

IP Gateways IK2218/EP2120

Markus Hidell, mahidell@kth.se KTH School of ICT

Acknowledgements

- The presentation builds upon material from
 - Previous slides by Markus Hidell, Björn Knutsson and Peter Sjödin
 - Computer Networking: A Top Down Approach, 5th ed. Jim Kurose, Keith Ross. Addison-Wesley.
 - TCP/IP Protocol Suite, 4th ed, Behrouz Foruzan. McGraw-Hill.

Outline

- Brief introduction
- What is a gateway?
- Firewalls
- NAT
- Some other gateways

Introduction

- We now have all the pieces theoretically required to build a network of networks and configure hosts
 - Has (hopefully) been covered in the course by now...
- Unfortunately, we are left with a substantial number of situations that do not fit into this model...
 - What if we don't want unrestricted forwarding of traffic?
 - What if we don't have enough available addresses?
 - What if we are away from our home network?
 - And need resources on our home network that we restrict access to from the outside?

What is a Gateway?

- A machine that sits between two interconnected networks and relays traffic between them
- Assumption: Traffic cannot flow between the two networks without the assistance of the gateway
- Conclusion: A router is a network layer gateway
 - But we can have other types of gateways, both at the network layer and elsewhere

Purposes with a Gateway

- What can we use other types of gateways for?
 - Connecting networks with incompatible address systems NAT
 - IPv4 and IPv6
 - Two IPv4 networks with independent address domains
 - Restricting what traffic flows between two networks
 - Protective purposes

Firewall

- Redirecting traffic, possibly tunneling it
 - Mobility, VPNs, IPsec tunnels etc

Firewalls

Firewall Definition

Isolates organization's internal network from larger Internet, allowing some packets to pass and blocking others

Castle and Moat Analogy

- Maybe more like the moat around a castle than a firewall
 - Restricts access from the outside
 - Restricts outbound connections, too (!!)
 - Important: filter out undesirable activity from internal hosts!

Firewall—Design Goals

- 1. All traffic from inside to outside, and vice versa, must pass through the firewall. This is achieved by physically blocking all access to the local network except via the firewall.
- 2. Only authorized traffic, as defined by the local security policy, will be allowed to pass.
- 3. The firewall itself is immune to penetration.

Bellovin, S., Cheswick, W. "Network Firewalls." IEEE Communications Magazine, September 1994.

Firewalls—General Techniques

- Service control
 - Determines the types of Internet services that can be accessed, inbound or outbound
 - Packet filtering, proxy software, hosting server software
- Direction control
 - Determines the direction in which particular service requests may be initiated and allowed to flow through the firewall
- User control
 - Controls access to a service
- Behavior control
 - Controls how particular services are used
 - E.g., filter email to eliminate spam

Firewall Locations in the Network

- Between internal LAN and external network
- At the gateways of sensitive subnetworks within the organizational LAN
 - Payroll's network must be protected separately within the corporate network
- On end-user machines
 - "Personal firewall"
 - Microsoft's Internet Connection Firewall (ICF) comes standard with Windows XP

Firewall Types

Packet filter: internal network connected to Internet via *router firewall*

Application level gateway: splices and relays two application-specific connections

Packet Filters

- For each packet, firewall decides whether to allow it to proceed
 - Decision must be made on per-packet basis
- To decide, use information available in the packet
 - IP source and destination addresses, ports
 - Protocol identifier (TCP, UDP, ICMP, etc.)
 - TCP flags (SYN, ACK, RST, PSH, FIN)
 - ICMP message type
- Filtering rules are based on pattern-matching
 - Deep packet inspection

Packet Filter Default Policies

Two default policies:

- Default = discard
 - That which is not expressly permitted is prohibited
- Default = forward
 - That which is not expressly prohibited is permitted
- Default = discard is more conservative
 - Services added on a case-by-case basis
 - Very visible to users....

Packet Filtering—Examples

- Example 1: block incoming and outgoing datagrams with IP protocol field = 17 and with either source or dest port = 23.
 - All incoming and outgoing UDP flows carrying telnet connections are blocked.
- Example 2: Block inbound TCP segments with ACK=0.
 - Prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside.

TCP has a flag, called ACK, that is set on all but the first packet, the one that establishes the connection. So, if the firewall disallows packets from B without ACK set in the TCP header, then we will have the desired effect, in general.

Packet Filters—Rule Sets

Rule sets here not formal—only for purpose of illustration

A	action	ourhost	port	theirhost	port		comment
	block	*	*	SPIGOT	*	we don't trust these people	
	allow	OUR-GW	25	*	*	connection to our SMTP port	
В	action	ourhost	port	theirhost	port	comment	
	block	*	*	*	*	default	
С	action	ourhost	port	theirhost	port	comment	
	allow	*	*	*	25	connection to their SMTP port	
D	action	src	port	dest	port	flags	comment
	allow	{our hosts}	*	*	25		our packets to their SMTP port
	allow	*	25	*	*	ACK	their replies
E	action	src	port	dest	port	flags	comment
	allow	{our hosts}	*	*	*		our outgoing calls
	allow	*	*	*	*	ACK	replies to our calls
	allow	*	*	*	>1024		traffic to nonservers

In each rule set, rules are applied top to bottom. "*" is a wildcard matching everything.

Examples A-E, cont'd

- A. Inbound mail allowed (port 25 is for SMTP incoming), but only to OUR-GW. Mail from SPIGOT is blocked.
- B. Explicit statement of the default policy. All rule sets include this rule implicitly as the last rule.
- C. Intended to specify that any inside host can send mail to the outside. TCP packets go to SMTP server on destination machine.
 - Problem: Outside machine could be configured to have some other application linked to port 25. An attacker could gain access to internal machines by sending packets with TCP src port = 25.

Examples A-E, cont'd

- D. Achieves the intended result that was not achieved in "C". Once a connection is set up, ACK = 1 in TCP segment. Allow replies from outside, but not connection initiation. Furthermore, allow IP packets from "our hosts" (list of designated internal hosts) and the destination TCP port 25.
- E. An approach to handling FTP connections. FTP uses two TCP connections: one for control and one for data transfer. Most attacks target well-known ports (<1024). Rule set allows:
 - Packets that originated internally
 - Reply packets to a connection initiated by internal machine
 - Packets destined for high-numbered ports on internal machines

Weaknesses of Packet Filters

- Do not prevent application-specific attacks
 - For example, if there is a buffer overflow in URL decoding routine, firewall will not block an attack string
- No user authentication mechanisms
 - ... except (spoofable) address-based authentication
 - Firewalls don't have any upper-level functionality
- Vulnerable to TCP/IP attacks such as spoofing
 - Attacker sends packets with IP src address belonging to the internal network
- Security breaches due to misconfiguration

PF: Attacks and Countermeasures

IP address spoofing

- Attacker sends packet with internal src address
- Countermeasure: discard packets with inside source address arriving on an external interface
- Source routing attacks
 - Use source routing to try to bypass security measures
 - Countermeasure: discard all packets with this IP option
- Tiny fragment attacks
 - Intruder uses IP fragmentation to create very small fragments to circumvent filtering on TCP header information
 - Countermeasure: Discard packets based on protocol type and IP fragment offset

Stateful Packet Filters

- There are protocols that require B to make a TCP connection to A, even though A initiated the session
 - FTP (control connection and data connection)
- Stateful packet filter
 - Note that connection was initiated from s (internal) to d
 - Allow (for some period of time) connections from
 d to s

Application-Level Gateway

- Splices and relays two application-specific connections
 - Common example: HTTP gateway (proxy server)
- Can support high-level user-to-gateway authentication
 - Log into the proxy server with your name and password
- Simpler filtering rules than for arbitrary TCP/IP traffic
- Each application requires implementing its own proxy
 - Proxy might be a performance bottleneck

Proxy Firewall (same thing as application-level gateway)

©The McGraw-Hill Companies, Inc., 2000

Bastion Host

- Bastion host: gw placed behind firewall router(s)
 - Trusted system (secure version of its operating system)
 - Firewalls refuse to forward anything unless to/from the application-level gateway
 - All non-essential services are turned off
 - Application-specific proxies for supported services
 - E.g., Telnet, DNS, FTP, SMT
 - Reduced S/W complexity, no disk access (apart from reading conf)
 - Support for user authentication

Some Comparisons

- Packet filter can do its job without requiring software changes in the communicating nodes
 - Allowed conversations proceed normally (in most cases)
- An application level gateway is visible to the users
 - Need to connect to the gateway
- Application level gateway can be more powerful than packet filters—e.g., look at data inside email messages
 - Gateway is application-aware

General Problems with Firewalls

- Interfere with networked applications
 - Can make it difficult for legitimate user to get the work done
- Many problems not solved with firewalls
 - Buggy software (like buffer overflow exploits)
 - Firewall friendly protocols
 - Run IP over HTTP.....
- Don't prevent insider attacks
- Increasing complexity and potential for misconfiguration

NAT Gateways

NAT—Network Address Translation

What if we have many computers, but only a single public IP address? Use private addresses on LAN, let gateway translate

NAT—Motivation

- Local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable,
 visible by outside world (a security plus).

NAT—Implementation

NAT router must:

- for outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
- . . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr.
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- for incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT—Operation

NAT Issues and Concerns

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - address shortage should instead be solved by IPv6

NAT Traversal Problem

- Client wants to connect to server with address 10.0.0.1
 - server address 10.0.0.1 local to LAN (client can't use it as destination addr)
 - only one externally visible NATed address: 138.76.29.7
- Solution 1: statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (123.76.29.7, port 2500)always forwarded to 10.0.0.1 port 2500

NAT Traversal Problem, cont'd

- Solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed host to:
 - learn public IP address (138.76.29.7)
 - add/remove port mappings (with lease times)

That is, we have automated static NAT port map configuration

NAT Traversal Problem, cont'd

- External client wants to connect to NATed client
- Solution 3: relaying (used in Skype)
 - NATed client establishes connection to relay
 - External client connects to relay
 - Relay node bridges packets between to connections

Some Other Gateways

IPv4/IPv6 Gateways

IPv4/IPv6 Gateways, cont'd

Tunneling IPv6 in IPv4: We use gateways to do the job...

IPv4/IPv6 Gateways, cont'd

Header translation IPv6/IPv4: We use gateways to do the job...

©The McGraw-Hill Companies, Inc., 2000

IPsec Gateways—Encrypted Tunnels

Let's revisit tunneling and VPN:

- VPN based on encrypted IPsec tunnels
- Internet treated like an insecure wire
- Gateways do the job
 - Computers in corporate networks "unaware" of tunnel
 - Computer attached from outside needs a tunnel endpoint

Summary

IP gateways are used in many situations

- Firewalls
 - Packet filter
 - Application-level gateways (proxy firewalls)
- NAT
- IPv4 to IPv6 transitions
- IPsec VPNs

Thanks for listening