CAPÍTULO 14 – REGRESSÃO

Problemas

PROBLEMA 14.1

O montante global dos seguros de vida efectuados pelas famílias de um determinado país depende do rendimento anual do agregado familiar. Na tabela seguinte apresentam-se os valores destas variáveis, expressas em unidades monetárias do país em causa, para um conjunto de 12 famílias considerado representativo da população.

Rendimento anual	Capital seguro			
[1000 u.m.]	[1000 u.m.]			
14	31			
19	40			
23	49			
12	20			
9	21			
15	34			
22	54			
25	52			
15	28			
10	21			
12	24			
16	34			

- (i) Estime a relação entre as duas variáveis.
- (ii) Calcule a probabilidade de uma família qualquer com um rendimento anual de 20.000 u.m. ter seguros de vida num montante que excede as 45.000 u.m.

PROBLEMA 14.2

Na tabela seguinte apresenta-se, para os últimos 9 anos, o volume de produção de trigo numa determinada região (em milhares de toneladas).

Ano (X)	1997	1998	1999	2000	2001	2002	2003	2004	2005
Vol. de Produção (<i>Y</i>)	285	270	294	279	260	262	258	272	255

Com base nos valores inscritos na tabela, calcularam-se as seguintes estatísticas:

$$\bar{x} = 2001,$$
 $\bar{y} = 270.(5);$ $s_{xx} = 60$ $s_{yy} = 1416.(2)$ $s_{xy} = -203.$

(i) Estime e teste, ao nível de significância de 5%, a relação que define a evolução de produção de trigo em função do tempo.

1

- (ii) Estime a probabilidade de o volume de produção em 2006 ser superior ao de 2005.
- (iii)Estime a probabilidade de o volume de produção em 2007 ser superior ao de 2006.

PROBLEMA 14.3

No âmbito de uma auditoria internacional a uma Agência Governamental, tentou verificar-se a fiabilidade do Índice de Preços no Consumidor publicado pela Agência (o IPC oficial). Para o efeito, recalculou-se aquele índice seguindo uma metodologia considerada correcta. Na tabela seguinte apresentam-se os valores dos dois índices, o "correcto" e o oficial, para um período de seis anos.

IPC correcto (X)	IPC oficial (Y)
112.2	108.8
123.5	119.7
131.0	128.0
138.6	135.8
145.7	142.5
149.4	147.0

Com base nestes valores, calcularam-se as seguintes estatísticas:

$$\overline{x} = 133.4 \qquad \overline{y} = 130.3$$

$$s_{XX} = 987.54$$
 $s_{XY} = 1012.12$ $s_{YY} = 1037.88$

Face a estes dados, estime, teste e interprete a relação entre os dois índices. Nos testes hipóteses que efectuar, adopte o nível de significância de 5%.

PROBLEMA 14.4

No âmbito de um estudo de tráfego efectuado para apoiar o projecto de um túnel rodoviário, registaram-se, em 20 ocasiões diferentes, os valores observados das duas variáveis seguintes:

X: densidade do tráfego, expressa em número de veículos por quilómetro

Y: velocidade média dos veículos, expressa em km/hora.

A partir das mediações efectuadas, foram calculadas as seguintes estatísticas:

$$\bar{x} = 60$$
 $\bar{y} = 25$ $s_{xx} = 5000$ $s_{xy} = -1500$ $s_{yy} = 630$.

- (i) Determine a recta de regressão que permite prever a velocidade a partir da densidade. Verifique (com $\alpha = 5\%$) se o coeficiente angular da recta é significativo.
- (ii) Admitindo que a densidade de tráfego é de 70 veículos por quilómetro, defina o intervalo de previsão a 95% para a velocidade média.

2

(iii) Estime o nível ao qual deve ser controlada a densidade de tráfego, de forma a maximizar o volume (V) de tráfego do túnel (com $V = X \cdot Y$ veículos por hora). Qual o valor do desvio padrão do estimador da densidade óptima?

PROBLEMA 14.5

Uma companhia de aviação efectua a manutenção preventiva de um determinado instrumento dos aviões do tipo AA após cada 25 horas de voo dos aparelhos. No entanto, foi sugerido que a desregulação dos instrumentos em causa dependeria mais do tempo que decorre entre manutenções sucessivas do que do número de horas de voo.

Parar examinar a validade desta sugestão, efectuaram-se, para os aviões do tipo AA, 20 observações das variáveis seguintes:

 X_1 : número de horas de voo decorridas desde a última operação de manutenção até à verificação do instrumento

 X_2 : número de dias decorridos desde a última operação de manutenção até à verificação do instrumento

Y: medida de desregulação do instrumento.

A partir dos resultados obtidos foram calculadas as seguintes estatísticas:

$$\overline{x}_1 = 12$$
 $\overline{x}_2 = 10$ $\overline{y} = 2$ $s_{X_1X_1} = 1500$ $s_{X_1X_2} = 500$ $s_{X_2X_2} = 300$ $s_{X_1Y} = 120$ $s_{X_2Y} = 60$ $s_{YY} = 30$.

- (i) Analise os resultados e verifique se as manutenções devem ser programadas de acordo com X_1 , de acordo com X_2 , ou de acordo com as duas variáveis.
- (ii) Admita que, por razões de segurança, a mediada de desregulação do instrumento em causa não deve ultrapassar o valor de 5.0. Viajaria tranquilo nesta companhia de aviação se soubesse que a nova política de manutenção consistia em regular o aparelho logo que decorressem 15 dias desde a intervenção anterior?

PROBLEMA 14.6

Para estudar os efeitos exercidos pela temperatura de reacção (T) e pela presença de um determinado catalisador no rendimento (R) de um processo químico, efectuou-se uma experiência cujos resultados se incluem na tabela seguinte.

Presença do catalisador	Temperatura [°C]	Rendimento [%]		
não	20	70		
não	22	71		
não	26	80		
não	29	82		
sim	21	72		
sim	23	78		
sim	27	88		
sim	28	89		

Modele a relação entre o rendimento do processo e os dois factores analisados (temperatura de reacção e ausência/presença do catalisador).

Na realização do teste de significância, admita que, pela natureza da reacção envolvida,

- O rendimento não pode baixar com o aumento da temperatura e
- A presença do catalisador não pode contribuir para a diminuição do efeito da temperatura sobre o rendimento.

PROBLEMA 14.7

Na tabela seguinte apresentam-se as vendas trimestrais (VV) de um produto que foi lançado no primeiro trimestre (trimestre t = 1).

Trimestre (t)	Volume de vendas (VV)					
1	1206					
2	11356					
3	36888					
4	39636					
5	53887					
6	77806					
7	91627					
8	80147					
9	89646					
10	101677					

Efectue previsões das vendas para o trimestre 11, calculando o intervalo de previsão a 95%.

PROBLEMA 14.8

O preço de um veículo usado é função de diversos factores, entre os quais figuram os seguintes: o modelo do veículo em causa, o preço do veículo novo, a idade do veículo usado, o seu estado de conservação e a relação procura/oferta no mercado de veículos em segunda mão.

Considerando apenas o caso de veículos devidamente conservados e supondo que o factor procura/oferta do mercado em segunda mão não varia significativamente, o preço de um veículo usado de determinado modelo pode ser explicado através de uma relação do tipo

$$p = \frac{PVU}{PVN} = f(I)$$

onde

PVU: preço do veículo usado

PVN: preço do veículo novo

I: idade do veículo usado.

Na tabela seguinte apresentam-se os valores de p e I para veículos de um determinado modelo, que se supõem obtidos nas condições acima enunciadas.

I[anos]	1	2	3	4	5	6	7	8	9
p=PVU/PVN	0.843	0.753	0.580	0.520	0.452	0.414	0.346	0.264	0.241

- (i) Começando por representar graficamente os dados, defina a função que melhor traduz a relação entre p e I.
- (ii) Calcule a probabilidade de *p* ultrapassar o valor 0.65, para um veículo que, tendo 3 anos de idade, esteja nas condições definidas anteriormente.