-1-

、明 細 書

R-T-B系希土類永久磁石及び磁石組成物

5 技術分野

10

15

20

本発明は、R (Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である。)、T (TはFe又はFe及びCoを必須とする少なくとも1種以上の遷移金属元素)及びB (ホウ素)を主成分とするR-T-B系希土類永久磁石に関する。また本発明は、R-T-B系希土類永久磁石を製造する際に用いられる磁石組成物に関する。

背景技術

希土類永久磁石の中でもR-T-B系希土類永久磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であることから、需要は年々、増大している。

R-T-B系希土類永久磁石の磁気特性を向上するための研究開発も精力的に行われている。例えば、特開平1-219143号公報では、R-T-B系希土類永久磁石に $0.02\sim0.5$ at%のCuを添加することにより、磁気特性が向上し、熱処理条件も改善されることが報告されている。しかしながら、特開平1-219143号公報に記載の方法は、高性能磁石に要求されるような高磁気特性、具体的には高い保磁力(HcJ)及び残留磁束密度(Br)を得るには不十分であった。

ここで、焼結で得られるR-T-B系希土類永久磁石の磁気特性は焼結温度に依存するところがある。その一方、工業的生産規模においては焼結炉内の全域で加熱温度を均一にすることは困難である。したがって、R-T-B系希土類永久磁石において、焼結温度が変動しても所望する磁気特性を得ることが要求される。ここで、所望する磁気特性を得ることのできる温度範囲を焼結温度幅ということにする。

R-T-B系希土類永久磁石をさらに高性能なものにするためには、合金中の酸素量を低下させることが必要である。しかし、合金中の酸素量を低下させると焼結工程において異常粒成長が起こりやすく、角形比が低下する。合金中の酸素が形成している酸化物が結晶粒の成長を抑制しているためである。

そこで磁気特性を向上する手段として、Cuを含有するR-T-B系希土類 永久磁石に新たな元素を添加する方法が検討されている。特開2000-23 4151号公報では、高い保磁力及び残留磁束密度を得るために、Zr及び/ 又はCrを添加する報告がなされている。

同様に特開2002-75717号公報では、Co、Al、Cu、さらにZr、Nb又はHfを含有するR-T-B系希土類永久磁石中に微細なZrB化合物、NbB化合物又はHfB化合物(以下、M-B化合物)を均一に分散して析出させることにより、焼結過程における粒成長を抑制し、磁気特性と焼結温度幅を改善する報告がなされている。

特開2002-75717号公報によればM-B化合物を分散・析出することによって焼結温度幅が拡大されている。しかしながら、特開2002-75717号公報に開示される実施例3-1では焼結温度幅が20℃程度と、狭い。よって、量産炉などで高い磁気特性を得るには、さらに焼結温度幅を広げることが望ましい。また十分広い焼結温度幅を得るためには、Zr添加量を増やすことが有効である。ところが、Zr添加量の増大にともなって残留磁束密度は低下し、本来目的とする高特性は得られない。

そこで本発明は、磁気特性の低下を最小限に抑えつつ粒成長を抑制し、かつ焼結温度幅をさらに改善できるR-T-B系希土類永久磁石を提供することを目的とする。

25 発明の開示

5

15

20

近年、高性能なR-T-B系希土類永久磁石を製造する場合、各種金属粉体や組成の異なる合金粉末を混合、焼結する混合法が主流となっている。この混合法は、典型的には、 $R_2T_{14}B$ 系金属間化合物(Rは希土類元素の1種又は2種以

15

上(但し希土類元素はYを含む概念である。)、TはFe又はFe及びCoを主体とする少なくとも1種以上の遷移金属元素)を主体とする主相形成用の合金と、主相間に存在する粒界相を形成するための合金(以下、「粒界相形成用の合金」という)とを混合する。ここで、主相形成用の合金は希土類元素Rの含有量が相対的に少ないために低R合金と呼ばれることがある。一方、粒界相形成用の合金は希土類元素Rの含有量が相対的に多いために高R合金と呼ばれることがある。

本発明者等は、混合法を用いてR-T-B系希土類永久磁石を得る際に、Z r を低R合金に含有させると、得られたR-T-B系希土類永久磁石においてZ r の分散性が高いことを確認した。Z r の分散性が高いことにより、より少ない Z r の含有量で異常粒成長を防止すること、さらには焼結温度幅を拡大することを可能とする。

本発明は以上の知見に基づくものであり、R:25~35wt% (Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である。)、B: $0.5\sim4.5$ wt%、Al及びCuの1種又は2種: $0.02\sim0.6$ wt%、Zr: $0.03\sim0.25$ wt%、Co:4wt%以下(0を含まず)、残部実質的にFeからなる組成を有する焼結体からなり、前記焼結体中におけるZrの分散度合いを示す変動係数(CV値)が130以下であることを特徴とするR-T-B系希土類永久磁石を提供する。

Zrを低R合金に含有させることによるZrの分散性向上及び焼結温度幅の 20 拡大という効果は、焼結体中に含まれる酸素量が2000ppm以下と低酸素 量の場合に顕著となる。

本発明のR-T-B系希土類永久磁石において、Zrは $0.05\sim0.2w$ t%が望ましく、 $0.1\sim0.15w$ t%であることがさらに望ましい。

また本発明のR-T-B系希土類永久磁石において、Zrを除く組成として
25 は、R:28~33wt%、B:0.5~1.5wt%、Al:0.3wt%以
下(0を含まず)、Cu:0.3wt%以下(0を含まず)、Co:0.1~2.
0wt%、残部実質的にFeとすることが望ましく、R:29~32wt%、
B:0.8~1.2wt%、Al:0.25wt%以下(0を含まず)、Cu:

0.15wt%以下 $(0を含まず)、<math>Co:0.3\sim1.0wt\%$ 、残部実質的にFeとすることがさらに望ましい。

以上のような組成及びZrの分散性を備えることにより、本発明のR-T-B系希土類永久磁石は、残留磁束密度(Br)と保磁力(Hc J)が、Br +0.1 \times Hc J(無次元、以下同じ)が15.2以上という高特性を得ることができる。但し、ここでのBrの値はCG S系におけるkG表示の値であり、またHc Jの値はCG S系におけるkO e表示の値である。

先に説明したように、本発明のR-T-B系希土類永久磁石によれば、焼結温度幅が改善される。焼結温度幅の改善効果は、焼結前の粉末(又はその成形体)の状態である磁石組成物が備えている。したがって本発明は、R $_2$ T $_{14}$ B $_1$ 相(Rは希土類元素の1種又は2種以上(但し希土類元素はYを含む概念である)、TはFe又はFe及びCoを主体とする少なくとも1種以上の遷移金属元素)からなる主相と、主相よりRを多く含む粒界相とを備えるR-T-B系希土類永久磁石を製造する際に用いられる磁石組成物としても提供される。このR-T-B系磁石組成物は、R:25 \sim 35wt%、B:0.5 \sim 4.5wt%、A1及びCuの1種又は2種:0.02 \sim 0.6wt%、Zr:0.03 \sim 0.25wt%、Co:4wt%以下(0を含まず)、残部実質的にFeからなる組成を有する。そして、この磁石組成物は、焼結によって得られるR-T-B系希土類永久磁石の角形比(Hk/HcJ)が90%以上となる焼結温度幅を、40℃以上とすることができる。

本発明の磁石組成物は、主相形成用の合金と粒界相形成用の合金との混合物からなる場合に、Zrを主相形成用の合金に含有させることが望ましい。Zrの分散性を向上させるために有効だからである。

25 図面の簡単な説明

5

10

15

20

第1図は第1実施例において用いた低R合金及び高R合金の化学組成を示す 図表、第2図は第1実施例で得られた永久磁石(No.1~20)の最終組成、 酸素量及び磁気特性を示す図表、第3図は第1実施例で得られた永久磁石(N

o. 21~35)の最終組成、酸素量及び磁気特性を示す図表、第4図は第1 実施例で得られた永久磁石(焼結温度1070℃)における残留磁束密度(B r)、保磁力(HcJ)及び角形比(Hk/HcJ)とZr添加量との関係を示 すグラフ、第5図は第1実施例で得られた永久磁石(焼結温度1050℃)に おける残留磁束密度 (Br)、保磁力 (HcJ) 及び角形比 (Hk/HcJ) と Zr添加量との関係を示すグラフ、第6図は第1実施例で得られた永久磁石(高 R合金添加による永久磁石)のEPMA(Electron Prove Micro Analyzer)元 素マッピング結果を示す写真、第7図は第1実施例で得られた永久磁石(低R 合金添加による永久磁石)のEPMA元素マッピング結果を示す写真、第8図 は第1実施例で得られた永久磁石におけるΖrの添加方法、Ζrの添加量及び 10 ZrのCV値(変動係数)との関係を示すグラフ、第9図は第2実施例で得ら れた永久磁石 (No. 36~75) の最終組成、酸素量及び磁気特性を示す図 表、第10図は第2実施例における残留磁束密度(Br)、保磁力(HcJ)及 び角形比(Hk/HcJ)とΖェ添加量との関係を示すグラフ、第11図は第 2実施例で得られたNo.37、No.39、No.43及びNo.48の各永久 15 磁石の破断面をSEM (走査型電子顕微鏡) により観察した組織写真、第12 図は第2実施例で得られたNo.37、No.39、No.43及びNo.48の 各永久磁石の4πI-H曲線を示すグラフ、第13図は第2実施例で得られた No.70による永久磁石のB、Al、Cu、Zr、Co、Nd、Fe及びPr の各元素のマッピング像($30\mu m \times 30\mu m$)を示す写真、第14図は第220 実施例で得られたNo.70による永久磁石のEPMAライン分析のプロファ イルの一例を示す図表、第15図は実施例2で得られたNo.70による永久磁 石のEPMAライン分析のプロファイルの他の例を示す図表、第16図は第2 実施例におけるZr添加量、焼結温度及び角形比(Hk/HcJ)との関係を 示すグラフ、第17図は第3実施例で得られた希土類永久磁石(No. 76~ 25 79)の最終組成、酸素量及び磁気特性を示す図表、第18図は第4実施例で 得られた希土類永久磁石 (No. 80~81) の最終組成、酸素量及び磁気特 性等を示す図表である。

発明を実施するための最良の形態 以下に本発明の実施の形態について説明する。

<組織>

15

25

はじめに本発明の特徴であるR-T-B系希土類永久磁石の組織について説 5 明する。

本発明によるR-T-B系希土類永久磁石は、焼結体組織中にZrが均一に分散していることが特徴である。この特徴は、より具体的には変動係数(本願明細書中でCV (Coefficient of Variation)値と記す)で特定される。本発明では、ZrのCV値が130以下、望ましくは100以下、さらに望ましくは90以下となる。このCV値が小さいほど、Zrの分散度合いが高いことを示している。なお、よく知られているようにCV値は標準偏差を算術平均値で割った値(百分率)である。また、本発明におけるCV値は後述する実施例の測定条件により求められる値とする。

このようにZrの高い分散性はZrの添加方法に起因している。後述するように、本発明のR-T-B系希土類永久磁石は混合法で作製することができる。混合法は主相形成用の低R合金と粒界相形成用の高R合金とを混合するものであるが、Zrを低R合金に含有させると、高R合金に含有させた場合に比べて、その分散性が著しく向上するのである。

本発明によるR-T-B系希土類永久磁石は、Zrの分散の度合いが高いため に、より少ない量のZrの添加によっても結晶粒の成長を抑制する効果を発揮することができる。

次に、本発明のR-T-B系希土類永久磁石によれば、①Zrリッチ領域ではCuがともにリッチである、②Zrリッチ領域ではCu及びCoがともにリッチである、③Zrリッチ領域ではCu、Co及びNdがともにリッチである、ことが確認された。特にZrとCuとがともにリッチである割合が高く、ZrがCuと共に存在してその効果を発揮している。またNd、Co及びCuは、ともに粒界相を形成する元素である。したがって、その領域のZrがリッチであることから、Zrは粒界相に存在すると判断される。

ZrがCu、Co及びNdと上記のような存在形態を示す理由については、定かではないが、以下のように考えている。

本発明によれば、焼結過程においてCu、Nd及びCoの1種又は2種以上と Zrとがともにリッチな液相(以下、「Zrリッチ液相」という)が生成される。 このZrリッチ液相は、通常のZrを含まない系における液相とはR2T14B1 結晶粒(化合物)に対する濡れ性が相違する。それが、焼結過程における粒成長の速度を鈍化させる要因となる。そのために粒成長の抑制及び巨大異常粒成長の発生を防止できる。同時に、Zrリッチ液相に起因して焼結温度幅を改善することが可能なために、高い磁気特性のR-T-B系希土類永久磁石を容易に製造す 3 ことができるようになった。

Cu、Nd及びCoの1種又は2種以上とZrとが共にリッチな粒界相を形成させることで、以上のような効果が得られる。このため焼結過程において固体状態で存在する場合(酸化物、ホウ化物等)よりも均一かつ微細に分散させることが可能となる。これにより、必要なZrの添加量を少なくでき、かつ主相比率を下げるような異相の多量発生が起こらないので、残留磁束密度(Br)等の磁気特性の減少が起こらない、と推察される。

<化学組成>

15

次に、本発明によるR-T-B系希土類永久磁石の望ましい化学組成について説明する。ここでいう化学組成は焼結後における化学組成をいう。本発明によるR-T-B系希土類永久磁石は、後述するように混合法により製造することができるが、混合法に用いる低R合金及び高R合金の各々については、製造方法についての説明中で触れることにする。

本発明の希土類永久磁石は、Rを25~35wt%含有する。

ここで、Rは、La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu及びYからなるグループから選択される1種又は2種以上である。Rの量が2.5w t %未満であると、希土類永久磁石の主相となるR $_2$ T $_{14}$ B $_1$ 相の生成が十分ではない。このため、軟磁性を持つ α -Feなどが析出し、保磁力が著しく低下する。一方、Rの量が3.5w t %を超えると主相

Ndは資源的に豊富で比較的安価であることから、Rとしての主成分をNdとすることが好ましい。またDyの含有は異方性磁界を増加させるため、保磁力を向上させる上で有効である。よって、RとしてNd及びDyを選択し、Nd及びDyの合計を25~33wt%とすることが望ましい。そして、この範囲において、Dyの量は0.1~8wt%が望ましい。Dyは、残留磁束密度及び保磁力のいずれを重視するかによって上記範囲内においてその量を定めることが望ましい。つまり、高い残留磁束密度を得たい場合にはDy量を0.1~3.5wt%とし、高い保磁力を得たい場合にはDy量を3.5~8wt%とすることが望ましい。

また、本発明の希土類永久磁石は、ホウ素(B)を $0.5\sim4.5$ w t %含有する。Bが0.5w t %未満の場合には高い保磁力を得ることができない。但し、Bが4.5w t %を超えると残留磁束密度が低下する傾向がある。したがって、上限を4.5w t %とする。望ましいBの量は $0.5\sim1.5$ w t %、さらに望ましいBの量は $0.8\sim1.2$ w t %である。

20 本発明のR-T-B系希土類永久磁石は、A l 及びC u の 1 種又は 2 種を 0 . 0 2 ~ 0 . 6 w t %の範囲で含有することができる。この範囲でA l 及びC u の 1 種又は 2 種を含有させることにより、得られる永久磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。A l を添加する場合において、望ましいA l の量は 0 . 0 3 ~ 0 . 3 w t %、さらに望ましいA l の量は 0 . 0 5 ~ 0 .

25 25wt%である。また、Cuを添加する場合において、Cuの量は0.3wt%以下(0を含まず)、望ましくは0.15wt%以下(0を含まず)、さらに望ましいCuの量は0.03~0.08wt%である。

本発明のR-T-B系希土類永久磁石は、Zrを0.03~0.25wt%含

有する。R-T-B系希土類永久磁石の磁気特性向上を図るために酸素含有量を低減する際に、Zr は焼結過程での結晶粒の異常成長を抑制する効果を発揮し、焼結体の組織を均一かつ微細にする。したがって、Zr は酸素量が低い場合にその効果が顕著になる。Zr の望ましい量は $0.05\sim0.2$ w t %、さらに望ましい量は $0.1\sim0.15$ w t %である。

本発明のR-T-B系希土類永久磁石は、その酸素量を2000ppm以下とする。酸素量が多いと非磁性成分である酸化物相が増大して、磁気特性を低下させる。そこで本発明では、焼結体中に含まれる酸素量を、2000ppm以下、望ましくは1500ppm以下、さらに望ましくは1000ppm以下とする。但し、単純に酸素量を低下させたのでは、粒成長抑制効果を有していた酸化物相が減少し、焼結時に十分な密度上昇を得る過程で粒成長が容易に起こる。そこで、本発明では、焼結過程での結晶粒の異常成長を抑制する効果を発揮するZrを、R-T-B系希土類永久磁石中に所定量含有させる。

本発明のR-T-B系希土類永久磁石は、Coを4wt%以下 (0を含まず)、望ましくは $0.1\sim2.0wt\%$ 、さらに望ましくは $0.3\sim1.0wt\%$ 含有する。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。

<製造方法>

5

15

次に、本発明によるR-T-B系希土類永久磁石の好適な製造方法について 20 説明する。

本実施の形態では、 $R_2T_{14}B$ を主体とする合金(低R合金)と、低R合金よりRを多く含む合金(高R合金)とを用いて本発明に係る希土類永久磁石を製造する方法について示す。

はじめに、原料金属を真空又は不活性ガス、好ましくはAr雰囲気中でスト リップキャスティングすることにより、低R合金及び高R合金を得る。原料金 属としては、希土類金属あるいは希土類合金、純鉄、フェロボロン、さらには これらの合金等を使用することができる。得られた母合金は、凝固偏析がある 場合は必要に応じて溶体化処理を行なう。その条件は真空又はAr雰囲気下、

700~1500℃の領域で1時間以上保持すれば良い。

本発明で特徴的な事項は、Zrを低R合金から添加するという点である。これは、<組織>の欄で説明したように、低R合金からZrを添加することにより、焼結体中におけるZrの分散性を向上することができるからである。

5 低R合金には、R、T及びBの他に、Cu及びAlを含有させることができる。このとき低R合金は、R-Cu-Al-Zr-T(Fe)-B系の合金を構成する。また、高R合金には、R、T(Fe)及びBの他に、Cu、Co及びAlを含有させることができる。このとき高R合金は、R-Cu-Co-Al-T(Fe-Co)-B系の合金を構成する。

10 低R合金及び高R合金が作製された後、これらの各母合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、各母合金を、それぞれ粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが望ましい。粗粉砕性を向上させるために、水素を吸蔵させた後、粗粉砕を行なうことが効果的である。また、水素吸蔵を行った後に、水素を放出させ、さらに粗粉砕を行うこともできる。

粗粉砕工程後、微粉砕工程に移る。微粉砕は、主にジェットミルが用いられ、粒径数百 μ m程度の粗粉砕粉末が、平均粒径3~5 μ mになるまで粉砕される。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。

微粉砕工程において低R合金及び高R合金を別々に粉砕した場合には、微粉砕された低R合金粉末及び高R合金粉末とを窒素雰囲気中で混合する。低R合金粉末及び高R合金粉末の混合比率は、重量比で80:20~97:3程度とすればよい。同様に、低R合金及び高R合金を一緒に粉砕する場合の混合比率も重量比で80:20~97:3程度とすればよい。微粉砕時に、ステアリン酸亜鉛等の添加剤を0.01~0.3 w t %程度添加することにより、成形時に

配向性の高い微粉を得ることができる。

次いで、低R合金粉末及び高R合金粉末からなる混合粉末を、電磁石に抱かれた金型内に充填し、磁場印加によってその結晶軸を配向させた状態で磁場中成形する。この磁場中成形は、 $12.0\sim17.0$ k O e の磁場中で、 $0.7\sim1.5$ t / c m^2 前後の圧力で行なえばよい。ここで得られた成形体は、低R合金粉末と高R合金粉末の混合物からなる磁石組成物であり、以後の焼結工程における焼結温度幅が40 C以上という特性を備えている。したがって、工業的生産において安定して高い磁気特性を得ることができる。

磁場中成形後、その成形体を真空又は不活性ガス雰囲気中で焼結する。焼結 10 温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必 要があるが、1000~1100℃で1~5時間程度焼結すればよい。

焼結後、得られた焼結体に時効処理を施すことができる。時効処理は、保磁力を制御する上で重要である。時効処理を 2 段に分けて行なう場合には、 8 0 0 ∞ 近傍、 6 0 0 ∞ 近傍での所定時間の保持が有効である。 8 0 0 ∞ 近傍での所定時間の保持が有効である。 8 0 0 ∞ 抵合法においては特に有効である。 また、 6 0 0 ∞ 近傍の熱処理で保磁力が大きく増加するため、時効処理を 1 段で行なう場合には、 6 0 0 ∞ 近傍の時効処理を施すとよい。

以上の組成及び製造方法による本発明の希土類永久磁石は、残留磁束密度(Br)と保磁力(HcJ)が、Br+0.1×HcJが15.2以上、さらには15.4以上という高い特性を得ることができる。

(実施例)

5

15

20

25

次に、具体的な実施例を挙げて本発明をさらに詳細に説明する。なお、以下では第1実施例~第4実施例に分けて本発明によるR-T-B系希土類永久磁石を説明するが、用意した原料合金、各製造工程は共通するところがあるため、はじめにこの点について説明しておく。

1) 原料合金

ストリップキャスティング法により、第1図に示す13種類の合金を作製し

た。

2) 水素粉砕工程

室温にて水素を吸蔵させた後、Ar雰囲気中で600℃×1時間の脱水素を 行なう、水素粉砕処理を行なった。

5 高磁気特性を得るために、本実験では焼結体酸素量を2000ppm以下に抑えるために、水素処理(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、100ppm未満の酸素濃度に抑えてある。以後、無酸素プロセスと称す。

3) 粉砕工程

15

20

10 通常、粗粉砕と微粉砕による2段粉砕を行っているが、粗粉砕工程を無酸素 プロセスで行なうことができなかったため、本実施例では粗粉砕工程を省いて いる。

微粉砕を行なう前に添加剤を混合する。添加剤の種類は特に限定されるものではなく、粉砕性の向上並びに成形時の配向性の向上に寄与するものを適宜選択すればよいが、本実施例ではステアリン酸亜鉛を 0.05~0.1%混合した。添加剤の混合は、例えばナウターミキサー等により 5~30分間ほど行なう程度でよい。

その後、ジェットミルを用いて合金粉末が平均粒径 $3\sim6~\mu$ m程度になるまで微粉砕を行なった。本実験では、平均粒径が $4~\mu$ m と $5~\mu$ m の 2 種類の粉砕粉を作製した。

当然ながら、添加剤の混合工程と微粉砕工程は、ともに無酸素プロセスで行っている。

4)配合工程

実験を効率よく行なうために、数種類の微粉砕粉を調合し、所望の組成(特 25 に Z r 量)となるように混合する場合がある。この場合の混合も、例えばナウ ターミキサー等により5~30分間ほど行なう程度でよい。

無酸素プロセスで行なうことが望ましいが、焼結体酸素量を微増させる場合、本工程にて、成形用微粉末の酸素量を調整する。例えば、組成や平均粒径が同

一の微粉末を用意し、100ppm以上の含酸素雰囲気に数分から数時間放置することで、数千ppmの微粉末が得られる。これら2種類の微粉末を無酸素プロセス中で混合することで、酸素量の調整を行っている。第1実施例は、上記方法にて各永久磁石を作製した。

5 5) 成形工程

10

15

20

得られた微粉末を磁場中にて成形する。具体的には、微粉末を電磁石に抱かれた金型内に充填し、磁場印加によってその結晶軸を配向させた状態で磁場中成形する。この磁場中成形は、 $12.0\sim17.0$ k O e の磁場中で、 $0.7\sim1.5$ t / c m^2 前後の圧力で行なえばよい。本実験では15 k O e の磁場中で 1.2 t / c m^2 の圧力で成形を行い、成形体を得た。本工程も無酸素プロセスにて行なった。

6) 焼結、時効工程

この成形体を真空中において $1010\sim1150$ \mathbb{C} で4時間焼結した後、急冷した。次いで得られた焼結体に800 $\mathbb{C}\times1$ 時間と550 $\mathbb{C}\times2.5$ 時間(ともにAr 雰囲気中)の2段時効処理を施した。

(第1実施例)

第1図に示す合金を用いて第2図及び第3図に示す最終組成となるように配合した後に、水素粉砕処理後、ジェットミルにて平均粒径 5.0μ mに微粉砕した。なお、用いた原料合金の種類も第2図及び第3図に記載してある。その後磁場中成形した後に、1050 と1070 で焼結し、得られた焼結体に2段時効処理を施した。

得られたR-T-B系希土類永久磁石について、残留磁束密度(Br)、保磁力(HcJ)及び角形比(Hk/HcJ)をB-Hトレーサにより測定した。なお、Hkは磁気ヒステリシスループの第2象限において、磁束密度が残留磁25 東密度の90%になるときの外部磁界強度である。その結果を第2図及び第3図に併記した。また、第4図には焼結温度が1070℃のときのZr添加量と磁気特性の関係を示すグラフを、第5図には焼結温度が1050℃のときのZr添加量と磁気特性の関係を示すグラフを示している。なお、焼結体中の酸素

10

·15

20

25

量を測定した結果を第2図及び第3図に併記した。第2図において、No.1~ 14は酸素量が1000~1500 ppmの範囲にある。また第2図において、No.15~20は1500~2000 ppmの範囲にある。また、第3図においては、No.21~35の全てがその酸素量が1000~1500 ppmの範囲にある。

第2図において、No. 1はZrを含まない材料である。また、No. $2\sim 9$ は低R合金からZrを添加した材料、No. 10 ~ 1 4は高R合金からZrを添加した材料である。第4図のグラフにおいて、低R合金からZrを添加した材料には低R合金添加と、また高R合金からZrを添加した材料には高R合金添加と表示している。なお、第4図は第2図中の1000 ~ 1 500ppmと酸素量が低い材料について示したものである。

第2図及び第4図より、1070 \mathbb{C} の焼結では、Zr を添加しないNo.1 による永久磁石は保磁力(HcJ)及び角形比(Hk/HcJ)がともに低いレベルにある。この材料の組織を観察したところ、異常粒成長による粗大化した結晶粒子が確認された。

高R合金添加による永久磁石は、95%以上の角形比(Hk/HcJ)を得るために0.1%のZrを添加する必要がある。これ未満のZr添加量による永久磁石は、異常粒成長が確認された。また、例えば第6図に示すように、EP MA(Electron Prove Micro Analyzer)による元素マッピング観察により、同一箇所においてBeZrとが観察されたことから、Zr B化合物が形成されているものと推測される。Zrの添加量を0.2%まで増やしていくと、第2図及び第4図に示すように残留磁束密度(Br)の低下が無視できなくなる。

以上に対して、低R合金添加による永久磁石は、0.03%のZrの添加で95%以上の角形比(Hk/HcJ)を得ることができる。そして、組織観察によると、異常粒成長は確認されなかった。また、0.03%以上のZrの添加によっても、残留磁束密度(Br)及び保磁力(HcJ)の低下が認められない。よって、低R合金添加による永久磁石によれば、より高温域での焼結、粉砕粒径の微細化、低酸素雰囲気等の条件下の製造によっても高特性を得ることが可

10

15

能となる。但し、低R合金添加による永久磁石であっても、Zr添加量を0.3 0wt%まで増加させると、Zr無添加永久磁石よりも残留磁束密度(Br)が低くなる。したがって、低R合金の場合であっても、Zrは0.25wt%以下の添加量とすることが望ましい。高R合金添加による永久磁石と同様にEPMAによる元素マッピング観察において、低R合金添加の永久磁石は、例えば第7図に示すように、BeZrとを同一箇所において観察することができなかった。

酸素量と磁気特性との関係について着目すると、第2図及び第3図より、酸素量を2000ppm以下にすることで高い磁気特性が得られることが分かる。そして、第2図の $No.6\sim8$ と $No.16\sim18$ との比較、 $No.11\sim12$ と $No.19\sim20$ との比較により、酸素量を1500ppm以下にした場合には、

保磁力(HcJ)が増加して好ましいことが分かる。

次に、第3図及び第5図より、Zrを添加しないNo.21は焼結温度が1050Cの場合であっても角形比(Hk/HcJ)が86%と低い。この永久磁石も、その組織中に異常粒成長が確認された。

高R合金添加による永久磁石(No.28~30)は、Zrの添加により角形比(Hk/HcJ)は向上するが、Zr添加量を増やすと残留磁束密度(Br)の低下が大きくなる。

これに対して、低R合金添加による永久磁石(No.22~27)は、角形比20 (Hk/HcJ)の向上がなされる一方で、残留磁束密度(Br)の低下はほとんどない。

第3図中のNo. $31\sim35$ は、A1量を変動させている。これら永久磁石の磁気特性から、A1量を増加させることにより保磁力(HcJ)が向上することがわかる。

第2図及び第3図には、 $Br+0.1 \times Hc$ Jの値を記載している。低R合金からZr を添加した永久磁石は、 $Br+0.1 \times Hc$ J値がZr の添加量にかかわらず 15.2以上を示していることがわかる。

第2図中のNo.2~14の永久磁石ついて、EPMAによる元素マッピング

の結果から、解析画面におけるZrの分散性をCV値(変動係数)にて評価した。なお、CV値は、全分析点の標準偏差を全分析点の平均値で割った値(百分率)であり、この値が小さいほど分散性が優れていることを示す。また、EPMAは日本電子(株)製のJCMA733(分光結晶にPET(ペンタエリトリートール)を使用)を用い、測定条件を以下のとおりとした。その結果を第2図及び第8図に示す。第2図及び第8図より、低R合金からZrを添加した永久磁石(No.Z~Z0)は、高R合金からZ1 を添加した永久磁石(Z1 の分散性が優れることがわかる。

このように、低R合金からZrを添加することにより得られる良好な分散性が、少量のZr添加で結晶粒の異常成長抑制効果を発揮する原因とみられる。

加速電圧: 20 k V

5

10

15

照射電流: 1×10⁻⁷A

照射時間:150msec/点

測定点: X→200ポイント(0.15 μ mステップ)

 $Y\rightarrow 200$ ポイント $(0.146\mu m \lambda \tau)$

範囲: 30.0 μ m×30.0 μ m

倍率:2000倍

(第2実施例)

第1図の合金 a 1、合金 a 2、合金 a 3及び合金 b 1を用いて第9図に示す 20 最終組成となるように配合した後に、水素粉砕処理後、ジェットミルにて平均 粒径 4.0 μ mに微粉砕した。その後磁場中成形し、1010~1100℃の各 温度で焼結し、得られた焼結体に2段時効処理を施した。

得られたR-T-B系希土類永久磁石について、残留磁束密度(Br)、保磁力(HcJ)及び角形比(Hk/HcJ)をB-Hトレーサにより測定した。

25 また、 $Br + 0.1 \times Hc$ J 値を求めた。その結果を第9図に併記した。また、 第10図に焼結温度と各磁気特性の関係を示すグラフを示している。

第2実施例では、高磁気特性を得るために、無酸素プロセスにより焼結体の酸素量を600~900ppmと低減し、かつ粉砕粉末の平均粒径を4.0μm

10

と微細なものとした。したがって、焼結過程における異常粒成長が生じやすくなっている。そのため、Zr を添加しない永久磁石 (第9図 No. $36\sim39$ 、第10図中でZr-f reeと表記)は、1030 で焼結した場合以外は磁気特性が極めて低い値となっている。もっとも、1030 においても角形比 (Hk/HcJ) が88% と90% に達していない。

磁気特性のなかで角形比(Hk/HcJ)が異常粒成長による低下傾向が最も早く現れる。つまり、角形比(Hk/HcJ)は異常粒成長の傾向を把握することのできる一指標となる。そこで、90%以上の角形比(Hk/HcJ)が得られた焼結温度域を、焼結温度幅と定義すると、Zrを添加しない永久磁石は焼結温度幅が0である。

以上に対して低R合金添加による永久磁石は、相当の焼結温度幅を有している。 Z r を 0.05%添加した永久磁石(第9図 No.40~43)では、1010~1050℃において90%以上の角形比(Hk/HcJ)を得ている。つまり、Z r を 0.05%添加した永久磁石の焼結温度幅は40℃である。同様に、Z r を 0.08%添加した永久磁石(第9図 No.44~50)、Z r を 0.15%添加した永久磁石(第9図 No.51~58)及びZ r を 0.15%添加した永久磁石(第9図 No.51~58)及びZ r を 0.15%添加した永久磁石(第9図 No.59~66)の焼結温度幅は60℃、Z r を 0.18%(第9図 No.67~75)添加した永久磁石の焼結温度幅は70℃である。

20 次に、第9図中のNo.37(1030℃焼結、Zr無添加)、No.39(1060℃焼結、Zr無添加)、No.43(1060℃焼結、Zr0.05%添加)及びNo.48(1060℃焼結、Zr0.08%添加)の各永久磁石の破断面をSEM(走査型電子顕微鏡)により観察した組織写真を第11図に示す。また、第2実施例で得られた各永久磁石の4πI-H曲線を第12図に示している。

No.37のようにZrを添加しないと異常粒成長しやすく、第11図に示すように若干粗大化した粒子が観察される。No.39のように焼結温度が106 0 ∞ と高くなると、異常粒成長が顕著となる。第11図に示すように100 μ

15

m以上に粗大化した結晶粒子の析出が目立つ。Zr を 0.05%添加したNo.43は、第11図に示すように粗大化した結晶粒子の発生数を抑えることができる。Zr を 0.08%添加したNo.48は、第11図に示すように1060 焼結でも微細かつ均一な組織が得られ、異常粒成長は観察されなかった。組織中に 100μ m以上に粗大化した結晶粒子は観察されなかった。

次に、第12図を参照すると、No. 48のように微細かつ均一な組織に対し、No. 43のように100 μ m以上の粗大化した結晶粒子が発生すると、最初に角形比(Hk/HcJ)が低下する。但し、この段階では残留磁束密度(Br)及び保磁力(HcJ)の低下は見られない。次に、No. 39に示すように、

10 異常粒成長が進展して100μm以上の粗大化した結晶粒子が多くなると、角形比 (Hk/HcJ) が大幅に劣化するとともに、保磁力 (HcJ) が低下する。しかし、残留磁束密度 (Br) の低下は始まってない。

第9図のNo. 50~No. 66の永久磁石についてCV値を測定した。その結果を第9図に示すが、角形比(Hk/HcJ)が90%以上得られる焼結温度の範囲(1030~1090℃)ではCV値が100以下を示し、Zro分散度合いが良好である。しかし、焼結温度が1150℃まで高くなると、CV値が本発明で規定する130を超えてしまう。

次に、第9図中のNo.70の永久磁石についてEPMAによる解析を行なった。第13図にB、Al、Cu、Zr、Co、Nd、Fe及びPrの各元素の マッピング像 $(30 \, \mu\, m \times 30 \, \mu\, m)$ を示している。第13図に示したマッピング像のエリア内における上記各元素についてライン分析を行なった。ライン 分析は、2つの異なるラインについて行なった。一方のライン分析プロファイルを第14図に、また他方のライン分析プロファイルを第15図に示す。

第14図に示すように、Zr、Co及びCuのピーク位置が一致している箇 所 (O)、Zr及びCuのピークが一致している箇所 (Δ 、 \times) がある。また、 第15図においても、Zr、Co及びCuのピーク位置が一致している箇所 (\Box) が観察される。このように、Zrがリッチな領域においては、Co及び/又は Cuもリッチになっている。また、このZrがリッチな領域は、Ndがリッチ

でかつFeがプアな領域と重なっていることから、Zrは永久磁石中の粒界相に存在していることがわかる。

以上のように、No.70の永久磁石は、Co、Cu及びNdの1種又は2種以上と、Zrとがともにリッチな領域を含む粒界相を生成している。なお、ZrとBが化合物を形成している形跡は見当たらなかった。

EPMAの解析に基づいて、Cu、Co及びNdのリッチな領域が、各々Zrのリッチな領域と一致する頻度を求めた。その結果、Cuがリッチな領域は94%の確率でZrと共にリッチな領域とが一致することがわかった。同様に、Coは65.3%、Ndは59.2%であった。

10 第16図は、第2実施例におけるZr添加量、焼結温度及び角形比(Hk/HcJ)の関係を示すグラフである。

第16図より、Zrを添加することにより、焼結温度幅が広がること及び90%以上の角形比(Hk/HcJ)を得るためには0.03%以上のZrの添加が必要であることがわかる。さらに、95%以上の角形比(Hk/HcJ)を得るためには0.08%以上のZrの添加が必要であることがわかる。

(第3実施例)

15

第1図の合金 a $1\sim$ 合金 a 4及び合金 b 1 を用いて第17図に示す最終組成となるように配合した以外は第2実施例と同様のプロセスによりR-T-B系希土類永久磁石を得た。この永久磁石の含有酸素量は1000 p p m以下であり、また焼結体組織を観察したところ、 100μ m以上の粗大化した結晶粒子は確認されなかった。この永久磁石について、第1実施例と同様に残留磁束密度(Br)、保磁力(HcJ)及び角形比(Hk/HcJ)をB-Hトレーサにより測定した。また、Br $+0.1\times$ HcJ値を求めた。その結果を第17図に併記した。

25 第3実施例は、Dy量による磁気特性の変動を確認すること目的の一つとして行なった。第17図よりDy量が増加するにつれて保磁力(HcJ)が高くなることがわかる。一方で、いずれの永久磁石も15.4以上のBr+0.1×HcJ値が得られている。これは、本発明による永久磁石が、所定の保磁力(H

c J) を確保しつつ、高いレベルの残留磁束密度(Br) も得ることができる ことを示している。

(第4実施例)

第1図の合金 a 7~合金 a 8及び合金 b 4~合金 b 5を用いて第18図に示す最終組成となるように配合した以外は第2実施例と同様のプロセスによりRIT-B系希土類永久磁石を得た。なお、第18図のNo.80の永久磁石は合金 a 7と合金 b 4を90:10の重量比で配合し、また、No.81の永久磁石は合金 a 8と合金 b 5を80:20の重量比で配合した。また、微粉砕後の粉末の平均粒径は4.0μmである。得られた永久磁石の含有酸素量は第18図に示すように1000ppm以下であり、また焼結体組織を観察したところ、100μm以上の粗大化した結晶粒子は確認されなかった。この永久磁石について、第1実施例と同様に残留磁束密度(Br)、保磁力(HcJ)及び角形比(Hk/HcJ)をBーHトレーサにより測定した。また、Br+0.1×HcJ値を求めた。さらにCV値を求めた。その結果を第18図に併記した。

第18図に示すように、構成元素の含有量を第1~第3実施例に対して変動させた場合であっても、所定の保磁力(HcJ)を確保しつつ、高いレベルの残留磁束密度(Br)を得ることができる。

産業上の利用可能性

15

20 以上詳述したように、Zrを添加することにより、焼結時の異常粒成長を抑制することができる。そのために、酸素量低減等のプロセスを採用したときにも角形比の低減を抑制することができる。特に、本発明では、分散性よくZrを焼結体中に存在させることができるため、異常粒成長を抑制するためのZr量を低減できる。したがって、残留磁東密度等の他の磁気特性の劣化を最小限に25 抑えることができる。さらに本発明によれば、40℃以上の焼結温度幅を確保することができるため、加熱温度ムラが生じやすい大型の焼結炉を用いた場合でも、安定して高い磁気特性を有するR-T-B系希土類永久磁石を容易に得ることができる。

請求の範囲

1. R:25~35wt%(Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である)、B:0.5~4.5wt%、Al及びCuの1種又は2種:0.02~0.6wt%、Zr:0.03~0.25wt%、Co:4wt%以下(0を含まず)、残部実質的にFeからなる組成を有する焼結体からなり、

前記焼結体中におけるZrの分散度合いを示す変動係数(CV値)が130 以下であることを特徴とするR-T-B系希土類永久磁石。

10

5

- 2. 前記CV値が100以下であることを特徴とする請求項1に記載のR-T-B系希土類永久磁石。
- 3. 前記CV値が90以下であることを特徴とする請求項1に記載のR-T-15 B系希土類永久磁石。
 - 4. 前記焼結体のZr含有量が0.05~0.2wt%であることを特徴とする 請求項1に記載のR-T-B系希土類永久磁石。
- 20 5. 前記焼結体のZr含有量が0.1~0.15wt%であることを特徴とする 請求項1に記載のR-T-B系希土類永久磁石。
 - 6. 前記焼結体中に含まれる酸素量が2000ppm以下であることを特徴とする請求項1に記載のR-T-B系希土類永久磁石。

25

7. 残留磁東密度 (Br) と保磁力 (HcJ) が、Br+0.1×HcJ (無次元) が15.2以上の条件を満足することを特徴とする請求項1に記載のR-T-B系希土類永久磁石。

8. $R_2T_{14}B_1$ 相(Rは希土類元素の1種又は2種以上(但し希土類元素はYを含む概念である。)、TはFe又はFe及びCoを主体とする少なくとも1種以上の遷移金属元素)からなる主相と、前記主相よりRを多く含む粒界相とを備えるR-T-B系希土類永久磁石を製造する際に用いられる磁石組成物であって、

R:25~35wt%、B:0.5~4.5wt%、Al及びCuの1種又は 2種:0.02~0.6wt%、Zr:0.03~0.25wt%、Co:4wt% 以下(0を含まず)、残部実質的にFeからなる組成を有し、

- 10 焼結によって得られる前記R-T-B系希土類永久磁石が90%以上の角形比(Hk/HcJ)を得るための焼結温度幅が40℃以上であることを特徴とする磁石組成物。
- 9. 前記焼結温度幅が60℃以上であることを特徴とする請求項8に記載の磁 15 石組成物。
 - 10. 前記磁石組成物は、主相形成用の合金と粒界相形成用の合金との混合物からなり、Zrは前記主相形成用の合金に含まれることを特徴とする請求項8に記載の磁石組成物。

20

11. 前記磁石組成物は、主相形成用の合金と粒界相形成用の合金との混合物からなり、Zr、Cu及びAlは前記主相形成用の合金に含まれることを特徴とする請求項8に記載の磁石組成物

- 23 -

要 約 書

R:25~35wt% (Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である)、B:0.5~4.5wt%、A1及びCuの1種又は2種:0.02~0.6wt%、Zr:0.03~0.25wt%、Co:4wt%以下(0を含まず)、残部実質的にFeからなる組成を有する焼結体とする。この焼結体は、Zrの分散度合いを示す変動係数 (CV値) が130以下である。この焼結体によれば、磁気特性の低下を最小限に抑えつつ粒成長を抑制し、かつ焼結温度幅を改善することができる。