St. Xavier's College (Autonomous), Kolkata

Department of Statistics

MDTS 4113/SEM I

Linear Algebra

Notes on Orthogonal Projections

Let V be an inner product space and W be a finite-dimensional subspace of V.

Then any vector $\underline{x} \in V$ is uniquely represented as $\underline{x} = \underline{y} + \underline{e}$, where $\underline{y} \in W$ and $\underline{e} \perp W$.

The component \underline{y} is the orthogonal projection of the vector \underline{x} onto the subspace W. The distance from \underline{x} to the subspace W is $\|\underline{e}\|$.

If \underline{v}_1 , \underline{v}_2 , ..., \underline{v}_n is an orthogonal basis for W then

$$\underline{y} = \underbrace{\langle \underline{\mathbf{x}}, \underline{\mathbf{v}}_1 \rangle}_{\langle \underline{\mathbf{v}}_1, \underline{\mathbf{v}}_1 \rangle} \underline{\mathbf{v}}_1 + \underbrace{\langle \underline{\mathbf{x}}, \underline{\mathbf{v}}_2 \rangle}_{\langle \underline{\mathbf{v}}_2, \underline{\mathbf{v}}_2 \rangle} \underline{\mathbf{v}}_2 + \dots + \underbrace{\langle \underline{\mathbf{x}}, \underline{\mathbf{v}}_n \rangle}_{\langle \underline{\mathbf{v}}_n, \underline{\mathbf{v}}_n \rangle} \underline{\mathbf{v}}_n$$
Projection of Projection of Projection of \underline{x} on \underline{v}_1 on \underline{v}_2 on \underline{v}_n

• The orthogonal projection of any vector \underline{x} onto \underline{v}_i : $Proj_{\underline{v}_i}(\underline{x}) = (\underline{x}. \underline{v}_i) \underline{v}_i$, i = 1, 2, ... n.

- The orthogonal projection of any vector \underline{x} onto W: $Proj_W(\underline{x}) = \sum_{i=1}^n (\underline{x}. \underline{v}_i) \underline{v}_i = \sum_{i=1}^n Proj_{\underline{v}_i}(\underline{x})$
- $\underline{x} = Proj_W(\underline{x}) + \underline{e}, \qquad \underline{e} \perp W$
- Define a matrix $P = [\underline{v}_1 \ \underline{v}_2 \ \dots \underline{v}_n]$ then, $Proj_W(\underline{x}) = PP^T\underline{x}$

Best Approximation:

Let W be a subspace.

- Then, for any vector \underline{y} , $Proj_W(\underline{y}) \in W$ is the best approximation to \underline{y} by vectors in W.
- More precisely, $Proj_W(\underline{y})$ is the closest point in W to \underline{y} ,

i.e.,
$$\|\underline{y} - \text{Proj}_{W}(\underline{y})\| \le \|\underline{y} - \underline{w}\|$$
, for any $\underline{w} \in W$

• This closest distance is defined as the distance from y to W:

$$\operatorname{dist}(\underline{y}, W) = \min \left\{ \left\| \underline{y} - \underline{w} \right\| : \underline{w} \in W \right\} = \left\| \underline{y} - \operatorname{Proj}_{W}(\underline{y}) \right\|$$

Method of Least Squares observations:

y(response)

Consider a Linear Model: $\underline{y} = X\underline{\beta} + \underline{\varepsilon}$

To estimate the parameter β .

The error is $E=||\underline{y} - X\underline{\beta}||$: distance of \underline{y} to the point $X\underline{\beta}$ in the column space of X.

So, searching for the least square solution $\underline{\beta}$ minimizing E, is same as locating the point $p=X\underline{\beta}$, that is closer to \underline{y} than any other point in the column space.

