МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №4 по курсу «Программирование графических процессоров»

Работа с матрицам. Метод Гаусса. Вариант 2. Вычисление обратной матрицы.

Выполнил: А.В. Синявский

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

Цель работы.

Использование объединения запросов к глобальной памяти.

Реализация метода Гаусса с выбором главного элемента по столбцу. Ознакомление с библиотекой алгоритмов для параллельных расчетов Thrust.

Вариант 2. Вычисление обратной матрицы.

Входные данные. На первой строке задано число n - размер матрицы. В следующих n строках, записано по n вещественных чисел - элементы матрицы. n≤10^4 **Выходные данные.** Необходимо вывести на n строках, по n чисел -- элементы обратной матрицы.

Программное и аппаратное обеспечение

Nvidia GeForce GTX 660

Compute capability: 3.0

Графическая память: 2048МВ

Регистров на блок: 65536

Нитей на блок: 1024 Мультипроцессоров: 5

Всего ядер: 960

Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz

Тактовая частота: 3.4 GHz

Кэш-память: 6 МВ

Оперативная память

Объём: 8 GB

Жёсткий диск

Объём: 2 ТВ

Программное обеспечение

OS: Windows 10

IDE: Visual Studio 2019

CUDA: v10.2 nvcc

Метод решения

Припишем справа к исходной матрице единичную, и реализуем прямой и обратный проход метода Гаусса для приведения исходной матрицы к единичной. При прямом проходе будем выбирать ведущий элемент и делить строку на него. Обратный же проход – классический метод Гаусса

Описание программы

1. Maкрос CSC

Проверяет, с каким статусом завершаются CUDA-операции, и в, случае ошибки, выводит на стандартный поток ошибок debug-информацию.

2. forward

Прямой проход методом Гаусса. Функция принимает данные, размерность матрицы и индекс ведущего элемента.

3. backward

Аналогично прямому проходу, только идём по главной диагонали справа налево, вычитаем из верхних строк.

4. swap

Функция, меняющая местами две строки

5. divide_line

Делит значения в строке на значение её ведущего элемента

6. main

Основная функция, работающая на процессоре, отвечает за ввод и вывод данных, работу с памятью и запуск всех функций-ядер, описанных выше

Результаты

Размер	(1, 16), (1, 16)	(16, 16), (16, 16)	(32, 32), (32, 32)	CPU
теста				
3	13.58мс	13.54мс	14.57мс	32мс
100	184.32мс	121.32мс	84.5мс	494мс

Выводы

Проделав работу, я изучил принцип объединения запросов в глобальную память, на практике ощутил прирост производительности от объединения запросов. Также я познакомился с библиотекой Thrust, углубил своё понимание организации сетки потоков на видеокарте, и освежил в памяти курс линейной алгебры.