Cours d'Algèbre et géométrie I

Bernhard Keller

écrit par Xavier Durand avec les graphes de Tristan François

11/09/2018 - 11/12/18

Table des matières

1	Groupes		2
	1.1	Motivation	2
	1.0	1.1.1 Éléments de symétrie	2
		Définition et premiers exemples	2
		Sous-groupe	4
	1.4	O T O T O T O T O T O T O T O T O T O T	6
	1.5	Morphismes de groupes	6
	1.6		10
	1.7	Les treillis de sous-groupes	11
2	Acti	Actions de groupes	
	2.1	Relations d'équivalence	15
	2.2	Définition d'une action de groupe	
	2.3	Orbites et stabilisateurs	19
	2.4	Aspects numériques	21
			22
3		1 , 1	24
	3.1		24
		3.1.1 Transpositions et cycles	
	3.2	La signature	28
4	Sous-groupes distingués, groupes quotients 30		
	4.1	Sous-groupes distingués	30
	4.2	Groupes quotients	32
	4.3	Passage au quotient des morphismes de groupes	34
5	Sou	s-groupes de Sylow	37
		· · · · · · · · · · · · · · · · · · ·	37
		<u> -</u>	39
			40
6			43
		1	43
		Produit semi-direct externe	
			46
			47
	6.5		48
	6.6	6 · F · · · · · · · · · · · · · · · · ·	49
	6.7	0 1	51
		6.7.1 Classification des <i>p</i> -groupes abéliens	53
7	Unı	peu de géométrie affine	55
			55
	7.2	-	56
	73	•	58

Chapitre 1

Groupes

1.1 Motivation

1.1.1 Éléments de symétrie

- 3 symétries orthogonales : σ_A , σ_B , σ_C
- rotation ρ d'angle $\frac{2\pi}{3}$
- rotation ρ^2 d'angle $\frac{4\pi}{3}$
- l'identité

 $D_3 = \{Id, \sigma_A, \sigma_B, \sigma_C, \rho, \rho^2\} \text{ est un groupe diédral.}$

On peut composer les éléments de l'ensemble D_3 et on restera dans D_3 . La composition est associative.

Elle admet un élément neutre, l'identité.

Chaque élément admet un inverse.

FIGURE 1.1 – Le groupe diédral D₃

1.2 Définition et premiers exemples

Définition 1.2.1

Un groupe est un couple (G, *)*, où G est un ensemble et :*

$$*: G \times G \to G, (g,h) \mapsto g * h$$

est son appellation telle que:

1. * est associative, c'est à dire:

$$(x * y) * z = x * (y * z)$$

2. * admet un élément neutre e, c'est à dire :

$$e * x = x = x * e$$

3. tout élément $x \in G$ admet un inverse x, c'est à dire :

$$x * x' = e = x' * x$$

Remarque 1.2.2

- 1. Souvent, on écrit xy au lieu de x*y
- 2. L'élément neutre e est unique : en effet, si e' est un deuxième élément neutre, on a :

$$e = e'e = e'$$

3. L'inverse est unique : en effet, soit x" un deuxième inverse. On a :

$$x'' = ex'' = (x'x)x'' = x'(xx'') = x'e = x'$$

On note désormais x^{-1} l'inverse de x.

4. Pour tous $x, y \in G$, on a $(xy)^{-1} = y^{-1}x^{-1}$. En effet, on a :

$$(xy)(y^{-1}x^{-1}) = (x(yy^{-1}))x^{-1} = (xe)x^{-1} = e$$
$$(y^{-1}x^{-1})(xy) = y^{-1}(x^{-1}(xy)) = y^{-1}(ey)$$

Définition 1.2.3

Un groupe G est abélien ou commutatif si xy=yx, pour tous x, y \in *G.*

Remarque 1.2.4

Souvent, on note + la loi de groupe d'un groupe abélien. On note alors 0, l'élément neutre et -x l'élément inverse de $x \in G$.

Exemple 1.2.5

- 1. $D_3 = \{Id, \sigma_A, \sigma_B, \sigma_C, \rho, \rho^2\}$ n'est pas commutatif car $\sigma_C \circ \sigma_A = \rho$ et $\sigma_A \circ \sigma_C = \rho^{-1} = \rho^2 \neq \rho$.
- 2. $(\mathbb{Z}, +)$ est un groupe abélien.
- 3. $(\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$ sont des groupes abéliens.
- 4. $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$ est un groupe abélien pour la multiplication. De même pour \mathbb{R}^* et \mathbb{C}^* .
- 5. Si E est un espace vectoriel sur \mathbb{R} ou \mathbb{C} , alors (E, +) est un groupe abélien.
- 6. Soit $n \ge 1$ un entier, alors l'ensemble $GL_n(\mathbb{R})$ des matrices inversibles $n \times n$ est un groupe pour la multiplication des matrices. Il est abélien ssi n = 1. De même pour $GL_n(\mathbb{Q})$ et $GL_n(\mathbb{C})$.
- 7. Soit X un ensemble (fini ou infini). Le groupe symétrique \mathfrak{S}_X est formé des bijections $f: X \to X$. Sa multiplication est la composition des applications. Son élément neutre est Id_X . L'inverse d'une bijection $f: X \to X$ est la bijection réciproque $f^{-1}: X \to X$. En particulier, pour $n \ge 1$, on a le groupe symétrique :

$$\mathfrak{S}_n = \mathfrak{S}_{\{1,2,\dots,n\}} = \text{groupe de permutations de } \{1,\dots,n\}$$

Notons que $|\mathfrak{S}_n| = n!$.

Notation 1.2.6

Soit G un groupe. Soient g \in *G et n* \in \mathbb{N} .

On note g^n , l'élément de G défini par récurrence :

$$g^0 = e$$

$$g^{n+1} = g^n g, \forall n \ge 0$$

Si n > 0, on pose $g^{-n} = (g^n)^{-1}$.

Lemme 1.2.7

Soient G un groupe et $m, n \in \mathbb{Z}$. On a $g^{m+n} = g^m g^n$ et $(g^n)^{-1} = g^{-n}$.

Démonstration

Il faut distinguer des cas. Les détails sont laissés en exercice.

Lemme 1.2.8

Soient G et H deux groupes.

Posons:

$$K = G \times H = \{(g, h) | g \in G, h \in H\}$$

Alors K est un groupe pour la loi:

$$K \times K \rightarrow K$$
, $((g,h),(g',h')) \mapsto (gg',hh')$

Démonstration

Clairement la loi est associative. Elle admet $e_K = (e_G, e_H)$ pour élément neutre et l'inverse de (g, h) est $(g^{-1}, h^{-1}), \forall g \in G, h \in H.$

Définition 1.2.9

 $G \times H$ muni de cette loi est le groupe produit de G par H.

Exercice 1.2.10

 $G \times H$ est abélien ssi G et H sont abéliens.

1.3 Sous-groupe

Définition 1.3.1

Soit G un groupe. Un sous-groupe de G est une partie de $H \subseteq G$ telle que :

- 1. $e_G \in H$
- 2. $\forall h, h' \in H$, on $a hh' \in H$
- 3. $\forall h \in H$, on $ah^{-1} \in H$

Notation 1.3.2

On note $H \le G$ lorsque H est un sous-groupe de G.

Lemme 1.3.3

Une partie $H \subseteq G$ *est un sous-groupe ssi* $H \neq \emptyset$ *et pour tous* $h_1, h_2 \in H$, *on a* $h_1h_2^{-1} \in H$.

Démonstration

" \Rightarrow " $H \neq \emptyset$ car $e_G \in H$. Si $h_1, h_2 \in H$ alors $h_2^{-1} \in H$ (3.) et donc $h_1 h_2^{-1} \in H$ (2.).

" \Leftarrow " Comme H est non vide, on peut choisir un $h \in H$. Alors $hh^{-1} = e_G \in H$. Soient $h_1, h_2 \in H$. On a $h_2^{-1} = eh_2^{-1} \in H$. Donc $h_1h_2 = h_1(h_2^{-1})^{-1} \in H$

Remarque 1.3.4

- 1. Soit H un sous-groupe de G. Alors la loi de G induit une application $H \times H \to H$, $(h_1, h_2) \mapsto h_1 h_2$ (bien définie par 2.). Muni de cette loi, H devient un groupe d'élément neutre $e_H = e_G$. Désormais tout sous-groupe d'un groupe est considéré comme un groupe de cette façon.
- 2. Si $H \le G$ et $K \le H$, alors $K \le G$

Exemple 1.3.5

Soit G un groupe.

- 1. $\{e\} \le G$
- 2. $G \le G$
- 3. Posons $Z(G) = \{g \in G | hg = gh, \forall h \in G\}$ Clairement, on a $e \in Z(G)$. On montre ensuite que la multiplication de deux éléments de Z(G) est toujours dans Z(G).

Enfin, on montre que soient $g \in Z(G)$ et $h \in G$, on a $hg^{-1} = g^{-1}h$, donc $g^{-1} \in Z(G)$.

Par conséquent, Z(G) est un sous-groupe de G.

Définition 1.3.6

On appelle Z(G) le centre de G.

Exemple 1.3.7

$$Z(GL_n(\mathbb{R})) = \mathbb{R}^* \cdot I_n$$

Exemple 1.3.8 (de sous-groupes (suite))

Soit $n \ge 1$. Les parties suivantes sont des sous-groupes de $GL_n(\mathbb{R})$:

- $-- SL_n(\mathbb{R}) = \{ A \in GL_n(\mathbb{R}) | \det A = 1 \}$
- $O_n(\mathbb{R}) = \{ A \in GL_n(\mathbb{R}) | A^t A = I_n \}$
- $SO_n(\mathbb{R}) = SL_n(\mathbb{R}) \cap O_n(\mathbb{R})$

Notation 1.3.9

 $\mathbb{U} = \{ z \in \mathbb{C} \mid |z| = 1 \}$

 $\mathbb{U}_n = \{z \in \mathbb{C} \,|\, z^n = 1\} \ o\grave{u} \ n \geq 1$

 \mathbb{U}_n = racines n-ièmes de 1

Ce sont des sous-groupes de ℂ*

Remarque 1.3.10

On a $\mathbb{U}_n \leq \mathbb{U} \leq \mathbb{C}^*$ et $\mathbb{U}_n \leq \mathbb{U}_{mn} \ \forall n, m \geq 1$.

Notation 1.3.11

Pour $n \in \mathbb{Z}$, on pose:

 $n\,\mathbb{Z}=\{n\,k|\,k\in\mathbb{Z}\}$

Théoreme 1.3.12

- 1. $n\mathbb{Z} \leq \mathbb{Z}$
- 2. Soit H un sous-groupe de \mathbb{Z} . Il existe un et un seul $n \in \mathbb{N}$ tq $H = n\mathbb{Z}$. Si $H \neq \{0\}$, alors n est le plus petit entier strictement positif contenu dans H.

Démonstration

- 1. est clair
- 2. Soit $H \leq \mathbb{Z}$. Si $H = \{0\}$, alors $H = 0 \cdot \mathbb{Z}$. Supposons donc que $H \neq \{0\}$.

Soit $0 \neq x \in H$. Alors $-x \in H$. Donc H contient au moins un entier strictement positif. Soit $E = \{x \in H | x > 0\}$. Alors E est une partie non vide de \mathbb{N} .

Donc il existe dans E un plus petit élément n. Comme $n \in H$, on a $n \mathbb{Z} \subseteq H$.

Montrons que $n\mathbb{Z} \supseteq H$. Soit $x \in H$. Supposons x > 0, alors $x \in E$ et $x \ge n$.

La division euclidienne de x par n s'écrit x = nq + r, où $q, r \in \mathbb{Z}$ et $0 \le r < n$.

Comme x et nq sont dans H, r est dans H.

Or on a $0 \le r < n$ et n était le plus petit entier positif contenu dans H. Donc r = 0 et $x = nq \in n\mathbb{Z}$. Donc $H = n\mathbb{Z}$. Finalement, si m, n sont des entiers positifs et $m\mathbb{Z} = n\mathbb{Z}$, alors m = n.

1.4 Sous-groupe engendré par une partie

Soit *G* un groupe.

Lemme 1.4.1

Si $(G_i)_{i\in I}$ est une famille de sous-groupes, alors $\cap_{i\in I}G_i$ est encore un sous-groupe.

Démonstration

Exercice facile.

Définition 1.4.2

Soit S une partie de G. Si $S = \emptyset$, on pose $\langle S \rangle = \{e\}$. Si $S \neq \emptyset$, on pose:

 $\langle S \rangle = \bigcap_{H \ sous-groupe \ tq \ H \supseteq S} H$

On appelle $\langle S \rangle$ le sous-groupe engendré par S.

Remarque 1.4.3

 $\langle S \rangle$ est le plus petit des sous-groupe contenant S.

Définition 1.4.4

 $S \subseteq G$ est une partie génératrice si $\langle S \rangle = G$. G est monogène s'il admet un singleton comme partie génératrice. G est cyclique s'il est monogène et fini.

Exemple 1.4.5

 $(\mathbb{Z}, +)$ est monogène (engendré par $S = \{1\}$) et infini. \mathbb{U}_n , $n \ge 1$, est monogène et fini, donc cyclique.

Lemme 1.4.6

Soit S une partie non vide de G. On a:

$$\langle S \rangle = \{g_1 g_2 ... g_n | n \in \mathbb{N}, g_i \in S \text{ ou } g_i^{-1} \in S \text{ pour tout } i\}$$

Démonstration

Notons H le membre de droite. Clairement, H est un sous-groupe et contient S. Donc $H \supseteq \langle S \rangle$. Soit K un autre sous-groupe contenant S. Alors pour tout $s \in S$, on a $s \in K$ et $s^{-1} \in K$. Comme K est stable par produit, K contient H donc H est le plus petit sous-groupe de G contenant S, cad $H = \langle S \rangle$.

1.5 Morphismes de groupes

Définition 1.5.1

Soient G et H deux groupes. Un morphisme de groupes (appelé aussi homomorphisme) est une application $f: G \to H$ tq $f(xy) = f(x)f(y) \ \forall x,y \in G$

Remarque 1.5.2

Dans ce cas, on a automatiquement $f(e_H) = e_H$ et $f(x^{-1}) = f(x)^{-1}$, $\forall x \in G$ En effet, on a :

f(e) = f(ee) = f(e)f(e). En multipliant à gauche par $f(e)^{-1}$, on trouve e = f(e) $f(x^{-1})f(x) = f(x^{-1}x) = f(e) = e$. En multipliant à droite par $f(x)^{-1}$, on trouve $f(x^{-1}) = f(x)^{-1}$

Exemple 1.5.3

- 1. $x \mapsto exp(x)$ est un morphisme de groupe de $(\mathbb{R}, +)$ vers (\mathbb{R}^*, \cdot)
- 2. $x \mapsto ln(x)$ est un morphisme de groupe de (\mathbb{R}^*,\cdot) vers $(\mathbb{R},+)$
- 3. det : $GL_n(\mathbb{R}) \to \mathbb{R}^*$ est un morphisme de groupes. De même pour $GL_n(\mathbb{C})$ et $GL_n(\mathbb{Q})$
- 4. Soient E et F deux espaces vectoriels sur \mathbb{R} , soit $f: E \to F$ une application linéaire. Alors en particulier, f est un morphisme de groupes de (E, +) vers (F, +).
- 5. Soient *G* un groupe et $H \le G$ un sous-groupe. Alors l'inclusion $H \mapsto G$ est un morphisme de groupe

Théoreme 1.5.4

Soit G un groupe. Pour tout $g \in G$, il existe un unique morphisme de groupes $f: (\mathbb{Z}, +) \to G$ tel que f(1) = g.

Démonstration

Pour l'existence, posons $f(n)=g^n, n\in\mathbb{Z}$, alors $f(1)=g^1=g$ et $f(m+n)=g^{n+m}=g^ng^m=f(n)f(m)$ pour tous $n,m\in\mathbb{Z}$

Pour l'unicité, notons que si n > 1, on a $f(n) = f(1 + ... + 1) = f(1)...f(1) = g...g = g^n$ On doit aussi avoir f(0) = e et $f(-n) = f(n)^{-1} = g^{-n}$ pur tout n > 0.

Théoreme 1.5.5

Soient G un groupe et $n \ge 1$. Pour tout $g \in G$ ta $g^n = e$, il existe un unique morphisme de groupes $f : \mathbb{U}_n \to G$ ta f(c) = g, où $c = e^{\frac{2\pi i}{n}}$

Démonstration

On a $\mathbb{U}_n = \{1, c, ..., c^{n-1}\}.$

Montrons l'unicité. On doit avoir :

$$f(c^k) = f(c)^k = g^k$$
 $\forall 0 \le k \le n-1$

Pour montrer l'existence, définissons f par cette formule. Vérifions que f est un morphisme. Soient $0 \le k \le n-1$. Soit k+l=qn+r, la division euclidienne de k+l par n. On a :

$$f(c^kc^l) = f(c^{k+l}) = f(c^r) = g^r$$

$$f(c^k)f(c^l) = g^k g^l = g^{k+l} = g^r$$

П

Lemme 1.5.6

- $1. \ \ La \ compos\'ee \ de \ deux \ morphismes \ de \ groupes \ est \ un \ morphisme \ de \ groupes \ .$
- 2. Si $f: G \to H$ est un morphisme de groupes et f est bijectif, alors l'application réciproque $f^{-1}: H \to G$ est encore un morphisme de groupes .

Démonstration

1. Soient $G \xrightarrow{\psi} H \xrightarrow{\varphi} K$ des morphismes de groupes . Pour $x, y \in G$, on a :

$$\varphi\circ\psi(x,y)=\varphi(\psi(xy))=\varphi(\psi(x)\psi(y))=\varphi(\psi(x))\varphi(\psi(y))=\varphi\circ\psi(x)\cdot\varphi\circ\psi(y)$$

2. Soient $x, y \in H$. Il s'agit de monter que :

$$f^{-1}(xy) = f^{-1}(x)f^{-1}(y)$$

Comme f est injective, il suffit de monter que les images par f des deux cotés sont égales. En effet, on a :

$$f(f^{-1}(xy)) = xy \ et \ f(f^{-1}(x)f^{-1}(y)) = xy$$

Définition 1.5.7

Un isomorphisme est un morphisme de groupes bijectif. Deux groupes G et H sont isomorphes s'il existe un isomorphisme $f: G \to H$.

On écrit alors $G \cong H$, et on écrit une flèche $\stackrel{\sim}{\to}$ pour désigner un isomorphisme.

Exemple 1.5.8

- 1. On a des isomorphismes inverses l'un de l'autre (exp et ln)
- 2. Soit $\sigma \in \mathfrak{S}_2$ tq $\sigma(1) = 2$ et $\sigma(2) = 1$. On a un isomorphisme :

$$(\{\pm 1\}, \cdot) \xrightarrow{\sim} \mathfrak{S}_2$$

$$1 \qquad \mapsto \qquad Id$$

$$-1 \qquad \mapsto \qquad \sigma$$

3. Soit D_3 le groupe des symétries d'un triangle équilatéral ($D_3 = \{Id, \sigma_A, \sigma_B, \sigma_C, \rho, \rho^2\}$), on a :

$$f: D_3 \stackrel{\sim}{\to} \mathfrak{S}_3$$

en envoyant chaque élément de symétrie g sur la permutation des sommets f(g) qu'il induit.

Définition 1.5.9

Soit G un groupe. Un automorphisme de G est un isomorphisme $f: G \to G$.

On note Aut(G) l'ensemble des automorphismes de G. C'est un sous-groupe du groupe symétrique \mathfrak{S}_G de l'ensemble G.

Exemple 1.5.10

Pour tout $g \in G$, on a l'application de conjugaison par g:

$$c_g: G \to G, x \mapsto gxg^{-1}$$

C'est un morphisme de groupes car $c_g(xy) = c_g(x)c_g(y)$

C'est bijectif : sa réciproque est $c_{g^{-1}}$ car $c_{g^{-1}}(c_g(x)) = x \ \forall x \in G$ et $c_g(c_{g^{-1}}(x)) = x \ \forall x \in G$

Donc c_g est un automorphisme de G appelé l'automorphisme intérieur associé à g.

Propriété 1.5.11

- 1. L'application $G \to Aut(G)$, $g \mapsto c_g$ est un morphisme de groupes
- $2.\ \ L'ensemble\ des\ automorphismes\ intérieurs\ est\ un\ sous-groupe\ de\ Aut(G)$

Démonstration

En exercice.

Soient G et H deux groupes et $f: G \rightarrow H$ un morphisme.

Définition 1.5.12

Le noyau de f est:

$$Ker(f)=\{g\in G|f(g)=e\}\subseteq G$$

L'image de f est:

$$Im(f) = \{f(g) | g \in G\} \subseteq H.$$

.

Théoreme 1.5.13

- 1. $Ker(f) \leq G$
- 2. $Ker(f) = \{e\}$ ssi f est injective
- 3. $Im(f) \leq H$
- 4. Im(f) = H ssi f est surjective

Démonstration

1. On a $e \in Ker(f)$ car f(e) = e. Soient $x, y \in Ker(f)$, alors :

$$f(xy^{-1}) = f(x) f(y)^{-1} = e.e^{-1}$$

Donc $xy^{-1} \in Ker(f)$

- 2. Supposons f injective. Alors f(g) = e = f(e) implique g = e. Donc $Ker(f) = \{e\}$. Réciproquement, supposons que $Ker(f) = \{e\}$. Soient $x, y \in G$ tq f(x) = f(y). Alors $f(xy^{-1}) = f(x)f(y)^{-1} = e$. Donc $xy^{-1} \in Ker(f) = \{e\}$. Donc $xy^{-1} = e$ et x = y.
- 3. On a $e = f(e) \in Im(f)$. Soient $f(x), f(y) \in Im(f)$. Alors:

$$f(x)f(y)^{-1} = f(x)f(y^{-1}) = f(xy^{-1}) \in Im(f)$$

4. est clair.

Théoreme 1.5.14

- 1. Soit G' un sous-groupe de G. Alors f(G') est un sous-groupe de Im(f)
- 2. Soit H' un sous-groupe de H. Alors $f^{-1}(H')$ est un sous-groupe de G contenant Ker(f)
- 3. Les applications $G' \mapsto f(G')$ et $H' \mapsto f^{-1}(H')$ sont des bijections inverses l'une de l'autre entre l'ensemble des sous-groupes de G contenant Ker(f) et l'ensemble des sous-groupes de Im(f)

Démonstration

1. On a $e = f(e) \in f(G')$. Si $x, y \in G'$ et donc $f(x), f(y) \in f(G')$, alors :

$$f(x)f(y)^{-1} = f(xy^{-1}) \in f(G')$$

2. On a $f(e) = e \in H'$ donc $e \in f^{-1}(H')$.

Soient $x, y \in f^{-1}(H')$, alors :

$$f(xy^{-1}) = f(x)f(y)^{-1} \in H'$$

Donc $xy^{-1} \in H'$.

3. Soit $G' \leq G$ un sous-groupe contenant Ker(f), alors clairement $G' \subseteq f^{-1}(f(G'))$ Réciproquement, soit $x \in f^{-1}(f(G'))$. Alors $f(x) \in f(G')$. Soit $y \in G'$ tq f(x) = f(y). Alors $y^{-1}x \in Ker(f) \subseteq G'$. Donc:

$$x = y \cdot y^{-1} x \in G'$$

Soit H' un sous-groupe de Im(f). Alors clairement $H' \supseteq f(f^{-1}(H'))$. Réciproquement, soit $f(g) \in H'$. Alors $g \in f^{-1}(H')$ et $f(g) \in f(f^{-1}(H'))$.

9

1.6 Ordre d'un élément

Soit *G* un groupe.

Définition 1.6.1

L'ordre de G est le cardinal |G| de l'ensemble G.

Exemple 1.6.2

- 1. L'ordre de $(\mathbb{Z}, +)$ est infini
- 2. L'ordre de \mathbb{U}_n est n

Notation 1.6.3

Pour $g \in G$, *on pose* $\langle g \rangle := \langle \{g\} \rangle$.

Propriété 1.6.4

Soit $g \in G$. On suppose qu'il existe $n \ge 1$ tq $g^n = e$.

- 1. On $a \langle g \rangle = \{g^i | 0 \le i \le n-1\}$. En particulier, l'ordre de $\langle g \rangle$ est $\le n$
- 2. Si on note d l'ordre de $\langle g \rangle$, alors :

$$d=min\{t\geq 1|g^t=e\}$$

Démonstration

1. " \supseteq " est clair. Réciproquement, on sait que tout élément de $\langle g \rangle$ est de la forme g^i pour un $i \in \mathbb{Z}$. Soit i = qn + r la division euclidienne de i par n. Alors on a :

$$g^i=g^{qn+r}=g^r\in\{g^k|0\leq k\leq n-1\}$$

2. Posons $s = min\{t \ge 1 | g^t = e\}$. Alors par 1), on a :

$$\langle g \rangle = \{ g^i | 0 \le i \le s - 1 \}$$

Pour $0 \le i < j \le s-1$, les puissances g^i et g^j sont distinctes. Sinon, on aurait $g^{j-i} = e$ mais j-i < s. Donc $s = |\langle g \rangle| = d$.

Définition 1.6.5

Soit $g \in G$. Si $\langle g \rangle$ est infini, l'ordre de g est infini. Si $\langle g \rangle$ est fini, l'ordre de g est le plus petit entier $d \ge 1$ tq $g^d = e$

Remarque 1.6.6

- 1. Donc on a que l'ordre de g est égal à l'ordre de $\langle g \rangle$
- 2. Si $d < \infty$ est l'ordre de G, alors :

$$d\mathbb{Z} = \{n \in \mathbb{Z} \mid g^n = e\}$$

3. Etant donné $t \ge 1$, l'élément g est d'ordre t ssi $g^t = e$ et $g^{t'} \ne e$ pour tout diviseur strict t' de t.

Exemple 1.6.7

Soient $n \ge 1$ et $k \in \mathbb{Z}$. Soit $c = e^{\frac{2\pi i}{n}} \in \mathbb{U}$. Alors $c^k \in \mathbb{U}_n$ est d'ordre $\frac{ppcm(n,k)}{k}$

Théoreme 1.6.8 (Théorème de Lagrange)

Soit G un groupe fini. Alors, l'ordre de tout sous-groupe $G' \leq G$ divise l'ordre de G.

Corollaire 1.6.9

Soit G un groupe fini. Alors tout élément $g \in G$ est d'ordre fini et son ordre divise l'ordre de G.

Conséquence 1.6.10

Soit G un groupe fini dont l'ordre est un nombre premier.

Alors tout sous-groupe de G est égal à G ou à {e}.

En particulier, si $e \neq g \in G$, alors $G = \langle g \rangle$. Donc G est cyclique.

Démonstration

Soit H un sous-groupe de G.

Pour $g \in G$, on pose :

$$gH = \{gh | h \in H\}$$

alors |gH| = |H|, $\forall g \in G$, car on a les bijections réciproques l'une de l'autre : $H \to gH$, $h \mapsto gh$ et $gH \to H$, $x \mapsto g^{-1}x$.

Montrons que pour tous $g, g' \in G$, on a :

$$gH \cap g'H \neq 0 \Rightarrow gH = g'H$$

En effet, si on a gh = g'h', pour $h, h' \in H$, alors pour $h'' \in H$, on a :

$$gh'' = g'g'^{-1}gh'' = g'h'h^{-1}h'' \in g'H$$

Donc $gH \subseteq g'H$ et de même $g'H \subseteq gH$. Donc gH = g'H.

Notons que la réunion des gH, $g \in G$, est G car $g = g \cdot e \in gH$, pour $g \in G$. Il s'ensuit que $\{gH | g \in G\}$ est une partition de G.

П

Chaque gH a le même nombre d'éléments : |H|

Donc $|G| = |H| \cdot |\{gH | g \in G\}|$.

1.7 Les treillis de sous-groupes

Définition 1.7.1

Soit X un ensemble. Une relation R sur X est un sous-ensemble $R \subseteq X \times X$.

On note xRy ("x est en relation avec y") lorsque $(x, y) \in R$.

Définition 1.7.2

Une relation R est une relation d'ordre ssi :

- (réflexivité) $\forall x \in X$, xRx
- (antisymétrie) $\forall x, y \in X (xRy \ et \ yRx) \Rightarrow x = y$
- $(transitivit\acute{e}) \forall x, y, z \in X (xRy \ et \ yRz) \Rightarrow xRz$

Définition 1.7.3

Un ensemble (X, R) muni d'une relation d'ordre s'appelle un ensemble ordonné.

Exemple 1.7.4

- 1. (ℝ,≤) est un ensemble ordonné.
- 2. Soit $n \ge 1$, X l'ensemble des diviseurs positifs de n, avec R la relation $xRy \Leftrightarrow x \ divise \ y$, est un ensemble ordonné.
- 3. *X* un ensemble, P(x) l'ensemble des parties de *X* avec $ARB \Rightarrow A \subseteq B$

Définition 1.7.5

Soit (X, R) un ensemble ordonné et soit $A \subseteq X$ un ensemble. Un minorant (resp majorant) de A est un $x \in X$ $tq xRa \ \forall a \in A$ (resp $aRx, \ \forall a \in A$), le plus petit (resp le plus grand) élément de A est un minorant (resp un majorant) qui est dans A.

Dorénavant notons \leq toute relation d'ordre sur un ensemble X.

Définition 1.7.6

Un treillis est un ensemble ordonné (X, \leq) tq $\forall (x, y) \in X \times X$ il existe dans X un plus petit majorant Sup(x, y) de $\{x, y\}$ et un plus grand minorant Inf(x, y) de $\{x, y\}$.

Exemple 1.7.7

- 1. (ℝ,≤) est un treillis (évident)
- 2. Soit $n \ge 1$ un entier, $X = \{d \in \mathbb{N} | d \ divise \ n\}$ muni de $x \le y \Leftrightarrow x | y$ est un treillis pour sup(k, l) = ppcm(k, l) (qui est encore un diviseur de n) et inf(k, l) = pgcd(k, l)
- 3. X un ensemble, P(x) l'ensemble des parties de X. $(P(x), \subseteq)$ est un treillis avec $A, B \in P(x)$ $\sup(A, B) = A \cup B$ et $\inf(A, B) = A \cap B$
- 4. V un K-espace vectoriel, K un corps $(\mathbb{R}, \mathbb{C}, ...)$, Gr(V) l'ensemble des sous K-espace vectoriel de V est un treillis pour \subseteq car :

 $\forall U, W \in Gr(V) \ sup(U, W) = \{u + w \in V | u \in U, w \in W\}$ est le plus petit sous espace vectoriel de V qui contient U et W, et $inf(U, W) = U \cap W$ est le plus grand sous espace vectoriel de V inclus dans U et dans V.

5. *G* un groupe, L(G) l'ensemble des sous-groupes de *G* est un treillis pour \subseteq car : $H, H' \in L(G)$ sup $(H, H') = \langle H, H' \rangle$ (groupe engendré par H et H'), et $inf(H, H') = H \cap H'$

Définition 1.7.8

Soit (X, \leq) un treillis. Son diagramme de Hasse est le graphe orienté où :

- les sommets sont les éléments $x \in X$
- on met une flèche $x \rightarrow y$ si y est minimal parmi les éléments > x.

Exemple 1.7.9

1. $(P(\{1,2\},\subseteq))$:

2. $(X = \{\text{ensemble des diviseurs de 20}\}, |), \text{ on a } X = \{1, 2, 4, 5, 10, 20\}:$

Lemme 1.7.10

Soit $n \ge 1$ *un entier,* $\zeta = e^{\frac{2i\pi}{n}} \in \mathbb{U}_n$.

Les sous-groupes de \mathbb{U}_n sont exactement les $\zeta^{d\mathbb{Z}}$ avec $d \mid n$. De plus $\zeta^{d\mathbb{Z}} \subseteq \zeta^{d'\mathbb{Z}} \Leftrightarrow d' \mid d$

Démonstration

Soit $e: \mathbb{Z} \to \mathbb{U}_n$, $k \mapsto \zeta^k$.

C'est un morphisme de groupes. Donc $\forall H$ sous-groupe de \mathbb{U}_n , $e^{-1}(H) = \{k \in \mathbb{Z} | e(k) \in H\}$ est un sousgroupe de \mathbb{Z} .

De plus $e^{-1}(H) \supseteq e^{-1}(1)$ (car $1 \in H$).

On connaît les sous-groupes de \mathbb{Z} : les $d\mathbb{Z}$.

 $\exists d \in \mathbb{N} \ tq \ e^{-1}(H) = d \mathbb{Z} \ \text{donc} \ e^{-1}(1) = \{k \in \mathbb{Z} \ | \zeta^k = e^{\frac{2i\pi k}{n}} = 1\} = n \mathbb{Z}$ Donc $n \in n \mathbb{Z} \subseteq d \mathbb{Z} \Rightarrow d \mid n$. Donc $H = \zeta^{d \mathbb{Z}} \ \text{avec} \ d \mid n$.

$$\zeta^{d\mathbb{Z}} \subseteq \zeta^{d'\mathbb{Z}} \Leftrightarrow d\mathbb{Z} \subseteq d'\mathbb{Z} \Leftrightarrow d'|d$$

Exemple 1.7.11

1. Treillis de \mathbb{U}_{20} :

D'après le lemme précédent, les sous-groupes de \mathbb{U}_{20} sont $\langle \zeta^{20} \rangle$, $\langle \zeta^{10} \rangle$, $\langle \zeta^5 \rangle$, $\langle \zeta^4 \rangle$, $\langle \zeta^2 \rangle$ et $\langle \zeta^1 \rangle$:

FIGURE 1.2 – Diagramme de Hasse du groupe \mathbb{U}_{20}

2. Treillis des sous-groupes de $D_3 = \{Id, \sigma_A, \sigma_B, \sigma_C, \rho, \rho^2\}$. Soit H un sous-groupe de D_3 , $|H| \in \{1, 2, 3, 6\}$, donc on a :

$$-- |H| = 1 \Rightarrow H = \{Id\}$$

$$- |H| = 2 \Rightarrow H = \langle \sigma_A \rangle, \langle \sigma_B \rangle, \langle \sigma_C \rangle$$

$$-- |H| = 3 \Rightarrow H = \langle \rho \rangle = \langle \rho^2 \rangle$$

FIGURE 1.3 - Diagramme de Hasse du groupe diédral 3

Ici, comme dans tous les diagrammes de Hasse de groupes à venir, les " - - - " représentent la relation de conjugaison par ρ .

3. Treillis des sous-groupes de D_4 , on pose :

- τ_i la réflexion par rapport à Δ_i
- ρ la rotation d'angle $\frac{2\pi}{4}$

On a $D_4 = \{Id, \rho, \rho^2, \rho^3, \tau_1, \tau_2, \tau_3, \tau_4\}.$ Soit H un sous-groupe de D_4 , $|H| \in \{1, 2, 4, 8\}$, donc on a :

- $-- |H| = 1 \Rightarrow H = \{Id\}$
- $-- |H| = 2 \Rightarrow H = \langle \rho^2 \rangle, \langle \tau_1 \rangle, \langle \tau_2 \rangle, \langle \tau_3 \rangle, \langle \tau_4 \rangle$
- $|H| = 4 \Rightarrow H = \langle \rho \rangle, \langle \tau_1, \tau_3 \rangle, \langle \tau_2, \tau_4 \rangle$

FIGURE 1.4 – Diagramme de Hasse du groupe diédral D_4

Chapitre 2

Actions de groupes

2.1 Relations d'équivalence

Définition 2.1.1

X un ensemble. Une relation R sur X est une relation d'équivalence ssi :

- 1. (réflexivité) $\forall x \in X \ xRx$
- 2. (symétrie) $\forall x, y \in X \ xRy \Leftrightarrow yRx$
- 3. $(transitivit\acute{e}) \forall x, y, z \in X (xRy \ et \ yRz) \Rightarrow xRz$

Exemple 2.1.2

Soit *G* un groupe.

- 1. $H \subseteq G$ un sous-groupe. On définit $g, g' \in G$ $g \sim_H g'$ si $\exists h \in H | g' = gh$. C'est une relation d'équivalence.
- 2. $\forall g, g' \in G$, on définit $g \sim g'$ si $\exists x \in G | g' = xgx^{-1}$. C'est une relation d'équivalence.
- 3. X = L(G) l'ensemble des sous-groupes de G avec la relation $H \sim H'$ si $\exists g \in G | H' = gHg^{-1}$

Définition 2.1.3

Soit (X,R) un ensemble muni d'une relation d'équivalence.

La classe d'équivalence de $x \in X$ est $\bar{x} = \{y \in X | xRy\}$.

 $Le\ quotient\ de\ X\ par\ R\ est\ X/R = \{\bar{x}|x\in X\}.$

 $X \rightarrow X/R$ L'application \tilde{x} s'appelle la surjection canonique.

Exemple 2.1.4

Dans le cas 1) de l'exemple précédent, $g \in G$, $\bar{g} = \{gh | h \in H\} = gH$ et on note $G / \sim_H = G/H$. G/H n'est pas un groupe en général.

Propriété 2.1.5

- 1. X/R est une partition de X
- 2. $\forall x, y \in X \ xRy \Leftrightarrow \bar{x} = \bar{y}$

Démonstration

1. Soit $\bar{x}, \bar{y} \in X/R$. Supposons $\bar{x} \cap \bar{y} \neq \emptyset$ et montrons que $\bar{x} = \bar{y}$.

 $\exists z \in \bar{x} \ et \ z \in \bar{y}.$

Montrons que $\bar{x} \subseteq \bar{y}$:

Soit $z' \in \bar{x}$, z'Rz et $zRz' \Rightarrow z'Ry \Rightarrow z' \in \bar{y}$.

On montre que $\bar{y} \subseteq \bar{x}$ par un raisonnement identique.

Cela montre que les classes d'équivalences sont disjointes ou confondues. Et $\forall x \in X \ x \in \bar{x}$. Donc les classes d'équivalences forment une partition de X.

2. " \Rightarrow " Supposons xRy, soit $z \in \bar{x}$, on a zRy $z \in \bar{y}$. Donc de même, on a $\bar{y} \subseteq \bar{x}$. Donc $\bar{x} = \bar{y}$ " \Leftarrow " Supposons $\bar{x} = \bar{y}$, $y \in \bar{y} = \bar{x}$, $y \in \bar{x}$, donc yRx.

Théoreme 2.1.6

Soit (X, R) un ensemble avec une relation d'équivalence.

Soit π la surjection canonique.

Soit f une application de X dans Y. Les assertions suivantes sont équivalentes :

- 1. $(\forall x, y \in R \ xRy \Rightarrow f(x) = f(y))$
- 2. $(\exists! \bar{f}: X/R \to Y \text{ telle que } f = \bar{f} \circ \pi)$

Démonstration

Supposons 1).

— unicité de \bar{f} : Si \bar{f}_1 et \bar{f}_2 vérifient $\bar{f}_1 \circ \pi = f = \bar{f}_2 \circ \pi$. Soit $\bar{x} \in X/R$ $\bar{x} = \pi(x)$, et on a:

$$\bar{f}_1(\bar{x}) = (\bar{f}_1 \circ \pi)(x) = f = (\bar{f}_2 \circ \pi)(x) = \bar{f}_2(\bar{x})$$

— Existence de \bar{f} :

Soit $\chi \in X/R$, $\exists x \in X | \pi(x) = \bar{x} = \chi$.

On pose $\bar{f}(\chi) = f(x)$. Cette définition est indépendante du choix de x, car :

si $y \in X$ vérifie $\pi(y) = \chi \Rightarrow \pi(x) = \pi(y)$

D'après le lemme , on a $xRy \Rightarrow f(x) = f(y)$. Donc cette définition définit une application $\bar{f}: X/R \to Y$ et elle vérifie $f = \bar{f} \circ \pi$ par construction.

Supposons 2). Soit $x, y \in X$, $xRy \Rightarrow \pi(x) = \pi(y) \Rightarrow (\bar{f} \circ \pi)(x) = (\bar{f} \circ \pi)(y) \Rightarrow f(x) = f(y)$

Remarque 2.1.7

Lorsque f vérifie 1. du théorème, on dit que f passe au quotient par R et que \bar{f} est induite par f.

Lemme 2.1.8

Soit (X, R), f vérifiant les assertions du théorème précédent :

- 1. \bar{f} est surjective $\Leftrightarrow f$ l'est aussi
- 2. \bar{f} est injective \Leftrightarrow $(\forall x, y \in X, f(x) = f(y) \Rightarrow xRy)$

Démonstration

- 1. Supposons \bar{f} surjective, $f = \bar{f} \circ \pi$ est surjective, car \bar{f} et π sont surjectives. Supposons f surjective, soit $y \in Y$, $\exists x \in X | f(x) = \bar{f}(\pi(x)) = y$, \bar{f} est surjective.
- 2. à faire en exercice

Propriété 2.1.9Soit $n \ge 1$ entier, soit e: $k \longrightarrow \frac{2\pi ik}{2\pi ik}$

Soit R la relation d'équivalence $xRy \Leftrightarrow n|x-y$.

Notons $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/R$, alors e induit une bijection $\bar{e}: \mathbb{Z}/n\mathbb{Z} \to \mathbb{U}_n$ avec $e = \bar{e} \circ \pi$

Démonstration

L'existence de \bar{e} découle du théorème et de $xRy \Leftrightarrow n|x-y \Leftrightarrow \exists k \in \mathbb{Z} | x=y+nk$.

Ceci implique que e(x) = e(y).

La surjection de \bar{e} découle du lemme et de la surjectivité de e.

L'injection de \bar{e} découle de $\forall x, y \in \mathbb{Z}$ $e(x) = e(y) \Leftrightarrow xRy$, et du lemme.

2.2 Définition d'une action de groupe

Définition 2.2.1

Soient X un ensemble, G un groupe. Une action de G sur X est une application $G \times X \to X$ $(g,x) \to g \cdot x$ telle que:

- 1. $\forall x \in X \ e \cdot x = x$
- 2. $\forall g, h \in G \ \forall x \in X \ (gh) \cdot x = g \cdot (h \cdot x)$

Définition 2.2.2

Un G-ensemble est un ensemble muni d'une action du groupe G.

Exemple 2.2.3

- 1. Le groupe diédral $D_3 = \{Id, \sigma_A, \sigma_B, \sigma_C, \rho, \rho^2\}$ agit sur l'ensemble $\{1, 2, 3\}$ des sommets du triangle équilatéral.
- 2. Le groupe symétrique \mathfrak{S}_n agit sur l'ensemble $X = \{1, \dots, n\}$ par $\sigma \cdot x := \sigma(x), \ \forall \sigma \in \mathfrak{S}_n, \ \forall x \in X$.

Soit G un groupe.

3. Soit $H \subseteq G$ un sous-groupe. Alors H agit sur G par :

$$H \times G \rightarrow G$$
, $(h, g) \mapsto hg$

On appelle cette action, l'action de *H* sur *G* par translation à gauche.

- 4. L'application $G \times G \to G$, $(g, x) \mapsto gxg^{-1}$ est une action de G sur lui-même (en effet, on a $e \cdot x = e \cdot x \cdot e^{-1} = x$, $\forall x \in G$ et $(gh) \cdot x = ghx(gh)^{-1}g(hxh^{-1})g^{-1} = g(hx)$, $\forall g, h \in G, \forall x \in G$). On l'appelle l'action de conjugaison de G sur lui-même.
- 5. Soit *X* l'ensemble des sous-groupes de *G*. L'application :

$$G \times X \to X$$
, $(g, K) \mapsto gKg^{-1}$

est une action de groupe. On l'appelle l'action de conjugaison de *G* sur l'ensemble de ses sous-groupes.

6. Soit $n \ge 1$. L'application :

$$GL_n(\mathbb{R}) \times \mathbb{R}^n \to \mathbb{R}^n$$
, $(g, v) \mapsto g(v)$

est une action de groupe.

7. Soit $n \ge 1$. L'application :

$$GL_n(\mathbb{R}) \times M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$$

 $(P,M) \mapsto PMP^{-1}$

est une action de groupe de $GL_n(\mathbb{R})$ sur $M_n(\mathbb{R})$.

Propriété 2.2.4

Soient G un groupe et X un ensemble.

1. Une action de G sur X: pour tout $g \in G$, soit $\varphi_g : X \to X$ l'application $x \mapsto gx$, alors $\varphi_g \in \mathfrak{S}_X$ et l'application $G \to \mathfrak{S}_X$ $g \mapsto \varphi_g$ est un morphisme de groupes.

2. Soit $f: G \to \mathfrak{S}_X$ est un morphisme de groupes. Alors il existe une unique action de G sur X tq:

$$g \cdot x = (f(g))(x), \ \forall g \in G, \forall x \in X$$

Comme le montre la proposition, on a une bijection naturelle entre l'ensemble des actions de G sur X et l'ensemble des morphismes de groupes de G vers \mathfrak{S}_X

Démonstration

1. Pour tout $g \in G$, l'application φ_g est bijective de réciproque $\varphi_{g^{-1}}$ car :

$$\varphi_g\varphi_{g^{-1}}(x)=\varphi_g(g^{-1}x)=g(g^{-1}x)=(gg^{-1})x=ex=x$$

et de la même façon:

$$\varphi_{g^{-1}}\varphi_g(x)=ex=x$$

On a pour $g, h \in G$:

$$\varphi_{gh}(x)=(gh)(x)=g(hx)=\varphi_g\circ\varphi_h(x),\ \forall x\in X$$

Donc l'application $g \mapsto \varphi_g$ est bien un morphisme de groupe $G \to \mathfrak{S}_X$

2. On définit l'application $G \times X \to X$ par $g \cdot x = (f(g))(x), \ \forall g \in G, \forall x \in X$, vérifions qu'il s'agit d'une action.

$$ex = (f(e))x = Id_X(x) = x, \forall x \in X$$

et

$$g(hx) = f(g(hx)) = f(g)(f(h)(x)) = (f(g) \circ f(h))(x) = f(gh)(x) = gh.x$$

pour tous $g, h \in G$ et tout $x \in X$

Définition 2.2.5

Soient G un groupe et X un ensemble. Une action à droite de G sur X est une application :

$$X \times G \to X, \ (x,g) \mapsto x \cdot g$$

telle que :

1.
$$x \cdot e = x$$
, $\forall x \in X$

2.
$$x \cdot (gh) = (xg) \cdot h, \ \forall g, h \in G, \ \forall x \in X$$

Exemple 2.2.6

Soit $n \ge 1$, alors l'application :

$$M_n(\mathbb{R}) \times GL_n(\mathbb{R}) \rightarrow M_n(\mathbb{R})$$

est une action à droite de $GL_n(\mathbb{R})$ sur $M_n(\mathbb{R})$.

Remarque 2.2.7

Soit X un ensemble muni d'une action à droite d'un groupe G. On définit $g \cdot x := x \cdot g^{-1} \ \forall g \in G$. C'est une action à gauche de G sur X car :

$$ex = xe^{-1} = xe = x$$

et

$$(gh)\cdot x = x(gh)^{-1} = x(h^{-1}g^{-1}) = (xh^{-1})g^{-1} = (hx)g^{-1} = g\cdot (hx)$$

 $\forall x \in X, \ \forall g, h \in G.$

On obtient ainsi une bijection entre les actions à droite de G sur X et les actions à gauche de G sur X.

2.3 Orbites et stabilisateurs

Soient *G* un groupe et *X* un *G*-ensemble.

Définition 2.3.1

Pour $x \in X$, l'orbite de x est :

$$G \cdot x = \{g \cdot x | g \in G\}$$

Le stabilisateur de x est :

$$Stab_G(x) = G_x = \{g \in G | g \cdot x = x\}$$

FIGURE 2.1 – Orbite de *x* sous *G*

Remarque 2.3.2

- 1. Soit $x \in X$. L'orbite $G \cdot x$ contient $x = e \cdot x$. Le stabilisateur G_x est un sous-groupe car $e \cdot x = x$, et g(hx) = gx = x, $\forall g, h \in G_x$, et si $g \in G_x$ alors $g^{-1} \in G_x$ car $g^{-1}x = x \Leftrightarrow g(g^{-1}x) = gx \Leftrightarrow ex = x$.
- 2. On définit de façon analogue les orbites et stabilisateurs d'une action à droite.

Exemple 2.3.3

Soit $H \subseteq G$ un sous-groupe.

- 1. Pour l'action $H \times G \to G$, $(h,g) \mapsto hg$, l'orbite d'un $g \in G$ est Hg, la classe à gauche modulo H de g.
 - Le stabilisateur de $g \in G$ est formé des $h \in H$ tq $hg = g \Leftrightarrow h = e$. Donc $Stab_H(g) = \{e\}$.
- 2. Pour l'action à droite:

$$G\times H\to G,\ (g,h)\mapsto gh$$

l'orbite de $g \in G$ est la classe à droite gH. En outre, $Stab_H(g) = \{e\}$

Propriété-Définition 2.3.4

Soit \sim la relation sur X tq:

$$x \sim y \Leftrightarrow y \in G \cdot x$$

Alors \sim est une relation d'équivalence sur X appelée la relation d'équivalence associée à l'action de G sur X

Démonstration

On vérifie que ~ est :

— réflexive : $x \sim x$ car x = ex

- symétrique : $x \sim y \sim y \sim x$ car $y = gx \Leftrightarrow g^{-1}y = x$
- transitive : Si $x \sim y$ et $y \sim z$, alors $x \sim z$ car si y = gx et z = hy, alors z = hy = h(gx) = (hg)x

Remarque 2.3.5

Pour tout $x \in X$, la classe d'équivalence de x est égale à l'orbite $G \cdot x$.

Définition 2.3.6

Le quotient de X par G est l'ensemble $G \setminus X := X / \sim$ formé des orbites de G dans X.

Remarque 2.3.7

On définit de façon analogue la relation d'équivalence et l'ensemble quotient d'une action à droite de G sur X.

L'ensemble quotient est alors noté X/G.

Propriété 2.3.8

L'ensemble des orbites est une partition de X.

Démonstration

En effet, ce sont des classes d'équivalence pour une relation d'équivalence.

Définition 2.3.9

Soit X un G-ensemble non-vide.

L'action de G sur X est :

- transitive s'il n'y a qu'une seule orbite
- fidèle si $\forall g \in G$, on a:

$$gx = x$$
, $\forall x \in X \Rightarrow g = e$

— libre si tous les stabilisateurs sont triviaux ($Stab_G(x) = \{e\}, \ \forall x \in X$).

Remarque 2.3.10

- 1. On définit de façon analogue les notions correspondantes pour les actions à droite.
- 2. L'action de G sur X est transitive ssi $G \setminus X$ est un singleton.
- 3. L'action de G sur X est fidèle ssi le morphisme associé $G \to \mathfrak{S}_X$ a pour noyau $\{e\}$, c'est à dire ssi $G \to \mathfrak{S}_X$ est injectif.

Exemple 2.3.11

- 1. Pour tout sous-groupe H de G, l'action de H sur G par translations à gauche (ou à droite) est libre (car $Stab_H(g) = \{h \in H | hg = g\} = \{e\}$), donc fidèle.
 - Elle est transitive ssi H = G (s'il n'y a qu'une seule orbite, elle est égale à G, donc G est l'orbite sous H de e mais cette orbite est $H \cdot e = H$)
- 2. Soit $n \ge 1$. Considérons l'action :

$$GL_n(\mathbb{R}) \times \mathbb{R}^n \to \mathbb{R}^n$$
, $(g, v) \mapsto gv$

L'orbite d'un vecteur $v \neq 0$ est $\mathbb{R}^n \setminus \{0\}$ (en effet si $v_1, ..., v_n$ est une base tq $v_1 = v$ et $w_1, ..., w_n$ est une base tq $w_1 = w \neq 0$, il existe un unique $g \in GL_n(\mathbb{R})$ tq $g(v_i) = w_i$, $\forall i$, en particulier gv = w). L'orbite de v = 0 est $\{0\}$.

Il y a donc exactement 2 orbites : $\mathbb{R}^n \setminus \{0\}$ et $\{0\}$.

Donc l'action n'est pas transitive.

Elle est fidèle (car si $gv = v \ \forall v$, alors $ge_i = e_i$, pour $i \in [|1, n|]$ et g = Id). Elle n'est pas libre car $Stab_{GL_n(\mathbb{R})}(0) = GL_n(\mathbb{R})$

- 3. L'action $GL_n(\mathbb{R}) \times (\mathbb{R}^n \setminus \{0\}) \to (\mathbb{R}^n \setminus \{0\})$, $(g, v) \mapsto gv$ est transitive, fidèle et non libre. En effet, $Stab_{GL_n(\mathbb{R})}(e_1) = [e_1, *, *, ..., *]$ avec * des vecteurs quelconques.
- 4. Soit $C = \{(x_1, x_2, x_3) \in \mathbb{R} \mid \forall i \text{ on a } x_i = \pm 1\}$ l'ensemble des sommets d'un cube de \mathbb{R}^3 centré en l'origine. Soit $G = \{g \in O_3(\mathbb{R}) \mid g(C) = C\}$ (O_n est l'ensemble des matrices orthogonales de taille $n \times n$). L'action :

$$G \times C \rightarrow C, (g, x) \mapsto gx$$

est transitive (combiner des rotations et des symétries).

Elle est fidèle (les vecteurs
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1\\1 \end{bmatrix}$ forment une base de \mathbb{R}^3).

Elle n'est pas libre (la rotation d'angle $\frac{2\pi}{3}$ et d'axe $\mathbb{R}\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ est dans G et dans le stabilisateur de

$$\left[\begin{array}{c}1\\1\\1\end{array}\right]).$$

2.4 Aspects numériques

Soit *G* un groupe et soit *X* un *G*-ensemble (ensemble muni d'une action de *G*).

Théoreme 2.4.1

Soit $x \in X$. Soit $\pi : G \to G/Stab_G(x)$ la projection canonique. Il existe une et une seule application :

$$\varphi: G/Stab_G(x) \to G \cdot x$$

telle que $\phi \circ \pi(g) = gx$ pour tout $g \in G$. Cette application est bijective.

Démonstration

Soit $H = Stab_G(x)$. Comme π est surjective, l'application φ , si elle existe, est unique. Soient $g \in G$ et $h \in H$. On a :

$$(gh)x = g(hx) = gx$$
 $h \in Stab_G(x)$

Donc l'application $\tilde{\varphi}: G \to G \cdot x$ vérifie $\tilde{\varphi}(gh) = \tilde{\varphi}(g), \forall h \in H, \forall g \in G$.

Donc $\tilde{\varphi}(g)$ ne dépend que de la classe $gH \in G/H$. Par passage au quotient par H, $\tilde{\varphi}: G \to G \cdot x$ induit $\varphi: G/H \to G \cdot x$. Clairement, φ est surjective.

Supposons que $g_1, g_2 \in G$ sont tels que $\varphi(g_1) = \varphi(g_2)$. Alors $g_1 x = g_2 x$, donc $x = g_1^{-1} g_2 x$ et $g_1^{-1} g_2 \in H$ et $g_2 \in g_1 H$. Donc on a $g_2 H = g_1 H$, ou $\pi(g_1) = \pi(g_2)$.

Cela montre que φ est injective.

Remarque 2.4.2

L'ensemble $G/Stab_G(x)$ est un G-ensemble pour l'action naturelle :

$$g \cdot \pi(g') := \pi(gg'), \quad \forall g, g' \in G$$

où $\pi: G \to G/Stab_G(x)$ est la projection canonique. La bijection canonique $G/Stab_G(x) \stackrel{\sim}{\to} G \cdot x$ est en fait un isomorphisme de G-ensembles.

En particulier, tout G-ensemble transitif est isomorphe à un G-ensemble de la forme G/H pour un sousgroupe H de G.

Corollaire 2.4.3

On suppose G et X finis.

- 1. Pour tout $x \in X$, on $a | G \cdot x | = \frac{|G|}{|Stab_G(x)|}$. En particulier, $|G \cdot x|$ divise |G|.
- 2. Choisissons un élément x_i dans chaque orbite, $1 \le i \le n$. On a :

$$|X| = \sum_{i=1}^{n} \frac{|G|}{|Stab_G(x_i)|}$$

Remarque 2.4.4

Ces égalités sont appelées équations aux classes.

2.4.1 Applications

Application 1

Soit p un nombre premier. Supposons que G est un p-groupe, c'est à dire son ordre est une puissance de p.

Définition 2.4.5

Un élément x d'un G-ensemble X est un point fixe si g x = x \forall *g* \in *G.*

Soient G un p-groupe, et X un G-ensemble fini.

Si $x \in X$ n'est pas un point fixe, le cardinal de l'orbite $|G \cdot x|$ est un diviseur > 1 de |G|.

Donc p divise $|G \cdot x|$. D'où :

Corollaire 2.4.6

Si G est un p-groupe et X un G-ensemble fini, alors:

$$|X| \equiv |X^G| \bmod p$$

où X^G est l'ensemble des points fixes de G dans X.

Application 2

Théoreme 2.4.7 (de Cauchy)

Soient G un groupe fini et p un nombre premier qui divise |G|, alors G contient un élément d'ordre p.

Démonstration (d'après John McKay)

Soit:

$$X = \{(g_1,...,g_p) \in G^p | g_1g_2....g_p = e\}$$

Notons que:

$$g_1g_2...g_p = e$$

$$\Rightarrow g_2...g_p = g_1^{-1}$$

$$\Rightarrow g_2...g_pg_1 = e$$

Donc X est stable par permutation cyclique des composantes. Donc le groupe cyclique $H = \mathbb{U}_p$ agit sur X par :

$$\zeta(g_1, g_2...g_p) := (g_2...g_pg_1)$$

où
$$\zeta = e^{\frac{2\pi i}{p}}$$
.

Les points fixes sont les $(g,...,g) \in G^p$ tq $g^p = e$. Cela veut dire que ou bien g = e ou bien g est un élément

d'ordre p. Par le corollaire précédent, on a :

$$|X^H| = |X| \bmod p$$

Or X est de cardinal $|G|^{p-1}$ (l'application $X \to G^{p-1}, \ (g_1,...,g_p) \mapsto (g_2,...,g_p)$ est bijective). Donc :

$$|X^H| = 0 \bmod p$$

Il existe donc au moins un point fixe autre que (e, ..., e).

Chapitre 3

Groupes symétriques

3.1 Définition et premières propriétés

Rappel

Si E est un ensemble, le groupe symétrique \mathfrak{S}_E est le groupe des bijections $f: E \to E$ avec la composition des applications pour loi. On note :

$$\mathfrak{S}_n := \mathfrak{S}_{\{1,2,\dots,n\}}$$
 $n \ge 1$

et on l'appelle le n-ième groupe symétrique. Il est d'ordre n!.

Remarque 3.1.1

Si E et F sont deux ensembles et $\varphi: E \to F$, une bijection, on a un isomorphisme de groupes :

$$\mathfrak{S}_E \to \mathfrak{S}_F$$
, $f \mapsto \varphi \circ f \circ \varphi^{-1}$

En particulier, l'étude de \mathfrak{S}_E pour un ensemble fini de cardinal n se ramène à celle de \mathfrak{S}_n .

Notation 3.1.2

 $Si \sigma \in \mathfrak{S}_n$, on le décrit à l'aide du tableau :

1 2 ...
$$n$$

 $\sigma(1)$ $\sigma(2)$... $\sigma(n)$

Remarque 3.1.3

1. Le groupe \mathfrak{S}_n agit sur $\{1, ..., n\}$ par :

$$\sigma.i = \sigma(i), \qquad \forall i \in \{1,...,n\}, \forall \sigma \in \mathfrak{S}_n$$

- 2. Cette action est fidèle et transitive
- 3. Pour tout $i \in \{1,...,n\}$, la stabilisateur de i dans \mathfrak{S}_n est isomorphe à $\mathfrak{S}_{\{1,2,...,n\}\setminus\{i\}}$

Définition 3.1.4

Soit $\sigma \in \mathfrak{S}_n$. Le support de σ est l'ensemble :

$$supp(\sigma) = \{i \in \{1,...,n\} | \sigma(i) \neq i\}$$

Propriété 3.1.5

- 1. Deux permutations à supports disjoints commutent
- 2. Les groupes symétriques \mathfrak{S}_1 et \mathfrak{S}_2 sont abéliens. Pour $n \geq 3$, le centre de \mathfrak{S}_n est trivial.

Démonstration

On peut et on va supposer $n \ge 3$.

1. Soient $\sigma_1, \sigma_2 \in \mathfrak{S}_n$ tq $supp(\sigma_1) \cap supp(\sigma_2) = \emptyset$. Si l'une parmi σ_1 et σ_2 est l'identité, elles commutent bien. Supposons $supp(\sigma_1)$ et $supp(\sigma_2)$ non vides $(\sigma_i \neq Id \ \forall i)$. Soit $i \in supp(\sigma_1)$, alors $i \notin supp(\sigma_2)$ et $\sigma_1(i) \notin supp(\sigma_2)$. Donc :

$$\sigma_1 \circ \sigma_2(i) = \sigma_1(i)$$

$$\sigma_2 \circ \sigma_1(i) = \sigma_1(i)$$

De même, pour $i \in supp(\sigma_2)$, on a :

$$\sigma_1 \circ \sigma_2(i) = \sigma_2(i)$$

$$\sigma_2 \circ \sigma_1(i) = \sigma_2(i)$$

D'autre part, si $i \notin supp(\sigma_1) \cup supp(\sigma_2)$, alors $\sigma_1 \circ \sigma_2(i) = i = \sigma_2 \circ \sigma_1(i)$. On conclut que $\sigma_1 \circ \sigma_2(i) = \sigma_2 \circ \sigma_1(i)$

2. Soit $\sigma \in \mathfrak{S}_n \setminus \{Id\}$.

Soient $i \in \{1,...,n\}$ tq $\sigma(i) \neq i$ et $k \in \{1,...,n\} \setminus \{i,\sigma(i)\}$.

Soit τ la permutation tq :

$$\tau(\sigma(i)) = k, \ \tau(k) = \sigma(i), \ \tau(j) = j, \ \forall j \notin \{k, \sigma(i)\}\$$

Montrons que $\tau \circ \sigma \neq \sigma \circ \tau$. En effet :

$$\tau \circ \sigma(i) = k$$

$$\sigma \circ \tau(i) = \sigma(i) \neq k$$

3.1.1 Transpositions et cycles

Définition 3.1.6

Soit $n \ge 2$ et soit $2 \le l \le n$. Soit $(a_1, ..., a_l)$ une suite d'éléments 2 à 2 distincts de $\{1, ..., n\}$. On note encore $(a_1, ..., a_l)$ la permutation définition par :

$$\begin{aligned} x \mapsto x & \forall x \in \{1, ..., n\} \backslash \{a_1, ..., a_l\} \\ a_i \mapsto a_{i+1} & \forall 1 \le i \le l-1 \\ a_l \mapsto a_1 \end{aligned}$$

Une telle permutation est appelée l-cycle (ou cycle). Sa longueur est l. Si l=2, elle est appelée la transposition de a_1 et a_2

Remarque 3.1.7

Soit $\sigma = (a_1, ..., a_l)$ un l-cycle.

1. Soit $i \in \{1, ..., l-1\}$, alors $\sigma^i(a_1) = a_{1+i}$. Plus généralement, on a :

$$\sigma^{i}(a_{j}) = \begin{cases} a_{j+i} & 1 \leq j \leq l-i \\ a_{j+i-l} & l-i+1 \leq j \leq l \end{cases}$$

Le cycle est d'ordre l dans \mathfrak{S}_n .

2. Pour tout $\tau \in \mathfrak{S}_n$, on a:

$$\tau \circ (a_1, ..., a_l) \circ \tau^{-1} = (\tau(a_1), ..., \tau(a_l))$$

3.

$$(a_1,...,a_n) = (a_1,a_2) \circ ... \circ (a_{l-2},a_{l-1}) \circ (a_{l-1},a_l)$$

Le l-cycle est produit de l-1 transpositions.

4.

$$(a_1,...,a_n) = (a_2,...,a_n,a_1)$$

5. Soit τ_1 et τ_2 deux transpositions à support disjoint, alors $\tau_1\tau_2 = \tau_2\tau_1$ (qui est d'ordre 2) est appelé une **double transposition**.

Exemple 3.1.8

1.

$$\mathfrak{S}_2 = \{e, (12)\}$$

2.

$$\mathfrak{S}_3 = \{e, (12), (13), (23), (123), (132)\}$$

3. \mathfrak{S}_4 ={e, (12), (13), (23), (14), (24), (34), (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243), (1234), (1243), (1324), (1342), (1423), (1432)}

Théoreme 3.1.9

Soit $\sigma \in \mathfrak{S}_n$.

1. Il existe un entier naturel k et des cycles $c_1, ..., c_k$ de \mathfrak{S}_n à supports disjoints 2 à 2 tq:

$$\sigma = c_1...c_k$$

2. Si s est un entier naturel et $c'_1,...,c'_s$ des cycles à supports disjoints 2 à 2 tq:

$$\sigma = c_1'...c_s'$$

alors k = s et il existe une permutation $\tau \in \mathfrak{S}_k$ tq $c'_i = c_{\tau(i)}$, $\forall 1 \le i \le k$.

Idée de la démonstration : On fait agir le groupe $\langle \sigma \rangle \subseteq \mathfrak{S}_n$ sur $\{1,...,n\}$. Les orbites nous fournissent les cycles $c_i, 1 \le i \le k$.

Exemple 3.1.10

 σ = (1 6 10 13)(2 7)(3 9 12 11 8) est une décomposition en produit de cycles à supports disjoints 2 à 2 de $\sigma \in \mathfrak{S}_{14}$.

Démonstration

On fait agir le sous-groupe $\langle \sigma \rangle$ engendré par σ dans \mathfrak{S}_n sur l'ensemble $\{1,...,n\}$.

Sous cette action, l'ensemble $\{1,...,n\}$ se décompose en orbites disjointes 2 à 2. Les orbites ponctuelles sont exactement les points fixes de σ .

Soient $\Omega_1,...,\Omega_r$ les orbites non ponctuelles.

Le sous-groupe $\langle \sigma \rangle$ permute cycliquement les éléments de chaque Ω_i . Soit $a_{i_1},...,a_{i_{l_i}}$ une énumération des éléments de Ω_i tq:

$$\sigma(a_{i_j}) \left\{ \begin{array}{ll} a_{i_{j+1}} & 1 \leq j \leq l_i - 1 \\ a_{i_1} & j = l_i \end{array} \right.$$

Soit $c_i = (a_{i_1}, ..., a_{i_l})$, alors l'action de c_i et de σ sur l'orbite Ω_i est la même.

Donc l'action de σ et de $c_1c_2...c_r$ sur $\{1,...,n\}$ est la même.

Donc $\sigma = c_1...c_r$.

Terminologie

- 1. Avec les hypothèses et les notations du théorème, on dit que l'égalité $\sigma = c_1...c_r$ est la décomposition de σ en **produit de cycles à supports disjoints**.
- 2. Si σ et σ' sont deux permutations, on dit que σ et σ' sont du **même type** si pour tout entier $2 \le l \le n$, le nombre de l-cycles dans la décomposition de σ en produit de cycles à support disjoints est égal au nombre de l-cycles dans la décomposition de σ' en produit de cycles à support disjoints .

Exemple 3.1.11

(12)(34)(567) est du même type que (123)(45)(67).

Corollaire 3.1.12

Pour tout $n \ge 1$, \mathfrak{S}_n est engendré par l'ensemble de ses transpositions.

Démonstration

En effet, \mathfrak{S}_n est engendré par ses cycles et chaque cycle est produit de transpositions, comme on l'a vu. \square

Exercice 3.1.13

Monter que \mathfrak{S}_n est même engendré par les n-1 transpositions :

$$(1\ 2), (2\ 3), ..., (n-1\ n)$$

.

Corollaire 3.1.14

Soient $n \ge 1$ et $\sigma \in \mathfrak{S}_n$, alors l'ordre de σ est le PPCM des longueurs des cycles apparaissant dans la décomposition de σ en produit de cycles à support disjoints.

Exemple 3.1.15

 $ord((1\ 2)(2\ 3)(4\ 5\ 6)) = PPCM(2,2,3) = 6$

Corollaire 3.1.16

Soient $n \ge 1$ et $\sigma, \sigma' \in \mathfrak{S}_n$, alors on a une équivalence entre :

- 1. σ et σ' sont du même type.
- 2. σ et σ' sont conjugués.

Démonstration

Cela provient du fait que pour un cycle $(a_1,...,a_l)$ et une permutation $\tau \in \mathfrak{S}_n$, on a :

$$\tau \circ (a_1,...,a_l) \circ \tau^{-1} = (\tau(a_1),...,\tau(a_l))$$

Exemple 3.1.17

 $\sigma = (1\ 2)(3\ 4)(5\ 6\ 7)$ et $\sigma' = (1\ 2\ 3)(4\ 5)(6\ 7)$ sont conjugués par :

$$\sigma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 1 & 2 & 3 \end{array}\right)$$

Remarque 3.1.18

Deux permutations conjuguées ont même ordre (et même signature, voir ci-dessous).

3.2 La signature

Soit $n \ge 1$. Le groupe symétrique \mathfrak{S}_n agit sur l'ensemble $\mathbb{Z}[X_i,...,X_n]$ des polynômes en $X_1,...,X_n$ à coefficients entiers par :

$$(\sigma P)(X_1,...,X_n) := P(X_{\sigma(1)},...,X_{\sigma(n)})$$

(clairement, Id.P = P et $\sigma(\tau P) = (\sigma \tau)P, \forall \sigma, \tau \in \mathfrak{S}_n$ et $\forall P \in \mathbb{Z}[X_i, ..., X_n]$).

Soit

$$\Delta_n := \prod_{i < j} (X_i - X_j) \in \mathbb{Z}[X_i, ..., X_n]$$

Par exemple, on a $\Delta_2 = X_1 - X_2$, $\Delta_3 = (X_1 - X_2)(X_1 - X_3)(X_2 - X_3)$.

Toute permutation σ envoie un $X_i - X_j$ sur $X_{\sigma(i)} - X_{\sigma(j)}$ et on a $\sigma(i) < \sigma(j)$ ou $\sigma(j) < \sigma(i)$ si i < j.

Donc σ envoie un facteur $X_i - X_j$ de Δ_n soit sur un autre facteur de Δ_n soit sur l'opposé d'un autre facteur de Δ_n . Donc :

$$\sigma \Delta_n = \pm \Delta_n, \ \forall \sigma \in \mathfrak{S}_n$$

Définition 3.2.1

La **signature** $\epsilon(\sigma)$ *de* $\sigma \in \mathfrak{S}_n$ *est l'unique nombre* $\epsilon(\sigma) \in \{1, -1\}$ *tq* :

$$\epsilon(\sigma)\Delta_n = \sigma\Delta_n$$

Exemple 3.2.2

- 1. $\sigma = (12) \in \sigma_2 : \sigma(X_1 X_2) = X_2 X_1 = -(X_1 X_2) \Rightarrow \varepsilon(\sigma) = -1$
- 2. $\sigma = (123) \in \sigma_3 : \sigma((X_1 X_2)(X_1 X_3)(X_2 X_3)) = (X_2 X_3)(X_2 X_1)(X_3 X_1) = (-1)(-1)\Delta_3 = \Delta_3 \Rightarrow \epsilon(\sigma) = 1$

Propriété 3.2.3

1. La signature est un morphisme de groupes

$$\epsilon:\mathfrak{S}_n\to(\{1,-1\},\cdot)$$

2. Toute transposition est de signature -1. Tout cycle de longueur l est de signature $(-1)^{l-1}$

Démonstration

1. résulte du fait que \mathfrak{S}_n agit sur $\mathbb{Z}[X_i,...,X_n]$. En effet, pour $\sigma,\tau\in\mathfrak{S}_n$, on a :

$$\epsilon(\sigma\tau).\Delta_n=(\sigma\tau)\Delta_n=\epsilon(\tau)\epsilon(\sigma)\Delta_n$$

et donc $\epsilon(\sigma \tau) = \epsilon(\sigma)\epsilon(\tau), \forall \sigma, \tau \in \mathfrak{S}_n$.

2. Soit $\sigma \in \mathfrak{S}_n$. Une **inversion** de σ est un couple (u, v) de nombres dans $\{1, ..., n\}$ tq u < v mais $\sigma(u) > \sigma(v)$. Clairement, on a $\varepsilon(\sigma) = (-1)^t$, où t est le nombre d'inversions de σ . Soit maintenant $\sigma = (ij)$, où $1 \le i < j \le n$.

Les inversions de σ sont :

- -(u, j) pour i < u < j
- (i, u) pour i < u < j
- -(i, j)

Le nombre des inversions de σ est donc :

$$2(j-i+1)+1$$

П

Donc $\epsilon(\sigma) = -1$.

Donc toute transposition est de signature -1.

Comme un *l*-cycle *c* est produit de l-1 transposition, par 1), on a $\varepsilon(c)=(-1)^{l-1}$

Remarque 3.2.4

Soient $n \ge 2$, et $\sigma \in \mathfrak{S}_n$.

- 1. On dit que σ est **paire** (respectivement **impaire**) si $\varepsilon(\sigma) = 1$ (respectivement $\varepsilon(\sigma) = -1$)
- 2. σ est pair (resp impair) ssi σ est produit de nombre pair (resp impair) de transpositions.
- 3. Soient $l_1,...,l_r$ les cardinaux des orbites $\Omega_1,...,\Omega_r$ de $\langle \sigma \rangle$ dans $\{1,...,n\}$ (y compris les orbites ponctuelles), alors on a :

$$\epsilon(\sigma) = \epsilon(c_1...c_r) = (-1)^{l_1-1}...(-1)^{l_n-1} = (-1)^{(\sum l_i)-r} = (-1)^{n-r}$$

Définition 3.2.5

Soit $n \ge 1$. On appelle n-ième **groupe alterné** le noyau \mathcal{A}_n de la signature $\epsilon : \mathfrak{S}_n \to \{\pm 1\}$.

Remarque 3.2.6

On verra que $|\mathcal{A}_n| = \frac{n!}{2}$

Exemple 3.2.7

- 1. $\sigma_2 = \{e, (12)\} \mathcal{A} = \{e\}$
- 2. $\sigma_3 = \{e, (12), (13), (23), (123), (132)\}$ $\mathcal{A}_3 = \{e, (123), (132)\}$
- 3. $|\sigma_4| = 24$, on a $\mathcal{A}_4 = \{e, (123), (132), (234), (243), (134), (143), (124), (142), (12), (12), (13), (14$

Chapitre 4

Sous-groupes distingués, groupes quotients

4.1 Sous-groupes distingués

Soient *G* un groupe et *H* un sous-groupe de *G*.

Notation 4.1.1

Pour $g \in H$, on note $gHg^{-1} = \{ghg^{-1} | h \in H\}$. C'est un sous-groupe en tant qu'image de H par l'automorphisme de conjugaison (= automorphisme intérieur)

$$c_g: G \to G, x \mapsto gxg^{-1}$$

Propriété 4.1.2

Les conditions suivantes sont équivalentes :

- 1. $\forall g \in G$, on agH = Hg
- 2. $\forall g \in G$, on $a g H g^{-1} = H$
- 3. $\forall g \in G$, on $a g H g^{-1} \subseteq H$

Démonstration

Clairement 1) \Leftrightarrow 2) et 2) \Rightarrow 3). Montrons que 3) \Rightarrow 2) : Soit $x \in G$, alors pour $g = x^{-1}$, on a :

$$H \supseteq gHg^{-1} = x^{-1}H(x^{-1})^{-1} = x^{-1}Hx$$

et donc $xHx^{-1} \supseteq H$.

Définition 4.1.3

H est **distingué** (ou **normal**) dans *G* ssi, pour tout $g \in G$, on a $gHg^{-1} = H$. On écrit alors $H \triangleleft G$.

Définition 4.1.4

Soit un groupe G et H un sous-groupe. Le **normalisateur** de H dans G est :

$$N_G(H) = \{g \in G | gHg^{-1} = H\}$$

Remarque 4.1.5

 $N_G(H)$ est un sous-groupe de G contenant H. H est distingué dans $N_G(H)$ et $N_G(H)$ est le plus grand sous-groupe de G dans lequel H est distingué.

H est distingué dans G ssi $N_G(H) = G$

Définition 4.1.6

L'indice de H dans G est $[G:H] = |G/H| = \frac{|G|}{|H|}$ si |G| et |H| sont finis.

Exemple 4.1.7

- 1. $\{e\} = H \Rightarrow gHg^{-1} = \{gg^{-1}\} = \{e\}$. Donc $\{e\} \lhd G$. On a $G \lhd G$ et $Z(G) \lhd G$
- 2. Si *G* est **abélien**, alors $c_g = Id_G$, $\forall g \in G$, donc $H \triangleleft G$ pour tout sous-groupe H de G.
- 3. Si H est **d'indice 2** dans G (|G/H| = 2) alors $G = H \cup gH = H \cup Hg$ et gH = Hg, H est distingué dans G.

Lemme 4.1.8

Si $f: G \to K$ est un morphisme de groupes, alors Ker(f) est distingué dans G.

Démonstration

Soient $x \in Ker(f)$ et $g \in G$. On a:

$$f(gxg^{-1}) = f(g)f(x)f(g)^{-1} = f(g)ef(g)^{-1} = e$$

Donc $g \ Ker(f) \ g^{-1} \subseteq Ker(f), \forall g \in G \ \text{et} \ Ker(f) \lhd G.$

Remarque 4.1.9

 $Im(f) \subseteq K$ n'est pas distingué en général. Par exemple, si $f: G \to K$ est l'inclusion d'un sous-groupe non distingué, alors $Im(f) = G \subseteq K$ n'est pas distingué.

Exemple 4.1.10

- 1. $\mathcal{A}_n \triangleleft \mathfrak{S}_n \operatorname{car} \mathcal{A}_n = Ker(\epsilon)$
- 2. $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$ car $SL_n(\mathbb{R}) = Ker(det)$
- 3. $SO_n(\mathbb{R}) \triangleleft O_n(\mathbb{R})$, $SU_n(\mathbb{C}) \triangleleft U_n(\mathbb{C})$ par la même raison.
- 4. Quels sont les sous-groupes distingués de $D_4 = \{e, \tau_1, \tau_2, \tau_3, \tau_4, \rho, \rho^2, \rho^3\}$

Notons σ_D la symétrie orthogonale par rapport à une droite D et f une isométrie. Alors :

$$f \circ \sigma_D \circ f^{-1} = \sigma_{f(D)}$$

Donc D_4 , $\{e\}$, $\langle \tau_1, \tau_3 \rangle$, $\langle \tau_2, \tau_4 \rangle$, $\langle \rho \rangle$, $\langle \rho^2 \rangle$ sont distingués et $\langle \tau_1 \rangle$, $\langle \tau_3 \rangle$, $\langle \tau_2 \rangle$ et $\langle \tau_4 \rangle$ ne sont pas distingués. On a $N_{D_4}(\langle \tau_1 \rangle) = \langle \tau_1, \tau_3 \rangle$, $N_{D_4}(\langle \tau_2 \rangle) = \langle \tau_2, \tau_4 \rangle$.

Remarque 4.1.11

1. Dans les treillis des sous-groupes , on a l'action de conjugaison de *G* sur l'ensemble des sous-groupes par conjugaison.

31

Les orbites ponctuelles sont les sous-groupes distingués, cad les sous-groupes qui ne sont pas liés par une action de ρ à d'autres sous-groupes .

Les orbites non ponctuelles sont les paquets de sous-groupes reliés par une action de ρ .

Le stabilisateur d'un sous-groupe H est l'ensemble des g tq $gHg^{-1}=H$, donc c'est le normalisateur de H dans G.

L'isomorphisme $G/Stab_G(x) \xrightarrow{\sim} G \cdot x$ dit que l'indice du normalisateur $N_G(H)$ est égal au cardinal de l'orbite de H sous l'action de conjugaison.

2. Un groupe G est **simple** si $G \neq \{e\}$ et ses seuls sous-groupes distingués sont $\{e\}$ et G. On verra plus tard que \mathcal{A}_n est simple pour $n \geq 5$. Cela est lié au fait que l'équation du n-ième degré n'est pas résoluble par des radicaux pour $n \geq 5$ (voir M1).

4.2 Groupes quotients

Soient G un groupe et $H \le G$ un sous-groupe . On note $\pi: G \to G/H$, $g \mapsto gH$ la bijection canonique.

Rappel

- $-\pi$ est surjective
- ∀ g ∈ G, on a $\pi(g) = gH$
- Pour $g, g' \in G$, on a $\pi(g) = \pi(g')$ ssi $\exists h \in H \text{ tq } g' = gh$

Théoreme 4.2.1

On suppose que $H \triangleleft G$.

Il existe une unique loi de composition interne * sur G/H tq (G/H, *) soit un groupe et

$$\pi:G\to G/H$$

un morphisme de groupes.

Démonstration

Soient $\alpha, \beta \in G/H$. Soient $x, y \in G$ tq $\pi(x) = \alpha$ et $\pi(y) = \beta$. On définit

$$\alpha * \beta = \pi(x) * \pi(y) = \pi(xy)$$

et c'est la seule possibilité car π doit être un morphisme de groupes.

Il faut vérifier que $\alpha * \beta$ est bien défini.

Soient $x', y' \in G$ tq $\pi(x') = \alpha$ et $\pi(y') = \beta$.

Il existe $h, k \in H$ tq x' = xh et y' = yk. On a :

$$\pi(x'y') = \pi(xhyk) = \pi(xyy^{-1}hyk) = \pi(xy)$$

Ce qui montre que $\pi(xy)$ ne dépend que du choix des représentants x et y de α et β . Montrons l'associativité : Soient $\pi(x)$, $\pi(y)$, $\pi(z)$ dans G/H. On a :

$$(\pi(x)\pi(y))\pi(z) = \pi(xy)\pi(z)$$
$$= \pi(xyz)$$
$$= \pi(x)(\pi(y)\pi(z))$$

 $\pi(e)$ est neutre car :

$$\pi(x)\pi(e) = \pi(xe) = \pi(x) = \pi(ex) = \pi(e)\pi(x)$$

et $\pi(x^{-1})$ est inverse de $\pi(x)$, $\forall x \in G$, car :

$$\pi(x)\pi(x^{-1}) = \pi(xx^{-1}) = \pi(e) = \pi(x^{-1}x) = \pi(x^{-1}x) = \pi(x^{-1})\pi(x)$$

Remarque 4.2.2

- 1. On suppose que $H \triangleleft G$. Alors la loi de composition sur G/H vérifie :
 - $-H = \ker(\pi : G \to G/H)$
 - -eH = H est l'élément neutre
 - -- $\forall x, y \in G : xH * yH = xyH$
- 2. Supposons que $H \le G$ et G/H a une structure de groupe telle que $\pi : G \to G/H$ est un morphisme. Alors $H = \ker(\pi)$ est forcément distingué dans G.

Définition 4.2.3

Supposons que $H \triangleleft G$. Le groupe G/H du théorème 4.2.1 est le **groupe quotient** de G par H.

Corollaire 4.2.4

Les sous-groupes distingués de G sont exactement les noyaux des morphismes de groupes $G \xrightarrow{\varphi} K$ de domaine G.

Exemple 4.2.5

1. Si E est un espace vectoriel sur \mathbb{R} et F un sous espace vectoriel alors (F, +) est un sous-groupe distingué de (E, +) (qui est commutatif).

Alors E/F devient un espace vectoriel pour la multiplication par les scalaires définie par $\lambda \cdot (\nu + F) = \lambda \nu + F$

Si $F' \subseteq E$ est un supplémentaire de F ($E = F' \oplus F$), alors la composition :

$$F' \hookrightarrow E \rightarrow E/F$$

est un isomorphisme d'espaces vectoriels (exo!).

En particulier, si dim $E < \infty$, alors :

$$\dim E/F = \dim E - \dim F$$

2. Soit $V = \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$. C'est un sous-groupe de \mathcal{A}_4 . Alors V est distingué dans \mathcal{A}_4 et le quotient \mathcal{A}_4/V est d'ordre 12/4 = 3.

Donc \mathcal{A}_4/V est isomorphe à \mathbb{U}_3 .

Il est instructif de voir la position de V dans le treillis des sous-groupes de \mathcal{A}_4 .

On a : $N_{\mathcal{A}_4}(\langle (1\ 2)(3\ 4)\rangle)=V$ est d'indice 3 dans \mathcal{A}_4 et cet indice est égal au nombre de sous-groupes conjugués à $\langle (1\ 2)(3\ 4)\rangle$.

 $N_{\mathcal{A}_4}(\langle (1\,2\,3)\rangle) = \langle (1\,2\,3)\rangle$ est d'indice 4 dans \mathcal{A}_4 et cet indice est égal au nombre de sous-groupes conjugués à $\langle (1\,2\,3)\rangle$.

4.3 Passage au quotient des morphismes de groupes

Théoreme 4.3.1 (Propriété universelle du groupe quotient)

Soit $f: G \to K$ un morphisme de groupes . Soit $H \lhd G$. On suppose que $H \subseteq \ker(f)$. Alors il existe un unique morphisme de groupes

$$\bar{f}: G/H \to K$$

 $tq\,f=\bar{f}\circ\pi$

Terminologie

On dit que \bar{f} est obtenu à partir de f par passage au quotient par H, ou que \bar{f} est induit par f.

Remarque 4.3.2

On a $Im(\bar{f}) = Im(f)$ et $\ker(\bar{f}) = \pi(\ker f)$

Démonstration (Théorème 4.3.1)

Comme π est surjectif, \bar{f} est unique. On définit pour $x \in G$,

$$\bar{f}(\pi(x)) = f(x)$$

On doit vérifier que si $\pi(x) = \pi(x')$, alors f(x) = f(x'). En effet, il existe $h \in H$ tq x' = xh et on a donc :

$$f(x') = f(xh) = f(x)f(h) = f(x)$$

 $\operatorname{car} f(h) \in \ker f$.

Vérifions que \bar{f} est bien un morphisme :

On a pour $x, y \in G$:

$$\bar{f}(\pi(x)\pi(y)) = \bar{f}(\pi(xy))
= f(xy)
= f(x)f(y)
= \bar{f}(\pi(x))\bar{f}(\pi(y))$$

Théoreme 4.3.3 (Premier théorème d'isomorphisme)

Soit $f: G \to K$ un morphisme de groupes , alors f induit un isomorphisme de groupes de $G/\ker(f)$ sur Im(f).

En particulier, si f est surjectif, alors f induit un isomorphisme

Démonstration

 \bar{f} est bien définie par la propriété universelle du groupe quotient (théorème 4.3.1). Clairement, \bar{f} est surjectif.

Montrons que \bar{f} est injectif : si on a $\bar{f}(\pi(x)) = \bar{f}(\pi(x'))$, alors f(x) = f(x'), donc $x^{-1}x' \in \ker(f)$ et donc $\pi(x) = \pi(x')$ dans $G/\ker(f)$.

Remarque 4.3.4

Ce théorème est important car il relie le groupe quotient, qui a priori est difficile à comprendre, avec un sous-groupe , qui est plus facile à comprendre.

Exemple 4.3.5

- 1. Soit $f: \mathbb{Z} \to \mathbb{U}_n$, $k \mapsto e^{\frac{2\pi i k}{n}}$, alors f est surjectif de noyau $n\mathbb{Z} \subseteq \mathbb{Z}$. Donc f induit un isomorphisme $\mathbb{Z}/n\mathbb{Z} \stackrel{\sim}{\to} \mathbb{U}_n$.
- 2. Soit ϵ : $\mathfrak{S}_n \to \{\pm 1\}$ la signature, alors ϵ est surjectif de noyau \mathscr{A}_n . Donc ϵ induit un isomorphisme

$$\mathfrak{S}_n/\mathscr{A}_n \xrightarrow{\sim} \{\pm 1\}$$

En particulier, on a $|\mathcal{A}_n| = \frac{1}{2}(n!)$.

Lemme 4.3.6

Soient G un groupe fini et p le plus petit diviseur premier de |G|. Soit $H \subseteq G$ un sous-groupe d'indice p. Alors H est distingué.

Remarque 4.3.7

Pour p = 2, on retrouve le fait qu'un sous-groupe d'indice 2 est toujours distingué.

Démonstration

Faisons agir G sur G/H par translation à gauche :

$$g.xH := gxH, \forall g \in G, \forall x \in G$$

Comme |G/H| = p, cela définit un morphisme de groupes $f: G \to \mathfrak{S}_p$. Ce morphisme est non trivial car l'action est transitive.

Notons K son image. Alors |K| divise à la fois |G| et $|\sigma_p|=p!$. Donc il divise pgcd(|G|,p!)=p. Donc |K|=p.

Comme $G/\ker(f) \stackrel{\sim}{\to} K$, l'indice de $\ker(f)$ dans G est p. Or les éléments de $\ker(f)$ laissent fixe eH. Donc $\ker(f) \subseteq H$. Comme les deux sont d'indice p dans G, ils sont égaux et $H = \ker(f)$ est distingué.

Théoreme 4.3.8 (Deuxième théorème d'isomorphisme)

Soient G un groupe, H un sous-groupe distingué et $K \subseteq G$ un sous-groupe . Alors $HK = \{hk | h \in H, k \in K\}$ est un sous-groupe de G et on a un isomorphisme de groupes

$$K/H \cap K \xrightarrow{\sim} HK/H$$

Exemple 4.3.9

Si F, G sont des sous espaces vectoriels d'un espace vectoriel E, on a

$$F/F \cap G \xrightarrow{\sim} F + G/F$$

Démonstration

Montrons que HK est un sous-groupe : $e = e \cdot e \in HK$. Si $x, x' \in H$ et $y, y' \in K$, on a :

$$(xy)^{-1} = y^{-1}x^{-1} = y^{-1}x^{-1}yy^{-1} \in HK$$

et

$$xyx'y' = xyx'y^{-1}yy' \in HK$$

La composée

$$K \hookrightarrow HK \twoheadrightarrow HK/H$$

est un morphisme de groupes surjectif dont le noyau est $K \cap H$. Par le premier théorème d'isomorphisme , on obtient l'isomorphisme $K/H \cap K \stackrel{\sim}{\to} HK/H$.

Théoreme 4.3.10 (Troisième théorème d'isomorphisme)

Soient $H \subseteq K$ deux sous-groupes distingués d'un groupe G. Alors, on a

$$G/K \stackrel{\sim}{\rightarrow} (G/H)/(K/H)$$

Démonstration

La composée des surjections canoniques

$$G \twoheadrightarrow G/H \twoheadrightarrow (G/H)/(K/H)$$

est un morphisme de groupes surjectif de noyau K. Le premier théorème d'isomorphisme nous donne l'isomorphisme

$$G/K \rightarrow (G/H)/(K/H)$$

Remarque 4.3.11

En particulier, si G et K sont finis et $f: G \to K$ est un morphisme de groupes, alors l'ordre de l'image de f divise à la fois |G| et |K|

Exemple 4.3.12

Soit $n \ge 1$ un entier. Soit K un sous-groupe de $\mathbb{Z}/n\mathbb{Z}$. Alors $K = d\mathbb{Z}/n\mathbb{Z}$ pour un diviseur d de n. On a

$$\mathbb{Z}/d\mathbb{Z} \xrightarrow{\sim} \mathbb{Z}/n\mathbb{Z}/d\mathbb{Z}/n\mathbb{Z}$$

Chapitre 5

Sous-groupes de Sylow

5.1 Définition et exemples

Motivation

Le théorème de Lagrange affirme que si H est un sous-groupe de G, alors l'ordre de H est un diviseur de l'ordre de G. On peut se demander si réciproquement, pour tout diviseur d de l'ordre de G, il existe un sous-groupe d'ordre G.

Ceci est faux, par exemple \mathcal{A}_4 est d'ordre 12 et n'admet pas de sous-groupe d'ordre 6.

Néanmoins, nous allons voir que si d est une **puissance maximale d'un nombre premier** divisant l'ordre du groupe G, il existe toujours un sous-groupe d'ordre d. Ces sous-groupes sont les **sous-groupes de Sylow**.

Soit G un groupe fini. soit n son ordre. Soit p un diviseur premier de n. On a donc $n = p^{\alpha} \cdot m$, où α est un entier ≥ 1 , et m n'est pas divisible par p.

Définition 5.1.1

Un **p-sous-groupe de Sylow** (ou p-Sylow) est un sous-groupe P d'ordre p^{α} de G.

Remarque 5.1.2

On montrera que pour tout diviseur premier p de |G| = n, il **existe** un p-Sylow, et que tous les p-Sylow sont **conjugués**.

Exemple 5.1.3

1.
$$G = D_3 = \{Id, \sigma_A, \sigma_B, \sigma_C, \rho, \rho^2\}$$

FIGURE 5.1 - Diagramme de Hasse du groupe diédral 3

On a $|D_3| = 2 \times 3$.

 D_3 admet trois 2-Sylow $\langle \tau_1 \rangle$, $\langle \tau_2 \rangle$, $\langle \tau_3 \rangle$. Ils sont tous conjugués.

 D_3 admet un unique 3-Sylow $\langle \rho \rangle$. Il est distingué.

2. $G = \mathcal{A}_4$

 $|\mathcal{A}_4| = 12 = 4 \times 3$ et $V = \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$. \mathcal{A}_4 admet V pour unique 2-Sylow (on l'appelle le sous-groupe de Klein V). Il est distingué. \mathcal{A}_4 admet quatre 3-Sylow $\langle (1\,2\,3) \rangle$, $\langle (1\,2\,4) \rangle$, $\langle (1\,3\,4) \rangle$, $\langle (2\,3\,4) \rangle$. Ils sont tous conjugués.

3. $G = \mathbb{U}_{12}$. On a $|G| = 12 = 2^2 \times 3$

Les 2-Sylow sont d'ordre 4. Il y en a un seul : $\mathbb{U}_4 < \mathbb{U}_{12}$

Les 3-Sylow sont d'ordre 3. Il y en a un seul : $\mathbb{U}_3 < \mathbb{U}_{12}$.

4. $G = \mathfrak{S}_4$. On a $|\mathfrak{S}_4| = 24 = 2^3 \times 3$.

Les 2-Sylow sont les sous-groupes d'ordre 8. Soit σ un 4-cycle de \mathfrak{S}_4 .

Soient $a, b, c, d \in \{1, 2, 3, 4\}$ tel que $\sigma = (a \ b \ c \ d)$

Alors $P = \langle \sigma, (ac) \rangle$ est un 2-Sylow de \mathfrak{S}_4 constitué de :

- Id
- les transpositions (a c) et (b d)
- les 3 doubles transpositions :

$$(1\ 2)(3\ 4),\ (1\ 3)(2\ 4),\ (1\ 4)(2\ 3)$$

— les deux 4-cycles : σ et

$$\sigma^{-1} = (a b c d)$$
$$= (a c)\sigma(a c)^{-1}$$
$$= (b d)\sigma(b d)^{-1}$$

Notons que P n'est pas distingué dans \mathfrak{S}_4 .

Les 3-Sylow de \mathfrak{S}_4 sont les sous-groupes d'ordre 3.

Ils sont tous de la forme $\langle c \rangle$, où c est un 3-cycle (exercice : compter le nombre de 3-cycles et le nombre de sous-groupe d'ordre 3). Ils sont tous conjugués.

5. $G = \mathfrak{S}_5$. On a $|G| = 120 = 2^3 \times 3 \times 5$

Les 2-Sylow de \mathfrak{S}_3 sont les sous-groupes d'ordre 8.

Les 3-Sylow sont les sous-groupes d'ordre 3. Donc ils sont tous de la forme $\langle c \rangle$, où c est un 3-cycle.

Les 5-Sylow sont les sous-groupes d'ordre 5. Ils sont tous de la forme $\langle c \rangle$, où c est un 5-cycle.

6. $G = D_4$. On a $|G| = 8 = 2^3$. Il y a un unique 2-Sylow, à savoir D_4 lui-même.

Le prochain but est de montrer qu'il existe toujours des *p*-Sylow.

5.2 Digression arithmétique

Définition 5.2.1

Un **anneau** est un triplet $(A, +, \bullet)$, où (A, +) est un groupe abélien et

$$\bullet: A \times A \longrightarrow A$$

un loi telle que :

- 1. est associative: (ab)c = a(bc), $\forall a, b, c \in A$
- 2. admet un élément neutre 1 : $1.a = a = a \cdot 1$, $\forall a \in A$
- 3. est distributive à gauche et à droite par "+":

$$(a+b)c = ac+bc$$
 et $a(b+c) = ab+ac$, $a,b,c \in A$

L'anneau A est commutatif si ab = ba, $\forall a, b \in A$

Exemple 5.2.2

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sont des anneaux commutatifs.
- 2. $M_2(\mathbb{R})$ est un anneau non commutatif
- 3. Soit $n \ge 1$ un entier. Alors $\mathbb{Z}/n\mathbb{Z}$ est un anneau pour l'addition habituelle et la multiplication définie par

$$\overline{a} \cdot \overline{b} = \overline{ab}, \quad \overline{a}, \overline{b} \in \mathbb{Z} / n \mathbb{Z}$$

où $\overline{a} = a + n\mathbb{Z}$

4. Si A est un anneau commutatif, alors

$$A[X] := \{ \text{polynômes en } X \text{ à coefficients dans } A \}$$

$$= \left\{ \sum_{k=1}^{n} a_k X^k \middle| n \in \mathbb{N}, a_k \in A, \forall k \right\}$$

est un anneau commutatif pour l'addition et la multiplication naturelles des polynômes.

Soit *p* un nombre premier.

Lemme 5.2.3

Dans
$$(\mathbb{Z}/p\mathbb{Z})[X]$$
, on $a(P+Q)^p = P^p + Q^p$, $\forall P, Q \in (\mathbb{Z}/p\mathbb{Z})[X]$

Démonstration

Par le binôme de Newton (valable dans tout anneau commutatif), on a

$$(P+Q)^p = P^p + Q^p + \sum_{k=1}^{p-1} \binom{p}{k} \cdot P^k \cdot Q^{p-k}$$

Il suffit de montrer que p divise $\binom{p}{k}$ pour $1 \le k \le p-1$.

Or on a:

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$

et p divise le numérateur mais pas le dénominateur.

Lemme 5.2.4

Si s, m sont des entiers naturelles tel que p ne divise pas s, alors $\binom{s.p^m}{p^m}$ est congru à s modulo p.

Démonstration

La quantité $\binom{s.p^m}{p^m}$ modulo p est le coefficient de X^{p^m} dans le développement du binôme

$$(X+1)^{p^m} \in \mathbb{Z}/p\mathbb{Z}[X]$$

Or, on a:

$$(X+1)^{s.p^m} = ((X+1)^{p^m})^s = (X^{p^m} + 1^{p^m})^s = 1 + s \cdot X^{p^m} + \dots$$

5.3 Les théorèmes de Sylow

Soit G un groupe fini et n = |G|. Soit p un nombre premier qui divise n. Écrivons $n = s \cdot p^m$, où p ne divise pas s (i.e p^m est la puissance maximale de p qui divise n). Alors, par définition, les p-Sylow de G sont les sous-groupes d'ordre p^m .

Théoreme 5.3.1 (Premier théorème de Sylow)

Il existe au moins un p-Sylow dans G.

Démonstration

Soit S l'ensemble des parties de G ayant p^n éléments.

On a:

$$|S| = {s \cdot p^n \choose p^n} \underset{\text{lemme } 2}{\underbrace{\equiv}} s \neq 0 \mod p$$

La translation à gauche par un élément de G transforme une partie à p^n éléments en une partie à p^n éléments (car $l_g: G \to G$, $g' \mapsto gg'$ est bijective de réciproque $l_{g^{-1}}$). On a donc une action par translations à gauche :

$$G \times S \rightarrow S$$
, $(g, E) \mapsto gE = \{gs \mid s \in E\}$

L'équation aux classes associées est

$$|S| = \sum_{O \text{ orbite}} |O|$$

Comme $|S| = {sp^n \choose p^n} \equiv s \mod p$ n'est pas divisible par p au moins l'une des orbites est de cardinal non divisible par p. Prenons un élément A d'une telle orbite et considérons son stabilisateur $H = \operatorname{Stab}_G(A)$. On va montrer que H est un p-Sylow, c'est à dire $|H| = p^n$. Comme on a :

$$|G/H| = |G \cdot A| \ et \ |G| = |H| \cdot |G \cdot A|$$

et p ne divise pas $|G \cdot A|$, p^n doit diviser |H|.

De l'autre côté, on a $h \cdot A = A$ pour tout $h \in H$. Donc l'action de H par translation à gauche laisse stable A et A est réunion de H-orbites $H \cdot a$, $a \in A$.

Or $|H \cdot a| = |H|$ car $H \cdot a$ est en bijection avec H via la translation à droite par a^{-1} . Donc |H| divise $|A| = p^n$. Finalement, on obtient bien que $|H| = p^n$.

Théoreme 5.3.2 (Deuxième théorème de Sylow)

Soit K un sous-groupe de G et soit H un p-Sylow de G. Alors il existe un conjugué H' de H tel que $H' \cap K$ est un p-Sylow de K.

Corollaire 5.3.3

- 1. Si $K \le G$ est un p-sous-groupe, alors K est contenu dans un p-Sylow de G.
- 2. Les p-Sylow de G sont tous conjugués.

Démonstration (Démonstration du corollaire)

- 1. Le deuxième théorème nous fournit un p-Sylow H' de G tel que $K \cap H'$ est un p-Sylow de K. Comme K est un p-groupe, on a $K = K \cap H'$, autrement dit : $K \subset H'$
- 2. Soient K et H deux p-Sylow de G. Par le deuxième théorème, il existe un conjugué H' de H tel que $H' \cap K$ est un p-Sylow de G. Or G est un G-Sylow de G. Or G est un G-Sylow de G est un G-Sylow de G. Or G est un G-Sylow de G est un G-Sylow de G-S

Démonstration (Démonstration du deuxième théorème de Sylow)

On a un sous-groupe $K \le G$ et un p-Sylow $H \subseteq G$, et on doit montrer qu'on peut conjuguer H en un p-Sylow H' tq $H' \cap K$ est un p-Sylow de K.

Soit S l'ensemble des classes G/H. On aura besoin des faits suivants : G opère transitivement sur G/H (par translation à gauche : $g \cdot xH = gxH$) et H est le stabilisateur de l'un des points de S, à savoir : S = eH.

Donc le stabilisateur de as, $a \in G$ est : aHa^{-1} (si G agit sur X et $x \in X$ et $g \in G$, alors $Stab_G(gx) = gStab_G(x)g^{-1}$ comme on le vérifie facilement. La conjugaison $h \mapsto ghg^{-1}$ donne la bijection).

Nous restreignons l'action de G sur S à K. Comme H est un p-Sylow, le cardinal de $|S| = |G/H| = |G|/|H| = sp^m/p^m = s$ n'est pas divisible par p.

Donc le cardinal d'au moins l'une des *K*-orbites, disons *O*, n'est pas divisible par *p*.

Supposons que O est l'orbite du point as pour un $s \in G$.

Soit $H' = aHa^{-1}$ le stabilisateur de as pour l'action de G. Alors le stabilisateur de as pour l'action restreinte à K est clairement $K \cap H'$ et l'indice $[K:H' \cap K]$ est |O|, qui n'est pas divisible par p. En outre, $K \cap H'$ est un p-groupe en tant que sous-groupe de H' (qui est un p-groupe car conjugué de H). Donc $H' \cap K$ est un p-groupe.

Il s'ensuit que $H' \cap K$ est bien un p-Sylow de K.

Théoreme 5.3.4 (Troisième théorème de Sylow)

Soit $n_p(G)$ le nombre de p-Sylow de G.

Alors $n_p(G)$ divise s et est congru à $1 \mod p$.

Exemple 5.3.5

- 1. $G = D_3$, $|G| = G = 2 \times 3$
 - $n_2(G) = 3$ divise bien s = 3 et est congru à 1 mod 2
 - $n_3(G) = 1$ divise bien s = 2 et est congru à 1 mod 3
- 2. $G = \mathcal{A}_4$, $|G| = 12 = 2^2 \times 3$

- $n_2(G) = 1$ divise 3 et est congru à 1 mod 2
- $n_3(G) = 4$ divise 2^2 et est congru à 1 mod 3.

Démonstration (Démonstration du troisième théorème de Sylow)

Par le corollaire, les p-Sylow de G sont tous conjugués à l'un d'entre eux, disons H. Soit $N = N_G(H)$ le normalisateur de H. Alors N est le stabilisateur de H dans l'action de G par conjugaison sur les p-Sylow. Donc $n_p(G) = [G:N]$ est le cardinal de l'orbite de H.

Comme $H \subseteq N$, [G:N] divise [G:H] = s

Pour montrer que $n_p(G) \equiv 1 \mod p$, on décompose l'ensemble des p-Sylow $\{H_1, H_2, \dots, H_{n_p(G)}\}$ en orbite sous l'action de conjugaison par $H = H_1$.

Une orbite ponctuelle est formée d'un seul sous-groupe H_i ssi H est contenu dans le normalisateur N_i de H_i . Si c'est le cas, alors H_i et H sont tous les deux des p-Sylow de N_i . Donc ils sont conjugués par un élément de N_i . Or H_i est distingué dans N_i , donc $H = H_i$.

Donc il n'existe qu'une seule orbite ponctuelle sous l'action de H sur les p-Sylow, à savoir $\{H\} = \{H_1\}$. Les cardinaux des autres orbites divisent |H|, donc sont des multiples de p. Il s'ensuit que $n_p(G) \equiv 1 \mod p$.

Exemple 5.3.6

Soit *G* un groupe d'ordre 15. On va montrer que *G* est cyclique.

On a $|G| = 15 = 3 \times 5$

 $n_3(G)$ divise 5 et est congru à 1 mod 3, donc $n_3(G) = 1$ et G admet un unique 3-Sylow P, qui est donc distingué (car pour $g \in G$, le conjugué gPg^{-1} est encore un 3 - Sylow et donc $gPg^{-1} = P$) et d'ordre 3. $n_5(G)$ divise 3 et est congru à 1 modulo 5. Donc $n_5(G) = 1$. Donc G admet un unique 5-Sylow Q qui forcément est distingué.

On a $P \cap Q = \{e\}$ car $|P \cap Q|$ divise à la fois |P| = 3 et |Q| = 5.

On a $P \cong \mathbb{U}_3$ et $Q \cong \mathbb{U}_5$ car 3 et 5 sont premiers.

Pour $x \in P$ et $y \in Q$, on a xy = yx, car le commutateur $xyx^{-1}y^{-1}$ appartient à la fois à P et à Q car P et Q sont distingués.

Donc on a un morphisme de groupes bien défini :

$$\varphi: P \times Q \to G, \ (x,y) \mapsto xy$$

Son noyau est formé des (x, y) tq $xy = e \Leftrightarrow x = y^{-1}$.

Donc $\ker(\varphi) = \{e\}$. Donc φ est injectif. Comme $|P \times Q| = 15 = |G|$, φ est aussi surjectif.

Donc φ est un isomorphisme

$$G \simeq P \times Q \simeq \mathbb{U}_3 \times \mathbb{U}_5 \cong \mathbb{U}_{15}$$
 car pgcd(3,5) = 1

Chapitre 6

Théorèmes de classification

6.1 Un outil: le produit semi-direct

Définition 6.1.1

Soient G un groupe et $N \triangleleft G$ un sous-groupe distingué. Un **complément** de N dans G est un sous-groupe $K \triangleleft G$ tel que

$$K \cap N = \{e\}$$
 et $K \cdot N = G$

Remarque 6.1.2

Notons que comme N est distingué, $K \cdot N$ est un sous-groupe et en fait égal à $N \cdot K$.

Exemple 6.1.3

1. Rappelons-nous le treillis des sous-groupes de D_3

Le sous-groupe $N=\langle \rho \rangle$ est distingué et chacun des $\langle \tau_i \rangle$, où τ_i est la i-ème symétrie, est un complément.

- 2. Plus généralement, dans $G = D_n$, le sous-groupe des rotations $N = \langle \rho \rangle$ est distingué et chaque sous-groupe $K = \langle \tau \rangle$, où τ est une symétrie, est un complément.
- 3. Si E est un espace vectoriel et $F \subset E$ un sous-espace, alors tout supplémentaire G (i.e. $E = F \oplus G$) est un complément du sous-groupe N = F de G = E.

Remarque 6.1.4

Soient G un groupe, $N \triangleleft G$ et K un complément. Alors par le deuxième théorème d'isomorphisme, on a

$$G/N = KN/N \cong K/N \cap K = K$$

Donc si K_1 et K_2 sont deux compléments, alors $K_1 \cong K_2$.

Définition 6.1.5

Soient G un groupe, N un sous-groupe distingué et K un complément de N. Alors G est **le produit semi-direct interne** de N par K, en symboles : $G = N \stackrel{i}{\rtimes} K$

Exemple 6.1.6

 $D_n = \langle \rho \rangle \times \langle \tau \rangle$, où ρ engendre le sous-groupe des rotations et τ est une symétrie quelconque.

6.2 Produit semi-direct externe

Rappel

Si G est un groupe. Aut(G) désigne le groupe des automorphismes de G, i.e. des morphismes de groupes bijectifs $\varphi: G \xrightarrow{\sim} G$.

Définition 6.2.1

Soient K et N des groupes et

$$u: K \to \operatorname{Aut}(N), k \mapsto u_k$$

un morphisme de groupes. Le **produit semi-direct externe** $N \rtimes K$ est l'ensemble $N \times K$, muni de la loi définie $par(n,k) \cdot (n',k') = (n \cdot u_k(n'),k \cdot k'), \quad \forall n,n' \in N, \ \forall k,k' \in K$

Remarque 6.2.2

Si u est trivial (i.e. $u_k = \operatorname{Id}_N, \ \forall k \in K$), alors le produit semi-direct externe se réduit au produit direct : $N \rtimes K = N \times K$

Lemme 6.2.3

- 1. $N \underset{u}{\rtimes} K$ est un groupe
- 2. $N \rtimes K$ est le produit semi-direct interne de son sous-groupe distingué $N \times \{e\}$ par le complément $\{e\} \times K$.

Démonstration

1. Montrons l'associativité de la multiplication :

$$\begin{split} \big((n,k),(n',k')\big)\cdot(n'',k'') &= \big(n\cdot u_k(n'),k\cdot k'\big)\cdot(n'',k'') \\ &= \big(n\cdot u_k(n')\cdot u_{k\cdot k'}(n''),k\cdot k'\cdot k''\big) \\ &= \big(n\cdot u_k(n')\cdot u_k\cdot u_{k'}\cdot(n''),k\cdot k'\cdot k''\big) \end{split}$$

$$\begin{split} (n,k)\cdot \big((n',k'),(n'',k'')\big) &= (n,k)\cdot \big(n'\cdot u_{k'}(n''),k'\cdot k''\big) \\ &= \big(n\cdot u_k\big(n'\cdot u_{k'}(n'')\big),k\cdot k'\cdot k''\big) \\ &= \big(n\cdot u_k(n')\cdot u_k\big(u_{k'}(n'')\big),k\cdot k'\cdot k''\big) \end{split}$$

Montrons que (e, e) est un élément neutre :

$$(n, k)(e, e) = (nu_K(e), ke)$$

= $(ne, ke) = (n, k)$

$$\begin{split} (e,e)(n,k) &= (eu_K(n),ek) \\ &= (e\operatorname{Id}_N(n),ek) \\ &= (n,k) \\ n &\in N, \ k \in K \end{split}$$

Montrons que $(u_{K^{-1}}(n^{-1}), k^{-1})$ est l'inverse de $(n, k) \in N \rtimes K$

$$\begin{aligned} \big(u_{K^{-1}}(n^{-1})(n,k) &= \big(u_{K^{-1}}(n^{-1}) \cdot u_{K^{-1}}(n), k^{-1}k\big) \\ &= \big(u_{K^{-1}}(n^{-1} \cdot n), k^{-1}k\big) = (e,e) \end{aligned}$$

$$(n,k) (u_{K^{-1}}(n^{-1},k^{-1}) = (n \cdot u_K(u_{K^{-1}}(n^{-1})), kk^{-1})$$
$$= (nu_{KK^{-1}}(n^{-1}), kk^{-1})$$
$$= (n \operatorname{Id}(n^{-1}, e) = (e, e)$$

2. Montrons que $N \times \{e\}$ est distingué dans $N \rtimes K$:

$$\begin{split} (n,k)(n',e) \big(u_{K^{-1}}(n^{-1}), k^{-1} \big) &= \big(n u_K(n'), k \big) (u_{K^{-1}}(n^{-1}), k^{-1} \big) \\ &= \big(n \cdot u_K(n') \cdot u_K \big(u_{K^{-1}}(n^{-1}) \big), k k^{-1} \big) \\ &= \big(n \cdot u_K(n') n^{-1}, e \big) \in N \times \{e\} \end{split}$$

Il est clair que $(N \times \{e\}) \cap (\{e\} \times K) = \{e\} \times \{e\} = e_{N \rtimes K}$ Montrons que $(N \times \{e\}) \cdot (\{e\} \times K) = N \rtimes K$

$$(n,e)\cdot(e,k)=(nu_e(e),ek)=(n,k)$$

pour $n \in N$, $k \in K$

Lemme 6.2.4

Supposons que $G = N \stackrel{i}{\rtimes} K$. Soit

$$u: K \to \operatorname{Aut}(N), \quad k \mapsto (n \mapsto knk^{-1})$$

Alors on a un isomorphisme canonique:

$$\varphi: N \underset{u}{\rtimes} K \overset{\sim}{\to} N \overset{i}{\rtimes} K = G, \quad (n,k) \mapsto nk$$

Exemple 6.2.5 On a $D_n = \underbrace{\langle \rho \rangle}_N \times \underbrace{\langle \tau \rangle}_K$, où ρ engendre le sous-groupe des rotations et τ est une symétrie. On a $\tau \rho \tau^{-1} = \rho^{-1}$. Donc si :

$$u:\langle \tau \rangle \to \operatorname{Aut}(\langle \rho \rangle), \quad \tau \mapsto (\rho^l \mapsto \rho^{-l})$$

Alors: $D_n \overset{\sim}{\leftarrow} \langle \rho \rangle \rtimes \langle \tau \rangle$ Notons qu'on a $\langle \rho \rangle \simeq \mathbb{Z}/n\mathbb{Z}$, $\langle \tau \rangle \simeq \mathbb{Z}/2\mathbb{Z}$ et donc

$$D_n \overset{\sim}{\leftarrow} \mathbb{Z}/n\mathbb{Z} \underset{u}{\rtimes} \mathbb{Z}/2\mathbb{Z}$$

$$u: \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}), \quad \overline{1} \mapsto (\overline{a} \mapsto -\overline{a})$$

Démonstration (Démo du lemme)

Vérifions que φ est un morphisme

$$\varphi((n,k),(n',k')) = \varphi((nu_K(n'),kk')$$

$$= n \cdot u_K(n')kk'$$

$$= nkn'k^{-1}kk'$$

$$= nkn'k'$$

$$= \varphi((n,k)) \cdot \varphi((n',k'))$$

où $n, n' \in N$, $k, k' \in K$. Clairement φ est surjectif. Le noyau de φ est formé des couples (n, k) tel que nk = e, i.e. $n = k^{-1} \in N \cap K = \{e\}$.

6.3 Les groupes d'automorphismes des groupes cycliques

Définition 6.3.1

Soit A un anneau. Un élément de $a \in A$ est **inversible** s'il existe $a \in A$ tel que aa' = 1 = a'a. On note A^* l'ensemble des éléments inversibles.

Remarque 6.3.2

 A^* est un groupe pour la multiplication.

Exemple 6.3.3

- 1. $M_n(\mathbb{R})^* = Gl_n(\mathbb{R})$
- 2. On a:

$$(\mathbb{Z}/n\mathbb{Z})^* = \left\{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} \,\middle|\, \exists \overline{a'} \text{ tel que } \overline{a}\overline{a'} = \overline{1} \right\}$$

$$= \left\{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} \,\middle|\, \exists a', k \in \mathbb{Z} \text{ tel que } a'a + kn = 1 \right\} \text{ identit\'e de B\'ezout}$$

$$= \left\{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} \,\middle|\, \operatorname{pgcd}(a,n) = 1 \right\}$$

En particulier, si p est un nombre premier, on a :

$$(\mathbb{Z}/p\mathbb{Z})^* = \mathbb{Z}/p\mathbb{Z} \setminus \{\overline{0}\}$$
 est d'ordre $p-1$

On peut montrer qu'en fait $(\mathbb{Z}/p\mathbb{Z})^*$ est **cyclique** d'ordre p-1

Définition 6.3.4

Un **corps commutatif** est un anneau commutatif A où $1 \neq 0$ et tout élément non nul est inversible.

Exemple 6.3.5

Si p est premier, l'anneau $\mathbb{Z}/p\mathbb{Z}$ est un corps. Les anneaux $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ sont des corps. L'anneau \mathbb{Z} n'est pas un corps car $\mathbb{Z}^* = \{1, -1\}$.

Théoreme 6.3.6

Si K est un corps commutatif fini (i.e K n'a qu'un nombre fini d'éléments), alors $K^* = K \setminus \{0\}$ est cyclique. En particulier, si p est premier, le groupe $(\mathbb{Z} \mid p \mathbb{Z})^*$ est cyclique d'ordre p-1.

Remarque 6.3.7

Si A est un anneau, on a un morphisme naturel

$$A^* \to \operatorname{Aut}((A,+)), \quad a \mapsto (b \mapsto ab)$$

En effet, on a a(b+b') = ab + ab' et (aa')b = a(a'b), $\forall a, a' \in A^*, \forall b, b' \in A$

Lemme 6.3.8

Le morphisme naturel

$$f: (\mathbb{Z}/n\mathbb{Z})^* \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$$

 $\bar{a} \mapsto (\bar{b} \mapsto \bar{a}\bar{b})$

est un isomorphisme. En particulier, si p est premier, alors $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})$ est cyclique d'ordre p-1.

Démonstration

Clairement f est un morphisme.

f est injectif car $\bar{b} \mapsto \bar{a}\bar{b}$ est l'identité ssi $\bar{a} \cdot 1 = 1$

Montrons que f est surjectif. Soit $\varphi: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ un automorphisme. Alors $\varphi(\overline{1})$ est un générateur de $\mathbb{Z}/n\mathbb{Z}$

Or cela signifie que $\varphi(\overline{1}) = \overline{a}$ pour un $a \in \mathbb{Z}$ tel que pgcd(a, n) = 1

Pour $\overline{b} \in \mathbb{Z}/n\mathbb{Z}$, on a:

$$\varphi(b) = \varphi(\underbrace{1+1+\ldots+1}_{b})$$

$$= \underbrace{\varphi(1) + \varphi(1) + \ldots + \varphi(1)}_{b}$$

$$= \overline{a} + \ldots + \overline{a}$$

$$= \overline{a}.\overline{b}$$

$$= (f(\overline{a}))(\overline{b})$$

Donc $\varphi = f(\bar{a})$

6.4 Classification des groupes d'ordre pq, p < q premiers

Théoreme 6.4.1

Soient p < q premiers et G un groupe d'ordre pq. Alors ou bien G est cyclique ou bien isomorphe à un produit semi-direct $\mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$ pour un $u: \mathbb{Z}/p\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \cong \mathbb{Z}/(q-1)\mathbb{Z}$ non trivial.

Remarque 6.4.2

Comme Aut($\mathbb{Z}/q\mathbb{Z}$) est cyclique d'ordre q-1, il existe un

$$u: \mathbb{Z}/p\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z})$$

non trivial ssi $\mathbb{Z}/(q-1)\mathbb{Z}$ admet un sous-groupe d'ordre p ssi p divise q-1 ssi $q \equiv 1 \mod p$. Donc pour p < q:

- $q \neq 1 \mod p \Rightarrow$ tout groupe d'ordre pq est cyclique.
- $q \equiv 1 \mod p$ ⇒ tout groupe d'ordre pq est ou bien cyclique ou bien un produit semi-direct $\mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$

C'est le cas par exemple pour $pq = 21 \operatorname{car} 7 \equiv 1 \mod 3$.

Exemple 6.4.3 (Exemple d'application)

Un groupe d'ordre $6 = 2 \times 3$ est ou bien cyclique ou bien isomorphe à

$$\mathbb{Z}/3 \rtimes \mathbb{Z}/2 \simeq D_3 \simeq \mathfrak{S}_3$$
, D_3 permute les sommets au triangle

Donc à isomorphisme près, $\mathbb{Z}/6$ et $D_3 \simeq \mathfrak{S}_3$ sont les seuls groupes d'ordre 6. Soit G un groupe d'ordre $15 = 3 \times 5$. On a $5 \neq 1 \mod 3$. Donc par le théorème, G est cyclique.

Démonstration

Le premier théorème de Sylow nous affirme l'existence d'au moins un sous-groupe P d'ordre p et d'au moins un sous-groupe Q d'ordre q. Tous deux sont cycliques et isomorphes à $\mathbb{Z}/p\mathbb{Z}$ et $\mathbb{Z}/q\mathbb{Z}$ respectivement. Remarquons que comme $\operatorname{pgcd}(p,q)=1$, on a $P\cap Q=\{e\}$

Enfin P et Q engendrent le sous-groupe G, seul sous-groupe contenant strictement P et Q.

Le 3ème théorème de Sylow nous indique si $n_q(G)$ est le nombre de q-Sylow de G, alors $n_q(G)$ divise p est est congru à 1 modulo q.

Puisque p < q, la seule possibilité est $n_q(G) = 1$. Ainsi G admet Q pour q-Sylow unique et Q est donc distingué dans G.

Nous avons donc

$$G = Q \cdot P = Q \overset{i}{\rtimes} P$$

$$\simeq Q \underset{u}{\rtimes} P$$

$$\simeq \mathbb{Z}/q \mathbb{Z} \underset{u}{\rtimes} \mathbb{Z}/p \mathbb{Z}$$

Pour un $u: \mathbb{Z}/p \to \operatorname{Aut}(\mathbb{Z}/q) \simeq \mathbb{Z}/(q-1)$.

Si u est trivial, alors

$$\mathbb{Z}/q\mathbb{Z} \times_{\mathcal{U}} \mathbb{Z}/p\mathbb{Z} \simeq \mathbb{Z}/q\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \simeq \mathbb{Z}/pq\mathbb{Z}$$

 \Box

6.5 Classification des groupes d'ordre p^2 , p premier

Soit p un nombre premier.

Lemme 6.5.1

Si G est un p-groupe (i.e. |G| est une puissance de p), alors le centre Z(G) est non trivial.

Démonstration

Écrivons l'équation aux classes pour l'action de conjugaison de G sur lui-même :

$$|G| = |Z(G)| + \sum_{O \text{ orbite non ponctuelle}} |O|$$

Les points fixes (= orbites ponctuelles) de cette action sont exactement les éléments du centre et les orbites non ponctuelles sont toutes de cardinal une puissance $\geq p$ de p.

Donc |Z(G)| est congru à 0 modulo p, et comme $e \in Z(G)$, l'ordre de Z(G) est au moins p.

Lemme 6.5.2

Tout groupe d'ordre p^2 est abélien.

Remarque 6.5.3

Il existe des groupes d'ordre p^3 qui ne sont pas abéliens, par exemple D_4 qui est d'ordre 8.

Démonstration

Soit *G* un groupe d'ordre p^2 . On va montrer que pour tout $x \in G$, le centralisateur

$$\mathbb{Z}_G(x) = \{ y \in G | xy = yx \}$$

est le groupe G tout entier.

Soit $x \in G$. Si $x \in Z(G)$, alors $Z_G(x) = G$ comme annoncé.

Supposons donc que $x \notin Z(G)$. Alors $Z_G(x)$ est strictement plus grand que Z(G) car il contient Z(G) et en plus l'élément x. Or les ordres de Z(G) et $Z_G(x)$ divisent p^2 et d'après le lemme précédent, l'ordre de Z(G) est $\geq p$. Donc $|Z_G(x)| > p$ et divise $p^2 = |G|$. La seule possibilité est $|Z_G(x)| = p^2$ et $Z_G(x) = G$.

Théoreme 6.5.4

Tout groupe d'ordre p^2 est ou bien cyclique isomorphe à $\mathbb{Z}/p^2\mathbb{Z}$ ou bien isomorphe à $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$

Démonstration

Comme l'ordre d'un élément divise p^2 , deux cas sont possibles :

- 1er cas : Il existe un élément d'ordre p^2 et $G \simeq \mathbb{Z}/p^2 \mathbb{Z}$ est cyclique.
- 2ème cas : Tout élément autre que *e* est d'ordre *p*.

Soient x et y deux éléments d'ordre p et H_1 et H_2 les sous-groupes qu'ils engendrent.

On peut choisir *y* de telle façon qu'il ne soit pas une puissance de *x*.

Alors comme $y \notin H_1$, le sous-groupe $H_1 \cap H_2$ est strictement plus petit que H_2 qui est d'ordre p.

П

Donc $H_1 \cap H_2 = \{e\}$. De plus, H_1 et H_2 sont distingués dans G qui est abélien.

Puisque $y \notin H_1$, le groupe H_1H_2 est strictement plus grand que H_1 et son ordre divise p^2 .

Donc $H_1 \cdot H_2 = G$ et on a un isomorphisme $\mathbb{Z}/p \times \mathbb{Z}/p \simeq H_1 \times H_2 \xrightarrow{\sim} G$.

6.6 Classification des groupes d'ordre 12

Théoreme 6.6.1

Tout groupe d'ordre 12 est isomorphe à l'un des uniques groupes suivants :

- **Z**/3 × **Z**/4
- $\mathbb{Z}/3 \times \mathbb{Z}/2 \times \mathbb{Z}/2$
- A4
- D₆
- $\tilde{\mathfrak{S}}_3 := \mathbb{Z}/3 \underset{u}{\times} \mathbb{Z}/4$, u non trivial

Remarque 6.6.2

Notons que $\mathbb{Z}/3 \times \mathbb{Z}/4 \cong \mathbb{Z}/12$ et $\mathbb{Z}/3 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \cong \mathbb{Z}/6 \times \mathbb{Z}/2$. Ce sont les seuls sous-groupes abéliens d'ordre 12 à isomorphisme près.

Le morphisme $u: \mathbb{Z}/4 \to \operatorname{Aut}(\mathbb{Z}/3) \cong \mathbb{Z}/2$ est l'**unique** morphisme **non trivial**.

Le groupe $\tilde{\mathfrak{S}}_3$ contient le sous-groupe $N = \langle (\bar{0}, \bar{2}) \rangle \cong \mathbb{Z}/2$ qui est distingué dans $\tilde{\mathfrak{S}}_3$.

Le quotient $\tilde{\mathfrak{S}}_3/N$ est isomorphe à $\mathbb{Z}/3 \rtimes \mathbb{Z}/2 \cong \mathfrak{S}_3$. On a donc ce qu'on appelle une **suite exacte** :

$$\{e\} \to \mathbb{Z}/2 \stackrel{i}{\to} \tilde{\mathfrak{S}_3} \stackrel{p}{\to} \mathfrak{S}_3 \to \{e\}$$

i.e *i* est injectif, *p* est surjectif et ker(p) = Im(i)

Démonstration (Théorème)

Soit G un groupe d'ordre $12 = 3 \times 2^2$. Soit H un 2-Sylow de G (il est d'ordre 4) et soit K un 3-Sylow de G (il est d'ordre 3). D'après le 3ème théorème de Sylow, le nombre $n_2(G)$ divise 3 et est congru à 1 modulo 2. Donc $n_2(G) \in \{1,3\}$. De même, le nombre $n_3(G)$ divise 4 et est congru à 1 modulo 3. En outre, $K \cong \mathbb{Z}/3$. Donc $n_3(G) \in \{1,4\}$. En outre, H est d'ordre 4 et donc isomorphe à $\mathbb{Z}/4$ ou à $\mathbb{Z}/2 \times \mathbb{Z}/2$.

Lemme 6.6.3

L'un au moins parmi les groupes H et K est distingué dans G.

Démonstration

Supposons que K n'est pas distingué. Alors K a 4 sous-groupes conjugués $K = K_1$, K_2 , K_3 , K_4 . Puisque $|K_i| = 3$, $\forall i$, l'intersection de deux quelconques de ces sous-groupes est réduite à l'identité. En comptant les éléments de G, on voit que seuls 3 éléments de G ne sont dans aucun des sous-groupes K_i .

Le 2-Sylow H est d'ordre 4 et $H \cap K_i = \{e\}$, $\forall i$.

Donc H est formé de e et de ces 3 éléments. Donc H est unique et par conséquent distingué.

HK est un sous-groupe de G. Puisque $H \cap K = \{e\}$, chaque élément de HK a une **unique** expression comme produit hk, $h \in H$, $k \in K$. Puisque |G| = 12, on a G = HK.

— 1er cas : H et K sont tous les deux distingués. Dans ce cas, on a hk = kh, pour tous $h \in H$, $k \in K$, car

$$hkh^{-1}k^{-1} \in H \cap K = \{e\}$$

avec $hkh^{-1} \in K$, $k^{-1} \in K$, $khk^{-1} \in H$, $h \in H$

Donc on a un isomorphisme $H \times K \xrightarrow{\sim} HK = G$, $(h, k) \mapsto hk$ et donc $G \simeq \mathbb{Z}/4 \times \mathbb{Z}/3$ ou $G \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$, suivant que $H \cong \mathbb{Z}/4$ ou $H \cong \mathbb{Z}/2 \times \mathbb{Z}/2$.

Remarque 6.6.4

On verra que ce sont les seuls groupes abéliens d'ordre 12.

— 2ème cas : *H* est distingué mais *K* ne l'est pas.

Il y a donc 4 3-Sylow conjugués K_1 , K_2 , K_3 , K_4 . G agit par conjugaison sur cet ensemble X de 4 sous-groupes conjugués.

À cette action est associé un morphisme de groupes

$$\phi: G \longrightarrow \mathfrak{S}_4$$

On va montrer que ϕ induit un isomorphisme de G sur $\mathcal{A}_4 \subseteq \mathfrak{S}_4$. Le stabilisateur de K_i pour l'action de conjugaison est le normalisateur $N_G(K_i)$, qui contient K_i . Le cardinal de l'orbite est 4 et c'est aussi l'indice de $N_G(K_i)$ dans G (le cardinal d'une orbite est l'indice du stabilisateur de tout point de l'orbite).

Donc $N_G(K_i)$ est d'ordre 3 et $N_G(K_i) = K_i$. L'intersection des $N_G(K_i)$ est l'intersection des K_i , c'est-à-dire $\{e\}$.

Donc

$$\operatorname{Ker}(\phi) = \bigcap_{i=1}^{4} N_G(K_i) = \{e\}$$

 ϕ est injectif et G est isomorphe à $Im(\phi)$

Puisque G a 4 sous-groupes d'ordre 3, il contient 8 éléments d'ordre 3 et ces 8 éléments engendrent G. Si x est d'ordre 3, $\phi(x)$ est d'ordre 3 donc un 3-cycle donc une permutation paire.

Donc $Im(\phi) \in \mathcal{A}_4$, et comme les deux sont d'ordre 12, on a $Im(\phi) = \mathcal{A}_4$

— 3ème cas : K est distingué mais H ne l'est pas

Dans ce cas, on a $G = K \rtimes H \simeq K \rtimes H$ pour un morphisme $u : H \longrightarrow \operatorname{Aut}(K)$ à déterminer.

Comme $K \simeq \mathbb{Z}/3$, on a Aut $(K) \simeq \mathbb{Z}/2$, et il reste à voir comment les éléments de H agissent sur K par conjugaison (c'est cette action qui donne u). Supposons que H est cyclique engendré par x. Soit y un générateur de K. Comme G n'est pas abélien, on a $xy \neq yx$ et donc $xyx^{-1} = y^2$ (car y et y^2 sont les seuls générateurs de $K \cong \mathbb{Z}/3$). Donc $u: H \longrightarrow \operatorname{Aut}(K)$ est l'unique morphisme non

trivial et on a $G \simeq \mathbb{Z}/3 \underset{u}{\rtimes} \mathbb{Z}/4 = \tilde{\mathfrak{S}}_3$.

La dernière possibilité est que $H \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$. H contient 3 éléments d'ordre 2.

Puisque K n'a que deux automorphismes et H est d'ordre 4, il existe un élément $w \in H$ autre que l'identité qui agit trivialement sur K: $wyw^{-1} = y$.

Puisque G n'est pas abélien, il y a aussi un élément $v \in H$, qui agit non trivialement : $vyv^{-1} = y^2$. Alors on a

$$H = \{e, v, w, vw\}$$

et $v^2 = w^2 = e$ et vw = wv.

L'élément x = wy est d'ordre 6 et

$$vxv^{-1} = vwvv^{-1} = wv^2 = v^2w = x^{-1}$$

On a donc x est d'ordre 6, v est d'ordre 2 et $vxv^{-1} = x^{-1}$, d'où un isomorphisme :

$$D_6 \stackrel{\sim}{\rightarrow} 0$$

$$\rho \mapsto z$$

$$\tau \mapsto \nu$$

6.7 Classification des groupes abéliens finis

Notations dans les groupes abéliens

1. Soit A un groupe abélien. Soit $a \in A$. Pour $n \in \mathbb{N}$, on note na = a + ... + a (cela correspond à g^n dans un groupe noté multiplicativement). On note (-n)a = -na pour $n \in \mathbb{N}$. L'**ordre** de a est le plus petit entier $n \ge 1$, tq na = 0, respectivement $+\infty$ s'il existe pas de tel entier. On a ma = 0 ssi m est multiple de l'ordre de a. Si a est d'ordre n, on a un unique morphisme de groupes injectif:

$$\mathbb{Z}/n\mathbb{Z} \hookrightarrow A, \bar{k} \mapsto ka$$

Son image est le sous-groupe $\langle a \rangle$ engendré par a.

- 2. Si A et B sont deux groupes abéliens, on note $A \oplus B := A \times B$ (somme directe externe). Si A est un groupe abélien et B, $C \subseteq A$ des sous-groupes on note $A = B \oplus C$ (somme directe interne) si A = B + C et $B \cap C = \{0\}$ (i.e C est un complément de B dans A).
- 3. Si A est un groupe abélien et A_1, \ldots, A_n des sous-groupes , on note $A = A_1 \oplus \ldots \oplus A_n$ si tout $a \in A$ s'écrit de façon unique sous la forme :

$$a = a_1 + \ldots + a_n$$

pour des $a_i \in A_i$, $1 \le i \le n$. De façon équivalente :

- (a) $A = A_1 + ... + A_n$
- (b) $A_i \cap (A_1 + ... + \hat{A}_i + ... + A_n) = \{0\}$ ($\hat{A}_i = \text{on omet } A_i$) pour tout $1 \le i \le n$.

Décomposition en p-Sylow

Remarque 6.7.1

Si A est abélien fini, tout sous-groupe est distingué. Donc A admet un **unique** p-Sylow noté A_p pour tout nombre premier p.

Théoreme 6.7.2

Soit A un groupe abélien fini. Alors A est la somme directe de ses p-Sylow. Autrement dit, on a :

$$A = A_{p_1} \oplus \ldots \oplus A_{p_k}$$

où les p_i sont les diviseurs premiers de |A|.

Exemple 6.7.3

$$\mathbb{Z}/12 = (\mathbb{Z}/12)_2 \oplus (\mathbb{Z}/12)_3$$

 $\cong \mathbb{Z}/4 \oplus \mathbb{Z}/3$

Démonstration

Par récurrence sur |A|. Si |A| = 1, alors $A = \{0\}$ et il n'y a rien à démontrer. Supposons |A| > 1. Soit p un diviseur premier de |A|. Écrivons $|A| = p^e s$ où p ne divise pas s. Décrivons $A_p \subseteq A$. On a :

$$p^e a = 0$$
 \Leftrightarrow l'ordre de a divise p^e
 \Leftrightarrow $\langle a \rangle$ est un p -groupe
 \Leftrightarrow $\langle a \rangle \subseteq A_p$ (car A_p est le **seul** p -Sylow de A)
 \Leftrightarrow $a \in A_p$

Donc $A_p = \{a \in A | p^e a = 0\}$. Posons $A_s := \{a \in A | sa = 0\}$. Montrons que $A = A_p \oplus A_s$. Soit

$$1 = up^e + vs$$
, $u, v \in \mathbb{Z}$

est une identité de Bézout. Soit $a \in A_p \cap A_s$. Alors :

$$a = 1 \cdot a = (up^e + vs) \cdot a = up^e a + vsa = 0$$

Soit $a \in A$. On a $a = 1 \cdot a = up^e a + vsa$ et:

$$s(up^e a) = usp^e a = 0 \Rightarrow up^e a \in A_s$$

 $p^e(vsa) = vp^e sa = 0 \Rightarrow vsa \in A_p$

Par l'hypothèse de récurrence, on a :

$$A_s = (A_s)_{p_2} \oplus \ldots \oplus (A_s)_{p_k}$$

où les p_i sont les diviseurs premiers de |A| autres que p. Et on a :

$$(A_s)_{p_i} = \{a \in A_s | p_i^{e_i} a = 0\}, \text{ où } s = p_i^{e_i} s_i, p_i \text{ ne divise pas } s_i$$

= $\{a \in A | p_i^{e_i} a = 0\}, \text{ où } |A| = p_i^{e_i} p^e s, p_i \text{ ne divise pas } p^e s$
= A_{p_i}

Donc $A = A_p \oplus ... \oplus A_{p_k}$

6.7.1 Classification des p-groupes abéliens

Remarque 6.7.4

On va montrer que tout p-groupe abélien est isomorphe à une somme directe de groupes \mathbb{Z}/p^m , $m \in \mathbb{N}$.

Lemme 6.7.5

Soit A un p-groupe abélien. Soit $a \in A$ un élément d'ordre maximal. Soit $\pi : A \to A/\langle a \rangle$ la projection canonique. Alors il existe $c \in A$ tel que $\pi(c) = b$ et tq c a même ordre que b.

Démonstration

Notons ord(x) l'ordre d'un élément x. Soit $c' \in A$ tq $\pi(c') = b$.

Soit k = ord(b). Alors $ord(c') \cdot b = ord(c')\pi(c') = \pi(ord(c')c') = \pi(0) = 0$. Donc ord(c') est un multiple de ord(b) = k. Disons ord(c') = kl. Comme a est d'ordre maximal, ord(c') = kl divise ord(a). Disons ord(a) = klm. On a :

$$\pi(kc') = k\pi(c') = k \cdot b = 0$$

Donc kc' = ia pour un $i \in \mathbb{N}$. On a $lia = lk \cdot c' = 0$. Donc li est divisible par klm = ord(a) et i est divisible par km. Disons i = jkm. Posons c = c' - jma.

П

Alors $\pi(c) = \pi(c') = b$ et $k \cdot c = k(c' - jma) = kc' - kjma = kc' - ia = 0$. Donc k divise ord(c).

Mais ord(c) divise $ord(\pi(c)) = ord(b) = k$.

Donc ord(c) = k = ord(b).

Théoreme 6.7.6

Soit A un p-groupe abélien. Alors, on a :

$$A \cong \mathbb{Z}/p^{m_1} \oplus \ldots \oplus \mathbb{Z}/p^{m_k}$$

pour un unique $k \in \mathbb{N}$ et des $m_i \ge 1$ uniques à permutation près.

Définition 6.7.7

Le **diagramme de Young** associé à A est un diagramme formé de k lignes chacune à m_i cases, où l'on a ordonné les m_i tels que $m_1 \ge m_2 \ge ... \ge m_k$.

Exemple 6.7.8

diagramme de Young associé à $6 \ge 3 \ge 3 \ge 2 \ge 1$ respectivement au groupe :

$$\mathbb{Z}/p^6\oplus\mathbb{Z}/p^3\oplus\mathbb{Z}/p^3\oplus\mathbb{Z}/p^2\oplus\mathbb{Z}/p$$

Démonstration

Unicité : On va montrer que A détermine son diagramme de Young. Considérons le noyau de la multiplication par p^r :

$$p^k: \mathbb{Z}/p^m \to \mathbb{Z}/p^m$$
$$\bar{k} \mapsto p^r \bar{k}$$

Si $r \ge m$, alors le noyau est \mathbb{Z}/p^m tout entier.

Si r < m, alors le noyau est le sous-groupe engendré par $\overline{p^{m-r}}$. Dans ce cas, il est donc d'ordre p^r .

$$|\ker(p^r: \mathbb{Z}/p^m \to \mathbb{Z}/p^m)| = \left\{ \begin{array}{ll} p^m & si \ r \ge m \\ p^r & si \ r \le m \end{array} \right.$$

Chapitre 7

Un peu de géométrie affine

7.1 Espaces affines

Soit K un corps (par ex. \mathbb{Q} , \mathbb{R} , \mathbb{C})

Définition 7.1.1

Un espace affine sur K est un triplet (ε, E, ϕ) , où

- ε est un ensemble non vide
- E est un K-espace vectoriel
- $\phi: \varepsilon \times E \longrightarrow \varepsilon$ est une action libre et transitive du groupe (E, +) sur l'ensemble ε .

Remarque 7.1.2

Dans la situation de la définition, on dit aussi que ε est un espace affine de **direction** E. Les éléments de ε sont appelés **points**, ceux de E **vecteurs**.

Exemple 7.1.3

Soit E un \mathbb{K} -espace vectoriel. On pose $\varepsilon = E$, et on note ϕ l'action de (E, +), sur $\varepsilon = E$ par translation. Alors ε est un espace affine de direction E.

Notation 7.1.4

Soit ε un espace affine de direction E. On note :

$$\phi(P, v) = P + v, \quad \forall P \in \varepsilon, \forall v \in E$$

Remarque 7.1.5

Pour tous $P, Q \in \varepsilon$, et $v, w \in E$, on a:

- P + 0 = P
- (P + v) + w = P(v + w)
- $\exists u \in E \text{ tel que } Q = P + u$

Notation 7.1.6

Pour tous P,Q $\in \varepsilon$, *on note PQ l'unique vecteur tel que*

$$Q = P + \overrightarrow{PQ}$$

Remarque 7.1.7

Pour tous $P, Q, R \in \varepsilon$ et $u, v \in E$, on a

•
$$\vec{PQ} = 0 \Leftrightarrow P = Q$$

•
$$\overrightarrow{PQ} = u \Leftrightarrow P + u = Q$$

$$\bullet \ \ \vec{PQ} + \vec{QR} = \vec{PR}$$

(relation de Chasles)

•
$$P + u = Q + v \Leftrightarrow \vec{PQ} = u - v$$

7.2 Sous-espaces affines

Soit ε un espace affine de direction E.

Définition 7.2.1

Un sous-espace affine de ε *est une partie* $\mathscr{F} \in \varepsilon$ *telle qu'il existe un point* $P \in \varepsilon$ *et sous-espace vectoriel* $F \subset E$ *tel que*

$$\mathcal{F} = \{P + v | v \in F\} = P + F$$

Exemple 7.2.2

- 1. $\mathcal{F} = \varepsilon$ est un sous-espace affine (F = E)
- 2. Pour $P \in \varepsilon$, $\mathcal{F} = \{P\}$ est un sous-espace affine $(F = \{0\})$

Remarque 7.2.3

Soient $P \in \varepsilon$ et $F \subset E$ un sous-espace vectoriel.

Posons $\mathcal{F} = P + F$.

1. On a
$$F = \{\vec{QR} | Q, R \in \mathcal{F}\}$$

Donc F est uniquement déterminé par ${\mathcal F}$

2.
$$\forall Q \in \varepsilon$$
 $Q \in \mathscr{F} \Leftrightarrow \vec{PQ} \in F$

3.
$$\forall Q \in \mathcal{F}$$
 $\mathcal{F} = Q + F$

4.
$$\forall u \in E$$
 $u \in F \Leftrightarrow P + u \in \mathscr{F}$

Définition 7.2.4

Soit $\mathcal{F} \in \varepsilon$ *un sous-espace affine*

- 1. l'unique sous-espace vectoriel F de E pour lequel il existe $P \in \varepsilon$ tel que $\mathscr{F} = P + F$ est appelé la **direction** de \mathscr{F} et parfois noté $\mathring{\mathscr{F}}$
- 2. On appelle **dimension** de \mathcal{F} la dimension de F
- 3. $Si \dim(\mathcal{F}) = 1$ (resp. 2), on dit que \mathcal{F} est une **droite affine** (resp. un **plan affine**) de ε

Exemple 7.2.5

1. On suppose que $\dim(E) = 2$. Soit e_1, e_2 une base de E. soit $P \in \varepsilon$ et soit $u \in E \setminus \{0\}$. Soit $\mathbb D$ la droite affine $P + \mathrm{Vect}(u)$. On a

$$\forall M \in \varepsilon: \qquad M \in \mathbb{D} \Leftrightarrow \quad \det_{(e_1, e_2)}(u, \vec{PM}) = 0$$

2. On suppose que $\dim(E) = 3$. Soit e_1, e_2, e_3 une base de E. Soit $P \in \varepsilon$ et soient $u, v \in E$ linéairement indépendants.

On note \mathscr{P} de plan affine P + Vect(u, v).

On a:

$$\forall M \in \varepsilon \qquad \det_{(e_1, e_2, e_3)} (u, v, \vec{PM}) = 0$$

Remarque 7.2.6

1. Soit \mathcal{F} un sous-espace affine de direction F.

De façon naturelle, $\mathcal F$ est lui-même un espace affine de direction F.

- 2. ε est l'unique sous-espace affine de direction E
- 3. Les sous-espaces affines de direction $\{0\}$ sont exactement les singletons de ε

Exemple 7.2.7

1. $\{(x, y, z) \in \mathbb{K}^3 \mid x + y + z = 1\}$ est un sous-espace affine de $\varepsilon = \mathbb{K}^3$. C'est un plan de direction

$$\{(x, y, z) \in \mathbb{K}^3 \mid x + y + z = 0\}$$

2. Soit $n \in \mathbb{N}$. Alors $\mathscr{F} = \{(x_1, \dots, x_{n+1}) \in \mathbb{K}^{n+1} \mid x_1 + \dots + x_{n+1} = 1\}$ est un sous-espace affine de $\varepsilon = \mathbb{K}^{n+1}$ de dimension n et de direction

$$F = \{(x_1, \dots, x_{n+1}) \in \mathbb{K}^{n+1} \mid x_1 + \dots + x_{n+1} = 0\}$$

3. Soit V un \mathbb{K} -espace vectoriel. Soit $f:V\longrightarrow \mathbb{K}$ une forme linéaire non nulle. Alors

$$\mathcal{F} = \{ v \in V | f(v) = 1 \}$$

est un sous-espace affine de $\varepsilon = V$ de direction $\operatorname{Ker}(f) \subset E = V$. Si $\dim(V) < \infty$, \mathscr{F} est de dimension $\dim(V) = 1$. On dit que \mathscr{F} est un **hyperplan affine** dans $\varepsilon = V$.

Définition 7.2.8

Deux sous-espaces affines sont parallèles si leurs directions sont égales.

Remarque 7.2.9

- 1. Deux sous-espaces affines parallèles ont même dimension
- 2. Soient \mathscr{F} et \mathscr{G} deux sous-espaces affines F G. Si $\mathscr{F} \subset \mathscr{G}$, alors $F \subset G$. Si de plus : F = G, alors $\mathscr{F} = \mathscr{G}$

Lemme 7.2.10

Soit $(\mathcal{F}_i)_{i\in I}$ une famille de sous-espaces affines. Soit F_i la direction de \mathcal{F}_i . Si $\bigcap_{i\in I}\mathcal{F}_i$ est non vide, alors c'est un sous-espace affine de direction $\bigcap_{i\in I}F_i$.

Démonstration

Supposons que $P \in \bigcap_{i \in I} F_i$. On a :

$$u \in \bigcap_{i \in I} F_i \quad \Leftrightarrow \quad \mathcal{F}_i, \ \forall i \in I$$
$$\Leftrightarrow \quad P + u \in \bigcap_{i \in I} \mathcal{F}_i$$

Donc
$$\bigcap_{i \in I} \mathscr{F}_i = P + \bigcap_{i \in I} F_i$$

Lemme 7.2.11

Soient deux sous-espaces affines \mathscr{F} et \mathscr{G} de directions F et G. Si E = F + G, alors \mathscr{F} cap \mathscr{G} est non vide et donc c'est un sous-espace affine de direction $F \cap G$. Si de plus $E = F \oplus G$, alors $\mathscr{F} \cap \mathscr{G}$ est un singleton.

Démonstration

Soient $P \in \mathcal{F}$ et $Q \in \mathcal{G}$

Comme E = F + G, le vecteur \overrightarrow{PQ} s'écrit

$$\vec{PQ} = u + v, \quad u \in F, \ v \in G$$

Alors le point

$$P + u = Q - v$$

appartient à $\mathscr{F} \cap \mathscr{G}$. Si $E = F \oplus G$, alors la direction de $\mathscr{F} \cap \mathscr{G}$ est $E \cap F = \{0\}$, donc $\mathscr{F} \cap \mathscr{G}$ est un singleton.

Exemple 7.2.12

Soit un système à m équations linéaires à n inconnues, et à coefficients dans \mathbb{K} ? Soit \mathscr{F}_i , $1 \le i \le m$, l'ensemble des solutions de la i-ème équation. Supposons $\mathscr{F}_i \ne \emptyset$, $\forall i$.

Alors \mathcal{F}_i est un sous-espace affine de direction F_i , l'espace des solutions de l'équation homogène associée. L'ensemble \mathcal{F} des solutions du système est l'intersection $\bigcap_{i=1}^m \mathcal{F}_i$.

S'il est non vide, c'est un sous-espace affine de \mathbb{K}^n de direction $\mathscr{F} = \bigcap_{i=1}^m \mathscr{F}_i$ l'espace des solutions du système homogène associé.

Conséquence 7.2.13 (en petit dimension)

- 1. On suppose que ε est un plan affine. Soient \mathbb{D}, \mathbb{D}' des droites **distinctes** de ε de directions D, D' Alors une et une seule des assertions suivantes est vrai :
 - \mathbb{D} et \mathbb{D}' sont parallèles et disjointes
 - $\mathbb{D} \cap \mathbb{D}'$ est un singleton
- 2. On suppose que ε est de dimension 3.

Soient \mathbb{D} et \mathbb{D}' des droites affines **distinctes** de ε de direction D et D'.

Alors une seule des assertions est vrai :

- \mathbb{D} et \mathbb{D}' sont disjointes
- $\mathbb{D} \cap \mathbb{D}'$ est un singleton
- 3. On suppose que ε est de dimension 3. Soit $\mathbb D$ une droite affine de direction D. Soit $\mathcal P$ un plan affine de direction P.

Alors une et une seule des assertions suivantes est vraie :

- $\mathbb{D} \subset \mathscr{P}$ (et alors $D \subset P$)
- $\mathbb{D} \cap \mathscr{P}$ est vide (et alors $D \subset P$)
- $\mathbb{D} \cap \mathscr{P}$ est un singleton.
- 4. On suppose que ε est de dimension 3. Soient \mathscr{P} et \mathscr{P}' des plans affines **distinctes** de direction P et P'. Alors une et une seule des assertions suivantes est vraie :
 - \mathscr{P} et \mathscr{P}' sont parallèles et disjoints.
 - $\mathscr{P} \cap \mathscr{P}'$ est une droite affine de direction $P \cap P'$

7.3 Applications affines

Soit ε un espace affine de direction E.

Définition 7.3.1

Soit \mathscr{F} un espace affine de direction FUne application $f: \varepsilon \to \mathscr{F}$ est **affine**.