《线性代数》模拟题二

考试方式: 闭卷 学分: 2.5 考试时间: 110 分

一、 阅卷人 得分

填空题(每空 3 分, 共 30 分)

- 1. 排列 3421 的逆序数为
- 2. 设 A 为三阶方阵, A^* 为其伴随矩阵, |A| = 2, 则 $|3A^*| = _____$.
- 3. 设n个未知量的齐次线性方程组Ax=0,R(A)=r,则Ax=0有非零解的充要条件 .
- 4. 设B可逆,R(C) = 3, A = BC,则矩阵A的秩 $R(A) = _____$.
- 5. 设 $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$,则AB =_____.
- 6. 设 1,2,3 是三阶矩阵 A 的特征值,则 $|A^2-5A|=$ _______
- 7. 设方阵 A 满足 $A^2 = A$, 则 $(A 2E)^{-1} =$ ______(用 A 的多项式表示).
- 8. $A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & -2 \\ 1 & -2 & 1 \end{pmatrix}$, 则 $A_{12} + A_{22} + A_{32} = \underline{\hspace{1cm}}$.
- 9. 设 α_1 , α_2 , …, α_s 是非齐次线性方程组Ax = b的解,若 $C_1\alpha_1 + C_2\alpha_2 + \cdots + C_s\alpha_s$ 也是Ax = b的一个解,则 $C_1 + C_2 + \cdots + C_s =$ _____
- 10. 若 α_1 , α_2 , α_3 , α_4 线性无关,则 α_1 + α_2 , α_2 + α_3 , α_3 + α_4 , α_4 + α_1 线性______.

阅卷人 得分

二(1,2,3)、计算题(30分)

$$1$$
、(8分)计算行列式 $D = \begin{vmatrix} 4 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 \\ 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 4 \end{vmatrix}$.

2、
$$(10 \, \text{分})$$
 设 $A = \begin{pmatrix} 2 & 1 & -3 \\ 1 & 2 & -2 \\ -1 & 3 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ -2 & 5 \end{pmatrix}$, 求解矩阵方程 $AX = B$.

3、(12分) 求非齐次线性方程组的通解及其对应的齐次线性方程组的基础解系.

$$\begin{cases} x_1 - 5x_2 + 4x_3 - 3x_4 = 11 \\ 5x_1 + 3x_2 - x_4 = -1 \\ 2x_1 + 4x_2 - 2x_3 + x_4 = -6 \end{cases}$$

	阅卷人	得分	>	\	(a. ())
ĺ			二(4,5)、	计昇题	(24分)

4、 (10 分) 已知矩阵
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{bmatrix}$$
 与 $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{bmatrix}$ 相似.求 x 与 y .

5、(14 分) 设二次型
$$f(x_1, x_2, x_3) = 5x_1^2 + 5x_2^2 + 3x_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$$
,

(1) 写出 f 对应的对称矩阵 A; (2) 求一个正交变换,化二次型为标准型.

阅卷人	得分	— \TDDBT (4 (/\)
		三、证明题(16 分)

1、(8 分)向量组
$$A: \alpha_1 = (0,1,1)^T$$
, $\alpha_2 = (1,1,0)^T$; $B: \beta_1 = (-1,0)^T$,
$$\beta_2 = (1,2,1)^T$$
, $\beta_3 = (3,2,-1)^T$.证明 A 组与 B 组等价.

(8分) 证明:设A 是n 阶方阵,若存在正整数k,使得线性方程组 $A^k x = 0$ 有解向量 α ,且 $A^{k-1} \alpha \neq 0$.证明:向量组 α . $A \alpha$ $A^{k-1} \alpha$ 是线性无关的.