Phys514 Fall 2013: HW4 Solution

TA: David Chen*

1 Von Neumann entropy (25 pts)

a. Pure state: the eigenvalues of $\rho = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ are $\lambda = 0, 1$, therefore $S = \ln 1 = \boxed{0}$

b. Mixed state: $S = -2 \cdot 1/2 \ln 1/2 = \ln 2$

c. Entangled state: if we consider the basis ordering ++, +-, -+, --, then

$$\rho = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1/2 & -1/2 & 0 \\ 0 & -1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \rho_a = \rho_b = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$$

The eigenvalues of ρ are 0 and 1, then $S = \ln 1 = \boxed{0}$. Also $S_a = S_b = -2 \cdot 1/2 \ln 1/2 = \boxed{\ln 2}$

d. Non-entangled state:

$$\rho = \begin{pmatrix}
1/4 & -1/4 & 1/4 & -1/4 \\
-1/4 & 1/4 & -1/4 & 1/4 \\
1/4 & -1/4 & 1/4 & -1/4 \\
-1/4 & 1/4 & -1/4 & 1/4
\end{pmatrix}
\qquad \rho_a = \begin{pmatrix}
1/2 & 1/2 \\
1/2 & 1/2
\end{pmatrix}
\qquad \rho_b = \begin{pmatrix}
1/2 & -1/2 \\
-1/2 & 1/2
\end{pmatrix}$$

The eigenvalues of ρ , ρ_a and ρ_b are 0 and 1, therefore, $S = S_a = S_b = \ln 1 = \boxed{0}$

From the examples above we could infer that S = 0 for a pure state and S > 0 for a mixed state. Also, the entropy of the reduced density matrices is zero if the state is not entangled; and greater than zero if it is entangled.

2 Foot 1.8 (25 pts)

From Foot 1.23, $E(t) = E_0 e^{-t/\tau}$, where $E_0 = \frac{1}{2} m \omega^2 r^2$ and $\tau = \frac{6\pi\epsilon_0 m c^3}{e^2 \omega^2}$. The transition rate is $t^{-1} = \frac{1}{\tau} \ln \left(1 - \frac{\hbar \omega}{E_0}\right) \approx \frac{E_0}{\hbar \omega \tau} = \frac{e^2 r^2 \omega^3}{12\pi\epsilon_0 \hbar c^3}$. Plugging numbers in and using that $r = n^2 a_0$ (we treat this problem classically) gives $\tau = 19.35$ ns and $E_0/(\hbar \omega) = 2.81$ and $t^{-1} = 1.45 \cdot 10^8 \text{ s}^{-1}$

3 Foot 7.5 (25 pts)

a. From Foot 7.81, the on-resonance cross-section is $\sigma(\omega_0) = \frac{3}{2\pi}\lambda_0^2 = 1.66 \cdot 10^{-13} \text{ m}^2$. From Foot 7.70, $I = I_0 e^{-n\sigma(\omega_0)\Delta z} = I_0 e^{-1}$, then $n = \frac{1}{\sigma(\omega_0)\Delta z} = 6.04 \cdot 10^{15} \text{ m}^{-3}$. Therefore, $N = \frac{4}{3}\pi(0.5 \text{ mm})^3 n = \boxed{3.16 \cdot 10^6}$

b. From Foot 7.84, the absorption coefficient is $\kappa(\omega_0, I_{\text{sat}}) = \frac{n\sigma(\omega_0)}{2} = 0.5 \text{ mm}^{-1}$, then the absorption is $1 - e^{-n\sigma(\omega_0)\Delta z} = \boxed{0.39}$

^{*}dchen30@illinois.edu

4 Foot 7.6 (25 pts)

a. The electric dipole selection rule $\Delta l = \pm 1$ allows the following transitions: 2p - 3s, 1s - 3p, 2s - 3p, 2p - 3d and 1s - 2p

b. For 3s, $\tau = 1/(6.3 \cdot 10^6) = 158.73$ ns. For 3p, $\tau = 1/(1.7 \cdot 10^8) + 1/(2.2 \cdot 10^7) = 5.21$ ns. For 3d, $\tau = 1/(6.5 \cdot 10^7) = 15.38$ ns. The fraction in the 2s configuration will be $\frac{N_{2s}}{N_{2s} + N_{1s}} = \left(1 + \frac{A_{1s-3p}}{A_{2s-3p}}\right)^{-1} = 0.11$. The relation $N_{1s}/N_{2s} = A_{1s-3p}/A_{2s-3p}$ was used.

c. For simplicity, let us ignore the decay process $3p \to 2s$, which is dominated by $3p \to 1s$. The lifetime $\tau = 1/A$ is proportional to $1/(\omega^3|D|^2)$. On the one hand, the wavefunctions have a greater overlap in the 1s - 2p configuration than in 1s - 3p, therefore $D_{1s-2p} > D_{1s-3p}$. On the other hand, $\omega_{1s-2p} < \omega_{1s-3p}$. To determine which one has a bigger effect, we use the table shown in the part d.

$$\frac{\tau_{1s-2p}}{\tau_{1s-3p}} \approx \left(\frac{\omega_{1s-3p}}{\omega_{1s-2p}}\right)^3 \left(\frac{D_{1s-3p}}{D_{1s-2p}}\right)^2 = 0.27$$

d. Using Foot 7.23, $A_{ij} = \frac{g_i}{g_j} \frac{4\alpha}{3c^2} \omega_{ij}^3 |D_{ji}|^2$, where α is the fine structure constant and $\omega_{ij} = 2\pi c R_{\infty} \left(\frac{1}{n_j^2} - \frac{1}{n_i^2}\right)$.

i - j	$A_{ij}/10^6[1/s]$	g_i/g_j	$\omega/10^{15} [\mathrm{rad/s}]$	$D_{ij}[a_0]$
2p-3s	6.3	3	2.87	0.54
1s - 3p	170	1/3	18.4	0.52
2s - 3p	22	1/3	2.87	3.03
2p - 3d	65	3/5	2.87	3.89
1s - 2p	625	1/3	15.5	1.29

e. Using the formula $I_{sat} = \frac{\pi hc}{3\lambda^3\tau}$

Transition	$\tau [\mathrm{ns}]$	$I_{sat}[\mathrm{W/m^2}]$
2p-3s	158.73	4.66
1s-3p	5.88	32835