

现代数据中心中不使用PCIe SSD的几大理由

?

阳学仕, PhD 宝存科技CEO

提纲

- 数据中心架构的变迁 闪存革命
- PCIe 固态闪存卡简介
- 使用PCIe固态闪存卡的顾虑
 - 寿命
 - 稳定性
 - 可靠性
 - 成本
- PCle Flash存储的优势

基于传统磁硬盘(HDD)存储的IO和读写延迟限制

架构变迁(1)-分

• 个人PC阶段

10′ 10/每秒

架构变迁(2)-合

- CPU及互联网技术的发展
- →存储IO要求
- →异构数据中心

10万 IO/每秒

架构变迁(3)-分

- · 闪存的出现大幅度提升单机IO
- 分布式架构主导
- 同构数据中心

100万 IO/每秒

SATA和PCIe接口

• SATA接口

- SATA2.0: 3Gb/s

- SATA 3.0: 6Gb/s

SATA和PCIe接口

• PCle 接口

PCIe Architecture	Raw Bit Rate	Interconnect Bandwidth	Bandwidth Per Lane Per Direction	Total Bandwidth for x16 Link
PCIe 1.X	2.5GT/s	2Gbps	~250MB/s	~8GB/s
PCIe 2.X	5.0GT/s	4Gbps	~500MB/s	~16GB/s
PCIe 3.X	8.0GT/s	8Gbps	~1GB/s	~32GB/s

PCIe接口优势

- 最低时延(微秒级)
- 高带宽, 最高达 32GB/s (PCle 3.0x16)
- 灵活可扩展性(x1, x2, x4, x8, x16)

PCle 接口的Flash

• SATA 向PCIe接口转化, Enterprise

Source: HGST

PCIe 接口的Flash

• SATA 向PCIe接口转化, Client

Source: Marvell

不同存储设备比较 – HDD, SATA SSD, PCIe Flash

PCle Flash更优的解决方案

PCIe Flash完全超越SAN的IO性能

Direct-IO™ PCIe SSD SAN

读写延迟降低 100x

采购成本降低 10x

耗电量减少 40x

100K IOPS - 250K IOPS 10ms - 25ms 平均延迟 功耗高达几千瓦

350K IOPS - 1500K IOPS 0.068ms - 0.1 ms 平均延迟 功耗低于25瓦

应用领域

PCIe Flash加速应用

数据库

虚拟化

搜索

大数据分析

高性能计算

AUTODESK

提纲

- 数据中心架构的变迁-闪存革命
- PCle 固态闪存卡简介
- 使用PCIe固态闪存卡的顾虑
 - 寿命
 - 稳定性
 - 可靠性
 - 成本
- PCle Flash存储的优势

HDD的寿命

实际失效率: Datasheet的2x-30x

可用寿命

	15K SAS HDD	PCIe Flash 3.2TB
稳态8KB IOPS	400	60K
可写入数据量/天	280GB	16TB @ 5DWPD

PCle Flash寿命

- 10x HDD RAID
 - 4K IOPS@8KB
 - 2.8TB/天写入寿命,3年3PB数据
- PCle Flash
 - Up to 60K IOPS@8KB
 - 16TB/天写入寿命,3年17.5PB数据
 - 如果允许2.8TB/天写入,Flash使用寿命为17年

PCle Flash寿命

6x 实际使用寿命

SATA SSD系统的稳定性

• 由于控制器原因,可能造成SSD性能波动

PCIe SSD的性能稳定一致性

4K随机读,64K顺序读,4K随机写,64K顺序写

PCle SSD可靠性和安全性

- 智能闪存转换层 Smart Flash Translation Layer
 - 智能热、冷数据动态跟踪
 - 动态垃圾回收和磨损平衡,写放大因子最小化
 - 双重数据保护机制
 - 最大化NAND闪存的寿命

完善的容错数据保护机制

- 高达 40bit/1KB ECC或更高
- 读写,擦除出错处理及数据保护
- 页面, 坏块出错处理及数据保护

● 内置RAID机制

- RAID-(N+1)冗余阵列
- 动态,可配置冗余度
- 进一步防止数据丢失

端到端数据保护

- 企业级端到端数据链路保护
- 多重数据完整性及正确性校验

过热保护机制

- 防止系统过热对系统造成不可恢复损伤

掉电数据保护

- 完善的突发掉电数据保护机制
- 防止系统不正常关机的数据完整性和安全性

衡量成本的维度

	每IOPS的成本 (USD)
Direct-IO PCIe Flash	<0.01
SATA SSD	0.03 - 0.05
HDD (7200RPM)	0.9
HDD (10K RPM)	0.84
HDD(15K RPM)	0.78

PCIe Flash vs RAID SATA SSD

- 10x 业务处理能力提升
- Server + HBA 及运维成本考虑

提纲

- 数据中心架构的变迁-闪存革命
- PCIe 固态闪存卡简介
- 使用PCIe固态闪存卡的顾虑
 - 寿命
 - 稳定性
 - 可靠性
 - 成本
- PCle Flash存储的优势

Shannon PCIe Flash

• 200GB 至6.4TB容量

PCle Flash物理形态

• PCle卡

Shannon 8639 2.5寸盘

- Native PCle接口
- 支持热拔插
- 专利cross盘的RAID技术

PCle Flash使用者

- 1. Facebook
- 2. Apple

Shannon PCle Flash支撑业务发展

部署时间点

联系我们

地址:上海市杨浦区大连路588号宝地广场A座305室

电话: 021-55580181

邮箱: <u>contact@shannon-sys.com</u> 官方网站: www.shannon-sys.com

Weibo:@宝存科技

WeChat: Shannon-Systems

Q&A THANKS

