

Transport of Carbohydrates

	Tissue Location	Functions	
Facilitative bidirectional transporters GLUT 1 Brain, kidney, colon, placenta, erythrocyte		Uptake of glucose	
GLUT 2	Liver, pancreatic B cell, small intestine, kidney	Rapid uptake and release of glucose	
GLUT 3	Brain, kidney, placenta	Uptake of glucose	
GLUT 4	Heart and skeletal muscle, adipose tissue	Insulin-stimulated uptake of glucose	
GLUT 5	Small intestine	Absorption of fructose	
	-dependent unidirectional transporter Small intestine and kidney	Active uptake of glucose from lumen of intestine and reabsorption of glucose in proximal tubule of kidney against a concentration gradient	

Glucose Metabolism Processes

GLUCOSE METABOLISM PROCESSES	SUBSTRATE	PRODUCT	GLUCOSE METABOLISM USE
Glycolysis (Anaerobic) Anaerobic conversion of glucose to pyruvate or lactate	Glucose	Pyruvate/ lactate + ATP	Energy production (2 ATP)
Glycogenesis Process of glycogen formation from glucose	Glucose	Glycogen	Storage of glucose as glycogen in liver and muscle
Glycogenolysis Breakdown of glycogen to form glucose	Glycogen	Glucose	Release of glucose from glycogen for energy (muscle) or increase of blood glucose (liver) to maintain homeostasis
Gluconeogenesis Formation of glucose from noncarbohydrate sources (proteins, lipids)	Amino acids Lactate Glycerol	Glucose	Increase of blood glucose (liver) when glycogen stores are de- pleted
TCA (Tricarboxylic Acid) Cycle and Electron Transport System Aerobic phase of glucose metabolism within the mitochondria of the cell	Pyruvate → acetyl CoA	ATP	Energy production (24 ATP, 12 per acetyl CoA molecule)
Hexose Monophosphate Pathway (HMP) Alternate pathway for glucose oxidation	Glucose	NADPH	Energy source for many anabolic re- actions and glycolysis in RBCs, since they lack mitochondria

NADPH, reduced form of nicotinamide adenine dinucleotide phosphate; RBCs, red blood cells.

Red Blood Cell

Brain Tissue Cell

Muscle and Heart Tissue Cell

Adipose Tissue Cell

Liver Parenchymal Cell

Chemical Inhibitors of Glycolysis

Fluoride, F

Fluoride ion is a potent inhibitor of Enolase, it is believed to form a complex with magnesium and inorganic phosphate which interferes with the interaction of the enzyme with substrate *

* fluoride has many other effects on the body, some of which are toxic and some of which may be beneficial (i.e., hardening of dental ename)

Arsenate

Arsenate is a phosphate analog and will form and arsenoanalog of 1,3 bisphosphoglycerate, 1-arsenato 3-phosphoglycerate which spontaneously hydrolyses and prevents the formation of both 1,3 bisphosphoglycerate and ATP in the mitochondrion.

*arse nate will not only shut down glycolysis but also interfere with oxidative phosphorylation and starve the cell for high-energy equivalents

Fates of Pyruvate under Anaerobic Condition

Lactate fermentation

Produced by muscles when the body can't supply enough O₂.

Anaerobic conversion of pyruvate to lactate permits regeneration of NAD+.

Body can then make more ATP - at a cost. Creates an oxygen debt.

Must use extra O₂ to oxidize lactate later

Fates of Pyruvate under Aerobic Condition

Pyruvate has several origins and metabolic fates

Energy Yield of Glycolysis (Aerobic & Anaerobic)

Net energy produced is 2 ATP

In addition, the two pyruvate can go on to the citric acid cycle to produce more energy.

Overall glycolysis

glucose + 2 ATP + 2 ADP + $2 PO_4^{=}$ + $2 NAD^{+}$

10 enzymes

2 pyruvate + 2 NADH + 2 H_2O + 4 ATP

Shuttle Systems May Produce Different ATP Yields

Glycerol Phosphate Shuttle Yields FADH,

This results in the potential for the synthesis of 1.5 - 2 ATP through mitochondrial oxidative phosphorylation

Malate - aspartate Shuttle Yields NADH

This results in the potential for the synthesis of 2.5 - 3 ATP through mitochondrial oxidative phosphorylation

In muscle and brain, the glycerol-P shuttle brings cytoplasmic NADH to the ETS

Malate-aspartate shuttle

Glycolysis (HK Regulation)

Glycolysis (PFK Regulation)

Gluconeogenesis

Process where glucose is synthesized.

Occurs primarily in the liver

Common materials used as starting materials

lactate all amino acids except leucine and lysine glycerol from fats

Only used under starvation conditions

Gluconeogenesis

Gluconeogenesis

Gluconeogenesis

Muscles lack enzyme needed to convert pyruvate to glucose-6-P. It must be sent to liver.

Gluconeogenesis: The Cori cycle

Control of Gluconeogenesis

Fates of Pyruvate under Aerobic Condition

Fate of pyruvate

Glycolysis pathway is similar in all organisms.

What happens to pyruvate will vary significantly.

In our cells, under aerobic conditions, pyruvate is converted to acetyl CoA in the mitochondria.

The Pyruvate Dehydrogenase Reaction

Pyruvate +
$$NAD^{\dagger}$$
 + CoASH \longrightarrow acetyl CoA + CO_2 + $NADH$ + H

This is an irreversible reaction

This reaction is catalyzed by a multifunctional enzyme complex which requires 5 different coenzymes or cofactors and catalyzes three discrete reactions.

- component E1 (a decarboxylase)
- 2. dihydrolipoyl transacetylase (E 2)
- 3. dihydrolipoyl dehydrogenase (E3)

Pyruvate dehydrogenase complex (mitochondrion)

A covalent intermediate is formed with the release of CO, and ultimately the two remaining carbons are transferred to CoASH to form acetyl CoA and regenerate the enzyme. This is a highly regulated enzyme. The 5 cofactors or coenzymes involved are NADH, Thiamin pyrophosphate, lipoic acid, FAD and CoASH. This is a key enzyme in metabolism and on EXAMS.

Energy & the citric acid cycle

Glycogen

a glucose polymer that serves as the body's quick energy reserve.

Average person usually maintains enough for one day's needs.

Glycogen

Glycogen is a highly branched structure with an a [1-6] branch occurring approximately every 4th residue in the central core and less frequently in the outer branches. Mature glycogen molecules have very large molecular weights (up to 10,000,000) and are derived from proglycogen molecules of about 400,000 in molecular weight.

Gly cogen is a polymer of glucose residues linked through α [1 - 4] and α [1 - 6] linkages

 α [1 - 4] linkage

Glycogen is a polymer of glucose residues linked through α [1 - 4] and α [1 - 6] linkages

$$\alpha \text{ [1 - 6] linkage}$$

Receptor-Mediated Activation of PKA

copyright 1996 M.W.King

(inactive)

Muscle Cell

Insulin

α-Receptor-Mediated Responses on Phosphorylase

α-Receptor-Mediated Responses on Glycogen Synthase

Glycogen Storage Diseases

Glycogenosis	Name	Cause of Disorder	Characteristics
Type I	Von Gierke's disease	Deficiency of glucose-6-phosphatase	Liver cells and renal tubule cells loaded with glycogen. Hypoglycemia, lactic- acidemia, ketosis, hyperlipemia.
Type II	Pompe's disease	Deficiency of lysosomal α-1→4- and 1→6-glucosidase (acid maltase)	Fatal, accumulation of glycogen in lyso- somes, heart failure.
Type III	Limit dextrinosis, Forbes' or Cori's disease	Absence of debranching enzyme	Accumulation of a characteristic branched polysaccharide.
Type IV	Amylopectinosis, Andersen's disease	Absence of branching enzyme	Accumulation of a polysaccharide hav- ing few branch points. Death due to cardiac or liver failure in first year of life.
Type V	Myophosphorylase deficiency, McArdle's syndrome	Absence of muscle phosphorylase	Diminished exercise tolerance; muscles have abnormally high glycogen content (2.5–4.1%). Little or no lactate in blood after exercise.
Type VI	Hers' disease	Deficiency of liver phosphorylase	High glycogen content in liver, ten- dency toward hypoglycemia.
Type VII	Tarui's disease	Deficiency of phosphofructokinase in muscle and erythrocytes	As for type V but also possibility of he- molytic anemia.
Type VIII		Deficiency of liver phosphorylase kinase	As for type VI.

Glucuronic Acid Synthesis

An Alternate Pathway for the Oxidation of Glucose

The Pentose Phosphate or Hexose Monophosphate
Shunt Pathway

The Pentose Phosphate Pathway Provides:

NADPH

Required for many biosynthetic reactions (reductions)

Necessary for maintenance of reduced glutathione in red blood cells and the reduction of methemoglobin.

Various tissues utilize this pathway to different degrees depending on their requirements for NADPH and Ribose 5-phosphate

Ribose 5-phosphate

Necessary for nucleotide and cofactor biosynthesis

Oxidative Stage of Pentose Phosphate Pathway

Non-Oxidative Stage of Pentose Phosphate Pathway

5 Glucose 6 - phosphate + 12 NADPH + 6 CO₂ + 12 H
$*$
 + P_i

Net Reaction:

Glucose 6 - phosphate + 12 NADP
$$^+$$
 + 7 H $_2$ O

G6PD Abnormalities

