

Deep Learning

Dr. Mehran Safayani safayani@iut.ac.ir

safayani.iut.ac.ir

https://www.aparat.com/mehran.safayani

https://github.com/safayani/deep_learning_course

Examples of sequence data

Machine translation

Video activity recognition

Name entity recognition

moi?

Voulez-vous chanter avec

Yesterday, Harry Potter Yesterday, Harry Potter met Hermione Granger. met Hermione Granger.

Image captioning

 $y^{<1>}y^{<2>}$ $y^{<3>}$ $y^{<4>}$ $y^{<5>}$ $y^{<6>}$ A cat sitting on a chair

[Mao et. al., 2014. Deep captioning with multimodal recurrent neural networks] [Vinyals et. al., 2014. Show and tell: Neural image caption generator] [Karpathy and Li, 2015. Deep visual-semantic alignments for generating image descriptions]

Recurrent Neural Networks

• Now, given this input X let's say that you want a model to operate Y that has one outputs per input word and the target output the design Y tells you for each of the input words is that part of a person's name.

• This is our first serious foray into NLP or Natural Language Processing.

Representing words

• Dictionary: 30000, 50000

Representing words

- Utilizing a sequence model for supervised learning to map input X to output Y.
- Introduction of an "Unknown Word" token for handling out-of-vocabulary words.
- Describing a notation for training sets in sequence data.

Recurrent Neural Network Model

Why not a standard network?

Problems:

- Inputs, outputs can be different lengths in different examples.
- Doesn't share features learned across different positions of text.

Recurrent Neural Networks

- Activation at time zero in neural networks is often initialized as a vector of zeros.
- Some researchers prefer initializing it as $a^{(0)}$ randomly.
- There are alternative methods to initialize the activation at time zero

Backward propagation through time

Forward Propagation

 $a^{\langle 0 \rangle} = \overrightarrow{0}$

$$a^{\langle 1 \rangle} = g\{w_{aa}a^{\langle 0 \rangle} + w_{ax}x^{\langle 1 \rangle} + b_a\} \leftarrow \tanh|\text{Relu}$$

$$\hat{y}^{\langle 1 \rangle} = g\{w_{ya}a^{\langle 1 \rangle} + b_y\} \leftarrow \text{sigmoid}$$

$$a^{\langle t \rangle} = g(w_{aa}a^{\langle t-1 \rangle} + w_{ax}x^{\langle t \rangle} + b_a)$$

$$\hat{y}^{\langle t \rangle} = g(w_{ya}a^{\langle t \rangle} + b_y)$$

Simplified RNN notation

$$a^{(t)} = g(w_{aa}a^{(t-1)} + w_{ax}x^{(t)} + b_{a})$$

$$\hat{y}^{(t)} = g(w_{ya}a^{(t)} + b_{y})$$
• $a^{(t)} = g(w_{aa}a^{(t-1)}, u^{(t)'}]' + b_{a}$

$$\begin{bmatrix} a^{(t-1)} \\ u^{(t)} \end{bmatrix} = 0$$

$$\begin{bmatrix} a^{(t-1)} \\ u^{(t)} \end{bmatrix} = 0$$

$$\begin{bmatrix} a^{(t-1)} \\ u^{(t)} \end{bmatrix} = 0$$

$$\begin{bmatrix} a^{(t-1)} \\ u^{(t)} \end{bmatrix} = w_{aa}a^{(t-1)} + w_{ax}x^{(t)}$$

Recurrent Neural Networks

Vanishing gradients with RNNs

- The cat which already ate bunch of food was full
- The cats were full $a^{(1)}$ $a^{(2)}$ $a^{(3)}$ $a^{(4)}$ $a^{(9)}$ $\chi^{\langle 4 \rangle}$ $x^{\langle 1 \rangle} = \vec{0} \quad x^{\langle 2 \rangle}$ $\chi\langle T_{\chi}\rangle$ $\chi(3)$

Exploding gradients. NaN gradient clipping

RNN Unit

GRU (simplified)

The cat, which already ate ..., was full.

GRU (Simplified)

Full GRU

- $\hat{c}^{\langle t \rangle} = \tanh \left(w_c \left[\Gamma_r * c^{\langle t-1 \rangle}, x^{\langle t \rangle} \right] + b_c \right)$
- $\Gamma_u = \sigma(w_u[c^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_u)$
- $\Gamma_r = \sigma(w_r[c^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_r)$
- $c^{\langle t \rangle} = \Gamma_{\mathbf{u}} * \hat{c}^{\langle t \rangle} + (1 \Gamma_{\mathbf{u}}) * c^{\langle t-1 \rangle}$

