Software Platforms for Automotive Systems

Lecture 2: Basic Concepts

Alejandro Masrur 22th October 2015, TU Chemnitz

Automotive Control Systems

- R: Feedback
- <u>U</u>: Controller output
- W: Reference
- W*: Input by the driver

- R: Sensed values
- X: Controlled signals
- Y: Actuation values
- <u>Z</u>: Disturbance

ECU Network = Control Tasks

Block Diagram of an ECU

- Input/output adaption
 - Translate voltage and current levels

Block Diagram of a Microcontroller

Sampling Signals

Continuous time and values

Continuous time and discrete values

Continuous values and discrete time

Discrete time and values

Light Indicator for Fuel Level

Design requirements:

- Indicate when critical level is reached
 - Critical level is 5 liters
- Turn off indication when fuel is above critical level
- Avoid fluctuations
- Design constraints
 - Fuel level sensor returns voltage value
 - Linearly dependent on fuel level
 - 10 V = zero liters, decrements by 0.5 V with every liter
 - Saturates at 0 V from 20 liters onwards

State Automata: Fuel Level

Distance Control

- This is a subsystem of ACC
- Design requirements:
 - A desired distance is given (by another subsystem, etc.)
 - Keep desired distance to leading car
 - Independent of its speed
 - (Sudden) changes in speed should be considered
 - Independent of steepness
- Design constraints
 - Distance sensor measures up to 300 meters ahead

Distance Control

Control Algorithm

Real-Time Behavior

- Tasks need to executed on time
- Tasks are associated with deadlines
 - Deadline misses may cause damage
 - Human lives in danger = hard real-time
 - Brakes in a car, steer by wire, etc.
 - Quality of service goes down = soft real-time
 - Multimedia systems, MMI, etc.
 - Require a schedulability/feasibility analysis

Task Model and Scheduling

- Model for real-time tasks
 - Periodic/sporadic with inter-release time: p
 - Relative deadline: d
 - Worst-case execution time: e
- p d e e

- The case d =p is more usual
 - Rate Monotonic (RM)
- The case of d ≤ p is harder to handle
 - Deadline Monotonic (DM)

Constant-Time Tests

- "Utilizations bounds" from the literature
 - The Liu and Layland test:

$$\sum_{i=1}^{n} \frac{e_i}{p_i} \le n \cdot \left(2^{\frac{1}{n}} - 1\right)$$
RM

The hyperbolic bound:

$$\prod_{i=1}^{n} \left(1 + \underbrace{\frac{\mathbf{e}_{i}}{\mathbf{p}_{i}}} \right) \leq 2$$

Constant-Time Tests

- "Utilizations bounds" from the literature
 - The Liu and Layland test:

$$\sum_{i=1}^{n} \frac{\mathbf{e}_{i}}{\mathbf{p}_{i}} \leq \mathbf{n} \cdot \left(2^{\frac{1}{n}} - 1 \right) \qquad \Longrightarrow \qquad \sum_{i=1}^{n} \frac{\mathbf{e}_{i}}{\mathbf{d}_{i}} \leq \mathbf{n} \cdot \left(2^{\frac{1}{n}} - 1 \right)$$

The hyperbolic bound:

$$\prod_{i=1}^{n} \left(1 + \frac{\mathbf{e}_{i}}{\mathbf{p}_{i}} \right) \leq 2 \qquad \Longrightarrow \qquad \prod_{i=1}^{n} \left(1 + \frac{\mathbf{e}_{i}}{\mathbf{d}_{i}} \right) \leq 2$$

These are sufficient but not necessary conditions

Exact Schedulability Test

- Worst-case response time (WCRT) analysis
 - For T_k , $w_k = WCRT \rightarrow if w_k \le d_k$, T_k is schedulable

$$\mathbf{t}^{(j+1)} = \mathbf{e}_{k} + \sum_{\substack{\forall \ T_{i} \in \\ \mathsf{HP}(k)}} \left\lceil \frac{\mathbf{t}^{(j)}}{\mathbf{p}_{i}} \right\rceil \cdot \mathbf{e}_{i} \qquad \text{-HP}(k) = \text{set of tasks with higher priority than } T_{k}$$

- Pseudo-polynomial complexity
 - Depends on the number and parameters of tasks
 - Running time may vary with the task set

OSEK-VDX Specifications

- Operating System
 - Single-core processors
 - Standardized interfaces
- Communication
 - TransparentCommunication
 - Requirements for Network and Data Link
 - **Network Management**
 - Node monitoring
 - Network diagnotics

OSEK-VDX Operating System

Configurable and scalable

Different conformance classes

- Predictable behavior
 - Real-time scheduling
 - Fixed priorities
 - Priority ceiling
- Special features
 - Single and cyclic alarms on counters

Property	BCC1	BCC2	ECC1	ECC2
Multiple activation	no	yes	BT:no ET:no	BT:yes ET:no
# tasks	8		16	
Tasks/ priority	=1	>1	=1	>1
Events/ task	-		8	
# priorities	8		16	

OSEK-VDX Operating System

- Configurable and scalable
- Different conformance classes
- Predictable behavior
 - Real-time scheduling
 - Fixed priorities
 - Priority ceiling
- Special features
 - Single and cyclic alarms on counters

Communication in ECU Networks

Logical system architecture

Technical system architecture

Common Topologies

Communication Technologies

- Controller Area Network (CAN)
 - Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)
 - Bus topology
 - Broadcast and filtering
 - Messages are given priorities
 - Real-time transmission

Recessive

dominant

- Maximum 1Mbps
 - For 40m length
- Bitwise arbitration

Filter

Send

Receive

Filter

Communication Technologies

FlexRay

- Time Division Multiple Access (TDMA)
 - Synchronized (global) time base
- Bus, star and mixed topology
- Synchronous & asynchronous communication
 - Static segment = time-triggered slot
 - Dynamic segment = priority-based
- Two communication channels
 - Redundancy possible
- 10 Mbps

Communication Technologies

Summary

- Automotive software closely related to control
 - An ECU is prepared to deal with input and output signal
 - Signal adaption is performed
 - Need to sample signals from the car environment
- Real-time behavior is required
 - In particular in vehicle centric domains
 - Need for a schedulability analysis and OS support
- Communication between ECUs
 - Common automotive technologies: CAN and FlexRay

