Systems Similarity

Tim McLain
Brigham Young University

Conservation laws

- Inflow Outflow = Rate of Creation (or Storage)
- How does this general statement of the conservation laws apply to

$$\sum F = \frac{d}{dt}(mv)$$

• Electrical systems?

$$\sum i = C \frac{dV}{dt}$$

• Fluid systems?

$$\sum \dot{m} = \frac{d}{dt}(\rho V) = \dot{\rho}V + \rho \dot{V}$$

• Thermo-fluid systems?

$$\underbrace{\sum \dot{Q}_h}_{\text{heat transfer}} - \underbrace{\dot{W}}_{\text{mass flow across boundaries}} = \underbrace{\frac{d}{dt} \left(mu + \frac{mv^2}{2} + mzg \right)_{cross}}_{\text{energy stored}}$$

Power variables

domain	effort variable	flow variable
mechanical translation	force - F	velocity - v
mechanical rotation	\mid torque - T	angular velocity - Ω
electrical	$oxed{voltage - V}$	\mid current - i
fluid	pressure - P	volumetric flow rate - Q

 $power = effort \times flow$

Energy variables

domain	momentum variable	displacement variable
mechanical translation	linear momentum - p	linear displacement - x
mechanical rotation	angular momentum - H	angular displacement - θ
electrical	flux linkage - λ	charge - q
fluid	pressure momentum - p_P	$oxed{volume - V}$

For a spring:
$$PE = \int \text{power } dt = \int Fv \ dt = \int kx \ dx = \frac{1}{2}kx^2$$
 For a mass:
$$KE = \int \text{power } dt = \int vF \ dt = \int v \ dp = \int mv \ dv = \frac{1}{2}mv^2$$

Fundamental relationships

flow =
$$\frac{d}{dt}$$
 (displacement)

effort =
$$\frac{d}{dt}$$
 (momentum)

Dissipative elements (Resistance)

effort = resistance \times flow

domain	constitutive relation	physical description
mechanical translation	F = bv	friction, damping
mechanical rotation	$ au = b\Omega$	friction, damping
electrical	V = Ri	electrical resistance
fluid	P = RQ	fluid drag, resistance

Energy storage elements (Capacitance)

effort =
$$\frac{1}{\text{capacitance}} \times \text{displacement}$$

capacitance
$$\times \frac{d}{dt}$$
 effort = flow

domain	constitutive relation	alternat relation	physical description
mechanical translation	F = kx	$\frac{1}{k}\frac{dF}{dt} = v$	linear spring
mechanical rotation	$ au = k\theta$	$\frac{1}{k}\frac{d au}{dt} = \Omega$	torsional spring
electrical	$V = \frac{1}{C}q$	$C\frac{dV}{dt} = i$	capacitor
fluid	$\Delta P = \frac{1}{C} \Delta V$	$C\frac{dP}{dt} = Q$	compliance

Energy storage elements (Inertia)

$$flow = \frac{1}{inertia} \times momentum$$

inertia
$$\times \frac{d}{dt}$$
 flow = effort

domain	constitutive relation	alternate relation	physical description
mechanical translation	$v = \frac{1}{m}p$	$m\frac{dv}{dt} = F$	mass
mechanical rotation	$\Omega = \frac{1}{J}H$	$J \frac{d\Omega}{dt} = \tau$	mass moment of inertia
electrical	$i = \frac{1}{L}\lambda$	$L\frac{di}{dt} = V$	inductance
fluid	$Q = \frac{1}{I} p_P V$	$I\frac{dQ}{dt} = P$	fluid inertia

Similar systems (Capacitance-effort)

Toilet tank

Door-closing mechanism

Similar systems (Inertia-flow)

Long pipe with valve

DC motor with transistor switch

Car quickly decelerating 0 km/hr

Similar systems (Inertia-flow)

Long pipe with valve

DC motor with transistor switch

0 km/hr