Graph theory homework, task 2

Vladislav Hober

1 Triangle inequality

Let's assume that dist(x, z) > dist(x, y) + dist(y, z). So, dist(x, z) is the shortest path between x and z. However, we can find a shorter path between these vertices: dist(x, z) = dist(x, y) + dist(y, z). It's a contradiction. Consequently, for any connected graph $dist(x, z) \leq dist(x, y) + dist(y, z)$.

2 Tree

G is a connected graph. Let's consider 2 cases.

- |E| < |V| 1. Then some vertices will not have edges. So, the graph will not be connected. It is a contradiction.
- |E| > |V| 1. G is a connected graph. So, |V| 1 edges should connect all vertices. There is no cycles in a graph because with |V| 1 we can create only a one path between all |V| vertices. So, if we add more than |V| 1 edges, we will create a new path. Two different paths between vertices would create a cycle. We would get a cyclic graph.

Consequently, a connected graph with only |V| - 1 edges would be acyclic, would be a tree.

3 Whitney

Let be $\varkappa(G) = n$, $\lambda(G) = m$, $\delta(G) = q$.

• Let's assume that n > q. But if some vertex has q as a minimum degree, we can just remove q vertices to disconnect graph. So, $\varkappa(G)$ equals at least q. We came to contradiction. Consequently, $n \leq q$.

• Let's assume that m>q. But if some vertex has at least q edges, we can just remove q edges to disconnect graph. So, $\lambda(G)$ equals at least q. We came to contradiction. Consequently, $m\leq q$

In conclusion, $\varkappa(G) \le \lambda(G) \le \delta(G)$

4 Chartrand