해석개론 및 연습 1 과제 #3

2017-18570 컴퓨터공학부 이성찬

1. (1) • int $A = \{(x,y) \in \mathbb{R} : xy > 1\}$ $x_0y_0 > 1$ 이라고 하자. $\epsilon < \frac{x_0y_0 - 1}{|x_0| + |y_0|}$ 에 대해, $|x_0 - x| < \epsilon, |y - y_0| < \epsilon$ 라 하면

$$xy - 1 = |xy| - 1 = |x||y| - 1 \ge (|x_0| - \epsilon)(|y_0| - \epsilon) - 1$$
$$= |x_0||y_0| - 1 - \epsilon(|x_0| + |y_0|) + \epsilon^2 > \epsilon^2 > 0$$

이므로 $N((x_0, y_0), \epsilon) \subset A$.

- $A' = \{(x,y) \in \mathbb{R} : xy \geq 1\}$ $x_0y_0 \geq 1$ 라고 하자. $\epsilon > 0$ 에 대하여 $(x_0 + \frac{y_0}{2|y_0|}\epsilon)y_0 = x_0y_0 + |y_0|\epsilon/2 > 1$ 이다. 그러므로 $(x_0 + \frac{y_0}{2|y_0|}\epsilon, y_0) \in A$ 이고 이는 $N((x_0, y_0), \epsilon)$ 의 원소이고 (x_0, y_0) 과 다른 점이므로 $N((x_0, y_0), \epsilon) \cap A \setminus \{(x_0, y_0)\} \neq \emptyset$.
- \bullet $\overline{A} = A$
- (2) \bullet int $A = \emptyset$

 $A\subset\mathbb{Q}$ 임은 자명하다. 임의의 $\epsilon>0,\,x\in A$ 에 대하여 $N(x,\epsilon)=(x-\epsilon,x+\epsilon)$ 에는 무리수가 반드시 존재한다. 따라서 $N(x,\epsilon)\nsubseteq A$ 이므로 A 의 어떠한 점도 내점이 될 수 없다.

• $A'=\{-1,1\}$ $\forall \epsilon>0,\ 0<\left|(-1)^n-(-1)^n\frac{n}{n+1}\right|<\epsilon\ \ 0.$ 이 존재하는지 확인하면 된다.

$$\left| (-1)^n - (-1)^n \frac{n}{n+1} \right| = \left| 1 - \frac{n}{n+1} \right| = \frac{1}{n+1} < \frac{1}{n} < \epsilon$$

이 되도록 하는 n은 $\lceil 1/\epsilon \rceil$ 보다 크기만 하면 된다.

- $\bullet \ \overline{A} = A \cup \{-1, 1\}$
- (3) $\operatorname{int} A = \emptyset$ $\alpha = (x_0, y_0, 0) \in A \text{ 라 하자. } \forall \epsilon > 0, \ N(\alpha, \epsilon) \text{ 에는 } (x_0, y_0, \epsilon/2) \text{ 이 존재하며 이는 } A의 원소가 아니다. \ N(\alpha, \epsilon) \not\subseteq A \text{ 이므로 } A 의 어떠한 점도 내점이 될 수 없다.$
 - $A' = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z = 0\}$ $r \in [0, 1], \theta \in [0, 2\pi)$ 에 대해 $r\beta = r(\cos \theta, \sin \theta, 0) \in A$ 이라 두자. 임의의 $\epsilon > 0$ 에 대해 $\min\{(r \epsilon/2), r/2\} \cdot \beta \in N(r\beta, \epsilon) \cap A \setminus \{r\beta\}$ 이므로 극한점이 된다.
 - $\overline{A} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, z = 0\}$
- (4) \bullet int $A = \emptyset$

A 의 원소들의 성분은 전부 유리수이다. $\alpha \in A$ 일 때, 임의의 $\epsilon > 0$ 에 대하여 $N(\alpha,\epsilon)$ 에는 반드시 무리수가 존재한다. $N(\alpha,\epsilon) \nsubseteq A$ 이므로 내점이 존재하지 않는다.

A' = {(x,0) ∈ ℝ² : x ≥ 0}
 임의의 z = (x,0) (x ≥ 0), ε > 0 에 대해 N(z,ε) 중 구간 I₁ = {(k,0) : x - ε <

 $k < x + \epsilon$ } 과 $I_2 = \{(x, y) : 0 < y < \epsilon\}$ 를 생각하자.

우선 I_1 에 존재하는 x 가 아닌 양의 유리수 p/q $(\gcd(p,q)=1)$ 을 하나 택한다.

그리고 $\epsilon' = \sqrt{\epsilon^2 - (x - p/q)^2}$ 에 대해, 충분히 큰 n 을 잡는다.

그러면 $y=1/n<\epsilon'$ 이 되게 할 수 있다. 이러한 n 을 n' 으로 고정하고, p/q=m/n' 이 되게 하는 m을 n'p/q 로 잡아준다.

그러면 $(m/n, 1/n) \in N(z, \epsilon)$ 가 된다.

$$(: (x - p/q)^2 + (1/n')^2 < (x - p/q)^2 + \epsilon'^2 = \epsilon^2)$$

그리고 $(m/n, 1/n) \in A \setminus \{z\}$ 이므로 이 점은 극한점이 된다.

- $\overline{A} = A \cup \{(x,0) \in \mathbb{R}^2 : x \ge 0\}$
- (5) $\operatorname{int} A = \{(x,y) \in \mathbb{R}^2 : |x| < 1, |x+y| < 1\}$ $z = (x_0,y_0) \ \text{가} \ |x_0| < 1, |x_0+y_0| < 1 \ \text{을 만족한다고 하자. 임의의 양수}$

$$0 < \epsilon < \min \left\{ 1 - x_0, x_0 + 1, \frac{1 - |x_0 + y_0|}{2} \right\}$$

에 대하여 $|x - x_0| < \epsilon$, $|y - y_0| < \epsilon$ 를 가정하면 |x| < 1 은 자동으로 얻어진다.

$$|x + y| = |x - x_0 + y - y_0 + x_0 + y_0| \le |x - x_0| + |y - y_0| + |x_0 + y_0|$$

$$< 2\epsilon + |x_0 + y_0| < 1$$

이므로 $N(z,\epsilon)\subset A$ 이다.

A' = {(x,y) ∈ ℝ² : |x| ≤ 1, |x + y| ≤ 1}
 int A 의 점들은 전부 A' 에 속하므로 |x + y| = 1 인 점들에 대해서 보인다.
 z = (x₀, y₀) 가 |x₀| ≤ 1, |x₀ + y₀| = 1 을 만족한다고 하자.
 y₀ ≠ 0 인 경우, (x₀, y₀ - y₀/2|y₀) ϵ) ∈ N(z, ϵ) for 0 < ϵ < 1. 그리고

$$\left| x_0 + y_0 - \frac{y_0}{2|y_0|} \epsilon \right| + \left| \frac{y_0}{2|y_0|} \epsilon \right| \le |x_0 + y_0| = 1$$

와 $\left|\frac{y_0}{2|y_0|}\epsilon\right|=\epsilon/2$ 로부터 $\left|x_0+y_0-\frac{y_0}{2|y_0|}\epsilon\right|<1-\epsilon/2$ 이므로 $(x_0,y_0-\frac{y_0}{2|y_0|}\epsilon)\in A\setminus\{z\}$. 따라서 극한점이 된다. $\epsilon\geq 1$ 의 경우에는 $(x_0,y_0-\frac{y_0}{2|y_0|})$ 으로 두면 된다. $y_0=0$ 인 경우, $x=\pm 1$ 이다. $\forall \epsilon>0$ 에 대해 $(\pm 1,\pm 1\mp\epsilon)$ 에 속하는 적당한 실수를 잡아주면 $N(z,\epsilon)\cap A\setminus\{z\}\neq\emptyset$ 이므로 극한점이 된다.

- $\overline{A} = \{(x, y) \in \mathbb{R}^2 : |x| \le 1, |x + y| \le 1\}$
- **2.** (1) 거짓. (반례) $A = (0,1) \cup (1,2)$ 를 생각하면 $\inf A = A$ 인데 $\inf \overline{A} = (0,2)$ 이다.
 - (2) 거짓. $A = \{0\}$ 을 생각하면 $\operatorname{int} A = \emptyset$ 이므로 $\overline{\operatorname{int} A} = \emptyset \neq A$.
 - (3) 참.
 - (4) 참.
 - (3), (4) 를 보이기 위해서는 다음 명제를 보이면 된다.

Claim. $\overline{A^C} = (\operatorname{int} A)^C$.

 (\subset) $x\in \overline{A^C}$ 일 때, $x\in A^C$ 라면, $x\notin \operatorname{int} A$ 이므로 $(\operatorname{int} A\subset A)$ OK. $x\notin A^C$ 이고 $x\in (A^C)'$ 이라면, 임의의 $\epsilon>0$ 에 대해 $N(x,\epsilon)\cap A^C\backslash\{x\}\neq\emptyset$ 이므로 $y\in N(x,\epsilon)\cap A^C\backslash\{x\}$ 를 잡을 수 있다. 그러면 $y\in N(x,\epsilon)$ 인데 $y\in A^C$ 이므로 모든 $\epsilon>0$ 에 대해 $N(x,\epsilon)$ 은 A 의 부분집합이 될 수 없다. $x\notin \operatorname{int} A$.

- (\supset) $x \notin \operatorname{int} A$ 라 가정하자. 우선 $x \in A^C$ 이면 $x \in \overline{A^C}$ 는 당연하다. $x \notin A^C$ 를 가정하면, x 가 A 의 내점이 아니므로 임의의 $\epsilon > 0$ 에 대해 $N(x,\epsilon)$ 는 A 의 부분집합이 아니다. 따라서 $y \in N(x,\epsilon) \setminus A$ 가 존재한다. 이는 곧 $y \in N(x,\epsilon) \cap A^C$ 이며, $A^C = A^C \setminus \{x\}$ 이므로 극한점의 정의에 따라 $N(x,\epsilon) \cap A^C \setminus \{x\} \neq \emptyset$ 이 되어 $x \in (A^C)'$ 이다. 따라서 $x \in \overline{A^C}$.
- **3.** (1) $\langle b_n \rangle$ 이 코시 수열이므로 수렴한다. 수렴하는 수열은 유계이므로, 모든 n 에 대해 $|b_n| < A$ 인 $A \in \mathbb{R}$ 이 존재한다. 이제 다음이 성립한다.

$$\sum_{n=1}^{\infty} |a_n b_n| = \sum_{n=1}^{\infty} |a_n| \, |b_n| \le \sum_{n=1}^{\infty} A \, |a_n| < \infty$$

따라서 비교판정법에 의해 $\sum_{n=1}^{\infty} a_n b_n$ 는 절대수렴한다.

(2) $a_n = n!/n^n$ 으로 정의하자.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{(1+1/n)^n} = \frac{1}{e} < 1$$

극한값이 존재하며 1 보다 작으므로, $\limsup a_{n+1}/a_n = 1/e < 1$ 이다. 비율판정법에 의해 주어진 급수는 수렴한다.

- **4.** \overline{A} 가 유계이고 닫힌집합인지 확인하면 된다.
 - ullet \overline{A} 는 A 를 포함하는 가장 작은 닫힌 집합이다.
 - A가 유계이므로 $x \in A \Rightarrow ||x|| < R$ 인 $R \in \mathbb{R}$ 이 존재한다.
 - (a) $x \in A$ 이면 ||x|| < R 이므로 OK.
 - (b) $x\in A'-A$ 인 경우¹ 임의의 $\epsilon>0$ 에 대해 $N(x,\epsilon)\cap A\backslash\{x\}\neq\emptyset$ 이다. $y\in N(x,\epsilon)\cap A$ 에 대하여 $\|y-x\|<\epsilon,\,\|y\|< R$ 이므로

$$||x|| = ||x - y + y|| \le ||y - x|| + ||y|| < R + \epsilon$$

이다. 따라서 이 경우에도 $\|x\| < R + 1$ 이다.

따라서 \overline{A} 는 유계이다.

5. 다음과 같은 집합족 $\{U_k : k \in \mathbb{N}\}$ 을 고려한다.

$$U_k = \left\{ (x, y) \in \mathbb{R}^2 : |x| + 2|y| < 1 - \frac{1}{k} \right\}$$

¹이러한 원소가 존재하지 않는 경우는 당연히 참이므로 존재한다고 가정한다.

• U_k 는 열린집합이다.

$$z=(x_0,y_0)\in U_k$$
 라 하면 $\epsilon<\frac{1}{2}(1-\frac{1}{h}-|x_0|-2|y_0|)$ 에 대해

$$|x - x_0| < \epsilon, |y - y_0| < \epsilon \implies |x| + 2|y| < |x_0| + 2|y_0| + 3\epsilon < 1 - \frac{1}{k}$$

(삼각부등식: $|x| < |x_0| + \epsilon$, $|y| < |y_0| + \epsilon$) 이므로 $N(z, \epsilon) \subset U_k$ 임을 알 수 있다.

• 구한 집합족은 cover 가 된다.

 $(x_0, y_0) \in A$ 이면 $|x_0| + 2|y_0| < 1$ 이므로

$$k = \left[\frac{1}{1 - |x_0| - 2|y_0|} \right]$$

으로 잡으면

$$1 - \frac{1}{k} \ge 1 - (1 - |x_0| - 2|y_0|) = |x_0| + 2|y_0|$$

가 되어 $(x_0, y_0) \in U_k$. 따라서 $A \subset \bigcap_{k=1}^{\infty} U_k$.

• Open finite subcover 가 존재하지 않는다.

만약 open finite subcover $\{U_{k_1}, \ldots, U_{k_m}\}$ $(k_1 < k_2 < \cdots < k_m)$ 이 존재한다면 이들 의 합집합은 U_{k_m} 이고, $1-1/k_m<2\,|y_0|<1$ 인 실수 y_0 를 잡을 수 있다. 그러면 $(0,y_0) \in A-U_{k_m}$ 이므로 subcover 임에 모순이다. Finite subcover 가 존재하지 않는다.

6. (귀류법) $\lim_{n \to \infty} a_n \neq a$ 라고 가정하자. 적당한 $\epsilon > 0$ 에 대하여 N 이 존재해, $|a_n - a| \geq \epsilon$ 인 n > N 이 무수히 많이 존재한다. 만약 위 조건을 만족하는 n 이 유한하다면, 그러한 n 중 최댓값을 N 으로 잡아주면 $\lim a_n =$ a 가 되게 할 수 있다.

따라서 $|a_n-a| \geq \epsilon$ 인 n 들에 대해 차례대로 $n_1 < n_2 < \cdots$ 로 잡으면 2 이렇게 얻어진 부분수열 $\langle a_{n_k} \rangle$ 는 절대 a 로 수렴 할수 없으므로 모순이다.

8. 주어진 관계식을 다음과 같이 변형한다.

$$na_{n+1} \le na_n - ca_n \implies ca_n \le na_n - na_{n+1} \implies (c-1)a_n \le (n-1)a_n - na_{n+1}$$

이제 $b_n := (n-1)a_n \ (n \ge 1)$ 으로 정의하면,

- $a_n > 0$ 이므로 $b_n > 0$ 이 되어 아래로 유계이다.
- $b_{n+1} b_n \ge (c-1)a_n > 0$ (c>1) 에서 $b_n < b_{n+1}$ 이므로 감소수열이다.

따라서 단조수렴정리에 의해 b_n 은 수렴한다. 그 극한값을 β 로 두자. 이제 k=N,N+1 $1, \ldots, n$ 에 대해 부등식을 변변 더하면

$$\sum_{k=N}^{n} (c-1)a_k \le \sum_{k=N}^{n} (b_k - b_{k+1}) = b_N - b_{n+1}$$

를 얻고 $n \to \infty$ 인 극한을 취하면 다음 식을 얻는다.

$$0 < \sum_{k=N}^{\infty} a_k < \sum_{k=N}^{\infty} (c-1)a_k \le b_N - \lim_{n \to \infty} b_{n+1} = b_N - \beta$$

 $\sum_{k=N}^{\infty} a_k$ 는 비교판정법에 의해 수렴하며, 유한개의 항을 더한 $\sum_{n=1}^{\infty} a_n$ 도 수렴한다.

²자연수의 집합은 셀 수 있다. 혹은 well-ordering principle 에 의해 최소의 원소가 항상 존재한다.