Revision Notes on Organic Compounds Containing Halogens

Organic Compounds Containing Halogens can be devided into two groups:

- Alkyl Halides: Aliphatic carbon chain with halogen arom(s) as substitution.. Example: Chlorobutane.
- **Aryl Halides:** Aromatic carbon ring with halogen arom(s) as substitution on ring. Example: Chlorobenzene.

Methods of Preparation of Alkyl Halides:

Grove's process: Replacement of "OH" group in primary and secondary alcohols with an "X" atom in presence of Zinc chloride.

$$\overrightarrow{ROH} + \overrightarrow{Z} nCl_2 \longrightarrow R \xrightarrow{\bigoplus} \overrightarrow{Z} nCl_2 \xrightarrow{S_N 1} \xrightarrow{\bigoplus} R + [HO \longrightarrow \overrightarrow{Z} nCl_2]$$

The reaction follows S_N2 mechanism when the concentration of zinc chloride is low.

(b) Darzen Process: Reaction of thionyl chloride with straight-chain primary alcohols without presence or absence of pyridine.

In presence of pyridine:

ROH + SOCl₂ ☐ HCl + ROSOCl

 $HCI+C_5H_5N \square C5H5NH^++CI^-$

ROSOCI + CI $^ \square$ RCI + SO $_2$ (S_N2)

- Action of a phosphorus halide on the alcohol: ROH + PCl₅

 RCl + HCl + POCl₃.
- By addition of Halogen to an alefins: R-CH=CH₂ +Br₂+CCl₄

 \[
 \text{R-CH(Br)CH₂Br}
 \]
- Photohalogenation: CH₄ + Cl₂ +hv \(\text{CH}_3 \text{Cl} + HCl \)
- Displacement of one halogen atom by another:RCl + Nal □Rl + NaCl
- Bonodine Hünsdiecker Reaction: RCO₂Ag + Br₂□RBr + CO₂ + AgBr
- Hydrohalogenation of unsaturated hydrocarbons:
 - In absence of peroxide: RCH=CH2 +HBr \(\text{RCH(Br)CH3} \)
 - In presence of peroxide: RCH=CH2 +HBr + Peroxide ☐RCH2CH2Br

Methods of Preparation of aryl halides

From diazonium salts:

 $C_6H_5N_2CI + HBF_4 \rightarrow C_6H_5F$ (Schiemann Reaction)

 $\hspace{0.5cm} \circ \hspace{0.5cm} \mathsf{C_6H_5N_2CI} + \mathsf{CuCI} \to \!\! \mathsf{C_6H_5CI} \hspace{0.5cm} \text{(Sandmeyer Reaction)}$

 \circ C₆H₅N₂Cl + Cu powder \rightarrow C₆H₅Cl (Gatterman Reaction)

S_N 1 and S_N 2 mechanism:

	S _N 1	S _N 2	
Steps	Two: (1) R:XI \to R ⁺ + X ⁻ (2) R ⁺ + Nu ⁻ I \to RNu	One : R:X + Nu ⁻ l → RNu + X ⁻	
Rate	=K [RX] (1st order)	=K[RX] [:Nu ⁻] (2nd order)	
TS of slow step	R CX ⁵ - R	δ- _{Nu} νονος νονο X - R	
Stereochemistry	Inversion and racemization	Inversion (backside attack)	
Molecularity	Unimolecular	Bimolecular	
Reactivity structure of R Determining Factor Nature of X Solvent effect on rate	3°> 2°> 1°> CH ₃ Stability of R ⁺ RI> RBr> RCI> RF Rate increases in polar solvent	CH ₃ > 1°> 2°> 3° Steric hindrance in R group RI> RBr> RCI> RF with Nu ⁻ there is a large rate increase in polar aprotic solvents.	
Effect of nucleophile	No effect as it does not appear in the rate expression.	Rate depends on nucleophilicity I^ > Br^ > Cl^-; RS^- > RO^-	
Catalysis	Lewis acid, eg. Ag ⁺ , AlCl ₃ , ZnCl ₂	None	
Competitive reaction	Elimination, rearrangement	Elimination	

Reactions of Alkyl Halides:

• **Hydrolysis:** : RX + OH⁻ \square ROH + X⁻

• Williamson Synthasis: R-ONa +R'X ☐ R-R' + NaX

• Reaction with dry silver oxide: $2R-X + Ag_2O \square R-O-R$

• Reaction with sodio-Alkynides: R-C=C-Na +X-R R-C=C-R +NaX

- Reaction with potassium-cyanide: KCN+X-R RCN +KX
- Reaction with silver-cyanide: AgCN+X-R□ RNC +AgX
- Reaction with silver-nitrite: $AgNO_2+X-R \square RNO_2 + AgX$
- Reaction with potassium-nitrite: KNO₂+X-R□ R-O-N=O +KX
- Fridal Craft Reaction: R-X + C₆H₆ + AlCl₃ C₆H₅-R
- Malonic Ester Synthasis: $R-X + {^-CH(CO_2C_2H_5)_2} \square R-CH(CO_2C_2H_5)_2 +HX$
- Acetoacetic Ester Synthasis: $R-X + {^-CH(CO_2CH_3)_2} \square R-CH(CO_2CH_3)_2 +HX$
- Reaction with Ammonia: R-X +NH₃ R-NH₂ +HX
- Wurtz Reaction: 2R-I+ 2Na □R—R + 2NaI
- Dehydrohalogenation: CH₃.CH₂.CH₂Br + alco.KOH

 CH₃-CH = CH₂ + KBr + H₂O
- Reaction with alcoholic AgNO₃: R-X +AgNO₃ \(\text{R} \) R+ AgX\(\text{H} \) + HNO₃

Substitution Versus Elimination:

CH ₃ X	RCH ₂ X	R ₂ CHX	R ₃ CX
Methyl	1°	2°	3°
Bimolecular reactions only			S _N 1/E1 or E ₂
Gives S _N 2 reactions	Gives mainly $S_{N}2$ except with a hindered strong base [e.g., $(CH_3)_3CO^-$] and then gives mainly E2.	Gives mainly S_N2 with weak bases (e.g., I^- , CN^- , RCO_2^-) and mainly E2 with strong bases (e.g., RO^-)	No S_N 2 reaction. In solvolysi gives S_N 1/E1, and at lower temperature S_N 1 is favoured When a strong base (e.g., RC is used. E2 predominates.

Haloform(Tri halide):

- Preparation: It can be prepared from any alcohol having –CH(OH)CH₃ group or from the aldehydes and ketones formed from above type of alcohols i.e, from a carbonyl compound having three a - hydrogen atoms by the action of X₂ and an alkali or Na₂CO₃.
- Laboratory Preparation of CHCl₃:

$$\text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\quad \text{oxidation by CI}_2 \quad \text{CH}_3\text{CHO} \quad \xrightarrow{\quad \text{chlorination} \quad \text{CCI}_3\text{CHO} \quad \xrightarrow{\quad \text{Ca}(\text{OH})_2 \quad \text{hydrolysis}} \quad \text{CHCI}_3$$

Physical properties of CHCl₃: colourless liquid with sweet smell and test. It is heavier than water and insoluble
in it but soluble in alcohol and ether.

Chemical Reactions of CHCl₃:

Oxidation: CHCl₃ + 1/2 O₂

HCl + COCl₂ (phosgene)

- **Hydrolysis:** $CHCl_3 + 4NaOH \square HCOONa + 3NaCl + 2H_2O$
- Carbyl amine reactions: $CHCl_3 + CH_3NH_2 + 3NaOH \square CH_3N \equiv C + 3NaCl + 3H_2O$