

Данные

More data beats clever algorithms, but better data beats more data (P. Norvig)

На что смотреть:

- размеры, размерность, число элементарных порций (объектов), разреженность, разрешение
- семантика данных
- структура данных, режим доступа к данным (online / offline), способ доступа

Виды данных

- признаковые описания (матрица объект-признак)
- измерения
 - о одномерные сигналы (ряды, звук и т.п.), последовательности, тексты
 - о изображения
 - **о видео**
- метрические данные
- данные в специальных форматах
 - о графы
 - XML-файлы
 - о пространственно-временные
 - о сырые логи
 - О И Т.П.

Свойства данных

Свойства данных	Что мешает этому свойству	Причины нарушения свойства	Средство борьбы
Корректность (точность) Ассигасу м.б. Истинность	Аномалии (выбросы + шум)	Погрешность приборов, ошибки при заполнении	Очистка данных (Data Cleaning)
Полнота Completeness	Пропуски Разреженность	Недоступность данных, ошибки при заполнении, сбои при записи	Очистка данных (Data Cleaning)
Непротиворечивость (согласованность) Consistency		Различные источники данных	Data Integration
Дубликаты Шум Безызбыточность Излишняя дискретизация		Особенности интеграции, ошибки при заполнении	Data Reduction Data Transformation
Ясность Interpretability		Плохие хранение и подготовка д.	Data Transformation

Свойства данных

Доступность		
Accessibility		
Актуальность		
Timeliness		
Ценность		
Value added		
Истинность		
Believability		

Эти свойства рассматриваются на этапе добычи данных

Предобработка данных (Data Preprocessing / Preparation)

- замена, модификация или удаление частей набора данных с целью повышения непротиворечивости, полноты, корректности и ясности набора данных, а также уменьшения избыточности.

Выполняется на полном наборе данных

(и на контрольных объектах тоже)

Тонкость: не допустить утечки (информации, не доступной при функционировании модели)

Data Mungling Tepmuh???

Что бывает в данных

	дата	пол	образование	сумма	платёжная строка	число просрочек	?????	x_m
0	12/01/2017	1	высшее	5000.0	0000	0	0	0.00000
1	13/01/2017	1	высшее	2500.0	0000	1	1	1.00000
2	13/01/2017	1	высшее	2500.0	001000	1	1	1.00000
3	13/01/2017	0		13675.0	111	3	3	0.00000
4	25/01/2017	0		NaN	0	0	0	0.00000
5		1	начальное	NaN	00	0	0	0.00000
6	02/02/2017	1	среднее	1000.0		0	0	0.00000
7	01/01/0001	13/01/2017	среднее	0.0		-7	-7	-0.00001

Что бывает в данных

	дата	пол	образование	сумма	платёжная строка	чис просро	сло чек	?????	x_m	неясность
0	12/01/2017	1	высшее	5000.0	0000		0	0	0.00000	
1	13/01/2017	1	высшее	2500.0	0000	OKTHOCTL	1	1	1.00000	дубликаты
2	13/01/2017	1	высшее	2500.0	001000	ектность	1	1	1.00000	
3	13/01/2017	0		13675.0	111		3	3	0.00000	
4	25/01/2017	0		NaN	0		0	0	0.00000	
5		1	начальное	NaN	00		0	0	0.00000	
6	02/02/2017	1	среднее	1000.0			0	0	0.00000	
7	01/01/0001	13/01/2017	среднее	0.0	пропус	1614	-7	-7	-0.00001	
	ошибка		нечисловой признак	İ	пропус		дубл	икаты	выброс	

РАЗДЕЛЫ Предобработки данных

Очистка данных (Data Cleaning)

- Обнаружение (и удаление / замена) аномалий / выбросов + отд
- Обнаружение (и удаление / замена) пропусков (Missing Data Imputation)
- Обнаружение (и удаление / замена) шумов (Noise Identification)
- Обнаружение (и удаление / исправление) некорректных значений (correct bad data / filter incorrect data)

Сокращение данных (Data Reduction)

- Сэмплирование (Sampling)
- Сокращение размерности (Dimensionality reduction)
- Отбор признаков (Feature subset selection)
- Отбор объектов (Instance Selection)
 - о удаление дубликатов

РАЗДЕЛЫ Предобработки данных

Трансформация данных (Data Transformation)

- Переименование признаков, объектов, значений признаков, преобразование типов
- Кодирование значений категориальных переменных + отд
- Дискретизация (Discretization / Binning)
- Нормализация (Normalization)
- Сглаживание (Smoothing)
- Создание признаков (Feature creation) + отд
- Агрегирование (Aggregation)
- Обобщение (Generalization)
- Деформация значений

Интеграция данных (Data Integration)

• Объединение данных из разных источников

Переименования

Названия переменных (и их значения ?!) должны быть интуитивны

(они используются в том числе при передачи данных коллегам, презентации результатов и т.п.)

Преобразования типов данных Нужно использовать типы, которые поддерживает Ваша среда программирования

	X5XX.	X5XV.	price(\$)	date
0	200\$	Jan.1.2018	200	2018-01-01
1	150\$	Feb.13.2017	150	2017-02-13
2	7000\$		7000	NaT
3	110\$	Jun.13.1996	110	1996-06-13

```
df.rename(columns={'X5XX.': 'price($)'}, inplace=True)
df['price($)'] = df['price($)'].apply(lambda x: int(x[:-1]))
df['date'] = pd.to_datetime(df['X5XV.'], errors='coerce')
```

Кодировки

Как правило, компьютер работает с числами ⇒ категории представляем числами (векторами)

(дальше подробнее)

	ans	weather	ans_coded	weather_coded
0	yes	warm	1	0
1	no	cool	0	1
2	yes	cold	1	2
3	no	warm	0	0

```
dct = {'yes': 1, 'no': 0}
df['ans_coded'] = df['ans'].map(dct)
df['weather_coded'] = df.weather.factorize()[0]
```

Корректировка значений

	время	давление	в.давл.	н.давл.	время
0	23:10	120/80	120	80	2018-09-13 23:10:00
1	10 часов	120/70	120	70	2018-09-13 10:00:00
2	7:40	110/70	110	70	2018-09-13 07:40:00

```
tmp = df['давление'].str.split('/')
df['в.давл.'] = tmp.apply(lambda x: x[0])
df['н.давл.'] = tmp.apply(lambda x: x[1])
```

Д/З Как лучше? Относится к любому фрагменту кода

Пропуски – как выглядят в данных

- пустые значения
- специальные значения (NA, NaN, null, ...)
- специальный код (–999, mean, число за пределами значения признака)

df[name].isnull().sum() # число "нанов" df[name].count() # число не "нанов"

Пропуски – как выглядят в данных

500	53
540	8
523	8
469	7
451	7
419	7
435	6

df['volume'].value_counts()

Пропуски – что делать

• оставляем

(но не все модели могут работать с пропусками)

• удаляем описания объектов с пропусками / признаки

```
(радикальная мера, которая редко используется) df.dropna(how='any', axis=1)
```

• заменяем на фиксированное значение

```
(например, если признак бинарный, то на 0.5)
Значение –999, как правило, плохое – является выбросом df.fillna(-1)
```

заменяем на легковычислимое значение

```
(среднее, медиана, мода)
df.fillna(df.mean()) # , inplace=True
```

восстановление значения код

```
(построение специальной модели для восстановления)

from sklearn.preprocessing import Imputer

imputer = Imputer(missing_values='NaN', strategy='mean', axis=0)

vals = imputer.fit_transform(df[['сумма']])
```

• экспертная замена (см. ниже)

Пропуски – что делать

	ts	ts2	ts3	ts4
2015-01-01	1.0	1.0	1.00	1.00
2015-01-02	NaN	1.5	1.33	1.17
2015-01-04	2.0	2.0	2.00	2.00
2015-01-10	NaN	6.0	8.86	8.37
2015-01-11	10.0	10.0	10.00	10.00

• добавлять характеристический признак пропусков «is_nan» тогда модель сама определит оптимальное значение для заполнения

• заполнять пропуски лучше после генерации признаков иначе возникают дополнительные неопределённости

	площадь	цена	цена/кв.м.	площадь	цена	цена/кв.м.	площадь	цена	цена/кв.м.
0	82.0	5200000.0	63414.634146	82.0	5200000.0	63414.634146	82.0	5200000.0	63414.6
1	70.0	4400000.0	62857.142857	70.0	4400000.0	62857.142857	70.0	4400000.0	62857.1
2	74.0	4200000.0	56756.756757	74.0	4200000.0	56756.756757	74.0	4200000.0	56756.8
3	60.0	NaN	NaN	60.0	4350000.0	72500.000000	60.0	4350000.0	61009.5
4	NaN	3600000.0	NaN	71.5	3600000.0	50349.650350	71.5	3600000.0	61009.5
5	NaN	NaN	NaN	71.5	4350000.0	60839.160839	71.5	4350000.0	61009.5

```
df['цена/кв.м.'] = df['цена'] / df['площадь']
df.fillna(df.mean())
```

• не допускать ликов при заполнении пропусков

Общий пайплайн: предобработка данных + классификация при заполнении пропусков нельзя брать информацию из будущего

data плошаль плошаль 1 плошаль 2 плошаль 3

	uala	площадь	площадь_т	площадь_2	площадь_3
0	train	82.0	82.0	82.0	82.0
1	train	NaN	66.5	78.0	78.0
2	train	74.0	74.0	74.0	74.0
3	test	60.0	60.0	60.0	60.0
4	test	NaN	66.5	78.0	55.0
5	test	50.0	50.0	50.0	50.0

ДЗ Может ли код быть эффектнее?

В соревнованиях м.б. выгодно знать контроль

важно понимать природу пропуска:

значение может не быть доступно клиент банка не указал в анкете свой возраст отсутствие информации – тоже информация!

значение может не существовать

«Доход» для детей моложе 18 (=0)

значение не является числом

0/0 = NaN

средняя покупка в категории товаров

значение вызвана предобработкой данных

при конкатенации таблиц – несуществующие колонки при обработке дат – исключение

• обучение и тест – одинаковые распределения Тоже самое для пропусков!

 можно посмотреть, зависит ли факт пропуска от других данных

	data	площадь	target
0	train	82.0	0
1	train	NaN	1
2	train	74.0	0
3	test	60.0	0
4	test	NaN	1
5	test	50.0	0

целевой признак – характеристический признак пропуска

```
df['target'] = df['площадь'].isnull().astype(int)
```

Зашумлённые данные (Noisy Data)

Аналогия с пропусками

Что делать

- оставляем (но будет погрешность при моделировании)
- удаляем сильно зашумлённые признаки
- удаляем сильно зашумлённые объекты
- замена аномальных значений (ex: clipping)

могут нести важную информацию!

Причины

- ошибка сбора данных (ех: погрешность прибора, ввода и т.п.)
- ошибка обработки данных
- свойство данных (ех: выброс зарплата СЕО)

Отдельная тема: обнаружение аномалий

Зашумлённые данные – Винсоризация (Winsorizing)


```
import scipy
x3 = scipy.stats.mstats.winsorize(x, limits = 0.05)
```

Зашумлённые данные – Тонкость

Если есть шум, можем ли доверять и другим признакам?

выбросы в обычном признаке / целевом

Плохо для линейных моделей, но есть модели «устойчивые к выбросам»

В чём разница между этими выбросами?

Агрегирование (Aggregation)

pressure_1	pressure_2	pressure_3	pressure_4	pressure_5	pr_mean	pr_std	pr_max	pr_min
14	15	18	23	10	16.0	4.85	23	10
36	13	14	21	16	20.0	9.46	36	13
10	14	16	17	20	15.4	3.71	20	10
13	20	15	25	13	17.2	5.22	25	13

Составляющие суммы, замеры разными датчиками и т.п.

Часто лучше использовать различные статистики!

```
df['pr mean'] = df[cols].mean(axis=1)
df['pr_std'] = df[cols].std(axis=1) #.round(2)
df['pr max'] = df[cols].max(axis=1)
df['pr min'] = df[cols].min(axis=1)
```

Совет: часто хорошо отсортировать построчно показания

Обобщение (Generalization)

	товар	group1	group2
0	стол	офис	дерево
1	тетрадь	офис	бумага
2	горшок	дом	пластик
3	стук kv-15	дом	пластик

Больше – генерация признаков Создание описательных признаков

Интеграция данных (Data Integration)

Обычно – из разных источников

	клиент	дата	договор		клиент	возраст	счёт		договор	сумма
0	1001	12.01.05	20050047	0	1001	34	12000.0	0	20050047	100000
1	1002	14.01.05	20050054	1	1002	52	0.0	1	20050065	200000
2	1003	15.01.05	20050058	2	1003	25	10000.0			
3	1004	16.01.05	20050065	3	1004	33	NaN			

	клиент	дата	договор	возраст	счёт	сумма
0	1001	12.01.05	20050047	34	12000.0	100000.0
1	1002	14.01.05	20050054	52	0.0	NaN
2	1003	15.01.05	20050058	25	10000.0	NaN
3	1004	16.01.05	20050065	33	NaN	200000.0

df.merge(df2, how='left').merge(df3, how='left')

Интеграция данных

```
tmp = df.groupby('gr')
tmp.head(2)
tmp.nth(2)
```

	gr	sum	k			
0	alpha	1	1.2		k	sum
1	beta	4	4.3	gr		
2	alpha	0	1.5	alpha	1.5	2
3	beta	0	0.2	beta	0.0	1

?

Интеграция данных

Анкета БКИ

id	пол	возраст	сумма	карт
12	M	34	10000	0
15	M	23	50000	1
37	Ж	37	90000	2

id	дата	сумма	просрочек
12	10-11-12	1000	0
12	01-02-13	2000	1
15	19-10-11	1000	0
15	05-03-12	2000	0
15	03-07-13	3000	1
15	09-09-13	2000	0
37	23-11-13	5000	0

сумма + веса среднее максимум минимум медиана

Использование интеграции или нет

	user	target		user	transaction
0	1	0	0	1	10.0
1	3	1	1	1	20.5
2	6	0	2	3	10.4
3	7	0	3	3	18.0
4	8	1	4	3	3.0

Агрегаты

	user	tr_mean	tr_std	tr_max	tr_min	target
0	1	15.25	7.42	20.5	10.0	0
1	3	10.47	7.50	18.0	3.0	1
2	6	9.83	7.52	17.0	2.0	0
3	7	7.25	3.89	10.0	4.5	0
4	8	9.00	12.73	18.0	0.0	1

На уровень транзакций

	user	transaction	target
0	1	10.0	0
1	1	20.5	0
2	3	10.4	1
3	3	18.0	1
4	3	3.0	1

Использование интеграции или нет

```
tmp = data2.groupby('user')['transaction']
tmp = tmp.agg({'tr_mean':mean, 'tr_std':std, 'tr_max':max, 'tr_min':min})
data = data.merge(tmp.reset_index(), on='user')

data2.merge(data, on='user').head()
```

Второй способ, конечно, менее эффективен, но помогает при ансамблировании.

Нормировки (Data Normalization)

Для большинства алгоритмов машинного обучения необходимо, чтобы все признаки были вещественными и «в одной шкале».

• Стандартизация (Z-score Normalization / Variance Scaling)

$$\{u_i\}_{i\in I} \rightarrow \left\{\frac{u_i - \operatorname{mean}\{u_t\}_{t\in I}}{\operatorname{std}\{u_t\}_{t\in I}}\right\}_{i\in I}$$

• Нормировка на отрезок (Min-Max Normalization)

$$\{u_i\}_{i \in I} \to \left\{ \frac{u_i - \min\{u_t\}_{t \in I}}{\max\{u_t\}_{t \in I} - \min\{u_t\}_{t \in I}} \right\}_{i \in I}$$

• Нормировка по максимуму

$$\{u_i\}_{i\in I} \to \left\{\frac{u_i}{\max\{u_t\}_{t\in I}}\right\}_{i\in I}$$

Decimal Scaling Normalization

$$N_{ds}(x) = \frac{x}{10^{\min\{i:10^i > x\}}}$$

• Ранговая нормировка (tiedrank, rankdata)

Нормировки – реализация

табличка...

```
X = X / np.max(X)

X = X - np.min(X)
X = X / np.max(X)

X = X - np.mean(X)
X = X / np.std(X)

from scipy.stats import rankdata

X = rankdata(X, method='average')
X = X - np.min(X)
X = X / np.max(X)
```

```
import sklearn.preprocessing as prp

X['minmax'] = prp.minmax_scale(X['name'])

X['standart'] =
preproc.StandardScaler().fit_transform(X[['name']])
# требует df
```

Нормировки – обоснование

Зависимость моделей от масштаба

«признак 1» × 10, «признак 2» × 10, нормальный масштаб

Нормировки – обоснование

ДЗ Что за модели? Нет ли ошибки?

Дьяконов А.Г. (Москва, МГУ)

Нормировки – обоснование

Модели по-разному реагируют на изменение масштаба по признакам

Нормировки – тонкости

Как всегда: предобработка + классификация – общий пайплайн

параметры нормировок вычисляются по выборке использовать все данные не всегда корректно

если вычислить параметры на обучении, то на контроле может не быть желаемого эффекта

может выйти за пределы [0, 1]

ex: rankdata

Нормировки (Data Normalization)

Если данные имеют смысл векторов (признаки однородны), то нормировки векторов


```
import sklearn.preprocessing as preproc
nrm = preproc.Normalizer()
X2 = nrm.fit_transform(X)
```

тонкости:

не центрируйте разреженные данные

Нормировки в пределах группы

```
z_score = lambda x: (x - x.mean()) / x.std()
df['stand'] = df.groupby('gr').transform(z_score)
```

	gr	sum	stand
0	alpha	1	0.000000
1	beta	4	1.120897
2	alpha	0	-1.000000
3	beta	0	-0.800641
4	beta	1	-0.320256
5	alpha	2	1.000000

Ранговая нормировка

	feat	average	min	max	dense	ordinal
0	1	1.5	1	2	1	1
1	2	4.0	3	5	2	3
2	2	4.0	3	5	2	4
3	5	6.0	6	6	3	6
4	2	4.0	3	5	2	5
5	1	1.5	1	2	1	2
6	10	7.0	7	7	4	7

```
import scipy.stats as ss
```

```
for method in ['average', 'min', 'max', 'dense', 'ordinal']:
    data[method] = ss.rankdata(data.feat, method=method)
```

Нормировка

Приведение всех признаков «в одну шкалу»: k-NN, k-means, SVM

Хотя формально это слабо помогает – нужен адекватный масштаб

Пример: регуляризация временных рядов

Трансформация

Box-Cox Transformation положительного признака

$$f_{\lambda}(x) = \begin{cases} \frac{x^{\lambda} - 1}{\lambda}, & \lambda > 0, \\ \ln(x), & \lambda = 0. \end{cases}$$

Как правило применяют, чтобы распределение признака стало похожим на нормальное

$$x2 = np.log1p(x) # с предварительным +1$$

 $x2 = np.log(x)$

картинка!!!

Трансформация

совет: попробовать функцию x/(x+1)

Дискретизация (биннинг, Binning, квантование, Quantization)

переход от вещественного признака к порядковому за счёт кодирования интервалов одним значением.

доход от 0 до 10000, от 10000 до 25000, от 25000 до 50000 и т.д.

+ Улучшает интерпретацию,

+ Позволяет решать задачу простыми алгоритмами

(качество ухудшается)

```
bins = pd.cut(df[name], 5)

points = [0, 12, 18, 25, 50, 100]
labels = ['ребёнок', 'юноша', 'молодой человек', 'мужчина', 'пожилой']
factors = pd.cut(ages, points, labels=labels)
factors.describe()
```

	counts	freqs
categories		
ребёнок	8	0.16
юноша	9	0.18
молодой человек	7	0.14
мужчина	26	0.52
пожилой	0	0.00

Способы дискретизации:

Equal-width (distance) partitioning

Делим область значения признаков на области-интервалы равной длины м.б. в другой шкале! 0 - 9, 10 - 99, 100 - 999

factors = pd.cut(ages, 4)

categories	counts	freqs
(5.964, 15.0]	14	0.200000
(15.0, 24.0]	21	0.300000
(24.0, 33.0]	15	0.214286
(33.0, 42.0]	20	0.285714

Equal-depth (frequency, Quantile-based) partitioning

Делим область значения признаков на области-интервалы: в каждую попало одинаковое число точек.

factors = pd.qcut(ages, 4)

•	Кластеризация
	• Экспертно

	counts	freqs
categories		
(5.999, 17.0]	19	0.271429
(17.0, 25.0]	16	0.228571
(25.0, 34.0]	19	0.271429
(34.0, 42.0]	16	0.228571

Способы дискретизации: Equal-width (distance) partitioning

$${x : hi \le x < h(i+1)} \rightarrow i$$

+ простая быстрая реализация

неравномерные бины

x2 = np.round(x).astype(int)

сюда же округление! Почему нужно?

есть средства бинаризации:

from sklearn.preprocessing import Binarizer
bn = Binarizer(threshold=0.9)
new = bn.transform(old)

Способы дискретизации: Equal-depth (Frequency, Quantile-based) partitioning

+ равномерные бины

```
X['name'].quantile([.2, .4, .6, .8]) # пороги-квантили x2 = pd.qcut(x, 10, labels=False) # квантильная дискретизация
```

Способы дискретизации: Кластеризация


```
from sklearn.cluster import KMeans
model = KMeans(n_clusters=4, random_state=0)
a = model.fit_predict(x)
c = np.sort(model.cluster_centers_[:, 0])
c = (c[1:] + c[:-1]) / 2
c = np.concatenate([min(x), c, max(x)])
```

Способы дискретизации

Если не угадать с кластеризацией...

Способы дискретизации:

Кластеризация

Если есть группа однородных признаков, то можно с помощью кластеризации получить новый категориальный признак «номер кластера»

Или «расстояние до центра кластера»

Дискретизация (биннинг, Binning)

Способы кодирования при дискретизации:

- первым / последним значением
- средним (арифметическим, медианой и т.п)
 - номером бина

Пример

Сокращение данных (Data Reduction)

- уменьшение объёма исходных данных, сохраняя полезную информацию
- отбор признаков (Feature Selection) отдельная тема next
- отбор объектов (Instance Selection) редко используется, как правило, по анализу или экспертами

Удаление дубликатов, «пустых» данных!

• дискретизация, огрубление информации (Discretization)

увеличение шага дискретизации перевод вещественных признаков в дискретные

Сокращение данных (Data Reduction)

• сэмплированое (Sampling)

- сокращение размерности (Dimensionality reduction)
 - о факторный анализ (factor analysis)
 - о метод главных компонент (PCA), SVD, случайные проекции
 - о нелинейные модели: LLE, ISOMAP
 - о многомерное шкалирование (MDS)

Сокращение данных (Data Reduction)

цели

- удаление лишних (нерелавантых) данных
 - повышение качества решения задачи
 - уменьшение стоимости данных
- увеличение скорости последующего анализа

(в частности, настройки моделей)

• повышение интерпретируемости моделей

Сокращение данных – удаление дубликатов

	uate	Sum	K	is_aup
0	2012-01-01	55	1.2	False
1	2012-02-03	117	4.3	False
2	2012-01-01	55	1.5	True
3	2012-02-03	117	0.2	True

	date	sum	k	is_dup
0	2012-01-01	55	1.2	False
1	2012-02-03	117	4.3	False

тонкости

- дубликаты могут быть по подмножеству признаков (ех: есть шумовой признак)
 - как с пропусками и выбросами:

факт дублирования м.б. важен (лучше установить причину)

Совет: смотреть данные, отсортированные по отдельным признакам

Сокращение данных – удаление дубликатов

По числу уникальных значений, можно догадаться, что категориальные признаки равны.

pic

Сокращение данных – сэмплирование

- Без возвратов (Simple random sampling without replacement)
- С возвратами (Simple random sampling with replacement)
- Балансированное (Balanced sampling) сэмплирование при котором подвыборка будет удовлетворять некоторому заранее заданному условию (например, 90% описаний будет соответствовать пациентам старше 60 лет)
- Кластерное (Cluster sampling) предварительно данные разбиваются на кластеры и выбирается поднабор кластеров.
- Стратифицированное (Stratified sampling) предварительно данные разбиваются на кластеры, в каждом кластере отдельно осуществляется сэмплирование, таким образом в подвыборку попадают представители всех кластеров.

Для более быстрого поиска оптимальных параметров. Составляющая часть алгоритма (RF) Для получения выборки, обладающей специальными свойствами.

Сэмплирование

может производиться с предварительно заданными вероятностями

- ~ сложность классификации объектов для получения «трудных» выборок
 - ~ веса в функциях ошибок
- ~ свежесть данных / доверие к данным

Сокращение размерности (Dimensionality reduction) PCA

X = X - X.mean(axis=0)U, L, V = svd(X)

Тонкости: Truncated SVD, с точностью до знака

Сокращение размерности (Dimensionality reduction)

Изначальный размер изображения 300×451

```
from numpy.linalg import svd
U, L, V = svd(image)
k = 5
plt.imshow(U[:,:k].dot(np.diag(L[:k]).dot(V[:k,:])),
cmap=plt.cm.gray)
```

Вопрос: как ещё использовать SVD в изображениях?

Резюме

- качественные данные \Rightarrow качественная модель
 - очень трудозатратно (м.б. 90% времени)