ALGORITHMIC DIFFERENTIATION

BITS F276 – Design Oriented Project 28/4/16

INTRODUCTION

Traditional Approaches

Symbolic Differentiation

Method of Finite Differences

Complex Taylor Series Expansion

ALGORITHMIC DIFFERENTIATION

AD works on the principle of Chain Rule at the operator level.

$$f = f_1(f_2(f_3...f_n(x)))$$

We need,

 $\frac{\partial f}{\partial x} = \frac{\partial f_1}{\partial f_2} \cdot \frac{\partial f_2}{\partial f_3} \cdot \frac{\partial f_3}{\partial f_n} \cdot \frac{\partial f_n}{\partial x}$

FORWARD MODE

 Forward Mode refers to the forward accumulation of the gradient information. i.e. right to left traversal of the chain rule.

REVERSE MODE

 Reverse mode refers to the reverse accumulation of the gradients. I.e right to left traversal of the chain rule.

COMPARISON OF MODES

Forward Mode requires **n** passes to evaluate the derivative whereas Reverse Mode requires **m** passes. Therefore, for m >> n, Reverse Mode is preferred and Forward Mode for n >> m.

Criteria to be considered:

- Complexity
- Memory

The problem of computing a full Jacobian of $f: \mathbb{R}^n \to \mathbb{R}^m$ with a minimum number of arithmetic operations is known as the *optimal Jacobian accumulation (OJA)* problem, which is NP-complete under mild assumptions.

COMPUTATIONAL GRAPHS

Definition:

$$G(F) = (V, E)$$
$$V = \{ V_x, V_y, V_z \}$$

- V_x: set of vertices representing independent variables.
- V_y: set of vertices representing intermediate variables.
- V_y: set of vertices representing output varibales.

GRAPH OPTIMISATION

GRAPH OPTIMISATION

Edge Separator

Matrix Chaining

Vertex Elimination

NEURAL NETWORKS

NEURAL NETWORKS

$$f_{l}(X) = \sum_{D} \sum_{j} \sigma \left(\sum_{i} w_{ij} x_{i} \right)$$

For each hidden layer 1

$$E = \left(\sum_{D} \left(\sum_{j} \sigma\left(\sum_{i} w_{ij} x_{i}\right)\right) - y_{d}\right)^{2}$$

Therefore, to compute accurate synapse weights we need to find gradient of E w.r.t. to W.

$$\frac{\partial E}{\partial w_{ii}}$$
 For all i, j in each layer.

CATEGORIES

Feedforward NN

Trained using backprop:

$$w_{ij} \leftarrow w_{ij} + \eta \frac{\partial E}{\partial w_{ij}}$$

CATEGORIES

Recurrent NN

CATEGORIES

Convolutional NN

Source Code Transformation

Operator Overloading

Rationale

- Operator Overloading easier to implement given binary nature of operator and parsing of function code.
- Intuitively easier to program as Derivative code is appended to normal evaluation code as in-built semantic rules for the parser.
- Allows convenient construction of syntax tree.
 Therefore easier to generate Computational Graph / Evaluation Trace.

Codebase design paradigm

Variables – New data type defined for necessary attributes.

Memory – Checkpoint methods for Taping Schemes specific to Neural Networks.

Optimisation

- Parser based Performed at compile time alongside other code optimisation.
- Reference Count Repeatedly used variables flagged to decrease memory usage.
- Evaluation Sweep Clearing Trace at appropriate intervals to efficiently utilise memory.
- Graph Methods Vertex Elimination / Matrix Chaining.

SCOPE AND LIMITATIONS

Hessian based Gradient Descent – Second Derivative optimisation algorithms.

 Activation Functions – Treat the activation functions of each neural layer as an elementary function.

 GPU enhanced Computations – Where Function evaluation can be parallelised, so can AD tool. Devise efficient hybrid sweep schemes.

SCOPE AND LIMITATIONS

High Dimensionality – requires distributed processing

 Performace Loss for Basic Network architectures. Hand-Written derivative code more efficient.

CONCLUSION

• The techniques discussed above provide guarantees on the reduction of computational complexity and memory efficiency over a general purpose AD tool.

• Reduce Prototyping time.

• Produce more legible, structured code.

REFERENCES

Recent Advances in Algorithmic Differentiation - Shaun Forth, Paul Hovland, Eric Phipps, Jean Utke, Andrea Walther

Evaluating Derivatives – Andreas Griewank

Automatic differentiation in machine learning: a survey – Baydin et al.

https://en.wikipedia.org/wiki/Automatic_differentiation

https://en.wikipedia.org/wiki/Artificial_neural_network

THANK YOU