Solutions to Final-Mid term exam

2022/11/28

9:00a - 11:30a

1. (17%)

Evaluate the linear convolution (h*f) (8%) and 3×3 circular convolution $(h\otimes f)$ (9%) of h and f below. The shaded grids indicate the origin (0,0) of the image spatial coordinate.

h(x,y)					
1	-1	0			
-1	0	0			
0	0	0			

f(x,y)			
1	2	3	
4	5	4	
3	2	1	

Solution

$$g_{LC}(x,y) = h(x,y) * f(x,y) = \sum_{s=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} h(s,t) f(x-s,y-t) = f(x,y) - f(x-1,y) - f(x,y-1)$$

1	2	3		0	0	0		0	1
4	5	4		1	2	3	_	0	4
3	2	1		4	5	4		0	3
			•	3	2	1			

1	2-1	3-2	-3	
4-1	5-2-4	4-3-5	-4	
3-4	2-5-3	1-4-2	-1	
-3	-2	-1		

1	1	1	-3
3	-1	-4	-4
-1	-6	-5	-1
-3	-2	-1	0

8

linear convolution (h*f)

1. (18%) (continue)

Evaluate the linear convolution (h*f) (9%) and 3×3 circular convolution $(h\otimes f)$ (9%) of h and f below. The shaded grids indicate the origin (0,0) of the image spatial coordinate.

h(x,y)					
1	-1	0			
-1	0	0			
0	0	0			

f(x,y)			
1	2	3	
4	5	4	
3	2	1	

Solution

$$g_{CC}(x,y) = h(x,y) \otimes f(x,y) = \sum_{s=0}^{2} \sum_{t=0}^{2} h(s,t) f((x-s)_3, (y-t)_3)$$
$$= f((x)_3, (y)_3) - f((x-1)_3, (y)_3) - f((x)_3, (y-1)_3)$$

1	2	3	3	2	1	3	1	2
4	5	4	 1	2	3	 4	4	5
3	2	1	4	5	4	1	3	2

9

 3×3 circular convolution $(h\otimes f)$

2. (10%)

Consider the design of Wiener filter $H_W(u,v) = \hat{F}(u,v)/G(u,v)$. Assume the degradation function is a 2nd-order Butterworth lowpass filter (β =1) with cutoff frequency D_0 . (a) Determine the SNR if the overall gain of Wiener filter is 1.2 at D_0 (5%). (b) What is the DC gain of the Wiener filter in (a) (5%)?

Solution

$$H(u,v) = \frac{1}{1 + \left\lceil \frac{D^2(u,v)}{D_0^2} \right\rceil^2} \Rightarrow H(D=D_0) = \frac{1}{2}$$

$$H_W(u,v) = \frac{\hat{F}(u,v)}{G(u,v)} = \frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K} = (2) \frac{\frac{1}{4}}{\frac{1}{4} + K} = 1.2 \Rightarrow K = \frac{1}{6}$$

(a)
$$SNR = 1/K = 6$$
 5

(b)
$$H(D=0)=1 \Rightarrow H_W(D=0)=\frac{1}{1+\frac{1}{6}}=\frac{6}{7}$$
 5

3. (14%)

(a) Determine the values of H, S and I in HSI color model for a color with normalized (R,G,B) = (0.6,0.7,0.5) (6%). (b) Determine the values of C, M, Y and K in CMYK model for this color (8%).

Solution

$$S = 1 - \frac{3}{R + G + B} \left[\min(R, G, B) \right] = 1 - \frac{3}{1.8} (0.5) = \frac{1}{6}$$

$$I = \frac{1}{3}(R+G+B) = 0.6$$

C, M, Y in CMY model:

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.3 \\ 0.5 \end{bmatrix}$$
$$(C, M, Y) = (0.4, 0.3, 0.5)$$

CMYK model:

$$K = \min\{C, M, Y\} = 0.3$$

$$\Rightarrow C = \frac{C - K}{1 - K} = \frac{1}{7}, M = \frac{M - K}{1 - K} = 0, Y = \frac{Y - K}{1 - K} = \frac{2}{7}$$
$$(C, M, Y, K) = \left(\frac{1}{7}, 0, \frac{2}{7}, 0.3\right)$$

4. (9%)

Prove the circular convolution property of 2D inverse DFT, that is, inverse DFT{F(u,v)H(u,v)} = $f(x,y) \otimes h(x,y)$, given F(u,v) is $M \times N$ DFT of f(x,y), H(u,v) is $M \times N$ DFT of h(x,y), and operator \otimes indicates $M \times N$ circular convolution.

Proof

$$g(x,y) = DFT^{-1} \left\{ F(u,v)H(u,v) \right\} = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \left\{ F(u,v)H(u,v) \right\} W_{M}^{-ux} W_{N}^{-vy}$$

$$= \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \left\{ \left[\sum_{\alpha=0}^{M-1} \sum_{\beta=0}^{N-1} f(\alpha,\beta) W_{M}^{u\alpha} W_{N}^{v\beta} \right] H(u,v) \right\} W_{M}^{-ux} W_{N}^{-vy}$$

$$= \sum_{\alpha=0}^{M-1} \sum_{\beta=0}^{N-1} f(\alpha,\beta) \left[\frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} H(u,v) W_{M}^{-u(x-\alpha)} W_{N}^{-v(y-\beta)} \right]$$

$$= \sum_{\alpha=0}^{M-1} \sum_{\beta=0}^{N-1} f(\alpha,\beta) h((x-\alpha)_{M}, (y-\beta)_{N}) = f(x,y) \otimes h(x,y)$$

- 5. (30%) Briefly describe
- (a) the differences of isopreference curves between crowd and Lena's face (5%),
- (b) the assumption for the degradation function and the added noise in the degradation model (5%),
- (c) the differences between the band filter and the notch filter (5%),
- (d) the mechanism of ringing effect caused by ideal filter (5%).
- (e) the scheme for determining the direction of motion from an image degraded by uniform-linear motion blurring (5%).
- (f) Consider a real 4×4 function f(x,y) and its 4×4 DFT F(u,v). Determine $g(x,y) = DFT^{-1}\{F(u,v)(j)^u\}$, expressed in f(x,y) (5%).

Solution

- (a) The almost vertical isopreference curve of crowd indicates the subjective quality of crowd image is rather insensitive to the number of bits (number of gray levels); the isopreference curve of Lena's face bends to lower right indicating more pixels are needed to achieve the same subjective quality when using fewer gray levels. (5)
- (b) Degradation function is assumed to be linear and shift invariant, noise is random variable, independent of spatial coordinates and uncorrelated with the image. (5)
- (c) Band filter has a concentric-ring pass/stop band; notch filter has pairs of notches (holes) symmetrical to DC frequency (0,0). (5)

- 5. (30%) Briefly describe (continue)
- (a) the differences of isopreference curves between crowd and Lena's face (5%),
- (b) the assumption for the degradation function and the added noise in the degradation model (5%),
- (c) the differences between the band filter and the notch filter (5%),
- (d) the mechanism of ringing effect caused by ideal filter (5%).
- (e) the scheme for determining the direction of motion from an image degraded by uniform-linear motion blurring (5%).
- (f) Consider a real 4×4 function f(x,y) and its 4×4 DFT F(u,v). Determine $g(x,y)=DFT^{-1}\{F(u,v)(j)^u\}$, expressed in f(x,y) (5%).

Solution

- (d) The linear convolution sum overlaps and sums up the scaled, shifted impulse response. Ideal filter's impulse response, a 2D sinc function, has significant sidelobes that cause ringing effect. (5)
- (e) Compute DFT magnitude, from the direction of major (large magnitude) distribution, we may estimate the direction of motion as the direction perpendicular to the DFT major distribution. (5)
- (f) According to spatial shift property, DFT⁻¹{ $F(u,v)(j)^u$ } = DFT⁻¹{ $F(u,v)(W_4^{-1})^u$ } = $f((x+1)_4,y) \rightarrow g(x,y) = f((x+1)_4,y)$ (5)

6. (16%)

Consider a 3 bits/pixel image f_r (size 10×10) with the gray levels $0 \le r_i \le 7$, i = 0, ..., 7. The number of pixels (n_i) with gray level r_i is: $n_0=10$, $n_1=30$, $n_2=25$, $n_3=20$, $n_4=15$, $n_5=n_6=n_7=0$. (a) Determine the intensity transformation function z = T(r) to produce the output image f_z with the new histogram (probability density function) $\{0.2\ 0.2\ 0.1\ 0.1\ 0.1\ 0.1\ 0.1\ 0.1\ 0.1\}$ (8%). (b) Determine the actual histogram of the output image (8%).

Solution

$\boldsymbol{r_k}$	$p_r(r_k)$	$\boldsymbol{s_k}$		v_n	$p_z(z_k)$	$\boldsymbol{z_k}$
0—	0.10	0.10		0.2	0.2	→ 0
1—	0.30	0.40		0.4	0.2	→ 1
2—	0.25	0.65		0.5	0.1	2
3	0.20	0.85	\neg	0.6	0.1	3
4—	0.15	1	- L	0.7	0.1	4
5—	0	1	+	0.8	0.1	5
6	0	1		0.9	0.1	→ 6
7—	0	1		1	0.1	

histogram

z=T(r)				
r_k	Z_k			
0	0			
1	1			
2	4			
3	6			
4	7			
5	7			
6	7			
7	7			
Λ				

\mathcal{Z}_k	$p_z(z_k)$
0	0.10
1	0.30
2	0
3	0
4	0.25
5	0
6	0.20
7	0.15
	A

7. (9%) Consider the image in Fig 7A. Sketch the intensity transformation curves for generating the output images in Figs 7B - 7D.

10