

AGENTES RACIONAIS

Licenciatura em Engenharia Informática Introdução à Inteligência Artificial

David José Nobre Pires (P2) / Dinis Meireles de Sousa Falcão (P5)
2019129618 / 2020130403
a2019129618@isec.pt / a2020130403@isec.pt

ÍNDICE

INTRODUÇÃO	2
OBJETIVO	3
DESENVOLVIMENTO	4
INTERFACE	5
FUNÇÕES UTILIZADAS	6
RESULTADOS	7
CONCLUSÃO	10
ANEXOS	11

INTRODUÇÃO

Um agente é uma entidade que habita num ambiente e é capaz de percecionar e atuar. Um agente racional escolhe uma ação correta, isto é, uma ação que leva o agente a atingir o melhor final. Existem alguns tipos de agentes. Agentes reativos respondem a cada perceção sempre da mesma forma, tomando em linha de conta apenas a perceção mais recente. Funcionam como um simples reflexo, traduzível por uma regra do tipo "if...then..." e simulam reflexos adquiridos ou inatos. Os agentes reativos com estado interno (memória) respondem à mesma perceção de forma eventualmente diferente, combinando a perceção mais recente com informação acerca do estado anterior do ambiente. Os agentes guiados por objetivos consideram os objetivos a cumprir, ou seja, se o objetivo for alterado, o agente altera o seu comportamento. E, por último, os agentes baseados em funções de utilidade respondem a uma perceção de forma a atingirem um dado objetivo maximizando o grau de sucesso obtido na prossecução desse objetivo.

Para consolidar os conteúdos lecionados nas aulas de Introdução à Inteligência Artificial, foi proposto a realização de um trabalho prático, cujo tema é "Agentes Racionais".

OBJETIVO

O objetivo deste trabalho consiste em conceber, implementar e analisar comportamentos racionais para agentes reativos. Este trabalho foi realizado na ferramenta NetLogo.

O ambiente é definido através de uma grelha bidimensional toroidal, onde habitam dois tipos de agentes ("basics" e "experts"), cujo principal objetivo é garantir a sua sobrevivência o maior tempo possível. No ambiente também existem células diferentes que, quando detetadas pelos agentes, lhes concedem vantagens, penalizações ou mesmo a morte.

Os agentes têm características diferentes e interagem entre si de forma competitiva.

Figura 1 – Imagem Netlogo

DESENVOLVIMENTO

Após finalizado o Modelo Base, foi possível observar que os Agentes Basic nunca sobrevieram e morreram muito cedo, em relação aos Agentes Expert (Tabelas nos Resultados). Devido a este facto, e de modo a implementar alterações que permitam aos agentes sobreviver mais tempo no ambiente, o Modelo Melhorado foi pensado de maneira a que este desequilíbrio entre os agentes fosse anulado. Para tal, foram acrescentadas algumas condições:

Criação de um novo Agente (Robin), inspirado no Robin Woods, que rouba energia aos Agentes Experts (ricos) e a acrescenta aos Agentes Bascis (pobres).

Capacidade de reprodução dos Agentes Basics, quando encontram outro Agente do mesmo tipo.

Criação de uma Patch chamada Veneno, que retira energia aos Agentes Basics e aos Agentes Experts.

Capacidade dos Agentes Basics de conseguir percecionar e comer o Alimento Verde, acrescentando 5 de energia.

INTERFACE

Usando a implementação original, acrescentou-se funcionalidades na interface de maneira a permitir uma melhor visualização e absorção do ambiente, tanto como uma fácil capacidade de alteração do ambiente em prol dos diferentes comportamentos dos agentes.

Figura 2 – Interface da aplicação

FUNÇÕES UTILIZADAS

Função setup: Função que define o ambiente.

<u>Função setup-patches</u>: É criado o terreno com patches de tamanho 15 e diferentes cores.

<u>Função setup-turtles:</u> São criadas as turtles da simulação, após limpar eventuais turtles que sobraram de anteriores simulações, com diferentes cores, formas e tamanho = 1,5.

<u>Função go:</u> Responsável por correr cada iteração (tick) do programa e chama as funções responsáveis pelo comportamento das turtles e pelo aparecimento da energia.

<u>Função morte-turtles:</u> Responsável pela morte das turtles, assim que elas atinjam energia inferior ou igual a zero.

<u>Função move-basics:</u> controla as perceções dos agentes basics e a sua reação a cada uma.

<u>Função move-experts:</u> controla as perceções dos agentes experts e a sua reação a cada uma.

Função mostra-labels: mostra a energia que cada agente tem.

<u>Função modelo-melhorado:</u> acrescenta novas reações às perceções dos agentes.

<u>Função setup-patches-melhorado:</u> acrescenta um novo tipo de patch ao ambiente.

<u>Função setup-turtles-melhorado:</u> acrescenta um novo tipo de agente ao ambiente.

RESULTADOS

EM RELAÇÃO AO MODELO BASE:

A quantidade de comida influencia a sobrevivência dos agentes?

Número de Basics	Número de Experts	Abrigos	Células Verdes	Células Amarelas	Armadilhas	Média de número de Basics vivos	Média de número de Experts vivos	Média do número de iterações
100	100	5	5	1	1	0	58,8	999
100	100	5	10	3	1	. 0		999
100	100	5	15	5	1	0	90,1	999

Figura 3 - Alteração da quantidade de comida

Resposta: Quanta mais comida existir no ambiente, mais sobreviventes haverão, confirmando-se assim que a quantidade de comida influencia a sobrevivência dos agentes.

A quantidade de armadilhas influencia a sobrevivência dos agentes?

Número de Basics	Número de Experts	Abrigos	Células Verdes	Células Amarelas	Armadilhas	Média de número de Basics vivos	Média de número de Experts vivos	Média do número de iterações
100	100	5	15	5	0	0	100	999
100	100	5	15	5	1	0	87,8	999
100	100	5	15	5	2	0	80,1	999

Figura 4 – Alteração do número de armadilhas

Resposta: Quantas mais armadilhas houverem no ambiente, menos serão os agentes sobreviventes, confirmando-se assim que a quantidade de armadilhas influencia a sobrevivência dos agentes.

A quantidade de abrigos influencia a sobrevivência dos agentes?

Número de Basics	Número de Experts	Abrigos	Células Verdes	Células Amarelas	Armadilhas	Média de número de Basics vivos	Média de número de Experts vivos	Média do número de iterações
100	100	0	15	5	1	0	83,6	999
100	100	5	15	5	1	0	90,8	999
100	100	10	15	5	1 0 90,4		999	

Figura 5 - Alteração do número de abrigos

Resposta: Quantos abrigos estiverem no ambiente, há uma ligeira maior taxa de sobrevivência, sendo esta alteração insuficiente para dizer que influencia a sobrevivência dos agentes.

A quantidade de agentes influencia a sobrevivência dos mesmos?

Número de Basics	Número de Experts	Abrigos	Células Células Verdes Amarelas		Armadilhas	Média de número de Basics vivos	Média de número de Experts vivos	Média do número de iterações
100	50	10	15	5	1	0	46,2	999
50	100	10	15	5	1	0	88,1	999
100	100	10	15	5	1	0	88,9	999

Figura 6 - Alteração do úmero de agentes

Resposta: Como previsto, a quantidade de agentes não tem grande influência na sobrevivência dos mesmos. Mas quando há mais basics, verifica-se uma diminuição na sobrevivência dos experts.

EM RELAÇÃO AO MODELO MELHORADO:

Introdução dos Agentes Robins no ambiente:

Número de Basics	Número de Experts	Número de Robins	Abrigos	Células Verdes	Células Amarelas	Armadilhas	Filhos	Veneno	Média de número de Basics vivos	Média de número de Experts vivos	Média do número de iterações
100	100	0	10	15	5	2	0	0	0	77,2	999
100	100	5	10	15	5	2	0	0	0	1,3	999
100	100	10	10	15	5	2	0	0	0,3	0,5	999

Figura 7 - Introdução dos Robins

Verificou-se uma redução acentuada dos número de experts vivos e conseguiu-se aumentar, ainda que muito pouco, o número de basics vivos.

Introdução do Veneno no ambiente:

Número de Basics	Número de Experts	Número de Robins	Abrigos	Células Verdes	Células Amarelas	Armadilhas	Filhos	Veneno	Média de número de Basics vivos	Média de número de Experts vivos	Média do número de iterações
100	100	0	10	15	5	2	0	1	0	74,6	999
100	100	0	10	15	5	2	0	3	0	79,2	999
100	100	0	10	15	5	2	0	5	0	82,3	999

Figura 8 – Introdução do Veneno

A introdução da nova patch Veneno não alterou significativamente o número de turtles vivos em relação ao modelo base, mantendo-se as diferenças entre o número de experts vivos e o número de basics vivos.

Introdução da capacidade de reprodução dos Basics:

Número de Basics	Número de Experts	Número de Robins	Abrigos	Células Verdes	Células Amarelas	Armadilhas	Filhos	Veneno	Média de número de Basics vivos	Média de número de Experts vivos	Média do número de iterações
100	100	10	10	15	5	2	0	5	0,5	0,4	999
100	100	10	10	15	5	2	1	5	1	1,1	999
100	100	10	10	15	5	2	2	5	x	x	х

Figura 9 - Introdução da capacidade de reprodução

A introdução da capacidade de reprodução nos agentes basics revelou-se um bocado instável. O aumento dessa da mesma aumentou significativamente a sobrevivência deles, chegando a níveis quase impossíveis de registar. Quando colocamos os Basics a reproduzir um filho, verifica-se um equilíbrio entre a sobrevivência dos Basics e dos Experts. Quando colocamos os Basics a reproduzir dois filhos, estes reproduzem-se infinitamente, tornando assim impossível chegar a qualquer conclusão com estes valores.

CONCLUSÃO

Neste trabalho, abordámos o tema da implementação e teste de comportamentos racionais para agentes reativos e concluímos que o equilibrio entre vários agentes não é fácil de atingir e manter. Para além disso, notámos que ligeiras alterações ao ambiente ou comportamento dos agentes, por mais pequenas que sejam, podem alterar por completo o rumo da simulação (efeito borboleta) e, muitas vezes, ter consequências inesperadas. Todos estes aspetos, juntos, tornaram este trabalho muito imprevisível, tornando assim mais difícil a sua realização e conclusão. Ainda assim, conseguimos verificar que a introdução dos novos agentes Robins, conseguiram equilibrar a sobrevivência dos agentes (0,3 para os Basics e 0,5 para os Experts), ainda que por valores minúsculos. Contrariamente ao esperado, a introdução da capacidade de reprodução dos agentes Basics revelou-se um bocado instável, fazendo com que estes ou se reproduzissem infinitamente, ou morressem normalmente.

Concluímos assim que o ambiente ideal, ou seja, aquele que maximizaria a sobrevivência de ambos os agentes, seria uma perfeita combinação entre estes dois parâmetros (agentes Robins e capacidade de reprodução).

ANEXOS

- Agentes_Racionais_TP.nlogo
- Relatório_IIA_Trabalho_Prático_1.pdf
- Resultados.xlsx