```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter
import statsmodels.api as sm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [2]: def read_data(path, date="Date"):
    data = pd.read_csv(path)
    data[date] = pd.to_datetime(data[date], dayfirst=True)
    return data
```

```
In [3]: #import csv data
nvda = read_data("data/NVDA.csv")
#nvda['Close'] = nvda['Close'].apply(np.log)
display(nvda)
```

|     | Date       | Open       | High       | Low        | Close      | Adj Close  | Volume    |
|-----|------------|------------|------------|------------|------------|------------|-----------|
| 0   | 2019-04-15 | 47.424999  | 47.615002  | 45.775002  | 46.575001  | 46.258690  | 156704800 |
| 1   | 2019-04-22 | 46.337502  | 48.202499  | 43.325001  | 44.522499  | 44.220123  | 231328000 |
| 2   | 2019-04-29 | 44.602501  | 46.217499  | 43.875000  | 45.752499  | 45.441769  | 184062800 |
| 3   | 2019-05-06 | 43.875000  | 45.084999  | 41.000000  | 42.205002  | 41.918369  | 262631200 |
| 4   | 2019-05-13 | 40.875000  | 41.107498  | 38.735001  | 39.132500  | 38.866734  | 348726800 |
|     |            |            |            |            |            |            |           |
| 257 | 2024-03-18 | 903.880005 | 947.780029 | 850.099976 | 942.890015 | 942.890015 | 288579700 |
| 258 | 2024-03-25 | 939.409973 | 967.659973 | 891.229980 | 903.559998 | 903.559998 | 208706300 |
| 259 | 2024-04-01 | 902.989990 | 922.250000 | 858.799988 | 880.080017 | 880.080017 | 208939400 |
| 260 | 2024-04-08 | 887.000000 | 907.390015 | 830.219971 | 881.859985 | 881.859985 | 207522200 |
| 261 | 2024-04-15 | 890.979980 | 906.130005 | 859.289978 | 860.010010 | 860.010010 | 44307700  |

262 rows × 7 columns

|     | Time (week of) | Normalized Value (0-100) | Absolute Google Search Volume |
|-----|----------------|--------------------------|-------------------------------|
| 0   | 2019-04-14     | 15                       | 1360594                       |
| 1   | 2019-04-21     | 14                       | 1269888                       |
| 2   | 2019-04-28     | 15                       | 1360594                       |
| 3   | 2019-05-05     | 15                       | 1360594                       |
| 4   | 2019-05-12     | 15                       | 1360594                       |
|     |                |                          |                               |
| 257 | 2024-03-17     | 98                       | 8889219                       |
| 258 | 2024-03-24     | 100                      | 9070631                       |
| 259 | 2024-03-31     | 96                       | 8707806                       |
| 260 | 2024-04-07     | 97                       | 8798512                       |
| 261 | 2024-04-14     | 97                       | 8798512                       |

262 rows × 3 columns

|     | Time (week of) | Normalized Value (0-100) | Absolute Google Search Volume |
|-----|----------------|--------------------------|-------------------------------|
| 0   | 2019-04-14     | 15                       | 14.123432                     |
| 1   | 2019-04-21     | 14                       | 14.054439                     |
| 2   | 2019-04-28     | 15                       | 14.123432                     |
| 3   | 2019-05-05     | 15                       | 14.123432                     |
| 4   | 2019-05-12     | 15                       | 14.123432                     |
|     |                |                          |                               |
| 257 | 2024-03-17     | 98                       | 16.000350                     |
| 258 | 2024-03-24     | 100                      | 16.020552                     |
| 259 | 2024-03-31     | 96                       | 15.979730                     |
| 260 | 2024-04-07     | 97                       | 15.990093                     |
| 261 | 2024-04-14     | 97                       | 15.990093                     |

262 rows × 3 columns

```
In [5]: #cleaning data
    nvda = nvda.drop(columns=['Open','High','Low','Adj Close'])
    display(nvda)
```

|     | Date       | Close      | Volume    |
|-----|------------|------------|-----------|
| 0   | 2019-04-15 | 46.575001  | 156704800 |
| 1   | 2019-04-22 | 44.522499  | 231328000 |
| 2   | 2019-04-29 | 45.752499  | 184062800 |
| 3   | 2019-05-06 | 42.205002  | 262631200 |
| 4   | 2019-05-13 | 39.132500  | 348726800 |
|     |            |            |           |
| 257 | 2024-03-18 | 942.890015 | 288579700 |
| 258 | 2024-03-25 | 903.559998 | 208706300 |
| 259 | 2024-04-01 | 880.080017 | 208939400 |
| 260 | 2024-04-08 | 881.859985 | 207522200 |
| 261 | 2024-04-15 | 860.010010 | 44307700  |

262 rows × 3 columns

|     | Date       | Normalized Value (0-100) | Search Volume |
|-----|------------|--------------------------|---------------|
| 0   | 2019-04-14 | 15                       | 1360594       |
| 1   | 2019-04-21 | 14                       | 1269888       |
| 2   | 2019-04-28 | 15                       | 1360594       |
| 3   | 2019-05-05 | 15                       | 1360594       |
| 4   | 2019-05-12 | 15                       | 1360594       |
|     |            |                          |               |
| 257 | 2024-03-17 | 98                       | 8889219       |
| 258 | 2024-03-24 | 100                      | 9070631       |
| 259 | 2024-03-31 | 96                       | 8707806       |
| 260 | 2024-04-07 | 97                       | 8798512       |
| 261 | 2024-04-14 | 97                       | 8798512       |

262 rows × 3 columns

|     | Date       | Normalized Value (0-100) | Search Volume |
|-----|------------|--------------------------|---------------|
| 0   | 2019-04-14 | 15                       | 14.123432     |
| 1   | 2019-04-21 | 14                       | 14.054439     |
| 2   | 2019-04-28 | 15                       | 14.123432     |
| 3   | 2019-05-05 | 15                       | 14.123432     |
| 4   | 2019-05-12 | 15                       | 14.123432     |
|     |            |                          |               |
| 257 | 2024-03-17 | 98                       | 16.000350     |
| 258 | 2024-03-24 | 100                      | 16.020552     |
| 259 | 2024-03-31 | 96                       | 15.979730     |
| 260 | 2024-04-07 | 97                       | 15.990093     |
| 261 | 2024-04-14 | 97                       | 15.990093     |

262 rows × 3 columns

```
In [7]: def plot_uni(data,variable,colour):
    plt.figure(figsize=(14, 8))
    plt.xlabel('Date')
    plt.ylabel(variable)
    plt.title('Univariate '+variable+' Analysis')
        # Format x-axis dates
    date_form = DateFormatter("%d/%m/%Y")
    plt.gca().xaxis.set_major_formatter(date_form)
    plt.plot(data['Date'], data[variable], color=colour)
```

```
In [8]: plot_uni(nvda,'Close','blue')
  plt.savefig("outputs/figure1.png")
  plt.show()
```







```
In [10]: def scientific_formatter(x, pos):
    # Format the tick label in scientific notation with exponent next to th
    return "{:.0e}".format(x)
```

```
In [11]: def plot_comparison(nvda, searchvol, important_dates=None):
             # Plotting historical close prices and search volume
             plt.figure(figsize=(14, 8))
             plt.xlabel('Date')
             plt.ylabel('Close Price')
             plt.title('Historical Close Prices and Search Volume')
             # Format x-axis dates
             date_form = DateFormatter("%d/%m/%Y")
             plt.gca().xaxis.set_major_formatter(date_form)
             # Plot Close Price on primary y-axis
             stock = plt.plot(nvda['Date'], nvda['Close'], label='Close Price', colo
             # Create secondary y-axis for Search Volume
             ax2 = plt.twinx()
             search = ax2.plot(searchvol['Date'], searchvol['Search Volume'], label=
             ax2.set_ylabel('Search Volume')
             # Combine legend for both primary and secondary plots
             lns = stock + search
             labs = [l.get_label() for l in lns]
             plt.legend(lns, labs, loc='upper left')
             if important dates != None:
                 for item in important_dates:
                     plt.axvline(x=pd.Timestamp(item['date']), color='gray', linesty
                     y = plt.ylim()[0] + (.5*plt.ylim()[1]-6.75) if item['top'] == T
                     plt.text(pd.Timestamp(item['date']), y, item['name'], rotation=
```





```
In [13]: plot_comparison(nvda, lnsearchvol)
   plt.show()
```





```
In [15]: plot_comparison(nvda, lnsearchvol, important_dates)
    plt.savefig("outputs/figure7")
    plt.show()
```



```
In [16]:
         # x_train, x_test, y_train, y_test = train_test_split(joined['Search Volume
         # plt.scatter(x_train, y_train, label='Trainng dtaa',color='r',alpha=.7)
         # plt.scatter(x_test, y_test, label='Testing dtaa',color='b',alpha=.4)
         # plt.xlabel('search volume')
         # plt.ylabel('stock close price')
         # plt.legend()
         # plt.title('test traiin split')
         # plt.show()
         # LR = LinearRegression()
         # LR.fit(x.values.reshape(-1,1),y)
         # predict = LR.predict(x.values.reshape(-1,1))
         # plt.plot(x,predict,label='linear',color='b')
         # plt.scatter(x,y,label='actual test data',color='g',alpha=.7)
         # plt.xlabel('search volume')
         # plt.ylabel('stock close price')
         # plt.legend()
         # plt.show()
         # b= LR.coef
         # print(b)
         # #R-squared of model
         # LR.score(x.values.reshape(-1,1),y.values)
```

```
In [17]: def calc_regression(x, y):
    x_reshaped = x.values.reshape(-1, 1)

# Create and fit the linear regression model
    LR = LinearRegression()
    LR.fit(x_reshaped, y)

# Predict using the fitted model
    predict = LR.predict(x_reshaped)
    # Display the coefficient (slope) of the linear regression model
    coef = LR.coef_
    print("Coefficient (slope) of the linear regression model:", coef)

# Calculate R-squared (coefficient of determination) of the model
    r_squared = LR.score(x_reshaped, y)
    print("R-squared of the linear regression model:", r_squared)
    return predict
```

```
In [18]: def plot_regression(x, y, predict):
    # Plotting the linear regression line and actual data
    plt.plot(x, predict, label='Linear Regression', color='r')
    plt.scatter(x, y, label='Actual Data', color='dimgray', alpha=1, linewi
    plt.xlabel('Search Volume')
    plt.ylabel('Stock Close Price')
    plt.legend()
    plt.title('Linear Regression: Search Volume vs. Stock Close Price')
```

```
In [19]: predict1 = calc_regression(searchvol['Search Volume'], nvda['Close'])
    plot_regression(searchvol['Search Volume'], nvda['Close'], predict1)
    plt.savefig("outputs/figure5")
    plt.show()
```

Coefficient (slope) of the linear regression model: [6.57219112e-05] R-squared of the linear regression model: 0.7786908923901182

# Linear Regression: Search Volume vs. Stock Close Price



```
In [20]: predict2 = calc_regression(lnsearchvol['Search Volume'], nvda['Close'])
    plot_regression(lnsearchvol['Search Volume'], nvda['Close'], predict2)
    plt.savefig("outputs/figure8")
    plt.show()
```

Coefficient (slope) of the linear regression model: [234.11895979] R-squared of the linear regression model: 0.7247326809795085

# Linear Regression: Search Volume vs. Stock Close Price



```
In [21]: def save_regression(figure):
    # Get the summary as a string
    summary_str = results.summary().as_text()
    # Define the file path where you want to save the summary
    output_file_path = "regression_outputs/"+figure+".txt"
    # Write the summary string to a text file
    with open(output_file_path, 'w') as f:
        f.write(summary_str)
```

In [22]: results = sm.OLS(nvda['Close'].values, sm.add\_constant(searchvol['Search Vo
 print(results.summary())
 save\_regression("figure6")

|                                         | OLS Regression Results |              |       |        |               |          |        |
|-----------------------------------------|------------------------|--------------|-------|--------|---------------|----------|--------|
| ======================================= | =======                | :=======     | ===== | :===== | ========      | =======  | :===== |
| Dep. Variabl                            | e:                     |              | у     | R-squ  | uared:        |          |        |
| 0.779<br>Model:                         |                        |              | OLS   | Λdi    | R-squared:    |          |        |
| 0.778                                   |                        |              | OLS   | Auj.   | K Squarea.    |          |        |
| Method:                                 |                        | Least Squa   | ares  | F-sta  | atistic:      |          | 9      |
| 14.8                                    |                        |              |       |        |               |          |        |
| Date:<br>e-87                           | W€                     | ed, 24 Apr 2 | 2024  | Prob   | (F-statistic  | ):       | 3.96   |
| Time:                                   |                        | 21:46        | 5:22  | Log-l  | ikelihood:    |          | -15    |
| 43.0                                    | •                      |              | 262   | A.T.C. |               |          | 2      |
| No. Observat 090.                       | ions:                  |              | 262   | AIC:   |               |          | 3      |
| Df Residuals                            | :                      |              | 260   | BIC:   |               |          | 3      |
| 097.                                    |                        |              |       |        |               |          |        |
| Df Model:                               |                        |              | 1     |        |               |          |        |
| Covariance T                            |                        | nonrol       |       |        |               |          |        |
| ====                                    |                        |              |       |        |               |          |        |
|                                         | coef                   | std err      |       | t      | P> t          | [0.025   | 0.     |
| 975]                                    |                        |              |       |        |               | -        |        |
|                                         |                        |              |       |        |               |          |        |
|                                         | 28.4688                | 8.366        | 3     | .403   | 0.001         | 11.995   | 4      |
| 4.943                                   |                        |              |       |        |               |          |        |
|                                         | 6.572e-05              | 2.17e-06     | 30    | .246   | 0.000         | 6.14e-05 | 7      |
| e-05                                    |                        |              |       |        |               |          |        |
| ====                                    |                        |              |       |        |               |          |        |
| Omnibus:                                |                        | 40.          | .594  | Durbi  | in-Watson:    |          |        |
| 0.064                                   |                        |              | 000   | _      | D (3D)        |          | _      |
| Prob(Omnibus 3.567                      | ):                     | 0.           | .000  | Jarqu  | ue-Bera (JB): |          | 6      |
| Skew:                                   |                        | 0.           | .903  | Prob(  | (JB):         |          | 1.57   |
| e-14                                    |                        | 4            | 600   | C = d  | NI-           |          | F 04   |
| Kurtosis:<br>e+06                       |                        | 4.           | .600  | Cond.  | , NO.         |          | 5.94   |
|                                         | =======                |              |       | =====  |               | =======  |        |

#### Notes:

====

- $\[1\]$  Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.94e+06. This might indicate that ther e are

strong multicollinearity or other numerical problems.

results = sm.OLS(nvda['Close'].values, sm.add\_constant(lnsearchvol['Search In [23]: print(results.summary()) save\_regression("figure9")

|                 | ( -8   | ,            |      |          |             |           |        |
|-----------------|--------|--------------|------|----------|-------------|-----------|--------|
|                 |        |              | _    | sion Res |             |           |        |
| ==========      | ====== | =======      | ==== |          |             |           | ====== |
| ====<br>D V     |        |              |      | D        |             |           |        |
| Dep. Variable:  |        |              | У    | R-squa   | area:       |           |        |
| 0.725           |        |              | 01.0 | ۷4 - ۱   | ) sausnodi  |           |        |
| Model:          |        |              | OLS  | Aaj. F   | R-squared:  |           |        |
| 0.724           |        | Longt Caus   |      | Г c+ c+  |             |           | 6      |
| Method:<br>84.5 |        | Least Squa   | i.es | r-Stat   | LISCIC.     |           | 0      |
| Date:           | ldo    | d, 24 Apr 2  | 024  | Doob /   | /F ctaticti | ۵).       | 8.54   |
| e-75            | we     | u, 24 Apr. 2 | 024  | PI'OD (  | (L-21911    |           | 0.54   |
| Time:           |        | 21 • 46      | • 22 | Log-Li   | ikelihood:  |           | -15    |
| 71.6            |        | 21.40        |      | LUG-LI   | ikeiinoou.  |           | -13    |
| No. Observation |        |              | 262  | AIC:     |             |           | 3      |
| 147.            |        | ,            | 202  | AIC.     |             |           | ,      |
| Df Residuals:   |        |              | 260  | BIC:     |             |           | 3      |
| 154.            |        |              | 200  | DIC.     |             |           | ,      |
| Df Model:       |        |              | 1    |          |             |           |        |
| Covariance Type | • •    | nonrob       | _    |          |             |           |        |
| ==========      |        |              |      |          |             | :=======  |        |
| ====            |        |              |      |          |             |           |        |
|                 | coef   | std err      |      | t        | P> t        | [0.025    | 0.     |
| 975]            |        |              |      |          |             | -         |        |
|                 |        |              |      |          |             |           |        |
|                 |        |              |      |          |             |           |        |
|                 | 1.6927 | 130.967      | - 24 | 1.447    | 0.000       | -3459.584 | -294   |
| 3.801           |        |              |      |          |             |           |        |
|                 | 4.1190 | 8.948        | 26   | 5.164    | 0.000       | 216.499   | 25     |
| 1.739           |        |              |      |          |             |           |        |
| =========       |        |              | ==== |          |             |           | ====== |
| ====            |        |              |      |          |             |           |        |
| Omnibus:        |        | 66.          | 055  | Durbir   | n-Watson:   |           |        |
| 0.052           |        |              |      |          |             |           |        |
| Prob(Omnibus):  |        | 0.           | 000  | Jarque   | e-Bera (JB) | :         | 15     |
| 3.230           |        | _            |      |          |             |           |        |
| Skew:           |        | 1.           | 194  | Prob(3   | JB):        |           | 5.33   |
| e-34            |        | _            | 00-  | 6 '      |             |           |        |
| Kurtosis:       |        | 5.           | 887  | Cond.    | NO.         |           |        |

319.

====

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is cor rectly specified.

```
In [24]: SnP = read_data("data/SPY.csv")
#cleaning data
SnP = SnP.drop(columns=['Open','High','Low','Adj Close'])
display(SnP)
```

|     | Date       | Close      | Volume    |
|-----|------------|------------|-----------|
| 0   | 2019-04-15 | 290.019989 | 228726700 |
| 1   | 2019-04-22 | 293.410004 | 251486900 |
| 2   | 2019-04-29 | 294.029999 | 331555200 |
| 3   | 2019-05-06 | 288.100006 | 559396700 |
| 4   | 2019-05-13 | 285.839996 | 455352700 |
|     |            |            |           |
| 257 | 2024-03-18 | 521.210022 | 358522300 |
| 258 | 2024-03-25 | 523.070007 | 293270500 |
| 259 | 2024-04-01 | 518.429993 | 367203800 |
| 260 | 2024-04-08 | 510.850006 | 361747100 |
| 261 | 2024-04-15 | 504.450012 | 92101400  |
|     |            |            |           |

262 rows × 3 columns

```
In [25]: multi= pd.concat([lnsearchvol['Search Volume'],SnP['Close']],axis=1)
```

```
In [26]: predict3 = calc_regression(SnP['Close'], nvda['Close'])
    plot_regression(SnP['Close'], nvda['Close'], predict3)
```

Coefficient (slope) of the linear regression model: [2.31572742] R-squared of the linear regression model: 0.651732842120399

# Linear Regression: Search Volume vs. Stock Close Price



```
In [27]:
    multi_reshaped = multi.values
    multi_reshaped
    # Create and fit the Linear regression model
    LR = LinearRegression()
    LR.fit(multi_reshaped, nvda['Close'])

# Predict nvidia price based on ai search volume and s&p 500 regression
    predict4 = LR.predict(multi_reshaped)
```

```
In [28]:
    # Plotting the linear regression lines adn
    plt.plot(np.log(predict4/predict4[0]), label='MLR', color='r')
    plt.plot(np.log(SnP['Close']/SnP['Close'][0]),label='S&P 500 ',color='b')
    plt.plot(np.log(nvda['Close']/nvda['Close'][0]),label= 'nvidia',color='g')
    #plt.xlabel('time')
    plt.ylabel('Stock Close Price index (base 0)')
    plt.legend()
    plt.title('Index Logarithmic Price Comparison ')
    plt.savefig("outputs/figure11")
    plt.show()
```

C:\Users\jarvit\AppData\Local\Temp\ipykernel\_20272\2289097429.py:2: Runtim
eWarning: invalid value encountered in log
 plt.plot(np.log(predict4/predict4[0]), label='MLR', color='r')

# Index Logarithmic Price Comparison



```
In [29]: results= sm.OLS(nvda['Close'].values, sm.add_constant(multi).values).fit()
    print(results.summary())
    save_regression("figure10")
```

| OLS Regression Results                  |             |        |        |              |           |        |
|-----------------------------------------|-------------|--------|--------|--------------|-----------|--------|
| ======================================= |             | ====== | ====== |              | :=======  | ====== |
| ====                                    |             |        | _      |              |           |        |
| Dep. Variable:                          |             | У      | R-squ  | uared:       |           |        |
| 0.848                                   |             | 01.6   |        |              |           |        |
| Model:                                  |             | OLS    | Adj.   | R-squared:   |           |        |
| 0.846                                   |             |        |        |              |           | _      |
| Method:                                 | Least Sq    | uares  | F-sta  | atistic:     |           | 7      |
| 20.5                                    |             |        |        |              |           |        |
| Date:                                   | Wed, 24 Apr | 2024   | Prob   | (F-statisti  | lc):      | 1.50e  |
| -106                                    |             |        |        |              |           |        |
| Time:                                   | 21:         | 46:22  | Log-l  | _ikelihood:  |           | -14    |
| 94.1                                    |             |        |        |              |           |        |
| No. Observations:                       |             | 262    | AIC:   |              |           | 2      |
| 994.                                    |             |        |        |              |           |        |
| Df Residuals:                           |             | 259    | BIC:   |              |           | 3      |
| 005.                                    |             |        |        |              |           |        |
| Df Model:                               |             | 2      |        |              |           |        |
| Covariance Type:                        | nonr        | obust  |        |              |           |        |
| ======================================= |             | ====== |        |              | ========  | ====== |
| ====                                    |             |        |        | - 1.1        | F. 0.0-   |        |
|                                         | ef std err  |        | t      | P> t         | [0.025    | 0.     |
| 975]                                    |             |        |        |              |           |        |
|                                         |             |        |        |              |           |        |
| const -2566.948                         | 30 107.041  | -23    | 3.981  | 0.000        | -2777.730 | -235   |
| 6.166                                   |             |        |        |              |           |        |
| x1 156.371                              | 12 8.568    | 18     | 3.250  | 0.000        | 139.499   | 17     |
| 3.243                                   |             |        |        |              |           |        |
| x2 1.291                                | L9 0.089    | 14     | 1.456  | 0.000        | 1.116     |        |
| 1.468                                   |             |        |        |              |           |        |
| ======================================= | -=======    | ====== |        |              | .=======  | ====== |
| ====                                    |             |        |        |              |           |        |
| Omnibus:                                | 10          | 3.416  | Durbi  | in-Watson:   |           |        |
| 0.057                                   |             |        |        |              |           |        |
| Prob(Omnibus):                          |             | 0.000  | Jarqu  | ue-Bera (JB) | :         | 44     |
| 6.523                                   |             |        |        | ` ′          |           |        |
| Skew:                                   |             | 1.590  | Prob(  | (JB):        |           | 1.09   |
| e-97                                    |             |        |        | ,            |           |        |
| Kurtosis:                               |             | 8.549  | Cond.  | . No.        |           | 9.39   |
| e+03                                    |             |        |        |              |           |        |
| ======================================= |             | ====== |        |              | .=======  | ====== |
| ====                                    |             |        |        |              |           |        |

### Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.39e+03. This might indicate that ther e are

strong multicollinearity or other numerical problems.

```
In [ ]:
```