

Exploring big data efficiently with the Astro Data Lab science platform

Astro Data Lab Team <datalab@noirlab.edu>

NSF's NOIRLab

Tutorial at ADASS XXXIII, November 2023, Tucson/AZ

Introduction to the Astro Data Lab science platform

The Astro Data Lab

Efficient exploration and analysis of large astronomy datasets with an emphasis on NOIRLab wide-field 4-meter telescopes

Total exposure time on NOIRLab 4-m class telescopes

Wide-field cameras & data avalanche

Dark Energy Camera 570 Mpix

Rubin Camera 3200 Mpix

Rubin Camera 40x Moon area

Astro Data Lab Science Platform

Pre-installed software/tools/tutorials co-located with data

- Web services (website)
- JupyterLab (notebook) server
- Large variety of Python packages

Rich variety & volume of data

- Images (2.5 PB)
- Catalogs (175 TB) in databases
- Spectra (40+ M) from ground-based & space-based observatories

Astronomers/students can

- Create a user account, log on
- Use our services for their *entire* analysis (directly from their browser or install a command-line package)

Low barrier of entry to powerful tools

Access to big data

Open & inclusive Community oriented

Some datasets hosted at DL

Dataset	Number of objects or measurements	Notes	
DES DR 1 & 2	691M objects in DR 2	photometry	
DECaLS DR 3 through 10	3.14B objects in DR 10	photometry, targeting for DESI	
NOIRLab Source Catalog DR 1 & 2	3.9B objects, 68B measurements in DR 2	homogeneous reduction across 3 cameras	NOIRLab telescopes
SMASH DR 1 & 2, DELVE DR 1 & 2	2.5B objects in DELVE DR 2	photometry	
PHAT v2	117M objects	Andromeda	
DESI EDR, SPARCL (metadata)	2M spectra in DESI EDR	spectroscopy	
Gaia DR 1, 2, EDR3, 3	1.8B objects in DR 3	astrometry	
AllWISE, unWISE, CatWISE2020	2.2B objects in unWISE	IR	external
VHS DR 5	1.4B objects	photometry (S hemisphere)	CALCITICI
UKIDSS DR 11+	1.2B objects	photometry (N hemisphere)	
Buzzard DR 1, LSST SIM DR 2	12.6B objects in LSST SIM DR 2	simulated datasets	simulated

Growing user community

Data services & tools

Action	Modes	Notes
Authentication	web, client/API, cmdline	log on to access user-specific functions
Sky exploration	Aladdin Lite	
Catalog query	web form, client/API, cmdline	SQL/ADQL, sync/async
Cross-matching	web, client/API, cmdline	Also hosting fast pre-crossmatched tables
Query results to	client, VOSpace, MyDB	Format conversions on the fly
Spectro access	client/API	SPARCL
Remote user file storage	client/API, cmdline	VOSpace
Remote user DB	client/API, cmdline	MyDB
Image search & cutout	client/API, web	SIA
Analysis (with all of Python)	web, local	Jupyter notebook server

Learning & Documentation

Curated Jupyter notebook collection Intros, How-Tos, Science Cases, EPO, Contributed... **User Manual & API docs**

Helpdesk & FAQ

Discovery Ready Science Notebooks

Astro Data Lab Notebook Gallery

Getting Started with Data Lab Learn the basics such as importing modules, sending a database query, and using the Simple Image Access (SIA) service to create image cutouts.

Dwarf Galaxies in the SMASH survey Discover the ultrafaint Hydra II dwarf galaxy in the SMASH DECam survey based on spatial overdensities of blue stars with a detection algorithm.

Exploring SMASH DR2 The 480 square degree SMASH DECam survey of the Magellanic Clouds and their periphery contains a wealth of objects, including this capture of the SMC with 47 Tuc in the foreground.

Large-Scale Structure of the Universe Investigate cosmic filaments and clusters of galaxies, pan around an interactive sky viewer, combining spectroscopy and DESI pre-imaging.

Fun with PHAT Visualize the 100 million+ stars in the Andromeda Galaxy captured by the Panchromatic Hubble Andromeda Treasury (PHAT).

Gallery of Cluster Galaxies Use the Simple Image Access (SIA) service to retrieve images from the Gemini GOGREEN program.

Intended for

- **Training**
- Education
- Research

Science cases

- Intro
- Galactic
- Extragalactic
- Time Domain

Datasets

- **Images**
- Catalogs
- Spectra

Introduction to SPARCL

NOIR SPARCL

SPectra Analysis & Retrievable Catalog Lab

- Spectroscopic database for large surveys/datasets
- Data Discovery
- Data Access/Retrieval
- Server can work with different clients
- Compatible with Astro Data Lab (works in JupyterLab)
- Public version: SDSS DR16 (SDSS, (e)BOSS), DESI EDR

- Future goals:
 - Add other spectroscopic datasets (streamlining the ingest process)
 - Add more advanced functionality (e.g., aligning spectra)
 - Add an authentication feature (e.g., proprietary access for DESI collaborators)

SPARCL

Server-API

Client-API

Fields

Categoricals

Release Notes

Data Set Notes

Acknowledgments

User Manual

Documentation

- Server API
- Client API
- List of fields (columns)
- Data set notes
- Acknowledgments
- User Manual
- + How-To Notebook

SPectra Analysis and Retrievable Catalog Lab

About SPARCL

SPectra Analysis & Retrievable Catalog Lab (SPARCL) at NOIRLab's Astro Data Lab provides flexible access to spectra from large optical and near-infrared surveys. Major elements of SPARCL include capabilities to discover and query for spectra based on parameters of interest, a fast web service that delivers desired spectra either individually or in bulk, and documentation and example Jupyter Notebooks to help users learn to apply all of these elements in their research. See the How To Use SPARCL Jupyter Notebook to get started.

astrosparcl.datalab.noirlab.edu

Contents # of Data Records Set Total **BOSS-**3,918,000 **DR16** DESI-2,044,588 **EDR** SDSS-1,798,901 **DR16** TOTALS | 7,761,489

Notebook: How to use SPARCL

How to use SPARCL

MVP release of SPectra Analysis and Retrievable Catalog Lab (SPARCL)

Table of contents

- Goals & Summary
- · Imports and setup
- Authentication
- Data sets available in SPARCL
- Get default field names
- · Get all field names
- Data discovery I: using SPARCL's client.find() method
- Data discovery II: using Data Lab's sparcl.main table
- Retrieve records by id using client.retrieve()
- Retrieve records by specid using client.retrieve_by_specid()
- Join between IDs and spectrum records
- Access fields in records
- Convert retrieved output to Pandas DataFrame or Spectrum1D object
- Plot spectra
- Use client.missing() to find missing IDs in the SPARCL database

 Public version for SDSS DR16 & now DESI EDR

 Fast data discovery and access to 1D spectra (retrieval for up to 20k spectra per call)

Full notebook available (Jacques et al.):

github.com/astro-datalab/notebooks-latest/blob/master/04 HowTos/SPARCL/How to use SPARCL.ipynb

datalab@noirlab.edu

datalab.noirlab.edu

github.com/astro-datalab

@DataLabAstro

#datalab-tutorial

Hacking together on great science with Data Lab!

Data Lab website: https://datalab.noirlab.edu

SPARCL website: https://astrosparcl.datalab.noirlab.edu

Register account: https://datalab.noirlab.edu/account/register.html

User manual: https://datalab.noirlab.edu/docs/manual

Helpdesk: https://datalab.noirlab.edu/help

Notebook server: https://cloud.datalab.noirlab.edu

Notebook collection: https://github.com/astro-datalab/notebooks-latest

Notebook gallery: [LINK]

Tutorial materials: https://github.com/astro-datalab/Tutorial-ADASS-2023

How to clone them:

git clone https://github.com/astro-datalab/Tutorial-ADASS-2023.git

Backup slides