

Probabilidades e Estatística E

22 de Maio de 2019

TICA E 2018/2019 **Duração**: 1h 30m + 30m

Teste 2 A

Nome completo:			
N.º aluno:	Curso:	Nota:	

Em cada pergunta apenas uma das respostas está correcta. Assinale a sua resposta com uma cruz no quadrado correspondente. Se pretender anular uma resposta já assinalada, rasure por completo o respectivo quadrado. A cotação para uma resposta correcta e o desconto por uma resposta incorrecta assinala-se à esquerda da pergunta. Uma não resposta nada vale nem desconta. n.a. significa "nenhuma das anteriores".

1. Seja X uma v.a. absolutamente contínua com função densidade de probabilidade

$$f(x) = \begin{cases} 0, & x < d \\ m x^{-a-1}, & x \ge d \end{cases}, \quad d, a \in \mathbb{R}^+, \quad m \in \mathbb{R}$$

(1.0/0.2) (a) Se a = 2, a constante m deve satisfazer:

$$\blacksquare$$
 $m=2\,d^2$ \blacksquare $m=-d^2$ \blacksquare $m=3d^3$ \blacksquare n.a.

(1.0/0.3) (b) Para d = 1, a = 1, m = 1 e $x \in [1, +\infty[$, a P(X > 3x | X > 2x) tem valor:

(b) Fara
$$a = 1$$
, $a = 1$, $m = 1$ of $a \in [1, + \infty]$, and $a = 1, + \infty$ and $a = 1, + \infty$ and $a = 1, + \infty$ by $a = 1, + \infty$ by

- 2. O tempo gasto pelo Sr. S numa qualquer visita ao mercado é uma v.a. com distribuição Normal de valor médio igual a μ horas e desvio padrão igual a 0.5 horas.
- (2.0/0.2) (a) Se, com probabilidade 0.1587, demorar mais de 3 horas numa visita, então μ tem valor:

 $f A = 2.5 \qquad f B = 3.5 \qquad f C = -2.5 \qquad f D = 3.25 \qquad f E = n.a.$

(1.5/0.4) (b) Se $\mu=2$, a probabilidade de numa visita gastar entre 1 e 3 horas é:

A 0.5228 B 0.8414 C 0.0456 D 0.9544 E n.a.

(1.5/0.4) (c) Sejam X e Y os tempos gastos em duas visitas (e independentes) e $Z \sim N(0,1)$. Para $\mu=1,\ P\left(2X-Y\leq a\right),\ a\in\mathbb{R},$ tem o mesmo valor que:

$$\boxed{ \textbf{A} } \ P\left(Z \leq \frac{a-1}{0.75}\right) \qquad \boxed{ \textbf{B} } \ P\left(Z \leq \frac{a+1}{1.25}\right) \qquad \boxed{ \textbf{C} } \ P\left(Z \leq \frac{a-1}{\sqrt{1.25}}\right) \qquad \boxed{ \textbf{D} } \ P\left(Z \leq \frac{a-1}{\sqrt{2.5}}\right) \qquad \boxed{ \textbf{E} } \quad \text{n.a.}$$

3. O número de viaturas que passam numa passadeira pedonal situada perto de uma escola, comporta-se segundo um Processo de Poisson de intensidade $\beta=0.5$ viaturas por minuto. Considere a v.a. T - tempo (em minutos) entre passagens consecutivas de viaturas na passadeira.

(1.5/0.3) (a) A $P(T \le 5 | T > 3)$ tem valor: $\boxed{\mathbb{A}} \quad 1 - e^{-5/2} \quad \boxed{\mathbb{B}} \quad e^{-1} \quad \boxed{\mathbb{C}} \quad 1 - e^{-1} \quad \boxed{\mathbb{D}} \quad e^{-3/2} \quad \boxed{\mathbb{E}} \quad \text{n.a.}$

(2.0/0.4) (b) No período entre as 13:00 horas e as 13:30, a probabilidade de passarem na passadeira 3 viaturas nos primeiros 2 minutos e 1 viatura nos últimos 4 minutos tem valor:

(1.5/0.3) (c) A probabilidade aproximada de durante 32 minutos passarem na passadeira 22 ou menos viaturas é:

A 0.6700 B 0.9332 C 0.5596 D 0.0668 E n.a.

4. Seja (X_1, X_2, \ldots, X_n) , $n \geq 2$, uma amostra aleatória de uma população X cuja distribuição depende do valor de dois parâmetros, $\theta \in \mathbb{R}$ e $\delta \in \mathbb{R}^+$. Sabemos que $E(X) = \theta - \delta$ e que $V(X) = \delta^2$.

Considere $\hat{\theta}$ um estimador de θ tal que $E\left(\hat{\theta}\right) = \theta - \frac{\delta}{n}$ e $V\left(\hat{\theta}\right) = \frac{\delta^2}{n^2}$.

(1.5/0.2)(a) Os estimadores dos momentos para os parâmetros θ e δ , são:

 $\theta^* = \bar{X} - \sqrt{M_2}, \ \delta^* = \sqrt{M_2}$ $\theta^* = \bar{X} - M_2, \ \delta^* = M_2$ $\theta^* = \bar{X} + \sqrt{M_2}, \ \delta^* = \sqrt{M_2}$

Nas alíneas b) e c) que se seguem, admita que o parâmetro δ tem valor conhecido, nomeadamente $\delta = 2$.

(b) Assinale com uma cruz no quadrado correspondente, as suas respostas à questão desta alínea. Cada resposta correcta vale 0.6 valores e cada resposta incorrecta desconta 0.2 valores.

Das estatísticas que se seguem, indique as duas que são estatísticas centradas para o parâmetro θ .

(c) O erro quadrático médio do estimador $\hat{\theta}$ é: (1.0/0.2)

 $\frac{8}{n^2}$ $\frac{4}{n^2}$ $\frac{4}{n^2}$ $\frac{2}{n}$ $\frac{4}{n}$ $\frac{2}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$

Nas alíneas seguintes, admita que o parâmetro δ tem valor conhecido, nomeadamente $\delta = 3$.

(d) Considere $\tilde{\theta} = \bar{X} + 3$ e $\ddot{\theta}$ dois estimadores <u>centrados</u> para o parâmetro θ . Sabendo que $V\left(\ddot{\theta}\right) = \frac{9}{n^2}$, (1.3/0.3)então

 $\underline{\mathbf{A}}$ $\tilde{\theta}$ é o mais eficiente $\underline{\mathbf{B}}$ $\tilde{\theta}$ e $\ddot{\theta}$ são igualmente eficientes

 $\ddot{\theta}$ é o mais eficiente

(e) Foi recolhida a seguinte amostra desta população: (7.2, 3.2, 8.4, 9.7, 4.5). A estimativa do parâmetro (1.0/0.4) θ , resultante da utilização do estimador $\ddot{\theta}$, assim como uma estimativa centrada da V(X) têm valor, respectivamente:

A $6.6 e \approx 2.70093$

B 9.6 e 7.295

© 9.6 e 5.836

D n.a.

(2.0/0.5) 5. Considere X uma v.a. aleatória com distribuição Uniforme no intervalo [2,6]. Para a seguinte sequência (u_1, u_2, u_3, u_4) de NPA's Uniformes no intervalo [0, 1],

a correspondente sequência (x_1,x_2,x_3,x_4) de observações pseudo-aleatórias da v.a. X é: