http://www.elecfans.com 电子发烧友 http://bbs.elecfans.com 电子技术论坛

2.4GHz 射频收发芯片 nRF2401 及其应用

文章作者:武汉理工大学 郑启忠 朱宏辉 耿四军

摘 要:本文介绍了工作于 2.4GHz ISM 频段的射频收发芯片 nRF2401 的芯片结构、引脚功能、工作模式、

接收与发送的工作流程,详细描述了 nRF2401 的器件配置,给出了应用电路图,分析了 PCB 设计时应该

注意的问题,最后对全文进行了总结。

关键词:nRF2401;射频;无线通信;收发芯片

1. 引言

nRF2401 是单片射频收发芯片,工作于 2.4~2.5GHz ISM 频段,芯片内置频率合成器、功率放大器、晶

体振荡器和调制器等功能模块,输出功率和通信频道可通过程序进行配置。芯片能耗非常低,以-5dBm的

功率发射时,工作电流只有 10.5mA,接收时工作电流只有 18mA,多种低功率工作模式,节能设计更方便。

其 DuoCeiverTM 技术使 nRF2401 可以使用同一天线,同时接收两个不同频道的数据。nRF2401 适用于

多种无线通信的场合,如无线数据传输系统、无线鼠标、遥控开锁、遥控玩具等。

2. 芯片结构、引脚说明

2.1 芯片结构

nRF2401 内置地址解码器、先入先出堆栈区、解调处理器、时钟处理器、GFSK 滤波器、低噪声放

大器、频率合成器,功率放大器等功能模块,需要很少的外围元件,因此使用起来非常方便。QFN24 引脚

封装,外形尺寸只有 5×5mm。nRF2401 的功能模块如图 1 所示。

图 1 nRF2401 功能模块

2.2 引脚说明

表 1: nRF2401 引脚

引脚	名称	引脚功能	描述
1	CE	数字输入	使 nRF2401 工作于接收或发送状态
2	DR2	数字输出	频道2接收数据准备好
3	CLK2	数字 I/O	频道2接收数据时钟输入/输出
4	DOUT2	数字输出	频道2接收数据
5	CS	数字输入	配置模式的片选端
6	DR1	数字输出	频道1接收数据准备好
7	CLK1	数字I/O	频道1接收数据时钟输入/输出
8	DATA	数字I/O	频道1接收/发送数据端
9	DADD	电源	电源的正数字输出
10	VSS	电源	电源地
11	XC1	模拟输出	晶振1
12	XC2	模拟输入	晶振2
13	VDD_PA	电源输出	给功率放大器提供 1.8V 的电压
14	ANT1	天线	天线接口1
15	ANT2	天线	天线接口 2
16	VSS_PA	电源	电源地
17	VDD	电源	电源正端
18	VSS	电源	电源地
19	IREF	模拟输入	模数转换的外部参考电压
20	VSS	电源	电源地
21	VDD .	电源	电源正端
22	VSS	电源	电源地
23	PWR_UP	数字输入	芯片激活端
24	ADD	电源	电源正端

3. 工作模式

nRF2401 有工作模式有四种:收发模式、配置模式、空闲模式和关机模式。nRF2401 的工作模式由 PWR_UP 、CE、TX_EN 和 CS 三个引脚决定,详见表 2。

表 2: nRF2401 工作模式

工作模式	PWR_UP	CE	CS
收发模式	1	1	0
配置模式	1	0	1
空闲模式	1	0	0
关机模式	0	×	×

3.1 收发模式

nRF2401 的收发模式有 ShockBurstTM 收发模式和直接收发模式两种,收发模式由器件配置字决定,具体配置将在器件配置部分详细介绍。

3.1.1 ShockBurstTM 收发模式

ShockBurstTM 收发模式下,使用片内的先入先出堆栈区,数据低速从微控制器送入,但高速(1Mbps)发射,这样可以尽量节能,因此,使用低速的微控制器也能得到很高的射频数据发射速率。与射频协议相关的所有高速信号处理都在片内进行,这种做法有三大好处:尽量节能;低的系统费用(低速微处理器也能进行高速射频发射);数据在空中停留时间短,抗干扰性高。nRF2401的 ShockBurstTM 技术同时也减小了整个系统的平均工作电流。

在 ShockBurstTM 收发模式下,nRF2401 自动处理字头和 CRC 校验码。在接收数据时,自动把字头和 CRC 校验码移去。在发送数据时,自动加上字头和 CRC 校验码,当发送过程完成后,数据准备好引脚通知微处理器数据发射完毕。

3.1.1.1 ShockBurstTM 发射流程

接口引脚为 CE, CLK1, DATA

- A. 当微控制器有数据要发送时,其把 CE 置高,使 nRF2401 工作;
- B. 把接收机的地址和要发送的数据按时序送入 nRF2401;
- C. 微控制器把 CE 置低,激发 nRF2401 进行 ShockBurstTM 发射;
- D. nRF2401 的 ShockBurstTM 发射
- 2 给射频前端供电;
- ² 射频数据打包(加字头、CRC 校验码);
- 2高速发射数据包;

- ² 发射完成, nRF2401 进入空闲状态。
- 3.1.1.2 ShockBurstTM 接收流程

接口引脚 CE、DR1、CLK1 和 DATA(接收通道 1)

- A. 配置本机地址和要接收的数据包大小;
- B. 进入接收状态,把 CE 置高;
- C. 200us 后, nRF2401 进入监视状态, 等待数据包的到来;
- D. 当接收到正确的数据包(正确的地址和 CRC 校验码), nRF2401 自动把字头、地址和 CRC 校验位移去;
- E. nRF2401 通过把 DR1(这个引脚一般引起微控制器中断)置高通知微控制器;
- F. 微控制器把数据从 nRF2401 移出;
- G. 所有数据移完,nRF2401 把 DR1 置低,此时,如果 CE 为高,则等待下一个数据包,如果 CE 为低, 开始其它工作流程。
- 3.1.2 直接收发模式

在直接收发模式下,nRF2401 如传统的射频收发器一样工作。

3.1.2.1 直接发送模式

接口引脚为 CE、DATA

- A. 当微控制器有数据要发送时,把 CE 置高;
- B. nRF2401 射频前端被激活;
- C. 所有的射频协议必须在微控制器程序中进行处理(包括字头、地址和 CRC 校验码)。
- 3.1.2.2 直接接收模式

接口引脚为 CE、CLK1 和 DATA

A. 一旦 nRF2401 被配置为直接接收模式,DATA 引脚将根据天线接收到的信号开始高低变化(由于噪声的

存在);

B. CLK1 引脚也开始工作;

C. 一旦接收到有效的字头,CLK1 引脚和 DATA 引脚将协调工作,把射频数据包以其被发射时的数据从

DATA 引脚送给微控制器;

D. 这头必须是8位;

E. DR 引脚没用上,所有的地址和 CRC 校验必须在微控制器内部进行。

3.2 配置模式

在配置模式,15 字节的配置字被送到 nRF2401,这通过 CS、CLK1 和 DATA 三个引脚完成,具体的配置方法请参考本文的器件配置部分。

3.3 空闲模式

nRF2401 的空闲模式是为了减小平均工作电流而设计,其最大的优点是,实现节能的同时,缩短芯片的起动时间。在空闲模式下,部分片内晶振仍在工作,此时的工作电流跟外部晶振的频率有关,如外部晶振为 4MHz 时工作电流为 12uA,外部晶振为 16MHz 时工作电流为 32uA。在空闲模式下,配置字的内容保持在 nRF2401 片内。

3.4 关机模式

在关机模式下,为了得到最小的工作电流,一般此时的工作电流小于 1uA。关机模式下,配置字的内容也会被保持在 nRF2401 片内,这是该模式与断电状态最大的区别。

4. 器件配置

nRF2401的所有配置工作都是通过 CS、CLK1和 DATA 三个引脚完成,把其配置为 ShockBurstTM 收发模式需要 15字节的配置字,而如把其配置为直接收发模式只需要 2字节的配置字。由上文对 nRF2401工作模式的介绍,我们可以知道,nRF2401一般工作于 ShockBurstTM 收发模式,这样,系统的程序编制会更加简单,并且稳定性也会更高,因此,下文着重介绍把 nRF2401配置为 ShockBurstTM 收发模式的器件配置方法。

ShockBurstTM 的配置字使 nRF2401 能够处理射频协议,在配置完成后,在 nRF2401 工作的过程中,只需改变其最低一个字节中的内容,以实现接收模式和发送模式之间切换。ShockBurstTM 的配置字可以分为以下四个部分:

数据宽度:声明射频数据包中数据占用的位数。这使得 nRF2401 能够区分接收数据包中的数据和 CRC 校验码;

地址宽度:声明射频数据包中地址占用的位数。这使得 nRF2401 能够区分地址和数据;

地址:接收数据的地址,有通道1的地址和通道2的地址;

CRC:使 nRF2401 能够生成 CRC 校验码和解码。

当使用 nRF2401 片内的 CRC 技术时,要确保在配置字中 CRC 校验被使能,并且发送和接收使用相同的协议。nRF2401 配置字的各个位的描述如表 3 所示。

表 3: nRF2401 配置字描述

	忟	位数	名字	功能
Sh	143:120	24	TEST	保留
oc	119:112	8	DATA2_W	接收频道2有效数据的长度
kВ	111:104	8	DATA1_W	接收频道1有效数据的长度
ur_	103:64	40	ADDR2	接收频道2的地址,最高为5字节
st ^T	63:24	40	ADDR1	接收频道1的地址,最高为5字节
-	23:18	6	ADDR_W	接收频道地址位数
配置	17	1	CRC_L	8或16位CRC
B	16	1	CRC_EN	使能 CRC 检验
常	15	1	RX2_EN	使能第二频道
用	14	1	CM	通信方式设置
思器	13	1	RFDR_SB	发射数据速率(1Mops 需要 16MHz 晶振)
	12:10	3	XO_F	晶振频率
件	9:8	2	RF_PWR	发射输出电源
配置	7:1	7	RF_CH#	频道设置
B	0	1	RXEN	接收或发射操作

在配置模式下,注意保证 PWR_UP 引脚为高电平,CE 引脚为低电平。配置字从最高位开始,依次送入 nRF2401。在 CS 引脚的下降沿,新送入的配置字开始工作。

5. 应用电路

图 2 nRF2401 应用电路

图 2 为 nRF2401 的应用电路,由图可知,其只需要 14 个外围元件。nRF2401 应用电路一般工作于 3V,它可用多种低功耗微控制器进行控制。在设计过程中,设计者可使用单鞭天线或环形天线,上图为 50 欧姆单鞭天线的应用电路。在使用不同的天线时,为了得到尽可能大的收发距离,电感电容的参数应适当调整。

6. PCB 设计

PCB 设计对 nRF2401 的整体性能影响很大,所以 PCB 设计在 nRF2401 收发系统的开发过程中主要的工作之一,在 PCB 设计时,必须考虑到各种电磁干扰,注意调整电阻、电容和电感的位置,特别要注意电容的位置。

nRF2401 的 PCB 一般都是双层板,底层一般不放置元件,为地层,顶层的空余地方一般都敷上铜,这些敷铜通过过孔与底层的地相连。直流电源及电源滤波电容尽量靠近 VDD 引脚。nRF2401 的供电电源应通

过电容隔开,这样有利于给 nRF2401 提供稳定的电源。在 PCB 中,尽量多打一些通孔,使顶层和底层的 地能够充分接触。

7. 结束语

nRF2401 通过 ShockBurstTM 收发模式进行无线数据发送,收发可靠,其外形尺寸小,需要的外围元器件也少,因此,使用方便,在工业控制、消费电子等各个领域都具有广阔的应用前景。