An Open Source 3D Printable and Arduino-based Alarm System for monitoring Ventilator Airflow

Dr. Alex Maag's Capstone Design Group:

- Karl Frohlich
- Ian McNitt
- Noah Marinaro

Background

Patient demand of medical equipment during the COVID-19 Pandemic has crippled the supply:

- Limited to no access to available ventilators
- Italy, Spain and NYC are experiencing drastic shortages along with rural hospitals
- On March 22, the FDA fast tracked converting sleep apnea machines to ventilators to meet demand
 - CPAP
 - > BIPAP

Auburn's RE-INVENT Project

Auburn University successfully re-purposed a standard CPAP machine into a functional emergency ventilator:

- Cost approximately \$700 worth of off-the-shelf components
- Inspiration to expiration ratio: 1:3 3:1
- Breaths per minute: 10 30 BPM
- Air pressure set: 5 25 cmH20
- Alarm senses deviations from patient parameters

Problems:

- Aggressive development
- Little to no design refining
- Difficulty validating efficacy
- Unknown component and sensor integrity

Capstone Idea:

Airflow Monitor

- Adds an extra line of safety against malfunctions
- Uses pressure sensor to measure flow rate to validate tidal volume
- Implement an alarm system to verify necessary ventilator-patient lung tidal volume

How Mechanical Ventilation Works

Ventilation for COVID 19 Patients:

- An Acute Respiratory Distress Syndrome (ARDS)
- Mechanical Inhalation: Pre-set Volume or Pressure
- Mechanical Exhalation: Passive Air Removal

Ventilator Basics

1. Tidal Volume

- a. The volume of air the lungs will receive
- b. **Set by a medical professional**
- c. What we will be measuring
- Inspiratory Phase ('Triggering')
 - a. Inside the ventilator
- 3. Expiratory Phase ('Cycling')
 - a. Our emphasis
 - b. Outside the ventilator
 - c. Difficult to tamper with

Using a Pitot Tube to Measure Flow Rate

Total Pressure = Static Pressure + Dynamic Pressure

We can use Dynamic Pressure to solve for velocity of the airstream!

Dynamic Pressure =
$$r \times \frac{V^2}{2}$$

Solving for Velocity:

$$V^2 = \frac{2 * (P_T - P_S)}{r}$$

Total Pressure = P_T Static Pressure = P_s

An Open Source 3D Printable and Arduino-based Alarm System for monitoring Ventilator Airflow

Hardware Overview

Parts Required

Picture	Part	Price (approx) as of May 2020
	Arduino Nano	\$7
M M M M M M M M M M M M M M M M M M M	MPXV7002DP Differential Pressure Sensor	\$16
	Piezoelectric Speaker	\$1
DUPACELL DUPACELL DUPACELL	4x AA Power Supply (6V) + 4 AA Batteries	\$5
	Pushbutton + Rocker Switch + Resistor + Wires + Screws + 3mm diameter rubber pipe	\$11 Total = \$40/unit

Procedure

- 1. Nurse attaches alarm to ventilator and turns it on.
- 2. Alarm calibrates for the first ~10 seconds as the patient breathes normally.
- 3. After 10 seconds, the alarm ensures that the patient continues to breath at a similar flow and interval.
- 4. If breathing is irregular, the alarm rings until a button is pressed by the nurse to silence it.

Software/Circuit Overview Modeled and Simulated using Autodesk Tinkercad!

How do you build our Alarm System? Visit our Public Github Repository!

Future Direction

- Improve alarm system with LED light
 - Green = Normal
 - Yellow = Warning
 - Red = Needs Attention
- Transmitter (ESP8266)
 - Inexpensive (\$7)
 - o 24 / 7 monitor capability
 - Enhanced safety

Additional Components

Temperature and Humidity Sensor

Oxygen Sensor

Future Aim

Monitoring the patient's health over time

- i. National Institute of Health ARDS Network protocol:
 - $V_T = (PBW)(6 \text{ mL} / \text{kg PBW})$
- ii. Track the breathing over time
 - Use this data to monitor their health over time

- Average Height By State 2020. (2020, April 6). Retrieved May 8, 2020, from https://worldpopulationreview.com/states/average-height-by-state/
- Benson, T. Pitot Tube. Retrieved May 8, 2020, from https://www.grc.nasa.gov/WWW/k-12/VirtualAero/BottleRocket/airplane/pitot.html
- Burch, T., & Zabala, M. THE AUBURN RE-INVENT PROJECT. Retrieved May 7, 2020, from http://eng.auburn.edu/reinvent
- Khoury-Folkens, C. VENTILATOR SOS. Retrieved May 7, 2020, from https://www.ventilatorsos.com/
- Mechanical Ventilation. (2016, July). Retrieved May 8, 2020, from https://craighospital.org/resources/mechanical-ventilation
- Miller, S., & Wysocki, M. Tidal volumes for ventilated patients should be determined at the endotracheal tube. Retrieved May 7, 2020, from https://www.hamilton-medical.com/dam/jcr:abe1ac16-8732-4bcd-a209-7c5faa076aa8/flow-sns-position_whitepaper-en-689217.00.pdf
- Silva, P. L., & Rocco, P. (2018). The basics of respiratory mechanics: ventilator-derived parameters. Annals of translational medicine, 6(19), 376. https://doi.org/10.21037/atm.2018.06.06
- Pressure Measuring MIT E-Vent: MIT Emergency Ventilator. (2020, April 4). Retrieved May 8, 2020, from https://e-vent.mit.edu/controls/pressure-measuring/

References

Questions?

Determining the Tidal Volume:

$$Q = Flow Rate (m3/s)$$

$$V = Volume (m^3)$$

$$A = Area (m^2)$$

$$t = Time(s)$$

$$Q = V / t = A*d / t = A*v$$

Tidal Volume
$$(V_T) = Q*t$$

Measuring Additional Parameters

- Positive End Expiratory Pressure (PEEP)
 - Low PEEP: 3 5 cmH20
 - High PEEP: 12+ cmH20
- Peak Inspiratory Pressure (PIP)
 - Low PIP < 30 cm H20
 - High PIP > 40 cm H20
- Driving Pressure: PIP PEEP < 15

Potential Pressure Readings:

- Target PEEP: 15 cmH20
- Target PIP: 30 cmH20
- With an I/E ratio of 2:1 and target PEEP:
 - Male = 424 mL / Female = 317 mL