Data Engineering

LTAT.02.007

Ass Prof. Riccardo Tommasini

Assistants: Fabiano Spiga, Mohamed Ragab, Hassan Eldeeb

https://courses.cs.ut.ee/2020/dataeng

Forum

Moodle

History

Leonhard Euler's paper on "Seven Bridges of Königsberg", published in 1736.

Famous problems

- The traveling salesman problem: A traveling salesman is to visit a number of cities.
 - how to plan the trip so every city is visited once and just once and the whole trip is as short as possible ?
- Four color problem¹⁰⁰: using only four colors, color any map of countries in such a way as to prevent two bordering countries from having the same color.
 - SOLVED ONLY 120 YEARS LATER!

¹⁰⁰ Francis Guthrie, 1852

Other Examples of Graph Problems

- Cost of wiring electronic components
- Shortest route between two cities.
- Shortest distance between all pairs of cities in a road atlas.
- Matching / Resource Allocation
- Task scheduling
- Visibility / Coverage

What is a Graph?

Informally a *graph* is a set of nodes joined by a set of lines or arrows.

Graph

G is an ordered triple G := (V, E, f)

- V is a set of nodes, points, or vertices.
- E is a set, whose elements are known as edges or lines.
- f is a function
- maps each element of E
- to an unordered pair of vertices in V.

Vertexes and Edges

- A Vertex is a Basic Element
 - Drawn as a node or a dot.
 - The Vertex set of a graph *G is usually denoted by V
- An edge is set of two elements
 - Drawn as a line connecting two vertices, called end vertices, or endpoints.
 - The edge set of G is usually denoted by E(G), or E.

Example

 $V:=\{1,2,3,4,5,6\}$

 $E := \{\{1,2\},\{1,5\},\{2,3\},\{2,5\},\{3,4\},\{4,5\},\{4,6\}\}\}$

Directed Graph (digraph)

Edges have directions, i.e. an edge is an ordered pair of nodes

Weighted graphs

are graphs for which each edge has an associated weight, usually given by a _weight function

$$f_w:E o R$$
 .

Path

A path is a sequence of vertices such that there is an edge from each vertex to its successor.

- A path is *simple* if each vertex is distinct.
- If there is path p from u to v then we say v is **reachable** from u via p.

Example: Simple path from 1 to 5= [1, 2, 4, 5]

Cycle

- A path from a vertex to itself is called a cycle.
- A graph is called cyclic if it contains a cycle;
 - otherwise it is called acyclic

Connectivity

- A graph is connected if
 - you can get from any node to any other by following a sequence of edges OR
 - any two nodes are connected by a path.
- A directed graph is *strongly connected* if there is a directed path from any node to any other node.

Sparsity/Density

A graph is *sparse* if |E| pprox |V|

A graph is dense if $|E| pprox |V^2|$

Degree

Number of edges incident on a node

E.g., the degree of **5** is 3.

Degree (Directed Graphs)

In degree: Number of edges entering

Out degree: Number of edges leaving

Degree =indegree+outdegree

Graph Types

Bipartite graph

- V can be partitioned into 2 sets V_1 and V_2 such that $(u,v)\in E$ implies
 - ullet either $u\in V_1$ and $v\in V_2$
 - ullet or ${}^*v\in V_1$ and $u\in V_2$

Complete Graph

- Denoted K_n
- Every pair of vertices are adjacent
- Has n(n-1) edges

Planar Graph

- Can be drawn on a plane such that no two edges intersect
- K_4 is the largest complete graph that is planar

Tree

Connected Acyclic Graph

Two nodes have *exactly* one path between them

Hypergraph

- Generalization of a graph,
 - edges can connect any number of vertices.
- Formally, an hypergraph is a pair (X,E) where
 - X is a set of elements, called nodes or vertices, and
 - E is a set of subsets of X, called hyperedges.
- Hyperedges are arbitrary sets of nodes,
 - contain an arbitrary number of nodes.

Subgraph

- Vertex and edge sets are subsets of those of G
 - a *supergraph* of a graph G is a graph that contains G as a subgraph.

Spanning subgraph

- Subgraph G has the same vertex set as H.
 - Possibly not all the edges
 - "G spans H".

Graph ADT

- In computer science, a graph is an abstract data type (ADT)
- that consists of
 - a set of nodes and
 - a set of edges
 - establish relationships (connections) between the nodes.
- The graph ADT follows directly from the graph concept from mathematics.

Representation (Matrix)

- Incidence Matrix
 - E x V
 - [edge, vertex] contains the edge's data
- Adjacency Matrix
 - V x V
 - Boolean values (adjacent or not)
 - Or Edge Weights

Representation (List)

- Edge List
 - pairs (ordered if directed) of vertices
 - Optionally weight and other data
- Adjacency List

Undirected Graph

Edge List

[[0,1],[0,2],[0,3],[1,2],[3,2]]

Adjacency Matrix

Adjacency List

[[1,2,3], [0,2], [0,1,3], [0,2]]

Graph Algorithms

- Shortest Path
 - Single Source
 - All pairs (Ex. Floyd Warshall)
- Network Flow
- Matching
 - Bipartite
 - Weighted
- Topological Ordering
- Strongly Connected

- Biconnected Component / Articulation Point
- Bridge
- Graph Coloring
- Euler Tour
- Hamiltonian Tour
- Clique
- Isomorphism
- Edge Cover
- Vertex Cover
- Visibility