Customer Churn Prediction

```
In [1]: import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
%matplotlib inline
```

```
In [2]: df = pd.read_csv(r"C:\Users\Lenovo\Downloads\archive (11)\data.csv")
    df.sample(5)
```

Out[2]:		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLine
	1011	6614- YOLAC	Female	0	Yes	Yes	71	No	No phor servic
	525	0750-EBAIU	Male	0	No	No	52	Yes	Λ
	6249	7823- JSOAG	Male	0	No	No	3	Yes	Yı
	3380	5178- LMXOP	Male	1	Yes	No	1	Yes	Ye
	3228	3567- PQTSO	Male	0	Yes	Yes	53	Yes	Yı

5 rows × 21 columns

```
In [3]: df.drop('customerID',axis='columns',inplace=True)
    df.dtypes
```

```
gender
                              object
Out[3]:
        SeniorCitizen
                               int64
        Partner
                              object
        Dependents
                              object
                               int64
        tenure
        PhoneService
                              object
        MultipleLines
                              object
        InternetService
                              object
        OnlineSecurity
                              object
                              object
        OnlineBackup
        DeviceProtection
                              object
        TechSupport
                              object
        StreamingTV
                              object
        StreamingMovies
                              object
        Contract
                              object
        PaperlessBilling
                              object
        PaymentMethod
                              object
        MonthlyCharges
                             float64
        TotalCharges
                              object
        Churn
                              object
        dtype: object
```

```
df.TotalCharges.values
In [4]:
         array(['29.85', '1889.5', '108.15', ..., '346.45', '306.6', '6844.5'],
Out[4]:
                dtype=object)
         pd.to_numeric(df.TotalCharges,errors='coerce').isnull()
In [6]:
                  False
Out[6]:
         1
                  False
         2
                  False
         3
                  False
         4
                  False
         7038
                  False
         7039
                  False
                  False
         7040
         7041
                  False
                  False
         7042
         Name: TotalCharges, Length: 7043, dtype: bool
In [7]:
         df[pd.to_numeric(df.TotalCharges,errors='coerce').isnull()]
               gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetSe
Out[7]:
                                                                                    No phone
               Female
          488
                                  0
                                                               0
                                         Yes
                                                      Yes
                                                                            No
                                                                                      service
          753
                  Male
                                  0
                                         No
                                                      Yes
                                                               0
                                                                            Yes
                                                                                          No
          936
                Female
                                         Yes
                                                      Yes
                                                                            Yes
                                                                                          No
         1082
                                  0
                                                      Yes
                                                               0
                                                                                         Yes
                  Male
                                         Yes
                                                                            Yes
                                                                                    No phone
                                  0
                                                               0
         1340 Female
                                         Yes
                                                      Yes
                                                                            No
                                                                                      service
         3331
                  Male
                                  0
                                                      Yes
                                                               0
                                                                                          No
                                         Yes
                                                                            Yes
         3826
                                  0
                                                               0
                  Male
                                         Yes
                                                      Yes
                                                                            Yes
                                                                                         Yes
         4380
                Female
                                  0
                                         Yes
                                                      Yes
                                                               0
                                                                            Yes
                                                                                          No
         5218
                                  0
                                                               0
                  Male
                                         Yes
                                                      Yes
                                                                            Yes
                                                                                          No
         6670
                Female
                                         Yes
                                                      Yes
                                                                            Yes
                                                                                          Yes
         6754
                  Male
                                  0
                                         No
                                                      Yes
                                                               0
                                                                            Yes
                                                                                         Yes
In [8]:
         df.shape
         (7043, 20)
Out[8]:
         df.iloc[488].TotalCharges
```

```
Out[9]:
         df[df.TotalCharges!=' '].shape
In [10]:
          (7032, 20)
Out[10]:
         df1 = df[df.TotalCharges!=' ']
In [11]:
          df1.shape
          (7032, 20)
Out[11]:
In [12]:
         df1.dtypes
                               object
         gender
Out[12]:
         SeniorCitizen
                                int64
         Partner
                               object
         Dependents
                               object
                                int64
         tenure
         PhoneService
                               object
         MultipleLines
                               object
         InternetService
                               object
         OnlineSecurity
                               object
         OnlineBackup
                               object
         DeviceProtection
                               object
         TechSupport
                               object
         StreamingTV
                               object
         StreamingMovies
                               object
         Contract
                               object
         PaperlessBilling
                               object
         PaymentMethod
                               object
         MonthlyCharges
                              float64
         TotalCharges
                               object
         Churn
                               object
         dtype: object
In [13]: | df1.TotalCharges = pd.to_numeric(df1.TotalCharges)
         C:\Users\Lenovo\AppData\Local\Temp\ipykernel_13684\973151263.py:1: SettingWithCopyW
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
         user_guide/indexing.html#returning-a-view-versus-a-copy
           df1.TotalCharges = pd.to_numeric(df1.TotalCharges)
In [14]:
         df1.TotalCharges.values
         array([ 29.85, 1889.5 , 108.15, ..., 346.45, 306.6 , 6844.5 ])
Out[14]:
In [15]:
         df1[df1.Churn=='No']
```

Out[15]:	gender		SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetSe
	0	Female	0	Yes	No	1	No	No phone service	
	1	Male	0	No	No	34	Yes	No	
	3	Male	0	No	No	45	No	No phone service	
	6	Male	0	No	Yes	22	Yes	Yes	Fiber
	7	Female	0	No	No	10	No	No phone service	
	•••								
	7037	Female	0	No	No	72	Yes	No	
	7038	Male	0	Yes	Yes	24	Yes	Yes	
	7039	Female	0	Yes	Yes	72	Yes	Yes	Fiber
	7040	Female	0	Yes	Yes	11	No	No phone service	
	7042	Male	0	No	No	66	Yes	No	Fiber

5163 rows × 20 columns

Data Visualization

Customer Churn Prediction Visualiztion

Out[17]: <matplotlib.legend.Legend at 0x20827622f10>

Customer Churn Prediction Visualiztion


```
In [18]: def print_unique_col_values(df):
                for column in df:
                      if df[column].dtypes=='object':
                          print(f'{column}: {df[column].unique()}')
In [19]: | print_unique_col_values(df1)
         gender: ['Female' 'Male']
         Partner: ['Yes' 'No']
         Dependents: ['No' 'Yes']
         PhoneService: ['No' 'Yes']
         MultipleLines: ['No phone service' 'No' 'Yes']
         InternetService: ['DSL' 'Fiber optic' 'No']
         OnlineSecurity: ['No' 'Yes' 'No internet service']
         OnlineBackup: ['Yes' 'No' 'No internet service']
         DeviceProtection: ['No' 'Yes' 'No internet service']
         TechSupport: ['No' 'Yes' 'No internet service']
         StreamingTV: ['No' 'Yes' 'No internet service']
         StreamingMovies: ['No' 'Yes' 'No internet service']
         Contract: ['Month-to-month' 'One year' 'Two year']
         PaperlessBilling: ['Yes' 'No']
         PaymentMethod: ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'
          'Credit card (automatic)']
         Churn: ['No' 'Yes']
In [20]:
         df1.replace('No internet service','No',inplace=True)
         df1.replace('No phone service','No',inplace=True)
```

```
C:\Users\Lenovo\AppData\Local\Temp\ipykernel 13684\2045096646.py:1: SettingWithCopy
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
         user guide/indexing.html#returning-a-view-versus-a-copy
           df1.replace('No internet service','No',inplace=True)
         C:\Users\Lenovo\AppData\Local\Temp\ipykernel_13684\2045096646.py:2: SettingWithCopy
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
         user guide/indexing.html#returning-a-view-versus-a-copy
           df1.replace('No phone service','No',inplace=True)
In [21]: | print_unique_col_values(df1)
         gender: ['Female' 'Male']
         Partner: ['Yes' 'No']
         Dependents: ['No' 'Yes']
         PhoneService: ['No' 'Yes']
         MultipleLines: ['No' 'Yes']
         InternetService: ['DSL' 'Fiber optic' 'No']
         OnlineSecurity: ['No' 'Yes']
         OnlineBackup: ['Yes' 'No']
         DeviceProtection: ['No' 'Yes']
         TechSupport: ['No' 'Yes']
         StreamingTV: ['No' 'Yes']
         StreamingMovies: ['No' 'Yes']
         Contract: ['Month-to-month' 'One year' 'Two year']
         PaperlessBilling: ['Yes' 'No']
         PaymentMethod: ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'
          'Credit card (automatic)']
         Churn: ['No' 'Yes']
In [22]: yes no columns = ['Partner', 'Dependents', 'PhoneService', 'MultipleLines', 'OnlineSecu
                            'DeviceProtection','TechSupport','StreamingTV','StreamingMovies',
         for col in yes_no_columns:
             df1[col].replace({'Yes': 1,'No': 0},inplace=True)
         C:\Users\Lenovo\AppData\Local\Temp\ipykernel 13684\1648037665.py:4: SettingWithCopy
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
         user guide/indexing.html#returning-a-view-versus-a-copy
           df1[col].replace({'Yes': 1,'No': 0},inplace=True)
In [23]: for col in df1:
             print(f'{col}: {df1[col].unique()}')
```

```
gender: ['Female' 'Male']
         SeniorCitizen: [0 1]
         Partner: [1 0]
         Dependents: [0 1]
         tenure: [ 1 34  2 45  8 22 10 28 62 13 16 58 49 25 69 52 71 21 12 30 47 72 17 27
           5 46 11 70 63 43 15 60 18 66 9 3 31 50 64 56 7 42 35 48 29 65 38 68
          32 55 37 36 41 6 4 33 67 23 57 61 14 20 53 40 59 24 44 19 54 51 26 39]
         PhoneService: [0 1]
         MultipleLines: [0 1]
         InternetService: ['DSL' 'Fiber optic' 'No']
         OnlineSecurity: [0 1]
         OnlineBackup: [1 0]
         DeviceProtection: [0 1]
         TechSupport: [0 1]
         StreamingTV: [0 1]
         StreamingMovies: [0 1]
         Contract: ['Month-to-month' 'One year' 'Two year']
         PaperlessBilling: [1 0]
         PaymentMethod: ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'
          'Credit card (automatic)']
         MonthlyCharges: [29.85 56.95 53.85 ... 63.1 44.2 78.7 ]
         TotalCharges: [ 29.85 1889.5 108.15 ... 346.45 306.6 6844.5 ]
         Churn: [0 1]
         df1['gender'].replace({'Female':1, 'Male':0}, inplace=True)
In [24]:
         df1.gender.unique()
         C:\Users\Lenovo\AppData\Local\Temp\ipykernel 13684\2321097074.py:1: SettingWithCopy
         Warning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
         user_guide/indexing.html#returning-a-view-versus-a-copy
           df1['gender'].replace({'Female':1,'Male':0},inplace=True)
         array([1, 0], dtype=int64)
Out[24]:
```

One hot encoding for categorical data

Out[26]:		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	OnlineSec
	4891	0	0	1	0	4	1	1	
	1255	1	0	0	0	2	0	0	
	5682	1	0	1	0	1	0	0	
	2058	0	0	0	0	72	1	1	
	2820	0	0	0	0	53	1	1	

5 rows × 27 columns

```
In [27]: cols_to_scale = ['tenure','MonthlyCharges','TotalCharges']

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df2[cols_to_scale] = scaler.fit_transform(df2[cols_to_scale])
for col in df2:
    print(f'{col}: {df2[col].unique()}')
```

```
gender: [1 0]
SeniorCitizen: [0 1]
Partner: [1 0]
Dependents: [0 1]
tenure: [0.
                  0.46478873 0.01408451 0.61971831 0.09859155 0.29577465
 0.12676056 0.38028169 0.85915493 0.16901408 0.21126761 0.8028169
 0.67605634 0.33802817 0.95774648 0.71830986 0.98591549 0.28169014
 0.15492958 0.4084507 0.64788732 1.
                                         0.22535211 0.36619718
 0.05633803 0.63380282 0.14084507 0.97183099 0.87323944 0.5915493
 0.42253521 0.69014085 0.88732394 0.77464789 0.08450704 0.57746479
 0.47887324 0.66197183 0.3943662 0.90140845 0.52112676 0.94366197
 0.43661972 0.76056338 0.50704225 0.49295775 0.56338028 0.07042254
 0.04225352 0.45070423 0.92957746 0.30985915 0.78873239 0.84507042
 0.18309859 0.26760563 0.73239437 0.54929577 0.81690141 0.32394366
 PhoneService: [0 1]
MultipleLines: [0 1]
OnlineSecurity: [0 1]
OnlineBackup: [1 0]
DeviceProtection: [0 1]
TechSupport: [0 1]
StreamingTV: [0 1]
StreamingMovies: [0 1]
PaperlessBilling: [1 0]
MonthlyCharges: [0.11542289 0.38507463 0.35422886 ... 0.44626866 0.25820896 0.60149
TotalCharges: [0.0012751 0.21586661 0.01031041 ... 0.03780868 0.03321025 0.7876413
6]
Churn: [0 1]
InternetService_DSL: [1 0]
InternetService_Fiber optic: [0 1]
InternetService No: [0 1]
Contract_Month-to-month: [1 0]
Contract_One year: [0 1]
Contract_Two year: [0 1]
PaymentMethod_Bank transfer (automatic): [0 1]
PaymentMethod Credit card (automatic): [0 1]
PaymentMethod_Electronic check: [1 0]
PaymentMethod_Mailed check: [0 1]
```

train test split

```
In [28]: X = df2.drop('Churn',axis='columns')
y = df2['Churn']

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=

In [31]: X_train.shape

Out[31]: (5625, 26)
In [32]: X_test.shape
```

```
(1407, 26)
Out[32]:
In [33]:
          X_train[:10]
Out[33]:
                 gender SeniorCitizen Partner Dependents
                                                               tenure PhoneService MultipleLines OnlineService
           5664
                       1
                                    1
                                             0
                                                          0 0.126761
                                                                                  1
                                                                                                0
            101
                                    0
                                                             0.000000
                                                                                                0
                       1
                                                                                  1
           2621
                                    0
                                                          0 0.985915
                                                                                                0
            392
                                             0
                                                          0 0.014085
                                                                                                0
                                                                                  1
                       0
                                                          0 0.816901
           1327
                                    0
                                             1
                                                                                  1
                                                                                                1
           3607
                                    0
                                             0
                                                          0 0.169014
                                                                                                0
                                                                                  1
           2773
                       0
                                    0
                                             1
                                                          0 0.323944
                                                                                                0
           1936
                                    0
                                             1
                                                          0 0.704225
                                                                                                0
           5387
                       0
                                    0
                                                          0 0.042254
                                                                                                0
           4331
                       0
                                    0
                                             0
                                                          0 0.985915
                                                                                  1
                                                                                                1
          10 rows × 26 columns
          len(X_train.columns)
```

Tensorflow/keras

model.fit(X_train, y_train, epochs=100)

Out[34]:

C:\Users\Lenovo\AppData\Roaming\Python\Python311\site-packages\keras\src\layers\cor
e\dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a
layer. When using Sequential models, prefer using an `Input(shape)` object as the f
irst layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Fig. 1. 4.400								
Epoch 1/100 176/176 ————————————————————————————————————	3¢	3ms/sten	_	accuracy:	0 7441	_	1055.	0 5267
Epoch 2/100	,,,	311137 3 CCP		accar acy.	0.7441		1055.	0.3207
•	1 s	2ms/step	-	accuracy:	0.7961	-	loss:	0.4331
Epoch 3/100								
	0s	2ms/step	-	accuracy:	0.8006	-	loss:	0.4176
Epoch 4/100 176/176	00	2ms /s+on		26611026111	0 0002		1000	0 4147
Epoch 5/100	05	zms/scep	-	accuracy:	0.8003	-	1055:	0.4147
·	0s	2ms/step	_	accuracy:	0.8028	_	loss:	0.4107
Epoch 6/100		·						
	0s	2ms/step	-	accuracy:	0.7992	-	loss:	0.4224
Epoch 7/100 176/176 ————————————————————————————————————	00	2ms /s+on		accuracy:	0 0000		1000	0 4060
Epoch 8/100	62	ziiis/step	-	accuracy.	0.0000	_	1055.	0.4009
•	0s	2ms/step	_	accuracy:	0.8089	-	loss:	0.4108
Epoch 9/100								
	0s	2ms/step	-	accuracy:	0.8152	-	loss:	0.3981
Epoch 10/100 176/176 ————————————————————————————————————	۵c	2ms/ston		accuracy:	0 8164	_	1000	0 1033
Epoch 11/100	03	21113/3CEP	_	accuracy.	0.0104	_	1033.	0.4055
•	0s	2ms/step	-	accuracy:	0.8159	-	loss:	0.3907
Epoch 12/100								
	0s	2ms/step	-	accuracy:	0.8085	-	loss:	0.4105
Epoch 13/100 176/176 ————————————————————————————————————	05	2ms/sten	_	accuracy:	0.8228	_	loss:	0.3953
Epoch 14/100		5, 5 ccp			0.0110			010100
	0s	2ms/step	-	accuracy:	0.8205	-	loss:	0.3949
Epoch 15/100	0 -	2 / 1			0 0477		,	0 2004
176/176	05	2ms/step	-	accuracy:	0.81//	-	1055:	0.3991
·	0s	2ms/step	_	accuracy:	0.8178	_	loss:	0.3944
Epoch 17/100		·						
	0s	2ms/step	-	accuracy:	0.8138	-	loss:	0.3991
Epoch 18/100 176/176 ————————————————————————————————————	۵c	2ms/ston		accuracy:	0 8244	_	1000	0 30/1
Epoch 19/100	03	21113/3 ССР		accuracy.	0.0244		1033.	0.5541
•	0s	2ms/step	-	accuracy:	0.8196	-	loss:	0.3903
Epoch 20/100	_						_	
176/176 ————————————————————————————————————	0s	2ms/step	-	accuracy:	0.8125	-	loss:	0.3941
•	0s	2ms/step	_	accuracy:	0.8201	_	loss:	0.3983
Epoch 22/100		, ,						
	0s	3ms/step	-	accuracy:	0.8133	-	loss:	0.3946
Epoch 23/100 176/176 ————————————————————————————————————	1.	2ms/s+on		accuracy:	0 0175		1000	0 2070
Epoch 24/100	12	oms/scep	-	accuracy.	0.01/3	_	1055.	0.3370
•	1 s	2ms/step	-	accuracy:	0.8162	-	loss:	0.3977
Epoch 25/100								
	0s	2ms/step	-	accuracy:	0.8225	-	loss:	0.3858
Epoch 26/100 176/176 ————————————————————————————————————	05	2ms/sten	_	accuracy:	0.8121	_	loss:	0.4076
Epoch 27/100		о, о сер			0.0			
176/176	0s	2ms/step	-	accuracy:	0.8235	-	loss:	0.3802
Epoch 28/100	0-	2ms /s+		0.000.000	0.0263		1	0 2765
176/176	ØS	∠ms/step	-	accuracy:	0.8263	-	TOSS:	0.3/65
•	0s	2ms/step	_	accuracy:	0.8268	_	loss:	0.3825
Epoch 30/100		•						

476/476	0 -	2 / 1			0 0000		,	0 2725
	0S	2ms/step	-	accuracy:	0.8283	-	loss:	0.3/35
Epoch 31/100	0-	2			0 0220		1	0 2006
176/176 ————————————————————————————————————	62	3ms/scep	-	accuracy:	0.8229	-	1055:	0.3800
•	۵c	2ms/stan	_	accuracy:	0 8253	_	1000	a 377a
Epoch 33/100	03	21113/3CEP	_	accur acy.	0.0233	_	1033.	0.3//0
•	95	2ms/sten	_	accuracy:	0.8217	_	loss:	0.3804
Epoch 34/100	0.5	23, 3 ccp		acca. acy.	0.021		1055.	0.300.
•	0s	2ms/step	_	accuracy:	0.8216	_	loss:	0.3840
Epoch 35/100		, ,		,				
176/176	0s	2ms/step	-	accuracy:	0.8294	-	loss:	0.3724
Epoch 36/100								
176/176	0s	2ms/step	-	accuracy:	0.8310	-	loss:	0.3717
Epoch 37/100							_	
176/176	0s	2ms/step	-	accuracy:	0.8309	-	loss:	0.3771
Epoch 38/100	0-	2			0 0242		1	0.3660
176/176 ————————————————————————————————————	05	zms/step	-	accuracy:	0.8342	-	1088:	0.3669
176/176	۵c	2ms/stan	_	accuracy:	0 8228	_	1000	a 377a
Epoch 40/100	03	211137 3 CCP		accar acy.	0.0220		1033.	0.3770
•	0s	2ms/step	_	accuracy:	0.8101	_	loss:	0.3915
Epoch 41/100		, ,		,				
176/176	0s	2ms/step	-	accuracy:	0.8233	-	loss:	0.3759
Epoch 42/100								
	0s	3ms/step	-	accuracy:	0.8231	-	loss:	0.3721
Epoch 43/100	_						-	
	0s	2ms/step	-	accuracy:	0.8246	-	loss:	0.3770
Epoch 44/100 176/176 ————————————————————————————————————	00	2mc/c+on		accuracy:	0 9260		1000	0 27/1
Epoch 45/100	03	Jilis/scep	_	accuracy.	0.0203	_	1055.	0.3/41
•	1s	3ms/sten	_	accuracy:	0.8295	_	loss:	0.3680
Epoch 46/100		т, т.т.р		,				
176/176	1 s	3ms/step	-	accuracy:	0.8311	-	loss:	0.3737
Epoch 47/100								
176/176	1 s	3ms/step	-	accuracy:	0.8273	-	loss:	0.3676
Epoch 48/100	_						-	
176/176 ————————————————————————————————————	0S	2ms/step	-	accuracy:	0.8263	-	loss:	0.368/
Epoch 49/100 176/176	۵c	2mc/stan	_	accupacy:	0 8242	_	1000	0 3783
Epoch 50/100	03	21113/3CCP		accuracy.	0.0242		1033.	0.5765
176/176 —————	1 s	2ms/step	_	accuracy:	0.8307	_	loss:	0.3738
Epoch 51/100		, ,		,				
176/176	1 s	3ms/step	-	accuracy:	0.8334	-	loss:	0.3571
Epoch 52/100								
176/176	0s	2ms/step	-	accuracy:	0.8222	-	loss:	0.3757
Epoch 53/100	0-	2			0 0353		1	0 2507
176/176 ————————————————————————————————————	05	3ms/step	-	accuracy:	0.8352	-	TOSS:	0.3507
176/176	۵c	2ms/sten	_	accuracy:	0 8262	_	1055.	0 3684
Epoch 55/100	03	2.1137 3 CCP		accar acy.	0.0202		1033.	0.5004
176/176	0s	2ms/step	_	accuracy:	0.8280	_	loss:	0.3717
Epoch 56/100				_				
176/176	0s	2ms/step	-	accuracy:	0.8327	-	loss:	0.3614
Epoch 57/100								
176/176	0s	2ms/step	-	accuracy:	0.8303	-	loss:	0.3689
Epoch 58/100 176/176	0-	2mc/s+		200000000000000000000000000000000000000	0.000		1	0 2742
Epoch 59/100	Ø5	ziiis/step	-	accuracy:	5058،0	-	TOSS:	0.3/13
176/176	95	2ms/sten	_	accuracy:	0.8308	_	1055.	0.3622
_, 0, ±, 0	03	J/ 3 CCP	-	accui acy.	3.0300		1033.	0.3022

Epoch 60/100							_	
176/176	0s	2ms/step	-	accuracy:	0.8274	-	loss:	0.3722
•	0s	2ms/step	_	accuracy:	0.8385	_	loss:	0.3453
Epoch 62/100		·		-				
	0s	2ms/step	-	accuracy:	0.8321	-	loss:	0.3588
Epoch 63/100 176/176	95	2ms/sten	_	accuracy:	0.8290	_	loss:	0.3678
Epoch 64/100	03	211137 3 сер		accui acy.	0.0230		1033.	0.3070
	0s	2ms/step	-	accuracy:	0.8340	-	loss:	0.3547
Epoch 65/100 176/176	۵c	2ms/stan		accuracy:	0 8373		1000	0 3500
Epoch 66/100	03	21113/3CEP		accuracy.	0.0373		1033.	0.5550
176/176	0s	2ms/step	-	accuracy:	0.8299	-	loss:	0.3615
Epoch 67/100	0-	2			0 0222		1	0.3560
176/176 ————————————————————————————————————	05	zms/step	-	accuracy:	0.8333	_	1055:	0.3569
•	0s	2ms/step	-	accuracy:	0.8286	-	loss:	0.3714
Epoch 69/100	_							
176/176 ————————————————————————————————————	0s	2ms/step	-	accuracy:	0.8340	-	loss:	0.3672
•	0s	2ms/step	-	accuracy:	0.8330	_	loss:	0.3617
Epoch 71/100	_						_	
176/176 ————————————————————————————————————	0s	2ms/step	-	accuracy:	0.8388	-	loss:	0.3519
•	1 s	3ms/step	-	accuracy:	0.8312	-	loss:	0.3624
Epoch 73/100	0 -	2 / 1			0 0353		,	0 2707
176/176 ————————————————————————————————————	0S	2ms/step	-	accuracy:	0.8353	-	loss:	0.3/0/
176/176	0s	2ms/step	-	accuracy:	0.8349	-	loss:	0.3525
Epoch 75/100	0-	2			0.0262		1	0.3600
176/176 ————————————————————————————————————	05	zms/step	-	accuracy:	0.8262	-	1055;	0.3098
176/176	1 s	2ms/step	-	accuracy:	0.8387	-	loss:	0.3601
Epoch 77/100 176/176 ————————————————————————————————————	۵c	2ms/stan		accuracy:	0 8351		1000	0 3519
Epoch 78/100		•		•				
176/176	0s	2ms/step	-	accuracy:	0.8351	-	loss:	0.3457
Epoch 79/100 176/176	ac	2ms/sten	_	accuracy:	0 8313	_	1055.	0 3609
Epoch 80/100	03	211137 3 сер		accar acy.	0.0313		1033.	0.3003
	1 s	3ms/step	-	accuracy:	0.8413	-	loss:	0.3411
Epoch 81/100 176/176	05	3ms/sten	_	accuracy:	0.8327	_	loss:	0.3479
Epoch 82/100		оо, о сор						
	0s	2ms/step	-	accuracy:	0.8444	-	loss:	0.3421
Epoch 83/100 176/176	15	3ms/sten	_	accuracy:	0.8394	_	loss:	0.3482
Epoch 84/100		эо, э сер						0.00.00
	1 s	3ms/step	-	accuracy:	0.8341	-	loss:	0.3567
Epoch 85/100 176/176	15	3ms/sten	_	accuracy:	0.8374	_	loss:	0.3499
Epoch 86/100		эо, э сер						010.00
	0s	2ms/step	-	accuracy:	0.8336	-	loss:	0.3489
Epoch 87/100 176/176	15	3ms/sten	_	accuracy:	0.8318	_	loss:	0.3455
Epoch 88/100		·		-				
176/176 ————————————————————————————————————	1 s	3ms/step	-	accuracy:	0.8366	-	loss:	0.3510
Epoch 89/100								

```
176/176 -
                                     - 1s 3ms/step - accuracy: 0.8345 - loss: 0.3499
         Epoch 90/100
         176/176 -
                                     - 0s 2ms/step - accuracy: 0.8350 - loss: 0.3523
         Epoch 91/100
                                     - 1s 3ms/step - accuracy: 0.8357 - loss: 0.3462
         176/176 -
         Epoch 92/100
         176/176 •
                                     - 1s 3ms/step - accuracy: 0.8272 - loss: 0.3597
         Epoch 93/100
         176/176 -
                                      - 1s 3ms/step - accuracy: 0.8376 - loss: 0.3506
         Epoch 94/100
         176/176 -
                                     - 1s 3ms/step - accuracy: 0.8397 - loss: 0.3476
         Epoch 95/100
                                     - 1s 3ms/step - accuracy: 0.8454 - loss: 0.3415
         176/176 -
         Epoch 96/100
         176/176 -
                                     - 1s 3ms/step - accuracy: 0.8445 - loss: 0.3382
         Epoch 97/100
         176/176 -
                                     - 1s 3ms/step - accuracy: 0.8360 - loss: 0.3455
         Epoch 98/100
         176/176 -
                                     - 1s 3ms/step - accuracy: 0.8455 - loss: 0.3433
         Epoch 99/100
                                     - 1s 3ms/step - accuracy: 0.8371 - loss: 0.3402
         176/176 -
         Epoch 100/100
         176/176 -
                                  ---- 1s 3ms/step - accuracy: 0.8268 - loss: 0.3594
         <keras.src.callbacks.history.History at 0x20833233c10>
Out[37]:
In [38]:
         model.evaluate(X_test, y_test)
                         Os 2ms/step - accuracy: 0.7781 - loss: 0.4787
         44/44 -
Out[38]: [0.48671993613243103, 0.7711442708969116]
         yp = model.predict(X_test)
In [39]:
         yp[:5]
         44/44 -
                                  - 0s 5ms/step
         array([[0.17012183],
Out[39]:
                [0.5717167],
                 [0.00540317],
                [0.7973403],
                [0.54782796]], dtype=float32)
In [40]: | y_pred = []
         for element in yp:
             if element > 0.5:
                 y_pred.append(1)
             else:
                 y_pred.append(0)
In [41]: y_pred[:10]
Out[41]: [0, 1, 0, 1, 1, 1, 0, 1, 0, 0]
In [42]: y_test[:10]
```

```
2660
                  0
Out[42]:
          744
                  0
         5579
                  1
          64
          3287
                  1
         816
                 1
          2670
                  0
         5920
                  0
         1023
         6087
         Name: Churn, dtype: int64
In [43]: | from sklearn.metrics import confusion_matrix , classification_report
          print(classification_report(y_test,y_pred))
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.82
                                       0.86
                                                 0.84
                                                             999
                     1
                             0.62
                                       0.55
                                                 0.58
                                                            408
                                                 0.77
                                                            1407
             accuracy
                             0.72
                                       0.71
            macro avg
                                                 0.71
                                                            1407
         weighted avg
                             0.76
                                       0.77
                                                 0.77
                                                            1407
In [44]:
         import seaborn as sn
          cm = tf.math.confusion_matrix(labels=y_test,predictions=y_pred)
          plt.figure(figsize = (10,7))
          sn.heatmap(cm, annot=True, fmt='d')
          plt.xlabel('Predicted')
          plt.ylabel('Truth')
         Text(95.722222222221, 0.5, 'Truth')
Out[44]:
```



```
In [45]:
         #Accuracy
          round((862+229)/(862+229+137+179),2)
         0.78
Out[45]:
         #precision for 0 class
In [46]:
          round(862/(862+179),2)
         0.83
Out[46]:
In [47]:
         #precision for 1 class
         round(229/(229+137),2)
         0.63
Out[47]:
         #recall for 0 class
In [48]:
          round(862/(862+137),2)
         0.86
Out[48]:
In [49]:
         #recall for 1 class
          round(229/(229+179),2)
         0.56
Out[49]:
 In [ ]:
```