

Presentación de los objetivos del curso

Temas				
Cadenas	Tkinter			
Bucles	SQL			
Funciones	Pandas			
Clases	Llibrerias estadísticas			
Herencias	Github			

Planificación

SEMANAS	LUNES	MARTES	MIÉRCOLES	JUEVES	VIERNES
15-19/05/23					
-					
-					
-					
12-14/05/23					

Realización del proyecto

Puntos Clave

- Petición y colocación de datos.
- Guardar Excel.
- Convertir Excel a PDF y guardarlo.
- Traspaso de datos a un histórico.

Uso de librerias concretas

Definición de funciones

```
# Definiciones

def peticion_datos_colocar (final):

fecha_factura = input ("Introduce el último día del mes de la factura (Formato DD/MM/AAAA)")

servicios_prestados = float(input ("Indica la base imponible (Puntos como si fueran comas): "))

rec_combustible = float(input ("Indica el recargo del combustible (Puntos como si fueran comas): "))

num_factura = fecha_factura [-6:]

final["B12"] = fecha_factura
final["E20"] = servicios_prestados
final["F20"] = servicios_prestados_limpios
final["F21"] = rec_combustible
```

Ejecución del programa

Numpy & Matplotlib

```
import numpy as np
import matplotlib.pyplot as plt

data = {'a': np.arange(1)}
data ['a'] = ['16-19', '20-24', '25-29', '30-24', '35-39','40-44']
data ['unidades'] = [80, 150, 12, 67, 90, 30]
data ['valor'] = [335, 203, 334, 604, 700, 555]
data ['c'] = [1,2,3,4,5,6]

plt.scatter('a', 'unidades', c='c', s='valor', data = data)
plt.show()
```


Elaboración de frames

Inclusión de datos

```
1 # Añade sin sobreescribir.
 3 df=df.append({'Nom':'Sara' , 'Dept':'VENDES', 'DiesV':8, 'PreuDia':44} , ignore index=True)
 1 print(df)
                 DiesV PreuDia
    Nom
           Dept
0 Sònia
           PROD
                    32
                             60
                    55
                            80
  Laura
          ADMIN
                                           3 import matplotlib.pyplot as plt
                            90
           MANT
   Rosa
          ADMIN
                    43
                           100
                                           5 x = ['A', 'B', 'C', 'D', 'E']
     Sam
           PROD
                    30
                                           6 y = [22, 9, 40, 27, 55]
                            90
  Manel
           MANT
   Sara
         VENDES
                            44
```

Análisis estadísticos

	DiesV	PreuDia
count	7.000000	7.000000
mean	27.571429	78.428571
std	18.100250	19.594703
min	5.000000	44.000000
25%	14.000000	70.000000
50%	30.000000	85.000000
75%	37.500000	90.000000
max	55.000000	100.000000

División del curso

