A. DEFINITION

Photosynthesis is:

The production of carbon compounds in cells using light energy

carbon dioxide + water + light energy → glucose + oxygen

B. HOW CARBOHYDRATES ARE PRODUCED

- light energy is converted to chemical energy
- some of the energy is used to produce ATP;
- ATP/energy is needed to produce glucose;
- · chlorophyll absorbs light;
- chlorophyll absorbs red and blue light AND reflects green light;
- light is used for photolysis/to split water molecules;
- electrons/H from water are used to reduce compounds;
- CO₂ is absorbed/used/reduced to produce carbohydrates;
- plants absorb/fix CO₂ using rubisco (enzyme);
- electrons provide energy to fix CO₂;
- •. glucose can be converted to other carbohydrates/starch/cellulose;
- produces oxygen (as a waste product);

C. CHLOROPLAST STRUCTURE

ELECTRON MICROGRAPH

DIAGRAM

- Feel free to also add many 70S ribosomes and circular DNA to the diagram
- Thylakoids contain lots of chlorophyll and stacked for maximum light absorption
- A stack of thylakoids is called a granum
- Grana are connected by structures called lamellae
- The stroma contains enzymes (e.g. rubisco) for CO₂ fixation to glucose

D. TYPES OF SPECTRA

- Light is absorbed by photosynthetic pigments such as chlorophyll a and chlorophyll b.
- Different photosynthetic pigments absorb different amounts of different wavelengths of light.

Absorption Spectrum

- Shows the wavelengths of light absorbed by each pigment (e.g. chlorophyll).
- Visible light has a range of wavelengths with **violet** the **shortest wavelength** and **red** the **longest wavelength**.
- Chlorophyll absorbs red and blue light most effectively and reflects green light more than other colours. This explain why leaves look green.

Action Spectrum

• Shows the rate of photosynthesis at each wavelength of light.

- It is mainly blue and red light that are used in photosynthesis.
- Notice that the rate of photosynthesis for green light is not at zero.
- It is accessory photosynthetic pigments (not chlorophyll) that use the small amount of green light.
- Examples of accessory pigments include beta-carotene and xanthophyll.

You are expected to be able to draw these spectra

E. EFFECT OF LIMITING FACTORS

• A limiting factor **prevents** the **rate of photosynthesis** from **increasing** when it is in **short supply**.

Light intensity

Temperature

- Photosynthesis is controlled by **enzymes**. The enzyme **rubisco fixes CO**₂ to produce glucose.
- Temperature is the **limiting factor** at both **low** and **high** temperatures.

Carbon dioxide

• The enzyme rubisco fixes CO₂ to produce glucose.

D. INVESTIGATING LIMITING FACTORS

- Independent variable is the factor that is changed each time.
- **Dependent variable** is the factor that is **measured**.
- Control variables are the factors that are kept the same each time.

Limiting factor	Method of varying it	Method of controlling it	Suggested range
Light	Move lamp different distances from the plant	Keep the lamp at a fixed distance from the plant	4, 5, 7, 10 and 14 cm and no light
Temperature	Use a thermostatically controlled water bath	Set the thermostat on the water bath at 25°C and keep it there throughout the experiment	5°C to 45°C in 5°C or 10°C intervals
Carbon dioxide	Add different amounts of sodium hydrogen carbonate (NaHCO ₃) to increase the CO ₂ concentration	Add enough sodium hydrogen carbonate to make sure that it does not run out	0 – 50 mmol dm ⁻³ in 10mmol dm ⁻³ intervals

F. PREDICTING THE LIMITING FACTOR FROM A GRAPH

- Much easier if you look at the curves in pairs.
- It must be concluded from **what is shown in the graph**, rather than what you know about photosynthesis.
- The graph shows the effects of **light intensity** on the **rate of photosynthesis** at two different **co**₂ **concentrations**.
- It is possible to work out which is the **limiting factor** from the graph.

- At **V**, it is limited by **light intensity** for all curves.
- W and X show it is limited by temperature.
- W and Y show it is limited by CO₂ concentration.
- Y and Z show it is limited by temperature.
- X and Z show it is limited by CO₂ concentration.

G. SEPARATING PHOTOSYNTHETIC PIGMENTS BY CHROMATOGRAPHY

- A concentrated spot of pigment is spotted onto chromatography paper.
- In a **sealed** container, the **solvent evaporates** and **diffuses up** the paper. It moves **from** its **origin** and **ends** at the **solvent front**.
- The different components of the mixture travel at different speeds, causing them to separate.
- Different substances will separate at different distances as they have different solubilities in the solvent.
- The **Rf value** of each substance is then **calculated** using the formula:

- This value is then compared to known Rf values in a table or book for this given solvent.
- This allows the unknown substance to be identified.
- For example, the **Rf table** will only name the pigment **xanthophyll** as having an **Rf value** of **0.71** with this solvent.

ORGANIC solvents, such as ETHANOL, PROPANONE or ACETONE are used

 Paper chromatography can be used to separate photosynthetic pigments but thin layer chromatography gives better results.