Name: Md Toufique Hasan

Student Number: 151129267

Exercise date: 10/11/2022

Exercise Task: 1

Answer to the question no: 1

```
% generate successive integers from 1 to 100
int = 1 : 100
int = 1 \times 100
                                    7
                                         8
                                                   10
   1
                                                         11
                                                              12
                                                                   13 • • •
% generate values from 100 to 1
value = flip (int)
value = 1 \times 100
  100
              98
                        96
                              95
                                        93
                                              92
                                                   91
                                                         90
                                                              89
                                                                   88 . . .
% values from 1 to 100 with the interval of 2
valueinterval = 1 : 2 : 100
valueinterval = 1×50
       3
                   7 9
                              11
                                   13
                                        15 17
                                                   19
                                                         21
                                                              23
                                                                   25 · · ·
```

Answer to the question no: 2

```
% Find the intersection point of the signals visually
f=50
f = 50
F=8192
F = 8192
y1=sin(2*pi*int*(f/F))
y1 = 1 \times 100
             0.0766
                     0.1148
                                           0.1906
                                                                        0.3020 · · ·
   0.0383
                                 0.1528
                                                     0.2281
                                                              0.2652
y2=cos(2*pi*int*(f/F))
y2 = 1 \times 100
   0.9993
             0.9971
                       0.9934
                                 0.9883
                                           0.9817
                                                     0.9736
                                                              0.9642
                                                                        0.9533 · · ·
plot(y1,y2,'r')
```



```
a1 = abs(y1)
a1 = 1 \times 100
   0.0383
            0.0766
                                0.1528
                                         0.1906
                                                   0.2281
                                                            0.2652
                                                                     0.3020 · · ·
                      0.1148
a2 = abs(y2)
a2 = 1 \times 100
                                                                     0.9533 · · ·
  0.9993 0.9971
                      0.9934
                                0.9883
                                         0.9817
                                                  0.9736
                                                            0.9642
plot(a1, a2, 'g')
```


Here we don't find the exact point of intersection because y1 and y2 have all positive values and their direction is same also. So y1 and y2 don't overlap.

Answer to the question no: 3

```
% Generate its values in discrete points [1 100] and compare the difference of signal y1[n]
n = 0:1:100
n = 1 \times 101
                                                                         12 . . .
    0
          1
                                 5
                                                             10
                                       6
                                                                   11
f = 50
f = 50
F = 8192
F = 8192
y1 = \sin(2*pi*n*(f/F))
y1 = 1 \times 101
             0.0383
                       0.0766
                                0.1148
                                          0.1528
                                                    0.1906
                                                             0.2281
                                                                       0.2652 ...
plot(n, y1, 'b')
title('SIN Function')
```



```
%derivative
y1_diff = diff(y1)./diff(n);

plot(n(2:end), y1_diff, 'b')
title('Derivative')
```


Answer to the question no: 4

```
% Import using Home > Import Data > Select Matrix.txt and save as MatrixNumeric
% value of the 5th row
fifthRow = MatrixNumeric(5,:)
fifthRow = 1 \times 1000
                                                                     0.9638 · · ·
            0.4441
                                0.7958
                                         0.9130
                                                   0.9820
   0.2281
                      0.6368
                                                            0.9992
% listen 5th row
soundsc(fifthRow)
% Means of Rows
MeanRow = mean(MatrixNumeric,2)
MeanRow = 5 \times 1
   0.0056
   0.0100
   0.0658
   0.0003
   0.0071
% Means of columns
MeanCol = mean(MatrixNumeric,1)
MeanCol = 1 \times 1000
```

0.1596

0.2288

0.3756 ...

0.1907

0.2120

0.3438

0.3587

0.2832

```
% Mean of whole matrix
MeanWhole = mean2(MatrixNumeric)
MeanWhole = 0.0178
                             Answer to the question no: 5
% Find the lowest sounding signal
lowSig = min(MatrixNumeric(:))
lowSig = -1
soundsc(lowSig)
                             Answer to the question no: 6
% Import using Home > Import Data > Select inco13par.txt and save as inco13parNumeric
mat = inco13parNumeric
mat = 529 \times 16
   2.0000
                        0
                            8.0000
                                    1.0000
                                             0.0500
                                                             68.0000 · · ·
   3.0000
               0
                        0
                           4.0000
                                   30.0000
                                                            72.0000
                                             0.2000
                                                         0
   4.0000
               0
                       0
                           4.0000
                                  40.0000
                                             0.1000
                                                         0 72.0000
   5.0000
               0
                      0 11.0000
                                  60.0000 0.1500
                                                         0 71.0000
                     0 8.0000
               0
   6.0000
                                  5.0000
                                               NaN
                                                         0
                                                                NaN
   8.0000
               0
                      0
                             NaN 30.0000 0.9500
                                                         0 57.0000
              0
                      0 5.0000
  10.0000
                                  5.0000
                                                        NaN
                                             NaN
                                                                NaN
  11.0000
               0
                      0 5.0000
                                   1.0000
                                               NaN
                                                         0
                                                                NaN
  13.0000
               0
                        0 6.0000
                                  80.0000
                                               NaN
                                                         0
                                                                NaN
  14.0000
                            8.0000
                                   20.0000
                                               NaN
                                                         0 27.0000
% Missing values for each variable
sum(ismissing(mat))
ans = 1 \times 16
         0
              1 144
                      108 335
                                111
                                     183
                                          127
                                               116 191
                                                           2
                                                                0 . . .
```

```
find(mat)
```

```
ans = 5680×1

1
2
3
4
5
6
7
8
9
10
```

isnan(mat)

ans =	529×	:16	logi	cal	array										
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0
0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
	:														