GATT Analysis

Kristy Buzard

4/24/2021

Contents

Next steps	1
To do	
Done	2
Importing and cleaning the data	3
Basic summary statistics	3
Specific tariffs	3
Ad valorem tariffs	3
How did liberalization vary across Schedules?	4
Summary stats for specific tariffs	4
Mean of specific tariffs by schedule and round	4
Summary stats for ad valorem tariffs	4
Mean of ad valorem tariffs by schedule and round	4
What was the total reduction in negotiated tariffs under the GATT in each round?	4
Which lines were only ad valorem, only specific, or both?	9
Mixed	9
Victor's intuition on mixed lines	9
Proportions of specific, ad valorem, mixed	9
Tariff Increases	10
No change from Smoot Hawley to Dillon B	14
Lines that switch between specific, ad valorem, or both	14
Summarizing the impact of tax intervals	17
Implementation dates	17
TOT analysis	17
·	

Next steps

To do

- 1. Create centralized documentation
 - Include history from Unsolved problems in coding.docx (OneDrive)

- 2. Resolve "complicated" paragraphs, including 4 that still have no tariffs
 - Matt is looking through last three rounds
- 3. Kennedy, Tokyo, Uruguay
- 4. Choose other countries
 - Refine Members.in. GATT.xlsx
 - Focus on Benelux, Canada, Chile, France, India, U.K., Dominican Republic, Haiti, Italy, Germany, Peru, Japan
 - Matt is adding # of pages for each schedule
- 5. Make list of accuracy checks, run them, fix typos in data
 - Check for tariffs going up from round to round
- 6. Figure out how to integrate "free" list
 - For which rounds do we have the free list typed up? Just Torquay Free List.xlsx on G: drive
- 7. Condense data cleaning code
- 8. Read and summarize "Tariff negotiations and renegotiations under the GATT and the WTO" (hard copy at SU library)
 - · Victor will ask Matt to see if he can get the book from the library, let me know if not
- 9. Read through Victor's notes for ideas
 - What is status of 'interesting paragraphs.pdf' and 'Splitting paragraphs in Dillon.pdf"?
- 10. Go back to questions in *Plan.docx* when last three rounds are finished
- 11. Identify lines that switch between specific and ad valorem
- 12. Look for gradualism in graphs
- 13. 10 lines in Dillon that have more than 2 years
- 14. Think about how variation in units affects specific summary stats
 - Look into trade-weighting
- 15. TOT analysis
- 16. Find implementation years (maybe get answer from Doug Irwin)
- 17. Get working draft together ASAP
- 18. Add Schedule A tariff data from 1946 (last available before Geneva 1947)
 - Are current Column 2 tariffs Smoot Hawley or the 1946 tariffs?

Done

- 1. Make Github version for CEA abstract
- 2. Contact Tricia Mueller (USITC) and Roy Santana (WTO) [Bob Staiger's suggestions] [Feb 24]
- 3. Figure out how to source multiple code files
- 4. Program stats into abstract
- 5. Resolve copyright issues, then (hopefully) post the correct schedules on Github
- 6. Determine that TSUS tariffs were always at 5 digit, so we can just use the 5-digit tariff for all of the 7-digit subcategories
- 7. Read and summarize "Two Centuries of Tariffs" (USITC, in G:drive folder)
- 8. Consolidate various notes in Github / One Drive / G drive

		Summary St	atistics	of Speci	fic Tariffs by	Round	d
	Min	1st Quartile	Mean	Median	3rd Quartile	Max	N
Smoot Hawley	0	2.00	48.07	6.00	30	3000	1528
Geneva	0	1.25	33.12	5.00	25	2000	1531
Annecy	0	1.15	32.15	4.15	25	2000	1527
Torquay	0	1.00	27.72	3.50	20	2000	1525
GenevaA	0	1.00	27.31	3.50	20	2000	1527
GenevaB	0	1.00	26.92	3.50	20	2000	1527
GenevaC	0	1.00	26.58	3.40	20	2000	1524
DillonA	0	1.00	25.34	3.00	19	2000	1521
DillonB	0	1.00	24.63	3.00	18	2000	1521

	Su	Summary Statistics of Ad Valorem Tariffs by Round								
	Min	1st Quartile	Mean	Median	3rd Quartile	Max	N			
Smoot Hawley	5.00	25.0	38.80	35.00	50.0	90	1963			
Geneva	2.50	15.0	27.50	25.00	35.0	90	1947			
Annecy	2.50	15.0	26.37	22.50	35.0	90	1950			
Torquay	1.88	12.5	22.41	20.00	30.0	90	1948			
GenevaA	1.88	11.5	21.88	17.62	27.5	90	1946			
GenevaB	1.88	11.0	21.66	17.50	27.5	118	1946			
GenevaC	1.88	10.5	21.37	17.50	27.5	90	1947			
DillonA	1.00	10.5	19.49	15.50	25.0	90	1943			
DillonB	0.50	10.0	18.92	15.00	25.0	90	1943			

Importing and cleaning the data

Importing and cleaning the data is done in "data_cleaning.rmd". It needs to be reprogrammed before being added here because it is nearly 1000 lines long. The chunk below calls that program to make the processed data available to the rest of the commands in this document.

Basic summary statistics

Specific tariffs

We see below that the specific tariffs come down by roughly half from Smoot Hawley.

 About half came in Geneva, the rest through Dillon. That is, Geneva did half the work and the following four rounds did the other half

But this could be deceptive since different lines use different units

• Victor has standardized everything to be in cents (per U.S. dollar) in UnitsKey.rmd

source('UnitsKey.r')

Ad valorem tariffs

Strikingly, the reductions look to be of the same magnitude for Ad valorem, again with Geneva doing about half the work.

• In Dillon, 1054 rows out of 2997 are missing, so there are 1943 ad valorem tariffs. So 64.83% of lines have ad valorem tariffs.

	Sn	noot Hawley Schedule Titles
Schedule	# Lines	Title
1	397	Chemicals, Oil, and Paints
2	243	Earths, Earthenware, and Glassware
3	661	Metals and Manufactures of
4	53	Wood and Manufactures of
5	17	Sugar, Molasses, and Manufactures of
6	12	Tobacco and Manufactures of
7	462	Agricultural Products and Provisions
8	33	Spirits, Wines, and other Beverages
9	116	Cotton Manufactures
10	84	Flax, Hemp, Jute, and Manufactures of
11	152	Wool and Manufactures of
12	36	Silk Manufactures
13	53	Manufactures of Rayon or Other Synthetic Textile
14	146	Papers and Books
15	532	Sundries

How did liberalization vary across Schedules?

First, descriptions of each schedule:

Summary stats for specific tariffs

The table below is exactly the same as the one above EXCEPT it drops the 218 lines that are impacted by the "tax interval" issue

Notes:

- 8 (spirits) largest, and consistent across rounds (1 ad valorem only)
- 5 (sugar) unambiguously smallest cuts, had some of the highest ad-valorem
- Reduction in median vs. mean: split exactly half and half as to which reduction was smaller
- Schedule 12 must be all ad valorem

Mean of specific tariffs by schedule and round

Removing tax interval lines

Summary stats for ad valorem tariffs

For several paragraphs, the maximum tariff for Dillon B changes when we get rid of the tax interval lines (2,9,11). Still I'm not going to print the tables with the maxes in them for now.

Mean of ad valorem tariffs by schedule and round

Removing tax interval lines

What was the total reduction in negotiated tariffs under the GATT in each round?

Mean and median of specific tariffs in each round

Sched	SH_mean	DB_mean	mean_chg	SH_med	DB_med	$\operatorname{med_chg}$	SH_obs	DB_obs	n
1	24.33	13.50	44.50	5.00	2.50	50.00	258	264	397
2	45.04	28.02	37.80	10.00	5.55	44.50	112	106	243
3	55.01	24.70	55.10	3.50	2.00	42.86	316	304	661
4	53.55	24.27	54.67	60.00	22.50	62.50	6	6	53
5	24.42	23.28	4.69	0.38	0.15	59.73	11	11	17
6	147.50	62.19	57.84	52.50	23.50	55.24	12	12	12
7	29.31	16.56	43.51	3.00	1.50	50.00	350	349	462
8	277.42	81.79	70.52	125.00	50.00	60.00	31	31	33
9	8.60	21.60	-151.14	6.50	15.00	-130.77	8	15	116
10	12.63	5.04	60.06	2.00	1.50	25.00	37	37	84
11	39.96	31.42	21.37	40.00	33.00	17.50	134	134	152
12	NaN	NaN	NaN	NA	NA	NA	0	0	36
13	41.03	25.58	37.67	45.00	25.00	44.44	34	40	53
14	11.66	12.84	-10.16	5.00	2.00	60.00	85	86	146
15	113.80	56.48	50.37	10.00	7.00	30.00	134	126	532

Sched	SH_mean	DB_mean	mean_chg	SH_med	DB_med	med_chg	SH_obs	DB_obs	n
1	24.47	13.58	44.48	5.00	2.50	50.00	256	262	389
2	53.99	29.74	44.92	10.00	5.25	47.50	90	90	199
3	58.20	21.99	62.21	4.00	2.00	50.00	298	287	609
4	53.55	24.27	54.67	60.00	22.50	62.50	6	6	53
5	24.42	23.28	4.69	0.38	0.15	59.73	11	11	17
6	147.50	62.19	57.84	52.50	23.50	55.24	12	12	12
7	29.56	16.65	43.67	3.00	1.50	50.00	347	347	459
8	277.42	81.79	70.52	125.00	50.00	60.00	31	31	33
9	11.30	6.75	40.23	10.00	6.06	39.38	6	6	89
10	12.63	5.04	60.06	2.00	1.50	25.00	37	37	84
11	39.30	28.30	27.99	40.00	33.00	17.50	121	121	137
12	NaN	NaN	NaN	NA	NA	NA	0	0	33
13	38.86	21.70	44.15	45.00	25.00	44.44	22	22	25
14	11.66	7.11	39.00	5.00	2.00	60.00	85	85	143
15	85.88	50.60	41.08	6.00	4.00	33.33	124	117	497

Sched	SH	G1	An	То	GC	DB	chgG1	chgAn	chgTo	chgGC	chgDB
1	24.33	21.22	21.13	16.60	15.73	13.50	12.79	0.42	21.45	5.22	14.17
2	45.04	36.47	35.55	29.77	28.81	28.02	19.03	2.53	16.26	3.20	2.76
3	55.01	37.18	36.55	30.97	29.65	24.70	32.41	1.69	15.28	4.26	16.70
4	53.55	24.27	22.61	22.61	22.61	24.27	54.67	6.87	0.00	0.00	-7.37
5	24.42	23.49	23.33	23.32	23.31	23.28	3.82	0.70	0.03	0.02	0.16
6	147.50	94.96	86.42	67.25	62.65	62.19	35.62	9.00	22.18	6.85	0.73
7	29.31	19.82	19.59	17.51	17.43	16.56	32.38	1.19	10.57	0.49	5.01
8	277.42	166.61	139.80	99.80	89.48	81.79	39.94	16.09	28.61	10.34	8.60
9	8.60	22.38	22.38	21.90	21.90	21.60	-160.19	0.00	2.12	0.00	1.38
10	12.63	7.28	7.19	5.16	5.15	5.04	42.33	1.25	28.29	0.13	2.06
11	39.96	30.29	30.18	29.15	29.15	31.42	24.20	0.37	3.41	0.00	-7.80
12	NaN	150.00	150.00	150.00	150.00	NaN	NaN	0.00	0.00	0.00	NaN
13	41.03	28.33	27.89	25.33	25.33	25.58	30.94	1.55	9.20	-0.02	-0.95
14	11.66	18.50	18.40	16.27	14.93	12.84	-58.73	0.57	11.60	8.20	14.00
15	113.80	66.76	66.45	62.18	58.38	56.48	41.34	0.47	6.41	6.11	3.26

Sched	SH	G1	An	То	GC	DB	chgG1	chgAn	chgTo	chgGC	chgDB
1	24.47	21.47	21.38	16.72	15.85	13.58	12.26	0.43	21.76	5.24	14.28
2	53.99	40.71	39.36	31.94	30.82	29.74	24.61	3.30	18.84	3.53	3.49
3	58.20	36.46	35.44	29.80	28.47	21.99	37.36	2.79	15.92	4.47	22.74
4	53.55	24.27	22.61	22.61	22.61	24.27	54.67	6.87	0.00	0.00	-7.37
5	24.42	23.49	23.33	23.32	23.31	23.28	3.82	0.70	0.03	0.02	0.16
6	147.50	94.96	86.42	67.25	62.65	62.19	35.62	9.00	22.18	6.85	0.73
7	29.56	19.93	19.69	17.61	17.53	16.65	32.57	1.19	10.57	0.49	5.01
8	277.42	166.61	139.80	99.80	89.48	81.79	39.94	16.09	28.61	10.34	8.60
9	11.30	7.94	7.94	6.75	6.75	6.75	29.72	0.00	14.95	0.00	0.00
10	12.63	7.28	7.19	5.16	5.15	5.04	42.33	1.25	28.29	0.13	2.06
11	39.30	30.20	30.07	28.95	28.95	28.30	23.15	0.41	3.72	0.00	2.27
12	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
13	38.86	24.77	24.77	21.70	21.70	21.70	36.26	0.00	12.39	0.00	0.00
14	11.66	10.19	10.09	7.93	7.86	7.11	12.57	1.04	21.40	0.84	9.55
15	85.88	60.69	60.64	56.09	52.28	50.60	29.33	0.09	7.49	6.80	3.22

Sched	SH_mean	DB_mean	mean_chg	SH_med	DB_med	med_chg	SH_obs	DB_obs	n
1	29.81	14.18	52.42	25.00	12.50	50.00	206	205	397
2	44.61	23.93	46.37	45.00	21.00	53.33	155	158	243
3	37.71	17.15	54.53	35.00	13.00	62.86	467	478	661
4	33.91	15.46	54.41	33.33	15.00	55.00	47	47	53
5	50.83	31.92	37.21	50.00	22.50	55.00	6	6	17
6	25.00	7.75	69.00	25.00	7.75	69.00	2	2	12
7	31.40	14.01	55.39	35.00	12.50	64.29	116	117	462
8	60.00	30.00	50.00	60.00	30.00	50.00	1	1	33
9	36.12	22.35	38.12	40.00	20.00	50.00	110	103	116
10	37.58	15.10	59.82	40.00	12.50	68.75	55	55	84
11	49.76	25.02	49.71	50.00	25.00	50.00	110	105	152
12	57.36	23.38	59.25	60.00	21.00	65.00	36	36	36
13	51.94	26.81	48.39	50.00	25.00	50.00	49	39	53
14	21.70	8.68	60.00	20.00	8.00	60.00	125	124	146
15	43.95	22.60	48.58	40.00	17.00	57.50	478	467	532

Sched	SH_mean	DB_mean	mean_chg	SH_med	DB_med	$\operatorname{med_chg}$	SH_obs	DB_obs	n
1	29.80	14.05	52.84	25.00	12.50	50.00	198	198	389
2	42.40	21.52	49.26	45.00	20.00	55.56	127	127	199
3	38.22	17.27	54.82	35.00	13.00	62.86	431	442	609
4	33.91	15.46	54.41	33.33	15.00	55.00	47	47	53
5	50.83	31.92	37.21	50.00	22.50	55.00	6	6	17
6	25.00	7.75	69.00	25.00	7.75	69.00	2	2	12
7	31.40	14.04	55.28	35.00	12.50	64.29	116	116	459
8	60.00	30.00	50.00	60.00	30.00	50.00	1	1	33
9	34.42	21.55	37.41	35.00	20.00	42.86	85	85	89
10	37.58	15.10	59.82	40.00	12.50	68.75	55	55	84
11	49.21	23.48	52.28	50.00	22.50	55.00	97	97	137
12	57.12	23.32	59.18	60.00	20.00	66.67	33	33	33
13	54.40	25.82	52.54	60.00	22.50	62.50	25	25	25
14	21.49	8.70	59.53	20.00	8.00	60.00	122	122	143
15	44.30	21.95	50.44	40.00	17.00	57.50	443	441	497

Sched	SH	G1	An	То	GC	DB	chgG1	chgAn	chgTo	chgGC	chgDB
1	29.81	21.86	21.32	17.42	16.55	14.18	26.67	2.47	18.26	4.99	14.34
2	44.61	32.36	30.37	25.73	25.32	23.93	27.45	6.15	15.30	1.57	5.52
3	37.71	28.02	26.66	21.11	19.99	17.15	25.71	4.84	20.81	5.32	14.21
4	33.91	24.87	22.27	20.52	18.70	15.46	26.65	10.48	7.84	8.85	17.35
5	50.83	33.58	33.58	33.58	33.58	31.92	33.93	0.00	0.00	0.00	4.96
6	25.00	15.62	15.62	9.38	7.75	7.75	37.50	0.00	40.00	17.33	0.00
7	31.40	21.23	19.70	16.83	15.94	14.01	32.37	7.24	14.54	5.28	12.15
8	60.00	60.00	60.00	30.00	30.00	30.00	0.00	0.00	50.00	0.00	0.00
9	36.12	26.25	25.62	23.03	22.81	22.35	27.32	2.40	10.12	0.97	1.98
10	37.58	20.64	20.41	19.68	18.31	15.10	45.09	1.10	3.56	6.97	17.53
11	49.76	26.83	26.65	24.52	23.93	25.02	46.09	0.68	7.97	2.41	-4.56
12	57.36	39.07	36.14	30.79	27.43	23.38	31.89	7.50	14.82	10.90	14.78
13	51.94	35.41	33.66	28.78	26.99	26.81	31.83	4.94	14.49	6.23	0.67
14	21.70	13.88	12.95	11.13	10.41	8.68	36.05	6.66	14.09	6.43	16.63
15	43.95	32.78	31.83	27.75	26.47	22.60	25.42	2.90	12.83	4.59	14.63

Sched	SH	G1	An	То	GC	DB	chgG1	chgAn	chgTo	chgGC	chgDB
1	29.80	21.68	21.13	17.21	16.31	14.05	27.23	2.56	18.56	5.23	13.83
2	42.40	29.52	27.43	23.29	22.67	21.52	30.39	7.07	15.10	2.68	5.07
3	38.22	28.77	27.50	21.46	20.41	17.27	24.73	4.41	21.95	4.90	15.38
4	33.91	24.87	22.27	20.52	18.70	15.46	26.65	10.48	7.84	8.85	17.35
5	50.83	33.58	33.58	33.58	33.58	31.92	33.93	0.00	0.00	0.00	4.96
6	25.00	15.62	15.62	9.38	7.75	7.75	37.50	0.00	40.00	17.33	0.00
7	31.40	21.33	19.78	16.89	16.00	14.04	32.06	7.26	14.60	5.31	12.22
8	60.00	60.00	60.00	30.00	30.00	30.00	0.00	0.00	50.00	0.00	0.00
9	34.42	25.74	24.97	22.21	21.94	21.55	25.24	2.97	11.05	1.22	1.80
10	37.58	20.64	20.41	19.68	18.31	15.10	45.09	1.10	3.56	6.97	17.53
11	49.21	27.12	26.92	24.63	23.96	23.48	44.88	0.76	8.51	2.72	1.98
12	57.12	38.71	35.61	29.92	26.36	23.32	32.23	8.02	15.96	11.90	11.55
13	54.40	35.00	35.00	27.60	26.06	25.82	35.66	0.00	21.14	5.58	0.92
14	21.49	13.92	12.98	11.12	10.43	8.70	35.24	6.74	14.29	6.24	16.60
15	44.30	32.44	31.47	27.13	25.82	21.95	26.76	3.00	13.78	4.84	14.97

	Decre	Decrease in specific tariffs by round										
	Mean	Mean % decrease Median % decre										
Smoot Hawley	48.07	0.00	6.00	0.00								
Geneva	33.12	31.09	5.00	16.67								
Annecy	32.15	2.95	4.15	17.00								
Torquay	27.72	13.78	3.50	15.66								
GenevaA	27.31	1.49	3.50	0.00								
GenevaB	26.92	1.43	3.50	0.00								
GenevaC	26.58	1.26	3.40	2.86								
DillonA	25.34	4.66	3.00	11.76								
DillonB	24.63	2.77	3.00	0.00								

	Decre	ase in ad va	lorem tar	iffs by round					
	Mean % decrease Median % decre								
Smoot Hawley	38.80	0.00	35.00	0.00					
Geneva	27.50	29.12	25.00	28.57					
Annecy	26.37	4.13	22.50	10.00					
Torquay	22.41	15.01	20.00	11.11					
GenevaA	21.88	2.38	17.62	11.88					
GenevaB	21.66	1.00	17.50	0.71					
GenevaC	21.37	1.30	17.50	0.00					
DillonA	19.49	8.82	15.50	11.43					
DillonB	18.92	2.91	15.00	3.23					

Which lines were only ad valorem, only specific, or both?

Mixed

Next we need to know about the lines that have both ad valorem and specific (or take them out from above); at least quantify them to start

How many lines have both ad valorem and specific in each round?

Smoot Hawley: 498
Geneva 1947: 485
Annecy: 484
Torquay: 480
Geneva56A: 480
Geneva56B: 480
Geneva56C: 478
DillonA: 471

• DillonB: 471

Victor's intuition on mixed lines

I believe many of the changes from specific tax to ad valorem or otherwise is because of the tax intervals. You could search the keywords "tax boundaries" and "tax interval(s)" in Extra column of every round to locate them.

Proportions of specific, ad valorem, mixed

A few lines in each round have neither specific nor ad valorem. Matt is working on fixing this

[1] "Smoot-Hawley"

14

15

Sch	ıed	Produ	ıct	Paragraph	id
	3		1	368.c_18	1078
	8		1	810	1878
	14		1	1408	2412
	15		17	1532.a	2832
[1]	"D:	illon	В"		
Sch	ned	Produ	ıct	Paragraph	id
	3		1	368.c_18	1078
	8		1	810	1878

1

17

1408 2412

1532.a 2832

Tariff Increases

Here we are looking round by round for lines that had an increase in either the ad valorem or specific tariff (or both). Later we will look at lines that switch from one type of tariff to the other.

[1] "Increased tariff from Smoot Hawley to Geneva"

##	Paragraph	i d	Product	aw nc	en ne	Ad Valorom SU	Ad_Valorem_Geneva	Specific SH
##	355		8	22	-300	45	35	2
##	718.a		4	-47	NA	30	44	NA
##	901.a		2	-300	NA	5	20	NA NA
##	901.b		2	-150	NA	10	25	NA
##	904.a		2	-175	NA	10	28	NA
##	904.b		3	-131	NA	13	30	NA
##	904.c		3	-100	NA	16	32	NA
##	911.a		7	-38	NA	40	55	NA
##	1022		2	NA	-25	NA	NA	8
##	1301		17	NA	-22	50	NA	45
##	1301		21	NA	-33	55	NA	45
##	1301		23	NA	-11	50	NA	45
##	1526.a		2	-120	NA	25	55	125
##	1526.a	2665	3	-120	NA	25	55	250
##	1526.a	2666	4	-120	NA	25	55	500
##	1526.a	2667	5	-90	NA	25	48	600
##	1526.a	2668	6	-90	NA	25	48	700
##	1526.a	2669	7	-60	NA	25	40	900
##	1526.a	2670	8	-60	NA	25	40	1200
##	1527.a.2	2676	2	-10	NA	50	55	100
##	1527.b	2679	2	-10	NA	50	55	6
##	1527.c.2	2681	1	-10	NA	50	55	1
##	1527.c.2		2	-30	NA	50	65	1
##	1527.c.2		3	-10	NA	50	55	1
##	1537.c		2	43	-50	35	20	2
##	Specific_0		_		ts_Gene	eva Interval		
##		3		L9		19 NA		
##		NA		IA		NA NA		
##		NA		JA		NA NA		
##		NA		JA		NA NA		
##		NA NA		JA TA		NA NA		
## ##		NA NA		JA TA		NA NA		
##		N A N A		JA JA		NA NA 1		
##		10		14		44 NA		
##		55		1		1 1		
##		60		1		1 1		
##		50		1		1 1		
##		NA		20		NA 1		
##		NA		20		NA 1		
##		NA		20		NA 1		
##		NA		20		NA 1		
##		NA		20		NA 1		
##		NA		20		NA 1		
##		NA		20		NA 1		
##		NA		19		NA 1		
##		NA		55		NA NA		

```
##
                  NA
                              1
                                           NA
                                                     NA
##
                  NΑ
                              1
                                           NA
                                                     NΑ
##
                  NA
                              1
                                           NA
                                                     NA
                   3
                             19
                                           19
##
                                                     NA
   [1] "Increased tariff from Geneva to Annecy"
                 id Product av_pc sp_pc Ad_Valorem_Geneva Ad_Valorem_Annecy
    Paragraph
           385 1240
                           2
                                  0
                                     -67
##
                                                            10
                                                                                10
##
     1005.a.3 2026
                           1
                                 NA
                                      -23
                                                            NA
                                                                                NA
##
    Specific_Geneva Specific_Annecy Units_Geneva Units_Annecy Interval
##
                 6.0
                                    10
                                                    1
                                                                  1
                 3.2
                                                    1
##
                                                                  1
                                                                           NA
   [1] "Increased tariff from Annecy to Torquay"
##
##
                 id Product av_pc sp_pc Ad_Valorem_Annecy Ad_Valorem_Torquay
    Paragraph
##
            59
                280
                           2
                                  NA
                                        -50
                                                             NA
##
           331
                857
                          10
                                  NA
                                        -33
                                                             NA
                                                                                  NA
##
           360 1012
                           6
                             -50.00
                                         NA
                                                           20.0
                                                                                  30
##
           366 1047
                               -5.00
                                                          50.0
                                                                                  52
                           4
                                        NA
##
           394 1260
                           2
                                  NA
                                        -12
                                                             NA
                                                                                  NA
##
           757 1672
                           2
                                  NA
                                       -800
                                                             NA
                                                                                  NA
##
       1114.d 2178
                           4
                              -0.67
                                                           37.2
                                                                                  38
                                          0
##
          1405 2349
                           3 -33.33
                                                           7.5
                                          0
                                                                                  10
##
          1405 2359
                          13
                                0.00
                                        -50
                                                           10.0
                                                                                  10
                                                           20.0
##
                           1 - 12.50
                                         NA
                                                                                  22
       1519.b 2634
##
       1537.b 2862
                           8 -25.00
                                         NA
                                                           10.0
                                                                                  12
##
    Specific_Annecy Specific_Torquay Units_Annecy Units_Torquay Interval
##
              600.00
                                  900.0
                                                   1.0
                                                                     1
                                                                              NA
##
                3.00
                                    4.0
                                                                     1
                                                   1.0
                                                                              NA
##
                  NA
                                     NA
                                                    NA
                                                                   NA
                                                                              NA
##
                  NA
                                     NA
                                                    NA
                                                                    NA
                                                                              NA
##
                1.00
                                    1.1
                                                   1.0
                                                                     1
                                                                              NA
##
                0.12
                                    1.1
                                                   1.0
                                                                     1
                                                                              NA
                                   37.5
               37.50
##
                                                   1.0
                                                                     1
                                                                              NA
##
                2.50
                                    2.5
                                                   1.0
                                                                     1
                                                                              NA
##
                1.00
                                    1.5
                                                   0.5
                                                                     1
                                                                              NA
##
                  NA
                                     NA
                                                    NA
                                                                    NA
                                                                              NA
##
                  NA
                                     NA
                                                                   NA
                                                                              NA
   [1] "Increased tariff from Torquay to Geneva56_C"
##
                 id Product
                              av_pc sp_pc Ad_Valorem_Torquay Ad_Valorem_Geneva56_C
##
    Paragraph
##
        202.a
                410
                           7
                               -20.0
                                        NA
                                                              35
                                                                                      42
##
        202.a
                411
                           8
                                  NA -20.0
                                                              NA
                                                                                      NA
##
        202.a
                412
                           9
                               -20.0
                                                              25
                                                                                      30
                                         NA
##
        202.a
                413
                          10
                                -7.1
                                                              28
                                                                                      30
                                         NA
        202.a
                414
##
                          11
                                  NA
                                       -6.2
                                                              NA
                                                                                      NA
                          12
                                                              20
##
        202.a
                415
                                -5.0
                                         NA
                                                                                      21
##
        202.a
                417
                          14
                              -18.3
                                                              30
                                                                                      36
                                         NA
##
        202.a
                418
                          15
                                -6.2
                                         NA
                                                              24
                                                                                      26
                474
                              -71.4
                                                                                      30
##
           209
                           6
                                         NA
                                                              18
           214
##
                514
                              -70.0
                                                              20
                                                                                      34
                                         NA
                           1 -122.2
                                                              22
                                                                                      50
##
           357
                983
                                         NA
##
           357
                984
                           2 - 122.2
                                         NΑ
                                                              22
                                                                                      50
                           1 -13.3
##
           360 1007
                                                              22
                                                                                      26
```

##	397 1296	29 -11.1	NA		45	50
##	778 1814	1 -112.5	NA		8	17
##	1114.d 2177	3 -28.0	0.0		25	32
##	Specific_Torquay	Specific_Gene	va56_C	${\tt Units_Torquay}$	${\tt Units_Geneva56_C}$	Interval
##	NA		NA	NA	NA	1
##	5.0		6.0	6	6	1
##	NA		NA	NA	NA	1
##	NA		NA	NA	NA	1
##	4.0		4.2	6	6	1
##	NA		NA	NA	NA	1
##	NA		NA	NA	NA	NA
##	NA		NA	NA	NA	NA
##	NA		NA	NA	NA	NA
##	NA		NA	NA	NA	NA
##	1.8		NA	19	NA	NA
##	7.5		NA	19	NA	NA
##	NA		NA	NA	NA	NA
##	NA		NA	NA	NA	NA
##	NA		NA	NA	NA	NA
##	37.5		37.5	1	1	NA
##	[1] "Increased tar	riff from Gene	va56_C	to Dillon_B"		
##	Paragraph id Pi	roduct av pc	sp pc /	Ad Valorem Gene	eva56 C Ad Valorer	n Dillon B

##	Paragraph	id	${\tt Product}$	av_pc	sp_pc	Ad_Valorem_Geneva56_C	Ad_Valorem_Dillon_B
##	24	102	6	-300.0	67	9.0	36
##	24	103	7	-373.3	67	7.5	36
##	202.a	413	10	-30.0	NA	30.0	39
##	202.a	414	11	NA	-32	NA	NA
##	202.a	415	12	-33.3	NA	21.0	28
##	209	470	2	-37.1	NA	8.8	12
##	209	475	7	-55.6	NA	22.5	35
##	331	856	9	NA	-20	NA	NA
##	354	951	1	-70.0	68	25.0	42
##	354	952	2	-70.0	68	25.0	42
##	354	953	3	-54.5	67	27.5	42
##	354	960	10	-54.5	67	27.5	42
##	354	961	11	-54.5	72	27.5	42
##	354	962	12	-70.0	80	25.0	42
##	354	963	13	-54.5	86	27.5	42
##		1032	9	-18.4	-18	19.0	22
##		1097	2	NA	-50	NA	NA
##		1098	3	-50.0	NA	15.0	22
##		1100	5	NA	-50	NA	NA
##		1101	6		NA	15.0	22
##		1102	7	-50.0	NA	15.0	22
##	371	1103	8	NA	-50	NA	NA
##		1104	9	-50.0	NA	7.5	11
##		1106	11	NA	-50	NA	NA
##		1107	12		NA	15.0	22
##		1114	3		NA	10.5	14
##		1338	7	NA	-100	NA	NA
##	721.e		1	NA	-12	NA	NA
##		2048		-300.0	NA	2.5	10
##		2136		-140.0	0	25.0	60
##	1108	2137	8	-140.0	0	25.0	60

##	1108		9	NA	-260	25.0	NA
##	1108		10	NA	-260	25.0	NA
##	1108		11	-52.0	0	25.0	38
##	1108			-140.0	0	25.0	60
##	1108		13	NA	-203	25.0	NA
##	1108		14	NA	-203	25.0	NA
##	1108	2144	15	-52.0	0	25.0	38
##	1109.a	2145		-140.0	0	25.0	60
##	1109.a	2146	2	NA	-203	25.0	NA
##	1109.a	2147	3	-52.0	0	25.0	38
##	1109.a		4		0	20.0	30
##	1109.a		5	-50.0	0	20.0	30
##	1109.a	2150	6	-50.0	0	20.0	30
##	1301	2274	8	-122.2	NA	22.5	50
##	1404	2336	9	-6.7	20	7.5	8
##	1549.a		1	20.0		12.5	10
##	Specific_G	eneva56_C	Spe	ecific_D	illon_B	<pre>Units_Geneva56_C Units_Dillon_I</pre>	3 Interval
##		30.00			10.0		l NA
##		51.00			17.0	1	l NA
##		NA			NA	NA NA	
##		4.25			5.6	6	5 1
##		NA			NA	NA NA	A 1
##		NA			NA	NA NA	A NA
##		NA			NA	NA NA	A NA
##		3.00			3.6	1	L NA
##		0.62			0.2	19 19	9 NA
##		2.50			0.8	19 19) NA
##		5.50			1.8	19 19	9 NA
##		7.50			2.5	19 19) NA
##		9.00			2.5	19 19	9 NA
##		12.50			2.5	19 19	9 NA
##		17.50			2.5	19 19	9 NA
##		425.00			500.0	19 19	9 NA
##		125.00			187.5	19 19	9 1
##		NA			NA	NA NA	A 1
##		200.00			300.0	19 19	9 1
##		NA			NA	NA NA	A 1
##		NA			NA	NA NA	
##		125.00			187.5	19 19	9 1
##		NA			NA	NA NA	
##		250.00			375.0	19 19	
##		NA			NA	NA NA	
##		NA			NA	NA NA	
##		10.00			20.0	18 18	
##		4.00			4.5		L NA
##		NA			NA	NA NA	
##		30.00			30.0		1 1
##		30.00			30.0		1 1
##		30.00			108.0		1 1
##		30.00			108.0		1 1
##		30.00			30.0		1 1
##		37.50			37.5		1 1
##		37.50			113.5		1 1
##		37.50			113.5	1	1

##	37.50	37.5	1	1	1
##	37.50	37.5	1	1	1
##	37.50	113.5	1	1	1
##	37.50	37.5	1	1	NA
##	37.50	37.5	1	1	NA
##	37.50	37.5	1	1	NA
##	37.50	37.5	1	1	NA
##	NA	NA	NA	NA	1
##	2.50	2.0	1	1	NA
##	0.21	17.0	1	18	NA

No change from Smoot Hawley to Dillon B

```
lines <- data_set %>%
    mutate(av_pc =((Ad_Valorem_SH - Ad_Valorem_Dillon_B)/Ad_Valorem_SH)*100,sp_pc
    =((Specific_SH - Specific_Dillon_B)/Specific_SH)*100)
lines2 <- subset(lines,is.na(sp_pc) | sp_pc==0) %>% subset(is.na(av_pc) | av_pc==0)
```

The code above produces 371 lines that are the same in Smoot Hawley and Dillon B (i.e. that don't change at all through these five rounds of negotiations—we assume. We still need a check for rates going up.)

Lines that switch between specific, ad valorem, or both

Below are the lines that either change units or change between specific only, ad valorem only or both specific and ad valorem. Indicator variables for each round (G for Geneva, A for Annecy, etc.) show in which round the change(s) occurred. Variable "unit_ch" equals 1 if the unit changed.

##	Sched	Product	Paragraph	id	G	Α	T	GA	GB	GC	DA	DB	${\tt unit_ch}$	Interval
##	1	16	28.a	148	NA	NA	NA	NA	NA	NA	1	NA	0	1
##	1	2	33	168	1	NA	NA							
##	1	8	41	197	1	NA	NA							
##	1	9	41	198	1	NA	NA							
##	1	10	41	199	1	NA	NA							
##	1	11	41	200	1	NA	NA							
##	1	12	41	201	1	NA	NA							
##	1	10	53	253	1	NA	1	NA	NA	NA	NA	NA	NA	1
##	1	6	72	324	1	NA	1							
##	2	1	202.a	404	1	NA	1							
##	2	3	202.a	406	1	NA	1							
##	2	4	202.a	407	1	NA	1							
##	2	6	202.a	409	1	NA	1							
##	2	7	202.a	410	1	NA	1							
##	2	9	202.a	412	1	NA	1							
##	2	10	202.a	413	NA	NA	1	NA	NA	NA	NA	NA	0	1
##	2	12	202.a	415	NA	NA	1	NA	NA	NA	NA	NA	0	1
##	2	4	210	479	1	NA	1							
##	2	2	212	489	1	NA	1							
##	2	4	212	491	NA	NA	1	NA	NA	NA	NA	NA	0	1
##	2	11	212	498	1	NA	1							
##	2	14	212	501	NA	NA	1	NA	NA	NA	NA	NA	NA	1
##	2	4	213	506	1	NA	1							
##	2	2	218.d	535	1	NA	1	NA	NA	NA	NA	NA	NA	1

##	2	5	218.d	538	1	NΔ	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NA	1
##	2	7	218.f	554			NA						NA	1
##	2	11	218.f	558								NA	NA	1
##	2	4	226	592			NA						0	1
##	3	3	302.d	654	NA				NA				0	NA
##	3	3	304	693	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	3	4	304	694	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	3	5	304	695	NA	1	NA	NA	NA	NA	NA	NA	0	1
##	3	11	304	701	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	3	12	304	702	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	3	13	304	703	NA	1	NA	NA	NA	NA	NA	NA	0	1
##	3	21	304	711	1	NA	NA	NA	NA	NA	NA	NA	NA	NA
##	3	22	304	712	1	NA	NA	NA	NA	NA	NA	NA	NA	NA
##	3	23	304	713			NA						NA	NA
##	3	24	304	714			NA						0	NA
##	3	25	304	715			NA						0	NA
##	3	26	304	716			NA						0	NA
##	3	30	304	720			NA						NA	NA
##	3	38	304	728			NA						NA NA	1
## ##	3 3	39 40	304	729			NA						NA NA	1
##	3	40 41	304 304	730 731			NA NA						NA O	1 1
##	3	46	304	736								NA	0	NA
##	3	47	304	737								NA	0	NA
##	3	48	304	738								NA	0	NA
##	3	1	308	749		NA			NA				NA	1
##	3	3	308	751		NA			NA				NA	1
##	3	12	316.a	790			NA						NA	1
##	3	4	318	799			NA						NA	1
##	3	7	318	802	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	3	1	357	983	NA	NA	NA	NA	NA	1	NA	NA	0	NA
##	3	2	357	984	NA	NA	NA	NA	NA	1	NA	NA	0	NA
##	3	7	358	996	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	3	16	365	1039	NA	NA	NA	NA	NA	NA	1	NA	0	NA
##	3	18	365	1041	NA	NA	NA	NA	NA	NA	1	NA	0	NA
##	3	1	368.c_2									NA	NA	NA
##	3	2	368.c_2									NA	NA	NA
##	3	1	368.c_17										0	NA
##	3	2		1097			NA						NA	1
##	3	5		1100			NA						NA	1
##	3	8		1103			NA						NA	1
##	3 3	11		1106 1109			NA NA						NA NA	1
## ##	3	14 2		1109									NA O	1 NA
##	3	4	382.a										NA	1
##	3	11		1278								NA		1
##	7	4		1543								NA		1
##	7	1		1550								NA	1	NA
##	7	2		1660			NA						1	NA
##	7	1		1815									0	NA
##	9	4		1918			NA						NA	1
##	9	7		1921			NA						NA	1
##	9	14		1928			NA						NA	1
##	9	2	910	1933	1	NA	NA	NA	NA	NA	NA	NA	NA	1

##	9	8	911.a	10/12	1	NA	NΤΛ	A TA	NT A	NT A	NT A	NT A	NA	1
##	9	2		1942		NA							NA NA	1
##	9	9		1990		NA							NA	1
##	11	9		2138								NA	0	1
	11			2130									0	1
##		10										NA		1
##	11	13		2142								NA	0	
##	11	14		2143								NA	0	1
##	11	2	1109.a									NA	0	1
##	12	3		2255		NA					_	NA	NA NA	1
##	13	1		2267			NA						NA NA	1
##	13	3		2269			NA						NA NA	1
##	13	5		2271						NA			NA NA	1
##	13	9		2275								NA	NA	1
##	13	13	1301			NA							NA	1
##	13	15	1301			NA							NA	1
##	13	17		2283		NA							0	1
##	13	19		2285		NA							0	1
##	13	21		2287		NA							0	1
##	13	23		2289		NA							0	1
##	14	13	1405			NA		NA					1	NA
##	14	6		2456		NA							NA	1
##	15	5	1504.a									NA	NA	1
##	15	5				NA							NA	NA
##	15	10	1506			NA							NA	1
##	15	1		2533			NA						0	NA
##	15	1	1526.a			NA							0	1
##	15	2	1526.a			NA							NA	1
##	15	3	1526.a			NA							NA	1
##	15	4	1526.a	2666	1	ΝA	ΝA	NA	NA	NA	NA	ΝA	NA	1
##	15	5	1526.a	2667	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	15	6	1526.a	2668	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	15	7	1526.a	2669	1	ΝA	ΝA	NA	NA	NA	NA	ΝA	NA	1
##	15	8	1526.a	2670	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	15	1	1527.a.2	2675	NA	1	ΝA	NA	NA	NA	NA	ΝA	0	1
##	15	2	1527.a.2	2676	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	15	2	1527.b	2679	1	ΝA	ΝA	NA	NA	NA	NA	ΝA	NA	NA
##	15	1	1527.c.2		1	NA	NA	NA	NA	NA	NA	NA	NA	NA
##	15	2	1527.c.2	2682	1	NA	NA	NA	NA	NA	NA	NA	NA	NA
##	15	3	1527.c.2	2683	1	NA	NA	NA	NA	NA	NA	NA	NA	NA
##	15	4	1527.c.2	2684	NA	NA	NA	NA	NA	NA	1	NA	0	NA
##	15	5	1527.c.2	2685	1	NA	NA	NA	NA	NA	NA	NA	NA	NA
##	15	3	1530.e	2786	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	15	4	1535	2839	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	15	8	1535	2843	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	15	11	1535	2846	1	NA	1	NA	NA	NA	NA	NA	NA	1
##	15	5	1537.b	2859	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	15	8	1541.a	2889	1	NA	NA	NA	NA	NA	NA	NA	NA	1
##	15	25	1541.a	2906	NA	NA	NA	1	NA	NA	NA	NA	0	NA
##	15	1	1548	2931	1	NA	1	NA	NA	NA	NA	NA	0	NA
##	15	1	1549.a	2932	NA	NA	NA	NA	1	NA	1	NA	0	NA
##	15	4	1549.b	2940	NA	NA	1	NA	NA	NA	NA	NA	0	NA
##	15	5	1549.b	2941	NA	NA	1	NA	NA	NA	NA	NA	0	NA
##	15	1	1550.a	2942	NA	NA	NA	1	NA	NA	NA	NA	0	NA
##	15	6	1552	2959	1	NA	NA	NA	NA	NA	NA	NA	0	NA

Summarizing the impact of tax intervals

Implementation dates

Geneva 1: January 1, 1948 (Irwin 2017, p. 486)

TOT analysis

We'll need measure of importer market power

- $1.\,$ inverse foreign supply elasticities are at HS6 level, are much more recent
 - Ross will look into the feasibility (data and code) of creating these measures for the 1930s/40s
 - Would we want Broda, Limao, Weinstein version (requires trade flows only) or Anson Soderbery's heterogeneous version?
 - Ross recalls he's seen a joint project between Anson Soderbery and Doug Irwin about the 1930s
- 2. product differentiation index (Rauch), also newer, but maybe less sensitive to changes over time
- 3. market share might be credible enough, and easier to get

We'll need to think about whether it's credible to try the identification strategy Ross has used in his work