Nivelación en Redes TICS413 - Seguridad TI

Profesores del Curso

UAI

11 de agosto de 2025

Contenido de la Sesión

Fundamentos de Redes

- ¿Qué es una Red?
- Evolución de las Redes
- Conceptos Básicos de Paquetes
- Estructura de Paquetes IP
- Conmutación de Paquetes vs. Circuitos
- Segmentación de Redes

Arquitectura de Protocolos

- Pila TCP/IP
- Modelo OSI
- Encapsulación y Desencapsulación

Capas del Modelo OSI

- Capas 1-4: Física a Transporte
- Capas 5-7: Sesión a Aplicación
- Funcionamiento de las Capas

Conceptos Avanzados

- Servicios de Red (Puertos)
- Análisis de Paquetes

Conexión con la Seguridad

Estos conceptos son la base para entender la seguridad en redes. Cada capa del modelo OSI presenta vulnerabilidades específicas que los profesionales de seguridad deben conocer y proteger.

• Definición: Sistema que permite la comunicación entre dispositivos

- Definición: Sistema que permite la comunicación entre dispositivos
- Analogía: Como las calles que conectan casas en una ciudad

- Definición: Sistema que permite la comunicación entre dispositivos
- Analogía: Como las calles que conectan casas en una ciudad
- Objetivo: Compartir recursos e información de manera eficiente

- Definición: Sistema que permite la comunicación entre dispositivos
- Analogía: Como las calles que conectan casas en una ciudad
- Objetivo: Compartir recursos e información de manera eficiente

- Definición: Sistema que permite la comunicación entre dispositivos
- Analogía: Como las calles que conectan casas en una ciudad
- Objetivo: Compartir recursos e información de manera eficiente

- Definición: Sistema que permite la comunicación entre dispositivos
- Analogía: Como las calles que conectan casas en una ciudad
- Objetivo: Compartir recursos e información de manera eficiente

Concepto Clave

Una red no es solo cables y dispositivos, sino un sistema organizado donde cada elemento tiene una función específica en la comunicación de datos.

- Definición: Sistema que permite la comunicación entre dispositivos
- Analogía: Como las calles que conectan casas en una ciudad
- Objetivo: Compartir recursos e información de manera eficiente

Una red es como un sistema de carreteras para la información

Concepto básico de redes de comunicación

Tipos de Redes

- WAN (Wide Area Network): Más de 10 km Como las autopistas entre ciudades
- LAN (Local Area Network): Menos de 10 km Como las calles de un barrio
- PAN (Personal Area Network): 10-20 m Como la conexión Bluetooth de tu celular

Redes de Telégrafo (1800s)

• Código Morse: Secuencias de puntos y rayas

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

Redes Telefónicas (1900s)

Circuit Switching: Recursos dedicados por llamada

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)
- Connection-oriented: Configuración de sesión previa

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)
- Connection-oriented: Configuración de sesión previa
- Ruta fija: Mismo camino para todos los datos

Internet y Redes de Computadoras (1960s+)

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

• Packet Switching: Datos divididos en paquetes

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)
- Connection-oriented: Configuración de sesión previa
- Ruta fija: Mismo camino para todos los datos

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

Redes Telefónicas (1900s)

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)
- Connection-oriented: Configuración de sesión previa
- Ruta fija: Mismo camino para todos los datos

Internet y Redes de Computadoras (1960s+)

- Packet Switching: Datos divididos en paquetes
- Statistical Multiplexing: Recursos compartidos dinámicamente

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

Redes Telefónicas (1900s)

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)
- Connection-oriented: Configuración de sesión previa
- Ruta fija: Mismo camino para todos los datos

Internet y Redes de Computadoras (1960s+)

- Packet Switching: Datos divididos en paquetes
- Statistical Multiplexing: Recursos compartidos dinámicamente
- Store-and-forward: Cada router almacena y reenvía

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

Redes Telefónicas (1900s)

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)
- Connection-oriented: Configuración de sesión previa
- Ruta fija: Mismo camino para todos los datos

Internet y Redes de Computadoras (1960s+)

- Packet Switching: Datos divididos en paquetes
- Statistical Multiplexing: Recursos compartidos dinámicamente
- Store-and-forward: Cada router almacena y reenvía
- IP Protocol: Servicio de datagramas global

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

Redes Telefónicas (1900s)

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)
- Connection-oriented: Configuración de sesión previa
- Ruta fija: Mismo camino para todos los datos

Internet y Redes de Computadoras (1960s+)

- Packet Switching: Datos divididos en paquetes
- Statistical Multiplexing: Recursos compartidos dinámicamente
- Store-and-forward: Cada router almacena y reenvía
- IP Protocol: Servicio de datagramas global

Ventajas del Packet Switching

 Mejor para datos bursty: Uso eficiente de ancho de banda

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

Redes Telefónicas (1900s)

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)
- Connection-oriented: Configuración de sesión previa
- Ruta fija: Mismo camino para todos los datos

Internet y Redes de Computadoras (1960s+)

- Packet Switching: Datos divididos en paquetes
- Statistical Multiplexing: Recursos compartidos dinámicamente
- Store-and-forward: Cada router almacena y reenvía
- IP Protocol: Servicio de datagramas global

Ventajas del Packet Switching

- Mejor para datos bursty: Uso eficiente de ancho de banda
- Recursos compartidos: Más usuarios pueden usar la red

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

Redes Telefónicas (1900s)

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)
- Connection-oriented: Configuración de sesión previa
- Ruta fija: Mismo camino para todos los datos

Internet y Redes de Computadoras (1960s+)

- Packet Switching: Datos divididos en paquetes
- Statistical Multiplexing: Recursos compartidos dinámicamente
- Store-and-forward: Cada router almacena y reenvía
- IP Protocol: Servicio de datagramas global

Ventajas del Packet Switching

- Mejor para datos bursty: Uso eficiente de ancho de banda
- Recursos compartidos: Más usuarios pueden usar la red
- Sin configuración: No requiere setup de llamada

Redes de Telégrafo (1800s)

- Código Morse: Secuencias de puntos y rayas
- Store-and-forward: Almacenamiento y reenvío
- Message Switching: Mensajes completos se enrutan
- Sin circuito dedicado: Recursos compartidos

Redes Telefónicas (1900s)

- Circuit Switching: Recursos dedicados por llamada
- Multiplexing: T1 (24 señales de voz digitalizadas)
- Connection-oriented: Configuración de sesión previa
- Ruta fija: Mismo camino para todos los datos

Internet y Redes de Computadoras (1960s+)

- Packet Switching: Datos divididos en paquetes
- Statistical Multiplexing: Recursos compartidos dinámicamente
- Store-and-forward: Cada router almacena y reenvía
- IP Protocol: Servicio de datagramas global

Ventajas del Packet Switching

- Mejor para datos bursty: Uso eficiente de ancho de banda
- Recursos compartidos: Más usuarios pueden usar la red
- Sin configuración: No requiere setup de llamada
- Escalabilidad: Soporta más usuarios simultáneos

Componentes de una Red

• Internet: Red externa que conecta con el mundo

- Internet: Red externa que conecta con el mundo
- Router: Dispositivo que dirige el tráfico entre redes

- Internet: Red externa que conecta con el mundo
- Router: Dispositivo que dirige el tráfico entre redes
- Firewall: Barrera de seguridad que filtra el tráfico

- Internet: Red externa que conecta con el mundo
- Router: Dispositivo que dirige el tráfico entre redes
- Firewall: Barrera de seguridad que filtra el tráfico
- Switch: Conecta múltiples dispositivos en la misma red local

- Internet: Red externa que conecta con el mundo
- Router: Dispositivo que dirige el tráfico entre redes
- Firewall: Barrera de seguridad que filtra el tráfico
- Switch: Conecta múltiples dispositivos en la misma red local
- Dispositivos finales: Laptops, servidores, bases de datos

¿Por qué las redes punto a punto no escalan?

Problema de Escalabilidad

• Complejidad O(N2): El número de enlaces crece cuadráticamente

¿Por qué las redes punto a punto no escalan?

Problema de Escalabilidad

- Complejidad O(N²): El número de enlaces crece cuadráticamente
- Agregar un nodo: Requiere enlaces a todos los nodos existentes

¿Por qué las redes punto a punto no escalan?

Problema de Escalabilidad

- Complejidad O(N2): El número de enlaces crece cuadráticamente
- Agregar un nodo: Requiere enlaces a todos los nodos existentes
- Costo de mantenimiento: Cada enlace adicional aumenta la complejidad

Problema de Escalabilidad

- Complejidad O(N²): El número de enlaces crece cuadráticamente
- Agregar un nodo: Requiere enlaces a todos los nodos existentes
- Costo de mantenimiento: Cada enlace adicional aumenta la complejidad
- Administración: Difícil gestionar tantas conexiones

Problema de Escalabilidad

- Complejidad O(N²): El número de enlaces crece cuadráticamente
- Agregar un nodo: Requiere enlaces a todos los nodos existentes
- Costo de mantenimiento: Cada enlace adicional aumenta la complejidad
- Administración: Difícil gestionar tantas conexiones

Ejemplo Numérico

• 5 nodos: 10 enlaces

Problema de Escalabilidad

- Complejidad O(N²): El número de enlaces crece cuadráticamente
- Agregar un nodo: Requiere enlaces a todos los nodos existentes
- Costo de mantenimiento: Cada enlace adicional aumenta la complejidad
- Administración: Difícil gestionar tantas conexiones

Ejemplo Numérico

- 5 nodos: 10 enlaces
- 10 nodos: 45 enlaces

Problema de Escalabilidad

- Complejidad O(N²): El número de enlaces crece cuadráticamente
- Agregar un nodo: Requiere enlaces a todos los nodos existentes
- Costo de mantenimiento: Cada enlace adicional aumenta la complejidad
- Administración: Difícil gestionar tantas conexiones

Ejemplo Numérico

- 5 nodos: 10 enlaces
- 10 nodos: 45 enlaces
- 100 nodos: 4,950 enlaces

Problema de Escalabilidad

- Complejidad O(N²): El número de enlaces crece cuadráticamente
- Agregar un nodo: Requiere enlaces a todos los nodos existentes
- Costo de mantenimiento: Cada enlace adicional aumenta la complejidad
- Administración: Difícil gestionar tantas conexiones

Ejemplo Numérico

- 5 nodos: 10 enlaces
- 10 nodos: 45 enlaces
- 100 nodos: 4,950 enlaces
- 1000 nodos: 499,500 enlaces

Ventajas de la Estructura Jerárquica

• Compartir infraestructura: Múltiples redes usan los mismos routers

Ventajas de la Estructura Jerárquica

- Compartir infraestructura: Múltiples redes usan los mismos routers
- Routers y switches: Dispositivos especializados para cada función

Ventajas de la Estructura Jerárquica

- Compartir infraestructura: Múltiples redes usan los mismos routers
- Routers y switches: Dispositivos especializados para cada función
- Reducir costos: No duplicar equipos para cada red

Ventajas de la Estructura Jerárquica

- Compartir infraestructura: Múltiples redes usan los mismos routers
- Routers y switches: Dispositivos especializados para cada función
- Reducir costos: No duplicar equipos para cada red
- Meior escalabilidad: Agregar redes sin afectar las existentes

Ventajas de la Estructura Jerárquica

- Compartir infraestructura: Múltiples redes usan los mismos routers
- Routers y switches: Dispositivos especializados para cada función
- Reducir costos: No duplicar equipos para cada red
- Mejor escalabilidad: Agregar redes sin afectar las existentes

Componentes Clave

• Switches: Conectan dispositivos en la misma red local

Ventajas de la Estructura Jerárquica

- Compartir infraestructura: Múltiples redes usan los mismos routers
- Routers y switches: Dispositivos especializados para cada función
- Reducir costos: No duplicar equipos para cada red
- Mejor escalabilidad: Agregar redes sin afectar las existentes

Componentes Clave

- Switches: Conectan dispositivos en la misma red local
- Routers: Conectan diferentes redes y subredes

Ventajas de la Estructura Jerárquica

- Compartir infraestructura: Múltiples redes usan los mismos routers
- Routers y switches: Dispositivos especializados para cada función
- Reducir costos: No duplicar equipos para cada red
- Mejor escalabilidad: Agregar redes sin afectar las existentes

Componentes Clave

- Switches: Conectan dispositivos en la misma red local
- Routers: Conectan diferentes redes y subredes
- ISP Regional: Proporciona conectividad a múltiples clientes

Ventajas de la Estructura Jerárquica

- Compartir infraestructura: Múltiples redes usan los mismos routers
- Routers y switches: Dispositivos especializados para cada función
- Reducir costos: No duplicar equipos para cada red
- Mejor escalabilidad: Agregar redes sin afectar las existentes

Componentes Clave

- Switches: Conectan dispositivos en la misma red local
- Routers: Conectan diferentes redes y subredes
- ISP Regional: Proporciona conectividad a múltiples clientes
- ISP Global: Backbone de Internet

Cliente/Servidor vs Peer-to-Peer

Ventajas y Desventajas

- Estrella: Fácil mantenimiento, punto único de falla
- Anillo: Eficiente, pero si se rompe un enlace se pierde la red
- Malla: Muy confiable, pero costosa de implementar
- Árbol: Escalable, pero dependiente del nodo raíz

Proceso de Conmutación

• Multiplexación: Paquetes de múltiples entradas se combinan

Proceso de Conmutación

- Multiplexación: Paquetes de múltiples entradas se combinan
- Cola interna: Paquetes esperan en buffer FIFO

Proceso de Conmutación

- Multiplexación: Paquetes de múltiples entradas se combinan
- Cola interna: Paquetes esperan en buffer FIFO
- Demultiplexación: Basada en encabezados se envían a salidas

Proceso de Conmutación

- Multiplexación: Paquetes de múltiples entradas se combinan
- Cola interna: Paquetes esperan en buffer FIFO
- Demultiplexación: Basada en encabezados se envían a salidas
- Enrutamiento: Cada paquete toma su ruta específica

Problemas de Escala

• Complejidad O(N²): Las redes punto a punto no escalan

Problemas de Escala

- Complejidad O(N²): Las redes punto a punto no escalan
- Administración: Difícil gestionar muchas conexiones

Problemas de Escala

- Complejidad O(N²): Las redes punto a punto no escalan
- Administración: Difícil gestionar muchas conexiones
- Costos: Cada enlace adicional es costoso

Problemas de Escala

- Complejidad O(N²): Las redes punto a punto no escalan
- Administración: Difícil gestionar muchas conexiones
- Costos: Cada enlace adicional es costoso
- Mantenimiento: Fallas afectan toda la red

Problemas de Escala

- Complejidad O(N²): Las redes punto a punto no escalan
- Administración: Difícil gestionar muchas conexiones
- Costos: Cada enlace adicional es costoso
- Mantenimiento: Fallas afectan toda la red

Variedad Tecnológica

Medios físicos: Cable, fibra, Wi-Fi, móvil

Problemas de Escala

- Complejidad O(N²): Las redes punto a punto no escalan
- Administración: Difícil gestionar muchas conexiones
- Costos: Cada enlace adicional es costoso
- Mantenimiento: Fallas afectan toda la red

Variedad Tecnológica

- Medios físicos: Cable, fibra, Wi-Fi, móvil
- Protocolos: Diferentes estándares y versiones

Problemas de Escala

- Complejidad O(N²): Las redes punto a punto no escalan
- Administración: Difícil gestionar muchas conexiones
- Costos: Cada enlace adicional es costoso
- Mantenimiento: Fallas afectan toda la red

Variedad Tecnológica

- Medios físicos: Cable, fibra, Wi-Fi, móvil
- Protocolos: Diferentes estándares y versiones
- Dispositivos: Múltiples fabricantes y modelos

Problemas de Escala

- Complejidad O(N²): Las redes punto a punto no escalan
- Administración: Difícil gestionar muchas conexiones
- Costos: Cada enlace adicional es costoso
- Mantenimiento: Fallas afectan toda la red

Variedad Tecnológica

- Medios físicos: Cable, fibra, Wi-Fi, móvil
- Protocolos: Diferentes estándares y versiones
- Dispositivos: Múltiples fabricantes y modelos
- Requerimientos: Diferentes necesidades de calidad de servicio

Solución: Arquitectura en Capas

• Separación de responsabilidades: Cada capa tiene una función específica

Solución: Arquitectura en Capas

- Separación de responsabilidades: Cada capa tiene una función específica
- Independencia: Las capas pueden evolucionar por separado

Solución: Arquitectura en Capas

- Separación de responsabilidades: Cada capa tiene una función específica
- Independencia: Las capas pueden evolucionar por separado
- Interoperabilidad: Diferentes implementaciones pueden comunicarse

Solución: Arquitectura en Capas

- Separación de responsabilidades: Cada capa tiene una función específica
- Independencia: Las capas pueden evolucionar por separado
- Interoperabilidad: Diferentes implementaciones pueden comunicarse
- Modularidad: Fácil agregar o modificar funcionalidades

Application		
TCP	UDP	
IP		
Link Layer		

Principios de Diseño

• Separación de preocupaciones: Cada capa tiene responsabilidades únicas

Application		
TCP	UDP	
IP		
Link Layer		

Principios de Diseño

- Separación de preocupaciones: Cada capa tiene responsabilidades únicas
- Encapsulación: Cada capa agrega su encabezado específico

Principios de Diseño

- Separación de preocupaciones: Cada capa tiene responsabilidades únicas
- Encapsulación: Cada capa agrega su encabezado específico
- Independencia: Las capas superiores no dependen de las inferiores

Application		
TCP	UDP	
IP		
Link Layer		

Principios de Diseño

- Separación de preocupaciones: Cada capa tiene responsabilidades únicas
- Encapsulación: Cada capa agrega su encabezado específico
- Independencia: Las capas superiores no dependen de las inferiores
- Interfaz bien definida: Comunicación estándar entre capas

Application		
TCP	UDP	
IP		
Link Layer		

Beneficios del Modelo

• Modularidad: Fácil desarrollo y mantenimiento

Application		
TCP	UDP	
IP		
Link Layer		

Beneficios del Modelo

- Modularidad: Fácil desarrollo y mantenimiento
- Reutilización: Implementaciones pueden reutilizarse

Introducción al modelo de capas

Application		
TCP	UDP	
IP		
Link Layer		

Beneficios del Modelo

- Modularidad: Fácil desarrollo y mantenimiento
- Reutilización: Implementaciones pueden reutilizarse
- Estándares: Protocolos bien definidos por capa

Introducción al modelo de capas

Application		
TCP	UDP	
IP		
Link Layer		

Beneficios del Modelo

- Modularidad: Fácil desarrollo y mantenimiento
- Reutilización: Implementaciones pueden reutilizarse
- Estándares: Protocolos bien definidos por capa
- Educativo: Facilita la comprensión de redes

¿Por qué dos modelos de referencia?

Modelo OSI (7 Capas)

- Capa 7: Aplicación (HTTP, FTP, DNS)
- Capa 6: Presentación (SSL/TLS, JPEG)
- Capa 5: Sesión (RPC, NetBIOS)
- Capa 4: Transporte (TCP, UDP)
- Capa 3: Red (IP, ICMP)
- Capa 2: Enlace (Ethernet, ARP)
- Capa 1: Física (Cable, Wi-Fi)

Modelo TCP/IP (4 Capas)

- Aplicación: HTTP, FTP, DNS, SMTP
- Transporte: TCP, UDP
- Internet: IP, ICMP
- Acceso a Red: Ethernet, Wi-Fi

¿Por qué dos modelos de referencia?

OSI (7 capas)	TCP/IP (4 capas)	Protocolo
Aplicación (7)		HTTP, FTP, DNS
Presentación (6)		SSL/TLS
Sesión (5)		RPC
Transporte (4)	Transporte	TCP, UDP
Red (3)	Internet	IP, ICMP
Enlace (2)	Acceso a red	Ethernet, ARP
Física (1)	arraen 1 Pan	Wi-Fi, cable

¿Por qué TCP/IP es más usado?

TCP/IP es el estándar de facto en Internet porque es más simple, práctico y fue desarrollado específicamente para resolver problemas reales de comunicación. El modelo OSI, aunque más completo teóricamente, es demasiado complejo para implementaciones prácticas.

¿Qué es el Subnetting?

• División lógica de una red IP en subredes más pequeñas Profesores del Curso (UAI)

¿Qué es el Subnetting?

• División lógica de una red IP en subredes más pequeñas Profesores del Curso (UAI)

¿Qué es el Subnetting?

• División lógica de una red IP en subredes más pequeñas Profesores del Curso (UAI)

Segmentación de Redes

División de redes en subredes más pequeñas

Ejemplo de la Imagen

Segmentación de Redes

División de redes en subredes más pequeñas

Ejemplo de la Imagen

• Subred Superior: 128.96.34.0/25 (máscara 255.255.255.128)

Segmentación de Redes

División de redes en subredes más pequeñas

Ejemplo de la Imagen

- Subred Superior: 128.96.34.0/25 (máscara 255.255.255.128)
- Subred Central: 128.96.34.128/25 (máscara 255.255.255.128)

Ejemplo de la Imagen

• Subred Superior: 128.96.34.0/25 (máscara 255.255.255.128)

• Subred Central: 128.96.34.128/25 (máscara 255.255.255.128)

• Subred Inferior: 128.96.33.0/24 (máscara 255.255.255.0)

Paquete

¿Qué es un Paquete?

• Unidad básica de datos que se transmite a través de una red

Paquete

¿Qué es un Paquete?

- Unidad básica de datos que se transmite a través de una red
- Como un sobre de correo: tiene dirección de origen, destino y datos

Paquete

¿Qué es un Paquete?

- Unidad básica de datos que se transmite a través de una red
- Ocomo un sobre de correo: tiene dirección de origen, destino y datos
- Se divide en encabezado (control) y cuerpo (datos)

Paquete

¿Qué es un Paquete?

- Unidad básica de datos que se transmite a través de una red
- Ocomo un sobre de correo: tiene dirección de origen, destino y datos
- Se divide en encabezado (control) y cuerpo (datos)

Direccionamiento Fundamental

• Dirección IP: Identificador lógico de red (32 bits en IPv4)

Paquete

¿Qué es un Paquete?

- Unidad básica de datos que se transmite a través de una red
- Ocomo un sobre de correo: tiene dirección de origen, destino y datos
- Se divide en encabezado (control) y cuerpo (datos)

Direccionamiento Fundamental

- Dirección IP: Identificador lógico de red (32 bits en IPv4)
- Dirección MAC: Identificador físico único del dispositivo

Paquete

¿Qué es un Paquete?

- Unidad básica de datos que se transmite a través de una red
- Como un sobre de correo: tiene dirección de origen, destino y datos
- Se divide en **encabezado** (control) y **cuerpo** (datos)

Direccionamiento Fundamental

- Dirección IP: Identificador lógico de red (32 bits en IPv4)
- Dirección MAC: Identificador físico único del dispositivo
- Conversiones: Decimal, binario y hexadecimal para IPs

Campos del Encabezado IPv4

• Version (4 bits): Versión del protocolo IP (IPv4 = 4)

Campos del Encabezado IPv4

- Version (4 bits): Versión del protocolo IP (IPv4 = 4)
- HLen (4 bits): Longitud del encabezado en palabras de 32 bits

Campos del Encabezado IPv4

- Version (4 bits): Versión del protocolo IP (IPv4 = 4)
- HLen (4 bits): Longitud del encabezado en palabras de 32 bits
- TOS (8 bits): Tipo de servicio para calidad de servicio

Campos del Encabezado IPv4

- Version (4 bits): Version del protocolo IP (IPv4 = 4)
- HLen (4 bits): Longitud del encabezado en palabras de 32 bits
- TOS (8 bits): Tipo de servicio para calidad de servicio
- Total Length (16 bits): Longitud total del paquete

Campos del Encabezado IPv4

- Version (4 bits): Versión del protocolo IP (IPv4 = 4)
- HLen (4 bits): Longitud del encabezado en palabras de 32 bits
- TOS (8 bits): Tipo de servicio para calidad de servicio
- Total Length (16 bits): Longitud total del paquete

Información de Control

• TTL (8 bits): Tiempo de vida del paquete

Campos del Encabezado IPv4

- Version (4 bits): Versión del protocolo IP (IPv4 = 4)
- HLen (4 bits): Longitud del encabezado en palabras de 32 bits
- TOS (8 bits): Tipo de servicio para calidad de servicio
- Total Length (16 bits): Longitud total del paquete

Información de Control

- TTL (8 bits): Tiempo de vida del paquete
- Protocol (8 bits): Protocolo de la capa superior (TCP/UDP)

Campos del Encabezado IPv4

- Version (4 bits): Versión del protocolo IP (IPv4 = 4)
- HLen (4 bits): Longitud del encabezado en palabras de 32 bits
- TOS (8 bits): Tipo de servicio para calidad de servicio
- Total Length (16 bits): Longitud total del paquete

Información de Control

- TTL (8 bits): Tiempo de vida del paquete
- Protocol (8 bits): Protocolo de la capa superior (TCP/UDP)
- Checksum (16 bits): Verificación de integridad del encabezado

Circuit Switching (Redes Telefónicas)

Recursos dedicados: Ancho de banda reservado por llamada

- Recursos dedicados: Ancho de banda reservado por llamada
- Setup requerido: Configuración de circuito antes de transmitir

- Recursos dedicados: Ancho de banda reservado por llamada
- Setup requerido: Configuración de circuito antes de transmitir
- Ruta fija: Mismo camino para todos los datos

- Recursos dedicados: Ancho de banda reservado por llamada
- Setup requerido: Configuración de circuito antes de transmitir
- Ruta fija: Mismo camino para todos los datos
- Rendimiento garantizado: Sin retrasos de cola

- Recursos dedicados: Ancho de banda reservado por llamada
- Setup requerido: Configuración de circuito antes de transmitir
- Ruta fija: Mismo camino para todos los datos
- Rendimiento garantizado: Sin retrasos de cola
- Ineficiencia: Recursos ociosos si no se usan

Circuit Switching (Redes Telefónicas)

- Recursos dedicados: Ancho de banda reservado por llamada
- Setup requerido: Configuración de circuito antes de transmitir
- Ruta fija: Mismo camino para todos los datos
- Rendimiento garantizado: Sin retrasos de cola
- Ineficiencia: Recursos ociosos si no se usan

Packet Switching (Internet)

 Recursos compartidos: Ancho de banda usado según necesidad

Circuit Switching (Redes Telefónicas)

- Recursos dedicados: Ancho de banda reservado por llamada
- Setup requerido: Configuración de circuito antes de transmitir
- Ruta fija: Mismo camino para todos los datos
- Rendimiento garantizado: Sin retrasos de cola
- Ineficiencia: Recursos ociosos si no se usan

- Recursos compartidos: Ancho de banda usado según necesidad
- Sin setup: Los paquetes se envían inmediatamente

Circuit Switching (Redes Telefónicas)

- Recursos dedicados: Ancho de banda reservado por llamada
- Setup requerido: Configuración de circuito antes de transmitir
- Ruta fija: Mismo camino para todos los datos
- Rendimiento garantizado: Sin retrasos de cola
- Ineficiencia: Recursos ociosos si no se usan

- Recursos compartidos: Ancho de banda usado según necesidad
- Sin setup: Los paquetes se envían inmediatamente
- Rutas dinámicas: Cada paquete puede tomar camino diferente

Circuit Switching (Redes Telefónicas)

- Recursos dedicados: Ancho de banda reservado por llamada
- Setup requerido: Configuración de circuito antes de transmitir
- Ruta fija: Mismo camino para todos los datos
- Rendimiento garantizado: Sin retrasos de cola
- Ineficiencia: Recursos ociosos si no se usan

- Recursos compartidos: Ancho de banda usado según necesidad
- Sin setup: Los paquetes se envían inmediatamente
- Rutas dinámicas: Cada paquete puede tomar camino diferente
- Retrasos variables: Dependiendo de la congestión

Circuit Switching (Redes Telefónicas)

- Recursos dedicados: Ancho de banda reservado por llamada
- Setup requerido: Configuración de circuito antes de transmitir
- Ruta fija: Mismo camino para todos los datos
- Rendimiento garantizado: Sin retrasos de cola
- Ineficiencia: Recursos ociosos si no se usan

- Recursos compartidos: Ancho de banda usado según necesidad
- Sin setup: Los paquetes se envían inmediatamente
- Rutas dinámicas: Cada paquete puede tomar camino diferente
- Retrasos variables: Dependiendo de la congestión
- Eficiencia: Mejor uso del ancho de banda

Arquitectura de capas del conjunto de protocolos

Pila de Protocolos TCP/IP

Capas del Modelo TCP/IP

• Capa de Aplicación: FTP, HTTP, DNS, TFTP

Capas del Modelo TCP/IP

- Capa de Aplicación: FTP, HTTP, DNS, TFTP
- Capa de Transporte: TCP (confiable) y UDP (rápido)

Capas del Modelo TCP/IP

- Capa de Aplicación: FTP, HTTP, DNS, TFTP
- Capa de Transporte: TCP (confiable) y UDP (rápido)
- Capa de Internet: IP para enrutamiento

Capas del Modelo TCP/IP

- Capa de Aplicación: FTP, HTTP, DNS, TFTP
- Capa de Transporte: TCP (confiable) y UDP (rápido)
- Capa de Internet: IP para enrutamiento
- Capa de Acceso a Red: Múltiples tecnologías de red

Capas del Modelo TCP/IP

- Capa de Aplicación: FTP, HTTP, DNS, TFTP
- Capa de Transporte: TCP (confiable) y UDP (rápido)
- Capa de Internet: IP para enrutamiento
- O Capa de Acceso a Red: Múltiples tecnologías de red

Comunicación entre Capas

• Encapsulación: Cada capa agrega su encabezado

Capas del Modelo TCP/IP

- Capa de Aplicación: FTP, HTTP, DNS, TFTP
- Capa de Transporte: TCP (confiable) y UDP (rápido)
- Capa de Internet: IP para enrutamiento
- O Capa de Acceso a Red: Múltiples tecnologías de red

Comunicación entre Capas

- Encapsulación: Cada capa agrega su encabezado
- Desencapsulación: Cada capa remueve su encabezado

Capas del Modelo TCP/IP

- Capa de Aplicación: FTP, HTTP, DNS, TFTP
- Capa de Transporte: TCP (confiable) y UDP (rápido)
- Capa de Internet: IP para enrutamiento
- Capa de Acceso a Red: Múltiples tecnologías de red

Comunicación entre Capas

- Encapsulación: Cada capa agrega su encabezado
- Desencapsulación: Cada capa remueve su encabezado
- Independencia: Las capas superiores no dependen de las inferiores

Fundamentos de las capas más bajas

Capa 1: Física

- Medios de transmisión:
 - Cable de cobre (UTP, coaxial)
 - Fibra óptica (monomodo, multimodo)
 - Ondas electromagnéticas (Wi-Fi, Bluetooth)
- Codificación de bits:
 - Manchester, NRZ, 4B/5B
 - Sincronización de reloj
 - Detección de errores básica

Capa 2: Enlace

- Framing: Delimitación de frames
- Direccionamiento MAC: Identificación única de dispositivos
- Control de acceso: CSMA/CD, CSMA/CA
- Detección de errores: CRC, checksums
- Broadcast: Envío a todos los dispositivos

Fundamentos de las capas más bajas

Ejemplos de Tecnologías

• Ethernet: 10/100/1000 Mbps, 10 Gbps

• Wi-Fi: 802.11a/b/g/n/ac/ax (Wi-Fi 6)

• Bluetooth: PAN de corto alcance

• Fibra: 1/10/40/100 Gbps

¿Cómo se identifican los dispositivos en la red local?

Dirección MAC

- Formato: 48 bits (6 bytes)
- Notación: XX:XX:XX:XX:XX:XX
- OUI: Primeros 3 bytes identifican fabricante
- Única: Cada dispositivo tiene una MAC única
- Local: Solo válida en la red local

Ejemplos de Comandos

- Windows: ipconfig /all
- Linux/Mac: ifconfig o ip addr
- ARP: arp -a
- Manufacturer: Buscar OUI en bases de datos

¿Cómo se identifican los dispositivos en la red local?

Ejemplos de Comandos

```
Windows: ipconfig /all
```

- Dirección física : 00-1B-44-11-3A-B7
- Linux: ifconfig eth0
- ether 00:1b:44:11:3a:b7 txqueuelen 1000

Características Importantes

- No enrutable: Las MAC no cruzan routers
- Hardware: Quemada en la tarjeta de red
- Cambiable: Se puede spoofear (para pruebas)
- Privacidad: Wi-Fi 6 permite MAC aleatorias

Protocolo de Resolución de Direcciones

¿Qué es ARP?

- ARP = Address Resolution Protocol
- Propósito: Mapear direcciones IP a direcciones MAC
- Alcance: Solo funciona en la red local
- Cache: Tabla ARP para evitar consultas repetidas

¿Cómo se enrutan los paquetes entre redes?

Características de IP

- No orientado a conexión: Cada paquete se enruta independientemente
- No confiable: No garantiza entrega ni orden
- Globalmente enrutable: Puede cruzar múltiples redes
- Versionado: IPv4 (32 bits) e IPv6 (128 bits)

Enrutamiento

- Tabla de rutas: Define hacia dónde enviar cada paquete
- Gateway por defecto: Ruta para destinos desconocidos
- Protocolos: RIP, OSPF, BGP para rutas dinámicas
- Longest prefix match: Se elige la ruta más específica

Ejemplos prácticos de configuración de red

ipconfig/ifconfig

- O Dirección IP: Identifica al dispositivo en la red
- Máscara de subred: Define el rango de la red local
- Gateway: Router que conecta con otras redes
- DNS: Servidores que resuelven nombres a IPs
- DHCP: Asignación automática de configuración

Comandos de Diagnóstico

- ping: Verificar conectividad básica
- tracert/traceroute: Ver ruta de paquetes
- nslookup/dig: Consultar DNS
- netstat: Ver conexiones activas

¿Cuándo usar cada protocolo de transporte?

TCP (Transmission Control Protocol)

- Orientado a conexión: Handshake de 3 vías
- Confiable: Garantiza entrega y orden
- Control de flujo: Evita saturar al receptor
- Control de congestión: Adapta velocidad a la red
- Retransmisión: Reenvía paquetes perdidos

UDP (User Datagram Protocol)

- No orientado a conexión: Sin handshake
- No confiable: No garantiza entrega ni orden
- Sin control de flujo: Envía a máxima velocidad
- Sin control de congestión: Puede saturar la red
- Sin retransmisión: Paquetes perdidos se pierden

Protocolos de aplicación y ejemplos prácticos

Protocolos Comunes

- HTTP/HTTPS: Navegación web, APIs REST
- SMTP/IMAP/POP3: Correo electrónico
- FTP/SFTP: Transferencia de archivos
- SSH: Acceso remoto seguro
- DNS: Resolución de nombres
- DHCP: Configuración automática de red

VLANs: Redes Virtuales

Separación lógica de dominios de broadcast

¿Qué son las VLANs?

- VLAN = Virtual Local Area Network
- Propósito: Crear redes lógicas separadas en switches físicos
- Broadcast domains: Cada VLAN es un dominio independiente
- Seguridad: Aislamiento entre diferentes grupos de usuarios

Separación lógica de dominios de broadcast

Tipos de Puertos

- Access ports: Conectan dispositivos finales
 - Solo pueden pertenecer a una VLAN
 - Frames sin etiqueta VLAN
 - Configuración: switchport mode access
- Trunk ports: Conectan switches
 - Pueden transportar múltiples VLANs
 - Frames con etiqueta VLAN (802.1Q)
 - Configuración: switchport mode trunk

VLANs: Redes Virtuales

Separación lógica de dominios de broadcast

Ventajas de las VLANs

- Seguridad: Aislamiento entre grupos
- Flexibilidad: Reorganización sin cambios físicos
- Escalabilidad: Más VLANs en menos switches
- Administración: Gestión centralizada de políticas

¿Cómo se asignan las direcciones IP automáticamente?

Proceso DHCP (4-way handshake)

- **1** DISCOVER: Cliente busca servidor DHCP
- OFFER: Servidor ofrece configuración
- REQUEST: Cliente solicita la configuración
- ACK: Servidor confirma la asignación

Información Asignada

- O Dirección IP: Única en la red
- Máscara de subred: Define el rango de red
- Gateway: Router por defecto
- Servidores DNS: Para resolución de nombres
- Lease time: Tiempo de validez de la IP

¿Cómo se asignan las direcciones IP automáticamente?

Ventajas del DHCP

- Automatización: Sin configuración manual
- O Centralización: Gestión desde un punto
- Flexibilidad: Cambios automáticos de configuración
- Reducción de errores: Menos errores de configuración manual

Conceptos Clave

• Modelo OSI: Estándar internacional para comunicación

- Modelo OSI: Estándar internacional para comunicación
- 7 Capas: Cada una con funciones específicas

- Modelo OSI: Estándar internacional para comunicación
- 7 Capas: Cada una con funciones específicas
- Encapsulación: Proceso de agregar encabezados

- Modelo OSI: Estándar internacional para comunicación
- 7 Capas: Cada una con funciones específicas
- Encapsulación: Proceso de agregar encabezados
- Interoperabilidad: Permite comunicación entre sistemas

- Modelo OSI: Estándar internacional para comunicación
- 7 Capas: Cada una con funciones específicas
- Encapsulación: Proceso de agregar encabezados
- Interoperabilidad: Permite comunicación entre sistemas
- Protocolos: Se implementan en capas específicas

Conceptos Clave

- Modelo OSI: Estándar internacional para comunicación
- 7 Capas: Cada una con funciones específicas
- Encapsulación: Proceso de agregar encabezados
- Interoperabilidad: Permite comunicación entre sistemas
- Protocolos: Se implementan en capas específicas

¿Por qué es importante?

• Estándar: Permite que diferentes fabricantes se comuniquen

Conceptos Clave

- Modelo OSI: Estándar internacional para comunicación
- 7 Capas: Cada una con funciones específicas
- Encapsulación: Proceso de agregar encabezados
- Interoperabilidad: Permite comunicación entre sistemas
- Protocolos: Se implementan en capas específicas

¿Por qué es importante?

- Estándar: Permite que diferentes fabricantes se comuniquen
- Modularidad: Cada capa tiene responsabilidades específicas

Conceptos Clave

- Modelo OSI: Estándar internacional para comunicación
- 7 Capas: Cada una con funciones específicas
- Encapsulación: Proceso de agregar encabezados
- Interoperabilidad: Permite comunicación entre sistemas
- Protocolos: Se implementan en capas específicas

¿Por qué es importante?

- Estándar: Permite que diferentes fabricantes se comuniquen
- Modularidad: Cada capa tiene responsabilidades específicas
- Educativo: Facilita la comprensión de redes

Conceptos Clave

- Modelo OSI: Estándar internacional para comunicación
- 7 Capas: Cada una con funciones específicas
- Encapsulación: Proceso de agregar encabezados
- Interoperabilidad: Permite comunicación entre sistemas
- Protocolos: Se implementan en capas específicas

¿Por qué es importante?

- Estándar: Permite que diferentes fabricantes se comuniquen
- Modularidad: Cada capa tiene responsabilidades específicas
- Educativo: Facilita la comprensión de redes
- Seguridad: Cada capa presenta vulnerabilidades específicas

El modelo OSI es como un edificio de 7 pisos

Analogía del Edificio

Cada piso tiene una función específica

Piso	Nombre	Función	Protocolo
7	Aplicación	Interacción con usuario	HTTP, FTP, DNS
6	Presentación	Codificación, cifrado y compresión	SSL/TLS, JPEG
5	Sesión	Gestión de sesiones	RPC, NetBIOS
4	Transporte	Entrega confiable	TCP, UDP
3	Red	Enrutamiento	IP, ICMP
2	Enlace	Comunicación local	Ethernet, ARP
1	Física	Transmisión de bits	Wi-Fi, cable

El modelo OSI es como un edificio de 7 pisos

Analogía del Edificio

- Cada piso tiene una función específica
- La información sube y baja por el edificio

Piso	Nombre	Función	Protocolo
7	Aplicación	Interacción con usuario	HTTP, FTP, DNS
6	Presentación	Codificación, cifrado y compresión	SSL/TLS, JPEG
5	Sesión	Gestión de sesiones	RPC, NetBIOS
4	Transporte	Entrega confiable	TCP, UDP
3	Red	Enrutamiento	IP, ICMP
2	Enlace	Comunicación local	Ethernet, ARP
1	Física	Transmisión de bits	Wi-Fi, cable

El modelo OSI es como un edificio de 7 pisos

Analogía del Edificio

- Cada piso tiene una función específica
- La información sube y baja por el edificio
- Cada piso agrega o quita información según sea necesario

Piso	Nombre	Función	Protocolo
7	Aplicación	Interacción con usuario	HTTP, FTP, DNS
6	Presentación	Codificación, cifrado y compresión	SSL/TLS, JPEG
5	Sesión	Gestión de sesiones	RPC, NetBIOS
4	Transporte	Entrega confiable	TCP, UDP
3	Red	Enrutamiento	IP, ICMP
2	Enlace	Comunicación local	Ethernet, ARP
1	Física	Transmisión de bits	Wi-Fi, cable

Modelo de 7 capas para comunicación en redes

Características del Modelo

- Arquitectura: Diseño modular y escalable
- Estándares: Protocolos bien definidos por capa
- Implementación: Cada fabricante puede implementar libremente
- Educativo: Facilita la comprensión de redes

¿Por qué dos modelos?

Modelo OSI	Modelo TCP/IP	
 Teórico: Define cómo debería ser 	Práctico: Lo que realmente se usa	
• 7 capas: Muy detallado	• 4 capas: Más simple	
• Estándar: ISO/IEC 7498-1	Internet: Basado en la realidad	

¿Por qué TCP/IP es más usado?

TCP/IP es el estándar de facto en Internet porque es más simple, práctico y fue desarrollado específicamente para resolver problemas reales de comunicación. El modelo OSI, aunque más completo teóricamente, es demasiado complejo para implementaciones prácticas.

¿Por qué dos modelos?

OSI (7 capas)	TCP/IP (4 capas)	Protocolo
Aplicación (7)		HTTP, FTP, DNS
Presentación (6)		SSL/TLS
Sesión (5)		RPC
Transporte (4)	Transporte	TCP, UDP
Red (3)	Internet	IP, ICMP
Enlace (2)	Accoso a rod	Ethernet, ARP
Física (1)		Wi-Fi, cable

Como enviar un paquete por correo

Encapsulación (Envío) Capa 7: Escribir la carta Desencapsulación (Recepción) Capa 1: Recibir el paquete

Encapsulación (Envío) Capa 7: Escribir la carta Capa 6: Traducir al idioma correcto Desencapsulación (Recepción) Capa 1: Recibir el paquete Capa 2: Leer código de barra

Encapsulación (Envío)

- Capa 7: Escribir la carta
- Capa 6: Traducir al idioma correcto
- Capa 5: Establecer sesión de correo

- Capa 1: Recibir el paquete
- Capa 2: Leer código de barra
- Capa 3: Leer dirección postal

Encapsulación (Envío)

- O Capa 7: Escribir la carta
- Capa 6: Traducir al idioma correcto
- Capa 5: Establecer sesión de correo
- Capa 4: Agregar número de seguimiento

- Capa 1: Recibir el paquete
- Capa 2: Leer código de barra
- Capa 3: Leer dirección postal
- Capa 4: Verificar número de seguimiento

Encapsulación (Envío)

- Capa 7: Escribir la carta
- Capa 6: Traducir al idioma correcto
- Capa 5: Establecer sesión de correo
- Capa 4: Agregar número de seguimiento
- Capa 3: Agregar dirección postal

- Capa 1: Recibir el paquete
- Capa 2: Leer código de barra
- Capa 3: Leer dirección postal
- Capa 4: Verificar número de seguimiento
- Capa 5: Confirmar sesión

Encapsulación (Envío)

- O Capa 7: Escribir la carta
- Capa 6: Traducir al idioma correcto
- Capa 5: Establecer sesión de correo
- Capa 4: Agregar número de seguimiento
- Capa 3: Agregar dirección postal
- Capa 2: Agregar código de barra

- Capa 1: Recibir el paquete
- Capa 2: Leer código de barra
- Capa 3: Leer dirección postal
- Capa 4: Verificar número de seguimiento
- Capa 5: Confirmar sesión
- Capa 6: Traducir al idioma local

Encapsulación (Envío) Desencapsulación (Recepción) • Capa 7: Escribir la carta • Capa 1: Recibir el paquete • Capa 6: Traducir al idioma correcto Capa 2: Leer código de barra • Capa 5: Establecer sesión de correo Capa 3: Leer dirección postal • Capa 4: Agregar número de seguimiento • Capa 4: Verificar número de seguimiento • Capa 3: Agregar dirección postal Capa 5: Confirmar sesión • Capa 6: Traducir al idioma local • Capa 2: Agregar código de barra • Capa 1: Enviar por el medio físico • Capa 7: Leer la carta

Representación visual del flujo de datos

Flujo de Información

- Origen: Los datos parten de la aplicación
- Procesamiento: Cada capa agrega información de control
- Transmisión: Los datos viajan por el medio físico
- Destino: Los datos llegan a la aplicación destino

La capa física es como las carreteras y puentes

¿Qué hace?

- Función: Transmite bits por medios físicos
- Responsabilidad: Convertir datos digitales en señales
- Analogía: Como las calles por donde circulan los autos

Medios de Transmisión

- Cable Ethernet: Como una calle asfaltada
- Fibra óptica: Como una autopista de alta velocidad
- Wi-Fi: Como el aire que respiramos (invisible)

Velocidades de Transmisión

- Ethernet: 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps
- Fibra óptica: 1 Gbps, 10 Gbps, 100 Gbps, 1 Tbps
- Wi-Fi 6: Hasta 9.6 Gbps
- 5G móvil: Hasta 10 Gbps Profesores del Curso (UAI)

Componentes y medios de transmisión

Componentes Físicos

- Medios de transmisión: Cable, fibra óptica, aire
- Conectores: RJ45, SC, antenas, etc.
- Dispositivos: Hubs, repetidores, transceptores
- Estándares: IEEE 802.3, 802.11, ITU-T

La capa de enlace es como el sistema de direcciones de una ciudad

¿Qué hace?

- Función: Comunicación entre dispositivos en la misma red local
- Responsabilidad: Detectar y corregir errores de transmisión
- Analogía: Como el sistema de direcciones y códigos postales

Conceptos Clave

- MAC Address: Como el número de casa único
- Switches: Como los semáforos que dirigen el tráfico
- Tramas: Como los autos que transportan la información

Protocolos

Ethernet, ARP, PPP - Como las reglas de tránsito locales

Comunicación entre dispositivos locales

Responsabilidades de la Capa 2

- Direccionamiento MAC: Identificación única de dispositivos
- Control de acceso al medio: Evitar colisiones
- Detección y corrección de errores: Verificar integridad
- Control de flujo: Regular velocidad de transmisión

Ejemplo de Colisión y Prevención

- Colisión: Cuando dos dispositivos transmiten al mismo tiempo
- CSMA/CD: Protocolo que detecta colisiones y espera
- Switches modernos: Evitan colisiones usando buffers
- Analogía: Como evitar que dos autos entren al mismo tiempo en una intersección

La capa de red es como el sistema de GPS y mapas

¿Qué hace?

- Función: Enrutamiento entre redes diferentes
- Responsabilidad: Encontrar la mejor ruta para los datos
- Analogía: Como un GPS que te dice cómo llegar a otro barrio

Conceptos Clave

- Direcciones IP: Como las direcciones de calles y números
- Subredes: Como los barrios de una ciudad
- Gateways: Como las entradas principales a cada barrio
- Routers: Como los guardias de tráfico que dirigen

Protocolos

IP (v4/v6), ICMP - Como las señales de tránsito y mapas

Enrutamiento y comunicación entre redes

Responsabilidades de la Capa 3

- Enrutamiento: Determinar la mejor ruta para los paquetes
- Direccionamiento IP: Identificación lógica de dispositivos
- Fragmentación: Dividir paquetes grandes si es necesario
- Control de congestión: Evitar sobrecarga en la red

Ejemplo de Subred y Máscara

- IP: 192.168.1.100
- Máscara: 255.255.255.0 (o /24)
- **Subred**: 192.168.1.0/24
- Dispositivos: 192.168.1.1 a 192.168.1.254
- Analogía: Como dividir una ciudad en barrios con códigos postales específicos

La capa de transporte es como el servicio de mensajería

¿ Qué hace?

- Función: Entrega confiable o rápida de datos
- Responsabilidad: Control de flujo y detección de errores
- Analogía: Como elegir entre envío express o certificado

Dos Opciones de Servicio

- TCP (confiable): Como envío certificado con confirmación
- UDP (rápido): Como envío express sin confirmación

Conceptos Clave

- Puertos: Como los buzones específicos de cada departamento
- Control de flujo: Como regular el tráfico en hora punta
- Multiplexación: Como un camión que lleva varios paquetes

Entrega confiable y control de flujo

Responsabilidades de la Capa 4

- TCP: Conexión orientada, confiable, ordenado
- UDP: Sin conexión, rápido, no garantiza entrega
- Puertos: Identifican servicios específicos
- Ontrol de flujo: Regula velocidad de transmisión

Analogía del "Paquete con Seguro" para TCP

- Onfirmación: Como recibir un acuse de recibo
- Reenvío: Si se pierde, se envía de nuevo
- Orden: Los paquetes llegan en secuencia correcta
- Integridad: Verificación de que no se corrompió
- Analogía: Como enviar un paquete valioso con seguro y seguimiento

La capa de sesión es como organizar una reunión

¿Qué hace?

- Función: Establece, mantiene y finaliza sesiones
- Responsabilidad: Sincronización y recuperación de datos
- Analogía: Como coordinar una videollamada entre dos personas

Proceso de Sesión

- Establecer: "¿Puedes hablar ahora?"
- 2 Mantener: "¿Me escuchas bien?"
- 3 Finalizar: "Hasta luego, fue un gusto"

La capa de sesión es como organizar una reunión

Protocolos

- RPC: Como hacer una llamada a distancia
- NetBIOS: Como el sistema de nombres de Windows
- SSH: Conexiones seguras remotas
- Telnet: Conexiones remotas (no seguras)

Ejemplo Cotidiano

Videollamada entre dos usuarios - Coordinar cuándo hablar, mantener la conexión y terminar la llamada

La capa de presentación es como el traductor e intérprete

¿Qué hace?

- Función: Traduce, cifra y comprime datos
- Responsabilidad: Asegurar que los datos sean comprensibles
- Analogía: Como un intérprete en una reunión internacional

Tareas Principales

- Codificación: ASCII, UTF-8 (como traducir idiomas)
- Cifrado: SSL/TLS (como poner un candado en la información)
- Compresión: JPEG, MPEG (como empaquetar ropa en una maleta)

La capa de presentación es como el traductor e intérprete

Protocolos

- SSL/TLS: Seguridad en la comunicación
- JPEG/MPEG: Formatos de imagen y video
- ASCII/UTF-8: Codificación de caracteres
- GZIP: Compresión de archivos
- Base64: Codificación de datos binarios

La capa de aplicación es como las tiendas y servicios de la ciudad

¿Qué hace?

- Función: Interacción directa con el usuario o software
- Responsabilidad: Proporcionar servicios específicos
- Analogía: Como ir a diferentes tiendas según lo que necesites

Servicios Principales

- HTTP: Como ir a una librería a buscar información
- FTP: Como ir a una bodega a transferir archivos grandes
- DNS: Como usar la guía telefónica para encontrar direcciones
- SMTP: Como ir a la oficina de correos para enviar cartas

La capa de aplicación es como las tiendas y servicios de la ciudad

Protocolos

- HTTP/HTTPS: Navegación web segura
- FTP/SFTP: Transferencia de archivos
- DNS: Resolución de nombres
- SMTP/POP3/IMAP: Correo electrónico
- SSH: Conexiones remotas seguras
- Telnet: Conexiones remotas (legacy)
- DHCP: Asignación automática de IPs
- SNMP: Monitoreo de red

Ejemplo Cotidiano

Escribir una URL en el navegador - Es como ir a una dirección específica en la ciudad

Servicios y protocolos de usuario

Responsabilidades de la Capa 7

- HTTP/HTTPS: Navegación web y comercio electrónico
- FTP/SFTP: Transferencia segura de archivos
- DNS: Resolución de nombres de dominio
- SMTP/IMAP: Envío y recepción de correos

Glosario de Términos Clave

Funciones por Capa

- Capa 1: Transmisión de bits (como calles)
- Capa 2: Comunicación local (como direcciones)
- Capa 3: Enrutamiento (como GPS)
- Capa 4: Transporte (como mensajería)
- Capa 5: Sesiones (como reuniones)
- Capa 6: Presentación (como traductor)
- Capa 7: Aplicación (como tiendas)

TCP/IP no es un solo protocolo, sino una familia

¿Qué es TCP/IP?

- Definición: Familia de protocolos que trabajan juntos
- Objetivo: Permitir la comunicación en redes de manera eficiente
- Analogía: Como un equipo de trabajo donde cada miembro tiene una función específica

Protocolos Principales

- TCP: Control de transmisión (confiable)
- IP: Direccionamiento en Internet
- UDP: Datagramas de usuario (rápido)
- ICMP: Mensajes de control

TCP/IP no es un solo protocolo, sino una familia

Características

- Estándar abierto: No pertenece a una empresa
- Escalable: Funciona en redes pequeñas y grandes
- Interoperable: Diferentes sistemas pueden comunicarse

Secuencia de Encapsulación

- Paso 1: TCP agrega encabezado de transporte
- 2 Paso 2: IP agrega encabezado de red
- 3 Paso 3: Ethernet agrega encabezado de enlace

Cada capa tiene funciones específicas y bien definidas

Características de Cada Capa

- Funciones específicas: Cada capa tiene responsabilidades únicas
- Encapsulación: Agrega encabezados al pasar por cada capa
- Servicio: Funciona como servicio para la capa superior
- Independencia: Las capas pueden funcionar independientemente

Principios de Diseño

- Separación de responsabilidades: Cada capa tiene una función específica
- Interfaz bien definida: Comunicación estándar entre capas
- Modularidad: Fácil desarrollo y mantenimiento
- Reutilización: Implementaciones pueden reutilizarse

Procesos de Encapsulación y Desencapsulación

Proceso de Encapsulación Proceso de Desencapsulación Capa 7: Datos de aplicación Capa 1: Recibe señal física Capa 6: + Encabezado de presentación Capa 2: Lee encabezado de enlace Capa 5: + Encabezado de sesión 3: Lee encabezado de red Capa 4: + Encabezado de transporte Capa 4: Lee encabezado de transporte Capa 3: + Encabezado de red Capa 5: Lee encabezado de sesión **6** Capa 2: + Encabezado de enlace **6** Capa 6: Lee encabezado de presentación Capa 1: Transmisión física Capa 7: Datos de aplicación

¿Qué hemos aprendido hoy?

Conceptos Clave

- Redes: Sistemas de comunicación entre dispositivos
- Evolución: De telégrafos a Internet
- Paquetes: Unidades básicas de datos en la red
- Packet Switching: Mejor que circuit switching para datos
- Modelo OSI: Arquitectura de 7 capas

Analogías Utilizadas

- Edificio: 7 pisos con funciones específicas
- Ciudad: Calles, direcciones y servicios
- Mensajería: Envío de paquetes de datos
- Traductor: Conversión de formatos

¡Gracias por tu atención!