EPIT	A/	InfoS2#

Novembre 2022 NOM : PRENOM : Groupe :

Contrôle Architecture - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Nombres à virgule flottante (6 points)

1. Convertissez, en détaillant chaque étape, les deux nombres ci-dessous dans le format flottant IEEE 754 simple précision. Vous exprimerez le résultat final sous forme hexadécimale.

a.
$$-82,3125$$

$$0.8 = 1$$

$$0.82,3125 = (1010010,0101)_{2}$$

$$= (1,0100100101)_{2} \times 2^{6}$$

$$= 17 = 010010010010 = e = 6$$

$$0.5 = 0.$$

b. 0,46875

- 2. Convertissez, en détaillant au maximum, les nombres ci-dessous, dans leur représentation décimale.
 - a. $4B50\ 0000_{16}$

b. C070 0000 0000 0000₁₆

Coto coco coco coco coco coma, coco coma, se e
$$\eta$$

o S=A = Nb <0
o E= 1000 coco an am = 1023 i 8 = η

e = 8

o $(4, \eta)_{ij} = (4, 0)_{ij}$

= η

= η

c. 8005 0000 0000 0000₁₆

8005 0000 0000 0000 0000 0000,
$$0.1010.0$$
, $S=1=0$ of $1\neq 0=0$ Nbr devormalife.

$$= 9 - (0, 1)_{k} \times 2^{-1022} = -(0, 0.101)_{k} \times 2^{-1022}$$

$$= -(401)_{k} \times 2^{-1026} = -5 \times 2^{-1026}$$

3. Donnez, en puissance de 2, le plus grand nombre positif à mantisse dénormalisée qu'il est

5. Donnez, en puissance de 2, le plus grand nombre positif a mantisse dénormalisée qu'il est possible de coder dans le format flottant IEEE 754 simple précision

$$\begin{bmatrix}
E = 0 \\
1 = 11...12 \\
23 & bib
\end{bmatrix} = 0 (0,111...1) \times 2^{-126} = (111...1) \times 2^{-149} = (2^{23}-1) \times 2^{-149}$$

Exercice 2. Logique Séquentielle (14 points)

1. Compléter le chronogramme des sorties Q_0 , Q_1 et Q_2 du circuit suivant jusqu'à retrouver l'état initial. (On admettra que $Q_0=Q_1=Q_2=0$ à t=0)

Si on lit les sorties Q_2 , Q_1 et Q_0 comme un nombre avec Q_0 en poids faible et Q_2 en poids fort, quel est le modulo et le type du circuit ainsi réalisé ?

Il s'agit d'un compteur synchone modulo 6.

2. Compteur de Johnson.

Compléter le chronogramme des sorties Q_0 , Q_1 , Q_2 et Q_3 du circuit suivant.(On admettra que $Q_i=0$ à t=0, $i\in [\![0,3]\!]$)

3. Compléter le chronogramme des sorties Q_A et Q_B du circuit suivant jusqu'à retrouver l'état initial (On admettra que $Q_A=Q_B=0$ à ${\bf t}=0$).

Si on lit les sorties Q_2 , Q_1 et Q_0 comme un nombre avec Q_0 en poids faible et Q_2 en poids fort, quel est le modulo et le type du circuit ainsi réalisé ?

Il s'agit d'un décompteur synchrone module 4 eu code gray.

4. Compléter le chronogramme des sorties Q_0 , Q_1 , Q_2 et Q_3 du circuit suivant jusqu'à retrouver l'état initial.(On admettra que $Q_i = 0$ à t = 0, $i \in [0,3]$).

Si on lit les sorties Q_3 , Q_2 , Q_1 et Q_0 comme un nombre avec Q_0 en poids faible et Q_3 en poids fort, quel est le modulo et le type du circuit ainsi réalisé ?

Il s'agit d'un décompteur avynchone modulo 11