ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика» Направление подготовки: 01.03.02 «Прикладная математика и информатика» Π рофиль: «Анализ данных и принятие решений в экономике и финанcax» Φ орма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 125

1. Сформулируйте определение случайной выборки из конечной генеральной совокупности. Какие виды выборок вам известны? Перечислите (с указанием формул) основные характеристики выборочной и генеральной совокупностей

Здесь очень много исчерпывающей информации о выборках из генеральной совокупности и про различные виды выборок

- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;7] и [0;3] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(0,006 \leqslant Z \leqslant 0,519)$.
 - 1) Функция распределения $F_Z(x)$ имеет вид: $F_Z(x) = \begin{cases} 0, x \leqslant 0; \\ \frac{7x}{6}, 0 \leqslant x \leqslant \frac{3}{7} \approx 0,429; \\ 1 \frac{3}{14x}, x \geqslant \frac{3}{7}; \end{cases}$ 2) Плотность распределения $f_Z(x)$ имеет вид: $f_Z(x) = \begin{cases} 0, x \leqslant 0; \\ 1 \frac{3}{14x}, x \geqslant \frac{3}{7}; \\ \frac{7}{6}, 0 \leqslant x \leqslant \frac{3}{7} \approx 0,429; \\ \frac{3}{14x^2}, x \geqslant \frac{3}{7}; \end{cases}$

3) вероятность равна: $\P(0,006 \le Z \le 0.519) = 0.57962$.

3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x)=x^{\beta}, 0\leqslant x\leqslant 1$. Наблюдения показали, что в среднем она составляет 87,5%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 53%

Найдём плотность рапределения как интеграл от ΦP , а дальше всё и вовсе простою Ответ: 1174711139837

- 4. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y 100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i = X(\omega_i)$ и $y_i = Y(\omega_i)$, i = 1...25. Все оценки известны $x_0 = 73, y_0 = 44, x_1 = 44, y_1 = 83, x_2 = 49, y_2 = 41, x_3 = 36, y_3 = 32, x_4 = 48, y_4 = 60, x_5 = 53, y_5 = 37, x_6 = 70, y_6 = 86, x_7 = 61, y_7 = 82, x_8 = 42, y_8 = 57, x_9 = 94, y_9 = 40, x_{10} = 44, y_{10} = 78, x_{11} = 85, y_{11} = 78, x_{12} = 48, y_{12} = 66, x_{13} = 88, y_{13} = 82, x_{14} = 31, y_{14} = 39, x_{15} = 84, y_{15} = 68, x_{16} = 49, y_{16} = 51, x_{17} = 84, y_{17} = 55, x_{18} = 65, y_{18} = 67, x_{19} = 37, y_{19} = 99, x_{20} = 46, y_{20} = 31, x_{21} = 84, y_{21} = 46, x_{22} = 40, y_{22} = 67, x_{23} = 86, y_{23} = 54, x_{24} = 89, y_{24} = 32$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X \geqslant 50$ и $Y \geqslant 50$; 2) коэффициент корреляции X и Y при том же условии.
 - 1) Ковариация = -345.5 2) Коэффициент корреляции = -2.9554
- 5. (10) Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y=2	Y=4	Y = 5
X = 200	16	19	5
X = 300	25	10	25

Из Ω случайным образом без возвращения извлекаются 6 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

- 1) математическое ожидание $\mathbb{E}(\bar{Y})$: 3.48 2) стандартное отклонение $\sigma(\bar{X})$: 256.5595
- 3) ковариацию $Cov(\bar{X},\bar{Y})$: 0.5887
- 6. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{3X_1 + X_2 + 4X_3 + 2X_4}{10}, \hat{\theta}_1 = \frac{X_1 + 6X_2 + 2X_3 + X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?

Обе они несмещенные, потому что в числителе выходит в сумме 10. Какая-то точно должна быть, а может и нет....

Утверждаю: Первый заместитель руководителя департамента

Дата 01.06.2021

Феклин В.Г.