PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10090226 A

(43) Date of publication of application: 10.04.98

(51) Int. CI

G01N 27/62 G01N 27/64 G01N 33/68

(21) Application number: 08263460

(22) Date of filing: 11.09.96

(71) Applicant:

SHIMADZU CORP

(72) Inventor:

TANAKA KOICHI

(54) METHOD FOR DETERMINING AMINO ACID **SEQUENCE IN PEPTIDE**

(57) Abstract:

PROBLEM TO BE SOLVED: To facilitate the generation of a decomposed ion and allow the application to various peptides in a wide range by preliminarily connecting amino acid having charges to the terminal of a peptide molecule to be analyzed.

SOLUTION: As the matrix to be connected to the terminal of a peptide molecule, nicotinic acid, sinapic acid, 2,5-dihydroxy benzoic acid or the like is used. When the laser beam from a nitrogen laser oscillator 1 is reflected by a mirror 2 and emitted to a sample (peptide to be analyzed) 5, the generated ion 7 is drawn to the right by the application of a voltage VO, and flies in parallel by the voltage VL of an ion lens 6. When the voltage VD of a deflecting plate 8 and the voltage VR of a reflector 9 are 0, the ion linearly flies and reaches a detector 10, whereby it is measured with high sensitivity. In contrast to this, since the ion 7 is reversed within the reflector with VD=0, [VR>VO], and reaches a detector 11, it is measured with particularly

high precision and high resolution.

COPYRIGHT: (C)1998,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-90226

(43)公開日 平成10年(1998) 4月10日

(51) Int.Cl. ⁶		識別記号	FΙ		
G01N	27/62		G 0 1 N	27/62	В
				•	K
	27/64			27/64	В
	33/68			33/68	

	-			
		審査請求	未請求 請求項の数3 FD (全 7 頁)	
(21)出願番号	特顧平8-263460	(71)出願人	000001993 株式会社島津製作所	
(22)出顧日	平成8年(1996)9月11日		京都府京都市中京区西ノ京桑原町1番地	
		(72)発明者	田中 耕一 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内	
		(74)代理人	弁理士 岡田 正広	
	- .			

(54) 【発明の名称】 ペプチドのアミノ酸配列決定方法

(57)【要約】

【課題】 分解イオンの発生を容易にして、広範な種類 のペプチドに適用し得る質量分析法によるペプチドのア ミノ酸配列決定方法を提供する。

【解決手段】 分析すべきペプチド分子の末端に、電荷 を有するアミノ酸(例えば、アスパラギン酸、グルタミ ン酸、リジン、アルギニン、ヒスチジン等)を予め結合 させる。このアミノ酸が結合したペプチド分子をイオン 化(例えばMALDI)させると共に分解イオンを発生 させ、これらのイオンを質量分析法(例えばTOFM S) により分離検出して、アミノ酸配列を決定する。

【特許請求の範囲】

【請求項1】 分析すべきペプチド分子の末端に、電荷 を有するアミノ酸を結合させ、このアミノ酸が結合した ペプチド分子をイオン化させると共に分解イオンを発生 させ、これらのイオンを質量分析法により分離検出する ことによって、ペプチドのアミノ酸配列を決定する方

【請求項2】 アミノ酸が結合したペプチド分子をマト リックス支援レーザー脱離イオン化法(MALDI)に よってイオン化させる、請求項1に記載のペプチドのア 10 ミノ酸配列を決定する方法。

【請求項3】 飛行時間型質量分析法(TOFMS)に よって、イオンを分離検出する、請求項2に記載のペプ チドのアミノ酸配列を決定する方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、質量分析法による ペプチドのアミノ酸配列決定方法に関し、より詳しく は、分解イオンの発生が容易に起とり、広範な種類のペ プチドのアミノ酸配列を決定し得る方法に関する。 [0002]

【従来の技術】従来より、質量分析法によるペプチドの アミノ酸配列決定方法としては、分析すべきペプチド分 子をイオン化させ、発生したイオンが飛行途中で自然に 分解した種々のポストソース分解イオン (Post Source Decay Ion)を分離検出することによって行なうポスト ソース分解 (Post Source Decay, PSD) 法がある。と の方法は、例えば、B. Spengler et al., Rapid Commu n. Mass Spectrom. 7, 902-910 (1993) 等に記載され ている。

【0003】しかしなから、ペプチドの種類によっては ポストソース分解イオンが十分発生しない場合があり、 このようなペプチドをPSD法で分析することは非常に 困難であった。つまり、この方法は、ポストソース分解 イオンが発生容易なペプチドのみにしか適用することが できなかった。

[0004]

【発明が解決しようとする課題】そとで、本発明の目的 は、上記の問題点を解決し、分解イオンの発生を容易に して、広範な種類のペプチドに適用し得る質量分析法に 40 よるペプチドのアミノ酸配列決定方法を提供することに ある。

[0005]

【課題を解決するための手段】本発明者は、分析すべき ベプチド分子の末端に、電荷を有するアミノ酸を予め結 合させることによって、分解イオンの発生を容易にでき るという知見に基づき、本発明を完成するに至った。

【0006】本発明のペプチドのアミノ酸配列決定方法 は、分析すべきペプチド分子の末端に、電荷を有するア 子をイオン化させると共に分解イオンを発生させ、これ らのイオンを質量分析法により分離検出することによる

【0007】ペプチド分子のイオン化方法としては、特 に限定されるものではないが、レーザー脱離法(L D)、マトリックス支援レーザー脱離イオン化法(MA LDI)、高速原子衝撃法(FAB)、液体二次イオン 質量分析法(LSIMS)、液体イオン化法(LI)等 が挙げられる。

【0008】これらのうち、LD法ではマトリックスを 用いないので、ペプチド分子自身が、レーザー光を吸収 することが必要である。一方、MALDI法、FAB 法、LSIMS法、LI法ではマトリックスを用いるの で、マトリックスのみがレーザー光を吸収すれば良く、 ペプチド分子自身が直接レーザー光を吸収する必要がな いため、極めて多種類の化合物をイオン化することがで きる。

【0009】マトリックスとしては、例えばMALDI 法の場合、以下の化合物が挙げられる。レーザーとして 20 Nd-YAG第4高調波266nmを使用する場合、ニ コチン酸、2-ビラジンカルボン酸等が挙げられ、パル ス窒素レーザー337nmやNd-YAG第3高調波3 55nmを使用する場合、シナピン酸(3,5-ジメト キシ-4-ヒドロキシケイ皮酸)、2,5-ジヒドロキ シ安息香酸、5-メトキシサリチル酸、α-シアノ-4 -ヒドロキシケイ皮酸、3-ヒドロキシピコリン酸、ジ アミノナフタレン、2-(4-ヒドロキシフェニルア ゾ)安息香酸、ジスラノール等が挙げられ、CO, 2. 94 μmを使用する場合、コハク酸、5-(トリフルオ 30 ロメチル) ウラシル、グリセリン等が挙げられる。

【0010】マトリックスは光エネルギー吸収体以外の 役割(例えばジアミノナフタレンはS-S結合開裂の役 割)も有しているので、分析対象物の化学的・物理的性 質の違いによってマトリックスも適宜選択する必要があ る。また、各々のマトリックスは、それぞれ固有の吸収 波長と吸光率を持っているので、使用するレーザーの波 長が変われば、マトリックスも変更する必要がある。

【0011】 これらのうち、ペプチドの分析のために・ は、ニコチン酸、シナビン酸、2,5-ジヒドロキシ安 息香酸、5-メトキシサリチル酸、α-シアノ-4-ヒ ドロキシケイ皮酸、ジアミノナフタレン、コハク酸、5 - (トリフルオロメチル) ウラシル等が好ましい。特 に、2,5-ジヒドロキシ安息香酸は、紫外光エネルギ ーを吸収する役割を有し且つプロトンドナーでもあり、 また、極性物質と均一に混合しやすい性質を有している ので好ましい。

【0012】また、レーザーとしてはパルス窒素レーザ -337nmが、以下の点から好ましい。(i) 小型・安 定・安価・取扱い容易である。(ii)337nmは、多く ミノ酸を結合させ、このアミノ酸が結合したペプチド分 50 の化合物において吸光度が低い。(jij) パルスイオン化

に十分な半値幅(500ps~3ns)と出力(1パル ス:数十~数百μ J) を発生するので、分析対象物を急 速に加熱することができる。分析対象物を急速加熱する ことにより、分析対象物を分解させることなく、イオン 化することができる。パルスレーザーイオン化は熱イオ ン化の一種であるが、分子量100kDaを超えるタン パク質のような熱的不安定分子をも分解させることな く、脱離イオン化が可能である。

【0013】以上より、MALDI法においては、パル ス窒素レーザー337nmと2, 5-ジヒドロキシ安息 10 香酸の組合わせが好適である。

【0014】MALDI法におけるサンプル調製は、通 常分析対象のペプチド分子溶液とマトリックス溶液とを モル比1:100~1:10000で混合後乾燥させ、 ベプチド分子とマトリックスとがミクロンレベルで均一 に混合された状態、すなわち、ペプチド分子の微細結晶 を多量のマトリックス結晶が取り囲んでいる(又はアモ ルファス)状態にする。

【0015】とのような状態のサンプルに半値幅1ns - 程度のパルスレーザー光を照射すると、マトリックスが 20 レーザー光を吸収し、熱エネルギー(ミクロ的には振動 エネルギー) に変換し、マトリックスの一部が急速に加 熱(加熱時間:1~数十ns、到達温度:1000K以 上)され、ペプチド分子と共に気化(昇華)される。ペ プチド分子が中性のままで脱離されても、同時に気化さ れたプロトン、陽イオン(不純物として存在)又はマト リックスイオンが付加すれば、イオンとなる。

【0016】このように、MALDI法は前述の他のイ オン化法と比較して、以下の特長点を有し、ペプチド分 析に好適な方法である。(i) 瞬時の(パルス) イオン化 30 を行なう。(ii)効率の高いイオン化が可能である。(ii i) 広範囲の化合物のイオン化が可能である。(iv)未精 製や混合物状態の化合物のイオン化が可能である。

【0017】本発明においては、ペプチド分子を好まし くはMALDI法でイオン化させ、飛行時間型質量分析 法(time of flight mass spectrometry, TOFMS) によって、ポストソース分解イオンを分離検出すること

【0018】TOFMS法は、(i) 髙速: 1スペクトル 不要であり、明るいイオン光学系である。(iii) 広範囲 の測定が可能: 測定可能範囲は0 < m/z < ∞である。 (iv)安価:機械系は髙精度不要で、構造が単純である。 という特長点を有する。すなわち、TOFMSは、MA LDIと多くの共通した特長を有し、MALDI-TO FMSは、相性の良いもの同士を組合わせた好ましい方 法の一つである。

【0019】 このようなMALDI-TOFMS装置の 一例を図1を参照して説明する。図1において、窒素レ

m) が発振される。レーザー光はミラー(2) で反射さ れ、光学フィルター(3) によって調光され、光学レンズ (4) で集光された後、サンブル(5) に照射される。発生 したイオンは、V。の印加電圧によって図1における右 方向に引き出される。引き出されたイオンは、イオンレ ンズ(6) 電圧V、を印加することにより、各イオン(7) が平行飛行できるようになる。

【0020】 ことで、偏向板(8) 電圧V。=0かつリフ レクター(9) 電圧V。=0の場合、イオンは直線飛行し 第1検出器(10)に到達する。この方法をリニアー型と呼 び、特に高感度の測定が可能である。これに対して、V s = 0かつリフレクター電圧($|V_{R}| > |V_{O}|$)を 印加した場合、イオンはリフレクター内で折り返され、 第2検出器(11)に到達する。この方法をリフレクター型 と呼び、特に高精度・高分解能の測定が可能である。 【0021】イオンは第1検出器(10)又は第2検出器(1 1)で検出増幅された後、電気信号(リニアー信号(12)、 リフレクター信号(13)) が測定回路へ導かれ、A D変換 器(14)によってデジタル信号に変換され、コンピュータ (15)で処理される。 ---

【0022】飛行時間を測定するためには、時間の原点 (0点)を定めなければならないが、TOFMSでは通 常、イオンが発生した時間をO点とする。MALDI-TOFMSの場合、レーザー光発射とイオン発生が同時 とみなすことができるため、フォトダイオード(16)によ るレーザー光検波信号を、TOFの基準時間(TOF= 0[s]) を表すスタート信号(17)として扱うことができ

【0023】図1のMALDI-TOFMS装置で、ペ プチド分子(M)のMS/MS測定を行なう場合、通常 は偏向板(8) に電圧を印加(V。≠0)しておき、図1 の下方にイオンを偏向させる。そして、注目しているイ オン([M+H] *)が偏向板(8) を通過する一瞬のみ V。=0とする。なお、注目しているイオン([M+ うが飛行途中で分解したイオンも、分解しないイ オンと同速度で飛行し、同一時刻に偏向板(8) を通過す

【0024】との操作によって、注目しているイオン及 びそれが分解したイオンのみが、図1の右方向に直線飛 測定時間は、1ms未満である。(ii)高感度:スキャン 40 行でき、リフレクター(9) に導入される(これが1段目 のMSとなる)。

> 【0025】リフレクター電圧V。を印加した状態で は、注目しているイオン及び分解したイオンすべてが折 り返すが、分解したイオンは途中で運動エネルギーの一 部を失っているため、エネルギー (m/z値) の小さい 順にリフレクター(9) 内で先に折り返し、分解しないイ オン([M+H] +)よりも早く第2検出器(11)に到達 する(これが2段目のMSとなる)。

【0026】図1の装置のリフレクター(9) では、分解 ーザー発振器(1) から窒素レーザー光 (波長:337 n 50 したイオンまでエネルギー収束できるため、V_e 一定の

ままですべてのイオンを同時に検出することができる。 【0027】とのようにして、ペプチド分子をMALD I 法でイオン化させ、TOFMSによって、ポストソー ス分解イオンを分離検出することができる。

【0028】本発明においては、分析すべきペプチド分 子の末端に、電荷を有するアミノ酸を予め結合させてお く。ペプチド分子末端に、電荷を有するアミノ酸を結合 させておくことによって、ポストソース分解イオンの発 生を容易にできる。

【0029】ペプチド分子の末端に予め結合すべき電荷 10 を有するアミノ酸は、電荷を有するものであれば良く、 α -アミノ酸、 β -アミノ酸、 γ -アミノ酸、 δ -アミ ノ酸のいずれであっても良い。α-アミノ酸としては、 例えば、アスパラギン酸、グルタミン酸等の酸性アミノ 酸、リジン、アルギニン、ヒスチジン等の塩基性アミノ 酸を挙げることができる。

【0030】分析すべきペプチド分子の末端に、とのよ うな電荷を有するアミノ酸を結合させるには、従来より 公知のペプチド合成法を適用することができる。すなわ ち、液相法、固相法のいずれの合成法によってもアミノ 20 酸を結合させることができる。

【0031】本発明によれば、分析すべきペプチド分子 の末端に、電荷を有するアミノ酸を予め結合させておく ことによって、ポストソース分解イオンの発生を容易に できるので、従来、分析すべきペプチド分子そのままで はポストソース分解イオンの発生が不十分なため分析不 可能又は困難であったペプチドをも分析することが可能 となる。

[0032]

【実施例】以下、実施例により本発明をさらに具体的に 30 説明する。ペプチドH-RVYIHPF-OHと、この末端 にDを結合させたペプチドH-DRVYIHPF-OHの分 析を行なった。

【0033】[実施例]との実施例においては、ペプチ ドH-DRVYIHPF-OHのアミノ酸配列の分析を、図・ 1のMALDI-TOFMS装置によって行なった。

【0034】レーザー:バルス窒素レーザー337nm マトリックス: α - シアノ - 4 - ヒドロキシケイ皮酸 サンブル:ペプチド分子(0.1%TFA)溶液とマト $y_0/2$ (0. 1%TFA/TP+1溶液とを、ペプチド:マトリックスのモル比で1:20 00で混合後乾燥させて調製した。

V. : 20000V

【0035】得られたMS/MSスペクトルチャート (分解イオン強度出力:×2)を図2に示す。ペプチド 分子末端に電荷を有するDが結合しているために、TO FMSにおいて、ポストソース分解イオンが十分発生し ている。図2の分解物ピーク上に示された[アルファベ ット1文字+数字]は、ペプチド結合(-CRH-CO -NH-CR'H-) の切れた部位を示す。アルファベ 50 (13)…リフレクター信号

ットa, b, cはN末端側、x, y, zはC末端側が残 っているシリーズであり、数字は残っているアミノ酸残 基の数を表す。

[0036] COMS/MSスペクトルチャートから、 分析を行なったペプチドのアミノ酸配列は、H-DRVY IHPF-OH であることが明らかである。

【0037】[比較例] ペプチドH-RVYIHPF-OH の分析を、実施例と同様の条件で、図1のMALDI-TOFMS装置によって行なったところ、図3に示すM S/MSスペクトルチャート(分解イオン強度出力:× 50)が得られた。このチャートから分かるように、と の比較例ではペプチド分子末端に電荷を有するアミノ酸 が結合していないために、ポストソース分解イオンの発 生がイオン種及びイオン感度の両面において不十分であ り、アミノ酸配列の決定を行うことは困難であった。 [0038]

【発明の効果】本発明のペプチドのアミノ酸配列決定方 法によれば、上述のように、分析すべきペプチド分子の 末端に、電荷を有するアミノ酸を予め結合させておくと とによって、ポストソース分解イオンの発生を容易にで きるので、従来、分析すべきペプチド分子そのままでは ポストソース分解イオンの発生が不十分なため分析不可 能であったペプチドをも分析することが可能となる。そ の結果、広範な種類のペプチドに、本発明の方法を適用 してアミノ酸配列を決定することがてきる。

【0039】また、本発明の方法は、各種のペプチド合 成法によって合成されたペプチド分子のアミノ酸配列を 確認したい場合にも有用である。

【図面の簡単な説明】

【図1】 本発明の方法に適用し得るMALDI-TO FMS装置の一例を示す概略図である。

【図2】 本発明の方法により得られたペプチドH-DR VYIHPF-OHのMS/MSスペクトルチャートであ

【図3】 従来法により得られたペプチドルRVYIH $PF-OHOMS/MSZ^2OFNF+OFTOSS$ 【符号の説明】

- (1) …窒素レーザー発振器
- (2) …ミラー
- 40 (3) …光学フィルター
 - (4) …光学レンズ
 - (5) …サンプル
 - (6) …イオンレンズ
 - (7) …飛行イオン
 - (8) …偏向板
 - (9) …リフレクター
 - (10)…第1検出器
 - (11)…第2検出器 (12)…リニアー信号

(5)

特開平10-90226

(14)…A D変換器 (15)…コンピュータ * (16)…フォトダイオード * (17)…スタート信号

【図1】

