Úloha č. 1

Značení: $(f \circ g)(x) = g(f(x))$

a)

Mějme funkci $h: \mathbb{N}_0 \to \mathbb{N}_0$ definovanou jako $h(n) = \lfloor \frac{n}{2} \rfloor$. Zjevně h je na.

Levé krácení

Mějme funkce f, g_1, g_2 , všechny na M. Pokud platí $(f \circ g_1) = (f \circ g_2)$, z definice pro všechna $m \in M$ platí $g_1(f(m)) = g_2(f(m))$. Jelikož je f(m) na, z této rovnosti vyplývá, že $g_1(m) = g_2(m)$ pro všechna $m \in M$, z čehož nutně platí $g_1 = g_2$. Grupoid (P, \circ) tedy je s levým krácením.

Pravé krácení

Mějme $f: \mathbb{N}_0 \to \mathbb{N}_0$ s předpisem

$$f(n) = \begin{cases} n+1 & n \text{ sud\'e} \\ n-1 & n \text{ lich\'e}. \end{cases}$$

Tato funkce je na. Dostáváme pro všechna $n \in \mathbb{N}_0$

$$(f \circ h)(n) = \begin{cases} \lfloor \frac{n+1}{2} \rfloor & n \text{ sud\'e} \\ \lfloor \frac{n-1}{2} \rfloor & n \text{ lich\'e} \end{cases}$$
$$(f \circ h)(n) = \lfloor \frac{n}{2} \rfloor$$
$$(f \circ h) = h.$$

Zároveň vidíme, že $(id \circ h) = h = (f \circ h)$, ovšem triviálně $f \neq id$. Grupoid tedy **není** s pravým krácením.

Levé dělení

Uvažujme řešení x rovnice $h \circ x = id$. Pro řešení musí platit x(h(0)) = 0, tedy x(0) = 0. Zároveň musí platit x(h(1)) = 1, tedy x(0) = 1. Toto nám dává spor s tím, že x je zobrazení. Grupoid tudíž **není** s levým dělením.

Pravé dělení

Uvažujme řešení x rovnice $x \circ h = id$. Pro řešení musí platit x(0) = 0 nebo x(0) = 1, aby h(x(0)) = 0. BÚNO x(0) = 0. Jelikož je x na, musí existovat m takové, že x(m) = 1. Z předchozího musí být takovéto $m \ge 1$. Pak ovšem dostáváme h(x(m)) = h(1) = 0, $m \ne 0$, z čehož jasně $h \circ x \ne id$, což je spor. Grupoid tudíž **není** s pravým dělením.

b)

Levé krácení

Mějme funkci $f: \mathbb{N} \to \mathbb{N}$ s předpisem f(n) = 2n a funkci $g: \mathbb{N} \to \mathbb{N}$ s předpisem

$$g(n) = \begin{cases} 2n & n \text{ sud\'e} \\ 2n - 1 & n \text{ lich\'e}. \end{cases}$$

Snadno ověříme, že $f,g\in R$ a $f\neq g$. Pro všechna $n\in N$ pak platí

$$(f \circ f)(n) = f(2n) = 4n$$
$$(f \circ g)(n) = g(2n) = 4n$$
$$(f \circ f) = (f \circ g).$$

Grupoid (R, \circ) tedy **není** s levým krácením.

Pravé krácení

Mějme funkce $f, g_1, g_2 \in R$ takové, že $(g_1 \circ f) = (g_2 \circ f)$. Poté pro každé $n \in \mathbb{N}$ platí $f(g_1(n)) = f(g_2(n))$. Jelikož f je prostá, tato rovnost platí pouze když $g_1(n) = g_2(n)$. Z toho vyplývá, že $g_1 = g_2$ a grupoid **je** s pravým krácením.

Levé dělení

Mějme funkce $f,g\in R$. Jako řešení rovnice $f\circ x=g$ zadefinujeme funkci x následujícím způsobem:

- $\forall n \in \mathbb{N} : x(f(n)) = g(n)$
- pro $m = \min(\mathbb{N} \setminus f(\mathbb{N}))$ je $x(m) = \min(\mathbb{N} \setminus g(\mathbb{N}))$.
- pro jiné $m \in \mathbb{N} \setminus f(\mathbb{N})$ ať je p předchůdce m v $\mathbb{N} \setminus f(\mathbb{N})$. x(m) pak položíme rovno libovolné hodnotě z $\mathbb{N} \setminus g(\mathbb{N})$, pro kterou existuje $r \in \mathbb{N} \setminus g(\mathbb{N})$ takové, že x(p) < r < x(m) (x(p) můžeme získat indukcí).

Jelikož je $\mathbb{N} \setminus g(\mathbb{N})$ nekonečná, prvky r a x(m) z třetího bodu vždy existují, tudíž definice je korektní. Z prvního bodu vidíme, že $f \circ x = g$ a tudíž i že $x(f(\mathbb{N})) = g(\mathbb{N})$.

Jelikož g je prostá, x je na $f(\mathbb{N})$ také prostá. Z druhého a třetího bodu je snadno x na $\mathbb{N} \setminus f(\mathbb{N})$ také prostá, navíc jsou $x(f(\mathbb{N}))$ a $x(\mathbb{N} \setminus f(\mathbb{N}))$ disjunktní, tudíž x je prostá.

Protože je $\mathbb{N} \setminus f(\mathbb{N})$ nekonečná a x prostá, je i $x(\mathbb{N} \setminus f(\mathbb{N}))$ nekonečná. Zároveň ke každému prvku z $x(\mathbb{N} \setminus f(\mathbb{N}))$ můžu najít alespoň jedno r z třetího bodu. Z definice všechna tato r náleží $\mathbb{N} \setminus x(\mathbb{N})$, z čehož vyplývá, že je i $\mathbb{N} \setminus x(\mathbb{N})$ nekonečná. Tedy x náleží R a je řešením rovnice, čímž jsme dokázali, že grupoid **je** s levým dělením.

Pravé dělení

Mějme $f,g \in R$ s předpisy f(n) = 2n a g(n) = 3n. Hledáme řešení rovnice $x \circ f = g$. Pro takové řešení musí platit $(x \circ f)(1) = f(x(1)) = g(1) = 3$. $f(\mathbb{N})$ však obsahuje pouze sudá čísla, tudíž pro žádnou přirozenou hodnotu x(1) nemůže platit f(x(1)) = 3. x tím pádem nemůže být řešením rovnice a grupoid **není** s pravým dělením.

Úloha č. 2

Neutrální prvek

Z pravého, resp. levého dělení mějme pro nějaký prvek g pologrupy řešení rovnic $g \cdot i_1 = g$ a $i_2 \cdot g = g$. Ukážeme, že $i_1 = i_2 = i$ a že i je řešením rovnic pro všechny prvky pologrupy. Poté je i z definice neutrálním prvkem.

Nejprve ukážeme pomocí pravého a levého krácení rovnost i_1 a i_2 .

$$g \cdot g = g \cdot g$$

$$(g \cdot i_1) \cdot g = g \cdot (i_2 \cdot g)$$

$$g \cdot (i_1 \cdot g) = g \cdot (i_2 \cdot g)$$

$$i_1 \cdot g = i_2 \cdot g$$

$$i_1 = i_2$$

Mějme nyní libovolný prvek pologrupy p.

$$g \cdot i = g$$
 $i \cdot g = g$ $g \cdot i \cdot p = g \cdot p$ $p \cdot i \cdot g = p \cdot g$ $p \cdot i = p$

Inverzní prvek

Pro prvek p najdeme řešení rovnice $p \cdot q_1 = i$, resp. $q_2 \cdot p = i$ a ukážeme, že $q_1 = q_2 = p^{-1}$, což je z definice inverzní prvek k p.

$$p = p$$

$$p \cdot i = i \cdot p$$

$$p \cdot (q_2 \cdot p) = (p \cdot q_1) \cdot p$$

$$(p \cdot q_2) \cdot p = (p \cdot q_1) \cdot p$$

$$p \cdot q_2 = p \cdot q_1$$

$$q_2 = q_1$$

Tímto jsme ukázali, že pologrupa splňuje všechny axiomy grupy.

Úloha č. 3

a)

Aby T byla podpologrupa S, musí být uzavřená na operaci \cdot .

Neutrální prvek

Mějme libovolný prvek $t_1 \in T$. Z uzavřenosti dostáváme $t_1 \cdot t_1 = t_2 \in T$. Stejně tak $t_1 \cdot t_2 = t_3 \in T$, $t_1 \cdot t_2 \cdot t_3 = t_4 \in T$ a takto induktivně pokračujeme. Z konečnosti T pak pro nějaké $k \leq n$ musíme dostat

$$t_1 \cdot t_2 \cdot t_3 \cdots t_n = t_k$$

$$(t_1 \cdot t_2 \cdots t_{k-1}) \cdot t_k \cdots t_n = t_1 \cdot t_2 \cdots t_{k-1}$$

$$t_k \cdot t_{k+1} \cdots t_n = 1.$$

Neutrální prvek tedy náleží T. Jednoznačnost a oboustrannost 1 jakožto neutrálního prvku dostaneme z toho, že S je grupa.

Inverzní prvek

Mějme libovolný prvek $t_1 \in T$. Stejným postupem jako v předchozím případě dostaneme

$$t_{k} \cdot t_{k+1} \cdot t_{k+2} \cdots t_{n} = 1$$

$$(t_{1} \cdot t_{2} \cdots t_{k-1}) \cdot t_{k+1} \cdot t_{k+2} \cdots t_{n} = 1$$

$$t_{1} \cdot (t_{2} \cdots t_{k-1} \cdot t_{k+1} \cdot t_{k+2} \cdots t_{n}) = 1$$

$$t_{2} \cdots t_{k-1} \cdot t_{k+1} \cdot t_{k+2} \cdots t_{n} = t_{1}^{-1}.$$

Jednoznačnost a oboustrannost t_1^{-1} jako inverzního prvku k t_1 opět dostáváme z toho, že S je grupa.

Pologrupa T tedy splňuje všechny axiomy grupy.

b)

Mějme grupu $(\mathbb{Z}, +)$ s neutrálním prvkem 0. Vezměme podpologrupu $(\mathbb{N}, +)$. Očividně $\mathbb{N} \subseteq \mathbb{Z}$, + je asociativní a $(\forall n, m \in \mathbb{N})(n + m \in \mathbb{N})$. Je to tedy skutečně podpologrupa $(\mathbb{Z}, +)$. Zároveň však \mathbb{N} neobsahuje neutrální prvek, tudíž nemůže být grupou.