-30

٧

Dual P-Ch 30V Fast Switching MOSFETs

Description

The HSM4805 is the high cell density trenched Pch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The HSM4805 meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

Vos

Product Summary

12 $\boldsymbol{m}\Omega$ RDS(ON),typ -9 lо Α

- 100% EAS Guaranteed
- Green Device Available
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
Vos	Drain-Source Voltage	-30	V
Vgs	Gate-Source Voltage	±25	V
Id@Ta=25°C	Continuous Drain Current, -Vgs @ -10V1	-9	А
Id@Ta=70°C	Continuous Drain Current, -VGS @ -10V1	-7	А
Ідм	Pulsed Drain Current ₂	-40	А
EAS	Single Pulse Avalanche Energy ₃	125	mJ
las	Avalanche Current	-50	А
Pd@Ta=25°C	Total Power Dissipation4	2	W
Тѕтс	Storage Temperature Range	torage Temperature Range -55 to 150	
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур. Мах.		Unit
RеJA	Thermal Resistance Junction-Ambient 1		85	°C/W
Rелс	Thermal Resistance Junction-Case ₁		24	°C/W

Dual P-Ch 30V Fast Switching MOSFETs

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVpss	Drain-Source Breakdown Voltage	Vgs=0V , Ip=-250uA	-30			V	
△BVDSS/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25°C , ID=-1mA		-0.022		V/°C	
Rds(on)	Static Drain-Source On-Resistance ₂	Vgs=-10V , ID=-8A		12	16	m()	
KDS(ON)		Vgs=-4.5V , ID=-5A		18	28	mΩ	
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =-250uA	-1.0		-2.5	V	
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	VGS=VDS , ID =-230UA		4.6	-	mV/°C	
Ipss	Drain Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =25°C			-1	uA	
IDSS	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =55°C			-5	uA	
Igss	Gate-Source Leakage Current	Vgs=±20V, Vps=0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-8A		24		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		9		Ω	
Qg	Total Gate Charge (-4.5V)			20			
Qgs	Gate-Source Charge	Vps=-15V , Vgs=-4.5V , Ip=-8A		5.1	-	nC	
Qgd	Gate-Drain Charge			7.3			
Td(on)	Turn-On Delay Time			33.8			
Tr	Rise Time	V_{DD} =-15 V , V_{GS} =-10 V , R_{G} =3.3 Ω ,		35.8	-	no	
Td(off)	Turn-Off Delay Time	ID=-1A		72.8		ns	
Tf	Fall Time			10.6			
Ciss	Input Capacitance			2215			
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		310		pF	
Crss	Reverse Transfer Capacitance			237			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current _{1,5}	g=Vp=0V , Force Current			-9	Α
lsм	Pulsed Source Current _{2,5}	G=VD=0V, Force Current			-50	Α
Vsp	Diode Forward Voltage ₂	ss=0V , Is=-1A , T _J =25°C			-1.2	V
trr	Reverse Recovery Time			35		nS
Qrr	Reverse Recovery Charge	=-8A , dl/dt=100A/μs , Tյ=25°C		25		nC

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =-25V, V_{GS} =-10V, L=0.1mH, I_{AS} =-50A
- 4.The power dissipation is limited by 150 °C junction temperature
- 5. The data is theoretically the same as $\mbox{$\rm Id$}$ and $\mbox{$\rm Id$}$, in real applications , should be limited by total power dissipation.

HSM4805

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics of Reverse

Fig.5 Normalized V_{GS(th)} vs. T_J

Dual P-Ch 30V Fast Switching MOSFETs

Fig.2 On-Resistance vs G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON vs. TJ

Dual P-Ch 30V Fast Switching MOSFETs

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.11 Unclamped Inductive Switching Waveform

Dual P-Ch 30V Fast Switching MOSFETs

Ordering Information

Part Number	Package code	Packaging		
HSM4805	SOP-8	4000/Tape&Reel		

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
е	1.270 (BSC)		0.050 (BSC)		
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	