BCB 731:

Defense Against the Dark Arts

Critic: A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy

November 1st, 2023

A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy

Marta Łuksza¹, Nadeem Riaz^{2,3}, Vladimir Makarov^{3,4}, Vinod P. Balachandran^{5,6,7}, Matthew D. Hellmann^{7,8,9}, Alexander Solovyov^{10,11,12,13}, Naiyer A. Rizvi¹⁴, Taha Merghoub^{7,15,16}, Arnold J. Levine¹, Timothy A. Chan^{2,3,4,7}, Jedd D. Wolchok^{7,8,15,16} & Benjamin D. Greenbaum^{10,11,12,13}

Abstract

Checkpoint blockade immunotherapies enable the host immune system to recognize and destroy tumour cells. Their clinical activity has been correlated with activated T-cell recognition of neoantigens, which are tumour-specific, mutated peptides presented on the surface of cancer cells^{2,3}. Here we present a fitness model for tumours based on immune interactions of neoantigens that predicts response to immunotherapy. Two main factors determine neoantigen fitness: the likelihood of neoantigen presentation by the major histocompatibility complex (MHC) and subsequent recognition by T cells. We estimate these components using the relative MHC binding affinity of each neoantigen to its wild type and a nonlinear dependence on sequence similarity of neoantigens to known antigens. To describe the evolution of a heterogeneous tumour, we evaluate its fitness as a weighted effect of dominant neoantigens in the subclones of the tumour. Our model predicts survival in anti-CTLA-4-treated patients with melanoma^{4.5} and anti-PD-1-treated patients with lung cancer⁶. Importantly, low-fitness neoantigens identified by our method may be leveraged for developing novel immunotherapies. By using an immune fitness model to study immunotherapy, we reveal broad similarities between the evolution of tumours and rapidly evolving pathogens 7.8,9.

Impact

nature

Explore content > About the journal > Publish with us >

nature > articles > article

Article Open access Published: 10 May 2023

Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer

Luis A. Rojas, Zachary Sethna, Kevin C. Soares, Cristina Olcese, Nan Pang, Erin Patterson, Jayon
Lihm, Nicholas Ceglia, Pablo Guasp, Alexander Chu, Rebecca Yu, Adrienne Kaya Chandra, Theresa
Waters, Jennifer Ruan, Masataka Amisaki, Abderezak Zebboudi, Zagaa Odgerel, George Payne,

Evelyna Derhovanessian, Felicitas Müller, Ina Rhee, Mahesh Yadav, Anton Dobrin, Michel Sadelain,

... Vinod P. Balachandran → + Show authors

Nature 618, 144-150 (2023) Cite this article

195k Accesses | 66 Citations | 3620 Altmetric | Metrics

nature

Explore content > About the journal > Publish with us >

nature > articles > article

Article Open access | Published: 11 May 2022

Fundamental immune–oncogenicity trade-offs define driver mutation fitness

David Hoyos, Roberta Zappasodi , Isabell Schulze, Zachary Sethna, Kelvin César de Andrade,

Dean F. Bajorin, Chaitanya Bandlamudi, Margaret K. Callahan, Samuel A. Funt, Sine R. Hadrup,

Jeppe S. Holm, Jonathan E. Rosenberg, Sohrab P. Shah, Ignacio Vázquez-García, Britta Weigelt,

Michelle Wu, Dmitriy Zamarin, Laura F. Campitelli, Edward J. Osborne, Mark Klinger, Harlan S.

Robins, Payal P. Khincha, Sharon A. Savage, Vinod P. Balachandran, ... Benjamin D. Greenbaum

+ Show authors

nature

Explore content v About the journal v Publish with us v

nature > articles > article

Article Open access Published: 19 May 2022

Neoantigen quality predicts immunoediting in survivors of pancreatic cancer

Marta Łuksza ≅, Zachary M. Sethna, Luis A. Rojas, Jayon Lihm, Barbara Bravi, Yuval Elhanati, Kevin Soares, Masataka Amisaki, Anton Dobrin, David Hoyos, Pablo Guasp, Abderezak Zebboudi, Rebecca Yu, Adrienne Kaya Chandra, Theresa Waters, Zagaa Odgerel, Joanne Leung, Rajya Kappagantula, Alvin Makohon-Moore, Amber Johns, Anthony Gill, Mathieu Gigoux, Jedd Wolchok, Taha Merghoub, ... Vinod P. Balachandran ≅ + Show authors

Nature 606, 389-395 (2022) | Cite this article

42k Accesses | 53 Citations | 219 Altmetric | Metrics

Published: 01 November 2017

Papers

Identification of unique neoantigen qualities in longterm survivors of pancreatic cancer

Business & Money

STAND UP TO CANCER
ANNOUNCES \$1.5 MILLION
COMMITMENT FROM
PANCREATIC CANCER NORTH
AMERICA TO FUND
PANCREATIC CANCER
VACCINE RESEARCH

Pershing Square Sohn Prize-Mark Foundation Fellow Announced

COMPUTATIONAL BIOLOGIST AWARDED PRESTIGIOUS RESEARCH PRIZE

In partnership with the Pershing Square Sohn Cancer Research Alliance, The Mark Foundation is pleased to announce that **Dr. Benjamin Greenbaum** has been named the 2018 Pershing Square Sohn Prize–Mark Foundation Fellow. This award will support Dr. Greenbaum's research, in which he uses methods from math and physics to analyze highly complex data to understand better immunotherapy responses so that more patients can be successfully treated.

Plausibility of the Neoantigen Fitness Model

The Model

Overall form: tumors always shrink

"Amplitude" / "Agretopicity" / "DAI"

$$A = K_{\rm d}^{\rm WT} / K_{\rm d}^{\rm MT} \tag{7}$$

Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity

Fei Duan,¹ Jorge Duitama,² Sahar Al Seesi,² Cory M. Ayres,³ Steven A. Corcelli,³ Arpita P. Pawashe,¹ Tatiana Blanchard,¹ David McMahon,¹ John Sidney,⁴ Alessandro Sette,⁴ Brian M. Baker,³ Ion I. Mandoiu,² and Pramod K. Srivastava¹

Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma

E. Ghorani^{1,2}, R. Rosenthal², N. McGranahan^{2,3}, J. L. Reading^{1,2}, M. Lynch⁴, K. S. Peggs^{1,2}, C. Swanton^{2,3*,†} & S. A. Ouezada^{1,2*,†}

Which features matter?

Resource

Machine learning methods and harmonized datasets improve immunogenic neoantigen prediction

Markus Müller, 1944 Florian Huber, 199 Marion Arnaud; 199 Anne L. Kraemer, 199 Emma Ricart Altiminas, 199 Justine Michaut, 1994 Marie Talliandier-Coindard; 199 Johanna Chilfeld; 199 Baptiste Murgues; 199 Tallia Gehret, 199 Aymeric Auger, 199 Brian J. Stevenson, 199 George Coukos, 1999 Alexandre Harari, 1999 Brian J. Stevenson, 1990 George Coukos, 1999 Alexandre Harari, 1999 Brian J. Stevenson, 1990 George Coukos, 1999 Alexandre Harari, 1999 Brian Stevenson, 1990 Brian Stevenson

*Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland
*Department of Oncology, Centre hospitaller universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland

³Agora Cancer Research Centre, 1011 Lausanne, Switzerland ⁴SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bätiment Amphipôle, 1015 Lausanne, Switzerland

Center of Experimental Therapeutics, Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland

*Correspondence: markus.muller@chuv.ch (M.M.), michal.bassani@chuv.ch (M.B.-S.) https://doi.org/10.1016/j.immuni.2023.09.002

SUMMARY

The accurate selection of neoantigens that bind to class I human leukocyte antigen (HLA) and are recognized by autologous Toells is a crucial step in many cancer immunotherapy pipelines. We reprocessed whole-exome sequencing and RNA sequencing (RNA-seq) data from 120 cancer patients from two external large-scale neoantigen immunogenicity screening assays combined with an in-house clastase of 11 patients and identified 46,017 somatic single-nucleotide variant mutations and 1,781,445 neo-peptides, of which 21 mutations and 1781,445 neo-peptides, of which 21 mutations and 1781,445 neo-peptides, of which 21 mutations and 1781,456 neo-peptides, of which 21 mutations and 1781,465 neo-peptides, of which 21 mutations and 1781 neo-peptides were immunogenic. Beyond features commonly used for neoantigen prior-litzation, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding pro-ritzation, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding prior-litzation, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding prior-litzation, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding prior-litzation, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding prior-litzation, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding prior-litzation, factors such as the location of neo-peptides within protein HLA presentation hotspots.

"Amplitude" / "Agretopicity" / "DAI"

T-cell recognition potential

Extended Data Figure 4 | Alignments to IEDB epitopes. The TCR recognition probability for a neoantigen is a sigmoidal function of the alignment scores of a given neoantigen to the IEDB epitopes, evaluated for the set of neoantigens from the cohort of patients from ref. 5, using the consistent set of parameters.

What is IEDB?

How big is IEDB?

Summary Metrics	
Peptidic Epitopes	1,598,256
Non-Peptidic Epitopes	3,188
T Cell Assays	509,612
B Cell Assays	1,391,866
MHC Ligand Assays	4,778,192
Epitope Source Organisms	4,405
Restricting MHC Alleles	995
References	24,286

Paper only uses 6,695 IEDB entries

```
(base) → SupplementaryDataFile5 cat IEDB_negative_T-cell_assays.fasta | grep ">" | wc -l
4137
(base) → SupplementaryDataFile5 cat IEDB_positive_T-cell_assays.fasta | grep ">" | wc -l
2558
```

Which IEDB entries do they use?

```
(base) → SupplementaryDataFile5 cat IEDB*.fasta | grep corona
>16351|Spike glycoprotein precursor|SARS coronavirus|227859
>18160|Spike glycoprotein precursor|SARS coronavirus BJ01|228407
>28784|Spike alvcoprotein precursor|Human coronavirus 229E|11137
>32036|Spike alycoprotein precursor|SARS coronavirus BJ01|228407
>37515|Nucleoprotein|SARS coronavirus BJ01|228407
>54725|Spike glycoprotein precursor|SARS coronavirus BJ01|228407
>74683|Nucleoprotein|SARS coronavirus BJ01|228407
>16156|Spike alycoprotein precursor|P59594.1|SARS coronavirus|227859
-19442|nucleocapsid protein|ABI96968.1|SARS coronavirus|227859
>21041|Membrane glycoprotein|Q692E0|SARS coronavirus TJF|284672
>21347|Nucleoprotein|P59595.1|SARS coronavirus|227859
>26273|nucleocapsid protein|ABI96968.1|SARS coronavirus|227859
>27241|Spike glycoprotein precursor|P59594.1|SARS coronavirus|227859
-32069|Spike glycoprotein precursor|P59594.1|SARS coronavirus BJ01|228407
>36723|Spike alvcoprotein precursor|P15423.1|Human coronavirus 229E|11137
>36724|Spike alycoprotein precursor|P59594.1|SARS coronavirus|227859
>37473|Nucleoprotein|P59595.1|SARS coronavirus|227859
>37536|Spike glycoprotein precursor|P15423.1|Human coronavirus 229E|11137
>50779|N protein|AAP13445.1|SARS coronavirus Urbani|228330
>51250|nucleocapsid protein|ABI96968.1|SARS coronavirus|227859
>54680|Spike glycoprotein precursor|P59594.1|SARS coronavirus|227859
>54690|Nucleoprotein|P59595.1|SARS coronavirus|227859
>55683|nucleocapsid protein|ABI96968.1|SARS coronavirus|227859
>64710|Membrane glycoprotein|Q692E0|SARS coronavirus TJF|284672
>71663|Spike glycoprotein precursor|P59594.1|SARS coronavirus|227859
>112359|Non-structural protein 2a|Q80872.1|Human coronavirus 0C43|31631
156949|Protein 3a|P59632.1|SARS coronavirus|227859
190494|nucleocapsid protein|NP_828858.1|SARS coronavirus|227859
>190533|nucleocapsid protein|AAP49024.1|SARS coronavirus|227859
>193551|Protein 3a|P59632.1|SARS coronavirus|227859
>532115|membrane glycoprotein|ADE34769.1|SARS coronavirus|227859
>534068|nucleocapsid protein|NP_828858.1|SARS coronavirus|227859
```

```
93 Trypanosoma cruzi
1 Trypanosoma cruzi strain CL Brener
39 West Nile virus
12 West Nile virus NY-99
```

```
11 Dengue virus
79 Dengue virus 1
2 Dengue virus 1 Singapore/S275/1990
158 Dengue virus 2
33 Dengue virus 2 D2/SG/05K4155DK1/2005
13 Dengue virus 2 Thailand/16681/84
4 Dengue virus 2 Thailand/NGS-C/1944
46 Dengue virus 3
43 Dengue virus 4
1 Dengue virus 4 Thailand/0348/1991
21 Dengue virus type 1 Hawaii
```

14 Japanese encephalitis virus
1 Japanese encephalitis virus Vellore P20778

Red Flags

CNV & phylogeny from WES

Zhao et al. BMC Bioinformatics (2020) 21:97 https://doi.org/10.1186/s12859-020-3421-1

BMC Bioinformatics

RESEARCH ARTICLE

Open Access

Comparative study of whole exome sequencing-based copy number variation detection tools

RESEARCH ARTICLE

Assessing reliability of intra-tumor heterogeneity estimates from single sample whole exome sequencing data

Judith Abécassis^{1,2,3}, Anne-Sophie Hamy¹, Cécile Laurent¹, Benjamin Sadacca^{1,4}, Hélène Bonsang-Kitzis^{1,5}, Fabien Reyal^{1,5}, Jean-Philippe Vert₀^{2,6}*

1 Institut Curie, PSL Research University, Translational Research Department, INSERM, U932 Immunity and Cancer, Residual Tumor & Response to Treatment Laboratory (RT2Lab), Paris, France, 2 MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France, 3 Institut Curie, PSL Research University, INSERM, U900, Paris, France, 4 Institut de Mathématiques de Toulouse, UMR5219 Université de Toulouse, CNRS UPS IMT, Toulouse, France, 5 Department of Surgery, Institut Curie, Paris, France, 6 Google Brain, Paris, France

* ipvert@google.com

BRCA (n=870)

HNSC (n=433)

BLCA (n=343)

PyClone
PhyloWGS

SciClone

Expands

Where's the code, Lebowski?

Code availability. Custom script examples for computation of neoantigen fitness cost are included as Supplementary Data 7. Additional custom code will be made available upon reasonable request.

python src/main.py InputData/neoantigens Rizvi.txt InputData/neoantigen alignments Rizvi \$a \$k Output/neoantigen fitness Rizvi.txt

They evaluate lots of models

Extended Data Table 2 | Ranking of fitness models without accounting for the subclonal composition of

Melanoma, anti-CTLA-4 (ref .5)	The Control of the Co	anti-C	ed on me TLA-4 rom ref. 4	anoma	L			
Models	a		k		Sco	re	Significance	Equation
	Mean	Std	Mean	Std	Mean	Std	Significance	Equation
$A \times R$	18.5	±0.152	0.59845	±0.001	0.61	±0.24		(2)
Partial models:								
A			- 12	2	0.05	±0.03		(13)
R	18.2	±2.995	4.54981	±0.001	0.2	±0.03		(14)
$K_d^{WT} \times R$	23.7	±2.593	3.83397	±0.001	1.35	±0.34		(15)
K_d^{WT}	-	11-	-	-	0.46	±0.2		(15)
$1/K_d^{MT} \times R$	26.6	±1.609	1.34421	±0.001	1.41	±0.61		(16)
$1/K_d^{MT}$	120		12	12	0.69	±0.23		(16)
Alternative models:					227927			
Neoantigen load					0.24	±0.12		(18)
$A \times R$, sum over neoantigens	25.1	±3.308	4.89176	±0.001	1.57	±0.39		(17)
$A \times R$, alignments at positions 3-8	21.9	+2.871	3.1276	+0.001	0.35	+0.36		(2)
$A \times R$, negative IEDB assays	14.4	±2.58		±0.001	0.04	±0.03		(2)
$A \times R$, all neoantigens	29.2		3.88642	±0.001	0.24	±0.19		(2)
					0141	20110		(4)
Melanoma, anti-CTLA-4 (ref. 4)	0.500000000	Parameters trained on melanoma anti-CTLA-4 Log-ran dataset from ref. 5				k test		
Models	а		k		Sco	re	Significance	Equation
Wodels	Mean	Std	Mean	Std	Mean	Std	orginitourios	Lquation
$A \times R$	26.4	±0.892	1.0851	±0.001	6.55	±0.9	0.01047 *	(2)
Partial models:								
A	100	12	12	1.	4.44	±0.68	0.03507 *	(13)
R	29.7	±4.829	2.51962	±0.001	1.26	±0.34		(14)
$K_d^{WT} \times R$	26.9	±2.735	3.73387	±0.001	1.67	±0.22		(15)
K_d^{WT}		24		- 1	3.11	±0.75		(15)
$1/K_d^{MT} \times R$	26	±1.929	0.82074	±0.001	3.65	±0.81		(16)
$1/K_d^{MT}$	1.0		12	12	3.44	±0.61		(16)
Alternative models:					387707			
Neoantigen load					0.42	±0.21		(18)
$A \times R$, sum over neoantigens	27	±3.005	5.08369	±0.001	1.63	±0.53		(17)
$A \times R$, alignments at positions 3-8	30	±4.023	1.35553	±0.001	2.73	±0.65		(2)
$A \times R$, negative IEDB assays	36	±9.57	10.1531	±0.001	0.23	±0.65		(2)
$A \times R$, all neoantigens	26	±1.95	5.22216	+0.001	0.59	±0.92		(2)
	Paramete		ed on me	lanoma				(-)
Lung, anti-PD-1 (ref. 6)		A-4 data	asets from		L			
Models			ref. 5					Equation
	8		, k		Sco		Significance	
	Mean	Std	Mean	Std	Mean	Std		100
$A \times R$	27	±0.787	1.00032	±0.001	6.48	±1.14	0.01088 *	(2)
Partial models:					77.00			200
A					4.65	±1.17	0.03099 *	(13)
R	19.6	±3.355	4.29127	±0.001	1.53	±0.29		(14)
$K_{d}^{WT} \times R$	23	±2.737	5.37707	±0.001	10.48	±1.71	0.00121 ***	(15)
K _d ^{WT}	-			-	4.49	±0.75	0.03416 *	(15)
$1/K_d^{MT} \times R$	21	±2.027	0.53498	±0.001	0.02	±0.07		(16)
$1/K_d^{MT}$	0.00	17	10	- 1	0.17	±0.13		(16)
Alternative models:					300000			
Neoantigen load	-	100	-	-	4.93	±1.15	0.02639 *	(18)
$A \times R$, sum over neoantigens	25	±4.316	4.03113	±0.001	3.09	±1.09		(17)
$A \times R$, alignments at positions 3-8	22	±3.042	5.2228	±0.001	2.3	±0.82		(2)
$A \times R$, negative IEDB assays	14.5	±2.806	1.90577	±0.001	1	±0.45		(2)

Melanoma, anti-CTLA-4 (ref .5)	Parameters trained on melanoma, anti-CTLA-4 dataset from ref. 4							Log-rank test			
Models	τ		а		k		Score		0::	Famation	
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Significance	Equation	
$A \times R$	0.09003	±0.077	26	±2.988	4.19761	±0.01	7.92	±0.49	0.00489 ***	(2)	
Partial models:	50000000	5-570		20,000		573.00				12567	
A	0.00131	±0.0001	0	-	32	5 12	0.65	±0.03		(13)	
R	12.33338	±1.827	12.5	±1.074	1.89795	±24.161	1.68	±0.01		(14)	
$K_{\mathrm{d}}^{\mathrm{WT}} \times R$	0.00048	±0.0001	31	±2.911	6.26907	±0.001	0.09	±0.25		(15)	
K_d^{WT}	0.00307	±0.0001		-			0.04	±0.2		(15)	
$1/K_{ m d}^{ m MT} imes R$	0.03851	±1.711	21.3	±0.353	1.50243	±0.02	2.01	±0.45		(16)	
$1/K_{\rm d}^{\rm MT}$	0.3386	±0.0001		-		9 9	1.46	±0.23		(16)	
Alternative models:										20 00	
Neoantigen load	16.39039	±0.0001		-	0.43	()	1.48	±0.12		(18)	
$A \times R$, sum over neoantigens	18.3366	±0.471	38.3	±0.001	10.1531	±29.105	0.21	±0.08		(17)	
$A \times R$, alignments at positions 3-8	0.0716	±1.011	22.3	±0.273	0.46591	±0.022	0.94	±0.13		(2)	
$A \times R$, negative IEDB assays	0.00091	±0.58	15.8	±0.056	0.45236	±0.001	0.98	±0.03		(2)	
$A \times R$, all neoantigens	0.01602	±0.559	34.9	±0.051	0.53933	±0.834	0.13	±0.03	-	(2)	
$A \times R$, average fitness			26.3	±0.252	1.06061	±0.001	4.03	±0.84	0.04476 *	(2) and (20)	
Melanoma, anti-CTLA-4 (ref. 4)	Param	Parameters trained on melanoma, anti-CTLA-4 dataset from ref. 5									
Models	τ	8	8		k		Score		Significance	Equation	
	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Significance	Equation	
$A \times R$	0.02326	±0.479	26	±3.835	3.44101	±0.088	9.1	±0.92	0.00256 ***	(2)	
Partial models:	AS WALKS SEVE	-503-0000		-2.000	100000000000000000000000000000000000000					42.02	
A	0.1007	±0.0001		-			0.09	±0.68		(13)	
R	1.3483	±17.017	21.2	±5.133	5.57735	±27.093	1.17	±0.38		(14)	
$K_{\mathrm{d}}^{\mathbf{WT}} \times R$	0.00096	±15.302	27	±4.14	5.53499	±0.001	0.53	±0.22		(15)	
$K_{\rm d}^{ m WT}$	13.33274	±0.0001					1.21	±0.75		(15)	
$1/K_d^{MT} \times R$	0.0786	±5.21	22	±0.445	1.4779	±0.065	0.41	±0.65		(16)	
$1/K_{ m d}^{ m MT}$	0.06196	±0.0001		-		9	0.63	±0.61		(16)	
Alternative models:										191 - 431	
Neoantigen load	0.10065	±0.0001	U	2	- 2	2 34	0.64	±0.21		(18)	
$A \times R_i$ sum over neoantigens	0.08928	±27.215	27	±8.827	5.01647	±34.399	0.09	±0.53	-	(17)	
$A \times R$, alignments at positions 3-8	1.82771	±11.104	24.9	±8.066	8.08455	±1.826	5.33	±1.05	0.021	(2)	
$A \times R$, negative IEDB assays	0.16414	±10.716	11.7	±0.768	0.89312	±0.164	1.83	±0.97	1, -11	(2)	
$A \times R$, all neoantigens	0.00772	±23.665	25.7	±7.145	7.16555	±0.834	2.63	±0.92		(2)	
$A \times R$, average fitness	+3		26	±3.158	3.34043	±0.001	8.03	±0.92	0.00459 ***	(2) and (20)	

fitness model parameters a=26. k=4.86936

Extremely sensitive to IEDB entries

Extended Data Figure 5 | Effect of IEDB sequence content on predictive power of the neoantigen fitness model. Predictions were performed using subsampled IEDB epitope sequences, with subsampling rate varying between 0.1 and 0.9. For each rate, 10,000 iterations were performed to obtain a distribution of log-rank test scores. The violin plots represent the data density at a given value on the vertical axis (n = 10,000). Solid black lines mark the log-rank test score of the prediction for the full set of epitope sequences and grey thick lines mark the median scores of the

subsampled data. **a–c**, Subsampling of the original set of IEDB sequences, supported by positive T-cell assays, shows that the quality of predictions decreases with subsampling rate. Prediction quality is more robust in the datasets from refs 4, 6. **d–f**, The analogous subsampling procedure was repeated for IEDB sequences that were not supported by positive T-cell assays. For the datasets from refs 4, 5, model performance is substantially decreased.

They tell you it's overfit

We further performed a joint optimization of the cumulative log-rank test score of the three cohorts, obtaining a single set of parameters with predictions that are highly stable around these values (Extended Data Fig. 3). The alignment threshold parameter is consistently set to 26 (Extended Data Table 1), which in our datasets is obtained by alignments of a mean length of 6.8 amino acids, just above the average

Extended Data Figure 3 | Survival analysis score landscape as a function of model parameters. a–c, The landscape of log-rank test scores as the function of the parameters of the TCR-binding model (a and 1 / k), shown for the consistent choice of τ = 0.09; colours represent the significance level of the long-rank test. The regions of high scores are similar across all three datasets. The point corresponding to consistent parameters (a = 26

and k=4.87) is marked by a black dot in each plot. d-f, log-rank score for the fitness model at consistent binding-function parameters, plotted as a function of τ . Dashed vertical lines are at $\tau=0.09$, thin solid lines mark the score values corresponding to significance of P=0.05, P=0.01 and P=0.005 (P=0.00) and P=0.005 (P=0.00) and P=0.005 (P=0.00) and P=0.005 (P=0.005) and P

#Fin