Real-time Systems

Week 6: Periodic real time scheduling

Ngo Lam Trung

Dept. of Computer Engineering

Contents

- Notation of periodic real-time tasks
- Periodic scheduling algorithms
 - Timeline Scheduling
 - Earliest Deadline First
 - Rate Monotonic
 - Deadline Monotonic
 - Earliest Deadline First (modified)

- □ 3 tasks:
 - □ Task 1: period 200 ms, computation time 50 ms
 - □ Task 2: period 100 ms, computation time 50 ms
 - Task 3: period 400 ms, computation time 50 ms
 - Is it schedulable?
- If task 4 is added
 - □ Task 4: period 200 ms, computation time 30 ms
 - Is it schedulable?

Notation of periodic task set

- \square Γ : a set of periodic tasks
- $\Box \tau_i$: a generic periodic task
- $\ \ \ \ \tau_{i,j}$: the *j*-th instance of task τ_i
- $ightharpoonup r_{i,j}$: the release time of $\tau_{i,j}$
- $\blacksquare \Phi_i = r_{i,1}$: the phase of τ_i
- \square D_i : the relative deadline of τ_i
- $lue{}$ $d_{i,j}$: the absolute deadline of $\tau_{i,j}$

•
$$d_{i,j} = \Phi_{i,j} + (j-1)T_i + D_i$$

- \square $s_{i,j}$: the start time of $\tau_{i,j}$
- \Box $f_{i,j}$: the finishing time of $\tau_{i,j}$

Periodic task notations

 \Box Task τ_i 's timing parameters

- □ Task τ_i 's timing parameters is **feasible** if all its instances finish within their absolute deadline
- A set Γ of periodic tasks is schedulable if all tasks in Γ are feasible

Assumptions

- A1. The instance of τ_i is regularly activated at a constant rate. (Period T_i)
- All All instances of a task have the same worst-case execution time C_i .
- A3. All instances of a task have the same relative deadline D_i and $D_i = T_i$.
- A4. All tasks are independent; no precedence & resource constraints
- A5. No task can suspend itself, for example on I/O operations
- A6. All tasks are fully pre-emptible.
- □ A7. All overheads in the kernel are ignored.

Simplified task parameters

- □ A task under assumptions A1-A4 can be characterized by 3 parameters.
 - Task set: $\Gamma = \{\tau_i(\Phi_i, T_i, C_i), i=1,...,n\}$
 - Release time: $r_{i,k} = \Phi_i + (k-1)T_i$
 - Absolute deadline: $d_{i,k} = \Phi_i + kT_i$

Periodic task parameters

Response time:

- Duration from the release time to finishing time
- $R_{i,k} = f_{i,k} r_{i,k}$

Critical instant:

 The time at which the release of a task will produce the largest response time

□ Critical time zone:

Response time with respect to the critical instant

An example of critical instance

$$\Gamma = \{ \tau_1(0,3,2), \tau_2(2,4,1) \}$$

- \blacksquare Assume that τ_2 has lower priority than τ_1 .
- ullet When is the critical instant of τ_2 ?

Hyperperiod

- \Box Given a set of 3 tasks, all activate at t = 0:
 - □ Task 1: period 200 ms, computation time 50 ms
 - □ Task 2: period 100 ms, computation time 50 ms
 - Task 3: period 400 ms, computation time 50 ms
- How long will the schedule repeat itself?

$$H = lcm(T_1, \ldots, T_n)$$

Icm: least common multiply

Hyper period

- \Box Given a set of 3 tasks, all activate at t = 0:
 - □ Task 1: period 200 ms, computation time 50 ms
 - Task 2: period 100 ms, computation time 50 ms
 - □ Task 3: period 400 ms, computation time 50 ms
- How long will the schedule repeat itself?

$$H = lcm(T_1, \ldots, T_n)$$

Icm: least common multiply

Processor utilization factor

Processor utilization for n tasks

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i}$$

- □ *U* represents how many percent of processor resource is utilized by a given task set.
- Example 1:
 - U3 = 50/200 + 50/100 + 50/400 = 87.5%
 - U4 = 50/200 + 50/100 + 50/400 + 30/200 = 102.5%

Utilization factor vs schedulability?

- □ If U > 1:
 - Let H be the hyperperiod

$$U > 1 \Rightarrow UH > H$$

$$\Rightarrow \sum_{i=1}^{n} \frac{H}{T_i} C_i > H$$

- \Box $(H/T_i)Ci$: total CPU time requested by T_i during H
- \rightarrow total requestime during [0, H) is bigger than H
- → the task set is not schedulable

- What if U < 1: the task set is schedulable?</p>
 - →not sure!

Utilization factor vs schedulability?

 \square Consider two tasks T_1 , T_2 (T1 has higher priority)

- Schedulable?
- □ U = ?
- What if C1 or C2 increase by epsilon?
- → U < 1 does not guarantee schedulability
- Given a task set Γ, its schedulability depends on
 - The parameters of the tasks
 - The scheduling algorithm

Processor utilization factor

Given a scheduling algorithm A and a task set Γ, there will be a upper bound value of U

$$U_{ub}(\Gamma,A)$$

- $U > U_{ub}(\Gamma, A)$: Γ is not schedulable by A
- $If U = U_{ub}(\Gamma, A)$: Γ fully utilizes the processor

□ For a given algorithm *A*, let

$$U_{lub}(A) = \min_{\Gamma} U_{ub}(\Gamma, A)$$

- □ All task set having $U \leq U_{lub}(A)$ will be schedulable by A
- □ if $1 > U > U_{lub}(A)$, schedulability depends on actual tasks parameters (activation time, period...)

Processor utilization factor

Utilization vs schedulability

Algorithms for periodic scheduling

- \Box Timeline Scheduling (D = T)
- \square Earliest Deadline First (D = T)
- \square Rate Monotonic (D = T)
- \square Deadline Monotonic ($D \le T$)
- \square Earliest Deadline First $(D \le T)$

Algorithm 1: Timeline Scheduling

- Divide the timeline into Minor Cycles and Major Cycles
 - □ Major Cycle = $lcm(T_i)$ = H (least common multiply)
 - □ Minor Cycle = $gcd(T_i)$ (greatest common divisor)
- Scheduling and implementation:
 - Schedule the task execution in each minor cycle of a major cycle
 - Set up a timer with period equal to minor cycle
 - The main function synchronize task execution with timer event

- Consider a taskset $\Gamma = \{\tau_1, \tau_2, \tau_3\}$
 - Periodic tasks $\tau_i = (C_i, D_i, T_i), D_i = T_i$
 - $T_1 = 25ms$, $T_2 = 50ms$, $T_3 = 100ms$
- 1. Minor Cycle $\Delta = gcd(25, 50, 100) = 25ms$
- 2. Major Cycle T = lcm(25, 50, 100) = 100ms
- 3. Compute a schedule that respects the task periods
 - Allocate tasks in slots of size $\Delta = 25ms$
 - The schedule repeats every T = 100ms
 - au_1 must be scheduled every 25ms, au_2 must be scheduled every 50ms, au_3 must be scheduled every 100ms
 - In every minor cycle, the tasks must execute for less than 25ms

- The schedule repeats every 4 minor cycles
 - au_1 must be scheduled every $25ms \Rightarrow$ scheduled in every minor cycle
 - au_2 must be scheduled every $50ms \Rightarrow$ scheduled every 2 minor cycles
 - au_3 must be scheduled every $100ms \Rightarrow$ scheduled every 4 minor cycles

- First minor cycle: $C_1 + C_3 \le 25ms$
- Second minor cycle: $C_1 + C_2 \le 25ms$

 Periodic timer firing every minor cycle

- Every time the timer fires...
- ...Read the scheduling table and execute the appropriate tasks
- Then, sleep until next minor cycle

Algorithm 1: Timeline Scheduling

Advantage:

- Simple, does not require RTOS
- No context switching, minimal run-time overhead.

Disadvantages:

- Domino effect if task does not terminate on time
- May need to divide task in to small pieces
- Difficult to handle aperiodic and long tasks
- Sensitive to task parameter changes (period, execution time...)

Algorithm 2: Ealiest Deadline First (EDF)

- Pre-emptible task set, dynamic priorities
- All tasks instances are consider aperiodic tasks
- Priority and scheduling of task is based on the instances' absolute deadline:

$$d_{i,j} = \Phi_i + (j-1)T_i + Di$$

Proof of optimality is the same as with aperiodic tasks

How to analyze schedulability/feasibility?

Schedulability analysis of EDF

Theorem: a set of periodic tasks is schedulable with EDF if and only if

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} \le 1$$

Proof:

Schedulability analysis of EDF

Theorem: a set of periodic tasks is schedulable with EDF if and only if

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} \le 1$$

Proof:

- □ If U > 1: not enough CPU resource → not schedulable
- □ If U <= 1: show that the task set is schedulable</p>

Contradiction: provided the task set is not schedulable

Let t_2 : time that time-overflow happens

 t_1 : starting of **continuous utilization** $[t_1, t_2]$

Total processor computation time demanded in [t₁, t₂]

$$C_p(t_1, t_2) = \sum_{r_k > t_1, d_k < t_2} C_k = \sum_{i=1}^n \left\lfloor \frac{t_2 - t_1}{T_i} \right\rfloor C_i$$

Schedulability analysis of EDF

If the task set is not schedulable

$$C_p(t_1, t_2) > t_2 - t_1$$

However

$$C_p(t_1, t_2) \le \sum_{i=1}^n \frac{t_2 - t_1}{T_i} C_i = (t_2 - t_1) U$$

Then we have

$$(t_2 - t_1)U > t_2 - t_1$$

$$\to U > 1$$

> contradiction

An example of EDF scheduling

Task	1	2	3
ϕ_i	0	2	1
C_i	1.5	1	0.5
T_i	4	3	2

- \square Assume that $T_i = D_i$
- Preemptive task set

An example of EDF scheduling

Algorithm 3: Rate Monotonic (RM)

- Pre-emptible task set, static scheduling with fixed priorities
- Priority of task is based on the task's request rate: higher rates (shorter periods) correspond to higher priorities
- Optimality: RM is optimal among all fixed-priority algorithms
- Schedulability/feasibility analysis: U_{lub}

□ T1: c=1, p=d=4

□ T2: c=2, p=d=5

□ T3: c=3, p=d=20

Proof of optimality (1)

For any task T, the critical instance occurs when it is released simultaneously with all higher-priority tasks

→ Task schedulability can be checked at its critical instance

Proof of optimality (2)

- If a task set Γ is schedulable by any fixed priority algorithm, it will be schedulable by RM
 - □ Given two tasks τ_1 , τ_2 with T1 < T2, in critical instants
 - □ Provided the scheduled violates RM $\rightarrow \tau_2$ has higher priority
 - → the schedule is feasible if

- Show that exchanging priority of T1 and T2 will result in feasible schedule
 - → Homework

Proof of optimality (3)

- \Box Consider if τ_1 , τ_2 are scheduled by RM, τ_1 has higher priority
- Let $F = \lfloor T_2/T_1 \rfloor$: the number of T1 contained entirely in T2

→ The schedule by RM is feasible

Proof of optimality (4)

Case (b)

As
$$C_1+C_2 \leq T_1$$
 \Rightarrow $FC_1+FC_2 \leq FT_1$ Since $F \geq 1$ $FC_1+C_2 \leq FC_1+FC_2 \leq FT_1$

- → The schedule by RM is feasible
- Given τ_1 , τ_2 if they are scheduled by any fixed priority algorithm, then they are schedulable by RM
- → RM is optimal

RM schedulability: using U

Necessary but not sufficient

$$U \leq 1$$

Sufficient but not necessary (LL-bound)

$$U \leq n(2^{1/n}-1)$$

As the number of tasks n increases to infinite

$$U \to ln2 = 0.69$$

n	U_{lub}
1	1.000
2	0.828
3	0.780
4	0.757
5	0.743

n	U_{lub}
6	0.735
7	0.729
8	0.724
9	0.721
10	0.718

- \blacksquare T1(c=1,p=d=4), T2(c=1, p=d=5), T3(c=1, p=d=10)
- □ Is this tasks set schedulable by RM?

$$U = 1/4 + 1/5 + 1/10 = 0.55$$

 $n(2^{1/n} - 1) = 3(2^{1/3} - 1) = \approx 0.78$

We have

$$U \leq n(2^{1/n}-1)$$

→ Schedulable tasks set

Schedulability analysis of RM

- □ If $n(2^{1/n} 1) < U \le 1$ the tasks set might of might not be schedulable
- → Need to check manually

RM schedulability: using hyperbolic bound

 $lue{}$ Given a set of periodic task with utilization factors U_i the tight bound for schedubility with RM is

$$\prod_{i=1}^{n} (U_i + 1) \le 2.$$

EDF vs RM

EDF vs RM

EDF is dynamic algorithm → able to produce feasible schedule when RM fails

EDF and **RM** comparison

- EDF: large overhead
 - Calculate time to deadline for all ready tasks
 - Assign priorities
 - Schedule based on new priorities
- RM is simpler to implement, requires less overhead

Assumptions for EDF and RM

A3: Relative deadline equals to period

$$D_i = T_i$$

Relax the assumption for more practical problems

→ modified algorithms

Algorithm 4: Deadline Monotonic (DM)

- Each task is assigned a priority inversely proportional to its relative deadline
- Shorter deadlines imply higher priorities

→ Feasible schedule

Schedulability analysis of DM

$$\tau_1$$
 τ_2
 τ_2
 τ_3
 τ_4
 τ_4
 τ_4
 τ_5
 τ_5
 τ_6
 τ_6
 τ_7
 τ_8
 τ_8

Processor utilization

$$U = 2/3 + 3/6 = 1.16 > 1$$

→ cannot be used for schedulability analysis

Schedulability analysis of DM

- The worst-case processor demand (at critical instances) must be met
- In the worst case: for each task τ, the sum of its processing time and the interference (preemption) imposed by higher priority tasks must be less than or equal to its relative deadline

Schedulability based on response time

Response time of task i

$$R_i = C_i + I_i,$$

Interference by higher priority tasks

$$I_i = \sum_{j=1}^{i-1} \left\lceil \frac{R_i}{T_j} \right\rceil C_j.$$

Then

$$R_i = C_i + \sum_{j=1}^{i-1} \left\lceil \frac{R_i}{T_j} \right\rceil C_j.$$

 \square R_i is calculated recursively until converged

□ Test the schedulability of the tasks set, present a feasible schedule if available

	C_i	T_i	D_i
$ au_1$	1	4	3
$ au_2$	1	5	4
$ au_3$	2	6	5
$ au_4$	1	11	10

Step 0:
$$R_4^{(0)} = \sum_{i=1}^4 C_i = 5$$
, but $I_4^{(0)} = 5$ and $I_4^{(0)} + C_4 > R_4^{(0)}$ hence τ_4 does not finish at $R_4^{(0)}$.

Step 1:
$$R_4^{(1)} = I_4^{(0)} + C_4 = 6$$
, but $I_4^{(1)} = 6$ and $I_4^{(1)} + C_4 > R_4^{(1)}$ hence τ_4 does not finish at $R_4^{(1)}$.

Step 2:
$$R_4^{(2)} = I_4^{(1)} + C_4 = 7$$
, but $I_4^{(2)} = 8$ and $I_4^{(2)} + C_4 > R_4^{(2)}$ hence τ_4 does not finish at $R_4^{(2)}$.

Step 3:
$$R_4^{(3)} = I_4^{(2)} + C_4 = 9$$
, but $I_4^{(3)} = 9$ and $I_4^{(3)} + C_4 > R_4^{(3)}$ hence τ_4 does not finish at $R_4^{(3)}$.

Step 4:
$$R_4^{(4)} = I_4^{(3)} + C_4 = 10$$
, but $I_4^{(4)} = 9$ and $I_4^{(4)} + C_4 = R_4^{(4)}$ hence τ_4 finishes at $R_4 = R_4^{(4)} = 10$.

Analyze the schedulability of task T3

Task	Т	С	D
1	250	5	10
2	10	2	10
3	330	25	50

Analyze the schedulability of task T3

Task	Т	С	D
1	250	5	10
2	10	2	10
3	330	25	50

Iteration	Rs (for Task T3)	1	R ^{s+1}
1	25	5+3x2=11	36
2	36	5+4x2=13	38
3	38	5+4x2=13	38

→T3 is schedulable

Algorithm 5: EDF with D < T

- Dynamic scheduling
- Utilization bound does not work!!!
- → The processor demand approach

"During any time interval, the total processor demand of the whole tasks set must be no greater than the available time"

Processor demand

Given time interval [0,L], total processor demand for task
 τ_i is

$$C_i(0,L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right) C_i$$

Example

Processor demand

Total processor demand for the whole task set

$$C(0,L) = \sum_{i=1}^{n} \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right) C_i$$

Example

	C _i	D _i	$T_{\mathbf{i}}$
T1	2	4	6
T2	2	5	8
T3	3	7	9

L	C(0,L)
4	2
5	4
7	7

Schedulability analysis

- Condition on processor demand
- For all L > 0 task set is schedulable by EDF if and only if

$$L \geq \sum_{i=1}^{n} \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right) C_i$$

- Problem: how to check this condition?
 - Too many value of L

Schedulability analysis: Check at deadlines

- □ C(0, L) is a step function so we can check the schedulability condition on deadlines
- □ The number of values to check is still large

Schedulability analysis: Bounding L

Observe

$$\sum_{i=1}^{n} \left(\left\lfloor \frac{L+T_{i}-D_{i}}{T_{i}} \right\rfloor \right) \times C_{i} \leq \sum_{i=1}^{n} \frac{L+T_{i}-D_{i}}{T_{i}} \times C_{i}$$

Let

$$G(0,L) = \sum_{i=1}^{n} \frac{L + T_i - D_i}{T_i} \times C_i$$

We have

$$C(0,L) \le G(0,L)$$

Schedulability analysis: Bounding L

Rewrite

$$G(0,L) = \sum_{i=1}^{n} \left(\frac{L + T_i - D_i}{T_i} \right) C_i$$

$$= \sum_{i=1}^{n} L \frac{C_i}{T_i} + \sum_{i=1}^{n} (T_i - D_i) \frac{C_i}{T_i}$$

$$= LU + \sum_{i=1}^{n} (T_i - D_i) U_i$$

then

$$\begin{cases}
C(0,L) \le G(0,L) \\
C(0,L) \le L
\end{cases}$$

Schedulability analysis: Bounding L

G(0, L) is a straight line with slope U

L represents the line with slope 1. When U < 1, there exists $L = L^*$, where G(0, L) = L

L*: bounding value of L to check for schedulability

Calculate L* and verify schedulability

$$L^* = \frac{\sum_{i=1}^{n} (T_i - D_i) U_i}{1 - U}$$

	C _i	D _i	$T_{\mathbf{i}}$
T1	2	4	6
T2	2	5	8
ТЗ	3	7	9

L	C(0,L)
4	2
5	4
7	7

	C _i	D _i	T_{i}
T1	2	4	6
T2	2	5	8
T3	3	7	9

L	C(0,L)	
4	2	OK
5	4	OK
7	7	OK
10	9	OK
13	11	OK
16	16	OK
21	18	OK
22	20	OK

$$U = 2/6 + 2/8 + 3/9$$

$$L^* = \frac{\sum_{i=1}^{n} (T_i - D_i) U_i}{1 - U}$$

$$L^* = 25$$

Exercise

Construct the schedule for this task set using RM and EDF

	C_i	T_i
$ au_1$	1	4
$ au_2$	2	6
$ au_3$	3	8

Verify the schedulability and construct the schedule for the following task set using DM and EDF

	C_i	D_i	T_i
$ au_1$	2	5	6
$ au_2$	2	4	8
$ au_3$	4	8	12