

Neural ODE meeting reading

For meeting in Data Analytics

Yingzi Bu August 8, 2024

- two compartment model math derivation
- My code for two compartment model on github
- My code for one compartment model with gradient descent for optimization

One compartment, first order PO ODE derivation

First order, thus ODE:

$$\begin{split} \frac{\mathrm{d}A_a}{\mathrm{d}t} &= -K_aA_a, & \text{IC}: A_a = D \text{ when } t = 0; \\ \frac{\mathrm{d}A_c}{\mathrm{d}t} &= K_aA_a - KA_c, & \text{IC}: A_c = 0 \text{ when } t = 0; \end{split}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} A_a \\ A_c \end{bmatrix} = \begin{bmatrix} -K_a & 0 \\ K_a & -K \end{bmatrix} \begin{bmatrix} A_a \\ A_c \end{bmatrix}$$

Solve for eigenvalues and eigenvectors and we obtain

$$\lambda_1 = -K_a,$$
 $\mathbf{v}_1 = \begin{bmatrix} K - K_a \\ K_a \end{bmatrix}$ $\lambda_2 = -K,$ $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Thus the equation is

$$\begin{bmatrix} A_a \\ A_c \end{bmatrix} = C_1 \mathbf{v}_1 \exp(-K_a t) + C_2 \mathbf{v}_2 \exp(-K t)$$

in which C_1 and C_2 are constants. Given the initial conditions, we could obtain $C_1 = \frac{D}{K - K_a}$ and $C_2 = \frac{-K_a D}{K - Ka}$, thus the final equation will be:

$$\begin{bmatrix} A_a \\ A_c \end{bmatrix} = \frac{D}{K - K_a} \begin{bmatrix} K - K_a \\ K_a \end{bmatrix} \exp(-K_a t) + \frac{-K_a D}{K - K a} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \exp(-K t)$$

We are interested in central compartment which could represent the plasma drug amount/concentration

$$A_{c} = \frac{K_{a}D}{K_{a} - K} (e^{-Kt} - e^{-K_{a}t})$$

$$Conc = \frac{A_{c}}{V_{d}} = \frac{K_{a}D}{(K_{a} - K)V_{d}} (e^{-Kt} - e^{-K_{a}t})$$

Two compartment, first order PO ODE derivation

First order, thus ODE:

$$\begin{split} \frac{\mathrm{d}A_{a}}{\mathrm{d}t} &= -K_{a}A_{a}, & \text{IC}: A_{a} = D \text{ when } t = 0; \\ \frac{\mathrm{d}A_{c}}{\mathrm{d}t} &= K_{a}A_{a} - (K_{10} + K_{12})A_{c} + K_{21}A_{p}, & \text{IC}: A_{c} = 0 \text{ when } t = 0; \\ \frac{\mathrm{d}A_{c}}{\mathrm{d}t} &= K_{12}A_{c} - K_{21}A_{p}, & \text{IC}: A_{p} = 0 \text{ when } t = 0; \end{split}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} A_a \\ A_c \\ A_p \end{bmatrix} = \begin{bmatrix} -K_a & 0 & 0 \\ K_a & -K_{10} - K_{12} & K_{21} \\ 0 & K_{12} & -K_{21} \end{bmatrix} \begin{bmatrix} A_a \\ A_c \\ A_p \end{bmatrix}$$

Let
$$M = \begin{bmatrix} -K_a & 0 & 0 \\ K_a & -K_{10} - K_{12} & K_{21} \\ 0 & K_{12} & -K_{21} \end{bmatrix}$$

Solve for eigenvalues and eigenvectors, we need to calculate $det(M - \lambda \mathbf{I}) = 0$ and we obtain

$$\det\begin{pmatrix} -K_a - \lambda & 0 & 0\\ K_a & -K_{10} - K_{12} - \lambda & K_{21}\\ 0 & K_{12} & -K_{21} - \lambda \end{pmatrix} = 0$$

which is

$$(-K_a - \lambda)[(-K_{10} - K_{12} - \lambda)(-K_{21} - \lambda) - K_{12}K_{21}] = 0$$

We could observe that $\lambda_1 = -K_a$, we would solve the other 2 λ s for

$$\begin{split} (-K_{10}-K_{12}-\lambda)(-K_{21}-\lambda)-K_{12}K_{21} &= 0\\ \lambda^2+(K_{10}+K_{12}+K_{21})\lambda+K_{10}K_{21} &= 0\\ \text{Let } \alpha+\beta &= K_{10}+K_{12}+K_{21}, \text{ and } \alpha\beta &= K_{10}K_{21}\\ \text{thus } \lambda^2+(\alpha+\beta)\lambda+\alpha\beta &= 0\\ (\lambda+\alpha)(\lambda+\beta) &= 0 \end{split}$$

Thus,

$$\lambda_2 = -\alpha, \lambda_3 = -\beta$$

Since two $\lambda = \frac{-(K_{10}+K_{12}+K_{21})\pm\sqrt{\Delta}}{2}$ in which $\Delta = (K_{10}+K_{12}+K_{21})^2 - 4K_{10}K_{21}$, we could obtain

$$\alpha, \beta = \frac{(K_{10} + K_{12} + K_{21}) \pm \sqrt{\Delta}}{2} \tag{1}$$

$$\lambda_{1} = -K_{a}, \qquad \mathbf{v}_{1} = \begin{bmatrix} \frac{(K_{10} - K_{a})(K_{21} - K_{a})}{K_{a}} - K_{12} \\ K_{21} - K_{a} \\ K_{12} \end{bmatrix}$$

$$\lambda_{2} = -\alpha, \qquad \mathbf{v}_{2} = \begin{bmatrix} 0 \\ K_{21} - \alpha \\ K_{12} \end{bmatrix}$$

$$\lambda_{3} = -\beta, \qquad \mathbf{v}_{3} = \begin{bmatrix} 0 \\ K_{21} - \beta \\ K_{12} \end{bmatrix}$$

Thus the equation is

$$\begin{bmatrix} A_a \\ A_c \\ A_p \end{bmatrix} = C_1 \mathbf{v}_1 \exp(-K_a t) + C_2 \mathbf{v}_2 \exp(-\alpha t) + C_3 \mathbf{v}_3 \exp(-\beta t)$$

in which C_1 and C_2 and C_3 are constants. Given the initial conditions $\begin{bmatrix} A_a \\ A_c \\ A_p \end{bmatrix} = \begin{bmatrix} D \\ 0 \\ 0 \end{bmatrix}$ at t=0, we could obtain

$$C_{1} = \frac{DK_{a}}{(K_{10} - K_{a})(K_{21} - K_{a}) - K_{12}K_{a}}$$

$$C_{2} = C_{1} \frac{-K_{a} + \beta}{\alpha - \beta}$$

$$C_{3} = C_{1} \frac{K_{a} - \alpha}{\alpha - \beta}$$