Cryptographic Hash Function

 $H: \{0,1\}^* \rightarrow \{0,1\}^{l(n)}$

- deterministic
- "easy" to compute, "difficult" to invert

l(n) = poly(n), with n the security parameter $\{0,1\}^*$: sequence on bits, regardless its size

s.t.: such that A: adversary

6

Security (3)

Collision resistance

Hash^{coll}_{\mathcal{A},H}(n)=1 if \mathcal{A} outputs $x,y \in \{0,1\}^*$ s.t. $x \neq y$ and H(x) = H(y)Hash^{coll}_{\mathcal{A},H}(n)=0, otherwise

H is *collision resistant* if $\forall \mathcal{A} \text{ PPT, } \exists \ \varepsilon(n) \text{ negligible s.t.:}$ $\Pr[\mathsf{Hash^{coll}}_{\mathcal{A} H}(n)=1] \le \varepsilon(n)$

Second pre-image resistance

Hash^{2nd-pre-img}_{\mathcal{A},H}(n)=1 if **given** $\mathbf{x} \leftarrow \mathbb{R} \{0,1\}^*$, \mathcal{A} outputs $y \in \{0,1\}^*$ s.t. $\mathbf{x} \neq \mathbf{y}$ and $\mathbf{H}(\mathbf{x}) = \mathbf{H}(\mathbf{y})$ Hash^{2nd-pre-img}_{\mathcal{A},H}(n)=0, otherwise

H is second pre-image resistant if $\forall \mathcal{A} \text{ PPT, } \exists \ \varepsilon(n) \text{ negligible s.t.:}$ $\Pr[\mathsf{Hash^{2nd\text{-}pre\text{-}img}}_{\mathcal{A},\mathcal{H}}(n)=1] \le \varepsilon(n)$

First pre-image resistance

Hash^{1st-pre-img}_{\mathcal{A},H}(n)=1 if **given X** = H(x'), x' \leftarrow R {0,1}*, \mathcal{A} outputs $x \in \{0,1\}^*$ s.t. H(x) = XHash^{1st-pre-img}_{\mathcal{A},H}(n)=0, otherwise

H is *first pre-image resistant* if $\forall \mathcal{A}$ PPT, $\exists \ \varepsilon(n)$ negligible s.t.: $\Pr[\mathsf{Hash^{1st\text{-}pre\text{-}img}}_{\mathcal{A},H}(n)=1] \le \varepsilon(n)$

one-way function

lower security

Pages on SecuRity by Ruxandra F. Olimid

higher security