美國職棒打者各項表現與長打率之

簡單線性迴歸分析

指導教授: 江振東 教授

學生:

106306042 資管三 陳姵廷

目錄

	2
壹、	摘要
貳、	3 研究動機與目的
參、	3 資料蒐集與研究方法
肆、	3 資料簡介
伍、	4 複迴歸模型
陸、	7 模型解釋
柒、	
	16 附錄

一、原始資料	
	16
、參考資料	
	18

壹、摘要

本報告為探討棒球選手的平均擊球初速與其長打率的關係,報告中選用了 199 位在 2019 年於美國職棒大聯盟有 100 打席以上之擊球員的「平均擊球初速」、「打擊率」、「滾飛比」、「衝刺速度」與「長打率」來配適簡單迴歸模型,藉此了解兩者間的關聯性。

根據研究結果·確實看見平均擊球初速的提升與擊球初速、打擊率以及滾飛 比有顯著相關·這三項變數可以解釋 71.8%的長打率變異·但衝刺速度與長打率卻沒 有明顯相關·因此不納入最後模型。

貳、研究動機與目的

棒球一直以來都是臺灣人民十分喜愛且熱衷的運動,從三級棒球賽事到職業棒球都備受國人矚目,更不用談論國際賽事的熱度。隨著時代不斷前進、科技不斷變更,各項體育賽事已不再單純只採用傳統訓練方式,而是引進「大數據」來為選手表現分析,再選用有別於傳統的訓練方式,而棒球也不例外。使用科學儀器測量進階數據在今天已不再只是職業棒球的專利,下至學生棒球也大量使用數據來幫助球員提升表現。

傳統上認為,把球打的「扎實」更能夠擊出「長打」來為球隊攻下更多的壘包, 以得到更多分數,而衝刺速度越高照理來說也應該可以獲取更多壘包。再者,飛球也 應比滾地球更不容易被守備方攔截而有更多時間來衝上下一個壘包。以及打擊率越高 也可以讓其他數據提升。我們好奇這觀念是否有其道理?在本次報告中,會從以上五項數據,探討一球員的各項表現與長打率之間的可能線性關係。

參、資料蒐集與研究方法

作者從體育相關網站 ESPN 取得美國大聯盟球員今年的擊球數據,由於母體數量過多,以隨機選取的 199 筆樣本作為研究依據。採用簡單線性迴歸的方法,先進行模型缺適性檢定,確定模型適當後,再進行一般線性檢定選擇要用完全模型或是可以用簡化模型,最後得知以此變數所建立的模型,能否很好的解釋我們手中的樣本資料。

X₁為 199 位美國大聯盟球員在 2019 年所有比賽中擊出球的平均擊球初速 (Average Exit Velocity)(單位:mph)

X2 為 199 位美國大聯盟球員在 2019 年所有比賽中的打擊率 (Hitting Average)(單位:無)

X₃ 為 199 位美國大聯盟球員在 2019 年所有比賽中的滾飛比 (Ground to Fly Ratio)(單位:無)

X4 為 199 位美國大聯盟球員在 2019 年所有比賽中平均的衝刺速度 (Sprint Speed)(單位:yard/sec)

Y 軸為此 199 位美國大聯盟球員在 2019 年所表現的的長打率(Slugging Percentage)·字面上意思為出現長打的機率·但實際意義是指「每一次打擊可以貢獻 幾個壘包」。

兩者資料皆取自 ESPN(美國娛樂與體育節目電視網)的 2019 Regular Season MLB baseball batting statistics

(http://www.espn.com/mlb/stats/batting/_/minpa/100)

我們選取當中普遍大眾認為最有關係的兩種數據進行研究分析。

肆、資料簡介

以下將對本報告中的兩變數做簡單介紹:

一、解釋變數(X1):

為 2019 年於美國職棒大聯盟出賽之打者個別於比賽中擊出球之平均初速· 根據 ESPN 網站所蒐集之資料·在 2019 年至少打 100 打席(PA)的打者之總 體平均擊球初速為 88.29(mph)。

在報告所抽出的 199 個樣本中,平均值為 88.478(mph),代表報告所抽出的打者有大多數高於聯盟平均;中位數為 88.6、表示資料左偏,作者認為造成這種現象的原因應該是因為抽樣的關係,且此左偏不顯著,所以認為這個左偏的資料不會造成太大的問題。樣本資料之最大值 90.4(mph)同為母體資料之最大值,最小值 80.4(mph)也為母體資料中第二小的值,因此認為此樣本可繼續進行後續分析。

Average S.D.	Median	Min.	Max.
--------------	--------	------	------

88.478	2.56	88.6	80.4	95 9
00.470	2.30	00.0	00.4	33.3

二、解釋變數(X₂):

為 2019 年於美國職棒大聯盟出賽之打者於該年的打擊率,根據 ESPN 網站 所蒐集之資料,在 2019 年至少打 100 打席 (PA)的打者之總體平均打擊率為 0.254。

在報告所抽出的 199 個樣本中·平均值為 0.256·代表所抽出的打者有大多數高於聯盟平均;中位數為 0.259·表示資料左偏·作者認為造成這種現象的原因應該是因為抽樣的關係·且此左偏不顯著·所以認為這個左偏的資料不會造成太大的問題。

Average	S.D.	Median	Min.	Max.
0.257	0.036	0.259	0.157	0.334

三、解釋變數(X3):

為 2019 年於美國職棒大聯盟出賽之打者於該年的滾飛比,根據 ESPN 網站所蒐集之資料,在 2019 年至少打 100 打席 (PA)的打者之 總體平均滾飛比為 0.72。

在報告所抽出的 199 個樣本中·平均值為 0.75·代表所抽出的打者有大多數高於聯盟平均;中位數為 0.74·表示資料右偏·作者認為造成這種現象的原因應該是因為抽樣的關係·且此右偏不顯著·所以認為這個右偏的資料不會造成太大的問題。

Average	S.D.	Median	Min.	Max.
0.75	0.31	0.74	0.00	1.74

四、解釋變數(X4):

為 2019 年於美國職棒大聯盟出賽之打者於該年的衝刺速度,根據 ESPN 網站所蒐集之資料,在 2019 年至少打 100 打席 (PA)的打者之 總體平均衝刺速度為 27.02。

在報告所抽出的 199 個樣本中,平均值為 26.98,代表所抽出的打者有大多數高於聯盟平均;中位數為 27.00,表示資料左偏,作者認為造成這種現象的原因應該是因為抽樣的關係,且此左偏不顯著,所以認為這個左偏的資料不會造成太大的問題。

Average	S.D.	Median	Min.	Max.
26.98	1.51	27.00	22.50	30.80

五、反應變數(Y):

為 2019 年於美國職棒大聯盟出賽之打者個別於該年球季所表現的長 打率、根據 ESPN 網站所搜蒐集之資料、在 2019 年至少打 100 打席 (PA)的打者之總體平均長打率為 0.438。

在報告所抽出的 199 個樣本中,平均值為 0.443,表示 200 位打者中有多數球員高於聯盟平均;中位數為 0.438,表示資料輕微右偏。

Average	S.D.	Median	Min.	Max.
0.44	0.09	0.44	0.22	0.67

在上面五筆資料中,雖然都有產生一點右偏或左偏,但作者認為任一筆資料都沒有過於顯著的左偏或右偏,因此決定繼續使用此資料。

伍、複迴歸模型

一、圖形觀察

觀察圖形可以得知一些初步的資訊:

- 1. AEV 與 SLG 有很高的正相關
- 2. AVG 與 SLG 也有很高的正相關
- 3. GF 與 SLG 的相關性較不明顯
- 4. AEV 與 AVG 兩自變數間可能存在共線性

二、變數選擇

(一)、全面執行 F 檢定

 $H_0: B_1 = B_2 = B_3 = B_4 = 0$

H₁: 並非所有 B_k 都為 0。

	Ana	alysis of V	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	1.08477	0.27119	137.51	<.0001
Error	194	0.38261	0.00197		
Corrected Total	198	1.46738			

Root MSE	0.04441	R-Square	0.7393
Dependent Mean	0.44169	Adj R-Sq	0.7339
Coeff Var	10.05453		

由於 p-value < 0.0001 · 因此我們拒絕 Ho · 也就表示這些自變數的體迴歸效應是顯著的(至少有一個 X 與 Y 有關) 。

(二)、目標

整

本報告的目標是找出一個模型,能夠很好的解釋手中的資料。因此根據此目的,在此採用的模型準則可以使用 R2 或 AIC 或 SBC。然而,因為一開始只有選擇四個可能的自變數來做推論,因此不太會有自變數過多的問題,而作者也沒有特別想要找一個自變數個數少的模型,因此在這樣的情形之下,決定採用AIC 當作主要的當作我們主要的模型挑選準則。而進一步的,也會額外注意 R2 是否夠大,因為 R2 也是評估模型能否很好的解釋目前手中資料的指標。

(三)、結果

利用 AIC 準則・並且以 R_2 作為輔助來選擇模型・以下為模型篩選的結果。

Number in Model	R-Square	AIC	Variables in Model
1	0.4780	-1102.4059	AVG
1	0.3750	-1066.5873	AEV
1	0.0593	0.0593 -985.2233 GF	
1	0.0052	-974.0949 SS	SS
2	0.6839	-1200.2310	AEV AVG
2	0.5374	-1124.4622	AVG GF
2	0.4787	-1100.7039	SS AVG
2	0.4278	-1082.1449	AEV SS
2	0.4076	-1075.2598	AEV GF
2	0.0699	-985.4774	SS GF
3	0.7223	-1224.0197	AEV AVG GF
3	0.6961	-1206.0674	AEV SS AVG
3	0.5374	-1122.4647	SS AVG GF
3	0.4698	-1095.3119	AEV SS GF
4	0.7393	-1234.5541	AEV SS AVG GF

由此結果可以看出,模型同時放入 AEV、SS、AVG 與 GF 時,AIC 有最小值 -1234.55。而同時放入 AEV、AVG 與 GF 時,AIC 有次小值 -1224.02。然而因為這兩個值非常接近,因此再以 R2 做進一步判斷。透過觀察 R2 可以看出,放入 AEV、SS、AVG 與 GF 的模型 R2 為 0.7393,而放入 AEV、AVG 與 GF 的模型的 R2 為 0.7223。因為這兩個 R2 的差距對結果而言是微小的差距,我們認為不需要為了增加這一點 R2 而添加自變數,因此最後決定採用放入 AEV、AVG 與 GF 的模型。

三、模型配適

因為作者決定要將 AEV、AVG 與 GF 三個自變數放入模型,因此回過頭觀察第一部分圖表的結果,發現 AEV 與 AVG 兩自變數間可能存在共線性,因此在之後的模型調整上需要特別注意。

首先觀察模型 E(Y) = B₀ + B₁ (AEV) + B₂ (AVG) + B₃ (GF)

	An	al	ysis of V	ar	iance			
Source	DF	5	Sum of Squares	S	Mean quare	FV	alue	Pr > F
Model	3		1.05989	0	.35330	16	69.07	<.0001
Error	195		0.40749	0	.00209			
Corrected To	tal 198		1.46738					
Root MS	SE		0.0457	1	R-Squ	are	0.722	23
Dependent Mean Coeff Var		an 0.44169 Adj R-		Sq	0.718	30		
		10.3495	9					

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Type I SS	Type II SS	Variance Inflation		
Intercept	1	-1.17775	0.11215	-10.50	<.0001	38.82265	0.23047	0		
AEV	1	0.01478	0.00130	11.39	<.0001	0.55027	0.27133	1.07938		
AVG	1	1.38457	0.09314	14.86	<.0001	0.45324	0.46173	1.06763		
GF	1	-0.05550	0.01069	-5.19	<.0001	0.05638	0.05638	1.01177		

發現所有自變數都是顯著的。再者,因為資料中沒有重複的觀測值,因此不適合進行 Lack of Fit Test,也就是到此為止初步模型建構完成。

接下來探討是否需要加入高次項或交互作用項。

首先探討高次項的部分。由期中報告的結果可以知道,擊球初速 與長打率之間的關聯性可以以線性關係解釋;而打擊率是一次打擊中能 站上壘包的機率,因此認為若打擊率越高,則長打率的提升會是線性關 係,應該不存在二次項的關係;最後,滾飛比的計算是由滾地球除以飛 球數,因此合理推測,若是長打率越高,則飛球數應該也會越多,也因 此滾飛比會越低,也就表示長打率跟滾飛比應該是呈現負相關,而由圖 形與上面表格中的負係數可以應證此推測,因為是呈現反比的關係,因此負相關的線性關係就足以表達兩者之間的關係。可以由以下邊際迴歸圖來確認以上猜測,由邊際迴歸圖可以看出,並沒有存在二次以上的曲線的 pattern,因此可以再次得證不需要加入高次項。

再者,探討交互作用向的必要。首先,本報告認為擊球初速與滾飛比有可能會產生交互作用項。也就是本報告認為在擊球初速提升的情況下,對於長打率的影響,會與此名球員打擊的滾飛比有關。因為傳統上知道飛球造成長打的機率較高,因此若是在滾飛比低(即飛球較滾地球多)的情況下,長打的機率可能也會較高。因此本報告認為擊球初速對於長打率的提升效果,可能會仰賴於滾飛比是否夠低,也因此推測擊球初速與滾飛比可能會產生交互作用項。以下將這兩個自變數的交互作用項加入模型後,進行配滴與確認。

1	The S	AS Sys	tem	
Т		EG Procedel: MODE		
Test test4 Resi	ults fo	r Depend	ent Varial	ole SLG
Source	DF	Mean Square	F Value	Pr > F
Numerator	1	0.02786	14.24	0.0002
	194	0.00196		

本報告透過一般線性檢定對擊球初速與滾飛比的交互作用項進行檢定,透過此邊際檢定判斷在其他變數存在模型的前提下,此交互作用項是否由提供足夠的貢獻。

$$H_0: E(Y) = B_0 + B_1 (AEV) + B_2 (AVG) + B_3 (GF)$$

$$H_1: E(Y) = B_0 + B_1 (AEV) + B_2 (AVG) + B_3 (GF) + B_4 (AEV)*(GF)$$

因為由上圖得知 p-value = 0.0002 < 0.05,因此拒絕 Ho ,表示表示此 交互作用項對模型有明顯的邊際貢獻。且再觀察下圖,發現此交互作用項 的係數為負,這與先前作者的猜想(在滾飛比低的情況下,擊球初速對於 長打率的提升影響較高)一致。

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Type I SS	Type II SS	Variance Inflation	
Intercept	1	-2.30307	0.31735	-7.26	<.0001	38.82265	0.10306	0	
AEV	1	0.02754	0.00361	7.64	<.0001	0.55027	0.11408	8.91365	
AVG	1	1.40366	0.09028	15.55	<.0001	0.45324	0.47306	1.07100	
GF	1	1.35817	0.37477	3.62	0.0004	0.05638	0.02570	1329.12382	
INTER	1	-0.01612	0.00427	-3.77	0.0002	0.02786	0.02786	1315.75319	

然而,雖然此交互作用項為統計顯著,且所有自變數也都為統計顯著,但作者發現原先滾飛比(GF)的係數應為負,但在加入交互作用項後卻變為正數,且又發現滾飛比與新加入的交互作用項,這兩者的變異數膨脹

因子(VIF)都非常高,因此可以知道滾飛比與此新加入的交互作用項有過高的共線性,因此本報告最後仍然決定不加入該交互作用項。

四、離群值探討

至此為止,我們選擇的模型為 E(Y) = B₀ + B₁ (AEV) + B₂ (AVG) + B₃ (GF)

接下來要找出離群值,並研究其對模型的影響,以決定該如何處理。 首先,透過 h_{ii} 找出 X 的離群值。若此槓桿值 h_{ii} 超過兩倍的平均槓桿值, h_{ii} > (2p)/n = 2*4/199 = 0.04,則認定其槓桿值過高,認定為離群 X值。

4	0.0338	0.7711	0.0814	1.0977	0.2295	0.2231	-0.2136	-0.0058	-0.0280
84	0.0146	0.3283	0.0586	1.0820	0.0819	-0.0375	0.0518	-0.0697	0.0012
	·	· ·							
93	-0.0543	-1.2322	0.0673	1.0609	-0.3311	-0.1762	0.1891	-0.1724	0.2406
140	0.0287	0.6494	0.0684	1.0863	0.1760	0.0574	-0.0639	-0.0055	0.1475
154	0.0832	1.8871	0.0565	1.0060	0.4618	0.3883	-0.3660	-0.0888	0.1192
174	-0.0576	-1.2971	0.0527	1.0409	-0.3058	0.0047	-0.0707	0.2715	0.0960
		-							
191	-0.0389	-0.8800	0.0642	1.0735	-0.2304	0.0741	-0.0509	-0.0413	-0.2121

透過觀察 SAS 結果,發現以上幾筆 X 離群值。

接下來要找離群 Y 值,我透過 Studentized Deleted Residuals 判 斷,

若此值大於 1.96 · 則認定為離群 Y 值。

6	0.0902	1.9935	0.0062	0.9471	0.1574	0.0599	-0.0548	-0.0083	0.0279
28	-0.1159	-2.6369	0.0465	0.9299	-0.5822	-0.3219	0.2872	-0.0581	0.4968
56	0.0950	2.1199	0.0208	0.9513	0.3093	-0.0737	0.1283	-0.1990	-0.1478
72	0.1000	2.2345	0.0220	0.9428	0.3348	0.1269	-0.1749	0.2217	0.1289
12	0.1000	2.2345	0.0220	0.9420	0.3340	0.1209	-0.1749	0.2217	0.1209
78	-0.1166	-2.6110	0.0179	0.9053	-0.3523	0.2880	-0.2975	0.0688	-0.0584
103	-0.0899	-2.0169	0.0348	0.9734	-0.3831	-0.1028	0.1663	-0.3444	0.0307
87	-0.1243	-2.8308	0.0442	0.9083	-0.6084	0.2941	-0.3647	0.4388	-0.2958
129	-0.1041	-2.3143	0.0097	0.9244	-0.2289	0.1222	-0.1032	-0.0860	-0.0451
132	0.0984	2.1961	0.0201	0.9442	0.3142	-0.0965	0.0871	0.1230	-0.1991
134	0.1185	2.6474	0.0113	0.8958	0.2830	-0.1815	0.1788	0.0374	-0.0526
147	0.1002	2.2250	0.0090	0.9313	0.2118	-0.1296	0.1367	-0.0207	-0.0146
148	0.1002	2.2250	0.0090	0.9313	0.2118	-0.1296	0.1367	-0.0207	-0.0146
185	0.0986	2.1920	0.0119	0.9368	0.2406	-0.0369	0.0584	-0.0305	-0.1653
193	-0.0886	-1.9919	0.0385	0.9791	-0.3988	-0.1215	0.1059	-0.0781	0.3619

透過觀察 SAS 結果,我們發現以上幾筆 Y 離群值。

接下來透過 DFFITS 與 DFBETAS 判斷離群值對模型的影響,依據排序後的結果,發現第 28、87、154 三筆資料為對參數估計與回歸模型配適有嚴重影響 的離群值。針對此三筆資料探討,本報告認為離群職應該只是球員個別表現差異的 結果,沒有很強烈的理由刪除。

五、殘差討論

可以利用 Studentized Residuals 與常態機率百分位數對照圖判斷 是否違反殘差常態分配的原則。由下圖看出,並沒有明顯的證據指出本報告模型的殘差違反常態分配。

此外,可以再透過底下標準化殘差對配適值的散佈圖看出,標準 化殘差的變異並沒有產生明顯 pattern,也就表示殘差沒有因為配適值的不 一樣而有特別的變化,因此模型應該是沒有違反殘差同值性變異數的假設。

陸、模型解釋

最終配適出此迴歸模型

E(Y) = -1.1778 + 0.0148 (AEV) + 1.3846 (AVG) - 0.0555 (G/F)

柒、結論

在搜集三個自變數(平均擊球初速、打擊率、滾飛比)的水準以後,便能利用此模型去估計或預測某一位棒球員的長打率。也可以利用此模型去了解自變數與反應變數的關係,首先是平均擊球初速,有較輕微的正相關,與前一次的期中報告相符,當時的平均擊球初速只能解釋大約四成的長打率變化。再來是打擊率,正係數 1.3846 是本報告模型中三個自變數中係數絕對值最大的,代表著打擊率這個自變數對模型預測變化最大,且很明顯的,打擊率越高,長打率就很可能越高。最後一個自變數則是滾飛比,係數為不大的負值。

對於模型的殘差分析以及可能需要的補救,利用 studentized residuals 與常態機率百分位數對照圖檢驗過,並沒有明顯的證據指出此模型的殘差違反常態分配,再透過標準化殘差對配適值的散佈圖,標準化殘差的變異沒有特別明顯的 pattern,沒有因為配適值的變動而不同。

此模型有令作者感到滿意的結果,複判定係數 R-Square=0.7223·代表著長打率的變異中,有72.23%是能透過此模型去預估的,若考量自由度而去做調整,調整過後的解釋程度依然高達71.8%·下降很少。比起期中報告時只有平均擊球初速單變數時的 R-square=0.4364·模型的解釋能力已顯著提升。

捌、附錄

一、原始資料

	AVG Exit			AVG Exit	
Player Name		SLG	Player Name		SLG
A.J. Pollock	90.5	0.468	Jonathan Schoop	87.5	0.473
Aaron Judge	95.9	0.54	Jonathan Villar	87.7	0.453
Adalberto Mondesi	87.9	0.424	Jorge Polanco	87	0.485
Adam Eaton	86.6	0.428	Jose Abreu	92.1	0.503
Adam Engel	84.1	0.383	Jose Altuve	86.1	0.55
Adam Frazier	86.3	0.417	Jose Martinez	88.6	0.41
Addison Russell	86.3	0.391	Jose Osuna	89.2	0.456
Adeiny Hechavarria	87.5	0.443	Jose Ramirez	89.1	0.479
Albert Almora Jr.	85.2	0.381	Josh Donaldson	92.9	0.521
Aledmys Diaz	88.3	0.467	Josh Harrison	85.3	0.263
Alex Gordon	88.2	0.396	Josh Phegley	83.7	0.411
Andrew McCutchen	90.6	0.457	Josh Reddick	86	0.409
Anthony Rendon	90.4	0.598	Josh VanMeter	89.7	0.408
Anthony Santander	89.6	0.476	Jung Ho Kang	92.2	0.395
Aristides Aquino	87.9	0.576	Jurickson Profar	86.7	0.41
Austin Barnes	86.9	0.34	Justin Bour	89.2	0.364
Austin Nola	87.1	0.454	Justin Turner	90.2	0.509
Ben Gamel	88.2	0.373	Keon Broxton	85.4	0.275
Brad Miller	91.6	0.565	Kevan Smith	89.4	0.393
Brandon Belt	86.4	0.403	Kevin Kiermaier	88.9	0.398
Brandon Drury	86.9	0.38	Kevin Pillar	86	0.432
Brandon Nimmo	88.1	0.407	Kevin Plawecki	85.5	0.342
Brett Gardner	87.2	0.503	Kolten Wong	83.6	0.423
Brian Anderson	89.9	0.468	Kyle Farmer	85	0.41
Brian Dozier	88.3	0.43	Kyle Schwarber	92.7	0.531
Brian Goodwin	87.3	0.47	Kyle Seager	89.3	0.468
Brian McCann	88.6	0.412	Leonys Martin	84.7	0.343
Bubba Starling	80.4	0.317	Luke Voit	89.7	0.464
Buster Posey	88.4	0.368	Maikel Franco	89	0.409

		I	1		
C.J. Cron	91	0.469	Manuel Margot	86.5	0.387
Cameron Maybin	88.8	0.494	Marcus Semien	88.8	0.522
Carlos Correa	89	0.57	Mark Canha	89.1	0.517
Carlos Santana	91.8	0.515	Marwin Gonzalez	90.4	0.414
Carson Kelly	89	0.478	Matt Beaty	89.4	0.458
Chad Pinder	90.5	0.416	Matt Carpenter	87.2	0.392
Charlie Tilson	86.9	0.285	Matt Chapman	92.6	0.506
Chris Owings	86.8	0.233	Matt Duffy	87	0.327
Chris Taylor	85.2	0.462	Matt Joyce	87.3	0.45
Christian Walker	91.1	0.476	Matt Olson	91.9	0.545
Christian Yelich	93.1	0.671	Matt Wieters	88.8	0.435
Clint Frazier	88.4	0.489	Max Kepler	89.7	0.519
Cody Bellinger	90.7	0.628	Max Muncy	89.7	0.515
Cole Tucker	87	0.361	Melky Cabrera	87.9	0.399
Colin Moran	88.2	0.429	Michael Brantley	88.7	0.503
Corey Dickerson	87.1	0.565	Michael Chavis	88.8	0.444
Curt Casali	87.2	0.411	Miguel Rojas	87.1	0.379
Curtis Granderson	88.1	0.356	Miguel Sano	94.4	0.576
Daniel Vogelbach	88.9	0.439	Mike Ford	91.9	0.559
Dansby Swanson	89.8	0.422	Mike Trout	90.7	0.645
David Bote	89.7	0.422	Mitch Moreland	90.8	0.507
David Fletcher	83.7	0.384	Neil Walker	86.2	0.395
David Freese	91.5	0.599	Nelson Cruz	93.7	0.639
David Peralta	90.1	0.461	Nicholas Castellanos	89	0.525
Dee Gordon	83	0.359	Nick Ahmed	87.5	0.437
Delino DeShields	82.9	0.347	Nomar Mazara	89.1	0.469
Derek Dietrich	86.9	0.462	Oscar Mercado	86.5	0.443
Dexter Fowler	85.2	0.409	Ozzie Albies	88.8	0.5
Domingo Santana	89	0.441	Pablo Reyes	87.7	0.322
Donovan Solano	87.1	0.456	Pablo Sandoval	89.3	0.507
Dwight Smith Jr	88.7	0.412	Paul DeJong	87	0.444
Dylan Moore	87.5	0.389	Paul Goldschmidt	90.1	0.476
Eduardo Escobar	87.8	0.511	Pedro Severino	87.2	0.42
Eduardo Nunez	87.8	0.305	Raimel Tapia	87.4	0.415
Edwin Encarnacion	90	0.531	Robbie Grossman	87.7	0.348
Elias Diaz	87.6	0.307	Robinson Cano	90.8	0.428
Eloy Jimenez	91.2	0.513	Ronald Acuna Jr.	90.6	0.518

Enrique Hernandez	88.4	0.411	Ronald Guzman	85.6	0.414
Eric Hosmer	90.5	0.425	Ronny Rodriguez	87.3	0.438
Eric Sogard	84.7	0.457	Ryan Braun	91.2	0.505
Francisco Cervelli	86.4	0.348	Ryan McMahon	91.4	0.45
Franmil Reyes	93.3	0.512	Ryan O'Hearn	90.5	0.369
Freddie Freeman	89.7	0.549	Ryan Zimmerman	91.4	0.415
Freddy Galvis	88.2	0.438	Ryon Healy	89.7	0.456
Gary Sanchez	91	0.525	Sam Travis	88.9	0.382
Gleyber Torres	89	0.535	Sandy Leon	83.6	0.297
Grayson Greiner	86.3	0.308	Shed Long	87.6	0.454
Hanser Alberto	82.8	0.422	Shin-Soo Choo	91.3	0.455
Hernan Perez	87.9	0.379	Shohei Ohtani	92.8	0.505
Howie Kendrick	91.6	0.572	Starlin Castro	88.6	0.436
Hunter Dozier	91.1	0.522	Teoscar Hernandez	91.1	0.472
Ian Desmond	90.6	0.479	Tim Beckham	87.5	0.461
Ian Kinsler	83.6	0.368	Tim Locastro	83.4	0.34
Ildemaro Vargas	86.8	0.413	Tom Murphy	90.6	0.535
Isiah Kiner-Falefa	86.9	0.322	Tomas Nido	86.4	0.316
J.D. Davis	91.4	0.527	Tommy Pham	90.8	0.45
J.D. Martinez	91.3	0.557	Travis d'Arnaud	90	0.433
Jackie Bradley Jr.	89.7	0.421	Trea Turner	90.3	0.497
James McCann	89.9	0.46	Ty France	88.9	0.402
Jarrod Dyson	82	0.32	Welington Castillo	89.5	0.417
Jason Castro	91.5	0.435	Willians Astudillo	85.8	0.379
Jason Heyward	88.6	0.429	Willie Calhoun	89.7	0.524
Jason Kipnis	86.7	0.41	Xander Bogaerts	90.6	0.555
Jay Bruce	90	0.523	Yadier Molina	87.4	0.399
Jean Segura	88	0.42	Yairo Munoz	84.7	0.355
Jeff Mathis	85.7	0.224	Yan Gomes	87.6	0.389
Joey Gallo	93	0.598	Yandy Diaz	91.7	0.476
Johan Camargo	86.7	0.384	Yasiel Puig	89.9	0.458
John Hicks	87.4	0.379	Yoan Moncada	92.8	0.548
Jon Jay	80.6	0.315	Yonder Alonso	87.9	0.346
Jonathan Lucroy	87	0.355	Yordan Alvarez	92.2	0.655

三、參考資料(資料來源):

http://www.espn.com/mlb/stats/batting/_/year/2019/seasontype/2