Como resolver o problema do percurso do cavalo?

Antes de aprender, passo a passo, como resolver o Problema do Percurso do Cavalo (PPC), que tal entender como chegamos até aqui?

Este desafio, que parece simples à primeira vista, inspirou muitas pesquisas e análises profundas. A nossa solução foi construída com base em conceitos matemáticos, estratégias inteligentes e muita experimentação e queremos compartilhar com você esse caminho!

Prepare-se para conhecer os bastidores da resolução, entender a lógica por trás do percurso e, depois, aplicar tudo isso para completar o tabuleiro com sucesso.

Uma investigação sobre os operadores genéticos no ALGORITMO EVOLUTIVO APLICADO AO PROBLEMA DO PERCURSO DO CAVALO

AUTORAS E PUBLICAÇÃO

MURIELLY O. NASCIMENTO

Universidade Federal de Uberlândia

Christiane Regina S. Brasil

Universidade Federal de Uberlândia

O artigo foi publicado na Revista Brasileira de Computação Aplicada, em novembro de 2024.

Antes de entender como resolver o Problema do Percurso do Cavalo (PPC), é importante conhecer as ideias que nos ajudaram a encontrar a solução. Primeiro, vamos descobrir o que é Computação Bioinspirada, depois, vamos entender os Algoritmos Evolutivos. E, claro, vamos explorar o que realmente é o PPC — um desafio clássico que une lógica, estratégia e muita criatividade!

Computação Bioinspirada

A Computação Bioinspirada é uma área da informática que cria soluções baseadas em como a natureza funciona. Por exemplo, ela usa ideias como a evolução das espécies para resolver problemas muito difíceis, que demorariam tempo demais se fossem resolvidos com métodos tradicionais.

Esses problemas são chamados de problemas de alta complexidade — ou seja, são tão complicados que, conforme eles crescem, fica quase impossível encontrar a melhor resposta com rapidez. Por isso, ao invés de tentar achar a única solução perfeita, a computação bioinspirada busca boas soluções, de forma mais rápida e eficiente.

ALGORITMOS EVOLUTIVOS

Os Algoritmos Evolutivos (AEs), imitam a Teoria da Evolução de Darwin: assim como na natureza os seres mais fortes sobrevivem e passam suas características para os filhos, nesses algoritmos as melhores soluções são escolhidas para gerar novas soluções, cada vez melhores.

Exemplo: Imagine um grupo de várias possíveis soluções para um problema. As melhores "sobrevivem" e são combinadas entre si, gerando novas soluções, que são testadas novamente. Esse processo se repete várias vezes, até encontrar uma solução muito boa.

Por que os Algoritmos Evolutivos são importantes? Esses AEs não buscam só uma solução perfeita, mas geram várias boas soluções. Além disso, conseguem resolver problemas muito difíceis, que cresceriam muito em custo e tempo com métodos comuns. É por esses motivos, eles são muito importantes.

O QUE É O PPC?

Imagine um tabuleiro de xadrez... mas, desta vez, ele pode ter tamanhos variados, indo de 5x5 até 20x20 casas ou até mais! O grande desafio é fazer com que o cavalo — aquela peça clássica que se movimenta em formato de "L" — consiga percorrer todas as casas do tabuleiro, passando por cada uma delas apenas uma vez, sem repetir nenhuma, partindo de qualquer posição inicial. Pode parecer simples, mas à medida que o tabuleiro cresce, o número de possibilidades aumenta de forma impressionante, transformando essa tarefa em um verdadeiro quebracabeça matemático e computacional.

COMO FOI FEITA A SOLUÇÃO?

1° PASSO

Foi criada uma população inicial de caminhos que o cavalo poderia seguir. Esses caminhos foram avaliados: os melhores foram escolhidos para formar novos caminhos.

2° PASSO

Depois, eles foram combinados (como se fossem "pais" gerando "filhos"). E também passaram por mutações (pequenas mudanças), para tentar melhorar ainda

3° PASSO

Esse processo foi repetido até achar um caminho muito bom ou até o número máximo de tentativas. Além disso, o grupo criou algumas melhorias no algoritmo para ter resultados ainda melhores.

RESULTADOS

O Algoritmo Evolutivo (AE) implementado foi capaz de resolver o Problema do Percurso do Cavalo (PPC) em tabuleiros de dimensões de 5x5 até 20x20, com diferentes níveis de sucesso:

RESULTADOS ALCANÇADOS

TABULEIRO 5X5

Missão Cavalo

Usuário

Tamanho do Tabuleiro:

5x5

21 11

Reiniciar

Resolução Automática

Casas visitadas: 25

TABULEIRO 8X8

Missão Cavalo

Tamanho do Tabuleiro: Usuário 8x8

Reiniciar

Resolução Automática

Casas visitadas: 64

TABULEIRO 20X20

Missão Cavalo 🐁																			
				Us	uário				Tam	anho	do Tal	buleir	0: 20)x20 \					
84	49	52	11	80	89	54	13	76	99	56	15	72	117	58	17	68	21	60	19
51	10	83	88	53	12	79	100	55	14	75	116	57	16	71	118	59	18	67	22
48	85	50	81	90	101	96	77	98	115	144	73	136	133	128	69	126	119	20	61
9	82	87	102	95	78	105	114	143	74	137	134	145	70	125	132	129	66	23	120
86	47	94	91	104	113	142	97	138	161	146	223	172	135	194	127	124	131	62	65
93	8	103	150	141	106	139	160	147	224	171	162	195	238	173	130	193	64	121	24
46	151	92	107	112	159	148	225	170	163	228	237	222	219	196	239	174	123	176	63
7	108	153	158	149	140	169	164	227	236	243	220	255	240	249	218	185	192	25	122
152	45	156	111	168	165	226	235	244	229	286	241	248	221	256	197	250	175	184	177
109	6	167	154	157	282	245	230	285	242	247	254	287	326	251	188	217	186	191	26
44	155	110	281	166	231	234	283	246	299	302	325	252	257	288	327	198	189	178	183
5	278	315	232	305	280	311	300	303	284	253	298	329	324	337	258	187	216	27	190
316	43	306	279	314	233	304	309	312	301	330	323	336	297	328	289	338	199	182	179
277	4	317	356	307	310	313	344	331	322	335	342	333	382	339	390	259	180	215	28
42	357	276	319	354	361	308	321	348	343	332	381	340	389	296	383	290	391	200	181
3	318	355	362	365	320	353	350	345	380	341	334	387	384	395	392	211	260	29	214
358	41	366	275	360	363	370	347	352	349	386	379	394	295	388	291	396	213	210	201
271	2	359	364	369	274	351	372	375	346	265	294	385	398	393	212	261	204	207	30
40	367	272	269	38	371	376	267	36	373	378	399	34	263	292	397	32	209	202	205
1	270	39	368	273	268	37	374	377	266	35	264	293	1 0	33	262	203	206	31	208

Reinicia

Resolução Automática

Casas visitadas: 400

OBRIGADO!

Esperamos que você tenha aprendido bastante e, acima de tudo, que se divirta explorando e resolvendo o Problema do Percurso do Cavalo.

Boa sorte e aproveite a jornada!

@maia_josepaulo

@_kauaoliverpb

@mauroviniciius

 $@david_arlley$

@arthur_of_peace

