\leftarrow Ergodicity, differentiability, continuity

Quiz, 5 questions

1 point
1. Let W_t be a Brownian Motion considered at integer time points $t=0,1,2,$ Choose the ergodic processes:
$X_t = \xi t + W_t$, where $\xi \sim N(0,1)$ and ξ is independent of W_t .
none of above
$igwedge X_t = Ct + W_t$, where C is a non-zero constant
1 point
2. Let $X_t=\cos(\omega t+ heta)$ be a stochastic process and $ heta\sim$ Unif[0, 2π], $\omega=\pi/10$. Is this process ergodic? Is it stationary?
It is ergodic and weakly stationary
none of above
It is non-ergodic and weakly stationary
It is ergodic and non-stationary
1 point 3.
Let $X_t=arepsilon_t+\xi\cos(\pi t/12)$, $t=1,2,$ and $arepsilon_1,arepsilon_2,$ be a sequence of i.i.d. random variables. Is the process X_t stationary and ergodic?
$oxed{X_t}$ is weakly stationary and ergodic
none of above
$oxed{X}_t$ is weakly stationary and non-ergodic
4. Assume that for a process X_t it is known that $\mathbb{E}\left[X_t\right]=\alpha+\beta t$, $\operatorname{cov}(X_t,X_{t+h})=e^{-h\lambda}$, for all $h\geq 0, t>0$, and some constants $\lambda>0$, α,β . Is the process X_t stationary and ergodic? X_t is non-stationary and ergodic
none of above
X_t is weakly stationary and non-ergodic
X_t is weakly stationary and ergodic
1 point
5. Let $X_t=\sigma W_t+ct$, where W_t is Brownian motion, σ , c >0. Choose the correct statements about this process:
$igsqcup X_t$ is weakly stationary
$oxed{igwedge} X_t$ has continuous trajectories
none of above
$igspace{1}{2} X_t$ is strictly stationary
$oxed{X_t}$ is differentiable
I, Mark R. Lytell, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code
Submit Quiz

r r