Fourier Algorithm for ASC Analysis: Part I

- Background
- Motivation
- Method
- Beam propagation
 - Reproduce results obtained using ABCD matrix method
- Control
 - Mirror tilt
 - Accuracy
 - Resolution
 - Displacement in x-k space at OMC waist
 - Actuation orthogonality between mirrors
- Conclusion so far

Background

- Mode-matching-calculator
 - Beam propagation using ABCD matrix method
 - Analysis in terms of beam-waist, W, and defocus, S.
 - Calculation of lens/mirror strengths for exact mode-matching.
 - Calculation of optimum mirror placement for orthogonal control of mode shape (Automatic Wave-front Control, AWC)
 - Propagation on-axis

Motivation

- Alignment Sensing & Control (ASC).
- Requirement to sense alignment error
 - Sense orthogonal degrees of freedom: position, direction
 - Optimal placement of sensors with respect to OMC (target) waist
- Requirement for orthogonal beam control
 - Correction for errors
 - Orthogonal control of beam: position and direction
 - Two mirrors separated in Gouy-phase by 90°
- Modelling
 - Analyse effect of errors and changes in beam position and displacement
 - Have tool to analyse beam propagation on-axis
 - Need tool to analyse beam propagation off-axis

- Sziklas & Siegman, 'Mode calculation in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method,' *App.Opt*, 14, 1874 (1975).
- Johannes Courtial, Optics group
 - WaveTrace (LabView)
 - Young TIM (Java)
 - Leavey, & Courtial, 'Young TIM User Guide' (2017)

- Input: complex wave amplitude at plane, z = 0.
 - Gaussian beam profile. Phase includes information about curvature.
 - Can be arbitrary phase and amplitude distribution.
- Amplitude can be expressed as integral over spatial frequency distribution
- Likewise, spatial frequency distribution can be expressed as integral over amplitude distribution
- Amplitude and Spatial Frequency related by Fourier and inverse Fourier transforms

- Propagation through distance, Δz :
 - Input array, U(x), at plane z = 0.
 - Fourier transform to give Spatial frequency distribution, $P(k_x)$, at plane z = 0.
 - Deconstruct input beam into its constituent plane waves having spatial frequencies, k_x.
 - Multiply each plane wave element by phase-factor, $exp(ik_z\Delta z)$
 - Represents propagation through distance, Δz
 - k_z derived from monochromaticity condition: $(2\pi/\lambda)^2 = k_0^2 = k_z^2 + k_x^2$.
 - Inverse Fourier transform to reconstruct amplitude array at plane $z = \Delta z$.

- Insert elements: lenses(focus), mirrors(focus, tilt) etc.
 - At element plane, multiply amplitude by phase-factor, $\exp(-i\Delta\Phi)$
- Lens, focal length, f:
 - $\Delta \Phi = kx^2/2f$
- Concave mirror, ROC, R:
 - $\Delta \Phi = kx^2/R$
- Mirror, tilted by angle, α
 - $\Delta \Phi = \text{kx sin}(\alpha)$

- Image beam in plane, z:
 - Plot absolute value of amplitude, |U(x)|
 - Gaussian fit gives offset and width
- Fourier transform:
 - Plot absolute value of spatial frequency distribution | P(k_x) |
 - Gaussian fit gives offset and width
- Beam profile:
 - Plot waist as a function of z

Implement in Python

- Define global variables:
 - Input parameters (wavelength, spacings, focal lengths, etc.)
 - Window and resolution in x. Resolution in z.
 - Array in x-space; corresponding arrays in kx and kz.
- Define Amplitude Class representing complex amplitude distribution
- Methods:
 - Propagation
 - Focusing by lens
 - Focusing with concave mirror
 - Tilt with mirror
 - Fitting and plotting amplitude and spatial frequency distributions

• Functions:

- Calculation of initial amplitude distribution
- Plotting beam profile
- Composite beam path with multiple elements and propagation between them
- Analysis of effect of mirror tilt at OMC waist
- Calculation of phase-separation (ASC-phase) with change in mirror separation
- Analysis of effect of input error (position, direction)
- Calculation of offset in position, x, and direction, kx, as function of distance from OMC waist.

Beam propagation

- Gaussian beam with q = -3.55 1.09i.
- Initial amplitude array: $U = (1/q) \exp(ikx^2/2q)$
- Include spacings and focusing elements for Layout 9c, path B:
 - OFI = -9.9 m
 - R1 = 5.5 m
 - R2 = 2.7 m
- Propagate beam over 10 m with resolution of 50 mm.
- Plot beam profile $(1/e^2)$ beam radius) as a function of z.
- Compare with result from propagation with ABCD matrices (mode-matching calculator).

Beam propagation

ABCD Fourier

Beam propagation

- Good agreement after propagation through multiple spacings and elements.
- In one case, beam profile calculated using ABCD matrix method:
 - transformation of complex beam parameter, q.
- In other case, beam profile calculated using Fourier algorithm:
 - deconstruction of complex amplitude into plane-wave constituents, multiplication by phase-factors, re-construction after propagation.
- Agreement gives confidence in method and its implementation in Python.

- Include tilt of mirrors, OMB3 (M1) and OMB2 (M2).
- M1 and M2 separated by 4,335 mm, as determined by mode-matching calculator.
- Gouy phase-separation of 91°.
- Apply tilt of ± 1 mrad.
- Analyse effect at OMC beam waist.
- Plot and fit to Gaussian distribution in x- and k_x -space.
- Determine offset in x, k_x.
- Repeat for various window sizes and resolutions.

Gaussian distributions in x- and k_x -space at OMC waist (no tilt).

Χ

 k_x

Change width and resolution of array in x-space.

x-array / mm		Tilt / mrad		Offset / mm		Error / %
width	resolution	M1	M2	x	k	
300	0.003	0	0	-0.0016	-0.043	
300	0.003	1	0	-0.5796	9.298	
300	0.003	-1	0	0.5765	-9.384	~ 0.5
300	0.003	0	1	-1.2137	-5.959	
300	0.003	0	-1	1.2106	5.872	
100	0.01	0	0	-0.0051	-0.131	
100	0.01	1	0	-0.5756	9.284	
100	0.01	-1	0	0.5663	-9.545	~ 2
100	0.01	0	1	-1.2215	-6.067	
100	0.01	0	-1	1.2118	5.804	
30	0.03	0	0	-0.0218	-0.445	
30	0.03	1	0	-0.56	9.244	
30	0.03	-1	0	0.5257	-10.132	~ 5
30	0.03	0	1	-1.2523	-6.456	
30	0.03	0	-1	1.2151	5.55	

- Estimate error from size of offset for 0 and comparing magnitude of offset for ± 1 mrad tilt.
- Error depends on window size, W, and resolution of x-array.
 - Resolution in k-space determined by inverse of window size (= 1/W)
- Large number of points (window/resolution) needed for accuracy.
- Choose values which give similar resolution in x- and k-space relative to the width of the Gaussian distribution.
- W = 200 mm, res = 0.02: gives 0.5 1 % error.

- Plot effect of tilting mirrors, M1 and M2 in x-k space.
- Width of Gaussian distribution is the natural scale.
- Plot dimensionless quantity: offset / width.
- Calculate angle between actuation effected by mirrors (orthogonality):
 - dot product between unit vectors corresponding mirror tilts in x-k space.
- Compare with Gouy-phase-separation as determined by modematching calculator.

- Orthogonality = 91° (angle between unit vectors in x-k space).
- Good agreement with Gouy-phase-separation from mode-matching calculator – also 91°!
- Calculate and plot orthogonality as a function of mirror separation.

- Variation as expected
 - Orthogonality / phase-separation decreases as mirrors move closer together.
 - Orthogonality of actuation reaches 91° at separation for which the mode-matching calculator predicts a Gouy-phase separation of 91°.

Conclusion – so far

- Able to reproduce findings of beam propagation analysis using ABCD matrices.
 - Beam profile
 - Orthogonality of actuation: Gouy-phase-separation
- Gives confidence in proceding to investigate positioning of sensors.

Fourier Algorithm for ASC Analysis: Part II

Sensing

- Input error
- Displacement in x-k space
- Dependence on distance from OMC waist

ASC Analysis: Sensing

• Input Error

- Model as error in position and direction of beam at SRM.
- Calculate displacement in x-k space as a function of distance from OMB2.

ASC Analysis: Sensing

- x-offset varies with distance from OMC waist.
- k-offset independent of distance from OMC waist, i.e. beam has a certain direction.
- Note: positions where variation in x-offset has a null.
 - Different depending on whether input error is in position or direction.