SfePy Documentation

September 23, 2008

Contents

1	1 Notation											3
2	2 List of all terms											4
3	3 Introduction											6
	3.1 Term call syntax			 	 	 	 					6
4	4 Terms in termsMass											6
	$4.1 \text{ dw}_{\text{mass}} \dots \dots$			 	 	 	 					6
	$4.2 \text{ dw_mass_scalar} \dots$			 	 	 	 					7
	4.3 dw_mass_scalar_fine_coa	se .		 	 	 	 					7
	4.4 dw_mass_scalar_variable			 	 	 	 					7
	$4.5 \text{ dw_mass_vector} \dots$			 	 		 					7
5	5 Terms in termsBasic											7
	5.1 d_surface_dot			 	 	 	 					7
	5.2 d_surface_integrate											8
	5.3 d_volume											8
	5.4 d_volume_dot											8
	5.5 d_volume_wdot			 	 	 	 					8
	5.6 de_average_variable			 	 	 	 					8
	5.7 de_volume_average_mat			 	 	 	 					8
	5.8 di_volume_integrate											9
	5.9 di_volume_integrate_mat											9
	5.10 dw_surface_integrate .											10
	5.11 dw_volume_integrate .											10
	$5.12 \text{ dw_volume_wdot}$											10
	$5.13 \text{ dw_volume_wdot_dt}$											10
	$5.14~\mathrm{dw_volume_wdot_th}$			 	 	 	 					10
6	6 Terms in termsLaplace											11
Ū	6.1 d_diffusion			 	 		 				 	11
	6.2 de_diffusion_velocity .											11
	6.3 dw_diffusion											11
	6.4 dw_laplace											11
	6.5 dw_permeability_r											11

	erms in termsNavierStokes
7.	
7.5	10
7.3	
7.4	
7.	
7.0	8
7.	
7.8	$ m B \ dw_grad_dt \ \dots $
7.9	dw_lin_convect
7.	0 dw_st_grad_div
7.	1 dw_st_pspg_c
7.	2 dw_st_pspg_p
7.	3 dw_st_supg_c
7.	4 dw_st_supg_p
8 Te	erms in termsHyperElasticity
8.	
8.5	- *
8.	
0.0	dw_of_ite_iteoffook
	erms in termsPoint
9.1	dw_point_lspring
10 Te	erms in termsVolume
10	.1 dw_volume_lvf
11 Te	erms in termsPiezo
11	.1 dw_piezo_coupling
10 T	· · · · · · · · · · · · · · · · · · ·
	erms in termsSurface
12	.1 dw_surface_ltr
	erms in termsLinElasticity
	.1 d_lin_elastic
	.2 de_cauchy_strain
13	
13 13	.2 de_cauchy_strain
13 13 13	.2 de_cauchy_strain
13 13 13 13	.2 de_cauchy_strain
13 13 13 13 13	.2 de_cauchy_strain .3 de_cauchy_stress .4 dw_lin_elastic .5 dw_lin_elastic_iso
13 13 13 13 13 13	2 de_cauchy_strain .3 de_cauchy_stress .4 dw_lin_elastic .5 dw_lin_elastic_iso .6 dw_lin_viscous .7 dw_lin_viscous_th
13 13 13 13 13 14 Te	2 de_cauchy_strain 3 de_cauchy_stress 4 dw_lin_elastic 5 dw_lin_elastic_iso 6 dw_lin_viscous 7 dw_lin_viscous_th erms in termsBiot
13 13 13 13 13 13 14 Te 14	2 de_cauchy_strain 3 de_cauchy_stress 4 dw_lin_elastic 5 dw_lin_elastic_iso 6 dw_lin_viscous 7 dw_lin_viscous_th erms in termsBiot 1 d_biot_div
13 13 13 13 13 13 14 Te 14 14	2 de_cauchy_strain 3 de_cauchy_stress 4 dw_lin_elastic 5 dw_lin_elastic_iso 6 dw_lin_viscous 7 dw_lin_viscous_th erms in termsBiot 1 d_biot_div 2 dw_biot_div
13 13 13 13 13 13 14 Te 14 14 14	2 de_cauchy_strain 3 de_cauchy_stress 4 dw_lin_elastic 5 dw_lin_elastic_iso 6 dw_lin_viscous 7 dw_lin_viscous_th erms in termsBiot 1 d_biot_div 2 dw_biot_div 3 dw_biot_div_dt
13 13 13 13 13 13 14 14 14 14 14	2 de_cauchy_strain 3 de_cauchy_stress 4 dw_lin_elastic 5 dw_lin_elastic_iso 6 dw_lin_viscous 7 dw_lin_viscous_th
13 13 13 13 13 13 14 14 14 14 14 14	2 de_cauchy_strain 3 de_cauchy_stress 4 dw_lin_elastic 5 dw_lin_elastic_iso 6 dw_lin_viscous 7 dw_lin_viscous_th erms in termsBiot 1 d_biot_div 2 dw_biot_div 3 dw_biot_div_dt 4 dw_biot_div_th 5 dw_biot_grad
13 13 13 13 13 13 14 14 14 14 14 14 14	2 de_cauchy_strain 3 de_cauchy_stress 4 dw_lin_elastic 5 dw_lin_elastic_iso 6 dw_lin_viscous 7 dw_lin_viscous_th erms in termsBiot 1 d_biot_div 2 dw_biot_div 3 dw_biot_div_dt 4 dw_biot_div_th 5 dw_biot_grad 6 dw_biot_grad_dt
13 13 13 13 13 13 14 14 14 14 14 14 14	2 de_cauchy_strain 3 de_cauchy_stress 4 dw_lin_elastic 5 dw_lin_elastic_iso 6 dw_lin_viscous 7 dw_lin_viscous_th erms in termsBiot 1 d_biot_div 2 dw_biot_div 3 dw_biot_div_dt 4 dw_biot_div_th 5 dw_biot_grad 6 dw_biot_grad_dt
13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 15 Te	2 de_cauchy_strain 3 de_cauchy_stress 4 dw_lin_elastic 5 dw_lin_elastic_iso 6 dw_lin_viscous 7 dw_lin_viscous_th erms in termsBiot 1 d_biot_div 2 dw_biot_div 3 dw_biot_div_dt 4 dw_biot_div_th 5 dw_biot_grad

16	Term caches in cachesBasic	19
	16.1 cauchy_strain	19
	16.2 div_vector	19
	16.3 grad_scalar	19
	16.4 grad_vector	19
	16.5 mat_in_qp	19
	16.6 state_in_surface_qp	19
	16.7 state_in_volume_qp	20
	16.8 volume	20

1 Notation

Ω	volume (sub)domain						
Γ	surface (sub)domain						
t	time						
y	any function						
\underline{y}	any vector function						
<u>n</u>	unit outward normal						
q, s	scalar test function						
p, r	scalar unknown or parameter function						
\bar{p}	scalar parameter function						
\underline{v}	vector test function						
$\underline{w}, \underline{u}$	$\underline{\iota}$ vector unknown or parameter function						
\underline{b}	vector parameter function						
$\underline{\underline{e}}(\underline{u})$	Cauchy strain tensor $(\frac{1}{2}((\nabla u) + (\nabla u)^T))$						
<u>F</u>	deformation gradient $F_{ij} = \frac{\partial x_i}{\partial \partial X_j}$						
J	$\det(F)$						
<u>C</u>	right Cauchy-Green deformation tensor $C = F^T F$						
$\underline{\underline{E}}(\underline{u})$	Green strain tensor $E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_m}{\partial x_i} \frac{\partial u_m}{\partial x_j} \right)$						
$ \underline{\underline{\underline{E}}}(\underline{u}) \\ \underline{\underline{\underline{S}}} \\ \underline{\underline{f}} \\ \underline{f} $	second Piola-Kirchhoff stress tensor						
\underline{f}	vector volume forces						
f	scalar volume force (source)						
ρ	density						
ν	kinematic viscosity						
c	any constant						
$\delta_{ij}, \underline{\underline{I}}$	Kronecker delta, identity matrix						

The suffix ${}^{\circ}_{0}$ denotes a quatity related to a previous time step. Term names are prefixed according to the following conventions:

dw	discrete weak	terms having a virtual (test) argument and zero or more unknown arguments, used for FE assembling
d	discrete	terms having all arguments known, the result is the scalar value of the integral
di	discrete integrated	like 'd' but the result is not a scalar (e.g. a vector)
dq	discrete quadrature	terms having all arguments known, the result are the values in quadrature points of elements
de	discrete element	terms having all arguments known, the result is a vector of integral averages over elements (element average of 'dq')

2 List of all terms

section	name	definition
(14.1)	d_biot_div	$\int_{\Omega} r \; lpha_{ij} e_{ij}(\underline{w})$
(6.1)	d_{-} diffusion	$\int_{\Omega} K_{ij} abla_i ar{p} abla_j r$
(7.1)	$d_{-}div$	$\int_{\Omega} \bar{p} \ abla \cdot \underline{w}$
(13.1)	$d_{lin_elastic}$	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{b}) e_{kl}(\underline{w})$
(5.1)	$d_surface_dot$	$\int_{\Gamma} pr, \int_{\Gamma} \underline{u}\cdot \underline{w}$
(5.2)	$d_surface_integrate$	$\int_{\Gamma} y$, for vectors: $\int_{\Gamma} \underline{y} \cdot \underline{n}$
(5.3)	d_{-} volume	$\int_{\Omega} 1$
(5.4)	d_volume_dot	$\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$
(5.5)	d_volume_wdot	$\int_{\Omega} y p r, \int_{\Omega} y \underline{u} \cdot \underline{w}$
(5.6)	$de_average_variable$	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} y / \int_{T_K} 1$
(13.2)	de_cauchy_strain	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w}) / \int_{T_K} 1$
(13.3)	de_cauchy_stress	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} D_{ijkl} e_k l(\underline{w}) / \int_{T_K} 1$
(6.2)	$de_diffusion_velocity$	vector of $\forall K \in \mathcal{T}_h : \int_{T_K} K_{ij} \nabla_j r / \int_{T_K} 1$
(5.7)	$de_volume_average_mat$	$\forall K \in \mathcal{T}_h: \int_{T_K} m/\int_{T_K} 1$
(5.8)	$di_volume_integrate$	$\int_{\Omega}y,\int_{\Omega}\underline{y}$
(5.9)	$di_volume_integrate_mat$	$\int_{\Omega} m$
(7.2)	dq-grad	$(\nabla p) _{qp}$
(7.3)	dq_lin_convect	$((\underline{b}\cdot abla)\underline{u}) _{qp}$
(14.2)	dw_biot_div	$\int_{\Omega} q \; lpha_{ij} e_{ij}(\underline{u})$
(14.3)	$dw_biot_div_dt$	$\int_{\Omega} q \alpha_{ij} \frac{e_{ij}(\underline{u}) - e_{ij}(\underline{u}_0)}{\Delta t}$
(14.4)	$dw_biot_div_th$	$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij} (t - \tau) \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \mathrm{d}\tau \right] q$
(14.5)	dw_biot_grad	$\int_{\Omega} p \; lpha_{ij} e_{ij}(ar{v})$
		continued

		$\dots continued$
(14.6)	dw_biot_grad_dt	$\int_{\Omega} \frac{p - p_0}{\Delta t} \alpha_{ij} e_{ij}(\underline{v})$
(14.7)	dw_biot_grad_th	$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) p(\tau) \right) d\tau \right] e_{ij}(\underline{v})$
(7.4)	dw_convect	$\int_{\Omega} ((\underline{u} \cdot \nabla)\underline{u}) \cdot \underline{v}$
(6.3)	dw_diffusion	$\int_{\Omega} K_{ij} \nabla_i q \nabla_j p$
(7.5)	dw_div	$\int_{\Omega} q \; abla \cdot \underline{u}$
(7.6)	dw_div_grad	$\int_{\Omega} u abla \underline{v} : abla \underline{u}$
(7.7)	dw_grad	$\int_\Omega p \ abla \cdot \underline{v}$
(7.8)	dw_grad_dt	$\int_{\Omega} rac{p-p_0}{\Delta t} abla \cdot \underline{v}$
(6.4)	dw_laplace	$c \int_{\Omega} \nabla s \cdot \nabla r$ or $\sum_{K \in \mathcal{I}_h} \int_{T_K} c_K \nabla s \cdot \nabla r$
(7.9)	dw_lin_convect	$\int_{\Omega}((\underline{b}\cdot abla)\underline{u})\cdot\underline{v}$
(13.4)	dw_lin_elastic	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u})$
(13.5)	dw_lin_elastic_iso	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \ \delta_{ij}\delta_{kl}$
(13.6)	dw_lin_viscous	$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) \frac{e_{kl}(\underline{u}) - e_{kl}(\underline{u}_0)}{\Delta t}$
(13.7)	dw_lin_viscous_th	$\int_{\Omega} \left[\int_{0}^{t} \mathcal{H}_{ijkl}(t-\tau) \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \mathrm{d}\tau \right] e_{ij}(\underline{v})$
(4.1)	dw_mass	$\int_{\Omega} ho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$
(4.2)	dw_mass_scalar	$\int_{\Omega} q p$
(4.3)	dw_mass_scalar_fine_coarse	$\int_{\Omega}q_{h}p_{H}$
(4.4)	dw_mass_scalar_variable	$\int_{\Omega} cqp$
(4.5)	dw_mass_vector	$\int_{\Omega} ho \ \underline{v} \cdot \underline{u}$
(6.5)	dw_permeability_r	$\int_{\Omega}K_{ij} abla_{j}q$
(11.1)	dw_piezo_coupling	$\int_{\Omega} g_{kij} \ e_{ij}(\underline{u}) \nabla_k q, \ \int_{\Omega} g_{kij} \ e_{ij}(\underline{v}) \nabla_k p$
(9.1)	dw_point_spring	$\underline{f}^i = -k\underline{u}^i \forall \text{ FE node } i \text{ in region}$
(7.10)	$dw_st_grad_div$	$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$
(7.11)	$dw_st_pspg_c$	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$
(7.12)	dw_st_pspg_p	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$
(7.13)	$dw_st_supg_c$	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{v})$
(7.14)	dw_st_supg_p	$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \nabla p \cdot ((\underline{b} \cdot \nabla) \underline{v})$
(5.10)	dw_surface_integrate	$\int_{\Gamma} q$
(12.1)	dw_surface_ltr	$\int_{\Gamma} \underline{v} \cdot \underline{\underline{\sigma}} \cdot \underline{n}$
(8.1)	dw_tl_bulk_penalty	$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$
(8.2)	dw_tl_he_mooney_rivlin	$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$
(8.3)	dw_tl_he_neohook	$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$
(5.11)	dw_volume_integrate	$\int_\Omega q$
(10.1)	dw_volume_lvf	$\int_{\Omega} \underline{f} \cdot \underline{v} \text{ or } \int_{\Omega} fq$
(5.12)	dw_volume_wdot	$\int_{\Omega} y q p, \int_{\Omega} y \underline{v} \cdot \underline{u}$
(5.13)	dw_volume_wdot_dt	$\int_{\Omega} yq \frac{p-p_0}{\Delta t}, \int_{\Omega} y\underline{v} \cdot \frac{\underline{u}-\underline{u}_0}{\Delta t}$
		continued

		$\dots continued$
(5.14)	dw_volume_wdot_th	$\int_{\Omega} \left[\int_{0}^{t} \mathcal{G}(t-\tau)p(\tau) d\tau \right] q$

3 Introduction

Equations in SfePy are built using terms, which correspond directly to the integral forms of weak formulation of a problem to be solved. As an example, let us consider the Laplace equation:

$$c\Delta t = 0 \text{ in } \Omega, \quad t = \bar{t} \text{ on } \Gamma.$$
 (1)

The weak formulation of (1) is: Find $t \in V$, such that

$$\int_{\Omega} c \, \nabla t : \nabla s = 0, \quad \forall s \in V_0 \ . \tag{2}$$

In the syntax used in SfePy input files, this can be written as

$$dw_{laplace.i1.0mega(coef, s, t) = 0,$$
 (3)

which directly corresponds to the discrete version of (2): Find $t \in V_h$, such that

$$oldsymbol{s}^T(\int_{\Omega_h} c \ oldsymbol{G}^T oldsymbol{G}) oldsymbol{t} = 0, \quad orall oldsymbol{s} \in V_{h0} \ ,$$

where $\nabla u \approx \mathbf{G}\mathbf{u}$. The integral over the discrete domain Ω_h is approximated by a numerical quadrature, that is named i1 in our case.

3.1 Term call syntax

In general, the syntax of a term call in SfePy is:

where <i> denotes an integral name (i.e. a name of numerical quadrature to use) and <r> marks a region (domain of the integral). In the following, <virtual> corresponds to a test function, <state> to a unknown function and parameter> to a known function arguments. We will now describe all the terms available in SfePy to date.

4 Terms in termsMass

4.1 dw_mass

Class: MassTerm

Description: Inertial forces term (constant density).

Definition:

$$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$$

Arguments:

material.rho	ρ
ts.dt	Δt
parameter	\underline{u}_0

Syntax: dw_mass.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

4.2 dw_mass_scalar

Class: MassScalarTerm

Description: Scalar field mass matrix/rezidual.

Definition:

 $\int_{\Omega} qp$

 $Syntax: dw_mass_scalar.<i>.<r>(<virtual>, <state>)$

4.3 dw_mass_scalar_fine_coarse

Class: MassScalarFineCoarseTerm

Description: Scalar field mass matrix/rezidual for coarse to fine grid interpolation. Field p_H

belong to the coarse grid, test field q_h to the fine grid.

Definition:

 $\int_{\Omega} q_h p_H$

Syntax: dw_mass_scalar_fine_coarse.<i>.<r>(<virtual>, <state>, <iemaps>, <pbase>)

4.4 dw_mass_scalar_variable

Class: MassScalarVariableTerm

Description: Scalar field mass matrix/rezidual with coefficient c defined in nodes.

Definition:

 $\int_{\Omega} cqp$

Syntax: dw_mass_scalar_variable.<i>.<r>(<material>, <virtual>, <state>)

4.5 dw_mass_vector

Class: MassVectorTerm

Description: Vector field mass matrix/rezidual.

Definition:

 $\int_{\Omega} \rho \ \underline{v} \cdot \underline{u}$

Syntax: dw_mass_vector.<i>.<r>(<material>, <virtual>, <state>)

5 Terms in termsBasic

5.1 d_surface_dot

Class: DotProductSurfaceTerm

Description: Surface $L^2(\Gamma)$ dot product for both scalar and vector fields.

Definition:

 $\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$

Syntax: d_surface_dot.<i>.<r>(<parameter_1>, <parameter_2>)

5.2 d_surface_integrate

Class: IntegrateSurfaceTerm

Definition:

 $\int_{\Gamma} y$, for vectors: $\int_{\Gamma} y \cdot \underline{n}$

Syntax: d_surface_integrate.<i>.<r>(<parameter>)

5.3 d₋volume

Class: VolumeTerm

Description: Volume of a domain. Uses approximation of the parameter variable.

Definition:

 $\int_{\Omega} 1$

Syntax: d_volume.<i>.<r>(<parameter>)

5.4 d_volume_dot

 ${\bf Class:}\ {\bf DotProductVolumeTerm}$

Description: Volume $L^2(\Omega)$ dot product for both scalar and vector fields.

Definition:

 $\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$

Syntax: d_volume_dot.<i>.<r>(

5.5 d_volume_wdot

Class: WDotProductVolumeTerm

Description: Volume $L^2(\Omega)$ weighted dot product for both scalar and vector fields.

Definition:

 $\int_{\Omega} ypr, \int_{\Omega} y\underline{u} \cdot \underline{w}$

Arguments:

material weight function y

Syntax: d_volume_wdot.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

5.6 de_average_variable

Class: AverageVariableTerm

Description: Variable y averaged in elements.

Definition: vector of

 $\forall K \in \mathcal{T}_h: \int_{T_K} y/\int_{T_K} 1$

Syntax: de_average_variable.<i>.<r>(<parameter>)

5.7 de_volume_average_mat

Class: AverageVolumeMatTerm

Description: Material parameter m averaged in elements. Uses approximation of y variable. **Definition**:

$$\forall K \in \mathcal{T}_h : \int_{T_K} m / \int_{T_K} 1$$

Arguments:

material	m (can have up to two dimensions)
parameter	y
shape	shape of material parameter parameter
mode	'const' or 'vertex' or 'ele- ment_avg'

Syntax: de_volume_average_mat.<i>.<r>(<material>, <parameter>, <shape>, <mode>)

5.8 di_volume_integrate

 ${\bf Class:}\ {\bf IntegrateVolumeTerm}$

Definition:

$$\int_{\Omega} y, \int_{\Omega} \underline{y}$$

Syntax: di_volume_integrate.<i>.<r>(<parameter>)

$5.9 \quad di_volume_integrate_mat$

 ${\bf Class:}\ {\bf IntegrateVolumeMatTerm}$

Description: Integrate material parameter m over a domain. Uses approximation of y variable.

Definition:

$$\int_{\Omega} m$$

Arguments:

material	m (can have up to two dimensions)
parameter	$\mid y \mid$
shape	shape of material parameter parameter
mode	'const' or 'vertex' or 'ele- ment_avg'

Syntax: di_volume_integrate_mat.<i>.<r>(<material>, <parameter>, <shape>, <mode>)

5.10 dw_surface_integrate

Class: IntegrateSurfaceOperatorTerm

Definition:

 $\int_{\Gamma} q$

Syntax: dw_surface_integrate.<i>.<r>(<material>, <virtual>)

5.11 dw_volume_integrate

Class: IntegrateVolumeOperatorTerm

Definition:

 $\int_{\Omega} q$

 $Syntax: dw_volume_integrate.<i>.<r>(<virtual>)$

5.12 dw_volume_wdot

 ${\bf Class: \ WDotProductVolumeOperatorTerm}$

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not imple-

mented!) fields. **Definition**:

 $\int_{\Omega} yqp, \int_{\Omega} y\underline{v} \cdot \underline{u}$

Arguments:

material weight function y

 $Syntax: \ \, dw_volume_wdot. <i>.<r>(<material>, <virtual>, <state>)$

5.13 dw_volume_wdot_dt

Class: WDotProductVolumeOperatorDtTerm

Description: Volume $L^2(\Omega)$ weighted dot product operator for scalar and vector (not implemented!) fields.

Definition:

$$\int_{\Omega} yq \frac{p-p_0}{\Delta t}, \int_{\Omega} y\underline{v} \cdot \frac{\underline{u}-\underline{u}_0}{\Delta t}$$

Arguments:

	. 1 . 2
material	weight function y

Syntax: dw_volume_wdot_dt.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

5.14 dw_volume_wdot_th

 ${\bf Class:}\ {\bf WDotProductVolumeOperatorTHTerm}$

Definition:

$$\int_{\Omega} \left[\int_0^t \mathcal{G}(t-\tau) p(\tau) \, d\tau \right] q$$

Syntax: dw_volume_wdot_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

6 Terms in termsLaplace

6.1 d_diffusion

 ${\bf Class:}\ {\bf DiffusionIntegratedTerm}$

Description: Integrated general diffusion term with permeability K_{ij} constant or given in mesh

vertices. **Definition**:

$$\int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r$$

Syntax: d_diffusion.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

6.2 de_diffusion_velocity

Class: DiffusionVelocityTerm

Description: Diffusion velocity averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h: \int_{T_K} K_{ij} \nabla_j r / \int_{T_K} 1$$

Syntax: de_diffusion_velocity.<i>.<r>(<material>, <parameter>)

6.3 dw_diffusion

Class: DiffusionTerm

Description: General diffusion term with permeability K_{ij} constant or given in mesh vertices.

Definition:

$$\int_{\Omega} K_{ij} \nabla_i q \nabla_j p$$

Syntax: dw_diffusion.<i>.<r>(<material>, <virtual>, <state>)

6.4 dw_laplace

Class: LaplaceTerm

Description: Laplace term with c constant or constant per element.

Definition:

$$c \int_{\Omega} \nabla s \cdot \nabla r$$
 or $\sum_{K \in \mathcal{T}_h} \int_{T_K} c_K \nabla s \cdot \nabla r$

Syntax: dw_laplace.<i>.<r>(<material>, <virtual>, <state>)

$6.5 ext{ dw_permeability_r}$

Class: PermeabilityRTerm

Description: Special-purpose diffusion-like term with permeability K_{ij} constant or given in mesh vertices (to use on a right-hand side).

Definition:

$$\int_{\Omega} K_{ij} \nabla_j q$$

Syntax: dw_permeability_r.<i>.<r>(<material>, <virtual>, <index>)

7 Terms in termsNavierStokes

$7.1 d_{-}div$

 ${\bf Class:}\ {\bf DivIntegratedTerm}$

Description: Integrated divergence term (weak form).

Definition:

$$\int_{\Omega} \bar{p} \, \nabla \cdot \underline{w}$$

Syntax: d_div.<i>.<r>(<parameter_1>, <parameter_2>)

7.2 dq_grad

Class: GradQTerm

Description: Gradient term (weak form) in quadrature points.

Definition:

$$(\nabla p)|_{qp}$$

Syntax: dq_grad.<i>.<r>(<state>)

7.3 dq_lin_convect

Class: LinearConvectQTerm

Description: Linearized convective term evaluated in quadrature points.

Definition:

$$((\underline{b} \cdot \nabla)\underline{u})|_{qp}$$

Syntax: dq_lin_convect.<i>.<r>(<parameter>, <state>)

7.4 dw_convect

Class: ConvectTerm

Description: Nonlinear convective term.

Definition:

$$\int_{\Omega} ((\underline{u} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

Syntax: dw_convect.<i>.<r>(<virtual>, <state>)

$7.5 \, dw_div$

Class: DivTerm

Description: Divergence term (weak form).

Definition:

$$\int_{\Omega} q \nabla \cdot \underline{u}$$

Syntax: dw_div.<i>.<r>(<virtual>, <state>)

7.6 dw_div_grad

Class: DivGradTerm

Description: Diffusion term.

Definition:

$$\int_{\Omega} \nu \ \nabla \underline{v} : \nabla \underline{u}$$

Syntax: dw_div_grad.<i>.<r>(<material>, <virtual>, <state>)

7.7 dw_grad

Class: GradTerm

Description: Gradient term (weak form).

Definition:

$$\int_{\Omega} p \, \nabla \cdot \underline{v}$$

Syntax: dw_grad.<i>.<r>(<virtual>, <state>)

$7.8 \, dw_{grad_dt}$

Class: GradDtTerm

Description: Gradient term (weak form) with time-discretized \dot{p} .

Definition:

$$\int_{\Omega} \frac{p - p_0}{\Delta t} \nabla \cdot \underline{v}$$

Arguments:

ts.dt	Δt
parameter	p_0

Syntax: dw_grad_dt.<i>.<r>(<ts>, <virtual>, <state>, <parameter>)

7.9 dw_lin_convect

Class: LinearConvectTerm

Description: Linearized convective term.

Definition:

$$\int_{\Omega} ((\underline{b} \cdot \nabla)\underline{u}) \cdot \underline{v}$$

Syntax: dw_lin_convect.<i>.<r>(<virtual>, <parameter>, <state>)

7.10 dw_st_grad_div

Class: GradDivStabilizationTerm

Description: Grad-div stabilization term (γ is a global stabilization parameter).

Definition:

$$\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$$

Syntax: dw_st_grad_div.<i>.<r>(<material>, <virtual>, <state>)

$7.11 \quad dw_st_pspg_c$

Class: PSPGCStabilizationTerm

Description: PSPG stabilization term, convective part (τ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$$

Syntax: dw_st_pspg_c.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

7.12 $dw_st_pspg_p$

Class: PSPGPStabilizationTerm

Description: PSPG stabilization term, pressure part (τ is a local stabilization parameter), alias

to Laplace term dw_laplace.

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$$

Syntax: dw_st_pspg_p.<i>.<r>(<material>, <virtual>, <state>)

7.13 dw_st_supg_c

Class: SUPGCStabilizationTerm

Description: SUPG stabilization term, convective part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{v})$$

Syntax: dw_st_supg_c.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

7.14 $dw_st_supg_p$

Class: SUPGPStabilizationTerm

Description: SUPG stabilization term, pressure part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla) \underline{v})$$

Syntax: dw_st_supg_p.<i>.<r>(<material>, <virtual>, <parameter>, <state>)

Terms in termsHyperElasticity 8

8.1 dw_tl_bulk_penalty

Class: BulkPenaltyTerm

Description: Hyperelastic bulk penalty term. Stress $S_{ij} = K(J-1) J C_{ij}^{-1}$.

Definition:

$$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$$

Syntax: dw_tl_bulk_penalty.<i>.<r>(<material>, <virtual>, <state>)

8.2 dw_tl_he_mooney_rivlin

Class: MooneyRivlinTerm

Description: Hyperelastic Mooney-Rivlin term. Effective stress $S_{ij} = \kappa J^{-\frac{4}{3}} (C_{kk} \delta_{ij} - C_{ij} \frac{2}{3}I_2C_{ij}^{-1}$). **Definition**:

$$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$$

Syntax: dw_tl_he_mooney_rivlin.<i>.<r>(<material>, <virtual>, <state>)

8.3 dw_tl_he_neohook

Class: NeoHookeanTerm

Description: Hyperelastic neo-Hookean term. Effective stress $S_{ij} = \mu J^{-\frac{2}{3}} (\delta_{ij} - \frac{1}{3} C_{kk} C_{ij}^{-1})$.

Definition:

$$\int_{\Omega} S_{ij}(\underline{u}) \delta E_{ij}(\underline{u};\underline{v})$$

Syntax: dw_tl_he_neohook.<i>.<r>(<material>, <virtual>, <state>)

9 Terms in termsPoint

9.1 dw_point_lspring

Class: LinearPointSpringTerm

Description: Linear springs constraining movement of FE nodes in a reagion; use as a relaxed

Dirichlet boundary conditions.

Definition:

$$\underline{f}^i = -k\underline{u}^i \quad \forall \text{ FE node } i \text{ in region}$$

Syntax: dw_point_lspring.<i>.<r>(<material>, <virtual>, <state>)

10 Terms in termsVolume

10.1 dw_volume_lvf

Class: LinearVolumeForceTerm

Description: Vector or scalar linear volume forces (weak form) — a right-hand side source term.

Definition:

$$\int_{\Omega} f \cdot \underline{v} \text{ or } \int_{\Omega} fq$$

 $Syntax: \ \, dw_volume_lvf. < i>. < r> (< material>, < virtual>)$

11 Terms in termsPiezo

11.1 dw_piezo_coupling

Class: PiezoCouplingTerm

Description: Piezoelectric coupling term.

Definition:

$$\int_{\Omega} g_{kij} e_{ij}(\underline{u}) \nabla_k q$$
, $\int_{\Omega} g_{kij} e_{ij}(\underline{v}) \nabla_k p$

Syntax: dw_piezo_coupling.<i>.<r>(<material>, <virtualstate;, jstate—virtual;)—

12 Terms in termsSurface

12.1 dw_surface_ltr

Class: LinearTractionTerm

Description: Linear traction forces (weak form), where, depending on dimension of 'material' argument, $\underline{\underline{\sigma}} \cdot \underline{\underline{n}}$ is $\underline{p}\underline{\underline{I}} \cdot \underline{\underline{n}}$ for a given scalar pressure, $\underline{\underline{f}}$ for a traction vector, and itself for a stress tensor.

Definition:

$$\int_{\Gamma} \underline{v} \cdot \underline{\sigma} \cdot \underline{n}$$

Syntax: dw_surface_ltr.<i>.<r>(<material>, <virtual>)

13 Terms in termsLinElasticity

13.1 d_lin_elastic

Class: LinearElasticIntegratedTerm

Description: Integrated general linear elasticity term.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{b}) e_{kl}(\underline{w})$$

Syntax: d_lin_elastic.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

13.2 de_cauchy_strain

Class: CauchyStrainTerm

Description: Cauchy strain tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w}) / \int_{T_K} 1$$

Syntax: de_cauchy_strain.<i>.<r>(

13.3 de_cauchy_stress

Class: CauchyStressTerm

Description: Cauchy stress tensor averaged in elements.

Definition: vector of

$$\forall K \in \mathcal{T}_h: \int_{T_K} D_{ijkl} e_k l(\underline{w}) / \int_{T_K} 1$$

Syntax: de_cauchy_stress.<i>.<r>(<material>, <parameter>)

13.4 dw_lin_elastic

Class: LinearElasticTerm

Description: General linear elasticity term, with D_{ijkl} given in the usual matrix form exploiting symmetry: in 3D it is 6×6 with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it is 3×3 with the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u})$$

Syntax: dw_lin_elastic.<i>.<r>(<material>, <virtual>, <state>)

13.5 dw_lin_elastic_iso

Class: LinearElasticIsotropicTerm

Description: Isotropic linear elasticity term.

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \ \delta_{ij}\delta_{kl}$$

Syntax: dw_lin_elastic_iso.<i>.<r>(<material>, <virtual>, <state>)

13.6 dw_lin_viscous

Class: LinearViscousTerm

Description: General linear viscosity term, with D_{ijkl} given in the usual matrix form exploiting symmetry: in 3D it is 6×6 with the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it is 3×3 with the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) \frac{e_{kl}(\underline{u}) - e_{kl}(\underline{u}_0)}{\Delta t}$$

Arguments:

ts.dt	Δt
material	D_{ijkl}
virtual	$ \underline{v} $
state	u (displacements of current time step)
parameter	\underline{u}_0 (known displacements of previous time step)

Syntax: dw_lin_viscous.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

13.7 dw_lin_viscous_th

Class: LinearViscousTHTerm

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \mathcal{H}_{ijkl}(t-\tau) \, \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \, \mathrm{d}\tau \right] \, e_{ij}(\underline{v})$$

Syntax: dw_lin_viscous_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

14 Terms in termsBiot

14.1 d_biot_div

Class: BiotDivRIntegratedTerm

Description: Integrated Biot divergence-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} r \ \alpha_{ij} e_{ij}(\underline{w})$$

Syntax: d_biot_div.<i>.<r>(<material>, <parameter_1>, <parameter_2>)

14.2 dw_biot_div

Class: BiotDivTerm

Description: Biot divergence-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} q \, \alpha_{ij} e_{ij}(\underline{u})$$

Syntax: dw_biot_div.<i>.<r>(<material>, <virtual>, <state>)

14.3 dw_biot_div_dt

Class: BiotDivDtTerm

Description: Biot divergence-like rate term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} q \, \alpha_{ij} \frac{e_{ij}(\underline{u}) - e_{ij}(\underline{u}_0)}{\Delta t}$$

Syntax: dw_biot_div_dt.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

14.4 dw_biot_div_th

Class: BiotDivTHTerm

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) \frac{\mathrm{d}e_{kl}(\underline{u}(\tau))}{\mathrm{d}\tau} \, \mathrm{d}\tau \right] q$$

Syntax: dw_biot_div_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

14.5 dw_biot_grad

Class: BiotGradTerm

Description: Biot gradient-like term (weak form) with α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} p \ \alpha_{ij} e_{ij}(\underline{v})$$

Syntax: dw_biot_grad.<i>.<r>(<material>, <virtual>, <state>)

14.6 dw_biot_grad_dt

Class: BiotGradDtTerm

Description: Biot gradient-like term (weak form) with time-discretized \dot{p} and α_{ij} given in vector form exploiting symmetry: in 3D it has the indices ordered as [11, 22, 33, 12, 13, 23], in 2D it has the indices ordered as [11, 22, 12].

Definition:

$$\int_{\Omega} \frac{p - p_0}{\Delta t} \ \alpha_{ij} e_{ij}(\underline{v})$$

Arguments:

ts.dt	Δt
parameter	p_0

Syntax: dw_biot_grad_dt.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

14.7 dw_biot_grad_th

Class: BiotGradTHTerm

Definition:

$$\int_{\Omega} \left[\int_{0}^{t} \alpha_{ij}(t-\tau) p(\tau) \right) d\tau \right] e_{ij}(\underline{v})$$

Syntax: dw_biot_grad_th.<i>.<r>(<ts>, <material>, <virtual>, <state>, <parameter>)

15 Term caches in cachesFiniteStrain

15.1 finite_strain_tl

```
Class: FiniteStrainTLDataCache
cache = term.get_cache( 'finite_strain_tl', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

16 Term caches in cachesBasic

16.1 cauchy_strain

```
Class: CauchyStrainDataCache
cache = term.get_cache( 'cauchy_strain', <index> )
data = cache( <data name>, <ig>>, <ih>>, state )
```

16.2 div_vector

```
Class: DivVectorDataCache
cache = term.get_cache( 'div_vector', <index> )
data = cache( <data name>, <ig>>, <ih>>, state )
```

16.3 grad_scalar

```
Class: GradScalarDataCache
cache = term.get_cache( 'grad_scalar', <index> )
data = cache( <data name>, <ig>>, <ih>>, state )
```

16.4 grad_vector

```
Class: GradVectorDataCache
cache = term.get_cache( 'grad_vector', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

$16.5 \quad \text{mat_in_qp}$

```
Class: MatInQPDataCache
cache = term.get_cache( 'mat_in_qp', <index> )
data = cache( <data name>, <ig>>, <ih>>, mat, ap, assumed_shapes, mode_in )
```

16.6 state_in_surface_qp

```
Class: StateInSurfaceQPDataCache
cache = term.get_cache( 'state_in_surface_qp', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

$16.7 \quad state_in_volume_qp$

```
Class: StateInVolumeQPDataCache
cache = term.get_cache( 'state_in_volume_qp', <index> )
data = cache( <data name>, <ig>, <ih>, state )
```

16.8 volume

```
Class: VolumeDataCache
cache = term.get_cache( 'volume', <index> )
data = cache( <data name>, <ig>>, <ih>>, region, field )
```