OpenMP를 활용한 LSH DRBG 병렬 최적 구현

권혁동* 안규황* 서화정 *† * 한성대학교 대학원 정보시스템공학과

요 약

- 미국 국립표준연구소(NIST)에서 권고하는 결정론적 난수 발생기(DRBG)를 구현
- 병렬화 적용이 가능한 부분을 병렬처리로 변경하여 성능 향상을 도모

연구 목적

- SHA-2, SHA-3가 적용된 DRBG를 국내 표준에 적합하도록 LSH를 이용하여 이식 구현
- DRBG의 내부 구조 중 반복적이지만 서로 독립적인 연산 부분을 병렬화하여 성능을 향상시키고자 함

연구 방법

● 데이터 병렬화와 태스크 병렬화 두 기법을 사용하여 기존 구조와 동작 속도를 비교

Algorithm

- 1. read test vectors
- 2. loop count = number of hash output types
- 3. operate OpenMP to for loop
- 4. For i = 1 to loop count
 - 4.1 DRBG using hash[i] type
 - 4.2 write DRBG result
 - 4.3 waiting until other processing finished
- 5. DRBG finished

Fig. 1. (left) 데이터 병렬화가 적용된 의사 코드

Fig. 2. (right) 태스크 병렬화가 적용된 내부 출력 생성 함수 의사 코드

Algorithm 1. len = ceil (output bits from parameter / hash bits) 2.1 If hash bits is 224 or 256

- seed bits = 440 2.2 If hash bits is 384 or 512
- seed bits = 888
- 3. data = state V from parameter 4. operate OpenMP to for loop
- 4. operate OpenMP to for loop 5. For i = 1 to len
- 5.1 output[i] = Hash(data)
 - $5.2 \text{ data} = (\text{data} + 1) \text{ mod } 2^{\text{seed bits}}$
 - 5.3 waiting until other processing finished
- 6. final output = (output[1] $| | \cdots | |$ output[n]) mod $2^{\text{output bits}}$

연구 결과

- 데이터 병렬화가 적용된 구조는 기존의 구조보다 약 2.71배의 성능 향상을 보임
- 태스크 병렬화가 적용된 구조는 기존의 구조보다 약 2.04배의 성능 하락을 보이나 DRBG의 출력 길이가 증가함 에 따라 조건부 성능 향상을 꾀할 수 있음

	평균수행시간(ms)	cpb
대조군	73	491
병렬화	149	1001

Table. 2. 태스크 병렬화 성능 비교

	평균수행시간(ms)	cpb
대조군	73	491
병렬화	27	181

Table. 1. 데이터 병렬화 성능 비교

Fig. 3. 출력 길이 별 성능 비교

결 론

- 데이터 병렬화가 적용된 DRBG는 기존 구조보다 성능 향상을 보임
- 이를 활용하여 동시에 다른 규격의 DRBG 출력 값을 확보하는 것이 가능함
- 태스크 병렬화가 적용된 DRBG는 출력 규격에 일치하지는 않지만 조건부 성능 향상이 가능함