Zespół nr: 1

Skład zespołu wraz z funkcjami:

Paweł Szczepankiewicz:

Koordynator, Programista, Tester, Autor dokumentacji

Kamil Nalewajski:

Programista, Tester, Strona graficzna

Konrad Zdziarski:

Programista, Tester, Strona graficzna

Problem	Specyfikacja problemu (dane i wyniki)	Do jakich treści w zadaniu odnosi się algorytm	Zastosowane struktury danych	Informacje o zastosowanym algorytmie
1	Pole – identyfikator, współrzędne (x, y), ilość jęczmienia Browar – identyfikator, współrzędne (x, y), pojemność produkcyjna Karczma – identyfikator, współrzędne (x, y), zapotrzebowanie Droga – połączenie między obiektami (źródło, cel), produkt przewożony, przepustowość, koszt naprawy (Dodatkowo w strukturze znajduje się WynikTrie, ale to element przyszłych problemów – np. Problem 5) Wynik: Reprezentacja danych w postaci struktur w programie Przygotowanie danych do przetwarzania przez algorytmy w kolejnych problemach	"Zaproponuj jak informacje o polach, browarach, karczmach i drogach reprezentować w komputerze"	Struct Vector Map	Brak zastosowanych algorytmów, użyto struktur.

2	Dane: Graf przepływu zbudowany z: Pol (Pole), browarów (Browar) i karczm (Karczma) jako wierzchołków Dróg (Droga) jako krawędzi z przepustowościami Reprezentacja jako macierz sąsiedztwa Wynik: Maksymalna ilość piwa możliwa do dostarczenia do karczm	"Opracuj sposób znalezienia maksymalnej ilości piwa, która można dostarczyć do karczm w Shire"	Macierz sąsiedztwa Graf skierowany z wagami Kolejka Wektory	Algorytm Edmondsa-Karpa [maksymalny przepływ O(V·E²)] BFS (w każdej iteracji przepływu)
---	--	---	--	--

3	Dane: Graf skierowany z krawędziami zawierającymi: Pojemność (przepustowość) Koszt przesyłu jednostki towaru Aktualny przepływ Struktura grafu: lista sąsiedztwa (vector <vector<krawedz>>) Wynik: Maksymalny przepływ (max_flow) Minimalny koszt realizacji tego przepływu (min_cost)</vector<krawedz>	"Zmodyfikujcie swoje rozwiązanie tak, żeby przy zachowaniu ilości przewożonego towaru, koszt naprawy dróg, po których poruszają się transporty był możliwie najmniejszy"	Lista sąsiedztwa – dynamiczne przechowywanie grafu Kolejka priorytetowa do optymalizacji wyszukiwania ścieżek	Algorytm Successive Shortest Path SSP [O(F·(V + E·log V))] — znajdowanie minimalnego kosztu przepływu Algorytm Dijkstry z potencjałami [O(E·log V) na iterację] — wyznaczanie najtańszych ścieżek
---	--	---	--	---

4	Dane: Współrzędne punktów granicznych każdej ćwiartki pola (Punkt) Ilość jęczmienia produkowanego na każdej ćwiartce (dane dodatkowe) Wynik: Współrzędne punktów granicznych każdej ćwiartki pola (Punkt) Ilość jęczmienia produkowanego na każdej ćwiartce (dane dodatkowe)	"Samwise kazał zebrać współrzędne punktów granicznych każdej ćwiartki (każda z ćwiartek okazała się być wielokątem wypukłym, rozłącznym z pozostałymi ćwiartkami). Wie też ile jęczmienia wyrasta na polu w poszczególnych ćwiartkach. Zmodyfikujcie swoje rozwiązanie uwzględniając te nowe informacje zebrane przez burmistrza Sama"	Struktura Punkt (x, y) Sortowanie punktów wg x, następnie y Iloczyn wektorowy do określania orientacji punktów Wzór na pole wielokąta ("shoelace formula")	Algorytm Grahama [wypukła otoczka O(n·log n)]
---	---	--	---	--

5	Dane: Plik tekstowy zawierający treść do przeszukania. Lista poszukiwanych słów (wzorców) Wynik: Pozycje wystąpień poszukiwanych słów w tekście	"Burmistrz Marzy o tym, żeby szybko wyszukiwać w tych rozwiązaniach słów: "piwo", "jęczmień", "browar" oraz innych, które przyjdą mu kiedyś do głowy. Chciałby przetestować kilka sposobów wyszukiwania słów. Zaproponujcie odpowiednie rozwiązania"	Wykorzystanie słownika do przechowywania wzorców. Implementacja odpowiednich struktur danych, np. stosów lub tablic,	Algorytm Naiwny [O(n·m)] Algorytm KMP Knutha-Morrisa- Pratta [O(n + m)] Algorytm Rabina-Karpa [średnio O(n + m)] Algorytm Trie [O(n + k), gdzie k to liczba dopasowań] Algorytm Boyer-Moore[O(n·m) – gdy dopasowanie nie występuje i znaki często nie pozwalają na duże przesunięcia]
---	---	--	---	---

6	Dane: Tekst (plik tekstowy) do skompresowania Wynik: Skompresowany tekst w postaci ciągu bitów (string z '0' i '1') Mapy kodów Huffmana do kodowania i dekodowania	"Komputer ma ograniczone zasoby"	Drzewo binarne Huffmana — węzły przechowujące znak i częstotliwość Kolejka priorytetowa do budowy drzewa Huffmana Mapy znak → kod oraz kod → znak do kompresji i dekompresji	Algorytm Huffmana [O(n·log n), n – liczba symboli]
---	--	-------------------------------------	--	--

7	Dane: Wymagania dotyczące zastosowania wybranego algorytmu Wynik: Reprezentacja graficzna projektu przy użyciu bibliotek	Wizualizacja projektu z wykorzystaniem obiektów i bibliotek graficznych	Obiekty Biblioteki graficzne	Brak implementacji algorytmu — nacisk na wykorzystanie bibliotek do tworzenia interfejsu i wizualizacji
---	---	--	---------------------------------	--