MANOJ KUMAR - 2048015

Lab 10: Naive Bayes (NB) Classification

Kidney diseases are disorders that affect the functions of the kidney. During the late stages, kidney d iseases can cause kidney failure to prevent chronic kidney disease-CKD by utilising machine learning te chniques to diagnose kidney disease at an early stage. We describe the most prominent supervised machin e learning algorithms (SML), their characteristics, Generalisation capacity of each method, Time comple xity, Hyper-parameter tuning, and Advantages and disadvantages of each technique comparatively.

The Kidney Disease dataset obtained from UCI was used to determine and test its highest percentage of a ccuracy and benchmark.

Importing basic libraries

```
In [1]: import pandas as pd
import numpy as np
import time
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
```

Reading the dataset

Rename the columns to have meaningful names

```
In [4]: col_dict={"bp":"blood_pressure",
                   "sg": "specific_gravity",
                   "al": "albumin",
                   "su":"sugar",
                   "rbc": "red_blood_cells",
                   "pc": "pus_cell",
                   "pcc": "pus_cell_clumps",
                   "ba":"bacteria",
                   "bgr": "blood_glucose_random",
                   "bu":"blood_urea",
                   "sc": "serum_creatinine",
                   "sod": "sodium",
                   "pot": "potassium",
                   "hemo": "hemoglobin",
                   "pcv": "packed cell volume",
                   "wc": "white_blood_cell_count",
                   "rc": "red_blood_cell_count",
                   "htn": "hypertension",
                   "dm": "diabetes_mellitus",
                   "cad": "coronary_artery_disease",
                   "appet": "appetite",
                   "pe": "pedal_edema",
                   "ane":"anemia"}
        ckd_df.rename(columns=col_dict, inplace=True)
        #Check the column names again
        ckd_df.columns
Out[4]: Index(['id', 'age', 'blood_pressure', 'specific_gravity', 'albumin', 'sugar',
                'red_blood_cells', 'pus_cell', 'pus_cell_clumps', 'bacteria',
                'blood_glucose_random', 'blood_urea', 'serum_creatinine', 'sodium',
                'potassium', 'hemoglobin', 'packed_cell_volume',
                'white_blood_cell_count', 'red_blood_cell_count', 'hypertension',
                'diabetes_mellitus', 'coronary_artery_disease', 'appetite',
                'pedal_edema', 'anemia', 'classification'],
               dtype='object')
```

Observing the data

In [5]:	ckd_df.head(11).T

0114_411044(22)12											
:	0	1	2	3	4	5	6	7	8	9	10
id	0	1	2	3	4	5	6	7	8	9	10
age	48	7	62	48	51	60	68	24	52	53	50
blood_pressure	80	50	80	70	80	90	70	NaN	100	90	60
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01
albumin	1	4	2	4	2	3	0	2	3	2	2
sugar	0	0	3	0	0	0	0	4	0	0	4
red_blood_cells	NaN	NaN	normal	normal	normal	NaN	NaN	normal	normal	abnormal	NaN
pus_cell	normal	normal	normal	abnormal	normal	NaN	normal	abnormal	abnormal	abnormal	abnormal
pus_cell_clumps	notpresent	notpresent	notpresent	present	notpresent	notpresent	notpresent	notpresent	present	present	present
bacteria	notpresent										
blood_glucose_random	121	NaN	423	117	106	74	100	410	138	70	490
blood_urea	36	18	53	56	26	25	54	31	60	107	55
serum_creatinine	1.2	0.8	1.8	3.8	1.4	1.1	24	1.1	1.9	7.2	4
sodium	NaN	NaN	NaN	111	NaN	142	104	NaN	NaN	114	NaN
potassium	NaN	NaN	NaN	2.5	NaN	3.2	4	NaN	NaN	3.7	NaN
hemoglobin	15.4	11.3	9.6	11.2	11.6	12.2	12.4	12.4	10.8	9.5	9.4
packed_cell_volume	44	38	31	32	35	39	36	44	33	29	28
white_blood_cell_count	7800	6000	7500	6700	7300	7800	NaN	6900	9600	12100	NaN
red_blood_cell_count	5.2	NaN	NaN	3.9	4.6	4.4	NaN	5	4.0	3.7	NaN
hypertension	yes	no	no	yes	no	yes	no	no	yes	yes	yes
diabetes_mellitus	yes	no	yes	no	no	yes	no	yes	yes	yes	yes
coronary_artery_disease	no										
appetite	good	good	poor	poor	good	good	good	good	good	poor	good
pedal_edema	no	no	no	yes	no	yes	no	yes	no	no	no
anemia	no	no	yes	yes	no	no	no	no	yes	yes	yes
classification	ckd										

unique values in "pus_cell_clumps":

```
In [6]: for i in ckd_df.drop("id",axis=1).columns:
            print('unique values in "{}":\n'.format(i),ckd_df[i].unique())
        unique values in "age":
         [48. 7. 62. 51. 60. 68. 24. 52. 53. 50. 63. 40. 47. 61. 21. 42. 75. 69.
         nan 73. 70. 65. 76. 72. 82. 46. 45. 35. 54. 11. 59. 67. 15. 55. 44. 26.
         64. 56. 5. 74. 38. 58. 71. 34. 17. 12. 43. 41. 57. 8. 39. 66. 81. 14.
         27. 83. 30. 4. 3. 6. 32. 80. 49. 90. 78. 19. 2. 33. 36. 37. 23. 25.
         20. 29. 28. 22. 79.]
        unique values in "blood_pressure":
  [ 80. 50. 70. 90. nan 100. 60. 110. 140. 180. 120.]
        unique values in "specific_gravity":
         [1.02 1.01 1.005 1.015 nan 1.025]
        unique values in "albumin":
         [ 1. 4. 2. 3. 0. nan 5.]
        unique values in "sugar":
         [ 0. 3. 4. 1. nan 2. 5.]
        unique values in "red_blood_cells":
         [nan 'normal' 'abnormal']
        unique values in "pus_cell":
         ['normal' 'abnormal' nan]
```

```
In [7]: |#Replace incorrect values
        ckd_df['diabetes_mellitus'] = ckd_df['diabetes_mellitus'].replace(to_replace={'\tno':'no','\tyes':'yes',' yes':'y
        ckd_df['coronary_artery_disease'] = ckd_df['coronary_artery_disease'].replace(to_replace='\tno',value='no')
        ckd_df['white_blood_cell_count'] = ckd_df['white_blood_cell_count'].replace(to_replace='\t8400',value='8400')
        ckd_df["classification"]=ckd_df["classification"].replace("ckd\t", "ckd")
        for i in range(ckd_df.shape[0]):
           if ckd_df.iloc[i,16]=='\t?':
               ckd df.iloc[i,16]=np.nan
           if ckd_df.iloc[i,16]=='\t43':
               ckd_df.iloc[i,16]='43'
           if ckd_df.iloc[i,17]=='\t?':
               ckd_df.iloc[i,17]=np.nan
           if ckd_df.iloc[i,17]=='\t6200':
               ckd_df.iloc[i,17]= '6200'
           if ckd_df.iloc[i,18]=='\t?':
               ckd df.iloc[i,18]=np.nan
           if ckd_df.iloc[i,25]=='ckd':
               ckd_df.iloc[i,25]='1'
           if ckd_df.iloc[i,25]=='notckd':
               ckd_df.iloc[i,25]='0'
        for i in ckd_df.drop("id",axis=1).columns:
           print('unique values in "{}":\n'.format(i),ckd_df[i].unique())
        unique values in "age":
        [48. 7. 62. 51. 60. 68. 24. 52. 53. 50. 63. 40. 47. 61. 21. 42. 75. 69.
        nan 73. 70. 65. 76. 72. 82. 46. 45. 35. 54. 11. 59. 67. 15. 55. 44. 26.
        64. 56. 5. 74. 38. 58. 71. 34. 17. 12. 43. 41. 57. 8. 39. 66. 81. 14.
        27. 83. 30. 4. 3. 6. 32. 80. 49. 90. 78. 19. 2. 33. 36. 37. 23. 25.
        20. 29. 28. 22. 79.]
        unique values in "blood_pressure":
        [ 80. 50. 70. 90. nan 100. 60. 110. 140. 180. 120.]
        unique values in "specific gravity":
        [1.02 1.01 1.005 1.015 nan 1.025]
        unique values in "albumin":
        [ 1. 4. 2. 3. 0. nan 5.]
        unique values in "sugar":
        [ 0. 3. 4. 1. nan 2. 5.]
        unique values in "red_blood_cells":
        [nan 'normal' 'abnormal']
        unique values in "pus_cell":
        ['normal' 'abnormal' nan]
        unique values in "pus_cell_clumps":
        ['notpresent' 'present' nan]
        unique values in "bacteria":
        ['notpresent' 'present' nan]
        unique values in "blood_glucose_random":
        [121. nan 423. 117. 106. 74. 100. 410. 138. 70. 490. 380. 208. 98.
        157. 76. 99. 114. 263. 173. 95. 108. 156. 264. 123. 93. 107. 159.
        140. 171. 270. 92. 137. 204. 79. 207. 124. 144. 91. 162. 246. 253.
        141. 182. 86. 150. 146. 425. 112. 250. 360. 163. 129. 133. 102. 158.
        165. 132. 104. 127. 415. 169. 251. 109. 280. 210. 219. 295. 94. 172.
        101. 298. 153. 88. 226. 143. 115. 89. 297. 233. 294. 323. 125. 90.
        308. 118. 224. 128. 122. 214. 213. 268. 256. 84. 105. 288. 139. 78.
        273. 242. 424. 303. 148. 160. 192. 307. 220. 447. 309. 22. 111. 261.
        215. 234. 131. 352. 80. 239. 110. 130. 184. 252. 113. 230. 341. 255.
        103. 238. 248. 120. 241. 269. 201. 203. 463. 176. 82. 119. 97. 96.
         81. 116. 134. 85. 83. 87.
                                     75.]
        unique values in "blood urea":
         [ 36.
               18. 53. 56.
                                 26.
                                       25.
                                             54.
                                                  31.
                                                        60. 107.
                                                                    55.
                                                                          72.
               90. 162.
                                87.
                                      27. 148. 180. 163.
                                                             nan 50.
         86.
                           46.
                                                                         75.
                                39. 153.
         45.
               28. 155.
                           33.
                                           29.
                                                  65. 103.
                                                             70.
                                                                   80.
         202.
               77.
                   89.
                          24.
                                17.
                                      32. 114.
                                                  66.
                                                       38. 164.
                                                                  142.
                                                                         96.
                          73.
         391.
               15. 111.
                                19.
                                      92.
                                           35.
                                                  16. 139.
                                                             48.
                                                                   85.
                                                                         98.
         186.
               37.
                    47.
                          52.
                                82.
                                      51. 106.
                                                  22.
                                                      217.
                                                             88. 118.
                                                                         50.1
         71.
               34.
                     40.
                           21.
                               219.
                                      30. 125. 166.
                                                        49. 208.
                                                                  176.
                                                                 113.
              165.
         145.
                    322.
                           23.
                               235. 132.
                                            76.
                                                  42.
                                                        44.
                                                             41.
              58. 133. 137. 67. 115. 223.
                                                  98.6 158.
                                                            94.
                                                                   74. 150.
        146.
              57. 95. 191.
                               93. 241.
                                            64.
                                                  79. 215. 309.
                                                                   10.]
         61.
        unique values in "serum_creatinine":
        [ 1.2
               0.8
                     1.8 3.8
                                1.4
                                      1.1 24.
                                                  1.9
                                                       7.2
                                                             4.
                                                                    2.7
                                                                         2.1
                                                 3.9 76.
                     9.6
                                5.2
                                                             7.7
         4.6
               4.1
                           2.2
                                      1.3
                                            1.6
                                                                    nan 2.4
         7.3
               1.5
                     2.5
                                3.4
                                      0.7
                                            1.
                                                 10.8
                                                       6.3
                                                             5.9
                           2.
                                                                   0.9
                                                                         3.
         3.25 9.7
                     6.4
                           3.2 32.
                                      0.6
                                           6.1
                                                 3.3
                                                       6.7
                                                            8.5
                                                                   2.8 15.
                                      4.4 10.2 11.5
                                                       0.5 12.2
         2.9
              1.7
                     3.6
                           5.6
                               6.5
                                                                   5.3
                                                                         9.2
                                      2.3 13.
        13.8 16.9
                          7.1 18.
                                                48.1 14.2 16.4
                    6.
                                                                   2.6
                                                                        7.5
         4.3 18.1 11.8
                          9.3 6.8 13.5 12.8 11.9 12.
                                                            13.4 15.2 13.3
         0.4 ]
        unique values in "sodium":
        nan 111. 142. 104. 114. 131. 138. 135. 130. 141. 139.
        136. 129. 140. 132. 133. 134. 125. 163. 137. 128. 143. 127.
        146. 126. 122. 147. 124. 115. 145. 113. 120. 150. 144.
        unique values in "potassium":
        [ nan 2.5 3.2 4. 3.7 4.2 5.8 3.4 6.4 4.9 4.1 4.3 5.2 3.8
         4.6 3.9 4.7 5.9 4.8 4.4 6.6 39. 5.5 5. 3.5 3.6 7.6 2.9
         4.5 5.7 5.4 5.3 47. 6.3 5.1 5.6 3. 2.8 2.7 6.5 3.3]
```

unique values in "hemoglobin":

```
[15.4 11.3 9.6 11.2 11.6 12.2 12.4 10.8 9.5 9.4 9.7 9.8 5.6 7.6
12.6 12.1 12.7 10.3 7.7 10.9 nan 11.1 9.9 12.5 12.9 10.1 12. 13.
 7.9 9.3 15. 10. 8.6 13.6 10.2 10.5 6.6 11. 7.5 15.6 15.2 4.8
 9.1 8.1 11.9 13.5 8.3 7.1 16.1 10.4 9.2 6.2 13.9 14.1 6. 11.8
11.7 11.4 14. 8.2 13.2 6.1 8. 12.3 8.4 14.3 9. 8.7 10.6 13.1
10.7 5.5 5.8 6.8 8.8 8.5 13.8 11.5 7.3 13.7 12.8 13.4 6.3 3.1
17. 15.9 14.5 15.5 16.2 14.4 14.2 16.3 14.8 16.5 15.7 13.3 14.6 16.4
16.9 16. 14.7 16.6 14.9 16.7 16.8 15.8 15.1 17.1 17.2 15.3 17.3 17.4
17.7 17.8 17.5 17.61
unique values in "packed_cell_volume":
 ['44' '38' '31' '32' '35' '39' '36' '33' '29' '28' nan '16' '24' '37' '30'
 '34' '40' '45' '27' '48' '52' '14' '22' '18' '42' '17' '46' '23' '19'
 '25' '41' '26' '15' '21' '43' '20' '47' '9' '49' '50' '53' '51' '54']
unique values in "white blood_cell_count":
['7800' '6000' '7500' '6700' '7300' nan '6900' '9600' '12100' '4500'
 '12200' '11000' '3800' '11400' '5300' '9200' '6200' '8300' '8400' '10300'
 '9800' '9100' '7900' '6400' '8600' '18900' '21600' '4300' '8500' '11300'
 '7200' '7700' '14600' '6300' '7100' '11800' '9400' '5500' '5800' '13200'
 '12500' '5600' '7000' '11900' '10400' '10700' '12700' '6800' '6500'
 '13600' '10200' '9000' '14900' '8200' '15200' '5000' '16300' '12400'
 '10500' '4200' '4700' '10900' '8100' '9500' '2200' '12800' '11200'
 '19100' '12300' '16700' '2600' '26400' '8800' '7400' '4900' '8000'
 '12000' '15700' '4100' '5700' '11500' '5400' '10800' '9900' '5200' '5900'
 '9300' '9700' '5100' '6600']
unique values in "red_blood_cell_count":
['5.2' nan '3.9' '4.6' '4.4' '5' '4.0' '3.7' '3.8' '3.4' '2.6' '2.8' '4.3'
 '3.2' '3.6' '4' '4.1' '4.9' '2.5' '4.2' '4.5' '3.1' '4.7' '3.5' '6.0'
 '5.0' '2.1' '5.6' '2.3' '2.9' '2.7' '8.0' '3.3' '3.0' '3' '2.4' '4.8'
 '5.4' '6.1' '6.2' '6.3' '5.1' '5.8' '5.5' '5.3' '6.4' '5.7' '5.9' '6.5']
unique values in "hypertension":
['yes' 'no' nan]
unique values in "diabetes_mellitus":
['yes' 'no' nan]
unique values in "coronary artery disease":
['no' 'yes' nan]
unique values in "appetite":
['good' 'poor' nan]
unique values in "pedal_edema":
['no' 'yes' nan]
unique values in "anemia":
['no' 'yes' nan]
unique values in "classification":
['1' '0']
```

In [8]: # Observing the summarized information of data ckd df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 26 columns):

#	Column	•	-Null Count	Dtype
0	 id	400	non-null	 int64
1			non-null	float64
2	age		non-null	float64
3	blood_pressure			
	specific_gravity		non-null	float64
4	albumin		non-null	float64
5	sugar		non-null	float64
6	red_blood_cells		non-null	object
7	pus_cell		non-null	object
8	pus_cell_clumps		non-null	object
9	bacteria	396	non-null	object
10	blood_glucose_random	356	non-null	float64
11	blood_urea	381	non-null	float64
12	serum_creatinine	383	non-null	float64
13	sodium	313	non-null	float64
14	potassium	312	non-null	float64
15	hemoglobin	348	non-null	float64
16	packed cell_volume	329	non-null	object
17	white blood cell count	294	non-null	object
18	red_blood_cell_count	269	non-null	object
19	hypertension	398	non-null	object
20	diabetes_mellitus	398	non-null	object
21	coronary_artery_disease	398	non-null	object
22	appetite	399	non-null	object
23	pedal_edema	399	non-null	object
24	anemia	399	non-null	object
25	classification	400	non-null	object
dtype	es: float64(11), int64(1)			-

memory usage: 81.4+ KB

```
In [9]: | ckd_df.iloc[:,-1]=ckd_df.iloc[:,-1].astype('int64')
        ckd_df.head(11).T
```

Out[9]:

	0	1	2	3	4	5	6	7	8	9	10
id	0	1	2	3	4	5	6	7	8	9	10
age	48	7	62	48	51	60	68	24	52	53	50
blood_pressure	80	50	80	70	80	90	70	NaN	100	90	60
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01
albumin	1	4	2	4	2	3	0	2	3	2	2
sugar	0	0	3	0	0	0	0	4	0	0	4
red_blood_cells	NaN	NaN	normal	normal	normal	NaN	NaN	normal	normal	abnormal	NaN
pus_cell	normal	normal	normal	abnormal	normal	NaN	normal	abnormal	abnormal	abnormal	abnormal
pus_cell_clumps	notpresent	notpresent	notpresent	present	notpresent	notpresent	notpresent	notpresent	present	present	present
bacteria	notpresent										
blood_glucose_random	121	NaN	423	117	106	74	100	410	138	70	490
blood_urea	36	18	53	56	26	25	54	31	60	107	55
serum_creatinine	1.2	0.8	1.8	3.8	1.4	1.1	24	1.1	1.9	7.2	4
sodium	NaN	NaN	NaN	111	NaN	142	104	NaN	NaN	114	NaN
potassium	NaN	NaN	NaN	2.5	NaN	3.2	4	NaN	NaN	3.7	NaN
hemoglobin	15.4	11.3	9.6	11.2	11.6	12.2	12.4	12.4	10.8	9.5	9.4
packed_cell_volume	44	38	31	32	35	39	36	44	33	29	28
white_blood_cell_count	7800	6000	7500	6700	7300	7800	NaN	6900	9600	12100	NaN
red_blood_cell_count	5.2	NaN	NaN	3.9	4.6	4.4	NaN	5	4.0	3.7	NaN
hypertension	yes	no	no	yes	no	yes	no	no	yes	yes	yes
diabetes_mellitus	yes	no	yes	no	no	yes	no	yes	yes	yes	yes
coronary_artery_disease	no										
appetite	good	good	poor	poor	good	good	good	good	good	poor	good
pedal_edema	no	no	no	yes	no	yes	no	yes	no	no	no
anemia	no	no	yes	yes	no	no	no	no	yes	yes	yes
classification	1	1	1	1	1	1	1	1	1	1	1

```
In [10]: print(ckd_df['packed_cell_volume'].unique())
          print(ckd_df['white_blood_cell_count'].unique())
          print(ckd_df['red_blood_cell_count'].unique())
          ['44' '38' '31' '32' '35' '39' '36' '33' '29' '28' nan '16' '24' '37' '30'
           '34' '40' '45' '27' '48' '52' '14' '22' '18' '42' '17' '46' '23' '19'
           '25' '41' '26' '15' '21' '43' '20' '47' '9' '49' '50' '53' '51' '54']
          ['7800' '6000' '7500' '6700' '7300' nan '6900' '9600' '12100' '4500'
           '12200' '11000' '3800' '11400' '5300' '9200' '6200' '8300' '8400' '10300'
           '9800' '9100' '7900' '6400' '8600' '18900' '21600' '4300' '8500' '11300'
           '7200' '7700' '14600' '6300' '7100' '11800' '9400' '5500' '5800' '13200'
           '12500' '5600' '7000' '11900' '10400' '10700' '12700' '6800' '6500'
           '13600' '10200' '9000' '14900' '8200' '15200' '5000' '16300' '12400'
           '10500' '4200' '4700' '10900' '8100' '9500' '2200' '12800' '11200'
           '19100' '12300' '16700' '2600' '26400' '8800' '7400' '4900' '8000'
           '12000' '15700' '4100' '5700' '11500' '5400' '10800' '9900' '5200' '5900'
           '9300' '9700' '5100' '6600']
          ['5.2' nan '3.9' '4.6' '4.4' '5' '4.0' '3.7' '3.8' '3.4' '2.6' '2.8' '4.3' '3.2' '3.6' '4' '4.1' '4.9' '2.5' '4.2' '4.5' '3.1' '4.7' '3.5' '6.0'
           '5.0' '2.1' '5.6' '2.3' '2.9' '2.7' '8.0' '3.3' '3.0' '3' '2.4' '4.8'
           '5.4' '6.1' '6.2' '6.3' '5.1' '5.8' '5.5' '5.3' '6.4' '5.7' '5.9' '6.5']
```

```
In [11]: mistyped=['packed_cell_volume','white_blood_cell_count','red_blood_cell_count']
         for col in mistyped:
                 ckd_df[col]=ckd_df[col].astype('float')
         numeric=[]
         for i in ckd_df.columns:
             if ckd_df[i].dtype=='float64':
                 numeric.append(i)
         numeric
Out[11]: ['age',
           'blood_pressure',
          'specific_gravity',
          'albumin',
           'sugar',
           'blood_glucose_random',
           'blood_urea',
           'serum_creatinine',
           'sodium',
           'potassium',
          'hemoglobin',
           'packed_cell_volume',
           'white_blood_cell_count',
           'red_blood_cell_count']
In [12]: ckd_df.drop('id',axis=1,inplace=True)
         categoricals=[]
         for col in ckd_df.columns:
             if not col in numeric:
                 categoricals.append(col)
         categoricals.remove('classification')
         categoricals
Out[12]: ['red_blood_cells',
           'pus_cell',
           'pus_cell_clumps',
           'bacteria',
           'hypertension',
           'diabetes_mellitus',
           'coronary_artery_disease',
           'appetite',
           'pedal_edema',
           'anemia']
In [13]: |import warnings
         warnings.simplefilter('ignore')
         import matplotlib.style as style
         style.use('fivethirtyeight')
```

Checking distribution of the numerical features

Numeric features:-

While diving into detailed EDA we could see that some of the features represent good distributions, some are skewed by right & left and shows us positive and negative insights.

Checking distribution of the Categorical features

```
In [15]: |style.use('fivethirtyeight')
         fig, axes = plt.subplots(nrows=5, ncols=2, figsize=(15,30))
         fig.subplots_adjust(hspace=0.5)
         fig.suptitle('Distributions of Categorical Features')
         n_{rows}, n_{cols} = (5,2)
         for index, column in enumerate(categoricals):
             i,j = index // n_cols, index % n_cols
             miss_perc="%.2f"%(100*(1-(ckd_df[column].dropna().shape[0])/ckd_df.shape[0]))
             collabel=column+"\n({}% is missing)".format(miss_perc)
             fig = sns.countplot(x=column, data=ckd_df,label=collabel,
                                  palette=sns.cubehelix_palette(rot=-.4,light=0.85,hue=1), ax=axes[i,j])
             axes[i,j].set_title(collabel,fontsize=25)
             axes[i,j].set_xlabel(None)
             axes[i,j].set_ylabel("Count",fontsize=20)
             axes[i,j].set_xticklabels(axes[i,j].get_xticklabels(), Fontsize=20)
         plt.show()
```


Categorical features:-

Bar graph is used to analysis categorical values. Since it's an binary classification dataset, we could see that Most of the uniques features in categorical data we're 'good', 'poor', 'yes', 'no', 'normal', 'abnormal' and finally our classification label 'ckd' and 'notckd'.

```
In [16]: import matplotlib.ticker as ticker
         style.use('fivethirtyeight')
         # Some random data
         ncount = 400
         plt.figure(figsize=(15,8))
         ax = sns.countplot(x="classification", data=ckd_df)
         plt.title('Distribution of classification sata')
         plt.xlabel('Type')
         # Make twin axis
         ax2=ax.twinx()
         # Switch so count axis is on right, frequency on left
         ax2.yaxis.tick_left()
         ax.yaxis.tick_right()
         # Also switch the labels over
         ax.yaxis.set_label_position('right')
         ax2.yaxis.set_label_position('left')
         ax2.set_ylabel('Frequency [%]')
         for p in ax.patches:
             x=p.get_bbox().get_points()[:,0]
             y=p.get_bbox().get_points()[1,1]
             ax.annotate('\{:.1f\}%'.format(100.*y/ncount), (x.mean(), y),
                     ha='center', va='bottom') # set the alignment of the text
         # Use a LinearLocator to ensure the correct number of ticks
         ax.yaxis.set_major_locator(ticker.LinearLocator(11))
         # Fix the frequency range to 0-100
         ax2.set_ylim(0,100)
         ax.set_ylim(0,ncount)
         # And use a MultipleLocator to ensure a tick spacing of 10
         ax2.yaxis.set major locator(ticker.MultipleLocator(10))
         # Need to turn the grid on ax2 off, otherwise the gridlines end up on top of the bars
         ax2.grid(None)
```


After required taking acting on Missing values using Sklearn package, Outliers were found by checking uniqueness values of each features.

Outliers removal:-

- -Since we don't have higher level of data outliers.
- -We took necessary outliers fix based on the domain knowledge by updating invalid data entry.
- -Removing outliers will help to improve our data quality, which will be resulting in the model performa nce.

```
In [17]: for i in range(ckd_df.shape[0]):
    if ckd_df.iloc[i,24]=='ckd':
        ckd_df.iloc[i,24]='1'
    if ckd_df.iloc[i,24]=='notckd':
        ckd_df.iloc[i,24]='0'
```

Missing Values

Data cleaning

Data cleaningprocess were the key to projecting model quality and good accuracy score.

In CKD dataset we can clearly view the percentage of Missing values. Which is later handled using S klearn missing value imputer.

Sklearn is one of the best library for imputation.

In [19]: ckd_df.head(10).T

Out[19]:

	0	1	2	3	4	5	6	7	8	9
age	48	7	62	48	51	60	68	24	52	53
blood_pressure	80	50	80	70	80	90	70	NaN	100	90
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02
albumin	1	4	2	4	2	3	0	2	3	2
sugar	0	0	3	0	0	0	0	4	0	0
red_blood_cells	NaN	NaN	normal	normal	normal	NaN	NaN	normal	normal	abnormal
pus_cell	normal	normal	normal	abnormal	normal	NaN	normal	abnormal	abnormal	abnormal
pus_cell_clumps	notpresent	notpresent	notpresent	present	notpresent	notpresent	notpresent	notpresent	present	present
bacteria	notpresent									
blood_glucose_random	121	NaN	423	117	106	74	100	410	138	70
blood_urea	36	18	53	56	26	25	54	31	60	107
serum_creatinine	1.2	0.8	1.8	3.8	1.4	1.1	24	1.1	1.9	7.2
sodium	NaN	NaN	NaN	111	NaN	142	104	NaN	NaN	114
potassium	NaN	NaN	NaN	2.5	NaN	3.2	4	NaN	NaN	3.7
hemoglobin	15.4	11.3	9.6	11.2	11.6	12.2	12.4	12.4	10.8	9.5
packed_cell_volume	44	38	31	32	35	39	36	44	33	29
white_blood_cell_count	7800	6000	7500	6700	7300	7800	NaN	6900	9600	12100
red_blood_cell_count	5.2	NaN	NaN	3.9	4.6	4.4	NaN	5	4	3.7
hypertension	yes	no	no	yes	no	yes	no	no	yes	yes
diabetes_mellitus	yes	no	yes	no	no	yes	no	yes	yes	yes
coronary_artery_disease	no									
appetite	good	good	poor	poor	good	good	good	good	good	poor
pedal_edema	no	no	no	yes	no	yes	no	yes	no	no
anemia	no	no	yes	yes	no	no	no	no	yes	yes
classification	1	1	1	1	1	1	1	1	1	1

One-Hot Encoding

In [20]: onehotdata=pd.get_dummies(ckd_df,drop_first=True,prefix_sep=': ')
onehotdata.head(13).T

Out[20]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
age	48.00	7.00	62.00	48.000	51.00	60.000	68.00	24.000	52.000	53.00	50.00	63.00	68.000
blood_pressure	80.00	50.00	80.00	70.000	80.00	90.000	70.00	NaN	100.000	90.00	60.00	70.00	70.000
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01	1.01	1.015
albumin	1.00	4.00	2.00	4.000	2.00	3.000	0.00	2.000	3.000	2.00	2.00	3.00	3.000
sugar	0.00	0.00	3.00	0.000	0.00	0.000	0.00	4.000	0.000	0.00	4.00	0.00	1.000
blood_glucose_random	121.00	NaN	423.00	117.000	106.00	74.000	100.00	410.000	138.000	70.00	490.00	380.00	208.000
blood_urea	36.00	18.00	53.00	56.000	26.00	25.000	54.00	31.000	60.000	107.00	55.00	60.00	72.000
serum_creatinine	1.20	0.80	1.80	3.800	1.40	1.100	24.00	1.100	1.900	7.20	4.00	2.70	2.100
sodium	NaN	NaN	NaN	111.000	NaN	142.000	104.00	NaN	NaN	114.00	NaN	131.00	138.000
potassium	NaN	NaN	NaN	2.500	NaN	3.200	4.00	NaN	NaN	3.70	NaN	4.20	5.800
hemoglobin	15.40	11.30	9.60	11.200	11.60	12.200	12.40	12.400	10.800	9.50	9.40	10.80	9.700
packed_cell_volume	44.00	38.00	31.00	32.000	35.00	39.000	36.00	44.000	33.000	29.00	28.00	32.00	28.000
white_blood_cell_count	7800.00	6000.00	7500.00	6700.000	7300.00	7800.000	NaN	6900.000	9600.000	12100.00	NaN	4500.00	12200.000
red_blood_cell_count	5.20	NaN	NaN	3.900	4.60	4.400	NaN	5.000	4.000	3.70	NaN	3.80	3.400
classification	1.00	1.00	1.00	1.000	1.00	1.000	1.00	1.000	1.000	1.00	1.00	1.00	1.000
red_blood_cells: normal	0.00	0.00	1.00	1.000	1.00	0.000	0.00	1.000	1.000	0.00	0.00	0.00	0.000
pus_cell: normal	1.00	1.00	1.00	0.000	1.00	0.000	1.00	0.000	0.000	0.00	0.00	0.00	1.000
pus_cell_clumps: present	0.00	0.00	0.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
bacteria: present	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	0.000
hypertension: yes	1.00	0.00	0.00	1.000	0.00	1.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
diabetes_mellitus: yes	1.00	0.00	1.00	0.000	0.00	1.000	0.00	1.000	1.000	1.00	1.00	1.00	1.000
coronary_artery_disease: yes	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	1.000
appetite: poor	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	0.000	1.00	0.00	1.00	1.000
pedal_edema: yes	0.00	0.00	0.00	1.000	0.00	1.000	0.00	1.000	0.000	0.00	0.00	1.00	1.000
anemia: yes	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	0.00	0.000

```
In [21]: # define imputer
    from sklearn.impute import KNNImputer
    imputer = KNNImputer(n_neighbors=5, weights='uniform', metric='nan_euclidean')
    impute_columns=list(set(onehotdata.columns)-set(["classification"]))
    print(impute_columns)

    ['coronary_artery_disease: yes', 'pedal_edema: yes', 'albumin', 'blood_pressure', 'hemoglobin', 'sugar', 'white_blood_cell_count', 'bacteria: present', 'serum_creatinine', 'potassium', 'hypertension: yes', 'red_blood_cells: normal', 'specific_gravity', 'packed_cell_volume', 'red_blood_cell_count', 'sodium', 'diabetes_mellitus: yes', 'appetite: poor', 'pus_cell_clumps: present', 'blood_urea', 'blood_glucose_random', 'pus_cell: normal', 'age', 'anemia: yes']

In [22]: imputer.fit(onehotdata[impute_columns])

Out[22]: KNNImputer()

In [23]: X_trans=pd.DataFrame(imputer.transform(onehotdata[impute_columns]), columns=impute_columns)
```

In [24]: X_trans.head(13).T

Out[24]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
coronary_artery_disease: yes	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	1.000
pedal_edema: yes	0.00	0.00	0.00	1.000	0.00	1.000	0.00	1.000	0.000	0.00	0.00	1.00	1.000
albumin	1.00	4.00	2.00	4.000	2.00	3.000	0.00	2.000	3.000	2.00	2.00	3.00	3.000
blood_pressure	80.00	50.00	80.00	70.000	80.00	90.000	70.00	74.000	100.000	90.00	60.00	70.00	70.000
hemoglobin	15.40	11.30	9.60	11.200	11.60	12.200	12.40	12.400	10.800	9.50	9.40	10.80	9.700
sugar	0.00	0.00	3.00	0.000	0.00	0.000	0.00	4.000	0.000	0.00	4.00	0.00	1.000
white_blood_cell_count	7800.00	6000.00	7500.00	6700.000	7300.00	7800.000	10280.00	6900.000	9600.000	12100.00	9260.00	4500.00	12200.000
bacteria: present	0.00	0.00	0.00	0.000	0.00	0.000	0.00	0.000	0.000	0.00	0.00	0.00	0.000
serum_creatinine	1.20	0.80	1.80	3.800	1.40	1.100	24.00	1.100	1.900	7.20	4.00	2.70	2.100
potassium	4.20	3.92	4.20	2.500	3.98	3.200	4.00	4.200	4.960	3.70	4.56	4.20	5.800
hypertension: yes	1.00	0.00	0.00	1.000	0.00	1.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
red_blood_cells: normal	0.00	0.00	1.00	1.000	1.00	0.000	0.00	1.000	1.000	0.00	0.00	0.00	0.000
specific_gravity	1.02	1.02	1.01	1.005	1.01	1.015	1.01	1.015	1.015	1.02	1.01	1.01	1.01{
packed_cell_volume	44.00	38.00	31.00	32.000	35.00	39.000	36.00	44.000	33.000	29.00	28.00	32.00	28.000
red_blood_cell_count	5.20	4.96	3.80	3.900	4.60	4.400	4.64	5.000	4.000	3.70	4.92	3.80	3.400
sodium	137.60	136.80	133.80	111.000	138.40	142.000	104.00	133.800	134.000	114.00	139.00	131.00	138.000
diabetes_mellitus: yes	1.00	0.00	1.00	0.000	0.00	1.000	0.00	1.000	1.000	1.00	1.00	1.00	1.000
appetite: poor	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	0.000	1.00	0.00	1.00	1.000
pus_cell_clumps: present	0.00	0.00	0.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	1.00	1.000
blood_urea	36.00	18.00	53.00	56.000	26.00	25.000	54.00	31.000	60.000	107.00	55.00	60.00	72.000
blood_glucose_random	121.00	113.00	423.00	117.000	106.00	74.000	100.00	410.000	138.000	70.00	490.00	380.00	208.000
pus_cell: normal	1.00	1.00	1.00	0.000	1.00	0.000	1.00	0.000	0.000	0.00	0.00	0.00	1.000
age	48.00	7.00	62.00	48.000	51.00	60.000	68.00	24.000	52.000	53.00	50.00	63.00	68.000
anemia: yes	0.00	0.00	1.00	1.000	0.00	0.000	0.00	0.000	1.000	1.00	1.00	0.00	0.000

In [25]: X_trans # final datset

Out[25]:

<u></u>	coronary_artery_disease: yes	pedal_edema: yes	albumin	blood_pressure	hemoglobin	sugar	white_blood_cell_count	bacteria: present	serum_creatinine	potass
0	0.0	0.0	1.0	80.0	15.4	0.0	7800.0	0.0	1.2	
1	0.0	0.0	4.0	50.0	11.3	0.0	6000.0	0.0	0.8	
2	0.0	0.0	2.0	80.0	9.6	3.0	7500.0	0.0	1.8	
3	0.0	1.0	4.0	70.0	11.2	0.0	6700.0	0.0	3.8	
4	0.0	0.0	2.0	80.0	11.6	0.0	7300.0	0.0	1.4	
395	0.0	0.0	0.0	80.0	15.7	0.0	6700.0	0.0	0.5	
396	0.0	0.0	0.0	70.0	16.5	0.0	7800.0	0.0	1.2	
397	0.0	0.0	0.0	80.0	15.8	0.0	6600.0	0.0	0.6	
398	0.0	0.0	0.0	60.0	14.2	0.0	7200.0	0.0	1.0	
399	0.0	0.0	0.0	80.0	15.8	0.0	6800.0	0.0	1.1	

400 rows \times 24 columns

Modelling

```
In [26]: X=X_trans
          y=ckd_df["classification"]
          X_prod=X_trans
          print(X.shape)
          print(y.shape)
          print(X_prod.shape)
          (400, 24)
          (400,)
          (400, 24)
          Predictive Models with hyperparameter tuning Section
In [27]: | from sklearn.metrics import classification_report
          from sklearn.metrics import accuracy_score
          from sklearn.metrics import confusion_matrix
          from sklearn.model_selection import GridSearchCV
In [28]: |def display_confusion_matrix(y_test,y_pred):
              cm = confusion_matrix(y_test, y_pred_lr)
              group_names = ["True Neg", "False Pos", "False Neg", "True Pos"]
              group_counts = ["{0:0.0f}".format(value) for value in cm.flatten()]
              group_percentages = ["{0:.2%}".format(value) for value in cm.flatten()/np.sum(cm)]
              labels = [f''(v1)\n(v2)\n(v3)'' for v1, v2, v3 in zip(group_names,group_counts,group_percentages)]
              labels = np.asarray(labels).reshape(2,2)
              sns.heatmap(cm, annot=labels, fmt="", cmap="Blues")
              print(classification_report(y_test, y_pred))
In [29]: def plot_roc_curve(fpr, tpr):
              plt.plot(fpr, tpr, label='ROC')
              plt.plot([0, 1], linestyle='--')
              plt.xlabel('False Positive Rate')
              plt.ylabel('True Positive Rate')
              plt.legend()
              plt.show()
In [30]: |##Split train and test
          from sklearn.model_selection import train_test_split
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 4658)
          print(X_train.shape)
          print(X_test.shape)
          print(y_train.shape)
          print(y_test.shape)
          (320, 24)
          (80, 24)
          (320,)
          (80,)
          StandardScaler data with PCA implementation
          #performing preprocessing part from sklearn.preprocessing import StandardScaler sc = StandardScaler()
          X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)
          #Applying PCA function on training and testing set of X component from sklearn.decomposition import PCA
          pca = PCA(n\_components = 2)
          X_train = pca.fit_transform(X_train) X_test = pca.transform(X_test)
```

Logistic Regression Hyper parameter tuning

explained_variance = pca.explained_variance_ratio_ explained_variance

```
In [31]: | from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import roc_curve
         from sklearn.metrics import roc_auc_score
         c_{space} = np.logspace(-5, 8, 15)
         param_grid = {'C': c_space}
         start_lr = time.time()
         lr = GridSearchCV(LogisticRegression(),
                           param_grid,
                           cv = 5)
         lr.fit(X_train, y_train)
         end_lr = time.time()
         final_lr = end_lr - start_lr
         final_lr = round(final_lr,3)
         final_lr
         # Print the tuned parameters and score
         print("Tuned Logistic Regression Parameters: {}".format(lr.best_params_))
         print("Best score is {}".format(lr.best_score_))
         print("Best estimator is {} \n\n".format(lr.best_estimator_))
         y_pred_lr = lr.predict(X_test)
         display_confusion_matrix(y_test, y_pred_lr)
         accuracy_lr=lr.best_score_
         print("\nAccuracy of Logistic Regression is :", accuracy_lr)
         print("Computation time {} - Sec".format(final_lr))
         Tuned Logistic Regression Parameters: {'C': 2275.845926074791}
```

	precision	recall	f1-score	support
0	0.84	0.84	0.84	25
1	0.93	0.93	0.93	55
accuracy			0.90	80
macro avg	0.88	0.88	0.88	80
weighted avg	0.90	0.90	0.90	80

Best estimator is LogisticRegression(C=2275.845926074791)

Accuracy of Logistic Regression is : 0.9 Computation time 3.003 - Sec

Best score is 0.9


```
In [32]: auc = roc_auc_score(y_test, y_pred_lr)
    print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_lr)
    plot_roc_curve(fpr, tpr)
```


Decision Tree Hyper parameter tuning

```
In [33]: from sklearn.tree import DecisionTreeClassifier
         from sklearn.model selection import RandomizedSearchCV
         hyperparam_combs = {
             'max_depth': [4, 6, 8, 10, 12],
             'criterion': ['gini', 'entropy'],
             'min_samples_split': [2, 10, 20, 30, 40],
             'max_features': [0.2, 0.4, 0.6, 0.8, 1],
             'max_leaf_nodes': [8, 16, 32, 64, 128],
             'class_weight': [{0: 1, 1: 1}, {0: 1, 1: 2}, {0: 1, 1: 3}, {0: 1, 1: 4}, {0: 1, 1: 5}]
         start_dt = time.time()
         clf = RandomizedSearchCV(DecisionTreeClassifier(),
                                  hyperparam_combs,
                                  scoring='f1',
                                  random_state=1,
                                  n_iter=20)
         dt_model = clf.fit(X_train, y_train)
         end_dt = time.time()
         final_dt = end_dt - start_dt
         final_dt = round(final_dt,3)
         final_dt
         # Print the tuned parameters and score
         print("Tuned Decision Tree Parameters: {}".format(dt_model.best_params_))
         print("Best score is {}".format(dt_model.best_score_))
         print("Best estimator is {}".format(dt_model.best_estimator_))
         y_pred_dt = dt_model.predict(X_test)
         display_confusion_matrix(y_test, y_pred_dt)
         accuracy_dt=dt_model.best_score_
         print("Accuracy of Decision Tree is :", accuracy_dt)
         print("Computation time {} - Sec".format(final_dt))
         Tuned Decision Tree Parameters: {'min_samples_split': 2, 'max_leaf_nodes': 128, 'max_features': 0.2, 'max_dep
         th': 10, 'criterion': 'gini', 'class_weight': {0: 1, 1: 3}}
         Best score is 0.9687584678257564
         Best estimator is DecisionTreeClassifier(class_weight={0: 1, 1: 3}, max_depth=10,
                                max_features=0.2, max_leaf_nodes=128)
                                    recall f1-score support
                       precision
                    0
                             0.89
                                       0.96
                                                 0.92
                                                             25
                    1
                             0.98
                                       0.95
                                                 0.96
                                                             55
                                                 0.95
                                                             80
             accuracy
                             0.94
                                                 0.94
            macro avg
                                       0.95
                                                             80
         weighted avg
                             0.95
                                       0.95
                                                 0.95
                                                             80
         Accuracy of Decision Tree is: 0.9687584678257564
         Computation time 0.609 - Sec
                                    False Pos
                 True Neg
                                                     40
                                       4
          0
                    21
                  26.25%
                                     5.00%
```



```
In [34]: auc = roc_auc_score(y_test, y_pred_dt)
    print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_dt)
    plot_roc_curve(fpr, tpr)
```


Random Forest Hyper parameter tuning

```
In [35]: | from sklearn.ensemble import RandomForestClassifier
         param_grid = {"n_estimators": np.arange(2, 300, 2),
                        "max_depth": np.arange(1, 28, 1),
                        "min samples_split": np.arange(1,150,1),
                        "min_samples_leaf": np.arange(1,60,1),
                        "max_leaf_nodes": np.arange(2,60,1),
                        "min_weight_fraction_leaf": np.arange(0.1,0.4, 0.1)}
         start_rf = time.time()
         rf = RandomizedSearchCV(RandomForestClassifier(),
                                  param_grid,
                                  scoring='f1',
                                  random_state=4658,
                                  n_iter=20)
         rf_model = rf.fit(X_train, y_train)
         end_rf = time.time()
         final_rf = end_rf - start_rf
         final_rf = round(final_rf,3)
         final_rf
         # Print the tuned parameters and score
         print("Tuned Random Tree Parameters: {}".format(rf_model.best_params_))
         print("Best score is {}".format(rf_model.best_score_))
         print("Best estimator is {}".format(rf_model.best_estimator_))
         y_pred_rf = rf_model.predict(X_test)
         display_confusion_matrix(y_test, y_pred_rf)
         accuracy_rf=rf_model.best_score_
         print("Accuracy of Random Forests model is :", accuracy_rf)
         print("Computation time {} - Sec".format(final_rf))
         Tuned Random Tree Parameters: {'n_estimators': 240, 'min_weight_fraction_leaf': 0.1, 'min_samples_split': 52,
         'min samples leaf': 38, 'max leaf nodes': 39, 'max depth': 26}
         Best score is 0.9740925740925741
         Best estimator is RandomForestClassifier(max_depth=26, max_leaf_nodes=39, min_samples_leaf=38,
                                min_samples_split=52, min_weight_fraction_leaf=0.1,
                                n_estimators=240)
                                    recall f1-score
                       precision
                                                        support
                    0
                            0.96
                                      1.00
                                                 0.98
                                                             25
                    1
                            1.00
                                       0.98
                                                 0.99
                                                             55
                                                 0.99
                                                             80
             accuracy
                                                 0.99
            macro avg
                            0.98
                                       0.99
                                                             80
         weighted avg
                            0.99
                                       0.99
                                                 0.99
                                                             80
         Accuracy of Random Forests model is : 0.9740925740925741
```

Computation time 22.088 - Sec


```
In [36]: auc = roc_auc_score(y_test, y_pred_rf)
    print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_rf)
    plot_roc_curve(fpr, tpr)
```


Support Vector Machine Hyper parameter tuning

```
In [37]: from sklearn.svm import SVC
    # defining parameter range
    param_grid = {'C': [0.1, 1, 10, 100, 1000],
            'gamma': [1, 0.1, 0.01, 0.001, 0.0001]}
    start_svm = time.time()
    svm = GridSearchCV(SVC(), param_grid, refit = True, verbose = 3)
    # fitting the model for grid search
    svm.fit(X_train, y_train)
    end_svm = time.time()
    final_svm = end_svm - start_svm
    final_svm = round(final_svm,3)
    final_svm
    # Print the tuned parameters and score
    print("Tuned Support Vector Machine Parameters: {}".format(svm.best_params_))
    print("Best score is {}".format(svm.best_score_))
    print("Best estimator is {}".format(svm.best_estimator_))
     [CV] C=0.1, gamma=1 .....
     [CV] C=0.1, gamma=1 ......
     [CV] C=0.1, gamma=0.1 .....
    [CV] ...... C=0.1, gamma=0.1, score=0.609, total= 0.0s
     [CV] C=0.1, gamma=0.1 ......
    [CV] C=0.1, gamma=0.1 .....
     [CV] C=0.1, gamma=0.1 ......
     [CV] C=0.1, gamma=0.1 .....
     [CV] C=0.1, gamma=0.01 .....
    [CV] ...... C=0.1, gamma=0.01, score=0.609, total= 0.0s
     [CV] C=0.1, gamma=0.01 ......
       ..... C=0.1, gamma=0.01, score=0.609, total= 0.0s
     [CV] C=0.1, gamma=0.01 .....
```

	precision	recall	f1-score	support
0	0.83	0.60	0.70	25
1	0.84	0.95	0.89	55
accuracy			0.84	80
macro avg	0.84	0.77	0.79	80
weighted avg	0.84	0.84	0.83	80

Accuracy of Support Vector Machine is: 0.75625 Computation time 1.222 - Sec


```
In [39]: auc = roc_auc_score(y_test, y_pred_svm)
print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_svm)
plot_roc_curve(fpr, tpr)
```

AUC: 0.77

Artificial neural network

```
In [40]: from sklearn.neural_network import MLPClassifier
        # defining parameter range
        param_grid = {
                    'max_iter': [1000],
        start_mlp = time.time()
        mlp = GridSearchCV(MLPClassifier(), param grid, refit = True, verbose = 3)
        # fitting the model for grid search
        mlp.fit(X_train, y_train.values.ravel())
        end_mlp = time.time()
        final_mlp = end_mlp - start_mlp
        final_mlp = round(final_mlp,3)
        final_mlp
        # Print the tuned parameters and score
        print("Tuned Artificial neural network Parameters: {}".format(mlp.best_params_))
        print("Best score is {}".format(mlp.best_score_))
        print("Best estimator is {}".format(mlp.best_estimator_))
        Fitting 5 folds for each of 1 candidates, totalling 5 fits
        [CV] max_iter=1000 ......
        [CV] ..... max_iter=1000, score=0.703, total= 0.2s
        [CV] max_iter=1000 ......
        [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
        [Parallel(n_jobs=1)]: Done
                               1 out of 1 | elapsed:
                                                      0.2s remaining:
        [CV] ..... max_iter=1000, score=0.859, total= 0.2s
        [CV] max_iter=1000 ......
        [CV] ..... max_iter=1000, score=0.875, total= 0.2s
        [CV] max_iter=1000 ......
        [Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed:
                                                       0.4s remaining:
                                                                        0.0s
        [CV] ..... max_iter=1000, score=0.734, total= 0.2s
        [CV] max_iter=1000 ......
        [CV] ..... max_iter=1000, score=0.781, total= 0.4s
        [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed:
        Tuned Artificial neural network Parameters: {'max_iter': 1000}
        Best score is 0.790625
        Best estimator is MLPClassifier(max_iter=1000)
In [41]: | y_pred_mlp = mlp.predict(X_test)
        display_confusion_matrix(y_test, y_pred_mlp)
        accuracy_mlp=mlp.best_score_
        print("Accuracy of Artificial neural network is :", accuracy_mlp)
        print("Computation time {} - Sec".format(final_mlp))
                   precision
                              recall f1-score
                                              support
                 0
                        0.77
                                0.96
                                         0.86
                                                   25
                        0.98
                                0.87
                                         0.92
                                                   55
           accuracy
                                         0.90
                                                   80
                        0.88
                                0.92
                                         0.89
                                                   80
          macro avg
        weighted avg
                        0.92
                                0.90
                                         0.90
                                                   80
```

Accuracy of Artificial neural network is: 0.790625 Computation time 1.735 - Sec


```
In [42]: auc = roc_auc_score(y_test, y_pred_mlp)
    print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_mlp)
    plot_roc_curve(fpr, tpr)
```


k Nearest Neighbors

```
In [43]: from sklearn.neighbors import KNeighborsClassifier
         model = KNeighborsClassifier(n_jobs=-1)
         params = {'n_neighbors':[5,6,7,8,9,10],
                    'leaf_size':[1,2,3,5],
                    'weights':['uniform', 'distance'],
                   'algorithm':['auto', 'ball_tree','kd_tree','brute'],
                   'n_jobs':[-1]}
         start_knn = time.time()
         model1 = GridSearchCV(model, param_grid=params, n_jobs=1)
         model1.fit(X_train, y_train)
         end_knn = time.time()
         final_knn = end_knn - start_knn
         final_knn = round(final_knn,3)
         final_knn
         # Print the tuned parameters and score
         print("Tuned Logistic Regression Parameters: {}".format(model1.best_params_))
         print("Best score is {}".format(model1.best_score_))
         print("Best estimator is {} \n\n".format(model1.best_estimator_))
         y_pred_knn = model1.predict(X_test)
         display_confusion_matrix(y_test, y_pred_knn)
         accuracy_knn=accuracy_score(y_test, y_pred_knn)
         print("\nAccuracy of k Nearest Neighbors is \t:", accuracy_knn)
         print("Best Accuracy of k Nearest Neighbors is : {}".format(model1.best_score_))
         print("Computation time {} - Sec".format(final_knn))
         Tuned Logistic Regression Parameters: {'algorithm': 'auto', 'leaf_size': 1, 'n_jobs': -1, 'n_neighbors': 7,
         'weights': 'distance'}
         Best score is 0.68125
         Best estimator is KNeighborsClassifier(leaf_size=1, n_jobs=-1, n_neighbors=7, weights='distance')
                       precision
                                    recall f1-score
                                                        support
                                                 0.52
                    0
                            0.44
                                      0.64
                                                             25
                    1
                            0.80
                                      0.64
                                                 0.71
                                                             55
                                                             80
                                                 0.64
             accuracy
            macro avg
                            0.62
                                      0.64
                                                 0.62
                                                             80
         weighted avg
                            0.69
                                       0.64
                                                 0.65
                                                             80
         Accuracy of k Nearest Neighbors is
                                                  : 0.6375
         Best Accuracy of k Nearest Neighbors is: 0.68125
```

Computation time 16.407 - Sec


```
In [44]: auc = roc_auc_score(y_test, y_pred_knn)
    print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_knn)
    plot_roc_curve(fpr, tpr)
```


Naive Bayes (NB) Classifier

```
In [45]: from sklearn.naive_bayes import GaussianNB

start_nb = time.time()
    gnb = GaussianNB()
    gnb.fit(X_train, y_train)
    nb_model = gnb.fit(X_train, y_train)
    end_nb = time.time()
    final_nb = end_nb - start_nb
    final_nb = round(final_nb,3)
    final_nb

y_pred_nb = gnb.predict(X_test)

display_confusion_matrix(y_test, y_pred_nb)
    accuracy_nb=accuracy_score(y_test, y_pred_nb)
    print("Gaussian Naive Bayes model accuracy :", accuracy_nb)
    print("Computation time {} - Sec".format(final_nb))
```

	precision	recall	fl-score	support
0	0.83	1.00	0.91	25
1	1.00	0.91	0.95	55
accuracy			0.94	80
macro avg	0.92	0.95	0.93	80
weighted avg	0.95	0.94	0.94	80

Gaussian Naive Bayes model accuracy : 0.9375 Computation time 0.005 - Sec


```
In [46]: auc = roc_auc_score(y_test, y_pred_nb)
print('AUC: %.2f' % auc)

fpr, tpr, thresholds = roc_curve(y_test, y_pred_nb)
plot_roc_curve(fpr, tpr)
```


Out[47]:

	Model	Score
3	Random Forest	0.974093
2	Decision Tree	0.968758
1	Naive Bayes	0.937500
0	Logistic Regression	0.900000
6	Artificial neural network	0.790625
4	Support Vector Machines	0.756250
5	K - Nearest Neighbors	0.681250

```
In [48]: import plotly.express as px
import plotly.graph_objects as go

fig = px.bar(models, x='Model', y='Score', color="Model", title="Model Comparison")
fig.show()
```

Model Comparison


```
In [49]: model = models["Model"]
         fig = go.Figure()
         fig.add_trace(go.Bar(x=model,
                         y=models["Score"],
                          name='Without dimensionality reduction',
                         marker_color='rgb(55, 83, 109)'
                         ))
         fig.add trace(go.Bar(x=model,
                         y=[0.978125, 1.000000, 0.987277, 0.987277, 0.987500, 0.984375, 0.981250],
                         name='With PCA',
                         marker_color='rgb(26, 118, 255)'
                          ))
         fig.update_layout(
             title='US Export of Plastic Scrap',
             xaxis_tickfont_size=10,
             yaxis=dict(
                 title='USD (millions)',
                 titlefont_size=16,
                 tickfont_size=14,
             ),
             legend=dict(
                 x=0,
                 y=1.0,
                 bgcolor='rgba(255, 255, 255, 0)',
                 bordercolor='rgba(255, 255, 255, 0)'
             ),
             barmode='group',
             bargap=0.15, # gap between bars of adjacent location coordinates.
             bargroupgap=0.1 # gap between bars of the same location coordinate.
         fig.show()
```

US Export of Plastic Scrap

Insights,

24 data recording information of 400 people such as age, blood pressure, density, diabetes were used as attributes. Clinical records were examined to determine whether chronic kidney disease was present or not, and provided a high accuracy rate with machine learning methods.

Chronic kidney disease is a disease that hinders the normal functions of the kidney and damages the kidneys. It is one of the common diseases in the world and the prediction of the disease is one of the basic issues in medical diagnosis. Chronic kidney disease is one of the leading causes of death worldwide. Early detection of this disease is very important in terms of health and treatment costs. Many machine learning algorithms have been used in the literature to predict the disease.

Here, seven different classifiers were utilized in determining the targeted chronic kidney disease and the best performing classifier was tried to be found. These algorithms were compared on the basis of accuracy, sensitivity, sensitivity, recall and f1 score. When the results were evaluated with the data used in this study, it was seen that the **Random Forest and SVM** method (with an accuracy of 99.16%) performed better than other classification algorithms.

Here by concluding the **Naive Bayes** is normally giving good accuracy score with taken dataset and notably **Naive Bayes** is overfitting after implementing dimensionality reduction with PCA (2 components)