

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code : EE-601 CONTROL SYSTEM - II

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for and any ten of the following: $10 \times 1 = 10$
 - i) If the trajectories of a non-linear system are eventually trapped into the closed curve, then it can be concluded that
 - a) a stable steady-state oscillation will never be attained
 - a stable state oscillation results with the voltage oscillating with fixed amplitude
 - c) asymptotic stability has been attained
 - d) the system is unstable.

6/60108

Turn over

CS/B.TECH/EE/EVEN/SEM-6/EE-601/2015-16

i) In the figure below:

- a) A and B have stable limit cycle.
- A has stable limit cycle & B has unstable limit cycle.
- c) A has unstable limit cycle and B has stable limit cycle.
- d) None of these are true.
- iii) The state and output equations of a system are as under

$$\begin{bmatrix} x_1 & (t) \\ x_2 & (t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 & (t) \\ x_2 & (t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u (t)$$

output equation $c(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 & (t) \\ x_2 & (t) \end{bmatrix}$.

The system is

- a) neither state controllable nor output controllable
- b) state controllable but not output controllable
- c) output controllable but not state controllable
- d) both state & output controllable.

6/60108

2

- In a discrete time system, the stability is found by
 - Lyapunov function
 - Routh-Hurwitz criterion
 - Jury's stability criteria
 - model reduction criteria.
- $V(x, y) = 25(x-y)^2$, this function is
 - positive definite
 - negative definite
 - positive semi-definite
 - negative semi-definite.
- A system is described by the state equation

 $\dot{X} = AX + BV$. The output being Y = CX where

$$A = \begin{bmatrix} -4 & -1 \\ 3 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = [1 \ 0].$$
 The

transfer function G(S) of the system is

a)
$$\frac{s}{s^2 + 5s + 7}$$
 b) $\frac{1}{s^2 + 5s + 7}$

b)
$$\frac{1}{s^2 + 5s + 7}$$

c)
$$\frac{s}{s^2 + 3s + 2}$$

c)
$$\frac{s}{s^2 + 3s + 2}$$
 d) $\frac{1}{s^2 + 3s + 2}$.

vii) For a system described by

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, the eigenvalues are

a)
$$-1$$
, -2 b) 0, 3

6/60108

3

Turn over

CS/B.TECH/EE/EVEN/SEM-6/EE-601/2015-16

viii) The phase portrait of the second order system shown below in the $y_1 y_2$ phase has

- stable focus
- unstable focus
- - stable nodal point d) unstable nodal point.
- The input-output characteristics of a non-linearity is shown. The non-linearity is called

- backlash non-linearity
- b) relay with pure hysteresis
- relay with dead zone and hysteresis
- relay with dead zone.

x)
$$Y(k+1) = AX(k) + BV(k)$$
 is a

- non-linear equation a)
- linear time invariant difference equation b١
- a dynamic non-linear equation C)
- d) autonomous equation.

xi) The inverse Z transform of the function

$$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$$
 is

a) te^{-at}

b) e^{-at}

c) $1 - e^{-at}$

- d) $\frac{t^n}{n!}$
- xii) Jump resonance characteristics can be found in
 - a) Chaotic system
 - second order non-linear system
 - c) higher order non-linear system
 - d) linear time varying system.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$

The state equation of a linear time invariant system is given by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

Find the characteristic equation and the state transition matrix using the Caley-Hamilton theorem.

3. Obtain the Z-transform of

$$x(t) = \begin{cases} \cos \omega t &, t \ge 0 \\ 0 &, t < 0 \end{cases}.$$

4. Find the describing function for Dead-zone with saturation type of non-linearity.

CS/B.TECH/EE/EVEN/SEM-6/EE-601/2015-16

5. Obtain pulse transfer function of the system shown below with T = 2 sec and $G_p(s) = \frac{20}{s(s+5)}$.

6. The overall transfer function of a SISO system is given by

$$\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 2}{s^3 + 9s^2 + 26s + 24}$$

Obtain the state equation.

GROUP - C (Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. A system is characterized by the following state equation:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u, Y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- a) Find the transfer function of the system.
- b) Draw the block diagram of the above transfer function.
- c) Compute the state transition matrix.
- d) Obtain the solution to the state equation for a unit step input under zero initial conditions.

4 + 3 + 4 + 4

- Enumerate Lyapunov's direct stability criterion. 8.
 - Determine whether the following quadratic form is positive definite:

$$Q = -x_1^2 - 3x_2^2 - 11x_3^2 - 2x_1x_2 - 4x_2x_3 - 2x_1x_3$$

Determine the stability range for the gain k of the system shown below:

3 + 3 + 9

Determine the amplitude and frequency of the limit 9. aì cycle of the non-linearity shown below:

Determine the stability of the system shown in figure below:

10 + 5

Draw the phase trajectory for the linear system 10. a) having the following state equations:

$$x_1 = x_2$$
 and $x_2 = 2x_1 + x_2$

What do you mean by 'Asymptotic stability' and 10 + 5'Global asymptotic stability'?

7

HTTP://WWW.MAKAUT.COM

Turn over

CS/B.TECH/EE/EVEN/SEM-6/EE-601/2015-16

A closed loop system is shown below. Find the 11. a) characteristic equation of z-domain for the sample data system. State whether the system is stable o not.

- What is meant by 'Anti-aliasing filters'?
- 12 + 3 x !
- 12. Write short notes on any three of the following:
 - Jump resonance
 - Controllability and observability
 - State space model of field controlled d.c. motor
 - Pole placement method
 - Mapping of S-plane to Z-plane.