Completing the Square (Rough Draft June 6, 2008)

A perfect square binomial is a degree 2 polynomial with a repeated root (meaning it factors as the square of a linear term). For example, $x^2 + 6x + 9 = (x+3)^2$ is a perfect square binomial, or often we just say it is a perfect square. Some other examples are $(x+5)^2 = x^2 + 10x + 25$ and $(x-4)^2 = x^2 - 8x + 16$. In general we have $(x-a)^2 = x^2 - 2a + a^2$, so we can recognize that $x^2 + bx + c$ is a perfect square if b = 2a and $c = a^2$, or a = (b/2) and $c = (b/2)^2$. The binomial $x^2 + 3x + 9/4$ is the perfect square $(x - 3/2)^2$, since half of 3 is 3/2 and $(3/2)^2 = 9/4$.

The process of completing the square requires that we recognize perfect squares and use them in solving. To solve $x^2 + 6x + 10 = 0$, we recognize that $x^2 + 6x$ would be a perfect square if we added $(6/2)^2 = 9$ to the polynomial. So we add and subtract 9 from the left hand side to obtain and then have $x^2 + 6x + 9 - 9 + 10 =$ $(x+3)^2+1$. This means our equation becomes $(x+3)^2+1=0$ or $(x+3)^2=-1$. Taking the square root of each side gives $x + 3 = \pm i$, or $x = -3 \pm i$. This is the general process require to complete the square. As another example, we solve $x^2 - 2x + 5 = 0$ by writing $x^2 - 2x + 1 - 1 + 5 = (x - 1)^2 + 4 = 0$, or $(x - 1)^2 = -4$. Taking square roots gives $x - 1 = \pm 2i$ or $x = 1 \pm 2i$.

You can also obtain real roots using this process. For example, we can solve $x^2 + 4x + 3 = 0$ by either factoring (x+3)(x+1)=0 or by completing the square. To complete the square we would write $x^2 + 4x + 4 - 4 + 3 = (x + 2)^2 - 1 = 0$ or $(x + 2)^2 = 1$. Taking square roots gives $x + 2 = \pm 1$ or $x = -2 \pm 1 = -3, -1$, which is the same solution we get by factoring.

To solve a problem which contains a constant in front of the x^2 term, we just factor that constant out of x^2 and x terms. For example $2x^2 + 12x + 3 = 2(x^2 + 6x) + 3$. Then we complete the square on the factor in parenthesis, giving $2(x^2 + 6x + 9 - 9) + 3 = 2((x + 3)^2 - 9) + 3 = 2(x + 3)^2 - 2(9) + 3 = 2(x + 3)^3 - 15$. So to solve $2x^2 + 12x + 3 = 0$ by completing the square, we would write $2(x + 3)^3 - 15 = 0$ or $(x + 3)^3 = 15/2$. Taking square roots gives $x + 3 = \pm \sqrt{15/2}$ or $x = -3 \pm \sqrt{15/2}$. The quadratic formula (which is derived

by completing the square) gives us
$$x = \frac{-12 \pm \sqrt{144 - 4(2)(3)}}{2(2)} = -3 \pm \frac{\sqrt{120}}{4} = -3 \pm \sqrt{\frac{120}{16}} = -3 \pm \sqrt{\frac{15}{2}}$$
.

Solve the following problems using completing the square:

1.
$$x^2 - 2x + 5 = 0$$

2.
$$x^2 - 8x + 20 = 0$$

3.
$$x^2 + 4x + 8 = 0$$

4.
$$x^2 + 6x + 13 = 0$$

$$5. \ x^2 + 10x + 34 = 0$$

6.
$$x^2 + 2x - 3 = 0$$

7. $x^2 - 2x + 5 = 0$ (You will get 2 real roots on this and some below)

8.
$$x^2 + 6x + 5 = 0$$

9.
$$x^2 + 8x + 25 = 0$$