חלוקת עלויות

בימינו יש יותר ויותר אפליקציות המאפשרות לאנשים לחלוק נסיעות, למשל: waze carpool, וגם ב ,waze carpool, ועוד. אחת השאלות המעניינות העולות במקרה זה היא: איך לחלק את עלות הנסיעה בין הנוסעים?
זו בעיה של חלוקה הוגנת - אבל היא שונה מבעיות קודמות שלמדנו:

- מצד אחד, הדבר שאותו מחלקים כסף הוא רציף ואחיד, ולכולם יש בדיוק אותן העדפות לגביו כולם רוצים כמה שיותר כסף (ולשלם כמה שפחות). מבחינה זו, הבעיה קלה יותר מבעיית חלוקה של קרקע או של חדרים בדירה.
 - מצד שני, הזכויות כאן הן לא שוות. אם נוסע אחד יורד אחרי קילומטר, ונוסע אחד אחרי שני קילומטר שניהם צריכים לשלם, אבל זה לא הגיוני שהם ישלמו אותו דבר.

מהי חלוקה הוגנת של התשלומים במקרה זה?

.cooperative game - אנחנו נציג את הבעיה כמקרה פרטי של בעיה כללית יותר הנקראת משחק שיתופי

קביעת תשלומים במשחק שיתופי

במשחק שיתופי, יש קבוצה ${\sf N}$ של שחקנים הרוצים לשתף פעולה לתועלת כולם (במקרה שלנו - ${\sf N}$ היא קבוצת הנוסעים הרוצים לנסוע יחד כדי לחסוך עלויות).

כלל-התשלומים צריך לקחת בחשבון, שכל "קואליציה" של שחקנים (כל תת-קבוצה של N) יכולה לפרוש ולפעול באופן עצמאי. לכן הכלל צריך לבדוק את כל תת-הקבוצות האפשריות, ולחשב את העלות של כל אחת מהן בנפרד. מכאן, במשחק שיתופי עם n שחקנים, הקלט כולל n מספרים שונים. זה די הרבה, אבל כל עוד מספר הנוסעים במונית המשותפת הוא לא גדול, זה סביר.

עבור כל תת-קבוצה S של N ("קואליציה"), נסמן ב- C(S) את הערך של S. במקרה שלנו, זו עלות עבור S נוסעים: במקרה שהאנשים בקבוצה S נוסעים לבד. הנה דוגמה לטבלת-עלויות עבור S נוסעים:

S קואליציה	c(S)
0	0
×	10
ב	15
۵	25
א,ב	20
א,ג	25
ב,ג	30
א,ב,ג	37

כלל-חלוקת-עלויות הוא פונקציה p המקבלת כקלט את הטבלה c, ומחזירה לכל שחקן כמה הוא צריך לשלם. אנחנו נחפש כלל-חלוקת-עלויות המקיים כמה תנאים.

א. כיסוי מלא: כשכולם נוסעים יחד, עלות הנסיעה מכוסה במלואה ע"י הנוסעים:

$$c(N) = p(c,1) + p(c,2) + ... + p(c,n)$$

- ב. הגינות (נקרא גם סימטריה): התשלום שכל שחקן משלם צריך להיות תלוי רק בעלות השולית שהוא מוסיף. העלות השולית של שחקן i, ביחס לקבוצה מסויימת i שאינה מכילה את i, מוגדרת כ: i מצטרף. כלומר העלות של הקבוצה כש-i מצטרף, פחות העלות של הקבוצה כש-i לא מצטרף. עקרון הסימטריה קובע, שאם לשני שחקנים, i ו-i, יש בדיוק אותה תרומה שולית לכל תת-הקבוצות שאינן מכילות אותם, אז הם צריכים לשלם את אותו תשלום בדיוק.
 - ג. עקרון הלמלם: למלם (באנגלית "null player") הוא שחקן שאינו מוסיף שום עלות לשום תת-קבוצה שהוא מצטרף אליה. תחשבו על "עציץ" שתמיד נמצא במונית לא עולה ולא יורד, לא מועיל ולא מזיק. עקרון הלמלם קובע, שלמלם לא צריך לשלם או לקבל כלום.
- ד. ליניאריות: התשלומים נמדדים באותן יחידוֹת שבהן מודדים את הערכים. למשל, אם הערכים בשקלים אז גם התשלומים באגורות. מכאן, אם מכפילים את כל אז גם התשלומים בשקלים. אם הערכים באגורות אז גם התשלומים מקבלים תשלומים גדולים פי הערכים פי 100 (או קבוע כלשהו k), ומפעילים את אותו כלל-תשלומים מקבלים תשלומים גדולים פי 100 (או פי k).

באותו אופן, אם מחברים שני משחקים עם אותם שחקנים, ויוצרים משחק חדש שבו הערך של כל תת-קבוצה הוא הסכום של ערכי תת-הקבוצה הזאת במשחקים הקודמים, ומפעילים את אותו כלל-תשלומים - התשלום של כל שחקן יהיה סכום התשלומים שלו במשחקים הקודמים. ובמונחים שלנו: אם קבוצת נוסעים נוסעת היום לירושלים ומחשבת כמה כל אחד צריך לשלם, ונוסעת מחר לאילת ומחשבת כמה כל אחד צריך לשלם, אז הסכום הכולל שכל נוסע ישלם יהיה שווה לתשלום שיתקבל אם נחשב את התשלומים על שתי הנסיעות ביחד.

כל התנאים הללו נראים מאד הגיוניים.

מתברר שיש רק כלל תשלומים **אחד** המקיים את כל הכללים האלו! הכלל הזה נקרא "ערך שאפלי".

ערך שאפלי מחושב באופן הבא:

- עבור על כל n! הסידורים האפשריים של השחקנים.
- עבור כל סידור וכל שחקן, חשב את העלות השולית שלו בסידור זה.
- התשלום של כל שחקן הוא הממוצע החשבוני של העלויות השוליות שלו בכל אחד מהסידורים.

לדוגמה עבור המספרים מלמעלה, ראו בגליון האלקטרוני המצורף.

משפט 1: ערך שאפלי מקיים את התכונות א,ב,ג,ד.

הוכחה: א. צריך להוכיח שהסכום של ערך שאפלי על כל השחקנים, שווה לערך של הקבוצה כולה (N). נחשב את הסכום עבור כל סידור בנפרד. עבור כל סידור של השחקנים, יש לסכם את התרומות השוליות של כל השחקנים לפי סדר זה. למשל עבור הסדר א-ב-ג, יש לחבר את התרומה השולית של א ביחס לקבוצה הריקה {}, ועוד ב ביחס לקבוצה {א}, ועוד ג ביחס לקבוצה {א,ב}. זה סכום טלסקופי שהערך שלו הוא בדיוק הערך של הקבוצה {א,ב,ג}. כלומר, לכל סידור של השחקנים, הסכום הפנימי יוצא (C(N) (ראו הדגמה בגליון האלקטרוני).

ברוך ה' חונן הדעת

- ב. ערך שאפלי של שחקן נקבע רק לפי העלויות השוליות שהוא מוסיף לכל קבוצה שאינה כוללת אותו. לכן, לשני שחקנים עם אותן עלויות שוליות יש בדיוק אותו ערך שאפלי.
 - ג. לשחקן למלם יש עלות שולית 0 ביחס לכל תת-קבוצה, ולכן גם הממוצע שלו 0.
- ד. ערך שאפלי הוא פונקציה ליניארית של הערכים בטבלה. לכן, אם מכפילים את כל הערכים בקבוע אז גם ערך שאפלי מוכפל בקבוע, ואם מחברים שתי טבלאות אז גם ערך שאפלי מתחבר.

משפט 2: ערך שאפלי הוא הפונקציה היחידה המקיימת את התכונות א,ב,ג,ד.

הוכחה: ...

[המשך יבוא]

איך מחליטים מי יקבל שירות?

עד עכשיו הנחנו שכולם נוסעים, וכל השאלה היתה איך לחלק ביניהם את העלות.

אבל, מה אם העלות היא כל-כך גבוהה עד שחלק מהאנשים בכלל לא ירצו לנסוע?

איך מחליטים כמה ואיזה נוסעים בדיוק ישתתפו בנסיעה?

כדי לענות לשאלה זו, צריך להוסיף נתון לבעיה: לא מספיק לדעת מהי העלות של כל קבוצת-נוסעים - צריך גם לדעת מהו הערך שכל נוסע מפיק מהשתתפות בנסיעה. אנחנו מניחים שההשתתפות היא בינארית - נוסע j שמשתתף בנסיעה, הערך שלו הוא V_j. כיוון שאנחנו בקורס "אלגוריתמים כלכליים", רק הנוסע עצמו יודע מהי התועלת שלו. אנחנו צריכים לפתח מכרז (מנגנון) שישכנע את הנוסעים לחשוף את הערך האמיתי שלהם.

פתרון אחד, שכבר למדנו, הוא מכרז VCG:

- יש 2 אפשרויות כל תת-קבוצה של 1 היא אפשרות.
- אם הוא בקבוצה, ו-0 אם הוא לא בקבוצה. V[j] אם הוא לא בקבוצה. •
- יש שחקן נוסף (נקרא לו "הנהג"), שהערך שלו לכל אפשרות הוא שלילי מינוס עלות הנסיעה.
 - עבור כל תת-קבוצה, חשב את סכום הערכים (כולל הערך השלילי של הנהג).
 - בחר את תת-הקבוצה עם הסכום הגדול ביותר.
- עבור כל נוסע, התשלום הוא הסכום של הנוסעים האחרים (כולל הנהג) אילו הוא לא היה משתתף,
 פחות הסכום של הנוסעים האחרים (כולל הנהג) כשהוא משתתף.

ראו דוגמה בגליון המצורף.

כפי שלמדנו בעבר, מכרז וק"ג הוא אמיתי ויעיל פארטו, אבל יש בו בעיה רצינית - סכום התשלומים של כל השחקנים לא בהכרח מכסה את עלות הנסיעה. במילים אחרות: יש **גירעון!** אם נרצה להשתמש במכרז כזה באופן קבוע, הממשלה תצטרך לסבסד אותו.

פתרון אפשרי הוא לגבות מכל נוסע תשלום מסויים, כך שסכום התשלומים יכסה את עלות הנסיעה (למשל: ערך שאפלי), ואז לחסר את התשלום הזה מהערך של הנוסע.

הבעיה היא, שהעלות של חלק מהנוסעים עלולה להיות שלילית - הם ישלמו יותר מהערך שלהם.

מכרז מולין-שנקר

במקום וק"ג אפשר להשתמש במכרז אחר, המאפשר לנו לקבוע כלל-תשלום מאוזן תקציבית. המכרז נקרא על-שם ממציאיו - Moulin, Shenker. במכרז זה, אנחנו קובעים מראש את כלל-התשלום. כלל-התשלום הוא פונקציה (p(S,i). הוא קובע, עבור כל תת-קבוצה של נוסעים S, כמה ישלם כל נוסע i אם הקבוצה הזאת היא הקבוצה הנבחרת. הכלל צריך לקיים איזון תקציני (budget balance) - לכל תת-קבוצה, סכום התשלומים של חברי הקבוצה שווה לעלות הנסיעה של תת-הקבוצה.

בתחילת השיעור ראינו דוגמה לכלל-תשלום: ערך שאפלי. ראינו שהוא מאוזן תקציבית. ישנם כללים נוספים עם איזון תקציבי. למשל, אפשר לסדר את הנוסעים בסדר קבוע כלשהו (מהזוטר לבכיר), ולגבות מכל אחד את העלות השולית שלו בסדרה זו. ערך שאפלי עושה ממוצע על כל הסדרים, אבל אפשר לבחור סדר אחד כלשהו, והכלל עדיין יהיה מאוזן-תקציבית.

בהינתן כלל-התשלום, המכרז מתנהל באופן הבא (בדומה ל"מכרז יפני"):

- 1. **איתחול**: מכניסים את כל הנוסעים הפוטנציאליים לחדר.
- אומרים לכל משתתף כמה הוא צריך לשלם (לפי כלל-התשלום p), בהנחה שכל הנוסעים הנמצאים עכשיו בחדר משתתפים בנסיעה.
 - 3. כל משתתף שאינו רוצה לשלם יוצא מהחדר.
 - .4 אם מישהו יצא מהחדר חזור לצעד
 - 5. אחרת סיים ושלח את הנוסעים שנשארו בחדר למונית.

במקום להכניס נוסעים לחדר, אפשר לבצע הדמיה של התהליך - מבקשים מכל נוסע לדווח את הערך שלהם שלו, ומריצים את התהליך במחשב, כאשר בשלב 3, מוציאים מה"חדר" את כל המשתתפים שהערך שלהם קטן מהמחיר שהם אמורים לשלם.

כדי שהמכרז הזה יהיה אמיתי, כלל-התשלום צריך להיות מונוטוני במובן הבא: אם נוסע עוזב את הקבוצה, אז התשלומים של כל הנוסעים הנשארים גדֵלים (או שווים). כלומר לכל שתי קבוצות S,T ולכל שחקן i בקבוצה S, מתקיים:

If $S \le T$ then $p(S, i) \ge p(T, i)$

משפט: אם כלל-התשלום הוא מונוטוני, אז מכרז מולין-שנקר הוא אמיתי.

הוכחה: בכל פעם שנוסעים יוצאים מהחדר, התשלום של כל הנוסעים הנשארים נשאר קבוע או גדֵל. לכן, לנוסע שיצא, אף פעם לא כדאי לחזור. לכן ההתנהגות האופטימלית של נוסע היא לצאת מהחדר אם-ורק-אם התשלום הנוכחי גדול מהערך שלו. זה בדיוק מה שההדמיה של מכרז מולין-שנקר עושה עבורו כשהוא אומר את ערכו האמיתי. ***

האם אפשר להשתמש במכרז מולין-שנקר עם כלל-התשלום של שאפלי? לשם כך צריך לוודא שהכלל הזה מונוטוני. והוא אכן מונוטוני כאשר יש עלות שולית פוחתת.

הגדרה: פונקציית-עלות נקראת תת-פודולרית (submodular) אם יש לה עלות שולית פוחתת (decreasing marginal cost), כלומר, העלות השולית של כל שחקן ביחס לקבוצה מסויימת, קטנה (או שווה) כאשר הקבוצה גדֵלה. פורמלית, לכל שתי קבוצות S,T ולכל שחקן i:

If $S \le T$, then $c(S \cup \{i\}) - c(S) \ge c(T \cup \{i\}) - c(T)$

טבלת העלויות שהוצגה למעלה מקיימת תכונה זו.

ברוד ה' חונו הדעת

משפט: במשחק עם עלות שולית פוחתת, כלל-התשלום של שאפלי הוא מונוטוני.

הוכחה: נניח שחישבנו את ערך שאפלי של שחקן א בקבוצה מסויימת בגודל n. שחקן חדש, ב, הצטרף לקבוצה, ואנחנו מחשבים שוב את ערך שאפלי של שחקן א. צריך להוכיח שהערך החדש שווה או קטן מהערך הישן.

הערך הישן הוא ממוצע של nעצרת מספרים - אחד עבור כל סדר של השחקנים הישנים.

הערך החדש הוא ממוצע של (n+1)-עצרת מספרים - אחד עבור כל סדר של השחקנים עם שחקן ב. עבור כל סדר ישן, יש n+1 סדרים חדשים, כי יש n+1 אפשרויות להכניס את שחקן ב לתוך הסדר (לפני הראשון, לפני השני, ..., לפני האחרון, אחרי האחרון).

אם מכניסים את שחקן ב אחרי שחקן א - אז העלות השולית של שחקן א בסדר זה לא משתנה. אם מכניסים את שחקן ב לפני שחקן א - אז העלות השולית של שחקן א בסדר זה קטֵנה - כי יש עלות שולית פוחתת.

*** לכן, הממוצע על כל הסדרים קטן או שווה לממוצע הישן.

לסיכום, מכרז מולין-שנקר הוא מאוזן תקציבית ואמיתי (כשכלל-התשלום מונוטוני), אבל הוא לא מושלם:

משפט: מכרז מולין-שנקר אינו בהכרח יעיל-פארטו.

הוכחה: שיעורי בית.

סיכום

לסיכום, ראינו שלוש תכונות - יעילות, אמיתיות ואיזון תקציבי:

- מכרז וק"ג הוא יעיל ואמיתי אבל לא מאוזן;
- מכרז מולין-שנקר הוא אמיתי ומאוזן אבל לא יעיל;
- קל לחשוב על מכרז יעיל ומאוזן אבל לא אמיתי, למשל כל אחד משלם את הערך שלו.

האם קיים מכרז המקיים את כל התכונות? התשובה היא לא! כמו בשיעורים קודמים, יש "טרילמה" - צריך לבחור שתיים מתוך שלוש תכונות, אי אפשר לקבל את כל מה שרוצים...

מקורות

- http://www.ma.huji.ac.il/raumann/pdf/The%20Shapley%20Value.pdf ישראל אומן על ערך שאפלי:
 - Moulin, Hervé; Shenker, Scott (2001). "Strategyproof sharing of submodular : פנגנון פולין-שנקר costs:budget balance versus efficiency". Economic Theory. **18** (3): 511. .doi:10.1007/PL00004200
 - ... Herve Moulin, "Fair Division and Collective Welfare", pages
 - Shapley Value ויקיפדיה,
 - Cost-sharing mechanism ויקיפדיה,

מאמרים להרחבה ולמטלת רשות

- 1. Shahar Dobzinski, Aranyak Mehta, Tim Roughgarden, Mukund Sundararajan (2018): "Is Shapley cost sharing optimal?"
- 2. Yuhui Jin, Chuei-Tin Chang, Shaojun Li, Da Jiang (2018), "On the use of risk-based *Shapley* values for *cost sharing* in interplant heat integration programs"
- 3. Dongshuang Hou, Hao Sun, Panfei Sun, Theo Driessen (2018): "A note on the *Shapley* value for airport *cost* pooling game"
- 4. Khaled Maafa, Lhouari Nourine, Mohammed Said Radjef (2018): "Algorithms for computing the *Shapley* value of cooperative games on lattices"
- **5.** Christoph M.: "Interpretable machine learning Shapley values" https://christophm.github.io/interpretable-ml-book/shapley.html
- 6. Tjeerd van Campen, Herbert Hamers, Bart Husslage, Roy Lindelauf: "A new approximation method for the Shapley value applied to the WTC 9/11 terrorist attack" - ערך שאפלי והפיגוע במגדלי התאומים

סיכם: אראל סגל-הלוי.