Capítulo 4: Interferência de Ondas

Tópicos:

Sobreposição e interferência de ondas harmónicas

Ondas estacionárias

Batimentos (interferência no tempo)

Cap. 4: Interferência de Ondas

1

Sobreposição e interferência

Uma característica importante do movimento ondulatório ocorre quando duas ou mais ondas coincidem no espaço e no tempo, verificando-se então o fenómeno de interferência.

Princípio de sobreposição:

Se duas ou mais ondas passam na mesma região do espaço, no mesmo tempo, a função de onda resultante é, em qualquer ponto, a soma algébrica das funções de onda individuais.

Elementos de Física universidade de aveiro theoria poiesis praxis

Considere-se duas <u>ondas harmónicas progressivas</u>, que se propagam da esquerda para a direita, tendo:

- a mesma amplitude, A,
- a mesma constante de propagação, k,
- a mesma frequência f,
- o mesmo comprimento de onda λ
- mas desfasadas entre si de φ

$$y_1(x,t) = A \operatorname{sen} (\omega t - kx)$$

$$y_2(x,t) = A \operatorname{sen} (\omega t - kx + \varphi)$$

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

3

Sobreposição e interferência

De acordo com o **princípio de sobreposição** a onda resultante na região do espaço e tempo onde coincidem as duas primeiras, será obtida pela sua adição algébrica:

$$y(x,t) = y_1(x,t) + y_2(x,t)$$

= A [sen (ωt - kx) + sen (ωt - kx + φ)]

Como sen a + sen b = 2 cos (a-b)/2 sen (a+b)/2, temse:

$$y(x,t) = \left[2A\cos\left(\frac{\varphi}{2}\right) \right] sen \left[\omega t - kx + \left(\frac{\varphi}{2}\right) \right]$$

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

Tal como as ondas iniciais a onda resultante

- é harmónica
- tem o mesmo comprimento de onda λ
- a mesma constante de propagação, k,
- a mesma frequência f,

Contudo, difere das ondas iniciais por apresentar

- uma diferença de fase de φ/2
- uma nova amplitude A'=2A cos φ/2

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

5

Sobreposição e interferência

Ocorre interferência totalmente construtiva

sempre que

$$\cos\left(\frac{\varphi}{2}\right) = \pm 1$$

$$\left(\frac{\varphi}{2}\right) = n\pi$$
$$\varphi = 0, 2\pi, ..., 2n\pi$$

Ocorre interferência totalmente destrutiva

sempre que

$$\cos\left(\frac{\varphi}{2}\right) = 0$$

$$\left(\frac{\varphi}{2}\right) = (2n+1)\frac{\pi}{2}$$
$$\varphi = \pi, 3\pi, \dots, (2n+1)\pi$$

Cap. 4: Interferência de ondas

lementos de Física universidade de aveiro theoria poiesis praxis

J

Interferência totalmente construtiva:

$$\varphi = 0$$
, logo cos $(\varphi/2) = 1$

$$y(x,t) = y_1(x,t) + y_2(x,t) = 2Asen[kx - \omega t]$$

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

7

Sobreposição e interferência

Interferência totalmente destrutiva:

$$\varphi = \pi$$
, logo cos $(\varphi/2) = 0$

$$y(x,t) = y_1(x,t) + y_2(x,t) = 0$$

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

O desfasamento entre duas ondas é muitas vezes de <u>origem espacial</u>, ou seja, deriva do facto de as ondas terem <u>diferentes percursos</u> entre as fontes e o ponto de interferência.

Considere-se duas fontes F1 e F2 que mantêm uma diferença de fase constante (fontes coerentes), emitindo ondas harmónicas com a mesma amplitude e frequência.

Sobreposição e interferência

Após diferentes percursos r_1 (= x_1) e r_2 (= x_2), as ondas no ponto $\stackrel{\textbf{P}}{}$ são:

$$y_1(x,t) = A \operatorname{sen} (\omega t - kx_1)$$

 $y_2(x,t) = A \operatorname{sen} (\omega t - kx_2)$

De acordo com o princípio de sobreposição, a onda resultante é:

$$y(x,t) = A[sen(\omega t - kx_1) + sen(\omega t - kx_2)]$$
$$= 2A\cos\left(\frac{k(x_1 - x_2)}{2}\right) sen[\omega t - kx]$$

 $com x \approx (x_1 + x_2)/2$

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

A diferença de fase φ entre as duas ondas é então

$$\varphi = (kx_1 - \omega t) - (kx_2 - \omega t) = k (x_1 - x_2) = k \Delta x$$

Verifica-se que a diferença de fase é proporcional à diferença de percurso.

Como k = $2\pi / \lambda$, tem-se:

$$\varphi = 2\pi \frac{\Delta x}{\lambda}$$

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

11

Sobreposição e interferência

A interferência totalmente construtiva é dada pela condição:

$$\frac{\varphi}{2} = \frac{k\Delta x}{2} = n\pi$$
$$\Delta x = \lambda, 2\lambda, ..., n\lambda$$

ou seja, verifica-se se a diferença de percurso for igual a um <u>número inteiro de comprimentos de</u> <u>onda</u>

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

A interferência totalmente destrutiva é dada pela condição:

$$\frac{\varphi}{2} = \frac{k\Delta x}{2} = (2n+1)\frac{\pi}{2}$$
$$\Delta x = \frac{\lambda}{2}, \frac{3\lambda}{2}, \dots, (2n+1)\frac{\lambda}{2}$$

ou seja, verifica-se se a diferença de percurso for igual a um <u>número inteiro ímpar de metade do comprimento de onda</u>

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

Interferência construtiva:

$$\Delta r = n\lambda \Leftrightarrow a \sin \theta = n\lambda \Leftrightarrow y = \frac{n\lambda L}{a}$$

n=0,±1, ±2,...

Interferência destrutiva:

$$\Delta r = (2n+1)\frac{\lambda}{2} \Leftrightarrow a \sin \theta = (2n+1)\frac{\lambda}{2} \Leftrightarrow y = \frac{(2n+1)\lambda L}{2a}$$

 $n=0,\pm 1,\pm 2,...$

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

Sobreposição e interferência

Exemplo

Numa experiência de Young realizada com luz, a separação entre as duas fendas é de 0.20mm e o ecran de observação está a uma distância de 1.0m. A terceira franja brilhante (*n*=3) está a uma distância de 7.5mm da franja central. Determine o comprimento de onda da luz utilizada.

Solução:

A posição da n-ésima franja brilhante é dada $v = \frac{hL}{a}$ Com n = 3, L = 1.0m, y = 7.5mm e a = 0.20mm, obtémse então $\lambda = 500$ nm.

Quando se confina o movimento ondulatório a uma região limitada do espaço, como uma corda em que as extremidades estão fixas, um líquido num canal ou uma onda electromagnética numa cavidade, a interferência produz ondas estacionárias.

Este tipo de interferência é de grande interesse prático, ex.

- -- Física atómica quantificação dos níveis de energia;
- -- Emissão laser;
- -- Desenho de pontes, prédios, instrumentos musicais

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

17

Ondas estacionárias

Duas ondas harmónicas que se propagam em sentidos opostos interferem de tal modo que há pontos que não se desviam da posição de equilíbrio - nodos - e outros que vibram com amplitude máxima - anti-nodos ou ventres.

A onda resultante <u>não se</u> <u>propaga</u> e chama-se onda estacionária

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

Ondas estacionárias numa corda

Considere-se a corda OX que tem a extremidade O fixa. Uma onda harmónica transversal incidente que se propaga para a esquerda, expressa por $y_1(x,t) = A$ sen $(\omega t + kx)$, será reflectida em O, produzindo uma nova onda harmónica que se propaga para a direita e é expressa por $y_2(x,t) = A$ sen $(\omega t - kx)$.

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

19

Ondas estacionárias

O deslocamento em qualquer ponto da corda é o resultado da sobreposição das duas ondas:

$$y(x,t) = y_1(x,t) + y_2(x,t) = A[sen(kx+\omega t) + sen(kx-\omega t)]$$

$$y(x,t) = 2Asen(kx)\cos(\omega t)$$

As expressões (kx \pm ω t) não aparecem na onda resultante e como tal ela não representa uma onda progressiva, mas sim uma onda estacionária. A amplitude varia com a posição e é dada por:

A' = 2 A sen (kx)

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

A amplitude A' = 2A sen (kx) é <u>nula</u> para kx = n π , onde n é inteiro. Como k = $2\pi/\lambda$, tem-se:

$$x = \frac{n\lambda}{2}$$

Estes pontos designam-se por *nodos*. Os nodos consecutivos estão separados de $\,\lambda$ /2 .

A standing wave pattern for a string

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

21

22

Ondas estacionárias

Os pontos de amplitude máxima – *anti-nodos* ou ventres - ocorrem quando |sen (kx)|=1; ou seja, para

$$kx = (2n+1) \pi/2$$

Como k = $2\pi/\lambda$, tem-se:

$$x = \frac{(2n+1)\lambda}{4}$$

Elementos de Física universidade de aveiro theoria poiesis praxis

Ondas estacionárias Note-se que anti-nodos (nodos) adjacentes estão separados de λ/2 e que a distância entre um nodo e um antinodo é de λ/4.

Elementos de Física

2017/2018

universidade de aveiro theoria poiesis praxis

A standing wave pattern for a string

Exemplo 1: corda presa nas duas extremidades

$$L = n \frac{\lambda}{2}$$
 (L= comprimento da corda)

$$\lambda_n = 2L/n$$

$$\lambda_n = 2L/n \qquad f_n = \frac{nv}{2L}$$

$$\longrightarrow \lambda_1 = 2L \qquad \longrightarrow f_1 = \frac{v}{2L}$$

$$\rightarrow \lambda_2 = 1$$

$$\longrightarrow \lambda_2 = L \qquad \longrightarrow f_2 = \frac{v}{L}$$

$$\longrightarrow$$
 f_{2}

Cap. 4: Interferência de ondas

Elementos de Física 2017/2018

universidade de aveiro theoria poiesis praxis

Ondas estacionárias

Exemplo 2: corda com uma extremidade livre

L- comprimento da corda Ponto x=L é um ventre

$$\lambda_{2n+1} = \frac{4L}{2n+1}$$

$$\lambda_{2n+1} = \frac{4L}{2n+1}$$
 $f_{2n+1} = (2n+1)\frac{v}{4L}$

$$\lambda_1 = 4I$$

$$\longrightarrow \lambda_1 = 4L \qquad \longrightarrow f_1 = \frac{v}{4L}$$

$$\lambda_3 = \frac{4L}{3}$$

$$f_3 = 3\frac{v}{4I}$$

$$\lambda_5 = \frac{4L}{5}$$

$$f_5 = 5\frac{v}{4L}$$

Cap. 4: Interferência de ondas

Elementos de Física 2017/2018

universidade de aveiro

Exemplo 3: ondas sonoras estacionárias

Tubo aberto nas duas extremidades:

Tubo aberto em uma extremidade:

Cap. 4: Interferência de ondas

Ondas estacionárias

Exemplo

Num esforço para ter o nome no Guiness Book of World Records, alguém construiu uma viola em que as cordas apresentam um comprimento de 5.0m. Uma corda tem uma densidade linear de massa de 40.0g/m e uma frequência fundamental de 20.0Hz. Calcule a) a tensão desta corda e b) a frequência e o comprimento de onda do segundo harmónico.

Solução:

Tem-se

 $f_1 = \frac{v}{2L}$ e $v = \sqrt{\frac{T}{\rho}}$

- Considerando ρ = 40.0g/m, f_1 = 20.0 Hz e L = 5.0 m, obtém-se T = 1600 N
- Tem-se $f_2 = \frac{v}{L} = 2f_1 = 40.0Hz$ $\lambda_2 = L = 5.00m$

Batimentos

Neste caso, consideramos duas ondas que se propagam no mesmo sentido, apresentando a mesma amplitude, mas com frequências e comprimentos de onda diferentes.

Cap. 4: Interferência de ondas

Elementos de Física 2017/2018

universidade de aveiro theoria poiesis praxis 29

Batimentos

$$y(x,t) = y_1(x,t) + y_2(x,t) = A[sen(\omega_1 t - k_1 x) + sen(\omega_2 t - k_2 x)]$$

$$= 2A\cos\left\{\frac{[(\omega_1 - \omega_2)t - (k_1 - k_2)x]}{2}\right\} sen\left\{\frac{[(\omega_1 + \omega_2)t - (k_1 + k_2)x]}{2}\right\}$$

Fazendo:

$$k = \frac{k_1 + k_2}{2} \quad e \quad \omega = \frac{\omega_1 + \omega_2}{2}$$

$$k_m = \frac{k_1 - k_2}{2} \quad e \quad \omega_m = \frac{\omega_1 - \omega_2}{2}$$

podemos escrever:

$$y(x,t) = 2A\cos\{\omega_m t - k_m x\} sen\{\omega t - kx\}$$

Cap. 4: Interferência de ondas

Elementos de Física universidade de aveiro theoria poiesis praxis

Batimentos

Em geral, ω_m e k_m são muito mais pequenos que ω e k. Podemos escrever:

 $y(x,t) = A' sen\{\omega t - kx\}$

Esta expressão descreve uma onda progressiva com frequência $f=\omega/2\pi$ e comprimento de onda $\lambda=2\pi/k$, mas com uma amplitude A variável:

 $A = 2A\cos\{\omega_m t - k_m x\}$

Temos uma $\it Modulação\ da\ Amplitude\ com\ uma\ frequência\ f_{\rm m}$ e $\it Batimentos\ com\ uma\ frequência\ f_{\rm b}=2f_{\rm m}$:

 $f_b = 2f_m = \frac{\omega_m}{\pi}$

Elementos de Física 2017/2018

universidade de aveiro theoria poiesis praxis