

escola britânica de artes criativas & tecnologia

# Profissão Cientista de Dados AdaBoost

# Por que estamos aprendendo nessa ordem?

Pois essa foi a ordem das invenções.



# **Adaptative Boosting - AdaBoost**

# RF vs AdaBoost

#### 3 grandes diferenças

#### **Random forest**



Floresta de árvores

#### **AdaBoost**



Floresta de Stumps

# RF vs AdaBoost

#### 3 grandes diferenças

#### **Random forest**



Árvores independentes

#### **AdaBoost**



Uma árvore influencia na seguinte

# RF vs AdaBoost

#### 3 grandes diferenças

#### **Random forest**



Respostas das árvores tem o mesmo peso

#### **AdaBoost**



Respostas tem pesos diferentes

#### Real AdaBoost

- 1. Start with weights  $w_i = 1/N$ , i = 1, 2, ..., N.
- 2. Repeat for m = 1, 2, ..., M:
  - (a) Fit the classifier to obtain a class probability estimate  $p_m(x) = \hat{P}_w(y = 1|x) \in [0, 1]$ , using weights  $w_i$  on the training data.
  - (b) Set  $f_m(x) \leftarrow \frac{1}{2} \log p_m(x) / (1 p_m(x)) \in R$ .
  - (c) Set  $w_i \leftarrow w_i \exp[-y_i f_m(x_i)]$ , i = 1, 2, ..., N, and renormalize so that  $\sum_i w_i = 1$ .
- 3. Output the classifier sign[ $\sum_{m=1}^{M} f_m(x)$ ].

1. Inicie com os pesos  $w_i = 1/N$ , i = 1, 2, ..., N

N é o número de linhas, logo, w = 1/6 = 0,1666

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,17 |
| 2 |                |                |                       |   | 0,17 |
| 3 |                |                |                       |   | 0,17 |
| 4 |                |                |                       |   | 0,17 |
| 5 |                |                |                       |   | 0,17 |
| 6 |                |                |                       |   | 0,17 |

m = 1

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores)
 b. Crie um Stump para cada variável explicativa

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    | $X_1$ |
|---|----------------|----------------|-----------------------|---|------|-------|
| 1 |                |                |                       |   | 0,17 |       |
| 2 |                |                |                       |   | 0,17 |       |
| 3 |                |                |                       |   | 0,17 |       |
| 4 |                |                |                       |   | 0,17 |       |
| 5 |                |                |                       |   | 0,17 |       |
| 6 |                |                |                       |   | 0,17 |       |



 $X_2$ 

m = 1

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores)
 c. Calcule o odds (QntAcertos/QntErros) para cada Stump

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,17 |
| 2 |                |                |                       |   | 0,17 |
| 3 |                |                |                       |   | 0,17 |
| 4 |                |                |                       |   | 0,17 |
| 5 |                |                |                       |   | 0,17 |
| 6 |                |                |                       |   | 0,17 |





m = 1

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores)
 d. Calcule a performance de cada Stump = ½ ln(QntAcertos/QntErros)

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y |
|---|----------------|----------------|-----------------------|---|
| 1 |                |                |                       |   |
| 2 |                |                |                       |   |
| 3 |                |                |                       |   |
| 4 |                |                |                       |   |
| 5 |                |                |                       |   |
| 6 |                |                |                       |   |

| W    |
|------|
| 0,17 |
| 0,17 |
| 0,17 |
| 0,17 |
| 0,17 |
| 0,17 |



Perf. =  $\frac{1}{2}$  \* In(odds) Perf. =  $\frac{1}{2}$  \* In( $\frac{1}{2}$ ) Perf. =  $\frac{1}{2}$  \* In(0,5)

Perf. =  $\frac{1}{2}$  \* (-0,69)

Perf. = -0.35



m = 1

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores) e. Selecione o Stump com **maior performance** 

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y |
|---|----------------|----------------|-----------------------|---|
| 1 |                |                |                       |   |
| 2 |                |                |                       |   |
| 3 |                |                |                       |   |
| 4 |                |                |                       |   |
| 5 |                |                |                       |   |
| 6 |                |                |                       |   |

| W    |
|------|
| 0,17 |
| 0,17 |
| 0,17 |
| 0,17 |
| 0,17 |
| 0,17 |





m = 1

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,17 |
| 2 |                |                |                       |   | 0,17 |
| 3 |                |                |                       |   | 0,17 |
| 4 |                |                |                       |   | 0,17 |
| 5 |                |                |                       |   | 0,17 |
| 6 |                |                |                       |   | 0,17 |



m = 1

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | w    | W <sub>n</sub> |                                            |
|---|----------------|----------------|-----------------------|---|------|----------------|--------------------------------------------|
| 1 |                |                |                       |   | 0,17 |                | $w_1 \leftarrow w_1 * e^(\pm Performance)$ |
| 2 |                |                |                       |   | 0,17 |                | $w_2 \leftarrow w_2 * e^(\pm Performance)$ |
| 3 |                |                |                       |   | 0,17 |                | $w_3 \leftarrow w_3 * e^(\pm Performance)$ |
| 4 |                |                |                       |   | 0,17 |                | $w_4 \leftarrow w_4 * e^(\pm Performance)$ |
| 5 |                |                |                       |   | 0,17 |                | $w_5 \leftarrow w_5 * e^(\pm Performance)$ |
| 6 |                |                |                       |   | 0,17 |                | $w_6 \leftarrow w_6 * e^(\pm Performance)$ |



m = 1

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    | Wn |
|---|----------------|----------------|-----------------------|---|------|----|
| 1 |                |                |                       |   | 0,17 |    |
| 2 |                |                |                       |   | 0,17 |    |
| 3 |                |                |                       |   | 0,17 |    |
| 4 |                |                |                       |   | 0,17 |    |
| 5 |                |                |                       |   | 0,17 |    |
| 6 |                |                |                       |   | 0,17 |    |

$$w_1 \leftarrow w_1 * e^{(\pm Performance)}$$
  
 $0,17 * e^{(\pm Performance)}$   
 $0,17 * e^{(\pm 0,8)}$   
 $0,17 * e^{(-0,8)}$   
 $0,17 * 0,45$   
 $0,08$ 



m = 1

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    | Wn   |
|---|----------------|----------------|-----------------------|---|------|------|
| 1 |                |                |                       |   | 0,17 | 0,08 |
| 2 |                |                |                       |   | 0,17 |      |
| 3 |                |                |                       |   | 0,17 |      |
| 4 |                |                |                       |   | 0,17 |      |
| 5 |                |                |                       |   | 0,17 |      |
| 6 |                |                |                       |   | 0,17 |      |

$$w_1 \leftarrow w_1 * e^{(\pm Performance)}$$
  
 $0,17 * e^{(\pm Performance)}$   
 $0,17 * e^{(\pm 0,8)}$   
 $0,17 * e^{(-0,8)}$   
 $0,17 * 0,45$   
 $0,08$ 



m = 1

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    | Wn   |
|---|----------------|----------------|-----------------------|---|------|------|
| 1 |                |                |                       |   | 0,17 | 0,08 |
| 2 |                |                |                       |   | 0,17 |      |
| 3 |                |                |                       |   | 0,17 |      |
| 4 |                |                |                       |   | 0,17 |      |
| 5 |                |                |                       |   | 0,17 |      |
| 6 |                |                |                       |   | 0,17 |      |

| $w_2 \leftarrow w_2 * e^{(\pm)}$ | •              |
|----------------------------------|----------------|
| 0,17 * e^(=<br>0,17 * e^(=       | E Performance) |
| 0,17 * e^(-                      | <b>0,8</b> )   |
| 0,17 * 0,45<br>0,08              |                |



m = 1

|   | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | Y | w    | Wn   |
|---|----------------|----------------|----------------|---|------|------|
| 1 |                |                |                |   | 0,17 | 0,08 |
| 2 |                |                |                |   | 0,17 | 0,08 |
| 3 |                |                |                |   | 0,17 |      |
| 4 |                |                |                |   | 0,17 |      |
| 5 |                |                |                |   | 0,17 |      |
| 6 |                |                |                |   | 0,17 |      |

| 0,17 *<br>0,17 *<br>0,17 * | e^(±<br>e^(±<br>e^(- |              |
|----------------------------|----------------------|--------------|
| 0,17 *<br>0,08             |                      | <b>0,</b> 0) |



m = 1

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores) f. Atualize o peso de cada linha  $w_i <- w_i * e^{(\pm Performance)}$ , sendo + quando erro na linha e – quando acerto na linha e i = 1, 2, ..., N

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    | W <sub>n</sub> |
|---|----------------|----------------|-----------------------|---|------|----------------|
| 1 |                |                |                       |   | 0,17 | 0,08           |
| 2 |                |                |                       |   | 0,17 | 0,08           |
| 3 |                |                |                       |   | 0,17 | 0,08           |
| 4 |                |                |                       |   | 0,17 | 0,08           |
| 5 |                |                |                       |   | 0,17 | 0,08           |
| 6 |                |                |                       |   | 0,17 |                |

 $w_6 \leftarrow w_6 * e^{(\pm Performance)}$   $0,17 * e^{(\pm Performance)}$   $0,17 * e^{(\pm 0,8)}$   $0,17 * e^{(+ 0,8)}$  0,17 \* 2,23 0,38Acerto 5 Erro 1 Perf. = 0,8

m = 1

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores) f. Atualize o peso de cada linha  $w_i <- w_i * e^{(\pm Performance)}$ , sendo + quando erro na linha e – quando acerto na linha e i = 1, 2, ..., N

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |   | W <sub>n</sub> |                                               |
|---|----------------|----------------|-----------------------|---|------|---|----------------|-----------------------------------------------|
| 1 |                |                |                       |   | 0,17 |   | 0,08           |                                               |
| 2 |                |                |                       |   | 0,17 |   | 0,08           |                                               |
| 3 |                |                |                       |   | 0,17 |   | 0,08           |                                               |
| 4 |                |                |                       |   | 0,17 |   | 0,08           |                                               |
| 5 |                |                |                       |   | 0,17 |   | 0,08           |                                               |
| 6 |                |                |                       |   | 0,17 |   | 0,38           | $w_6 \leftarrow w_6 * e^{(\pm)}$ Performance) |
|   |                |                | •                     |   |      | • |                | $0.17 * e^{\pm Performance}$                  |
|   |                |                |                       |   |      |   |                | $0.17 * e^{(\pm 0.8)}$                        |
|   |                |                |                       |   |      |   |                | $0.17 * e^{(+0.8)}$                           |

0,17 \* e^(± **Performance**) 0,17 \* e^(± **0,8**) 0,17 \* e^(± **0,8**) 0,17 \* e^(+ **0,8**) 0,17 \* 2,23 0,38

Acerto 5 Erro 1 Perf. = 0,8

m = 1

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | w    | W <sub>n</sub> |
|---|----------------|----------------|-----------------------|---|------|----------------|
| 1 |                |                |                       |   | 0,17 | 0,08           |
| 2 |                |                |                       |   | 0,17 | 0,08           |
| 3 |                |                |                       |   | 0,17 | 0,08           |
| 4 |                |                |                       |   | 0,17 | 0,08           |
| 5 |                |                |                       |   | 0,17 | 0,08           |
| 6 |                |                |                       |   | 0,17 | 0,38           |



m = 1

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | w    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,08 |
| 2 |                |                |                       |   | 0,08 |
| 3 |                |                |                       |   | 0,08 |
| 4 |                |                |                       |   | 0,08 |
| 5 |                |                |                       |   | 0,08 |
| 6 |                |                |                       |   | 0,38 |



m = 1

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores) g. **Normalize os pesos** para que a soma deles seja **igual a 1**. ( $\Sigma_i$   $w_i = 1$ )

|   | X <sub>1</sub>                           | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Υ | W    | ÷ 0,78 | W    |  |
|---|------------------------------------------|----------------|-----------------------|---|------|--------|------|--|
| 1 |                                          |                |                       |   | 0,08 | 3      | 0,10 |  |
| 2 |                                          |                |                       |   | 0,08 | 3      | 0,10 |  |
| 3 |                                          |                |                       |   | 0,08 | 3      | 0,10 |  |
| 4 |                                          |                |                       |   | 0,08 | 3      | 0,10 |  |
| 5 |                                          |                |                       |   | 0,08 | 3      | 0,10 |  |
| 6 |                                          |                |                       |   | 0,38 | 3      | 0,50 |  |
|   | $\Sigma_i w_i = 0.78$ $\Sigma_i w_i = 1$ |                |                       |   |      |        |      |  |



m = 1

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores) g. **Normalize os pesos** para que a soma deles seja **igual a 1**. ( $\Sigma_i$   $w_i = 1$ )

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | w    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |



2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores)

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |

#### m = 2

# AdaBoost

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | w    | Range |
|---|----------------|----------------|-----------------------|---|------|-------|
| 1 |                |                |                       |   | 0,10 |       |
| 2 |                |                |                       |   | 0,10 |       |
| 3 |                |                |                       |   | 0,10 |       |
| 4 |                |                |                       |   | 0,10 |       |
| 5 |                |                |                       |   | 0,10 |       |
| 6 |                |                |                       |   | 0,50 |       |

|   | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | Y | W    | Range    |
|---|----------------|----------------|----------------|---|------|----------|
| 1 |                |                |                |   | 0,10 | 0 - 0,10 |
| 2 |                |                |                |   | 0,10 |          |
| 3 |                |                |                |   | 0,10 |          |
| 4 |                |                |                |   | 0,10 |          |
| 5 |                |                |                |   | 0,10 |          |
| 6 |                |                |                |   | 0,50 |          |

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |

| Range       |  |  |  |  |  |
|-------------|--|--|--|--|--|
| 0 - 0,10    |  |  |  |  |  |
| 0,10 - 0,20 |  |  |  |  |  |
|             |  |  |  |  |  |
|             |  |  |  |  |  |
|             |  |  |  |  |  |
|             |  |  |  |  |  |
|             |  |  |  |  |  |

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |
|   |                |                |                       |   |      |

| Range       |  |  |  |  |
|-------------|--|--|--|--|
| 0 - 0,10    |  |  |  |  |
| 0,10 - 0,20 |  |  |  |  |
| 0,20 - 0,30 |  |  |  |  |
| 0,30 - 0,40 |  |  |  |  |
| 0,40 - 0,50 |  |  |  |  |
| 0,50 - 1    |  |  |  |  |

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores)
 a. Usando os pesos (w) crie um novo conjunto de dados de treino

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |

| Range       |  |  |  |  |
|-------------|--|--|--|--|
| 0 - 0,10    |  |  |  |  |
| 0,10 - 0,20 |  |  |  |  |
| 0,20 - 0,30 |  |  |  |  |
| 0,30 - 0,40 |  |  |  |  |
| 0,40 - 0,50 |  |  |  |  |
| 0,50 - 1    |  |  |  |  |

Bootstrap com pesos

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | w    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |
| 6 |                |                |                       |   | 0,50 |

| Ra   | nge   |
|------|-------|
| 0 -  | 0,10  |
| 0,10 | - 0,2 |
| 0,20 | - 0,3 |
| 0,30 | - 0,4 |
| 0,40 | - 0,5 |
| 0,5  | 0 - 1 |
| ,    |       |



|   | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | Y |
|---|----------------|----------------|----------------|---|
| 1 |                |                |                |   |

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |

| Range      |
|------------|
| 0 - 0,10   |
| 0,10 - 0,2 |
| 0,20 - 0,3 |
| 0,30 - 0,4 |
| 0,40 - 0,5 |
| 0,50 - 1   |
|            |



|   | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | Y |
|---|----------------|----------------|----------------|---|
| 1 |                |                |                |   |

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |

|   | Ra   | n  |
|---|------|----|
| ) | 0 -  | 0, |
| ) | 0,10 | _  |
| ) | 0,20 | _  |
| ) | 0,30 | _  |
| ) | 0,40 | _  |
| ) | 0,5  | 0  |
|   |      |    |



|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y |
|---|----------------|----------------|-----------------------|---|
| 1 |                |                |                       |   |
| 6 |                |                |                       |   |

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |

| Range       |
|-------------|
| 0 - 0,10    |
| 0,10 - 0,20 |
| 0,20 - 0,30 |
| 0,30 - 0,40 |
| 0,40 - 0,50 |
| 0,50 - 1    |
|             |



|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y |
|---|----------------|----------------|-----------------------|---|
| 1 |                |                |                       |   |
| 6 |                |                |                       |   |

#### m = 2

### **AdaBoost**

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | w    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |
|   |                |                |                       |   |      |

| Range       |  |  |  |  |  |
|-------------|--|--|--|--|--|
| 0 - 0,10    |  |  |  |  |  |
| 0,10 - 0,20 |  |  |  |  |  |
| 0,20 - 0,30 |  |  |  |  |  |
| 0,30 - 0,40 |  |  |  |  |  |
| 0,40 - 0,50 |  |  |  |  |  |
| 0,50 - 1    |  |  |  |  |  |



|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y |
|---|----------------|----------------|-----------------------|---|
| 1 |                |                |                       |   |
| 6 |                |                |                       |   |
| 5 |                |                |                       |   |

|   | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> | Y | W    |
|---|----------------|----------------|----------------|---|------|
| 1 |                |                |                |   | 0,10 |
| 2 |                |                |                |   | 0,10 |
| 3 |                |                |                |   | 0,10 |
| 4 |                |                |                |   | 0,10 |
| 5 |                |                |                |   | 0,10 |
| 6 |                |                |                |   | 0,50 |

| Rang   | J |
|--------|---|
| 0 - 0, | 1 |
| 0,10 - | C |
| 0,20 - | C |
| 0,30 - | C |
| 0,40 - | C |
| 0,50   |   |
|        |   |



|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y |
|---|----------------|----------------|-----------------------|---|
| 1 |                |                |                       |   |
| 6 |                |                |                       |   |
| 5 |                |                |                       |   |

### **AdaBoost**

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores)
 a. Usando os pesos (w) crie um novo conjunto de dados de treino

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |

| Range       |   |
|-------------|---|
| 0 - 0,10    |   |
| 0,10 - 0,20 | 0 |
| 0,20 - 0,30 | O |
| 0,30 - 0,40 | 0 |
| 0,40 - 0,50 | O |
| 0,50 - 1    |   |
|             |   |



|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y |
|---|----------------|----------------|-----------------------|---|
| 1 |                |                |                       |   |
| 6 |                |                |                       |   |
| 5 |                |                |                       |   |
| 6 |                |                |                       |   |

#### **AdaBoost**

m = 2

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores) a. Usando os **pesos (w) crie um novo conjunto de dados de treino** 

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 2 |                |                |                       |   | 0,10 |
| 3 |                |                |                       |   | 0,10 |
| 4 |                |                |                       |   | 0,10 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |

| Range       |  |  |  |  |
|-------------|--|--|--|--|
| 0 - 0,10    |  |  |  |  |
| 0,10 - 0,20 |  |  |  |  |
| 0,20 - 0,30 |  |  |  |  |
| 0,30 - 0,40 |  |  |  |  |
| 0,40 - 0,50 |  |  |  |  |
| 0,50 - 1    |  |  |  |  |



### **AdaBoost**

2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores)
 a. Usando os pesos (w) crie um novo conjunto de dados de treino

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | W    |
|---|----------------|----------------|-----------------------|---|------|
| 1 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |
| 5 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |
| 3 |                |                |                       |   | 0,10 |
| 6 |                |                |                       |   | 0,50 |

### **AdaBoost**

m = 2

- 2. Repita para m = 1 até M (sendo M a quantidade de Stumps/Árvores)
  - b. Crie um Stump para cada variável explicativa

|   | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y | w    | $X_1$ | $X_2$ |
|---|----------------|----------------|-----------------------|---|------|-------|-------|
| 1 |                |                |                       |   | 0,10 |       |       |
| 6 |                |                |                       |   | 0,50 |       |       |
| 5 |                |                |                       |   | 0,10 |       |       |
| 6 |                |                |                       |   | 0,50 |       |       |
| 3 |                |                |                       |   | 0,10 |       |       |
| 6 |                |                |                       |   | 0,50 |       |       |



### AdaBoost

M = 20

- 2. Repita para m = 1 até M.
  - a. Usando os **pesos (w) crie um novo conjunto de dados de treino**.
  - b. Crie um Stump para cada variável explicativa.
  - c. Calcule o odds (QntAcertos/QntErros) para cada Stump
  - d. Calcule a **performance de cada Stump** =  $\frac{1}{2} \ln(\mathbf{QntAcertos}/\mathbf{QntErros})$
  - e. Selecione o Stump com maior performance
  - f. Atualize o peso de cada linha  $w_i <- w_i * e^{(\pm Performance)}$ , sendo + quando erro na linha e quando acerto na linha e i = 1, 2, ..., N
  - g. Normalize os pesos para que a soma deles seja igual a 1.

$$\Sigma_i w_i = 1$$

# AdaBoost

3. Some a **performance** de cada Stump pra cada classe e a maior será a resposta.



# AdaBoost

3. Some a **performance** de cada Stump pra cada classe e a maior será a resposta.



## AdaBoost

3. Some a **performance** de cada Stump pra cada classe e a maior será a resposta.



# **AdaBoost**

3. Some a **performance** de cada Stump pra cada classe e a maior será a resposta.







Resposta final da votação ponderada = 1 (weighted majority vote)

# RF vs AdaBoost

#### 3 grandes diferenças

#### **Random forest**



Floresta de árvores

#### **AdaBoost**



Floresta de Stumps

# RF vs AdaBoost

#### 3 grandes diferenças

#### **Random forest**



Árvores independentes

#### **AdaBoost**



Uma árvore influencia na seguinte

# RF vs AdaBoost

#### 3 grandes diferenças

#### **Random forest**



Respostas das árvores tem o mesmo peso

#### **AdaBoost**



Respostas tem pesos diferentes



AdaBoost almost never overfits the data no matter how many iterations it is run. **Leo Breiman, 1998**