

Hot-melt adhesive useful for pre coating materials, comprising a diamine-cured prepolymer prepared by reacting a crystalline linear polyester and a linear polyether with a diisocyanate

Patent number: DE19963585

Publication date: 2001-07-12

Inventor: JAHRSETZ HEIKE (DE); KLEINEBERG OLAF (DE); PFEIFFER HEINZ-PETER (DE)

Applicant: DUPONT PERFORMANCE COATINGS GM (DE)

Classification:

- **international:** C09J175/04; C09J175/02

- **european:** C08G18/48H; C08G18/12; C08G18/12; C08G18/40A2; C08G18/48A2

Application number: DE19991063585 19991229

Priority number(s): DE19991063585 19991229

Abstract of DE19963585

Hot-melt adhesive comprises a diamine-cured prepolymer having blocked isocyanate groups prepared by reacting a crystalline linear polyester and a linear polyether with a diisocyanate. Hot-melt adhesive comprises: (a) a prepolymer prepared by reacting an at least partially crystalline linear polyester, a linear polyether and optionally an amorphous polyester with a diisocyanate, where the prepolymer has a number-average molecular weight of 700-6000 and has 50-100% blocked isocyanate groups; (b) a diamine and/or diamine-epoxide adduct; and optionally (c) one or more conventional additives.

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Offenlegungsschrift**
(10) **DE 199 63 585 A 1**

(5) Int. Cl.⁷:
C 09 J 175/04
C 09 J 175/02

(21) Aktenz. ichen: 199 63 585.4
(22) Anmeldetag: 29. 12. 1999
(43) Offenlegungstag: 12. 7. 2001

(71) Anmelder:
DuPont Performance Coatings GmbH & Co KG,
42285 Wuppertal, DE

(71) Vertreter:
Gille Hrabal Struck Neidlein Prop Roos, 40593
Düsseldorf

(72) Erfinder:
Jahrsetz, Heike, 42555 Velbert, DE; Kleineberg, Olaf,
58091 Hagen, DE; Pfeiffer, Heinz-Peter, Dipl.-Chem.
Dr., 42349 Wuppertal, DE

Die folgenden Angaben sind den vom Anmelder eingerichteten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Schmelzklebstoff-Zusammensetzung und Verfahren zum Verkleben von Substraten

(57) Schmelzklebstoff-Zusammensetzung, enthaltend

A) ein Isocyanatgruppen aufweisendes Prepolymer, erhältlich durch Umsetzung von zumindest teilkristallinen, linearen Polyestern im Gemisch mit linearen Polyethern und gegebenenfalls amorphen Polyestern mit Diisocyanaten, wobei das Prepolymer eine zahlenmittlere Masse Mn von 700 bis 6000 aufweist und die reaktiven Isocyanatgruppen des Prepolymeren zu 50 bis 100% blockiert sind und

B) Diamine und/oder deren Epoxidaddukte, sowie gegebenenfalls ein oder mehrere übliche Additive.

DE 199 63 585 A 1

DE 199 63 585 A 1

Beschreibung

Die Erfindung betrifft eine Beschichtungszusammensetzung auf Polyurethan-Basis, welche als wärmereaktiver Schmelzklebstoff für das Verbinden unterschiedlichster Materialien geeignet ist. Die Erfindung betrifft auch das Verfahren zum Verkleben verschiedenster Substrate unter Verwendung des erfundungsgemäßen Schmelzklebstoffs.

Es sind Polyurethanklebstoffe (PUR-Schmelzklebstoffe) aus Prepolymeren bekannt, die durch Einwirkung von Feuchtigkeit aus der Luft oder den miteinander verklebten Materialien irreversibel austüren (EP-B-455 400). Derartige Prepolymere sind spezielle Reaktionsprodukte aus Polyadipinsäurederivaten bzw. Polyglykolderivaten mit Polysocyanaten. Die PUR-Schmelzklebstoffe sind universell anwendbar zum Verbinden sehr unterschiedlicher Materialien wie z. B. Kunststoff, Glas, Metall, Leder oder Holz.

Die Abbindezeiten von PUR-Schmelzklebstoffen, d. h. die Erstarrungszeiten ohne einsetzende Reaktion der Komponenten miteinander, lassen sich durch Modifizierung der Rezepturen mit kristallinen oder amorphen Komponenten im Bereich von Sekunden bis zu Minuten einstellen. Dabei bewirken die kristallinen Strukturen nicht nur eine niedrige Schmelzviskosität und ein schnelles Erstarren nach dem Auftrag, sondern auch aufgrund der niedrigen Glasübergangstemperatur eine gute Kältelelastizität (DE-A-38 27 224, DE-A-41 14 220, EP-A-0 354 527).

Die eigentliche Aushärtung von PUR-Schmelzklebstoffen, d. h. Vernetzungsreaktion der Komponenten miteinander, erfolgt innerhalb einiger Tage durch Reaktion der Isocyanatgruppen mit Wasser zu dureplastischem Polyharnstoff. Die PUR-Schmelzklebstoffe sind danach nicht mehr schmelzbar oder z. B. in Lösemitteln löslich. Aufgrund dessen haben die ausgehärteten Klebstoffe eine gute Wärmefestigkeit und Beständigkeit gegen Chemikalien wie Weichmacher, Lösemittel, Öle oder Kraftstoffe.

Ein Nachteil dieser Produkte ist die Lagerfähigkeit. Beireits Spuren von Wasser, die bei der Herstellung oder Lagerung in die Klebstoffe gelangen, führen zum Anstieg der Viskosität und schließlich zum Aushärten vor der Verarbeitung. Wenn der Klebstoff teilweise z. B. durch Hautbildung an der Oberfläche austüret, können ausgehärtete Partikel mit noch intaktem Klebstoff vermischt die Leitungen und Düsen der Auftragswerke verstopfen und zu Ausfallzeiten oder auch zu Fehlverklebungen führen.

Ein weiterer Nachteil dieser Klebstoffe ist das Ausgasen von Kohlendioxid bei der Reaktion mit Wasser zu Polyharnstoff. Der Klebstoff kann dadurch in der Klebefuge aufschäumen und die gewünschte Position der Fügeteile kann sich verändern.

Bekannt sind thermisch aktivierbare Polyurethanklebstoffe auf der Basis von Prepolymeren mit Isocyanatgruppen, deren Aktivität durch eine Verkappung blockiert ist und erst bei höherer Temperatur in Erscheinung tritt durch Freisetzung der Isocyanatgruppen. Bei weiterer Temperaturerhöhung und über eine zusätzliche Feuchtigkeitseinwirkung auf die reaktiven Isocyanatgruppen setzt die Vernetzungsreaktion und somit der Klebefprozeß ein. Die zu verklebenden Teile müssen dazu eine ausreichende Feuchtigkeitskonzentration aufweisen, so daß Klebungen undurchlässiger Materialien kaum durchführbar sind (G. Habenicht, "Kleben", Springer-Verlag, 1986, Seiten 41 bis 42).

Die EP-A-0 431 413 beschreibt wärmehärtende PUR-Pulver auf der Basis von Polyurethanen mit eingekapselten Isocyanaten, wobei die Desaktivierung der Isocyanatgruppen nicht durch Verkappung, sondern durch eine Sperrschicht an der Teilchenoberfläche zustande kommt. Es werden teilchenförmige Komponenten verwendet. Zur Erzeu-

gung der pulvelförmigen Produkte ist es erforderlich, das Reaktionsgemisch als Schmelze einem inertem Lösemittel/Emulgator-System zuzusetzen.

Aufgabe der Erfindung ist es, einen durch Wärme härtbaren reaktiven Schmelzklebstoff auf Polyurethanbasis bereitzustellen, der die oben genannten Nachteile nicht aufweist. Die Schmelzklebstoffe sollen gegenüber Feuchtigkeit eine hohe Beständigkeit und Lagerfähigkeit aufweisen, insbesondere dann, wenn die Fügeteile mit den Klebstoffen vorbeschichtet oder präpariert werden und die eigentliche Verklebung erst später erfolgt.

Die Aufgabe konnte erfundungsgemäß gelöst werden durch eine Schmelzklebstoff-Zusammensetzung, enthaltend

- 15 A) ein Isocyanatgruppen aufweisendes Prepolymer, erhältlich durch Umsetzung von einem oder mehreren zumindest teilkristallinen, linearen Polyester im Gemisch mit einem oder mehreren linearen Polyethern und gegebenenfalls einem oder mehreren amorphen Polyester mit Diisocyanaten, wobei das Prepolymer eine zahlenmäßige Molmasse Mn von 700 bis 6000 aufweist und die reaktiven Isocyanatgruppen des Prepolymers zu 50 bis 100%, vorzugsweise zu 70 bis 95%, blockiert sind und
- 20 B) ein oder mehrere Diamine und/oder deren Epoxidaddukte sowie gegebenenfalls ein oder mehrere übliche Additive.

Die Komponente A kann darüber hinaus in der Polyurethanchemie übliche Additive enthalten, wie z. B. Katalysatoren und Beschleuniger, beispielsweise Wismutverbindungen, Dibutylzinnlaurat oder tertiäre Amine. Weitere Beispiele sind Lichtschutzmittel, Füllstoffe wie Bariumsulfat, pyrogene Kieselsäure, gemahlene Mineralstoffe oder Talcum, sowie Pigmente zum Einfärben des Klebstoffs für bestimmte Anwendungen wie z. B. Ruß oder Eisenoxide, sowie Metallpulver und/oder Metallspäne.

Das in der erfundungsgemäßen Schmelzklebstoff-Zusammensetzung enthaltene Prepolymer A basiert im wesentlichen auf zumindest teilkristallinen Polyester. Die Polyester sind hydroxyfunktionell und weisen beispielsweise Hydroxylzahlen von 15 bis 50 mg KOH/g auf. Neben den zumindest teilkristallinen Polyester können jedoch auch geringe Mengen an amorphen Polyester enthalten sein. Auch diese sind hydroxyfunktionell und weisen vorzugsweise eine Hydroxylzahl von 80 bis 110 auf.

Das Prepolymer kann beispielsweise aus folgenden Mengen an Polyester/Polyether erhalten werden:

- 45 bis 75 Gew.-% zumindest teilkristalliner linearer Polyester
- 50 25 bis 45 Gew.-% linearer Polyether
- 60 0 bis 10 Gew.-% amorpher Polyester (wobei sich die Menge an amorphem Polyester auf den Gehalt an zumindest teilkristallinem Polyester plus Polyether bezieht).

Teilkristalline oder kristalline Polyester (hier als zumindest teilkristalline Polyester bezeichnet) sind dem Fachmann geläufig und werden aus aliphatischen Dicarbonsäuren und kurzketten Diolen mit einer geraden Anzahl von Kohlenstoffatomen hergestellt. Brauchbare, zumindest teilkristalline Polyester werden beispielsweise in der EP-A-0 354 527 beschrieben, auf die hier Bezug genommen wird.

Beispiele für erfundungsgemäß einsetzbare lineare, zumindest teilkristalline Polyester sind Produkte aus aliphatischen Dicarbonsäuren und/oder deren Derivaten, wie z. B. Adipinsäure, Sebacinsäure, Dodecansäure und deren Derivate. Kurzkettige Diols weisen beispielsweise bis zu 10 Kohlenstoffatome auf. Beispiele für die verwendbaren kurzketten Diols mit gerader Anzahl von Kohlenstoffatomen

sind Ethylen glykol, Butandiol-1,4 oder Hexandiol-1,6.

Vor zugswise werden zur Herstellung der zumindest teilkristallinen Polyester Adipinsäure und Adipinsäurederivate sowie Ethylen glykol und Butandiol-1,4 eingesetzt. Bei den linearen, zumindest teilkristallinen Polyestern kann es sich jedoch auch um Polycaprolactone handeln.

Neben den linearen, zumindest teilkristallinen Polyestern können auch geringere Mengen an amorphen Polyestern bei der Herstellung der Prepolymer-Komponente A mitverwendet werden. Die amorphen Polyester können erhalten werden aus der Reaktion von aliphatischen, cycloaliphatischen und/oder aromatischen Dicarbonsäuren bzw. deren Derivaten, z. B. Sebazinsäure, Dodecansäure, Phthalsäure, Isophthalsäure und/oder deren Derivate, sowie Diolen. Beispiele für Diole sind kurzkettige Diole wie Ethylen glykol, Diethylenglykol, Triethylenglykol, Propandiol-1, 2 oder Propandiol-1,3, Butandiol-1,2 oder Butandiol-1,4, Neopentylglykol, Hexandiol-1,6, Dipropylenglykol und Tripropylenglykol.

Bei der Herstellung der erfundungsgemäß eingesetzten Prepolymer-Komponente A werden neben der im wesentlichen eingesetzten, zumindest teilkristallinen Polyester-Komponente auch Polyether mitverwendet. Als Polyether können beispielsweise Polyethylen glykol, Polypropylenglykol oder Polytetramethylene glykol sowie auch mit Ethylenoxid modifizierte Polypropylenglykole oder Mischungen davon verwendet werden. Beispielsweise können derartige Polyether zahlenmittlere Molmassen Mn von 600 bis 2000 aufweisen.

Die erfundungsgemäß einsetzbaren Polyester sind in üblicher Weise herstellbar durch Veresterungsreaktion der Säurekomponente mit der Diolkomponente, beispielsweise einer Stickstoffatmosphäre, beispielsweise bei Temperaturen zwischen 140 und 260°C, mit oder ohne Einsatz von üblichen Veresterungskatalysatoren.

Als Diisocyanate sind in der Polyurethanchemie übliche verwendbar beispielsweise Hexamethylen-, Isophoron-, 2,4-(2,6)-Toluyl-, Dicyclohexyl-, 4,4-Diphenylmethan-diisocyanat (MDI). Auch Derivate des MDI wie Isomere, Homologe oder Prepolymere, wie z. B. Desmodur PF®, können verwendet werden. Vor zugswise wird 4,4-Diphenylmethan-diisocyanat eingesetzt.

Die Blockierung kann mit den üblichen Mitteln erfolgen, z. B. Butanonoxim, Phenol, Acetessigester, Malonester, Dimethylpyrazol oder Caprolactam. Vor zugswise wird Caprolactam verwendet, es sind jedoch auch Kombinationen aus mehreren der genannten Verbindungen möglich.

Darüber hinaus kann das Prepolymer der Komponente A unter Mitverwendung von Kettenverlängerern hergestellt werden. Als Kettenverlängerer können die daftr üblicherweise verwendeten kurzkettigen Diole wie Ethylen glykol, Diethylenglykol, Triethylenglykol, Propandiol-1, 2 oder Propandiol-1,3, Butandiol-1,2 oder Butandiol-1,4, Neopentylglykol, Hexandiol-1,6, Dipropylenglykol oder Tripropylenglykol zum Einsatz kommen. Vor zugswise werden Butandiol-1,4 und Hexandiol-1,6 verwendet.

Die Komponente B besteht aus einem oder mehreren Diaminen, beispielsweise wie sie zur Aushärtung von Epoxidklebstoffen Verwendung finden. Eingesetzt werden können beispielsweise aliphatische, cycloaliphatische, araliphatische oder aromatische Diamine, wie z. B. Ethylen-, Hexamethylen-, Isophorondiamin, Aminomethylbenzylamin, Derivate des Dicyclohexylmethandiamins (Laromin C 260®), aminofunktionelle Polypropylenglykole (Jeffamin ®), aminofunktionelle Polyamide und/oder Epoxidaddukte.

Das Mischungsverhältnis der Komponenten A und B ergibt sich aus dem Gesamtgehalt an Isocyanat (freies und verkapptes) der Komponente A und des titrierbaren Amin-

gehalts der Komponente B. Das Äquivalentgewichtsverhältnis Isocyanat zu Amin in der erfundungsgemäßen Zusammensetzung beträgt beispielsweise 1 : 1 bis 1 : S. vor zugswise 1 : 2,5.

Da die Mischung im allgemeinen einen Schmelzbereich von 40 bis 80°C und eine Reaktionstemperatur zwischen 140 und 300°C hat, kann man sie in einem herkömmlichen Rührkessel herstellen. Die Bestandteile der Komponente A können dabei zunächst gemeinsam erwärmt werden, beispielsweise in einem heizbaren Kneter, und anschließend mit der Komponente B vermischt werden. Es ist jedoch auch möglich, beide Komponenten separat zu handhaben und unmittelbar vor dem Auftrag auf die Fügeteile zu vermischen. Das Vermischen kann beispielsweise in einem statischen Mischer oder Mischrohr vorgenommen werden, wie es auch bei der Applikation zweikomponentiger Klebstoff dem Stand der Technik entspricht.

Die Viskosität der fertigen Schmelzklebstoffe ohne Füllstoffe oder Pigmente liegt bevorzugt zwischen 800 und 12000 mPas, besonders bevorzugt zwischen 800 bis 3000 mPas, bei 100°C.

Der Klebstoff kann als Schmelze ein- oder zweiseitig auf die zu verklebenden Fügeteile aufgetragen werden. Dazu wird der Klebstoff nur bis zu einer Temperatur erwärmt, bei der beide Komponenten A und B nicht miteinander reagieren. Die Temperatur liegt dabei beispielsweise im Bereich von 40 bis 80°C, bevorzugt von 50 bis 70°C. Nach Abkühlung sind die in dieser Weise mit dem Kleber beschichteten Fügeteile monatelang lagerfähig. Unmittelbar vor der Anwendung wird der auf den Fügeteilen befindliche Kleber durch Erhitzen geschmolzen, beispielsweise bei einer Temperatur im Bereich von 140 bis 300°C, bevorzugt von 170 bis 250°C. Während dieser Zeit findet eine chemische Vernetzungsreaktion statt, so daß der Klebstoff nach Positionieren der Fügeteile und Abkühlen nicht mehr schmelzbar ist. Die Fügeteile verändern nach dem Abkühlen des Klebstoffes ihre Position nicht mehr.

Der erfundungsgemäße Klebstoff kann auch ohne Zwischenlagerung der mit ihm beschichteten Fügeteile, unmittelbar nach Auftrag durch Temperaturerhöhung zur Reaktion, d. h. zum Verkleben und Aushärten gebracht werden.

Das Aufschmelzen des Klebstoffs kann beispielsweise durch Heißluft, Wärmestrahlung, Mikrowellenstrahlung oder auch durch Hochfrequenz erfolgen.

Die mit dem Aufschmelzen des Klebstoffes einhergehende Vernetzungsreaktion erfolgt schnell, so daß nach einem Zeitraum von wenigen Sekunden, z. B. 4 bis 6 Sekunden, bis maximal 20 bis 30 Sekunden, abhängig von Art des Aufschmelzens, eine vollständige Aushärtung des Klebers erfolgt ist.

Die erfundungsgemäße Klebstoff-Zusammensetzung kann zum Verkleben der verschiedensten Materialien miteinander bzw. untereinander verwendet werden. Dies können beispielsweise Materialien aus Metall, Kunststoff, Glas, Holz, Leder und textile Stoffe sein.

Einen Gegenstand der Erfindung bildet daher auch ein Verfahren zum Verkleben von Substraten, bei dem man zumindest auf eines der zu verklebenden Substrate die erfundungsgemäße Schmelzklebstoff-Zusammensetzung aufbringt und die Schmelzklebstoff-Zusammensetzung unmittelbar vor der Anwendung aufschmilzt. Gemäß einer bevorzugten Ausführungsform werden dabei die zu verklebenden Substrate nach dem Aufbringen der Schmelzkleber-Zusammensetzung einer Zwischenlagerung unterzogen.

Einen weiteren Gegenstand der Erfindung bildet auch die Verwendung der Schmelzklebstoff-Zusammensetzung der Erfindung zum Beschichten von zu verklebenden Substraten, bzw. zum Verkleben von Substraten.

Mit der erfindungsgemäßen Klebstoff-Zusammensetzung ist es möglich, die mit dem Klebstoff applizierten Fügeteile über Monate zu lagern, bevor die eigentliche Verklebung der Teile erfolgt. Durch die Unanfälligkeit gegenüber Wasser und Feuchtigkeit erfolgt trotz der hohen Lagerzeit keine vorzeitige Vernetzungsreaktion und somit keine vorzeitige Aushärtung des Klebers. Dadurch kann eine Beeinträchtigung der späteren Verklebung durch Fehlverklebungen verhindert werden. Außerdem treten auch bei der Herstellung der Klebstoff-Zusammensetzung nicht die durch vorzeitige Aushärtung verursachten Verstopfungen der Auftragswerke und dadurch bedingte Ausfallzeiten ein. Des Weiteren wird ein Aufschäumen des Klebstoffes durch entstehendes Kohlendioxid durch Reaktion mit Wasser und damit eine Lageveränderung bzw. ein teilweises Trennen der verklebten Teile vermieden.

Die Erfindung wird an folgendem Beispiel erläutert.

Beispiel 1 für einen teilkristallinen Polyester

2496,4 g Adipinsäure (19,2 Mol), 2120,7 g 1,6-Hexandiol (20,2 Mol) und 1,1 g Monobutylzinnoxid (Fascat 4100) werden in einem 51 Glaskolben mit Kolonne und Destillationseinrichtung aufgeschmolzen. Ab Reaktionsbeginn (ca. 140°C) wird die Temperatur langsam auf 250°C erhöht, so daß die Kolonnenkopftemperatur 100°C nicht übersteigt. Nach Erreichen einer Säurezahl von 10 mg KOH/g wird Vakuum angelegt (< 300 mbar) und auf eine Säurezahl von < 3 mg KOH/g kondensiert. Danach wird unter Stickstoff abgekühlt.

Hydroxylzahl: 25 mg KOH/g
Molgewicht (Mn): 4500 g/Mol

Beispiel 2 für einen amorphen Polyester

248 g Ethylenglykol (4 Mol), 170,6 g Diethylenglykol (1,6 Mol), 97 g Neopentylglykol (0,93 Mol), 85,2 g 1,6-Hexandiol (0,72 Mol), 421,5 g Adipinsäure (2,89 Mol) und 479,3 g Isophthalsäure (2,89 Mol) werden wie in Beispiel 1 beschrieben zur Reaktion gebracht. Nach Erreichen einer Säurezahl von 13 wird Vakuum angelegt und auf eine Säurezahl < 4 mg KOH/g kondensiert.

Hydroxylzahl: 87 mg KOH/g
Molgewicht Mn: 1300 g/Mol

Beispiel 3 für einen Schmelzkleber

Zur Herstellung der Komponente A werden 231,6 g 4,4-Diphenylmethandiisocyanat (0,85 Mol) in einem trockenen 21 Kolben unter Stickstoff aufgeschmolzen. Dann werden portionsweise unter Beachtung der exothermen Reaktion 377,5 g (0,08 Mol) Polyester aus Beispiel 1, 227,4 g Polytetrahydrofuran 1000 (0,23 Mol), 17 g Polyester aus Beispiel 2 (0,013 Mol) und 11 g 1,4-Butandiol zugegeben und auf 80°C geheizt. Nach vier Stunden Röhren bei 80°C unter Stickstoff ist eine NCO-Zahl von 3,6% erreicht. Dann werden 85 g Caprolactam portionsweise unter Beachtung der exothermen Reaktion zugegeben. Nach drei Stunden ist eine NCO-Zahl von unter 0,2% erreicht. Als Komponente B werden 69,6 g Isophorondiamin (0,41 Mol) zugegeben.

Schmelzviskosität: 1500 mPas/ 100°C

Der Schmelzklebstoff aus dem angeführten Beispiel zeigt bei Einwirkung von Temperatur das in der beigefügten Figur aufgezeigte Verhalten hinsichtlich Schmelz- und Reaktions-

temperatur.

Figur

Patentansprüche

1. Schmelzklebstoff-Zusammensetzung, enthaltend
 - A) ein Isocyanatgruppen aufweisendes Prepolymer, erhältlich durch Umsetzung von einem oder mehreren zumindest teilkristallinen, linearen Polyestern im Gemisch mit einem oder mehreren linearen Polyethern und gegebenenfalls einem oder mehreren amorphen Polyestern mit Diisocyanaten, wobei das Prepolymer eine zahlenmittlere Molmasse Mn von 700 bis 6000 aufweist und die reaktiven Isocyanatgruppen des Prepolymeren zu 50 bis 100% blockiert sind und
 - B) ein oder mehrere Diamine und/oder deren Epoxidaddukte, sowie gegebenenfalls ein oder mehrere übliche Additive.
2. Schmelzklebstoff-Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das Prepolymer A erhältlich ist aus 45 bis 75 Gew.-% eines oder mehrerer zumindest teilkristalliner Polyester 25 bis 45 Gew.-% eines oder mehrerer Polyether und 0 bis 10 Gew.-% eines oder mehrerer amorpher Polyester.
3. Schmelzklebstoff-Zusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Prepolymer A zusätzlich in Anwesenheit eines oder mehrerer Kettenverlängerer erhältlich ist.
4. Schmelzklebstoff-Zusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie eine Viskosität von 800 bis 12000 mPas, gemessen bei 100°C ohne Pigment- und Füllstoffzusatz, aufweist.
5. Verfahren zum Verkleben von Substraten, dadurch gekennzeichnet, daß man zumindest auf eines der zu verklebenden Substrate eine Schmelzklebstoff-Zusammensetzung gemäß einem der Ansprüche 1 bis 4 aufbringt und die Schmelzklebstoff-Zusammensetzung unmittelbar vor der Anwendung aufschmilzt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man die zu verklebenden Substrate nach dem Aufbringen der Schmelzkleber-Zusammensetzung einer Zwischenlagerung unterzieht.
7. Verfahren nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß man Substrate aus Metall, Kunststoff, Glas, Holz, Leder und/oder textilen Stoffen miteinander verklebt.
8. Verwendung der Schmelzklebstoff-Zusammensetzung nach einem der Ansprüche 1 bis 5 zum Beschichten von zu verklebenden Substraten.
9. Verwendung der Schmelzklebstoff-Zusammensetzung nach einem der Ansprüche 1 bis 5 zum Verkleben von Substraten.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

FIGUR

