

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	<u>Информатик</u>						
КАФЕДРА Системы обработки информации и управления							
		чёт					
	по лабораторн	-					
«Разведочный	анализ данных. Иссл	гедование и визуа	лизация данных.»				
]	по курсу «Технологии	машинного обучен	«RNH				
Выполнил:							
	дент группы ИУ5-63		Волков А.С				
<i>J</i> ,		(Подпись, дата)	(Фамилия И.О.)				
П.,							
Проверил:							
	-	(П	Гапанюк Ю.Е				
		(Подпись, дата)	(Фамилия И.О.)				

Цель лабораторной работы:

Изучение различных методов визуализация данных.

Краткое описание. Построение основных графиков, входящих в этап разведочного анализа данных.

Задание:

- Выбрать набор данных (датасет).
- Для первой лабораторной работы рекомендуется использовать датасет без пропусков в данных.
- Выполнить преобразования датасетов Scikit-learn в Pandas Dataframe, если потребуется.

Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

- Создать ноутбук, который содержит следующие разделы:
- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Выполнение лабораторной работы:

1) Текстовое описание набора данных

В качестве набора данных мы будем использовать набор данных о ценах домов в Бостоне. https://github.com/selva86/datasets/blob/master/BostonHousing.csv (https://github.com/selva86/datasets/blob/master/BostonHousing.csv)

Анализ подобного набора данных позволить выявить прежде всего факторы, которые больше всего влияют на цену собственности, а также позволяют отметить некоторые закономерности между определенными характеристиками собственности.

Датасет состоит из одного файла BostonHousing.csv.

Файл содержит следующие колонки:

CRIM - уровень преступности на душу населения

ZN - доля жилых земель, предназначенных для участков площадью более 25 000 кв. футов.

INDUS - доля нерозничных предприятий в акрах на город

CHAS - искусственная переменная близости к р. Чарльз (1 если здание у реки; 0 иначе)

NOX - концентрация оксидов азота (частей на 10 миллионов)

RM - среднее количество комнат на одно жилище

AGE - количество единиц жилья, занимаемых владельцами, построенных до 1940 года

DIS - взвешенные расстояния до пяти Бостонских центров занятости

RAD - индекс доступности радиальных магистралей

ТАХ - налог на недвижимость полной стоимости за \$10 000

PTRATIO - соотношение числа учащихся и учителей

В - доля чернокожих (Bk): 1000(Bk - 0.63)^2

LSTAT - процент более низкого статуса населения

MEDV - средняя стоимость домов, занятых владельцами, в тысячах долларов США

Импорт библиотек

Импортируем библиотеки с помощью команды import. Как правило, все команды import размещают в первой ячейке ноутбука, но мы в этом примере будем подключать все библиотеки последовательно, по мере их использования.

In [144]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Загрузка данных

Загрузим файлы датасета с помощью библиотеки Pandas.

```
In [145]:
```

```
data = pd.read_csv('data/BostonHousing.csv', sep=",")
```

2) Основные характеристики датасета

In [146]:

```
# Первые 5 строк датасета data.head()
```

Out[146]:

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	m
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	:
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	:
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	;
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	;
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	;
4														

In [147]:

```
# Размер датасета - 100 строк, 6 колонок
data.shape
```

Out[147]:

(506, 14)

In [148]:

```
total_count = data.shape[0]
print('Всего строк: {}'.format(total_count))
```

Всего строк: 506

In [149]:

```
# Список колонок
data.columns
```

Out[149]:

In [150]:

```
# Список колонок с типами данных data.dtypes
```

Out[150]:

crim float64 float64 zn float64 indus chas int64 float64 nox float64 rmfloat64 age float64 dis rad int64 int64 tax float64 ptratio float64 b lstat float64 medv float64 dtype: object

In [151]:

```
# Цикл по колонкам датасета

for col in data.columns:

# Количество пустых значений - все значения заполнены

temp_null_count = data[data[col].isnull()].shape[0]

print('{} - {}'.format(col, temp_null_count))
```

```
crim - 0
zn - 0
indus - 0
chas - 0
nox - 0
rm - 0
age - 0
dis - 0
rad - 0
tax - 0
ptratio - 0
b - 0
lstat - 0
medv - 0
```

In [152]:

Основные статистические характеристки набора данных data.describe()

Out[152]:

	crim	zn	indus	chas	nox	rm	age	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	_
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	
75%	3.677082	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	

In [153]:

Определим уникальные значения для целевого признака data['medv'].unique()

Out[153]:

```
array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15.,
      21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 13.6, 19.6, 15.2, 14.5,
      15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 13.2, 13.1, 13.5, 20. ,
      24.7, 30.8, 34.9, 26.6, 25.3, 21.2, 19.3, 14.4, 19.4, 19.7, 20.5,
      25. , 23.4, 35.4, 31.6, 23.3, 18.7, 16. , 22.2, 33. , 23.5, 22. ,
      17.4, 20.9, 24.2, 22.8, 24.1, 21.4, 20.8, 20.3, 28., 23.9, 24.8,
      22.5, 23.6, 22.6, 20.6, 28.4, 38.7, 43.8, 33.2, 27.5, 26.5, 18.6,
      20.1, 19.5, 19.8, 18.8, 18.5, 18.3, 19.2, 17.3, 15.7, 16.2, 18.
      14.3, 23., 18.1, 17.1, 13.3, 17.8, 14., 13.4, 11.8, 13.8, 14.6,
      15.4, 21.5, 15.3, 17., 41.3, 24.3, 27., 50., 22.7, 23.8, 22.3,
      19.1, 29.4, 23.2, 24.6, 29.9, 37.2, 39.8, 37.9, 32.5, 26.4, 29.6,
      32., 29.8, 37., 30.5, 36.4, 31.1, 29.1, 33.3, 30.3, 34.6, 32.9,
      42.3, 48.5, 24.4, 22.4, 28.1, 23.7, 26.7, 30.1, 44.8, 37.6, 46.7,
      31.5, 31.7, 41.7, 48.3, 29. , 25.1, 17.6, 24.5, 26.2, 42.8, 21.9,
      44., 36., 33.8, 43.1, 48.8, 31., 36.5, 30.7, 43.5, 20.7, 21.1,
      25.2, 35.2, 32.4, 33.1, 35.1, 45.4, 46., 32.2, 28.5, 37.3, 27.9,
      28.6, 36.1, 28.2, 16.1, 22.1, 19. , 32.7, 31.2, 17.2, 16.8, 10.2,
      10.4, 10.9, 11.3, 12.3, 8.8, 7.2, 10.5, 7.4, 11.5, 15.1, 9.7,
      12.5, 8.5, 5., 6.3, 5.6, 12.1, 8.3, 11.9, 17.9, 16.3, 7.,
       7.5, 8.4, 16.7, 14.2, 11.7, 11., 9.5, 14.1, 9.6, 8.7, 12.8,
      10.8, 14.9, 12.6, 13., 16.4, 17.7, 12., 21.8, 8.1])
```

3) Визуальное исследование датасета

Диаграмма рассеяния

В данном случае рассмотрим отношение средней стоимости дома и количества комнат в нем.

In [154]:

```
fig, ax = plt.subplots(figsize=(7,7))
sns.scatterplot(ax=ax, x='medv', y='rm', data=data)
```

Out[154]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d0d3a93688>

Больше комнат - стоимость, очевидно, больше. Однако большинство зданий имеют до 7 комнат.

А теперь выделим цветом процент населения более низкого статуса.

In [155]:

```
plt.figure(figsize = (10,5))
sns.scatterplot(x='medv', y='rm', hue = 'lstat', data=data)
```

Out[155]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d0d379fa48>

Виден очевидный факт - население более низкого статуса может позволить себе только дешевые дома.

Однако этот дом необязательно будет иметь маленькое количество комнат.

Также мною была замечена странная связь концентрации оксидов азота и расстояния до центров занятости.

In [156]:

```
plt.figure(figsize = (10,10))
X_plot = np.linspace(0.35, 0.9, 50)
Y_plot = np.exp(-(X_plot*11-2))*80+2
plt.scatter(data['nox'], data['dis']); plt.plot(X_plot, Y_plot, color='r')
plt.xlabel('Концентрация оксидов азота')
plt.ylabel('Расстояние до центров занятости')
```

Out[156]:

Text(0, 0.5, 'Расстояние до центров занятости')

Гистограмма

Оценим плотность вероятности распределения среднего числа комнат.

In [157]:

```
plt.figure(figsize = (7,7))
sns.distplot(data['rm'])
```

Out[157]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d0d1dd5f88>

Построим jointplot для отношения концентрации азота и расстояния до центров занятости.

In [158]:

```
plt.figure(figsize = (7,7))
sns.jointplot(x='nox', y='dis', data=data, kind="hex")
```

Out[158]:

<seaborn.axisgrid.JointGrid at 0x1d0d43917c8>

<Figure size 504x504 with 0 Axes>

Парная диаграмма, где цветом обозначена близость к реке.

In [159]:

sns.pairplot(data)

Out[159]:

<seaborn.axisgrid.PairGrid at 0x1d0d1ebe848>

Violin plot

Распределение плотности для средней стоимости, сгрупированное по близости к реке.

In [160]:

```
sns.violinplot(x='chas', y='medv', data=data)
```

Out[160]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d0d946ea48>

4)Информация о корреляции признаков

In [161]:

data.corr()

Out[161]:

	crim	zn	indus	chas	nox	rm	age	dis
crim	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670
zn	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408
indus	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027
chas	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176
nox	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230
rm	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246
age	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881
dis	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000
rad	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588
tax	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432
ptratio	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471
b	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512
Istat	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996
medv	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929

Тепловая карта

In [162]:

sns.heatmap(data.corr())

Out[162]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d0db026ac8>

Тепловая карта со значениями

In [163]:

```
plt.figure(figsize = (15,10))
sns.heatmap(data.corr(), cmap='Greens', annot=True, fmt='.2f')
```

Out[163]:

<matplotlib.axes._subplots.AxesSubplot at 0x1d0dcaf8cc8>

Сортировка корреляций для целевого признака

In [167]:

Треугольнгая тепловая карта корреляций с обнулёнными незначительными корреляциями

In [165]:

```
new_corr = data.corr()
new_corr[np.abs(new_corr)<.4] = 0
plt.figure(figsize=(15,10))
mask = np.zeros_like(new_corr, dtype=np.bool)
mask[np.tril_indices_from(mask)] = True
sns.heatmap(new_corr, mask = mask, cmap = 'coolwarm', annot=True);
                          0.42
E -
                                                                                       - 0.9
                                                      0
                                                                 0
                                                                            0
                                0
                                                                 0
                                                                                       - 0.6
                                                      0
                                                                 0
                                                                            0
chas
                                                           0
                                                                 0
× –
                                           0
                                                0
                                                      0
                                                           0
                                                                 0
                                                                                       - 0.3
                                                     0.51
                                                                 0
age
dis -
                                                                                       - 0.0
                                                                            0
pg.
פ –
                                                                                       -0.3
                                                                            0
                                                                                        -0.6
                                                                           -0.74
stat
```