Elements of Econometrics.

Lecture 17.

Modeling with Time Series Data.

Dynamic Processes.

FCS, 2022-2023

POLYNOMIAL DISTRIBUTED LAG MODEL

Polynomial Distributed lag:

$$\begin{split} Y_t &= \alpha + \beta_0 X_t + \beta_1 X_{t-1} + \beta_2 X_{t-2} + \ldots + u_t \\ \text{Where } \beta_s &= \gamma_0 + \gamma_1 \cdot s + \gamma_2 \cdot s^2 + \ldots + \gamma_m \cdot s^m; \quad s = -1,0,1,2,\ldots \\ \beta_0 &= \gamma_0 - \gamma_1 + \gamma_2 + \ldots; \quad \beta_1 = \gamma_0; \qquad \beta_2 = \gamma_0 + \gamma_1 + \gamma_2 + \ldots + \gamma_m \end{split}$$

For example, for n = 3, m = 2 we get:

 $\beta_3 = \gamma_0 + 2\gamma_1 + 4\gamma_2 + \ldots + 2^m \gamma_m; \ldots$

$$\begin{split} Y_t &= \alpha + (\gamma_0 - \gamma_1 + \gamma_2) X_t + \gamma_0 X_{t-1} + (\gamma_0 + \gamma_1 + \gamma_2) X_{t-2} + \\ (\gamma_0 + 2\gamma_1 + 4\gamma_2) X_{t-3} + u_t &= \alpha + \gamma_0 (X_t + X_{t-1} + X_{t-2} + X_{t-3}) + \\ \gamma_1 (-X_t + X_{t-2} + 2X_{t-3}) + \gamma_2 (X_t + X_{t-2} + 4X_{t-3}) &= \\ \alpha + \gamma_0 Z_0 + \gamma_1 Z_1 + \gamma_2 Z_2. \end{split}$$

Estimate α and γ 's, then calculate β 's.

POLYNOMIAL DISTRIBUTED LAG MODEL: EXAMPLE. DEPENDENT VARIABLE RUR_USD, REGRESSOR OIL_BRENT(-2). 09.01.2014-14.01.2017, 747 observations, Eviews.

Is rur_usd c pdl(oil_brent(-2),2,2)

ls rur_usd c pdl(oil_brent(-2),2,1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob
C PDL01	89.56551 -0.008316	0.255745 0.095010	350.2137 -0.087526	0.0000 0.9303	C DDI 04	89.56151	0.256069	349.7553	0.000
DL02 DL03	0.092072 -0.244216	0.052901 0.142521	1.740470 -1.713537	0.0822 0.0870	PDL01 PDL02	-0.171107 0.092063	0.001208 0.052970	-141.6807 1.738036	0.000

Lag Distribution of i		Coefficient	Std. Error	t-Statistic
	0 1 2	-0.34460 -0.00832 -0.16046	0.07116 0.09501 0.07108	-4.84242 -0.08753 -2.25761
	Sum of Lags	-0.51338	0.00362	-141.876

Lag Distribution of i		Coefficient	Std. Error	t-Statistic	
	1 1 1	0 1 2	-0.26317 -0.17111 -0.07904	0.05304 0.00121 0.05293	-4.96186 -141.681 -1.49339
	Sum	of Lags	-0.51332	0.00362	-141.681

Estimation of Polynomial Distributed Lags in Eviews: Is Y c pdl(X, Number of Lags, Order of Polynomial)

MODELS OF DYNAMIC PROCESSES: PARTIAL ADJUSTMENT MODEL

$$Y_t^* = \beta_1 + \beta_2 X_t + u_t$$

$$Y_{t} - Y_{t-1} = \lambda (Y_{t}^{*} - Y_{t-1})$$
$$Y_{t} = \lambda Y_{t}^{*} + (1 - \lambda)Y_{t-1}$$

$$\begin{split} Y_t &= \lambda \big(\beta_1 + \beta_2 X_t + u_t\big) + \big(1 - \lambda\big) Y_{t-1} \\ &= \beta_1 \lambda + \beta_2 \lambda X_t + \big(1 - \lambda\big) Y_{t-1} + \lambda u_t \\ &= \alpha_1 + \alpha_2 X_t + \alpha_3 Y_{t-1} + \lambda u_t \end{split}$$
 where $\alpha_1 = \beta_1 \lambda, \ \alpha_2 = \beta_2 \lambda, \ \alpha_3 = \big(1 - \lambda\big).$

Let Y^* be target or desired (unobserved) value of Y. Parameter λ is called the speed of adjustment (complete adjustment if λ =1). Substituting for Y_t^* we obtain a specification with observable variables of the ADL(1,0) form.

TIME SERIES MODELS:

STATIC MODELS AND MODELS WITH LAGS

$$LGHOUS_{t}* = \beta_{1} + \beta_{2}LGDPI_{t} + \beta_{3}LGPRHOUS_{t} + u_{t}$$

$$LGHOUS_{t} - LGHOUS_{t-1} = \lambda(LGHOUS_{t}^{*} - LGHOUS_{t-1})$$

$$LGHOUS_{t} = \lambda LGHOUS_{t}^{*} + (1 - \lambda)LGHOUS_{t-1}$$

$$LGHOUS_{t} = \lambda(\beta_{1} + \beta_{2}LGDPI_{t} + \beta_{3}LGPRHOUS_{t} + u_{t}) + (1 - \lambda)LGHOUS_{t-1}$$

$$= \beta_{1}\lambda + \beta_{2}\lambda LGDPI_{t} + \beta_{3}\lambda LGPRHOUS_{t} + (1 - \lambda)LGHOUS_{t-1} + \lambda u_{t}$$

$$= \alpha_{1} + \alpha_{2}LGDPI_{t} + \alpha_{3}LGPRHOUS_{t} + \alpha_{4}LGHOUS_{t-1} + \lambda u_{t}$$

short-run elasticities: α_2 ; α_3

long-run elasticities: $\beta_2 = \frac{\alpha_2}{1 - \alpha_4} \qquad \beta_3 = \frac{\alpha_3}{1 - \alpha_4}$

Let *LGHOUS** be the desired (unobserved) demand for housing, while the actual demand LGHOUS is determined by the Partial Adjustment process. *LGDPI* is the logarithm of disposable personal income, and *LGPRHOUS* is the logarithm of the relative price index for housing services.

PARTIAL ADJUSTMENT: DEMAND FOR HOUSING

Dependent Variable: LGHOUS

Method: Least Squares

Sample (adjusted): 1960 2003

Included observations: 44 after adjusting endpoints

Variable	Coefficient	Std.Error	t-Statistic	Prob.
C	0.074	0.063	1.175	0.247
LGDPI	0.283	0.047	6.031	0.000
LGPRHOUS	-0.117	0.027	-4.271	0.000
LGHOUS (-1)	0.707	0.044	15.93	

long-run income elasticity
$$=\frac{0.283}{1-0.707}=0.97$$

long-run price elasticity
$$= \frac{-0.117}{1 - 0.707} = -0.40$$

Here is the result of logarithmic regression of expenditure on housing on *DPI* and relative price, ADL(1,0) – transformed Partial Adjustment Model.

PARTIAL ADJUSTMENT: LINTNER'S MODEL OF DIVIDEND ADJUSTMENT

Let D_t be actual dividend, and Π_t is profit. D_t^* is a "target" dividend dependent on profit to which the actual dividend is adjusting gradually.

$$\begin{split} D_t^* &= \alpha + \gamma \Pi_t + u_t \\ D_t - D_{t-1} &= \lambda (D_t^* - D_{t-1}) + v_t \\ D_t - D_{t-1} &= \lambda \alpha + \gamma \lambda \Pi_t - \lambda D_{t-1} + \lambda u_t + v_t \\ D_t &= \lambda \alpha + \gamma \lambda \Pi_t + (1 - \lambda)D_{t-1} + \lambda u_t + v_t \end{split}$$

Here the explanatory variable D_{t-1} and the disturbance term are related, but not simultaneously correlated, therefore, the OLS estimators will be biased, but consistent (as well as in the general Partial Adjustment model).

G. Lintner has estimated the model directly on the data for the US corporate sector for 1918-1941 and has obtained the following results: $\gamma = 0.3$; $\lambda = 0.5$.

ADAPTIVE EXPECTATIONS

$$Y_{t} = \beta_{1} + \beta_{2} X_{t+1}^{e} + u_{t}$$

$$X_{t+1}^{e} - X_{t}^{e} = \lambda (X_{t} - X_{t}^{e})$$

$$X_{t+1}^{e} = \lambda X_{t} + (1 - \lambda) X_{t}^{e}$$

$$Y_{t} = \beta_{1} + \beta_{2} \lambda X_{t} + \beta_{2} (1 - \lambda) X_{t}^{e} + u_{t}$$

$$X_{t}^{e} = \lambda X_{t-1} + (1 - \lambda) X_{t-1}^{e}$$

$$Y_{t} = \beta_{1} + \beta_{2} \lambda X_{t} + \beta_{2} \lambda (1 - \lambda) X_{t-1} + \beta_{2} (1 - \lambda)^{2} X_{t-1}^{e} + u_{t}$$

$$Y_{t} = \beta_{1} + \beta_{2}\lambda X_{t} + \beta_{2}\lambda (1-\lambda)X_{t-1} + \beta_{2}\lambda (1-\lambda)^{2}X_{t-2} + \dots$$
$$+ \beta_{2}\lambda (1-\lambda)^{s-1}X_{t-s+1} + \beta_{2}(1-\lambda)^{s}X_{t-s+1}^{e} + u_{t}$$

 X_{t+1}^e is the expected value of X (unobservable explanatory variable). We suppose that expectations are changing proportionally to the discrepancy between X_t^e , and the actual value X_t .

We assume $0 < \lambda \le 1$, hence $(1 - \lambda)^s$ tends to zero as s grows, and the term with unobserved variable can be neglected.

ADAPTIVE EXPECTATIONS

$$Y_{t} = \beta_{1} + \beta_{2} X_{t+1}^{e} + u_{t}$$

$$X_{t+1}^{e} - X_{t}^{e} = \lambda (X_{t} - X_{t}^{e})$$

$$X_{t+1}^{e} - X_{t}^{e} = \lambda (X_{t} - X_{t}^{e})$$

$$X_{t+1}^{e} = \lambda X_{t} + (1 - \lambda) X_{t}^{e}$$

$$Y_{t} = \beta_{1} + \beta_{2} \lambda X_{t} + \beta_{2} (1 - \lambda) X_{t}^{e} + u_{t}$$

$$Y_{t-1} = \beta_{1} + \beta_{2} X_{t}^{e} + u_{t-1}$$

$$\beta_{2} X_{t}^{e} = Y_{t-1} - \beta_{1} - u_{t-1}$$

$$Y_{t} = \beta_{1} + \beta_{2}\lambda X_{t} + (1 - \lambda)(Y_{t-1} - \beta_{1} - u_{t-1}) + u_{t}$$

$$= \beta_{1}\lambda + \beta_{2}\lambda X_{t} + (1 - \lambda)Y_{t-1} + u_{t} - (1 - \lambda)u_{t-1}$$

$$= \alpha_{1} + \alpha_{2}X_{t} + \alpha_{3}Y_{t-1} + u_{t} - (1 - \lambda)u_{t-1}$$

where
$$\alpha_1 = \beta_1 \lambda, \ \alpha_2 = \beta_2 \lambda, \ \alpha_3 = (1 - \lambda)$$

This is again the ADL(1,0) model. The only difference with the partial adjustment model is the compound disturbance term. But the explanatory variable Y_{t-1} includes u_{t-1} , and hence C.7 assumption is violated and the OLS estimates are biased and inconsistent. The model has to be estimated as the geometrically distributed lag model.

ADAPTIVE EXPECTATIONS: FRIEDMAN'S PERMANENT INCOME HYPOTHESIS

$$C_t^P = \beta_2 Y_t^P$$

$$C_t = C_t^P + C_t^T$$

$$Y_t = Y_t^P + Y_t^T$$

$$Y_{t}^{P} - Y_{t-1}^{P} = \lambda (Y_{t} - Y_{t-1}^{P})$$

$$Y_{t}^{P} = \lambda Y_{t} + (1 - \lambda) Y_{t-1}^{P}$$

$$Y_{t-1}^{P} = \lambda Y_{t-1} + (1 - \lambda) Y_{t-2}^{P}$$

$$C_{t} - C_{t}^{T} = \beta_{2} (\lambda Y_{t} + (1 - \lambda) Y_{t-1}^{P})$$

$$C_{t} = \beta_{2} \lambda Y_{t} + \beta_{2} (1 - \lambda) Y_{t-1}^{P} + C_{t}^{T}$$

$$C_{t} = \beta_{2} \lambda Y_{t} + \beta_{2} \lambda (1 - \lambda) Y_{t-1} + \beta_{2} (1 - \lambda)^{2} Y_{t-2}^{P} + C_{t}^{T}$$

$$C_{t} = \beta_{2} \lambda Y_{t} + \beta_{2} \lambda (1 - \lambda) Y_{t-1} + \beta_{2} \lambda (1 - \lambda)^{2} Y_{t-2} + C_{t}^{T}$$

$$+ \beta_{2} \lambda (1 - \lambda)^{s-1} Y_{t-s+1} + \beta_{2} (1 - \lambda)^{s} Y_{t-s+1}^{P} + C_{t}^{T}$$

The specification is nonlinear in parameters and Friedman fitted it using nonlinear iterative estimation method.

ADAPTIVE EXPECTATIONS: FRIEDMAN'S PERMANENT INCOME HYPOTHESIS

$$C_t^P = \beta_2 Y_t^P$$

$$C_t = C_t^P + C_t^T$$

$$Y_t = Y_t^P + Y_t^T$$

$$Y_{t}^{P} - Y_{t-1}^{P} = \lambda (Y_{t} - Y_{t-1}^{P})$$

$$Y_{t}^{P} = \lambda Y_{t} + (1 - \lambda) Y_{t-1}^{P}$$

$$Y_{t-1}^{P} = \lambda Y_{t-1} + (1 - \lambda) Y_{t-2}^{P}$$

$$C_{t} - C_{t}^{T} = \beta_{2} (\lambda Y_{t} + (1 - \lambda) Y_{t-1}^{P})$$

$$C_{t} = \lambda \beta_{2} Y_{t} + (1 - \lambda) \beta_{2} Y_{t-1}^{P} + C_{t}^{T}$$

$$\beta_{2} Y_{t-1}^{P} = C_{t-1}^{P} = C_{t-1} - C_{t-1}^{T}$$

$$C_{t} = \lambda \beta_{2} Y_{t} + (1 - \lambda) (C_{t-1} - C_{t-1}^{T}) + C_{t}^{T}$$

$$= \lambda \beta_{2} Y_{t} + (1 - \lambda) (C_{t-1} + C_{t}^{T} - (1 - \lambda) C_{t-1}^{T})$$

The short-run marginal propensity to consume is given by the coefficient of Y_t , $\lambda \beta_2$ and the long-run propensity is β_2 . If to estimate in this form, C.7 assumption is violated, and the estimates are biased and inconsistent.

THE ERROR CORRECTION MODEL: TYPE 1

$$Y_{t}^{*} = \beta_{1} + \beta_{2}X_{t} + u_{t}$$

$$\Delta Y_{t} = \lambda (Y_{t}^{*} - Y_{t-1}) + \delta \Delta X_{t}$$

$$= \lambda (\beta_{1} + \beta_{2}X_{t} - Y_{t-1}) + \delta (X_{t} - X_{t-1}) + \lambda u_{t}$$

$$= \lambda \beta_{1} + (\lambda \beta_{2} + \delta)X_{t} - \delta X_{t-1} - \lambda Y_{t-1} + \lambda u_{t}$$

$$Y_{t} = \alpha_{1} + \alpha_{2}X_{t} + \alpha_{3}Y_{t-1} + \alpha_{4}X_{t-1} + \lambda u_{t}$$

$$\alpha_{1} = \lambda \beta_{1} \qquad \alpha_{2} = \lambda \beta_{2} + \delta$$

$$\alpha_{3} = 1 - \lambda \qquad \alpha_{4} = -\delta$$

Y* is a desirable (appropriate) unobserved value of Y. In the short run, $\Delta Y_t = Y_t - Y_{t-1}$, is determined by two components: closing the discrepancy between its "appropriate" and previous actual values, $Y^*_{t-1}Y_{t-1}$, and a straightforward response to ΔX_t . This is ADL(1,1) model. The ADL(1,0) model is a special case with the testable restriction $\alpha_4 = -\delta = 0$.

THE ERROR CORRECTION MODEL: TYPE 2

$$Y_{t}^{*} = \beta_{1} + \beta_{2}X_{t} + u_{t}$$

$$\Delta Y_{t} = \lambda (Y_{t-1}^{*} - Y_{t-1}) + \delta \Delta X_{t}$$

$$= \lambda (\beta_{1} + \beta_{2}X_{t-1} - Y_{t-1}) + \delta (X_{t} - X_{t-1}) + \lambda u_{t-1}$$

$$= \lambda \beta_{1} + \delta X_{t} + (\lambda \beta_{2} - \delta)X_{t-1} - \lambda Y_{t-1} + \lambda u_{t-1}$$

$$Y_{t} = \alpha_{1} + \alpha_{2}X_{t} + \alpha_{3}Y_{t-1} + \alpha_{4}X_{t-1} + \lambda u_{t-1}$$

$$\alpha_{1} = \lambda \beta_{1} \qquad \alpha_{2} = \delta$$

$$\alpha_{3} = 1 - \lambda \qquad \alpha_{4} = \lambda \beta_{2} - \delta$$

Y* is a desirable (appropriate) unobserved value of Y. In the short run, $\Delta Y_t = Y_t - Y_{t-1}$, is determined by two components: closing the discrepancy between its previous "appropriate" and actual values, $Y_{t-1}^* - Y_{t-1}$, and a straightforward response to ΔX_t .

ERROR CORRECTION MODEL (TYPE 1): EXAMPLE

$$\begin{split} \boldsymbol{Y_t^*} &= \boldsymbol{\beta_1} + \boldsymbol{\beta_2} \boldsymbol{X_t} + \boldsymbol{u_t} \\ \Delta \boldsymbol{Y_t} &= \boldsymbol{\lambda} \big(\boldsymbol{Y_t^*} - \boldsymbol{Y_{t-1}} \big) + \delta \Delta \boldsymbol{X_t} + \lambda \boldsymbol{u_t} = \lambda \boldsymbol{\beta_1} + (\lambda \boldsymbol{\beta_2} + \delta) \boldsymbol{X_t} - \delta \boldsymbol{X_{t-1}} - \lambda \boldsymbol{Y_{t-1}} + \lambda \boldsymbol{u_t} \\ RUR_USD_t &= \boldsymbol{\alpha_1} + \boldsymbol{\alpha_2} OIL_BRENT_{t-2} + \\ &+ \boldsymbol{\alpha_3} RUR_USD_{t-1} + \boldsymbol{\alpha_4} OIL_BRENT_{t-3} + \boldsymbol{u_t} \end{split}$$

Dependent Variable: RUR_USD; 14.01.2014-14.01.2017, 744 obs.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C OIL_BRENT(-2) OIL_BRENT(-3) RUR_USD(-1)	6.069175	1.183033	5.130184	0.0000
	-0.257502	0.025500	-10.09801	0.0000
	0.223103	0.025962	8.593349	0.0000
	0.932065	0.013166	70.79289	0.0000

$$\hat{\alpha}_{1} = \hat{\lambda}\hat{\beta}_{1} = 6.07; \quad \hat{\alpha}_{2} = \hat{\lambda}\hat{\beta}_{2} + \hat{\delta} = -0.2575; \quad \hat{\alpha}_{3} = 1 - \hat{\lambda} = 0.932; \quad \hat{\alpha}_{4} = -\hat{\delta} = 0.223;$$

$$Hence \quad \hat{\beta}_{2} = -0.51; \quad \hat{\beta}_{1} = 89.3.$$