

Multi-instrument detection for stereo-endoscopy in heart surgeries

Sommersemester 2022

Bastian Westerheide, Lisa Wimmer, Nina Stegmayer, Moritz Bednorz und Nils-Christian Iseke

Aufgabenstellung / Ziele

Multi-instance detection Wieviele Instrumente?

Source: wft ss2022 session1 overview.pptx | Lalith Sharan

Multi-class detection Welche Instrumente?

Aufgabenstellung / Ziele

Meilensteinplanung

Meilensteinplanung

Aufgabenverteilung

Annotation der Bilder a. Überprüfung der Annotierungen b. Annotierungsprozess (CVAT, Fiftyone) Datenanalyse und Statistik Monovision Pipeline mit MMDetection a. CustomDataset, Augmentation, Evaluierung Dataloader Implementierung 5. Monovision Model Implementierung Stereovision Model Implementierung Evaluierung Dokumentation Wimmer Stegmayer
Westerheide
Iseke
Bednorz

Motivation - Einsatz von Deep Learning

Annotierung

- Schlechte Annotierung → Schlechtes Ergebnis
- CVAT (Computer Vision Annotation Tool), lokal gehostet
- Wie sorgen wir für eine einheitliche Annotation?
 - Festlegung von Anootierungsstandards
 - "6-Augen-Prinzip"

Annotierung

Welche Informationen stecken in diesem Bild?

Annotierung - Rotierte Bounding Boxes

Toy-Datensatz im SDS: toy_rotated_bb

Datenauswertung

Anzahl der Instrumente pro Bild

Datenauswertung Attribute

Unterschiede zwischen Stereodaten

Umsetzung - Data Pipeline

- Augmentierung der Trainingsbilder
- Formatieren der Bounding Boxes
- Umgang mit Bildern ohne Bounding Boxes

 Für Stereo: Zusammenlegen der Bilder beider Kameraperspektiven

Umsetzung - Model Implementation

- Pretrained Faster-RCNN Modell
- ResNet50 Backbone
 - Mono: 3 Channel
 - Stereo: 6 Channel
- Output:
 - Bounding Boxen
 - Labels
 - Confidence score

Resultate - HOTA metric

Mono Modell 100 Epochen

Stereo Modell 100 Epochen

7wei Instrumente neheneinander

mono-Modell

stereo-Modell

Viele Fäden

mono-Modell

stereo-Modell

Verschwommene Instrumente

mono-Modell

stereo-Modell

Resultate - Dokumentation

- prozessierte Daten: SDS der Uni Heidelberg
- trainierte Modelle: SDS der Uni Heidelberg
- Pfad zum Repository: https://github.com/Cardio-AI/ wft_ss22_multi_instrument_detection

Limitationen

- Stereomodell ist nicht wirklich spezialisiertes Stereomodell
 - kaum Paper gefunden

Klassen sind sehr unbalanciert

Bisher wenig Modelloptimierung

- Labeln der Daten
- labelMe
- bwVisu
- Zeitmangel durch Änderung des Lösungsansatzes
- viele leere Bilder

Verbesserungsmöglichkeiten

- stabilere Verbindung zu bwVisu
- Schreibrechte auf SDS
- evt. CVAT statt LabelMe
- Stereodaten → Kamerakonfiguration nutzen
- temporale Daten fürs Training nutzen
- rotierte Bounding Boxen nutzen?
- Modelle verbessern

