Course 8: Implementing Virtual Private

Networks

Introducing VPNs

VPN Benefits:

- Cost Savings
- Security
- Scalability
- Compatibility

Layer 3 IPsec VPNs

Two Types of VPNs

Remote-Access VPN

Site-to-Site VPN Access

Components of Remote-Access VPNs

Components of Site-to-Site VPNs

Topic 8.2.1: Introducing IPsec

IPsec Technologies

IPsec Framework

IPsec Framework Choices ESP + IPsec Protocol ΑH **ESP** AH Confidentiality DES **AES SEAL** 3DES Integrity MD5 SHA Authentication **PSK RSA** Diffie-Hellman DH1 DH2 DH5 DH...

IPsec Implementation Examples

Confidentiality

Confidentiality with Encryption:

Confidentiality (Cont.)

Encryption Algorithms:

Integrity

Hash Algorithms

Security of Hash Algorithms

Authentication

Peer Authentication Methods

PSK

Authentication (Cont.)

RSA

Secure Key Exchange

Diffie-Hellman Key Exchange

Topic 8.2.2: IPsec Protocols

IPsec Protocol Overview

Authentication Header

AH Protocols

Authentication Header (Cont.)

Router Creates Hash and Transmits to Peer

Peer Router Compares Recomputed Hash to Received Hash

ESP

© 2013 Cisco and/or its affiliates. All rights reserved.

19

ESP Encrypts and Authenticates

Transport and Tunnel Modes

Apply ESP and AH in Two Modes

Transport and Tunnel Modes (Cont.)

ESP Tunnel Mode

Topic 8.2.3: Internet Key Exchange

The IKE Protocol

Phase 1 and 2 Key Negotiation

Phase 2: Negotiating SAs

Topic 8.3.1: Configuring a Site-to-Site IPsec VPN

IPsec Negotiation

IPsec VPN Negotiation: Step 1 - Host A sends interesting traffic to Host B.

IPsec VPN Negotiation: Step 2 - R1 and R2 negotiate an IKE Phase 1 session.

IPsec VPN Negotiation: Step 3 - R1 and R2 negotiate an IKE Phase 2 session.

IPsec Negotiation (Cont.)

IPsec VPN Negotiation: Step 4 - Information is exchanged via IPsec tunnel.

IPsec VPN Negotiation: Step 5 - The IPsec tunnel is terminated.

Site-to-Site IPsec VPN Topology

IPsec VPN Configuration Tasks

XYZCORP Security Policy	Configuration Tasks
Encrypt traffic with AES 256 and SHA	1. Configure the ISAKMP policy for IKE Phase 1
Authentication with PSK	2. Configure the IPsec policy for IKE Phase 2
Exchange keys with group 24	3. Configure the crypto map for IPsec policy
ISAKMP tunnel lifetime is 1 hour	4. Apply the IPsec policy
IPsec tunnel uses ESP with a 15-min. lifetime	5. Verify the IPsec tunnel is operational

Existing ACL Configurations

Permit ISAKMP Traffic Router(config)# access-list acl permit udp source wildcard destination wildcard eq isakmp Permit ESP Traffic Router (config) # access-list acl permit esp source wildcard destination wildcard Permit AH Traffic Router(config)# access-list acl permit ahp source wildcard destination wildcard

ACL Syntax for IPsec Traffic

Existing ACL Configurations (Cont.)

Permitting Traffic for IPsec Negotiations

Introduction to GRE Tunnels

Topic 8.3.2: ISAKMP Policy

The Default ISAKMP Policies

Syntax to Configure a New ISAKMP Policy


```
R1(config) # crypto isakmp policy ?
  <1-10000> Priority of protection suite
R1(config) # crypto isakmp policy 1
R1(config-isakmp)# ?
ISAKMP commands:
  authentication Set authentication method for protection suite
  default
                  Set a command to its defaults
  encryption
                  Set encryption algorithm for protection suite
  exit
                  Exit from ISAKMP protection suite configuration mode
                  Set the Diffie-Hellman group
  group
                  Set hash algorithm for protection suite
  hash
  lifetime
                  Set lifetime for ISAKMP security association
                  Negate a command or set its defaults
  no
```

XYZCORP ISAKMP Policy Configuration

Configuring a Pre-Shared Key

The crypto isakmp key Command

```
Router(config)#

crypto isakmp key keystring address peer-address

Router(config)#

crypto isakmp key keystring hostname peer-hostname
```

Configuring a Pre-Shared Key (Cont.)

Pre-Shared Key Configuration

Define Interesting Traffic

The IKE Phase 1 Tunnel Does Not Exist Yet

Define Interesting Traffic (Cont.)

Configure an ACL to Define Interesting Traffic

Configure IPsec Transform Set

The crypto ipsec transform-set Command

Configure IPsec Transform Set (Cont.)

The crypto ipsec transform-set Command

Topic 8.3.4: Crypto Map

Syntax to Configure a Crypto Map

Router(config)#

crypto map map-name seq-num [ipsec-isakmp | ipsec-manual]

Parameter	Description
map-name	Identifies the crypto map set.
seq-num	Sequence number you assign to the crypto map entry. Use the crypto map map-name seq-num command without any keyword to modify the existing crypto map entry or profile
ipsec-isakmp	Indicates that IKE will be used to establish the IPsec for protecting the traffic specified by this crypto map entry.
ipsec-manual	Indicates that IKE will not be used to establish the IPsec SAs for protecting the traffic specified by this crypto map entry

Syntax to Configure a Crypto Map (Cont.)

Crypto Map Configuration Commands

XYZCORP Crypto Map Configuration

Crypto Map Configuration:


```
R1(config)# crypto map R1-R2 MAP 10 ipsec-isakmp
% NOTE: This new crypto map will remain disabled until a peer
and a valid access list have been configured.
R1(config-crypto-map)# match address 101
R1(config-crypto-map)# set transform-set R1-R2
R1(config-crypto-map)# set peer 172.30.2.2
R1(config-crypto-map)# set pfs group24
R1(config-crypto-map)# set security-association lifetime seconds 900
R1(config-crypto-map)# exit
R1(config)#
```



```
R2(config) # crypto map R1-R2_MAP 10 ipsec-isakmp
% NOTE: This new crypto map will remain disabled until a peer
and a valid access list have been configured.
R2(config-crypto-map) # match address 102
R2(config-crypto-map) # set transform-set R1-R2
R2(config-crypto-map) # set peer 172.30.2.1
R2(config-crypto-map) # set pfs group24
R2(config-crypto-map) # set security-association lifetime seconds 900
R2(config-crypto-map) # exit
R2(config) #
```

XYZCORP Crypto Map Configuration (Cont.)

Crypto Map Configuration:


```
R1# show crypto map
    Interfaces using crypto map NiStTeSt1:
Crypto Map IPv4 "R1-R2 MAP" 10 ipsec-isakmp
    Peer = 172.30.2.2
    Extended IP access list 101
        access-list 101 permit ip 10.0.1.0 0.0.0.255 192.168.1.0 0.0.0.255
    Current peer: 172.30.2.2
    Security association lifetime: 4608000 kilobytes/900 seconds
    Responder-Only (Y/N): N
    PFS (Y/N): Y
    DH group: group24
    Mixed-mode : Disabled
    Transform sets={
        R1-R2: { esp-aes esp-sha-hmac } ,
    Interfaces using crypto map R1-R2 MAP:
R1#
```

Apply the Crypto Map


```
R1(config)# interface serial0/0/0
R1(config-if)# crypto map R1-R2 MAP
R1(config-if)#
*Mar 19 19:36:36.273: %CRYPTO-6-ISAKMP ON OFF: ISAKMP is ON
R1(config-if)# end
R1# show crypto map
Interfaces using crypto map NiStTeSt1:
Crypto Map IPv4 "R1-R2 MAP" 10 ipsec-isakmp
Peer = 172.30.2.2
Extended IP access list 101
    access-list 101 permit ip 10.0.1.0 0.0.0.255 192.168.1.0 0.0.0.255
Current peer: 172.30.2.2
Security association lifetime: 4608000 kilobytes/900 seconds
Responder-Only (Y/N): N
PFS (Y/N): Y
DH group: group24
Mixed-mode : Disabled
Transform sets={
R1-R2: { esp-aes esp-sha-hmac } ,
Interfaces using crypto map R1-R2 MAP:
Serial0/0/0
```

Topic 8.3.5: IPsec VPN

Send Interesting Traffic

Use Extended Ping to Send Interesting Traffic

Verify ISAKMP and IPsec Tunnels

Verify the ISAKMP Tunnel is Established


```
R1# show crypto isakmp sa
IPv4 Crypto ISAKMP SA
dst src state conn-id status
172.30.2.2 172.30.2.1 QM_IDLE 1005 ACTIVE

IPv6 Crypto ISAKMP SA
R1#
```

Verify ISAKMP and IPsec Tunnels (Cont.)

Verify the IPsec Tunnel is Established


```
Interface: Serial0/0/0
Crypto map tag: R1-R2_MAP, local addr 172.30.2.1

protected vrf: (none)
local ident (addr/mask/prot/port): (10.0.1.0/255.255.255.0/0/0)
remote ident (addr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
current_peer 172.30.2.2 port 500
PERMIT, flags={origin_is_acl,}
#pkts encaps: 4, #pkts encrypt: 4, #pkts digest: 4
#pkts decaps: 4, #pkts decrypt: 4, #pkts verify: 4
#pkts compressed: 0, #pkts decompressed: 0
#pkts not compressed: 0, #pkts compr. failed: 0
#pkts not decompressed: 0, #pkts decompress failed: 0
```