Name

Юрпалов Сергей Николаевич

Task №1

Асимптотическая оценка времени работы алгоритма A составляет $\Theta(\log n)$, алгоритма $B - \Theta(\log n^5)$, где n — размер входных данных. Какой алгоритм работает быстрее и почему?

Task №2

Время работы некоторого алгоритма равно $T = 38n^3 \log n + 49n^3 + 10^{66}n$, где n — размер входных данных. Какова асимптотическая оценка времени работы этого алгоритма и почему?

Task №3

Отметьте верные утверждения (вы должны уметь отвечать на вопрос почему):

- \bullet Ω это лучшее время работы программы.
- Если время работы программы $T(n) = \Theta(n^2)$, то $T(n) = \Omega(n^5)$.
- Если время работы программы $T(n) = \Theta(n^2)$, то $T(n) = \omega(n^5)$.
- Если время работы программы $T(n) = \Theta(n^2)$, то $T(n) = \Theta(5n^2)$.
- Если программа работает в худшем случае $T(n) = \Theta(n^2)$, то $T(n) = O(n^3)$.
- Если график одной функции, всегда выше графика второй функции, то первая функция асимптотически больше второй.

Task №4

Пусть реализован алгоритм сортировки выбором, сортирующий входной массив по возрастанию. Какова асимптотическая оценка времени работы этого алгоритма в случае, если входной массив, состоящий из n элементов, уже отсортирован по возрастанию (однако это заранее неизвестно и алгоритм все же запускается)?

Task №5

Пусть f(n) — асимптотически положительная функция. Правда ли, что $f(n) = O(f(n)^2)$? Если да, то докажите по определению, если нет, то объясните почему и приведите пример, когда это не так.