Задания

14 сентября 2015 г.

- 1. Опишите в категории (пред)порядка следующие конструкции:
 - (а) Терминальные объекты.
 - (b) Произведения объектов.
- 2. Пусть в категории ${\bf C}$ существует терминальный объект 1. Докажите, что для любого объекта A в ${\bf C}$ существует произведение $A\times 1$.
- 3. Докажите, что любой морфизм из терминального объекта является мономорфизмом.
- 4. Пусть в категории ${\bf C}$ существует терминальный объект 1 и некоторый морфизм $1\to B$. Докажите, что любая проекция $\pi_1:A\times B\to A$ является эпиморфизмом.
- 5. Докажите, что в **Ab** существуют все произведения.
- 6. Докажите, что два определения уравнителей, приводившихся в лекции, эквивалентны.
- 7. Докажите, что уравнитель пары стрелок $f,g:A\to B$ уникален с точностью до изоморфизма. То есть, если $e_1:E_1\to A$ и $e_2:E_2\to A$ два уравнителя f и g, то существует уникальный изоморфизм $i:E_1\to E_2$ такой, что $e_2\circ i=e_1$.
- 8. Морфизм $h: B \to B$ называется идемпотентным, если $h \circ h = h$. Докажите следующие факты:
 - (a) Если $f:A\to B$ и $g:B\to A$ такие, что $g\circ f=id_A,$ то $h=f\circ g$ является идемпотентным.
 - (b) Если в категории есть уравнители, то обратное верно. Конкретно, для любого идемпотентного морфизма $h:B\to B$ существуют $f:A\to B$ и $g:B\to A$ такие, что $g\circ f=id_A$ и $f\circ g=h$.
- 9. Докажите, что любой расщепленный мономорфизм регулярен.

10. Мономорфизм $f:A\to B$ называется $\mathit{сильным},$ если для любой коммутативного квадрата, где $e:C\to D$ является эпиморфизмом,

существует (не обязательно уникальная) стрелка $D \to A$ такая, что диаграмма выше коммутирует.

Докажите, что любой регулярный мономорфизм силен.

11. Мономорфизм $f:A\to B$ называется экстремальным, если для любого эпиморфизма $e:A\to C$ и любого морфизма $g:C\to B$ таких, что $g\circ e=f$, верно, что e — изоморфизм.

Докажите, что любой сильный мономорфизм экстремален.

- 12. Докажите, что если в категории все мономорфизмы регулярны, то она сбалансирована. Можно ли усилить это утверждение?
- 13. Докажите, что в **Set** все мономорфизмы регулярны.
- 14. Докажите, что в ${\bf Ab}$ все мономорфизмы регулярны.