INSTRUCTOR SOLUTION for HW2

Collaboration Statement:

Total hours spent: 3 hour

We consulted the following resources:

- Bishop's PRML textbook
- Murphy's 2012 textbook

Links: [HW2 instructions] [collab. policy]

Contents

1a:	Solution																	2
1b:	Solution																	3
2a:	Solution																	4
3a:	Solution																	5
3b:	Solution																	6
3c:	Solution																	6
3d:	Solution																	7

1a: Problem Statement

Compute the expected value of estimator $\hat{\sigma}^2(x_1, \dots x_N)$, where

$$\hat{\sigma}^2(x_1, \dots x_N) = \frac{1}{N} \sum_{n=1}^N (x_n - \mu_{\text{true}})^2$$
 (1)

1a: Solution

The desired expectation is:

$$\mathbb{E}_{x_n \sim \mathcal{N}(\mu_{\text{true}}, \sigma_{\text{true}}^2)} \left[\hat{\sigma}^2(x_1, \dots x_N) \right] = \mathbb{E}_{x_n \sim \mathcal{N}(\mu_{\text{true}}, \sigma_{\text{true}}^2)} \left[\frac{1}{N} \sum_{n=1}^N (x_n - \mu_{\text{true}})^2 \right]$$
(2)

Expanding the quadratic, we obtain:

$$= \mathbb{E}_{x_n \sim \mathcal{N}(\mu_{\text{true}}, \sigma_{\text{true}}^2)} \left[\frac{1}{N} \sum_{n=1}^{N} (x_n^2 - 2x_n \mu_{\text{true}} + \mu_{\text{true}}^2) \right]$$
(3)

Applying linearity of expectations to bring the expectation inside the sum, we have:

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}[x_n^2] - \mathbb{E}[x_n \mu_{\text{true}}] + \mathbb{E}[\mu_{\text{true}}^2]$$
 (4)

Because μ_{true} is a *constant* wrt our random variables x, so we can simplify to:

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}[x_n^2] - \mathbb{E}[x_n] \mu_{\text{true}} + \mu_{\text{true}}^2$$
 (5)

Next, we use two facts about Gaussian random variables: $\mathbb{E}[x_n] = \mu_{\text{true}}$ and $\mathbb{E}[x_n^2] = \mu_{\text{true}}^2 + \sigma_{\text{true}}^2$. Substituting these in, we have

$$= \frac{1}{N} \sum_{n=1}^{N} \mu_{\text{true}}^2 + \sigma_{\text{true}}^2 - 2\mu_{\text{true}}^2 + \mu_{\text{true}}^2$$
 (6)

Simplifying, all μ_{true} terms cancel and we find that the expected value of the estimator is the true variance:

$$= \frac{1}{N} \sum_{n=1}^{N} \sigma_{\text{true}}^2 = \sigma_{\text{true}}^2 \tag{7}$$

1b: Problem Statement

Using your result in 1a, explain if the estimator $\hat{\sigma}^2$ is biased or unbiased. Explain why this differs from the biased-ness of the maximum likelihood estimator for the variance, using a justification that involves the mathematical definition of each estimator. (Hint: Why would one be lower than the other?).

1b: Solution

This estimator is *unbiased*. Its expected value of this estimate of the variance parameter is equal to the true parameter we are trying to estimate.

In contrast, consider the ML estimator of variance:

$$\sigma_{ML}^{2}(x_{1}, \dots x_{N}) = \frac{1}{N} \sum_{n=1}^{N} (x_{n} - \mu_{ML})^{2}$$
(8)

As shown in the textbook (and in the lecture notes), this estimator is *biased*: its expected value is $\mathbb{E}[\sigma_{\text{ML}}^2] = \frac{N-1}{N}\sigma_{\text{true}}^2$, which is slightly smaller than the true variance: fracN-1N $\sigma_{\text{true}}^2 < \sigma_{\text{true}}^2$

Comparing the two estimators, both compute the sum of squared errors between a mean value μ and each training point x_n . The only difference is whether we use μ_{true} or μ_{ML} . The estimator μ_{ML} is chosen to *maximize likelihood* (equivalently, minimize sum-of-squared-errors) for the given dataset of size N. Thus we can always be sure that μ_{ML} leads to a smaller sum-of-squared errors (otherwise by counterexample μ_{true} would be a better ML estimator for μ). So we know:

$$\sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2 \le \sum_{n=1}^{N} (x_n - \mu_{\text{true}})^2$$
 (9)

Based on this analysis, it makes sense that the ML-estimated variance is typically underestimated: $\sigma_{\text{ML}}^2 \leq \sigma_{\text{true}}^2$, and really cannot be overestimated. Thus, using the ML-estimate of the mean leads to bias in the ML-estimate of the variance.

2a: Problem Statement

Suppose vector r.v. $x \in \mathbb{R}^M$ has the following log PDF function:

$$\log p(x) = \mathbf{c} - \frac{1}{2}x^T A x + b^T x \tag{10}$$

where A is a symmetric positive definite matrix, b is any vector, and c is any scalar constant. Show that x has a multivariate Gaussian distribution.

2a: Solution

Strategy: transform a known Gaussian PDF into a similar form as above.

Suppose we have a Gaussian random variable with precision matrix S (symmetric, positive definite), and mean vector μ . We could rewrite the log PDF as:

$$\log p(x) = \operatorname{const} - \frac{1}{2}(x - \mu)^T S(x - \mu)$$

$$= \operatorname{const} - \frac{1}{2}\left(x^T S x - \mu^T S x - x^T S \mu + \mu^T S \mu\right) \quad \text{By expanding the quadratic}$$

$$= \operatorname{const} - \frac{1}{2}\left(x^T S x - 2\mu^T S x + \mu^T S \mu\right) \quad \text{By symmetry of } S.$$

$$= \operatorname{const} - \frac{1}{2}\left(x^T S x - 2\mu^T S x\right) \quad \text{Gather } \mu^T S \mu \text{ into constant}$$

$$= \operatorname{const} - \frac{1}{2}x^T S x - (S\mu)^T x \quad \text{Simplifying algebra}$$

where $(S\mu)^T = \mu^T S$ by definition of transpose of product when S is symmetric.

Now, let us define two new symbols (remember to read \triangleq as "is defined as")

$$A \triangleq S$$
, A is an $M \times M$ symmetric, positive definite matrix (12) $b \triangleq S\mu$, b is a $M \times 1$ column vector

Using these symbols, we can re-write our last line above as

$$\log p(x) = \operatorname{const} - \frac{1}{2}x^T A x - b^T x$$

and we have arrived at our desired result.

BONUS: we can write S, μ in terms of A, b:

$$S = A, \qquad \mu = S^{-1}b = A^{-1}b$$
 (13)

3a: Problem Statement

Show that we can write $S_{N+1}^{-1} = S_N^{-1} + vv^T$ for some vector $v \in \mathbb{R}^M$.

3a: Solution

After observing N examples, we can write S_N as

$$S_N^{-1} = S_0^{-1} + \beta \Phi_{1:N}^T \Phi_{1:N}$$
 by the definition of S_N (14)
$$= S_0^{-1} + \beta \sum_{n=1}^N \underbrace{\phi(x_n)\phi(x_n)^T}_{\text{outer product, shape } M \times M}$$

using the fact that matrix $\Phi_{1:N}$ is made up by stacking up feature vectors $\phi(x_n) \in \mathbb{R}^M$ as rows, and using the view of a matrix multiply as a sum of outer products.

Similarly, after observing N+1 examples (one more than above) we can write:

$$S_{N+1}^{-1} = S_0^{-1} + \beta \sum_{n=1}^{N+1} \phi(x_n) \phi(x_n)^T$$
 (15)

Rewriting the sum over N+1 examples into two terms, a sum over the first N examples and a separate last example, we have:

$$S_{N+1}^{-1} = \underbrace{S_0^{-1} + \beta \sum_{n=1}^{N} \phi(x_n) \phi(x_n)^T}_{S_N^{-1}} + \beta \phi(x_{N+1}) \phi(x_{N+1})^T$$
(16)

Splitting $\beta = \sqrt{\beta}\sqrt{\beta}$, we can rewrite this in the desired form of the S_N term plus an outer product of a vector v:

$$S_{N+1}^{-1} = S_N^{-1} + \left(\sqrt{\beta}\phi(x_{N+1})\right) \left(\sqrt{\beta}\phi(x_{N+1})\right)^T$$
 (17)

$$= S_N^{-1} + vv^T, \quad v \triangleq \sqrt{\beta}\phi(x_{N+1})$$
 (18)

We've now defined S_{N+1}^{-1} in terms of S_N^{-1} and an M-dimensional vector v, as desired.

3b: Problem Statement

Next, consider the following identity, which holds for any invertible matrix A:

$$(A + vv^{T})^{-1} = A^{-1} - \frac{(A^{-1}v)(v^{T}A^{-1})}{1 + v^{T}A^{-1}v}$$
(19)

Substitute $A = S_N^{-1}$ and v as defined in 3a into the above. Simplify to write an expression for S_{N+1} in terms of S_N .

3b: Solution

Substituting $A = S_N^{-1}$ (and thus $A^{-1} = S_N$), we have

$$(S_N^{-1} + vv^T)^{-1} = S_N - \frac{(S_N v)(v^T S_N)}{1 + v^T S_N v}$$
(20)

Recalling that $S_{N+1}^{-1} = S_N^{-1} + vv^T$, we rewrite the left-hand side as:

$$S_{N+1} = S_N - \frac{1}{1 + v^T S_N v} (S_N v) (v^T S_N)$$
(21)

We've now defined S_{N+1} in terms of S_N (and v), as desired.

3c: Problem Statement

Show that
$$\sigma_{N+1}^2(x_*) - \sigma_N^2(x_*) = \phi(x_*)^T [S_{N+1} - S_N] \phi(x_*)$$

3c: Solution

We start by restating the general definition of the predictive variance after seeing training sets of size N and N+1 examples:

$$\sigma_N^2(x_*) = \beta^{-1} + \phi(x_*)^T S_N \phi(x_*)$$

$$\sigma_{N+1}^2(x_*) = \beta^{-1} + \phi(x_*)^T S_{N+1} \phi(x_*)$$
(22)

Taking the difference (second line minus first line), the β terms cancel, and we have

$$\sigma_{N+1}^2(x_*) - \sigma_N^2(x_*) = \phi(x_*)^T (S_{N+1} - S_N) \phi(x_*)$$
(23)

which achieves our goal.

3d: Problem Statement

Finally, plug your result from 3b defining S_{N+1} into 3c, plus the fact that S_N must be positive definite, to show that:

$$\sigma_{N+1}^2(x_*) \le \sigma_N^2(x_*) \tag{24}$$

This would prove that the predictive variance *cannot increase* with each additional data point. In other words, we will never be "less certain" if we gather more data.

3d: Solution

From 3b, we know $S_{N+1} - S_N = \frac{-1}{1+v^T S_N v} (S_N v) (v^T S_N)$. Plugging into 3c gives

$$\sigma_{N+1}^2(x_*) - \sigma_N^2(x_*) = \frac{-1}{1 + v^T S_N v} \cdot \phi(x_*)^T \left[(S_N v)(v^T S_N) \right] \phi(x_*)$$
 (25)

where we've simplified by bringing the scalar term out front. Second, using the associativity of matrix-vector multiplication, we can regroup the multiplies as:

$$\sigma_{N+1}^2(x_*) - \sigma_N^2(x_*) = \frac{-1}{1 + v^T S_N v} \left(\phi(x_*)^T S_N v \right) \left(v^T S_N \phi(x_*) \right)$$
 (26)

Because S_N is symmetric, we know scalar $a^T S_N b = b^T S_N a$ for any vectors a and b, and thus our difference of variances becomes a product of two scalars:

$$\sigma_{N+1}^{2}(x_{*}) - \sigma_{N}^{2}(x_{*}) = \frac{-1}{1 + v^{T}S_{N}v} \left(\phi(x_{*})^{T}S_{N}v\right) \left(\phi(x_{*})^{T}S_{N}v\right)$$

$$= \frac{-1}{\underbrace{1 + v^{T}S_{N}v}_{\text{always}<0}} \underbrace{\left(\phi(x_{*})^{T}S_{N}v\right)^{2}}_{\text{always}\geq0}$$

$$< 0$$

$$(27)$$

The first scalar is always *negative*, because the numerator is negative and the denominator is positive (at least 1). Recall that S_N is positive definite, thus by definition, $v^T S_N v \ge 0$ for any non-zero vector v.

The second scalar is *always non-negative*, because it is a square of the scalar $(\phi(x_*)^T S_N v)$ and squares are never negative.

Thus, together, the product of the first (negative) and second (non-negative) will be non-positive. This implies σ_{N+1}^2 is always less than or equal to σ_N^2 , as desired.