Cryptography notes CS 6260 (Fall 2012) and CS 7560 (Spring 2013)

Christopher Martin chris.martin@gatech.edu

1 Symmetric cryptography scheme

 $\begin{array}{c|cccc} \operatorname{Key \ space} & \mathcal{K} \\ \operatorname{Message \ space} & \mathcal{M} \\ \operatorname{Cypher \ space} & \mathcal{C} \\ \operatorname{Key \ generator} & \operatorname{Gen}: \phi \to \mathcal{K} \\ \operatorname{Encryption \ function} & \operatorname{Enc}: \{\mathcal{K} \times \mathcal{M}\} \to \mathcal{C} \\ \operatorname{Decryption \ function} & \operatorname{Dec}: \{\mathcal{K} \times \mathcal{C}\} \to \mathcal{M} \\ \end{array}$

2 Information theoretic security

Information theoretic security repels even resource-unbounded attackers. Shannon secrecy and perfect secrecy are equivalent definitions of information theoretic security for symmetric cryptography schemes.

Information security turns out to be a stronger definition than necessary, so generally we will instead consider computational security, which will impose computation bounds on attackers.

Shannon secrecy A scheme is Shannon-secret iff the ciphertext reveals no additional information about the message.

 \forall distribution D over $M, \bar{m} \in \mathcal{M}, \bar{c} \in \mathcal{C}$:

$$\Pr_{\substack{k \leftarrow \mathsf{Gen} \\ m \in D}} \left[\, m = \bar{m} \, | \, \mathsf{Enc}_k(m) = \bar{c} \, \right] = \Pr_{m \in D} \left[\, m = \bar{m} \, \right]$$

Perfect secrecy A scheme is perfectly secret iff the distributions of ciphertexts for any two messages are identical.

 $\forall m_1, m_2 \in \mathcal{M}, c \in \mathcal{C}$:

$$\Pr_{k_1 \leftarrow \mathsf{Gen}} \left[\mathsf{Enc}_{k_1}(m_1) = c \right] = \Pr_{k_2 \leftarrow \mathsf{Gen}} \left[\mathsf{Enc}_{k_2}(m_2) = c \right]$$

This model considers only a single message and ciphertext, so although a one-time pad is perfectly secret, a "two-time pad" is not.

Theorem 1. Perfect secrecy $\Rightarrow |\mathcal{K}| \geq |\mathcal{M}|$.

Proof. Let D be uniform over \mathcal{M} , and let $\bar{m} \in \mathcal{M}$, $\bar{c} \in \operatorname{Enc}_k(\bar{m})$, $\bar{k} \in \mathcal{K}$ be arbitrary. Let $S = {\operatorname{Dec}_k(\bar{c}) : k \in \mathcal{K}}$. $|S| < |\mathcal{M}|$ because Dec must be deterministic.

$$\Pr_{m \leftarrow D}[\ m = \hat{m}\] = \frac{1}{|\mathcal{M}|} \ \forall \ \hat{m} \in \mathcal{M} \ .$$

If we choose $\hat{m} \in \mathcal{M} \backslash S$, then

$$\Pr_{\substack{m \leftarrow D, \\ k \leftarrow \mathsf{Gen}}} \left[\ m = \hat{m} \ | \ \mathsf{Enc}_k(m) = \bar{c} \ \right] = 0 \ .$$

One-way functions

 $\mathbf{3}$

A function $f:\{0,1\}^* \to \{0,1\}^*$ is a one-way-function if:

Easy to compute: \exists a ppt algorithm F such that $F(x) = f(x) \ \forall \ x$.

Hard to invert: $\forall nuppt A$, the advantage

$$\Pr_{x \leftarrow \{0,1\}^n} [A(\underbrace{1^n}_{\text{helps bound } A}, f(x)) \in \underbrace{f^{-1}(f(x))}_{\text{preimages of } f(x)}] = \text{negl}(n)$$

The domain and range are given as $\{0,1\}^*$ for convenience, but any $D_n \to R_n$ is okay if D_n can be efficiently sampled.

Subset-sum f_{ss} : $(\mathbb{Z}_N)^n \times \{0,1\}^n \to (\mathbb{Z}_N)^n \times \mathbb{Z}_N$, $N = 2^n$ $f_{ss}(a_1,\ldots,a_n,b_1,\ldots,b_n) = (a_1,\ldots,a_n,S = \sum_{i=1}^n a_i b_i \bmod N)$ Subset-sum is NP-complete. This might be a one-way function.

Prime multiplication $f:(\text{primes}_n)^2 \to \mathbb{N}$ f(x,y) = xy might be a one-way function.

Weak one-way functions For a weak one-way function, any adversary has advantage $\leq 1 - \delta$ for some $\delta = \frac{1}{\text{poly}(n)}$. Multiplication might be a weak one-way function, because there are a lot of primes.

Hardness amplification We can use a weak one-way function to find a one-way function. If f is δ -OWF, then f' is strong-OWF where

$$f'(x_1,\ldots,x_m) = f(x_1),\ldots,f(x_m)$$

Assume \mathcal{A}' with non-negl advantange $\alpha(n)$ against f'.

$$G_i \equiv \left\{ x_i : \Pr_{\substack{x_j \leftarrow \{0,1\}^n, \\ j \neq i}} \left[\mathcal{A}'(f'(x' = (x_1 \dots x_m))) \text{ inverts } \right] \ge \frac{\alpha}{2m} \right\}$$

For $m \geq \frac{2n}{\delta}$, $\exists i$ such that $\frac{|G_i|}{2^n} \geq 1 - \delta/2$. Proof: Suppose not.

 $\Pr_{x'}[\mathcal{A}'(f'(x')) \text{ inverts }] \leq \Pr_{x'}[\mathcal{A}' \text{ inverts } \land \text{ every } x_i \in G]$

$$+ \sum_{i=1}^{m} \Pr[\mathcal{A}' \text{ succeeds } \wedge x_i \notin G]$$

$$\leq \Pr_x[\text{ every } x_i \in G_i] + \sum_{i=1}^{m} \Pr[\mathcal{A}' \text{ succeeds } | x_i \notin G]$$

$$\leq (1 - \frac{\delta}{2})^{2n/\delta} + \sum_{i=1}^{m} \frac{\alpha}{2m}$$

$$\leq 2^{-n} + \frac{\delta}{2} < \delta$$

Construct \mathcal{A} against $f: \mathcal{A}(\mathbf{1}^n, y = f(x_i)) \equiv \text{Repeat}$: Choose all of the x_j for $j \neq i$, invoke $\mathcal{A}'(f'(x'))$, win if \mathcal{A}' succeeds.

$$\Pr_{x_i}[\mathcal{A} \text{ inverts }] \approx \Pr_{x_i}[x_i \text{ is good}] \geq 1 - \delta/2$$

Family of one-way functions $F = \{f_s : D_s \rightarrow R_s\}$

Easy to sample a function: $\exists ppt \ S(\mathbf{1}^n)$ outputs some $f_s \in F$

Easy to sample from D_s

Easy to evaluate $f_s(x)$

Hard to invert: $\forall nuppt \mathcal{A}$,

$$\operatorname{Adv}_{F}(\mathcal{A}) = \Pr_{\substack{s \leftarrow S(\mathbf{1}^{n}), \\ x \leftarrow D_{s}}} \left[\mathcal{A}(\mathbf{1}^{n}, s, f_{s}(x)) \in f_{s}^{-1}(f_{s}(x)) \right] = \operatorname{negl}(n)$$

Family of subset-sum functions

$$F_{\mathrm{ss}} = \left\{ f_{\vec{a}}(b_1, \dots, b_n) = \sum_i a_i \cdot b_i \bmod N \right\}$$

Rabin's function $f_N: \mathbb{Z}_N^* \to \mathbb{Z}_N^*, N = pq$ for distinct primes p, q, q $f_N(x) = x^2 \bmod N$

Rabin OWF family \iff factoring is hard Chinese remainder theorem: $h: \mathbb{Z}_N \to \mathbb{Z}_p \times \mathbb{Z}_q$

p, q distinct primes, N = pq

 $h(x) = (x \bmod p, x \bmod q)$

Ring homomorphism: $h(x \cdot y) = h(x) \cdot h(y), h(x+y) = h(x) + h(y)$... is an isomorphism (a bijection)

 $|\mathbb{QR}_p^*| = (p-1)/2$ for any odd prime p: because $a^2 = (-a)^2 = (p-a)^2$ mod p. \mathbb{Z}_p is a field so there are ≤ 2 square roots for any element. Therefore $x \to x^2 \mod p$ is a 2-to-1 function $\mathbb{Z}_p^* \to \mathbb{Q}\mathbb{R}_p^*$

 $\mathbb{Z}_N^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^*, \text{ so } \mathbb{Q}\mathbb{R}_N^* \cong \mathbb{Q}\mathbb{R}_p^* \times \mathbb{Q}\mathbb{R}_q^* \Longrightarrow |QR_N^*| = \frac{p-1}{2}\frac{q-1}{2} = \frac{\phi(N)}{4}$ For $(a_p, a_q) \in \mathbb{Q}\mathbb{R}_p^* \times \mathbb{Q}\mathbb{R}_q^*, \ (\pm \sqrt{a_p}, \pm \sqrt{a_q})^2 = (a_p, a_q), \text{ so Rabin is 4-to-1.}$ Lemma: Given any $x_1, x_2 \in \mathbb{Z}_N^*$ such that $x_1^2 = x_2^2$ but $x_1 \neq \pm x_2$ mod N, the factorization of N can be computed efficiently. Proof: $x_1^2 = x_2^2$ mod p and mod q. So $x_1 = \pm x_2 \mod p$ and $x_1 = \pm x_2 \mod q$, but the \pm for these two statements cannot both be + or both -. Otherwise, by Chinese remainder theorem, $x_1 = x_2$. w.l.o.g. $x_1 = +x_2 \mod p$ and $x_1 = -x_2$ mod q. So $p \mid (x_1 - x^2)$ and $q \nmid (x_1 - x_2)$, and $gcd(N, x_1 - x_2) = p$.

If factoring is easy: $A(N = pq, y = x^2 \mod N) \equiv \text{Factor } N \text{ into } p, q.$ Compute $\sqrt{y \mod p} \in \mathbb{Z}_p^*$, $\sqrt{y \mod q} \in \mathbb{Z}_q^*$ (proof omitted). Reconstruct $\sqrt{y} \in \mathbb{Z}_N^*$ using Chinese remainder theorem bijection (proof omitted).

If Rabin inversion is easy: Assume $\exists \mathcal{B}$ for which $\Pr_{N \leftarrow pq, X \leftarrow \mathbb{Z}_N^*}[\mathcal{B}(N, y = x_0)]$ $x^2 \mod N \in \sqrt{y} \ge \alpha(n) \text{ non-negl}(n)$. Build $\mathcal{A}(N = pq)$: Choose $x \leftarrow \mathbb{Z}_N^*$, let $y = x^2 \mod N$. $\mathcal{B}(N, y) = x' \in \mathbb{Z}_N^*$ such that $(x')^2 = y \mod N$ (w.p. $\geq \alpha(n)$). If $x \neq \pm x' \mod N$ (w.p. 1/2), we can use the lemma. Overall, succeeds w.p. $\geq \alpha(n)/2$.

4 Psuedo-random generators (PRGs)

If \exists a PRG G with output length n+1, \exists a PRG G_{ℓ} with output length $\ell(n) = \text{poly}(n)$:

$$G_{\ell}(x) = (h(x), h(f(x)), h(f^{2}(x)), h(f^{3}(x)), \dots, h(f^{\ell-1}(x)))$$

4.1 PRG implies PRF

PRG with $\ell(n) = 2n$ implies a PRF family. Write $G(x) = G_0(x) \parallel G_1(x)$ and:

$$f_s(x) = G_{x_n}(\dots G_{x_2}(G_{x_1}(s)))\dots)$$

Given \mathcal{A} that distinguishes f, build $\mathcal{B}(z=z_0 \parallel z_1)$: When \mathcal{A} queries with x, answer with $G_{x_n}(\ldots G_{x_2}(z_{x_1})\ldots)$. If z=G(s), then \mathcal{B} simulates f_s . If $z \leftarrow \mathcal{U}_{2n}$, \mathcal{B} 's responses are computationally indistinguishable from random. TODO: Why isn't this argument that simple?

5 Pseudo-random functions

Uniformly random function U is a random variable chosen uniformly from the set of all functions $\{0,1\}^m \to \{0,1\}^n$.

Pseudo-random function A PRF belongs to a family of functions $F: \{0,1\}^{\ell} \times \{0,1\}^{m} \to \{0,1\}^{n}$. Write $F_{k}(\cdot)$ to denote $F(k,\cdot)$.

Distinguishing advantage Consider an adversary \mathcal{A} who knows F, having oracle access to F_k where k was chosen uniformly at random, trying to distinguish the oracle's responses from a random function. The distinguishing advantange of \mathcal{A} against F is

$$\mathrm{Adv}_F^{\mathrm{prf}}(\mathcal{A}) \equiv \Pr_{k \in \{0,1\}^\ell} \left[\, \mathcal{A}^{F_k} \, \, \mathrm{accepts} \, \right] - \Pr_U \left[\, \mathcal{A}^U \, \, \mathrm{accepts} \, \right] \, .$$

In time O(t), we can brute-force t keys to get advantage $t/2^{\ell}$.

(t,q)-bounded adversary $egin{array}{c|c} t & {
m Running\ time} \ q & {
m Number\ of\ queries} \end{array}$

 (t, q, ε) -secure PRF F is (t, q, ε) -secure iff \forall (t, q)-bounded A,

$$\mathrm{Adv}_F^{\mathrm{prf}}(\mathcal{A}) \leq \varepsilon$$
.

Examples of reasonable constants $\begin{array}{c|c} t & 2^{128} \\ q & 2^{64} \text{ or } 2^{32} \\ \varepsilon & 2^{-128} \end{array}$

Existence The existence of secure PRFs has not been proven, but there are some functions that have never been broken and are widely assumed to be PRFs.

6 Goldreich-Levin

Given $\overline{F}(x)$ OWF, define $F(x,r) \equiv (\overline{F}(x),r)$ for |x| = |r|. Then

$$h(x,r) \equiv \langle x,r \rangle \mod 2 = \sum_{j=1}^{n} x_j \cdot r_j \mod 2$$

is hard-core for F.

Suppose $\exists A$ and non-negl δ s.t.

$$\Pr_{x,r \leftarrow \{0,1\}^n} \left[\mathcal{A}(\overline{F}(x),r) = \langle x,r \rangle \right] \ge \frac{1}{2} + 2\delta$$

Then we'll construct \mathcal{B} s.t.

$$\Pr_{x \leftarrow \{0,1\}^n} [\ \mathcal{B}(\overline{F}(x)) \in \overline{F}^{-1}(\overline{F}(x))\] \ge \delta$$

Let $\mathcal{O}(\cdot) \equiv \mathcal{A}(y, \cdot)$.

Define $SC(z, \{r\}_m \in \{0,1\}^n, \{b\}_m \in \{0,1\})$ for $m = O(\log n)$. Assume that $b_j = \langle x, r_j \rangle$ (we will end up trying all the $\{b\}$).

For each subset $S \subseteq [m]$: Let $b_S = \sum_{j \in S} b_j$ and $r_s = \sum_{j \in S} r_j$. So $\langle x, r_s \rangle = \left\langle x, \sum_{j \in S} r_j \right\rangle = \sum_{j \in S} \left\langle x, r_j \right\rangle = \sum_{j \in S} b_j = b_S$. Then $c_S \leftarrow \mathcal{O}(z + r_s) - b_S$. Return the majority value of c_S .

For each $j \in [m]$ choose $r_j \leftarrow \{0,1\}^n$ randomly.

For each $\{b\} \in \{0, 1\}^m$:

For each $k \in [n]$ let $x'_k \leftarrow SC(e_k, \{r\}_m, \{b\}_m)$ Let $x' = x'_1 \dots x'_n$. Output x' if it is an inversion.

Over random choice of the r_j , the r_S are uniformly random and pairwise independent for all $S \neq \phi$.

 $X_S \equiv \operatorname{ind}(\mathcal{O}(z+r_s) \text{ is correct}(=\langle x,z+r_s\rangle))$ We're interested in whether $X = \sum_{S\subseteq [m]} X_S > \frac{m}{2}$ **Local list-decoding the Hadamard code** With a weak SC and $<\frac{1}{4}$ fraction of errors, can recover the unique x. GL says with strong SC at $\frac{1}{2} - \delta$ fraction of errors, we can recover all possible x.

7 Reduction

Karp (many-to-one) reduction Reduction from A to B transforms an instance of A to an instance of B.

Cook (Turing) reduction Reduction from A to B solves A using a subroutine that solves B.

Key recovery security F is (t, q, ε) -kr-secure iff $\forall (t, q)$ -bounded A,

$$\mathrm{Adv}_F^{\mathrm{kr}} \equiv \Pr_{k \in \{0,1\}^\ell} \left[\, \mathcal{A}^{F_k(\cdot)} \text{ outputs } k \, \right] \leq \varepsilon \; .$$

Theorem 2. If F is a (t, q, ε) -secure PRF for $q < 2^m$, then F is (t', q', ε') -kr-secure for $t' \approx t$, q' = q - 1, $\varepsilon' = \epsilon + 2^{-n}$.

Proof. Cook reduction. For any kr-adversary \mathcal{A}' running in time t' and making $q' < 2^m$ queries, let \mathcal{A} be the PRF adversary:

$$k' \leftarrow \mathcal{A}'(\mathcal{O})$$

 $x \leftarrow$ a value that \mathcal{A}' did not query with
 $y \leftarrow \mathcal{O}(x)$
Accept iff $y = F_{k'}(x)$

 \mathcal{A} runs in time $t \approx t'$ and makes q = q' + 1 queries.

$$\operatorname{Adv}_F^{\operatorname{prf}}(\mathcal{A}) \ge \operatorname{Adv}_F^{\operatorname{kr}}(\mathcal{A}') - 2^{-n}$$
.

Example PRF construction For PRF $F: \{0,1\}^{\ell} \times \{0,1\}^{n} \to \{0,1\}^{n}$, $F'_{k}(x) \equiv F_{k}(F_{k}(x)) ||F_{k}(\overline{F_{k}(x)})$

Theorem 3. F' is $(t, \frac{q}{3}, \varepsilon + \frac{q^2}{2^n})$ -secure.

Proof. Let \mathcal{A}' be an attacker on F'. Define \mathcal{A} as:

$$\mathcal{O}' \equiv \mathcal{O}(\mathcal{O}(x)) \| \mathcal{O}(\overline{\mathcal{O}(x)})$$
 (done with 3 queries to \mathcal{O})
Accept iff $\mathcal{A}'^{\mathcal{O}'}$ accepts

 $\mathcal{O}'(x)$ simulates F' perfectly, so $\Pr_{k} \left[\mathcal{A}^{F_{k}} \right] = \Pr_{k} \left[\mathcal{A'}^{F'_{k}} \right]$.

 \mathcal{O}' does not simulate U perfectly, but it is close. We have independence as long as all of the $\mathcal{O}(x)$, $\overline{\mathcal{O}(x)}$ are distinct. Using union bound, this probability $\leq \frac{q^2}{2^n}$

8 Pseudo-random permutations

In a permutation family $F: \{0,1\}^{\ell} \times \{0,1\}^n \to \{0,1\}^n$, every F_k is bijective. A secure PRP is computationally indistinguishable from a uniformly random permutation.

Strong PRP / block cipher Attackers with oracle access to both F and F^{-1} have small advantage.

$$\mathrm{Adv}_F^{\mathrm{sprp}} \equiv \Pr_k \left[\mathcal{A}^{F_k, F_k^{-1}} \text{ accepts} \right] - \Pr_P \left[\mathcal{A}^{P, P^{-1}} \text{ accepts} \right] \leq \varepsilon$$

PRF/PRP switching lemma If G is a (t, q, ε) -secure PRP (not necessarily strong), then F is a $(t, q, \varepsilon + \frac{q^2}{2^{n+1}})$ -secure PRF.

9 Secure symmetric encryption

Perfect secrecy is impossible where $m > \ell$, but computational security is possible with pseudorandom objects.

Electronic code block (ECB) Suppose F is a secure PRP $\{0,1\}^{\ell} \times \{0,1\}^n \to \{0,1\}^n$ with F and F^{-1} efficiently computable.

Gen
$$k \leftarrow \{0,1\}^{\ell}$$

Enc $M' \leftarrow \text{Pad message } M \text{ with 1 and some 0s to a multiple of } n.$
Break $M' \text{ into } n\text{-bit blocks } m_0, m_1, \dots$
Apply F_k to each of the $\{m\}$
Dec Apply F'_k to each of the $\{m\}$

Repeated blocks give repeated ciphertext. Never use ECB.

Security model Adversary, seeing all cipthertexts and having oracle access to Enc_k , learns nothing about plaintexts (except message length, which is unavoidable).

 $SE = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is (t, σ, ε) -IND-CPA secure ("indistinguishable under chosen-plaintext attack") iff $\forall (t, \sigma)$ -bounded \mathcal{A} ,

$$\begin{split} \operatorname{Adv}^{\operatorname{indcpa}}_{SE}(\mathcal{A}) &\equiv \Pr_{k \leftarrow \operatorname{\mathsf{Gen}}} \left[\, \mathcal{A}^{L_k} \, \operatorname{accepts} \, \right] - \Pr_{k \leftarrow \operatorname{\mathsf{Gen}}} \left[\, \mathcal{A}^{R_k} \, \operatorname{accepts} \, \right] \,, \\ L_k(m,m') &\equiv \operatorname{\mathsf{Enc}}_k(m) \, \operatorname{if} \, |m| = |m'| \, \operatorname{else} \, \bot \,, \\ R_k(m,m') &\equiv \operatorname{\mathsf{Enc}}_k(m') \, \operatorname{if} \, |m| = |m'| \, \operatorname{else} \, \bot \,, \end{split}$$

t is the running time, and σ total length of all message queries.

Equivalent definition: Enc_k is computationally indistinguishable from a zero-encrypting oracle $Z_k \equiv \mathsf{Enc}_k(\mathsf{0}^m)$.

Query repetition Enc in an IND-CPA-secure scheme should not always return the same ciphertext for multiple encryptions of the same message. This attack has advantage 1 against any deterministic and stateless scheme:

$$\begin{vmatrix} c \leftarrow \mathcal{O}(\langle 0 \rangle, \langle 0 \rangle) \\ c' \leftarrow \mathcal{O}(\langle 0 \rangle, \langle 1 \rangle) \\ \text{Accept iff } c = c' \end{vmatrix}$$

10 Block cipher modes

Stateful counter mode (CTRS) Let F be a PRF with m = n.

Gen
$$k \leftarrow \{0,1\}^{\ell}$$
, $counter \leftarrow 0$
Enc echo $counter$
for each message block m :
echo $F_k(counter) \oplus m_i$
increment $counter$

CTRS is not used much, because preserving *counter* is difficult.

Theorem 4. If F is a (t, q, ε) -secure PRF, then CTRS(F) is $(t' \approx t, qn, 2\varepsilon)$ -IND-CPA secure.

Proof. We will show using a hybrid argument that $\forall (t', \sigma)$ -bounded \mathcal{A}' against CTRS(F) where $\sigma \leq n \, 2^m$, there is a $(t \approx t', q = \sigma/n)$ -bounded attacker \mathcal{A} attacking F such that $Adv_{CTRS(F)}^{indepa}(\mathcal{A}') \leq 2 \, Adv_F^{prf}(\mathcal{A})$.

Given \mathcal{O} that is either F or U:

$$\mathcal{A} \equiv \mathcal{A}_L \equiv \begin{vmatrix} counter \leftarrow 0 \\ \mathcal{O}'(m, m') \equiv \begin{vmatrix} \text{If } |m| = |m'|, \text{ return } \bot \\ \text{Split } m \text{ into blocks } m_0, m_1, \dots, m_{t-1} \\ y_i \leftarrow \mathcal{O}(counter + i) \ \forall \ i \in [0, t) \\ \text{Return } counter \| \text{join}_i(m_i \oplus y_i) \\ counter \leftarrow counter + t \end{vmatrix}$$
Also define $\mathcal{A}'^{\mathcal{O}'}$ accepts

Also define A_R similarly using m' instead of m.

 $\mathcal{A}_{L}^{F_{k}}$ perfectly simulates L_{k} to \mathcal{A}' . \mathcal{A}_{L}^{U} does not simulate R_{k} , but it does simulate an oracle \$:

$$\$(m,m') \equiv \begin{vmatrix} \text{If } |m| = |m'|, \text{ return } \bot \\ \text{Return } counter \| [\text{random bits}] \\ counter \leftarrow counter + \text{number of blocks} \end{vmatrix}$$

$$P_{\ell} = \Pr_{k}[\mathcal{A}_{L}^{F_{k}}] = \Pr_{k}[\mathcal{A}^{\prime L_{k}}]$$

$$P_{r} = \Pr_{k}[\mathcal{A}_{R}^{F_{k}}] = \Pr_{k}[\mathcal{A}^{\prime R_{k}}]$$

$$P_{\$} = \Pr_{k}[\mathcal{A}_{L}^{U}] = \Pr_{k}[\mathcal{A}_{R}^{U}] = \Pr_{k}[\mathcal{A}^{\prime \$}]$$

$$Adv_{\text{CTRS}(F)}^{\text{indcpa}}(\mathcal{A}') = |P_{\ell} - P_{r}|$$

$$\leq |(P_{\ell} - P_{\$}) + (P_{r} - P_{\$})| \quad \text{(triangle inequality)}$$

$$< \varepsilon + \varepsilon = 2\varepsilon$$

Counter modes

 $adv^{indcpa} \le 2 adv^{prf}$ CTRS One global counter CTR\$ Random IV for each message CTR\$\$ Random IV for each block

Cipher block chaining (CBC) $C_0 = IV, C_i = F_k(C_{i-1} \oplus m_i)$

Dec requires being able to calculate F^{-1} .

If F is a (t, q, ε) -secure PRF, then CBC[F] is $(\approx t, \sigma = qn, 2\varepsilon + q^2/2^n)$ ind-cpa-secure. The proof requires showing that for U, all inputs to U are distinct (minus a birthday term).

11 Message authentication code (MAC)

Alice sends message m and $t \leftarrow \mathsf{Tag}_k(m)$. Eve intercepts (m,t) and delivers (m',t') to Bob. Bob runs $\mathsf{Ver}_k(m',t')$.

$$\begin{aligned}
&\text{Ver}_k \text{ returns} \begin{cases}
m & \text{if } t' \text{ is a valid tag (Ver}_k \text{ "accepts")} \\
&\perp & \text{otherwise (Ver}_k \text{ "rejects")}
\end{aligned}$$

Eve has access to a Tag_k oracle and can make many attempts on Ver . Eve "wins" if Ver accepts on an m' not previously queried to Tag_k .

Conerns ignored by this model

Dropped messages

Replay attacks ("freshness" of messages)

Message sequence

Unforgeability under chosen message attack

$$\mathrm{Adv}^{\mathrm{ufmca}}_{\mathrm{MAC}}(\mathcal{A}) \equiv \Pr_{k \leftarrow \mathsf{Gen}} \left[\ \mathcal{A}^{\mathsf{Tag}_k, \mathsf{Ver}_k} \ \text{``wins''} \ \right]$$

MAC is $(t, q_t, q_v, \varepsilon)$ -uf-cma-secure iff advantage of an attacker bounded by time t, number of Tag queries q_t , and number of Ver queries q_v is less than ε .

Examples of reasonable constants $\begin{array}{c|c} t & 2^{80} \text{ or } 2^{128} \\ q_v, q_t & 2^{40} \text{ or } 2^{56} \\ \varepsilon & 2^{-40} \text{ or } 2^{-56} \end{array}$

Brute-force MAC attacks

Key search: Get a few oracle tags, and guess k. $Adv = t/2^{\ell}$.

Tag search: $Adv = t/2^s$ where s is the tag length.

PRF-based MAC $Tag_k \equiv F_k$

 $\forall (t, q_t, q_v)$ -bounded $\mathcal{B}, \exists (\approx t, q_t + q_v)$ -bounded \mathcal{A} such that

$$\operatorname{Adv}_{\operatorname{PRFMAC}[F]}^{\operatorname{ufcma}}(\mathcal{B}) \leq \operatorname{Adv}_F^{\operatorname{prf}}(\mathcal{A}) + q_v/2^n$$
.

CBC-MAC For a fixed t, and $F : \{0,1\}^{nt} \to \{0,1\}^n$, CBC-MAC[F] is secure, losing $(qt)^2/2^n$ advantage from that of F.

Cipher-based MAC (CMAC) Adds an extra step to the end of CBC-MAC to make it secure for arbitrary-length messages.

Precompute $k_1, k_2 \in \{0, 1\}^n$ using $F_k(0^m)$.

$$m'_t \leftarrow \begin{cases} m'_t \oplus k_1 & : |m'_t| = n \\ m' || 000 \dots \oplus k_2 & : |m'_t| < n \end{cases}$$

Run $m_1 \| \dots \| m_t$ through CBC-MAC.

12 Combining authenticity and privacy

Integrity of ciphertexts (INT-CTXT) $Dec_k(c)$: returns decryption of c, or \bot if c is invalid.

 $SE = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is INT-CTXT secure iff \forall bounded \mathcal{A} ,

$$\mathrm{Adv}^{\mathrm{int\text{-}ctxt}}_{SE}(\mathcal{A}) \equiv \Pr_{k \leftarrow \mathsf{Gen}} \left[\ \mathcal{A}^{\mathsf{Enc}_k, \mathsf{Dec}_k} \ \mathrm{wins} \ \right] < \varepsilon \ .$$

UF-CMA-security does not necessarily give INT-CTXT security. For example: If the output of Tag has a spurious bit that is ignored by Ver. So we require a stronger condition:

Strong unforgeability (SUF-CMA) Winning is redefined as: Ver_k accepts (m', t') that was not previously a query/answer pair to Tag_k .

Bad idea: Encrypt-and-tag $AEnc \equiv EEnc_{k_e}(m)||Tag_{k_m}(m)$. The tag could reveal information about m.

Bad idea: Tag-then-encrypt AEnc $\equiv \mathsf{EEnc}_{k_e}(m||\mathsf{Tag}_{k_m}(m))$. The ciphertext might be forgeable (for example, if EEnc appends a spurious bit).

Good idea: Encrypt-then-tag $AEnc \equiv EEnc_{k_e}(m) \| Tag_{k_m}(EEnc_{k_e}(m)).$

Indistinguishability under chosen ciphertext attack (IND-CCA) IND-CPA \land INT-CTXT \Rightarrow IND-CCA.

13 Summary of symmetric crypto games

		Oracles	Goal
ıger	IND-CPA	L/R	Left or right?
Stronger	IND-CCA	$ m L/R,~ m D\hat{e}c$	
Stronger	INT-PTXT	Enc,D	D returns new plaintext
	INT-CTXT		D returns non- \perp on new ciphertext
\downarrow			
Stronger	UF-CMA	Tag, Ver	Ver(m,t): m has never been tagged
	SUF-CMA		Ver(m,t):(m,t) has never been a Tag pair
\downarrow		•	•

14 Hashing

Hash function $h: D \to \{0,1\}^n, D > 2^n$

Collision $x, x' \in D : h(x) = h(x') \land x \neq x'$

 $\textbf{Hash family} \quad H: \{\mathtt{0},\mathtt{1}\}^\ell \times D \to \{\mathtt{0},\mathtt{1}\}^n$

Collision resistance (CR) H is (t, ε) -collision resistant if $Adv_H^{cr}(A) \leq \varepsilon$ \forall t-bounded A.

$$\mathrm{Adv}_H^{\mathrm{cr}}(\mathcal{A}) = \Pr_{k \leftarrow \{0,1\}^\ell} [\ \mathcal{A}(k) \ \mathrm{outputs} \ \mathrm{a} \ \mathrm{collision} \ \mathrm{in} \ H_k \]$$

Hash output lengths need to be longer than encryption key lengths because brute-force attacks can test $\approx q^2$ pairs in q hashes ("birthday attack").

Second preimage resistance / target collision resistance (TCR) Given x, attacker must find x' such that x, x' is a collision.

$$\operatorname{Adv}_{H}^{\operatorname{tcr}}(\mathcal{A}) = \Pr_{\substack{k \leftarrow \{0,1\}^{\ell}, \\ x \leftarrow D}} [\mathcal{A}(k,x) \text{ outputs a collision }]$$

where D is some distribution over the message space.

Brute force attack does not have a birthday advantage in this game. $CR \Rightarrow TCR$.

One-wayness (OW)

$$\operatorname{Adv}_{H}^{\operatorname{ow}}(\mathcal{A}) = \Pr_{\substack{k \leftarrow \{0,1\}^{\ell}, \\ x \leftarrow D}} \left[\mathcal{A}(k, H_k(x)) \text{ outputs } x' : H_k(x') = H_k(x) \right]$$

 $TCR \Rightarrow OW$ for "high-entropy" D (so that $H_k(x)$ reveals very little about x).

Merkle-Damgård (MD) transform $MD[h]_k(M \in \{0,1\}^*)$ Uses a compression function $h_k : \{0,1\}^\ell \times \{0,1\}^{b+n} \to \{0,1\}^n$ Break M into M_1, \ldots, M_t s.t. $||M_i|| = b$

$$y_{1} \leftarrow h_{k}(M_{1} \parallel \langle 0 \rangle)$$

$$y_{2} \leftarrow h_{k}(M_{2} \parallel y_{1})$$

$$\vdots$$

$$y_{i} \leftarrow h_{k}(M_{i} \parallel y_{i-1})$$

$$\vdots$$

$$y_{t} \leftarrow h_{k}(M_{t} \parallel y_{t-1})$$

$$y \leftarrow h_{k}(\langle t \rangle \parallel y_{t})$$

If h is CR, then MD[h] is CR Let \mathcal{B} attack MD[h] in CR game. We can build \mathcal{A} attacking h in CR game. $\mathcal{A}(k \in \{0,1\}^{\ell})$ will use a collision x, x' in MD[h_k] to find a collision in h_k.

If x, x' have different numbers of blocks: Then $\langle t \rangle \parallel M_t, \langle t' \rangle \parallel M_t'$ is a collision in h_k .

Otherwise: Walk backward through the MD process to find a step where $M_i \parallel y_{i-1} \neq M'_i \parallel y'_{i-1}$.

HMAC Secure MAC based on hash function.

 $\operatorname{HMAC}_k(m) = H((k \oplus \operatorname{opad}) \| H((k \oplus \operatorname{ipad}) \| m))$ where k is the MAC key padded to the length of the compression function, ipad and opad are fixed strings of the same length.

Only TCR security of H is required for the security of HMAC.

15 Groups

Group axioms

G is closed under \cdot

$$1 \cdot a = a \cdot 1 = a$$

Every element of G has a unique multiplicative inverse

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

The group operator \cdot is not necessarily commutative.

Examples of groups

Integers under addition

Invertible matrices with real entries under multiplication

$$\mathbb{Z}_N = \{0, 1, \dots, N-1\}$$
 under modular addition

$$\mathbb{Z}_N^* = \{a \in \mathbb{Z}_N : \gcd(a, N) = 1\}$$
 under multiplication (mod N)

 \mathbb{Z}_N^* is closed under · Proof sketch:

$$gcd(a \cdot b, N) = 1 \implies gcd(ab \mod N, N) = 1.$$

 \mathbb{Z}_N^* has unique inverses Proof sketch:

Use the fact
$$gcd(a, N) = 1 \iff \exists x, y \in \mathbb{Z} : ax + Ny = 1.$$

 $ax = 1 - Ny = 1 \mod N \implies x = a^{-1} \mod N.$

Generator $g \in G : \{g^0, g^1, g^2, \ldots\} = G$

If G is finite, then $a^{|G|} = 1 \ \forall \ a \in G$.

g is a generator iff $g^i \neq 1 \forall 0 < i < |G| : i \mid G$

For a prime p, \mathbb{Z}_p^* is finite and cyclic (has a generator). Its order is p-1.

Order of $a \in G$ is $(\min i > 0 : a^i = 1)$. order(a) divides |G|.

How many generators? If $g \in G$ is a generator and i is coprime with |G|, then g^i is a generator. Therefore we have $|\mathbb{Z}_{p-1}^*|$ generators.

16 Diffie-Hellman protocol (1976)

For establishing a secret key without meeting.

A chooses $a \in G$ and transmits g^a . B chooses $b \in G$ and transmits g^b . The secret is g^{ab} .

Requires a multiplicative group (G, \cdot) and a generator $g \in G$, and the discrete log problem must be intractable.

Calculations required for implementation Multiply huge numbers ($\approx 2^{4096}$), exponentiate huge numbers, sample huge primes, find a generator of \mathbb{Z}_p^* .

Multiplication Simple grade-school multiplication algorithm followed by Euclid's division algorithm. Both are quadratic in bit length.

Exponentiation Repeated squaring. $O(\lg^3 a)$ multiplications.

Primality testing Miller-Rabin test runs in $O(\lg^3 p)$, randomized with false positives. Alternately, AKS is a deterministic test running in $O(\lg^6 p)$. Approximately 1/k of k-bit numbers are prime.

Generator testing g is a generator if $g^{(p-1)/i} = 1 \forall$ prime divisors i of p-1. Since factoring is hard, we must generate p such that we know the factors of p-1...

Sophie Germain (safe) primes Pick a prime q and let p = 2q + 1. Repeat until p is prime. It appears that $1/k^2$ of k-bit numbers are safe primes, although this is unproven.

Uniformity of shared secret We want $ab \mod (p-1)$, and therefore also g^{ab} , to be uniformly distributed. If $G = \mathbb{Z}_p^*$, this is not the case; ab is even with probability 3/4, and the $\mod (p-1)$ operation does not affect this parity (because p-1 is even). But if G has prime order q, then $ab \mod q$ is very nearly uniform (ab = 0 with probability 2/q, anything else with probability 1/(q-1)).

Quadratic residue The subgroup of quadratic residues in \mathbb{Z}_p^* is $\mathbb{Q}\mathbb{R}_p^* = \{(g^2)^0, (g^2)^1, (g^2)^2, \dots, (g^2)^{(p-3)/2}\}$. For p = 2q+1, $|\mathbb{Q}\mathbb{R}_p^*| = q$, so if p is a safe prime, $|\mathbb{Q}\mathbb{R}_p^*|$ has prime order. g^2 is a generator for $\mathbb{Q}\mathbb{R}_p^*$.

Jacobi symbol For $y \in \mathbb{Z}_p^*$, Jacobi symbol is 1 if $y \in \mathbb{QR}_p^*$, and -1 otherwise. $y \in \mathbb{QR}_p^* \iff y^{(p-1)/2} = 1$. Proof: $y^{(p-1)/2} = g^{i(p-1)/2}$ for some $i = 2i' + b, \ b \in \{0, 1\}$. Use the fact that $g^{(p-1)/2} = -1$. $y = g^{b(p-1)/2} = \{1 \text{ if } b = 0, \ -1 \text{ if } b = 1\}$.

17 Asymmetric encryption

Scheme AE = (Gen, Enc, Dec)

$$(pk, sk) \leftarrow \mathsf{Gen}$$

$$c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m) = \mathsf{Enc}(\mathsf{pk}, m)$$
 where $m \in M_{\mathsf{pk}}$, and M_{pk} is some group m or $\bot \leftarrow \mathsf{Dec}_{\mathsf{sk}}(c)$

Gen and Enc are randomized. Dec is deterministic.

IND-CPA-security

$$\mathrm{Adv}_{\mathrm{AE}}^{\mathrm{indcpa}}(\mathcal{A}) \equiv \Pr_{(\mathrm{pk},\mathrm{sk}) \leftarrow \mathsf{Gen}} \left[\mathcal{A}^{L_{\mathrm{pk}}}(\mathrm{pk}) \right] - \Pr_{(\mathrm{pk},\mathrm{sk}) \leftarrow \mathsf{Gen}} \left[\mathcal{A}^{R_{\mathrm{pk}}}(\mathrm{pk}) \right]$$

where $L_{pk}(m_L, m_R) = \mathsf{Enc}_{pk}(m_L)$ and $R_{pk}(m_L, m_R) = \mathsf{Enc}_{pk}(m_R)$.

IND-CCA-security Like IND-CPA, but the attacker gets another oracle:

$$D_{\rm sk}(c) = \begin{cases} {\sf Dec}_{\rm sk}(c) & \text{if } c \text{ was not returned by L/R oracle} \\ \bot & \text{otherwise} \end{cases}$$

One encryption query \forall ind-cpa attacker \mathcal{B} against AE, \exists an ind-cpa attacker \mathcal{A} against AE making $\leq q$ Enc queries such that $\mathrm{Adv_{AE}^{indcpa}}(\mathcal{B}) \leq q \, \mathrm{Adv_{AE}^{indcpa}}(\mathcal{A})$. (Also, same for ind-cca with 1 encryption query and unlimited D_{sk} queries.) The analogous claim is not true in a symmetric key setting.

ElGamal Asymmetric encryption scheme similar to Diffie-Hellman.

Gen: Choose group G of order n, generator g. Choose $x \leftarrow \mathbb{Z}_n$. Output $(\operatorname{sk} = x, \operatorname{pk} = (G, G, X = g^x))$.

$$\mathsf{Enc}_{\mathsf{pk}}(m \in G)$$
: Choose $y \leftarrow \mathbb{Z}_n$. Output $c = (Y = g^y, \overbrace{m \cdot X^y}^{g^{xy}})$.

$$\operatorname{Dec}_{\operatorname{sk}}(\overset{g^y}{Y},\overset{m\cdot g^{xy}}{Z}) \colon \operatorname{Output} \overset{m\cdot g^{xy}}{Z} \cdot (\overset{g^{xy}}{Y^x})^{-1} = m.$$

Not ind-cpa-secure for $G = \mathbb{Z}_p^*$. Attack: $(Y, Z) \leftarrow O(1, g)$. Accept if $Z^{(p-1)/2} = 1$, reject if -1. $\Pr[\mathcal{A}^L] = \Pr[1 \cdot g^{xy} \text{ is square}] = 3/4$. $\Pr[\mathcal{A}^R] = \Pr[g^{xy+1} \text{ is square}] = 1/4$.

Is ind-cpa-secure under assumption that DDH (decision Diffie-Hellman) is hard.

Is not cca-secure. But the Cramer-Shoup scheme is, using two applications of ElGamal, under the DDH assumption.