Modellierung eines verallgemeinerten SEIR-Modells mit prävalenzabhängigen Kontaktraten

1 SEIDR-Modell

Das SEIDR-Modell wird durch das folgende System gewöhnlicher Differentialgleichungen beschrieben:

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dE}{dt} = \beta \frac{SI}{N} - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \gamma I - \delta I$$

$$\frac{dR}{dt} = \gamma I + \gamma D$$

$$\frac{dD}{dt} = \delta I - \gamma D$$

- verallgemeintertes SEIR Modell (GG-SEIR) kann flexibleres Verhalten einbeziehen
- z.B. frühes sub-exponentielles Wachstum
- Modell beschrieben durch obige DGL, Variablen erklären

2 Kontaktrate

- Variation der Kontaktrate $\beta(t)$
- $-\beta(t) = \beta_0[(1-\phi)f(t;\theta) + \phi]$
- der kleinstmögliche Wert für β ist dann $\phi\beta_0$
- exponentielle, harmonische, und hyperbolische β Funktionen, verschiedene Parameter [Plots]

3 Fallbeispiel Xi'an

- Beispiel für Chinas strikte Null-Covid-Strategie
- Einmonatiger Lockdown ab dem 23. Dezember 2021

• Annahme: nicht immunisierte Bevölkerung (plausibel aufgrund relativ wirkungsloser Vakzine)

3.1 Strategie 1: Keine Intervention

Verbleibende nicht infizierte Individuen: 0.7649229% \Rightarrow Durchseuchung

Abbildung 1: Verlauf mit $\delta = 0.01, \beta = \frac{5.5}{12}$

3.2 Strategie 2: Testen, testen, testen

Tabelle 1: Verlauf mit verstärktem Testen

δ	Verbleibende S (in %)	I und E kleiner 1, ab
$\delta_{ur} \cdot 2^1$	1.252596	212 (+ 36)
$\delta_{ur} \cdot 2^2$	2.687945	196 (+ 36)
$\delta_{ur} \cdot 2^3$	7.447852	186 (+ 36)
$\delta_{ur} \cdot 2^4$	23.80182	211 (+ 36)
$\delta_{ur} \cdot 2^5$	76.87228	589 (+ 36)
$\delta_{ur} \cdot 2^6$	99.93514	60 (+ 36)

Abbildung 2: Verlauf mit $\delta = 0.64, \beta = \frac{5.5}{12}$

- \Rightarrow Erst ab einer Steigerung der Testeffizienz um Faktor 2^5 ist eine Eindämmung der Epidemie möglich
- \Rightarrow Bei einer Steigerung der Testeffizienz um Faktor 2^6 müssten "nur" zwei Monate lang vermehrt getestet werden

3.3 Strategie 3: Kontaktreduktion

Tabelle 2: Verlauf mit Kontaktreduktion

β	Verbleibende S (in %)	I und E kleiner 1, ab
$\beta_{ur} * 2^{-1}$	11.3365	338 (+ 36)
$\beta_{ur} * 2^{-2}$	65.28979	1184 (+ 36)
1/12	99.79345	898 (+ 36)

- ⇒ Kontaktreduktion verhindert Infektionen, zieht die Epidemie aber in die Länge
- \Rightarrow Um eine Durchseuchung zu verhindern, müssten die Kontakte fast drei Jahre lang reduziert werden

Abbildung 3: Verlauf mit $\delta = 0.0.1, \beta = \frac{1}{12}$

3.4 Strategie 4: Kontaktreduktion und Massentest

Tabelle 3: Verlauf mit verstärktem Testen und Kontaktreduktion

δ	Verbleibende S (in %)	I und E kleiner 1, ab
$\delta_{ur} \cdot 2^1$	99.88242	456 (+ 36)
$\delta_{ur} \cdot 2^2$	99.92746	230 (+ 36)
$\delta_{ur} \cdot 2^3$	99.95006	117 (+ 36)
$\delta_{ur} \cdot 2^4$	99.96137	60 (+ 36)
$\delta_{ur} \cdot 2^5$	99.96703	33 (+ 36)
$\delta_{ur} \cdot 2^6$	99.96986	20 (+ 36)

- \Rightarrow Bei extremer Kontaktreduktion wirkt sich die Testeffizienz kaum auf die Anzahl der Infektionen aus, dafür aber sehr stark auf die erforderliche Dauer der Beschränkungen
- $\Rightarrow\,$ Die Testeffizienz müsste mindestens um Faktor 2^4 gesteigert werden, um die Dauer der Einschränkungen gering zu halten (ein bis zwei Monate)

Abbildung 4: Verlauf mit $\delta = 0.64, \beta = \frac{1}{12}$

3.5 Zusammenfassung

Literatur:

P. Yan, G. Chowell: Quantitative Methods for Investigating Infectious Disease Outbreaks, 2019

A. King: Ordinary differential equations in R, https://kinglab.eeb.lsa.umich.edu/480/nls/de.html, Zugriff: 03.02.2022

Tabelle 4: Zusammenfassung

Tabene 4: Zusammemassung					
Strategie	δ	β	Dauer	Verbleibende S (in $\%$)	
_	0.01	5.5/12	8.5 Monate	0.7649229	
${ m T}$	0.64	5.5/12	2 Monate	99.93514	
K	0.01	1/12	2.5 Jahre	99.79345	
K + T	0.32	1/12	1 Monat	99.96703	
K + T	0.64	1/12	3 Wochen	99.96986	