Canais de Qanat

Por Marcio T. I. Oshiro San Brasil

Timelimit: 1

A medina de Marrakech é formada pela cidade fortificada, patrimônio universal da Unesco desde 1995. O início de sua construção remonta à fundação da cidade no século XI e inclui vários monumentos impressionantes, como a mesquita de Koutoubia, madraçal de Ben Youssef, e o Palácio Bahia. Várias histórias cercam os monumentos que formam a medina. A mais interessante diz respeito os jardins Ménara. O parque tem hortas e lagos artificiais construídos na época do sultão. Abd-el-Rhaman, que era um apaixonado por desafios matemáticos. Um dos mais brilhantes é o dos conjuntos de canais de qanat (هناة). Cada conjunto é formado por um canal fechado e um canal aberto. O canal fechado tem o formato de um polígono e o canal aberto consiste de uma sequência de arestas formando um caminho. O desafio é determinar se é possível transformar o canal fechado no canal aberto através de operações mentais sobre o canal fechado, como de remoção de vértices e arestas, translações e rotações (no plano).

Os canais são dados através das coordenadas dos seus vértices e a ordem na qual os vértices são dados indica o sentido do fluxo de água. Consideramos que é possível transformar o canal fechado no aberto se após a aplicação das operações, o canal resultante tem as mesmas coordenadas e a água flui no mesmo sentido.

Figura 1. Ilustração primeiro (esq.) e segundo (dir.) exemplos de entrada.

Entrada

A entrada é composta por diversas instâncias e termina com final de arquivo (EOF).

A primeira linha de cada instância contém dois inteiros N_f (3 $\leq N_f \leq$ 20.000) e N_a (2 $\leq N_a \leq$ 5.000), correspondendo ao número de vértices dos canais fechado e aberto, respectivamente. A linha seguinte contém N_f pares de inteiros (\mathbf{x}_i , \mathbf{y}_i) (-10.000 $\leq \mathbf{x}$, $\mathbf{y} \leq$ 10.000), cada par representando a coordenada de um vértice do canal fechado. No canal fechado a água sempre flui no sentido anti-horário e os vértices são númerados de 1 a N_f . A terceira e última linha contém Na pares de inteiros (\mathbf{x}_i , \mathbf{y}_i) correspondendo aos vértices do canal aberto.

Saída

Para cada instância imprima -1, se não é possível transformar o canal fechado no aberto, ou o menor índice do vértice do canal fechado que coincide com primeiro vértice do canal aberto após a transformação.

Exemplo de Entrada	Exemplo de Saída
4 2	1
0 0 4 3 0 6 -4 3	-1
2 -1 2 4	
4 3	
0 0 4 3 0 6 -4 3	
5 0 5 5 4 5	