Essays on Bioinformatics and Social Network Analysis

Statistical and Computational Methods for Complex Systems

George G Vega Yon

University of Southern California, Department of Preventive Medicine

January 28, 2020

What motivates my research

Statistical and computational methods for bioinformatics and social network analysis

► We live in a non-*IID* world.

Statistical and computational methods for bioinformatics and social network analysis

- ▶ We live in a non-*IID* world.
- ▶ In some times, the cannot understand a process unless we look at it as a whole.

Statistical and computational methods for bioinformatics and social network analysis

- ▶ We live in a non-*IID* world.
- ▶ In some times, the cannot understand a process unless we look at it as a whole.
- \blacktriangleright There's a reason why we usually assume *IID*.

Statistical and computational methods for bioinformatics and social network analysis

- ▶ We live in a non-*IID* world.
- ▶ In some times, the cannot understand a process unless we look at it as a whole.
- ► There's a reason why we usually assume *IID*.
- Modern (as of today) computational tools help us coping with that.

Contents

Paper 2: Exponential Random Graph Models for Small Networks

Future Research

Exponential Random Graph Models for Small Networks

Joint with: Andrew Slaughter and Kayla de la Haye

What are Exponential Random Graph Models

Keck School of Medicine of USC

Exponential Family Random Graph Models, aka ERGMs are:

What are Exponential Random Graph Models

Keck School of Medicine of USC

Exponential Family Random Graph Models, aka ERGMs are:

► Statistical models of (social) networks

Exponential Family Random Graph Models, aka ERGMs are:

- ► Statistical models of (social) networks
- ▶ In simple terms: statistical inference on what network patterns/structures/motifs govern social networks

A vector of model parameters

A vector of sufficient statistics

$$\Pr\left(\mathbf{Y} = \mathbf{y} \mid \theta, \mathbf{X}\right) = \frac{\exp\left\{\theta^{\mathbf{t}} s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\theta^{\mathbf{t}} s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$
All possible networks

A vector of model parameters sufficient statistics

A vector of

$$\Pr\left(\mathbf{Y} = \mathbf{y} \mid \theta, \mathbf{X}\right) = \frac{\exp\left\{\theta^{\mathbf{t}} s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\theta^{\mathbf{t}} s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$
All possible networks

The normalizing constant has $2^{n(n-1)}$ terms!

Sufficient statistics have various forms

Representation	Description
○ ← ← ○	Mutual Ties (Reciprocity) $\sum_{i\neq j} y_{ij} y_{ji}$
	Transitive Triad (Balance) $\sum_{i \neq j \neq k} y_{ij} y_{jk} y_{ik}$
•••	Homophily $\sum_{i eq j} y_{ij} 1 (x_i = x_j)$
	Covariate Effect for Incoming Ties $\sum_{i \neq j} y_{ij} x_j$
	Four Cycle ∑ _{i≠j≠k≠l} YijYjkYklYli

We see 4 edges, 1 transitive triad and no mutual ties.

We see 4 edges, 1 transitive triad and no mutual ties.

The probability function of this model would be

$$\begin{split} \mathbb{P}(\mathbf{G} = \mathbf{g} \mid \boldsymbol{\theta}) &= \frac{\exp\left\{4\theta_{edges} + \theta_{ttriads} + 0\theta_{mutual}\right\}}{\sum_{\mathbf{g}' \in \mathcal{G}} \exp\left\{\theta^{\mathbf{t}} s\left(\mathbf{g}'\right)\right\}} \\ \text{with } \boldsymbol{\theta} &= \left[\theta_{edges} \quad \theta_{ttriads} \quad \theta_{mutual}\right]^{\mathbf{t}} \end{split}$$

We see 4 edges, 1 transitive triad and no mutual ties.

The probability function of this model would be

$$\begin{split} \mathbb{P}\left(\mathbf{G} = \mathbf{g} \mid \theta\right) &= \frac{\exp\left\{4\theta_{edges} + \theta_{ttriads} + 0\theta_{mutual}\right\}}{\sum_{\mathbf{g}' \in \mathcal{G}} \exp\left\{\theta^{\mathbf{t}} \mathbf{s}\left(\mathbf{g}'\right)\right\}} \\ \text{with } \theta &= \begin{bmatrix}\theta_{edges} & \theta_{ttriads} & \theta_{mutual}\end{bmatrix}^{\mathbf{t}} \end{split}$$

This model has **MLE parameter estimates** of -0.20 (low density), 0.28 (high chance of ttriads), and -Inf (low chance of mutuality) for the parameters edges, ttriads, and mutual respectively.

ERGMs: State of the Art

Keck School of Medicine of USC Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- ► Maximum Pseudo Likelihood (MPLE)

Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- Maximum Pseudo Likelihood (MPLE)

large-huge networks (up to millions of vertices)

- ► Parametric bootstrap
- ► Conditional joint estimation (like snowball sampling, a.k.a. divide and conquer)
- ► Equilibrium Expectation Algorithm (millions of vertices)

Medium-large (dozens to a couple of thousand vertices) networks

- ► Markov Chain Monte Carlo (MCMC) based approaches like MC-MLE or Robbins-Monro Stochastic Approximation.

 details
- Maximum Pseudo Likelihood (MPLE)

large-huge networks (up to millions of vertices)

- ► Parametric bootstrap
- ► Conditional joint estimation (like snowball sampling, a.k.a. divide and conquer)
- ► Equilibrium Expectation Algorithm (millions of vertices)

All of these methods are approximations!

Keck School of Medicine of USC

Keck School of Medicine of USC

We see small networks everywhere

► Families and friends

Keck School of Medicine of USC

- ► Families and friends
- ► Small teams

Keck School of Medicine of USC

- ► Families and friends
- ► Small teams
- ► Egocentric networks

Keck School of Medicine of USC

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)

Keck School of Medicine of USC

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)
- ► etc.

- ► Families and friends
- ► Small teams
- ► Egocentric networks
- ► Online networks (sometimes)
- ▶ etc.

ERGMs for Small Networks

▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.

ERGMs for Small Networks

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► This allow us to directly compute the normalizing constant.

A vector of model parameters a sufficient statistics
$$\mathbf{y} \mid \theta, \mathbf{X}) = \frac{\exp\left\{\theta^t \mathbf{s}\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}} \left(\theta^t \mathbf{s}\left(\mathbf{y}, \mathbf{X}\right)\right)}, \quad \forall \mathbf{y} \in \mathbf{J}$$

$$\Pr\left(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}\right) = \frac{\exp\left\{\theta^{t} s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\theta^{t} s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$

$$\text{All possible networks}$$

$$\text{constant}$$

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► This allow us to directly compute **the normalizing constant**.

$$\begin{array}{c} \textbf{A vector of} \\ \textbf{model parameters} \end{array} \quad \begin{array}{c} \textbf{A vector of} \\ \textbf{sufficient statistics} \end{array}$$

$$\Pr\left(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}\right) = \frac{\exp\left\{\theta^t s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\theta^t s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y} \\ \textbf{All possition} \end{array}$$

The normalizing constant

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► This allow us to directly compute the normalizing constant.

Observed data

▶ Using the exact likelihood opens a huge window of methodological-possibilities.

networks

A vector of model parameters a sufficient statistics
$$\mathbf{f} = \mathbf{v} \mid \theta, \mathbf{X}) = \frac{\exp\left\{\theta^{\mathbf{t}} s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\exp\left\{\theta^{\mathbf{t}} s\left(\mathbf{y}, \mathbf{X}\right)\right\}} \quad \forall \mathbf{v} \in \mathbf{v}$$

$$\Pr\left(\mathbf{Y} = \mathbf{y} \mid \boldsymbol{\theta}, \mathbf{X}\right) = \frac{\exp\left\{\theta^{t} s\left(\mathbf{y}, \mathbf{X}\right)\right\}}{\sum_{\mathbf{y}' \in \mathcal{Y}} \exp\left\{\theta^{t} s\left(\mathbf{y}', \mathbf{X}\right)\right\}}, \quad \forall \mathbf{y} \in \mathcal{Y}$$

$$\text{All possible networks}$$

$$\text{Constant}$$

- ▶ In the case of small-enough networks, computation of the likelihood becomes computationally feasible.
- ► This allow us to directly compute the normalizing constant.
- ▶ Using the exact likelihood opens a huge window of methodological-possibilities.
- ▶ We implemented this and more in the ergmito R package

Sidetrack...

ito, ita: From the latin - itus. suffix in Spanish used to denote small or affection. e.g.: ¡Qué lindo ese perrito! / What a beautiful little dog! ¡Me darías una tacita de azúcar? / Would you give me a small cup of sugar?

Sidetrack...

ito, ita: From the latin - itus. suffix in Spanish used to denote small or affection. e.g.: ¡Qué lindo ese perrito! / What a beautiful little dog! ¿Me darías una tacita de azúcar? / Would you give me a small cup of sugar?

Special thanks to George Barnett who proposed the name during the 2018 NASN!

In general

- ▶ Implements estimation of ERGMs using exact statistics for small networks.
- ▶ Meta-programming allows specifying likelihood (and gradient) functions for pooled models.
- ▶ Includes tools for simulating and post-estimation checks.
- ► Getting ready for CRAN!

In general

- ▶ Implements estimation of ERGMs using exact statistics for small networks.
- ▶ Meta-programming allows specifying likelihood (and gradient) functions for pooled models.
- ▶ Includes tools for simulating and post-estimation checks.
- ► Getting ready for CRAN!

Other features

- Vectorized calculation of sufficient statistics.
- ► Scales up nicely (hundreds of small networks) saving space and computation (when possible).
- ▶ Highly tested (90% coverage with more than one hundred tests).

Figure 1 Random sample of 5 networks simulated using the ergmito package

Figure 1 Random sample of 5 networks simulated using the ergmito package

	Bernoulli	Full model
Edge-count	-0.69*	-1.70**
	(0.27)	(0.54)
Homophily (on Gender)		1.59^{*}
		(0.64)
AIC	78.38	73.34
BIC	80.48	77.53
Log Likelihood	-38.19	-34.67
Num. networks	5	5

Standard errors in parenthesis. ***p < 0.001, **p < 0.01, *p < 0.05

 $\begin{tabular}{ll} \textbf{Table 1} & \textbf{Fitted ERGMitos using the fiveness dataset}. \end{tabular}$

Figure 1 Random sample of 5 networks simulated using the ergmito package

ulated using the eightito package			
We performed a large simulation	study comparing	MC-MLE (ergm) with	MLE (ergmito).

	Bernoulli	Full model
Edge-count	-0.69*	-1.70**
	(0.27)	(0.54)
Homophily (on Gender)		1.59*
		(0.64)
AIC	78.38	73.34
BIC	80.48	77.53
Log Likelihood	-38.19	-34.67
Num. networks	5	5

Standard errors in parenthesis. ***p < 0.001, **p < 0.01, *p < 0.05Table 1 Fitted ERGMitos using the fivenets dataset.

▶ The MC-MLE implementation failed \sim 5,000/20,000 times

- ▶ The MC-MLE implementation failed \sim 5,000/20,000 times
- ► In ~700 of those cases ergmito (MLE) reported a significant effect

- ▶ The MC-MLE implementation failed \sim 5,000/20,000 times
- ► In ~700 of those cases ergmito (MLE) reported a significant effect
- ► I no case that MLE failed MC-MLE reported an effect.

	Р(Туре		
Sample size	MC-MLE (ergm)	MLE (ergmito)	χ^2
5	0.084	0.057	11.71 ***
10	0.070	0.045	12.46 ***
15	0.084	0.066	5.55 *
20	0.074	0.060	3.58
30	0.057	0.052	0.67
50	0.046	0.044	0.17
100	0.048	0.048	0.00

Table 2 Empirical Type I error rates. The χ^2 statistic is from a 2-sample test for equality of proportions, and the significance levels are given by **** p < 0.001, *** p < 0.01, and * p < 0.01.

Paper 2 Simulation Studies: Elapsed time

Keck School of Medicine of USC

Key takeaways

Keck School of Medicine of USC

Key takeaways

▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)

Keck School of Medicine of USC

Key takeaways

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.

Keck School of Medicine of USC

Key takeaways

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ▶ Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

Key takeaways

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ► Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

Challenges

► Computationally, we can do better in terms of speed/memory.

Key takeaways

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ► Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

Challenges

- ► Computationally, we can do better in terms of speed/memory.
- ► Have a good way of assessing goodness-of-fit.

Key takeaways

- ▶ New extension of ERGMs using exact statistics for small networks (families, teams, etc.)
- ► Performance: Same (un)bias, Lower Type I error rates, (way) faster.
- ▶ Opens the door the new methods, e.g. Mixed effects, LRT, etc.

Challenges

- ► Computationally, we can do better in terms of speed/memory.
- ► Have a good way of assessing goodness-of-fit.
- ► Explore extending this method for (very) large networks.

Future Research

Keck School of Medicine of USC

Goodness-of-fit

Keck School of Medicine of USC

Goodness-of-fit

▶ Is something that will need to be addressed at some point.

Keck School of Medicine of USC

Goodness-of-fit

- ▶ Is something that will need to be addressed at some point.
- $\,\blacktriangleright\,$ The problem is not easy as we need to deal a discrete distribution.

Keck School of Medicine of USC

Goodness-of-fit

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ▶ Two key questions: What sufficient statistic to look at? what test?

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ► Two key questions: What sufficient statistic to look at? what test?

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ▶ Two key questions: What sufficient statistic to look at? what test?

ERGMs for large networks

▶ There is still no standard way to estimate ERGMs for large networks.

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ▶ Two key questions: What sufficient statistic to look at? what test?

- ▶ There is still no standard way to estimate ERGMs for large networks.
- ▶ Most attempts are still depending on simulation methods.

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ▶ Two key questions: What sufficient statistic to look at? what test?

- ▶ There is still no standard way to estimate ERGMs for large networks.
- Most attempts are still depending on simulation methods.
- ▶ We could use the Snowball Sampling framework together with ERGMitos.

- ▶ Is something that will need to be addressed at some point.
- ▶ The problem is not easy as we need to deal a discrete distribution.
- ► Two key questions: What sufficient statistic to look at? what test?

- ▶ There is still no standard way to estimate ERGMs for large networks.
- Most attempts are still depending on simulation methods.
- ▶ We could use the Snowball Sampling framework together with ERGMitos. (... I would call this ERGMote)

Keck School of Medicine of USC

▶ An extension to a well studied models for social networks.

- ▶ An extension to a well studied models for social networks.
- ► Small size allows exact calculations.

- ▶ An extension to a well studied models for social networks.
- ► Small size allows exact calculations.
- ▶ Opens the door to a large set of methodological innovations.

- ▶ An extension to a well studied models for social networks.
- ► Small size allows exact calculations.
- ▶ Opens the door to a large set of methodological innovations.
- ▶ Next steps: GOF or extensions to large networks?

- ▶ An extension to a well studied models for social networks.
- ► Small size allows exact calculations.
- ▶ Opens the door to a large set of methodological innovations.
- ▶ Next steps: GOF or extensions to large networks?

Accomplishments during the development of this work

- ▶ 6 journal publications (Journal of Open Source Software, Stata Journal, Journal of health and social behavior, Translational behavioral medicine, Social Science & Medicine)
- ▶ 11 packages/libraries built (ergmito, similR, gnet, fmcmc, slurmR, aphylo, polygons, pruner, netplot, rphyloxml, jsPhyloSVG)

Essays on Bioinformatics and Social Network Analysis

Statistical and Computational Methods for Complex Systems

George G Vega Yon

University of Southern California, Department of Preventive Medicine

January 28, 2020

Thanks!

References I

One of the most popular methods for estimating ERGMs is the MC-MLE approach (citations here) This consists on the following steps

- 1. Start from a sensible guess on what should be the population parameters (usually done using pseudo-MLE estimation)
- 2. While the algorithm doesn't converge, do:
 - 2.1 Simulate a stream of networks with the current state of the parameter, θ_t
 - 2.2 Using the law of large numbers, approximate the ratio of likelihoods based on the parameter θ_t , this is the objective function
 - 2.3 Update the parameter by a Newton-Raphson step
 - 2.4 Next iteration

Paper 2 Simulation Studies

We performed a simulation study with the following features:

- ▶ Draw 20,000 samples of groups of small networks
- ► Each group had prescribed: (model parameters, number of networks, sizes of the networks)
- ► Each group could have from 5 to 300 small networks
- ▶ We estimated the models using MC-MLE and MLE.

◀ go back

Paper 2 Simulation Studies: Empirical Bias

