

Building Information Model

Virtual buildingmodel, whereby data (information) is connected to objects

Objects are:

- Walls
- Windows
- Doors
- Floors
- Roof
- etc

Building information modelling; profits

• 3D design (the 'information' is only geometry)

Building information modelling; profits

- 3D design
- Advantage in engineering
- clashing

5

BILT Academy; Introduction BIM

Short explanation BIM

Building information modelling; profits

- 3D design
- Advantage in engineering
- Clashing
- Communication

6

Building information modelling; profits

- 3D design
- · Advantage in engineering
- Clashing
- Communication
- Re-use information

Less imperfections = less unnecessary costs

Better insight = higher quality

How will it be done

Design

Lines are changed in objects: modelling to place objects

Objects do have length, width, height: geometric information

More data can be added to objects: material, weight, color, etc.: Material information

8

Transferring data is the GOAL

Transfer = moment of checking

Both, sender and receiver, has to check!

Sender: is model and information correct?
Receiver: did I get where I asked for?

Checking means:

- · Check reliability;
- · Correct communication of imperfections.

Information transfer means:

- · Generating the desired data;
- Export to further on use.

Do not forget this step!

You can be supported by software

12

Basic Rules

BIMmodelling is making a **database**: so use the **rules** for making a database.

Put only into the database what you really need / is asked for.

Use standards.

Think about who puts the information into the database, when it have to be done en where you can find it → make appointments at the start of a project (for dutch people: BIM Uitvoeringsplan)

BIMmodelling is about managing data. So **Building Information Management** is a better name!

13

How does a building lose energy?

Energy loss by:

Transmission through boundaries

BILT Academy; introduction BIM

IDS Energietransition

How does a building lose energy?

Energy loss by:

- Transmission through boundaries
- Infiltration through seams and cracks

How does a building lose energy?

Energy loss by:

- Transmission through boundaries
- Infiltration through seams and cracks
- Ventilation

19

BILT Academy; introduction BIM

IDS Energietransition

How does a building lose energy?

Energy loss by:

- Transmission through boundaries
- Infiltration through seams and cracks
- Ventilation
- Efficiency of heating equipment

20

Subject

- Transmission through boundaries
- Infiltration through seams and cracks
- Ventilation
- Efficiency of heating equipment

Connection with the model

- → properties of materials
- → connection of objects
- → equipment & behaviour
- → property of this equipment

What is in the model?

- Building objects
- · Mechanical equipment
- And properties of the building itself

21

BILT Academy; introduction BIM

IDS Energietransition

In the models there is data about the whole building in accordance with the method of

22

Properties of materials:

- Thermal Conductivity (λ)
- Mass Density (d)
- Specific Heat Capacity (c)

An air space is not a material → it will not be modelled

But it does something with heat \rightarrow responsibility of the building physician

BILT Academy; introduction BIM

23

		eenheid	Propertieset	Parameter
Algemene informatie				
	Bouwjaar		Pset_BuildingCommon	YearOfConstruction
	Type gebouw		Pset_BuildingUse	MarketCategorie
	Soort bouw		Pset_BuildingCommon	ConstructionMethod
	Aantal bouwlagen		Pset_BuildingCommon	NumberOfStoreys
	Vertrekhoogte	m ¹	volgt uit geometrie	
	Binnenluchttemperatuur (winter)	°C	Pset_SpaceThermalRequirements	SpaceTemperatureMin
	Binnenluchttemperatuur (zomer)	°C	Pset_SpaceThermalRequirements	SpaceTemperatureMax
	Kruipruimteventilatie		Pset_SpaceThermalRequirements	NaturalVentilation
Gevel				
Algemene informatie	Oppervlakte (binnenzijde)	m ²	volgt uit geometrie	
	Oriëntatie	graden tov N	Pset_ElementShading	Azimuth
Gevel materiaal	materiaal van elke laag		n.v.t.	Material
	warmtegeleidingscoëfficiënt λ	W/(m.K)	Pset_MaterialThermal	ThermalConductivity
	soortelijk gewicht d	kg/m³	Pset_MaterialThermal	MassDensity
	soortelijke warmte c	J/(K·kg)	Pset_MaterialThermal	SpecificHeatCapacity
Transparante constructies	Afmeting	m ²	volgt uit geometrie	
	Oppervlakte transparantie constructie	%	Pset_WindowCommon	GlazingAreaFraction
	Oriëntatie	graden tov N	Pset_ElementShading	Azimuth
	zontoetredingsfactor g	fractie	Pset_ElementShading	AverageSolarTransmittance
	Warmtedoorgangscoëfficiënt Uw/Ud	W/(m ² .K)	Pset WindowCommon	ThermalTransmittance

25

