记明3:0 f*f = $\frac{m}{2}$ $\sum_{i=1}^{m} \sum_{j=1}^{m} d_i d_j k(\vec{x}_i \vec{x}_j) = \vec{d}^T k_{mxm} \vec{d}$

由于 Kmxm 矩阵半正定 . 二 f×f≥0

② 如果 $\vec{f} = \vec{\sigma} \implies \sum_{i=1}^{m} d_i k(\cdot, \vec{x}_i) = \vec{\sigma}$

 $\therefore f * f = \sum_{j=1}^{m} \lambda_j \sum_{i=1}^{m} \alpha_i k(\vec{x}_j \vec{x}_i) = 0$

如果 $f*f = \sum_{i=j+1}^{m} \sum_{j=1}^{m} did_j k(\vec{x}_i \vec{x}_j) = 0$

光记 | f*9 | 2 ≤(f*f)(g*g) 这个施瓦茨不霉式、

▲杨遥舒入配存式 (f+2g)*(f+2g) ≥0恒成至,通过150得证施瓦茨不等式

級店、构造 $f(\vec{x}) = k(\cdot, \vec{x}) * f(\cdot) = \sum_{i=1}^{m} d_i k(\vec{x}, \vec{x})$ 即 $f(\vec{x})$ 是 $f(\cdot)$ 这 斥 无 多 程 历 星 的 任 意 一 广 分 量 .

 $(f\vec{x},)^2 = (k(\cdot,\vec{x}) * f(\cdot))^2 \le (k(\cdot,\vec{x}) * k(\cdot,\vec{x}))(f*f) = k(\vec{x},\vec{x})(f*f)$ identify

identify

如果f*f=0 刚 $f(\vec{n})=0$ 即 $f(\cdot)$ 配在意一个分量为0 以 $f(\cdot)=3$

这样与杨成了一个肉积空间,*可以用内积过算代替.

④把S%机,就得到了希伦特空间、由于 k(·文) **f(·) = f(文),也则 再继希伦特空间