User Manual - Bug Report Classification Tool

This tool is designed to classify bug reports from deep learning frameworks as either performance-related or not. It implements three different classification models with increasing sophistication:

- 1. Baseline Model: Naive Bayes with TF-IDF features
- 2. Intermediate Model: SVM with Word2Vec embeddings
- 3. **Hybrid Model**: Ensemble classifier with domain-specific features, pattern detection, and code-aware analysis

Getting Started

- 1. Ensure all requirements are installed (see requirements.pdf)
- 2. Place your datasets in the datasets directory
- 3. Run the download nltk resources.py script to get necessary NLTK data

Tool Structure

The tool consists of several key components:

Core Components

- Model Implementations:
 - baseline_model.py Naive Bayes classifier with TF-IDF features
 - $\circ \ \, \text{intermediate_model.py SVM classifier with Word2Vec word embeddings} \\$
 - hybrid_model.py Advanced ensemble model with domain-specific features
- Preprocessing and Feature Extraction:
 - preprocessing.py Text cleaning with special handling for code and technical terms
 - feature extraction.py TF-IDF, Word2Vec, and structural feature extraction
- Evaluation Framework:
 - evaluation.py Comprehensive evaluation metrics and visualisation
 - $\circ \ \ \mathsf{evaluation_framework.py} \ \mathsf{-} \ Framework \ for \ \mathsf{evaluating} \ \mathsf{models} \ \mathsf{across} \ \mathsf{datasets}$

Testing Scripts

- \bullet test_all_models.py Compare all three models
- test_intermediate_model.py Test baseline vs. intermediate model
- test_hybrid_model.py Test baseline vs. hybrid model
- \bullet test_framework.py Test the framework components

Models Description

Baseline Model

- Algorithm: Multinomial Naive Bayes
- Features: TF-IDF features from bug report text
- Advantages: Fast training and prediction, works well with text classification
- Class balancing: SMOTE for handling class imbalance

Intermediate Model

- Algorithm: Support Vector Machine (SVM)
- Features: Word2Vec embeddings (averaged word vectors)
- Advantages: Better semantic understanding of text
- Class balancing: SMOTE for handling class imbalance

Hybrid Model

- Algorithm: Ensemble of multiple classifiers (Naive Bayes, SVM, Random Forest, Logistic Regression)
- Features:
 - Framework-specific weighted TF-IDF
 - Pattern-based features using regex for performance indicators
 - Code-aware token extraction
 - Meta-features about report structure
- **Advantages**: Superior performance through domain knowledge and specialised feature engineering
- Class balancing: SMOTE plus weighted classification

Running the Classification

Test on a Single Framework

To evaluate models on a specific framework, use (make sure you are the in the lab1 folder - cd lab1)

```
# Test hybrid model vs baseline on TensorFlow
python test_hybrid_model.py --framework tensorflow
# Test intermediate model vs baseline on PyTorch
python test_intermediate_model.py --framework pytorch
```

Test on All Frameworks

To run evaluation across all available frameworks:

```
# Evaluate all models on all datasets
python evaluation_framework.py

# Evaluate with reduced sample size for faster results
python evaluation_framework.py --sample_ratio 0.2 --n_runs 2

# Test hybrid model vs baseline on all frameworks
python test_hybrid_model.py

# Test intermediate model vs baseline on all frameworks
python test_intermediate_model.py

# Test all models on all frameworks with results in evaluation_summary.md (will take longer time) for full comparison
python test_all_models.py
```

Parameters

- --framework: Specify framework dataset to use (tensorflow, pytorch, keras, caffe, all)
- --n_runs: Number of evaluation runs for statistical validity (default: 3)
- --test_size: Percentage of data to use for testing (default: 0.3)
- --sample_ratio: Portion of dataset to use for faster evaluation (default: 0.5)
- --output_dir: Directory to save results (default: ./results)

Output Files and Visualisation

The tool generates various output files in the results directory:

Results Directory

- CSV files with metrics for individual runs
- *_multiple_runs.csv files containing results from multiple evaluation runs
- evaluation_summary.md with overall metrics across frameworks

Plots Directory

These visualisations help understand model performance:

- 1. F1 Score Comparison (*_f1_score_comparison.png):
 - Bar charts comparing F1 scores across models
 - Higher bars indicate better overall performance
- 2. **Precision-Recall Comparison** (*_precision_recall.png):
 - · Shows precision and recall for each model
 - Ideal models have both high precision and recall
- 3. Boxplots (*_f1_score_boxplot.png):
 - Show statistical distribution of F1 scores across multiple runs
 - Wider boxes indicate more variability in performance
- 4. **Training Time Comparison** (*_training_time.png):
 - Bar charts comparing training times
 - Faster training times indicate better efficiency

Comprehensive Results Directory

The comprehensive_results directory contains: - Detailed tables for each framework - Raw data for all evaluation metrics - Cross-framework comparison summaries - Model parameter settings used for each run

Interpreting evaluation_summary.md

The evaluation_summary.md file presents an overview of all model performances:

- 1. **Framework-specific sections** show metrics for each deep learning framework:
 - **Precision**: Higher values mean fewer false positives
 - Recall: Higher values mean fewer false negatives
 - **F1 Score**: Harmonic mean of precision and recall (balance between the two)
 - Training/Prediction Time: Resource requirements for each model
- 2. **Overall Model Performance** section provides average performance across all frameworks
 - Values are shown as mean ± standard deviation
 - $\circ~$ Higher precision, recall, and F1 scores indicate better performance
- 3. **Note on missing models**: Sometimes models may not appear in some result files
 - The Hybrid model may be missing if memory resources were limited
 - Only completed evaluations are included in the summaries

Working with New Datasets

To use your own bug report datasets:

1. Format your data as CSV files with at least these columns:

- 'Title': Bug report title'Body': Bug report description
- o 'class': Binary label (1 for performance bug, 0 for non-performance bug)
- 2. Place your CSV files in the datasets directory with framework name as filename (e.g., tensorflow.csv)
- 3. Run the evaluation as described above

Reducing Evaluation Time

If the full evaluation takes too long, you can:

1. Test on a single framework:

```
python test_hybrid_model.py --framework tensorflow
```

2. Reduce the sample size:

```
python evaluation_framework.py --sample_ratio 0.2
```

3. Reduce the number of statistical runs:

```
python evaluation_framework.py --n_runs 2
```