Lógica

Mauro Polenta Mora

Ejercicio 1

Consigna

Considere un lenguaje de primer orden del tipo $\langle -; 1, 1, 2; 3 \rangle$ con símbolos de función f_1 , f_2 (unarios), f_3 (binario) y símbolos de constante c_1 , c_2 , c_3 .

Sea ${\cal B}$ una estructura de dicho tipo definida como sigue:

 $B=\langle \mathbb{R},\ ^2,\ |\cdot|,\ -,\ 0,\ 1,\ 2\rangle$ donde 2 es la función cuadrado, $|\cdot|$ el valor absoluto y - la resta.

Evalúe:

$$\begin{array}{l} \text{-} \ (f_2(f_3(f_1(c_3),\ f_1(c_2))))^B \\ \text{-} \ (f_2(f_3(c_2,\ f_3(c_2,\ f_1(c_3)))))^B \end{array}$$

Resolución

Hagamos dos partes, una para cada evaluación.

Parte 1

Evaluemos $(f_2(f_3(f_1(c_3), f_1(c_2))))^B$

$$\begin{split} &(f_2(f_3(f_1(c_3),f_1(c_2))))^B\\ =&(\text{interpretación de }f_2\text{ en }B)\\ &|(f_3(f_1(c_3),f_1(c_2)))^B|\\ =&(\text{interpretación de }f_3\text{ en }B)\\ &|f_1(c_3)^B-f_1(c_2)^B|\\ =&(\text{interpretación de }f_1\text{ en }B)\\ &|((c_3)^B)^2-((c_2)^B)^2|\\ =&(\text{interpretación de }c_2,c_3\text{ en }B)\\ &|2^2-1^2|\\ =&(\text{aritmética})\\ &3 \end{split}$$

Parte 2

Evaluemos $(f_2(f_3(c_2,f_3(c_2,\ f_1(c_3)))))^B$.

$$\begin{split} &(f_2(f_3(c_2,f_3(c_2,f_1(c_3)))))^B \\ = &(\text{interpretación de } f_2 \text{ en } B) \\ &|f_3(c_2,f_3(c_2,f_1(c_3)))^B| \\ = &(\text{interpretación de } f_3 \text{ en } B) \\ &|c_2^B - f_3(c_2,f_1(c_3))^B| \\ = &(\text{interpretación de } c_2,f_3 \text{ en } B) \\ &|1 - (c_2^B - f_1(c_3)^B)| \\ = &(\text{interpretación de } c_2,f_1 \text{ en } B) \\ &|1 - (1 - ((c_3)^B)^2)| \\ = &(\text{interpretación de } c_3 \text{ en } B) \\ &|1 - (1 - 2^2)| \\ = &(\text{aritmética}) \\ &|1 - (-3)| \\ = &(\text{aritmética}) \\ &4 \end{split}$$