Location Mechanisms

- Commonly used to infer user context;
- Symbolic abstract ideas of where something is (e.g., home, work);
- Physical actual coordinates (e.g., latitude, longitude).
- Accuracy how close the location is to the real location.
- **Precision** how detailed the location is **high precision** means less variability in the location.

- GPS outdoor location mechanism;
- Infrared and Ultrasonic indoor location mechanisms;
- 802.11 (Wi-Fi) indoor/outdoor location mechanism;
- Cellular-based Systems outdoor location mechanism.

GPS - Outdoor Location Mechanism

- Global Positioning System a satellite-based navigation system;
- Passive one-way system satellites send signals, and GPS receivers calculate the distance to each satellite;
- World-wide coverage;
- Preserves user privacy;
- Scales to large number of users;
- Supports a range of location services with accuracies from meters to centimeters;
- Selective Availability the US government can degrade the accuracy of GPS signals for non-military users, by adding intentional noise to the signals (turned off in 2000).

GPS Architecture

- Constellation of **earth-orbiting satellites** that broadcast a continuous signal currently 31 satellites;
 - Full coverage with 24 satellites the additional ones operate as active spares to accommodate maintenance and failures;
- Ground stations monitor and control the satellites;
 - Clock corrections and orbit updates;
 - There are enough ground monitoring stations to ensure that each satellite is visible from at least two stations at all times;
- **GPS receivers** receive the signals and calculate the location (latitude, longitude and altitude).;
 - Determine the position using at least 4 satellites, but commonly
 use up to 12 for better accuracy this can be augmented with
 other location mechanisms (accelerometers, gyroscopes, etc.).

GPS Algorithm

- The distance (R_i) from the satellite to the receiver is calculated using the time it takes for the signal to travel, multiplied by the speed of light;
- This requires **synchronized clocks** between the satellites and the receiver;
 - Low-cost crystal oscillators in the receiver introduces bias,
 making the distance calculation inaccurate;
 - Satellites have atomic clocks that are synchronized with each other, but not with the receiver;
 - Calculate the receiver location (x, y, z) and the clock bias
 b:

$$R_i = \sqrt{(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2} + b$$

- This way, **four satellites** are needed to calculate the **four unknowns** (x, y, z, b) three satellites would be enough with **perfect clocks**;
- When more than 4 signals are available, **redundant data** can be used to **improve accuracy**.

Satellite Range Estimation

- GPS satellites transmit radio signals modulated by pseudorandom noise (PRN) codes appear to be random, but are deterministic to each satellite and known to the receiver;
- Receiver continually compare the received signal with the PRN code to determine the time delay between the satellite and the receiver - delay is proportional to the distance;
- GPS receiver obtains the **satellite's position** from a **navigation message** transmitted by the satellite, containing:
 - Coordinates of the satellites as a function of time;
 - Satellite clock correction;
 - Satellite direction of motion;
 - Constellation health information;

- Parameters for the **ionospheric delay correction**.
- Atomic clocks are very stable, but still need to be corrected because accumulated errors can lead to significant inaccuracies;
- Ionospheric delay the signal travels through the ionosphere, which causes a delay that is proportional to the frequency of the signal higher frequencies are less affected.

Quality of GPS location estimation depends on:

- How well satellites are **spread out** in the sky;
- Size of uncertainty area as the satellites are closer together, the uncertainty area is higher, because the satellites are less spread out.

Drawbacks

- Signals do not **penetrate** walls, soil, or water very well requires **unobstructed view** of at least **four satellites**;
- Indoor and urban canyon environments can block signals;

Real-Time Differential GPS (DGPS)

- Differential GPS can be used to improve accuracy by correcting errors caused by the ionosphere and satellite clock drift;
- Real-time differential GPS uses a network of ground stations to monitor the GPS signals and broadcast corrections to the GPS receivers;
 - One or more GPS receivers are placed at known locations and measure the error in the GPS signals, sending the corrections to nearby GPS receivers that can move around;
 - Maritime DGPS network of stations installed at lighthouses;
 - WAAS (Wide Area Augmentation System) a network of ground stations that broadcast corrections to airborne GPS receivers.
- Provides sub-meter accuracy.

Real-Time Kinematic GPS (RTK)

- Achieves centimeter-level accuracy;
- Measuring the number of fractional and full signal cycles between the satellite and the receiver.

Technology	Basic GPS	GPS + WAAS	Real-time Kinematic GPS
Accuracy	***	★★★☆	****
	3D coordinates with 10 m median accuracy	3D coordinates with 2 m median accuracy	3D coordinates with 10 cm accuracy
Coverage	★★★☆	***	★ ☆☆☆
	Outdoors with clear view of 4+ GPS satellites	Outdoors in USA — Requires clear view of 4+ GPS satelites and a WAAS satelite	Outdoors with 4+ GPS satellites and requires line-sight between mobile unit and surveyed unit
Infrastructure	****	****	★ ☆☆☆
cost	\$14 B US initial cost + \$500 M US yearly for global coverage	WAAS satellites needed in addition to GPS constellation	Beyond GPS constellation, requires calibrated, surveyed ground unit
Per-client cost	★★★☆	★★★☆	★ ☆☆☆
cost	GPS antenna and chipset required	GPS antenna and WAAS-capable chipset required	Special RTK unit required
Privacy	****	****	****
	Location is estimated passively on the GPS unit	Location is estimated passively on the GPS unit	Location is estimated passively on the GPS unit
Well- matched use cases	Outdoor navigation for land, sea and air, emergency response, tum-by-tum driving directions, outdoor mapping/information/tour guide services, personell/pet tracking, fitness/activity tracking, gaming	Outdoor navigation for land, sea and air, emergency response, turn-by-turn driving directions, outdoor mapping/information/to ur guide services, personnel/pet tracking, fitness/activity tracking, gaming	Outdoor navigation requiring extreme accuracy, surveying, aircraft landing, maritime construction

Indoor Location Mechanisms - Infrared and Ultrasonic

- Light and sound move freely through the air, but are both largely blocked by materials;
 - Two types of signals well suited for **indoor location**;
- Infrared or ultrasound beacons and listeners beacons may be embedded in the environment, and listeners remain mobile, or viceversa;
- Possible indoor location approaches:
 - Infrared proximity active badges;
 - Ultrasound proximity Walrus;
 - Ultrasound TOF (Time of Flight) Active Bat.

Active Badge

- First indoor location system;
- Badges emit infrared signals that are received by sensors placed in the room;
- Each person has a badge that sends unique pulses at regular intervals, received by **base stations**, that decoded the **infrared signals** and send the decoded badgeIDs to a **centralized location server**;
- Base stations are mounted on known locations and the server can infer in which room the person is located;
- Drawbacks:
 - Line-of-sight is required between the badge and the base station,
 and infrared signals are easily blocked;
 - Requires specialized infrastructure.

Walrus

• Uses PC and PDA speakers and microphones to transmit and receive ultrasound signals;

- PCs are the **beacons** and PDAs are the **receivers**;
- It encodes the roomID using a radio side channel;
- ...

Cricket

- Sub-room-level location system using ultrasound;
- Privacy-preserving no centralized server;
- Badges are the receivers and beacons are the infrastructure;
- Beacons are placed on the ceiling and emit ultrasound signals, advertising their identity, using a combination of RF (radio frequency) and ultrasound:
- Listeners not only listen for an ultrasound pulse, but also for how long it takes for the RF signal to arrive, to calculate the distance to the beacon;

Active Bat

- Goal is to estimate absolute location within a room with high accuracy;
- Badges are beacons and receivers are the infrastructure;
- Similar to cricket, but **bats** (small pager-like devices) emit **ultrasound signals** and the receivers in the infrastructure **calculate the distance** to the bats;

Technology	Infrared proximity (e.g., Active Badge)	Ultrasound proximity (e.g., WALRUS)	Ultrasound TOF (e.g., Active Bat
Accuracy	★★☆ Room ID with high accuracy	★★★☆ Room ID with high accuracy	★★★★ 3D location with 5 cm accuracy
Coverage	★★☆☆ Indoor only in room fit with IR receiver/beacon	★★☆☆ Indoor only in room fit with ultrasonic beacons	★★☆☆ Indoor only in room fit with ultrasonic infrastructure
Infrastructure cost	★★☆☆ Infrared receiver or beacon required for each room	1 or more ultrasonic receiver or beacon required for each room	Requires dense array of ultrasonic receivers
Per-client cost	★★☆ Inexpensive IR badge/dongle required	★★★★ Software only solution on device with microphone	★★★☆ Inexpensive ultrasonic badge/dongle required
Privacy	★★★★ If localization is performed on the client. Otherwise ★★☆☆ Opt-out easy by removing badge	★★★ Localization is performed by mobile client	★★☆☆ Localization is performed by infrastructure. Opt-out easy by removing badge
Well- matched use cases	Asset and personnel tracking, indoor mapping/ navigation/tour guides	Asset and personnel tracking, indoor mapping/ navigation/tour guides	Asset and personnel tracking, tangible Uls, fine-grained info services

Location Estimation with 802.11 (Wi-Fi)

- 802.11 (Wi-Fi) is a **common wireless technology** that is **ubiquitous** in many environments;
- 802.11 radios and their supporting drivers allow a device to scan for nearby access points (APs) and measure the signal strength of the signals;
- APs have a **limited range** and if a device can hear an AP, it is **close** to it;
- If a device can see more than one AP, it can estimate its own location more precisely signal strength and packet loss can be used to estimate distance;
- Client devices can:
 - passively listen for APs;
 - actively send probe requests to APs;
- APs send **beacon frames** to announce their presence to clients, containing:
 - **SSID** network name readable by humans;
 - **BSSID** MAC address of the AP;
 - Signal strength;
 - Channel;
 - Supported data rates;
 - Security settings.

Signal Strength Fingerprinting

- Two phases:
 - Mapping phase collect signal strength measurements at known locations;
 - * Distances need to be **small** to capture the **variability** of the signal strength;

- Localization phase estimate the location of the device based on the signal strength measurements;
- Spatial variation of the signal strength is unique to each location;
- Temporal consistency the signal strength at a location is relatively stable over time;
- RADAR by Microsoft Research uses **signal strength** and **packet** loss to estimate the distance to the APs;
- Drawbacks:
 - Signal strength can be affected by many factors interference, obstructions, multi-path fading, device orientation, device type, etc.;
 - If the environment changes, the fingerprinting map needs to be updated.

Signal Strength Modeling

- Radio signals **propagate** through the environment in **predictable** ways;
- Device location can be estimated by **modeling the propagation of** the signal;
- There is an **AP database** that stores the location of each known AP;

- Signal strength is affected by the distance between the device and the AP, and obstructions in the environment;
- Client's location can be estimated by **comparing the measured signal strength** with the **expected signal strength** at each known AP location;
- War-driving driving around with a laptop to collect signal strength measurements from APs;
- Drawbacks:
 - Decreased accuracy;
 - We assume that all APs can be heard from the same distance in all directions;

Technology	802.11 signal-strength fingerprinting (e.g., RADAR)	802.11 signal-strength modeling (e.g., Place Lab)
Accuracy	★★★☆ 2D coordinates with 1-3 m median accuracy	★★☆☆ 2D coordinates with 10- 20m median accuracy
Coverage	Building to campus scale. Requires 802.11 coverage and radio map. Best accuracy achieved when 3+ APs are visible.	Areas with 802.11 coverage and radio map. Best accuracy achieved when 3+ APs are visible.
Infrastructure cost	★★☆☆ No additional infrastructure is needed beyond 802.11 APs. Creating radio map is time intensive and new/moved APs require remap.	★★★☆ No additional infrastructure is needed beyond 802.11 APs. Creating radio maps is less work than for fingerprinting.
Per-client cost	★★★★ Software-only solution for devices with 802.11 NICs.	★★★★ Software-only solution for devices with 802.11 NICs.
Privacy	**** when localization is performed on the client. *** when localization is performed in the infrastructure.	**** when localization is performed on the client. *** when localization is performed in the infrastructure.
Well- matched use cases	Asset and personnel tracking in indoor environments, indoor mapping/navigation/tour guides	Social networking, tour guides, indoor/outdoor navigation/tour guides, fitness/activity tracking

Cellular-based Systems

- Location systems based on cellular signals like GSM (Global System for Mobile Communications) and CDMA (Code Division Multiple Access) has advantages:
 - Leverage existing infrastructure;
 - Widespread coverage;
- Categories of cellular-based location systems:
 - Cell-ID location is estimated based on the cell tower that the device is connected to - GSM/CDMA Proximity;
 - * Low accuracy hundreds of meters;
 - Radio Modeling estimate the location based on the signal strength and time of flight of the signals;
 - * TDOA (Time Difference of Arrival) estimate the location based on the time difference between the signals from different cell towers;
 - * Higher accuracy tens of meters;
 - Assisted GPS provides faster and more accurate location estimates by offloading some of the calculations to the network;
 - * High accuracy tens of meters.
 - Radio Fingerprinting similar to Wi-Fi signal strength fingerprinting, but is more potential to work ir more places, due to higher coverage of cellular signals.

Technology	GSM signal- strength fingerprinting	GSM TOF and signal-strength modeling	GSM/CDMA proximity	Assisted GPS (A-GPS)
Accuracy	**** 2D coordinates with 4 m median accuracy in dense cell environment	★★☆☆ 3D coordinates with 100 - 200 m accuracy	Accuracy dependant on cell tower density (150 m – 30 km)	3D coordinates with 10 -150 m accuracy depending on number of GPS satellites visible
Coverage	***	★★★☆	****	****
	Building to campus scale. Requires cell network coverage and radio map. Best accuracy when 3+ cells are visible	Areas with GSM coverage and radio map. Best accuracy when 3+ cells are visible	Anywhere with cell coverage and cell-to- location map	Outdoors with 4+ GPS satellites or indoors with cell network support + view of 1+ GPS satellite
Infrastructure cost	***	****	****	****
cost	No additional infrastructure is needed beyond cell network. Creating radio map is time intensive	No additional infrastructure is needed beyond cell network and map of tower locations	No additional infrastructure is needed beyond cell network and map of tower locations	Beyond GPS constellation, requires deployment of fixed GPS receivers
Per-client cost	****	****	****	★★★☆
COSC	Software only solution	Software only solution	Software only solution	GPS antenna and chipset required for handset
Privacy	***	***	***	***
	Even if location is computed on client device, the network still tracks a handset's associated cell	Even if location is computed on client device, the network still tracks a handset's associated cell	Even if location is computed on client device, the network still tracks a handset's associated cell	Even if location is computed on client device, the network still tracks a handset's associated cell
Well- matched use cases	Asset and personnel tracking in indoor environments, indoor mapping/navigatio n/tour guides	Social networking, emergency response, neighorhood- scale information access, fitness tracking, outdoor mapping /	Regional information access (weather, traffic, etc.)	Emergency response, indoor/outdoor information/tour guide services, personnel/pet tracking, activity tracking, gaming