Math Fundamentals

EE468/CE468: Mobile Robotics

Dr. Basit Memon

Electrical and Computer Engineering Habib University

August 28, 2023

Table of Contents

- 1 Reference Frames and Coordinate Axes
- 2 Frames for robots
- 3 Transformations
- 4 Change of reference frames
- References

Table of Contents

- 1 Reference Frames and Coordinate Axes
- 2 Frames for robots
- 3 Transformations
- 4 Change of reference frame
- 5 References

Measurements require context.

■ Speed of your car is measured as 45 km/h by the speed gun on Shuhada-e-ASF road.

Measurements require context.

- Speed of your car is measured as 45 km/h by the speed gun on Shuhada-e-ASF road.
- Every measurement requires context:
 - Unit system (e.g. meters, hour)
 - Number system (e.g. base 10)
 - Coordinate system (e.g. north, east)
 - Reference frame to which measurement is ascribed (e.g. car)
 - Reference system with respect to which measurement is made (e.g. speed gun)

Is coordinate system same as frame of reference? [, Section 4.1]

Figure: Transformation between frames

Is coordinate system same as frame of reference? [1, Section 4.1]

- Coordinate systems are conventions for representation.
- A reference frame is a state of motion, which is linked to a moving body for convenience.

Figure: Transformation between frames

Is coordinate system same as frame of reference? [1, Section 4.1]

- Coordinate systems are conventions for representation.
- A reference frame is a state of motion, which is linked to a moving body for convenience.
- We use laws of physics to convert among frames, while laws of physics hold regardless of coordinate system.

Figure: Transformation between frames

r. physical quantity / property
o: object possessing property
d: object whose state of motion
serves as datum
c: object whose coordinate system
is used to express result

Change of reference frame vs Change of coordinates

- Datum with respect to which measurement is made has changed.
- This is change of reference frame.
- Requires laws of physics.

Change of reference frame vs Change of coordinates

- Datum with respect to which measurement is made has changed.
- This is change of reference frame.
- Requires laws of physics.

- Change of coordinates. Quantity remains r_n^a .
- Quantity is free vector. Moved from origin of *a* to origin of *b*.
- Magnitude and direction remain the same.

Table of Contents

- Frames for robots

Figure: Pose of a mobile robot (Source: Autonomous Mobile Robots)

Robot **chassis** is the rigid body minus joints and wheels with internal dof.

Figure: Pose of a mobile robot (Source: Autonomous Mobile Robots)

- Robot chassis is the rigid body minus joints and wheels with internal dof.
- Assume robot moves on horizontal plane only.

Figure: Pose of a mobile robot (Source: Autonomous Mobile Robots)

- Robot chassis is the rigid body minus joints and wheels with internal dof.
- Assume robot moves on horizontal plane only.
- Describing motion of the frame {R}, rigidly attached to the chassis, with respect to a global inertial frame of reference {I} completely captures the motion of chassis.

Figure: Pose of a mobile robot (Source: Autonomous Mobile Robots)

Embedded frames abstract the motion of a body.

Choose any point P on the robot chassis and attach a frame $\{R\}$ to it.

Figure: Embedded frame (Source: [1])

Embedded frames abstract the motion of a body.

- Choose any point *P* on the robot chassis and attach a frame {*R*} to it.
- Frame moves with the robot.

Figure: Embedded frame (Source: [1])

Embedded frames abstract the motion of a body.

- Choose any point P on the robot chassis and attach a frame $\{R\}$ to it.
- Frame moves with the robot.
- It possesses properties of both reference frame and coordinate system.

Figure: Embedded frame (Source: [1])

Frame Assignment

- w: world frame
- b: body frame
- c: wheel contact frame
- p: position estimator frame
- s: sensor frame
- h: sensor housing

Figure 2.24 Standard Vehicle Frames. Many coordinate frames are commonly used when modelling vehicles.

Table of Contents

- 3 Transformations

Position in m-dimensional space is given by an $m \times 1$ vector.

 $= 2 \times 1$ position vector

$$^{A}P = \begin{bmatrix} p_{\chi} \\ p_{y} \end{bmatrix}$$

Figure: Source: Robotics, Vision, and Control

Position in m-dimensional space is given by an $m \times 1$ vector.

 2×1 position vector

$$^{A}P = \begin{bmatrix} p_{x} \\ p_{y} \end{bmatrix}$$

Superscript indicates coordinate axes or frame information.

Figure: Source: Robotics, Vision, and Control

$$\hat{\mathbf{x}}_b = \cos\theta \,\hat{\mathbf{x}}_s + \sin\theta \,\hat{\mathbf{y}}_s$$

Figure: Source: Modern Robotics

$$\hat{x}_b = \cos\theta \, \hat{x}_s + \sin\theta \, \hat{y}_s$$

$$\hat{y}_b = -\sin\theta \,\hat{x}_s + \cos\theta \,\hat{y}_s$$

Figure: Source: Modern Robotics

$$\hat{x}_b = \cos\theta \, \hat{x}_s + \sin\theta \, \hat{y}_s$$

$$\hat{y}_b = -\sin\theta\,\hat{x}_s + \cos\theta\,\hat{y}_s$$

Orientation representation

$${}^{s}R_{b} = \begin{bmatrix} {}^{s}\hat{x}_{b} & {}^{s}\hat{y}_{b} \end{bmatrix}$$

$$= \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$= \begin{bmatrix} \hat{x}_{b} \cdot \hat{x}_{s} & \hat{y}_{b} \cdot \hat{x}_{s} \\ \hat{x}_{b} \cdot \hat{y}_{s} & \hat{y}_{b} \cdot \hat{y}_{s} \end{bmatrix}$$

Figure: Source: Modern Robotics

$$\hat{x}_b = \cos\theta \, \hat{x}_s + \sin\theta \, \hat{y}_s$$

$$\hat{y}_b = -\sin\theta \,\hat{x}_s + \cos\theta \,\hat{y}_s$$

Orientation representation

$${}^{s}R_{b} = \begin{bmatrix} {}^{s}\hat{x}_{b} & {}^{s}\hat{y}_{b} \end{bmatrix}$$

$$= \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

$$= \begin{bmatrix} \hat{x}_{b} \cdot \hat{x}_{s} & \hat{y}_{b} \cdot \hat{x}_{s} \\ \hat{x}_{b} \cdot \hat{y}_{s} & \hat{y}_{b} \cdot \hat{y}_{s} \end{bmatrix}$$

Figure: Source: Modern Robotics

Called the Rotation matrix.

■ Dof of planar end-effector (rigid body) is 3, but we're using 6 numbers here!

- Dof of planar end-effector (rigid body) is 3, but we're using 6 numbers here!
- Any rotation matrix, $R \in \mathbb{R}^{2 \times 2}$ with columns c_i , has 3 constraints.

- Dof of planar end-effector (rigid body) is 3, but we're using 6 numbers here!
- Any rotation matrix, $R \in \mathbb{R}^{2 \times 2}$ with columns c_i , has 3 constraints.

- Dof of planar end-effector (rigid body) is 3, but we're using 6 numbers here!
- Any rotation matrix, $R \in \mathbb{R}^{2 \times 2}$ with columns c_i , has 3 constraints.
 - Each column is a unit vector, i.e. $||c_i|| = 1$, for $i \in \{1, 2\}$.
 - Two columns are orthogonal to each other, i.e. $c_1^T c_2 = 0$.

We want right-handed frames

- det R = +1 corresponds to right-handed frame.
 - The \hat{x} , \hat{y} , and \hat{z} of right-handed reference frame are aligned with index finger, middle finger, and thumb respectively.

Figure: Source: Modern Robotics

We want right-handed frames

- $\det R = +1$ corresponds to right-handed frame.
 - The \hat{x} , \hat{y} , and \hat{z} of right-handed reference frame are aligned with index finger, middle finger, and thumb respectively.
- Positive rotation along an axis is in direction the fingers of right-hand curl when thumb is pointed along axis.

Figure: Source: Modern Robotics

Homogeneous Transformation

Figure: Source: Intro to Robotics, Mechanics and Control

Homogeneous Transformation

$$\begin{bmatrix} ^{A}P\\1 \end{bmatrix} = \begin{bmatrix} ^{A}R_{B} & ^{A}O_{B}\\\mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} ^{B}P\\1 \end{bmatrix}$$

- 4×4 matrix is called homogeneous transformation, ${}^{A}T_{B}$.

Figure: Source: Intro to Robotics, Mechanics and Control

Three interpretations of homogeneous transformation, T_B^A

Description of relationship between frames: Moves frame *A* to be in coincidence with frame *B*.

Three interpretations of homogeneous transformation, ${\cal T}^A_{\cal B}$

- **Description of relationship between frames:** Moves frame *A* to be in coincidence with frame *B*.
- **Operator to move points or reorient directions:** Expression $T_B^A r_P^A$ moves the point P to the frame B, i.e. $r_{P_2}^A$.

Three interpretations of homogeneous transformation, ${\cal T}^A_{\cal B}$

- **Description of relationship between frames:** Moves frame *A* to be in coincidence with frame *B*.
- Operator to move points or reorient directions: Expression $T_B^A r_P^A$ moves the point P to the frame B, i.e. $r_{P_2}^A$.
- Change of frame: Same operator T_B^A acting on point r_P^B , vector relative to B and expressed in B, changes it to r_P^A , vector relative to A and expressed in A, i.e. $r_P^A = T_B^A r_P^B$

Rotation matrix can be used to transform only coordinates.

• Given some velocity ξ in the global frame, I, we can convert its coordinates to the local frame, R, as:

$$\dot{\xi}_{R} = {}^{R}R_{I}\dot{\xi}_{I}$$

Figure: Pose of a mobile robot (Source: Autonomous Mobile Robots)

Inverse of a rotation matrix is its transpose.

Interestingly,

$${}^RR_I^{-1} = {}^RR_I^T$$

Figure: Pose of a mobile robot (Source: Autonomous Mobile Robots)

Inverse of a rotation matrix is its transpose.

Interestingly,

$${}^R R_I^{-1} = {}^R R_I^T$$

Inverse of a homogeneous transformation is not its transpose. We have to find matrix inverse.

Figure: Pose of a mobile robot (Source: Autonomous Mobile Robots)

Composition of transforms

Figure 2.38 Kinematic Placement Problem. Where must R2 be relative to R1 if the tip frame (T2) is to be aligned with the pallet (P)?

Composition of transforms

Figure 2.38 Kinematic Placement Problem. Where must R2 be relative to R1 if the tip frame (72) is to be aligned with the pallet (P)?

$$T_{R2}^{R1} = T_{B1}^{R1} T_P^{B1} T_{T2}^P T_{B2}^{T2} T_{B2}^{B2} = T_B^R T_P^B (T_T^B)^{-1} (T_B^R)^{-1}$$

Table of Contents

- Change of reference frames

Mutually Stationary Frames

Figure 4.2 Mutually Stationary Frames. Observers in the two buildings will agree on the velocity of the particle but not on its position vector.

$$\vec{r}_p^a = \vec{r}_p^h + \vec{r}_h^a$$

Differentiating the expression,

$$\vec{v}_p^a = \vec{v}_p^h$$

Uniform Velocity Frames

Figure 4.3 Frames Moving at Constant Velocity. Observers in the tower and airplane will agree on the acceleration of the particle but not on its velocity vector.

$$\vec{r}_p^t = \vec{r}_p^f + \vec{r}_{f0}^t + \vec{v}_f^t \cdot t$$

Differentiating the expression,

$$\vec{\mathbf{v}}_{p}^{t} = \vec{\mathbf{v}}_{p}^{f} + \vec{\mathbf{v}}_{f}^{t}$$

Rotating Frames: Coriolis Equation or Transport Theorem

- Frame m is rotating with respect to frame f with instantaneous angular velocity $\vec{\omega}$.
- For any vector \vec{u} ,

$$\left(\frac{d\vec{u}}{dt}\right)_f = \left(\frac{d\vec{u}}{dt}\right)_m + \vec{\omega} \times \vec{u}$$

General Relative Motion

Figure: Frames in general motion

$$\vec{r}_o^f = \vec{r}_m^f + \vec{r}_o^m$$

Differentiating,

$$\vec{v}_o^f = \frac{d}{dt} \Big|_f \vec{r}_m^f + \frac{d}{dt} \Big|_f \vec{r}_o^m$$
$$= \vec{v}_m^f + \vec{v}_o^m + \vec{\omega}_m^f \times \vec{r}_o^m$$

Table of Contents

- 1 Reference Frames and Coordinate Axes

- References

1] Alonzo Kelly.

Mobile robotics: mathematics, models, and methods.

Cambridge University Press, 2013.