Álgebra I Práctica 1 Resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

- Notas teóricas
- Ejercicios de la guía:

1.	5.	9.	13.	17.	21.	25.	29.
2.	6.	10.	14.	18.	22.	26.	30.
3.	7.	11.	15.	19.	23.	27.	
4.	8.	12.	16.	20.	24.	28.	

• Ejercicios Extras

1. **2**. **3**. **4**.

Notas teóricas:

Básicos sobre conjuntos y coso:

• Las uniones e intersecciones de conjuntos conmutan:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

• De Morgan Law's:

$$(A \cup B)^c = A^c \cap B^c \to \text{De Morgan 1}$$

 $(A \cap B)^c = A^c \cup B^c \to \text{De Morgan 2}$

• Distribución de la intersección en una unión y alverre:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• Diferencias en sus varios colores, sabores y notaciones:

$$A - B \xleftarrow{\operatorname{idem}}_{\operatorname{notación}} A \ \backslash \ B \xleftarrow{\operatorname{idem}}_{\operatorname{notación}} A \cap B^c$$

• Diferencia simétrica:

$$A\triangle B = \begin{cases} (A-B) & \cup & (B-A) \\ (A\cup B) & \cap & (A\cap B)^c \\ (A\cup B) & \setminus & (A\cap B) \to \text{mi favorita} & \\ (A\cap B^c) & \cup & (B\cap A^c) \end{cases}$$

• Complemento:

$$A^c = \{ x \in \mathcal{U} \ / \ x \notin A \}$$

• Tablas de verdad:

En las tablas de verdad que un elemento esté en un conjunto, $x \in A$ es equivalente a decir que la proposición A es verdadera. En mi cabeza es más fácil recordar las tablas en conjuntos que en ... lo otro.

$x \in A$	$x \in B$	$x \in A^c$	$x \in A \cap B$	$x \in A \cup B$	$x \in \frac{A \subseteq B}{A^c \cup B}$	$x \in A \triangle B$	A - B
V	V	F	V	V	V	F	F
V	F	F	F	V	F	V	V
F	V	V	F	V	V	V	F
F	F	V	F	F	V	F	F

Cuando para probar $p \Rightarrow q$ se prueba en su lugar $\sim q \Rightarrow \sim p$ se dice que es una demostración por contrarrecíproco.

Cuando para probar $p \Rightarrow q$ se prueba en su lugar $p \land \sim q$ para llegar así a una contradicción, se dice que es una demostración por reducción al absurdo.

Ejercicios de la guía:

- Dado el conjunto $A = \{1, 2, 3\}$, determinar cuáles de las siguientes afirmaciones son verdaderas
 - (i) $1 \in A$
- (ii) $\{1\} \subseteq A$ (iii) $\{2,1\} \subseteq A$ (iv) $\{1,3\} \in A$ (v) $\{2\} \in A$

 $\overline{A} = \{1, 2, 3\}$

- (i) $1 \in A \xrightarrow{\text{respueta}} V$
- (iii) $\{2,1\} \subseteq A \xrightarrow{\text{respuesta}} V$
- $(v) \{2\} \in A \xrightarrow{\text{respuesta}} F$

- (ii) $\{1\} \subseteq A \xrightarrow{\text{respueta}} V$
- (iv) $\{1,3\} \in A \xrightarrow{\text{respuesta}} F$
- 2. Dado el conjunto $A = \{1, 2, \{3\}, \{1, 2\}\}$, determinar cuáles de las siguientes afirmaciones son verdaderas:
 - (i) $3 \in A$
- (iv) $\{\{3\}\}\in A$ (vii) $\{\{1,2\}\}\subseteq A$ (x) $\varnothing\subseteq A$

- (ii) $\{3\} \subset A$
- (v) $\{1,2\} \in A$ (viii) $\{\{1,2\},3\} \subset A$ (xi) $A \in A$

- (iii) $\{3\} \in A$
- (vi) $\{1,2\} \subset A$
- (ix) $\varnothing \in A$
- (xii) $A \subseteq A$

(i) $3 \in A \to F$

- (v) $\{1, 2\} \in A \to V$
- (ix) $\varnothing \in A \to F$

- (ii) $\{3\} \subset A \to F$
- (vi) $\{1,2\} \subset A \to V$
- $(\mathbf{x}) \varnothing \subseteq A \to V$

- (iii) $\{3\} \in A \to V$
- (vii) $\{\{1,2\}\}\subseteq A\to V$ (xi) $A\in A\to F$

- (iv) $\{\{3\}\}\in A\to V$
- (viii) $\{\{1,2\},3\}\subseteq A\to F$ (xii) $A\subseteq A\to V$
- 3. Determinar si $A \subseteq B$ en cada uno de los siguientes casos:
 - i) $A = \{1, 2, 3\}, B = \{5, 4, 3, 2, 1\}$
 - ii) $A = \{1, 2, 3\}, B = \{1, 2, \{3\}, -3\}$
 - iii) $A = \{x \in \mathbb{R} / 2 < |x| < 3\}, B = \{x \in \mathbb{R} / x^2 < 3\}$
 - iv) $A = \{\emptyset\}, B = \emptyset$
- - (i) $\begin{cases} A = \{1, 2, 3\} \\ B = \{5, 4, 3, 2, 1\} \end{cases} \xrightarrow{\text{respueta}} A \subseteq B$
 - (ii) $\begin{cases} A = \{1, 2, 3\} \\ B = \{1, 2, \{3\}, -3\} \end{cases} \xrightarrow{\text{respueta}} A \nsubseteq B \xrightarrow{\text{dado}} \{3\} \notin B$
- Aportá! Correcciones, subiendo ejercicios, * al repo, críticas, todo sirve.

(iii)
$$\begin{cases} A = \{x \in \mathbb{R} / 2 < |x| < 3\} & \xrightarrow{-3} -2 & 2 & 3 \\ B = \{x \in \mathbb{R} / x^2 < 3\} & \xrightarrow{\text{respueta}} A \nsubseteq B \xrightarrow{\text{dado}} 2.5 \in A \text{ y } 2.5 \notin B \end{cases}$$

(iv)
$$\begin{cases} A = \{\emptyset\} \\ B = \emptyset \end{cases}$$

(iv) $\begin{cases} A = \{\varnothing\} \\ B = \varnothing \end{cases}$ respueta $A \not\subseteq B \xrightarrow[\text{que}]{\text{dado}} B$ no tiene ningún elemento, sin embargo A tiene un elemento: \varnothing .

- Dados los subconjuntos: $A = \{1, -2, 7, 3\}, B = \{1, \{3\}, 10\} \text{ y } C = \{-2, \{1, 2, 3\}, 3\} \text{ del conjunto}$ referencial: $V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\}$, hallar
 - (a) $A \cap (B \triangle C)$

- (b) $(A \cap B) \triangle (A \cap C)$

a)
$$B\triangle C = \{-2, 1, 3, \{1, 2, 3\}, \{3\}\}$$

$$A \cap (B \triangle C) = \{-2, 1, 3\}$$

b)
$$A \cap B = \{1\}$$
 y $(A \cap C) = \{-2, 3\}$

$$(A \cap B) \triangle (A \cap C) = \emptyset$$

c)
$$A^c = \{10, \{1, 2, 3\}, \{3\}\}, \quad B^c = \{-2, 7, 3, \{1, 2, 3\}\} \quad \text{y} \quad C^c = \{1, \{3\}, 7, 10\}$$

$$A^c \cap B^c \cap C^c = \emptyset$$

- Dados los subconjuntos A, B, C de un conjunto referencial V, describir $(A \cup B \cup C)^c$ en términos de intersecciones y complementos, y $(A \cap B \cap C)^c$ en términos de uniones y complementos
 - $(A \cup B \cup C)^c \stackrel{\text{(c)}}{=} (A \cup B)^c \cap C^c \stackrel{\text{(c)}}{=} A^c \cap B^c \cap C^c$ i)
 - $(A \cap B \cap C)^c \stackrel{\text{(d)}}{=} (A \cap B)^c \cup C^c \stackrel{\text{(d)}}{=} A^c \cup B^c \cup C^c \quad \checkmark$
- 6. Sean A,B y C conjuntos. Representar en un diagrama de Venn
 - i) $(A \cup B^c) \cap C$
 - ii) $A\triangle(B\cup C)$
 - iii) $A \cup (B \triangle C)$

7. Encontrar fórmulas que describen las partes rayadas de los siguientes diagramas de Venn, utilizando únicamente intersecciones, uniones y complementos.

(a) $(A \cap B^c) \cup (A^c \cap B \cap C)$

- (c) $((A \cap B) \cup (B \cap C) \cup (A \cap C)) \cap (A \cap B \cap C)^c$
- (b) $(A \triangle C) \cap B^c \stackrel{!}{=} (A \cup C) \cap (A \cap C)^c \cap B^c$
- 8. Hallar el conjunto $\mathcal{P}(A)$ de partes de A en los casos.
 - i) $A = \{1\}$

ii) $A = \{a, b\}$

iii) $A = \{1, \{1, 2\}, 3\}$

Recordando que:

$$\mathcal{P}(A) \to \begin{cases} B \in \mathcal{P}(A) \iff B \subseteq A \\ \mathcal{P}(A) = \{B \mid B \subseteq A\} \end{cases}$$

- (i) $A = \{1\} \rightarrow \mathcal{P}(A) = \{\varnothing, A\}$ \checkmark
- (ii) $A = \{a, b\} \rightarrow \mathcal{P}(A) = \{\varnothing, \{a\}, \{b\}, A\}$ \checkmark
- $\text{(iii)} \ A = \left\{1, \left\{1, 2\right\}, 3\right\} \rightarrow \mathcal{P}(A) = \left\{\varnothing, \left\{1\right\}, \left\{\left\{1, 2\right\}\right\}, \left\{3\right\}, \left\{1, \left\{1, 2\right\}\right\}, \left\{1, 3\right\}, \left\{\left\{1, 2\right\}, 3\right\}, A\right\} \quad \checkmark$
- 9. Sean A y B conjuntos, Probar que $\mathcal{P}(A) \subseteq \mathcal{P}(B) \iff A \subseteq B$
 - $\Rightarrow) \text{ Pruebo por absurdo. Supongo que } A \nsubseteq B \Rightarrow \exists x \in A \ / \ x \notin B.$ Si $x \in A \Rightarrow \{x\} \in \mathcal{P}(A) \xrightarrow{\text{hipótesis}} \{x\} \in \mathcal{P}(B) \Rightarrow x \in B. \text{ Absurdo } \clubsuit.$ $\rightarrow \boxed{\mathcal{P}(A) \subseteq \mathcal{P}(B) \Rightarrow A \subseteq B} \quad \checkmark$

10. Sean p, q proposiciones. Verificar que las siguientes expresiones tienen la misma tabla de verdad para concluir que son equivalentes:

i) $p \Rightarrow q$, $\sim q \Rightarrow \sim p$, $\sim p \lor q$ y $\sim (p \land \sim q)$.

Esto nos dice que podemos demostrar una afirmación de la forma $p \Rightarrow q$ probando en su lugar $\sim q \Rightarrow \sim p$ (es decir demostrando el contrarrecíproco), o probando $\sim (p \land \sim q)$ (esto es una demostración por reducción al absurdo).

- ii) $\sim (p \Rightarrow q)$ y $\sim q$.
- i) Sean p, q proposiciones. Verificar que las siguientes expresiones tienen la misma tabla de verdad para concluir que son equivalentes:

p	q	$\sim p$	$\sim q$	$p \Rightarrow q$	$\sim q \Rightarrow \sim p$	$\sim p \vee q$	$\sim (p \land \sim q)$
V	V	F	F	V	V	V	V
V	F	F	V	F	F	F	F
F	V	V	F	V	V	V	V
F	F	V	V	V	V	V	V

ii)

p	q	$\sim q$	$p \Rightarrow q$	$\sim (p \Rightarrow q)$	$p \wedge \sim q$
V	V	F	V	F	F
V	F	V	F	V	V
F	V	F	V	F	F
F	F	V	V	F	F

- 11. Hallar contraejemplos para mostrar que las siguientes proposiciones son falsas:
 - i) $\forall a \in \mathbb{N}, \frac{a-1}{a}$ no es un número entero. La proposición es falsa, dado que si $a=1 \Rightarrow \frac{1-1}{1} = \frac{0}{1} = 0 \in \mathbb{Z}$
 - ii) $\forall x, y \in \mathbb{R} \text{ con } x, y \text{ positivos, } \sqrt{x+y} = \sqrt{x} + \sqrt{y}.$

La proposición es falsa, dado que si.

$$\left\{ \begin{array}{l} x = 2. \\ y = 2 \end{array} \right\} \to \sqrt{2+2} = \sqrt{4} = 2 \neq \sqrt{2} + \sqrt{2} = \sqrt{2}$$

iii) $\forall x \in \mathbb{R}, x^2 > 4 \Rightarrow x > 2.$

La proposición es falsa, dado que si x=-3, queda $9>4 \Rightarrow -3>2$, lo cual es falso.

12.

- i) Decidir si las siguientes proposiciones son verdaderas o falsas, justificando debidamente:
 - a) $\forall n \in \mathbb{N}, n \geq 5 \lor n \leq 8.$
 - b) $\exists n \in \mathbb{N} / n \ge 5 \land n \le 8$.
 - c) $\forall n \in \mathbb{N}, \exists m \in \mathbb{N} / m > n.$
 - d) $\exists n \in \mathbb{N} / \forall m \in \mathbb{N}, m > n$.

- e) $\forall x \in \mathbb{R}, x > 3 \Rightarrow x^2 > 4$.
- f) Si n es un natural terminado en 4, entonces n es par.
- g) Si z es un número real, entonces $z \in \mathbb{C}$.
- ii) Negar las proposiciones anteriores, y en cada caso verificar que la proposición negada tiene el valor de verdad opuesto al de la original.
- iii) Reescribir las proposiciones e) y f) del item i) utilizando las equivalencias del ejercicio 10i)
 - i) (a) $\forall n \in \mathbb{N}, n \geq 5 \lor n \leq 8$.

La proposición es verdadera. El conjunto descrito por $\{n \in \mathbb{N} \mid n \leq 8 \lor n \geq 5\} = \mathbb{N}$

¿Se puede justificar con un gráfico?

(b) $\exists n \in \mathbb{N} / n \ge 5 \land n \le 8$.

La proposición es verdadera, en este caso es cuestión de encontrar solo un valor que cumpla, n=6

(c) $\forall n \in \mathbb{N}, \exists m \in \mathbb{N} / m > n.$

La proposición es verdadera, si se elige por ejemplo a m = n + 1

(d) $\exists n \in \mathbb{N} / \forall m \in \mathbb{N}, m > n$.

La proposición es falsa, el único $n \in \mathbb{N}$ que no tiene un número menor estricto es el 1. Pero la condición dice que $\forall m \in \mathbb{N}$ se debe cumplir y si m $1 \nleq 1$

(e) $\forall x \in \mathbb{R}, x > 3 \Rightarrow x^2 > 4$.

La proposición es verdadera. Si $x > 3 \Rightarrow x^2 > 9 \xrightarrow[\text{particular}]{\text{en}} x^2 > 9 > 4 \Rightarrow x^2 > 4$

- (f) Si n es un natural terminado en 4, entonces n es par.
 - hav que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

(g) Si z es un número real, entonces $z \in \mathbb{C}$.

Están proponiendo que dado $z \in \mathbb{R} \Rightarrow z \in \mathbb{C}$. Dado que $\mathbb{R} \subseteq \mathbb{C} = \{a \in \mathbb{R}, b \in \mathbb{R} \mid a + ib\}$, con $i^2 = -1$ Por lo tanto para b = 0, podría generar todo \mathbb{R} .

ii) (a) $\exists n \in \mathbb{N}, n < 5 \land n > 8.$

 $A = \{n \in \mathbb{N} / n < 5 \land n > 8\} = \emptyset \Rightarrow \nexists n$ que cumpla lo pedido.

(b) $\forall n \in \mathbb{N} / n < 5 \lor n > 8$.

La proposición es falsa, n=6 no cumple estar en ese conjunto.

- (c) $\exists n \in \mathbb{N}, \ \forall m \in \mathbb{N} \ / \ m \leq n$. La proposición es falsa, porque el conjunto \mathbb{N} no tiene un máximo. n = m + 1.
- (d) $\forall n \in \mathbb{N} / \exists m \in \mathbb{N}, m \leq n$. La proposición es verdadera, el único $m \in \mathbb{N}$ que cumple eso es el m = 1.
- (e) $\exists x \in \mathbb{R}, x \leq 3 \Rightarrow x^2 \leq 4$. La proposición es falsa. Dado dos conjunto:

$$\left\{ A = \left\{ x \in \mathbb{R} \mid x \le 3 \right\} B = \left\{ x \in \mathbb{R} \mid x^2 \le 2 \right\} \right\} \rightarrow \left\{ \begin{array}{c} \bullet \\ -2 \end{array} \right.$$

- (g) Si z no es un número real, entonces $z \notin \mathbb{C}$. La proposición es falsa. Están proponiendo que dado $z \notin \mathbb{R} \Rightarrow z \notin \mathbb{C}$. Si z = i, se prueba lo contrario. Dado que $i \notin \mathbb{R}$, pero $i \in \mathbb{C}$

iii)

$p \Rightarrow q$	$\forall x \in \mathbb{R}, x > 3 \Rightarrow x^2 > 4$	-2 2 3	$A\stackrel{?}{\subseteq} B$ \checkmark
$\sim q \Rightarrow \sim p$	$x^2 \le 4 \Rightarrow x \le 3$	← 2 2 3 → 1	$A\stackrel{?}{\subseteq} B$ \checkmark
$\sim p \vee q$	$x \le 3 \lor x^2 > 4$	$\begin{array}{ccc} & & & & & & & & & & \\ & & & & & & & & $	$A \cup B \stackrel{?}{=} \mathcal{U} \checkmark$
	$\sim (x > 3 \land x^2 \le 4)$	 ← → → → → → → → → → → → → → → → → → → →	$(A \cap B)^c \stackrel{?}{=} \varnothing^c = \mathcal{U} \checkmark$

13. Determinar cuáles de las siguientes afirmaciones son verdaderas y cualesquiera sean los subconjuntos A, B y C de un conjunto referencial \mathcal{U} y cuáles no. Para las que sean verdaderas, dar una demostración, para las otras dar un contraejemplo.

i)
$$(A\triangle B) - C = (A - C)\triangle(B - C)$$
.

iii)
$$C \subseteq A \Rightarrow B \cap C \subseteq (A \triangle B)^c$$

ii)
$$(A \cap B) \triangle C = (A \triangle C) \cap (B \triangle C)$$

iv)
$$A\triangle B=\varnothing\iff A=B$$

i) $(A\triangle B)-C=(A-C)\triangle(B-C)$. Es verdadera. Pruebo con tabla de verdad.

A	B	C	C^c	A-C	B-C	$A\triangle B$	$(A\triangle B)-C$	$(A-C)\triangle(B-C)$
V	V	V	F	F	F	F	F	F
V	V	F	V	V	V	F	F	F
V	F	V	F	F	F	V	F	F
V	F	F	V	V	F	V	V	V
F	V	V	F	F	F	V	F	F
$\mid F \mid$	V	F	V	F	V	V	V	V
\overline{F}	F	V	F	F	F	F	F	F
F	F	F	V	F	F	F	F	F

Hay distribución entre la resta y una diferencias simétrica.

ii) 2... hay que hacerlo! 6

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

- iii) hacer
- iv) hacer
- 14. Sean A, B y C subconjuntos de un conjunto referencial \mathcal{U} . Probar que:

i)
$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$$

v)
$$A \subseteq B \Rightarrow A \triangle B = B \cap A^c$$

ii)
$$A - (B - C) = (A - B) \cup (A \cap C)$$

vi)
$$A \subseteq C \iff B^c \subseteq A^c$$

iii)
$$A \triangle B \subseteq (A \triangle C) \cup (B \triangle C)$$

$$VI) \ A \subseteq C \iff D \subseteq A$$

iv)
$$(A \cap C) - B = (A - B) \cap C$$

vii)
$$A \cap C = \emptyset \Rightarrow A \cap (B \triangle C) = A \cap B$$

i) Voy a usar tablas con los resultados que hay en las tablas de verdad acá.

1	4	В	C	$B\triangle C$	$A \cap B$	$A \cap C$	$A \cap (B \triangle C)$	$(A \cap B) \triangle (A \cap C)$
I	7	V	V	F	V	V	F	F
I	7	V	F	V	V	F	V	V
I	7	F	V	V	F	V	V	V
1	7	F	F	F	F	F	F	F
1	F	V	V	F	F	F	F	F
1	F	V	F	V	F	F	F	F
	F	F	V	V	F	F	F	F
	F	F	F	F	F	F	F	F

ii) Este sale sin tablas:

$$(A-B)\cup(A\cap C)=A\cap[(A\cap B^c)\cup C]=A\cap[(A\cup C)\cap(B^c\cup C)]=A\cap(B^c\cup C)=A\cup(B-C)^c=A-(B-C)$$

- iii) Hacer!
- iv) Hacer!
- v) Hacer!
- vi) Hacer!
- vii) Hacer!
- **15.** Sean $A = \{1, 2, 3\}$, $B = \{1, 3, 5, 7\}$. Hallar $A \times A, A \times B, (A \cap B) \times (A \cup B)$.
 - $A \times A = \left\{ \begin{array}{l} \{a \in A, b \in A \ / \ (a,b) \in A \times A\} \rightarrow \text{Comprensión} \\ \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\} \rightarrow \text{Extensión} \end{array} \right.$
 - $A \times B = \cdots$

•
$$(A \cap B) \times (A \cup B) =$$

$$\begin{cases}
\{1,3\} \times \{1,2,3,5,7\} = \frac{\times |1| |2| |3| |5| |7|}{1 |(1,1)| \cdots |\cdots |\cdots |(1,7)|} \\
3 |(3,1)| \cdots |\cdots |(3,7)| \\
(A \cap B) \times (A \cup B) = \{s \in (A \cap B), t \in (A \cup B) / (s,t) \in (A \cap B) \times (A \cup B)\}
\end{cases}$$

16. Sean A, B y C conjuntos. Probar que:

i)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

ii)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

iii)
$$(A - B) \times C = (A \times C) - (B \times C)$$

iv)
$$(A \triangle B) \times C = (A \times C) \triangle (B \times C)$$

• ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

 $\underline{Relaciones}$ Definición de Relación, \mathcal{R} :

Sean A y B conjuntos. Una relación \mathcal{R} de A en B es un subconjunto cualquiera \mathcal{R} del producto cartesiano $A \times B$. Es decir \mathcal{R} de A en B si $\mathcal{R} \in \mathcal{P}(A \times B)$.

17. Sean $A = \{1, 2, 3\}$ y $B = \{1, 3, 5, 7\}$. Verificar las siguientes relaciones de A y B y en caso afirmativo graficarlas por medio de un diagrama con flechas de A en B y por medio de puntos en el producto cartesiano $A \times B$.

i)
$$\mathcal{R} = \{(1,1), (1,3), (1,7), (3,1), (3,5)\}$$

ii)
$$\mathcal{R} = \{(1,1), (1,3), (2,7), (3,2), (3,5)\}$$

 $\rightarrow 3 \mathcal{R} \ 2 \notin \mathcal{P}(A \times B)$

iii)
$$\mathcal{R} = \{(1,1), (2,7), (3,7)\}$$
 Hacer!

iv)
$$\mathcal{R} = \{(1,3), (2,1), (3,7)\}$$
 Hacer!

18. Sean $A = \{1, 2, 3\}$ y $B = \{1, 3, 5, 7\}$. Describir por extensión cada una de las siguientes relaciones de A en B:

i) $(a,b) \in \mathcal{R} \iff a < b$

iii) $(a,b) \in \mathcal{R} \iff a \cdot b \text{ es par}$

ii) $(a,b) \in \mathcal{R} \iff a > b$

iv) $(a, b) \in \mathcal{R} \iff a + b > 6$

i)
$$(a,b) \in \mathcal{R} \iff a \leq b \to (a,b) \in \mathcal{R} \Leftrightarrow \{(1,1),(1,3),(1,5),(1,7),(2,3),(2,5),(2,7),(3,3),(3,5),(3,7)\}$$

- ii) $(a,b) \in \mathcal{R} \iff a > b \to (a,b) \in \mathcal{R} \Leftrightarrow \{(2,1),(3,1)\}$
- iii) $(a,b) \in \mathcal{R} \iff a \cdot b \to (a,b) \in \mathcal{R} \Leftrightarrow \{(2,1),(2,3),(2,5),(2,7)\}$
- iv) $(a,b) \in \mathcal{R} \iff a+b>6 \to (a,b) \in \mathcal{R} \Leftrightarrow \{(1,7),(2,5),(2,7),(3,5),(3,7)\}$

19. Sea $A = \{a, b, c, d, e, f, g, h\}$. Para cada uno de los siguientes gráficos describit por extensión la relación en A que representa y determinar si es reflexiva, simétrica, antisimétrica o transitiva.

Un poco de la teoría de esto:

- 1. Reflexiva: $(x,x) \in \mathcal{R} \quad \forall x \in A \text{ o } x \mathcal{R} x. \quad \forall x \in A.$ Gráficamente, cada elemento tiene que tener un bucle. $x \bullet$
- 2. Simétrica: $(x,y) \in \mathcal{R}$, entonces el par $(y,x) \in \mathcal{R}$, también si $\forall x,y \in A, x \mathcal{R} y \Rightarrow y \mathcal{R} x$. Gráficamente tiene que haber un ida y vuelta en cada elemento de la relación.
- 3. Antisimétrica: $(x,y) \in \mathcal{R}$, con $x \neq y$ entonces el par $(y,x) \notin \mathcal{R}$, también se puede pensar como $\forall x,y \in A, x \mathcal{R} y \in y \mathcal{R} x \Rightarrow x = y$. Gráficamente **no** tiene que haber ningún ida y vuelta en el gráfico. Solo en una dirección.
- 4. Transitiva: Para toda terna $x, y, z \in A$ tales que $(x, y) \in \mathcal{R}$ e $(y, z) \in \mathcal{R}$, se tiene que $(x, z) \in \mathcal{R}$. Otra manera sería si $\forall x, y, z \in A$, $x \mathcal{R} y \in y \mathcal{R} z \Rightarrow x \mathcal{R} z$. Gráficamente tiene que haber flecha directa entre las puntas de cualquier camino que vaya por más de dos nodos.

atajo

- No es reflexiva, porque no hay bucles en todos los vértices, en particular $a \mathcal{K} a$.
- No es simétrica, porque $d \mathcal{R} c$.
- No es antisimétrica, porque $a \mathcal{R} b y b \mathcal{R} a$ con $a \neq b$.
- No es transitiva, porque $c \mathcal{R} h$ y $h \mathcal{R} g$, pero $c \mathcal{K} h$.

ii) 9... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

iii) 2... hay que hacerlo! 6

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

- Reflexiva, porque hay bucles en todos los elementos de A.
- Es simétrica, porque hay ida y vuelta en todos los pares de vértices.
- No es antisimétrica, porque $a \mathcal{R} b y b \mathcal{R} a$ con $a \neq b$.
- Es transitiva, porque hay *atajos* en todas las relaciones de ternas.

20. Sea $A = \{1, 2, 3, 4, 5, 6\}$. Graficar la relación, $\mathcal{R} = (1, 1), (1, 3), (3, 1), (3, 3), (6, 4), (4, 6), (4, 4), (6, 6)$

- No es reflexiva porque no hay bucles ni en 2 ni en 5.
- Es simétrica, porque hay ida y vuelta en todos los pares de vértices.
- No es antisimétrica, porque 1 \mathcal{R} 3 y 3 \mathcal{R} 1 con 1 \neq 3.
- Es transitiva.
 Chequear. Caso particula donde no hay ternas de x, y, z distintos.
 Sí, el que 2 esté ahí solo ni cumple la hipótesis de transitividad.

21. 2... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

22. En cada uno de los siguientes casos determinar si la relación \mathcal{R} en A es reflexiva, simétrica, antisimétrica, transitiva, de equivalencia o de orden.

i)
$$A = \{1, 2, 3, 4, 5\}, \mathcal{R} = (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (1, 3), (2, 5), (1, 5)\}$$

- ii)
- iii)
- iv)
- $\mathbf{v})$

vi)
$$A = \mathcal{P}(\{n \in \mathbb{N} \mid n \leq 30\}), \mathcal{R}$$
 definida por $X \mathcal{R} Y \iff 2 \notin X \cap Y^c$

vii)
$$A = \mathbb{N} \times \mathbb{N}$$
, \mathcal{R} definida por $(a, b) \mathcal{R}(c, d) \iff bc$ es múltiplo de ad .

- 1. Relación de equivalencia: La relación debe ser reflexiva, simétrica y transitiva.
- 2. Relación de orden: La relación debe ser reflexiva, antisimétrica y transitiva.

i)
$$A = \{1, 2, 3, 4, 5\}, \mathcal{R} = (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (1, 3), (2, 5), (1, 5)\}$$

- R: Es reflexiva, porque hay bucles en todos los elementos de A.
- S: No es simétrica, dado que existe (1,5), pero no (5,1)
- AS: Es antisimétrica. No hay ningún par que tenga la vuelta, excepto los casos $x \mathcal{R} x$.
 - T: Es transitiva. La terna 1, 2, 5 es transitiva.

La relación es R, AS y T, por lo tanto es una relación de orden.

- ii) 9... hay que hacerlo!
 - Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.
- iii) 🖭 ... hay que hacerlo! 😚
 - Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.
- iv) 🖭 ... hay que hacerlo! 😚
 - Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.
- v) 🖭 ... hay que hacerlo! 😚
 - Si querés mandarlo: Telegram $\to \odot$, o mejor aún si querés subirlo en LATEX $\to \odot$.
- vi) $A = \mathcal{P}(\{n \in \mathbb{N} \mid n \leq 30\}), \mathcal{R}$ definida por $X \mathcal{R} Y \iff 2 \notin X \cap Y^c$

Į	$2 \in X$	$2 \in Y$	$2 \in Y^c$	$2 \in X^{\circ}$	$2 \notin X \cap Y^c$	$2 \notin Y \cap X^{\circ}$
	V	V	F	F	V	V
İ	V	F	V	F	F	V
	F	V	F	V	V	F
	F	F	V	V	V	V

- R: La relación es reflexiva ya que para que un elemento X esté relacionado con sí mismo debe ocurrir que $X \mathcal{R} X \iff 2 \notin X \cap X^c$, es decir $2 \notin \emptyset$, lo cual es siempre cierto.
- S: La relación no es simétrica. Se puede ver con la segunda y tercera fila de la tabla con un contraejemplo. $X = \{1\}$ y $Y = \{2\}$, $X, Y \subseteq A$, $X \in X$, pero $Y \in X$,
- AS: La relación no es antisimétrica. Se puede ver con la primera o cuarta fila tabla con un contraejempl con un contraejemplo. Si $X = \{1, 2\}$ e $Y = \{2, 3\} \Rightarrow X \mathcal{R} Y$ y además $Y \mathcal{R} X$ con $X \neq Y$.
 - T: Es transitiva. Si bien no es lo más fácil de explicar, se puede ver en la tabla que para tener 2 relaciones en una terna X,Y,Z no se puede llegar nunca al caso de la segunda fila de la tabla, donde se lograría que $X \mathcal{K} Z$
- vii) $A = \mathbb{N} \times \mathbb{N}$, \mathcal{R} definida por (a, b) \mathcal{R} $(c, d) \iff bc$ es múltiplo de ad.

R: $(a,b) \mathcal{R}(a,b) \iff ba = k \cdot ab \text{ con } k = 1$, se concluye que sí es reflexiva.

S:
$$\begin{cases} (a,b) \ \mathcal{R}(c,d) \iff bc^{\bigstar^{1}} = k \cdot ad \\ (c,d) \ \mathcal{R}(a,b) \iff ad = h \cdot bc^{\bigstar^{1}} = h \cdot k \cdot ad = k'ad \\ \text{con } k' = 1 \text{ se cumple la igualdad. La relación es simétrica.} \end{cases}$$

AS: Si tomo (a, b) = (4, 2) y (c, d) = (16, 4), tengo que (a, b) $\mathcal{R}(c, d)$ con $(a, b) \neq (c, d)$. Por lo tanto la relación no es antisimétrica.

T:
$$\begin{cases} (a,b) \mathcal{R}(c,d) \iff bc^{\bigstar^{1}} = k \cdot ad \\ (c,d) \mathcal{R}(e,f) \iff de^{\bigstar^{1}} = h \cdot cf \\ \text{quiero ver que } (a,b) \mathcal{R}(e,f) \iff be = k' \cdot af \\ \frac{\text{multiplico}}{\text{M.A.M.}} \begin{cases} bc^{\bigstar^{1}} = k \cdot ad \\ de^{\bigstar^{1}} = h \cdot cf \end{cases} \xrightarrow{\text{acomodo}} be \cdot \mathscr{A} = k \cdot h \cdot af \cdot \mathscr{A} \rightarrow be \stackrel{\checkmark}{=} k' \cdot af.$$

Se concluye que la relación es transitiva.

Con esos resultados se puede decir que \mathcal{R} en A es de equivalencia.

- 23. Sea A un conjunto. Describir todas las relaciones en A que son a la vez
 - i) simétricas y antisimétricas elementos en bucles sueltos?

ii) de equivalencia y de orden Idem anterior

- i) simétricas y antisimétricas elementos en bucles sueltos?
- ii) de equivalencia y de orden Idem anterior

¿Puede una relación en A no ser ni simétrica ni antisimétrica? 22 (vi)?

24. Sea $A = \{a, b, c, d, e, f\}$. Dada la relación de equivalencia en A:

$$\mathcal{R} = \{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b), (b, a), (a, f), (f, a), (b, f), (f, b), (c, e), (e, c)\}$$

Hallar la clase \bar{a} de a, la clase \bar{b} de b, la clase \bar{c} de c, la clase \bar{d} de d, y la partición asociada a \mathcal{R}

La partición asociada a \mathcal{R} : $\{\{d\}, \{c, e\}, \{a, b, f\}\} = \{\overline{d}, \overline{b}, \overline{a}\}.$

25. Sea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Hallar y graficar la relación de equivalencia en A asociada a la partición $\{\{1,3\},\{2,6,7\},\{4,8,9,10\},\{5\}\}$. ¿Cuántas clases de equivalencia distintas tiene? Hallar un representante para cada clase.

• hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

26. Sean $P = \mathcal{P}(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\})$ el conjunto de partes de $\{1, \dots, 10\}$ y \mathcal{R} la relación en P definida por:

$$A \mathcal{R} B \iff (A \triangle B) \iff \cap \{1, 2, 3\} = \emptyset$$

- i) Probar que \mathcal{R} es una relación de equivalencia y decidir si es antisimétrica ($\underline{Sugerencia}$: usar adecuadamente el ejercicio 14iii)).
- ii) Hallar la clase de equivalencia de $A = \{1, 2, 3\}$.

•... hay que hacerlo! 🔞

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

- **27.** Sean $A = \{n \in \mathbb{N} \mid n \le 92\}$ y \mathcal{R} la relación en A definida por $x \mathcal{R} y \iff x^2 y^2 = 93x 93y$
 - a) Probar que $\mathcal R$ es una relación de equivalencia. ¿Es antisimétrica?
 - b) Hallar la clase de equivalencia de cada $x \in A$. Deducir cuántas clases de equivalencia **distintas** determina la relación \mathcal{R} .
 - a) Primero acomodo la condición de la relación:

$$x^{2} - y^{2} = 93x - 93y \iff \begin{cases} x \stackrel{\bigstar^{1}}{=} y \\ \text{o bien} \\ x + y \stackrel{\bigstar^{2}}{=} 93 \end{cases}$$

Hacer este ejercicio sin avivarse de lo que pasa en !!! es horrible.

Para ser relación de equivalencia es necesario que sea reflexiva, simétrica y transitiva: Reflexiva:

$$x \mathcal{R} x \iff x \stackrel{\bigstar^1}{=} x \checkmark$$

Simétrica:

$$\begin{cases} x \mathcal{R} y \iff x + y \stackrel{\bigstar^2}{=} 93 \\ y \mathcal{R} x \iff y + x \stackrel{\bigstar^2}{=} 93 \end{cases}$$

Transitiva:

$$\begin{cases} x \mathcal{R} y \iff x \stackrel{\bigstar^2}{=} 93 - y & \xrightarrow{\text{resto}} x - y = -y + z \to x \stackrel{\bigstar^1}{=} z \iff x \mathcal{R} z \checkmark \\ y \mathcal{R} z \iff y \stackrel{\bigstar^2}{=} 93 - z & \xrightarrow{\text{M.A.M}} x - y = -y + z \to x \stackrel{\bigstar^1}{=} z \iff x \mathcal{R} z \checkmark \end{cases}$$

Antisimétrica:

La \mathcal{R} no es antisimétrica, como contraejemplo se ve que 1 \mathcal{R} 92 y 92 \mathcal{R} 1 con $1 \neq 92$ \mathfrak{Z} .

b) A priori no sé como encontrar las clases de equivalencia, pero solo buscando la relación del 1 con algún número (excepto el mismo) veo que únicamente se puede relacionar con el 92 por la condición \star^2 , dado que $1+92 \stackrel{\star}{=} 93$. De ahí se pueden inferir que todas las clases van a ser conjuntos *chiquitos*, con los números que sumen 93.

Las clases de equivalencia :
$$\begin{cases} \overline{1} &= \overline{92} &= \{1,92\} \\ \overline{2} &= \overline{91} &= \{2,91\} \\ \vdots &\vdots &\vdots \\ \overline{45} &= \overline{47} &= \{45,47\} \\ \overline{46} &= \{46\} \end{cases}$$

28.

- i) Sea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Consideremos en $\mathcal{P}(A)$ la relación de equivalencia dada por el cardinal (es decir, la cantidad de elementos): Dos subconjuntos de A están relacionados si y solo si tienen la misma cantidad de elementos ¿Cuántas clases de equivalencia distintas determina la relación? Hallar un representante par acada clase.
- ii) En el conjunto de todos los subconjuntos finitos de N, consideremos nuevamente la relación de equivalencia dada por el cardinal: Dos subconjuntos finitos de N están relacionados si y solo si tienen la misma cantidad de elementos ¿Cuántas clases de equivalencia distintas determina la relación? Hallar un representante para cada clase.
- i) $\mathcal{P}(A) = \{\emptyset, \{1\}, \{1, 2\}, \dots, \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}\}\$, el conjunto $\mathcal{P}(A)$ tiene un total de $2^{10} = 1024$ elementos. La relación determina 11 clases de equivalencia distintas.

ii) Es parecido al inciso anterior, donde ahora $A = \{1, 2, 3, \dots, N-1, N\}$, donde $\mathcal{P}(\mathbb{N}_N)$ tiene 2^N elementos.

La relación determina N+1 clases de equivalencia distintas.

```
Conjuntos con 0 elementos: \overline{0} \varnothing
Conjuntos con 1 elemento: \overline{1} {3}
Conjuntos con 2 elementos: \overline{2} {5, 2}
Conjuntos con 3 elementos: \overline{3} {1, 6, 3}
Conjuntos con 4 elementos: \overline{4} {1, 8, 10, 4}
\vdots
\overline{N} {1, 2, 3, 4, \cdots, N-1, N} \mathbb{N}_N
```

Functiones

Un poco de teoría:

Sean A y B conjuntos, y sea \mathcal{R} de A en B. Se dice que \mathcal{R} es una función cuando todo elemento $x \in A$ está relacionado con algún $y \in B$, y este elemento y es único. Es decir:

 $\{ \forall x \in A, \exists ! y \in B \ / \ x \ \mathcal{R} \ y \ \forall x \in A, \exists y \in B \ / \ x \ \mathcal{R} \ y, \text{si} \ y, z \in B \text{ son tales que } x \ \mathcal{R} \ y \ y \ x \ \mathcal{R} \ z \Rightarrow y = z.$

- Dada $f: A(dominio) \to B(codominio)$ el conjunto imagen es: $Im(f) = \{y \in B: \exists x \in A / f(x) = y\}$
- - inyectiva: si $\forall x, x' \in A$ tales que f(x) = f(x') se tiene que x = x'
 - sobreyectiva: si $\forall y \in B, \exists x \in A \text{ tal que } f(x) = y. f \text{ es sobreyectiva si } \text{Im}(f) = B$
 - biyectiva: Cuando es inyectiva y sobreyectiva.
- A,B,C conjuntos y $f:A\to B\to C,\,g:B\to C$ funciones. Entonces la composición de f con g, que se nota:

 $g \circ f = g\left(f(x)\right), \ \ \forall x \in A$, resulta ser una función de A en C.

• f es biyectiva cuando: $f^{-1}: B \to A$ es la función que satisface que:

$$\forall y \in B: f^{-1}(y) = x \iff f(x) = y$$

- **29.** Determinar si \mathcal{R} es una función de A en B en los casos
 - i) $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c, d\}$, $\mathcal{R} = \{(1, a), (2, a), (3, a), (4, b), (5, c), (3, d)\}$ No es función, dado que 3 \mathcal{R} a, 3 \mathcal{R} d y $a \neq d$
 - ii) $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c, d\}$, $\mathcal{R} = \{(1, a), (2, a), (3, d), (4, b)\}$ No es función, dado que todo elemnto de A tiene que estar relacionado a algún

No es función, dado que todo elem
nto de A tiene que estar relacionado a algún elemento de B,
5 \mathcal{K} y para ninún $y \in B$

- iii) $A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d\}, \mathcal{R} = \{(1, a), (2, a), (3, d), (4, b), (5, c)\}$ Es función.
- iv) $A = \mathbb{N}, B = \mathbb{R}, \mathcal{R} = \{(a, b) \in \mathbb{N} \times \mathbb{R} \mid a = 2b 3\}$ Es función.
- v) $A = \mathbb{R}, B = \mathbb{N}, \mathcal{R} = \{(a, b) \in \mathbb{R} \times \mathbb{N} \mid a = 2b 3\}$ No es función, $\sqrt{2} \mathcal{K} b$ para ningún $b \in \mathbb{N}$
- vi) $A = \mathbb{Z}, B = \mathbb{Z}, \mathcal{R} = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a+b \text{ es divisible por 5}\}$ No es función, porque $0 \mathcal{R} 5 y 0 \mathcal{R} 10 y$ necesito que $\forall x \in \mathbb{Z}, \exists ! y \in \mathbb{Z}$
- Determinar si las siguientes funciones son invectivas, sobrevectivas o bivectivas. Para las que sean biyectivas hallar la inversa y para la que no sean sobreyectivas hallar la imagen.
 - i) $f: \mathbb{R} \to \mathbb{R}$. $f(x) = 12x^2 5$ No es inyectiva, f(-1) = f(1). No es sobreyectiva, $\operatorname{Im}(f) = [-5, +\infty)$.
 - ii) 🖭 ... hay que hacerlo! 📆

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

iii) ... hay que hacerlo!

Si querés mandarlo: Telegram $\to \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \to \bigcirc$.

iv) $f: \mathbb{N} \to \mathbb{N}$, $f(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par} \\ n+1 & \text{si } n \text{ es impar} \end{cases}$ Es inyectiva y sobreyectiva. $\forall m, m' \in \mathbb{N}$, $\begin{cases} f(2m) = \frac{2m}{2} = m \\ f(2m'-1) = 2m'-1+1 = 2m' \end{cases} \to \text{Si bien } f(8) = f(3)$

la función es sobreyectiva porque genera todo $\mathbb N$ tan solo con la parte par de la función. $f^{-1}(n) = \left\{ \begin{array}{ll} 2n & \text{si } n \text{ es par} \\ n-1 & \text{si } n \text{ es impar} \end{array} \right.$

Ejercicios extras:

1. Probar la propiedad distributiva: $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$

Tengo que hacer una doble inclusión:

- 1) $X \cap (Y \cup Z) \subseteq (X \cap Y) \cup (X \cap Z)$
- 2) $X \cap Y \cup (X \cap Z) \subseteq X \cap (Y \cup Z)$
- 1) $x \in X \cap (Y \cup Z)$ quiere decir que $x \in X$ y $\begin{cases} x \in Y \\ \text{o bien} \\ x \in Z \end{cases}$. Por lo tanto $\rightarrow \begin{cases} x \in X \cap Y \\ \text{o bien} \\ x \in X \cap Z \end{cases}$, lo que equivale a $x \in (X \cap Y) \cup (X \cap Z)$ \checkmark .
- 2) Ahora hay que probar la vuelta. Uso razonamiento análogo:

$$x \in (X \cap Y) \cup (X \cap Z) \Rightarrow x \in X \quad y \quad \begin{cases} x \in X \cap Y \\ o \\ x \in X \cap Z \end{cases}$$

Pero teniendo en cuenta que:

$$\left\{ \begin{array}{l} Y \subseteq Y \cup Z \\ \text{y que} \end{array} \right. \stackrel{\text{!!}}{\Rightarrow} \left\{ \begin{array}{l} x \in X \cap (Y \cup Z) \\ \text{o bien} \end{array} \right. \Rightarrow x \in X \cap (Y \cup Z)$$

$$x \in X \cap (Z \cup Y)$$

En !! uso algo "obvio" pero que me sirve para seguir bien donde está x: Resalto que si un elemento está en Y seguro va a estar en la unión de Y con lo que sea.

2. Probar la propiedad $(A \cap B)^c = A^c \cup B^c$.

Tengo que hacer una doble inclusión $\rightarrow \begin{cases} 1) & (A \cap B)^c \subseteq A^c \cup B^c \\ 2) & A^c \cup B^c \subseteq (A \cap B)^c \end{cases}$

1) Prueba directa: Si $x \in (A \cap B)^c \Rightarrow x \in A^c \cup B^c$ Por hipótesis $x \in (A \cap B)^c \stackrel{\text{def}}{\Longleftrightarrow} x \notin A \lor x \notin B \Rightarrow x \in A^c \lor x \in B^c \Rightarrow x \in A^c \cup B^c$

A	B	$A^c \cup B^c$	$(A \cap B)^c$
V	V	F	F
V	F	V	V
F	V	V	V
F	F	V	V

Uso la tabla para ver la definición $x \in (A \cap B)^c \stackrel{\text{def}}{\Longleftrightarrow} x \notin A \vee x \notin B$

- 2) Pruebo por absurdo. Si $\forall x \in A^c \cup B^c \Rightarrow x \in (A \cap B)^c$ Supongo que $x \notin (A \cap B)^c \stackrel{\text{def}}{\Longleftrightarrow} x \in (A \cap B) \xrightarrow[\text{hipótesis}]{\text{por}} x \in A^c \cup B^c \to \left\{ \begin{array}{c} x \notin A \\ \lor \\ x \notin B \end{array} \right\}$, por lo que $x \notin A \cup B \Rightarrow x \notin A \cap B$ contradiciendo el supuesto, absurdo. Debe ocurrir que $x \in (A \cap B)^c$
- ☐ ¡Aportá! Correcciones, subiendo ejercicios, ★ al repo, críticas, todo sirve.

A	B	$A \cap B$	$(A \cup B)$	$(A \cap B) \subseteq (A \cup B)$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

△3. Sea

$$\mathcal{F} = \{h : \{1, 2, 3, 4\} \to \{1, 2, \dots, 50\} / h \text{ es inyectiva}\}.$$

Definimos en \mathcal{F} la relación \mathcal{R} como

$$f \mathcal{R} g$$
 si y sólo si $\#(\operatorname{Im}(f) \setminus \operatorname{Im}(g)) = 0$ o 4.

- a) Analizar si \mathcal{R} es una relación reflexiva, simétrica, antisimétrica y/o transitiva.
- b) Sea $f \in \mathcal{F}$ definida como f(x) = x para $1 \le x \le 4$. Calcular cuántas funciones $g \in \mathcal{F}$ satisfacen $f \mathcal{R} g$

Observar que $f \in \mathcal{F}$ es una función que tiene un dominio con solo 4 elementos, es decir

$$\# \operatorname{Dom}(f) = 4 \ \forall f \in \mathcal{F},$$

y dado que f es inyectiva, todos los elementos de la imagen deben ser distintos, por lo tanto

$$\#\operatorname{Im}(f) = 4 \ \forall f \in \mathcal{F}$$

a) Reflexiva: Quiero ver que si $f \mathcal{R} f$.

Esto debe ser cierto, ya que $A = \{ \operatorname{Im}(f) \setminus \operatorname{Im}(f) \} = \emptyset$ y $\# \emptyset \stackrel{!}{=} 0 \ \forall f \in \mathcal{F}$. \mathcal{R} es reflexiva \checkmark Simétrica: Quiero ver que si $f \mathcal{R} g \Rightarrow g \mathcal{R} f$.

Si tengo que $f \mathcal{R} g$, sé algo sobre sus conjuntos Im ya que,

$$\begin{cases} \#\{\operatorname{Im}(f) \setminus \operatorname{Im}(g)\} = 0 & \iff \operatorname{Im}(f) \stackrel{\bigstar^{1}}{=} \operatorname{Im}(g) \\ & \text{o} \end{cases}$$

$$\#\{\operatorname{Im}(f) \setminus \operatorname{Im}(g)\} = 4 \iff \operatorname{Im}(f) \stackrel{\bigstar^{2}}{\cap} \operatorname{Im}(g) = \varnothing$$

Entonces los conjuntos $\operatorname{Im}(f)$ y $\operatorname{Im}(g)$ están relacionados por un "=" y un "\cap", dos operadores simétricos por lo tanto $\mathcal R$ es simétrica. \checkmark

Antisimétrica: Quiero ver que si $f \mathcal{R} g \Rightarrow g \mathcal{R} f$, o también a veces está bueno pensarla la antisimetría como si $f \mathcal{R} g$ y $g \mathcal{R} f \Rightarrow f = g$. Bajo la sospecha de que la función no es antisimétrica la segunda forma de pensarlo me ayuda a encontrar un *contra*ejemplo.

$$f \to \begin{cases} f(1) = 1 \\ f(2) = 2 \\ f(3) = 3 \end{cases} \quad \text{y} \quad g \to \begin{cases} g(1) = 4 \\ g(2) = 3 \\ g(3) = 2 \\ g(4) = 1 \end{cases}$$

 $\begin{cases} f \mathcal{R} g, \text{ sus imágenes cumplen} \bigstar^1 \\ g \mathcal{R} f, \text{ sus imágenes cumplen} \bigstar^1 \end{cases}, \text{ pero por como están definidas las funciones } f \neq g. \mathcal{R} \text{ no es antisimétrica.}$

Transitiva: Quiero ver que si $f \mathcal{R} g$ y $g \mathcal{R} h \Rightarrow f \mathcal{R} h$.

Acá podemos encontrar un contraejemplo para mostrar que no es transitiva, saco de la galera 3 funciones, f, g y $h \in \mathcal{F}$

$$f \to \left\{ \begin{array}{l} f(1) = 1 \\ f(2) = 2 \\ f(3) = 3 \\ f(4) = 4 \end{array} \right., \quad g \to \left\{ \begin{array}{l} g(1) = 5 \\ g(2) = 6 \\ g(3) = 7 \\ g(4) = 8 \end{array} \right., \quad y \quad h \to \left\{ \begin{array}{l} h(1) = 1 \\ h(2) = 2 \\ h(3) = 9 \\ h(4) = 10 \end{array} \right.$$

 $\left\{ \begin{array}{l} f \; \mathcal{R} \; g, \; \text{sus imágenes cumplen} \; \bigstar^2 \\ g \; \mathcal{R} \; h, \; \text{sus imágenes cumplen} \; \bigstar^2 \end{array} \right., \; \text{pero} \; f \; \mathcal{K} \; h \; \text{dado que:}$

$${\operatorname{Im}(f) \setminus \operatorname{Im}(g)} = {3,4} \Rightarrow \# {\operatorname{Im}(f) \setminus \operatorname{Im}(g)} = 2 \neq 0 \text{ o } 4.$$

 \mathcal{R} no es transitiva. $\mathbf{2}$

b) Para que f y g se relacionen se debe cumplir con \bigstar^1 o con \bigstar^2 . En otras palabras necesito encontrar funciones $g \in \mathcal{F}$ cuya imagen $\text{Im}(g) = \{1, 2, 3, 4\}$ o su codominio sea $\underbrace{\text{Cod} = \{5, 6, \dots, 49, 50\}}_{\#\text{Cod}=46}$.

Contar cuando $Im(g) = \{1, 2, 3, 4\}$:

Hago la inyección de los 4 valores que puede tomar la función inyectiva g.

$$\begin{cases} g \to g(1) & g(2) & g(3) & g(4) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \text{opciones} \to \#4 & \#3 & \#2 & \#1 \end{cases}$$

Hay 4! permutaciones ✓

Contar cuando codominio sea $Cod = \{5, 6, \dots, 49, 50\}$

Hago la inyección de los 46 valores que puede tomar la función inyectiva g.

$$\begin{cases} g \rightarrow g(1) & g(2) & g(3) & g(4) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \text{opciones} \rightarrow \#46 & \#45 & \#44 & \#43 \end{cases}$$

Hay $\frac{46!}{42!}$ permutaciones \checkmark

Se concluye que hay un total de $\frac{46!}{42!} + 4!$ funciones $g \in \mathcal{F}/f \ \mathcal{R} \ g$

♦4. (recuperatorio 1er C. 24)

Se define en $\mathbb Z$ la relación $\mathcal R$ dada por

$$n \mathcal{R} m \iff 10 \mid n^2 + 4m^2 + m - 6n.$$

- a) Probar que $n \mathcal{R} m \iff 5 \mid n^2 m^2 + m n \quad y \quad n \equiv m \ (2).$
- b) Probar que \mathcal{R} es una relación de equivalencia.

$$a) (\Rightarrow)$$

$$n \mathcal{R} m \stackrel{\text{def}}{\Longleftrightarrow} n^2 + 4m^2 + m - 6n \equiv 0 \ (10)$$

Si la expresión es divible por 10, debe ser divisible por 2 y también por 5:

$$\begin{cases} n^{2} + 4m^{2} + m - 6n \stackrel{(5)}{=} n^{2} - m^{2} + m - n \equiv 0 \text{ (5)} \quad \checkmark \\ n^{2} + 4m^{2} + m - 6n \stackrel{(2)}{=} n^{2} + m \stackrel{(2)}{=} n + m \equiv 0 \text{ (2)} \Leftrightarrow n \equiv m \text{ (2)} \quad \checkmark \end{cases}$$

Si no ves lo que pasó en !! pensá en la paridad de un número y su cuadrado.

Por lo tanto si

$$n \mathcal{R} m \implies 5 \mid n^2 - m^2 + m - n \quad y \quad n \equiv m (2)$$

 (\Leftarrow)

$$n^2 - m^2 + m - n \equiv 0 \ (5) \Leftrightarrow n^2 + 4m^2 + m - 6n \equiv 0 \ (5) \Leftrightarrow 5 \ | \ n^2 + 4m^2 + m - 6n \ \checkmark$$

Ahora uso la información de $n \equiv m$ (2)

Si
$$n \equiv m \ (2) \Rightarrow n^2 + 4m^2 + m - 6n \stackrel{(2)}{=} 5 \underbrace{m(m-1)}_{\text{par!}} \equiv 0 \ (2) \iff 2 \mid n^2 + 4m^2 + m - 6n \quad \checkmark$$

Por lo tanto si

$$n \mathcal{R} m \leftarrow 5 | n^2 - m^2 + m - n \quad y \quad n \equiv m (2)$$

b) No es casualidad que en el punto anterior tuvieramos una redefinición de la relación \mathcal{R} :

$$n \mathcal{R} m \iff \begin{cases} n^2 - m^2 + m - n \equiv 0 \ (5) \\ y \\ n \equiv m \ (2). \end{cases}$$

En esa forma es mucho más fácil mostrar lo que sigue porque la relación queda definida en función de congruencias que <u>ya son relaciones de equivalencias</u>. Para mostrar la relación de equivalencia, hay que probar que es reflexiva, simétrica y transitiva.

Reflexiva: Si
$$n \mathcal{R} n \iff \begin{cases} n^2 - n^2 + n - n = 0 \equiv 0 \ (5) \end{cases} \checkmark$$

$$\underset{n \equiv n}{\text{Neg}} (2) \checkmark.$$

La relación es reflexiva.

Simétrica: Si $n \mathcal{R} m \Rightarrow m \mathcal{R} n$, para algún par n, m.

Si
$$n \mathcal{R} m \Rightarrow$$

$$\begin{cases}
n^2 - m^2 + m - n \equiv 0 \ (5) \xrightarrow{m \mathcal{R} n} m^2 - n^2 + n - m = -(n^2 - m^2 + m - n) \equiv 0 \ (5) & \checkmark \\
y & \\
n \equiv m \ (2) \xrightarrow{m \mathcal{R} n} m \equiv n \ (2) & \checkmark
\end{cases}$$

La relación es simétrica

Transitiva: Quiero ver que si: $n \mathcal{R} m$ y $m \mathcal{R} j \Rightarrow n \mathcal{R} j$

Si

$$n \mathcal{R} m \Leftrightarrow \begin{cases} n^{2} - m^{2} + m - n \equiv 0 \ (5) \\ y \\ n \equiv m \ (2) \end{cases} \qquad y \quad m \mathcal{R} j \Leftrightarrow \begin{cases} m^{2} - j^{2} + j - m \equiv 0 \ (5) \bigstar^{1} \\ y \\ m \equiv j \ (2) \bigstar^{2} \end{cases}$$

entonces

$$n^{2}-m^{2}+m-n \equiv 0 \ (5) \iff n^{2}-j^{2}+j-n \equiv 0 \ (5)$$

$$y$$

$$n \equiv m \ (2) \iff n \equiv j \ (2)$$

$$\Rightarrow \boxed{n \ \mathcal{R} \ j}$$

La relación es transitiva.

Como la relación resultó ser reflexiva, simétrica y transitiva, entonces es de equivalencia. Fin.