

AD-A101 245

6AI CONSULTANTS INC MONROEVILLE PA  
NATIONAL DAM INSPECTION PROGRAM. FAWN LAKE DAM (NDI I.D. NUMBER—ETC(U)  
JUN 81 B M MIHALCIN

F/G 13/13  
DACPW31-81-C-0014  
NL

UNCLASSIFIED

1 or 2  
AD A  
11-1245



ADA101245

DELAWARE RIVER BASIN  
BRANCH OF HORNBECKS CREEK, PIKE COUNTY

PENNSYLVANIA

LEVEL II

FAWN LAKE DAM

(NDI I.D. NO. PA-00822  
PENNDR I.D. NO. 52-182)

DTIC  
ELECTED

JUL 13 1981

MARCON, INC.

PHASE I INSPECTION REPORT,  
NATIONAL DAM INSPECTION PROGRAM



\*Original contains color plates: All DTIC reproductions will be in black and white\*

PREPARED FOR

DEPARTMENT OF THE ARMY  
Baltimore District, Corps of Engineers

Baltimore, Maryland 21203

DACW31-81-C-0024

PREPARED BY

GAI CONSULTANTS, INC.

570 BEATTY ROAD  
MONROEVILLE, PENNSYLVANIA 15146

JUNE 1981

DMC FILE COPY

DISTRIBUTION STATEMENT A

Approved for public release;  
Distribution Unlimited

81710007

## PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established guidelines, the Spillway Design Flood is based on the estimated Probable Maximum Flood (greatest reasonably possible storm runoff) for the region, or fractions thereof. The Spillway Design Flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition, and the downstream damage potential.

Breach analyses are performed, when necessary, to provide data to assess the potential for downstream damage and possible loss of life. The results are based on specific theoretical scenarios peculiar to the analysis of a particular dam and are not applicable to other related studies such as those conducted under the Federal Flood Insurance Program.

|               |                                                                      |                                                                            |
|---------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|
| Accession For | NTIS GRA&I<br>DTIC TAB<br>Unannounced<br>Justification<br><i>for</i> | Distribution/<br>Availability Codes<br>By _____<br>Avail and/or<br>Special |
| <i>A</i>      |                                                                      |                                                                            |

PHASE I INSPECTION REPORT  
NATIONAL DAM INSPECTION PROGRAM

ABSTRACT

Fawn Lake Dam: NDI I.D. No. PA-00822

Owner: Marcon, Inc.  
State Located: Pennsylvania (PennDER I.D. No. 52-182)  
County Located: Pike  
Stream: Branch of Hornbecks Creek  
Inspection Date: 15 October 1980  
Inspection Team: GAI Consultants, Inc.  
570 Beatty Road  
Monroeville, Pennsylvania 15146



Based on a visual inspection, operational history, and hydrologic and hydraulic analysis, the dam is considered to be in fair condition.

The size classification of the facility is small and its hazard classification is considered to be high. In accordance with the recommended guidelines, the Spillway Design Flood (SDF) for the facility ranges between the 1/2 PMF (Probable Maximum Flood) and the PMF. Since the facility is classified near the lower bounds of the small category, the SDF is considered to be the 1/2 PMF. Results of the hydrologic and hydraulic analysis indicate the facility will pass and/or store only about 15 percent of the PMF prior to embankment overtopping. A breach analysis indicates that failure under less than 1/2 PMF conditions could lead to increased downstream damage and potential for loss of life. Thus, based on screening criteria provided in the recommended guidelines, the spillway is considered to be seriously inadequate and the facility unsafe, non-emergency.

It is recommended that the owner immediately:

a. Retain the services of a registered professional engineer experienced in the hydraulics and hydrology of dams to more accurately assess the adequacy of the spillway and prepare recommendations for remedial measures deemed necessary to make the facility hydraulically adequate.

b. Develop a formal emergency warning system to notify downstream inhabitants should hazardous embankment conditions develop. Included in the plan should be provisions for around-

Fawn Lake Dam: NDI I.D. No. PA-00822

the-clock surveillance of the facility during periods of unusually heavy precipitation.

c. Remove all forms of excess vegetation from the embankment slopes and immediate downstream area as part of a regular maintenance program in order to afford an unobstructed view of the facility.

d. Provide adequate erosion protection along the sidewalls of the emergency spillway discharge channel.

e. Drain and clear the area along the downstream embankment toe at the common outlet of both the service spillway and outlet conduit to provide for unimpeded discharge.

f. Make necessary repairs to prevent or control corrosion of the service spillway riser and operate the drawdown mechanism on a regular basis to ensure its proper function. In addition, repair or replace the partially dislodged trash screen inside the drop inlet.

g. Remove the rocks from the small depression in the embankment crest and backfill with compacted earth materials. The site should be observed in future inspections, and, if the depression again begins to develop, the situation should be investigated in order to determine the origin of the depression.

h. Develop formal manuals of operation and maintenance to ensure the future proper care of the facility.

GAI Consultants, Inc.

  
Bernard M. Mihalcin, P.E.

Approved by:

  
JAMES W. PECK  
Colonel, Corps of Engineers  
Commander and District Engineer



Date 3 June 1981

Date 19 June 1981

OVERVIEW PHOTOGRAPH



## TABLE OF CONTENTS

|                                                                              | <u>Page</u> |
|------------------------------------------------------------------------------|-------------|
| PREFACE . . . . .                                                            | i           |
| ABSTRACT . . . . .                                                           | ii          |
| OVERVIEW PHOTOGRAPH. . . . .                                                 | iv          |
| TABLE OF CONTENTS. . . . .                                                   | v           |
| SECTION 1 - GENERAL INFORMATION. . . . .                                     | 1           |
| 1.0 Authority. . . . .                                                       | 1           |
| 1.1 Purpose. . . . .                                                         | 1           |
| 1.2 Description of Project . . . . .                                         | 1           |
| 1.3 Pertinent Data . . . . .                                                 | 2           |
| SECTION 2 - ENGINEERING DATA . . . . .                                       | 5           |
| 2.1 Design . . . . .                                                         | 5           |
| 2.2 Construction Records . . . . .                                           | 6           |
| 2.3 Operational Records. . . . .                                             | 6           |
| 2.4 Other Investigations . . . . .                                           | 6           |
| 2.5 Evaluation . . . . .                                                     | 6           |
| SECTION 3 - VISUAL INSPECTION. . . . .                                       | 7           |
| 3.1 Observations . . . . .                                                   | 7           |
| 3.2 Evaluation . . . . .                                                     | 8           |
| SECTION 4 - OPERATIONAL PROCEDURES . . . . .                                 | 10          |
| 4.1 Normal Operating Procedure . . . . .                                     | 10          |
| 4.2 Maintenance of Dam . . . . .                                             | 10          |
| 4.3 Maintenance of Operating Facilities. . . . .                             | 10          |
| 4.4 Warning System . . . . .                                                 | 10          |
| 4.5 Evaluation . . . . .                                                     | 10          |
| SECTION 5 - HYDROLOGIC/HYDRAULIC EVALUATION. . . . .                         | 11          |
| 5.1 Design Data. . . . .                                                     | 11          |
| 5.2 Experience Data. . . . .                                                 | 11          |
| 5.3 Visual Observations. . . . .                                             | 11          |
| 5.4 Method of Analysis . . . . .                                             | 11          |
| 5.5 Summary of Analysis. . . . .                                             | 11          |
| 5.6 Spillway Adequacy. . . . .                                               | 14          |
| SECTION 6 - EVALUATION OF STRUCTURAL INTEGRITY . . . . .                     | 15          |
| 6.1 Visual Observations. . . . .                                             | 15          |
| 6.2 Design and Construction Techniques . . . . .                             | 16          |
| 6.3 Past Performance . . . . .                                               | 16          |
| 6.4 Seismic Stability. . . . .                                               | 16          |
| SECTION 7 - ASSESSMENT AND RECOMMENDATIONS FOR<br>REMEDIAL MEASURES. . . . . | 17          |
| 7.1 Dam Assessment . . . . .                                                 | 17          |
| 7.2 Recommendations/Remedial Measures. . . . .                               | 17          |

TABLE OF CONTENTS

- APPENDIX A - VISUAL INSPECTION CHECKLIST AND FIELD SKETCHES
- APPENDIX B - ENGINEERING DATA CHECKLIST
- APPENDIX C - PHOTOGRAPHS
- APPENDIX D - HYDROLOGIC AND HYDRAULIC ANALYSES
- APPENDIX E - FIGURES
- APPENDIX F - GEOLOGY

PHASE I INSPECTION REPORT  
NATIONAL DAM INSPECTION PROGRAM  
FAWN LAKE DAM  
NDI# PA-00822, PENNDER# 52-182

SECTION 1  
GENERAL INFORMATION

1.0 Authority.

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.

1.1 Purpose.

The purpose is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Fawn Lake Dam is an earth embankment approximately 22 feet high and 808 feet long, including emergency spillway. The facility is constructed with both service and emergency spillways. The service spillway is an 18-inch diameter, 1/4-inch steel, drop inlet type, vertical riser pipe located along the upstream embankment face about 250 feet from the right abutment. The emergency spillway is an uncontrolled, trapezoidal shaped, earth cut, rock lined channel located at the left abutment. Drawdown capability is reportedly provided by means of a 12-inch diameter pipe, controlled at the inlet, which discharges through the service spillway conduit.

b. Location. Fawn Lake Dam is located on a branch of Hornbecks Creek in Delaware Township, Pike County, Pennsylvania. The facility is located about 2,500 feet east of Wild Acres Lake and less than four miles east of U.S. Route 209, which parallels the Delaware River. The dam, reservoir and watershed are contained within the Lake Maskenozha, Pennsylvania-New Jersey, 7.5 minute U.S.G.S. topographic quadrangle (see Figure 1, Appendix E). The coordinates of the dam are N41° 13.0' and W74° 56.0'.

c. Size Classification. Small (22 feet high, 68 acre-feet storage capacity at top of dam).

d. Hazard Classification. High (see Section 3.1.e).

e. Ownership. Marcon, Inc.  
155 Willowbrook Boulevard  
P. O. Box 460  
Wayne, New Jersey 07470  
Attn: Joseph J. Marone  
Vice-President

f. Purpose. Recreation.

g. Historical Data. No substantial information relative to the history of Fawn Lake Dam was obtained by the inspection team from either the owner or PennDER. The owner's technical subsidiary, Monroe Engineering, Inc., provided a plan view drawing of the facility dated February, 1966 (see Figure 2). The drawing represents the only dated information available; however, field inspection indicates that the drawing does not depict as-built conditions. The owner's representative indicated that personnel turnovers have depleted the staff at Monroe Engineering, Inc. of anyone who might have been involved in the design of the facility. It is noted that the U.S.G.S. 7.5 minute topographic quadrangle, Lake Maskenoza, Pennsylvania-New Jersey, indicates that the facility was completed by 1973 (date of revisions in which Fawn Lake was included).

### 1.3 Pertinent Data.

a. Drainage Area (square miles). 1.6

b. Discharge at Dam Site.

Discharge Capacity of Outlet Conduit - Discharge curves are not available.

Discharge Capacity of Service Spillway at Maximum Pool - Discharge curves are not available.

Discharge Capacity of Emergency Spillway at Maximum Pool  $\approx$  390 cfs (see Appendix D, Sheet 11).

c. Elevations (feet above mean sea level). The following elevations were obtained from field measurements based on the approximate elevation of normal pool at 997.0 feet as estimated from the U.S.G.S. 7.5 minute topographic quadrangle, Lake Maskenoza, Pennsylvania-New Jersey (see Appendix D, Sheet 1 and Appendix E, Figure 1).

|                        |                |
|------------------------|----------------|
| Top of Dam             | 999.7 (field). |
| Maximum Design Pool    | Not known.     |
| Maximum Pool of Record | Not known.     |
| Normal Pool            | 997.0          |
| Service Spillway Crest | 997.0          |

|                             |                |
|-----------------------------|----------------|
| Emergency Spillway Crest    | 997.0          |
| Upstream Inlet Invert       | Not known.     |
| Downstream Outlet Invert    | 978.0 (field). |
| Streambed at Dam Centerline | Not known.     |
| Maximum Tailwater           | Not known.     |

d. Reservoir Length (feet).

|             |      |
|-------------|------|
| Top of Dam  | 1100 |
| Normal Pool | 900  |

e. Storage (acre-feet).

|             |    |
|-------------|----|
| Top of Dam  | 68 |
| Normal Pool | 44 |

f. Reservoir Surface (acres).

|             |    |
|-------------|----|
| Top of Dam  | 11 |
| Normal Pool | 7  |

g. Dam.

|                  |                                                                         |
|------------------|-------------------------------------------------------------------------|
| Type             | Earth.                                                                  |
| Length           | 741 feet (excluding spill-way).                                         |
| Height           | 22 feet (field measured; embankment crest to downstream outlet invert). |
| Top Width        | Varies; 12 to 18 feet.                                                  |
| Upstream Slope   | 2.5H:1V                                                                 |
| Downstream Slope | 2H:1V                                                                   |
| Zoning           | Not known.                                                              |
| Impervious Core  | Not known.                                                              |
| Cutoff           | Not known.                                                              |
| Grout Curtain    | Not known.                                                              |

h. Diversion Canal and Regulating Tunnels.

None.

i. Service Spillway.

|      |                                                                           |
|------|---------------------------------------------------------------------------|
| Type | Uncontrolled, 18-inch diameter, 1/4-inch steel, drop inlet type, vertical |
|------|---------------------------------------------------------------------------|

riser pipe connected to a 12-inch diameter, discharge conduit.

Crest Elevation 997.0 feet.

j. Emergency Spillway.

Type Uncontrolled, trapezoidal shaped channel located at the left abutment.

Crest Elevation 997.0 feet.

Crest Length 67 feet (top width).  
10 feet (bottom width).

k. Outlet Conduit.

Type Reportedly a 12-inch diameter cast iron pipe.

Length Not known.

Closure and Regulating Facilities Flow through the outlet conduit appears to be controlled at the inlet by a slide gate. (No drawings available).

Access The control mechanism is located within the reservoir and is accessible only by boat.

SECTION 2  
ENGINEERING DATA

2.1 Design.

a. Design Data Availability and Sources. No design reports, calculations, miscellaneous design data, correspondence, state inspection reports or as-built construction drawings are available from either the owner or the PennDER. A single design drawing was supplied to the inspection team by the owner (see Figure 2, Appendix E). The plan view of the facility depicted in the figure bears little resemblance to the as-built structure; however, the figure also contains foundation test pit data which is of value.

b. Design Features.

1. Embankment. Based primarily on visual observations and field measurements, general statements can be made regarding the embankment design. The dam is a 22-foot high, 808-foot long earth embankment, including spillway. The exposed outer embankment shell consists of hard, rocky soil whose parent material is most likely the glacial till prevalent in the local area. This till is depicted in Figure 2 as foundation material referred to as "hard-pan". The downstream embankment face is sloped at 2H:1V while the upstream embankment face is sloped at 2.5H:1V. A layer of riprap partially covers the upstream face and is characterized as relatively small below the pool level and much larger at and above the water line.

2. Appurtenant Structures.

a) Service Spillway. The service spillway consists of an uncontrolled, 18-inch diameter, 1/4-inch steel, drop inlet type, vertical riser pipe located about 250 feet from the right abutment. A welded wire trash screen is provided at the inlet. Flow from the riser is discharged at the downstream embankment toe via a 12-inch diameter, horizontal, discharge conduit.

b) Emergency Spillway. The emergency spillway is an uncontrolled, trapezoidal shaped channel located at the left abutment. The spillway has no regulating weir or well defined control section. Therefore, discharges are regulated strictly by channel slope. The discharge channel roughly parallels the downstream embankment toe until it converges with the original stream about 70 feet below the outlet conduit. The channel floor is rock lined; however, the channel sidewalls lack adequate erosion protection.

c) Outlet Conduit. The outlet conduit is reported to be a 12-inch diameter pipe. The inlet to the conduit is located several feet upstream of the service spillway riser. The conduit is manually controlled at the inlet as evidenced by the control

mechanism protruding through the reservoir surface in Photograph 11. The conduit apparently discharges at the base of the service spillway riser and ultimately at the downstream embankment toe.

c. Specific Design Data and Criteria. Aside from information contained in Figure 2, no design data or information relative to design procedures are available.

#### 2.2 Construction Records.

No construction records are available for the facility.

#### 2.3 Operational Records.

No records of the day-to-day operation of the facility are maintained.

#### 2.4 Other Investigations.

No records concerning formal studies or investigations of Fawn Lake Dam were made available to the inspection team. A seepage evaluation was reportedly conducted on the embankment after construction. Results of the study are not available.

#### 2.5 Evaluation.

There is no formal information available relative to the design and construction of this facility. The structure, based solely on external features and dimensions, appears to be adequately constructed while the structural design appears to generally conform to the standards of modern engineering practice. However, without knowledge of specific design details and parameters or construction techniques, any assessment of the integrity of the structure, particularly at high pools or during overtopping, is highly speculative.

SECTION 3  
VISUAL INSPECTION

3.1 Observations.

a. General. The general appearance of the facility suggests the dam and its appurtenances are in fair condition.

b. Embankment. Observations made during the visual inspection reveal the embankment is in fair condition and in need of general maintenance. Most of the embankment is covered with low briars and thick weeds. A large segment of the downstream embankment face to the left of the outlet is overgrown with small trees, while some larger trees inhabit the area immediately beyond the downstream embankment toe. This heavy growth obscures the overall view of the facility from downstream (see Photographs 3 and 8). No evidence of seepage through the downstream embankment face was encountered; however, a small damp area ( $\approx$  25 feet in diameter) was observed between the spillway channel and downstream embankment toe about 350 feet from the left abutment. A small depression was observed along the embankment crest directly above the outlet conduit (see Photograph 10). The depression measured about four feet in diameter and was filled with rocks. Its origin could not be ascertained strictly by visual observation nor was the owner's representative able to contribute any substantive information. No signs of sloughing, animal burrows, or excessive settlement were observed.

c. Appurtenant Structures.

1. Service Spillway. Visual observations suggest that the service spillway is in poor condition. The exposed portion of the drop inlet displays heavy corrosion (see Photographs 2 and 11). Furthermore, the trash screen inside the drop inlet is partially dislodged and appears ineffective. The discharge end of the service spillway conduit is submerged in a local pool at the downstream embankment toe and could not be observed (see Photograph 12).

2. Emergency Spillway. Visual observations suggest that the emergency spillway is in fair condition. The channel is poorly defined at its entrance and along its control section and, as with the overall facility, is in need of general maintenance (see Photographs 5, 6 and 7). Only the channel floor appears adequately protected against erosion with rock. Sizeable areas of erosion were observed along the earth cut sidewalls of the discharge channel that parallels the downstream embankment toe between the outlet conduit and left abutment (see Photographs 8 and 9). About 150 to 200 feet from the left abutment, erosion appears to be encroaching on the downstream embankment toe.

3. Outlet Conduit. The condition of the outlet conduit could not be ascertained as both the inlet and outlet were submerged.

The drawdown mechanism was not operated in the presence of the inspection team nor was it reported to have been operated in recent years. The control stem was observed protruding through the pool surface about 30 feet upstream of the embankment crest; however, close observation was not possible due to lack of access (see Photograph 11).

d. Reservoir Area. The general area surrounding the reservoir is composed of moderate slopes that are primarily forested. No signs of slope distress were observed.

Four other water impounding facilities share portions of the Fawn Lake watershed. They include Little Fawn Lake Dam (no PennDER I.D. No.), located about 1,100 feet upstream of Fawn Lake Dam; Lower Rickards Dam (PennDER I.D. No. 52-103), located about 3,700 feet upstream; Rickards Dam (PennDER I.D. no. 52-82) located about 5,600 feet upstream; and Long Ridge Dam (PennDER I.D. No. 52-185), located about 11,100 feet upstream (see Appendix D, Sheets 12, 13, 14, and 18).

e. Downstream Channel. Discharge from Fawn Lake Dam flows through a steep, narrow and heavily forested valley with steep confining slopes. The first inhabitable structures situated near the streambed are located approximately 6,200 feet downstream of the dam at Camp Log-N-Twig, a seasonal recreation camp. The camp was not in use on the day of the inspection. The structures located near the stream apparently include sleeping and dining facilities. A rough estimate of the number of inhabitants of the facility during the peak season is difficult, but, can be reasonably assumed to be more than a few (three) and as many as several hundred. Thus, based on the high potential for loss of life and property damage, the hazard classification is considered to be high.

It is noted that the dam shown in Figure 1 located 2,900 feet downstream of Fawn Lake Dam was also observed by the field team on the day of the inspection. The facility was found to be drained and in the midst of extensive renovation. The dam appears to be primarily an earthen structure with a concrete spillway section near its centerline. No work was currently being performed at the site. As the owner is unknown and no records or drawings of the completed facility are available from PennDER files, it has not been included in the analysis contained in this report. However, its status should be reevaluated in any future hydrologic and hydraulic assessment of Fawn Lake Dam.

### 3.2 Evaluation.

The overall condition of the facility based on visual observations is considered to be fair. Deficiencies requiring remedial attention include: 1) removing overgrowth from the embankment slopes; 2) repairing the service spillway, including replacement and restoration of damaged and/or corroded segments and clearing its

presently inundated discharge end; 3) providing adequate erosion protection along the emergency spillway discharge channel sidewalls; 4) assuring the operability of the drawdown mechanism; and 5) removing the rocks from the small depression along the embankment crest and backfilling with compacted impervious materials, and investigating its origin should the depression again begin to develop.

SECTION 4  
OPERATIONAL PROCEDURES

4.1 Normal Operating Procedure.

Fawn Lake Dam is essentially a self-regulating facility. Excess inflow passes through the drop inlet service spillway and is discharged at the downstream embankment toe. Inflows in excess of the capacity of the service spillway are stored and/or discharged through the emergency spillway. Under normal operating conditions the outlet conduit is closed. No formal operations manual is available.

4.2 Maintenance of Dam.

The condition of the facility as observed during the inspection is indicative of a general lack of routine maintenance. No formal maintenance manual is available that defines routine maintenance or provides a schedule for its regular performance.

4.3 Maintenance of Operating Facilities.

See Section 4.2 above.

4.4 Warning System.

No formal warning system is presently in effect.

4.5 Evaluation.

No formal operations or maintenance manuals are available for the facility, but, are recommended to ensure the proper care and operation of the facility. In addition, warning system procedures should be formalized and incorporated into these manuals.

## SECTION 5

## HYDROLOGIC/HYDRAULIC EVALUATION

5.1 Design Data.

No formal design reports, calculations, or miscellaneous design data are available for the facility.

5.2 Experience Data.

Daily records of reservoir levels and/or spillway discharges are not available.

5.3 Visual Observations.

Visual observations indicate that both the service and emergency spillways are inadequately maintained and in poor and fair condition, respectively. The service spillway riser is corroded and lacks an adequate trash screen at its inlet. The emergency spillway is poorly defined and inadequately protected against erosion. The observed conditions raise serious questions as to how these appurtenances will perform during emergency flood situations.

5.4 Method of Analysis.

The facility has been analyzed in accordance with procedures and guidelines established by the U.S. Army, Corps of Engineers, Baltimore District, for Phase I hydrologic and hydraulic evaluations. The analysis has been performed utilizing a modified version of the HEC-1 program developed by the U.S. Army, Corps of Engineers, Hydrologic Engineering Center, Davis, California. Analytical capabilities of the program are briefly outlined in the preface contained in Appendix D.

5.5 Summary of Analysis.

a. Spillway Design Flood. In accordance with the procedures and guidelines contained in the National Guidelines for Safety Inspection of Dams for Phase I Investigations, the Spillway Design Flood (SDF) for Fawn Lake Dam ranges between the 1/2 PMF (Probable Maximum Flood) and the PMF. This classification is based on the relative size of the dam (small) and the potential hazard of dam failure to downstream developments (high). Since the facility is classified near the lower bounds of the small category, the SDF for the facility is considered to be the 1/2 PMF.

b. Results of Analysis. Fawn Lake Dam was evaluated under near normal operating conditions. That is, the reservoir was

initially at its normal pool elevation of approximately 997.0 feet, the elevation of both the service spillway and emergency spillway crests. The emergency spillway, which consists of an uncontrolled, roughly trapezoidal shaped channel cut through soil and rock at the left abutment, was assumed to be discharging freely. However, the service spillway, which consists of an 18-inch diameter, drop inlet type, vertical riser pipe connected to a 12-inch diameter outlet pipe (which also serves as the low level outlet), was considered to be non-functional for the purpose of analysis. In any event, the capacity of this outlet pipe is not such that it would significantly increase the total discharge capabilities of the dam and reservoir.

Long Ridge Dam, Rickards Dam, Lower Rickards Dam, and Little Fawn Lake Dam, located in succession upstream of Fawn Lake (see Figure 1), were also evaluated in this analysis to determine their effects on Fawn Lake Dam. They, too, were evaluated under near normal operating conditions. That is, the reservoirs were initially at normal pool, the spillways were assumed to be discharging freely, and, the outlet conduits were assumed to be closed. The outflow from each facility was routed directly into the reservoir immediately downstream from it. All pertinent engineering calculations relative to the evaluation of Fawn Lake Dam, including those pertaining to the upstream facilities, are included in Appendix D.

Overtopping analysis (using the modified HEC-1 computer program) indicated that the discharge/storage capacity of Fawn Lake Dam can accommodate only about 15 percent of the PMF prior to embankment overtopping, while Long Ridge Dam, Rickards Dam, Lower Rickards Dam, and Little Fawn Lake Dam can accommodate only about 60 percent, 29 percent, 10 percent, and 6 percent of the PMF, respectively, prior to overtopping. Under the 1/2 PMF (SDF) event, the embankment at Fawn Lake Dam was overtopped for about 8.2 hours by depths of up to 1.1 feet (Appendix D, Summary Input/Output Sheets, Sheets S and T). Since the SDF for Fawn Lake Dam is the 1/2 PMF, it can be concluded that the dam has a high potential for overtopping, and thus for breaching under floods of less than SDF magnitude.

Since Fawn Lake Dam cannot safely pass a flood of at least 1/2 PMF magnitude, the possibility of embankment failure under floods of less than 1/2 PMF intensity was investigated (in accordance with Corps directive ETL-1110-2-234). The possible failures of the upstream dams were not included in this analysis. It is noted, however, that both Lower Rickards Dam and Little Fawn Lake Dam overtop prior to the overtopping of Fawn Lake Dam. Failure of either facility (particularly Lower Rickards Dam and to a lesser extent Little Fawn Lake Dam because of its smaller maximum storage capacity) would likely result in the overtopping and possible failure of Fawn Lake Dam at floods of less than 15 percent PMF.

Several possible alternative failure schemes were examined for Fawn Lake Dam, since it is difficult, if not impossible, to determine exactly how or if a specific dam will fail. The major concern of the breaching analysis is with the impact of the various breach discharges on increasing downstream water surface elevations above those to be expected if breaching did not occur.

The modified HEC-1 computer program was used for the breaching analysis, with the assumption that the breaching of an earth dam would begin once the low area in the embankment crest was overtopped. Also, in routing the outflows downstream, the channel bed was assumed to be initially dry.

Five possible modes of failure were investigated for Fawn Lake Dam. Two sets of breach geometry were evaluated for each of two failure times. The two sets of breach sections chosen were considered to be the minimum and maximum probable failure sections. The two failure times (total time for each breach section to reach its final dimensions) under which the minimum and maximum failure sections were investigated were assumed to be a rapid time (0.5-hour) and a prolonged time (4.0 hours), so that a range of this most sensitive variable might be examined. In addition, an average possible set of breach conditions was analyzed, with a failure time of 1.0-hour (Appendix D, Sheet 23).

The peak breach outflows (resulting from 0.20 PMF conditions) ranged from about 890 cfs for the minimum section-maximum fail time scheme to about 4330 cfs for the maximum section-minimum fail time scheme. The peak outflow for the average breach scheme was 2,200 cfs, compared to the non-breach 0.20 PMF peak outflow of approximately 610 cfs (Appendix D, Sheet 25).

The principal center of damage investigated is located at Camp Log-N-Twig along the banks of Hornbecks Creek, approximately 1.2 miles downstream from Fawn Lake Dam (Section 2, see Figure 1). Within this reach, the 0.20 PMF non-breach outflows remained below the damage levels of the nearby structures. However, the water surface elevations resulting from the breach models were as much as 3.8 feet above the non-breach levels, and in the cases of the more rapid breaches (0.5 and 1.0 hour failure times), above the damage levels of the nearby structures (Appendix D, Sheet 25). It should be noted that the breach analysis was performed under 0.20 PMF conditions. Should an event of greater magnitude occur, it is possible that the peak water surface levels resulting from the breaches would be even higher than those noted above.

The consequences of dam failure can better be envisioned if not only the increase in the height of the floodwave is considered, but also the great increase in momentum of the larger and probably swifter moving volume of water. In addition, there is the possibility that one or more of the upstream dams could fail, which, in combination with the failure of Fawn Lake Dam, could ultimately result in even higher downstream water surface elevations. Therefore, it is concluded that the failure of Fawn Lake Dam is quite

possible, and would most likely lead to increased property damage and possibly loss of life in the downstream regions.

#### 5.6 Spillway Adequacy.

As presented previously, Fawn Lake Dam can accommodate only about 15 percent of the PMF prior to embankment overtopping. It has been shown that should an event of greater magnitude occur, the dam would be overtopped and could possibly fail, resulting in increased potential for property damage and possibly loss of life in the downstream region. Therefore, the spillway system at Fawn Lake Dam is considered to be seriously inadequate.

SECTION 6  
EVALUATION OF STRUCTURAL INTEGRITY

6.1 Visual Observations.

a. Embankment. The embankment is considered to be in fair condition, exhibiting a general lack of maintenance. The heavy overgrowth along the embankment slopes obscures an overall view of the facility. A clear view of the embankment, especially the downstream face, is particularly critical during periods of flooding when the reservoir is unusually high and the potential for hazardous seepage is increased. In addition, small trees and saplings, if allowed to mature, may develop extensive root systems which also could eventually aid in the development of hazardous seepage. The small depression observed along the embankment crest is suspicious in appearance, but is not considered to be significant relative to the integrity of the structure, even though its origin and purpose are not known. As a precaution, the rocks within the depression should be removed and replaced with compacted impervious backfill materials.

b. Appurtenant Structures.

1. Service Spillway. The service spillway is considered to be in poor condition and in need of maintenance. Efforts should be made to clear the outlet which is presently inundated. In addition, remedial measures should be implemented to protect the inlet from further corrosion and to repair the trash screen.

2. Emergency Spillway. The emergency spillway is considered to be in fair condition. Specifically, the channel is poorly defined at its entrance and control section, and is not adequately maintained. Furthermore, the spillway discharge channel sidewalls are inadequately protected, and thus, highly susceptible to erosion. To date, erosion has occurred on both sides of the channel and is encroaching toward the downstream embankment toe at an area about 150 to 200 feet from the left abutment. Remedial measures should be implemented immediately to provide adequate erosion protection along the entire spillway channel.

3. Outlet Conduit. Observation of the outlet conduit was not possible due to the lack of access to the control mechanism. The operability of the conduit is questionable, at present. The conduit should be operated regularly to insure its ability to function.

#### 6.2 Design and Construction Techniques.

No information is available that details the methods of design and/or construction.

#### 6.3 Past Performance.

No records relative to the performance history of this facility are available. A seepage study was reportedly conducted after construction, which indicates questionable performance. The owner's representative stated, however, that the embankment had never been overtopped to his knowledge.

#### 6.4 Seismic Stability.

The dam is located in Seismic Zone No. 1 and may be subject to minor earthquake induced dynamic forces. As the facility appears adequately constructed and sufficiently stable, it is believed it can withstand the expected dynamic forces; however, no calculations and/or investigations were performed to confirm this opinion.

## SECTION 7

## ASSESSMENT AND RECOMMENDATIONS FOR REMEDIAL MEASURES

7.1 Dam Assessment.

a. Safety. The results of this investigation indicate the facility is in fair condition.

The size classification of the facility is small and its hazard classification is considered to be high. In accordance with the recommended guidelines, the Spillway Design Flood (SDF) for the facility ranges between the 1/2 PMF (Probable Maximum Flood) and the PMF. Results of the hydrologic and hydraulic analysis indicate the facility will pass and/or store only about 15 percent of the PMF prior to embankment overtopping. A breach analysis indicates that failure under less than 1/2 PMF conditions could lead to increased downstream damage and potential for loss of life. Thus, based on screening criteria provided in the recommended guidelines, the spillway is considered to be seriously inadequate and the facility unsafe, non-emergency.

b. Adequacy of Information. The available data are considered sufficient to make a reasonable Phase I assessment of the facility.

c. Urgency. The recommendations listed below should be implemented immediately.

d. Necessity for Additional Investigations. Additional hydrologic/hydraulic investigations are considered necessary to more accurately assess the adequacy of the spillway.

7.2 Recommendations/Remedial Measures.

It is recommended that the owner immediately:

a. Retain the services of a registered professional engineer experienced in the hydraulics and hydrology of dams to more accurately assess the adequacy of the spillway and prepare recommendations for remedial measures deemed necessary to make the facility hydraulically adequate.

b. Develop a formal emergency warning system to notify downstream inhabitants should hazardous embankment conditions develop. Included in the plan should be provisions for around-the-clock surveillance of the facility during periods of unusually heavy precipitation.

c. Remove all forms of excess vegetation from the embankment slopes and immediate downstream area as part of a regular maintenance program in order to afford an unobstructed view of the facility.

d. Provide adequate erosion protection along the sidewalls of the emergency spillway discharge channel.

e. Drain and clear the area along the downstream embankment toe at the common outlet of both the service spillway and outlet conduit to provide for unimpeded discharge.

f. Make necessary repairs to prevent or control corrosion of the service spillway riser and operate the drawdown mechanism on a regular basis to ensure its proper function. In addition, repair or replace the partially dislodged trash screen inside the drop inlet.

g. Remove the rocks from the small depression in the embankment crest and backfill with compacted impervious materials. The site should be observed in future inspections, and, if the depression again begins to develop, the situation should be investigated in order to determine the origin of the depression.

h. Develop formal manuals of operation and maintenance to ensure the future proper care of the facility.

**APPENDIX A**  
**VISUAL INSPECTION CHECKLIST AND FIELD SKETCHES**

**CHECK LIST**  
**VISUAL INSPECTION**  
**PHASE 1**

|                                      |                 |           |               |                 |               |
|--------------------------------------|-----------------|-----------|---------------|-----------------|---------------|
| NAME OF DAM                          | Fawn Lake Dam   | STATE     | Pennsylvania  | COUNTY          | Pike          |
| NDI # PA                             | — 00822         | PENNDER # | 52-182        |                 |               |
| TYPE OF DAM                          | Earth           | SIZE      | Small         | HAZARD CATEGORY | High          |
| DATE(S) INSPECTION                   | 15 October 1980 | WEATHER   | Partly Cloudy | TEMPERATURE     | 60° @ 3:00 PM |
| POOL ELEVATION AT TIME OF INSPECTION | 996.0 feet      | M.S.L.    |               |                 |               |
| TAILWATER AT TIME OF INSPECTION      | N/A             | M.S.L.    |               |                 |               |

**INSPECTION PERSONNEL**

|               |      |
|---------------|------|
| B.M. Mihalcin | None |
| D.J. Spaeder  |      |
| D.L. Bonk     |      |
|               |      |
|               |      |
|               |      |

**OWNER REPRESENTATIVES**

|  |  |
|--|--|
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

**OTHERS**

|  |
|--|
|  |
|  |
|  |
|  |
|  |
|  |

RECORDED BY B. M. Mihalcin

**EMBANKMENT**

| ITEM                                                   | OBSERVATIONS/REMARKS/RECOMMENDATIONS                                                                                                                                                                                                                                                         | NDI# PA · 00822 |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| SURFACE CRACKS                                         | None observed.                                                                                                                                                                                                                                                                               |                 |
| UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE      | None observed.                                                                                                                                                                                                                                                                               |                 |
| SLoughing OR Erosion OF EMBANKMENT AND ABUTMENT SLOPES | 4-foot diameter, rock filled depression located at the downstream edge of the embankment crest directly above the service spillway discharge conduit. Also, erosion evident along the sidewalls of the spillway discharge channel where the channel parallels the downstream embankment toe. |                 |
| VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST         | Horizontal - good.<br>Vertical - see "Profile of Dam Crest from Field Survey", Appendix A.                                                                                                                                                                                                   |                 |
| RIPRAP FAILURES                                        | Partially covered with vegetation. Riprap size is relatively small below the pool level and much larger at and above the water line. No erosion apparent. Embankment soil appears very rocky.                                                                                                |                 |
| JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM  | Good condition.                                                                                                                                                                                                                                                                              |                 |

**EMBANKMENT**

| ITEM                                                             | OBSERVATIONS/REMARKS/RECOMMENDATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NDIN PA. 00822 |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| DAMP AREAS<br>IRREGULAR VEGETA-<br>TION (LUSH OR DEAD<br>PLANTS) | A small damp area ( $\approx$ 25 ft in diameter) was observed between the spillway channel and downstream embankment toe about 350 feet from the left abutment.                                                                                                                                                                                                                                                                                                                                             |                |
| ANY NOTICEABLE<br>SEEPAGE                                        | None through downstream embankment face.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| STAFF GAGE AND<br>RECORDER                                       | None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| DRAINS                                                           | None observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| MISCELLANEOUS                                                    | Right half of downstream embankment face is covered with low briars and thick weeds. Left half of downstream embankment face is covered with small maple trees near the center of the embankment with briars and weeds wherever the trees have not taken root. General appearance of inadequate maintenance. Several small pine trees are located along the downstream edge of the embankment crest. Trees have been cut along the upstream edge of the embankment crest, but are now sprouting new shoots. |                |

## OUTLET WORKS

| ITEM                                                                   | OBSERVATIONS/REMARKS/RECOMMENDATIONS                                                                                                                                                                                                 | NDI# PA# |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| INTAKE STRUCTURE                                                       | Submerged, not observed.                                                                                                                                                                                                             |          |
| OUTLET CONDUIT<br>(CRACKING AND<br>SPALLING OF CON-<br>CRETE SURFACES) | Outlet conduit discharges through the service spillway pipe. Neither conduit was observed. Discharge outlet along the downstream embankment toe was not observed as it is submerged in a local pool.                                 |          |
| OUTLET STRUCTURE                                                       | None.                                                                                                                                                                                                                                |          |
| OUTLET CHANNEL                                                         | Rock lined ditch.                                                                                                                                                                                                                    |          |
| GATE(S) AND OPERA-<br>TIONAL EQUIPMENT                                 | Frame and stem for the control mechanism for the outlet conduit are visible projecting out of the water just upstream of the service spillway drop inlet. Control mechanism was not operated in the presence of the inspection team. |          |
|                                                                        |                                                                                                                                                                                                                                      |          |

**EMERGENCY SPILLWAY**

| ITEM                             | OBSERVATIONS/REMARKS/RECOMMENDATIONS                                                                                                                                                                                                                                   | NDWPA • 00822 |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| TYPE AND CONDITION               | Uncontrolled, trapezoidal shaped, rock lined channel located at the left abutment.                                                                                                                                                                                     |               |
| APPROACH CHANNEL                 | Rock lined and unobstructed.                                                                                                                                                                                                                                           |               |
| SPILLWAY CHANNEL AND SIDEWALLS   | Channel bottom is rock lined along its entire length. Channel sidewalls are rock lined for only about 30 feet beyond the control section. Sidewall erosion is evident in several areas along that portion of the channel that parallels the downstream embankment toe. |               |
| STILLING BASIN PLUNGE POOL       | None.                                                                                                                                                                                                                                                                  |               |
| DISCHARGE CHANNEL                | The discharge channel wraps around the left end and parallels the downstream embankment toe. Erosion encroaching on the downstream embankment toe between 150 to 200 feet from the left abutment.                                                                      |               |
| BRIDGE AND PIERS EMERGENCY GATES | None.                                                                                                                                                                                                                                                                  |               |

**SERVICE SPILLWAY**

| ITEM               | OBSERVATIONS/REMARKS/RECOMMENDATIONS                                                                                                                                                         | NDI# PA# |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| TYPE AND CONDITION | 18-inch diameter, 1/4-inch steel, drop inlet riser pipe in poor condition.<br>Extensive corrosion evident above pool level. Welded wire trash screen is broken and only partially effective. | 00822    |
| APPROACH CHANNEL   | N/A.                                                                                                                                                                                         |          |
| OUTLET STRUCTURE   | None. Pipe discharges along downstream embankment toe. No headwall.<br>Discharge end of conduit is totally submerged in a small local pool.                                                  |          |
| DISCHARGE CHANNEL  | Small rock lined ditch. Unobstructed.                                                                                                                                                        |          |
|                    |                                                                                                                                                                                              |          |
|                    |                                                                                                                                                                                              |          |

**INSTRUMENTATION**

| ITEM                  | OBSERVATIONS/REMARKS/RECOMMENDATIONS | NDI# PA - 00822 |
|-----------------------|--------------------------------------|-----------------|
| MONUMENTATION SURVEYS | None.                                |                 |
| OBSERVATION WELLS     | None.                                |                 |
| WEIRS                 | None.                                |                 |
| PIEZOMETERS           | None.                                |                 |
| OTHERS                | None.                                |                 |

**RESERVOIR AREA AND DOWNSTREAM CHANNEL**

| ITEM                                              | OBSERVATIONS/REMARKS/RECOMMENDATIONS                                                                                                                                                                                                       | NDIN PA. | 00822 |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| SLOPES:<br>RESERVOIR                              | Moderate and primarily forested slopes. Watershed is partially developed at present and future expansion is likely.                                                                                                                        |          |       |
| SEDIMENTATION                                     | None observed.                                                                                                                                                                                                                             |          |       |
| DOWNTREAM CHANNEL (OBSTRUCTIONS,<br>DEBRIS, ETC.) | Local road culvert located about 350 feet below the dam.                                                                                                                                                                                   |          |       |
| SLOPES:<br>CHANNEL VALLEY                         | Steep and heavily forested.                                                                                                                                                                                                                |          |       |
| APPROXIMATE NUMBER<br>OF HOMES AND<br>POPULATION  | Camp-Log-N-Twig, seasonal recreational camp is located along the banks of the channel about 6,200 feet downstream of Fawn Lake Dam. It is estimated that the camp likely houses as many as several hundred persons during its peak season. |          |       |



FAWN LAKE DAM  
GENERAL PLAN-FIELD INSPECTION NOTES

NDI 80A-00022

# TAWNIAKE DAM

## PROFILE OF DAM CREST FROM FIELD SURVEY



SCALE:

VERTICAL 1 N = 2 FT  
HORIZONTAL 1 N = 100 FT

|         |              |          |          |                       |
|---------|--------------|----------|----------|-----------------------|
| SUBJET  | TAWNIAKE DAM | 11/24/81 | 11/24/81 | OF                    |
| BY      | BBT          | 11/24/81 | 11/24/81 |                       |
| CALC BY | BBT          | 11/24/81 | 11/24/81 | PROJECT NO 80-233-022 |

**APPENDIX B**  
**ENGINEERING DATA CHECKLIST**

**CHECK LIST**  
**ENGINEERING DATA**  
**PHASE I**

| NAME OF DAM                                   | Fawn Lake Dam                                                                                                                                                                                                                                                           | ITEM | REMARKS | NDI# PA - |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-----------|
| PERSONS INTERVIEWED AND TITLE                 | Monroe Engineering, Inc. (Subsidiary of Marcon, Inc.)<br>Leonard Tusar - General Manager<br>Interview took place at Wild Acres Lake Dam the day after the inspection of this facility.                                                                                  |      |         | 00822     |
| REGIONAL VICINITY MAP                         | See Figure 1, Appendix E.                                                                                                                                                                                                                                               |      |         |           |
| CONSTRUCTION HISTORY                          | Constructed sometime between 1966 and 1973. Construction permit was never issued by the state.                                                                                                                                                                          |      |         |           |
| AVAILABLE DRAWINGS                            | Single drawing contained in PennDER files entitled "General Plan, Longitudinal Section", dated February 1966 by Monroe Engineering, Inc. (see Figure 2, Appendix E). Three other drawings in set are not available from owner or PennDER and apparently have been lost. |      |         |           |
| TYPICAL DAM SECTIONS                          | See Figure 2, Appendix E (not as-built).                                                                                                                                                                                                                                |      |         |           |
| OUTLETS:<br>PLAN DETAILS<br>DISCHARGE RATINGS | See Figure 2, Appendix E (not as-built).                                                                                                                                                                                                                                |      |         |           |

**CHECK LIST  
ENGINEERING DATA  
PHASE I  
(CONTINUED)**

| ITEM                                                                                          | REMARKS                                  | NDI# PA • 00822 |
|-----------------------------------------------------------------------------------------------|------------------------------------------|-----------------|
| SPILLWAY:<br>PLAN<br>SECTION<br>DETAILS                                                       | See Figure 2, Appendix E (not as-built). |                 |
| OPERATING EQUIP.<br>MENT PLANS AND<br>DETAILS                                                 | None available.                          |                 |
| DESIGN REPORTS                                                                                | None available.                          |                 |
| GEOLOGY REPORTS                                                                               | None available.                          |                 |
| DESIGN COMPUTATIONS:<br>HYDROLOGY AND<br>HYDRAULICS<br>STABILITY ANALYSES<br>SEEPAGE ANALYSES | None available.                          |                 |
| MATERIAL<br>INVESTIGATIONS:<br>BOREHOLE RECORDS<br>LABORATORY TESTING<br>FIELD TESTING        | See Figure 2, Appendix E.                |                 |

**CHECK LIST**  
**ENGINEERING DATA**  
**PHASE I**  
**(CONTINUED)**

| ITEM                                                       | REMARKS                                                                                                                                                                                 | NDI# PA. |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| BORROW SOURCES                                             | Not known.                                                                                                                                                                              |          |
| POST CONSTRUCTION<br>DAM SURVEYS                           | None.                                                                                                                                                                                   |          |
| POST CONSTRUCTION<br>ENGINEERING<br>STUDIES AND<br>REPORTS | Seepage study reportedly performed in 1977 by Northeast Engineering Company. Several test pits were dug, and a formal report was submitted to the owner but is currently not available. |          |
| HIGH POOL RECORDS                                          | No formal records are available.                                                                                                                                                        |          |
| MONITORING SYSTEMS                                         | None.                                                                                                                                                                                   |          |
| MODIFICATIONS                                              | None.                                                                                                                                                                                   |          |

**CHECK LIST  
ENGINEERING DATA  
PHASE I  
(CONTINUED)**

| ITEM                                           | REMARKS                             | NDIN PA - 00822 |
|------------------------------------------------|-------------------------------------|-----------------|
| PRIOR ACCIDENTS OR FAILURES                    | None.                               |                 |
| MAINTENANCE: RECORDS MANUAL                    | No records or manual are available. |                 |
| OPERATION: RECORDS MANUAL                      | No records or manual are available. |                 |
| OPERATIONAL PROCEDURES                         | Self-regulating.                    |                 |
| WARNING SYSTEM AND/OR COMMUNICATION FACILITIES | None.                               |                 |
| MISCELLANEOUS                                  |                                     |                 |

GAI CONSULTANTS, INC.

CHECK LIST  
HYDROLOGIC AND HYDRAULIC  
ENGINEERING DATA

NDI ID # PA-00822  
PENNDER ID # 52-182

SIZE OF DRAINAGE AREA: 1.6 square miles (total); 0.1-square mile (local).

ELEVATION TOP NORMAL POOL: 997.0 STORAGE CAPACITY: 44 acre-feet

ELEVATION TOP FLOOD CONTROL POOL: - STORAGE CAPACITY: -

ELEVATION MAXIMUM DESIGN POOL: - STORAGE CAPACITY: -

ELEVATION TOP DAM: 999.7 STORAGE CAPACITY: 68 acre-feet

SPILLWAY DATA

CREST ELEVATION: 997.0 feet (service and emergency).

TYPE: 18-inch diameter drop inlet (service); trapezoidal channel (emergency).

CREST LENGTH: (emergency) 67-foot top width, 10-foot bottom width.

CHANNEL LENGTH: Approximately 400 feet.

SPILOVER LOCATION: 250 feet from right abutment (service); left abutment (emergency).

NUMBER AND TYPE OF GATES: None.

OUTLET WORKS

TYPE: 12-inch diameter pipe.

LOCATION: 250 feet from right abutment.

ENTRANCE INVERTS: Not known.

EXIT INVERTS: 978.0 feet (field).

EMERGENCY DRAWDOWN FACILITIES: Slide gate at inlet.

HYDROMETEOROLOGICAL GAGES

TYPE: None.

LOCATION: -

RECORDS: -

MAXIMUM NON-DAMAGING DISCHARGE: Not known.

**APPENDIX C**  
**PHOTOGRAPHS**



PHOTOGRAPH 1 View of the embankment crest looking toward the right abutment.

PHOTOGRAPH 2 View of the upstream embankment face looking toward the right abutment and the service spillway drop inlet.

PHOTOGRAPH 3 View of the downstream embankment face as seen from the right abutment.

PHOTOGRAPH 4 Close-up view of the dense vegetation that covers a portion of the downstream embankment face to the left of the outlet conduit.



PHOTOGRAPH 5 View, looking downstream, of the entrance to the emergency spillway.

PHOTOGRAPH 6 View of the entrance to the emergency spillway looking upstream.

PHOTOGRAPH 7 View, looking downstream, of the emergency spillway channel from a position about 20 feet downstream of the channel entrance.

PHOTOGRAPH 8 View, looking toward the right abutment, of the rock lined spillway discharge channel located along the downstream embankment toe.



PHOTOGRAPH 9 View of typical erosion evident in several areas along the sidewalls of the spillway discharge channel.

PHOTOGRAPH 10 View of a rock filled depression located at the downstream edge of embankment crest directly above the service spillway discharge conduit.

PHOTOGRAPH 11 View of the service spillway drop inlet and gate stem as seen from the embankment crest.

PHOTOGRAPH 12 View of the area along the downstream embankment toe at which the service spillway and outlet conduit discharge. The discharge outlet is presently inundated and obscured from view.



10



10



9



11

**APPENDIX D**  
**HYDROLOGIC AND HYDRAULIC ANALYSES**

## PREFACE

The modified HEC-1 program is capable of performing two basic types of hydrologic analyses: 1) the evaluation of the overtopping potential of the dam; and 2) the estimation of the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. Briefly, the computational procedures typically used in the dam overtopping analysis are as follows:

- a. Development of an inflow hydrograph(s) to the reservoir.
- b. Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.

c. Routing of the outflow hydrograph(s) from the reservoir to desired downstream locations. The results provide the peak discharge(s), time(s) of occurrence the peak discharge(s), and the maximum stage(s) of each routed hydrograph at the downstream end of each reach.

The evaluation of the hydrologic-hydraulic consequences resulting from an assumed structural failure (breach) of the dam is typically performed as shown below.

- a. Development of an inflow hydrograph(s) to the reservoir.
- b. Routing of the inflow hydrograph(s) through the reservoir.
- c. Development of a failure hydrograph(s) based on specified breach criteria and normal reservoir outflow.
- d. Routing of the failure hydrograph(s); to desired downstream locations. The results provide estimates of the peak discharge(s), time(s) to peak and maximum water surface elevation(s) of failure hydrograph(s) for each location.

HYDROLOGY AND HYDRAULIC ANALYSIS  
DATA BASE

NAME OF DAM: FAWN LAKE DAM

PROBABLE MAXIMUM PRECIPITATION (PMP) = 22.0 INCHES/24 HOURS <sup>(1)</sup>

| STATION                                                         | 1              | 2            | 3                  |
|-----------------------------------------------------------------|----------------|--------------|--------------------|
| STATION DESCRIPTION                                             | LONG RIDGE DAM | RICKARDS DAM | LOWER RICKARDS DAM |
| DRAINAGE AREA (SQUARE MILES)                                    | 0.10           | 1.10         | 0.11               |
| CUMULATIVE DRAINAGE AREA (SQUARE MILES)                         | 0.10           | 1.20         | 1.31               |
| ADJUSTMENT OF PMF FOR DRAINAGE AREA LOCATION (%) <sup>(1)</sup> | ZONE 1         | ZONE 1       | ZONE 1             |
| 6 HOURS                                                         | 111            | 111          | 111                |
| 12 HOURS                                                        | 123            | 123          | 123                |
| 24 HOURS                                                        | 133            | 133          | 133                |
| 48 HOURS                                                        | 142            | 142          | 142                |
| 72 HOURS                                                        | -              | -            | -                  |
| SNYDER HYDROGRAPH PARAMETERS                                    |                |              |                    |
| ZONE (2)                                                        | 1              | 1            | 1                  |
| $C_p$ (3)                                                       | 0.45           | 0.45         | 0.45               |
| $C_t$ (3)                                                       | 1.23           | 1.23         | 1.23               |
| L (MILES) (4)                                                   | -              | 1.7          | -                  |
| $L_{ca}$ (MILES) (4)                                            | -              | 0.7          | -                  |
| $L'$ (MILES) (4)                                                | 0.21           | -            | 0.15               |
| $t_p$ (MILES) (5)                                               | 0.48           | 1.30         | 0.39               |
| SPILLWAY DATA                                                   |                |              |                    |
| CREST LENGTH (FEET)                                             | 10             | 72           | 35                 |
| FREEBOARD (FEET)                                                | 2.1            | 2.1          | 1.7                |

- (1) HYDROMeteorological Report 33, U.S. CORPS OF ENGINEERS, 1956.
- (2) Hydrologic Zone defined by Corps of Engineers, Baltimore District, for determination of Snyder coefficients ( $C_p$  and  $C_t$ ).
- (3) SNYDER COEFFICIENTS
- (4) L = LENGTH OF LONGEST WATERCOURSE FROM DAM TO BASIN DIVIDE  
 $L_{ca}$  = LENGTH OF LONGEST WATERCOURSE FROM DAM TO POINT OPPOSITE BASIN CENTROID.  
 $L'$  = LENGTH OF LONGEST WATERCOURSE FROM RESERVOIR INLET TO DRAINAGE DIVIDE.
- (5)  $t_p = C_t (L \cdot L_{ca})^{0.3}$  or  $t_p = C_t (L')^{0.6}$

HYDROLOGY AND HYDRAULIC ANALYSIS  
DATA BASE

NAME OF DAM: FAWN LAKE DAM  
 PROBABLE MAXIMUM PRECIPITATION (PMP) = 22.0 INCHES/24 HOURS<sup>(1)</sup>

| STATION                                                            | 4                       | 5                | 6 |
|--------------------------------------------------------------------|-------------------------|------------------|---|
| STATION DESCRIPTION                                                | LITTLE FAWN<br>LAKE DAM | FAWN LAKE<br>DAM |   |
| DRAINAGE AREA (SQUARE MILES)                                       | 0.17                    | 0.10             |   |
| CUMULATIVE DRAINAGE AREA<br>(SQUARE MILES)                         | 1.48                    | 1.58             |   |
| ADJUSTMENT OF PMF FOR<br>DRAINAGE AREA LOCATION (%) <sup>(1)</sup> | ZONE 1                  | ZONE 1           |   |
| 6 HOURS                                                            | 111                     | 111              |   |
| 12 HOURS                                                           | 123                     | 123              |   |
| 24 HOURS                                                           | 133                     | 133              |   |
| 48 HOURS                                                           | 142                     | 142              |   |
| 72 HOURS                                                           | -                       | -                |   |
| SNYDER HYDROGRAPH PARAMETERS                                       |                         |                  |   |
| ZONE (2)                                                           | 1                       | 1                |   |
| $C_p$ (3)                                                          | 0.45                    | 0.45             |   |
| $C_t$ (3)                                                          | 1.23                    | 1.23             |   |
| $L$ (MILES) (4)                                                    | 0.7                     | 0.5              |   |
| $L_{ca}$ (MILES) (4)                                               | 0.2                     | 0.2              |   |
| $t_p = C_t (L \cdot L_{ca})^{0.3}$ (HOURS)                         | 0.68                    | 0.62             |   |
| SPILLWAY DATA                                                      |                         |                  |   |
| CREST LENGTH (FEET)                                                | 8                       | 10               |   |
| FREEBOARD (FEET)                                                   | 2.4                     | 2.7              |   |

- (1) HYDROMETEOROLOGICAL REPORT 33, U.S. CORPS OF ENGINEERS, 1956.
- (2) HYDROLOGIC ZONE DEFINED BY CORPS OF ENGINEERS, BALTIMORE DISTRICT, FOR DETERMINATION OF SNYDER COEFFICIENTS ( $C_p$  AND  $C_t$ ).
- (3) SNYDER COEFFICIENTS
- (4)  $L$  = LENGTH OF LONGEST WATERCOURSE FROM DAM TO BASIN DIVIDE.  
 $L_{ca}$  = LENGTH OF LONGEST WATERCOURSE FROM DAM TO POINT OPPOSITE BASIN CENTROID.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DTS DATE 4-3-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 1 OF 25



## DAM STATISTICS

HEIGHT OF DAM = 72 FT (FIELD MEASURED: TOP OF DAM TO DOWNSTREAM INVERT OF OUTLET CONDUIT; "TOP OF DAM" HERE AND ON ALL SUBSEQUENT CALCULATION SHEETS REFERS TO THE LOW AREA IN THE EMBANKMENT CREST.)

NORMAL POOL STORAGE CAPACITY = 44 AC-FT (HEC-1)

MAXIMUM POOL STORAGE CAPACITY = 68 AC-FT (HEC-1)  
(@ TOP OF DAM)

### DRAINAGE AREA:

| SUB-AREA<br>(SEE FIG. 1) | LOCAL DRAINAGE AREA<br>(SQ-MI) | CUMULATIVE DRAINAGE AREA<br>(SQ-MI) |
|--------------------------|--------------------------------|-------------------------------------|
| LONG RIDGE DAM           | 0.10                           | -                                   |
| RICKARDS DAM             | 1.10                           | 1.20                                |
| LOWER RICKARDS DAM       | 0.11                           | 1.31                                |
| LITTLE FAWN LAKE DAM     | 0.17                           | 1.48                                |
| FAWN LAKE DAM            | 0.10                           | 1.58                                |

(PLANIMETRICALLY ON USGS 7.50 QUAD - LAKE  
MASKEROVSKA, PA.)

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY JTS DATE 4-4-81 PROJ. NO. 80-238-822  
CHKD. BY DGA DATE 5-4-81 SHEET NO. 2 OF 25



ELEVATIONS:

|                                   |             |                |
|-----------------------------------|-------------|----------------|
| TOP OF DAM (DESIGN)               | = NOT KNOWN |                |
| TOP OF DAM (FIELD)                | = 999.7     |                |
| NORMAL POOL                       | = 997.0     | (SEE NOTE 1)   |
| SERVICE SPILLWAY CREST            | = 997.0     | (FIELD SURVEY) |
| EMERGENCY SPILLWAY CREST          | = 997.0     | (FIELD SURVEY) |
| UPSTREAM INLET INVERT (DESIGN)    | = NOT KNOWN |                |
| DOWNSTREAM OUTLET INVERT (DESIGN) | = NOT KNOWN |                |
| DOWNSTREAM OUTLET INVERT (FIELD)  | = 978.0     |                |
| STREAMBED @ DAM CENTERLINE        | = NOT KNOWN |                |

NOTE 1: NORMAL POOL ELEVATION ESTIMATED TO BE APPROXIMATELY  
AT EL. 997, FROM USGS 7.5" QUAD - LAKE MASKENOZHA, PA.  
IT IS NOTED THAT ELEVATIONS USED IN THIS ANALYSIS ARE CONSIDERED  
ESTIMATES, AND ARE NOT NECESSARILY ACCURATE.

DAM CLASSIFICATION

DAM SIZE: SMALL (REF 1, TABLE 1)

HAZARD CLASSIFICATION: HIGH (FIELD OBSERVATION)

REQUIRED SDF:  $\frac{1}{2}$  PMF TO PMF (REF 1, TABLE 3)

SUBJECT DAM SAFETY INSPECTIONFAWN LAKE DAMBY DJS DATE 4-4-81 PROJ. NO. 80-238-822CHKD. BY DLG DATE 5-4-81 SHEET NO. 3 OF 25Engineers • Geologists • Planners  
Environmental SpecialistsHYDROGRAPH PARAMETERS

$$C_p = 0.45$$

$$C_c = 1.23$$

(SUPPLIED BY C.O.E., ZONE 1,  
DELAWARE RIVER BASIN )

| SUB-AREA<br>(SEE FIG. 1) | $L^0$<br>(MI) | $L_{ca}$<br>(MI) | $L'$<br>(MI) | $t_p^{④} = C_c (L \cdot L_{ca})^{0.3}$<br>(HRS) | $t_p^{③} = C_t (L')^{0.6}$<br>(HRS) |
|--------------------------|---------------|------------------|--------------|-------------------------------------------------|-------------------------------------|
| LONG RIDGE DAM           | -             | -                | 0.21         | -                                               | 0.48                                |
| RICKARDS DAM             | 1.7           | 0.7              | -            | 1.30                                            | -                                   |
| LOWER RICKARDS DAM       | -             | -                | 0.15         | -                                               | 0.39                                |
| LITTLE FAWN LAKE DAM     | 0.7           | 0.2              | -            | 0.68                                            | -                                   |
| FAWN LAKE DAM            | 0.5           | 0.2              | -            | 0.62                                            | -                                   |

①  $L$  = LENGTH OF LONGEST WATERCOURSE②  $L_{ca}$  = LENGTH OF LONGEST WATERCOURSE FROM DAM TO A POINT  
OPPOSITE BASIN CENTROID.③  $L'$  = LENGTH OF LONGEST WATERCOURSE FROM RESERVOIR INLET  
TO BASIN DIVIDE; USED IN ESTIMATION OF  $t_p^0$  WHEN RESERVOIR  
LENGTH  $> L_{ca}$  ( AS PER C.O.E., BALTIMORE DISTRICT; STREAM  
LENGTHS MEASURED ON USGS TOPO QUAD - LAKE MASKENOZHA, PA.)

④ FROM REF. 2.

⑤ USED WHEN ④ NOT APPLICABLE; SEE ③.

(Note: HYDROGRAPH VARIABLES USED HERE ARE DEFINED IN REF 2,  
IN SECTION ENTITLED "SNYDER SYNTHETIC UNIT HYDROGRAPH.")

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DTS DATE 4-4-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 4 OF 25



## RESERVOIR STORAGE CAPACITY

### RESERVOIR SURFACE AREAS:

SURFACE AREA (S.A.) @ NORMAL POOL (EL. 997.0) = 7 ACRES

S.A. @ EL. 1000.0 = 11 ACRES

S.A. @ EL 1000.0 = 20 ACRES

(PLANIMETERED ON USGS topo quad - LAKE MASKANOZWA, MI)

- S.A. @ TOP OF DAM (EL. 999.7) = 10.6 ACRES

(BY LINEAR INTERPOLATION)

THE "ZERO-STORAGE" ELEVATION IS ASSUMED TO BE AT EL. 978,  
OR APPROXIMATELY AT THE SAME ELEVATION AS THE DOWNSTREAM  
INVERT OF THE OUTLET CONDUIT (SEE SHEET 2).

### ELEVATION-STORAGE RELATIONSHIP

THE ELEVATION-STORAGE RELATIONSHIP IS COMPUTED  
INTERNAL IN THE HEC-1 PROGRAM, BY USE OF THE CONIC  
METHOD, BASED ON THE GIVEN RESERVOIR SURFACE AREA AND  
ELEVATION DATA (SEE SUMMARY INPUT/OUTPUT SHEETS).

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DTS DATE 4-4-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 5 OF 25



## PMP CALCULATIONS

APPROXIMATE RAINFALL INDEX = 22.0 INCHES  
(CORRESPONDING TO A DURATION OF 24 HOURS  
AND A DRAINAGE AREA OF 200 SQUARE MILES)

(REF 3, FIG. 1)

### DEPTH-AREA-DURATION ZONE 1

(REF 3, FIG 1)

- ASSUME DATA CORRESPONDING TO A 10-SQUARE MILE AREA  
MAY BE APPLIED TO THIS 1.58-SQUARE MILE BASIN.

| <u>DURATION (HRS)</u> | <u>PERCENT OF INDEX RAINFALL</u> |
|-----------------------|----------------------------------|
| 6                     | 111                              |
| 12                    | 123                              |
| 24                    | 133                              |
| 48                    | 142                              |

(REF 3, FIG. 2)

Hop Brook Factor (ADJUSTMENT FOR BASIN SHAPE AND FOR THE  
LESSER LIKELIHOOD OF A SEVERE STORM CENTERING OVER A SMALL BASIN)  
FOR A DRAINAGE AREA OF 1.58 SQUARE MILES IS 0.80

(REF 4, p. 48)

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-4-81 PROJ. NO. 80-238-822  
CHKD. BY DJS DATE 5-4-81 SHEET NO. 6 OF 25



### SPILLWAY CAPACITY\*



#### CONTROL SECTION:



#### - LOOKING UPSTREAM -

- SKETCHES BASED IN FIELD NOTES  
AND OBSERVATIONS. -

THE SPILLWAY CONSISTS OF AN UNCONTROLLED, ROUGHLY TRAPEZOIDAL SHAPED CHANNEL CUT THROUGH SOIL AND ROCK AT THE LEFT ABUTMENT. THE CONTROL SECTION IS LOCATED NEAR THE RESERVOIR OUTLET, AS SHOWN ABOVE.

\* - THE DISCHARGE CAPACITY OF THE SERVICE SPILLWAY, WHICH CONSISTS OF AN 18-INCH DIAMETER DROP INLET RISER PIPE AND A 12-INCH DIAMETER JUSET PIPE, WAS CONSIDERED INSUFFICIENT.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY ZES DATE 4-4-81 PROJ. NO. 80-238-822  
CHKD. BY JLB DATE 5-4-81 SHEET NO. 7 OF 25



BASED ON THE ASSUMPTION OF CRITICAL FLOW AT THE CONTROL SECTION,

$$\frac{Q^2 T}{g A^3} = 1.0 \quad (\text{REF 5, p. 8-7})$$

WHERE  $Q$  = DISCHARGE, IN CFS,  
 $T$  = TOP WIDTH OF FLOW AREA, IN FT,  
 $g$  = GRAVITATIONAL ACCELERATION CONSTANT = 38.2 FT/SEC<sup>2</sup>,  
 $A$  = FLOW AREA, IN FT<sup>2</sup>.

ALSO,

$$H_m = D_c + \frac{D_m}{2}$$

$$\text{AND } D_m = A/T \quad (\text{REF 5, p. 8-8})$$

WHERE  $H_m$  = TOTAL HEAD AT CRITICAL DEPTH, OR MINIMUM SPECIFIC ENERGY, IN FT,  
 $D_c$  = CRITICAL DEPTH, IN FT,  
 $D_m$  = MEAN DEPTH OF FLOW AREA, IN FT.

THE RESERVOIR ELEVATION CORRESPONDING TO ANY PARTICULAR DISCHARGE IS THEN  $H_m + 997.0$  (WHERE INVERT OF CONTROL SECTION = 997.0). THIS IS BASED ON THE ASSUMPTION OF ZERO-VELOCITY HEAD AT THE RESERVOIR JUST UPSTREAM OF THE CONTROL SECTION, AND NEGLIGIBLE HEAD LOSS TO THE CONTROL SECTION → NO APPROACH LOSSES.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-6-81 PROJ. NO. SD-238-322  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 8 OF 25



SPILLWAY RATING TABLE

| $D_c$<br>(FT) | $A^{\circ}$<br>( $\text{FT}^2$ ) | $T^{\circ}$<br>(FT) | $D_m$<br>(FT) | $H_m$<br>(FT) | $Q^{\circ}$<br>(cfs) | RESERVOIR <sup>⑥</sup><br>ELEVATION<br>(FT) |
|---------------|----------------------------------|---------------------|---------------|---------------|----------------------|---------------------------------------------|
| 0.5           | 7.3                              | 19.2                | 0.38          | 0.7           | 26                   | 997.7                                       |
| 1.0           | 19.2                             | 28.4                | 0.68          | 1.3           | 90                   | 998.3                                       |
| 1.5           | 35.7                             | 37.6                | 0.95          | 2.0           | 197                  | 999.0                                       |
| 2.1           | 61.6                             | 48.6                | 1.27          | 2.7           | 394                  | 999.7 ( <sup>no ac</sup> / <sub>dam</sub> ) |
| 2.4           | 77.0                             | 54.2                | 1.42          | 3.1           | 521                  | 1000.1                                      |
| 2.7           | 94.1                             | 59.7                | 1.58          | 3.5           | 670                  | 1000.5                                      |
| 3.1           | 119.4                            | 67.0                | 1.78          | 4.0           | 904                  | 1001.0                                      |
| 3.5           | 146.2                            | 67.0                | 2.18          | 4.6           | 1225                 | 1001.6                                      |
| 4.0           | 179.7                            | 67.0                | 2.68          | 5.3           | 1670                 | 1002.3                                      |
| 4.5           | 213.2                            | 67.0                | 3.18          | 6.1           | 2158                 | 1003.1                                      |
| 5.0           | 246.7                            | 67.0                | 3.68          | 6.8           | 2686                 | 1003.8                                      |

- ① FOR  $D_c < 3.1$ ,  $A = 10D_c + 6.1\left(\frac{D_c^2}{2}\right) + 12.3\left(\frac{D_c^3}{3}\right) = 10D_c + 9.2D_c^2$   
FOR  $D_c \geq 3.1$ ,  $A = 119.4 + 67(D_c - 3.1)$
- ② FOR  $D_c < 3.1$ ,  $T = 10 + 6.1D_c + 12.3D_c = 10 + 18.4D_c$   
FOR  $D_c \geq 3.1$ ,  $T = 67.0$
- ③  $D_m = A/T$
- ④  $H_m = D_c + D_m/2$
- ⑤  $Q = \sqrt{gA^3/T}$
- ⑥ RESERVOIR ELEVATION =  $H_m + 997.0$

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-6-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 9 OF 25



## EMBANKMENT RATING CURVE

ASSUME THAT THE EMBANKMENT BEHAVES ESSENTIALLY AS A DROPOUT-CRESTED WEIR WHEN OVERTOPPING OCCURS. THUS, THE DISCHARGE CAN BE ESTIMATED BY THE RELATIONSHIP

$$Q = C L H^{3/2} \quad (\text{REF } 5, p. 5-23)$$

WHERE  $Q$  = DISCHARGE OVER EMBANKMENT, IN CFS,  
 $L$  = LENGTH OF EMBANKMENT OVERTOPPED, IN FT,  
 $H$  = HEAD, IN FT; IN THIS CASE, IT IS THE AVERAGE "FLOW AREA WEIGHTED HEAD" ABOVE THE LOW AREA IN THE EMBANKMENT CREST; AND  
 $C$  = COEFFICIENT OF DISCHARGE, DEPENDENT UPON THE HEAD AND THE WEIR BREADTH.

### LENGTH OF EMBANKMENT INUNDATED VS. RESERVOIR ELEVATION:

| RESERVOIR ELEVATION<br>(FT) | EMBANKMENT LENGTH<br>(FT) |
|-----------------------------|---------------------------|
| 999.7                       | 0                         |
| 999.9                       | 110                       |
| 1000.1                      | 220                       |
| 1000.2                      | 460                       |
| 1000.4                      | 650                       |
| 1000.7                      | 750                       |
| 1001.0                      | 760                       |
| 1001.5                      | 770                       |
| 1002.0                      | 780                       |
| 1003.0                      | 800                       |
| 1004.0                      | 820                       |
| 1005.0                      | 840                       |

(FROM FIELD SURVEY AND USGS topo QUAD - LAKE MASKEROUGH, PA;  
LT SS = 10H:IV  
RT SS = 8H:IV.)

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-6-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 10 OF 25



ASSUME THAT INCREMENTAL DISCHARGES FOR SUCCESSIVE RESERVOIR ELEVATIONS ARE APPROXIMATELY TRAPEZOIDAL IN CROSS-SECTIONAL FLOW AREA. THEN ANY INCREMENTAL AREA OF FLOW CAN BE ESTIMATED AS  $H_i [(L_1 + L_2)/2]$ , WHERE  $L_1$  = LENGTH OF EMBANKMENT OVERTOPPED AT HIGHER ELEVATION,  $L_2$  = LENGTH AT LOWER ELEVATION,  $H_i$  = DIFFERENCE IN ELEVATIONS. THUS, THE TOTAL AVERAGE "FLOW AREA WEIGHTED HEAD" CAN BE ESTIMATED AS  $H_w = (\text{TOTAL FLOW AREA} / L_1)$ .

### EMBANKMENT RATING CURVE

| RESERVOIR ELEVATION<br>(FT) | $L_1$<br>(FT) | $L_2$<br>(FT) | INCREMENTAL HEAD, $H_i$<br>(FT) | INCREMENTAL FLOW AREA, $A_i$<br>( $FT^2$ ) | TOTAL FLOW AREA, AT HEAD, $H_w$<br>( $FT^2$ ) | WEIGHTED HEAD, $H_w$<br>(FT) | $\frac{H_w}{L_1}$ | C    | Q<br>(CFS) |
|-----------------------------|---------------|---------------|---------------------------------|--------------------------------------------|-----------------------------------------------|------------------------------|-------------------|------|------------|
| 999.7                       | 0             | —             | —                               | —                                          | —                                             | —                            | —                 | —    | 0          |
| 999.9                       | 110           | 0             | 0.2                             | 11                                         | 11                                            | 0.10                         | 0.01              | 2.93 | 10         |
| 1000.1                      | 220           | 110           | 0.2                             | 33                                         | 44                                            | 0.20                         | 0.01              | 2.97 | 60         |
| 1000.2                      | 460           | 220           | 0.1                             | 34                                         | 78                                            | 0.17                         | 0.01              | 2.96 | 100        |
| 1000.4                      | 650           | 460           | 0.2                             | 111                                        | 189                                           | 0.29                         | 0.02              | 2.99 | 300        |
| 1000.7                      | 750           | 650           | 0.3                             | 210                                        | 399                                           | 0.53                         | 0.04              | 3.02 | 870        |
| 1001.0                      | 760           | 750           | 0.3                             | 227                                        | 626                                           | 0.82                         | 0.05              | 3.03 | 1710       |
| 1001.5                      | 770           | 760           | 0.5                             | 383                                        | 1009                                          | 1.3                          | 0.09              | 3.04 | 3470       |
| 1002.0                      | 780           | 770           | 0.5                             | 388                                        | 1397                                          | 1.8                          | 0.12              | 3.04 | 5730       |
| 1003.0                      | 800           | 780           | 1.0                             | 790                                        | 2187                                          | 2.7                          | 0.18              | 3.07 | 10,700     |
| 1004.0                      | 820           | 800           | 1.0                             | 810                                        | 2997                                          | 3.7                          | 0.25              | 3.08 | 17,970     |
| 1005.0                      | 840           | 820           | 1.0                             | 830                                        | 3827                                          | 4.6                          | 0.31              | 3.09 | 25,610     |

①  $A_i = H_i [(L_1 + L_2)/2]$

②  $H_w = A_i / L_1$

③  $l = \text{DISTANCE OF CREST} = 15 \text{ FT} \quad (\text{AUG. VALUE; FIELD MEASURED})$

④  $C = A(H_w l)^{1/2}$ ; FROM REF 12, FIG. 24.

⑤  $Q = CL, H_w^{3/2} \quad (\text{ROUNDED TO NEAREST 10 CFS})$

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DTS DATE 4-7-81 PROJ. NO. 80-238-822  
CHKD. BY DLG DATE 5-4-81 SHEET NO. 11 OF 25



## TOTAL FACILITY RATING CURVE

$$Q_{\text{TOTAL}} = Q_{\text{SPILLWAY}} + Q_{\text{EMBANKMENT}}$$

| RESERVOIR ELEVATION (FT)                    | ① $Q_{\text{SPILLWAY}}$ (CFS) | ② $Q_{\text{SPILLWAY}}$ (CFS) | ③ $Q_{\text{TOTAL}}$ (CFS) |
|---------------------------------------------|-------------------------------|-------------------------------|----------------------------|
| 997.0                                       | 0                             | -                             | 0                          |
| 997.7                                       | 30                            | -                             | 30                         |
| 998.3                                       | 90                            | -                             | 90                         |
| 999.0                                       | 200                           | -                             | 200                        |
| 999.6                                       | 370*                          | -                             | 370                        |
| ( <sup>TOP</sup><br><i>(at dam)</i> ) 999.7 | 390                           | 0                             | 390                        |
| 999.9                                       | 460*                          | 10                            | 470                        |
| 1000.1                                      | 520                           | 60                            | 580                        |
| 1000.3                                      | 560*                          | 100                           | 660                        |
| 1000.4                                      | 630*                          | 300                           | 930                        |
| 1000.7                                      | 760*                          | 870                           | 1630                       |
| 1001.0                                      | 900                           | 1710                          | 2610                       |
| 1001.5                                      | 1170*                         | 3470                          | 4640                       |
| 1002.0                                      | 1480*                         | 5730                          | 7210                       |
| 1003.0                                      | 2100*                         | 10,900                        | 13,000                     |

\* - LINEARLY INTERPOLATED FROM RATING TABLE - SHEET 8  
(ROUNDED TO NEAREST 10 CFS)

① FROM RATING TABLE, SHEET 8.

② FROM RATING TABLE, SHEET 12.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-7-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 12 OF 25



## UPSTREAM DAMS

### 1) LONG RIDGE DAM:

- HEIGHT OF DAM = 12 FT (SEE NOTE 2)
- ELEVATION OF NORMAL POOL = 1188.0 "
- ELEVATION OF TOP OF DAM = 1190.1 "
- PMP DATA - SEE SHEET 5

### RESERVOIR SURFACE AREA VS. ELEVATION:

| ELEVATION<br>(FT)         | S.A.<br>(ACRES) |
|---------------------------|-----------------|
| 1178                      | 0               |
| 1180                      | 2               |
| (NORMAL)<br>POOL<br>1188  | 9               |
| (TOP<br>OF DAM)<br>1190.1 | 10.6            |
| 1200                      | 18              |

(SEE NOTE 2)

---

Note 2: DATA TAKEN FROM "PHASE I INSPECTION REPORT," NATIONAL  
DAM INSPECTION PROGRAM, RICKARDS DAM, PENN DER  
I.D. No. 52-82, NDI I.D. No. PA-33405, PREPARED BY  
GAI CONSULTANTS, INC.; JUNE, 1981.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-7-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 13 OF 25



### LONG RIDGE DAM:

#### FACILITY RATING TABLE:

(SEE NOTE 2)

| ELEVATION<br>(FT)                     | OUTFLOW<br>(CFS) | ELEVATION<br>(FT) | OUTFLOW<br>(CFS) |
|---------------------------------------|------------------|-------------------|------------------|
| 1188.0                                | 0                | 1190.5            | 330              |
| 1188.7                                | 20               | 1190.7            | 470              |
| 1189.4                                | 80               | 1191.0            | 730              |
| 1190.0                                | 170              | 1191.3            | 1050             |
| ( <sup>TOP OF</sup><br>DAM)<br>1190.1 | 190              | 1191.6            | 1500             |
| 1190.2                                | 210              | 1192.0            | 2160             |
| 1190.3                                | 240              |                   |                  |

### 2) RICKARDS DAM:

- HEIGHT OF DAM = 9 FT

(SEE NOTE 2)

- ELEVATION OF NORMAL POOL = 1077.0

"

- ELEVATION OF TOP OF DAM = 1079.1 (LOW AREA)

"

#### ELEVATION - STORAGE TABLE:

| ELEVATION<br>(FT)          | STORAGE<br>(AC-FT) | ELEVATION<br>(FT) | STORAGE<br>(AC-FT) |
|----------------------------|--------------------|-------------------|--------------------|
| 1068.5                     | 0                  | 1080.0            | 242                |
| 1071.1                     | 7                  | 1081.0            | 312                |
| 1073.3                     | 29                 | 1082.0            | 386                |
| 1075.0                     | 56                 | 1083.0            | 464                |
| (NORMAL<br>POOL)<br>1077.0 | 98                 | 1084.0            | 546                |
| (TOP<br>OF DAM)<br>1079.1  | 187                | 1085.0            | 632                |

(SEE NOTE 2)

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-7-81 PROJ. NO. 80-238-22  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 14 OF 25



### RICKARDS DAM:

- PMP DATA - SEE SHEET 5.

- FACILITY RATING TABLE:

(SEE NOTE 2)

| ELEVATION<br>(FT)         | OUTFLOW<br>(CFS) | ELEVATION<br>(FT) | OUTFLOW<br>(CFS) |
|---------------------------|------------------|-------------------|------------------|
| 1077.0                    | 0                | 1080.5            | 3800             |
| 1078.0                    | 220              | 1080.7            | 4620             |
| 1079.0                    | 660              | 1081.0            | 5640             |
| (TOP<br>OF DAM)<br>1079.1 | 720              | 1081.5            | 7930             |
| 1079.4                    | 1010             | 1082.0            | 10,590           |
| 1079.5                    | 1170             | 1083.0            | 17,090           |
| 1079.8                    | 1750             | 1084.0            | 24,290           |
| 1080.3                    | 2240             | 1085.0            | 33,030           |
| 1080.2                    | 2810             |                   |                  |

### 3) LOWER RICKARDS DAM:

- HEIGHT OF DAM = 10 FT (FIELD MEASURED: TOP OF DAM TO DOWNSTREAM INVERT OF OUTLET CONDUIT.)

- ELEVATION OF NORMAL POOL = 1070.0 (SEE NOTE 3)

- ELEVATION OF TOP OF DAM = 1071.7 (FIELD SURVEY)

- RESERVOIR CAPACITY:

SURFACE AREAS:

S.A. @ NORMAL POOL (EL. 1070.0) = 15 ACRES

S.A. @ EL. 1080 = 29 ACRES

(PLANIMETRIZED IN USGS  
TOD QWD-LAKE MASCOT, WIS.)

NOTE 3: NORMAL POOL AT LOWER RICKARDS DAM FIELD MEASURED TO BE APPROXIMATELY 7 FT BELOW SPILLWAY CREST AT RICKARDS DAM.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-7-81 PROJ. NO. 80-238-822  
CHKD. BY DLC DATE 5-4-81 SHEET NO. 15 OF 25



LOWER RICKARDS DAM:

S.A. @ TOP OF DAM (EL. 1071.7) = 17.4 ACRES  
(BY LINEAR INTERPOLATION)

STORAGE @ NORMAL POOL = 75 AC-FT (SEE NOTE 4)

BY USE OF CONIC METHOD,

$$\text{VOL. @ NORMAL POOL} = \frac{1}{3} \text{ HA}$$

WHERE  $H$  = MAX. DEPTH OF RESERVOIR, IN FT,  
 $A$  = S.A. @ NORMAL POOL = 15 ACRES

$$\begin{aligned}\text{VOL} &= \frac{1}{3} \text{ HA} \\ 75 \text{ AC-FT} &= \frac{1}{3} H(15) \\ H &= \underline{15.0} \text{ FT}\end{aligned}$$

$$\therefore \text{ZERO STORAGE ASSUMED AT } 1070.0 - 15.0 = \underline{1055.0}.$$

THE ELEVATION-STORAGE RELATIONSHIP IS COMPUTED INTERNALLY IN THE HEC-1 PROGRAM, BY USE OF THE CONIC METHOD, BASED ON THE ELEVATION-SURFACE AREA DATA GIVEN ABOVE. ALTHOUGH THE MINIMUM RESERVOIR ELEVATION PROBABLY OCCURS AT SOME ELEVATION ABOVE 1055.0, THIS VALUE MUST BE USED IN THE HEC-1 INPUT IN ORDER TO MAINTAIN A STORAGE OF 75 ACRE-FEET AT NORMAL POOL.

Note 4: VOLUME OF RESERVOIR AT NORMAL POOL NOTED IN PHONE CONVERSATION (APRIL 6, 1981) WITH DEAN DER REPRESENTATIVE.  
VOLUME IS REPORTED AS 75 AC-FT IN DEAN DER FILES.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-8-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 16 OF 25



### LOWER RICKARDS DAM:

#### - SPILLWAY CAPACITY :

THE SPILLWAY CONSISTS OF AN UNCONTROLLED, ROUGHLY TRAPEZOIDAL CHANNEL CUT IN SOIL AND ROCK AT THE RIGHT ABUTMENT. THE CONTROL SECTION IS LOCATED AT THE CONCRETE WEIR SHOWN BELOW:

#### PLAN:



#### PROFILE:



(BASED ON FIELD MEASUREMENTS  
AND OBSERVATIONS)

THE WEIR IS TRAPEZOIDAL IN CROSS-SECTION, WITH AVERAGE SIDE-SLOPES = 1.5H:1V, BOTTOM WIDTH = 30 FT, AND FREEBOARD OF APPROXIMATELY 1.7 FT TO TOP OF DAM. SINCE THE MAXIMUM SPILLWAY DISCHARGE CAPACITY (AT TOP OF DAM) IS SMALL IN COMPARISON TO THE EXPECTED PMF-MAGNITUDE OUTFLOWS, THE WEIR SECTION WILL BE APPROXIMATED AS RECTANGULAR, 35 FT LONG.

DISCHARGE CAN BE ESTIMATED BY THE WEIR EQUATION

$$Q = CLH^{3/2}$$

(REF 5, p. J-33)

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-9-81 PROJ. NO. 80-338-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 17 OF 25



### LOWER RICKARDS DAM:

WHERE  $Q = \text{DISCHARGE, IN CFS}$ ,  
 $H = \text{HEAD, IN FT}$ ,  
 $L = \text{WEIR LENGTH} = 35 \text{ FT (SEE SHEET 16)}$   
 $C = \text{COEFFICIENT OF DISCHARGE. A CONSERVATIVE VALUE ON THE ORDER OF } 0.7 \text{ WILL BE ASSUMED, IN ORDER TO ACCOUNT FOR APPROACH LOSSES TO THE WEIR.}$

THE SPILLWAY RATING CURVE IS COMPUTED INTERNALLY IN THE HEC-1 PROGRAM, BY USE OF THE WEIR EQUATION AND THE DATA GIVEN ABOVE.

### - EMBANKMENT RATING TABLE:

DISCHARGE OVER THE EMBANKMENT WILL BE COMPUTED INTERNALLY IN THE HEC-1 PROGRAM, BASED ON THE WEIR EQUATION

$$Q = CLH^{3/2} \quad (\text{SHEET 16})$$

THE LENGTH OF EMBANKMENT INUNDATED WILL BE ASSUMED TO REMAIN CONSTANT AT 510 FEET (THE ACTUAL MEASURED EMBANKMENT LENGTH) FOR ALL RESERVOIR ELEVATIONS. THE DISCHARGE COEFFICIENT WILL BE ASSUMED TO BE ON THE ORDER OF 3.0 (REF. 12, FIG 24)

- PMP DATA - SEE SHEET 5.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-9-81 PROJ. NO. 80-238-822  
CHKD. BY DLG DATE 5-4-81 SHEET NO. 18 OF 25



Engineers • Geologists • Planners  
Environmental Specialists

### LITTLE FAWN LAKE DAM:

- HEIGHT OF DAM = 9 FT (FIELD MEASURED: TOP OF DAM TO DOWNSTREAM TOE OF EMBANKMENT)
  - ELEVATION OF NORMAL POOL = 1010.0 (SEE NOTE 5)
  - ELEVATION OF TOP OF DAM = 1012.4 (FIELD SURVEY)
  - PMP DATA - SEE SHEET 5.
- RESERVOIR CAPACITY

#### SURFACE AREAS:

S.A. @ NORMAL POOL (EL 1010.0) = 2.5 ACRES

S.A. @ EL. 1020.0 = 6.5 ACRES

(DETERMINED ON USGS TWO-SIDED  
LAKE MASKORDON, PA)

S.A. @ TOP OF DAM (EL. 1012.4) = 3.5 ACRES

(BY LINEAR INTERPOLATION)

THE "ZERO-STORAGE" ELEVATION IS ASSUMED TO BE APPROXIMATELY  
AT THE SAME ELEVATION AS THE DOWNSTREAM EMBANKMENT TOE, EL. 1003.

THE ELEVATION-STORAGE RELATIONSHIP IS COMPUTED INTERNALLY  
IN THE HEC-1 PROGRAM, BASED ON THE DATA GIVEN ABOVE.

---

NOTE 5: NORMAL POOL AT LITTLE FAWN LAKE DAM FIELD MEASURED TO  
BE APPROXIMATELY 13 FT ABOVE NORMAL POOL AT FAWN LAKE DAM.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-9-81 PROJ. NO. 80-738-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 19 OF 25



### LITTLE FAWN LAKE DAM :

#### - SPILLWAY CAPACITY :

THE SPILLWAY CONSISTS OF AN UNCONTROLLED, ROUGHLY TRAPEZOIDAL CHANNEL CUT IN SOIL AND ROCK AT THE RIGHT ABUTMENT. THE CONTROL SECTION IS LOCATED NEAR THE RESERVOIR OUTLET, AS SHOWN BELOW.

#### PLAN:



#### CROSS-SECTION:



THE SPILLWAY RATING TABLE IS PROVIDED ON SHEET 20, AND IS BASED ON THE ASSUMPTION OF CRITICAL DEPTH AT THE CONTROL SECTION, WITH NO APPROACH LOSSES (SEE SHEETS 2 AND 8 FOR ASSUMPTIONS AND METHODOLOGY).

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY ZDS DATE 4-9-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-4-81 SHEET NO. 20 OF 25



### LITTLE FAWN LAKE DAM:

#### SPILLWAY RATING TABLE:

| $D_c$<br>(FT) | $A^{\circ}$<br>( $FT^2$ ) | $T^{\circ}$<br>(FT) | $D_m^{\circ}$<br>(FT) | $H_m^{\circ}$<br>(FT) | $Q^{\circ}$<br>(cfs) | RESERVOIR<br>ELEVATION <sup>(6)</sup><br>(FT) |
|---------------|---------------------------|---------------------|-----------------------|-----------------------|----------------------|-----------------------------------------------|
| 0.0           | -                         | -                   | -                     | -                     | 0                    | 1010.0                                        |
| 0.5           | 4.6                       | 10.2                | 0.45                  | 0.7                   | 20                   | 1010.7                                        |
| 1.0           | 10.2                      | 12.4                | 0.82                  | 1.4                   | 50                   | 1011.4                                        |
| 1.5           | 17.0                      | 14.6                | 1.16                  | 2.1                   | 100                  | 1012.1                                        |
| 1.7           | 19.9                      | 15.0                | 1.33                  | 2.4                   | 130                  | 1012.4                                        |
| 2.1           | 25.9                      | 15.0                | 1.73                  | 3.0                   | 190                  | 1013.0                                        |
| 2.8           | 36.4                      | 15.0                | 2.43                  | 4.0                   | 320                  | 1014.0                                        |
| 3.5           | 46.9                      | 15.0                | 3.13                  | 5.1                   | 470                  | 1015.1                                        |
| 4.1           | 55.9                      | 15.0                | 3.72                  | 6.0                   | 610                  | 1016.0                                        |
| 4.8           | 66.4                      | 15.0                | 4.42                  | 7.0                   | 790                  | 1017.0                                        |
| 5.5           | 76.9                      | 15.0                | 5.12                  | 8.1                   | 990                  | 1018.1                                        |

- ① FOR  $D_c < 1.6$ ,  $A = 8D_c + 2(2.2)(\frac{1}{3})D_c^3 = 8D_c + 2.2D_c^2$   
FOR  $D_c \geq 1.6$ ,  $A = 18.4 + 15(D_c - 1.6)$
- ② FOR  $D_c < 1.6$ ,  $T = 8 + 2(2.2)D_c = 8 + 4.4D_c$   
FOR  $D_c \geq 1.6$ ,  $T = 15$
- ③  $D_m = A/T$
- ④  $H_m = D_c + D_m/2$
- ⑤  $Q = \sqrt{gA^3/T}$  (ROUNDED TO NEAREST 10 CFS)
- ⑥ RESERVOIR ELEVATION =  $H_m + 1010.0$

#### EMBANKMENT RATING TABLE:

DISCHARGE OVER THE EMBANKMENT WILL BE COMPUTED INTERNALLY IN THE HEC-1 PROGRAM, WITH THE ASSUMPTION THAT CRITICAL DEPTH OCCURS ON THE CREST, AND WITH THE CREST PROFILE REPRESENTED BY A SERIES OF TRAPEZOIDS. THE INPUT DATA IS PROVIDED ON SHEET 21.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-9-81 PROJ. NO. 80-238-823  
CHKD. BY D.G. DATE 5-4-81 SHEET NO. 21 OF 25



LITTLE FAWN LAKE DAM :

EMBANKMENT OVERTOPPING DATA:

| RESERVOIR ELEVATION<br>(LOW AREA IN RIGHT ABUTMENT NEAR SPILLWAY) | LENGTH OF EMBANKMENT INUNDATED<br>(FT) |
|-------------------------------------------------------------------|----------------------------------------|
| 1011.6                                                            | 0                                      |
| (TOP OF DAM) 1012.4                                               | 10                                     |
| 1012.7                                                            | 50                                     |
| 1013.0                                                            | 90                                     |
| 1013.2                                                            | 210                                    |
| 1013.5                                                            | 300                                    |
| 1014.0                                                            | 350                                    |
| 1015.0                                                            | 360                                    |
| 1016.0                                                            | 370                                    |
| 1018.0                                                            | 390                                    |

(BASED ON FIELD SURVEY AND USGS  
TOPO QUAD - LAKE MCKEEONIA, PA)

SUBJECT: DOWN RIVER DAMS  
BY: 2255 4-20-81 FILE NO. 22 OF 25  
CHD BY: 2255 4-20-81 PROJECT NO. 80-208-022

### DOWNSTREAM ROUTING SECTIONS



SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY ZDT DATE 4-20-81 PROJ. NO. 80-238-822  
CHKD. BY ZLB DATE 4-21-81 SHEET NO. 23 OF 25



## BREACH ASSUMPTIONS

### TYPICAL BREACH SECTION:



### HEC-1 DAM BREACHING ANALYSIS INPUT:

(BREACHING ASSUMED TO COMMENCE WHEN RECEDING LEVEL REACHES MINIMUM EMBANKMENT OREST ELEVATION - 999.7.)

| PLAN                                     | BREACH BOTTOM WIDTH (FT) | MAX. BREACH DEPTH (FT) | SECTION SIDE-SLOPES | BREACH TIME (HRS) |
|------------------------------------------|--------------------------|------------------------|---------------------|-------------------|
| ① MIN. BREACH SECTION,<br>MIN. FAIL TIME | 0                        | 21.7                   | 1H:1V               | 0.5               |
| ② MAX BREACH SECTION,<br>MIN. FAIL TIME  | 300                      | 21.7                   | 10:1                | 0.5               |
| ③ MIN. BREACH SECTION<br>MAX. FAIL TIME  | 0                        | 21.7                   | 1:1                 | 4.0               |
| ④ MAX. BREACH SECTION<br>MAX. FAIL TIME  | 300                      | 21.7                   | 10:1                | 4.0               |
| ⑤ AVERAGE POSSIBLE<br>CONDITIONAL        | 60                       | 21.7                   | 1:1                 | 1.0               |

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJT DATE 4-20-81 PROJ. NO. 20-238-822  
CHKD. BY ZLR DATE 4-21-81 SHEET NO. 24 OF 25



THE BREACH ASSUMPTIONS LISTED ON THE PREVIOUS SHEET ARE BASED ON THE SUGGESTED RANGES PROVIDED BY THE C.G.E. (BALTIMORE DISTRICT), AND ON THE PHYSICAL CONSTRAINTS OF THE DAM AND SURROUNDING TERRAIN:

- DEPTH OF BREACH = 21.7 FT (TOP OF DAM TO INVERT OF OUTLET CONDUIT)

- LENGTH OF BREACHABLE EMBANKMENT = 740 FT (FIELD MEASURED)

- VALLEY BOTTOM WIDTH = 300 FT (FIELD OBSERVATION)

- VALLEY SIDE-SLOPES ADJACENT TO DAM:

RIGHT-SIDE: 10H:1V

LEFT-SIDE: 10H:1V

(USGS TOPO QUAD -  
LAKE MASKENOZHA, PA)

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-27-81 PROJ. NO. 80-238-822  
CHKD. BY DLS DATE 5-4-81 SHEET NO. 25 OF 25



## HEC-1 DAM BREACHING ANALYSIS OUTPUT SUMMARY:

### RESERVOIR DATA: (UNDER 0.20 PMF BASE FLOW CONDITIONS)

| PLAN* | ACTUAL MAX. FLOW DURING FAIL TIME (CFS) | CORRESPONDING TIME OF PEAK (HRS) | INTERPOLATED OR HEC-1 ROUTED MAX. FLOW DURING FAIL TIME (CFS) | CORRESPONDING TIME OF PEAK (HRS) | ACTUAL PEAK FLOW THROUGH DAM (CFS) | CORRESPONDING TIME OF PEAK (HRS) | TIME OF INITIAL BREACH (HRS) |
|-------|-----------------------------------------|----------------------------------|---------------------------------------------------------------|----------------------------------|------------------------------------|----------------------------------|------------------------------|
| ①     | 3004                                    | 41.50                            | 3004                                                          | 41.50                            | 3004                               | 41.50                            | 41.00                        |
| ②     | 4327                                    | 41.12                            | 3889                                                          | 41.17                            | 4327                               | 41.12                            | 41.00                        |
| ③     | 893                                     | 43.58                            | 893                                                           | 43.67                            | 893                                | 43.58                            | 41.00                        |
| ④     | 1110                                    | 41.42                            | 1104                                                          | 41.50                            | 1110                               | 41.42                            | 41.00                        |
| ⑤     | 2203                                    | 41.42                            | 2115                                                          | 41.33                            | 2203                               | 41.42                            | 41.00                        |

### DOWNSTREAM ROUTING DATA: (UNDER 0.20 PMF BASE FLOW CONDITIONS)

| OUTPUT @ SECTION 2; 6160 FT. D.S. FROM DAM |                 |                                            |                                         |                           |
|--------------------------------------------|-----------------|--------------------------------------------|-----------------------------------------|---------------------------|
| PLAN*                                      | PEAK FLOW (CFS) | CORRESPONDING WATER SURFACE ELEVATION (FT) | WATER SURFACE ELEVATION W/O BREACH (FT) | ELEVATION DIFFERENCE (FT) |
| ①                                          | 2173            | 899.3                                      | 895.7                                   | +3.6                      |
| ②                                          | 2265            | 899.5                                      | 895.7                                   | +3.8                      |
| ③                                          | 886             | 896.4                                      | 895.7                                   | +0.7                      |
| ④                                          | 1088            | 897.0                                      | 895.7                                   | +1.3                      |
| ⑤                                          | 1908            | 898.0                                      | 895.7                                   | +2.3                      |

\* - SEE SHEET 23.

- DAMAGE LEVEL OF STRUCTURES @ SECTION 2 (CAMP LOG-N-Twig)  
APPROXIMATELY @ EL. 897

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM

BY RJS DATE 4-28-81 PROJ. NO. 80-238-822  
 CHKD. BY DLB DATE 5-6-81 SHEET NO. A OF EE



SUMMARY INPUT/OUTPUT SHEETS

DAM SAFETY INSPECTION  
 FAWN LAKE DAM O/S OVERTOPPING ANALYSIS, W/ FOUR UPSTREAM FACILITIES @  
 10-MINUTE TIME STEP AND 48-HOUR STORM DURATION

| NO  | NHR | MIN | IDAY | JDAY | IHR | MIN | MEVC | IPMT | JPMT | NETAN |
|-----|-----|-----|------|------|-----|-----|------|------|------|-------|
| 300 | 0   | 10  | 0    | 0    | 0   | 0   | 0    | 0    | 0    | 0     |
|     |     |     |      |      |     |     |      |      |      |       |
|     |     |     |      |      |     |     |      |      |      |       |
|     |     |     |      |      |     |     |      |      |      |       |

**OVERTOPPING  
 ANALYSIS**

| INFLOW HYDROGRAPHS - LONG RIDGE RESERVOIR |       |       |       |      |        |       |       |  |  |
|-------------------------------------------|-------|-------|-------|------|--------|-------|-------|--|--|
| SUB-AREA RUNOFF COMPUTATION               |       |       |       |      |        |       |       |  |  |
| ISIAQ                                     | ICUMP | IECON | ITAPE | JPMT | I NAME | ISAGE | IAUTO |  |  |
| LRD                                       | 0     | 0     | 0     | 0    | 0      | 0     | 0     |  |  |
|                                           |       |       |       |      |        |       |       |  |  |
|                                           |       |       |       |      |        |       |       |  |  |

| HYDROGRAPH DATA |      |       |      |       |       |       |       |       |  |
|-----------------|------|-------|------|-------|-------|-------|-------|-------|--|
| TNSPC           | TUNG | TAREA | BMAP | TRSDA | RATIO | ISMON | ISAME | LOCAC |  |
| 1               | .10  | 0.00  | 1.59 | 0.00  | 0.000 | 0     | 1     | 0     |  |
|                 |      |       |      |       |       |       |       |       |  |
|                 |      |       |      |       |       |       |       |       |  |

| PRECIP DATA |       |        |        |        |        |      |      |  |  |
|-------------|-------|--------|--------|--------|--------|------|------|--|--|
| SPFE        | PMS   | R6     | R12    | R24    | R48    | R72  | R96  |  |  |
| 0.00        | 22.00 | 111.00 | 123.00 | 133.00 | 142.00 | 0.00 | 0.00 |  |  |
|             |       |        |        |        |        |      |      |  |  |
|             |       |        |        |        |        |      |      |  |  |

TNSPC COMPUTED BY THE PROGRAM IS .800  
 UNIT HYDROGRAPH DATA

LOSS DATA

| LNROPT | STRAK | DLTIN | RT101 | ERAIN | STRAS | RT10K | CHSTL | ALSHX | RTIMP |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0      | 0.00  | 0.00  | 1.00  | 0.00  | 0.00  | 1.00  | 1.00  | 0.05  | 0.00  |
|        |       |       |       |       |       |       |       |       |       |
|        |       |       |       |       |       |       |       |       |       |

CONSTANT RAINFALL  
 LOSSES AS PER CO.E.

| TP= | CPS= | RTA= | 0 | ✓ | AS PER CO.E. |
|-----|------|------|---|---|--------------|
| .48 | .45  |      |   |   |              |
|     |      |      |   |   |              |
|     |      |      |   |   |              |

| RECEDITION DATA |       |        |      |       |      |  |  |  |  |
|-----------------|-------|--------|------|-------|------|--|--|--|--|
| STRTD           | -1.50 | ONCSNE | -0.5 | NRJDR | 2.00 |  |  |  |  |
|                 |       |        |      |       |      |  |  |  |  |
|                 |       |        |      |       |      |  |  |  |  |

APPROXIMATE CLANK COEFFICIENTS FROM GIVEN SWARD CP AND TP ARE 7C > 3.15 AND H = 4.32 INTERVALS

| 10. | JA. | 50. | 47. | 37. | 29. | 23. | 18. | 15. |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 12. | 9.  | 7.  | 6.  | 5.  | 4.  | 3.  | 2.  | 1.  |
| 1.  | 1.  | 1.  | 1.  | 0.  |     |     |     |     |

| RAIN            | EXCS           | LOSS | COMP Q |
|-----------------|----------------|------|--------|
| 6.99            | 22.60          | 2.39 | 9749   |
| ( 635.1( 574.1) | ( 61.1( 247.7) |      |        |

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-28-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-6-81 SHEET NO. B OF EE



**Engineers • Geologists • Planners  
Environmental Specialists**

| LONG RIDGE RESERVOIR INFLOW |       | 0.1 PMF |        | 0.2 PMF |         | 0.3 PMF      |  |
|-----------------------------|-------|---------|--------|---------|---------|--------------|--|
|                             |       | PEAK    | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |  |
| MM                          | 46.0  | 36.32   | 31.54  | 31.54   | 31.54   | 31.54        |  |
| AC-FT                       | 10.   | 12.     | 12.    | 12.     | 12.     | 12.          |  |
| THOUS CU M                  | 12.   | 15.     | 15.    | 15.     | 15.     | 15.          |  |
| CRS                         | 0.5   | 39.     | 12.    | 6.      | 1753.   |              |  |
| CMS                         | 2.    | 1.      | 0.     | 0.      | 50.     |              |  |
| INCHES                      |       | 3.63    | 0.43   | 0.53    | 4.53    |              |  |
| MM                          | 92.28 | 112.64  | 112.64 | 112.64  | 112.64  | 112.64       |  |
| AC-FT                       |       | 19.     | 24.    | 24.     | 24.     | 24.          |  |
| THOUS CU M                  |       | 24.     | 29.    | 29.     | 29.     | 29.          |  |
| PEAK                        | 120.  | 59.     | 18.    | 9.      | 2630.   |              |  |
| CRS                         |       |         |        |         |         |              |  |
| CMS                         |       |         |        |         |         |              |  |

| PEAK       | 6-HOUR |        | 24 HOUR |        | 72-HOUR |        | TOTAL VOLUME<br>cu m |
|------------|--------|--------|---------|--------|---------|--------|----------------------|
|            | CFS    | INCHES | CFS     | INCHES | CFS     | INCHES |                      |
| CFS        | 41.    | 20.    | 6.      | 0.     | 3.      | 0.     | 611.                 |
| CMS        | 1.     | 1.     | 0.      | 0.     | 0.      | 0.     | 25.                  |
| INCHES     |        |        | 1.82    | 2.22   | 2.27    | 2.37   | 57.54                |
| MM         | 46.14  | 56.32  | 57.54   | 57.54  | 57.54   | 57.54  | 57.54                |
| AC-FP      | 10.    | 12.    | 12.     | 12.    | 12.     | 12.    | 12.                  |
| THOUS CU M | 12.    | 15.    | 15.     | 15.    | 15.     | 15.    | 15.                  |
| PEAK       | 6-HOUR |        | 24 HOUR |        | 72-HOUR |        | TOTAL VOLUME         |
| CFS        | 85.    | 39.    | 12.     | 6.     | 6.      | 6.     | 1763.                |
| CMS        | 2.     | 1.     | 0.      | 0.     | 0.      | 0.     | 50.                  |
| INCHES     |        | 3.63   | 4.43    | 4.53   | 4.53    | 4.53   | 4.53                 |
| MM         | 92.28  | 112.64 | 115.00  | 115.00 | 115.00  | 115.00 | 115.00               |
| AC-FP      | 19.    | 24.    | 26.     | 26.    | 26.     | 26.    | 26.                  |
| THOUS CU M | 24.    | 29.    | 30.     | 30.    | 30.     | 30.    | 30.                  |
| PEAK       | 6-HOUR |        | 24 HOUR |        | 72-HOUR |        | TOTAL VOLUME         |
| CFS        | 120.   | 59.    | 18.     | 9.     | 9.      | 9.     | 2630.                |
| CMS        | 4.     | 2.     | 1.      | 0.     | 0.      | 0.     | 74.                  |
| INCHES     |        | 5.65   | 6.65    | 6.65   | 6.65    | 6.65   | 6.65                 |
| MM         | 130.3  | 160.96 | 172.61  | 172.61 | 172.61  | 172.61 | 172.61               |
| AC-FP      | 29.    | 35.    | 35.     | 35.    | 35.     | 35.    | 35.                  |
| THOUS CU M | 36.    | 44.    | 45.     | 45.    | 45.     | 45.    | 45.                  |

| O.5PMF     |        | PMF     |         |              |
|------------|--------|---------|---------|--------------|
| PEAK       | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
| CFS        | 211.   | 98.     | 50.     | 15.          |
| CMS        | 6.     | 3.      | 1.      | 0.           |
| INCHES     | 9.08   | 11.09   | 11.33   | 11.33        |
| MN         | 230.71 | 281.60  | 287.69  | 287.69       |
| AC-FT      | 48.    | 59.     | 60.     | 60.          |
| THOUS CU M | 20.    | 23.     | 24.     | 24.          |
| PEAK       | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
| CFS        | 427.   | 195.    | 60.     | 29.          |
| CMS        | 12.    | 6.      | 2.      | 1.           |
| INCHES     | 16.17  | 22.17   | 22.65   | 22.65        |
| MN         | 461.42 | 563.20  | 575.38  | 575.38       |
| AC-FT      | 97.    | 116.    | 121.    | 121.         |
| THOUS CU M | 119.   | 146.    | 149.    | 149.         |

WILHELM LORENZ UND SEINE WERKE

וְאַתָּה תִּשְׁעַל אֶת־בְּנֵי־יִשְׂרָאֵל וְאֶת־בְּנֵי־יִשְׂרָאֵל  
וְאֶת־בְּנֵי־יִשְׂרָאֵל וְאֶת־בְּנֵי־יִשְׂרָאֵל וְאֶת־בְּנֵי־יִשְׂרָאֵל

卷之三

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-28-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-6-81 SHEET NO. C OF EE



**Engineers • Geologists • Planners  
Environmental Specialists**

| FLOW         | 0.00<br>1050.00 | 20.00<br>1500.00 | 60.00<br>2160.00 | 170.00      | 190.00      | 210.00       | 240.00      | 330.00 |
|--------------|-----------------|------------------|------------------|-------------|-------------|--------------|-------------|--------|
| SURFACE AREA | 0.              | 2.               | 9.               | 11.         | 16.         |              |             |        |
| CAPACITY     | 0.              | 1.               | 41.              | 63.         | 203.        |              |             |        |
| ELEVATION    | 1170.           | 1180.            | 1188.            | 1190.       | 1200.       |              |             |        |
| CREL         | 0.0             | SPWID<br>0.0     | C00W<br>0.0      | ELEV<br>0.0 | COOL<br>0.0 | CAREA<br>0.0 | EXPL<br>0.0 |        |
|              | 1180.0          |                  |                  |             |             |              |             |        |

**LONG  
RIDGE  
RESERVOIR  
OUTFLOW**



SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 4-28-81 PROJ. NO. 80-238-822  
CHKD. BY DLA DATE 5-6-81 SHEET NO. E OF EE



|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 215.  | 165.   | 65.     | 32.     | 9476.        |
| CMS        | 8.    | 5.     | 2.      | 1.      | 268.         |
| INCHES     |       | 1.57   | 0.57    | 0.23    | 2.23         |
| MM         | 39.62 | 15.7   | 5.50    | 2.23    | 56.56        |
| AC-FT      |       |        |         |         | 131.         |
| THOUS CU M |       | 113.   | 32.     | 131.    | 161.         |
|            |       |        |         |         | 161.         |

LOCAL  
INFLOW -  
RICKARDS  
DAM

0.20 PMF

0.20 PMF

0.20 PMF

0.20 PMF

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 351.  | 371.   | 129.    | 63.     | 10957.       |
| CMS        | 16.   | 10.    | 4.      | 2.      | 53.          |
| INCHES     |       | 3.14   | 1.37    | 0.55    | 4.45         |
| MM         | 79.64 | 110.99 | 41.11   | 11.11   | 113.11       |
| AC-FT      |       | 104.   | 256.    | 261.    | 261.         |
| THOUS CU M |       | 227.   | 316.    | 322.    | 322.         |
|            |       |        |         |         | 322.         |

0.30 PMF

0.30 PMF

0.30 PMF

0.30 PMF

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 626.   | 356.   | 194.    | 95.     | 28435.       |
| CMS        | 23.    | 16.    | 5.      | 3.      | 805.         |
| INCHES     |        | 0.70   | 0.55    | 0.68    | 6.68         |
| MM         | 119.46 | 169.49 | 169.66  | 169.66  | 169.66       |
| AC-FT      |        | 276.   | 394.    | 392.    | 392.         |
| THOUS CU M |        | 340.   | 474.    | 493.    | 493.         |
|            |        |        |         |         | 493.         |

0.50 PMF

0.50 PMF

0.50 PMF

0.50 PMF

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 1377.  | 927.   | 321.    | 159.    | 41392.       |
| CMS        | 39.    | 26.    | 9.      | 4.      | 1342.        |
| INCHES     |        | 7.84   | 10.92   | 11.13   | 11.13        |
| MM         | 199.10 | 277.48 | 282.77  | 282.77  | 282.77       |
| AC-FT      |        | 460.   | 641.    | 653.    | 653.         |
| THOUS CU M |        | 567.   | 790.    | 805.    | 805.         |
|            |        |        |         |         | 805.         |

0.50 PMF

0.50 PMF

0.50 PMF

0.50 PMF

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 2754.  | 1854.  | 646.    | 316.    | 94784.       |
| CMS        | 18.    | 12.    | 14.     | 4.      | 144.         |
| INCHES     |        | 15.68  | 21.05   | 22.27   | 22.27        |
| MM         | 198.20 | 324.97 | 565.54  | 565.54  | 565.54       |
| AC-FT      |        | 919.   | 1281.   | 1306.   | 1306.        |
| THOUS CU M |        | 1134.  | 1580.   | 1610.   | 1610.        |
|            |        |        |         |         | 1610.        |

0.50 PMF

0.50 PMF

0.50 PMF

0.50 PMF

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 291.  | 199.   | 70.     | 34.     | 10276.       |
| CMS        | 8.    | 6.     | 2.      | 1.      | 291.         |
| INCHES     |       | 1.54   | 2.17    | 2.21    | 2.21         |
| MM         | 39.10 | 55.16  | 56.21   | 56.21   | 56.21        |
| AC-FT      |       | 90.    | 119.    | 142.    | 142.         |
| THOUS CU M |       | 121.   | 171.    | 175.    | 175.         |
|            |       |        |         |         | 175.         |

0.10 PMF

0.10 PMF

0.10 PMF

0.10 PMF

CUMULATIVE HYDROGRAPH  
CUMULATIVE INFLOW WITH RICKARDS DAM INFLOW

| STAGE | ICUMP | IECON | ITAPE | JPLT | JPT | INAKE | ISTAGE | IAUTO |
|-------|-------|-------|-------|------|-----|-------|--------|-------|
| HD    | 2     | 0     | 0     | 0    | 0   | 0     | 1      | 0     |

0.10 PMF

SUM OF RICKARDS  
DAM LOCAL INFLOW  
AND LONG RIDGE DAM  
OUTFLOW.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DTS DATE 4-30-81 PROJ. NO. 80-238-822  
CHKD. BY DLG DATE 5-6-81 SHEET NO. F OF EE



|            | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|------|--------|---------|---------|--------------|
| CFS        | 590. | 401.   | 140.    | 69.     | 20583.       |
| CFS        | 117. | 11.    | 6.      | 2.      | 583.         |
| INCHES     |      | 3.11   | 4.35    | 4.43    | 4.43         |
| IN         |      | 78.30  | 110.48  | 112.58  | 112.58       |
| ACFT       |      | 159.   | 278.    | 284.    | 284.         |
| THOUS CU M |      | 216.   | 343.    | 350.    | 350.         |

0.30 PMF

SUBJECT

## DAM SAFETY INSPECTION

## FAWN LAKE DAM

BY ZDSDATE 4-30-81PROJ. NO. 80-238-822CHKD. BY ZDSDATE 5-6-81SHEET NO. 6 OF EE

Engineers • Geologists • Planners  
Environmental Specialists

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 205.  | 171.   | 66.     | 32.     | 9646.        |
| CM3        | 6.    | 5.     | 2.      | 1.      | 273.         |
| INCHES     | —     | 1.33   | 2.04    | 2.08    | 2.08         |
| MM         | 31.64 | 51.84  | 52.16   | 52.16   | 52.16        |
| AC-FT      | 85.   | 131.   | 133.    | 133.    | 133.         |
| THOUS CU M | 105.  | 161.   | 164.    | 164.    | 164.         |

## OUTFLOW

HYDROGRAPHS:  
RICKARDS  
DAM

|            | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|------|--------|---------|---------|--------------|
| CFS        | 492. | 362.   | 133.    | 65.     | 1991.        |
| CM3        | 14.  | 10.    | 4.      | 2.      | 552.         |
| INCHES     | —    | 7.01   | 4.12    | 4.20    | 4.20         |
| MM         | —    | 17.37  | 106.77  | 106.61  | 106.61       |
| AC-FT      | 160. | 264.   | 268.    | 268.    | 268.         |
| THOUS CU M | 222. | 325.   | 331.    | 331.    | 331.         |

|            | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|------|--------|---------|---------|--------------|
| CFS        | 162. | 565.   | 201.    | 98.     | 29410.       |
| CM3        | 22.  | 16.    | 6.      | 3.      | 833.         |
| INCHES     | —    | 4.38   | 6.23    | 6.34    | 6.34         |
| MM         | —    | 111.26 | 158.21  | 160.97  | 160.97       |
| AC-FT      | —    | 289.   | 399.    | 405.    | 405.         |
| THOUS CU M | —    | 346.   | 491.    | 500.    | 500.         |

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 1411. | 949.   | 338.    | 165.    | 49531.       |
| CM3        | 40.   | 21.    | 10.     | 5.      | 1403.        |
| INCHES     | —     | 7.51   | 10.58   | 10.67   | 10.67        |
| MM         | —     | 190.04 | 266.31  | 270.91  | 270.91       |
| AC-FT      | —     | 401.   | 671.    | 682.    | 682.         |
| THOUS CU M | —     | 593.   | 827.    | 832.    | 832.         |

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 2977. | 2001.  | 685.    | 334.    | 100379.      |
| CM3        | 84.   | 51.    | 19.     | 9.      | 2840.        |
| INCHES     | —     | 15.51  | 21.23   | 21.59   | 21.59        |
| MM         | —     | 394.01 | 539.28  | 546.47  | 546.47       |
| AC-FT      | —     | 992.   | 1358.   | 1381.   | 1381.        |
| THOUS CU M | —     | 1224.  | 1675.   | 1704.   | 1704.        |

\*\*\*\*\*  
SUB-AREA RUNOFF COMPUTATION  
\*\*\*\*\*

## LOCAL INFIL - LOWER RICKARDS LAKE

| I.R.D | ICMP | IECUN | ITAPE | IVPLT | JPLNT | ISMRN | ISAME | ISAGE | IAUTO |
|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1     | .11  | 0.00  | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

| HYDGC | LONG | AREA | SNAP | TRUDA | TRSPC | RATIO | ISMRN | ISAME | ISAGE |
|-------|------|------|------|-------|-------|-------|-------|-------|-------|
| 1     | .11  | 0.00 | 1.56 | 0.00  | 0.00  | 0.00  | 0     | 0     | 0     |

| SPPE | PAB   | H6     | H12    | H24    | R48  | R72  | H96  |
|------|-------|--------|--------|--------|------|------|------|
| 0.00 | 22.00 | 111.00 | 123.00 | 142.00 | 0.00 | 0.00 | 0.00 |

TRSPC COMPUTED AT THE PROGRAM IS .000

DRAFT STRES D-TDR RTOL ERAN STRCK STRTL LOSS DATA ASMX RTMP O 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

SUBJECT

# DAM SAFETY INSPECTION

## FAWN LAKE DAM

BY

205

DATE

4-10-81

PROJ. NO.

80-238-822

CHKD. BY

DLB

DATE

5-6-81

SHEET NO.

4 OF 44

UNIT HYDROGRAPH DATA  
TPs .39 CPs .45 STA 0

APPROXIMATE CLARK COEFFICIENTS FOR GIVEN UNIT CPS AND TP ARE TCS 2.25 AND RM 3.79 INTERVALS

|                                                  | 5INTS | -1.50 | 0.05 | 0.50 | RMOR= 2.00                  |
|--------------------------------------------------|-------|-------|------|------|-----------------------------|
| UNIT HYDROGRAPH 22 END-UP-PERIOD UNDULATES, LAGS | 61.   | 62.   | 47.  | 36.  | .39 HOURS, CPS .45 VOL 1.00 |
| 10.                                              | 11.   | 6.    | 4.   | 3.   | 20. 21. 16. 11.             |
| 1.                                               | 1.    | 6.    | 4.   | 3.   | 1. 1. 1. 1.                 |

## RECEDITION DATA

5INTS -1.50 CPS .45 RMOR= 2.00

INTERVALS 2.25 AND RM 3.79

UNIT HYDROGRAPH 22 END-UP-PERIOD UNDULATES, LAGS

|                       | 6-HOUR      | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|-----------------------|-------------|---------|---------|--------------|
| SUM                   | 24.99 21.60 | 2.39    | 9600    | 9671         |
| (433.97 874.16 61.31) |             |         | 273.77) | 271.         |

|                       | 6-HOUR      | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|-----------------------|-------------|---------|---------|--------------|
| SUM                   | 24.99 21.60 | 2.39    | 9600    | 9671         |
| (433.97 874.16 61.31) |             |         | 273.77) | 271.         |

|            | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|---------|---------|--------------|
| CFS        | 52.    | 22.     | 7.      | 3.           |
| CMS        | 1.     | 1.      | 0.      | 0.           |
| INCHES     | 1.83   | 2.22    | 2.27    | 2.27         |
| MM         | 46.55  | 56.40   | 57.32   | 57.32        |
| AC-FT      | 11.    | 12.     | 13.     | 13.          |
| THOUS CU M | 13.    | 16.     | 16.     | 16.          |

|            | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|---------|---------|--------------|
| CFS        | 103.   | 43.     | 13.     | 6.           |
| CMS        | 3.     | 1.      | 0.      | 0.           |
| INCHES     | 3.67   | 4.45    | 4.55    | 4.55         |
| MM         | 93.10  | 112.96  | 115.44  | 115.44       |
| AC-FT      | 21.    | 26.     | 27.     | 27.          |
| THOUS CU M | 27.    | 32.     | 33.     | 33.          |

|            | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|---------|---------|--------------|
| CFS        | 155.   | 65.     | 20.     | 10.          |
| CMS        | 4.     | 2.      | 1.      | 0.           |
| INCHES     | 5.58   | 4.67    | 6.82    | 6.82         |
| MM         | 130.65 | 149.43  | 173.17  | 173.17       |
| AC-FT      | 32.    | 39.     | 40.     | 40.          |
| THOUS CU M | 40.    | 46.     | 49.     | 49.          |

|            | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|---------|---------|--------------|
| CFS        | 257.   | 100.    | 33.     | 16.          |
| CMS        | 7.     | 3.      | 1.      | 0.           |
| INCHES     | 9.16   | 11.12   | 11.36   | 11.36        |
| MM         | 232.75 | 287.39  | 288.61  | 288.61       |
| AC-FT      | 59.    | 65.     | 67.     | 67.          |
| THOUS CU M | 66.    | 80.     | 82.     | 82.          |

|            | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|---------|---------|--------------|
| CFS        | 517.   | 217.    | 66.     | 32.          |
| CMS        | 15.    | 6.      | 2.      | 1.           |
| INCHES     | 18.33  | 22.24   | 22.73   | 22.73        |
| MM         | 455.49 | 564.78  | 577.22  | 577.22       |
| AC-FT      | 107.   | 120.    | 133.    | 133.         |
| THOUS CU M | 133.   | 161.    | 164.    | 164.         |

## LOCAL INFLOW - LOWER RICKARDS DAM

|            | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|---------|---------|--------------|
| CFS        | 103.   | 43.     | 13.     | 6.           |
| CMS        | 3.     | 1.      | 0.      | 0.           |
| INCHES     | 3.67   | 4.45    | 4.55    | 4.55         |
| MM         | 93.10  | 112.96  | 115.44  | 115.44       |
| AC-FT      | 21.    | 26.     | 27.     | 27.          |
| THOUS CU M | 27.    | 32.     | 33.     | 33.          |

|            | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|---------|---------|--------------|
| CFS        | 155.   | 65.     | 20.     | 10.          |
| CMS        | 4.     | 2.      | 1.      | 0.           |
| INCHES     | 5.58   | 4.67    | 6.82    | 6.82         |
| MM         | 130.65 | 149.43  | 173.17  | 173.17       |
| AC-FT      | 32.    | 39.     | 40.     | 40.          |
| THOUS CU M | 40.    | 46.     | 49.     | 49.          |

|            | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|---------|---------|--------------|
| CFS        | 257.   | 100.    | 33.     | 16.          |
| CMS        | 7.     | 3.      | 1.      | 0.           |
| INCHES     | 9.16   | 11.12   | 11.36   | 11.36        |
| MM         | 232.75 | 287.39  | 288.61  | 288.61       |
| AC-FT      | 59.    | 65.     | 67.     | 67.          |
| THOUS CU M | 66.    | 80.     | 82.     | 82.          |

|            | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|---------|---------|--------------|
| CFS        | 517.   | 217.    | 66.     | 32.          |
| CMS        | 15.    | 6.      | 2.      | 1.           |
| INCHES     | 18.33  | 22.24   | 22.73   | 22.73        |
| MM         | 455.49 | 564.78  | 577.22  | 577.22       |
| AC-FT      | 107.   | 120.    | 133.    | 133.         |
| THOUS CU M | 133.   | 161.    | 164.    | 164.         |

PMF

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY RJS DATE 5-6-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-6-81 SHEET NO. I OF EE



CUMULATIVE RICKARDS DAM OUTFLOW & LOWER RICKARDS LAKE INFLOW

| INFLATE | ICOMP | TECON | ITAPE | JPLT | JPT | INAME | ISAGE | LAUTO |
|---------|-------|-------|-------|------|-----|-------|-------|-------|
| LNLD    | 2     | 0     | 0     | 0    | 0   | 0     | 1     | 0     |

| CF8        | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CRS        | 214.  | 182.   | 77.     | 35.     | 1063.        |
| INCHES     | 6.    | 5.     | 2.      | 1.      | 301.         |
| NN         | 1.29  | 2.06   | 2.09    | 2.09    | 2.09         |
| AC-FT      | 32.89 | 52.23  | 53.17   | 53.17   | 53.17        |
| THOUS CU M | 90.   | 144.   | 146.    | 146.    | 146.         |
| AC-FT      | 112.  | 177.   | 180.    | 180.    | 180.         |

**SUM OF RICKARDS  
DAM OUTFLOW  
AND LOWER  
RICKARDS DAM  
LOCAL INFLOW.**

| CF8        | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CRS        | 513.  | 390.   | 146.    | 71.     | 2142.        |
| INCHES     | 15.   | 11.    | 4.      | 2.      | 607.         |
| NN         | 2.77  | 6.15   | 4.23    | 4.23    | 4.23         |
| AC-FT      | 70.30 | 105.45 | 107.35  | 107.35  | 107.35       |
| THOUS CU M | 193.  | 290.   | 295.    | 295.    | 295.         |
| AC-FT      | 238.  | 358.   | 364.    | 364.    | 364.         |

| CF8        | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CRS        | 813.   | 609.   | 221.    | 106.    | 3232.        |
| INCHES     | 23.    | 17.    | 6.      | 3.      | 916.         |
| NN         | 4.32   | 6.77   | 6.38    | 6.38    | 6.38         |
| AC-FT      | 109.82 | 159.15 | 161.99  | 161.99  | 161.99       |
| THOUS CU M | 302.   | 418.   | 445.    | 445.    | 445.         |
| AC-FT      | 312.   | 540.   | 549.    | 549.    | 549.         |

| CF8        | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CRS        | 1516.  | 1040.  | 371.    | 161.    | 54368.       |
| INCHES     | 43.    | 30.    | 11.     | 5.      | 1540.        |
| NN         | 7.44   | 10.54  | 10.72   | 10.72   | 10.72        |
| AC-FT      | 169.95 | 267.46 | 272.39  | 272.39  | 272.39       |
| THOUS CU M | 520.   | 736.   | 749.    | 749.    | 749.         |
| AC-FT      | 641.   | 908.   | 924.    | 924.    | 924.         |

0.20PMF

| CF8        | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CRS        | 813.   | 609.   | 221.    | 106.    | 3232.        |
| INCHES     | 23.    | 17.    | 6.      | 3.      | 916.         |
| NN         | 4.32   | 6.77   | 6.38    | 6.38    | 6.38         |
| AC-FT      | 109.82 | 159.15 | 161.99  | 161.99  | 161.99       |
| THOUS CU M | 302.   | 418.   | 445.    | 445.    | 445.         |
| AC-FT      | 312.   | 540.   | 549.    | 549.    | 549.         |

| CF8        | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CRS        | 813.   | 609.   | 221.    | 106.    | 3232.        |
| INCHES     | 23.    | 17.    | 6.      | 3.      | 916.         |
| NN         | 4.32   | 6.77   | 6.38    | 6.38    | 6.38         |
| AC-FT      | 109.82 | 159.15 | 161.99  | 161.99  | 161.99       |
| THOUS CU M | 302.   | 418.   | 445.    | 445.    | 445.         |
| AC-FT      | 312.   | 540.   | 549.    | 549.    | 549.         |

| CF8        | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CRS        | 813.   | 609.   | 221.    | 106.    | 3232.        |
| INCHES     | 23.    | 17.    | 6.      | 3.      | 916.         |
| NN         | 4.32   | 6.77   | 6.38    | 6.38    | 6.38         |
| AC-FT      | 109.82 | 159.15 | 161.99  | 161.99  | 161.99       |
| THOUS CU M | 302.   | 418.   | 445.    | 445.    | 445.         |
| AC-FT      | 312.   | 540.   | 549.    | 549.    | 549.         |

| CF8        | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CRS        | 813.   | 609.   | 221.    | 106.    | 3232.        |
| INCHES     | 23.    | 17.    | 6.      | 3.      | 916.         |
| NN         | 4.32   | 6.77   | 6.38    | 6.38    | 6.38         |
| AC-FT      | 109.82 | 159.15 | 161.99  | 161.99  | 161.99       |
| THOUS CU M | 302.   | 418.   | 445.    | 445.    | 445.         |
| AC-FT      | 312.   | 540.   | 549.    | 549.    | 549.         |

**ROUTE TOTAL HYDROGRAPH THROUGH LOWER RICKARDS LAKE DAM**

| ROUTE | ICOMP | TECON | ITAPE | JPLT  | JPT   | INAME  | ISAGE | LAUTO |
|-------|-------|-------|-------|-------|-------|--------|-------|-------|
| LNLD  | 1     | 0     | 0     | 0     | 0     | 0      | 1     | 0     |
| 0.0   | 0.000 | 0.00  | 1     | 1     | 1     | 1      | 0     | 0     |
| NS1PA | NETOL | LAG   | ANSK  | TSK   | IPMP  | LSTR   | ---   | ---   |
| 1     | 0     | 0     | 0.000 | 0.000 | 0.000 | -1070. | 0     | 0     |

HYDROGRAPH ROUTING

SUBJECT DAM SAFETY INSPECTION

FAWN LAKE DAM

BY ZJS DATE 5-6-81 PROJ. NO. 80-238-822

CHKD. BY D.L.A. DATE 5-6-81 SHEET NO. J OF EE



CONSULTANTS, INC.  
Engineers • Geologists • Planners  
Environmental Specialists

SURFACE AREA 0. 15. 17. 29.  
CAPACITY 0. 75. 103. 293.  
ELEVATIONS 1055. 1070. 1072. 1080.  
CFS 1030.0 35.0 2.7 1.9 0.0 0.0 0.0  
INCHES 30.98 1.22 1.89 1.91 1.91 1.91 0.91  
MM 66.45 46.08 46.56 46.56 46.56 46.56 21.29  
AC-FT 105. 105. 105. 105. 105. 105. 105.  
THOUS CU M 163. 163. 163. 163. 163. 163. 163.

|            | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|------|--------|---------|---------|--------------|
| CFS        | 190. | 172.   | 67.     | 32.     | 9693.        |
| CFS        | 6.   | 5.     | 2.      | 1.      | 274.         |
| INCHES     |      |        |         |         |              |
| MM         |      |        |         |         |              |
| AC-FT      |      |        |         |         |              |
| THOUS CU M |      |        |         |         |              |

OUTFLOW HYDROGRAPHS  
LOWER RICKARDS DAM

|            | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|------|--------|---------|---------|--------------|
| CFS        | 510. | 380.   | 130.    | 67.     | 20165.       |
| CFS        | 14.  | 11.    | 4.      | 2.      | 311.         |
| INCHES     |      |        |         |         |              |
| MM         |      |        |         |         |              |
| AC-FT      |      |        |         |         |              |
| THOUS CU M |      |        |         |         |              |

|            | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|------|--------|---------|---------|--------------|
| CFS        | 601. | 605.   | 212.    | 103.    | 30831.       |
| CFS        | 23.  | 17.    | 6.      | 3.      | 873.         |
| INCHES     |      |        |         |         |              |
| MM         |      |        |         |         |              |
| AC-FT      |      |        |         |         |              |
| THOUS CU M |      |        |         |         |              |

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 1863. | 1048.  | 361.    | 175.    | 52589.       |
| CFS        | 43.   | 30.    | 10.     | 5.      | 1489.        |
| INCHES     |       |        |         |         |              |
| MM         |       |        |         |         |              |
| AC-FT      |       |        |         |         |              |
| THOUS CU M |       |        |         |         |              |

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 3221. | 2173.  | 739.    | 360.    | 107935.      |
| CFS        | 91.   | 62.    | 21.     | 10.     | 3056.        |
| INCHES     |       |        |         |         |              |
| MM         |       |        |         |         |              |
| AC-FT      |       |        |         |         |              |
| THOUS CU M |       |        |         |         |              |

PMF

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM

BY DS DATE 5-6-81 PROJ. NO. 80-238-822

CHKD. BY DLB DATE 5-6-81 SHEET NO. K OF EE



**SUB-AREA RUNOFF COMPUTATION**

**LOCAL INFLOW- LITTLE FAWN LAKE**

| INFLOW | ICOMP | IECON | ITAPE | JPAT | INAME | ISTAGE | IAUTO |
|--------|-------|-------|-------|------|-------|--------|-------|
| 1      | 0     | 0     | 0     | 0    | 0     | 0      | 0     |

**UNIT HYDROGRAPH DATA**

| INFLOW | ISMAP | TANEA | TRADP | RATIO | ISMAP | NAME | LOCAL |
|--------|-------|-------|-------|-------|-------|------|-------|
| 1      | 0.00  | 0.00  | 1.50  | 0.00  | 0.000 | 0    | 0     |
|        |       |       |       |       |       | 1    | 0     |

| SPFE | PMS   | R6     | R12    | R24    | R48    | R72  | R96  |
|------|-------|--------|--------|--------|--------|------|------|
| 0.00 | 72.00 | 111.00 | 121.00 | 131.00 | 142.00 | 0.00 | 0.00 |

TRSPC COMPUTED BY THE PROGRAM IS .600

| LADPT | STRK | ULTRKA | RATIO | LAGS | LOSS DATA | STNS | ATIM | CMSTL | ALSMX | RTIMP |
|-------|------|--------|-------|------|-----------|------|------|-------|-------|-------|
| 0     | 0.00 | 0.00   | 1.00  | 0.00 | 0.00      | 1.00 | 1.00 | .05   | 0.00  | 0.00  |

**UNIT HYDROGRAPH DATA**

| TPs | CPr | RTAs | RTIMF |
|-----|-----|------|-------|
| .60 | .45 | 0    | 0     |

**RECSSION DATA**

| SINT0      | -1.50 | QRCNs | -0.05 | RTAs | 2.00 |
|------------|-------|-------|-------|------|------|
| SINT0      | -1.50 | QRCNs | -0.05 | RTAs | 2.00 |
| SINTERVALS |       |       |       |      |      |
| 7.         | 21.   | 51.   | 69.   | 71.  | 61.  |
| 29.        | 25.   | 21.   | 16.   | 15.  | 13.  |
| 6.         | 5.    | 4.    | 4.    | 3.   | 3.   |
| 1.         | 1.    | 1.    | 1.    | 1.   | 1.   |

**APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SWIDER CP AND TP ARE TCS 4.46 AND RS 6.37 INTERVALS**

| UNIT HYDROGRAPH 37 END-OF-PERIOD ORDINATES, LAGS | .60 HOURS, CPr = .45 | VOLn = 1.00 |
|--------------------------------------------------|----------------------|-------------|
| 7.                                               | 34.                  |             |
| 21.                                              | 39.                  |             |
| 25.                                              | 30.                  |             |
| 51.                                              | 30.                  |             |
| 69.                                              | 34.                  |             |
| 16.                                              | 11.                  |             |
| 15.                                              | 10.                  |             |
| 4.                                               | 8.                   |             |
| 3.                                               | 2.                   |             |
| 1.                                               | 1.                   |             |

**RAIN EXCS LOSS COMP D**

| BUN      | 24.99  | 27.60 | 2.39      | 14835. |
|----------|--------|-------|-----------|--------|
| ( 635.31 | 574.31 | 61.31 | ( 420.08) |        |

| PEAK        | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|-------------|--------|---------|---------|--------------|
| CFS         | 60.    | 32.     | 10.     | 1483.        |
| CMS         | 2.     | 1.      | 0.      | 42.          |
| INCHES      |        |         |         |              |
| MM          | 1.76   | 2.21    | 2.25    | 2.35         |
| AC-FT       | 77.58  | 52.0    | 57.26   | 57.26        |
| THOUS CU FT | 16.    | 40.     | 40.     | 40.          |
| THOUS CU M  | 20.    | 25.     | 25.     | 25.          |

**LOCAL INFLOW -**

**LITTLE FAWN**

**LAKE DAM.**

| PEAK        | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|-------------|--------|---------|---------|--------------|
| CFS         | 121.   | 64.     | 20.     | 2966.        |
| CMS         | 3.     | 1.      | 0.      | 64.          |
| INCHES      |        |         |         |              |
| MM          | 3.51   | 4.42    | 4.51    | 4.51         |
| AC-FT       | 99.16  | 112.20  | 114.51  | 114.51       |
| THOUS CU FT | 37.    | 40.     | 41.     | 41.          |
| THOUS CU M  | 39.    | 49.     | 50.     | 50.          |

0.10PMF

0.20PMF

SUBJECT DAM SAFETY INSPECTION  
ON LAKE DAM  
BY DIS DATE 6-6-81 PROJ. NO. 80-238-822  
CND. BY DIS DATE 6-6-81 SHEET NO. 6 OF EE



|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 161.   | 96.    | 30.     | 15.     | 4469.        |
| CMS        | 5.     | 3.     | 1.      | 0.      | 126.         |
| INCHES     | 5.27   | 5.27   | 6.63    | 6.76    | 6.76         |
| MM         | 133.75 | 168.50 | 171.77  | 171.77  | 171.77       |
| AC-FT      | 46.    | 60.    | 61.     | 61.     | 61.          |
| THOUS CU M | 59.    | 74.    | 76.     | 76.     | 76.          |

0.30PMF

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 302.   | 160.   | 50.     | 25.     | 7115.        |
| CMS        | 9.     | 5.     | 1.      | 1.      | 216.         |
| INCHES     | 8.76   | 11.04  | 11.27   | 11.27   | 11.27        |
| MM         | 222.91 | 266.49 | 266.28  | 266.28  | 266.28       |
| AC-FT      | 80.    | 100.   | 102.    | 102.    | 102.         |
| THOUS CU M | 90.    | 123.   | 126.    | 126.    | 126.         |

0.50PMF

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 604.   | 321.   | 161.    | 49.     | 14830.       |
| CMS        | 17.    | 9.     | 1.      | 1.      | 626.         |
| INCHES     | 17.56  | 22.09  | 22.54   | 22.54   | 22.54        |
| MM         | 465.83 | 560.99 | 572.51  | 572.51  | 572.51       |
| AC-FT      | 159.   | 200.   | 205.    | 204.    | 204.         |
| THOUS CU M | 196.   | 247.   | 252.    | 252.    | 252.         |

PMF

**COMBINE HYDROGRAPHS**  
**COMBINE LOWER RICKARDS LAKE DAN OUTFLOW W/ LITTLE FAWN LAKE INFLOW**

| INSTAG | ICUMP | LECON | ITAPE | JPIAF | JPAF | INAME | ISTAGE | IAUTO |
|--------|-------|-------|-------|-------|------|-------|--------|-------|
| LFD    | 2     | 0     | 0     | 0     | 0    | 0     | 0      | 0     |

|            | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|------|--------|---------|---------|--------------|
| CFS        | 200. | 107.   | 57.     | 37.     | 11176.       |
| CMS        | 6.   | 5.     | 2.      | 1.      | 316.         |
| INCHES     | —    | —      | —       | —       | —            |
| MM         | —    | —      | —       | —       | —            |
| AC-FT      | —    | —      | —       | —       | —            |
| THOUS CU M | —    | —      | —       | —       | —            |

0.10PMF

|            | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|------|--------|---------|---------|--------------|
| CFS        | 908. | 639.   | 207.    | 116.    | 3286.        |
| CMS        | 26.  | 19.    | 7.      | 3.      | 99.          |
| INCHES     | —    | —      | —       | —       | —            |
| MM         | —    | —      | —       | —       | —            |
| AC-FT      | —    | —      | —       | —       | —            |
| THOUS CU M | —    | —      | —       | —       | —            |

0.20PMF

|            | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|------|--------|---------|---------|--------------|
| CFS        | 908. | 639.   | 207.    | 116.    | 3286.        |
| CMS        | 26.  | 19.    | 7.      | 3.      | 99.          |
| INCHES     | —    | —      | —       | —       | —            |
| MM         | —    | —      | —       | —       | —            |
| AC-FT      | —    | —      | —       | —       | —            |
| THOUS CU M | —    | —      | —       | —       | —            |

0.30PMF

SUM OF LOWER  
RICKARDS DAM  
OUTFLOW AND  
LITTLE FAWN  
LAKE INFLOW.

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM

BY DJS DATE 5-6-81 PROJ. NO. 80-238-822

CHKD. BY DLB DATE 5-6-81 SHEET NO. M OF EE



Engineers • Geologists • Planners  
Environmental Specialists

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 1712.  | 1183.  | 411.    | 200.    | 6004.        |
| CMS        | 40.    | 33.    | 12.     | 6.      | 1699.        |
| INCHES     |        |        |         |         | 10.48        |
| MM         | 7.43   | 10.13  | 10.48   | 10.48   | 266.10       |
| MM         | 109.42 | 262.48 | 266.10  | 266.10  | 266.10       |
| AC-FT      | 586.   | 815.   | 821.    | 821.    | 827.         |
| THOUS CU M | 723.   | 1006.  | 1019.   | 1019.   | 1019.        |

O.50 PMF

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 1666.  | 2442.  | 940.    | 409.    | 12216.       |
| CMS        | 104.   | 70.    | 24.     | 12.     | 376.         |
| INCHES     |        |        |         |         | 21.43        |
| MM         | 15.47  | 21.13  | 21.13   | 21.13   | 544.43       |
| MM         | 193.01 | 536.46 | 544.43  | 544.43  | 544.43       |
| AC-FT      | 1221.  | 1657.  | 1671.   | 1671.   | 1671.        |
| THOUS CU M | 1506.  | 3056.  | 3086.   | 3086.   | 3086.        |
| *****      | *****  | *****  | *****   | *****   | *****        |

PMF

#### HYDROGRAPH ROUTING

ROUTE TOTAL HYDROGRAPH THROUGH LITTLE FAWN LAKE DAM

| STAGE | ICUMP | ICUMP | ICUMW          | JPTM  | JPLT | JPTP | INAME | ISTAGE | IAUTO |
|-------|-------|-------|----------------|-------|------|------|-------|--------|-------|
| LFLD  | 0     | 0     | 0              | 0     | 0    | 0    | 0     | 0      | 0     |
| OLDES | CLSSS | Avg   | ADJUSTING DATA | ISAME | IPMP | IPMP | LSTN  | 0      | 0     |
| 0.0   | 0.000 | 0.06  | 0.000          | 1     | 0    | 0    | 0     | 0      | 0     |

| WTSP         | WTSDL   | LAG     | ANSW    | TSK     | STOMA   | ISPRAT  |      |  |  |
|--------------|---------|---------|---------|---------|---------|---------|------|--|--|
| 1            | 0       | 0       | 0.000   | 0.000   | -3010.  | -1      |      |  |  |
| STAGE        | 1010.00 | 1010.70 | 1011.40 | 1012.10 | 1012.40 | 1013.00 |      |  |  |
| FLOW         | 0.00    | 200.00  | 50.00   | 100.00  | 130.00  | 190.00  |      |  |  |
| SURFACE AREA | 0.      | 3.      | 4.      | 7.      |         |         |      |  |  |
| CAPACITY     | 0.      | 6.      | 13.     | 50.     |         |         |      |  |  |
| ELEVATION    | 1003.   | 1010.   | 1012.   | 1020.   |         |         |      |  |  |
| CREL         | SPWID   | CWID    | EPWID   | ELEV    | COAL    | CAREA   | EXPL |  |  |
| 1010.0       | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0  |  |  |

| TOPC                  | CCWD   | EXPD   | DAMID  | DAM DATA |
|-----------------------|--------|--------|--------|----------|
| 1012.4                | 0.0    | 0.0    | 0.0    | 0.0      |
| CHEST LENGTH          | 10.    | 50.    | 90.    | 210.     |
| AT OR BELOW ELEVATION | 1012.4 | 1012.7 | 1013.0 | 1013.2   |
| THOUS CU M            | 1010.0 | 1010.7 | 1011.4 | 1012.1   |

1013.4 0.0 0.0 0.0 0.0

1014.0 1014.0 1014.0 1014.0 1014.0

1015.0 1015.0 1015.0 1015.0 1015.0

1016.0 1016.0 1016.0 1016.0 1016.0

1017.4 36. 36. 36. 10174.

1 1 1 306.

1.88 1.88 1.88 1.88

47.87 47.87 47.87 47.87

149. 149. 149. 149.

103. 103. 103. 103.

183. 183. 183. 183.

0.10 PMF

|            | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|------|--------|---------|---------|--------------|
| CFS        | 207. | 186.   | 74.     | 36.     | 10794.       |
| CMS        | 6.   | 5.     | 2.      | 1.      | 306.         |
| INCHES     |      | 1.17   | 1.87    | 1.88    | 1.88         |
| MM         |      | 29.77  | 47.38   | 47.38   | 47.38        |
| AC-FT      |      | 92.    | 147.    | 149.    | 149.         |
| THOUS CU M |      | 114.   | 162.    | 103.    | 183.         |

0.20 PMF

LITTLE FAWN LAKE  
DAM OUTFLOW  
HYDROGRAPHS

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 5-6-81 PROJ. NO. 80-238-822  
CHKD. BY DGB DATE 5-6-81 SHEET NO. N OF EE



|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |          |
|------------|--------|--------|---------|---------|--------------|----------|
| CFS        | 908.   | 679.   | 238.    | 116.    | 34723.       |          |
| CMS        | 26.    | 19.    | 7.      | 3.      | 983.         |          |
| INCHES     |        | 4.27   | 5.99    | 6.06    | 6.06         |          |
| MM         | 100.47 | 152.21 | 153.99  | 153.99  | 153.99       | O.30 PMF |
| AC-FY      | 337.   | 473.   | 478.    | 478.    |              |          |
| THOUS CU M | 416.   | 583.   | 590.    | 590.    | 590.         |          |

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |          |
|------------|--------|--------|---------|---------|--------------|----------|
| CFS        | 1713.  | 1193.  | 407.    | 198.    | 39386.       |          |
| CMS        | 48.    | 33.    | 12.     | 6.      | 1682.        |          |
| INCHES     |        | 7.43   | 10.24   | 10.37   | 10.37        |          |
| MM         | 180.85 | 240.18 | 243.36  | 243.36  | 243.36       |          |
| AC-FY      | 507.   | 808.   | 816.    | 816.    | 816.         |          |
| THOUS CU M | 724.   | 997.   | 1009.   | 1009.   | 1009.        | O.50 PMF |

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |     |
|------------|--------|--------|---------|---------|--------------|-----|
| CFS        | 3668.  | 2462.  | 937.    | 407.    | 122097.      |     |
| CMS        | 104.   | 70.    | 24.     | 12.     | 3457.        |     |
| INCHES     |        | 11.47  | 21.04   | 21.32   | 21.32        | PMF |
| MM         | 393.00 | 534.44 | 541.42  | 541.42  | 541.42       |     |
| AC-FY      | 1221.  | 1660.  | 1662.   | 1662.   | 1662.        |     |
| THOUS CU M | 1506.  | 2048.  | 2074.   | 2074.   | 2074.        |     |

| SUB-AREA RUNOFF COMPUTATION |       |        |        |        |        |        |
|-----------------------------|-------|--------|--------|--------|--------|--------|
| LOCAL INFLOW - FAWN LAKE    |       |        |        |        |        |        |
| ISIAQ                       | ICOMP | ICUNO  | ITAPE  | JPT    | JNAME  | ISTAGE |
| FLO                         | 0     | 0      | 0      | 0      | 0      | 0      |
|                             |       |        |        |        |        |        |
| HYDROGRAPH DATA             |       |        |        |        |        |        |
| INHOG                       | INTC  | TAREA  | SWAP   | TRACB  | RATIO  | ISNUM  |
| 1                           | .10   | 0.00   | 1.38   | 0.00   | 0.000  | 0      |
|                             |       |        |        |        |        |        |
| PRECIP DATA                 |       |        |        |        |        |        |
| SPRE                        | PMS   | R6     | R12    | R24    | R48    | R72    |
| 0.00                        | 72.00 | 111.00 | 123.00 | 133.00 | 142.00 | 0.00   |
|                             |       |        |        |        |        |        |

TRSPC COMPUTED BY THE PROGRAM IS .600

| LADPFT | STMRK | DLTRK | RTOL | ERAIN | SIMR | SRTRK | CMRSP | ALSKX | RTIMP |
|--------|-------|-------|------|-------|------|-------|-------|-------|-------|
| 0      | 0.00  | 0.00  | 1.00 | 0.00  | 0.00 | 1.00  | 1.00  | 0.00  | 0.00  |
|        |       |       |      |       |      |       |       |       |       |

UNIT HYDROGRAPH DATA

TP= .62 CPS = .45 RTAD= 0

RECSSION DATA

STRDS = -1.50 QCSNN = 4.05 RTTRS 2.00

APPROPRIATE CLARK COEFFICIENTS FROM GIVEN SNYER CP AND TP ARE TC= 3.01 AND RA 6.01 INTERVALS

|     | UNIT HYDROGRAPH 34 END-UP-PERIOD ORDINATES. ILAGS |     |     |     |     |     |
|-----|---------------------------------------------------|-----|-----|-----|-----|-----|
| 6.  | 21.                                               | 37. | 45. | 43. | 36. | 31. |
| 16. | 11.                                               | 11. | 10. | 9.  | 7.  | 6.  |
| 1.  | 1.                                                | 1.  | 2.  | 2.  | 1.  | 1.  |
|     | 0.                                                | 0.  | 0.  | 0.  | 0.  | 0.  |

MAIN EXCS LSSS CUMP 0

SUM 24.99 22.60 2.39 8717.  
( 635.1( 574.)( 61.)( 46.84)

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 5-6-81 PROJ. NO. 80-238-822  
CHKD. BY DLG DATE 5-6-81 SHEET NO. 0 OF EE



Engineers • Geologists • Planners  
Environmental Specialists

LOCAL INFLOW -  
FAWN LAKE.

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |          |
|------------|-------|--------|---------|---------|--------------|----------|
| CFS        | 37.   | 19.    | 6.      | 3.      | 973.         | O.10 PMF |
| CMS        | 1.    | 1.     | 0.      | 0.      | 25.          |          |
| INCHES     | 1.77  | 2.21   | 2.26    | 2.26    | 2.26         |          |
| MM         | 44.67 | 56.12  | 51.29   | 51.29   | 51.29        |          |
| AC-FT      |       | 9.     | 12.     | 12.     | 12.          |          |
| THOUS CU M | 12.   | 15.    | 15.     | 15.     | 15.          |          |

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 74.   | 38.    | 12.     | 6.      | 1746.        |
| CMS        | 21.   | 1.     | 0.      | 0.      | 49.          |
| INCHES     | 3.53  | 4.42   | 4.51    | 4.51    | 4.51         |
| MM         | 89.74 | 112.23 | 114.37  | 114.37  | 114.37       |
| AC-FT      | 19.   | 24.    | 24.     | 24.     | 24.          |
| THOUS CU M | 23.   | 29.    | 30.     | 30.     | 30.          |

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 111.   | 57.    | 16.     | 9.      | 2619.        |
| CMS        | 3.     | 2.     | 1.      | 0.      | 74.          |
| INCHES     | 5.30   | 6.63   | 6.77    | 6.77    | 6.77         |
| MM         | 134.61 | 168.35 | 171.66  | 171.66  | 171.66       |
| AC-FT      | 26.    | 35.    | 36.     | 36.     | 36.          |
| THOUS CU M | 35.    | 44.    | 44.     | 44.     | 44.          |

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 185.   | 95.    | 30.     | 15.     | 4364.        |
| CMS        | 5.     | 3.     | 1.      | 0.      | 124.         |
| INCHES     | 6.13   | 11.05  | 11.29   | 11.29   | 11.29        |
| MM         | 224.35 | 280.58 | 286.44  | 286.44  | 286.44       |
| AC-FT      | 4.     | 59.    | 60.     | 60.     | 60.          |
| THOUS CU M | 58.    | 73.    | 74.     | 74.     | 74.          |

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 370.   | 150.   | 59.     | 26.     | 8724.        |
| CMS        | 10.    | 5.     | 2.      | 1.      | 247.         |
| INCHES     | 17.67  | 22.09  | 22.55   | 22.55   | 22.55        |
| MM         | 448.70 | 561.15 | 571.87  | 571.87  | 571.87       |
| AC-FT      |        | 94.    | 118.    | 120.    | 120.         |
| THOUS CU M | 116.   | 145.   | 148.    | 148.    | 148.         |

\*\*\*\*\*  
COMBINE HYDROGRAPHS  
\*\*\*\*\*

COMBINE LITTLE FAWN LAKE DAM OUTFLOW W/ FAWN LAKE INFLOW

| FLD | 1STAD | ICUMP | LECON | ITAPE | JPLT | JPAT | INAME | ISAGE | IAUTO |
|-----|-------|-------|-------|-------|------|------|-------|-------|-------|
| 2   | 0     | 0     | 0     | 0     | 0    | 0    | 1     | 0     | 0     |

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 217.  | 196.   | 80.     | 39.     | 11667.       |
| CMS        | 6.    | 6.     | 2.      | 1.      | 330.         |
| INCHES     | 1.15  | 1.89   | 1.91    | 1.91    | 1.91         |
| MM         | 29.32 | 47.93  | 48.46   | 48.46   | 48.46        |
| AC-FT      | 97.   | 154.   | 161.    | 161.    | 161.         |
| THOUS CU M | 120.  | 196.   | 198.    | 198.    | 198.         |

SUM OF LITTLE FAWN  
LAKE OUTFLOW AND  
FAWN LAKE INFLOW

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 609.  | 451.   | 167.    | 81.     | 24367.       |
| CMS        | 17.   | 13.    | 5.      | 2.      | 690.         |
| INCHES     | 2.66  | 3.04   | 3.09    | 3.09    | 3.09         |
| MM         | 67.51 | 100.31 | 101.22  | 101.22  | 101.22       |
| AC-FT      | 224.  | 332.   | 336.    | 336.    | 336.         |
| THOUS CU M | 409.  | 409.   | 414.    | 414.    | 414.         |

O.20PMF

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 5-6-81 PROJ. NO. 80-238-822  
CHKD. BY DLG DATE 5-6-81 SHEET NO. P OF EE



**Engineers • Geologists • Planners  
Environmental Specialists**

**O.30 PMF**

| 0.50 P.M.F |       |        |         |
|------------|-------|--------|---------|
|            | PEAK  | 6-HOUR | 24-HOUR |
| CFS        | 1026. | 1263.  | 437.    |
| CMH        | 52.   | 36.    | —       |
| INCHES     |       |        |         |
| MM         |       |        |         |
| AC-FP      | —     | —      | —       |
| THAWS CU M | —     | —      | —       |

四

| INCHES | MM     | INCHES | MM     | INCHES | MM     |
|--------|--------|--------|--------|--------|--------|
| 15.49  | 393.55 | 15.49  | 393.55 | 21.41  | 538.11 |
| 1305.  | 3310.  | 1305.  | 3310.  | 1774.  | 4499.  |
| 1610.  | 4086.  | 1610.  | 4086.  | 2193.  | 5562.  |
|        |        |        |        | 2220.  | 5630.  |
|        |        |        |        | 2221.  | 5631.  |

**ROUTE TOTAL HYDROGRAPH THROUGH FAWN LAKE DAM.**  
**HYDROGRAPH INPUTS**

|              | STAO    | ICUMN   | ICLMIN       | ITAPE   | JPHU     | JPMW   | INAPT  | ISLAGT. | LAIU    |
|--------------|---------|---------|--------------|---------|----------|--------|--------|---------|---------|
|              | FLD     | 6       | 0            | 0       | 0        | 0      | 1      | 0       | 0       |
| LOSS         | CLSS    | Avg     | ROUTING DATA |         |          |        |        |         |         |
| 0.0          | 0.000   | 0.00    | INES ISAME   | 1UP1    | IPMP     |        |        | LSRN    |         |
|              |         |         | 1            | 0       | 0        |        |        | 0       |         |
| MSTPS        | MSTOL   | LAG     | AMSKK        | X       | TSK      | STORA  | ISPRAT |         |         |
| 1            | 0       | 0       | 0.000        | 0.000   | 0.000    | -997.  | -1     |         |         |
| STAGE        | 997.00  | 997.70  | 998.30       | 999.00  | 999.60   | 999.70 | 999.90 | 1000.10 | 1000.20 |
|              | 1000.70 | 1001.00 | 1001.50      | 1002.00 | 1003.00  |        |        |         |         |
| FLOW         | 0.00    | 30.00   | 90.00        | 200.00  | 370.00   | 390.00 | 470.00 | 580.00  | 660.00  |
|              | 1630.00 | 2610.00 | 4610.00      | 7210.00 | 13000.00 |        |        |         |         |
| SURFACE AREA | 0.      | 7.      | 11.          | 11.     | 20.      |        |        |         |         |
| CAPACITY     | 0.      | 44.     | 68.          | 71.     | 377.     |        |        |         |         |
| ELEVATION    | 978.    | 997.    | 1000.        | 1000.   | 1020.    |        |        |         |         |
|              |         |         |              |         |          |        |        |         |         |
| CREL         | SPWID   | CODW    | EXPW         | FLEVEL  | CWUL     | CAREA  | EXPL   |         |         |
|              | 997.0   | 0.0     | 0.0          | 0.0     | 0.0      | 0.0    | 0.0    |         |         |
| DAM DATA     | COOD    | EPD     | DAMID        |         |          |        |        |         |         |
|              | COOD    | COOD    | COOD         |         |          |        |        |         |         |
| TOPEL        | COOD    | COOD    | COOD         |         |          |        |        |         |         |

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJT DATE 5-6-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-6-81 SHEET NO. Q OF EE



|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 213.  | 192.   | 175.    | 16.     | 109.         |
| CMS        | 6.    | 5.     | 2.      | 1.      | 309.         |
| INCHES     | 1.13  | 1.13   | 1.77    | 1.78    | 1.78         |
| MM         | 28.76 | 28.76  | 44.90   | 45.30   | 45.30        |
| AC-FT      | 99.   | 99.    | 149.    | 150.    | 150.         |
| THOUS CU M | 116.  | 116.   | 164.    | 165.    | 165.         |

FAWN LAKE  
DAM OUTFLOW  
HYDROGRAPHS

|            | PEAK  | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|-------|--------|---------|---------|--------------|
| CFS        | 605.  | 446.   | 161.    | 76.     | 23406.       |
| CMS        | 17.   | 13.    | 5.      | 2.      | 663.         |
| INCHES     | 2.63  | 2.63   | 3.79    | 3.83    | 3.83         |
| MM         | 66.73 | 66.73  | 96.33   | 97.23   | 97.23        |
| AC-FT      | 221.  | 221.   | 319.    | 322.    | 322.         |
| THOUS CU M | 273.  | 273.   | 394.    | 398.    | 398.         |

  

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 964.   | 717.   | 249.    | 121.    | 346227.      |
| CMS        | 27.    | 20.    | 7.      | 6.      | 1046.        |
| INCHES     | 4.22   | 4.22   | 5.01    | 5.91    | 5.93         |
| MM         | 107.17 | 107.17 | 149.10  | 150.63  | 150.53       |
| AC-FT      | 355.   | 355.   | 494.    | 499.    | 499.         |
| THOUS CU M | 438.   | 438.   | 610.    | 616.    | 616.         |

  

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 1037.  | 1201.  | 410.    | 208.    | 42530.       |
| CMS        | 52.    | 36.    | 12.     | 6.      | 1771.        |
| INCHES     | 7.42   | 7.42   | 10.13   | 10.23   | 10.23        |
| MM         | 108.56 | 108.56 | 257.20  | 259.75  | 259.75       |
| AC-FT      | 635.   | 635.   | 953.    | 961.    | 961.         |
| THOUS CU M | 711.   | 711.   | 1052.   | 1062.   | 1062.        |

  

|            | PEAK   | 6-HOUR | 24-HOUR | 72-HOUR | TOTAL VOLUME |
|------------|--------|--------|---------|---------|--------------|
| CFS        | 3927.  | 2632.  | 849.    | 431.    | 129319.      |
| CMS        | 111.   | 75.    | 25.     | 12.     | 3661.        |
| INCHES     | 15.50  | 15.50  | 20.44   | 21.16   | 21.16        |
| MM         | 393.66 | 393.66 | 531.80  | 537.44  | 537.44       |
| AC-FT      | 1305.  | 1305.  | 1761.   | 1782.   | 1782.        |
| THOUS CU M | 1610.  | 1610.  | 2175.   | 2198.   | 2198.        |

0.10 PMF

0.20 PMF

0.30 PMF

0.50 PMF

PMF

AD-A101 245

GAI CONSULTANTS INC MONROEVILLE PA  
NATIONAL DAM INSPECTION PROGRAM, FAWN LAKE DAM (NDI I.D. NUMBER--ETC(U)  
JUN 81 B M MIHALCIN DACW31-81-C-0014

ML

UNCLASSIFIED

2 of 2  
AD A  
1745

END  
100%  
FILMED  
8-81  
DTIC

SUBJECT

# DAM SAFETY INSPECTION

## FAWN LAKE DAM

BY ZTSDATE 5-6-81PROJ. NO. 80-238-822CHKD. BY DGBDATE 5-6-81SHEET NO. 2 OF EE

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PIAN-RATIO ECONOMIC COMPUTATIONS  
 FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)  
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

| OPERATION     | STATION | AREA  | PLAN | RATIOS APPLIED TO FLOWS |         |         |         |         |
|---------------|---------|-------|------|-------------------------|---------|---------|---------|---------|
|               |         |       |      | RATIO 1                 | RATIO 2 | RATIO 3 | RATIO 4 | RATIO 5 |
| HYDROGRAPH AT | LHD     | .10   | 1    | 43;                     | 85;     | 128;    | 21;     | 421;    |
|               |         | .261  | {    | 1.21;                   | 2.42;   | 3.63;   | 6.04;   | 12.00;  |
| MOUNTED TO    | LHD     | .10   | 1    | 17;                     | 46;     | 75;     | 146;    | 375;    |
|               |         | .261  | {    | .48;                    | 1.32;   | 2.14;   | 4.13;   | 10.61;  |
| HYDROGRAPH AT | MD      | .10   | 1    | 275;                    | 551;    | 926;    | 1377;   | 2756;   |
|               |         | 2.051 | {    | 7.80;                   | 15.60;  | 23.40;  | 39.00;  | 77.99;  |
| 2 CUMULATED   | RD      | .10   | 1    | 291;                    | 596;    | 901;    | 1522;   | 3022;   |
|               |         | 3.111 | {    | 0.24;                   | 16.07;  | 25.52;  | 43.12;  | 86.99;  |
| MOUNTED TO    | RD      | .10   | 1    | 205;                    | 482;    | 762;    | 1411;   | 2977;   |
|               |         | 3.111 | {    | 5.82;                   | 13.69;  | 21.57;  | 39.97;  | 84.30;  |
| HYDROGRAPH AT | LALD    | .11   | 1    | 52;                     | 103;    | 155;    | 258;    | 517;    |
|               |         | .281  | {    | 1.46;                   | 2.93;   | 4.39;   | 7.31;   | 14.63;  |
| 2 CUMULATED   | LALD    | .11   | 1    | 214;                    | 513;    | 813;    | 1516;   | 3221;   |
|               |         | 3.391 | {    | 6.07;                   | 14.51;  | 23.01;  | 42.92;  | 91.27;  |
| MOUNTED TO    | LFLD    | .11   | 1    | 196;                    | 510;    | 811;    | 1511;   | 3221;   |
|               |         | 3.391 | {    | 5.56;                   | 14.46;  | 22.96;  | 42.85;  | 91.21;  |
| HYDROGRAPH AT | LFLD    | .11   | 1    | 60;                     | 121;    | 181;    | 302;    | 604;    |
|               |         | .441  | {    | 1.71;                   | 3.42;   | 5.13;   | 9.55;   | 17.03;  |
| 2 CUMULATED   | LFLD    | .11   | 1    | 208;                    | 533;    | 908;    | 1712;   | 3666;   |
|               |         | 3.441 | {    | 5.68;                   | 16.22;  | 25.72;  | 46.46;  | 103.02; |
| MOUNTED TO    | LFLD    | .11   | 1    | 207;                    | 532;    | 908;    | 1713;   | 3668;   |
|               |         | 3.441 | {    | 5.67;                   | 16.21;  | 25.70;  | 46.50;  | 103.06; |
| HYDROGRAPH AT | FLD     | .10   | 1    | 37;                     | 74;     | 111;    | 185;    | 310;    |
|               |         | .261  | {    | 1.05;                   | 2.09;   | 3.14;   | 5.23;   | 10.66;  |
| 2 CUMULATED   | FLD     | .10   | 1    | 217;                    | 609;    | 965;    | 1826;   | 3924;   |
|               |         | 4.091 | {    | 6.15;                   | 17.23;  | 27.32;  | 51.71;  | 111.13; |
| MOUNTED TO    | FLD     | .10   | 1    | 213;                    | 605;    | 964;    | 1827;   | 3927;   |
|               |         | 4.091 | {    | 6.04;                   | 17.13;  | 27.30;  | 51.73;  | 111.19; |

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM

BY DJS DATE 5-6-81 PROJ. NO. 80-238-822  
 CHKO. BY DGA DATE 5-6-81 SHEET NO. 5 OF 55



BUMMARY OF DAM SAFETY ANALYSIS

| ELEVATION<br>STORAGE<br>OUTFLOW                   | INITIAL VALUE<br>1190.00 | SPILLWAY CREST |         | TOP OF DAM |         |
|---------------------------------------------------|--------------------------|----------------|---------|------------|---------|
|                                                   |                          | 1190.00        | 1190.10 | 1190.00    | 1190.10 |
| RATIO<br>OF<br>RESERVOIR<br>TO<br>PHF<br>W.S.ELEV | 0.00                     | 0.00           | 0.00    | 0.00       | 0.00    |
| .10                                               | 1190.59                  | 0.00           | 41.     | 17.        | 42.00   |
| .20                                               | 1189.81                  | 0.00           | 51.     | 46.        | 44.41   |
| .30                                               | 1189.35                  | 0.00           | 55.     | 75.        | 41.00   |
| .40                                               | 1189.84                  | 0.00           | 60.     | 146.       | 40.83   |
| .50                                               | 1190.56                  | .45            | 68.     | 375.       | 40.33   |
| 1.00                                              | 1190.56                  | 0.             | 68.     | 2.50       | 0.00    |

| ELEVATION<br>STORAGE<br>OUTFLOW                   | INITIAL VALUE<br>1077.00 | SPILLWAY CREST |         | TOP OF DAM |         |
|---------------------------------------------------|--------------------------|----------------|---------|------------|---------|
|                                                   |                          | 1077.00        | 1077.10 | 1077.00    | 1077.10 |
| RATIO<br>OF<br>RESERVOIR<br>TO<br>PHF<br>W.S.ELEV | 0.00                     | 0.             | 0.      | 0.         | 0.      |
| .10                                               | 1077.93                  | 0.00           | 130.    | 205.       | 42.03   |
| .20                                               | 1078.60                  | 0.00           | 165.    | 462.       | 42.33   |
| .30                                               | 1079.14                  | .04            | 190.    | 762.       | 47.17   |
| .40                                               | 1079.52                  | .52            | 219.    | 1411.      | 41.50   |
| 1.00                                              | 1080.25                  | 1.15           | 260.    | 2971.      | 41.17   |

| ELEVATION<br>STORAGE<br>OUTFLOW                   | INITIAL VALUE<br>1070.00 | SPILLWAY CREST |         | TOP OF DAM |         |
|---------------------------------------------------|--------------------------|----------------|---------|------------|---------|
|                                                   |                          | 1070.00        | 1071.70 | 1070.00    | 1071.70 |
| RATIO<br>OF<br>RESERVOIR<br>TO<br>PHF<br>W.S.ELEV | 0.00                     | 0.             | 0.      | 0.         | 0.      |
| .10                                               | 1071.63                  | 0.00           | 101.    | 156.       | 41.81   |
| .20                                               | 1071.95                  | .25            | 100.    | 530.       | 42.33   |
| .30                                               | 1072.18                  | .48            | 131.    | 811.       | 42.17   |
| .40                                               | 1072.57                  | .82            | 117.    | 1513.      | 41.50   |
| 1.00                                              | 1073.18                  | 1.45           | 129.    | 3221.      | 41.17   |

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DLG DATE 5-6-81 PROJ. NO. 80-238-822  
CHKD. BY DLG DATE 5-6-81 SHEET NO. 7 OF 5E



Engineers • Geologists • Planners  
Environmental Specialists

LITTLE FAWN  
LAKE DAM;  
OVERTOPS  
@= 0.06 PMF

| RATIO<br>UR<br>OF<br>RESERVOIR<br>TO<br>U.S. ELEV<br>PMF | MAXIMUM<br>DEPTH<br>OVER DAM | MAXIMUM<br>STORAGE<br>ACFT | SPILLWAY CREST<br>1010.00 | TOP OF DAM<br>1012.40 | DURATION<br>OVER TOP<br>HOURS | TIME OF<br>MAX OUTFLOW<br>HOURS | TIME OF<br>FAILURE<br>HOURS |
|----------------------------------------------------------|------------------------------|----------------------------|---------------------------|-----------------------|-------------------------------|---------------------------------|-----------------------------|
|                                                          |                              |                            |                           |                       |                               |                                 |                             |
| .10                                                      | 1012.96                      | .46                        | 15.                       | 207.                  | 7.00                          | 41.33                           | 0.00                        |
| .20                                                      | 1012.49                      | 1.09                       | 17.                       | 572.                  | 10.50                         | 42.17                           | 0.00                        |
| .30                                                      | 1012.78                      | 1.30                       | 18.                       | 908.                  | 12.00                         | 42.00                           | 0.00                        |
| .50                                                      | 1014.28                      | 1.68                       | 20.                       | 1713.                 | 13.00                         | 41.50                           | 0.00                        |
| 1.00                                                     | 1015.18                      | 2.70                       | 24.                       | 3668.                 | 16.00                         | 41.17                           | 0.00                        |

FAWN LAKE  
DAM;  
OVERTOPS  
@= 0.15 PMF

| RATIO<br>UR<br>OF<br>RESERVOIR<br>TO<br>U.S. ELEV<br>PMF | MAXIMUM<br>DEPTH<br>OVER DAM | MAXIMUM<br>STORAGE<br>ACFT | SPILLWAY CREST<br>997.00 | TOP OF DAM<br>999.10 | DURATION<br>OVER TOP<br>HOURS | TIME OF<br>MAX OUTFLOW<br>HOURS | TIME OF<br>FAILURE<br>HOURS |
|----------------------------------------------------------|------------------------------|----------------------------|--------------------------|----------------------|-------------------------------|---------------------------------|-----------------------------|
|                                                          |                              |                            |                          |                      |                               |                                 |                             |
| .10                                                      | 999.05                       | 0.00                       | 61.                      | 213.                 | 0.00                          | 43.50                           | 0.00                        |
| .20                                                      | 1005.13                      | .43                        | 73.                      | 605.                 | 3.03                          | 42.33                           | 0.00                        |
| .30                                                      | 1006.41                      | .71                        | 76.                      | 964.                 | 5.03                          | 42.00                           | 0.00                        |
| .50                                                      | 1006.16                      | 1.06                       | 80.                      | 1827.                | 8.17                          | 41.50                           | 0.00                        |
| 1.00                                                     | 1001.37                      | 1.62                       | 86.                      | 3927.                | 11.50                         | 41.17                           | 0.00                        |

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM

BY DJS DATE 5-6-81 PROJ. NO. 80-238-822

CHKD. BY DLS DATE 5-6-81 SHEET NO. U OF EE



**BREACHING  
ANALYSIS**

(INPUT DATA IS SAME AS  
FOR OVERTOPPING ANALYSIS,  
WITH THE ADDITION OF THE  
BREACH CRITERIA GIVEN HERE)

DAM SAFETY INSPECTION  
FAWN LAKE DAM \*\*\* BREACH ANALYSIS \*\*\* (U.S. DAMS INCLUDED)  
10-MINUTE TIME STEP AND 48-HOUR STORM DURATION

| NO  | MMR | MINN | IDAY  | IINH | METRIC | IPLT  | IPNT | INSTAN |
|-----|-----|------|-------|------|--------|-------|------|--------|
| 300 | 0   | 10   | 0     | 0    | 0      | 0     | 0    | 0      |
|     |     |      | JOPEN | NUT  | LNUPT  | TRACE |      |        |
|     |     |      |       | 5    | 0      |       |      |        |

MULTI-PLAN ANALYSES TO BE PERFORMED  
NPLANS 6 NRTIO 4 1 LRTIO 1

RATIO = .20

\*\*\*\*\*  
ROUTE TOTAL HYDROGRAPH THROUGH FAWN LAKE DAM  
HYDROGRAPH ROUTING  
\*\*\*\*\*

**PLAN**

| DAM DATA | CODD  | EIPU | DAMVID |
|----------|-------|------|--------|
| TOPEL    | 999.7 | 0.0  | 1.0    |

| DAM BREACH DATA | ELBM | TFAIL  | WEBC | FAILBL |
|-----------------|------|--------|------|--------|
| GRND            | Z    |        |      |        |
| 0.              | 1.00 | 976.00 | .50  | 997.00 |

STATION FLD . PLAN 1. RATIO 1

BEGIN DAM FAILURE AT 41.00 HOURS

PEAK OUTFLOW IS 3004. AT TIME 41.50 HOURS

| DAM BREACH DATA | ELBN  | TRAIL  | WEBL | FAILBL |
|-----------------|-------|--------|------|--------|
| ARVID           | Z     |        |      |        |
| 300.            | 10.00 | 976.00 | .50  | 997.00 |

STATION FLD . PLAN 2. RATIO 1

BEGIN DAM FAILURE AT 41.00 HOURS

PEAK OUTFLOW IS 4327. AT TIME 41.12 HOURS

②

(0.20 PMF EVENT)

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY JDS DATE 5-6-81 PROJ. NO. 20-208-822  
CHKD. BY DLB DATE 5-6-81 SHEET NO. V OF EE



PLAN

DAM BREACH DATA  
STATION FLD . PLAN 3, RATIO 1  
BREACH ID 1, ELBN TFAIL USBL FAILBL  
0. 1.00 978.00 4.00 997.00 999.70  
300. 10.00 978.00 4.00 997.00 999.70

BEGIN DAM FAILURE AT 41.00 HOURS  
PEAK OVERFLOW IS 893, AT TIME 43.50 HOURS

DAM BREACH DATA  
STATION FLD . PLAN 4, RATIO 1  
BREACH ID 2, ELBN TFAIL USBL FAILBL  
300. 10.00 978.00 4.00 997.00 999.70

BEGIN DAM FAILURE AT 41.00 HOURS  
PEAK OVERFLOW IS 1110, AT TIME 43.42 HOURS

DAM BREACH DATA  
STATION FLD . PLAN 4, RATIO 1  
BREACH ID 3, ELBN TFAIL USBL FAILBL  
60. 1.00 978.00 1.00 997.00 999.70

BEGIN DAM FAILURE AT 41.00 HOURS  
PEAK OVERFLOW IS 2403, AT TIME 41.42 HOURS

(3)

(4)

(5)

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY TJS DATE 5-6-81 PROJ. NO. 80-278-822  
CHKD. BY DLO DATE 5-6-81 SHEET NO. W OF EE



THE DAM BREACH HYDROGRAPH WAS DEVELOPED USING A TIME INTERVAL OF .049 HOURS DURING BREACH FORMATION.  
BREACH CALCULATIONS WERE USE A TIME INTERVAL OF .167 HOURS.  
THIS TABLE COMPARES THE HYDROGRAPH FOR BREACH CALCULATIONS WITH THE COMPUTED BREACH HYDROGRAPH.  
INTERMEDIATE FLOWS ARE INTERPOLATED FROM END-OF-PERIOD VALUES.

| TIME   | INTERPOLATED<br>BEGINNING<br>BREACH<br>IS BREACH | COMPUTED<br>BREACH | BREACH  | HYDROGRAPH | HYDROGRAPH | ERROR   | ACCUMULATED<br>(CF8) | ACCUMULATED<br>ERRIN<br>(AC-FT) |
|--------|--------------------------------------------------|--------------------|---------|------------|------------|---------|----------------------|---------------------------------|
| TIME   | (HOURS)                                          | (HOURS)            | (HOURS) | (CF8)      | (CF8)      | (CF8)   | (CF8)                | (AC-FT)                         |
| 41.000 | 0.000                                            | 403.               | 403.    | 0.         | 0.         | 0.      | 0.                   | 0.                              |
| 41.010 | .010                                             | 604.               | 679.    | -71.       | -71.       | 0.      | 0.                   | 0.                              |
| 41.020 | .020                                             | 813.               | 1121.   | -308.      | -378.      | -94.    | -94.                 | -94.                            |
| 41.029 | .029                                             | 1018.              | 1634.   | -616.      | -926.      | -1933.  | -1933.               | -1933.                          |
| 41.039 | .039                                             | 1223.              | 2152.   | -926.      | -1213.     | -3135.  | -3135.               | -3135.                          |
| 41.049 | .049                                             | 1428.              | 2641.   | -1213.     | -1445.     | -450.   | -450.                | -450.                           |
| 41.059 | .059                                             | 1633.              | 3078.   | -1445.     | -1616.     | -616.   | -616.                | -616.                           |
| 41.069 | .069                                             | 1839.              | 3454.   | -1616.     | -1735.     | -731.   | -731.                | -731.                           |
| 41.078 | .079                                             | 2044.              | 3778.   | -1735.     | -1772.     | -9701.  | -9701.               | -9701.                          |
| 41.088 | .089                                             | 2249.              | 4020.   | -1772.     | -1739.     | -11422. | -11422.              | -11422.                         |
| 41.098 | .098                                             | 2454.              | 4193.   | -1739.     | -1631.     | -13013. | -13013.              | -13013.                         |
| 41.108 | .108                                             | 2659.              | 4290.   | -1631.     | -1463.     | -14516. | -14516.              | -14516.                         |
| 41.118 | .118                                             | 2864.              | 4327.   | -1463.     | -1230.     | -15766. | -15766.              | -15766.                         |
| 41.128 | .127                                             | 3069.              | 4299.   | -1230.     | -963.      | -16729. | -16729.              | -16729.                         |
| 41.137 | .137                                             | 3214.              | 4237.   | -963.      | -665.      | -17594. | -17594.              | -17594.                         |
| 41.147 | .147                                             | 3419.              | 4144.   | -665.      | -344.      | -17736. | -17736.              | -17736.                         |
| 41.157 | .157                                             | 3624.              | 4026.   | -344.      | -0.        | -17736. | -17736.              | -17736.                         |
| 41.167 | .167                                             | 3829.              | 3889.   | -0.        | 0.         | 0.      | 0.                   | 0.                              |
| 41.176 | .176                                             | 3774.              | 3774.   | 5.         | 5.         | -17736. | -17736.              | -17736.                         |
| 41.186 | .186                                             | 3599.              | 3599.   | 20.        | 20.        | -17736. | -17736.              | -17736.                         |
| 41.196 | .196                                             | 3453.              | 3453.   | 41.        | 41.        | -16729. | -16729.              | -16729.                         |
| 41.206 | .206                                             | 3107.              | 3242.   | 65.        | 65.        | -17095. | -17095.              | -17095.                         |
| 41.216 | .216                                             | 2161.              | 3073.   | 80.        | 80.        | -17594. | -17594.              | -17594.                         |
| 41.225 | .225                                             | 3016.              | 2905.   | 111.       | 111.       | -17736. | -17736.              | -17736.                         |
| 41.235 | .235                                             | 2870.              | 2740.   | 110.       | 110.       | -17736. | -17736.              | -17736.                         |
| 41.245 | .245                                             | 2725.              | 2580.   | 145.       | 145.       | -17736. | -17736.              | -17736.                         |
| 41.255 | .255                                             | 2579.              | 2425.   | 155.       | 155.       | -16916. | -16916.              | -16916.                         |
| 41.265 | .265                                             | 2434.              | 2275.   | 158.       | 158.       | -16819. | -16819.              | -16819.                         |
| 41.275 | .275                                             | 2288.              | 2132.   | 156.       | 156.       | -16632. | -16632.              | -16632.                         |
| 41.284 | .284                                             | 2143.              | 1996.   | 147.       | 147.       | -16515. | -16515.              | -16515.                         |
| 41.294 | .294                                             | 1997.              | 1866.   | 131.       | 131.       | -16313. | -16313.              | -16313.                         |
| 41.304 | .304                                             | 1852.              | 1743.   | 109.       | 109.       | -16215. | -16215.              | -16215.                         |
| 41.314 | .314                                             | 1706.              | 1627.   | 79.        | 79.        | -16195. | -16195.              | -16195.                         |
| 41.324 | .324                                             | 1561.              | 1517.   | 43.        | 43.        | -16152. | -16152.              | -16152.                         |
| 41.333 | .333                                             | 1415.              | 1415.   | 0.         | 0.         | -16152. | -16152.              | -16152.                         |
| 41.343 | .343                                             | 1367.              | 1319.   | 47.        | 47.        | -16105. | -16105.              | -16105.                         |
| 41.353 | .353                                             | 1316.              | 1230.   | 69.        | 69.        | -16016. | -16016.              | -16016.                         |
| 41.363 | .363                                             | 1261.              | 1147.   | 123.       | 123.       | -15891. | -15891.              | -15891.                         |
| 41.373 | .373                                             | 1121.              | 1070.   | 151.       | 151.       | -15742. | -15742.              | -15742.                         |
| 41.382 | .382                                             | 1171.              | 1000.   | 173.       | 173.       | -15570. | -15570.              | -15570.                         |
| 41.392 | .392                                             | 1124.              | 936.    | 188.       | 188.       | -15381. | -15381.              | -15381.                         |
| 41.402 | .402                                             | 1016.              | 878.    | 190.       | 190.       | -15044. | -15044.              | -15044.                         |
| 41.412 | .412                                             | 1027.              | 926.    | 202.       | 202.       | -14982. | -14982.              | -14982.                         |
| 41.422 | .422                                             | 919.               | 779.    | 199.       | 199.       | -14781. | -14781.              | -14781.                         |
| 41.431 | .431                                             | 930.               | 738.    | 192.       | 192.       | -14591. | -14591.              | -14591.                         |
| 41.441 | .441                                             | 882.               | 703.    | 179.       | 179.       | -14412. | -14412.              | -14412.                         |
| 41.451 | .451                                             | 831.               | 673.    | 161.       | 161.       | -14251. | -14251.              | -14251.                         |
| 41.461 | .461                                             | 785.               | 647.    | 138.       | 138.       | -14113. | -14113.              | -14113.                         |
| 41.471 | .471                                             | 736.               | 627.    | 110.       | 110.       | -14004. | -14004.              | -14004.                         |
| 41.480 | .480                                             | 689.               | 610.    | 78.        | 78.        | -13926. | -13926.              | -13926.                         |
| 41.490 | .490                                             | 639.               | 599.    | 41.        | 41.        | -13805. | -13805.              | -13805.                         |
| 41.500 | .500                                             | 591.               | 591.    | 0.         | 0.         | -13805. | -13805.              | -13805.                         |

PLAN  
②

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 5-6-81 PROJ. NO. 80-238-822  
CHKD. BY DAB DATE 5-6-81 SHEET NO. X OF EE



SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY ZJS DATE 5-6-81 PROJ. NO. 80-228-822  
CHKD. BY DLB DATE 5-6-81 SHEET NO. Y OF EE



THE DAM UNLACH HYDROGRAPH WAS DEVELOPED USING A TIME INTERVAL OF .021 HOURS DURING WHICH FORMATION.  
DURING THE CALCULATIONS WILL USE A TIME INTERVAL OF .167 HOURS.  
THIS TABLE COMPARES THE HYDROGRAPH FOR DYNAMIC CALCULATIONS WITH THE COMPUTED UNLACH HYDROGRAPH.  
INTERMEDIATE FLOWS ARE INTERPOLATED FROM END-UP-PERIOD VALUES.

| TIME<br>(HOURS) | TIME FROM<br>BEGINNING<br>OF UNLACH | COMPUTED                                      |                  | UNLACH | ACCUMULATED<br>UNLACH<br>FLOW (CU-FT) |
|-----------------|-------------------------------------|-----------------------------------------------|------------------|--------|---------------------------------------|
|                 |                                     | INTERPOLATED<br>BREACH<br>HYDROGRAPH<br>(CFS) | MIDRAPH<br>(CFS) |        |                                       |
| 41.000          | 0.000                               | 401.                                          | 401.             | 0.     | 0.                                    |
| 41.021          | .021                                | 524.                                          | 469.             | 55.    | 55.                                   |
| 41.042          | .042                                | 648.                                          | 576.             | 72.    | 127.                                  |
| 41.063          | .063                                | 771.                                          | 701.             | 70.    | 197.                                  |
| 41.083          | .083                                | 895.                                          | 919.             | 56.    | 253.                                  |
| 41.104          | .104                                | 1018.                                         | 985.             | 33.    | 286.                                  |
| 41.125          | .125                                | 1142.                                         | 1127.            | 15.    | 301.                                  |
| 41.146          | .146                                | 1265.                                         | 1262.            | 4.     | 305.                                  |
| 41.167          | .167                                | 1389.                                         | 1389.            | 0.     | 305.                                  |
| 41.188          | .188                                | 1479.                                         | 1506.            | -26.   | 278.                                  |
| 41.208          | .208                                | 1570.                                         | 1516.            | -46.   | 231.                                  |
| 41.229          | .229                                | 1661.                                         | 1630.            | -70.   | 163.                                  |
| 41.250          | .250                                | 1752.                                         | 1830.            | -78.   | 155.                                  |
| 41.271          | .271                                | 1842.                                         | 1914.            | -92.   | 123.                                  |
| 41.292          | .292                                | 1933.                                         | 1994.            | -61.   | -48.                                  |
| 41.313          | .313                                | 2024.                                         | 2057.            | -33.   | -90.                                  |
| 41.333          | .333                                | 2115.                                         | 2115.            | 0.     | -80.                                  |
| 41.354          | .354                                | 2109.                                         | 2153.            | -46.   | -124.                                 |
| 41.375          | .375                                | 2103.                                         | 2106.            | -93.   | -208.                                 |
| 41.396          | .396                                | 2097.                                         | 2120.            | -105.  | -313.                                 |
| 41.417          | .417                                | 2092.                                         | 2203.            | -112.  | -425.                                 |
| 41.438          | .438                                | 2086.                                         | 2189.            | -103.  | -528.                                 |
| 41.458          | .458                                | 2080.                                         | 2161.            | -81.   | -609.                                 |
| 41.479          | .479                                | 2074.                                         | 2120.            | -46.   | -655.                                 |
| 41.500          | .500                                | 2068.                                         | 2068.            | 0.     | -655.                                 |
| 41.521          | .521                                | 1988.                                         | 2007.            | -19.   | -674.                                 |
| 41.542          | .542                                | 1907.                                         | 1936.            | -30.   | -704.                                 |
| 41.563          | .563                                | 1826.                                         | 1859.            | -31.   | -737.                                 |
| 41.583          | .583                                | 1745.                                         | 1776.            | -32.   | -769.                                 |
| 41.604          | .604                                | 1664.                                         | 1690.            | -26.   | -795.                                 |
| 41.625          | .625                                | 1583.                                         | 1601.            | -18.   | -812.                                 |
| 41.646          | .646                                | 1502.                                         | 1511.            | -9.    | -821.                                 |
| 41.667          | .667                                | 1421.                                         | 1421.            | 0.     | -821.                                 |
| 41.688          | .688                                | 1350.                                         | 1334.            | 16.    | -805.                                 |
| 41.708          | .708                                | 1279.                                         | 1249.            | -30.   | -775.                                 |
| 41.729          | .729                                | 1207.                                         | 1168.            | -39.   | -735.                                 |
| 41.750          | .750                                | 1136.                                         | 1092.            | 44.    | -691.                                 |
| 41.771          | .771                                | 1065.                                         | 1022.            | 43.    | -649.                                 |
| 41.792          | .792                                | 993.                                          | 958.             | 35.    | -513.                                 |
| 41.813          | .813                                | 922.                                          | 901.             | 21.    | -593.                                 |
| 41.833          | .833                                | 851.                                          | 851.             | 0.     | -593.                                 |
| 41.854          | .854                                | 824.                                          | 806.             | 17.    | -576.                                 |
| 41.875          | .875                                | 797.                                          | 768.             | 29.    | -547.                                 |
| 41.896          | .896                                | 770.                                          | 735.             | 35.    | -513.                                 |
| 41.917          | .917                                | 743.                                          | 707.             | 36.    | -477.                                 |
| 41.938          | .938                                | 716.                                          | 683.             | 32.    | -444.                                 |
| 41.959          | .958                                | 688.                                          | 663.             | 25.    | -419.                                 |
| 41.979          | .979                                | 661.                                          | 647.             | 14.    | -405.                                 |
| 42.000          | 1.000                               | 634.                                          | 634.             | 0.     | -405.                                 |

PLAN (5)

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM

BY DTI DATE 5-6-81 PROJ. NO. 80-238-822  
 CHKD. BY DLB DATE 5-6-81 SHEET NO. 2 OF EE



STATION #20



SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 5-6-81 PROJ. NO. 80-238-822  
CHKD. BY DLB DATE 5-6-81 SHEET NO. AA OF EE



| HYDROGRAPH HUNTING                                      |       |      |       |       |       |        |
|---------------------------------------------------------|-------|------|-------|-------|-------|--------|
| ROUTE FAWN LAKE DAM TO SECTION 1: 2160 FT U.S. FURN DAM |       |      |       |       |       |        |
| STATION                                                 | ICOMP | ICUM | IAFP  | IPFT  | INAME | ISTAGE |
| SEC1                                                    | Q     | Q    | Q     | 0     | Q     | Q      |
| NSTPS                                                   | NSTDL | LAG  | ANSK  | X     | TSK   | ISPHAT |
| 1                                                       | 0     | 0    | 0.000 | 0.000 | 0.000 | -1.    |

| ALL PLANS HAVE SAME<br>ROUTING DATA |       |      |       |      |      |        |
|-------------------------------------|-------|------|-------|------|------|--------|
| CLASS                               | Avg   | RES  | ISAME | IPFT | IPMP | LASTH  |
| 0.0                                 | 0.00  | 0.00 | 1     | 0    | 0    | 0      |
| NSTPS                               | NSTDL | LAG  | ANSK  | X    | TSK  | ISPHAT |

MINIMAL DEPTH CHANNEL ROUTING

| ON(1) | ON(2) | ON(3) | ELMAX | ELMIN | SEL    |
|-------|-------|-------|-------|-------|--------|
| 0.00  | .0400 | .0100 | 950.0 | 980.0 | 2160.0 |
| .0800 |       |       |       |       | .01000 |

CROSS SECTION COORDINATES--STA ELEV STA ELEV--ETC

|         |          |          |          |          |          |         |          |          |           |
|---------|----------|----------|----------|----------|----------|---------|----------|----------|-----------|
| 0.00    | 980.00   | 250.00   | 980.00   | 387.00   | 953.00   | 390.00  | 950.00   | 405.00   | 950.00    |
| 408.00  | 953.00   | 500.00   | 950.00   | 600.00   | 980.00   |         |          |          |           |
|         |          |          |          |          |          |         |          |          |           |
| STORAGE | 0.00     | 1.30     | 2.86     | 6.93     | 15.05    | 27.21   | 43.41    | 63.24    | 85.34     |
|         | 136.02   | 164.61   | 195.36   | 228.28   | 263.36   | 300.60  | 340.00   | 381.57   | 425.30    |
| OUTFLW  | 0.00     | 118.80   | 387.15   | 911.74   | 1862.21  | 3394.57 | 5641.06  | 8864.56  | 13002.73  |
|         | 23874.49 | 30670.95 | 38420.67 | 47159.66 | 56924.33 | 6751.13 | 79616.44 | 92736.39 | 106966.86 |
| STAGE   | 950.00   | 951.16   | 954.74   | 956.32   | 957.69   | 959.47  | 961.05   | 962.63   |           |
|         | 965.79   | 967.37   | 968.95   | 970.53   | 972.11   | 973.68  | 975.26   | 976.84   | 978.42    |
| FLOW    | 0.00     | 118.80   | 387.15   | 911.74   | 1862.21  | 3394.57 | 5641.06  | 8864.56  | 13002.73  |
|         | 23874.49 | 30670.95 | 38420.67 | 47159.66 | 56924.33 | 6751.13 | 79616.44 | 92736.39 | 106966.86 |

| HYDROGRAPH HUNTING                                       |       |      |       |       |       |        |
|----------------------------------------------------------|-------|------|-------|-------|-------|--------|
| ROUTE FAWN SECTION 1 TO SECTION 2: 6160 FT U.S. FURN DAM |       |      |       |       |       |        |
| STATION                                                  | ICOMP | ICUM | IAFP  | IPFT  | INAME | ISTAGE |
| SEC2                                                     | 1     | 0    | 0     | 0     | 0     | 0      |
| NSTPS                                                    | NSTDL | LAG  | ANSK  | X     | TSK   | ISPHAT |
| 1                                                        | 0     | 0    | 0.000 | 0.000 | 0.000 | -1.    |

| CLASS | Avg   | RES  | ISAME | IPFT | IPMP | LASTH  |
|-------|-------|------|-------|------|------|--------|
| 0.0   | 0.000 | 0.00 | 1     | 1    | 0    | 0      |
| NSTPS | NSTDL | LAG  | ANSK  | X    | TSK  | ISPHAT |

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM

BY DJS DATE 5-6-81 PROJ. NO. 80-238-822

CHKD. BY DAB DATE 5-6-81 SHEET NO. BB OF EE



MUNICIPAL DEPTH CHANNEL MUNTING

ON(1) UN(2) UN(3) ELEV STA. ELEV--ETC  
.0800 .0400 .0800 893.0 920.0 4000. .01300

| CROSS SECTION COORDINATES--STA.ELEV. STA.ELEV--ETC |          |         |          |          |            |          |
|----------------------------------------------------|----------|---------|----------|----------|------------|----------|
| 0.00                                               | 920.00   | 100.00  | 900.00   | 170.00   | 900.00     | 900.00   |
| 200.00                                             | 900.00   | 450.00  | 900.00   | 680.00   | 920.00     |          |
| STORAGE                                            | 0.00     | 3.91    | 7.83     | 11.74    | 15.66      | 22.64    |
|                                                    | 290.41   | 353.14  | 418.93   | 487.77   | 557.68     | 634.55   |
| WATERLW                                            | 0.00     | 215.46  | 647.22   | 1208.78  | / 1861.96  | 2607.94  |
|                                                    | 27086.26 | 3659.83 | 46464.29 | 57483.45 | / 69666.51 | 83026.37 |
| STAGE                                              | 893.00   | 894.42  | 895.84   | 897.26   | 898.68     | 900.11   |
|                                                    | 907.21   | 908.63  | 910.05   | 911.47   | 912.89     | 914.32   |
| FLW                                                | 0.00     | 215.46  | 647.22   | 1208.78  | / 1861.96  | 2607.94  |
|                                                    | 27086.26 | 3659.83 | 46464.29 | 57483.45 | / 69666.51 | 83026.37 |

REMARKS: REMARKS: REMARKS: REMARKS: REMARKS: REMARKS: REMARKS:

SUMMARY OF DAM SAFETY ANALYSIS

| ELEVATION<br>STORAGE<br>OUTFLW                | INITIAL VALUE<br>42. | SPILLWAY CREST<br>1188.00 | TOP OF DAM<br>1190.10 |
|-----------------------------------------------|----------------------|---------------------------|-----------------------|
| RATIO<br>OF<br>RESERVOIR<br>W.S.ELEV<br>P.M.F | 0.                   | 42.                       | 63.                   |

| RATIO<br>OF<br>RESERVOIR<br>W.S.ELEV<br>P.M.F | MAXIMUM<br>DEPTH<br>OVER DAM | MAXIMUM<br>STORAGE<br>AC-FT | MAXIMUM<br>OUTFLW<br>CFS | DURATION<br>OVER TOP<br>HOURS | TIME OF<br>FAILURE<br>HOURS | TIME OF<br>FAILURE<br>HOURS |
|-----------------------------------------------|------------------------------|-----------------------------|--------------------------|-------------------------------|-----------------------------|-----------------------------|
| .20                                           | 1189.01                      | 0.00                        | 51.                      | 46.                           | 0.00                        | 41.17                       |

| ELEVATION<br>STORAGE<br>OUTFLW                | INITIAL VALUE<br>1077.00 | SPILLWAY CREST<br>96. | TOP OF DAM<br>1079.10 |
|-----------------------------------------------|--------------------------|-----------------------|-----------------------|
| RATIO<br>OF<br>RESERVOIR<br>W.S.ELEV<br>P.M.F | 0.                       | 96.                   | 107.                  |
|                                               | 1078.60                  | 0.00                  | 1066.                 |

LONG  
RIDGE  
DAM

RICKARDS  
DAM

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM

BY DJS DATE 5-6-81 PROJ. NO. 80-238-822

CHKD. BY DLA DATE 5-6-81 SHEET NO. CC OF EE



Engineers • Geologists • Planners  
Environmental Specialists

| ELEVATION                     | INITIAL VALUE                | SPILLWAY CREST      | TOP OF DAM              |
|-------------------------------|------------------------------|---------------------|-------------------------|
| STORAGE                       | 1070.00                      | 1070.00             | 1071.70                 |
| OUTFLOW                       | .15.                         | .15.                | .103.                   |
|                               | 0.                           | 0.                  | 209.                    |
| RATIO OF RESERVOIR W.S.F.ELEV | MAXIMUM DEPTH OVER DAM AC-FT | MAXIMUM OUTFLOW CFS | DURATION OVER TOP HOURS |
| .20                           | 1071.99                      | .29                 | 109.                    |
|                               |                              |                     | 510.                    |
|                               |                              |                     | 5.83                    |
|                               |                              |                     | 42.33                   |
|                               |                              |                     | 0.00                    |

LOWER RICKARDS DAM

| ELEVATION                     | INITIAL VALUE                | SPILLWAY CREST      | TOP OF DAM              |
|-------------------------------|------------------------------|---------------------|-------------------------|
| STORAGE                       | 1010.00                      | 1010.00             | 1012.40                 |
| OUTFLOW                       | .6.                          | .6.                 | .13.                    |
|                               | 0.                           | 0.                  | 130.                    |
| RATIO OF RESERVOIR W.S.F.ELEV | MAXIMUM DEPTH OVER DAM AC-FT | MAXIMUM OUTFLOW CFS | DURATION OVER TOP HOURS |
| .20                           | 1013.49                      | 1.09                | 17.                     |
|                               |                              |                     | 572.                    |
|                               |                              |                     | 10.50                   |
|                               |                              |                     | 42.17                   |
|                               |                              |                     | 0.00                    |

LITTLE FAWN LAKE DAM

SUMMARY OF DAM SAFETY ANALYSIS

| PLAN ①.....                   | ELEVATION              | INITIAL VALUE         | SPILLWAY CREST  | TOP OF DAM            |
|-------------------------------|------------------------|-----------------------|-----------------|-----------------------|
|                               | STORAGE                | W.S.FLEV              | AC-FT           | MAX OUTFLOW HOURS     |
| .20                           | 999.19                 | .09                   | .69.            | 3004.                 |
|                               |                        |                       |                 | .35                   |
|                               |                        |                       |                 | 41.50                 |
| RATIO OF RESERVOIR W.S.F.ELEV | MAXIMUM DEPTH OVER DAM | MAXIMUM STORAGE AC-FT | MAX OUTFLOW CFS | TIME OF FAILURE HOURS |
| .20                           | 999.19                 | .09                   | .69.            | 390.                  |
|                               |                        |                       |                 | 41.00                 |

  

| PLAN ②.....                   | ELEVATION              | INITIAL VALUE         | SPILLWAY CREST  | TOP OF DAM            |
|-------------------------------|------------------------|-----------------------|-----------------|-----------------------|
|                               | STORAGE                | W.S.FLEV              | AC-FT           | MAX OUTFLOW HOURS     |
| .20                           | 999.72                 | .02                   | .69.            | 3004.                 |
|                               |                        |                       |                 | .35                   |
|                               |                        |                       |                 | 41.50                 |
| RATIO OF RESERVOIR W.S.F.ELEV | MAXIMUM DEPTH OVER DAM | MAXIMUM STORAGE AC-FT | MAX OUTFLOW CFS | TIME OF FAILURE HOURS |
| .20                           | 999.72                 | .02                   | .69.            | 390.                  |
|                               |                        |                       |                 | 41.00                 |

  

| PLAN ③.....                   | ELEVATION              | INITIAL VALUE         | SPILLWAY CREST  | TOP OF DAM            |
|-------------------------------|------------------------|-----------------------|-----------------|-----------------------|
|                               | STORAGE                | W.S.FLEV              | AC-FT           | MAX OUTFLOW HOURS     |
| .20                           | 1000.01                | .21                   | .71.            | 999.                  |
|                               |                        |                       |                 | 1.42                  |
|                               |                        |                       |                 | 41.50                 |
| RATIO OF RESERVOIR W.S.F.ELEV | MAXIMUM DEPTH OVER DAM | MAXIMUM STORAGE AC-FT | MAX OUTFLOW CFS | TIME OF FAILURE HOURS |
| .20                           | 1000.01                | .21                   | .71.            | 390.                  |
|                               |                        |                       |                 | 41.00                 |

FAWN LAKE DAM

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM

BY DJS DATE 5-6-81 PROJ. NO. 80-238-822  
 CHKD. BY DLB DATE 5-6-81 SHEET NO. DD OF EE



Engineers • Geologists • Planners  
 Environmental Specialists

SECTION  
1

PLAN ④ ELEVATION INITIAL VALUE SPILLWAY CREST TOP OF DAM  
 STORAGE DEPTH 997.00 997.00 99% .70  
 OUTFLOW 44. 44. 44.  
 0. 0. 0.

RATIO MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF  
 OF RESERVOIR DEPTH OVER DAM STORAGEx AC-FT OVER TOP FAILURE  
 P.M.F. 4.5.ELEV. 02 60. 997.00 997.00 HOURS  
 0.20 999.72 .02 60. 1110. .25 41.42 41.00

PLAN ⑤ ELEVATION INITIAL VALUE SPILLWAY CREST TOP OF DAM  
 STORAGE DEPTH 997.00 997.00 99% .70  
 OUTFLOW 44. 44. 44.  
 0. 0. 0.

RATIO MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF  
 OF RESERVOIR DEPTH OVER DAM STORAGEx AC-FT OVER TOP FAILURE  
 P.M.F. 4.5.ELEV. 04 68. 997.00 997.00 HOURS  
 0.20 999.74 .04 68. 2203. .23 41.42 41.00

PLAN ⑥ ELEVATION INITIAL VALUE SPILLWAY CREST TOP OF DAM  
 STORAGE DEPTH 997.00 997.00 99% .70  
 OUTFLOW 44. 44. 44.  
 0. 0. 0.

RATIO MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF  
 OF RESERVOIR DEPTH OVER DAM STORAGEx AC-FT OVER TOP FAILURE  
 P.M.F. 4.5.ELEV. 03 73. 997.00 997.00 HOURS  
 0.20 1000.13 .03 73. 605. 3.03 42.33 0.00

PLAN ⑦ ELEVATION INITIAL VALUE SPILLWAY CREST TOP OF DAM  
 STORAGE DEPTH 997.00 997.00 99% .70  
 OUTFLOW 44. 44. 44.  
 0. 0. 0.

RATIO MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF  
 OF RESERVOIR DEPTH OVER DAM STORAGEx AC-FT OVER TOP FAILURE  
 P.M.F. 4.5.ELEV. 03 73. 997.00 997.00 HOURS  
 0.20 1000.13 .03 73. 605. 3.03 42.33 0.00

PLAN ⑧ ELEVATION INITIAL VALUE SPILLWAY CREST TOP OF DAM  
 STORAGE DEPTH 997.00 997.00 99% .70  
 OUTFLOW 44. 44. 44.  
 0. 0. 0.

PLAN ⑨ ELEVATION INITIAL VALUE SPILLWAY CREST TOP OF DAM  
 STORAGE DEPTH 997.00 997.00 99% .70  
 OUTFLOW 44. 44. 44.  
 0. 0. 0.

RATIO MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF  
 OF RESERVOIR DEPTH OVER DAM STORAGEx AC-FT OVER TOP FAILURE  
 P.M.F. 4.5.ELEV. 03 73. 997.00 997.00 HOURS  
 0.20 1000.13 .03 73. 605. 3.03 42.33 0.00

PLAN ① STATION SECT1 STATION SECT1  
 MAX FLOW, CFS MAX STAGE, FT TIME HOURS RATIO MAX FLOW, CFS MAX STAGE, FT TIME HOURS

RATIO FLOW, CFS STAGE, FT TIME HOURS RATIO FLOW, CFS STAGE, FT TIME HOURS  
 .20 2005. .20 2053. .20 2053. .956.5 41.50

PLAN ② STATION SECT1 STATION SECT1  
 MAX FLOW, CFS MAX STAGE, FT TIME HOURS RATIO MAX FLOW, CFS MAX STAGE, FT TIME HOURS

RATIO FLOW, CFS STAGE, FT TIME HOURS RATIO FLOW, CFS STAGE, FT TIME HOURS  
 .20 2005. .20 2053. .20 2053. .953.0 42.33

PLAN ③ STATION SECT1 STATION SECT1  
 MAX FLOW, CFS MAX STAGE, FT TIME HOURS RATIO MAX FLOW, CFS MAX STAGE, FT TIME HOURS

RATIO FLOW, CFS STAGE, FT TIME HOURS RATIO FLOW, CFS STAGE, FT TIME HOURS  
 .20 2005. .20 2053. .20 2053. .953.0 42.33

PLAN ④ STATION SECT1  
 (NON-BREACH) STATION SECT1  
 MAX FLOW, CFS MAX STAGE, FT TIME HOURS RATIO MAX FLOW, CFS MAX STAGE, FT TIME HOURS

RATIO FLOW, CFS STAGE, FT TIME HOURS RATIO FLOW, CFS STAGE, FT TIME HOURS  
 .20 2005. .20 2053. .20 2053. .953.0 42.33

SUBJECT DAM SAFETY INSPECTION  
FAWN LAKE DAM  
BY DJS DATE 5-6-81 PROJ. NO. 80-238-822  
CHKD. BY DLO DATE 5-6-81 SHEET NO. EE OF EE



GAI  
CONSULTANTS, INC.  
Engineers • Geologists • Planners  
Environmental Specialists

SECTION 2

| PLAN ①            |                   | STATION SEC2      |            |                   |                   |
|-------------------|-------------------|-------------------|------------|-------------------|-------------------|
| RATIO             | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT | TIME HOURS | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT |
| .20               | 2173.             | 899.3             | 41.67      |                   |                   |
|                   |                   |                   |            |                   |                   |
| PLAN ②            |                   | STATION SEC2      |            |                   |                   |
| RATIO             | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT | TIME HOURS | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT |
| .20               | 2265.             | 899.5             | 41.33      |                   |                   |
|                   |                   |                   |            |                   |                   |
| PLAN ③            |                   | STATION SEC2      |            |                   |                   |
| RATIO             | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT | TIME HOURS | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT |
| .20               | 886.              | 896.4             | 43.03      |                   |                   |
|                   |                   |                   |            |                   |                   |
| PLAN ④            |                   | STATION SEC2      |            |                   |                   |
| RATIO             | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT | TIME HOURS | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT |
| .20               | 1088.             | 897.0             | 41.87      |                   |                   |
|                   |                   |                   |            |                   |                   |
| PLAN ⑤            |                   | STATION SEC2      |            |                   |                   |
| RATIO             | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT | TIME HOURS | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT |
| .20               | 1908.             | 898.8             | 41.67      |                   |                   |
|                   |                   |                   |            |                   |                   |
| PLAN ⑥            |                   | STATION SEC2      |            |                   |                   |
| (NON - BREATHING) | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT | TIME HOURS | MAXIMUM FLOW, CFS | MAXIMUM STAGE, FT |
| .20               | 603.              | 895.7             | 42.50      |                   |                   |

## LIST OF REFERENCES

1. "Recommended Guidelines for Safety Inspection of Dams," prepared by Department of the Army, Office of the Chief of Engineers, Washington, D. C. (Appendix D).
2. "Unit Hydrograph Concepts and Calculations," by the U. S. Army, Corps of Engineers, Baltimore District (L-519).
3. "Seasonal Variation of Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1,000 Square Miles and Durations of 6, 12, 24, and 48 Hours," Hydrometeorological Report No. 33, prepared by J. T. Riedel, J. F. Appleby and R. W. Schloemer, Hydrologic Service Division, Hydrometeorological Section, U. S. Army, Corps of Engineers, Washington, D. C., April 1956.
4. Design of Small Dams, U. S. Department of the Interior, Bureau of Reclamation, Washington, D. C., 1973.
5. Handbook of Hydraulics, H. W. King, and E. F. Brater, McGraw-Hill, Inc., New York, 1963.
6. Standard Handbook for Civil Engineers, F. S. Merritt, McGraw-Hill, Inc., New York, 1963.
7. Open-Channel Hydraulics, V. T. Chow, McGraw-Hill, Inc., New York, 1959.
8. Weir Experiments, Coefficients, and Formulas, R. E. Horton, Water Supply and Irrigation Paper No. 200, Department of the Interior, United States Geological Survey, Washington, D. C., 1907.
9. "Probable Maximum Precipitation, Susquehanna River Drainage Above Harrisburg, Pennsylvania," Hydrometeorological Report No. 40, prepared by H. V. Goodyear and J. T. Riedel, Hydrometeorological Branch Office of Hydrology, U. S. Weather Bureau, U. S. Department of Commerce, Washington, D. C., May, 1965.
10. Flood Hydrograph Package (HEC- 1) Dam Safety Version, Hydrologic Engineering Center, U. S. Army, Corps of Engineers, Davis, California, July 1978.
11. "Simulation of Flow Through Broad Crest Navigation Dams with Radial Gates," R. W. Schmitt, U. S. Army, Corps of Engineers, Pittsburgh District.
12. "Hydraulics of Bridge Waterways," BPR, 1970, Discharge Coefficient Based on Criteria for Embankment Shaped Weirs, Figure 24, page 46.

13. Applied Hydraulics in Engineering, H. M. Morris and J. N. Wiggert, Virginia Polytechnic Institute and State University, 2nd Edition, The Ronald Press Company, New York, 1972.
14. Standard Mathematical Tables, 21st Edition, The Chemical Rubber Company, 1973, page 15.
15. Engineering Field Manual, U. S. Department of Agriculture, Soil Conservation Service, 2nd Edition, Washington, D. C., 1969.
16. Water Resources Engineering, R. K. Linsley and J. B. Franzini, McGraw-Hill, Inc., New York, 1972.
17. Engineering for Dams, Volume 2, W. P. Creager, J. D. Justin, J. Hinds, John Wiley & Sons, Inc., New York, 1964.
18. Roughness Characteristics of Natural Channels, H. H. Barnes, Jr., Geological Survey Water-Supply Paper 1849, Department of the Interior, United States Geological Survey, Arlington, Virginia, 1967.
19. "Hydraulic Charts for the Selection of Highway Culverts," Hydraulic Engineering Circular No. 5, Bureau of Public Roads, Washington, D. C., 1965.

**APPENDIX E**

**FIGURES**

## LIST OF FIGURES

| <u>Figure</u> | <u>Description/Title</u>                     |
|---------------|----------------------------------------------|
| 1             | Regional Vicinity and Watershed Boundary Map |
| 2             | General Plan and Longitudinal Section        |





LONGITUDINAL SECTION





**CONSULTANTS, INC.**

## FIGURE 2



**APPENDIX F**

**GEOLOGY**

## Geology

Fawn Lake is located in the glaciated Low Plateaus section of the Appalachian Plateaus physiographic province of eastern Pennsylvania. In this area, the Appalachian Plateaus province is characterized topographically by flat-topped, hummocky hills formed as a result of glaciation and subsequent stream dissection of nearly flat-lying strata. The Devonian age sedimentary rock strata in Pike County regionally strike N35°E and dip gently to the northwest. The Delaware River is the major drainage basin in the area. Major tributary streams intersect the Delaware River at right angles; whereas, smaller streams display a slightly more random tributary pattern. Both major and minor tributary stream systems are joint controlled and exhibit modified rectangular and trellis-type drainage patterns.

Structurally, the area containing Pike County lies on the south flank of a broad, asymmetrical synclinorium that plunges to the southwest. Superimposed on this broad structural basin are numerous anticlinal and synclinal folds characterized by planar limbs and narrow hinges. Due to prior glaciation, low relief and surficial soil cover, fold axes are difficult to trace.

The sedimentary rock sequences in the vicinity of the dam and reservoir are probably members of the Susquehanna Group of Upper Devonian age (see Geology Map). The sedimentological changes observed in the Catskill Formation indicate that the rate of sedimentation exceeded the rate of basin subsidence, resulting in a facies change from marine to non-marine strata. On the accompanying geology map the delineation between the Middle and Upper Devonian age sedimentary rock sequences represents the Allegheny Front, which separates the Valley and Ridge physiographic province from the Appalachian Plateaus physiographic province.

Approximately half of Pike County, including the dam site, is covered by a blanket of Wisconsin age (most recent) glacial drift which, based on the degree of weathering, was probably deposited during the Woodfordian stage. Valley bottoms are typically covered by recent alluvium and Woodfordian outwash of variable thickness, but typically less than 10 feet. These deposits are characteristically unconsolidated stratified sand and gravel usually with more gravel than sand and some small boulders. The direction of the Wisconsin ice advance was from the northeast over the Catskill Mountains and from the north over the Appalachian Plateau. The terminal moraine resulting from the southern most advance of the Wisconsin ice sheet in this area is located in the southern portion of Monroe County, which borders Pike County to the South.

References:

1. Fletcher, F. W., Woodrow, D. L., "Geology and Economic Resources of the Pennsylvania Portion of the Milford and Port Jervis 15 minute U.S.G.S. Topographic Quadrangles," Pennsylvania Geological Survey, Fourth Series, Harrisburg, Atlas 223, 1970.
2. Sevon, W. D., Berg, T. M., "Geology and Mineral Resources of the Skytop Quadrangle, Monroe and Pike Counties, Pennsylvania", Pennsylvania Geological Survey, Fourth Series, Harrisburg, Atlas 214A., 1978.
3. Sevon, W., Personal Communication, Commonwealth of Pennsylvania Department of Environmental Resources, Harrisburg, December 3, 1980.



### LEGEND

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UPPER DEVONIAN  | Catskill Formation - Shohola Member interbedded in to 20-foot thick sets of greenish-grey, medium-grained sandstone and sandy shale, and tan or brownish-grey to medium-light brown sandstone and shale. Sandstones are predominantly low-rank arenaceous. Bedding is thin to none. Shale units have simple or planar sets of small- to medium-scale, generally low-angle, minor stratifications. Interbeds with shale units are abruptly disconformable to gradational. Concretionary features are poorly developed. Shale is thinly laminated and well cleaved. Bed spacing, concretion bedding, and shale marks are present in association with sandstone units. Member is more than 2,000 feet thick. Lower contact is gradational and expressed at top of highest red bed of the underlying Antrim. Antrim has three Members, m. b. (brownish-grey), s. l. (silty, massive), finely laminated well-cleaved shale containing thin beds of brownish-grey sandy shale, and n. f. (nearly very fine grained sandstone). Unit is the "first red" or marl section in Upper Devonian group. Member is about 100 feet thick. Lower contact is gradational and is placed at the base of lowest red bed. |
| MIDDLE DEVONIAN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HAMILTON GROUP  | Mahantango Formation - Upper member medium-dark-grey, fairly coarse grained, thin-bedded dolomite and silty shale; member is about 200 feet thick and is separated from lower member by the "Pinecroft Ridge," a calcareous dolomite bioherme containing abundant horn corals. The centerfold is about 50 feet thick. Lower member, virtually same lithology as upper member. Unit is about 1,100 feet thick. Lower contact is gradational.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| REFERENCE:      | Marcellus Shale - Dark-grey, evenly laminated, silty clay shale and shaly dolomite. Unit commonly contains very hard lime concretions and is well cleaved; bedding is generally obscured. Member is about 75-feet thick. Lower contact is gradational.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

SCALE



GEOLOGY MAP



GEOLOGIC MAP OF NORTHEASTERN PENNSYLVANIA. COMPILED BY  
GEO. W. STOKE AND O.A. LJUNGSTEDT COMMONWEALTH OF PENN-  
SYLVANIA DEPT. OF INTERNAL AFFAIRS DATED 1932, SCALE  
1' = 6 MILES.