6.002 CIRCUITS AND ELECTRONICS

Energy, CMOS

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 23

Review

Reading: Section 11.5 of A & L.

Square wave input

independent of f. MOSFET ON half the time.

In standby mode, half the gates in a chip can be assumed to be on. So
$$\overline{P}_{STATIC}$$
 per gate is still $\frac{V_s^2}{2R_L}$.

$$T = \frac{1}{f}$$
 $V_S^2 f$
 $T = \frac{1}{f}$
 $T_L >> R_{ON}$
 $T_L >> "RC"$
 $T_L >> "RC"$
 $T_L >> "RC"$
 $T_L >> "RC"$

related to switching capacitor.

In standby mode, $f \rightarrow 0$, so dynamic power is 0

$$\overline{P} = \frac{{V_S}^2}{2R_L} + C{V_S}^2 f$$

Chip with 106 gates clocking at 100 MHz

$$C = 1f F$$
, $R_L = 10 K\Omega$, $f = 100 \times 10^6$, $V_S = 5V$

$$\overline{P} = 10^{6} \left[\frac{5^{2}}{2 \times 10 \times 10^{3}} + 10^{-15} \times 5^{2} \times 100 \times 10^{6} \right]$$

=
$$10^6 \left[1.25 \text{ milliwatts} + 2.5 \mu \text{ watts} \right]$$

1.25KWatts

problem!

- independent of f
- also standby power (assume $\frac{1}{2}$ MOSFETs ON if $f \rightarrow 0$)
- must get rid of this!

2.5Watts

not bad

- αf
- αV_S^2 reduce V_S $5V \rightarrow 1V$ $2.5V \rightarrow 150mW$

How to get rid of static power

Intuition:

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 23

New Device PFET

N-channel MOSFET (NFET)

P-channel MOSFET (PFET)

Consider this circuit:

works like an inverter!

Consider this circuit:

works like an inverter!

$$v_I = 5V$$
 (input high)

$$v_I = OV$$
 (input low)

$$V_{S} = 5V$$

$$R_{ON_{p}}$$

$$V_{I} = 0V$$

$$= 5V$$

Called "CMOS logic" Complementary MOS

(our previous logic was called "NMOS")

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

Lecture

Key: no path from V_S to GND! no static power!

Let's compute $\overline{P}_{DYNAMIC}$

From $\bigstar \bigstar \overline{P} = CV_S^2 f$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

23

6.002 Fall 2000 Lecture

For our previous example —

$$C = 1f F$$
, $V_S = 5V$, $f = 100MHz$, I

$$\overline{P} = CV_S^2 f$$

$$= 10^{-15} \times 5^2 \times 100 \times 10^6$$

$$= 2.5 \text{ µwatts per gate}$$

$$\overline{P} = 2.5 \text{ µwatts for } 10^6 \text{ gate chip}$$

Gates	f	\overline{P}	
	100	~2.5	
106	MHz	watts	Pentium?
	300	~15	
2×10 ⁶	MHz	watts	PII?
	600	~30	
2×10 ⁶	MHz	watts	PII?
		~240	
8×10 ⁶	1.2 GHz	watts	PIII?
		~1875	
25×10 ⁶	3 GHz	watts	PIV?

"keep all else same"

dazb;

How to reduce power

(A) V_S 5V \rightarrow 3V \rightarrow 1.8V \rightarrow 1.5V \sim PIV \rightarrow 170 watts \rightarrow better, but high

and use big heatsink

- (B) Turn off clock when not in use.
- \bigcirc Change V_S depending on need.

 \rightarrow next time: power supply

CMOS Logic NAND:

A	B	Z
0	0	1
0	1	1
1	0	1
1	1	0

In general, if we want to implement F

