MA 540 Data Mining

Instructor: Prashant Shekhar, PhD

Tentative Schedule for Spring 2023

Week Number:	Chapter	Topic	Homework	Learning
Starting Date (days)	Number		110,110,000,11	Outcome
Data Mining Basics				
1: 12 th Jan (Th)	1	Course Introduction		1,2,13
$2: 17^{th} \text{ Jan} / 19^{th} \text{ Jan (Tu,Th)}$	2	Types of data		1,3
, , , , , , , , , , , , , , , , , , , ,		Data quality Similarity and Distance	HW 1 released	1,3 1,4
$3: 24^{th} \text{ Jan} / 26^{th} \text{ Jan (Tu,Th)}$	2	Data Preprocessing	11W 1 Teleased	1,4 $1,4$
Classification Basics				
4: 31 st Jan/ 2 nd Feb 2 (Tu, Th)	3	Decision Trees: I		5,6
		Decision Trees: II		5,6
5: 7 th Feb/ 9 th Feb (Tu,Th)	4	Rule Based		5,6
		Naive Bayes	HW 1 due	5,6
6: 14 th Feb/ 16 th Feb (Tu,Th)	3	Classifier Evaluation	HW 2 released	5,6,7
0. 14 Feb/ 10 Feb (1u,11i)		Validation and Overfitting		5,6,7
Classification Algorithms				
7: 21^{st} Feb/ 23^{rd} Feb (Tu,Th)	4	K-Nearest Neighbor/ Exam review		5,6
		Exam 1		2,13
8: 28 th Feb/ 2 nd Mar (Tu,Th)	4	Support Vector Machines: I		5,6
, , ,		Support Vector Machines: II	TIME OF T	5,6
9: 7 th Mar/ 9 th Mar (Tu,Th)	4	Ensemble Methods: I Ensemble Methods: II	HW 2 due HW 3 released	5,6,8 $5,6,8$
Spring Break				
		Imbalanced Classes: I		5,6,9
11: $21^{st} \text{ Mar} / 23^{rd} \text{ Mar (Tu,Th)}$	4	Imbalanced Classes: II		5,6,9
Association Analysis				
10 00th M / 20th M / (TI TI)	5	Apriori Algorithm /Exam review	HW 3 due	10
12: $28^{th} \text{ Mar} / 30^{th} \text{ Mar (Tu,Th)}$		Exam 2	HW 4 released	
Clustering Analysis				
13: 4^{th} Apr/ 6^{th} Apr (Tu,Th)	7	KMeans Algorithm		11
		Cluster Evaluation		11
Anomaly Detection				
14: 11 th Apr/ 13 th Apr (Tu,Th)	9	Proximity-based		12
11 12p1/ 13 11p1 (1a,1h)		Clustering-based		12
Project				
15: $18^{th} \text{ Apr} / 20^{th} \text{ Apr (Tu,Th)}$		Course conclusion	HW 4 due	12
		Project Presentation I		2,13
16: $25^{th} \text{ Apr} / 27^{th} \text{ Apr (Tu,Th)}$		Project Presentation II	Droingt due	2,13
		Project Presentation III	Project due	2,13

Learning outcome: After successful completion of this course, you will acquire knowledge to:

- 1. Understand the basics of data mining and its relation to machine learning.
- 2. Use python as an efficient tool for data mining
- 3. Understand the types of data and evaluate its quality, distribution etc.
- 4. Implement foundational data preprocessing techniques for effective data mining.
- 5. Understand the basics of supervised learning
- 6. Implement and analyze prominent classification algorithms for data mining.
- 7. Evaluate and compare various classification algorithms
- 8. Combining multiple classification models to create better models.
- 9. Handle unbalanced classes in classification problems.
- 10. Understand and implement association analysis.
- 11. Understand and implement clustering analysis.
- 12. Understand and implement anomaly detection.
- 13. Apply the concepts learnt in class to problems of practical importance.