1-1 答案

```
semaphore mutex=1;
cobegin

process traveler_i() {

P(mutex);

过桥;

V(mutex);
}
coend
```


1-2 答案

```
semaphore mutex=1; //东西方向互斥使用独木桥
int numE2W=0, numW2E=0; //东向西和西向东的桥上人数
semaphore mutexE2W=1, mutexW2E=1; //互斥改变numE2W和
numW2E
cobegin
process travelerE2W_i() {
                                process travelerW2E_j() {
  P(mutexE2W);
                                 P(mutexW2E);
  numE2W++;
                                  numW2E++;
  if (numE2W==1)
                                  if (numW2E==1)
     P(mutex);
                                     P(mutex);
  V(mutexE2W);
                                  V(mutexW2E);
  过桥;
                                  过桥;
  P(mutexE2W);
                                  P(mutexW2E);
  numE2W--;
                                  numW2E-;
  if (numE2W==0)
                                  if (numW2E==0)
     V(mutex);
                                    V(mutex);
  V(mutexE2W);
                                 V(mutexW2E);
                               }
coend
```

1-3 答案

```
semaphore mutex= 1; //东西方向互斥使用独木桥
int numE2W=0; //东向西的桥上人数
semaphore mutexE2W=1; //互斥改变numE2W
cobegin
```

```
process travelerE2W i() {
  P(mutexE2W);
  numE2W++;
  if (numE2W==1)
      P(mutex);
  V(mutexE2W);
   过桥;
  P(mutexE2W);
  numE2W--;
  if (numE2W==0)
     V(mutex);
  V(mutexE2W);
coend
```

```
process travelerW2E_j() {
    P(mutex);
    过桥;
    V(mutex);
}
```


第二题

```
P1:
while (True){
  x=produce();
  P(empty);
  P(mutex);
  //x=produce();
  put(x);
  V(mutex);
  if x\%2 = = 0
        V(even);
  else
        V(odd);
```

```
P2:
while (True){
  P(odd);
  P(mutex);
  getodd();
  V(mutex);
  countodd();
  V(empty);
```

```
P3:
while (True){
  P(even);
  P(mutex);
  geteven();
  V(mutex);
  counteven();
  V(empty);
```


第二题

⋄ 互斥信号量mutex:实现进程对缓冲区的互斥访问,初值为1

◈ 信号量empty: 空缓冲区的数量, 初值为N

◈ 信号量even:数字为偶数的缓冲区数量,初值为0

⋄ 信号量odd:数字为奇数的缓冲区数量,初值为0

第三题

最短剩余时间优先调度: 0时刻P1执行,由于最短剩余时间优先调度是抢占式调度算法,故P1执行到2时P2到达,此时P2剩余时间短于P1,故P2先执行。P2执行期间P3到达,但P3剩余时间多于P2,故P2执行到6结束。此时P4也到达,P1剩余8,P3剩余10,P4剩余5,故先执行P4结束后再执行P1,最后执行P3。因此进程的运行次序为P1,P2,P4,P1,P3。各进程相关时间如下表:

进程	运行时间	到达时间	结束时间	周转时间	带权周转时间
P1	10	0	19	19	1.9
P2	4	2	6	4	1
Р3	10	4	29	25	2.5
P4	5	6	11	5	1

- 平均周转时间为: (19+4+25+5)/4=13.25
- 带权平均周转时间为: (1.9+1+2.5+1)/4=1.6

第四题

- 每个作业运行将经过两个阶段:作业调度(SJF算法)和进程调度 (优先数抢占式)。此外,批处理最多容纳2道作业,其余作业都 在后备队列等待。
- A作业10:00到达,此时只有1个作业直接进入内存执行,到10:20时,B作业到达,因为B的优先数高于A,因此A进入就绪队列,B执行至10:50结束。
- 10:50时,作业D到达。此时B执行结束,根据SJF算法,调度D进入内存,然后再根据优先数调度算法,调度A执行,A执行至11:10结束。
- 此时调度C进入内存,根据优先数调度算法,先调度执行C,C执行至12:00结束,最后再执行D,D执行至12:20结束。

第四题

综上所述,所有作业的到达时间、进入内存时间、运行结束时间以及周转时间如下表所示:

作业名	到达时间	进入内存时间	结束时间	周转时间
A	10:00	10:00	11:10	70
В	10:20	10:20	10:50	30
С	10:30	11:10	12:00	90
D	10:50	10:50	12:20	90

平均周转时间为(70+30+90+90)/4=70分钟

第五题

(1) T0时刻的五个进程资源缺口情况及已分配资源情况如下表:

洪和	已	分配资源	量		资源缺口		系统剩余资源数量			
进程	A	В	С	A	В	С	A	В	С	
P1	2	1	2	3	4	7	2	3	3	
P2	4	0	2	1	3	4				
Р3	4	0	5	0	0	6				
P4	2	0	4	2	2	1				
P5	3	1	4	1	1	0				

- 剩余资源满足P4和P5, 先将P4的已分配资源释放,得到剩余资源量为 (4,3,7), 然后再将P5的已分配资源释放,得到剩余资源量为(7,4,11), 满足剩余三个进程P1、P2和P3的资源缺口。
- ⋄ 故T0时刻是安全状态,其中一个安全序列为P4,P5,P1,P2,P3(安全序列)
 列不唯一)

第五题

(2)进程P4申请资源(2,0,1),判断申请有效性(分别和系统剩余资源数量、P4资源缺口进行比较)后进行尝试分配,分配后各进程的已分配资源及缺口情况见下表:

:# 10	已	分配资源	量		资源缺口		系统剩余资源数量			
进程	Α	В	С	A	В	С	Α	В	С	
P1	2	1	2	3	4	7	0	3	2	
P2	4	0	2	1	3	4				
Р3	4	0	5	0	0	6				
P4	4	0	5	0	2	0				
P5	3	1	4	1	1	0				

- 剩余资源满足P4,先将P4的已分配资源释放,得到剩余资源量为(4,3,7),剩余资源满足P2、P3、P5的资源缺口,依次释放后满足P1的资源缺口。
- 故P4的资源申请是安全的,尝试分配后存在安全序列P4, P2, P3, P5, P1(安全序列P4, P2, P3, P5, P1(安全序列P4, P2, P3, P5, P1)

第五题

(3) 进程P1申请资源(0,2,0),判断申请有效性(分别和系统剩余资源数量、P1资源缺口进行比较)后进行尝试分配,分配后各进程的已分配资源及缺口情况见下表:

2H ID	已	分配资源	量		资源缺口		系统剩余资源数量			
进程	Α	В	С	A	В	С	Α	В	С	
P1	2	3	2	3	2	7	0	1	2	
P2	4	0	2	1	3	4				
Р3	4	0	5	0	0	6				
P4	4	0	5	0	2	0				
P5	3	1	4	1	1	0				

发现剩余资源数量不能满足任何一个进程的需求缺口,无法找到一个安全 序列,将导致系统进入不安全状态,因此不能按照进程P1的申请进行资源 分配。

第1题

一个 32 位地址的计算机系统使用二级页表,虚拟地址为:顶级页表占9位,二级页表占11位。请问:页面长度为多少?虚拟地址空间有多少个页面?

 虚拟地址共32位,顶级页表占9位,二级页表占11位,那么 页内偏移占32-9-11=12位,因此页面长度是2¹²B,即4KB。虚 拟地址空间的页面数量为2²⁰=1M个。

第2题

 用户编程空间共32个页面,则在虚拟地址中页号占5位。 每页为1KB,则在虚拟地址中10位。

逻辑地址0A5C(H)转化为二进制是0000 1010 0101 1100, 其中页内偏移量是10 0101 1100,转化为十进制是604, 页号是10,转化为十进制是2,对应物理块号是4。

最后的物理地址为4*1024+604=4700(或者是125℃H)

第3题

页面	1	2	3	4	2	3	5	6	3	1	4	6	7	5	2	4	1	3	2
	1	1	1	4			4	4	3	3	3	6	6	6	2	2	2	3	3
		2	2	2			5	5	5	1	1	1	7	7	7	4	4	4	2
			3	3			3	6	6	6	4	4	4	5	5	5	1	1	1
缺页				是			是	是	是	是	是	是	是	是	是	是	是	是	是

◈ 缺页中断次数为14次,缺页率为14/19

第3题

页面	1	2	3	4	2	3	5	6	3	1	4	6	7	5	2	4	1	3	2
	1	1	1	4			4	4		4			4	4	4			3	
		2	2	2			5	6		6			7	5	2			2	
			3	3			3	3		1			1	1	1			1	
缺页				是			是	是		是			是	是	是			是	

→ 缺页中断次数为8次,缺页率为8/19

第3题

LRU:

页面	1	2	3	4	2	3	5	6	3	1	4	6	7	5	2	4	1	3	2
	1	1	1	4			5	5		1	1	1	7	7	7	4	4	4	2
		2	2	2			2	6		6	4	4	4	5	5	5	1	1	1
			3	3			3	3		3	3	6	6	6	2	2	2	3	3
缺页				是			是	是		是	是	是	是	是	是	是	是	是	是

◈ 缺页中断次数为13次,缺页率为13/19

第4题

(1) 页面大小为4KB,则在虚拟地址中页内偏移量占低12位

逻辑地址	页号	页内偏移量
2362Н	2	362H
1565H	1	565H
25A5H	2	5A5H

- ⋄ 访问2362H: 10(访问块表)+100(访问页表)+100(访问物理地址) =210ns
- ⋄ 访问1565H: 10(访问块表)+100(访问页表)+108(处理缺页)+100(访问物理地址)=318ns
- ⋄ 访问25A5H: 10(访问块表)+100(访问物理地址)=110ns
- 《2)访问虚拟地址1565H,产生缺页中断,驻留集为2,必须淘汰1个页面。 根据局部淘汰策略和LRU算法,0号页被淘汰,1号页被置换进入内存,则1 号页对应的页框号为101H。故逻辑地址1565H的物理地址是101565H

第5题

分配给该作业的主存共300字,页的大小为100字,因此分配给该作业3个物理块。

对应的页号是: 1, 2, 1, 0, 4, 1, 3, 4, 2, 1

第5题

页面	1	2	1	0	4	1	3	4	2	1
	0	0			4		4			4
	1	1			1		3			3
		2			2		2			2
淘汰					0		1			2
缺页					是		是			是

◈ 缺页中断次数为3次,缺页中断率为3/10

第5题

LRU:

页面	1	2	1	0	4	1	3	4	2	1
	0	0			0		3		3	1
	1	1			1		1		2	2
		2			4		4		4	4
淘汰					2		0		1	3
缺页					是		是		是	是

◈ 缺页中断次数为4次,缺页中断率为4/10

2

第6题

- 《1)页的大小为1KB,页内偏移量占低10位。逻辑地址为17CAH, 转化为二进制位0001 0111 1100 1010,故页号为5(0101)。
- (2)操作系统使用固定分配局部置换策略,页面5不在内存,故需要进行页面置换。采用FIF0置换算法,故将页面0淘汰,将其页框7分配给页面5。因此其对应的物理地址为0001 1111 1100 1010,转化为16进制为1FCAH。
- 《3)采用Clock置换算法,且当前指针指向2号页框,从2号页框开始,依次检测页框的访问位,第一次循环过后,发现所有页框访问位都为1,故将所有页框的访问位都置0。在第二次循环时,将2号页框对应的页置换,因此对应的物理地址为0000 1011 1100 1010,转化为16进制为0BCAH。