Übungsblatt 3

(Besprechung am 07.11.2024)

1. Converting between number representations

Complete the following table!

$\operatorname{decimal}$	binary	dyadic	3-adic
35	110001		
	110001	121211	
		141411	
			11131

2. Simulation of a RAM by a Python program

Apply the construction from Theorem 2.35 to the following RAM program, which computes a function $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ here.

3. Elimination of function calls

The aim of this task is to apply the elimination of function calls (cf. step 4 of the proof of Theorem 2.37) using an example to understand the *general* procedure.

The following While program computes a function which, in its definition, is similar to the Ackermann function.

```
def a(n,m):
    r = 0
    if(n == 0):
        r = (m + 1)
    if((n > 0) and (m == 0)):
        r = a((n-1),1)
    if((n > 0) and (m > 0)):
        r = a((n-1), a(n,(m-1)))
    if((r > ((n + m) + 1))):
        r = (r - 1)
    return r
```

Convert this function into a Python program in the same way as described in step 4 of Theorem 2.37. The Python program should

- contain exactly one function,
- $\bullet\,$ not contain any function calls and
- compute the same function.

Observe the hints for this task.

4. TM program

- (a) Let $l: \mathbb{N} \to \mathbb{N}$ with l(x) = 2x + 2. Specify the program of a 1-tape TM that computes l in dyadic representation.
- (b) Let $l': \mathbb{N} \to \mathbb{N}$ with l'(x) = 2x + 3. Specify the program of a 1-tape TM that computes l' in dyadic representation.

Hints

Exercise 1:

No justification is required here. Use Properties 2.6 and 2.14.

Exercise 2:

Implement the Python function phi specified in the proof (page 132).

Exercise 3:

In the elo course room you will find a similar task including a detailed sample solution, which you should use as a guide. The aim is to understand the general construction. Therefore, it makes sense to proceed according to step 4 of the proof of Theorem 2.37 and according to the sample solution in elo. In particular, you should not implement the specified function using a dynamic program.

Exercise 4:

Think about how the dyadic representations of the numbers x and 2x + 2 (resp., 2x + 2 and 2x + 3) are related. For the latter, remember your math lessons in elementary school. You can use the TM interpreter in the elo course room to test your program.

Solutions

Solution for exercise 1:

decimal	binary	dyadic	3-adic
35	100011	11211	322
49	110001	21121	1211
83	1010011	121211	2232
127	1111111	1111111	11131

Solution for exercise 2:

The specified RAM program does not compute a specific function, but is only intended to illustrate the simulation of a RAM using a Python program.

```
def read(u,v,a):
                           # liefert den Inhalt von Ra
 i = 0
  while (i < len(u) and u[i] != a): # Index a suchen
   i = i + 1
  if (i == len(u)):
                                   # Listen erweitern
   u += [a]
   v += [0]
 return v[i]
                                   # Inhalt von Ra zurï; ½ck
def write(u,v,a,b): # schreibt b in Ra
 i = 0
 while (i < len(u) and u[i] != a): # Index a suchen
   i = i + 1
  if (i == len(u)):
                                   # Listen erweitern
   u += [a]
   v += [0]
 v[i] = b
                                   # schreibt b in Ra
def phi(x1,x2):
 u = [0,1]
 v = [x1, x2]
 ir = 0
 while (ir < 7):
   if (ir == 0):
                      # 0 R3 <- RR2
     i = read(u,v,2)
     j = read(u,v,i)
     write(u,v,3,j)
     ir = ir + 1
   if (ir == 1):
                      # 1 R3 <- R3 + R2
     i = read(u,v,3) + read(u,v,2)
     write(u,v,3,i)
     ir = ir + 1
   if (ir == 2):
                       # 2 R2 <- R2 + R1
     i = read(u,v,2) + read(u,v,1)
     write(u,v,2,i)
     ir = ir + 1
   if (ir == 3):
                       # 3 RR2 <- R3
     i = read(u,v,3)
     j = read(u,v,2)
     write(u,v,j,i)
     ir = ir + 1
                   # 4 RO <- RO - R1
   if (ir == 4):
     i = read(u,v,0) - read(u,v,1)
     if (i < 0):
       i = 0
     write(u,v,0,i)
     ir = ir + 1
   if (ir == 5): # 5 IF R0 > 0 GOTO 0
     if (read(u,v,0) > 0):
       ir = 0
     else:
       ir = ir + 1
   if (ir == 6):
                       # 6 RO <- RR2
     i = read(u,v,2)
```

```
j = read(u,v,i)
write(u,v,0,j)
ir = ir + 1
return read(u,v,0)
```

Solution for exercise 3:

Wir verwenden die folgenden Listen als Stack:

- argn speichert die ersten Parameter der jeweiligen Funktionsaufrufe
- argm speichert die zweiten Parameter der jeweiligen Funktionsaufrufe
- var speichert Werte der Variable r in den jeweiligen Funktionsaufrufen
- pos speichert die Positionen der jeweiligen Funktionsaufrufe, ist also eine Art Rücksprungadresse. Die Positionen sind im untenstehenden Programm markiert. An den jeweiligen Positionen muss Folgendes ausgeführt werden.
 - 0 Man befindet sich in der jeweiligen Ebene am Anfang der Funktion.
 - 1 Der rekursive Aufruf mit a(n-1,1) wurde getätigt und der Wert befindet sich in ret.
 - 2 Der erste rekursive Aufruf mit a(n,m-1) wurde getätigt und der Wert befindet sich in ret.
 - 3 Der zweite rekursive Aufruf mit a(n-1, a(n,m-1)) wurde getätigt und der Wert befindet sich in ret.
 - 4 Das letzte Element der Liste var ist der Rückgabewert innherhalb der entsprechenden Ebene.

```
def a(n,m):
   r = 0
                                       # Position 0
   if(n == 0):
       r = (m + 1)
   if((n > 0) and (m == 0)):
       r = a((n-1),1)
                                       # Position 1
    if((n > 0) and (m > 0)):
       r = a((n-1), a(n,(m-1)))
                                       # Positionen 2 und 3
    if(r > ((n + m) + 1)):
                                       # Position 4
       r = (r - 1)
 return r
def a_(n,m):
   argn = [n]
                                        # Initialisierung
   argm = [m]
   var = [0]
   pos = [0]
   ret = 0
   while len(pos) > 0:
       if pos[-1] == 0:
                                        # Beginn einer Rekursion
            if argn[-1] == 0:
                var[-1] = argm[-1] + 1
                pos[-1] = 4
            elif argn[-1] > 0 and argm[-1] == 0:
               pos[-1] = 1
                                        # Position merken
                pos += [0]
                                        # wegen Funktionsaufruf Stack vergroessern
                argn += [argn[-1] - 1]
                argm += [1]
                var += [0]
            elif argn[-1] > 0 and argm[-1] > 0:
               pos[-1] = 2
                                        # Position merken
                pos += [0]
                                        # wegen Funktionsaufruf Stack vergroessern
                argn += [argn[-1]]
                argm += [argm[-1] - 1]
                var += [0]
            else:
               pos[-1] = 4
        elif pos[-1] == 1:
            var[-1] = ret
                                        # Rueckgabewert der aufgerufenen Funktion
           pos[-1] = 4
                                        # weitergeben an aufrufende Funktion
        elif pos[-1] == 2:
           pos[-1] = 3
                                        # Position merken
            pos += [0]
                                        # wegen Funktionsaufruf Stack vergroessern
            argn += [argn[-1] - 1]
                                        # Rueckgabewert der aufrufenden Funktion
```

```
argm += [ret]
                                    # ist Argument im naechsten Aufruf
        var += [0]
    elif pos[-1] == 3:
        var[-1] = ret
                                    # Rueckgabewert der aufgerufenen Funktion
        pos[-1] = 4
                                    # weitergeben an aufrufende Funktion
    else:
        if var[-1] > argn[-1] + argm[-1] + 1:
            var[-1] = var[-1] - 1
        ret = var[-1]
                                    # Rueckgabewert in ret speichern
        pos = pos[0:-1]
                                    # und abgearbeitete Funktion vom Stack nehmen
        var = var[0:-1]
        argn = argn[0:-1]
        argm = argm[0:-1]
return ret
```

Solution for exercise 4:

(a) Beobachtung: Bei dyadischer Zahlendarstellung entspricht die Operation 2x + 2 dem Anhängen einer 2 an die Eingabe.

Arbeitsweise der TM:

- -laufe im Zustand z_0 nach rechts bis zum ersten \square
- schreibe eine 2 und gehen in den Stoppzustand z_1

Programm der TM:

```
(z0,1) \rightarrow (z0,1,R) // erstes Leerzeichen suchen (z0,2) \rightarrow (z0,2,R) (z0,_) \rightarrow (z1,2,0) // 1 schreiben und stoppen
```

(b) Nun müssen wir nach der Berechnung von 2x+2 noch 1 draufaddieren.

```
(z0,1) \rightarrow (z0,1,R) // erstes Leerzeichen suchen (z0,2) \rightarrow (z0,2,R) (z0,_) \rightarrow (z2,2,0) (z2,1) \rightarrow (z1,2,0) (z2,2) \rightarrow (z2,1,L) (z2,_) \rightarrow (z1,1,0)
```