A Speedrun to the Yoneda Lemma

Pete Su

31 October 2021

1. The Big Picture

The Yoneda Lemma is a basic and beloved result in category theory. In most treatments it shows up fairly early in the books and lecture notes on the subject. Its statement is deceivingly compact because its content is buried inside layers of abstraction and notation that have been built up while working through the conceptual basis of category theory. For me the hard part of understanding this result was unwrapping the abstraction ladder.

I am going to do the following dumb thing: I am going to state the result at the top to give us the target. Then I will define the only the pieces we need to make that result make sense as fast as possible, so all of the material is contained in a single small document for easy reference. In the spirit of video game speedruns, we will only write down what is absolutely necessary, and it will skip a lot of interesting material for the purposes of speed.

Note that I am not a mathematician or a category theory expert. I'm just wrote this down trying to figure out the language. So everything in this document is probably wrong.

2. Statement of the Lemma

The Lemma is usually stated in some form similar this:

Lemma 1 (Yoneda). Let **C** be a locally small category. Let X be an object of **C**, and let $F: \mathbf{C} \to \mathbf{Set}$ be a functor from **C** to the category **Set**. Then there is an invertible mapping between the set of natural transformations from Arrows(X, -) to F and the elements of FX and this mapping is natural in both F and X.

To make sense of this we need to look into the various parts of the statement:

- Categories
- Functors
- Natural transformations
- Functor categories
- Catgories and sets.

So that's the path that we will take, and when we get to the end we'll state the result again in various other ways.

3. Categories

Categories have a deliciously multi-part definition.

Definition 1. A category **C** consists of:

- A collection of *objects* that we will denote with upper case letters X, Y, Z, ..., and so on. We call this collection *Objects*(C). Traditionally people write just C to mean *Objects*(C) when the context makes clear what is going on.
- A collection of *arrows* denoted with lower case letters f, g, h, ..., and so on. Other names for *arrows* include *mappings* or *functions* or *morphims*. We will call this collection *Arrows*(**C**).

The objects and arrows of a category satisfy the following conditions:

- Each arrow f maps one object $A \in Objects(\mathbf{C})$ to another object $B \in Objects(\mathbf{C})$ and we denote this by writing $f : A \to B$. A is called the *domain* of f and B the *codomain*.
- For each pair of arrows f: A → B and g: B → C we can form a new arrow g ∘ f: A → C called the *composition* of f and g. This is also sometimes written gf.
- For each $A \in Objects(\mathbb{C})$ there is a function $1_A : A \to A$, called the *identity* at A that maps A to itself. Sometimes this object is also written as id_A .

Finally, we have the last two rules:

- For any $f: A \to B$ we have that $1_B \circ f$ and $f \circ 1_A$ are both equal to f.
- Given $f: A \to B$, $g: B \to C$, $h: C \to D$ we have that $(h \circ g) \circ f = h \circ (g \circ f)$, or alternatively (hg)f = h(gf). What this also means is that we can always just write hgf if we want.

We will call the collection of all arrows from A to B $Arrows_{\mathbf{C}}(A,B)$. We will usually write Arrows(A,B) when it's clear what category A and B come from. People also write Hom(A,B) or $Hom_{\mathbf{C}}(A,B)$, or hom(A,B) or just $\mathbf{C}(A,B)$ to mean Arrows(A,B). Here "Hom" stands for homomorphism, which is a standard word for mappings that preserve some kind of structure. Category theory, and the Yoneda Lemma, it it turns out, is mostly about the arrows.

At this point every category theory book will list a few dozen examples of categories. These will have strangely truncated names like **Measu** or **Htpy** or **Matr**. The general fear of readable names in the mathematical literature is fascinating to me, having spent most of my life trying to think up readable names in program source code. In the "modern" world of LATEX there is no reason to limit names to being only four or five random letters in length. Thus, I have done the unthinkable and written many names out in full. For these short notes I think the only specific category that we will run into is **Set**, where the objects are sets and the arrows are mappings between sets.

Speaking of sets, the definition of categories we were careful about not calling anything a *set*. This is because some categories involve collections of things that are too "large" to be called sets and not get into set theory trouble. Here are two more short definitions about this that we will need.

Definition 2. A category **C** is called *small* if *Arrows*(**C**) is a set.

Definition 3. A category C is called *locally small* if $Arrows_C(A, B)$ is a set for every $A, B \in C$.

For the rest of this note we will only deal with locally small categories, since in the the setup for the Lemma, we are given a category **C** that is locally small.

Finally, one more notion that we'll need later is the idea of an isomorphism.

Definition 4. An arrow $f: X \to Y$ in a category C is an *isomorphism* if there exists an arrow $g: B \to A$ such that $gf = 1_X$ and $fg = 1_Y$. We say that the objects X and Y are *isomorphic* to each other whenever there exists an isomorphism between them. If two objects in a category are isomorphic to each other we write $X \cong Y$.

Note that in the category **Set** the isomorphisms are exactly the invertible mappings between sets.

4. Functors

As we navigate our way from basic categories up to the statement of the lemma we will travel through multiple layers conceptual abstraction. Functors are the first step up this ladder.

Functors are the *arrows between categories*. That is, if you were to define the category where the objects were all categories of some kind then the arrows would be functors.

Definition 5. Given two categories C and D a *functor* $F:C\to D$ is defined by two sets of parallel rules. First:

- For each object $X \in \mathbf{C}$ we assign an object $F(X) \in \mathbf{D}$.
- For each arrow $f: X \to Y$ in **C** we assign an arrow $F(f): F(X) \to F(Y)$ in **D**.

So F maps objects in \mathbf{C} to objects in \mathbf{D} and also arrows in \mathbf{C} to arrows in \mathbf{D} such that the domains and codomains match up the right way. That is, the domain of F(f) is F applied to the domain of f, and the codomain of F(f) is F applied to the codomain of f. In addition the following must be true:

- If $f: X \to Y$ and $g: Y \to Z$ are arrows in C then $F(g \circ f) = F(g) \circ F(f)$ (or F(gf) = F(g)F(f)).
- For every $X \in \mathbf{C}$ it is the case that $F(1_X) = 1_{F(X)}$.

So, a functor consists of two mappings, one on objects and one on arrows. And, these mappings preserve all of the structure of a category, namely domains and codomains, composition, and identities.

If $F : C \to D$ is a functor from a category C to another category D and an object $X \in C$ we may write FX to mean F(X). This is analogous to the more compact notation for composition of arrows above.

Functors are notationally confusing because we are using one letter to denote two mappings. So if $F: \mathbb{C} \to \mathbb{D}$ and $X \in \mathbb{C}$ then F(X) is the functor applied to the object, which will be an object in \mathbb{D} . On the other hand, if $f: A \to B$ is an arrow in \mathbb{C} then F(f) is an arrow in \mathbb{D} . This seems obvious from the definition but in proofs and calculations the notations will often shift back and forth without enough context and can be very confusing.

5. Natural Transformations

Natural transformations are the next step up the ladder. If functors are arrows between categories, then natural transformations are arrows between functors.

Definition 6. Let C and D be categories, and let F and G be functors $C \to D$. To define a *natural transformation* α from F to G, we assign to each object X of C, an arrow $\alpha_X : FX \to GX$ in D, called the *component* of α at X. In addition, for each arrow $f: X \to Y$ of C, the following diagram has to commute:

$$\begin{array}{ccc} FX & \xrightarrow{Ff} & FY \\ \downarrow \alpha_X & & \downarrow \alpha_Y \\ GX & \xrightarrow{Gf} & GY \end{array}$$

This is the first commutative diagram that I've tossed up. There is no magic here. The idea is that you get the same result no matter which way you travel through the diagram. So here $\alpha_Y \circ F$ and $G \circ \alpha_X$ must be equal.

We denote natural transformations as double arrows, $\alpha : F \Rightarrow G$, to distinguish them in diagrams from functors (which are denoted by single arrows):

$$C \xrightarrow{F \atop G} D$$

You might wonder to yourself: what makes natural transformations "natural"? The answer appears to be related to the fact that you can construct them from *only* what is given to you in the categories at hand. The natural transformation takes the action of F on C and lines it up exactly with the action of G on C. No other assumptions or conditions are needed. In this sense they define a relationship between functors that is just sitting there in the world no matter what, and thus "natural". Another apt way of putting this is that natural transformations give a canonical way of mapping between the images of two functors.

As with arrows, it will be useful to define what an isomorphism means in the context of natural transformations:

Definition 7. A *natural isomorphism* is a natural transformation $\alpha : F \Rightarrow G$ in which every component α_X is an isomorphism. In this case, the natural isomorphism may be depicted as $\alpha : F \cong G$.

6. Functor Categories

We are almost there, but there are two more steps up the abstraction ladder. We have in our one hand objects called functors, and we have in our other hand the natural transformations. So the next obvious thing is to make a category out of them.

Definition 8. Let **C** and **D** be categories. The *functor category* between **C** and **D** is constructed as follows:

- Objects are functors $F : C \rightarrow D$;
- Morphisms are natural transformations $\alpha : F \Rightarrow G$.

Right now you should be wondering to yourself: "wait, does this definition actually work?" I have brazenly claimed without any justification that the it's OK to use the natural transformations as arrows. Luckily it's fairly clear that this works out if you just do everything component-wise. So if we have all of these things:

- Three functors, $F: C \to D$ and $G: C \to D$ and $H: C \to D$.
- Two natural transformations $\alpha : F \Rightarrow G$ and $\beta : G \Rightarrow H$
- One object $X \in \mathbf{C}$.

Then you can define $(\beta \circ \alpha)(X) = \beta(X) \circ \alpha(X)$ and you get the right behavior. Similarly, the identity transformation 1_F can be defined component-wise: $(1_F)(X) = 1_{F(X)}$.

There are a lot of standard notations for this object, none of which I really like. The most popular seems to be [C, D], but you also see D^C , and various abbreviations like Fun(C, D) or Func(C, D), or Funct(C, D). I think we should just spell it out and use Functor(C, D). So there.

Now we can define this notation:

Definition 9. Let C and D be categories, and let $F, G \in Functor(C, D)$. Then we'll write Nat(F, G) for the set of all natural transformations from F to G, which in this context is the same as the arrows from F to G in the functor category.

You will also see people write Hom(F, G) or C(F, G) for this, which overloads Hom to work on both categories and functor categories.

7. Represented Functors

The last conceptual step that we need is a way to construct *functors* from *objects*. The following definition is a natural way to do this.

Definition 10. Given a locally small category C and an object $X \in C$ we define a functor

$$Arrows(X, -) : \mathbf{C} \to \mathbf{Set}$$

using the following assignments:

- A mapping from $C \to \mathbf{Set}$ that assigns to each Y in $Objects(\mathbf{C})$ the set Arrows(X,Y)
- A mapping from $Arrows(\mathbf{C}) \to Arrows(\mathbf{Set})$ that assigns to each arrow $f: A \to B$ the function defined by mapping each $g: X \to A$ the arrow $f \circ g$.

Some texts call a functor defined this way the functor *represented* by X, which will make sense when we get back to the Lemma.

The definition for objects here is pretty clear. But the one for arrows maybe needs some thought. Given an arrow $f: A \to B$, it should be the case that Arrows(X, -) applied to f is an arrow from $Arrows(X, A) \to Arrows(X, B)$. Since C is locally small $f \in Arrows(Set)$. Now, if $g: X \to A$ we have that $(f \circ g): X \to B$ is the arrow we want. This mapping on f is called the *post-composition* mapping, since it composes f *after* g. As an overloaded abuse of notation we will also write $Arrows(X, -)(f) = Arrows(X, f) = f \circ -$. Note how the placeholder symbols mean completely different things on each side of this formula. Some people write f_* for $f \circ -$, but that doesn't seem as fun.

Other notations for this functor include just C(X, -), Hom(X, -), $Hom_C(X, -)$, H^X and h^X . In my notational convention we probably should have written this as $Arrows_C(X, -)$. Some people also call this kind of functor a *hom-functor*.

Finally, we can use the above definition to characterize an important relationship between objects and functors:

Definition 11. Let **C** be a category. A functor $F : \mathbf{C} \to \mathbf{Set}$ is called *representable* if it is naturally isomorphic to the functor $Hom_{\mathbf{C}}(X, -) : \mathbf{C} \to \mathbf{Set}$ for some object X of **C**. In that case we call X the *representing object*.

Using objects of one kind to represent objects of another kind is the bread and butter of many different kinds of mathematical inquiry. Often it allows you to study something simple in place of something complicated (e.g. a single object

rather than a whole functor). While this definition is not used directly in our discussion of the Lemma, it's closely related to what the Lemma ultimately says about functors.

We can actually return to the statement of the Yoneda Lemma now, but I'm going to take one tangent first to define one more handy piece of the conceptual framework of category theory.

8. Opposites and Duals

This section is the one optional side quest that I'm including because it comes up in comparing different versions of the Lemma. Duality in mathematics comes up in a lot of different ways. Covering it all is way beyond the scope of these notes. But the following definition is a basic part of category theory so it's worth including.

Definition 12. Let C be a category. Then we write C^{op} for the *opposite* or *dual* category of C, and define it as follows:

- The objects of C^{op} are the same as the objects of C.
- $Arrows(\mathbf{C}^{op})$ is defined by taking each arrow $f: X \to Y$ in $Arrows(\mathbf{C})$ and flipping their direction, so we put $f': Y \to X$ into $Arrows(\mathbf{C}^{op})$. In particular for $X, Y \in Objects(\mathbf{C})$ we have $Arrows_{\mathbf{C}}(A, B) = Arrows_{\mathbf{C}^{op}}(B, A)$ (or $\mathbf{C}(A, B) = \mathbf{C}^{op}(B, A)$.
- Composition of arrows is the same, but with the arguments reversed.

The *principle of duality* then says, informally, that every categorical definition, theorem and proof has a dual, obtained by reversing all the arrows.

Duality also applies to functors.

Definition 13. Given categories **C** and **D** a *contravariant* functor from **C** to **D** is a functor $F: \mathbf{C}^{op} \to \mathbf{D}$ where:

- $F(X) \in Objects(\mathbf{D})$ for each $X \in Objects(\mathbf{C})$.
- For each arrow $f \in Arrows(\mathbf{C})$ an arrow $F(X) : Y \to X$.

In addition

- For any two arrows $f, g \in Arrows(\mathbb{C})$ where $g \circ f$ is defined we have $F(f) \circ F(g) = F(g \circ f)$.
- For each $X \in Objects(\mathbf{C})$ we have $1_{F(X)} = F(1_X)$

Note how the arrows go backwards when they need to. With this terminology in mind, we call regular functors from $C \to D$ covariant.

Now we have all the language we need to look at the statement of the Lemma again.

9. The Lemma Returns

So, here is what we wrote down before, now that we know what all the words mean:

Lemma 2 (Yoneda). Let **C** be a locally small category and $F : \mathbf{C} \to \mathbf{Set}$ a functor. Let X be an object of **C**. Then there is an invertible mapping between Nat(Arrows(X, -), F) and the elements of FX. In addition this mapping is natural in both F and X.

So now we can break it down:

- A locally small category C means that all of the collections of arrows are sets. So the functor Arrows(X, -) maps objects in C to sets of arrows.
- Nat(Arrows(X, -), F) are the natural transformations from $Arrows(X, -) \Rightarrow F$.
- In priciple Nat(Arrows(X, -), F) could be a giant complicated thing.
- But actually it can only be as large as FX.
- In other words, every natural transformation is essentially an element of the set FX.
- Which is pretty amazing.

The recipe for achieving this is also easy as pie. You can define the mapping you need just by assigning each transformation its value at the idenity. So we map each $\alpha: Arrows(X, -) \Rightarrow F$ to $\alpha_X(1_X) \in FX$.

To write this in the covariant language, you just change Arrows(X, -) to Arrows(-, X), which switches the direction of all the arrows.

Finally, here are some other ways people write the result, and how their statements translate to my notational scheme.

This statement is due to Tom Leinster, and uses the contravariant language.

Lemma 3 (Yoneda). Let **C** be a locally small category. Then

$$[\mathbf{C}^{\mathrm{op}}, \mathbf{Set}](\mathsf{H}_{\mathsf{X}}, \mathsf{F}) \cong \mathsf{F}(\mathsf{X}) \tag{9.1}$$

naturally in $X \in \mathbf{C}$ and $F \in [\mathbf{C}^{op}, \mathbf{Set}]$.

Here $[\mathbf{C}^{op}, \mathbf{Set}]$ is the category of functors from \mathbf{C}^{op} to \mathbf{Set} and H_X is the corresponding arrow functor. The notation $[\mathbf{C}^{op}, \mathbf{Set}](H_X, F)$ denotes the arrows in the category $[\mathbf{C}^{op}, \mathbf{Set}]$ between H_X and F.

Emily Rhiel writes it down like this:

Lemma 4 (Yoneda). Let **C** be a locally small category and $X \in \mathbf{C}$. Then for any functor $F : \mathbf{C} \to \mathbf{Set}$ there is a bijection

$$Hom(\mathbf{C}(X, -), F) \cong FX$$

that associates each natural transformation $\alpha : \mathbf{C}(X, -) \Rightarrow F$ with the element $\alpha_X(1_X) \in FX$. Moreover, this correspondence is natural in both X and F.

Which is pretty easy to translate.

Peter Smith does this

Lemma 5 (Yoneda). For any locally small category \mathbb{C} , object $X \in \mathbb{C}$, and functor $F : \mathbb{C} \to \mathbf{Set}$ we have $Nat(\mathbb{C}(X, -), F) \cong FX$ both naturally in $X \in \mathbb{C}$ and $F \in [\mathbb{C}, \mathbf{Set}]$

Paolo Perrone has has the contravariant version, and uses the standard term "presheaf" for a functor from C^{op} to Set.

Lemma 6 (Yoneda). Let **C** be a category, let X be an object of **C**, and let $F: \mathbf{C}^{op} \to \mathbf{Set}$ be a presheaf on **C**. Consider the map from

$$Hom_{[\mathbf{C}^{\mathrm{op}},\mathbf{Set}]}(Hom_{\mathbf{C}}(-,X),\mathsf{F})\to\mathsf{F}X$$

assigning to a natural transformation $\alpha: Hom_{\mathbb{C}}(-,X) \Rightarrow F$ the element $\alpha_X(\mathrm{id}_X) \in FX$, which is the value of the component α_X of α on the identity at X.

This assignment is a bijection, and it is natural both in X and in F.

Here he writes $Hom_{[\mathbf{C}^{op},\mathbf{Set}]}$ to mean the arrows in the category $[\mathbf{C}^{op},\mathbf{Set}]$, which are the natural transformations.

Finally, Peter Johnstone has my favorite, relatively concrete statement:

Lemma 7 (Yoneda). Let **C** be a locally small category, let X be an object of **C** and let $F: C \to \mathbf{Set}$ a functor. Then

- (i) there is a bijection between natural transformations $C(X, -) \Rightarrow F$
- (ii) the bijection in (i) is natural in both F and X.

10. Who I Stole From

- https://arxiv.org/abs/1912.10642
- https://math.jhu.edu/~eriehl/context/
- https://arxiv.org/abs/1612.09375
- https://www.logicmatters.net/2018/01/29/category-theory-a-gentle-introduction/
- http://pi.math.cornell.edu/~dmehrle/notes/partiii/cattheory_partiii_notes.pdf
- http://www.julia-goedecke.de/pdf/CategoryTheoryNotes.pdf
- https://www.youtube.com/watch?v=SsgEvrDFJsM

And of course, a bit from https://en.wikipedia.org/wiki/Categories_for_the_Working_Mathematician