	Utech
Name:	
Roll No.:	A Spran of Exemples 2nd Explored
Invigilator's Signature :	

BASIC ELECTRONICS ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Bandgaps of Silicon and Germanium are
 - a) 0.67 eV and 1.1 eV b) 5.89 eV and 4.56 eV
 - c) 0.87 eV and 6.78 eV d) 0.54 eV and 0.786 eV.
 - ii) Gain of inverting op-amp is
 - a) $-R_f/R_1$
 - b) $\left(1+R_f/R_1\right)$
 - c) $(R_f + R_1)/R_f$
 - d) $-(R_f + R_1)/R_1$.

22102 [Turn over

- iii) In active mode of operation of BJT
 - a) emitter-base junction is forward-biased and collector-base junction is reverse-biased
 - b) emitter-base junction is forward-biased and collector-base junction is forward-biased
 - c) emitter-base junction is reverse-biased and collector-junction is forward-biased
 - d) emitter-base junction is reverse-biased and collector-base junction is reverse-biased.
- iv) In CRO, circle is produced as Lissajuos figure when the phase difference between x and y-signals is
 - a) 90°

b) 180°

c) 270°

- d) 0°.
- v) SCR has_terminals
 - a) 3

b) 4

c) 2

d) 6.

- vi) CMRR =
 - a) Mod $\left(A_d/A_c\right)$ [A_d = voltage gain for difference signal; A_c = voltage gain for common mode signal]
 - b) V_2/V_1 [V_1 = non-inverting input terminal signal; V_2 = inverting input terminal signal]
 - c) $A_1 A_2$ [A_1 = voltage gain when inverting terminal is grounded; A_2 = voltage gain when non-inverting terminal is grounded]
 - d) $V_d V_c$ [V_d = difference signal; V_c = common-mode signal].

- vii) The diffusion capacitance of a forward-biased p-r junction diode varies
 - a) linearly with current
 - b) inversely with current
 - c) as the square of the current
 - d) as the square root of the current.
- viii) When the reverse voltage across p-n junction is gradually decreased, the depletion region inside the diode
 - a) does not change in width
 - b) initially increases upto certain width then decreases
 - c) continuously increases in width
 - d) continuously decreases in width.
- ix) Semiconductors have
 - a) zero temperature coefficient of resistance
 - b) positive temperature coefficient of resistance
 - c) negative temperature coefficient of resistance
 - d) none of these.
- x) The ripple factor of a power supply is a measure of
 - a) its filter efficiency
 - b) its voltage regulation
 - c) diode rating
 - d) purity of power output.

a) 37·2%

b) 40.6%

c) 53.9%

d) 81·2%.

xii) JFET is a

- a) voltage controlled voltage source
- b) voltage controlled current source
- c) current controlled voltage source
- d) current controlled current source.

xiii) Input and output impedances of a voltage shunt feedback are

- a) $Z_i/(1+A\beta)$ and $Z_o/(1+A\beta)$
- b) $Z_i(1+A\beta)$ and $Z_o/(1+A\beta)$
- c) $Z_i/(1+A\beta)$ and $Z_o(1+A\beta)$
- d) $Z_i(1+A\beta)$ and $Z_o(1+A\beta)$.

xiv) Unit of diffusion constant for silicon in SI unit is

- a) $m^2/V.s$
- b) m^2/s

c) m/s

d) V/s.

xv) Temperature coefficient of resistance for intrinsic semiconductor is

- a) positive
- b) negative
- c) infinity
- d) does not depend on temperature.

GROUP – B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Distinguish between Avalanche breakdown and Zener breakdown. Why is Zener diode called reference diode?
- 3. What are the advantages and disadvantages of bridge rectifier over full-wave rectifier using two diodes?
- 4. Define CMRR of an OPAMP.

When a voltage of V_1 = 40 μ V is applied to the non-inverting input terminal and a voltage V_2 = -40 μ V is applied to the inverting input terminal of an OPAMP, an output voltage V_0 = 100 mV is obtained. But when V_1 = V_2 = 40 μ V, one obtains V_0 = 4 μ V. Calculate the CMRR.

- 5. What are the basic differences between BJT and FET? Define pinch of voltage.
- 6. Derive the expressions for the electrical conductivity of
 - i) an intrinsic semiconductor
 - ii) an N-type semiconductor
 - iii) a P-type semiconductor.

- 7. a) Explain the term "Drift" related to semiconductors.
 - b) What is electrical conductivity? Derive the expression for electrical conductivity of a semi-conductor.
 - c) Show that the total electron current density is equal to the sum of drift and diffusion current density.
 - d) Find:
 - i) conductivity and
 - ii) resistance of a bar of pure silicon of length 1 cm and cross-sectional area $1~\text{mm}^2$ at 300 K. Given $\mu_n=0.13~\text{m}^2/\text{Vs}\,,$ $\mu_p=0.05~\text{m}^2/\text{Vs}\,,$ $ni=1.5~^*10^{16}/\text{m}^3\,.$ 3+1+3+5+3
- 8. a) With regard to full-wave rectification explain the working of a bridge rectifier and compare its PIV with other rectifiers. Give two advantages and disadvantages of the bridge rectifier.

22102 6

- b) Find out the expression for efficiency, form factor and ripple factor for a half-wave rectifier.
- c) A full-wave rectifier uses a double diode, the forward resistance of each element being 100 ohm. The rectifier supplies current to a load resistance of 1000 ohm. The primary to secondary turns ratio of the centre tapped transformer is 10:1. The transformer primary is fed from a supply of 240 V (rms).

Find:

- i) DC load current
- ii) direct current in each diode
- iii) the ripple voltage and
- iv) the efficiency of rectification. (4+2)+3+6
- 9. a) Formulate the expression for voltage gain, current gain and output resistance of a transistor amplifier employing h-parameters.
 - b) A transistor amplifier in CE configuration couples a source of internal resistance 1 k Ω to a load of 20 k Ω . Find the input and the output resistance if h_{ie} = 1 k Ω , h_{re} = 2·5 * 10⁻⁴ k Ω , h_{fe} = 150 & 1/ h_{oe} = 40 k Ω .

- c) Differentiate between depletion and enhancement type MOSFETs. $(3 \times 3) + 4 + 2$
- 10. a) Draw the circuit diagram of clamper and explain the working principle of it.
 - b) Explain the operation of bridge rectifier with proper circuit diagram.
 - c) Evaluate the ripple factor and efficiency of half-wave rectifier.
- 11. Write short notes on any *three* of the following: 3×5

8

- a) Clipper circuit
- b) Eber-Moll model of transistor
- c) Enhancement and depletion MOSFETs
- d) Hybrid parameters for a transistor.

22102