## Particle spectrograph

## Wave operator and propagator

| Source constraints                                                   |                                                                                                                                                                                                                                     |                |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| SO(3) irreps                                                         | Fundamental fields                                                                                                                                                                                                                  | Multiplicities |
| $\sigma_0^{\#1} == 0$                                                | $\epsilon \eta_{\alpha\beta\chi\delta}  \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$                                                                                                                                            | 1              |
| $\tau_{0^{+}}^{\#2} == 0$                                            | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$                                                                                                                                                                          | 1              |
| $\tau_{0^{+}}^{\#1} - 2  \bar{\imath}  k  \sigma_{0^{+}}^{\#1} == 0$ | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$                                       | 1              |
| $\tau_{1^{-}}^{\#2\alpha} + 2 ik\sigma_{1^{-}}^{\#2\alpha} == 0$     | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$  | 3              |
| $\tau_{1^{-}}^{\#1\alpha} == 0$                                      | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$                                                                                              | 3              |
| $\tau_{1+}^{\#1\alpha\beta} == 0$                                    | $\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} = =$                                                                        | 3              |
|                                                                      | $\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau^{\beta\alpha}$                                                                            |                |
| $\sigma_{1^{+}}^{\#2\alpha\beta} == 0$                               | $\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$ | 3              |
| $\tau_{2^{+}}^{\sharp 1 \alpha \beta} == 0$                          | $4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$                                         | 5              |
|                                                                      | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$                                             |                |
|                                                                      | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta\chi} +$                     |                |
|                                                                      | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha\chi} +$                                             |                |
|                                                                      | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$                  |                |
| $\sigma_{2^{+}}^{\sharp 1 \alpha \beta} = 0$                         | $3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \chi \delta} +$                                                             | 5              |
|                                                                      | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi\delta}_{\chi} = 2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma^{\chi\delta}_{\chi} +$                                   |                |
|                                                                      | $3\left(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\chi\beta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\chi\alpha}\right)$                                                                 |                |
| Total constraints/gai                                                | 25                                                                                                                                                                                                                                  |                |

| ${\mathfrak r}_1^{\#2}{}_{\alpha}$                                                       | 0                                 | 0                               | 0                             | $\frac{2i}{k(1+2k^2)(r_1+r_5)}$            | $\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$ | 0                              | $\frac{6k^2(r_1+r_5)+4t_3}{(1+2k^2)^2(r_1+r_5)t_3}$              |
|------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|-------------------------------|--------------------------------------------|-----------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|
| $\tau_{1^{-}}^{\#1}{}_{\alpha}$                                                          | 0                                 | 0                               | 0                             | 0                                          | 0                                                               | 0                              | 0                                                                |
| $\sigma_{1}^{\#2}{}_{\alpha}$                                                            | 0                                 | 0                               | 0                             | $\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1+r_5)}$ | $\frac{3k^2(r_1+r_5)+2t_3}{(k+2k^3)^2(r_1+r_5)t_3}$             | 0                              | $-\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$ |
| $\sigma_{1}^{\#1}{}_{\alpha}$                                                            | 0                                 | 0                               | 0                             | $\frac{1}{k^2 \left(r_1 + r_5\right)}$     | $\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1 + r_5)}$                    | 0                              | $-\frac{2i}{k(1+2k^2)(r_1+r_5)}$                                 |
| $\tau_{1}^{\#1}{}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 0                                 | 0                               | 0                             | 0                                          | 0                                                               | 0                              | 0                                                                |
| $\sigma_{1}^{\#2}_{+\alpha\beta}~\tau_{1}^{\#1}_{+\alpha\beta}$                          | 0                                 | 0                               | 0                             | 0                                          | 0                                                               | 0                              | 0                                                                |
| $\sigma_{1}^{\#1}{}_{\alpha\beta}$                                                       |                                   | 0                               | 0                             | 0                                          | 0                                                               | 0                              | 0                                                                |
| ,                                                                                        | $\sigma_{1}^{\#1} + \alpha \beta$ | $\sigma_1^{\#2} + \alpha \beta$ | $\tau_1^{\#1} + \alpha \beta$ | $\sigma_{1}^{\#1} +^{\alpha}$              | $\sigma_{1}^{\#2} +^{\alpha}$                                   | $\tau_{1}^{\#_{1}} +^{\alpha}$ | $\tau_1^{\#2} + \alpha$                                          |

| <sup>2</sup> ) <sup>2</sup> ( <sup>1</sup> 1+ <sup>1</sup>                  |                         | ı                                                                                                                                                                                                                                                                                   |                                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                         |                                                                                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                           |                       |
|-----------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------|
| (1+2 k                                                                      |                         | -<br>-<br>-                                                                                                                                                                                                                                                                         | ) <sup>αβι</sup> +                                | 30                                                                                                                                                                                                                       | + '8'                                                                                                                                                                                                                                     |                                                                         | + 6                                                                                                                                                                                                                        |                                                                                                                                                                                            |                                                                                                                           | £#2                   |
|                                                                             |                         | K O, FC                                                                                                                                                                                                                                                                             | $\eta_{\theta} \varrho^{\theta H}$                | $\partial_{1}\omega_{\alpha_{l}}$                                                                                                                                                                                        | $^{3}\partial^{	heta}\omega^{\circ}$                                                                                                                                                                                                      |                                                                         | $^{	heta}\partial_{\kappa}\omega_{_{_{}}}$                                                                                                                                                                                 |                                                                                                                                                                                            | 4.                                                                                                                        | #1                    |
| (+r5) t3                                                                    |                         | 3 W k                                                                                                                                                                                                                                                                               | $\partial_{eta}\omega_{c}$                        | '-2 r <sub>1</sub>                                                                                                                                                                                                       | $^{eta}$                                                                                                                                                                                                                                  | +_                                                                      | $\partial_{lpha}\omega^{lpha_{\prime}}$                                                                                                                                                                                    | , _                                                                                                                                                                                        | ם<br>אם                                                                                                                   | 4                     |
| $\int_{-1}^{1} \left  \begin{array}{c c c c c c c c c c c c c c c c c c c $ |                         | $S == \iiint \left( \frac{1}{3} \left( -2t_3  \omega^{\alpha_{l}}  \omega_{l\kappa}^{\kappa} + 3f^{\alpha\beta}  \tau_{\alpha\beta} + 3 \omega^{\alpha\beta\chi}  \sigma_{\alpha\beta\chi} + 4t_3  \omega_{\alpha\kappa}^{\kappa}  \partial_{l} f^{\alpha_{l}} - 1 \right) \right)$ | $4t_3\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$ | $2r_1\partial_\beta\omega_{\alpha\theta_\prime}\partial^\theta\omega^{\alpha\beta'} - 8r_1\partial_\beta\omega_{\prime\theta\alpha}\partial^\theta\omega^{\alpha\beta'} - 2r_1\partial_\prime\omega_{\alpha\beta\theta}$ | $\partial^{\theta}\omega^{\alpha\beta\prime} + 2r_1\partial_{\theta}\omega_{\alpha\beta\prime}\partial^{\theta}\omega^{\alpha\beta\prime} + 2r_1\partial_{\theta}\omega_{\alpha\prime\beta}\partial^{\theta}\omega^{\alpha\beta\prime} +$ | $3r_5\partial_i\omega_{\theta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $2t_3\partial_i f^{\alpha i}\partial_\kappa f_\alpha^{\ \ \kappa} - 4t_3\partial^i f^\alpha_{\ \alpha}\partial_\kappa f_i^{\ \ \kappa} - 3r_5\partial_\alpha\omega^{\alpha i\theta}\partial_\kappa\omega_i^{\ \ \kappa} +$ | $6r_5\partial^{\theta}\omega^{\alpha\prime}_{\alpha}\partial_{\kappa}\omega^{\prime}_{\theta} + 3r_5\partial_{\alpha}\omega^{\alpha\prime\theta}\partial_{\kappa}\omega^{\prime}_{\theta}$ | $6 r_5 \partial^{\theta} \omega^{\alpha'}_{\alpha} \partial_{\kappa} \omega^{\kappa}_{\theta'}) [t, x, y, z] dz dy dx dt$ | ,,,#2 f#1 f#2         |
| 1+72)                                                                       |                         | - 3 ω <sup>αβ</sup>                                                                                                                                                                                                                                                                 | $2t_3\partial_i f$                                | -8 r <sub>1</sub> 0                                                                                                                                                                                                      | $\omega_{\alpha \beta \prime}  \partial^{\epsilon}$                                                                                                                                                                                       | -3 r <sub>5</sub> ∂                                                     | $t_3  \partial' f^{lpha}$                                                                                                                                                                                                  | +3/5                                                                                                                                                                                       | ))[t, x,                                                                                                                  | ,#1                   |
| $(1+2k^2)(r)$                                                               |                         | $^{\alpha\beta}$ $^{\tau_{\alpha\beta}}+$                                                                                                                                                                                                                                           | $\frac{1}{2}f^{\alpha}+\frac{1}{2}$               | $^{\prime\prime}\partial^{\theta}\omega^{\alphaeta_{\prime}}$                                                                                                                                                            | $+2r_1\partial_{\theta}$                                                                                                                                                                                                                  | $^{\prime}_{\alpha}\partial^{\theta}\omega^{lpha\prime}_{}$             | $_{\kappa}f_{\alpha}^{\kappa}-4$                                                                                                                                                                                           | $_{\alpha}\partial_{\kappa}\omega_{,\;\;	heta}^{\;\;\kappa}$                                                                                                                               | $_{lpha}\partial_{\kappa}\omega_{	heta}^{\kappa}$ ,                                                                       | 3                     |
| ~                                                                           |                         | +3 f                                                                                                                                                                                                                                                                                | E, K                                              | $\partial_{eta}\omega_{lphaeta}$                                                                                                                                                                                         | $^{	heta}\omega^{lphaeta_{\prime}}$                                                                                                                                                                                                       | , θ,ω, <sup>K</sup>                                                     | $\partial_{i}f^{\alpha i}$                                                                                                                                                                                                 | $\partial^{\theta}\omega^{lpha\prime}$                                                                                                                                                     | $\partial^{	heta}\omega^{lpha\prime}$                                                                                     | $f^{#1}$              |
|                                                                             | on                      | x ω',                                                                                                                                                                                                                                                                               | 4 <i>t</i> 3                                      | $2r_1$                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                         | 3 /5                                                                    | 2 t <sub>3</sub>                                                                                                                                                                                                           | 6 /5                                                                                                                                                                                       | 6 r <sub>5</sub>                                                                                                          | ,#2                   |
| )                                                                           | acti                    | $\omega^{\alpha\prime}$                                                                                                                                                                                                                                                             |                                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                         |                                                                                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                           | ٦                     |
| ò                                                                           | Quadratic (free) action | $\iint (\frac{1}{3} (-2 t_3))$                                                                                                                                                                                                                                                      |                                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                         |                                                                                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                           | (,)#1 (,)#2 f#1 (,)#1 |
| -<br>-                                                                      | Quadr                   | S== [                                                                                                                                                                                                                                                                               |                                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                         |                                                                                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                           |                       |
|                                                                             |                         |                                                                                                                                                                                                                                                                                     |                                                   |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                                                                         |                                                                                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                           |                       |

*i* √2 kt<sub>3</sub>

 $k^{2} (r_{1} + r_{5}) + \frac{2t_{3}}{3}$   $-\frac{\sqrt{2} t_{3}}{3}$  0

 $\omega_1^{\#2} +^{lpha}$ 

 $f_{1}^{\#1} \dagger^{\alpha}$ 

2 i k t 3 

 $-\frac{2}{3}ikt_3$ 

 $\omega_{1}^{#1} + \alpha \beta$   $\omega_{1}^{#2} + \alpha \beta$   $\omega_{1}^{#2} + \alpha \beta$   $f_{1}^{#1} + \alpha \beta$   $\omega_{1}^{#1} + \alpha \beta$ 

 $k^2 (2 r_1 + r_5)$ 

|                                      |     |                                   |                                              |                                        |                 |                                            |                              | $\sigma_{2^{+}a}^{\#1}$   | $\iota_{eta} \ 	au_2^{\#}$ | ·1<br>+ αβ           | $\sigma_{2}^{\#1}$           | αβχ |
|--------------------------------------|-----|-----------------------------------|----------------------------------------------|----------------------------------------|-----------------|--------------------------------------------|------------------------------|---------------------------|----------------------------|----------------------|------------------------------|-----|
|                                      |     |                                   |                                              |                                        |                 | $\sigma_{2}^{\#1}$                         | $+^{\alpha\beta}$            | 0                         |                            | 0                    | 0                            |     |
|                                      |     | ,#1                               | <b>_</b> #1                                  | , ,#1                                  |                 | $	au_{2}^{\#1}$                            | $+^{\alpha\beta}$            | 0                         |                            | 0                    | 0                            |     |
| (,) <sup>#</sup> ! +                 |     | $\omega_{2^+ \alpha \beta}$       | $\int_{2^{+}\alpha\beta}^{2^{+}\alpha\beta}$ | $\omega_{2}^{\#1}{}_{\alpha\beta\chi}$ |                 | $\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$ |                              | 0                         |                            | 0                    | $\frac{1}{k^2 r_1}$          |     |
| $\omega_{2}^{\#1}$ † $f_{2}^{\#1}$ † | _αβ |                                   | 0                                            | 0                                      |                 |                                            | $\omega_{0^{	ext{-}}}^{\#1}$ | 0                         | 0                          | 0                    | 0                            |     |
| ) <sub>2</sub> -1 †                  |     | 0                                 | 0                                            | $k^2 r_1$                              |                 |                                            | $f_{0}^{\#2} = a$            |                           | 0                          | 0                    | 0                            |     |
|                                      | L   | $\sigma_{0^{+}}^{\#1}$            | $	au_0^{\#}$                                 |                                        | $	au_{0}^{\#2}$ | $\sigma_0^{\#1}$                           |                              |                           | ; t3                       |                      |                              |     |
| 7 <sup>#1</sup> †                    |     | $\frac{1}{2k^2)^2t_3}$            | $-\frac{i\sqrt{1+2}\sqrt{1+2}k}{1+2k}$       |                                        | 0               | 0                                          | $f_0^{#1}$                   | $-i\sqrt{2} kt_3$         | $2k^2t_3$                  |                      | 0                            |     |
| r#1 †                                |     | $\frac{\sqrt{2} k}{2 k^2)^2 t_3}$ | $\frac{2k}{(1+2k^2)}$                        |                                        | 0               | 0                                          | $\omega_0^{\#1}$             |                           | $i\sqrt{2}kt_3$            | 0                    | 0                            |     |
| -#2<br>0+ <b>†</b>                   |     | 0                                 | 0                                            |                                        | 0               | 0                                          |                              |                           | † i \                      | +                    |                              |     |
|                                      |     |                                   |                                              |                                        |                 |                                            |                              | <u>+</u> +                | $f_{0}^{\#1}$ †            | $f_0^{\#2} \uparrow$ | ±1.                          |     |
| σ <sup>#1</sup> †                    |     | 0                                 | 0                                            |                                        | 0               | 0                                          |                              | $\omega_{0}^{\#1}\dagger$ | $f_{\mathcal{O}}^{\sharp}$ | f <sub>O</sub>       | $\omega_{0}^{\#1}$ $\dagger$ |     |

## Massive and massless spectra



(No massive particles)

## Unitarity conditions

$$r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$$