決定的アルゴリズムによる単語分散表現の離散符号化

<u>仲村 祐希</u>¹ 鈴木 潤^{1,2} 高橋 諒^{1,2} 乾 健太郎^{1,2} 東北大学¹ 理化学研究所²

| 単語分散表現の圧縮:基底番号のリスト | (離散符号)と基底ベクトルで表現

- 深層ニューラルネットワーク(DNN)による手法
 - Compressing Word Embeddings via Deep Compositional Code Learning [Shu+,ICLR'18]
- DNNによる手法はランダム性があり、乱数のシードによって 離散符号が異なる
 - ▶ ランダム性がない離散符号の獲得手法を考案

提案手法:決定的アルゴリズムによる 離散符号の獲得手法

1次元のK-means法は最適解が多項式時間で求まり決定的

結果①:既存手法 [Shu+,ICLR'18]との比較

• 圧縮率を揃えて、単語分散表現の圧縮前後の**誤差**を測るためにユークリッド距離を測定

結果①: 既存手法 [Shu+,ICLR'18]との比較

• 圧縮率を揃えて、単語分散表現の圧縮前後の**誤差**を測るためにユークリッド距離を測定

結果②:離散符号例

• 既存手法 [Shu+,ICLR'18]

1回目	uog	Э	10	/	TT	4	1	12	14	
	dogs	6	5	7	1	4	1	12	3	
	dog	7	5	15	2	7	15	3	3	
2回目	dogs	7	5	6	7	7	8	11	3	
	dog	9	4	11	11	0	11	1	2	
3回目	dogs	9	4	3	0	0	11	1	2	
400	dog	11	3	3	12	4	4	7	8	
1回目	dogs	8	3	6	14	3	4	10	9	
2回目	dog	11	3	3	12	4	4	7	8	
	dogs	8	3	6	14	3	4	10	9	

12

14

• 提案手法

√ 提案手法は乱数のシードを変えても離散符号は**不変**

3回目

8

9

10

dog

dogs

dog

まとめと議論

• **決定的アルゴリズム**による単語分散表現の離散符号化手法 を考案した

議論

- さらなる性能向上のための手法やDNNの中に取り入れるための工夫
- ・決定的な離散符号の他の適用先の検討

Contact

https://yukinon874.github.io/

Appendix

Appendix:まとめと議論

- **決定的アルゴリズム**による単語分散表現の離散符号化手法 を考案した
- •機械翻訳タスクなどに適用した場合**、性能を落とさず**にど の程度まで**圧縮**できるか測定したい

議論

- さらなる性能向上のための手法やDNNの中に取り入れるための工夫
- ・決定的な離散符号の他の適用先の検討

Appendix:軸の決め方の詳細

- 主成分分析(実験ではこちらを使用)
 - 分散が最大となるように軸を決定
- 単語の類似度行列を二つの1次元のベクトルの積で近似
 - Right-truncatable Neural Word Embeddings [Suzuki+,NAACL'16]

$$x = WW^{T}$$
Minimize
$$\frac{1}{2} \sum_{(i,j)} (x_{i,j} - u_{i}v_{j})^{2}$$

W:単語分散表現

 $u^{V\times 1}$:1次元近似ベクトル

 $v^{1\times V}$:1次元近似ベクトル

V:語彙数

• 1次元近似ベクトルの片方をクラスタリングに用いる

Appendix:実験で用いた基底ベクトル の詳細

• 単語分散表現を基底ベクトルと離散符号 に対応する基底ベクトルの重みで表現

$$\mathbf{w} = \sum_{i} \alpha_{i,C_i} \mathbf{A}_i$$

w:単語ベクトル

C:離散符号

α:基底ベクトルの重み

A:基底ベクトル

単語分散表現との平均二乗誤差が最小 となるようにDNNで学習

単語ベクトル:

Appendix:手法によるサイズの違い

• 既存手法 [Shu+,ICLR'18]

 $VM \log K + 4MKH$ [Byte]

M:離散符号の数

K:離散符号の種類数

H:単語ベクトルの次元数

V:語彙数

• 提案手法

$$VM \log K + 4MH + 4MK$$
 [Byte]

• 圧縮率