Siddharth Mishra

M: (201) 912-1227 • sidd.mishra@berkeley.edu • linkedin.com/in/sidd-mishra

EDUCATION

UNIVERSITY OF CALIFORNIA, BERKELEY

GPA: 3.94

BS in Electrical Engineering and Computer Science (EECS)

Expected Spring 2026

Relevant Course Work: Probability and Random Processes, Efficient Algorithms and Intractable Problems, Artificial Intelligence and LLMs, Applications of Machine Learning, Risk Management in Financial Institutions, DSA, OS, Multivariable Calculus, Advanced Linear Algebra

SKILLS

CS: Python (Pandas, NumPy, SciPy), C/C++, Machine Learning (Python, R), Snowflake, Java, Kafka, SQL, Git Math: Stochastic Calculus, Probability, Linear Algebra, Multivariable Calculus, Financial Modeling, Algorithm Development Soft Skills: Problem Solving, Logical Reasoning, Analytical Thinking, Effective Communication, Teamwork, Multitasking, Detail-oriented

EXPERIENCE

Jefferies Investment Banking — Software Engineering Intern, New York City, NY

May 2024 - Present

- Developing a Data Vault 2.0 (Python) model integrating Pandas into Snowflake to enhance securities warehouse architecture
- Integrating 25+ complex financial systems, facilitating efficient data retrieval for in-house quantitative market analysis
- Optimized ETL pipelines and data retrieval mechanisms, achieving an average of >20% reduction in query latency

Aristocrat Gaming — Computational Engineering Intern, New Delhi, India

Jun 2023 - Aug 2023

- Automated slot simulations (C/C++) by applying complex probabilistic models to verify the Return To Player (RTP)
- Performed deep-dive data analysis alongside mathematicians, significantly improving the logical models for risk management
- Utilized decision trees and logistic regression to analyze player behavior patterns which led to a 10% increase in user retention rate

Berkeley Imaging Systems Lab — Undergraduate Researcher, Berkeley, CA

Oct 2022 - Present

- Developed advanced FFT algorithms (MATLAB) for MRI image reconstruction, achieving 25% increase in diagnostic precision
- Optimized image processing pipelines and applied vectorized linear algebra techniques to reduce computational overhead by 40%
- Working with a team of computer scientists and radiologists to integrate deep learning models using TensorFlow

Space Technology and Rocketry — Avionics Team Lead, Berkeley, CA

Sep 2022 - Present

- Implementing precise Arduino software to initiate main parachute deployment at a predetermined altitude
- Engineered an ingenious minimal noise mechanism structure, leading to a \$5000 reduction in instrumentation cost
- Developed a working deployment PCB and support power distributions for other parts of the payload

PROJECTS

Quantitative Analysis and Strategy Optimization for Sports Betting, Berkeley, CA

- Engineered predictive sports betting models using Support Vector Machines and Neural Networks and achieved >77% accuracy
- Optimized betting using statistical arbitrage and Kelly criterion, achieving a Sharpe Ratio of 1.8 through refined back-testing
- Developed a Monte Carlo-based risk management system to dynamically adjust betting sizes and maximize return on investment

E-Motion: Impact of Social Media on market adjustments, Berkeley, CA

- Developed ARIMA and Random Forest models to forecast stock prices based on sentiment analysis, achieving 92% accuracy
- Used NLP to analyze tweets and news, correlating sentiment scores with stock prices, with a predictive accuracy RMSE of 0.28%
- Established rapid market response to sentiment shifts, with significant stock price changes within 30 minutes of tweet publication

Voice-controlled Car with Maze-solving capabilities, Berkeley, CA

- Programmed a voice-controlled car from scratch in C++ and Python and implemented a PCB and breadboard mixed design
- Implemented direction mechanisms using SVD and k-NN classification for machine learning
- Encoded brushed motors, sensor integration, control theory and implemented pathfinding capability using the A* Algorithm

BYoW: Game for generating explorable worlds, Berkeley, CA

- Developed a 2D tile-based game from scratch using the engine to build explorable worlds in Java
- Included features like random map generation, save and load structures, random encounters, and teleportation vents
- Implemented an **A* and Kruskal's MST algorithm** to generate valid hallways and rooms