Homework 6 for **MATH 497A**, Introduction to Ramsey Theory

Due: Monday October 3

Problem 1

Failure of Ramsey's Theorem for infinite colorings

Show that for any infinite cardinal κ , $2^{\kappa} \not\longrightarrow (3)^2_{\kappa}$.

Solution. This is in the lecture notes from 09/26.

Problem 2

Failure of Ramsey's Theorem for power sets

Show that for any cardinal κ , $2^{\kappa} \not\longrightarrow (\kappa^+)_2^2$.

Solution. Sketch: The strategy is the same as in the proof that $2^{\aleph_0} \not\longrightarrow (\aleph_1)^2_2$.

The crucial lemma is to show that the lexicographically ordered set $\{0,1\}^{\kappa}$ has no increasing or decreasing sequence of length κ^+ .

To see this, assume for a contradiction that $W=\{f_\alpha\colon \alpha<\kappa^+\}\subseteq\{0,1\}^\kappa$ is a lexicographically increasing sequence of length κ^+ (the decreasing case is similar). Let $\gamma\leq\kappa$ be the least γ such that the set $\{f_\alpha\upharpoonright_\gamma\colon \alpha<\kappa^+\}$ has size κ^+ . For each $\alpha<\kappa^+$, let ξ_α be such that $f_\alpha\upharpoonright_{\xi_\alpha}=f_{\alpha+1}\upharpoonright_{\xi_\alpha}$ and $f_\alpha(\xi_\alpha)=0\neq 1=f_{\alpha+1}(\xi_\alpha)$, that is, ξ_α is the position where f_α first differs from its successor $f_{\alpha+1}$. Clearly $\xi_\alpha<\gamma$. There are $\gamma\leq\kappa$ many choice for ξ_α . We have κ^+ many ξ_α . Hence by the infinite pigeonhole principle there exists $\xi<\gamma$ such that $\xi=\xi_\alpha$ for κ^+ many elements f_α of W. However, if $\xi=\xi_\alpha=\xi_\beta$ and $f_\alpha\upharpoonright_\xi=f_\beta\upharpoonright_\xi$, then $f_\beta< f_{\alpha+1}$ and $f_\alpha< f_{\beta+1}$, which means $f_\alpha=f_\beta$. Thus the set $\{f_\alpha\upharpoonright_\xi\colon \alpha<\kappa^+\}$ has size κ^+ , contrary to the minimality assumption on γ .

Problem 3

Increasing sequences of real numbers

Show that for any ordinal $\beta < \omega_1$, there exists an increasing sequence of reals of length β , i.e. a sequence $\{a_{\xi} \colon \xi < \beta\}$ such that for any $\xi < \beta$, $a_{\xi} <_{\mathbb{R}} a_{\xi+1}$.

Solution. We prove this by transfinite induction. For $\beta=0$ there is nothing to show, so assume the assertion holds for all $\alpha<\beta$. If β is a successor ordinal, $\beta=\alpha+1$, let $(a_\xi\colon \xi<\alpha)$ be an increasing sequence of length α . Using an order preserving bijection between $\mathbb R$ and (0,1), we can assume that (a_ξ) is contained in (0,1). Then the sequence (b_ξ) defined as $b_\xi=a_\xi$ for $\xi<\alpha$, $b_\alpha=1$ is an incresing sequence of length β .

Now assume β is a countable limit ordinal. Let (ξ_n) be a sequence of countable ordinals so that $\sup\{\xi_n : n \in \mathbb{N}\} = \beta$.

By induction hypothesis, there exists an increasing sequence $(a_{\zeta}^1: \zeta < \xi_1)$ of length ξ_1 . Using again an order preserving bijection between \mathbb{R} and (0,1), we can assume that $(a_{\zeta}^1)_{\zeta < \xi_1}$ is contained in (0,1).

There exists a unique ordinal γ_1 such that $\xi_1 + \gamma_1 = \xi_2$. γ is the order type of $\{\eta\colon \xi_1 \leq \eta < \xi_2\}$ (i.e. we "subtract" ξ_1 from ξ_2). By induction hypothesis there exists sequence $(b_\zeta^1\colon \zeta<\gamma_1)$ of length γ_1 . Using an order preserving bijection, we can assume that (b_ζ^1) is contained in (1,2). Then the sequence $(a_\zeta^2\colon \zeta<\xi_2)$ is increasing of length ξ_2 . We can now continue inductively: Let γ_2 be such that $\xi_2+\gamma_2=\xi_3$. Find an increasing sequence of length γ_2 in (2,3) and "append" it to $(a^2\zeta)$, yielding a sequence of length γ_3 . In the limit, this yields an increasing sequence in $(0,\infty)$ of length β .

Problem 4

No Banach-Tarski Paradox for \mathbb{Z}

An easy reformulation of the Banach-Tarski paradox says that the unit ball C in \mathbb{R}^3 can be *paradoxically decomposed*, i.e. there exist disjoint sets A, B such that $C = A \cup B$ and each set A, B can be further partitioned into finitely many pairwise disjoint sets A_1, \ldots, A_m and B_1, \ldots, B_n such that

$$A = \bigcup_{k=1}^{m} A_k \qquad B = \bigcup_{l=1}^{n} B_l$$

and there exist rigid motions $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n$ such that

$$C = \bigcup_{k=1}^{m} \alpha_k(A_k) = \bigcup_{l=1}^{n} \beta_l(B_l).$$

Show that such a decomposition is impossible for \mathbb{Z} , if as motions we only allow translations by integers, i.e. translations of a set A in the form $A + j = \{a + j : a \in A\}$ for some $j \in \mathbb{Z}$.

Solution. A proof can be found here (Proposition 3): https://terrytao.wordpress.com/2009/01/08/245b-notes-2-amenability-the-ping-pong-lemma-and-the-banach-tarski-paradox-optional/

Problem 5

BONUS: The measure problem for non-atomic measures

Translation invariance of a measure on \mathbb{R} , $\mu(A+r)=\mu(A)$, implies $\mu(\{x\})=0$ for all $x\in\mathbb{R}$. Measures with the latter property are called *non-atomic*. Does the measure problem become solvable if we only require non-atomicity? That is, does there exist a function $\mu: \mathcal{P}(\mathbb{R}) \to [0,\infty]$ such that

- (1) $\mu([0,1]) = 1$,
- (2) $\mu(\lbrace x \rbrace) = 0$ for all $x \in \mathbb{R}$,
- (3) $\mu(|A_n|) = \sum \mu(A_n)$ for any sequence of pairwise disjoint sets $A_n \subseteq \mathbb{R}$?

Solution. Banach and Kuratowski showed in 1929 that, under the assumption of the Continuum Hypothesis, such a measure cannot exist.

Here is a link to their original paper (in French):