Bayesian Statistics III/IV (MATH3341/4031)

Michaelmas term, 2019

# **Handout 13: Hypothesis tests**

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Aim: To explain, design, and use hypothesis tests in the Bayesian framework

#### **References:**

- Berger, J. O. (2013; Section 4.3.3). Statistical decision theory and Bayesian analysis. Springer Science & Business Media.
- DeGroot, M. H. (2005, Sections 11.5-11.13). Optimal statistical decisions (Vol. 82). John Wiley & Sons
- Robert, C. (2007; Section 5.2(exclude 5.2.6)). The Bayesian choice: from decision-theoretic foundations to computational implementation. Springer Science & Business Media.

#### 1 Set-up of a hypothesis test

Aim: Let  $y=(y_1,...,y_n)$  generated from the real unknown data-generating process  $y \sim R(y)$ . Statistician approximates/parametrizes  $R(\cdot)$  by a statistical model  $F(y|\theta)$  with unknown  $\theta \in \Theta$ . Then you wish to find useful statements about  $\theta$ : E.g. is there a smaller  $\Theta_{\star} \subseteq \Theta$  where You can restrict the possible values of unknown  $\theta$ ?

Notation 1. Let  $y = (y_1, ..., y_n)$  be a sequence of observables modeled to have been generated from the sampling distribution  $F(y|\theta)$  labeled by an unknown parameter  $\theta \in \Theta$  following a priori distribution  $\Pi(\theta)$ ; namely

$$\begin{cases} y|\theta & \sim F(y|\theta) \\ \theta & \sim \Pi(\theta) \end{cases} \tag{1}$$

Assume there is interest to test/compare the following hypotheses/statements

$$H_0: \theta \in \Theta_0$$
; vs.  $H_1: \theta \in \Theta_1$  (2)

where  $\Theta = \Theta_0 \cup \Theta_1$ , under the Bayesian model (1).

*Note* 2. The pair of hypotheses (2) partitions the overall prior  $\Pi(\theta)$  (representing overall prior believes about  $\theta$ ) as

$$d\Pi(\theta) = \pi_0 \times d\Pi_0(\theta) + \pi_1 \times d\Pi_1(\theta)$$
(3)

where  $\pi_0$ , and  $\pi_1$  describe the prior probabilities of hypotheses  $H_0$  and  $H_1$ 

$$\pi_0 = \underbrace{\mathsf{P}_\Pi\left(\theta \in \Theta_0\right)}_{=\mathsf{P}_\Pi(\mathsf{H}_0)} = \int 1\left(\theta \in \Theta_0\right) \mathrm{d}\Pi(\theta), \qquad \qquad \pi_1 = \underbrace{\mathsf{P}_\Pi\left(\theta \in \Theta_1\right)}_{=\mathsf{P}_\Pi(\mathsf{H}_1)} = \int 1\left(\theta \in \Theta_1\right) \mathrm{d}\Pi(\theta),$$

respectively while  $\Pi_0(\theta) := \Pi(\theta | \theta \in \Theta_0)$  and  $\Pi_1(\theta) := \Pi(\theta | \theta \in \Theta_1)$  are prior distributions with pdf/pmf

$$\pi_0(\theta) := \underbrace{\pi(\theta|\theta \in \Theta_0)}_{=\pi(\theta|H_0)} = \frac{\pi(\theta)1 \ (\theta \in \Theta_0)}{\int 1 \ (\theta \in \Theta_0) \ d\Pi_0(\theta)}; \quad \text{and} \qquad \pi_1(\theta) := \underbrace{\pi(\theta|\theta \in \Theta_1)}_{=\pi(\theta|H_1)} = \frac{\pi(\theta)1 \ (\theta \in \Theta_1)}{\int 1 \ (\theta \in \Theta_1) \ d\Pi_1(\theta)},$$

describing how the prior mass of  $\theta$  is spread out over the hypotheses  $H_0$  and  $H_1$  respectively. Then the Bayesian hypothesis test can also be expressed as

$$H_0: \begin{cases} y|\theta & \sim F(y|\theta) \\ \theta & \sim \Pi_0(\theta), \ \theta \in \Theta_0 \end{cases} \quad \text{vs} \quad H_1: \begin{cases} y|\theta & \sim F(y|\theta) \\ \theta & \sim \Pi_1(\theta), \ \theta \in \Theta_1 \end{cases}$$
 (4)

with prior  $\pi_0 = \mathsf{P}_\Pi \left( \theta \in \Theta_0 \right)$  and  $\pi_1 = \mathsf{P}_\Pi \left( \theta \in \Theta_1 \right)$ .

**Question 3.** Which Bayesian model  $(H_0 \text{ or } H_1)$  describes 'better' the real data generating process?

*Note* 4. In Bayesian framework, hypothesis testing is rather straightforward. All You need to do is to calculate the corresponding posterior probabilities  $P_{\Pi}(\theta \in \Theta_0|y)$ , and  $P_{\Pi}(\theta \in \Theta_1|y)$ , and decide between  $H_0$  and  $H_1$ .

### 2 Decision theory prespective

Note 5. Bayes hypothesis test (4) can be addressed as a Bayesian statistical decision problem with decision space  $\mathcal{D} = \{\text{accept H}_0, \text{accept H}_1\}$  or simpler  $\mathcal{D} = \{0, 1\}$ , and under Bayesian model (1). It can be seen as a parametric point estimation about the indicator function

$$1_{\Theta_1}(\theta) = \begin{cases} 0 & , \theta \in \Theta_0 \\ 1 & , \theta \in \Theta_1 \end{cases}$$
 (5)

under Bayesian model (1), prior (3), and a loss function  $\ell(\theta, \delta)$ , with  $\theta \in \Theta$ ,  $\delta \in \mathcal{D}$ ; E.g., the 0-1 loss function.

**Theorem 6.** The Bayes estimator of  $1_{\Theta_1}(\theta)$  in (5), under the prior  $\Pi(\theta)$  in (3) and the  $c_I - c_{II}$  loss function

$$\ell(\theta, \delta) = \begin{cases} 0 & , if \theta \in \Theta_0, \, \delta = 0 \\ 0 & , if \theta \notin \Theta_0, \, \delta = 1 \\ c_{II} & , if \theta \notin \Theta_0, \, \delta = 0 \\ c_{I} & , if \theta \in \Theta_0, \, \delta = 1 \end{cases}$$

$$(6)$$

where  $c_I > 0$  and  $c_{II} > 0$  are specified by the researcher is

$$\delta(y) = \begin{cases} 0 &, P_{\Pi} \left( \theta \in \Theta_0 | y \right) > \frac{c_H}{c_H + c_I} \\ 1 &, otherwise \end{cases}$$
 (7)

where  $\{\Theta_0, \Theta_1\}$  constitute a partition for  $\Theta$ , and  $P_{\Pi}(\theta \in \Theta_0|y) = \int I(\theta \in \Theta_0) d\Pi(\theta|y)$ .

*Proof.* The posterior expected loss is <sup>1</sup>

$$\begin{split} \varrho(\pi,\delta|y) &= \mathrm{E}_{\Pi}(\ell(\theta,\delta)|y) &= \int \ell(\theta,\delta)\mathrm{d}\Pi(\theta|y) = \int_{\Theta_0} \ell(\theta,\delta)\mathrm{d}\Pi(\theta|y) + \int_{\Theta_1} \ell(\theta,\delta)\mathrm{d}\Pi(\theta|y) \\ &= \begin{cases} \int_{\Theta_0} \mathrm{Od}\Pi(\theta|y) &+ \int_{\Theta_1} c_{\Pi}\mathrm{d}\Pi(\theta|y) &, & \text{if } \delta = 0 \\ \int_{\Theta_0} c_{\mathrm{I}}\mathrm{d}\Pi(\theta|y) &+ \int_{\Theta_1} \mathrm{Od}\Pi(\theta|y) &, & \text{if } \delta = 1 \end{cases} \\ &= \begin{cases} c_{\Pi} \int 1 \left(\theta \in \Theta_1\right) \mathrm{d}\Pi(\theta|y) &, & \text{if } \delta = 0 \\ c_{\mathrm{I}} \int 1 \left(\theta \in \Theta_0\right) \mathrm{d}\Pi(\theta|y) &, & \text{if } \delta = 1 \end{cases} \\ &= c_{\Pi} \mathrm{P}_{\Pi} \left(\theta \notin \Theta_0|y\right) 1 \left(\delta \in \{0\}\right) + c_{\mathrm{I}} \mathrm{P}_{\Pi} \left(\theta \in \Theta_0|y\right) \end{split}$$

Notation:  $\int_{\Theta_j} d\Pi(\theta|y) = \int 1 (\theta \in \Theta_j) d\Pi(\theta|y)$ 

The Bayes rule (estimator) of (5) is  $\delta(y) = 0$  when

$$\varrho(\pi, \delta = 0|y) < \varrho(\pi, \delta = 1|y) \iff c_{\Pi} \mathsf{P}_{\Pi} \left(\theta \notin \Theta_{0}|y\right) < c_{\mathsf{I}} \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) \iff \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}} + c_{\mathsf{\Pi}}} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}} + c_{\mathsf{\Pi}}} \left(\theta \in \Theta_{0}|y\right) < c_{\mathsf{\Pi}} \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}} + c_{\mathsf{\Pi}}} \left(\theta \in \Theta_{0}|y\right) < c_{\mathsf{\Pi}} \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}} + c_{\mathsf{\Pi}}} \left(\theta \in \Theta_{0}|y\right) < c_{\mathsf{\Pi}} \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}} + c_{\mathsf{\Pi}}} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}} +$$

The Bayes rule (estimator) of (5) is  $\delta(y) = 1$  when

$$\varrho(\pi,\delta=0|y)>\varrho(\pi,\delta=1|y)\iff c_{\mathrm{II}}\mathsf{P}_{\Pi}\left(\theta\not\in\Theta_{0}|y\right)>c_{\mathrm{I}}\mathsf{P}_{\Pi}\left(\theta\in\Theta_{0}|y\right)\iff \mathsf{P}_{\Pi}\left(\theta\in\Theta_{0}|y\right)<\frac{c_{\mathrm{II}}}{c_{\mathrm{II}}+c_{\mathrm{I}}}$$

So  $\rho(\pi, \delta|y)$  is minimised for (7).

# 3 Bayes factors perspective

Note 7. Hypothesis tests in Bayesian statistics can be addressed by using Bayes factors.

**Definition 8.** The Bayes factor  $B_{01}(y)$  is the ratio of the posterior probabilities of  $H_0$  and  $H_1$  over the ratio of the prior probabilities of  $H_0$  and  $H_1$ .

$$B_{01}(y) = \frac{\mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) / \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}\right)}{\mathsf{P}_{\Pi} \left(\theta \in \Theta_{1}|y\right) / \mathsf{P}_{\Pi} \left(\theta \in \Theta_{1}\right)} \tag{8}$$

where

$$\mathsf{P}_{\Pi}\left(\theta\in\Theta_{j}\right)=\int \mathsf{1}\left(\theta\in\Theta_{j}\right)\mathrm{d}\Pi\left(\theta\right);\quad \text{and} \qquad \mathsf{P}_{\Pi}\left(\theta\in\Theta_{j}|y\right)=\int \mathsf{1}\left(\theta\in\Theta_{j}\right)\mathrm{d}\Pi\left(\theta|y\right); \qquad \text{for } j=0,1.$$

**Proposition 9.** For Hypothesis pair (2) and Bayes model (1), where the prior is formed as in (3), the Bayes factor in (8) can be written as

$$B_{01}(y) = \frac{\int_{\Theta_0} f(y|\theta) d\Pi_0(\theta)}{\int_{\Theta_0} f(y|\theta) d\Pi_1(\theta)} = \frac{f_0(y)}{f_1(y)}$$

where  $f_j(y) = \int_{\Theta_j} f(y|\theta) d\Pi_j(\theta)$  is the conditional marginal likelihood (or prior predictive pdf/pmf) given  $H_j$ , for j = 0, 1.

*Proof.* It results by showing that for j = 0, 1, it is

$$\begin{split} \mathsf{P}_{\Pi}(\theta \in \Theta_{j}|y) &= \int_{\Theta_{j}} \mathsf{d}\Pi(\theta|y) &= \int_{\Theta_{j}} \frac{f(y|\theta) \mathsf{d}\Pi(\theta)}{\int_{\Theta} f(y|\theta) \mathsf{d}\Pi(\theta)} = \int_{\Theta_{j}} \frac{f(y|\theta) \left(\pi_{0} \times \mathsf{d}\Pi_{0}(\theta) + \pi_{1} \times \mathsf{d}\Pi_{1}(\theta)\right)}{\underbrace{\int_{\Theta} f(y|\theta) \mathsf{d}\Pi(\theta)}_{=f(y)}} \\ &= \frac{\pi_{0}}{f(y)} \int_{\Theta_{j}} f(y|\theta) \mathsf{d}\Pi_{0}(\theta) + \frac{\pi_{0}}{f(y)} \int_{\Theta_{j}} \pi_{1} f(y|\theta) \mathsf{d}\Pi_{1}(\theta) = \begin{cases} \frac{\pi_{0}}{f(y)} \int_{\Theta_{0}} f(y|\theta) \mathsf{d}\Pi_{0}(\theta) & \text{,if } j = 0 \\ \frac{\pi_{1}}{f(y)} \int_{\Theta_{1}} f(y|\theta) \mathsf{d}\Pi_{1}(\theta) & \text{,if } j = 1 \end{cases} \end{split}$$

*Remark* 10. Obviously,  $B_{10}(y) = 1/B_{01}(y)$ 

Remark 11. Bayes factor  $B_{01}(y)$ :

- ...is the 'odds in favour of  $H_0$  against  $H_1$  that are given by the data' y.
- ...evaluate the modification of the odds of  $\Theta_0$  against  $\Theta_1$  due to the observations y.
- ...is the ratio of the likelihoods, weighted by the conditional priors  $d\Pi_0(\theta)$  and  $d\Pi_1(\theta)$ .

Proposition 12. One can write

$$\mathsf{P}_{\Pi}(\theta \in \Theta_{0}|y) = \left[1 + \frac{1 - \mathsf{P}_{\Pi}(\theta \in \Theta_{0})}{\mathsf{P}_{\Pi}(\theta \in \Theta_{0})} B_{01}(y)^{-1}\right]^{-1} = \left[1 + \frac{\pi_{1}}{\pi_{0}} B_{01}(y)^{-1}\right]^{-1}$$

where  $\pi_j = P_{\Pi}$  ( $\theta \in \Theta_j$ ), for j = 0, 1, by rearranging (8) (please check).

**Criterion 13.** Consider a hypothesis test  $H_0: \theta \in \Theta_0$  versus  $H_1: \theta \in \Theta_1$  as described in (4) with loss function (6), and given a Bayesian model (1). The hypothesis  $H_0$  is accepted when

$$B_{01}(y) > \frac{c_{II}}{c_{I}} \frac{\pi_{1}}{\pi_{0}} \tag{9}$$

where  $\pi_i = \mathsf{P}_\Pi \ (\theta \in \Theta_i)$ , for j = 0, 1.

Proof. Straightforward result from Definition 8 and Theorem 6.

Remark 14. Eq. 9 shows the duality between loss function and the prior distribution. Different combinations of priors and loss functions may lead to the same result. For instance, for  $c'_{II} = c'_{I} = 1$ ,  $\pi'_{0} = \frac{c_{I}\pi_{0}}{c_{I}\pi_{0} + c_{II}\pi_{1}}$ , and  $\pi'_{1} = \frac{c_{II}\pi_{1}}{c_{I}\pi_{0} + c_{II}\pi_{1}}$ , we get again (9) !!!

**Criterion 15.** *Jeffreys developed a scale to judge the strength of evidence in favor of*  $H_0$  *or against*  $H_0$  *brought by the data, outside a true decision-theoretic setting (aka; without the need to specify*  $c_I$  *and*  $c_{II}$  *in (9)).* 

| $B_{01}$               | $\log_{10}(B_{01})$ | Strength of evidence                                         |
|------------------------|---------------------|--------------------------------------------------------------|
| $(1,+\infty)$          | $(0,+\infty)$       | $\mathbf{H}_0$ is supported                                  |
| $(10^{-1/2},1)$        | (-1/2,0)            | Evidence against H <sub>0</sub> : not worth more than a bare |
| $(10^{-1}, 10^{-1/2})$ | (-1, -1/2)          | Evidence against H <sub>0</sub> : substantial                |
| $(10^{-3/2}, 10^{-1})$ | (-3/2, -1)          | Evidence against H <sub>0</sub> : strong                     |
| $(10^{-2}, 10^{-3/2})$ | (-2, -3/2)          | Evidence against H <sub>0</sub> : very strong                |
| $(0, 10^{-2})$         | $(-\infty, -2)$     | Evidence against H <sub>0</sub> : decisive                   |

The precise bounds separating one strength from another are a matter of convention. Note that similar criticism exists in frequentist hypothesis tests with the choice of the significance level  $a = \{0.01, 0.05, 0.1, ...\}$ .

# 4 Special cases in hypotheses tests

**Definition 16.** Traditionally, hypotheses,  $H_j$ , are categorized as:

- Single (or point) hypothesis for  $\theta$  is called the hypothesis  $H_j: \theta \in \Theta_j$  where  $\Theta_j = \{\theta_j\}$  contains a single element, namely when  $\Pi_j(\theta)$  assigns probability one to a specific value for  $\theta$ .
- Composite hypothesis for  $\theta$  is called the hypothesis  $H_j: \theta \in \Theta_j$  where  $\Theta_j \subseteq \Theta$  contains many elements. Namely when  $\Pi_j(\theta)$  defines a non-degenerate density  $\pi_j(\theta)$  over  $\Theta_j \subseteq \Theta$ .
- General alternative hypothesis for  $\theta$  is called the composite hypothesis  $H_1: \theta \in \Theta_1$  where  $\Theta_1 = \Theta \{\theta_0\}$  and  $\theta_0$  a single value. It is often denoted as  $H_1: \theta \neq \theta_0$  and compared against a single null hypothesis  $H_0: \theta = \theta_0$ .

We present some special cases of hypothesis tests.

Case 1. Composite vs Composite is the hypothesis test:

$$H_0:\theta\in\Theta_0 \qquad vs \qquad H_1:\theta\in\Theta_1$$

where both  $\Theta_0 \subseteq \Theta$  and  $\Theta_1 \subseteq \Theta$  contain more than one elements. Overall prior can be partitioned as

$$d\Pi(\theta) = \pi_0 \times d\Pi_0(\theta) + \pi_1 \times d\Pi_1(\theta)$$

Then the conditional marginal likelihoods are

$$f_0(y) = \int_{\Theta_0} f(y|\theta) d\Pi_0(\theta); \qquad f_1(y) = \int_{\Theta_1} f(y|\theta) d\Pi_1(\theta).$$

**Example.** A composite vs. composite hypothesis is:

$$\mathbf{H}_0: \begin{cases} y_i | \mu, \sigma^2 & \stackrel{\text{IID}}{\sim} \mathbf{N}(\mu, \sigma^2), \ i = 1, ..., n \\ \mu | \sigma^2 \sim; & \sim \mathbf{N}(\mu_0, \sigma^2 \frac{1}{\lambda_0}) \\ \sigma^2 & \sim \mathbf{Ga}(a_0, b_0) \end{cases} \quad \text{vs} \quad \mathbf{H}_1: \begin{cases} y_i | \mu & \stackrel{\text{IID}}{\sim} \mathbf{T}(\mu, 1, k_0), \ i = 1, ..., n \\ \mu & \sim \mathbf{N}(\xi_0, v_0) \end{cases}$$

In H<sub>0</sub>: I consider a sampling model  $y_i \stackrel{\text{IID}}{\sim} N(\mu, \sigma^2)$  with prior  $(\mu, \sigma^2) \sim N(\mu_0, \sigma^2/\lambda_0) \text{IG}(a_0, b_0)$ , and  $\Theta_0 = \{N\} \cup \mathbb{R} \cup (0, \infty)$ . Here  $\mu_0, \lambda_0, a_0, b_0$  are fixed.

In H<sub>1</sub>: I consider a sampling model  $y_i \stackrel{\text{IID}}{\sim} T(\mu, 1, k_0)$  with prior  $(\mu, \sigma^2) \sim N(\mu_0, \sigma^2/\lambda_0) IG(a_0, b_0)$ , and  $\Theta_1 = \{T\} \cup \mathbb{R}$ . Here  $\mu_0, k_0, \xi_0, v_0$  are fixed.

#### Case 2. Single vs. General alternative is the pair of hypotheses

$$H_0: \theta = \theta_0$$
 vs  $H_1: \theta \neq \theta_0$ .

If  $\theta$  is continuous, the difficulty is that we cannot use a continuous prior for  $\Pi_0(\theta)$  to conduct a test with point null hypothesis  $H_0: \theta = \theta_0$  because it would give a prior probability zero for  $\theta = \theta_0$ . To overcome this, we specify the conditional distribution  $\Pi_0(\theta)$  as a Dirac prior distribution with concentration point at  $\theta_0$ ; namely  $d\Pi_0(\theta) = 1$  ( $\theta \in \{\theta_0\}$ )  $d\theta$ . The conditional distribution  $\Pi_1(\theta)$  can be any reasonable distribution  $d\Pi_1(\theta) = d\Pi_1(\theta|\theta \in \Theta_1)$ . Then the overall prior is

$$d\Pi(\theta) = \pi_0 \times 1 \, (\theta \in \{\theta_0\}) \, d\theta + \pi_1 \times d\Pi_1(\theta | \theta \in \Theta_1) \tag{10}$$

and it is called spike-and-slab. Then the conditional marginal likelihoods are

$$\begin{split} f_0(y) &= \int_{\Theta_0} f(y|\theta) \mathrm{d}\Pi_0(\theta) = \int_{\{\theta = \theta_0\}} f(y|\theta) \mathbf{1} \left(\theta \in \{\theta_0\}\right) \mathrm{d}\theta = f(y|\theta_0) \\ f_1(y) &= \int_{\Theta_1} f(y|\theta) \mathrm{d}\Pi_1(\theta) = \int_{\{\theta \neq \theta_0\}} f(y|\theta) \mathrm{d}\Pi_1(\theta) \end{split}$$

**Example.** The standard two side test  $H_0: \mu = \theta_0$  vs.  $H_1: \mu \neq \theta_0$ , where the sampling distribution is assumed to be  $y_i \stackrel{\text{IID}}{\sim} N(\mu, \sigma^2)$  with known variance  $\sigma^2$  for i = 1, ..., n, is a simple vs. general alternative hypothesis test and can also be formulated as:

$$\mathbf{H}_{0}: y_{i} | \theta_{0}, \sigma_{0}^{2} \stackrel{\text{IID}}{\sim} \mathbf{N}\left(\theta_{0}, \sigma_{0}^{2}\right), \ i = 1, ..., n$$
 vs  $\mathbf{H}_{1}: \begin{cases} y_{i} | \mu, \sigma^{2} \stackrel{\text{IID}}{\sim} \mathbf{N}\left(\mu, \sigma_{0}^{2}\right), & i = 1, ..., n \\ \mu \sim \mathbf{N}(\mu_{0}, \sigma_{0}^{2}) \end{cases}$ 

Here it is  $\Theta_0 = \{\theta_0\}, \, \Theta_1 = \{\theta \in \mathbb{R} : \theta \neq \theta_0\}$ , while  $\theta_0, \mu_0, \sigma_0^2$  are fixed values.

# Case 3. Single vs. Single is the pair of hypothesis

$$H_0: \theta = \theta_0$$
 vs  $H_1: \theta = \theta_1$ 

where  $\Theta_0 = \{\theta_0\}$  and  $\Theta_1 = \{\theta_1\}$  for some values of  $\theta_0$  and  $\theta_1$ . The hypotheses  $H_0$  and  $H_1$  are single, and hence the corresponding priors can be considered as having a point mass around  $\theta_0$  and  $\theta_1$ . Mathematically,

we assign Dirac prior distributions  $d\Pi_0(\theta) = 1$  ( $\theta \in \{\theta_0\}$ )  $d\theta$  and  $d\Pi_1(\theta) = 1$ ( $\theta \in \{\theta_1\}$ ) $d\theta$ , which imply

$$d\Pi(\theta) = \left( \pi_0 \times 1 \left( \theta \in \{\theta_0\} \right) + \pi_1 \times 1 \left( \theta \in \{\theta_1\} \right) \right) d\theta$$

Then the conditional marginal likelihoods are

$$\begin{split} f_0(y) &= \int_{\Theta_0} f(y|\theta) \mathrm{d}\Pi_0(\theta) = \int_{\{\theta = \theta_0\}} f(y|\theta) 1 \, (\theta \in \{\theta_0\}) \, \mathrm{d}\theta = f(y|\theta_0) \\ f_1(y) &= \int_{\Theta_1} f(y|\theta) \mathrm{d}\Pi_1(\theta) = \int_{\{\theta = \theta_1\}} f(y|\theta) 1 \, (\theta \in \{\theta_1\}) \, \mathrm{d}\theta = f(y|\theta_1) \end{split}$$

*Note* 17. In this case, Bayes factor is the likelihood ratio of  $H_0$  against  $H_1$  which most statisticians (whether Bayesian or not) view as the odds in favor of  $H_0$  against  $H_1$  that are given by the data.

**Example.** Given the statistical model  $y_i \stackrel{\text{IID}}{\sim} N(\mu, \sigma^2)$  the comparison  $H_0: \mu = \theta_0$  vs.  $H_1: \mu = \theta_1$ , is a simple vs. simple hypothesis, where  $\Theta_0 = \{\theta_0\}, \Theta_1 = \{\theta_1\}$  are sets with a single elements  $\theta_0 \neq \theta_1$ .

**Example.** The model comparison

$$H_0: y_i | \phi_0 \stackrel{\text{IID}}{\sim} \text{Nb}(\phi_0, 1) \text{ vs.} \quad H_1: y_i | \lambda_0 \stackrel{\text{IID}}{\sim} \text{Pn}(\lambda_0)$$

where  $\phi_0 > 0, \lambda_0 > 0$  are known, is a simple vs. simple hypothesis. Here it is  $\Theta_0 = \{Nb\}, \Theta_1 = \{Pn\}$ .

**Example 18.** Let  $y=(y_1,...,y_n)$  a sequence of observables, and assume that n=5, and  $y_*=\sum_{i=1}^5 y_i=3$ . Assume a sampling distribution  $y_i|\theta \stackrel{\text{iid}}{\sim} \text{Br}(\theta)$ , with unknown parameter  $\theta \in [0,1]$ , a priori following a uniform distribution.

1. By using Jeffreys' scaling rule, perform the following hypothesis test for  $\theta_0 = 1/2$ 

$$H_0: \theta = \theta_0$$
 vs  $H_1: \theta \neq \theta_0$ 

2. Compute the posterior probability of the NULL hypothesis.

Solution. This is a simple vs. general alternative hypothesis. I specify the overall prior with pdf

$$\pi(\theta) = \pi_0 1(\theta = \theta_0) + (1 - \pi_0) \mathbf{U}(\theta|0, 1)$$

for some  $\pi_0 > 0$ . I leave  $\pi_0$  abstract, however the usual choice (but maybe not the best) is  $\pi_0 = 1/2$ .

1. The Bayes factor is

$$\mathbf{B}_{01}(y) = \frac{\prod_{i=1}^{n} \mathbf{Br}(y_{i}|\theta_{0})}{\int_{(0,1)} \prod_{i=1}^{n} \mathbf{Br}(y_{i}|\theta) \mathbf{U}(\theta|0,1) \mathrm{d}\theta} = \frac{\theta_{0}^{y_{*}} (1-\theta_{0})^{n-y_{*}}}{\int_{(0,1)} \theta^{y_{*}} (1-\theta)^{n-y_{*}} \mathrm{d}\theta} = \frac{\theta_{0}^{y_{*}} (1-\theta_{0})^{n-y_{*}}}{\mathbf{B}(y_{*}+1,n-y_{*}+1)} = \frac{(1/2)^{5}}{\mathbf{B}(4,3)} = \frac{15}{8}$$

Then  $B_{01}(y) = \frac{15}{8} \approx 2$ , and  $\log_{10}(B_{01}(y)) \approx 0.27$ . According to Jeffreys' scaling rule,  $H_0$  is supported. We can accept the null hypothesis.

2. The posterior probability of  $H_0$  is

$$\mathsf{P}_{\Pi}(\theta = \theta_0 | y) = \mathsf{P}_{\Pi}(\theta \in \Theta_0 | y) = \left[1 + \frac{1 - \pi_0}{\pi_0} \mathsf{B}_{01}(y)^{-1}\right]^{-1} = \left[1 + \frac{1/2}{1 - 1/2} (\frac{15}{8})^{-1}\right]^{-1} = \frac{15}{23} \approx 0.65$$

and hence the posterior distribution tends to support H<sub>0</sub>.

**Example 19.** Let  $y = (y_1, ..., y_n)$  a sequence of observables. There is interest in performing the following hypothesis test

$$\mathbf{H}_0: \begin{cases} y_i | \phi \sim \operatorname{Nb}(1,\phi); & \phi > 0 \\ \phi \sim \operatorname{Be}(a_0,b_0); & a_0 = 2, \ b_0 = 2 \end{cases} \qquad \text{vs} \qquad \mathbf{H}_1: \begin{cases} y_i | \lambda \sim \operatorname{Pn}(\lambda); & \lambda > 0 \\ \lambda \sim \operatorname{Ga}(a_1,b_1); & a_1 = 2, \ b_1 = 1 \end{cases}$$

- 1. Perform the test for n=2, and  $y_1=y_2=0$ , by using Jeffrey's scaling.
- 2. Perform the test for n = 2, and  $y_1 = y_2 = 2$ , by using Jeffrey's scaling.
- **Hint-1** Poisson distribution  $x \sim \text{Pn}(\lambda)$  has PMF:  $\text{Pn}(x|\lambda) = \frac{1}{x!}\lambda^x \exp(-\lambda)1_{\mathbb{N}}(x)$ , where  $\mathbb{N} = \{0, 1, 2, ...\}$  and  $\lambda > 0$ .
- **Hint-2** Negative Binomial distribution  $x \sim \text{Nb}(r, \theta)$  has PMF:  $\text{Nb}(x|r, \theta) = {r+x-1 \choose r-1}\theta^r(1-\theta)^x 1_{\mathbb{N}}(x)$  with  $\theta \in (0, 1)$ ,  $r \in \mathbb{N} \{0\}$ , and  $\mathbb{N} = \{0, 1, 2, \ldots\}$ .
- **Hint-3** Gamma distribution  $x \sim \text{Ga}(a,b)$  has PDF:  $\text{Ga}(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) \mathbf{1}_{(0,\infty)}(x)$ , with a>0 and b>0.
- **Hint-4** Beta distribution  $x \sim \text{Be}(a,b)$  has PDF:  $\text{Be}(x|a,b) = \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}1_{(0,1)}(x)$ , with a>0 and b>0. **Solution.** This is a Composite vs composite hypotheses. The overall a priori distribution  $d\Pi(\theta)$  with  $\theta \in \Theta$  and  $\Theta = \{\text{Nb}\} \times (0,1) \cup \{\text{Pn}\} \times (0,\infty)$  has density

$$\pi(\theta) = \pi_0 \text{Be}(\phi|a_0, b_0) + \pi_1 \text{Ga}(\lambda|a_1, b_1);$$

where  $\pi_0 = \pi_1 = 0.5$ . Let's compute the Bayes factor

$$\begin{split} f_0(y) &= \int \prod_{i=1}^n \mathrm{Nb}(y_i|\phi, 1) \mathrm{Be}(\phi|a_0, b_0) \mathrm{d}\phi = \frac{1}{B(a_0, b_0)} \int_0^1 \phi^{n+a_0-1} (1-\phi)^{n\bar{y}+b_0-1} \mathrm{d}\phi = \frac{B(n+a_0, n\bar{y}+b_0)}{B(a_0, b_0)} \\ f_1(y) &= \int \prod_{i=1}^n \mathrm{Pn}(y_i|\lambda) \mathrm{Ga}(\lambda|a_1, b_1) \mathrm{d}\lambda = \frac{1}{\prod_{i=1}^n y_i!} \frac{b_1^{a_1}}{\Gamma(a_1)} \int_0^\infty \lambda^{n\bar{y}+a_1-1} \exp(-(n+b_1)\lambda) \mathrm{d}\lambda \\ &= \frac{\Gamma(n\bar{y}+a_1)}{\Gamma(a_1)} \frac{b_1^{a_1}}{(n+b_1)^{n\bar{y}+a_1}} \frac{1}{\prod_{i=1}^n y_i!} \end{split}$$

So the Bayes Factor is

$$B_{01}(y) = \frac{B(n+a_0, n\bar{y}+b_0)}{B(a_0, b_0)} \frac{\Gamma(a_1)}{\Gamma(n\bar{y}+a_1)} \frac{(n+b_1)^{n\bar{y}+a_1}}{b_1^{a_1}} \prod_{i=1}^n y_i!$$

- 1. Then  $B_{01}(y) = 2.70$ , and  $\log_{10}(B_{01}(y)) \approx 0.43$ . According to Jeffrey's scaling rule,  $H_0$  is supported.
- 2. Then  $B_{01}(y) = 0.29$ , and  $\log_{10}(B_{01}(y)) \approx -0.53$ . According to Jeffrey's scaling rule, the evidence against  $H_0$  is substantial.

**Example 20.** Let  $y = (y_1, ..., y_n)$  a sequence of observables. There is interest in performing the following hypothesis test

$$\mathrm{H}_0: y_i | \phi \sim \mathrm{Nb}(\phi, 1); \ \mathrm{with} \ \phi = 1/3 \qquad \mathrm{vs} \qquad \mathrm{H}_1: y_i | \lambda \sim \mathrm{Pn}(\lambda); \ \mathrm{with} \ \lambda = 2$$

- 1. Perform the test for n = 2, and  $y_1 = y_2 = 0$ , by using Jeffreys' scaling.
- 2. Perform the test for n = 2, and  $y_1 = y_2 = 2$ , by using Jeffreys' scaling.
- **Hint-1** Poisson distribution  $x \sim \text{Pn}(\lambda)$  has PMF:  $\text{Pn}(x|\lambda) = \frac{1}{x!}\lambda^x \exp(-\lambda)1_{\mathbb{N}}(x)$ , where  $\mathbb{N} = \{0, 1, 2, ...\}$  and  $\lambda > 0$ .
- **Hint-2** Negative Binomial distribution  $x \sim \text{Nb}(r, \theta)$  has PMF:  $\text{Nb}(x|r, \theta) = {r+x-1 \choose r-1}\theta^r(1-\theta)^x 1_{\mathbb{N}}(x)$  with  $\theta \in (0, 1)$ ,  $r \in \mathbb{N} \{0\}$ , and  $\mathbb{N} = \{0, 1, 2, \ldots\}$ .

**Solution.** This is a simple vs simple hypothesis test. I specify priors  $\pi(Nb) = \pi(Pn) = 1/2$ , due to the a priori ignorance about the parametric statistical model, however, we do not really need it now .... The Bayes factor is

$$B_{01}(y) = \frac{f_0(y)}{f_1(y)} = \frac{\prod_{i=1}^n \text{Nb}(y_i | \phi, 1)}{\prod_{i=1}^n \text{Pn}(y_i | \lambda)} = \frac{\phi^n (1 - \phi)^{n\bar{y}}}{\lambda^{n\bar{y}} \exp(-n\lambda) / \prod_{i=1}^n y_i!}$$

- 1. Then  $B_{01}(y) = \exp(4)/9 \approx 6.07$ , and  $\log_{10}(\mathbf{B}_{01}(y)) \approx 0.78$ . According to Jeffrey's scaling rule,  $H_0$  is supported.
- 2. Then  $B_{01}(y) = 4\exp(4)/729 \approx 0.30$ , and  $\log_{10}(B_{01}(y)) \approx -0.54$ . According to Jeffrey's scaling rule, the evidence against  $H_0$  is substantial.

#### **Practice**

Question 21. To practice try to work on the Exercise ?? from the Exercise sheet.