toy_notebook_fr

March 28, 2019

1 À propos du calcul de π

1.1 En demandant à la lib maths

Mon ordinateur m'indique que π vaut approximativement

1.2 En utilisant la méthode des aiguilles de Buffon

Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :

1.3 Avec un argument "fréquentiel" de surface

Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^2 + Y^2 \le 1] = \pi/4$ (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :

```
In [3]: %matplotlib inline
    import matplotlib.pyplot as plt

    np.random.seed(seed=42)
    N = 1000
    x = np.random.uniform(size=N, low=0, high=1)
    y = np.random.uniform(size=N, low=0, high=1)
```

```
accept = (x*x+y*y) <= 1
reject = np.logical_not(accept)

fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')</pre>
```


Il est alors aisé d'obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :

```
In [4]: 4*np.mean(accept)
```

Out[4]: 3.1120000000000001