20240122

MCMC

Hsin-Pei Huang Huei-Wen Teng

Bayesian analysis

- * Bayesian analysis is a statistical paradigm that answers research questions about unknown parameters using probability statements.
- * Estimating the posterior distribution of a parameter of interest, is at the heart of Bayesian analysis.
- * Bayesian analysis can make model parameters be expressed as probability statements based on the estimated posterior distribution

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)} \cdot P(H)$$

* Notation:

H: assumption , E: evidence , P(H): prior distribution

P(H|E): posterior distribution , P(E|H): likelihood model (function of E)

P(E): marginal likelihood which is constant

Inverse method

- * Aims: generate a sample from a distribution f(x)
 - * Suppose the cdf F(x) and its inverse function $F^{-1}(u)$ exist
 - * Generate $U \sim U(0,1)$ using pheudo number generator.
 - * Then, $F^{-1}(U)$ hs the same distribution as f(x).
- * Example:
 - * Generate $X \sim N(0,1)$ (David)

MCMC algorithm

- * Aims: generate a sample from a distribution $z(x) = cf(x) \propto f(x)$ where c is unknown: Inverse method fails.
 - * We use MCMC algorithm to sample in this case.
- Independence MH (Wendy)
 - * Proposal?
 - * $\alpha_t = ?$
- Random-Walk MH (James)
 - Proposal?
 - * $\alpha_t = ?$

The Metropolis-Hastings algorithm starts from any value x_1 belonging to the support of the target distribution. The value x_1 can be user-defined or extracted from a given distribution.

Then, the subsequent values x_2 , $ldotsx_T$ are generated recursively.

In particular, the value x_t at time step t is generated as follows:

- 1. Draw y_t from the distribution with density $q(y_t|x_{t-1})$;
- 2. Set $p_t = min\left(\frac{f(y_t)}{f(x_{t-1})}\frac{q(x_{t-1}|y_t)}{q(y_t|x_{t-1})}, 1\right)$
- 3. Draw u_t from a uniform distribution on [0,1];
- 4. If $u_t \leq p_t$, set $x_t = y_t$; otherwise, set $x_t = x_{t-1}$.

Since u_t is uniform, $p(u_t \le p_t) = p_t$. That is, the probability of accepting the proposal y_t as the new draw x_t is equal to p_t .

The following terminology is used:

- The distribution $q(y_t|x_{t-1})$ is called proposal distribution;
- The draw y_t is called proposal;
- \bullet The probability p_t is called acceptance probability;
- When $u_t leq p_t$ and $x_t = y_t$, we say that the proposal is accepted;
- When $u_t > p_t$ and $x_t = x_{t-1}$, we say that the proposal is rejected.

If $q(x_{t-1}|y_t) = q(y_t|x_{t-1})$ for any value of x_{t-1} and y_t , then we say that the proposal distribution is symmetric.

In this special case, the acceptance probability is $p_t = min\left(\frac{f(y_t)}{f(x_{t-1})}, 1\right)$ and the algorithm is called Metropolis algorithm.

*

A naive example

Please update the red line

* Please generate a sample with density proportional: $f(x) = \exp(-\sin(100x)/x)$ for the support $x \in [0,10]$

Outputs

- * Time series plot of x_t
- Density plot of x_t
- * ACF of x_t: Slowly decay: not a good sign...
- * Acceptance rate

SVCJ

- (1) $d \log S_t = \mu dt + \sqrt{V_t} dw_t^{(S_t)} + Z_t^y dN_t$: log return process
- (2) $dV_t = \kappa(\theta V_t)dt + \sigma_V \sqrt{V_t} dW_t^{(V)} + Z_t^{\nu} dN_t$: volatility process
- (3) $Cov(dW_t^{(S)}, dW_t^{(V)}) = \rho dt$
- (4) $P(dN_t = 1) = \lambda dt$: jump
- (5) $Z_t^y | Z_t^v \sim N(\mu_y + \rho_j Z_t^v, \sigma_y^2); Z_t^v \sim exp(\mu_v).$

* Notations:

- $\{S_t\}$: the price process, $\{d \log S_t\}$: the log returns, $\{V_t\}$: the volatility process
- μ : the expected log return, κ and θ are the mean reversion rate and mean reversion level.
- σ_V is the volatility of the volatility process
- $W^{(S)}$ and $W^{(V)}$ are two correlated standard Brownian motions with correlation ρ .
- N_t is a jump process with a constant intensity parameter λ .
- Z_t^y and Z_t^v are the random jump sizes.

Simulation studies

SVCJ model