

- The Internet Protocol
- IP Address
- ARP and DHCP
- ICMP
- IPv6
- Mobile IP
- Internet Routing
- BGP and OSPF
- IP Multicasting
- Multiprotocol Label Switching (MPLS)

IP Multicasting

Multicast

- Act of sending datagram to multiple receivers (hosts) with single transmit operation
- Multicast address (class D in IPv4)
 - Addresses that refer to group of hosts on one or more networks
- Applications
 - Multimedia (TV) broadcast
 - Teleconferencing
 - Database replication
 - Distributed computing, ...

- Multicast (Spanning) Tree
 - Build a (least cost) tree connecting routers having local mcast group members
 - Nodes (routers) forward copies only along spanning tree

Sender only sends once

Multicast Example

(a) Spanning tree from source to multicast group

(b) Packets generated for multicast transmission

- Multicast group concept: use of indirection
 - Hosts address IP datagram to a multicast group
 - Routers forward multicast datagrams to hosts that have joined that multicast group

- Convention needed to identify multicast addresses
 - IPv4: Class D, start with 1110

1110 Multicast Group ID

✓ 28 bits →

■ IPv6: 8 bit prefix, 4 bit flags, 4 bit scope, 112 bit group identifier

11111111 flgs scop group ID

- 224.0.0.0~224.0.0.255为预留的<u>组播</u>地址(永久组地址),地址224.0.0.0保留 不做分配;
- 224.0.1.0~224.0.1.255是公用<u>组播</u>地址,可以用于Internet;
- 224.0.2.0~238.255.255.255为用户可用的<u>组播</u>地址(临时组地址),全网范围内有效:
- 239.0.0.0~239.255.255.255为本地管理组播地址,仅在特定的本地范围内有效。

- Address translation
 - IP: translate between IP multicast addresses and lists of networks containing group members
 - Malticast MAC: translate between IP multicast address and multicast MAC address

组播mac地址的高24bit为0x01005e,mac 地址的低23bit为组播ip地址的低23bit。

Maintain a Multicast Group

Local network

- Host informs local mcast router of desire to join a group
- IGMP (Internet Group Management Protocol) used

Wide area

- Mcast routers interact with each other to build spanning tree, and interchange mcast datagrams
- Many protocols (e.g. DVMRP, MOSPF, PIM)

IGMP

- RFC 3376
- Host and router exchange of multicast group info on local net
- Can use broadcast LAN to transfer info among multiple hosts and routers

Hosts

- Send reports to routers to subscribe to (join) and unsubscribe from (unjoin) multicast group
- Host need not explicitly unjoin group when leaving

Routers

- Sends query info at regular intervals
- Host belonging to a mcast group must reply to query

IGMP Operations (1)

- 2 special multicast address
 - 224.0.0.1: all multicast groups on subnet
 - 224.0.0.2: all routers on subnet
- On each LAN, one router is elected as the querier
 - Querier periodically sends a Membership Query message to 224.0.0.1
 with TTL = 1
- On receipt, hosts start random timers (0~10s) for each multicast group to which they belong

IGMP Operations (2)

- When a host's timer for group G expires, it sends a Membership Report to group G, with TTL = 1
- Other members of G hear the report and stop their timers
- Routers hear all reports, and time out non-responding

IGMP Versions

IGMP v1

- Routers: "Host Membership Query" broadcast on LAN to all hosts
- Use timer to unsubscribe members
- Hosts: explicitly issues "Host Membership Report" to indicate group membership (join a group)
- Implicit leave via no reply to Query

IGMP v2

- Routers can use group-specific Query
- Host replying to Query can send explicit "Leave Group" message

IGMP v1 & v2

- Operations
 - Sources do not have to subscribe to groups
 - Any host can send traffic to any multicast group
- Problems
 - Location of sources is not known
 - Establishment of distribution trees is problematic (not optimistic)
 - Spamming of multicast groups consume valuable resources
 - Finding globally unique multicast addresses difficult

IGMP v3

- Allows hosts to specify source list from which they want to receive traffic
 - Traffic from other hosts blocked at routers
- Allows hosts to block packets from sources that send unwanted traffic

Membership Query

- Sent by multicast router
- General query
 - Which groups have members on attached network
- Group-specific query
 - Does specified group have members on attached network
- Group-and-source specific query
 - Do attached hosts want packets sent to specified multicast address from any of specified list of sources

IGMP Message – Membership Query

(a) Membership query message

Membership Query Fields (1)

- Type (8 bits): 0x11, means Query
- Max Response Time (8 bits)
 - Max time before host sending report in units of 1/10 second
- Checksum (16 bits): Same algorithm as IPv4
- Group Address (32 bits)
 - Zero for general query message
 - Multicast group address for group-specific or group-and-source
- S Flag (1 bit)
 - 1 indicates that receiving routers should suppress normal timer updates done on hearing query

Membership Query Fields (2)

- QRV (querier's robustness variable) (3 bits)
 - RV dictates number of retransmissions to assure report not missed
 - Other routers can adopt value from most recently received query
- QQIC (querier's querier interval code) (8 bits)
 - QI dictates timer for sending multiple queries
 - Routers not current querier adopt most recently received QI
- Number of Sources (16 bits)
- Source addresses
 - One 32 bit unicast address for each source

IGMP Message – Membership Report

Bit:	0	4	8	16	31			
	Type =	0x22	Reserved	Checksum				
	Reserved			Number of group records (M)				
	Group record [1]							
	Group record [2]							
	Group record [M]							

(b) Membership report message

- Type (8 bits)
 - 0x22, means Report
- Checksum (16 bits)
 - Same algorithm as IPv4
- Number of Group Records
- Group Records
 - One record for each group attended

IGMP Message – Group Record

Bit:	0	4	8	16	31			
	Reco	ord type	Aux data len	Number of sources (N)				
	Multicast address Source address [1]							
	Source address [2]							

(c) Group record

Group Record

- Multicast Address (32 bits)
 - Identify the group attended
- Record Type (8 bits)
 - EXCLUDE or INCLUDE mode (6 modes defined)
- Number of Sources (16 bits)
- Source Addresses
- Aux Data Length (8 bits)
 - Length of Auxiliary Data, in 32-bit words
- Auxiliary Data
 - Currently, no auxiliary data values defined

Group Membership with IPv6

- IPv6 internets need same functionality
- IGMP functions incorporated into Internet Control Message Protocol version 6 (ICMP v6)
 - ICMPv6 includes all of functionalities of ICMPv4 and IGMP
- ICMPv6 includes Group-membership Query and Group-membership Report message
 - Used in the same fashion as in IGMP v3

Multicast Routing

- Find a spanning tree (or trees) connecting routers having local mcast group members
- Shared-tree
 - Same tree used by all group members
- Source-based
 - Different tree from each sender to receivers

Approaches for Multicast Trees

- Source-based tree: one tree per source
 - Shortest path trees
 - Reverse path forwarding
- Group-shared tree: group uses one tree
 - Minimal spanning (Steiner)
 - Center-based trees

- Multicast forwarding tree
 - Tree of shortest path routes from source to all receivers
 - Use Dijkstra's algorithm, used with OSPF

LEGEND

link used for forwarding, i indicates order link added by algorithm

Reverse Path Forwarding

- Rely on router's knowledge of unicast shortest path from it to sender
- Each router has simple forwarding behavior:
- Used with RIP

if (mcast datagram received on incoming link on shortest path back to sender)then flood datagram onto all outgoing links else ignore datagram

Reverse Path Forwarding: Example

LEGEND

- router with attached group member
- router with no attached group member
- datagram will be forwarded
- → I datagram will not be forwarded
- The result is a source-specific reverse SPT
 - May be a bad choice with asymmetric links

Reverse Path Forwarding: Pruning

- Forwarding tree contains subtrees with no mcast group members
 - No need to forward datagrams down subtree
 - "Prune" msgs sent upstream by router with no downstream group members

Shared-Tree: Steiner Tree

Steiner Tree

- Minimum cost tree connecting all routers with attached group members
- Problem is NP-complete, but excellent heuristics exists

Not used in practice

- Computational complexity
- Information about entire network needed
- Monolithic: rerun whenever a router needs to join/leave

Center-based Trees

- Single delivery tree shared by all
 - One router identified as center of tree
- Other routers to join:
 - Edge router sends unicast join-msg addressed to center router
 - join-msg processed by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - Path taken by join-msg becomes new branch of tree for this router

Center-based Trees: Example

Suppose R6 chosen as center:

LEGEND

path order in which join messages generated

Multicasting Routing Protocols

DVMRP

- Distance Vector Multicast Routing Protocol, RFC1075
- Flood and prune: source-based tree, reverse path forwarding

Soft state

- DVMRP router periodically (1 min) "forgets" branches are pruned
- Mcast data again flows down unpruned branch
- Downstream router: reprune or else continue to receive data

Multicasting Routing Protocols

- PIM: Protocol Independent Multicast
 - Not dependent on any specific underlying unicast routing algorithm (works with all)
 - 2 different multicast distribution scenarios
 - Sparse: group members widely dispersed, bandwidth not plentiful
 - Dense: group members densely packed, bandwidth more plentiful
- Sparse mode
 - Group-shared tree, use center-based approach
- Dense mode
 - Nearly same as DVMRP

Application-level Multicast

MPLS

Multiprotocol label switching (MPLS)

- Initial goal: high-speed IP forwarding using fixed length label (instead of IP address)
 - Fast lookup using fixed length identifier (rather than shortest prefix matching)
 - Borrowing ideas from Virtual Circuit (VC) approach
 - But IP datagram still keeps IP address!

Why MPLS?

- IP Routing disadvantages
 - Connectionless, no QoS
 - Large IP Header (>=20 bytes)
 - Routing in Network Layer: Slower than Switching
- ATM disadvantages
 - Complex
 - Expensive
 - Not widely adopted
- Best of both
 - MPLS + IP form a middle ground that combines the best of IP and the best of circuit switching technologies.

Multiprotocol Label Switching

- Speed up IP forwarding by using fixed length label to do VC-like routing
- Advantages of MPLS
 - Leverage existing ATM hardware
 - Ultra fast forwarding
 - IP traffic engineering
 - Constraint-based Routing
 - Better supporting Virtual Private Networks
 - Controllable tunneling mechanism
 - QoS support for Voice/Video on IP

ROUTE AT EDGE, SWITCH IN CORE

IP-Over-ATM

IP-Over-ATM

- Boundary router at source LAN
 - IP layer maps between IP, ATM dest address
 - Passes datagram to AAL5
 - AAL5 encapsulates data, segments cells, passes to ATM layer
- ATM network: moves cell along VC to destination LAN
- Boundary router at dest LAN
 - AAL5 reassembles cells into original datagram
 - If CRC OK, datagram is passed to IP

MPLS

- Capable of providing a connection oriented Inter-networks
 - Makes full use of VC networks such as ATM or Frame Relay

MPLS Header

Contains one or more "labels", called a label stack

Each label contains 4 fields

- Label value, 20-bit VC number
- Experimental traffic class, 3 bit, for priority and Explicit Congestion Notification
- Bottom of stack, 1 bit, means the last "label"
- Time to Live, 8 bit, same as IP TTL

MPLS Forwarding

- By MPLS capable routers, must co-exist with IPonly routers
- Forwards packets to outgoing interface based only on label value
 - MPLS forwarding table distinct from IP forwarding tables
- Signaling protocol needed to set up forwarding table
 - Support hop-by-hop and source routing
 - RSVP-TE, an extension of the Resource Reservation Protocol (RSVP) for traffic engineering

MPLS capable routers

- a.k.a. label-switched router
- forward packets to outgoing interface based only on label value (don' t inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables
- flexibility: MPLS forwarding decisions can differ from those of IP
 - use destination and source addresses to route flows to same destination differently (traffic engineering)
 - re-route flows quickly if link fails: pre-computed backup paths (useful for VoIP)

IP routing: path to destination determined by destination address alone

MPLS versus IP paths

- IP routing: path to destination determined by destination address alone
- MPLS routing: path to destination can be based on source and dest. address
 - fast reroute: precompute backup routes in case of link failure

in	out		out
label	label	dest	interface
	10	Α	0
	12	D	0
	8	Α	1

in label	out label	dest	out interface
10	6	Α	1
12	9	D	0

in label	out label	dest	out interface	
8	6	Α	0	

in	out		out	
label	label	dest	interface	
6	-	Α	0	

- Forwarding Equivalence Class
 - A subset of packets or flows that are all treated the same way by a MPLS router
 - Provides for a great deal of flexibility and scalability

Traffic Engineering

- Purpose of traffic engineering:
 - •Maximize utilization of links and nodes throughout the network
 - •Engineer links to achieve required delay, grade-of-service
 - •Spread the network traffic across network links, minimize impact of single failure
 - •Ensure available spare link capacity for re-routing traffic on failure
 - Meet policy requirements imposed by the network operator

MPLS Advantages

- Improves packet-forwarding performance in the network
- Supports QoS and CoS (Type of Service) for service differentiation
- Supports network scalability
- Integrates IP and ATM in the network
- Builds interoperable networks

MPLS Disadvantages

- An additional layer is added
- The router has to understand MPLS

- IP Multicast
 - 组播地址
 - 组管理: IGMP
 - 组播路由机制及协议
- MPLS概念及原理

Homework

■ 第四章: R35, R36, P45