



Pilani Campus

## **Information Retrieval**

Abhishek April 2020



## CS F469, Information Retrieval

Lecture topics: Cross-Lingual IR

- Cross-Lingual IR or Cross Language IR
- Multi-Lingual IR

#### Cross-lingual IR (CLIR):

- Retrieval of documents in a language different from that of a query
  - Query is in language X
  - Documents are in language Y

#### Multilingual IR (MLIR):

- Query can be in different languages
- Documents can be in different languages

### **Example of CLIR and MLIR**

- E.g.: query: "major earthquakes in recent year"
- We want to retrieve both passages below:
  - There is a major earthquake in Wenchuan, China in 2008 (EN)
  - Un tremblement de terre violent `a Wenchuan secoue la Chine en 2008 (FR)



#### **Need for CLIR and MLIR**

- Among top 10 million websites, the content languages distribution is as follows: <u>59% English</u>, <u>41% non-English</u>.
- An information searcher might wants to retrieve relevant documents in whatever language
  - Intelligence:
    - Govt. Intelligence agencies,
    - companies (finding competing companies, finding calls for tenders, ...)
- A user speaking several languages also may want an MLIR to avoid typing the same query several times in different languages.

#### **Problems in CLIR**

- CLIR and MLIR are based on monolingual IR: all the problems of monolingual IR
- Problems due to the differences in languages

# Monolingual vs Cross lingual







### The Translation module

#### **Query translation:**

- Mapping the query representation into the document representation
  - Pro: flexible, more interaction with the user (who could choose the languages of interest, can correct the translation.)
  - Cons: translation ambiguity amplified by the lack of context.

#### **Document translation:**

- Mapping the document representation into the query rep.
  - Pro: more context
  - Cons: one has to determine in advance to which language each document should be translated, all the translated versions should be stored.



### The Translation module

### Inter-lingua translation

- Mapping document and query representation to a 3rd language
  - Pro: useful if there is no resource for a direct translation.
  - Cons: lower performance than the direct translation
- Most used approach in CLIR: Query translation.

## **Machine Translation (MT)**

Automatically translating from one language to another language.

#### Examples:

Information Retrieval→ Récupération de l'information (F)

 $\rightarrow$  信息检索 (C)

→ Informationsrückgewinnung (G)

→ सूचना पुनर्प्राप्ति

(H)

#### **Machine Translation Challenges**

## **Lexical Ambiguity**

Example: (English → Spanish)

- book the flight → reservar
- Read the book → libro

### Example:

- Kill a man → matar
- Kill a process → acabar

**Examples from Michael Collins slides** 



## Differing word orders

English word order: subject - verb - object

Japanese word order: subject - object - verb

English: IBM bought Lotus

Japanese: IBM Lotus bought

English: Source said that IBM bought Lotus yesterday

Japanese: Source yesterday IBM Lotus bought that said

**Examples from Michael Collins slides** 

## **Syntactic Ambiguity**

John hit the dog with the stick.

John golpeo el perro con el palo / que tenia el palo

**Examples from Michael Collins slides** 

#### **Machine Translation Methods**

### **Translation Methods**

- Dictionary Based
- Statistical Methods

# Dictionary Based Query Translation: Overview



- This approach tries to identify and select the possible translations of each source word from a bilingual dictionary.
- English-French dictionary examples:
  - access: attaque, accéder, intelligence, entrée, accès
  - branch: branche, bifurquer, succursale
  - data: données, matériau, data
- For each word, there are several candidates. Thus, for multi-word query there are several possible sequences.

# Dictionary Based Query Translation: Approach



- For each query word
  - Determine all the possible translations (through a dict.)
- Selection
  - Select the set of translation words that produce the highest *cohesion*

### Cohesion

Frequency of two translation words together

E.g. For translating "data access"

data: données, matériau, data

access: attaque, accéder, intelligence, entrée, accès

(accès, données) 152 \*

(accéder, données) 31

(données, entrée) 21

(entrée, matériau) 3

Frequency from a document collection or from the Web

#### **Statistical Machine Translation**

## **Summary of CLIR**

- CLIR = Query Translation + IR
  - Integrate QT with IR
  - QT is one step in the global IR process

## Multilingual IR

- MLIR = CLIR + merging
  - Translate the query into different languages
  - Retrieve doc. in each language
  - Merge the results into a single list.

## Multilingual IR

### Merging

- Round-robin
  - Take the first from the list of F, E, I, ...
  - Take the second from the list of F, E, I, ...
  - Assumption: similar number of rel. doc., ranked similarly
- Raw score
  - Mix all the lists together
  - Sort according to the similarity score
  - Assumption: similar IR method, collection statistics

## Introduction to Statistical MT



- Parallel corpus is available in several language pairs.
- Basic idea: use parallel corpus as a training set of translation examples.
- Example of parallel corpus collection:
  - OPUS: <a href="http://opus.nlpl.eu/">http://opus.nlpl.eu/</a>

## **Noisy Channel Model**

- Goal:
  - translation system from Source to Target language.
  - Have a model p(t | s) which estimates conditional probability of any target language sentence t given the source language sentence s. Use the training corpus to set the parameters.
- A Noisy Channel Model has two components:
  - p(t) the language model
  - p(s | t) the translation model
- Using the above two, we can estimate:
  - Learn a distribution p(t | s) = arg max<sub>t</sub> p(t)p(s | t)

# More about Noisy Channel Model



- The language model p(t) could be a trigram model, estimated from any data (parallel corpus not needed to estimate the parameters)
- The translation model p(s | t) is trained from a parallel corpus of Source/Target pairs.
- Note:
  - The translation model is backwards!
  - The language model can make up for deficiencies of the translation model.
  - Later we'll talk about how to build p(s | t)
  - Decoding, i.e., finding

is also a challenging problem.

# Language Modeling Problem



We have some (finite) vocabulary,
 Say V = {the, a, book, read, bank, two, ... }

We have infinite set of strings, V'
the STOP
 a STOP
 a book STOP
 a two the book read STOP
 ...

# Language Modeling Problem (Continued)

- We have a training sentence of example sentences in English.
  - Billion or more words
- We need to learn a probability distribution p, i.e., a function that satisfies

$$\Sigma_{x \in V'} p(x) = 1 p(x) \ge 0 \text{ for } x \in V'$$

 $p(the STOP) = 10^{-12}$ 

 $p(the fan STOP) = 10^{-8}$ 

p(the fan saw Sachin STOP) = 10<sup>-11</sup>

p(the the fan saw saw STOP) =  $10^{-15}$ 

. . .

# Why we want to model p(x)?



- Speech Recognition was the original motivation.
  - Map input analog signal to sequence of words.
  - Confusing sound/words
    - Wreck a nice beach
    - Recognize speech
- Machine translation

### **A Naive Method**

- We have N training sentences
- For any sentence  $x_1 x_n$ ,  $c(x_1 x_n)$  is the number of times the sentence is seen in our training data
- A naive estimate:

$$p(x_1 ... x_n) = c(x_1 ... x_n) / N$$

### **Markov Process**

- Consider a sequence of random variables  $X_1, X_2, ..., X_n$ . Each random variable can take any value in finite set V. For now, we assume that the length n is fixed (e.g., n = 100).
- Our goal: model

$$P(X_1 = X_1, X_2 = X_2, ..., X_n = X_n)$$

# First-Order Markov Process



$$P(X_1 = X_1, X_2 = X_2, ..., X_n = X_n)$$

# Second-Order Markov Process



$$P(X_1 = X_1, X_2 = X_2, ..., X_n = X_n)$$

# Modeling Variable Length Sequences



- We would like the length of the sequence, n, to also be a random variable.
- A simple solution: always define  $X_n = STOP$ , where STOP is a special symbol.

# Trigram Language Models



- A trigram language model consists of:
  - a. A finite set V.
  - b. A parameter q(w | u, v) for each trigram (u, v, w) such that w ∈
     V U {STOP}, and u, v ∈ V U {\*}

• For any sentence  $x_1 cdots x_n$ , where  $x_i ext{ } \in V$  for i = 1 cdots (n-1), and  $x_n = STOP$ , the probability of the sentence under the trigram language model is

$$p(x_1 ... x_n) = \prod_{i=1}^{n} q(x_i | x_{i-2}, x_{i-1})$$

where we define  $x_0 = x_{-1} = *$ 

## An Example

For a sentence:

The dog barks STOP

We would have:

```
p(the dog barks STOP) = q(the | *, *)

x q(dog | *, the)

x q(barks | the, dog)

x q(STOP | dog, barks)
```

# The Trigram Estimation Problem



$$q(w_{i}|w_{i-2}, w_{i-1})$$

For example: q(barks | the, dog)

A natural estimate (the "maximal likelihood estimate")

$$q(w_i|w_{i-2}, w_{i-1}) = Count(w_{i-2}, w_{i-1}, w_i) / Count(w_{i-2}, w_{i-1})$$

q(barks | the, dog) = Count(the dog barks) / Count(the dog)

### **Sparse Data Problems**

$$q(w_i|w_{i-2}, w_{i-1}) = Count(w_{i-2}, w_{i-1}, w_i) / Count(w_{i-2}, w_{i-1})$$

q(barks | the, dog) = Count(the dog barks) / Count(the dog)

Say our vocabulary size is N = |V|, then there are  $N^3$  parameters in the model.

E.g. N =  $20,000 \rightarrow 20000^3 = 8 \times 10^{12}$  parameters

Trigram maximum-likelihood estimate

$$q_{ML}(w_i|w_{i-2}, w_{i-1}) = Count(w_{i-2}, w_{i-1}, w_i) / Count(w_{i-2}, w_{i-1})$$

Bigram maximum-likelihood estimate

$$q_{ML}(w_i|w_{i-1}) = Count(w_{i-1}, w_i) / Count(w_{i-1})$$

Unigram maximum-likelihood estimate

$$q_{MI}(w_i) = Count(w_i) / Count()$$

#### innovate

### **Linear Interpolation**

Take our estimate q(w<sub>i</sub>| w<sub>i-2</sub>, w<sub>i-1</sub>) to be

$$\begin{split} q(w_{i}|\ w_{i-2},\ w_{i-1}) &= \lambda_{1} \ x \ q_{ML}(w_{i}|\ w_{i-2},\ w_{i-1}) \\ &+ \lambda_{2} \ x \ q_{ML}(w_{i}|\ w_{i-1}) \\ &+ \lambda_{3} \ x \ q_{ML}(w_{i}) \end{split}$$
 where  $\lambda_{1} + \lambda_{2} + \lambda_{3} = 1$  and  $\lambda_{i} \geq 0$  for all i.

#### Example:

q(barks| the, dog) =  $\frac{1}{3}$  q<sub>ML</sub>(barks| the, dog) +  $\frac{1}{3}$  q<sub>ML</sub>(barks | dog) +  $\frac{1}{3}$  q<sub>ML</sub>(barks)

Assuming all lambdas values are equal.

# Linear Interpolation (Continued)

Is q(w<sub>i</sub>| w<sub>i-2</sub>, w<sub>i-1</sub>) a valid estimator?

$$\sum_{w \in V'} q(w|u,v) = 1$$

### References

#### Language Modeling:

http://www.cs.columbia.edu/~mcollins/lm-spring2013.pdf