<u>Introduction to Artificial Intelligence –</u> <u>Assignment III – Tom Goodman</u> (1526322)

(Apologies for the lack of LaTeX formatting this assignment. I simply haven't had time).

1. Decision Tree [3%]

Your company wants to make predictions about whether or not a visitor to their site will make a purchase, depending on observed browsing behaviour.

You have the following attributes and their values that can be measured.

Attribute	Values			
Visitor	Integer counter in chronological order			
Referrer to the page	Search Engine, Banner Ad, Price Comparison website, Other			
Visit frequency of page	Once, Multiple times			
Page search function used	yes, no			
Length of visit	< 5 minutes, 5 to 10 minutes, 10 to 15 minutes, longer			
Purchase made	yes, no			

To train the system you have recorded information on the last 16 distinct visitors:

Visitor	Referrer	Frequency	Search	Length	Purchase
1	Search	multiple	yes	15	no
2	Search	once	no	10	yes
3	Other	multiple	yes	5	yes
4	Comparison	once	yes	15	yes
5	Banner	once	yes	10	no
6	Other	multiple	yes	10	no
7	Other	once	no	5	no
8	Banner	once	no	5	no
9	Comparison	multiple	yes	10	yes
10	Comparison	once	yes	10	yes
11	Search	once	yes	15	yes
12	Search	multiple	yes	10	no
13	Banner	once	yes	longer	yes
14	Comparison	once	no	5	yes
15	Banner	once	no	5	no
16	Comparison	multiple	no	longer	yes

Use the formulas on Entropy and Information Gain from the lecture in order to construct a decision tree. Show your working.

Refere

Gain (Refere) = B(Pm) - (Remainder (Nelwar))

- (Plog2 Pm + (1-Pm) log2 (P-Pm))

- (9 log2 Pm + (1-Pm) log2 (P-Pm))

- (9 log2 18 + (16) log2 (P))

= 0.09887.

Shell Phin x = (Pm log Pk | (1-Ru log2 (1 Pm)) | 2 log2 (1 Pm) | 2 log K=1 (Search) 4 x - (2 log 2 4 + 2 log 2) = - \frac{1}{4} \log_2 \frac{1}{2} = \frac{1}{4} 1 = 2 (cter) $\frac{3}{16}$ x - $\left(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}\right)$ = 0.17218

HER TO DO 01-12-2015 (Comparison) (= 10g, = + 9 10g, 5) L=4 (Barner) x - (1 lag 2 1 + 3 lag 3 4) = 0.20282 : Gain(Referer) = 0.9887 - 0.625 = 0.3637. - (Pan log2 Pan + panlog2 Pan log2 q + (1-9) log2 (1-9)

Kergri Gain (Length) = 0.9887 - Remainder (Length)

-Ph +nk (Pk log Ph + Nk log Nk

P+n (Pk+nk) Putnk Putnk 3, 24, 10 $\frac{-3}{16} \left(\frac{2}{3} \log_2 \frac{2}{3} + \frac{1}{3} \log_2 \frac{1}{3} \right)$ L=2 (10) 6, 3y, 3n $\frac{-6}{16} \left(\log_2 \frac{1}{2} \right) = \frac{3}{4}$ K=3(5) % 5, 2y, 3n. -5 (2 lag 2 = + 3 log 3) L=4 (large) 2, 25,00% 6) $\frac{-2}{5}(\frac{2}{2}\log_2 \frac{2}{3}) + \frac{0}{2}\log_2 \frac{0}{2}) = 0$

Because all of the gains are the saves Banner other Componing Search once marker a multiple NO YES NO Barner 811- Remainde (Fraguery) Chain Frequency (multiple) ,0 n Gain (Langers) = 0.811 - Reminder (Longers) K=1 (15) 0,09,00.

[3%]

Consider the following Bayesian Network about unhealthy plants in your garden.

You can observe that the grass is brown. What is the probability distribution for the plant loosing leaves?

< 0.2939, 0.2303 >. Hence $\alpha = 1.9077$ and $\mathbb{P}(E) = < .56, .44 >$.

The important part is that you show your working!

[2%]

Consider the following MiniMax tree with chance nodes.

Downward triangles are Min nodes, upward triangles are Max nodes, circles represent chance nodes, and squares are leafs with utility values. The probabilities given on the outgoing edges from the chance nodes correspond to the likelihood that a particular child node will be selected.

In expected MiniMax the utility value propagation works as follows:

Min Node Takes the minimum of the values of its children.

Max Node Takes the maximum of the values of its children.

Chance Node Takes the sum of the values of its children weighted by the probabilities given on the edges, or

$$\sum_{c \in Children} P(c) \cdot value(c)$$

See also AI:AMA for more details.

- (a) Fill in the utility value for each node computed by the Expected MiniMax algorithm.
- (b) Consider that Expected MiniMax uses DFS left to right and that all utility values are non-negative. When using α - β -pruning, is there any part of the tree that does not need to be expanded? Justify your answer.

