预备

大数据分析的一条入门途径

——以拍拍贷风控模型预测为例

范方达

Kesci "魔镜杯" 风控算法大赛 涌泉队

2016.4

出发点

- 大数据是更多人可以理解的
- 大数据的方法也是更多人可以理解的
- 大数据没有祖传秘方——不要把曾经初学的我们拦在外面
- 这并不是唯一一个正确答案,而是恩典在面对每一个小小的 困难中的累积

- 为数据分析初学者提供一点点数据分析的思路
- 为Python初学者提供一点点Python处理数据的技巧
- 为机器学习过程遇到的难题提供一点点解决方案

预备

数据读取

数据摘要与清洗

模型选择

模型训练与评估

模型组合与预测

回顾

预备

预备

数据读取

数据摘要与清洗

模型选择

模型训练与评估

模型组合与预测

回顾

数据与目标

"魔镜杯"风控算法大赛复赛数据

样本

预备

- 训练样本:初赛训练集+初赛预测集+复赛训练集(8万)
- 预测样本:复赛预测集(1万)
- 自变量
 - ・主表(226个)
 - 登录信息(4个,但每个index有多条)
 - 用户更新信息 (3个,但每个index有多条)
- 预测变量Y: 每个index的6个月内贷款逾期情况(0-1)
- · 优化目标:预测变量Y在预测样本的AUC得分

代码平台

Python 3.5

预备

- Packages :
 - 代码笔记本: jupyter
 - 基础: numpy, scipy, pandas, matplotlib, time, re
 - 模型: sklearn, xgboost, keras (theano), hyperopt
- Windows下建议Anaconda,包含科学计算的众多常用包

预备

流程预览

预备

数据读取

数据摘要与清洗

模型选择

模型训练与评估

模型组合与预测

同时

数据读取

- Q: 数据集有一些不同的文件,怎样合成一个数据呢?
- A: 首先我们可以根据数据类型为它们重命名来分门别类
 - 项目名(PPD)可以做前缀,区分项目时一目了然
 - 主表(da)、历史记录(dah)、辅助(daa)、初赛预测列(day)
 - 训练集(t)、预测集(v)
 - 重复的可以通过字段和数字序号添加后缀标识
- 用pandas包批量读数据
 - pd.concat + map + pd.read_csv + 文件名的list
 - 记得读数据时将文件中表示空值的一些符号标记为空值
 - 通过主表DataFrame的fillna把初赛预测列填充好

历史记录处理

- · Q: 历史记录的两个表LogInfo和UserUpdate怎样使用呢?
- A: 通常地说,历史记录与主表建立联系的难点在于:
 - 每个index对应多条记录
 - 每条记录分属不同的事件类别
 - 各条记录时间有先后顺序
- 风控中,登录/信息上传的起始时间和频率对衡量借款人的 行为或许较重要。进一步,我们也可统计每类事件的频率
- 我们对此有解法:对历史记录按index来分组汇总(比如总 频率和起始时间),使每个index记录唯一,就可以与主表 接合了
 - 针对时间性问题:同时按index和时间分组计数/去重/...等
 - 针对类别性问题:同时按index和类别分组计数/去重/...等

数据批处理实现

这两个批量整理数据的组合非常实用,也是我们后续进行数据摘要与清洗的主力

- pd.concat + map + (function) + (list)
 - 逐行/逐列批量应用函数
 - axis = 0,按行:批量整理样本等
 - axis = 1, 按列:批量整理变量等
- pd.DataFrame: groupby + count/first/aggregate/...
 - 将行/列分组,逐组汇总数据
 - axis = 0,按行:整理分组样本等(如历史记录)
 - axis = 1,按列:整理系列变量等(如不同类别/时期的第三方信息变量)

预备

数据读取

数据摘要与清洗

模型选择

模型训练与评估

模型组合与预测

同时

数据摘要

- · Q: 当我整理好数据集之后, 我要做什么呢?
- A: 首先我们要从大局出发, 简化并理解数据特征。 具体地,可以通过循环/pd.concat+map对各变量处理汇总 成一个表格。各行是变量名(原数据的每一列),而各列的 内容有:
 - 变量是什么类型
 - 变量的空值/非空值数量
 - 变量出现频数前5大的值与数量,和其他值的数量(尾巴)
 - 数值变量的统计量:均值、方差、四分位数、最值

数据摘要展示:摘要前

```
2 2 2 广深中 0 2 2 1 1 29 四 南 O D D D O E E O E E O E E O 2 2 新進中 1 0 0 1 3 3 2 2 28 福不 O D D D O E E O E E O E E
                                                  2 2 湖:宣中 0 0 0 1 4 4 2 1 32 湖:宣 0 D D D
                                                  2 2福南中 0 0 0 1 2 2 1 133 江 不 0 D D D
                                                                    3 3 1 143 辽 锦: OD D D OE E
                                                                     4 4 2 1 24 Щ Т OD D D OE E E
                                                  2 2 内包中 1 1 0 0 2 2 1 1 33 内赤 0 D D D 0 E
                                                                     5 5 1 1 29 湖:荆; 0 D D D 0 E
                                                  1 1湖:武中 0 0 1 0 2 2 1 2 28湖:武 0 D D D 0 E
                                                                    3 3 1 1 24 湖 湘: 0 D D D
                                                                                           OE E
                                                                     6 4 3 1 27 福達: 0 D D D
                                                                                           OE E E
                                                               3 3 1 131果社: 0D D D OE E E
                                        2 0 0 7 0 2 2 北北中 1 0 1 1 2 2 2 138 内 不 0 D D D 0 E E E
                                  0 0 0 0 1 2 3 3 2 2 山(忻)中 0 0 0 1 2 4 2 126 山(不 0 D D D 0 E E E
18 # 1成:3忻州
                                                                    3 3 1 1 32 福三 0 D D D
                                                                     4 4 1 1 29 山 衛 0 D D D
                                                2 2 2 山衛中 1 0 1 0 3 3 1 137 (子) P 0 D D D 0 E
                                                  2 2 江泰中 0 0 0 1 4 4 2 134 江扬 0D D D 0 E
                                                                     5 3 1 124 山i大 0 D D
                                            0 0 0 1 1 不不不 0 0 0 1 3 3 2 129 福南 0 D D D 0 E E E
                                  0 0 0 0 0 1 4 3 2 2 云紅中 0
                                                                    4 4 2 1 26 云紅: 0 D D D D E
                       2 7 0 0 0 0 0 0 0 0 2 0 3 2 1 1福南中 0 0 0 1 4 4 2 123福三 0D D D 0 E E E
                   9 5 9 32 0 0 0 0 0 0 15 12 6 10 4 1 1 湖柳中 0
                                                               3 3 1 1 26 湖 郴; O D D D O E E E O E E E I I5 D O O O O O O 1
29 # 3常:4常州 0
                  2 2 2 11 3 0 0 0 0 0 0 4 0 5 2 1 1 江常中 1
                                                                    2 2 6 130 江常: 0 D D D D E E E DE E E I FI(D 0 0 0 0 0 0 0 2
          PPD dat 1
```

数据摘要展示:摘要后

4	A	В	C	D	E	F	G	Н)	K	L	M	N	0	P	Q	R	S	T	U	V	W
	Columns		type			min	25%	50%	75%	max			value 3	value 4	value 5			freq 3	freq 4	freq 5	freq oth		
	Education_Info1	89999		0.06	0.24	0	0	0	0	1	0					84408	5591				0	0	
	Education_Info2	89999									E	A		AQ	AN	84408	2886	2044		233	128	0	
	Education_Info3	89999									E	毕业	结业			84408	5416	175			0	0	
5	Education_Info4	89999	object								E	T	F	AR	V	84408	4281	791	209	182	128	0	
	Education_Info5	89999		0.03	0.18	0	0	0	- 0	1	0					87110	2889				0	0	
7	Education_Info6	89999									E	A	AM	AQ	U	87110	1640	1015	145	83	6	0	
8	Education_Info7	89999									E	不详				87110	2889				0	0	
9	Education_Info8	89999	object								E	T	不详	F	V	87110	2173	334		82	90	0	
0	ListingInfo		datetim	ne64[ns]							****	ппппп	*****	****	*****	1320	1093	1049	966	914	84657	0	
1	SocialNetwork_1	89999	int64	0.00	0.04	0	0	0	0	2	0	1	. 2			89891	101	7			0	0	
2	SocialNetwork_10	22293		298.74	ппппп	0	25	89	261	75009	0		. 2	4	5	687	329	301	269	264	20443	67706	
3	SocialNetwork_11	40	float64	10.88	58.41	0	0	0	0.25	368	0	1	368	48	- 6	30	4	1	1	1	3	89959	
4	SocialNetwork_12	22702	float64	0.01	0.10	0	0	0	0	1	0					22492	210				0	67297	
5	SocialNetwork_13	89999	int64	0.22	0.42	0	0	0	0	4	0	1	. 2	3	4	70454	19326	210	8	1	0	0	
6	SocialNetwork_14	89999	int64	0.06	0.24	0	0	0	0	3	0	1	. 2	3		84426	5542	29	2		0	0	
7	SocialNetwork_15	89999	int64	0.03	0.16	0	0	0	0	2	0	1	. 2			87506	2491	2			0	0	
8	SocialNetwork_16	89999	int64	0.02	0.13	0	0	0	0	1	0	1				88465	1534				0	0	
	SocialNetwork_17	89999		0.25	0.44	0	0	0	1	3	0		. 2	3		67297	22620	80			0	0	
10	SocialNetwork_2	89999	int64	0.03	0.20	0	0	0	0	2	0	1	. 2			87558	2061	380			0	0	
1	SocialNetwork_3	2441	float64	*****	ппппп	0	9	47	221	1E+06	1			5		200	66			57	1998	87558	
2	SocialNetwork_4	2441	float64	217.29	378.52	0	30	86	222	3000	0	30	1	2	28	107	31	30	29	23	2221	87558	
3	SocialNetwork_5	2439	float64	418.56	ппппп	0	8	64	306	37924	0	1	. 2	3	4	215	98	81	56	40	1949	87560	
4	SocialNetwork_6	2438	float64	29.31	195.94	0	0	0	3	4870	0	1	. 2	3	4	1392	239	131	71	66	539	87561	
5	SocialNetwork_7	2493	float64	0.07	0.26	0	0	0	0	1	0	1				2313	180				0	87506	
6	SocialNetwork_8	22211	float64	139.76	ппппп	0	36	74	124	129496	0	1	. 2	70	50	611	229	198	178	172	20823	67788	
7	SocialNetwork_9	22244	float64	142.69	230.23	0	29	74	164	4304	0	2	. 3	4	6	445	358	293	269	262	20617	67755	
8	ThirdParty_Info_Pe	89480	float64	19.47	32.72	0	1	7	24	790	0	1	. 2	3	4	20445	6129	4777	3781	3202	51146	519	
	ThirdParty_Info_Pe	89480	float64	0.97	1.63	0	0	0	1	28	0	- 1	. 2	3	4	50411	18647	8863	5007	2678	3874	519	
-	PPD su			(+)		-	-					_	-		4								

这样,我们可以通过表格的信息来对变量特性一目了然,并能帮助我们进行后续清洗工作。

数据清洗:目的

- Q: 为什么我们要进行数据清洗?
- A: 模型向往的是分布良好的数值,数据却有着骨感的现实
 - 空缺、类别(字符串)..............模型陷进了Bug中

 - 时间、地理名称...... 模型在人类知识面前踌躇不进
- 我们要为模型铺平数据的道路, 使模型能在其上飞驰
- 整个数据分析流程的重中之重

数据清洗:思路

- Q: 这么多变量,真的需要我一个一个看来清洗吗?
- A: 不必的,我们要搭建通用的5步法先后处理掉清洗工作:
 - 1. 数值变量保留,**非数值变量**全部转为数值变量:
 - 有额外信息的非数值变量可以转化为根据先验知识得到的数值中(比如时间转为年、月、日、星期、以及相对天数等, 地名转为经纬度和城市等级,定序变量保留序数等)
 - 其余非数值变量全部用OneHotEncoder转为0-1哑变量
 - 2. 对**一系列相似变量**可取求和、中位数、方差、最值、空值数等统计量取代原变量(比如几个省份、城市、不同时期的第三方信息变量等)。选取统计量重精不重多,尽量互相独立
 - 3. 删掉空值/同一值占绝大比例(比如99.9%)的稀疏变量
 - 4. 以相关矩阵的下三角阵中包含接近±1来筛选删除**共线变量**
 - 5. 用中位数(或平均数)填充**空值**,再进行标准化

数据清洗:实践

- Q: 什么时候该选用中位数而不是平均数填充空值呢?
- A: 数据分布不对称时,中位数比平均数更能保持排序关系
- Q: 我该怎样批量清洗这些变量呢?
- A: 我们可继续让批量转换pd.concat+map组合和分组汇总 groupby+aggregate组合大显身手,而我们只需做几个对 变量执行不同清洗功能的函数,然后把各变量按类别分类扔 给它们
- 当我们完成了清洗的工作后,即将踏入建模阶段

预备

预备

数据读取

数据摘要与清洗

模型选择

模型训练与评估

模型组合与预测

Logistic Regression

- Q: 如果我刚入门机器学习,应该从什么模型开始?
- A: Logistic Regression:最简洁、快速、稳健的做法,可解释性强,适于工业界
- 但由于比赛以精度为标准,由于Logistic Regression对变量关系的线性限制,难以达到精度最优
- 但是我们在建模时可以充分发挥它的特性:
 - 通过增加L2罚函数减少过拟合
 - 作为基准, 对数据清洗效果和模型表现进行快速评估
 - 与结构不同的模型加权组合预测,补充原模型精度和稳健性

XGBoost(梯度强化树)

- Q: 如果我对机器学习已经有所了解, 打算以精度为目标, 用什么模型效果好?
- A: 考虑这是一个非线性的分类问题,变量成分较多元,样 本和变量间无固定模式关联(图像、语音、时间序列等)。 如果以精度为目标,综合考虑稳健性、速度、通用性等因素 可以首选XGBoost
- Q: XGBoost的原理是什么?有哪些重要参数?
- A: XGBoost—种梯度强化树(Gradient Boosting Trees)。 好比用大石头雕刻人像,每棵决策树都凿掉一些石头(残 差),然后对剩下的石头继续雕刻,直到雕出人形
 - 步长(eta)雕刀:大斧子 vs. 小凿子
 - 变量抽样(colsample bylevel)匠师:项羽 vs. 刘邦
 - 深度(depth)刀法:平推 vs. 直钻

Keras (神经网络)

- Q: 如果我对XGBoost的精度仍不满足,想达到更好的预测效果,该如何做?
- A: 可以尝试神经网络Keras , 并把XGBoost与多种模型组合
- XGBoost的出发点是各变量完全独立,而从决策树的二分 关联叠加向真实关联趋近;而神经网络的出发点是各变量充 满复杂的非线性关联,而不断去优化网络权重向真实关联趋 近。两种模型结构具有较高的互补性
- 由于神经网络内部结构复杂,寻找最优解困难,除了合理搭建网络结构、优化参数之外,对数据建议把X各变量标准化为正态分布。
 - 目的:去除影响神经网络训练的有偏分布和极端值
 - 实现方法:可以通过rank和正态分布的百分位函数复合
 - 在本数据集能明显提高神经网络和LR的效果

模型对比

- · 精度以相同的10-folds交叉验证为准
- 训练样本8万,变量经清洗后共389个,正态分布标准化
- 计算平台: Intel Core i5 4300U 双核 2.5 GHz, 8 GB 内存

模型	LR	XGBoost	Keras
类型	逻辑回归	梯度强化树	神经网络
平均精度(AUC)	0.775	0.787	0.771
最差精度(AUC)	0.759	0.768	0.753
单模型时间(s)	8	350	400
调参个数	2	8	10+
可解释性	好	中	水平不行
支持分布式	是	是	否

预备

数据读取

数据摘要与清洗

模型选择

模型训练与评估

模型组合与预测

同时

交叉验证与模型训练

- · Q: 为什么要用交叉验证?怎样用?
- A: 较比用单训练预测集建模,交叉验证的优势主要有:
 - 更准确地估计模型的预测精度
 - 可以预估模型预测效果的区间范围
 - 减少模型优化过程中对单验证集的过拟合情况
- 以10-folds为例做交叉验证:
 - 1. 把数据按列分成X和Y(预测目标列为Y,其他的列为X)
 - 2. 把样本行的index随机拆成10份保存起来
 - 3. 每次取1份index作验证集,另外9份index粘起来作训练集,以取的X和Y的训练和验证集训练模型,把模型保存起来
 - 4. 依次取10组不同的index , 得到一组10个模型
 - 5. 预测时用10个模型预测结果取平均

模型评估

- · Q: 模型训练的过程中, 我们如何评价模型的效果?
- A: 我们可以从验证集分数和训练时间两个角度予以评价。 其中交叉验证的验证集分数包含着模型效果的更多信息:
 - 均值:反映模型精度

 - 箱线图(box-plot):可视化地展现验证分数的分布规律并发现异常情况

变量评估

- Q:我们该如何了解Y受哪些变量影响呢?
- A:可以用XGBoost判断变量重要性,再用LR看影响方向
 - 线性影响: Logistic Regression的系数来评估
 - 正负号表示对Y值的正影响或负影响
 - (变量X标准化后)系数绝对值越高影响越大
 - 受共线性影响大,可能使变量与Y虚假相关
 - 非线性影响:XGBoost各变量的相对频率来评估
 - 可用 fscore Mean(fscore) 计算相对频率, fscore为XGB模型 get_fscore得到的树分支挑选各变量的频数
 - 相对频率大于1的为在模型中明显有效的变量,远小于1则为较不重要的变量
 - 受共线性影响小, 稳健性高

变量评估展示

如图为XGB变量相对频率按组汇总,可据此改进我们的

• 数据收集:增加对重要变量的收集

• 变量处理:针对重要变量在模型清洗阶段进一步转换组合

参数优化

- · Q: 如何进行参数优化?怎么选取初始值?
- A: 模型调参是非常考验耐心和时间的过程
 - 1. 在调参前,首先要理解模型和参数的含义,这步非常关键
 - 先用单数据集,从默认值开始, 手工逐个调参熟悉模型, 小范围用等差数列, 大范围用等比数列, 确定合理参数范围
 - 3. 确定大致范围后,可以用交叉验证+自动搜索来得到最优参数,如Python的HyperOpt包
- 如果模型训练是以10-folds验证的话,我们可以用5-folds 交叉验证来自动搜索寻找最优参数
 - 节约调参时间
 - 数据集不同,减少对交叉验证结果的过拟合
- 在找到最优参数后,我们重新在原交叉验证集上用最优参数 训练模型,至此模型训练阶段结束

预备

数据读取

数据摘要与清洗

模型选择

模型训练与评估

模型组合与预测

模型组合

当训练优化好各组交叉验证模型后,就可将各组模型**加权平均**预测了,比如我们这里使用XGBoost,Keras和LR三组模型加权平均,并使用HyperOpt取得最优加权权重

- Q: 为什么要使用模型加权平均而不是最优模型预测?
- A: 数学上,如果一个无偏模型的预测方差为 V_1 ,当我们加入另一个无偏而完全独立的模型,该模型预测方差为 V_2 ,当我们对两模型的预测结果加权平均取最优解时,预测方差会变成原 V_1 的 $\frac{V_2}{V_1+V_2}$ 倍
- 当然因为实际数据集和模型结构所限,真实的模型往往是有偏的,而只有一小部分相互独立,因此改进效果并没有理论上那样明显,但至少是一种比较稳健的方法
- 预测提交时,我们先对三组模型的交叉验证预测Y分别算术 平均,再把这三个Y照权重加权平均,就可以提交了

效果展示

- 不同模型组合在同一10-folds交叉验证集上的得分分布
- 训练样本8万,变量经清洗后共389个,正态分布标准化
- 最优权重:XGB+LR=90:10, XGB+Keras+LR=75:20:5
 - Keras虽然预测精度较低,但结构互补进一步改善模型效果

预测反馈

- Q: 为什么排行榜上的结果要比交叉验证的结果要好/差?
- A: 通常来说,预测的结果稍可能比交叉验证略好,原因是 在不同数据集的交叉验证模型取平均形成部分互补减小误差
- 当然,因为预测集数据分布有随机性,预测效果的区间大致可以通过交叉验证的均值 $\pm \frac{2}{\sqrt{K}}$ 标准差来估算(K-folds)
- 我们也要在全程中注意避免过拟合,包括:
 - 避免将Y的真值/预测信息在数据清洗或建模时引入到X中
 - 模型优化时采用另外划分的交叉验证集
 - 尽量能说清所做每一步处理的必要性和通用性
 - 注意:反复尝试变量组合提高验证集分数时,可能造成过拟合

预备

回顾

流程回顾

回顾

流程思想要点

- 为数据建模逐步搭建通用的函数(清洗、拆分、训练、优化等),将整个流程尽量自动化、可重复、可移植
- 注意对数据建模的整个过程进行评估(时间、复杂性、过拟 合等),减少不必要的中间环节
- 清洗数据时,构造的人工变量要少而精,在相互独立和完备 覆盖之间取得平衡,从而为模型增加有效信息帮助预测

改进潜力

- 当我们完成所有数据建模的必要工作时,在有需要而且有资源足够的前提下,可以在当前预测精度上进一步改进
 - 数据清洗:对预测Y较重要的变量之间,可尝试不同种类的组合变换(四则运算、各种分布变换、系列变量的各类统计量等),增加模型可以发掘的有效信息
 - 模型选择:可引入更多种类的模型,如随机森林,不同结构 (层数、激活函数等)的神经网络等,改善模型互补性
 - 参数优化:减小梯度模型步长,在更多参数维度中搜索最优

但是

- 会继续指数级增加所需时间、精力、计算量
- 精度提升和算法的通用性改进会明显减少
- 可能陷入为改进而改进的循环中
- 直到机器学习界的AlphaGo取代人工劳作的数据分析师

局限与反思

- 同时,我们目前所做的数据模型是很有限的:
 - 数据的预测局限:当试图穷尽数据处理、模型、调参等方法时,投入时间、复杂度与计算量会呈现指数级增长,然而往往仅能取得1%,甚至0.1%的提升,与真理相去仍然甚远
 - 模型的功能局限:模型只是指引决策的参考,却不能为它的 决策本身进行价值判断和承担责任
 - 模型的反馈局限:模型在欠拟合的经济/数据体系中发挥正面作用,当经济/数据体系已经过拟合,模型和体系的系统性风险会加倍扩大(金融危机、评级垄断、高频交易、...)
- 我们到目前所学习与创作的,只是浩如烟海的世界中一块小小的砖瓦,我们生命的盼望却不在这里
- 愿恩惠平安从主基督耶稣临到所见的人

神爱世人,甚至将他的独生子赐给他们,叫一切信他的,不至灭亡,反得永生。——约翰福音3章16节