

第11章 方差分析与回归分析

∰ 讲授人: 牛言涛
∅ 日期: 2020年4月16日

第11章 方差分析与回归分析知识点思维导图

非线性回归函数

指数函数

$$y = \alpha e^{\beta x}$$

$$y = \alpha e^{\frac{\beta}{x}}$$

幂函数

$$y = \alpha x^{\beta}$$

$$y = \frac{1}{\alpha + \beta e^{-x}}$$

非线性回归函数

$$y = \frac{x}{\alpha x + \beta}$$

$$y = \alpha + \beta \lg x$$

多项式函数

$$y = a_1 x^n + a_2 x^{n-1} + \dots + a_n x + a_0$$

一. 一元非线性回归

例1: 头围(head circumference)是反映婴幼儿大脑和颅骨发育程度的重要指标之一,对头围的研究具有非常重要的意义。笔者研究了天津地区1281位儿童(700个男孩,581个女孩)的颅脑发育情况,测量了年龄、头宽、头长、头宽/头长、头围和颅围等指标,测得1281组数据,年龄跨度从7个星期到16周岁,试根据这1281组数据建立头围关于年龄的回归方程。

	A	В	С	D	E	F	G	Н	I	J
1	ウロ	# DI 左\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	左岭立左边	年龄	月龄	头宽	头长	头宽/头长	头围	颅围
2	1 序号 性别 2	当生力リ	别 年龄及标识	单位: 岁	单位:月	单位: 毫米	单位: 毫米		单位: 厘米	单位: 厘米
3	1	m	11Y	11	132	136.0476	168.7998	0.805970149	50.90952	48.3008
4	2	m	20 M	1.666667	20	149.9043	161.2416	0.9296875	50.4282	49.01562
5	3	m	10Y	10	120	144. 4456	156.6227	0.922252011	51.35181	48. 14725
6	4	m	3Y	3	36	145.7053	163.761	0.88974359	50.27417	48.73305
7	5	m	3 Y	3	36	139.8267	153. 2635	0.912328767	48.52064	46.925
8	6	m	5Y	5	60	146.965	155. 7829	0.943396226	50.30917	48.04408
9	7	m	4 Y	4	48	151. 164	163.761	0. 923076923	52.34006	50.33477
10	8	m	87	8	96	139.8267	159.9819	0.874015748	49.05821	47. 44784
11	9	m	87	8	96	138.9869	169.2197	0.82133995	51. 17692	49.05429
12	10	m	11M	0.916667	11	133. 1083	145. 2854	0.916184971	46.21404	44.36468
13	11	m	4Y	4	48	146.965	163.3411	0.899742931	51.89274	49.36296
1.4	10	_	707	7	0.4	1/6 1050	157 0004	A AAEE91A1E	בה בחותה	40 00441

1. 绘制数据散点图

>> HeadData = xlsread('headcf.xls');

>> x = HeadData(:, 4);

>> y = HeadData(:, 9);

>> plot(x, y, 'k.');

>> xlabel('年龄(x)'); ylabel('头围(y)');

>> title('年龄与头围关系散点图')

• 备选方程

✓ 负指数函数: $y = \beta_1 e^{\frac{\beta_2}{x + \beta_3}}$

✓ 双曲线函数:
$$y = \frac{x + \beta_1}{\beta_2 x + \beta_3}$$

✓ 幂函数: $y = \beta_1 (x + \beta_2)^{\beta_3}$

✓ Logistic曲线函数:
$$y = \frac{\beta_1}{1 + \beta_2 e^{-(x + \beta_3)}}$$

✓ 对数函数: $y = \beta_1 + \beta_2 \ln(x + \beta_3)$

2. 建立模型与求解

%选择负指数函数作为理论回归方程。

>> HeadCir = @(beta, x)beta(1)*exp(beta(2)./(x+beta(3)));

>> beta0 = [53, -0.2604, 0.6276];

>> opts = statset('Display','iter','TolFun',1e-10,'Robust','on');

% nlm1 = NonLinearModel.fit(x,y,HeadCir,beta0,'Options',opts)%不推荐使用

>> nlm1 = fitnlm(x,y,HeadCir,beta0,'Options',opts) %推荐使用

nlm1 =
Nonlinear regression mode1 (robust fit):
 y ~ beta1*exp(beta2/(x + beta3))

Estimated Coefficients:

	Estimate	SE	tStat	pValue
beta1	52. 377	0.1449	361.46	0
beta2	-0. 25951	0.016175	-16.044	6. 4816e-53
beta3	0.76038	0.072948	10. 423	1.7956e-24

Number of observations: 1281, Error degrees of freedom: 1278

Root Mean Squared Error: 1.66

R-Squared: 0.747, Adjusted R-Squared 0.747

F-statistic vs. zero model: 4.64e+05, p-value = 0

>> nlm1.plotSlice %绘制图像

>> Alpha = 0.05;

%参数估计的置信区间

>> ci1 = nlm1.coefCl(Alpha)

ci1 =

52.0923 52.6609

-0.2912 -0.2278

0.6173 0.9035

-0.25951

建立的模型为: $\hat{y} = 52.377e^{x+0.76038}$

非线性回归函数


```
>> xnew = linspace(0,16,50)';
>> ynew = nlm1.predict(xnew);
>> plot(x, y, 'k.');
>> hold on;
>> plot(xnew, ynew, 'linewidth', 3);
>> xlabel('年龄(x)');
>> ylabel('头围(y)');
>> legend('原始数据散点','非线性回归曲线');
>> title('散点图与一元非线性回归曲线')
```


5. 置信区间和观测值的预测区间

头围平均值的置信区间和观测值的预测区间

```
[yp,ypci] = nlm1.predict(xnew,'Prediction','observation');
yup = ypci(:,2); %置信区间上限值
ydown = ypci(:,1); %置信区间下限值
hold on; grid on;
h1 = fill([xnew;flipud(xnew)],[yup;flipud(ydown)],[0.8,0.8,0.8]);
set(h1,'EdgeColor','none','FaceAlpha',0.5);
plot(xnew,yup,'r---',xnew,ydown,'b-.',xnew, yp, 'k','LineWidth',1.5);
ylim([32, 57]);
```


legend('预测区间','预测区间上限','预测区间下限','回归曲线','Location', 'SouthEast');

legend('boxoff')

title('回归曲线与预测区间')

xlabel('年龄(x)');ylabel('头围(y)');

(1) 残差分析: >> plot_plotResiduals(nlm1)

(2) 离群点诊断: >> [idout,idinf,idleve] = fitnlmplot_outliers(nlm1);

存在强影响点较多的异常值、 高杠杆值和强影响点。 从数据的输出来看:异常值有 122个、高杠杆值有44个,强 影响点45个。

(3) 模型改进

>> nlm2 = NonLinearModel.fit(x,y,HeadCir,beta0,'Exclude',idout,'Options',opt)

n1m2 =
Nonlinear regression model (robust fit):
 v ~ beta1*exp(beta2/(x + beta3))

Estimated Coefficients:

	Estimate	SE	tStat	pValue
beta1	52. 369	0. 12693	412.6	0
beta2	-0. 26243	0.014592	-17. 984	5. 9309e-64
beta3	0.78167	0.067002	11, 666	8, 2311e=30

Number of observations: 1159, Error degrees of freedom: 1156

Root Mean Squared Error: 1.37

R-Squared: 0.807, Adjusted R-Squared 0.807

F-statistic vs. zero model: 6.11e+05, p-value = 0

建立的模型为: $\hat{y} = 52.369e^{\frac{-0.26243}{x+0.78167}}$

改进模型后回归曲线


```
xnew = linspace(0,16,50)';
ynew = nlm1.predict(xnew);
plot(x, y, 'k.');
hold on; grid on
plot(xnew, ynew, 'r--','linewidth', 3);
ynew2 = nlm2.predict(xnew);
plot(xnew, ynew2, 'b:', 'linewidth', 3);
xlabel('年龄(x)');
ylabel('头围(y)');
legend('原始数据散点','非线性回归曲线','改进模型后的非
线性回归曲线');
legend('boxoff')
title('去除异常值后的散点图与回归曲线')
```


模型改进后的残差图

残差分析满足基本假定,独立、完美对称、不自相关、近似服从正态分布,但存在厚尾性。

二. 多元非线性回归

例2:2011年4月1日某时在某一地点发生了一次地震,图中10个地震观测站点均接收到了地震波,观测数据如表所列。假定地震波在各种介质和各个方向的传播速度均相等,并且在传播过程中保持不变。请根据表中的数据确定这次地震的震中位置、震源深度以及地震发生的时间(不考

虑时区因素,建议时间以分为单位)。

地震观测站	横坐标x(干米)	纵坐标y(干米)	接收地震波时间
А	500	3300	4月1日9时21分9秒
В	300	200	4月1日9时19分29秒
С	800	1600	4月1日9时14分51秒
D	1400	2200	4月1日9时13分17秒
E	1700	700	4月1日9时11分46秒
F	2300	2800	4月1日9时14分47秒
G	2500	1900	4月1日9时10分14秒
Н	2900	900	4月1日9时11分46秒
I	3200	3100	4月1日9时17分57秒
J	3400	100	4月1日9时16分49秒

建立非线性回归模型

假设震源三维坐标为 (x_0, y_0, z_0) ,这里的 z_0 取正值,设地震发生的时间为2011年4月1日9时 t_0 分,地震波传播速度为 v_0 (单位:km/s).

用 $(x_i,y_i,0)$, i=1,2,...10分别表示地震观测站点A—J的三维坐标,用 T_i 表示观测到站点A—J接收到地震波的时刻,这里的 T_i 表示9时 T_i 分接收到地震波。建立 T_i 关于 x_0,y_0,z_0 的二元非线性回归模型如下:

$$T_{i} = t_{0} + \frac{\sqrt{(x_{i} - x_{0})^{2} + (y_{i} - y_{0})^{2} + z_{0}^{2}}}{60v_{0}} + \varepsilon_{i}, \quad i = 1, 2, \dots, 10$$

建立非线性回归模型

2200.5

2300 2800 14 47;2500 1900 10 14;2900 900 11 46; 3200 3100 17 57;3400 100 16 49];

 $>> modelfun = @(b,x)sqrt((x(:,1)-b(1)).^2+(x(:,2)-b(2)).^2+b(3).^2)/(60*b(4))+b(5);$

% modelfun = $\frac{y}{a^2} \sim \frac{(x1-b1)^2 + (x2-b2)^2 + b3^2}{(60*b4) + b5'}$;

- >> xy = xyt(:,1:2); Minutes = xyt(:,3); Seconds = xyt(:,4);
- >> T = Minutes + Seconds/60;
- >> b0 = [1000 100 1 1 1];
- >> mnlm = fitnlm(xy,T,modelfun,b0)

也就是说地震发生的时间为2011年4月1日09时07分, 震中位于(2200.5, 1399.9) 处,震源深度35.1公里。

$$\begin{cases} y_0 &= 1399.9 \\ z_0 &= 35.144 \\ v_0 &= 2.9994 \\ t_0 &= 6.9863 \end{cases}$$

mn1m =

Nonlinear regression model:

$$y \sim sqrt((x1 - b1)^2 + (x2 - b2)^2 + b3^2)/(60*b4) + b5$$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
b1	2200.5	0. 53366	4123.5	1.5922e-17
b 2	1399. 9	0. 48183	2905. 4	9. 168e-17
b 3	35. 144	61.893	0. 56782	0. 5947
b4	2. 9994	0.0041439	723.82	9. 5533e-14
b 5	6. 9863	0. 02087	334.75	4. 515e-12

Number of observations: 10, Error degrees of freedom: 5

Root Mean Squared Error: 0.00591 R-Squared: 1, Adjusted R-Squared 1

F-statistic vs. constant model: 8.3e+05, p-value = 9.75e-15

三. 其他非线性回归函数

• 非线性回归函数nlinfit, Isqnonlin, Isqcurvefit

$$y = f\left(x_1, x_2, \dots, x_p; \underline{a_1, a_2, \dots, a_k}\right)$$
 未知参数

事先用m-文件定义 的非线性函数

[beta, r, J, COVB,mse] = nlinfit(X, y, fun, b0, options)

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

• 参数估计的置信区间

- [beta,resid,J,Sigma]= nlinfit(X, y, fun, b0)
- ci = nlparci(beta,resid, 'covar',Sigma) 或
- ci = nlparci(beta,resid,'jacobian',J)

• 预测值的置信区间

- [beta,resid,J,Sigma] = nlinfit(X, y, fun, b0)
- [ypred,delta] = nlpredci(fun,x,beta,resid,covar',Sigma) 或
- [ypred,delta] = nlpredci(fun,x,beta,resid,'jacobian',J)
- 求nlinfit所得的回归方程在x处的预测值ypred及预测值的置信水平为1- alpha的置信区间ypred±delta; alpha缺省时为0.05.

案例分析: 人口增长模型

例:根据经验,人口增长的预测模型通常采用Logistic函数 $y(t) = \frac{A}{1 + Be^{Ct}}$,其中y(t)为t 时刻

人口数, A, B, C 为常数。试根据1975-2005年的中国人口数据, 得出中国人口增长预测模型。

年份	时间	人口 (亿)	年份	时间	人口 (亿)	年份	时间	人口(亿)
1975	0	9.242	1986	11	10.751	1996	21	12.239
1976	1	9.3717	1987	12	10.93	1997	22	12.363
1977	2	9.4974	1988	13	11.103	1998	23	12.476
1978	3	9.6259	1989	14	11.27	1999	24	12.579
1979	4	9.7542	1990	15	11.433	2000	25	12.674
1980	5	9.8705	1991	16	11.582	2001	26	12.763
1981	6	10.007	1992	17	11.717	2002	27	12.845
1982	7	10.165	1993	18	11.852	2003	28	12.923
1983	8	10.301	1994	19	11.985	2004	29	12.999
1984	9	10.436	1995	20	12.112	2005	30	13.076
1985	10	10.585						

绘制散点图与模型回归

- >> person = xlsread('renkou.xlsx');
- >> ps = [person(:,3);person(:,6);person(:,9)];
- >> year = [person(:,1);person(:,4);person(:,7)];
- >> plot(year,ps,'b.','MarkerSize',10)
- >> grid on; xlabel('年份'); ylabel('人口数量(亿)')
- >> title('人口数量(亿)与年份关系散点图')

%调用nlinfit函数作logistic回归的matlab程序

>> fun=@(beta,t)beta(1)./(1+beta(2)*exp(beta(3).*t));

>> t = 1:length(year);

>> [beta,resid,J,Sigma,mse] = nlinfit(t',ps,fun,[15,1,1]);

beta =

15.4577 0.7259 -0.0442

>> yp=fun(beta,t');

>> ci = nlparci(beta,resid,'covar',Sigma)

ci =

14.8318 16.0836

0.6656 0.7863

-0.0493 -0.0390

>> [ypred,delta] = nlpredci(fun,t,beta,resid,'covar',Sigma);

置信区间绘图与模型F检验

- >> plot(t,ps,'k.',t,ypred,'r-',t,ypred-delta,'b--',t,ypred+delta,'b--');
- >> grid on
- >> xlabel('时间 (1975-2005年) '); ylabel('中国人口 (亿人) ')
- >> legend('实际数据','拟合曲线','上置信区间','下置信区间')
- >> title('人口数量随时间拟合曲线与置信区间')

ybar = mean(y); n = length(t); $SSR1 = sum((ypred-ybar).^2);$ MSR1 = SSR1/3; $SSE1 = sum((y-ypred).^2);$ MSE1 = SSE1/(n-3); r2 = SSR1/(SSR1+SSE1)fvalue1 = MSR1/MSE1 falpha1 = finv(0.95,3,n-3)pvalue1 = 1-fcdf(fvalue1,3,n-3)

%运行结果 r2 = 0.9974 fvalue1 = 3.5476e+03 falpha1 = 2.9467 pvalue1 = 0

可知模型非常显著 (p = 0) , 得到的

Logistic函数表达式为:

$$y(t) = \frac{16.1634}{1 + 0.7712e^{-0.0408t}}$$

案例分析: 曲面拟合

例:在一丘陵地带测量高程, x和y方向每隔100米测一个点, 得高程如下表, 试拟合一曲面, 确定

合适的模型,并由此找出最高点和该点的高程。

高程		X							
		100	200	300	400	500			
	100	636	697	624	478	450			
	200	698	712	630	478	420			
y	300	680	674	598	412	400			
	400	662	626	552	334	310			

z=[636 697 624 478 450;698 712 630 478 420;680 674 598 412 400;662 626 552 334 310];

[x,y]=meshgrid(100:100:500,100:100:400); %生成网格点

surf(x,y,z) %对实际数据绘制网格面

view(39,26) %改变视角

建立模型并预测


```
xy=[x(:),y(:)]; %组合成两列
zd=z(:); %列向量
fun_gc=@(b,t)b(1)*t(:,1) + b(2)*t(:,2) + b(3)*t(:,1).^2 + b(4)*t(:,1).*t(:,2) + ...
b(5)*t(:,2).^2 + b(6)*t(:,1).^3 + b(7)*t(:,1).^2.*t(:,2) + ...
b(8)*t(:,1).*t(:,2).^2 + b(9)*t(:,2).^3 + b(10);
```

[beta,resid,J,Sigma,mse] = nlinfit(xy,zd,fun_gc,0.1*ones(10,1))

syms x y

$$fh = vpa(beta(1)*x+beta(2)*y+beta(3)*x^2+beta(4)*x*y+beta(5)*y^2+...$$
 beta(6)*x^3+beta(7)*x^2*y+beta(8)*x*y^2+beta(9)*y^3+beta(10),6); sol = solve(diff(fh,x)==0,diff(fh,y)==0,x,y); %偏导并求方程组的解 for i = 1:4 maxy(i) = subs(subs(fh,x,sol.x(i)),y,sol.y(i)); end

通过求偏导, 然后由偏导等于0解得最高点为(167.2419 200.6160), 最高点处的高程为731.6817.

[xi,yi] = meshgrid(100:10:500,100:10:400);

xydat = [xi(:),yi(:)];

zi = reshape(fun_gc(beta,xydat),size(xi)); %求z并重排

surfc(xi,yi,zi); shading interp %绘制曲面

view(39,26) %改变视角

hold on

plot3(sol.x(1),sol.y(1),maxy(1)+5,'r.','MarkerSize',20)

plot3(sol.x(1),sol.y(1),300,'r.','MarkerSize',12)

Isqnonlin与Isqcurvefit

- nonlinfit, Isqnonlin, Isqcurvefit在功能上是类似的,但对于拟合过程的控制、输出参数的种类等有所不同,对于初学者而言,掌握三个函数的任意一个即可。
- [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA] = Isqnonlin(fun,x0,lb,ub,options)
 - fun是事先用 m-文件定义的待拟合的非线性函数;
 - x0是回归系数的初值; lb, ub是回归参数的上下界
 - options是回归参数选项
- [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA] = Isqcurvefit(fun,x0,xd,yd,lb,ub,options)

例:已知数据,拟合如下函数形式的曲线: $y=a_1e^{a_2x}$

X	1	2	3	4	5	6	7	8
Y	15.3	20.5	27.4	36.6	49.1	65.6	87.8	117.6

调用nlinfit、Isqnonlin、Isqcurvefit函数作非线性回归

Isqnonlin与Isqcurvefit

x=1:8; %实际数据

y=[15.3 20.5 27.4 36.6 49.1 65.6 87.8 117.6];

objfun1=@(a,x)a(1)*exp(a(2)*x); %模型

objfun2=@(a)a(1)*exp(a(2)*x)-y;

a0=[1,1]; %初始估计值

a1=lsqcurvefit(objfun1,a0,x,y)

a2=lsqnonlin(objfun2,a0)

a3=nlinfit(x,y,objfun1,a0)

a1 = 11.4241 0.2914

 $a2 = 11.4241 \quad 0.2914$

a3 = 11.4241 0.2914

yp1=objfun1(a1,x); yp2=objfun2(a2)+y; yp3=objfun1(a3,x); plot(x,y,'co','MarkerFaceColor','c'); hold on; grid on plot(x,yp1,'r',x,yp2,'c:',x,yp3,'b:','LineWidth',2); legend('observe data','lsqcurvefit','lsqnonlin','nlinfit')

非线性拟合交互式工具nlintool

对于上例可以利用交互式工具nlintool进行拟合 nlintool(x,y, objfun1,a0,0.05,'X','Y');

非线性拟合交互式工具nlintool

感谢聆听