

Poolbanen

Stabiliteisonderzoek in s-domein Fo

Voorbeeld s-domein

$$K = 0$$

$$K = 4$$

Overdracht $R(s) \rightarrow C(s)$:

$$H_1(s) = K_{pn} \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)} = K_{pn} \frac{T(s)}{N(s)}$$

Overdracht closed loop systeem:

$$H_{c.l.} = \frac{H_{rechtdoorgaand}}{1 + H_{rondgaand}}$$

$$H_{c.l.} = \frac{K_{pn} \frac{T(s)}{N(s)}}{1 + K_{pn} K_T \frac{T(s)}{N(s)}} = K_{pn} \frac{T(s)}{N(s) + K_{pn} K_T T(s)}$$

Closed loop systeem:

$$H_{c.l.} = \frac{H_{rechtdoorgaand}}{1 + H_{rondgaand}} = \frac{K_{pn} \frac{T(s)}{N(s)}}{1 + K_{pn} K_T \frac{T(s)}{N(s)}} = K_{pn} \frac{T(s)}{N(s) + K_{pn} K_T T(s)}$$

Belangrijkste conclusies:

- Variatie van K_{pn} en K_T bij een teruggekoppeld systeem heeft geen invloed op de waarde van de nulpunten
- Positie van de polen is afhankelijk van K_{pn}.K_T
- Voor 0 ≤ K_{pn}.K_T ≤ ∞ wordt de poolbaan gevonden

Voorbeeld 6.1: de poolbaan van een teruggekoppeld eerste orde systeem

$$H_{CL} = K_{pn} \frac{T(s)}{N(s) + K_{pn} K_T T(s)} \Rightarrow Polen: N(s) + K_{pn} K_T T(s) = 0$$

Poolbaanvergelijking: $N(s) + K_{pn}K_TT(s) = 0$

De volgende eigenschappen en regels zijn van belang:

- Begin- en eindpunt van de poolbaan
- Asymptoten van de poolbaan
- Symmetrie van de poolbaan
- Delen van de poolbaan op de reele as
- Aankomst- en vertrekpunt op de reele as
- De somregel
- De productregel
- Bepaling van de poolbaan- en de gelijkspanningsversterking

$$\frac{T(s)}{N(s)} = -\frac{1}{K'}, \text{ met } K' = K_{pn}K_T$$

$$\left|\frac{T(s)}{N(s)}\right| = \left|-\frac{1}{K'}\right| = \frac{1}{K'}$$

$$\arg\left\{\frac{T(s)}{N(s)}\right\} = \arg\{T(s)\} - \arg\{N(s)\} = 3$$

$$\max_{s} k = 0, 1, 2$$

Poolbaanvergelijking

Normaalvorm: dit is een complexe vergelijking. Hieruit volgen twee voorwaarden:

Modulus voorwaarde

$$\operatorname{arg}\left\{\frac{T(s)}{N(s)}\right\} = \operatorname{arg}\left\{T(s)\right\} - \operatorname{arg}\left\{N(s)\right\} = \operatorname{arg}\left\{-\frac{1}{K'}\right\} = \pi \pm k2\pi,$$

$$\operatorname{met} \ k = 0, 1, 2, \dots$$
Fase voorwaarde

Voor complexere systemen is er geen makkelijke formule waarmee de polen kunnen worden uitgerekend!

Om poolbanen toch te kunnen construeren maken we gebruik van constructie- en rekenregels

Zie blz. 131/132 oud boek, 248/249 Franklin

Zie blz. 131/132 of blz. 133/134 oude boek. Blz. 268/269 nieuwe boek

- 1. De plaats van de nulpunten is onafhankelijk van K'.
- 2. De plaats van de polen volgt uit de poolbaanvergelijking: N(s) + K'T(s) = 0.
- 3. De poolbaan is symmetrisch ten opzichte van de reële as.
- 4. Punten op de reële as behoren tot de poolbaan indien geldt dat het totale aantal polen en nulpunten rechts van zo'n punt oneven is.
- 5. Er zijn n-m asymptoten waarlangs n-m poolbaantakken naar oneindig gaan. De asymptoten snijden de reële as in het zwaartepunt q van het pn-beeld onder de hoeken α_k : $\sum_{i=1}^{n} p_i \sum_{i=1}^{n} z_i$ n=aantal polen

 $q = \frac{\sum_{i=1}^{n} p_i - \sum_{i=1}^{n} z_i}{n - m}$, $\alpha_k = \frac{\pi + k2\pi}{n - m}$ $(k = 0, 1, 2, \dots, n - m - 1)$

- 6. De poolbaan bestaat uit **n** poolbaantakken.
- 7. In elke pool van het open systeem (lus) start een poolbaantak.
- 8. Er eindigen m poolbaantakken in de (zichtbare) nulpunten, terwijl er n-m takken eindigen in oneindig.

m=aantal nulpunten

Hogescholen

9. Eventuele aankomst- en vertrekpunten op de reële as kunnen worden bepaald uit:

$$\frac{dK'}{ds} = 0$$
, of uit: $\sum_{i=1}^{n} \frac{1}{s - p_i} - \sum_{i=1}^{m} \frac{1}{s - z_i} = 0$

10. Voor de hoeken waaronder de poolbaantakken in één punt aankomen of vertrekken op de reële as geldt:

$$\phi_k = \frac{\pi + k2\pi}{\ell}$$
 ($\ell = \text{aantal aankomende of vertrekkende takken, } k = 0,1,..,\ell-1$)

- 11. Indien er minstens twee polen meer dan nulpunten zijn, dan is de som van de polen onafhankelijk van K'.
- 12. Indien er één nulpunt in de oorsprong ligt, dan is het product van de polen onafhankelijk van K'. (het cirkelgeval)
- 13. Voor de poolbaanversterking in een bepaald punt p_k^{Δ} van de poolbaan geldt:

K' =
$$\frac{\prod\limits_{i=1}^{n}\left|p_{k}^{\Delta}-p_{i}\right|}{\prod\limits_{i=1}^{m}\left|p_{k}^{\Delta}-z_{i}\right|}$$
 met: k = 1, 2, 3, ··· n

14. Voor de lus-gelijkspanningsversterking in een bepaald punt van de poolbaan geldt:

$$K_{L} = K' \frac{\prod_{i=1}^{m} |z_{i}|}{\prod_{i=1}^{n} |p_{i}|}$$

De snijpunten van de poolbaantakken met de imaginaire as vinden we door substitutie van $s=j\omega$ in de poolbaanvergelijking. Dit levert de oscillatiefrequentie en de poolbaanversterking bij oscilleren op.

Poolbanen, beginpunten van de poolbaan

De beginpunten van de poolbaan vinden we door in de poolbaanvergelijking voor $K' = K_{pn}.K_T$ nul in te vullen.

$$N(s) + K_{pn}K_{T}T(s) = 0$$

$$N(s) = \prod_{i=1}^{n} (s - p_{i}) = 0$$

$$s = p_{i} (i = 1, 2, 3,n)$$

* Normaal vorm:
$$\frac{T(s)}{N(s)} = \frac{-1}{K'}$$

De beginpunten van de poolbaan zijn de polen van het open systeem

Poolbanen, eindpunten van de poolbaan

Eindpunt van de poolbaan: K' = K_{pn}.K_T => ∞

$$N(s) + K_{pn}K_TT(s) = 0$$
 maar nu voor K' = $K_{pn}K_T = \infty$!

$$T(s) = \prod_{i=1}^{m} (s - z_i) = 0$$

$$s = z_i (i = 1, 2, 3,m)$$

* Normaal vorm: $\frac{T(s)}{N(s)} = \frac{-1}{K'}$

De eindpunten van de poolbaan zijn de nulpunten van het open systeem; n – m poolbaantakken gaan naar ∞

Poolbanen, symmetrie van de poolbaan

Vb: Vanwege de symmetrie-eis kan de poolbaantak alleen over de reële as lopen.

Poolbanen, begin- en eindpunten van de poolbaan

Vb: berekening begin- en eindpunten van de poolbaan

Poolbanen, begin- en eindpunten van de poolbaan

Note: voor praktische systemen geldt: $n_P \ge m_z$ => Er zijn dus $(n_p - m_z)$ poolbanen die gaan naar ∞

Poolbanen, begin- en eindpunten van de poolbaan

Note: voor praktische systemen geldt: $n_P \ge m_z$ => Er zijn dus $(n_p - m_z)$ poolbanen die gaan naar ∞

Poolbanen, asymptoten van de poolbaan

$$q = \frac{\sum_{i=1}^{n} p_i - \sum_{i=1}^{m} z_i}{n - m}$$

$$\alpha_k = \frac{\pi + k2\pi}{n - m}$$
, met $k = 0, 1, 2, ...(n - m - 1)$

q = zwaartepunt van het pn-beeld van het open systeem α_k = hoeken waaronder de asymptoten de reele as snijden

Poolbanen, asymptoten van de poolbaan

Vb.
$$H(s) = K \frac{s+2}{s(s+3)(s+5)}$$

$$q = \frac{\{0 + (-3) + (-5)\} - (-2)}{3-1} = -3$$

$$\alpha_0 = \frac{\pi + 0}{2} = \frac{\pi}{2} \ (+90^\circ)$$

$$\alpha_1 = \frac{\pi + 2\pi}{2} = \frac{3\pi}{2} \ (270^\circ \text{ of ook } -90^\circ)$$

Poolbanen, asymptoten van de poolbaan

$$H(s) = K \frac{s+2}{s(s+3)(s+5)}$$

$$q = \frac{\{0 + (-3) + (-5)\} - (-2)}{3 - 1} = -3$$

$$\alpha_0 = \frac{\pi + 0}{2} = \frac{\pi}{2} (+90^\circ)$$

$$\alpha_1 = \frac{\pi + 2\pi}{2} = \frac{3\pi}{2}$$
 (270° of ook –90°)

Poolbanen, gedeelte van de poolbaan op de reele as

Vb. 6.5: Ga van rechts naar links over de reele as: in de oorsprong passeren we de eerste pool. Vanaf dat moment begint de poolbaan. In "-2" zijn er weer twee polen, dus 3 polen gepasseerd, in '-4' passeren we pool nr. 4, daarna houdt de poolbaan even op. Vanaf '-6' is er weer sprake van een poolbaan.

$$H_1(s) = K \frac{(s+4)(s^2+10s+34)}{s(s+2)^2(s+6)}$$

Poolbanen, aankomst- en vertrekpunten op de reele as

$$\frac{dK'}{ds} = 0$$

$$\frac{d}{ds} \left\{ \frac{N(s)}{T(s)} \right\} = 0$$

$$\sum_{i=1}^{i=n} \frac{1}{s - Pi} - \sum_{i=1}^{i=m} \frac{1}{s - z_i} = 0$$

Poolbanen, aankomst- en vertrekpunten op de reele as

$$\sum_{i=1}^{i=n} \frac{1}{s - Pi} - \sum_{i=1}^{i=m} \frac{1}{s - z_i} = 0$$

$$H(s) = K \frac{s+2}{s(s+3)(s+5)}$$
$$\frac{1}{s} + \frac{1}{s+3} + \frac{1}{s+5} - \frac{1}{s+2} = 0$$

vertrekpunt = -3.86

Poolbanen, aankomst- en vertrekpunten op de reele as

Hogescholen

$$H_p(s) = \frac{1}{(s+1)(s+2)(s+3)}$$

$$H_L(s) = K_R H_p(s) = K_R \frac{T(s)}{N(s)} = \frac{K_R}{(s+1)(s+2)(s+3)}$$

$$m = 0 \text{ nulpunten}$$

$$n = 3 \text{ polen}$$

De poolbaanvergelijking is: $N(s) + K_R T(s) = 0$

$$\frac{T(s)}{N(s)} = \frac{1}{(s+1)(s+2)(s+3)} = -\frac{1}{K_R}$$

of:

$$K_R = -(s+1)(s+2)(s+3) = -(s^3 + 6s^2 + 11s + 6)$$

$$H_p(s) = \frac{1}{(s+1)(s+2)(s+3)}$$

$$H_p(s) = \frac{1}{(s+1)(s+2)(s+3)}$$

$$H_p(s) = \frac{1}{(s+1)(s+2)(s+3)}$$

- r3) Er zijn n=3 poolbaantakken
- r4) Beginpunten (luspolen) zijn : $s_1 = -1; s_2 = -2; s_3 = -3$
- r5) Eindige eindpunten (lusnulpunten): geen
- r6) Aantal asymptoten: n m = 3 0 = 3

Richting asymptoten:
$$\alpha_k = \frac{\pi + k2\pi}{n - m} = \frac{\pi + k2\pi}{3} \Rightarrow \frac{\pi}{3}, \pi, \frac{5\pi}{3}$$
 (60°,180°,300°)

Snijpunt asymptoten met de reële as: $q = \frac{\sum_{i=1}^{n} p_i - \sum_{i=1}^{m} z_i}{n-m} = \frac{(-1)+(-2)+(-3)-(0)}{3} = \frac{-2}{\sqrt{2}}$

- r7) Poolbaan symmetrisch boven en onder de reële as
- r8) Takken op de reële as: tussen -1 en -2 en links van -3
- r9) Vertrekpunten: $K_R = -(s^3 + 6s^2 + 11s + 6)$

$$\frac{dk}{ds} = -\frac{d}{ds} (s^3 + 6s^2 + 11s + 6) = -(3s^2 + 12s + 11) = 0$$

$$s_{v1} = -2,58 \text{ (v.n.)} \quad \text{en } s_{v2} = -1,42$$

Door het uitbreekpunt $s_{v2} = -1,42$ in de poolbaanvergelijking in te vullen vindt met de waarde van K_R in dat punt:

$$K_R = -(s^3 + 6s^2 + 11s + 6) = -((-1, 42)^3 + 6(-1, 42)^2 + 11(-1, 42) + 6) = 0.38$$

Re-as

32

r10) Er vertrekken 2 takken met hoeken:

$$\phi_{k} = \frac{\pi + k2\pi}{\ell} = \frac{\pi}{2}, \frac{3\pi}{2}$$

r11,12,13) Zijn niet nodig voor de constructie

r15) Snijpunten met Imaginaire as (vul in $s=j\omega$):

$$s^3 + 6s^2 + 11s + 6 = -K_R$$
 \rightarrow $-j\omega^3 - 6\omega^2 + 11j\omega + 6 = -K_R$

Im;
$$-\omega^3 + 11\omega = 0$$

Re;
$$-6\omega^2 + 6 = -K_{\rm p}$$

$$\begin{cases} Im; & -\omega^3 + 11\omega = 0 \\ Re; & -6\omega^2 + 6 = -K_R \end{cases} \qquad \omega_1 = 0 \quad (K_R = -6 \text{ v.n.})$$

$$\omega_{2,3} = \pm 3,3 \text{ en } K_R = 60$$

Snijpunten zijn: $s_{1,2} = \pm 3,3j$

De poolbaan ziet er als volgt uit:

Im-as

+3j

Re-as

Poolbanen, de somregel

$$\sum_{i=1}^n p_i = \sum_{i=1}^n p_i^{\Delta}$$

Som van de closed loop polen = som van de open loop polen In het vertrekpunt geldt dat de polen van het closed loop systeem aan elkaar gelijk zijn, dus het vertrekpunt is (som open loop polen)/2

Voorwaarde: 2 polen meer dan nulpunten

Poolbanen, de DC Motor

Poolbanen, de DC Motor

$$P(s) = \frac{\dot{\Theta}(s)}{V(s)} = \frac{K_{em}}{(Js+b)(Ls+R) + K_{em}} \qquad C(s) = K$$

Poolbanen, de DC Motor

$$P(s) = \frac{\dot{\Theta}(s)}{V(s)} = \frac{K_{em}}{(Js+b)(Ls+R) + K_{em}}$$

$$C(s) = K$$

$$P(s) = \frac{\dot{\Theta}(s)}{V(s)} = \frac{K_{em}}{(Js+b)(Ls+R) + K_{em}}$$

Poolbanen, de DC Motor

$$P(s) = \frac{\dot{\Theta}(s)}{V(s)} = \frac{K_{em}}{(Js+b)(Ls+R) + K_{em}}$$

$$C(s) = K$$

$$P(s) = \frac{\dot{\Theta}(s)}{V(s)} = \frac{K_{em}}{(Js+b)(Ls+R) + K_{em}}$$

Poolbanen, de productregel

$$\prod_{i=1}^n (-p_i) = \prod_{i=1}^n (-p_i^{\Delta})$$

$$\prod_{i=1}^n p_i = \prod_{i=1}^n p_i^{\Delta}$$

Voorwaarde: precies 1 nulpunt in de oorsprong.

Dan geldt de productregel:

Het product van de polen van het closed loop systeem = Het product van de polen van het open loop systeem

Poolbanen, de productregel

Poolbanen, de productregel

Poolbanen, bepaling van de poolbaanversterking

Poolbaanvergelijking

$$\prod_{i=1}^{n} (s - p_i) + K' \prod_{i=1}^{m} (s - z_i) = 0$$

$$K' = -rac{\prod\limits_{i=1}^{n} (p_{1}^{\Delta} - p_{i})}{\prod\limits_{i=1}^{m} (p_{1}^{\Delta} - z_{i})}$$
 $K' = rac{\prod\limits_{i=1}^{n} \left| (p_{1}^{\Delta} - p_{i}) \right|}{\prod\limits_{i=1}^{m} \left| (p_{1}^{\Delta} - z_{i}) \right|}$

$$K' = rac{\prod\limits_{i=1}^{n}\left|(p_1^{\Delta}-p_i)
ight|}{\prod\limits_{i=1}^{m}\left|(p_1^{\Delta}-z_i)
ight|}$$

De poolbaanversterking in een bepaald punt van de poolbaan wordt gevonden door het product van de lengten van de vectoren van de polen van het open systeem naar dat bepaalde punt, te delen door het product van de lengten van de vectoren van de nulpunten naar dat bepaalde punt.

Poolbanen, bepaling van de gelijkspanningsversterking

$$K_{L} = H(s = 0)_{rondgaand} = K' \frac{\prod\limits_{i=1}^{m} (-z_{i})}{\prod\limits_{i=1}^{n} (-p_{i})} \qquad K_{L} = K' \frac{\prod\limits_{i=1}^{m} |z_{i}|}{\prod\limits_{i=1}^{n} |p_{i}|}$$

$$\mathit{K_L} = \mathit{K'} rac{\displaystyle\prod_{i=1}^{m} |z_i|}{\displaystyle\prod_{i=1}^{n} |p_i|}$$

De lus-gelijkspanningsversterking K_L wordt gevonden door de poolbaanversterking K' bij een bepaalde instelling te vermenigvuldigen met het product van de moduli van de nulpunten en te delen door het product van de moduli van de polen.

K, - Gelijkspanningsversterking

Stel:

$$H = \frac{K}{(s+2)(s+6)}$$

K_i - Gelijkspanningsversterking

Stel:

$$H = \frac{K}{(s+2)(s+6)}$$

$$K_L = K * \frac{1}{-2*-6}$$

$$E_{stat} = \frac{100\%}{1 + K_I}$$

$$K = 1 \Rightarrow E_{stat} = 92.3\%$$

 $K = 4 \Rightarrow E_{stat} = 75\%$
 $K = 20 \Rightarrow E_{stat} = 37.5\%$

Poolbanen, bepaling van de poolbaan- en de gelijkspanningsversterking

Statische fout ten gevolge van een stapvormige ingangsverandering: (dit is overigens een specifieke oplossing van de eindwaardestelling)

$$E = \frac{100\%}{1 + K_L} = \frac{100\%}{1 + 17/8} \approx 32\%$$

Dode tijd of looptijd bij dit proces is: $T_d = 1/v$

Overbrengingsfunctie van een looptijd: $H_d(s) = e^{-sT_d}$

Kan worden geschreven als:

den geschreven als:
$$H_d(s) = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{T_d}{n} s\right)^n} = \lim_{n \to \infty} \frac{\left(\frac{n}{T_d}\right)^n}{\left(s + \frac{n}{T_d}\right)^n}$$

Hiermee wordt de looptijd benaderd door oneindig veel 1e orde systemen in cascade met zeer kleine tijdconstanten.

Een meer praktische benadering is n beperken, bijvoorbeeld tot n = 3:

$$H_d(s) \approx \frac{1}{\left(1 + \frac{T_d}{3}s\right)^3}$$

Voor computersimulatie wordt vaak de Padé-benadering gebruikt:

$$e^{-sT_d} = \frac{P(sT_d)}{Q(sT_d)} = \frac{a_0 + a_1(sT_d) + a_2(sT_d)^2 + \dots}{b_0 + b_1(sT_d) + b_2(sT_d)^2 + \dots}$$

De coëfficiënten ai en bi kunnen met de volgende formule worden berekend

$$e^{-sT_d} = 1 - sT_d + \frac{(sT_d)^2}{2!} - \frac{(sT_d)^3}{3!} + \dots$$

De 1e orde benadering is dan:

$$e^{-sT_d} \approx \frac{1 - \frac{1}{2} sT_d}{1 + \frac{1}{2} sT_d}$$

Deze blijkt nogal onhandig te zijn.

Een goed compromis is de 2e orde Padé-benadering:

$$e^{-sT_d} \approx \frac{s^2 - \frac{6}{T_d}s + \frac{12}{T_d^2}}{s^2 + \frac{6}{T_d}s + \frac{12}{T_d^2}}$$

Deze benadering levert 2 complexe polen op in het linkerhalfvlak (LHV) en 2 complexe nulpunten in het rechterhalfvlak (RHV). Door deze nulpunten zullen er altijd poolbaantakken naar het RHV worden getrokken. Dit betekent dat door looptijd regelsystemen, voor grotere waarden van de versterking, altijd instabiel zullen worden. Door looptijd wordt ook de haalbare bandbreedte beperkt.

OEFENOPDRACHTEN

Construeer de poolbaan v.d. volgende systemen:

1)
$$H_L(s) = K' \frac{(s+3)}{(s+1)(s+5)}$$

2)
$$H_L(s) = K' \frac{(s+2)}{(s+3)(s+5)}$$

3)
$$H_L(s) = K' \frac{(s+1)}{(s+3)^2}$$

4)
$$H_L(s) = K' \frac{(s+2)(s+3)}{s(s+5)}$$

5)
$$H_L(s) = K' \frac{1}{(s+2)^2}$$

6)
$$H_L(s) = K' \frac{(s-1)}{(s+2)^2}$$

7)
$$H_L(s) = K' \frac{16}{(s+2)(s+8)}$$

OEFENOPDRACHTEN

Construeer de poolbaan v.d. volgende systemen:

1)
$$H_L(s) = K' \frac{(s+3)}{(s+1)(s+5)}$$

2)
$$H_L(s) = K' \frac{(s+2)}{(s+3)(s+5)}$$

3)
$$H_L(s) = K' \frac{(s+1)}{(s+3)^2}$$

4)
$$H_L(s) = K' \frac{(s+2)(s+3)}{s(s+5)}$$

5)
$$H_L(s) = K' \frac{1}{(s+2)^2}$$

6)
$$H_L(s) = K' \frac{(s-1)}{(s+2)^2}$$

7)
$$H_L(s) = K' \frac{16}{(s+2)(s+8)}$$

