Communication Complexity Examples

Jake Kinsella

April 6, 2021

Example 1: Parity

$$f(x,y) = \bigoplus xy$$

"Are the number of ones in xy even or odd?"

Protocol Π

Player 1	Player 2
x = 101	y = 110
$P_1(x) = parity(101) = 0 \longrightarrow$	n. = 0
	$\begin{vmatrix} p_1 = 0 \\ \leftarrow P_2(y, p_1) = parity(110) \oplus 1 = 0 \end{vmatrix}$
$p_2 = 0$	

$$C(\Pi) = 2$$

C(f) is at least 2 because the function f depends on both x and y so there must be at least one bit of communication from both players.

Thus
$$C(f) = 2 \text{ via } \Pi$$

Example 2: Halting

Function $H: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$

$$x = 1^n \text{ and } y = < M >$$

H returns 1 if M halts on x

Protocol Π

Player 1	Player 2
$x = 1^{10}$	$y = \langle M_{accept} \rangle$
$P_1(1^{10}) = 1 \longrightarrow$	
	$p_1 = 1$
	$P_2(y, p_1) = M_{accept}(1^{ \langle M_{accept}\rangle })$ $\longleftarrow M(1^{10}) = 1$
	$\longleftarrow M(1^{10}) = 1$
$p_2 = 1$	

In communication complexity problems, both players have unlimited computation power. This allows Player 2 to solve the halting problem. Computational power and time is ignored to focus on communication between players.