CS2040S 22/23 Sem 1

Orders of Growth

 $\begin{aligned} 1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < 2^n < 2^{2n} \\ \log_a n < n^a < a^n < n! < n^n \end{aligned}$

Types

properties

Let T(n) = O(f(n)) and S(n) = O(g(n))• addition: T(n) + S(n) = O(f(n) + g(n))• multiplication: T(n) * S(n) = O(f(n) * g(n))• composition: $f_1 \circ f_2 = O(g_1 \circ g_2)$ – only if both functions are increasing

1 HASH TABLES

• disadvantage: no successor/predecessor operation

1.1 hashing

Let the m be the table size; let n be the number of items; let cost(h) be the cost of the hash function

• $load(hash\ table)$, $\alpha = \frac{n}{m} = average\ number\ of\ items$ per bucket = expected number of items per bucket

1.1.1 hashing assumptions

ullet simple uniform hashing assumption

- every key has an equal probability of being mapped to every bucket
- keys are mapped independently

• uniform hashing assumption

- every key is equally likely to be mapped to every permutation, independent of every other key.
- NOT fulfilled by linear probing

1.1.2 properties of a good hash function

- 1. able to enumerate all possible buckets $h:U\to \{1..m\}$
 - for every bucket j, $\exists i$ such that h(key, i) = j
- 2. simple uniform hashing assumption

1.2 chaining

- time complexity
 - insert(key, value) $O(1 + cost(h)) \Longrightarrow O(1)$ * for n items: expected maximum cost $\cdot = O(\log n)$ $\cdot = \Theta(\frac{\log n}{\log(\log(n))})$
 - search(key)

```
* worst case: O(n + cost(h)) \implies O(n)

* expected case: O(\frac{n}{m} + cost(h)) \implies O(1)
```

• total space: O(m+n)

1.3 open addressing - linear probing

- $hash(k) = (k\%m + i)\%TABLE_SIZE$ (if collide, check next slot)
- delete(key)
 - use a tombstone value DON'T set to null

• performance

- if the table is $\frac{1}{4}$ full, there will be clusters of size $\Theta(\log n)$
- expected cost of an operation i.e no. of probes $\leq \frac{1}{1-\alpha}$ (assume $\alpha < 1$ and uniform hashing)

• advantages

- saves space (use empty slots vs linked list)
- better cache performance (table is one place in memory)
- rarely allocate memory (no new list-node allocation)

• disadvantages

- more sensitive to choice of hash function (primary clustering)
- more sensitive to load (as $\alpha \to 1$, performance degrades)

1.3.1 modified linear probing

```
hash(key)
(hash(key) + 1 * d) % m
(hash(key) + 2 * d) % m
(hash(key) + 3 * d) % m
```

d is some constant integer > 1 and is co-prime to m

1.3.2 quadratic probing

```
hash (key)

(hash (key) + 1) % m

(hash (key) + 4) % m

(hash (key) + 9) % m

:

(hash (key) + k^2) % m
```

• If $\alpha < 0.5$ and m is prime, then we can always find an empty slot.

1.3.3 double hashing

 $(hash(key) + i * hash_2(key))\%TABLE_SIZE$

ullet Secondary hash function must not evaluate to 0

• To solve this problem, simply change $hash_2(key)$ to: $hash_2(key) = n - (key\%n)$ Prevents secondary clustering

sort	best	average	worst	stable?	in-place
bubble	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	✓
radix	$\Omega(n)$	O(n)	O(n)	✓	×
selection	$\Omega(n^2)$	$O(n^2)$	$O(n^2)$	×	✓
insertion	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	✓
merge	$\Omega(n \log n)$	$O(n \log n)$	$O(n \log n)$	✓	×
quick	$\Omega(n \log n)$	$O(n \log n)$	$O(n^2)$	×	✓
heap	$\Omega(n \log n)$	$O(n \log n)$	$O(n \log n)$	×	×

sorting invariants

\mathbf{sort}	invariant (after k iterations)	searching	
bubble	largest k elements are sorted	search	average
selection	smallest k elements are sorted	linear	O(n)
insertion	first k slots are sorted	binary	$O(\log n)$
merge	given subarray is sorted	quickSelect	O(n)
quick	partition is in the right position		

data structures assuming O(1) comparison cost

data structure	search	insert	
sorted array	$O(\log n)$	O(n)	
unsorted array	O(n)	O(1)	
linked list	O(n)	O(1)	
tree $(kd/(a, b)/binary)$	$O(\log n)$ or $O(h)$	$O(\log n)$ or $O(h)$	
trie	O(L)	O(L)	
symbol table	O(1)	O(1)	
chaining	O(n)	O(1)	
open addressing	$\frac{1}{1-\alpha} = O(1)$	O(1)	

orders of growth

$$T(n) = 2T(\frac{n}{2}) + O(n) \qquad \Rightarrow O(n \log n)$$

$$T(n) = T(\frac{n}{2}) + O(n) \qquad \Rightarrow O(n)$$

$$T(n) = 2T(\frac{n}{2}) + O(1) \qquad \Rightarrow O(n)$$

$$T(n) = T(\frac{n}{2}) + O(1) \qquad \Rightarrow O(\log n)$$

$$T(n) = 2T(n-1) + O(1) \qquad \Rightarrow O(2^n)$$

$$T(n) = 2T(\frac{n}{2}) + O(n \log n) \qquad \Rightarrow O(n(\log n)^2)$$

$$T(n) = 2T(\frac{n}{4}) + O(1) \qquad \Rightarrow O(\sqrt{n})$$

$$T(n) = T(n-c) + O(n) \qquad \Rightarrow O(n^2)$$