Overall descriptions:

Number of rows: 10,273,969 rows

Number of columns: 21

Number of trucks: 9 ('粤ABP691', '闽K59769', '粤ADS670', '粤ADW293', '闽K59938', '闽K59936',

'粤ADP980', '粤ABW222', '闽K55572')

Collect date: 30 days, December of 2019 except December 5th

rowkey STRING COMMENT 'rowkey', value STRING COMMENT '值',

ems_time STRING COMMENT 'EMS upload time',

imei STRING COMMENT 'imei code', gpsno INT COMMENT 'gps Number', truckid STRING COMMENT 'Vehicle ID',

item_id INT COMMENT 'item_id', model STRING COMMENT 'model',

truckno STRING COMMENT ' plate number', orgcode STRING COMMENT 'institute ID',

lat DOUBLE COMMENT 'lat', Ing DOUBLE COMMENT 'Ing',

course INT COMMENT '360 degrees, 0 is north', triggertime TIMESTAMP COMMENT 'timestamp',

province STRING COMMENT 'Province', city STRING COMMENT 'City',

county STRING COMMENT 'country/district',

address STRING COMMENT 'address',

r_name STRING COMMENT 'Road Name, from Tencent' r level STRING COMMENT 'road Level, from Tencent,'

date

ID	Description	单位 unit
x7000	转速 Engine Speed	km/h
x7001	瞬时油耗 Fuel Rate	升/小时L/hr
x7002	总油耗 Total Fuel Consumption	0.5升L
x7003	刹车Brake	1:激活on 0:未激活off
x7004	EMS里程 EMS mileage	0.1公里KM

x7005	累计总里程 Total Mileage	mile
x7006	油门开度百分比 Throttle	%
x7007	冷却液温度 Temperature of coolant	1 摄氏度Celsius;从-100度开始计算。例如:0表示-100度 , 160表示60度,60表示-40度
x006C	GPS车速 GPS speed	km/h
x7035	刹车状态(手刹) Brake	0:未激活off 1:激活 on
x000B	当前时间 Time	年月日时分秒
x7091	主油箱剩余油量百分比 Percentage of fuel left	0.1%;范围range: 0.0%——100.0%
x70EB	未知 Unknown	

VVID	License	Days	Date
	Plate		
3CCC0051225317	粤ABP691	30	20191201, 20191202, 20191203, 20191204, 20191206, 20191207,
37E69EA3BA2132			20191208, 20191209, 20191210, 20191211, 20191212, 20191213,
4ECD			20191214, 20191215, 20191216, 20191217, 20191218, 20191219,
			20191220, 20191221, 20191222, 20191223, 20191224, 20191225,
			20191226, 20191227, 20191228, 20191229, 20191230, 20191231

A0A4A31F4C3509 655240D8D7DB9C D389	闽K59769	30	20191201, 20191202, 20191203, 20191204, 20191206, 20191207, 20191208, 20191209, 20191210, 20191211, 20191212, 20191213, 20191214, 20191215, 20191216, 20191217, 20191218, 20191219, 20191220, 20191221, 20191222, 20191223, 20191224, 20191225, 20191226, 20191227, 20191228, 20191229, 20191230, 20191231
83E94E04A08895 767DFE0D80A21A 07D3	闽K59938	30	20191201, 20191202, 20191203, 20191204, 20191206, 20191207, 20191208, 20191209, 20191210, 20191211, 20191212, 20191213, 20191214, 20191215, 20191216, 20191217, 20191218, 20191219, 20191220, 20191221, 20191222, 20191223, 20191224, 20191225, 20191226, 20191227, 20191228, 20191229, 20191230, 20191231
B45F36E3944670 E22C7EC735D833 F709	粤ADW293	5	20191227, 20191228, 20191229, 20191230, 20191231
7571522FF0EBA0 36818CEACBA52 D3B60	粤ADS670	4	20191228, 20191229, 20191230, 20191231
096B3BBA5216C1 0C7EDF72FD803 ACFD7	粤ADP980	25	20191203, 20191204, 20191209, 20191210, 20191211, 20191212, 20191213, 20191214, 20191215, 20191216, 20191217, 20191218, 20191219, 20191220, 20191221, 20191222, 20191223, 20191224, 20191225, 20191226, 20191227, 20191228, 20191229, 20191230, 20191231
3EF3F915B5831A E8667B6FC54FBA 89B7	闽K55572	30	20191201, 20191202, 20191203, 20191204, 20191206, 20191207, 20191208, 20191209, 20191210, 20191211, 20191212, 20191213, 20191214, 20191215, 20191216, 20191217, 20191218, 20191229, 20191220, 20191221, 20191222, 20191223, 20191224, 20191225, 20191226, 20191227, 20191228, 20191229, 20191230, 20191231
CABB5C23A2B5E 1541DB6E75FD1D 61E01	粤ABW222	30	20191201, 20191202, 20191203, 20191204, 20191206, 20191207, 20191208, 20191209, 20191210, 20191211, 20191212, 20191213, 20191214, 20191215, 20191216, 20191217, 20191218, 20191219, 20191220, 20191221, 20191222, 20191223, 20191224, 20191225, 20191226, 20191227, 20191228, 20191229, 20191230, 20191231
257C0D741E2CD DAFDA1A297FC5 AC9964	闽K59936	30	20191201, 20191202, 20191203, 20191204, 20191206, 20191207, 20191208, 20191209, 20191210, 20191211, 20191212, 20191213, 20191214, 20191215, 20191216, 20191217, 20191218, 20191229, 20191220, 20191221, 20191222, 20191223, 20191224, 20191225, 20191226, 20191227, 20191228, 20191229, 20191230, 20191231

Trajectory of the route:

Truck ID: 83E94E04A08895767DFE0D80A21A07D3

License plate: 闽K59938 Date: 20191201

From Guangdong to Hunan

Truck ID: 3CCC005122531737E69EA3BA21324ECD

License plate: 粤ABP691 Date: 20191201

From Guangdong to Guizhou

Truck ID: A0A4A31F4C3509655240D8D7DB9CD389

License plate: 闽K59769 Date: 20191201

From Hunan to Chongqing

Truck ID: B45F36E3944670E22C7EC735D833F709

License plate: 粤ADW293 Date: 20191228

From Guangdong to Guangxi

Truck ID: 7571522FF0EBA036818CEACBA52D3B60

License plate: 粤ADS670 Date: 20191230

From Guangdong to Fujian

Truck ID: 096B3BBA5216C10C7EDF72FD803ACFD7

License plate: 粤ADP980 Date: 20191212

Guangdong

Truck ID: 3EF3F915B5831AE8667B6FC54FBA89B7

License plate: 闽K55572 Date: 20191201

From Chongqing to Sichuan

Truck ID: CABB5C23A2B5E1541DB6E75FD1D61E01

License plate: 粤ABW222 Date: 20191201

From Yunnan to Guizhou

Truck ID: 257C0D741E2CDDAFDA1A297FC5AC9964

License plate: 闽K59936 Date: 20191201

From Guangdong to Sichuan

Questions on the data:

- 1. The data is not sorted for different vehicle, timestamp, and date
- 2. Some data metrics are missing, especially the ems data in column 2
- 3. For some date, the truck is just parked there and not driving (like 20191227 for 粤 ADW293, 20191210 for 粤ADP980)

Fuel Efficiency Analysis (Specific vehicle on a specific day)

VVID: 257C0D741E2CDDAFDA1A297FC5AC9964

License Plate: 闽K59936

Date: 20191201

Linear regression based approach:

Input: d['x7000'],d['x7002'],d['x7003'],d['x7004'],d['x7005'],d['x7006'],d['x7007'],d['x006C'],d['x7035'],d['x7091'], lat, lng

Output: d['x7001']
Train: 64252
Test: 10000
Coefficients:

[[3.17465326e-03 -4.83697138e-06 6.42187046e+00 8.13119386e-02 1.87307609e-02 8.09133162e-01 1.70884482e-01 -3.55271368e-15 1.30340511e+01 9.47522911e-02 2.02923432e+00 -2.21454512e+00]

Mean squared error (MSE): **38.89** Coefficient of determination (R2): **0.91**

Input: d['x7000'], d['x7003'], d['x7004'], d['x7005'], d['x7006'], d['x7007'], d['x7006C'], d['x7035'], d['x7091'], lat, lng the sum of the property of the

Output: d['x7001']
Train: 64252
Test: 10000
Coefficients:

[[3.17400533e-03 6.42252792e+00 8.13104329e-02 1.87990254e-02 8.09141491e-01 1.70914629e-01 1.95399252e-14 1.30347769e+01

9.38992513e-02 2.03293073e+00 -2.22533441e+00]]

Mean squared error (MSE): **38.89** Coefficient of determination (R2): **0.91**

Input: d['x7000'],d['x7003'],d['x7004'],d['x7005'],d['x7006'],d['x7007'],d['x006C'],d['x7035'],d['x7091'], lat, Ing

Output: d['x7002']
Train: 64252
Test: 10000
Coefficients:

[8.15209464e-04 -7.58280654e-01 -1.69451224e-02 5.08176126e-01 -7.81788000e-03 8.65023507e-02 -1.37223566e-13 2.20035076e+00

9.48877311e-03 1.18874090e+01 -1.15637862e+01]

Mean squared error: **12.08**Coefficient of determination: **0.97**

MLP based approach:

Input: d['x7000'],d['x7003'],d['x7004'],d['x7005'],d['x7006'],d['x7007'],d['x006C'],d['x7035'],d['x7091'], lat, Ing

Output: d['x7001'] 10-fold cross-validation

Epoch: 30 Batch size: 50

Number of instances: 74252

Two layer: [11, 1] Activation: relu Optimizer: adam

Without standardization MSE: **7.73** R2: **0.896** With standardization MSE: **6.16** R2: **0.934**

Three-layer: [11, 6, 1] Activation: relu Optimizer: adam

With standardization MSE: 5.91 R2: 0.948

Input: d['x7000'], d['x7003'], d['x7004'], d['x7005'], d['x7006'], d['x7007'], d['x7006C'], d['x7035'], d['x7091'], lat, lng in the context of the context

Output: d['x7002'] 10-fold cross-validation

Epoch: 30 Batch size: 50

Number of instances: 74252

Two layer: [11, 1] Activation: relu Optimizer: adam

 Without standardization
 MSE: 14.015
 R2: -0.150

 With standardization
 MSE: 14603.62
 R2: -2146518.09

Three-layer: [11, 6, 1] Activation: relu Optimizer: adam

With standardization MSE: 867.84 R2: -4725.70

LSTM-based approach:

To be added

Correlation analysis

1E01 all the data

0-10: 'x7000', 'x7003', 'x7004', 'x7005', "x7006', 'x7007', 'x006C', 'x7035', 'x7091', lat, x7001 or x7002

x7001 (fuel rate)

x7002 (Total fuel consumption)

9964 '永州市' same routes

Same Route Analysis:

Route matching algorithm:

- 1. Merge data instance together based on city and vvid to get the date group;
- 2. For each date in the **date** group, calculate the total milerages for that day and get the start and end points' position (latitude, longitude);
- 3. Compare the start and end point of different routes to determine the direction. Compare the mileage of different routes to get **the most frequent length** of the routes **L**₁. The routes with length **L**₁ and the same direction will be grouped together. There will be two groups: each direction has one;
- 4. For each group, the route can be represented as a (2,X), where X is the number of instances for each route. Then do the **sampling** on each route to make each route can be represented as a **fixed length** two-dimensional matrix;
- 5. Calculate the **distance matrix** of the routes (difference of the fixed-length two-dimensional matrix). If the sum of the absolute values of the matrix is less than a predefined threshold, then these two routes are the same route.

Two examples: (blue as one group of same routes, red as another)

1E01 桂林市

	Start Position	End Position	Milerage	Instances
20191202	25.852 109.743	24.517 111.021	259.2	11339
20191204	24.517 111.02	25.852 109.743	258.6	10740
20191206	25.851 109.743	24.517 111.021	386.7	11769
20191208	24.517 111.02	25.851 109.743	258.5	10981
20191211	25.852 109.742	24.517 111.02	259.7	11328
20191213	24.517 111.02	25.853 109.742	259.7	11732
20191217	24.517 111.02	25.853 109.742	259.0	12010
20191219	25.852 109.742	24.517 111.02	259.5	11326
20191220	24.517 111.021	25.852 109.743	259.0	10684
20191226	24.517 111.02	25.853 109.743	259.0	9958
20191228	25.852 109.742	24.517 111.02	259.8	10741
20191229	24.517 111.02	25.851 109.744	258.6	10192

9964 永州市

	Start Position	End Position	Milerage	Instances
20191201	26.861 111.355	25.487 112.12	187.4	10186
20191202	25.487 112.12	25.222 112.175	33.8	3314
20191204	25.22 112.175	26.862 111.354	227.6	10095
20191207	26.86 111.355	25.22 112.175	221.6	11859
20191209	25.22 112.175	26.861 111.355	227.2	10740
20191213	26.862 111.354	25.221 112.175	221.7	13130
20191214	25.223 112.174	26.12 111.813	125.4	5772
20191217	26.856 111.359	25.257 112.166	219.8	11015
20191219	25.22 112.175	26.861 111.355	227.7	11397
20191221	26.86 111.355	26.45 111.672	60.4	2944
20191222	26.45 111.672	25.221 112.175	161.1	9174
20191224	25.22 112.175	26.86 111.356	227.7	10410
20191228	25.283 112.167	26.862 111.354	227.5	10530
20191231	26.862 111.354	26.455 111.671	59.4	2879

Fuel Prediction

Dataset: 9964 '永州市' same routes

Number of rows: 53171

Based on the correlation analysis results, we divide the features into three feature groups.

x7001 (fuel rate)

Feature groups:

F: 'x7006'

N: 'x7000', 'x7006'

S: 'x7000', 'x7006', 'x006C'

T: 'x7000', 'x7006', 'x006C', 'lat', 'lng'

For LSTM and CNN-LSTM, the input includes the history 'x7001', size is 10

5 fold cross-validation R2 value:

R2 value	LR	PR (N=5)	MLP	LSTM	CNN	CNN-LSTM
F	0.92		0.925	0.92	0.924	0.915
N	0.884	0.951	0.952	0.901	0.951	0.91
S	0.91		0.951	0.91	0.950	0.913
Т	0.91		0.929	0.905	0.942	0.913

MLP network:

Model: "sequential_5"

Layer (type)	Output Shape	Param #	
dense_33 (Dense)	(None, 100)	700	
dense_34 (Dense)	(None, 100)	10100	
dense_35 (Dense)	(None, 100)	10100	
dense_36 (Dense)	(None, 100)	10100	

dense_37 (Dense)	(None, 50)	5050
dense_38 (Dense)	(None, 50)	2550
dense_39 (Dense)	(None, 50)	2550
dense_40 (Dense)	(None, 1)	51

Total params: 41,201 Trainable params: 41,201 Non-trainable params: 0

LSTM:

Model: "sequential_5"

Layer (type)	Output Shape	Param #	
Istm_9 (LSTM)	(None, 4, 10	00) 44400	
lstm_10 (LSTM)	(None, 50)	30200	
dense_5 (Dense)	(None, 1)	51	==

Total params: 74,651 Trainable params: 74,651 Non-trainable params: 0

CNN:

Model: "sequential_5"

Layer (type)	Output Shape	Param #	
dense_33 (Dense)	(None, 100)	200	
dense_34 (Dense)	(None, 100)	10100	
dense_35 (Dense)	(None, 100)	10100	
dense_36 (Dense)	(None, 100)	10100	
reshape_5 (Reshape) (None, 5, 5, 4)	0	
time_distributed_13 (TimeDis (None, 5, 2, 1	28) 2176	

	(T) D: (N) = 4 400	
time_distributed_14	(TimeDis (None, 5, 1, 128)	0
time_distributed_15	(TimeDis (None, 5, 128)	0
flatten_10 (Flatten)	(None, 640) 0	
dense_37 (Dense)	(None, 50)	32050
dense_38 (Dense)	(None, 50)	2550
dense_39 (Dense)	(None, 50)	2550
dense_40 (Dense)	(None, 1)	51

Total params: 69,877 Trainable params: 69,877 Non-trainable params: 0

CNN-LSTM:

Model: "sequential_4"

Layer (type)	Output Shape	Param #
time_distributed_10 (TimeDis (None, 6, 2, 1	128) 1152
time_distributed_11 (TimeDis (None, 6, 1, 1	128) 0
time_distributed_12 (TimeDis (None, 6, 128	3) 0
dense_16 (Dense)	(None, 6, 200)	25800
dense_17 (Dense)	(None, 6, 100)	20100
dense_18 (Dense)	(None, 6, 100)	10100
dense_19 (Dense)	(None, 6, 50)	5050
flatten_8 (Flatten)	(None, 300)	0
dense_20 (Dense)	(None, 1)	301

Total params: 62,503

Trainable params: 62,503 Non-trainable params: 0

Question:

1. There are some gaps in GPS data, maybe when the truck is going through the tunnel. EMS data is generated every second.

2. MLP shows better performance than LSTM, the highest R2 is 0.951, which is still far from the objective. Advice for optimization?

R2 value	LR	PR (N=5)	MLP	LSTM	CNN	CNN-LSTM
F	0.92	-	0.925	0.92	0.924	0.915
N	0.884	0.951	0.952	0.901	0.951	0.91
N-PR	-	0.951	0.951	0.90	0.950	0.950
S	0.91	-	0.951	0.91	0.950	0.913
Т	0.91	-	0.929	0.905	0.942	0.913