1 Обработка данных.

Экспериментальным путем измерили период колебаний, при R=0 T=340 мкс; тогда частота колебаний составляет $\nu\approx 2941.18Hz\approx 3$ к Γ ц.

Используя формулу Томсона, вычислим индуктивность

$$T=2\pi\sqrt{LC}\Rightarrow L=rac{1}{C}\left(rac{T}{2\pi}
ight)^2=rac{1}{2\cdot 10^{-8}}rac{3.4^2\cdot 10^{-8}}{4\pi^2}pprox 146.55\ {
m mTh}$$

Измерим индуктивность при помощи прибора TETPOH-RLC200. Полученное значение – $L=143.47~\mathrm{m}\Gamma$ н.

Примем расчетную погрешность 4%; погрешность вычисления индуктивности ($\pm 5.74~\mathrm{m\Gamma H}$).

Вывод: Таким образом, приходим к выводу, что полученные значения совпадают в пределах погрешности.

Измерим зависимость $T^2(C)$; построим график данной зависимости.

$C~(10^{-2}~{ m MK}\Phi)$	1	2	4	7	9
$T^2 (10^3 { m mkc}^2)$	57.6	115.6	230.4	409.6	518.4

По графику проверим справедливость формулы Томсона.

Вывод: график $T^2(C)$ представляет собой линейную зависимость, таким образом, приходим к выводу о справедливости формулы Томсона.

Измерим зависимость логарифмического декремента затухания от сопротивлени

$R_{\text{внеш}}, \text{ Om}$	n	U_1/U_n	θ	Q
0	23	2	0.03	104.6
2	21	2	0.033	95.15
4	20	2	0.034	92.35
6	19	2	0.036	87.22
8	17	2	0.041	76.59
10	25	3	0.044	71.36
12	24	3	0.046	68.26
15	28	4	0.049	64.08

Вычислим теоретическое значение критического сопротивления.

$$R_{\mathrm{Kp}} = 2\sqrt{\frac{L}{C}} = 2\sqrt{\frac{143.47 \cdot 10^{-3}}{2 \cdot 10^{-8}}} \approx 5356.68 \mathrm{Om}$$

$$\theta = \gamma T = \frac{R}{2L} 2\pi \sqrt{LC} = R\pi \sqrt{\frac{C}{L}} = \frac{2\pi}{R_{\text{KD}}} R \tag{1}$$

$$R = R_{\text{внеш}} + R_{\text{внутр}} \tag{2}$$

$$\theta = \frac{2\pi}{R_{\text{kp}}} R_{\text{внеш}} + \frac{2\pi}{R_{\text{kp}}} R_{\text{внутр}} \tag{3}$$

Построим график зависимости $\theta(R)$ и выразим $R_{\text{внеш}}$ $R_{\text{внутр}}$.

$$\frac{2\pi}{R_{\rm kp}}=0.0013\Rightarrow R_{\rm kp}\approx 4830.77~{\rm Om}$$

$$\frac{2\pi}{R_{\rm kp}}R_{\rm bhytp}=0.029\Rightarrow R_{\rm bhytp}\approx 22.31~{\rm Om}$$

Вывод: таким образом, с помощью графика зависимости $\theta(R)$ мы нашли значения внутреннего и критического сопротивления. Вычислим логарифмический декремент затухания по фазовой диаграмме.

Figure 1: Колебания на фазовой диаграмме R = 300 Ом

Figure 2: Колебания на фазовой диаграмме $R=1\ \kappa O$ м

Вычисления выполним по формуле:

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$
 (4)
$$300 \text{ Om: } \theta = \frac{1}{4} \ln \frac{14}{3} \approx 0.39$$

$$1 \text{ kOm: } \theta = \ln \frac{6}{2} \approx 1.09$$