Отчет о выполнении лабораторной работы 2.1.1 Измерение удельной теплоемкости воздуха при постоянном давлении

Исламов Сардор, группа Б02-111 7 февраля 2022 г.

Аннотация. В работе изучена зависимость повышения температуры от мощности подводимого тепла и расхода при стационарном течении через трубу. Исключив тепловые потери, по результатам измерений определена теплоемкость воздуха при постоянном давлении.

Теоретические сведения

Теплоемкость тела в некотором процессе определяется как отношение подводимого к телу тепла и изменения его температуры:

$$C = \frac{\delta Q}{dT} \tag{1}$$

Надежность измерения зависит от качества установки. Необходимо, чтобы количество тепла, затрачиваемого на нагрев тела, во много превосходило тепло, расходуемое на нагрев установки и потерю тепла в окружающую среду.

Рассмотрим газ, протекающий стационарно слево направо через трубу постоянного сечения, в которой установлен нагревательный элемент мощностью N (рис. 1).

Рис. 1: Нагрев газа при течении по трубе

Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm=qdt, где q [кг/с] — массовый расход газа в трубе. Если мощность тепловых потерь равна $N_{\text{пот}}$, то газ получил тепло $\delta Q=(N-N_{\text{пот}})dt$. С другой стороны $\delta Q=cdm\Delta T$, где $\Delta T=T_2-T_1$ - приращение температуры газа, и c - удельная теплоемкость газа в этом процессе. При малых расходах газа и большом диаметре трубы перепад давления на ее концах мал, т.е. можно принять, что $P_1\approx P_2\approx P_0$, где P_0 - атмосферное давление. Таким образом получаем выражение для удельной теплоемкости при постоянном давлении

$$c_p = \frac{N - N_{\text{not}}}{q\Delta T} \tag{2}$$

Экспериментальные методы

В работе используются: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

Схема установки изображена на рис. 2

Рис. 2: Схема экспериментальной установки

Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов. На внутреннюю поверхность стенок трубки нанесено серебряное покрытие для минимизации потерь тепла засчет излучения. Воздух из пространства между стенками калориметра откачан до высокого вакуума 10^{-5} торр для минимизации потерб тепла, обусловленных теплопроводностью.

Нагреватель в виде намотанной на пенопласт нихромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев проволоки производится от регулируемого источника постоянного тока (ИП). Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI \tag{3}$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй — в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T \tag{4}$$

где $\beta=40.7\frac{\text{мкB}}{\text{°}C}$ — чувствительность медно-константановой термопары в рабочем диапазоне температур (20–30 °C). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком ГС. Для регулировки расхода служит кран К. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. Объёмный расход равен $\frac{\Delta V}{\Delta t}$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{5}$$

где ρ_0 — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева—Клапейрона: $\rho_0 = \frac{\mu P_0}{RT_0}$, где P_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu = 29,0$ г/моль — средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T \ll T_0$) мощность потерь тепла $N_{\text{пот}}$ прямо пропорциональна разности температур:

$$N_{\text{HOT}} = \alpha \Delta T \tag{6}$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (c_p q + \alpha) \Delta T \tag{7}$$

Следовательно, при фиксированном расходе воздуха (q=const) подводимая мощность и разность температур связаны прямой пропорциональностью($\Delta T(N)$ — линейная функция).

Методика измерений и обработка данных

- 1. Подготовим к работе газовый счетчик: проверим, заполнен ли он водой, установим счетчик по уровню.
- 2. Начинать измерения следует при условии, что калориметр охлажден до комнатной температуры. Для охлаждения включим компрессор и открывая кран K, установим максимально возможный расход воздуха. Источник постоянного тока должен быть при этом выключен.
- 3. Снимем показания давления, температуры и относительной влажности в комнате.

P , к Π а	$σ_P$, κ Π a	$T,^{o}C$	σ_T , oC	φ	σ_{φ}
98.325	0.001	22	0.1	48	1

Таблица 1: Характерные параметры воздуха в помещении

4. С помощью газового счетчика и секундомера измерим максимальный расход воздуха $\Delta V/\Delta t$ в л/с. Максимальный расход q_{max} расчитаем по формуле (5).

$$ho_0 = 1.163 \; \mathrm{K} \Gamma/\mathrm{M}^3, \; \sigma_{
ho} =
ho_0 \sqrt{\left(rac{\sigma_p}{P_0}
ight)^2 + \left(rac{\sigma_T}{T_0}
ight)^2} pprox 0.005 \; \mathrm{K} \Gamma/\mathrm{M}^3$$

- 5. Оценим величину тока нагревателя I_0 , требуемого для нагрева воздуха на $\Delta T = 1^o C$. Для этого
 - 5.1 Определим теоретическое значение удельной теплоемкости воздуха при постоянном давлении $c_p^{\rm reop} \approx 10^3 \text{Дж/кг K}$, считая воздух смесью идеальных двухатомных газов;

ΔV , л	σ_V , л	$\Delta t, c$	σ_t, c	$q_{max}, \Gamma/c$	$\sigma_q, \Gamma/c,$
15.0	0.1	74.5	0.5	0.235	0.002
15.0	0.1	74.7	0.5	0.235	0.002
15.0	0.1	74.6	0.5	0.235	0.002

Таблица 2: Измерения для q = 0.235 г/c

- 5.2 Оценим минимальную мощность N_0 ($N \ge c_p q \Delta T$), необходимую для нагрева газа при максимальном расходе q_{max} на $\Delta T = 1^o C$. $N_0 = 0.235$ Вт;
- 5.3 Учитывая что сопровтивление проволоки нагревателя составляет приблизительно $R_{\rm H} \approx 35~{\rm Om}$ и в процессе опыта практически не меняется, определим искомое значение тока

$$I_0 = \sqrt{\frac{N_0}{R_{\scriptscriptstyle \mathrm{H}}}} \approx 81{,}94{\scriptscriptstyle \mathrm{M}}\mathrm{A}.$$

- 6. Проведем измерение зависимости разности температур от мощности нагрева $\Delta T(N)$ при максимальном расходе воздуха $q_1=q_{max}$.
 - 6.1 Чтобы начать нагрев, включим источник питания (ИП) нагревателя и установим на нем такое напряжение, чтобы ток через нить накаливания составлял $I_1 \sim (2 \div 2.5) I_0$. Запишем значения тока I и напряжения U в цепи. Расчитаем мощность нагрева N, а также сопротивление нити нагревателя $R_{\rm H}$.
 - 6.2 После включения нагрева (или после изменения его мощности) дождемся установления стационарного состояния системы.
 - 6.3 По величине ε определим значение ΔT . Учитывая, что $\Delta T \sim N \sim I^2$, определим значения токов канала, необходимые для того, чтобы равномерно повышать температуру нагрева ΔT до требуемого значения. Проведем измерения согласно пп. 6.1-6.2, последовательно увеличивая ток нагрева до расчетных значений.

I, MA	σ_I , MA	U, B	σ_U, B	N , м $\mathrm{B}\mathrm{T}$	σ_N , м B т	$\varepsilon, \mu B$	$\sigma_{\varepsilon}, \mu B$	$\Delta T, K$	σ_T, K
77.09	0.01	2.73	0.01	210.38	0.68	29	1	0.71	0.02
89.98	0.01	3.18	0.01	286.50	0.93	41	1	1.01	0.02
118.56	0.01	4.19	0.01	497.0	1.6	72	1	1.77	0.02
135.04	0.01	4.77	0.02	644.4	2.1	95	1	2.33	0.02
163.86	0.02	5.79	0.02	948.6	3.1	140	1	3.44	0.02

Таблица 3: Измерения для $q=0.235~\mathrm{r/c}$

7. Проведем измерения для другого значения расхода воздуха. Соответствующие значения занесем в таблицы (4) и (5).

ΔV , л	σ_V , л	Δt , c	σ_t , c	$q_{max}, \Gamma/c$	$\sigma_q, \Gamma/c,$
15.0	0.1	99.9	0.5	0.175	0.002
15.0	0.1	100.2	0.5	0.174	0.002
15.0	0.1	100.0	0.5	0.174	0.002

Таблица 4: Измерения для q = 0.174 г/с

I, MA	σ_I , MA	U, B	σ_U, B	N, B_{T}	$\sigma_N, \operatorname{Br}$	$\varepsilon, \mu B$	$\sigma_{\varepsilon}, \mu B$	$\Delta T, K$	σ_T, K
63.09	0.01	2.25	0.01	141.74	0.45	23	1	0.57	0.02
79.88	0.01	2.84	0.01	226.62	0.73	40	1	0.98	0.02
113.19	0.01	4.01	0.01	453.7	1.5	85	1	2.09	0.02
142.52	0.01	5.03	0.02	717.0	2.3	144	1	3.54	0.02
179.84	0.02	6.35	0.02	1141.1	3.7	225	1	5.53	0.02

Таблица 5: Измерения для q = 0.174 г/c

98.0%. 2022

8. Построим графики зависимости $\Delta T(N)$ для каждого значения расхода воздуха q. Видно, что точки хорошо ложатся на прямую, значит тепловые потери пропорциональны разности температур. Коэффициенты наклона прямых найдем по МНК.

$$k_1 = (3.60 \pm 0.02) \cdot 10^{-3} \text{BT/K}, k_2 = (4.82 \pm 0.06) \cdot 10^{-3} \text{BT/K}.$$

Рис. 3: Графики зависимости $\Delta T(N)$

9. Пользуясь формулой (7) и полученными значениями получаем

$$c_p = \frac{\frac{N_1}{\Delta T_1} - \frac{N_2}{\Delta T_2}}{q_1 - q_2} = \frac{\frac{1}{k_1} - \frac{1}{k_2}}{q_1 - q_2} = 1152 \frac{\text{Дж}}{\text{кг K}}$$

$$\sigma_{c_p} = \sqrt{\left(\frac{\partial c_p}{\partial k_1} \sigma_{k_1}\right)^2 + \left(\frac{\partial c_p}{\partial k_2} \sigma_{k_2}\right)^2 + \left(\frac{\partial c_p}{\partial q_1} \sigma_{q_1}\right)^2 + \left(\frac{\partial c_p}{\partial q_2} \sigma_{q_2}\right)^2} =$$

$$= \sqrt{\left(\frac{\sigma_{k_1}}{k_1^2(q_1-q_2)}\right)^2 + \left(\frac{\sigma_{k_2}}{k_2^2(q_1-q_2)}\right)^2 + \left(\frac{\sigma_{c_pq_1}}{q_1-q_2}\right)^2 + \left(\frac{\sigma_{c_pq_2}}{q_1-q_2}\right)^2} \approx 75 \frac{\text{Дж}}{\text{K} \Gamma \text{ K}}$$

Теперь, пользуясь полученным значением c_p и формулой (7), определим $\frac{N_{\text{пот}}}{N}$.

$$N = c_p q \Delta T + N_{\text{not}} \Rightarrow \frac{N_{\text{not}}}{N} = 1 - c_p q_1 k_1 \approx 0.025$$

$$\sigma_{N_{\rm not}/N} = N_{\rm not}/N \sqrt{\left(\frac{\sigma_{c_p}}{c_p}\right)^2 + \left(\frac{\sigma_{q_1}}{q_1}\right)^2 + \left(\frac{\sigma_{k_1}}{k_1}\right)^2} \approx 0.002$$

Вывод

В ходе работы изучена зависимость повышения температуры от мощности подводимого тепла и расхода при стационарном течении через трубу. На основе полученных данных выяснено, что тепловые потери пропорциональны разнице температур. Исключив потери тепла, отношение которых к подводимой мощности составляет $\frac{N_{\rm nor}}{N}=0.025\pm0.002$ ($\varepsilon=8\%$), определена удельная теплоемкость воздуха при постоянном давлении $c_p=(1152\pm75)\frac{D_{\rm nor}}{K\Gamma}$ ($\varepsilon=7\%$). Небольшое отличие полученного значениея от табличного $c_p=1000\frac{D_{\rm nor}}{K\Gamma}$ может быть связано с высокой влажностью воздуха в помещении, неучитывающейся при расчете плотности.