DATA Gathering:

Hypothesis: Is there a correlation between drinking and LDL cholesterol levels?

Null Hypothesis (H0): There is no significant correlation between drinking and LDL cholesterol levels. Alternative Hypothesis (H1): There is a significant correlation between drinking and LDL cholesterol levels.

```
In [1]:
         import pandas as pd
         import numpy as np
         import random
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
In [2]: df = pd.read_csv('smoking_driking_dataset_Ver01.csv')
        df.head()
In [3]:
                       height weight waistline sight_left sight_right hear_left hear_right
Out[3]:
                                                                                              SBP
             sex age
         0 Male
                   35
                          170
                                            90.0
                                                        1.0
                                                                                         1.0 120.0
                                   75
                                                                   1.0
                                                                             1.0
            Male
                   30
                          180
                                   80
                                            89.0
                                                        0.9
                                                                   1.2
                                                                             1.0
                                                                                             130.0
                                                                                         1.0
            Male
                   40
                          165
                                   75
                                            91.0
                                                        1.2
                                                                   1.5
                                                                             1.0
                                                                                         1.0
                                                                                             120.0
         3 Male
                   50
                          175
                                   80
                                            91.0
                                                        1.5
                                                                   1.2
                                                                             1.0
                                                                                         1.0
                                                                                            145.0
                                   60
                                            0.08
                                                        1.0
                                                                   1.2
                                                                                         1.0 138.0
         4 Male
                   50
                          165
                                                                             1.0
        5 rows × 24 columns
In [4]: df.describe()
```

Out[4]:		age	height	weight	waistline	sight_left	sigh
	count	991346.000000	991346.000000	991346.000000	991346.000000	991346.000000	991346.
	mean	47.614491	162.240625	63.284050	81.233358	0.980834	0.
	std	14.181339	9.282957	12.514241	11.850323	0.605949	0.
	min	20.000000	130.000000	25.000000	8.000000	0.100000	0.
	25%	35.000000	155.000000	55.000000	74.100000	0.700000	0.
	50%	45.000000	160.000000	60.000000	81.000000	1.000000	1.
	75%	60.000000	170.000000	70.000000	87.800000	1.200000	1.

140.000000

999.000000

9.900000

9.

190.000000

8 rows × 22 columns

max

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 991346 entries, 0 to 991345
Data columns (total 24 columns):

85.000000

Column Non-Null Count Dtype ----_____ 0 991346 non-null object sex 1 991346 non-null int64 age 2 991346 non-null int64 height 3 weight 991346 non-null int64 4 991346 non-null float64 waistline 5 sight_left 991346 non-null float64 6 sight_right 991346 non-null float64 7 hear_left 991346 non-null float64 8 hear_right 991346 non-null float64 9 SBP 991346 non-null float64 10 DBP 991346 non-null float64 11 **BLDS** 991346 non-null float64 991346 non-null float64 12 tot_chole 13 HDL_chole 991346 non-null float64 14 LDL_chole 991346 non-null float64 15 triglyceride 991346 non-null float64 991346 non-null float64 hemoglobin 16 17 urine_protein 991346 non-null float64 serum_creatinine 991346 non-null float64 18 SGOT_AST 19 991346 non-null float64 20 SGOT_ALT 991346 non-null float64 21 gamma_GTP 991346 non-null float64 22 SMK_stat_type_cd 991346 non-null float64 23 DRK_YN 991346 non-null object

dtypes: float64(19), int64(3), object(2)

memory usage: 181.5+ MB

DATA Cleaning:

```
In [6]: # Check missing values
        df.isna().sum()
Out[6]: sex
                          0
                          0
        age
        height
                         0
        weight
        waistline
        sight_left
                         0
        sight_right
        hear_left
                         0
        hear_right
                         0
        SBP
                         0
        DBP
        BLDS
                         0
                      0
        tot_chole
        HDL_chole
        LDL_chole
                         0
        triglyceride 0
        hemoglobin
        urine_protein 0
        serum_creatinine 0
        SGOT_AST
        SGOT_ALT
                         0
        gamma_GTP 0
        SMK_stat_type_cd 0
        DRK_YN
        dtype: int64
        We don't have any missing or NaN values
In [7]: # Check duplicates
        df[df.duplicated].shape
Out[7]: (26, 24)
In [8]: # There are 26 duplicates to drop from the dataset
        df = df.drop_duplicates(keep='first')
In [9]: df[df.duplicated].shape
Out[9]: (0, 24)
In [10]: # Rename column DRK_YN to drinking_hist
        df.rename(columns={'DRK_YN': 'drinking_hist'}, inplace=True)
```

```
In [11]: # Replace Y to 1 and N to 0
          df['drinking_hist'] = df['drinking_hist'].replace({'Y': 1, 'N': 0})
In [12]: # Keep only cholesterol columns
          columns_to_keep = ['tot_chole', 'HDL_chole', 'LDL_chole', 'drinking_hist']
          # Create a new DataFrame with only the specified columns
          df = df[columns_to_keep]
In [13]: # Calculate the mean value of 'LDL_chole' within your specified range
          mean_within_range = df[(df['LDL_chole'] >= 10) & (df['LDL_chole'] <= 250)]['LDL_chole']</pre>
          # Replace values outside of the range with the mean value
          df['LDL_chole'] = df['LDL_chole'].apply(lambda x: mean_within_range if x < 10 or x</pre>
In [14]: # Final Dataset
         df.head()
Out[14]:
            tot_chole HDL_chole LDL_chole drinking_hist
          0
                193.0
                             48.0
                                       126.0
                                                       1
                228.0
                             55.0
                                      148.0
          1
                                                       0
          2
                136.0
                             41.0
                                       74.0
                                                       0
```

DATA Analysis:

495476

Name: drinking_hist, dtype: int64

201.0

199.0

76.0

61.0

104.0

117.0

0

0

3

4

The proportions of people who drink (1) and those who don't (0) are very close, indicating a roughly equal distribution of drinking history in the dataset.

```
In [18]: # Create a pie chart

explode=[0, 0.02]
    custom_palette = ['orange', 'lightblue']

# Create a pie chart with the custom color palette
    plt.figure(figsize=(6, 6))
    plt.pie(drk_counts, labels=['Drinking (1)', 'Non-Drinking (0)'], autopct='%1.1f%',
    plt.title('Distribution of Drinking History')
    plt.show()
```

Distribution of Drinking History


```
In [19]: # Calculate the mean and standard deviation for drinkers (1)
    mean_LDL_drinkers = df[df['drinking_hist'] == 1]['LDL_chole'].mean()
    std_LDL_drinkers = df[df['drinking_hist'] == 1]['LDL_chole'].std()

# Calculate the proportion of drinkers (1) in the dataset
    proportion_drinkers = len(df[df['drinking_hist'] == 1]) / len(df)

# Calculate the mean and standard deviation for non-drinkers (0)
    mean_LDL_nondrinkers = df[df['drinking_hist'] == 0]['LDL_chole'].mean()
    std_LDL_nondrinkers = df[df['drinking_hist'] == 0]['LDL_chole'].std()
```

```
# Calculate the proportion of non-drinkers (0) in the dataset
proportion_nondrinkers = len(df[df['drinking_hist'] == 0]) / len(df)

# Print the results
print("Drinkers (1):")
print(f"Mean LDL Cholesterol: {mean_LDL_drinkers:.2f}")
print(f"Standard Deviation: {std_LDL_drinkers:.2f}")
print(f"Proportion of Drinkers: {proportion_drinkers:.2%}\n")

print("Non-Drinkers (0):")
print(f"Mean LDL Cholesterol: {mean_LDL_nondrinkers:.2f}")
print(f"Standard Deviation: {std_LDL_nondrinkers:.2f}")
print(f"Proportion of Non-Drinkers: {proportion_nondrinkers:.2%}")
Drinkers (1):
```

Mean LDL Cholesterol: 111.33
Standard Deviation: 33.55
Proportion of Drinkers: 49.98%

Non-Drinkers (0):
Mean LDL Cholesterol: 114.38
Standard Deviation: 34.59
Proportion of Non-Drinkers: 50.02%

On average, individuals with a drinking history (1) tend to have a slightly lower mean LDL cholesterol level (111.47) compared to those without a drinking history (0) who have a slightly higher mean LDL cholesterol level (114.60), with nearly equal proportions of drinkers and non-drinkers in the dataset.

```
In [26]: # Calculate the mean LDL cholesterol for drinkers (1) and non-drinkers (0)

sns.boxplot(x='drinking_hist', y='LDL_chole', data=df, palette=['blue', 'green'])
plt.xlabel('Drinking History')
plt.ylabel('LDL Cholesterol Levels')
plt.title('LDL Cholesterol by Drinking History')
plt.xticks([0, 1], ['Non-Drinkers', 'Drinkers'])
plt.show()
```



```
In [21]: # Calculate the correlation matrix with other cholesterol results

correlation_matrix = df[['tot_chole', 'HDL_chole', 'LDL_chole', 'drinking_hist']].c

# Create a heatmap of the correlation matrix
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap')
plt.show()
```


The correlation coefficient for LDL Cholesterol is -0.04. This indicates a very weak linear relationship between LDL cholesterol levels and drinking history.

```
In [22]: from scipy.stats import ttest_ind

# Separate the data into two groups: drinkers and non-drinkers
drinkers = df[df['drinking_hist'] == 1]['LDL_chole']
non_drinkers = df[df['drinking_hist'] == 0]['LDL_chole']

# Perform an independent t-test
t_statistic, p_value = ttest_ind(drinkers, non_drinkers, equal_var=False)

# Print the results
print('T-Statistic:', t_statistic)
print('P-Value:', p_value)
```

T-Statistic: -44.550079625743514

P-Value: 0.0

This independent two-sample t-test, the negative t-statistic (-44.55) suggests that individuals with a drinking history (1) have a lower mean LDL cholesterol levels compared to those without a drinking history (0). The low p-value (0.0) indicates strong evidence to reject the

null hypothesis, supporting the hypothesis that drinking has a significant correlation with LDL cholesterol levels.

Drinking is associated with lower LDL cholesterol levels.