Chapter 5 Statistical Analysis with Incomplete Grouped Data

5.1 Missing Data in Longitudinal Studies

- A major challenge for the analysis of longitudinal data is the problem of missing data
 - > studies are designed to collect data on every subject at a set of prespecified follow-up times
 - > often subjects miss some of their planned measurements for a variety of reasons
- We can have different patterns of missing data

Subject	Visits				
	1	2	3	4	5
1	X	X	X	X	X
2	X	X	X	?	?
3	?	X	X	X	X
4	?	X	?	X	?

Subject 3: late entry

5.1 Missing Data in Longitudinal Studies (cont'd)

- Implications of missingness:
 - \triangleright we collect less data than originally planned \Rightarrow *loss of efficiency*
 - ▷ not all subjects have the same number of measurements ⇒ unbalanced datasets
- For the handling of missing data, we introduce the missing data indicator

$$r_{ij} = \begin{cases} 1 & \text{if } y_{ij} \text{ is observed} \\ 0 & \text{otherwise} \end{cases}$$

5.1 Missing Data in Longitudinal Studies (cont'd)

- ullet We obtain a partition of the complete response vector y_i
 - \triangleright observed data y_i^o , containing those y_{ij} for which $r_{ij}=1$
 - \triangleright missing data y_i^m , containing those y_{ij} for which $r_{ij}=0$
- For the remaining we will focus on dropout ⇒ notation can be simplified
 - \triangleright Discrete dropout time: $r_i^d = 1 + \sum\limits_{j=1}^{n_i} r_{ij}$ (ordinal variable)
 - \triangleright Continuous time: T_i^* denotes the time to dropout

5.2 Missing Data Mechanisms

- To describe the probabilistic relation between the measurement and missingness processes Rubin (1976, Biometrika) has introduced three mechanisms
- Missing Completely At Random (MCAR): The probability that responses are missing is unrelated to both y_i^o and y_i^m

$$p(r_i \mid \mathbf{y}_i^o, \mathbf{y}_i^m) = p(r_i)$$

- Examples
 - > subjects go out of the study after providing a pre-determined number of measurements
 - ▶ laboratory measurements are lost due to equipment malfunction

- Features of MCAR:
 - \triangleright The observed data y_i^o can be considered a random sample of the complete data y_i
 - > We can use any statistical procedure that is valid for complete data
 - * sample averages per time point
 - * linear regression, ignoring the correlation (consistent, but not efficient)
 - * *t*-test at the last time point
 - *

• Missing At Random (MAR): The probability that responses are missing is related to y_i^o , but is unrelated to y_i^m

$$p(r_i \mid y_i^o, \underline{y_i^m}) = p(r_i \mid y_i^o)$$

Examples

- > study protocol requires patients whose response value exceeds a threshold to be removed from the study
- > physicians give rescue medication to patients who do not respond to treatment

• Features of MAR:

- ▷ The observed data cannot be considered a random sample from the target population
- ▶ Not all statistical procedures provide valid results

Not valid under MAR	Valid under MAR		
sample marginal evolutions	sample subject-specific evolutions		
methods based on moments, such as GEE	likelihood based inference		
mixed models with misspecified correlation structure	mixed models with correctly specified correlation structure		
marginal residuals	subject-specific residuals		

MAR Missingness

MAR Missingness

• Missing Not At Random (MNAR): The probability that responses are missing is related to y_i^m , and possibly also to y_i^o

$$p(r_i \mid \boldsymbol{y_i^m})$$
 or $p(r_i \mid \boldsymbol{y_i^o}, \boldsymbol{y_i^m})$

Examples

- ▷ in studies on drug addicts, people who return to drugs are less likely than others to report their status
- in longitudinal studies for quality-of-life, patients may fail to complete the questionnaire at occasions when their quality-of-life is compromised

Features of MNAR

- ▷ The observed data cannot be considered a random sample from the target population
- \triangleright Only procedures that explicitly model the joint distribution $\{y_i^o,y_i^m,r_i\}$ provide valid inferences \Rightarrow analyses which are valid under MAR will not be valid under MNAR

We cannot tell from the data at hand whether the missing data mechanism is MAR or MNAR

Note: We can distinguish between MCAR and MAR

5.3 Review of Key Points

• ***