1 Матрично-векторное дифференцирование

Определение 1. Говорят, что функция $f: \mathbb{R}^m \to \mathbb{R}^n$ дифференцируема в точке x, если существует такой линейный оператор $L: \mathbb{R}^m \to \mathbb{R}^n$, что для любых достаточно малых по норме $dx \in \mathbb{R}^n$ выполнено:

$$f(x + dx) = f(x) + L(dx) + o(||dx||)$$

Задача 1.1. Пусть $x \in \mathbb{R}^n$. Найдите дифференциалы следующих функций:

a)
$$a^T x$$
, $(a \in \mathbb{R}^n)$

c)
$$\log ||Ax - b||^2$$
, $(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

b)
$$x^T A x$$
, $(A \in \mathbb{R}^{n \times n})$

d)
$$a \times x \ (a, x \in \mathbb{R}^3)$$

Задача 1.2. Пусть $X \in \mathbb{R}^{m \times n}$. Найдите дифференциалы следующих функций:

a)
$$a^T X b$$
, $(a \in \mathbb{R}^m, b \in \mathbb{R}^n)$

d)
$$tr(AX)$$

b)
$$a^T X^T B X a$$
, $(a \in \mathbb{R}^m, B \in \mathbb{R}^{n \times n})$

e)*
$$X^{-1}$$

c)
$$||Xa - b||^2$$
, $(a \in \mathbb{R}^n, b \in \mathbb{R}^m)$

$$f$$
)* $\log \det(X)$

2 Многомерная линейная регрессия

Задача 2.1. Пусть $X \in \mathbb{R}^{n \times d}$ и $y \in \mathbb{R}^n$. Рассмотрим стандартную задачу линейной регрессии $f_w(x) = w^T x$:

- а) Вспомните, как выглядит функция потерь MSE(w) для линейной регрессии и найдите её градиент.
- b) Запишите условия для минимума и найдите оптимальный вектор весов w^* .
- с) Какие требования на X должны выполняться, чтобы w^* существовал?
- d) Рассмотрим линейную регрессию и модифицированную функцию потерь $MSE_{\lambda}(w) = MSE(w) + \lambda ||w||^2$. Найдите оптимальный вектор весов w^* .

3 Градиентный спуск

Определение 2. Функция f называется выпуклой, если для любых двух точек $x, y \in \mathbb{R}^n$ выполняется неравенство $f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle$.

Задача 3.1. Докажите, что градиент – это направление наискорейшего роста.

Определение 3. Функция f называется Липшицевой с константой L, если для любых двух точек $x, y \in \mathbb{R}^n$ выполняется неравенство $||f(x) - f(y)|| \le L||x - y||$.

Задача 3.2. Пусть f выпукла в области $D \subset \mathbb{R}^n$ и имеет Липшицев градиент. Рассмотрим градиентный спуск с шагом λ . Докажите, что если $\lambda < \frac{2}{L}$, то $f(x_k)$ убывает на каждой итерации.

Подсказка. Воспользуйтесь неравенством формулой Тейлора.