

©Programa de Matemáticas Vol. I , Nº 1, (2014)

Revista Del Programa De Matemáticas I (2014) 26–29

Conjuntos débilmente semi abiertos con respecto a un ideal Weakly semi open sets with respect to an ideal

Ennis Rosas¹

¹Departamento de Matemáticas, Escuela de Ciencias Universidad de Oriente, Cumaná (Venezuela) Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla (Colombia) E-mail: ennisrafael@gmail.com

Carlos Carpintero²

²Departamento de Matemáticas, Escuela de Ciencias Universidad de Oriente, Cumaná (Venezuela) Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla (Colombia) E-mail: carpintero.carlos@gmail.com

Alvaro Farith Muñoz³

³Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla (Colombia) E-mail: almuoz@hotmail.com

Received / Recibido: 20/12/2013. Accepted / Aceptado: 16/03/2014

Resumen

En este artículo se introducen las nociones de conjuntos débilmente semi abiertos con respecto a un ideal, se caracterizan y finalmente se encuentran algunas propiedades de éstos.

Palabras claves: conjunto débilmente; semi abierto con respecto a un ideal; conjunto semi abierto 2010 *Mathematics Reviews* Primary 54A05. Secondary 54C08, 54D65.

Abstract

In this article we introduce the notions of weakly semi open sets with respect to an ideal, characterize its and find some properties.

Keywords: weakly semi; open set with respect to an ideal; semi open set. 2010 *Mathematics Reviews* Primary 54A05. Secondary 54C08, 54D65.

1. Introducción

La noción de conjunto semi abierto fue introducida por Levine en [3]. Recientemente Friday Ifeanyi Michael en [1] estudiaron los conjuntos semi abiertos con respecto a un ideal y se prueba que la noción de conjuntos semi abiertos es equivalente a la noción de conjunto semi abierto con respecto a un ideal. S. Jafari et al. [2], introducen y estudian el concepto de conjuntos g-cerrados con respecto a un ideal como una extensión de los conjuntos g-cerrados. Al igual como se obtiene la noción de topología generalizada a partir de la noción de topología, vamos a proceder a generalizar la definición de conjunto semi abierto con respecto a un ideal para estudiar sus propiedades y dar algunas caracterizaciones. Recor-

demos que un ideal I sobre un espacio topológico (X,τ) es una colección no vacía de subconjuntos de X que satisface las siguientes propiedades: si $A \in I$ y $B \subset A$ entonces $B \in I$ y si $A,B \in I$ entonces $A \cup B \in I$.

2. Conjuntos débilmente semi abiertos con respecto a un ideal

Sea X un espacio topológico. Recordemos que $A \subset X$ es un conjunto semi abierto[3], si existe un conjunto abierto U tal que $U \subset A \subset Cl(U)$. Un subconjunto A de X es semi abierto con respecto a un ideal I[1], si existe un conjunto abierto U tal que $U \setminus A \in I$ y $A \setminus Cl(U) \in I$. La anterior noción motiva a la siguiente definición.

Definición 1. Un subconjunto A de X se dice que es débilmente semi abierto con respecto a un ideal I (denotado por débilmente I-semi abierto) si $A = \emptyset$ ó si $A \neq \emptyset$ existe un conjunto abierto $U \neq \emptyset$ tal que $U \setminus A \in I$.

Es de notar que la razón fundamental de hacer consideraciones sobre el conjunto A en la definición 1, es para no obtener siempre que todo subconjunto A de X es débilmente I-semi abierto para cualquier ideal I.

Ejemplo 2.1. Sea I cualquier ideal, si A es un conjunto abierto cualquiera, entonces A es un conjunto débilmente I-semi abierto.

Ejemplo 2.2. Sea I cualquier ideal. Si A es un conjunto semi abierto, entonces A es un conjunto débilmente I-semi abierto.

Ejemplo 2.3. Sea I cualquier ideal. Si A es un conjunto I-semi abierto, entonces A es un conjunto débilmente I-semi abierto.

Ejemplo 2.4. Sea $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a\}, \{b,c\}\}$. El conjunto $A = \{a,b\}$ es débilmente I-semi abierto pero no es un conjunto semi abierto, ni tampoco I-semi abierto

El siguiente teorema da una caracterización de los conjuntos no vacios A que son débilmente I-semi abiertos.

Teorema 2.5. Sea $A \neq \emptyset$ un subconjunto de X e I un ideal. A es débilmente I-semi abierto si soló si existe un conjunto abierto U y $C \in I$ tal que $(U \setminus C) \subset A$

Demostración. Supongamos que $A \neq \emptyset$ es un conjunto débilmente I semi abierto, entonces existe un conjunto abierto $U \neq \emptyset$ tal que $U \setminus A \in I$. Sea $C = U \setminus A = U \cap (X \setminus A)$. Entonces $U \setminus C \subset A$. Recíprocamente supongamos que existe un conjunto abierto $U \setminus C \in I$ tal que $(U \setminus C) \subset A$, luego $(U \setminus A) \subset C$ sigue entonces que $U \setminus A \in I$

Definición 2. Un subconjunto A de X se dice que es débilmente I-semi cerrado, si $X \setminus A$ es débilmente I-semiabierto.

Teorema 2.6. Sea (X, τ) un espacio topológico, I un ideal y A un subconjunto de X. Si A es débilmente I-semi cerrado entonces $A \subset (K \cup B)$ para algún conjunto cerrado K de X y $B \in I$.

Demostración. Si A es débilmente I-semi cerrado, entonces $X \setminus A$ es débilmente I-semi abierto. Si $X \setminus A = \emptyset$, entonces A = X, en consecuencia, \emptyset es débilmente I-semi cerrado. Si $X \setminus A \neq \emptyset$, entonces existe U abierto y $B \in I$ tal que $(U \setminus B) \subset (X \setminus A)$ sigue que $A \subset X \setminus (U \setminus B) = X \subset (U \cap (X \setminus B)) = (X \setminus U) \cap B$. Tomemos $K = (X \subset U)$ y sigue que $A \subset K \cup B$

El recíproco del Teorema anterior no es necesariamente cierto, como se muestra en el siguiente ejemplo.

Ejemplo 2.7. Sea $X = \{a,b,c,d\}$ dotado de la topologia $\tau = \{\emptyset, X, \{a,b\}, \{c,d\}\}$. tomemos $I = \{\emptyset\}$ y $A = \{a,c\}$. Si K = X y $B = \emptyset$, $A \subset K \cup B$ pero A no es débilmente I-semi cerrado ya que $X \subset A$ no es débilmente I-semi abierto.

Teorema 2.8. La unión arbitraria de cualquier familia de conjuntos débilmente *I*-semi abierto es débilmente *I*-semi abierto.

Demostración. Sea $\{A_{\alpha}\}_{\alpha \in J}$ una colección de conjuntos débilmente I- semi abiertos, entonces para cada A_{α} con $\alpha \in J$, existe U_{α} , $\alpha \in J$ tal que $U_{\alpha} \setminus A_{\alpha} \in I$, ahora tomemos α' fijo en J luego tenemos que $U'_{\alpha} \setminus \bigcup_{\alpha \in J} A_{\alpha} \subset U'_{\alpha} \setminus A'_{\alpha} \in I$ En consecuencia, $\bigcup_{\alpha \in J} A_{\alpha}$ es débilmente I-semi abierto. \square

La intersección de conjuntos débilmente *I*-semi abiertos no es necesariamente débilmente *I*-semi abierto como se muestra a continuación.

Ejemplo 2.9. Sea $X = \{a, b, c\}$ con la topología $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\} \text{ e } I = \{\emptyset\}$, consideremos $A = \{a, b\}$ y $B = \{b, c\}$ es fácil ver que A y B son conjunto débilmente I-semi abierto pero $A \cap B = \{b\}$ no lo es.

Observación 2.10. Si denotamos $SO_I(X, \tau)$ como la familia de los conjunto debilmente I-semi abierto de espacio topológico (X, τ) entonces $SO_I(X, \tau)$ es un estructura minimal que satisface las condiciones de Maki[4].

De la Definición 1, se obtiene que si $\emptyset \neq A \subset B$ y A es débilmente I-semiabierto, entonces B también es débilmente I-semi abierto y en consecuencia, obtenemos el siguiente corolario.

Corolario 2.11. Si A es débilmente Isemiabierto, entonces cualquier subconjunto Bque contiene a A es débilmente I semi abierto, en
particular, Cl(A) es débilmente I-semiabierto.

El recíproco del corolario anterior no es necesariamente cierto como se prueba en el siguiente ejemplo.

Ejemplo 2.12. Sea $X = \{a,b,c,d\}$ dotado de la topología $\tau = \{X,\emptyset,\{a,c\},\{a,b,c\}\}$ e $I = \{\emptyset\}$. Sea $A = \{b,c\}$, entonces Cl(A) = X es débilmente I-semiabierto pero A no es débilmente I-semiabierto.

El siguiente teorema nos da un condición suficiente para que $SO_I(X, \tau)$ = P(X).

Teorema 2.13. Sea (X, τ) un espacio topológico e I un ideal tal que existen un conjunto unitario que pertenece tanto a la topología como al ideal, entonces $SO_I(X, \tau) = P(X)$.

Demostración. Sea (X,τ) un espacio topológico, I un ideal y supongamos que el conjunto unitario $\{a\} \in I$. Sea $\{b\}$ cualquier conjunto unitario en X, entonces $\{b\} \in SO_I(X,\tau)$, ya que $\{a\} \setminus \{b\} \in I$. Ahora usando Teorema 2.8, obtenemos que cualquier subconjuntos A de X esta en $SO_I(X,\tau)$.

Estamos interesados en determinar bajo que condiciones se cumple que si Cl(A) es débilmente I-semi abierto entonces A es débilmente I-semi abierto, para $A \subseteq X$.

Aquí podemos enunciar lo siguiente:

- 1. Si Cl(A) = X entonces A no es necesariamente es débilmente I-semi abierto.
- Si existe A ⊂ X, tal que Cl(A) es un conjunto clopen entonces A no es necesariamente débilmente I-semi abierto. Si tomamos X = {a,b,c,d}, τ = {Ø, X, {a,b}, {c,d}}. Para A = {a}, Cl(A) = {a,b} es débilmente I-semi abierto pero A no lo es.

Teorema 2.14. Sea (X, τ) un espacio topológico e I un ideal tal que la colección de conjuntos abiertos satisface la propiedad de intersección finita, entonces si A y B son débilmente I-semi abierto entonces lo es $A \cap B$.

Demostración. Dado que A y B son conjuntos débilmente I-semi abiertos entonces existen conjuntos U, V abiertos tal que $U \setminus A \in I$, $V \setminus B \in I$, por lo tanto $(U \cap V) \setminus (A \cap B) = (U \setminus A) \cap V \cup U \cap (V \setminus B) \in I$

Observación 2.15. En la Proposición 6 de [1], se enuncia que si I es un ideal sobre (X, τ) tal que la colección de conjuntos abierto satisface la propiedad de intersección finita y cada subconjunto abierto no vacío de X es denso entonces Cl(A) es I-semi abierto si soló si A es I-semi abierto. Este resultado no es cierto en general, como se ve en el Ejemplo 2.12, donde la topología τ satisface la propiedad de intersección finita y todo subconjunto abierto no vacío de X es denso, tomando $A = \{b, c\}$, obtenemos que Cl(A) = X es I-semiabierto pero A no es I-semiabierto.

Teorema 2.16. (X, τ) un espacio topológico, $I \neq \emptyset$, τ satisface la propiedad de la intersección finita y $A \subset X$ tal que $Cl(A) \neq X$, entonces Cl(A) es débilmente I-semi abierto si soló si A es débilmente I-semi abierto.

Demostración. Si A es débilmente I-semi abierto, entonces Cl(A) es débilmente I-semi abierto, usando Corolario 2.11. Recíprocamente, supongamos que Cl(A) es débilmente I-semi abierto, entonces $Cl(A) = \emptyset$ o $Cl(A) \neq \emptyset$: Si $Cl(A) = \emptyset$, entonces $A = \emptyset$ y por lo tanto A es débilmente I-semi abierto. Ahora si $Cl(A) \neq \emptyset$ existe un conjunto abierto $U \neq \emptyset$ tal que $U \setminus Cl(A) \in I$. Tómese el conjunto abierto $V = U \setminus Cl(A)$, $V \neq \emptyset$, $V \in I$ y además $V \setminus A = (U \setminus Cl(A)) \setminus A = U \setminus Cl(A) \in I$. □

Observación 2.17. Observe que si en el Teorema 2.16:

- 1. $I \neq \emptyset$ y $Cl(A) \neq X$ son omitidas, el resultado no necesariamente es cierto, (vease Ejemplo 2.12).
- 2. Si cambiamos $Cl(A) \neq X$ por Cl(A) = X, el resultado no necesariamente es cierto. En Ejemplo 2.12, tómese $I = \{\emptyset, \{c\}\}$ y $A = \{a, d\}$, obtenemos que Cl(A) es débilmente I-semi abierto pero A no es débilmente I-semi abierto.
- 3. $I = \emptyset$ y $Cl(A) \neq X$ nunca puede ocurrir, si esto ocurre, entonces Cl(A) nunca puede ser débilmente I-semi abierto.

Referencias

- [1] Friday Ifeanyi Michael K., On some open sets with respect to an ideal, *European Journal of Pure and Applied Mathemetics* **6(1) (2013)**, 53-58.
- [2] S. Jafari and N. Rajesh, Generalized closed sets with respect to and ideal, European Journal of Pure and Applied Mathemetics, 4(2) (2011), 147-151.
- [3] N. Levine, semi open sets and semi continuity in topological spaces, *American Mathematical Monthly* **70 (1963)**, 36-41.
- [4] H. Maki, R. Chandrasekhara Rao and A. Nagoor Gani, On generalizing semi-open sets and preopen sets, Pure Appl. Math. Math. Sci, 49 (1999), pp 17-29.

Para citar este artículo: Rosas E. et all, 2014, Çonjuntos débilmente semi abiertos con respecto a un ideal". Disponible en Revistas y Publicaciones de la Universidad del Atlántico en: http://investigaciones.uniatlantico.edu.co/revistas/index.php/MATUA.