Área da base} \times \text{Altura}$$

Volume de uma esfera:
$$\frac{4}{3}\pi r^3$$
 $(r - raio)$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Progressão geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

$$cos(a + b) = cos a cos b - sen a sen b$$

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{i\frac{\theta + 2k\pi}{n}} \quad (k \, \in \, \{0,\dots,n-1\} \, \text{e} \, n \in \, \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u'(n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

1. Em fevereiro de 2024, realizou-se em Doha, no Catar, o Campeonato do Mundo de Desportos Aquáticos.

Portugal esteve representado por um total de quinze atletas, dois dos quais participaram na modalidade de natação artística, quatro nas provas de águas abertas e nove na competição de natação pura.

Na chegada ao aeroporto, os atletas dispuseram-se lado a lado, em linha reta, para tirar uma fotografia.

De quantas maneiras se podem dispor os quinze atletas, de modo que os atletas da mesma modalidade figuem juntos?

- **(A)** 17 418 240
- **(B)** 34 836 480
- **(C)** 52 254 720
- **(D)** 104 509 440

- **2.** Qual é valor de $\lim_{x\to 3} \frac{\sin(3-x)}{-x^2+x+6}$?
 - (A) $\frac{1}{5}$
- (B) $\frac{1}{3}$

- (C) $-\frac{1}{5}$
- **(D)** $-\frac{1}{2}$

3. Seja *g* a função definida por:

$$g(x) = \frac{\operatorname{tg} x}{\operatorname{sen}(x) - \operatorname{sen}(2x)}$$

Determine, sem recorrer à calculadora, o domínio da função g.

4. Seja f uma função, de domínio \mathbb{R} , definida por $f(x) = e^x + 12e^{-x} - 1$ e seja g uma função, de domínio $\mathbb{R}\setminus\{0\}$, definida por $g(x)=2-\log_2 x^2$.

Resolva os itens seguintes sem recorrer à calculadora.

- **4.1** Determine o conjunto dos números reais que são solução da equação $f(x) = g\left(-\frac{1}{4}\right)$.
- **4.2** Considere, num referencial o.n. *Oxy*:
 - a reta r, tangente ao gráfico de f no ponto de abcissa 0;
 - o ponto A, pertencente ao gráfico de g, de abcissa positiva e ordenada nula.

Determine a equação reduzida da reta paralela à reta r e que passa pelo ponto A.

5. Para certos valores de a e b (a > 1 e b > 1), tem-se que $\log_b \frac{a}{b^2} = 6$.

Qual é o valor de $\log_a(b^2) - b^{3\log_b(\frac{1}{2})}$?

(A) $\frac{1}{2}$

- **(B)** $\frac{1}{4}$
- (C) $\frac{1}{6}$
- (D) $\frac{1}{6}$

6. Considere a função f, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} \frac{1 - \sqrt{3 - x}}{x^2 - 2x} & \text{se } x < 2\\ k & \text{se } x = 2\\ \frac{e^{x - 2} + 2x - 5}{x^2 - 4} & \text{se } x > 2 \end{cases}$$

- **6.1** Averigue se existe algum valor real k para o qual a função f é contínua em x = 2.
- **6.2** Seja g a função, de domínio \mathbb{R} , definida por g(x) = 2x 2.

Qual é o valor de $(f \circ g)(-2)$?

(O símbolo o designa composição de funções.)

(A) $\frac{1}{9}$

- (B) $\frac{1}{12}$ (C) $-\frac{1}{24}$ (D) $-\frac{1}{48}$

7. Considere a função f, de domínio $]\ln 2$, $+\infty[$, definida por:

$$f(x) = \ln(2e^x - 4) - 5x$$

Resolva os itens seguintes sem recorrer à calculadora.

- **7.1** O gráfico da função f tem uma assíntota vertical e uma assíntota oblíqua. Determine uma equação de cada uma dessas assíntotas.
- 7.2 Estude a função f quanto à monotonia e a existência de extremos e determine esses extremos, caso existam.

Na sua resposta, apresente o(s) intervalo(s) de monotonia da função.

8. Considere a função f, de domínio \mathbb{R}^+ , definida por $f(x) = \log_4(x)$.

Determine, por processos exclusivamente analíticos, o conjunto dos números reais que são solução da inequação:

$$f(x) - \frac{1}{2}\log_4(6x - 5) \ge 0$$

9. Seja f a função, de domínio \mathbb{R}^+ , definida por $f(x) = \ln(x)$.

Seja (u_n) a sucessão definida por $u_n = \left(\frac{n+2}{n}\right)^n$.

Qual é o valor de $\lim (f(u_n))$?

- **(A)** 1
- **(B)** 2
- **(C)** *e*

(**D**) e^2

10. Admita que a altura de uma árvore, *h*, em metros, *t* anos após ter sido plantada, é dada por:

$$h(t) = \frac{24}{1 + 16,24e^{-0,16t}}$$

Decorridos t_1 anos após ter sido plantada, a altura desta árvore atingiu um certo valor.

Sabe-se que, após 5 anos, a altura da árvore aumentou 35% face a esse valor.

Determine, recorrendo às capacidades gráficas da calculadora, o valor de $t_{\rm 1}$, sabendo que esse valor existe e é único.

Apresente o valor pedido com arredondamento às décimas.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permita(m) resolver a equação, e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas.

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.	2.	3.	4.1	4.2	5.	6.1	6.2	7.1	7.2	8.	9.	10.	Pontos
10	10	18	18	18	10	20	10	20	20	18	10	18	200