Nondeterministic Bottom-Up Parsing

Recap: Leftmost analysis with NTA

Match "b"

 We have seen the nondeterministic Top-Down parsing automaton that gives the leftmost analysis of an input

 ε , ε , 23452467)

```
Example
              E \rightarrow E + T \mid T
                                     (1,2)
                     T \to T * F \mid F \tag{3,4}
                     F \to (E) \mid a \mid b (5, 6, 7)
  on input (a) * b
                          ((a) * b, 	 E, \varepsilon)

((a) * b, 	 T, 2)

((a) * b, 	 T * F, 23)

((a) * b, 	 F * F, 234)

    Initial state

    Rule 2 to expand E

    Rule 3 to expand T

   • Rule 4 to expand T
   • Rule 5 to expand E ((a) * b, (E) * F, 2345)
                              (a) * b, E) * F, 2345
   Match the "("
   • Rule 2 to expand E ( a) * b, T) * F, 23452)
   • Rule 4 to expand T (a) * b, F) * F, 234524)
                                 (a) * b, a) * F, 2345246
   • Rule 6 to expand F
                                 ()*b,)*F, 2345246)
   • Match "a"
                                 ( * b, * F, 2345246)
( b, F, 2345246)
( b, b, 23452467)

    Match ")"

    Match "*"

   • Rule 7 to expand F
```

Bottom-up parsing

Idea: Parse from the leafs of the syntax tree toward the root

■ Example
$$E \to E + T \mid T$$
 (1, 2)
 $T \to T * F \mid F$ (3, 4)
 $F \to (E) \mid a \mid b$ (5, 6, 7)
on input $(a) * b$

(video)

Nondeterministic Bottom-Up Automaton (NBA)

- Similar to NTA, we define the NBA for $G = < \Sigma, N, P, S >$ by
 - Input alphabet Σ
 - Pushdown alphabet $X = N \cup \Sigma$
 - Output alphabet U = the rule numbers 1,2,3,...
 - States $\Sigma^* \times X^* \times U^*$
 - Two types of transitions for $w \in \Sigma^*$, $\alpha \in X$, $z \in U$:
 - **Reducing** using rule $A \to \beta$ with number i: $(w, \alpha\beta, z) \to (w, \alpha A, z i)$
 - Shifting of terminal symbol $a \in \Sigma$: $(aw, \alpha, z) \rightarrow (w, \alpha a, z)$
 - Initial state $(w, \varepsilon, \varepsilon)$ for $w \in \Sigma^*$
 - Final state (ε, S, u) where $u \in U^*$
- Theorem (without proof): Running the NBA on input w gives the reversed rightmost analysis u of w

Example: Reversed Rightmost Analysis with NBA

$$E \to E + T \mid T$$
 (1, 2)
 $T \to T * F \mid F$ (3, 4)
 $F \to (E) \mid a \mid b$ (5, 6, 7)

■ Running the NBA on w = (a) * b

- Initial state $((a) * b, \varepsilon, \varepsilon)$
- Shift (a) * b, (ϵ)
- Shift (a, ε)
- Rule 6 to reduce a to F ()*b, (F, 6)
- Rule 4 to reduce F to T () * b, (T, 64)
- Rule 2 to reduce T to E () * b, (E, 642)
- Shift (*b, (E), 642)
- Rule 5 to reduce (E) to F (*b, F, 6425)
- Rule 4 to reduce F to T (* b, T, 64254)
- Shift (b, T*, 64254)
- Shift $(\varepsilon, T*b, 64254)$
- Rule 7 to reduce b to F (ε , T*F, 642547)
- Rule 3 to reduce T * F to T (ε , T, 6425473)
- Rule 2 to reduce T to E (ε , E, 64254732)

Nondeterminism

- Like NTAs, NBA parsing can be nondeterministic:
 - If we have a rule $A \rightarrow a$ and the state $(bw, \alpha a, z)$, should we reduce a to A or shift b?
 - If we have rules $A \to ab$ and $B \to b$ and the state $(w, \alpha ab, z)$, should we reduce ab to A or b to B?
 - If we have rules $A \to a$ and $B \to a$ and the state $(w, \alpha a, z)$, should we reduce a to A or to B?
 - If we have rule $A \to S$ (where S is the initial symbol) and the state (ε, S, z) , should we stop parsing or reduce S to A?
- The last case can be easily fixed:

For grammars like

$$S \rightarrow \cdots$$
 $A \rightarrow S$

we add a new initial symbol S' and rule $S' \to S$

This is called a *start-separated* grammar. No further reduction possible after reaching (ε, S', z)