Deep contextualized word representation

AntNLP

Yupei Du

Language Models

Language Models

ELMo

Deep-BiLSTM

$$\sum_{k=1}^{N} (\log p(t_k \mid t_1, \dots, t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k \mid t_{k+1}, \dots, t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s))$$

ELMo

$$R_{k} = \{\mathbf{x}_{k}^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\}$$

$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$

$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}.$$

Experiments

SQuAD(Question answering): 100K+ crowd sourced questionanswer pairs where the answer is a span in a given Wikipedia paragraph

SNLI(Textual entailment): 550K hypothesis/premise pairs.determining whether a "hypothesis" is true, given a "premise"

SRL(Semantic role labeling): models the predicate-argument structure of a sentence, and is often described as answering "Who did what to whom"

Coref(Coreference resolution): clustering mentions in text that re- fer to the same underlying real world entities

Experiments

NER(Named entity extraction): tag entities with four different entity types

SST-5(Sentiment analysis): selecting one of five labels (from very negative to very positive) to describe a sentence from a movie review

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Regularize

Adding $\lambda ||w||_2^2$ to loss function

Task	Baseline	Last Only	All layers	
Task			λ =1	λ=0.001
SQuAD	80.8	84.7	85.0	85.2
SNLI	88.1	89.1	89.3	89.5
SRL	81.6	84.1	84.6	84.8

Input or Output?

Tools	Input	Input &	Output
Task	Only	Output	Only
SQuAD	85.1	85.6	84.8
SNLI	88.9	89.5	88.7
SRL	84.7	84.3	80.9

What information is captured?

Model	$oxed{\mathbf{F}_1}$	Model	Acc.
WordNet 1st Sense Baseline	65.9	Collobert et al. (2011)	97.3
Raganato et al. (2017a)	69.9	Ma and Hovy (2016)	97.6
Iacobacci et al. (2016)	70.1	Ling et al. (2015)	97.8
CoVe, First Layer	59.4	CoVe, First Layer	93.3
CoVe, Second Layer	64.7	CoVe, Second Layer	92.8
biLM, First layer	67.4	biLM, First Layer	97.3
biLM, Second layer	69.0	biLM, Second Layer	96.8

Sample efficiency

Speed

486
ightarrow 10~epochs~in~SRL

dataset size

Visualization of weights

Thank you!

Q&A