Homework Assignment 5: Prediction Problem and More Maneuvers

ENAE 404: Space Flight Dynamics

For derivations or other pen-and-paper problems, please present your work neatly and box answers (5 points will be based on the professionalism of your submission). For problems requiring coding, attach your code.

- 1. (27 points) Use the patched conic method to calculate the total ΔV required to transfer from a 400km altitude orbit about Mercury to a 10,000km altitude orbit about Jupiter. Assume both planets move in perfectly circular orbits, and that the heliocentric transfer is a Hohmann transfer. In addition to the ΔV :
 - calculate the radius of the sphere of influence for each planet
 - calculate the hyperbolic excess speed (V_{∞}) at both planets
 - sketch the sphere of influence, planet velocity and transfer hyperbola at each planet
 - calculate the time of flight of the heliocentric transfer orbit
- 2. Consider a spacecraft on a Mars flyby. The flyby hyperbola has an eccentricity of 1.2 and a radius of periapsis of 5380 km. For each of these cases:
 - (a) (21pts) Assume that the radius of periapsis for the flyby is along the velocity vector of the planet (leading edge flyby)
 - (b) (11pts) Assume that the radius of periapsis for the flyby is 30° from the direction of the velocity vector of the planet (leading edge flyby)
 - (c) (11pts) Assume that the radius of periapsis for the flyby is along the *negative* of the velocity vector of the planet

do the following:

- Sketch the hyperbolic flyby with respect to Mars, indicating the Mars velocity direction, v_{∞}^- , v_{∞}^+ , the radius of periapsis, and the hyperbola's turn angle.
- Sketch the inertial velocity of Mars, v_{∞} and the inertial initial and final spacecraft velocities (2 sketches total).
- Calculate the ΔV , and state whether the spacecraft's velocity magnitude increases or decreases in the inertial frame.

3. (15 points code, 15 points solution) Using the computer language of your choice, write a code to solve Kepler's Prediction Problem. For each of the spacecraft describe below (orbiting Earth), calculate the position and velocity vectors after 1 hour.

Spacecraft ID	a (km)	e	i (deg)	Ω (deg)	ω (deg)	ν (deg)
Spacecraft 1	15,000	0.4	60	45	0	145
Spacecraft 2	21,000	0.6	90	0	0	35