Math 110 HW2

Neo Lee

09/09/2023

Problem 1.

Suppose $U := \{(x, x, 3x) : x \in \mathbb{R}\}$ and $W := \{(x, -x, -3x) : x \in \mathbb{R}\}.$

(a)

Proposition 1. U and W are subspaces of \mathbb{R}^3 .

- (b) Describe U + W using symbols.
- (c) Describe U+W without symbols.

Problem 2.

Suppose $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and let

$$U = \{(x, y, x + y, -y, -x) \in \mathbb{F}^5 : x, y \in \mathbb{F}\}.$$

Find three subspaces W_1, W_2, W_3 of \mathbb{F}^5 , none of which equals $\{0\}$, such that $\mathbb{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$.

Problem 3.

Proposition 2. Let V be a vector space over \mathbb{F} . Suppose that $1+1\neq 0$ in \mathbb{F} and the list v_1, v_2, v_3, v_4 is linearly independent in V. Then the list $v_1 - v_2, v_1 + v_2, v_3 - v_2, v_4 - v_1$ is also linearly independent in \mathbb{V} .

Problem 4.

Does the statement of Problem 3 still hold if we replace "linearly independent" by "a basis"?

Problem 5.

Proposition 3. The space $\mathbb{R}^{[0,1]}$ is infinite-dimensional.