

IN5180 - Analog Microelectronics Design

Advanced MOSFET modelling, passives and EDA tools

Kristian G. Kjelgård

Topics

Body effect

Short channel effects

- Mobility Degradation
- Drain Induced Barrier Lowering
- Hot carriers

Passives

EDA tools

The 4th terminal

Body effect

- Back-gate effect, substrate effect
- Current change as V_{SB} is different from zero
- Modeled as change in threshold voltage

$$V_{tn} = V_{tn0} + \gamma \left(\sqrt{V_{SB} + |2\phi_F|} - \sqrt{|2\phi_F|} \right)$$

– V_{tn0} – zero biased threshold voltage

$$\gamma = \sqrt{\frac{2qN_A K_S \varepsilon_0}{C_{ox}}}$$

 $\phi_{\scriptscriptstyle F}$ - Fermi potential

Body effect - small signal

$$g_{s} = \frac{\partial I_{D}}{\partial V_{SB}} = \frac{\partial I_{D}}{\partial V_{tn}} \frac{\partial V_{tn}}{\partial V_{SB}} = \frac{\gamma g_{m}}{2\sqrt{V_{SB} + |2\phi_{F}|}}$$

If bulk connected to source

$$g_s = 0$$

• If Vsb ≠ 0

$$g_s \neq 0$$

X-section with capacitance

26.08,2024

Small signal model with capacitances

f_T transition frequency - transistor speed

• Higher f_T -> faster digital systems and analog/RF (ie millimetre wave radio / radar systems)

Current gain unity gain frequency

26.08.2024

10

UiO : Department of Informatics

University of Oslo

- Lower capacitance and higher Gm with shorter L
- ft proportional to $1/L^2$

Assumes μ_n constant...

$$f_{T} = \frac{N_{n}(o_{X}(\frac{W}{L}))V_{EFF}}{2n(o_{X}W(\frac{1}{2})L} = \frac{3N_{n}V_{EFF}}{4nL^{2}}$$

Mobility degradation - μ_n with high E

- When transistors scale E gets high and mobility degraded
- Velocity of charge carrier limited to 10⁷ cm/s
- Affects speed and transconductance

$$V_{n,l+f} = \frac{V_n}{\left(1 + \left(\Theta V_{EFF}\right)^m\right)^{V_{lm}}}$$

High V_{eff} -> less control of channel Square law -> linear

Implications

- Small-signal transconductance limited
- Reduced available signal swing
- Reduction in intrinsic gain A_i

Example

- **1.25** Make a qualitative sketch of transistor intrinsic gain A_i versus V_{eff} for:
 - a. Constant device width W

In each case what is the relationship between A_i and V_{eff} in weak-inversion, active mode and under mobility degradation

Drain Induced Barrier Lowering (DIBL)

Drain Induced Barrier Lowering (DIBL)

- V_t dependence on V_{ds}
- Current dependent on V_{ds} -> reduced r_{ds}

Hot carriers

High velocity carriers

- E-H pairs -> Drain-tosubstrate current
- Gate oxide tunnel
- Electrons in oxide trapped

Leakage Current

- Gate -> channel quantum-mechanical tunnel
- pn reverse junction leakage

Summary

- In modern CMOS technology a large variety of effects gives a non-ideal transistor behaviour
- Basic models used for "intuition" and design ideas
- Non-ideal characteristics very significant
- When to use simulator?

Sub 40 nm technologies -> finfet

 Next generation analog / Radio Frequency SoC in finfet technology?

