

Enhancing License Plate Super-Resolution: A Layout-Aware and Character-Driven Approach

Valfride Nascimento*, Rayson Laroca^{†,*}, Rafael O. Ribeiro[‡], William Robson Schwartz[§], David Menotti*

Department of Informatics, Federal University of Paraná (UFPR), Curitiba, Brazil

*{vwnascimento, rblsantos, menotti}@inf.ufpr †rayson@ppgia.pucpr.br ‡rafael.ror@pf.gov.br §william@dcc.ufmg.br

Summary

- 1. Problem and Motivation
- 2. Contributions
- 3. Layout and Character Oriented Focal Loss
- 4. Architecture
- 5. Datasets
- 6. Quantitative Results
- 7. Qualitative Results
- 8. Ablation Study
- 9. Final Remarks

Problem and Motivation

Low-resolution license plates are common in real-world surveillance.

Problem and Motivation

Blurred and low-quality images reduce license plate recognition (LPR) performance

Problem and Motivation

 Need for an approach that improves character reconstruction in low-resolution scenarios.

Novel Loss Function: Layout and Character Oriented Focal Loss (LCOFL).

Novel Loss Function: Layout and Character Oriented Focal Loss (LCOFL).

 Architecture improvements: Incorporation of deformable convolutions and shared weights in attention modules.

Novel Loss Function: Layout and Character Oriented Focal Loss (LCOFL).

 Architecture improvements: Incorporation of deformable convolutions and shared weights in attention modules.

 Training Strategy: A GAN-based training approach with OCR-guided discriminator for generation of more realistic and recognizable LP images.

Novel Loss Function: Layout and Character Oriented Focal Loss (LCOFL).

 Architecture improvements: Incorporation of deformable convolutions and shared weights in attention modules.

 Training Strategy: A GAN-based training approach with OCR-guided discriminator for generation of more realistic and recognizable LP images.

• Real-World Images: Preliminary experiments with real data.

$$L_C = -\frac{1}{K} \sum_{k=1}^{K} w_k \log p_t(y_k^{GT} | x_k)$$

Weighted cross-entropy to classify characters.

$$L_C = -\frac{1}{K} \sum_{k=1}^{K} w_k \log p_t(y_k^{GT} | x_k)$$

- Weighted cross-entropy to classify characters.
- Penalizes misclassification from structural similarities.

$$L_C = -\frac{1}{K} \sum_{k=1}^{K} w_k \log p_t(y_k^{GT} | x_k)$$

- Weighted cross-entropy to classify characters.
- Penalizes misclassification from structural similarities.
- Weights are updated based on confusion matrix after each epoch.

$$L_P = \sum_{i=1}^{K} \left[D(x_k) \cdot A(y_k^{GT}) + \cdot A(x_k) \cdot D(y_k^{GT}) \right]$$

$$D(c) = \begin{cases} \beta & \text{if } c \text{ is a digit} \\ 0 & \text{otherwise} \end{cases}$$

$$A(c) = \begin{cases} \beta & \text{if } c \text{ is a letter} \\ 0 & \text{otherwise} \end{cases}$$

Enforces the correct positional arrangement of letters and digits in the LP layout.

$$L_P = \sum_{i=1}^{K} \left[D(x_k) \cdot A(y_k^{GT}) + \cdot A(x_k) \cdot D(y_k^{GT}) \right]$$

$$D(c) = \begin{cases} \beta & \text{if } c \text{ is a digit} \\ 0 & \text{otherwise} \end{cases}$$

$$A(c) = \begin{cases} \beta & \text{if } c \text{ is a letter} \\ 0 & \text{otherwise} \end{cases}$$

- Enforces the correct positional arrangement of letters and digits in the LP layout.
- Penalizes errors where a letter is reconstructed as a digit, or vice versa.

$$L_S = \frac{1 - SSIM(S_i, H_i)}{2}$$

Guides the network to maintain LP layout and structural details.

$$L_S = \frac{1 - SSIM(S_i, H_i)}{2}$$

- Guides the network to maintain LP layout and structural details.
- Penalizes deviations in texture, structure, and contrast.

Network Architecture

Architecture

Datasets

RodoSol-ALPR[1]

- Input Resolution (LR): 16×48 px;
- Output Resolution (HR): 32×96 px.

Preliminary Real-World Images

- Input Resolution (LR): 16×48 px;
- Output Resolution (HR): 32×96 px.

[1] R. Laroca, E. V. Cardoso, D. R. Lucio, V. Estevam, and D. Menotti, "On the Cross-dataset Generalization in License Plate Recognition" in International Conference on Computer Vision Theory and Applications (VISAPP), Feb 2022, pp. 166-178.

Quantitative Results

		# Correct Characters						
Test Images		RodoSol-ALPF	₹	Preliminary Real-World Images				
	All	≥ 6	≥ 5	All	≥ 6	≥ 5		
HR (No SR)	98.5%	99.9%	99.9%	90.6%	98.7%	100%		
LR (No SR)	0.8%	4.1%	11.7%	9.9%	28.0%	56.2%		
Proposed model & baselines	tested							
LR + SR (SR3 [6])	43.1%	82.2%	82.2%	31.7%	63.7%	80.1%		
LR + SR (PLNET [5])	39.0%	59.9%	74.2%	36.3%	67.2%	82.5%		
LR + SR (Proposed)	49.8%	71.2%	83.3%	39.5%	70.2%	83.1%		

^[5] Nascimento, V., Laroca, R., Lambert, J.D.A., Schwartz, W.R. and Menotti, D., "Super-resolution of license plate images using attention modules and sub-pixel convolution layers." In Computers & Graphics, 2023, 113, pp.69-76.

^[6] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, "Image super-resolution via iterative refinement," IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 45, no. 4, pp. 4713–4726, 2023. Google Research.

Quantitative Results

		# Correct Characters						
Tool Images	1	RodoSol-ALPR		Preliminary Real-World Images				
Test Images	All	≥ 6	≥ 5	All	≥ 6	≥ 5		
HR (No SR)	98.5%	99.9%	99.9%	90.6%	98.7%	100%		
LR (No SR)	0.8%	4.1%	11.7%	9.9%	28.0%	56.2%		
Proposed model & baselines	s tested							
LR + SR (SR3 [6])	43.1%	82.2%	82.2%	31.7%	63.7%	80.1%		
LR + SR (PLNET [5])	39.0%	59.9%	74.2%	36.3%	67.2%	82.5%		
LR + SR (Proposed)	49.8%	71.2%	83.3% /	39.5%	70.2%	83.1%		

^[5] Nascimento, V., Laroca, R., Lambert, J.D.A., Schwartz, W.R. and Menotti, D., "Super-resolution of license plate images using attention modules and sub-pixel convolution layers." In Computers & Graphics, 2023, 113, pp.69-76.

^[6] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, "Image super-resolution via iterative refinement," IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 45, no. 4, pp. 4713–4726, 2023. Google Research.

Quantitative Results

		# Correct Characters						
Test Images		RodoSol-ALPR		Preliminary Real-World Images				
	All	≥ 6	≥ 5	All	≥ 6	≥ 5		
HR (No SR)	98.5%	99.9%	99.9%	90.6%	98.7%	100%		
LR (No SR)	0.8%	4.1%	11.7%	9.9%	28.0%	56.2%		
Proposed model & baselines	stested							
LR + SR (SR3 [6])	43.1%	82.2%	82.2%	31.7%	63.7%	80.1%		
LR + SR (PLNET [5])	39.0%	59.9%	74.2%	36.3%	67.2%	82.5%		
LR + SR (Proposed)	49.8%	71.2%	83.3%	39.5%	70.2%	83.1%/		

^[5] Nascimento, V., Laroca, R., Lambert, J.D.A., Schwartz, W.R. and Menotti, D., "Super-resolution of license plate images using attention modules and sub-pixel convolution layers." In Computers & Graphics, 2023, 113, pp.69-76.

^[6] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, "Image super-resolution via iterative refinement," IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 45, no. 4, pp. 4713–4726, 2023. Google Research.

Qualitative Results

[5] Nascimento, V., Laroca, R., Lambert, J.D.A., Schwartz, W.R. and Menotti, D., "Super-resolution of license plate images using attention modules and sub-pixel convolution layers." In Computers & Graphics, 2023, 113, pp.69-76.

[6] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, "Image super-resolution via iterative refinement," IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 45, no. 4, pp. 4713–4726, 2023. Google Research.

Qualitative Results

SR3 [6]

PLNET [5]

PROPOSED

HR

SR3 [6]

PLNET [5]

PROPOSED

HR

[5] Nascimento, V., Laroca, R., Lambert, J.D.A., Schwartz, W.R. and Menotti, D., "Super-resolution of license plate images using attention modules and sub-pixel convolution layers." In Computers & Graphics, 2023, 113, pp.69-76.

[6] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, "Image super-resolution via iterative refinement," IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 45, no. 4, pp. 4713–4726, 2023. Google Research.

Ablation Study

Recognition Rates (RR) Achieved With Different Components Integrated Into The Proposed Approach

Approach	RR
Proposed (w/o ArchMod, GAN-style, and LCOFL)	39.0%
Proposed (w/o LCOFL)	45.9%
Proposed (w/o ArchMod and LCOFL)	47.6%
Proposed (w/o GAN-style and LCOFL)	47.7%
Proposed (w/o ArchMod and GAN-style)	48.2%
Proposed (w/o ArchMod)	49.2%
Proposed (w/o GAN-style)	49.4%
Proposed	49.8%

Final Remarks

 Our approach involved the implementation of LCOFL for character reconstruction according with the LP layout.

LCOFL effectively mitigates confusions between structurally similar characters.

Modifications to the architecture and training procedure led to state of the art results.

Final Remarks - Future Works

Conduct experiments on various LP layouts.

 Complete the paired real-world LR/HR dataset and make it publicly accessible for researchers.

Ensure the dataset supports multi-image super-resolution.

THANK YOU!

