Cristina Boeres

minha página

http://www.ic.uff.br/~boeres

página do curso de 50

https://sites.google.com/ic.uff.br/sistemas-operacionais-icuff/home

meu e-mail

boeres@ic.uff.br

O que é um 50?

- um gerenciador de recursos?
- uma interface?

máquina virtual?

- Revisão: UCP, Memória, Processos e Interrupções
- Processos e threads
- Gerenciamento de Memória
- Memória Virtual
- Concorrência
- Deadlocks
- Escalonamento de Processos
- Sistemas de Arquivos

Livro texto

- Operating Systems: Internals and Design Principles, W. Stallings
 - (http://williamstallings.com/OperatingSystems/)

Bibliografia Complementar:

- Operating Systems Concepts, A. Silberschatz e
 P.B. Galvin, Wiley
 - (em português, Sistemas Operacionais em Java, Ed Elsevier)
- Modern Operating Systems, A. Tanenbaum and H. Bos, Ed. Prentice Hall

Atividades do curso

- □ P1 : 9 de maio
- □ P2: 27 de junho
- um trabalho prático T
- participação (bônus)
- Nota final: P1*0.4 + P2 * 0.4 + T* 0.2 + bônus
- 2ª chamada somente para quem faltar a uma das provas
- VS

"Que é um Sistema Computacional ?"TM

"Que é um Sistema Computacional ?"TM

- Uma ferramenta, que tem
 - Bom desempenho?
 - Baixo custo ?
 - Facilidade de uso ?
 - ...?

- Processamento
- Armazenamento
- Comunicação

Arquitetura X Organização de computadores

- Arquitetura de computadores refere-se às características visíveis pelo programador
 - conjunto de instruções
 - número de bits de dados
 - mecanismos de E/S
 - modos de endereçamento

Arquitetura X Organização de computadores

- Organização de computadores refere-se às unidades operacionais e suas interconexões que implementam as características da arquitetura
 - detalhes de h/w como sinais de controle
 - interfaces
 - tecnologia de memória
 - etc

Arquitetura x Organização

 Especificar se um computador deve ou não ter uma instrução de multiplicação constitui uma decisão de projeto de ...

Arquitetura

 Definir se essa instrução será implementada por uma unidade específica de multiplicação ou por um mecanismo que utiliza repetidamente sua unidade de soma é uma decisão de ...

Organização

Arquitetura x Organização

- Fabricantes oferecem famílias de modelos, com mesma arquitetura e diferentes organizações
 - custo e desempenho diferentes
 - compatibilidade de código
 - mudança da organização com tecnologia

Conclusão

 uma organização deve ser projetada para implementar uma especificação particular de arquitetura

Estrutura e Função

- Um computador é um sistema hierárquico
 - máquina multiníveis
- Em cada nível, o projetista se preocupa com sua estrutura e sua função
 - Estrutura é a forma como os componentes se relacionam
 - Função é a operação de cada componente parte dessa estrutura

Função

- Funções básicas de um computador são:
 - Processamento de dados
 - Armazenamento de dados
 - Movimentação de dados
 - Controle
 - Comunicação

Visão funcional

IC - UFF

Estrutura: visão macro

Estrutura: a UCP

Estrutura: unidade de controle

Uma pequena revisão

- revisando pontos importantes.....
- agora queremos entender um ambiente computacional onde vários programas podem ser submetidos e executados ao mesmo tempo

Computador: visão macro

Ciclo de instrução

Ciclo de busca Ciclo de execução

Ciclo de busca

- PC contém o endereço da próxima instrução
- Instrução é buscada e colocada no IR para ser interpretada
- PC é incrementado (quase sempre!)

Ciclo de execução

- UCP interpreta instrução e executa ação:
 - UCP ↔ memória: transferência de dados
 - UCP ↔ E/S: transferência de dados
 - processamento de dados: operação lógica ou aritmética
 - controle: alteração da seqüência de operação
 - combinação dessas ações

Organização da UCP

- Funções da UCP:
 - buscar instruções
 - interpretar instruções
 - buscar dados
 - processar dados
- UCP precisa fazer armazenamento temporário: registradores

Registradores

- Espaço de trabalho temporário
- Quantidade e função varia entre processadores
- Uma das principais decisões de projeto
- Nível superior da hierarquia de memória

Classificação:

- vísiveis
- restritos
 - controle
 - estado

Registradores visíveis

- São os que podem ser referenciados através de linguagem de máquina
 - de uso geral (dados e endereçamento)
 - de dados (e.g., acumulador)
 - de endereço: segmento, índice, pilha, ...
 - códigos de condição (só leitura)

Registradores de controle e estado

- visibilidade restrita
- essenciais: PC, IR, MAR, MBR
- PSW: Program Status Word
 - códigos de condição =

```
sinal + zero + vai-um + estouro + permissão/inibição de interrupção + modo supervisor/não
```

 Outros registradores importantes: SP, apontador de PCB, interrupção vetorizada

Processador: recursos central de controle

- CPU não deve ficar ociosa
 - princípio de multiprogramação

Modos de Execução

- Modos de execução do processador em relação à entrada
 - E/S programáveis
 - E/S por interrupção
 - DMA (Direct Memory Acess)

E/S programáveis

- Usada em alguns microprocessadores mais simples
- O processador está sempre checando a entrada
 - A instrução de entrada (ou saída) seleciona o dispositivo desejado (registradores podem estar associados a um determinado dispositivo)
 - um caractere é transmitido entre um registrador específico e o dispositivo selecionado
 - uma instrução de entrada (ou saída) deve ser especificada para cada caractere a ser lido (ou escrito)

E/S programáveis

- dois registradores estão associados a um dispositivo de E/S
 - registrador de estado (de 8 bits): dois bits mais a esq são necessários
 - Registrador de dado

- Um loop testa se o bit de estado está setado
- Se positivo, software (SO, por exemplo) lê o caractere para o reg de dado

E/S programáveis

Desvantagem de E/S programável:

- loop é eterno
- o processador fica em espera ocupada
 - não é desvantagem quando a CPU tem tarefa específica

E/S por interrupção

- Para evitar a espera ocupada: o dispositivo gera uma interrupção quando necessário.
- Sinal por hardware avisa a CPU para iniciar a rotina de E/S

Interrupção

- emitir um sinal para a CPU
- CPU inicia o tratamento de E/S
- Avisa ao dispositivo quando acabar de operar
 - reseta o registrador de estado

E/S por interrupção

- A interrupção pode resolver o problema da espera ocupada, mas todo caractere lido/escrito é seguido de interrupção, o que ainda não é uma boa solução.
- Solução melhor
 - E/S programável, mas com um dispositivo especifica para realizar esta tarefa: DMA

DMA (Direct Memory Access)

- chip controlador que acessa diretamente o dispositivo
- tem pelo menos 4 registradores, carregados por software (série de macro instruções) executada pela CPU.

Descrição dos registradores:

- R1: o endereço de MP de onde serão Lidos/Escritos.
- R2: Quantos bytes/palavras serão transferidos.
- R3: # do dispositivo ou o espaço de end. da E/S a ser usado.
- R4: dado deve ser lido ou gravado.

DMA (Direct Memory Access)

- Escrever um bloco de 32 bytes do endereço 100 da MP para o terminal (dispositivo 4)
- inicialização: A CPU escreve os dados nos registradores:

R1←100

R2←32

R3←4

R4←WRITE

DMA (Direct Memory Access)

- Início) O controlador de DMA para ler do endereço R1
 como faria a CPU
- DMA pede ao dispositivo selecionado (dispositivo 4) para efetuar a operação (escrita).
- DMA incrementa R1 e decrementa R2.
- Se R2 >0 então volta para Início)
- Se R2=0: transferência finalizada e um sinal enviado para a linha de interrupção da CPU

DMA (Direct Memory Access)

CPU

- inicializa DMA
- detecta o sinal de interrupção.
- Atenção: mesmo usando DMA, a CPU pode ficar esperando, pela lógica do próprio programa sendo executado ou por ter como executar outros processos.

Prioridade de acesso ao barramento da MP

 a DMA tem maior prioridade de acesso aos barramentos de memória. Por que?

Controladores especiais

- CPU carrega para a MP um programa
- executa uma instrução de início que indica qual o canal e o dispositivo de E/S a ser acionado
- o canal acionado restaura o endereço do programa e começa a executá-lo
- exemplo de instruções executadas pelo canal: READ, WRITE, READ BACKWARD, CONTROL, SENSE, desvios condicionais e HALT

Interrupção

- Mecanismo pelo qual outros módulos interrompem processamento normal da UCP
 - Basicamente associado a E/S
- Tipos mais comuns de interrupção:
 - programa (e.g., \div 0) \rightarrow *traps*
 - temporização → escalonamento de processo
 - E/S (e.g., fim de escrita em disco)
 - falha de h/w (e.g., falta de energia)

Transferência de controle

Tratador de interrupção

- Programa que determina a natureza da interrupção e que realiza o tratamento adequado
- Controle é transferido para este programa após salvamento de algumas informações
- É parte do sistema operacional

Ciclo de interrupção

Tratamento da interrupção

Interrupções múltiplas (1)

- Desabilita outras interrupções: seqüencial
 - UCP ignora outras interrupções enquanto processa uma interrupção
 - interrupções pendentes só são verificadas ao fim do tratamento da interrupção corrente
 - interrupções tratadas na ordem sequencial de ocorrência
 - Quando terminar o tratamento, as interrupções são habilitadas.
- Vantagem: simplicidade
- Desvantagem: falta de critério

Tratamento sequencial

Interrupções múltiplas (2)

- Definição de prioridades
 - interrupções de menor prioridade podem ser interrompidas por interrupções de maior prioridade
 - quando há o término do tratamento da(s) de maior prioridade, UCP trata a(s) de menor prioridade

Tratamento com prioridades

Tratamento com prioridades

restaura o tratamento devido a impressora

.