

Algebra - recap

algebraic structures set + operation(s) -5 set, 4: s x s -> 5

(x, y) -> x * y operation (internal law) semigroup monoid
semi-group group

- associativity: & x,4,2 & 5 (x*y)=2 = x + (4+3)

- mentral element:] e ES: xFx ES: x * e = x

invertability . * x es :] x' as : x * x' = e

- commutativity : X x, y e 5 : x + y = y + x

group + commutativity = abelian (commutative) group

 $G_{K}: qroups: (Z, +), (R, +), (R, +), (C, +), (M_{n}(R), +), (Z_{2}, +), (Z_{2}, +), (Z_{2}, +)$

(5_n, 0), (Z², +) mornoids that are not groups: $(\mathcal{M}_{h}(R), \cdot)$, $(A^{\frac{1}{2}}, \circ)$ with mention element $id_{A}: A \rightarrow A$ (\mathcal{U}_{4}, \cdot)

GLn(R) = A & M(R) | dot A + of

How does one invert a matrix?

- A*
- A-1 = 1 dut A

(Zn,+,) field (≥) m prime

B= { g: A > B} + + = { g: A > A}

Yoly nomials R commutative unital laing (e.g. a field) A polynomial over R is a formal sum of the form f= ax + a x + a . x + a; er the coefficients of x m = deg of (degree of g), an= leading coefficient a = free torm Gx: dug (x2-5x4)=2 deg (+x - 9) =1 deg (5) =0 deg (0) = - 00 deg (f.g)= deg f + deg q (if R is field) Counter example: R=Z4 (2x+3) (2x2+2)=6x2+2x+3 ference A- set when the operations from 2 make sense we com define $\tilde{j}:A \rightarrow A$ X -> a, x 1 ... + a, x 19, x 19. The polymormial function of I on A Thu Fundamental theorem of algebra Any ge C[x] has roots in C Corellary If the resols of fare x1, x2..., xn EC, then f = an(x-x1)(x-x2)....(x-xn)

Ex)
$$\int_{-\infty}^{\infty} x^2 \cdot 1 \in \mathbb{R}(x)$$
, invaring the sin \mathbb{R}
 $\int_{-\infty}^{\infty} (x-i)(x+i)$ reducible in \mathbb{R}
 $\int_{-\infty}^{\infty} (x-i)(x+i)$ reducible in \mathbb{R}

Then Carlideau division

 $K = \{uable = 0 \}$
 $\int_{-\infty}^{\infty} 2 \in K(x)$ with dig $x < dg$ so that $\int_{-\infty}^{\infty} 2 \int_{-\infty}^{\infty} 1 \int_{-\infty}$