Introdução aos modelos DSGE

Modelo de Ciclos de Negócio Reais (RBC) com competição imperfeita

João Ricardo Costa Filho

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

Sobre a estrutura de mercado nos modelos DSGE

 Até o momento, trabalhamos com todos os mercados perfeitamente competitivos (bens e serviços, mercado de trabalho, mercado de capitais...).

- Até o momento, trabalhamos com todos os mercados perfeitamente competitivos (bens e serviços, mercado de trabalho, mercado de capitais...).
- A consequência disso é que os agentes (empresas e famílias) tomam os preços como dados.

- Até o momento, trabalhamos com todos os mercados perfeitamente competitivos (bens e serviços, mercado de trabalho, mercado de capitais...).
- A consequência disso é que os agentes (empresas e famílias) tomam os preços como dados.
- Vamos alterar essa hipótese para o mercado de bens e serviços.

- Até o momento, trabalhamos com todos os mercados perfeitamente competitivos (bens e serviços, mercado de trabalho, mercado de capitais...).
- A consequência disso é que os agentes (empresas e famílias) tomam os preços como dados.
- Vamos alterar essa hipótese para o mercado de bens e serviços.
- Vamos assumir que há concorrência monopolística:
 - Livre entrada e saída de competidores.

- Até o momento, trabalhamos com todos os mercados perfeitamente competitivos (bens e serviços, mercado de trabalho, mercado de capitais...).
- A consequência disso é que os agentes (empresas e famílias) tomam os preços como dados.
- Vamos alterar essa hipótese para o mercado de bens e serviços.
- Vamos assumir que há concorrência monopolística:
 - Livre entrada e saída de competidores.
 - Muitos compradores, muitos vendedores.

- Até o momento, trabalhamos com todos os mercados perfeitamente competitivos (bens e serviços, mercado de trabalho, mercado de capitais...).
- A consequência disso é que os agentes (empresas e famílias) tomam os preços como dados.
- Vamos alterar essa hipótese para o mercado de bens e serviços.
- Vamos assumir que há concorrência monopolística:
 - Livre entrada e saída de competidores.
 - Muitos compradores, muitos vendedores.
 - Produto diferenciado

- Até o momento, trabalhamos com todos os mercados perfeitamente competitivos (bens e serviços, mercado de trabalho, mercado de capitais...).
- A consequência disso é que os agentes (empresas e famílias) tomam os preços como dados.
- Vamos alterar essa hipótese para o mercado de bens e serviços.
- Vamos assumir que há concorrência monopolística:
 - Livre entrada e saída de competidores.
 - Muitos compradores, muitos vendedores.
 - Produto diferenciado

 as empresas possuem poder de mercado.

Como instroduzir concorrência monopolística no mercado de bens e serviços?

 Vamos assumir que a concorrência monopolística ocorre no mercado de bens intermediários.

- Vamos assumir que a concorrência monopolística ocorre no mercado de bens intermediários.
- Cada uma dessas empresas vende o seu bem para uma empresa de bens finais que opera em um mercado perfeitamente competitivo.

- Vamos assumir que a concorrência monopolística ocorre no mercado de bens intermediários.
- Cada uma dessas empresas vende o seu bem para uma empresa de bens finais que opera em um mercado perfeitamente competitivo.
 - Isso facilita a agregação de bens diferenciados: torna-se um problema das empresas;

- Vamos assumir que a concorrência monopolística ocorre no mercado de bens intermediários.
- Cada uma dessas empresas vende o seu bem para uma empresa de bens finais que opera em um mercado perfeitamente competitivo.
 - Isso facilita a agregação de bens diferenciados: torna-se um problema das empresas; é possível (e não mais difícil) escrever o modelo como um problema de agregação por parte das famílias.

O modelo

Trabalharemos com três tipos de agentes representativos:

Famílias

- Famílias
 - Oferecem trabalho.

- Famílias
 - Oferecem trabalho.
 - Detêm o capital.

- Famílias
 - Oferecem trabalho.
 - Detêm o capital.
- Empresas de bens intermediários

- Famílias
 - Oferecem trabalho.
 - Detêm o capital.
- Empresas de bens intermediários
 - Recrutam trabalhadores.

- Famílias
 - Oferecem trabalho.
 - Detêm o capital.
- Empresas de bens intermediários
 - Recrutam trabalhadores.
 - Utilizam o estoque de capital.

- Famílias
 - Oferecem trabalho.
 - Detêm o capital.
- Empresas de bens intermediários
 - Recrutam trabalhadores.
 - Utilizam o estoque de capital.
- Empresas de bens finais
 - Agregam os bens intermediários em um bem final.

"Bird's eye view"

Vamos introduzir o governo no Fluxo Circular da Renda.

Famílias

Problema de maximização

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

Problema de maximização

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$\max_{c_s, h_s, k_{s+1}} E_t [\sum_{s=t}^{\infty} \beta^{s-t} u(c_s, h_s)], \tag{1}$$

Problema de maximização

As famílias possuem preferências acerca do consumo (c) e das horas trabalhadas (h) de tal forma que desejam maximizar a seguinte utilidade intertemporal:

$$\max_{c_s, h_s, k_{s+1}} E_t [\sum_{s=t}^{\infty} \beta^{s-t} u(c_s, h_s)], \tag{1}$$

s.a.

$$c_s + i_s = w_s h_s + r_s k_s, (2)$$

onde i representa os gastos com investimentos, w é o salário nominal, r é o retorno do capital (k).

A lei de movimento do capital

Finalmente, a dinâmica do estoque de capital é dada por:

$$k_{t+1} = (1 - \delta)k_t + i_t.$$
 (3)

Lagrangiano

A partir das equações (1), (2) e (3), temos:

$$\mathcal{L} = E_t \left[\sum_{s=t}^{\infty} \beta^t u(c_s, h_s) + \right]$$
$$\sum_{t=0}^{\infty} \beta^{s-t} \lambda_s (w_s h_s + r_s k_s - c_s - k_{s+1} + (1 - \delta) k_s) \right].$$

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff u_{c,t} - \lambda_t = 0, \tag{4}$$

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff u_{c,t} - \lambda_t = 0, \tag{4}$$

$$\frac{\partial \mathcal{L}}{\partial h_s} = 0 \iff u_{h,t} + \lambda_t w_t = 0, \tag{5}$$

$$\frac{\partial \mathcal{L}}{\partial c_s} = 0 \iff u_{c,t} - \lambda_t = 0, \tag{4}$$

$$\frac{\partial \mathcal{L}}{\partial h_s} = 0 \iff u_{h,t} + \lambda_t w_t = 0, \tag{5}$$

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} = 0 \iff -\lambda_t + \beta E_t \left[\lambda_{t+1} \left(1 - \delta + r_{t+1} \right) \right] = 0, \quad (6)$$

$$rac{\partial \mathcal{L}}{\partial c_s} = 0 \iff u_{c,t} - \lambda_t = 0,$$
 $rac{\partial \mathcal{L}}{\partial h_s} = 0 \iff u_{h,t} + \lambda_t w_t = 0,$

(4)

$$\frac{\partial \mathcal{L}}{\partial k_{t+1}} = 0 \iff -\lambda_t + \beta E_t \big[\lambda_{t+1} \big(1 - \delta + r_{t+1} \big) \big] = 0,$$

(7)

$$\frac{\partial \mathcal{L}}{\partial \lambda_t} = 0 \iff c_t + i_t = w_t h_t + r_t k_t. \tag{7}$$

Empresas de bens finais

Assuma que exista um *continuum* de empresas $j \in [0, 1]$.

Assuma que exista um *continuum* de empresas $j \in [0, 1]$. As empresas de bens finais agregam os bens intermediários $(y_{j,t})$ por meio de um função CES "à la" Dixit and Stiglitz (1977):

$$y_t = \left[\int_0^1 y_{j,t}^{\frac{\zeta-1}{\zeta}} dj \right]^{\frac{\zeta}{\zeta-1}} \tag{8}$$

onde y_t representa a produção total de bens finais e $\xi>1$ é a elasticidade de substituição (constante, portanto) entre os bens intermediários.

Em um ambiente de concorrência perfeita, as empresas escolhem a quantidade de bens intermediários que maximiza os seus lucros em todo período t, tomando o preço (p_t) como dado:

Em um ambiente de concorrência perfeita, as empresas escolhem a quantidade de bens intermediários que maximiza os seus lucros em todo período t, tomando o preço (p_t) como dado:

$$\max_{y_{j,t}} \Pi_t = p_t y_t - \int_0^1 p_{j,t} y_{j,t} dj.$$
 (9)

Em um ambiente de concorrência perfeita, as empresas escolhem a quantidade de bens intermediários que maximiza os seus lucros em todo período t, tomando o preço (p_t) como dado:

$$\max_{y_{j,t}} \Pi_t = p_t y_t - \int_0^1 p_{j,t} y_{j,t} dj.$$
 (9)

Ao substituirmos a equação (8) em (10), temos:

Em um ambiente de concorrência perfeita, as empresas escolhem a quantidade de bens intermediários que maximiza os seus lucros em todo período t, tomando o preço (p_t) como dado:

$$\max_{y_{j,t}} \Pi_t = p_t y_t - \int_0^1 p_{j,t} y_{j,t} dj.$$
 (9)

Ao substituirmos a equação (8) em (10), temos:

$$\max_{y_{j,t}} \Pi_t = p_t \left[\int_0^1 y_{j,t}^{\frac{\xi-1}{\xi}} dj \right]^{\frac{\xi}{\xi-1}} - \int_0^1 p_{j,t} y_{j,t} dj.$$
 (10)

$$\frac{\partial \Pi_t}{\partial y_{j,t}} = 0 \iff p_t \frac{\xi}{\xi - 1} \left[\int_0^1 y_{j,t}^{\frac{\xi - 1}{\xi}} dj \right]^{\frac{1}{\xi - 1}} \frac{\xi - 1}{\xi} y_{j,t}^{\frac{-1}{\xi}} - p_{j,t} = 0 \quad \forall j.$$

$$\tag{11}$$

$$\frac{\partial \Pi_t}{\partial y_{j,t}} = 0 \iff p_t \frac{\xi}{\xi - 1} \left[\int_0^1 y_{j,t}^{\frac{\xi - 1}{\xi}} dj \right]^{\frac{1}{\xi - 1}} \frac{\xi - 1}{\xi} y_{j,t}^{-\frac{1}{\xi}} - p_{j,t} = 0 \quad \forall j.$$

$$\tag{11}$$

Note que $\left[\int_0^1 y_{j,t}^{\frac{\zeta-1}{\zeta}} dj\right]^{\frac{1}{\zeta-1}} = y_t^{\frac{1}{\zeta}}$. Podemos reescrever a equação acima como:

$$\frac{\partial \Pi_t}{\partial y_{j,t}} = 0 \iff p_t \frac{\xi}{\xi - 1} \left[\int_0^1 y_{j,t}^{\frac{\xi - 1}{\xi}} dj \right]^{\frac{1}{\xi - 1}} \frac{\xi - 1}{\xi} y_{j,t}^{-\frac{1}{\xi}} - p_{j,t} = 0 \quad \forall j.$$

$$\tag{11}$$

Note que $\left[\int_0^1 y_{j,t}^{\frac{\zeta-1}{\zeta}} dj\right]^{\frac{1}{\zeta-1}} = y_t^{\frac{1}{\zeta}}$. Podemos reescrever a equação acima como:

$$p_t y_t^{\frac{1}{\xi}} y_{j,t}^{-\frac{1}{\xi}} - p_{j,t} = 0 \quad \forall j.$$
 (12)

Finalmente, podemos reescrever a equação anterior como:

$$y_{j,t} = \left(\frac{p_{j,t}}{p_t}\right)^{-\xi} y_t \quad \forall j. \tag{13}$$

Finalmente, podemos reescrever a equação anterior como:

$$y_{j,t} = \left(\frac{p_{j,t}}{p_t}\right)^{-\xi} y_t \quad \forall j. \tag{13}$$

Qual é o significado econômico desse resultado?

$$p_t y_t = \int_0^1 p_{j,t} y_{j,t} dj$$

$$p_t y_t = \int_0^1 p_{j,t} y_{j,t} dj \iff$$

$$p_t y_t = \int_0^1 p_{j,t} \left(\frac{p_{j,t}}{p_t}\right)^{-\xi} y_t dj$$

$$p_t y_t = \int_0^1 p_{j,t} y_{j,t} dj \iff$$

$$p_t y_t = \int_0^1 p_{j,t} \left(\frac{p_{j,t}}{p_t}\right)^{-\xi} y_t dj \iff$$

$$p_t y_t = p_t^{\xi} y_t \int_0^1 p_{j,t}^{1-\xi} dj$$

$$p_{t}y_{t} = \int_{0}^{1} p_{j,t}y_{j,t}dj \iff$$

$$p_{t}y_{t} = \int_{0}^{1} p_{j,t} \left(\frac{p_{j,t}}{p_{t}}\right)^{-\xi} y_{t}dj \iff$$

$$p_{t}y_{t} = p_{t}^{\xi}y_{t} \int_{0}^{1} p_{j,t}^{1-\xi}dj \iff$$

$$p_{t}^{1-\xi} = \int_{0}^{1} p_{j,t}^{1-\xi}dj.$$

$$(14)$$

Portanto, o índice de preços que represente o custo de vida dos agentes é dado por:

$$p_t = \left[\int_0^1 p_{j,t}^{1-\xi} dj \right]^{\frac{1}{1-\xi}} \tag{15}$$

Empresas de bens intermediários

Escolhas

 As empresas de bens intermediários possuem dois tipos de escolhas:

Escolhas

 As empresas de bens intermediários possuem dois tipos de escolhas: (i) qual a quantidade de fatores de produção recrutar

Escolhas

- As empresas de bens intermediários possuem dois tipos de escolhas: (i) qual a quantidade de fatores de produção recrutar e (ii) qual o preço cobrar pelos seus produtos.
- Dadas as formas funcionais que vamos utilizar, essas decisões podem ser analisadas em dois estágios.

Dado um nível de produção $(y_{j,t})$, o salário real (w_t) e a taxa de retorno do capital (r_t) as empresas escolhem

$$\min_{h_{j,t},k_{j,t}} ctj, t = w_t h_{j,t} + r_t k_{j,t}$$
 (16)

Dado um nível de produção $(y_{j,t})$, o salário real (w_t) e a taxa de retorno do capital (r_t) as empresas escolhem

$$\min_{h_{j,t},k_{j,t}} ctj, t = w_t h_{j,t} + r_t k_{j,t}$$
 (16)

s.a.

$$y_{j,t} = A_t k_{j,t}^{\alpha} h_{j,t}^{1-\alpha}$$
 (17)

Com base nas equações (16) e (17), o Lagrangiano pode ser escrito como:

$$\mathcal{L}_t = w_t h_{j,t} + r_t k_{j,t} + \lambda_t \left[y_{j,t} - A_t k_{j,t}^{\alpha} h_{j,t}^{1-\alpha} \right].$$

Com base nas equações (16) e (17), o Lagrangiano pode ser escrito como:

$$\mathcal{L}_t = w_t h_{j,t} + r_t k_{j,t} + \lambda_t \left[y_{j,t} - A_t k_{j,t}^{\alpha} h_{j,t}^{1-\alpha} \right].$$

As C.P.O. são:

$$\frac{\partial ctj, t}{\partial h_{j,t}} = 0 \iff w_t = \lambda_t (1 - \alpha) \frac{y_{j,t}}{h_{j,t}}, \tag{18}$$

Com base nas equações (16) e (17), o Lagrangiano pode ser escrito como:

$$\mathcal{L}_t = w_t h_{j,t} + r_t k_{j,t} + \lambda_t \left[y_{j,t} - A_t k_{j,t}^{\alpha} h_{j,t}^{1-\alpha} \right].$$

As C.P.O. são:

$$\frac{\partial ctj, t}{\partial h_{j,t}} = 0 \iff w_t = \lambda_t (1 - \alpha) \frac{y_{j,t}}{h_{j,t}}, \tag{18}$$

$$\frac{\partial ctj, t}{\partial k_{j,t}} = 0 \iff r_t = \lambda_t \alpha \frac{y_{j,t}}{k_{j,t}}.$$
 (19)

Trabalhemos com a equação (16). A função de custo total pode ser reescrita considerando as escolhas ótimas:

$$ct_{j,t} = w_t h_{j,t} + r_t k_{j,t}$$

Trabalhemos com a equação (16). A função de custo total pode ser reescrita considerando as escolhas ótimas:

$$ct_{j,t} = w_t h_{j,t} + r_t k_{j,t}$$

$$ct_{j,t} = \lambda_t (1 - \alpha) \frac{y_{j,t}}{h_{j,t}} h_{j,t} + \lambda_t \alpha \frac{y_{j,t}}{k_{j,t}} k_{j,t}$$

Trabalhemos com a equação (16). A função de custo total pode ser reescrita considerando as escolhas ótimas:

$$ct_{j,t} = w_t h_{j,t} + r_t k_{j,t}$$

$$ct_{j,t} = \lambda_t (1 - \alpha) \frac{y_{j,t}}{h_{j,t}} h_{j,t} + \lambda_t \alpha \frac{y_{j,t}}{k_{j,t}} k_{j,t}$$

$$ct_{j,t} = \lambda_t (1 - \alpha) y_{j,t} + \lambda_t \alpha y_{j,t}.$$

Trabalhemos com a equação (16). A função de custo total pode ser reescrita considerando as escolhas ótimas:

$$ct_{j,t} = w_t h_{j,t} + r_t k_{j,t}$$

$$ct_{j,t} = \lambda_t (1 - \alpha) \frac{y_{j,t}}{h_{j,t}} h_{j,t} + \lambda_t \alpha \frac{y_{j,t}}{k_{j,t}} k_{j,t}$$

$$ct_{j,t} = \lambda_t (1 - \alpha) y_{j,t} + \lambda_t \alpha y_{j,t}.$$

Portanto, o custo marginal das empresas é dado por:

Trabalhemos com a equação (16). A função de custo total pode ser reescrita considerando as escolhas ótimas:

$$ct_{j,t} = w_t h_{j,t} + r_t k_{j,t}$$

$$ct_{j,t} = \lambda_t (1 - \alpha) \frac{y_{j,t}}{h_{j,t}} h_{j,t} + \lambda_t \alpha \frac{y_{j,t}}{k_{j,t}} k_{j,t}$$

$$ct_{j,t} = \lambda_t (1 - \alpha) y_{j,t} + \lambda_t \alpha y_{j,t}.$$

Portanto, o custo marginal das empresas é dado por:

$$\frac{\partial ct_{j,t}}{\partial y_{j,t}} = cmg_{j,t} = \lambda_t(1-\alpha) + \lambda_t\alpha = \lambda_t.$$
 (20)

Para compreendermos a dinâmica do custo marginal, trabalhemos com as escolhas ótimas das empresas (equações (18) e (19)):

$$\frac{w_t}{r_t} = \frac{(1-\alpha)}{\alpha} \frac{k_{j,t}}{h_{j,t}}.$$
 (21)

Note que se multiplicarmos os dois lados por menos um, temos:

$$\underbrace{-\frac{w_t}{r_t}}_{\text{TES}} = \underbrace{-\frac{(1-\alpha)}{\alpha} \frac{k_{j,t}}{h_{j,t}}}_{\text{TMS}}.$$

 Taxa econômica de substituição (TES): taxa pela qual a quantidade de horas trabalhadas pode ser substituída pelo capital para manter os cutsos constantes.

- Taxa econômica de substituição (TES): taxa pela qual a quantidade de horas trabalhadas pode ser substituída pelo capital para manter os cutsos constantes.
- Taxa marginal de substituição técnica (TMS): taxa pela qual a quantidade de horas trabalhadas pode ser substituída pelo capital para manter a produção constante.

Da equação (21), podemos isolar $h_{j,t}$:

$$h_{j,t} = \frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} k_{j,t}. \tag{22}$$

Ao substituirmos o resultado acima na função de produção, temos:

$$y_{j,t} = A_t k_{j,t}^{\alpha} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} k_{j,t} \right]^{1-\alpha} \iff$$

Da equação (21), podemos isolar $h_{j,t}$:

$$h_{j,t} = \frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} k_{j,t}. \tag{22}$$

Ao substituirmos o resultado acima na função de produção, temos:

$$y_{j,t} = A_t k_{j,t}^{\alpha} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} k_{j,t} \right]^{1-\alpha} \iff$$

$$k_{j,t} = \frac{y_{j,t}}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha-1}$$
(23)

Podemos substituir (23) em (22):

$$h_{j,t} = \frac{y_{j,t}}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha}$$
 (24)

$$ct_{j,t} = w_t h_{j,t} + r_t k_{j,t}$$

$$ct_{j,t} = w_t h_{j,t} + r_t k_{j,t}$$

$$ct_{j,t} = w_t \frac{y_{j,t}}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha} + r_t \frac{y_{j,t}}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha-1}$$

$$ct_{j,t} = w_t h_{j,t} + r_t k_{j,t}$$

$$ct_{j,t} = w_t \frac{y_{j,t}}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha} + r_t \frac{y_{j,t}}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha-1}$$

$$\vdots$$

$$cmg_{j,t} = \frac{w_t}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha} + \frac{r_t}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha-1}$$

$$ct_{j,t} = w_t h_{j,t} + r_t k_{j,t}$$

$$ct_{j,t} = w_t \frac{y_{j,t}}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha} + r_t \frac{y_{j,t}}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha-1}$$

$$\vdots$$

$$cmg_{j,t} = \frac{w_t}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha} + \frac{r_t}{A_t} \left[\frac{(1-\alpha)}{\alpha} \frac{r_t}{w_t} \right]^{\alpha-1}$$

$$\vdots$$

$$cmg_{j,t} = \frac{1}{A_t} \left(\frac{w_t}{1-\alpha} \right)^{1-\alpha} \left(\frac{r_t}{\alpha} \right)^{\alpha}$$

$$(25)$$

As empresas de bens intermediários maximizam o lucro, tomando a curve de demanda pelos seus bens como dada:

As empresas de bens intermediários maximizam o lucro, tomando a curve de demanda pelos seus bens como dada:

$$\max_{p_{j,t}} \pi_{j,t} = p_{j,t} y_{j,t} - w_t h_{j,t} - r_t k_{j,t}$$

s.a.

$$y_{j,t} = \left(\frac{p_{j,t}}{p_t}\right)^{-\xi} y_t$$

$$\max_{p_{j,t}} \Pi_{j,t} = p_{j,t} y_{j,t} - \lambda_t (1 - \alpha) \frac{y_{j,t}}{h_{j,t}} h_{j,t} - \lambda_t \alpha \frac{y_{j,t}}{k_{j,t}} k_{j,t}$$

$$\max_{p_{j,t}} \Pi_{j,t} = p_{j,t} y_{j,t} - \lambda_t (1 - \alpha) \frac{y_{j,t}}{h_{j,t}} h_{j,t} - \lambda_t \alpha \frac{y_{j,t}}{k_{j,t}} k_{j,t} \iff$$

$$\max_{p_{j,t}} \Pi_{j,t} = p_{j,t} y_{j,t} - \lambda_t y_{j,t}$$

$$\max_{p_{j,t}} \Pi_{j,t} = p_{j,t} y_{j,t} - \lambda_t (1-\alpha) \frac{y_{j,t}}{h_{j,t}} h_{j,t} - \lambda_t \alpha \frac{y_{j,t}}{k_{j,t}} k_{j,t} \iff$$

$$\max_{p_{j,t}} \Pi_{j,t} = p_{j,t} y_{j,t} - \lambda_t y_{j,t} \iff$$

$$\max_{p_{j,t}} \Pi_{j,t} = p_{j,t} y_{j,t} - cmg_{jt} y_{j,t}$$

$$\begin{aligned} & \max_{p_{j,t}} \Pi_{j,t} = p_{j,t} y_{j,t} - \lambda_t (1-\alpha) \frac{y_{j,t}}{h_{j,t}} h_{j,t} - \lambda_t \alpha \frac{y_{j,t}}{k_{j,t}} k_{j,t} \iff \\ & \max_{p_{j,t}} \Pi_{j,t} = p_{j,t} y_{j,t} - \lambda_t y_{j,t} \iff \\ & \max_{p_{j,t}} \Pi_{j,t} = p_{j,t} y_{j,t} - cmg_{jt} y_{j,t} \iff \\ & \max_{p_{j,t}} \Pi_{j,t} = p_{j,t}^{1-\xi} \left(\frac{1}{p_t}\right)^{-\xi} y_t - cmg_{j,t} \left(\frac{p_{j,t}}{p_t}\right)^{-\xi} y_t \end{aligned}$$

Escolha ótima

A C.P.O. é dada por

$$\frac{\partial \Pi_{j,t}}{\partial p_{j,t}} = 0 \iff p_{j,t} = \underbrace{\frac{\xi}{\xi - 1}}_{\text{markup}} cmg_{j,t}. \tag{26}$$

Escolha ótima

A C.P.O. é dada por

$$\frac{\partial \Pi_{j,t}}{\partial p_{j,t}} = 0 \iff p_{j,t} = \underbrace{\frac{\xi}{\xi - 1}}_{\text{markup}} cmg_{j,t}. \tag{26}$$

Note que se $\xi \to \infty$, o mercado tende para a concorrência perfeita.

Escolha ótima

A C.P.O. é dada por

$$\frac{\partial \Pi_{j,t}}{\partial p_{j,t}} = 0 \iff p_{j,t} = \underbrace{\frac{\xi}{\xi - 1}}_{\text{markup}} cmg_{j,t}. \tag{26}$$

Note que se $\xi \to \infty$, o mercado tende para a concorrência perfeita. Em um equilíbrio simétrico, todas as empresas j escolhem o mesmo preço $p_{j,t}$. Podemos, portanto, normalizá-lo para 1. Assim, $cmg_{j,t} = \frac{\xi-1}{\xi}$.

Dinâmica da Produtividade

$$\ln A_t = (1 - \rho_A) \ln \overline{A} + \rho_A \ln A_{t-1} + \varepsilon_t, \tag{27}$$

onde \bar{A} representa o valor da variável no equilíbrio estacionário e ε é um choque exógeno com média zero e variância σ_{ε}^2 .

A restrição de recursos

Com os resultados do problemas das empresas de bens intermediários (equações 18 e 19), temos que

A restrição de recursos

Com os resultados do problemas das empresas de bens intermediários (equações 18 e 19), temos que

$$c_t + i_t = (1 - \alpha) \frac{y_t}{h_t} h_t + \alpha \frac{y_t}{k_t} k_t$$

A restrição de recursos

Com os resultados do problemas das empresas de bens intermediários (equações 18 e 19), temos que

$$c_t + i_t = (1 - \alpha) \frac{y_t}{h_t} h_t + \alpha \frac{y_t}{k_t} k_t = y_t.$$
 (28)

Formas funcionais

Utilizemos uma função utilidade CRRA ($Constant\ Relative\ Risk\ Aversion$), separável em c_t e h_t , para representar as preferências das famílias:

Formas funcionais

Utilizemos uma função utilidade CRRA (*Constant Relative Risk Aversion*), separável em c_t e h_t , para representar as preferências das famílias:

$$u(c_t, h_t) = \frac{c_t^{1-\sigma}}{1-\sigma} - \psi \frac{h_t^{1+\varphi}}{1+\varphi}.$$
 (29)

Formas funcionais

Utilizemos uma função utilidade CRRA (Constant Relative Risk Aversion), separável em c_t e h_t , para representar as preferências das famílias:

$$u(c_t, h_t) = \frac{c_t^{1-\sigma}}{1-\sigma} - \psi \frac{h_t^{1+\varphi}}{1+\varphi}.$$
 (29)

Então, temos que $u_c = c_t^{-\sigma}$ e $u_h = -\psi h_t^{\varphi}$.

- Famílias
 - $\psi h_t^{\varphi} c_t^{\sigma} = w_t$

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$
- $k_{t+1} = (1-\delta)k_t + i_t$

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$
- $k_{t+1} = (1 \delta)k_t + i_t$
- Empresas de bens intermediários
 - $y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$
- $k_{t+1} = (1 \delta)k_t + i_t$
- Empresas de bens intermediários
 - $y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$
 - $r_t = \frac{\xi 1}{\xi} \alpha \frac{y_t}{k_t}$

Famílias

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$
- $k_{t+1} = (1 \delta)k_t + i_t$

Empresas de bens intermediários

- $y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$
- $r_t = \frac{\xi 1}{\xi} \alpha \frac{y_t}{k_t}$
- $w_t = \frac{\xi 1}{\xi} (1 \alpha) \frac{y_t}{h_t}$

Famílias

- $\psi h_t^{\varphi} c_t^{\sigma} = w_t$
- $c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} \delta \right) \right]$
- $k_{t+1} = (1 \delta)k_t + i_t$

Empresas de bens intermediários

- $v_t = A_t k_t^{\alpha} h_t^{1-\alpha}$
- $r_t = \frac{\xi 1}{\xi} \alpha \frac{y_t}{k_t}$
- $w_t = \frac{\xi 1}{\xi} (1 \alpha) \frac{y_t}{h_t}$

• Restrição de recursos

 $y_t = c_t + i_t$

Famílias

•
$$\psi h_t^{\varphi} c_t^{\sigma} = w_t$$

•
$$c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} - \delta \right) \right]$$

•
$$k_{t+1} = (1 - \delta)k_t + i_t$$

Empresas de bens intermediários

•
$$y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$$

$$r_t = \frac{\xi - 1}{\xi} \alpha \frac{y_t}{k_t}$$

•
$$w_t = \frac{\xi - 1}{\xi} (1 - \alpha) \frac{y_t}{h_t}$$

• Restrição de recursos

$$v_t = c_t + i_t$$

• Lei de movimento da produtividade

Famílias

•
$$\psi h_t^{\varphi} c_t^{\sigma} = w_t$$

•
$$c_t^{-\sigma} = \beta E_t \left[c_{t+1}^{-\sigma} \left(1 + r_{t+1} - \delta \right) \right]$$

•
$$k_{t+1} = (1 - \delta)k_t + i_t$$

Empresas de bens intermediários

•
$$y_t = A_t k_t^{\alpha} h_t^{1-\alpha}$$

$$r_t = \frac{\xi - 1}{\xi} \alpha \frac{y_t}{k_t}$$

•
$$w_t = \frac{\xi - 1}{\xi} (1 - \alpha) \frac{y_t}{h_t}$$

• Restrição de recursos

$$v_t = c_t + i_t$$

• Lei de movimento da produtividade

•
$$\ln A_t = (1 - \rho_A) \ln \bar{A} + \rho_A \ln A_{t-1} + \varepsilon_t$$

O equilíbrio estacionário

Podemos normalizar $\bar{A} = 1$.

O equilíbrio estacionário

Podemos normalizar $\bar{A}=1$. Da equação de Euler das famílias ricardianas, obtemos:

O equilíbrio estacionário

Podemos normalizar $\bar{A}=1$. Da equação de Euler das famílias ricardianas, obtemos:

$$\bar{r} = \frac{1}{\beta} - 1 + \delta.$$

O equilíbrio estacionário

Podemos normalizar $\bar{A}=1$. Da equação de Euler das famílias ricardianas, obtemos:

$$\bar{r} = \frac{1}{\beta} - 1 + \delta.$$

Vamos utilizar métodos numéricos para encontrar as demais variáveis.

Comparação entre equilíbrios

Variável	Valor relativo (cm / cp)
	81%
$ar{h}$	92%
$ar{k}$	55%
$ar{W}$	60%
\bar{r}	100%
$ar{y}$	74%
ī	55%
Ā	100%
Labor share _{cp} = $\frac{\bar{w}\bar{h}}{\bar{v}}$	0.7499997%

Parâmetros do nosso modelo

Parâmetro	Valor	Descrição
φ	1	Curvatura da função utilidade em relação às horas trabalhadas.
ψ	2.43	Peso da desutilidade do trabalho na função utilidade.
σ	2	Curvatura da função utilidade em relação ao consumo.
α	0.44	Participação do capital na função de produção.
β	0.97	Fator de desconto.
δ	0.05	Taxa de depreciação.
ρ_A	0.9	Coeficiente AR da produtividade.
$\sigma_{arepsilon}$	0.01	Desvio-padrão dos erros do processo da produtividade.
Ā	1	Nível da produtividade no equilíbrio estacionário.

O que acontece após um choque de produtividade?

Simulação – Funções impulso-resposta

Produtividade

- Choque positivo de 1% (acima do equilíbrio estacionário).
- Comportamento auto-regressivo.

Consumo: hump-shaped

- As pessoas não gostam apenas de consumir (nível), mas também de manter o padrão de consumo
- Esse é o padrão que observamos nos estudos empíricos com SVARs.
- Como chegamos nesse padrão sem nenhum tipo de custo de ajustamento ou formação de hábitos?

Trabalho

- Os trabalhadores estão mais produtivos.
- Isso aumenta a demanda por trabalho.
- E, em equilíbrio, aumentam o salário real e as horas trabalhadas inicialmente.

Investimento

- O capital também está mais produtivo.
- Isso aumenta a demanda por capital.
- E, em equilíbrio, aumentam a taxa de juros real e o investimento, inicialmente.
- Ao longo do tempo, aumenta a oferta de capital e a taxa de juros cai.

Capital

- O maior investimento aumenta o estoque de capital ao longo do tempo.
- Note que o capital não "pula".

PIB

- Ótica da renda: aumentos tantos na remuneração dos fatores, quanto nas quantidades.
- Ótica de produção: as empresas recrutaram mais trabalhadores e mais capital para produzir mais.
- Ótica do dispêndio: maior gasto com consumo e gasto com investimento.

IRFs em perspectiva

- PIB e investimento não são "hump-shaped".
- O consumo aumenta menos do que o 1% inicialmente.
- O PIB aumenta mais do que 1% inicialmente.

Referências i

Dixit, Avinash K, and Joseph E Stiglitz. 1977. "Monopolistic Competition and Optimum Product Diversity." *The American Economic Review* 67 (3): 297–308.