

Agenda

- To understand rigour and validity of adequate analysis.
- To follow high standards in data collection.

Outline

- Descriptive Data Analysis
- Hypothesis Testing
- Regression Analysis

Scale of measurement

Discrete	Nominal	Gender, Religious
	Ordinal	Education
Continuous	Interval	Temperature, IQ
	Ratio	Income, age

General rule- Type of analysis

- DV and IV are Nominal scale-Cross tab
- DV and IV are Interval Regression, Pearson correlation
- IV (2 categorical) DV (Interval)-T test
- IV (3 categorical) DV (Interval)-ANOVA

Descriptive Analysis with One Variable

- We will look at the following statistics:
- Frequency Distributions (ordinal and nominal variables)
- SPSS provides a range of output e.g. cell count,
 percentages (%) total, as well information on missing cases

- Descriptive statistics (scale variables)
- measures of central tendency and dispersion e.g. min, max, mean, and standard deviation.

Frequencies

- Select Analyze>Descriptive Statistics>Frequencies
- Highlight the variable(s) you want in the left hand panel and click on the arrow to move it into the right hand panel and click on 'OK'
- Your frequency table will appear in the output window
- Other options for descriptive statistics include percentiles (more appropriate for scale variables)
- You can sort your results in the output (e.g. using categories)

Frequency Distribution for Race

Statistics

Race of Respondent

Ν	Valid	1517
	Missing	0

Race of Respondent

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	White	1264	83.3	83.3	83.3
	Black	204	13.4	13.4	96.8
	Other	49	3.2	3.2	100.0
	Total	1517	100.0	100.0	

Descriptives

- Select Analyze>Descriptive Statistics>Descriptives
- Highlight the variable (e.g. age) and move it across.

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Age of Respondent	1514	18	89	45.63	17.808
Valid N (listwise)	1514				

- To obtain the <u>median</u> or <u>quartiles</u>, you will find it as an option under *Frequencies*>*Statistics* or use the *Analyze*>*Explore* option
- Stats can be affected by missing values and thus, you may need to <u>discard</u> or apply <u>corrective measures</u> on missing cases/values

Descriptive Analysis with Two Variables

We will now look at the following techniques:

Cross Tabulations

- Descriptive statistics by category
- Correlations

Cross-Tabulations

- To examine the relationship between two nominal variables, select *Analyze>Descriptive Statistics>Crosstabs*
- Select the variables you want as the row and column variables and move them into the respective boxes
 - e.g. to see how happiness varies by gender, select happy as your row variable and gender as your column variable
- Click 'OK' to see the frequencies for each category
- Percentages of the results can be obtained by clicking on the Cells button on the right hand side of the screen
 - > e.g. click on the 'row' option under *Cells* to get row percentages
- Contingency (and other) tests can be obtained under <u>Statistics</u>

Crosstab of Happiness and Gender

Case Processing Summary

Cases

	Valid		Missing		Total	
	Ν	Percent	N	Percent	N	Percent
General Happiness * Respondent's Gender	1504	99.1%	13	0.9%	1517	100.0%

General Happiness * Respondent's Gender Crosstabulation

			Responder	Respondent's Gender	
			Male	Female	Total
General Happiness	Very Happy	Count	206	261	467
		% within General Happiness	44.1%	55.9%	100.0%
	Pretty Happy	Count	374	498	872
		% within General Happiness	42.9%	57.1%	100.0%
	Not Too Happy	Count	53	112	165
		% within General Happiness	32.1%	67.9%	100.0%
Total		Count	633	871	1504
		% within General Happiness	42.1%	57.9%	100.0%

Descriptives

	Respond	ent's Gender		Statistic	Std. Error
Highest Year of School	Male	Mean		13.23	.125
Completed		95% Confidence Interval	Lower Bound	12.99	
		for Mean	Upper Bound	13.48	
		5% Trimmed Mean		13.27	
		Median		13.00	
		Variance		9.876	
		Std. Deviation		3.143	
		Minimum		3	
		Maximum		20	
		Range		17	
		Interquartile Range		4	
		Skewness		203	.097
		Kurtosis		.425	.194
	Female	Mean	12.63	.096	
		95% Confidence Interval for Mean	Lower Bound	12.44	
			Upper Bound	12.82	
		5% Trimmed Mean		12.65	
		Median	12.00		
		Variance	8.062		
		Std. Deviation	2.839		
		Minimum		0	
		Maximum		20	
		Range		20	
		Interquartile Range		2	
		Skewness		199	.083
		Kurtosis		1.006	.165

Dr Matteo Molinari

Correlations

- To examine the relationship between two <u>continuous</u> variables, select Analyze>Correlate>Bivariate
- Select the variables you want and move them into the box on the right hand side by clicking on the right arrow
 - O e.g. to see how an individual's attitude is associated with their purchasing intention, select att and intention
 - O The default correlation coefficient is Pearson
- Click 'OK. The output will include significance levels for the correlations.
- Other coefficients can be added (e.g. Kendall's Tau and Spearman)
- Be careful on how you interpret correlation results: a high correlation does not necessarily imply a <u>causation</u>

Correlation Between Individual's attitude and intention

Correlations

Intention

Attitude

Attitude	Pearson Correlation	1	.419**
	Sig. (2-tailed)		.000
	N	1510	1232
Intention	Pearson Correlation	.419**	1
	Sig. (2-tailed)	.000	
	N	1232	1233

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Tests of Statistical Significance

Chi-Square Tests

Establishes how confident we are that there exists a relationship between two variables in a population

Comparing means (t-tests)

Allows you to test whether a variable's mean is equal to a particular value or is different to that of another variable in a population

Tests of Correlation

Provides information about likelihood that variables are statistically associated in a population Dr Matteo Molinari

Statistical significance when a relationship is found

 How <u>confident</u> can we be that the findings from a sample can be <u>generalized</u> to the population as a whole?

How <u>risky</u> is it to make this inference?

 Hypothesis testing is usually applied to probability (or representative) samples

What is a Hypothesis?

An <u>informed</u> speculation about a relationship between some variables based on <u>theoretical underpinnings</u> but has not been proven yet. There are 2 types of hypotheses:

• **Null hypothesis** (H_0): represents the status quo that is adopted until it is proven false i.e. effect is <u>absent</u>, there is no association, difference or relationship:

"There is <u>no relationship</u> between students' attendance and their academic performance"

• Alternative hypothesis (H_a): converse of null hypothesis which represents the theory that we will adopt when there is corroborative evidence i.e. effect is <u>present</u>, there is an association, difference or relationship:

"Class attendance has a positive effect on students' academic performance"

- One-tailed vs Two-tailed hypothesis test
- Type I & Type II errors

What is a Hypothesis (cont.)?

• <u>Single-tailed</u> test: directional (X > Y or X < Y)Predicts the nature of the difference:

"Female managers earn <u>less</u> than their male counterparts"

"An increase in the number of promotional emails sent to customers will <u>increase</u> customer complaints"

- Can also be a default when one of the sides is impossible
- Two-tailed test: non-directional $(X \neq Y)$ Does not predict the nature of the difference. You are interested in values above or below the hypothesised value (no specific direction)

"There is a <u>difference</u> in the wages earned between employees working in London and the South East"

 May be you know that both outcomes are possible or you are not sure

Steps for Hypothesis Testing

- **1. Set up** a null hypothesis (H₀) as well as an alternative hypothesis (H₁);
- 2. <u>Decide</u> on an acceptable level of statistical significance (1% or 5%);
- 3. <u>Use</u> an appropriate statistical test (could either be set up as one or two-tailed alternative);
- 4. If acceptable level is attained, <u>reject</u> null hypothesis; If not attained, <u>do not reject</u> it.

...but you might be wrong to accept or reject the null hypothesis

Type I & Type II errors

Dr Matteo Molinari

Null Hypothesis	Type I Error / False Positive	Type II Error / False Negative
Wolf is not present	present (shepherd cries wolf) when no wolf is actually	Shepherd thinks wolf is NOT present (shepherd does nothing) when a wolf is actually present

		Type II Error / False
Null Hypothesis	Type I Error / False Positive	Negative
Person is not guilty of the crime	when the person actually did not commit the	Person is judged not guilty when they actually did commit the crime (letting a guilty person go free)

Different Tests in SPSS

- One can test the extent to which two (nominal or ordinal) variables are associated and the most common test of association is the Chi-Square Test
- The null hypothesis in this test assumes that the variables are independent
- These tests can be performed by selecting
 Analyze>Descriptive Statistics>Crosstabs and then clicking on the Statistics button and ticking the appropriate boxes.

A Basic Example of Crosstabs

Attitude

Cheated

	Liked	Disliked
Yes	12	33
No	44	66

Comparing Means

- Various statistical tests can be found under Analyze>Compare Means
- To test whether means are different from zero (or another value)
 - ➤ Select One-Sample T Test
- To test whether means are different from each other
 - ➤ Select *Paired-Sample T Test*

Paired sample t-test

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	Male_time	11.01	974	4.118	.132
	Female_time	11.02	974	3.407	.109

H0= no difference between male and female group

Paired Samples

P=0.943>0.05

Null Hypothesis not rejected

No difference between two groups

	Paired Differences									
				Std. Error	95% Confidence Interval of the Difference					
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2- ed)	
Pair 1	Male_time	007	3.115	.100	203	.189	072	973	.943	
	Female_time									

Correlation and Significance

- How confident can you be about a relationship between two variables?
- Whether a correlation coefficient is statistically significant depends on:
 - Size of the coefficient (the higher the better)
 - Size of your sample (the larger the better)
- If p < 0.05, one can reject the null hypothesis

Correlation and Significance in SPSS

You can obtain correlation coefficients for more than 2 variables e.g. attitude and their SN and PCB

Correlations								
		AVGatt	AVGintention	AVGsn	AVGpbc			
AVGatt	Pearson Correlation	1	.213**	.147*	.081			
	Sig. (2-tailed)		.003	.045	.270			
	N	187	187	187	187			
AVGintention	Pearson Correlation	.213**	1	.567**	.380**			
	Sig. (2-tailed)	.003		.000	.000			
	N	187	187	187	187			
AVGsn	Pearson Correlation	.147*	.567**	1	.566**			
	Sig. (2-tailed)	.045	.000		.000			
	N	187	187	187	187			
AVGpbc	Pearson Correlation	.081	.380**	.566**	1			
	Sig. (2-tailed)	.270	.000	.000				
	N	187	187	187	187			
**. Correlation is significant at the 0.01 level (2-tailed).								
*. Correlation is significant at the 0.05 level (2-	tailed).							

p-values are generated automatically. Stars (*) next to a value signify that there is a significant relationship between the variables

Regression Analysis

- Similar to correlation but also gives you a coefficient attached to a constant
- OLS estimates a line of best fit with an intercept and slope
- Coefficients should be interpreted differently depending on how the variables have been entered (e.g. in levels or logs)
- Associated p-values allow you to test for significant relationships
- The R-squared statistic in the output shows the overall significance of the regression
 - How much the independent variables explain the variations in the dependent variables

Simple Regression Analysis in SPSS

- Select Analyze>Regression>Linear
- To estimate the effect of attitude on intention
 - ➤ Move intention into the Dependent variable box
 - ➤ Move attitude into the Independent variables box
 - > Click OK
- A range of other options are available with the Statistics button

Simple Regression Output from SPSS

The equation for predicting intention is intention = 2.566 + 0.261*att

Multiple Regression Analysis in SPSS

- Can add more explanatory variables into the analysis e.g. age, subjective norm, etc.
- Just move SN into the independent variable box and click OK
- Analysis will affect the coefficient on attitude as well as R-squared

Multiple Regression Output from SPSS

Model Summary										
				Std. Error of the	Change Statistics					
Model	R	R Square	Adjusted R Square	Estimate	R Square Change	F Change	df1	df2		Sig. F Change
1	.582ª	.339	.332	.58716	.339	47.201	2		184	.000
a. Predictors: (Constant), AVGsn, AVGatt										

Coefficients ^a								
				Standardized				
		Unstandardiz	ed Coefficients	Coefficients				
Model		В	Std. Error	Beta	t	Sig.		
1	(Constant)	1.451	.321		4.528	.000		
	AVGatt	.163	.074	.132	2.185	.030		
	AVGsn	.472	.052	.548	9.043	.000		
a. Dependent Variable: AVGintention								