

ЭТИКЕТКА

УП3.487.363 ЭТ

Микросхема интегральная 564 ИП5В Функциональное назначение – Универсальный двухразрядный умножитель

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение X0 S0 - 11 14 УМ У0 9 15 S1 X1 7 13 S2 У1 S3 12 К0 M0 10 -К1 M1 P0 M2

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход старшего разряда числа У	9	Выход второго разряда результата S
2	Вход первого (младшего) разряда числа М	10	Вход второго (старшего) разряда числа К
3	Вход второго разряда числа М	11	Выход первого (младшего) разряда результата
4	Выход вспомогательного переноса Ро	12	Вход первого (младшего) разряда числа К
5	Вход третьего (старшего) разряда числа М	13	Вход второго (старшего) разряда числа X
6	Выход четвертого (старшего) разряда результата	14	Вход первого (младшего) разряда числа X
7	Выход третьего разряда результата S	15	Вход первого (младшего) разряда числа У
8	Общий	16	Питание, U _{CC}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

	Буквенное	Норма		
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	
1	2	3	4	
1. Выходное напряжение низкого уровня, B, при: $U_{\rm CC}$ = 5 B, 10 B	U_{OL}	-	0,01	
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5~B$ $U_{CC} = 10~B$	Uoн	4,99 9,99	- -	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,~U_{IL}=1,5~B$ $U_{CC}=10~B,~U_{IL}=3,0~B$	U _{OL max}	-	0,8 1,0	
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IH} = 7,0 B	$U_{ m OHmin}$	4,2 9,0	-	
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B$	I_{IL}	-	/-0,1/	
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15~\mathrm{B}$	I_{IH}	-	0,1	
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 0,4 \; B \\ U_{CC} = 10 \; B, \; U_O = 0,5 \; B$	I_{OL}	0,4 1,0	-	
8. Выходной ток высокого уровня, мА, при: $U_{CC}=5~B,~U_{O}=2,5~B\\ U_{CC}=10~B,~U_{O}=9,5~B$	I_{OH}	/-1,0/ /-1,0/	-	

Продолжение таблицы 1			
1	2	3	4
9. Ток потребления, мкА, при:			
$U_{CC} = 5 B$	I_{CC}	-	5,0
$U_{\rm CC} = 10 \mathrm{B}$	100	-	10,0
$U_{\rm CC} = 15 \mathrm{B}$		-	20,0
10. Время задержки распространения сигнала при включении, нС, при:			
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$			
от К ₀ до Р ₀		=	560
от M_0 до S_2	$t_{ m PHL}$	-	1200
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$			
от К ₀ до Р ₀		-	230
от M ₀ до S ₂		-	600
11. Время задержки распространения сигнала при выключении, нС, при:			
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$			
от К ₀ до Р ₀		-	560
от M_0 до S_2	$t_{\rm PLH}$	-	1200
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$			
от К ₀ до Р ₀		-	230
от M ₀ до S ₂		-	600
12. Входная емкость, пФ, при:	C		9.0
$U_{\rm CC} = 10 \mathrm{B}$	C_{I}	-	8,0

1.2 Содержание драгоценных металлов в 1000 шт. микрос

золото г, серебро г, в том числе:

золото г/мм
на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ C - не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

 $3.1 \ \underline{\Gamma}$ арантии предприятия — изготовителя — по ОСТ В $11 \ 0398 - 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4	СВЕДЕНИЯ	O	ПРИЕ	MKE
---	----------	---	------	-----

Микросхемы 564	ИП5В соответствуют техническ	им условиям бК0.347.064 Т	У 18	и признаны	годными для экс	плуатации.
1	3	,		1		,

Приняты по		от		_	
(из	вещение, акт и др.)		(дата)		
Место для штампа	ОТК _			Место для штампа Е	П
Место для штампа	« Перепроверка п	роизведен	на	(дата)	>>
Приняты по(из	вещение, акт и др.)	от	(дата)	_	
Место для штампа	ОТК _			Место для штампа Е	ВΠ

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с 6К0.347.064 ТУ/02.