

Sicherheit in SPAs

Philipp Burgmer

theCodeCampus / w11k GmbH

- Ausgangssituation
- Sicherheitskonzept
- Gängige Probleme
 - Ursache
 - Auswirkung
 - Test
 - Gegenmaßnahme

ÜBER MICH

- Philipp Burgmer
 - Software-Entwickler, Trainer
 - Fokus: Frontend, Web-Technologien
 - burgmer@w11k.de
- w11k GmbH
 - Software Design, Entwicklung & Wartung
 - Consulting, Schulungen & Projekt Kickoff
 - Web-Apps, Mobil-Apps, Rich Clients
 - AngularJS, TypeScript, Eclipse RCP

ARCHITEKTUR VON SPAs

- Rich Client im Browser
- Server liefert statische Dateien für den Client
- Server bietet API für Daten (REST, WebSocket) (JSON, XML)
- Backend weis nichts über verwendete Technologien im Client
- Client weis nichts über verwendete Technologien im Backend
- Stateful Client, Stateless Backend

TECHNOLOGIES

- Datenbanken (SQL | NoSQL) & Backend-Sprache
- HTTP
- JavaScript & HTML
- Historisch betrachten
- Vieles gewachsen
- Nicht für heute Verwendung gedacht

SICHERHEITSKONZEPT

NAIV

- Öffentlicher und privater Bereich
- Login -> Session
- Benutzer-Rollen
- Grundgedanke: Jeder sichert sich selbst ab
 - Client schütz UI
 - Server schütz Datenzugriffe
 - Jeder schützt seine verwendeten Technologien
 - Alle schützen die Übertragung

LOGIN

- Login vor Aufruf der Anwendung
- Login innerhalb der Anwendung
- Berechtigungen innerhalb der Anwendung

LOGIN

VOR DER ANWENDUNG

- Server stellt sicher
 - Anwendung nur mit gültigem Login aufrufbar
 - Ohne gültigen Login: HTTP-Redirect auf Login-Seite
 - Nach erfolgreichem Login: HTTP-Redirect auf Anwendung
- In Anwendung
 - HTTP 401: Navigation zu Login-Seite
- Weniger Angriffsfläche: Nicht jeder sieht die Anwendung
- Schnelles Laden der ersten Seite
- Immer ganze Anwendung geschützt

LOGIN

IN DER ANWENDUNG

- Rein Client-seitiges Handling (für UI)
- Login-Formular als Route / State in Anwendung
- Ajax-Request für Login
- Prüfung auf gültigen Login
 - State-Change + Event-Handler | \$stateChangeError
 - API-Requests + HTTP Interceptor
- Weniger Request notwendig
- Öffentliche und geschützte Bereiche möglich

BERECHTIGUNGEN VERWALTEN

IN ANGULARJS

- Berechtigungen über Rollen verwalten
- Bereiche mit Rollen versehen
- Im UI per Direktive

BERECHTIGUNGEN VERWALTEN

IN ANGULARJS

An Route / State per resolve

```
angular.module('app').config(function() {
    $stateProvider.state('admin', {
        url: '/admin',
        templateUrl: 'route/admin/admin.html',
        resolve: {
        authorized: /* @ngInject */ function (UserService) {
            return UserService.hasRoles('ADMIN');
        }
    }
});});
```

TOP 10 SICHERHEITSPROBLEME

- 1. Injection
- 2. Broken Authentication and Session Management
- 3. Cross-Site Scripting
- 4. Insecure Direct Object References
- 5. Security Misconfiguration
- 6. Sensitive Data Exposure
- 7. Missing Function Level Access Control
- 8. Cross-Site Request Forgery
- 9. Using Components with Known Vulnerabilities
- 10. Unvalidated Redirects and Forwards

Quelle: OWASP Top10 2013

OWASP

- The Open Web Application Security Project
- Non-Profit Organisation
- Finanziert über Mitgliedsbeiträge und Spenden
- Existiert seit 2001
- Stellt Informationen zu Sicherheitsthemen bereit
 - detaillierte Beschreibungen und Erklärungen
 - gängige Lösungsansätze

GENERELLE GEGENMASSNAHMEN

- Benutzereingaben nie trauen
- Im Backend nie davon ausgehen, dass Request vom Client kommen
- Verwendete Komponenten auf Security-Updates prüfen
- Security testen
 - <u>punkspider.org</u>: Suchmaschine für Sicherheitslücken
 - <u>BeEF The Browser Exploitation Framework</u>: Tool für Penetrationstests
 - OWASP Vulnerability Scanning Tools

UNZUREICHENDE GEGENMASSNAHMEN

- Code-Minimierung / -Obfuscating
- Verwendung von HTTPS
- Berechtigungen im Client prüfen
- Eingaben im Client validieren

CODE INJECTION

BEISPIEL: SQL

Java Code um SQL Abfrage zusammen zu bauen

```
statement = "SELECT * FROM users WHERE id = " + request.getParameter("id") + ";"
```

URL-Aufruf des Angreifers

1 http://example.com/user?id=42;UPDATE+USER+SET+TYPE="admin"+WHERE+ID=23;--

Ausgeführtes SQL

SELECT * FROM users WHERE id = 42; UPDATE USER SET TYPE="admin" WHERE ID=23;--;

CODE INJECTION

- Daten aus Sprache A werden zu Code in Sprache B
- Code wird dynamisch an einen Interpreter übergeben
- Code enthält Benutzereingaben (Formular-Daten, URL-Parameter, ...)
- Benutzereingaben werden nicht oder unzureichend überprüft
- An vielen Stellen möglich
 - SQL
 - HTML (z.B. bei Cross-Site-Scripting)
 - Script-Sprachen mit eval-Funktion (JS, PHP)
 - Dynamisches Laden von Code aus Dateien
 - Shell / Command Execution

SCHWACHSTELLEN FINDEN

- Manuell am Code
 - Verwendung von Interpretern ausfindig machen
 - Eingaben von Interpretern auf dynamische Teile untersuchen
 - Datenfluss zurückverfolgen (Wo kommen dynamische Teile her?)
- Automatisiert
 - Code Analyse Tools um Interpreter zu finden
 - Peneration-Test-Tools finden häufig gemachte Fehler

GEGENMASSNAHMEN

- Möglichst wenig Interpreter verwenden, besser APIs
 - Prepared-Statements
 - Stored-Procedures
- Benutzereingaben nicht vertrauen
 - Kontextuelles Escapen (HTML, JS, SQL)
 - White-Listing

BEISPIEL: SQL

Sicherer Java Code um SQL Abfrage zusammen zu bauen

```
PreparedStatement pstmt = connection.prepareStatement("SELECT * FROM users WHERE id = ?");

pstmt.setInt(1, request.getParameter("id"));

ResultSet rset = pstmt.executeQuery();
```

BROKEN AUTHENTICATION AND SESSION MANAGEMENT

SESSION MANAGEMENT

- Zugangsdaten oder Session können entwendet werden
- Session kann geklaut werdenz.B. Session-ID in der URL, oft bei URL Rewriting
- Kein Session-Timeout (öffentlicher PC)
- Vorhersagbare Session IDs
- Übertragung per unverschlüsselter Kommunikation
- Cross-Site-Scripting um Cookie zu entwenden

BEISPIELE

- Passwörter stehen im Klartext in der Datenbank
 - Datenbank wird entwendet
 - Angreifer kann sich als jeder User einloggen
- Session-ID steht in URL
 - 1 http://example.com/shoppingcart?sessionid=268544541

GEGENMASSNAHMEN

- Login, Logout und Session Managemnt nicht selbst implementieren
- Bewährte, gut getestete Biblotheken verwenden (OAuth?)
- Verschlüsselte Kommunikation
- Keine Passwörte speichern, Hash mit Salt
- Cross-Site-Scripting verhindern

HERAUSFORDERUNG STATELESS BACKEND

- Weniger Zustand im Server -> Bessere Skalierbarkeit
- Gut: Session = Mapping Session ID -> User ID
- Besser: keine Session im Backend, Session ID enthält allen Zustand
- Im Backend benötigter Zustand wird bei jedem Request übertragen

STATEFUL SESSION-ID

- Session-ID ist kein Random oder Hash
- Session-ID enthält Zustand
 - User-ID
 - Login-Timestamp
 - XSRF-Token?
 - Base64 encoded
- Session-ID wird gegen Manipulation und Nachahmung geschützt
 - Verschlüsselung
 - Signierung
 - Message Authentication Code (z.B. HMAC)
 - Nur auf dem Server bekannt

XSS

CROSS-SITE-SCRIPTING

BEISPIEL

```
var source = $('#insecure-input');
var text = source.val();
var target = $('#insecure-output');
target.append(text);
```

Ausprobieren ...

CROSS-SITE-SCRIPTING

- Spezielle Art der HTML Injection
- HTML-Injection wird ausgenutzt um anderen Benutzer Code unterzuschieben
- Benutzereingabe wird ohne Prüfung in HTML ausgegeben
- Ermöglicht Ausführen von Code
- Angriffe
 - Daten auslesen und an Angreifen übermitteln (z.B. Session-Cookie)
 - Code ruft URL auf um Aktion mit Rechten des Benutzers auszuführen (ähnlich wie XSRF)

GEGENMASSNAHMEN

- Benutzereingaben immer escapen
- Daten vom Server escapen
- Sanitizer Biblothek verwenden
- Kontext beachten in dem Wert verwendet wird

- Angular escapt alle Data-Bindings automatisch
- \$sanitize Service um sicheres HTML-Subset ausgeben zu können
- \$sce Service um beliebiges HTML aus vertrauenswürdiger Quelle ausgeben zu können
- Ausführliches Beispiel

BESPIEL

```
1 <input type="text" ng-model="text"/>
2 <div ng-bind="text"></div>
3 <div ng-bind-html="text"></div>
```

NG-BIND-HTML

- ng-bind und {{}} escaped alle HTML Sonderzeichen
- ng-bind-html lässt ein sicheres Subset durch
- ngSanitize: zusätzliches Modul mit erweitertem Sanitizer für sicheres Subset
- Muss eigebunden werden für ng-bind-html, ansonsten Fehler auf Konsole

STRICT CONTEXTUAL ESCAPING

- \$sce Service stellt Methoden zum wrappen bereit
- JS, URL, HTML
- \$sce.trustAsHtml wrapt Text in Objekt
- Objekt markiert Text als sicheren Code
- ng-bind-html übernimmt ursprünglichen Text als Code in DOM

XSRF

CROSS-SITE-REQUEST-FORGERY

BEISPIEL

Ausgangsituation: Benutzer in App eingeloggt (hat gültiges Session-Cookie)

Aufruf von Business Logik ohne zusätzlichen Schutz

1 http://example.com/app/transferFunds?amount=1500&destinationAccount=4673243243

XSRF Attacke per Social Engeneering

1 Link zu einer "vertrauenswürdigen" Seite

XSRF Attacke per XSS

1

XSRF

- Angreifer bringt Benutzer dazu URL aufzurufen
- Request wird mit Rechten des Benutzers ausgeführt
- Verschiedene Angriffsformen
 - Cross-Site-Scripting
 - Social-Engeneering / Unterschieben einer URL
- Cookies allein sind nicht sicher
 - Für Session-Cookie immer httpOnly und secure verwenden
 - Cookie kann nicht abgegriffen werden (per JS)
 - Cookie wird aber immer gesendet (XSRF immer noch möglich)
- Zusätzlicher Schutz notwendig

GEGENMASSNAHMEN

- Server
 - Schickt bei Login Session-ID als Cookie mit httpOnly und secure
 - Schickt bei Login zusätzliches Token als Cookie XSRF-Token ohne httpOnly
- Client
 - Token wird zwischengespeichert (JS Variable) und Cookie gelöscht
 - Token wird bei jedem Request als Header mitgesendet
- Server validiert bei jedem Request mitgesendetes Token

- HTTP-Interceptor Konzept
- Interceptor schon mit dabei
 - Ließt Cookie XSRF-TOKEN
 - Sendet Header X-XSRF-TOKEN
 - Namen konfigurierbar
- Problem: Öffne Link in neuem Tab
- Lösung: Server sendet Token noch mal bei *GET api/login*

Philipp Burgmer burgmer@w11k.de

www.w11k.de www.thecodecampus.de