ESTUDIOS SOBRE EQUILIBRIOS DE POLIANIONES

XIII. Polimerización de los teluratos en NaCl 1 M y 25° C

POR

FELIPE BRITO

Departamento de Química Inorgánica, Real Universidad Técnica, Estocolmo, Suecia.

Recibido el 9 de diciembre de 1964.

SUMMARY

The hydrolysis of telluric acid has been studied in 1M NaCl ionic medium. The IH+concentration was measured using a glass electrode. B, the total tellurium concentration and Z, the number of H+ split off per tellurium atom, were varied as follows: $(0.005 \text{ M}, \leqslant 0.8), (0.010, \leqslant 0.8), (0.046, \leqslant 0.5), (0.100, \leqslant 0.4)$ and $(0.200, \leqslant 0.3)$.

An analysis of the data by means of the computer program Letagrop (2), indicated tre following equilibria and stability constants $(B=Te(OH)_n)$:

The experiments are continued.

Esta nota concierne con las reacciones de condensación que tienen lugar en la alcalinización del ácido telúrico.

La formación de un complejo $B_q(OH)_p^{p-}$, designado más brevemente (p, q), puede ser formulada,

$$q B + p H_2 O \rightleftharpoons B_q (OH)_p^{p-} + p H^+$$

donde B representa H₆TeO₆.

Su constante de quilibrio viene definida por la expresión,

$$K_{pq} = [B_q (OH)_p^{p-}][B]^{-q}[H^+]^p$$
 [2]

donde los [] representan concentraciones, si se supone que en el medio iónico NaCl 1 M usado los coeficientes de actividad permanecen constantes (1).

A su vez, el «balance de masas» viene dado por las ecuaciones,

$$B = b + \Sigma \Sigma q K_{pq} b^q h^{-p}$$
 [3]

$${\rm BZ}\,(=h-{\rm H}-{\rm K_w}\,h^{-1})=\Sigma\Sigma\,q\,{\rm K_{pq}}\,b^{\rm q}\,h^{-\rm p} \eqno(4)$$

en las que B y H representan las concentraciones totales de H_6TeO_6 y de H^+ ; Z el número medio de OH^- ligados por H_6TeO_6 ; K_w , el producto iónico del agua; y h y b las concentraciones en equilibrio de H^+ y H_6TeO_6 .

Si se conoce B y H (análisis) y se mide h, los datos Z (log h, B) pueden ser analizados mediante las ecuaciones [3] y [4] hasta encontrar las mejores combinaciones (p, q, K_{pq}) que los satisfagan.

Los experimentos se llevaron a cabo manteniendo B constante y variando h por adiciones convenientes de una solución de H_6 TeO $_6$ en (H $^+$, Na $^+$)Cl 1 M con Z=0, a soluciones de H_6 TeO $_6$ en Na(Cl $^-$, OH $^-$) 1 M con Z>0, y viceversa. B fue variado entre los límites 5 mM<B<200 mM.

⁽¹⁾ BIEDERMAN, G., y SILLÉN, L. G.: Arkiv för Kemi, 5, 425 (1953).

h se midió por medio de la pila -Ag, AgCl/NaCl sat. AgCl/NaCl 1M// (solución en equilibrio)//electrodo de vidrio+cuyo potencial en mV viene dado a 25° C por la ecuación

$$E = E_0 + jh + 59.15 \log h$$
 [5]

Los parámetros E_0 y j se determinaron en la región donde Z=0, trazando $(E-59.15 \log h)$ frente a h.

Los datos Z (log h)_B fueron analizados en un computador por medio

del programa Letagropvrid (2).

La tabla I reúne los resultados de los cálculos realizados hasta ahora.

TABLA I

(p, q) (1, 1) (1, 2) (3, 3) (2, 3) (1, 3)	$-\log K_{ m pq}$				
	$7.30 \pm 0.04 \\ 6.10 \pm 0.07$	7.31 ± 0.02 6.24 ± 0.05 18.83 ± 0.08 $(K_{1,3} = 0)$	7.30 ± 0.02 6.30 ± 0.12 $\approx 18.9(>18.2)$ $\approx 12.6(>12.3)$	7.35 ± 0.02 6.30 ± 0.05 $\approx 20.0(>19.2)$	7.33 ± 0.02 6.25 ± 0.03 $K_{3,3} = 0)$
(2, 2)				$13,\!15\pm0.18$	13.23 ± 0.03
U.10 ²	1.94 (*)	0.458 (*)	0.426 (*)	0,268 (*)	0.566 (**)
$\sigma(Z)$	0.0150	0.0074	0.0073	0,0058	0.0070

(*) Calculados con datos: 5 mM < B < 200 mM y Z < 0.3. (**) Calculado con datos (B mM, Z): (5, <0.8); (10, <0.8); (46, <0.5); (100, <0.4) y (200, <0.3). Puesto que en este caso n, número de datos empleados, es mayor, U y $\sigma(Z)$ han aumentado.

 $\sigma(Z)$ es el error normal medio de Z; y $U=\Sigma(Z-Z_{calculado})^2$, suma de cuadrados de errores de Z, la función que la máquina trata de hacer mínima. Tanto U como $\sigma(Z)$ dan una idea de la bondad del ajuste con las hipótesis probadas. Las constantes se dan en la forma: $\log K \pm 3 \sigma(\log K)$, es decir: $\log K = \log K_M \pm 3/2 \log(K_M + \sigma(K))/(K_M - \sigma(K))$, para $\sigma(K) < 0.2 K_M$; y log $K \approx \log K_M$, para $\sigma(K) > 0.20 K_M$, donde K_M es el mejor valor de K y $\sigma(K)$, su desviación normal media (3).

La combinación de complejos(0,1), (1,1), (1,2) y (2,2) parecen ser los que mejor explican los datos analizados.

Deseamos testimoniar nuestro agradecimiento al profesor L. G. Sillén por su interés en este trabajo; a la Fundación Juan March y a la «Office of Scientific Research the Office of Aerospace Research, USA AF», bajo cuyos auspicios fue realizado; y en fin, a la «Swedish Board of Computing Machinery» por el uso del computador Besk.

⁽²⁾ SILLÉN, L. G.: Acta Chem. Scand., 16, 159 (1962). INGRI, N., y SILLÉN, L. G.: Ibidem, 16, 173 (1962).

⁽³⁾ DUNSMORE, H. S.; HIETANEN, S., y SILLEN, L. G.: Ibidem, 17, 2.644 (1963).