НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Кафедра обчислювальної техніки

РОЗРАХУНКОВА ГРАФІЧНА РОБОТА

з дисципліни "Комп'ютерна логіка 2. Комп'ютерна арифметика"

Виконав Мазан Ян Владиславович Факультет ІОТ, Група ІВ-71 Залікова книжка № ІВ-7109 Керівник Верба О. А.

(підпис керівника)

I. Завдання:

- 1. Числа X і Y в прямому коді записати у формі з плаваючою комою у класичному варіанті (з незміщеним порядком і повною мантисою). На порядок відвести 4 розряди, на мантису 7 розрядів (з урахуванням знакових розрядів). Записати числа X і Y також за стандартом ANSI/IEEE 754-2008 в короткому 32-розрядному форматі).
- 2. Виконати 8 операцій з числами, що подані з плаваючою комою в класичному варіанті (чотири способи множення, два способи ділення, додавання та обчислення кореня додатного числа Y). Номери операцій (для п.3) відповідають порядку переліку, починаючи з нуля (наприклад, 0 множення першим способом; 5 ділення другим способом). Операндами для першого способу множення є задані числа X та Y . Для кожної наступної операції першим операндом є результат попередньої операції, а другим операндом завжди є число Y . (Наприклад, для ділення першим способом першим операндом є результат множення за четвертим способом, для операції обчислення кореня першим операндом є результат додавання).

Для обробки мантис кожної операції, подати:

- 2.1 теоретичне обґрунтування способу;
- 2.2 операційну схему;
- 2.3 змістовний (функціональний) мікроалгоритм;
- 2.4 таблицю станів регістрів (лічильника), довжина яких забезпечує одержання 6 основних розрядів мантиси результату;
 - 2.5 обробку порядків (показати у довільній формі);
- 2.6 форму запису нормалізованого результату з плаваючою комою в пам'ять комп'ютера в прямому коді.

Вказані пункти для операції додавання виконати для етапу нормалізації результату з урахуванням можливого нулевого результату. Інші дії до етапу нормалізації результату можна проілюструвати у довільній формі.

- 3 Для операції з номером $x_3 x_2 x_1$ додатково виконати:
- 3.1 побудувати функціональну схему з відображенням управляючих сигналів, входів для запису операндів при ініціалізації пристрою і схем формування внутрішніх логічних умов;
- 3.2 розробити закодований (структурний) мікроалгоритм (мікрооперації замінюються управляючими сигналами виду W,SL,SR тощо);
- 3.3 для операції з парним двійковим номером $x_3x_2x_1$ додатково подати граф управляючого автомата Мура з кодами вершин, а для непарного номера $x_3x_2x_1$ автомата Мілі;
- 3.4 побудувати управляючий автомат на тригерах та елементах булевого базису. Вибрати JK -тригери для автомата Мура та RS -тригери для автомата Мілі.

ІІ.Обґрунтування варіанту:

Перевести номер залікової книжки в двійкову систему. Записати два 10-розрядних двійкових числа:

$$X = -x_7 x_6 1 x_5 x_4 0, x_3 1 x_2 x_1$$
 i $Y = +x_9 1 x_8 x_7 x_6 x_5, x_4 x_3 x_2 x_1$

де χ_i - двійкові цифри номера залікової книжки у двійковій системі числення (χ_i - молодший розряд).

$$7109_{10} = 11011111000101_2$$

$$X = -101000,1101 (\sim -40)$$
 $Y = +111100,0101 (\sim 60)$

Ш.Основна частина:

<u>Завдання</u> 1

Числа X і Y в прямому коді записати у формі з плаваючою комою у класичному варіанті (з незміщеним порядком і повною мантисою). На порядок відвести 4 розряди, на мантису 7 розрядів (з урахуванням знакових розрядів). Записати числа X і Y також за стандартом ANSI/IEEE 754-2008 в короткому 32-розрядному форматі).

X = -101000,1101

$$Y = +111100,0101$$

 $X_{IIK} = 1.101000,1101$

$$Y_{\text{TIK}} = 0.111100,0101$$

Запис у класичному коді:

Зсув порядків

 $P_X = 6_{10} = 0.110$

 $M_X = 1.1010001101$

 $P_v = 6_{10} = 0.110$

 $M_Y = 0.1111000101$

X:

0 1		1	0
-----	--	---	---

|--|

Y:

0 1	1	1	1	0	0	

Запис X і Y за стандартом ANSI/IEEE 754-2008:

$$E_X = P_X + (2^{8-1}-1) = P_X + 127 = 110+1111111=10000101$$

$$M_X = 1010001101000000000000000$$

$$E_Y = P_Y + (2^{8-1}-1) = P_Y + 127 = 110+1111111=10000101$$

X:

Завдання 2

Виконати 8 операцій з числами, що подані з плаваючою комою в класичному варіанті (чотири способи множення, два способи ділення, додавання та обчислення кореня додатного числа).

2.1. Перший спосіб множення

2.1.1 Теоретичне обгрунтування способу:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Добуток Z модулів чисел дорівнює

$$Z = YX = Yx_1 2^{-1} + Yx_2 2^{-2} + \dots + Yx_i 2^{-i} + \dots + Yx_n 2^{-n}.$$
 (1)

Цей вираз можна представити у вигляді:

$$Z = (((0+YX_n)2^{-1}+YX_{n-1})2^{-1}...+YX_1)2^{-1};$$

$$Z = \sum_{i=1}^{n} (Z_{i-1} + Y X_{n-i+1}) 2^{-1};$$

Звідси випливає, що отримані суми часткових добутків в i-му циклі ($i=\overline{1,n}$) зводиться до обчислення $Z_i=(Z_{i-1}+Yx_{n-i+1})2^{-1}$ з початковими значеннями i=1, $Z_0=0$, причому $Z_n=Z=YX$.

2.1.2 Операційна схема:

2.1.3 Змістовний мікроалгоритм:

2.1.4 Таблиця станів регістрів:

В моєму випадку X = 101000, Y = 111100, n = 110

No	RG1	RG2	RG3	СТ
ПС	000000	10100 0	111100	110
1	000000	01010 0	111100	101
2	000000	00101 0	111100	100
3	000000	000101	111100	011
4	111100 → 011110	00001 0	111100	010
5	001111	000001	111100	001
6	1001011 → 100101	100000	111100	000

Z = 100101100000

2.1.5 Обробка порядків:

$$P_Z = P_X + P_Y = 12 = 0.1100$$

2.1.6 Нормалізація результату:

Отримано результат Z = 100101100000

Так, як у старшому розряді Z стоїть одиниця, то зсув непотрібен.

Знак мантиси: 1 ⊕0=1(додавання за модулем знаків множеного і множника)

Можемо записати мантису: $M_Z = 1.100101$

Z:

0 1 1 0 0	1	1 0	0	1	0	1
-----------	---	-----	---	---	---	---

2.2 Другий спосіб множення

2.2.1 Теоретичне обгрунтування способу:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Представимо вираз (1) у вигляді:

$$Z = ((...((0+Y2^{-n}x_n)+Y2^{-n+1}x_{n-1})+...+Y2^{-1}x_1.$$

Очевидно, що процес множення може бути зведений до n-кратного виконання циклу

$$Z_{i} = Z_{i-1} + Y_{i} x_{n-i+1}, \quad Y_{i} = 2Y_{i-1},$$

з початковими значеннями i=1, $Y_0=Y2^{-n}$, $Z_0=0$. Множення здійснюється з молодших розрядів, множене зсувається вліво, а сума часткових добутків залишається нерухомою.

2.2.2 Операційна схема:

2.2.3 Змістовний мікроалгоритм:

2.2.4 Таблиця станів регістрів:

В моєму випадку X = 1.100101, Y = 0.111100

№	RG1	RG2	RG3
ПС	000000000000	10010 1	000000111100
1	000000111100	01001 0	000001111000
2	000000111100	00100 1	000011110000
3	000100101100	000100	000111100000
4	000100101100	000010	001111000000
5	000100101100	000001	011110000000
6	100010101100	000000	111100000000

Z = 100010101100

2.2.5 Обробка порядків:

$$P_Z = P_X + P_Y = 12 + 6 = 18_{10} = 0.10010$$

2.2.6 Нормалізація результату:

Отримано результат Z = 100010101100

Так, як у старшому розряді Z стоїть одиниця, то зсув непотрібен.

Знак мантиси: 1 ⊕0=1(додавання за модулем знаків множеного і множника)

Можемо записати мантису: $M_Z = 1.100010$

Z:

0	1	0	0	1	0		1	1	0	0	0	1	0	
---	---	---	---	---	---	--	---	---	---	---	---	---	---	--

2.3 Третій спосіб множення

2.3.1 Теоретичне обгрунтування способу:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Представимо вираз (1) у вигляді:
$$Z = ((...((0+Y2^{-n}x_1)2+Y2^{-n}x_2)2+...+Y2^{-n}x_i)2+...+Y2^{-n}x_n.$$

Отже, суму часткових добутків у і-м циклі ($i=\overline{1,n}$) можна одержати за формулою

$$Z_i = 2Z_{i-1} + Y2^{-n}x_i$$

Початковими значеннями ϵ i=1, Z0=0. Множення здійснюється зі старших розрядів множника, сума часткових добутків зсувається вліво, а множене нерухоме.

2.3.2 Операційна схема:

2.3.3 Змістовний мікроалгоритм:

2.3.4 Таблиця станів регістрів:

В моєму випадку X=1.100010, Y = 0.111100, n = 6_{10} = 110

№	RG2	RG1	RG3	CT
ПС	100010	000000	111100	110
1	100010 0 00101	111100 111000	111100	101
2	001011	110000	111100	100
3	0 10111	100000	111100	011
4	1 01111	000000	111100	010
5	101111 0 11111	111100 111000	111100	001
6	111111	110000	111100	000

Z = 111111111000

2.3.5 Обробка порядків:

$$P_Z = P_X + P_Y = 18 + 6 = 24_{10} = 0.11000$$

2.3.6 Нормалізація результату:

Отримано результат Z = 111111111000

Так, як у старшому розряді Z стоїть одиниця, то зсув непотрібен.

Знак мантиси: 1 ⊕0=1(додавання за модулем знаків множеного і множника)

Можемо записати мантису: $M_Z = 1.1111111$

Z:

0	1	1	0	0	0		1	1	1	1	1	1	1
---	---	---	---	---	---	--	---	---	---	---	---	---	---

2.4 Четвертий спосіб множення

2.4.1 Теоретичне обґрунтування способу:

Числа множаться у прямих кодах, знакові та основні розряди обробляються окремо. Для визначення знака добутку здійснюють підсумування по модулю 2 цифр, що розміщуються в знакових розрядах співмножників.

Представимо вираз (1) у вигляді:

$$Z = ((...((0+Y2^{-1}x_1)+Y2^{-2}x_2)+...+Y2^{-i}x_i)+...+Y2^{-n}x_n.$$

Процес множення може бути зведений до *n*-кратного виконання циклу

$$Z_i = Z_{i-1} + Y_{i-1}x_i$$
, $Y_i = Y_{i-1}2^{-1}$ з початковими значеннями $i=1$, $Y_0 = Y2^{-1}$, $Z_0 = 0$.

2.4.2 Операційна схема:

2.4.3 Змістовний мікроалгоритм:

2.4.4 Таблиця станів регістрів:

В моєму випадку X=1.1111111, Y=0.111100

№	RG1	RG2	RG3
ПС	000000000000	1 11100	011111100000
1	011111100000	111000	001111110000
2	101111010000	110000	000111111000
3	110111001000	100000	000011111100
4	111011000100	000000	000001111110

Z=111011000100

2.4.5 Обробка порядків:

$$P_Z = P_X + P_Y = 24 + 6 = 32_{10} = 0.100000$$

2.4.6 Нормалізація результату:

Отримано результат Z = 111011000100

Так, як у старшому розряді Z стоїть одиниця, то зсув непотрібен.

Знак мантиси: 1 ⊕0=1(додавання за модулем знаків множеного і множника)

Можемо записати мантису: $M_Z = 1.111011$

		0	1	0	0	0	0	0		1	1	1	1	0	1	1
--	--	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---

2.5 Перший спосіб ділення

2.5.1 Теоретичне обгрунтування способу:

Нехай ділене X і дільник Y ϵ п-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

При реалізації ділення за першим методом здійснюється зсув вліво залишку при нерухомому дільнику. Черговий залишок формується в регістрі Р2 (у вихідному стані в цьому регістрі записаний X). Виходи Р2 підключені до входів СМ безпосередньо, тобто ланцюги видачі коду з Р2 не потрібні. Час для підключення n+1 цифри частки визначається виразом t=(n+1)(tt+tc), де tt - тривалість виконання мікрооперації додавання-віднімання; tc - тривалість виконання мікрооперації зсуву.

2.5.2 Операційна схема:

2.5.3 Змістовний мікроалгоритм:

2.5.4 Таблиця станів регістрів:

В моєму випадку X = 1.111011, Y = 0.111100

<u>№</u>	RG3	RG2	RG1
ПС	0000001	0 0111011	00111100
1	0000010	0 1110110	00111100
		+11000011	
		+ 1	
		≭ 00111010	
2	0000101	0 1110100	00111100
		+11000011	
		+ 1	
		* 00111000	
3	0 001011	0 1110000	00111100
		+11000011	
		+ 1	
		* 00110100	
4	0 010111	0 1101000	00111100
		+11000011	
		+ 1	
		* 00101011	
5	0 101111	0 1010110	00111100
		+11000011	
		+ 1	
		* 00011001	
6	1 011111	0 0110010	00111100
		+11000011	
		+ 1	
		11110101	

$$Z = 011111$$

2.5.5 Обробка порядків:

$$P_Z = P_{X-}P_Y = 32-6 = 24_{10} = 0.11000$$

2.5.6 Нормалізація результату:

Отримано результат Z = 011111

Так, як у старшому розряді Z не стоїть одиниця, то потрібно виконати зсув мантиси:

Виконуємо зсув результату вліво, доки у першому розряді не опиниться одиниця, при цьому порядок числа зменшуємо на 1:

$$M_Z = 0.0111111 \rightarrow M_Z = 0.1111110$$
; $P_Z = P_Z - 1 = 23_{10} = 0.101111$

Знак мантиси: 1 ⊕0=1(додавання за модулем знаків множеного і множника)

Можемо записати мантису: $M_Z = 1.1111110$

Z:

0	1	0	1	1	1	1	1	1	1	1	1	0

2.6 Другий спосіб ділення

2.6.1 Теоретичне обгрунтування способу:

Нехай ділене X і дільник Y є n-розрядними правильними дробами, поданими в прямому коді. В цьому випадку знакові й основні розряди операндів обробляються окремо. Знак результату визначається шляхом підсумовування по модулю 2 цифр, записаних в знакових розрядах.

Остача нерухома, дільник зсувається праворуч. Як і при множенні з нерухомою сумою часткових добутків можна водночає виконувати підсумування і віднімання, зсув в регістрах Y,Z. Тобто 1 цикл може складатися з 1 такту, це дає прискорення відносно 1-го способу.

2.6.2 Операційна схема:

2.6.3 Змістовний мікроалгоритм:

2.6.4 Таблиця станів регістрів:

В моєму випадку X = 1.1111110, Y = 0.111100, n = 6

(RG1 інвертується до останньої одиниці, нулі далі залишаються)

No	RG3	RG2	RG1
ПС	0000001	0111110000000	0111100000000
1	0 000011	+1000100000000 0000010000000	0001111000000
2	0 000110	+1110001000000 1110011000000	0000111100000
3	0 001100	+0000011110000 1110110110000	0000011110000
4	0 011000	+0000001111000 1111000101000	0000001111000
5	0 110000	+0000001111000 1111010100000	000000111100
6	1100000	+0000000011110 11110101111110	000000011110

Результат: Z = 100000

2.6.5 Обробка порядків:

$$P_Z = P_X - P_Y = 23 - 6 = 17_{10} = 0.10001$$

2.6.6 Нормалізація результату:

Отримано результат Z = 100000

Так, як у старшому розряді Z стоїть одиниця, то зсув непотрібен.

Знак мантиси: 1 ⊕0=1(додавання за модулем знаків множеного і множника)

Можемо записати мантису: $M_Z = 1.100000$

Z:

1 0 0 0 0

2.7 Додавання чисел, поданих у формі з плаваючою комою

2.7.1 Теоретичне обгрунтування способу:

На першому етапі додавання чисел з плаваючою комою виконують вирівнювання порядків до числа із старшим порядком. На другому етапі виконують додавання мантис. Додавання мантис виконується у доповняльних кодах.

2.7.2 Операційна схема:

2.7.3 Змістовний мікроалгоритм:

2.7.4 Обчислення порядку суми, вирівнювання порядків та додавання мантисою

$$P_X = 17_{10} = 0.10001$$

$$P_y = 6_{10} = 0.110$$

$$P_Z = max(P_X, P_Y) = 0.10001$$

$$\Delta = P_X - P_Y = 17 - 6 = 11_{10} = 0.1011$$

$$M_X = 1.100000$$

$$M_Y = 0.111100$$

Вирівнювання порядків

Робимо зсув вправо мантиси числа Y, зменшуючи Δ на кожному кроці, доки Δ не стане рівним 0.

$M_{ m Y}$	Δ
0,111100	1011
0,011110	1010
0,001111	1001
0,000111	1000
0,000011	0111
0,000001	0110
0,00000	0101
0,000000	0100
0,00000	0011
0,00000	0010
0,000000	0001
0,00000	0000
TTC	

Додаємо мантиси у ДК

$$M_{XJJK} = 11.0111111 + 1 = 11.100000$$

$$M_{YJIK} = M_{YIIK} = 0.000000$$

$$M_X + M_Y = 11.100000 = M_{ZJJK}$$

$$M_{ZIIK} = \overline{11.100000-1} = 1.100000$$

2.7.5 Обробка порядків:

$$P_z = 0.10001$$

$$M_Z = 1.100000$$

2.7.6 Нормалізація результату:

Нормалізація непотрібна

Z:

		0	1	0	0	0	1		1	1
--	--	---	---	---	---	---	---	--	---	---

2.8 Обчислення квадратного кореня

2.8.1 Теоретичне обгрунтування способу:

Аргумент вводиться зі старших розрядів. Порядок результату дорівнює поділеному на два порядку аргум З мантиси добувається корінь завдяки нерівностям:

0

0

0

$$Z_i \le \sqrt{X} \le Z_i + 2^{-i}$$
;
 $Z_i^2 \le X \le Z_i^2 + 2^{-i}Z_i + 2^{-2i}$;
 $0 \le 2^{i-1}(X - Z_i^2) \le Z_i + 2^{-i-1}$.

Виконання операції зводиться до послідовності дій:

1. Одержання остачі.

$$R_{i+1}' = 2R_i - Z_i - 2^{-i-2};$$

2. Якщо
$$R_{i+1} \geq 0$$
, то $Z_{i+1} = 1$, $R_{i+1} = R_{i+1}$.

3. Якщо
$$R_{i+1}' < 0$$
, то $Z_{i+1} = 0$, $R_{i+1} = R_{i+1}' + Z_i - 2^{-i-2}$.

Відновлення остачі додає зайвий такт, але можна зробити інакше:

 $R_{i+2} = 2R_{i+1}' + Z_i + 2^{-i-2} + 2^{-i-3}$, тоді корінь добувається без відновлення залишку.

Для цього R_i зсувається на 2 розряди ліворуч, а Z_i - на 1 розряд ліворуч, і формується як при діленні.

2.8.2 Операційна схема:

2.8.3 Змістовний мікроалгоритм:

2.8.4 Таблиця станів регістрів:

В моєму випадку X = 100000

Так як порядок X дорівнює 17 ($P_X = 0.10001$), то я повине зсунути мантису на один порядок праворуч, щоб отримати парний порядок.

 $P_X = 0.10010 (18_{10}), X = 010000$

N₂	RGZ	RGR	RGX	СТ
ПС	000000	00000000 00000001	010000 000000	110
1	000001	0 0000001 +1111111 00000000 00000000	000000	101
2	000010	0 0000000 +11111011 11111011 11101100	000000	100
3	000100	11101100 +00001011 11110111 11011100	000000	011
4	001000	11011100 +00010011 11101111 10111100	000000	010
5	010001	10111100 +00100011 11011111 01111100	000000	001
6	100010	01111100 +10111011 00110111 11011100	000000	000

Результат: Z = 111011

2.8.5 Обробка порядків:

$$P_Z = P_X/2 = 9_2 = 0.1001_2$$

2.8.6 Нормалізація результату

Так, як в результаті Z в найстаршому розряді стоїть одиниця, то нормалізація непотрібна.

$$M_Z = 0.111011$$

Z:

0	1	0	0	0	1		1	1	1	1	0	1	1
---	---	---	---	---	---	--	---	---	---	---	---	---	---

Завдання 3

$$x_3x_2x_1=101_2=5_{10}$$

Мені потрібно виконати індивідуальне завдання для ділення другим способом і побудувати автомат Мілі на RS-тригерах.

3.1 Функціональна схема

3.2 Закодований (структурний) мікроалгоритм

Кодування мікрооперацій та логічних умов

Кодування м	ікрооперацій	Кодування логічних умов				
RG3:=0001	RESET	RG2[2n+1]	X			
RG2:=0.X	2:=0.X W2		STOP			
RG1:=00.Y	W1					
RG2:=RG2+RG1 RG2:=RG2+RG1+1	SUM					
RG1:=0.r(RG1)	SR					
RGZ:=l(RG3).p	SL					

3.3 Граф управляючого автомата Мура

3.4 Структурна таблиця станів автомата, спрощення управляючих сигналів,

побудова управляючого автомата

0	R	S 0	0
0 -	0	1	0 1
	1	0	-
1 1	0	-	→ 0
Ι.			- 1

Перехід	Код ПС	Код СП		Лог. мови	Керуючі сигнали							Функції збудження тригерів				
	Q^1Q^2	$Q^{1'}Q^{2'}$	X	STOP	RESET	W2	W1	SUM	SR	SL	R_1	S_1	R_2	S_2		
Z_1Z_2	00	01	1	-	1	1	1	0	0	0	-	0	0	1		
Z_1Z_3	00	10	0	-	1	1	1	0	0	0	0	1	ı	0		
Z_2Z_2	01	01	1	0	0	0	0	1	1	1	-	0	0	-		
$\mathbb{Z}_2\mathbb{Z}_3$	01	10	0	0	0	0	0	1	1	1	0	1	1	0		
$\mathbb{Z}_2\mathbb{Z}_4$	01	11	-	1	0	0	0	1	1	1	0	1	0	-		
Z_3Z_2	10	01	1	0	0	0	0	1	1	1	1	0	0	1		
Z_3Z_3	10	10	0	0	0	0	0	1	1	1	0	-	ı	0		
Z_3Z_4	10	11	-	1	0	0	0	1	1	1	0	-	0	1		

Спрощуватиму функції методом діаграм Вейча.

$$RESET = W2 = W1 = \overline{Q_2} \; \overline{Q_1}$$

$$SUM = SR = SL = Q_1 \vee Q_2$$

$$R_1 = x \overline{STOP}$$

$$S_1 = \overline{x} \vee Q_2 STOP$$

$$R_2 = \overline{STOP} \ \overline{x}$$

$$S_2 = x \vee Q_1 \; STOP$$

3.5 Побудований управляючий автомат Мілі

3.6 Підрахунок часу виконання операції Для другого способу $t_{\mbox{\tiny діл}} = t_{\mbox{\tiny додавання}} = (n+1) t_{\mbox{\tiny додавання}}$, де n — кількість розрядів діленого і дільника

 $(n+1)t_{0}$ додавання $\approx 7n$, де n — кількість розрядів діленого і дільника Під час виконання мого завдання розрахункової n дорівнював 6, тому в моєму випадку $t_{\text{діл}} = 7 \cdot 7 = 49$ умовних одиниць часу.

4. Висновок

Під час виконання даної графічної розрахункової роботи я навчився виконувати 8 простих операцій з числами, поданими у формі з плаваючою комою (чотири способи множення, два способи ділення, додавання та обчислення кореня додатного числа). Також, під час перетворень числа із форми з фіксованою у форму з плаваючою комою, я вивчив два способи подання другої вищепереліченої форми двійкових чисел: класичний варіант та стандарт ANSI/IEEE 754-2008 в короткому 32-розрядному форматі. Форма запису двійкового числа із плаваючою комою вигідніша за форму з фіксованою комою тим, що в ній відсутнє переповнення розрядної сітки, а замість цього операції з числами виконуються з певною, попередньо заданою точністю, яка визначається розміром розрядної сітки.