目录

1	问题	型描述	2		
	1.1	类自然语言描述	2		
	1.2	一种形式化描述	2		
2	研究	运现状与对比算法	3		
	2.1	非随机近似算法	3		
		2.1.1 最近邻点算法	3		
		2.1.2 克里斯托菲德斯算法	4		
		2.1.3 2-OPT 改进算法	7		
	2.2	随机型近似算法	9		
		2.2.1 王磊算法	9		
		2.2.2 模拟退火	10		
3	遗传算法及改进策略 11				
	3.1	传统的遗传算法	11		
	3.2	改进的遗传算法	12		
4	实验	↑ ↑ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	14		
	4.1	数据集与超参数	14		
	4.2	实验结果	14		
5	结束	i语	15		

求解旅行商问题的拟物拟人算法研究

杜睿

摘要

旅行商问题是一个典型的 NP 难度问题,虽易于描述但无法在多项式时间内求得最优解。近年来,国内外研究者设计各种近似算法(尤其是进化算法)期望求解该问题。

对于组合优化问题,有两条主线。第一条是如何表达可行解与解空间,语义(表现型)和存储(基因型)可以有所不同。第二条是如何平衡局部搜索与跳坑策略,平衡开采与探索:如果开采不足,收敛性不好;如果探索不够,容易早熟,陷入局部最优解。

本文提出了改进的遗传算法用于求解旅行商问题:在种群的初始化阶段发扬"继承"策略,减少迭代次数并保留种群多样性;在变异部分,在 K-OPT 的基础上,设计了一种基于"贪婪插入"的算子;同时,在选择操作中弃用轮盘赌方法,改用排位等级法。

选取城市数小于等于 1000 中全部 48 个 benchmark 测试用例对算法进行测试,每个实例计算 10 次。实验表明,提出的算法在求解质量和求解速度上优于所对比的算法。

1 问题描述

1.1 类自然语言描述

给定 n 个城市,对这 n 个城市中的每两个城市来说,从一个城市到另一个城市所走的路程是已知的正实数(符合三角形三边关系定则),其中 n 是已知的正整数, $n \geq 3$ 。这 n 个城市的全排列共有 n! 个。每一个这 n 个城市的全排列都恰好对应着一种走法: 从全排列中的第一个城市走到第二个城市, ...,从全排列中的第 n-1 个城市走到第 n 个城市,从全排列中的第 n 个城市回到第一个城市。要求给出一个这 n 个城市的全排列 σ ,使得在 n! 个全排列中,全排列 σ 对应的走法所走的路程是最短的(严格来讲,由于起点任意、顺逆时针等价,问题复杂度为 $\frac{(n-1)!}{2}$)。

1.2 一种形式化描述

给定一个有向完全图 G = (V, A),其中集合 $V = \{v_1, ..., v_n\}$ 是顶点集合,每个顶点代表一个城市,n 是顶点数 $(n \ge 3)$,集合 $E = \{(v_i, v_j) | v_i, v_j \in V, v_i \ne v_j\}$ 是有向边集合。

 c_{ij} 是有向边 (v_i,v_j) 的长度(权值), c_{ij} 是已知的正实数,其中 $(v_i,v_j) \in E$ 。集合 Σ 是顶点全排列的集合,共有 n! 元素。 σ 是所有顶点的一个全排列, $\sigma = (\sigma(1),\ldots,\sigma(n)),\sigma \in \Sigma, \sigma(i) \in V$ $1 \leq i \leq n$ 对应着一条遍历所有顶点的回路:从顶点 $\sigma(1)$ 走到顶点 $\sigma(2)$, …,从顶点 $\sigma(n-1)$ 走到顶点 $\sigma(n)$,从顶点 $\sigma(n)$ 回到顶点 $\sigma(1)$ 。

全排列 σ 所对应的回路的长度记为 $L(\sigma)$, $L(\sigma) = \sum_{i=2}^{n} c_{\sigma(i-1)\sigma(i)} + c_{\sigma(n)\sigma(1)}$ 。

目标是给出所有顶点的一个全排列 σ^* ,使得 $L(\sigma^*) = \min_{\sigma \in \Sigma} L(\sigma)$ 。

每一对顶点 v_i 和 v_j 来说,都有 $c_{v_iv_j}$ 成立,那么称问题是对称的 (Symmetric traveling salesman problem);否则称问题是非对称的 (Asymmetric traveling salesman problem)。

2 研究现状与对比算法

求解旅行商问题的算法大体可分为两类:确切算法和近似算法。

- 1. 确切算法保证给出最优解,但由于"组合爆炸",其仅可用于计算较小规模实例。
- 2. 近似算法,或许有可能在短时间内,给出相当接近最优解的近似解。其中,非随机性近似算法包括构建式启发/贪婪算法,克里斯托菲德斯算法;随机性近似算法包括随机局域搜索、模拟退火、遗传算法、粒子群算法等。

本节接下来介绍对比算法,包括非随机近似算法(最近邻点算法、克里斯托菲德斯算法以及 2-OPT 改进算法)和随机近似算法(王磊算法、模拟退火算法)。

2.1 非随机近似算法

5 $\sigma^* \leftarrow tour, L \leftarrow L(\sigma^*);$

2.1.1 最近邻点算法

顾名思义,在选定一个启始城市 s 后,每次贪婪地选择距离当前城市最近的未访问城市 v 作为下一站;依次类推,直至将所有城市访问一遍,最后回到出发城市 s。伪码如下:

Algorithm 1: GreedyNearestNeighbor Algorithm

2.1.2 克里斯托菲德斯算法

可证明最差情况下,该近似算法所得回路长度也不会超过最优回路长度的 1.5 倍。求最小值问题,设 Opt 是最优值,x 表示某近似算法给出的一个值,一般规定, $Opt \le x \le \alpha \times Opt$, α 记为该算法的近似比,可用于评价算法优劣。元启发算法虽然有可能得出比较好的近似解,但往往不涉及在最差情况下的效率证明。

首先,引入近似比为2的算法(2-Approximation):

- (a) 定义: S 代表一系列边(允许重边),c(S) 代表各边权重(长度)之和。
- (b) 定义: H_G^* 为无向多重图 G 上,长度最短的哈密尔顿回路(Hamiltonian Cycle),途中经过所有点且只经过一次。
- (c) 构造最小生成树 T,根据最小权生成树定义, $c(H_G^*) \geq c(H_G^* e) \geq c(T)$ 。
- (d) 按深度优先搜索次序记录回路 C,下探一次,回溯一次,因此 $c(C) = 2 \times c(T)$ 。
- (e) 搭桥 (short-cut/bypass) 略过重复访问的点得到符合问题描述的新回路 C' (最后回到起点),例如,1,2,3,4,5,6...,1。

图 1: 近似比为 2 的算法(引入)

证明如下:

- 由 e、三角形三条边关系定则, $c(C') \le c(C)$;
- $\pm c$, $c(H_G^*) \ge c(H_G^* e) \ge c(T)$;
- $\not\equiv d$, $c(C) = 2 \times c(T)$;
- $\& c(C') \le 2c(H_G^*);$
- 因此,该近似算法所得解,最多也不会超过最优解的 2 倍。

然后,仍基于最小生成树,想方设法减小"每边下探一次,回溯一次"带来的额外开销,导出理论近似比为 1.5 的算法。期待一笔画、不重边地遍历所有顶点,可以将问题转换成"欧拉回路"问题。无向图存在欧拉回路的充要条件为:该图为连通图,且所有顶点度数均为偶数。倘若'奇度数'顶点为偶数个(证明见下),那么可以通过将其两两匹配,为每一个顶点都"附赠"一个度,这样便可以满足"顶点度数均为偶数"条件。

- (a) 定义: S 代表一系列边(允许重边), c(S) 代表各边权重(长度)之和。
- (b) 定义: H_G^* 为无向多重图 G 上,长度最短的哈密尔顿回路(Hamiltonian Cycle),即途中经过所有点且只经过一次。
- (c) 定义: 假设 S 为无向多重图 G 上的导出子图,在 S 上长度最短的哈密尔顿回路记为 H_S^* 。根据三角形三边关系定则易证, $c(H_S^*) \leq c(H_G^*)$ 。
- (d) 构造最小生成树 T,根据最小权生成树定义, $c(H_G^*) \geq c(H_G^* e) \geq c(T)$ 。
- (e) 分离在 T 上度数为奇数的点,生成导出子图 S (根据握手定理,给定无向图 G = (V, E), 一条边贡献 2 度,故有 $\Sigma degG(v) = 2|E|$;除开度数为偶数的顶点所贡献的度数,推论可知,度数为奇数顶点数有偶数个);
- (f) 构造 S 的最小权完美匹配 M,构造多重图 $G' = T \cup M$ (此时每个顶点均为偶数度,故存在欧拉回路);
- (g) 生成 G' 的欧拉回路 C, c(C) = c(T) + c(M);
- (h) 搭桥(short-cut/bypass)略过重复访问的点(起点终点不删)得到符合问题描述的新回路 C'(最后回到起点)。

证明:

- 由 e、三角形三边关系定则, $c(C') \leq c(C)$;
- $\pm d$, $c(H_G^*) \ge c(H_G^* e) \ge c(T)$;
- $\pm g$, c(C) = c(T) + c(M);
- $\pm f$, c, $c(M) + c(M) \le c(M1) + c(M2) = c(H_S^*) \le c(H_G^*)$;
- $\text{th } c(C') \leq c(T) + c(M) \leq c(H_G^*) + \frac{1}{2}c(H_G^*);$
- 即得证。

图 2: 克里斯托菲德斯算法(步骤)

图 3: 最小权完美匹配(举例)

图 4: 克里斯托菲德斯算法(实例)

2.1.3 2-OPT 改进算法

如果题目数据使用欧几里得距离,那么最优路线必定不会自交。基于这一观察,有学者倡导使用"改进"算法,即对于一条可行回路查漏补缺对其进行细微调整。"知错能改,善莫大焉"。"怎么改"对应着一种"操作",即一种"邻域算子"。

解空间中的一个巡回旅行路线直接或间接对应一个全排列 σ ,若将其视作 n 维空间中的一个点,其邻域 σ' 操作有很多种,如插入、块插入、块反转、点对换、块交换、边重组等等。边重组中,最著名的是 2-交换(2-OPT)、3-交换(3-OPT)。2-交换的步骤就是删除路线中的两条边,用另外两条更短的边重新连接,是路径连为一体。反复使用 2-交换算子改进路线,就可以在很大程度上改进"虎头蛇尾"、"目光短浅"的回路路线。

图 5: 2-OPT (图例)

2-OPT 改进算法伪代码如下:

Algorithm 2: 2-OPT Algorithm

```
input : V = \{v_1, \dots, v_n\}, dist(\cdot, \cdot), L(\cdot), \sigma
     output: \sigma^*
 1 length \leftarrow L(\sigma);
 2 repeat
           improved \leftarrow False;
 3
           for i \leftarrow 0 to n-3 do
 4
                for j \leftarrow i + 2 to n do
 5
                      \sigma' \leftarrow \sigma;
  6
                      \sigma'[i+1\ldots j] \leftarrow \text{reverse}(tour'[i+1\ldots j]);
                      length' \leftarrow L(\sigma');
                      \mathbf{if} \ length' < length \ \mathbf{then}
  9
                            \sigma \leftarrow \sigma';
10
                            length \leftarrow length';
11
                            improved \leftarrow \text{True};
12
13 until \neg improved;
14 \sigma^* \leftarrow \sigma;
```

3-OPT 改进算法与之类似,但是可能的情况更多:

图 6: 3-OPT (图例)

2.2 随机型近似算法

2.2.1 王磊算法

王磊老师在课上跟学生说过一个随机型近似算法(王磊算法),基本算法 A_1 描述如下:

输入: 指导序列 γ , γ 是所有顶点的一个全排列;

开局:用前 3 个点绘制外接凸多边形,构成初始的部分回路 $\sigma = (\gamma(1), \gamma(2), \gamma(3));$

迭代:每次从当前格局向新格局演化时,选择下一个点,按照使得新的部分回路长度 尽量短的贪心策略,将其插入至 σ 合适的位置;

停机: 直到产生 n 个点的回路 σ , 算法结束, 输出 σ 。

Algorithm 3: Generate Tour from a Conductor

input: $V = \{v_1, \dots, v_n\}, dist(\cdot, \cdot), \gamma \text{ a permutation of } V$ output: σ the tour

1 $\sigma \leftarrow (\gamma(1), \gamma(2), \gamma(3));$ 2 for $i \leftarrow 4$ to n do

3 $best_idx \leftarrow \underset{j \in \{1, \dots, |\sigma|\}}{\arg\min} L(\sigma_{1:j}) + dist(\gamma(i), \sigma(j)) + L(\sigma_{j:|\sigma|}) - L(\sigma);$ $\sigma \leftarrow (\sigma_{1:best_idx}, \gamma(i), \sigma_{best_idx+1:|\sigma|});$

对所有指导序列 $\gamma \in \Gamma$,目标是 $\gamma^* = \arg\min_{L(A_1(\gamma))} L(A_1(\gamma))$ 。据此,提出算法 A_2 :

初始格局: 初始化 γ , 通过 A_1 算法指导获得回路 $\sigma = A_1(\gamma)$, 以及长度 $l = L(\sigma)$;

邻域搜索: 邻域变换得到 γ' 、 σ' 及 l',若 l' < l,依照最陡下降法,更新格局 $\gamma \leftarrow \gamma'$

跳坑策略当 γ 位于局部最优,即几乎尝试所有邻域都无法改善目标函数时,重新随机初始化 γ 或者采用大步长算子(如块移动、块对换、块插入)对 γ 进行变换。

Algorithm 4: WangLei Algorithm

```
input : V, dist(\cdot, \cdot), L(\cdot), epoch, early\_stop
permutation(\cdot), transform(\cdot), shuffle(\cdot)
output: \sigma, l

1 \gamma \leftarrow permutation(V); \sigma \leftarrow A_1(\gamma); l \leftarrow L(\sigma);
2 for e \leftarrow 1 to epoch do

3 \gamma' \leftarrow transform(\gamma); \sigma' \leftarrow A_1(\gamma'); l' \leftarrow L(\sigma');
4 if l' < l then

5 \gamma \leftarrow \gamma'; \sigma \leftarrow \sigma'; l \leftarrow l';
6 if no improvement for early\_stop iterations then

7 \gamma \leftarrow permutation(V) or \gamma \leftarrow shuffle(\gamma);
```

王磊算法的创新和启发意义主要有以下三点:

1. 传统启发算法求解旅行商问题,几乎全部都是直接在回路 σ 上进行邻域扰动,获得新解。而王磊算法则提出了 $\gamma \to \sigma$ 的映射算法 A_1 ,这相当于对原有解空间进行了"扭曲",将求"回路"的原问题转化为了求"指导顺序"的新问题。

在最优化理论中,原始问题很难求解时,往往通过引入对偶问题的方式,简化对原始问题的求解。在机器学习中,也有代替函数、核函数作为例子。我们不禁要问,对于所有的"指导序列" $\gamma \in \Gamma$,它们所生成的所有回路集合 Σ^* ,是否包含了最优回路 σ^* ? 即,通过指导序列将问题转换,问题转换前后是否仍然具有"一致性"?

2. 邻域搜索和跳坑策略思想并不高深。局部极小值的定义来自于函数求极值,跳坑则更有烟火气:如果你已经期末总评满分了,就要跳坑,到更有希望的学府继续深造。

对于旅行商问题而言,无论是回路 σ ,还是指导序列 γ ,若邻域中的点所对应的回路 长度都不比中心点短,则中心点是局部极小值点,当邻域搜索走到局部极小值点时,就采用跳坑策略,进行随机扰动,跳出局部极小值陷阱以后,继续进行邻域搜索。

这其中的问题是,随着邻域算子设计的不同,邻域中的"点"随着维度的增大,个数可能比想象中要多得多,因此有时候不得不采用固定次数的方式来执行邻域搜索。邻域搜索对应"变异"、"开采",而跳坑策略则对应"探索",可以说所有的最优化算法都要考虑这两者的平衡。

3. 生成回路算法本身也具有烟火气。想象一下,借一个扎头发的橡皮筋,套住几个点; 然后采用贪心策略,将其余点加入回路。

传统的最近邻点贪心策略是,最后一步方能连成回路,这就导致目光浅显、虎猴蛇尾;而如果是在一个成形的"回路"中添加,每次添加评价的都直接是回路的全长,则能一定程度上缓解"短视"问题。

这启发我们同样是贪心策略,但是如何运用,运用的好不好则是可以评价的。

2.2.2 模拟退火

事实上,人们从物理世界状态演化、自然界各种现象、千百年来生存斗争经验获得启发,以仿生拟人拟物途径设计了各种千奇百怪五花八门的算法。模拟退火是其中一种,具有自然背景而且实现简单。

模拟退火并没有显式地将跳坑策略(探索)和邻域搜索(开采)分成两阶段看待;它的基本思想是,以接受劣解,且接受劣解的概率随迭代次数递减直至无限趋近于零。如果只接受优解,则容易早熟,多样性不足,易于陷入局部最优,因此需要接受劣解;如果一味接受劣解,则无法保证收敛性,因此需要控制接受劣解的概率。

Algorithm 5: Simulated Annealing Algorithm

```
input : V, dist(\cdot, \cdot), L(\cdot), transform(\cdot)
                     T, \epsilon, \alpha, time \ out, early \ stop
     output: \sigma^*, L^*
 1 start_time \leftarrow current time;
 2 while current time – start time < time out do
           \sigma \leftarrow \operatorname{permutation}(V);
           L \leftarrow L(\sigma);
           while T > \epsilon do
                 for step \leftarrow 1 to early stop do
  6
                       \sigma' \leftarrow \operatorname{transform}(\sigma); L' \leftarrow L(\sigma'); \Delta L \leftarrow L' - L;
  7
                      if \Delta L < 0 or random(0,1) \le e^{\frac{-\Delta L}{T}} then
                        \  \  \, \bigsqcup \  \, \sigma \leftarrow \sigma'; \ L \leftarrow L';
                 T \leftarrow T \times \alpha;
10
11 \sigma^* \leftarrow \sigma, L^* \leftarrow L;
```

3 遗传算法及改进策略

3.1 传统的遗传算法

```
Algorithm 6: Genetic Algorithm for TSP
   input: V, epoch, early stop, population size, pc, pm
   output: \sigma^*, L^*
 1 初始化种群;
 2 for e \leftarrow 1 to epoch do
      初始化当前最佳长度为无穷大;
      for step \leftarrow 1 to early\_stop do
  4
        选择操作:根据适应度选择当前种群中的一些个体;
  5
        交叉操作:根据交叉概率 pc 结合选中的个体产生后代;
  6
        变异操作: 根据变异概率 pm 改变某些个体的特征;
        如果找到更优的解,则更新当前最佳长度;
      重新初始化种群;
 10 \sigma^* ← 找到的最佳解; L^* ← 最佳解的长度;
```

无论是基于邻域搜索和拟人策略跳坑的王磊算法,还是从淬火物理结晶过程获得启发的模拟退火算法,都是基于"个体"的启发算法。而遗传算法,从生物学获得启发,将"个体"扩展至"种群";除邻域操作(也成"变异"算子)外,新增了"交叉"操作,将"个体理性"和"群体理性"进行结合。传统的遗传算法求解旅行商问题的具体细节为:

- 编码 将执行变异操作的个体直接编码为城市序号的全排列 σ ;
- 适应 采用 $\frac{1}{L(\sigma)}$ 表示解的优劣,适应度越大,被选择保留的概率越高;
- **选择** 采用轮盘赌, 计算每条染色体的被选择概率和累计概率, 再根据一个随机数确定要保留的染色体; 选择操作是遗传算法的核心, 一方面, 要保证收敛质量好, 即回路长度短, 另一方面, 要保证种群有足够的多样性, 避免陷入局部最优的困境;
- 交叉 交叉操作的目的是,集合不同回路的优良顺序特征,常用有顺序交叉和部分映射交叉。
- 变异 通过邻域变换对种群中的个体(回路)进行扰动;遗传算法中,变异概率通常非常小。

3.2 改进的遗传算法

我对传统遗传算法的初始化、选择、变异操作做出如下改进:

- 初始 发扬"继承"策略,在初始化阶段,将"2-OPT"和"最近邻点"的结果作为初始化种群的一部分;这样可以极大的减少迭代次数,保证解的收敛性,使得随机的元启发算法依然具有理论保证,回路长度最大不会超过最优回路的 1.5 倍。
- **选择** 在选择过程中,弃用轮盘赌法,轮盘赌法的缺陷是,当适应度相似时,选择概率相近,不一定保证选择当前回路长度最小的解,使得收敛性无法保证;我们采用排位等级法,随着适应度的排序等级该确定选择概率,缓解了适应度相近时,选择困难的问题。
- **变异** 在变异过程中,除了传统的算子外,设计了一个全新的变异算子。从王磊 A_1 算法中获得启发,我们对于一个已知回路 σ ,随机剔除 N 个城市,然后依序采取贪心策略将被剔除的点添加到回路中。N 取自一个概率分布,这样能够保证剔除城市个数可以动态变化;而剔除策略,分为单点剔除和随机剔除。

下面给出种群初始化的伪代码:

```
Algorithm 7: Population Initialization for Genetic Algorithm
     input: V, size, init population
     output: Initialized population P
   1 P \leftarrow init population;
   2 while |P| < size do
         P.append(permutation(V));
   下面给出选择操作的伪代码:
Algorithm 8: Selection Operation in Genetic Algorithm
   1 Function Select (P, L, size, C, operator):
         lengths \leftarrow [L(individual) \text{ for each } individual \in P];
   2
         order \leftarrow sort indices of lengths in ascending order;
   3
         selected \leftarrow [best seen tour];
   4
         while |selected| < size do
             idx \leftarrow 0, target \leftarrow 1;
   6
             while random(0,1) < target \times (1-C) do
   7
   8
                 target \leftarrow target \times C;
             selected.append(P[order[idx]]);
  10
         return selected;
   下面给出变异算子的伪代码:
Algorithm 9: Greedy Insert Operator for Genetic Algorithm
     input : \sigma, dist(\cdot, \cdot), times, dimension
     output: Modified \sigma
   1 if random(0, 1) < 0.5 then
         conductor \leftarrow \text{remove } times \text{ random elements from } \sigma;
   3 else
         pivot \leftarrow \text{random integer}(1, dimension - times - 1);
         conductor \leftarrow \text{remove } times \text{ elements starting at } pivot \text{ from } \sigma;
   6 foreach vertex \in conductor do
         best\_idx \leftarrow arg min \ L(\sigma_{1:i}) + dist(vertex, \sigma(j)) + L(\sigma_{i:|\sigma|}) - L(\sigma);
   7
```

 $\sigma \leftarrow (\sigma_{1:best\ idx}, vertex, \sigma_{best\ idx+1:|\sigma|});$

4 实验设置与测试结果

4.1 数据集与超参数

TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/) 中公布了旅行商问题的 benchmark 测试数据集。以 EUC-2D 类型的测试数据集中的实例 a280 为例。a280.txt 文件开头有一段说明文字,然后是 280(表示点的个数),接下来有 280 行数据,每行数据含有 3 个数,分别是:当前点的序号、当前点的 x 坐标、当前点的 y 坐标。

表 1: 随机近似算法实验超参数设置			
对应算法	超参数	缺省值	
${\it GreedyNearestNeighbor}$	boost, 是否随机选择一个起始城市	True	
Simulated Annealing	初始温度 t , 终止温度 ϵ , 衰减系数 α	$1000, 10^{-14}, 0.98$	
Simulated Annealing	重启停机参数 time_out, early_stop	1,250	
${\bf Wang Lei Algorithm}$	重启停机参数 epoch, early_stop	16,250	
Proposed	种群大小 $size$, 交叉概率 p_c , 变异概率 p_m	50, 1, 0.4	
Proposed	选择系数 C	0.5	
Proposed	重启停机参数 epoch, early_stop	6,7500	

表 1: 随机近似算法实验超参数设置

4.2 实验结果

由于王磊老师是在 C 语言环境下,选择"最快速度"编译选项,在 CPU 主频为 3.4GHz 的微机上进行的测试;而我对算法的实现均采用 Python 语言编程,不具有可比较性,因此,我弃用了王磊老师于《专业方向综合实践验收的问题》中提到的报道结果,而是用 Python 复现的王磊算法进行比较。

基于 Python 语言编程实现了最近邻点算法、克里斯托菲德斯算法、2-OPT 改进的克里斯托菲德斯算法、模拟退火算法,依照课上所述的基本思想对王磊算法进行了复现作为对比算法,对本文提出的改进的遗传算法进行了测试。选取城市数小于等于 1000 中全部 48个 benchmark 测试用例对算法进行测试,每个实例计算 10 次。

下面是 10 次计算所得回路长度的最小值、平均值和平均计算时间。实验验证了提出的遗传算法的收敛质量和求解速度: 在。

^{*}提出改进的遗传算法的初始种群仅来自 2-OPT、GreedyNearestNeighbor。

5 结束语 15

5 结束语

算法及复现代码开源在:https://github.com/DURUII/Homework-Algorithm-TSPLIB95。本次专业方向综合实践,我对进化计算、遗传算法、组合优化问题以及算法思想直觉有了进一步的认识,更深刻地体会到开采和探索、多样和收敛、邻域和跳坑、个体和种群的平衡。