Pattern recognition - 4. lab Feature selection

Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

10.3.2020

Shannon entropy

$$H(Y) = -\sum_{y \in \omega} P(Y = y) \cdot log_2(P(Y = y))$$

X	Y
Matematika	Áno
História	Nie
Informatika	Áno
Matematika	Nie
Matematika	Nie
Informatika	Áno
História	Nie
Matematika	Áno

Shannon entropy

$$H(Y) = -\sum_{y \in \omega} P(Y = y) \cdot log_2(P(Y = y))$$

X	Y
Matematika	Áno
História	Nie
Informatika	Áno
Matematika	Nie
Matematika	Nie
Informatika	Áno
História	Nie
Matematika	Áno

$$H(X) = 1.5$$

Shannon entropy

$$H(Y) = -\sum_{y \in \omega} P(Y = y) \cdot log_2(P(Y = y))$$

X	Y
Matematika	Áno
História	Nie
Informatika	Áno
Matematika	Nie
Matematika	Nie
Informatika	Áno
História	Nie
Matematika	Áno

$$H(X) = 1.5$$

$$H(Y) = 1$$

$$H(Y|X = v) = H(Y)$$
, only for values of Y, where $X = x$

X	Y
Matematika	Áno
História	Nie
Informatika	Áno
Matematika	Nie
Matematika	Nie
Informatika	Áno
História	Nie
Matematika	Áno

$$H(Y|X = v) = H(Y)$$
, only for values of Y, where $X = x$

X	Y
Matematika	Áno
História	Nie
Informatika	Áno
Matematika	Nie
Matematika	Nie
Informatika	Áno
História	Nie
Matematika	Áno

$$H(Y|X = M) = 1$$

$$H(Y|X=v)=H(Y)$$
, only for values of Y, where $X=x$

X	Y
Matematika	Áno
História	Nie
Informatika	Áno
Matematika	Nie
Matematika	Nie
Informatika	Áno
História	Nie
Matematika	Áno

■
$$H(Y|X = M) = 1$$

■ $H(Y|X = H) = 0$

$$H(Y|X=v)=H(Y)$$
, only for values of Y, where $X=x$

X	Y
Matematika	Áno
História	Nie
Informatika	Áno
Matematika	Nie
Matematika	Nie
Informatika	Áno
História	Nie
Matematika	Áno

■
$$H(Y|X = M) = 1$$

■ $H(Y|X = H) = 0$

$$H(Y|X=I)=0$$

Conditional entropy

$$H(Y|X) = \sum_{x \in \Omega_x} P(X = x) \cdot H(Y|X = x)$$

X	Y
Matematika	Áno
História	Nie
Informatika	Áno
Matematika	Nie
Matematika	Nie
Informatika	Áno
História	Nie
Matematika	Áno

Conditional entropy

$$H(Y|X) = \sum_{x \in \Omega_x} P(X = x) \cdot H(Y|X = x)$$

X	Y
Matematika	Áno
História	Nie
Informatika	Áno
Matematika	Nie
Matematika	Nie
Informatika	Áno
História	Nie
Matematika	Áno

$$H(Y|X) = 0.5$$

Entropy - Matlab

Load the data

```
load census1994
Y = categorical(adultdata.salary);
X1 = categorical(adultdata.education);
```

Exercise

Create a function entropia(X), which returns the value we defined as H(X).

countcats

countcats(X) - returns the number of elements in each category of the categorical array X.

Entropy - Matlab

Exercise

Create a function podm_entropia(Y, X), which returns the value we defined as H(Y|X).

categories

c = categories(X) - returns a cell array of character vectors containing the categories of the categorical array X. Note: to get a category we need to use notation $c\{i\}$, we can use this when indexing by a logical matrix (X == $c\{i\}$). vráti cell štruktúru c s jednolivými kategóriami z X (ak je X typu categorical). Pozn.: z cell dostane kategóriu ako $c\{i\}$ a použijeme pri indexácii logickou maticou (X == $c\{i\}$).