Day1 讲题

讲题人: xjt

2024年1月6日

吐槽环节

Zayin 6th January 2024 GDKOI Day1 Sol 2 / 36

简短题意

给定一个具有 2n 点的二分图,边权为 01,试构造一个边权异或和为 0 的完美匹配。

 $n \leq 500$

Zayin 6th January 2024 GDKOI Day1 Sol

3 / 36

 $n \leq 8$

读懂题意即可。

直接对每个左边点枚举右边匹配的点是哪个,暴力检验所有匹配。

复杂度 $O(n^n)$ 。

Zayin 6th January 2024 GDKOI Day1 Sol 4 / 36

n < 18

点的匹配关系其实不重要,只需要关心剩下能匹配的点集以及当前边权异或和即可。

可记 $dp_{i,S,0/1}$ 表示考虑了前 i 个左边点,匹配了右边点集为 S,且当前边权异或和的值为 0/1 是否可能。

转移枚举 i 的匹配边即可。

复杂度 $O(n^22^n)$, 期望得分 40pts。

Zayin 6th January 2024 GDKOI Day1 Sol

5 / 36

性质分析

先求任一个完美匹配X。

如果当前匹配边权异或和已经为 0,则直接输出即可。

否则考虑最终答案 Y,若 X 和 Y 取对称差,则会得到若干个偶环,并且其中一个偶环边权异或和恰好为 1。

Zayin 6th January 2024 GDKOI Day1 Sol

6 / 36

7 / 36

不妨假设 X就是 i 匹配 i+n 。

那么对于一个长度为 2k 的环 $x_1, x_1 + n, x_2, x_2 + n, \dots, x_k, x_k + n$,可以把它缩成一个长度为 k 的环 x_1, x_2, \dots, x_k , 每条边的边权是原来两条边的异或和。

即对于原图的 (y, x + n) , 在新图里连边 $x \rightarrow y$, 边权为 (x, x + n) , (x + n, y) 的异或和。

则我们的目标就是在新图里找一个边权异或和为 1 的环。

Zayin 6th January 2024 GDKOI Day1 Sol

8 / 36

在边权随机的情况下,可以随机 dfs 并只考虑返祖边导出的环(实际上非常难卡也许能得到 100 pts)

正确做法可以通过拆点求 (x,0) 到 (x,1) 的路径得到。

复杂度瓶颈为求完美匹配,即 $O(n^3)$ 。

Zayin 6th January 2024 GDKOI Day1 Sol

简短题意

在数组 a[1...n] 上定义一个操作序列 op[1...m],每个操作形如:

- C: 区间 a[l...r] 赋值为 v
- Q: 区间 a[l...r] 求和

支持多组询问, 每组询问:

• 依次 op[L...R] 的所有操作,求所有求和操作的结果总和 $n < 5 \times 10^5$

Zayin 6th January 2024 GDKOI Day1 Sol

9 / 36

Roast D1T1 D1T2 D1T3 QnA 中山大學 (11) 中山大學 (11) 以 (11

$n, m, q \le 100/500$

读懂题意即可。

对每个询问按顺序执行操作,每次操作可暴力 O(n) 或使用数据 结构 $O(\log n)$ 加速。

总复杂度 $O(nmq)/O(mq \log n)$ 。

Zayin 6th January 2024 GDKOI Day1 Sol 10 / 36

每次操作都是求和操作

因为 a 初始化后没有修改恒为 0,所以求和一定为 0。

Zayin 6th January 2024 GDKOI Day1 Sol 11 / 36

L=1

相当于对一个前缀求答案。

从左往右执行操作即可,需要使用数据结构 $O(\log n)$ 加速。

总复杂度 $O(q \log n)$ 。

Zayin 6th January 2024 GDKOI Day1 Sol 12 / 36

满分做法: 题意简化

不妨考虑一个简单的版本: 把区间赋值 C 改为区间加法 A。

考虑对操作序列按 $B = \sqrt{n}$ 分块。

假设我们能够对任意 i, R 预处理出 op[iB, R] 的答案。

则询问 op[L,R] 的时候,我们可以将贡献分成三部分:

- op[L, iB) 的 A 对 op[L, iB) 的 Q 的贡献;
- op[L, iB) 的 A 对 op[iB, R] 的 Q 的贡献;
- op[iB,R] 的 A 对 op[iB,R] 的 Q 的贡献;

显然第三部分已经预处理、考虑前面两部分。

Zayin 6th January 2024 GDKOI Day1 Sol 13 / 36

题意简化解法

第一部分: op[L,iB) 的 A 对 op[L,iB) 的 Q 的贡献

该部分可以看成是一个后缀 op[*,iB) 的贡献, 也可以预处理。

在后缀移动的时候直接对每个操作 A 暴力检验对其后面 Q 的贡献即可。

该部分总复杂度 $O(n\sqrt{n})$ 。

Zayin 6th January 2024 GDKOI Day1 Sol 14 / 36

题意简化解法

第二部分: op[L, iB) 的 A 对 op[iB, R] 的 O 的贡献

注意到

• op[L,iB) 的 A 会将 a[1...n] 划分成不超过 O(B) 个连续段在从小到大枚举 R 时可以通过差分标记求得 op[iB,R] 对 O(B) 的每个连续段共求和过多少次。

询问的时候可暴力 O(B) 还原差分标记,并 O(B) 枚举 op[L, iB) 的 A 求得贡献。

Zayin 6th January 2024 GDKOI Day1 Sol 15 / 36

题意简化解法

预处理第三部分: op[iB,R] 的 A 对 op[iB,R] 的 Q 的贡献

实际上该部分可以拆成:

- op[iB, (i+1)B) 的 A 对 op[iB, (i+1)B) 的 Q 的贡献;
- op[(i+1)B,R] 的 A 对 op[(i+1)B,R] 的 Q 的贡献;
- op[iB, (i+1)B) 的 A 对 op[(i+1)B, R] 的 Q 的贡献;

第一个与之前讨论的询问没有本质区别;

第二个可直接继承后一块的答案;

对于第三个,可以使用 $O(\sqrt{n})$ 修改,O(1) 查询的值域分块,总 复杂度 $O(n\sqrt{n})$ 。

Zayin 6th January 2024 GDKOI Day1 Sol 16 / 36

17 / 36

对于零散的部分,也即询问的 $[L,R) \in [iB,(i+1)B)$ 的情况,可 以视为

- op[L, (i+1)B) 的 A 对 op[L, (i+1)B) 的 Q 的贡献;
- 减去 op[R, (i+1)B) 的 A 对 op(R, (i+1)B) 的 Q 的贡献;
- 减去 op[L, R) 的 A 对 op[R, (i+1)B) 的 Q 的贡献;

前两部分已经通过后缀贡献预处理得到,对于第三部分:

- 对每个 op[R, (i+1)B) 打差分标记
- 对 op[L, R) 的 A 暴力枚举贡献即可

GDKOI Dav1 Sol Zavin 6th January 2024

原题意转化

回到原题意,考虑操作都是同一个区间的情况,设在时间 t 赋值为 v:

- 若该操作为第一次赋值,则视为在时间 t 将值加等于 v:
- ◆ 若其上一次赋值为 (t', v'), 则视为在时间 [t', t] 将值减等于 v'。

上述操作均可抽象成操作序列轴上的 (tl, tr, v), 当且仅当询问 [L, R] 包含 [tl, tr] 的时候,该加法操作才生效。

• 不是同一个区间的情况,可以通过颜色数均摊的方法转化成 *O*(*m*) 个等价的相同区间。

Zayin 6th January 2024 GDKOI Day1 Sol 18 / 36

满分做法

转化后与简化版本唯一的不同是区间加法操作 A 是有生效范围限制的,即

• 令 A = (tl, tr, l, r, v), 当且仅当询问 [L, R] 包含 [tl, tr] 的时候 对 a[l, r] + = v

考虑每个部分需要怎么适配。

Zayin 6th January 2024 GDKOI Day1 Sol 19 / 36

预处理第三部分: op[iB,R] 的 A 对 op[iB,R] 的 Q 的贡献 该部分没有变化,注意 op[iB,R] 的 A 指 $[tl,tr] \in [iB,R]$ 即可。

Zayin 6th January 2024 GDKOI Day1 Sol 20 / 36

第二部分: op[L,iB) 的 A 对 op[iB,R] 的 Q 的贡献

- op[iB, R] 的差分标记这部分不变。
- 在 *O*(*B*) 暴力枚举 *A* 的时候注意只需要枚举满足 [*tl*, *tr*] ∈ [*L*, *R*] 的 *A*。

Zayin 6th January 2024 GDKOI Day1 Sol 21 / 36

第一部分: op[L,iB) 的 A 对 op[L,iB) 的 Q 的贡献

该部分由于 R 未知, 所以每个 A 是否生效未知, 不能直接简单 预处理每个后缀的答案。

但由于 $R \ge iB$, 所有 Q 都是生效的, 所以对每个 A = op[i] 求得 其对后所有 $Q \in op(j, iB)$ 的贡献。

然后再 O(B) 暴力枚举 A 检验是否生效即可。

6th January 2024 GDKOI Day1 Sol Zavin 22 / 36 零散部分: $op[L,R) \in op[iB,(i+1)B)$

由于预处理后缀的方法已经不可行了, 故考虑另一个方法:

- 容: 先假设所有 $A \in op[L,R)$ 都在 $Q \in op[iB,R)$ 前面
- 斥: 然后扣掉额外多统计的 $Q \in op[iB,j)$ 对 A = op[j] 的贡献通过容斥之后就转化成了前缀 Q 和前缀 Q + A 的贡献,通过差分

标记预处理,每个询问可以预处理 $O(\sqrt{n})$ 求得。

Zayin 6th January 2024 GDKOI Day1 Sol 23 / 36

综上所述, 总复杂度 $O(n\sqrt{n})$ 。

如某个部分没有平衡好, $O(n\sqrt{n}\log n)$ 能得到 60pts - 80pts。

Zayin 6th January 2024 GDKOI Day1 Sol 24 / 36

简短题意

定义数组 a[1...n] 的 f(a) = b[1...n] 为 b_i 表示把 a_i 改为 0 后 a[1...n] 的最大独立集和。

求 $a_i \in [0, m]$ 能得到多少种本质不同的 f(a)。

 $n \le 3000$

Zayin 6th January 2024 GDKOI Day1 Sol 25 / 36

Roast D1T1 D1T2 D1T3 QnA 中山大學

$n, m \leq 5$

读懂题意即可。

暴力枚举所有可能的 a 求出 f(a) 后去重即可。

总复杂度 $O(m^n)$ 。

推性质

设 $i \le 0$ 或 i > n 时令 b_i 为全局最大独立集。显然 $n \ge 2$ 时 b[1...n] 中的最大值即为全局最大独立集。

- 令 f_i , g_i 分别表示 a[1, i], a[i, n] 的最大独立集。则 $b_i = f_{i-1} + g_{i+1}$ 。
- $\Leftrightarrow p_i = f_i f_{i-1}, q_i = g_{i+1} g_{i+2}$ 。 则 $b_{i+1} b_i = p_i q_i$ 。 根据 f_i, g_i 的递推式可以得到

 $p_i = \max(a_i - p_{i-1}, 0), q_{i-1} = \max(a_i - q_i, 0).$

若我们固定了所有的 $c_i = b_{i+1} - b_i$,则合法的 b 应当满足其全局最大值在一段区间中,也即 f_n 在一段区间中,因此我们只需要考虑 $f_n = \sum p_i$ 的上下界。

Zayin 6th January 2024 GDKOI Day1 Sol

27 / 36

推性质(续)

先考虑对于一组确定的 $c_{1\sim n}$ 如何确定 f_n 的上下界。

容易发现 b_i 中任意相邻两个位置中至少有一个最大值,因此若 $c_{i-1} < 0$ 则 $c_i = -c_{i-1}$ 。

假设我们已经确定了 $a_{0...i-1}, p_{0...i-1}, q_{0...i-1}$, 再固定 a_i , 则

- *p_i* 可以唯一确定。
- 若 $q_{i-1} > 0$ 则 q_i 也可以唯一确定。
- 否则 $q_{i-1} = 0$,此时 q_i 可以是任意一个 $\geq a_i$ 的数。

Zayin 6th January 2024 GDKOI Day1 Sol 28 / 36

P山大學 N YAT-SEN UNIVERSITY

29 / 36

推性质 (续)

具体来说, 有如下若干种情况:

- 若 $c_{i-1} < 0$,则此时一定有 $c_i = -c_{i-1}$,可以任选 $a_i \in [q_{i-1}, m]$,有 $p_i = a_i p_{i-1}, q_i = a_i q_{i-1}$ 。
- 若 $c_{i-1} \ge 0$,则此时一定有 $c_i \le 0$:
- $\exists |c_i| < |c_{i-1}|, \ \mathsf{Mf} \ a_i = q_{i-1} + |c_{i-1}|, p_i = 0, q_i = |c_i|.$
- 若 $|c_i| > |c_{i-1}|$,则要求 $q_{i-1} = 0$,可以任选 $q_i \in [c_i, m]$,有 $a_i = q_i |c_i| + |c_{i-1}|, p_i = q_i |c_i|$ 。
- 若 $|c_i| = |c_{i-1}|$,则可以任意归入上述两种情况之一。

根据上述过程可以发现 f_n 可以取到的最小值为 $\frac{1}{2}\sum |c_i|$,这是因为只需要始终保持 $\min(p_i,q_i)=0$ 一定合法且最优。所以我们只需求出 f_n 可以取到的最大值就可以了。

Zayin 6th January 2024 GDKOI Day1 Sol

部分分

因为
$$f_n = \sum_{i=0}^{n-1} p_i$$
,并且只有相邻的 a, p, q 的取值有影响;

考虑 $dp_{i,x,y}$ 表示 $p_i = x$, $q_i = y$ 的时候, $\sum p$ 最大可以是多少。

然后可以将对着 dp 写出 dp 套 dp 就可以解决原问题。

复杂度大约是 $O(nm^{m^2})$, 实现难度不低于 NOI2022 移除石子。

Zayin 6th January 2024 GDKOI Day1 Sol 30 / 36

满分做法

可以发现,只需要在不违反限制的情况下贪心地使得当前的 p_i 最大即可使得 f_n 最大。

(限制只会在 $c_{i-1} \ge 0$, $|c_i| > |c_{i-1}|$ 时产生)。

证明可以考虑调整法,即考虑当前 p_i 未取到上限的情况,将它与 p_i 取到上限的情况比对,后者一定不劣。

Zayin 6th January 2024 GDKOI Day1 Sol 31 / 36

D1T3

32 / 36

因此我们只需要知道 $p_{i-1}, q_{i-1}, c_{i-1...i+1}$ 即可唯一确定 a_i, p_i, q_i 在 最优贪心过程中的取值。

 $dp_{i,x,v,c_1,c_2,\Sigma_p}$ 表示考虑到当前想确定 p_i 和 q_i 的值, p_{i-1} 和 q_{i-1} 的值分别是 x, y, c_{i-1} 和 c_i 分别是 c1, c2,前面 p 的总和是 $\sum p$ 。

再枚举 c_{i+1} 是多少那么根据上述结论可以推出 p_i 与 q_i 的取值。

不加以优化的话时间复杂度是 $O(n^2m^6)$, 期望得分 50pts.

Zavin 6th January 2024 GDKOI Day1 Sol

实际上 $\sum p$ 不需要记在状态上,令

- *f_{i,x,v,c1,c2}* 当前状态为 *i,x,y,c1,c2* 的方案数。
- g_{i,x,v,c_1,c_2} 当前状态为 i,x,y,c_1,c_2 的 $\sum p \frac{1}{2} \sum |c_i|$ 之和。 复杂度可优化至 $O(nm^5)$, 期望得分 $50 \sim 85pts$ 。

6th January 2024 GDKOI Day1 Sol 33 / 36 Zavin

而我们基本只关心 $c_{i-1...i+1}$ 之间的大小关系。

 $c_{i-1...i+1}$ 的具体数值只在 a, p, q 的相互转移中用到。

考虑只记录 c_{i-1} , c_i 的大小关系并使用前缀和优化 dp 即可做到 $O(nm^2)$ 。

Zayin 6th January 2024 GDKOI Day1 Sol 34 / 36

D1T3

35 / 36

实际上,分析贪心过程的性质可得一定有 $\min(p_i,q_i)=0$ 或 $\max(p_i,q_i)=m$ 。

也即总状态数只有 O(nm), 总复杂度 O(nm)。

没有前缀和加速或者没有意识到 p,q 之间的关联,复杂度为 $O(nm^2)$,可以获得 $70 \sim 85$ 分。

Zayin 6th January 2024 GDKOI Day1 Sol

Zayin 6th January 2024 GDKOI Day1 Sol 36 / 36