Ejercicios Hoja 1

Curso 2020/2021

- 1. Encuentra el valor reducido de cada uno de los siguientes números en el correspondiente \mathbb{Z}_n
 - 23, 13, 55, -5, -43, -17 en \mathbb{Z}_4
 - 21, 19, 155, -3, -23, -11 en \mathbb{Z}_3
 - 27, 11, 58, -5, -73, -13 en \mathbb{Z}_{11}
- 2. Calcula $345 \cdot 43 + 122 \cdot 5 225$ en \mathbb{Z}_5 , \mathbb{Z}_8 y \mathbb{Z}_{11} .
- 3. Calcula el máximo común divisor de los siguientes pares de números y expresálo en función de los mismos
 - 402 y 31
 - 824 y 205
 - 412 y 102
 - 213 y 66
- 4. Para casa uno de los \mathbb{Z}_n indicados estudia qué elementos son unidades y, para cada uno de ellos, calcula el inverso correspondiente.
 - 23, 13, 55, -5, -43, -17 en \mathbb{Z}_8
 - 21, 19, 155, -3, -23, -11 en \mathbb{Z}_5
 - 27, 11, 58, -5, -73, -13 en \mathbb{Z}_{14}
- 5. Para cada \mathbb{Z}_n estudia qué elementos son unidades y, para los que lo sean, calcula su inverso
 - Z₉
 - \bullet \mathbb{Z}_{12}
 - \mathbb{Z}_{18}
- 6. Calcula los siguientes inversos
 - 11^{-1} en \mathbb{Z}_{42}
 - 31^{-1} en \mathbb{Z}_{100}

- 13^{-1} en \mathbb{Z}_{70}
- 7. Efectúa las operaciomes indicadas
 - $32 \cdot 21 12 \cdot 24^{-1}$ en \mathbb{Z}_7
 - $23 + 12 \cdot 11^{-1} + 43 \cdot 10^4$ en \mathbb{Z}_6
 - $23 + 12 \cdot 11^{-1} + 43 \cdot 10^4$ en \mathbb{Z}_4
- 8. Calcula 6^{-1} y 11^{-1} en \mathbb{Z}_{15} usando el valor de $\varphi(15)$.
- 9. Calcula 5^{-1} y 13^{-1} en \mathbb{Z}_{48} usando el valor de $\varphi(48)$.
- 10. Calcular las dos últimas cifras de 1237¹²¹ (Indicación: calcula esta potencia en \mathbb{Z}_{100} usando $\varphi(100)$)
- 11. Para las siguientes ecuaciones, indica si tiene solución y (caso de tener) calcula todas las posibles soluciones
 - 12x + 18y = 48
 - 20x + 35y = 15
 - 16x + 28y = 22
 - 14x + 35y = 21
- 12. Un coleccionista de obras de arte ha adquirido varias obras entre pinturas y dibujos. Las pinturas le han costado 210 euros cada una y los dibujos 120 euros. Cuando el coleccionista llega a casa, no sabe si se ha gastado 2700 euros o 2600 euros. ¿ Pueden haberle costado 2600 euros ?. ¿ Cuántos cuadros y dibujos ha comprado ?.
- 13. Una bufanda cuesta 19 rublos, pero el comprador no tiene más que billetes de tres rublos, y la cajera sólo de cinco. ¿Puede en estas condiciones abonarse el importe de la compra, y cómo hacerlo ?.
- 14. En una bolsa hay monedas de 10 y 20 céntimos y que su valor es 2 euros. ¿Que combinaciones de monedas son posible ?.
- 15. ¿Es posible llenar exactamente un depósito de 25 litros con recipientes de 6 y 8 litros ?.

- 16. Una persona va a un supermercado y compra 12 litros de leche, unos de leche entera y otros de desnatada, por 120 euros. Si la leche entera vale 3 euros más por litro que la desnatada, y ha comprado el mínimo posible de leche desnatada, ¿cuántos litros habrá comprado de cada una?.
- 17. Un programa produce números que se sabe que son siempre múltiplos de 3, que son impares y que el triple de esos números siempre dan resto 2 al dividirlos por 5 ; qué forma tienen esos números?. Calcula dos de ellos y comprueba que cumplen las condiciones.
- 18. Un general quiere distribuir a sus soldados en grupos. Primero dispone a sus soldados en grupos de 11 y le sobran 2. Decide quitar 10 soldados y agruparlos en grupos de 9 y ahora le sobran 3. Finalmente añade de nuevo 4 de los 10 soldados que quitó y, al agruparlos en grupos de 25 le sobra 1. Calcula dos posibles soluciones del número de soldados y comprueba que la primera de ellas cumple las condiciones.
- 19. De un cierto número se sabe que al dividirlo por 7 el resto es 3. El resto al dividir el doble de ese número por 11 es 5 y el número es múltiplo de 4. ¿Cuánto puede valer ese número?.
- 20. Encuentra todas las soluciones de los siguientes sistemas de ecuaciones lineales pasando la matriz del sistema a forma reducida

•
$$x + 2z + 5t = 2$$

 $y - 3z = 1$ en \mathbb{R} , $2x + y + z + t = 4$
 $z + 4t = 2$ en \mathbb{Z}_{11}

$$3x + y + z + t = 3$$

$$2x - y + z + t = 1$$

$$2x + y - t = 2$$

$$y + 2z + 3t = 0$$
en \mathbb{Z}_{11} , $-x - z = 3$

$$2x + y + 5z = -4$$
en \mathbb{Z}_{5}

$$x + 2z + 5t = 2$$

$$y - 3z = 1$$

$$3x + 2z + 5t = 2$$

$$y - 3z = 1$$

$$4z = 12$$
en \mathbb{R} , $3z + 3t + 2u = 3$

$$3z + 3t + u = 1$$

$$4u = 12$$
en \mathbb{Z}_{7}

21. Encuentra la forma reducida de cada una de las siguientes matrices:

•
$$\begin{pmatrix} 2 & 3 & 1 \\ 1 & 0 & 3 \\ 2 & 5 & 0 \end{pmatrix}$$
 en \mathbb{Z}_3 , $\begin{pmatrix} 0 & 3 & 0 & 0 \\ 4 & 2 & 3 & 3 \\ 0 & 5 & 1 & 3 \end{pmatrix}$ en \mathbb{Z}_7

$$\bullet \begin{pmatrix} 3 & 2 & 1 & 4 \\ 4 & 4 & 3 & 3 \\ 2 & 5 & 1 & 5 \\ 3 & 2 & 0 & 1 \end{pmatrix} \text{ en } \mathbb{Z}_5 \quad \begin{pmatrix} 2 & 2 & 1 \\ 0 & 4 & 0 \\ 0 & 4 & 1 \\ 3 & 2 & 1 \end{pmatrix} \text{ en } \mathbb{Z}_3$$

22. Encuentra cuando sea posible las inversas de las siguientes matrices

•
$$\begin{pmatrix} 2 & 3 & 1 \\ 1 & 4 & 3 \\ 2 & 5 & 1 \end{pmatrix}$$
 en \mathbb{Z}_2

•
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 en \mathbb{Z}_7

•
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 6 & 0 \\ 3 & 0 & 0 \end{pmatrix}$$
 en \mathbb{Z}_5