Side Channel Attack (Power Analysis)

IT정보공학과 신명수

목차

- 1. About Side Channel Attack
- 2. SPA (Simple Power Analysis)
- 3. DPA (Differential Power Analysis)
- 4. CPA (Correlation Power Analysis)

- 부채널 정보
 - 암호 장비에서 암호 알고리즘이 실행될 때 평문-암호문 쌍 이외의 암호 동작 소요시간, 소비 전력량, 방출되는 전자기파 등을 말함.
- 부채널 분석
 - 부채널 정보를 통해 비밀키와 같은 정보를 취득하는 분석 방법

Timing Analysis

- 연산이 수행될 때의 시간 차이를 이용하는 공격 기법.
- 암호 시스템은 서로 다른 입력 데이터를 처리하기 위해 조금씩 다른 시간이 소비된다.
 Ex. 분기 및 조건문, 캐시 hit 횟수, 곱셈 및 나눗셈 연산 등
- 암호 연산의 실행 시간이 비밀키와 연관된 정보에 의존한다는 가정을 기반함.

Power Analysis

- 암호 모듈이 처리하는 데이터와 연산에
 따라서 순간 소비 전력의 차이를 사용하는
 공격 기법.
- 암호 모듈이 설치된 기기에 저항과
 오실로스코프를 연결해 파형을 수집.

Power Analysis

- 소비 전력은 암호 모듈이 동작할 때 입력받은 정보에 따라서 약간의 차이를 보이게 된다.
- 전력 분석 공격은 데이터와 소비전력의 연관성을 바탕으로 공격

내부 연산 데이터와 소비 전력 사이 연관성

회로에서 사용하는 CMOS 인버터 (NOT gate)

내부 연산 데이터와 소비 전력 사이 연관성

데이터가 0에서 1로 바뀔 때, 1에서 0으로 바뀔 때 전력 소비가 발생한다.

• 전력 분석은 데이터가 바뀔 때 소비 전력의 차이를 바탕으로 공격을 한다.

데이터 상태 변화 모델링

• Hamming Weight Model (the number of bits set to 1)

$$HW(x) = \sum x[i], \qquad x = (x[0], ..., x[n-1]) \in \{0, 1\}^n$$

 $ex. \ HW(110100101) = 5.$

Hamming Distance Model

$$HD(x_0, x_1) = HW(x_0 \oplus x_1)$$

ex. $HD(0010, 0001) = 2$.

데이터 상태 변화 모델링

- 데이터가 변경될 때 전력 소비량이 발생
 - -> 비트가 바뀌는 만큼 전력 소비가 일어나는 것을 모델링함.

수집하는 소비 전력

- 1. 연산 의존 소비 전력
- 2. 데이터 의존 소비 전력
- 3. 노이즈
- 4. 상수 요소 (디바이스가 동작하는데 필요한 소비 전력 등)

전력 분석 공격은 데이터와 전력 소비 간의 관계를 통해 공격 -> 노이즈의 요소가 영향을 미칠 수 있음.

• 하나 혹은 적은 수의 전력 파형을 분석하여, 민감 정보를 추출하는 전력분석기법을 말한다.

• 소비전력량, 연산시간 차이를 이용해 키 추출 가능.

• 분석 및 공격 위치 검색에 사용됨.

- 공개키 암호의 비밀키 추출에 효과적이다.
- 소수의 전력 파형만으로 가능
- 비밀키를 실시간으로 추출 가능
- 명령어 수행 여부 활용
- 통계적 기법 미적용 -> 신호 노이즈에 취약하다.

SPA로 공개키 암호 비밀키 추출

ex. RSA 모듈러 지수승 연산 구현 부분을 공격하여 키를 추출

Algorithm 1. Modular exponentiation $(X^d \mod N)$ calculation using left to right binary method.

```
input: X, N, d = (d_{k-1}, d_{k-2}, \dots, d_0)
output: Z = X^d \mod N
Z \leftarrow 1
For \ i = k-1 \ down \ to \ 0 \ do
Z \leftarrow Z \times Z \ mod \ N;
if (d_i = 1) then
Z \leftarrow Z \times X \ mod \ N;
end
end
end
return \ Z;
```


암호 알고리즘 구조 파악

DPA나 CPA를 위해 공격 위치를 파악하기 위해 사용하거나 리버싱에 사용될 수 있다.

AES-128 10 round Encryption

• 다수의 파형을 통계적으로 분석하여 암호 알고리즘 비밀키를 추출하는 방법.

• 블록암호 비밀키 추출에 효과적임.

- 다수의 전력 파형을 사용함.
- 파형 수집과 비밀키 추출 단계를 구분한다.
- 연산 데이터의 소비 전력 모델 정보를 활용한다.
- 통계적 기법을 활용해 신호 노이즈에 내성이 있다.

DPA 공격 조건

- 1. 부채널 신호는 연산 데이터에 의존한다.
- 2. 암호 알고리즘의 동작 방식은 공개되어있다.
- 3. 공격자는 충분한 수의 부채널 신호를 수집할 수 있다.
- 4. 공격자는 암호 알고리즘의 입력 또는 출력을 알 수 있다.

블록암호에 대한 DPA 공격 과정

1. 다수의 임의 평문을 입력하여 소비전력을 측정 Input 데이터 - Trace(파형) 의 한쌍 ex. AB - (2, 5, 7, 3, 8, 9, 3), 05(5, 7, 3, 0, 9, 8, 6)

블록암호에 대한 DPA 공격 과정

2. 추측 키(1 byte)와 평문을 이용하여 중간값 연산 $ex.Sbox(p \oplus key)$

블록암호에 대한 DPA 공격 과정

3. 중간값의 hamming weight를 계산하여 값에 따라 분류

블록암호에 대한 DPA 공격 과정 예시

2. 추측 키(1 byte)와 평문을 이용하여 중간값 연산 $\exp(p \oplus key)$ 현재 계산하고 있는 추측 키가 0xC2 이고, $Sbox(0xAB \oplus 0xC2) = 0x54$ 라 하자.

3. 중간값의 hamming weight를 계산하여 값에 따라 분류 0x54(01010100) 이므로 HW(0x54) = 3 이다. HW(Sbox()) = 4 를 기준으로 Small group 과 Big group 로 분류

블록암호에 대한 DPA 공격 과정

4. 양분한 데이터 그룹 각각 평균 소비전력을 구한다.

블록암호에 대한 DPA 공격 과정

5. 차분 신호를 계산

추측 키 0xC2에 대한 차분 신호

여러개의 추측키에 대해 차분파형을 생성하여 비교

HW는 bit 1의 수 예)11001100 = HW(4)

KEY GUESS

Figure 8. DPA traces, one correct and two incorrect, with power reference [7].

4. CPA (Correlation Power Analysis)

• 다수의 파형과 Hamming Weight 간의 상관 관계를 계산하여 비밀 키를 추출하는 방법.

• Hamming Weight 집단과 소비 전력 집단 간 가지는 선형적 관계를 기반으로 공격.

4. CPA (Correlation Power Analysis)

- 다수의 임의 평문을 입력하여 소비 전력 측정
- 추측한 키와 평문을 이용하여 중간값을 Hamming Weight 계산
- 측정한 소비 전력과 Hamming Weight 간의 상관 관계 계산
- 상관도가 가장 높게 나오는 추측키 = 올바른 키

4. CPA (Correlation Power Analysis)

CPA 에서 사용되는 상관 계수

$$\rho(X,Y) = \frac{E(XY) - E(X)E(Y)}{\sqrt{E(X^2) - E(X)^2} \cdot \sqrt{E(Y^2) - E(Y)^2}}$$

Fig. 2. Two correlation peaks for full word (32 bits) and partial (4 bits) predictions. According to theory the 20% peak should rather be around 26%.