0 0

컴퓨터 기초

소프트웨어와 미래사회 2019

컴퓨터의 구성

• 하드웨어 + 소프트웨어

[컴퓨터의 구성과 하드웨어]

[컴퓨터 동작에 따른 하드웨어]

[컴퓨터시스템의 구성과 작동]

- 시스템 소프트웨어 : 운영체제와 펌웨어
- 운영체제(O/S) :
 HW와 응용SW의 작동을 관리하는 프로그램
- 펌웨어 컴퓨터의 시작에 필요한 시스템 SW (시스템의 초기동작 제어) ROM에 존재

• 중앙처리장치(CPU: Central Processing Unit)

- 사람의 두뇌에 해당, 수리적 연산 및 논리적 연산
- 연산장치(ALU), 레지스터, 제어장치로 구성
- 데이터 처리: Binary 형태로

• 저장장치(기억장치)

• 주기억장치(RAM, ROM)와 보조기억장치

• 입력장치

- 외부로부터 데이터를 입력 받는 장치
- 마우스, 키보드, 바코드리더, 스케너, 마이크 등

• 출력장치

- 처리된 결과물을 시스템 외부로 출력
- 프린터, 스피커, 모니터 등

[비트와 바이트]

3

비트 (bit): Binary Digit 의 약자로 컴퓨터 정보 표현의 가장 기본적인 단위

[비트와 바이트]

2진수	10진수
00	0
01	1
10	2
11	3

2진수	10진수
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

2진수	10진수
0000	0
0001	1
0010	2

1111 15

[진법과 수의 구성]

진법

• N 진법: 0에서 부터 (N-1)까지의 기호를 가지고 수와 양을 표현하는 방법 ex) 10진법: 0~9까지의 기호를 사용, 10을 한 자리의 기본 단위로 하는 진법 16진법: 0~9 그리고 A~F까지 16개의 기호를사용하여 표시하는 진법

수의 변환

컴퓨터 데이터의 저장을 위해 2진수 사용 시 표현이 길어지는 단점
 8진수 1자리는 2진수 3자리로
 16진수 1자리는 2진수 4자리로 줄여서 표현 가능

[아날로그와 디지털]

o C

digit

- 1. (0에서 9까지의 아라비아) 숫자
- 2. 손가락

Analog

- 1. 유사의; 상사형(相似型)의
- 2. 아날로그의; <컴퓨터가> 아날로그식의

Digital

여러 자료를 유한한 자릿수의 숫자로 나타내는 방식

[아날로그와 디지털]

1/m//m//m//m//m//

ADC

- Analog to Digital Convertor
- 빛, 소리등의 아날로그 신호를 디지털 신호로 변환
- 표본화→양자화 → 부호화의
 과정을 통하여
 0,1의 디지털 신호로 변환

표본화 Sampling

• 일정한 간격으로 아날로그 신호의 값을 추출하는 과정

샘플링을 많이 하면?
 원신호와의 일치성은 커지나, 디지털 데이터의 양도 증가

[아날로그와 디지털]

부호화 Coding

• 양자화로 나눈 레벨에 속한 값을 이진수로 변환하는 과정

양자화 Quantization

- 추출한 샘플링 신호의 레벨을 단계로 나타내는 과정
- 1개의 샘플 데이터에 1bit 할당시 2단계,
 2bit 할당시 4단계, 3bit 할당시 8단계 ... 로 나아감

ex) 4레벨 (2bit) 양자화

[참고] CD 음질: 44.1kHz, 16bit, stereo

제어 문자		공백 문자		구두점 성		숫	:자	알파벳				
10진	16진	문자	10진	16진	문지	1	10진	16진	문자	10진	16진	문자
0	0x00	NUL	32	0x20	SP		64	0x40	@	96	0x60	- S
1	0x01	SOH	33	0x21			65	0x41	Α	97	0x61	а
2	0x02	STX	34	0x22			66	0x42	В	98	0x62	b
3	0x03	ETX	35	0x23	#		67	0x43	С	99	0x63	С
4	0x04	EOT	36	0x24	\$		68	0x44	D	100	0x64	d
5	0x05	ENQ	37	0x25			69	0x45	Е	101	0x65	е
6	0x06	ACK	38	0x26			70	0x46	F	102	0x66	f
7	0x07	BEL	39	0x27			71	0x47	G	103	0x67	9
8	0x08	BS	40	0x28	(72	0x48	Н	104	0x68	h
9	0x09	НТ	41	0x29			73	0x49	-1	105	0x69	i
10	0x0A	LF	42	0x2A	*		74	0x4A	J	106	0x6A	j
11	0x0B	VT	43	0x2B	+		75	0x4B	К	107	0x6B	k
12	0x0C	FF	44	0x2C			76	0x4C	L	108	0x6C	-1
13	0x0D	CR	45	0x2D			77	0x4D	М	109	0x6D	m
14	0x0E	SO	46	0x2E			78	0x4E	N	110	0x6E	n
15	0x0F	SI	47	0x2F			79	0x4F	0	111	0x6F	0
16	0x10	DLE	48	0x30	0		80	0x50	Р	112	0x70	Р
17	0x11	DC1	49	0x31	-1		81	0x51	Q	113	0x71	q
18	0x12	DC2	50	0x32	2		82	0x52	R	114	0x72	r
19	0x13	DC3	51	0x33	3		83	0x53	S	115	0x73	S
20	0x14	DC4	52	0x34	4		84	0x54	Т	116	0x74	t
21	0x15	NAK	53	0x35	5		85	0x55	U	117	0x75	u
22	0x16	SYN	54	0x36	6		86	0x56	٧	118	0x76	٧
23	0x17	ЕТВ	55	0x37	7		87	0x57	W	119	0x77	w
24	0x18	CAN	56	0x38	8		88	0x58	×	120	0x78	Х
25	0x19	EM	57	0x39	9		89	0x59	Υ	121	0x79	У
26	0x1A	SUB	58	0x3A	:		90	0x5A	Z	122	0x7A	Z
27	0x1B	ESC	59	0x3B)		91	0x5B	[123	0x7B	{
28	0x1C	FS	60	0x3C	<		92	0x5C	₩	124	0x7C	
29	0x1D	GS	61	0x3D	=		93	0x5D]	125	0x7D	}
30	0x1E	RS	62	0x3E			94	0x5E		126	0x7E	
31	0x1F	US	63	0x3F			95	0x5F		127	0x7F	DEL

[컴퓨터에서 문자의 표현]

Unicode

- 영어 외, 세계 모든 언어를 위하여 제정된 표준코드
- ASCII 코드 포함 (영어는 ASCII로 충분)
- 한글, 중국어, 일본어, 히브리어 등다양한 언어를 위해 코드 영역을 지정
- 16 비트 또는 32 비트 사용
- 워드프로세서 간 텍스트의 호환성 유지됨

ASCII 코드표

[픽셀과 해상도]

픽셀 Pixel

- picture + element의 합성어로서, 디지털 이미지의 최소 단위
- TV나 사진, 신문 등에서 이미지을 구성하고 있는 최소단위의 명암의 점
- 인쇄물에서는 도트(dot)로 표현

이러한 점이 일정한 영역 내에서 많을수록 화질이 좋은 것으로, 즉 해상도(resolution)가 높은 것 ex) 800x600, 1024x768, 1280x1024 해상도 등

- 인치당 픽셀 또는 도트의 개수, 선명도를 나타냄
- 컴퓨터나 모니터 출력 작업인 경우에는 72 dpi로 작업하는 것이 일반적
- 인쇄물 일 경우에는 300dpi 이상으로 작업해야 만족할 만한 결과물을 얻을 수 있음

dpi or ppi

[픽셀의 비트 수와 색상의 관계]

픽셀 할당 비트수	색상의 수	참고 사항		
1	2 (21)	흑백		
2	4 (2 ²)			
4	16			
8	256	팔레트 or Grayscale(회색조)		
16	65,536	하이컬러 (R:G:B = 5:5:5)		
24	16,777,216	트루컬러 (R:G:B = 5:5:5)		
32	16,777,216 + 8bit Alpha	트루컬러 + 알파채널		

THANK YOU FOR LISTENING!