Classical and Modern Geometry Lecture Notes

Benjamin Cabalona Jr.

March 12, 2021

Contents

1	Origami Geometry	2
	1.1 30° - 60° - 90° Right Triangle by Paper Folding	2

1 Origami Geometry

1.1 30° - 60° - 90° Right Triangle by Paper Folding

First, we need a rectangular paper is needed to proceed. Next, follow the steps outlined below

- 1. Fold the paper lengthwise into 2 equal parts
- 2. Fold the upper right (upper left) corner such that it intersects with the line that separates the paper into 2 equal parts.

Figure 1: Resulting Fold

Figure 2: Code to Generate the Origami Animation

Proof. Consider the diagram below. Notice that the hypotenuse of $\triangle ABC$ is equal to the height of our paper say x (in this specific case, that is equal to 4). It is also clear, that the shorter leg is equal to $\frac{x}{2}$.

Now, borrowing from plane geometry, it follows that ΔABC is a 30-60-90 triangle.

That fact will imply the following:

- 1. $\angle CAB = 30^{\circ}$
- 2. $\angle DAC = 60^{\circ}$ since $\angle DAB$ is a right triangle
- 3. $\angle DAE = \angle EAD = \angle DEA = \angle AEC = 30^\circ$ since $\overline{\rm AE}$ is a bisector of $\angle DAC$ and $\angle DEC$
- 4. $\angle ADE = 60^{\circ}$ since $\triangle ADE$ is an isoceles triangle.

Figure 3: Code to Generate the Origami Animation

∴ ΔDAB is a 30° - 60° - 90° triangle since by contruction $\angle DAB$ is a right angle and we have shown that $\angle ADE = 60$ ° The sum of the angles must be 180° thereby forcing $\angle DBA = 30$ °.