

Departamento de Matemática, Universidade de Aveiro

Cálculo II — Agrup. IV Exame Final; 13 de junho de 2018

Duração: 2h45

Justifique todas as respostas e indique os cálculos efetuados -

Sabendo que a série numérica de termos positivos $\sum_{n=1}^{+\infty} u_n$ é convergente e que a série de potências $\sum_{n=0}^{+\infty} u_n(x-2)^n$ tem raio de convergência R=1, determine, justificando detalhadamente, o domínio de convergência da série de potências.

[20pts]

- 2. Seja $f(x) = \ln x, x \in \mathbb{R}^+$.
 - (a) Determine o polinómio de Taylor de f de ordem 3 centrado em c=1, isto é, $T_1^3f(x)$.
 - (b) Mostre que o erro absoluto cometido ao aproximar $\ln(\frac{3}{2})$ usando $T_1^3 f(\frac{3}{2})$ é inferior a $\frac{1}{64}$.

[20pts

3. Considere a série de funções

$$\sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^3 + \sqrt{n} + 2}$$

- Mostre que a série converge uniformemente em R.
- (b) Denotando por S a função soma da série, calcule, justificando, $S'(\pi)$.

Seja g a função real de variável real 2π -periódica tal que $g(x)=3x, \ -\pi \leq x < \pi$. Determine a série de Fourier de g.

- Seja g a função de domínio \mathbb{R}^2 tal que $g(x,y)=\left\{ egin{array}{ll} \frac{x^2-3y}{x^2-y} & \text{se } y \neq x^2 \\ 0 & \text{se } y=x^2 \end{array}
 ight.$
 - (a) Determine a curva de nível 2 de g e faça o seu esboço gráfico.
 - (b) Mostre que g não é contínua em (0,0).
 - (c) g é diferenciável em (0,0)? Justifique.

- Seja f a função de domínio \mathbb{R}^2 tal que $f(x,y)=x^3+y^2-2xy$.
 - (a) Determine os pontos críticos de f.
- (b) Mostre que o ponto $(\frac{2}{3}, \frac{2}{3})$ é um minimizante local de f, averiguando se existem outros extre-
- (d) O ponto $(\frac{2}{3}, \frac{2}{3})$ é minimizante global de f? Justifique.

Resolve a equação diferencial de Bernoulli $y' + xy = -e^{x^2}y^3$

Determine a solução geral da EDO exata $xe^{2y}dx + (y+x^2)e^{2y}dy = 0$

Encontre a solução geral da EDO linear y'' + 3y = 2

Usando transformadas de Laplace, resolva o problema de valores iniciais $\begin{cases} y'' + 6y' + 9y = 0 \\ y(0) = -1 \end{cases}$

Digitalizada com CamScanner

3. $+\infty$ $n = 1$ $n^3 + \sqrt{n} + 2$
a) $(os(nx))$ ≤ 1 $= an$ $n^3 + \sqrt{n} + a$ $= an$
$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{1}{n^3 + \sqrt{n} + 2} = 1 = 0$
Como em an é o, entad é uma série convergente.
Logo, a série numérica $\frac{1}{n-1}$ $\frac{\cos(n\pi)}{n^3+\sqrt{n+a}}$ é uma série $\frac{1}{n^3+\sqrt{n+a}}$
con vergente.
Atendando ao cartério de Weierstrass, uma cez que:
$\frac{1}{n^3+\sqrt{n+2}} < \frac{1}{n^3+\sqrt{n+2}}, \forall n > n_0, \forall x \in D \in a$
rérie de termes not regatives 2 an éconvergente, entat
podemos concluir que $\frac{1}{2}$ cos $(n\pi)$ é uniformemente $n=1$ $n^3+\sqrt{n}+2$
consergente em todo o reu domínio IR.

Digitalizada com CamScanner

5. g funçad de dominio IR ² $g(x_1y) = \begin{cases} \frac{\chi^2 - 3y}{\chi^2 - y}, & y \neq x^2 \\ \frac{\chi^2 - 3y}{\chi^2 - y}, & y = x^2 \end{cases}$	
Para K > 0, a more de nivel de 17 de g é	
CK = } (neg) < 1R2: M2-34 = K	
$C_{2} = \left\{ (x_{1}y) \in \mathbb{R}^{2} : x^{2} - 3y = 2 \right\}$	
= } (n 14) < 12 2: 71 2 - 34 = 2 (x 2 - 4) 4	
$= \frac{3(n_1y) \in \mathbb{R}^2}{n^2 - 3y = 2n^2 - 2y}$	
= 3 (ny) < 12 2 = 43 4 4 7 parábola	
4=-1	
b.) Para au g reja continua em (0,0),	
(x,y) = (0,0)	
g(0,0) = 0	
· lim g(x,y) (0,0)	
Consideration of conjuntor $R_1 = \frac{1}{3}(x_1y_1) \in \mathbb{R}^3$: $x_1 = 0$ (e) $R_2 = \frac{1}{3}(x_1y_1) \in \mathbb{R}^3$: $y_1 = 0$ (
$= \lim_{(x,y)\to(0,0)} \frac{0^2 - 3y}{0^2 - y} = \lim_{(x,y)\to(0,0)} \frac{-3y}{-y} = 3$	
Digitalizada com CamSo	

Digitalizada com CamScanner

le R2 Qm y)->(0,0) N2	2 = 1	(y) CBa	x2 - 0		
o amites	não são	5 iguais	, podemos	concluix	que
ō é continu	a em (0,0).			
g não é c	ontinuci	em (0,0	1 pois	(x, y)-(0	(1) g(1,4)
o g nao é	diferenci	ável.	12		
				12014	

6. função f de dominio IR 2 e(1,y) = x 3 + y 2 - 2xy
a) pontos exiticos
$\frac{\partial f(n,y)}{\partial n} = 3n^2 - 2y$, $\frac{\partial f(n,y)}{\partial y} = 2y - 2n$
V f(n,y) = (3n2-2y, 2y-2n) = (0,0)
$3x^2 - 2y = 0 \qquad (=) \qquad 3x^2 - 2x = 0$ $3y - 2x = 0 \qquad 2y = 2x$
$(=) \begin{cases} x(3x-2)=0 \\ y=x \end{cases} y=x \qquad \begin{cases} y=x \end{cases} $
$y = 0$ $y = \frac{1}{3}$ $y = \frac{1}{3}$
Pooto critico: $(0,0)$, $\left(\frac{2}{3},\frac{2}{3}\right)$
b) $\frac{\partial^2 f}{\partial x^2} (x,y) = 6x + \frac{\partial^2 f}{\partial y^2} (x,y) = 2$ $\frac{\partial^2 f}{\partial x^2} (x,y) = -2 = \frac{\partial^2 f}{\partial y^2} (x,y)$
Matrit Herriana: $H(x_1y) = \begin{cases} \frac{\partial^2 f}{\partial x^2} & (x_1y) \\ \frac{\partial^2 f}{\partial y \partial x} & (x_1y) \end{cases} \xrightarrow{\partial^2 f} (x_1y)$ $\frac{\partial^2 f}{\partial y \partial x} & (x_1y) \xrightarrow{\partial^2 f} (x_1y)$
$H(x_1y) = \begin{bmatrix} 6x & -2 \\ -2 & +2 \end{bmatrix}$

$$\left(\frac{1}{3},\frac{2}{3}\right) = \left(\frac{1}{3},\frac{1}{3}\right) = \left(\frac{4}{-3} - \frac{2}{4}\right)$$

$$\frac{1}{3},\frac{2}{3} = \frac{4}{3} \times 2 - (+3) \times (-3) = 8 - 4 = 4$$

$$\frac{1}{3} \times \frac{1}{3} = \frac{4}{3} \times 2 - (+3) \times (-3) = 8 - 4 = 4$$

$$\frac{1}{3} \times \frac{1}{3} = \frac{4}{3} \times 2 - (+3) \times (-3) = 8 - 4 = 4$$

$$\frac{1}{3} \times \frac{1}{3} = \frac{4}{3} \times \frac{1}{3} = \frac{2}{3} \times \frac{1}{3} = \frac{4}{3} = \frac{4}{3} = \frac{4}{3} = \frac{4}{3} = \frac{4}{3} = \frac{4}{3} = \frac{4}{3}$$

Digitalizada com CamScanner

```
9. Rosolver a EDO linear
     4" + 34 = 2
    · Solução homogénea
              y" + 3y = 0
       Usando polinómio caxacterístico: p(x) = x^2 + 3 = 0

(3) x^2 = -3 (3) x = \pm \sqrt{3}i
                                            B = 53
         SFS = \frac{1}{2} e^{\alpha} \cos(\beta x), e^{\alpha} \sin(\beta x)! =
= \frac{1}{2} e^{\alpha} \cos(\sqrt{3} x), e^{\alpha} \sin(\sqrt{3} x)! =
                 = 3 cos ( \( \bar{3} \times \), \( \alpha \) \( ( \bar{3} \times \) \)
                4 (1) C1 cos (J3x) + C, sen(J3x), C1, C2 EIR
  · Solução particular
y" + 34 = 2
    b(x) = \beta m e^{\alpha x} \cos(\beta x)
        0 = m usco
  Como a+ Bi = 0 + 0i = 0 não é xaz do polinómio
   característico, entad K = 0
```


10 -
$$\frac{1}{3}$$
 to $\frac{1}{3}$ to