FEM - 第 6 周作业

SA23001071 杨哲睿

2023年10月13日

	06-00 Ø T.	JJJ004 Q 1.0240.
>> fullExp		
10.0000	0.0005	0.0089
20.0000	0.0001	0.0042
40.0000	0.0000	0.0021
80.0000	0.0000	0.0010
10.0000	NaN	NaN
20.0000	1.9969	1.0689
40.0000	1.9992	1.0298
80.0000	1.9998	1.0135

图 1: Test on MacBook Pro (M1 32g),按照群里的说法是不是可以不看了。

1 Introduction

编写程序求解两点边值问题:

$$\begin{cases}
-\Delta u = f & (x, y) \in \Omega = [0, 1] \times [0, 1] \\
u|_{\partial\Omega} = 0
\end{cases}$$
(1)

选取等距网格剖分,有限元空间选取分段线性多项式空间 V_h ,选取准确解 $u(x,y)=(x-1)\sin(x)(y-1)\sin y$ 算出满足方程的 f(x,y)。

$$f(x,y) = (-2\cos x - (x-1)\sin x)(y-1)\sin y + (-2\cos y - (y-1)\sin y)(x-1)\sin x$$
 (2)

2 METHOD 2

2 Method

定义双线性型 $a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v dx$,内积 $(f,g) = \int_{\Omega} f \cdot g dx$ 。那么变分问题是 找 $u \in V = \{v \in H^1[0,1], v|_{\Omega} = 0\}$,使得 a(u,v) = (f,v), $\forall v \in V$ 都成立. 有限元空间为:

$$V_h = \left\{ v | v \in C(\Omega), v |_K \in P^1(K), K \in \mathcal{T}_h, v |_{\partial\Omega} = 0 \right\}$$
(3)

实验中采用三角网格划分,单元数为 $2N^2$ 如下,内部点数 $(N-1)^2$,边界点数 4N。

对应的刚度矩阵为:

2 METHOD 3

该刚度矩阵的构造采用了上课所说的第二种方法。先不考虑边界节点和内部点的区别,而 直接构造刚度矩阵。由于我们采用的是零边界条件,所以可以将边界点*i*对应矩阵中的元素

$$K_{ij} = K_{ji} = 0 \quad \forall i \neq j \quad K_{ii} = 1 \tag{4}$$

按照这样的规则进行赋值。

局部刚度矩阵的计算:由于我们选取的是相当规则的单元,因此其局部刚度矩阵是容易直接计算的。对于标准形函数

$$\bar{\phi}_1(x,y) = 1 - x - y \tag{5}$$

$$\bar{\phi}_2(x,y) = x \tag{6}$$

$$\bar{\phi}_3(x,y) = y \tag{7}$$

其计算得到的矩阵为:

$$\left(\int_{\Omega} \nabla \bar{\phi}_i \cdot \nabla \bar{\phi}_j dx\right) = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
(8)

而经过变换后到局部基函数,所对应的矩阵也是完全相同的。以单元1为例。坐标变换为

$$\phi = \bar{\phi} \left(1 - \frac{1}{h} x, \frac{1}{h} y \right) \tag{9}$$

那么

$$\frac{\partial \phi}{\partial x} = -\frac{1}{h} \frac{\partial \bar{\phi}}{\partial x}
\frac{\partial \phi}{\partial y} = \frac{1}{h} \frac{\partial \bar{\phi}}{\partial y}$$
(10)

这说明了对于局部基函数:

$$\int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j dx = \frac{1}{h^2} \int_{\Omega} \nabla \bar{\phi}_i \cdot \nabla \bar{\phi}_j dx \tag{11}$$

而三角形的面积恰好是 $\frac{1}{2h^2}$, 因此如果我们合理地规划顶点,始终让直角边出现在三角形的第一个标号上,那么实际上每一个局部刚度矩阵就是

$$K = \frac{1}{2} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
 (12)

这在构造稀疏矩阵系数时可以极大的简化操作。

3 RESULTS 4

3 Results

对于求得的系数,先进行插值,然后进行梯形公式数值积分。可以看出,有限元方法的 L^2 误差是 2 阶的, H^1 误差是 1 阶的。

表 1: 误差分析

网格总数	总内部结点数	总边界点数	L^2 error	order	H^1 error	order
200	81	40	4.929e-04	_	8.862434e-03	_
800	361	80	1.234e-04	1.99	4.224e-03	1.06
3200	1521	160	3.089e-05	1.99	2.068e-03	1.02
12800	6241	320	7.723e-06	1.99	1.024 e - 03	1.01