Energy conversion I

Lecture 19:

Topic 5: Induction Motors (S. Chapman ch. 7)

- Induction Motor Construction.
- Basic Induction Motor Concepts.
- The Equivalent Circuit of an Induction Motor.
- Power and Torque in Induction Motor.
- Induction Motor Torque-Speed Characteristics.
- Starting Induction Motors.
- Speed Control of Induction Motor.
- Determining Circuit Model Parameters.

Start-Up Current

@start-up: s=1

Z_{in}: smallest

I₁: largest (can reach up to 9times rated current)

Additional losses + Mechanical stress on windings

Can be limited in Wound rotor motors by adding external resistor in series with rotor winding

EE Course No: 25741 Energy Conversion I \mathbf{E}_1

Effect of Cage Rotor Design

To avoid lower efficiency
R₂ decreases after start-up
Needs wound rotor and
External resistance

In cage rotor machines, using deep-bar / double-cage rotor variable resistance rotor can be achieved!

Deep-bar / Double-Cage Rotor

Higher inductance of inner layers

Higher current density in outer layers

Higher effective rotor resistance

Uniform current distribution in low frequency

Frequency dependant rotor resistance (higher resistance @ higher frequency)

EE Course No: 25741 Energy Conversion I Sharif Univers
Technology

Induction Motor Design Classes

Class A:

Normal starting torque(1-2) and current(5-8), T_{max}:200%-300%, low slip(<0.05), fans, blower, pumps Class B:

More often, lower starting current, more preferable,

Class C:

High starting torque, low starting current, double cage, loaded pumps, compressors

Class D:

High starting torque, low starting current, high slip (7-11%), bigger size, Fly wheel punch presses/shears, high inertia loads

Typical Laminations for Cages of Induction Motors

Laminations from typical cage induction motor, cross section of the rotor bars

- a) class A large bars near thesurface
- b) class B large, deep rotor bars
- c) class C double-cage rotor design
- d) class D small bars near the surface

Starting Induction Motors

Induction motors have start-up torque across-the-line starting s = 1 small input impedance very high start-up current

Start-up current reduction methods

Applying reduced voltage:

Current reduces linearly.

Torque is a function of V^2 .

Auto transformer.

Electronic soft starter.

Star-delta connection.

Adding stator resistance / reactance.

No more in use

Increasing rotor resistance:

Can increase startup torque.

Limited to wound rotor motor.

Starting using reduced voltage

EE Course No: 25741 Energy Conversion I Sharif University of Technology

Static Soft Starter

Control of stator rms voltage

controllable first harmonics

Starting current is reduced (good).

Starting torque is reduced (cannot start heavy loads).

Maximum torque is reduced (acceleration is reduced).

Speed at maximum torque is unchanged.

Star-Delta Start up

Constant line voltage

When Star connected:

$$V_{\rm w} = V_{\rm L}/\sqrt{3}$$

When delta connected

$$V_w = V_L$$

To Start: Close 1, 2, 3, 4, 5, 6 Open 7, 8, 9 To Run: Open 4, 5, 6 Close 7, 8, 9

Star Connected Initially Delta Connected finally High transients when changing from star to delta!

EE Course No: 25741 Energy Conversion I Sharif University of Technology

Induction motors automatic starting circuits

Short Circuit protection – provided by the fuses

Overload protection – provided by the Overload heaters (thermostats) and the overload contacts (OL)

Under voltage protection – de energising of the M relays.

EE Course No: 25741 **Energy Conversion I**

Speed Control of Induction motors

Steady state Torque speed operating point is the cross section of load torque-speed characteristic with the machine torque-speed characteristic.

Operating point is close to synchronous speed

To change the speed, motor torque-speed characteristic should be

modified:

$$T_{ind} = \frac{3}{2} \frac{p}{\omega_s} \frac{R_2}{s} \frac{V_{th}^2}{(R_{th} + \frac{R_2}{s})^2 + (X_R + X_{th})^2}$$

Parameters that can affect:

Poles, frequency, voltage, rotor

resistance

EE Course No: 25741 Energy Conversion I Sharif University Technology

Speed changing using pole changing/ multi winding

Synchronous speed:
$$n_{sync} = \frac{120f_e}{p}$$

Operating point is close to synchronous speed.

Speed control using line voltage

$$T_{ind} \propto V_{th}^2 \propto V_p^2$$

Speed variation is limited.

Maximum torque decreases Rapidly.

Operating s increases.

Used for small motors with special loads.

EE Course No: 25741 Energy Conversion I Sharif University of Technology

Speed control using line frequency

$$T = \frac{3}{2} \frac{p}{\omega_s} \frac{R_2}{s} \frac{V_{th}^2}{(R_{th} + \frac{R_2}{s})^2 + (X_{th} + X_2)^2}$$

$$\frac{f}{f_s} = a \Rightarrow \frac{X}{X_s} = a$$

$$T \approx \frac{3}{2} \frac{p}{a\omega_s} \frac{R_2}{s} \frac{V_{th}^2}{(R_{th} + \frac{R_2}{s})^2 + a^2(X_{th} + X_2)^2} + \frac{A \text{ decrease in the no load speed}}{speed (synchronous speed).}$$

$$A \text{ decrease in the maximum torque.}$$

$$A \text{ rapid decrease in the Start-up Torque.}$$

$$T_{max} \approx \frac{3p}{4a\omega_s} \frac{V_{th}^2}{R_{th} + \sqrt{R_{th}^2 + a^2(X_{th} + X_2)^2}} + \text{ Needs Frequency Converter.}$$

$$T_{\text{max}} \approx \frac{3p}{4a\omega_s} \frac{V_{\text{th}}^2}{R_{\text{th}} + \sqrt{R_{\text{th}}^2 + a^2(X_{\text{th}} + X_2)^2}}$$

$$T_{st} \approx \frac{3p \quad V_{th}^2 R_2}{2a^2 \omega_s \left(X_{th}^2 + X_2\right)}$$

EE Course No: 25741 **Energy Conversion I**

- An increase in the no load

- Why a is greater than 1!!

Speed Control by Adjusting V/F constant

$$E = 4.44 f_{e} N_{se} \phi_{max}$$

$$V \approx E$$

$$T = \frac{3}{2} \frac{p}{\omega_{s}} \frac{R_{2}}{s} \frac{V_{th}^{2}}{(R_{th} + \frac{R_{2}}{s})^{2} + (X_{th} + X_{2})^{2}}$$

$$\frac{f}{f_e} = a = \frac{V}{V_s} \Rightarrow \frac{X}{X_s} = a$$
 Neglecting R1(/R_{th})

$$T = \frac{3}{2} \frac{p}{a\omega_s} \frac{R_2}{\frac{f_r}{af_s}} \frac{a^2 V_{th}^2}{(\frac{R_2}{f_r})^2 a^2 f_s^2 + a^2 (X_{th} + X_2)^2}$$

$$T = \frac{3}{2} \frac{p}{2\pi} \frac{R_2}{f_r} \frac{V_{th}^2}{(\frac{R_2}{f_r})^2 f_s^2 + (X_{th} + X_2)^2}$$

To avoid Saturation: ϕ_{max} =const Voltage and frequency Should change together.

for the same slip frequency (f_r) torque is the same Look at start up torque!
Needs Frequency Converter.

EE Course No: 25741 Energy Conversion I

Speed Control by Adjusting Rotor Resistance

In wound rotor machine rotor starter can be used for speed control

