VNUHCM - University of Science fit@hcmus

CSC10004 – Data Structures and Algorithms

Session 04 Sorting Algorithms

Instructors:

Dr. Lê Thanh Tùng

Content

- Merge Sort
- Quick Sort
- Radix Sort
- Counting Sort

Review

	Best	Average	Worst
Bubble Sort	O(n²)	O(n ²)	O(n ²)
Insertion Sort	O(n)	O(n ²)	O(n ²)
Selection Sort	O(n ²)	O(n ²)	O(n ²)
Heap Sort	O(nlog(n))	O(nlog(n))	O(nlog(n))

Review

What's the worst-case runtime complexity of heapsort

Sorting

- How can we design better, more efficient sorting algorithms?
- So far, we've seen O(N²) sorting algorithms. How can we start to do better?
 - Divide-and-Conquer

Sorting

 Assume that it takes t seconds to run insertion sort on the following array:

14	6	3	9	16	7	2	15	10	8

Approximately how many seconds will it take to run insertion sort on each of the following arrays?

7 2 15 10 8

Sorting

 Assume that it takes t seconds to run insertion sort on the following array:

Approximately how many seconds will it take to run insertion sort on each of the following arrays?

14	6	3	9	16
l			1	

Each array should only take about t/4 seconds to sort

- Motivating Divide-and-Conquer
 - Sorting N elements directly takes total time t
 - Sorting two sets of N/2 elements (total of N elements) takes
 total time t/2
 - We got a speedup just by sorting smaller sets of elements at a time!

Divide-and-Conquer

- Our general approach when designing a divide-and-conquer algorithm is to decide how to make the problem smaller and how to unify the results of these solved, smaller problems
- Both sorting algorithms we explore today will have both of these components
 - Divide Step: Make the problem smaller by splitting up the input list
 - Join Step: Unify the newly sorted sublists to build up the overall sorted result

fit@hcmus

Merge Sort

Divide-and-Conquer

fit@hcmus

This technique can be divided into the following three parts:

- Divide: This involves dividing the problem into smaller sub-problems.
- Conquer: Solve sub-problems by calling recursively until solved.
- Join: Combine the sub-problems to get the final solution of the whole problem

- Merge Sort algorithm is one of two important divide-andconquer sorting algorithms.
- It is a recursive sorting algorithm
 - Base case: An empty or single-element list is already sorted
 - Recursive step:
 - Break the list in half and recursively sort each part
 - Use merge to combine them back into a single sorted list

fit@hcmus

- Idea: It is a recursive algorithm.
 - Divides the list into halves,
 - Sort each halve separately, and
 - Then merge the sorted halves into one sorted array.

Note:

A list with 0 or 1 element is a sorted list.

- Merge procedure:
 - Goal: Merge two ordered lists into an order list.

- Input: two ordered lists A[] (n elements), B[] (m elements)
- Output: a new ordered list C[] (n + m elements) (containing all elements of A and B).

fit@hcmus

24

Merge procedure:

9

- Input:
 - \blacksquare A = {2, 3, 7, 16},
 - \blacksquare B = {4, 9, 11, 24};
- **Output**:
 - $C = \{2, 3, 4, 7, 9, 11, 16, 24\}$

Propose the efficient algorithm

- Input: A[], left, right (list A from index left to right).
- Output: (Ordered) A[] (from left, to right)

```
MergeSort(A[], left, right)
  if (left < right) {
    mid = (left + right)/2;
    MergeSort(A, left, mid);
    MergeSort(A, mid+1, right);
    Merge (A, left, mid, right);
```

fit@hcmus

Step 1:

values.

Step 3:

Step 4:

Split sub-lists in

two until you reach pair of

Sort/swap pair

Merge and sort

repeat process till you merge to

sub-lists and

the full list.

of values if needed.

Merge Sort

 Exercise: employs the Merge Sort algorithm to effectively organize a given set of integers listed below

6 3 9 1 5 4 7 2

Merge Sort: Analysis

- Merge Sort is extremely efficient algorithm with respect to time.
 - Both worst case and average case are 0 (n * log₂n)

 Merge Sort requires an extra array whose size equals to the size of the original array.

- If we use a linked list, we do not need an extra array
 - But we need space for the links
 - And, it will be difficult to divide the list into half O(n)

Merge Sort: Analysis

- Number of division stages is log₂n (Divide Phase)
- On each merge step, n elements are merged:
 - Step 1: n x 1
 - Step 2: n/2 x 2
 - Step 3: n/4 x 4
 - •
- Best case: occurs when the elements are already sorted in ascending order
- The time complexity of merge sort is O(nlog(n))

Merge Sort: Pros and Cons

- Advantages:
 - Stability
 - Guaranteed worst-case performance
 - Parallelizable: take advantage of multiple processors or threads
- Drawbacks
 - Space complexity
 - Not in-place
 - Not always optimal for small datasets

Merge Sort: Pros and Cons

fit@hcmus

• Merge sort runs in time $O(n \log n)$, which is faster than insertion sort's $O(n^2)$?

fit@hcmus

Quick Sort

 Like Merge Sort, Quick Sort is also based on the divide-andconquer paradigm.

- It works as follows:
 - First, it partitions an array into two parts, (hard divide)
 - Then, it sorts the parts independently,
 - Finally, it combines the sorted subsequences by a simple concatenation.

 (easy join)

Quick Sort

- The algorithm consists of the following three steps:
- Divide: Partition the list.
 - To partition the list, we first choose some element from the list for which we
 hope about half the elements will come before and half after. Call this element
 the pivot.
 - Then we partition the elements so that all those with values less than the pivot come in one sub-list and all those with greater values come in another.

- Recursion: Recursively sort the sub-lists separately.
- Conquer: Put the sorted sub-lists together.

- Input: A[], first, last (Sort the list A[] from index first to last)
- Output: Ordered list A[first ... last]

```
QuickSort(A[], first, last)
   if (first < last) {</pre>
      // Select a pivot p from A[].
      pivotIndex = Partition(A, first, last)
      //Partition A[] into 2 sub-lists
      // S<sub>1</sub> (first ... pivotIndex-1), S<sub>2</sub> (pivotIndex+1 ... last)
      QuickSort (A, first, pivotIndex-1) //Sort S<sub>1</sub>
      QuickSort (A, pivotIndex + 1, last) //Sort S<sub>2</sub>
```

fit@hcmus

Partitioning places the pivot in its correct place position within the array.

- Arranging the array elements around the pivot p generates two smaller sorting problems.
 - sort the left section of the array and sort the right section of the array.
 - when these two smaller sorting problems are solved recursively, our bigger sorting problem is solved.

- Selecting the pivot
 - Select a pivot element among the elements of the given array
 - We put this pivot into the first location of the array before partitioning

- Partitioning uses two more variables:
 - lastS1: the last index of S1 (the elements in A less than p).
 - firstUnknown: the first index of Unknown.
- Partitioning takes place when firstUnknown ≤ last.

fit@hcmus

- Initialize
 - lastS1 = first
 - firstUnknown = first + 1

Initial state

fit@hcmus

Partition(A[], first, last, pivot) -> pivotIndex

```
Step 1. while (firstUnknown <= last) //not finish
  1.1 If a[firstUnknown] < a[pivot]
      then move that element to S1
     Otherwise, move that element to S2
  1.2 firstUnknown = firstUnknown + 1 //next element
Step 2. Move pivot to the correct position
(between S1 and S2):
  Swap two elements at lastS1 and first.
Step 3. pivotIndex = lastS1
```

fit@hcmus

Move to S2

fit@hcmus

Partition this list: 27, 38, 12, 39, 27, 16

Pivot	Unknown					
27	38	12	39	27	16	

Pivot	S2	Unknown				
27	38	12	39	27	16	

firstUnknown = 1

firstS1 = 0

lastS1 = 0

Move to S2

firstUnknown = 2

firstS1 = 0

lastS1 = 0

fit@hcmus

Partition this list: 27, 38, 12, 39, 27, 16

Pivot	S2	Unknown			
27	38	12	39	27	16

Pivot	S1	S2	Unknown		
27	12	38	39	27	16

firstUnknown = 2

$$firstS1 = 0$$

$$lastS1 = 0$$

Move to S1

$$lastS1 = 1$$

$$firstUnknown = 3$$

Quick Sort - Partition

fit@hcmus

Partition this list: 27, 38, 12, 39, 27, 16

Pivot	S1	S2	Unknown			
27	12	38	39	27	16	
Pivot	S1		S2		U.K	
27	12	38	39	27	16	
		1				
Pivot	S	1		S2		
27	12	16	39	27	38	
\wedge		\wedge				

S	1	Pivot	S2		
16	12	27	39	27	38

Swap a[0], a[lastS1] Return pivotIndex

Quick Sort - Partition

fit@hcmus

Another technique:

Quick Sort - Partition

fit@hcmus

Another technique:

An inversion occurs:

- A[j] < pivot
- A[i] > pivot
- → Swap A[i], A[j]

Finally, swap A[i] and pivot

→ pivot is at correct position

- Which array item should be selected as pivot?
 - The first element
 - The last element
 - The middle element
 - If the items in the array arranged randomly, we choose a pivot randomly.
 - We can choose the first or last element as a pivot (it may not give a good partitioning).
- → We can use different techniques to select the pivot
- → E.g: Median-of-three pivot selection

Quick Sort: Analysis

- What is the worst/best case of Quick Sort?
 - Best case:
 - Worst case:

Quick Sort: Analysis

- What is the worst/best case of Quick Sort ?
 - Best case: all the splits happen in the middle of corresponding subarrays
 - Pivot is chosen as the median of two sub-lists
 - Worst case: 1 of the 2 subarrays is empty
 - Pivot is chosen as the largest or smallest element in sub-list

Quick Sort: Analysis

fit@hcmus

Time Complexity

- Best case/Average Case: O (nlog₂ (n))
- Worst case: O (n²)

Notes:

- Quick Sort is slow when the array is sorted and we choose the first element as the pivot
- Although the worst case behavior is not so good, its average case behavior is much better than its worst case
- Quick Sort is one of best sorting algorithms using key comparisons.

Quick Sort: Pros and Cons

fit@hcmus

Pros:

- The performance in average case is far better than its worst case
- In-place Algorithm
- In most situation, quick sort is better than merge sort
 - This is because its innermost loop is so efficient

Cons:

- Not stable
- In the worst case, quick sort is significant slower than merge sort.

fit@hcmus

Radix Sort

Radix Sort

fit@hcmus

 Radix Sort algorithm different than other sorting algorithms that we talked.

It DOES NOT use key comparisons to sort an array.

Radix Sort

fit@hcmus

Treats each data item as a character string.

- Repeat (for all character positions from the rightmost to the leftmost)
 - Groups data items according to their rightmost character
 - Put these groups into order with respect to this rightmost character.
 - Combine all the groups.
 - Move to the next left position.

At the end, the sort operation will be completed.

Radix Sort

```
RadixSort(A[], n, d) // sort n d-digit integers in the array A
   for (j = d \text{ down to } 1) {
        Initialize 10 groups to empty
        Initialize a counter for each group to 0
        for (i = 0 \text{ through } n-1) {
              k = jth digit of A[i]
              Place A[i] at the end of group k
              Increase kth counter by 1
        Replace the items in A with all the items in group O_{\bullet}
        followed by all the items in group 1, and so on.
```


Radix Sort - Example

Sort the following list ascendingly using Radix Sort:

- Base: 10, Number of digits: 2
- First Pass. The rightmost digit

0	1	2	3	4	5	6	7	8	9
							1 7		
		5 2				46	2 7	78	3 9

Combine after first pass: 52, 46, 27, 17, 78, 39

Radix Sort - Example

fit@hcmus

- Second Pass.
 - The second rightmost digit of: 52, 46, 27, 17, 78, 39

Resulting list: 17, 27, 39, 46, 52, 78

Radix Sort - Analysis

fit@hcmus

Radix Sort is O(n)

What are the strength and weakness of this algorithm?

Radix Sort - Analysis

- Pros:
 - linear time complexity
 - stable sorting algorithm
 - efficient for sorting large numbers of integers/strings
 - easily parallelized
- Cons:
 - Not efficient for sorting floating-point numbers
 - requires a significant amount of memory
 - not efficient for small data sets

Radix Sort - Analysis

fit@hcmus

- Although the radix sort is O(n), it is NOT appropriate as a generalpurpose sorting algorithm.
 - Memory needed?

The Radix Sort is more appropriate for a linked list than an array.

fit@hcmus

Counting Sort

- Counting sort sorts elements by storing the count of unique elements
- The count is stored in an auxiliary array
- The sorting is done by mapping the count as an index of the auxiliary array

- Counting Sort Assumption: data is going to be in the specific range [a, b]
- Sort the array A in Counting sort:
 - Step 1: Create the auxiliary array C from [a, b]
 - Step 2: Count the frequency of element C in A
 - Step 3: Create the expecting position of element from C
 - Step 4: Copy the element from A via the position array

fit@hcmus

Step 1, 2: Get the frequency of element

fit@hcmus

Step 1, 2: Get the frequency of element

fit@hcmus

Step 3: Calculate the expecting position

fit@hcmus

Step 4: Copy the elements in A to result S

Counting Sort - Analysis

- Time Complexity: O(n + k)
 - n: number of original array
 - k: number of elements in the range [a, b]
- Space Complexity: O(k)
- Worst case: when data is skewed and range is large
- Best Case: When all elements are same
- Average Case: O(N+K) (N & K equally dominant)

Counting Sort – Pros and Cons

- Pros:
 - Stability
 - No comparison operation
 - Effectiveness as the range of the input is small compared to the number of elements
- Cons:
 - Limited to sorting integers or similar ones
 - Not in-place

Comparison of Sorting Algorithms

Continu Almorithms		Space Complexity		
Sorting Algorithms -	Best Case	Average Case	Worst Case	Worst Case
Bubble Sort	O(n)	O(n^2)	O(n^2)	0(1)
Selection Sort	O(n^2)	O(n^2)	O(n^2)	0(1)
Insertion Sort	O(n)	O(n^2)	O(n^2)	0(1)
Merge Sort	O(nlogn)	O(nlogn)	O(nlogn)	O(n)
Quick Sort	O(nlogn)	O(nlogn)	O(n^2)	O(n)
Heap Sort	O(nlogn)	O(nlogn)	O(nlogn)	0(1)
Counting Sort	O(n + k)	O(n + k)	O(n + k)	O(k)
Radix Sort O(nk) O(nk)		O(nk)	O(n + k)	
Bucket Sort	O(n + k)	O(n + k)	O(n^2)	O(n)

Summary

- **Selection Sort** is O(n²) algorithm. Good in some particular case but it is slow for large problems.
- Heap Sort converts an array into a heap to locate the array's largest items, enabling to sort more efficient.
- Quick Sort and Merge Sort are efficient recursive sorting algorithms.
- Quick Sort is O(n²) in worst case but rarely occurs.
- Merge Sort requires additional storage.
- Radix Sort is O(n) but not always applicable as not a general-purpose sorting algorithm.

Exercise

 Demonstrate the steps to sort the following list of integers ascendingly by Merge Sort and Quick Sort

5 2 7 6 1 9 4

Exercise: Merge Sort

THANK YOU for YOUR ATTENTION