

a target to the

Scilab

3D Grafik

J. Koch, 6. Januar 2018

1. 3D Grafik

Gliederung

Hochschule Esslingen
University of Applied Sciences

1. 3D Grafik
Gitternetz
Schaubild von f(x, y)Sombrero

Farbpalette Höhenlinien Kugel Vektorfeld

- ► Sie können eine Matrix mithilfe eines Gitternetzes visualisieren
- ► Sie können die Achsenbeschriftungen anpassen
- Sie k\u00f6nnen Schaubilder von Funktionen in zwei Ver\u00e4nderlichen erstellen
- ► Sie können die Farbpalette bei Grafiken in 3D verändern
- ► Sie können Höhenlinien einer Fläche visualisieren
- ► Sie können können geschlossene Flächen in 3D (Kugel, Torus, ...) visualisieren
- ▶ Sie können ebene Vektorfelder grafisch darstellen.

- ► Sie können eine Matrix mithilfe eines Gitternetzes visualisieren
- ▶ Sie können die Achsenbeschriftungen anpassen
- Sie k\u00f6nnen Schaubilder von Funktionen in zwei Ver\u00e4nderlichen erstellen
- ► Sie können die Farbpalette bei Grafiken in 3D verändern
- ► Sie können Höhenlinien einer Fläche visualisieren
- ► Sie können können geschlossene Flächen in 3D (Kugel, Torus, ...) visualisieren
- ▶ Sie können ebene Vektorfelder grafisch darstellen.

- ► Sie können eine Matrix mithilfe eines Gitternetzes visualisieren
- Sie können die Achsenbeschriftungen anpassen
- Sie können Schaubilder von Funktionen in zwei Veränderlichen erstellen
- ► Sie können die Farbpalette bei Grafiken in 3D verändern
- ► Sie können Höhenlinien einer Fläche visualisieren
- ► Sie können können geschlossene Flächen in 3D (Kugel, Torus, ...) visualisieren
- ▶ Sie können ebene Vektorfelder grafisch darstellen.

- ► Sie können eine Matrix mithilfe eines Gitternetzes visualisieren
- Sie können die Achsenbeschriftungen anpassen
- Sie können Schaubilder von Funktionen in zwei Veränderlichen erstellen
- ► Sie können die Farbpalette bei Grafiken in 3D verändern
- Sie können Höhenlinien einer Fläche visualisieren
- ► Sie können können geschlossene Flächen in 3D (Kugel, Torus, ...) visualisieren
- ▶ Sie können ebene Vektorfelder grafisch darstellen.

- ► Sie können eine Matrix mithilfe eines Gitternetzes visualisieren
- Sie können die Achsenbeschriftungen anpassen
- Sie können Schaubilder von Funktionen in zwei Veränderlichen erstellen
- ► Sie können die Farbpalette bei Grafiken in 3D verändern
- ► Sie können Höhenlinien einer Fläche visualisieren
- ► Sie können können geschlossene Flächen in 3D (Kugel, Torus, ...) visualisieren
- ► Sie können ebene Vektorfelder grafisch darstellen.

- ► Sie können eine Matrix mithilfe eines Gitternetzes visualisieren
- Sie können die Achsenbeschriftungen anpassen
- Sie können Schaubilder von Funktionen in zwei Veränderlichen erstellen
- ► Sie können die Farbpalette bei Grafiken in 3D verändern
- ► Sie können Höhenlinien einer Fläche visualisieren
- ► Sie können können geschlossene Flächen in 3D (Kugel, Torus, ...) visualisieren
- ▶ Sie können ebene Vektorfelder grafisch darstellen.

- ► Sie können eine Matrix mithilfe eines Gitternetzes visualisieren
- Sie können die Achsenbeschriftungen anpassen
- Sie können Schaubilder von Funktionen in zwei Veränderlichen erstellen
- Sie können die Farbpalette bei Grafiken in 3D verändern
- ► Sie können Höhenlinien einer Fläche visualisieren
- ► Sie können können geschlossene Flächen in 3D (Kugel, Torus, ...) visualisieren
- Sie können ebene Vektorfelder grafisch darstellen.

▶ Gitternetz

► Achsenbeschriftung

$$\longrightarrow$$
 a = gca();

$$\longrightarrow$$
 ticks.locations = $[1;2;3;4;5]$

► Gitternetz

$$--> A = \begin{bmatrix} 0 & 2 & 3 & 2 & 2; \\ 2 & 4 & 5 & 4 & 2; \\ 3 & 5 & 6 & 5 & 3; \\ 2 & 4 & 5 & 4 & 2; \\ 1 & 2 & 3 & 2 & 0 \end{bmatrix};$$

—> mesh (A)▶ Achsenbeschriftung

$$\longrightarrow$$
 a.font_size = 8;

▶ Schaubild von f(x, y)

$$--> x = -2:2;$$

$$--> y = 0:4;$$

$$\longrightarrow$$
 [X,Y]=meshgrid(x,y)

$$--> F = X.^2 + Y.^2;$$

$$\longrightarrow$$
 mesh(X,Y,F);

$$f(x,y) = x^2 + y^2$$

Sombrero

$$f(x,y) = \frac{\sin\left(x^2 + y^2\right)}{x^2 + y^2}$$

$$\rightarrow$$
 xy = linspace($-\%$ pi, $\%$ pi, 40);

$$\longrightarrow$$
 [X,Y] = meshgrid(xy);

$$--> F = \sin(X.^2+Y.^2)./(X.^2+Y.^2);$$

 \longrightarrow mesh(X,Y,F)

► Farbpalette

$$f(x,y) = \frac{\sin\left(x^2 + y^2\right)}{x^2 + y^2}$$

- \rightarrow xy = linspace(-%pi,%pi,40);
- \longrightarrow [X,Y] = meshgrid(xy);
- \longrightarrow F = sin(X.^2+Y.^2)./(X.^2+Y.^2);
- \longrightarrow surf(X,Y,F)
- \longrightarrow f = gcf();
- --> f.color_map = coolcolormap(32);

► Höhenlinien

$$\frac{\sin\left(x^2+y^2\right)}{x^2+y^2} = \text{const}$$

$$\rightarrow$$
 xy = linspace($-\%$ pi, $\%$ pi, 40);

$$\longrightarrow$$
 [X,Y] = meshgrid(xy);

$$\longrightarrow$$
 F = sin(X.^2+Y.^2)./(X.^2+Y.^2);

 \rightarrow contour (xy, xy, F)

Kugel

$$S(u,v) = \begin{pmatrix} \sin(u)\cos(v) \\ \sin(u)\sin(v) \\ \cos(u) \end{pmatrix}$$


```
\rightarrow u = linspace(0, %pi, 40);
```

$$--> v = linspace(0,2*\%pi,40);$$

$$\longrightarrow$$
 [U,V] = meshgrid(u,v);

$$\longrightarrow$$
 X = sin(U).*cos(V);

$$\longrightarrow$$
 Y = sin(U).*sin(V);

$$\longrightarrow$$
 Z = cos(U);

$$\longrightarrow$$
 surf(X,Y,Z);

$$--> f = gcf();$$

Vektorfeld

$$\vec{v}(x,y) = \begin{pmatrix} v_x(x,y) \\ v_y(x,y) \end{pmatrix}$$

$$--> x = -2:0.5:2;$$

$$--> y = -2:0.5:2;$$

$$\longrightarrow$$
 [X,Y] = meshgrid(x,y);

$$--> Vx = -Y;$$

$$--> Vy = X;$$

Matrizen transponieren!

Beispiel

$$\vec{v}(x,y) = \left(\begin{array}{c} -y \\ x \end{array}\right)$$

Vektorfeld

$$\vec{v}(x,y) = \begin{pmatrix} v_x(x,y) \\ v_y(x,y) \end{pmatrix}$$

$$--> x = -2:0.5:2;$$

$$--> y = -2:0.5:2;$$

$$\longrightarrow$$
 [X,Y] = meshgrid(x,y);

- --> Vx = -Y;
- --> Vy = X;
- —> champ(x,y,Vx',Vy');
 - Matrizen transponieren!

Beispiel

$$\vec{v}(x,y) = \begin{pmatrix} -y \\ x \end{pmatrix}$$

 Erstellen Sie ein Schaubild der Funktion

$$f(x,y) = -4 x e^{-x^2-y^2},$$

für

$$(x,y) \in [-3,3]^2$$
.

2. Erstellen Sie ein Schaubild des Torus

$$\left(\begin{array}{c} (2+\cos(u))\cos(v) \\ (2+\cos(u))\sin(v) \\ \sin(u) \end{array}\right)$$

für

$$(u, v) \in [0, 2\pi]^2$$
.