Chapter 2

Data

Terminology

	Student ID	Year	GPA ←		Attribute
	1042129	Junior	3.85		_
Data set	1034262	Senior	3.24	•••	Data object
Data set <	1052663	Sophomore	3.51		Object
	1082246	Freshman	3.62	•••	

- Data object: an entity with measurable properties
 - Also called record, point, vector, case, sample, instance, observation, ...
- Attribute: a property or characteristic of a data object
 - Also called variable, field, feature, dimension, ...
- Data set: a collection of data objects
 - Commonly stored in flat files or database tables

Data-Related Issues for Data Mining (1/2)

1. The types of data

- The attributes can be of *different* types
 - (ex) categorical (city, gender, genre, ...), numeric (temperature, age, price, ...)
- Data sets often have *different* characteristics
 - (ex) record data, graph data (social network), ordered data (time series), ...
- The type of data determines which methods and techniques can be used

2. The quality of the data

- Data is often *far* from perfect
 - (ex) noise, outliers, missing data, inconsistent data, duplicate data
 - (ex) biased or unrepresentative data
- Understanding and improving data quality typically *improves* the quality of the resulting analysis

Data-Related Issues for Data Mining (2/2)

3. Preprocessing

- Often, the raw data must be processed to make it suitable for analysis
 - (ex) continuous attribute (e.g., length) → categorical attribute (e.g., S/M/L)
 - (ex) dimensionality reduction (e.g., 100 attributes → 10 attributes)
- The goal is to modify the data so that it better fits a specific technique

4. Measures of similarity

- Data mining tasks often need to measure the similarity between objects
 - (ex) clustering, classification, or anomaly detection
- There are *many* similarity or distance measures
 - The proper choice depends on the type of data and the particular application

Types of Data

1. Types of Attributes

Categorical (qualitative) attribute

- An attribute that can take on one of a *limited* number of possible values
 - (ex) zip code, student ID, city
- Lacks most of the properties of numbers and should be treated as symbols
 - (ex) 'Junior' + 'Senior' (X)
- However, the values may have an order relationship (e.g., 'S' < 'M' < 'L')

Numeric (quantitative) attribute

- An attribute whose value can be any number from a defined range
 - (ex) temperature, age, mass, length, counts
- Has most of the properties of numbers (e.g., 35.1°C < 40.2°C (O))
- Associated with a measurement scale (e.g., °C, °F, cm, kg, GB)

Different Attribute Types

Attribute T	уре	Description	Examples
Catagorical (gualitativa)	Nominal	The values are just different names $(=, \neq)$	zip codes, employee IDs, eye color, gender
Categorical (qualitative)	Ordinal The values provide enough information to order objects $(<,>)$	hardness of minerals, {good, better, best}, grades, street numbers	
Numeric (quan	titative)	The values are represented by numbers (e.g., real numbers, integers) $(+, -, \times, /)$	temperature, monetary quantities, counts, age, mass, length, electrical current

Another Way to Distinguish Attributes

Discrete attribute

- Has a *finite* or *countably infinite* set of values (e.g., 1, 2, 3, ...)
- Categorical (e.g., zip codes) or numeric (e.g., counts)
- Often represented using *integer* variables
- Binary attribute: a special case with only two values
 - (ex) true/false, yes/no, 0/1

Continuous attribute

- One whose values are real numbers (i.e., can take any value)
 - (ex) temperature, height, weight
- Typically represented as *floating-point* variables

2. Types of Data Sets

- There are many types of data sets
 - As the field of data mining develops and matures, a greater variety of data sets become available for analysis
- We focus on some of the most common types:
 - (1) Record data
 - (2) Graph-based data
 - (3) Ordered data
- However, these categories do not cover all possibilities and other types are certainly possible

General Characteristics of Data Sets

Dimensionality

- The number of attributes in the data set
- The curse of dimensionality
 - The difficulties associated with high-dimensional data
 - Because of this, *dimensionality reduction* is often used

Distribution

- The frequency of various values for the attributes
 - (ex) Gaussian (normal) distribution
- However, many data sets have distributions that are
 not well captured by standard statistical distributions
- Skewness in the distribution can make mining difficult
 - (ex) Male : Female = 5 : 95

(1) Record Data

- The data set is a collection of *records* (data objects)
 - Each record consists of a fixed set of fields (attributes)
- There is *no* explicit relationship among records or fields
- Usually stored either in flat files or in relational databases
 - However, data mining often does *not* use any of the additional information available in a relational database
 - Rather, the database serves as a convenient place to find records

ID	artistName	albumTitle	genre	releaseDate	rating	length	label
1	Bach, J.S	6 Favorite Cantatas	Classical	14-Oct-07	9.5	75:15	L'Oiseau Lyre
2	Rush	Moving Pictures [Remastered]	Rock	03-Jun-97	9.75	45:32	Mercury
3	Wild Pink Puppies	Tales from Beyond	Punk	15-May-03	3	32:15	Orange Goblin
4	Mr Mister	Welcome to the Real World [Re-Release]	Rock	08-Jun-11	8.5	74:43	RCA
5	Anwynn	Epic	Gothic	03-Apr-09	7.75	65:54	Relativity
6	Novembre	Blue	Rock	23-Jan-11	8.5	56:55	Azure Records

(Ex) Record Data

Tid	Refund	Marital Status	Taxable Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(a) Record data.

Projection of x Load	Projection of y Load	Distance	Load	Thickness
10.23	5.27	15.22	27	1.2
12.65	6.25	16.22	22	1.1
13.54	7.23	17.34	23	1.2
14.27	8.43	18.45	25	0.9

(c) Data matrix.

TID	ITEMS
1	Bread, Soda, Milk
2	Beer, Bread
3	Beer, Soda, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Soda, Diapers, Milk

(b) Transaction data.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

(d) Document-term matrix.

(2) Graph-Based Data

- The data is represented as one or more graphs
- (Case 1) Data with relationships among objects
 - The graph captures relationships among data objects
 - Nodes: data objects
 - Links: the relationships among objects
 - (ex) World Wide Web, social networks

- (Case 2) Data with objects that are graphs
 - Each data object is represented as a graph
 - (ex) chemical compounds

(Ex) Graph-Based Data

Useful Links:

- Bibliography
- Other Useful Web sites
 - ACM SIGKDD
 - KDnuggets
 - The Data Mine

Book References in Data Mining and Knowledge Discovery

Usama Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy uthurasamy, "Advances in Knowledge Discovery and Data Mining", AAAI Press/the MIT Press, 1996.

J. Ross Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers, 1993. Michael Berry and Gordon Linoff, "Data Mining Techniques (For Marketing, Sales, and Customer Support), John Wiley & Sons, 1997.

Knowledge Discovery and Data Mining Bibliography

(Gets updated frequently, so visit often!)

- Books
- General Data Mining

General Data Mining

Usama Fayyad, "Mining Databases: Towards Algorithms for Knowledge Discovery", Bulletin of the IEEE Computer Society Technical Committee on data Engineering, vol. 21, no. 1, March 1998.

Christopher Matheus, Philip Chan, and Gregory Piatetsky-Shapiro, "Systems for knowledge Discovery in databases", IEEE Transactions on Knowledge and Data Engineering, 5(6):903-913, December 1993.

(a) Linked web pages.

(b) Benzene molecule.

(3) Ordered Data (1/2)

The attribute values have order relationships in time or space

- (Case 1) Sequential transaction data
 - Each transaction has a timestamp associated with it
 - It is possible to find sequential patterns
 - (ex) people who buy DVD players tend to buy DVDs
 - (ex) retail transaction data, purchase history

TID	Date	Items Purchased
101	01/01/2001	Cheese, Wine, Bread
102	01/02/2001	Bread, Water, Milk
103	01/03/2001	Milk, Cheese, Magazine
104	01/03/2001	Cheese, Wine, Bread, Milk
105	01/04/2001	Milk, Bread

- (Case 2) Time series data
 - Each record is a time series (i.e., a series of measurements taken over time)
 - It is important to consider temporal autocorrelation
 - i.e., two values close in time are often very similar
 - (ex) the daily prices of stocks, temperature data

(3) Ordered Data (2/2)

(Case 3) Sequence data

- A data set is a sequence of individual entities
- There are *no* time stamps
 - Instead, there are positions in a sequence
- Many problems involve finding similar sequences
- (ex) sequences of words, genetic sequence data

Human genome

GGTCTGGATGC
CGGTCTGGATGC
GCGGTCTGGAT
GCGGTCTGGAT
GGCGGTCTGGAT
GGCGGTCTGGA
TCTATGCGGGCCCCT
TCTATGCGGGCCCC
ATCTATGCGGGCC
TATCTATGCGGGC
TTATCTATGCGGG
CTTATCTATGCGGG

(Case 4) Spatial and spatio-temporal data

- The data consists of time series at various locations
- A more complete analysis requires consideration of both the spatial and temporal aspects of the data
- It is important to consider *spatial* autocorrelation
- (ex) Earth science data sets, gas flow simulation data

time

(Ex) Ordered Data

Time	Customer	Items Purchased
t1	C1	A, B
t2	C3	A, C
t2	C1	C, D
t3	C2	A, D
t4	C2	E
t5	C1	A, E

Customer	Time and Items Purchased
C1	(t1: A,B) (t2:C,D) (t5:A,E)
C2	(t3: A, D) (t4: E)
C3	(t2: A, C)

(a) Sequential transaction data.

(b) Genomic sequence data.

(c) Temperature time series.

(d) Spatial temperature data.

Data Quality

Data Quality

- It is unrealistic to expect that data will be perfect
 - Human error
 - Limitations of measuring devices
 - Flaws in the data collection process, etc.
- Examples: data quality problems
 - Values or even entire data objects can be missing
 - Spurious or duplicate objects (e.g., multiple records for a single person)
 - Inconsistencies (e.g., a person has a height of 2 m, but weights only 2 kg)
- To prevent data quality problems, data mining focuses on
 - ① The detection and correction of data quality problems \rightarrow data cleaning
 - 2 The use of algorithms that can tolerate poor data quality

Measurement and Data Collection Errors

Measurement error

- Any problem resulting from the measurement process
 - (ex) the numerical difference of the measured and true value (i.e., error)

Data collection error

- Errors such as omitting data objects or attribute values, or inappropriately including a data object
 - (ex) including similar but unrelated data objects

			?						?
ID	Last Name	First Name	Street	City	State	Zip	Phone	Fax	E-mail
113	Smith	+	123 S. Main	Denver	CO	80210	(303) 777-1258	(303) 777-5544	ssmith@aol.com
114	Jones	Jeff	12A ▼	Denver	CO	80224	(303) 666-6868	(303) 666-6868	(303) 666-6868
115	Roberts	Jenny	1244 Colfax	Denver	CO	85231	759-5654	853-6584	jr@msn.com
116	Robert	Jenny	1244 Colfax	Denver	CO	85231	75 9 -5654	853-6584	jr@msn.com
)						2	88.0°

Noise and Artifacts

Noise

- The *random* component of a measurement error
 - Typically involves the distortion of a value or the addition of spurious values
- Because its elimination is difficult, much work focuses on robust algorithms
 - They produce acceptable results even when noise is present

(a) Time series.

(b) Time series with noise.

Artifacts

- Deterministic distortions of data
 - (ex) a streak in the same place on a set of photographs

Outliers

- Data objects that have characteristics that are different from most of the other data objects in the data set
- Or, values that are unusual with respect to the typical values
- Also referred to as *anomalous* objects or values

- Many different definitions have been proposed by the statisticians and data mining communities
- It is important to distinguish between noise and outliers
 - Outliers can be *legitimate* data objects or values

Missing Values

- The information was not collected or not applicable
- Several strategies for dealing with missing data
 - Eliminate data objects or attributes
 - Estimate missing values (e.g., average, interpolation)
 - Ignore the missing value during analysis

		▼ 18
Name	Height	Weight
Lee	172 cm	65 kg
Kim	*	74 kg
Park	182 cm	75 kg
Seo	169 cm	62 kg
Jeong	178 cm	69 kg

Inconsistent Values

Values that *violate* given consistency constraints

Examples

- Different zip codes for the same area
- A person's height is negative
- Nonexistent name
- 6-digit telephone number

Name	City	Tel
Lee	Seoul	031 -710-4112
Kim	Daejeon	042-270-4615
Park	Busan	051-200-1679

- It is important to detect and, if possible, correct such problems
 - The correction may require additional or external information

Duplicate Data

Data objects that are *duplicates* of one another

Two main issues

- If there are two objects that actually represent a single object, then it is important to resolve inconsistent values
- ② Care needs to be taken to avoid accidentally combining data objects that are similar, but **not** duplicates (e.g., two people with identical names)

Deduplication

The process of dealing with these issues

	A	В	С
1	Name	Gender	Age
2	ABC	Male	25
3	DEF	Male	28
5	GHI	Female	27
5	JKL	Female	22
6	MNO	Female	31
7	PQR	Male	30
8	STU	Male	24
9	XYZ	Female	19
10	JKL	Female	35 🗚
11	BCD	Male	32
12	RST	Male	18
13	VWX	Female	21

Data Preprocessing

Data Preprocessing

- Additional steps to make the data more suitable for data mining
- A broad area and consists of a number of different strategies and techniques that are interrelated in complex ways
- We will discuss the following topics:
 - Aggregation
 - Sampling
 - Dimensionality reduction
 - Feature selection
 - Feature creation
 - Discretization and binarization
 - Variable transformation

1. Aggregation

- Combine two or more objects into a single object
 - Because sometimes "less is more"
- Example: customer purchase data set
 - ① Replace all the transactions of a single store location with a single object
 - 2 Reduce the possible values for *Date* from 365 days to 12 months

Transaction ID	Item	Store Location	Date	Price	
:	:	:	:	:	
101123	Watch	Chicago	09/06/04	\$25.99	
101123	Battery	Chicago	09/06/04	\$5.99	
101124	Shoes	Minneapolis	09/06/04	\$75.00	

Items	Store Location	Total Price	
:	:	:	•••
Watch, Battery,	Chicago	\$428.98	
Shoes,	Minneapolis	\$195.02	

Items	Date	Total Price	:
:	••	:	••
Watch, Battery, Shoes,	09/06	\$1523.75	

Motivations for Aggregation

- 1. The smaller data sets require *less* memory and processing time
 - Hence, it enables the use of more expensive data mining algorithms
- 2. Aggregation can provide a *high-level* view of the data
 - (ex) each store's sales \rightarrow each location's sales
- 3. The behavior of groups of objects is often *more stable* than that of individual objects
 - (ex) hourly temperature \rightarrow daily temperature (on average)
- Disadvantage: the potential loss of interesting details
 - (ex) aggregating over months \rightarrow which day has the highest sales?

2. Sampling

- Select a subset of the data objects to be analyzed
- Motivations for sampling
 - Statisticians: obtaining the entire data set is too expensive
 - Data miner: processing the entire data set is too expensive
 - In terms of memory or processing time
- Key principle for effective sampling
 - Use a *representative* sample
 - It should have approximately the same property as the original data set
 - (ex) the mean of a sample \approx the mean of the original data set

Sampling Approaches

① Simple random sampling

- There is an equal probability of selecting any particular object
- Two variations on random sampling
 - Sampling without replacement
 - Sampling with replacement

② Stratified sampling

When the population consists of different types of objects, simple random sampling can fail

- (ex) A: 10000, B: 10 → A: 100, B: 0
- Select objects from *each* group
 - Equal numbers of objects
 - The number proportional to the size of that group

Progressive (or Adaptive) Sampling

Used when the proper sample size can be difficult to determine

Basic technique

- Starts with a small sample
- Increase the sample size until a sample of sufficient size has been obtained

Important point

- There must be a way to evaluate the sample to judge if it is large enough
 - (ex) Stop increasing the sample size if the increase in accuracy levels off

3. Dimensionality Reduction

- The process of *reducing* the number of attributes in the data set
 - Dimensionality = the number of attributes

15	sepal length	sepal width	petal length	petal width
0	-0.900681	1.032057	-1.341272	-1.312977
1	-1.143017	-0.124958	-1.341272	-1.312977
2	-1.385353	0.337848	-1.398138	-1.312977
3	-1.506521	0.106445	-1.284407	-1.312977
4	-1.021849	1.263460	-1.341272	-1.312977

	principal component 1	princial component 2
0	-2.264542	0.505704
1	-2.086426	-0.655405
2	-2.367950	-0.318477
3	-2.304197	-0.575368
4	-2.388777	0.674767

Key benefits

- ① Many data mining algorithms work **better** if the dimensionality is lower
 - Partly because irrelevant features are eliminated and noise is reduced
 - Partly because the curse of dimensionality
- 2 A more understandable model can be obtained
 - Because the model involves fewer attributes

• (ex)
$$y = x_1 + 5.1x_2 + 4.2x_3 + 8.7x_4 + 7.4x_5 + 2.9x_6 + 10x_7 \rightarrow y = z_1 + 7.2z_2$$

3. Dimensionality Reduction

- Key benefits (cont'd)
 - The data can be more easily visualized
 - Because the data can be reduced to two or three dimensions
 - 4 The amount of time and memory required by the algorithm is reduced
 - Because the size of the data is reduced

The Curse of Dimensionality (1/2)

- The phenomenon that data analysis becomes *significantly harder* as the dimensionality of the data increases
- Because, as dimensionality increases, the data becomes increasingly *sparse* in the space
 - Also the distances between objects become very *large*
 - Eventually the distances between objects become almost the same

The Curse of Dimensionality (2/2)

Problem for *classification*

 There are *not enough* data objects to allow the creation of a model that reliably assigns a class to all possible objects

Problem for *clustering*

The distance between objects become less meaningful

- The amount of training data needed to cover
 80% of the space grows exponentially
- 2. Nearly all objects become far from each other

4. Feature Selection

- Another way to reduce the dimensionality is to use only a subset of the features
 - We would not lose information if *redundant* and *irrelevant* features are present

Redundant features

- Duplicate much or all of the information contained in other attributes
- (ex) the price of a product \leftrightarrow the amount of sales tax

Irrelevant features

- Contain almost no useful information for the data mining task
- (ex) 'student ID' for the task of predicting students' GPA

Approaches to Feature Selection

1. Use common sense or domain knowledge

2. Embedded approaches

- The data mining algorithm itself decides which attributes to use
- (ex) decision trees

3. Filter approaches

- Features are selected before the data mining algorithm is run
- (ex) select attributes whose pairwise correlation is as low as possible

4. Wrapper approaches

- Use the target data mining algorithm as a black box to find the **best** subset of attributes
- (ex) add attributes one by one as long as the performance improves

Feature Weighting

- An alternative to keeping or eliminating features
 - Assign more important features a *higher* weight, while giving less important features a *lower* weight
- Two approaches
 - Use domain knowledge about the relative importance of features
 - The data mining algorithm determines the weights automatically
- (ex) support vector machine (SVM)
 - Produces classification models in which each feature is given a weight
 - (ex) $y = 100x_1 + 0.01x_2 + 20x_3 + 4$
 - x_1 is the most important feature, while x_2 is the least important feature

5. Feature Creation

- It is frequently possible to create, from the original attributes,
 new attributes
 - That captures the important information in a data set much more effectively

transaction_ID	user_home_country	transaction_country	transaction_ID	user_home_country	transaction_country	in_foreign_country
01	US	US	01	US	US	False
02	Canada	Canada	02	Canada	Canada	False
03	Canada	Spain	03	Canada	Spain	True
04	US	US	04	US	US	False
05	US	Japan	05	US	Japan	True

- Two related methodologies
 - Feature extraction
 - 2 Mapping the data to a new space

Feature Extraction

The creation of a new set of features from the original raw data

Example

- We want to classify historical artifacts with respect to their materials
 - (ex) wood, clay, bronze, gold
- In this case, a *density* feature constructed from the mass and volume features would most directly yield an accurate classification

Artifact	Mass	Volume	Artifact	Mass	Volume	Density (Mass/Volume)

Unfortunately, the most common approach is to use domain expertise

Mapping the Data to a New Space

 A totally different view of the data can reveal important and interesting features

Example

- The following points represented in the Euclidean space (x, y) are difficult for decision trees to classify
- However, if we represent the points in the polar coordinate system (r, θ) , it is easy for decision trees to classify the points

6. Discretization and Binarization

Discretization

Transform a continuous attribute into a categorical attribute

Humidity	Humidity
85.1	High
78.2	Normal
62.6	Low

Binarization

Transform an attribute into one or more binary attributes

Name	Gender	Age	Name	Male	Female	Age
Lee	Male	24	Lee	1	0	24
Kim	Female	17	Kim	0	1	17

Why?

- Some data mining algorithms require categorical or binary attributes
 - (ex) certain classification algorithms, association rule mining algorithms

Binarization

Simple technique

- Suppose there are *m* categorical values
- Introduce one binary attribute for each categorical value
- For each of the *m* binary attributes
 - Assign 1, if the binary attribute represents the categorical value of the object
 - Assign 0, otherwise

Categorical Value
awful
poor
OK
good
great

awful	poor	ΟK	good	great
x_1	x_2	x_3	x_4	x_5
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Discretization

Basic steps

- Decide how many categories, n, to have
- Divide the values of the continuous attribute into n intervals
- Map all the values in one interval to the same categorical value

Several simple approaches

- Equal width discretization
- Equal frequency discretization
- Clustering-based discretization (e.g., k-means)

Several Approaches to Discretization

- Equal width discretization
 - Divide the range into a number of intervals each having the same width
- Equal frequency discretization
 - Try to put the same number of objects into each interval
- Clustering-based discretization (e.g., k-means)
 - Find clusters of objects and divide the range according to the clusters

7. Variable Transformation (1/2)

Apply a transformation to all the values of a variable (attribute)

- (Type 1) Simple functions
 - Apply a simple mathematical function to each value individually
 - (ex) x^k , $\log x$, e^x , \sqrt{x} , 1/x, $\sin x$, or |x|
 - Examples
 - $\log_{10} x$ is used when the range of values is very huge (e.g., 10^8 , $10^9 \rightarrow 8$, 9)
 - \sqrt{x} , $\log x$, and 1/x are often used to transform data into a **normal distribution**

7. Variable Transformation (2/2)

- (Type 2) Normalization or standardization
 - Make an entire set of values have a particular property
 - (ex) "Standardizing a variable" in statistics $x' = (x \bar{x})/s_x$
 - \bar{x} : the mean of the attribute values
 - s_x : the standard deviation of the attribute values
 - Creates a new variable that has a mean of 0 and a standard deviation of 1
 - Often used to avoid having a variable with large values dominate the results of analysis
 - (ex) Consider comparing people based on age and income
 - The comparison between people will be *dominated* by differences in *income*
 - (ex) $person_1 = (24, 25000)$, $person_2 = (67, 25050)$, $person_3 = (25, 25100)$

Measures of Similarity

Measures of Similarity and Dissimilarity

- Similarity and dissimilarity between objects are important
 - Because they are used by a number of data mining techniques
 - (ex) clustering, nearest neighbor classification, and anomaly detection

Proximity

- Used to refer to either similarity or dissimilarity
- There are many proximity measures for objects
 - Euclidean distance
 - Jaccard coefficient
 - Cosine similarity
 - ...

We will discuss various proximity measures for objects

Definitions

- Similarity: a numerical measure of the degree to which two objects are alike
 - The more alike, the higher the similarity is
 - (ex) 0 (no similarity) $\rightarrow 1$ (complete similarity)
- Dissimilarity: a numerical measure of the degree to which two objects are different
 - The more similar, the *lower* the dissimilarity is
 - (ex) 0 (complete similarity) $\rightarrow 1$ or ∞ (no similarity)

Transformations

A similarity can be converted to a dissimilarity, or vice versa

Examples

- Let $s \in [0, 1]$ and $d \in [0, 1]$ be a similarity and a dissimilarity, respectively
- s can be converted to d as follows:
- Subtract: d = 1 s

• (ex)
$$s = 0 \rightarrow d = 1$$
, $s = 1 \rightarrow d = 0$

- Reciprocal: d = 2/(s + 1) - 1

• (ex)
$$s = 0 \rightarrow d = 1$$
, $s = 1 \rightarrow d = 0$

- Exponent: $d = e^{-s}$

• (ex)
$$s = 0 \rightarrow d = 1$$
, $s = 1 \rightarrow d = 0.37$

In general, any monotonic decreasing function can be used

Examples of Proximity Measures

1. [Dissimilarity] Distances

- Manhattan distance (L₁ distance)
- Euclidean distance (L₂ distance)
- Supremum distance (L_{\infty} distance)

2. [Similarity] Similarity coefficients

- Simple matching coefficient
- Jaccard coefficient
- 3. [Similarity] Cosine similarity
- 4. [Similarity] Correlation
- 5. [Similarity] Mutual information

1. Distances (1/2)

- Let $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ be two data objects
 - n: the number of dimensions
 - $-x_k$ and y_k : the kth attributes of x and y, respectively
- **Distances**: dissimilarities with certain properties
- Euclidean distance
 - The straight-line distance between two points

$$d(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{k=1}^{n} \left(x_k - y_k
ight)^2}$$

1. Distances (2/2)

Generalization of the Euclidean distance (Minkowski distance)

$$d(x,y) = \left(\sum_{k=1}^n \lvert x_k - y_k
vert^r
ight)^{1/r}$$

- -r=1: Manhattan distance (L₁ norm)
 - $d(\mathbf{x}, \mathbf{y}) = |x_1 y_1| + |x_2 y_2| + \dots + |x_n y_n|$
- -r=2: Euclidean distance (L₂ norm)

- r = ∞: Supremum distance (L_{max} or L_{∞} norm)

•
$$d(x, y) = \lim_{r \to \infty} \left(\sum_{k=1}^{n} |x_k - y_k|^r \right)^{1/r} = \max_k (|x_k - y_k|)$$

(Ex) Minkowski Distance

Consider the following four two-dimensional points

L ₁	p1	p2	р3	p4
p1	0.0	4.0	4.0	6.0
p2	4.0	0.0	2.0	4.0
р3	4.0	2.0	0.0	2.0
p4	6.0	4.0	2.0	0.0

\mathbf{L}_{2}	p1	p2	р3	p4
p1	0.0	2.8	3.2	5.1
p2	2.8	0.0	1.4	3.2
р3	3.2	1.4	0.0	2.0
p4	5.1	3.2	2.0	0.0

L_{∞}	p1	p2	р3	p4
p1	0.0	2.0	3.0	5.0
p2	2.0	0.0	1.0	3.0
рЗ	3.0	1.0	0.0	2.0
p4	5.0	3.0	2.0	0.0

 L_1 distance matrix

 L_2 distance matrix

 L_{∞} distance matrix

The Properties of Distances

• If $d(\mathbf{x}, \mathbf{y})$ is a **distance**, the following properties hold:

1. Positivity

- $-d(\mathbf{x},\mathbf{y}) \ge 0$ for all \mathbf{x} and \mathbf{y}
- $-d(\mathbf{x}, \mathbf{y}) = 0$ only if $\mathbf{x} = \mathbf{y}$

2. Symmetry

 $- d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y}

- 3. Triangle inequality
 - $-d(\mathbf{x},\mathbf{z}) \le d(\mathbf{x},\mathbf{y}) + d(\mathbf{y},\mathbf{z})$ for all \mathbf{x} , \mathbf{y} , and \mathbf{z}
- These properties are useful because they express our intuition about a distance well

2. Similarity Coefficients (1/2)

- Similarity measures between objects that contain only binary attributes
 - Typically have values between 0 and 1
 - 0: the objects are not at all similar
 - 1: the objects are completely similar

$$\mathbf{x} = (1, 0, 0, 1, 0, 1, 0, 0, 0, 1)$$

$$\mathbf{y} = (0, 1, 0, 1, 1, 0, 0, 0, 1, 0)$$

Notations

- Let $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ be two objects
 - where x_k and y_k are binary attributes (k = 1, 2, ..., n)
- $-f_{00} =$ the number of attributes where ${\bf x}$ is 0 and ${\bf y}$ is 0
- $-f_{01}$ = the number of attributes where \mathbf{x} is 0 and \mathbf{y} is 1
- $-f_{10}$ = the number of attributes where **x** is 1 and **y** is 0
- f_{11} = the number of attributes where **x** is 1 and **y** is 1

2. Similarity Coefficients (2/2)

- Simple matching coefficient (SMC)
 - Counts both presences and absences equally

$$SMC = rac{ ext{number of matching attribute values}}{ ext{number of attributes}} = rac{f_{11} + f_{00}}{f_{01} + f_{10} + f_{11} + f_{00}}$$

- Jaccard coefficient (*J*)
 - Counts only presences (e.g., items purchased by both customers)

$$J = \frac{\text{number of matching presences}}{\text{number of attributes not involved in 00 matches}} = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

Example

$$- \mathbf{x} = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)$$

$$- \mathbf{y} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1)$$

-
$$SMC = (f_{11} + f_{00})/(f_{01} + f_{10} + f_{11} + f_{00}) = 0.7, J = f_{11}/(f_{01} + f_{10} + f_{11}) = 0$$

3. Cosine Similarity (1/2)

Measure the (cosine of the) angle between two vectors **x** and **y**

$$\cos(\mathbf{x}, \ \mathbf{y}) = \frac{\langle \mathbf{x}, \ \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

- $-\ <\!\!\mathbf{x},\,\mathbf{y}\!\!>$: the inner product of \mathbf{x} and \mathbf{y} , i.e., $\langle \mathbf{x},\,\mathbf{y}
 angle = \sum x_k y_k$
- $\|\mathbf{x}\|$: the length of vector \mathbf{x} , i.e., $\|\mathbf{x}\| = \sqrt{\sum_{k=1}^n x_k^2}$

$$\theta \approx 90^{\circ} \rightarrow \cos(\mathbf{x}, \mathbf{y}) \approx 0$$

$$\theta \approx 180^{\circ} \rightarrow \cos(\mathbf{x}, \mathbf{y}) \approx -1_{60}$$

3. Cosine Similarity (2/2)

- Useful for measuring the similarity between documents
 - Documents are often represented as vectors
 - Each component represents the frequency of a particular term (word)
 - 0-0 matches are ignored (i.e., words that do not appear in both)
 - If 0-0 matches are counted, most documents will be similar to each other
 - Depends only upon the words that appear in both documents
- (ex) Cosine similarity between two document vectors
 - $-\mathbf{x} = (3, 2, 0, 5, 0, 0, 0, 0, \frac{2}{2}, 0, 0)$
 - $\mathbf{y} = (\mathbf{1}, 0, 0, 0, 0, 0, 0, 0, \mathbf{1}, 0, 2)$
 - $-\cos(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle / (||\mathbf{x}|| \cdot ||\mathbf{y}||) = 5/(6.48 \cdot 2.45) = 0.31$
- Note that the lengths of x and y are *not* important in cos(x, y)

4. Correlation

- Measure the *linear relationship* between two sets of values
 - Examples
 - $\mathbf{x} = (1, 2, 3, 4, 5), \mathbf{y} = (2, 4, 6, 8, 10) \rightarrow \text{perfect positive correlation (= 1)}$
 - $\mathbf{x} = (1, 2, 3, 4, 5), \mathbf{y} = (5, 4, 3, 2, 1) \rightarrow \text{perfect negative correlation } (=-1)$

- There are many types of correlation
 - In this course, we focus on *Pearson's correlation*

Pearson's Correlation

Definition

$$\operatorname{corr}(\mathbf{x},\ \mathbf{y}) = \frac{\operatorname{covariance}(\mathbf{x},\ \mathbf{y})}{\operatorname{standard_deviation}(\mathbf{x}) \times \operatorname{standard_deviation}(\mathbf{y})} = \frac{s_{xy}}{s_x\ s_y}$$

where we use the following standard statistical notation and definitions:

covariance(
$$\mathbf{x}$$
, \mathbf{y}) = $s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})$
standard_deviation(\mathbf{x}) = $s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (x_k - \bar{x})^2}$
 $\bar{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$ is the mean of \mathbf{x}
 $\bar{y} = \frac{1}{n} \sum_{k=1}^{n} y_k$ is the mean of \mathbf{y}
standard_deviation(\mathbf{y}) = $s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} (y_k - \bar{y})^2}$

(Ex) Pearson's Correlation

Perfect negative correlation

$$- \mathbf{x} = (-3, 6, 0, 3, -6)$$

$$-$$
 y = $(1, -2, 0, -1, 2)$

-
$$\operatorname{corr}(\mathbf{x}, \mathbf{y}) = -1 \ (\because x_k = -3y_k)$$

Perfect positive correlation

$$- \mathbf{x} = (3, 6, 0, 3, 6)$$

$$-$$
 y = $(1, 2, 0, 1, 2)$

$$-\operatorname{corr}(\mathbf{x},\mathbf{y})=1\ (\because x_k=3y_k)$$

No linear correlation

$$-\mathbf{x} = (-3, -2, -1, 0, 1, 2, 3)$$

$$-$$
 y = $(9, 4, 1, 0, 1, 4, 9)$

$$- \text{ corr}(\mathbf{x}, \mathbf{y}) = 0 \ (\because y_k = x_k^2)$$

Correlations from -1 to 1

(Ex) Comparing Proximity Measures

Objects Measure	$\mathbf{x} = (1, 2, 4, 3, 0, 0, 0)$ $\mathbf{y} = (1, 2, 3, 4, 0, 0, 0)$	$\mathbf{x} = (1, 2, 4, 3, 0, 0, 0)$ $\mathbf{y_s} = (2, 4, 6, 8, 0, 0, 0)$ $(\mathbf{y_s} = 2\mathbf{y})$	$\mathbf{x} = (1, 2, 4, 3, 0, 0, 0)$ $\mathbf{y_t} = (6, 7, 8, 9, 5, 5, 5)$ $(\mathbf{y_t} = \mathbf{y} + 5)$
$\cos(\mathbf{x}, \mathbf{y})$	0.9667	0.9667	0.7940
$corr(\mathbf{x}, \mathbf{y})$	0.9429	0.9429	0.9429
Euclidean distance(x, y)	1.4142	5.8310	14.2127

Mutual Information (1/2)

- Measure the similarity between two sets of *paired values*
 - Particularly when a *nonlinear* relationship is suspected
- Measure how much *information* one set of values provides about another
 - Given that the values in pairs (e.g., height and weight)
- Intuitive example (0: head, 1: tail)

X	y	Mutual information
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)	(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)	1
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)	(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)	1
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)	(0, 0, 1, 0, 0, 0, 1, 0, 1, 1)	0.1535

Mutual Information (2/2)

- If the two sets of values are completely independent
 - i.e., the value of one tells us *nothing* about the other
 - Then their mutual information is 0
- If the two sets of values are completely dependent
 - i.e., knowing the value of one tells us the value of the other
 - Then they have maximum mutual information

X	y	Mutual information
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)	0
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)	(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)	3.322

Entropy

Measure the average information in a single set of values

$$H(X) = \sum_{j=1}^{m} P(X = u_j) I(X = u_j) = -\sum_{j=1}^{m} P(X = u_j) \log_2 P(X = u_j)$$

- X: a set of values with m distinct values $u_1, u_2, ..., u_m$
- H(X): the entropy of X
- $P(X = u_j)$: the probability of u_j in X
- $I(X = u_j)$: the amount of information acquired through observing u_j
 - $I(X = u_i) = \log_2(1/P(X = u_i)) = -\log_2 P(X = u_i)$
 - As $P(X = u_i)$ increases, $I(X = u_i)$ decreases, and vice versa

Entropy = 0

Entropy = 0.81

Entropy = 1

Definition: Mutual Information (1/2)

• Consider two sets of values, X and Y, which occur in pairs (X, Y)

X	(1, 2, 3, 1, 3)
Y	(2, 3, 1, 2, 2)
(X, Y)	((1, 2), (2, 3), (3, 1), (1, 2), (3, 2))

• First, we measure the *average information* (*i.e., entropy*) of X, Y, and (X, Y), respectively

$$egin{aligned} H(X) &= -\sum_{j=1}^m P(X=u_j) \log_2 P(X=u_j) \ H(Y) &= -\sum_{k=1}^n P(Y=v_k) \log_2 P(Y=v_k) \end{aligned}$$

$$H(X, Y) = -\sum_{j=1}^{m} \sum_{k=1}^{n} P(X = u_j, Y = v_k) \log_2 P(X = u_j, Y = v_k)$$

Definition: Mutual Information (2/2)

Finally, we obtain the mutual information of X and Y as follows:

$$I(X, Y) = H(X) + H(Y) - H(X, Y)$$

- The mutual information quantifies the "amount of information" obtained about *X* by observing *Y*, and vise versa
 - Note that I(X, Y) is symmetric, i.e., I(X, Y) = I(Y, X)

(Ex) Mutual Information

Suppose we have two sets of values x and y to compare

$$- \mathbf{x} = (-3, -2, -1, 0, 1, 2, 3), \mathbf{y} = (9, 4, 1, 0, 1, 4, 9)$$

- Although there is a relationship $y_k = x_k^2$, their correlation is 0
- However, their mutual information $I(\mathbf{x}, \mathbf{y}) = 1.9502$

-
$$I(\mathbf{x}, \mathbf{y}) = H(\mathbf{x}) + H(\mathbf{y}) - H(\mathbf{x}, \mathbf{y}) = 2.8074 + 1.9502 - 2.8074$$

x_j	$P(\mathbf{x}=x_j)$	$-P(\mathbf{x}=x_j)\mathrm{log}_2\ P(\mathbf{x}=x_j)$			
-3	1/7	0.4011			
-2	1/7	0.4011			
-1	1/7	0.4011			
0	1/7	0.4011			
1	1/7	0.4011			
2	1/7	0.4011			
3	1/7	0.4011			
H(x)		2.8074			

y_k	$P(\mathbf{y}=y_k)$	$-P(\mathbf{y}=y_k)\log_2 P(\mathbf{y}=y_k)$			
9	2/7	0.5164			
4	2/7	0.5164			
1	2/7	0.5164			
0	1/7	0.4011			
H(y)		1.9502			

x_j	y_k	$P(\mathbf{x}=x_j,\ \mathbf{y}=x_k)$	$-P(\mathbf{x}=x_j,\ \mathbf{y}=x_k)\log_2 P(\mathbf{x}=x_j,\ \mathbf{y}=x_k)$				
-3	9	1/7	0.4011				
-2	4	1/7	0.4011				
-1	1	1/7	0.4011				
0	0	1/7	0.4011				
1	1	1/7	0.4011				
2	4	1/7	0.4011				
3	9	1/7	0.4011				
$H(\mathbf{x},\mathbf{y})$		H(x , y)	2.8074				

Issues in Proximity Calculation (1/2)

• (Issue 1) Standardization

 If attributes have different scales, standardize them to avoid being dominated by attributes with large values

Rescaling

• Rescale the range of attributes to be [0, 1]

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Mean normalization

Rescale based on the distance from the mean

$$x' = rac{x - \operatorname{average}(x)}{\max(x) - \min(x)}$$

Standardization (in statistics)

• Make attributes have 0-mean and 1-variance

$$x'=rac{x-ar{x}}{\sigma}$$

Issues in Proximity Calculation (2/2)

• (Issue 2) Using weights

- In some cases, some attributes are more important than others
 - (ex) When comparing two people, Age may be more important than Height
- We can assign each attribute a different weight w_k

Attribute	Age	Height	Weight	Salary
Weight	0.5	0.2	0.2	0.1

The definition of the Minkowski distance can also be modified as follows:

$$d\left(\mathbf{x},\;\mathbf{y}
ight) = \left(\sum_{k=1}^{n} \underline{w_k} |x_k - y_k|^r
ight)^{1/r}$$