Imię i Nazwisko: Edyta Michalska

Nr indeksu: 332350 Wydział: MIM

Cel ćwiczenia: analiza struktury białek z uwzględnieniem rzędowości.

303Q

• struktura I-rzędowa

Struktura o identyfikatorze 3O3Q w PDB to struktura krystaliczna pewnego mutanta białka o nazwie pierwszy czynnik wzrostu fibroblastów (ang. fibroblast growth factor-1, w skrócie FGF1). FGF1 odgrywa ważną rolę w regulacji przetrwania komórki, jej podziału, różniowania i migracji.

W stosunku do kanonicznej sekwencji białka FGF1 z bazy Uniprot o długości 155, w pełnej sekwencji białka mutanta z PDB o długości 144:

- początkowe 15 aminokwasów FGF1 zostało zastąpione przez 6 histydyn,
- nastąpiło 6 delecji: glutaminy na pozycji 119, lizyny na 120, asparaginy na 121, glicyny na 135, proliny na 136, i argininy na 137,
- nastąpiło 9 mutacji: leucyna na pozycji 59 została zamieniona na fenyloalaninę na pozycji 44, metionina na pozycji 82 na izoleucynę na pozycji 67, leucyna na pozycji 88 na walinę na pozycji 73, alanina na pozycji 118 na glicynę na pozycji 103, fenyloalanina na pozycji 123 na tyrozynę na pozycji 108, walina na pozycji 124 na leucynę na pozycji 109, leucyna na pozycji 126 na izoleucynę na pozycji 111, cysteina na 132 na walinę na 117, arginina na pozycji 134 na glicynę na pozycji 119.

Modyfikacje potranslacyjne:

Według bazy Uniprot, FGF1 może być fosforylowane w jądrze przez PKC/PRKCD.

Białko FGF1, którego ten łańcuch jest mutantem zawiera region wiążący heparynę. W analizowanym łańcuchu też występuje ten fragment zmodyfikowany o 2 mutacje i 3 delecje aminokwasów.

• struktura II-rzedowa

Analizowane białko nie zawiera helis. Posiada natomiast 6 dwuniciowych, antyrównoległych betakartek (zaznaczono je na rys. 1 kolorami: zielonym, białym, czerwonym, brązowym, żółtym oraz fioletowym).

Rys. 1. Struktury II-rzędowe dla białka 3O3Q.

Rys. 2. Struktury II-rzędowe dla białka 3O3Q: betakartki.

• struktura nad-II-rzędowa

Analizowane białko posiada 5 beta-spinek (zaznaczono je na rys. 3 kolorami: zielonym, białym, czerwonym, brązowym oraz fioletowym).

Rys. 3. Struktury nad-II-rzędowe dla białka 3O3Q.

Rys. 4. Struktury nad-II-rzędowe dla białka 3O3Q: beta-spinki.

Analizowane białko składa się z jednej domeny strukturalnej. Typ foldu białka to beta-trefoil.

Rys. 5. Struktura III-rzędowa dla białka 3O3Q (typ foldu:beta-trefoid).

Nie ma struktury czwartorzędowej, ponieważ białko składa się z jednego łańcucha.

3VGZ

• struktura I-rzędowa

Struktura o identyfikatorze 3VGZ w PDB to struktura krystaliczna białka zawierającego od 31 do 353 aminokwasu białka YncE z bektarii E. coli. Pochodzi ona z pracy [1]. Według tej pracy, białko YncE ma zdolność wiązania się do DNA i bierze udział w metabolizmie żelaza, ale jego dokładna funkcja nie jest znana. Badacze wzięli do krystalizacji białko bez 30 początkowych aminokwasów, ponieważ stanowią one sekwencję sygnałową, która powodowała degradację białka w komórkach, w których pełne białko było produkowane, a białko produkowane bez tego fragmentu było odporne na degradację.

W PDB są 4 łańcuchy tego samego rodzaju. Do dalszej analizy biorę łańcuch C, ponieważ ma on najmniej brakujących aminokwasów z całego białka YncE (brakuje w nim 30 początkowych aminokwasów, podczas gdy w pozostałych łańcuchach 32).

Sekwencja w pliku PDB pokrywa się z sekwencją z UniProta, poza tym że zamiast metioniny występuje w nim selenometionina na pozycjach 1, 34, 46 i 186.

• struktura II-rzędowa

Fragment 31-353 białka YncE nie posiada helis, ale posiada 7 antyrównoległych beta-kartek złożonych z 4 nici każda. Na rys. 6 każdą beta-kartkę zaznaczono innym kolorem.

Rys. 6. Struktury II-rzędowe dla białka 3VGZ.

Rys. 7. Struktury II-rzędowe dla białka 3VGZ: beta-kartki.

• struktura nad-II-rzędowa

Białko zawiera 6 struktur typu beta-meander (rys. 8: kolory fioletowy, błękitny, żółty, czerwony, niebieski, zielony) oraz jedną beta-spinkę (rys. 8: kolor brązowy).

Rys. 8. Struktury nad- II-rzędowe dla białka 3VGZ.

Na rys. 9 przedstawiono występującą w białku strukturę nad-II-rzędową typu beta-spinka, natomiast na rys. 10 wszystkie struktury typu beta-meander.

Rys. 9. Struktura nad-II-rzędowa dla białka 3VGZ: beta-spinka.

Rys. 10. Struktury nad- II-rzędowe dla białka 3VGZ: beta-meandry.

Białko składa się z jednej domeny i ma fold typu beta-propeller.

• struktura IV-rzędowa

Nie ma struktury czwartorzędowej, ponieważ białko składa się z jednego łańcucha.

1R4N

• struktura I-rzędowa

Struktura 1R4N w pliku PDB jest strukturą kompleksu APPBP1-UBA3-NEDD8-ATP pochodzącą z pracy [2]. Słada się ona z białek:

a) APPBP1 (ang. amyloid beta precursor protein-binding protein 1). W stosunku do wersji kanonicznej białka z bazy Uniprot w jego pełnym łańcuchu brakuje aminokwasów na pozycjach od 254 do 258. W pliku PDB białko to występuje jako identyczne łańcuchy A, C, E, G, w których brakuje aminokwasów na pozycjach od 1 do 5 i od 200 do 207 z pełnego łańcucha.

Modyfikacje potranslacyjne: według Uniprot może być ubikwitynowana przez TRIP12.

b) UBA3 (ang. ubiquitin-activating enzyme E1C).

W stosunku do wersji kanonicznej tego białka w bazie Uniprot, w jego pełnym łańcuchu brakuje pierwszych 32 aminokwasów oraz cysteina z pozycji 237 została zastąpiona alaniną. W pliku PDB białko to występuje jako identyczne łańcuchy B, D, F, H.

c) Ubikwityno-podobne białko NEDD8.

W stosunku do wersji kanonicznej tego białka w bazie Uniprot,

w pełnym łańcuchu białka brakuje aminokwasów od 77 do 81.

W pliku PDB białko to wystepuje jako identyczne łańcuchy I, J, K, L równe pełnemu łańcuchowi.

Modyfikacje potranslacyjne: fragment formy prekursorowej może być wycinany przez UCHL3 lub SENP8.

Do dalszej analizy bierzemy łańcuchy A, B, I.

Łańcuch A (białko APPBP1)

• struktura II-rzędowa

W łańcuchu A są 22 helisy. Rodzaj oraz zakres aminokwasów każdej z nich podano w tabeli poniżej.

Nr	Zakres aminokwasów	Rodzaj helisy
1	7-18	alfa
2	20-29	alfa
3	40-51	alfa
4	67-71	alfa
5	85-96	alfa
6	109-115	alfa
7	117-122	alfa
8	133-146	alfa
9	190-198	alfa
10	214-228	alfa

11	238-249	alfa
12	263-272	alfa
13	283-290	alfa
14	303-316	alfa
15	336-367	alfa
16	377-389	alfa
17	398-402	alfa
18	409-416	alfa
19	422-439	alfa
20	448-468	alfa
21	476-485	alfa
22	491-510	alfa

W łańcuchu A znajdują się 3 beta-kartki (rys. 11: kolor czerwony, zielony, niebieski) . Dwie z nich to beta-kartki antyrównoległe, składające się z 2 beta-nici (rys. 12). Trzecia to beta-kartka mieszana, składająca się z 8 beta-nici (rys. 13).

Rys. 11. Struktury II-rzędowe dla łańcucha A białka 1R4N.

Rys. 12. Struktury II-rzędowe dla łańcucha A białka 1R4N: beta-kartki składające się z 2 nici.

Rys. 13. Struktura II-rzędowa dla łańcucha A białka 1R4N: beta-kartka składająca się z 8 nici.

• Struktura nad-II-rzędowa

Analizowany łańcuch posiada jedną beta spinkę (rys. 14: kolor pomarańczowy, rys. 16) oraz jedną helix-hairpin (rys.. 14: kolor zielony, rys. 15).

Rys. 14. Struktury nad-II-rzędowe dla łańcucha A białka 1R4N.

Rys. 15. Struktura nad-II-rzędowa dla łańcucha A białka 1R4N: helixhairpin.

Rys. 16. Struktura nad-IIrzędowa dla łańcucha A białka 1R4N: beta-spinka.

W łańcuchu A możemy wyróżnić także mieszane struktury nad-II-rzędowe: 1 motyw typu beta-alfabeta (rys. 17: kolor czerwony, rys. 19) oraz 1 motyw alpha-alpha corners (rys. 17: kolor szary, rys. 18).

Rys. 17. Struktury nad-II-rzędowe mieszane dla łańcucha A białka 1R4N.

Rys. 19. Struktura nad-II-rzędowa dla łańcucha A białka 1R4N: motyw beta-alfa-beta.

Rys. 18. Struktura nad-II-rzędowa dla łańcucha A białka 1R4N: motyw alpha-alpha corners.

Według pracy [3] w białku APPBP1 występują trzy domeny:

A - adenylation domain; ma ona fold typu "sandwich alpha-beta-alpha", CC - catalytic cysteine domain; posiada ona fold typu "mainly alpha", 4HB – o typie foldu 4-helix bundle.

W pełnym łańcuchu białka z pliku PDB obejmują one aminokwasy:

A - od 1 do 168 i od 482 do 529,

CC - od 169 do 392,

4HB - od 393 do 481.

Na rysunku 20 zaznaczono te domeny na łańcuchu A z PDB kolorami: niebieskim – domenę A , czerwonym- domenę CC, żółtym- domenę 4HB.

Rys. 20. Struktura III-rzędowa dla łańcucha A białka 1R4N.

Łańcuch B (białko UBA3)

• struktura II-rzędowa

W łańcuchu B jest 14 helis. Rodzaj oraz zakres aminokwasów każdej z nich podano w tabeli

poniżej.

Nr	Zakres aminokwasów	Rodzaj helisy
1	17-22	alfa
2	40-48	alfa
3	59-69	alfa
4	103-114	alfa
5	132-137	alfa
6	148-161	alfa
7	215-220	alfa
8	225-240	alfa
9	254-271	alfa
10	278-286	alfa
11	293-312	alfa
12	364-370	alfa
13	600-605	alfa
14	702-706	alfa

W łańcuchu B znajdują się 4 beta-kartki. Dwie z nich to składające się z dwóch nici beta-kartki antyrównoległe (rys. 21: kolor czerwony i szary; rys. 23). Trzecia to złożona z 5 beta-nici beta-kartka mieszana (rys. 21: kolor zielony; rys. 24). Czwarta to beta-kartka mieszana, składająca się z 8 beta-nici (rys. 21: kolor niebieski; rys. 22).

Rys. 21. Struktury II-rzędowe dla łańcucha B białka 1R4N.

Rys. 23. Struktury II-rzędowe dla łańcucha B białka 1R4N: beta-kartki antyrównoległe, składające się z 2 nici.

Rys. 24. Struktura II-rzędowa dla łańcucha B białka 1R4N: beta-kartka mieszana, składająca się z 5 nici.

Rys. 22. Struktura II-rzędowa dla łańcucha B białka 1R4N: betakartka mieszana, składająca się z 8 nici.

• Struktura nad-II-rzędowa

Analizowany łańcuch B posiada cztery beta spinki (w jednej beta spince pomiędzy dwoma betaniciami brakuje 4 aminokwasów (385-388), które prawdopodobnie w tej strukturze tworzą betaspinkę). Na rys. 25 beta-spinki zostały zaznaczone kolorami: zielonym, czerwonym, niebieskim oraz fioletowym.

Rys. 25. Struktury nad-II-rzędowe dla łańcucha B białka 1R4N.

Rys. 26. Struktury nad-II-rzędowe dla łańcucha B białka 1R4N: beta-spinki.

W łańcuchu B można wyróżnić także strukturę ponad II-rzędową mieszaną: 1 motyw beta-alfa-beta. (rys. 27, kolor biały).

Rys. 27. Struktura nad-II-rzędowa mieszana dla łańcucha B białka 1R4N.

Rys. 28. Struktura nad-II-rzędowa mieszana dla łańcucha B białka 1R4N: motyw beta-alfa-beta.

Z pracy [3] wynika, że w badanym białku występują trzy domeny: A i CC o nazwach jak dla APPBP1 powyżej, oraz Ubl - ubiquitin-like domain. Zaznaczyłam je na rysunku 29: A – na niebiesko, CC – na czerwono, i Ubl – na zielono. Posiadają one typy foldu: A - "sandwich alphabeta-alpha", CC - "4-helix bundle" i Ubl - "sandwich alpha-beta". W pełnym łańcuchu z pliku PDB obejmują one aminokwasy: A - od 1 do 199 i od 289 do 336, CC - od 200 do 288 i Ubl - od 337.

Rys. 29. Struktura III-rzędowa dla łańcucha B białka 1R4N.

Łańcuch I (białko NEDD8)

• struktura II-rzędowa

W łańcuchu I występuje jedna alfa-helisa (zakres aminokwasów: 123-134) oraz jedna beta-kartka mieszana, złożona z 4 beta-nici. (rys. 30: kolor niebieski).

Rys. 30. Struktura II-rzędowa dla łańcucha I białka 1R4N.

Rys. 31. Struktura IIrzędowa dla łańcucha I białka 1R4N: alfa-helisa.

• Struktura nad-II-rzędowa

Analizowany łańcuch I posiada jedną beta-spinkę (rys. 32: kolorem czerwony).

Rys. 33. Struktura nad-IIrzędowa dla łańcucha I białka 1R4N: beta-spinka.

Rys. 32. Struktura nad-II-rzędowa dla łańcucha I białka 1R4N.

• struktura III-rzędowa

Białko składa się z jednej domeny. Ma ona fold typu "sandwitch alpha-beta".

• struktura IV-rzędowa

W tabelach poniżej znajduje się lista oddziaływań pomiędzy poszczególnymi łańcuchami dla białka 1R4N.

łańcuch A	łańcuch I	rodzaj oddziaływania
Leu 180	Gly 135	VdW
Lys 240	Glu 132	jonowe
Lys 240	Glu 132	wodorowe
Asn 273	Glu 128	wodorowe

łańcuch B	łańcuch I	rodzaj oddziaływania
Gly 57	Gly 176	VdW
Leu 59	Gly 176	VdW
Gly 144	Gly 176	VdW
Asp 146	Arg 174	jonowe
Asp 140 Arg 151	Arg 174	wodorowe
Arg 151	Gly 175	wodorowe
Thr 182	Gly 175	wodorowe
	,	
Glu 183	Arg 174	jonowe
Glu 183	Arg 174	wodorowe
Gly 187	Leu 173	VdW
Asn 188	Leu 173	wodorowe
Glu 205	Arg 142	jonowe
Leu 206	Ala 172	VdW
Leu 206	Ala 172	wodorowe
Tyr 207	Leu 173	VdW
Pro 208	Leu 171	VdW
Pro 208	Ala 172	VdW
Tyr 321	Leu 171	VdW
Tyr 321	Leu 171	wodorowe
Tyr 321	Ala 172	VdW
Val 323	Val 170	VdW
Tyr 331	Thr 107	wodorowe
Tyr 331	Leu 108	VdW
Tyr 331	Gly 110	VdW
Phe 335	Ile 144	VdW
Phe 335	Val 170	VdW
Glu 338	Lys 148	jonowe

łańcuch A	łańcuch B	rodzaj oddziaływania
Glu 10	Arg 279	jonowe
Glu 10	Arg 279	wodorowe
Arg 15	Ala 291	wodorowe
Arg 18	Arg 279	wodorowe
Leu 19	Pro 290	VdW
Asp 22	Arg 279	jonowe
Asp 22	Arg 279	wodorowe
Glu 44	Lys 65	jonowe
Glu 44	Lys 65	wodorowe
Lys 47	Glu 62	jonowe
Lys 47	Glu 62	wodorowe
Gly 67	Trp 13	VdW
Glu 68	His 19	jonowe
Phe 74	Phe 92	VdW
Phe 74	Arg 114	wodorowe
Leu 158	Tyr 315	VdW
Asp 177	Lys 186	jonowe
Asp 331	Arg 223	jonowe
Ser 336	Pro 222	wodorowe
Ile 340	Tyr 271	VdW
Arg 391	Asp 328	jonowe
Gly 444	Arg 26	wodorowe
Glu 481	Tyr 315	wodorowe
Arg 484	Phe 23	wodorowe
Arg 484	Ala 314	wodorowe
Tyr 485	Tyr 315	VdW
Glu 489	His 19	jonowe
Pro 490	Phe 23	VdW
His 491	Lys 65	wodorowe
Thr 492	Thr 305	wodorowe
Phe 496	Val 298	VdW
Phe 496	Ala 301	VdW
Gln 503	Ser 294	wodorowe
Lys 507	Asp 326	jonowe
Lys 507	Asp 326	wodorowe
Lys 507	Gly 329	wodorowe
Val 514	Val 327	wodorowe
Val 514	Gly 329	VdW
Val 514	Gly 329	wodorowe
Phe 516	Gly 329	VdW
Tyr 520	Leu 330	VdW
Gly 524	Lys 309	wodorowe
Met 525	Lys 309	wodorowe
Gln 527	Thr 334	wodorowe
Ser 529	Thr 332	wodorowe

Literatura:

- [1] "Structural basis for the DNA-binding activity of the bacterial beta-propeller protein YncE". Wataru Kagawa et. al. Acta Crystallographica Section D. 2011.
- [2] "The Structure of the APPBP1-UBA3-NEDD8-ATP Complex Reveals the Basis for Selective Ubiquitin-like Protein Activation by an E1". Helen Walden et. al. Molecular Cell. 2003.
- [3] "Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8". Helen Walden, et. al. Nature. 2003.