Rec-KAN: Recursive KAN of KANs

	t · October 2024 40/RG.2.2.30664.12806/1		
CITATIONS 0	S	READS 7	
1 autho	r:		
	Gary Nan Tie Mu Risk LLC 80 PUBLICATIONS 26 CITATIONS SEE PROFILE		

Recursive KAN: KAN of KANs Gary Nan Tie, Oct 3, 2024

Abstract

Schematically, the architecture of a Kolmogorov-Arnold neural network (KAN) has sum operations on nodes and learnable activation functions on edges. We introduce Rec-KAN, recursive KANs, by having learnable sparse KANs on edges. Rec-KANs are interpretable, parallelizable, enjoy compositional sparsity, and have sub-quadratic runtime.

$$\chi_{l+1,j} \triangleq \sum_{i=1}^{n_l} \varphi_{l,j,i} (\chi_{l,i}), \quad \varphi_{l,j,i} : \mathbb{R} \longrightarrow \mathbb{R} \text{ and}$$

$$l=0,...,l-1 \qquad i=1,...,n_l \qquad j=1,...,n_{l+1}$$

in matrix form:

$$\chi_{l+1} = \bigoplus_{l} \chi_{l}, \quad (\eta_{l+1} \times \eta_{l}) \bigoplus_{l} = [\varphi_{l,j,i}]$$

Schematically, the KAN architecture has sum operations on the nodes and learnable activation functions & on the edges. We propose Rec-KAN, recursive KANS, by having learnable sparse KANS on edges.

$$Rec-KAN(x) = (\Phi_{L-1} \circ ... \circ \Phi_{\circ}) \chi$$

where
$$\Phi_{l} \triangleq \Psi_{l}^{l} + ... + \Psi_{M}^{l}$$

Without loss of generality, let Rec-KAN have shape

 $[n_0, N, ..., N, n_L]$ (otherwise let $N = \max\{n_1, ..., n_{L-1}\}$).

Note that the intermediate layers L=1,..., L-2

I = II + ... + II have MN2 activation functions

to learn! To make Rec-KAN tractable we sparsify

the Φ_{L} by defining $\Psi_{k}^{L} = D(f_{k}^{L}) \subset (h_{k}^{L}) D(g_{k}^{L})$

where D(f) is a NXN diagonal matrix with diagonal

f = (f1,..., fN) and (Ch) is a NXN circulant matrix

with generator h = (h,,..,hN).

In terms of number of activation functions to learn:

- sparse Rec-KAN D, has M3N

- Rec-KAN I has MN2

- unstructured KAN \$\overline{D}_{\mathbb{L}}\$ has \$N^2\$

If N>3 and N>3M then sparse Rec-KAN \$\overline{D}_L\$ have the fewert activation functions to learn.

Note that $\Phi_L = \mathcal{F}_1 + \ldots + \mathcal{F}_M$ can be computed in parallel and that $\mathcal{F}_K(x) = (D(f_K^L) C(h_K^L) D(g_K^L)) x$ can be computed using a Fast Fourier Transform.

Case by case, there is a tradeoff between accuracy and runtime (sparsity) to be determined.

Sparse recursive KAN, $(\bar{\Phi}_{L-1} \circ ... \circ \bar{\Phi}_{\sigma}) \chi$ with $\bar{\Phi}_{L} = \sum_{k=1}^{M} D(f_{k}^{L}) C(h_{k}^{L}) D(g_{k}^{L})$ are:

- 1) interpretable
- 2) parallelizable
- 3) compositionally sparse with sub-quadratic runtime.

Layers L, nodes N, and number of DCDs M
are hyperparameters to be chosen.

Random sparse KANs

A KAN layer, matrix Φ_{l} , can be made sparse by using structured matrices, like sums of DCD matrices. We can prune further with random masking.

In a sparse recursive KAN, = = 7,+...+7 ,

where
$$\mathcal{T}$$
 has form $D(f)$ $C(h)$ $D(g)$

$$= \begin{bmatrix} f_1 \\ h_1 \\ h_N \\ h_1 \\ h_{N-1} \\ h_{N-1} \end{bmatrix} \begin{bmatrix} g_1 \\ g$$

$$= \begin{bmatrix} f_1h_1g_1 & f_1h_2g_2 & \dots & f_1h_{N-1}g_{N-1} & f_1h_Ng_N \\ f_2h_Ng_1 & f_2h_1g_2 & \dots & f_2h_{N-2}g_{N-1} & f_2h_{N-1}g_N \\ \vdots & \vdots & \vdots & \vdots \\ f_Nh_2g_1 & f_Nh_3g_2 & \dots & f_Nh_Ng_{N-1} & f_Nh_1g_N \end{bmatrix}$$

with fi, hi, si: R -> R

Let gi = oi, Rademacher variables,

ie
$$Pr(\sigma_i = 1) = \frac{1}{2} = Pr(\sigma_i = 0)$$

where $1: \mathbb{R} \to \mathbb{R}$ and $0: \mathbb{R} \to \mathbb{R}$ $x \mapsto 1$ $z \mapsto 0$

and draw M independent samples of g = (51,..,5N)

Notice \$\overline{D}_{\mu}, being a random sum of DCs, has

M2N activation functions to learn and is a

form of neural architecture search.

References

KAN:Kolmogorov–Arnold Networks Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Solja ci'c, Thomas Y. Hou, Max Tegmark arXiv:2404.19756v4 [cs.LG] 16 Jun 2024

Sparse Kolmogorov-Arnold Networks Gary Nan Tie, Aug 25, 2024 ResearchGate DOI <u>10.13140/RG.2.2.10535.97448/1</u>