

Sistema de monitoratge autoadaptable heterogeni i distribuït

Autor: Joaquim Motger de la Encarnación

Director: Xavier Franch Gutierrez

Codirector: Marc Oriol Hilari

Treball de final de grau presentat sota el marc del Grau d'Enginyeria Informàtica en l'especialitat de Enginyeria del Software

Declaració d'Autoria

Jo, Joaquim MOTGER DE LA ENCARNACIÓN, declaro que aquest Treball de Final de Grau titulat *Sistema de monitoratge autoadaptable heterogeni i distribuït* i el treball presentats en el mateix són propis. Declaro que:

- La feina aquí presentada ha estat desenvolupada durant el curs del Grau en Enginyeria Informàtica
- S'ha indicat degudament l'ús de publicacions o components d'autoria externa, utilitzats com a suport pel desenvolupament del projecte, reconeixent l'autoria original dels mateixos
- S'ha indicat degudament tota la feina desenvolupada per autoria pròpia
- Totes les publicacions terceres consultades pel desenvolupament del treball estan degudament citades

I per deixar constància d'aquesta declaració, signo el present document

Signatura:			
Date:			

Universitat Politècnica de Catalunya

Abstracte

Facultat d'Informàtica de Barcelona Enginyeria de Serveis i Sistemes de la Informació

Grau d'Enginyeria Informàtica

Sistema de monitoratge autoadaptable heterogeni i distribuït

per Joaquim MOTGER DE LA ENCARNACIÓN

El monitoratge consisteix en la tècnica d'observació i control dels sistemes software amb l'objectiu de garantir la seva fiabilitat, la qualitat del servei (Quality of Service, QoS), la seguretat i altres característiques dels sistemes software pròpies de la seva execució en temps real. El monitoratge proporciona la informació que permet a un sistema software autoadaptable modificar la seva execució davant la violació d'uns certs valors sobre aquestes característiques. De la mateixa manera, els sistemes de monitoratge requereixen també poder adaptar la seva execució per satisfer la seva fiabilitat. En aquest context, com podem dotar a un sistema de monitoratge de capacitats autoadaptables?

En base a aquesta premisa, aquest Treball de Final de Grau consisteix en el disseny i implementació d'un sistema de monitoratge autoadaptable, heterogeni i distribuït que integra un conjunt de monitors de naturalesa diversa i permet, mitjançant la gestió i adaptació de diagrames UML, la seva reconfiguració de forma automàtica. La proposta i el desenvolupament plantejats en aquest projecte es validen mitjançant casos d'ús reals i, en especial èmfasi, amb la seva integració dins el marc de SUPER-SEDE, un projecte del programa Horizon 2020 enfocat a la gestió del cicle de vida dels serveis software i les aplicacions, amb l'objectiu de millorar l'experiència final de l'usuari en l'ús d'aquests sistemes.

Agraïments

The acknowledgments and the people to thank go here, don't forget to include your project advisor...

Índex

De	eclara	ió d'Autoria i	iii
Ał	strac		v
Αę	graïm	nts	'ii
1	Intro	lucció	1
2	2.1 2.2	extualització Presentació i justificació de la temàtica	3 4 4 6
3	Obje 3.1 3.2	Objectiu general	9 10 10
4	Gest 4.1 4.2 4.3	Metodologia de desenvolupament 1 Recursos 1 2.2.1 Recursos humans 1 2.2.2 Recursos materials 1 2.2.3 Recursos software 1 Planificació temporal 1 3.3.1 Descripció de fases 1	13 14 14 14 15 15
	4.4	Disseny 1 Implementació 1 Fase final 1 4.3.2 Previsió d'alternatives i pla d'acció 1 Viabilitat 1	15 16 16 17 17
		Despeses indirectes i amortitzacions	19 19 19 20 21 21

			Dimensió aml Matriu de sos														
5	Anà	lisi de r	equisits														23
	5.1	Visió g	eneral del siste	ema .													 23
	5.2	Requis	its														 24
			Funcionals .														24
		5.2.2	De qualitat .														24
6	Eine	s de de	senvolupameı	nŧ													25
•	6.1		ogies utilitzad														
	6.2		de configurac														
7	Dice		sistema														27
1		•															
	7.1		pció general														
	7.2		a de monitorat	_													27
		7.2.1	Monitors														27
		7.2.2	Monitor Mana	0													27
		7.2.3	Orchestrator														28
	7.3		a d'adaptabilit														28
		7.3.1	Model Reposi	tory .													 28
		7.3.2	Adapter														 28
			Model Adapte	er													 29
			Enactor														 29
	7.4	Dashb	oard														 29
8	Mod	lelatoe i	UML de config	nıraci	ons	s de	ls r	ทกเ	nito	ırs							31
•	8.1		Section 1														
	0.1	8.1.1	Subsection 1														
		8.1.2	Subsection 2														31
	0.3	•															
	8.2	Main S	Section 2		• •		• •	•	•	• •	• •	• •	• •	• •	 •	• •	 31
9	Reco	onfigura	ció dels moni	tors													33
	9.1	Main S	Section 1														 33
			Subsection 1														33
		9.1.2	Subsection 2														33
	9.2	Main S	Section 2														33
10	Dice	ony dol	dashboard														35
10		•	Section 1														35
	10.1		Subsection 1														
																	35
	40.0		Subsection 2														35
	10.2	Main S	Section 2					•	•						 ٠		 35
11	Vali	dació d	el sistema														37
	11.1	Main S	Section 1														 37
		11.1.1	Subsection 1														 37
		11.1.2	Subsection 2														 37
	11.2	Main S	Section 2														 37

12	Treball futur i possibles expansions	39
	12.1 Main Section 1	39
	12.1.1 Subsection 1	39
	12.1.2 Subsection 2	39
	12.2 Main Section 2	39
13	Conclusions	41
	13.1 Main Section 1	41
	13.1.1 Subsection 1	41
	13.1.2 Subsection 2	41
	13.2 Main Section 2	41
Α	Frequently Asked Questions	43
	A.1 How do I change the colors of links?	

Índex de figures

2.1	Arquitectura de sistemes auotadaptables monitorats	5
2.2	Cicle de vida i entorn proposat per SUPERSEDE	7
4.1	Simplificació de la metodologia Kanban	13

Índex de taules

4.1	Costos directes	18
4.2	Costos indirectes i amortitzacions	19
4.3	Contingències	19
4.4	Imprevistos	20
4.5	Resum global del pressupost	20
	Matriu de sostenibilitat	

Capítol 1

Introducció

El present document consisteix en la memòria del Treball de Final de Grau (TFG) del Grau en Enginyeria Informàtica titulat *Sistema de monitoratge autoadaptable, heterogeni i distribuït*. Com a projecte realitzat a la cloenda dels estudis de grau, el desenvolupament i presentació d'aquest projecte tenen dos objectius principals.

En primer lloc, la consolidació dels coneixements adquirits durant el transcurs del grau. Aquests coneixements engloben des de la qüestió tècnica i específica de la matèria, amb especial èmfasi en els conceptes i aprenentatges relacionats amb l'especialitat d'Enginyeria del Software (tals com el disseny de components software), fins a aspectes relacionats amb la gestió, realització i documentació de projectes complets, pràctics i funcionals, dels quals aquest TFG n'és un exemple. Al llarg dels capítols que composen aquesta memòria, la justificació, explicació i demostració de les tasques realitzades i els conceptes tractats s'exposen amb la rigurositat adequada a un document acadèmic d'aquesta categoria, demostrant l'assoliment d'aquests coneixements amb la major claredat possible.

Per altra banda, aquest projecte pretèn presentar-se com un treball d'investigació, recerca i desenvolupament amb valor propi, dins d'un àmbit i context determinats, amb un objectiu pràctic i aplicable. Més enllà del caire acadèmic, els productes i resultats generats com a conseqüència de la realització d'aquest projecte (components software, disseny i implementació de sistemes, documentació, etc.) esdevenen elements amb valor propi, amb expectatives d'ús i possibilitats d'expansió dins del seu propi context.

Per tal de satisfer aquests dos objectius, aquest projecte presenta el següent propòsit: dissenyar, implementar, gestionar, testejar, validar i mantenir un sistema de monitoratge que satisfaci els criteris d'autoadaptabilitat, heterogeneïtat i distribució (conceptes que s'aprofundiran més endavant). Sota aquesta temàtica, i amb les consideracions prèviament establertes, s'assoliran tant l'objectiu de consolidació de coneixements com la generació d'uns resultats que puguin ser presentats pel seu valor propi i independent.

Capítol 2

Contextualització

2.1 Presentació i justificació de la temàtica

En les darreres dècades els sistemes software han evolucionat fins al punt d'esdevenir elements clau i imprescindibles de les activitats primàries de qualsevol empresa, organització o institució. La gestió de la informació, els protocols i controls de seguretat, els processos de negoci, etc., són els reptes als quals els CIO de moltes empreses s'han d'enfrontar. Aquests reptes i els seus resultats depenen, en gran mesura, del comportament dels sistemes software que entren en joc dins aquestes activitats. Adicionalment, la quantitat de productes software exposats com a serveis o aplicacions mòbils ha incrementat dràsticament. Fet que deriva en el sorgiment d'una gran varietat de contexts i entorns d'execució entre els grans volums d'usuaris que aquests sistemes poden tenir.

És per aquest motiu que eventualment ha anat prenent força un concepte basat en l'estudi i control de qualitat dels sistemes software: el monitoratge. Com a part de la vida professional d'un enginyer de software, la supervisió i control dels components i sistemes amb els què treballa és un concepte clau amb el qual, d'una forma o altra, ha d'estar familiaritzat. Però el problema que plantegem aquí va més enllà: després del repte de monitorar els sistemes, ens hem de plantejar com dissenyar, gestionar i adaptar aquest monitoratge.

Els reptes que aquestes tasques plantegen i que aquest projecte treballa són diversos. Entre d'altres, cal valorar el disseny i les característiques tècniques dels monitors, la seva configuració i la capacitat d'adaptabilitat. En relació amb aquest últim aspecte, també cal valorar com s'emmagatzemen i es gestionen els detalls relacionats amb la configuració dels monitors, i establir interaccions de la manera més genèrica possible per facilitar l'extensibilitat.

Tal i com veurem més endavant a l'apartat 2.3. Estat de l'art, existeix una àmplia recerca que actualment treballa i desenvolupa projectes en relació a aquest àmbit. El potencial d'estudi que ofereix resulta d'un alt interès a causa de la possibilitat de recerca i síntesi i als diferents aspectes i criteris sobre els quals es pot treballar.

Així, tant com estudiant com a futur professional del sector de l'enginyeria del software, es poden contemplar diversos criteris per treballar en aquesta temàtica:

- Un aprofundiment en els coneixements de l'enginyeria i els sistemes software
- Treball i recerca en conceptes de control de qualitat, fiabilitat i millora de l'experiència de l'usuari

- Possibilitat de col·laborar i aprofundir en un tema de recerca d'actualitat dins l'enginyeria de serveis i els sistemes d'informació
- Plantejament d'un projecte complet que pugui servir a tercers interessats en l'estudi de sistemes de monitoratge autoadaptatius

2.1.1 Identificació dels stakeholders

Les diferents fases que engloben aquest projecte deriven en l'obtenció d'un producte final, orientat a la seva aplicació pràctica. Com a tal, els documents generats i els components dissenyats i implementats esdevenen productes propis dins el context del monitoratge de sistemes software. Com a tals, aspectes que s'exposaran al llarg d'aquest document (el disseny i implementació d'una arquitectura genèrica pels monitors, la gestió de les configuracions, etc.) poden resultar d'utilitat per a agents externs a la pròpia autoria del projecte.

Podem considerar, per tant, que podrà ser una eina d'interès pels principals stakeholders, que vindrien a ser:

- Desenvolupadors i enginyers software. Aquells agents al càrrec del control de qualitat de sistemes softwares de diverses naturaleses. Els conceptes treballats, el plantejament de problemàtiques, i el producte generat, poden aportar valor de qualitat al sector treballant, per una banda, en la síntesi i recopilació de la informació actual, i per altra banda, aportant propostes i solucions pròpies basades en l'experiència del desenvolupament del projecte.
- Gestors de projecte i experts en Sistemes d'Informació. La gestió de la informació, el tractament i el seu potencial poden resultar afectats gràcies a la capacitat de recol·lecció de dades del sistema de monitoratge, així com els criteris de revisió i control de qualitat, que permeten analitzar i obtenir informació fiable.
- Usuaris finals dels sistemes monitorats. De forma indirecta, es veuran afectats degut a les conseqüències del monitoratge dut a terme per aquest sistema de monitoratge o d'altres derivats dels conceptes treballats al llarg d'aquest projecte.

2.2 Estat de l'art

Per tal de plantejar les necessitats i projeccions del treball, així com les vies de desenvolupament del projecte, és necessari conèixer quina és la situació del monitoratge autoadaptatiu de sistemes software en la recerca actual.

En primer lloc, cal conéixer l'entorn referent als sistemes software autoadaptatius: és a dir, aquells que seran l'objectiu de monitoratge del nostre sistema de monitoratge (que no deixa de ser un altre sistema software autoadaptatiu). És interessant veure com la recerca i la investigació planteja, de forma pràcticament correlacionada, els conceptes de sistema autoadaptatiu i monitoratge.

De fet, documents de caràcter acadèmic tals com "An Approach to Self-adaptive Software Based on Supervisory Control", publicat per la Vanderbilt University de Nashville (USA), plantegen una arquitectura d'autoadaptabilitat per sistemes software

2.2. Estat de l'art 5

FIGURA 2.1: Arquitectura de sistemes autoadaptables monitorats

basada en la supervisió o monitoratge. Tal com podem veure a la Figura 2.1, destaquem dos components principals: l'aplicació principal, o **Main Application Function**, equivalent al sistema software (servei web, aplicació mòbil, etc.) encarregat d'una funcionalitat específica i sobre el qual volem realitzar el control de qualitat; i el component supervisor, o **Supervisory Component**, que s'encarrega d'executar aquest control de qualitat.

La interacció i arquitectura plantejada en la figura és relativament senzilla. El component software a avaluar forma part del domini del sistema a avaluar (*ground-level*, GL). En la seva activitat, aquesta aplicació o sistema rep una sèrie de dades (que dependrà de la naturalesa i objectiu del sistema), i produeix uns resultats en base a aquest *input*. Paral·lelament, com qualsevol sistema orientat a l'ús, existeix una interacció sistema-usuari. Més enllà del domini i les característiques pròpies dels sistemes software, es presenta l'entorn corresponent al sistema de supervisió o monitoratge (*supervisory-level*, SL). En aquest nivell trobem des d'un punt de vista lògic el component de supervisió o monitor, que interacciona amb l'aplicació principal de dues formes diferents:

- Monitoratge. Procés d'interacció entre el component principal i el monitor on el primer envia informació al segon. L'aplicatiu produeix, com a conseqüència de la seva activitat, informació i dades que envia com a *output* al monitor. Aquesta informació ha d'estar prèviament definida i estructurada, de tal manera que el monitor sigui capaç d'interpretar-la.
- Reconfiguració. El monitor procesa les dades que rep com a input del monitoratge i, segons els criteris d'adaptabilitat establerts, aplica els canvis o reconfiguracions pertinents en el sistema software monitorat. D'aquesta manera, la lògica encarregada d'interpretar la informació i prendre decisions d'adaptabilitat (SL) queda totalment separada de la lògica del domini de l'aplicatiu (GL).

Partint d'aquest punt, aquest document estableix les premisses del monitoratge i les necessitats de reconfiguració d'aquests tercers sistemes softwares, la naturalesa dels quals és diversa i heterogènia. Noti's que, de fet, l'anterior disseny presenta

una arquitectura genèrica aplicable a qualsevol entorn software, independentment de la naturalesa del domini monitorat. Tot i així, existeix una àmplia recerca especialitzada: publicacions com "Agent Based Services for Negotiation, Monitoring and Reconfiguration of Cloud Resources", publicada per la universitat de Nàpols (Itàlia), es centren en analitzar els requisits, necessitats i funcions principals del monitoratge i reconfiguració de sistemes i recursos al núvol (p.e. serveis web).

La documentació i bibliografia referent als sistemes software autoadaptables i als sistemes de supervisió i monitoratge és molt àmplia. Tot i així, si focalitzem la recerca a la problemàtica a resoldre, és a dir, l'autoadaptabilitat i reconfiguració dels sistemes de monitoratge, no trobem un treball tan profunditzat i específic com en el cas prèviament explicat.

En alguns documents, com per exemple el ja esmentat publicat per la University of Nashville, es mencionen criteris del disseny de la capa de supervisió, entre els quals entren en joc, p.e., factors com la previsió d'errors a la capa de l'aplicatiu principal, o ve esdeveniments/disparadors inesperats. I, com és lògic, una reacció i canvis per part del sistema de monitoratge.

En altres documents, tals com "Self-reconfiguration of service-based systems: a case study for service level agreements and resource optimization", publicat per IBM, es defineixen models autònoms d'autoadaptabilitat i reconfiguració autònoma, basats en tècniques de detecció d'esdeveniments i canvis en el propi sistema. Conceptes com l'anàlisi de l'estat del sistema, el monitoratge i l'execució d'una reconfiguració entren en joc dins d'aquest pla.

2.2.1 Projecte SUPERSEDE

Com a part de l'estat de l'art i punt de partida pel desenvolupament del sistema, cal introduïr el projecte SUPERSEDE (https://www.supersede.eu/). Aquest projecte forma part del *Horizon 2020 Programme*, un programa de recerca i innovació financiat i gestionat per la Unió Europea. Actualment, compta amb la participació de diverses empreses, fundacions i universitats, entre les quals s'inclou la pròpia UPC.

Aquest projecte planteja una proposta del cicle de vida i la gestió dels serveis software i les aplicacions, amb l'objectiu final similar al plantejat com a premisa d'aquest Treball de Final de Grau: millorar la qualitat de l'execució dels sistemes software i, en conseqüencia, l'experiència de l'usuari final en l'interacció amb aquests sistemes.

Dins aquest cicle de vida, orientat al control de qualitat dels sitemes software, es proposen 4 fases:

- 1. **Col·lecció**. L'obtenció i emmagatzematge de dades que puguin resultar d'interès pel control de qualitat. La naturalesa d'aquestes dades (així com el format i altres criteris) dependran de l'objectiu d'aquest anàlisi i el tipus de dades tractat. Així, aquestes poden incloure desde dades purament analítiques (p.e. % de disponibilitat del sistema) o bé contextuals (p.e. missatges o continguts introduïts al sistema).
- 2. **Anàlisi**. Les dades obtingudes en la fase anterior tenen un significat, una informació que el sistema ha de ser capaç d'extreure i comprendre. En aquesta

2.2. Estat de l'art

FIGURA 2.2: Cicle de vida i entorn proposat per SUPERSEDE

fase, les dades es transformen en coneixement en relació a l'estat del sistema, a través de diverses tècniques anal·lítiques, de nou en funció del marc d'estudi i el context. Per exemple, es podrien valorar tècniques d'anàlisi de llenguatge natural per estudiar les valoracions d'usuaris introduïdes a un sistema.

- 3. **Decisió**. El coneixement produït a l'anterior fase genera la capacitat de prendre decisions de millora i actuació sobre el sistema software. És a dir, deriva en una o vàries suggerencies d'adaptació. Les eines de presa de decisions entren en joc en aquesta fase, rebent com a entrada la informació i, a partir dels criteris i paràmetres definits en relació a aquesta informació, es produeix la suggerència d'adaptació del sistema.
- 4. Adaptació. Un cop el sistema ha estat capaç de produïr de forma automàtica una suggerència de millora o adaptació del sistema, aquesta s'aplica sobre el component monitoritzat amb l'objectiu de millorar l'experiència de l'usuari. Arribats a aquest punt, es tanca el cicle de control de qualitat, reflectint la transformació de l'input de la fase de col·lecció, les dades, fins a l'output d'aquesta darrera fase, l'adaptació del sistema.

La Figura 2.2 resumeix aquest cicle de vida i les característiques del context de les seves fases. Tal i com es pot observar, la principal font de dades amb les quals aquest control de qualitat es nodreix es l'experiència de l'usuari final, el context on s'executa aquesta aplicació o sistema i les dades generades del propi ús i funcionament del sistema. És, per tant, un aspecte clau l'obtenció de **dades en execució real**, que seran les que ens permetin aplicar aquest cicle regularment. Regularitat que serà crucial per satisfer l'objectiu d'anàl·lisi de la qualitat del sistema: només amb dades actuals i constants serem capaços de conéixer l'activitat real del nostre sistema i actuar en conseqüència.

En aquest context identifiquem per tant 4 sectors o subsistemes amb un objectiu específic que, integrats, serveixen a un propòsit genèric. Si ens plantegem com encaixa aquest model dins el nostre tema d'estudi (és a dir, l'adaptabilitat dels sistemes de

monitoratge) podem establir una relació directa amb les fases de **col·lecció** de dades i **adaptació**. Dins aquesta primera fase de col·lecció, necessitem definir un sistema capaç d'obtenir aquestes dades, en funció dels sistemes a controlar i de l'interès que tinguem sobre aquests sistemes. Aquest sistema de **monitoratge** estarà composat per un conjunt definit de monitors, encarregats de recollir aquesta informació. Per altra banda, si volem dotar a aquest sistema de monitoratge d'adaptabilitat, i per tant, garantir un control de qualitat sobre aquests monitors, necessitem establir un sistema que gestioni l'activitat dels monitors i defineixi adaptacions a aplicar sobre aquests monitors.

Pel desenvolupament d'aquest projecte, ens centrarem en aquestes dues parts: el sistema encarregat de la fase de col·lecció de dades (monitors), i el sistema encarregat de gestionar i aplicar les adaptacions sobre aquest sistema de col·lecció. De la mateixa manera, es treballa la integració entre aquests dos components, per generar com a resultat final l'objectiu d'aquest projecte: un sistema de monitoratge autoadaptable, heterogeni i distribuït.

Capítol 3

Objectius

Definit el context, l'àrea d'estudi i una aproximació a l'estat de l'art actual d'aquest projecte, cal definir amb el màxim nivell de detall quins seran els objectius principals, així com els objectius específics i l'abast, per tal d'introduïr els conceptes treballats durant el desenvolupament del mateix.

3.1 Objectiu general

L'objectiu principal d'aquest projecte consisteix en la implementació d'un sistema software orientat al monitoratge d'altres sistemes softwares. Aquest sistema haurà de complir 3 característiques principals: ser autoadaptable, heterogeni i distribuït. A continuació procedim a explicar en detall què entendrem per aquestes característiques dins el context d'aquest projecte, en base a la contextualització i els conceptes explicats anteriorment:

- 1. **Autoadaptable**. El sistema de monitoratge generat ha d'estar dotat de capacitats d'adaptabilitat de la seva execució en temps real. Mitjançant la gestió i control de la seva activitat, els diferents monitors han d'oferir eines d'adaptació orientades al control de qualitat del propi sistema. Per fer-ho, caldrà tenir en compte dos punts que es desenvoluparan més endavant: en primer lloc, la dotació dels monitors d'aquestes eines d'adaptació; en segon lloc, el disseny i implementació dels components necessaris per gestionar les adaptacions.
- 2. **Heterogeni**. El sistema constarà d'un conjunt de monitors de naturalesa variada i permetrà, mitjançant un disseny i una arquitectura prou genèrica, la integració de nous monitors de diversa índole. Per tant, el sistema haurà d'estar capacitat per gestionar els diversos tipus de monitors tot i les seves diferències en aspectes com el sistema monitorat, la naturalesa del monitoratge, les necessitats de configuració, etc. L'objectiu d'aquesta característica és que el resultat final sigui el més aprofitable i reusable possible.
- 3. **Distribuït**. El sistema haurà de permetre desplegar els diferents monitors i els components d'adaptabilitat de forma distribuïda i, per tant, tenir la capacitat de desplegar els diferents components com a elements independents dins el nostre sistema genèric.

Els detalls tècnics de l'assoliment d'aquests 3 objectius es desenvoluparan al llarg d'aquesta memòria.

3.1.1 Objectius específics

En base a l'objectiu general prèviament establert, cal definir una sèrie d'objectius específics que ens permetran assolir-lo definint unes vies prou clares com per a facilitar el desenvolupament del projecte. Procedim, doncs, a enumerar aquests objectius:

- **OBJ1.** Definir una planificació pel desenvolupament del projecte en funció dels requisits.
- **OBJ2.** Dissenyar una arquitectura software adequada a les necessitats.
- **OBJ3.** Implementar el sistema de monitoratge.
- **OBJ4.** Implementar el sistema d'adaptació dels monitors.
- **OBJ5.** Generació d'un producte final usable, que pugui ser desplegable i reproduïble en format demo.
- **OBJ6.** Configurar i definir l'entorn de desenvolupament i d'ús del sistema.
- OBJ7. Assegurar qualitat i fiabilitat mitjançant els criteris definits.
- **OBJ8.** Seguir una metodologia de desenvolupament i testing del sistema.
- **OBJ9.** Definir una sèrie de casos d'ús per mostrar la usabilitat i comportament real del sistema.
- **OBJ10.** Documentar i justificar l'evolució del projecte.

Aquests objectius engloben les dues vessants d'aquest projecte, ja especificades anteriorment: la generació i documentació d'un Treball de Final de Grau, i el disseny i la implementació del sistema descrit. En qualsevol cas, aquests objectius específics defineixen les "metes finals" d'aquest projecte. Per garantir-ne i comprendre el desenvolupament fins a assolir-los, cal definir les tasques i, per tant, l'abast específic d'aquest projecte.

3.2 Abast del projecte

Els objectius específics prèviament identificats ens donen una visió acurada de l'abast del nostre projecte i les tasques a realitzar. Tot i així, és important reflectir de forma explícita l'abast d'aquest projecte, enumerant els requisits (o dit d'una altra manera, les tasques o necessitats a satisfer) i delimitant el nostre projecte. Ens basarem per tant en els següents punts:

- Realitzar una recerca bibliogràfica (basada en l'estat de l'art) per assentar les bases i el context del desenvolupament del projecte.
- Dissenyar, implementar i documentar un disseny arquitectònic software que satisfaci l'objectiu general i els tres criteris (autoadaptabilitat, heterogeneïtat i distribució) del nostre sistema de monitoratge.
- Dissenyar, implementar i documentar el sistema d'adaptabilitat dels monitors i realitzar la integració amb els mateixos.
- Definir una sèrie de casos d'ús (mínim de 3 escenaris) que ens permetin validar les funcionalitats del sistema amb exemples mitjançant l'execució real.

11

• Dissenyar i implementar un dashboard que permeti visualitzar l'activitat del sistema de monitoratge i adaptabilitat.

Aquests punts estableixen el mínim del que podríem considerar com a necessari per considerar que s'han assolit els objectius esmentats a l'apartat 3 d'aquest document. Tot i així, podem preveure la possibilitat de permetre'ns augmentar les perspectives, i gràcies a l'ús d'una metodologia àgil (veure apartat 5.1. Metodologia de treball), augmentar l'abast del projecte, amb aspectes com incrementar el nombre de monitors implementats, o augmentar les funcionalitats del dashboard. En qualsevol cas, aquests aspectes serien un afegit secundari que únicament tindrà sentit contemplar amb el transcurs del projecte.

Capítol 4

Gestió i desenvolupament

Abans d'entrar en els detalls del projecte, necessitem definir sota quins criteris i quines pràctiques realitzarem la gestió i el desenvolupament del projecte.

4.1 Metodologia de desenvolupament

Les necessitats i requisits específics del projecte aniran fortament relacionades amb la recerca i l'avenç del propi transcurs del projecte. Si bé els objectius específics queden clars, les tasques a desenvolupar aniran evolucionant dinàmicament. Per aquesta raó, en aquest cas serà adequat seguir una metodologia de desenvolupament àgil. I, en concret, es seguirà una simplificació de la metodologia Kanban.

En base als requisits establerts inicialment durant la planificació del projecte, i al llarg del seu transcurs, s'aniran generant una sèrie de tasques que s'afegiran a un backlog o to-do list; és a dir, el conjunt de tasques amb la mínima granularitat que aporti valor al projecte com a producte entregable. D'acord a les necessitats, s'aplicarà una priorització, i aquestes tasques s'aniran afegint com a tasques realitzant o en progrés. Conforme aquestes tasques es completin, s'afegiran al llistat de tasques realitzades o done, mantenint així un control dels requisits que s'estan satisfent i el seu grau de completesa.

Per garantir la integritat del sistema, cadascuna d'aquestes tasques serà desenvolupada fora de l'entorn de producció, en un entorn (o branca) separats. D'aquesta manera, el desenvolupament no afectarà al producte provisional generat en cada moment del desenvolupament del projecte. I, alhora, permetrà fer un seguiment més exacte de l'estat de cada tasca o funcionalitat a implementar.

S'ha considerat millor opció a, per exemple, alternatives àgils com Scrum, degut a diversos factors. P.e., a Kanban les entregues o releases són constants, i no acotades

FIGURA 4.1: Simplificació de la metodologia Kanban

temporalment. Considerarem més important, per tant, la metodologia basada en el producte final.

4.2 Recursos

Per definir les necessitats de recursos per satisfer la realització del projecte, els classificarem segons el següent criteri: recursos **humans**, recursos **materials** i recursos **software**.

4.2.1 Recursos humans

Pel domini de nostre projecte, basat en 1 desenvolupador principal i 2 gestors de projecte (1 director + 1 co-director), considerarem les seves hores de treball com recursos humans. Estimarem, i considerant els següents aspectes:

- El TFG es correspon a 18 ECTS (3 crèdits ECTS GEP + 15 crèdits ECTS TFG)
- 1 ECTS = 25-30 hores de treball
- Durada aproximada TFG = 22 setmanes

Podem estimar, per tant, pel cas del desenvolupador (alumne) una dedicació d'unes **24 hores** a la setmana. Pel cas dels gestors, farem una estimació aproximada de **50 hores** en total per part dels dos rols, com a tasques de suport

4.2.2 Recursos materials

Els recursos materials per aquest projecte són relativament senzills. Bàsicament:

- Portàtil Lenovo G-50. Màquina principal amb la qual es durà a terme el projecte
- Materials d'impressió. Necessaris per documentació, impressió de memòria, etc.

4.2.3 Recursos software

Tot i que aquests es discutiran amb més detall al capítol 5. Eines de desenvolupament, podem identificar inicialment la necessitat d'alguns recursos software principals, tals com:

- **Gestor de versions**. El codi (emmagatzemament, desenvolupament i evolució) requereix un control i manteniment, motiu pel qual s'estableix com a necessitat una eina d'aquest tipus
- IDE. És necessari l'ús d'un entorn de desenvolupament integrat per desenvolupar el projecte, dissenyar l'arquitectura, realitzar la implementació, configurar l'entorn, etc.
- **Sistema de compilació automàtic**. Necessari per gestionar la compilació i les dependències dels projectes.

• Framework desenvolupament web. Segons les necessitats que es defineixin al llarg del projecte, es triarà una tecnologia específica per desenvolupar el dashboard definit com a requisit al projecte.

Les opcions triades per suplir les necessitats d'aquests recursos i altres recursos software identificats com a necessaris es plantejaran més endavant.

4.3 Planificació temporal

Segons les necessitats d'aquest projecte i les seves característiques, classificarem el desenvolupament en 4 fases: la planificació, el disseny, la implementació, i la documentació i entrega del projecte.

4.3.1 Descripció de fases

Planificació

En primer lloc cal una fase inicial o fase de planificació. L'objectiu principal d'aquesta fase del projecte és definir els aspectes bàsics que definiran la naturalesa del projecte: els objectius, la metodologia de treball, el desenvolupament, els requisits, la planificació, etc. És a dir, tot allò relacionat amb l'establiment de les premisses sobre les quals ens basarem per desenvolupar el nostre projecte.

Aquesta fase del projecte va fortament lligada al desenvolupament del curs GEP, juntament amb altres activitats. En definitiva, les tasques a realitzar són les següents:

- **P1.** Investigació i recerca en quant al monitoratge i l'adaptabilitat de sistemes software.
- **P2.** Definir l'abast i el context del projecte.
- P3. Definir les fases i tasques del projecte, així com una planificació temporal de desenvolupament.
- P4. Preparar una gestió econòmica i una anàlisi de sostenibilitat.
- **P5.** Establir els requisits i necessitats d'acord a l'especialitat d'Enginyeria del Software.
- **P6.** Definir les eines de desenvolupament i els llenguatges amb els que treballar i implementar el sistema i el dashboard.
- P7. Definir els casos d'ús per validar i implementar el sistema.

Disseny

Conforme la fase de planificació avanci, podrem començar a realitzar el disseny del nostre sistema des d'un punt de vista de requisits i també arquitectònic (en referència a arquitectura del software). És a dir: l'objectiu d'aquesta fase és passar dels conceptes i objectius definits a la planificació a un "mapa" o "esquema" que serveixi de guia pel desenvolupament del projecte (subjecte, per descomptat, a possibles canvis i adaptacions al llarg del desenvolupament).

Principalment, les tasques a incloure en aquesta fase són:

- D1. Definir els entorns de configuració sota els quals es desenvoluparà el projecte
- **D2.** Dissenyar l'arquitectura software del sistema de monitoratge i dels monitors
- D3. Definir els criteris d'adaptabilitat amb els quals es dotarà al sistema
- D4. Configurar un entorn de configuració d'acord amb els criteris definits
- D5. Documentar els avanços referents a aquesta fase (memòria)

Implementació

Aquesta fase tindrà la major càrrega de feina de tot el projecte. Partirà d'uns criteris i objectius ben definits i estructurats a partir de les anteriors fases. Les tasques es correspondran principalment a totes aquelles tasques d'implementació i de testing del nostre sistema.

Per tant, identificarem com a tasques:

- I1. Implementació de l'arquitectura genèrica del sistema de monitoratge.
- I2. Implementació del sistema de monitors.
- I3. Implementació del sistema d'adaptabilitat.
- I4. Integració dels sistemes.
- I5. Implementació d'un dashboard que permeti visualitzar l'activitat del sistema
- I6. Generació de documentació referent al desenvolupament i la implementació (documentació d'APIs, README per desplegar el sistema, manual d'usuari del dashboard, etc.)
- I7. Ampliació del sistema (afegir monitors, ampliar dashboard) en funció de les necessitats i/o de la disponibilitat temporal
- I8. Redacció i ampliació de la memòria

Fase final

Finalment, identificarem una darrera fase del projecte que servirà de cloenda per preparar l'entrega i defensa final de la feina realitzada, així com tancar possibles tasques pendents i assegurar el correcte funcionament del sistema i la generació d'un producte final adequat.

Les tasques principals seran:

- F1. Testing de les funcionalitats del sistema
- F2. Comprovació de la satisfacció dels objectius i requisits
- F3. Finalització i revisió de la memòria
- F4. Preparació de la defensa final

4.4. Viabilitat

4.3.2 Previsió d'alternatives i pla d'acció

La planificació temporal i de tasques plantejada, així com el consum de recursos, contempla un desenvolupament del treball regular i sense imprevistos. Tot i així, hem de considerar alternatives al desenvolupament fruït d'imprevistos, desviacions o altres factors no contemplats dins de la normalitat. Identificarem, per tant, les possibles següents desviacions:

• Increment del nº d'hores necessàries. Aquest problema pot ser derivat per diverses causes (inhabilitació temporal del desenvolupador, dificultats tècniques en el desenvolupament, etc.). Això pot provocar, per una banda, una necessitat de més hores, i per altra banda, més dedicació per unitat de temps.

Pla d'acció. La tasca corresponent a la implementació del dashboard serà adaptada en funció de l'estat del projecte arribat al moment. És a dir: al tractarse d'un requisit molt flexible en quant a la seva complexitat (podem aspirar a un dashboard molt complet i multifuncional, o bé establir els requisits mínims per satisfer els criteris d'acceptació del TFG), podem permetre'ns retallar hores d'aquesta tarda, prioritzant aspectes crucials (com p.e. la implementació dels monitors).

• Avaria en el hardware. És possible que durant el desenvolupament del projecte el hardware utilitzat (en aquest cas, el portàtil Lenovo G-50) pateixi alguna avaria. Al tractar-se de la principal eina de desenvolupament, això pot afectar als terminis de desenvolupament.

Pla d'acció. Dues mesures complementàries: per una banda, en tot moment es mantindran diverses còpies de seguretat de tots els artefactes generats (documentació, software, entorns de configuració...) per garantir-ne la recuperabilitat; per altra banda, disposarem d'un entorn de treball alternatiu (un sistema operatiu instal·lat a un disc dur extern) on podrem seguir el desenvolupament del nostre projecte paral·lelament mentre l'avaria es soluciona.

 Canvis en els requisits del projecte. Podem suposar que el desenvolupament pràctic del projecte ens durà a concloure nous canvis necessaris en quant als requisits prèviament establerts.

Pla d'acció. En primer lloc, sotmetre a constant revisió el projecte per tal d'evitar al màxim que es produeixi un canvi de requisits significatiu. Per ferho, constantment es revisaran requisits, nivell de viabilitat, i satisfacció envers els terminis establerts. Si, per contra, es produeix un canvi significatiu inevitable, el nº d'hores total del projecte (aproximats) permet un petit increment fruit d'aquesta desviació, per tal de garantir que la resta de tasques es duen a terme correctament.

4.4 Viabilitat

Un dels principals objectius del Treball de Final de Grau és plasmar la capacitat de l'estudiant de generar, mitjançant els coneixements obtinguts, un producte o projecte real, amb una utilitat i uns objectius aplicables al nostre entorn. Per aquest motiu, i com estudiants, cal assumir la responsabilitat del projecte i estudiar-ne la seva viabilitat en dos sentits. Per una banda, la seva viabilitat econòmica, mitjançant una estimació pressupostària dels costos del projecte en un àmbit professional. Per

altra banda, el seu impacte econòmic, social i ambiental des d'un punt de vista de sostenibilitat.

4.4.1 Estimació pressupostària

Per simplificar al màxim l'estudi dels costos i, alhora, clarificar i estudiar-ne la justificació, procedirem a identificar i estimar els diferents costos associats al projecte segons el seu tipus.

Despeses directes

Entraran dins la classificació de despeses directes aquelles despeses derivades directament de la realització d'activitats previstes pel desenvolupament del projecte. Per una major precisió, relacionarem directament les activitats definides a l'anterior entregable amb els costos directes.

ACTIVITAT	HORES TOTALS	DEVELOPER	DIRECTOR	CODIRECTOR	COST TOTAL
Planificació	149	125	12	12	2475,00€
Abast i context	30	25	2,5	2,5	500,00€
Planificació	12	10	1	1	200,00€
Gestió econòmica i sostenibilitat	12	10	1	1	200,00€
Requisits d'especialitat	12	10	1	1	200,00€
Recerca de la temàtica	38	30	4	4	650,00€
Eines de desenvolupament	20	20	0	0	300,00€
Definir casos d'ús	25	20	2,5	2,5	425,00€
Disseny	102	88	4	10	1670,00€
Entorn de configuració	15	15	0	0	225,00€
Arquitectura software	32	25	2	5	550,00€
Criteris d'autoadaptabilitat	25	20	2	3	425,00€
Integració continuada	20	18	0	2	320,00€
Documentació memòria	10	10	0	0	150,00€
Implementació	203	186	0	17	3215,00€
Implementació arquitectura genèrica	30	26	0	4	490,00€
Implementació monitors	70	65	0	5	1100,00€
Implementació sistema d'adaptabilitat	50	45	0	5	800,00€
Integració sistemes	20	20	0	0	300,00€
Implementació dashboard	33	30	0	3	525,00€
Documentació de components	15	15	0	0	225,00€
Ampliació del sistema	15	15	0	0	225,00€
Documentació memòria	10	10	0	0	150,00€
Fase final	85	75	4	6	1375,00€
Finalització tasques	10	10	0	0	150,00€
Testing	19	15	2	2	325,00€
Comprovació satisfacció	14	10	2	2	250,00€
FInalització memòria	25	25	0	0	375,00€
Preparació defensa final	17	15	0	2	275,00€
Total	539	474	20	45	8735,00€

TAULA 4.1: Costos directes

Per aquest cas, farem les següents assumpcions:

- En el projecte intervindran 3 agents: el desenvolupador (alumne), i dos gestors de projectes (director i codirector). La principal diferència entre el director i codirector, per aquest cas, serà la involucració de cadascun en el desenvolupament del projecte segons la fase (el director tindrà major pes durant la fase inicial, mentre que el codirector donarà més suport al desenvolupament).
- L'estimació del cost serà de 12€/hora pel desenvolupador i 25€/hora pels gestors del projecte, en base a la informació actual que podem trobar referent a aquest aspecte pels rols de programador junior i gestor de projecte a portals com InfoJobs.

4.4. Viabilitat

Per cada activitat estimarem un n^o d'hores total i un grau d'implicació de cada rol. Les unitats corresponen a hores pel n^o d'hores totals i de cada rol, i a \in pel cost total.

Despeses indirectes i amortitzacions

Considerarem les següents despeses indirectes i amortitzacions:

- Impressions a paper. Considerarem 150 fulls / memòria, a 3 memòries a entregar per la defensa final + 1 de provisional; com a afegit, 200 fulls per articles, documentació... fan un total de 800 fulls.
- **Electricitat**. Cost i consum en base a referències de característiques de portàtil i preu estàndard de companyies elèctriques.
- Amortització. portàtil Lenovo G-50. Cost en base a compra; percentatge d'amortització en base a les hores útils de vida aproximada i les hores de rendiment esperades de programació, documentació, etc.
- Software. El desenvolupament serà basat en software lliure i, per tant, sense despesa addicional, però el considerarem com a part del pressupost per possibles desviacions.

CONCEPTE	COST UNITARI	UNITATS	COST
Impressions a paper	0,03€/full	800 fulls	24,00€
Electricitat	0,20€/kWh	225 kWh	45,00€
Amortització portàtil Lenovo G-50	450,00€/portàtil	0,15 (amortitzat)	67,50€
Software	0,00€/mes	5 mesos	0,00€
Total			136,50€

TAULA 4.2: Costos indirectes i amortitzacions

Contingències

Afegirem, en base als costos directes i indirectes prèviament desglosats, un 15% sobre el total en concepte de contingències.

CONCEPTE	COST BASE	% CONTINGÈNCIES	TOTAL
Costos directes	8735,00€/full	15	1310,25€
Costos indirectes	136,50€/kWh	15	20,475€
Total			1330,725€

TAULA 4.3: Contingències

Imprevistos

Identificarem 2 imprevistos en base a la planificació:

Prolongació de les hores / ampliació del termini. Contemplarem la possibilitat de requerir més temps de l'estimat per acabar el projecte, considerant una desviació de fins a 50 hores (que podríem considerar la dedicació aproximada de dues setmanes a mitja jornada). Considerarem una probabilitat raonable del 20

• Avaria de hardware. Problemes en l'ús del material hardware (en aquest cas, exclusivament el portàtil). Considerarem una probabilitat més remota, del 5%, i el pitjor dels casos, que equivaldria a la substitució total del cost del portàtil.

CONCEPTE	COST UNITARI	UNITATS	COST TOTAL	% PROBABILITAT	TOTAL
Ampliació del termini	12,00€/hora	50 hores	600,00€	20	120,00€
Avaria del hardware	450,00€/ordinador	1 ordinador	450,00€	5	22,50€
Total					142,50€

TAULA 4.4: Imprevistos

Pressupost global

Un cop valorat costos indirectes, costos indirectes i amortitzacions, contingències i possibles imprevistos, podem donar una versió completa de l'estimació pressupostària per la realització del projecte.

CONCEPTE	COST
Costos directes	8735,00€
Costos indirectes	136,50€
Contingències	1330,725€
Imprevistos	142,50€
Total	10.344,725€

TAULA 4.5: Resum global del pressupost

Per tant, el pressupost final és de 9867,475€.

4.4.2 Control de gestió

El pressupost exposat ja inclou com a part de la partida destinada una part generada per imprevistos i desviacions amb possibilitats de produir-se i que pretenen precisament realitzar un control i manteniment de la gestió i evolució del projecte i els recursos (veure apartats 2.1.3. i 2.1.4.).

Tot i així, podem considerar oportú establir uns mecanismes, o tasques específiques, dedicades al control periòdic que permetin fer un seguiment de l'activitat de gestió de projecte i, per tant, no només preveure de forma teòrica aspectes com desviacions pressupostàries, sinó detectar al llarg de l'evolució del projecte quan això succeeixi. Per fer-ho es proposa realitzar un control de desviacions durant la transició de fases; és a dir, treballarem amb un model de plantilla que ens calculi una sèrie de desviacions (en funció de diversos criteris), que al finalitzar cada fase ens permeti obtenir un feedback objectiu i ràpid de possibles desviacions respecte al pressupost inicial. Per fer-ho, i basant-nos en la bibliografia utilitzada a GEP, farem servir els següents indicadors:

- **Desviament de mà d'obra en preu** = (cost estimat cost real) * consum hores real
- **Desviament en la realització d'una tasca en consum** = (consum estimat consum real) * cost real
- Desviament total en la realització de tasques = cost total estimat tasca cost total real tasca

4.4. Viabilitat

 Desviament total de despeses fixes = total costos fixes pressupostat - total costos fixes real

Considerarem aquests 4 indicadors, ja que ens seran els més útils per detectar desviacions, p.e., en quant a la realització de les activitats descrites al Gantt, en termes tant de dedicació en quantitat d'hores total com per tasca, i també en aspectes com despeses fixes (p.e. amortitzacions). Mitjançant la comprovació d'aquests indicadors, podrem veure el grau de desviament i actuar en conseqüència segons les necessitats.

4.4.3 Sostenibilitat econòmica, social i ambiental

Procedim a fer un anàlisi de les 3 dimensions de la sostenibilitat en referència a aquest projecte, per posteriorment avaluar fent servir la matriu de sostenibilitat el grau de satisfacció d'aquest àmbit en funció dels criteris establerts.

Dimensió econòmica

La dimensió econòmica està satisfactòriament treballada gràcies al pressupost prèviament exposat, basat en dades objectives i específiques (p.e., activitats reals a realitzar durant el projecte), que inclou despeses materials i humanes. Aquests costos i temps de dedicació inclouen aspectes crítics tals com possibles desviacions i imprevistos, i una assignació proporcional dels recursos assignats a la rellevància de cada tasca. Es tracta d'un projecte realitzat amb el cost mínim, però suficient (tenint en compte sempre que és necessari afegir extres per desviacions), garantint la seva satisfacció però sense despeses innecessàries, el que garanteix la seva viabilitat econòmica.

Dimensió social

L'objectiu principal del treball és aprofundir en el control de qualitat i monitoritatge de sistemes software mitjançant el desenvolupament de software lliure reaprofitable. Tal i com vam veure a l'entregable 1 (a l'apartat Estat de l'art), existeix marge d'investigació i treball en aquest àmbit, i l'àmplia gama de serveis software poden extreure un cert benefici en base als avenços (o si més no, la recerca i síntesi) que aquest projecte pugui aportar. Des del punt de vista dels desenvolupadors (usuaris reals d'aquest projecte, ja que seran els que l'utilitzaran), aportem noves eines i facilitem criteris d'autoadaptabilitat per monitors de control de qualitat. També, però, tindrà conseqüències en els usuaris dels sistemes monitorats, ja que la recol·lecció de dades d'aquests està orientada a la millora de la qualitat dels serveis oferts per aquests sistemes. Aquest és un aspecte que cada vegada requereix més profunditat, motiu pel qual podem considerar l'existència d'una necessitat dins el mercat actual. Podem considerar que no existeixen col·lectius afectats negativament.

Dimensió ambiental

Els recursos plantejats tant pel desenvolupament del projecte com el consum necessari per la seva vida útil són mínims, i inclouen únicament aquells derivats del manteniment d'un sistema software. No existirà contaminació destacada més allà de la generada pel consum d'electricitat del dispositiu portàtil a utilitzar pel desenvolupament del projecte o la impressió de papers (que es limitarà al mínim necessari).

Es tracta, a més, d'un projecte que té per objectiu ser reaprofitat per tercers projectes (plantejant estructures, arquitectures, monitors, etc. reaprofitables).

Matriu de sostenibilitat

En base als anteriors criteris establerts, assignarem les següents puntuacions a la matriu de sostenibilitat, considerant únicament la Planificació per cadascuna de les 3 dimensions:

Sostenibilitat	Econòmica	Social	Ambiental
Planificació	9	8	7

TAULA 4.6: Matriu de sostenibilitat

Podem considerar, juntament amb la informació prèviament exposada, les següents justificacions:

- **Dimensió econòmica**. S'assoleixen satisfactòriament criteris econòmics amb rigor i detall (basat en pressupost) i es presenta informació verídica en quant a costos, optimitzats per un ajustament adequat.
- **Dimensió social**. Tot i que l'impacte pot no ser especialment destacable, sí que té un mercat profitós i aporta beneficis dins el seu sector que el fan un projecte positiu des del punt de vista social.
- Dimensió ambiental. No aporta un benefici destacable directe però sí que assoleix els criteris d'eficiència ambiental en quant al consum de recursos o l'empremta ecològica del projecte, que podrà ser reutilitzat per projectes tercers.

Anàlisi de requisits

Definits els objectius i l'abast del nostre projecte, és necessari procedir a traduïr aquests en requisits específics que el nostre sistema ha de satisfer. I que, en conseqüència, guiaran les posteriors tasques de disseny i implementació dels diferents components a desenvolupar.

5.1 Visió general del sistema

De forma prèvia a la identificació dels requisits, i a partir de la informació prèviament exposada, podem presentar una breu visió general del nostre sistema. En aquesta part no es presentaran detalls més enllà de la naturalesa, objectius i funcionalitats generals del sistema i els seus components, ja que aquests es desenvoluparan més endavant, un cop els requisits estiguin definits.

En primer lloc, establim de nou la premisa d'aquest projecte: el **disseny**, la **implementació** i **validació** d'un sistema de **monitoratge** que satisfaci les característiques d'**adaptabilitat**, **heterogeneïtat** i **distribució** (característiques explicades al *Capítol 3. Objectius*). En base al context del projecte SUPERSEDE (presentat al *Capítol 2. Contextualització*), i segons aquest objectiu, el nostre sistema haurà d'incloure dues vessants:

- Un sistema de monitoratge de serveis i components software tercers.
- Un **sistema d'adaptabilitat** que permeti adaptar l'activitat del sistema de monitoratge.

El component clau de l'activitat del monitoratge és el que anomenem **monitor**. Un monitor no és més que un component software (independentment de la seva naturalesa o la tecnologia amb la qual està desenvolupat) que interactua amb un component software i col·lecciona informació relacionada amb la seva activitat, tal i com s'explica al *Capítol 2.2. Estat de l'art*. Per tal de generar un sistema de monitoratge dins el nostre projecte, haurem de tenir en compte diversos factors.

En primer lloc, necessitarem definir una **arquitectura genèrica** que ens permeti definir l'estructura i arquitectura bàsica dels monitors que inclourem al nostre projecte. D'aquesta manera, mitjançant criteris que s'estudiaran més endavant, el nostre sistema disposarà d'un component genèric a partir del qual podrem generar **monitors específics**, independentment de la seva activitat en termes específics. Així, garantit la característica d'**heterogeneïtat**, el nostre sistema permetrà la seva extensió mitjançant la implementació de nous monitors que es puguin integrar al sistema.

En segon lloc, haurem de considerar per una banda que aquests monitors han de ser components independents que es puguin desplegar de forma distribuïda i que la seva activitat pugui actuar com a unitat per sí mateixa. Per altra banda, per gestionar la integració del nostre sistema, necessitarem definir components que **integri** aquest conjunt de monitors en un únic punt i sigui capaç de gestionar l'activitat dels mateixos.

Paral·lelament al sistema de monitoratge, necessitem dissenyar i implementar una part del sistema que **gestioni les configuracions dels monitors** (és a dir, les diferents activitats de monitoratge) i pugui gestionar les adaptacions sobre els monitors. Per gestionar tot aquest subdomini del projecte, s'utilitzaran un **conjunt de models UML** amb els quals es modelaran tots els detalls relacionats amb les configuracions i les adaptacions dels monitors: configuracions actuals, propostes de noves configuracions, detalls sobre mecanismes d'adaptacions, etc. Mitjançant aquest conjunt de models, que més endavant es detallaran, el sistema podrà **computar i aplicar de forma automàtica adaptacions** sobre els monitors desplegats. Per garantir el funcionament i la validació del sistema, caldrà que aquests dos subcomponents estiguin integrats i es puguin comunicar entre ells, seguint els criteris d'adaptació.

Finalment, com a tasca complementària, el nostre sistema inclourà un *dashboard* consultor que permeti visualitza les diferents adaptacions que el sistema realitza sobre els monitors, per tal de poder observar i validar l'activitat del sistema d'acord amb els requisits establerts.

5.2 Requisits

Per tal de presentar aquest anàlisi de requisits en el marc d'aquest projecte, es procedirà a presentar i definir els diferents requisits classificats en dos tipus: **requisits funcionals**, és a dir, aquells requisits que defineixen funcionalitats que el sistema ha de ser capaç de realitzar; i **requisits de qualitat** (també coneguts com no funcionals), aquells que avaluen i garanteixen l'execució satisfactòria del sistema.

5.2.1 Funcionals

Per facilitar la comprensió i el seguiment del raonament i treball realitzat durant aquest projecte, partirem de l'abast i els objectius principals del projecte (presentats anteriorment) per extreure els requisits funcionals del nostre sistema.

5.2.2 De qualitat

Eines de desenvolupament

6.1 Tecnologies utilitzades

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

6.2 Entorn de configuració

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

Disseny del sistema

7.1 Descripció general

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

7.2 Sistema de monitoratge

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

7.2.1 Monitors

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

7.2.2 Monitor Manager

7.2.3 Orchestrator

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

7.3 Sistema d'adaptabilitat

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

7.3.1 Model Repository

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

7.3.2 Adapter

7.4. Dashboard 29

Model Adapter

Enactor

7.4 Dashboard

Modelatge UML de configuracions dels monitors

8.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

8.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

8.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

8.2 Main Section 2

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum

quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

Reconfiguració dels monitors

9.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

9.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

9.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

9.2 Main Section 2

Disseny del dashboard

10.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

10.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

10.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

10.2 Main Section 2

Validació del sistema

11.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

11.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

11.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

11.2 Main Section 2

Treball futur i possibles expansions

12.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

12.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

12.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

12.2 Main Section 2

Conclusions

13.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

13.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

13.1.2 Subsection 2

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor. Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

13.2 Main Section 2

Apèndix A

Frequently Asked Questions

A.1 How do I change the colors of links?

The color of links can be changed to your liking using:

\hypersetup{urlcolor=red}, or
\hypersetup{citecolor=green}, or

\hypersetup{allcolor=blue}.

If you want to completely hide the links, you can use:

\hypersetup{allcolors=.}, or even better:

\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:

\hypersetup{colorlinks=false}.