

复变函数与积分变换

张神星 (合肥工业大学)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.github.io

第二章 解析函数

1 解析函数的概念

第一节 解析函数的概念

- ■可导函数
- ■可微函数
- 解析函数

• 由于 $\mathbb C$ 和 $\mathbb R$ 一样是域,因此我们可以像一元实变函数一样去定义复变函数的导数和微分。

定义 ()

- 设 w = f(z) 的定义域是区域 D, $z_0 \in D$.
- 若极限

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

存在, 则称 f(z) 在 z_0 可导. 这个极限值称为 f(z) 在 z_0 的导数, 记作 $f'(z_0)$.

• 若 f(z) 在区域 D 内处处可导, 称 f(z) 在 D 内可导.

例: 线性函数的不可导性

例

函数
$$f(z) = x + 2yi$$
 在哪些点处可导?

解答

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{(x + \Delta x) + 2(y + \Delta y)i - (x + 2yi)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\Delta x + 2\Delta yi}{\Delta x + \Delta yi}.$$

当 $\Delta x = 0, \Delta y \to 0$ 时, 上式 $\to 2$; 当 $\Delta y = 0, \Delta x \to 0$ 时, 上式 $\to 1$. 因此该极 跟不左左 f(x) 外外不可呈

例:复变函数的导数

练习

函数 f(z) = x - yi 在哪些点处可导?

答案

处处不可导.

例

求 $f(z) = z^2$ 的导数.

解答

求导运算法则

和一元实变函数情形类似, 我们有如下求导法则:

定理

- (c)' = 0, 其中 c 为复常数;
- $(z^n)' = nz^{n-1}$, 其中 n 为整数;
- $(f \pm g)' = f' \pm g'$, (cf)' = cf';
- $(fg)' = f'g + fg', \quad \left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2};$
- $[f(g(z))]' = f'[g(z)] \cdot g'(z)$;
- $g'(z) = \frac{1}{f'(w)}, g = f^{-1}, w = g(z).$

可导蕴含连续

定理

若 f(z) 在 z_0 可导,则 f(z) 在 z_0 连续.

该定理的证明和实变量情形完全相同.

证明

设

$$\Delta w = f(z_0 + \Delta z) - f(z_0),$$

则

$$\lim_{\Delta z \to 0} \Delta w = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \Delta z$$
$$= \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} \cdot \lim_{\Delta z \to 0} \Delta z = f'(z_0) \cdot 0 = 0.$$

复变函数的微分也和一元实变函数情形类似.

定义

若存在常数 A 使得函数 w = f(z) 满足

$$\Delta w = f(z_0 + \Delta z) - f(z_0) = A\Delta z + o(\Delta z),$$

其中 $o(\Delta z)$ 表示 Δz 的高阶无穷小量, 则称 f(z) 在 z_0 处可微, 称 $A\Delta z$ 为 f(z) 在 z_0 的微分, 记作 $\mathrm{d} w = A\Delta z$.

和一元实变函数情形一样, 复变函数的可微和可导是等价的, 且 $\mathrm{d} w = f'(z_0)\Delta z,\,\mathrm{d} z = \Delta z.$ 故 $\mathrm{d} w = f'(z_0)\,\mathrm{d} z,\,f'(z_0) = \frac{\mathrm{d} w}{\mathrm{d} z}.$

定义

- 若函数 f(z) 在 z_0 的一个邻域内处处可导,则称 f(z) 在 z_0 解析.
- 若 f(z) 在区域 D 内处处解析,则称 f(z) 在 D 内解析,或称 f(z) 是 D 内的一个解析函数.
- 若 f(z) 在 z_0 不解析, 则称 z_0 为 f(z) 的一个奇点.

无定义、不连续、不可导、可导但不解析, 都会导致奇点的产生.

由于区域 D 是一个开集, 其中的任意 $z_0 \in D$ 均存在一个包含在 D 的邻域. 所以 f(z) 在 D 内解析和在 D 内可导是等价的.

若 f(z) 在 z_0 解析, 则 f(z) 在 z_0 的一个邻域内处处可导, 从而在该邻域内解析. 因此 f(z) 解析点全体是一个开集.

解析函数

练习

函数 f(z) 在点 z_0 处解析是 f(z) 在该点可导的(A).

(A) 充分条件

(B) 必要条件

(C) 充要条件

(D) 既非充分也非必要条件

答案

解析要求在 20 的一个邻域内都可导才行.

例

研究函数 $f(z) = |z|^2$ 的解析性.

解答

由于

$$\frac{f(z+\Delta z)-f(z)}{\Delta z} = \frac{(z+\Delta z)(\overline{z}+\overline{\Delta z})-z\overline{z}}{\Delta z} = \overline{z}+\overline{\Delta z}+z\frac{\Delta x-\Delta yi}{\Delta x+\Delta yi},$$

- (1) 若 z=0, 则当 $\Delta z \rightarrow 0$ 时该极限为 0.
- (2) 若 $z \neq 0$, 则当 $\Delta y = 0$, $\Delta x \rightarrow 0$ 时该极限为 $\overline{z} + z$; 当 $\Delta x = 0$, $\Delta y \rightarrow 0$ 时该极限为 $\overline{z} z$. 因此此时极限不存在.

按 f(~) 付左 ~ _ ∩ 外可呈 从五外外不解析