Enhancing Energy System Resilience with a Recommendation System for Voluntary Demand Response

José Ricardo Andrade jose.r.andrade@inesctec.pt

H2020 InterConnect @ ENLIT 23rd October 2024

INSTITUTE FOR SYSTEMS
AND COMPUTER ENGINEERING,
TECHNOLOGY AND SCIENCE

InterConnect at a glance

- H2020 Large Scale Pilot (2019-2024)
 - InterConnect gathers 50+ European entities to develop and demonstrate advanced solutions for connecting and converging digital homes and buildings with the electricity sector.
- Cross-domain semantic interoperability based on SAREF over several use-cases
- Validation in 7 connected large-scale test-sites:
 - PT, BE, DE, NL, IT, EL and FR.

SIF

DSOi

IR

Open Calls

OC1: Interoperable Prototypes

OC2:EnergyApplications

interconnectproject.eu

Challenges and Roadmap for Energy Resilience in Europe

Challenges: Climate change, geopolitical risks, decarbonization → increased reliance on renewable energy, but with variable supply.

Need: Greater flexibility in energy consumption to help prevent periods of excess demand or energy generation

Sustainability: Aligned with the EU's action plan goals by promoting smarter energy use

CERF-Compliant Energy Applications (EU2020 InterConnect)

Goal: Demonstrate the adaptability of H2020 InterConnect project to support a new use-case: Energy applications aligned with the Common European Reference Framework (CERF)

Method: Use flexibility from the demand side alongside "grid signals" to engage end-users to help improving system resilience

Challenge: implement a credible technical and scientific strategy for end-user participation

CERF - Enabling an Ecosystem of Stakeholders

Interoperable Recommender Objectives

- Develop a methodology to assess periods of <u>expected system</u> <u>vulnerability</u> in Europe's energy infrastructure
- Promote <u>country-level actions</u> (increase/decrease energy consumption) during those periods to enhance resilience
- <u>Data-driven methodology</u> to assess vulnerability and compute actions with publicly available data, considering the status of each country and its neighbours/interconnections
- Share this information with other interested parties, through the **EnergyAPP** *backend*

Interoperable Recommender Methodology

System vulnerability? Why?

- RES generation variability and forecast uncertainty
- Increasing challenges of day-ahead load forecasting

Risks?

- Risk of energy scarcity or renewable energy curtailment
- Unexpected problems and unavailability of reserve capacity

How to proceed?

- Calculate the system margin per country considering load and RES forecast uncertainty
- Extract risk attributes from the system margin to assess the impact of a potential reserve level
- Define **country-level actions** to mitigate this risk and enhance resilience for **each country and its neighbours** (interconnections)

Hourly recommendations (per country in the pilot)

Methodology

- 1. Data Acquisition: Collect real-time, publicly accessible system data from ENTSO-E Transparency Platform
- 2. Forecasting: Create RES / Load Probabilistic Forecasts (Quantiles)
- 3. Risk Assessment (country specific)*:
- **Calculate system margin**
- **Develop risk-reserve curves**
- Calculate reliability indexes (LOLP, PCRE)
- Find operating reserve requirements (based on TSO risk threshold)
- Calculate deterministic rule for reserve (DRR)

5. Final Recommendations

- Evaluate if the current DRR meets acceptable risk criteria.
- Simple output. Easy to communicate.
- $R \leq DRR \rightarrow$ Healthy
- R > DRR → At Risk

Healthy → No recommendation

Upward Risk → *Decrease* Consumption

Downward Risk → *Increase* Consumption

Assess if a country's interconnections could help mitigate risk

^{*} Reference: M.A. Matos, R.J. Bessa, "Setting the operating reserve using probabilistic wind power forecasts" IEEE Transactions on Power Systems, vol. 26(2), pp.594-603, May 2011.

(Wattchr APP)

^{4.} Risk Coordination:

Towards regional recommendations

Pilots Key Results

- Service operational during multiple months in 12 countries
- 400+ consumers involved in testing
- Preliminary results show **consumer response**:
 - ✓ (PT) 4% consumption decrease during *Decrease* recommendations when analysed against *comparable days*
 - ✓ (PT) 81.6% of collected feedback showed commitment to adopt recommendations (4 to 5 stars)

Not Available Decrease None Increase Not Available Decrease None Increase Not Available Decrease None Increase Not Available Decrease None Increase

(PT) Residential setting

Histogram of recommended actions for Portugal.

Portuguese pilot: Comparison between days with recommendations and historically comparable days.

What's next? Some ideas

Enhance Data and Methodology

Improve data reliability with backup sources and detailed country-specific models.

Integrate Consumer Feedback

Use real consumer energy data for feedback loops and personalized recommendations.

Optimize DR Program Efficiency

• Evaluate DR strategies, addressing scalability, infrastructure, and GDPR compliance.

Expand Studies for Long-term Insights

Extend pilot programs, generalize findings across Europe

Improve coordination with TSO-DSO

Publications / Source Code

Enhancing the European Power System Resilience with a Recommendation System for Voluntary

Demand Response

Carlos A. M. Silva*^{1, 2}, Ricardo J. Bessa¹, José R. Andrade¹, Fábio A. Coelho³, Rafael B. Costa³, Carlos Damas Silva⁴, George Vlachodimitropoulos^{5, 6}, Donatos Stavropoulos⁷, Spiros Chadoulos⁸, and David E. Rua¹

¹INESC TEC, Center for Power and Energy Systems, Porto, Portugal

²Faculty of Engineering, University of Porto, Porto, Portugal

³INESC TEC & University of Minho, High-Assurance Software

Laboratory, Braga, Portugal

⁴E-REDES, Lisbon, Portugal

⁵University of Aegean, Samos, Greece

⁶Local AI, Kalamata, Greece

⁷GRIDNET, Volos, Greece

⁸Mobile Multimedia Laboratory, Department of Informatics, School of Information Sciences and Technology, Athens University of Economics and Business, Athens, Greece

(under review in iScience)

The Team

Carlos Silva Researcher **CPES**

Ricardo Bessa Coordinator & Researcher **CPES**

José Andrade Researcher **CPES**

David Rua Coordinator & Researcher **CPES**

Fábio Coelho Researcher **HASLAB**

Rafael Braga Researcher **HASLAB**

