SI618 Project 2

Name: Junqi Chen

Unigname: jungich

UMID: 03846505 Date: 2021/12/7

I. Motivation

Due to the COVID-19 epidemic worldwide, a great change has taken place in our daily lives in the past two years. I want to investigate how COVID make an influence on the activities of people viewing from the country level. Take a step further, I want to look into how people's behaviors and reactions affect the spread of COVID in reverse.

Research Questions:

- How the condition of a country make influence on the spread of COVID?
- How COVID affect human behavior in the country level?
- How human behaviors make influence on the COVID over time?

II. Data Sources

Basic Info

The dataset I use in this project is **Covid-19 Dataset**, which is a collection of the COVID-19 data maintained by Our World in Data. It includes the number of confirmed COVID cases, hospital information and various indicators for different countries. There are two version for this dataset:

- <u>Version 2</u> is a previous version the same as I used in project 1. A record of COVID from 2019-12-31 to 2021-10-19.
- <u>Version 3</u> is an newly updated version. It emitted the past records but only keep the current record for all countries in 2021-11-05. It can be a great start without involving the time series data.

The main file I will focus on is the covid.csv, which records the COVID cases in a time series with various useful indicators like reproduction rate and stringency Index. I will possibly use the vaccinations.csv if needed.

Documentation

Source: https://www.kaggle.com/deepshah16/covid19-dataset?select=covid.csv

The documentation of the some important variables is listed (for more information, please refer to the source data):

COVID Indicators

Variable	Description
total_cases	Total confirmed cases of COVID-19
new_cases	New confirmed cases of COVID-19
new_cases_smoothed	New confirmed cases of COVID-19 (7-day smoothed)
total_cases_per_million	Total confirmed cases of COVID-19 per 1,000,000 people
reproduction_rate	Real-time estimate of the effective reproduction rate (R) of COVID-19. See https://github.com/crondonm/TrackingR/tree/main/Estimates-Database

Country & Human Indicators

Variable	Description
stringency_index	Government Response Stringency Index: composite measure based on 9 response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest response)
gdp_per_capita	Gross domestic product at purchasing power parity (constant 2011 international dollars), most recent year available
handwashing_facilities	Share of the population with basic handwashing facilities on premises, most recent year available
life_expectancy	Life expectancy at birth in 2019
human_development_index	A composite index measuring average achievement in three basic dimensions of human development—a long and healthy life, knowledge and a decent standard of living. Values for 2019, imported from http://hdr.undp.org/en/indicators/137506
total_vaccinations_per_hundred	Total number of COVID-19 vaccination doses administered per 100 people in the total population
people_vaccinated_per_hundred	Total number of people who received at least one vaccine dose per 100 people in the total population

III. Methods

Part 1: Country conditions & COVID

- Data manipulation: First, I select the targeted variables (including iso_code, gdp_per_capita, total_cases_per_million) to make a new dataframe. With the function pd.cut(), I make new columns called gdp_level and covid_level for the different level of GDP and COVID cases.
- **Data cleaning**: I simply drop the rows with the missing data. Since the dropping rows are around 10% of all rows, it does not make a difference to the final result.
- **Challenge**: For the function pd.cut(), we have to decide the number of the bins. I originally consider 3 bins for each level but finally switch to 2 bins for COVID cases since there will be no country in the {high_gdp, high_covid} set.

Part 2: COVID & Human reactions

- Data manipulation: Similarly, I select the targeted variables (including <code>iso_code</code>, <code>reproduction_rate</code>), reproduction_rate) to make a different new dataframe. With the function <code>pd.cut()</code>, I make new columns called <code>rr_level</code> and <code>si_level</code> for the different level of reproduction rate and stringency index.
- Data cleaning: I simply drop the rows with the missing data.
- **Challenge**: For the Mosaic plot for the 3 bins size, it does not have a clear relationship between the reproduction rate and stringency index as I expect. However, with the chi-square test, I finally make a conclusion on the these uncorrelated variables.

Part 3: Human reaction & COVID over time

- Data manipulation: In this question, I adopt the Version 2 of Covid-19 dataset to take the advantage of the time series data. I first extract the needed variables (including date, "new_cases_per_million" and new_vaccinations_smoothed_per_million) for a new dataframe. Then I perform the conversion from the date time to year, month and day, which is used for later groupby() operation. With the data retrieved, we can easily plot a time series graph on both new cases and new vaccinations.
- **Data cleaning**: Similarly, I simply drop the rows with the missing data in the independent variables new_cases and new_vacc.
- **Challenge**: For the time series data in this question, I originally consider plotting the data in the daily level. However, the large number of data results in a messy plot in the end. So I decide to plot the data in a monthly level, where the change of the variables can be clearly depicted. Besides, it takes me some times to put two variables in the same plot.

IV. Analysis and Results

Part 1: Country conditions & COVID

In this question, I want to investigate how the condition of a country (indicated by some indicators like GDP) make influence on the spread of COVID (indicated by total confirmed cases).

Q1-1: The relationship between the GDP and COVID cases

The first subquestion is to explore on whether the GDP of a country <code>gdp_per_capita</code> relates to the total count of COVID cases <code>total_cases_per_million</code>. Intuitively, we may consider that countries with higher GDP will have better social welfare and healthcare resources due to the highly-developed economic. With the Python, we then explore whether our assumption is ture.

Mosaic Plot:

To figure out the relationship between these two variables, I first cut the COVID indicator total_cases_per_million into 2 equal sized bins and GDP total_cases_per_million into 3 bins with clear labels. Then, the masaic plot is shown below:

According to the masaic plot, we can find out that there is an obvious decrease on the COVID cases as the GDP level increase, indicating that <u>countries with higher GDP are likely to fewer COVID cases</u>. However, most countries are classified into the <u>low_gdp</u> bins since I use the default bin with equal length. It may lead to some bias for the different bin size (different numbers of countries in different bins). Hence the conclusion still need further inspection.

• Chi-square Test:

To make further examination on the previous conclusion, we consider the chi-square test as an applicable statistic method in this situation. With the chi-square test, we get the following statistics:

```
chi2 = 9.149203444961929
p-val = 0.010310404762794585
degree of freedom = 2
```

Since the p-value of the test is smaller than the pre-defined $\alpha=0.05$, hence we have no enough evidence to reject the null hypothesis statistically. It indicates that <u>a higher GDP relate to a lower total COVID cases for a country</u>.

Q1-2: OLS between COVID cases and country indicators

To further investigate how the condition and situation of a country make influence on the COVID cases, I adapt the OLS method to fit several country indicators. The model I used is:

$$y = \beta_1 \text{CI}_1 + \beta_2 \text{CI}_2 + \beta_3 \text{CI}_3 + c$$

, where y is a COVID indicator (total_cases_per_million or reproduction_rate) and ${\rm CI}_i$ are selected country indicators (gdp_per_capita, handwashing_facilities and hospital_beds_per_thousand). The specific models are shown in the sample code:

```
model1 = smf.ols('total_cases_per_million ~ gdp_per_capita + handwashing_facilities +
hospital_beds_per_thousand', data=df1).fit()
model2 = smf.ols('reproduction_rate ~ gdp_per_capita + handwashing_facilities +
hospital_beds_per_thousand', data=df1).fit()
```

i.e. we have two models like:

 $\label{eq:model:$

The fitting results are shown below:

	OLS Regi	ression	Resul	lts			
======== Dep. Variable:	total_cases_per_mil	===== lion	R-squa				
Model:	·		OLS Adj. R-squared:		0.477 0.456		
Method:	Least Squa		• •		22.22		
Date:	Tue, 07 Dec 2	2021					
Time:	15:25	5 : 57	Log-Li	ikelihood:		-887.59	
No. Observations:		77	AIC:			1783.	
Df Residuals:		73	BIC:			1793.	
Df Model:		3					
Covariance Type:	nonrobust						
	coef	std	err	t	P> t	_	0.975
 Intercept	-1.138e+04			-1.897		-2.33e+04	575.950
gdp_per_capita	0.9827	0.	527	1.865	0.066	-0.068	2.033
handwashing_facilit	ies 335.4258	122.	277	2.743	0.008	91.728	579.123
	housand 7293.2487	2014.			0.001		1.13e+04
 Omnibus:	20.067		n-Wats			2.204	
Prob(Omnibus):	0.000	Jarqu	e-Bera	a (JB):		31.066	
Skew:	1.031	Prob(JB): 1.80e-07					
JNEW.	1,001	PI OD (JB):		1	.80e-07	
Kurtosis: 	5.330 	Cond.	No.		2	.18e+04 =====	and
<pre>{urtosis: fodel2: reproduction_</pre>	5.330	Cond. + hand	No. washir	ng_facilities + ho	2 ====== ospital_b	. 18e+04 ===== eds_per_thous	and
Kurtosis: Model2: reproduction	5.330 	Cond. + hand sion Re	No. washir	ng_facilities + ho	2 ====== ospital_b	. 18e+04 ===== eds_per_thous	and
Kurtosis: Model2: reproduction Dep. Variable:	5.330 rate ~ gdp_per_capita OLS Regres reproduction_rate OLS	Cond. + hand sion Re R-squ Adj.	No. washir esults uared: R-squa	ng_facilities + ho	2 ====== ospital_b	. 18e+04 eds_per_thous 	and
Kurtosis: Model2: reproduction Dep. Variable: Model: Method:	5.330 rate ~ gdp_per_capita OLS Regres reproduction_rate OLS Least Squares	Cond. + hand sion Re R-squ Adj. F-sta	No. washir esults uared: R-squartistic	ng_facilities + ho ared: c:	2 ====== ospital_b	. 18e+04 ====== eds_per_thous ===== 0 . 116 0 . 079 3 . 115	and
<pre>{urtosis: fodel2: reproduction Dep. Variable: Model: Method: Date:</pre>	5.330 _rate ~ gdp_per_capita OLS Regres reproduction_rate OLS Least Squares Tue, 07 Dec 2021	Cond. + hand sion Re R-squ Adj. F-sta Prob	No. washir esults uared: R-squatistic (F-st	ng_facilities + ho ared: c: atistic):	2 ospital_b	. 18e+04 eds_per_thous 0 . 116 0 . 079 3 . 115 0 . 0315	and
Kurtosis: Model2: reproduction Dep. Variable: Model: Method: Date: Time:	5.330 _rate ~ gdp_per_capita OLS Regres reproduction_rate OLS Least Squares Tue, 07 Dec 2021 15:25:57	Cond. + hand sion Re R-squ Adj. F-sta Prob Log-L	No. washir esults uared: R-squatistic (F-st	ng_facilities + ho ared: c: atistic):	2 ospital_b	. 18e+04 	and
Kurtosis: //odel2: reproduction E===================================	5.330 rate ~ gdp_per_capita OLS Regres reproduction_rate OLS Least Squares Tue, 07 Dec 2021 15:25:57 75	+ hand sion Re R-squ Adj. F-sta Prob Log-L	No. washir esults uared: R-squatistic (F-st	ng_facilities + ho ared: c: atistic):	2 ospital_b	.18e+04 ====== eds_per_thous ====== 0.116 0.079 3.115 0.0315 -1.3847 10.77	and
Kurtosis: Model2: reproduction Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals:	5.330 rate ~ gdp_per_capita OLS Regres reproduction_rate OLS Least Squares Tue, 07 Dec 2021 15:25:57 75 71	Cond. + hand sion Re R-squ Adj. F-sta Prob Log-L	No. washir esults uared: R-squatistic (F-st	ng_facilities + ho ared: c: atistic):	2 ospital_b	. 18e+04 	and
Kurtosis:	5.330 rate ~ gdp_per_capita OLS Regres reproduction_rate OLS Least Squares Tue, 07 Dec 2021 15:25:57 75 71 3	+ hand sion Re R-squ Adj. F-sta Prob Log-L	No. washir esults uared: R-squatistic (F-st	ng_facilities + ho ared: c: atistic):	2 ospital_b	.18e+04 ====== eds_per_thous ====== 0.116 0.079 3.115 0.0315 -1.3847 10.77	and
Kurtosis:	5.330 rate ~ gdp_per_capita OLS Regres reproduction_rate OLS Least Squares Tue, 07 Dec 2021 15:25:57 75 71	+ hand sion Re R-squ Adj. F-sta Prob Log-L	No. washir esults uared: R-squatistic (F-st	ng_facilities + ho ared: c: atistic):	2 ospital_b	.18e+04 ====== eds_per_thous ====== 0.116 0.079 3.115 0.0315 -1.3847 10.77	and
Kurtosis: Model2: reproduction Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	5.330 rate ~ gdp_per_capita OLS Regres reproduction_rate OLS Least Squares Tue, 07 Dec 2021 15:25:57 75 71 3	+ hand sion Re R-squ Adj. F-sta Prob Log-L	No. washir esults uared: R-squatistic (F-static) ikeli	ng_facilities + ho ared: c: atistic):	2 ospital_b	.18e+04 ====== eds_per_thous ====== 0.116 0.079 3.115 0.0315 -1.3847 10.77	======
Kurtosis:	5.330 _rate ~ gdp_per_capita OLS Regres reproduction_rate OLS Least Squares Tue, 07 Dec 2021 15:25:57 75 71 3 nonrobust coef	Cond. + hand sion Re R-squ Adj. F-sta Prob Log-L AIC: BIC: std	No. washir esults uared: R-squatistic (F-staikelia	ared: c: atistic): hood:	2 pspital_b ====== P> t 0.000	.18e+04 ====== eds_per_thous 0.116 0.079 3.115 0.0315 -1.3847 10.77 20.04 ==================================	 0.975 0.823
Kurtosis:	5.330 _rate ~ gdp_per_capita OLS Regres reproduction_rate OLS Least Squares Tue, 07 Dec 2021 15:25:57 75 71 3 nonrobust coef 0.7016 1.129e-05	Cond. + hand sion Re R-squ Adj. F-sta Prob Log-L AIC: BIC: std	No. washir esults uared: R-squatistic (F-staikelil err 061	ared: c: atistic): hood: t	2 pspital_b ====== P> t 0.000 0.039	.18e+04 ====== eds_per_thous 0.116 0.079 3.115 0.0315 -1.3847 10.77 20.04 ==================================	0.975 0.975 0.823 2.2e-0
Kurtosis:	5.330	Cond. + hand sion Re ====== R-squ Adj. F-sta Prob Log-L AIC: BIC: std 0. 5.38e	No. washir esults uared: R-squatistic (F-st. ikelil err 061 2-06 001	ared: c: atistic): hood: 11.556 2.098 0.628	2 pspital_b ====== P> t 0.000 0.039 0.532	.18e+04 ====== eds_per_thous ====== 0.116 0.079 3.115 0.0315 -1.3847 10.77 20.04 ========== [0.025 -0.581 5.61e-07 -0.002	0.975 0.975 0.823 2.2e-05 0.003
Kurtosis:	5.330	+ hand sion Re R-squ Adj. F-sta Prob Log-L AIC: BIC:	No. washir esults uared: R-squatistic (F-stickelid) err 061 e-06 001 020	ared: c: atistic): hood: 11.556 2.098 0.628 -0.597	2 pspital_b ====== P> t 0.000 0.039 0.532 0.552	.18e+04 eds_per_thous 0.116 0.079 3.115 0.0315 -1.3847 10.77 20.04 [0.025 0.581 5.61e-07 -0.002 -0.053	0.975 0.975 0.823 2.2e-05 0.003
Kurtosis:	5.330	+ hand sion Re R-squ Adj. F-sta Prob Log-L AIC: BIC: std	No. washir esults uared: R-squ itistic (F-st ikelil err 061 e-06 001 020	ared: c: atistic): hood: 11.556 2.098 0.628 -0.597	2 pspital_b ====== P> t 0.000 0.039 0.532 0.552	.18e+04 eds_per_thous 0.116 0.079 3.115 0.0315 -1.3847 10.77 20.04 [0.025 0.581 5.61e-07 -0.002 -0.053	 0.975 0.82: 2.2e-0: 0.00:
Kurtosis:	5.330	+ hand sion Re R-squ Adj. F-sta Prob Log-L AIC: BIC: std	No. washir esults uared: R-squi etistic (F-staikeli) err 061 2-06 001 020 un-Wattie-Bergi	ared: c: atistic): hood: 11.556 2.098 0.628 -0.597	2 pspital_b ====== P> t 0.000 0.039 0.532 0.552	.18e+04 eds_per_thous 0.116 0.079 3.115 0.0315 -1.3847 10.77 20.04 [0.025 0.581 5.61e-07 -0.002 -0.053	0.975 0.975 0.823 2.2e-05 0.003
Kurtosis:	5.330	+ hand sion Re R-squ Adj. F-sta Prob Log-L AIC: BIC: std	No. washir esults uared: R-squi etistic (F-staikeli) err 061 2-06 001 020 un-Wattie-Bergi	ared: c: atistic): hood: 11.556 2.098 0.628 -0.597	2 pspital_b ====== P> t 0.000 0.039 0.532 0.552	.18e+04 ====== eds_per_thous 0.116 0.079 3.115 0.0315 -1.3847 10.77 20.04 ==================================	and 0.975] 0.823 2.2e-05 0.003 0.028

- For the first model whose dependent variable is COVID cases, the indicators handwashing_facilities and hospital_beds_per_thousand are significant since their p-value larger than 0.05. Hence we can conclude that the healthcare condition including the handwashing facilities and available beds in hospital make a great influence to the number of COVID cases.
- For the second model whose dependent variable is reproduction rate (an indicator for the spread of the COVID), only indicator gdp_per_capita is significant. Hence we can conclude that <u>GDP makes influence on the spread of COVID in a country</u>.

Part 2: COVID & Human reactions

In this part, I want to investigate how COVID (indicated by total confirmed cases and reproduction rate) affect human behavior (indicated by some indicators like stringency index and vaccination rate) in the country level.

Q2-1: The relationship between the reproduction rate and stringency index

The only question I want to investigate in this part is that how reproduction rate relates to the stringency index. The reproduction rate is an indicator for the spread speed of COVID virus and the stringency index refers to the government's policies against the spread of COVID. We may think that countries with higher reproduction rate would have a more strict policy.

To exam the assumption, we perform the similar operation as the Q1-1:

Mosaic Plot:

To figure out the relationship between two variables, I first cut the reproduction rate reproduction_rate into 3 equal sized bins and indicator for the country policies stringency_index into 3 bins with clear labels. Then, the masaic plot is shown below:

According to the masaic plot, we can find out that there is not obvious tendency between the reproduction rate and stringency index. We can figure out that most countries are of middle-level on both reproduction rate and stringency index since this sell occupies the most area. Hence we need further examination to check whether they are uncorrelated.

• Chi-square Test:

Similarly, I consider the chi-square test to perform further inspection. I perform the chi-square on the following cross tab:

rr_level/si_level	low_si	middle_si	high_si
low_rr	7	9	1
middle_rr	15	58	15
high_rr	11	17	7

The result of chi-square test is shown below:

```
chi2 = 7.6001770453060855
p-val = 0.10737217993872845
degree of freedom = 4
```

Since the p-value is smaller than the pre-defined $\alpha=0.05$, we have enough evidence to reject the null hypothesis statistically. It indicates that there is not relationship between the reproduction rate and stringency index. Hence we can conclude that the <u>spread of COVID does not necessarily relates to or determine the policies of government</u>.

Part 3: Human reaction & COVID over time

In this part, I want to investigate how human behaviors (indicated by vaccination) make influence on the COVID (indicated by newly confirmed cases and reproduction rate) over time how COVID in a country level.

Q3-1: The relationship between COVID cases and vaccination over time

Intuitively, we may consider that a serious COVID condition will prompt more people to get vaccinated. To figure out whether our assumption is true, i.e. the relationship between the COVID cases and vaccination over time, we plot the time series graph of two variables new_cases_per_million and new_cases_per_million in a monthly level. I take the average values from both variables in a month as the representatives.

The line plot is shown below (from 10 random sampled countries):

, where the blue lines stand for the new_cases_per_million times 10 and the red lines stand for the new_vaccinations_smoothed_per_million.

According to the graph above, we can figure out that there exist some similarity between the change on new COVID cases and new vaccination counts. For example, we can see that both COVID cases and vaccinations reach a peak in August (month 8) in Eswatini. However, most of the curves have a irregular change over months, indicating that we cannot draw a conclusion that there are close relationship between the COVID cases and vaccinations.

Q3-2: The relationship between reproduction rate and vaccination over time

Due to the limitation of page, the analysis for the relationship between reproduction rate and vaccination over time is emitted in this report. Please refer to the source code for more detail information.