Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Test 18

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{2}{\sqrt{3}-1} - \left(\sqrt{3}+1\right) = \frac{2\left(\sqrt{3}+1\right)}{3-1} - \left(\sqrt{3}+1\right) =$	3p
	$= \sqrt{3} + 1 - \sqrt{3} - 1 = 0$	2p
2.	f(0) = 3	3p
	Coordonatele punctului de intersecție a graficului funcției f cu axa Oy sunt $x = 0$ și $y = 3$	2p
3.	$2x+1=4-x \Leftrightarrow 3x=3$ $x=1$	3p 2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 45 de numere impare, deci sunt 45 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{45}{90} = \frac{1}{2}$	1p
5.	AB = 2	2p
	A este mijlocul segmentului BC , deci $BC = 2AB = 4$	3p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$	3p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{4}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} =$	2p
	$=2\cdot 1-2\cdot 1=0$	3p
b)	$A \cdot A = \begin{pmatrix} 6 & 3 \\ 6 & 3 \end{pmatrix}, \ xA = \begin{pmatrix} 2x & x \\ 2x & x \end{pmatrix}, \text{ pentru orice număr real } x$	3 p
	$\begin{pmatrix} 6 & 3 \\ 6 & 3 \end{pmatrix} = \begin{pmatrix} 2x & x \\ 2x & x \end{pmatrix}, \text{ de unde obținem } x = 3$	2 p
c)	$\left \det \left(A + I_2 \right) = \begin{vmatrix} 3 & 1 \\ 2 & 2 \end{vmatrix} = 4, \det \left(A - I_2 \right) = \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = -2, \det \left(aI_2 \right) = a^2, \text{ pentru orice număr real } a$	3 p
	$a^2 = 2 \Leftrightarrow a = -\sqrt{2} \text{ sau } a = \sqrt{2}$	2p
2.a)	$(-1) \circ 2020 = (-1) \cdot 2020 + (-1) + 2020 - 5 =$	3 p
	=-1-5=-6	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

b)	$x \circ x = x^2 + 2x - 5$, pentru orice număr real x	2p
	$x^2 + 2x - 3 = 0 \Leftrightarrow x = -3 \text{ sau } x = 1$	3 p
c)	$m \cdot (-2) + m + (-2) - 5 = 1 \cdot (-m) + 1 + (-m) - 5 \Leftrightarrow m = 3$	3 p
	$m \circ (-m) = 3 \circ (-3) = 3 \cdot (-3) + 3 + (-3) - 5 = -14$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{2x \cdot x - (x^2 - 1)}{x^2} = \frac{2x^2 - x^2 + 1}{x^2} =$	3p
	$=\frac{x^2+1}{x^2}=1+\frac{1}{x^2}, \ x\in(0,+\infty)$	2 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - 1}{x^2} = 1$	2p
	$\lim_{x\to +\infty} \left(f(x)-x\right) = \lim_{x\to +\infty} \left(-\frac{1}{x}\right) = 0, \text{ deci dreapta de ecuație } y=x \text{ este asimptotă oblică spre}$ $+\infty \text{ la graficul funcției } f$	3 p
c)	$f''(x) = -\frac{2}{x^3}, x \in (0, +\infty)$	2p
	$f''(x) < 0$, pentru orice $x \in (0, +\infty)$, deci funcția f este concavă	3 p
2.a)	$\int_{0}^{1} (f(x) - 2) dx = \int_{0}^{1} x^{3} dx = \frac{x^{4}}{4} \Big _{0}^{1} =$	3 p
	$=\frac{1}{4}-0=\frac{1}{4}$	2 p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{x^4}{4} + 2x + c$, unde $c \in \mathbb{R}$	2p
	$F(2) = 7 \Rightarrow c = -1$, deci $F(x) = \frac{x^4}{4} + 2x - 1$	3 p
c)	$\int_{0}^{1} e^{x} (f(x) - x^{3} + x^{2}) dx = \int_{0}^{1} e^{x} (x^{2} + 2) dx = e^{x} (x^{2} + 2) \Big _{0}^{1} - \int_{0}^{1} 2x e^{x} dx =$	3p
	$= 3e - 2 - 2\left(xe^{x} \begin{vmatrix} 1 \\ 0 - \int_{0}^{1} e^{x} dx \right) = 3e - 4$	2p