Supplemental Information

Contents

- 1. Codon decoding times as estimated by the computational decoding model.
- 2. Recombinant sequences used to generate data in figure 1.
- 3. Alignments of codon variants and resulting speed changes.
- 4. Plasmids used in this study.
- 5. qPCR assays
 - a. **qPCR** primer sequences
 - b. **qPCR** protocol
 - c. Primer strategy for comparison between codon variant transcripts

2nd Base

		A C G		U					
Α	Lys	0.052	Thr	0.390	Arg	0.0316	lle	0.595	Α
	Asn	0.121	Thr	0.117	Ser	0.327	lle	0.087	U
A	Lys	0.071	Thr	0.267	Arg	0.529	Met	0.172	G
	Asn	0.135	Thr	0.113	Ser	0.326	lle	0.086	כ
	Gln	0.105	Pro	0.233	Arg	0.145	Leu	0.451	Α
С	His	0.251	Pro	0.918	Arg	0.103	Leu	1.411	U
-	Gln	1.233	Pro	0.056	Arg	0.440	Leu	0.330	G
	His	0.184	Pro	0.927	Arg	0.101	Leu	0.496	J
G	Glu	0.069	Ala	0.495	Gly	0.253	Val	1.022	Α
	Asp	0.151	Ala	0.139	Gly	0.070	Val	0.129	U
G	Glu	0.569	Ala	0.056	Gly	0.323	Val	0.464	G
	Asp	0.157	Ala	0.140	Gly	0.068	Val	0.131	כ
U	Stop		Ser	0.829	Stop		Leu	0.187	Α
	Tyr	0.216	Ser	0.118	Cys	0.166	Phe	0.175	С
	Stop		Ser	1.372	Trp	0.067	Leu	0.119	G
	Tyr	0.226	Ser	0.121	Cys	0.166	Phe	0.174	U

3rd Base

Supplemental Table 2. Recombinant sequences used to generate data in figure 1.

>MinCFLuc

ATGGAGGACGCAAAAAACATAAAAAAAGGGCCTGCGCCCTTCTATCCTCTCGAGGATGGGACGGCGGGGGA GCAGCTCCATAAAGCGATGAAAAGGTACGCACTCGTGCCTGGGACGATAGCGTTTACGGATGCACATATAGA GGTGAACATAACGTACGCGGAGTACTTCGAGATGTCGGTGCGGCTCGCAGAGGCGATGAAACGGTATGGGC TCAATACGAATCACAGGATAGTAGTATGCTCGGAGAACTCGCTCCAGTTCTTTATGCCTGTGCTCGGGGCCGCT CTTTATAGGGGTGGCAGTGGCGCCCGCGAACGACATATATAATGAGCGGGAGCTCCTCAACTCGATGAACAT ATCGCAGCCTACGGTAGTGTTTGTGTCGAAAAAAGGGCTCCAGAAAATACTCAACGTGCAGAAAAAACTCCCC ATAATACAGAAAATAATAATAATGGATTCGAAAACGGATTACCAGGGGTTTCAGTCGATGTACACGTTCGTAA CGTCGCATCTCCCTCCCGGGTTTAATGAGTACGATTTTGTACCCGAGTCGTTTGATCGGGACAAAACGATAGC ACTCATAATGAATTCGTCGGGGATCGACGGGGCTCCCTAAAGGGGTGGCACTCCCTCATAGGACGGCATGCGT AAGGTTCTCGCATGCAAGGGACCCTATATTTGGGAATCAGATAATACCTGATACGGCGATACTCTCGGTGGTG CCCTTCCATCACGGGTTTGGGATGTTTACGACGCTCGGGTATCTCATATGTGGGTTTCGGGTAGTACTCATGTA TAGGTTTGAGGAGGAGCTCTTTCTCCGGTCGCTCCAGGATTACAAAATACAGTCGGCGCTCCTCGTACCCACG CTCTTTTCGTTCTTCGCAAAATCGACGCTCATAGACAAATACGATCTCTCGAATCTCCACGAGATAGCGTCGGG GGGGGCACCTCTCCGAAAGAGGTAGGGGAGGCGGTGGCAAAACGGTTCCATCTCCCCGGGATACGGCAGG GGTATGGGCTCACGGAGACGCCGCGATACTCATAACGCCCGAGGGGGATGATAAACCTGGGGCGGTA GGGAAAGTGGTGCCCTTTTTTGAGGCGAAAGTGGTGGATCTCGATACGGGGAAAACGCTCGGGGTGAATCA GAGGGGGGAGCTCTGTGTAAGGGGGCCTATGATAATGTCGGGGTATGTAAACAATCCTGAGGCGACGAACG CACTCATAGACAAAGATGGGTGGCTCCATTCGGGGGACATAGCGTACTGGGACGAGGACGAGCACTTCTTCA TAGTGGACCGGCTCAAATCGCTCATAAAATACAAAGGGTATCAGGTGGCACCCGCGGAGCTCGAGTCGATAC TCCTCCAGCACCCCAACATATTCGACGCGGGGGTGGCAGGGCTCCCCGACGATGACGCAGGGGAGCTCCCCG CAGCAGTGGTGGTGCTCGAGCACGGGAAAACGATGACGGAGAAAGAGATAGTGGATTACGTAGCATCGCAG GTAACGACGGCGAAAAAACTCCGGGGGGGGGGGGTGTTTTGTGGACGAGGTACCTAAAGGGCTCACGGGGA AACTCGACGCAAGGAAAATAAGGGAGATACTCATAAAAGCAAAAAAAGGGGGGGAAATAA

>StaCFLuc

>MaxCFLuc

ATGGAAGACGCTAAGAACATTAAGAAGGGCCCAGCTCCATTCTACCCATTGGAAGACGGCACTGCTGGCGAA CAATTGCACAAGGCTATGAAGAGATACGCTTTGGTTCCAGGCACTATTGCTTTCACTGACGCTCACATTGAAGT TAACATTACTTACGCTGAATACTTCGAAATGTCTGTTAGATTGGCTGAAGCTATGAAGAGATACGGCTTGAAC ACTAACCACAGAATTGTTGTTTGCTCTGAAAACTCTTTGCAATTCTTCATGCCAGTTTTGGGCCGCTTTGTTCATT GGCGTTGCTGTTGCTCCAGCTAACGACATTTACAACGAAAGAGAATTGTTGAACTCTATGAACATTTCTCAACC AACTGTTGTTTCGATTCTAAGAAGGGCTTGCAAAAGATTTTGAACGTTCAAAAGAAGTTGCCAATTATTCAAA AGATTATTATTGGACTCTAAGACTGACTACCAAGGCTTCCAATCTATGTACACTTTCGTTACTTCTCACTTGC CACCAGGCTTCAACGAATACGACTTCGTTCCAGAATCTTTCGACAGAGACAAGACTATTGCTTTGATTATGAAC TCTTCTGGCTCTACTGGCTTGCCAAAGGGCGTTGCTTTGCCACACAGAACTGCTTGCGTTAGATTCTCTCACGC TAGAGACCCAATTTTCGGCAACCAAATTATTCCAGACACTGCTATTTTGTCTGTTGTTCCATTCCACCACGGCTT CGGCATGTTCACTACTTTGGGCTACTTGATTTGCGGCTTCAGAGTTGTTTTGATGTACAGATTCGAAGAAGAAT GTCTACTTTGATTGACAAGTACGACTTGTCTAACTTGCACGAAATTGCTTCTGGCGGCGCTCCATTGTCTAAGG AAGTTGGCGAAGCTGTTGCTAAGAGATTCCACTTGCCAGGCATTAGACAAGGCTACGGCTTGACTGAAACTAC TTCTGCTATTTTGATTACTCCAGAAGGCGACGACAAGCCAGGCGCTGTTGGCAAGGTTGTTCCATTCTTCGAA GCTAAGGTTGTTGACTTGGACACTGGCAAGACTTTGGGCGTTAACCAAAGAGGCGAATTGTGCGTTAGAGGC ACTCTGGCGACATTGCTTACTGGGACGAAGACGAACACTTCTTCATTGTTGACAGATTGAAGTCTTTGATTAAG TACAAGGGCTACCAAGTTGCTCCAGCTGAATTGGAATCTATTTTGTTGCAACACCCAAACATTTTCGACGCTGG CGTTGCTGGCTTGCCAGACGACGACGCTGGCGAATTGCCAGCTGCTGTTGTTTTTGGAACACGGCAAGACT ATGACTGAAAAGGAAATTGTTGACTACGTTGCTTCTCAAGTTACTACTGCTAAGAAGTTGAGAGGCGGCGTTG TTTTCGTTGACGAAGTTCCAAAGGGCTTGACTGGCAAGTTGGACGCTAGAAAGATTAGAGAAATTTTGATTAA GGCTAAGAAGGGCGGCAAGTAA

>Min4MaxCFLuc

ATGGAGGACGCAAAGAACATTAAGAAGGGCCCAGCTCCATTCTACCCATTGGAAGACGCACTGCTGGCGAA CAATTGCACAAGGCTATGAAGAGAGACGCTTTGGTTCCAGGCACTATTGCTTTCACTGACGCTCACATTGAAGT TAACATTACTTACGCTGAATACTTCGAAATGTCTGTTAGATTGGCTGAAGCTATGAAGAGAGATTGTTGTTTGCTCTGAAAACTCTTTGCAATTCTTCATGCCAGTTTTTGGGCGCTTTGTTCATT GGCGTTGCTGTTGCTCCAGCCTAACGACATTTACAACGAAAGAGAATTGTTGAACTCTATGAACATTTCTCAACC AACTGTTGTTTCCTAAGAAGGGCTTGCAAAAGAATTTTGAACGTTCAAAAGAAGTTGCCAATTATTCAAA AGATTATTATTATGGACTCTAAGACTGACCAAGAGCTTCCAATCTATGTACACTTTCGTTACTTCTCACTTGC CACCAGGCTTCAACGAATACGACTTCCAGAGAATCTTTCGACAGAGACAAGACTATTGCTTTGATTATGAAC TCTTCTGGCTCTACTGGCTTGCCAAAGGGCGTTGCCAACGAACCACAGAACTGCTTGCGTTAGATTCTCTCACGC

>Min8MaxCFLuc

ATGGAGGACGCAAAAAACATAAAAAAGGGCCCAGCTCCATTCTACCCATTGGAAGACGGCACTGCTGGCGAA CAATTGCACAAGGCTATGAAGAGATACGCTTTGGTTCCAGGCACTATTGCTTTCACTGACGCTCACATTGAAGT TAACATTACTTACGCTGAATACTTCGAAATGTCTGTTAGATTGGCTGAAGCTATGAAGAGATACGGCTTGAAC ACTAACCACAGAATTGTTTGCTCTGAAAACTCTTTGCAATTCTTCATGCCAGTTTTGGGCGCTTTGTTCATT GGCGTTGCTGTTGCTCCAGCTAACGACATTTACAACGAAAGAGAATTGTTGAACTCTATGAACATTTCTCAACC AACTGTTGTTTTCGTTTCTAAGAAGGGCTTGCAAAAGATTTTGAACGTTCAAAAGAAGTTGCCAATTATTCAAA AGATTATTATTGTGGACTCTAAGACTGACTACCAAGGCTTCCAATCTATGTACACTTTCGTTACTTCTCACTTGC CACCAGGCTTCAACGAATACGACTTCGTTCCAGAATCTTTCGACAGAGACAAGACTATTGCTTTGATTATGAAC TCTTCTGGCTCTACTGGCTTGCCAAAGGGCGTTGCTTTGCCACACAGAACTGCTTGCGTTAGATTCTCTCACGC TAGAGACCCAATTTTCGGCAACCAAATTATTCCAGACACTGCTATTTTGTCTGTTGTTCCATTCCACCACGGCTT CGGCATGTTCACTACTTTGGGCTACTTGATTTGCGGCTTCAGAGTTGTTTTGATGTACAGATTCGAAGAAGAAT GTCTACTTTGATTGACAAGTACGACTTGTCTAACTTGCACGAAATTGCTTCTGGCGGCGCTCCATTGTCTAAGG AAGTTGGCGAAGCTGTTGCTAAGAGATTCCACTTGCCAGGCATTAGACAAGGCTACGGCTTGACTGAAACTAC TTCTGCTATTTTGATTACTCCAGAAGGCGACGACAAGCCAGGCGCTGTTGGCAAGGTTGTTCCATTCTTCGAA GCTAAGGTTGTTGACTTGGACACTGGCAAGACTTTGGGCGTTAACCAAAGAGGCGAATTGTGCGTTAGAGGC ACTCTGGCGACATTGCTTACTGGGACGAAGACGAACACTTCTTCATTGTTGACAGATTGAAGTCTTTGATTAAG TACAAGGGCTACCAAGTTGCTCCAGCTGAATTGGAATCTATTTTGTTGCAACACCCAAACATTTTCGACGCTGG CGTTGCTGGCTTGCCAGACGACGACGCTGGCGAATTGCCAGCTGCTGTTGTTTTTGGAACACGGCAAGACT ATGACTGAAAAGGAAATTGTTGACTACGTTGCTTCTCAAGTTACTACTGCTAAGAAGTTGAGAGGCGGCGTTG TTTTCGTTGACGAAGTTCCAAAGGGCTTGACTGGCAAGTTGGACGCTAGAAAGATTAGAGAAATTTTGATTAA GGCTAAGAAGGGCGGCAAGTAA

>Min12MaxCFLuc

ATGGAGGACGCAAAAAACATAAAAAAAGGGCCTGCGCCATTCTACCCATTGGAAGACGCCACTGCTGGCGAA CAATTGCACAAGGCTATGAAGAGATACGCTTTGGTTCCAGGCACTATTGCTTTCACTGACGCTCACATTGAAGT TAACATTACTTACGCTGAATACTTCGAAATGTCTGTTAGATTGGCTGAAGCTATGAAGAGATACGGCTTGAAC ACTAACCACAGAATTGTTTGCTCTGAAAACTCTTTGCAATTCTTCATGCCAGTTTTGGGCGCTTTGTTCATT GGCGTTGCTGTTGCTCCAGCTAACGACATTTACAACGAAAGAGAATTGTTGAACTCTATGAACATTTCTCAACC AACTGTTGTTTTCGTTTCTAAGAAGGGCTTGCAAAAGATTTTGAACGTTCAAAAGAAGTTGCCAATTATTCAAA AGATTATTATTGGACTCTAAGACTGACTACCAAGGCTTCCAATCTATGTACACTTTCGTTACTTCTCACTTGC CACCAGGCTTCAACGAATACGACTTCGTTCCAGAATCTTTCGACAGAGACAAGACTATTGCTTTGATTATGAAC TCTTCTGGCTCTACTGGCTTGCCAAAGGGCGTTGCTTTGCCACACAGAACTGCTTGCGTTAGATTCTCTCACGC TAGAGACCCAATTTTCGGCAACCAAATTATTCCAGACACTGCTATTTTGTCTGTTGTTCCATTCCACCACGGCTT CGGCATGTTCACTACTTTGGGCTACTTGATTTGCGGCTTCAGAGTTGTTTTGATGTACAGATTCGAAGAAGAAT GTCTACTTTGATTGACAAGTACGACTTGTCTAACTTGCACGAAATTGCTTCTGGCGGCGCTCCATTGTCTAAGG AAGTTGGCGAAGCTGTTGCTAAGAGATTCCACTTGCCAGGCATTAGACAAGGCTACGGCTTGACTGAAACTAC TTCTGCTATTTTGATTACTCCAGAAGGCGACGACAAGCCAGGCGCTGTTGGCAAGGTTGTTCCATTCTTCGAA GCTAAGGTTGTTGACTTGGACACTGGCAAGACTTTGGGCGTTAACCAAAGAGGCGAATTGTGCGTTAGAGGC ACTCTGGCGACATTGCTTACTGGGACGAAGACGAACACTTCTTCATTGTTGACAGATTGAAGTCTTTGATTAAG TACAAGGGCTACCAAGTTGCTCCAGCTGAATTGGAATCTATTTTGTTGCAACACCCAAACATTTTCGACGCTGG CGTTGCTGGCTTGCCAGACGACGACGCTGGCGAATTGCCAGCTGCTGTTGTTTTTGGAACACGGCAAGACT ATGACTGAAAAGGAAATTGTTGACTACGTTGCTTCTCAAGTTACTACTGCTAAGAAGTTGAGAGGCGGCGTTG TTTTCGTTGACGAAGTTCCAAAGGGCTTGACTGGCAAGTTGGACGCTAGAAAGATTAGAGAAATTTTGATTAA GGCTAAGAAGGGCGGCAAGTAA

>Min16MaxCFLuc

ATGGAGGACGCAAAAAACATAAAAAAAGGGCCTGCGCCCTTCTATCCTTTGGAAGACGGCACTGCTGGCGAA CAATTGCACAAGGCTATGAAGAGATACGCTTTGGTTCCAGGCACTATTGCTTTCACTGACGCTCACATTGAAGT TAACATTACTTACGCTGAATACTTCGAAATGTCTGTTAGATTGGCTGAAGCTATGAAGAGATACGGCTTGAAC ACTAACCACAGAATTGTTTGCTCTGAAAACTCTTTGCAATTCTTCATGCCAGTTTTGGGCGCTTTGTTCATT GGCGTTGCTGTTGCTCCAGCTAACGACATTTACAACGAAAGAGAATTGTTGAACTCTATGAACATTTCTCAACC AACTGTTGTTTCGATTCTAAGAAGGGCTTGCAAAAGATTTTGAACGTTCAAAAGAAGTTGCCAATTATTCAAA AGATTATTATTGGACTCTAAGACTGACTACCAAGGCTTCCAATCTATGTACACTTTCGTTACTTCTCACTTGC CACCAGGCTTCAACGAATACGACTTCGTTCCAGAATCTTTCGACAGAGACAAGACTATTGCTTTGATTATGAAC TCTTCTGGCTCTACTGGCTTGCCAAAGGGCGTTGCTTTGCCACACAGAACTGCTTGCGTTAGATTCTCTCACGC TAGAGACCCAATTTTCGGCAACCAAATTATTCCAGACACTGCTATTTTGTCTGTTGTTCCATTCCACCACGGCTT CGGCATGTTCACTACTTTGGGCTACTTGATTTGCGGCTTCAGAGTTGTTTTGATGTACAGATTCGAAGAAGAAT GTCTACTTTGATTGACAAGTACGACTTGTCTAACTTGCACGAAATTGCTTCTGGCGGCGCTCCATTGTCTAAGG AAGTTGGCGAAGCTGTTGCTAAGAGATTCCACTTGCCAGGCATTAGACAAGGCTACGGCTTGACTGAAACTAC TTCTGCTATTTTGATTACTCCAGAAGGCGACGACAAGCCAGGCGCTGTTGGCAAGGTTGTTCCATTCTTCGAA GCTAAGGTTGTTGACTTGGACACTGGCAAGACTTTGGGCGTTAACCAAAGAGGCGAATTGTGCGTTAGAGGC ACTCTGGCGACATTGCTTACTGGGACGAAGACGAACACTTCTTCATTGTTGACAGATTGAAGTCTTTGATTAAG TACAAGGGCTACCAAGTTGCTCCAGCTGAATTGGAATCTATTTTGTTGCAACACCCAAACATTTTCGACGCTGG CGTTGCTGGCTTGCCAGACGACGACGCTGGCGAATTGCCAGCTGCTGTTGTTTTTGGAACACGGCAAGACT ATGACTGAAAAGGAAATTGTTGACTACGTTGCTTCTCAAGTTACTACTGCTAAGAAGTTGAGAGGCGGCGTTG TTTTCGTTGACGAAGTTCCAAAGGGCTTGACTGGCAAGTTGGACGCTAGAAAGATTAGAGAAATTTTGATTAA GGCTAAGAAGGGCGGCAAGTAA

>Min53MaxCFLuc

ATGGAGGACGCAAAAAACATAAAAAAAGGGCCTGCGCCCTTCTATCCTCTCGAGGATGGGACGGCGGGGGGA GCAGCTCCATAAAGCGATGAAAAGGTACGCACTCGTGCCTGGGACGATAGCGTTTACGGATGCACATATAGA GGTGAACATAACGTACGCTGAATACTTCGAAATGTCTGTTAGATTGGCTGAAGCTATGAAGAGATACGGCTTG AACACTAACCACAGAATTGTTTGCTCTGAAAACTCTTTGCAATTCTTCATGCCAGTTTTGGGCGCTTTGTTC ATTGGCGTTGCTGCTCCAGCTAACGACATTTACAACGAAAGAGAATTGTTGAACTCTATGAACATTTCTCA ACCAACTGTTGTTTCGTTTCTAAGAAGGGCTTGCAAAAGATTTTGAACGTTCAAAAGAAGTTGCCAATTATTC AAAAGATTATTATTATGGACTCTAAGACTGACTACCAAGGCTTCCAATCTATGTACACTTTCGTTACTTCTCACT TGCCACCAGGCTTCAACGAATACGACTTCGTTCCAGAATCTTTCGACAGAGACAAGACTATTGCTTTGATTATG AACTCTTCTGGCTCTACTGGCTTGCCAAAGGGCGTTGCTTTGCCACACAGAACTGCTTGCGTTAGATTCTCTCA CGCTAGAGACCCAATTTTCGGCAACCAAATTATTCCAGACACTGCTATTTTGTCTGTTGTTCCATTCCACCACGG CTTCGGCATGTTCACTACTTTGGGCTACTTGATTTGCGGCTTCAGAGTTGTTTTGATGTACAGATTCGAAGAAG AATTGTTCTTGAGATCTTTGCAAGACTACAAGATTCAATCTGCTTTGTTGGTTCCAACTTTGTTCTTCTTCGC TAAGTCTACTTTGACAAGTACGACTTGTCTAACTTGCACGAAATTGCTTCTGGCGGCGCTCCATTGTCTA AGGAAGTTGGCGAAGCTGTTGCTAAGAGATTCCACTTGCCAGGCATTAGACAAGGCTACGGCTTGACTGAAA CTACTTCTGCTATTTTGATTACTCCAGAAGGCGACGACAAGCCAGGCGCTGTTGGCAAGGTTGTTCCATTCTTC GAAGCTAAGGTTGTTGACTTGGACACTGGCAAGACTTTGGGCGTTAACCAAAGAGGCGAATTGTGCGTTAGA TGCACTCTGGCGACATTGCTTACTGGGACGAAGACGAACACTTCTTCATTGTTGACAGATTGAAGTCTTTGATT AAGTACAAGGGCTACCAAGTTGCTCCAGCTGAATTGGAATCTATTTTGTTGCAACACCCAAACATTTTCGACGC TGGCGTTGCTGGCTGCCAGACGACGACGCTGCCGAATTGCCAGCTGCTGTTGTTTTTGGAACACGGCAA GACTATGACTGAAAAGGAAATTGTTGACTACGTTGCTTCTCAAGTTACTACTGCTAAGAAGTTGAGAGGCGGC GTTGTTTTCGTTGACGAAGTTCCAAAGGGCTTGACTGGCAAGTTGGACGCTAGAAAGATTAGAGAAATTTTGA TTAAGGCTAAGAAGGGCGGCAAGTAA

>Min103MaxCFLuc

ATGGAGGACGCAAAAAACATAAAAAAAGGGCCTGCGCCCTTCTATCCTCTCGAGGATGGGACGGCGGGGGGA GCAGCTCCATAAAGCGATGAAAAGGTACGCACTCGTGCCTGGGACGATAGCGTTTACGGATGCACATATAGA GGTGAACATAACGTACGCGGAGTACTTCGAGATGTCGGTGCGGCTCGCAGAGGCGATGAAACGGTATGGGC TCAATACGAATCACAGGATAGTATGCTCGGAGAACTCGCTCCAGTTCTTTATGCCTGTGCTCGGGGCCGCT CTTTATAGGGGTGGCAGTGGCCAGCTAACGACATTTACAACGAAAGAGAATTGTTGAACTCTATGAACATT TCTCAACCAACTGTTGTTTTCGTTTCTAAGAAGGGCTTGCAAAAGATTTTGAACGTTCAAAAGAAGTTGCCAAT TATTCAAAAGATTATTATGGACTCTAAGACTGACTACCAAGGCTTCCAATCTATGTACACTTTCGTTACTTC TCACTTGCCACCAGGCTTCAACGAATACGACTTCGTTCCAGAATCTTTCGACAGAGACAAGACTATTGCTTTGA TTATGAACTCTTCTGGCTCTGCCTTGCCAAGGGCGTTGCTTTGCCACACAGAACTGCTTGCGTTAGATTC TCTCACGCTAGAGACCCAATTTTCGGCAACCAAATTATTCCAGACACTGCTATTTTGTCTGTTGTTCCATTCCAC CACGGCTTCGGCATGTTCACTACTTTGGGCTACTTGATTTGCGGCTTCAGAGTTGTTTTGATGTACAGATTCGA AGAAGAATTGTTCTTGAGATCTTTGCAAGACTACAAGATTCAATCTGCTTTGTTGGTTCCAACTTTGTTCTCTTT CTTCGCTAAGTCTACTTTGATTGACAAGTACGACTTGTCTAACTTGCACGAAATTGCTTCTGGCGGCGCTCCAT TGTCTAAGGAAGTTGGCGAAGCTGTTGCTAAGAGATTCCACTTGCCAGGCATTAGACAAGGCTACGGCTTGAC TGAAACTACTTCTGCTATTTTGATTACTCCAGAAGGCGACGACAAGCCAGGCGCTGTTGGCAAGGTTGTTCCA TTCTTCGAAGCTAAGGTTGTTGACTTGGACACTGGCAAGACTTTGGGCGTTAACCAAAGAGGCGAATTGTGCG CTGGTTGCACTCTGGCGACATTGCTTACTGGGACGAAGACGAACACTTCTTCATTGTTGACAGATTGAAGTCTT

TGATTAAGTACAAGGGCTACCAAGTTGCTCCAGCTGAATTGGAATCTATTTTGTTGCAACACCCCAAACATTTTC
GACGCTGGCGTTGCTGGCTTGCCAGACGACGACGCTGGCGAATTGCCAGCTGCTGTTGTTTTTTGGAACACG
GCAAGACTATGACTGAAAAGGAAATTGTTGACTACGTTGCTTCTCAAGTTACTACTGCTAAGAAGTTGAGAGG
CGGCGTTGTTTTCGTTGACGAAGTTCCAAAGGGCTTGACTGGCAAGTTGGACGCTAGAAAGATTAGAGAAAT
TTTGATTAAGGCTAAGAAGGGCGGCAAGTAA

>Min346MaxCFLuc

ATGGAGGACGCAAAAAACATAAAAAAAGGGCCTGCGCCCTTCTATCCTCTCGAGGATGGGACGGCGGGGGGA GCAGCTCCATAAAGCGATGAAAAGGTACGCACTCGTGCCTGGGACGATAGCGTTTACGGATGCACATATAGA GGTGAACATAACGTACGCGGAGTACTTCGAGATGTCGGTGCGGCTCGCAGAGGCGATGAAACGGTATGGGC TCAATACGAATCACAGGATAGTAGTATGCTCGGAGAACTCGCTCCAGTTCTTTATGCCTGTGCTCGGGGCCGCT CTTTATAGGGGTGGCAGTGGCGCCCGCGAACGACATATATAATGAGCGGGAGCTCCTCAACTCGATGAACAT ATCGCAGCCTACGGTAGTGTTTGTGTCGAAAAAAGGGCTCCAGAAAATACTCAACGTGCAGAAAAAACTCCCC ATAATACAGAAAATAATAATAATGGATTCGAAAACGGATTACCAGGGGTTTCAGTCGATGTACACGTTCGTAA CGTCGCATCTCCCTCCCGGGTTTAATGAGTACGATTTTGTACCCGAGTCGTTTGATCGGGACAAAACGATAGC ACTCATAATGAATTCGTCGGGGATCGACGGGGCTCCCTAAAGGGGTGGCACTCCCTCATAGGACGGCATGCGT AAGGTTCTCGCATGCAAGGGACCCTATATTTGGGAATCAGATAATACCTGATACGGCGATACTCTCGGTGGTG CCCTTCCATCACGGGTTTGGGATGTTTACGACGCTCGGGTATCTCATATGTGGGTTTCGGGTAGTACTCATGTA TAGGTTTGAGGAGGAGCTCTTTCTCCGGTCGCTCCAGGATTACAAAATACAGTCGGCGCTCCTCGTACCCACG CTCTTTTCGTTCTTCGCAAAATCGACGCTCATAGACAAATACGATCTCTCGAATCTCCACGAGATAGCGTCGGG GGGGGCACCTCTCCGAAAGAGGTAGGGGAGGCGGTGGCAAAACGGTTCCATCTCCCCGGGATACGGCAGG GGTATGGGCTCACGGAGACGACGTCTGCTATTTTGATTACTCCAGAAGGCGACGACAAGCCAGGCGCTGTTG GCAAGGTTGTTCCATTCTTCGAAGCTAAGGTTGTTGACTTGGACACTGGCAAGACTTTGGGCGTTAACCAAAG AGGCGAATTGTGCGTTAGAGGCCCAATGATTATGTCTGGCTACGTTAACAACCCAGAAGCTACTAACGCTTTG ATTGACAAGGACGCTGGTTGCACTCTGGCGACATTGCTTACTGGGACGAAGACGAACACTTCTTCATTGTTG ACAGATTGAAGTCTTTGATTAAGTACAAGGGCTACCAAGTTGCTCCAGCTGAATTGGAATCTATTTTGTTGCAA CACCCAAACATTTCGACGCTGGCGTTGCTGGCTTGCCAGACGACGACGCTGGCGAATTGCCAGCTGCTGTTG TTGTTTTGGAACACGGCAAGACTATGACTGAAAAGGAAATTGTTGACTACGTTGCTTCTCAAGTTACTACTGCT AAGAAGTTGAGAGGCGCGTTGTTTTCGTTGACGAAGTTCCAAAGGGCTTGACTGGCAAGTTGGACGCTAGA AAGATTAGAGAAATTTTGATTAAGGCTAAGAAGGGCGGCAAGTAA

>Max346MinCFLuc

GTCTACTTTGATTGACAAGTACGACTTGTCTAACTTGCACGAAATTGCTTCTGGCGGCGCTCCATTGTCTAAGG
AAGTTGGCGAAGCTGTTGCTAAGAGATTCCACTTGCCAGGCATTAGACAAGGCTACGGCTTGACTGAAACGA
CGTCGGCGATACTCATAACGCCCGAGGGGGATGATAAACCTGGGGCGGTAGGGAAAGTGGTGCCCTTTTTTG
AGGCGAAAGTGGTGGATCTCGATACGGGGAAAACGCTCGGGGTGAATCAGAGGGGGAGCTCTGTGTAAG
GGGGCCTATGATAATGTCGGGGTATGTAAACAATCCTGAGGCGACGAACGCACTCATAGACAAAGATGGGTG
GCTCCATTCGGGGGACATAGCGTACTGGGACGAGGACGACCACTTCTTCATAGTGGACCGGCTCAAATCGCT
CATAAAATACAAAGGGTATCAGGTGGCACCCGCGGAGCTCGAGTCGATACTCCTCCAGCACCCCAACATATTC
GACGCGGGGGTGGCAGGGCTCCCCGACGATGACGCAGGGGAGCTCCCCGCAGCAGTGGTGGTGCTCGAGCA
CGGGAAAACGATGACGGAGAAAAAAAGGGGTACCTAAAAGGGCTCACGGGGAAAACTCGACGCAAAGAAAAAACTCC
GGGGGGGGGTGGTGTTTGTGGACGAGGTACCTAAAAGGGCTCACGGGGAAAACTCGACGCAAAGAAAAAAAGGGGGGAAAATAA

>minHIS3

ATGACAGAGCAGAAGGCACTCGTAAAGAGGATAACAAATGAGACAAAGATACAGATAGCAATATCGCTCAA
GGGGGGGCCTCTCGCAATAGAGCACTCGATATTCCCTGAGAAGGAGGCAGAGGCAGTAGCAGAGCAGCAA
CACAGTCGCAGGTAATAAATGTACACACAGGGATAGGGTTCCTCGATCACATGATACACGCACTCGCAAAGCA
CTCGGGGTGGTCGCTCATAGTAGAGTGCATAGGGGGATCTCCACATAGATGATCACCACACAACAGAGGATTG
CGGGATAGCACTCGGGCAGGCATTCAAGGAGGCACTCGGGGCAGTAAGGGGGGTAAAGAGGTTCGGGTCG
GGGTTCGCACCTCTCGATGAGGCACTCTCGAGGGCAGTAGTAGATCTCTCGAATAGGCCTTATGCAGTAGTAG
AGCTCGGGCTCCAGAGGGAGAAGGTAGGGGATCTCTCGTGCGAGATGATACCTCACTTCCTCGAGTCGTTCG
CAGAGGCATCGAGGATAACACTCCACGTAGATTGCCTCAGGGGGAAGAATGATCACCACAGGTCGGAGTCG
GCATTCAAGGCACTCGCAGTAGCAATAAGGGAGGCAACATCGCCTAATGGGACAAATGATGTACCTTCGACA
AAGGGGGTACTCATGTATCCTTATGATGTACCTGATTATGCATAG

>staHIS3

>maxHIS3

ATGACTGAACAAAAGCGTTGGTCAAAAGAATTACTAACGAAACTAAAATTCAAATTGCGATTTCCTTGAAAG
GTGGTCCGTTGGCGATTGAACATTCCATTTTTCCGGAAAAAGAAGCGGAAGCGGTCGCGGAACAAGCGACTC
AATCCCAAGTCATTAACGTCCATACTGGTATTGGTTTTTTTGGACCATATGATTCATGCGTTGGCGAAACATTCC
GGTTGGTCCTTGATTGTCGAATGTATTGGTGACTTGCATATTGACGACCATCATACTACTGAAGACTGTGGTAT
TGCGTTGGGTCAAGCGTTTAAAGAAGCGTTGGGTGCGGTCAGAGGTGTCAAAAGATTTGGTTCCGGTTTTGC
GCCGTTGGACGAAGCGTTGTCCAGAGCGGTCGTCGACTTGTCCAACAGACCGTACGCGGTCGTCGAATTGGG
TTTGCAAAGAAAAAAGTCGGTGACTTGTCCTGTGAAATGATTCCGCATTTTTTGGAATCCTTTGCGGAAGCG

TCCAGAATTACTTTGCATGTCGACTGTTTGAGAGGTAAAAACGACCATCATAGATCCGAATCCGCGTTTAAAG CGTTGGCGGTCGCGATTAGAGAAGCGACTTCCCCGAACGGTACTAACGACGTCCCGTCCACTAAAGGTGTCTT GATGTACCCGTACGACGTCCCGGACTACGCGTAG

>minRLuc

>staRLuc

ATGACTTCGAAAGTTTATGATCCAGAACAAAGGAAACGGATGATAACTGGTCCGCAGTGGTGGGCCAGATGT
AAACAAATGAATGTTCTTGATTCATTTATTAATTATTATGATTCAGAAAAACATGCAGAAAATGCTGTTATTTT
TTACATGGTAACGCGGCCTCTTCTTATTTATGGCGACATGTTGTGCCACATATTGAGCCAGTAGCGCGGTGTAT
TATACCAGACCTTATTGGTATGGGCAAATCAGGCAAATCTGGTAATGGTTCTTATAGGTTACTTGATCATTACA
AATATCTTACTGCATGGTTTGAACTTCTTAATTTACCAAAGAAGATCATTTTTGTCGGCCATGATTGGGGTGCTT
GTTTGGCATTTCATTATAGCTATGAGCATCAAGATAAGATCAAAGCAATAGTTCACGCTGAAAGTGTAGTAGA
TGTGATTGAATCATGGGATGAATGGCCTGATATTGAAGAAGAAAATTGCGTTGATCAAAATCTGAAGAAGGAGA
AAAAATGGTTTTGGAGCATATCTTCGTGGAAACCATGTTGCCATCAAAAATCATGAGAAAGTTAGAACCA
GAAGAATTTGCAGCATATCTTGAACCATTCAAAGAGAAAAGGTGAAATTGTTAGGAATTATAATGCTTATCTACGT
GCAAGTGATGATTTACCAAAAATGTTTATTGAATCGGACCCAGGATTCTTTTCCAATGCTATTGTTGAAGGTGC
CAAGAAGTTTCCTAATACTGAATTTGTCAAAGTAAAAGGTCTTCATTTTTCCCAAGAAGATGCACCTGATGAAA
TGGGAAAATATATCAAATCGTTCGTTGAGCGAGTTCTCAAAAAATGAACAAATGTCGTAA

>mCherryv3

CCAGGTGCATACAACGTTAATATTAAGCTTGATATCACCTCTCATAACGAAGATTATACTATTGTCGAGCAATA CGAAAGAGCTGAAGGTAGACACTCCACTGGCGGTATGGACGAATTGTACAAGTAA

>mCherryv4

ATGGTTTCAAAGGGCGAAGAAGACAATATGGCTATTATTAAGGAATTCATGAGATTCAAGGTCCACATGGAA
GGTTCTGTCAACGGTCACGAATTCGAAATTGAAGGTGAAGGTGAAGGTAGACCATACGAAGGTACCCAAACC
GCTAAGTTGAAGGTCACCAAGGGTGGTCCATTGCCATTCGCTTGGGATATTTTGTCTCCACAATTCATGTACGG
TTCTAAGGCTTACGTCAAGCACCCAGCTGATATTCCAGATTACTTGAAGTTGTCTTTCCCAGAAGGTTTCAAGT
GGGAAAGAGTCATGAACTTCGAAGATGGTGGTGTCGTCACCCTCACCCAAGATTCTTCTTTGCAAGATGGTGA
ATTCATTTACAAGGTCAAGTTGAGAGGTACCAACTTCCCATCTGATGGTCCAGTCATGCAAAAGAAGACCATG
GGTTGGGAAGCTTCTTCTGAAAGAATGTACCCAGAAGATGGTGCTTTGAAGGGTGAAATTAAGCAAAGATTG
AAGTTGAAGGATGGTGGTCACTACGATGCTGAAGTCAAGACCACCTACAAGGCTAAGAAGCCAGTCCAATTG
CCAGGTGCTTACAACGTCAACATTAAGTTGGATATTACCTCTCACAACGAAGATTACACCATTGTCGAACAATA
CGAAAGAGCTGAAGGTAGACACTCTACCGGTGGTATGGATGAATTGTACAAGTAA

Firefly Luciferase (CFLuc) codon variants: codon substitutions and resulting decoding speed changes max faster 16x no change 16x slower sta min Fold speed change compared to staCFLuc 150 ATGGAAGACGCTAAGAACATTAAGAAGGCCCAGCTCCATTCTACCCATTGGAAGACGCTGCTGGCGAACAATTGCACAAGGCTATGAAGATTAACGCTTTTGATTTCACTGACGCTCACATTGAAGTTAAC ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCTCTAGAGGATGGAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGTACGCCCTGGTTCCTGGAACAATTGCTTTTACAGATGCACATATCGAGGTGAAC ATG<mark>GAG</mark>GACGCAAAAAACATAAAAAAAGGGGCCTGCGCCCTTCTATCCTCCGAGGATGGGACGGCGGGGGGACGCTCCATAAAGCGATGAAAAGCGATGAACATCCTCGGGACGATAGCGTTCACGCACTCTCTATCCTCTCCACACATATAGAGGTGAAC 300 ATAACGTACGCGGAGTACTTCGAGATGTCGGTGCGGCTCGCAGAGGCGATGAAACGGTATGGGCTCAATACGAATCACAGTAGTAGTAGTATGCTCGGAGAACTCGCTCCAGTTCTTTATGCTCGGGGCGCTCTTTATAGGGGTG 450 GCAGTGGCGCCCGCGAACGACATATATAATGAGCGGGAGCTCCTCAACTCGATGAACATATCGCAGCCTACGGTAGTGTTTTGTGTCGAAAAAAAGGGCTCCAGAAAAATACTCAACGTGCAGAAAAAACTCCCCCATAATACAGAAAATAATAA 600 ATTATGGACTCTAAGACTGACTACCAAGGCTTCCAATCTATGTACACTTTCGTTACTTCTCACTTGCCACCAGGCTTCAACGAATACGACTTCGTTCCAGAAATCTTTCGACAAGACAAATCTTTCGACTATGATTATGAACTCTTCTGGC ATCATGGATTCTAAAACGGATTACCAGGGATTTCAGTCGATGTACACGTTCGTCACATCTCACTCTCCCGGTTTTAATGAATACGATTTTGTACCAGAGTCCTTTGATCGTCGACAAAACAATTGCACTGATAATGAATTCCTCTGGA 750 TCGACGGGGCTCCCTAAAGGGGTGGCACTCCTCATAGCACGCATGCGTAAGGTTCTCGCATGCAAGGGACCCTATATTTTGGGAATCAGATAATACGCTGATACTCTCGGTGGTGCCCTTCCATCACGGGGTTTGGGATGTTT ACTACACTCGGATATTTGATATGTGGATTCCGAGTCGTCTTAATGTATAGATTTGAAGAAGAGCTGTTTTTACGATCCCTTCAGGATTACAAAATTCAAAGTGCGTTGCTAGTACCAACCCTATTTTCATTCTTCGCCAAAAGCACTCTG ACGACGCTCGGGTATCTCATATGTGGGGTTCCACGCTACTCATGTATAGGGTTTTGAGGAGGAGCTCTTTCCCGGTCGCTCCAGGATTACAAAATACAGTCGGCGCTCCTCGTACCCACGCTCTTTTCGCTACAAAATCGACGCTC 1050 ATTGACAAGTACGACTTGTCTAACTTGCACGAAATTGCTTCTGGCGGCGCTCCATTGTCTAAGGAAGTTGCCGAAGCTGTTGCTAAGAGATTCCACTTGCCAGGCATTAGACAAGGCTACGGCTTCTAACTACTTCTGCTATTTTTG ATTGACAAATACGATTTATCTAATTTACACGAAATTGCTTCTGGGGGCGCACCTCTTTCGAAAGAAGTCGGGGAAGCGGTTGCAAAACGCTTCCATCTTCCAGGGATACGACAAGGATATGGGCTCACTGAGACTACATCAGCTATTCTG 1200 ATTACTCCAGAAGGCGACGACGACGACGACGACTGTTGGCAAGGTTGTTCCATTCTTCGAAGCTAAGGTTGTTGACCTTGGACACTTTGGCCAAGACTTTGGCCATTACCCAAAGACCCAAAGACTTTGTCCGACCCAATGATTATGTCTGGC ATTACACCCGAGGGGGATGATAAACCGGGCGGTCGGTAAAGTTGTTCCATTTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAGAGAGGCGAATTATGTCTCAGAGGACCTATGATTATGTCCGGT ATAACGCCCGAGGGGGATGATAAACCTGGGGCGGTAGGGAAAGTGGTGCCCTTTTTTGAGGCGAAAGTGGTGGATCTCGATACGGGGAAAACGCTCGGGGTGAATCAG<mark>AGG</mark>GGGGGGGGCTCTGTGTAAGGGGGCCCTATGATAATG<mark>TCG</mark>GG TACGTTAACAACCCAGAAGCTACTAACGCTTTGATTGACAAGGACGGCTGGTTGCACTCTGGCGACATTGCTTACTGGGACGAAGACGACACTTCTTCATTGTTGACAAGTCTTTGATTAACTACAAGGGCTAC

HIS3 codon variants: codon substitutions and resulting decoding speed changes

faster 16x 16x slower no change Fold speed change compared to staHIS3 maxHIS3 staHIS3 minHIS3 150 ATGACTGAACAAAAAGCGTTGGTCAAAAGAATTACTAACGAAACTAAAATTCAAATTGCGATTTCCTTGAAAGGTGGTCCGTTGGCGATTGAACATTTCCATTTTTCCGGAAAAAGAAGCGGAAGCGGTCGCGGAAA ATGACAGAGCAGAAAGCCCTAGTAAAGCGTATTACAAATGAAACCAAGATTCAGATTCGCGATCTCTTTAAAGGGTGGTCCCCTAGCGATAGAGCACTCGATCTTCCCAGAAAAAAGAGGCAGAAGCAGTAGCAGAACAGGCCACACAATCG ATGACAGAGCAGAAGGCACTCGTAAAGAGGTAACAAATGGAGACAAAGATACAGATACCAATATCGCTCAAGGGGGGGCCTCTCGCAATAGAGCACTCGATATTCCCTGAGAAGGAGGCAGAGAGCAGTAGCAGACAACACAGTCG 300 CAAGTCATTAACGTCCATACTGGTATTGGTTTTTTGGACCATATGATTCATGCGTTGGCGAAACATTCCGGTTGGTCCTTGATTGTCGAATGTATTGGTGACTACTACTACTACTGAAGACTGTGGTATTGCGTTG CAAGTGATTAACGTCCACACAGGTATAGGGTTTCTGGACCATATGATACATGCTCTGGCCAAGCATTCCGGCTGGTCGCTAATCGTTGAGTGCATTGGTGACTTACACATAGACGACCATCACACCACTGAAGACTGCGGGATTGCTCTC CAGGTAATAAATGTACACACAGGGATAGGGTTCCTCGATCACATGATACACGCACTCGCAAAGCAC<mark>TCG</mark>GGTGGTCGCTCATAGTAGAGGGGTCTCCACATAGATGATCACCACACAACA<mark>GAG</mark>GATTGCGGGATAGCACTC 450 GGTCAAGCGTTTAAAGAAGCGTTGGGTGCGGTCAGAGGTGTCAAAAGATTTGGTTCCGGTTTTGCGCCGTTGGACGAAGCGTTGTCCAGAGCGTTGTCCAACAGACCGTACGCGGTCGTCGAATTGGGTTTGCAA GGTCAAGCTTTTAAAGAGGCCCTAGGGGCCGTGCGTGGAGTAAAAAGGTTTGGATCAGGATTTGCGCCTTTGGATGAGGCACTTTCCAGAGCGGTGGTAGATCTTTCGAACAGGCCGTACGCAGTTGTCGAACTTGTTTGCAAAGGGAG GGGCAGGCATTCAAGGAGCACTCGGGGCAGTAAGGGGGGTAAAGAGGTTCGGGTCGGGGTTCGCACCTCTCGATGAGGCCACTCTCGAGTAGTAGATCTCTCGAATAGGCCTTATGCAGTAGTAGAGCTCGGGCTCCAGAGGGAG 600 AAAGTAGGAGATCTCTCTTGCGAGATGATCCCGCATTTTCTTGAAAGCTTTGCAGAGGCTAGCAGAATTACCCTCCACGTTGATTGTCTGCGAGGCAAGAATGATCACCCGTAGTGACAGTGCGTTCAAGGCTCTTGCGGTTGCCATA

AAGGTAGGGGATCTCTCGTGCGAGATGATACCTCACTTCCTCGAGTCGTTCGCAGAGGCATCGAGGATAACACTCCACGTAGATTGCCTCAGGGGGAAGAATGATCACCACAGGTCGGAGTCGGCATTCAAGGCACTCGCAGTAGCAATA

AGAGAAGCGACTTCCCCGAACGGTACTAACGACGTCCCGTCCACTAAAGGTGTCTTGATGTACCCGTACGACGTCCCGGACTACGCGTAG
AGAGAAGCCACCTCGCCCAATGGTACCAACGATGTTCCCTCCACCAAAGGTGTTCTTATGTACCCGTACGACGTCCCGGACTACGCGTAG
AGGGAGGCAACATCGCCTAATGGGACAAATGATGTACCTTCGACAAAGGGGGTACTCATGTATCCTTATGATGTACCTGATTATGCATAG

RLuc codon variants: codon substitutions and resulting decoding speed changes

faster 16x no change 16x slower

Fold speed change compared to staRLuc

staRLuc minRLuc

300
CATGGTAACGCGGCCTCTTCTTATTTATGGCGACATGTTGTGCCACATATTGAGCCAGTAGCGCGGTGTATTATACCAGACCTTATTGGTATGGCAAATCAGGCAAATCTGGTAATGGTTCTTATAGGTTACTTGATCATTACAAATAT
CACGGGAATGCAGCATCGTCCTATCTCTGGAGGCACGTAGTACCTCACATAGAGCCTGTAGCAAGGTGCATAAATACCTGATCTCATAGGGATGGGGAAGTCGGGGAATGGGGTCGTATAGGCTCCTCGATCACTATAAGTAT

600
GAATCATGGGATGAATGGCCTGATATTGAAGAAGATATTGCGTTGATCAAATCTGAAGAAGGAGAAAAAATGGTTTTGGAGAATAACTTCTTCGTGGAAACCATGTTGCCATCAAAAATCATGAGAAAGTTAGAACCAGAAGAATTTGCA
GACTCGTGGGATGACTGGCCTGATATAGAGGAGGATATAGCACTCATAAACTCGGAGGACGGCGGAGAAGATGCTCGAGAAAAATTTCTTCGTAGAGAAAATCCTCCCTTCGAAGATAATCAGGAAGCTCGAGCCTGAGGACTTCGCA

900
CCAAAAATGTTTATTGAATCGGACCCAGGATTCTTTTCCAATGCTATTGTTGAAGGTGCCAAGAAGTTTCCTAATACTGAATTTGTCAAAGGTATAAAGGTCTTCATTTTTCGCAAGAAGATGCACCTGATGAAATAGGGAAAATATATACAA
CCTAAGATGTTCATAGAGTCCGATCCTGGGTTCTTCTCGAATGCAATAGTAGAGGGGGCAAAGAAGTTCCCTAATACAGAGTTCGTAAAAGGTAAAGGGGCTCCACTTCTCGCAGGAGGATGCACCTGATGAGATGTAGAGGGGAAGTATATAAAG

mCherry codon variants: codon substitutions and resulting decoding speed changes

faster 16x no change 16x slower

Fold speed change compared to mCherryv3

mCherryv3 mCherryv4

150

ATGGTTTCAAAGGGCGAAGAAGACAATATGGCTATTATTAAGGAATTCATGAGATTTAAAGTTCATATGGAGGGTAGTGTTAACGGTCACGAATTCGAAATCGAAGGTGAAGGTGAAGGTAGACCATACGAGGGTACCCAAACTGCTAAG

ATGGTTTCAAAGGGCGAAGAAGACAATATGGCTATTATTAAGGAATTCATGAGATTCAAGGTCCACATCGAAGTTCTCAACGGTCACGGAATTCGAAATTGAAGGTGAAGGTGAAGGTAGACCATACCAAACCGCTAAG

600
TCTAGCGAAGAATGTATCCAGAAGATGTGCTCTGAAAGGAGAATCAAGCAACGTTTGAAATTAAAGGATGGTGGTCACTACGACGCTGAAGTTAAAACTACATATAAGGCCAAAAAGCCTGTCCAATTGCCAGGTGCATACAACGTT
TCTTCTGAAAGAATGTACCCAGAAGATGGTGCTTTGAAGGGTGAAATTAAGCAAAGATTGAAGTTGAAGGTGAACTCACTACGATGCTGAAGTCAAGACCACCTACAAGGCTAAGAAGCCCACTACAATTGCCAGGTGCTTACAACGTC

711

AATATTAAGCTTGATATCACCTCTCATAACGAAGATTATACTATTGTCGAGCAATACGAAAGAGCTGAAGGTAGACACTCCACTGGCGGTATGGACGAATTGTACAAGTAA
AACATTAAGTTGGATATTACCTCTCACAACGAAGATTACACCATTGTCGAACAATACGAAAGAGCTGAAGGTAGACACTCTACCGGTGGTATGGATGAATTGTACAAGTAA

Supplemental Table 3. Plasmids used in this study.

"Addgene Ref." numbers can be used to locate plasmid with sequence information and maps at the Addgene plasmid repository (www.addgene.org).

	Plasmid	Alt Name	Description	Ref.	Addgene Ref.
	рТН644	CENBEVY-U	Centromeric <i>URA3</i> marker plasmid containing bidirectional expression cassette, for simultaneous expression of genes from <i>TDH3</i> and <i>ADH1</i> promoters.	(Chu et al., 2011)	29695
Basic CFLuc codon variants	pTH645	CEN_R	CENBEVY-U with Renilla luciferase (RLuc) expressed from the <i>ADH1</i> promoter.	(Chu et al., 2011)	29694
	pTH726	CEN_R/minCFLuc	pTH645 with a slow codon variant of cytoplasmic FLuc expressed from the <i>TDH3</i> promoter.	this study	38210
Basic CFLuc	рТН727	CEN_R/staCFLuc	pTH645 with normal codon variant of cytoplasmic FLuc expressed from the <i>TDH3</i> promoter.	this study	38211
	рТН728	CEN_R/maxCFLuc	pTH645 with fast codon variant of cytoplasmic FLuc expressed from the <i>TDH3</i> promoter.	this study	38212
variants	рТН786	CEN_R/GAA ₁₀ maxCFLuc	pTH728 including a run of 10 GAA codons following the maxCFLuc start codon	this study	45556
	рТН787	CEN_R/GAG ₁₀ maxCFLuc	pTH728 including a run of 10 GAG codons following the maxCFLuc start codon	this study	45557
	pTH747	CEN_R/ min4maxCFLuc	As pTH728, but first 4 codons replaced by slow codons	this study	38213
	pTH748	CEN_R/ min8maxCFLuc	As pTH728, but first 8 codons replaced by slow codons	this study	38214
c codor	pTH749 CEN_R/		As pTH728, but first 12 codons replaced by	this	38215
Mixed CFLuc codon variants		min12maxCFLuc	slow codons	study	
	рТН750	CEN_R/	As pTH728, but first 16 codons replaced by slow codons	this study	38216
		min16maxCFLuc			
	pTH751	TH751 CEN_R/	As pTH728, but first 53 codons replaced by slow codons	this study	38217
		min53maxCFLuc		•	

Basic CFLuc codon variants with slow initiation region	pTH752 CEN_R/		As pTH728, but first 103 codons replaced by slow codons	this study	38218
		min103maxCFLuc			
	pTH753	CEN_R/	As pTH728, but first 346 codons replaced by slow codons	this study	38219
		min346maxCFLuc	Siow codolis	study	
	pTH754	CEN_R/ max346minCFLuc	As pTH728, but last 201 codons replaced by slow codons	this study	40597
	рТН738	CENBEVY-slow	Variant pTH644 with a uORF-containing leader in the bidirectional expression cassette, which slows initiation rates for mRNAs expressed from the <i>TDH3</i> promoter.	this study	38220
	рТН741	CENslow_R	Variant pTH645 with a uORF-containing leader in the bidirectional expression cassette, which slows initiation rates for mRNAs expressed from the <i>TDH3</i> promoter. Expresses Renilla luciferase from the <i>ADH1</i> promoter.	this study	38221
	pTH742	CENslow-R/ minCFLuc	pTH741 with a slow codon variant of cytoplasmic FLuc expressed from the <i>TDH3</i> promoter via a uORF-containing 5-UTR.	this study	38222
	pTH743	CENslow-R/ staCFLuc	pTH741 with normal codon variant of cytoplasmic FLuc expressed from the <i>TDH3</i> promoter via a uORF-containing 5-UTR.	this study	38223
	pTH744	CENslow-R/ maxCFLuc	pTH741 with fast codon variant of cytoplasmic FLuc expressed from the <i>TDH3</i> promoter via a uORF-containing 5-UTR.	this study	38224
	рТН729	CEN_minRLuc	pTH644 with slow codon variant of RLuc expressed from the <i>TDH3</i> promoter.	this study	38225
Codon variants of other proteins	pTH730	CEN_staRLuc	pTH644 with normal codon variant of RLuc expressed from the <i>TDH3</i> promoter.	this study	38226
	рТН735	CEN_minHIS3	pTH644 with slow codon variant of HA-tagged yeast HIS3 expressed from the <i>TDH3</i> promoter.	this study	38227
	рТН736	CEN_staHIS3	pTH644 with normal codon variant of HA- tagged yeast HIS3 expressed from the <i>TDH3</i> promoter.	this study	38228
	pTH737	CEN_maxHIS3	pTH644 with fast codon variant of HA-tagged yeast HIS3 expressed from the <i>TDH3</i> promoter.	this study	38229
	рТН760	CEN_mCherry_v3	Centromeric plasmid expressing v3 variant of mCherry fluorescent protein.	this study	40598
	pTH761	CEN_mCherry_v4	Centromeric plasmid expressing v4 variant of mCherry fluorescent protein.	this study	40599

pTH490 tQSRTL Centromeric plasmid, contains genes for the (Chu et 29699 five essential tRNAs encoded by a single al., chromosomal gene in *S. cerevisiae*. 2011)

qPCR data and mRNA analyses

1. qPCR primer sequences.

Primers were designed using the primer design tool provided by Genscript, Piscataway, NJ (https://www.genscript.com/ssl-bin/app/primer), with a target product size range of 80-150 nucleotides and a target primer Tm of 58-60 °C. qADH1 primers were designed manually.

Primer Name	Purpose	Sequence		
qMaxFLuc_f		CGACATTGCTTACTGGGACG		
qMaxFLuc_r	Target nucleotides 1263-1351 of the MaxCFLuc ORF	GAGCAACTTGGTAGCCCTTG		
qMaxFLuc5_f	T	CTCTACTGGCTTGCCAAAGG		
qMaxFLuc5_r	Target nucleotides 600-734 of the MaxCFLuc ORF	TGGTGGAATGGAACAACAGA		
qMinFLuc5_f	T	CTGCGCCCTTCTATCCTCTC		
qMinFLuc5_r	Target nucleotides 32-137 of the MinCFLuc ORF	TGTGCATCCGTAAACGCTAT		
qREN_f	Toward and a fide a 750,000 of the Dive ODE	TGTTTATTGAATCGGACCCA		
qREN_r	Target nucleotides 758-880 of the RLuc ORF	CATCAGGTGCATCTTCTTGC		
qADH1_f	Target a 70 nt long sequence in the <i>ADH1</i> -derived	TGCAAGCTTTGGACTTCTTC		
qADH1_r	3'-UTR present in the recombinant protein expression constructs.	CAAGGTAGACAAGCCGACAA		
qHIS3_f	Target a 88 nt-long sequence in the HIS3 mRNA	ATGTAGTGACACCGATTATTTA		
qHIS3_r	starting at nucleotide 658 of the ORF and extending 82 nucleotides into the <i>HIS3</i> 3'-UTR	TACATACTTACTGACATTCATAG		
qLEU3_f	Target a 134-nt long sequence in the <i>LEU3</i> mRNA,	CAGCAACTAAGGACAAGG		
qLEU3_r	comprising nucleotides 2125-2259 of the ORF	GGTCGTTAATGAGCTTCC		

2. qPCR protocol.

2 oD units of yeast cells transformed with the recombinant protein expressing plasmids and grown in SC medium lacking uracil to an oD $_{600}$ of 0.5-0.9 were harvested and frozen at -20 °C. For data in figure 7, 2 oD units of cells grown in YPD to an oD $_{600}$ of 0.7-0.8 were used. RNA was prepared from cells using an RNA easy kit (QIAgen, UK) including the optional DNAse digest step.

Apparent primer efficiencies were determined by preparing 2-fold serial dilutions of RNA samples containing target mRNA and analysing the resulting data as described in Pfaffl *et al.* (2001).

Primer specificity was verified by separating final PCR products on a 2% agarose gel where all primers yielded a single product of the expected size.

3. Primers used for different constructs.

qPCR data displayed in figure 2 were generated using primers qADH1 directed against the 3'-UTRs of the codon variant mRNAs, and primers qLEU3 which are directed against the internal standard mRNA.

qPCR data in figure 3 were generated using primers qADH1 directed against the 3'-UTRs of the different CFLuc mRNAs, and primers qREN for the internal standard.

qPCR data in figure 4 were generated as described below.

qPCR data for the maxCFLuc/max346minCFLuc comparison in figure 5 were generated using primers qmaxFLuc5, which are directed against the codon optimised part of the sequence shared between maxCFLuc and max346minCFLuc, and using primers qREN for the internal standard. The data for minCFLuc in this figure are from the maxCFLuc/minCFLuc comparison in figure 4.

qPCR data in figure 6 were generated using primers qmaxFLuc, and using primers qREN for the internal standard.

qPCR data in figure 7 were generated using primers qHIS3 which are directed against the invariant 3'-UTR of the HIS3 codon variant mRNAs, and using primers qADH1 for the internal standard

To generate data for the mixed codon variants in figure 4, we employed a strategy using two pairs of primers (qmaxFLuc and qminFLuc5) as follows, with qREN as internal standard for all reactions.

Primers qmaxFLuc anneal to the codon optimised sequence common to maxCFLuc and all mixed codon variants in this figure. Primers qminFLuc5 anneal to the codon-disoptimised sequence common to minCFLuc and min346/103/53CFLuc. qPCR reactions were run for each template with all primer pairs targeting that template.

RNA samples were prepared at least in triplicate from independently cultured cells expressing the different CFLuc constructs. qPCR reactions were prepared combining each RNA sample with each primer pair targeting the expressed CFLuc construct in that sample. qREN primers were used to generate an internal standard.

The fold difference to the average signal for the primer pair used was calculated, based on the ΔCt to the average Ct and the experimentally determined efficiency for that primer. All minFLuc5 values were adjusted so that the average value for min53max, min103max and min346max was the same as the average maxFLuc value

Data were normalised to the max value and where multiple primers were used for the same sample values were averaged to generate data used in figure 4.

4. References

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.