Contents

5	5 Tests for Trends and Association 2						
	5.1	Associ	ation between Quantitative Variables	3			
		5.1.1	Pearson's Correlation Coefficient	4			
		5.1.2	Slope of Least Squares Line	6			
		5.1.3	Permutation Test for ρ or β_1	7			
		5.1.4	Spearman Rank Correlation	12			
		5.1.5	Kendall's $ au$	16			
	5.2	Qualit	ative Variables	22			
		5.2.1	Contingency Tables	22			
		5.2.2	Chi-square Test for Association	24			
		5.2.3	Fisher's Exact Test for a 2×2 Contingency Table	32			

5 Tests for Trends and Association

Example 1: homework and final grade The following data shows a subset of the homework and final exam grade of students in Fall 2007.

Table 1: A subset of the grades

Student	1	2	3	4	5
Homework	0	96	65	58	56
Final exam	0	166	130	118	130

Question: How to assess the relationship between homework and final exam?

Example 2: reading ability. Is there a significant positive correlation between the rankings of 10 children on a reading test X and their teacher's ranking of their reading ability Y?

Table 2: Reading ability

Student	1	2	3	4	5	6	7	8	9	10
X	1	2	3	4	5	6	7	8	9	10
Y	3	2	1	4	5	6	8	7	10	9

We first consider assessing the relationship between two continuous variables X and Y by using

- ullet correlation coefficient ho
- ullet slope of least squares regression line eta_1

5.1 Association between Quantitative Variables

5.1.1 Pearson's Correlation Coefficient

Pearson's Correlation Coefficient:

$$\rho = \frac{E\{(X - \mu_x)(Y - \mu_y)\}}{\sigma_x \sigma_y},$$

where

- ullet μ_x and μ_y are the means of X and Y;
- ullet σ_x and σ_y are the standard deviations of X and Y;
- the numerator is Cov(X, Y).

Some properties of ρ :

- ullet measures the linear relationship between X and Y;
- $-1 \le \rho \le 1$;

- $\rho = 0 \Rightarrow$ no **linear** relationship;
- $\rho > 0$: positive linear association, Y tends to increase as X increases, and vice versa.

Suppose we observe $(X_i, Y_i), i = 1, \dots, n$. We can estimate ρ by the **Sample correlation coefficient**:

$$\hat{\rho} = r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}} = \frac{S_{xy}}{S_x S_y},$$

where

•
$$S_{xy} = 1/(n-1) \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

•
$$S_x^2 = 1/(n-1)\sum_{i=1}^n (X_i - \bar{X})^2$$

•
$$S_y^2 = 1/(n-1)\sum_{i=1}^n (Y_i - \bar{Y})^2$$

Hypothesis test:

• If $(X_i, Y_i), i = 1, \dots, n$ is a random sample from a bivariate

normal distribution, then we can test $H_0: \rho = 0$ with the test statistic

$$t_{corr} = \sqrt{\frac{n-2}{1-r^2}}r \sim t_{n-2} \quad \text{under } H_0.$$

That is,

$$-H_a: \rho \neq 0$$
, reject H_0 if $|t_{corr}| > t_{\alpha/2,n-2}$

$$-H_a: \rho > 0$$
, reject H_0 if $t_{corr} > t_{\alpha,n-2}$

$$-H_a: \rho < 0$$
, reject H_0 if $t_{corr} < -t_{\alpha,n-2}$

5.1.2 Slope of Least Squares Line

Simple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

- β_0 : intercept;
- β_1 : slope, $\beta_1 = 0 \Rightarrow$ no linear relationship between Y_i and X_i ;

• ϵ_i : random error with mean 0 and finite variance.

Least squares estimates $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are the minimizers of

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2 = \sum_{i=1}^{n} Y_i^2 - \hat{\beta}_0 \sum_{i=1}^{n} Y_i - \hat{\beta}_1 \sum_{i=1}^{n} X_i Y_i,$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = r \frac{S_y}{S_x},$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}.$$

If ϵ_i i.i.d. are normally distributed, we can test $H_0: \beta_1 = \beta_{10}$ with

$$t_{slope} = \frac{\widehat{\beta}_1 - \beta_{10}}{se(\widehat{\beta}_1)} = \frac{\widehat{\beta}_1 - \beta_{10}}{\sqrt{\frac{MSE}{\sum_{i=1}^n (X_i - \bar{X})^2}}} \sim t_{n-2} \text{ under } H_0,$$

where MSE = SSE/(n-2).

5.1.3 Permutation Test for ρ or β_1

The validity of the t-tests require the normal distribution assumption. When we are not willing to make distributional assumptions, we can perform permutation test to obtain the reference null distribution of $\hat{\rho}$ or $\hat{\beta}_1$.

Under $H_0: \rho = 0$ or $H_0: \beta_1 = 0$,

- Y_i is likely to appear with X_j as it is to appear with X_i for $j \neq i$;
- i.e. all n! ways of arranging the Y_i 's with the X_i 's are equally likely under H_0 .

Steps:

- Calculate $\widehat{\beta}_{1,obs}$ (or r_{obs}).
- Permute the Y's among the X's in n! ways (or a sample R of the permutations). That is, keep the order of X unchanged and permute Y.

- ullet For each permutation, calculate $\widehat{\beta}_1^*$ or r^* .
- Upper-tailed test $H_0: \beta_1 > 0$:

$$p$$
-value $= rac{\# \widehat{eta}_1^* \text{'s} \geq \widehat{eta}_{1,obs}}{R}.$

• Lower-tailed test $H_0: \beta_1 < 0$:

$$p$$
-value $= rac{\# \widehat{eta}_1^* \text{'s} \leq \widehat{eta}_{1,obs}}{R}.$

• Two-tailed test $H_0: \beta_1 \neq 0$:

$$p\text{-value} = \frac{\#|\widehat{\beta}_1^*|\text{'s} \geq |\widehat{\beta}_{1,obs}|}{R}.$$

Remark. Recall that

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = r \frac{S_y}{S_x},$$

and S_y and S_x are unchanged with permutations. Therefore, it's

equivalent to base the test on

$$\bullet \ r = \frac{S_{xy}}{S_x S_y}$$

• or
$$(n-1)S_{xy} = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) = \sum_{i=1}^{n} X_i Y_i - n\bar{X}\bar{Y}$$

• or
$$\sum_{i=1}^{n} X_i Y_i$$

Large sample approximation for r: $Var(r) = \frac{1}{n-1}$, so for large n,

$$Z_r = rac{r}{\sqrt{1/(n-1)}} = r\sqrt{n-1} \sim N(0,1)$$
 approximately.

Example 5.1.1 ST745 grades. X_i : middle term exam score, Y_i : final exam score, $i = 1, \dots, 21$. We have the following summary: $\sum_{i=1}^{n} X_i = 1956, \sum_{i=1}^{n} Y_i = 1917, \sum_{i=1}^{n} X_i Y_i = 179203, \sum_{i=1}^{n} X_i^2 = 182738, \sum_{i=1}^{n} Y_i^2 = 176499$.

Calculate r and $\widehat{\beta}_1$, and test $H_0: \beta_1 = 0$.

See R code for the hypothesis testing results.

5.1.4 Spearman Rank Correlation

Consider the following data:

$$X_i$$
 1 2 3 4 5 6 7 Y_i 1 16 81 256 625 1296 2401

- The sample correlation coefficient: r = .89.
- However, there is a perfect relationship: $Y_i = X_i^4$.
- Pearson's CC can only capture the linear relationship.

Notice that for the above data: when the rank of X_i increases, the rank of Y_i also increases.

Instead of limiting our definition of association to linear relationship, we consider measuring the extent to which Y increases with X by comparing the ranks of X_i 's with those of Y_i 's.

- Spearman's rank correlation (r_s) is the standard Pearson correlation applied to the ranks of X_i 's and the ranks of Y_i 's.
- r_s measures how well one variable is monotonically dependent on the other variable. When there are no ties, $r_s = 1$ (or -1) means one variable is a perfect monotone increasing (or decreasing) function of the other.
- Table A12 gives the limited critical values for the distribution of r_s under H_0 .
- Large sample approximation: for large n,

$$Var(r_s) = \frac{1}{n-1}, \ Z = \frac{r_s}{\sqrt{Var(r_s)}} = r_s\sqrt{n-1} \sim N(0,1)$$

approximately under H_0 : no association between X and Y.

- One treatment of ties
 - use midranks to ties among X_i 's (or Y_i 's)

- then apply Pearson correlation to the ranks adjusted for ties
- use permutation to obtain an exact test
- or use the large sample approximation
- There exists some other complicated adjustments for ties but we recommend apply the permutation to ranks.

For the above artificial data:

R code and outputs:

```
x 1 2 3 4 5 6 7
y 1 16 81 256 625 1296 2401
> cor(x,y)
[1] 0.8903055
> rank(x)
[1] 1 2 3 4 5 6 7
> rank(y)
[1] 1 2 3 4 5 6 7
> cor(rank(x), rank(y))
[1] 1
```

Example 5.1.2 Calculate the Spearman coefficient for the "Reading ability" data set, and test $H_0: r_s = 0$ versus $H_a: r_s > 0$

```
x 1 2 3 4 5 6 7 8 9 10
y 3 2 1 4 5 6 8 7 10 9
> ## Spearman correlation
> (rs.obs = cor(x, y))
[1] 0.9272727
```

```
> ## permutation test for the Spearman correlation
> permr <- perm.approx.r(x, y, 1000)
> mean(permr >= rs.obs)
[1] 0
```

From Table A12, p-value = $P(r_s \ge 0.927) > P(r_s > 0.78) = 0.005$. Q: Carry out the test based on the large sample approximation.

Example 5.1.3 Scores (with ties) of ten projects at a science fair:

```
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10

      JudgeA x
      8
      8
      7
      8
      5
      6
      6
      9
      8
      7

      JudgeB y
      7
      8
      8
      5
      6
      4
      5
      8
      6
      9
```

```
> (x = rank(x))
[1] 7.5 7.5 4.5 7.5 1.0 2.5 2.5 10.0 7.5 4.5
> (y = rank(y))
[1] 6.0 8.0 8.0 2.5 4.5 1.0 2.5 8.0 4.5 10.0
>
> ## Spearman's rank correlation
> (rs.obs = cor(x, y))
[1] 0.3750694
>
> ## permutation test for the Spearman correlation
> permr <- perm.approx.r(x, y, 1000)
> mean(permr >= rs.obs)
[1] 0.131
```

5.1.5 Kendall's τ

For this measure of association, we consider whether pairs are concordant or discordant.

Consider the exam1 score X_i and exam2 scores Y_i of two students.

- A: $X_1 = 43$, $Y_1 = 64$
- B: $X_2 = 89, Y_2 = 72$

Note that as exam1 score increases from subject A to subject B, the exam2 score also increases, i.e. B performs better than A consistently in two exams.

We say a pair of points (X_i, Y_i) and (X_j, Y_j) are

• concordant if

$$X_i < X_j \Rightarrow Y_i < Y_j$$
, or $(X_i - X_j)(Y_i - Y_j) > 0$

• discordant if

$$X_i < X_j \Rightarrow Y_i > Y_j$$
, or $(X_i - X_j)(Y_i - Y_j) < 0$.

We say that X's and Y's have

- a positive association if pairs are more likely to be concordant than discordant;
- a negative association if pairs are more likely to be discordant than concordant;
- no association if pairs are equally likely to be discordant or concordant.

Assuming no ties, Kendall's au is defined as

$$\tau = 2P\{(X_i - X_j)(Y_i - Y_j) > 0\} - 1,$$

so that $\tau \in [-1,1]$.

Estimation of τ (standard approach)

For $i = 1, \dots, n, j = 1, \dots, n$, let

$$U_{ij} = \begin{cases} 1, & (X_i - X_j)(Y_i - Y_j) > 0 \\ 0, & (X_i - X_j)(Y_i - Y_j) < 0 \\ 1/2, & (X_i - X_j)(Y_i - Y_j) = 0, \end{cases}$$

and

$$V_i = \sum_{j=i+1}^n U_{ij},$$

that is, the number of pairs (X_j,Y_j) concordant with (X_i,Y_i) for $j\geq i+1$. Then

$$\sum_{i=1}^{n-1} V_i / \binom{n}{2}$$

is the fraction of concordant pairs. One estimation of τ :

$$r_{\tau} = 2\left(\frac{\sum_{i=1}^{n-1} V_i}{\binom{n}{2}}\right) - 1$$

Estimation of τ (simpler approach, equivalent when no ties)

- 1. Order the paired data (X_i, Y_i) so that X's are in the increasing order $X_1 < X_2 < \cdots < X_n$.
- 2. Count the number of pairs (Y_i, Y_j) such that $Y_i < Y_j$. If $Y_i = Y_j$, add 1/2 to the sum.

3.
$$r_{\tau} = 2\left(\frac{\text{sum in step2}}{\binom{n}{2}}\right) - 1$$

Large sample approximation for distribution of r_{τ} : under H_0 : no association, r_{τ} is approximatly normal with $E(r_{\tau}) = 0$ and

$$Var(r_{\tau}) = \frac{4n+10}{9(n^2-n)}.$$

Note: the variance needs be adjusted when there are ties (see Higgins).

Example 5.1.4 A subset of grades:

student	1	2	3	4	5
homework X_i	0	96	65	58	56
final exam Y_i	0	166	130	118	130

Step1: order the pairs

homework X_i 0 56 58 65 96 final exam Y_i 0 130 118 130 166

Step2: total 4+1.5+2+1=8.5 pairs (Y_i,Y_j) such that $Y_i < Y_j$, $\binom{5}{2}=10$.

Step3: $r_{\tau} = 2\frac{8.5}{10} - 1 = 0.7$. See R code for permutation test.

5.2 Qualitative Variables

5.2.1 Contingency Tables

Suppose individuals are placed into categories according to two characteristics. The two-way contingency table displays the counts of individuals falling into each of the categories. For example:

• Simple Random Sample (SRS) with questions: "favorite member of Beatles" and "favorite member of U2"

	U2						
Beatles	Bone	Edge	Larry	Adam	Total		
John	15	12	0	1	28		
Paul	14	8	2	1	25		
George	8	4	2	5	19		
Ringo	5	9	10	2	26		
Total	42	33	14	9	98		

• Stratified sample: attitudes about Jell-O

	Hate	Neutral	Love	Total
Utahns	10	20	70	100
Californians	50	40	10	100
Alaskans	20	60	20	100

• Designed experiment (CRD):

	No benefit	Mild benefit	Strong benefit	total
Drug A	10	20	40	80
Drug B	15	15	10	40

5.2.2 Chi-square Test for Association

Observations in an $r \times c$ contingency table:

	Col 1	Col 2	• • •	Col c	Row Totals
Row 1	n_{11}	n_{12}	• • •	n_{1c}	$n_{1.}$
Row 2	n_{21}	n_{22}	• • •	n_{2c}	$n_{2.}$
:		:	:		:
Row r	n_{r1}	n_{r2}	• • •	n_{rc}	$n_{r.}$
Col Totals	$n_{.1}$	$n_{.2}$	• • •	$n_{.c}$	n

Two different cases:

- Case 1 (SRS): all n individuals are randomly selected and classified according to row/column characteristics.
- Case 2 (stratified or CRD):
 - a fixed number $n_{i.}$ is selected according to row characteristics,

$$i=1,\cdots,r$$

then classified according to column characteristics

Hypotheses:

• Case 1: $H_0: p_{ij} = p_{i.}p_{.j}$ (independence), where

$$p_{ij} = \frac{E(n_{ij})}{n}, \quad p_{i.} = \sum_{j=1}^{c} p_{ij}, \quad p_{.j} = \sum_{i=1}^{r} p_{ij},$$

and p_{ij} is the expected proportion of the cell (i,j), $p_{i.}$ is the expected proportion of row i, and $p_{.j}$ is the expected proportion of the column j.

• Case 2: $H_0: p_{j|i} = p_{j|i'}$ for all i, i' and j (homogeneity), where

$$p_{j|i} = \frac{p_{ij}}{p_{i.}}$$

is the conditional probability of column j given row i. E.g. for the example "attitudes about Jell-O", $p_{1|2}$: the expected proportion of

Californians who hate Jell-O.

• The two null hypotheses are equivalent: test if there is any association between the row and the column factors.

Chi-square test statistic:

- Observed counts in each cell: n_{ij}
- Expected counts under H_0 :

$$e_{ij} = \frac{n_{i.}n_{.j}}{n}$$

• Chi-square test statistic

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(n_{ij} - e_{ij})^2}{e_{ij}}.$$

• If $e_{ij} \geq 5$ for all i, j, then χ^2 is distributed $\chi^2_{(r-1)(c-1)}$ under H_0 .

Permutation χ^2 **test**: when some $e_{ij} < 5$, the chi-square distribution may not be valid. But we can still create permutation distribution of the χ^2 statistic under H_0 .

Example 5.2.1 satisfaction with pain-relief treatment versus gender

	Not	Somewhat	Very	row total
	satisfied	satisfied	satisfied	
Female	2	2	0	4
Male	0	1	2	3
col total	2	3	2	7

The expected counts: $e_{11} = \frac{4 \times 2}{7} = 8/7$, $e_{12} = 12/7$, $e_{13} = 8/7$, $e_{21} = 6/7$, $e_{22} = 9/7$, $e_{23} = 6/7$. So

$$\chi_{obs}^2 = \frac{(8/7-2)^2}{8/7} + \dots + \frac{(6/7-2)^2}{6/7} = 4.28.$$

The permutation null distribution of χ^2 . Under H_0 ,

- all assignments of the 4 females and 3 males to the 3 column groups are equally likely;
- or equivalently, all assignments of 2 non-, 3 somewhat-, and 2 very-satisfied to the genders are equally likely

Steps for the permutation chi-square test:

- 1. Calculate χ^2_{obs}
- 2. For each permutation, randomly choose n_i of the column labels to be placed in row i and calculate χ^{2*} for each permutation. For the pain-relief treatment example,
 - there are total 7 subjects, having 7 labels N_1 , N_2 , S_3 , S_4 , S_5 , V_6 , V_7
 - assigning 7 labels: 4 to one treatment, and 3 to the other treatment has $\frac{7!}{4!3!}=35$ ways

3. Calculate p-value = $\#\{\chi^{2*} > \chi^2_{obs}\}/R$, where R is the number of permutations (or a sample of all permutations).

Simple implementation of Step 2:

ullet Create vectors x and y (length n) with row labels $(1,\cdots,r)$ and column labels $(1,\cdots,c)$ as elements. For the pain-relief treatment example

• Randomly permute values in x (or in y) while keeping the other vector unchanged to get table and χ^{2*} statistic. Example tables for pain-relief example under H_0 (note that each table has the same row totals and column totals)

Permuted x: 1, 1, 2, 2, 1, 1, 2 gives the permuted frequency table:

	N	S	V
Female	2	1	1
Male	0	2	1

Permuted x: 1, 2, 1, 2, 1, 1 gives the permuted frequency table:

	Ν	S	V
Female	1	1	2
Male	1	2	0

Example 5.2.2 See the R code for the permutation test of the following examples

- Satisfaction v.s. Gender
- Gender v.s. Party
- Presidential preference v.s. Region

5.2.3 Fisher's Exact Test for a 2×2 Contingency Table

Permutation test applied to a 2×2 contingency table is Fisher's exact test. Fisher's exact test is used for small sample size, as p-value can be calculated exactly under the null hypothesis rather than based on large sample approximation. Fisher's exact test is named after its inventor R. A. Fisher, .

The lady tasting tea experiment: The lady, Muriel Bristol, claimed that she was able to tell whether the tea or the milk was added first to a cup. Fisher prepared 8 cups of tea, 4 with tea added first and 4 with milk added first. The lady was informed of the design (4 tea first, 4 milk first). Then Fisher presented the 8 cups to her in random order. She was asked to identify the 4 cups with milk first. Below is the result:

	Order of Actual Pouring			
Guess	Tea first	Milk first		
Tea first	3	1		
Milk first	1	3		

The question is: does the lady have the discriminating skill? What's the probability that she got such answers when everything is due to chance (p-value)?

The null and alternative hypotheses:

 H_0 : there is no association between the true order of pouring and the lady's guess

versus H_a : there is a positive association.

We can generalize the table as follows:

	Order of Actual Pouring		
Guess	Tea first	Milk first	Total
Tea first	X		4
Milk first			4
	4	4	8

- Since the design fixes the row and column totals to 4 each, the entire table is fixed after X is choosen (X=3 in the lady tea example).
- Rephrase the problem. There are total 8 cups, among which 4
 have milk added first ("success"). The lady is asked to choose 4
 cups (that she believes has milk added first). X is the number of
 milk-first cups among the 4 that the lady choose, that is, the
 number of success among 4 randomly chosen from the population.
- There are total $\binom{8}{4}$ of ways of choosing 4 cups among 8.

- Suppose H_0 is true, i.e. the lady has no discriminating skill. Then all $\binom{8}{4}$ are equally likely. Under H_0 , X follows the hypergeometric distribution Hyper(m=4,n=4,k=4).
- Hyper(m,n,k) is a discrete distribution. The hypergeometric distribution can be understood by using the urn model. Suppose a urn has total n black marbles, and m white marbles ("successes") . Suppose you are asked to draw k marbles from the urn without replacement, and denote X as the number of white marbles you get among k. Then $X \sim Hyper(m,n,k)$ and

$$P(X = x) = \frac{\binom{m}{x} \binom{n}{k-x}}{\binom{m+n}{k}},$$

for $\max\{0, k - \min(n, k)\} \le x \le \min(m, k)$.

• Under H_0 :

$$P(X=3) = \frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}} = 0.229$$

$$P(X=4) = \frac{\binom{4}{4}\binom{4}{0}}{\binom{8}{4}} = 0.014$$

• In R, function dhyper(x, m, n, k) gives P(X = x) for hypergeometric distribution.

dhyper(0:4, m, n, k)
0.01428571 0.22857143 0.51428571 0.22857143 0.01428571

- The probability that X=3 is equivalent to the probability that we get exactly 3 white marbles among 4 draws in the urn containing total 4 white marbles and 4 black marbles.
- For testing H_0 : no association between the true order and the lady's guess

versus

 H_a : there is a positive association (i.e. the lady has the discriminating skill).

Then H_a implies that X is large and

$$p$$
-value = $P(X \ge 3) = P(X = 3) + P(X = 4) = 0.243$.

So there is no significant positive association.

Example 5.2.3 Cross-classification of 13 states by presidential preference and region

	Bush	Kerry	Total
West	6	1	7
East	4	2	6
Total	10	3	13

Use Fisher's exact test to test H_0 : no association between region and preference versus H_a : western states prefer Bush more.

38

5 Tests for Trends and Association