1 Continuity

Remark. Naive Characterisation of Continuity.

Let X, Y be topological spaces, $f: X \to Y$ a map of sets. Then the following are equivalent:

- 1. f continuous.
- 2. For all $x \in X$ and $\alpha : \mathbb{N} \to X$, α converges to $x \Rightarrow f \circ \alpha$ converges to f(x).

Proposition. Neighbourhood Filter.

Let X be a topological space, $x \in X$, Open(X) the set of opens of X. Define the set of neighbourhoods of x as

$$N(x) := \{ V \subseteq X \mid \exists U \in Open(X), x \in U \subseteq V \}$$

Then $N(x) \in Fil(X)$.

Proof. Clear. \Box

Definition. Filter Converging to Point.

Let X be a topological space, $x \in X$, $F \in Fil(X)$. Then F converges to x when $N(x) \subseteq F$.

Remark. Motivation for Filter Convergence Definition.

Let X be a topological space, $x \in X$, $\alpha : \mathbb{N} \to X$. Define the filter associated with α as

$$F_{\alpha} := \{ V \subseteq X \mid \exists n \in \mathbb{N}, \alpha \mathbb{N}_{>n} \subseteq V \}$$

Then α converges to x if and only if F_{α} converges to x.

Theorem. Characterisation of Continuity.

Let X, Y be topological spaces, $f: X \to Y$ a map of sets. Then the following are equivalent:

- 1. f continuous.
- 2. For all $x \in X$ and $F \in Fil(X)$, F converges to $x \Rightarrow fF$ converges to f(x).
- 3. For all $x \in X$, fN(x) converges to f(x).

Proof. $(1 \Rightarrow 2)$ Let $x \in X$, $F \in Fil(x)$, F converges to x. Let $V \in N(f(x))$. Then $f^{-1}V \in N(x) \subseteq F$ by continuity of f, and $ff^{-1}V \subseteq V$. So $N(f(x)) \subseteq FF$.

 $(2 \Rightarrow 3)$ Clear.

 $(2 \Rightarrow 1)$ Let $U \in Open(Y)$. Then for all $x \in f^{-1}U$, fN(x) converges to f(x) implies $U \in fN(x)$. So there exists $U_x \in N(x)$, $fU_x \subseteq U$. It follows that $f^{-1}U = \bigcup_{x \in f^{-1}U} U_x$, which is open.