Artificial neuron

Neural inspiration

Neural inspiration

Synapses

 On the input side, information is usually transmitted chemically, using a neurotransmitter (such as dopamine or serotonin)

Neural inspiration

Perceptron (idealization of a biological neuron)

INPUTS

OUTPUT

ANN activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$

credit

Logical functions using perceptrons

 Suppose that our input features indicate light at a two points in space (0 = no light; 1 = light)

 How can we build a perceptron that detects when there is light in both locations?

$$w_1 = 1, w_2 = 1, \theta = 2$$

İ ₁	i ₂	W1İ1+W2İ2
0	0	0
0	1	1
1	0	1
1	1	2

Limitations of perceptrons

 Can we build a perceptron that fires when the two pixels have the same value (i₁ = i₂)?

Positive: (1, 1) (0, 0)

 $\begin{aligned} w_1 + w_2 &\geq \theta, & 0 \geq \theta \\ w_1 &< \theta, & w_2 &< \theta \end{aligned}$

Negative: (1, 0) (0, 1)

Multilayer perceptron

- Fire when the two pixels have the same value $(i_1 = i_2)$
- How can we set the weights?

Hidden layer

Representation learning

• Fire when the two pixels have the same value ($i_1 = i_2$)

			Hidden layer input		Hidden layer output		
	<u> </u>	<u>i</u> 2	h ₁	h ₂	h ₁	h ₂	0
X 1	0	0	0	0	0	1	1
O 1	0	1	1	-1	0	0	0
O 2	1	0	1	-1	0	0	0
X 2	1	1	2	-2	1	0	1

(for x_1 and x_2 the correct output is 1; for o_1 and o_2 the correct output is 0)

Representation learning

 Recode the input: the hidden layer representations are now linearly separable

			Hidden layer input		Hidden layer output		
	i ₁	<u>i</u> 2	h ₁	h ₂	h ₁	h ₂	0
X 1	0	0	0	0	0	1	1
O 1	0	1	1	-1	0	0	0
O 2	1	0	1	-1	0	0	0
X 2	1	1	2	-2	1	0	1

Not linearly separable

Linearly separable

Universal approximation theorem

- Any "reasonable" function can be computed by a multilayer perceptron with a single hidden layer
- But there's no guarantee that we can learn that function from examples
- Multiple hidden layers sometimes help

Deep learning

Multiple layers of hidden units:

(Figure from LeCun, Bengio and Hinton, 2015)

Multilayer perceptrons as classifiers

$$\mathbf{y} = \sigma(U\mathbf{h})$$

$$\mathbf{h} = \sigma(W\mathbf{x} + b)$$

(Applying σ elementwise)

Multilayer perceptrons as classifiers

$$z = softmax(y)$$

$$\mathbf{y} = \sigma(U\mathbf{h})$$

$$\mathbf{h} = \sigma(W\mathbf{x} + b)$$

softmax(**y**) =
$$\left(\frac{e^{y_1}}{\sum_{j=1}^d e^{y_j}}, \dots, \frac{e^{y_d}}{\sum_{j=1}^d e^{y_j}}\right)$$

Neural language models

