Конспект лекции 9: Асимптотические методы теории нелинейных колебаний

Введение

В лекции рассматриваются асимптотические методы для анализа нелинейных колебаний, когда точные аналитические решения найти сложно. Основное внимание уделяется методам разложения по малому параметру.

Осциллятор с квадратичной нелинейностью

Рассматривается уравнение:

$$\ddot{x} + \omega_0^2 x + \alpha x^2 = 0$$

Путем нормировки переменных и введения безразмерных величин, уравнение преобразуется в:

$$\ddot{x} + x + \varepsilon x^2 = 0$$

где $\varepsilon = \alpha A/\omega_0^2$.

Метод разложения по малому параметру

Решение ищется в виде ряда:

$$x(t) = x_1(t) + \varepsilon x_2(t) + \varepsilon^2 x_3(t) + \dots$$

Подстановка этого ряда в уравнение приводит к системе уравнений:

$$\varepsilon^{0} : \ddot{x}_{1} + x_{1} = 0,$$

 $\varepsilon^{1} : \ddot{x}_{2} + x_{2} + x_{1}^{2} = 0,$
 $\varepsilon^{2} : \ddot{x}_{3} + x_{3} + 2x_{1}x_{2} = 0.$

Решение уравнений

Решение для x_1 :

$$x_1 = a\cos(t+\varphi)$$

Решение для x_2 :

$$x_2 = -\frac{a^2}{2} + \frac{a^2}{6}\cos 2(t + \varphi)$$

Осциллятор Дуффинга

Рассматривается уравнение с кубической нелинейностью:

$$\ddot{x} + \omega_0^2 x + \beta x^3 = 0$$

Преобразуется в:

$$\ddot{x} + x + \varepsilon x^3 = 0$$

где
$$\varepsilon = \beta A^2/\omega_0^2$$
.

Метод Линштедта - Пуанкаре

Для учета неизохронности вводится новая временная переменная $\tau = \omega t.$ Решение ищется в виде:

$$x = x_1 + \varepsilon x_2 + \varepsilon^2 x_3 + \dots$$

$$\omega = 1 + \varepsilon \omega_1 + \varepsilon^2 \omega_2 + \dots$$

Выбор ω_1 устраняет секулярные члены:

$$\omega_1 = \frac{3a^2}{8}$$

Заключение

Методы разложения позволяют находить приближенные решения для нелинейных осцилляторов, учитывая влияние малых параметров на динамику системы. Метод Линштедта - Пуанкаре особенно полезен для учета неизохронности в системах с кубической нелинейностью.