Analisi Matematica Prova scritta parziale n. 1

Corso di laurea in Fisica, 2020-2021

18 dicembre 2020

1.1) Si consideri la successione definita per ricorrenza

$$\begin{cases} a_0 = \alpha \\ a_{n+1} = 4 - \frac{3}{a_n} \end{cases}$$

- (a) Al variare di $\alpha \in (-\infty, 0) \cup [1, +\infty)$ si determini, se la successione è ben definita e, quando esiste, qual è il suo limite.
- (b) Al variare di $\alpha \in \left[0, \frac{39}{40}\right]$ si determini se la successione è ben definita e, quando esiste, qual è il suo limite.
- (c) Riesci a trovare una formula esplicita (non ricorsiva) per i valori di α per i quali la successione non è ben definita?
- 1.2) Si consideri la successione definita per ricorrenza

$$\begin{cases} a_0 = \alpha \\ a_{n+1} = \frac{3}{3-a_n} - 1 \end{cases}$$

- (a) Al variare di $\alpha \in (-\infty, 2] \cup (3, +\infty)$ si determini, se la successione è ben definita e, quando esiste, qual è il suo limite.
- (b) Al variare di $\alpha \in \left[\frac{81}{40}, 3\right]$ si determini se la successione è ben definita e, quando esiste, qual è il suo limite.
- (c) Riesci a trovare una formula esplicita (non ricorsiva) per i valori di α per i quali la successione non è ben definita?
- 2.1) Per quali $x \in \mathbb{R}$ la seguente serie converge?

$$\sum_{n} x^{n} \cdot \left(\frac{n}{n+2}\right)^{n^{2}}$$

2.2) Per quali $x \in \mathbb{R}$ la seguente serie converge?

$$\sum_{n} x^{n} \cdot \left(\frac{2n}{2n+1}\right)^{n^{2}}$$

2.3) Per quali $x \in \mathbb{R}$ la seguente serie converge?

$$\sum_{n} x^{n} \cdot \left(\frac{n-1}{n+1}\right)^{n^{2}-1}$$

3.1) Per quali $x \in \mathbb{R}$ la seguente serie converge?

$$\sum_{n} \frac{x^n}{\sqrt{n}} \left(1 - \frac{n}{n+1} x^n \right)$$

3.2) Per quali $x \in \mathbb{R}$ la seguente serie converge?

$$\sum_{n} \frac{x^n}{\sqrt{n}} \left((-1)^n - \frac{n}{n+1} x^n \right)$$