(Autonomous Institution affiliated to VTU, Belagavi)

Bengaluru – 19

Department of Computer Science and Engineering

Verilog Program List

19CSPC34

Laboratory Manual

(AUTONOMOUS SCHEME 2019)

(Autonomous Institution affiliated to VTU, Belagavi)

Bengaluru - 19

Department of Computer Science and Engineering

Laboratory Certificate

This	is	to	certify	that	Mr.			
			h	as satisfa	actorily co	mpleted the c	ourse of Exp	eriments
in Pract	tical _				prescri	ibed by the De	epartment d	uring the
year								
Name of	f the (Candid	ate:	· · · · · · · · · · · · · · · · · · ·			-	
USN No.:				_ Sem	nester:		-	
	Mar	·ks				Marks	in Words	7
Max. N	Iarks	Obta	ined					
10	ı							

Head of the Department

Signature of the staff in-charge

Date:

(Autonomous Institution affiliated to VTU, Belagavi)

Bengaluru - 19

Department of Computer Science and Engineering

This is	to certif	y that Mr.	
		_has satisfactorily cor	npleted the course of Experiment
in Practical _		prescrib	bed by the Department during th
year			
Name of the C	Candidate:		
USN No.:		Semester:	
Mar	ks		Marks in Words
Max. Marks	Obtained		
10			
Signature of the	staff in-charge		Head of the Department
Date:			

(Autonomous Institution affiliated to VTU, Belagavi)

Bengaluru - 19

Department of Computer Science and Engineering

This is	to ce	rtify	that	Mr.		
		h	as satisfa	actorily co	ompleted the co	ourse of Experime
in Practical _				presci	ribed by the De	epartment during t
year						
Name of the C	Candidate:					
USN No.:			Sen	nester:		
						
Mar	ks				Marks i	in Words
Max. Marks	Obtaine	d				
10						
Signature of the	staff in-cha	rge			Head of	the Department
Date:						

(Autonomous Institution affiliated to VTU, Belagavi)

Bengaluru - 19

Department of Computer Science and Engineering

This is	to cert	ify that	Mr.	
		has satisfa	ctorily co	ompleted the course of Experimen
in Practical _			prescr	ribed by the Department during
year	· · · · · · · · · · · · · · · · · · ·			
Name of the C	andidate: _			
USN No.:		Sem	ester:	
Marl	ks			Marks in Words
Max. Marks	Obtained			
10				
Signature of the	staff in-charg	e		Head of the Department
Date:				

(Autonomous Institution affiliated to VTU, Belagavi)

Bengaluru - 19

Department of Computer Science and Engineering

This is	to certify	y that Mr.	
		_has satisfactorily con	mpleted the course of Experimen
in Practical _		prescri	bed by the Department during th
year			
Name of the C	Candidate:		
USN No.:		Semester:	
Mar	ks		Marks in Words
Max. Marks	Obtained		
10			
10			
Signature of the	staff in-charge		Head of the Department
Date:			

Verilog Program List 19CSPC34

Laboratory Manual

Serial No.	Title
110.	CYCLE I
	Structural Modeling
1.	Write HDL implementation for the following Logic
	a. AND/OR/NOT
	Simulate the same using structural model and depict the timing diagram for valid inputs.
2.	Write HDL implementation for the following Logic
	a. NAND/NOR
	Simulate the same using structural model and depict the timing diagram for valid inputs.
3.	Write HDL implementation for the following Logic
	Simulate the same using structural model and depict the timing diagram for valid inputs.
4.	Write HDL implementation for a 4:1 Multiplexer. Simulate the same using structural model and depict the timing diagram for valid inputs.
5.	Write HDL implementation for a 2-to-4 decoder. Simulate the same using structural model and depict the timing diagram for valid inputs.
6.	Write HDL implementation for a 4-to-2 encoder. Simulate the same using structural model and depict the timing diagram for valid inputs.

	CYCLE II
	Behavior Modeling
7.	Write HDL implementation for a RS flip-flop using behavioral model.
	Simulate the same using Behavior model and depict the timing diagram for
	valid inputs.
8.	Write HDL implementation for a JK flip-flop using behavioral model. Simulate
	the same using Behavior model and depict the timing diagram for valid inputs.
9.	Write HDL implementation for a 4-bit right shift register using behavioral
	model. Simulate the same using Behavior model and depict the timing diagram for valid inputs.
	Tot vand inputs.
10.	Write HDL implementation for a 3-bit up-counter using behavioral model.
	Simulate the same using Behavior model and depict the timing diagram for
	valid inputs.
	CYCLE III
	Dataflow Modeling
11.	Write HDL implementation for AND/OR/NOT gates using data flow model.
	Simulate the same using Dataflow model and depict the timing diagram for
	valid inputs.
12.	Write HDL implementation for a 3-bit full adder using data flow model.
	Simulate the same using Dataflow model and depict the timing diagram for valid inputs.

Verilog Program List-19CSPC34 SCHEME OF CONDUCT AND EVALUATION

CLASS: III SEMESTER YEAR: 2019-20

EVALUATION SCHEME Tutorial Test: 1 hour

Expt. No.	TITLE	Max. Marks	Marks Obtained	Signature
1.	K-Map and Quine Mcclusky Method	2		
2.	AND/OR/NOT			
3.	NAND/NOR			
4.	Logic diagram			
5.	Multiplexer			
6.	Decoder			
7.	Encoder	3		
8.	RS			
9.	JK			
10.	Shift right			
11.	Counter			
12.	AND/OR/NOT – data flow			
13.	3-bit full adder			
	Test: Viva – 2 Marks + Writeup – 1 Mark + Execution – 2 Marks	5		
	TOTAL MARKS	10		
		•		

Verilog Program List-19CSPC34 Rubrics

Sl.No	Criteria	Excellent	Good	Average	Poor	Max Score	
A	Design & specifications	1	0.5	0.25	0	1	
В	Expected output	2	1	0.5	0	2	
	Record						
С	Simulation/ Conduction of the experiment	3	2	1	0	3	
D	K-Map and Quine Mcclusky Method	2	1	0.5	0	2	
	Viva						
		10					

STRUCTURAL MODELING

Experiment 1

- 1. Write HDL implementation for the following Logic
 - a. AND/OR/NOT

Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE (OR GATE GIVEN)

```
module or_gate(A,B,Y);
input A,B; // defines two input port
output Y; // defines one output port
or g1(Y,A,B);
```

/*Gate declaration with predefined keyword or representing logic OR, g1 is optional user defined gate identifier */

endmodule

module testor;

```
reg A,B;
wire x;
or_gate org(A,B,x);
initial
begin
A= 1'b0; B=1'b0;
#20
A= 1'b1; B=1'b1;
#20
A= 1'b1; B=1'b1;
#20
$finish;
end
```

endmodule

Write HDL implementation for the following Logic

a. NAND/NOR

Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE(FOR NAND GATE)

module nand_gate(A,B,Y);

```
input A,B;
// defines two input port
output Y;
// defines one output port
nand g1(Y,A,B);
endmodule
TEST MODULE
module testnand;
reg A,B;
wire x;
nand_gate nandg(A,B,x);
initial
begin
A = 1'b0; B = 1'b0;
#20
A = 1'b0; B = 1'b1;
#20
A = 1'b1; B = 1'b0;
#20
A= 1'b1; B=1'b1;
#20
$finish;
end
```

endmodule

Write HDL implementation for the following Logic

Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module addor(A,B,C,D,Y);
input A,B,C,D;
output Y;
wire and_opl, and_op2;
and gl(and_opl,A,B);
and g2(and_op2,C,D);
// g2 represents lower A.ND
or g3(Y,and_opl,and_op2);
// g3 represents the OR gate
```

endmodule

endmodule

TEST MODULE

```
module test andor;
reg a,b,c,d;
wire y;
addor ao(a,b,c,d,y);
initial
begin
a=0; b=1; c=1; d=1; #10
a=0; b=0; c=1; d=0; #10
$finish;
end
```


Write HDL implementation for a 4:1 Multiplexer. Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module Multiplexer4to1(Do, Din, En);
input En;
input [3:0] Din;
output Do;
reg [1:0]Do;
always @ (En or Din)
begin
if (En)
begin
case (Din)
4'b0001: Do = 2'b00;
4'b0010: Do = 2'b01;
4'b0100: Do = 2'b10;
4'b1000: Do = 2'b11;
default: Do=2'bzz;
endcase
end
end
endmodule
```

TESTBENCH MODULE

```
module multiplexer_tb;
reg [3:0] Din;
reg En;
wire Do;
   Multiplexer4to1 mux(
                           .Do(Do),
                           .Din(Din),
                           .En(En)
                        );
initial begin
// Initialize Inputs
En = 1;
Din = 4'b0001; #100;
Din = 4'b0010; #100;
Din = 4'b0100; #100;
Din = 4'b1000; #100;
end
```

endmodule

Write HDL implementation for a 2-to-4 decoder. Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module decoder_case(Do, Din, En);
input En;
input [1:0] Din;
output [3:0]Do;
reg [3:0]Do;
always @ (En or Din)
begin
if (En)
begin
case (Din)
                     2'b00: Do = 4'b0001;
                     2'b01: Do = 4'b0010;
                     2'b10: Do = 4'b0100;
                     2'b11: Do = 4'b1000;
default: Do=4'bzzzz;
endcase
end
end
endmodule
```

TEST BENCH MODULE

Din = 2'b11; #100; end endmodule

Write HDL implementation for a 4-to-2 encoder. Simulate the same using structural model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module Encoder(Do, Din, En);
input En;
input [3:0] Din;
output [1:0]Do;
reg [1:0]Do;
always @ (En or Din)
begin
if (En)
begin
case (Din)
         4'b0001: Do = 2'b00;
         4'b0010: Do = 2'b01;
         4'b0100: Do = 2'b10;
         4'b1000: Do = 2'b11;
default: Do=2'bzz;
endcase
end
end
endmodule
```

TESTBENCH MODULE

Din = 4'b1000; #100; end

BEHAVIOR MODELING

Experiment 7

Write HDL implementation for a SR flip-flop using behavioral model. Simulate the same using behavioral model and depict the timing diagram for valid inputs.

```
MAIN MODULE
```

A=2'b01;#10 A=2'b10;#10 A=2'b11;#20 \$finish;

end endmodule

```
module SR_FF (sr, clk, q, qb);
input [1:0] sr;
input clk;
output reg q=1'b0;
output reg qb;
always @ (posedge clk)
begin
    case (sr)
              2'b00 : q = q;
                   2'b01 : q = 1'b0;
                   2'b10: q = 1'b1;
                   2'b11 : q = 1'bz;
    endcase
              qb = q;
    end
endmodule
TEST MODULE
module testsrflipf;
  reg [1:0] A;
 reg c;
 wire x, xb;
 SR_FF srff(A,c,x,xb);
 initial c=1'b0;
 always #5 c=\sim c;
 initial
  begin
  A=2'b00; #10
```


Write HDL implementation for a JK flip-flop using behavioral model. Simulate the same using behavioral model and depict the timing diagram for valid inputs.

```
MAIN MODULE
module JK_FF (jk, clk, q, qb);
input [1:0] jk;
input clk;
output reg q=1'b0;
output reg qb;
always @ (posedge clk)
begin
    case (jk)
                2'b00 : q = q;
                2'b01 : q = 1'b0 ;
                2'b10 : q = 1'b1 ;
                2'b11 : q = \sim q;
    endcase
           qb = q;
    end
endmodule
TEST MODULE
module testjkflipf;
 reg [1:0] A;
 reg c;
 wire x, xb;
 JK_FF jkff(A,c,x,xb);
 initial c=1'b0;
 always #5 c=\sim c;
 initial
  begin
  A=2'b00; #10
  A=2'b01;#10
  A=2'b10;#10
  A=2'b11;
  #20 $finish;
  end
```

endmodule

Write HDL implementation for a 4-bit right shift register using behavioral model. Simulate the same using behavioral model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module Rshiftregister( input clk, input clrb, input SDR, output reg [3:0] Q );
//serial in, parallel out
  always @ (posedge(clk), negedge(clrb))
  if (~clrb) Q<=4'b0000;
  else
     Q \le \{SDR, Q[3:1]\};
endmodule
TEST MODULE
module testRshiftregister;
  reg clk,clrb,SDR;
  wire [3:0]Q;
  Rshiftregister RS(clk, clrb, SDR, Q);
  initial
  begin
  clk = 1;
  clrb=0;
  SDR=1;
  #100
  clrb=1;
  SDR=1;
  #150
  SDR=0;
  #200 $finish;
//initial and always run in parallel and starts its execution at Ons
always #5 clk=~clk;
endmodule
```


Write HDL implementation for a 3-bit up-counter using behavioral model. Simulate the same using behavioral model and depict the timing diagram for valid inputs.

Main Module

```
module counter_behav ( count,rst,clk);
input rst, clk;
output reg [2:0] count;
always @(posedge (clk))
if (rst)
count \le 3'b000;
else
count \le count + 1;
endmodule
TEST MODULE
module testmod;
reg r,c;
wire [2:0] ct;
counter_behav countbeh (ct,r,c);
initial
begin
  r = 1;
  c=0;
  #100 r=0;
  #200 $finish;
//initial and always run in parallel and starts its execution at Ons
always #5 c=\sim c;
endmodule
```


DATA FLOW MODELING

Experiment 11

Write HDL implementation for AND/OR/NOT gates using data flow model. Simulate the same using data flow model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module gates(input a, b, output [2:0]y); assign y[2]= a & b; // AND gate assign y[1]= a | b; // OR gate assign y[0]= \sima; // NOT gate endmodule
```

TESTBENCH MODULE

```
modulegates_tb;
wire [2:0]y;
reg a, b;
gatesdut(.y(y), .a(a), .b(b));
initial
begin
a = 1'b0;
b = 1'b0;
#50;
a = 1'b0;
b = 1'b1;
#50;
a = 1'b1;
b = 1'b0;
#50;
a = 1'b1;
b = 1'b1;
#50;
end
endmodule
```


Write HDL implementation for a 3-bit full adder using data flow model. Simulate the same using data flow model and depict the timing diagram for valid inputs.

MAIN MODULE

```
module fa(a,b,cin,s,cout);
  input a,b,cin;
  output s,cout;
  assign s =a^b^cin;
  assign cout = (a&b) | (b&cin) | (cin&a);
endmodule
```

TEST MODULE

```
module fa_test;
  reg a,b,cin;
  wire s, cout;
  fa f1(a,b,cin,s,cout);
  initial
     begin
       a=1;
              b=1; cin=0;
       #5
       a=1;
              b=1; cin=1;
       #5
       a=0;
              b=1; cin=0;
       #100 $finish;
    end
endmodule
```

