Radiation Physics

A. Basics of Radiation

A.1. Cross section

→ The number of interactions detected can be calculated as:

$$N_{\text{detector}} = I \cdot n \cdot x \cdot \epsilon \cdot \sigma_{\text{total}},$$
 (1)

where:

 $I = \frac{dN_{\text{incident}}}{dt}$ is the incident particle flux (rate of incident particles), $I = \frac{dN_{\text{incident}}}{dt} = \frac{N_{AV}}{\rho}$ is the number density of scatterers, with:

 $\rho =$ Material density, $N_{AV} =$ Avogadro's number,

A = atomic weight of the material.

- $\epsilon = \epsilon_{\text{intrinsic}} \cdot \epsilon_{\text{qeo}}$ is the detection efficiency, consisting of:

$$\epsilon_{\text{geo}} = \frac{S}{d^2}$$

where S is the sensitive area of the detector and d is the distance between the detector and the interaction point. $-\sigma_{\rm total}$ is the total cross section, which can be expressed as an integral over the solid angle:

$$\sigma_{\mathsf{total}} = \int \frac{d\sigma(\theta, E)}{d\Omega} d\Omega,$$

where $\frac{d\sigma(\theta,E)}{d\Omega}$ represents the differential cross section as a function of angle θ and energy E.

- → Assume an interaction: A(a, b)B
- I_a = current of incident particles a; number of particles per unit time
- \rightarrow N_T = number of target nuclei per unit area
- \Rightarrow R_b = number of detected particles b per unit time (reaction rate)

$$R_h \propto I_a N_T$$

Define the cross section σ :

$$\sigma = \frac{R_b}{I_2 N_T}$$

The cross section σ has the dimension of area. The standard unit for cross section is the *barn*:

1 barn =
$$10^{-24}$$
 cm² = 100 fm²

$$I = I_0 e^{-\sigma nx} = I_0 e^{-\mu x}$$
, (2)

where l_0 is the initial intensity of the incident radiation, x is the thickness of the material, and μ is the linear attenuation coefficient defined as $\mu=\sigma n$.

 \rightarrow For a mixture or compound, the mass attenuation coefficient $\left(\frac{\mu}{\rho}\right)$ can be expressed as:

$$\left(\frac{\mu}{\rho}\right) = \sum w_i \left(\frac{\mu}{\rho}\right)_i,\tag{3}$$

A.2. Lab coordinate and Center-Of-Mass coordinate

→ Angle Transformation:

$$\tan(\theta_{\mathsf{lab}}) = \frac{\sin(\theta_{\mathsf{cm}})}{\gamma + \cos(\theta_{\mathsf{cm}})}$$

→ Solid Angle Transformation:

$$d\Omega_{\rm lab} = \frac{|1 + \gamma \cos(\theta_{\rm cm})|}{(1 + \gamma^2 + 2\gamma \cos(\theta_{\rm cm}))^{3/2}} d\Omega_{\rm cm}$$

→ Energy Transformation:

$$E_{\rm cm} = \frac{M_a}{M_a + M_A} E_{\rm lab}$$

→ Definition of γ:

$$\gamma = \sqrt{\frac{M_a M_b}{M_A M_B} \cdot \frac{E_{cm}}{E_{cm} + Q}} \approx \frac{M_a}{M_A}$$

B. Interaction of Photon and matter

B.1. Photoelectric effect

→ Moseley's Law:

$$E_n = Rhc \frac{(Z - s_n)^2}{n^2}$$

where:

- → R is the Rydberg constant,
- \rightarrow Z is the atomic number of the element,
- \rightarrow s_n is the screening constant that accounts for the shielding effect of inner electrons.
- → Photoelectron Kinetic Energy:

$$K_{a-} = E_{\gamma} - B_{r}$$

→ Cross-Section Dependence

$$\sigma \propto Z^4 \cdot E_{\gamma}^{-3}$$

B.2. Scattering

- → Rayleigh Scattering
- → Type: Elastic scattering, Coherent
- → Interaction Mechanism: Interaction of photons with bound electrons in an atom without energy transfer. It occurs when the incident photon's wavelength is much larger than the size of the particle.
- → Differential Cross Section:

$$\frac{d\sigma}{d\Omega} \propto r_0^2 \left(\frac{1+\cos^2\theta}{2}\right) \cdot \left[F\left(\frac{\sin\left(\theta/2\right)}{\lambda},Z\right)\right]^2 \cdot 2\pi \sin\theta$$

where $F\left(\frac{\sin(\theta/2)}{\lambda},Z\right)$ is the atomic form factor that depends on the scattering angle and atomic number Z. This factor accounts for the constructive interference of scattered waves, leading to coherent scattering.

→ Thomson Scattering

- →→ Type: Elastic scattering, Coherent
- → Interaction Mechanism: Scattering of low-energy photons by free or loosely bound electrons. It occurs in the limit of low photon energy, where the electron remains non-relativistic.
- → Differential Cross Section:

$$\frac{d\sigma}{d\Omega} = r_0^2 \left(\frac{1 + \cos^2 \theta}{2} \right)$$

This describes the scattering of electromagnetic waves off free electrons, assuming no change in photon energy.

→ Compton Scattering

- → Type: Inelastic scattering, Incoherent
- → Interaction Mechanism: Photon-electron interaction causing an energy transfer from the photon to the electron, resulting in a lower-energy scattered photon and a recoiling electron. It is significant at higher photon energies where energy transfer cannot be ignored.
- Differential Cross Section: The differential cross-section for Compton scattering is given by the Klein–Nishina formula:

$$\frac{d\sigma}{d\Omega} = r_0^2 \cdot \frac{1+\cos^2\theta}{2} \cdot \left[\frac{1}{1+\alpha(1-\cos\theta)}\right]^2 \cdot$$

$$\left[1 + \frac{\alpha^2(1-\cos\theta)^2}{(1+\cos^2\theta)(1+\alpha(1-\cos\theta))}\right]$$

where $\alpha = \frac{E\gamma}{m_{\rm ec}c^2}$ is the normalized photon energy. This formula reflects the dependence of the cross-section on the scattering angle θ and the photon's initial energy $E\gamma$. The energy of the scattered photon E_{L} is given by:

$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{mec^2}(1 - \cos\theta)}$$

The Compton shift, which represents the wavelength change due to scattering, is expressed as:

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$

B.3. Pair/Triple production

- → Threshold Energy:
- For Pair Production, the photon energy must exceed the combined rest mass energy of an electron-positron pair:

$$h\nu_{\rm threshold} = 2m_e c^2 \approx 1.022 \, {\rm MeV}$$

→→ For **Triple Production**, involving an additional electron, the threshold energy is:

$$h\nu_{\rm threshold} = 4m_e c^2 \approx 2.044 \, {\rm MeV}$$

Cross-Section Approximation: The cross-section σ for pair and triple production processes is approximately proportional to the square of the atomic number Z and the logarithm of the incident photon energy E_N:

$$\sigma \approx Z^2 \ln(E_{\alpha} + C)$$

where \mathcal{C} is a constant that depends on the material properties and interaction parameters. This logarithmic dependence indicates that the cross-section increases with increasing photon energy but at a decreasing rate.

B.4. Photon-Nuclear Interaction

- → Description: Photon-nuclear interactions occur when high-energy photons (typically above a few MeV) interact with a nucleus, causing nuclear reactions. These interactions can result in the emission of particles such as neutrons, protons, or even alpha particles. The most common photon-nuclear processes include the photo-neutron and photo-proton reactions.
- Photonuclear Reactions: The general form of photonuclear reactions can be represented as:

$$\gamma +_Z^A X \to_Z^{A-1} X + n$$

 $\gamma + {}^{A}_{7}X \rightarrow {}^{A-1}_{7}Y + p$

where

- → → γ represents the incident high-energy photon,
- $\stackrel{A}{\rightarrow}\stackrel{A}{\stackrel{A}{\rightarrow}}X$ is the target nucleus with atomic number Z and mass number $\stackrel{A}{\stackrel{A}{\rightarrow}}$
- \rightarrow n denotes the emitted neutron, and p denotes the emitted proton,
- \rightarrow $A^{-1}X$ and $A^{-1}Y$ are the resulting daughter nuclei.

C. Interaction of charged particle and matter

C.1. Stopping Power and Collision Types

- → Stopping Power:
- → Collision Stopping Power: This represents the energy loss due to inelastic collisions with atomic electrons. These collisions lead to ionization and excitation of atoms within the material.
- →→ Radiation Stopping Power: This accounts for energy loss due to the emission of bremsstrahlung radiation, which occurs when a charged particle is decelerated by the electric field of a nucleus.

$$S = \frac{dE}{dx} = S_{\text{rad}} + S_{\text{col}}$$

- → Collision Types:
- → Close/Hard Collisions: $b \approx a$
- $\rightarrow \rightarrow$ Far/Soft Collisions: $b \gg a$
- ightharpoonup Radiation/Bremsstrahlung Collisions: $b \ll a$

C.2. Stopping Power Concepts

→ Bohr Classical Formula: A model describing the energy loss of charged particles due to Coulomb interactions with atomic electrons. The formula gives an approximation for the stopping power at lower energies.

$$S_{\text{col}} = 4\pi \frac{ZN_{\text{A}}}{A} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 \frac{z^2}{m_{\text{e}}v^2} \ln \frac{b_{\text{max}}}{b_{\text{min}}}$$

$$S_{\text{col}} = 2\pi \frac{ZN_{\text{A}}}{A} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 \frac{z^2}{m_{\text{e}}v^2} \ln \frac{2mv^2}{I}$$

→ Bethe Equation: The Bethe formula describes the stopping power of charged particles moving through matter. It is given by:

$$S_{col} = S^{hard} + S^{soft}$$

$$=4\pi\frac{ZN_{\rm A}}{A}\left(\frac{e^2}{4\pi\varepsilon_0}\right)^2\frac{z^2}{m_{\rm e}c^2\beta^2}\left\{\ln\frac{2m_{\rm e}c^2}{I}+\ln\frac{\beta^2}{1-\beta^2}-\beta^2\right\}$$

where I is the mean excitation potential.

→ Fano Correction: A correction term applied to the Bethe equation to account for deviations from the classical assumptions in the stopping power calculation, particularly for electrons and positrons.

$$4\pi \frac{N_{\mathsf{A}}}{A} \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \frac{z^2 Z}{m_{\mathsf{e}} c^2 \beta^2} \left\{ \ln \frac{2m_{\mathsf{e}} c^2}{I} + \ln \frac{\beta^2}{1-\beta^2} - \beta^2 - \frac{\mathsf{C}}{\mathsf{Z}} - \delta \right\}$$

→ Mass Stopping Power: The stopping power normalized by the density of the absorbing material, for compounds:

$$\frac{1}{\rho} \frac{dE}{dx} = \sum_{i} w_{i} \frac{1}{\rho_{i}} \left(\frac{dE}{dx} \right)_{i}$$
$$w_{i} = (\alpha_{i} A_{i}) / \sum_{i} \alpha_{i} A_{i}$$

→ CSDA Range: The Continuous Slowing Down Approximation (CSDA) range is the total distance a charged particle travels in a material as it loses energy continuously. It is calculated by integrating the reciprocal of the stopping nower:

$$R_{\rm CSDA} = \int_0^{(E_{\rm K})_0} \frac{dE}{S_{\rm tot}(E)} = \int_{E_0}^0 \frac{dx}{dE} dE = \int_{E_0}^0 \frac{1}{(dE/dx)} dE [{\rm cm}]$$

 $R_{m_CSDA} = \int_{F_0}^{0} \frac{d\xi}{dE} dE = \int_{F_0}^{0} \frac{1}{(dE/d\xi)} dE \quad \left[g/cm^2 \right]$

 Substitution Rule: For two different materials with charges Z₁, Z₂, and masses m₁, m₂, the range can be related as:

$$\left(\frac{dE}{d\xi}\right)|_{\left(E_{2}\right)}=\frac{z_{2}^{2}}{z_{1}^{2}}\left(\frac{dE}{d\xi}\right)|_{\left(E_{1}\right)}$$

$$R_2(E_2) = \frac{m_2 Z_1^2}{m_1 Z_2^2} R_1(E_1)$$
, where $E_1 = E_2 \frac{m_1}{m_2}$

→ Bragg-Kleeman Rule:

$$\frac{(R_1/\rho_1)}{(R_2/\rho_2)} = \frac{\sqrt{A_1}}{\sqrt{A_2}}$$

→ Critical Energy (E_c): The critical energy is the energy at which the energy loss due to radiation (bremsstrahlung) becomes equal to the energy loss due to collisions. It is given by:

$$\frac{(dE/dx)_{\text{rad}}}{(dE/dx)_{\text{col}}} \approx \frac{E_k Z}{800}$$
, $(E_k)_{\text{critical}} = \frac{800}{Z}$

→ Radiation Yield (Y): The fraction of the total energy loss due to radiation as opposed to collisions. For electrons, the yield is approximated by:

$$Y = \frac{E_{\text{rad}}}{E_{\text{total}}} \approx \frac{6 \times 10^{-4} ZT}{1 + 6 \times 10^{-4} ZT}$$

where Z is the atomic number of the material and T is the kinetic energy of the particle.

D. Neutron physics

D.1. Energy Classifications of Neutrons

Neutrons can be classified based on their energy levels into several

- → Slow (Cold) Neutrons: Energy Range: 0 0.005 eV
- → Thermal Neutrons: Energy Range: 0.005 0.5 eV
- ⇒ Epithermal Neutrons: Energy Range: 0.5 1000 eV
- → Intermediate Neutrons: Energy Range: 1 100 keV

→ Fast Neutrons: Energy Range: 0.1 - 10 MeV

Neutrons also interact differently with target nuclei based on their mass

- → Light Nuclei: Mass Number: A < 25
- → Medium Nuclei: Mass Number: 25 < A < 80</p>
- → Heavy Nuclei: Mass Number: A > 80

D.2. Neutron Sources

Neutrons can be sourced from various processes, including:

- Fission: Neutrons are produced during the fission of heavy nuclei.
- → Particle Accelerators: High-energy particle collisions can produce
- \rightarrow (α ,n) Reactions: Neutrons are emitted when alpha particles interact with certain materials
- → (γ,n) Reactions: Neutrons are produced when gamma rays interact with certain nuclei.

D.3. Neutron Reactions

Neutrons can undergo various reactions, primarily classified into scattering and absorption:

- → Scattering:
- →→ Elastic Scattering (n, n):

$$\Delta E_{K \text{max}} = (E_K)_i \frac{4m_n M}{(m_n + M)^2}$$

Kinetic energy of the scattered neutron

$$(E_K)_f = (E_K)_i - \Delta E_{K \text{max}} = (E_K)_i (\frac{M - m_n}{M + m_n})^2$$

For certain angle $:\Delta E_K = (E_K)_i \frac{4m_n M}{(m_n + M)^2} \cos^2 \theta$. The average energy transfer is given by:

$$\langle \Delta E \rangle = \frac{\Delta E_{K \text{max}}}{2}$$

The average kinetic energy attained by the scattered neutron is

$$(E_K)_f = (E_K)_i - \langle \Delta E \rangle = (E_K)_i \frac{m_n^2 + M^2}{(m_n + M)^2}$$

 \rightarrow Inelastic Scattering (n, n' γ): In this reaction, a neutron is scattered and energy is transferred to the nucleus, resulting in gamma radiation

→ Absorption:

- Fission: Absorption of a neutron can lead to the fission of heavy nuclei
- \rightarrow Radiative Capture (n,γ) : A neutron is captured by a nucleus, emitting gamma radiation.
- \rightarrow Other reactions include:(n, p); (n, d); (n, α); (n, np); (n, 2n); (n, 3n): (n. f)
- \rightarrow Compound nucleus formation $a + A \rightarrow C^* \rightarrow B + b$

$$mc^2 + Mc^2 + T = M_{CN}c^2 + E_{k=4}$$

→ Partial decay lifetimes of compound nucleus states

$$\Gamma = \Gamma_{n,n} + \Gamma_{n,n/\alpha} + \Gamma_{n,\gamma} + \Gamma_{n,p} + \cdots$$

Relative probability of radiative capture is therefore $\frac{\Gamma_{n,\gamma}}{\Gamma}$

- For light nuclei, $\Gamma_{n,n} \gg \Gamma_{n,n}$
- For heavy nuclei, $\Gamma_{n,\gamma} \gg \Gamma_{n,n}$

Neutron width increases with energy of resonance: $\Gamma_{n,n} = \Gamma_{n,0} \sqrt{E}$

→ The formula for the Breit-Wigner cross section

$$\sigma_{CN} = \pi \lambda^2 (2\ell - 1) \frac{\Gamma_a \Gamma}{(E - E_R)^2 + \left(\frac{\Gamma}{2}\right)^2}$$

The decay in to entity b is expressed

$$\sigma_{ab} = \sigma_{CN} \frac{\Gamma_b}{\Gamma}$$

The energy-dependent cross-sections for compound elastic scattering is given by:

$$\sigma_{n,n} = \pi \lambda^2 \frac{\Gamma_{n,n}^2}{(E - E_R)^2 + \left(\frac{\Gamma}{2}\right)^2}$$

Cross sections for radiative capture

$$\sigma_{n,\gamma} = \pi \lambda^2 \frac{\Gamma_{n,n} \Gamma_{n,\gamma}}{(E - E_R)^2 + \left(\frac{\Gamma}{2}\right)^2}$$

E. X-ray production

Energy Range	X-ray Type	Typical Application		
0.1 - 20 kV	Soft X-rays	Microscopy, surface analysis		
20 - 150 kV	Diagnostic X-rays	Medical imaging, diagnostic		
150 - 300 kV	Orthovoltage X-rays	Superficial cancer treatment		
300 kV - 1 MV	Intermediate Energy X-rays	Therapeutic, deeper tissue treatmen		
> 1 MV	Megavoltage X-rays	High-energy cancer treatment		

→ Bremsstrahlung Radiation Power

$$P = \frac{\mu_0 q^2 a^2}{6\pi c}$$

→ Cross-section of Bremsstrahlung

$$\frac{d\sigma}{dE} \propto \frac{Z^2}{m^2} \frac{In^2 E}{E}$$

→ Kramer's law

$$I(E_{\gamma}) = KZ(T_e - E_{\gamma})$$

→ Efficiency Estimation

$$\frac{S_{\rm rad}}{S_{\rm col}} \approx \frac{E_k Z}{820}$$
 (E_k in MeV)

$$P_{\text{deposited}} = IV, P_{\text{radiated}} = 0.9 \times 10^{-9} ZV^2 I$$

 $\varepsilon = 0.9 \times 10^{-9} ZV$

F. Nuclear radiation and radioactive decay

F.1. Nuclear Binding Energy and Q-value

→ Nuclear Binding Energy:

$$\begin{aligned} \frac{B}{A} &= -(M(A, Z) - (A - Z)m_n - Z(m_p + m_e)) \\ &= -(-a_1 A + a_2 A^{\frac{2}{3}} + a_3 \frac{\left(\frac{A}{2} - Z\right)^2}{A} + a_4 \frac{Z^2}{4^{\frac{1}{2}}} + a_5 \frac{\delta}{A^{\frac{3}{4}}})/A \end{aligned}$$

$$M(A, Z) = (A - Z)m_n + Z(m_p + m_e) - B$$

→ Q-value:

$$Q = \sum_{i,before} M_i c^2 - \sum_{i,after} M_i c^2 = \sum_{i,after} B_i - \sum_{i,before} B_i$$
$$= \sum_{i,before} \Delta_i - \sum_{i,before} \Delta_i - \sum_{i,before} \Delta_i$$

- where $\Delta[{\rm MeV}]=M(A,Z)c^2-Am_{\rm amu}c^2$. If Q>0, it indicates an exothermic reaction (energy release).
- If Q < 0, it indicates an endothermic reaction (energy absorption).
- F.2. Decay Type

→ Alpha Decay (α decay):

$$P
ightarrow D + He$$
, $Q = \Delta_P - \Delta_D - \Delta_{He}$

- → Beta Decay (β decay)
- $\rightarrow \rightarrow$ For β^- decay:

$$P \rightarrow D + e^{-} + \overline{\nu}$$
, $Q = \Delta_{P} - \Delta_{D}$

 $\rightarrow \rightarrow$ For β^+ decay

$$P \rightarrow D + e^+ + \nu$$
, $Q = \Delta_P - \Delta_D - 2m_ec^2$

→→ For electron capture:

$$P + e^- \rightarrow D + \nu$$
, $Q = \Delta_B - \Delta_D - BE(e^-)$

→ Gamma Decay (γ decay):

$$X^m \rightarrow X + \gamma$$

F.3. Radioactivity

→ Activity:

$$A = \lambda N$$

→ Exponential Decay:

$$N(t) = N_0 e^{-\lambda t}$$

→ Mean Life

$$\tau = \frac{1}{\lambda} = \frac{T}{\ln 2}$$

→ Special Activity

$$SA = \frac{6.02 \times 10^{23} \lambda}{M} = \frac{4.17 \times 10^{23}}{MT}.$$

F.4. Serial Radioactive Decay

- Decay Chain: A radioactive nuclide decays into another nuclide, forming a decay chain, represented as:

$$N_1 \xrightarrow{\lambda_1} N_2 \xrightarrow{\lambda_2} N_3$$

→ Equilibrium States:

 $\rightarrow \rightarrow$ Secular Equilibrium: $T_1 \gg T_2$.

$$A_2 = A_1(1 - e^{-\lambda_2 t}) + A_{20}e^{-\lambda_2 t}$$

 \rightarrow → Transient Equilibrium: $T_1 > T_2$.

$$N_2 = \frac{\lambda_1 N_{10}}{\lambda_2 - \lambda_1} (e^{-\lambda_1 t} - e^{-\lambda_2 t}), A_2 = \frac{\lambda_2 A_1}{\lambda_2 - \lambda_1}$$

 $\rightarrow \rightarrow$ No Equilibrium: $T_1 < T_2$,

$$N_2 = \frac{\lambda_1 N_{10}}{\lambda_1 - \lambda_2} (e^{-\lambda_2 t} - e^{-\lambda_1 t})$$

G. Counting Statistics and Error Analysis

G.1. General Aspects on Radiation Measurement and Data

- → Fundamental Data: The core data in radiation measurement are counts, which serve as indicators of radiation events.
- → Types of Errors:
- → Systematic Errors (Bias): These impact accuracy due to fixed biases, e.g., calibration errors.
- → Random Errors (Precision): Variability arising from factors like electronic noise, minimized by large samples.
- → Accuracy vs Precision: Accuracy reflects closeness to the true value while precision indicates measurement repeatability.
- G.2. Statistical Methodology
- → Descriptive Statistics: Central tendency measures (mean, median, mode) and variability (variance, standard deviation).
- → Inferential Statistics: Used to draw conclusions about population parameters, employing sample data.

G.3. Statistical Models for Counting Statistics

- → Binomial Distribution: Suitable for processes with two outcomes, defined by the probability of success p and number of trials n.
- → Poisson Distribution: Used when the event probability is low and trials are numerous, approximates binomial for rare events, e.g., radiation
- → Gaussian (Normal) Distribution: Approximates distribution with a large sample size or high event mean.

G.4. Error Estimation and Propagation

- → Single Measurement Error: Variance for a Poisson-distributed process is $\sigma^2 = \mu$.
- → Multiple Measurements:

$$SE = \frac{\sigma}{\sqrt{N}}$$

→ Error Propagation Formula

$$\sigma_{u} = \sqrt{\left(\frac{\partial u}{\partial x}\sigma_{x}\right)^{2} + \left(\frac{\partial u}{\partial x}\sigma_{y}\right)^{2} + \cdots}$$

→ Chi-Square Test: Used to test the "goodness of fit" of observed data to expected distributions

G.5. Applications of Counting Statistics

- → Limits of Detectability:
- ROC Curves: Analyzes binary decision accuracy using true positive/negative rates.
- → Minimum Detectable Amount (MDA): Defines the smallest reliably detectable signal.
- → Pulse Time Interval Statistics: Examines the intervals between pulses to interpret random decay event distributions.

	Time intervals	Counts		
Distribution Function	Erlang: $I_n(t) = \frac{(rt)^{(n-1)}e^{-rt}}{(n-1)!}$	Poisson: $P(n; rt) = \frac{(rt)^n e^{-rt}}{n!}$		
Туре	Continuous	Discrete		
Variable	Time (t)	Count number (n)		
Mean	$\tau_n = \frac{n}{r}$	$\bar{n} = rt$		
Variance	$\sigma_F^2 = \frac{\tau_n^2}{n} = \frac{n}{r^2}$	$\sigma_P^2 = \bar{n} = rt$		

H. General Properties of detector

H.1. Detector working mode

→ Pulse Mode

 $\rightarrow \rightarrow$ Case 1: Small RC Time Constant $(t \ll \tau_c)$

$$V(t) = R \times i(t)$$

Here, i(t) represents the instantaneous current at time t, and R is the resistance. This is the fast response case, capturing rapid changes in current.

 \rightarrow Case 2: Large RC Time Constant $(t \gg \tau_c)$

$$V_{\text{max}} = \frac{Q}{G}$$

where Q is the charge collected during the pulse and C is the capacitance. In this case, the circuit integrates the current over

→ Current Mode

The total current can be expressed as:

$$I(t) = I_0 \pm \sigma_I(t), \quad I_0 = rQ = r \frac{E}{wq_e}$$

The mean squared value of the current fluctuations is given by:

$$\overline{\sigma_I^2(t)} = \frac{1}{T} \int_{t-T}^t \left[I(t') - I_0 \right]^2 dt' = \frac{1}{T} \int_{t-T}^t \sigma_i^2(t') dt'$$

where T is the measurement time interval. This equation represents the time-averaged variance in current fluctuations.

From Poisson statistics, the standard deviation in the number of events n over time T is:

$$\sigma_n = \sqrt{n} = \sqrt{rT}$$

where n = rT is the mean number of events in the time interval T. Thus, the fractional standard deviation in current is:

$$\frac{\overline{\sigma_I(t)}}{I_0} = \frac{\sigma_n}{n} = \frac{1}{\sqrt{rT}}$$

→ Mean Square Voltage (MSV) Mode

$$\overline{\sigma_I^2(t)} = \frac{I_0^2}{rT} = \frac{(rQ)^2}{rT} = \frac{rQ^2}{T}$$

H.2. Key concepts on detector properties

- → Pulse height spectra
- →→ Differential PHS:

$$N = \int_{H_1}^{H_2} \frac{dN}{dH} dH$$

→→ Integral PHS:

$$N(H*) = \int_{H*}^{\infty} \frac{dN}{dH} dH$$

→ Energy resolution:

FWHM = 2.35
$$\sigma$$
, $R = \frac{\text{FWHM}}{N} = \frac{2.35}{\sqrt{N}}$

→ The Fano factor. F

$$F \equiv \frac{\text{observed variance in } N}{\text{Poisson predicted variance}(=N)}$$

Statistical resolution:

$$R|_{\text{statistical limit}} = 2.35\sqrt{\frac{F}{N}}$$

→ Detector efficiency:

$$N_{obs} = N_{abs} \cdot \varepsilon_{tot} = N_{abs} \cdot W(\Theta, \Phi) \cdot \varepsilon_{geo} \cdot \varepsilon_{intrinsic} \cdot \varepsilon_{electronic}$$

- → Dead time Assume: n = true event rate, m = measured events rate, T = average period between true events (=1/n), τ = system dead time
- → Nonparalyzable Model: fixed dead time

$$m=rac{n}{1+n au}$$
, $n=rac{m}{1-m au}$

--- Paralyzable Model: extendable dead time

$$m = ne^{-n\tau}$$
, $n = -\frac{W(-m\tau)}{\tau}$

Dead Time Measurement: two source method

$$n_{12} + n_b = n_1 + n_2$$

→ → Nonparalyzable Model:

$$\tau = \frac{m_1 m_2 - \sqrt{m_1 m_2 (m_{12} - m_1)(m_{12} - m_2)}}{m_1 m_2 m_{12}}$$

→→ Paralyzable Model:

$$\tau = \frac{2m_{12}}{(m_1 + m_2)^2} \ln \left(\frac{m_1 + m_2}{m_{12}} \right)$$

I. Gas-filled Detector

- Ionization region: ionization chambers
- Proportional region: proportional counters
- Geiger-Mueller region: Geiger counters

I.1. Ionization Chambers

→ Average number of ion pairs:

$$\langle n_T \rangle = \frac{L \cdot \left\langle \frac{dE}{dx} \right\rangle_i}{W_i}$$

→ The drift velocity of charge in a gas

$$v = \mu \frac{\mathcal{E}}{p}$$

- → No internal gain (gain ~ 1).
- Slow drift velocity ($\nu_e \sim 10^3 m/s$, $\nu_{ion} \sim 1 m/s$).
- Charge collection time is too slow to count individual pulses.
- Poor timing properties.
- → Exposure: defined as the amount of ionization charge per unit mass

$$X \equiv \frac{Q}{M}$$

Convert exposure to dose $D = X \times 33.7[Gv]$

I.2. Proportional Counters

$$\mathcal{E} = \frac{V}{r \ln(b/a)}$$

a = anode wire radius, b = cathode inner radius.

→ nobel gas (such as Ar) + "quench gas" (such as CH4)

I.3. Geiger-Mueller Tubes(G-M counters)

- → Chain avalanche leads to Geiger discharge
- Primary Geiger discharge
- Secondary Geiger discharge(UV photons)
- → A cloud of positive ions surrounds the anode, with the effect of reducing the electric field intensity, leads the Geiger discharge termination - called Quenching effect.

Detector Type	Avalanche amplification	Good timing?	Energy information	Use as monitor	
Ion chamber	none	no, ~10-2 s	none	yes	
Prop. counter	10 ³ - 10 ⁵	yes, ~10-6 s	yes	no	
G-M tube	~1010	yes, ~10⁻6 s	none	yes	

J. Semi-conductor Detector

J.1. Advantages of semiconductor detectors

- → Semiconductor with moderate bandgap (1-2 eV)
- → Thermal energy = 1/40 eV
- → Energy to create e/h pair (signal quanta) w 3.6 eV (c.f gas: w = 35 eV)
- → High charge carrier yield
- → Better energy resolution and large signal
- → High density and Z (comparing to gas)
- → High carrier mobility: Fast (< 30 ns)

J.2. Basic properties of semiconductor

Majority of charge carriers provided by donors (impurities; doping)

- n-type:majority carriers are electrons(pentavalent dopants)
- p-type:majority carriers are positive holes(trivalent dopants)
- Pentavalent dopants (electron donors); P. As. Sb. .
- [5th electron only weakly bound; easily excited into conduction band]
- Trivalent dopants (electron acceptors): Al, B, Ga, In, ...
- [One unsaturated binding: easily excepts valence electron leaving hole]
- → PN Junction: depletion depth

$$d \approx \sqrt{\frac{2\varepsilon V}{eN}} = \sqrt{2\varepsilon V \mu \rho}, \quad V_{\text{bias}} = \frac{eNd^2}{2\epsilon}, \quad \rho = \frac{1}{e(\mu_n n + \mu_p p)}$$

$$C = \frac{\epsilon A}{d} = A \sqrt{\frac{e\epsilon N}{2V}}$$

→ Noise sources: (ENC= Equivalent Noise Charge)

Capacitance: ENC $\propto C_d$ Leakage Current: ENC $\propto \sqrt{I}$

Thermal Noise: ENC $\propto \sqrt{K_BT/R}$

J.3. Photodiode (PD)

- Cut-off wavelength vs Energy bandgap

$$\lambda_g[\mu m] = \frac{1.24}{E_{gap}[eV]}$$

→ Photon attenuation

$$I(x) = I_0 e^{-\alpha x}$$

→ Photocurrent and responsivity

$$I_{Ph} = q \left(\frac{P_0}{h\nu}\right) (1-r)(1-e^{-\alpha d}), \quad R = \frac{I_{Ph}}{P_o} = \frac{q}{h\nu} (1-r)(1-e^{-\alpha d})$$

→ Quantum Efficiency(external and internal)

$$\eta_e = \frac{I_{ph}/q}{P_0/h\nu} = (1-r)[1-e^{-\alpha d}], \eta_i = \frac{\eta_e}{(1-r)} = 1-e^{-\alpha d} \cong 1$$

- Avalanche Photodiodes: current gain and responsivity

$$M = \frac{Multiplied\ photocurrent}{Primary\ photocurrent} = \frac{I_M}{I_p}, R_{APD} = \frac{\eta q}{h v} M = R_0 M$$

→ Response Time: transit time, diffuse time and RC time constant

$$t_d = \frac{W}{v_D}$$
, $t_{diff} = \frac{l^2}{2D_e}$, $\tau = R_T C_T$

Туре	PMT	APD	SiPM	
Amplification	High (10 ⁶)	Low (~10 ²)	High (10 ⁶)	
Magnetic field	Sensitive	Not sensitive	Not sensitive	
Compactness	bulky	compact	compact	
Bias (V)	HV (600~1200)	HV (300-1500)	20-70	
S/N ratio	High	Low	High	
Time resolution	~1 ns	> 1 ns (2-4 ns)	<1 ns (~200ps)	
Electronic readout	Voltage amplifier	Charge sensitive preamplifier	Voltage amplifier	

K. Scintillation Detector

K.1. General characteristics of scintillation detector

• High stopping power, density and Z

- Sensitivity to radiation energy Scintillation efficiency and light yield
- Fast time response Pulse shape discrimination
- Radiation hardening Usually expensive
- → Stokes Shift: emitted photons are at longer wavelengths (smaller energies) than the energy gap of the excitation. This allows the scintillation light to propagate through the material. Emitted photons can't be self-absorbed by exciting the material again
- → Light Output and Light Yield

$$L = L_0 \left(e^{-t/\tau_d} - e^{-t/\tau_r} \right), Y = \int_0^\infty L(t) dt$$

→ Scintillation Efficiency

$$\eta = \frac{Y \cdot \frac{hc}{\lambda}}{E}$$

K 2 Scintillators

- → Inorganic Scintillators: Intrinsic(self-activated)/Extrinsic(activated)
- → Efficiency for conversion of energy deposit to scintillation light

$$n = \beta SQ$$

where β - efficiency of energy conversion, S - efficiency of energy transfer, Q - quantum efficiency of luminiscent centers

- → Three mechanisms for scintillation
- Excitions (bound e-h pair)
- Defects (interstitial)
- activators (doped impurities): trace mounts of activators are purposely introduced to create some parrower levels within the forbidden band gap. E.g. NaI(TI), CsI(TI)
- → Organic Scintillators:low density; just C and H; photoelectric effect goes as Z^4
- → Molecular states: Singlet states (spin=0)
- A series of levels (vibration states) Gap between S_0 and S_1 is 3-4
- Triplet states (spin=1)

Two scintillation processes

Fluorescence : $S_1 \rightarrow S_0$ [ns] / Phosphorescence: $T_0 \rightarrow S_0$ [ms]

→ Light yield and Birk's law:

$$\frac{dL}{dx} = S\frac{dE}{dx}, \frac{dL}{dx} = \frac{S\frac{dE}{dx}}{1 + kB\frac{dE}{dx}}$$

K.3. Photomultiplier Tube (PMT)

$$G = \delta^{N} = 10^{6} - 10^{8}, \frac{dG}{G} = N \frac{dV_{d}}{V_{d}} = N \frac{dV_{d}}{V_{d}}$$

- → Causes of dark current include:
 - Thermionic emission from photocathode and dynodes

 - Leakage current between anode and other electrodes - Photocurrent by scintillation from glass or electrode supports
- Field emission current - Cosmic rays, radioactivity in glass envelope, radioactivity (gamma)
- from surroundings (cement) \rightarrow Energy Resolution: $N_e = xp\delta$, $\sigma_E^2(N_e) = \sigma_E^2(x) + \sigma_E^2(xp) + \sigma_E^2(xp\delta)$

$$\sigma_{\rm F}^2(N_{\rm e}) = \frac{1}{x} + \frac{1}{x} \frac{1-p}{p} + \frac{1}{xp} \frac{1}{(\delta-1)}$$

$$R_E = 2.35\sqrt{\frac{1}{\chi}\left(1 + \frac{1-p}{p} + \frac{1}{p(\delta-1)}\right)}$$

	Туре		Mechanism Interaction Signal		Device Energy Proportionality	Energy	Counting rate	Temporal	Position		
						Performance	Information	Information			
		Pulse mode				Collect ions	lon Chamber	Excellent	Low ‡	Pour	Average
	See-filled		lonization charges	Multiply & Collect ions	Prop. Chamber	Very good	1	Average	Good		
	8			Create discharge	GM Counter & Spark chamber	No	1	Good to Excellent	Excellent*		
	Semi- conductor		Ionization charges	Collect ions	Silicon Diode & CZT	Excellent	1	Average	Excellent		
	Scintillator		Excitation light	Convert light into electrons	Scintillation Detector	Acceptable	1 1	Excellent	Poor*		
	Gas-filled	Current	lonization charges	Collect current	lon Chamber	Radiation Field	High	None	None		