

On-line recognition of handwritten mathematical symbols

Bachelor's thesis of Martin Thoma Martin Thoma | 5th of June, 2014

Contents

- What is my Bachelor's thesis about?
- 2 write-math.com
- 3 Preprocessing and Features
- 4 Neural Nets
- What will I do next?

What is my Bachelor's thesis about?

- Recognition of handwritten mathematical symbols
- On-line recognition, not OCR!
- Given a series of points (x(t), y(t), b(t))I want to get the proper LATEX code.

Why do I work on this topic?

- LATEX is easy as soon as you know the \codes.
- It's hard to find the LATEX code of single symbols.
- It's much harder to find complete formulas.

For now: recognition of isolated symbols. That means: single symbol "formulae" rather than multi symbol formulae

write-math.com

 a website where users can add labeled training data and unlabeled data which they want to classify. I call this data "recording"

- works with desktop computers and touch devices
- symbol recognition can be done by multiple classifiers
- users can contribute formulas as recordings and as LATEX answers for recordings
- users can vote for LATEX answers: \leq , \leq , \leqslant , . . .
- user who entered the recording can accept one answer

5th of June, 2014

Classify

Workflow

End

Ranking

Ranking

Only users with at least 5 written formulas will be listed below.						
#	User	Written formulas	Distinct symbols			
1	Detexify	217684	1125			
2	Martin Thoma	4382	523			
3	user_639125948	3071	430			
4	Eva	1134	566			
5	John	781	722			
6	TorbjornT	572	253			
7	user_1904016610	510	124			
8	Marienkaefer	458	260			
9	percusse	411	317			
10	Brent	374	196			

00 00000 00 Martin Thoma – On-line recognition of handwritten mathematical symbols

Statistics

- 127 users with at least 5 recordings
- 1111 symbols, but only 369 used for experiments
- 235 831 recordings (e.g. 3489 times \int, but only 50 times X)

First classification worker

- preprocessing: Scale to fit into unit square while keeping the aspect ratio
- applies greedy time warping
- compares a new recording with every recording in the database
- \Rightarrow Classification time is in $\mathcal{O}(\text{recordings})$, but we rather would like $\mathcal{O}(\mathsf{symbols})$
 - the current server / workflow can only handle about 4000 recordings
- ⇒ Another way to classify is necessary

Preprocessing

- Normalizing
 - Scaling
 - Shifting
 - Resampling
- Noise reduction
 - Smoothing (e.g. moving average)
 - Dot reduction
 - Filtering (by distance, speed or angle)
 - Stroke connection

5th of June, 2014

Features

- Local
 - Coordinates
 - Speed
 - Binary pen pressure
 - Direction
 - Curvature
 - Bitmap-environment
 - Hat-Feature
- Global
 - # of points
 - # of strokes
 - Center point
 - Bitmap
 - Bounding box (width, height, time)

Experiments

Preprocessing: Scaling, shifting and linear interpolation

Features: Coordinates of 80 points (4 strokes with 20 points each)

Learning: MLP, 300 epochs, LR of 0.1, Momentum 0.1

Topology	Error	Training time
160:500:369	30.62 %	9min 08s
160:500:500:369	27.73 %	11min 49s
160:500:500:500:369	34.79 %	14min 09s
160:500:500:500:500:369	33.61 %	14min 06s

Examples of confusable symbols

ETEX	Rendered	№ TEX	Rendered
\sum	\sum	\$\Sigma\$	Σ
\coprod	П	\$\amalg\$	Π
\perp	\perp	\$\bot\$	\perp
\models	=	\$\vDash\$	⊨
\emptyset	Ø	\$\diameter\$	Ø
		\$\o\$	Ø
		\$\varnothing\$	Ø
\Delta	Δ	\$\triangle\$	\triangle
\varepsilon	arepsilon	<pre>\$\mathcal{E}\$</pre>	${\cal E}$

When those confusions are not counted as errors, the current best system has an classification error rate of 12.7% (otherwise 22.2%).

What will I do next?

- Include the currently best model in write-math.com
- Evaluate preprocessing steps
- Try other features
- Try other topologies / trainings (e.g. pretraining, newbob)
- Eventually try convolutional neural nets

Image Sources

- Server by RRZEicons
- Desktop Computer by Ed g2s, Ironbrother, Kierancassel and Msgj
- Server by Mimooh

Thanks for Your Attention!

End