

# Stochastic Simulation in Multimodal Posteriors: UQ in ODEs

Centro de Investigación en Matemáticas, A.C.

#### Introduction

**A "basic problem"** : Someone asks you to estimate  $\mu_1, \mu_2$  in the mixture problem

$$X_i | \mu_1, \mu_2 \sim f(\mu_1, \mu_2), \quad \mu_1, \mu_2 \sim U(a, b),$$
  
 $f(x_i | \mu_1, \mu_2) = p \mathcal{N}(\mu_1, 1) + (1 - p) \mathcal{N}(\mu_2, 1)$ 

with  $p \neq 0.5$  known.



- 1. **Obs:** the problem is well specified, but your posterior has a strange shape!
- 2. **Lesson:** Multimodality can be present even in the simplest problems.
- 3. **Interest:** Multimodality when solving the inverse problem in ODEs. (Bayesian UQ).

$$y_{i} = \mathcal{H}(X_{\theta}(t_{i})) + \varepsilon_{i}, \quad \varepsilon_{i} \sim_{i.i.d}, i = 1, ..., m$$

$$\frac{dX_{\theta}}{dt} = F(X_{\theta}, t, \theta); \quad X_{\theta}(t_{0}) = X_{0}.$$

- $ightharpoonup X_{\theta}(t_i)$  is the **Forward Map**. Complex, non-linear and high dimensional.
- $ightharpoonup \mathcal{H}: \mathbb{R}^p 
  ightarrow \mathbb{R}^k$  is the **Observation operator**.
- $ightharpoonup \mathcal{H} \circ X_{\theta}$  induces multimodality!

# Metropolis-Hastings

- ▶ MCMC for the simulation of f, is any simulation method that produces an ergodic Markov chain  $(X_t)$  whose stationary distribution is f.
- ▶ We give attention to **Metropolis-Hastings** chains. We propose a move through  $q(\cdot|\cdot)$  and accept it with probability

$$\rho(x,y) = \left\{1, \frac{f(y)q(x|y)}{f(x)q(y|x)}\right\}.$$

- ➤ Obs: We use the Integrated Autocorrelation
  Time (IAT) to measure the quality of our chains.
  (The 'force' of independence our chain has.)
- ➤ **SERIOUS Problem:** Chains get stuck. Exploration of entire state space is not possible. NO ergodicity!

# Population based MCMC

**Idea:** Extend the state space from  $\mathcal{E}$  to  $\mathcal{E}^N$ 

$$f^*(\theta_1, ..., \theta_N | y) d_{\theta_1, ..., \theta_N} = \left[ \prod_{i=1}^N f_i(\theta_i | y) \right] d\theta_1 d\theta_2 ... d\theta_N,$$

where  $f = f_i$  for at least one i.

# Parallel Tempering

- ▶ Main Idea: Use  $f_i(\theta|y) \propto f(\theta|y)^{\beta_i}, \beta_i \in B$
- $\triangleright \beta_i$  is a smoothing factor or temperature in (0,1)



► Heavily based on transferring knowledge from high to low temperatures through an *exchange move*.



#### Affine Invariant MCMC

- ► Main Idea: be able to sample from densities and affine transformations of them just as equally difficult.
- ► Important to consider when the correlation structure varies through the state space.
- ► Some samplers: t-walk, emcee





## Gradient based MCMC

**Main idea:** make use of the gradient and Hessian as a means of information about the local geometry of the posterior distribution.

### Hamiltonian MC

- ► Treat  $U(\theta) = -\log f(\theta|y)$  as the **potential energy** of a system.
- Introduce auxiliary **momentum** variables p and K(p) to allow Hamiltonian dynamics to operate.
- New target distribution  $f(\theta,p|y) \propto f(\theta|y) f(p|y) \propto exp\left\{-H(\theta,p)\right\},$
- $\blacktriangleright H(\theta, p)$  is the **Hamiltonian** and it satisfies  $\forall i$

$$\frac{d\theta_i}{dt} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial \theta_i}.$$

- ► Simulate *leapfrog dynamics*.
- ► Highly efficient MCMC with low autocorrelation, but we need the gradient. (Expensive)

Let's see a nice animation https:
//chi-feng.github.io/mcmc-demo/app.html

## Example

Second Black Plague Eyam, Uk June 19, 1666.

114 days.

SIR Model

$$\frac{dS}{dt} = -\beta S(t)I(t), \quad \frac{dI}{dt} = \beta S(t)I(t) - \alpha I(t), \\ \frac{dR}{dt} = \alpha I(t).$$

Observed  $y_i$  is the number of *removed*.

 $y_i|\alpha,\beta,I(0) \sim Bin(N,R(t)/N), \ \alpha,\beta \sim Ga(0,1)I(0) \sim Bin(N,5/N)$ 





#### Conclusions

Simulation from multimodal posteriors can be addressed by combining and implementing several MCMC methods.

#### References

[1] Ajay Jasra, David A. Stephens, and Christopher C. Holmes.
On population-based simulation for static inference.
Statistics and Computing, 17(3):263–279, 2007.
[2] Christian P Robert, Víctor Elvira, Nick Tawn, and Changye Wu.
Accelerating mcmc algorithms.
Wiley interdisciplinary reviews. Computational statistics, 10(5):e1435–e1435, Sep-Oct 2018.