

Chapter 8 – Terrestrial radio navigation

8 Terrestrial radio navigation / Contents

- 8.1 Introduction
- 8.2 Point source systems
- 8.3 Area-based systems
- 8.4 Aircraft landing systems
- 8.5 Future of radio navigation systems

Appendix

8 Terrestrial radio navigation (1)

8.1 Introduction

- Main objective: position fixing
- Radio navigation uses radio waves transmitted by known points to determine the position of a roving receiver
- Measurements used: bearings, distances, pseudoranges
- Positioning uses lines of position (LOP) → Sect. 3.2.3
- Elementary properties of the electromagnetic wave propagation must be considered → Sect. 4.2
- Propagation characteristics
 - Ground waves
 - Sky waves
 - Line-of-sight waves

8 Terrestrial radio navigation (2)

8.2 Point source systems

8.2.1 Direction-finding ("radio compass")

- A directional antenna is used to get a bearing to a transmitter
- Transmitters can be
 - Broadcast stations
 - Communication stations
 - Navigation stations
 - Any other kind of radiating system
- Direction finding is the earliest use of radio for navigational purposes

8 Terrestrial radio navigation (3)

- It continues to perform a useful function as
 - Backup system, or
 - In cases where more specialized navigation aids are not available in some parts of the world
- Main drawback
 - Quite elaborate receiving equipment must be used if high accuracy is required

8 Terrestrial radio navigation (4)

- Classes of direction-finders for aircraft navigation
 - Airborne direction finder (active navigation)
 - -Takes bearings from the aircraft to ground transmitters
 - -Typically, only simple antenna systems can be afforded
 - Large errors must be tolerated
 - Ground based direction finder (passive navigation)
 - -Also: Automatic Direction Finder (ADF)
 - Takes bearings from the ground to the airborne transmitter upon request
 - -Transmits the result back to the aircraft
 - More economic and accurate but cumbersome and timeconsuming
 - -Requires an airborne transmitter and a communication link

8 Terrestrial radio navigation (5)

Loop antenna direction-finder principle

- No longer in production
- However, its basic principles still apply to the current generation of equipment
- Measurement of differential distance to a transmitter from two or more known points

8 Terrestrial radio navigation (6)

Basic principle of direction-finding loop

8 Terrestrial radio navigation (7)

Goniometer direction-finder principle

- Two fixed loops are placed at right angles
- The goniometer translates the received radio field at the loops into a miniature magnetic field

Accuracy

- ± 2° (exclusive of errors induced by aircraft structure)
- Including these errors, low- and medium-frequency directionfinders that use ground waves cannot produce reliable results better than ± 5°
- Sky-wave contamination can raise this value to ± 30° or more

8 Terrestrial radio navigation (8)

Airborne VHF/UHF direction-finder system

- VHF: 30 300 MHz, UHF: 300 3000 MHz
- Antennas of large aperture are required
- Many U.S. military aircraft carry direction-finding equipment
- The system is useful for air-to-air direction finding (rendezvous, refueling)

8 Terrestrial radio navigation (9)

8.2.2 Nondirectional beacons (NDB)

- Special transmitters are installed acting as omnidirectional transmitters for direction-finders
- Radio band 190 535 kHz is used
- NDBs are connected to a single vertical antenna
- In addition to the directional information given to direction finders some distance away, NDBs have another useful property:
 - There is a sharp reduction in signal strength as the aircraft flies directly over the beacon → specifically defined fix for air navigation
- NDBs are used for marine and aeronautic navigation

8 Terrestrial radio navigation (10)

- Drawbacks
 - Night effect: vulnerability to interference from distant stations
 - Mountain effect: signals may be reflected → fluctuations
- Nondirectional beacons have retained their popularity because
 - They are inexpensive
 - They are omnidirectional
 - They place responsibility for the quality of the bearing measurement entirely on the airborne receiver
- In 1996, the US maintained approximately 177 000 NDBs for civil aviation use with a growing rate of about 7 000 per year
- NDBs are used all around the world

8 Terrestrial radio navigation (11)

Examples of NDB ground antennas

8 Terrestrial radio navigation (12)

8.2.3 Marker beacons

- To provide better fixes along the airways, marker beacons were developed → part of the instrument landing system (ILS)
- They radiate a narrow pattern upward from the ground
- Marker beacon transmitters imply distance information to the runway → remind the pilot of important altitude decisions during the approach → decision height (DH)

More information: see Sect. 8.4.1.

8 Terrestrial radio navigation (13)

8.2.4 VHF omnidirectional range (VOR)

- Principle is analogous to aids to visual navigation:
 - Imagine a rotating beam at a lighthouse which becomes visible to the navigator if its direction coincides with his looking direction
 - When this rotating beam moves through a reference direction, it causes a second light to illuminate omnidirectionally; thus, vessels in arbitrary directions might see this light
 - The time elapsed between these two events is a measure for the angle between the vessel and the reference direction

8 Terrestrial radio navigation (14)

- VOR operates in the VHF band of the spectrum at 108 118 MHz
- VOR stations are radio beacons transmitting a signal which provides bearing information
- Lighthouse principle translated to radio waves:
 - A VOR ground station electronically rotates a directional antenna pattern at 30 rps (round per second), generating a 30 Hz sine wave at the airborne receiver and
 - The reference signal uses a frequency modulation of 30 Hz and is transmitted omnidirectionally

8 Terrestrial radio navigation (15)

- The phase difference between the two 30 Hz signals varies directly with the **bearing** of the aircraft
- The VHF carrier is also modulated by a 1020 Hz Morse code identification signal (→ cf. Sect. 1.6) and by a voice signal
- Range of VORs: some 200 nautical miles (nmi)

8 Terrestrial radio navigation (16)

Receiver characteristics

- The receiver detects the 30 Hz amplitude modulation produced by the rotating pattern and compares it with the 30 Hz frequency-modulated reference signal
- For airline-type of equipment, the two signals are brought into phase by a motor-driven phase shifter
- The shaft position of this motor displays the bearing directly

Accuracy

- Around ± 1° in airline-type equipment
- The main problem of the VOR is to measure phase shifts at 30 Hz accurately

8 Terrestrial radio navigation (17)

Example of a (conventional) VOR ground antenna

8 Terrestrial radio navigation (18)

8.2.5 Doppler VOR

- Compared to the conventional VOR, the only difference in the receiver is that the
 - 30 Hz amplitude-modulated signal is the reference and the
 - 30 Hz frequency-modulated signal is the variable
- The principle of wide antenna aperture is used to reduce site errors
- Compared to VOR, Doppler VOR does not require any change of the airborne equipment
- Doppler VORs are preferred in mountainous areas

8 Terrestrial radio navigation (19)

Example of a Doppler VOR ground antenna array

8 Terrestrial radio navigation (20)

Example of VOR onboard equipment

- A: course card (can be rotated by the knob B)
- B: omni bearing selector (OBS) → selection of a VOR radial; here: 345°
- C: course deviation indicator (CDI); here: 0°
- D: to-from indicator; here: to

Source: www.navfltsm.addr.com

8 Terrestrial radio navigation (21)

Navigation by VOR

- VOR (+ DME) symbol in an aeronautical map
- Theta-theta fixing using two VOR stations

8 Terrestrial radio navigation (22)

8.2.6 Distance-measuring equipment (DME)

- Pulse-ranging system for aircraft developed during World War II
- Commercially available since 1961
- Principle of DME: the slant range between the ground station and the aircraft by a two-way (interrogation-reply) run time measurement

- The aircraft transmits a signal which is received by the ground station and retransmitted
- The measured run time is translated to distance
- DME operates in the UHF band → restriction to line of sight

8 Terrestrial radio navigation (23)

- Principle (a)
 - The aircraft interrogator transmits pulses on one of 126 frequencies, spaced 1 MHz apart (1025 – 1150 MHz band)
 - The pulses are in pairs, 12 μs apart, each pulse lasting 3.5 μs
 - Pulse-pair-repetition rate ranging between
 - 5 pulse-pairs/s
 - 150 pulse-pairs/s
 - Paired pulses are used in order to reduce interference from other pulse systems
 - The ground beacon (transponder) receives these pulses and, after 50 µs fixed delay, retransmits them back to the aircraft on a frequency 63 MHz below or above the airborne transmitting frequency

8 Terrestrial radio navigation (24)

- Principle (b)

- The airborne interrogator compares the elapsed time between transmission and reception and displays the result in nautical miles (representing about 12 µs of elapsed round-trip time)
- Each beacon is designed to handle at least 50 aircraft
 simultaneously → capacity limitation by two-way communication
- Receiver characteristics (a)
 - The reply is compared with the transmitted signal (ranging circuit)
 - The ranging circuit also gets all other pulses transmitted from the ground beacon. Therefore, it must
 - -Recognize its own replies and reject all others
 - Convert these into a meaningful display

8 Terrestrial radio navigation (25)

Receiver characteristics (b)

- The basic objective of all DME ranging circuits is to locate the time slot where the desired replies are actually occurring → search process at the highest permissible pulse-repetition rate (150 pulse-pairs/s).
- Once the slot has been found (may vary from 1 to 20 s), the track mode commences and can be conducted at a much lower pulse-repetition rate, usually between 5 and 25 pulse-pairs/s

Loss of signal

- For about 10 s, a static memory indicates the last position or a velocity memory to get information on the last rate
- A new search is not immediately started upon loss of signal

8 Terrestrial radio navigation (26)

- Transmitter characteristics

- Whereas the airborne equipment must operate on 126 channels,
 the ground beacon usually stays on one channel for long periods
- The number of aircraft that a beacon can handle is usually based on the assumption that
 - -95 % of the aircraft will be in the track mode at not over 25 interrogations/s and
 - -5 % are in the search mode at not over 150 interrogations/s
- For 100 aircraft, this means about 3000 pulse-pairs/s
- DME (unlike the VOR) is not a passive system → inherent capacity limitation of about 110 aircraft per beacon

8 Terrestrial radio navigation (27)

- Collocation of the DME ground station with a VOR station:
 Standard ICAO rho-theta short-range navigation system
- Several DMEs can be combined to form a multiple ranging navigation system
- Achievable 2-σ accuracies:
 - DME: ± 185 m (or ± 0.1 nautical miles)
 - VOR: ± 1.4°

8 Terrestrial radio navigation (28)

Examples of DME ground equipment

Example of DME airborne equipment

8 Terrestrial radio navigation (29)

Navigation by DME

Rho-rho fixing using two DME stations

- Navigation by VOR/DME
 - Rho-theta fixing using a collocated VOR/DME station

8 Terrestrial radio navigation (30)

Examples of Doppler VOR/DME ground equipment

8 Terrestrial radio navigation (31)

8.2.7 Tactical air navigation (Tacan)

- Military counterpart of VOR/DME
- UHF domain, continuous bearing and distance to a station
- Airborne equipment: DME interrogator plus Tacan bearing circuits
- Distance and bearing are obtained via the same RF channel
- In 1996, over 800 facilities were maintained for the U.S. DoD
- Tacan 2-σ signal-in-space accuracy
 - Bearing: ± 1° (translates to ± 65 m at 3.75 km)
 - Distance: ± 185 m (± 0.1 nautical miles)
- Capacity
 - 110 aircraft for distance measurement (active)
 - Unlimited for bearing measurements (passive)

8 Terrestrial radio navigation (32)

8.2.8 VORTAC

- Combination of VOR and Tacan is denoted as VORTAC
- Provides rho-theta fixing to both civil and military aircraft
- Three individual services:
 - VOR bearing
 - Tacan bearing
 - Tacan distance
- Civil aircraft read distance from Tacan and bearing from VOR
- Military aircraft get both distance and bearing from Tacan
- In 1996: more than 200 000 users in the U.S. alone

8 Terrestrial radio navigation (33)

8.3 Area-based systems

- Point source systems: one transmitting source
- Area-based systems: more than on transmitter
- Typical representatives
 - Hyperbolic systems are based on coordinated transmissions from radio stations (Omega, Decca, Loran-C / Chayka)
 - Other systems (only partly covered)
 - Datatrak
 - Digital television networks
 - -Cellular communication networks

8 Terrestrial radio navigation (34)

Hyperbolic systems

 LOP is a hyperbola → all points have a constant difference in distance from two fixed points (i.e., the foci)

8 Terrestrial radio navigation (35)

- Figure: two continuous wave signals (synchronized in phase)
- Simplification: an integer of wavelengths fits between the stations
 - At A and C: same phase At B: maximal phase difference
 - Moving from A to C, the receiver crosses one "lane"
 - Width of the lane: half wavelength of the transmitted signal

8 Terrestrial radio navigation (36)

- Figure: the hyperbolas represent the LOPs for all receiver positions where the received signals from master and secondary station (the foci) are in phase
 - Receiver cannot distinguish A and A' (C and C')
 - The change of the number of traversed lanes is known because it is registered by the receiver (→ "traditional" receiver)

8 Terrestrial radio navigation (37)

8.3.1 Phased-out systems

Omega

- Omega was a very low frequency (VLF) system using frequencies in the 10 – 14 kHz band and became operational in 1967
- Omega was based on the measurement of phase differences
- Since VLF signal attenuation is low, the signals propagated to very large distances
- On average, over a range of about 1000 km, the signal amplitude is reduced by a factor of two
- Baseline lengths of up to 6000 nautical miles were possible
- Global coverage was obtainable with only 8 transmitters
- In 1997, Omega was "phased-down"

8 Terrestrial radio navigation (38)

Omega stations

Norway (A), Liberia (B), Hawaii (C), North Dakota (D),
 La Reunion (E), Argentina (F), Australia (G), Japan (H)

8 Terrestrial radio navigation (39)

Decca

- Decca was a LF system (around 100 kHz) covering much of Western Europe, parts of Canada and other parts of the world
- The range was limited to some 800 km (day) and 440 km (night)
- Usually, Decca comprised a central master and three slaves (red, green, purple)
- Four stations → chain
- First chain: 1946
- End of Decca: 2000
- Achievable accuracies
 - ± 25 m in central region
 - ± 250 m in outer zones

8 Terrestrial radio navigation (40)

8.3.2 Loran-C

- Loran is an acronym for <u>long range navigation</u>
- Loran-C was designed by the U.S. DOD to provide a navigation capability with
 - longer range and
 - higher accuracy

than predecessor Loran-A

- Loran-C was developed in the 1950's at the Radiation Laboratory of the MIT
- The Russian equivalent is called Chayka

8 Terrestrial radio navigation (41)

- Transmitter stations form chains (1 master, 1-5 secondaries)
- The chain coverage area is determined by
 - the transmitted power from each station, and
 - the geometry of the stations, including the distance between them and their orientation
- According to recent U.S. plans, Loran-C will be maintained and operated at least until 2008

Principle

- The transmitters broadcast low frequency (LF) pulsed signals
- The rate of pulses is denoted pulse repetition rate

8 Terrestrial radio navigation (42)

- Example: distance between two transmitters is 1800 km
 - → time taken to cover the distance is about 6000 µs
- LOPs may be plotted for difference in arrival time
- The plotted time difference in pulse reception is 2000 μs
- "Traditionally", the LOPs were **printed on charts** showing the value of time difference for each LOP
- Modern receivers compute positions digitally

8 Terrestrial radio navigation (43)

- Position fixing is possible by using LOPs from two pairs of master/secondary stations
- Range limitation of the system
 - The ground wave attenuates as it propagates over the earth
 - Depending on the transmission power, the range of a transmitter is limited to
 - -500 800 nautical miles over land
 - -800 1100 nautical miles over sea

8 Terrestrial radio navigation (44)

Signal structure and receiver characteristics

- All transmitters are synchronized → secondary signals have precise time interval relationships with the master
- Loran-C uses a carrier transmission frequency of 100 kHz and a pulse length of ~270 μs
- The zero crossing times are measured with respect to the time reference (6th zero crossing)
- Each transmitter
 periodically emits a
 group of 8 (or 9) pulses

8 Terrestrial radio navigation (45)

- Loran transmitters are grouped into chains
 - Every transmitter in a given chain sends its group of pulses at the group repetition interval (GRI)
 - The GRI varies from 50 to 100 ms
 - The GRI uniquely identifies the chain
 - Secondary pulse transmission is delayed → nonoverlapping signals in the coverage area (→ Figure)
- Cooperative efforts between the U.S. and Russia resulted in the implementation of a combined Loran-C/Chayka chain (Bering Sea)

8 Terrestrial radio navigation (46)

Constituents of the signal format

- Pulses and pulse spacing in a group
- Carrier phase code of each pulse
- Time of emission
- The time between repetition of pulse groups from a station
- The delay of secondary station pulse groups with respect to the master signal

Ground wave and sky wave

- Basic Loran-C signal: ground wave
- Sky wave component is reflected off the ionosphere
- Travel time of the ground wave is largely predictable
- Design of the Loran pulse → receiver can separate ground wave from the sky wave (the latter is rejected)

8 Terrestrial radio navigation (47)

- Because of the ionospheric changes, the sky wave is unstable
 - Temporal variations
 - -Diurnal
 - -Seasonal
- Receivers can derive 2D position, velocity, and time information from the time difference of arrival of a radio wave from the master station
- Loran-C receivers are commonly referenced by
 - The rate (number of chains tracked)
 - The source of the time reference
 - The number of stations tracked
 - The measurement type

8 Terrestrial radio navigation (48)

Example

- A single-rate, master-referenced, two-pair, time-difference receiver tracks a single chain selected by the user
- A cross-chain receiver uses stations from two chains to define LOPs (independent of a master station)

Accuracy

- Random errors (atmospheric noise, man-made interference) limit the short-term repeatable accuracy to around ± 10 – 100 m
- The **biases** are mainly due to unpredicted propagation effects
 - Delay of ground wave due to ground conductivity and topographic reasons)
- The absolute accuracy (i.e., the accuracy of a position estimate with respect to a coordinate frame) is approximately ± 400 m

8 Terrestrial radio navigation (49)

- Chain geometry

- Each hyperbolic LOP contains all points having the same time difference between arrival of signals from master and secondary stations
- Along the baseline itself, the distance between lines of equal time difference is smallest, and increases to each side of the baseline
- Since the LOPs are much closer along the baseline than they
 are at large distances away from it, a specific standard deviation,
 say 100 ns, of the time difference estimate represents much less
 error in position near the baseline than far offside

8 Terrestrial radio navigation (50)

– Examples: two Loran-C chains in Europe

8 Terrestrial radio navigation (51)

Differential Loran-C

- Same principle as with DGPS
 - A reference station is established, and a nominal set of time differences is determined
 - The reference station broadcasts the offset of the measured and the nominal values (differential corrections)
 - Real-time corrections to remove both seasonal and diurnal errors can be broadcast
- The broadcast corrections are applied to the user receiver which yields a high absolute accuracy in the vicinity of a reference station
- Studies show that publishing the corrections of the previous day is entirely satisfactory

8 Terrestrial radio navigation (52)

8.3.4 Cellular communication networks

- Systems
 - Global System for Mobile communications (GSM)
 - Universal Mobile Telecommunications System (UMTS)
- Positioning techniques
 - Cell-based positioning
 - -Standard vs. sector-based
 - Signal-strength measurement
 - Angle-of-arrival measurement ... theta-theta
 - Time measurement
 - -Time of arrival (TOA) ... pseudorange
 - -Time difference of arrival (TDOA) ... hyperbolic
 - → Combinations of techniques are possible

... rho-rho

8 Terrestrial radio navigation (53)

8.4 Aircraft landing systems

8.4.1 Instrument landing system

- The instrument landing system (ILS) is designed to provide an approach path for alignment and descent of an aircraft
- Functionally, an ILS may be divided into three parts transmitting information to the aircraft:
 - Guidance information by two directional systems: localizer and glide slope transmitter
 - Range information by three (or fewer) marker beacons and / or DME
 - Visual information by approach lights, touchdown and centerline lights, and runway lights

8 Terrestrial radio navigation (54)

ILS categories

- Depending on the quality of an ILS, a category (CAT) is associated
 - **CAT I**: an ILS procedure which provides for approach to a decision height (DH) above touchdown of no less than 200 ft and with *runway visual range* (RVR) of no less than 1800 ft
 - CAT II: DH no less than 100 ft and RVR no less than 1200 ft
 - CAT III
 - IIIA: without DH minimum and RVR not less than 700 ft
 - IIIB: without DH minimum and RVR not less than 150 ft
 - IIIC: without DH minimum and without RVR minimum
 - DH: is the height above the runway at which the landing must be aborted if the runway is not visible

8 Terrestrial radio navigation (55)

ILS components

Localizer

- Situated at the far end of the runway
- Transmits at a carrier frequency in the range 108 112 MHz
- Provides bearing information (i.e. lateral guidance)
- Establishes a radiation pattern in space that provides a deviation signal in the aircraft when the aircraft is displaced laterally from the vertical plane containing the runway centerline
- Provides course guidance throughout the descent path to the runway threshold from a distance of 18 nautical miles and a height range of about 1000 – 4500 feet
- Operational volume: 10° at either side of the course along a radius of 18 nautical miles and 10-35° at either side of the course along a radius of 10 nautical miles

8 Terrestrial radio navigation (56)

Examples: Localizer ground antenna array

8 Terrestrial radio navigation (57)

Glide slope transmitter

- Transmitter located offside (left or right) the runway touch-down point providing vertical guidance → 750 – 1250 ft from the approach end of the runway and offset 250 – 650 ft from the runway centerline
- Operates in the UHF domain (329-335 MHz) and transmits a 1.4°-wide beam; the signal structure is similar to the localizer
- Geometrically, the localizer and the glide slope signal form two
 orthogonal planes → intersection of the planes in space is the
 glide path
- Signal provides information for navigation down to the lowest authorized DH. Unfavorable conditions → missed approach procedure

8 Terrestrial radio navigation (58)

Examples: Glide slope ground antenna array

8 Terrestrial radio navigation (59)

Marker beacons

- ≤ 3 markers: outer, middle, inner
- Located about 8 km, 1 km, and 400 m from the touch-down point giving distance information as the aircraft passes (i.e., providing information along the glide path)
- A marker transmits a fan-shaped vertical beam across the approach direction
- When passing the marker, the pilot
 - -hears in his headset an audio tone
 - -and sees in the cockpit a visual signal identifying the marker being passed (outer: purple, middle: yellow, inner: white)
- The use of markers is decreasing with increasing DME

© Austrocontrol

8 Terrestrial radio navigation (61)

Example: ILS use onboard the aircraft (concept)

8 Terrestrial radio navigation (62)

General problems of ILS

- Most ILS ground equipments meet the requirements for CAT I only
- Possible reasons
 - Antenna problems
 - Reflection problems
 - Interference from FM broadcast
 - Lack of available frequencies
 - Inability to install an ILS at some difficult sites

8 Terrestrial radio navigation (63)

8.4.2 Microwave landing system

- ILS problems with antenna and reflection lead to the idea of systems operating at microwave frequencies
- After long discussions, the time reference scanning-beam (TRSB)
 MLS was selected and adopted
- MLS provides **bearing**, **height**, and **distance** information
- Particularly for military applications, MLS may be adapted for mobile operation and can be installed without site problems
- Rapid development of GPS faded the importance of MLS →
 vulnerability of GPS might lead to increased importance; however,
 2001 FRP expects phase-down of MLS to begin in 2010

8 Terrestrial radio navigation (64)

TRSB – a brief description

- The transmitters are located on the ground similar to ILS
- MLS transmits a carrier between 5.03 and 5.09 GHz
- The narrow MLS beam sweeps across the coverage area
 with constant scan velocity (± 30-40° w.r.t. the centerline)
- The airborne receiver measures the time interval between the sweeps (a pulse is received every time the beam is scanned)
- From the difference of pulses, the approach angle of the aircraft relative to the centerline can be determined
- Compared to ILS, there are no markers
- Distance is measured by means of DME

8 Terrestrial radio navigation (65)

8.5 Future of radio navigation systems

8 Terrestrial radio navigation (66)

References (1/2)

Caffrey JJ (2000): Wireless location in CDMA cellular networks. Kluwer Academic, Boston.

- Department of Defense, Department of Transportation (2002a): 2001 Federal Radionavigation Plan. U.S. National Technical Information Service, Springfield, Virginia, DOT-VNTSC-RSPA-01-3/DOD-4650.5.
- Department of Defense, Department of Transportation (2002b): 2001 Federal Radionavigation Systems. U.S.National Technical Information Service, Springfield, Virginia, DOT-VNTSC-RSPA-01-3.1/DOD-4650.5.
- Enge P, Graas F van (1996): Integration of GPS and Loran-C. In: Parkinson BW, Spilker JJ (eds): Global Positioning System theory and applications, vol. 2. American Institute of Aeronautics and Astronautics, Washington DC: 51-79.
- Federal Aviation Administration (2004): Aeronautical Information Manual. www.faa.gov/atpubs/AIM/
- Federal Aviation Administration (2004): Pilot/Controller Glossary.

 <u>www.faa.gov/atpubs/PCG/</u>. Forssell B (1991): Radionavigation systems. Prentice Hall, New York.

8 Terrestrial radio navigation (67)

References (2/2)

Helfrick A (2000): Principles of avionics. Avionics Communications Incorporation, Leesburg.

Kriegl J (2000): Location in cellular networks – automated vehicle monitoring based on GSM positioning. Diploma Thesis, Graz University of Technology, www.iaik.at.

Lachapelle G (1998): Hydrography. Lecture Notes of the Department of Geomatics Engineering of the University of Calgary, no. 10016.

Tetley L, Calcutt D (1991): Electronic aids to navigation – position fixing. Arnold, London.

Transport Canada: www.tc.gc.ca/CivilAviation/RegServ/terminology/glossary/menu.htm

Uttam BJ, Amos DH, Covino JM, Morris P (1997): Terrestrial radio-navigation systems. In: Kayton M, Fried WR (eds): Avionics navigation systems, 2nd edition. Wiley, New York: 99-177.

Details of phased-out systems

A8.1 Terrestrial radio navigation – Omega (1)

Principle

- The basic frequency is 10.2 kHz
- At each station, continuous wave signals were transmitted on
 - Four common frequencies and
 - One station-unique frequency
- The signal frequencies were time shared among the stations
- A given frequency was transmitted by only one station at any time
- The measured phase difference of phase-synchronized (to about 1 μs) time-shared signals received at a particular location with respect to two transmitting stations depended only on the actual distances between
 - The location
 - And the transmitting stations

A8.1 Terrestrial radio navigation – Omega (2)

- Figure: two transmitting stations A, B radiating phase-synchronized signals simultaneously
- Concentric circles around A, B represent one wavelength at the transmitted frequency
- Considering a receiver situated on the baseline at X, then signals are received from the two transmitters in phase
- If the receiver moves to Y the two signals are again received in phase since the receiver has moved away from B by half a wavelength while it has moved towards A by the same amount
- Thus, a lane width occurs every half wavelength

A8.1 Terrestrial radio navigation – Omega (3)

- In theory, the phase of the signal received from each station can be compared with a locally generated reference signal having the same wavelength and being phase-synchronized with the transmitter station
- The receiver can be anywhere along a particular phase difference hyperbola, as indicated by the points X and X. The hyperbolas are produced by joining all points of constant phase difference. Each hyperbola is known as LOP
- Repeating measurements for another pair of transmitting stations gives a second LOP
- The receiver position is established at the point of intersection of the two LOPs
- The lane width of Omega operating at 10.2 kHz is about 8 nmi (half a wavelength)

A8.1 Terrestrial radio navigation – Omega (4)

- Apart from the hyperbolic, direct ranging is also applied
 - Rho-rho
 - Rho-rho-rho
- Ranging techniques utilize phase measurements
- Two range measurements are required
- As in the hyperbolic case, it is assumed that the correct lane is initially known and successive measurements are processed so that lane changes are readily tracked
- Two stations are required (intersection of two circles) for the rho-rho method
- Rho-rho-rho type of ranging implies that the clock may have a frequency offset; signals from three stations are required

A8.1 Terrestrial radio navigation – Omega (5)

Signal structure

- The wavelengths are of the same order of magnitude as the distance between the D-region of the ionosphere and the earth surface (50-90 km)
- In the VLF band, radio propagation can be modeled as occurring within a spherical waveguide whose boundaries are formed between the earth and the ionosphere
- The lane ambiguity problem, is reduced through the use of multiple frequencies (Moire pattern) and is resolved for navigation through a process of continuous lane count

A8.1 Terrestrial radio navigation – Omega (6)

- Successive positions are computed from corresponding incremental phase change measurements
- If the lane count is temporarily lost, the Omega format is designed to resolve the ambiguity by using difference frequency techniques
- Modern Omega receivers process pseudorange measurements

A8.1 Terrestrial radio navigation – Omega (7)

Accuracy

- Global accuracies of ±1-2 nmi (CEP) were typical
- For aircraft, Omega accuracies of \pm 2.7 to \pm 3.3 nmi have been reported (95 % of the time)
- In the differential mode, the accuracy is in the hundreds of meters
- The principle (cf. DGPS)
 - A monitor station is established at a known location
 - Errors in received signals can be accurately observed
 - Any errors can be broadcast to vessels within reasonable radius

A8.2 Terrestrial radio navigation – Decca (1)

- Each chain was arranged in pairs of stations
 - Master + red
 - Master + green
 - Master + purple
- The stations transmitted low frequency continuous waves
- Each pair produced a pattern of hyperbolic LOPs
- The receiver consisted of three indicators (decometers), which continuously and automatically displayed the numbers of the LOPs passing through the receiver
- The intersection of any two LOPs on the chart gave the receiver position

A8.2 Terrestrial radio navigation – Decca (2)

Principle

- The principle was similar to Omega
- Important difference
 - Phase comparison within Decca was achieved using a frequency multiplexing technique
 - Omega used time multiplexing

A8.2 Terrestrial radio navigation – Decca (3)

- Figure: Using two master/slave pairs, set of hyperbolae is obtained
- The position of the receiver may be found by the intersection of the relevant LOPs

Position of the receiver

A8.2 Terrestrial radio navigation – Decca (4)

Transmission frequencies

- In practice, all chains operated with a fundamental frequency close to the value of 14 kHz
 - Master ~ 84 kHz
 - **Red** ~ 112 kHz
 - **Green** ~ 126 kHz
 - Purple ~ 70 kHz

A8.2 Terrestrial radio navigation – Decca (5)

- Example: SW British chain
 - Fundamental frequency: f = 14.0466 kHz
 - The phase difference between two received signals is compared at the comparison frequency (minimum common multiple of the two related frequencies)
 - The lane width is half the wavelength of the comparison frequency
 - The given lane width is only valid along the baseline between the two transmitters because
 - The distance between points of zero phase difference increases away from the baseline

Station	Frequency [kHz]	Comp. freq. [kHz]	Lane width [m]
Master	84.280 (6 <i>f</i>)		
Red	112.373 (8 <i>f</i>)	337.120 (24 <i>f</i>)	444.4
Green	126.419 (9 <i>f</i>)	252.840 (18 <i>f</i>)	592.6
Purple	70.233 (5 <i>f</i>)	421.399 (30 <i>f</i>)	355.5