Matrices - From intuitive Understanding to application

Dheeraj

What is Matrix?

Matrix

Expectation:

Reality:

Matrix Multiplication

Matrix Multiplication

Properties of Matrix

1. Associative

2. Commutative

3. Identity

4. Inverse

Associative Property

Let A and B be 2 Matrices -

Addition:

$$(A + B) + C = A + (B+C)$$

Multiplication:

$$(AB)C = A(BC)$$

Commutative Property

Let A and B be 2 Matrices -

Addition:

$$A + B = B + A$$

Multiplication (Not Commutative):

AB ≠ BA

Identity Property

Let A be a matrix, I be Identity matrix and O be an unique matrix such that-

Addition:

$$A + O = A$$

Multiplication:

$$AI = A$$

$$IA = A$$

Inverse Property

Let A be a matrix, I be Identity matrix and O be an unique matrix such that-

Addition:

$$A + (-A) = O$$

Multiplication:

$$AA^{-1} = I$$

$$A^{-1}A = I$$

Problem Solving

If A is a 3 × 3 non-singular matrix such that $AA^{T} = A^{T}A$ and $B = A^{-1}A^{T}$, then BB^{T} equals

- (a) I+B
- (b) I
- (c) B^{-1}
- $(d) (B^{-1})^T$

Solution

Given that
$$AA^{T} = A^{T}A$$
 and $B = A^{-1}A^{T}$
 $BB^{T} = (A^{-1}A^{T}) (A^{-1}A^{T})^{T}$
 $= A^{-1}A^{T} A(A^{-1})^{T}$ (since $(A^{T})^{T} = A$)
 $= A^{-1}A A^{T}(A^{T})^{-1}$
 $= I.I$
 $= I$

Hence option b is the answer.

Understanding each element of Matrix

Basis

$$\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}$$

Activity 1

1. Find Final coordinates of the square

Scaling

1. Horizontal Expansion

Putting a = 2

Activity 2

2. Find Final coordinates of the square

Scaling

2. Vertical Expansion

$$\begin{pmatrix}
1 & 0 \\
0 & b
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & b & b
\end{pmatrix}$$

Putting b = 2

Activity 3

3. Find Final coordinates of the square

Shearing

3. Horizontal Shearing

$$\begin{pmatrix}
1 & k \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 & 1+k & k \\
0 & 0 & 1 & 1
\end{pmatrix}$$

Putting k = 1.5, where k is the horizontal shear factor

Activity 4

4. Find Final coordinates of the square

Shearing

4. Vertical Shearing

$$\begin{pmatrix}
1 & 0 \\
k & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & k & k+1 & 1
\end{pmatrix}$$

Putting k = 1.5, where k is the vertical shear factor

5. Reflection along x-axis (y=0)

5. Reflection along x-axis (y=0)

$$\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & -1 & -1
\end{pmatrix}$$

5. Reflection along x-axis (y=0)

$$\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & -1 & -1
\end{pmatrix}$$

6. Reflection along y-axis (x=0)

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

6. Reflection along y-axis (x=0)

$$\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 & -1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}$$

7. Reflection along line y=x

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

7. Reflection along line y=x

$$\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0
\end{pmatrix}$$

8. Reflection along line y=-x

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

8. Reflection along line y=-x

$$\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & -1 & -1
\end{pmatrix}$$

9. Reflection along origin (0,0)

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

9. Reflection along origin (0,0)

$$\begin{pmatrix}
-1 & 0 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
=
\begin{pmatrix}
0 & -1 & -1 & 0 \\
0 & 0 & -1 & -1
\end{pmatrix}$$

Basis

Basis

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix} = x \begin{bmatrix} a \\ c \end{bmatrix} + y \begin{bmatrix} b \\ d \end{bmatrix}$$

Find Rotation Matrix

Multiply without actually multiplying

Find the Inverse

Without using:

- 1. Gauss Jordan Elimination
- 2. Classical Adjoint
- 3. Partition method

1. Image Classification

To a computer an image is represented as one large 2-dimensional array of numbers as shown in the figure on the left.

1. Image Classification

ı	test image					training image				pixel-wise absolute value differences					
	56	32	10	18		10	20	24	17		46	12	14	1	
	90	23	128	133		8	10	89	100		82	13	39	33	450
	24	26	178	200	-	12	16	178	170	=	12	10	0	30	→ 456
	2	0	255 22	220		4	32	233	112		2	32	22	108	

Using pixel-wise differences to compare two images by subtracting them elementwise and then all differences are added up to a single number. If two images are identical the result will be zero.

But if the images are very different the result will be large.

2. Graphics and Gaming

A 3D object in a game that needs to be translated, rotated, and scaled can be done using matrices. A transformation matrix is used to transform the position, orientation, and size of an object in a 3D space. Matrices are also used to perform lighting and shading operations in graphics and gaming.

Difference between Affine and Non-affine Displacements

Formulation

$$u_i = r_i - R_i$$

 $u_i = D R_i$ (Complete Affineness)
 $u_i = D R_i + u_{i,non-affine}$ (general case)

For reduced displacements

$$\Delta_i = u_i - u_0$$

$$u_0 = D R_0 + u_{0,non-affine}$$

$$\Delta_i = D(R_i - R_0) + \Delta_{i,non-affine}$$

$$NAP = \Sigma_i |\Delta_{i,nonaffine}|^2 = min_D [\Sigma_i |\Delta_i - D]$$

$$NAP = \sum_{i} |\Delta_{i,non-affine}|^2 = \min_{\mathcal{D}} [\sum_{i} |\Delta_{i} - D(R_i - R_0)|^2]$$

https://github.com/dheeraj08dube/GNAP_CALCULATION.git

Alternate Interpretation of Minimization

$$NAP = \sum_{i} |\Delta_{i,non-affine}|^2 = \min_{\mathcal{D}} [\sum_{i} |\Delta_{i} - D(R_i - R_0)|^2] \longrightarrow NAP = S^T S$$

3. Cryptography

Multiply the column vector with E to generate a matrix D (decrpytion matrix) given to our receiver.

$$EC = D$$
$$C = E^{-1}D$$

To decrypt and find the message, the receiver will have to multiply the Decryption matrix with inverse of E.

This technique is known as "Matrix Cypher"

Now you all make a (one word) secret message and see if the person sitting next to you can decode it or not.

3. Cryptography

Let E be our encryption matrix and our message be "MATRIX", each letter can be uniquely mapped to its rank in alphabets. E.g. A=1, B=2 etc.

Take 2 letter at a time to make 2x1 column vector. E.g. "MA" = $[13 \ 1]^T$

Taking a 2x2 matrix will make computation of inverse easy for us.