אינפי 2 ־ סמסטר א' תשע"ט תרגיל בית 6

להגשה עד יום חמישי, 6 בדצמבר, בשעה 20:00, דרך תיבת ההגשה במודל

1. (44 נק") לכל אחד מהטורים הבאים, קבעו האם האם הוא מתכנס:

(A)
$$\sum_{n=1}^{\infty} \ln\left(\frac{1+1/n}{1+1/(n+1)}\right)$$
 (B) $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^n}$ (C) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ (D) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n(n^4+n+1)}}$ (E) $\sum_{n=1}^{\infty} \frac{1}{n^2} \cdot \sin^2(n)$ (F) $\sum_{n=1}^{\infty} n^2 \cdot \sin\left(\frac{1}{n^2}\right)$ (G) $\sum_{n=1}^{\infty} n^2 \cdot \sin^2\left(\frac{1}{n}\right)$ (H) $\sum_{n=1}^{\infty} \left(\sqrt[n]{n}-1\right)^n$ (I) $\sum_{n=1}^{\infty} \frac{e^{1/n} \cdot \sin(1/n)}{\sqrt{n}}$ (J) $\sum_{n=1}^{\infty} nx^n$ (K) $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$

(B)
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^n}$$

(F)
$$\sum_{n=1}^{\infty} n^2 \cdot \sin\left(\frac{1}{n^2}\right)$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n(n^4+n+1)}}$$

(H)
$$\sum_{n=1}^{\infty} \left(\sqrt[n]{n} - 1 \right)$$

(I)
$$\sum_{n=1}^{\infty} \frac{e^{1/n} \cdot \sin(1/n)}{\sqrt{n}}$$

G)
$$\sum_{n=1}^{\infty} n^2 \cdot \sin^2\left(\frac{1}{n}\right)$$

(J)
$$\sum_{n=1}^{\infty} nx^n$$

בסעיף (J) הוא קבוע חיובי, והתשובה יכולה להיות תלויה בו.

- $.\sqrt{\alpha\beta} \leq \frac{1}{2} \cdot (\alpha+\beta)$ מתקיים, $\alpha,\beta \geq 0$ גוויון הממוצעים: את אי־שיוויון הוכיחו את אי־שיוויון הוכיחו את אי־שיוויון הממוצעים: עבור
 - . סדרה של מספרים ממשיים חיוביים (a_n) סדרה על מספרים ממשיים חיוביים. 3
 - (א) ביסות $\sum_{n=1}^{\infty}\sqrt{a_na_{n+1}}$ מתכנס, אז גם הטור $\sum_{n=1}^{\infty}a_n$ מתכנס.
- (ב) נניח שהסדרה $\sum_{n=1}^\infty a_n$ מונוטונית יורדת, והטור $\sum_{n=1}^\infty \sqrt{a_n a_{n+1}}$ מתכנס. הוכיחו שהטור ($(a_n)_{n=1}^\infty$
 - . מונוטונית מונוטונית (a_n) $_{n=1}^\infty$ הוכיחו שהסעיף מוותרים אם מוותרים אם נכון אם אונוטונית (ג)
 - $S \in \mathbb{R}$ יהי $\sum_{n=1}^{\infty} a_n$ טור מתכנס ל $\sum_{n=1}^{\infty} a_n$.4
 - $.S-\sum_{n=1}^l a_n$ ' מתכנס ל $\sum_{n=l+1}^\infty a_n$ הטור, און שלכל שלכל , הראו שלכל אתם הוכחה לכך בשיעור. אתם יכולים לחזור עליה.
 - $\lim_{l\to\infty}\sum_{n=l+1}^\infty a_n$ = 0 (ב)
- $\sum_{n=2}^{\infty} \frac{1}{n^2}$ ו $\sum_{n=1}^{\infty} \frac{1}{n^2}$ את בנפרד את בנפרד את אינט שר בנפרד $S = \sum_{n=1}^{\infty} \frac{1}{n^2}$ ו $S = \sum_{n=1}^{\infty} \frac{1}{n^2}$ מתכנס. נסמן כסמן $S = \sum_{n=1}^{\infty} \frac{1}{n^2}$ וו בעזרת אינטגרל).
- הצר במובן האר $\lim_{n\to\infty} \sqrt[n]{a_n}$ של מספרים חיוביים עבורה הגבול $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ לא קיים, אבל הגבול מספרים חיוביים עבורה הגבול ($(a_n)_{n=1}^\infty$ הגבול להסיק לגבי מבחני התכנסות כפי שנוסחו בתרגול?