中期考核报告: $\psi(2S) \rightarrow \gamma \eta_c(2S)$ 的研究 及BESIII上XYZ数据的积分亮度测量

报告人:杨翊凡 导师:苑长征

中科院高能物理研究所

2018年11月27日

目录

- ▶ $\psi(2S) \rightarrow \gamma \eta_c(2S)$ 的研究
- ▶ BESⅢ上XYZ数据的积分亮度测量
- ▶ 总结

$\psi(2S) \rightarrow \gamma \eta_c(2S)$ 的研究

选题意义

- ▶ 利用2009年的 ψ (2*S*)数据,BESIII首次观测到了M1电磁跃迁过程 ψ (2*S*) $\rightarrow \gamma \eta_c$ (2*S*)。
- η_c(2S)与ψ(2S)质量相近,辐射光子的能量很低,因而为相关实验提供了挑战。受限于此,现有的相关测量结果精度不高。
- ▶ 本工作的目标是结合2012年的 ψ (2*S*)数据,实现对这一过程的更精确测量,并研究 η_c (2*S*)的性质。

研究方法

- ▶ 对 $\eta_c(2S)$ 衰变到 $K_s^0 K^{\pm} \pi^{\mp} \pi K^{+} K^{-} \pi^0$ 两种强子末态的事例进行筛选。
- ightharpoons 对两者的质量谱进行联合拟合,测量 $\eta_c(2S)$ 谱形参数。

$\psi(2S) \rightarrow \gamma \eta_c(2S)$ 的研究

研究进展

- ▶ 挑选出了 $\gamma K_s^0 K^{\pm} \pi^{\mp} \pi \gamma K^+ K^- \pi^0$ 事例。
- ▶ 排除和压低了本底,并研究了剩余本底的谱形。
- ▶ 固定了 $\eta_c(2S)$ 的宽度,通过拟合测量了 $\eta_c(2S)$ 的质量和观测事例数。
- ▶ 研究了系统误差。
- ► 在今年的BESIII冬季年会上进行报告。

Fitting Result	09 data	12 data
n(Events) in $\gamma K^+ K^- \pi^0$	40 ± 8	172 ± 18
n(Events) in $\gamma K_s^0 K^{\pm} \pi^{\mp}$	76 ± 10	160 ± 20
Fitted Mass(MeV)	3634.1 ± 2.2	3638.5 ± 1.5

$\psi(2S) \rightarrow \gamma \eta_c(2S)$ 的研究

面临问题

- ▶ 拟合的系统误差较大,12年数据的结果并不优于09年数据的结果。
- ▶ 主要的误差项是damping function的形式。其形式的选取缺乏有力依据、难以优化。

Table: The Systematic Uncertainty of Fitting

09 Data	Fitted Mass(MeV)	$\gamma K^+ K^- \pi^0$ Events(%)	$\gamma K_s^0 K^{\pm} \pi^{\mp}$ Events(%)
$\eta_c(2S)$ width	0.9	11.9	10.5
Fitting range	0.0	3.8	1.2
Damping function	2.0	20.5	20.5
Background line shape	0.2	2.0	7.0
Combined	2.2	23.8	23.9

12 Data	Fitted Mass(MeV)	$\gamma K^+ K^- \pi^0$ Events(%)	$\gamma K_s^0 K^{\pm} \pi^{\mp}$ Events(%)
$\eta_c(2S)$ width	1.3	14.5	15.0
Fitting range	0.1	5.7	4.9
Damping function	2.0	23.8	27.5
Background line shape	0.3	1.5	8.0
Combined	2.4	28.5	32.7

$$\psi(2S) \rightarrow \gamma \eta_c(2S)$$
的研究

下一步计划

- ▶ 利用关联两个道的信号事例数等方法,改善拟合效果;尝试 拟合质量宽度。
- ▶ 研究事例筛选效率的误差。
- ▶ 希望在春节前进入Memo阶段。

BESIII上XYZ数据的积分亮度测量

研究意义

- ▶ 通过研究Bhabha散射过程,高精度测量 了BESIII上2016-2017年度所取的XYZ数据的积分亮度。
- ▶ 研究了一个BESⅢ量能器的故障问题对亮度测量结果的影响,修正了2011-2014年度的XYZ数据的积分亮度。

Energy Point(MeV)	Run Number	$Result(pb^{-1})$
4190	47543-48170	$524.6 \pm 0.1 \pm 2.2$
4200	48172-48713	$526.0 \pm 0.1 \pm 2.1$
4210	48714-49239	$518.0 \pm 0.1 \pm 1.8$
4220	49270-49787	$514.6 \pm 0.1 \pm 1.8$
4237	49788-50254	$530.3 \pm 0.1 \pm 2.7$
4246	50255-50793	$538.1 \pm 0.1 \pm 2.6$
4270	50796-51302	$531.1 \pm 0.1 \pm 3.1$
4280	51305-51498	$175.7 \pm 0.1 \pm 1.0$

Energy Point(MeV)	Run Number	Result BOSS v7.0.3(pb ⁻¹)	Result BOSS v6.6.x(pb ⁻¹)
4009	23463-24141	$482.0 \pm 0.1 \pm 4.7$	-
4190	30372-30437	43.33 ± 0.03 ± 0.29	-
42301	30438-30491	44.54 ± 0.03 ± 0.29	-
4310	30492-30557	$45.08 \pm 0.03 \pm 0.30$	-
4360	30616-31279	543.9 ± 0.1 ± 3.6	
4390	31281-31325	55.57 ± 0.03 ± 0.37	-
44201	31327-31390	$46.80 \pm 0.03 \pm 0.31$	45.37 ± 0.03 ± 0.30
42601,2	29677-30367, 31561-31981	$828.4 \pm 0.1 \pm 5.5$	-
4210	31983-32045	54.95 ± 0.03 ± 0.36	-
4220	32046-32140	$54.60 \pm 0.03 \pm 0.36$	-
4245	32141-32226	55.88 ± 0.03 ± 0.37	-
4230 ₂	32239-33484	$1056.4 \pm 0.1 \pm 7.0$	$1053.9 \pm 0.1 \pm 7.0$
3810	33490-33556	50.54 ± 0.03 ± 0.49	-
3900	33572-33657	$52.61 \pm 0.03 \pm 0.51$	
4090	33659-33719	$52.86 \pm 0.03 \pm 0.35$	-
44202	36773-38140	$1043.9 \pm 0.1 \pm 6.9$	1041.3 ± 0.1 ± 6.9
4470	36245-36393	$111.09 \pm 0.04 \pm 0.73$	
4530	36398-36588	$112.12 \pm 0.04 \pm 0.74$	-
4575	36603-36699	48.93 ± 0.03 ± 0.32	
4600	35227-36213	586.9 ± 0.1 ± 3.9	585.4 ± 0.1 ± 3.9

BESIII上XYZ数据的积分亮度测量

EMC读数故障问题

- ► 在4.0 GeV以上的Bhabha事例中,部分高能量径迹会丢失EMC读数,使亮度被低估。
- ▶ 通过检查MDC与EMC的不匹配信息,找回了这部分事例, 修正了亮度。
- ▶ 该现象对亮度的影响幅度随能量变化,在4.6 GeV处可达3.6%。

BESIII上XYZ数据的积分亮度测量

研究进展

- ▶ 高精度测量了亮度,误差在0.7%左右。
- ▶ 目前处于RC阶段,已经回答了Referee的问题。
- ▶ 因为要与束流能量测量的分析进行合并,所以需要等待该分析的审核。

下一步计划

▶ 继续推进这一项工作。

总结

- ► 在研究生阶段主要进行了 $\psi(2S) \rightarrow \gamma \eta_c(2S)$ 的研究和BESIII上XYZ数据的积分亮度测量两项工作。
- ▶ $\psi(2S) \rightarrow \gamma \eta_c(2S)$ 的分析的拟合还需要进行一些改进,准备尽快进入Memo阶段。
- ► XYZ数据的积分亮度测量的Memo正处于Referee审核阶段, 基本回答完了问题,但是需要等待能量测量的分析。
- ▶ 预计答辩时间2019年5月。