Wydział	Imię i nazwisko		Rok	Grupa	Zespół
	1.				
	2.				
PRACOWNIA	Temat:				Nr ćwiczenia
FIZYCZNA					
WFiIS AGH					
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Cel ćwiczenia

Wyznaczenie linii ekwipotencjalnych i wektorów natężenia pola elektrycznego na płaszczyźnie dla różnych konfiguracji elektrod.

Zagadnienia kontrolne	Ocena i podpis
 Wymień przykłady źródłowych i wirowych fizycznych pól wektorowych. Narysuj przebiegi linii dla tych pól. 	
2. Sformułuj prawa Gaussa oraz Coulomba dla pola elektrycznego.	
3. Narysuj, w przybliżony sposób, linie pola i linie ekwipotencjalne dla dipola elektrycznego.	
4. Dlaczego linie pola elektrostatycznego są prostopadłe do powierzchni metalu i kończą się na niej?	
5. Omów rozkład ładunku na powierzchni i wewnątrz przewodnika.	
6. Narysuj rozkład pola elektrycznego wewnątrz kondensatora płaskiego. Podaj wzory łączące natężenie i potencjał pola elektrycznego.	
7. Jakie czynniki wpływają na dokładność modelowania pola elektrostatycznego?	
Ocena z odpowiedzi:	

1. Układ pomiarowy

Pokazany na rys. 1w układ składa się z płyty modelowej do badania danego rozkładu pola oraz zasilacza i woltomierza cyfrowego. Mamy do wyboru płyty będące modelami kondensatorów: płaskiego, cylindrycznego oraz kondensatora o dowolnym kształcie elektrod. Płyty modelowe zawierają metalowe elektrody umieszczone na czarnym papierze przewodzącym prąd elektryczny. Powierzchnia papieru osłonięta jest folią izolacyjną z wyciętymi otworami dla punktów pomiarowych.

Rys. 1w. Schemat połączeń układu pomiarowego do modelowania pola elektrycznego

2. Wykonanie ćwiczenia

Uwagi wstępne

- Połącz obwód elektryczny jak na rys.2 z użyciem zaleconej płyty modelowej.
- Ustaw napięcie zasilacza na wartość 10V.
- Przy pomocy sondy zmierz wartość potencjału w różnych punktach płyty. Uwaga! Poprawny pomiar wymaga zastosowania odpowiedniej, tzn. zapewniającej dobry kontakt elektryczny z papierem lecz nie powodującej jego uszkodzenia, siły nacisku sondy.

A. Badanie pola kondensatora płaskiego

Zadanie polega na wyznaczeniu pola w dwu obszarach kondensatora płaskiego:

- Wewnątrz kondensatora wzdłuż kierunków a, b, c pokazanych na rys. 3. Zmierzone wartości potencjału wpisujemy do tabeli 1.
- Na zewnątrz kondensatora w obszarze wskazanym przez prowadzącego i obejmującym ok. 50 punktów. Wyniki pomiarów nanosimy bezpośrednio na rys. 3.

B. Badanie pola kondensatora cylindrycznego

Pomiary potencjału wykonujemy wzdłuż trzech promieni: r_a , r_b , r_c . Wyniki nanosimy na rys. 4 oraz wpisujemy do tabeli 2.

C. Badanie pola w dowolnym układzie elektrod

Zmierzyć wartości potencjału w ok. 100 punktach w obszarze płyty wskazanym przez prowadzącego. Wartości potencjałów nanosimy na rys. 5.

Wariant do wykonania (określa prowadzący):	_			
Wykonaj następujące warianty ćwiczenia	i			
			1	Podpis

3. Wyniki pomiarów

Wariant A.

Tabela 1: Wyniki pomiarów i obliczeń dla płaskiego układu elektrod:

a) potencjał

L.p.	x [mm]	$egin{array}{c} V_a \ [extbf{V}] \end{array}$	V_b [V]	<i>V_c</i> [V]	$\frac{V_{dośw.}=}{\frac{V_a + V_b + V_c}{3}} [V]$	V_{teor} [V]
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

b) natężenie pola

L.p.	<i>x</i> *	$E_{dośw}$	E_{teor}
	[mm]	[V/m]	[V/m]
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Rys. 2w. Płaski układ elektrod (wymiary siatki:0.5 x 0.5 cm)

Wariant B

Tabela 2: Wyniki pomiarów i obliczeń dla cylindrycznego układu elektrod:

a) potencjał

L.p.	x [mm]	V_a [V]	V_b [V]	<i>V_c</i> [V]	$\frac{V_{dośw.}=}{\frac{V_a + V_b + V_c}{3}}[V]$	$V_{teor} \ [extsf{V}]$
1						
2						
3						
4						
5						
6						
7						

b) natężenie pola

L.p.	x* [mm]	$E_{dośw}$	E_{teor} [V/m]
	[mm]	[V/m]	[V/m]
1			
2			
3			
4			
5			
6			
7			

Wariant C

Rys. 4w. Dowolny układ elektrod (wymiary siatki: 1 x 1 cm)

4. Opracowanie wyników pomiarów

Wariant A: kondensator płaski

1. Dla obszaru **wewnątrz kondensatora** oblicz średnie wartości potencjału dla danego położenia *x* . Następnie oblicz wartości doświadczalne natężenia pola jako

$$E_{dośw} = \frac{V_{n+1} - V_n}{x_{n+1} - x_n}$$

Tą wartość przypisać należy punktowi leżącemu w połowie odległości między x_{n+1} oraz xn,

o współrzędnej

$$x^* = \frac{x_{n+1} + x_n}{2} .$$

Wyniki obliczeń zanotuj w tabeli 1b.

- 2. Wykonaj wykresy zależności potencjału *V* i natężenia pola elektrycznego *E* od odległości *x*. Wykres winien zawierać punkty doświadczalne, oraz linię teoretyczną obliczoną wg. wzorów podanych w opisie ćwiczenia.
- 3. Dla obszaru **na zewnątrz kondensatora** oblicz, wg. wzorów (2) i (3), oraz narysuj wektor natężenia pola wraz ze składowymi E_x i E_y w kilku wybranych punktach pola.
- 4. Dla **obu wymienionych obszarów** narysuj linie ekwipotencjalne i linie pola. Przyjmij odstęp linii ekwipotencjalnych 1 2 V. Ponieważ poszczególne punkty pomiarowe mogą nie leżeć na rysowanych liniach ekwipotencjalnych, położenie punktów o szukanym potencjale należy ocenić przez proporcjonalny podział odcinków łączących punkty pomiarowe.

Wariant B: kondensator cylindryczny

Wykonaj w sposób analogiczny do kondensatora płaskiego. (W przypadku kondensatora cylindrycznego nie ma obszaru pola rozproszonego).

Wariant C: dowolny układ elektrod

- 1. Narysuj przebieg linii ekwipotencjalnych o odstępie 1 2 V, stosownie do zagęszczenia linii. Ponieważ poszczególne punkty pomiarowe mogą nie leżeć na rysowanych liniach ekwipotencjalnych, położenie punktów o szukanym potencjale należy ocenić przez proporcjonalny podział odcinków łączących punkty pomiarowe.
- 2. Narysuj przebieg linii pola.
- 3. Oblicz, według wzorów (2) i (3), oraz narysuj długość wektor natężenia $|\mathbf{E}|$ pola wraz z ze składowymi E_x i E_y w kilku wybranych punktach pola. Wyniki obliczeń wpisać do tabeli 3.

Tabela 3 Wyniki obliczeń natężenia pola elektrycznego w wybranych pumktach

Nr	E_x	E_{y}	E
punktu	[V/m]	[V/m]	[V/m]