OBSERVATO

LIBRARY, KODAIKANAL

. . . .

Survey of India.

PROFESSIONAL PAPER-No. 16.

THE
EARTH'S AXES
AND
TRIANGULATION

BY

J. DE GRAAFF HUNTER, M.A.,
MATHEMATICAL ADVISER TO THE SURVEY OF INDIA

PUBLISHED BY ORDER OF THE GOVERNMENT OF INDIA.

mehra mun:

PRINTED AT THE OFFICE OF THE TRIGONOMETRICAL SURVEY.

1918.

Price Rs. 4 or 5s. 4d.

TABLE OF CONTENTS.

			•				Page
ERRATA ET ADDE	NDA	•••	•••		•••	•••	•
Introduction	•••	•••	•••	•••	•••	•••	vii
CHAPTER I.	First method of f due to changes in	_	_		-	_	1
CHAPTER II.	Geodesics on a sp	heroid	•••	•••	•••	•••	40
CHAPTER III.	Changes of coord terrestrial sphero	_	_	-	hanges in axes	of the	53
CHAPTER IV.	Geometrical chan	ge from one Sp	heroid of Re	eference to	another	•••	69
CHAPTER V.	Laplace's Equation	on and the Choi	ce of a Sphe	roid of Re	ference	•••	75
CHAPTER VI.	Strength and Ad	justment of Tri	angulation.	Mechanic	al Analogy	•••	89
CHAPTER VII.	Probable errors o	f triangulation	before and a	after adjus	tment	•••	105
CHAPTER VIII.	Numerical value lation. Note on	s of the probathe solution of			the Indian tr	riangu-	120
CHAPTER IX.	Deflections of the of the Survey of		d values of	"g" derive 	d from obser 	vations	162
CHAPTER X.	Deflections of the (Ferghana) by the			of "g" d	erived in Tu	rkistan	211
Appendix.	Various determin	ations of the A	xes of the E	arth	•••	•••	217
CHART No. I. CHARTS Nos. II.		Index of G. T. Diagrammatic and Burma. Gravity and D	charts of	• • •	• • •	\	-at end

ERRATA ET ADDENDA.

Page

3 line 4 from top, column (Old value) insert (=6,377,276 metres) after 20,922,840.95 feet

- 18 " 23 " for known read know.
- 15 After equation Nos. (18), (19), (20) add A
- 16 line 7 from top for (20) read (20) A
- 80 For value of u under Long. 82°, 0.977, 0.997
- 39 In equation (47) , $6 \cos 4\lambda$, $6 \cos^4\lambda$
 - ,, At the bottom add a footnote:—In equations (42) to (47) dL, $d\lambda$ are expressed in radians.
- 40 At the bottom add an alternative proof of (2):—

For the curve whose osculating plane is normal to the spheroid we have for a small element

$$d\lambda = -\frac{ds}{\rho}\cos A$$
$$dA = -\frac{ds}{\alpha}\sin A \tan \lambda$$

Hence

$$\cot A. dA = \frac{\rho}{\nu} \tan \lambda \cdot d\lambda = \frac{1 - e^2}{1 - e^2 \sin^2 \lambda}. \tan \lambda \cdot d\lambda = \frac{1 - e^2}{2}. \frac{d\eta}{(1 - \eta)(1 - e^2 \eta)},$$
where $\eta = \sin^2 \lambda$

 $\therefore d \log \sin A = \frac{1}{2} \left(\frac{1}{1-\eta} - \frac{e^2}{1-e^2\eta} \right) d\eta = \frac{1}{2} d \log \frac{1-e^2\eta}{1-\eta} = -\frac{1}{2} d \log \cos^2 \phi = -d \log \cos \phi$ $\therefore \sin A \cos \phi = \text{constant on a geodesic.}$

52 line 5 from top

for ϕ

read Q

54 For equation (5) read

$$s = -a\sqrt{1-e^2}\left[\chi(1+\frac{1}{4}h^2-\frac{3}{64}h^4) - \frac{h^2}{8}\sin 2\chi\left(1-\frac{3}{16}h^2\right) + \frac{h^4}{32}\cos\chi\sin^2\chi\right]_{\chi'}^{\chi}$$

For equation (12) add a note—The complete term to next power of c² is—

$$-\frac{\delta h^{2}}{8} \left[(2\chi - \sin 2\chi) \left(1 - \frac{3h^{2}}{8} \right) + \frac{h^{2}}{4} \sin 2\chi \sin^{2}\chi \right]$$

- 55 In equations (16) and (17) for $\sin 2 \phi$, $\sin 2 \phi'$ read $\sin 2 \lambda$, $\sin 2 \lambda'$
- Against $10^{\circ}\lambda$ in the table in col. L-L' for + v read $\pm v$
- At the end add a para—The values found from tables XXIX—XXXIV for the central meridian (L=77° 40' approximately) differ slightly from those found in Chapter I.

 This is due to an approximation in Chapter I (vide footnote on page 4).

ERRATA ET ADDENDA-(Continued).

Page	,				
70	line 6 from top	after	$d\phi = u_1$	insert	(vide p. 54).
84	,, 13 from bottom	for	about	read	above.
96	" 9 from top	"	$w_{\mathrm{r}}-w_{\mathrm{r}-1}$,,	$w_r - w_{r-1} - \eta_{r-1}$
97	" 18 " "	"	$\mathbf{E_0}$	•	E
105	,, 13 from bottom	"	107	,,	10-7
115	,, 7 from bottom, col. 12	"	+2.20	"	+2.02
120	,, 17 ,, ,,	"	whence	,,	where
148	Against r=10, u=20, in col. rku	99	 · 004	,	-·0041.
149	In table LXXI against r = 16, in col. 23	,,	2399	99	-·0399 .

INTRODUCTION.

The preparation of this work has extended over some four years and has been delayed by press of other work resulting mainly from a shortage of officers in the department due to the war. Its final completion has been very hurried as the author has been ordered to Mesopotamia. The end of Chapter VIII has been much abbreviated owing to there not being time to work out a sufficient number of cases to form the basis for a proper discussion. It has been decided however to publish the work at the stage it has reached rather than to wait an indefinite period for its amplification.

The origin of the research was the need which had arisen of converting geodetic results, obtained in India and referred to the now obsolete Everest spheroid, into terms of the best determined spheroid-The work soon showed that certain inconsistencies arose and that multiple values of the changes were The reason of this is that the observations of triangufound according to the route followed. lation in India have been adjusted to fit the Everest spheroid and will not fit any other without readjustment. Had the spheroid of Everest been regarded merely as a reference figure and not, for purposes of triangulation, as identical with the geoid this difficulty would not have arisen: but I believe a similar method of treatment has been followed in all other countries. It would generally be impossible to avoid this treatment, as in the early stages of survey work values of deflections are not usually available. There is little reason why these deflections should not be determined roughly as the triangulation proceeds: and were this done all computations could be made quite correctly, and the deflection results would also be useful. The discrepancies involved, however, are not as large as the probable errors and offer what is more of a computation difficulty than a practical difficulty: and it is believed that the conclusions reached in the first four chapters overcome the difficulty quite satisfactorily for all practical geodetic purposes. The explanation of the discrepancy was by no means discovered at once and it is in Chapter V that the fundamental inconsistency is discussed.

Meanwhile other related subjects come under consideration and in Chapter VI reference is made to some of these. Here a complete analogy between adjustment of errors and small strains in a mechanical framework is shown to exist. This has led to the idea of "strength" of triangulation and gives a less abstract view of the adjustments by the method of least squares than was hitherto available. It enables one to picture in a tangible way the changes necessary, which will also be those most probable. A new method of adjustment of chains of triangulation has been developed, and applied to a number of Indian series.

In this connection a quantity M has been introduced as a criterion of the strength of triangulation. It is based on General Ferrero's quantity "m", but also takes cognisance of the length of sides and general formation of a series of triangulation. This quantity has been taken out numerically for all the Indian series.

The quantity M permits of probable errors not only of side and azimuth but also of latitude and longitude being expressed at any point of the triangulation. Application has been made to all the circuits of India and the closing errors actually met with are found in good accordance with the theoretical probable errors based on M.

The case of probable errors after adjustment has also been considered. This is much more troublesome and involves very heavy work in the form of solution of numerous equations. The value of the enquiry, however, will be considerable, as an answer can be found to questions such as,

how often should extra base lines or Laplace stations be introduced? It appears that Laplace stations should be just as numerous as extra bases: and that the observation of extra bases alone is only a half measure not likely to improve matters much. It may be roughly compared to closing a traverse circuit for northing and omitting to do so for easting. The improvement due to adjustment is but briefly considered owing to force of circumstances; but the necessary equations have been solved for the cases of the N.W. Quadrilateral of the Indian triangulation and this question will be resumed when it is possible to do so. As has been mentioned the process involves the solution of a large number of simultaneous linear equations; and this has to be done for a large number of values of the absolute term in these equations. It is believed that several novelties have been introduced in this connection which may be of general interest. This question is treated on pages 126-153.

In Chapter IX the results of all the deflection observations are expressed in terms of Helmert's spheroid; the azimuth observations all having been adjusted on the Laplace conditions, none of which had been made use of during the simultaneous adjustment of the triangulation. The quantities given also permit of easy reference to any other spheroid which may at any future time be adopted. Certain observations in Russian Turkistan have also been added, as by means of the recent Indo-Russian connection these can now be stated in terms of the Indian survey. It has also been considered convenient to give a tabular statement of all determinations of g, so as to make a complete statement of gravity, not only its direction, but also its intensity. Full details of the pendulum operations are to be found in Professional Papers Nos. 10, 15.

These quantities are of immediate interest when the question of the form of the geoid and the underlying reasons for that form are considered. A start had been made with this question, which I had hoped to include in this work, but which must now be held over. An approximate method of finding the underground density anomalies by means of Poisson's equations seems possible. This is independent of the usual isostatic hypotheses, and may throw light on the whole question of isostasy.

For convenience of reference a certain number of various determinations of the figure of the earth have been included.

The computations incidental to the preparation of this work have been very heavy. Those of the earlier chapters I to IV have been performed mostly by Babu Mukundananda Acharya and Babu Hem Chandra Banerji, B.A. The solution of equations in Chapter VIII has been entirely carried out by Babu Diwan Chand Nanda, to whom I am especially indebted for his industry and accuracy in a troublesome and monotonous piece of work. The data in Chapter IX have been compiled by Babu Surendranath Mitra, M.R.A.S.

Mr. Sarat Kumar Mukerji has been responsible for the printing of the whole letter press.

CHAPTER I.

First method of finding the changes of coordinates of triangulated points due to changes in axes of the terrestrial spheroid and coordinates of origin.

1. The subject of the first 16 sections of this chapter was printed in abstracted form in 1912 to draw attention to some of the difficulties of the problem, and with the hope that some light might be thrown on it at the Triennial Geodetic Conference held at Hamburg in that year.

The spheroid on which the triangulation of India has been adjusted is now believed to be considerably in error, as from the nature of the case was inevitable. Owing to possible deflection of the plumb line at the origin of the survey at Kalianpur, the values of latitude and azimuth at that point are somewhat in doubt. The problem for solution was to find the changes in latitude, longitude and azimuth of all triangulated points in India due to changes in the adopted values of the axes of the terrestrial spheroid and in the adopted coordinates of the origin of the Survey.

2. The new spheroid which is adopted in the first 16 sections of this chapter is defined by

a = semi major axis = 6378200 metres

$$\epsilon = \text{compression or flattening} = \frac{1}{298 \cdot 3} = \frac{a-b}{a}$$
.

These values are given on page 173 of "The Figure of the Earth and Isostasy, from Measurements in U.S.A." Washington 1909, where they are said to be Dr. Helmert's latest values.

Heretofore the axes used in the Survey of India are those due to Everest, known as "Everest's constants, first set". The numerical values are—

$$a = 20,922,931.80$$
 feet

$$\epsilon = \frac{1}{300 \cdot 8}$$

All base lines of the Survey of India have been expressed in terms of the Indian ten-foot standard, known as bar A. The base lines were not reduced to standard British feet but were

given as some number of times $\frac{A}{10}$ feet. In making use of Everest's constants we have accordingly been taking the semi major axis as

20,922,931 · 80
$$\frac{A}{10}$$
 British feet.

The value of A is given* as 3.333,318,86 Y, Y being the British standard yard.

We accordingly have $\frac{A}{10} = 1 - .000,004,342$ from which it follows that the semi major axis which has actually been used in India is

a = 20,922,840.95 British feet.

Similarly

$$b = 20,853,284 \cdot 03$$
 ,, ,,

3. Converting 6,378,200 metres into feet by means of the relation

$$1 \text{ metre} = 39 \cdot 370113 \text{ inches}$$

deduced by Benoit (see "Raport du Yard au mêtre, Paris 1896) we get as our new semi major axis 20,925,871-23 British feet, and denoting by δa and δb the corrections which have to be applied to the values used in the Survey of India, we have

 $\delta a = +3030 \cdot 28$ feet = 923 · 63 metres

and

$$\delta b = +2436 \cdot 78 \text{ feet} = 742 \cdot 73 \text{ metres}$$

Also since
$$e^2 = \epsilon (2 - \epsilon)$$
 and $\delta \epsilon = \frac{1}{298 \cdot 3} - \frac{1}{300 \cdot 8} = .000,027,86$ it follows that, $\delta e^2 = .000,055,54 \dagger$

where e is the eccentricity.

4. It is now considered that the coordinates of the origin of the survey at Kalianpur require modification. Captain G. P. Lenox Conyngham R. E. observed a group of azimuths and latitudes round Kalianpur. His results gave the mean value reduced to Kalianpur

Latitude 24° 7′ 11".57

Azimuth of Surantal 190° 27' 6".39.

The values heretofore adopted in the triangulation are,

Latitude 24° 7′ 11" · 26

Azimuth of Surantal 190° 27' 5".10.

We have to apply corrections to the origin of $+0''\cdot31$ in latitude and $+1\cdot''29$ in azimuth. As regards the old value of azimuth a correction of $-1''\cdot1$ was applied to the observed value by General Walker in order to make azimuths observed at other parts of the triangulation agree with geodetic values. We are now annulling this by reverting to an observed value of azimuth.

5. Accordingly it is necessary to investigate equations giving the change in coordinates due to the changes of both axes of the spheroid and of the latitude of the origin and of the azimuth of a ray through it, as exhibited in the following table

^{*} Account of the Operations of the G.T. Survey of India Vol. I. p. 28

[†] This corresponds to $\epsilon = \frac{1}{300 \cdot 8}$. Everest's actual value was $\frac{1}{300 \cdot 8017}$ and the corresponding value of δe^2 is $\cdot 000,055,58$.

TABLE I.

•	Old value	New value
Longitude of Kalianpur		77° 39′ 17″·57
Latitude of Kalianpur	24° 7′ 11″·26	24° 7′ 11″·57
Azimuth at Kalianpur of Surantal	190° 27′ 5″·10	190° 27′ 6″·39
Length of semi major axis	20,922,840 · 95 feet	20,925,871·23 feet (=6,378,200 metres)
Length of semi minor axis	20,853,284·03 feet	20,855,720 81 feet
Compression	300·8 ₀₁₇	$(=6,356,818, metres)$ $\frac{1}{298\cdot 3}$

The latest value of longitude* is merely given for convenience of reference. Any change in longitude of origin is of course immediately applicable to the whole of the triangulation by simple addition (or subtraction).

6. The old triangulation was adjusted, that is to say its apparent errors were distributed, by a process following the method of least squares as closely as was thought to be practicable in view of the great number of observed angles involved. Owing to the errors in the chosen values of the axes, the equations which the errors were made to satisfy were not quite correct. In the first place the spherical excesses of the several triangles were computed with uncorrect values of the axes: but, owing to the smallness of these spherical excesses, the change on this account is not appreciable to 0."01—the accuracy to which they were computed. None the less the error on this account being of a systematic kind—always of the same sign—will have had some small effect. With the "circuit equations" the case is less favourable. In following series of triangulation, which embrace much larger areas, the spherical excess becomes much more appreciable, and its value on the new spheroid differs from the old value by about one second in an area of 75 square degrees in Indian latitudes. This difference modifies the circuit equations. It is a smaller error than the errors generated in the triangulation, but is systematic.

The only theoretically accurate course would be to readjust all the triangulation. This would be a very large piece of work, and one object of the present paper is to avoid this labour by putting forward alternative methods, which will give the desired changes, with a departure from strict theoretical accuracy smaller than the errors due to fallible observations. The methods will also be applicable to any further changes that may be found desirable at any subsequent date.

- 7. The following notation is used
 - a = semi major axis
 - b = semi minor axis
 - ϵ = ellipticity or compression
 - e = eccentricity
 - $\rho = \text{radius of curvature to meridian} = a (1-e^2) (1-e^2\sin^2\lambda) \frac{3}{2}$
 - $\nu = \text{normal terminated by the minor axis} = a (1 e^2 \sin^2 \lambda)^{-\frac{1}{2}}$

which is the other principal radius of curvature

^{*} Account of the Operations of the G.T. Survey of India Vol. XVII p. xv.

As only very small values of c will be considered it is unnecessary to specify whether this distance is measured along a normal plain section or a geodesic line.

8. For small values of c

$$\Delta \lambda = -\frac{c}{\rho} \cos A$$

$$\Delta L = -\frac{c}{\nu} \frac{\sin A}{\cos \lambda}$$

$$\Delta A = -\frac{c}{\nu} \sin A \tan \lambda$$

Differentiating* these equations with respect to A, λ , ρ , ν the corresponding changes of $\Delta \lambda$, ΔL , ΔA are obtained: and remembering that $\delta \Delta \lambda = \delta u$ and $\delta \lambda = u$ etc., we obtain

$$\delta u = \frac{c}{\rho} \cos A \cdot \frac{\delta \rho}{\rho} + \frac{c}{\rho} \sin A \cdot w$$

$$\delta v = \frac{c}{\nu} \frac{\sin A}{\cos \lambda} \cdot \frac{\delta \nu}{\nu} - \frac{c}{\nu} \frac{\cos A}{\cos \lambda} \cdot w - \frac{c}{\nu} \frac{\sin A}{\cos^2 \lambda} \sin \lambda \cdot u$$

$$\delta w = \frac{c}{\nu} \sin A \tan \lambda \cdot \frac{\delta \nu}{\nu} - \frac{c}{\nu} \cos A \tan \lambda \cdot w - \frac{c}{\nu} \sin A \sec^2 \lambda \cdot u$$
(2)

These are three simultaneous partial equations from which u, v, w are to be determined. They express the small changes in u, v, w developed along a short (elementary) line in direction of azimuth A. Before they can be integrated it is necessary to define the route along which to travel. It might be supposed at first that the only important matter was the terminal points of the route: but it will be seen later that a different result is found from each route followed. The equations are not integrable in finite terms for all routes, and two special cases are now considered, firstly along a parallel of latitude and secondly along a meridian. These cases correspond to $A = 90^{\circ}$ and A = 0 respectively. A means of dealing with the general case of an oblique curvilinear ray is given later, §13 et seq.

9. Case I, when $A = 90^{\circ}$. In the case of a route along a parallel of latitude it is clear that $\frac{c}{v \cos \lambda} = dL$ and equations (2) can accordingly be written

$$-\frac{du}{dL} = \frac{\nu}{\rho} \cos \lambda. \ w$$

$$-\frac{dv}{dL} = \frac{\delta \nu}{\nu} - \tan \lambda. \ u$$

$$-\frac{dw}{dL} = \sin \lambda. \frac{\delta \nu}{\nu} - \sec \lambda. \ u$$
(3)

^{*} The quantities $\frac{d\rho}{d\lambda}$, $\frac{d\nu}{d\lambda}$ were neglected as they contain the factor ϵ^2 .

Putting $\beta^2 = \frac{\nu}{\rho}$ it follows at once from (3) that

$$\frac{du^2}{dL^2} = -\frac{\nu}{\rho} \cos \lambda. \frac{dw}{dL}$$
$$= \beta^2 \sin \lambda \cos \lambda. \frac{\delta \nu}{\nu} - \beta^2 u$$

The solution of this is

where P and Q are constants. Using (3) and differentiating (5) it follows that

$$-\beta^{2} \cos \lambda. \ w = \frac{du}{dL} = \beta \left\{ -P \sin (\beta L) + Q \cos (\beta L) \right\}$$

$$w = \frac{1}{\beta \cos \lambda} \left\{ P \sin (\beta L) - Q \cos (\beta L) \right\} (6)$$

To determine P and Q put L = 0 in (5) and (6)

$$u_0 = \frac{1}{2} \sin 2\lambda \frac{\delta \nu}{\nu} + P$$

$$w_0 = -\frac{Q}{\beta \cos \lambda}$$

$$(7)$$

where the suffix zero indicates values at the beginning of the line.

Further, using (3) and (5)

$$-\frac{dv}{dL} = \frac{\delta v}{\nu} - \tan \lambda \left\{ \frac{1}{2} \sin 2 \lambda \cdot \frac{\delta v}{\nu} + P \cos (\beta L) + Q \sin (\beta L) \right\}$$

whence

longitude being measured from the starting point.

Expressing these equations in terms of seconds—they are at present in radian units—we write

and
$$u'' = R'' + P''\cos(\beta L) + Q''\sin(\beta L)$$

$$v'' = v''_0 - R''\cot\lambda \cdot \frac{L^\circ}{57 \cdot 3} + \frac{\tan\lambda}{\beta} \left\{ P''\sin(\beta L) + Q''\left(1 - \cos(\beta L)\right) \right\}$$

$$v'' = \frac{1}{\beta \cos\lambda} \left\{ P''\sin(\beta L) - Q''\cos(\beta L) \right\}$$
(10)

Since $\nu = a (1 - e^2 \sin^2 \lambda)^{-\frac{1}{2}}$ it follows from logarithmic differentiation that

$$\frac{\delta \nu}{\nu} = \frac{\delta a}{a} + \frac{\sin^2 \lambda}{1 - e^2 \sin^2 \lambda} \frac{\delta e^2}{2}$$

Putting in the values of a, e, δa , δe^2 from $\S \S 3$, 4 and expanding

$$\frac{\delta \nu}{\nu} = .000, 144, 83 + .000, 027, 77 \sin^2 \lambda + .000, 000, 18 \sin^4 \lambda + \dots$$
 (11)

10. Case, II, when A = 0. In the case of a route along a meridian it is clear that $\frac{c}{\rho} = -d\lambda$ and equation (2) can accordingly be written

$$\frac{du}{d\lambda} = -\frac{\delta\rho}{\rho}
\frac{dv}{d\lambda} = \frac{\rho}{\nu} \sec \lambda \cdot w
\frac{dw}{d\lambda} = \frac{\rho}{\nu} \tan \lambda \cdot w$$
(12)

Differentiating

$$\rho = a \left(1 - e^{3}\right) \left(1 - e^{3} \sin^{3}\lambda\right)^{-\frac{3}{2}} \quad \text{logarithmically}$$

$$\frac{\delta \rho}{\rho} = \frac{\delta a}{a} - \delta e^{3} \left(\frac{1}{1 - e^{2}} - \frac{3}{2} \cdot \frac{\sin^{3}\lambda}{1 - e^{3} \sin^{3}\lambda}\right)$$

whence, expanding and putting in numerical values

$$\frac{\delta\rho}{\rho} = .000,144,83 - .000,055,54 \left(1.00668 - \frac{3}{2}\sin^2\lambda - \frac{3}{2}e^2\sin^4\lambda \dots \right)$$

Integrating the first equation of (12)

$$u - u_0 = -\int \frac{\delta \rho}{\rho} d\lambda$$
= - \cdot 000,130,78 \quad (\lambda - \lambda_0) + \left[\cdot 000,020,97 \sin 2\lambda - \cdot 000,000,02 \sin 4\lambda \quad \cdot \left] \lambda_0 \quad \quad

$$\frac{1}{w} \cdot \frac{dw}{d\lambda} = \frac{\rho}{\nu} \tan \lambda = \frac{1 - e^2}{1 - e^2 \sin^2 \lambda} \cdot \tan \lambda$$

Put $y = \sin^2 \lambda$ and $dy = 2 \sin \lambda \cos \lambda d\lambda$

Then

$$d \log w = \frac{1 - e^2}{1 - e^3 y} \tan \lambda \cdot \frac{dy}{2 \sin \lambda \cos \lambda}$$
$$= \frac{1}{2} \cdot \frac{1 - e^2}{1 - e^3 y} \cdot \frac{dy}{1 - y}$$
$$= \frac{1}{2} \left(\frac{1}{1 - y} - \frac{e^2}{1 - e^2 y} \right) dy$$

Integrating

$$\log w = -\frac{1}{2} \log (1-y) + \frac{1}{2} (1-e^2y) + \text{constant}$$

$$w = K \sqrt{\frac{1-e^2y}{1-y}} \quad \text{where K is a constant}$$

$$w = \frac{K \sqrt{1 - e^3 \sin^3 \lambda}}{\cos \lambda} = \frac{Ka}{\nu \cos \lambda}$$

$$w = w_0 \cdot \frac{\nu_0 \cos \lambda_0}{\nu \cos \lambda} \cdot \dots$$

$$Again \frac{dv}{d\lambda} = \frac{1 - e^2}{1 - e^3 \sin \lambda} \sec \lambda \cdot K \frac{\sqrt{1 - e^3 \sin^2 \lambda}}{\cos \lambda}$$

$$v = K \left(1 - e^3\right) \int_{\cos^2 \lambda}^{2} \frac{d\lambda}{\sqrt{1 - e^3 \sin^2 \lambda}}$$
Putting
$$x = \sin \lambda \text{ then } dx = \cos \lambda d\lambda \text{ and }$$

$$v = K \left(1 - e^2\right) \int_{\left(1 - x^2\right)^{\frac{3}{2}} \sqrt{1 - e^3 v^3}}^{2}$$

Now $\frac{1}{(1-x^2)^{\frac{3}{2}}\sqrt{1-e^2x^2}} = \frac{1}{(1-x^2)^{\frac{3}{2}}\sqrt{1-e^2+e^2(1-x^2)}}$ $= \frac{1}{\sqrt{1-e^2}} \cdot \frac{1}{(1-x^2)^{\frac{3}{2}}} \left\{ 1 - \frac{1}{2} k (1-x^2) + \frac{3}{8} k^2 (1-x^2)^2 \dots \right\} \dots (16)$ where $k = \frac{e^2}{1-e^2} = 0.006,682,2$

Collecting results and expressing them in terms of seconds we get

The value of $\log \sqrt{1-e^2}$ is $\overline{1} \cdot 9985538$.

11. With the equations (10) and (17) we can now deduce the values of u, v, w for any point P. Starting from the origin O, we may compute along the parallel OM and find the values at M. Using these as initial values we can then proceed along the meridian MP and get values for P.

Or we may first proceed along meridian ON and then along the parallel NP.

The values arrived at by the two routes are not identical.

This is inevitable. The discrepancy in azimuth is the change in spherical excess on the given area from the old to the new spheroid. We shall proceed to consider the discrepancies which occur.

ır. To study these

discrepancies the values of the changes were computed to five places of decimals. In the first place it was considered convenient to take as origin for this computation the point whose latitude and longitude were 24°, 78° on the old spheroid. The double values of u, v, w, for this point differ by a small amount and in view of what follows the following mean value of w was taken:—

$$w = \frac{\frac{w_x}{x} + \frac{w_y}{y}}{\frac{1}{x} + \frac{1}{y}} = \frac{yw_x + xw_y}{x + y}$$

The suffix x indicates the value found by route ONP and the suffix y ,, ,, ,, ,, OMP and x = PN, y = PM, but x and y are always treated as positive. The values of u_x , u_y and v_x , v_y were practically identical.

Starting from this origin by means of our equations the values exhibited in the following three tables are obtained:—

TABLE II.

LATITUDE (u").

Lat.	Long.	58°	63°	68°	78°	78°	88°	88°	93°	98"
34°	$egin{array}{c} u_x & & & \\ u_y & & & \\ u_x - u_y & & & \end{array}$		-2.65069 -2.89432 +0.24363	-3·09166 -3·20019 +0·10853	-3·39675 -3·42385 +0·02710	-3·56361 0·00000		·	•	Table 1
29°	u_x u_y u_x-u_y	-0·27462 -0·49755 +0·22298	-0.75738 -0.88329 +0.12591	-1·13306 -1·18916 +0·05610	-1.39881 -1.41282 +0.01401	-1.55258 0.60000				•
24°	$\left\{ egin{array}{c} u_x \ u_y \end{array} \right\} \ u_x - u_y$	+1.40241	+1.01667	+0.71080	+0.48714	+0.34738	+0.29261		+0.43903	
19°	u_x u_y $u_x - u_y$	+ 2 · 97072 + 3 · 20512 - 0 · 23440	+2.68699 +2.81988 -0.13289	+2·45452 +2·51851	+2.27510	+2.15009	+2.08045	0.00000 +2.06672 +2.12594 -0.05922	0.00000 +2.10900 +2.24174	
14°	u_x u_y		+4.27179	+4·11549 +4·23571	+ 3 · 98199	+3.87299	+3.78724	+ 8 · 72751	+3.69353 +3.96394 -0.27041	+3.68557

TABLE III.

LONGITUDE (v).

		58°	63°	68°	78°	78°	83°	88°	98*	98°
34°	$egin{array}{c} v_x \ v_y \end{array}$	+ 11 · 82474 + 11 · 55396		+5.98821	+ 3·03302 + 2·95734	+0.06397				
	$v_x - r_y$	+ 0.27078	+0.21427	+0.14818	+0.07568	0.00000				
29°	$egin{array}{c} oldsymbol{v_x} \ oldsymbol{v_y} \end{array}$	+ 11 · 03498 + 10 · 97521		+5·51411 +5·47878	+2.72776	-0.06874				
	$v_x - v_y$	+ 0 · 05977	+0.04958	+0-03533	+0.01834	0.00000				
24°		+ 10 • 45012	+7.80729	+ 5 · 15103	+ 2 · 18448	-0.18914	-2.86654	-5·54441	-8.21943	-10·88833
	$\begin{pmatrix} v_y \\ v_x - v_y \end{pmatrix}$	0.00000	0.00000	0.00000	0 00000	0.00000	0.00000	0.00000	0.00000	0.00000
19°	$egin{array}{c} v_x \ v_y \ v_x - v_y \end{array}$	+ 10·03969 + 9·96451 + 0·07518		+ 4 · 83195 + 4 · 84792 + 0 · 03408	+2·29303 +2·27645 +0·01658	-0·30049 0·00000	-2.89693 -2.88036 -0.01657	-5·49462 -5·46060 -0·03402	-8.09189 -8.08868 -0.05826	- 10 · 68705 10 · 61192 0 · 07513
14°	v_x v_y $v_x - v_y$	+9.78031 +9.50738 +0.27293	+ 7 · 23867 + 7 · 03876 + 0 · 20011	+4.69380 +4.56259 +0.13121	+ 2·14557 + 2·08063 + 0·06494	-0·40531 +0·00000	-2.95831 -2.89337 -0.06494	-5·51288 -5·38170 -0·13118	-8.06847 -7.86848 -0.20004	-10.62452 -10.35171 - 0.27281

TABLE IV.

AZIMUTH (w).

		58°	63°	68`	73°	78°	83°	88°	93°	98°
34°	$egin{array}{c} w_x \ w_y \end{array}$	+8·78306 +5·83531	+ 6 · 98775 + 4 · 75699	+ 5 · 13898 + 3 · 64230	+3.25090	+1.33803				
	$w_x - w_y$	+2.94775	+ 2 • 23076	+1-49668	+0.75117	0.00000				
29°	v_x v_y	+ 6 · 97539 + 5 · 53262	+5.60208	+ 4 · 18593 + 3 · 45336	+ 2·73775 + 2·37006	+1.26862				
	$w_x - w_y$	+1-44277	+1.09185	+0.73257	+0.36769	0.00000				ļ
24°	$\left\{\begin{array}{c} w_x \\ \end{array}\right\}$	+ 5 · 29810	+4.31905	+ 3 · 30698	+ 2.26960	+ 1 · 21485	+ 0 • 15080	-0·91440	-1.97260	-3.01574
	$w_x - w_y$	0.00000	0.00000	0-00000	0 00000	0.00000	0.00000	0.00000	0.00000	0.00000
19°	$w_x \\ w_y$	+3.71867 +5.11995	+ 3 · 11339 + 4 · 17383	+ 2 · 48428 + 3 · 19579	+ 1 · ×3619 + 2 · 19329	+ 1 · 17400	+0.50282	-0·17217 -0·88365	- 0·84588 - 1·90627	-1.51311 -2.91483
	w_x-w_y	-1.40128	-1.06044	-0.71151	-0.35710	0 00000	+0.35709	+0.71148	+1.06039	+1 40122
14°	w_s w_y	+ 2·20928 + 4·99000	+ 1·96355 + 4·06789	+ 1 · 70277 + 3 · 11467	+ 1 · 42897 + 2 · 13762	+ 1 · 14420	+0.85068	+ 0 · 55065 - 0 · 86122	+ 0.24640	-0.05974 -2.84036
	$ r_x-w_y $	-2.78072	-2.10434	-1-41190	-0.70865	0.00000	+0.70865	+1-41187	+ 2 · 10429	+ 2 - 78062

12. Denote the distances PN, PM (in any linear unit, not in angular units) by x and y then.

$$x = (\mathbf{L} - \mathbf{L}_0) \nu \cos \lambda$$

$$y = \int_{\lambda_0}^{\lambda} \rho d\lambda.$$

By inspection of the numbers shown in tables II, III, IV the following equations are found to be approximately true:

$$\begin{cases}
 u_x - u_y = Ax^2y \\
 v_x - v_y = Bxy^2 \\
 w_x - w_y = Cxy
 \end{cases}$$
(18)

where A, B, C are quantities varying slightly with the latitude, but which may be treated as constants with their mean values over any area with which we shall need to deal. The last equation simply expresses that the closing error in azimuth is equal to the change in spherical excess.

Now $u_x - u_y$ is what we will call the "closing error in latitude" in proceeding round the circuit OMPN; $v_x - v_y$ and $w_x - w_y$ being corresponding quantities for longitude and azimuth. Over any elementary area

$$dU = d (u_x - u_y) = 2A x dxdy$$

$$dV = d (v_x - v_y) = 2B y dxdy$$

$$dW = d (w_x - w_y) = C dxdy$$

$$(19)$$

By integrating over any area the closing error of the circuit enclosing that area is found.

To find the values of u, v, w then which would be obtained by proceeding along any route it is only necessary to find the values of u_x , v_x , w_x (or u_y , v_y , w_y) and apply the closing error with the correct sign. Integrating (18) it follows for moderate areas,

$$\begin{array}{c}
U = 2A \overline{x}a \\
V = 2B \overline{y}a \\
W = Ca
\end{array}$$
(20)

where a is the area of the circuit and x y are the coordinates of its centre of gravity. We say for moderate areas because the coordinates x and y are curvilinear: but for the areas we shall require to apply the formulæ to, x and y may be treated as rectilinear coordinates.

13. By means of the above equations it is possible to find the result of the change of axes and origin as computed along any line of any curvature or along any route whatever, by computing first along a parallel and then along a meridian (or in the reverse order) and then applying the "closing errors" of the circuit formed by the line in question and the parallel and meridian.

This, then, would solve the problem as for as solitary lines were concerned. When we come to a network of lines the case is different, for several values of the changes which occur at a point can be found corresponding to the several possible routes by which the point can be reached. In view of the fact that most of the triangulation of India is along meridian or parallel (see triangulation chart at end), the following procedure is suggested:—

(1). Select central meridian and parallel for India (Burma will be dealt with separately). The selected meridian is 78° and the selected parallel 24°N.

- (2). Assume the values of u, v, w found by the forumlæ on these lines, which we will call axes, to be correct. We have then to distribute the closing errors in **PM** and **PN**. (see fig. §11).
- (3). If PM is a meridional series the computations fixing the length PM depend only in a small measure on the size of the earth's axes. The way in which these axes have come in is through the spherical excess. In nearly all triangulation in the Survey of India, the spherical excess is such a small quantity that the change of axes proposed will not appreciably affect it (to $0'' \cdot 01$). There is reason then for assuming that the length PM is correct. In the same way the length PN may be regarded as correct. If then u_y and v_x are taken for the changes in coordinates of P there should be no error to the first order: and as the values of u, v are so small the second order quantities may surely be neglected.
- (4). This process would hold for the corners of circuits formed by meridian and longitudinal series, though some modification would be more correct for oblique series. In the Indian triangulation meridional and longitudinal series are the rule. Oblique series occur practically only along the coast of the Bay of Bengal and along the first range of the Himalayas. (See index chart of triangulation at end). As far as latitude and longitude are concerned we should not be committing much error in accepting the values of latitude and longitude, u_y and v_x .
- (5). Now consider the azimuth change. This can be found from the change in position of two contiguous points. If we take two points originally on the same latitude whose changes are u_y and $u_y + \frac{\delta u_y}{\delta L} dL$ the azimuth change on the line joining them is

$$\rho \frac{\delta u_y}{\delta L} dL \frac{1}{\nu \cos \lambda . dL} = \frac{\rho}{\nu \cos \lambda} \cdot \frac{\delta u_y}{\delta L} = w_y$$

whereas the azimuth change deduced from two points originally on the same longitude is

$$\frac{\nu\cos\lambda}{\rho}\frac{\delta v_x}{\delta\lambda}=w_x$$

It has been seen that the azimuth closing errors is C.xy where OM = xON = y. and C is a quantity which varies slightly with the latitude. Treating C as a constant and equal to its mean value over the area in consideration is permissible. This will be satisfied if the azimuth error is put into the lines PN and PM to amount proportional to their lengths.

This gives

$$\frac{\frac{w_x}{y} + \frac{w_x}{x}}{\frac{1}{y} + \frac{1}{x}} = \frac{xw_y + yw_x}{x + y}$$

as the best correction to the azimuth at P.

(6). The difference $w_y - w_x$ is not to be regarded as an error contained in the value of the angle MPN. Its effects is to alter the curvature of the lines PM and PN.

(7). In the case then of a gridiron system of meridional and longitudinal series at regular intervals all of equal weight, it seems that the best values we could assign to the changes are u_y , v_x , $\frac{xv_y + yv_x}{x + y}$. In this case the next step in correcting the triangulation would be to find the changes of intermediate points on the series as follows:—

$$\frac{u_y}{v_x}$$
 for change in latitude along a meridian parallel

and for the other coordinate and azimuth to simply interpolate between the terminal values.

(8). A difficulty arises when the actual points of the triangulation series are considered. For if the above formula for two adjacent points A and B is used, the difference of coordinates will not exactly give the correct change of azimuth. Adopting the rule of computing the azimuth from the coordinates, a different azimuth change on a ray going east from that found on a ray going south is arrived at. That is to say the actual change of $w_x - w_y$ would be forced into the single angle formed by these rays. To avoid this it appears better to take the azimuth change to be $\frac{xw_y + yw_x}{x + y}$ and the change in coordinates of one point only to be given by u_y , v_x , and compute the coordinates of second adjacent point from this with the corrected azimuth (i. e. old azimuth $+\frac{xw_y + yw_x}{x + y}$) and the old value of the distance c.

The computation alluded to in (8) may be performed with tables such as are given in the "Auxiliary Tables" prepared for the new values of the axes: or we may at once deduce the changes in the position of the second point B by differentiation of the equations for $\Delta\lambda$, ΔL and ΔA .

The equations are: -

$$\Delta\lambda = -\frac{c}{\rho}\cos A - \frac{1}{2}\frac{c^2}{\rho\nu}\sin^3 A \tan \lambda = \delta_1\lambda + \delta_2\lambda$$

$$\Delta L = -\frac{c}{\nu}\cdot\frac{\sin A}{\cos \lambda} + \frac{1}{2}\frac{c^2}{\nu^2}\cdot\frac{\sin 2 A \tan \lambda}{\cos \lambda} = \delta_1L + \delta_2L$$

$$\Delta A = -\frac{c}{\nu}\sin A \tan \lambda + \frac{1}{4}\frac{c^2}{\nu^2}(1 + 2\tan^2 \lambda) = \delta_1A + \delta_2A$$

being equations (1) carried to an extra term in consideration of the larger value of a now contemplated.

Differentiating we have at once

$$\delta\Delta\lambda = \delta_1\lambda \left(-\frac{\delta\rho}{\rho} - \tan A.w\right) + \delta_2\lambda \left(-\frac{\delta\rho}{\delta} - \frac{\delta\nu}{\nu} + 2\cot A.w + \frac{2}{\sin 2\lambda}u\right)$$

$$\delta\Delta L = \delta_1L \left(-\frac{\delta\nu}{\nu} + \cot A.w + \tan \lambda u\right) + \delta_2L \left\{-\frac{2\delta\nu}{\nu} + 2\cot 2A.w + (\cot \lambda + 2\tan \lambda)u\right\}$$

^{*} Auxiliary Tables of the Survey of India, Dehra Dun, 1906.

$$\delta\Delta A = \delta_1 A \left(-\frac{\delta \nu}{\nu} + \cot A.w + \frac{2}{\sin 2\lambda} u \right) + \delta_2 A \left(-\frac{2\delta \nu}{\nu} + \frac{4 \tan \lambda \sec^2 \lambda}{1 + 2 \tan^2 \lambda} u + 2 \cot 2A.w \right)$$

In above u, v, w are the values found for one end of the base A: the values for the other end B are then $u + \delta \Delta \lambda$, $v + \delta \Delta L$ $w + \delta \Delta A$.

A third method is to reach B by proceeding first along the parallel AC through A and then down the meridian CB through B, by means of the formulæ (or tables) already given: and then by applying the closing error of the area ACB.

It appears, then, that the expressions u_y , v_x , $\frac{xw_y + yw_x}{x + y}$ may be taken to represent the changes in latitude, longitude and azimuth respectively of any point in India (excluding Burma) with the restriction that adjacent points must be treated differently, the changes for the second point being deduced by one of the three methods just explained. On this basis the results may be given in convenient tabular form. They will represent the changes with accuracy considerably greater than the accuracy with which the points can be considered to be fixed in space by triangulation.

14. These values are believed to be satisfactory for all the purposes for which they can be used. As far as map producing goes the discrepancies are negligible. For geodetic purposes we require to know the absolute corrections to latitudes, longitudes and azimuths of a base where a junction is to be made with another survey—such as the Russian survey, or the Burma survey. We can do this as described in § 13 for one end of the base and then compute the coordinates of the other end of the base from a knowledge of its length. In the case of Burma the triangulation has not yet been adjusted. It will perhaps be adjusted with the new values of the axes and made to fit on to the most eastern series of the North-East Quadrilateral, viz., the Shillong Meridional Series, after this has been corrected for change of axes.

We also wish to known corrections to triangulated latitudes or azimuths at stations where these quantities have also been observed astronomically, so as to know the actual plumb-line deflections. As regards latitude we have uncertainty of perhaps 0"·l on account of axes change after leaving the central latitude by 10°, i.e. one part in 360,000 which is of the order of accuracy of our base-lines in India. The error generated in the triangulation must eventually be greater than this. The same argument holds as regards the azimuth, where the uncertainty of change due to change of axes, and due to error generated in triangulation are necessarily larger numbers when expressed in seconds of arc than occur in the latitude. The astronomic observations for azimuth are less precise, considered from point of view of plumb-line deflection, than the latitude observations. Apart from these considerations an error in plumb-line deflection in latitude of 0"·l is of little account. In India we have plume-line deflections of over 50" and, at least at present, tenths of second are too minute to be taken account of in any discussion of deflections.

15. It seems then that the method sketched above is sufficiently precise for the geodetic uses to which the results can be put, and higher accuracy could not be applied with advantage to the results of triangulation. The method of § 13 is applicable to points which can be reached by either route (meridian or parallel) without the route departing out of the region of triangulation. Thus while it applies to all the triangulation in Iudia which has been adjusted, it could not be fairly applied without modification to Burma, for this would imply the existence of triangulation across the Bay of Bengal. As the Burma triangulation remains to be adjusted, this does not matter and it will only be necessary to apply the method as far as the Shillong Meridional Series, which can be done very satisfactorily, the more so as our selected central latitude crosses this series.

16. The Survey of India was asked in 1912 by the Siamese Survey Department to furnish the best possible values of the coordinates of Bangkok. The way in which this has been done will serve as a good illustration of the method of using the closing error to determine the changes which occur along a route which is neither meridional nor longitudinal. As far as longitude 90° the route may be taken to follow the central parallel, latitude 24° (see triangulation chart at end). From these it proceeds along the Burma Coast Series down to latitude 13° 45′, and thence to Bangkok along latitude 13° 45′. In this case then we first compute along parallel 24° up to longitude 98°: we then proceed along meridian 98° down to latitude 13° 45′. The result at this point is found from tables II, III, IV by extrapolation to be

$$u_y = + 4.248$$

 $v_y = -10.339$
 $w_y = -2.837$

Now treating longitude 98° as axis from which x is measured, we evaluate the closing errors over the area between the Coast series and latitude 24° and meridian 98° and get

$$\Sigma Ax^{2}y = U = + \cdot 017$$

$$\Sigma Bxy^{3} = V = - \cdot 026$$

$$\Sigma Cxy = W = + \cdot 426$$

Hence the changes at latitude 13° 45', longitude 98°, as determined by the route following the Burma Coast Series, are $u_y + U$, $v_y + V$, $w_y + W$.

One further correction remains. The Bangkok Series which emanates from this point is expressed in "preliminary terms"—it was computed from preliminary values of the side from which it emanates. Later values of this side, found after the Coast Series had been computed from the preliminary value of the side, require the following changes to be applied to the beginning of the Bangkok Series, viz.

Combining these we arrive at the changes to be made at latitude 13° 45°, longitude 98°.

By parallel and meridian route Correction to bring into terms of Burma Coast S Correction from "preliminary terms"	 Series route 	 +4·248 +0·017	Longitude 10 · 339 0 · 026 0 · 17	+0.426
	Total	$+2\cdot 47$	-10.54	+3.09

With these initial values by computing along parallel 13° 45' up to longitude 100° 33' 3".5 the old value of the longitude of Phukhao Thong Station* in Bangkok we get the changes

$$u = + 2'' \cdot 34$$

 $v = -11'' \cdot 82$
 $w = + 2'' \cdot 9$

To bring into Greenwich terms the further correction -2' 27"·18 is required to the longitude, the final corrections being

^{*} Phukhao Thong Station is the most easterly triangulated point shown on the triangulation chart.

Owing to an unfortunate confusion of the quantities $u_y v_y w_y$ with $u_x v_x w_x$ the following corrections were wrongly supplied to the Royal Survey Department Siam in 1912

17. So far the particular case of definite numerical values of $\frac{\delta a}{a}$, δe^2 , u_0 wo has been considered. It is desirable to put the solution in a form in which the results of any desired change can be calculated rapidly.

Let u_1 , u_2 , u_3 , u_4 , be the changes in latitude respectively due to $\delta a = 1000$ metres, $\delta b = 1000$ metres, $u_0 = 1''$, $w_0 = 1''$ with corresponding notation for v and w. Since the quantities involved are small it is clear that

$$u = \delta a. \ u_1 + \delta b. \ u_3 + u_0. \ u_3 + w_0 u_4 \dots \dots \dots \dots$$
 (18)

with similar equations for v and w: where da, db are expressed in kilometers and u_0 , w_0 in seconds. If values of u_1 , u_2 , u_3 , u_4 are tabulated, equation (18) will enable the quantities u, v, w to be evaluated for any desired case. Of the quantities δa , δb , δe^2 any two may be regarded as independent, the third being determined from the result of differentiating $b = a \sqrt{1-e^2}$ logarithmically.

When $\delta a = \delta b = 1000$ metres = 39370·113 inches = 3280·843 feet

$$\frac{1}{2} \frac{\delta a}{a}$$
 cosec 1" = 16.1718 of which the logarithm is 1.2087596

$$\frac{1}{2} \frac{\delta b}{b} \operatorname{cosec} 1'' = 16 \cdot 2258$$
 ,, , , $1 \cdot 2102058$

Also

$$\frac{\delta \nu}{\nu} = \frac{\delta a}{a} + \frac{\sin^2 \lambda}{1 - e^2 \sin^2 \lambda} \cdot \frac{\delta e^2}{2}$$

$$= \frac{\delta a}{a} \left(1 + \frac{(1 - e^3) \sin^2 \lambda}{1 - e^2 \sin^2 \lambda} \right) - \frac{\delta b}{b} \cdot \frac{(1 - e^3) \sin^2 \lambda}{1 - e^2 \sin^2 \lambda} \quad . \quad . \quad by \quad (19)$$

Hence equation (9) may be written, omitting the dashes

$$R = \sin 2\lambda \left\{ 16 \cdot 1718 \left(1 + \frac{(1 - e^2) \sin^2 \lambda}{1 - e^2 \sin^2 \lambda} \right) \delta a - 16 \cdot 2258 \frac{(1 - e^3) \sin^2 \lambda}{1 - e^2 \sin^2 \lambda} . \delta b \right\}$$

$$P = u_0 - R \qquad (20)$$

$$Q = w_0 \beta \cos \lambda \qquad (20)$$

where δa , δb are expressed in kilometres and u_0 and u_0 in seconds.

18. Along a parallel of latitude

Case I, when $\delta a = 1$, $\delta b = 0$, $u_0 = 0$, $w_0 = 0$

By (20)
$$R = 16 \cdot 1718 \sin 2 \lambda \left(1 + \frac{(1 - e^2) \sin^3 \lambda}{1 - e^2 \sin^2 \lambda} \right) = -P$$
 (21)

$$u = R \left(1 - \cos(\beta L) \right)$$

$$v - v_0 = -R \left(\frac{L^0 \cot \lambda}{57 \cdot 3} + \frac{1}{\beta} \tan \lambda \sin(\beta L) \right)$$

$$w = -\frac{R}{\beta} \sec \lambda \sin(\beta L)$$
(22)

where L is expressed in degrees.

Case II, when $\delta a = 0$, $\delta b = 1$, $u_0 = 0$, $w_0 = 0$ From (20)

Case III, when $\delta a = 0$, $\delta b = 0$, $u_0 = 1$, $w_0 = 0$ In this case $\frac{\delta \nu}{n} = 0$ so that

$$\begin{cases}
R = 0 \\
P = u_0 = 1 \\
Q = 0
\end{cases}$$
(24)

$$v = \cos (\beta L)$$

$$v - v_0 = \frac{1}{\beta} \tan \lambda \sin (\beta L)$$

$$w = \frac{1}{\beta} \sec \lambda \sin (\beta L)$$
(25)

Case IV, when $\delta a = 0$, $\delta b = 0$, $u_0 = 0$, $w_0 = 1$

$$R = P = 0$$

$$Q = -\beta \cos \lambda$$
and

19. From (10) and (19)

$$\frac{\delta\rho}{\rho} = \frac{\delta a}{a} - 2\left(\frac{\delta a}{a} - \frac{\delta b}{b}\right) \left(1 - \frac{3}{2} \frac{(1 - e^2)\sin^2\lambda}{1 - e^2\sin^2\lambda}\right)
= \frac{\delta a}{a} - 2\left(\frac{\delta a}{a} - \frac{\delta b}{b}\right) \left\{1 - \frac{3}{2}(1 - e^2)\sin^2\lambda(1 + e^2\sin^2\lambda + \dots)\right\}
= \frac{\delta a}{a} - 2\left(\frac{\delta a}{a} - \frac{\delta b}{b}\right) \left\{1 - \frac{3}{2}(1 - e^2)\left(\frac{1 - \cos 2\lambda}{2} + \frac{e^2}{8}(3 - 4\cos 2\lambda + \cos 4\lambda) \dots\right)\right\}$$

Hence from (12)

$$u-u_0 = -\int_{\lambda_0}^{\lambda} \frac{\delta \rho}{\rho} d\lambda$$

$$= -\frac{\delta a}{a} (\lambda - \lambda_0) + 2 \left(\frac{\delta a}{a} - \frac{\delta b}{b} \right) \left\{ 0.2513 (\lambda - \lambda_0) + 0.8750 (\sin 2\lambda - \sin 2\lambda_0) - 0.0003 (\sin 4\lambda - \sin 4\lambda_0) \right\}$$

Expressing in seconds and introducing δa , δb expressed in kilometres and λ , λ_0 in degrees this becomes

$$u - u_0 = \delta a \left\{ -0.2807 \left(\lambda^\circ - \lambda_0^\circ \right) + 24.26 \left(\sin 2\lambda + \sin 2\lambda_0 \right) - 0.019 \left(\sin 4\lambda - \sin 4\lambda_0 \right) \right\} + \delta b \left\{ -0.2847 \left(\lambda^\circ - \lambda_0^\circ \right) - 24.34 \left(\sin 2\lambda - \sin 2\lambda_0 \right) + 0.019 \left(\sin 4\lambda - \sin 4\lambda_0 \right) \right\}.$$
 (28)

20. Along a meridian

Case I, when $\delta a = 1$, $\delta b = 0$, $u_0 = 0$, $w_0 = 0$

By (28) and (17)

$$u = -0.2807(\lambda^{\circ} - \lambda_{0}^{\circ}) + 24.26 (\sin 2\lambda - \sin 2\lambda_{0}) - 0.02 (\sin 4\lambda - \sin 4\lambda_{0})$$

$$v - v_{0} = 0$$

$$w = 0$$
(29)

Case II, when $\delta a = 0$, $\delta b = 1$, $u_0 = 0$, $w_0 = 0$ By (28) and (17)

Case III, when $\delta a = 0$, $\delta b = 0$, $u_0 = 1$, $w_0 = 0$

Then

Case IV, when $\delta a = 0$, $\delta b = 0$, $u_0 = 0$, $w_0 = 1$

Then
$$u-u_0=0$$

$$v-v_0=\frac{\nu_0\cos\lambda_0}{a}. \sqrt{1-e^2}\left[\tan\lambda-0.000,058,2\lambda^c+0.000,004,2\sin2\lambda\right]_{\lambda_0}^{\lambda}. \qquad (32)$$

$$w=\frac{\nu_0\cos\lambda_0}{\nu\cos\lambda} \qquad \dots \qquad \dots \qquad \dots$$

21. With the equations of §18, 20 changes can be computed at any point for any case. There are two possible routes. As an example consider Case I. We can first proceed along a parallel to the appropriate longitude. In proceeding thence along a meridian we have to apply Cases I. III and IV (because the values given by (22) now become initial values), and so find the values $u_y v_y w_y$: secondly we can proceed along a meridian and afterwards along a parallel and so find the second set of values $u_x v_x w_x$.

These computations have been made and the results for every degree square corner, so far as concerns the Indian triangulation, are exhibited in the following tables.

Values of u, in seconds,

Case I,— $\delta a = 1$ km.

94°	1.555 1.533 1.000 0.824 0.656	0.228 0.450 0.819	
- 86	1-461 1 1-201 1 1-019 1 0-755 0	0-163 0 0-184 0 0-882 0 0-882 0	many sampangahan telepapan gipanya sahilini siri gipah
920	1.411 1 1.194 1 0.963 0 0.0406 0	0 001.00 0 0.000 0 0.000 0 0 0.000 0 0 0.000	
910	1.347 1 1.181 1 0.680 0	0.042 0.042 0.042 0.042 0.042	
-06	1.888 1.788 1.477 1.477 1.072 1.072 0.686 0.674 0.689	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	novalden – Lavinovanov va sa ski pak tra s marchite Mar
89°	1.886 1 1.728 1 1.420 1 1.281 1 1.018 1 1.018 1 0.782 0 0.528 0	0.081 0.081 1.1.091 1.1.091	and the second second second
88°	1.780 1.1.668 1.1.668 1.1.668 1.1.668 1.1.668 1.1.60 1.1.180 1	0-107 0-629 0-72 0-72 1-134 1-	and the second
048	1.729 1. 1.618 1. 1.482 1. 1.320 1. 1.184 1. 1.184 1. 0.923 0. 0.689 0. 0.482 0.	0 148 0 0 0 470 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	to an extra section and the section of the section
86°	1.683 1. 1.678 1. 1.278 1. 1.092 1. 0.680 0. 0.080 0.	0.185 0.0.508 0.0.508 1.1.508 1.1.508 1.508 2.400 0.2.830	mangar mengangkan dan dan dan dan dan dan dan dan dan d
86°	1-642 1-533 1-540 1-240 1-066 1-0-641 0-6415 0-0-659 0-0-659		
84°	1.606 1. 1.499 1. 1.865 1. 1.207 1. 1.023 1. 0.815 0. 0.684 0.		~
88.	1.575 1. 1.469 1. 1.886 1. 1.178 1. 0.986 1. 0.588 0. 0.588 0.		es autoris — en es artes son por
82°	1.706 1.683 1.683 1.683 1.1850 1.144 1.1818 1.1818 1.185 0.078 0.078 0.0588 0.0588 0.0588 0.0588		윤크립
81° 8	1.688 1. 1.685 1. 1.685 1. 1.601 1. 1.630 1. 1.425 1. 1.294 1. 1.136 1. 0.955 0. 0.519 0. 0.519 0.		6.31.4 6.31.4 5.6 6.81
800	1.686 1. 1.645 1. 1.645 1. 1.651 1. 1.651 1. 1.610 1. 1.610 1. 1.610 1. 1.610 1. 1.610 1. 1.610 0. 0.941 0. 0.736 0. 0. 0.736 0. 0. 0.736 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0-819 0-807 0-638 0-628 0-977 0-885 1-824 1-701 2-520 2-509 2-949 2-938 3-894 3-885 3-885 3-845 4-826 4-316 4-826 4-316 4-826 4-316 5-300 5-300	69 5-869 86-328 66-856
8 624	1.686 1. 1.688 1. 1.688 1. 1.584 1. 1.506 1. 1.401 1. 1.270 1. 1.270 1. 1.114 1. 0.933 0. 0.248 0. 0.248 0.		5 6.866
18° 1		98 0.984 46 1.942 46 1.942 1.719	5 6-525 6 6-573
220 4		90 0.981 97 0.988 45 1.346 46 1.346 1.728 1.72	8 5.826 7 6.347 5 6.875
2 92		26 0.890 29 0.048 20 0.087 20 1.845 20 1.722 20 1.7222 20 1.722 20 1.	4 5.828 8 6.347 1 6.875
4 924		16 0.325 174 0.082 174 0.082 174 0.082 175 2.113 175 2.625 18 2.964 11 8.389 11 8.389 12 3.4.381 13 4.381 14 5.315	6 5.824 5 6.343 1 6.671
740 7	0 8 2 10 7 0 0 0 0	0.000000000000000000000000000000000000	5-816 6-855 1
4 8.		90 0-908 90 0-908 1-919 1-919 1-919 1-918 1-918 1-918 1-918 1-918 1-918 1-918 1-918 1-918 1-918 1-918	6.324
720 7	8 # 8 /2 # 4	94 0.286 9 0.604 9 0.944 1 1.681 1 2.077 0 2.480 0 2.919	
71° 7		8 0-284 8 0-688 8 1-282 8 1-282 7 1-661 7 2-470 7 2-900	
200 2		9 0.558 9 0.558 9 1.667 9 1.667 6 2.038 0 2.447	
690 10		14 0-308 15 0-528 17 0-869 1-300 2-006 2-420 2-850	1
9 89		0 0.174 77 0.485 10 0.837 11 1.198	
9 01	0 4 0 0 0	10 1.161 1 1.161	
. 99		60 0.088 64 0.759 7 1.121	
<u> </u>		0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	
<u>.</u>	e v i t i s o q	ө ү i ј а 3 ө <i>У</i> .	
Long	36. 34. 32. 32. 30. 20. 20. 22. 24.	22 22 21 20 19 18 17 16 15 14	8 8

Values of $u_x - u_y$ in seconds.

TABLE VI.

	T			· · · · · · · · ·																	اسيسيب
94°				0.055	0.040	0.025 0.011	0.002	0.014	0.025	0.035	0.045										
93°				870.0	0.085	0.030	0.001	0-012	0.022	0.031	0.040				-						,
92°				0.048	0.031	0.019	0.001	0.011	0.019	0.027	0.085									A	
916				0.087	0.027	0.008	100.0	600.0	0.017	₹70.0	0:030										
900		0.000	0.050	0.040	0.023	0.007	0.001	900.0	0.014	0.020	9700						***************************************				:
89°		0.059	0.042	0.034	0.010	0.008	0.001	200-0	0.012	0.017	0.022	-									
88°		0.049	0.035	0.028	0.016	0.010	100.0	9000	0.010	0.014	0.018									******	
87°		0.040	0.029	0.023	0.013	9000	0.001	0.005	900.0	0.012	0.015										
86°		0.032	0.023	0.019	0.010	0.003	0.000	500-0	900.0	600.0	0.012	0.014	0.018	0.020						****	
85°		0.025	0.018	0.014	800.0	0.005	0000	0.003	0.002	200.0	0000	0.011	0.014	0.010							
84°		0.019	0.013	0.001	900.0	0.004	0.000	0.002	0.004	900.0	200.0	0.008	0.011	0.013							
88°		0.013	00.00	9000	100.0	0.003	000.0	0.00	0.003	400.0	0.005	900.0	9000	900.0							
82°	0.014 0.013 0.011	0.000	900.0	0.002	0.003	0.002	0000	0.001	200.0	90.00	0.003	0.004	0.005	9-005	900.0	8	200.0	200.0	0.008	90.0	0.008
81°	0.008	0.008	₹00.0	0.003	0.003	0.001	990-0	0.001	100.0	200.0	0.002	0.003	0.008	0.008	0.00	3	0.00	0.00	0.002	9000	0.005
80°	0.004 0.004 0.003	0.008 0.003 0.002	0.003	0.001	100.0	0.001	000-0	0.000	0.001	100.0	100.0	0.001	0.001	0.003	0.005	280.0	0.00	8000	700-0	0.002	200.0
₀ 64	0.001	0.001 0.001 0.001	0.001	0.000	0.00	0.000	0.000	0.000	0.000	0000	0.000	0.000	100.0	0.001	0.001	TM.0	0.001	0.00	0.001	0.001	0.001
78°	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	000.0	0.000	0000	000-0		3	0000	0.000	0.000	0.000	0.000
°44	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0000	0000	0.000	0.000	0-00	0.00	3	0000	9 99	0.000	000.0	0.000
.94	0.002	0.002		0.001	0.000	0.000	000.0	0.00	0.000	0000	0.001	0.001	0.001	0.001	0.001	735	100.0	0.00	0.001	0.001	0.001
75°	0.005	0.004		0.002	0.001	0.001	000.0	0.00	0.001	0.001	0.001	0.002	0.005	200∙0	0.005			0.003	0.003	0.003	0.003
4₹₀	0.000	0.006	0.00	0.00	0.00	0.001	000.0	0.001	0.001	0.00	200·0°	0.008	†00-0	9-00-	0.004	***	0.005	0.002	0.002	0.005	0.005
73°	0.016	0.012		0.000	0.003	0.005	0000	0.001	0.003	90.0	500.0	0.005	900-0	9000							
720	0.024 0.022 0.019	0.017 0.015 0.013		0.000	0.005	0.008	0.000	0.00	0.003	0.00	0.005	0.007	90.00	0.00							
71 _c	0.084	0.024		0.012	0.00	0.004	000.0	0.003	100.0	9000	0.008	0.00	0.012	0.013							
°04	0.046	0.031		0.015	0000	0.008	000-0	00.003	0.002	0.008	0.010	0.012	0.018	0.017							
.69	0.057 0.051 0.045	0.040		0.020	0.011	0.007	100.0	0.004	200.0	0.010	0.013										
°89	0.070	0.049 0.048 0.037		0.025	0.014	0.000	100.0	0.005	600.0	0.012	0.016										
670	0.086 0.077 0.068	0.060		0.030	0.017	0.011	100.0	900.0	0.011	0.015	0.019										
.99	0·102 0·092 0·082	0.072	0.045	0.036	0.030	0.013 9.006	100.0	200.0	0.013	0.018	0.025										
	ә	v i t	ļ 1	N 0	ď					ə	Λ	į	4	¥	3		ė	N			
Long. Let.	35 35 44	33 32 31	90	6 8 8	27	26 25	24	23	22	21	20	19	17	16	G 7			11	10	6	8

Case I.— $\delta a = 1$ km.

Case I.— $\delta a = 1$ km.

<u>o</u> ,) [g 4	4 6	4	4 1	- 60	_		-							
940				-	\$86.01 t	10.893	10.724	10.644		10.421									
980					10.408 10.314	10.230	10.01	966.6	9-853	9.785									
92°	·				9.728	9.566	9-417	9.346	9.213	9.149									
91°					9-052	8-901	8.762	269.8		8.513									
o06			8-696	8-529	8.306	8.236	8.108	8.047		928.4									
. 6 3	0		7.994	7.768	7.634 8	7.571 8	7-452 8	7.396		7.240 7								~	
o88	A		7.899.7	7-151 7	7.028 7 6.968 7	6.905 7	6.797	6.746		6.602									
048	٠		6.523	6-461 7-6 7-6	6.345 7.	6-239 6. 6-189 6.	6-141 6.	6.095 6.		5.965 6.			···						
	ני		5.827	5-771 6- 5-718 6-	5.667 6. 5.619 6.	5.572 6. 5.527 6.	5.484 6				28	a :							
880	ස හ		5.129 5.	5.034	4.989 5.	4-905 5-4			22 5.364	89 6.827	67 5·291 26 5·256		67 5.188						
840	9		4.478 5.	4.389 5.	4.810 4.6		71 4.828		80 4.722	61 4.689	24 4.657 97 4.626		4.567						
880	N		8.771 4 3.734 4	3.698 4.8 3.664 4.8			14 4.171	88 4.140		18 4.051	90 4.024 87 3.997		25 25 25 25 25 25 25 25 25 25 25 25 25 2						
85°		8-206 8-167 3-132			52 3·631 27 3·600	03 8·570 79 3·542	57 3.514		3.487	75 3-413	298.8		8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	8	01 90	_		60	
810			85 3.088 81 8.086 37 3.086	15 3·007 94 2·979	73 2-952 54 2-927	35 2·903 17 2·879	99 2.857		2.014	8 8-775	2 2.756 8 2.738		0 2:702 7 2:685		2 2.652 9 2.636	2-820	2.604	3 2.588	1 2.578
8 °08		1.729 2.467 1.710 2.438 1.691 2.411	73 2·385 55 2·361 39 2·337	23 2·315 08 2·294	94 2.273	37 2·235 54 2·217	2.199		2.10v	8 2.136	8 2·122 8 2·108		8 2:080		2.042	2.017	3 2.005	7 1.993	1.981
79° 8(60 1.678 60 1.655 40 1.639	81 1.623 22 1.608	14 1.594 06 1.580	39 1.567 32 1.554	35 1.542		1.508	9 1.498	3 1.488		11.449		1.431	1-414	1.406	1-307	1.389
		54 0.992 52 0.981 49 0.970	46 0.960 44 0.960 41 0.940	89 0.981 87 0.922	35 0.914 33 0.906	31 0.899	9882		2 0.865	0-869	9 0-853 7 0-847		5 0.836 3 0.831		0.821	3 0.811	908-0	0.801	10.797
2 780		33 0.254 77 0.252 72 0.249	77 0·246 32 0·244 38 0·241	63 0.239 69 0.237	0.235	8 0.231	1 0.227	_	0.222	8 0.220	6 0.219 8 0.217	_	7 0.215		0.209	907.0	0.207	0.200	0.204
01		31 0-483 37 0-477 38 0-472	30 0.467 38 0.462 36 0.468	15 0.453	5 0.445	6 0.438	8 0.431		4 0.421	7 0.418	0 0-415		3 0.407		0.397	0.385	0.392	0.390	0.388
.94		58 1·221 56 1·207 14 1·193	1.180 1.168 5 1.156	7 1·146 0 1·135	4 1.125 9 1.115	4 1·106 9 1·097	6 1.088		7 1.064	2 1.067	1.050				1.004	886.0	0.382	986.0	0-880
760		36 1.958 35 1.936 35 1.914	1.893 1.874 1.855	39 1.837 1.820	1.804 2 1.789	2 1.774 3 1.759	8 1.746		0 1.707	4 1.695	8 1.684 3 1.673				1.620	1.601	1.591	1.582	1.572
74	9	2 2 685 2 2 685	2 2.554	1 2·529 1 2·506	3 2.484	0 2.442	1 2.403	2.385		3 2.334	2.318			2:244	2.217	2.208	2.190	2.177	3-164
0 780	Δ	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 3.319 0 3.285 0 3.252	2 3·221 6 3·191	2 3·163 9 3·136	3.110			3 2.988	1 2.972	2.952								
0 720	t ;	6 4·169 9 4·181 6 4·075	4 4.032 5 3.990 8 3.950	3 3·912 1 3·876	1 8.842 2 3.809	5 3.777	3.718		3.636	8.611	3.588		3.516						
2 710		4.906 4.849 4.795	5 4·744 9 4·695 8 4·648	5 4.603	4.531	4.445			4.279	4.549	4-220		4 8						
02	70.	7 5.642 3 5.578 3 5.514	5 5 398	5.295	5.155	5.112	5.031		4.921	4.887	4.821	4.790	4·759						
69	0	6.377	6.166	5.985	2.827	5.779	5.688		5.564	5.525									
-689	Ъ	7.113	6.806	6.675	6.489	6.394	6.344		908.9	6.162									
620		7.845	7.587 7.508 7.435	7.985	7.282	7.111	7.000		0.00.0	6.800									
99		8.579 8.480 8.886	8.297 8.818 8.131	8.054	7.909	7.777	7.655	7.598	687.2	7.487									
Long		36° 35 44	33 32 31	30	28	26	32	23	27	02	61 81	17	55.2	7	22:		9 1	6	 -

 $\nabla x_1 u \in s$ of $v_x - v_y$ in seconds.

VIII.

TABLE

0.005 0.016 0.012 0.046 0.002 0000 0.000 0.00 94° 0.015 0.00 0.003 000-0 000-0 0.003 0.010 0.011 0.002 0.002 000-0 000-0 0.00 0.005 600.0 £10.0 65° 9.00 0.002 0.013 0.011 0.005 000-0 9.00 900.0 900.0 91° D-064 0.0% 0.010 0.005 0000 0.000 0.001 20C-0 0.012 °06 0000 0.00 0.035 0.016 0.005 0-00 0000 0.001 0.011 0000 200.0 89° Φ 0.014 0.00 0.00 000-0 0.001 9.008 000-0 0.000 900.0 0.010 0.048 0.082 88 0.018 901-0 0.001 0.000 0.000 0.001 0.003 0.005 0000 0.040 0.029 900-0 0.020 87° 0.00 0.003 0.002 ი.008 0.018 200-0 0.004 0.001 0.00 0.00.0 0.015 980-0 0.028 0.018 0.011 86° =3 0.001 0.003 ₹00·0 0.014 0000 200.0 0.010 0.018 0.031 0.023 0.016 0.011 900-0 0.003 100.0 0.000 0.022 85° **⊅**0 0.00 0.004 0.012 0.014 000.0 9.03 0000 9990 0.001 900.0 0000 0.015 0.027 900.0 0.019 030.0 0.001 84% Θ 0.000 9.00 0.001 0.00T 0.010 9.0v8 0.001 0.003 0.00 0.016 0.012 0.002 0.013 0.023 0.017 1.005 89.0 83 Z 0.019 0.00 0.001 00000 000-0 9000 0.001 0.003 100.0 900.0 0.0u8 0.010 0.013 0.016 6.019 0.085 0.014 0.010 900.0 0.0r4 0.040 0.032 823 0.003 0.003 0.013 0.005 900-0 0.012 0.(22 0.080 0.015 0.00 0.001 0.000 00000 000-0 100.0 -008 0.015 0.617 0.019 0.025 855-0 0.005 0.019 0.011 0-008 0.031 $\frac{1}{2}$ 0.019 0.021 0.0v4 0.014 0.015 0.003 900-0 200-0 0.0IO 0.017 0.017 0.014 0.010 0.005 0.004 0.002 0.001 0.000 00000 000-0 0.000 0.001 0.001 0.00 0.00 (.012 900.0 803 0.018 0.000 0.002 0-008 \$00·0 0.002 900.0 900-0 000-0 0.010 0.011 0.00 0.00 0.000 000-0 0-001 0.001 2000 0.00 0.012 0.C10 900.0 900-0 \$00·0 0.003 0.003 0.001 0.001 793 000.0 0.000 0000 0.000 90.0 0.003 000.0 0000 0.001 0.001 0.003 0.003 0.002 0.000 000.0 100.0 0.001 0.001 0.001 0.00 0.0.0 F0)-0 0.003 0.003 0.003 100-0 0.001 0.001 0.001 282 0.000 0.000 0.00 0.000 0.001 0.001 0.00 0.003 ₹00·0 0.005 0.005 0.000 0.001 0.001 0.C02 0.003 700·: 0.002 10J-0 0.001 0.00 0.003 0.CO5 0.004 0.03 0·c02 000.0 0.008 120 9000 0.014 0.00 0.00 000-0 0000 9000 0.001 0.C01 E03-0 800-O 400-0 0.005 900.0 290:0 0.010 0.011 0.012 0.015 0.005 0.001 0.010 0.C05 **700.0** 0·c01 0.010 0.015 0.012 200-0 292 0.005 900.0 0.012 0.013 0.016 0.015 0.012 0.00 900.0 700-0 0.002 100.0 000.0 0.000 0.000 0.001 0.00 0.003 90.COB 900.0 0.010 0.017 0.030 0.02 0.024 0.020 0.001 0:030 93:03 750 0.001 0.001 0.005 0.003 203-0 0000 0.013 0.016 0.003 0.005 0.001 0.000 0.000 0.005 0.01 0.010 0:030 0.031 0.016 0.012 900.0 0.005 0.031 0.024 0.027 0.088 150-0 0.027 0.048 74° 0.014 100-0 600.0 0.011 0.031 0.003 0-00 0.020 0.015 200.0 ₹00-0 0.02 0.000 0.003 0.048 9:034 0.027 0.010 0.001 0.000 0.053 73° 0.010 0.014 800.0 0.005 0.003 0.000 0.000 0.001 0.002 0.003 0.00 90.0 0.017 0.025 0.018 0.013 0.001 0.084 0.052 평·0 0.032 15° 0.015 0.010 0.000 0.000 0.001 0.602 ₹30.0 900.0 60000 0.013 910-0 0.030 0.008 0.03 0.001 0.020 0.021 0.049 0.038 710 0·001 0.010 0.043 0.033 0.024 0.017 0.011 200.0 0.004 100.0 0.000 0000 100.0 0.002 200-0 0.014 0.018 0.000 990-0 20° 0.003 0.03 £00·0 0.000 0.000 0.001 0.002 0.049 0.027 0.019 0.013 9.00 900.0 0.097 0.032 69 000.0 000-0 0.003 0-105 0.014 0.008 ₹00-0 0.001 280.0 0.069 0.054 0.041 030-0 0.021 0.003 6000-0 0.107 တ္လ Ъ 0.003 0.015 0.00 0.005 0.002 0.000 0.000 0.001 900.0 0 095 9.00 0.080 9.045 0.033 0.023 0.118 670 0.010 0.016 0000 **700-0** 0.040 0.002 0.002 000-0 0.001 0.011 0.104 ₹90.0 980.0 0.025 200.0 99 ်က တ

Case I.— $\delta \alpha = 1$ km.

Values of we in seconds.

IX.	94°		4-914 4-751 4-698 4-455 4-107 4-107 8-878 8-878	
	93, 8			
3LL	 		6 4-681 6 4-681 7 4-323 7 4-323 8 8-898 8 8-898 1 3-648	
TABLE	950		8 - 41 - 4 - 92 - 92 - 93 - 93 - 93 - 93 - 93 - 93	
``	910		4-080 3-896 3-771 3-654 8-544 8-442 3-381 8-161	
	06		4.810 4.163 4.163 4.005 3.886 3.283 3.189 3.189 3.010 2.946	
	68	0	3.9468 3.685 3.681 3.521 3.021 2.770 2.770	-
	88	•	3.620 3.488 3.246 3.032 2.537 2.537 2.475	_
	87°	.i.	3. 274 3. 154 3. 154 2. 286 3. 485 3. 484 3. 286 3. 286	-
	.98	ر د	2-926 2-819 2-719 2-719 2-23 2-23 2-23 2-26 2-26 2-26 2-26 2-26	-
	85°	500	2.677 2.485 2.485 2.396 2.311 2.232 2.080 3.080 1.905 1.905 1.907	-
	% <u>4</u> %	•	2 - 298 2 - 146 3 - 070 1 - 998 1 - 99	-
ză.	830	z	1.878 2 1.809 2 1.745 2 1.687 1 1.687 1 1.687 1 1.687 1 1.478 1 1.478 1 1.478 1 1.481 1 1.881	-
	822		13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
in seconds	%18			_
	800			_
 2	79° 8		N N - O - N - O	-
10	780 7		997 97 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	_
2 2 2	770 7			-
4 & 1 u e 8			70 0-269 25 0-249 26 0-239 30 0-239 30 0-239 31 0-222 31 0-232 31 0-232 32 0-187 32 0-187 33 0-168 30 0-158	
>	.92		0.0509 0.0709 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503 0.0503	
	0 75°		1.049 1.1047 1.1049 1.1	
	74°	9	1.440 1.585 1.585 1.585 1.286 1.286 1.104 1.104 1.108 1.108 1.108 1.108 1.108 1.108 1.108 1.108 1.088 1.	
	73°	Λ	1.699 1.638 1.638 1.638 1.637 1.647 1.447 1.447 1.326 1.326 1.326 1.1210 1.1210 1.1002 1.002 1.002 1.003	
	7.50	t i	2.228 2.145 2.068 1.986 1.914 1.721 1.634 1.634 1.634 1.634 1.639 1.528 1.328 1.328 1.328 1.328 1.328	
	710		2.726 2.620 2.620 2.836 2.836 2.034 1.967 1.789	
	700	20	8.132 3.013 2.807 2.685 2.685 2.405 2.406 2.106 2.046 1.987 1.703 1.754 1.703	
km	69°	0	3.4538 3.403 3.273 3.034 2.034 2.038 2.138 2.138 2.138 2.138	٦
∺	68°	P	3.943 3.793 3.648 3.651 3.258	7
. 0a	67°		4.847 4.130 4.130 8.671 8.727 8.727 8.682 8.021 8.021 8.021 8.021 8.021 8.021 8.021 8.021 8.021 8.021 8.021 8.021 8.021 8.021	1
I.— δa ==	66°		4-750 4-587 4-589 4-073 3-925 3-623 3-623 3-102 3-102 3-103	-
Case	Long. Lat.			-
Ö			* * * * * * * * * * * * * * * * * * *	

Values of w_x-w_y in seconds.

94°		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.432	0·195 0·083	0.012	0·108 0·187	0.365	0.335											
930		44		0.291	0.138 (0.011	0.097	0.249	0.316			·····								
950 8				0.380 0	0-171-0	0.010	0.081 0	0.233	0.295											
910				0.354 0	0-160	0.000	0.154 0	0.217 0	0.275 0											
6 606		0.765	0.53\$	0.428 0.328 0. 0.235 0.	0.148 0.0.087 0.	0 000 0	0.078 0. 0.142 0.	0.201	0.255											_
68 0		.3 0.704 .3 0.695	8 0.491	60 0.893 76 0.302 77 0.216	24 0.136 53 0.061	800.0 20	36 0.072 30 0.131	39 0.185	14 0.234											
880		0.643	5 0.448	5 0.359 9 0.273 8 0.197	0 0 0 5 3	200.0 2	0 0.096 8 0.120	3 0.169	3 0.214											
87°		0.532	0.402	0.325	0.012	200.0	0.030	0.153	3 0.193	60 **	. 03							<u>.</u>		
862		0.520	0.362	0.228	0.100	900.0	0.054	0.137		0.208		0.286								
85°		0-178	0.319	0.258 0.198 0.110	0.088	0.005	0.047	0.120	0.152	0.183		0.232								
842		0.396	0.276	0.231 0.170 0.121	0.076	0.005	0.041	0.104		0.157		0.218								
83°		0.334	0.233	0·186 0·143 0·103	0.039	400·n	0.034	0•u88	0.111	0.132	0.169	184								
820	0-436 0-418 0-863	0.316 0.271 0.239	0.183	0·152 0·116 0·083	0.052	800-0	0.028	1.20-0	0.000	0.108	0.187	0.149	0.160	0.170	0.178	0-185	181.0	0-196	0.800	0.203
810	0.358 0.318 0.280	0.243	0.146	0.030 0.090 7117	0.040	0.00g	0.039	0.055	0.070	0.083	0.106	0.116	0.123	0.131	0.137	0.143	0. 14/	0.151	0.154	0.158
⁴⁰ 2	0.251 0.233 0.193	0·171 0·147 0·184	0.102	0.082	0.028	€00.0	0.016	0.038	0.049	0.058	0.074	0.081	0.087	0.082	960-0	0.100		90.108	0.108	0.110
792	0.145	180.0	0.029	0.047	0.016 0.037	0.001	0.000	0.023	0.028	0.089		0.048		0.053	0.035	0.057	Aco.o	0.081	0.062	90.0
			•																	
78°	-083 -083		0.015	0.003	0.004	0.00	0.005 0.001	0.005	200 ·0	9000	0.011	0.012	0.018	0.013	0.014	0.º16	0.018	0.016	910-0	0- : 16
786	0.083	0.025 0.023	2 0.015	0.009 0.009 0.009	Z 0.004	0.000	100.0 0.001	D 0.005	700·0	0.00	1		į	œ 0.013	o	.,	ત	0.016		0 18
77° 78°		0.024 0.024 0.018				0.001	9000				1		į		o		رب ال	0.030	0.030	0.031
	0.070 0.0824 0.053	0.018 0.026 0.041 0.023 0.085 the old	11	차 e	Ŋ			A	٨	i	120.0		U-024	8	0.037	883.0	رب ال	0.075 0.029	0.076 0.030	0.077 0.031
022	4 0·177 0·070 p 2 0·157 0·064 2 0·138 0·055 >	0.120 0.048 T. 0.025 0.103 0.041 0.023 0.037 0.085 ± 0.018	6 0.072 0.023 ≈	0.038 0.023 _{3.0} 0.094 0.018 0 0.082 0.013 0	2 800·0 000·0	0.001 0.001	9000	0.011	710.0	0.041 0.016	0.052 0.031	0.023	0.081 0.024 T	0.026	19 0.068 0.027	18 0-671 0-628	0:0/3 0:0% 0:0/3 0:0%	0.075 0.029	0.076 0.030	0-031
2 16° 77°	0.284 0.177 0.070 D 0.253 0.157 0.063 P	0.193 0.120 0.018 0.035 0.186 0.103 0.041 0.024 0.140 0.037 0.085 4- 0.018	0.116 0.072 0.023 ==	0.033 0.038 0.033 5.C 0.071 0.044 0.018 0.051 0.051 0.051	0.032 0.034 0.038 Z 0.015 0.009	0-103 0-001 0-001	0.017 0.011 0.004 0.031 0.019 0.008	0.027 0.011 D	0.035 0.014	0.016	120.0 220.0 480.0	0.092 0.057 0.023	0.098 0.081 0.024	0.085 0.028 ~	0.11.9 0.068 0.027	0.113 0.671 0.628	0-117 0-073 0-029	0.120 0.075 0.029	0.123 0.076 0.030	0.077 0.031
74° 75° 76° 77°	0.591 0.284 0.177 0.070 D. 0.0301 0.837 0.283 0.187 0.053 0.053 >	0.286 0.193 0.120 0.048 0.035 0.025 0.188 0.103 0.041 0.023 0.193 0.193 0.018	0.159 0.116 0.072 0.023 ==	0.188 0.038 0.038 0.033 34, 0.038 0.038 0.038 0.071 0.044 0.018 0.070 0.051 0.082 0.013	0.020 0.003 0.003 0.008 Z	0.003 0.403 0.001 0.001	0.023 0.017 0.011 0.004 0.043 0.031 0.049 0.008	0.014 0.027 0.011 D	0.055 0.635 0.014	0.086 0.041 0.016	0-115 0-084 0-052 0-051	0.092 0.057 0.023	0.098 0.081 0.024	0.104 0.085 0.026 2	0.11.9 0.068 0.027	0-113 0-471 0-428	1 0.012 0.038 0.038 0.038	0.120 0.075 0.029	0.123 0.076 0.030	0.124 0.077 0.031
730 742 753 760 770	0-408 0-391 0-284 0-1.77 0-070 D O O O O O O O O O O O O O O O O O O	0.538 0.286 0.193 0.120 0.018 0.032 0.029 0.028 0.103 0.041 0.032 0.032 0.186 0.103 0.058 0.058 0.088	0.203 0.159 0.116 0.072 0.023	0.163 0.128 0.033 0.033 0.033 35, 0.125 0.038 0.071 0.044 0.018 0.060 0.050 0.070 0.051 0.018	0.033 0.034 0.032 0.030 0.038 0.038 2,000 0.038	0.048 0.003 0.402 0.001 0.001	0.080 0.023 0.017 0.011 0.004 0.054 0.048 0.031 0.019 0.008	0.076 0.030 0.014 0.027 0.011 a	0.037 0.078 0.055 0.035 0.014	0.116 0.091 0.086 0.041 0.016	0.115 0.084 0.052 0.021	0.160 0.123 0.092 0.057 0.023	0.098 0.081 0.024	0.104 0.085 0.026 2	0.11.9 0.068 0.027	0-113 0-471 0-428	1 0.012 0.038 0.038 0.038	0.120 0.075 0.029	0.123 0.076 0.030	0.124 0.077 0.031
72° 73° 74° 75° 76° 77°	0.605 0.408 0.891 0.284 0.177 0.070 D O 0.070 D O 0.687 0.443 0.847 0.253 0.157 0.063 O 0.474 0.839 0.805 0.805 O 0.80	0-411 0-838 0-868 0-168 0-103 0-048 0-035 0-038 0-883 0-188 0-103 0-041 0-034 0-032 0-083 0-188 0-103 0-037 0-083 0-088	0.243 0.203 0.159 0.118 0.072 0.023 =	0-197 0-163 0-128 0-033 0-038 0-033 3-0 0-033 0-0151 0-125 0-038 0-071 0-044 0-018 0-018 0-108 0-083 0-070 0-051 0-082 0-013	0.088 0.035 0.044 0.032 0.034 0.038 Z 0.031 0.035 0.030 0.015 0.099 0.034	0.001 0.008 0.003 0.103 0.001 0.001	0.037 0.080 0.023 0.017 0.011 0.004 0.066 0.054 0.048 0.031 0.019 0.008	0.093 0.076 0.030 0.014 0.027 0.011 $_{\Phi}$	0.117 0.037 0.076 0.055 0.085 0.014	0-140 0-115 0-091 0-086 0-041 0-016	0.178 0.147 0.115 0.084 0.053 0.031	0.194 0.160 0.123 0.092 0.057 0.023	0.098 0.081 0.024	0.104 0.085 0.026 2	0.11.9 0.068 0.027	0-113 0-471 0-428	1 0.012 0.038 0.038 0.038	0.120 0.075 0.029	0.123 0.076 0.030	0.124 0.077 0.031
71° 72° 73° 74° 75° 76° 77°	0.711 0.605 0.468 0.891 0.284 0.177 0.070 0.070 0.071 0.081 0.681 0.181 0.181 0.081 0.881	0-483 0-411 0-838 0-266 0-193 0-120 0-048 0-025 0-415 0-853 0-290 0-228 0-186 0-103 0-041 0-021 0-853 0-296 0-193 0-197 0-097 0-082 0-831 0-298 0-026 0-193 0-186 0-018	0.283 0.243 0.203 0.159 0.116 0.072 0.023 =	0.283 0.197 0.183 0.198 0.033 0.038 0.033 5.0 0.173 0.151 0.125 0.038 0.071 0.044 0.018 0.018 0.187 0.187 0.187 0.188 0.187 0.188 0.188 0.070 0.051 0.082 0.018	0.033 0.038 0.035 0.044 0.032 0.03 0.030 0.038 0.03 0.039 0.	0.005 0.001 0.008 0.003 0.03 0.001 0.001	0.048 0.037 0.080 0.023 0.017 0.011 0.004 0.077 0.080 0.054 0.048 0.031 0.019 0.008	0.100 0.003 0.076 0.030 0.014 0.027 0.011 D	0.138 0.117 0.037 0.076 0.055 0.035 0.014	0.164 0.140 0.115 0.091 0.086 0.041 0.016	0.209 0.178 0.147 0.115 0.084 0.053 0.031	0.228 0.194 0.160 0.123 0.092 0.057 0.023	0.098 0.081 0.024	0.104 0.085 0.026 2	0.11.9 0.068 0.027	0-113 0-471 0-428	1 0.012 0.038 0.038 0.038	0.120 0.075 0.029	0.123 0.076 0.030	0.124 0.077 0.031
70° 71° 72° 73° 74° 75° 76° 77°	0-817 0-711 0-605 0-468 0-891 0-284 0-177 0-070 D 0-726 0-681 0-687 0-443 0-847 0-852 0-188 0-188 0-065	0.535 0.483 0.411 0.538 0.266 0.193 0.120 0.018 0.025 0.427 0.415 0.833 0.290 0.238 0.186 0.103 0.041 0.032 0.295 0.295 0.193 0.140 0.037 0.083 0.083	0.332 0.283 0.243 0.203 0.159 0.116 0.072 0.023 ==	0.286 0.283 0.197 0.163 0.188 0.033 0.038 0.033 2.0 0.033 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018	0.032 0.033 0.038 0.033 0.044 0.032 0.034 0.034 0.038 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-046 0-005 0-004 0-048 0-003 0-402 0-001 0-001	0.049 0.043 0.037 0.030 0.023 0.017 0.011 0.004 0.039 0.077 0.086 0.054 0.043 0.031 0.019 0.008	0.125 0.209 0.093 0.076 0.030 0.014 0.027 0.011 a	0-150 0-188 0-117 0-037 0-076 0-055 0-035 0-014	0.164 0.140 0.115 0.091 0.086 0.041 0.016	0.178 0.147 0.115 0.084 0.053 0.031	0.194 0.160 0.123 0.092 0.057 0.023	0.098 0.081 0.024	0.104 0.085 0.026 2	0.11.9 0.068 0.027	0-113 0-471 0-428	1 0.012 0.038 0.038 0.038	0.120 0.075 0.029	0.123 0.076 0.030	0.124 0.077 0.031
69° 70° 71° 72° 73° 74° 75° 76° 77°	0.933 0.817 0.711 0.603 0.408 0.391 0.284 0.177 0.070 0.092 0.639 0.183 0.187 0.093	0-687 0-556 0-488 0-481 0-338 0-386 0-389 0-189 0-190 0-018 0-025 0-889 0-477 0-415 0-853 0-290 0-289 0-189 0-103 0-041 0-034 0-455 0-436 0-286 0-189 0-190 0-097 0-082 0-018	0.876 0.382 0.283 0.243 0.203 0.159 0.116 0.072 0.023 ==	0-801 0-268 0-283 0-197 0-163 0-038 0-033 0-038 0-033 2.C 0-231 0-204 0-173 0-151 0-125 0-038 0-071 0-044 0-018 0-018 0-0185 0-185 0-185 0-018 0-018 0-0185 0-018 0-0185 0-018	0.101 0.032 0.033 0.038 0.033 0.044 0.032 0.030 0.039 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.008 0.005 0.005 0.004 0.008 0.003 0.03 0.001 0.001	0.055 0.049 0.048 0.087 0.080 0.023 0.017 0.011 0.004 0.100 0.089 0.077 0.088 0.054 0.048 0.031 0.019 0.008	0.142 0.125 0.209 0.083 0.076 0.030 0.014 0.027 0.011 a	0.179 0.150 0.188 0.117 0.027 0.078 0.055 0.035 0.014	0.164 0.140 0.115 0.091 0.086 0.041 0.016	0.209 0.178 0.147 0.115 0.084 0.053 0.031	0.228 0.194 0.160 0.123 0.092 0.057 0.023	0.098 0.081 0.024	0.104 0.085 0.026 2	0.11.9 0.068 0.027	0-113 0-471 0-428	1 0.012 0.038 0.038 0.038	0.120 0.075 0.029	0.123 0.076 0.030	0.124 0.077 0.031
63° 69° 70° 71° 72° 73° 74° 76° 76° 77°	1-039 0-925 0-817 0-711 0-605 0-468 0-891 0-284 0-177 0-070 D	0-699 0-687 0-556 0-488 0-481 0-538 0-286 0-193 0-130 0-048 0-025 0-601 0-639 0-477 0-485 0-290 0-286 0-198 0-190 0-097 0-097 0-087 0-087 0-645 0-938 0-286 0-193 0-194 0-097 0-088 0-088	0.419 0.876 0.833 0.283 0.243 0.203 0.159 0.116 0.072 0.023 =	0.386 0.801 0.286 0.283 0.197 0.183 0.038 0.033 0.034 0.033 5.000 0.034 0.033 0.038	0.116 0.104 0.032 0.033 0.088 0.033 0.044 0.032 0.030 0.030	100·0 100·0 20 100 0 0 000 0 0 000 0 0 000 0 0 000 0 0 0	0.082 0.055 0.049 0.048 0.087 0.080 0.023 0.017 0.011 0.004 0.112 0.100 0.089 0.077 0.088 0.054 0.048 0.018 0.019 0.008	0.158 0.148 0.125 0.100 0.093 0.076 0.030 0.014 0.027 0.011 D	0.200 0.179 0.159 0.118 0.117 0.037 0.078 0.055 0.035 0.014	0.164 0.140 0.115 0.091 0.086 0.041 0.016	0.209 0.178 0.147 0.115 0.084 0.053 0.031	0.228 0.194 0.160 0.123 0.092 0.057 0.023	0.098 0.081 0.024	0.104 0.085 0.026 2	0.11.9 0.068 0.027	0-113 0-471 0-428	1 0.012 0.038 0.038 0.038	0.120 0.075 0.029	0.123 0.076 0.030	0.124 0.077 0.031
3° 67° 63° 69° 70° 71° 72° 73° 74° 75° 76° 77°	1-134 1-039 0-923 0-817 0-711 0-605 0-468 0-891 0-284 0-177 0-070 <u>0</u> 1-007 0-918 0-830 0-726 0-681 0-687 0-443 0-827 0-283 0-157 0-063 0-836 0-804 0-721 0-638 0-565 0-473 0-830 0-805 0-822 0-188 0-055 >	0.771 0.689 0.687 0.558 0.488 0.411 0.838 0.386 0.183 0.193 0.193 0.103 0.018 0.024 0.683 0.401 0.683 0.415 0.853 0.390 0.228 0.103 0.011 0.011 0.021 0.559 0.607 0.455 0.403 0.553 0.256 0.245 0.193 0.140 0.003 0.018 0.018	0.481 0.419 0.876 0.832 0.283 0.243 0.203 0.159 0.116 0.072 0.023 =	0.587	0-128 0-116 0-104 0-032 0-033 0-088 0-053 0-044 0-032 0-030 0-039 2 0-030 0-035 0-057 0-052 0-05	0.008 0.007 0.008 0.006 0.005 0.004 0.008 0.003 0.03 0.001 0.001	0.068 0.062 0.055 0.049 0.048 0.087 0.080 0.023 0.017 0.011 0.004 0.128 0.112 0.100 0.089 0.077 0.086 0.054 0.048 0.089 0.081 0.089	0-174 0-158 0-148 0-125 0-100 0-083 0-076 0-030 0-014 0-027 0-011 D	0.280 0.200 0.170 0.150 0.188 0.117 0.027 0.076 0.055 0.035 0.011	0.164 0.140 0.115 0.091 0.086 0.041 0.016	0.209 0.178 0.147 0.115 0.084 0.053 0.031	0.228 0.194 0.160 0.123 0.092 0.057 0.023	0.098 0.081 0.024	0.104 0.085 0.026 2	0.11.9 0.068 0.027	0-113 0-471 0-428	1 0.012 0.038 0.038 0.038	0.120 0.075 0.029	0.123 0.076 0.030	0.124 0.077 0.031
63° 69° 70° 71° 72° 73° 74° 76° 76° 77°	1.839 1.134 1.039 0.923 0.817 0.711 0.605 0.468 0.891 0.284 0.177 0.070 1.10v 1.0v7 0.913 0.830 0.728 0.681 0.687 0.473 0.843 0.807 0.838 0.188 0.058 0.083 0.808 0.083 >	0-843 0-771 0-699 0-687 0-535 0-411 0-338 0-366 0-193 0-120 0-018 0-025 0-781 0-673 0-674 0-415 0-853 0-590 0-290 0-123 0-103 0-011 0-024 0-611 0-659 0-607 0-415 0-231 0-290 0-120 0-103 0-014 0-024	0.504 0.481 0.419 0.376 0.332 0.283 0.243 0.203 0.159 0.118 0.072 0.023	0-810 0-884 0-857 0-838 0-801 0-288 0-187 0-185 0-185 0-038	0-140 0-128 0-116 0-104 0-032 0-033 0-038 0-035 0-025 0-020 0-032 0-038	100·0 100·0 20 100 0 0 000 0 0 000 0 0 000 0 0 000 0 0 0	0.082 0.055 0.049 0.048 0.087 0.080 0.023 0.017 0.011 0.004 0.112 0.100 0.089 0.077 0.088 0.054 0.048 0.018 0.019 0.008	0.158 0.148 0.125 0.100 0.093 0.076 0.030 0.014 0.027 0.011 D	0.200 0.179 0.159 0.118 0.117 0.037 0.078 0.055 0.035 0.014	0.189 0.164 0.146 0.116 0.081 0.086 0.041 0.018	0.241 0.209 0.178 0.147 0.115 0.084 0.052 0.081	0.282 0.228 0.194 0.100 0-123 0.037 0.033	0.098 0.081 0.024	0.104 0.085 0.026 2	0.150 0.109 0.088 0.027	0-113 0-471 0-428	C 650.0 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0	0-166 0-120 0-075 0-029	0.123 0.076 0.030	0.124 0.077 0.031
3° 67° 63° 69° 70° 71° 72° 73° 74° 75° 76° 77°	1-134 1-039 0-923 0-817 0-711 0-605 0-468 0-891 0-284 0-177 0-070 <u>0</u> 1-007 0-918 0-830 0-726 0-681 0-687 0-443 0-827 0-283 0-157 0-063 0-836 0-804 0-721 0-638 0-565 0-473 0-830 0-805 0-822 0-188 0-055 >	0.771 0.689 0.687 0.558 0.488 0.411 0.838 0.386 0.183 0.193 0.193 0.103 0.018 0.024 0.683 0.401 0.683 0.415 0.853 0.390 0.228 0.103 0.011 0.011 0.021 0.559 0.607 0.455 0.403 0.553 0.256 0.245 0.193 0.140 0.003 0.018 0.018	0.481 0.419 0.876 0.832 0.283 0.243 0.203 0.159 0.116 0.072 0.023 =	0.587	0-128 0-116 0-104 0-032 0-033 0-088 0-053 0-044 0-032 0-030 0-039 2 0-030 0-035 0-057 0-052 0-05	0-0:8 0-008 0-007 0-008 0-005 0-005 0-005 0-0:8 0-0:8 0-03 0-03 0-001	0.068 0.062 0.055 0.049 0.048 0.087 0.080 0.023 0.017 0.011 0.004 0.128 0.112 0.100 0.089 0.077 0.086 0.054 0.048 0.089 0.081 0.089	0.190 0.174 0.158 0.148 0.125 0.200 0.003 0.076 0.030 0.014 0.027 0.011 $_{\odot}$	0.241 0.220 0.200 0.179 0.159 0.188 0.117 0.037 0.076 0.055 0.035 0.014	0.189 0.164 0.146 0.116 0.081 0.086 0.041 0.018	0.241 0.209 0.178 0.147 0.115 0.084 0.053 0.031	0.282 0.228 0.194 0.100 0-123 0.037 0.033	1. \$20.0 180.0 80.08 0.182 0.081 0.081 0.081	0.143 0.104 0.065 0.028 c	0.150 0.109 0.088 0.027	0.166 0.113 0.671 0.628	1 0.012 0.038 0.038 0.038	0-166 0-120 0-075 0-029	0.168 0.123 0.076 0.030	0.124 0.077 0.031

TABLE XI.

Values of ux in seconds.

	_																										
94°									8.121	2.370	1.586	0.800	410-0	0.855	1.718	2.589	8.484									-	,
93°									8-122	3.368	1.591	9-7-0	0.027	998-0	1.729	8·600	8.208				•						
92°									8.128	8.300		0.786	0.0:2	0.880	1.744	2.628	8.530										
910									8.134	2.365		0.780	910-0	269-0	1.769	3.645	8.550										
-06					26.9	292-9	4.674	3.862	8.136	3.364		0.774	890-0	0.908	1.772	8.681	8.569				-Feferen ent erteran						
89°					186-9	5-287	4.578	3.864	8.125	8.368		0-769	190.0	0.912	1.784	8.678	8.587										
88					2.087	5-272	4.583	8.863	8-126	2.362		0.784	890.0	0.921	1.705	3.600	8-808									····	
870					5-943	2.2	4.685	8.868	8-128	3.361		09.200	0.074	0.929	1.806	8.702	8-618			-							
86°					8:0.9	188.9	889.4	8.870	3-127	3-360		0.756	0.080	0-887	1.816	2.718	3.681	4.568	6.498	7.480							
850	-				8.053	8.284	4.691	8-871	8.127	2-369 2		0.758 0	0 990-0	0.948	1.823 1	8.723 2	3.643	4.881	6.510 6.	7.808 7.							
84°	-				5-957 B	5.288	4.598 4	8-878	8.128	3-358 2	-	0-749	0 890-0	0.040	1.830	2.733 8.	3.653 3.	5.551 5	6.526 6.	7.517 7.							
88	-				5.980	5.200	4-595	8-874 8	8.128	2.368		0.747 0	0 850-0	0.864	1.887	2.739	8.663	4.608 4. 5.563 5.	6.639	7.532 7.					····		
82° 8	8-374	7.818	7.223	9-607	5.963	5-293 5	4.596 4	8-875	8-138	3.357		0.744	0-088 0	0.988 0.	1.842 1.	2.748 2.	8.669	4.613 4.6	6-550		\$	116	29.	380	\$	88	8
810	8.878	7.816 7	7.226 7	9-909-9	5.965 5	5.294 5	4.598	8-876	8-128	2.357 2		0.718	0 860-0	0.961	1.846	2.750 2.	8.675 8.	4.618 4.0 5.580 5.0	6.558 6.4	_	8-29-6 6-678 8-569 9-678	10.01	111-667	45 12-780	20 18-504	14.906 14.888	16.014 16.000 15.980
800	8-880 B	7.818 7	7.328 7	6-611 6	5.987 5	5.298 5	4.589	8-876 8		3.367		0.742 0.	0-100	0.964 0.	1.849	2.764 2.	8-679 8	4-628 4-6 5-586 5-6	9-565 0-5			30 10-629	11.681	57 12.745	33 13.820	19 14.9	14,16.0
790 8	8.882 4	7.890 7	7.230 7	6-612	2.068	2.897 5	- *	3.877 8	8.129 8	2.357 29.		0.741 0.	0.101 0	0.965	1.851	2.756 2.	8.682				8.672 104 9.698	10-648 10-645 10-639	98 11-602	64 12.757	40 - 	27 14-919	23 16·0
78° 7	8.888	7.821 7.	7.230 7	6.613	5.068 5.	5-297 5-	₹-600 +	3.877 3.	3.120 8.	2.356 2.		0.740 0.	0-108 0	0.988	1.852 1.6	2.757 2.7	3.683		171 6.569		80 8·677 07 9·604	18 TO-6	02 11-698	87 12·764	14 13 - 840	31 14-927	27 16-023
240 2	8.383	7.821 7	7.280 7.	6-613 6-	5.968	6.207 6-	4.600	8-877 8-	_	2.856 2.		0-740 0.	0.108 0.	0.066	1.851			328 4·628 301 5·591	179 6-671		79 8·580 06 9·607		204-11	38 12.767	13 13-844	14-931	16.02
2 094	8.39.8	7.820 7	7-229 7.	6.612 6.	5.967 5.	5.206 5.	4.500 4.	3.876 3.		2.867 2.		0.741 0	0-101 0	0.986.0		756 2.757	381 3.688	26 4-628 88 5-591	68 6.571		76 8·579 08 9·606	10.647	102-111 201	2 12.768	18-843	35 14.98	0 18·05
0.0	8-380 8-	7.818 7.	7.838 7.	6.610 6.	6.976 5.	5-205 5-	4.598	8-876 3-1		2.857 2.8		0.748 0.7	0.100		1.850	53 2.756	78 3.681	22 4-626 84 5·588	89 6.568	_	8.576 8 9.608	10.643	0 11-697	12.758 12.762	3-829 13-858	14-915 14-925 14-980	16.010 16.020 18.026 16.027
14 ₀ 7.	8.877 8.	7.615 7.	7.225 7.	8.608	98.9	5.294 5.9	4.597 4.4	8.875 8.8						91 0.983	1.848	40 2.753	8.678	16 4.622 78 5.584	89-99		8 - 570	5 10.636	7 111-659	1 12.76	_ =	14.911	16-01
787 7	8-878 8-	7-811 7-	7-222 7-3	6-605 6-6		5-293 5-9	4.598 4.8			357 2-357		46 0.748	860-0	196-0 29	1.845	44 2.749	82 3.673	39 4.616	999-99 2		8.562	10.625	11-677	12.741	13.815	14.900	15.994
750 7	8-868	7-807 7-8	7.218 7.5	6-602		5.290 5.2		3.874		2.357		17 0.746	93 0.095	68 0.957	35 1.840	37 2.744	299-8	0 4-609 9 5-569	5 6.647	7 7.540							
21 014	8.362 8.	7.802 7.8	7.218 7.5	9-298	5-956 6-8	_	593 4-504	878 878		59 2·338		20 0-747	38 0.092	48 0.958	38 1.835	20 2-737	3.659	19 4-600 7 5-559	1 6-685	2 7.627							
	8-366 8-8	7-796 7-6				83 6.287	90 4.593	71 8.872		29 2-369		K3 0.750	88 0.088	0.048	1.828	0 2.729	9 3.650	7 4.589 8 5.547	6 6.521	7.512							
04 e			201 7-208	87 6.598	47 5.951	80 6-283	87 4.590	128-8 09		80 2.859		67 0.753	8 0.083	15 0.943	1.821	0 2.720	3.689	4.577 5.533	6.506	7.494							
3c 69	878-8 68	91 7.788	94 7.201	81 6.687	41 5.947	76 6.280	4.587			3: 2:380		11 0.767	8200 8.	2 0.035	3 1.812	9 3.710	39.62										
° 68°	80 8.339	72 7.781	86 7.194	74 6.581	35 6.941	21 2.878	4-584			* 36:		6 0.761	6 0.072	0.037	1.803	3.699	3 3.614										_
9 670	19 8.330	33 7-773	78 7-186	86 6-574	39 6.935	8 6.271	7 4.580	_		S - 2.362		1 0.786	990-0	0.019	1 1.798	8.686	8.508										
99	8.819	7.768	7.178	9-566	6.929	8.266	4.577			2.363 2.363	1.578	0.771	0.050	0.910	1.781	2.673	8-137										
	θ		<u> </u>	i		4	8		· 	9	И					9	Δ	i	4	i	B	0		त			
Lat.	36°	35	85 14	33	÷	3	30	59	2 2	à	26 25	3	7₹	23	22	71	20	19 18	17	16	14.	13	12	1	10	60 0	
					_	_	_		_	_																	

Case II.— $\delta b = 1$ km.

Values of u_x-u_y in seconds.

TABLE XII.

	_					_			_																				
94°									0.080	0.068	970.0	0.022	0.003	0.039	0.057	0.687	0.117												
93°						-			840.0	090.0	0.040	0.019	0.003	980-0	0.061	2.20.0	0.10₹												
. <u>6</u> 6			—.			•	**********		090-0	0.052	0.035	0.017	0.Cu2	0.038	0.044	290-0	0.091												
916									0.050	0.045	0:030	0.015	0.002	0.020	0.038	990-0	840.0		Mallares.										
006ء					0.091	0.082	0.072	0.062	0.051	0.038	970-0	0.013	0.003	0-017	0.033	0.050	290.0									,			
268					0.077	0.069	0.061	0-052	0.043	0.033	0.023	0.011	0.001	0.014	0.028	0.042	0.057			-									
°88					7-00-0	0.058	0.051	0.044	0.036	0.027	0.018	0.009	0.001	0.013	0.03	0.085	270-0									•			
87°					0.052	0.047	0.041	980-0	0.029	0.023	0.016	0.007	0.041	0.010	0.019	0.029	0.089												
.98					0.041	0.037	0.033	0.028	0.023	0.018	0.012	0.c08	0.001	900.0	0.015	0-028	180-0	0.039	0.048	290-0	990.0							,	
85°					0.082	0.029	0.026	0.088	0.018	0.014	0000	700.0	0.501	900-0	0.012	0.018	0.024	0:030	280-0	0.044	0.051								
84°					0.054	0.022	0.019	0.016	0.013	0.010	200.0	0.003	000.0	100.0	0.009	0.018	0-018	0.023	0.088	0.083	-0-088 								
83°					0.017	0.015	0.014	0.012	0.010	200.0	0.002	0.005	000-0	0.003	0.000	0-0w	0.013	0.016	0.030	0.023	0.027								
82°	0.018	0.014	0.013	0.012	0.011	0.010	0.00	9000	900.0	0.005	900-0	0.003	0.000	0.003	0.004	900-0	9000	0.011	0.013	0.015	0.018	0.021	8	0.028	0.029	0.088	0.085	99.0	0.061
sI°	0.00	900.0	900.0	200-0	200.0	900.0	0.002	0.002	0.004	0.003	0.003	0.001	000-0	0.001	0.00	700.0	0.005	900-0	0.008	600·0	0.011	0.012	0.014	0.015	0.017	0.019	0.021	0.023	0-024
80°	9.004	0.004	0.00	0.00	0.003	9000	0.003	0.002	0.00	0.001	0.001	0.000	000.0	0.001		0.003	0.005	0.003	0.004	0.00	0.002	9000	0.007	9000	90.0	00-1-00	0.010	110-0	0.013
79°	0.001	0.001	0.001	0.001	0.001	0.001	0.01	0.00	00.00	0.001	0.000	0.000	000-0	0.000	0000	0.001	0.001	0.001	0.001	200-0	0.002	9.00	0.005	0.005	0.003	0.003	0.003	₹.o.0	900-0
786	0.00	99.	9.60	0.00	000	0.00	0.00	0.60	0.000	00.00	0.00	0.000	000-0	0.00	0.0.0	0.000	0.000	0000	0.000	00.00	0.000	000-0	99.0	0.000	000-0	00000	000-0	000-0	00000
77°	000-0	90.0	000	0.00	9.00	0000	0.00	0.00	0.00	0.000	0.000	0.000	0000	0.00	0000	0.00	0000	00000	00000	0000-5	0.000	3.0-000	0.001	100-001	10001	0-001	0.001	0.001	100-00
.92	0.00	0.00	0.00	0.003	0.00	0.001	0.001	0.001	0.00	00.001	9-98	0.00	0000	0000	100-0	0.001	0.001	0-00	0.005	0.003	0.003	3 0.003	0.008	0.004	700.0	900-0	0.005	900-0	900-0
75°	0.005	00.00	0.00	0.005	0.00	0.00	00.00	0.003	200-0	0.003	0.001	0.001	000-0	0.001		0.00	90.003	9-00-8	90 0.005	11 0.000	13 0.007	900-0	0000	9 0.010	0.011	8 0.012	5 0.013	410-0	0.016
140	0.010	0.00	000	0.00	0.003	00.00	900-0	0.005	0.004	0.003	200-0	0.001	0.0	0.005	90-00		ě	800.0	ě	0	•	0.015	0.0	0.018	0.020	0.033	0.025	0.027	0.020
73°	0.017	0.016	0-015	0.014		0.012	0.010	0000	1 0.007	900-0	\$ 0·00 1	0.002	00000	0.003	900-0	200-0	0.010	8 0.012	3 0.015	9 0.018	0 0.021								_
1.10	0.025	3 0.024	0.022	0.021	8 0.019	4 0.017	1 0.015	8 0.013	6 0.011	1 0.008	8 0.005	4 0.003	00000	5 0.004	0 0.007	4 0.010	0.014	5 0-018	0.055	920-0	0.030						· · · · · · · · · · · · · · · · · · ·		_
71°	f80·0	3 0.083	1 0.081	8 0.029	5 0.028	2 0.024	8 0.031	£ 0.018	0.015	5 0.011	900-0	\$ 0.004	100.0	9 0.002	3 0.010	P10-0	9 0.020	B 0.025	0.030	990-0	99 0.042								_
7.00	8 0.045	5 0.043	2 0.041	0.088		1 0.032	9 0.038	1 0.024	5 0.020	9 0.015	3 0.010	6 0.005	0.001 0.001	900-0	6 0.013	0.0:0	970-0	0.083	0.010	0.048	0.056								
69	890-0	9 0.055	5 0.052	0.040	6 0.045	0 0.041	4 0.036	8 0.031	1 0.025	610-0	6 0.013	900-0 8	00.0	0.008	910-0	0.024	1 0.083					-			• • • •				-
.89	3 0.072	690.0	9 0.065	0.060	8 0.058	1 0.050	4 0.044	880-0	8 0.031	£20-0	0.016	800-0	1 0.001	3 0.010	0.020	060-0 4	0.041												
67°	980-0	180-0	0.079	8 0.074	_	8 0.061	5 0.054	5 0.048	5 0.038	6 0.029	4 0.020	010-0 8	10.001	5 0.013	3 0.025	280-0 1	0-020				·,								
663	0.105	0.100	0.093	0.08	0.081	0.078	0.08	0.055	0.045	0.086	0.034	0.013	0.001	0.015	0.020	0.0	090-0												
			Θ	Δ	i	4	İ	g	0	-d			_				•	Δ	į	7	. '	1 8	8		∍ 	N			
Fet Long	380	30 10	3	33	35	31	30	59	8.1 S0	27	26	22	747	23	22	21	20	61	<u>æ</u>	17	16	<u>ت</u>	14	13	12	=	2	6	œ

E	
7	
77	
L 000	
3	Š

١	94							_		15	19	F	69	69	. <i>e</i> n	_		60												
Ì										0 1.555	1.655	3 1.661	1.548	1.638	1.518	1.500	1:478	1.463												
	98°									1-400	1.400	1.456		1:499	1-488	1:408	1.388	1 364												
1	92°									1.366	1.365	1.961	1.365	1.345	1.383	1.817	1.208	1.270									•			
	910									1.270	1.270	1-967	1.981	1.252	1.340	1.238	1.208	1.187					_							
	.06					1.163	1-161	1.168	1.173	1.176	1.176	1.172	1.167	1-150	1.148	1.134	1.118	1.000												
	89°	0	[1.039	1.067	1.074	1.078	1.080	1:078	1.077	1-0%	1.065	1.058	1.048	1.088	1.010												
	.88	٨				988	8.76-0	0.870	0.988	0.984	0.984	0.088	0.978	0.971	0.043	0-951	0-988 1	0.932						_						
	870	•#		-		0.673	6.83	0-884	0.888	0.880	0-88-0		0-868	0.878	0.830	0-880	0-847	0.883			 .			_					<u> </u>	
	.98	42				0-778	0.785	0.780	0.788	0-784 0	964-0	0.708	0.789	0.784	0.777	0-768 0	0-787 0	0.744 0	0.78 82	0.718	999-0	0.673								
	880					988-0	0.001	0-685	0.688	0.000-0	0.689.0	0.00	0-695	0.000	0.087	0.676	0.000	0.655	0.648	0.087	0.610	0.588								
	84°					0.500	0.598	0.000-0	0.000	0.004	0.007	0.000	0-000	0.698	0.801	0.584 0	0-676	0.588	0.586	0.648 0.	0.627	0.611 0.								
	88	Ы				0-498 <u>-</u> 0	0.508	0.506	0.508	0.809	0-209	0.508	0.506 0.	0.503	0.408	0-402 0	0-486 0-	0.477	0.468	0.437 0.	0-444	0.431 0.				·				
	82°		0.386	986	0.401	0-702-0	0-408	0-411 0	0.413	0 707-0	0-414-0	0.418	0-411 0	0-408-0	0.405	0.400	0.384 0.	0-388-0	0-88-0	0.871	0.881	0.350 0.4	0.338	0.386	0.310	0.204	0.577	0.250	0.286	0-8118
	810		0.398		0.300	0-318-0	0.814	0-816	0.318 0.	0.818 0.	0.318 0.	0.318 0.	0-810 0-	0-817 0	0-319 0·	0-308-0	0.304	0-289	0.588 0.9	0.288	0-278 0-1	0.870 0.8	0.360	0.350	0.389		0.218 0.5	0.189	0-184 0-5	0-168 0-5
	800		0.908 0		0-2112	0.919	0.880		88	0.838	88. 0	0.889 0.	0.253	0.880	0-818 0-	0.8116	0.218	0-309	0.305 0.	0-500	0-198 0-3	0.189 0.9	0.188 0.9	0.175 0.9	0.167 0.5	0.159 0.597	C-150 0.5	0.140	0.129	0-118 0-1
	79° {		0.119		0.184	0.195	0.136	0 15 O	0.138	0.138 0	0.138 0	0.138 0.	0-127 0	0.138	0.165	0.134 0	0.123	0.130	0-118 0-9	0-115 0-5	0.112 0	0.100 0.	0.105 0.3	0.101	0.088	0.001	0-086 C-∃	0.080	0.074 0.1	0.068 0.3
	, 84 18°		0-031		0.083	-0 80-0	0.080.0	0.088	0.08	0.038	0.000	0.088 0.	0.038	0.0880	0-033	0.033	0.081	0.0811	0.080-0	0.030 0	0.020	0.088	0.087	960-0	0.088 0.0	0.088	0.088	9-08 0-08	0.018	0.017 0.0
	12		0.088	_	0-001	0-ош	0.00	0.088	0.088	0.003	0.088	0-062 0-	0.00	0.088	0.061	0.080	0.069	0.0%0	0.057	0-000	0.084	0.068 0.0	0.061 0.0	0.040	0.040	0.044 0.0	0.048	0-089	0.086	0 088 0
	760		0-147		0.158	0.154 0	0.158	0 491.0	0-121-0	0.158 0	0-168	0-191-0	0-157 0	0-156	0-1164	0.158 0	0.160 0.	0.148 0.	0.146 0.	0.140	0.138 0	0.134 0	0.199 0.	0.194 0	0.118 0	0.112 0	0.106	0-080-0	0.081	0-088 0
	750		0-335 0		0-316 0	0.248	0-2520	- EST	0.223	0.288	0.888	0.388	0.251 0	0.80	0.947	0.244 0.	0.241 0.	0-384	0.988	0.887	0.881	0.214 0.	0.202	0.199 0.	0-190	0.130	0.100	0.188	0.146 0.	0.188 0.
١	74.	0	0.994		0-384	0.340	0.844	0-846	0-347	0.348	0.388		0-346	0.848	0.340	0-386	0.888.0	0.336	0.320	0.819 0.	0-304 0	0.886	0.284 0	0.878	0.260	0.248 0.	• 88 •	0.218	0.201	0.188 0.
	780	٨	0-418 0		0.430	0-434 0	0-488	0-440	0.48	0.448 0	0.448	0.448 0·	0.440	0.487_0	0.438 0.	÷ 88 0	0.489	0.416 0.	0-404-0	0.888	0.387	0.875 0	Ö	<u>•</u>	<u> </u>	ė	ė	•	ė	<u>•</u>
	720		0.501 0			0.5897	0.588	0.585	0.557	0.538	0.588	489-0	0.535	0.581	0.528	0.580	0.518 0.	0.505	0.498	0-488	0.470	0.438								
	710	4	0.500		0.615	0.681	0.686	0-689-0	0.030-0	0.038	0-633-0	0.632	0.629-0	800		0.612	0.004	0.594	0.388	0-208	0.558	0.588								
	, 02	6 5	0.679		0.204	0-714	0.430	0.724	0.74	0.728	0.738	0.727	0.734 0	0.719	0.718 0.	0.704 0	0.694	0.688	0.000			0.616 0								
	. 69	&0 60	0.768		0.800	0.808	0.816	0-810		0-884	0.884	0.88	0.818 0.	0.813	0-808-0	0.7706 0	0.786 0.	·122-0	<u>•</u>	ė	Ö	Ġ								
	.89	z	0.884	_	0.808.0	0.901	906-0	0.918	0-314	0.919	0.910	0-014 0	0.018 0	406.0	988-0	0-888	0.875 0	0.800		_								_	-	
	67°		0.948		0.086	0-566-0	1.008	1.008	1.013	1.014 0	1-014	1.013 0	0 400-1	1.000	0.001	0-860	0-808	·0 -0-0-0												
	.99		1.088 0		1.077	1.088	1.096	1-109 1-	1.107	1.100 1.	1.100	1.108	1.101	1:097	1.084	1.071	1.056	1.088	-											
	<u>;</u> /		86° 1			_	81 1.	30 ·i	29 1.										.6			91	ດ -		c a	C 2			•	<u></u>
	3/1		Ø 0	ò	8	ದೆ	®	<u> </u>	ଷ	28	27	26	ଷ	72	র	22	0	8	19	ã;	-	16	ĭ	=	18	===	Ι.	10	. د	~

 ∇a lues of v_x-v_y in seconds.

TABLE XIV.

Case II.— $\delta b = 1 \text{ km}$.

94°											0.014	9000	9		900			0.085		•						<u> </u>				
98°										0.024	0.014	900.0		0-00 0-0	÷ 003	9.008	0.018	0.08							· 					
92°								•		89.0	3.018	0.00	0.001	0.00	200-0	9-708	0.017	0.080												
91°										300	0-012	0.00	0-001	0.00	0.003	200.0	0.016	0.027												
90°						0.089	0.084	470.0	9.68	0.09	0.018	900-0	100-0	0.000	0.003	200.0	0.014	0.088										-		
88°	9					0.077	0.050	770.0	0.090	0.019	0.011	0.008	0.001	0.00	9000	0.008	0.013	<u> </u>												
88	Δ					0.00	0.054	0.040	99.0	810-0	0.010	0.00	0.001	000-0	100-0	0.005	0.013	0.020												
87°						9.064	0.040	290.0	950-0	0.018	0.00	900-0	0.001	0.000	0.001	9.002	0.010	0.018											-	
88°	a t					990.0	0.044	0.088	0.023	0-315	9:008	9.00	100-0	0.000	100.0	700·0	0.000	0.016	9-05X	0.037	0.050	990.0								
85°	20					E		6.089	0.080	0.013	200:0	0.003	100.0	0.00	0.00	700-0	9000	0-014	0.08	780·0	0.044	0.688								
18	9				•	0.044	780.0	9.08	0.018	0.011	900.0	90.00	100.0	0.000	0.001	9000	400-0	0.019	0.019	0.088	0.088	0.050						7		
83°	z			_		250.0		0.021	0.015	0.010	90.00	900.0	100·0	0.000	0.001	0.008	900.0	0.010	0.010	88	9.0	0.048		,			~*			
82°		990-0	0.050	270.0	0.098	999		0.017	0.013	9000	700.0	90.0g	100-0	0000	0.001	0.00	900	900.0	0.013	0.019	989	9.03	9-0-0	9.02	990-0	0.00	960-0	0.109	0-136	0.144
810		0.051	0.043	0.088	9	88		0.013	900-0	9000	9000	9.00	000-0	0-000	0.000	9.00	700-0	900-0	0.0TO	0.015	0-030	9.08	0.088	9.046	0.051	190-0	0.073	780.0	200-0	0.111
°08		980-0	999	0.088	8	_		0.00	200.0	\$00.0	0.00	0.001	0.000	0000	0000	0.001	0.003	0.005	200.0	0.010	0.014	0.018	0.028	989-0	9:03	0.043	0.00	690.0	890-0	-0-678 -0-10-10-10-10-10-10-10-10-10-10-10-10-1
79°		120-0	470-0	710-0	0.018		0.007	0.005	700-0	9000	0.00	100.0	0.000	0000	0.000	10.0	90.0	90-0	700-0	90000	900.0	0.011	0.013	0.017	0.021	50.0	999	0.034	0.030	9.0
284		900-0	9.006	700÷0	9000			0.001	0.00		0000	0.00	0-000	0.00	9-30	0000	0.000	0.001	0.001	900·0	0.008	9000	9000	100.0	0.005	900.0	900.0	600-0	0.010	0.011
770		0.010	999	0.007	9000	_		0.003	0.00	100.0	0-001	0.000	0-000	0000	000-0	0.000	100.0	100.0	0.00	0.008	100-0	0.005	200-0	900.0	0.000	0.012	0-014	970-0	0.019	Ş
76°		0.025	0.081	0.018	0.015		0.00	200.0	99	90.0	90.0	-000-0	0000	0.00	0000	0.001	90.0	9000	0.005	200.0	0.010	0.018	0.017	120-0	9-08 89-	900	0.085	170-0	9.048	9:00
75°		0.040	789-0	99.0	99			0.011	9000	0.005	90.0	100.0	0.00	0000	0.000	100.0	0.003	0-002	9.008	0.012	910-0	0.021	0.027	9-68	0.040	0.048	0.057	0.088	220.0	889-0
74°	9	990-0	0.047	850.0	350-0	_		0.015	0.010	0.00	700.0	0.00	0.001	9000	0.001	0.003	\$00·0	200.0	0.011	0.010	9	0.0g	0:087	9.048	0.055	990-0	920-0	0-091	0.108	0.131
78°	۸	0.00	090-0	0.050	0-041	5	0.088	0.019	0.013	900.0	9000	800·0	0.001	0.000	0.001	0.003	90.00	600.0	0.014	0.000	0.088	0.037								
72°	·-	0.083	9.03		9			9-088	0.018		900-0	900-0	100.0	0000	ю.0	0.003	900.0	110.0	0.017	90.08	9:03	0.044								
110	t	001.0			9			90.0	0-018	0.018	0.07	900.0	0.007	0.00	0.007	9000	200-0	0-018	0.00	0.00	0.040	90-0	_				e me p 20. F1			
200	.1	0.118	80.0		0.067			0.680	150·0		0.008	9.00		0000	100.0	500-0	9000	0.015	0.088	0.088	9.046	00.0			-					
.69	0	0.130			0.078			9.084	760-0		0.00	700-0			0.001		_	0.017					• • • •							
-88 98	Ъ	141.0	91.0		80.0			89-0	-88		600.0	700.0	100-0	0000	0.001	0.00	0.011	0.019												
670		0.139	0.134		- 190	_			650-0			9000			0.001			9.08				<u>-</u> .								
.89		0-178			80.0			0.046	199.0		0.011	9005	_		90.0	9000	0.018	0.088												
Iet rong.		36°	82		23	_				8	27			24	23		21	20	18	28	17	16	15	14	18	E	11	10	6	∞
	<u> </u>	L											_																	

w_x in seconds.

lase II — 86 = 1 km

94°				,			0-02	0.106	0.277	0.458	0.648	0.887	1.080	1.840	1.408												
98°							400-A	001.0	0.80	9	9-6u4	0-787	228-0	1.174	1:83												 ,
92°							000.0	890-0	9-844	104-0	999-0	0-787	0-916	1.100	1.201										-		
916						!	9	290-0	- 188-O	0-874	0.657	480-0	0.889	1:684	1.208												
°06			145.0	0-878	823-0		0-043	0-080	0.110	0.846	9.488	989-0	0.780	0.940	1-114					_							
89°			0.480	0-348	0.25		050-0	720-0	9-194	0-8TB	977	0.588	0.728	0.878	1-685							····					
% %			0.401	0-51B	0.80	0.186	0.00	290.0	0.177	168-0	0.410	0.684	0.668	202.0	988-0												•
87°			0.362	0-887	208-0		9.00	19)-0	0.100	9880	0.871	0.488	0.800	0.721	9-8-6		_							,			
86°			988.0	0.257	0.186		0.00	0-455	0.148	0.286	0.331	0.488	0.586	9.64	0-768	0.878	196.0	1.114	1-941								
85°	•		0.286	988	0.168		Can .	9.00	0.198	0.307	0.282	0.380	0.478	0.563	999-0	0.768	0.878	0.981	1.098								
84°			Ø-847	0.198	171-0	90.0	_	170.0	0.107	0.170	0.258	9880	9.408	164-0	0.576	799-0	0.788	98.0	0.045								
833°		-	908 0	0.165	0.119	0.000		0.085	0.092	0.151	0.218	0.277	0.844	0-414	0.485	099-0		0.716	962-0			-				•	
82°	0.253	0.308	0-169	0-134	200-0		ora-n	0.088	0.074	0-128	0.173	0.835	0.280	988-0	988-0	0.455	9.518	9-588	9.648	0.77.6	0.7%	998-0	0.988	1.00%	1.078	1-165	1.288
81°	0.8.8 0.170	0.158	0-130	0-108	0.078		U-UTS	820·0	0.057	0.086	0.188	0.174	0.216	0.250	908-0	0.881	608.0	9.448	0.400	0.661	709-0		0.718	0.772	0.880	988	0.940
စ္န	31.0 34.0 81.0	0.100	0.003	0.00	0.088	0.061		0-015	9-9-	990.0	990-0	0.198	0-161	0·18E	0.818	0.246	0-880	9:814	0.350	0.386	9.484	0.468	0.501	0.641	0.582	0.688	999-0
79°	0-080	. 000	840÷0	90·0	0.080		i an n	0.00	89.0	0.088	9-064	0.00	280.0	0-104	0.138 881.0	0-141	0.180	0.130	0.301	0.588	0.248	0.585	88.0	0-SIK	0-384	0-367	0-388
78°	0.038		0.018	110-0	900-0		I TOOL O	870-0	90000	0.010	\$10·0	0:018	88	0.087	180.0	980-0	0.041	98	0.063	0.057	80.0	890-0	0-074	6.68	980-0	0-00-0	0-008
	θ Λ	, 4 .	¥	Ä		N)		i			i			0		 I	-		<u> </u>	
77°	0.038	0.080	0.025	0-030	0-015	0.009	0.0	9-007	0.011	0.01B	0.028	9.C84	0.048	0-(151	090-0	0.080	0.078	0.088	9000	901.0	0.118	0.130	0.140	0-151	0.163	9-174	0.186
76°	0.110 0.100 0.089	0.077	99.0	0-051	280-0	89.0	0-m-n	110.0	0.038	470·0	990-0	9.086	0-107	0.158	0-151	0-174	0.197	0.338	0.247	872-0	68. 0	988-0	0.864	888.0		97.0	0.470
76°	0·176 0·160 0·142	0.133	0.108	0-688	0.060	0.085	0.00	0.017	970-0	920-0	901.0	0.138	0.171	0.306	0.241	0.878	918-0	0.856	908-0	0.487	0.480		299-0	0.813	0.689	90.00	0-754 0
.₹4	0.196	0.170	0·148	0.118	180.0	90.0	o-n	750·0	0.083	0.108	0.146	0.190	0.285	988	0.388	988	0.138	0.468	9.546	- 800 · 0		0:720	0.781	0.848	0.907	128-0	
73°	0-808		0.181	0.149	0.108	0.081	U-UL7	0·u31	090-0	0-181	0.185	0.241	0.800	0.380	0.433	997-0	_	0.633	708.0		<u> </u>		-	_	<u> </u>	<u> </u>	
72°	908-0 978-0 778-0		0.280	0.174	0.196		0.030	280.0	0.007	0.100	0.235	9883	0.364	0.487	0.518	0-683	0.678	992-0	878.0							-	
710	0-440	0.306	0.250	908-0	0.148		0.024	770-0	0.114	0.188	0.985	978.0	0.488	0.514	7n9-0	9.00		0-890	0.991								
200	0.508	0-365	0.997	0.286	0-170	0.100	0.027	090-0	0.131	0.218	508·0	0.398	0.409	0.591	7-00-O	0.8.0		1.083	1.130								
.69 _o	0.619		0.386	998-0	0.198		0.(81	0.u57	0.148	0.944	978-0	0.448	0.556	999-0	0.784								_				
68°	0.679		0.874	968-0	9-814	0.136	0-024	990.0	0.166	0.973	9880	0-499	0.6139	0.744	7/8-0												
67°	0.708	9	0.438	0.887	0.286		990-0	0.40-0	0.188	0.300		0-550	9.688	9.88	98.0												
99	0.786	0.0	0.451	0.887	0.268	0.159	170.0	P.	0.189	0.887	199-0	v-601	0.746	2680	1.063				·				·.				
	Α Θ	ı	1	!	9	, q	_			_			θ	٨	ļ		7	B		Ħ	8)	N	`,			
E P	88 × 48	3 8	85	81	80	58	œ N	27	26	22	24	23	27 27	21	20	19	18	17	16	<u>۔</u> ت	14	13	12	11	10	0	00

Values of w.-w, in seconds.

Case II.—86= 1 km.

TABLE XVI.

0_			98	8 2 8	88	39 8	3 8	Z Z									
94°			989-0	7 0.639 1 0.858 9 0.169	8899		8 0.648	96-0									
98°				0.487	0.08	0.306		0.818	······································		<u>.</u>						
92°		•	7 19-0	0.310	0.021	0.196	994-0	0.761									;
91°			0.578	0.188	ego-o	0.188	889	0.700									
96		9.88÷0	0.530 0.530	9969 0-138 0-138	0.018	0.169	0.489	499-0			:			· · · · · · · · · · · · · · · · · · ·			<u></u> _
.68		0.906		0.926 0.946 0.118	910-0	0.156		9.60									
88		0.886		0.226	0.018	0.148		0.553								_	
87°		0.747	9-495	0-308-0	0.014	081-0											
86°		889-0		0.878 0.188 0.087	0.019	0.115		977-0	999-0	908-0	0-987		 -				
85°		88.0	0-890 0-890 0-817	0.240	0.011	0.101		0-388	0.496	0.718	0.885						
84° 8		0-509		0.138 0	0.000	990-0		0-330	0.450	0.6116	0.718						
88° 8	 	0.588		0-175	0-608	0.170			0.363	0-519	0-001						
828	0-476 0-447 0-417	0-884 0-840 0-819 0-		0.143 0. 0.086 0. 0.046 0.	0.006	0.080		0.288	0-367	÷	÷ 88.0	9.0	0.000	₩.0	0-628	1.000	1-079
81° 8	0 2978 · 0 408 · 0	0-308-0		0.110 0. 0.078 0. 0.036 0.	0.00%	0.048		0-179		9	0.837	0.488	0.589		0.111	0.20	0.8811
80° 8	0.248 0. 0.248 0. 0.225 0.	0-207 0-138 0-140 0-140		0.077 0. 0.061 0. 0.024 0.	0-003	88 6		0.138	0-150 0-	0.2%	0.584		0.878 0		0-498	0.540	0.588
79° 8	0.148 0. 0.139 0. 0.129 0.	0.116 0.108 0.097	0.086 0.0068 0.0068	0.039	0.002	0.019		0.073	0-091 0-	0-18H	0.153 0.		0.217 0.00		988-0	0.80	708.0
 					0.001	0-005		0.019	0.0880-0		0.089					0.029	_
78°	960-0 960-0 960-0	i 1	v 3			<u> </u>	9	<u>.</u>		190-087 T	? ?	8	0.058	F	0-028	3	90.0
770	0.073	0.058		0.000 0.000 0.000	100.0	0.000		0.085	790-0	790.0	740-0		0.106		0-189	9-151	0.168
76° 7	0.181 0 0.170 0 0.189 0	0.146 0.138 0.119		0.054	0-008	0.088		0-080-0	0-112 0	0-161	0-186 0-186 0-118-0	÷	988-0		0.888	0.881	0-611
0_	B S S	0.284 0. 0.218 0. 0.190 0.	8 4 2	8 3 4	700	8 5	. 8	- <u>0</u>		0.288	8 3	2	0.42		992-0	0.611	0.00
9 75					0.002	<u> </u>	ė	0.198									
74°		73 0.988 84 0.988		55 0·150 02 0·060 49 0·068					15 0-347 83 0-301	538-0	924-0	0.828	0.588	0.718	0.777		908-0
0 78°	19 0.510 88 0.479 84 0.446	99 0-411 53 0-873 06 0-884		95 0·153 94 0·102 59 0·049	200-0 80	78 0.064 70 0.134		0.249	83 0-815 65 0-383	10 O.453	98 0.524						
720	88 0 619 88 0 648 89 0 648	88 0.458 77 0.408		18 0·185	800-0 01	88 0.078		80.0	297-0 4	9.549	989-0		·				
110	77 0 728 88 0 684 89 0 687	4 0-587 8 0-588 9 0-477		0 0.918	1 0.010	0.008		998-0	7 0.450 8 0.547	8 0-646	0 0.748		· · · · · ·	<u>-</u> -	·		
202	6 0.887 8 0.788 7 0.788	8 0.618 9 0.548		8 0.250 8 0.167 0 0.080	8 0.011	90.108		0.409	0.517	0.748	098-0						
- 69	0-888 0-888	0.702 0.692 0.619		0 0-080	10.018	0.119		5 0-468					 				
- 68	1.054	0.08		001.0	710-0	0-133		0.516									
670	1.162	0.886 0.780		0.881	0.015	0.146		0.568									
99	1.969 1.198 1.110	1.028 0.020 0.831	0-736 0-616 0-501	0-880 0-258 0-121	0.017	0.160	0.468	9									
	9 A	i t	i a	o 4			θ	Δ	i	4	8	8	•	N			<u> </u>
Let	8 8 8 8 8 4	33 32 31	8 6 8	88	77	23	2 2	20	19 18	17	16	14	22	11	9	8	∞

Values of sand of in seconds,

94°	İ	0.850			··							-,	0-150	0-144	0.187	0.131	0-198	0.119	9-114	0.108	9-108					-			4000			
986	ľ	0.964		•						-			0-141	0-133	91.0	191-0	0-119	9:11	0-167	0-103	969			~								
92°	ľ	0.989											0.138		0-121		0-110	0.105			0000											المنصفر أ
910		0.978		'				-					0.198		0.118	*** **		88			180.0	•		• • •								;
-006		0.877		•	_				0-184	0.180	9-134 0	0-119	9.114		9-104			 180•0			679-0							•			r. miniprodu	
89°		0.080		•	_	• • •			0.128	0.118	0-114	0.100	0.106		885-0			1800			0.025				· ·			. 37	,			
88		99.0		>					0-119	901.0	0-104	0-100	960-0		- 0			0-678			0-035								•		ry is the	
87.		0.987							0.108	990-0	9-00-0	00000	980-0		959		0.078	990-0			999		-		- -	ح وجيد الا						
88		0.989		4					160-0	490-0	0.084	9.08	0.077		129-0			200.0	0.030		0-653	0.650	270-0	110-0	0.613	<u>}</u>				•		
85°		0.903		- -	_				0.080	440.0	7.0-0	0.071	9-068		90-0			7:0·0		0.040	30.0	0.044		600-0	20.0					, orașe		****
84°		900.0		•					890-0	990-0	790-0	190.0	0.050		0-084			0.047	9.0	96	0.010	~ 389.0 0.0		789-9	0.032							
88°		906-0		ы					0.068	990-0	790-0	0.068	050-0		0.045	570.0	30·0	0.040	9.688	0-689	0.03£	333.0	99-0	620.0	28)-0							
82°	tive)	220.0		'	950-0	9-058	0.061	90.0		0.048	9.00	970.0	0+0-0		0-037					99	O.ES	£3.0	0.03		88		0.019	0-017	3	1	Ī	Ī
81°	(Positive)	900.0			- 500.0	9.0	0.080	990-0		990-0	9-00-0	0.088	0.081		 8		980-0	89	100-		(-(2)	00000	6.016	-W-0	0.017		0-615	0-033		1	Ī	Ī
80°	3	088-0	٥		0.080		889-0	0.027		0.025	F80-0	0.088	8800	190-0	9-6	0.010	0.018	0.017	0-017	0-016	0-015	0.034	0-013	0.013	- HO-0	0-631	0.010-0	000-0		Ī	Ť	Ī
.62	o f	1.000	ų,		0.017		910-0	0.016		0.014	0.014	0-018	0.018		9-013	0-011	110-0	0.010	0.010	950-0	0.0.0	9.665	(-0.F.	0-687	0.00		9,000			Ī	Ī	Ī
84	8.0	1.000	8.0		700-0	_		100.0		700.0	900·0	900.0	0-003		9.0-0	800.0	-900-0	900-0	999	0-682	0-68-0	300	(i-00:	3			0.052		-	Ī	Ť	Ī
770	alu	1.000	lu		900.0	_	900-0	400-0	_	400.0	200.0	9000	900-0	900-0	900-0	0.005	9.003	0.003	0.003	9000	00·00	0-694	150	1000	0.66	0.00	0.663	20-0	a a	Ī	Ī	Ī
.94	Δ.	1.000	\ A B		0.081	900	0.080	0.019	0.018	210.0	0.017	0.010	0-015		710-0	\$10·0		0.013	0.012	0.011	ù-011	0.010	0.0.0	0.00%	0.00	909-0	300-0	0-00	*	Ī	Ī	Ī
75°		000-0	,		0.084	0.088	190-0	090-0	0.0	889.0	0.080	960-0	0.025	190.0	9.03 20.03	<u>\$</u>	<u>-</u> ਹ	0.00	0.03	. STO-0	0-617	0.016	0-015	6-614	9-613	0-013	0-612, (0-011	200	•	Ī	Ī
74.		988-0		0	0.046	0.045	0.048	170.0	0.040	9.00	480.0	999	0.084	0.038	180-0	990.0	83.0	0.037	80.0	0.635	0.63	9.0 8.0 9.0	159-0) 0 20-0	9-03-	0.617	0-616	0.015		1	Ī	Ī
78°		280-0		•	9900	290.0	0.086	990-0	0.051	970-0	270.0	0.045	0.043	170-0	0.540	- 83	980-0	0.085	9.688	0.031	(89)-()	. Si	83.0	(E)	6.63							
72°		0-986		t i	0.073	0.080	990-0	90.0	90.0	0.050	290-0	0.055	89.0		0.048	970.0	170.0	5TO-0	0.040	889-0	(S)	150-0	(J. (S)	0:00:0	(A)-0		٠.			, v, m _e mples v	~~~~	
110		890.0		•	780-0	0.081	0.078	0.075	0.079	0.00	490-0	790-0	0.008	0.089	0.057	0.054	80.0	0.049	250.0	#0·0	30·0	9.0	0.03S		0.633		~~ ~ ~			v-b-eb-b-7 877		
70°		100.0		80	280.0	990-0	0.000	290.0	0.083	0.080	2.00.0	720-0	0.071	9.008	0.00	20·0	0.030	0.057	0.004	0.031		950-0	90-0	0.011	0.63		٠				·· ·········	
69		0.989		•	0.100	0.108	901-0	900-0		0.001	280.0	9.088	090-0	0.077		0.020	0.067	790.0	0-0611	889-0	0.033 0	😇		·								
-88		0.886		Z	0.188	0.118	0.118	0.100		0.101	200.0	880-0	690-0	0.083	88	0.078	0.075	0.071	890-0	790-0	0.001											
67°		0-888			0.184	0.180	0.196	0.130		0.111	0.107	0.108	960.0	760-0	0000	980-0	980-0	820.0	0.075	0.071	0.067		-								,	
98		0.070			0.147	0-148	0.186	0.131		0.131	0-117	0.118	261.0	0.108	980-0	760.0	060-0	980-0	0.085	0.078 0	0.074						•	4 .0				
Forne:		4°-8°		•	86°	38	2	88	82	81	80		_	. 42			<u>~</u>				- <u>-</u> 07	6	 82 t			15		음	23		•	

Case III.—"= 1".

Values of w in secon

Case III. $-u_o = 1$ "

TABLE XVIII.

1 0						-	_	_		_		<u>.</u>	_						_						
94°					0.80		0.818	0.811	0.308	0-908	0.304	0.903	0.80										_		
98,					0-380	0.897	966-0	9.93	0.290	0.987	0.286	0.284	988												
92°					183-0	9.278	9/3-0	0.273	0.871	0-280	0.967	0.265	0.384												
91°					0.961	0.339	496.0	0.255	0.358	0-951	0.240	0.347	0.248												•
.06			0-250	478.0	0.945	0.340	0.238	88	0.334	0.588	0.231	68.0	0.938												
89°	0		0-889	9.52	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	158-0	0.210		0.218	0-214	0.218	0.511	0.300												
88	A		0.210	208-0	0.908	0-20g	008:0		0-197	0.196	0.194	0.188	191.0												
87°	••		0-181	0.188	0.186	0.188	0.181	0.179	0-178	9/11-0	0-175	0.174	0.178												
.98	t		0-171		0-166	0.168			951.0	0.158	0.187	0.158	0-154	0.154	0-153	0.168	0.151								_
85°	. B		0.151		0.146	0.144			97.	0.130	861.0	281.0	0.138	0.135	0-184	9:13 7	0.138								
84°	0		0-130		9.198	0.184			0:181-0	0.130	91.0	0.118	0.118	0-111-0	0.116	0-110	0.116					_			
88°	P		0.110		0.107	0.105			9. 80. 9.	0.101	o is	0.100	0-000-0	80.0		280-0	0-697								_
82°		160-0 160-0	0.080-0		280·0	9900			88	80.0	90.0	0.08I	180-0	0000	0900	0.079	0.079	9.678	8.00-0	9.0%	820.0	220.0	0.077	0.077	0.077
81°		0-073 0-070 0-070	0,040		990.0	990-0			780-0	890-0		990.0	0.068	380·0		190·0	0.081 0.081		0.080	0.080	00000	090-0	0-020-0	0.020	0.000
-08		0.050	97 99 0	250.0	250.0	970-0	970-0		9.0	9:045	9900	0.044	770.0	0.048	870-0	9.0	850.0		90·0	0.048	0.043	36.0	0-048	0.041	0.041
79° 8		980-0	88.69.		0.087	889.0	960-0		970-0	980-0	999	0.036	9:00:0	9.085	89.0	9.0	98.0		750-0	750.0	0.034	0.024	0-087	0.087	0-087
78°		400-0	700.0	200-0	2000-0	200-0	200.0		200-0	400.0	200.0	900-0	800.0	9000	900-0	9000	900-0	900.0	900-0	900-0	900.0	900-0	900.0	9000	900-0
770		0.014	0.014	0.013	0.018		0.013	0.013	0.013	0.018	90·0	0.003	0.019	0.013	0.012	- 80.0	0.03B	0.018	0.019	0.018	0.018	0.0E	0.013	0.018	0.018
16°		980-0	480-0 480-0 0-034	880-0	0.083		0.033			1890	0.031	0.631	180.0	0.091	989-	99-0	0.080	0.080	989-0	0.080	-089-0	- 	0.080	90.0	0.089.0
750		290-0	0.056	750-0	0.088		0.068	0.081	0.081	0.050	0.030	0.090	0.040	90.0	960.0	90.0	970-0	90.0	95-0	990.0	450.0	470.0	470.0	470-0	0-047
74°	. 0	0.078 0.078 0.077	0.078	7.0-0	0.073				0.00.0		9990	890.0	890.0	290.0	290:0	290-0	990.0		800	9-086	0.088	990-0	0.065	0.086	990-0
73°	Δ	0.100	0.090	760.0	90.0	160-0	0000	_	880-0	880-0	88.0	180-0	990-0	980-0	9.088	980-0	780.0		<u> </u>	Ť					
72°		0.128 0.120 0.119	0.118	0.114	0.113	0.111	0.110		901.0	0.107	901.0	901.0	0.105	0.104	- 701.0	0.168	9:108								
710	t	0-148 0-148 0-140	0.138	0.184	0.133	0.130	0.129		0:197 781:0	81.0	9. 81.	9-134	0.138	0-128	0.183	0.131	0.131	<u> </u>							
70°	80	0.166 0.168 0.181	0.150	0.154	0.151	0.150	0.148		971.0	9.145	0.144	0-148	0.149	0-141		0.130	0.139	•							
69	9 0	0.186 0.184 0.188	0-180 0-178 0-178	0.174	0.173		0.168	0.166	0.165	0-164	0.168	191.0	0910	Ť		<u> </u>	<u> </u>								
-88	Z .	0.806	0.198	0-194	0.190		0.187	0.186	0.184	0.188	0.181	0.180	0.179												
670		0.839 0	0.2210	9-314	0.200		0.308	508:0	90 3 ·0	-108:0	0.190	0.188	0.197												
99	İ	0.980	0.288 0	0.288	0.881		0.895		0.221	088-0	0-818	0.517	0.315										··· .		
bi /		36° 0 85° 0	88 82 81		2 8			28 28	_		22		۔ 20	- 61	81	- 41	91	<u>-</u> -	4	18	ឌ		10	G	
\$ / ±		ca ca	المال المال المال	***			~~		-			••		-						_	_	_	<u></u>		

TABLE XIX.

Values of u and v in seconds.

٠.
H
II
3
,
1
8
g

o_		_	88 I										>	<u> </u>	9.018	8	0.019	0.087	0.0KK			9				_									
94%			8 0.258	_										0.087	_		-									_		_							-
98			0.963	_									_	999-0	0000-0		210-0	9-685				8 5									· .				_
93°			0.83	_									0.001	0.041	0-023	0.007	0.015	0-088	_		_	8 -													_
910		_	0.318										-088 -0	9-048	120.0	9000	0.013	0.088	20.0			9			_						· 				
900			0.196 0.518 0.527	-					0.148	9.138	0.108	0.088	9.086	350	920-0	200-0	0.013	GBO-C	0.040		3	795-0			•						:				
88°	•	_	0.181	-					0.160	81	0.107	0.087	490.0	470-0	999	0.00	010-0	88	1	700	3	880								•					
.88		>	0-186		- ,				191	9	0-100	990.0	990-0	9-0-0	0.080	0.010	0.00	.6		3	5	0.081													
87°		-	0.169	-					0.158	0-138	0.111	0000	0.00	0.00	0.080	0.011	9000	1	3		9	990													
.98	+		0-188	. 						0.138	0.118	0.001	120-0	0-061	0.081	0.018	200.0	ğ		170.0	9	080-0	200.0	0.116	281. 5	0-149									
86°		å . 50	0.117 0.188	•					0.166	0.186	0-118	0.088	0.03	0.053	9.088	0-018	900-0				# 3	0.020	2000	711.0	0.131	0-148	-	•							
84°		~ • _{/.}	0.101						491.0	0.188	711.0	100.0	0.078	0.058	780-0	0-014	9000			90.0	5	820.0	960-0	0-113	0.181	0-148	•	•							
88	1	'. Z i								281-0	0-116		₹/0·0	0.064	9-004	0.018	700-0					0.077	0.086	0.118	0.180	0.147									
88		•	0.00-0		198-0	9	708-0	0.180	0.159	0.137	0.110	0-695	0.078	9-65	990-0	910-0	400.0			30.0	8	240.0	0.085	0.112	081.0	0-147	0-164	181-0	0-197	0.314	0-380	0.147	0.963		S. S.
810	3	. •	0.064 0.070 0.086	ٔ ا	0.25	8	908.0	0.188	0.100	6-188	211.0	960-0	9.00	9-068	990-0	0.018	89.5			90.0	5	0.02	0.004	0-113	ò	0.147	991-0	0.180	181.0	0.814	0.280	0.247	8		6.23.n
.08	4-4		-880	f ø	0.253	9 9 9 0	0.306	0.188	0.100	0.189	211.0	90.0	920.0	0.058	990-0	0.017	900-0		3	9 6	5	920-0				0.146	0·167	0.180	181-0	713-0	0-830	978-0	0.900		0.279
-64	0 20	•	0-011 0-008 0-033 0-038	0 8	933-0	0.28	908-0	0.183	0.161	0.130	0.118	0.007	9.00	0.056	0.089	0.017	8000		i :	5	9	920-0	700-0	0.113	91.0	0-146	0.168	0.180	0.197	0.214	0.380	0.246	0.00		0.279
180	lue		-8	lue	0-253		908-0	0.183	0-161	0.130	0.118	260-0	9.00	990-0	989	210-0	3000		5	9	99	920-0	760-0	9113	9	0-148	0.163	0.150	0.197	0-218	0-880	0.246	8		0.279
770	Va.		110-6	V 8	0.253		908-0	0.188	0.161	0.138	9118	260.0	9.076	990-0	980-0	0.017	8	3	1	9	999	920-0	90.0	0.113	0.129	0.146	0-168	0.180	0.197	0-218	0.280	0.246	9	200.0	0.279
76°			480.0	1	0.958	0.580	908-0	0.188	191-0	0.139	211.0	280.0	9.00-0	990-0	0.088	210-0	0.00	5	2	90.0	800	920-0	160-0	0-118	0.180	0.148	0-168	0.180	0.197	0.214	0-200	0.246	3	201.0	0.220
760	'		0.048	1	- 68	3	0.306	0.188	0.160	0.180	0-117	960-0	6.C%	990-0	98	9.018					999	9.000	0.084	0-113	0-120	0.146	0.168	0.180	0.197	0.214	0-280	0.247			0.279
74°			-0.00	1	0.258	9	908-0	9.18	0.100	0.138	211.0	9000	0.078	0.065	9-085	99	800	90.5	경 승	050-0	- - - - -	0.077	90.0	9119	9	0.147	0.164	181-0	0.197	913-0	082.0	0.24	5		0.279
73°	1	•	0.074	1	0.251		908-0	0.181	0-150	0.187	911.0	95.5	0.075	0.068	0.08K	9.016	_		遵	0.041	890·0	0.077	0.085	0-118	0.130	471-0									
720	1	•		1	0.250			0.180	0.158	0.136	0.118	0.004	7.00	790				5	950-0	170.0	0.0	9.00	0-(82	0.113	0.180	0.147									
710		t i	0-106 0-000	1	0.549		_	0.179		0.135	0.114	0.008	0.678	999		9 6			100·0	870-0	990-0	0.078	9-00-0	0.113	0-181	0.148									
70°			0.189	1	478-0			247	0.156		0.113	900	2			90.00	- 6.	900	0.025	850-0	0.061	0.00	200-0	0.114	0.181	0.140									
-69	1	120	0-138	1	, 0.0 K			P.178			0.113	ē	1	1 2		180.0			9639-0	170.0	0.0	090-0	_												
.89	1	0	0-154 0	1						_						_	-017	0.000 0.008 0.007	0-087	9-9-8	0.088	9.08				•									
67°	1	ы	0.170	1		2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				_	_		8 8	90.0			n-nr	000	0.028	970-0	90-0	380.0													
86.	1		0.185	-	_		0.188	_	0-171		401.0	9		9 6				19:0	0.080	250.0	9-068	0.088						•							
	-		_	1	_	,	θ	A	į	4		9		-	ď		-					ə	A	Ĺ			78	S	}	ə	Z	[
- 18g	1		36°-8°	1	- 6	. eg	2 4 2 4		9 6	 2 E		3 6	2 6	× 5	77	8 i	2 2 2	24	23	22	21	8	19	18	17	9	12	14	13	12	=	10	}	6	 -
<u> </u>	긔	_	<u></u>	<u> </u>									_													_									

Values of w in seconds.

TABLE XX.

9 <u>4</u> °		1.081	ij	1.001	88 0	0.974	999.0	998-0	0.961	776-0	898-0	28.0	9880-0	曼	0-916	뒫								
980 8		1.087		1.006	1-0 886·0	0-9779							-	158 0·831		116 0.911		_						
							78 0.971	88 0.988	11 0-969	0.949	87 0.948	198-0	35 0-90II	0.926	12 0.03I	0.016								
0 920		7 1.058 1.051		2 1.011	1.001	196-0	0 0.975	8 0.988	5 0.961	8 0-964	1 0.947	0.941	0.985	088-0	0.028	0-920								
910		1 1.047		1.005	0.807	0.888	088-0	8 0.978	0.985	928	0.861	0-945	080-0	0.984	0.929	₹88-0								
06		1.69		1.019	1.000	0.983	98.0	9.46	0.80	98.0	0.955	0.84	9.0	988	888.0	688								
89°		1.066		1.88	1.018	968-0	296.0	0880	0.972	999.0	0.980	0.983	276-0	0.941	0.986	0.881								
88		1.068		1.68	1.007	. 88	0.901	988	0.975	0.968	396.0	0.966	0.000	0.94	0.98	158÷0								
87°		1.061	1-089	1.68	1.080	1.00	0.894	0.986	0.078	0.971	989	0.959	998-0	476.0	0.043	286.0								
86°		1.064	1.048	1.683	1.023	1.005	0.996	0.989	0.881	726·0	298∙0	196.0	996-0	0.980	9.6	0.940								
85°		1.067		1.085	1.025	1.007	0.989	0.991	0.988	946-0	0-620	0.968	0.968	0.858	476.0	9.0								
84°		1.089	1.047	1.087	1.018	1.000	1.001	0.398	0.988	0.078	0.072	0.965	0.990	798.0	96.0	978.0								
88		1.071	1.06	1.039	1.020	1.011	1.008	0.995	486-0	0-380	74-0	196-0	196-0	998-0	0.961	9.6.6								
82°	1.124 1.111 1.097	1.085	1.051	1.040	1.681	1.018	1.004	988-0	688-0	0-082	0.875	9980	0.988	496.0	88.0	476.0	376∙0	886.0	786-0	138-0	88.0	0.83	988	0.018
81°	1.126 1.113 1.088	1.086	1.052	1.00	1.682	1.014	1.005	288-0	0-880	988	926-0	0.00	196-0	0.958	998	976-0	776·0	0.980	0.88	G-8629	0.0389	928.0	988	0.890
80°	1.137	1.087	1.058	1.08	1.083	1.015	1.006	988	0.991	0.984	0.977	128.0	0.068	0.0	78	978-0	0.045	98.0	986-0	0.988	0.880	728.0	728-0	28.0
79°	1.127 1.114 1.100	1.088	1.068	1.048	1.088	1.015	1.007	0.00	0.991	188.0	826-0	178-0	0.965	096-0	796-0	098-0	9.945	176.0	289-0	988-0	0.880	0-827	158.0	288
78°	1-128 1-114 1-100	1.088		1.048	1.034	1.016	1.007	903-0	-885 0-885	188-0	0.978	0-671	996-0	096-0	998-0	0.060	0.948	0.941	0.987	198-0	0.980	720-0	9.885	88.0
770	1.198 1.114 1.100	1.086	1.054	1.048	1.084	1.015	1.007	0.00	0.983	786.0	0.978	126.0	0.965		986	0.950		176.0	0-987	786.0	0.880	0.022	9:83	888.0
94	1.127 1.118 1.100	1.087	1.068	1.08	1.038	1.016	1.007	0.900		98 - 0	0.977	176-0	0-965		796-0	99.0		0.941	798-0	988	0.000	756-0	0.924	0.688
750	1.126 1.112 1.000	1.087	1.053	3. 1.08	1.68 1.83 1.83	1.01.	1.008	966-0	0-990	988	0.877	0.670	790-0	0-820	796-0	98.0	778.0	9.0	998-0	0.883	7	958-0	781·0	120-0
74°	1.125 1.111 1.098	1.088	1.061	1.041	1.68 1.68	1.013	1.005	488-0	0-969	286.0	926-0	0-969	196-0		586.0 0	88.0		0.0	0.886	198-0	0.928	0.926	9.838	989
78°	1.134 1.110 1.097	1.084	1.050	1.040		1.03		966-0	889:0	198	926-0	896-0	396·0	0-057	88.0	476.0	0.948	0.988	786-0	0.880				
72°	1.122	1.0%			1.038	1.011		798-0	0-967	088-0	0-878	296-0	196-0		036.0	970	_	0.887	988-0					
110ء	1.120 1.106 1.083	1.060			1-026	1.009		206. 0			120-0	0.988			89.0	976-0		98	186.0	73.0				
200	1.117	1.0%			1.024	1.006		98.0			996.0	9800			976.0	156-0		886.0	8					
.69	1.115	1.075			1:088 1:013	1.004		888.0			296.0	0.0												
- 889 - 889	1.112	1.073			1.010	1.001		0.98%			0.964	0.858												
670	1.108	1.089			1.016	866-0		0.982			188-0	0-855												
.99	1.001	1.064			1.018					_	998-0	138-0			•	-								
					9		_	i	7		ŗ	8	(>	ď					_				
Long.	38. 24.	33 32 31	98	53	228	26	2 Z	\$7 74	88	7.7	21	20	16	20 4	2	16	15	14	138	77	I	10	6	80

Oase IV.— $w_o = 1$ ".

The closing errors.

22. The tables just given exhibit the "closing errors" or differences between $u_x v_z w^z$ and $u_y v_y w_y$ respectively. The formulæ for these differences $u_x - u_y$ etc. for the four cases will now be considered separately and approximate expressions found for them.

Case I, when
$$\delta a = 1$$
, $\delta b = 0$, $u_0 = 0$, $w_0 = 0$

Along the parallel OM the changes at M are given by equations (21) and (22) in which suffix zero may be added to β , R, λ to indicate that it applies to latitude λ_0 . Apply the changes at M to the case of a meridian: it is necessary to consider cases I, III, IV of § 20 and the following equations are deduced:

Next proceeding along O N, the changes at N are given by (29), and applying these initial values to the parallel NP the following equations are formed by consideration of cases I and III of § 18

$$u_{s} = R\left(1 - \cos\left(\beta L\right)\right) + \cos\left(\beta L\right) \left[-0.2807 \,\lambda^{\circ} + 24.26 \sin 2\lambda - 0.02 \sin 4\lambda\right]_{\lambda_{0}}^{\lambda}$$

$$v_{s} - v_{0} = -R\left(\frac{L^{\circ} \cot \lambda}{57.3} + \frac{1}{\beta} \tan \lambda \sin\left(\beta L\right)\right)$$

$$+ \frac{1}{\beta} \tan \lambda \sin\left(\beta L\right) \left[-0.2807 \lambda^{\circ} + 24.26 \sin 2\lambda - 0.02 \sin 4\lambda\right]_{\lambda_{0}}^{\lambda}$$

$$w_{s} = -\frac{R}{\beta} \sec \lambda \sin\left(\beta L\right) + \frac{1}{\beta} \sec \lambda \sin\left(\beta L\right) \left[-0.2807 \lambda^{\circ} + 24.26 \sin 2\lambda - 0.02 \sin 4\lambda\right]_{\lambda_{0}}^{\lambda}$$
Thus, (29) and (24) it follows that

From (33) and (34) it follows that

$$\begin{aligned} w_{s} - u_{y} &= \left[R \left(1 - \cos \left(\beta L \right) \right) \right]_{\lambda_{0}}^{\lambda} + \left(1 - \cos \left(\beta L \right) \right) \left[0.2807 \lambda^{\circ} - 24.26 \sin 2\lambda + 0.02 \sin 4\lambda \right]_{\lambda_{0}}^{\lambda} \\ v_{s} - v_{y} &= -\left[R \left(\frac{L^{\circ} \cot \lambda}{57 \cdot 8} + \frac{1}{\beta} \tan \lambda \sin \left(\beta L \right) \right) \right]_{\lambda_{0}}^{\lambda} \\ &+ \frac{1}{\beta} \tan \lambda \sin \left(\beta L \right) \left[-0.280 \lambda L^{\circ} + 24.26 \sin 2\lambda - 0.02 \sin 4\lambda \right]_{\lambda_{0}}^{\lambda} \\ &+ \frac{R_{0}v_{0}}{\beta_{0}a} \sqrt{1 - e^{3}} \sin \left(\beta_{0}L \right) \left[\tan \lambda - 0.000, 058, 2\lambda^{\circ} + 0.000, 004, 2\sin 2\lambda \right]_{\lambda_{0}}^{\lambda} \\ w_{s} - w_{y} &= -\frac{R}{\beta} \sec \lambda \sin \left(\beta L \right) + \frac{1}{\beta} \sec \lambda \sin \left(\beta L \right) \left[-0.2807 \lambda^{\circ} + 24.26 \sin 2\lambda - 0.02 \sin 4\lambda \right]_{\lambda_{0}}^{\lambda} \\ &+ \frac{R_{0}v_{0}}{\beta_{0}\nu} \sec \lambda \sin \left(\beta_{0}L \right) \end{aligned}$$

$$(35)$$

23. Equations (35) may be simplified and written in approximate form if terms depending on e^2 are neglected. The closing errors will still be expressed with sufficient accuracy. Then β becomes unity and "a" may be substituted for ν . Denote $\lambda - \lambda_0$ by θ . In what follows u_s etc. are expressed in seconds and λ , L, θ are expressed in radians except when the degree mark is added—thus λ° , and $\lambda^\circ/\lambda = 57 \cdot 3$. The successive terms of (35) are taken one by one and reduced. $\dot{=}$ denotes approximate equality.

Case I, when $\delta a = 1$, $\delta b = 0$, $u_0 = 0$, $w_0 = 0$

Here
$$\frac{R}{16\cdot 17} = \sin 2\lambda (1 + \sin^2 \lambda) = \frac{3}{4}\sin 2\lambda - \frac{1}{4}\sin 4\lambda$$

$$u_{s} - u_{y} = (1 - \cos L) \left[16 \cdot 17 \left(\frac{3}{2} \sin 2\lambda - \frac{1}{4} \sin 4\lambda \right) + 16 \cdot 08\lambda - 24 \cdot 26 \sin 2\lambda + 0 \cdot 02 \sin 4\lambda \right]_{\lambda_{0}}^{\lambda}$$

$$= (1 - \cos L) \left[16 \cdot 08\lambda - 4 \cdot 02 \sin 4\lambda \right]_{\lambda_{0}}^{\lambda}$$

$$= 16 \cdot 1 \left(1 - \cos L \right) \left\{ \theta - \frac{1}{2} \sin 2\theta \cos 2(\lambda + \lambda_{0}) \right\}$$

$$= \cdot 281 \theta^{\circ} \left(1 - \cos L \right) \left\{ 1 - \frac{\sin 2\theta}{2\theta} \cos 2(\lambda + \lambda_{0}) \right\}. \tag{36}$$

 $\frac{R}{16\cdot 17}\cot\lambda = 2\cos^3\lambda \ (1+\sin^3\lambda) = \frac{5}{4} + \cos2\lambda - \frac{1}{4}\cos4\lambda$

$$\frac{R}{16 \cdot 17} \tan \lambda = 2 \sin^{9} \lambda \ (1 + \sin^{9} \lambda) = \frac{7}{4} - 2 \cos 2\lambda + \frac{1}{4} \cos 4\lambda$$

$$\begin{split} &\left[-R\left(\frac{L^{0}\cot\lambda}{57\cdot3}+\tan\lambda\sin L\right)^{\lambda}_{\lambda_{0}}=-16\cdot17\frac{L^{0}}{57\cdot8}\left[\frac{5}{4}+\cos2\lambda-\frac{1}{4}\cos4\lambda+\frac{\sin L}{L}\left(\frac{7}{4}-2\cos2\lambda+\frac{1}{4}\cos4\lambda\right)\right]^{\lambda}_{\lambda_{0}}\right.\\ &\left.=+\cdot2828\,L^{0}\,\left\{\,2\left(1-2\frac{\sin L}{L}\right)\sin\theta\sin\left(\lambda+\lambda_{0}\right)-\frac{1}{2}\left(1-\frac{\sin L}{L}\right)\sin2\theta\sin2\left(\lambda+\lambda_{0}\right)\,\right\}\right.\\ &\left.=-0\cdot0098\,L^{0}\theta^{0}\,\left\{\left(2\frac{\sin L}{L}-1\right)\frac{\sin\theta}{\theta}\,\sin\left(\lambda+\lambda_{0}\right)+\frac{1}{2}\left(1-\frac{\sin L}{L}\right)\frac{\sin2\theta}{2\theta}\sin2\left(\lambda+\lambda_{0}\right)\,\right\}\right. \end{split}$$

$$\begin{split} \frac{1}{\beta} \tanh \sin(\beta L) \Big[-0.2807 \ \lambda^{\circ} + 24.26 \sin 2\lambda - 0.02 \sin 4\lambda \Big]_{\lambda_{0}}^{\lambda} \\ &\doteq \theta^{\circ} \tanh \sin L \Big\{ -0.2807 + .8469 \frac{\sin \theta}{\theta}. \cos (\lambda + \lambda_{0}) - .0014 \frac{\sin 2\theta}{2\theta} \cos 2 (\lambda + \lambda_{0}) \Big\} \\ &\doteq -0.0049 \ L^{\circ} \theta^{\circ} \tan \lambda \frac{\sin L}{L} \Big\{ 1 - 3 \frac{\sin \theta}{\theta} \cos (\lambda + \lambda_{0}) \Big\} \end{split}$$

$$\begin{split} \frac{R_0 \ \nu_0}{\beta_0 \ a} \sqrt{1 - e^3} \sin \left(\beta_0 L\right) \left[\tan \lambda - 0.000,058, \ 2\lambda^\circ + 0.000,004, \ 2 \sin 2\lambda \right]_{\lambda_0}^{\lambda} \\ &= 16 \cdot 17 \sin 2\lambda_0 (1 + \sin^2 \lambda_0) \sin L \left\{ \frac{\sin \theta}{\cos \lambda \cos \lambda_0} - 0.000,058, 2\theta^\circ + 0.000,008, 4\cos(\lambda + \lambda_0) \sin \theta \right\} \end{split}$$

$$= +0.0049 \ L^{\circ} \, \theta^{\circ} \frac{\sin L}{L} \sin 2\lambda_{0} \ (1+\sin^{9}\lambda_{0}) \left\{ \sec \lambda \sec \lambda_{0} \, \frac{\sin \theta}{\theta} - 0.00884 \right\}$$

Hence
$$v_{s} - v_{s} = +0.0049 L^{\circ} \theta^{\circ} \frac{\sin L}{L} \left\{ 2 \left(\frac{L}{\sin L} - 2 \right) \sin \left(\lambda + \lambda_{0} \right) \frac{\sin \theta}{\theta} + \left(1 - \frac{L}{\sin L} \right) \sin 2 \left(\lambda + \lambda_{0} \right) \frac{\sin 2 \theta}{\theta} + \left(-1 + 8 \cos \left(\lambda + \lambda_{0} \right) \frac{\sin \theta}{\theta} \right) \tan \lambda + \sin 2\lambda_{0} \left(1 + \sin^{2} \lambda_{0} \right) \left(\sec \lambda \sec \lambda_{0} \frac{\sin \theta}{\theta} - 0.00334 \right) \right\}$$

$$=0.0049 \ L^{\circ} \ \theta^{\circ} \frac{\sin L}{L} \left[-\tan \lambda - 0.00884 \sin 2\lambda_{0} \left(1 + \sin^{2} \lambda_{0}\right) + \frac{\sin \theta}{\theta} \left\{ 2 \left(\frac{L}{\sin L} - 2\right) \sin \left(\lambda + \lambda_{0}\right) + 3\cos \left(\lambda + \lambda_{0}\right) \tan \lambda + 2\sin \lambda_{0} \left(1 + \sin^{2} \lambda_{0}\right) \sec \lambda \right\} + \left(1 - \frac{L}{\sin L}\right) \sin 2 \left(\lambda + \lambda_{0}\right) \frac{\sin 2 \theta}{2 \theta} \right]$$

Now $\frac{\sin \theta}{\theta} = 1$ and $\frac{L}{\sin L} = 1$ the error being about ·01 when θ or $L = 15^{\circ}$; hence $\frac{\sin \theta}{\theta}$ or $\frac{\sin 2\theta}{2\theta}$ may be treated as unity when multiplied by $\frac{L}{\sin L} - 1$. It follows that

$$v_{s}-v_{y} = +0.0049L^{\circ}\theta^{\circ}\frac{\sin L}{L}\left\{\tan\lambda\left(\cos(\lambda+\lambda_{0})-1\right)-0.00334\sin2\lambda_{0}\left(1+\sin^{9}\lambda_{0}\right) +2\sec\lambda\sin^{9}\lambda_{0}+\left(\frac{L}{\sin L}-1\right)\left(2\sin\left(\lambda+\lambda_{0}\right)-\sin2(\lambda+\lambda_{0})\right)\right\}\right\}.$$
(37)

$$-\frac{R}{\beta}\sec\lambda\sin\left(\beta L\right) + \frac{R_{0}\nu_{0}}{\beta_{0}\nu}\sec\lambda\sin\left(\beta_{0}L\right) = -\sec\lambda\sin L\left(R - R_{0}\right)$$

$$= -0.2823 L^{o}\frac{\sin L}{L}\sec\lambda\left[\frac{3}{2}\sin2\lambda - \frac{1}{4}\sin4\lambda\right]_{\lambda_{0}}^{\lambda_{0}}$$

$$= -0.0049 L^{o}\theta^{o}\frac{\sin L}{L}\sec\lambda\left\{8\cos\left(\lambda + \lambda_{0}\right)\frac{\sin\theta}{\theta} - \cos2\left(\lambda + \lambda_{0}\right)\frac{\sin2\theta}{2\theta}\right\}$$

$$\frac{1}{\beta}\sec\lambda\sin\left(\beta L\right)\left[-0.2807 \lambda^{o} + 24.26\sin2\lambda - 0.02\sin4\lambda\right]_{\lambda_{0}}^{\lambda_{0}}$$

$$= \sec\lambda\sin L\left\{-0.2807 \theta^{o} + 48.52\cos\left(\lambda + \lambda_{0}\right)\sin\theta\right\}$$

$$= -0.0049 L^{o}\theta^{o}\sec\lambda\frac{\sin L}{L}\left\{1 - 3\cos\left(\lambda + \lambda_{0}\right)\frac{\sin\theta}{\theta}\right\}$$
Hence
$$w_{s} - w_{s} = -.0049 L^{o}\theta^{o}\frac{\sin L}{L}\sec\lambda\left\{1 - \cos2\left(\lambda + \lambda_{0}\right)\frac{\sin2\theta}{2\theta}\right\} (38)$$

Case II, when $\delta a = 0$, $\delta b = 1$, $u_0 = 0$, $w_0 = 0$. Here

$$R = -16 \cdot 2258 \frac{(1 - e^3) \sin^2 \lambda}{1 - e^3 \sin^2 \lambda} \sin 2\lambda$$
$$= -8 \cdot 11 (\sin 2\lambda - \frac{1}{4} \sin 4\lambda)$$

Equations (35) hold for this case if we use the above value of R and change the quantity $-0.2807\lambda + 24.26 \sin 2\lambda - 0.02 \sin 4\lambda \text{ into } -0.2847\lambda - 24.84 \sin 2\lambda + 0.02 \sin 4\lambda$.

Ther

$$u_{x} - u_{y} = (1 - \cos L) \left[-8 \cdot 11 \left(\sin 2\lambda - \frac{1}{2} \sin 4\lambda \right) + 16 \cdot 8 \lambda + 24 \cdot 26 \sin 2\lambda - 0 \cdot 02 \sin 4\lambda \right]_{\lambda_{0}}^{\lambda}$$

$$= (1 - \cos L) \left[16 \cdot 3\lambda + 16 \cdot 1 \sin 2\lambda + 4 \cdot 04 \sin 4\lambda \right]_{\lambda_{0}}^{\lambda}$$

$$= \cdot 283 \,\theta^{\circ} \left(1 - \cos L \right) \, \left\{ 1 + 2 \, \frac{\sin \theta}{\theta} \cos \left(\lambda + \lambda_{0} \right) + \frac{\sin 2\theta}{2\theta} \cos 2 \left(\lambda + \lambda_{0} \right) \right\} \qquad (39)$$

$$\frac{R}{16 \cdot 28} \cot \lambda = -2\sin^{8}\lambda \cosh \cot \lambda = -2\sin^{9}\lambda \cos^{2}\lambda = -\frac{1}{2}(1 - \cos 4\lambda)$$

$$\frac{R}{16 \cdot 28} \tan \lambda = -2\sin^{8}\lambda \cosh \tan \lambda = -2\sin^{4}\lambda = -\frac{1}{2}(8 - 4\cos 2\lambda + \cos 4\lambda)$$

$$\left[-R\left(\frac{L^{\circ}\cot \lambda}{57 \cdot 8} + \tan \lambda \sin L\right)\right]_{\lambda_{0}}^{\lambda} = \frac{16 \cdot 28}{4} \cdot \frac{L^{\circ}}{57 \cdot 8}\left[1 - \cos 4\lambda + \frac{\sin L}{L}(3 - 4\cos 2\lambda + \cos 4\lambda)\right]$$

$$= 0 \cdot 0049 L^{\circ}\theta^{\circ} \left\{\left(1 - \frac{\sin L}{L}\right)\sin 2\left(\lambda + \lambda_{0}\right) \frac{\sin 2\theta}{2\theta} + 2\frac{\sin L}{L}\sin\left(\lambda + \lambda_{0}\right) \frac{\sin \theta}{\theta}\right\}$$

$$\begin{split} \frac{1}{\beta} \tan \lambda \sin \beta L \Big[& -0.2847 \lambda^{\circ} - 24.84 \sin 2\lambda + 0.02 \sin 4\lambda \Big] \frac{\lambda}{\lambda_{0}} \\ & = \tan \lambda \sin L \theta^{\circ} \Big\{ -0.2847 - 0.8497 \cos (\lambda + \lambda_{0}) \frac{\sin \theta}{\theta} + 0.0014 \cos 2 (\lambda + \lambda_{0}) \frac{\sin 2\theta}{2\theta} \Big\} \\ & = -L^{\circ} \theta^{\circ} \tan \lambda \frac{\sin L}{L} \Big\{ +0.0497 + 0.0148 \cos (\lambda + \lambda_{0}) \frac{\sin \theta}{\theta} - 0.00002 \cos 2 (\lambda + \lambda_{0}) \frac{\sin 2\theta}{2\theta} \Big\} \\ & = -0.0050 L^{\circ} \theta^{\circ} \tan \lambda \frac{\sin L}{L} \Big\{ 1 + 3 \cos (\lambda + \lambda_{0}) \frac{\sin \theta}{\theta} \Big\} \\ & = \frac{R_{0} y_{0}}{\beta_{0} a} \sqrt{1 - e^{3}} \sin (\beta_{0} L) \Big[\tan \lambda - 0.000,058, 2\lambda^{\circ} + 0.000,004, 2 \sin 2\lambda \Big] \frac{\lambda}{\lambda_{0}} \end{split}$$

 $= -16 \cdot 23 \sin 2\lambda_0 \sin^3 \lambda_0 \sin L \left\{ \frac{\sin \theta}{\cos \lambda \cos \lambda_0} - 0 \cdot 000058 \, 2\theta^\circ + 0 \cdot 0000084 \cos (\lambda + \lambda_0) \sin \theta \right\}$

 $= -0.0050 \ L^{\circ}\theta^{\circ} \frac{\sin L}{L} \sin 2\lambda_{0} \sin^{9}\lambda_{0} \ \left\{ \operatorname{sec}\lambda \operatorname{sec}\lambda_{0} \frac{\sin \theta}{\theta} - 0.00884 \right\}$

Hence

$$v_{s}-v_{y} = 0.0050 L^{\circ}\theta^{\circ} \frac{\sin L}{L} \left\{ \left(\frac{L}{\sin L} - 1 \right) \sin 2 \left(\lambda + \lambda_{0} \right) \frac{\sin 2\theta}{2\theta} + 2\sin(\lambda + \lambda_{0}) \frac{\sin \theta}{\theta} - \left(1 + 3\cos(\lambda + \lambda_{0}) \frac{\sin \theta}{\theta} \right) \tan \lambda - \sin 2\lambda_{0} \sin^{3}\lambda_{0} \left(-0.00334 + \sec\lambda \sec\lambda_{0} \frac{\sin \theta}{\theta} \right) \right\}$$

$$= 0.0050 L^{\circ}\theta^{\circ} \frac{\sin L}{L} \left\{ \frac{\sin \theta}{\theta} \left(\sin 2\lambda_{0} \cos\lambda_{0} \sec\lambda - \cos(\lambda + \lambda_{0}) \tan\lambda \right) - \tan\lambda + \left(\frac{L}{\sin L} - 1 \right) \sin 2 \left(\lambda + \lambda_{0} \right) + 0.00834 \sin 2\lambda_{0} \sin^{5}\lambda_{0} \right\}, (40)$$

$$-\frac{R}{\beta} \operatorname{sec}\lambda \sin (\beta L) + \frac{R_0 \nu_0}{\beta_0 \nu} \operatorname{sec}\lambda \sin (\beta_0 L) = -\operatorname{sec}\lambda \sin L (R - R_0)$$

$$= +16 \cdot 23 \operatorname{sec}\lambda \sin L \left[\frac{1}{2} \sin 2\lambda - \frac{1}{4} \sin 4\lambda \right]_{\lambda_0}^{\lambda}$$

$$= 0 \cdot 0050 \ L^0 \theta^0 \frac{\sin L}{L} \operatorname{sec}\lambda \left\{ \cos(\lambda + \lambda_0) \frac{\sin \theta}{\theta} - \cos 2(\lambda + \lambda_0) \frac{\sin 2\theta}{2\theta} \right\}$$

$$\frac{1}{\beta} \operatorname{sec}\lambda \sin (\beta L) \left[-0 \cdot 2847\lambda - 24 \cdot 34 \sin 2\lambda + 0 \cdot 02 \sin 4\lambda \right]_{\lambda_0}^{\lambda}$$

$$= \operatorname{sec}\lambda \sin L \left\{ -0 \cdot 2847\theta^0 - 48 \cdot 68\cos(\lambda + \lambda_0) \sin \theta \right\}$$

$$= -0 \cdot 0050 \ L^0 \theta^0 \operatorname{sec}\lambda \frac{\sin L}{L} \left\{ 1 + 3\cos(\lambda + \lambda_0) \frac{\sin \theta}{\theta} \right\}$$
Hence

$$w_x - w_y = -0.0050 \ L^{\circ}\theta^{\circ} \frac{\sin L}{L} \sec \lambda \left\{ 1 + 2\cos(\lambda + \lambda_0) \frac{\sin \theta}{\theta} + \cos 2(\lambda + \lambda_0) \frac{\sin 2\theta}{2\theta} \right\} . \qquad (41)$$

The closing errors for cases III and IV have also been considered and are practically This is at once evident also from the computed values of $u_x u_y$ etc. which agree to at least 0.001 of a second. It is otherwise clear that there would be no closing error on a sphere caused by moving the origin: and accordingly the effect on a spheroid must vanish with e2 and accordingly have e^2 as a factor. In considering closing errors then it is only necessary to take cases I and II into account, and this may be done by means of equations (36) to (41). The form of these equations explains how the closing errors found in tables II, III, IV approximately satisfied the empirical relations (18). The relations would not have been equally satisfactory for case I and case II considered independently.

In the case of Indian triangulation θ° only exceeds 8° for values of L° between -7° and -1° and is greater than -8° for values of L° between -5° and $+3^{\circ}$: so that we can always consider one of the quantities, θ° or L° , numerically less than 8° . Closing errors for the elementary area dL d λ are now deduced from the equations (36) to (41). In what follows L is treated as identical with $\sin L$.

Putting U_1 for u_x-u_y in case I, U_2 for u_x-u_y in case II etc. we have, omitting small terms

$$dU_{1} = 16 \cdot 1 \sin L (1 - \cos 4\lambda) dL d\lambda \qquad (42)$$

$$dU_{2} = 16 \cdot 1 \sin L (1 + 2\cos 2\lambda + \cos 4\lambda) dL d\lambda \qquad (43)$$

$$dV_{1} = -16 \cdot 17 \cos L \left\{ -2 \sin 2\lambda + \sin 4\lambda + 4 \sin 2\lambda - \sin 4\lambda \right\} dL d\lambda$$

$$+\cos L \left\{ \sec^2 \lambda \left(-16 \cdot 08\lambda + 24 \cdot 26 \sin 2\lambda \right) + \tan \lambda \left(-16 \cdot 08 + 48 \cdot 52 \cos 2\lambda \right) \right\} dL d\lambda \\ + 16 \cdot 17 \sin 2\lambda_0 \left(1 + \sin^2 \lambda_0 \right) \cos L \left\{ \sec^2 \lambda - 0 \cdot 00334 \right\} dL d\lambda$$

$$= 16 \cdot 1 \cos L \left\{ \sec^2 \lambda \left(-\lambda + \frac{3}{2} \sin 2\lambda + \sin 2\lambda_0 \left(1 + \sin^2 \lambda_0 \right) \right) + \tan \lambda \left(3\cos 2\lambda - 1 \right) - 2\sin 2\lambda \right\} dL d\lambda$$

$$= 16 \cdot 1 \cos L \left\{ \sec^2 \lambda \left(0 \cdot 871 - \lambda + \frac{3}{2} \sin 2\lambda \right) + \sin 2\lambda + 4 \tan \lambda \right\} dL d\lambda.$$

$$= 16 \cdot 1 \cos L \left\{ \sec^2 \lambda \left(0 \cdot 871 - \lambda \right) + \sin 2\lambda - \tan \lambda \right\} dL d\lambda. \tag{44}$$

$$dV_{3} = 16 \cdot 23 \cos L \left\{ \sin 4\lambda + 2 \sin 2\lambda - \sin 4\lambda \right\} dL d\lambda$$

$$+\cos L \left\{ \sec^{3}\lambda \left(-16\cdot 3\lambda - 24\cdot 34\sin 2\lambda \right) + \tan\lambda \left(-16\cdot 3 - 48\cdot 68\cos 2\lambda \right) \right\} dL d\lambda$$

$$-16\cdot23\sin2\lambda_0\sin^2\!\lambda_0\cos L\sec^2\!\lambda\;dL\;d\lambda$$

$$= 16 \cdot 2 \cos L \left\{ 2 \sin 2\lambda + \sec^3\lambda \left(-\lambda - \frac{3}{2} \sin 2\lambda - \sin 2\lambda_0 \sin^3\lambda_0 \right) + \tan\lambda \left(-1 - 3\cos 2\lambda \right) \right\} dL d\lambda$$

$$= -16 \cdot 2 \cos L \left\{ \sec^3\lambda \left(0 \cdot 125 + \lambda + \frac{3}{2} \sin 2\lambda \right) + 2 \tan\lambda - \sin 2\lambda \right\} dL d\lambda \qquad (45)$$

$$= -16 \cdot 2 \cos L \left\{ \sec^3\lambda \left(0 \cdot 125 + \lambda \right) + 5 \tan\lambda - \sin 2\lambda \right\} dL d\lambda$$

CALL OF CHARLES WEST TOP

Putting $\lambda_0 = 24^{\circ} 7' 11'' \cdot 26$

 $dW_1 = -32 \cdot 34 \cos L \cos \lambda (1 + 3 \sin^2 \lambda) dL d\lambda$

$$+\cos L\left\{\sinh \sec^2 \lambda \left(-16\cdot 1\lambda + 24\cdot 26\sin 2\lambda\right) + \sec \lambda \left(-16\cdot 1 + 48\cdot 5\cos 2\lambda\right)\right\} dL d\lambda$$

$$= -16 \cdot 1\cos L \left\{ 2\cos\lambda \left(1 + 3\sin^9\lambda \right) + \sinh\lambda \sec^9\lambda \left(\lambda - \frac{3}{2}\sin2\lambda \right) + \sec\lambda \left(1 - 3\cos2\lambda \right) \right\} dL d\lambda$$

$$= -16 \cdot 1 \cos L \left\{ \lambda \tanh + 1 + 5 \cos^2 \lambda - 6 \cos^4 \lambda \right\} \operatorname{sec} \lambda \, dL \, d\lambda \qquad (46)$$

 $dW_2 = 16 \cdot 2 \cos L \times 6 \cos \lambda \sin^2 \lambda dL d\lambda$

$$+\cos L\left\{\sinh \sec^2\lambda(-16\cdot3\lambda-24\cdot34\sin 2\lambda)+\sec \lambda(-16\cdot3-48\cdot68\cos 2\lambda)\right\}dL\ d\lambda.$$

$$\ \, = \ \, -16\cdot 2 \, \cos L \, \Big\{ \, -6 \mathrm{cos} \lambda \sin^2 \! \! \lambda + \mathrm{sec} \lambda \, (\lambda \mathrm{tan} \lambda + \tfrac{3}{2} \mathrm{tan} \lambda \sin 2 \lambda + 1 + 3 \mathrm{cos} 2 \lambda) \, \Big\} \, dL \, d\lambda$$

$$= -16 \cdot 2 \cos L \sec \lambda \left\{ \lambda \tan \lambda + 1 - 3 \cos^2 \lambda + 6 \cos 4 \lambda \right\} dL d\lambda \qquad (47)$$

By means of equations (42) to (47) it is possible to find the changes u, v, w at P as computed by any route. For

$$u = u_y + \int dU$$

the integration being taken over the area between the desired route (upper limit) and the central parallel and the meridian through P: and u_y being the quantity to be found by properly combining the four cases. This obviously does not get rid of the multiple values obtainable for u, v, w according to the route followed, but if any route has special advantages, results of following it become available. One such route is the geodesic, or the shortest path between any point and the origin. There is something to be said in favour of following this route, and the subject of the geodesic is accordingly considered in some detail in the following chapter, where a direct method of finding the quantities u, v, w along a geodesic is also made use of.

In concluding this chapter it may be pointed out that the equations (42) to (47) enable the differences of the values of u, v, w to be rapidly estimated. This makes it clear at once how far it is a matter of importance to strictly adhere to any route that may be selected; for the difference in values that will be found by any two routes is the closing error.

CHAPTER II.

Geodesics on a Spheroid.

1. It is nownecessary to develop some properties and relations of a geodesic in order that the changes of coordinates due to change of axes may be computed along geodesics. A fundamental relation of a geodesic on a conicoid is*

where p is the perpendicular from the centre on the tangent plane at a point and D is the semidiameter of the quadric parallel to the tangent to the curve at the same point. In the

case of a spheroid there is symmetry about the polar axis. In the figure ZOX is the equatorial plane and YCY' any meridian. Let P be any point on a geodesic: then the plane through O parallel to the tangent plane at P is the plane DOX, where OD is the diameter conjugate to OP. If ϕ is the eccentric angle of P so that the coordinates of P are O, $a\cos\phi$, $b\sin\phi$ then

$$Od^2 = a^2 \sin^2 \phi + \delta^2 \cos^2 \phi$$

For a geodesic proceeding from P in azimuth A, the semidiameter parallel to it is OQ where $DOQ = 180^{\circ} - A$ and so

$$D = \left(\frac{\sin^2 A}{a^3} + \frac{\cos^2 A}{a^2 \sin^2 \phi + b^2 \cos^2 \phi}\right)^{-\frac{1}{2}}$$
$$= \left(\frac{a^2 \left(a^2 \sin^2 \phi + b^2 \cos^2 \phi\right)}{a^2 + \sin^2 A \cos^2 \phi \left(b^2 - a^2\right)}\right)^{\frac{1}{2}}$$

Also

$$\partial^3 = \frac{1}{\frac{\cos^3\phi}{\sigma^2} + \frac{\sin^2\phi}{h^2}}$$

hence

$$p^{2} D^{2} = \frac{a^{4} b^{2}}{a^{3} + \sin^{2} A \cos^{2} \phi (b^{3} - a^{2})}$$

which is constant along a geodesic. It follows that

$$\sin A \cos \phi = \operatorname{constant} = k = \sin A_0 \qquad (2)$$

along any geodesic, A_0 being the azimuth of the geodesic on crossing the equator.

^{*} Geometry of Three Dimensions by George Salmon, 3rd edition, § 397.

2. Take two consecutive points on a spheroid and let A be the azimuth of the elementary line joining them. Then if the latitudes and longitudes are λ , L; $\lambda + d\lambda$, L + dL it follows that

where ρ is the radius of curvature of the meridian and ν is the normal terminated by the minor axis.

The relation between the latitude λ and the eccentric angle or "reduced latitude" ϕ is

Differentiating (2) logarithmically

and by (4)

Multiplying (5) and (6)

Equation (3) may be written

and the integration of this will now be performed.

$$\cot^{3} A = \csc^{3} A - 1 = \frac{\cos^{3} \phi}{k^{2}} - 1 \quad . \quad . \quad . \quad by (2)$$

$$= \frac{1}{k^{2} \left(1 + \frac{b^{2}}{a^{2}} \tan^{3} \lambda\right)} - 1 \quad = \quad \frac{\cos^{3} \lambda}{k^{2} \left(1 - e^{3} \sin^{2} \lambda\right)} - 1$$

$$\therefore \quad \tan A = \pm \frac{k \sqrt{1 - e^{3} \sin^{3} \lambda}}{\sqrt{1 - k^{2}} - \left(1 - k^{2} e^{3}\right) \sin^{3} \lambda} = \pm \frac{k}{\sqrt{1 - k^{2}}} \cdot \frac{\sqrt{1 - e^{3} \sin^{2} \lambda}}{\sqrt{1 - a^{2} \sin^{3} \lambda}}$$

where $a^2 = \frac{1-k^2}{1-k^2}$ and the + sign is taken for 1st and 4th quadrants and the minus sign for the 2nd and 3rd quadrants.

Hence by (8)

$$L = \pm \frac{k (1 - e^2)}{\sqrt{1 - k^3}} \int \frac{1}{\sqrt{1 - e^2 \sin^2 \lambda}} \frac{d\lambda}{\sqrt{1 - a^2 \sin^2 \lambda}} \frac{d\lambda}{\cos \lambda}$$

$$\operatorname{since} \frac{\rho}{\nu} = \frac{1 - e^2}{1 - e^3 \sin^2 \lambda}$$

Put x for $sin \lambda$: then

$$L = \pm \frac{k (1 - e^2)}{\sqrt{1 - k^2}} \int_{-\sqrt{1 - e^2 x^2}}^{2} \frac{dx}{\sqrt{1 - a^2 x^2 (1 - x^2)}} \dots \dots \dots (9)$$

This is an elliptic integral which cannot be integrated exactly: but it may be developed in a series of integrable terms as follows.

Put $1-x^2=y^2$, then

$$\frac{1}{\sqrt{1-e^3x^2}} \cdot \frac{1}{1-x^3} = \frac{1}{y^3\sqrt{1-e^3+e^3y^2}} = \frac{1}{\sqrt{1-e^3}} \cdot \frac{1}{y^3i\sqrt{1+\beta^2y^3}}$$

$$= \frac{1}{\sqrt{1-e^3}} \left\{ \frac{1}{y^2} - \frac{1}{2}\beta^2 + \frac{1\cdot 3}{2^3\lfloor 2}\beta^4y^2 \cdot \cdot \cdot \cdot \right\} \quad . \quad . \quad (10)$$

where $\beta^2 = e^2/(1 - e^2)$: hence

$$\int \frac{dx}{\sqrt{1-e^2 \, x^2} \, \sqrt{1-a^2 \, x^2} \, (1-x^2)} = \frac{1}{\sqrt{1-e^2}} \int \frac{dx}{\sqrt{1-a^2 \, x^2}} \left\{ \frac{1}{1-x^2} - \frac{1}{2} \, \beta^3 + \frac{3}{8} \, \beta^4 \, (1-x^2) \right. \, . \, \, \left. \right\} \, . \, \, (11)$$

Then

The remaining terms of (11) may be dealt with by the formula of reduction (17) now deduced.

$$u_{n} = \int_{\sqrt{1-a^{2}x^{3}}}^{x^{n}} \frac{dx}{a^{2}} = \frac{1}{a^{2}} \int_{-a^{2}x^{3}}^{x^{n-2}} \frac{(1-\overline{1-a^{2}x^{3}})}{\sqrt{1-a^{2}x^{2}}} dx$$

$$= \frac{1}{a^{2}} \cdot u_{n-2} - \frac{1}{a^{2}} \int_{-a^{2}x^{3}}^{x^{n-2}} \sqrt{1-a^{2}x^{3}} dx \qquad (15)$$

Integrating by parts

$$u_{n} = -\frac{1}{a^{3}} \int x^{n-1} d \sqrt{1 - a^{3} x^{3}}$$

$$= -\frac{1}{a^{2}} x^{n-1} \sqrt{1 - a^{3} x^{2}} + \frac{n-1}{a^{3}} \int x^{n-2} \sqrt{1 - a^{3} x^{3}} dx \quad . \quad . \quad (16)$$

Multiplying (15) by (n-1) and adding to (16)

$$nu_{n} = \frac{n-1}{a^{2}} \cdot u_{n-2} - \frac{1}{a^{2}} \cdot x^{n-1} \sqrt{1-a^{2} x^{2}} \cdot \dots \cdot \dots \cdot (17)$$

Hence

and from (9), (11), (13), (14) and (18)

$$L-L' = \pm \frac{k\sqrt{1-e^2}}{\sqrt{1-k^3}} \left[\frac{1}{\sqrt{a^2-1}} \tan^{-1} \left(\frac{\sqrt{a^2-1}}{a} \tan \theta \right) - \frac{1}{2}\beta^2 \cdot \frac{\theta}{a} + \frac{3}{8}\beta^4 \left\{ \frac{\theta}{a} \left(1 - \frac{1}{2a^2} \right) + \frac{1}{2a^2} \sin \lambda \cos \theta \right\} \cdot \cdot \cdot \right] \cdot (19)$$

in which

$$\theta = \sin^{-1}(a \sin \lambda)$$

$$\alpha^{2} = \frac{1 - k^{2}e^{2}}{1 - k^{2}}$$

$$\beta^{2} = \frac{e^{2}}{1 - e^{2}}$$
(20)

Hence

$$\sin\theta = \sqrt{\frac{1-k^2e^2}{1-k^2}}\sin\lambda$$

$$\therefore \frac{\sqrt{a^3-1}}{a} \tan \theta = \pm k \tan \phi \sec A = \pm \tan A \sin \phi \quad . \quad . \quad . \quad . \quad (22)$$

Since θ is given by (20) we may always arrange that it shall be in 1st quadrant and the sign in (22) must be taken accordingly.

Put

ψ being always in the first quadrant.

Then (19) may be written

$$L-L' = \pm \left[\pm \psi - \frac{e^3}{2} (1 + \overline{1 + k^3} | \frac{e^3}{8} + \dots) k\theta + \frac{3e^4}{16} (1 + \dots) k\sqrt{1 - k^3} \sin \lambda \cos \theta + \dots \right] . . . (24)$$

Now by (2) it follows that

$$\tan A \sin \phi = \frac{\sin A_0 \sec \phi}{\sqrt{1 - \sin^2 A_0 \sec^2 \phi}} \sin \phi = \frac{\sin A_0 \tan \phi}{\sqrt{\cos^2 A_0 - \sin^2 A_0 \tan^2 \phi}} = \frac{\tan A_0 \tan \phi}{\sqrt{1 - \tan^2 A_1 \tan^2 \phi}}$$

Hence

$$\psi = \pm \tan^{-1} (\tan A \sin \phi) = \pm \sin^{-1} (\tan A_0 \tan \phi)$$
 . . . (25)

Neglecting terms involving e4 (23) may be written

where ψ and θ are both in first quadrant and are defined by (25) and (20) respectively. This result is correct to nearest second for the terrestrial spheroid.

The rules for the double sign outside bracket are + 1st and 4th quadrant of azimuth - 2nd and 3rd quadrant ,,

and for double signs before ψ + 1st and 2nd quadrant ,, - 3rd and 4th quadrant ...

The quantity θ may also be found from (21) which may be written

$$\tan \theta = \frac{1}{k} \sqrt{\frac{1 - k^2 e^2}{1 - e^2}} \cdot \tan \psi \quad . \quad . \quad . \quad . \quad (27)$$

To solve (26) for A_0 take the first approximation to A_0 , namely A_1 such that

 $\tan A_1 \tan \phi = x$, $\tan A_1 \tan \phi' = y$ and $L - L' = \theta$ and for brevity put

Then (26) becomes

Squaring and transposing

$$x^{2} + y^{3} - 2x^{2}y^{3} - \sin^{2}\theta = 2xy \sqrt{(1-x^{2})(1-y^{2})}$$

Squaring again

and putting this into factors

$$(x^2 + y^2 + 2xy\cos\theta - \sin^2\theta)$$
 $(x^2 + y^2 - 2xy\cos\theta - \sin^2\theta) = 0$

Substituting for x and y it follows that

$$\tan^2 A_1 \left(\tan^2 \phi + \tan^2 \phi' \pm 2 \tan \phi \tan \phi' \cos (L - L') \right) = \sin^2 (L - L') \quad . \quad . \quad (30)$$

The double signs have been introduced by the process of squaring and it is necessary to return to (28) to decide which signs give the required solution.

First supposing $\tan \phi$ and $\tan \phi'$ of the same sign and $\phi > \phi'$: then from (28) changing the sign of $\tan \phi'$ diminishes the value of $\tan A_1$: hence by (30) we see that the lower sign must be taken. The same is true if $tan\phi$ and $tan\phi'$ are of opposite sign, and as ϕ and ϕ' are interchangeable this shows that the lower sign in (29) must always be taken.

Again if $\phi > \phi'$ the sign of tan A is the same as that of L-L', and if $\phi < \phi'$ the sign of tan A is opposite to that of L-L'.

Hence we may write (30)

Also

$$\tan A_1 = \pm \sqrt{\frac{\sin(L-L')}{\tan^2\phi + \tan^2\phi' - 2\tan\phi\tan\phi'\cos\overline{L-L'}}} \quad . \quad . \quad . \quad . \quad (31)$$

the upper or lower sign being taken according as $\phi > 0$ r $< \phi'$.

$$\begin{aligned}
\tan^2\phi + \tan^3\phi' - 2\tan\phi & \tan\phi' \cos \overline{L - L'} \\
&= (1 - e^2) \left\{ \tan^2\lambda + \tan^2\lambda' - 2\tan\lambda & \tan\lambda' \cos \overline{L - L'} \right\} & \text{by (4)} \\
&= (1 - e^2) \left(\tan\lambda - \tan\lambda' \right)^2 \left\{ 1 + \frac{4\tan\lambda & \tan\lambda'}{(\tan\lambda - \tan\lambda')^2} \sin^2 \frac{L - L'}{2} \right\} \\
&= (1 - e^2) \left(\frac{\sin (\lambda - \lambda')}{\cos^2 \cos^2 \omega} \right)^2 \sec^2\omega
\end{aligned}$$

$$\tan^2 \omega = \sin^2 \frac{L - L'}{2} \cdot \frac{\sin 2\lambda \sin 2\lambda'}{\sin^2 (\lambda - \lambda')}$$

so that finally

where

$$\tan A_1 = + \frac{\sin (L - L') \cos \omega \cos \lambda \cos \lambda'}{\sqrt{1 - e^2} \sin (\lambda - \lambda')}$$

$$\tan \omega = \frac{\sin \frac{1}{2} (L - L')}{\sin (\lambda - \lambda')} \sin 2\lambda \sin 2\lambda'$$
(32)

and $\cos \omega$ is taken positive.

4. Denote by ${}_{1}A$ the approximate value of A which corresponds to A_{1} which is an approximate value of A_{0} .

тпеп

Hence

$$\tan A_1 = \frac{\sin_{1} A \cos \phi}{\sqrt{1 - \sin^{2}_{1} A \cos^{2} \phi}} = \frac{1}{\sqrt{\sec^{2} \phi \csc^{2}_{1} A - 1}}$$
$$= \frac{1}{\sqrt{\sec^{2} \phi \cot^{2}_{1} A + \tan^{2} \phi}}$$

By (30)

 $\sin^2 (L - L') \left(\tan^2 \phi + \sec^2 \phi \cot^2 A \right) = \tan^2 \phi + \tan^2 \phi' - 2 \tan \phi \tan \phi' \cos(L - L')$ $\cot^2 A \sec^2 \phi \sin^2 (L - L') = \left\{ \tan \phi \cos(L - L') - \tan \phi' \right\}^2$

$$\therefore \quad \tan_1 A = + \frac{\sec \phi \, \sin(L - L')}{\tan \phi \, \cos(L - L') - \tan \phi'} \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad (34)$$

$$\tan_1 A' = -\frac{\sec \phi' \sin (L - L')}{\tan \phi' \cos (L - L') - \tan \phi} \cdot \cdot \cdot \cdot \cdot \cdot (35)$$

By differentiating (33) logarithmically with regard to A_1 and A_2 we get the relation between δA_1 and $\delta_1 A_2$ as follows:

Equations (34) and (35) correspond to the ordinary equations of spherical trigonometry to which they reduce if the eccentric angles ϕ , ϕ' are replaced by latitudes λ , λ' .

5. Suppose next that

where δA_1 gives a second approximation to A_0 . Then by (26) neglecting terms in e^4 , it follows that

With notation of (20)

$$\sin\theta = a \sin\lambda = \sqrt{\frac{1 - e^2 \sin^2 A_1}{1 - \sin^2 A_1}} \sin\lambda = \sec A_1 \sin\lambda \sqrt{1 - e^2 \sin^2 A_1}$$

since

$$k = \sin A_0 = \sin A_1$$

$$\cos^{2}\theta = 1 - \sin^{2}\lambda \sec^{2}A_{1} (1 - e^{2}\sin^{2}A_{1})$$
$$= \cos^{2}\lambda - (1 - e^{2}) \tan^{2}A_{1} \sin^{2}\lambda$$

... by (38)

$$\delta A_1 = \frac{e^2 \sin A_1 \cos^2 A_1}{2\sqrt{1 - e^2}} \frac{(\theta - \theta')}{\left[\sin \lambda \sec \theta\right]_{\lambda'}^{\lambda}}$$

Now

$$\sin \lambda \sec \theta = \frac{1}{a} \tan \theta$$

 $\delta A_1 = \frac{e^2 \sin 2A_1}{4} \sqrt{\frac{1 - e^3 \sin^2 A_1}{1 - e^3} \cdot \frac{\theta - \theta'}{\tan \theta - \tan \theta'}}$ in which $\theta = \sin^{-1} \left(\sin \lambda \sec A_1 \sqrt{1 - e^3 \sin^2 A_1} \right)$

For computation

$$\sin \theta = \sin \phi \sec A_1 \left\{ 1 + \frac{e^3}{2} (\cos^2 \phi - \sin^2 A_1) \right\} \qquad \text{since } \sin \lambda = \sin \phi \sqrt{1 - e^2 \cos^2 \phi}$$

$$= \sin \phi \sec A_1 \left(1 + \frac{e^3}{2} \cos^2 \phi \cos^2 A_1 \right) \qquad \text{since } \sin A_1 = \sin_1 A \cos \phi$$

Let

$$\sin \theta_1 = \sin \phi \sec A_1$$
 and $\theta = \theta_1 + \delta \theta$

$$\tan \theta_1 = \frac{\sin\phi}{\sqrt{\cos^2 A_1 - \sin^2\phi}} = \frac{\sin\phi}{\sqrt{\cos^2\phi - \sin^2 A \cos^2\phi}} = \tan\phi \sec_1 A$$

and

$$\delta\theta = \frac{e^3}{2} \cos {}^3\phi \cos {}^3A \tan \theta_1 = \frac{e^3}{4} \sin 2\phi \cos {}_1A.$$

With a given value of the larger quantity θ , θ' say θ it is clear that $\frac{\theta - \theta'}{\tan \theta - \tan \theta'}$ is greater the smaller the value of θ' ; its maximum value accordingly is $\frac{\theta}{\tan \theta}$ and the maximum value of this quantity occurs when $\theta = 0$, when it becomes unity. It is quite clear then that δA_1 cannot exceed $\frac{1}{2}e^2\sin 2A$, i. e. 6'. $\sin 2A_1$ in the case of the terrestrial spheroid where $e^2 = \frac{1}{150}$.

6. If ds is the length of an elementary line $\rho d\lambda = -ds \cos A$

$$s = -\int \rho \sec A \, d\lambda$$

On a geodesic

$$\cos A = \sqrt{1 - \sin^2 A_0 \sec^2 \phi} = \cos A_0 \sqrt{1 - \tan^3 A_0 \tan^2 \phi}$$

$$\rho = \frac{a (1 - e^2)}{(1 - e^2 \sin^2 \lambda)^{\frac{3}{2}}} ; \tan \lambda = \frac{\tan \phi}{\sqrt{1 - e^2}}$$

$$\sin \lambda = \frac{\sin \phi}{\sqrt{1 - e^2 \cos^2 \phi}} ; 1 - e^2 \sin^2 \lambda = \frac{1 - e^2}{1 - e^2 \cos^2 \phi} ; \cos \lambda = \cos \phi \sqrt{\frac{1 - e^2}{1 - e^2 \cos^2 \phi}}$$

whence

$$\rho = \frac{a}{\sqrt{1 - e^2}} \left(1 - e^2 \cos^2 \phi \right)^{\frac{3}{2}}$$

Also
$$\frac{d\lambda}{\sinh \cosh} = \frac{d\phi}{\sinh \cosh}$$

$$d\lambda = d\phi \frac{\sqrt{1 - e^2}}{1 - e^2 \cos^2 \phi}$$

$$s = -\int \frac{a (1 - e^{2} \cos^{2}\phi)^{\frac{3}{2}}}{\sqrt{1 - e^{2}}} \cdot \frac{\sec A_{0}}{\sqrt{1 - \tan^{2} A_{0} \tan^{2}\phi}} \cdot \frac{\sqrt{1 - e^{2}}}{1 - e^{2} \cos^{2}\phi} \cdot d\phi$$

$$= -a \sec A_{0} \int \sqrt{\frac{1 - e^{2} \cos^{2}\phi}{1 - \tan^{2} A_{0} \tan^{2}\phi}} \cdot d\phi$$

Put

$$\sin\phi = x \quad d\phi = \frac{dx}{\sqrt{1-x^2}}$$

$$s = - a \sec A_0 \int \sqrt{\frac{1 - e^2 (1 - x^2)}{1 - \tan^2 A_0 x^2 / (1 - x^2)}} \cdot \frac{dx}{\sqrt{1 - x^2}}$$

$$=-a\int\sqrt{\frac{1-e^2\;(1-x^3)}{\cos^3A_0-x^3}}\;\;dx\;=-a\;\sqrt{1-e^3}\int\frac{\sqrt{1+\beta^2\,x^3}}{\sqrt{\cos^3A_0-x^3}}\;dx$$

where

$$\beta^2 = \frac{e^3}{1-e^2}$$

Put

$$x = \cos A_0 \sin \chi = \sin \phi$$

Put
$$x = \cos A_0 \sin \chi = \sin \phi$$
 then

Now

$$\int \sin^{n}\chi \, d\chi = -\frac{1}{n}\cos\chi \sin^{n-1}\chi + \frac{(n-1)}{n} \int \sin^{n-2}\chi \, d\chi$$

$$\therefore \int \sin^2 \chi \, d\chi = -\, \frac{1}{2} \cos \chi \sin \chi + \frac{\chi}{2}$$

$$\int \sin^4 \chi \, d\chi = -\frac{1}{4} \cos \chi \sin^3 \chi - \frac{3}{4} \int \sin^3 \chi \, d\chi$$

$$= -\frac{1}{4} \cos \chi \sin^3 \chi - \frac{3}{8} \cos \chi \sin \chi + \frac{3}{8} \chi$$
etc.
$$\therefore s = -a \sqrt{1 - e^3} \left[\chi \left(1 + \frac{1}{4} h^3 - \frac{3}{64} h^4 \dots \right) - \frac{h^2}{4} \cos \chi \sin \chi \left(1 - \frac{3}{16} h^3 \dots \right) + \frac{h^4}{32} \cos \chi \sin^3 \chi \left(1 \dots \right) - \dots \right] \frac{\chi}{\chi} \dots (40)$$
where
$$\sin \chi = \frac{\sin \phi}{\cos A_0}$$

$$h^2 = \frac{e^2 \cos^2 A_0}{1 - e^3}$$
Otherwise
$$\sin \chi = \frac{\sin \phi \sin A_0}{\sin A \cos \phi \cos A_0} = \tan \phi \tan A_0 \csc A$$

$$\sin \chi = \frac{\sin \phi \sin A_0}{1 - \sin^2 A \cos^2 \phi} = \frac{\sin^3 A}{\tan^2 \phi + \cos^3 A}$$
and
$$\sin \chi = \frac{\tan \phi}{\pm \sqrt{\tan^2 \phi + \cos^3 A}}$$

$$\tan \chi = \pm \tan \phi \sec A \dots (42)$$

7. To facilitate reductions, tables are now given enabling the conversion from λ to ϕ and vice versa to be easily performed. They have been computed from formula $\lambda - \phi = \frac{1}{2} \cdot \frac{\epsilon \sin^2 \lambda}{1 - \epsilon \sin^2 \lambda}$ which is readily deducible from (4).

Table XXI.

λ	φ-λ	λ	φ-λ	λ	φ-λ	λ	φ-λ
۰	1 11	۰	. "	۰	' "		, ,
0	-0 0.0	10	-1 57.3	20	-3 40.5	30	-4 57'1
1	-0 12.0	11	-2 8.4	21	-3 49.5	31	-5 3.0
2	-0 23.8	12	-2 19.4	22	-3 58.2	32	-5 8.5
3	-0 35.8	13	-2 30.3	28	-4 6.7	83	-5 13.5
4	-0 47.7	14	-2 41.0	24	-4 14.9	34	-5 18.2
5	-0 59.5	15	-2 51.4	25	-4 22.8	35	-5 22.5
6	-1 11.3	16	-3 1.8	26	-4 30.4	36	-5 26.4
7	-1 23.0	17	-3 11 9	27	-4 37.6	37	-5 29.9
8	-1 34.5	18	-3 21.6	28	-4 44'5	38	-2 33.1
9	-1 45.9	19	-3 31.2	29	-4 50 9	39	-5 35.8
10	-1 57.3	20	-3 40.5	30	-4 57:1	40	-5 38.3

Table XXII.

φ	λ-φ	φ	λ-φ	φ	λ-φ	φ	λ-φ
•	, ,,	۰	' "	0	, ,	. 0	· / //
0	+0 0.0	10	+1 57.7	20	+3 41.1	30	+4 57.6
1	+0 12.0	.11	+2 8.8	21	+ 3 50 1	31	+5 3.5
2	+0 23.9	12	+2 19.8	22	+ 3 58 8	32	+5 8.9
3	+0 35.9	13	+2 30 7	23	+4 7.3	33	+5 13 9
4	+0 47-9	14	+2 41.5	24	+4 15 5	34	+5 18-6
5	+0 59.7	15	+2 51 9	25	+4 23 4	35	+ 5 22 8
6	+1 11.2	16	+3 2.3	26	+4 30.9	36	+5 26.7
7	+1 23.3	17	+3 12.4	27	+4 38 1	37	+5 30.2
8	+1 34.8	18	+3 22 1	28	-4 45.0	38	+5 33.3
9	+1 46.2	19	+3 31.7	29	+4 51 4	39	+5 36 0
10	+1 57.7	20	+3 41'1	30	+4 57.6	40	+5 38.4

Values of A_0 , k, s together with certain of the quantities by means of which they are computed are now given in tabular form for geodesics passing through the origin and points L, ϕ , for values of L'-L differing by 4° from 0 to 24° and for values of ϕ from 10° to 38°. It is clear that for longitudes east of the origin the value of A is 360— (its value in table): and that for s there is no change.

TABLE XXIII.

φ	L'-L	0°	4 °	8°	12°	16°	20°	24°
38°	180° - A ₁ - 5A ₁ 180° - A ₀ log k ½² s/b	0 0 0 0 0 0 0 0 	11 40 32 2 1 37 2 11 42 9 1 3071363 0 006407 0 250921	21 58 5 6 2 41 6 22 0 47 1 5738218 0 005748 0 271891	30° 12′ 43°8 3 6·7 30 15 51 1·7024180 0·004985 0·302418	36 27 5.0 3 2.2 36 30 7 1.7744081 0.004318 0.841099	41° 2' 45"3 2 48.9 41 5 34 1.8177511 0.003795 0.885090	44 23 53 7 2 27 1 44 26 21 1 8451916 0 003407 0 432724
34°	$ \begin{array}{c c} 180^{\circ} - A_{1} \\ -\delta A_{1} \\ 180^{\circ} - A_{0} \\ \log k \\ \hbar^{2} \\ s/b \end{array} $	0 0 0 0 0 0 0 0 0 -∞ 0.006682 0.173820	16 46 26·0 2 14·0 16 48 40 1·4612345 0·006128 0·184246	30 1 52·5 3 21·5 30 5 14 1·7001:31 0·005003 0·212464	39 8 30·0 3 20·0 39 11 50 1·8007114 0·004018 0·252555	45 6 17·2 2 53·0 45 9 10 1·8506405 0·003323 0·299755	48 59 53·3 2 21·7 49 2 15 I·8780268 0·002872 0·351166	51 34 13·2 1 52·7 51 36 6 1·8941560 0·002578 0·405139
30°	$ \begin{array}{c} 180 - A_1 \\ -\delta A_1 \\ 180 - A_0 \\ \log k \\ \hbar^2 \\ s/b \end{array} $	0 0 0 0 0 0 0 0 0 −∞ 0.006682 0.103942	27 11 14·3 3 24·5 27 14 39 1·6606593 0·005282 0·121206	48 2 45 · 7	50 56 59·8 2 36·8 50 59 37 I·8904627 0·002647 O·213928	55 2 12·4 1 51·6 55 4 4 1·9187238 0·002191 0·270030	57 17 10·9 1 18·3 57 18 29 1·9250992 0·001949 0·328293	58 34 48·1 0 54·9 58 35 48 I·9812075 0·001814 0·887702
26°	$ \begin{array}{c c} 180^{\circ} - A_{1} \\ -\delta A_{1} \\ 180^{\circ} - A_{0} \\ \log k \\ h^{2} \\ s/\delta \end{array} $	() 0 0 0 0 0 0 0 	52 54 33·6 2 46·9 52 57 21 I·9020954 0·002425 0·072033	60 59 16·4 1 7·7 61 0 24 1·9418474 0·001570 0·181409	62 59 19·7 0 32·1 62 59 52 1·9498721 0·001878 0·198359	63 41 3·3 0 16·4 63 41 20 1·9525018 0·001313 0·255990	63 56 27.7 0 6.5 63 56 34 1.9534486 0.001289 0.318858	
22°	$ \begin{array}{c c} 180^{\circ} - A_{1} \\ - \delta A_{1} \\ 180^{\circ} - A_{0} \\ \log k \\ h^{2} \\ s/\delta \end{array} $	0 0 0 0 0 0 0 0 	58 81 3·3 3 5·1 53 34 8 1·9055652 0·002357 0·073722	62 24 14·8 1 19·0 62 25 33 I·9476361 0·001432 0·133777	64 41 45.0 0 38.7 64 42 24 I. 9562317 0.001220 0.196608	65 31 8.4 0 20.4 65 31 29 1.9591081 0.001147 0.260182	65 50 39·9 0 9·4 65 50 49 T·9602121 0·001119 0·324032	65 56 48.9 0 2.1 65 56 51 I.9605528 0.001110 0.387973
18°	$ \begin{array}{c c} 180^{\circ} - A_{1} \\ - \delta A_{1} \\ 180^{\circ} - A_{0} \\ \log k \\ h^{2} \\ s/b \end{array} $	0 0 0 0 0 0 0 0 	29 19 11·0 4 2·5 29 28 14 I·6908226 0·005073 0·124192	46 25 6·2 4 7·9 46 29 14 I·8604705 0·003168 0·168012	55 5 18·8 8 11·5 55 8 25 1·9141068 0·002183 0·222619	59 41 41·7 2 21·1 59 44 3 1·9863608 0·001697 0·281789	62 18 45 2 1 43 1 62 20 28 1 9473002 0 001440 0 343184	63 52 30·2 1 15·0 63 53 45 I·9532744 0·001294 0·405645
14°	180° - A ₁ - 5 A ₁ - 5 A ₁ 180° - A ₀ log k h ² s/b	0 0 0 0 0 0 0 0 	19 22 52·8 3 8·3 19 26 1 1·5220722 0·005943 0·187488	34 31 14·1 4 27·9 34 35 42 I·7541789 0·004528 0·219676	44 51 50 8 4 27 1 44 56 18 I • 8490169 0 • 003348 0 • 264754	51 41 49·6 3 54·8 51 45 44 1·8951186 0·002560 0·317253	56 15 27·8 3 17·9 56 18 45 1·9201629 0·002056 0·374042	59 21 59·3 2 43·8 59 24 43 I·9849266 0·001780 0·438406
10°	$ \begin{array}{c c} 180^{\circ} - A_{1} \\ - \delta A_{1} \\ 180^{\circ} - A_{0} \\ \log k \\ h^{2} \\ s/b \end{array} $	0 0 0 0 0 0 0 0 	14 27 13.6 2 29.4 14 29 43 I.3984612 0.006264 0.254192	27 2 2·7 4 5·5 27 6 8 I·6585649 O·005295 O·279254	36 58 9·7 4 41·4 87 2 51 1·7799407 0·004257 0·316635	44 26 58 7 4 38 9 44 31 38 1 8458708 0 003396 0 362531	50 0 9·0 4 18·7 50 4 28 I·8847268 0·002752 0·414102	54 8 7·8 3 51·3 54 11 59 1·9090537 0·002287 0·469464

TABLE XXIV.

•	L'-L	4°	8°	12°	16°	20°	24°	L'-L	4°	8°	12°	16°	20°	24°
38°	ψ θ x 180°A	39 246 385723·4	41 41 34 41 36 40 • 7	45 32 6 45 27 50 1	0 / // 35 19 17·2 50 2 52 49 59 15·0 49 0 53	54 49 40 54 48 36 • 4	50 96 57	φ' -x'	24 38 44	26 8 25 26 4 32-5	15 5 35 • 6 19 28 12 42 30 28 9 8 • 0 30	30 56 27 41 • 7	32 46 56 32 43 58 • 1	ON EV EV
34°	Ιθ	35 49 35 35 44 36 • 7	40 19 53 40 15 39 8	461427 4611 1·0	52 27 38 7	58 34 31 58 32 19 7	64 13 30 64 11 46 3	θ' -x'	25 11 43 - 9	28 5 50 - 8	21 20 26 • 9 26 31 46 34 31 43 29 • 4 35 43 47 37	20 40	38 28 29 38 26 4 7	
80°	θ	84 17 29 84 13 16 8	43 16 20 43 13 17 · 5	52 38 4 52 85 54 • 0	55 45 11·5 60 51 33 60 49 57·2 71 12 6	67 47 47 67 46 36 8	79 30 40	سر	27 20 35	33 55 39 9	33 25 54 • 1 40 23 14 40 20 59 • 8 45 58 18 49	24 11 92 18 5	49 029 48 58 49 2	F1 80 80
26°	θ 1	46 43 33 46 41 28·7	64 45 38 64 44 35 • 1	74 55 13 74 54 37 • 8	80 31 41 · 5 81 30 7 81 29 39 · 5 85 49 2	86 20 26		-x'	423 AN 44	57 14 20 57 13 6 2	61 7 51 • 0 64 63 51 15 66 63 50 18 • 6 66 77 20 15 78	51 1 50 9.7	20 F 00	
22°	e x	89 833 89 634·5	54 238 16	31 16 15 31 15 21 • 6 (34 42 51 . 2 6	16 17 29 16 16 46 1	86 49 91	יע	43 19 53 1	6141 7.8	70 47 27 9 78 72 31 30 79 72 30 54 2 79 81 55 9 85	37 11 36 40 - 8	34 50 18 8 34 50 7 7 8	
18°	θ 2	20 49 13 2 20 46 19 • 6 2	8 42 15 8 8 40 3 8	12 45 22 3 12 43 39 · 5	13 50 3·8 3 87 50 18 4 87 48 53·7 85 15 0 6	1 45 18 1 44 7 0	14 37 51	x'	27 53 5·0	36 17 23 · 8	39 50 22 · 2 40 45 30 30 53 45 28 38 · 0 53 38 58 4 71	58 35 57 11 · 3	31 24 15 31 23 12 • 4	*# #T O.
14°	e x	14 54 25 1 14 51 52 8 1	7 737 2 7 526.51	9 59 3 3 2	8 26 45 · 7 2 3 2 6 2 3 0 32 · 1 2 4 2 48 5	5 52 56 2 5 51 33 0 2	9 94 97	و بر	204U 9 I	29 45 42 29 40 21 · 6 8	26 26 30 · 3 34 35 11 35 41 35 8 52 · 9 41 50 40 4 50	12 57 10 48 • 4	7 18 42 5 7 16 56 3 5	074 0
10°	e i	10 21 50 1 10 19 56 • 4 1	11 16 40 1 11 14 55 • 3 1	2 35 31 1	9 59 16 • 4 1 14 7 14 1 14 5 51 • 2 1 15 24 11 5	5 43 7 1 5 41 52 9 1	7 17 14	x' 2	4 53 31 .7	27 18 20 8 27 14 38 1 3	9 41 6 8 26 0 45 21 34 0 42 9 1 34 1 16 49 50	54 30 3 51 45 • 919	19 27 20 4	4 3 3 00 .

For the case L'-L=0 it is clear that

$$\psi = \psi' = 0$$
; $\theta = \lambda$; $\theta' = \lambda'$; $\chi = \pm \phi$; $\chi' = \pm \phi'$

8. It may be of interest to find the expression for the azimuthal angle of a vertical plane at the origin which passes through any given point on the earth, so that the difference of this and the geodesic may be studied.

The spheroid may be expressed

and P and Q two points on surface

 $P = a\cos\phi, 0, b\sin\phi$

 $Q = a\cos\phi'\cos L, a\cos\phi'\sin L, b\sin\phi'$

Tangent plane at P is

$$\frac{x\cos\phi}{a} + \frac{z\sin\phi}{b} = 1 \qquad (44)$$

The vertical plane at P which passes through Q also is

$$lx + my + nz = 1$$

subject to the conditions

$$la \cos \phi + nb \sin \phi = 1$$

since P is in it

$$la\cos\phi'\cos L + ma\cos\phi'\sin L + nb\sin\phi' = 1$$

since Q is in it

$$\frac{l\cos\phi}{a} + \frac{n\sin\phi}{b} = 0$$

since it is perpendicular to (44)

Also

$$\frac{1}{a^{2}-b^{2}} = \frac{la}{a^{2}\sec\phi} = \frac{nb}{-b^{2}\csc\phi} = \frac{la\cos\phi'\cos L + nb\sin\phi' - 1}{a^{2}\sec\phi\cos\phi'\cos L - b^{2}\csc\phi\sin\phi' - a^{2} + b^{2}}$$

$$= \frac{ma\cos\phi'\sin L}{a^{2}\left(1 - \frac{\cos\phi'\cos L}{\cos\phi}\right) - b^{2}\left(1 - \frac{\sin\phi'}{\sin\phi}\right)} \quad (46)$$

The azimuthal angle of Q from P as determined by the vertical plane through P is the angle this plane makes with ZOX or otherwise it is the angle between the normal to this plane, whose direction cosines are proportional to lmn, and the axis OY.

The angle accordingly is
$$\cos^{-1} \frac{m}{\sqrt{l^2 + m^2 + n^2}} = \cot^{-1} \frac{m}{\sqrt{l^2 + n^2}} = \psi$$
 say
$$\tan \psi = \frac{\sqrt{l^2 + n^2}}{m} \qquad (47)$$

Now

٠..

٠..

and by (46)

$$m = \frac{1 - \frac{\cos'\phi \cos L}{\cos\phi} - (1 - e^3) \left(1 - \frac{\sin\phi'}{\sin\phi}\right)}{ae^2 \cos\phi' \sin L}$$

$$= \left\{\frac{\sin\phi'}{\sin\phi} - \frac{\cos\phi' \cos L}{\cos\phi} + e^2 \left(1 - \frac{\sin\phi'}{\sin\phi}\right)\right\} / ae^2 \cos\phi' \sin L$$

$$\tan \psi = \frac{\sqrt{1 - e^3 \cos^3\phi}}{ae^3 \sin\phi \cos\phi} \cdot \frac{ae^3 \cos\phi' \sin L}{\frac{\sin\phi'}{\sin\phi} - \frac{\cos\phi' \cos L}{\cos\phi} + e^2 \left(1 - \frac{\sin\phi'}{\sin\phi}\right)}$$

$$= \frac{2\cos\phi' \sin L \sqrt{1 - e^3 \cos^2\phi}}{\sin^2\phi} \left\{\frac{\sin\phi'}{\sin\phi} - \frac{\cos\phi' \cos L}{\cos\phi} + e^2 \left(1 - \frac{\sin\phi'}{\sin\phi}\right)\right\} . \quad (49)$$

Substitute for ϕ in terms of λ by means of (4)

$$\tan \phi = \frac{1}{\sqrt{1-e^2}} \tan \lambda; \quad \frac{\sin \phi}{\sqrt{1-e^2 \sin \lambda}} = \frac{\cos \phi}{\cos \lambda} = \frac{1}{\sqrt{1-e^2 \sin^2 \lambda}}$$

Hence the value of tan \(\psi \) is

$$\frac{\frac{\cos\lambda'\sin L}{\sqrt{1-e^2\sin^2\!\lambda}}\sqrt{\frac{1-e^3}{1-e^2\sin^2\!\lambda}}}{\frac{(\sin\lambda'\cos\lambda-\cos\lambda'\sin\lambda\cos L)\,\sqrt{1-e^2}}{\sqrt{(1-e^2\sin^2\!\lambda')}}+\frac{e^2\cos\lambda\,\sqrt{1-e^2}}{\sqrt{1-e^3\sin^2\!\lambda}}\left(\frac{\sin\lambda}{\sqrt{1-e^2\sin^2\!\lambda'}}-\frac{\sin\lambda'}{\sqrt{1-e^2\sin^2\!\lambda'}}\right)}$$

from which it follows that

$$\tan \psi = \cos \lambda' \sin L / \left\{ \sin \lambda' \cos \lambda - \cos \lambda' \sin \lambda \cos L + e^2 \cos \lambda \left(\sin \lambda \sqrt{\frac{1 - e^2 \sin^2 \lambda'}{1 - e^2 \sin^2 \lambda}} - \sin \lambda' \right) \right\}. (50)$$

 ψ being the azimuthal angle of ϕ from P.

The case of a sphere is found by putting e = o, when (50) becomes

$$\tan \psi_0 = \frac{\cos \lambda' \sin L}{\sin \lambda' \cos \lambda - \cos \lambda' \sin \lambda \cos L} \qquad (51)$$

which is the ordinary formula.

Let
$$\psi = \psi_0 + \delta \psi$$
: then $\cot \overline{\psi_0 + \delta \psi} - \cot \psi_0 = -\frac{\sin \delta \psi}{\sin \psi \sin \psi_0}$

$$-\delta\psi = e^{2} \frac{\sin^{2}\psi_{0}\cos\lambda}{\sin L \cos\lambda'} \left\{ \sin\lambda \sqrt{\frac{1-e^{2}\sin^{2}\lambda'}{1-e^{2}\sin^{2}\lambda}} - \sin\lambda' \right\} \qquad (52)$$

This formula gives the correction to be applied to the azimuthal angle, found from the formula for a sphere, to obtain the spheroidal azimuth.

CHAPTER III.

Changes of coordinates of triangulated points, due to changes in axes of the terrestrial spheroid, calculated along geodesics.

1. Consider a geodesic on any surface, and let A B C be three consecutive points on it. Then A B C is the osculating plane at B and from the fundamental property of the geodesic it contains the normal to the surface at B. This shows that measured from B the azimuths of A and C differ by two right angles. It is possible then to describe a geodesic on a surface of unknown form by fulfilling this condition: and, to take a practical case, a traverse along a geodesic can be observed on the earth without knowing its figure if access to a level surface is possible. It follows that if there is a geodesic on one surface which has been selected as representing the earth and it is desired to change to another surface, the geodesic on the first surface will, on transfer to the second surface, remain a geodesic. This property makes it possible to differentiate along a geodesic with respect to the constants of the first surface and so to find relations between changes in these constants and the quantities defining the position of points.

This fact will now be made use of in connection with the equations of Chapter II for the case of a spheroid. Now it has been shown in Chapter I that the effect of slightly changing the latitude and azimuth at the origin may be computed, and that the result is practically independent of the route followed—values of u_x and u_y etc. being identical to nearer than 0.001 of a second: and the resulting changes of latitude, longitude and azimuth for unit changes at the origin are given in tables XVII—XX. These values then are equally applicable to a geodesic and so it is only necessary to consider the effects of changes in a and b.

It is however found convenient not to alter the constant k of the geodesic; and since this is equal to $\sin A \cos \phi$, this is given effect to by not changing the values of A and ϕ at the origin. It is moreover more convenient in dealing with geodesics on a spheroid to make use of the eccentric angle, or reduced latitude ϕ , in place of the latitude λ . Now the relation between λ and ϕ involves e^2 and so if ϕ is unchanged at the origin while e^2 undergoes a change it follows that λ must also change at the origin. In the solution which follows the effect of this origin change of λ occurs: but as its amount can be found from tables XVII, XVIII there is no difficulty in removing it.

^{2.} For convenience of reference equations (26), (25), (27), (2), (40), (42), (41) of Chapter II are repeated.

$$\psi = \pm \tan^{-1} (\tan A \sin \phi) = \pm \sin^{-1} (\tan A_0 \tan \phi)$$
 (2)

$$s = -a \sqrt{1 - e^2} \left[\chi \left(1 + \frac{1}{4} h^2 \right) - \frac{h^2}{8} \sin 2\chi \left(1 - \dots \right) + \dots \right]_{\chi'}^{\chi}$$
 (5)

The signs occurring in (1) and (2) are to be determined as explained in Chapter II. The sign of χ is determined by (8). It is best to consider a and e^3 as independent variables and b as dependent on these. At the end there is no difficulty in passing to the case of a and b considered as independent and e^3 as the dependent variable.

3. Suppose then that a and e^3 are changed, while the azimuth and reduced latitude ϕ of the origin remain unchanged. Values at the origin will be denoted by dashes.

Differentiating (4) and keeping k constant

$$\delta k = 0 = \cos A \cos \phi \, \delta A - \sin A \sin \phi \, \delta \phi$$

Changes of reduced latitude, longitude and azimuth, in keeping with the notation of Chapter I, will be denoted by u_1 , v, w: and the above equation may be written

Differentiating (1) and remembering that v'=0

$$\pm v = \left[\delta\psi\right] - \frac{ke^2}{2} \left[\delta\theta\right] - \frac{k\delta e^2}{2} \left[\theta\right] \quad . \quad . \quad . \quad . \quad . \quad (10)$$

By differentiating logarithmically $\tan \psi = \pm \tan A \sin \phi$ which is the same as (2): and by (3) and (6)

$$\frac{\delta \psi}{\sin \psi \cos \psi} = \frac{w}{\sin A \cos A} + u_1 \cot \phi = \frac{\delta \chi}{\sin \chi \cos \chi} = \frac{\delta \theta}{\sin \theta \cos \theta} - (1 - k^2) \frac{\delta e^2}{2} \equiv x \quad . \quad (11)$$

any of these expressions being denoted by x. This quantity x vanishes at the origin.

Finally differentiate (5) keeping s constant, replacing $\delta \chi$ by means of (11) and $\alpha \sqrt{1-e^2}$ by δ

$$\frac{s}{b} \left(-\frac{\delta a}{a} + \frac{\delta e^{3}}{2(1-e^{2})} \right) = -\frac{x}{2} \sin 2\chi \left\{ \left(1 + \frac{h^{2}}{4} + \ldots \right) - \frac{h^{2}}{4} \cos 2\chi (1...) \ldots \right\} - \frac{\delta h^{2}}{8} \left[2\chi (1...) - \sin 2\chi (...) \right]$$

$$= -\frac{x}{2}\sin 2\chi \left\{ 1 + \frac{h^2}{4}(1 - \cos 2\chi) \right\} - \frac{\delta h^2}{8} \left[2\chi - \sin 2\chi \right]. \qquad (12)$$

where

Equations (12) and (13) serve to determine x in terms of $\frac{\delta a}{a}$ and δe^2 . For the other quantities from (9) and (11) it follows that

and from (10) and (11)

$$\pm v = \frac{x}{2}\sin 2\psi - \frac{ke^2}{4}\left\{\left[\sin 2\theta\right](1-k^2)\frac{\delta e^2}{2} + x\sin 2\theta\right\} - \frac{k\delta e^2}{2}\left[\theta\right] \quad . \quad . \quad . \quad (15)$$

In all the above equations square brackets indicate that the quantity enclosed has to be taken between limits.

4. It remains to give the relation between u and u_1 From (4) of Chapter II

$$\tan\phi = \sqrt{1-e^2} \tan\lambda$$

Differentiating this logarithmically

$$\frac{u_1}{\sin\phi\cos\phi} = \frac{u}{\sin\lambda\cos\lambda} - \frac{1}{2} \frac{\delta e^2}{1 - e^2}$$

or

$$u = \frac{\sin 2\lambda}{\sin 2\phi} \cdot u_1 + \frac{1}{4} \cdot \frac{\delta e^2}{1 - e^2} \sin 2\lambda$$

Now

$$\frac{\sin 2\lambda}{\sin 2\phi} = \frac{\sqrt{1 - e^2}}{1 - e^2 \cos^2 \phi} = 1 + \frac{e^2}{2} (2\cos^2 \phi - 1)$$
$$= 1 + \frac{e^2}{2} \cos 2\phi$$

so that

$$u \stackrel{\cdot}{=} \left(1 + \frac{e^2}{2} \cos 2\phi\right) u_1 + \frac{1}{4} \frac{\delta e^2}{1 - e^3} \sin 2\phi \quad . \quad . \quad . \quad . \quad (16)$$

At the origin $u_1'=0$: hence

$$u' = \frac{1}{4} \frac{\delta e^2}{1 - e^2} \sin 2\phi'$$
 (17)

5. It may be noticed that by this method the changes u, v, w appear to be found without any integration, whereas in Chapter I simultaneous differential equations occurred which had to be solved. The case under consideration is a particular case of the general equations (2) of Chapter I. The decision to follow a geodesic introduces a relation by which these equations can be reduced to total differential equations: and the integration of these equations would lead to the same results as may be obtained from equations (12) to (17). The same results will be seen to be obtainable by application to values of u_x, v_x, w_x of the appropriate closing errors. For the case now under consideration the equations formed in Chapter II give the results of integration: and so no further integration is necessary.

- 6. In making use of the equations (12) to (17) two cases are considered in which
 - (i) $\delta a = 1$ km. and $\delta e^2 = 0$
 - (ii) $\delta a = 0$ and $\delta e^2 = \cdot 0001$

The first of these corresponds to a combination of cases I and II of Chapter I, while the second corresponds to a combination of cases II and III. This arrangement simplifies computation and there is no difficulty in deriving cases I and II when the computations are complete.

As no azimuthal change is being made at the origin it is clear that there is symmetry about a central meridian. In Chapter II values of ψ , θ , χ , A, $\frac{s}{b}$, h^3 , k (vide tables XXIII, XXIV) have already been given for every 4° of ϕ from 10° to 38° and for longitude differences of 4° from 4° to 24°. With the help of these the values of u_1 , u, v, w exhibited in the following two tables have been found. A double sign is prefixed to v and w and of these the upper or lower is to be taken according as the point is west or east of the origin. The results are given to three places of decimals as found by the computations: but the last figure is liable to error, which is not sufficiently large to be practically important for the present purpose.

TABLE XXV.

$$\delta a = 1 \text{ km.}, (\delta e^{3} = 0) \delta b = \frac{\delta}{a} = .9967 \text{ km.}$$

				a	- 5507 Kii		
φ	L - L'	4	8	12	16	20	24
38	れ	- 7.884	- 7·710	- 7.510	- 7·227	- 6.863	- 6.415
	セ	- 7.840	- 7·716	- 7.516	- 7·233	- 6.868	- 6.420
	土 v	+ 2.644	+ 5·280	+ 7.914	+10·532	+13.143	+15.733
	土 v	+ 1.680	+ 3·258	+ 4.882	+ 6·499	+ 8.106	+ 9.703
34	u ₁	- 5.577	- 5·468	- 5·281	- 5.019	- 4.688	- 4·270
	u	- 5.584	- 5·475	- 5·288	- 5.025	- 4.689	- 4·275
	土 v	+ 2.498	+ 4·996	+ 7·489	+ 9.967	+12.437	+14·894
	土 w	+ 1.400	+ 2·799	+ 4·195	+ 5.586	+ 6.971	+ 8·348
30	u ₁	- 3.325	- 3·222	- 3.052	- 2.812	- 2·502	- 2·123
	u	- 3.331	- 3·227	- 3.057	- 2.817	- 2·506	- 2·127
	±v	+ 2.384	+ 4·768	+ 7.143	+ 9.516	+11·871	+14·228
	±v	+ 1.195	+ 2·390	+ 3.581	+ 4.769	+ 5·951	+ 7·128
26	<i>u</i> ₁ <i>u</i> ± <i>v</i> ± <i>v</i>	- 1.071 - 1.073 + 2.294 + 1.009	- 0.977 - 0.979 + 4.586 + 2.016	- 0.820 - 0.822 + 6.873 + 3.019	- 0.603 - 0.604 + 9.152 + 4.024	- 0.322 - 0.323 +11.485 + 5.025	+ 0.024 + 0.024 +13.718 + 6.024
22	u ₁	+ 1·185	+ 1·268	+ 1.409	+ 1.606	+ 1.860	+ 2·172
	u	+ 1·188	+ 1·271	+ 1.412	+ 1.610	+ 1.864	+ 2·177
	土 v	+ 2·225	+ 4·447	+ 6.666	+ 8.881	+11.088	+13·291
	土 w	+ 0·836	+ 1·671	+ 2.504	+ 3.338	+ 4.164	+ 4·991
18	u ₁	+ 3·439	+ 3.513	+ 3.639	+ 3·814	+ 4.044	+ 4·319
	セ	+ 3·448	+ 3.522	+ 3.649	+ 3·824	+ 4.055	+ 4·331
	±υ	+ 2·172	+ 4.343	+ 6.512	+ 8·674	+10.834	+12·981
	±υ	+ 0·673	+ 1.346	+ 2.018	+ 2·688	+ 3.360	+ 4·024
14	W ₁	+ 5.695	+ 5.760	+ 5.869	+ 6.024	+ 6·223	+ 6·467
	セ	+ 5.712	+ 5.777	+ 5.886	+ 6.042	+ 6·241	+ 6·486
	セ	+ 2.135	+ 4.271	+ 6.401	+ 8.536	+10·660	+12·777
	セ	+ 0.519	+ 1.037	+ 1.554	+ 2.070	+ 2·587	+ 3·100
10	u ₁	+ 7.952	+ 8.008	+ 8·102	+ 8·232	+ 8 · 404	+ 8.616
	u	+ 7.977	+ 8.033	+ 8·127	+ 8·258	+ 8 · 430	+ 8.643
	土v	+ 2.114	+ 4.229	+ 6·343	+ 8·451	+ 10 · 559	+12.662
	土v	+ 0.869	+ 0.737	+ 1·105	+ 1·472	+ 1 · 840	+ 2.206

TABLE XXVI.

$$\delta a = 0$$
; $(\delta e^2 = 0.0001)$; $\delta b = -\frac{a^2 \delta e^2}{2b} = -0.3200 \text{ km.}$; $u_0 = 3''.872$.

φ	L∽L′	4 °	8°	12°	163	20°	24°
38°	u ₁	+ 1.837	+ 1.807	+ 1.757	+ 1.689	+ 1.600	+ 1·498
	u	+ 6.881	+ 6.850	+ 6.800	+ 6.783	+ 6.643	+ 6·536
	± v	- 0.094	- 0.187	- 0.279	- 0.870	- 0.455	- 0·540
	± v	- 0.882	- 0.763	- 1.142	- 1.519	- 1.890	- 2·258
34°	$egin{array}{c} u_1 \\ u \\ \pm v \\ \pm w \end{array}$	+ 1.364 + 6.185 - 0.060 - 0.342	+ 1.336 + 6.157 - 0.121 - 0.684	+ 1.289 + 6.111 - 0.182 - 1.024	+ 1·223 + 6·045 - 0·240 - 1·362	+ 1·139 + 5·960 - 0·295 - 1·696	+ 1.037 + 5.857 - 0.346 - 2.027
30°	u ₁ u ± v ± v	+ 0.845 + 5.350 - 0.033 - 0.304	+ 0 818 + 5 · 324 - 0 · 067 - 0 · 607	+ 0.775 + 5.280 - 0.100 - 0.909	+ 0.713 + 5.218 - 0.181 - 1.208	+ 0.633 + 5.138 - 0.160 - 1.506	+ 0.536 + 5.041 - 0.186 - 1.800
26°	u	+ 0.282	+ 0.257	+ 0.216	+ 0·158	+ 0.084	- 0.007
	u	+ 4.381	+ 4.357	+ 4.315	+ 4·258	+ 4.184	+ 4.096
	±v	- 0.011	- 0.023	- 0.033	- 0·041	- 0.049	- 0.056
	±v	- 0.265	- 0.530	- 0.794	- 1·057	- 1.317	- 1.579
22°	u	- 0.321	- 0.344	- 0.382	- 0.435	- 0.504	- 0.587
	u	+ 3.294	+ 3.271	+ 3.233	+ 3.180	+ 3.111	+ 3.027
	± v	+ 0.008	+ 0.015	+ 0.023	+ 0.032	+ 0.043	+ 0.055
	± w	- 0.227	- 0.454	- 0.679	- 0.904	- 1.127	- 1.349
18°	n₁	- 0.960	- 0.980	- 1.015	- 1.063	- 1·126	- 1·201
	n	+ 2.098	+ 2.078	+ 2.043	+ 1.995	+ 1·932	+ 1·856
	±v	+ 0.024	+ 0.046	+ 0.068	+ 0.092	+ 0·116	+ 0·143
	±v	- 0.188	- 0.375	- 0.563	- 0.749	- 0·935	- 1·119
14°	u	- 1.628	- 1.646	- 1.677	- 1.720	- 1.775	- 1.844
	u	+ 0.812	+ 0.794	+ 0.762	+ 0.719	+ 0.664	+ 0.596
	±v	+ 0.036	+ 0.069	+ 0.102	+ 0.134	+ 0.169	+ 0.205
	±v	- 0.148	- 0.296	- 0.444	- 0.591	- 0.738	- 0.884
10°	u ₁	- 2·322	- 2·337	- 2·364	- 2·401	- 2·450	- 2·508
	u	- 0·547	- 0·562	- 0·590	- 0·637	- 0·676	- 0·734
	±v	+ 0·042	+ 0·083	+ 0·122	+ 0·162	+ 0·202	+ 0·244
	±v	- 0·108	- 0·215	- 0·322	- 0·429	- 0·536	- 0·642

Case I.— $\delta a = 1$ km.

Values of u_g in seconds.

TABLE XXIX.

Lat.	60	6	l° 6	2° (53°	64°	65°	66	67	7° 6	8° 69	2° 70	0° 7	71°	72°	73°	74	° 75	° 76	7 7	7° 7	8° 7	9° 80	o° 81	1/
39 38 37	l															1.370	- 33.	1 1.33		1					4
ì										* 0				;	1 · 60 6 1 · 669	1.491 1.582 1.644	1.62	2 1.45 3 1.54 5 1.60	7 1.53	K I					333
36 35 34 33										1.8	46 1.80 49 1.80 24 1.78	6 1.7	68 1 -	735	l•706	1.677 1.682 1.659	1.66	3 1.64 3 1.64 0 1.62	7 1.69	2 7 00		323 1·6 329 1·6 308 1·6		8 1.656 4 1.681	3
33 32 31	2·197 2·089	2.11	2 1·S	46 1. 89 1.	977 1 871 1	·912 ·807	1·852 1·747	1·796 1·692	1.74	1 · 7 · 6 1 · 7 · 6 2 1 · 5 ·	75 1·78 00 1·65 96 1·55	3 1.69 8 1.69 5 1.5	30 1.4	587 J	• 559	1.610 1.535 1.433	1.591	1.578 3 1.500	1.568	1.56	1 1-5	60 1·5	81 1.E7	1.589	1
30 29	1·954 1·795	1.87	7 1.8	05 1.	737 1	674	1.616	1.562	1.51		37 1.42					1.305		1 · 398		1.35	a 1.3	81 1·38 53 1·28	35 1.39	1.411	3
	1.608 1.398	11.58	1.44	47 1· 63 1· 55 1·	907 T			1.405 1.223 1.017	1 - 173	5 1.19	12 1·27 12 1·09 14 0·88	A 7 A	4 1.0)22 O	.994	1·151 0·971	1.132	1.116	1.105	1.10	0 1.0	00 1.14		1.127	29
26 25 24	1·164 0·910		1.00	99 A.	956 0	896	0.841		0-739	0.80	5 A.es	0.00	0 0 E	316 O 589 O	·787 ·562	0.765	0.748	0.733	0-723	0.71	8 0.7	17 0.75	21 0.938	0.744	29 27
					1			0.003		0-44	4 0·40 1 0·13	0.08	9 0.8	39 O	•312	0·289 0·018	0.270	0.256	0 • 246	0.24	1 0 2	90 0·49 40 0·24 34 0·02	4 0 253	0.266	26 25
23 22 21									0.401	0.41	6 0·168 6 0·482 2 0·821	0.51		46 O	572	0·278 0·593	0.296	0·310 0·626	0.321	0.32	8 0-32	20 0.32 6 0.64	4 0.313	0.302	24 23
20										- • •	- 0 021	0.00	10.8			0·931 1·288	0.890	0.964 1.322	0.975	0.98	3 0.88	4 0.98	0 0 - 969	0.956	23 22 21
19 18 7																	1.682	1.697	1.708	1.716	1.71	1 1·33 7 1·71:	9 1 700	1.688	10
1 6 5 4		The divid	nign i ing li:	is + : nean	bove	the b	orizo: it.	ntal						2-	877 9	3.808	2.016	2.505	2.516	2.522	2.52	1 2·100 3 2·519	3 2 · 005 2 · 510	10 -00	19 18 17
														3.	821 :	3.212	3.360 3.817	2.071	0 000	3.391	3.39	0 2·946 2 3·389 3 3·846	3.300	2 · 923 3 · 367 3 · 825	1654
1321														4.	737 4	k* 2.5 × 1	4·291 4·776	1707	4 0000	4.321	4.32	4.318	4.310	4.299	
10	ŀ													U -,		. 200	5·274 5·781	5.288	5.298	5.303	5.304	5 4 804 5 5 300 5 5 808	5.292	4·783 5·281	13 12 11
8						_								6·2	80 6 87 6	281	6·290 6·826	A.212	3.323	6.829	6.330	6.326	6.318	5·788 6·306	10
Long.	1° 8	32° 8	33°	84°	0.50	-								=						0.607	0.090	6.854	6.816	6.833	8
at.			,,,	04	85°	- 8	5°	8 7 ° :	88°	89°	90°	91°	92°	93	3° 9	94°	95°	96°	97°	98°	99°	100	101	- 1	Long.
		-298 1	- 1					· 45 3 1	-497	1-545	1.597	1.654	1.716	1.7	32 1	.Qto	7.000.7	2.000							Lat.
28 10-	948 0	·144 1 ·964 0 ·759 0	•986 l	T 0.1	1 · 22 1 · 04 5 0 · 83	9.7.6	78 11	296 1 117 1	•159	1.9071	1·441 1·258	1·499 1·315	1.559	1.6	25 1	695	1·928 9 1·770 1	L •847	2·092 1·930	2.017	9.100			1	30°
26 0:	516 0 266 0	-532 O	553	0.57	0.60	9 0 -	48 0	·682 0	•958 •724	1.000	1.051	1·107 0·878	1.167	1.2	32 1	801	1.373	L • 450				2·205 2·015 1·801		2.218	29 28 27
١, ١	007 0	010 0	033	0.000		3 0.1	19 0	157 0	·472 ·199	0·518 0·24-1	0.294	0.849	0.684	0.7	7 0	·546 (1·139] 0·886 (961	1 · 296 1 · 040	1 • 123	1-213	1.306	1.663 1.403	1·765 1·515	26 25 24
23 22 21 0.8	317 0 356 0	284 0 600 0 937 0	579 916	0.235 0.658 0.892	0.210 0.522 0.865	0·1 7 0·4 5 0·8	77 0. 94 0.	140 0 457 0	098 (415 (0·053 0·370	0·002 0·321	0·053	0.114	0.18	2 0	251 (0.323 (0.400	0.480	0.561	0.648	1.036	1.133	1.233	
1		200 I	2/4	1.300	1.222	1.1		796 0. 158 1.			ı	0.608	0.542	0.42	4 0	·404 (D-330 (253 1	0.174	0.009	0.921	0.423	0.519	0·619 0·280	23 22 21
18 2.0	188 1. 183 9.	671 1. 065 2. 477 2.	650	1-626	1.599)							- 500									0.273			20
16 2.9		905 2	450	2-452	2.405			-						2.01	5 1.	944 1	L·458 1 L·870 1	*380 1 *792 1	714	1 • 221 1 • 633	1 · 135 1 · 547	1.044	0.554 (0.948 (1.362]	850	1987 17
14														2.44	4 2.	378 2	·298 2	220 2	142 2	-061	1.975	7 00-	1.791 1 2.236 2	-693	1654
3 2 1				The	sign	is +	abov.	the												1 200 2	1.877	2 - 787	2.694 2	•597	1
. 1			- [divid	ing lin	e and	1 - b	ejow i	t,	uca.i												3 · 747 4 · 244	3·169 3 3·654 3 4·151 4	-072 -558 -055	132
98			ı																·007, 4						

Case I.— $\delta a = 1$ km.

Values of v_g in seconds.

TABLE XXX.

Long.	60°	649	600		240							1		*****	Τ				i			1	1
	00	01	62°	63°	643	65°	66°	67°	68°	69°	70°	71°	72°	73°	74°	75°	76°	77°	78°	79°	80°	81°	Long.
Lat.					, 		P	0 1	s i	t	i	V	е						N	e g	a t i	νе	Lat.
40°													4.348	3-581	2-815	2.048	1.280						40°
39 38 37													4.240	3-539 3-498 3-458	2-748	1.997	1 · 262 1 · 245						39 38 37
36 35 34										6·352 6·284	5.620		4.154	3-420	2-685	1.951	1.230		0.254	0.080	1.723	2.458	1
33 32)								6.988	6-218	5 · 560 5 · 502	4-785		3-348	2-629	1.911	1·203 1·192	0.476 0.471		0.978 0.968	1.704 1.687	2·431 2·406	36 35 34
31	12·384 12·267	11·68 11·57	810·999 710·88	210 ·2 93 710·194	9·595 9·502	8 · 895 8 · 809	8·195 8·116	7 · 494 7 · 423	6.794	6 • 155 6 • 093 6 • 034	5 · 446 5 · 391 5 · 339	4 · 688 4 · 643	3.985	3-314 3-281 3-251	2.578	1.873	1·179 1·167 1·157	0·466 0·462 0·458	0.249	0.958 0.949 0.940	1.670 1.654 1.630	2·382 2·359 2·337	33 32 31
30		1		710·100 910·007	1			7 - 858		5 - 977	5 • 288	4.600	3.911		2.530	1.838	1.146	0.453		0.931	1.624	2.316	30
29 28 27	טכעני דד ו	1 1 1 200	7 IO. 50.	4 9·919 3 9·889	11 O. 9//	0.500	M. OOO	7 · 284 7 · 218 7 · 156	6.544	5 • 921 5 • 868 5 • 817	5 · 239 5 · 192 5 · 147	4.557 4.515 4.476	3 · 874 3 · 838 3 · 805	3-100 3-160 3-183	2.483	1.804	1·135 1·124 1·114	0·449 0·445 0·441	0.234	0.923 0.914 0.906	1.608	2·294 2·272	29 28 27
26 25 24	11-740 11-646	11·07 10·99	810·416 010·33	6 9·751 2 9·674	9·088 9·016	8·424 8·357	7 · 759 7 · 698	7 · 096 7 · 080	6.381	5·769 5·722	5 · 104 5 · 062	4·439 4·402	3.773	3-106 3-081	2-440	1.773	1.105	0·438 0·434	0.230		1.566	2 · 252	
23								6-933		5-677 5-634	5 · 022 4 · 984	4.367	3.718	3 · 058	2.385	1.745	1.088	0.430	0.227	0.884	1.553	2.215	26 25 24
27								6 · 883 6 · 834	6 · 238 6 · 194	5-593 5-554	4-948 4-913	4-303 4-274	3 • 659	3·014 2·994	2·368 2·352	1.721	1.072	0·424 0·422	0.224	0·878 0·872 0·866	1 · 531 1 · 520 1 · 510	2·183 2·168 2·153	23 22 21
19 18 17														2·974 2·954	2.337			0.419		0.860	1-409	2.138	20
	,												3 • 562	2·934 2·915	2·321 2·305 2·290	1.675	1.044	0·416 0·413 0·411	0.218	0.854 0.849 0.843	I-490 1-470 1-470	2·124 2·110 2·096	19 18 17
16 15 14													3.516 8.493	2·805 2·875 2·856	2·274 2·258	1.641	1.023	0·408 0·405		0·837 0·831	1-460	2·082 2·067	16 15 14
130 121													3-448	2.838	2·243 2·228	1.619	1.010	0.402	i	0.826	1 • 439	2.052	
11														2.802	2·214 2·200	1.598	0.996	0.397 0.394	0.209	0-815 0-810	1.421	2.026 2.013	132
98								•					3·382 3·360	2.766	2·186 2·172	1.578	0.984	O·892 O·390	ı	0.804	1 · 402 1 · 893	2·000	10
													3-338	2.748	2.158	1.568	0.978	0.388	0.203		1.384	1.974	98
Long.	81°	82°	83°	84°	85°	86°	87°	88°	89°	90°	91°	92°	93°	94°	95°	96°	97°	98°	99°	100°	1 O 1º	102°	Long.
Lat.							<u>'</u>	Ŋ	е	\mathbf{g}	au	t	i										
30°	3 ·316	3.007	3 • 697	4-387	5.076	5.764	6-452	7.140	7.827	8-514				11 000		e 			····	ı .	ī		Lat.
29 28 27	2·294 2·272	2·978 2·950	3 · 662 3 · 628	4·345 4·306	5·028 4·983	5 · 710 5 · 659	6-392 6-334	7-073	7 · 754 7 · 684	8 • 435 8 • 350	9-116	9.797	10 · 574 10 · 477 10 · 385	11.157	11.004	10 F11	40					ı	30°
26	2.233	2·925 2·900	3 • 566	4.268	4.898	5-610	6.279	6.949	7-617	8 - 286	8 • 056	9 • 626	10 • 295	10-964	11-680	12 297	12.963	13.628	14.292	14.057	15.621	16 · 421 16 · 285	29 287 27
25	2·215 2·109	2.876	3 • 537	4.198	4-858	5-517	6-176	6.835	7.404	8-152 8-091	8 · 811 8 · 745	9-470 9-400	10·210 10·128 10·054	10-878 10-786 10-705	11 · 534 11 · 442 11 · 357	13 · 106 12 · 098 12 · 008	12 · 857 12 · 753 12 · 659	13.518 13.409 13.308	14·177 14·064 13·955	14.836 14.719 14.603	15 · 405 15 · 378 15 · 251	16 • 153 16 • 026 15 • 900	26 25 24
23 22 21	2·183 2·168 2·153	2.814	3 - 459	4·134 4·104 4·075	4.748	5-393	6 · 082 6 · 088 5 · 996			8 • 031 7 • 073	8 · 679 8 · 617 8 · 554	9 · 327 9 · 256	9-977	10.625	11-272	11.919	12.563	13-207	13.850	14-404	15 - 137	15.780	2301
20	2.138						5.955				8-495		9-754	10-400	71-107	TT. 147	12.380	13.010	13.649	14-282	14.916	15.550	21 20
18	2·124 2·110 2·096	2.740	3 - 368	3 - 995	4.623								9 • 681 9 • 609	10.315	10.946	11.574	12-204	12.829	13.454	14.082	14.708	15.336	19 19 17
16	2 • 082			8 • 944										10 100	10-100	71.000	11-945	12.559	13.176	13.791	14.404	15.018	
15 14 13																	11.77	12.384	12.993	13.608 13.604	14.306 14.200	14-917 14-815	1654 14
13 12 11	٠					1											11.610	12-213	12.816	13 · 509 13 · 417 13 · 329	14.016	14-616	1321
10 9																	11-450	12-047	12-643	13-238	13 -831	14-421	10
ğ				,													11-370 11-290	11·964 11·882	12·558 12·474	13·149 13·061	13·730 13·648	14·325 14·230	9

Case I.— $\delta a = 1$ km.

Values of w_g in seconds.

TABLE XXXI.

Long.	60	° 6	l° 6	2° 6	3°	64°	65	° 66°	67°	68°	69°	70°	719	72°	73°	749	75°	76°	77°	78°	79	80°	8 1°	Loz
Lat.								Р (D . E	i i	t	i	V	е		<u>ـــــ</u> ـــــــــــــــــــــــــــــــ				N	e g	a t i	v e	La
40°	1													2.25	1.854	1.45	7 1.060	0.868		╁╌				40
39 38 37														2.12	7 1·801 5 1·750	1.37	5 1.029 4 0.999	0.648						33
36 35 34	1	'								3-422	3-060	2.716	2-36	9.000	1.700	1.33	5 0.970	0.589	i	0.700	3 0•478	0.000	1.100	,
										3.239	2.906	2.642	2-298	3 1.959	1.608	1.26	3 0.918	0.578	0.227	0.119	0.465 0.453	0.811	1 · 188 1 · 156 1 · 126	30
33 32 31	5 · 587 5 · 458	5·27 5·15	7 4·96 L 4·84	5 4·6 7 4·5	53 41	4·338 4·238	4 · 028	3·708 3·618	3.398 3.311	3·157 3·078 3·004	2.833 2.762 2.696	0.442	2.126	1.807	1.5_6 1.488 1.452	1.168	0.849	0.549	0.210	0.110	0.441	0·769 0·750	1.069	3333
30	5-325	1	4.78			4 • 134	8 · 834	3.533	1	2.933					1.402	1		0.504	1		0·420 0·410	0·781 0·715	l	3
29 287	5 · 203 5 · 087 4 · 976	4.804	4.62 4.52 4.42	0 4.2	84 i	8.948	3.662	8·452 8·375 3·303	13.089	2.866 2.802	Q.KIK	2·278 2·227 2·179	1.937	1.647	1·386 1·356	1.06	0.774	0·493 0·482	0-195 0-191	0.108	0·401 0·392	0.699 0.683	0.996	200
26 25 24	4·871 4·778	4-600	4.32	8 4-0	56	8 • 783	8.510	3·235 3·171	2.960	2.685	9.410	9.104	1.896	1.612	1.328	1.043	0-758	0·478 0·463	0-187	0.099	0.384	0.669	0.954	
	4-681	4-42	4.16	1 8.90	ŏ	8-637	3.374	3·111	2.847	2.582	2.316	2·091 2·050				1.003	0.729	0·454 0·446	0.180	0.095	0.377 0.370 0.363	0.656 0.644 0.632	0.935 0.917 0.900	20
23 22 21								·	2.746	2.534 2.490 2.448	2.224	2.013 1.978 1.944	1.721	1.490 1.464 1.438	1.206	0.948	0·702 0·689	0.430		0.090	0·356 0·350	0.620 0.609	0.884 0.868	200
20												2000	1.001		1·185 1·165	1	0.666	0.423	0-167	ľ	0.343 0.338	0·598 0·588	0·853 0·838	20
19 18 7														1.373	1 · 147 1 · 181	0.901 0.888	0·655 0·645	0·409 0·403	0-162 0-160	1	0-332	0·579 0·571	0.825 0.813	19
16 5 4											•			1.338	1.116	0·876 0·865	0.636	0.397	0.157	0.088	0-323	0.563	0.802	
	٠				1.									1.322	1.089	0·856 0·847	0.622	0.388	0·155 0·158 0·152	0.081	0.319 0.315 0.312	0 · 556 0 · 550 0 · 544	0·792 0·784 0·775	15
13 12 1													•	1·293 1·279 1·267	1.054	0.838 0.829	0.603	0.376	0·150 0·149	0•079 0•078	0.805	0·538 0·532	0·767 0·759	13
10	.													1.256		0·821 0·813			0·147 0·146	0·078			0·751 0·745	1 1 10
8														1·246 1·238		0-806 0-800	0·586 0·581	0·366 0·362	0·145 0·143	0•076 0•076	0.297	0.519	0·740 0·736	9
ong.	8 1°	82°	83°	84	° {	85°	86°	87°	88°	89°	90°	9 1°	92°	93°	94°	95°	96°	97^	98°	99°	1000	4.0.40	4000	
int.									N									,		99	100°	101	102	Lor
30° 1	1 • 019	1.323	1-628	1.93	3 2	237 2	1.540	2.841		θ	g			i \										La
9 0	0·996 0·974	1·294 1·265	1.592 1.556	1.88	9 2	185 2 137 2	481	2.775	8-068	3.361	3·654	4.042 3.948	4.241	4.599	4-824	5·234 5·118	5 • 401	ł	6·118 5·972		6.692	6.980		30
6 6	0·954 0·935	1·239 1·215	1.409	1.77	8 2	092 2	87.4		2-936	3 ·216	3.497	3.860 3.776	4 · 146 4 · 055	4 · 431 4 · 334	4·716 4·613	4·999 4·890	5 · 281 5 · 166	5.441	5·840 5·714	6·117 5·986	6.538 6.394 6.257	6.820 6.669 6.526	6.043	222
5 4	900	1.168	1.435	1.70	2 1	968 2	234	2.500	2.765	3.020	3.293	3·698 3·624 3·556	3·892 3·821	4.084				5·327 5·220	5·595 5·482	5·862 5·742		6·390 6·260	6.518	200
Žlä) 868 j	1.128	1.394	1.84	1 1	.002 2	188	2.454	2.714	2·974 2·922	S·233 S·177	8·492 3·431	3 • 794 3 • 769	4-047	4.808	4.556	4-807	5.057	5.303	5 - 547	5 • 863 5 • 791	6.084	6-277	
)·838 :					·865 2 ·836 2		2·870 2·833				- 0.0		0-000	4.790	4.4/2	4.719	5·005 4·956	5·246 5·198	5·486 5·430	5·726 5·665	5.964	6 - 202	22
8 10	·825 ·813	1.058	1.299	1 · 561 1 · 541	3 1	809						3-318		8-926	4-166	4-400	4-635	4.885	5·142 5·096	5.904		5 • 840 5 • 791	- 1	20
	0·802 : 0·792 :	1.042	1 • 281	1.520	1.	758								8 876	4·135 4·108	4·866 4·835	4·596 4·562	9.925	5·055 5·016	5.280	5·508 5·463	5 · 781 5 · 730 5 · 680	5.950	18
4				_ 000	•	,							;	8 · 857	4-084	4.308		4.725	4·978 4·942	5.158	5.875	5 · 631 5 · 587	5.803	15
3 2 1																	l	4-668	4·910 4·880	5-092		5.511	5-718	
6																		4.618	4·853 4·826	5·062 5·033	5.271	5·477 5·444	5 683	
8														1			J,	4.574	4·802 . 4·780 .	1.985	5-212		- 1	10
							.										[-	-556	1.761		5·188 5·167	o-368 f	5.564	. 9

Case II.— $\delta b = 1$ km.

Values of u_g in seconds.

TABLE XXXII.

\Long.	i	1							-			_											
	60°	6 1°	62°	63°	64°	65°	66°	67°	68°	69°	70°	71°	72°	73°	74°	75°	76°	77°	78°	79°	80°	810	Long.
Lat.	<u> </u>												-	,,	1	75	70	"	70	79	80	01	Lat.
4.0°													10.294	10 - 295	10-297	10-298	10-297						40°
39 38 37					ł									9.856	9.858	9-859	9 · 858						1 1
		[ļ									9·385 8·388	8.883	9·386 8·883	9·385 8·882						39 38 37
36 35 34				٠					7.789	8·347 7·790 7·204	8·348 7·790 7·204	7.790	8·350 7·701 7·208	7.791	7.791	8·351 7·791 7·204	7 - 792	7.793	8·350 7·792 7·205		8·351 7·792 7·204	8·351 7·791 7·204	36 35 34
33 32 31	5-963 5-305			5·961 5·299	5·960 5·297	5·959 5·296	5·958 5·201	5 · 957 5 · 292	5.956	6·393 5·955 5·290	6.502 5.054 5.288	6·592 5·953 5·287	5.952	6.591 5.951 5.285	5.950	6.590 5.950 5.283	5.950	5.949	6.500 5.019 5.281	5.949	6·590 5·950 5·282	6 · 500 5 · 950 5 · 283	33 32 31
30	4-610	4.616	4.614	4-611	4-608	4-606	4 • 604	4-602	4.600	4.598	4.596	4.594	4.593		1	4.590		1	4.587		4.589	4.590	30
286 486	3·008 3·170	3.004	3·901 3·161	3·897	3.893	3·890 3·148	3.887	3-884	3.882	3·880 3·135	3.878	3.876	3.874	3.872	3.871	8-870	3.869	3.868	3.867	3.868	3-869	3.870	
	2.400	2.403	2.398	2.392	2.386	2-381	2.377	2.373	2.369	2.366	3·132 2·363	2.361	3·128 2·358	2.356	3·125 2·355	8·124 2·354	3 · 123 2 · 353	3·122 2·352		3·122 2·352	3·123 2·353	3·124 2·354	29 28 27
26 25	1·623 0·815	1.617 0.808	1.611 0.800	1.604 0.793	1.597 0.786	1·501 0·779	1·585 0·772	1 · 581 0 · 767	1·577 0·763	1·574 0·759	1 · 571 0 · 755	1.567 0.751	1.564 0.748	1 · 562 0 · 745	1.560	1.559	1.558	1.557	1.556	1·557 0·739	1.558 0.740	1·550 0·742	26 25
24								0.069	0.074	0.079	0.083		0.091							0.102		O • 098	24
23 22 21								1.804	1.811	0.938 1.817	0.043 1.823	1.828	0.951 1.832	1.836	1 .839	0.960 1.842	1.845	1 - 847	0.965 1.848	0.963 1.846	0.961 1.843	0.958 1.840	23 22 21
20								2-700	2.112	2.719	2.725	2.781	2.735	2·739 3·662	1	2.747 8.670		ľ	2.753		2.748	2.745	
19		ĺ		·										4.605		4-613			8·678 4·622		3·672 4·615	8 · 668 4 · 611	20
19 18 17													5.560	5 · 565 6 · 545	5.570	5.574 6.554	5.578	5.581	5·583 6·563	5 • 580	5 · 576 6 · 556	5 · 571 6 · 551	19 187
16 154				is — ab e and -		e hori w it.	zontal						8.545	7 · 540 8 · 552 9 · 577	8.558	7 · 551 8 · 563 9 · 588	8.567	8.570	7·559 8·571 0·596	ಚ∙568	7 · 552 8 · 564 9 · 589	7 · 547 8 · 550 9 · 584	16 15 4
13 12 11													10.600	10-618	10.625	10-630	10.634	10.637	10.699	10.695	10.631	10.696	
1,7													11.00%	11.671	111-678	11 68 *	11.688	111 - 691	11.602	11.689 12.755	11.685 12.751	11.680 12.746	13 12 11
10													18-802	13-811	13.818	13-824	18-828	13-832	13-839	13-830	13 - 825	13-820	10
8		i											14-886 15-978	11-895 15-087	14.902 15.094	14-908 16-000	14·912 16·004	14-916 16-008	14.917	14·014 16·006	14-009	14.904 15.996	98
Loug.			1									===	===										
	81°	82°	83°	84°	85°	86°	87°	88°	89°	90°	91*	92°	93°	94°	95°	96°	97°	98°	99°	1000	1 O 1°	1 000	Long.
Lat.															30	90	9,	90	. 33	100		102	Lat.
30°	4.590	4-591	4-502	4.504	4-596	4-508	4.600	4.602	4.604	4.606	4-608	4.610	4-618	4.616	4.618	4-621	4-624	4.627	4.630	4.633	4.636	4.630	30°
29 28 27		3·872 3·126			3·878 3·132		3·882 3·187	3·884 3·140	3·886 3·148	3.880 3.146	3.802	3.895	3-890	3.003	3-906	8-910	3.914	3-918	3.922	3.926	3 - 931	3.936	
				2.360	2.363	2 366	2.368	2.371	2.375	2.380		2.300	2.396	2.402	3·169 2·407	3·174 2·413		3·184 2·425		3·194 2·439		3·206 2·453	29 28 27
26 25	0.742		0.747	0.750		0.757	0.761		0.771	0.777	1·505 0·788	0.790	0.708	() • 805	1.621 0.813	0.821	0.829	1.642 0.837	1.650 0.846	1.658 0.855	1.667 0.866	1.676	265 254 2024
24 23					0.085	0.080				0.057	0.050	0.011	0.085	U·024	0.014	0.003	0.008			0.044		0.070	24
	1.840	0·055 1·837 2·741	1.834	1.830	1.825	1.819 2.721	1.813	0.928 1.807 2.708	1.800	0.914 1.791	0.006 1.782	1.780	1.779	0.885 1.767	1.750	1.7742	3 MO.4	$0.841 \\ 1.722$	1 500	0.815 1.695	0·802 1·681	0·788 1·667	23 22
20		3.664		3.654		ĺ						- 003	4.003	2·673 8·506	7.001	2.039	2.637	2.024	2-611	2.597	2.583	2.568	21
	4.611	4-607	4-602	4.506	4.500								í					3·546 4·480		4.459	3·503 4·448		20
1 9 1 8 1 7	5·571 6·551	5 • 566 6 • 546	6 · 541	6 · 534	6 526								5·512 6·402	4 • 539 5 • 500 6 • 480	5·487 6·467	5 474 6 454	5.481	5.447	5.432	5·416 6·394	1 5 • AM	E.001	19 187 17
16 15 14	7 · 547	7 • 542	7 • 536	7•529	7-521								- 1	7-476			7·436 8·448	7·431 8·432 9·456	7·405 8·415	7·388 8·398		7·353 8·361	16 15 14
132 121						 da — ab			ontal								10-513	10-497	10-479	10.460	10-441	10-421	
						and +										1	11-565	11•548:	11.530	11.511 12.57±	111-402	11.471	1321
10																- 1				13-647	ł		
a			- 1			i				j						1	14.709	14-7741	14.7750	14.7701	14 800	1 4 000	١ ,
9 8			1			- 1			- 1	- 1			- 1			ŀ	15.800	15-870 1	5.P40	15 827	14.700	14.080	9 8

Case II.— $\delta b = 1$ km.

Values of v_g in seconds.

TABLE XXXIII.

Long	ş. 6	o° d	5 1°	62	° 6	3°	64°	65	° 66	5°	67°	68°	69°	70	° 7	1° 7	2° 7	73°	749	· 75	· 76	° 77	7º 78	3° 79	o 80	0° 81	° Lon	e.
Lat.		!_							N	е	g	а	t	i		e							_ _			i v e		_
40	•									T				T	T				T				┵	. 0 8	10	1 V E	Lat	j.
39 38 37																0.	197 () 109 ()	419	0.330	0.23	3 0·14 9 0·14	8	l	•			40	
1	ı											0.000	0.01			0.1	19 0. 27 0.	427 434	0.336	30.24	4 0·15 8 0·15	2					39 38 37	
3 <u>6</u> 35 34												0.910	0.813 0.818 0.829	0.72	5 0-6	31 0-	33 0 37 0 41 0	449	0.348	0.25	2 0·15 3 0·15 5 0·15	8 0.00	63 0.0	33 0·12	9 0-3	24 0.3	9 35	
33 32 31	1.62	75 1.	582 584	1·488 1·400	3 1·3: 3 1·3:	94 96	1 · 299 1 · 301	1·20· 1·20	4 1·11 8 1·11	10 1 12 1	·016	0.919 0.922 0.923	0.826 0.828	0.78	4 0-64	38 0-8 10 0-8	43 0 45 0	448 450	0.858	0.25	7 0·16 9 0·16	1 0.00	34 0.0	33 0·12 33 0·13	0 0.2	37 0.32		
30	1.62	1			1.3	98 :			8 1.13			0.928		1	" "	- 0-£	45 0. 45 0.	450	0.355	0.25	9 0·16 9 0·16	2 0.00	34 0.0	34 0·13 34 0·18	1 0-2	28 0.32	5 31	
29 28 27	1.67		578 :	1-484	1 · 89 4 1 · 30 4 1 · 88	39 1	1-294	1.198	1·11 1·10 1·09)5 1	-011	0.922 0.918 0.912	0.824	0.73	0.69	9 0-5	44 0·4	449 447	0.854	0.258	3 0·16	0.06	0.08	34 0·13 33 0·13	0 0.2	7 0.32		
26 25 24	1.65 1.64	5 1-8	68 J	1 • 470	1.87	76 1	-281	1.186	1.09	2 0	-999	0.008	0-814	0.72	0 62	8 0.5 8 0.5	38 0·4 34 0·4	444 441	0.349	0.25	0.15	0.08	3 0.03	33 0·13 3 0·12	9 0.25	5 0.32	0 27	
1										0	•986	0-900 0-894 0-886	0.802	0-710	0. 61	8 0·5 8 0·5	30 0·4 26 0·4	438 434	0.345	0.251	0.15	7 0.00	2 0.03	3 0·12 3 0·12 2 0·12	8 0.23	2 0.31	5 25	
23 22 21										0	-969	0 · 878 0 · 869	0.787	0.708 0.696 0.690	0.60	7 0.5	22 0·4 17 0·4 13 0·4	128	U • 337	0.245	0 · 15: 0 · 15: 0 · 15:	0.06	0 0 03 0 0 03 0 0 03	2 0.12	5 0.21	7 0.30	22	ı
20 19																0.5	08 0.4				0.150	1 - 5	0 0.03			1	1	
1 9 8 7	l														l	0.4	2 0·4 5 0·4 6 0·4	09	0.323	0.235	0-148 0-147 0-144	0.05	8 0.03	1 0·12 1 0·11	0.20	7 0.20	18	
654																0.47	6 0·3 4 0·3	93	0.310	0.226	0·141 0·137	0.050	0.02	0 0·112 0 0·114	0.19	9 0.28		1
1321																0.48	2 0.3	78	0 • 293	0.213	0.133	0.058	0.02	0 · 112 3 · 0 · 109	0.18	9 0.26	14	
10																0.42		51	0 • 276	0.201	0 · 125 0 · 121	0.051 0.050 0.048	0.026	7 0·105 3 0·102 5 0·008	0.17	7 0.253	12	ľ
9																	5 0·32 B 0·81	1			0·116 0·111	0-046	1					ı
			=	_				_		L							0.29		0-230	0-177	0.111	0.044		0-089	0.15			
Long.	8 1°	82°	83	3°	84°	85	s° ε	36°	87°	88	3° 8	9°	90°	9 1°	92°	93	92	1°	95°	Q6°	97°	98°	99°	100	101	2.400	Tana	1
Lat.	-		-							P											97	90	99	100	101	° 102	Long	
30°	0-325	0.421	0.5	516).R10	0.7	04.0	700				0	8	i	t	i	1	v	•	.							Lat.	
29	0·324 0·323	0.420	0.5	15 (0.809	0-7	08 0.	797	0·893 0·892	0.0	RA 1.	ADA 1	- 1	1.271			1		-648	1		1.929				2.208	30	1
26	0·320 0·318	0.411	0.5	508 ()·602	0-6		790	0·888 0·883	0.93	82 1. 76 1.	076 1 070 1	163	1 - 259	1.354	1-456	1.54	19 1 13 1	. 000	1·735 1·727	1.828	1.021	2·019 2·014 2·004	12.100	9.100	9.900		ı
25 24	0·315 0·313	0·409 0·406	0.5	98 (0·594 0·589	0-6	87 0 81 0	785 779 773	0 878 0 872 0 866	0.86	70 1. 84 1. 58 1.	063 1 057 1 050 1	·156 ·150 ·142	1 · 251 1 · 244 1 · 285	1.346 1.338	1.441	1.52	35 1 35 1	·626]	[ł	1	2·273 2·260 3·246		
22 1	0-311 0-309 0-306	110 A(16)	n.a	OA 17	\. E PA				0.850	0.9	41 1.	042 1 032 1	123	1 • 226 1 • 214	1.318	1.411	1-50	3 1	596 1	687	1.777	1.867	1.957	2-047	2-138			
	0.303						56 O·		0·841 0·831 ·	ישניט	21			1-201	1.599	1.980	1.48	0 1	• 572 1	·661	1.749	1.838	1.941 1.926	2·020 2·013		2·210 2·191	23 22 21	l
18 1	0·299 0·294 0·289	0.383	0.4	68 C	· 562 · 554	0.6	39							1 • 185	40V	1.369	1.45	8 1.	546 1	- 1			1.910 1.893	1.996		2·171 2·151	20	
1	0.283			"	·5 4 4 ·582											1.347	1.43	6 1. 3 1.	583 1 519 1	·620 ·605	. 000	- 112	1.099	1.959 1.938	2·043 2·021	2·151 2·127 2·103	19 18 17	
																1.335	1.43	η 1.	505 1	- 1:	L·650	1 · 751 1 · 730 1 · 708	1.833 1.811 1.787	1.915 1.892 1.865	1.996 1.971 1.948	9.050	1 6 1 5 1 4	
1321																					-610 -589	1-686 1-663	1.763	1.839	1.914	1-988	132	1
10																				'	-000 .	1.000	1.710 1.682	1.781	1.850	1.918		ľ
8	·										٠									11	-517 1	- 585	[1.777	7 . 700	1.017	10 9 8	

Case II.— $\delta b = 1$ km.

Values of w_g in seconds.

TABLE XXXIV.

Long.	60°	61°	62°	63°	64°	65°	66°	67°	68°	69°	70°	71°	72°	73°	74°	75°	76°	77°	78°	79°	80°	8 1°	Long.
Lat.						F	· 0	8	i	t	i	v	е						N	e g a	ti	v, e	Lat.
40°		<u> </u>											0.216	0-177	0.189	0.102	0-066			, _	[. 40°
39 38 37				,			i						0·194 0·171	0.140	0.110	C.091 0.080	0.050		,	, -		1	39 38 37
										0-190		0.144	0.147	0-100	0.078	0.056	0.035	0.014		0.028	0.049		
365 34									0 · 127	0·151 0·112 0·071	0.097	0.084		0.058	0.045	0.044	0.020	0.010	0.004	0.022	0.028		36 35 34
33 32 31	0·091 0·004	0·082 0·000	0.004	0·067 0·006	0.061 0.007	0·055 0·008	0-049 0-009	0·042 0·010	0.036	0-030	0.025	0.052 0.021 0.012	0.017 0.017	0.014	0.011	0.020 0.007 0.005	0.004	0.005 0.001 0.001	0.001	0.008 0.010	0.018 0.006		33 32 31
30	0·084 0·178		0.082			0.071			0.061		0.052		0.040			0.010		0-005	1	0.010	0.017	0.023	30
29 287	0.173 0.263 0.354	0.252	0·160 0·241 0·321	0.220	0.216	0·135 0·201 0·268	0.187	0.173	0·110 0·159 0·211	0.145	0.091 0.130 0.170	0.080 0.114 0.150	0·069 0·098 0·128	0.081	0.084	0 · 088 0 · 047 0 · 062	0.030	0.018 0.018	0.008	0·017 0·024 0·032	0.029 0.042 0.055	0.041 0.059 0.078	29 28 27
2654 2024	0•448 0•546		0·404 0·401			0·337 0·407	0·313 0·378	0.347	0·263 0·316 0·371	0.285	0·211 0·258 0·296	0·185 0·222 0·259	0·159 0·190	0.158	0.126	0·076 0·092	0.058	0.019 0.023	0.012	0.039	0.068 0.082		26 25 24
24 2001								0.469	0·426 0·483	0-383	0·341 0·384	0·298 0·386	0.222	0.212	0.168	0·107 0·123	0.077	0-031	0.016	0.055	0 - 109	0.153	
21 20			•						0.540		0.430	0.376	0.288 0.322 0.356	0-267	0.210	0·137 0·153 0·169	0.096	0.084 0.088	0.020	0.070 0.078 0.086	0.136	0.193	232
19 187													0·391 0·426	0.322	0.254	0·105 0·185 0·201	0.116	0.048 0.050	.0.024	0.088 0.094 0.102		0.232	20 19 187
				ns belo ne are									0.462	0.881	0.300	0.219	0.137	0.054	0.020	0.111	0.193	0.275	1
1654 14		abov		me are	орров	100 00	ттове						0·539 0·578	0.444	0.350	0·255 0·273	0-159	0.063 0.067	0.033	0·129 0·138	0.225		16 15 14
1321													0.618 0.658 0.698		0.426	0·291 0·310 0·329	0.104	0·072 0·077 0·083	0.040	0-148 0-157 0-167	0.274		13 12 11
10													0.739		l	0.849		0-087		0.177	0.808		10
98													0·780 0·821	0·642 0·675			0 - 230 0 - 242	0.002 0.097		0·187 3 0·197			8
Long.	8 1°	82°	83°	84°	85°	86°	87°	88°	89°	90°	9 1°	92°	93°	94°	95°	96°	97°	98°	99°	100	101	102°	Long.
				0-7		-	0,			30	3,	92	93	37			"			100		102	Long.
Lat.			i					P	0	s	i	t	i	<u> </u>	7.	е							Lat.
30°		0·030 0·052		0·044 0·077			0.059		0·066 0·124	0·070 0·132		0-078 . 0-150	0.081 0.158		0-084		1	0·081 0·184	0·079				"
987 987	0.059	0.076 0.100	0.003	0·110 0·143	0.125	0.140	0.155		0.183	0.197	0.211	0·224 0·299	0.237	0.249	0.260		0.279	0-288 0-394	0.295	0.30	0.305	0.809	1 28
26 25 24	0-115	0.148	0.180	0·177 0·212 0·248	0.244	0.275	0.307	0·281 0·388 0·396	0.305 0.368 0.432	0.398	0.427		0.398 0.482 0.568	0.510	0.537	0 · 463 0 · 564 0 · 680	0.590	1 0-614	0.636	0 - 536 3 0 - 657 3 0 - 828	0.677	0.565 0.697 0.891	25
23 22 21	0.173	0·198 0·223	0.273	0.321	0·327 0·369	0.418	0·413 0·467	0·457 0·515	0.499	0.539	0 · 579 0 · 658	0·527 0·524	0·572 0·575	0-616 0-625	0.659	0·703 0·724	0.745 0.772	0-786 0-818	0·826 0·864	0.866	0-907	0.947	23
21 20		0·249 0·274			0·413 0·459		ļ	0·577 0·642			1	0·523 0·522				0.747		0-853 0-888) 1·062 5 1·124	1
19 18 17	0 • 253	0-300 0-328	0-403	0.478	0·505 0·552							•	0·590 0·595	0.670	0.743	0·791 0·816	0.890	0.925 0.963	1.035	1 1 107	1.177	1 · 185	18
16 1654	i	0·356 0·385		1	0-600 0-648								0·601 0·609	1		0·842 0·868	0.954		1.126	1 · 158 3 1 · 210 3 1 · 264	1-298	1 · 311 3 1 · 377 4 1 · 444	16
1																	1.024	1.123	1.221	1 1.319	1-416	1 513	
13																	1.095	1.208	1.320	1.43	1.542		il ið
10 9 8	1																1.207	1·297 1·342	1-476	1.61	1-745	4 1·798 2 1·872	1
8														<u> </u>			1.245	1.388	1.53	i î•67	1.81	1.948	8

Case III. $-u_0=1''$.

Values of u, v, w

TABLE XXXV*.

in seconds.

	1	T	1			1.		лия.						
Lat.	Long	. 90°	91°	92°	98°	94*	95°	96°	97°	98°	99°	100°	101°	102°
					Va	lues	of 2	ı (pos	ritive)	•		_!		
29	°-8°	0.977	0.978	0.969	0.964	0.959	0 · 954	0.949	0.944	0.988	0.932	0.926	0.919	0.912
		1		-		Val	ues	of v.				_1		J
29° 28 27		0 119 0 114 0 109	0·128 0·123 0·118	0·137 0·132 0·126	0 · 1 47 0 · 1 41 0 · 135	0·156 0·150 0·144	0·165 0·158 0·152	0·175 0·167 0·160	0·184 0·176 0·169		0·202 0·194 0·185	0·211 0·202	0.219	0·228 0·219
26 25 24	0	0·104 0·100 0·095	0·108 0·108	0·121 0·116 0·110	0·129 0·124 0·118	0·137 0·131 0·125	0·145 0·138 0·133	0·158 0·146 0·140	0·161 0·153 0·147	0·169 0·161 0·155	0·177 0·169 0·162	0·195 0·185 0·176 0·169	0·202 0·193 0·185 0·176	0·210 0·201 0·192 0·183
28 22 21 20	i	0 091 0 087 0 082 0 078	0.098 0.093 0.089	0·105 0·100 0·095	0·112 0·107 0·102	0·119 0·114 0·108	0·126 0 120 0·114	0 134 0 127 0 120	0·141 0·134 0·127	0·147 0·140 0·133	0 154 0 147 0 140	0·161 0·153 0·146	0·168 0·160 0·152	0·175 0·166 0·158
19 18 17	i.	0·074 0·069 0·065	0·079 0·075 0·071	0·090 0 085 0·080 0·076	0.096 0.091 0.086 0.081	0·102 0·097 0·091 0·086	0·108 0·102 0·097 0·091	0·114 0·108 0·102	0·120 0·114 0·107	0·126 0·120 0·113	0·132 0·125 0·118	0·138 0·131 0 123	0·144 0·136 0·129	0·150 0·142 0·134
16 15 14	8 0	0 061 0 057 0 058	0·066 0·062 0·058	0·071 0·066 0·062	0·076 0·071 0·066	0·081 0·075 0·070	0.085 0.080 0.074	0·096 0·090 0·084 0·079	0.101 0.089 0.089	0·106 0·100 0·093	0·111 0·104 0·098	0 116 0 109 0 102	0·121 0·114 0·106	0·126 0·118 0·110
13 12 11	Ъ	0·049 0·045 0·041	0·053 0·049 0·045	0·057 0·053 0·048	0·061 0·056 0·051	0.065 0.060 0.055	0.069 0.063 0.058	0.078 0.067 0.061	0.076 0.070 0.064	0.087 0.080 0.074 0.068	0·091 0·084 0·077 0·071	0·095 0·088 0·081 0·074	0·099 0·091 0·084 0·077	0·108 0·095 0·088
10 9 8		0.038 0.034 0.030	0·041 0·037 0·033	0·044 0·040 0·036	0-047 0-043 0-089	0·050 0·046 0·042	0·053 0·048 0·044	0·055 0·050 0·045	0·058 0·052 0·047	0.061 0.055 0.049	0·064 0·057 0·051	0·067 0·060 0·053	0·070 0·063 0·056	0.080 0.073 0.065
						Val	ues	of w			0 001	0 003	0.036	0.058
29°		0.245	0.264	0.283	0.303	0.322	0.341	0.000	0.070		ī — Ţ			
28 27 26		0·242 0·240 0·238	0 · 261 0 · 259 0 · 257	0·281 0·278	0·300 0·297	0·319 0·316	0·338 0·334	0·860 0·357 0·353	0·379 0·375 0·372	0·398 0·394 0·390	0·416 0·412 0·408	0·435 0·431 0·427	0·453 0·449 0·444	0·471 0·467 0·462
25 24 28	6 A	0·236 0·234 0·232	0·255 0·258 0·251	0·276 0·273 0·271 0·269	0·294 0·292 0·290 0·287	0·313 0·311 0·308	0·332 0·329 0·326	0.350 0.347 0.344	0·369 0·363 0·363	0.387 0.383 0.380	0·405 0·401 0·398	0·423 0·419 0·416	0·441 0·437 0·433	0·458 0·454 0·451
22 21 20		0·231 0·229 0·228	3·249 0·247 0·246	0·267 0·265 0·264	0·287 0·285 0·284 0·282	0·306 0·304 0·302	0·324 0·322 0·319	0·342 0·339 0·337	0.360 0.357 0.355	0·378 0·375 0·372	0·395 0·392 0·390	0·413 0·410 0·407	0·430 0·427 0·424	0·448 0·444 0·441
19 18 17	.,-	0·227 0·225 0·224	0·244 0·242 0·241	0·262 0·261 0·259	0·280 0·278 0·277	0·300 0·298 0·296 0·295	0·317 0·315 0·313 0·312	0·335 0·333 0·331 0·329	0·352 0·351 0·348 0·347	0·368 0·366	0·385 0·383	0·404 0·402 0·400	0·421 0·419 0·416	0·438 0·436 0·438
16 15 14 18	0	0·222 0·221 0·220	0 · 240 0 · 239 0 · 238	0·258 0·256 0·255	0.278	0·293 0·291	0·310 0·309 0·307	0·327 0·326 0·324	0·345 0·343 0·341	0·364 0·362 0·360 0·358	0·381 0·379 0·377 0·375			0·431 0·429 0·427
12 11 10	P	0·218 0·218	1	. 1	0·270 0·270	0·288 0·287	0·306 0·305 0·304	0·323 0·322 0·321	0·340 0·389 0·388	0·357 0·355 0·354	0·373 0·372	0.388	0·406 0·405	0·425 0·423 0·421 0·420
9 8] ,	0.216	0.283	0.250	0.268	0.285	0.302		0·387 0·386 0·885	0·353 0·352 0·351	0·369 0·368	0·386 0·385	0·402 0·401	0·418 0·417 0·416

^{*} Extension of tables XVII, XVIII for Burma and Assam.

Case IV.— $w_0=1$ ".

Values of u, v, w TABLE XXXVI*.

in seconds.

Lat.	Long.	90°	91°	92°	98°	94°	95°	96°	976	98°	99°	100°	101°	102°
					Va	lues	of u	(neg	ative).	•			<u></u>	
29°	-8°	0.196	0.212	0.227	0.243	0.258	0.273	0.288	0.303	0.318	0.883	0.348	0.363	0.377
						V a	lues	of v.		-				•,
29° 28 27	sitive	0.085 0.065 0.045	0.082 0.063 0.043	0.081 0.061 0.041	0.078 0.059 0.039	0.076 0.057 0.037	0·074 0·055 0·035	0.071 0.052 0.032	0.068 0.049 0.030	0·065 0·046 0·027	0.062 0.043 0.024	0·059 0·040 0·021	0.056 0.037 0.018	0·052 0 033 0·014
26 25 24	Po	0.026 0.007	0·024 0·005 0·013	0.022 0.004 0.015	0.020 0.002 0.017	0.018 0.000	0·016 0·002 0·021	0·013 0·004 0·023	0.001	0.008	0 005	0.003	0.000	0.008 0.050
28 22 21	Θ	0.030 0.048 0.066	0.032 0.050 0.068	0·033 0·051 0·069	0.035 0.053 0.071	0·037 0·055 0·072	0.039 0.057 0.074	0.041 0.059 0.076	0.025 0.043 0.061 0.078	0.028 0.046 0.063 0.080	0.031 0.048 0.065 0.082	0.033 0.051 0.068 0.085	0.036 0.054 0.071 0.088	0·039 0·057 0·074 0·090
20 19	.i	0·084 0·100	0·085 0·102	0·086 0·104	0.088	0·090 0·107	0.091	0·093 0·110	0.095	0·097 0·114	0·099 0·116	0·102 0·118	0·104 0·120	0·106 0·122
18 17 16	حد	0·118 0·135	0·119 0·136	0·121 0·138	0·122 0.139	0·124 0·140	0·125 0·142	0·127 0·143	0·129 0·145	0·130 0·146	0·132 0·148	0·134 0·150	0·136 0·152	0·138 0·154
15 14	ස් ක	0·151 0·167 0·184	0·152 0·169 0·185	0·154 0·170 0·187	0.155 0.172 0.188	0·157 0·173 0·189	0·158 0·174 0·190	0·159 0·175 0·192	0·161 0·177 0·198	0·163 0·178 0·194	0·164 0·179 0·196	0·166 0·181 0·197	0·168 0·183 0·199	0·170 0·185 0·200
13 12 11	θ	0·201 0·216 0·232	0·202 0·217 0·233	0·204 0·219 0·235	0·205 0·220 0·236	0·206 0·221 0·237	0·207 0·222 0·238	0·208 0·223 0·239	0·209 0·224 0·240	0·210 0·225 0·241	0·212 0·227 0·242	0·213 0·228 0·243	0·214 0·229 0·244	0·215 0·230 0·245
10 9 8	N	0·248 0·264 0·279	0·249 0·265 0·280	0·251 0·266 0·281	0·252 0·267 0·282	0·252 0·267 0·282	0·253 0·268 0·283	0·254 0·269 0·284	0·255 0·270 0 285	0·256 0·271 0·286	0·257 0·272 0·287	0·258 0·273 0·288	0·259 0·274 0·289	0·260 0·275 0·290
						Va]	lues	of w			0 20.	0 200	0 200	
29°		1·019 1·009	1·015 1·005	1·011 1·001	1·006 0·997	1·001 0·992	0·996 0·987	0.990 0.982	0·984 0·976	0·978 0·970	0·972 0·963	0·965 0·956	0·958 0·949	0·950 0·942
27 26 25 24	Ð	1·000 0·992 0·984 0·976	0.997 0.988 0.980 0.972	0·992 0·984 0·975 0·968	0.988 0.979 0.971 0.963	0.983 0.974 0.966 0.958	0·978 0·969 0·961 0·954	0.972 0.963 0.956 0.948	0.966 0.958 0.950 0.943	0.960 0.952 0.944 0.937	0·954 0·945 0·938	0·947 0·939 0·931	0·940 0·932 0·925	0·933 0·925 0 918
23 22 21	i v	0·969 0·962 0·955	0·965 0·958 0·951	0·961 0·954 0·947	0·956 0·949 0·943	0·951 0·944 0·938	0·947 0·939 0·934	0·942 0·934 0·928	0 936 0 928 0 923	0.930 0.923 0.917	0·931 0·924 0·917 0·911	0.924 0.918 0.910 0.905	0.917 0.911 0.904 0.898	0.910 0.904 0.897 0.891
20 19 18 17	i t	0·949 0·943 0·938 0·933	0.945 0.939 0.934 0.929	0·941 0·935 0·930 0·925	0.937 0.931 0.926 0.921	0·932 0·926 0·921 0·916	0·927 0·921 0·916 0·912	0.922 0.916 0.911 0.907	0·916 0·911 0·906 0·901	0·911 0·905 0·900	0·904 0·899 0·894	0·898 0·893 0·888	0·892 0·886 0·882	0·885 0·879 0·875
16 15 14	∞ 0	0·928 0·924 0·920	0.924 0.920 0.916	0·920 0·916 0·912	0.916 0.911 0.908	0·911 0·907 0·903	0·907 0·902 0·898	0·902 0·897 0·893	0.896 0.892 0.888	0.896 0.891 0.886 0.883	0·890 0·885 0·880 0·877	0.883 0.879 0.874 0.870	0.877 0.872 0.868 0.864	0.870 0.865 0.861 0.857
13 12 11	Н	0·916 0·913 0·909	0.912 0.909 0.905	0·908 0·905 0·901	0·904 0·901 0·897	0·899 0·896 0·892	0·894 0·892 0·888	0·889 0·887 0·883	0.884 0.881 0.878	0·879 0·876 0·872	0·873 0·870 0·866	0·867 0·864 0·860	0·861 0·858 0·854	0·854 0·851 0·847
10 9 8		0.906 0.903 0.900	0·902 0·899 0·896	0·898 0·895 0·892	0·894 0·891 0·888	0·890 0·887 0·884	0·885 0·882 0·879	0·880 0·877 0·874	0·875 0·872 0·869	0·869 0·866 0·863	0·863 0·860 0·857	0·857 0·854 0·851	0·851 0·848 0·845	0·844 0·841 0·838

^{*} Extension of tables XIX, XX for Burma and Assam.

It will be noticed that in tables XXXI, XXXIV discontinuities in the values of w_g in the neighbourhood of lat. 20°, long. 91°, 92° are easily apparent. More careful examination of tables XXIX, XXX, XXXII, XXXIII reveals similar but much less marked discontinuities in the values These are inevitable in view of the method by which the quantities have been found, and the differences are in agreement with those which may be computed by equations (42)— (47) of Chapter I following the two paths (viz. by direct geodesic and by two geodesics through the second origin) to such a point as $L = 91\frac{2}{3}$ °, $\lambda = 20$ °. The amounts are not however sufficiently large to be of practical importance: and moreover they do not actually occur to the same extent in the actual triangulation of India as in the tables, for the tables have been extended somewhat beyond the triangulation limits for facility of subsequent interpolation. It may be mentioned in passing that the azimuth of a ray of length 40 miles is altered by an amount of order 0"·1 when its terminal latitude or longitude is altered by an amount of order 0"·001: so that the taking out of azimuth to more than one place of decimals is not really defensible when the coordinates are given to only three places. In the present instance the ordinary procedure of the department has been followed and three places of decimals have been kept, with the idea that at any time the latter two of these may be disregarded.

CHAPTER IV.

Geometrical change from one Spheroid of Reference to another.

1. In selecting a spheroid of reference for the geoid there is no doubt as to the direction of the polar axis; for this is the axis about which heavenly bodies appear to rotate. Hence all possible spheroids of reference are defined by the size of their axes and the position of their centres.

Consider two such spheroids. Let the semi-axes of one be a, b and of the other a'=a+da, b'=b+db. Select the origin of coordinates at the centre of the first spheroid and let the coordinates of the centre of the second be aa, $a\beta$, $b\gamma$ where a, β , γ are small quantities.

In relating a point on a geoid to the spheroid the natural course seems to be to draw the normal through the point to the spheroid and to find out the coordinates of the point where this normal meets the spheroid. So long as the spheroid and geoid are not widely different this normal may, without appreciable error be considered as the vertical to the geoid and also as a straight line. For supposing there is a plumb-line deflection of 1 minute and a separation of the geoid and spheroid by 300 feet, the divergence of the normal from the vertical only amounts to about one inch which only affects coordinates by 0.001 of a second. It is accordingly satisfactory to relate a point on the geoid to one on the spheroid by merely producing the vertical of the geoid until it meets the spheroid. Considering then the relation between the points thus obtained on two reference spheroids corresponding to a point on the geoid, it is clear that all these points may with sufficient accuracy be regarded as being on a straight line, this straight line being normal to one of the three surfaces, whichever is most convenient.

To any triangle formed by three points on the geoid there is a corresponding triangle on any reference spheroid. The angles of these triangles are not identical. Those on the spheroid have different spheroidal excesses. The angles of a triangle observed on the geoid accordingly require correcting before they can be properly applied to a spheroid of reference. If this is properly done then this point relationship given above will hold. It is a fault in reduction of most, if not all, survey observations that geoidal and spheroidal angles have been treated as identical.

2. The coordinates of a point P on the first spheroid may be represented by $a \cos \phi \cos L$, $a \cos \phi \sin L$, $b \sin \phi$

while those of a related point P' on the second spheroid may be represented by

$$a\alpha + a'\cos\phi'\cos L'$$
, $a\beta + a'\cos\phi'\sin L'$, $b\gamma + b'\sin\phi'$

 $\phi' = \phi + d\phi$, L' = L + dL. It is necessary to find expressions for $d\phi$ and dL. It is customary to decide on a point on a spheroid of reference as origin. All spheroids of reference are supposed to pass through this. Suppose that the origin lies in the plane of xz, so that L vanishes at the origin. In notation of previous chapters $dL=v, d\phi=u_1$. At the origin these quantities reduce to v_0 and $_0v_1$. The value of v_0 is not obtained directly, but is derivable after azimuth has been decided on by the relation

This of course does not show the error of longitude of the origin: it merely shows by how much it will be changed if the azimuth is changed on the supposition of a plumb-line deflection in prime vertical.

Since the origin on either spheroid is identical in position the expression for its coordinates may be equated. Hence putting $\phi = \phi_0$ and L = 0

$$a \cos \phi_0 = a\alpha + a' \cos \phi_0' \cos v_0$$

$$0 = \alpha\beta + \alpha' \cos \phi_0' \sin v_0$$

$$\delta \sin \phi_0 = \delta\gamma + \delta' \sin \phi_0'$$

$$(2)$$

Neglecting second order quantities and substituting from (1) for v_0 (2) may be written

$$a + \frac{da}{a}\cos\phi_0 - {}_0u_1\sin\phi_0 = 0$$

$$\beta + w_0\frac{\cos\phi_0}{\sin\lambda_0} = 0$$

$$\gamma + \frac{db}{b}\sin\phi_0 + {}_0u_1\cos\phi_0 = 0$$

$$(3)$$

These equations serve to determine a, β , γ in terms of the axes changes and changes at the origin: if the quantities $\frac{da}{a}$, $\frac{db}{b}$ are multiplied by cosec 1' the results are expressed in seconds.

3. Two further conditions are obtained by expressing the fact that the normal to the first spheroid at any point passes through the related point on the other spheroid.

The normal at P is

$$\frac{x - a \cos \phi \cos L}{\frac{\cos \phi \cos L}{a}} = \frac{y - a \cos \phi \sin L}{\frac{\cos \phi \sin L}{a}} = \frac{z - b \sin \phi}{\frac{\sin \phi}{b}}$$

and the conditions that P' should lie on this are

$$\frac{aa + d (a \cos \phi \cos L)}{a} = \frac{a\beta + d (a \cos \phi \sin L)}{\frac{\cos \phi \sin L}{a}} = \frac{b\gamma + d (b \sin \phi)}{\frac{\sin \phi}{b}}$$

whence

$$\frac{a}{\cos\phi\cos L} + \frac{da}{a} - \tan\phi \ u_1 - \tan L \cdot v = \frac{\beta}{\cos\phi\sin L} + \frac{da}{a} - \tan\phi \cdot u_1 + \cot L \cdot v$$

$$= (1 - e^2) \left\{ \frac{\gamma}{\sin\phi} + \frac{db}{b} + \cot\phi \cdot u_1 \right\} \quad . \quad (4)$$

From the first of equations (4)

$$v (\tan L + \cot L) = \sec \phi \left(\frac{a}{\cos L} - \frac{\beta}{\sin L} \right)$$

$$v = \sec \phi (a \sin L - \beta \cos L) \qquad (5)$$

Eliminating v from (4) it follows that

$$\left(\frac{a}{\cos\phi\cos L} + \frac{da}{a} - u_1\tan\phi\right)\cot L + \left(\frac{\beta}{\cos\phi\sin L} + \frac{da}{a} - u_1\tan\phi\right)\tan L$$

$$= (1 - e^2) (\tan L + \cot L) \left(\frac{\gamma}{\sin \phi} + \frac{db}{b} + u_1 \cot \phi \right)$$

whence

or

$$(a\cos L + \beta\sin L)\sec\phi + \frac{da}{a} - u_1\tan\phi = (1 - e^2)\left(\frac{\gamma}{\sin\phi} + \frac{db}{b} + u_1\cot\phi\right)$$

and expressing the results in seconds this may be written

$$u_1(1 - e^2 \cos^2 \phi) = (a \cos L + \beta \sin L) \sin \phi - (1 - e^2) \gamma \cos \phi + \sin \phi \cos \phi \left\{ \frac{da}{a} - (1 - e^2) \frac{db}{b} \right\} \csc 1'' ... (6)$$

The relation between u_1 and u is given by (16) of Chap. III, and in terms of da and db is

$$u = \left(1 + \frac{e^2}{2}\cos 2\phi\right)u_1 + \frac{1}{2}\left(\frac{da}{a} - \frac{db}{b}\right)\sin 2\lambda \csc 1'' \quad . \quad . \quad . \quad . \quad (7)$$

The quantities a, β , γ , $\frac{da}{a}$, $\frac{db}{b}$ all enter linearly into the equations. Their several effects can accordingly be computed separately and combined afterwards in any desired way. Cases corresponding to each of the four quantities $\frac{da}{a}$, $\frac{db}{b}$, $_0u_1$ and w_0 will now be considered.

Case (i)
$$da = 1$$
 km. $u_1 = 0$, $(u_0 = 12'' \cdot 063)$

From (3)

$$a + A \cos \phi_0 = 0$$
 where $A = \frac{da}{a} \operatorname{cosec} 1'' = 32'' \cdot 3437$
 $\beta = \gamma = 0$
 $\therefore a = -29'' \cdot 536$

From (5) and (6)

$$v = a \sec \phi \sin L$$

$$u_{1} (1 - e^{2} \cos^{2} \phi) = u_{1} \cdot \frac{\sin^{2} \phi}{\sin^{2} \lambda} = a \sin \phi \cos L + \frac{1}{2} A \sin 2\phi$$

$$u = (1 + \frac{e^{2}}{2} \cos 2\phi) u_{1} + \frac{1}{2} A \sin 2\lambda$$

$$= \sin 2\lambda \left(\frac{u_{1}}{\sin 2\phi} + \frac{1}{2} A \right)$$
(8)

Case (ii)
$$db = 1 \text{ km.}$$
 $_{0}u_{1} = 0$ $(u_{0} = -12'' \cdot 1084)$
From (8) $a = \beta = 0$
 $\gamma + B \sin \phi_{0} = 0$ where $B = \frac{db}{b} \csc 1'' = 82'' \cdot 4516$
 $\therefore \gamma = -13'' \cdot 2244$

To find the azimuth change w, the following equation holds for all cases

in which v_0 includes the entire origin change of longitude and is not restricted to that due to plumb-line deflection only. The equation follows from the fact that either side of it gives the difference between spheroidal and geoidal longitude. It is proved otherwise in the following chapter (vide equation (4)). With reference to the case IV (or (iv)) it will be noticed that the value of $u \propto \sin L \sin \phi$. The value found by the method of Chapter I was independent of ϕ . The two cases however are not geometrically similar. In the case of Chapter I an azimuth change of origin involves a twist about the normal at the origin. In the present case the fixed axis is the polar axis and any twist introduced to give any desired azimuth change is only a component of a twist round an axis parallel to the polar axis. This makes it clear why the effect on latitude of this azimuth change is zero at the equator, the equator being at right angles to the

The values of u, v, w have been computed for the four cases by means of equations (8) to (12). The values of λ and L are the same as those of tables XXVII, XXVIII, and hence it is easy to make a comparison between the values of u, v, w found by the method of the present chapter which may be denoted by u_r , v_r , w_r (related points on two spheroids) and u_g , v_g , w_g (found by following a geodesic). For this purpose values of $u_r - u_g$ &c. are exhibited in tables XXXVII—XL.

TABLE XXXVII.

Case I.— $\delta \alpha = 1$ km.

TABLE XXXVIII.

Case II.— $\delta b = 1$ km.

L'—L	0°	4°	8°	1 2°	16°	20°	. 24°	O°	4°	8°	1 2°	16°	20°	24°	L'-L
λ		Value	s of (2	$u_{ m r} - u_{ m g})$	in se	conds			Value	s of (2	$u_{\rm r}-u_{\rm g}$	in sec	conds.		λ
38° 34 30	0.000 +0.011 +0.005	+0.010 +0.021 +0.014	1 -0.000	TU'U30	40.109	+0.315 +0.249 +0.154	+0·442 +0·347 +0·216	+0.078 +0.017 +0.008	1 +0.008	-0.012	I—0∙044i	-0.062 -0.003 -0.064	-0.156	-0.234	38° 34 30
26 22 18	+0.005 -0.003 -0.004	-0.010	-0.017	+0.022 -0.028 -0.070	+0.038 -0.043 -0.117	+0.058 -0.061 -0.180	-0.090	-0.004 +0.003 -0.001	-0.006 +0.008 +0.011	-0.010 +0.012 +0.025	+0.017	-0.032 +0.024 +0.069	+0.029	+0.035	26 22 18
14	+0.005 +0.035	-0.012 +0.013	-0.048 -0.040	-0·103 -0·120	-0·186 -0·239	-0.290 -0.386	-0·418 -0·576	-0.034 -0.114	-0.022 -0.100	+0.001 -0.065	+0·034 -0·017	+0.084 +0.060	+0·144 +0·147	+0.216 +0.259	14
						second		V	Talues	of ±	$(v_{\rm r}-v_{\rm r})$	g)* in	secon	ds.	
38 34 30	0.000 0.000 0.000	+0.038 +0.016 +0.003	+0.026	+0.020 +0.020 -0.015	+0.067 -0.019 -0.071	-0.100		0.000 0.000	-0.068 -0.030 -0.008	-0.007	-0.201 -0.101 -0.037	-0.266 -0.127 -0.048	-0.152	-0.371 -0.168 -0.043	38 34 30
26 22 18	0.000	+0.001 -0.002 +0.002	-0.005 -0.003 +0.004	-0.031	-0.090 -0.091 -0.061		-0.346	0-000 0-000	-0.003 -0.001 -0.008	-0.009 -0.011 -0.025	-0.015 -0.011 -0.043	-0.005 -0.008 -0.052	-0.007	+0.015 +0.011 -0.056	26 22 18
18		+0.021 +0.047	+0.033 +0.083	+0.034 +0.108	-0.001 +0.100	-0.079 +0.014	-0.204 -0.066	0.000 0.000	-0.083 -0.070	-0.069 -0.137	-0-107 -0-217	-0-147 -0-285	-0·173 -0·348	-0·196 -0·400	18
						second		v	alues	of ±	$(w_r - v_r)$	o _g)* in	secor	ıds.	
38 34 30	0.000	+0.168	+0.320	+1.093 +0.806 +0.494	+1.058	+1.756 +1.292 +0.782	+2.058 +1.509 +0.913	0.000	-0.388 -0.280 -0.171	-0.564		-1.143	-1.438	-2·363 -1·740 -1·090	38 34 30
26 22 18	0.000	-0.068 -0.191	-0-130 -0-384	-0.578	-0.267 -0.760	-0.338 -0.950	+0.265 -0.411 -1.136	0.000		+0.124		+0.228	+0.268	-0.416 +0.288 +1.030	26 22 18
16		0·328 0·466	-0.648 -0.928	-0.969 -1.380	-1.285 -1.830	-1.508 -2.278	-1·903 -2·707	0.000 0.000	+0.324 +0.463	+0.642 +0.920	+0.953 +1.366	+1.265 +1.805	+1·542 +2·233	+1.815 +2.636	1 4

TABLE XXXIX.

Case III.— $u_0 = 1''$

TABLE XL.

Case IV.— $w_0 = 1''$

			,									0			
1/-L	O°	4 °	8°	12°	16'	20°	24°	O°	4°	8°	12°	16º	20°	24°	L'-L
λ		Value	s of (a	$u_{ m r}-u_{ m g})$	in se	conds.		7	alues	of ±	$(u_r - u$	g)* in	secon	ds.	λ
38° 34 30	-0.070	-0.014	-0.008	-0.015 +0.001 +0.011	-0.002 +0.014 +0.025	+0.014 +0.030 +2.042	+0.033 +0.050 +0.062	0.000	+0.032		+0.095 +0.069 +0.012	+0.093	+0.116	+0.188 +0.138 +0.084	38° 34 30
26 22 18	-0.000 -0.005	+0.002 -0.002	+0.008	+0.017 +0.018 +0.014	+0.031 +0.033 +0.029	+0.051 +0.047	+0.070	0.000 0.000	-0.003	-0-011	+0.013 -0.016 -0.047	+0.019 -0.021 -0.061	+0.024 -0.025 -0.076	+0.028 -0.030 -0.090	26 22 18
16	-0.014 -0.029	-0.012 -0.026	-0.005 -0.020	+0.005 0.008	+0.021 +0.007	+0.040 +0.027	+0.063 +0.051	0.000	-0·027 -0·038	-0.053 -0.074	-0·078 -0·110	-0·103 -0·145	-0·127 -0·180	-0·151 -0·214	14
	V	alues o	of ±($v_{ m r} - v_{ m g}$)* in :	second	s.		Values	s of (v	$_{ m r}-v_{ m g}$	in sec	onds.		
38 34 30	0.000 0.000 0.000	+0.019 +0.013 +0.008	+0.026	+0.055 +0.038 +0.023	+0.051	+0.091 +0.064 +0.037	+0·075 l	+0.083 +0.040 +0.013	+0.078		+0.037			-0·100 -0·140 -0·164	38 34 30
26 22 18	0.000 0.000	+0.002 -0.003 -0.007	+0.005 -0.004 -0.014	+0.007 -0.006 -0.022	-0.000	-0.012		+0.001 +0.002 +0.014	-0.0031	-0.017	-0.043	-0.077	-0·122 -0·121 -0·110	-0·176 -0·184 -0·164	26 22 18
14	0-000 0-000	-0.011 -0.017	-0.023 -0.032	-0.035 -0.049	-0.046 -0.065	-0·057 -0·081	-0·068 -0·096	+0.036	+0.031 +0.064	+0.016 +0.047	- 0.010	0.044	0.000	0.110	14
	Va	lues o	of ± (1	$o_{\rm r}-w_{\rm g}$)* in :	second	ls.	,	Values	s of (w	$v_{\rm r} - w_{\rm g}$	in se	conds.		
38 34 30	0.000	+0.000	+0.120	+0·198 +0·194 +0·191	+0.257		+0.387 +0.380 +0.375	+0.586	+0.5851	+0.580 +0.403	+0.573	+0.5641	+0.550 +0.382	+ 0·536 + 0·371 + 0·214	38 34 30
26 22 18	0.000	+0.064 +0.065 +0.065	+0-128 +0-129		+0·253 +0·254	+0.313		+0·075 -0·082 -0·234	-0.082 -0.233	-0.082 -0.232	-0.081 -0.229	-0.225	-0.078 -0.220	+0.068 -0.079 -0.214	26 22 18
16	0-000	+0.065 +0.066	+0-129 +0-131	+0·193 +0·196	+0·256 +0·260	+0·317 +0·323	+0-378 +0-383	-0·384 -0·538	-0.383 -0.532	-0-380 -0-528	-0.376 -0.522	-0.370 -0.512	-0.362 -0.501	- 0·350	16

^{* +} or - according as point is west or east of origin.

4. The differences $u_r - u_g$ and $v_r - v_g$ are never sufficiently great to have any important effect on geodetic results. In the case of $w_r - w_g$ larger values are met with. The deflections of plumb-line in the prime vertical are affected by the amount $(w_r - w_g)\cot \lambda$, a quantity which may be as much as several seconds. In the practical case however where, according to the most recent determinations $\delta a = 0.924 \,\mathrm{km}$ and $\delta b = 0.743 \,\mathrm{km}$; the combined effect of Cases I and II in these proportions are not large, the two cases tending to cancel each other; as may be seen from table XLI below, in which the values of $(w_r - w_g)$ cot λ are also given.

T	A	R	T.	Te!	X	T	7
4.4	а.	௨	ı	Ľ	1	•	1.

λ .	L'-L	Oot A	0·924× Case I	0.748 × Case II	Combined effect	Discrepancy in plumb-line deflection
38	24°	1.380	1 ["] 902	-1.756	" "	
34	24	1 . 483	1.394		0.146	o"187
80	24	1.732	1 -	-1.393	0,101	0.120
26	24	5.020	0.844	-0.810	0.034	0.029
22	24	_	0.342	-0.300	-0.064	-0.131
18	8	2.475	-0.380	0.314	-0.166	-0.411
	1 - }	3 • 078	-0.355	0.383	-0.073	-0.55
14	4	4.011	-0.303	0. 241	-0.063	=
10	4	5 - 671	-0.431	0.344	-0.087	-0.149 -0.493

The only case in which the discrepancy in prime vertical deflection would be considerable occurs in low latitudes and this case does not concern Indian Triangulation as in these latitudes there are no great longitude differences: for the case of Burma special treatment, as given in Chapter III, is in any case necessary.

The conclusion is that either this method or that of the preceding chapter could be used with practically satisfactory results. The discrepancies however indicate how far theoretical accuracy has been departed from in failing to project geoidal angles on to the spheroid of reference before introducing them in the computations.

The figures in tables XXXVII—XL may be noticed to be a little irregular. This is doubtless due to the fact that the computations of Chapter III were not made with sufficient accuracy to ensure the last figure always being correct. This was not considered to be sufficiently important to justify the extra labour which would have been necessary. The results are fully accurate enough for all practical purposes to which they can be put.

5. Three methods of finding the change in coordinates due to any proposed changes of the axes of the spheroid and the latitude and azimuth at the origin have now been given. That of Chapter I gives a means of computing these along any path defined by a relation between λ and L. Chapter III gives the results for the special case when the path selected is the geodesic through the origin and the point at which the changes are required: and in the present chapter the geometrical relation between corresponding points on two spheroids is worked out. All these methods give somewhat different results. The latter two have the advantage over the former of being free from any ambiguity due to multiple values and inconsistency: and the differences met with between them are not of amount sufficiently large to be troublesome. The reason for their discrepancy is examined in the following chapter: and the conclusion is arrived at, from theoretical considerations, in view of the methods by which the observations of the triangulation of India have been reduced, that the method of calculation along geodesics as set forth this to be done readily.

CHAPTER V.

Laplace's Equation and the Choice of a Spheroid of Reference.

1. When a large survey is begun one of the first essentials is the selection of a point as origin. The coordinates of this point have to be decided on. The longitude is of little consequence and the meridian through the point may be taken as that from which all deduced longitudes are measured. The latitude and azimuth can be observed astronomically: but their geodetic values depend on the plumb-line deflection existing at the point. Plumb-line deflection is of course merely the deviation of the vertical from the normal to some assumed figure of reference. In chosing the origin it must be eventually decided whether to consider the deflection there as nil—in other words, chosing a spheroid of reference parallel to the geoid at the origin—or whether considerations of topographical features and irregularities of density justify the adoption of certain values of the deflection in the two components. The question of height above geoid of the point selected as origin also arises. If an error of 10 feet is made in this it is practically equivalent to assuming a spheroid with axes 10 feet different from those actually selected. In the case of the origin of the Indian Survey there is no reason to suppose an error of nearly so much, and so no further consideration will be given to this point here.

Having decided on the origin O, it is next necessary to decide on a figure of reference. This will generally be referred to as the "spheroid" in opposition to the "geoid" or sea level equipotential surface of the earth. It is not implied by this that the figure of reference must be a spheroid, though the almost universal practice is to take a spheroid as a reference figure.

2. Chains of triangulation may now be computed rigidly if proper corrections given below in § 16 are applied: and the coordinates, latitude, longitude, height and azimuth at a distant point K may be deduced. Suppose that astronomical azimuth and latitude are observed at K and also that the arc OK is observed as a telegraphic longitude arc. Let λ , L be the geodetic latitude and longitude of K and let A be the geodetic azimuth at K of some reference mark: these are quantities brought up by triangulation. Let η , ξ be the plumb-line deflection at K in meridian and prime vertical (positive for southerly and westerly deflections of the plumb bob) referred to the selected spheroid of reference. These quantities obviously differ for different spheroids of reference.

In the figure suffixes s, g refer to spheroidal and geoidal points respectively: or in other words points derived from triangulation and star observations respectively. P is the pole and Z the zenith. The astronomic azimuth of a point Q is clearly $A + \xi \tan \lambda$ being S_gKS_s greater than the geodetic azimuth. Let suffix zero denote quantities appertaining to the origin of the survey: so that the values of $\eta_0 \xi_0$ have been decided in some way or other.

3. First consider the longitude observations. They depend on the interval of time between the meridians of O and K as shown by star transits. If the

zenith at a station is displaced in the prime vertical, the meridian is also displaced as a result, the direction of the pole being fixed. Time stars are observed when they transit the plane $Z_{\rm g}P$ instead of the plane $Z_{\rm g}P$. With a westerly deflection the zenith is moved towards the east and the result is that stars are observed too soon by the angle $Z_{\rm g}PZ_{\rm s}=\xi\sec\lambda$. If ξ is expressed in seconds of arc, the star time as given by the local meridian is early by $\xi\sec\lambda/15$ seconds of time. Now of the two stations O, K, if O is the more westerly and T is the time interval between the transits of a star at the two meridians, then the time interval between the two spheroidal meridians is

$$T - \frac{\xi \sec \lambda}{15} + \frac{\xi_0 \sec \lambda_0}{15}$$

and this should be the same as $\frac{L-L_0}{15}$, or the difference of longitude in time, on that spheroid on which ξ , ξ , represent the plumb-line deflections in prime vertical at K and O.

The quantity T is an observation quantity; suppose its error is δT : also suppose the error in longitude generated in the triangulation is δL . It follows that

$$\xi_0 \sec \lambda_0 - \xi \sec \lambda = L - L_0 - \delta L - 15 \quad (T - \delta T) \qquad (1)$$

Now consider the azimuth observations. Let A' be the astronomically observed azimuth which has an error $\delta A'$: A and δA being the geodetic azimuth computed on the spheroid and its

$$A'_{0}-\delta A-A+\delta A=\xi \tan \lambda A'_{0}-\delta A_{0}-A_{0}=\xi_{0}\tan \lambda_{0}$$

Eliminating ξ, ξ_0 between (1) and (2) it follows that

$$(A_0' - \delta A'_0 - A_0)$$
 cosec $\lambda_0 - (A' - \delta A' - A + \delta A)$ cosec $\lambda = L - L_0 - \delta L - 15$ $(T - \delta T)$. . (3) which is an elaborated form of Laplace's equation.

4. Suppose now that the computations had been carried out on a slightly different spheroid. If this had been done rigorously the quantity δL , being itself a small quantity will not be changed appreciably, while A', $\delta A'$, A_0' , $\delta A_0'$, T, δT are all quantities which are not affected by the change in spheroid. The only quantities in (3) which change appreciably are A, $L - L_0$ and λ . The λ terms are multiplied by small coefficients and their variations can be neglected. Hence differentiating (3) for change of spheroid it follows that in the notation of Chapter I where u v w represent changes in latitude, longitude and azimuth

It might be expected that this equation would be in accordance with those found in Chapter I. As was noticed there, however, the quantities u, v, w are many-valued, a separate set of values appertaining to each route along which the integration is performed. Equation (4) on the other hand is free from any ambiguity and accordingly cannot be in accord with the equations of Chapter I. If numerical quantities are substituted it is at once clear that the relation (4) is not satisfied. Consider the values of

$$v = v_x - f(v_x - v_y)$$
 and $w = w_x - f'(w_x - w_y)$

where f and f' are fractional quantities. These expressions are the values of v, w computed along routes intermediate to those of v_x and v_y . Taking case where $\delta a = 1$ km., $\lambda = 30^\circ$, $L = 66^\circ$, $v_0 = w_0 = 0$ from the tables VII—X it follows that

$$v \sin 30^0 = 4 \cdot 027 - 013 f$$

 $v = 3 \cdot 784 - 504 f$

which cannot be made equal by any positive fractional values of f and f'. In the same way the tables of Chapter III show that the relation (4) is not satisfied along a geodesic.

- 5. It has generally been considered that azimuth and longitude observations both give the same information, namely deflection of the plumb-line in prime vertical, and nothing more: and in so far as the results differ by the two methods the reason is that the observations are burdened by errors. Clarke states* that "the observations of the difference of longitude gives "us no information that is not also given by the observation for azimuth". With this principle Colonel Sir Sidney Burrard† has used the longitude observations of India to correct azimuth observations for the accumulation of error due to triangulation, considering the differences of the resulting plumb-line deflection found by the two observations to be entirely accounted for by observation error in the triangulation.
- 6. The explanation of these apparent inconsistencies was not discovered for some time. Equation (4) is perfectly correct if the triangulation is properly computed. The ordinary process of computation is not quite correct. Angles are measured by means of a theodolite and reduced to the horizontal plane of the geoid. This is not quite the same thing in general as the horizontal plane of the spheroid. If the computation is to be effected on the spheroid (on which all the various formulæ are based) the observed angles should be projected on to the selected spheroid of reference, and so will differ according to what spheroid is selected. The actual amount by which the geoidal angle must be altered to get the spheroidal angle depends on two things (vide § 16 below)
- (1) the deflection of the plumb-line or inclination of the geoidal (astronomic) vertical to the spheroidal (triangulated) vertical.
- (2) the inclination to the horizontal of the rays between which the geoidal angle is measured.

The first of these quantities varies appreciably with change of spheroid and accordingly the correction to the geoidal angle varies according to the spheroid used. The actual case under consideration is represented in symbols by supposing δL in (1) to contain not only the error due to faulty observations but also the error due to failure to correct the geoidal angles to spheroidal angles. This is purely a computation error. The actual "grinding" process has treated these errors as errors of observation.

This perhaps explains why Laplace's equation is in general not satisfied so well as the probable errors of the several observations on which its formation depends would cause to be expected.

and

^{* &}quot;Geodesy" by Col. A.R. Clarke, p. 291.

[†] Appendix No. 5 of G.T. Volume XVIII. "On the azimuth observations of the G.T.S. of India".

7. It also explains how it is that the different values of u, v, w arise as noticed in Chapter I. In this case the fact that the closing errors of circuits will differ from one spheroid to another unless all the geoidal angles are reduced to spheroidal angles makes the distribution of closing errors have a different effect according as the spheroid is altered.

Equation (4) may be re-written to meet the actual case as follows:

where ΔL is the change in computation error of longitude difference due to the treatment of spheroidal and geoidal angles as identical. The fact that ΔL is not zero would be of more serious importance in the question of change of spheroid had equation (3) been used in all possible cases as a condition for the series of triangulation to satisfy. When the main Indian triangulation was adjusted the longitude arcs either were not available or else were ignored, so that Laplace's condition was not imposed on the triangulation. In correcting the azimuth observations, Colonel Sir Sidney Burrard introduced the condition for the first time in India.

- 8. Clarke's statement quoted in § 5 was deduced from an equation which arises in his work: but it may be seen to be true without any analysis. The longitude observation fixes the meridian plane at a point, that is the plane through the zenith and the pole, by taking the time of stars transiting this plane. It obviously does no more than fix this plane with relation to another. The azimuth observation practically draws the great circle through the pole and zenith and locates where this cuts the horizon, by means of a horizontal angle measured from a fixed point. The position of the pole and the place of observation being already given the fixing of one other point suffices to fix the meridian plane. Thus longitude and azimuth observations both merely fix the position of the meridian plane and nothing more. The inclination of this plane to the meridian plane deducible from triangulation is the deflection in prime vertical.
- 9. None the less equation (3) does definitely give some information as to the error of computation generated in the triangulation, and to this extent Clarke's statement needs modification. When the practical case is considered from equation (3) it may be seen that the identity of plumb-line deflection, whether derived from longitude observations or azimuth observations, affords some information concerning the slightly faulty method of computing from geoidal angles instead of from spheroidal angles. For split up the error δL into $\delta_1 L$ due to faulty observation and $\delta_2 L$ due to faulty computation. Suppose next that the spheroid of reference is changed so that it is necessary to substitute A+w for A and L+v for L. The quantity $\delta_1 L$ remains unaltered, but $\delta_3 L$ obviously is a variable according to the spheroid used and from (3) it follows that
- $(A'_0 A_0 w_0)$ cosec $\lambda_0 (A' A w)$ cosec $\lambda = L L_0 + v v_0 15T \delta_2 L + \Delta E$. . . (6) in which the only variables are w, w_0 , $v-v_0$ and δ_3L , and ΔE is the combined and fixed effect of observation errors. It is possible to form sixteen equations of the form (6) from the longitude and azimuth observations of India. Expressing w, v_0 , $v-v_0$ in terms of δa , δb , u_0 and w_0 it is possible to solve these equations for δa , δb , u_0 , w_0 so as to make Σ $(\Delta E - \delta_2 L)^2$ a minimum : i.e. since ΔE is equally likely to be positive or negative $\sum \overline{\Delta E}|^2 + \sum \overline{\delta_2 L}|^2$ is a minimum. But as the value of ΔE is not being varied, this implies that $\sum \overline{\delta_2 L}|^2$ is a minimum. Now when the spheroid differs widely from the geoid it is clear that the computation errors increase: and conversely when the spheroid approximates more closely to the geoid these errors diminish. The fact that $\sum \overline{\delta_2 I}|^2$ is made a minimum affords one criterion for the spheroid being in close agreement with the geoid for the area over which the triangulation of India extends. It is of course possible to consider what spheroid suits the actual deflections best: but this is an entirely different point of view from that indicated above, and deals only with the actual localities in which the deflections are measured: and moreover is burdened by the errors of computation involved in treating geoidal and spheroidal

10. The interest in the method is chiefly theoretical. The quantities to be dealt with are very small: and in most cases the effects of observation error may well mask those due to the computation error. Sixteen equations of the form (6) are given below. These can be solved for δa , δb , u_0 , w_0 or, treating δa , δb as known, for u_0 , w_0 only. It was not anticipated that the former course would give reliable values of δa , δb but the solution was none the less made. Afterwards the solution of u_0 , w_0 only taking the latest values of δa , δb was performed. Referring to these two solutions as A and B, one difficulty of the application of (6) arises in A, but to a very much less extent in B. This difficulty is the selection of the route along which u, v, w in terms of δa , δb shall be determined. The actual courses of the triangulation series are numerous, and the case seems to be best met by taking the geodesic solution of Chapter III, for this in general leads to a medial path through the triangulation. In solution B it so happens that the δa and δb terms very nearly cancel one another. The form of the equations is as follows

The sixteen arcs from Kalianpur give rise to sixteen equations which are exhibited in the table.

TABLE XLII.

				ענגם		/11.							
Azimuth station	Longitude station		nates of n station		Coeffic	lents of		A' - A	16T-L+L0	Absolute term A -1.29 coseo λ_0 sin λ + $A' - A$ - $(15T - L + L_0)$ sin λ	Residual A	Absolute term B	Besidual B
		λ	L	δα	88	u ₀	w ₀		1	Abs. -1.2 -(15)	, e	Abso	Ä
Karachi Observatory	Karachi T. O.	24° 49′ 50′	67° 1′ 35	+0"060	-0"059	+0″168	+0"042	- 1.4	+ 0"5		1 [#] 6	- 2 ["] 9	- 3.0
Dehra Dun Observatory (old)	Dehra Dun Longitude Station	30 19 57	78 3 35	-0.017	+0.018	-0.005	+0.242	-11.9	-25.7	- 0.5	- 2·5		- 2.8
Quetta T. O.	Quetta T. O.	30 11 57	67 0 32	+0.457	-0-459	+0.160	÷0·251	- 4.4	+ 2-4	- 7.2	- 3·4		- 8-8
Calcutta Base-line, S. end	Calcutta	22 36 56	88 22 54	+0.118	-0.118	-0.172	-0-043	- 8.9	-11.0	- 5.9	- 5·4	- 5·9	- 5.8
Orejhar	Fyzabad T. O.	26 46 56	82 12 8	-0.085	+0.085	-0.071	+0-107	- 4-1	- 0-5	- 5.3	- 7.4		
Jalpaiguri	Jalpaiguri	26 31 17	88 44 13	-0.199	+0-196	- 0.172	+0-109	- 4.7	-20-4	+ 8.0	– 1·0	+ 8.0	+ 2.0
Nagarkhana	Chittagong T. O.	22 22 58	91 48 30	+0.226	-0.051	-0.227	-0-048	- 8.7	-11.7	- 5.4	 0·1		 - 5·1
Bolarum P.W.D. Office	Bolarum	17 30 13	78 31 11	+0.046	-0.045	-0.014	-0-257	- 1.1	– 3. 5	- 1.0	+ 1.4		+ 0.9
Vizagapatam Base-line, N. end	Waltair	18 1 3	83 13 43	+0.268	-0.267	-0.092	-0-285	- 1.4	- 3·3	- 1.4	+ 2.7		+ 0.2
Karaundi	Jubbulpore T.O.	23 10 40	79 59 43	+0.017	-0.021	-0.038	-0-036	– 4 ⋅0	-10-2	- 1-2	- 1.1	 _ 1·2	<u> </u>
Colaba Observatory	Bombay	18 53 49	72 48 40,	-0.198	+0.109	+0.080	-0-199	+ 1.0	- 6.8	+ 2.2	+ 2.2	+ 2.2	+ 3.7
Deesa T. O.	Deesa T. O.	24 15 30	72 11 6	+0.003	-0.003	+0.086	+0-009	- 4.6	+ 3.6	- 7.4	- 6·9	- 7-4	- 7·4
Mangalore	Mangalore	12 52 14	74 50 43	-0.261	+0.261	+0.048	-0.434	- 2.8	– 2· 0	- 3.1		- 3.1	+ 0-1
Bangalore Base-line, S.W. end	Bangalore	13 0 41	77 35 0	-0.007	+0.007	+0.003	-0.430	- 5.3	+ 2.9	- 6.7	 - 3·4	- 6·7	- 3-6
St. Thomas' Mount Trestle	Madras	13 0 15	80 11 41	+0.233	-0.233	-0.044	-0-429	- 4.0	- 7.2		+ 2.4		0.0
Kudankulam Observatory	Nagarkoil	8 10 22	77 41 27	+0.005	-0.007	0.000	-0-615	- 7.7	+ 1.8			- 8.4	-
	•						um of squ			1	203-83		
	Square root of mean square												4.27

The solution A, i.e. the most probable value of δa , δb , u_0 , w_0 , is

$$\begin{cases}
\delta a = 33.08 \text{ km} \\
\delta b = 22.63 \text{ km} \\
 u_0 = +6".10 \\
 \cdot w_0 = -7".71
\end{cases}$$

to which correspond the residuals under "Residual A" in the table. If 0.92363 km and 0.74273 km are substituted for δa and δb (vide Chapter I §3) the following most probable values of u_0 and w_0 are arrived at (solution B):—

$$w_0 = +1'' \cdot 01 w_0 = -7'' \cdot 28$$

and the corresponding residuals are shown in the table under heading "Residual B".

- 12. Solution A is obviously of no practical use as the values of δa and δb are much larger than it is possible could be correct. Solution B is not unreasonable. A southerly deflection at Kalianpur has previously been inferred, the estimated amount being 4". The value of w_0 indicates an easterly deflection of $16'' \cdot 2$. The value computed from the topography, but taking no account of compensation is $10'' \cdot 7$ (vide Prof. Paper 13, p. 116). The solutions however have been given more as illustrations of a principal than for their numerical values. The residuals show that the solution is not highly successful in satisfying the equations: yet the values of w_0 , w_0 derived from B are reasonable and the residuals might fairly be attributed to observation errors.
- The choice of a figure of reference for the geoid. In surveying a surface such as the geoid, in the first place of unknown form, it is necessary at the outset to decide on some figure of reference to which measurements may be referred. This figure of reference may be of any form whatever-a particular case would be any set of three orthogonal planes. operations a single plane is chosen, on the assumption that for a limited area the geoid is not much different from a plane: and it would be possible to extend the application of the plane of reference by the introduction of a third coordinate, namely that at right angles to the plane. If at each triangulation station the direction of the geoidal vertical is determined by means of latitude and longitude observations the data is sufficient to enable the position of any point to be expressed by means of its three coordinates, quite independently of the shape of the geoid. The statement of the position of numerous points on the geoid in fact determines the shape of the geoid. If however the position of the several points are referred to a figure which approximates in shape and position to the geoid, the actual shape of the geoid is much more readily grasped by the small deviations it exhibits from the well known reference figure. The choice of such a figure is extremely useful and greatly decreases the labour of calculation of the positions of points on the geoid. The closer the approximation between it and the geoid the smaller are the quantities which express the difference of the two surfaces: and, as a result, when these quantities appear in formulæ as square and power terms they may be neglected in many of the computations which arise. It is important none the less to recognise that the two surfaces cannot always be treated as identical, and to examine each case thoroughly. Moreover it is to be borne in mind that the complexity of computation will be much increased if a very complex figure of reference is selected. A balance must be struck between the two considerations, and it has been customary to adopt a spheroid. This is at the same time a comparatively simple figure for computation and also a fairly close approximation to the geoid. This choice need not at all imply that no other geometrical figure can be found which approximates more closely to the geoid. Suppose even that the geoid was in actual fact an ellipsoid (not of revolution) not very different from a spheroid. It would still be strictly accurate to refer it to a spheroid of reference:

and it is probable that this would be the simplest course to follow in dealing with the results of any one survey, for instance the Indian Survey. Or the geoid might be referred with strict accuracy to a sphere: but in this case the residuals in a vertical direction might be inconveniently large.

- 14. This does not appear to have been quite the point of view usually taken, seeing that much energy has been devoted to finding the spheroid which best fits the whole earth. The origin of this research was doubtless the desire to uphold the Newtonian theory that the earth, being a revolving gravitating mass, should approximate in form to an oblate spheroid: rather than to the prolate spheroid which early measurements led the French school to believe in. This question was finally settled in favour of the Newtonian theory by the measurements of the arcs in Peru and Lapland: and the matters now to be investigated are the relatively minor deviations of the geoid from the oblate spheroid. Given a ready means of converting coordinates from one spheroid to another, each survey may properly select the spheroid most suitable to its own requirements. In any case the several large surveys of the world are expressed in terms of different spheroids, and for purposes of intercomparison it is necessary to develop a method of changing from one spheroid to another. An interesting question is to consider how closely the several spheroids, which best fit the respective surveys, agree inter se: to account for any differences: and to see whether a theory of density distribution can be found which will bring all these spheroids into agreement. The same question may be considered by taking the surveys on the spheroids they happen to have been reduced on and afterwards expressing the results in terms of a single spheroid and the local differences of the geoid from this general spheroid. Even if this general spheroid is so selected as to make the differences from the geoid a minimum it still remains only a convenient figure of reference and a more or less close approximation to the geoid.
- 15. In the case of triangulation the usual procedure is as follows: horizontal angles are measured on the geoid, that is to say a theodolite is set up and levelled so that its horizontal circle is tangential to a level surface of the geoid. Spheroidal excess, calculated from the assumed spheroid, is applied to these angles. Further computations of the latitude and longitude of the points of triangulation are then carried out as though the spheroid and geoid were identical.

Now in certain disturbed districts the geoid is of considerably different curvature from the adopted spheroid: and the excess over 180° of the sum of the three angles of a triangle observed on the geoid is not the same as that computed from the spheroid. On account of the relative smallness of this excess in triangles of the size which occur in triangulation, this difference is not of great importance, though it gives rise to the two entirely different methods of Chapters III and IV. But if the rays observed have a considerable elevation, such as 5°, a very appreciable error is introduced, as will shortly be explained. It is necessary to be more precise. The most natural way of relating a point on the geoid to the spheroid is by giving the coordinates (latitude and longitude) of that point of the spheroid the normal—or more strictly for large distances the orthogonal confocal hyperbola— at which passes through the point on the geoid; and by stating the height of the geoid above the spheroid measured along this normal as well as the angle between this normal and the normal to the geoid (deflection of the plumb-line) and the azimuth of the plane containing the two normals.

Defining the position of a geoidal point in this way for the present, the separation of the geoid and spheroid need not be considered. To each point on the geoid there is a corresponding point on the spheroid: and consequently to each geoidal triangle a spheroidal triangle corresponds. It is with such spheroidal triangles that computations of latitude and longitude etc. really deal, the formulæ being deduced from properties of the spheroid. Consider then the relation between the angles of a geoidal triangle and the corresponding spheroidal triangle.

16. Suppose a theodolite is set up at a point O and levelled in the ordinary way: at this point two zeniths may be distinguished, Z_g that of the geoid and Z_s that of the spheroid, the former being indicated by the direction of the theodolite when the altitude is set to 90° .

The plane $Z_{\rm g}OZ_{\rm s}$ is the plane of deflection and the line OB at right angles to this plane is parallel to both spheroid and geoid and is chosen as axis of Y: so that OB may be regarded indifferently as belonging to the spheroid or the geoid. Consider another point A and draw the great circles Z_s A a_s and Z_g A a_g . Then O a_s and Oa_3 are the traces of the ray OA on the spheroid and geoid respectively. Suppose that the horizontal angle between OA and OB is required. Observation by the theodolite gives the angle a_g OB: but the angle required for computation on the spheroid is a_s OB. Denote by a the geoidal angle of elevation of A and by z the azimuthal angle $X_{\rm g} O a_{\rm g}$, corresponding quantities for the spheroid being $a + \delta a$, $z+\delta z$. From triangles Z_g BA and Z_sBA

 $\cos AB = \sin \alpha \cos Z_{\rm g}B - \cos \alpha \sin Z_{\rm g}B \cos (z_{\rm g} - 90^{\rm o}) = \sin (\alpha + \delta \alpha) \cos Z_{\rm s}B - \cos (\alpha + \delta \alpha) \sin Z_{\rm s}B \cos (z_{\rm s} - 90^{\rm o})$ But $Z_{\rm g}B = Z_{\rm s}B = 90^{\rm o}$; hence

 $\cos \alpha \sin z = \cos (\alpha + \delta \alpha) \sin (z + \delta z)$ i.e. $\tan \alpha \cdot \delta \alpha = \cot z \cdot \delta z$ neglecting second order terms. (1)

Now δz , δa are the corrections which should be applied to geoidal quantities to correct them into spheroidal quantities and make them suitable for spheroidal formulæ. δa is $Aa_s - Aa_g$ and is approximately $e\cos z$, where ϵ is the total plumb-line deflection which is in the plane $OX_g Z_g$: so that (2) may be written

The correction δz accordingly is greatest when $z=90^\circ$, that is when the observed object is in the plane of no deflection, and its magnitude in this case is $\epsilon \tan a$. Now values of ϵ up to one minute have been observed: and if at the same time a ray of elevation of 4° is observed, the horizontal angle may need a correction of 4 seconds—a very appreciable quantity in geodetic triangulation. The figures here given are roughly applicable to a ray through Jharipani (Dehra Dun district) where the deflection exceeds one minute and considerable angles of depression occur. In the case of a triangle at two of whose corners there is no deflection while a considerable deflection occurs at the third, a large triangular error will be apparent. More usually however the deflection is not so widely different at the three corners and the angular errors partially compensate one another in the sum, thus masking the error, but leaving the triangle distorted.

17. It is of interest to note that deflections have a corresponding effect on the measurements of base lines. Suppose that an element ds is measured along a line inclined at an angle a to the geoidal horizontal and $a + \delta a$ to the spheroidal vertical. Its reduced length is generally taken as $ds \cos a$, whereas reduced to the spheroid it is $ds \cos (a + \delta a)$, so that a correction

of $-ds \sin a.\delta a$ is required. The error on the whole line is $\int ds. \sin a \delta a$. This is equal to $s \sin a_m \delta a_m$ where a_m and δa_m are values which occur at some part of the line. If a is fairly constant $s \sin a$ is approximately the difference of level of the two ends of the base and the error is approximately $(h_2 - h_1) \delta a_m$. Owing to $h_2 - h_1$ being small compared with the length this is only liable to affect the length by a quantity of as much as 1 in 10^6 in extreme cases.

18. Deflections are usually stated in terms of their westerly and southerly components, ξ , η . It is clear that the effect of either component on a ray can be computed independently and then the two results combined. In the case of a ray of azimuth A it follows from (3) that a correction to the geoidal azimuth of amount δA is required where

$$\delta A = (-\xi \cos A + \eta \sin A) \tan a (4)$$

Consider now the case of a traverse. Denote the successive points by 1, 2, 3 . . n: let a_n be the angle of elevation of n+1 from n and let β_n be the elevation of n-1 from n. Also let A_n be the azimuth of n, n+1 and B_n that of n, n-1 and c_n be the arc subtended at centre of earth by n n+1

Then
$$a_n + \beta_{n+1} = -c_n$$

and $A_n = \beta_{n+1} + 180^{\circ} - K_n$ (5)

where K_n is the convergency.

This traverse may be regarded as the flank of a series of triangulation: and in proceeding along it, the accumulation of azimuth error will be estimated. Now the flank of a triangulation series may, without much loss of generality be considered to proceed along a great circle of the earth (or a geodesic to be more precise). The great circles on the earth which are most conveniently considered are the meridians: but it is clear that by changing the system of coordinates to which points are referred any great circle may be regarded as a meridian of a different system of coordinates. It will accordingly be sufficient to consider the case of a meridian (not necessarily one of the system with the axes of rotation as pole). Along such a meridian the azimuthal angle A is zero or 180°. Suppose then that the traverse 123 . . n lies on this meridian and that μ_n is the component of the plumb-line deflection at n in a direction perpendicular to this meridian (but not necessarily east and west as the meridian may be any great circle).

The correction to the angle at u will now be

which may be written sufficiently accurately for the present purpose

since a_n and β_n seldom if ever are so large as 5° in triangulation of a geodetic kind.

Let δh_n be the height of n+1 above n: then very approximately, if R is the radius of the earth

and

The accumulated azimuth error of the side n, n+1 is accordingly C_n where

$$C_{n} = \frac{1}{R} \sum_{n} \frac{\delta h_{n}}{c_{n}} (\mu_{n} - \mu_{n+1}) - \frac{1}{2} \sum_{n} \mu_{n} (c_{n-1} + c_{n}) \qquad (10)$$

$$= {}_{1}C_{n} + {}_{2}C_{n}.$$

Some attention to detail of the limits of this summation is necessary to obtain the precise value in a particular case: but the present object is to discuss the accumulation of the error and so this detail need not be considered now. It is clear that the first expression on the right hand side of (10) is not liable to great increase: for δh_n is equally likely to be positive or negative

as also is $\mu_n - \mu_{n+1}$ (considering that μ_n is the deflection at right angles to the line n, n+1). The most probable value of the expression 1Cn is

$$\frac{\sqrt{n}}{R} \cdot \frac{\delta h}{c} (\mu - \mu')$$

where $\frac{\delta k}{c}$ and $\mu - \mu'$ are values intermediate to the extreme values met with. To get an idea

of the magnitude which this might reasonably reach after 25 sides put $\frac{\delta k}{cR} = \frac{1}{50}$ corresponding to an angular elevation of more than 1° and $\mu - \mu' = 10''$. The value is then $5 \times \frac{1}{50} \times 10'' = 1''$. Now angular elevations of 1° are average, but changes of deflection of as much as 10" in the distance between two stations are not usual, though occasionally much bigger changes occur. It is felt then that the estimate of 1' for 25 rays is fair and that the danger of accumulation of error from this term is not considerable. The second term of (10) remains and its magnitude is liable to be somewhat greater. It may be written

$$_{2}C_{n} = -\mu_{m}\Sigma_{c}$$

where μ_m is some value intermediate to the extreme values of μ met with: Σc is merely the whole are subtended by the terminal stations at the earth's centre. Taking $\sum c = \frac{1}{10}$ radian which corresponds to a series about 400 miles long we get

$$_{2}C_{n}=-\tfrac{1}{10}\mu_{m}$$

In a series along the first range of the Himalayas deflections at right angles to this range of as much as 40" are of common occurrence. If $\mu_m = 40$ "

$$_{2}C_{n}=-4''$$

Now this is an error of magnitude about what might possibly occur in a single angle at which $\mu=60^{\prime\prime}$ and $\tan\alpha=\frac{1}{15}$: so that the conclusion may be drawn that the danger of failing to correct observed angles for deflection of the plumb-line is almost confined to the angles themselves and is not liable to produce a cumulative error of azimuth, if the angles were utilised as in a traverse. The effect however may be felt in a way different from that considered above owing to the distribution of triangular error. Each triangle which contains a station where the deflection differs considerably from those at the other stations is liable to be deformed when the angles are adjusted to equal two right angles plus the spherical excess calculated on The amount of this deformation and the effect on computed coordinates of the stations of the triangulation do not appear to be such as can be estimated for a general case. Its effect in the actual triangulation of India is mixed up with the effect of error of observation and its amount is in general considerably less, as appears from the solution of the modified Laplace equations given above in §§ 10—12.

19. In observations for azimuth the result of using a point at considerable angular elevation about the station of observation as a reference point seems to have always been ignored. Yet the same geometrical fact which causes the horizontal trace of the ray through the pole to be displaced in azimuth also gives rise to an azimuthal deflection of the horizontal trace of the ray through the reference point, unless it happens that the ray is in the azimuth at right angles to that of geoidal deflection. Suppose that at any point the southerly and westerly deflections are η , ξ respectively. The horizontal (spheroidal) trace of the ray through the pole and geoidal zenith will be deflected in azimuth by $+\xi \tan \lambda$, λ being the altitude of the pole. The horizontal trace of a ray in azimuth A and angular elevation a will be deflected by

$$-\tan a \left(\xi \cos A - \eta \sin A \right)$$

vide (4)

The difference between astronomic and geodetic azimuth is accordingly

 $\xi \tan \lambda + (\xi \cos A - \eta \sin A) \tan a$

instead of the simpler expression \xi tan\Lusually taken, which is more closely approximated to as

- 20. The advantages and disadvantages of the methods of correction worked out in Chapters I, III, IV may now be considered. The method of Chapter I in which u_y and v_x are taken as the changes of latitude and longitude has the justification and weaknesses referred to on pages 10-12. In a triangulation system where the bulk of the triangulation is along parallels and meridians this solution would be satisfactory were it not for the azimuths. The azimuth computed by the corrections at the ends of a ray of triangulation along a parallel differs by an appreciable amount from those for a ray along a meridian, and at first sight it appears that the difference is the necessary correction to the angle contained by these two rays. This however is not satisfactory as it is clear that the longitudinal and meridional series must be a little bent and that the whole error should not be forced into the junction angles. It would be equivalent to putting all the angular closing errors of a traverse which followed approximately the sides of a rectangle into the four angles at the corners of the rectangle. Moreover the final azimuth will not agree with the longitude as laid down in Laplace's equation. Laplace's equation might be adopted as a mode of determining the azimuth changes: but obviously the result would be inconsistent with the latitude and longitude changes found viz. uy, vx. In fact it appears that this method could rightly be applied merely to the junction points of the triangulation series. After changes for these points had been found, the corresponding changes along the series might be adjusted as is done in closing a traverse. This would involve a consideration in detail of all the series and has the disadvantage of being most laborious, and when done it is inconvenient in that the solution for the case of a further change of axes would have to be taken up right from the beginning. It might be supposed to be advantageous in that it takes cognisance of the actual form of the triangulation: but seeing that it is based on a method which is not entirely justifiable there seems to be little advantage in this partial approach to accuracy in the final stages of the reduction.
- 21. The method of computation along the geodesics at once gets rid of the difficulty of dual values of the changes. It is obvious however that the values obtained for the changes vary according as one origin or another is selected: for the closing errors in a triangle formed by joining any point and two selected origins exist just as much here as in the first method. This closing error however does not occur all at one point as in that method, but is satisfactorily distributed. There is some trouble in computing the geodesics: but this is of minor importance seeing that it has been done once for all and correction tables have been made out from which the coordinates of any point may be deduced by interpolation. These tables permit of the changes due to any desired changes in the elements a, b and latitude and azimuth at the origin being made immediately and admit of further changes being subsequently made when this becomes desirable.

Both this and the first method are based on the idea of the accuracy of the ratios of the sides in the triangulation: this is almost independent of small changes in the spheroid and the consequent minute changes in the spherical excess of any observed triangle. It may be noted here that in the case of an equilateral triangle with observed angles of equal weight the ratios are unaffected by the amount of spherical excess as this would be distributed equally. But the angles of the geoid have been used in place of spheroidal angles and from this some disturbance must have arisen.

While then the ratios of the sides may be regarded as practically perfect so far as corrections due to size of spheroid are concerned, it must at the same time be remembered that the observation errors have a cumulative effect on the ratio of a side to the original base as the side considered is separated more widely from the base: and the treatment of the observed angles as applicable to the spheroid without correction will aggravate this. The magnitude of the errors

so developed is indicated where closure has been made on additional base lines. It is clear that in a network of triangulation these additional bases may be reached from the origin by various routes and the length of these routes must accordingly be duly considered.

The following figures are taken from the circuits and base-lines of the N.W. Quadrilateral* in which there are 5 circuits and 4 measured bases.

TAI	3LE	XL	777

(1) Number of equation	(2) Logarithmic closing error ×10 ⁶	(3) Number of triangles	(2) ² ÷(3)
1 2 3 4 5 6 7 8	4.40 6.82 7.19 7.96 16.38 12.46 15.09	51 96 36 95 123 185 88 138	0·380 0·465 1·438 0·666 2·180 0·841 2·586
	Sq	Si Me uare root of Me	an = 8.558 an = 1.070 an = 1.035

It appears that the mean error per triangle in side ratio is 1.035 in the 6th place of logs which corresponds to an error of one part in 420,000 showing that a high order of accuracy has been attained.

22. In the third method, that of geometrical transformation, the idea of the spheroid as merely a figure of reference is used as a basis for the argument. It is free from the difficulties of multiple values, one for each route traversed, and gives a definite set of values for the changes at any point. Being geometrically correct it naturally satisfies the Laplace condition: but it does not keep the constancy of side ratios, though the departure from constancy is not serious. No attempt is made to correct for the distance between geoid and spheroid which in conjunction with large deflections such as have so far been discovered would make very small changes in the coordinates. It is to be remembered however that the original geoidal triangles have been applied without angular correction to the old spheroid of reference, although considerable corrections must have been necessary in some cases. To put this matter right now, deflections at many stations would need to be observed: and to make use of the information that might be gained by observation, it would be necessary to re-grind the whole triangulation of India. It is the object of the present investigation to avoid this immense piece of work: but as has just been pointed out, it could not be undertaken until many deflection observations had been made. Had the corresponding corrections been made in the first instance, which would have been possible if comparatively rough latitudes and azimuths had been observed at each triangulation station, the method of change of coordinates explained in Chapter IV would have been absolutely correct. The fact that this was not done is the source of the present difficulty and

^{*} Vide G.T. Volume II of the Survey of India, pages 303, 304.

practically disposes of the usefulness of this method. Further the Laplace equations should by right have been applied in the original grinding: they were not. This omission also makes an objection to any method of computing short of regrinding. And so the geometrical accuracy of the method of Chapter IV is vitiated. It is useless to insist on a method which strictly accords with Laplace's equations when the original quantities which are to be corrected fail to satisfy those equations.

23. As remarked above in §7 the reason of the multiple values of u, v, w according to traverse route followed is that in the computations no attempt has been made to correct observed geoidal angles to angles on the particular spheroid which is selected as a reference figure. Had these corrections been applied the method of geometrical change explained in Chapter IV would have given the changes ur, vr, wr which would then have been applicable on changing from one spheroid of reference to another. But seeing that no such corrections were applied, and that the closing errors of circuits were dispersed and treated as errors of observations it is clear that this method is not strictly applicable. The portion of the closing errors due to this lack of correction to the angles is small compared with those due to errors of observation : so in the main no great fault was committed. A greater fault was the neglect of closing on the longitude arcs, or in other words applying Laplace's longitude equation. What is at first sight naturally regarded as a defect of the methods of Chapters I and III is that equation (4) of this chapter is not satisfied. But when it is considered that Laplace's condition, of which equation (4) is an immediate consequence, was not enforced on the computation of the original triangulation, it is clear that there is nothing to be gained by now enforcing equation (4) on to the small changes to be applied an account of change of spheroid. A preferable course is to make these changes and then apply Laplace's condition to the final result as Sir Sidney Burrard has done in his discussion of the Indian azimuth observations. It is concluded then that the two objections to the methods of Chapters I, III cited above have little weight in view of the slight inaccuracies of method by which the Indian triangulation has been reduced. It remains then to decide merely on what route should be followed in deducing the changes of coordinates by the method of Chapter I. This method is applicable to any route if the "closing errors" are applied as explained at the end of that chapter: and in Chapter III although the results are obtained in a special way, yet these results might have been obtained by the method of Chapter I. It is clear that no route can be laid down as rigorously correct and that the best that can be done is to select a route which appears to be the best. Suppose there were four triangulation series all of equal merit forming a square. Then the route which should be followed from one corner to another is the diagonal, and this produces a result intermediate to those which would be found by following either pair of sides. If one pair of sides was distinctly better triangulation than the other, the best route would doubtless be one closer to the good sides than the bad sides. But in the case of a great network of triangulation it is too complicated to go into such detail and so the diagonal would be selected. Now the geodesic corresponds fairly closely in the case of a spheroid to the diagonal of any square or rectangle, and it gives a satisfactory medial path among the triangulation and medial results for the changes deduced. This choice is slightly arbitrary, but seems the best that can be made. Another arbitrary choice is that of the origin from which changes are computed on the point from which all the selected geodesics radiate. It is apparent from the theory of the "closing errors" that different values would be deduced for the change according as this central point is selected; but the differences are not really appreciable in comparison with the errors due to faulty observation: Kalianpur is very centrally situated as regards India, and as it is the origin of the triangulation it appears that it would merely be an unnecessary complication to select a slightly different point for the point from which the geodesics radiate. It would be useless to go into any great refinement as to the theoretically best centre for this purpose because it would be constantly disturbed as new triangulation is added to the Indian system.

It appears then that, without there being any rigidly accurate reason for adopting the method and results of Chapter III, yet that it meets the present case quite satisfactorily and has no defect of appreciable magnitude: and that any defect of theoretical precision would be present in any alternative method which might be proposed. The conclusion quoted at the end of Chapter IV is accordingly reiterated, namely that the method of calculation along geodesics through Kalianpur as set forth in Chapter III is the correct one to use.

CHAPTER VI.

Strength and Adjustment of Triangulation. Mechanical Analogy.

A criterion of strength of triangulation series.

1. If a mechanical network, which is analogous to a triangulation series in the sense explained in § 10 below, replaces each series in a system of triangulation a mechanical framework is formed. Each mesh in this framework corresponds to a circuit in the triangulation and needs straining to close in a way exactly analogous to the need of adjustment of triangulation circuits. Now in general in Indian triangulation, series follow approximately straight lines and these are generally more or less along meridians or parallels. Consider four series which form a circuit A B C D, and their mechanical analogues. To effect closing at A in the mechanical framework strains must be applied: and it seems fairly clear that the strains which will be caused in the side A B will be of the same nature all along this side, but will differ essentially from those caused in B C. An example would be that the strains in AB would be such as to increase the length AB while those in BC would be to slightly curve B C. On this account it appears desirable to consider strains of a particular type as existing throughout A B: but not existing to the same extent in B C. The side A B is thought of as having uniform strength which differs from the uniform strength of BC. Reverting to the triangulation series it may be remarked that in one series the same strength is aimed at throughout, angles being observed with similar precision and figures of the same type selected as far as possible. When topographical conditions change entirely, as must essentially occur on the passage from plain to hilly country, the series should be considered in sections.

In considering one series of a circuit, it is only necessary to think of a "route" formed by those sides which persist in the general direction of the series, but bearing in mind that the length of each side is expressed in terms of the previous side, and that in any adjustment its relative length to this previous side is the quantity which is to be slightly varied; and similarly its azimuth is relative to the previous side. It will not be very far from the truth in effect if these several sides are for simplicity regarded as of equal length l and practically in the same direction. Suppose the angle between the r^{th} and r+1 th side, originally practically 180°, is changed by the small angle η_r : and that the ratio of the length of the r+1 th side to the r^{th} , originally unity, is changed to $1+\epsilon_r$ Expressed in terms of the base, the r^{th} side changes in length in the ratio $\prod_{i=1}^{r} (1+\epsilon)-1 \stackrel{r}{=} \sum_{i=1}^{r} \epsilon_i$ and in direction by $\sum_{i=1}^{r} n_i$. These quantities ϵ_i and ϵ_i were the changes to give any possible recall the variable ϵ_i .

direction by $\sum_{i} \eta_{i}$. These quantities ϵ and η may be chosen to give any possible small changes in the length and azimuth of the terminal side of the series. Consider the displacements in the terminal

point r+1. That in the direction of the series is clearly

$$l\epsilon_1 + l (\epsilon_1 + \epsilon_2) + \cdots + l (\epsilon_1 + \cdots + \epsilon_r) = \frac{l}{r} \left(r\epsilon_1 + \frac{1}{r-1} + \frac{1}{\epsilon_2} + \cdots \right)$$

where s is the length of the series and accordingly s=tl.

The most probable value of this is

$$\frac{s\epsilon}{r} \left(r^3 + \overline{r-1} \right)^2 + \dots \right)^{\frac{1}{2}} = \frac{s\epsilon}{r} \sqrt{\frac{r(r+1)(2r+1)}{6}} \stackrel{\cdot}{=} s\epsilon \sqrt{\frac{r}{3}} \dots (1)$$
is large, ϵ being the most probable of $\frac{1}{2}$.

if r is large, ϵ being the most probable value of any of the quantities ϵ_r . Similarly the displacement of the terminal point r in the direction at right angles to the series is

Both the quantities ϵ and η depend on the probable error of an angle (adjusted by the triangular conditions) in the series. General Ferrero introduced the quantity "m" as a criterion of

$$m = \sqrt{\frac{\Sigma \Delta^3}{3 n}}$$

 Δ being the triangular error of any triangle and n the number of triangles considered. This quantity "m" is accordingly the error of mean square of one angle of a triangle. The probable error of an observed angle is .6745 m. The probable error of an angle adjusted to satisfy the

$$a = \sqrt{\frac{2}{3}} \times .6745 \ m = .551 \ m . \tag{3}$$
The expressed by sorring 4b.4.4.

The formulæ (1) and (2) may accordingly be expressed by saying that the probable displacement of the terminal point of a series of given length in any direction varies as m/\sqrt{l} . They accordingly show the advantages of figures with long sides. It remains to consider the effect of various types of figures in the series, simple triangles, braced quadrilaterals, central pentagons, hexagons etc. Only regular figures are considered and the sides of each are taken equal to l. To complete a series of each type of given length s suppose there are $n_3 n_4 n_5$ etc. figures, simple triangles, braced quadrilaterals, pentagons, etc. It is clear that the gains in distance in the required direction are

 $n_3 l \cos 60^{\circ}$ in the case of simple triangles $n_4 l$ $n_4 l$ quadrilaterals $n_5 l$ (cos $18^0 + \frac{1}{2} \cos 54^\circ$) . . . pentagons \dot{r} $2n_{\rm s}l\cos 30^{\rm o}$ · · · hexagons

Pentagons 1 4 1 Hexagons

and as these must all be equal to s

$$\frac{1}{2} n_8 = n_4 = \frac{n_5}{1.245} = \frac{n_6}{1.732}$$

Now the probable errors in the determination of a terminal side after a given number of figures of each of the kind mentioned are in the ratio

so that at the end of each series of the same length the errors are in the ratio

$$0.82\sqrt{n_3}$$
 : $\sqrt{n_4}$: $1.21\sqrt{n_5}$: $1.29\sqrt{n_6}$

which reduce to

for the cases of triangles, quadrilaterals, pentagons and hexagons respectively.

[†] An alternative arrangement of the pentagon

gives a result practically the same.

^{*} Vide Account of the Operations of the G. T. Survey of India, Vol. II, p. 199.

Suppose there is a series composed of a simple triangles, β braced quadrilaterals, γ pentagons and δ hexagons, then the ratio of its terminal probable errors to those of a series of the same length composed of quadrilaterals is

$$\sqrt{\frac{\overline{1\cdot17}|^2\alpha + \beta + \overline{1\cdot08}|^2\gamma + \overline{98}|^2\delta}{\alpha + \beta + \gamma + \delta}} : 1$$

which may be approximately written 1+f:1

Heptagons, nonagons etc. occur rarely and may be treated as pentagons. Octagons, decagons etc. may be treated as hexagons. Combining this result with (1) and (2) the quantity

is formed in which 18, the average length in miles of sides in the Indian triangulation, is introduced, and "m" is General Ferrero's expression for error of mean square of an angle and l is the average length of side expressed in miles in the series under consideration.

2. This quantity M takes cognizance not only of the probable error of the angles in the triangulation but also of the length of side and type of figure. For a given length of triangulation it gives a relative idea of the errors likely to occur in series of different precision and type: for example if there are several series of the same length, say 300 miles each, for which values M_1, M_2, M_3 ... have been found by (4), then the probable errors of northing or easting of the terminal point are approximately in ratio $M_1: M_2: M_3$... and the same is true of the probable errors of length or azimuth of the terminal side. "M" gives a criterion of the value of triangulation considering in proper proportion the excellence of observation and the success in chosing well-proportioned figures which has been attained: "m" only gauges the excellence of observation.

The deduction of the quantity M is confessedly based an approximations and simplifications. It would not be expected to be very accurate if applied to badly conditioned figures, and it is not intended that this should be done. In geodetic triangulation such figures are exceptional and figures approximately symmetrical largely predominate: and in these cases M is a practically useful criterion of the excellence or strength of the series.

All the triangulation of India has been classified according to values of M (ride table XLIV) and the order of merit of the several series deduced. The series are arranged in chronological order and designated by a serial number. Reference to any series can generally be made more conveniently by use of its serial number than by the rather long and frequently artificial names which have been applied. A consideration of the list shows that the principal and secondary triangulation ranges fairly continuously from very high class work in the best of which No. 76 North Baluchistan Series m'' = 0.221 and M = 0.17; to the least successful secondary triangulation No. 65. Siam Branch in which $m=3''\cdot711$ and $M=4\cdot34$. The mean square (vide note at foot of table) value of M for the triangulation which was utilised in the grinding of the Indian network is 1.04: that for the whole triangulation 1.51. In some cases so called secondary triangulation proves better than poor principal triangulation: in general there is no marked gap between the two classes. This classification of triangulation into principal and secondary is accordingly dropped after the completion of the series and both are classed as "geodetic" triangulation and placed according to the values of M yielded by them. The further distinction in Indian triangulation is between "geodetic" and "minor" triangulation. The former is always rigorously computed taking account of spherical excess. The latter, which is generally very much rougher, disregards-spherical excess.

TABLE XLIV.

Values of "m" and "M" for all Geodetic Series of the Indian Triangulation.

				1											· · · ·		-	
No						Num	1			eper	nde	nt F	igu					
140	Name of Series	Seasons	土加	1	3-sided	4-sided	, 5-sided	6-sided	7-sided	8-sided	9-sided	10-sided	II-sided	12-sided	punodmoo	f	 ± 1 	Order of
1 2 8	South Pārasnāth Mer. Budhon Meridional Amūa Meridional	1833-43 1834-38	$2 \cdot 242$	19.9	2.5	1	2	4						1	2 1	39 35	3 · 2 2 · 4 1 · 8	6 92 6 86
4 5 6	Calcutta Longitudinal Great Arc Meridional	1834-69	0 · 369	26.6		•···	4	2	2	2	1	1	1		. 0	67 51	$1 \cdot 7$ $0 \cdot 3$	72 28 t
	Section 24°-30°		1	0 1		•••	2	2	٠	.			\cdot	1	4 1	09	0 · 7	368
8	Bombay Longitudinal Great Arc Meridional,			1 1	1	1	2	2	٠				.	:	2 0	77	0 · 74	38
9	Section 18°-24° Great Arc Meridional,				İ	3	4			1				;	3 1	18	0.59	288
	Section 8°-18°	1840-74	0 - 390	23.7	1	4	2	5	3	1	٠.		.	;	3 0	54	0 · 36	138
TT	Singi Meridional South Konkan Coast Karāra Meridional	1842-62 1842-67 1843-45	2 · 176	29.6	16	3 3 1, 1					٠٠].				. 14	10	1·14 1·93 1·81	79
14	North Malüncha Mer. Chendwär Meridional Gora Meridional	1844-46 1844-69 1845-47	0⋅841∥	15•11 ⁻	77	1	1	1	2						. 18	30	1 · 42 1 · 06	60 45
17	Calcuita Meridional South Malüncha Mer. Khānpisura Meridional	1845-48 1845-53 1845-62	1 - 600	ווא. שו	ın I		1	1	2					. 1	16	7	1 · 21 1 · 99 1 · 97 L · 07	82 81
21	Hurīlāong Meridional	1846-47 1846-55 1848-52)•446∥	11 - 1 i g	96	2	1	3		1					·16	7 7	L·55 D·65 L·92	65 31 <i>6</i>
24	North-West Himalaya Gurhāgarh Meridionol East Coust	1848-53 1848-62 1848-63) • 9] 4	13 - 6 7	n l	6	1	2 3		i i i			ļ. -	. 3	02	1 0) · 55 · 21 · 70	26 52 <i>b</i>
27	Karāchi Longitudinal Abu Meridional North Pārasnāth Mer.	1849-53 1851-52 1851-52	0 617 1	$[5 \cdot 9]$	1	10		0 3 		2	-			1	·01 ·04	5 0 2 0)·60)·68 ·25	30 33
39 0	Kāthiāwār Meridional Gujarāt Longitudinal Kāthiāwār Minor Lon.	1852-56 1852-62 1853) 859∥]	4 · 2 3	1	3 5 .	1 2	1						3	·10	1 1 7 1	·11 ·12 ·34	49 50
12	Sābarmati Secondary Great Indus Rahūn Meridional	1853-54 1853-61 1853-63	· 359 1	2 7	İ	2 9 2	111		2 2	2		3	1		·14/	7 2	·84 ·43 ·37	88 20 <i>ì</i>

TABLE XLIV.—(Contd.)

Values of "m" and "M" for all Geodetic Series of the Indian Triangulation.

	<u> </u>																
						Num	ber	of.	Ind	epe	nde	nt I	Figu	res		1	
No.	Name of Series	Seasons	<u>+</u> m	l	3-sided	4-sided	5-sided	6-sided	7-sided	8-sided	9-sided	10-sided	11-sided	12-sided Compound	f	±N	Order of Merit
34 35 36	Cutch Coast	1854-60 1855-58 1855-60	0.986	12.5		2 5 18	3 6 1	4 1	•••	1	• • •			1	L 074		1 36 <i>8</i> 7 55 <i>8</i> 6 40
37 38 39	Sambalpur Lon	1855-63 1856-57 1856-60	0.806	19.3	7	2 		7 1 	1	1					. 117	0·5 0·8 1·4	
40 41	Meridional No. 1	1858-59	0 930	9 · 1	13	1	•••								155	1.5	64
42	Meridional No. 2	1859-60 1859-60				1 3	1				• •			1	145	ļ	
43 44	Bider Longitudinal	1859-72				1, 1	2	ĺ		3.				. 1	064	1 48 0·30	
45	Shillong Meridional	1860-64 1861-63				6	2	- 1	- 1		1.	.		i	·028 ·167	0·49 0·58	
46 47	Madras Mer. and Coast Kāthiāwār Minor Meridional No. 4	1861-68 1863-64			l	. 8	2	6	3	2.		!	: E		026		
	East Calcutta Lon	1863-69	0.379	10 · 7	32			2					- -		·157 ·157		
49 50 51	Manyalore Meridional Kumaun and Garhwal Nāsik Secondary	1863-73 1864-65 1864-65	1 · 742	26 · 7	2	1 4 	1	4 1 	2				- -	. 2		0 · 45 1 · 50 3 · 12	63
53	Burma Coast Jabalpur Meridional Madras Longitudinal	1864-82 1865-67 1865-80	0.340	22 • 4 .		18 2 1	5 3	5 7 6.	1	2				4	·078 ·008 ·038	0.31	7
56	Assam Valley Triangu- lation Brahmaµutra Mer Coimbatore Minor No. 1	1867-78 1868-74 1869-71) 564	12.0		5, 3 	1.1.1.	6		1				. 1	·141 ·009 ·163	0 · 70	346
59	Cuddapah Minor	1869-73 1871-72 1871-72)·826	L7·6	8	6 1 	4	6							·021 ·148 ·167	0.96	43b
62	Jodhpore Meridional	1871, 74, 80 1873-76 1875-79) • 291∥1	5.6		 3 8	 1 1		1		1			 1	·167 ·019 ·007	0.32	8 <i>t</i>

TABLE XLIV.—(Contd.)

Values of "m" and "M" for all Geodetic Series of the Indian Triangulation.

Ñ	o. Name of Series		11			Number of Independent Figures												
	Name of Series	Sensons	$\parallel \pm m$	Z	3-sided	4-sided	4-sided 5-sided		7-sided	8-sıded	9-sided	0-sided	11-sided	z-sided	J	f	±Μ	Order of
6 6	4 Eastern Sindh Mer. 5 Siam Branch Triangulation	1876-81	II.		•••	3	2	5	2				- ,	- 2	1	8 () • 3(1
60	6 Mandalay Meridional	. 1878-81 1889-95	3·711 0·418	$16 \cdot 1 \\ 27 \cdot 0$	7	4 18, 3									1 -10	$7 \Big\ _4$	4 · 3 4	94
67 68		1891-93	3 · 054	24.0		1	•••	•••	•••	•••	•••	+	•-		r .00	9 0) • 35	12
69	Makran Longitudinal	1894-99 1895-97	III) · 459	100.4		$5,\parallel 2$ $2,\parallel 1$	1				:: :	-	• •	. 1	1 13	0110	.36	13
7.1		1899-1909	1 . 000		8	2	1				•••		٠.	1	. 069	- 11		11
	Great Salween	1899-1902 1915-16 } 1900-11	0·750 0·404	$32 \cdot 6$	31	$\ 1\ $ 2, $\ 4\ $	2							1	16]	L II O	.81	39
74 75	Baluchistān Triangu	1902-03 1904-08	1 ·323 0 ·365	15·2 39·7.		1 6, 5		il.	.	.			ļ	ļ	125	$\ _1$	62	67
	radon	1908-09	1 · 348	33.2		1						1		,	.000	11	ľ	1
	North Baluchistān Gilgit	1908-10 1909-11	0.221	32.7			1.							1	083	0	- 1	
- 1	Khāsi Hills Secondary	1909-11	\$.038	$10 \cdot 7 1$	4	3, 1 . 3 .	-	· · ·							·093 ·137	0.	37	15t
JU1	Mawkmai Secondary Upper Irrawaddy Jaintia Hills Sec.	1909-11 1909-11 1910-11) • 59AII	30 · 61	4	1 .	- -			-					163	2.	35	85
32	Bhīr Secondary	1911-12	- 11			•••	٠.	-			-			••••	·074 ·167	1.	86	23 <i>0</i> 76
4	Ranchi Secondary Villupuram Secondary	1911-12 1 1911-12 1	· 840//1	15.011	3	· · · · ·						 			·167	2.	$34 \parallel 8$	84
6	Sambalpur Meridional Indo-Russian Connec-	1911-14	- 11				1 1						•••	•••	167	1.	78	71
- 1	Tion Khan I G	1912-13 1912-13 0	· 790 1	0.9 11	7	, 2									007 092		H	- 1
8 1	Ashta Secondary	1913-15	.048	5 - 3 - 9 7			· ···	···				•••	•••		167	1.8	27 5	58
4	Naldrug Secondary	$1913-14 0 \\ 1913-14 1$.304//1	୭ - ସା ୮ ୦	. 1	1			•••	• • •	::: -::	· · · .		· · · •	167 167	$0 \cdot 4$	3 2	08
OI T	Naga Hills Secondary	1913-14 1914-15 1014-15	913 2	1.3 7		1 1						.			161	1.8	5 7	5
1	Secondary	1914-1911.	094 15	5.0 13	1	1							$\cdot \cdot \cdot$	[1]	139 156 167	1.0	8 4	76
		1914-15 1	077 10) 5 10											67 1		11	ı

 4. Replace each triangulation series by one of its flanks. The network is then nearly similar to a traverse network, with the addition that closure of the length of the last side is necessary as well as its azimuth and the position of its terminal point. The flank of any series is usually not far from straight: or else consists of two or more portions with approximately straight flanks. Consider each such portion separately and denote it by the name "triangulation line."

Each triangulation line is liable to be slightly bent and to have its length slightly altered in the course of adjustment. This is effected by the angle at each station, and by the ratio of successive sides (between stations) of the triangulation line being slightly changed. Triangulation lines may be of different strengths according to the series from which they are derived: but it will be assumed that the strength of any one triangulation line is uniform. In other words, if it is necessary to adjust the azimuth at the end of a triangulation line this would be done correctly by giving the angles at all its stations an equal change: and to adjust the length of terminal side it would be correct to change the ratios of successive sides each by equal percentages.

When several triangulation lines are concerned the angular adjustment at any station of one will in general be different from that at any station of any other on account of both the different strengths of the several triangulation lines as well as their directions. The question of strengths has been considered in some detail above (vide § 1) and can be taken into account by means of M.

Adjustments of latitude and longitude at the end of a triangulation line may also be effected by a combination of small changes of the angles at the stations and the ratios of sides between stations: but in these cases the most probable adjustment would not be that of changing all the angles and the successive side ratios by equal amounts. The actual difference of this latter course from the most probable one is not very great in triangulation lines of moderate length, and it may be deemed justifiable on the ground of simplicity to make the adjustment by adopting the latter. This would bring the four types of adjustment into one simple scheme: but the more general case will now be explained and the simple case can easily be deduced from this if desired by omission of certain terms.

5. Consider any triangulation line and let the successive stations along the line be denoted by the numbers $0, 1, 2, \ldots, n$, there being altogether n sides in the line. Let A_r be the azimuth at r of r+1 and λ_r , L_r the latitude and longitude of r. Denote by c_r the length of the r^{th} side and by $\Delta \lambda_r$, ΔL_r , ΔA_r the increments of latitude, longitude and azimuth along this side (r-1, r). Suppose that the angle at the station r is changed by η_r radians and the ratio of the r-1 th to the r-th side to r-1 (1 + r) and consider what changes will be caused thereby.

The following expressions hold approximately

$$\Delta \lambda_{r} = -\frac{c_{r}}{a} \cos A_{r-1}$$

$$\Delta L_{r} = -\frac{c_{r}}{a} \sin A_{r-1} \sec \lambda_{r-1}$$

$$\Delta A_{r} = -\frac{c_{r}}{a} \sin A_{r-1} \tan \lambda_{r-1}$$
(5)

in which $\Delta \lambda_r$, ΔL_r , ΔA_r are expressed in radians. The differences between ρ , ν the principal radii of curvature and α the mean radius are neglected as only approximate equations are required in what follows.

Differentiate (5) with regard to c_r , A_{r-1} , λ_{r-1} . Denoting the changes in latitude, longitude, back azimuth and forward azimuth at station r by u_r , v_r , w_r , w_r , v_r

$$u_{r} - u_{r-1} = \Delta \lambda_{r} \left\{ \frac{\delta c_{r}}{c_{r}} - \tan A_{r-1} \left(w_{r-1} + \eta_{r-1} \right) \right\}$$

$$v_{r} - v_{r-1} = \Delta L_{r} \left\{ \frac{\delta c_{r}}{c_{r}} + \cot A_{r-1} \left(w_{r-1} + \eta_{r-1} \right) + \tan \lambda_{r-1} u_{r-1} \right\}$$

$$w_{r} - w_{r-1} - \eta_{r-1} = \Delta A_{r} \left\{ \frac{\delta c_{r}}{c_{r}} + \cot A_{r-1} \left(w_{r-1} + \eta_{r-1} \right) + \sec \lambda_{r-1} \operatorname{cosec} \lambda_{r-1} u_{r-1} \right\}$$
In these exerctions set of

In these equations cot A_{r-1} or $\tan A_{r-1}$ is liable to be inconveniently large: but this is always accompanied by either $\Delta \lambda_r$ or ΔL_r being correspondingly small. It is convenient to eliminate A_{r-1}

$$u_{r} - u_{r-1} = \Delta \lambda_{r} \frac{\delta c_{r}}{c_{r}} - \Delta L_{r} \cos \lambda_{r-1} \left(w_{r-1} + \eta_{r-1} \right)$$

$$v_{r} - v_{r-1} = \Delta L_{r} \frac{\delta c_{r}}{c_{r}} + \Delta \lambda_{r} \sec \lambda_{r-1} \left(w_{r-1} + \eta_{r-1} \right) + \Delta L_{r} \tan \lambda_{r-1} u_{r-1}$$

$$w_{r} - w_{r-1} = \Delta L_{r} \sin \lambda_{r-1} \frac{\delta c_{r}}{c_{r}} + \Delta \lambda_{r} \tan \lambda_{r-1} \left(w_{r-1} + \eta_{r-1} \right) + \Delta L_{r} \sec \lambda_{r-1} u_{r-1}$$
There with potential solutions and the first second solutions are sufficient to the first second solution.

In accordance with notation explained above, since $\frac{c_{\rm r}}{c_{\rm o}} = \frac{c_{\rm r}}{c_{\rm r-1}} \cdot \frac{c_{\rm r-1}}{c_{\rm r-2}}$ $\frac{c_r}{c_{r-1}} \text{ is changed into } \frac{c_r}{c_{r-1}} (1 + \epsilon_{r-1}) \text{: then } \frac{c_r}{c_0} \text{ is changed into } \frac{c_r}{c_0} \prod_{0}^{r-1} (1 + \epsilon_r). \text{ Hence } \frac{\delta c_r}{c_r} \stackrel{:}{=} E + \sum_{0}^{r-1} \epsilon_r$ where c_0 , which may be regarded as the last side previous to the side 01, is supposed to change to

Now suppose that the changes in successive side ratios and angles are in arithmetic progression: i.e.

and

$$\epsilon_{0} = \epsilon_{1} - \epsilon' = \epsilon_{2} - 2\epsilon' = \cdot \cdot \cdot = \epsilon_{r} - r\epsilon' = \epsilon$$

$$\eta_{0} = \eta_{1} - \eta' = \eta_{2} - 2\eta' = \cdot \cdot \cdot = \eta_{r} - r\eta' = \eta$$

$$\frac{\delta c_{r}}{c_{r}} = E + r\epsilon + \frac{r(r-1)}{2} \epsilon'$$

Then

E and H being the quantities relating to the side from which the triangulation line emanates. Equations (7) may now be written

$$u''_{r} - u''_{r-1} = \left(E + r\epsilon + \frac{r(r-1)}{2}\epsilon'\right) \operatorname{cosec} 1'' \Delta \lambda_{r} - \left(v''_{r-1} + \eta + (r-1)\eta'\right) \operatorname{cosec} \lambda_{r-1} \Delta L_{r}$$

$$v''_{r} - v''_{r-1} = \left(E + r\epsilon + \frac{r(r-1)}{2}\epsilon'\right) \operatorname{cosec} 1'' \Delta L_{r} + \left(v''_{r-1} + \eta + (r-1)\eta'\right) \operatorname{sec} \lambda_{r-1} \Delta \lambda_{r}$$

$$+ u''_{r-1} \tan \lambda_{r-1} \Delta L_{r} + u''_{r-1} \tan \lambda_{r-1} \Delta L_{r} + \left(v''_{r-1} + \eta + (r-1)\eta\right) \operatorname{cosec} 1'' \sin \lambda_{r-1} \Delta L_{r}$$

$$+ \left(v''_{r-1} + \eta + (r-1)\eta\right) \tan \lambda_{r-1} \Delta \lambda_{r} + u''_{r-1} \operatorname{sec} \lambda_{r-1} \Delta L_{r} + \left(v''_{r-1} + \eta + (r-1)\eta\right) \operatorname{cosec} 1 - \left(\lambda_{r} + \lambda_{r} $

in which u, v, w, η are now expressed in seconds and $\Delta \lambda$, ΔL are in radians, and $w_0 = H$.

To apply these equations it is necessary to know the values of E_0 , ϵ , η'' , u_0'' , v_0'' and v_0'' . last quantity is simply additive to all values of v. The remaining five quantities give rise to five cases: for they can be considered separately and the results combined afterwards, since second order quantities are being neglected. By successive application of (8) the solution may be obtained in the

$$u_{r} = (A_{u} + B_{u}\epsilon + G_{u}\epsilon') \text{ cosec } 1'' + C_{u}\eta + F_{u}\eta' + D_{u}u_{0} + K_{u}w_{0}$$

$$v_{r} - v_{0} = (A_{v} + B_{v}\epsilon + G_{v}\epsilon') \text{ cosec } 1'' + C_{v}\eta + F_{v}\eta' + D_{v}u_{0} + K_{v}w_{0}$$

$$w_{r} = (A_{v} + B_{v}\epsilon + G_{v}\epsilon') \text{ cosec } 1'' + C_{v}\eta + F_{v}\eta' + D_{v}u_{0} + K_{v}w_{0}$$

$$(9)$$

The coefficients A, B etc . . have to be determined for each triangulation line and then the latitude, longitude and azimuth changes are expressed by (9). The rth side is changed in the ratio $1 + E + r\epsilon + \frac{r(r-1)}{9}\epsilon'$: 1; so that the solution is complete.

It is convenient to denote the changes at the end of any, the mth, triangulation line in latitude, longitude, azimuth and side by mU mV mW mE: then taking account of different values of ϵ , η which occur in different triangulation lines the change in latitude, longitude and azimuth of the rth station of the mth line may be written

Equations (10) give in the most general form the changes that are effected by introducing the alterations η , η' , ϵ , ϵ' different for each triangulation line.

6. We may now consider the probable relative values of ϵ and η (the latter expressed in radians) for this purpose treating ϵ' and η' as zero.. Take the case of a series of simple equilateral triangles and let p-2, p-1, p be three successive stations on a flank: also let $x_p y_p z_p$ etc. be changes which are applied to the several angles, as indicated in the figure. The ratio of the successive flank sides Q R/P Q being denoted by r, then

$$d \log r = \cot 60^{\circ} (x_{p-1} + x'_{p-1} + y_p - y'_{p-1} - z'_{p-1} - z_p)$$

Hence

$$\sum_{n} d \log r = d \log \Pi r$$

$$= \cot 60^{0} \left\{ \sum_{n=0}^{p-1} (x_{n} + x'_{n} - z_{n-1} - z'_{n-1}) + y_{p} - y'_{0} \right\}$$

$$\stackrel{\cdot}{=} n\epsilon.$$

Hence the most probable way of getting a particular value for the change in logarithm of the side is by making all the xs equal to each other and of opposite sign to all the zs which will also all be equal. The y^s do not come into the case at all except at the two ends, unless an azimuth change is also required.

For the azimuth it is clear that

$$\sum \eta_{p-1} = \sum (x_p + y'_{p-1} + z_{p-1}) = p\eta$$

 $\Sigma \; \eta_{\rm p-1} \; = \; \Sigma \; (x_{\rm p} \; + \; y'_{\rm p-1} \; + \; z_{\rm p-1}) \; = p \eta$ is the azimuth change, since the $\eta^{\rm s}$ are all to be equal.

Now in the most probable distribution of changes obviously all the xs are equal as are the y^s and z^s . Hence

$$p\epsilon = \frac{p}{\sqrt{3}} \left\{ x + x' - z - z' \right\} + \frac{1}{\sqrt{3}} (y - y')$$
and
$$p\eta = p (x + y' + z).$$
Now
$$x + z = -y$$

$$\eta = y' - y$$
and
$$\epsilon \doteq \frac{1}{\sqrt{3}} \left(x + x' - z - z' \right)$$

The probable values of η and ϵ are accordingly in the ratio of the most probable values of $\frac{y\sqrt{8}}{m-z}$ in which the quantities are subject to the relation

$$x - y + z = 0$$

Following the usual plan of independent multipliers explained below (Chapter VII § 4) we have for the two cases (a) of y and (b) of x-z

$$a_1 = a_2 = a_3 = 1$$

 $b_1 = b_2 = b_3 = 0$
etc.
 $a_1 = a_2 = a_3 = 1$

 \mathbf{and} ٠.

$$3k_1 = 1$$
 in case (a); $3k_1 = 0$ in case (b) $u_{\mathbf{F}} = 1 - \frac{1}{3} = \frac{2}{3}$ in case (a); $u_{\mathbf{F}} = 2 - 0 = 2$ in case (b) able values of η and ϵ is units.

Hence the ratio of probable values of η and ϵ is unity, i.e., η and ϵ have the same weight.

7. Now it is clear that in the adjustment of azimuth and side the most probable solution is obtained by introducing equal values of η , ϵ and by putting $\epsilon' = \eta = 0$, all round a circuit composed of triangulation lines of equal strength: and if the triangulation lines are of different strengths the value of η , ϵ in any one is inversely proportional to the strength. With latitude and longitude it is clear that the directions of the traverse lines are of essential importance. Thus in the case of a triangulation line along a meridian a change in ϵ will give changes in latitude but no change in longitude. Moreover to get any desired change the most probable values of changes in angle and side ratio would not be equal at all the stations along a triangulation line: though it is probable that they would not alter much on one triangulation line if the circuit was composed of several such lines. Taking the case of a triangulation line along a meridian it is clear that to obtain a given change in longitude the change in the angles at the starting end of the line are more effective than equal changes in the angles near the closing point. If the sides were of equal length the most probable changes would be in arithmetical progression. The complexity of different changes at the various stations of a triangulation line on account of this has been deemed in general to overbalance the slight gain in theoretical accuracy of adjustment and at least in some preliminary adjustments which are about to be made (e.g. the incomplete Burma triangulation) the plan will be followed of making η and ϵ uniform along one triangulation line and putting $\eta' = \epsilon' = 0$. When the probable errors of position etc. are considered (vide Chapter VII.) it is believed that this plan will be considered fully satisfactory for many cases of geodetic application.

The equations (10) however show how the variation in changes along a triangulation line may be taken into account: and in closing a single triangulation line between two previously fixed sides they give the necessary number of quantities (four) at choice to satisfy the closing condition. It is clear from the theorem stated at the end of § 13 that for the general case of closure the changes at the several stations of a triangulation line should be in arithmetical progression this being a combination of the most probable adjustment firstly for log. side and azimuth and secondly for latitude and longitude. When the number of η^s and ϵ^s at choice is in considerable excess of the number of conditions te be satisfied it is believed that little gain in accuracy is obtained by introducing η'^s and ϵ'^s : and certainly this doubles the number of unknowns and greatly increases the labour of formation and solution of the normal equations. It also increases the complexity of the solution, and its subsequent application.

8. In the case of a network of circuits including Laplace stations and extra base lines, equations of form of (10) may be formed; and by equating the right hand sides to the several closing errors which arise, four equations are formed for each circuit together with one extra for each extra base line or Laplace station. These may be used to determine the most probable values of η , ϵ (and η' , ϵ' if it is thought desirable not to put these equal to zero for each triangulation line), due regard being paid to the strength of each triangulation line.

If $m = \sqrt{\frac{\overline{\Sigma}\Delta^2}{3n}}$ where Δ is the triangular error of any one of the triangles of a series, then the probable value of η in the case of a series of simple triangles in which the triangular error has been dispersed is, by (11), $\sqrt{\frac{2}{3}} m\sqrt{2} \times 6745 = 779m$. Account may be taken of the series comprising

quadrilaterals and other figures by the introduction of a factor $\frac{1+f}{1+\frac{1}{6}}$ (see § 1 above) so that the probable values of η and ϵ (which are equal) are both equal to

$$\cdot 779m \frac{1+f}{1+\frac{1}{6}} = 0.668m (1+f) = a \dots \dots (12)$$

in which m is supposed to be expressed in radians.

The equations for η and ϵ accordingly have to be solved subject to the condition that the sum of the squares of the corrections multiplied by their weights is a minimum. In one triangulation line the sum of the squares of the corrections is

$$\begin{split} \Sigma\Big(\eta^2+\epsilon^3\Big) \,+\, \Sigma\,\Big(\,\,\eta^{\prime3}+\epsilon^{\prime2}\,\Big) r^3 \,=\, r\Big(\eta^2+\epsilon^2\Big) \,+ \frac{r(r+1)(2r+1)}{6}\Big(\,\,\eta^{\prime3}+\epsilon^{\prime3}\,\Big) \\ &\stackrel{:}{\Rightarrow}\, r\Big(\eta^2+\epsilon^3\Big) \,+\, \frac{r^3}{3}\Big(\eta^{\prime2}+\epsilon^2\Big) \end{split}$$

when r is the number of sides in a triangulation line.

Hence the condition to be satisfied is that

$$\Sigma \left[\left\{ r \left(\eta^2 + \epsilon^2 \right) + \frac{r^3}{3} \left(\eta'^2 + \epsilon'^2 \right) \right\} + m^2 \left(1 + f \right)^2 \right] = \text{a minimum} \quad . \quad . \quad . \quad . \quad (13)$$

the summation extending over all the triangulation lines.

Mechanical Analogy

9. Suppose that there is a network of trilateration, in which the lengths of all sides have been determined by direct measurement. Let l be the measured length of any side, $l + \delta l$ the adjusted value, and w the weight of the determination l. In making any adjustment of the network, for example to bring a terminal side into agreement with a line slightly differently placed, the principle of least squares demands that $\sum w |\delta l|^2$ shall be a minimum, all imposed conditions being satisfied.

Now consider a similar framework formed by rods of material obeying Hooke's law of extension and compression, and suppose these rods are freely jointed at their junctions. If this framework is in equilibrium without any strains in action, and, the first side being held fast, the last side is brought into a slightly different position and its length slightly changed, then the several rods will undergo compression or extension and their lengths will be slightly altered. If the unstrained length of any rod is l and its strained length is $l + \delta l$; and the force in action in it causing this strain is F: then the work done on the rod is $\frac{1}{2}F\delta l$. Now by Hooke's law

$$\frac{\delta l}{l} = \frac{F}{aE}$$

where E is Young's modulus and a is the cross section.

Hence

$$\frac{1}{2} F \delta l = \frac{aE}{2l} \cdot \overline{\delta l}|^2$$

and this represents the work done on the rod. The quantity $\frac{aE}{2l}$ may be varied by suitably chosing a: suppose it is made equal to w. Then the work done on the rod is $w \delta l^2$. The principle of least work immediately shows that for the set of strains applied to bring the last side into the desired position the total work done must be a minimum: whence $\sum w \, \delta \, l^{|s|}$ is a minimum. accordingly is the same as that of the most probable adjustment of the similar trilateration network.

. 10. Now trilateration has never been carried out on a large scale for one obvious reason that no large tract of country is suitable for its execution by ordinary methods. Triangulation on the other hand extends over vast tracts and it is its adjustment which is of importance to geodesists. A mechanical analogy can be supposed for triangulation also. It is less simple than that just described for trilateration and to give it practical shape would be a matter of greater difficulty. Imagine a set of rods, the medial parts of which are laterally rigid, but which are longitudinally extensible without the application of (appreciable) force*. Let these rods be freely jointed to form a framework similar to a network of triangulation, the angles of the triangulation being maintained by rigid pieces. For example in the \triangle ABC the rod AB is freely extensible between

 A_1 and B_2 : a cross piece A_1 A_2 maintains the angle A at its proper value and so on. It will be seen then that such a triangle may be enlarged to any size but that it will always remain similar, unless the pieces $A_1 A_2$, $B_1 B_2$, $C_1 C_2$ are changed in length. If these pieces $A_1 A_2$ etc. are made of material obeying Hooke's law, by properly chosing their cross section it is possible to make them represent the "strength" of the angles A, B, C. When the system is deformed the work done on $A_1 A_2$ will be proportional to the square of the change in the angle A and accordingly a condition of form $\sum w \ \overline{\delta \theta}|^3$ = minimum must be satisfied so that the total work done shall be a minimum. All geometrical conditions such as triangular conditions, central station conditions and side ratio conditions obviously cannot be avoided in the mechanical analogy, so that the solution of the mechanical problem is precisely the same as that of the triangulation adjustment according to the method of least squares.

- 11. It is clear that if the change in any observed quantity can be made to correspond to the extension of a rod which obeys Hooke's law; and if a system of such rods are linked up in such a way as to represent the geometrical conditions controlling the observations; then a mechanical analogy for the set of observations is obtainable. The governing fact is that the work done on any rod is proportional to the square of its extension: so that by substituting extension for error of observation the equation of minimum squares is transformed into the principle of least work.
- 12. Consider a framework representing a network of triangulation and suppose that it is held fast at one or more points. It may be necessary to bring a terminal side into agreement with a predetermined value and position. To do this four conditions have to be satisfied:
 - The terminal side must be adjusted to the correct length. (1)(2)
 - The terminal side must be adjusted to the correct azimuth.
 - One extremity of the terminal side must be moved to the correct latitude.
 - This extremity of the terminal side must be moved to the correct longitude.

Now these adjustments may be considered one by one. First strain the terminal side to the correct length and hold it so: then change its azimuth, etc. The adjustments may also be performed

^{*} Approximations to these can readily be conceived, e.g. a rod sliding in a tube.

in any order and the final result is the same. This is immediately obvious mechanically, for it is clear that the final configuration due to small strains has nothing to do with the order in which they are applied.

13. The analogy thus proves an important theorem in the adjustment of observations, namely that provided all imposed conditions are maintained, the adjustment conditions may be introduced separately in any order, the previous adjustment conditions in each case being maintained; and the most probable complete adjustment is obtained after the last adjustment condition has been applied. This enables the circuit adjustments of triangulation to be applied after the figural adjustments, as has been done in the Survey of India. A further theorem is also easily deducible. In the case of the closing of a simple triangulation circuit in which there are four closing conditions to satisfy (i.e. the case in which there are no additional base lines or independent azimuth determinations) denote the four closing quantities by X, Y, Z, U. To effect the closing X alone in the most probable manner, changes are concurrently introduced which affect the other quantities by amounts y_x z_x u_x : and similarly for the other quantities. From the mechanical analogy it is clear that adjustments as follows should be made:—

$$(3) \quad x_z \quad y_z \quad z \quad u$$

 $(4) \quad x_u \quad y_u \quad z_u \quad u$

in which

and the quantities with suffixes are geometrically related to the suffix quantity, i.e.

$$\frac{y_x}{B_x} = \frac{z_x}{C_x} = \frac{u_x}{\overline{D}_x} = x$$

$$\frac{x_y}{A_y} = \frac{z_y}{C_y} = \frac{u_y}{\overline{D}_y} = y$$
etc. (15)

where the coefficients A B C D depend only on the form of the triangulation and are independent of the closing errors. It accordingly follows that

and by solving these the following equations may be obtained

$$\begin{array}{rcl}
x & = & a_{x} X + a_{y} Y + a_{z} Z + a_{u} U \\
y & = & b_{x} X + b_{y} Y + b_{z} Z + b_{u} U \\
z & = & c_{x} X + c_{y} Y + c_{z} Z + c_{u} U \\
u & = & d_{x} X + d_{y} Y + d_{z} Z + d_{u} U
\end{array}$$
(17)

If the adjustments x, y, z, u are applied independently and then combined the total effect will be the same as that of the single adjustment X, Y, Z, U taken simultaneously. By use of the quantities x, y, z, u in place of the related quantities X, Y, Z, U it is accordingly possible to treat each closure entirely independently of the remaining three.

[†] This theorem was proved analytically in "Account of the Operations of the G.T. Survey of India, Vol. II," Appendix No. 8, pp. 151-158.

If in addition to the 4 ordinary closing quantities additional conditions such as extra bases, or fixings of latitude, longitude or azimuth are introduced, this only makes the relation more involved: it is still possible to express x, y, z, u in terms of the closing errors and proceed as though each of

The principle is perfectly general and is applicable to a whole network of triangulation. As this becomes more complex the determination of the coefficients in the equations which correspond to (17) would become more difficult: but this is not necessary at least in some applications of the theorem. It is an important fact that an undetermined portion of each of the closures may be regarded quite independently of the others. The theorem may be stated as follows:—It is possible to find quantities related to the several closing errors such that each type may be adjusted separately and independently of the others, and such that the combined effects of these several adjustments will be the

These related quantities may be called the "independent errors" of each type. If each is adjusted independently of errors of another type, the other type adjustments being allowed to come in just as they will naturally do while the adjustment of the first type is made independently in the most probable manner, then the combined result of the adjustment of the four types will be the most probable adjustment of the closing errors which can be made.

14. Consider now in more detail the case of more than one circuit forming a network which has to be simultaneously adjusted. The case of two circuits which have a common portion is illustrative of this and will be seen to lead to a result generally applicable. Further these circuits may be considered as formed each for four series and no loss of generality 6 occurs in taking these circuits to be of the same strength. The several series may be characterised by the numbers 1-7 and the circuits by

(2)3 (1)

The adjustments along any side may be made by the introduction of ϵ and η changes: and any one of the four types of closures the ϵ^s and η^s along a triangulation line will be in arithmetical progression (vide § 16). For the rth side of the kth line their values may be represented by

$$\epsilon_k + \overline{r-1} | \epsilon'_k$$
 , $\eta_k + \overline{r-1} | \eta'_k$

Consider first the X closure and suppose that $_1x$ $_2x$ are the "independent errors" of the two circuits: these quantities have to be determined. Then equations of the following form may be formed:

in which the coefficients A B C D are independent of the closing errors. The prefixes to x are the

To obtain the most probable solution the quantities ϵ , η must be chosen so as to make

$$\sum_{k=1}^{k=7} \left\{ \sum_{r=1}^{r=n} \left(e_k + \overline{r-1} | e'_k \right)^2 + \sum_{r=1}^{r=n} \left(\eta_k + \overline{r-1} | \eta'_k \right)^2 \right\} = \text{minimum.}$$

The solution of this accordingly gives definite value for all the ϵ^s and η^s as linear functions of 1^x and 2^x . The associated quantities are given by equations of form

$${}_{1}y_{x} = {}_{1}\beta_{x} {}_{1}x + {}_{1}\beta'_{x} {}_{2}x$$

$${}_{1}z_{x} = {}_{1}\gamma_{x} {}_{1}x + {}_{1}\gamma'_{x} {}_{2}x$$

$${}_{1}u_{x} = {}_{1}\delta_{x} {}_{1}x + {}_{1}\delta'_{x} {}_{2}x$$

Similarly for the other closure

$$_{2}y_{x} = _{2}\beta_{x} _{1}x + _{2}\beta'_{x} _{2}x$$
 etc.
 $_{1}x_{y} = _{1}\alpha_{y} _{1}y + _{1}\alpha'_{y} _{2}y$ etc.

Equations similar to (14) can now be formed for each circuit

$${}_{1}x + ({}_{1}a_{y} {}_{1}y + {}_{1}a'_{y} {}_{2}y) + ({}_{1}a_{2} {}_{1}z + {}_{1}a'_{2}z) + ({}_{1}a_{u} {}_{1}u + {}_{1}a'_{u} {}_{2}u) = {}_{1}X \text{ etc. } (19)$$

From (19) it is clear that the determination of the "independent errors" $_1x_2x$ etc. from the known closing conditions can be effected by the solution of simultaneous linear equations of the same number as there are conditions. These equations are soluble without the introduction of the principles of least squares. Their solution however will entail much the same labour as the solution of the normal equations which would arise in the simultaneous adjustment of all the four types of closure. It appears at present to be only of theoretical interest that these closures or rather the adjustment of the related independent errors may be effected, each type independently of the others. for no material reduction in computation would be effected. However it is believed that the mechanical analogy throws some light on the question, and that developments are likely to result from its consideration.

15. The idea of a triangulation line has been introduced in § 4. It is the flank of a nearly straight series of triangulation. For the present, disregard the ϵ changes and fix attention on the η changes. Suppose a set of rigid rods are placed similarly to the several rays of the flank and that these are freely jointed at their ends, which accordingly correspond to the stations on the triangulation line. Introduce constraints at each junction which tend to maintain the angles between successive rods equal to the observed values and such that the force necessary to alter any one of these angles by a stated amount is inversely proportional to the probable error of the angle or directly proportional to the strength of the angle. Then it is clear that the work done in varying the angles in any way is proportional to the sum of the weighted squares of the changes of these angles. It is clear then that to bring the system into any given displaced formation the angular changes introduced are such as to make either the total work done, or the sum of the weighted squares of the adjustment in the angles, a minimum. That is to say the mechanical deformation is the same as the most probable adjustment. It is clear from this why when the angular strength is given the strength of the triangulation to resist either angular deflection at the end, or linear deflection, or a combination of the two, is the greater according as the number of stations in the line is less, or, in other words, according as the length of side is greater. The quantity M already introduced takes account of this (see Chapter VII § 1) and for certain considerations of probable error makes it unnecessary to consider the triangulation line in any detail.

The ϵ changes in a triangulation line (due to the extension of its sides) are precisely analogous to the η changes, if for angular deflection, change in ratio of final to initial side is taken, and for linear deflection at right angles to the line, linear deflection in the direction of the line is substituted. In the case of a single triangulation line (which is a straight line) the η changes are

independent of the ϵ changes and the corresponding adjustments can be performed independently: so both could be separately considered by means of this partial mechanical analogy. When however there is a set of triangulation lines in various directions the η and ϵ changes (northing and easting) of the several lines get intermixed and for this a complete analogy is required.

It is clear that for the case of trilateration it would only be necessary to arrange a set of extensible rods, jointed as described above, and representing a flank of the trilateration to obtain a complete analogy. But in the case of triangulation it is necessary to arrange that if any element changes length the successive elements change length in the same proportion without any force being involved. A simple mechanical analogy completely representing a triangulation line has not yet been discovered: and for this case it at present appears necessary to consider the analogy of the complete series instead of only one of its flanks (vide § 10). For purposes of probable errors it would be possible to replace the series by a simple series composed of equilateral triangles, in the same way that in the triangulation line it may be a convenient simplification to take all the sides of equal length and persisting in the same direction: and it appears from the mechanical analogy that little accuracy would be lost by so doing.

- 16. It is clear from the partial analogy given in the preceding section that the best adjustment to make in a triangulation line to obtain a given azimuth change is to change all the angles by amounts proportional to their probable errors: for this corresponds to the mechanical set of rods of which the first is held fast and to the last of which a suitable couple is applied. To obtain a given deflection the most probable adjustment is that the angular changes divided by their probable errors should be in arithmetical progression; as would be the case in the mechanical system, when held at one end and subjected to a simple force at right angles to the line at the other end. The exact analogy between the ϵ^s and η^s shows that similar conditions hold for the ϵ^s . The above statements can be simplified for the case of a triangulation line if the weights of the several angles are considered equal. It appears that a determination of the weights of the angles may best be obtained by a consideration of all the triangular errors, which leads to one value for the probable value of any angle of the series. Any determination of probable error of each angle separately is very much vitiated by triangulation line with all sides of the same length are:—
- (a) for a given angular deflection or a given change of ratio of final side to initial side, that the η^s or ϵ^s are all equal.
- (b) for a given linear deflection at right angles to or along the line, that the η^s or ϵ^s are in arithmetical progression.

On this account the cases of the η^s and ϵ^s changing in arithmetical progression (which includes (a) as a special case, the constant difference then being zero) have been considered in equations (8) to of unequal lengths.

CHAPTER VII.

Probable errors of triangulation before and after adjustment.

- 1. Expressions will now be formed for the probable errors of points and sides generated in one or more series of triangulation, in which only figural conditions have been adjusted.
 - (1) Probable errors in logarithm and azimuth of terminul side.

Equation (12) of chapter VI gives a the probable value of either η or ϵ . The probable error in the logarithm of the terminal side after n sides of a triangulation line is clearly \sqrt{n} log $_{10}(1+\epsilon)$ = $\cdot 4348a\sqrt{n}$; and in azimuth is $a\sqrt{n}$. Considering the triangulation line as practically straight and the distances between stations as equal then, if l is the average length of side and s the length of the line, so that nl = s,

$$a\sqrt{n} = .668m (1+f)\sqrt{n} = m(1+f) \sqrt{\frac{18}{l}} \cdot \sqrt{\frac{nl}{18}} \times .668$$
$$= .1575 \text{ M } \sqrt{s} \cdot ... \cdot ... \cdot ... \cdot (1)$$

Hence if M is expressed (as is always done) in seconds of arc

Probable error in azimuth at end of a triangulation line = 0"·1575 M \sqrt{s}

Probable error in log. side at end of a triangulation line = $.4343 \sin 1" \times 0.1575 \text{ M} \sqrt{s}$ = $3.32 \times 10^7 \text{ M} \sqrt{s}$

For the case of a number of triangulation lines it is necessary to substitute $\sqrt{\Sigma M^2}s$ for $M \sqrt{s}$. It is convenient to measure lengths of triangulation lines in units of 100 miles: so replace s by 100 S where the unit of S is 100 miles and then

Probable error in azimuth of the terminal side of a series of triangulation lines
$$= 1^{"} \cdot 575 \sqrt{\Sigma M^3 S}$$

Probable error in seventh place of logarithm of the terminal side of a series of triangulation lines ... $= 33.2 \sqrt{\Sigma M^3 S}$

In the above S is measured along the triangulation, and it is immaterial whether this is straight or not: but if the elements of the summation indicated by Σ are straight, then S may be replaced by L the length of any triangulation line, bringing formulæ (2) into similar terms to those of (5) below.

Probable errors in easting and northing of terminal points.

Consider any curve defined by s the distance measured along it and ϕ the angle the tangent makes with OX. Let this curve be divided into elements of length l. Suppose that for purposes of adjustment, or on account of errors, the ratio of the $\overline{m+1}$ element to the m^{th} is changed by factor $1 + \epsilon_m$ and the angle at the junction of these two elements by η_m . Then if P P' is the m+1th element the relative shift of P' to P is

in northing

N

X

$$l\cos\phi_m \sum_{1}^{m+1} \epsilon - l\sin\phi_m \sum_{1}^{m+1} \eta$$
 in easting
$$l\sin\phi_m \sum_{1}^{m+1} \epsilon + l\cos\phi_m \sum_{1}^{m+1} \eta$$
 in northing

and the total change relative to O of N is given by

$$\Delta x = l \sum_{1}^{n} \left(\cos \phi_{m} \sum_{1}^{m+1} \epsilon \right) - l \sum_{1}^{n} \left(\sin \phi_{m} \sum_{1}^{m+1} \eta \right)$$

$$\Delta y = l \sum_{1}^{n} \left(\sin \phi_{m} \sum_{1}^{m+1} \epsilon \right) + l \sum_{1}^{n} \left(\cos \phi_{m} \sum_{1}^{m+1} \eta \right)$$

Hence

and

$$\Delta y = l \sum_{1}^{n} \left(\sin \phi_{m} \sum_{1}^{m+1} \epsilon \right) + l \sum_{1}^{n} \left(\cos \phi_{m} \sum_{1}^{m+1} \eta \right)$$

$$\Delta x = l \epsilon_{1} \sum_{1}^{n} \cos \phi + l \epsilon_{2} \sum_{2}^{n} \cos \phi + l \epsilon_{3} \sum_{3}^{n} \cos \phi + \cdots - l \eta_{1} \sum_{1}^{n} \sin \phi - \cdots$$

$$= \epsilon_{1} (x_{n} - x_{0}) + \epsilon_{2} (x_{n} - x_{1}) + \epsilon_{3} (x_{n} - x_{2}) \cdots - \eta_{1} (y_{n} - y_{0}) - \cdots$$

$$=\epsilon_1(x_n-x_0)+\epsilon_2(x_n-x_1)+\epsilon_3(x_n-x_2) \qquad \dots \qquad -\eta_1(y_n-y_0)-\dots$$
 since
$$\cos\phi=\frac{x'-x}{l}, \text{ and } \sin\phi=\frac{y'-y}{l}$$

The most probable value of Δx is accordingly

$$\left[\epsilon^{2} \left\{ (x_{n}-x_{0})^{2}+(x_{n}-x_{1})^{2}+\ldots \right.\right.\right. + \eta^{2} \left\{ (y_{n}-y_{0})^{2}+(y_{n}-y_{1})^{2}+\ldots \right.\right]^{\frac{1}{2}}$$

and since the probable values of ϵ and η are both equal to a this reduces to $a\sqrt{\sum_{r}^2}$ where r is the radius vector measured from the point N. The probable value of Δy is the same. When the elements are increased in number Σr^2 may be replaced by $\frac{1}{l} \int r^2 ds$: also by (12) of chapter VI and (1)

$$a = 1575 \text{ M} \sin 1'' \sqrt{\frac{s}{n}} = 1575 \text{ M} \sin 1'' \sqrt{l}$$

a $\sqrt{\Sigma_r^2}$ becomes equal to 1575 M sin 1" $\sqrt{f_r^2 ds}$ and

So far only a single triangulation line has been considered. If there are several it is clear that it is necessary to alter this expression to 1575 sin 1" $\sqrt{\sum M^2 \int_{i}^{2} ds}$. This is expressed in units of a mile. To express it in feet multiply by 5280. It is convenient to measure r and s in units of 100 miles: denote their values in units of 100 miles by R and S. Finally if P (feet) is the probable error at a point N in easting or northing, and R is the radius vector measured from N, and S is the distance measured along the triangulation, both R and S being expressed in units of 100 miles, then

The integral $\int R^2 dS$ may be taken out for each triangulation line (assumed to be a straight line). If A B be one of these and S is measured from M the foot of the perpendicular from N on A B and N M = p, then R^2 = S^2 + p^2

$$\therefore \qquad \int R^2 \ dS = \left[\frac{1}{3} S^3 + S p^3 \right]_{MA}^{MB} = A B \left(\frac{1}{3} A B^2 + p^2 + MA. MB \right)$$

Now if G is the middle point of AB

$$MA.\ MB = -\left(\frac{L}{2} + MG\right)\left(\frac{L}{2} - MG\right) = -\frac{L^3}{4} + MG^3$$

Hence
$$\int R^2 dS = L \left(\frac{1}{3} L^2 + p^2 - \frac{1}{4} L^2 + MG^2 \right) = L \left(R_0^2 + \frac{L^3}{12} \right)$$

where R_0 is the radius vector to the middle point of AB and L is the length AB. Therefore for a series of triangulation lines

in which the quantities L, R_0 may be measured off a chart in units of 100 miles. From either (4) or (5) it is clear that the probable closing error in northing or easting is different according as different points of a circuit are selected on which to close and from which to start.

- Formulæ (2), (5) show that the probable errors in azimuth and logarithm of terminal side increase as the square root of the length of the several triangulation lines involved, while those of easting and northing increase at a much more rapid rate namely as the three halves power of the lengths, the triangulation lines remaining similar and similarly situated. .On account of this latter fact it is desirable to have more frequent checks to prevent accumulation of errors than would be necessary if only length and azimuth of side were required. These checks may be obtained by measurement of bases and by forming Laplace stations, that is stations whose longitudes are observed telegraphically and at which astronomical azimuths are also observed. These two checks are of precisely equal importance; and applying only one of them does not serve a very useful purpose. In the Indian triangulation eight base lines have been measured to date (1916), excluding the short Mergui base in Burma, and these have been made use of in the adjustment of the triangulation. The longitude arcs were not available when (previous to 1879) the main adjustment was carried out. They do not all admit of the formation of Laplace equations, as the longitude stations are not coincident with the triangulation stations, nor can they be connected with satisfactory accuracy (as regards azimuth) in all cases. Only latterly* (1906) have they been applied to control the azimuth observations with a view to determining corrected plumb-line deflections in the prime vertical. This application does not improve the probable error in easting and northing of the points concerned or any other points of the triangulation.
- 3. It is necessary for the full consideration of the problem to find expressions for the probable errors after certain further adjustments, viz. closing on extra base lines, closing of circuits or (what has not been done in India) closing on Laplace stations, have been effected. Before treating

^{*} Account of the Operations of the G. T. Survey of India, Vol. XVIII, Appendix 5.

this question quite generally it may be of interest to consider a special case. Suppose a series of triangulation lines closes between two bases. The probable error in easting or northing at any point of it after the adjustment has been performed is required. It is to be noticed in (4) that each portion of the triangulation is fully taken account of by the portion of the integral $\int M^2 R^2 dS$ which applies to it: that is to say, this portion of the integral represents the errors of displacement generated in the corresponding part of the triangulation, as if carried on to the closing point by perfect triangulation.

Let O,K be the two bases and suppose ST is the portion whose error as generated at N is required.

As in § 1 the expression for Δx for S T may be written

$$\Delta x = \sum_{s}^{t} \left(\epsilon_{r} x_{r} - \eta_{r} y_{r} \right)$$

The adjustment under consideration does not affect the η terms. The condition of closing gives (assuming uniform strength along O(K)

$$\sum_{1}^{k} \epsilon_{r} = a \text{ known quantity}$$

and in adjusting for this ϵ_r is replaced by $\epsilon_r - \frac{1}{k} \sum_{i=1}^{k} \epsilon_r$.

Denote the adjusted value of $\triangle x$ by ${}_{a}\triangle x$. Then

$$a\Delta x = \sum_{s}^{t} \left\{ x_{r} \left(\epsilon_{r} - \frac{1}{k} \sum_{1}^{k} \epsilon_{r} \right) - \eta_{r} y_{r} \right\}$$
$$= \sum_{s}^{t} \epsilon_{r} x_{r} - \frac{t - s}{k} X \sum_{s}^{t} \epsilon_{r} - \sum_{1}^{t} \eta_{r} y_{r}$$

where X is the x-coordinate of the centre of gravity of ST. Hence

$$a\Delta x = -\frac{t-s}{k} \overset{t}{\overset{c}{\underset{s}{X}}} \left(\overset{s-1}{\overset{c}{\underset{t}{\sum}}} \varepsilon + \overset{k}{\overset{c}{\underset{t+1}{\sum}}} \varepsilon \right) + \overset{t}{\overset{c}{\underset{s}{\sum}}} \varepsilon_{r} \left(x, -\frac{t-s}{k} \overset{t}{\overset{t}{\underset{s}{X}}} \right) - \overset{t}{\overset{c}{\underset{s}{\sum}}} \eta_{r} \ y_{r}$$

Hence the probable error of displacement at N, after O K has been adjusted, due to the portion S T is the square root of

$$(a \triangle x)^{2} + (a \triangle y)^{2} = (k - t + s) \left(\frac{t - s}{k}\right)^{2} e^{2} NG^{2} + e^{2} \sum_{s}^{t} R_{Q}^{2} + \eta^{2} \sum_{s}^{t} R_{N}^{2}$$

where G is the centre of gravity of ST and Q lies on NG and QN/GN = (t-s)/k: also R_Q and R_N are radius vectors measured from Q and N respectively. Denoting the resultant probable displacement by D, this relation may be written, putting $OK = S_0$, ST = S (measured along the curve)

$$D^{3} = k - t + s \left(\frac{S}{S_{0}}\right)^{3} \cdot NG^{3} \cdot e^{3} + e^{3} \stackrel{t}{\Sigma} R_{Q}^{3} + \eta^{2} \stackrel{t}{\Sigma} R_{N}^{2}$$

$$= e^{2} \left\{ n N Q^{2} + \stackrel{t}{\Sigma} R_{Q}^{2} \right\} + \eta^{2} \stackrel{t}{\Sigma} R_{N}^{2} \cdot \dots \cdot \dots \cdot \dots \cdot (6)$$

where n = k - t + s is the number of sides in the line ST. Hence

$$D^{2} = a^{2}n \left\{ NQ^{2} + \frac{1}{S} \int_{R_{Q}^{2}}^{R_{Q}^{2}} dS + \frac{1}{S} \int_{R_{N}^{2}}^{R_{Q}^{2}} dS \right\}$$

If the portion ST is a single triangulation line this becomes

$$D^{2} = a^{2}n \left\{ NQ^{2} + \rho_{0}^{2} + \frac{L^{2}}{12} + R_{0}^{2} + \frac{L^{2}}{12} \right\}$$

where ρ_0 R_0 are the distances of the centre of gravity of ST from N and Q respectively and S now becomes equal to L. Putting in numerical quantities and expressing the results in feet it follows, as in (4), that

$$D = 4.03 \,\mathrm{M} \, \sqrt{L \left(R_0^3 + \rho_0^3 + \frac{L^2}{6} + NQ^3\right)}$$

Finally if ST is composed of a number of triangulation lines, the probable displacement in any direction

where the points Q differ for each triangulation line and are found for each as has been done above for ST alone.

If closure had also been effected on Laplace station as well as on base lines at O and K this clearly would become

Equations (7) and (8) illustrate the statement made in §2 that closure only on a base and not on a Laplace station does not improve the results nearly so much as closure of both kinds simultaneously will probably do.

Probable errors after adjustment.

4. Consider any function F of quantities x_1 , x_2 , x_3 ... which have been found by measurement. If the true values of these quantities are $x_1 + v_1$, $x_2 + v_2$, ... and the true value of the function is F + dF then

where

$$f_1 = \frac{dF}{dx_1}$$
, $l_2 = \frac{dF}{dx_2}$, etc. . . .

Any conditions which may be imposed on x_1, x_2 . . . result in equations of form

$$\begin{cases}
 a_1 v_1 + a_2 v_2 + \dots + a_n v_n - l_1 = 0 \\
 b_1 v_1 + b_2 v_3 + \dots + b_n v_n - l_2 = 0
 \end{cases}$$
etc. (10)

Then dF may be written

$$dF = f_1 v_1 + f_2 v_2 \quad . \quad . \quad -k_1 (a_1 v_1 + a_2 v_2 + \dots - l_1) - k_2 (b_1 v_1 + b_2 v_2 + \dots - l_2) - . \quad .$$
in which are value.

in which any values may be assigned to k_1, k_2 . Hence

$$dF = (f_1 - k_1 a_1 - k_2 b_1 - \dots) v_1 + (f_2 - k_1 a_2 - k_2 b_2 - \dots) v_2 + \dots + k_1 l_1 + k_2 l_2 + \dots$$
(11)

Let the reciprocal weights of $x_1 x_2$. . be u_1, u_2 . . and let the reciprocal weight of F be u_F .

$$u_F = (f_1 - k_1 a_1 - k_2 b_1 - \dots)^2 u_1 + (f_2 - k_1 a_2 - k_2 b_2 - \dots)^2 u_2 + \dots$$
 (12)

If v_1, v_2 . . are the most probable values of the corrections, then u_F must be a minimum, and accordingly k_1, k_2, \ldots are to be determined from the following equations

$$\begin{bmatrix} u \, a \, a \end{bmatrix} \, k_1 + \begin{bmatrix} u \, a \, b \end{bmatrix} \, k_3 + \dots \qquad = \begin{bmatrix} u \, a \, f \end{bmatrix} \\ \begin{bmatrix} u \, b \, a \end{bmatrix} \, k_1 + \begin{bmatrix} u \, b \, b \end{bmatrix} \, k_2 + \dots \qquad = \begin{bmatrix} u \, b \, f \end{bmatrix}$$
 (13)

in which $[u \ a \ b]$ is written for $u_1 \ a_1 \ b_1 + u_3 \ a_3 \ b_2 + \dots$, etc.

Reverting to (12) and developing the squares it is clear that

by using the equations (13)*.

5. In considering the probable errors of triangulation it will be permissible to treat the quantities ϵ and η as errors in observed quantities, and as being independent except in so far as the several closing conditions relate them. Distinguish the several triangulation lines which make up a network of triangulation by the prefixes 1, 2, 3, etc., and the several stations on any triangulation by suffixes 1, 2, 3, etc. It will also be permissible in an investigation into the probable errors after adjustment to replace the triangulation by its projection on a plane, the projection of the general map of India naturally being selected for this purpose. This enables the closing conditions to be written in the following form, either for closure round a circuit or for closure between base lines or Laplace stations:

$$\Sigma \Sigma_{r} = 0 \quad \text{side closure}$$

$$\Sigma \Sigma_{r} = 0 \quad \text{azimuth closure}$$

$$\Sigma \Sigma_{r} = 0 \quad \text{azimuth closure}$$

$$\Sigma \Sigma_{r} = 0 \quad \text{easting closure}$$

$$\Sigma \Sigma_{r} = 0 \quad \text{northing closure}$$

the first summation for S corresponding to the number of sides in a triangulation line and the second for r corresponding to the number of triangulation lines: and x, y being the coordinates of any station referred to the closing point of the particular circuit as origin.

^{*} This deduction is taken from p. 229 of "A Treatise on the Adjustment of Observations" by T. W. Wright, New York, 1884.

There may be any number of each type of closures, and not necessarily the same number for each type. The triangulation lines over which the summations are taken differ in part for each closure of any type. Thus in the case supposed in Chapter VI §14 the line 3 occurs in both circuits. The quantities whose probable errors are required are of the same form as the left hand sides of equations (15): but the limits are different.

It is clear that the coefficients in (13) may be written, agreeably with the notation already adopted

$$\begin{bmatrix} u & a & a \end{bmatrix} = \sum_{r} \begin{bmatrix} u & a & a \end{bmatrix} \\ \begin{bmatrix} u & a & b \end{bmatrix} = \sum_{r} \begin{bmatrix} u & a & b \end{bmatrix}$$
 etc. (16)

and accordingly the portion relating to each triangulation line may be separately computed. [For the side and azimuth closures the coefficients a, b are all unity: for the other two closures they are x or y. Consider the case of a triangulation line which forms part of a closed circuit, so that there are closures of each type. It may also form part of a closure between base lines and Laplace stations. If so the coefficients of the several ϵ^s and η^s remain the same as in corresponding type of closure in the circuit, and the coefficients reduce to type $\begin{bmatrix} u & a \end{bmatrix}$. For the case of clearness take the specific case shown in the diagram when there are base lines and Laplace stations at A and B.

Consider the line 2. It enters into the following relations:

The symbolic coefficients a b c d e f are each written opposite one of these equations.

Along any triangulation line for n write a^2 , a being the probable value of e or η . Suppose that 2^n is the number of sides in the triangulation line, all considered of equal length. Then omitting the prefix 2 for simplicity and considering only the line 2

$$[u a a] = na^{2}$$

$$[u a b] = na^{2}$$

$$[u a c] = 0$$

$$[u a d] = 0$$

$$[u a e] = a^{2} \Sigma x = na^{2} X$$

$$[u a f] = a^{2} \Sigma y = na^{2} Y$$

where X, Y are the coordinates of the centre of gravity of the line 2. These are typical of all the combinations of a b c d with a b c d e f. The remaining typical coefficients are represented by

$$[uee] = [uff] = a^2 \Sigma (x^2 + y^2)$$

If
$$x_1 x_2$$
 are the limits of x and $x_1 = X - x_0$ and $x_2 = X + x_0$

$$\Sigma x^{2} \stackrel{=}{=} \frac{n}{x_{3} - x_{1}} \int^{2} x^{2} dx$$

$$= \frac{n}{3} \left(x_{2}^{2} + x_{2}x_{1} + x_{1}^{2} \right)$$

$$= \frac{n}{3} \left(\overline{X + x_{0}} |^{2} + (X + x_{0}) (X - x_{0}) + \overline{X - x_{0}} |^{2} \right)$$

$$= n(X^{2} + \frac{1}{3}x_{0}^{2}) \qquad (17)$$

$$\Sigma y^{2} = n(Y^{2} + \frac{1}{3}y_{0}^{2})$$

Similarly

Hence

$$\Sigma (x^2 + y^2) = n(R^2 + \frac{1}{8}r_0^2) = n\left(R^2 + \frac{L^2}{12}\right) \qquad (18)$$

Finally

$$[uee] = na^{2} \left(R^{2} + \frac{L^{2}}{12} \right)$$
$$[uef] = a^{2} \Sigma (xy - yx) = 0$$

Also

The complete result is given in tabular form:-

Values of $_{2}[u \ a \ a] + na^{2}$, etc.

		1	,		 		
		а	В	c	ď	e	f
Side	а	1	1	0	0	X	Y
Side	ь	1	1	0	0	X	Y
Azimuth	С	0	0	1	1	- Y	X .
Azimuth	d	0	0	1	1	-Y	X
Easting	е	<i>X</i>	X	- Y	- 7.	$R^2 + \frac{L^2}{12}$	0
Northing	.f	Y	Y	X	X	0	$R^2 + \frac{L^2}{12}$

Base

Laplace

It is clear from this that there are really only four types of quantities, and that a closure on an outer circuit or base gives rise to the same coefficient as the corresponding closure within the circuit. All the quantities of the form $_r[uub]$ are given by the following schemes, in which the four closures, side azimuth, easting, northing are represented by S, A, E, N.

The value of na^2 is given by (1) in terms of M and S, or M and L if straight portions are considered separately.

The above scheme deals with the cases in which the coordinates x, y which occur all refer to the same origin. It only remains to take the case where two origins occur and to form the typical expression [uaf]. The coefficients a, etc. are either 0, 1, x or $\pm y$ in which x,y are the coordinates of any point on the line referred to the point of closure for which the corresponding condition of closure was formed. When it is desired to find the probable error with regard to any point O (for example Kalianpur, the origin of the survey), then the coefficients f, etc. are either 0, 1, x_0 or $\pm y_0$ where x_0 y_0 are coordinates referred to this point. If the circuit closing point is P let x_p y_p be the coordinates of P with regard to origin O then

 $x_0 = x_p + x \qquad y_0 = y_p + y.$

The values of $[u \ af] + na^2$ are now indicated in tabular form similar to (19). As only the ratios of the coefficients in (13) are required na^2 may be replaced by M^2L by means of (1).

	S_f	A_f	\mathbf{E}_{f}	N_f	
s	1	0	$X + x_{p} = X_{o}$	$Y + y_p = Y_o$	•
A	0	1	$-Y - y_p = -Y_o$	$X + x_{\rm p} = X_{\rm o}$	(20)
E	X	- Y	$R^{3} + \frac{L^{2}}{12} + x_{p}X + y_{p}Y$	$-x_{\mathrm{p}}Y+y_{\mathrm{p}}X$	•
N	Y	X	$x_p Y - y_p X$	$\overline{R^2 + \frac{L^2}{12} + x_p X + y_p Y}$	

All the quantities X, Y, R are measured from P while x_p y_p are coordinates of P and X_o Y_o are the coordinates of the mid point of the triangulation line relative to O.

6. The method explained in §§ 4,5 will now be applied to the determination of probable errors in the N.W. Quadrilateral of the Indian triangulation, after all adjustments have been carried out. The probable errors most generally required will be those with reference to the origin of the survey at Kalianpur (Sironj Base). In putting down the conditions of closure any closing point may be chosen: but when probable errors with regard to Kalianpur are desired, Kalianpur will naturally be selected as the closing point and origin for X and Y. Chart I shows all the triangulation of India: in charts II.... V it is represented diagrammatically, each series being replaced by one or more straight lines, which may be regarded as the equivalent triangulation lines. The Indian triangulation was divided for purposes of adjustment into five portions, viz. the N.W. Quadrilateral, S.E. Quadrilateral, N.E. Quadrilateral, Southern Trigon, S.W. Quadrilateral. These were adjusted in the order stated, so that the first two were quite independently adjusted while the third was adjusted on the first two: the fourth was adjusted on the second, and the fifth was adjusted on the first, second and fourth. The Burma quadrilateral (chart IV) has just* been adjusted by the methods of Chapter VI and is being adjusted on the eastern series (Shillong Meridional, No. 44) of the N.E. Quadrilateral.

In chart II the series which were taken account of simultaneously in each quadrilateral or trigon are shown in full lines, while some additional series afterwards adjusted on these series are shown in broken lines. The series which are common to adjacent quadrilaterals or trigon are distinguished by heavy lines. The numbers written by the side of each triangulation line in the chart are those which have been applied in Table XLIV to the several series of the triangulation. The eight base lines of the triangulation of India and the Mergui base in Burma are shown: also the points at which it has been possible to form Laplace equations. The circuits are indicated by roman numerals and the points of closure by small arcs at the closing angle, e. g at D. The junction points of the triangulation lines are distinguished by letters A, B . . . C, a, b . . . with suffixes 1, 2, 3, 4, 5, 6 corresponding to the N.W. Quadrilateral, S.E. Quadrilateral, N.E. Quadrilateral, S. Trigon, S.W. Quadrilateral, Burma Quadrilateral.

The first step is to find M²L for each triangulation line, L being the length in units of 100 miles. Chart II is on the scale of 100 miles = 1 inch, so that L is the length of each line on the chart in inches. As an example take the line between the Sironj base and the Dehra base. This is composed of two triangulation lines representing a portion of the Great Arc Series, No. 6. From table XLIV the value of M is 0.71 and by measurement on the chart the values of L for the two parts are found to be 2.15 and 2.22 inches. Hence the values of M²L arc 1.083 and 1.109 respectively.

The values of MaL for all the triangulation lines are exhibited in table XLV together with certain related quantities to which reference will be made later. To proceed with the formation of the equations of form (13) which are necessary to determine the several probable errors, all quantities of the types indicated in (20) have to be formed. To any coefficient [u y h] several component terms, each corresponding to a particular triangulation line, may contribute. Some of these are exhibited in table XLV, while the remainder are found in table XLVI. To go more into detail, the N.W. Quadrilateral (vide chart II) is divided into five circuits 1, 11, 111, 1V, V. In each circuit there are four types of closure—side, azimuth, easting, northing—which may be characterised by suffixes s, a, e, n. These give rise to twenty conditions $I_n, I_n, I_n, I_1, \dots, V_n$. In addition there are three extra base lines giving conditions VI,, VIII, VIII,. To investigate the additional value of having as many Laplace stations as there are base lines, the cases have also been worked out for three Laplace closures at the same points as the base line closures, giving rise to conditions VI., VII., VIII. The 26 conditions which result make it necessary to determine 26 multipliers k_1 . . k_{36} by equations of form (13). In table XLVII the coefficients of the left hand sides of these equations are given. The method by which these coefficients are derived will now be given in detail for a few of them, The letters used correspond to those shown marginally in table XLVII.

By (20) $_{I}[uaa] + M^{2}L = 1$; hence $[uaa] = \sum M^{2}L$ round circuit I = 3.66 from table XLV. Also [uab] = 0, $[uac] = \sum X M^{2}L = 2.20$ from table XLV. In the formation of any coefficients involving any pair of u, b, c or d it is clear that the summation extends around the circuit I, for the corresponding conditions relate to this complete circuit. The case is different when a coefficient involving one of the quantities, u, b, c, d and one other quantity, say c, are considered. In this case both circuits I and II are involved and it is only the part common to the two circuits that has to be considered. Moreover in this case two origins are introduced. The portion common to circuits I and II is the line $D_{1}T_{1}$. It will be seen by (20) that

 $[uae] = M^2L \text{ for } D_1T_1 = \cdot 70 \qquad \text{from table NLV.}$ [uaf] = 0 $[uay] = X_0M^2L \text{ for } D_1T_1, \qquad X_0 \text{ referring to the circuit to which } g \text{ relates, } i.e. \text{ circuit II}$ $= + \cdot 41$ $[uah] = Y_0M^2L \text{ for } D_1T_1 \text{ from circuit II} = -2 \cdot 30$

This deals with all the conditions which relate to a portion which occurs also in condition a, except the base line conditions VI_x and VII_x. The most complex case is the coefficient corresponding to northing or easting relations in two circuits which have a portion in common. An example of this is [udg]. The circuits involved I, II have the portion T_1D_1 only in common. Hence from (20) as may be seen opposite the entry I, II in table XLVI, $[udg] = M^2L (v_pY - y_pX) = -1.14$. Similarly $[udh] = M^2L (R^2 + L^2/12 + x_pX + y_pY) = 7.35$. The quantities in tables XLV, XLVI depend on measurements of L_1 , R_1 , X, Y taken from a chart. These are not quite precise, and so to be equal in pairs have been separately determined by way of a check. They differ slightly as will be seen in table XLVI, the worst case being the coefficient which occurs in line II, III and also mean 29.62 shown in block type.

TABLE XLV.

N.W. Quadrilateral.

Hase line closures	Circuit	Line	Series	M	L	M°L A=	Closing point referred to Kalianpur	R^2	L ² 12	$R^2 + rac{L^2}{12}$	x	Y	$\left(rac{\mathbb{A} imes }{\mathbb{R}^2 + rac{L^2}{12}} ight)$	AX	AY	Base line closures	Circuit	Line	A= MºL	X.A.	AY
4 1 8	I	D ₁ T ₁ T ₁ A ₁ A ₁ B ₁ C ₁ D ₁	33 25 6 6 22	9-37 0-60 0-71 0-71 0-55	2.15	0.608 0.353 1.083 1.109 0.418	D_1 $x_p = -0.91$ $y_p = +5.18$	17-63	2·17 0·08 0·39 0·41 0·16	8.62 26.58 18.02 4.98 0.62	-0.04 +0.42 +0.81 +0.88 +0.53	-1.95	6·02 9·38 19·50 5·52 0·26	- 0.03 + 0.15 + 0.88 + 0.98 + 0.22	- 1.77 - 1.81 - 4.46 - 2.16 - 0.18	VI 1	I	$\mathbf{A}_1 \mathbf{B}_1 \mathbf{C}_1$	1.083 1.109 +2.192	+0.88 +0.98 +1.86	-2-16
4 8	п	E' X' U' X' X' Y' Y' T' S' T' D' E'	23 23 23 23 25 25 22	1·21 0·60 0·37	1.85 1.13 1.44 0.70 5.10	3-661 1-990 2-706 1-654 2-107 0-252 0-698 0-306	$E_{1} \\ x_{p} = -1.54 \\ y_{p} = +5.94$	5·16 14·19 25·37 33·53 11·24	0·15 0·29 0·11 0·17 0·04 2·17	0.63 5.45 14.40 25.54 33.57 13.41	-0·11 -0·27 -0·27 +0·20 +0·59	-0.60 -2.27 -3.77 -5.03 -5.79 -3.30	40.68 1.26 14.75 23.80 53.80 8.45 9.36	+ 2·20 - 0·08 - 0·30 - 0·45 - 0·57 + 0·05 + 0·41	-10.88 - 1.37 - 6.14 - 6.23 -10.60 - 1.46 - 2.30	VII 8		C ₁ D ₁ D ₂ D ₃ E ₁ G ₁ E ₁ G ₁	+1.228	+0·10 +0·15 +0·02 +0·49	-0·02 -0·42
5 5 4 4	111	1 1111000111555 5111000111555	32 32 25 25 25	0.43 0.43 0.60 0.60 0.60	1.99 1.67 2.28 1.02 1.46	9.713 0.868 0.309 0.823 0.888 0.526	$ \begin{aligned} & \mathbf{J}_1 \\ & \mathbf{w}_p = -4.26 \\ & \mathbf{y}_p = +3.36 \end{aligned} $	1.00 6.71 7.81 8.53 12.91	0.43 0.09 0.18	1.33 6.94 8.24 8.62 13.09	+1.85	-0.39 -0.44 -1.67 -2.61 -2.85 -3.08	0·10 111·51 0·49 2·14 6·77 3·17 6·88	+ 0·10 - 0·84 - 0·83 - 0·61 - 0·82 + 0·24 + 0·97	- 0·12 -28·22 - 0·16 - 0·52 - 2·15 - 1·05 - 1·62 - 5·16 - 1·97	VIII 5	V	J. L. L. N. G. H. H. J.	0.368 0.309 0.320 0.876 +1.373	-0.83 -0.61 -0.18 -0.45	-0.52 -0.24
			23 23 45 45	1.21 1.21 1.21 0.53 0.53	1.18 1.85 0.98	2·106 1·653 2·707 0·275 0·545 9·679		12·00 7·42 6·90	0·17 0·11 0·29 0·08	12·17 7·53 7·19 5·98 1·23	+2.45 +2.45 +2.61 +2.21 +0.88	-2·45 -1·19 +0·30 +1·01	25.61 12.46 19.46 1.65 0.67	+ 7.06 + 0.61 + 0.48	- 5·16 - 1·97 + 0·81 + 0·28 + 0·21						
8	IV	F ₁ V ₁ V ₁ U ₁ U ₁ E ₁ E ₁ F ₁	37 45 23 22		0.98 1.36 1.11	0-825 0-275 1-000 0-336 3-426	$x_{p} = -2.50$ $y_{p} = +6.55$	1·44 4·95 2·55 0·30	0.08 0.15	1.91 5.03 2.70 0.40	+0.45	-1.20 -2.18 -1.30 -0.30	1.58 1.38 5.37 0.13 8.46	+ 0.12 + 1.85 + 0.15	- 0.99 - 0.60 - 2.50 - 0.10 - 4.28						
5 5 3	V	G ₁ H ₁ H ₁ J ₁ J ₁ V ₁ V ₁ F ₁ F ₁ G ₁	32 32 45 37 22	0·43 0·53 0·59	2.37	0.320 0.376 0.545 0.825 0.103 2.229	G_1 $x_p = -2.88$ $y_p = +6.80$		0.84 0.31 0.47	1·12 7·93 9·86 2·72 0·06	-0.50 +0.30	-2-48	0.36 2.98 5.37 2.24 0.01	- 0.45 - 0.27 + 0.32 + 0.02	- 0 · 24 - 0 · 93 - 1 · 66 - 1 · 20 - 0 · 02 - 4 · 05						

TABLE XLVI.

N.W. Quadrilateral. Common portions of adjacent circuits.

											·				
Circ	uits	Line	First referred	circuit to second		For first ci	rcuit	AXx_	A Fv	Sum of last 8 columns		$A Y x^p$	Xy_p	Sum of last	
			x_p	y_p	AX	AY	$\left A \left(R^2 + \frac{L^2}{12} \right) \right $	P	P	8 columns			1	2 columns	
II	ΙΙ	$\mathbf{D_1} \mathbf{T_1} \\ \mathbf{T_1} \mathbf{D_1}$	+ :63 - :63	- ·76 + ·76	- ·03 + ·41	- 1.77 - 2.30	+ 6.02 + 9.36	- 0.02 - 0.26	+ 1·24 - 1·74	+ 7·34 + 7·36 }	+ 7.35	- 1·11 + 1·45	- 0.02 - 0.31	- 1·13 + 1·14}	∓ 1·14
11	111	$egin{array}{c} \mathbf{U}_1 \mathbf{X}_1 \\ \mathbf{X}_1 \mathbf{Y}_1 \\ \mathbf{Y}_1 \mathbf{S}_1 \end{array}$	+ 2.72	+ 2.58	- ·30 - ·45 - ·57	- 6.14 - 6.23 - 10.60	+ 14.75 + 23.80 + 53.80							•	
i			İ		- 1.32	- 22.97	+ 92.35	- 3.59	-59-20	+ 29.56		-62-45	+ 3.40	59 • 08 7	l
III	II	$\mathbf{S}_{1} \mathbf{Y}_{1}$ $\mathbf{Y}_{1} \mathbf{X}_{1}$ $\mathbf{X}_{1} \mathbf{U}_{1}$	- 2.72	- 2.58	+ 5·16 + 4·05 + 7·06	- 5·16 - 1·97 + 0·81	+ 25·61 + 12·46 + 19·46			•	+29·62			}	∓59•10
1			ľ		+ 16.27	- 6.32	+ 57.58	-44.15	+16.30	+ 29.68		+17-19	+41.95	+ 50 • 14	1
IA IJ	IV II	$\mathbf{E}_1 \mathbf{U}_1 \\ \mathbf{U}_1 \mathbf{E}_1$	+ 0.96 - 0.96	- 0.61 + 0.61	- ·08 + 1·35	- 1.37 - 2.59	+ 1·25 + 5·37	- 0.08 - 1.77	+ 0.84 - 1.58	+ 2·01 + 2·02}	+ 2.20	- 1·31 + 2·48	- 0.05 - 1.13	$\left. \begin{array}{c} -1.36 \\ +1.35 \end{array} \right\}$	∓ 1∙36
III	III	$ \begin{bmatrix} \mathbf{U}_1 & \mathbf{V}_1 \\ \mathbf{V}_1 & \mathbf{U}_1 \end{bmatrix} $	- 1.76 + 1.76	- 8·19 + 8·19	+ ·61 + ·12	+ ·28 - ·60	+ 1.65 + 1.38	- 1.07 + 0.21	- 0.89 - 1.91		- O·32	- 0·49 - 1·05	+ 1.94 - 0.38	+ 1.45 }	± 1·44
III V	III A	$V_1 J_1 V_1$	- 1.38 + 1.38	- 8·44 + 3·44	+ ·48 - ·27	+ ·21 - 1·66	+ ·67 + 5·37	- 0.66 - 0.87	- 0.72 - 5.71		- o·71	- 0·29 - 2·29	+ 1.65 + 0.93	+ 1.36 } - 1.36 }	± 1·36
IV V	17	$\mathbf{F}_{1} \mathbf{\nabla}_{1} \mathbf{F}_{1}$	+ 0.38 - 0.38	- 0·25 + 0·25	+ ·01 + ·32	- ·99 - 1·20	+ 1.58 + 2.24	0·00 0·12	+ 0.25 - 0.30	+ 1.83 + 1.82}	+ 1.83	- 0.38 + 0.46	- 0·08	- 0.38 + 0.88}	∓ O.38

The above explanation should make clear the formation of table XLVII, which gives the right hand sides of a set of equations. The left hand sides of these equations are different according as the quantity, whose probable error is sought, is of different form or relative to a different form denoting them by A, B, C R. It will be seen that this renders possible solution in a form which afterwards admits of the point as origin. To obtain a solution of all the cases which may arise it is desirable to keep the left hand sides of the equation in symbolical solution of the same conditions together with any further conditions that may be added.

TABLE XLVII.

N. W. QUADRILATERAL.

1117	1	++ ++ ++	+ 1.57
ΔI	1	24. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
IA	ž.	6 8 8 8	
VIII.	18	689. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
VII.		4. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
VI.		+ + + + + + +	
	, la	1 1969 - 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 3
- ``	1 PE	- 	1
 - -	- Jan	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•
·	J. J.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
IV,	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
IV, I	K I	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
IV. I	K. 1	+++++++++++++++++++++++++++++++++++++++	_
IV, I	k,s	1 + + + + + + + + + + + + + + + + + + +	۸
	1		_
', III,	, A		
, III,	1 14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
III.	, N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
₹ 11I,	ħ	+ , 7 7 7 0 0 0 0 0	-
11,	Ŋ,	2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	-
II,	k,		$\left\ \cdot \right\ $
IIa	ħ,	0 5 7 1 0 0 1 2 8 4 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	l
11,	'n.	1	I
I,	¥.	8-20 - 10-38 + .70	
I,	'A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
La	2	10.38 + 40.68 10.38 + 7.28 10.00 0 10.00 0	
I.	ā	90 02 18 8 90 + +	
		++ ++	
		2 8 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	ı

7. To find the probable errors at any point of side azimuth easting or northing it is necessary to form the right hand sides of the equations of which the left hand side coefficients are exhibited in table XLVII, i.e. to complete the formation of equations (13). The quantities [u af] etc. are of the same nature as those already formed: but differ in the lines for which they have to be

TABLE XLVIII.

Line	Circuit	M	L.	$A = M^2 L$	R^2	$\frac{L^2}{12}$	X	Y	$R^2 + \frac{L^2}{12}$	$\mathbf{A} \left(\mathbb{R}^2 + \frac{L^2}{12} \right)$	A.X	AY	X ₀	Y_0
$\begin{matrix} \textbf{K}_1 \ \textbf{L}_1 \\ \textbf{M}_1 \ \textbf{N}_1 \\ \textbf{O}_1 \ \textbf{P}_1 \end{matrix}$	III	0•43 0•43 0•60	1·55 0·78 0·57	0·286 0·144 0·205	1·03 8·70 7·21	0·20 0·05 0·03	-0.91 -2.06 -0.14	-0·45 -2·11 -2·68	1·23 8·75 7·24	0·35 1·26 1·48	-0.26 -0.30 -0.03	-0·13 -0·80 -0·55	-5·17 -6·32 -4·40	+2·91 +1·27 +0·68
$\begin{matrix} \mathbf{R}_1 \mathbf{S}_1 \\ \mathbf{V}_1 \mathbf{W}_1 \\ \mathbf{V}_1 \mathbf{W}_1 \end{matrix}$	III V	0.60 0.53 0.53	0·58 0·74 0·74	0·191 0·208 0·208	15·27 2·45 7·85	0•02 0•05 0•05	+2·31 +1·43 +0·05	-3·15 +0·64 -2·80	15·29 2·50 7·90	2·92 0·52 1·64	+0.44 +0.30 +0.01	-0.60 +0.13 -0.58	-1.95 -2.83 -2.83	+0·21 +4·00 +4·00
$\begin{matrix} W_1 & J_1 \\ W_1 & J_1 \end{matrix}$	III V	0·58 0·58	1·20 1·20	0-337 0-337	0·87 10·87	0-1 <u>2</u> 0-12	+0.55 -0.83	+0·25 -3·19	0·49 10·99	0·16 3·70	+0·19 -0·28	+0·08 -1·08	-3·71 -3·71	+3·61 +3·61

TABLE XLIX.

Circuit, Base and Laplace closures.

Line	Circuit	Closing point of circuireferred to Kalianpu	m ² L	(2) Ax _p	(3) Ay _p	(4) A.X	(5) A.F	(6) = (2) + (4) = A X ₀	(7) = (3) + (5) = AY ₀	$A\left(\frac{R^2+\frac{L^2}{12}\right)\mathfrak{B}$	(9) A Xx _p	(10) A Yy _p	(11)= (8)+(9) +(10)	(12) A Yx_p	(18) - AX y _p	(14)= (12)+ (13)	(15) 21 + %	(16) = A (15)
A ₁ B ₁ B ₁ C ₁ C ₁ D ₁		-0.91 -0.91 +5-	18 0-418	- 0.38	+ 2.17	+0.98	- 0.18	-0.16	+ 3.58	+ 5.52	- 0.89 - 0.20	-11·10 - 0·93	- 6·56 - 0·87	+ 1.97 + 0.16	- 5·08 - 1·14	- 3·11 - 0·98	10·84 22·96	1-65 12-02 9-59
D ₁ E ₁ E ₁ F ₁ F ₁ G ₁		-1.54 +5. -2.50 +6. -2.88 +6.																9·91 14·56 8·45
$\begin{array}{c} \mathbf{G_1} \ \mathbf{H_1} \\ \mathbf{H_1} \ \mathbf{J_1} \\ \mathbf{K_1} \ \mathbf{L_1} \end{array}$	V, VIII V, VIII III, VIII	-2.88 +6 -2.88 +6 -4.26 +3	·80 0 · 320 ·80 0 · 370 ·36 0 • 280	- 0.92 - 1.08 - 1.22	+ 2·18 + 2·56 + 0·96	-0·18 -0·45 -0·26	- 0.24 - 0.98 - 0.18	-1·10 -1·53 -1·48	+ 1.94 + 1.63 + 0.83	+ 0.36 + 2.98 + 0.85	+ 0.52 + 1.30 + 1.11	- 1.63 - 6.82 - 0.44	- 0.75 - 2.04 + 1.02	+ 0.69 + 2.68 + 0.55	+ 1.22 + 8.06 + 0.87	+ 1·91 + 5·74 + 1·42	48·69 35·65 35·40	15 - 58 18 - 40 10 - 12
M ₁ N ₁ L ₁ N ₁	111, VI 11 111, VI 11 111, VI 11	-4·26 +3 -4·26 +3 -4·26 +3	36 0 - 30	9 - 1.32	+ 1.04	-0.61	- 0.30 - 0.55	-0.91	+ 0.18	+ 2.14	+ 2.60	- 1.01 - 1.75	+ 1.58	+ 1.28 + 2.22	+ 1·01 + 2·05	+ 2-29 + 4-27	41 · 56 42 · 08	13-06 5-98 12-99
$\begin{array}{c} \mathbf{O_1}\mathbf{P_1}\\ \mathbf{N_1}\mathbf{P_1}\\ \mathbf{P_1}\mathbf{Q_1} \end{array}$	III III III	-4·26 +3 -4·26 +3 -4·26 +3	36 0 36	- 3.57 - 1.57	+ 1.24	+0.24	- 1.0	-1.33	+ 0.19	+ 8.77	+ 3·49 - 1·02	- 7·22 - 3·53	+ 3.04 - 1.38	+ 9.16	+ 2.76 - 0.81	+ 11·92 + 3·66	28 66 13 45	4·07 23·56 4·95
$\begin{array}{c} \mathbf{R_1} \ \mathbf{S_1} \\ \mathbf{Q_1} \ \mathbf{S_1} \\ \mathbf{S_1} \ \mathbf{T_1} \end{array}$	III	-4·26 +3 -4·26 +3 -1·54 +5	·36 0 · 19 ·36 0 · 52 ·94 0 · 25	1 — 0.81 6 — 2.24 2 — 0.39	+ 0.64 + 1.77 + 1.50	+0.44 +0.92 +0.05	- 0.66 - 1.65 - 1.4	0 -0.37 -1.27 -0.34	+ 0.04 + 0.15 + 0.04	+ 2·92 + 6·88 + 8·45	- 1.87 - 4.13 - 0.08	- 2·02 - 5·44 - 8·67	- 0.97 - 2.69 - 0.30	+ 2.56 + 6.90 + 2.25	- 1·48 - 3·26 - 0·30	+ 1·08 + 3·64 + 1·95	3·87 6·06 1·81	0-74 3-19 0-47
$\begin{matrix} \mathbf{T}_1 \mathbf{A}_1 \\ \mathbf{T}_1 \mathbf{D}_1 \\ \mathbf{T}_1 \mathbf{D}_1 \end{matrix}$	I II	-0.91 -0.91 +5 -1.54 +5	• 18IO • B9	81 0.64	11 + 3.69	20 • O • II	i 1.7	7I O•R7	i 1.85	1 4 6.09	1 	1- 0-17	L. Q.10	1.21	4 0.10	1 1 1777	10.04	0-11 7-01
$\begin{array}{c} \mathbf{S}_1 \ \mathbf{Y}_1 \\ \mathbf{S}_1 \ \mathbf{Y}_1 \\ \mathbf{Y}_1 \ \mathbf{X}_1 \end{array}$	III	-1.54 +5 -4.26 +3 -1.54 +5	•3612 • 10	BI X.9	71 + 7 (1)	21 - 5 - 14	31 5-1	KI X • X I	14 1.09	1 4 95 61	91 . 09	1 17 . 04	_ 10.71	. 61.00	17.04	1 4-04	4·28 8·09	9·02 13·38
Y ₁ X ₁ X ₁ U ₁ X ₁ U ₁	III.	-4·26 +3 -1·54 +5 -4·26 +3	·36 2·70	7 -11.5	9.10	+7.0	+ 0.8	1 -4.46	+ 9.93	+14.75	+ 0.46 -30.12	-36·47 + 2·72	-21·26 - 7·94	+ 9·46 - 3·45	+ 1.78 -23.76	+11·24 -27·21		44-59
U ₁ E ₁ U ₁ E ₁ U ₁ V ₁	III IV III	-1·54 +5 -2·50 +6 -4·26 +3	·94 1·99 ·55 1·99 ·36 0·27	0 - 3-0 0 - 4-9 5 - 1-1	8 +11·8 +13·0 7 + 0·9	2 -0.00 3 +1.8 2 +0.6	$ \begin{array}{r} $	7 -3·14 9 -3·18 8 -0·56	+10.45 +10.44 + 1.20	+ 1 · 20 + 5 · 37 + 1 · 65	+ 0·12 - 4·63 - 2·60	- 8·14 -16·96 + 0·94	- 6·77 -16·22 - 0·01	+ 2·11 + 6·48 - 1·19	+ 0·48 -12·12 - 2·05	+ 2·59 - 5·64 - 3·24	30·21 23·38	60-12 6-43
Մ₁ ▼₁ ▼₁ ₩₁ ▼₁ ₩₁	I .	-2.50 +6 -4.26 +3 -2.88 +6	•36(0•20	N-0-8	0.70 H	01+0.3	01+ 0+1	SI ~0 · 59	1 + 0.80	SI-L 0.59	1.99	11-11-11-11-11-11-11-11-11-11-11-11-11-	. 0.99	J 0.55	_ 1.011	1.KRI	24.05	5-00
$\begin{array}{c} W_1 \ J_1 \\ W_1 \ J_1 \\ V_1 \ F_1 \end{array}$	IA A III	-4·26 +3 -2·88 +6 -2·50 +6	·55 0·82	5 - 2·0	+ 5.4	+0.0	- 0.8	9 -2.05	+ 4.4	+ 3.70	- 0.03	- 7·32 - 6·48	- 2·81 - 4·93	+ 3·11 + 2·48	+ 1.90	+ 5.01	85-29	9-07 29-11
$\nabla_1 \mathbf{F}_1$	V	-2.88 +6	-80 0 -82	2-3	B + 5·6	1 +0.3	2 - 1.2	0 -2.06	+ 4.4	+ 2.2	- 0.92	- 8.16	- 6.84	+ 8-46	- 2-18	+ 1.28		

computed. The first step is to compute the necessary quantities for each line; it will only remain then to combine by simple addition the several lines which go to form the route between the point of reference and the point whose relative probable errors are sought. The reference point will be in general A_1 (Kalianpur), though any other point could also be used. The quantities of scheme (20) have to be formed as was done in tables XLV and XLVI. This has to be done for each section. Typical cases are S_1T_1 , T_1D_1 , D_1E_1 . The first S_1T_1 enters only in closing condition of circuit II; T_1D_1 enters in closing conditions of circuits I and II: and D_1E_1 enters into closing condition of circuit II as well as base and Laplace closure between Dehra and Chach, VI. For most of the lines values of A, AX, AY, $A(R^2 + L^2/12)$ are given in table XLV. For the others which are required the values are now exhibited in table XLVIII. In table XLIX all the quantities necessary for forming $\begin{bmatrix} n & af \end{bmatrix}$... $\begin{bmatrix} n & f \end{bmatrix}$... are given. In the column headed "circuit" the base line closures are indicated, and these require only A, AX, AY, AX_0 , AY_0 , which are the same quantities as for the circuits. To form $\begin{bmatrix} n & f \end{bmatrix}$, $A(R^2_0 + L^2/12)$ is required, where R_0 refers to Kalianpur. This quantity is also given for all lines. It is deduced from values of X_0 , Y_0 .

As an example consider the probable errors at U_1 , selecting the route A_1 B_1 C_1 D_1 E_1 U_1 . This gives a good example of the method of forming the right hand sides of the equations.

T	he section	ons A_1B_1 ,	B_1C_1	enter	into	circuits	I	and	VI
	"	C_1D_1					_		VII
	"	D_1E_1							VII
	. 53	E, U,					TT	••	
							ᄮ		\mathbf{IV}

TABLE L. (formed by (21))

í		_								-		•			•	
ı	Equation	ns				losure			Azimuth			Eastin	g closu	re		T
I		_	$A_1 B_1$	$B_1 C_1$	$C_1 D_1$	$D_1 E_1$	$E_1 U_1$	Total	closure		$B_1 C_1$		$D_1 E_1$		Total	Northing closure.
		1 2 3 4	+0.88	+1·11 0 +0·98 -2·16	10.99			+ 2·61 0 + 2·08 - 6·80	+2·61 +6·80	-1·15	-0.03 -3.58 -6.56	-0·16 -1·99			- 0·30 - 6·72 -11·83 - 4·59	+ 6.72 - 0.80 + 4.59
		5 6 7 8				0 +0·10	+ 1 · 99 0 - 0 · 08 - 1 · 37	+ 0.03	+2.30				-1·70 -0·76	- 10·45	- 3·51 -12·15 - 7·53 + 2·18	+12·15 - 3·51 - 2·18
	1: 1: 1:			•				0 0 0	0 0 0						0 0	0 0
	1 1 1	8 4 5 6					0 +1.85	+1.99 0 +1.85 -2.59	+1.99					-10·44 -16·22	- 3·13 -10·44 -16·22 - 5·64	+10·44 - 3·13 + 5·64
	V 1	8 9						0 0 0	0 0			·			0 0	0 0 0
	VI 2 VII 2 VIII 2	8	+1.08	+1.11		+0.31		+ 2·19 + 0·73 0		-0·11	-0.03		-0·37		- 0·14 - 0·53	+ 4·73 + 3·69
		4 5 6						0 0 0	+2·19 +0·73 0	-1.15	-3.58	-1.99	-1.70		- 4·73 - 3·69	- 0·14 - 0·53

There are four cases according as probable errors of side, azimuth, easting or northing are sought. The scheme (20) may be rewritten, entering the numbers of the column in table XLIX in place of the actual symbolical quantities.

	S_f	Af	E_f	N_f				
S	(1)	zero	(6)	(7)				
A	zero	(1)	- (7)	(6)				(21)
E	(4)	- (5)	(11)	- (14)				
N	(5)	(4)	(14)	(11)	•			

For side error A_1 B_1 contributes (1), 0, (4) and (5) to equations 1, 2, 3, 4, of circuit I and (1) to equation 21 of VI: to all other equations nothing. The numerical quantities taken from table XLIX are (1) = +1.08, (4) = +0.88, (5) = -4.46. The complete process is shown in table L.

The azimuth closure can at once be written down from the side closure by rearrangement of terms and changing of certain signs in accordance with (21).

8. In a similar way all the quantities occurring on the right hand sides of equations (13) can be formed as required, the necessary data being taken from Table XLIX. The solution of the equations which arise for the N. W. Quadrilateral is effected in the latter portion of the next chapter (VIII). It remains only to refer to the quantities [u,f] occurring in equation (14). From (19) it is clear that the necessary quantities for determining these are $A = M^2L$, AX_0 , AY_0 , $A(R_0^2 + L^2/12)$, the suffix zero indicating A_1 , or Kalianpur as origin. All these quantities are given in table XLIX in columns (1), (6), (7), (15) for each section of line: and the corresponding quantities for a set of lines are obtained by summation of the sectional quantities.

From (2) and (5) the probable errors before adjustment are proportional to $\sqrt{\lfloor uff \rfloor}$ the multiplying factors being 1".575 for azimuth, 33.2 for 7th place of logarithm of side and 4.03 for easting and northing in feet: for it is clear that $\lfloor uff \rfloor = \sum M^2L$ in the cases of azimuth and side and $\lfloor uff \rfloor = M^2L$ ($R_0^2 + L^2/12$) in the case of easting or northing. By (14) the probable errors after adjustment are proportional to $\lfloor uff \rfloor - \lfloor uaf \rfloor k_1 - \lfloor ubf \rfloor k_2 \dots \dots$ the multiplying factors being as just given for the several cases. The ratio of probable error after to adjustment to probable error before adjustment is K where

$$K = \sqrt{1 - \frac{[u \ af]}{[u ff]} k_1 - \frac{[u \ bf]}{[u ff]} k_2 - \qquad (22)$$

Numerical values of K will be given in the next chapter.

CHAPTER VIII.

Numerical values of the probable and actual errors in the Indian triangulation. Note on the solution of linear equations.

1. The formulæ (2) and (5) of chapter VII will now be applied to the actual circuits and closures of the Indian triangulation and the numerical results compared with the actual closing errors which have been found in the several circuits. The question is a little complicated by the fact that the triangulation has been adjusted in six portions and so, in the case of some circuits, the closing errors are those due to several series some of which have been adjusted in a neighbouring quadrilateral. In practice this is of little account, as the best quadrilaterals were first adjusted and those adjusted later are of considerably lower quality, so that the probable errors brought in by the adjusted quadrilaterals form only a small part of the total probable error and it is of little account whether the probable errors before or after adjustment are employed. In consideration of this question the fact that the flanking quadrilaterals were previously adjusted will be ignored. What has been said regarding the relative excellence of the several quadrilaterals does not apply to the Burma quadrilateral, which had only been begun when the Indian quadrilaterals were adjusted.

It will be seen from the equations that the quantities required for each line are M^3L and $M^2L\left(R^2+\frac{L^3}{12}\right)$ whence L is the length of line and R the distance of its mid point from the closing point of the circuit concerned, both expressed in 100 miles. These quantities have already been taken out (table XLV) for the N.W. quadrilateral. It remains to obtain these for the rest of the triangulation. For this purpose charts III, IV, V are given. These as well as chart II are on the scale 100 miles to an inch: so that L and R are the lengths on the charts in inches. See also § 6, chapter VII. The actual measurements and necessary deductions are now shown in table LI. For the Base-line and Laplace closures it is only necessary to compute ΣM^2L along the route. This has already been done for each element of the route which enters into one of the circuits: and only a few remain to be formed for the Laplace closures. The values for the elements are combined to form the necessary values of ΣM^3L for the complete routes. The results are shown in table LII.

Having thus found the probable values of closing errors in all forms of closure, the next step is to compare the results with the closing errors which have actually been found. This is done for the Base-line and Laplace closure in table LIII and for the circuit closures in table LIII. In each case the actual error is given and then this is divided by the theoretical error, giving a quantity f, of azimuth in seconds, of easting and northing in feet are denoted by ΔS , ΔA , ΔE and ΔN respectively.

TABLE LI.

Circui Clos poi	ing	Line	Series	м	L		I I	R :	D2 i -	L2 F	$R^2 + \frac{L^2}{12}$ $= C$	∆ O	Circuit Closi	ng	Line	Series	м	L	= M2T	R	R²	L ²	$R^2 + \frac{L^2}{12}$ $= C$	AC
	1	S ₂ W ₂ W ₂ D ₂	53	0·31 0·31	2.1		·202 1 ·202 3	·05	1.100	·368	1·47 10·74	0·30 2·17		I	C ₁ B ₁ B ₁ A ₁	6	0·71 0·71	2·22 2·15	V 1.119 1.084	8 - 28	10.76	0.383	1·64 11·14	13·03 12·08
a.l.	S ₂	D ₂ A ₁ A ₁ T ₂ T ₂ S ₂	8 43	0.32	1.2	6 0 6 1	·129 4 ·488 8	·24 1 ·40 1	7 · 98 (1 · 56 0 · 34 (· 182 · 510	18·11 13·07 0·45	2·34 19·38 0·04		C1	A ₁ C ₂ C ₂ C ₃ C ₃ B ₃	4 20	1 · 79 0 · 6 5	0.89	0·104 10·253 0·876	2-92 1-07	8.53 1.14 0.10	0·854 0·066	19·44 9·38 1·21 0·18	2·02 96·17 0·45 0·03
ter	n	B ₂ X ₂		0.3		3 5 0		.43	2.04	0.675	2·72 12·34	24·23 0·84 1·85		11	B ₁ C ₁	20		0.63	13·202 10·258		2.56		8-42	123·78 85·07
ila	R ₂	B ₂ X ₂ X ₂ E ₃ E ₂ D ₂ D ₂ W ₂	58 5 58	0-8	2 1 · · · · · · · · · · · · · · · · · ·	00 0 10 0	·102 4 ·202 8	1 · 25] 3 · 40]	.8·06 L1·56	0·158 0·083 0·368 0·368	18·14 11·93 8·43	1 · 65 2 · 41 0 · 70		C _s	E.W.		0·32 1·88	1 · 22 0 · 97 2 · 13	0·125 3·428	8·29 3·00	10·82 9·00		10.94	1.87 81.13
adr		D ₂ W ₂ W ₂ S ₂ S ₂ R ₂	58 43		1 2 .	62] (0 · 202 1 0 · 146 (0.81	0.66	0.218	0.88	0·13 7·78			W _a D _a D _a C _a	20	0.65	0-70	0 · 296 21 · 630			0.041	0.16	88.10
Qu	III Q ₂	Q ₂ Q ₂ Q ₃ M ₂ M ₂ L ₂	24 24 24	0.2	70 0•	96	0-470	8·68	13•18	0 • 864 0 • 077 0 • 027	3·45 13·26 18·61	5·44 5·23 5·19		III Ds	D ₃ W ₈ W ₃ E ₂ E ₂ E ₃	3 12	1 · 88 1 · 88 1 · 83	2 · 13 0 · 97 2 · 60	7·529 8·428 8·518	1.07 2.54 1.68	6 44	0.878 0.078 0.564	6-58	11·44 22·38 28·79
SZ EA		L ₂ K ₂ K ₂ E ₂ E ₂ X ₂	5 5 58	0.5	32 1 · 32 3 · 33 1 ·	40	0.848	4.10	16•81	0 • 092 0 • 963 0 • 158	20·61 17·77 13·12	2·23 6·18 1·97			E _a D _a	20		0.48	19-677			0.018		0·02 62·63
02		$X_2 R_2 R_2 R_2 Q_2$	58 48		88 2 · 80 0 ·	70		1 • 57 0 • 3 5		0-675 0-041	2·54 0·16	0.79 0.01 27.04		E ₃	E. E. E. F. F. F.	12 5 19	1.5	2 · 60 2 0 · 57 5 2 · 44	6.86	1.55	7.0	0.564 0.027 0.490	7.05	19·17 0·41 16·91
	 I	S. T.	;	7 0.	74 1	+	+	0.78	0.61	0.203	0.81	0.68	tera	_	F. E.	20			14.68	i		0.03		36.52
	s.	Ta A A S	. 8	9 0.	59 4 60 1 07 1	·26 ·70	1.488 0.612	2·35 4·09 3·59	5 · 5 2 16 · 7 3 12 · 8 9	1.512 0.241 0.101	7.03 16.97	10.48 10.89	i 1 a	F _a	F. F. F. G. G. G.	1	1.2	5 2 · 4 2 0 · 5 1 2 · 8	3.42	8 2·5 6 1·4	0 6-2 8 2-1	9 0 · 49 5 0 · 02 9 0 · 45 0 0 · 03	8 6·28 5 2·65	11.58 0.36 9.08
		I, S,	1	B 1·	07 3	·08	8 · 469 7 · 677	1-51		30.76		48-4	a d	. vi	Ga Fa				9.60	1		7 0 - 45		21.05
	H,	H _s I I _s S _i S _i R	. 2	5 0.	12 0 07 1 60 0	•52	1·204 1·259 0·167	0.48 0.95 1.10	1.2	0 · 077 0 · 10 1 0 · 22	1 1.00	1 · 2 0 · 2	7 3	G.	G. G. G. H. H. H.	27	1.6	1 2 · 9 2 0 · 6 2 2 · 2	0 0·61 6 8·34	5 2·4 9 1·4	0 5·7 3 2·0	5 0 · 08 4 0 · 42	5.78 2.47	3·55 20·62
era		R ₁ H			14 1		3.989	0.52		7 0.08		2.3		VII	H ₂ H ₄			92 2 . 2	12-66	-1			ļ	24·84 14·28
lat	Q.	1	5 2	8 1 9 1	·74 1 ·07 8 ·12 0	· 03 · 96	0.772 3.460 1.204 3.717	2.9	8·4 8·7	9 0 · 16 6 0 · 76 0 0 · 07 4 0 · 68	5 4·25 7 8·78	14·6 10·5	7	H ₃	H ₂ I ₃ I ₂ I ₈ I ₃ H ₈	1	1 1.	32 9 · 0 36 2 · 0	0 0 6 2 2 2 4 0 8	5(2 · 3(33 1 · 4(5 2 · 10	0.3	2.44	3·27 5·52 0·06
dri	ıv	H _s C			•14 5)·61	9-162			90.08		35.8	6	VII		1	4 1.	06 2 -	11·5 02 2·2	68 1 • 0	1 1.0	2 0.8		23·13 3·08
O u a	G,	TT T	1. 2	0 5 0	·14 ·60	- 03) - 92	1.339 0.331 0.499	1.0	0.6	90.08	9 0.7 1 1.2	8 1.0 6 0.4	2	I3	I ₂ I ₂ I ₂ J ₃ J ₂ I ₃	. 1	7 1.	32 0 · 25 1 · 65 0 ·	62 0·5 90 2·9 40 0·1	322·0 672·1 690·2	9 4.8	0 0.8	00 5.10	2·22 15·18 0·01
<u>×</u>	v	C. G	. 2	29 1	-12	l•18	2.934	0.5	9 0-1	35 0 - 11	16 0.4	7 0.	70	13	JaJa	2		25 1 · 32 0 ·	5·9 2·9		0.9	00 0.8	000 1·20 023 3·90	
Ø		100	3, 2	28 IO	·68 ·60	1•08 1•08	0·499 0·860	1.2 1.8	5 1.4 8 1.6	56 0 · 06 50 0 · 06 46 0 · 18	1.9	0.	72	J ₃	J ₃ J ₂ J ₂ K ₂ K ₂ K ₃	١.	8 1.	42 1.	58 0·2	51 1 • 1	8 1.8	89 0-2	288 1-68	6.30
	VI	N.	ا مد	35 1	-27	1 • 6 <u>4</u> 1 • 12	4·027	0.8		37 0 - 22	25 0.9 05 4.8		38	x	$egin{array}{c c} \mathbf{K}_2\mathbf{K}_3\\ \mathbf{K}_2\mathbf{L}_3 \end{array}$.	18 1 9	42 1	7·9 86 3·3 07 1·6		08 0 · 1 20 4 · 1	36 0·:	288 1-18 096 4-9	5.39
	N:	As H Bs F	1	28 1	•11	1 • 12 1 • 02 2 • 80	1.257	2.3	7 5-0	28 0 · 10 32 0 · 08 32 0 · 42	37 5.7	1 7.	18	K	$egin{array}{c c} \mathbf{L_2^2L} \\ \mathbf{L_3K} \end{array}$		16 1	99 2	81 0	1381	17 2.	16 0·	545 2.7	27.48
1						-	6.536					18-	93						15.	323				37.90

TABLE LI.

Clo		Line	Series	м	L	-M³L	R	R2	L ² 12	$ m R^2 + rac{L^2}{12}$	A.C	Circui	t and	Line	Series	м	L	M2L	R	R2	$\frac{L^2}{12}$	$R^2 + \frac{L^2}{12}$	AC.
	int		ď			. ₽			12	=C		poi	nt		æ			Α=	I.	1	12	=C	AU
Quad.	XI M.	M _s L _s L _s L _s L _z T _s	16 48	1 • 99 0 • 57	2 · 56 0 · 67	0.487 10.188 0.218	1·44 2·32	2·07 5·83	0.068 0.545 0.037	2·62 5·42	0·11 26·57 1·18	Quad.	XII	N ₂ M ₃ M ₂ S ₂ S ₃ R ₃	34 56 48	0 • 7 I 0 • 70 6 • 57	0·98 2·04 I·10	0·493 1·000 0·357	0·49 1·40 2·07	0·24 1·96 4·28	0-846	2.81	0·16 2·31 1·56
N.B.		T.S. S.M.	48 56	0-57 0-70	2-04	0·180 1·000 11·923	1.02		0-018 0-847		29.81	N.E. (R ₃ Q ₃ Q ₃ P ₃ P ₃ N ₃	44	0·49 0·49 0·49	0.79	0.187	1·78 1·18 0·44	8·17 1·39 0·19	0 • 052	1.44	0.37 0.27 0.05
	I 04	O.E. R.Q. Q.P.	11	1.93	0.90 2.37	0·418 0·495 8·828	2·20 1·80	1.69	0 · 347 0 · 068 0 · 467	4.91 1.66	0·57 2·43 14·83		I P.	P.Q. Q.R. R.K.	44 44 52	0 · 49 0 · 49 0 · 89	0·80 0·47 1·45	0·192 0·113	0.40 1.00 1.89	1.00	0 • 058 0 • 018 0 • 175	1.02	0·04 0·12 0·88
	п	P ₄ O ₄	À	0.88	8.37	9·900 0·488	1.68	2.82	0 - 016 0 - 945	8.77	18·00 1·64	1.		K ₆ I ₆ I ₆ H ₆ H ₆ G ₆	66	0.89 0.85	1.08	0·202 0·132	5·02 5·04	12·74 25·20 25·40	0·147 0·117		4·58 5·12 3·87
·	B ₄	B.T. T.R. B.O. O.N.	7 49 49	0.74	2.10 2.04	1.150 0.418 0.388	3.73 3.46 1.93	18·91 11·97 8·72	0·368 0·846 0·307	14·28 12·32 4·03	16·42 5·09	tera		GeFe FeCe CeAe		0.35 0.35 0.36	2·78 2·01	0·841 0·260	2·90 1·50	17·81 8·4) 2·25	0 · 645 0 · 887	9·06 2·59	1.91 3.09 0.67 0.01
gon	III		46	0-40	2.22	2·591 0·355	1-11	1.23	0.412	1.64	0·17 24·88 0·58	rila	п	,	52	0 • 3 9	1.23	2·032 0·187	0.62	0.38		0.08	19-69
Trig	H.	H.L. L.S. S.T. T.B. B.H.	48 48	0-46 0-30	1·11 1·17 3·37	0.235 0.105 0.436 0.201	2 · 78 3 · 42 2 · 17	7·78 11·70 4·71	0·103 0·114 0·945	7·83 11·81 5·66	1.84 1.24	nadı	J ₆	J.L. L.H. H.G. G.F.	66 66	0.39 0.35 0.35 0.35	1·08 0·87	0.107	2.22	8·31 4·93 3·61) · 117) · 068	8·46 5·05 8·67	0.70 0.67 0.39
ø.	IV		63	0.85	n - 8d	1·332 0·379			0·160 0·036	0.69	6·27 0·04	O		F ₆ C ₆ C ₆ B ₆ B ₆ M ₆ M ₆ L ₆	68 71 71	0·36 0·81 0·81	1·00 1·74 1·24	0·130 1·142 0·816	3·50 2·50 1·03	6 · 25 () - 083) - 2 52	7.00 12.83 6.50 1.19	2·39 1·60 7·42 0·97
	D ₄	D.F. F.G. G.H. H.B. B.D.	53 53	0-81 0-81	1.28 0.90	0·182 0·086 0·201	1 · 82 2 · 62 2 · 77	1 · 74 6 · 86 7 · 67	0·284 0·068 0·160	2·02 6·93 7·88	0·37 0·60 1·87	r m a	ш	L.J.		0·81 1·96		3.405		0.07		0.09	0·08 14·27
	v					0·343 1·091 0·384	1-32	1.74	0·480	1.92	0·80 3·38	Bu	M	M ₆ E ₆ E ₆ C ₆ C ₅ B ₆	66 68	0·85 0·36	I •80 1 •00	4.610 0.221 0.130 1.142	1.44	0.86 0 2.07 0 8.53 0	· 270 · 083	0.48 2.84 3.61	2·21 0·52 0·47
	I4	I ₄ Q ₂ Q ₂ Š ₂ Š ₂ I ₄	43	0-30	2.30 1.11	0·384 0·207 0·178 0·769	1.48 0.56	2.10		2.63 0.41	0.74 0.54 0.07			- •				6.103		U-70	202	0.91	4.24

TABLE LII.

Base line closure	Laplace closure		Line	A= M² L	B ² = ΣΑ	33·2 B	1·575B	Δ8	Δ4	f_{a} $\frac{\Delta S}{33 \cdot 2 B}$	f. Δ <u>d</u> 1·575 B	Beference
Sironj-Dehra Dun Dehra Dun-Chach Sironj-Karachi			A ₁ B ₁ C ₁ C ₁ D ₁ E ₁ F ₁ G ₁ A ₁ T ₁ S ₁ Q ₁ P ₁ N ₁		2·202 1·221 2·318	49·27 36·69 50·56	2.338	+ 44·0 + 71·9 - 79·6	+0.5	0.893 1.960 1.574	0-214	38 36 37
Karachi-Chach Sironj-Calcutta	Kalianpur-Deesa Deesa-Karachi Kalianpur-Calcutta	:::	A ₁ T ₁ S ₁ Q ₁ Q ₁ P ₁ N ₁ N ₁ L ₁ J ₁ H ₁ G ₁ A ₁ C ₂ K ₂ L ₂		1·130 1·188 1·374	38-91	1·675 1·716	+ 163 · 8	-4·4 +1·9	4.210	2·629 1·106	38 38 40
Calcutta-Vizagapatam Sironj-Bider	Kalianpur-Jubbulpur Calcutta-Waltair	::. :::	A ₁ D ₂ Jub. L ₂ M ₂ O ₂ Q ₂		1.808 0.158 2.327	44·59 50·53	2·115 0·626 2·403	+ 42·5 - 6·9	-5·9 -1·2 +4·5	0·958 0·187	2·790 1·917 1·872	41 42 48
Bider-Vizagapatam Calcutta-Sonakhoda Sonakhoda-Dehra Dun	Calcutta-Jalpaiguri	<u></u>	T ₃ S ₁ R ₂ Q ₃ L ₂ L ₃ L ₃ K ₃ J ₃ H ₃ E ₃ C ₃ C ₁		1.484 0.818 10.14	40·44 18·59 105·71	5.02	- 16·4 - 21·3 + 36·7	+8.9	0·406 1·146 0·347	1.774	44
Bider-Bangalore		•••	A ₁ F ₁ F ₂ Fyz. T ₂ A ₂ B ₄	0.760 } 4.65 }	8.006 5.41 0.435	57·34 21·91	8-662	- 35.2	-5.3	0.614	1.447	42
Vizsgapatam-Bangalore	Waltair-Madras Madras-Bangalore	:::	Qal.H. H.B. Q.H.B.		0.789 0.201 0.940	21.91	1.854 0.708	+ 20.0	-1·7 -2·3	0-918	1·256 8·259	50 51
Bangalore-Cape Comorin	Bangalore-Mangalore Bangalore-Nagarkoil Kalianpur-Bombay	:::	B.N. B.L.N. A.T.	1.484)	0·204 0·425	21.65	0·711 1·026	+ 1.1	+1·4 -3·0	1·283 0·051	1.970 2.923	58 54
Calcutta-Mergui	Calcutta Chittagong		T ₂ S ₄ S ₄ Q ₄ L ₂ R ₂ I ₂ X ₄	0-854	8.110	45-85	2.778	+ 0.7	-2.2	-	0-792	55
	Chittagong-Akyab Akyab-Prome	···	L ₂ T ₂ R ₂ R ₃ Chit. Chit. K ₄ J ₂	0·702 } 0·050 }	0·752 0·824		1.365	T 0.7	-1·0 -0·2	0-017	0.788	56 57
	Prome-Moulmein	•	Jels Prome Prome H.V.		0.269 0.375		0·817 0·984		-5·0 +2·1		0·223 6·12 2·179	59 60

The values of ΔA in table LII are taken from the second table of chapter IX in which the accumulated errors of azimuth at Laplace stations are found. These are the errors after the adjustment of the triangulation has been performed.

TA	P	T.	\mathbf{R}	T.	77	7
14	ப	ш.	יע	u	44	∡.

	Circuit	B²=∑A	33·2 <i>B</i>	Δ8	1.576 B	Δ4	D== \$ 40	4-03 D	Δ.Έ	ΔN	f _s ΔS 33·2B	f _a ΔS 1·575B	f _e <u>∆E</u> 4·03D	f_{n} $\Delta N \over 4.08D$	Beference number
N.W. Quad.	II III IV V	3·661 9·718 9·679 3·426 2·229	63 · 512 103 · 484 103 · 285 61 · 453 49 · 568	+ 68·2 -124·6 - 79·6 +150·9 - 5·8	3.013 4.909 4.900 2.915 2.351	+ 5.906 + 1.550 - 3.254 - 4.232 - 3.000	40 · 68 111 · 51 79 · 30 8 · 46 10 · 96	25.703 42.557 35.887 11.723 13.343	+ 14.613 + 18.296 + 26.065 - 24.477 - 24.588	+ 57·503 - 89·413 + 89·087 + 3·688 - 0·505	1.074 1.205 0.761 2.456 0.107	1.960 0.815 0.664 1.452 1.276	0.569 0.430 0.726 2.068 1.843	2·237 0·926 1·089 0·310 0·038	1 2 8 4 5
8.E. Quad.	III III	2·120 1·112 3·306	48-339 34-993 60-358	-54·9 +31·9 -17·5	2·293 1·660 2·868	+0.212 -4.968 -3.888	24·28 7·78 27·04	11.256	- 20·676 + 19·622 + 23·078	+ 5.048 - 21.785 - 14.322	1 • 654 0 • 961 0 • 527	0.092 2.993 1.398	1.042 1.726 1.101	0·254 1·936 0·683	6 7 8
N.E. Quad.	II III VIII VIII VIII VIII XX XI XII	13-202 21-630 19-677 14-681 0-601 12-660 11-530 5-931 7-495 11-923 2-362	120·649 154·418 147·275 127·222 102·854 118·192 112·780 80·875 90·902 120·978 114·640 51·028	+287·1 - 7·3 +482·3 -641·0 +169·4 + 82·1 -132·9 +196·7 -284·6 +190·9 -193·7 +102·0	6.987 6.035 4.879 5.607 5.350 3.837 4.312 6.166 5.438	+11·598 -14·317 - 6·798 +10·177 - 0·791 + 4·843 - 5·739 + 4·441 - 2·279 + 0·648 + 2·406 -13·140	29 - 81	11.961 31.893 24.853 18.490 20.086 19.380 18.220 18.936 24.809 22.004	+ 81 933 - 96 904 - 16 860 - 5 888 - 21 829 + 9 877 - 2 449 + 3 269 - 10 284 - 15 304 - 57 230	-122.087 + 38.675 + 21.806 - 96.047 + 30.593 + 31.703 - 21.606 + 13.023	1·178 2·432 8·130 1·468 1·690	2-026 1-956 0-973 1-686 0-162 0-864 1-073 1-157 0-528 0-105 0-442 5-428	1-828 8-102 0-513 0-221 1-164 0-467 0-139 0-134 0-234 0-414 0-592 6-542	2·118 2·972 2·929 5·013 2·092 1·061 1·860 1·679 2·275 0·871 0·592 1·905	9 10 11 12 13 14 15 16 17 18 19 20
8. Trigon.	H	9.900 2.591 1.332 1.091 0.760	104·447 53·452 38·313 34·661 28·917	+136·6 - 22·7 + 39·9 - 0·4 + 11·7	2.536 1.818		18 · 00 24 · 88 6 · 27 3 · 38 1 · 38	20·102 10·091 7·413	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.000	0·425 1·041 0·012	1 • 451 2 • 367 5 • 500		0-005 0-000 3-712	24
S.W. Quad.	II III IV V	2·934 4·027	91·997 66·300 100·496 56·872 66·632 81·802	+ 27·4 -185·6 - 62·2	3 · 145 4 · 768 2 · 698 3 · 161	-7·118 -6·719 +2·957 +3·046	2.38 35.86 1.74 3.30	6 · 218 3 24 · 183 4 5 · 826 7 · 328	$\begin{vmatrix} + & 38.056 \\ + & 6.236 \\ - & 1.216 \\ - & 6.715 \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 8 207 0 261 8 8 269 6 934	2·260 1·408 1·096 0·964	1.952 6.121 0.258 0.228 0.916 1.344	2-291 1-104 1-818 2-866 1-916 0-346	
Burma Quad.	III	3.405	61.254	+ 47.0	2.906	-6.002		12.54	3 - 17.55	0 - 17.55	3 0.767	2-065	1-399	2·337 1·399 0·209	

2. It is not to be expected that the actual errors will be the same as the probable errors: but in a considerable number of cases, values of the ratio of actual to probable errors, that is f, should be distributed according to the laws of probability. In a given number of cases the probability is that those values of f which are comprised within certain limits will form a certain percentage of the total cases. The probability integral, between the proper ordinates, represents this distribution of errors. It is tabulated in most books on minimum squares*. By means of this it is seen that 10 per cent of the errors will most probably fall in each of the regions $A, B, \ldots J$ of table LIV defined by limiting values of f.

The actual values of f found in 167 cases of closures are classified in these columns. Each value of f is followed by a number in brackets which refers to the corresponding closing condition in tables LII or LIII.

^{*} Vide Wright's "Adjustment of Observations", § 213.

TABLE LIV.

Values of f from to	▲ 0 •185	185 • 975	C •876 •572	D •572 •777	•777 1•000	F 1.000 1.249	G 1-240 1-539	H 1.539	I 1.900	J 2·438
Side (i) Circuit	•012 (24) •047 (10) •107 (5)	•261 (28)	•425 (23) •404 (25) •527 (8)	•695 (14) •761 (3) •767 (83)	•934 (30) •951 (32) •961 (7)	1.041 (23) 1.074 (1) 1.178 (15) 1.205 (2)	1.308 (21)	1.647 (13) 1.654 (6) 1.690 (19)	2·438 2·011 (20) 2·063 (26) 2·804 (34) 2·380 (9)	2·458 (4) 3·030 (31 8·130 (17) 3·207 (27
(ii) Base	3 •017 (56) •051 (54) •187 (43)	1 -347 (48)	3 •406 (44)	3 •614 (47)	803 (35) -913 (40) -963 (41)	4 1·146 5)	2 1-283 (52)	3 1·574 (37)	5 1.980 (36)	3·269 (29 3·275 (11) 5·038 (12) 7 4·210 (40)
	8	1	1	1	3	1	1	1	1	1
Asimuth (i) Circuit	•051 (21) •092 (6) •104 (18) •162 (13)	·293 (25) ·315 (2)	•4·12 (19) •528 (17)	·864 (3)	-864 (14) -927 (34) -964 (30) -972 (31) -973 (11)	1·000 (32) 1·073 (15) 1·093 (29) 1·167 (16)	1·276 (5) 1·303 (8) 1·408 (28) 1·451 (22) 1·452 (4)	1.686 (12) 1.789 (26)	1-956 (10) 1-960 (1) 2-026 (9) 2-065 (33) 2-260 (27)	2-993 (7) 5-428 (20) 5-500 (24)
(ii) Laplace	4	2 •214 (35) •223 (59)	2	1 •738 (67)	5 •702 (55)	4 1·106 (39)	5 1.256 (50) 1.447 (48)	2 1·774 (46) 1·872 (48)	2·367 (23) 6 1·917 (42) 1·970 (53) 2·179 (60)	3 2.629 (38) 2.790 (41) 2.923 (54)
	0	2	0	1	1	1	2	2	3	3·259 (51) 6·12 (59) 5
Easting	•134 (16) •139 (15)	·208 (25) ·221 (12) ·228 (29) ·234 (17) ·258 (28)	•414 (18) •426 (84) •430 (2) •446 (21) •467 (14) •513 (11)	•502 (19) •726 (3)	·916 (30)	1 · 042 (6) 1 · 101 (8) 1 · 154 (13)	1·3i4 (81) 1·399 (83) 1·416 (22)	1.706 (23) 1.726 (7) 1.828 (9) 1.843 (5)	1.052 (26) 2.088 (4)	2·653 (32) 5·734 (24) 6·121 (27) 6·542 (20) 8·102 (10)
Northing	2 -000 (23) -005 (22) -038 (5) -130 (21)	5 •209 (34) •254 (6) •810 (4) •846 (31)	·560 (1)	2 •592 (19) •683 (8)	1 •871 (18) •904 (25) •926 (2)	3 1.061 (14) 1.089 (3) 1.104 (27)	3 1-390 (33)	1.800 (19)	2 1.916 (30) 1.936 (7) 1.995 (20) 2.092 (13) 2.118 (9)	5 2.866 (29) 2.929 (11) 2.972 (10) 3.712 (24) 5.013 (12)
	4	4	0	2	3	3	1		2·287 (1) 2·275 (17) 2·291 (26) 2·337 (32) 9	5
Side and Azi- muth exclu- ling Laplace	10	4	6 36	5		٥	8	6	12	
Northing and Easting	8	9	7 30	4	_4	6	4	46 	11	10_
All except	16	13	13	9	15	15	12	38 18 84	23	21

^{3.} On examination of table LIV it is immediately noticeable that the cases in which the actual error is greater than the computed probable error are more numerous than the cases when it is less. Considering all the 167 cases, f is less than unity for 70 cases and greater than unity for the remaining 97 cases. This unequality is largely attributable to the Laplace closures,

although in this case values of azimuth, adjusted for all circuit conditions, have been used. In the Laplace closures there are 13 cases of actual error greater than computed probable error and only 4 cases of actual error less than computed error. It is believed that the explanation of this is that given in § 6, Chapter V. The error due to acceptance of geoidal angles uncorrected, instead of spheroidal angles, to some extent magnifies the triangular error and so increases the value of M, and as a result the closures of azimuth in circuits and of the deduced quantities side, northing and easting are in better agreement with the formulæ than the closures on Laplace points; since the former do not depend on absolute errors while the latter do. If the Laplace closures are ignored the number of cases, less than and greater than the formulæ give, are 66 and 84 respectively. If the formulæ values were increased in the ratio 1·1 to 1·0* the figures would become 74 and 76 respectively. It appears then that the formulæ give values of the probable error which are some ten per cent below what the 150 cases would lead to. This is not a serious deviation from the facts and, apart from mere chance, may be attributed partly to

- (1) the use of geoidal instead of spheroidal angles.
- (2) the fact that M is based on certain simplifying assumptions regarding the regularity of the triangles and polygons in the series of triangulation*.

The total number of cases falling in each class $A, \ldots J$ is shown at the bottom of the table and from this it is seen that the errors are fairly distributed in the various classes, except that in classes I, J a considerable excess of cases occur. The excess of large errors over the number which is given by the formulæ, viz. 45-30=15 or $50^{\circ}/_{\circ}$, in classes I, J is to be attributed to the neglect of certain sources of error. One such source of error is that, already mentioned, of treating geoidal and spheroidal angles as identical: and it may be that other undetected sources also exist. However the formulæ give practically a satisfactory indication of the probable accuracy of side, azimuth, easting or northing. They should be a useful guide to the care which ought to be expended on observing and selecting a series in order that a result of any stated precision may be arrived at. As work on such a series progresses, the value of M may be taken out and observations increased in number, or rays increased in length, until the value of M is reduced to a quantity sufficiently small to give the proper precision.

4. It has just (June 1917) been noticed that the question of probable errors of side, azimuth, easting and northing generated in a chain of triangles were considered by General Walker and Mr. W. H. Cole in 1882†. The deduction is based on the equations by which the simultaneous reduction of the triangulation of India had been effected, and the equations obtained—vide xxviii, xxix, xxx ibid—are somewhat complex. These equations are comparable with (2) and (5) of Chapter VII of this work. Dealing with the case of a simple chain of equilateral triangles (on p. 104) with sides of 15 miles and chain of length 8° of arc, it is found in the Appendix that the

e. m. s. (i. e.
$$\frac{\text{probable error}}{6745}$$
) in azimuth = 6" 93e, average value latitude 0" 55e longitude 0" 59e

the first quantity being somewhat dependent on the direction of the chain. It appears that ϵ is the quantity now denoted by m. To obtain results by the method of present work put M =

$$\frac{7}{6}$$
 m $\sqrt{\frac{18}{15}} = 1.278$ m. Then taking 8° as equivalent to 550 miles,

Probable error in azimuth = $1.575 \times 1.278\epsilon$ $\sqrt{5.5}$ = $4''.72\epsilon$

Mean error in azimuth = $\frac{4.72}{.6745}\epsilon = 6''.99\epsilon$

Probable error in easting or northing = $4.03 \times 1.278e\sqrt{5.5} \times \frac{5.5}{\sqrt{3}}$ feet = 38.3e feet.

^{*} See also § 4 below.

[†] Vide G.T.S. Vol. VII, Appendix No. 3.

Mean error in easting or northing =
$$\frac{38 \cdot 3\epsilon}{\cdot 6745}$$
 = $56 \cdot 8\epsilon$ feet.

These results are in accord with those found by the old formulæ. On pp. 105, 106 of the Appendix* additional quantities were introduced to take account of geometrical irregularity, double instead of single chains, length of side. The latter two considerations have been dealt with in the present work by use of the quantity M. In the appendix under reference geometrical irregularity of the magnitude which might occur in Survey of India work is represented by an augmenting factor κ and it is stated that "we may as a rule put $\kappa = 1 \cdot 4$ in hilly country and $\kappa = 1 \cdot 1$ in the plains". The introduction of this factor would increase most of the probable errors computed in the present work in ratio $1 \cdot 1$, an amount which would practically equalise the number of cases of errors exceeding and falling short of the probable error as already deduced in § 3. The independent opinion of the author before seeing this appendix was that it was better to leave this out of account: but it is a question as to whether the factor κ might not with advantage be incorporated in M in some cases.

The formulæ developed in the Appendix* do not appear to have been put to much use: and as far as can be seen were lost sight of. They are only applicable to straight (or approximately straight) chains of triangles, and not to circuits of all forms.

Note on the solution of equations.

5. In the adjustment of triangulation, and the calculation of its probable errors, groups of linear equations involving a large number of unknowns frequently arise. Although the solution is not necessarily required to a high order of accuracy, yet the work of elimination has generally of necessity been performed using a large number of significant figures to safeguard the solution against accumulation of computation inaccuracy. Some of the multipliers in the process of elimination become very large owing to the fact that the denominators consist of terms of which the positive and negative portions are not very different in amount. Taking the denominator to be of the form $\Sigma a - \Sigma \beta$ where a, β represent the positive and negative terms respectively, while Σa and $\Sigma \beta$ may each be formed to a fairly high percentage accuracy, the quantity $\Sigma a - \Sigma \beta$ may be inaccurate by a considerable percentage.

If the ordinary Gaussian method of arranging the elimination is followed, it is to be noted that most of the solution is independent of the R. H. S.† of the equations, and is in fact just a process of elimination of the several unknowns. In some cases, e. g. that occurring in Chapter VII, solutions are required for a number of sets of values of the R. H. S.† It is accordingly in this case desirable to retain the R. H. S.† in symbolical form. But this has an advantage of an entirely different kind, as it permits of any number of successive approximations in the solution being made, without repeating the eliminating process, which accordingly need not be performed with such exactness as would otherwise be necessary.

First consider the L. H. S.‡ of the equations. Following Gauss's method of arrangement denote the equations by

If the first equation is multiplied by $-\frac{b_1}{a_1}$ and added to the second, x_1 is eliminated. Similarly

^{*} Vide G.T.S. Vol. VII, Appendix No. 3. † R.H.S. = right hand side. ‡ L.H.S. = left hand side.

if it is multiplied by $-\frac{r_1}{a_1}$ and added to the rth equation x_1 is eliminated. The following equations are formed

To eliminate x_2 the same process is applied, the multipliers in this case all having the denominator $b_2 - \frac{b_1}{a_1} a_2$. It is to be observed that the denominator of the multiplying factors is always the first coefficient of the first equation of the set being operated on. The successive

denominators are
$$a_1$$
, $b_2 - \frac{b_1}{a_1} a_2$, $c_3 - \frac{c_1}{a_1} a_3 - \frac{c_2 - \frac{c_1}{a_1} a_2}{b_2 - \frac{b_1}{a_1} a_2} \left(b_3 - \frac{b_1}{a_1} a_3\right)$ etc.

In the solution of normal equations the diagonal coefficients are generally larger than the others. Being of the forms $\sum ua^2$ and $\sum uab$ respectively the component parts of the first form are all positive while those of the second form are equally likely to be positive and negative, and accordingly tend to cancel. Accordingly in more cases than not $a_1 > a_r$ $(r \neq 1)$, $b_2 > b_r$ $(r \neq 2)$. . . so that $b_2 - \frac{b_1}{a_1} a_2$ is not likely to be small compared with b_2 . But as the denominators become more complex there is more possibility of their becoming small. To avoid this, as well as may be foreseen before the actual computations are carried out, it is accordingly convenient to rearrange the equations in such order that the diagonal coefficients are of increasing magnitude. Before doing this however it is desirable that all these diagonal coefficients should be brought up to as near as may be the same order of magnitude. It is inconvenient to have quantities entering the computation, some with many figures preceding the decimal point while in others there are no figures before the decimal point and a number of zeros following the decimal point.

Any coefficient say f_r can be changed to $10 f_r$ or $\frac{1}{10} f_1$ if at the same time for x_r is written $\frac{1}{10} x_r$ or $10 x_r$, this being done in all the equations; and solution subsequently being performed for $\frac{1}{10} x_r$ or $10 x_r$ as the case may be. It is convenient to use as multiplier a power of ten, as this involves no loss of precision in the coefficient and no labour in transforming it. If the process thus suggested is carried out in the case of symmetrical equations—such as normal equations—the symmetry is destroyed. As the symmetry is advantageous it is desirable to avoid destroying it, and this may be arranged for as follows. When any column is multiplied by a power of ten the corresponding row should be multiplied by the same quantity. Then the equations (1) may be written

in which $X_r = \frac{x_r}{10^a}$: which are quite symmetrical.

In the solution of (1) the quantities which should be brought up to about the same order are the diagonal coefficients, as these enter more than the others into the computations. It may be seen from (3) that the diagonal coefficients can only be conveniently changed by powers (positive or

negative) of 10°. The first step then is to apply this process of dealing with the diagonal coefficients: the second is to rearrange the equations in such order that the modified diagonal coefficients occur in increasing order of magnitude. It can always be arranged that the largest diagonal coefficient is not so much as one hundred times the smallest.

6. Suppose now that (1) represents a set of equations dealt with and arranged as explained above. They are now in an order as favourable for solution as can be arranged for by mere inspection.

In proceeding with the elimination as explained in §5, notice that the R. H. S. quantities A,B,C do not in any way affect the elimination. The work on the left hand side of the equation is entirely independent of the values A,B,C Suppose then that a solution has been taken out, which is essentially only approximate: the degree of approximation depends on the number of figures retained in the arithmetical processes. Instead of the correct quantities x_1, x_2 . . this solution will determine slightly different quantities $x_1 - \delta x_1, x_2 - \delta x_2$. On substituting these in the L.H.S of (1) the values found will be $A - \delta A, B - \delta B$. . . Hence

$$\begin{array}{cccc}
a_1 \, \delta x_1 &+ a_2 \, \delta x_2 &+ & & & = \delta A \\
b_2 \, \delta x_1 &+ & & & & = \delta B
\end{array}$$
the same coefficients on the LHS.

These equations have the same coefficients on the L.H.S. as those of the original equations (1). Hence the process of elimination in order to determine δx_1 , δx_2 ... is the same as that already performed for x_1, x_2 ...: and it is only necessary to change the portion of the computation involving A, B, C. In this way a second approximation is easily arrived at. Clearly this result may again be treated in the same way, and so successive sets of higher approximation may be obtained, without any necessity of increasing the accuracy of the elimination process. The gain in accuracy is arrived at by means of accurate substitution, and this substitution may be made absolutely perfect by keeping all the figures resulting from the substitution. As an example, if the original solution consists of numbers of 4 significant figures, and the coefficients are given to 4 figures the products will consist of 7 or 8 significant figures. It may be pointed out here that if the coefficients are given to much higher accuracy it is not necessary to use the full amount of figures for the elimination process: but this must be done in the substitution.

The upshot of this is that the various multiplications and divisions which arise in the process of elimination may all be performed by slide rule, which greatly facilitates the work. The substitutions must be carried out with higher, or even absolute, accuracy, as can most conveniently be done by arithmometer.

7. As remarked in §5 it is sometimes convenient to have the solution in terms of symbolic values of the R.H.S. This gives rise to another general method of procedure as regards higher approximation to any desired degree, which will now be described. Other attendant advantages will be seen to arise in this method.

Suppose the solution of (1) is expressed in the form

$$x_{1} = {}_{a}x_{1}A + {}_{b}x_{1}B + {}_{c}x_{1}C + \dots$$

$$x_{r} = {}_{a}x_{r}A + {}_{b}x_{r}B + {}_{c}x_{r}C + \dots$$

$$(5)$$

Then $_{\mathbf{a}}x_{1}, _{\mathbf{a}}x_{2} \dots$ are the solutions of

and
$$_{\mathbf{r}}x_{1}, _{\mathbf{r}}x_{2}$$
 are the solutions of
$$a_{1}x_{1} + a_{2}x_{3} \quad . \quad . \quad = 0$$

$$r_{1}x_{1} + r_{2}x_{3} \quad . \quad . \quad = 1$$

$$\vdots \quad . \quad . \quad . \quad . \quad = 0$$

In (6) all the quantities on the R.H.S. are zero, except the rth, which is unity. The elimination processes are identical for all values of r, but the work on the R.H.S. differs for each value of r. The accurate solution of all the sets of form (6) gives values of all the quantities $_{r}x_{s}$: but any actual solution will give quantities slightly different, viz. $_{r}x_{s} - \delta_{r}x_{s}$. On substituting these, instead of getting the quantities unity and zero as values of the R.H.S. slightly different quantities are obtained, as indicated.

Values of R.F.	I.S. of	equations	(6)	resulting	from	an	approximate solution	2.
----------------	---------	-----------	-----	-----------	------	----	----------------------	----

	7	Values o	f R.H.S		٠,			Appro	oximate	solutions.	
	1	2	3		٠.	• .	. 1.	2	3		
1	$1+a_1$	a_2	a_3 .			•	$_{\mathbf{a}}u_{1}^{\cdot}$	au ₂	. au8.		
2	$oldsymbol{eta_1}$	$1+eta_2$	β_8 .	•		•	$_{b}u_{1}$	b#2	ь и 8		
3	γ_1	72	$1+\gamma_3$	•		٠	_c u _l	₀ <i>u</i> ₂	c ^u 3		
			٠. ٠.	٠	• .	•					

If the original equations are symmetrical, so also are the quantities of the approximate solution.

It is clear that if the approximate calculation has been properly carried out all the quantities α, β, γ . . . are small compared with unity.

8. Suppose the solutions 1, 2, 3... are combined in any way, taking for x_1 the value $A_au_1 + B_au_2 + \ldots$ and similarly for the other x^s . Then it is clear that the corresponding values of the R. H. S. will be

$$A(1 + a_1) + Ba_2 + Ca_3 \dots,$$

 $A\beta_1 + B(1 + \beta_2) + C\beta_3 \dots,$
 $A\gamma_1 + B\gamma_2 + C(1 + \gamma_3) + \dots,$

Only products of the small quantities a, β ... now occur except in the quantity unity in the first line: so that a higher approximation is readily found in this way. The process can obviously be repeated as often as is desirable.

9. The question can also be considered otherwise. Suppose the true value of any quantity x is u-v, u being a value obtained by solution and v a small correction. Then the solutions

and as above

Whence by means of (7) the solutions are represented by

$$\begin{array}{lll}
s v_1 & = a_{s a} x_1 + \beta_{s b} x_1 + \gamma_{s c} x_1 + \\
s v_2 & = a_{s a} x_2 + \beta_{s b} x_2 + \gamma_{s c} x_2 \\
s v_3 & = a_{s a} x_3 + \beta_{s b} x_3 + \gamma_{s c} x_3 & \dots \end{array}$$
(8)

Hence

$$\mathbf{s}^{\mathbf{v}_{\mathbf{r}}} = a_{\mathbf{s}} \mathbf{s}^{\mathbf{x}_{\mathbf{r}}} + \beta_{\mathbf{s}} \mathbf{b}^{\mathbf{x}_{\mathbf{r}}} + \gamma_{\mathbf{s}} \mathbf{c}^{\mathbf{x}_{\mathbf{r}}} + \dots \qquad (9)$$

The quantities $_{a}x_{r}$ etc. may as a first approximation be replaced by the determined quantities $_{a}x_{r}$ etc. The solution then takes the form

and if further approximation is required this value may be substituted in (8) for axr giving the next approximation to v_r . Any number of successive approximations may be made in this manner. The R. H. S. corresponding to (9) may be written down. They are

or

which may be written with abbreviated form

where

These residuals a', β' etc., are composed of binary products of a, β etc. and accordingly are of a smaller order than a, β Starting with the second approximate values u', . . and these residuals a', β' . . . another approximation may be made: and so on as far as is necessary to attain the accuracy of solution desired.

10. It may at times be convenient to split up a set of equations and apply the above process to any portion consisting of an equal number of rows and columns. This may be done with advantage when a considerable number of the coefficients are zero. It is to be remembered that the actual numerical labour of solving n equations varies as the cube of n, so that a group of say 30 equations presents a formidable piece of computation. By the method now proposed perhaps this labour may be considerably reduced: but one certain advantage is a substitution check at a comparatively early stage of the computation. This is a check against actual computation blunders, as well as against accumulation of error due to lack of absolute exactness in the calculation on account of the necessity of limiting the number of figures employed. In this way, as has been shown above, much of the work can be performed readily with a slide rule, greatly accelerating the work.

In a large class of equations, e.g. the normal equations which occur in the method of least squares, there is complete symmetry about a diagonal. This reduces the work of elimination to about one-half. It is important then that in dealing with equations of this class that the symmetry should be preserved. Gauss's arrangement secures this for his method of solution, and it will now be shown that symmetry is maintained when the equations are split up as just suggested.

Denote the equations by

Suppose the solution of

where r is less than n, is

$$k_{1} = {}_{1}k_{1} [i] + {}_{2}k_{1} [ii] + \cdots + {}_{r}k_{1} [r]$$

$$k_{2} = {}_{1}k_{2} [i] + \cdots + {}_{r}k_{r} [r]$$

$$k_{r} = {}_{1}k_{r} [i] + \cdots + {}_{r}k_{r} [r]$$

Then from the first r equations of (11) it is seen that

$$\begin{bmatrix} i \end{bmatrix} = (i) - (1,r+1) k_{r+1} - (1,r+2) k_{r+2} - \dots - (1,n) k_n \\ = (ii) - (2,r+1) k_{r+1} - (2,r+2) k_{r+2} - \dots - (2,n) k_n \\ = (r) - (r,r+1) k_{r+1} - (r,r+2) k_{r+2} - \dots - (r,n) k_n \end{bmatrix} . . (14)$$

Substituting from (14) in (13) it follows that

^{*} This may be a first or higher approximation as appears most suitable.

the summation indicated by Σ referring to s to which all values from 1 to r are to be given.

The values $k_1, k_2 \ldots k_r$ are now to be substituted in the latter n-r equations of (11). It is clear that thereby the coefficients of $k_{r+1}, k_{r+2}, \ldots, k_n$ are altered. The original coefficients are clearly symmetrical, and it is only necessary to show that the change in the coefficient of k_u in the $r+1^{th}$ equation—the first of the equations dealt with—is the same as the change in the coefficient of k_{r+1} in the n equation. By (15) and (11) it is seen that the change in coefficient of n in the n-th equation is

$$-(r+1,1) \sum_{s} k_{1}(s,u) - (r+1,2) \sum_{s} k_{2}(s,u) - \ldots - (r+1,r) \sum_{s} k_{r}(s,u) \ldots (16)$$

while the change in the coefficient of k_{r+1} in the u^{th} equation is

$$-(u,1) \sum_{s} k_{1}(s,r+1) -(u,2) \sum_{s} k_{2}(s,r+1) - \dots -(u,r) \sum_{s} k_{r}(s,r+1) \dots (17)$$

Remembering that $k_t = k_t$ notice that the sum of the coefficients of k_t and k_t in (16) is -(r+1,t)(s,u)-(r+1,s)(t,u) and the corresponding quantity in (17) is -(u,t)(s,r+1). These quantities are the same, since (u,t)=(t,u) etc.

The equations resulting from this method of solution are accordingly symmetrical.

11. In some cases after the solution of a set of normal equations has been effected, additional conditions may have to be introduced. The form of the equations, vide (13), is only modified thereby by the addition of a number of terms at the end of the original equations and an addition of the same number of equations at the end. If then the original equations have been solved in the manner explained above, it is possible to proceed immediately to derive the solution of the larger number of equations, making use of the solution already obtained. If the ordinary method of solution of the original equations had been followed this would have been of little help in proceeding to the solution of the larger number of equations.

These methods will now be given effect to in the solution of the 26 equations of p. 116. In table XLVII the coefficients are marked off in the stages for which solution will be performed.

In cases where a highly accurate solution is not desired the values of the residuals are not required. It is however of importance to verify that the solution does not contain any blunders, as may easily occur in the numerical work. A check on this is obtained by substituting the values obtained for solution A, B, . . . in the last equation. This equation only enters into the final eliminant from which the value of the last unknown is determined, and not into any of the previous equations used for the actual solution—that is the first of each group of equations formed by with satisfactory precision it is an indication that no blunder has been committed. It is not certain from this that the residuals of the other equations are equally small, and nothing short of substitution in each of these will make this point quite clear: but it is a sure check against any serious blunder.

12. Application of the method suggested above will now be made to the equation whose solution is necessary for the determination of the several probable errors of the N.W. Quadrilateral after adjustment. The L.H.S. of the equations are indicated in table XLVII. Conformably with §10 only a portion of the complete set is dealt with at first. It is at once clear that the first 8 equations and the next 12 equations form convenient groups. The first step is to solve the first 8 equations for the quantities k_1 ... k_8 ignoring for the present quantities k_9 ... k_{16} which occur in the 5th—8th equations. The R.H.S. are taken as zero or unity, vide (6). As an example of (3) multiplications by powers of 10 are introduced and the order of equations arranged to make the diagonal quantities in increasing order of magnitude. In this particular case there is little gained by the former procedure, which is introduced merely to illustrate the method. The arrangement of the work is shown in tabular form in table LV, of which detailed explanation is now given.

TABLE LV.

e t	Right			L	eft Ha	nd Sid	е		
Equation Number	Hand Side	l <i>k</i> ₃	2 k ₄	3 k ₇	4 <i>k</i> ₈	5 10 k1	6 10 k2	$7 \\ \frac{1}{10} k_5$	${8\atop {1\over 10}k_6}$
1(1)	+1.000 +4.1335	+40 68	0	+ 7:35 - :0296	+ 1.14	+ 22·0 - ·1354	+103.8	- 0001 - 0001	+ 17·7 + '02+7
2 3 4 6 6 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		+ 40·68	- 1·14 0 +111·51 - 1·33	+ 7·85 0 0 - ·206 +111·51 - ·03	- 103·8 0 + 4·1 - 3·975 - 28·0 - ·62 + 366·0 - ·11·9	+ 22·0 + 23·0 - 18·76 + 4·1 - 2·906 0 - 56·16 + 866·0 - 264·9	- 17·7 - 8·4 + ·054 - 282·2 + ·0084 + 70·0 + ·162 0 + ·7656 + 971·0 - ·002	- 0 3 + 282 2 - 3 2 - 8 4 - 496 - 9 576 + 70 0 - 45 17 + 131 + 971 0 - 7 7
() () () (2)	() 'aoofi	+ 1·000 + 4·1333	+ 40.68	- 1·14 + ·0046 - ·0001	+ 7·35 - · · · · · · · · · · · · · · · · · · ·	-103·8 + ·6 ₃ 86 - 2·993	+ 22·0 - '6344 - '1352	- 17·7 - :0073 + :0247	- 0·8 - ·0004 - ·0001
10 11 12 13 14	- · · · · · · · · · · · · · · · · · · ·	+ ·0280 - ·1807 0 + 2·552 0 - ·541		+110.18	- · 206 + · 206 + 111 · 48 - 1 · 33	+ 125 - 2 906 - 23 62 + 18 76 + 354 1 - 264 9	+ 4.24 + 62 + 1.194 - 3.975 - 56.16 + 56.144 +101.1	- 8·346 - 496 - 282·2 + 3·2 + 70·16 - 45·17 + 9·576 + 9·71·0 - 7·7	+ 279·0 - 01 - 8·896 + 054 - 9·576 - 7656 + 24·83 + 16 + 131 - 131 + 963·3 - 002
16 16(1) 16(2) 16(3)	- ·180°		+ 1.000	+110.15	0	- 2·781 + ·017 - ·080 + ·000	1 - '1401	- 8.842 0036 + .0123 0027	+ '114:
17	028	0	0		+110.15	- 4·86 + 89·2	- 2·781 - 016	-279·0 -24·99	- 8·842 0 - 10·342
18	- ·541 - ·004			,		+ 89.2	+ 1227	- ·223 + 10·342	+ 7.045 + 24.99
19 20	- 2·552 + · 008 + · 007		0	2	,		- '21	+ 963·3 - 71	- 12.31 0 + 22.40
21	- · · · · · · · · · · · · · · · · · · ·	5 + · · · · · · · · · · · · · · · · · ·	0						+ 963 · 3

TABLE LV (Continued).

thon	L	***************************************	B	light	Ha	nd Si	de					L	ft	Hand	Sido	
Equation Number										4 k ₈		5 10 1	¢ ₁	6 10 k2	7	8 10 kg
22 (1) 22 (2) 22 (3) 23 (4)		· • • • • • • • • • • • • • • • • • • •		·1807 ·4436		0000		3.776		+110.1	5	+ :	36 299 401 0008	+ '017	2 - · · · · · · · · · · · · · · · · · ·	144 - '0 895 - '0 864 + '0
23	-	- 5456				• 0252	+	0				+ 89-1		+ 106		
24	F	3.544		•0080 •5422		o •0441	+		.12			2	-	- 132	7 - 12.31	30
25	F	· 0071	+	•0046 • 4 372	_	• •0803	. +	025	25					+ 88 99	+ 10 73	
26	+	· 0700 · 0227 · 0022	' -	4577 0635	-	o 2·533 o	+	2 · 533 0							+962·6 -706·7	+ 22 40 - 22 40 + 256 6
27	F	5468		2.5447	+	.0252	4		٦,	1.0	20					- '71
27 (1) 27 (2) 27 (3) 27 (4) 27 (5)	ľ	• 5473	+	2.2632	-	·OI 52		.078				+ 88.9	2	- ·016 + ·0005 + ·0001	+ '00	51 - '00 74 - '00 39 + '03
28	L	2.545	_		<u> </u>		\downarrow		+	1.00	75			0	+ .13	39 - · · · · · · · · · · · · · · · · · ·
29	- - +	078 0766	-	*5468 *0005 *0205 *3566	+	·04412 ·0803 ·0035	++++	· 0255 · 0006 2 · 538	+ 10	0	- 1			+ 88.92	+ 3·68' + '00: +255·9	
30	Ë	·0205	+	1055	<u> </u>	2.533	+	.0018 .080 .090		0 041	- 1				- 1.75	+ 255·9 - 15
31 (1) 31 (2) 31 (3) 31 (4) 31 (5) 31 (6)	_	2.5451	-	·5463	+	·04412	+	·0252		.000		+ 1.00	0 1	+ 88·9 <u>2</u>	+ 3.689 + .001 005 + .001 + .036	+ 12·456 5 + '01) 1 + '005 1 - '123 7 + '003
32	- +	0014	 +	·3771	++	.0768	+	2.527	<u> </u> -	•140	1		75		- '002	
34	+	3566	+ +	· 0275 · 0766	+	**************************************	+	·001 ·0821 ·0035	+	·041	-	0 - '041 0 - '140	- 1		+254.15	+ 516 - 516 +255.75
34(1) 34(2) 34(3) 34(4)	+	1042	-	·85-11 ·35-14	+	·0786 ·0786	+	2.526	-	•140	-	0414		1.000	+254.0	- 1.75
4(i) 4(i) 4(i)		:				1	+	2.256	-	. 1401		•0414		•		0 0
35	+	·3514 .	+	.1040	-	2.526	+	.0786	+	•0414	6.		+	1,000		0
36	+	-3544 -	-	1040	_		+	0	_	•	_	·140 •	+	0.00003		+ 254 · 0
Carr				I		II		·0786	+	.0414	6 –	•140	+	0.000	+ 1.000	+ 254.0
Ë,	~			k ₁	_	k4	_		į	ΙV	_	٧		ΔI	VII	VIII
Ist approximation		11 11 17 7 7 71	- • 10	018	-·0	0001474 016	۰0 +	k ₇ 04025 001053 3 4 23	+ • (k ₈ 0001035 004027 00000182 03423	- · - ·	10 k ₁ 006155 028835 00017 000875	+ •	000172	10 k ₆ + 00041 - 001396 + 0008095 + 00994	10 k ₆ + 001395 + 0004094 - 00994 + 0008095
· · · · ·	-	iii	_				_					01133	+ •(00000202 01183	- · 000552 - · 0001635 + · 003937	+ ·000163 - ·000552 0 + ·003937

multipliers are also applied to the right hand side of the first equation which is unity, and therefore appear in this column. The work is performed by sliderule, making one setting representing division by 40.68, and reading off opposite the quantities 0, 7.35, 1.14 etc. these quantities being at once entered in R.H.S. column (shown in old face type). In completing the multiplication of the first equation by these several factors, it is noticed that the quantity to be entered is the product of the factor of the particular line by the coefficient of the particular column in equation No. 1, e. g. old face figures -3.975 (line 3, column 5) = $-.1807 \times 22.0$. The old face figures thus formed for all the equations Nos. 2-8, are added to the corresponding coefficients and give rise to 7 equations (numbered 9-15) from which k_3 has been eliminated. The process as regards the right hand side has only actually been applied for case I in which the right hand side of the first equation is unity and the rest are zero (vide § 7): but it will be easily seen that for the other cases all the old face quantities would be zero having zero as a factor. Case II is accordingly brought in conveniently after the elimination of k_3 has been completed.

The necessary multipliers for the next elimination, that of k4, are now duly entered of the R.H.S. for case II. They are the old face figures +.0280, -.1807, +2.552 . . . : and the process of elimination is proceeded with. In this way the groups of equations 16-21, 22-26, 27-30, 31-33, 34-35, 36 are formed successively in the last of which only $\frac{1}{10}$ k₆ occurs. From this values of $\frac{1}{10}$ k_6 are written down at the bottom of the table for each of the eight cases. These values would be substituted in 34, except that the coefficient of ke is so small that they are negligible. Thus equations 34(1) . . 34(7) are formed giving values of $\frac{1}{10}$ k_5 for seven cases. Then the values of $\frac{1}{10}$ k_6 and $\frac{1}{10}$ k_5 are substituted in 31, giving 31 (1) . . 31 (6) from which six values of $\frac{1}{10}$ k_2 are formed. These several substitutions are shown in old face. The results of the terms on the left hand sides are combined and with changed sign applied to the right hand side for the corresponding case, +.0786 = -.04412 - .0011 + .1238. All the values obtained are exhibited at the foot of the table: they are the values of ,x, in the notation of § 7. Since the equations are symmetrical the solution is also symmetrical and $_rx_s = _sx_r$: so that it is only necessary to take out half of the quantities. Had the equations not been symmetrical all work below the diagonal in each group of eliminants would have had to be completed and the full number of cases, eight, would have been necessary in substituting in each of equations 1, 9, 16, 22, 27, 31, 34, 36.

13. An approximate solution of the first eight equations has now been found. As it will be necessary to substitute from the solution in the remaining equations, it is desirable in any case at this stage to check the solution; but this substitution at the same time enables a higher approximation to be reached by (8). This is desirable; although a high order of accuracy of final solution is not desired, yet it is proper to avoid the introduction of computation inaccuracy at an early stage in the work. The first step is to substitute in the equations and so to find the quantities a, β . . . of § 7. In performing this substitution a sliderule cannot be used, as greater precession is desired. If an arithmometer is used, then there is little extra labour in taking out the work to the full number of figures which occur. When this has been done (10) gives a means of an infinite number of successive approximations. As exemplifying this, full accuracy is kept in this substitution, which is reproduced for Case I only in table LVI. It is to be remarked that there is no advantage in keeping the solution of

table LV to as many figures as has been done, as the latter figures cannot be accurate: and their presence adds to the labour of multiplication. However in the present case the substitution had already been carried out by the computer before this simplification could be given effect to.

TABLE	LVI
-------	-----

Equation	1	. 2	8.	4	5			7
Case I	-0.000,117,99 -0.135,410 -2.993,073 -0.000,123 +0.024,691,5	000,599,623,2 +- 004,588,85 000,760,725 +- 688,889 684,870 007,257 000,418,5	- · · · · · · · · · · · · · · · · · · ·	0 011,541,285 +-141,565 118,228,5 115,703 011,718	+2·285,200 +0·001,530,012 -0·016,502,5 +0·002,380,5 -2·252,730 +0·028,700 0	+10-546,080,00 -0-000,824,28 -0-002,875 -0-004,244,85 00,424,85 -10-553,610 00-007,650 -0-008,203,68	7030,480 +-000,220,898 +-083,810 +-029,207,7430,850 0 +-0398,110 +-000,058,598	8 +1.798,320,00 +0.000,004,85 -1.188,45 +0.000,868,4 0 -2.013,450 +1.854,545 -0.000,566,17

Table LVII gives the results of the substitution for all cases, that is the quantities $\alpha \beta \gamma$. in notation of § 7. To avoid constant repetition of zeros, they have all been multiplied by 10^{3} . It is now perfectly straightforward to substitute in (10) and obtain a second approximation. Since the solution is known to be symmetrical, it is not necessary to perform the substitution on both sides of the diagonal: but as a check it may sometimes be useful to do so. When two determinations of what is known by symmetry to be one quantity differ slightly, the mean can be taken.

TABLE LVII.

		2	8	4	5	6	7	8
$10^3 \alpha_r$ $10^3 \beta_r$ $10^3 \gamma_r$ $10^3 \delta_r$ $10^3 \epsilon_r$ $10^3 \epsilon_r$ $10^3 \epsilon_r$ $10^3 \theta_r$	- ·528,24 - ·128,448,2 - ·156,075,2 + ·217,747 - ·112,024 - ·329,39 - ·012,175 + ·015,73	+ •072,001,8 - •285,112 - •127,369 -1•219,784,8 + •432,29 - •100,006 - •067,41 + •016,817	- •286,446,4 - •019,755 - •749,292 + •334,403,2 + •087,01 - •160,988 + •022,785 + •870,834	+ ·095,876 - ·190,733,6 + ·077,903,2 - ·977,14 +1·172,782 - ·028,98 - ·350,65 + ·028,735	-1·421,988 +2·538,45 + ·266,00 +3·993,062 - ·915 + ·251,92 + ·131,75 - ·020,22	-3·203,63 - ·464,812 - ·436,938 - ·230,44 + ·132,62 - ·474,2 - ·122,5 + ·014,75	+ ·088,598 + ·159,302 - ·077,414 +2·077,762 - 3·072,0 - ·105,0 +1·105,4 - ·099,78	566,178 + - 248,962 -1 - 443,978 + - 842,254 + - 196,4 518,7 + - 075,7 + 1 - 087,88

The result of the second approximation, found by means of (8), is given in table LVIII which has been rearranged in the order of the original quantities.

TABLE LVIII.

	k 1	,						
		k ₂	k ₃	k4	<i>k</i> ₅	k ₆	k ₇	<i>k</i> ₈
12284 5678	+1-1325	+ ·000,006 +1·132,5	081,44 288,135 +-101,552	+-288,135 081,44 +-101,552	055,14 016,27 +-004,079 013,936 +-393,63	+ ·016,27 - ·055,14 + ·013,936 + ·004,079 0 + ·393,63	001,702 +-008,835 004,021 +-000,108,5 +-003,092 099,41 +-034,241	008,885 001,702 000,108,5 004,021 +- 009,41 +- 003,092 034,241

14. This solution corresponds to that indicated in (13). The next step is to form (15) with a view to substitution for $k_1 cdots cdots cdotk_8$ in the equations Nos. 9—20. For this only values of $k_5 cdots cdotk_8$ are required since the coefficients of $k_1 cdots cdots cdotk_4$ are zero in these equations. However values of $k_1 cdots cdots cdotk_4$ are also required at a later stage, so the complete series of quantities k_1 to k_8 are expressed

according to (15). Denote the quantities given in table LVIII by ${}_{s}K_{r}$ where r and s have all values from 1 to 8. It is necessary to compute all the quantities $\Sigma_{s}K_{r}(s,t)$ where s has all values from 1 to 8 and is the quantity to which Σ refers, for each value of r from 1 to 8 and each value of t from 9 to 20:(s,t) in the notation of (11) indicate the coefficients shown in table XLVII, while ${}_{s}K_{r}$ are the quantities of table LVIII. Owing to zero coefficients it has only to be taken for values 9 to 16 and so the number of quantities $\Sigma_{s}K_{r}(s,t)$ actually to be computed is $8\times 8=64$; and among them there is a sort of skew symmetry due to equality in pairs of coefficients in table XLVII, making altogether only 32 independent quantities. Further the summation Σ although relating to 8 values of s, actually only gives rise to four terms owing to zero coefficients. The details of the computation are given in full in table LIX. The computation is taken out to full accuracy to exhibit the symmetry which afterwards occurs when substituting in equations Nos. 9—20.

 $TABLE\ LIX.$ Values of $_{s}K_{r}$ (s, t) and of Σ^{s} $_{s}K_{r}$ (s, t), the latter in old face type.

	V der de co	er is rei						
r s	t = 9	10	11	12	13	14	15	16
1 5 6 7 8	- ·356,755,80 0 + ·002,246,64 + ·202,939,95	0 + ·105,266,90 - ·039,094,94 + ·011,662,20	- ·597,127,80 + ·102,826,40 - ·050,418,24 + ·522,148,50	+ ·348,494,8 + ·264,712,9 - ·100,588,2 - ·261,692,7	- ·109,728,60 0 + ·000,186,16 + ·012,103,95	0 + .032,377,30 002,331,74 + .000,708,80	- ·102,009,00 + ·042,139,30 - ·003,438,04 + ·012,015,60	+ ·142,812,60 + ·030,099,50 - ·002,814,72 - ·017,846,70
Sum	- •151,569,21	+ .077,834,16	- •322,566,14	+ -250,916,8	097,488,49	+ .030,752,36	- •051,292,14	+ •152,750,68
2 5 6 7 8	- ·105,266,90 0 - ·011,662,20 + ·089,094,94	0 •856,755,80 + •202,939,95 + •002,246,64	254,712,9 348,484,8 + .261,692,7 + .100,588,2	+ ·102,826,40 - ·827,127,80 + ·522,148,50 - ·050,413,24	- ·082,377,30 - ·000,706,80 + ·002,831,74	0 - •109,728,60 + •012,103,95 + •000,136,16	030,099,50 142,812,60 + -017,846,70 + -002,314,72	+ .042,189,30 102,009,00 + .012,015,60 003,489,04
Sum	077,834,16	- •151,569,21	- •250,916,8	322,566,14	030,752,36	- •097,488,49	- •152,750,68	051,292,14
3 5 6 7 8	+ ·026,891,130 0 + ·005,307,720 + ·002,492,245	0 + ·000,165,92 - ·092,862,37 + ·000,143,22	+ .066,365,33 + .088,075,52 119,102,02 + .006,412,35	- ·025,779,28 + ·226,738,72 - ·287,641,10 - ·003,213,77	+ ·008,117,210 0 + ·000,321,680 + ·000,148,645	0 + ·027,782,64 - ·005,508,77 + ·000,008,68	+ ·007,546,15 + ·036,004,24 - ·008,122,42 + ·000,147,56	- ·010,564,61 + ·025,781,60 - ·005,468,56 - ·000,219,17
Sum	+ .034,191,095	002,053,23	+ .041,751,18	039,895,43	+ .008,587,535	+ .022,232,55	+ •035,665,53	+ .009,529,26
4 5 6 7 8	- ·090,165,92 - ·000,143,22 + ·092,362,37	0 + ·026,391,130 + ·002,492,245 + ·005,307,720	- ·226,738,72 + ·025,779,28 + ·003,213,77 + ·237,641,10	+ ·088,075,52 + ·066,365,83 + ·006,412,85 - ·119,102,02	- ·027,782,64 0 - ·000,008,08 + ·005,508,77	0 + .008,117,210 + .000,148.645 + .000,321,680	025,781,60 + -010,564,61 + -000,219,17 + -005,468,56	+ ·086,094,24 + ·007,546,15 + ·000,147,56 - ·008,122,42
Sum	+ .002,053,23	+ .034,191,095	+ • • • • • • • • • • • • • • • • • • •	+ .041,751,18	022,232,55	+ .008,587,535	009,529,26	+ .035,665,53
5 5 6 7 8	+2.548,786,10 0 004,081,44 -2.283,447,70	0 0 + .071,023,24 131,221,20	+6-404,360,10 0 + -001,585,04 -5-875,131,00	-2·487,741,6 0 + ·182,787,2 +2·944,524,2	+ ·783,323,70 0 - ·000,247,36 - ·136,191,70	0 0 + ·004,236,04 - ·007,052,80	+ ·728,215,50 0 + ·006,245,84 - ·135,197,60	-1.019,501,70 0 + .004,205,12 + .200,808,20
Sum	+ .259,256,96	060,197,96	+ .620,814,14	+ .639,519,8	+ •646,884,64	003,716,76	+ .599,263,74	814,488,38
6 5 6 7 8	0 0 + ·131,221,20 - ·071,023,24	0 +2.546,786,10 -2.283,447,70 004,081,44	0 +2·487,741,6 -2·044,524,2 - ·182,797,2	0 +8:404,360,10 -5:75,131,00 + :001,585,04	0 0 + .007,952,80 004,236,04	0 + .783,323,70 136,191,70 000,247,36	0 +1.019,501,70 200,808,20 004,205,12	0 + .728,215,50 135,197,60 + .006,245,84
Sum	+ .060,197,96	+ -259,256,96	- •639,519,8	+ .620,814,14	+ .003,716,76	+ •646,884,64	+ .814,488,38	+ •599,263,74
7 5 6 7 8	+ ·020,005,24 - ·045,198,12	0 643,182,70 + .786,515,77	+ .050,306,84 628,271,20 +1.014,218,42	- ·019,541,44 -1·617,400,70 +2·023,648,10	+ ·006,153,08 - ·002,739,28	- ·197,825,00 + ·046,910,17	+ ·005,720,20 - ·257,471,90 + ·060,166,82	008,008,28 188,908,50 + -046,567,76
Sum	025,192,88	+ •143,333,07	+ •436,254,06	+ •386,700,96	+ .003,413,80	150,915,73	- 182,584,88	- •145,349,02
8 5 6 7	+ •643,182,70	+ ·020,005,24	+1.617,400,70 +.019,541,44	- ·628,271,20 + ·050,306,84	+ .197,825,90	+ ·006,153,08	+ ·183,908,50 + ·008,008,28 0 - ·046,567,76	- ·257,471,90 + ·005,720,20 + ·069,166,89
8	- •786,515,77	045,198,12	-2.023,643,10	+1.014,218,42	046,910,17	- ·002,739,28 + ·003,413,80	+ 145,349,02	- 182,584,8
Sum	- •143,333,07	025,192,88	- •386,700,96	+ •436,254,06	+ •150,915,73	1	1 1 1 1	Coineta ha

15. Values of k_5 , k_6 , k_7 , k_8 given in (15) contain terms in k_4 ... k_{16} of which the coefficients have just been found in table LIX. These are to be substituted in equations 9—16, they do not occur in equations 17 to 20. The formation of the products and the collecting of coefficients is carried out in Table LX. In this the values of $\sum_s K_r$ (s, t) are rewritten with sign changed at the top, kept to six places, while the multiplying coefficients are all shown in the first column. The previously existing

coefficients of k_9 . k_{20} are also included. The complete coefficients of k_9 to k_{20} after including the portions due to substitution of k_5 to k_8 , are shown in Table LX in old face. Thus twelve symmetrical equations relating k_9 to k_{20} have been formed, k_1 to k_8 having been eliminated. The solution of these twelve equations is performed in a manner similar to that employed for the solution of the first eight. The equations are first rearranged in increasing order of the diagonal coefficients, the whole process being given in table LXI. It does not seem likely that a second approximation is necessary in this case, so a verification, as described in § 11, is carried out in table LXII showing the degree of precision with which the last equation of the group of 12 is satisfied for each of the 12 cases.

 $TABLE\ LX.$ Substitution of k_5 — k_8 in equations 9 to 20.

	. 1				7.0	10	14	1 75	10	17 .	18	10	20
r \	t	. 9	10	11	12	18	14	15	16	17 .	10	19	20
5 8 7	$\mathbb{Z}_{\mathbf{s}}\mathbb{K}_{\mathbf{r}}(s,t)$	259,257 060,198 025,193	+ 060,198 - 259,257 - 143,833	620,814 +- 639,520 436,254	639,520 620,814 386,701	646,885 003,717	+ 003,717 - 646,885 + 150,916		+ 814,488 - 599,264 + 145,349				
8		+ 143,333	+ 025,193	+ 386,701	- 436,254	150,916		-145,349					
Equa- tion 9	Multiplier + 6.47 0	- 1.6774 0	+ ·3895 0	- 4·0167	- 4-1377 0	- 4·1858	+ .0240	- 3.8772 0	+ 5.2697				
	- 1 32 - 22 97 (9,t) Sum	- ·0333 - 3·2924 + 9·68 + 4·6770	+ ·1892 - ·5787 0	+ .5759 - 8.8825 +16.81 + 4.4867	+ .5104 +10.0208 -11.33 - 4.9365	+ ·0045 + 3·4665 + 0·28 - 0·4343	- ·1992 + ·0784 0 - ·0968	- ·2410 + 3·3387 + 0·12 - o·6595	- ·1919 - 4·1940 - 0·60 + o·2838	}+ 0.55	0	- 0.27	— 1·66
10	+ 6.47	0 - ·3895	0 - 1.6774	+ 4·1377	0 - 4·0167	- ·0240	0 - 4·1853	0 - 5·2697	- 3·8772				
	+ 22.97 - 1.32 (10,t)	+ ·5787 - ·1892	- 3·2924 - 0333 + 9·68	-10.0208 - 5104 +11.38	- 8.8825 + .5759 +16.81	- ·0784 + ·1992	+ 3.4665 + .0045 + .28	+ 4·1940 + ·1919 + ·60	+ 3.8387 2410 + .12	,			
- 11	Sum	- 4·2181	+ 4.6770	+ 4·9365	+ 4.4867	+ 0.0968 -10.5248	- 0·4343 + ·0605	- 0·2838 - 9·7500	- 0.6595 +18.2517	} °	+ 0.55	+ 1.66	- 0.27
11	+ 16·27 + 6·32 + 29·62 - 59·10	- ·3804 + ·7462 - 8·4710	+ ·9794 - 1·6385 - 4·2455 - 1·4889	+ 4.0418 -12.0218 -22.8510	- 3.9235 - 11.4541 + 25.7826	- ·0235 - ·1011 + 8·9191	- 4.0883 + 4.4701 + .2018	- 5·1476 + 5·4082 + 8·5901	- 3.7873 + 4.3052 -10.7908				
	(11,t) Sum	+16.81	+11.33	+79·30 +37·4654 + 3·9285	0	+ ·61 - 1·1203	- ·28 + ·3640 - ·0235	- ·32 - ·2193 + 3·7878	- 1.44 + 1.5388 - 5.1476	} + 0.48	- 0.31	- o·jī	- 1.36
12	- 6.32 + 16.27 + 59.10 + 29.62	+ 1.6385 9794 + 1.4889 + 4.2455	- ·3804 - 4·2181 - 8·4710 + ·7462	+10.4050 -25.7826 +11.4541	+ 4.0418 -10.1006 -22.8540 -12.9218	+ 4.0883 0605 2018 - 4.4701	-10.5248 + 8.9191 1011	-13.2517	- 9.7500 + 9.5901 + 5.4082				
	(12,t) Sum	-11·33 - 4·9365	+ 16-81	0 0 - 1.2854	+79·30 +37·4654	+ ·28 - o·3640 - 1·2873	+ ·61 - 1·1203	+ 1.44	- ·32 - ·2193 + 1·6208	} + 0.21	+ 0.48	+ 1.36	- 0·7I
13	+ 1.99 0 - 0.08 - 1.87	- ·5159 0 - ·0020 - ·1964	+ ·1198 0 + ·0115 - ·0845	+ ·0849 - ·5298	- ·2726 0 + ·0309 + ·5977	+ ·0003 + ·2068	+ ·0074 0 - ·0121 + ·0047	0 - ·0146 + ·1991	- ·0116 - ·2501	! :			
	(13,t) Sum	+ ·28 - ·4343	+ 0.0968	+ ·61 - 1·1203	+ ·28 - o·3640	+ 8.43 + 2.3497	0	+ 2.13	- 4·28 - 2·9209	} + 0.83	•	+ 0.32	- 1.30
14	+ 1.99	0 - ·1198 + ·0345	- ·5159 - ·1964	+ 1·2726 - ·5977	- 1·2354 - ·5298	- ·0074 - ·0047	+ 0.2068	+ .2501	0 - 1·1925 + ·1991				
	- 0.08 (14,t) Sum	- ·0115 0 - ·0968	- ·0020 + ·2s - ··4343	- ·0309 - ·28 + o·3640	+ ·0349 + ·61 - 1·1203	+ .0121	+ 0003 + 3.43 + 2.3497	+ 4·28 + 2·9209	- ·0146 + 2·13 + 1·1220	}。	+ 0.83	+ 1.20	+ 0.33
15	+ 2·59 + 2·02	- ·4796 - ·1559 + ·0509	+ ·1114 - ·6715 - ·2895	8812	- 1.1831 - 1.6079 7811	- 1·1967 - ·0096 - ·0069	+ .3018	- 2·1095 + ·3688	+ 1.5068 - 1.5521 + .2936				
	- 1.36 (15,t) sum	- ·1949 + ·12 - · · · · · · · · · · · · · · · · · · ·			+ ·5933 + 1·44 - · ·5388	+ 2.13	+ 4.28	+ 8.46 + 5.8084	- ·2483 0	} + 0.01	+ 0.99	+ 1.83	+ 0.38
16	+ 1.85	+ ·6715 - ·1114 + ·0848	- ·4796 - ·1949	+ 1·1831 - ·5933		0046	- 1·1967 + ·2052	- 1.5068 + .2483	- 2·1095 - 1·1086 + ·1977				
	+ 2.02 (16,t) Sum	+ ·2895 - ·60 + o·2839	+ -12	- 1.44	- ·8812 - ·32 - ·1·2192	- 4·28	+ 2.18	0	+ ·3688 + 8·46 + 5·8084	}- 0.99	+ 0.01	- o·38	+ 1.83
17	(17,t)	+ 0.55	.0	+ 0.48	+ 0.31	+ 0.83	•	+ 0.01	- 0.99	+ 2.23		- 0.56	- 4.05
18	3 (18,t)	•	+ 0.55	- 0.31	+ 0.48	•	+ 0.83	+ 0.99	+ 0.01	•	+ 2.23	+ 4.05	- 0.56
16	(19,t)	- 0.27	+ 1.66	- o·71	+ 1.36	+ 0.32	+ 1.30	+ 1.83	- o·38	- 0.56	+ 4.05	+10.06	
20	(20,t)	- 1.66	- 0.37	- 1·36	- 0.71	- 1.30	+ 0.32	+ 0.38	+ 1.83	- 4.05	- 0.56	•	+ 10.06

TABLE LXI.

ion Per	Right					Left	Hand S	ide.					
Equation Number	hand side	k,,	k _{is}	k12	k ₁₄	k _o	k10	k.s	k ₁₆	k ₁₀	kun	k.,	k ₁₉
1	+1·00 +3·77446	+2.23	0	+ ·83 - ·4318	0	+ ·55 - ·01716	0	+ ·01 + ·00188	- •99 + •08799	- ·56 - ·06054	- 4·05 - 2·35406	+ ·48 + ·00226	+ ·21 - ·003034
2 3 4	0 0 3722		+2.23	0 +2·85 - ·309	+ .83	0 - ·43 - ·2047 - ·10	+ ·55 + ·10 - ·43	+ ·99 -1·12 - ·0037 +2·92	+ ·01 -2·92 + ·3685 +1·12	+ 4.05 + .32 + .2084 + 1.20	- ·56 - 1·20 + 1·5074 + ·32	- ·21 - ·12 - ·1787 + ·36	+ ·49 - ·36 - ·0782 - 1·12
5 6 7	0 - ·2466 0 0 0				0	+4·68 - •136	0 0 +4.68	0 66 0025 28 0 +5.81	+ ·28 + ·2442 - ·66 0 0 + ·00444	- ·27 + ·1381 + 1·66 - · · · · · · · · · · · · · · · · · · ·	- 1.66 + .9989 27 27 39 + .38	0 + 4.49 - 1184 + 4.94 0 - 1.22	0 - 4.94 052 + 4.49 0 - 1.54 00094
8 9 10 11 12	0 + *4439 + *2511 0 + 1*816 0 - *2152 - *09417								+5.81	38 2486 +10.96 1406	+ 1.83 - 1.798 0 - 1.017 +10.96 - 7.355	+ 1.54 + 2131 - 2131 + 1205 - 1.86 + 8717 + 87.47 - 1033	- 1·22 + 1·38 + ·0527 - ·71 + ·3814 0 - ·0452 +37·47 - ·0198
13	0	+1·00 +3·77446	+2·23 (1) (2)	0	+ ·83 - ·2801 - ·4318	0	+ ·55 - ·00041 - ·01716	+ •99 + •18603 + •08799	+ ·01 - ·00089 + ·00188	+ 4.05 + .4373 - 2.35406	- •56 - •3255 - •06054	- ·21 - ·00099 - ·003034	+ •48 - •00694 + •00226
14 15 16	- ·3722 0 0 - ·2466	0 0 0 3722		+2.041	0 +2·35 - ·309	- ·6347 - ·10 +4·544	+ ·10 - ·43 - ·2047 0	+1·1163 +2·92 - ·3685 - ·6625	-2.5515 0 +1.12 0037 +.5242	+ ·5284 + 1·20 - · ·5074 - · ·1319	+ ·3074 + ·32 + ·2084 - ·6611	- 1·29×7 - 36 + ·0782 + 4·3716	- ·4382 o + 1·12 . - ·1787 - 4·992
17 18 19 20 21 22 23	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 - 2466 0 - 4439 0 - 004484 0 - 10816 0 + 2511 0 + 09417 0 - 2152					+4-68	- · · · · · · · · · · · · · · · · · · ·	- •66 - •0025 + •00444 - •00414 +5•3705 - •0000	- 1-66 - 1-9089 + 1-8325 - 1-798 6286 0182 + 10-8194 - 7-355	- · · · · · · · · · · · · · · · · · · ·	+ 4.94 + .052 - 1.22215 + .032 + 1.7581 + .00094 5805 + .3814 4883 0527 + 37.8667 0198	+ 4·40 - 1184 - 154094 - 2131 - 1-1268 - 00215 + 1-4127 - 3286 + 1205 - 0452 + 0452 + 0452 + 3338
24	- ·3722 - · · · · · · · · · · · ·	0 + •68875	+1.00	+2·041 (1) (2) (3)	0	- ·6347 + ·01866 - ·01085 - ·10384	+ ·10 - ·00171 - ·00294 + ·00240	+1·1168 + ·20976 + ·09922 - ·38032	-2.5515 + .22678 47945 -2.23044	+ •5284 + •05713 - •30713 - •06626	+ .17868	- 1.2087 00612 01877 + .01375	- ·4382 + ·006332 - ·002064 - ·02312
25 26 27 28 29 30 31 32 33	+ ·0561 - ·2152 - ·2368	- · · · · · · · · · · · · · · · · · · ·	0 0 0 + '311 0 - '049 0 0 - '547 1 0 - '2589 0 - '1506 + '6363 + '2147		+2.041	- ·10 +4·544 - ·1974	- · · · · · · · · · · · · · · · · · · ·	+ 2·5515 - ·6625 + ·3471 - ·5842 - ·547 + 5·58705 - ·6105	+1·1163 - + ·5242 - ·7935 - ·6625 + ·1250 0 +1·3955 +5·3708 -3·190	3074 1310 - + 1643 + - 6611	+ .3843	+ 4382 - 43716 - 439 + 4.992 + 0636 - 1.12895 + 1.75404 - 1.6235 - 2.081 - 3362 - 3541 + 1956 + 87.8469 - 8264	- 1·2987 - 4·992 - '1363 + 4·9718 + '0215 - 1·75404 + '2397 - 1·12895 - '5478 + '541 + '1134 - '2081 + '0660 - '2788 + 37·3469 - '0941
84	- ·68875	- ·3722 -1·0617	+ .0006	+3.81166	+2·041 (1) (2) (3) (4)	- ·10 + ·00294 - ·00171 - ·01636 + ·00240	+ .01866	+2-5515 + ·47945 + ·22678 - ·86930 -2-23044	+ •97584	+ 1786	3 + •30713 8 + •05712 5 - •04096	: + •co633	

TABLE LXI.—(Continued).

a .					Lef	t Hand	Side.	ı		
Equation Number	Bight Hand Side.	k14	k _o	k ₁₀	k ₁₈	k _{te}	k10	k _{so}	k ₁₁	k12
35 36 37 38 39 40 41 42	3628		- •0049	+4·5391 - · ×974	8154 + -1250 8789 + -7935 +4-78 -3-19	+ .0547 5875 + .3471 +1.8955 -1.3955 +2.181 6105	+ ·0824 - ·01506 + ·6852 - ·0956 - ·2545 + ·3843 + ·3843 + ·1681 + 8·3276 - ·0463	5655 + - 2250 14696 + - 1643 + - 4787 6666 + - 4188 289 0796 + 0796 + 1368	+ 3-9677 + -0215 + 5-0556 + 1465 - 141865 - 5478 + 13054 - 1281 + -0660 3454 1134 + 36-5205 0941	- 5·1283 - 4·3881 - 4·393 - 1·51484 + 1·6235 - 1·67/775 - 1·65/4 - 1·126 - 1·126 + 2788 + 2788 + 3.50 - 1.5228 - 2788 - 2788 - 2788 - 2788
48	382301824 + -311 + -049 + -07423 + -710221041	+1·00 +1·43627	+4·3417 (1) (2) (3) (4) (5)	0 0 0 0 0	- ·1904 - ·03578 - ·01692 + ·06487 + ·16644 - ·00408		+ ·01784 + ·00187 - ·01008 - ·00217 - ·001344	5398 31364 05834 04183 00707 02429	- 3-(0402 - 01870) - 05705 - 04225 - 21045 - 1380	5-1019 '07503 '02445 '2730 '05408 '25368
44 45 46 47 48 49 50	+ ·01824 - ·3823 - ·049 + ·311 0 0 0 0 0 0 0 0 0	0 0 0 + •04385 + •04943 0 - •003995 0 + •1242 0 - •9188 0 +1-196		+4-8417	+ ·2146 o + 1·57 - ·00835	0 - •0004 +1•570 - •0106	+ ·5896 - · · 1298 + · · · · · · · · · · · · · · · · · · ·	+ -01734 1819 - 0237 + 1298 - 0267 0 + 00215 + 3-2813 - 0070	+ 5-1010 - 986645 + 1749 - 10016 + 1072 + 1011 - 01503 - 45684 + 36-264 - 3-664	+ 3-50815 - 10818 - 2277 - 10813 - 2866 + 1888 + - 2707 + 11141 - 1450 0 + 4-766 + 3266 - 4-766 - 3206
51	+ ·01824 - ·3623 - ·049 + ·911 - ·07423 - ·12764 + ·1041 + ·71022	0	+1.00	+4-8417 (1) (2) (3) (4) (5) (6)	+ ·2146 + ·04033 + ·01907 - ·07311 - ·1876 + ·0046 - ·01512	- ·03578 - ·16644 + ·06487 - ·01341	- ·31364 - ·06767 + ·04183 - ·00600	+ ·01731 + ·01008 + ·00134 - ·00134 - ·00217 + ·00078 - ·00020	4 *02445 4 *01503 4 ~ *0540 - *27,40 - *1608	+ *0170 + *21045 - *04225 + *1040
52 53 54 54 54 54		+ ·04385 + ·0494 - ·00399 - ·1242 - ·9188 +1·196	0 - '04943 0 + '04385 0 - '1242 0 - '00399 - I'196 0 - '9188		+1.5616 0106	- · · · · · · · · · · · · · · · · · · ·	+ ·1336 - ·0267 + ·1828 + ·0237 + 3·2812 - ·0670	2056 	17-2	- +1185 - 1072 - 1-22705 1 -17-40 + 17-15 - 49.80 - 47-80 + 4-770 + 300-2178 - 3-964
5	8 + 1823 + 0835 - 531 -1.26325 + 29144 + 13785 - 52842 -1.35583				+1·551 (1) (2) (3) (4) (5) (6) (7)	0 0 0 0 0 0	+ ·1039 + ·01123 - ·06036 - ·01303 + ·00809 - ·00119	- 1200 - 0223 + 0100 + 0250 - 0003 + 0023	2 *0181 1 + *0111 + *0882 + *0812	36 • • • • • • • • • • • • • • • • • •
6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ ·0494 - ·0039 - ·0029 + ·1242 + ·0058 - ·9188 + ·0296 + ·196 + ·0089	+ .0033	0 0 - •06703		+ 1.55	1 + ·2065 + 3·2142 - ·0070	+ ·10:80 0 0 + ·0:38 + 3·2142 - ·0275	- ·4/iiii + ·0703 + ·0161	+ ·02110 - ·4668 - ·0420

$TABLE\ LXI$ —(Concluded).

idon ber				~ -		S. J.				Left	Hand	Side.	
Equation number			Righ	t Ha	na i	Side.			k 10	k19	k20	k,,	k12
64	•0885 •13785	+ •1828 + •29144	+ 1·26325 + 1·35583	— •531 — •52842	+ ·0494 + ·10925	+ •04385 + •03326	0	+1.00	+1-551 (x) (2) (3) (4) (5) (6) (7) (8)	+ ·2065 + ·02232 - ·120 - ·0259 + ·01601 - ·00233 - ·0093 - ·00914	+ ·1039 + ·06039 + ·01123 - ·00805 - ·01303 + ·00468 - ·00117 + ·00460 - ·00186	+ ·3157 + ·001487 + ·004562 - ·01666 - ·01099 - ·01543 + ·00825 - ·002772	- 1.0181 + .01515 004936 05529 + .01110 05121 + .03649 00920 0274
65 66 67 68	+ ·3345 + ·∞51 + 1·8513 + ·∞26 - ·0177 + ·∞78 - ·586 - ·026	- 1.8296 0243 + .3518 0122 + .6491 0371 133 + .1231	- ·2184 - ·1681 - ·1834 - ·0847 + ·0502 - ·257 + ·523 + ·853	+ ·1965 + ·0716 - ·4221 + ·0356 - 1·484 + ·108 + ·152 - ·3588	00898 00657 + .18.04 0033 8892 0101 +1.2049 + .0334	- ·1209 - ·00584 - ·01056 - ·00294 - 1·2294 - ·0089 - ·9289 + ·0296	- ·06703 + ·1381 • + ·6754 + ·2034	0 - 1331 0 - 06703 0 - 2034 + 0754		+8·2072 - •0275	+ •01384 - •01384 +8•1867 - •0070	·3986 ·0420 ·1234 ·02116 +25·846 ·0642	+ ±00506 + ±1305 - ±5098 + ±0702 - ±2132 + ±2132 +26±4896 - 7078
69	+ ·8396 + ·34375	-1·8589 -1·8482	— •3985 — •39877	+ •2681 + •24649	- ·0185	- ·12674	- •06708- •0₅68₃	- ·1331	+1.00	+3·1797 (1) (2) (3) (4) (5) (6) (7) (8) (9)	0	- · 4386 - · · · · · · · · · · · · · · · · · · ·	+ · 14456 - · · · · · · · · · · · · · · · · · · ·
70 71 72	+1.8589 0099 +.0468 612 0154	+ ·3396 + ·612 - ·2558 - ·0099 + ·0842	- ·2681 - ·2068 - ·0533 +1·376 + ·0176	- · · 3865 - 1 · 376 + · · 037 - · 2068 - · 0122	+ ·12674 - ·8993 - ·co186 +1·2383 + ·coc6	- ·0135 - 1·2383 - ·0175 - ·8993 + ·00576	+ ·1331 · ·6754 - ·00924 + ·2034 + ·00305	- ·06703 - ·2034 - ·01836 + ·6754 + ·0605	0 0 + ·13795 - ·04545	1	+3·1797 •	·14456 ·0605	- ·4386 0 0 + ·01995 +25·7818 - ·0066
73	+ 1.8539 + 1.8482	+ ·3396 + ·34375	— •2681 — •24649	- ·3865 - ·39 ⁸ 77	+ ·12674 + ·14314	- ·0135 - ·03583	+ •1331	- ·06705		+1.00	+3·1797 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)	14456 	- ·002065 - ·02314 + ·004645 - ·02143 + ·01527 - ·003851 - ·01147 + ·00078
74 75	+ ·0369 + ·0842 - ·6274 + ·2558	+ •3562 + •0154 + •0743 + •0468	- ·2601 - ·0122 + 1·8936 - ·0370	- 1.339 0176 219 0533	- ·90116 + ·00576 +1·2389 + ·0175	- 1.2558 coc6 89354 coc186		- ·0030 + ·6814	- 04545	+ .04545		+25.7213	+ ·01995 - ·01995 +25·7752 - ·0605
76	+ -1211	+ •3716	— ·2723	- 1.3566	- 8954	- 1.2564	+ ·6722	- ·2258	+ ·13798	+ •04545	+1.00	+25.7147	0*
77	- ·3716	+ ·1211	+ 1.3566	- ·2723	+ 1-2564	- ·8954	+ •2258	+ •6722	-·04545 o	+ ·13795	0	•	+25.7147
78	8716	+ •1211	+ 1.3566	- •2723	+ 1.2564	- 8954	+ •2258	+ 6722	- •0454	5 + •13795	0	+ 1.00	+25.7147
		k,,,	k18	k _{ta}	k14	k,	k10	· k ₁₅	k ₁₆	k10	k ₂₀	k ₁₁	k _{in}
	Case I II IV VI VII VIII IX X XI XII	+1.6926	0 1+1-8926	- • 5202 + • 33746 + 1 • 8675	- · 38746 - · 5202 +1·8675	- · 0394 + · 0171 + · 1636 - · 0239 + · 3308		+ ·1879 + ·08888 - ·3407 - ·87417 + ·02144 - ·07044 + ·6713	+ ·8741' - ·3407 + ·0704	- ·58125 7 - ·1254 + ·07752 - ·01127 - ·04502 - ·01787	+ · 58125 + · 1081 - · 07752 - · 1254 + · 04502 - · 01127 + · 04426 - · 01787 0 + · 3153	+ · · · · · · · · · · · · · · · · · · ·	6 - ·0017675 5 + ·0053646

^{*} As the coefficient of k_{12} vanishes no elimination is required, and this equation gives k_{11} direct.

TABLE LXII.

Verification of solution of 12 equations.

+ · 8554460 0 + · 1872720	+ .8124480	2002200	•0708686 •2496960 0	- ·0061740 + ·0082080 - ·0588960	- · 0141120	+ ·0394590 + ·0426624 + ·1226520	+ • 0901920 -	- 2790000	+.0518880	+ · 00098889 + · 00698600 + · 00381240	+ •00226032
+ • 1452360	+ · 5826240 - · 0844740 - · 1820060	- •8081840	+ 1184612	-1.6341520	0	+ ·9790704 - ·1059136 - ·3162756	- 8479736 -	- ∙0556738	2223988		+ ·01186080 - ·24186840 - ·15634180
+ • 1084336	i ∙2292389	+ ·5246780 -1·0664874 - ·1705440	+ •4156540	- • 0859868	- 0261568	-1.0338020 0 0243032	· 8189860 -	+ .0589972		- · 04025560 + · 01071282 + · 00729586	- ·03189080
0	0	1 0	0	0	0	- ·0814246 0 + ·82902407	0	Ō	0	0	- ·00380887 0 +1·45713336
+•0010848	+ • 000 18843	- •ooo6ax88	+ 0004903	+ •0003820	+ .0001141	+ •00114887		-•00034663	+-00009416	+ • 0001 51 56	+ •99989141

16. The residuals in table LXII are sufficiently small. Accordingly the values of $k_9 \ldots k_{20}$ have been found satisfactorily for the 12 latter cases. It remains to find their values for the first 8 cases, and also values of k_1 to k_8 for all cases. In this the work is much simplified by the known symmetry of the solution. The introduction of cases 1 to 8—i.e. giving the R.H.S. of the first 8 equations values $1,0\ldots$, (case 1) $0,1,\ldots$ (case 2) etc. causes the R.H.S. of the latter 12 equations to take the values $-\Sigma^s(s,t)$ _r K_s for case r and equation t, s being taken from 1 to 8: and these quantities accordingly have to be found for each of the cases 1 to 8. Values of these quantities with sign reversed have already been given in table LIX. It is necessary then to combine these cases 9 to 20 in such a way as to give the solution for k_9 to k_{20} for these related cases. For case r the value of k_u is $rk_u = -\Sigma^t t_k k_u \left\{ \Sigma^s(s,t) rK_s \right\}$, t being given all values from 9 to 20: but in fact $\Sigma^s(s,t)$ _r K_s vanishes for values of t above 16. The process is carried out in table LXIII.

The next step is to find tk_u for values of t and u from 1 to 8. Having found values of tk_u , for all values of u and values of t from 9 to 20, it is possible to write down values of t by symmetry. Equation (15) then enables the remaining quantities to be found as is done in table LXIV. The symmetry occurring largely simplifies the process while still affording a check.

This leads up to the solution of the combined 20 equations for all the 20 fundamental cases. The results of the solution, compiled from tables LXI, LXIII, LXIV, are given in table LXV. The solution of these 20 equations enables the probable errors of the N.W. Quadrilateral after adjustment of circuit conditions only, to be written down. By the incorporation of the next three equations, corresponding results can be given for the case when circuits and base line closures have been made (the actual adjustment carried out). Finally by incorporation of the last three equations the corresponding results obtainable if Laplace closures were introduced at each extra base can be given. Accordingly before giving the application of table LXV, the further solution of 23 and 26 equations will be carried out.

17. In table LXV are also shown certain multipliers. They are the coefficients of k_{21} , k_{22} , k_{23} in table XLVII. It is necessary to find k_u in terms of k_{21} , k_{22} , k_{23} , for all values of u between 1 and 20 by means of (15), with a view to substituting in equations 21, 22, 23. For this values of $\sum_{s} k_r$ (s,t) are required, where ${}_{s}k_{r}$ are the values given in table LXV and t has values 21, 22, 23, so that (s,t) are the multipliers just alluded to. Each of these products ${}_{s}k_{r}$ (s,t) are given in table LXVI, and their sums $\sum_{s} k_{r}$ (s,t) for values of s from 1 to 20, the latter in old face type. These are the coefficients of $-k_{n}$ in the expressions for k_{1} k_{20} as found from the first 20 equations. These quantities have to be substituted in equations 21, 22, 23, and accordingly multiplied by the respective coefficients. The process is carried out in table LXVII, where the coefficients of the three equations giving k_{21} , k_{22} , k_{23} , are formed. The process has been carried out with full accuracy to illustrate the complete symmetry of the resulting equations. The solution of these equations is very simple and is given in table LXVIII, with verification at the foot of the table.

TABLE LXIII.

	- 00068 - 00088 - 00088 - 0088 - ---	---
16 16 16 16 16 16 16 16 16 16	+ 00157 - 06808 - 06809 - 06809 - 06809 - 06809 - 06809 - 06809 - 06809 - 06809 - 06829 - 06829	
25.25.25.25.25.25.25.25.25.25.25.25.25.2	00017 01488 00287 00287 00087 00087 00088 00089 00089	
4	·) ++ + ++ + +	
1146 1146 1146 1147 1147 1147 1147 1147	.00067 .00028 .00028 .00028 .00028 .00048 .00108 .00108 .00108 .00108	
	1 +1+1 +1++ 1+1+	
1046 1046 1046 1046 1046 1047 1047 1047 1047 1047 1047 1047 1048 1047 1047 1047 1047 1047 1047 1047 1047	.00278 .00278 .00048 .00078 .00078 .00078 .00028	
1 1 1 1 1 1 1 1 1 1		
13 13 14 10 10 10 10 10 10 10 10 10 10 10 10 10	00000 000118 00070 00070 00018 000174 00028 00038 00038	
13 14 15 16 17 18 18 18 18 18 18 18 18 18 18	+ ++++ ++	
202 202 202 202 202 202 202 202 202 202	.00023 .0028 .0028 .0028 .0028 .0009 .00013 .00013 .0007	
]	+ + + + + +	
10 10 10 10 10 10 10 10 10 10	00164 00167 001187 001187 000118 00017 0008 00088 00088 00088 00088	
4000 0004 4004 6046 6460 8659 8645 8645 8684 8686 108	+ ++ + + ++	
9 9 9 9 1000000000000000000000000000000	.00003 .00283 .00088 .00088 .00182 .00183 .001167 .001167 .001163 .001163	
	+ ++11 ++11 11++	
	8	
Columns 17 to 20 comprise only zeros Ex., to Kan are not required = + .0022 = + .0023	+ .00286 + .00286 00018 00018 00018 -	
16 16 28 28 28 28 28 28 28 28 28 28 28 28 28		
	0 45 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
16 16 16 16 16 16 16 16 16 16 16 16 16 1	00045 000134 00003 00001 00007 00777 00717 00128 00124 00124 0024 0024 0024 0024 0024 00	
14 15 16 17 17 17 17 17 17 17	++ + + + + + + + + + + + + + + + + +	
-1 1		
	00160 + .00160 + .00160 + .00160 + .00170 + .00171 + .00171 + .00170 + .001707 + .001707 + .001707 + .001707 + .001707 + .001700 + .00140	
13 13 13 13 13 13 13 13 13 13		
25 26 26 26 26 26 26 26 26 26 26 26 26 26	555555 555555 555555 555555 5555 55	
	205 206 206 207 207 207 207 207 207 207 207 207 207	
11 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16	+ 10.00 - 11++ +1+1 - 10.00 - 11++ +1+1 - 10.00 - 10	
252 252 252 252 252 252 252 252 252 252	.00128002710027100271005280000700011900007000080000800000500000050000000500000500000500000050000000500000050000000000	
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	• + + ++ ++ + +	
9 11516 1052 1052 1052 1052 1052 1052 1052 1052	00499 000741 000167 00128 00128 00028 00128 00028 00028 00028 00028 00058	
	1 ++11 11++ ++11 11++	
$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$		
## 1 1 1 1 1 + + + 1 + 1 + 1 + 1 + 1 + 1		
++1111++ + 1++1+1+1+ ++11 11++ ++11	· 日本34 万日78 1834 万日78	

10

2

8

5

6

9

+·1516 +·0778 -·0342

-- 0021

-- 2593

-- 0602 +-0252

+ .1193

1.0997

+·0424 -·0102

+.0002

-- . T KAR

-- 1172 +- 0146 -- 0023

10

-.0775

+ ·1516 + ·0021 - ·0342

+ ·0602 - ·2593 - ·1433

+ .0259

- .0494

+ .0337

+ ·1172 - ·1568 + ·0023 + ·0146

TABLE LXIV. 11 12 13 14 15 16 + · 3226 + · 2509 - · 0418 +·0513 +·1528 - . 2509 ± •0075 -- 0206 - .1528 + · 8226 + · 0399 - · 0418 + .0513 + .0975 - •0036 - .0357 -.0222--0399 --0086 +.0095 -- 0357 Σ^* , K_* (s,t) from + ·8145 - · ·5993 + · 1453 + · 1826 + · 0037 - · 6469 + · 1509 - · 0034 __ . 6909 -- 6895 RARO __ . K003 table LIX. + 6395 - · 0037 - .8145 - 6208 + ·1826 - ·1453 - . 3867 - 1509 + · 0144 - · 0028 - · 0001 + · 0010 ·0023 + · 0373 + · 0811 - · 0152 + ·0431 + ·0072 - ·0032 0072 +·0144 -·0010 -·0001 +·0378 --·0041 --·0152 + .0431 + .0073 +.0041 -.0032 tKu or uKt - · 0342 - · 0579 + · 0579 - · 0342 - · 0153 - · 0052 + · 0052 - · 0153 + · 3090 - · 3600 + · 0758 + · 0433 •3600 -2168 -0482 - .2168 - - 3090 +·0482 -·0123 + ·0433 - ·0758 -- 0356 rKu from LVIII. tKu Zs rKs (s,t) $\begin{array}{c} | + \cdot 00511 | + \cdot 00330 | + \cdot 00464 | - \cdot 00058 | + \cdot 00364 | + \cdot 00250 | + \cdot 00221 | + \cdot 00110 | + 1 \cdot 13250 | = +1 \cdot 15442 \\ + \cdot 00262 | - \cdot 00643 | + \cdot 00371 | + \cdot 00074 | + \cdot 00115 | - \cdot 00791 | + \cdot 00658 | - \cdot 00057 | + \cdot 00001 | 0 \\ - \cdot 00115 | - \cdot 00009 | - \cdot 00060 | + \cdot 00009 | - \cdot 00032 | + \cdot 00180 | - \cdot 00154 | + \cdot 00077 | - \cdot 06144 | = - \cdot 06318 \\ - \cdot 00007 | + \cdot 00145 | - \cdot 00057 | - \cdot 00010 | + \cdot 00083 | + \cdot 00070 | + \cdot 00041 | + \cdot 00026 | + \cdot 28814 | = + \cdot 29104 \\ \end{array}$ $\begin{array}{c} -.00874 -.00255 -.00894 -.00147 -.02418 -.00030 -.02582 -.00586 -.05514 = -.13294 \\ -.00203 +.01100 +.00921 -.00143 -.00014 +.05247 -.03510 +.00431 +.01027 = +.05454 \\ +.00085 +.00608 -.00628 -.00628 -.00089 -.00013 -.00124 +.0787 -.00105 -.00170 = -.00748 \\ +.00488 -.00107 +.00567 -.00100 -.00568 +.00028 -.00628 -.0023 -.00182 -.00182 \\ -.00107 -.0$ $\begin{array}{l} + \cdot 00642 \\ + \cdot 00390 \\ + \cdot 00511 \\ - \cdot 00044 \\ + \cdot 00090 \\ - \cdot 00118 \\ + \cdot 00000 \\ - \cdot 00118 \\ - \cdot 00000 \\ - \cdot 00118 \\ - \cdot 00000 \\ - \cdot 00118 \\ - \cdot 00000 \\ - \cdot 00110 \\ - \cdot 00000 \\ - \cdot 00110 \\ - \cdot 00000$ $\begin{array}{c} - \cdot 00155 \\ - \cdot 00090 \\ - \cdot 00090 \\ - \cdot 00000 \\$ =-.06318 $= + \cdot 10227$ $\begin{array}{l} + \cdot 00265 \\ - \cdot 00001 \\ + \cdot 00002 \\ - \cdot 00003 \\ - \cdot 00008 \\ - \cdot 00008 \\ - \cdot 00008 \\ - \cdot 00008 \\ - \cdot 00008 \\ - \cdot 00008 \\ - \cdot 00005 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00010 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00010 \\ - \cdot 00001 \\$ = + .01322= + ·02484 = - ·00604 + .00003 + .00079 + .00032 + .00003 + .00040 + .00047 + .00037 + .00049 + .28814 =+ ·29104 =- ·06318

The same numbers occur as for u = 3, differently arranged.

 $\begin{array}{c} - \cdot 02377 \\ - \cdot 01220 \\ + \cdot 01777 \\ - \cdot 00858 \\ - \cdot 01367 \\ - \cdot 010220 \\ + \cdot 00033 \\ - \cdot 00401 \\ + \cdot 00138 \\ + \cdot 00138 \\ - \cdot 00242 \\ - \cdot 00800 \\ - \cdot 00242 \\ - \cdot 00800 \\ - \cdot 00242 \\ - \cdot 00800 \\ - \cdot 00242 \\ - \cdot 00800 \\ - \cdot 00266 \\ - \cdot 00200 \\ - \cdot 00266 \\ - \cdot 00200 \\ - \cdot 00122 \\ - \cdot 00304 \\ - \cdot 00122 \\ - \cdot 00304 \\ - \cdot 00242 \\ - \cdot 00304 \\ - \cdot 00242 \\ - \cdot 00304 \\ - \cdot 00266 \\ - \cdot 00206$

The same numbers occur as for u = 5, differently arranged.

 $\begin{array}{l} + \cdot 00221 \\ + \cdot 0114 \\ + \cdot 00035 \\ - \cdot 00084 \\ - \cdot 00084 \\ - \cdot 00061 \\ - \cdot 00084 \\ - \cdot 00021 \\ - \cdot 00037 \\ - \cdot 00168 \\ - \cdot 00065 \\ - \cdot 00065 \\ - \cdot 00008 \\ - \cdot 00008 \\ - \cdot 00008 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00001 \\ - \cdot 00010 \\$

 $\begin{array}{c} -0.0379 \\ -0.00839 \\ -0.00681 \\ -0.00681 \\ -0.00691 \\ -0.00831 \\ -0.00831 \\ -0.00831 \\ -0.00831 \\ -0.00831 \\ -0.00831 \\ -0.0021 \\ -0.0021 \\ -0.0021 \\ -0.0021 \\ -0.0021 \\ -0.00221 \\$

The same numbers occur as for u = 7, differently arranged.

·00379 + ·00014 + ·00950 + ·00833

 $\begin{array}{l} + \cdot 04065 \\ + \cdot 00706 \\ + \cdot 03040 \\ - \cdot 03040 \\ - \cdot 01680 \\ - \cdot 01680 \\ - \cdot 01680 \\ - \cdot 01822 \\ + \cdot 01682 \\ - \cdot 01822 \\$

=+·10227

=-.02481 =+.01322 =-.00024 = - ·00604

=-·13294 = -.05454= +.01322= -.02481

=+.82433

=+.02091 =+·16791

=+.05454 = - ·13294 = + ·02484 = + ·01325

= + .82433 = - ·16791 = + ·02091

= - · 00748 = + · 01346 = - · 00604 =-.00024

=+.02091 =+.05717 =-.01948 =-.00748 =+.00025

=-·00604 = 4 · 1670K $= + \cdot 02092$ 0 =+•05717

- · 00700 + · 00309 - · 00880 + · 09941

TABLE LXV.

Values of .k. for 20 conditions.

1	v a	lues o	f skr f	or 20	conar	nons.
æ	k28	0000	0000	+ 11 & %	0000	.16 + .70 0 0 .0263 .02 - 1.17
Multipliers	K ₂₃	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0000	¥, 50	ដ់ំំំំំំំំំំំំ
Ma	K21	+2·19 + 0 + 1·86 + -6·62 -	+ +1	0000	COCO	0000
-		4579 4579 4 + 1	85 (4 85 85	527778	2752	125 530 530
<u>۽</u> 	€ 	75000+ 00679 00689 00089	00838 +-0540× 01330 +-0693	01127 + -04502 0450201127 00536 + -00177 00177 + -00536	07762 12544 +-04426 01757	+ 58125 + 10310 + 31530
۽	a.	08316 - 00479 + 00824 + 2·19 + 01507 - 00828 + 0.00429 + 0.00283 + 0.00429 + 0.0028 + 0.0042 + 0.0042 - 6·62 - 0.0063 + 0.0042 - 6·62 - 0.0063 + 0.0042 - 6·62 - 0.0063 + 0.0042 - 6·62 - 0.0063 + 0.0042 - 6·62 - 0.0063 + 0.0042 - 6·62 - 0.0063 + 0.0042 + 0.0062 + 0.0042 + 0.0062 + 0.0042 + 0.0062 + 0.0042 + 0.0062 + 0	13870 + .0540800838 -16319 + .00838 + .05408 -03963 + .0069301830 -02259 + .01830 + .00693	$\begin{array}{c} -01710 \\ -02940 \\ -01450 \\ -01445 \\ -00177 \\ -00177 \\ -00037 \\ \end{array}$	-33746 12540 07753 -52120 +- 07752 12540 -05-8 01787 +- 04426 -16730 04426 01757	938: 0 + 10810 + 58125 0 +1.4923: -58125 + 10810 6810 - 58125 + 31530 6125 + 10810 0 + 31330
_		-08316 -01507 -00263 +	-13870 + -16319 + -03963 + -02250 +	-01710 -02940 -01445 -01445	33746 - 52021 + 05-8- 16790 -	0 + 455 - 4518 + 125 +
	_					+1.m +
2 €	;	.01607 -03316 -00628 + 00263 +	.16819 - .13870 + .02250 - .03963 -	-02940 + -01710 - -00471 + -01445 +	+ 1925 + 1975 + 1975 + 1988 + 4988 +	1.692% 0 + 1.0810 0 + 1.692% - 55125 1.1630 - 55125 + 51530 1.56125 + 10510 0
	-	00723 - 04308 - 00730 + 00324 -				++ + 5888
18	_			++ +	+-97417 34170 1 0 +-67136	1+1-
15	,	-03108 + .043080072303725 + .00723 + .043080032400730 + .01518 + .0073000519 + .007300052400730005240073000524007300052400730005240073000524007300052400730005240073000524007300052400730005240073000524007300052400730007300073000730007300072000	.308962167604831 .360u3 + .0483121676 .0757701234 + .08561 .043340856101234	-02305 + -02134 + -07044 -16380	. 557.50 0 5407.0 +. 67417 547.0 57417 547.0 57417 547.0 0 +. 57417 547.0 0 +. 57417 547.0 0 +. 67130	-82746 + 18720 - 05883 + 1-89384 0 6-5-2746 + 18720 10-5-2721 + 1-89241 10-5-2721 10-5
_		3725 + + + + + + + + + + + + + + + + + + +	30896 36002 + 07577 01334	++++	98750 -98750 -87417 -34670	7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55
14		1+11			+ 1 1 12 12 14	11+1
13		.03725 .08103 +- .01519	.86062 + .86896 - .04334 + .07577	.02398 + .016590165905276	- 57475 4 - 34670 74475	-5000
<u> </u>		++++ 1380 13 +++	1 +	+ 6889.+ + 03489 + 03489.+	200 ±1 100 ±1 11 ±1	1+11
13		++!!			+ + + & \$ \$ \$ \$	1+1+
Ħ	.	$\begin{array}{c}00749 \\00744 \\0034 \\00034 \\000025 \\000025 \\0000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\0000025 \\0000025 \\0000025 \\000025 \\000025 \\000025 \\000025 \\000025 \\000$	$\begin{array}{c} +.02001 +.16791 &16634 +.11729 &05422 &05785 \\10701 + 02001 &11729 &16634 +.0525 &06222 \\ +.05717 &01456 +.00227 &01629 &01629 \\0717 &02257 +.01456 +.00620 &01529 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{lll} + 0.4391 & -0.7577 + 0.0391 + 0.2393 & -0.059 + 0.6279 + 1.55750 \\ + 0.7277 + 0.0331 & -0.2359 & -0.0259 \\ -0.2377 + 0.0331 & -0.2359 & -0.0391 \\ -0.1394 & -0.0351 + 0.0214 & -0.0704 + 0.02014 + 0.0575 \\ + 0.551 & -0.0251 + 0.02014 + 0.0214 & -0.0575 + 0.05014 \\ + 0.551 & -0.0251 + 0.02014 + 0.0214 & -0.0575 \end{array}$	$\begin{array}{l}0220 + .03063024001710 + .04710145 - \\03680225 + .04700290 + .0145 + .0471 + \\ +.0083 + .013901270462 + .06580077 - \\0130 + .0663 + .01590117 + .06380077 + .01390077 + .00590077 + .005900770077 + .00$
	_	04238 + + .03369 - 0*1021 -	1723 5634 + 1436 +	08 4 3 1 +	1+1	+ + + + + + + + + + + + + + + + + + +
_		00000 +	++++	გიატ +∣ ლინ	++ + 	1111
G	,	++1+	- 156 - 1173 0335 - 0335	95970 + 28750 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	- 029 - 017 - 0112 - 015
- 65	,	0074901346 + .03869 + .0134600748 + .01238 00604 + .0002401022 0002400604 + .00021	+.16791 +.02091 0 +.05717	00227 + -33080 0 +-01459 0 + -23080 +-00520 (63482 04586 01525 + -04586 (63482	67577 64331 68561	02250 +-039050394001710 0356512251 +-01710042940 +-0038 +-013590112704502 01230 +-00603 +-0154201127
		348 348 344 344 344 344 344 344 344 344	+.02091 +.16791 16791 +.02091 +.05717 0	+ ·01456 - ·00227 + ·00227 + ·01458 - ·01528 + ·00520 - · ·0520 - ·01528	# I I + I I	+ 1 + +
4	_					
9	,	413294 + .05454 80546413294 + .01322 + .02484 702494 + .01322	+ ·82433 - · ·16791 + · 02091	1568411723 +-1172315684 08422 +-05785 (678503422	30396 36002 +-04521 21676	13870 16319 00938 05408
- 9	_	3294 + 5454 + 1322 + 2494 +	2433 0 9091 5791 1	2684 7885 7885 1	3005 596 1 + 1 1878	\$10 \$70 \$408 \$408 \$408
		1 +	# ++ # ++	1+11	1+11 9999	+ +
4	١	$\begin{array}{c}06318 \\29104 \\29104 \\10327 \\10327 \\10327 \\02494 \\ +.10327 \\02494 \\ +.01327 \\02494 \\01327 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\02494 \\01322 \\$	$\begin{array}{c} .06454 \\ -0.0329 \\ -0.0349 \\ -0.0004 \\ -0.0004 \\ -0.0002 \\ -0.0002 \\ -0.0002 \\ -0.0002 \\ -0.00002 \\ -0.$	$\begin{array}{lll} \cdot 04238 & \cdot \cdot 01022 + \cdot 00021 & \cdot \cdot 15634 - \cdot \cdot 11723 \\ \cdot 05380 & \cdot \cdot 00021 - \cdot 01022 + \cdot 11723 - \cdot 15684 \\ \cdot 05390 & \cdot \cdot 00021 - \cdot 01022 + \cdot \cdot 11723 - \cdot \cdot 15685 \\ \cdot 05430 & \cdot \cdot 00013 + \cdot \cdot 00013 - \cdot \cdot 05755 - \cdot \cdot 03422 \\ \cdot 01438 & \cdot \cdot \cdot 00000001 - \cdot \cdot 00013 - \cdot \cdot 05755 - \cdot \cdot 03422 \end{array}$	$\begin{array}{l} -03108 \\ -001519 \\ +00430 \\ -00723 \\ -000324 \\ +00730 \\ -00324 \\ -00$	$\begin{array}{l} .03316 + .00628002:8 + .16319 + .18570 \\ .01607 + .00208 + .0025918570 + .18519 \\ .00834 + .0004200083 + .05408 + .00380 \\ .00479 + .0004200048 + .00048 + .00380 \end{array}$
65	_	29104 29104 10227 0	01322 02481 00604 00024	00021	01519 0408 0324 0730	00.263 00.263 00.063 1
	_	1 +	44.48.48.44.44.44.44.44.44.44.44.44.44.4	1111 8888	1111	++++
•	·	+1.15428				$\begin{array}{lll} 0.0507 & -0.0316 + 0.0033 - 0.0023 + 0.0319 + 0.15570 \\ -0.0516 - 0.0507 + 0.0030 + 0.025 + 0.15570 + 0.031 \\ -0.0479 - 0.0634 + 0.0042 - 0.0051 + 0.0468 + 0.035 \\ -0.0834 - 0.0042 + 0.0045 + 0.0045 + 0.0368 + 0.035 \\ \end{array}$
	_	+1.15442 0 06318 +.29104	-13294 -06454 -00748 +- -01346	.08369 + .04238 + .01436 - .00230 +	.03725 + .08108 + .04303 + .00723 +	.01507 .0316 - .00479 - .00824 -
	ٰ ا		1+11	+1++	+1+1	1+1+
سے	H	H 67 60 4 7	8490	821g	15 14 16 16	13 18 18 18 18

 $TABLE\ LXVI$. Values of k_r (s,t) and $\Sigma^s k_r$ (s,t), s from 1 to 20, the latter in old face type.

										_	
	%	+ 0180456 + 0011718 - 0027804	+.0164370	+ .0034608 + .0001386 0000756 0025978	0013300 0008316 0263568 +-0066390	+ .0017870 + .098/0000 0063060	+.0675276	+ 0306130 - 0016638 - 0036448	+ ·4068750 0 3689010	+ :0632790	7.
	19	$\begin{array}{l}0104901 +.0180456 \\ +.0007812 +.0011718 \\ +.00417060027804 \end{array}$	0055383		+ .0006930 0015960 0426360 0026605	+ .0044280 + .0017870 + .0172960 + .0980000 + .0083060 00083060	0032327	0076636 0050884 +0012036	$\begin{array}{c} + .0756700 \\1986390 \\ 0 \\3689010 \end{array}$	-1344674	XVII
	8	$\begin{array}{l} \cdot 0390033 + \cdot 0726204 - \cdot 0104001 + \cdot 0180456 \\ \cdot 0116808 + \cdot 0048918 + \cdot 0007812 + \cdot 0017718 \\ \cdot 0174106 - \cdot 0415736 + \cdot 0041706 - \cdot 0027804 \end{array}$	·0039119 + ·0359386 - ·0055383 + ·0164370	$.006329_4 + 0.1987^2 = -0.001118 + 0.004508 \\ -0.013816 + 0.006786 + 0.000924 + 0.001384 \\ -0.0013734 - 0.011394 + 0.001134 - 0.000786 \\ -0.008289 - 0.428970 + 0.167648 - 0.025978$	$\begin{array}{l} \textbf{.0022500} - \textbf{.0039630} \\ \textbf{.0047556} + \textbf{.0037000} - \textbf{.0015960} \\ \textbf{.1768890} + \textbf{.1147384} - \textbf{.0426860} \\ \textbf{.0231850} + \textbf{.0133320} - \textbf{.0026605} \end{array}$	0187900 + -0044360 + -0017870 0 + -0172960 + -0980000 0116250 + -0068060 00021620 00063060	1606669 + 0646068 - 0032327 + 0675276	$\begin{array}{l} \cdot 0.199920 + \cdot 0.116280 - \cdot 0.0766384 + \cdot 0.016638 \\ \cdot 0.044274 - \cdot 0.135630 - \cdot 0.056884 - \cdot 0.016638 \\ \cdot 0.998260 - \cdot 0.032028 + \cdot 0.012036 - \cdot 0.056448 \end{array}$	0 + ·3661875 1264770	+.2345527	TABLE LXVIII
ľ	12				.0022500 .0047556 .1768680 .0281850	.008889 .2708160 .002162n .0116250	1606669		-1-1848200 -0681030 -6800625	- 4220611	r A B I
ŀ	16	$\begin{array}{l} +.073781110928122] +.0814484 +.0050370 +.08157751775659 +.08454590156308 \\0190082]00039060002418001785602883300755160062840135789 + \\0013802 +.00765640063523 +.00089050286772 +.10065780468280 +.0214488 + \\ \end{array}$	- 0255464 + .0248514 + .0041120 + .02644690845590 + .03999280079629	$\begin{array}{l} + \cdot 1222388 - \cdot 0558349 + \cdot 025968 - \cdot 0051146 - \cdot 0765534 + \cdot 0141488 - \cdot 0177986 - \cdot 0000402 + \cdot 0166401 - \cdot 024646 - \cdot 0101416 - \cdot 0766534 + \cdot 0141488 - \cdot 0177886 - \cdot 0000468 - \cdot 0000128 + \cdot 0164418 - \cdot 0768688 - \cdot 076128 - \cdot 0761286 - \cdot 0700128 + \cdot 0764211 - \cdot 0763784 - \cdot 0701344 + \cdot 0701670 - \cdot 070128 - \cdot 0701670 - \cdot 0701670 - \cdot 0701670 - \cdot 0701670 - \cdot 0701670 - \cdot 070170 - \cdot 0701670 - \cdot $	+ 00757700912840 + -008561006052008 + -0042732 + -00148081158880 + -29721781311255 + 1008950	0671300 + 0142208 + 0008852 + +.0003574 -	39001 + 10172774 + 10109378 + 10108471 - 10049066 - 1015549 + 13256310 - 10810495 - 10344112 + 19013765 +	+ 1112480 - 1015064 + 1045782 + 10478892 - 10089546 + 10089546 - 10485716 + 1085532 - 10855768 + 10077752 + 10058708 + 10077752 + 10	0622160 +1·1848200 +-0278836 0681030 +-0209079 6800625	32441+10152127+1582967+10991845 -10623840 -1084915 -1091138-10978524+10750411+10249529+14220611+12345527-1344674+10532790	
ľ	15	- 0488260 - 0488260	F-0399928	+ 0180936 - 0007128 - 0013140 - 0671956	0012340 +-0035610 +-0042732 +-0014808 1158380 +-2972178 +-1006950	00671300 +-08006400142208 00085740008852 0008852 +-0008574	0344112	$\begin{array}{llllllllllllllllllllllllllllllllllll$	+ ·1815800 - ·0622160 + ·0112581 + ·0278888 - ·0517842 + ·0209079	+.0750411	
	14	$\begin{array}{l}1775652 \\0075516 \\0075516 \\0469264 \\ +.1005578 \\0469260 \end{array}$	- 0845590	$\begin{array}{llllllllllllllllllllllllllllllllllll$	+ .0075770 0052008 0 1311255	+ 0530700 - 0539936 + 0015504 + 0025080	- 0810495	+ 0495944 + 0495944 + 0072012	$\begin{array}{l}010115096414002862220 +.1815300 \\ +.0011151 +.07900200488376 +.011281 \\0062712 +.0900864 +.14671800817842 \end{array}$	0978524	
ľ	13	- 0815775 - 0289534 - 0268772	1.0264469	+ 0156450 - 0083418 - 0007308 - 1116062	$\begin{array}{l} +.0014569 +.002370 0015290 0002300 +.045940 +.0076770 \\ +.006724 0017242 000240 +.006240 +.006240 0022008 \\ +.006724 +.0061589 +.0068168 +.0068009 0017884 +.024660 0 \\ +.0082160 0105690 +.0069021 +.00013170 0511050 1311255 \\ \end{array}$	$\begin{array}{l}00704400021440 +.000578000261400674170 +.0940700 \\00470400027809 +.000758600231200693820006289830 \\00022540006904 +.000107200000340025080 +.0015094 \\0009004 +.000225400003540001072 +.0015504 +.0025080 \end{array}$	+ 3256310	+ · · · · · · · · · · · · · · · · · · ·	$\begin{array}{l}0101150 \\ +.0011151 \\ +.0062712 \\ +.0062712 \\ +.0006884 \\ +.1467180 \\ \end{array}$	-1001138	
	21	$\begin{array}{l} +.0737811 0981122 +.0314484 +.0050370 +.0815775 \\0190082000890600024180017856028834 \\0013902 +.06765640068552 +.00089030208772 \end{array}$	F-0041130	+ .0009680 0002112 + .000234 0179335	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0028140 0028120 0000854 0001072	0016549	+ 0332248	- · · · · · · · · · · · · · · · · · · ·	0084915	
	#	- 0314484 - 0002418 - 0063552	F-0248514	-0060313 -0040286 -001728 -0106062	0015280 0006240 0086606 0089210	+ .0008780 + .0007536 0001072 0000354	9906100	0236776 0365566 0	+ 0032970		
İ	2	- 0028122 - 0003906 - 0676564	- 0255464	0177996 0000462 0018396 0363413	+-0002270 0017472 0081532 0105680	- 0021440 - 0027360 - 0009004 - 0002254	+ · oro8471		0119700 +-0283626 +-0131859	+.0991845	
	6	+ •0737811 - •0190092 - •0013902	+.0533817	+ 0141498 - 0022484 - 0000878	$\begin{array}{c} 0 \\ -0.06804 + 0.014560 + -0.002270 - 0.0183800.006300 \\ -0.068064 + -0.0027240.0124220.006246 + -0.018386 \\ -0.027618 + -0.0578240.0615820.0086006 + -0.0179834 \\ -0.053415 + -0.06321600.1058600 + -0.0690120 + -0.013170 \end{array}$		+ 0109378	$\begin{array}{c} 099008 - \cdot 0015436 + \cdot 2249440 & 0 \\ 143632 - \cdot 0048880 + \cdot 0227308 + \cdot 0459284 \\ 35360 + \cdot 01 \cdot 3904 - \cdot 0332248 + \cdot 0236776 \end{array}$	$\begin{array}{c} 57500 \\ + .0277410 \\0083790 \\ + .00710v1 \\ + .0283626 \\0083708 \\0081081 \\0081081 \\0081081 \\0081081 \\0081081 \\0081081 \\0081081 \\0081081 \\0080709 \\0081081 \\$	+ 1582967	II.
	o	$\begin{array}{c} 63812 - \cdot 0294774 + \cdot 0737811 \\ 12344 + \cdot 0004464 - \cdot 0190092 \\ 15888 + \cdot 0399848 - \cdot 0013902 \end{array}$	60268 + 0109538 + 0533817	0056533 +-0000528 +-0010872 +-0520521	0 0068604 0257618 0053415	65610 + .0012340 65000 + .0063408 01388 + .006560 028600001388	+.0172774		+ ·0277410 - ·0/93790 - ·0081081	+.0152127	LXVII
	~	63812 12344 15888	8920920-		+ .0057170 + .0147356 0018510	0035810 0035000 +-0001386 +-0002660	+.0139001	+ · · · · · · · · · · · · · · · · · · ·	0157500 0048659 +-0155610	+ .023245T	TE
İ	80	$\begin{array}{c} + \cdot 6878776 - \cdot 8911886 + \cdot 1194486 - \cdot 01 \\ 0 + \cdot 0245892 + \cdot 0462024 - \cdot 01 \\ - \cdot 6770274 + \cdot 1644408 - \cdot 0875164 + \cdot 00 \end{array}$	+ 0781286	+ 00229068 + 0054648 - 0023796		+-02167600055610 +-02219200056000 +-0001676 +-0001386 0010816 +-0002660	- 0481691	- 0797164 - 0543790 + 0232696	+ 09709^0 0052794 0632736	-0822888	TABL
	70	2911386 + -0245892 + -1644408	-1021086	+ .2555428	+ .0020910 0201492 1224068 0825140	+ .0048210 + .0261114 + .0010816 + .001676	+-0662887	- 1066512 + 0821668 + 0893380	+ 1142330 - 0340704 + 0098046	+ 0548208	
	4	+-6878776	8049660-	+ 1222308 0 0 0184086 0077004	- 0000240 + 0007248 + 0013804 + 0010950	+ .0003240 + .0048210 0004208 + .0261114 0000126 + .0010816 0000084 + .0001676	 +•0991862	+ 0001428 - 0009024 + 0000884		1909200-	
	တ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ .0518580	- 0285356 + 0224994 0 + 0040982		+ .0007300 + .0010048 + .0000084	0044908	0069496 +-0001222 +-0006528	+ · 0043960 - · 0002646 - · 0007371	0027803	
	63	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ .4839802 - 1230828 + .051858003964981021086 + .078128602	-4848564 0 - 02865366 + 1222388 - 0568848 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\frac{-0007289}{-00004289} - \frac{-0043080}{-0000428} + \frac{-0007320}{-0000428} + \frac{-0016210}{-0000428} + \frac{-0016210}{-0000428} + \frac{-0070440}{-0000428} - \frac{-0021440}{-0000428} + \frac{-00070440}{-0000428} + \frac{-00070440}{-0000428} + \frac{-00070440}{-0000428} + \frac{-00070440}{-0000428} + \frac{-00070440}{-0000428} + \frac{-00070440}{-0000428} + \frac{-0000440}{-0000428} + \frac{-0000424}{-0000428} + \frac{-000044}{-0000428} + $	10.+ 1931840 4882300.+ 2931860.+ 2931860 2131840 2131840	976-2030 - 1908: 10 + 1908:200 - 1908:200 - 1908:200 - 1808:200 -	$-0.006420 \\ -0.0262120 \\ -0.0002646 \\ +0.0002648 \\ -0.0002641 \\ -0.0002648 \\ -0.0002646 \\ +0.0002648 \\ -0.000002648 \\ -0.0002648 \\ -0$	·0093253 + ·0087991 - ·027803 - ·026067 + ·0548208 - ·0822888 + ·02	
	Į.	$\begin{array}{c} +2.5281798 & 0 \\ -0.1175148 &5413944 \\ -1.9266848 & +.4182516 \end{array}$	· •4839802	l .			- 3954036	+ .0229092 0134984 001564n	0105490 + .0030177 0096408	0093253	
	80	∞ -4 	-t Sam	⊶დ420 +	7 8 8 3 1 + + + +	94111 8848	Sam +	우디의	1 + 1 8 2 4		
1	7	12	-6	প্র			- <u>8</u>	83		-Sam	1

Ţ	
I_{I}	
IIAX'	
7	
F. V	
14	
LE	
Ø	
A	

TABLE LXIX.

18. To pass to the complete solution of the 23 equations the process is precisely similar to that already followed after the solution of 12 equations in §15: the notation given in the corresponding tables concerned—viz tables LXIX, LXX—explains itself and the solution, keeping only 4 decimal places, is exhibited in table LXXI.

In this table are given also the value of Σ^s , k_r for all values of s from 1 to 23. These obviously should correspond to the case where all the R. H. S. of the 23 equations are unity. This solution, which depends on all the fundamental cases, can be verified in the original equations, and affords a complete check of the work. The substitution is carried out in table LXII. It will be seen that the values of the R.H.S. obtained by substitution differ slightly from unity, the greatest difference being .035, showing that no gross error has been committed. It is of interest to consider to what these differences may be attributed. Each value of kr is given to four decimal places: and accordingly may be in error by ·00005. The sum of 23 such quantities may be wrong by . 00115: and in substituting in the original equation such an error is multiplied by coefficients, the largest of which is 111 51, which would admit of the corresponding term containing an error of 1. That this extreme value should be obtained is most unlikely: but it is clear that the actual discrepancies obtained may easily be attributable to this cause. This line of argument shows how many figures it will be necessary to keep to be absolutely sure of all errors being less than a stated amount. the present object, the solution as found may be considered sufficiently precise.

19. Table LXXI also contains the necessary multipliers to proceed to the solution of the complete 26 equations. The process is exactly similar to that already described in passing from 20 to 23 equations. All results are given in tables LXXIII—LXXIX, and the verification, similar to that of LXXII, in table LXXX. This completes the solution of the equations of table XLVII.

 			TABLE LXIX.	
_	r	t	21 22 23	
	1 2 3 4 5 6 7 8 9 9 1 1 2 3 4 5 6	$-\Sigma^*$ "kr (s,t) from table LXVI		
	7 8 9		+ ·00391 - ·16067 - ·42206 - ·03594 - ·06461 - ·23455 + ·00554 + ·00328 + ·13447	
	tku	21	- ·01644 - ·06753 - ·06328 +1·37317 + ·29277 + ·0032(1	
		23	+ ·29277 +1·12562 + ·05870 Value + ·00320 + ·05870 +1·12448 tk;	
21	9		$\begin{vmatrix} + \cdot 169010 + \cdot 014155 - \cdot 000028 = + \cdot 16 \\ - \cdot 071218 + \cdot 001815 + \cdot 000009 = - \cdot 06 \\ + \cdot 054446 - \cdot 029040 + \cdot 000008 = + \cdot 06 \\ + \cdot 140214 - \cdot 019408 - \cdot 000175 = + \cdot 12 \end{vmatrix}$	
	6 7 8 9 10		$\begin{vmatrix} + \cdot 035744 - \cdot 004070 - \cdot 000074 = + \cdot 08 \\ - \cdot 015036 - \cdot 005059 - \cdot 000040 = - \cdot 08 \end{vmatrix}$	77009
	11 12 13 14 15		005644 +.000483 +.000027 =00	32485 35134 31306 40157 45079
	16 17 18 19 20		- 049352 - 018916 - 000750 = - 06 + 007607 + 000946 + 000430 = + 00	8108 3020 9018 8983 2549
22	1 2 3 4 5		+ .036034 + .054424 000517 = + .08 016183 + .005054 + .000163 =00 + .011608 111650 + .000153 =00	6217 19941 19966 19889 7940
	6 7 8 9 10			9390 3550 7234
	11 12 13 14 15		007275 + ·005527 + ·008682 = + ·00 001203 + ·001567 + ·000498 = + ·00 007744 - ·866586 + ·008405 = - ·36 + ·024757 + ·091292 + ·005744 = + ·12 011708 + ·038733 - ·004405 = + ·02	1152 7875 1733
	16 17 18 19 20	:	$\begin{array}{lll} + \cdot 002830 & - \cdot 226677 & - \cdot 001465 & = - \cdot 22 \\ + \cdot 001145 & - \cdot 180853 & - \cdot 021775 & = - \cdot 20 \\ - \cdot 010522 & - \cdot 072726 & - \cdot 013768 & = - \cdot 01 \\ + \cdot 001622 & + \cdot 003836 & + \cdot 007803 & = + \cdot 015 \\ - \cdot 004813 & - \cdot 076013 & - \cdot 008715 & = - \cdot 086 \end{array}$	4483 7016 3151
23	1 2 3 4 5		$\begin{array}{lll} - \cdot 001849 & - \cdot 028210 & + \cdot 010491 & = - \cdot 014 \\ + \cdot 000394 & + \cdot 002838 & - \cdot 00805 & = - \cdot 006 \\ - \cdot 000166 & + \cdot 000127 & - \cdot 006822 & + \cdot 003328 & = - \cdot 006 \\ + \cdot 000127 & - \cdot 006822 & + \cdot 003827 & - \cdot 008891 & - \cdot 061644 & = - \cdot 068 \end{array}$	3224 2760
	6 7 8 9 10		$\begin{array}{lll} - \cdot 0.00250 & + \cdot 0.02828 & + \cdot 0.02588 & = + \cdot 0.000088 \\ + \cdot 0.000083 & - \cdot 0.00816 & - \cdot 0.28144 & = - \cdot 0.286144 \\ - \cdot 0.00035 & - \cdot 0.01014 & - \cdot 0.17109 & = - \cdot 0.18616 \\ - \cdot 0.00171 & - \cdot 0.00642 & - \cdot 178005 & = - \cdot 178005 \\ + \cdot 0.00082 & - \cdot 0.00637 & - \cdot 111526 & = - \cdot 112861 \\ \end{array}$	3877 3152 3818
	11 12 13 14 15		000080 +-000288 +-070145 =+-070 000013 +-000097 +-009547 =+-006 019114 +-122692 =+-103 +-000271 +-004768 +-110930 =+-115 000128 +-002020084381 =082	8493 6059
	16 17 18 19 20	1 1	$\begin{array}{l} + \cdot 000025 \\ + \cdot 000018 \\ - \cdot 009431 \\ - \cdot 00015 \\ - \cdot 003793 \\ - \cdot 203747 \\ - \cdot 000018 \\ - \cdot 000005 \\ - \cdot 000005 \\ - \cdot 000005 \\ - \cdot 00000000 \\ - \cdot 0000000 0 \\ - \cdot 00000000 \\ - \cdot 00000000 \\ - \cdot 00000000 \\ - \cdot 00000000 \\ - \cdot 000000000 \\ - \cdot 000000000 \\ - \cdot 000000000 \\ - \cdot 0000000000$	

TABLE LXX.

t	21	22	23				t	21	22	23	rku from		t		21	22	23	rku from	
r=1	- ·4840 + ·1231	- ·3954 + ·0484	+ .0093			r	u	tku	∑s rks (s	,t)	LXV	rku	r	u	tku	∑s rks (s	,t)	LXV	rku
3 4 5 6	- ·0519 + ·0396 + ·1021	+ ·0045 - ·0992 - ·0663	+ ·0028 + ·0026 - ·0548 + ·0823	·		2	16 17 18 19 20	+ · 00071 - · 00654 + · 00101	- · 01445 - · 00581 + · 00029	+ · 00283 + · 00157 · 00090	03316 01507 00824	=+.0260 =0441 =0259 =0078	6	12 13 14	+ · 00038 + · 00245 - · 00786	+ ·00006 - ·01179 + ·00293	+ · 00081 + · 01038 + · 00931	· 03422 · 30896 · 36002	= + .0663 =0330 =3079 =3556
7 8 9 10	+ •0260 - •0110 - •0534	- ·0139 - ·0173 - ·0109	- ·9232 - ·0152 - ·1583 - ·0992	Z* rks (4 Table	t) from	3	1 2 3	+ · 03383 - · 00860 + · 00363	+ ·00395 ·00048 ·00004	+ ·00003 ·00003 + ·00001	· 06818 · 29104 · 10227	=0134 =0254 =3002 =+.1059		15 16 17 18	· 00074 · 00036 · 00334	· 00729 · 00582 · 00234	· 00238 · 04014 · 02231	·21676 + ·13870 + ·16319	=+.0460 =2272 =+.0924 =+.1419
11 12 13 14 15	- ·0041 - ·0264 + ·0846	+ ·0017 - ·3256	+ ·0624 + ·0085 + ·1091 + ·0979 - ·0750				5 6 7 8	+ · 00546 - · 00182	· 00048	+ ·00026	+ ·01322 + ·02484 - ·00604	=0018 =+.0066 =+.0801 =0078	7	19 20 1 2	· 01529	+ .00372	· 00025	·00748	= + ·0208 = + ·0471 = - ·0198 = + ·0171
16 17 18 19	+ ·0080 + ·0039 - ·0359 + ·0055	- ·2014 - ·1607 - ·0646 + ·0032	- ·0250 - ·4221 - ·2346 + ·1345				9 10 11	- · 00178 + · 00174	+·00011 -·00005	- · 00032 + · 00020	00021 00018	=+.0011 =0069 =0022 =+.0018		3 4 5 6	00247	00045		16791	=0078 =+.0019 =+.0262 =1780
20 u=1 2 3 4	- ·0164 - ·7803 + ·1831	- ·0675 - ·5862 + ·0899 - ·0100	- ·0633				12 13 14 15 16	+ · 00185 - · 00501 + · 00280	+ ·00326 - ·00081 - ·00034	+ ·00035 + ·00031 - ·00024	•01519 •00406 •00324	= - · 0007 = - · 0007 = - · 0105 = - · 0010		8 9 10	·00035 ·00169 + ·00081	+ · 00010 + · 00010	+ · 00041 + · 00426 + · 00267	+ ·01456 + ·00227	= + .0587 = + .0002 = + .0172 = + .0058 =0178
5 6 7 8	+ -1206	- ·0479 + ·0362 - ·0094	- ·0652 + ·0951	,			17 18 19 20		+ ·00161 + ·00065 - ·00003	·00135 ·00075 ·00043	+ ·00628 + ·00263 + ·00042	= + ·0062 = + ·0050 = + ·0004 = + ·0023		12 13 14 15	00013 00083 -+-00267	00002 +-00306 00076	00023 00294 00263	00520 + 04334 + 07577	= - · 0056 = + · 0426 = + · 0751 = - · 0119
9 10 11 12	- ·0770 + ·0316 - ·0825	- ·0372 - ·0106 + ·0019	- ·1788 - ·1121 + ·0704 + ·0096	tku fro	m LXX	4	1 2 3 4 5	+·00313 -·00132 +·00101	- · 00484 - · 00045 + · 00091	+ ·00002 - ·00001 - ·00001	06318 0 +-10227	=+ ·3182 =- ·0649 =- ·001b =+ ·1132 =- ·0155		16 17 18 19 20	+ ·00012 - ·00113 + ·00017	+ ·00151 + ·00061 - ·00008	+ · 01186 + · 00681 - · 00362	02250 03963 00693	= + ·0984 = - ·0095 = - ·0339 = + ·0035 = - ·0115
18 14 15	- ·1818 + ·1402	- ·8679 + ·1217 + ·0226	+ ·1035 + ·1151				6 7 8 9		- ·00481 + ·00139 + ·00173	· 00023 · 00006 · 00004	+ ·01322 ·00024 ·00604	= + · 0062 = + · 0019 = - · 0046 = + · 0004 = - · 0082	8	1 2 3 4	+ .00978	+ .00933	00017 +-00017	- 01346 - 00748	= + ·0055 = - ·0109 = + ·0011 = - ·0046 = + ·1684
17 18 19 20	- ·0430 - ·0690	- ·2045 - ·0970 + ·0132	- ·4840 - ·2677 + ·1514 - ·0752				10 11 12 13	00063 00010 00067	·00040 ·00017 ·03253	· 00017 · 00002 · 00031	+ ·00096 - ·00013 + ·00406	=- ·0008 =- ·0004		5 6 7 8	+ .00157	· 00114	~·00150	+ •02091	= + · 1684 = + · 0198 = + · 0002 = + · 0581 = + · 0019
r u	٠	μ Σ* rk* (rku from LXV	rku		14 15 16	ļ	1	i	l	=0214 = +.0031 = +.0171		10 11	00031	+ .00020	+.00191	4-101801	= + ·0161 = + ·0045
3 4 5	- · 09605 + · 04050 - · 93090	02837 00264 +- 05815	+ ·00018 - ·00004 - ·00004	0 - •06318 + •29104	=+1.7637 =1242 =0254 =+ .8182 =1730		17 18 19 20	+ · 00010 - · 00091 + · 00014	+ ·01605 + ·00645 - ·00032	+ ·00118 + ·00066	- 00263 + 00626 - 00063	3 = + ·0145 3 = + ·0125 3 = - ·0012 4 = + ·0069		12 18 14 15	+ · 00008 + · 00053 - · 00170	+ · 00004 + · 00768 · 00191	00018 00198 00178	· 01528 · 07577 · 04334	= - · 0154 = - · 0695 = + · 0379 = - · 0343
6 7 8 9 10	02029 +-00858 +-04167	+ · 00815 + · 01014 + · 00639	+ ·00033 + ·00032 + ·00226	- ·00748	=+ ·0861 =- ·0198 =+ ·0055 =+ ·0846		1 2 3 4 5	+ · 01495 - · 00626 + · 00478		+ · 00057 · 00018 · 00017	- · 05454 + · 01322 - · 02484	= - · 1730 = - · 0414 = + · 0066 = - · 0165 = + · 8434	1	16 17 18 19 20	- · 00008 + · 00072 - · 00011	+ · 00378 + · 00152 - · 00008	+ · 00768 + · 00427 - · 0024	+ · 08968 - · 02250 + · 01880	= - ·0073 = + ·0510 = - ·0160 = + ·0107 = + ·0100
11 12 13 14 15	+ · 00820 + · 02060 - · 06601	00100 + 19087 04746		+ ·00230 + ·03725	= + ·0300 = + ·0041 = + ·2472 = - ·1960 = + ·0552		6 7 8 9 10	+ · 00814 - · 00183 - · 00644	+ .00083	+ · 00151 + · 00098 + · 01032	+ ·02091 + ·16791 - ·15684	= - · 0171 = + · 0262 = + · 1684 = - · 1524 = + · 1272		1 2 3 4 5	- · · · · · · · · · · · · · · · · · · ·	· 00180 · 00017 · 00869	+ · 00157 - · 00050	+ · 04238 - · 01022 + · 00021	= + ·0840 = + ·0327 = - ·0069 = + ·0004 = - ·1524
16 17 18 19 20	- · 00304 + · 02801 - · 00429	+ · 09420 + · 03787 - · 00188	+ ·00603 + ·00335 - ·00192	- ·01507 + ·03316 - ·00479	=+ ·1050 =+ ·0821 =+ ·1024 =- ·0120 =+ ·0610		11 12 13 14 15	00049 00318 +-01020		· 00058 · 00711 · 00638	- · 05785 - · 36002 + · 30890	2 = - · 0418 5 = - · 0590 2 = - · 3547 5 = + · 3088 5 = - · 2183		6 7 8 9 10	+ · 00085	+ · 00056 + · 00064 + · 00041	+ ·0041. + ·00273 + ·0283	+ · 01456 - · 00227 + · 33086	3 = - ·1277 3 = + ·0172 7 = + ·0010 0 = + ·3636 = + ·0162
2 1 2 3 4 5	+ · 02254 - · 00950 + · 00725	+ · 00435 + · 00040 - · 00892	00002	+1.15442 20104 06318	= - · 1248 = + 1 · 1814 = - · 3009 = - · 0648 = - · 0414		16 17 18 19 20	+ · 00047 - · 00133 + · 00060	+ · 00770 + · 00309 - · 00015	+ ·02759 + ·01530 - ·00877	+ ·16316 - ·13870 + ·05408	l = - · 0360 = + · 1990 = - · 1240 3 = + · 0458 3 = - · 0030		11 12 13 14 15	+ .00032	+·0121	3 - •0015 1 - •0195	$1 + 04886 \\ + 16366$	2 = - · 0442 6 = + · 0476 0 = + · 1582 8 = - · 0510 4 = + · 0367
6 7 8 9 10	- · 00201	+ · 00433 - · 00125 - · 00156 - · 00095 - · 00097	5 +·00010 5 +·00106	+ ·01340 - ·00748	=- ·1438 =+ ·0171 =- ·0108 =+ ·0327 =+ ·0381		1 2 3 4 5	1+ 00482	3 + ∙00017	1+ 00027	1 + .02484	= + ·0861 = - ·1438 = + ·0301 = + ·0062 = - ·0171		10 20	+ · 00276 - · 00045 + · 00126	+ ·0024 ·0001 + ·0025	+ ·0419 2 - ·0240 1 + ·0118	5 + · 0171 5 - · 0112 2 + · 0450	4 = + ·0818 0 = + ·0518 0 = + ·0642 7 = - ·0350 2 = + ·0601
- 11 12 13 14 15	- · 00075	+ · 00044 + · 00018 - · 02927 + · 00728 + · 00309		+ • 08104	= + ·0137	1	6 7 8 9 10	+ · 00720 - · 00242 + · 00102 + · 00406 - · 00237	+ · 00174 - · 00050 - · 00063 - · 00039 - · 00039	+ · 0078 - · 0022 - · 0014 - · 0150 - · 0094	3 + ·82433 - · ·16793 + · ·02093 - · ·11723 - · ·1568	3 = + ·8·113 1 = - ·1730 1 = + ·0108 3 = - ·1277 4 = - ·1696	10	1 2 3 4 5	- · 01529 + · 00889 - · 00169 + · 00129 + · 00329	+·0041 -·0005 -·0000 +·0010 +·0007	9 - ·0010 1 + ·0009 5 - ·0009 5 - ·0009 0 + ·0061	$\begin{array}{c} 4 - \cdot 0423 \\ 9 + \cdot 0336 \\ 1 - \cdot 0002 \\ 9 - \cdot 0102 \\ 4 + \cdot 1172 \end{array}$	$ \begin{array}{r} $

TABLE LXX.—(Continued).

	t.	21	22	23	rku from	rku	t	;	21	222	23	rku from		T	t	21	22	23	rku from	
r	u	tk	. Xª rks (s,t)	LXV		r	u	tk:	Σ ,k, (ε	,t)	LXV	rKu	r	u	tku	Σ• rk• (1	s,t)	LXV	rku
10	6 7 8 9 10	+ · 00082 - · 00085 - · 00169 + · 00081	+ ·00015 + ·00018 + ·00012 + ·00011	+ · 00260 + · 00170 + · 01775 + · 01112	+ ·00227 + ·01456 0 + ·33080	=- ·1690 =+ ·0058 =+ ·0161 =+ ·0162 =+ ·3428	14	1 2 3 4 5	- ·01728 - ·00728 + ·00555	+ • 00589	+ · 00101 + · 00032 + · 00030	+ ·03726 - ·00406 - ·01519	3 = - ·196 5 = + ·056 6 = - ·016 6 = - ·025 6 = - ·025 6 = + ·306	04 05 14	16 17 18 19 20	(°0017 + · 00154 · 00024	+ ·03286 + ·01321 - ·00065	+ · 11355	+1.69260	3 = - ·0859 = +1·9296 = + ·1283 = + ·0421 = + ·6264
	11 12 13 14 15	00018 00088 +-00267 00126	· 00002 · 00345 · 00086 · 00036		- · 08482 + · 02898 + · 16860 - · 07044	=- ·0567 =- ·0359 =+ ·0143 =+ ·1544 =- ·0637		6 7 8 9 10	+ ·00365 - ·00154		- · · · · · · · · · · · · · · · · · · ·	+ .07577	= - ·853 = + ·075 = + ·085 = - ·051 = + ·154	51	1 2 3 4 5	+ · 00850 + · 00858 - · 00278	00469 00044 00962	+·00286	- ·01507 + ·00263 + ·00628	=+ ·1024 =- ·0259 =+ ·0050 =+ ·0125 =- ·1246
 	16 17 18 19 20	+ ·00012 - ·00118 + ·00017 - ·00052	+ ·00170 + ·00068 - ·00003 + ·00072	+ ·04782 + ·02680 - ·01509 + ·00710	- ·01710 - ·02940 - ·04502 - ·01127	=+ ·0266 =+ ·0320 =- ·0036 =- ·0600 =- ·004		11 12 13 14 15	- ·00057 - ·00370 + ·01186	+ · 00060 + · 00021 - · 03963 + · 00986 + · 00419	+ ·00098 + ·01256 + ·01127	- 01058 0 +1.98750	= - · 048 = - · 010 = - · 030 = + 1 · 900)0)8	6 7 8 9 10	+ · 00179 + · 00075 + · 00368	+ · 00135 + · 00168 + · 00166	+ .00621	- ·08963 - ·02250 + ·01710	=+ ·1419 =- ·0339 =- ·0160 =+ ·0642 =- ·0036
l"	8 4 5	+ ·00169 - ·00129 - ·00332	+ ·00009 + ·00019 - ·00013	+ · 00062 + · 00020 + · 00018 - · 00386	- ·00230 - ·00013 + ·00096 - ·03422	=+ ·0300 =- ·0068 =+ ·0018 =- ·0003 =- ·0415		16 17 18 19 20	+ ·00055	02451 01956 00786 +-00039 00821	- 04858 - 02700	83746	= - ·867 = - ·405 = - ·560 = + ·094 = - ·149	0 1 2	11 12 13 14 15	+ · 00028 + · 00182 - · 00584	+ · 00016 + · 00158 - · 00786	00228	+ ·00471 + ·33746 - ·52020	=- ·0010 =+ ·0026 =+ ·3417 =- ·5601 =+ ·1084
	7 8 9 10	- 00000			- 104660	=+ ·0663 =- ·0178 =+ ·0045 =- ·0442 =- ·0567	15	1 2 8 4 5	*00555 + *00234 *00179 *00460	00224 00150	+ ·00073 - ·00023 - ·00021 + ·00452	+ ·00728 - ·00324 + ·00730 - ·21676	= + ·055 = + ·008 = - ·001 = + ·003 = - ·218	5	16 17 18 19 20	+ · 00027 + · 00248 - · 00038	+ · 01559 + · 00626 - · 00031	+ ·11300 + ·06280 - ·03601	0 1	= + ·2136 = + ·1283 = +1·7641 = - ·6179 = + ·1327
	12 18 14 15	+ ·00013 + ·00086 - ·00275 + ·00130	+ ·00000 - ·00062 + ·00015 + ·00007	+ 00060 + 00768 + 00680 - 00528	- ·01059 - ·05276 + ·02614	= + .0441 = + .0007 =002, =0485 = + .0222		10	+ ·00049 + ·00241 - ·00115	+ · 00109 - · 00031 - · 00025 - · 00024	+ · 00191 + · 00125 + · 01306 + · 00818	- ·01234 - ·03561 + ·02144 - ·07044	= + ·046 = - ·011 = - ·034 = + ·036 = - ·063	9 7 7	2 3 4	+·00047	+ ·00064 + ·0006 - ·00131	00133 + 00042 + 00039	- ·00824 + ·00042	=+ ·0004 =- ·0012
1 2	17 18 19 20	+·00117 -·00018 +·00053	00081 00012 00013		+ ·004/1 + ·01445 + ·00586 + ·00177	=0112 =0254 =0010 =+ .0147 =0023			+ · 00119 - · 00382 + · 00180	+ ·00004 - ·00736 + ·00183 + ·00078	00070 00900 00808 +- 00619		=+ ·022 =+ ·0:8 =- ·355 =- ·884 =+ ·680		6 7 8 9 10	+·00023	·00018 ·00023 ·00014	· 00230 · 02397	+ ·00838 + ·00693 + ·01330 - ·01127 - ·04502	→ · · · · · · · · · · · · · · · · · · ·
	34 5	+ · 00026 - · 00020 - · 00052	+ ·00006 + ·00001 - ·00012 - ·00008	+ ·00008 + ·00008 + ·00002 - ·00053	+ ·01486 - ·00096 - ·00013 - ·05785	=+ ·0044 =+ ·0137 =- ·0007 =- ·0004 =- ·0590		20	+ ·00162 - ·00025 + ·0074	+·00007 -·00153	+ ·03484 + ·01985 - ·01110 + ·00522	+ ·08888 - ·01787	=- ·002 =+ ·218 =+ ·108 =- ·029 =+ ·048	9 4 1	11 12 13 14 15	- · 00004	+ •00002	+ .00129	- ·00177	= + ·0147 = - ·0005 = - ·1134 = + ·0942 = - ·0291
	7 8 9 10,		00002 00002 00001 00001		- ·00520 - ·01528 + ·04886 - ·03482	=- ·0830 =- ·0056 =- ·0154 =+ ·0476 =- ·0859	16	3 4 5	00592 +-0+250 00191 00491	+·02240 +·01497	+ ·00035 - ·00011 - ·00010 + ·00219	+ ·04308 - ·00730 - ·00324 - ·04821	= + ·105 = + ·026 = - ·005 = + ·017 = - ·036	6 9 1	17 18 10	+·00004 -·00032	· 00212 · 00085	•06391 •03552 •02036	+ ·10810 - ·5·125 + ·81580	=6179
	12 13 14 15	+ •00002 + •00018 - •00043 + •00020	00039 +-00010 +-00004	+ ·00008 + ·00105 + ·00094 - ·00072	+ ·03889 + ·05276 - ·01059 + ·00878	= + ·0007 = + ·0390 = + ·0536 = - ·0100 = + ·0083		8 9 10	+ · 00125 + · 00052 + · 00257 - · 00123	· 01088 + · 00314 + · 0^891 + · 00246 + · 00244	+ •00093 + •00061 + •00631 + •00396	+ ·08561 - ·01234 + ·07044 + ·02144	=- · · 2279 =+ · 0384 =- · 0073 =+ · 0816 =+ · 0266	3	2 1	-·005231.	_ •00•00	⊥.∩∩ ∩??!.	+ ·00824 - ·00479 + ·00063 + ·00042 - ·00838	= + ·0615 = - ·0134 = + ·0023 = + ·0069 = - ·0030
18	17 18 19 20	00002 +-00018 00008 +-00008	00019 00008 00008		- ·01445 + ·00471 - ·00177 + ·00536	= + ·0256 = - ·0187 = + ·0026 = - ·0005 = + ·0048		12 13 14 15	+ · 00127 - · 00407 + · 00192	- 00038 + 07352 - 01829 - 00777	•00435 •00391 + •00299	+ ·02614 + ·87417 - ·34070 0	=- ·0115 =+ ·1·256 =+ ·9446 =- ·3676 =- ·0026	5	7 8	+ .00111	+ 00117	+ •00174	+ ·05408 - ·01830 + ·00693 + ·04502 - ·01127	= - ·0115
	845	+ ·00681 - ·00520 - ·01341	- · 00166 + · 03650 + · 02439	+ 00029 + 00027 - 00567	+ ·08108 : - ·01519 : + ·00406 : - ·86002 :	= + ·24/72 = + ·0462 = - ·0097 = + ·0356 = - ·3547		18 19 20	+·00173 -·00026 +·00079	+ ·01459 - ·00072 + ·01524	+ •01684 + •00936 - •00537 + •00253	- · 08888 + · 18790 - · 04426 - · 01787	= + ·7174 = - ·0356 = + ·2136 = - ·0506 = + ·0007	3	13 14 15	+ ·00172 - - ·00860 - + ·00170 -	- 00014 + 02751 - 00685 - 00291	00064 00820 00736 +- 00564	+ ·00536 : - ·07752 : - ·12540 : + ·04426 :	= - ·0023 = + ·0048 = - ·0571 = - ·1432 = + ·0487
	7 8 9 10	- · 00341 + · 00144 + · 00701 - · 00385	+ ·00511 + ·00686 + ·00401 + ·00397		+ ·04334 - ·07577 + ·16360 + ·02398	= - ·8079 = + ·0426 = - ·0695 = + ·1582 = + ·0143	17/	3 4 5		,	+ •00426 - •00136 - •00126 + •02652	- ·08316 + ·00628 - ·00263 + ·16319	= + ·0821 = - ·0441 = + ·0062 = + ·0142 = + ·1996		16 17 18 19 20	- · 00034 - · 60017 + · 00153 - · 00023 + · 00070	+ •01708 + •01359 + •00546 - •00027 + •00570	+ ·00188 + ·03174 + ·01764 - ·01011 + ·00476	- ·01787 + ·58125 + ·10810 0 + ·31530	= + ·0007 = + ·6264 = + ·1327 = - ·0106 = + ·3265
	14	·01111 + ·00525	- · 02980 - · 01266	+ .01013	- 34070	= - ·0027 = + ·0536 = +2·0020 = - ·0308 = - ·3559		8 9 10	+ · 00012 + · 00047 + · 00230 - · 00110	+ .00223	+ ·01123 + ·00736 + ·07662 + ·04801	- ·02250 + ·08963 - ·02940 - ·01710	=+ ·0924 =- ·0098 =+ ·0516 =+ ·0518 =+ ·0326							
	17 18 19	+:00471	+ 00912	· 04869 · 02428 · 01892	- ·52020 + ·33746 - ·12540	=+ ·9446 =- ·5053 =+ ·8417 =- ·1134 =- ·0571		13	+ .00114	+ .06659	·00411	- ·01445 - ·52020	=- ·0254 =- ·0185 =- ·5055 =- ·4056 =+ ·2186							<u>.</u>

TABLE LXXI. Values of ,kr for 23 conditions.

-	-				_			-	00	œ 4	_			_	-6	1	25	_			٦
z	F.98		9	_	0	•	0	•	-	+ 1 8 4		00	00	> 1	₹ +	1	3	0	00		1
Multipliers	L ₂₅		9.99 + +	ŝ		, s ;	äë		<u> </u>			_ <u>%</u>	2:	3	_ <u></u>	ۇ 1	\$	•			1
Int	4		++	<u>.</u>			++							<u>+</u> _		+					-
~	15. 15.	0	2 89 2 90 2 90	8	0	•	-	•	00	0	٠ د	-	0	>	•	0	0	0	00	•	ı
	-	<u>छ</u>) (0.00)	*	0652	ភូម	88	Ş	112	38	,	8 20	0825	2	3.9	1514	79. 0.	.0032	.1245	Τ.	ğ
	8				_		0182		• •	0.00				•	2877				_		3004
		20 5	38	- I	1	+	1 1	-	1 1 28	41	<u> </u>	+ +	81	<u>. </u>	花 岩	+	1	+ 88	+ + 918		+1/040.
	83		\$6		.0429		585			000	3	.1217			2045		÷9845	2928	1.12	3	
			# ! # #	1	<u> </u>	+	날	_	99	4 1	+	1313	+	 _	<u> </u>	+ 0000	1	+ 91	2928 +1.1258	}	<u> </u>
	25	28.		625	190A	88	95		929	555	5	1313	045	1849	8	Ş	95	+1.3732	Ġ.	Š	.7539
		1	+ 1		- 5	1 1	+ 1	,	1+	650	2	1 4	1	<u></u>	+ 6264	+	<u>।</u>	+	+ 9879	+ -	1983 +-8804 +
	2	+ .0616	+ 0000	8	+ (0000) +	3	+ 0116		ξĒ	0053	4	0571 1432 +	3	+-(000)	+ 6264	+ 9010-	+ .8265	10495	198	5	8
		8	-0259 0078 0134 - 0050 0004 0093	121		1419 + 0208 + 0471	3 2 2		0829 +.0801 -	7	<u>-</u>	# G	0291 + · 04S7	<u>+</u> _	+ 1 20 20 20 20 20 20 20 20 20 20 20 20 20	1 1	빎		8	4	83
	8	0129	- 0078	0012	4.0459	18	+ + + + + + + + + + + + + + + + + + + +		ŝŝ	+ 0147	999	5601 + 0949	8	0206	1283 + 0421	4170+ 3358	- 0106	- 0000	0970 + 0133	4 101.+	7
		1034	950	0125	10.0	18	85		8 8 8 8 8 8			2417	98	<u>.</u>	83	Ē	1327	000	2	102.	ġ
	83] -	۱۱ څخ		+ 1		\$ +	+ 1		ă.	+ 1283	ľ	+	2		şı I	1.2
		-0821	96	++		1000	9095	-	0818			5053	2189	980	8	283	188	6490		- - - - -	4752 + 1 · 1396 + 1 · 6991 + 1 · 2007
	11	•			•	: \$					•			ė į	+1.9296	÷	.			3	3
	.	1050	9980	÷ + + + + + + + + + + + + + + + + + + +		- 5223 - + 2273	0384	2	83	- 6110	ا ا	-9440	+ 6500	17.17.	-0350	-2136 +	+ + 2000		188	- - - - - - - - - - - - - - - - - - -	ģ
	16																			ş	
		- 23	+			11	+ 1		0867 1687 1687	- 1	* 3	# 1		庶	- 1	# # =	1 + 1/5		1 I	<u> </u>	22
	12	+ •0552	+ .0035 +	1.003.+	•	12.183	119	3	+ i	+	ž Š	1.0559	1000	- :0020	+ .3189	•5601 + ·1684 +	+:0457	3	+ .0226	0325	7
-		1960	900	0214		229	0751		0510	8	<u> </u>	808	88	9870	4050	텷	1482			1121	-0,20
	14					+ 1	+		11		ا ن	93	i de	।	1					_	
_		2778	+ 2970	9856		8070	98	8	1582	8	989	8	8559 - 8848	8		-3417	-0220	_;	+ 1 28.	8	0343 +.0268 +1.6833 -
	13	6.			•	1 1 1 1					ĕ +	2.2	1 1 3 4		ě		- 0 		11 19	÷	9.1
		2400		1 + 5 5			+ 9900-	<u>.</u>	+ .0476 +	Š	ŽΓ	+ .0536 + 2 .0030	8%						55	<u></u>	<u>8</u>
	23	1	+.0137		7	1 1	0	ş i	+	2000 +	9860+	9	-0100	++	0187	÷	+ .0065		- 1 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	÷	è
_		00800+	900	+ 3000		9615	- 0178	2		+ 0441	<i>1</i> 000 +	027	0510 + .154404850100	0112	0354				- · · · · · · · · · · · · · · · · · · ·	2	343
	==	1	- i			1 4	<u>- i · </u>	+_	i		<u> [</u>	0027	11	Ŀį.	_i	i	i t		i÷	+	انّ
	21	0.045	+ 0881	2000: 1000: 1000:		+ 1273	+	1910.+	+ 0162	+ 3828 1 -0587	0829	+ 1582 + 0143	45	+ 1988	·0518 + ·0320	0160 + 0642 - 0036			0770 + .0316 03720106	1121	1653 + 3053 + 2247
_		. !	+	ii		+ 1	+	÷	+	+ j	į	+			<u>.</u>	į	ii		+ 1	i m	+
	6	080	+.0327	6900:+	:	1924	+ 0172	9	8	+ 0162	+ .04.78	.158	- 0510	93.8	-051	ğ	+ .0359		0770		305
_		1 - 1	+	1 +	<u>. </u>	70	9	<u>∓</u> -	+	+ 1	+	+	50	2 E2	-0210	+	1+		1 1	<u> </u>	- 23
	00	36.	010	1100	;	1584	9	ş	6100	916	015	.0095	6879	0073	.05	ğ	000		5 5 5 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7	.0182	91
-		- - 7	35	182	1	200	3 6	짱	-27	8	28		<u> </u>	챙		8	2 2	-	95	8	-83 +
l	~	9010	38	5 5 1 1	.	ö:	+	٠ <u>+</u>	÷	83	8	÷	96	38	ج	ا	÷ i	3	+ i	į	0083
-		9	3	200	3	Ē:	18	ġ	22	8	8	620	99.0	225	-76	19	85		000	521	111
ı	9	[]	; + i	+1	, -	90	1	+	ī	1	Ηİ	i	1.	₽ <u>₹</u>	+	7	+ +		1+	+	ī
Г		1700	3	900	3	8484	2920	891	1524	1273	280	3647	800	882	1000	35	958	}	228	0652	4966
L	در .			- 1242 - 3003 + 1059 - 1018 + 1066 + 10801 - 1066 + 10605 + 1010 - 1188 - 1188 + 1066 + 10065 + 1010	-	ij	.08611435 + .0801 + .00620171 + .04151730 + .05870198 + .01710078 + .0019 + .02621730 + .0587	+	<u>i</u>	0381 - 0722 - 0082 + 1273 - 1690 + 0055 -	اً	_į	+	-0.035 - 0.010 + 0.0011 - 0.2183 + 0.920 - 0.0118 - 0.0266 - 0.0059 + 0.0171 - 0.0800 - 0.2772 + 0.0391 - 0.0360 - 0.0059 + 0.0051 - 0.0059 - 0.0		i	0.078 + 0.004 - 0.012 + 0.458 + 0.208 + 0.036	_	18310699 + .0254 + .12060929 + .0316		-9592 + -9019 2894 + -3342 + -4966
	4	8	98	8:		0.55	ė Š	98	ŝ	88	}§	368	ğ	35	:0145	190	28	3	ş	Ş	334
_		- -;	+1:1814 3002 0649	01	닐	į	++	i	+	910	<u> </u>	+	1	++	- 4	+	1 -	<u>-</u>	+ i	1	
	တ	ğ	18	Ë	ŝ	ŝ	ŝ	ŝ	ş	Š	38	٤	ğ	<u> </u>	Ş	8	ŞŞ	3	85	Ş	.28
-		-	1	늹	9	+	35 + 1	+	<u> </u>	188	+ <u> </u>	- 2	1	88 1 1		- +	+	<u>-</u>	동	+	
	63	. 5	21:18	i i	Ş	ş	78	ģ	8	8	35	Ş	ŝ	Ś	5	Ş	8	5	28	98	ક
-		- ,	 	1.5	<u> </u>	恴	<u> </u>	1 1	- =	14	33	- 4	+	•055 <u>9</u> +	5	120	-0120	1	·7808 +	-0148	
	_		+1-7637	18	ĕ								į÷	ė <u>:</u>					Ġ.		\$6.
ı			~ •								++		- 1	++		++	٠١٠	٠	ī	1 1	Sum +
L	m -	_	<u>+1</u>	11	<u>+</u>		4 4			2:				99			2		<u>-</u>		8

TABLE LXXII. Verification of solution in Table LXXI.

			2 33 33		3 95	64	83
23	0000	0000	+ ·2076 0 + ·0322 - ·0183	0000	80 11 81 11 81 11		+ .9985
88		.1539 .0006 .0198	0000	.5723 0 .0713 .1140	.2719 +1.1894 0 .0040 + .1249 .0176 +1.03J1	.0497 0	6666
- 13	+2·1006 + 05888 -2·2124	+ 11		+ 11	+ 11	+1.6510 0 -	+ 6000
	+2·1					41. 217.	952 + 1
 			11+1	-5387 -2.0200 -00110243 -86961806 -4330 +2.0855	9515 -6.8814 +4.89280724 -2.1784 0 0 +9.6492	0 -0008 + -0008 -22714217	+ + +
19			+++ .0824		+4.86 -2.17	0 0008 2271	+1.00
18			0 ++ .1236 + .0073	0630 + 4704 - + .0114 -	+2.6776 +4.89286724 8031 -2.1784 0 4630 0 +9.6498	000	+1.003
27			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} + \cdot 0170 \\ + 1 \cdot 1887 \\ - \cdot 8629 \\ + \cdot 8346 \\ + \cdot 6111 \\ - \cdot 8656 \\ \end{array}$	+ .2528	-9986 +1.0013 +1.0032 +1.0064 + .9952 +1.0009 +
91		-1.2862 - '21.77 - '01.13 + '8839	8888	$\begin{array}{c} -7 \cdot 2045 + 1 \cdot 3971 \\ - \cdot 1617 & 0 \\ 0 & - \cdot 0048 \\ + 9 \cdot 6410 - 1 \cdot 1282 \end{array}$	-1.6821 + .0120 + .0754 +1.6111	+	9866. +
25		9187 9048 9168 92848	1348 + 1348 + 10386 + 10386 + 1	+8.5854 3249 -4.0202	+ 0170 +1.1887 - 3629 + 3346	0 - 0061	1.0049
71		2342 -0114 -0132	9699	0 +8.5854 - 2603 - 3249 -2.0336 -4.0202 +2.4273 0	0 + .0170 -1.6821 + .9966 +1.1887 + .0120 23805829 + .0754 + .2817 + .8346 +1.6111	000	.9950 +1.0037 +1.0049 +
81		9882	1 -3 .4590 + .0855 0 + .0629 + .0629 + .0020 + .0065 + .0066 + + .2 .1252 + .0076 + .0163 + .0		8568 +1.4108 0 + .0170 -1.6821 -5768 0 + .9966 +1.1887 + .0190 -8687068588808829 + .0754 -6251 -1.0565 + .8817 + .8846 +1.6111	0 - 0138	- 9950- 1
81	·	3.1385 1.9160 4.8962	-3.4590 -3.7772 0 -2.1252	4718 0468 9848 9847	+ .3568 + .576826976251 -	0.	+ .9648 +
=		0 +8.0797 -8.1885 + .988278157439 -1.9150 024584905 + .00072182 - 9.7092 + 4.89022265 -	0 +5.1821 -3.4590 + .0855 +2.1751 +2.6459 +3.7773 0 8866 -2.7200 00209 + .4505 f +2.1252 + .0075	0 +1.0268 + .4718 +5.7737 0218 + .03180463 0 8251 + .16216843 -1.0122 + .1868 -1.64108947 -4.8775	+ 9846 0 + 8156 + 8568 +1-4108 0 + 9609 + 9609 0	- 3388	.9723 +1.0043 + .9925 +1.0062 +
91		0 -7815 -1907 -2182	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0213 2851 1368	0 + .8156 + .66042521 8292 + .1408 2877 -1.1973	000	+ .9925
6			7.6127 +2.9553 -2966 0 2.02715768 -79389036	.4713 0 .0570 .6838	+ •9345 0 + •0535 -1.4615	0 + .2451	+1.0043
	2.2062 .8698 .9299 .2.4564	14.0141 .0989 0 18.4326	7.0127 .2968 2.0271 7988	2·3061 -0061 -6463 2·3020		0 0 0 +	
~	+ .8988 - 2.2069 + 2.0744 + .8698 22 - 2.1271 9289 00 9810 + 2.4564	29 - 3.8215 + 42 - 9255 + 89 0 +	38 +5·1614 - 68 -1·0160 + 60 +1·5839 +	1347 1040 9589 1.5489	0	- 000-	+ 0696. + 9266.
•	68318 •5123 •0100	0 -1.1429 2342 1389	1.4538 2168	0 1610 -1.2308 -2.1083	•	000	9266.
70	+ ·6714 0 + ·0087 - ·5915	$ \begin{array}{c} .8790 \\ -0.085 \\ -0.095 \\ +0.070 \\ -0.095 \\ -0.095 \\ -0.070 \\ -0.23 \\ -0.135 \\ -0.185 \\ -0.135 \\ -0.185 \\ -0.135 \\ -0.185 \\ -0.135 \\ -0.185 \\ -0.135$	+1.9753 0 0 +1.4538 + 55812168 - 1694 + .4360 +	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	8 0 80126 0	1,00.14
4	- 9.9564 + 1.9842 + 13.5953	.8790 .0085 .0085 1.2150		<u> </u>	0	- 4.9908 + .0073	9886•
65	8 - 8 - 1102 9 - 8564 1 - 8 - 1102 1 - 9 - 8564 1 - 8 - 10 1 - 10	· 2083 + - 0610 + + 1884 + +			•	1.4023 .0090 0	+ 1,000.1+ 9886 + 1,000.
	3.30040 3.7352	- 0824 - 0191 - 0678 - 1 0678				+1	Sum +1.0029 + .9985 +
-	+3.5107 0 +8.3010 0 + 6367 -3.0040 0 -3.4690 + .7352	+ .3476 00084 13802				+1.6510 0171 0	1.0020
-	+ 11		* * * * * * * * * * * * * * * * * * *	8 2 2 2 2	2 2 2 2 2	<u>+।</u>	_ +
	1						<u>v</u>

	_
٠	Ţ
	4
	4
	٥
	_
1	ò
	5
•	_
٠.	5
•	4
•	4
	ģ
•	٠,
(~
	Q
	_
•	8 Irom 1 to 23, the latter in old face true
	ᅜ
ç	Ĭ
	00
	_•
(2
	တ်
	•
-	勺
ī	첫 사
, i	N N N
T T	ang 2° k
1 . 1 de	y z pur (2
1 . D. E	8, c) and 2° k
	(8, %) and 2° K
]_ ()	K. (8, 7) and 2, K
£ 1. (2. 4) 1 42. 1	I , Kr (8, 7) and 2° , K
(15 L - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	s of skr (8, 7) and 2° sk
(ab (- 1) (- 1) et a	les of ak. (8, 7) and 2° ak
("12 L (1 1) L 3 1 4	nnes of ak. (8, 7) and 2° ak
$(\nabla_{\alpha})_{\alpha=0}$, f_{α} , f_{α} , f_{α} , f_{α}	values of sk. (8, 7) and 2° sk
	values of sk. (8, 7) and 2° sk. (8, 7), 8
VVVII	44111
TTTTT	44411.
TITATI	ם הממונו.
TILL T TITL	חם חססוווי
DIE IVETIT	סטט חססוווי
DIE IVETIT	חם חססוווי

	83	014678 +-021184 005208	+ .001303	002814 +-000576 000616 +-029481			- 001504	- 076228 + 047872	187890 +-177198 +-047376	9,000	0000			0080	. 0001 . 0001 . 0463 . 0463	-8915 -8915 -0024	.0036 .0587 .0587		.00002880 .00046960 .0089976	.00017424 .00284108 .05443548	+ .06283692 + .05283692 +1.00278252
	8	+ 196881 - 066200 - 185814	055133	+ .037758 001800 021978 + .011222	001128 002360 +.041878	+ · 002260 - · 033870 - · 015520 + · 000264	- 001080	+ 007208 + 007208 + 001292	-067900 -015444 -053235	Jugov		d Side	ĺ	++ 1	++111	:1 +1 -	+ + 4		+++	1,1-1	++#
	E .	+ ·400989 - ·462733 + ·047244	o14505	078902 012682 006588	.005792 .002010 .047668		- 000850	+ 021488	045300067900 +-010530 +-015444 +-026775 +-053235	config.	LX	Han	, E	2001 5871 + .9399	1250. –	- 000	+ -2934 +1-1294	Verification	05870934 2259294 01174587	+ 27576666 +1.06152306 + 05517213	- 01420056 - 05466296 - 00284108
	8	- 029346 + 015226 + 012834	- 001286	008276 005628 + .000072 + .000414 000264 + .001518 + .006448 + .014601	- 001380 - 001000 - 018688	+ · · · · · · · · · · · · · · · · · · ·	069900-+		+ .092890 012402 205695		BLE	Left	N.	+ -7688	+1-0000	+1.00272 0 + 05215 + 05915	.	Verifi	05871448 22556592 0027676	.2755577] + .05870934] + .00072036] +	-01101680 -00234720 -00062880
TITO TO	19	- 017082 + 002648 - 002232	- or6666	+ .000264 + .000264 + .006448	+ 000420 + 001070 + 032028		- 2000312		482530 +-392886 +-006873	063300	T'A	Pioht.	Hand	0000	2608 2608	0104 0136			7++	111	.00002800 + .00002116 + .99987024 +
! !		056721 + .033100 + .023250	00037	- · · · · · · · · · · · · · · · · · · ·		+ 032040 + 982256 - 012858	- 150001-		1.234870 - 722943 - 083601				No.	1 62	eo 49 ├ 1 + +	, c, c,					+++
7	77	- 086679 + 041044 + 027842	028193	-018522 -001116 -028644	+ .005100 187700	- 005885 - 020528 - 000842 - 000842		3 + 021760 5 - 017272 + 017578	+ .089810 + 1.234870 + .049257 722943 394632 083601	233499 + . 422754			8			·10750392 ·00598096			-29592780	42189	1634.63
	97	+ 058254 - 039058 + 031806	+.051007	+ .001470 + .011173 - 000180001063 + + .000822 + .006762 + + .014260070432 +	+ 004608 - 000730 - 124780	107610 1-084176 1-084176			+ ·149520 - ·059202 - ·000441	+.076285		n 286	_		· · ·	1.1	1		1.4	- 1	+1·3700000 310 + ·89168458
, I	q	+ · 006620 - · 006620 + · 005766	118900.+	+ 001470 - 000180 + 000682 + 014260	-001428 -003430 -300628	017344			+ ·675989 - ·084047 - ·080681	- 024870 -		Equation 26				00814504 00027676	- 00488		- ·10926370 + ·07764354	- 1	0 - · 04841610
3	\$	+ 130086 - 069510 - 089804	1,0201	- 001894 - 004706 - 117236	+ 6461790	- 055050 - 089816 + 001884		+ 104992 - 032980 + 009400	\$92070 +-110214 +:090216	-110228			75		* * .	09646364	02314750		00025970	-00081018	·008(3572
<u> </u>	9	+ 101178 064214 + - 066216	+ 103180	6 - 000128 - 001746 - 001280 - 005832 - 010230 - 095440 - 0	+ .005112 006950 010472 035690	+ .141690 + .054672 002268	+ 075093	+ ·009724 - ·001336 - ·050384	+ •239190 - • 132678 + •085973	-062385 + .099989			88	.00487186 .00052290	.01710487 .00183432 .00235030	<u> </u>		00248700	++	- i	- · 04841610 +
2	3	- 004634 - 004634 - 000744	- 024025	000126 000088 010230		+ 003840 + 000416 - 000010	005130	+ 000476 + 036680	+ ·001820 - ·000585 - · ·003024	-•06238₹		n 25	_	+1+	-1 + 1		- 4	++	1.4	· + I	3F0 - 99r
=	11	014892 011916 000558	00353	+ 00006	+ .00450 + .018490 + .002-20	- 001680 - 000160 + 000294	+ .000407	- 088556 + 029886 - 000658		+.008722	:	Equation	88	16981398 + .01847052 + .00072050	- ·01927642 + ·00190200 - ·00127950		1	+ .02039430	1 +	+	+1.22000000
5	3	+ .083439 014564 015252	+ 05302	000896 001804 052890	+ .000696 + .001610 + .052496 006370	+ · 0008900 - · 000676 - · 001200	H-011978	+ · 233104 - · 088556 + · 083746	02520 070200 +-002520		IIV		77	-20127576 -00724896 -01243110	.03207601 .00127836		.00706248	00068110	00005936	00002572	20006243
		+1+ +	070000	+ 000088	+ .002064 + .000190 017340 + .00367.	+ ·012270 + ·014272 - ·000718	-015397	+ ·011016 - 050056 - 044744	+ · 044940 - · 042003 - · 067863	098710 +.158094	LXX		56	-02279352 -01923110 -00447330	. +++			1 F	++	+	- 2298
α		+ 00728: - 00856(- 025145	+ 000138 + 001012 + 006138	+ .000024 + .005810 + .012686	001095 002560 000214	012795	- 010948 - 003060 - 014476	011200 012519 005300	-023503	LE	ո 24		+ 1 +				•		-	+
2	- 07	+ .057448 051696 + .003584	1681700-+	001404 + .000418 053830	-007044 -000020 -025584 -001190	+ .005760 005424 000070	•015850	- 0023944 - 012104 - 005264	- 023730 - + 004095 + + 007245 -	· 015286 +	TA B	Equation	22	88546861 + .67930468 + .00609150			•			* +3	20006243
	, 100710	+ 189262	060970	+ .005418001404 + .000198 + .001364 + .000418001012 + .200772058630 + .006138	-020760 -001980 -120904	5005400034080019936 + .0227044 + .000916 + .000416 .000416 .3000080 .0009823000080 .0009823000080 .0008823000080 .000882300008923000080 .0008823000080 .000882300008823000080 .00088230008823000080 .00088230008820008	F-062182	4 - 114920 + 003944 + 045064 - 012104 + 031020 + 005264 + 0	-099330 -024336 -029673	-055177			24	1.04050932 - -26660064 + -10509934 +							+2.19000000 +.76879074
	000000	+ 043699 - 028830	-017999	+ 001188 - 003410 - 005301		005400 019936 000916	1.053789	028220	087220 + +-053586 + +-001890	+ 090680-		ients of	14.38	+ · 002954 + · 010408 - · 002905 + · 002405	083060 065177 +- 015286 023503	+ .098710 158094 008722 + .062385	009989 +-110228	024870	+ 283499 - 422754 + 063300	134,008	+ .006265 + 2 + .000256 +
4	10101		02725	-00032 -02490 -001923	+ .000228 000469 007276 + .000310	5 + .002665 + .002000 000024 + .000138	00327	005576 +-086564 000204028220 +-000876 +-055460	+ .008750 001404 004347	002405 +		From LXXIII: coefficients	k ₂₅	-010179 + -404319 + -102614 - -003276 +	- 063789 - - 062182 - + 015850 + - 012795 -	+ ·015397 + · · · · · · · · · · · · · · · · · ·	- 075083 833920 + -	-203943 +-	+ .062865 + .156091	000038 +	
·	2	- 00/450 - 00/348 - 00/348	1 196084	0.54036 + 0.19062 - 0.14278 - 0.00396 + 0.044485 + 0.00331 + 0.044485 + 0.00331 + 0.00	$\begin{array}{c} \textbf{.002052} & -\textbf{.000936} \\ \textbf{.001090} & +\textbf{.000110} \\ \textbf{.020196} & -\textbf{.003570} \\ \textbf{.000350} & -\textbf{.000100} \\ \end{array}$	000000.+ +000000.+	102014	+ 001224 + 000524 + 000655	+ ·003500 + ·000468 - ·001449	+.0020051-		rom LXX	- F	151706010179479228404319 +040272 + .102614066506 + .003276 +	+ 075804 + 108471 + 010658 + 025145	028679 + 053628 - 008534 - 024625 +	103180	-00130 -051002 +-	+ 028193 + + 000871 - + 016866 + +	014505	- 901303
62	1 0	+2.557200 -1.987334 120714		-111			.404319	025908 004624 012878	.018130 .009128 .08442	·010408 +			88		++++	++1 882 11+1	<u>i i.</u>	i i	+1.170 +	3	<u>+ i.</u>
Ī	000110	- 168148 - 168148 - 591852 591855	059184	- 004572 + 070004 + 026691	7002316 + .000550	-016760 + -016384 - -000268 - -001230 -	+ 64.010.+	087060 + +-080400 - 004136 -	+•071680 -•015093 088745 +	002024	4.	疑!	8	0 19 19 19 19 19 19 19 19 19 19 19 19 19	+++ 18 19 10	· · · · · · · · · · · · · · · · · · ·	48.	+ +	++-	3	
t2	و ر	4 A 4 B 4 C 4 E	3.0	400.40	7-0475 + +	++1+	+ - III	i + i 목표함 8	÷ i i	Sum		J filtipii 	H	1 2 2 4 4 4 1.86 4 1.86	8400	●유디컴	8171	99	8 19 12 8 13 14		

TABLE LXXVI.

	r	t=24	25	26	u	t=24	25	26	24 K u	t=24	25	26	25ku	t=24	25	26	26Ku
	1 2 3	4.799	- • AOAN	14 .010	U 9.	1e50000	1	14.000037	ll == • 778491	- • 1 <i>4</i> 0597	1 • 4.5661 <i>6</i>	1 OOOK10	= - ·055853 = - ·596603 = + ·103882		- • UZ37 3Z	4.0TIO91	= + ·002230 = - ·013760 = + ·002616
	4 5 6	+ .0758	0538	083	II S	+ 104384	- 015785		=+ ·088300	0.022240	• 060762	004878	= − · 0484 00	+∙000278		- · 093468	=+ ·002690 =- ·096848 =- ·064861
	7 8 9	+ .0251	- •0128	023	5 o	1.034569		l • 000085	$ = + \cdot 030722$	H + • 007364	.l — ∙014456	si • 001879	≃ • 008471	+ •00009 0	- 000751	02/04/30	=+ ·018176 =- ·027091 =+ ·111816
() (5)	10 11 12	-0008	iI— •∩∩∩4	•0•18	7111	II MALQIC	ıl • • • • • • • • • • • • • • • • •	71	$1 - + \cdot 0(467)$	II → •001025	71 — • 0000455	2 - • OXO511	!!=+ •000064	T 0000019	i — •000028	- • ULBS / BD	=178712 =009795 =+.070891
% Ā	13 14 15	- ·1035 - ·0206 - ·0068	3 3330	0 → •110	2114	11	007701	31++0000397	= - · 125942	7 I • 0 06103	31) + • 006469	11 =375724	- • • • • • • • • • • • • • • • • • • •) •OTAD#\	十 . 150045	=117250 =+-104820 =+-039950
	16 17 18	1+ •0289	31+ •0689	0 + 233	5117	11	ll + •02021!	5I → •000084 0	== + ·05988	J! + • 00827	11 + · 07781	61++013700	= + ·022346 = + ·099790 = - ·201000	+ .00010	3 + •UU9K/9#	4 .505017	=- ·083827 =+ ·266768 =- ·484685
	1:20	14 .0019	RI O.K.	য়1924	$\alpha \alpha$	リエ・ハハラハ	J	51 T • 00007 B-1	H — 4 • 00391	SI · OOCKR	11 + .00632	5) + •007866	$01 = + \cdot 014672$		> 十 *(JUU322)	11 4. • TOOL TO	=+·075152 =+·151044 =+·003761
	23	- ·001	- ·014 - ·005	+ .000	322 323	+ · 075878 - · 001796		+ •000023 + •000001	=+.07164 =00331	7 + •01616 5 •00038	6 - · 01637 1 - · 00587	6 + ·000370 6 + ·000018	= + ·000160 = - ·006236	+ ·00019 ·00000	- · · · · · · · · · · · · · · · · · · ·	+ ·007086 + ·000337	=+.006483 =+.000027
į	24 25 26	+1·377 + ·298	1 + ·298 4 +1 ·129 8 + ·058	+ .056	7							:					

TABLE LXXVII.

t		21		22		23		t		21	22	23	rka from	rku		t	21	22	23	rku from	rku
r=1	=	1517				·0030		r	u	tku	Zº 2 k. (8	,t)	LXXI		r	u	tku	∑s rks	(s,t)	LXXI	
3 4 5 6	- + +	· 0403 · 0568 · 0758 · 1038	++-	•1026 •0033 •0538 •0622	+-	·0029 ·0024 ·0831 ·0552		1	1 2 3 4 5	+ ·10154 + ·00854 + ·01197	+ ·02260 - ·00574 - ·00018	+ • 000002	- · 1242 · 0254 + · 3182	= - ·0228 = + ·3300		4 5	+ · · · · · · · · · · · · · · · · · · ·	+ • 00056	0000 0001	- ·0018 + ·0066 + ·0301	=+·1175 = ·0000 =-·0010 =+·0208 =-·0065
7 8 9 10	++	0107 025 0267 0530	1 — 7 + 3 —	-0128 -0154 -0120	+	•0153 •0235 •0987 •1581 •0087	I rks (s,t) from		6 7 8 9	·00227 ·00532 ·00566	+ · 00072		- · 0198 + · 0058 + · 0840	= - ·0224 = + ·0008 = + ·089		8 9 10 11 12	+ · 0007 + · 0014 - · 0001	+ · 0016 - · 0012 · 0000	+ · 0003 - · 0004	- ·0069 - ·0022 + ·0018	=0009 =0043 =0025 =+.0016 =+.0006
12 13 14 15	+	024	8 +	-0051 -0751 -3330	+-+	•0624 •1000 •1102 •0249			10 11 12 13 14		+ · 00002 - · 00020 + · 00420 + · 0186		+ ·0300 + ·0040 + ·2475 - ·1960	= + ·0291 = + ·0008 = + ·2728 = - ·1727		13 14 15 16	+ · 002d + · 0005 + · 0002 + · 0013	0078 0346 +- 0212 +- 0038	0008 +-0008 +-0001	- ·0097 - ·0108 - ·0010	=- ·0152 =- ·0442 =+ ·0204 =- ·0010
16 17 18 19 20	-++++	·000	2 + 4 - 7 +	-0689 -1561 -0664	+		5 3 3		15 16 17 18 19 20	00598 00008	- · 00203 - · 00383 + · (·0873 - · 00373	00012 0005	+ ·1050 + ·0823 + ·1024	=+ ·1134 =+ ·0728 =+ ·1102		18 19 20	-0000	0162 +-006	- · 0011 + · 0002	+ 0050	= + ·0138 = - ·0122 = + ·0071 = + ·0031
u=1 2 3 4 5	+	•211 •778 •025 •076 •088	5 — 4 + 8 —	-5966 -1039 -0127	3 + +	0026	3 6 7	2	1 2 3 4 5	+ ·11810 + ·87300 + ·03137 + ·04300	+ ·0000 + ·2412 - ·0612 - ·0019		4 - ·1245 4 +1·1816 4 - ·3006 3 - ·0646	= ·0000 = +1·7960 = - ·3300	4	3 4 5 6 7	• 0079		-0000 0000	+ ·1132 - ·0150 + ·0062	3 = 0000 2 = + 1175 5 = - 0206 2 = - 0010 9 = + 0006
6 7 8 9 10	+++1-	124 019 030 031 077	4 + 7 - 9 +	· 0088	+ 5 - L +		3		6 7 8 9	- · 08057 - · 00838 - · 01954 + · 02078	+ ·0871 - ·0094 + ·0076 - ·0091	+ · 00076 - · 00025 + · 00035 - · 00136	3 - ·1434 1 + ·017 2 - ·0106 3 + ·032	= - ·1865 = - ·0006 = - ·022		8 9 10 11 12	+ · 0021 + · 0041 - · 0005	+·0000	- · · · · · · · · · · · · · · · · · · ·	+ ·000 - ·008 - ·000	8 = - · 0068 4 = + · 0028 2 = - · 0006 8 = - · 0006 4 = + · 0016
11 12 13 14 15	++	•004 •032 •164 •125 •050	2 + 5 - 9 +	-0022 -1210 -3757 -2298	+++	• 04:00	3 1 2 3		11 12 13 14 15	+ · 01016 + · 08034 + · 01616	- 0030 + 0448 + 1980	4 - · 00086 0 + · 00136 7 - · 0013	3 + ·018 3 + ·046 2 + ·059	3 = - · • • • • • • • • • • • • • • • • • •	1 7 9	13 14 15 16 17	+ · 0016 + · 0008 + · 0039	+ · 004 5 - · 002 0 - · 000	2 + ·000 5 + ·000 5 - ·000	$3 - \cdot 021$ $1 + \cdot 003$ $2 + \cdot 017$	6 = + · 044 4 = - · 015 1 = + · 001 1 = + · 020 7 = + · 012
16 17 18 19 20	-+-++	·059 ·046 ·042	0 + 8 - 7 +	•0836	3 + 9 - 8 +		3		16 17 18 19 20	02198 00031 01300		L 0032: 3 + 0058: L 0008:	2 — ·044 4 — ·025 7 — ·007	3 = + ·045 1 = - ·110 2 = + ·072 3 = - ·061 4 = - ·019	202	18 19 20	001	000	+ .000	2 - ∙001	5 = + • 013 2 = - • 003 9 = + • 007

TABLE LXXVII.—(Continued).

		t	21	22	28	rku from		Т	t	21	22	28		ntinu	T -	t _.	21	90	1 00	·	:	
	r	u	tka	∑° rka (s	s,t)	LXXI	rku	r	u	ek.	u Sarke	(s,t)	rku from LXXI	rku .	_ _	u	<u> </u>	22 Σ .k.	(s,t)	ku froz LXXI		x k u
	5	5 6 7 8 9	+·0009 +·0022 -·0024	+ · 0027 - · 0007 + · 0006 - · 0007	+ · 0063 - · 0015 + · 0028 - · 0095	- ·0171 + ·0262 + ·1684 - ·1524	=+ ·8604 = ·0000 =+ ·0250 =+ ·1784 =- ·1649		12 13 14 15 16	- · OUr	2 + ·000 5 + ·002 2 - ·001	C + * * * * * * * * * * * * * * * * * *	- ·0695 + ·0379 - ·0343	=- ·0179 =- ·089 =+ ·0371 =- ·0868 =- ·0076		13 14 15 16 17	+ .0170	+ .0091	+ · 0117 - · 0129 - · 0029 + · 0089 - · 0274	+2·002 - ·030 - ·355 + ·944	0 = + 8 = - 6 = +	·2·030 ·000 · 382 · 957
		10 11 12 13 14	0091 0018	+ · 0083 + · 0144	+ ·0096 - ·0106	- ·3547 + ·3089	= + ·1882 = - ·0409 = - ·0678 = - ·3510 = + ·3110		17 18 19 20	+ · 0000 · 0000 - · 0000		60063 3 +-0115 60017 00036	+ ·0510 - ·0160 + ·0107 + ·0100	=+ ·0450 =- ·0032 =+ ·0089 =+ ·0064		18 19 20	· · · · · · · · · · · · · · · · · ·	+ .0189	+ ·0496 - ·0074 - ·0157	+ .341	7=+	•410
		15 16 17 18 19	+·0015	+·0068 -·0029	+ •0407 - •0061	- ·1246 + ·0458	= - ·2301 = - ·0348 = + ·1760 = - ·0771 = + ·0388	9						= + ·8757 ·0000 = - ·0458 = + ·0554 = + ·1491		13 14 15 16 17	+ ·0180 + ·0026 + ·0009 + ·0064 - ·0086	+ ·0282 + ·1251 - ·0766 - ·0139	- · 0104 + · 0115 + · 0026 - · 0080 + · 0244	- ·0300 +1·9004 - ·8844 - ·8670	5 = + = -	•000 2•039 •957 •382
	6						=0160	٠	16 17 18	+·0016 -·0009	+ ·003 + ·000 + ·001 - ·0024	+ · 0261 - · 0478	+ ·0367 + ·0818 + ·0518	=- ·0431 =+ ·0428 =+ ·0755 =+ ·0780 =+ ·0145		18		+ ·0506	· 0441 + · 0066 + · 0140	Fent		
		6 7 8 9	0033	- 0007 -	- 00064	- 1277	= ·0000 = + ·8604 = - ·1734 = + ·0250 = - ·1382		20	-0000	+ • 0001		+ •0601	=- ·0282 =+ ·0752	15	17 18	+ .0014	+ .0158	+ ·0010 - ·0031 + ·0093 - ·0169 + ·0025	+ ·2189	=+	•2450
		11 12 13 14	∙0026 -	+ 0144	- 0072	- 8556	= - ·1649 = + ·0673 = - ·0403 = - ·3110 = - ·3510	10	11 12 13	0003 +-0019 +-0080	-0000 -0000 -0002 +0029	+ ·0016 - ·0111 + ·0179	+ ·3428 - ·0567 - ·0359 + ·0143	= ·0000 = + ·8757 = - ·0554 = - ·0453 = + ·0431					+ • 0054			
		16 17 18 19	+ ·0035 -6000 + ·0021	- · 0029 - - · 0029 -	- · 0050 - - · 0152 - - · 0274 - - · 0041 -	- ·2272 = - ·0924 = - ·1419 = - ·0208 =	= + •0777 = + •1760 = + •0160	-	- 1	1		. 0.00	- '0000	= + •1491 = - •0755 = + •0428 = - •0145 = + •0780	16	17	- 0017	+ 0005	- · 0021 - + · 0064 - - · 0196 - + · 0354 - - · 0068 -	+ •7174 - •0950	=+	·0000 ·7276 ·0556 ·2455
 		.				- 0471 =			19 -	- ·0013	~ ·0026 ~ ·0002		- •0600 - •0040	= •0752 = •0282					0112			
7]	9 10 11	- ·0005 - - ·0001 - + ·0001	·0003 + ·0003 - ·0000 -	·0018 + ·0029 + ·0002 -	· 0172 = · 0172 = · 0058 = · 0178 =		-		-0000 -0001 -0005 -0001	0	+ .0010	- 0007 - 0027 - 0485	+ · · · · · · · · · · · · · · · · · · ·	-1	17 18 19 20	+ ·0017 + ·0010 + ·0001	- · 0069 - - · 0156 - - · 0066 -	+ · 0638 - · 1129 + · 0169 + · 0358	-1·9296 - ·1283 - ·0421 - ·6264	= +2 = = + = +	•0006 •0000 •0666 •6628
	111111111111111111111111111111111111111	16	0004 0001 0010	- · 0073 + - · 0045 + - · 0008	··0020 + ··0005 - ··0014 +	- 0056 = - 0426 = - 0751 = - 0119 = - 0384 =	+ · 0371 + · 0694 - · 0070 + · 0368		17 18	- · 0002 - · 0001 - · 0001 0	0	+ ·0011 - - ·0006 +	- 0112 = - 0254 = - 0010 = - 0147 =			17	- •0018	-0199	- 1182 + - 2040 + - 0307 - - 0649 +			
8	1 1 2	7	1.0000			- 1	- 0450 + 0064 - 0089		12 - 13 - 14 -		0 0 0002 0007	0006 -	· 0007 · 0890 = · 0586 =	+ 0441 + 0497	19	19	F • 0000 7		- · 0048 - · 0101		-+·	- 1
		8 9 0	+ ·0008 - ·0006 + ·0001	-0001 + -0001 + -0001 + -0000 +	·0004 + ·0006 + ·0027 + ·0043 + ·0002 +	· 0002 = · 0581 = · 0019 = · 0161 = · 0045 =	+ 0000 + 0595 - 0016 + 0188 + 0048		16 4	- 0016	+ •0001		-0256 =	+ •0220	20	19 +	· · 0001 0	·0010 •0001	·0096 ·0202 +	•0106 = •3265 =	= • =+•	0000 3468

									- I
	8	.0028 .0038 .0027	.0963 .0648 .0182	.1787 .0098 .0098	1172 1043 0838	. 1510		+ .0687	.966r
		.6559 .6966 -1039 + 1037	0434 0431 - 0219 - 1 + 1	4600 6000 4 1 1 4	-1210 -3757 + -2298 + -0223	-2010 -2010 -0836 -146 -146	.0000 .0000 .2884 .4	- 1294 - 0587 + +	+ 5105
	28	11+1 3232	11+1		11++ ដូខ្មុំខ្មុំភ្នំ	4144	1414	7+	+
	ă	·2119 ·7785 ·0254 ·0768	.0883 .1241 .0194 .0307	6322 + 1 + + + 1 + +	.1845 -1259 - -0505 + -0597 +	2222 2222	++ • • • • • • • • • • • • • • • • • •	-2934	-5354+
		1111	++++	11 + 1	1172 1172 0638 1 1 + 1	- 1510 - 1510 - 1510 - + +	11 + 2934 + .0036 + .0 21 + 1.1294 + .0587 + .0 21 + .0587 + .1.12470 31 + .07160033 + 1.1	++ 8	+
	83	1 - 0138 0022 0026	0849			11+1 3838	++1.1247	1	38
		.0559 .0559 .0127 -1089	0484 0484 0085 1 + 1	.0086 .0154 .0022 .0022 .0022	.1210 .0223 - 2298	.0998 .0146 .0146 .0836	488 488 616 616	2000	·oii6 + ·3594 +
	82		1+11	1.1 ± 1	1++1	11+1	++++	++	
	21	•2119 •0768 •0254	- 1241 - 0883 - 0307 - 0194	978 818 819 819 819	1845 0597 0505	<u> </u>	? <u>````````````````````````````````````</u>	-0711 -0008 +	-1362
		-0813 -0198 + -0031 - -0071 +	.0160 .0383 .0089 .0089 .0064	0752 02882 0148 1 + 1 -	.1315 + .0555 - .0105 -	0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0467 -0886 -0758 -0039 -++	·0146 -	計已
20	8	+1++	1+1+		<u> + </u>	++ + &ô. &	111+	++	± 2
ion	19	- 0198 - 0612 + 0071 - 0081	- + .0883 + + .0064 +0089	0282 0752 0142 0036	01315 0738 0106 0336	8688 8888	+ .0039 + .0146 + .1510 + .0427	0752	is X
conditions.		.11020198 .07280612 .0122 + .0071 .01330031	-1760 -1760 -1760 -++	0145 0780 0030 + + +	.4101 1315 .5456 +- 0738 .0556 0106 +- .2455 0665	+2.0006 +.6628 +.0 -6628 +.0 -6628 +.3468 +.0 -6628 +.3468 +.0 -6628 +.0 -6628 +.0 -6628 +.0 -6628 +.0 -6628 +.0	.0599 + .0039 .0998 + .0146 .2668 + .1510 .0468 + .0427	·2010 + ·0836 +	of solution in Table $LXXVIII$.
00	81	++1+	1+11	+++1			1111	11 31.	
26	17	.0728 .1102 + .0133 - .0122 +	-1760 -0774 -0032 0450	0780 0145 0275 + + -	. 5456 - 4101 - 2456 - 0556	+2.000e + .0666 + .6628	9468 9010 7484 9639	3000	15 T
for		.1134 -0453 -0010 -0204 +	.0348 -2301 -0368 -0070	0755 0428 0107 - 1 - 1	.9573 .3824 .0 .7276	2455 2455 0555 0106 1	.0505 .0400 -0400 -0597	2886 + +	1:1:
k, f	16		11+1 នំដំនំទំ	++ + 2223	41 4	+ ! ਜ਼ਿਆਦਿ	1111	<u>+ i</u> 충호	ion
of ,l	25	+ • • • • • • • • • • • • • • • • • • •	+ .0348 + .0070 0070 - + .0368	+ .0428 + .0220 + .0107 +	- 3834 - 9573 + 7276 0	+ ·2455 + + ·0556 + - ·0105 - + ·0556 :	1645 - 0597 -1210 + 0228 -1172 - 0638 -1259 + 0505	+ .0400+	solution in
0		2729 2729 	.31102301 .3510 + .0348 .06940070 .03710368	1840 1840 1860 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9573	5456 + .0738 - .1815 +	.1845 .1172 .1259 +	·3757 +	- F SS
Values	14	1+11		1+11	∓I ⊢ ⊢		+++1	1+	
Va	13	·2729 - ·1727 + ·0152 - ·0448 -	.3510 + .3110 - .0871 + .0694 +	1491 • 0481 • + -	- 288 878 878	.5456 - -4101 - -1315 + -0738 -	.1259 .8757 .1043 + .1645	-1210 -1172 +	$V_{\text{erification of}}$
I.		++!+	11+1	282 41 ++ 1 +	+ 1 + 8688	8583	11+1	81명	扫염
117	21	++++	0673 0403 0048 0179	+ 0554+	+ · · · · · · · · · · · · · · · · · · ·	0030 +-0275 +-0142 0142	- +	++ 86	7 er:
LXXVIII.	Ħ	- 0429 + 0291 + 0063 + 0291 + 0681 +	+ .13820403 1649 + .0673 + .00160179 + .0188 + .0048	- 0453 - 0554 + 0440	$\begin{array}{c} -1491 + 0431 - 0022 + 0497 + 2 \cdot 0397 \\ -0.431 + 1491 - 0497 - 0022 & 0 \\ -0.428 - 0.755 + 0.029 + 0.107 - 0394 \\ -0.755 + 0.028 - 0.107 + 0.020 + 0.973 \end{array}$	+ 0780 - 0145 - 0275 - 0030 + 0145 + 0780 + 0030 - 0276 - 0282 - 0752 + 0142 + 0036 + 0752 - 0288 - 0036 + 0142	+.031903220047 0154+.00220001 1118+.0704+.0088 0779+.0047	0386 +-0001 +-0022 17870098 +-0704	$\frac{+.3940 +.0373 0411 +.0774 +1.4938 -}{LXXIX}$ Verification
LX		# 1 # 1 H	+ · · · · · · · · · · · · · · · · · · ·		<u> </u>	+ - 0145 0780 0282 +	+.0319 0154 1118 0779	+ 188	
•	01	.0891 — .0429 .0429 + .0891 .0043 — .0025 .0025 — .0043	+ + +	7 + .8757 80654 10458	1491 + 0431 -0431 + 1491 -0428 - 0755 -0755 + 0428	1+11	+111	<u></u> ∃∞	1.3940 + 1.0372 1.XXIX
LE	6	++1+	1.1649	+ 3757 0 - (1453 + 0554		++ 0780	- 0779 - 0886 - 1787 - 0819	+ .0154	÷:3
TAB		+ 0009 - 0224 - 0009 - 0065	+ 1734 + 0250 0 + 0595	0429 - 0048 + 0025 - 14449 - 1382 + 0188 - 0016 0881 - 0025 - 0048 + 1382 - 14449 + 0108 + 0108 0008 + 0018 - 0000 - 04008 + 0018 + 0109 0881 + 0018 - 0000 - 04008 - 0079 - 0408 0881 + 0006 + 0016 - 0408 - 0079 - 0408 - 0048	$\begin{array}{c} .1727 \\ .2729 \\0422 \\04242 \\0052 \\ +.0010 \\0204 \\ +.0010 \\0201 \\00201 \\$	$\begin{array}{c} \textbf{1108} + \textbf{0138} + \textbf{0122} + \textbf{1750} + \textbf{0774} - \textbf{00023} + \textbf{0450} \\ \textbf{0778} - \textbf{0128} + \textbf{0128} - \textbf{07774} + \textbf{17700} - \textbf{0450} - \textbf{0450} \\ \textbf{1001} + \textbf{0001} - \textbf{0001} + \textbf{0108} + \textbf{01010} + \textbf{0004} + \textbf{0008} \\ \textbf{0118} + \textbf{0071} - \textbf{0001} + \textbf{0108} + \textbf{0108} + \textbf{0008} + \textbf{0008} \\ \textbf{0118} + \textbf{0001} + \textbf{0007} + \textbf{0001} + \textbf{0008} + \textbf{0008} \\ \textbf{0108} + \textbf{0001} + \textbf{0007} + \textbf{0001} + \textbf{0008} + \textbf{0008} \end{array}$	- 0194 - 0219 - 0183 + 0307	0085	1497 FF
T		0224 + .0009 00090224 00650009 + .00090065	+ + + + + + + + + + + + + + + + + + +	+ · 0188 - · 0016 + · 0016 + · 0188 - · 0179 + · 0048 - · 0048 - · 0179	1+11	+ + +	788.25 1 1 1 +	- 688	-4840 - 12619 + 13085 + 14299 - 1453 + 10201 + 11497
	^	+ .06730224 18620009 + .02080065 0010 + .0009	-0873 - 0010 - 0208 + 8604 0 + 0260 -0873 - 0010 - 0209 0 + 8604 - 1734 -008 - 0065 + -0009 + 0250 - 1734 + 0595 -0224 - 0009 - 0065 + 1734 + 0260	++!!	++ +	11+1	$\begin{array}{c}0768 + .0254 + .12410883 + .0807 \\012710390431 + .04340085 \\ +.002700260649 + .08680271 \\02540768 + .0883 + .1241 + .0194 \end{array}$	$\begin{array}{c} \textbf{.5966} + \textbf{.1039} & -\textbf{.0127} - \textbf{.0434} - \textbf{.0431} + \textbf{.0219} \\ \textbf{.0138} + \textbf{.0026} + \textbf{.0027} - \textbf{.0963} - \textbf{.0649} + \textbf{.0182} \end{array}$	<u> </u>
		1862 +-0673 06731862 0010 +-0208 02080010	986	-04290043 +-002516491388 -069100250043 +-18831649 -0091001600060403 +-0673 -0691 +-0006 +-001606730408		1.077 1.016 1.088	+ ·0254 + ·1241 - ·0883 - ·1039 - ·0431 + ·0434 - ·0026 - ·0649 + ·0968 - ·0768 + ·0888 + ·1241	9648	145
		- 1862 - 0673 - 0010 - 0208	\$ - 85 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9463	3510 3110 3801 0848	1760 0774 0888 0160	124 124 124 124 124 124 124 124 124 124	288	4299
		38 12	00100208 +.8604 +.02080010 0 0065 +.0009 +.0250 00090065 +.1734	1 + 1 1	3883 1+11	238827 7 1 + 1 +	.21190768 + .0254 + .1241 .0559012710390451 .0022 + .002700260649 .778502540768 + .0883		- }
	4	0228 +.3300 33000228 +.1175 0 +.1175	.067300100208 .1862 + .02080010 .00090065 + .0009 .022400090065	+11+	+ + + \$2000	++ +	+111	1+	ê. +
		00228 + +1.79808300 - .8300 +.1175	01000	.6025 -0016 -0016	0152 0204 0010	.0133 .0071 .0071	-2119 0768 -0559 0127 -0022 +- 0027 -7785 0254	1039	-2619
	<u> </u>	9 000	1+11	02.08.08 1 1 2.08.08 1 1 + +	25.25 1 + 1	6128 1987 1987 1987 1987 1987 1987 1987 198	.0559 .0559 .0029 .7785	- ++	-195
•	67	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1111 1111		++1+	1+11	++	1.1	+
	_	260 S	1862 0673 1 1 1 1 1	0429 0429 0429 0429 0429 0429 0429	2729 1727 1727 1134 1134	0728 1102 1 + 1 = 1	· 5966 • 5966 • 0138 - 2119	-0550 -0023	-8762 +
	-	+ 1 1	<u> </u>	+1++	· +1++	++1+	1111	1 +	-lung
	-	<u> </u>				. ~~~	01010101	01 01	<u> </u>

98	0000	0000	0 0253 0279 0726	0000	• 4 11.99	••••	+1-8287	866.
92	0 1907 0471 0679	0024 0034 0150	+11	0408 0353 1586	0.1148 -0019 -0208	0000	•6118 0 +1	+1.001+
78	9943 -9943 -7338 -	1++	0000	11+	+1+	0002	+	+1.0068 +1
-	+1+	0000	.2679 -0886 -0526		8822 0 0 861 861	-1: -1: -1:	••	+ +
23			+ +1	2 88	.3159 +1.3822 0 0 .0019 + .0599 .0208 -1.1851	+		0500-1+60
23	9 + ·3680 0 1 - ·0576 8 - ·0555	+ ·1353 + ·0020 + ·0180		+ ·5079 0 - ·0529 - ·1058	+ .3159	<u>"</u> .500		8+1.0009
EZ .	+1.9189 0 4871 -2.0428			••••	0000	+1.6128	00	41.0018
8			0550 + .0559 0550	- 1.7926 0469 1340 + 1.9862	- 7.9967 - 58969 - 11.1014	4 4000 4003 0	9087	+ .9848
e			.0618 .0618 .1053	.4780 1759 -6454 -4019	-1.1067 +2.8897 -1.0423	+ 1 0000	+ .0100+	1.0003
81		 .	0800.	-1212 -1213 -3462 -0106	1.6911 -3862 -5672	0000	-080s -6763	1.0012
- 41			-2167 -0197 +++	+1.2999 0 - 0085 - -1.0469 +	+4.4081 0 + .0638 - -4.1022 -	.00:19 :2515 0	<u>++</u>	9900-1
91		.1134 .2688 .0273 .3024	-2364 -0045 -0592 +	-6.3935 +1 3128 0 +8.9465 -1	80-1-8	00.00 00.00 00.00	0.00	+ 1000 · 1 + 1000 · 1
25	****	7953 —1 3763 — 0406 + 2036 +	0478 -0228 -0132 -1116 -	+3·1818 —6 — •6274 — —2·9838 0 +8	7064 + .0071 1740 + .0071 1840 + 1.8536	+ 00017 0	+ 0 0	
		0276 - 12891 - 12891 - 1280 - 1280	0104+ 0115+ 0472+		6922 + 1141 - 1241 + 1241 + 1	0000	.1705 + .	÷
41		.0016 - 0016 - 2051	. 1103 0.0251 - 6217 - 6217	177	+1+	6800.	+	910 + 1
53		+ 11		-4183 +5·1237 -0894 0 -5079 - ·7518 -3384 -4·5261	-4146 +1-6386 -3425 0 -12930304 -7192 -1-2155	. 2443 0 - 0 0 0 0	8	+
21		45 -2·7170 83 -2·3840 54 +1·1879 73 +4·4341	81 -4.4640 + 15 + .6263 92 0 - +6.1378 +	+111	++1:	1	709082	93 +1.0
п		+6.9945 7 + .5954 6 -8.8473	+6.6231 + .4215 7 -3.2592 1 0	0 + .9112 + .0410 + .04102116 + .11291269 - 1.5228	0 + .9478 + .39241428 + .1579 + .06752786 - 1.8775	0 0 3377	0 + .6570	+1.0118 +0.9593 +1.0788
Ot .		0 9401 5 + .4617 51976	0 + ·3601 - ·4657 +1·3011	11+	+11	0000	0299• +	11.011
6		+2.781b 0 026b 3.4386	+3-8136 0 	+ .418	+1.0860 0 + .0257 -1.6814	0 + :2443 0	••	+ .978
8	2.0153 .1861 .2986 .2.2675	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9-0502 -0491 -2-4291 -2-2926	2.0465 .0117 .4797 2.1362		0014 0	0.0502	- 1.078r
7	. 3592 1.0443 1.9250 - 3517	-3611 4-1004 2-2414 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2008 -2008 -7125 -1-4382		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.1656 + .0602 + 0 0	1.0633
9	9178 -4636 -0093	$ \begin{array}{c} 0 \\ -1.4109 \\ + .5672 \\1257 \\ \end{array} $ $ \begin{array}{c}8611 \\ -1.221 \\ 0 \\1285 \\ \end{array} $ $ \begin{array}{c}8611 \\1285 \\1285 \\ \end{array} $ $ \begin{array}{c}8611 \\1285 \\1285 \\ \end{array} $	-2407 -2598 1-2593	2917 - 9135 - 9135		0000	1656+	1.0324
5	98 0 + .6138 0 + .3852 + .9852 .9852	1748 0 0 1.2245 1.2245	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9800.0	+	+ 11,16.
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 11	+ 11		-0021 -0021 -9958	.1103	Sum +1.0001 +1.0108 + 1.0356 + 1.0051 + 1.9771 +1.024 +1.0781 + 1.9786
_	+8.2069 0 + 1.9276 - 9.0950 0 + 1.6016 + 4.7125 + .9988 0 0 + 2.7125 - 0.988 8763 - 8.7185 - 10.6541 - 3.2023 + .6787 0 + 12.5498	.0129 + .2572 + .1477 - .1707 + 1				- Tri		0356 + 1
- -	+ 1.9276 16 + 4.7125 86 -10.6541 87		······································			0 + 1.3898 + 0.0026 + 0.0026 + 1.1725 + 3.5448	+	+ 80
69	+3.2069 0 +1.6616 6763 - 2.7186 -3.2062 + .6787					9001	+ -2106 +	7+1.01
-	+3-2069 0 5763 -3-2022	+ ·3009 + ·0082 - ·3443				+1.6123	• •	+1.000
	- 01 03 4		@2 <u>11</u> 2	8473	8884 8			1

Probable errors after adjustment.

20. Having obtained the solution of the normal equations corresponding to either 20, 28 or 26 conditions it is now possible to determine the probable errors of side, azimuth, easting and northing as explained briefly at the end of Chapter VII. This is first done for the point U_1 for which the necessary quantities forming the R. H. S. of the normal equations have already been found and given in table L. The computations are given in full for this point: after which other points are considered in less detail. It is necessary to form the quantities [uff] and $[uff] - k_1 [uaf] - k_2 [ubf] - \dots$ which may be denoted by u_f and u_F respectively [vide Chapter VII, equation (14)]. These are the reciprocal weights before and after adjustment and their square roots when multiplied by $33 \cdot 2$, $1 \cdot 575$, $4 \cdot 03$, as the case may be, give the probable errors in 7th place of log side, azimuth (in seconds), easting or northing (in feet) as explained in § 8 of Chapter VII. The factor $\frac{u_F}{u_f}$ shows the improvement (or otherwise) caused by the adjustment.

Side closure at U,

$$[uff] = (u \ 1f) + (u \ 2f) = 2 \cdot 61 + 2 \cdot 30 = 4 \cdot 91$$

$$[uof] = 2 \cdot 61$$

$$= 0$$
etc. as given in Table L.

For 20 conditions

R.H.S. of normal equation (13) are $2 \cdot 61 \cdot \ldots 0$

$$k_{r} = 2.61 \, _{1}k_{r} + 2.08 \, _{8}k_{r} - 6.80 \, _{4}k_{r} + 2.30 \, _{5}k_{r} + .02 \, _{7}k_{r} - 1.49 \, _{8}k_{r} + 1.99 \, _{18}k_{r} + 1.85 \, _{15}k_{r} - 2.59 \, _{16}k_{r}.$$

and this is required for values of r 1, 3, 4, 5, 7, 8, 13, 15, 16, k_r being taken from table LXV.

Putting in the coefficients of 2.61 etc. from table LXV the computation of k_r stands as follows:—

TABLE LXXX.

	r	- 1	3	4	5	7	8	18	15	16
g ·	[usf]			-	Valu	res of [w	/ sk _r		•	<u> </u>
1 3 4 5 7 8 13 15	+ 2·61 + 2·08 - 6·80 + 2·30 + · 02 - 1·49 + 1·99 + 1·85	- 131 -1.979 - 306 + 020 + 074	0 + · 030 - · 000 - · 000	0 695 057 000 + .008 + .008	+ · 028 + · 169 + 1 · 896 - · 000 - · 250 - · 716	+ · 002 - · 048 + · 001 0 + · 086	+ ·000 + ·041 + ·386 - ·085	- · 032 - · 028 - · 828 + · 001 + · 113 + 8· 716	- · 007 - · 050 - · 499 - · 068 - · 678	- · · · · · · · · · · · · · · · · · · ·
16	-2.59	+ .018	+ .018	+ -014	401	058	066	- 630	+1.242	- 1 · 73
Sum	-	+0.790	+ 0 · 061	+0.047	+0 504	-0.011	+ 0.122	+ 0.145	+0 173	-0.10
Multiplier [u:	f]k _r	+2.61	+ 2 · 08 + · 127		1 .		ł	1	+1 85 + 320	

TABLE LXXXI.

Values of skr from Table LXXI.

For 23 conditions

Side closure

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2.037	-1.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 145 -	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 178 -	+ .6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ .277 -	- 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 001	.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ .030 -	+ ·õ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 261	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	083	+ .0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$Sum = k_{r} + .165 + .013 + .044 + .570 + .008 + .104006 + .145178$ $Multiplier = [urf] + 2.61 + 2.08 - 6.80 + 2.30 + 0.02 - 1.49 + 1.99 + 1.85 - 2.59$	+ 3 - 007	+ •6
Multiplier = $[urf]$ + 2.61 + 2.08 - 6.80 + 2.30 + 0.02 - 1.49 + 1.99 + 1.85 - 2.59	+ 214	+ •8
	+ 955	+ •4
	+ 2 · 10	+0.4
$ urf k_r + urf k_r + urf urf urf urf urf urf urf urf urf urf urf urf urf urf urf $	7	
	+2.091	+ .8
	 	
	/	
$u_f = 4.91$ $u_F = u_f - \sum [urf] k_r = 4.91 - 4.42 = .49$ $K = A$	$\sqrt{\frac{u_F}{u_f}} =$	= • 32
	$\sqrt{u_f}$	

Azimuth closure at U_1

$$[uff] = 2 \cdot 61 + 2 \cdot 30 = 4 \cdot 91$$

$$k_{r} = 2.61_{9}k_{r} + 6.80_{8}k_{r} + 2.08_{4}k_{r} + 2.30_{6}k_{r} + 1.49_{7}k_{r} + 0.02_{8}k_{r} + 1.99_{14}k_{r} + 2.59_{15}k_{r} + 1.85_{16}k_{r}.$$

This holds for either 20 or 23 conditions. But the values of $_{s}k_{r}$ are different in the two cases. Values of r required are 2, 3, 4, 6 16. For 20 conditions.

Comparing terms in k1 side closure and k2 azimuth closure

etc.

so that

 k_2 (azimuth) is same as k_1 (side).

As regards k (side) and k4 (azimuth)

$$2 \cdot 61_{1}k_{3} = 2 \cdot 61_{2}k_{4}$$

etc

and

 k_4 (azimuth) = k_3 (side).

For k_4 (side) and k_3 (azimuth)

$$2 \cdot 61_{1} k_{4} = -2 \cdot 61_{2} k_{3}$$

so that

$$k_3$$
 (azimuth) = k_4 (side)

etc.

No further computation in this case is necessary; and the multipliers being similarly related numerically and with regard to sign the same value of k holds for azimuth as for side.

For 23 conditions.—The symmetry is lost by the introduction of base-line conditions without corresponding Laplace conditions and the values of k_2 , k_3 , k_4 , k_6 . . . k_{16} have to be computed.

TABLE LXXXII.

For 23 conditions

Azimuth closure

4		F	ŀ	2		8		4		6		7	Π	8	Π	14		15	T	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	[usf]						-	V	alue	s of	[usj	' ا	 k _r			L			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 4	+6·80 +2·08	-: -	2·042 ·135	+	·720	-	·012	-++	·374 ·205 ·018	+ - +	·045	-+	·028	-	071	-	.007	-	·06 ·04 ·08 ·52
$Sum = k_{x} + .780284 + .069 + .517124012 + .158 + .095 + .1$	8 14 15	+0.02 +1.99 +2.59	+	·000 ·118 ·009	_	209 003	+	·003 ·000 ·043 ·008	- - +	·258 ·000 ·708 ·119	++-	·088 ·000 ·150 ·031	++	·000 ·001 ·075 ·089	+ + + 2	112 001 1790 290	- - -1 +1	·018 ·001 ·760	+	· 05′ · 00′ · 73′ · 00′
Multiplier = [urf] + 2.61 + 6.80 + 2.08 + 2.30 + 1.49 + 0.02 + 1.00 + 2.50 + 1.8	Sum=	k _r	+	•780	_	·234	+		-		!		느_							
		. –	+ 2	.61	+ 6	.80	+ 2	. 08	+ 2	·30	+ 1	*49	+0	.03	+ 1	.99	+ 2	•59	+ 1	85

TABLE LXXXIII.

Values of kr from Table LXXVIII

	r	1	8	4	5	7	8	13	15	16		
8	[usf]					Value	es of [u		10	10	21	22
1 3 4 5 7 8 13 15 16 21 22	+2·61 +2·08 -6·80 +2·30 + ·02 -1·49 +1·99 +1·85 -2·59 +0·73	- 2·24 - ·42 0 - ·00 + ·54 + ·08 - ·29	0 + ·001 - ·032 + ·036 + ·003	- ·799 - ·048 0 + ·010 + ·088 + ·002 - ·053	+ ·141 +1·979 + ·001 - ·258 - ·698 - ·426 + ·090	3 - ·058 2 - ·014 - ·006 9 + ·057 + ·001 3 - ·013 - ·095	+ · · · · · · · · · · · · · · · · · · ·	2 + ·712 2 - ·032 4 - ·800 9 - ·800 + ·103 3 + 4 ·059 9 - ·707	0 3 + ·05 0 1 + ·05 1 + ·346	8 + ·296 2 - ·002 7 - ·132 9 - ·080 5 + ·001 5 + ·010 1 + 1·905 3 0 -1·884 - ·111 5 - ·168	+ ·001 + ·285 + ·029 - ·251 - ·110	+ .0
Multiplier	= k _r :=[<i>wf</i>]k _r	+0·160	+ ·016	+ ·041	+ •582	+ .007	+ .108	+ 1·99	+ 1:85		+ .949	+ 4

No special explanation is required for tables LXXXIV-LXXXVII, which are now given.

TABLE LXXXIV.

r		1		2	1	3		4		5		6		7		8	1	3	1	4		15	:	16
[usf]			<u></u> .		<u> </u>	<u></u>	l		<u> </u>	٠	/alı	les o	f [usf]	, k _r		<u> </u>				l	•	l	
- ·30 - 6·72 -11·83 - 4·59	+	·747	-7 +3	-448	-	1.956	+	· 425 0	+	·367	+	·803	+	-09u -071	+ :	050	- :	545 180	<u>-</u>	·250	+	•049 •038	+	
- 3.51 -12.15 - 7.53 + 2.18	+	-663 -056	+1	·615	7	·302 ·045	-	·161	_	0 •157	-1 +	0·016 1·264	+2	-040 -430	-	·254	+8	754 326	+ 4 -	·374 ·571	+	•586 •093	+2	3.
- 3·18 -10·44 -16·22 - 5·64	+	·846 ·699	=	·389	+	·042 ·053	+	·159	-8 +8	·226 ·516	+	3·759 •783	-	·791 ·200	+	452 578	+5	0 526	-19 + 14	·497	+ -1	9-126 0-888	+9	3 •
= k _r	 1	•033	-3	•339	+	-647	-	• 170	-	•630	-	3-017	+	• 593	-	206	-1	117	-	-691	-	-564	<u> </u>	•
r =[<i>urf</i>]] k _r	ł	-	ŀ		1	-	1						, 1		ł		_	-			i		Į.	
	[u8f]30 - 6.7211.83 - 4.59 - 3.51 - 7.53 + 2.18 - 3.14 - 16.22 - 5.64 = k, r = [urf]	[usf] 30 6.7211.83 + - 4.59 -1 - 3.51 + -12.18 7.55 + + 2.18 3.1310.42 5.64 + = k _r -1 r = [urf]	[usf] 30	- 30 - 346 - 6·72 - 0 - 7 -11·83 + '747 + 3 - 4·59 -1·336 + - 3·51 + ·467 + -12·15 - 663 +1 - 7·53 - 663 +1 - 7·53 - 029 - - 3·13 - ·117 - -10·44 + ·346 - -10·44 + ·346 - -5·64 + ·041 - = k _r -1·033 -3 r = [wf] - ·30 - 6	[usf] 30	[usf] 30	30 346	$ \begin{bmatrix} utf' \end{bmatrix} \\ - & \cdot 30 \\ - & 6 \cdot 72 \\ 0 \\ - & 7 \cdot 768 \\ - & 11 \cdot 83 \\ + & \cdot 74J' + 3 \cdot 44.3 \\ - & 4 \cdot 59 \\ - & 1336 \\ + & \cdot 200 \\ - & 3 \cdot 51 \\ + & \cdot 467 \\ + & \cdot 101 \\ - & \cdot 046 \\ + & \cdot 101 \\ - & \cdot 045 \\ + & \cdot 101 \\ - & \cdot 045 \\ + & \cdot 101 \\ - & \cdot 045 \\ + & \cdot 056 \\ - & \cdot 101 \\ + & \cdot 045 \\ + & \cdot 101 \\ - & \cdot 045 \\ + & \cdot 101 \\ - & \cdot 045 \\ + & \cdot 041 \\ - & \cdot 045 \\ + & \cdot 041 \\ - & \cdot 041 \\ - & \cdot 041 \\ + & \cdot 041 \\ - & \cdot 041 \\ - & \cdot 041 \\ + & \cdot 041 \\ - & \cdot 0$	$ \begin{bmatrix} uvf' \end{bmatrix} \\ - \cdot 30 \\ - 6 \cdot 72 \\ 0 \\ -7 \cdot 758 \\ + 1 \cdot 956 \\ -11 \cdot 83 \\ + 747 + 3 \cdot 443 \\ -13 \cdot 84 \\ -13 \cdot 86 \\ + \cdot 290 \\ 0 \\ - 3 \cdot 51 \\ - 4 \cdot 59 \\ -1 \cdot 336 \\ + \cdot 290 \\ 0 \\ - 3 \cdot 51 \\ - 7 \cdot 53 \\ + \cdot 663 \\ + \cdot 101 \\ - 014 \\ - 013 \\ - 3 \cdot 13 \\ + \cdot 117 \\ - \cdot 254 \\ + \cdot 041 \\ - 013 \\ - 3 \cdot 13 \\ - 117 \\ - \cdot 254 \\ + \cdot 041 \\ - 103 \\ - 3 \cdot 13 \\ - 117 \\ - \cdot 254 \\ + \cdot 041 \\ - 103 \\ - 3 \cdot 13 \\ - 117 \\ - \cdot 254 \\ + \cdot 041 \\ - \cdot 013 \\ - \cdot 013 \\ - \cdot 014 \\ + \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot 014 \\ - \cdot 013 \\ - \cdot 014 \\ - \cdot$	$ \begin{bmatrix} uvf' \end{bmatrix} \\ - \frac{\cdot 30}{-6 \cdot 72} & - \frac{\cdot 346}{0} & 0 & + \frac{\cdot 019}{1 \cdot 967} + \frac{\cdot 087}{456} + \frac{\cdot 425}{425} + \frac{\cdot 11.936}{425} + \frac{\cdot 425}{425} + \frac{\cdot 11.936}{425} + \frac{\cdot 425}{42$	$ \begin{bmatrix} u t t' \end{bmatrix} \begin{bmatrix} u t t'$	$ \begin{bmatrix} utf' \end{bmatrix} $	30	30	Usf Values of [usf]	$ \begin{bmatrix} u v v \end{bmatrix} = \begin{bmatrix} u v v \end{bmatrix}_{0} \begin{bmatrix} u v v v \end{bmatrix}_{0} \begin{bmatrix} u v v v \end{bmatrix}_{0} \begin{bmatrix} u v v v \end{bmatrix}_{0} \begin{bmatrix} u v v v v \end{bmatrix}_{0} \begin{bmatrix} u v v v v v v \end{bmatrix}_{0} \begin{bmatrix} u v v v v v v v v v v v v v v v v v v$	[usf]	Usf Values of [usf] kr			Usf Values of [usf] kr		$ \begin{bmatrix} uif \end{bmatrix} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	

TABLE LXXXV.

													•					
For	r 23 co	nditio	ns							At	U_1					East	ing cl	osure
Γ	r		1		2		3	4	5	6	7	8	13	14	15	16	21	22
	в	[usf]								Va	lues of	[usf]	,k,		, , , , , , , , , , , , , , , , , , , 			
	1 2 8 4	- ·30 - 6·72 -11·83 - 4·59	‡:	300	- 7.8	51 -	2·017 1·258	+ .430	+ ·052 + ·278 - ·078 + ·071	+ .96	6 + -092	+ •078	+ -115	- · 899 + · 124	- ·024 + ·012	- ·179 + ·070	-1-230 + -827	+ ·176 - ·604 + ·118 + ·459
	5 6 7 8	- 3.51 -12.15 - 7.53 + 2.18	-1:	607 046 145 012	+ 1.7	45 44 29 + 24 +	- ·366 - ·059	- ·07	-2.960 + .208 197 + .367	-10.22 $+1.30$	1 +2.10	2241	+1·245 +3·741 - ·321 - ·152	• 566	- ·559 + ·090	+2.760	+1.129 238	+ ·168 - ·440 + ·071 - ·051
	13 14 15 16	- 3·13 -10·44 -16·22 - 5·64	+2	·774 ·046 ·895 ·592	- :	145 + 320 + 357 + 150 +	- •110 - •016	+ .22	0 +3.54	$\frac{1}{1} + \frac{3.71}{74}$	$\frac{2}{6} + .78$	4 - ·396 3 + ·556	$+ \cdot 322$ $+ 5 \cdot 778$	-19·841 +14·342	+ 1·114 + 9·231 -11·031 + ·016	+3.831	-1·464 + ·732	-1·271 - ·867
	21 22	- ·14 - ·53	++	·109 ·311)26 			4 - ·012 3 + ·02					- ·020				- ·041 - ·597
M	Sum = ultiplier= [<i>urf</i>] k	-[urf]	-	•30		72 -	-11.83	-4.59	-3.21	-12.15	-7.53	+2.18	-3.13	-10-44	- ·497 -16·22 + 8·061	-5.64	14	- •53
	$u_f = 93$	3.29	<u> </u>	г	ι _F =	u _f	_Σ[urf]	k _r =9	3·29 –	73.57	7=19	·72	·	K =	$\sqrt{2}$	$\frac{u_F}{u_f} =$	· 4 6

TABLE LXXXVI.

For 23 conditi	ons					At U	ı					Northi	ng clo	sure
r	1	2	3	4	- 5	6	7	.8	13	14	. 15	16	21	22
s [usf]							Value	s of [us	f] .kr		'	1	<u>!</u>	
294 3 + 4.54 4 - 11.8 5 + 12.11 6 - 8.5 7 - 2.11 14 - 7.5 18 + 10.4 14 - 5.11 15 + 5.6 16 - 16.2	+ · · · · · · · · · · · · · · · · · · ·	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8 + ·021 8 + ·080 4 - ·100 7 + ·012 2 - ·000	0 + ·019 3 - ·008 1 - 1·839 1 - ·188 5 - ·022 7 - ·004 3 + ·035 1 + ·372 3 + ·067 3 + ·017 3 - ·277	+ ·01: + ·08: + ·08: - ·05: - 1·26: - 3·70: - 96: - 1·28: + ·58:	2 + · 04 0 + · 13 3 - · 07 7 - · 20 0 - 2 · 95 7 + · 37 8 - · 14 1 + · 25 4 + 3 · 68 0 - · 43	3 — · · · · · · · · · · · · · · · · · ·	6 + ·005 2 + ·054 8 + 2 · 046 7 - · 069 8 · 000 2 - ·487 5 - ·726 5 - ·726 5 - ·119 7 - ·193 3 + ·118	- •014 - •044 - •421 - 4•316 + 1•081 - •099 + •528 + 20•901 + •096 - 2•007 - 15•321	- 018 - 048 + 258 + 1 248 - 164 - 288 - 328 - 328 - 5 948 - 4 987 + 5 958	3 - · · · · · · · · · · · · · · · · · ·	- · · · · · · · · · · · · · · · · · · ·	058 321 300 + 1.465 + .326 069 + .151 - 1.371 254 + .780	+ ·02 + ·17 3·84 - ·38 + ·12 +3·66
Sum=k, Multiplier=[urf] [urf] k,	+ 6.72	30	+4.59	+ ·561	+ 3.120	- ·708	+ .236	+ ·587 -7·53	+ •072	+ •414	+ .604	- 1.587 -16.22 +24.980	+ 2·244 + 4·73	+1.76

TARLE LYYYPIT

	condit	เบทธ						At U	J_1						Eas	ting c	losu
	r	1	2	3	4	5	6	7	8	_18	14	15	16	21	22	24	25
	[usf]							7	alues	of [us	f] k,	·					<u> </u>
1 2 3 4 5 6 7 8 13 14 15 16 21	- ·80 - 6·72 -11·83 - 4·59 - 3·51 - 12·15 - 7·53 + 2·18 - 3·13 - 10·44 - 16·22 - 5·64	+ · · · · · · · · · · · · · · · · · · ·	-12.069 + 3.904 + .105 + .286 + 2.262 + .007 049 541 - 2.849 + 1.839 255	+ ·004 - ·253 + ·049 - ·002 + ·048 + ·461 - ·331 + ·006	+ ·153 0 - ·539 + ·073 + ·012 - ·007 - ·014 - ·188 + ·159 - ·016 - ·115	+ · 452 + · 012 + · 095 - 3 · 020 - · 188 + · 378 + 1 · 099 - 3 · 247 + 3 · 732 + · 196	+ 1·251 - ·246 + ·005 0 -10·454 + 1·206 + ·973 + 3·664 - ·564 + 1·298	+ ·006 + ·077 - ·004 - ·098 +2·107 - ·448 0 - ·116 - ·725 + ·114 - ·208	+ ·15; + ·01; + ·08; - ·60; - ·30; - ·30; + ·13; + ·21; + ·59; + ·08;	7 +6·384 7 +6·203 9 -5·899	1 - 1.834 0 + .528 3 + .076 2 - 1.092 0 + 4.268 1528 1 + .081 4081 4081 4081 6081 6081 6081 7081 8081 1081 1081 1081 1081 2081 1081 1081 2081 1081 1081 1081 2081 1 -	+ .762 241 005 423 053 080 + 1.197 + 9.994 -11.802	- · · · · · · · · · · · · · · · · · · ·	+ · · 234 + · · 909 - · · 117 - · 436 + 1· 073 - · 042 + · · 994 + · · 968 + · · 285	- · · · · · · · · · · · · · · · · · · ·	+ 5.232 + .300 + .853 310 - 1.508 146 + .067 + .515 + 1.314 819	-1·2 + ·0 + ·1 + ·5 - ·1 - ·0 + ·8
21 22 24 25	- 3.69	<u> </u>	030 + 3-682 + 2-201	+ ·007 + ·120 - ·383	+ ·368 + ·047	+ ·023 - ·418 + ·160	- ·023 - ·587 + ·159	- ·005 - ·081	+ ·012 + ·031	,	- ·064 + ·596 + 1·386	- ·012 - ·239	+ 122	- ·198 - ·156 - ·001 + ·262	- ·599	038	-1·š
Sum = ultiplication	r=[urf]	+ •171	- 6-72	+ •579 -11•83 - 6•850	-4.59	-3·51	-12-15	-7.52	+2.78		i			- }	- 1	- 2·236 - 4·73 +10·576	

To consider the probable errors at some other points the values of the R.H.S. of the corresponding equations have to be found as was done in table L for U_1 . The details are given below in table LXXXVIII.

TABLE LXXXVIII.

its	ions					A	t N. ec	mpute	d alon	g route	A, T,	S. Q. 1	P. N.						At J	along .	A, to N	ī, as be	ofore s	nd L. J	,
Circuits	Equations	$\mathbf{A}_1\mathbf{T}_1$	T ₁ S	1 1	S ₁ Q ₁	Q_1P_1	P ₁ N ₁	Side	Az.	A_1T_1	T ₁ S ₁	S ₁ Q ₁	$\mathbf{Q}_1\mathbf{P}_1$	P	ıNı	East- ing	North ing	N,L	L,J,	Side	Az.	N_1L_1	L ₁ J ₁	East- ing	North- ing
I	1 2 3 4	+ ·3 0 + ·1 -1·8	5					+ ·35 0 + ·15 -1·81	0 + ·35 +1·81 + ·15	·17 ·02 ·13 + ·87						- ·17 - ·02 - ·13 + ·87	- ·17	4		+ •15	0 + ·35 +1·81 + ·15			- ·17 - ·02 - ·13 + ·87	- 17 - 87
п	5 6 7 8		+ 0	05				+ ·25 0 + ·05 -1·46	0 + ·25 +1·46 + ·05		- ·34 - ·04 - ·30 + t·95					- ·34 - ·04 - ·30 + 1·95	- ·34 - 1·98	SI .		+ ·25 0 + ·05 -1·46	+ ·25 +1·46			- ·34 - ·04 - ·30 + 1·95	- 1.95
ш	9 10 11 12				0 - •97	0 + •24	_ °82	+1·72 0 + ·39 -4·82	+1·72 +4·82			- ·15	-1:38	3 + 1	-61 3-04	- 6.92 95 - 1.03 +19.22	- 6.92 -19.22	- ·6	138	0 •55	+2.40	- ·52 +2·99	-1·08 +1·36	- 2·55 + 3·32	+ 2.55 -10.75 -25.28 + 3.32
VIII	23 26																	+ •8:	+ •37	+ ·68					+ 1.60 - 3.38
			its	Equations		At G	, along	A, to	J. as 1	efore	and H	G,		its	Equations			At (l, along	A, B,	C ₁				
			Circuita	Edua	J ₁ H	H ₁ G	sid	e Az.	J_1H	H,G	Eas in		th-	Circuits	Equa	A,B,	B ₁ C ₁	Side	Az.	L,B, B		ast- ing	Torth- ing		,
			ı	1 2 3 4			. + ∗:	85 + ·8 15 + 1·8 81 + ·3	31		= :	17 + 02 - 13 - 87 -	·02 I ·17 ·87 ·13		2 3	+1.08 + 0 + .88 + -4.46 -	0 - •98 +	0 - 1 · 86 -	-2-19 - -6-62 -	4-40 -	3·58 — 6·56 —	10-96 4	- ·14 - 8·61		
		İ	11	5 6 7 8			+ -	25 (0 0 + ·5 05 +1·4 46 + ·6	25 16		·	34 + 04 - 30 - 3	•04 •34 ⊽ •95	T	21 24	+1-08	+1·11 0	2·19 0	0 +2•19	·11 —					
			i	9 10 11 12			- •	40 0 +2· 55 +5· 50 - ·	10 50		- 2 + 3	75 + 5 55 -10 32 -2 28 + 3	0·75 4 5·28	Vote.	0	he value Northin correspo (uantiti	g at J onding es N. L	colum L. L. J	G, ha ns at to fin	ve bee N, by d those	n brou adding at J.:	to the	om the em the milar	e e ₹	
				17 18 19 20	+0.8	5	0 18 –	0 + 3	l71-2·()4 - ·7	75 1— 2 -	79 7	7 • 65		t	ne dra Ine dra	atities	J,H,	H.G.	have	been	added	to th	е	
			VIII	23 26	+ -8	18 + •	32 +1	38 0 +1·3	0 -1·8 38 -1·6	53 —1·1 68 —1·9	10 — 6· 34 — 5·	46 + 5 17 - 6	5·17 3·46										,		

The computations of k_r for the following are omitted, and only the values of u_f and k_r for Side, Azimuth, Easting and Northing closures are given in the following Table.

TABLE LXXXIX

Cı	G.—(Continued)	G ₁ —(Continued)	J ₁ —(Continued)	N ₁ —(Continued)
20 conditions—S. closure r k	23 conditions—A. closure r k_r [urf] [wrf] k_r 2 - 125 + .35044 3 + .092 + 1.81 + .187 4018 + .15003 6 + .038 + .25 + .008 7059 + 1.46098 8 + .073 + .05 + .004 10 + .435 + 2.40 + 1.04 11 + .116 + 5.50 + .638 1211855 + .065 18989 + 1.17104 2018463 + .105 18 + .985 + .70 + .256 19089 + 1.17104 2018463 + .105 \$ [urf] k_r = + 2.48 uf = 8.70 20 conditions—E. closure 1 068 17 + .011 2 095 02 + .002 3 + .076 13 010 4 + .050 + .87 + .044 5297 34 + .100 6 + .491 04 .020 7 281 30 + .084 8 340 +.195 683 9 -2.002 -10.75 + 21.522 10 -1.766 2.55 + 4.350 11 +.587 3.35 +.154 12 +.607 +25-28 +15-43 12 +.607 +25-28 +15-45 13 -3.529 -3.57 +12.599 19 +1.226 -2.79 -3.421 20 +.202 + .765 + 1.545 21 urf] k_r = +54-15, 22 conditions—E. closure 1 482 17 + .055 23 202 17 + .055 24 018 02 .000 3 +.026 13 006 4 +.036 87 344 .026 5 075 344 .026 11 388 2.55 +.363 11 +.388 2.55 +.363 11 +.381 322 +.193 12 +.576 +25.28 +14.561 11 +.318 2.55 +.363 11 +.381 3.22 +.193 12 +.576 572 10 -1.388 -2.55 +.363 11 +.381 -3.32 +.193 12 +.576 -2.52 193 13 286 357 +10.232 14 388 7.65 293 15 388 7.65 293 16 388 7.65 383 17 388 7.65 383 18 -2.866 367 -10.232 19 388 7.65 383 19 373 k 555 12 383 765 383 13 360 466 21.357 14 388 7.65 383 15 360 466 21.357 16 388 7.65 383 17 388 7.65 383 18 380 466 367 383 19 380 367 365 11 388 7.65 383 11 388 7.65 383 12 380 367 383 13 360 466 21.357 14 388 7.65 293 15 388 7.65 293 16 388 7.65 293 17 388 7.65 293 18 2866 367 367	26 conditions—E. closure r k,	20 conditions—E. closure x	28 conditions—A. closure r k_
G ₁ 20 conditions—S. closure 1 - 1.03 + .8503 3021 + .1504 4081 - 1.81 + .14 5 + .013 + .25 + .00 7 + .072 + .05 + .00 8 + .053 - 1.4607 9 + .452 + 2.40 + 1.08 1112255 + .06 12103 - 5.50 + .50 12103 - 5.50 + .52 17 + .425 + .70 + .28 1914963 + .09 20 + .105 - 1.1712	. 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathbb{Z} \left [wf' \right] \mathbb{L}_{*} = + 17 \cdot 069 \\ \mathbb{K} = \cdot 67 \end{array}$ $26 \; \text{conditions-E. closure}$ $\begin{array}{c} 1 \; - \cdot 378 - \cdot 17 + \cdot \cdot 063 \\ 2 \; + \cdot 160 - \cdot \cdot 02 - \cdot \cdot 003 \\ 3 \; + \cdot \cdot 037 - \cdot \cdot 13 - \cdot \cdot 005 \\ 4 \; + \cdot \cdot 059 + \cdot \cdot 87 + \cdot \cdot 061 \\ 5 \; - \cdot 189 - \cdot \cdot 34 + \cdot \cdot \cdot 064 \\ 6 \; + \cdot \cdot 345 - \cdot \cdot \cdot 04 - \cdot \cdot 014 \\ 7 \; - \cdot \cdot 220 - \cdot \cdot \cdot 30 + \cdot \cdot \cdot 066 \\ 8 \; - \cdot \cdot 306 + \cdot \cdot 195 - \cdot \cdot 597 \\ 9 \; - 1 \cdot 448 - 6 \cdot \cdot 92 \cdot 10 \cdot \cdot 020 \\ 10 \; - 1 \cdot 173 - \cdot \cdot \cdot 95 + 1 \cdot 114 \\ 11 \; + \cdot \cdot 340 - 1 \cdot \cdot \cdot 03 - \cdot \cdot \cdot 350 \\ 12 \; + \cdot \cdot 497 + 19 \cdot \cdot 22 + 9 \cdot \cdot 552 \end{array}$

The results obtained in tables LXXX to LXXXIX are now collected in the following table showing values of u_f and u_p for Side, Azimuth, Easting and Northing closures of several points of N.W.Q., the latter for 20, 23 and 26 conditions.

TABLE XC.

	C,	or De	hra b	50			υ,		G	, or O	ach ba	.SO		J	٠,		N ₁	or Ka	rachi	base
	u_f	20 u _F	23 u _F	26 u _F	u_f	20 u_F	23 u _F	26 # _F	u_f	20 u _F	23 u _F	26 u _F	u_f	20 u F	28 u _F	26 u _F	u_f	20 u _F	23 u _F	28 <i>u_F</i>
Side Azimuth	2·19 2·19	•77 •77	.76	0		1·19 1·19	.49 2-42	•46 •46		1·67 1·67	0 1·67	0	3·00 3·00		1.00 1.14	•97 •97		1·34 1·84	0 1.30	8
Easting Northing	13·67 18·67	6•44 6•44	6·35 3·06		93·29 93·29	19·98 19·98	19·72 8·25	14·02 14·02	87·31 87·31	83·16 83·16	22·50 24·18			12·43 12·43	9·88 11·84		32·28 32·28	14·92 14·92		12·82 12·82

These values all seem reasonable. Rather unexpected results are 2.42 and 8.25 for 23 conditions for U_1 .

It appears that the greatest probable error of the adjustment of Easting or Northing is $4\sqrt{33} \doteq 23$ feet: in terms of deflection this is negligible and of the order of probable error of latitude (astronomic) result.

As regards azimuths for 20 or 23 conditions the worst case is $1 \cdot 6 \sqrt{2 \cdot 4}$ *i.e.* probable error of 2".4. Error of 7" is in this case possible and liable to occur.

In N. E. Quadrilateral where triangulation is not so good there will be greater errors. Closed on Laplace stations, however, errors are probably reduced to $1.6 \sqrt{.5}$ and $1.6 \sqrt{1.0}$ i.e. probable error to 1.6 and possible to 5''.

In the above the "possible error" is regarded as three times the probable error.

As further discussion of these results is at present impossible, for reasons explained in the preface the chapter is concluded with a tabular statement of the probable errors of log. side to 7th place of decimals, azimuth in seconds and easting and northing in feet; these are obtained as explained in § 20.

TABLE XCI

	C	or D	ehra ba	se		τ	J ₁		G	l or C	hach l	ase			₁		N,	or Ka	rachi l	08.8e
	uf	u_F	23 u _F	26 #F	u_f	20 u _F	23 u _F	26 u _F	u_f	20 <i>u_F</i>	u_F^{23}	26 u _F	u _j .	20 u _F	23 u _F	26 u _F	u_f	20 u _F	23 u _F	26 u _F
Side	49	29	0	0	74	86	23	23	64	48	0	0	57	36	34	33	50	89	0	0
Azimuth	2″.88	1″89	1"37	0	8.50	1.72	2.46	1"07	3"02	2.03	2"08	0	2.72	1.70	1"69	1.54	2"39	1.83	1.e0	0
Easting Northing		10-24	feet 10 - 16 7 - 05		<i>feet</i> 38·93 38·93	18.01		feet 15 · 07 15 · 07	feet 87 · 64 87 · 64	feet 23 · 21 28 · 21	feet 19·10 19·83	feet 10·76 10·76	80.79	feet 14 • 23 14 • 23	feet 12 • 63 18 • 86		22 - 89	feet 15·56 15·56	feet 14·43 15·28	feet 14·15 14·15

CHAPTER IX.

Deflections of the Plumb-line and values of "g" derived from observations of the Survey of India.

1. The first use of the tables derived in the earlier chapters will now be made use of to display in convenient form all the data of plumb-line deflections available up to the time of writing (May 1917). As regards the deflections in meridian no comment is necessary. The results of observation are immediately available. With the deflections in prime vertical the case is different. It has been subsequently observed or reduced. The triangulation accordingly is burdened with an accumulation of error in azimuth which may be largely reduced by adjustment on the longitude arcs. For this purpose it is not essential for the present purpose to reopen the adjustment of the whole triangulation except as regards the azimuth, and the process followed will be substantially that followed by Colonel Sir Sidney Burrard in Appendix 5, G.T.S. Volume XVIII. The numerical results will however be slightly different owing to the improved methods of computing the effect of a change in azimuth at the origin which have been developed in Chapters I—III; the differences will depend mainly on the taking into account of the effect of a change on azimuth at the origin on longitudes of points considerably removed from the origin.

When the triangulation of India was adjusted General Walker decided to adopt a value of the fundamental azimuth (of Surantal from Kalianpur) which differed from the observed value by a small amount (vide Chapter I, § 4) and this of course implied a deflection in prime vertical at Kalianpur. This has given rise to a little confusion as regards the longitudes of India. The astronomic longitude of Kalianpur has been determined with reference to Greenwich, but no account of the implied deflection in prime vertical has been hitherto considered.* Colonel Sir Sidney Burrard in adjusting the azimuth observations eliminated the effect of this oversight by returning to an observed value of the fundamental azimuth. The deflection in meridian remained in terms of the Everest spheroid with Walker's initial azimuth. In dealing with the deflections as a whole it will accordingly be better to keep the azimuths in the same terms as the latitudes, and to recognise that a deflection in prime vertical at Kalianpur is thereby implied. After the adjustments on the longitude arcs have been performed, the results of both azimuth and latitude deflections will be in common terms of Everest spheroid and Walker's origin.

Quantities for correcting all the deflections to refer to any other spheroid and origin are given in table XCV in which all the results are exhibited, as well as the deflections corrected to the special case of Helmert's spheroid and the latest observed value of latitude and azimuth at Kalianpur, as derived from observations at a group of stations surrounding Kalianpur.

^{*} Vide, p. xv G.T.S. Vol. XVII, Survey of India.

[†] Vide, pp. 7,9 Professional Paper No. 5, Survey of India.

2. As the correction for azimuths has already been treated by Colonel Sir Sidney Burrard loc. cit. it will not be necessary to state afresh the various practical difficulties which arose owing to longitude stations not being in general identical with azimuth stations. The observation results exhibited by him will be taken unaltered, and immediately applied to Laplace's equation. This equation has been given in somewhat amplified form in (3) of Chapter V. There is now no occasion to consider observation errors of astronomic azimuths or their determination. The accumulated error of geodetic longitude determination is certainly small compared with that of geodetic azimuth and so will be neglected. The equation may accordingly be written

$$(A-G-\delta G)$$
 cosec $\lambda - (A_0-G_0)$ cosec $\lambda_0 = A-G$ (1)

where the notation has been changed in conformity with the usual practice and A, A and G, G signify astronomic and geodetic determinations respectively, roman letters referring to azimuth and italic letters to longitude determinations: δG is the correction necessary to the geodetic value of azimuth: as this is the quantity required it will be convenient to rewrite (1). From Chapter I § 4 it is seen that $A_0 - G_0 = +1 \cdot 29$, $\lambda_0 = 24^{\circ}$ 7' 12", $(A_0 - G_0)$ cosec $\lambda_0 = 3 \cdot 16$. Hence

$$\delta G = A - G - (3'' \cdot 16 + A - G) \sin \lambda \quad . \quad . \quad . \quad . \quad . \quad . \quad . \quad . \quad (2)$$

which serves to determine δG . So long as Walker's value of azimuth is adhered to all geodetic longitudes of India require a correction of $-3^{\prime\prime}$ 16.

For the Helmert spheroid an additional correction δ_2G is necessary. The corresponding equation to (1) is

$$(A - G - \delta G - \delta_1 G - w) \operatorname{cosec} \lambda = A - G - w \qquad (3)$$

since G,G are changed by v and w respectively and the astronomic and geodetic azimuths at the origin have been made identical. Subtracting (3) from (2) it follows that

$$\delta_2 G = 3 \cdot 1571 \sin \lambda + v \sin \lambda - w \qquad (4)$$

The solutions of (2) and (4) and the deduction of δG and $\delta_2 G$ are now shown in table XCIII.

- 3 Having obtained the values of δG and $\delta_2 G$ at all Laplace stations it is next necessary to find values at the intervening azimuth stations. This is done in table XCIV, interpolating according to the number of removes from terminal stations. The Laplace stations are shown in block type. Azimuth stations between which adjustments have been performed are shown in italics.
- 4. The precision of deflections in prime vertical so far as is due to the astronomical observation, obtained from azimuth observation, is much less than those in meridian.* As may be seen from results obtained in Chapter VII the probable error of azimuth generated in triangulation is much greater than that in latitude or longitude, all being expressed in seconds. The deflection in prime vertical is derived from the azimuth anomaly by multiplication by $\cot \lambda$ —a quantity which ranges from 7 to 1.4 in Indian latitudes—and this further increases the lack of precision. Considerable improvement on the other hand should result by the use of Laplace stations, which has been made. A further source of weakness, of varying amount, is the actual azimuth observation itself. The observation is not nearly so satisfactory as that for latitude and involves graduation error of the instrument which, especially in the older observations, introduces a serious uncertainty. It is desirable then to consider the relative degree of reliability of the azimuth observations. On account of the other sources of error, mainly that of accumulation of error in triangulation it is not useful to do this in very great detail, and it is considered sufficient to work out the probable error from the

^{*} For probable errors in astronomic latitude vide G.T.S. Vol. XI. pages 882—982 and G.T.S. Vol. XVIII App. 7 Table III. These are seldom so great as 0".2. The worst case (Gogipatri) is ± 0".68.

results obtained on the several zeros. This takes no account of errors in star places, a defect which was more serious in the early days of the survey than it is at present. Probably graduation error in the instruments has improved at much the same rate as the error of star place, and a fair estimate of probable error will be obtained by consideration of the probable error due to graduation only.

p. e. of mean of observations on
$$n$$
 zeros $= .6745 \sqrt{\frac{\sum \delta^2}{n(n-1)}}$ (5)

where δ is the discrepancy of the value derived from any zero from the mean result. The results of the application of this formula are given in table XCIV. Some idea of the probable errors in the geodetic values of latitude, longitude and azimuth is given in Chapter VIII, where the N.W. Quadrilateral is considered in detail.

5. In the table XCV the deflections derived from observations of the Survey of India are given. These have been arranged by degree sheets. On the left hand page of the table the data are expressed in terms of the Everest Spheroid, using the observed value of latitude and the deduced value of azimuth at Kalianpur which General Walker adopted: on the right hand page of the table the quantities are given which must be applied properly to the triangulated values to express in terms of any other spheroid. There are four variables to be considered, giving rise to four cases: these are (1) change of semi-major axis, δa , (2) change of semi-minor axis, δb , (3) change of latitude of origin, u_0 and (4) change of azimuth at origin, w_0 . The cases given correspond to $\delta a = 1$ km., $\delta b = 1$ km., $u_0 = 1''$, $w_0 = 1''$, and to obtain the general case these must be combined as follows :--

 $\delta a \times \text{case I} + \delta b \times \text{case II} + u_0 \times \text{case III} + w_0 \times \text{case IV}$ in which δa , δb are expressed in kilometres and u_0 , w_0 are expressed in seconds. Thus in the case of the Helmert Spheroid in which $a=6378\cdot2$ km. and $1/\epsilon=298\cdot3$ and with revised values of latitude and azimuth at Kalianpur as given on p. 2, $\delta a = .924$, $\delta b = .743$, $u_0 = .31$, $w_0 = 1.29$. in terms of this spheroid are given on the right of the right hand page of the table: but those in terms of any other spheroid may be easily found by making use of different values of δa , etc. It is clear in the notation of this work that the correction to latitude deflection is -u, to prime vertical deflection $-v\cos\lambda$ or $-w\cot\lambda$ according as the deflection is derived from longitude or azimuth observations.

Values of these quantities have been taken from tables XVII—XX, XXIX—XXXVI. It frequently happens that latitude observations have been made on a site not quite identical with the triangulation station, but at some (small) distance from it on the prime vertical through it. Similarly the longitude observations done by wire-telegraphy were made at the telegraph offices and not exactly on the station sites. The coordinates of the triangulation stations are generally the quantities given. But at latitude stations the value of latitude given is that of the latitude station, and in longitude stations the longitude of the longitude station. When a change is made to a different spheroid, since the corrections do not satisfy Laplace equation, slight discrepancies occur between deflection derived from longitude and azimuth observations. This point has been explained in Chapter V and has been taken into account in the case of the Helmert spheroid in table XCIII.

The elevation of the referring mark affects the result of azimuth observations (vide §6 Chapter V) and accordingly this has been given in the table except for a few cases where the data

Longitude arcs by means of wireless telegraphy were observed in collaboration with the expedition of Cav. de Filippi in 1914 between Dehra Dun and eight stations. Their names and the values of A are appended. The Dehra Dun observations were made in the transit room adjoining the

Dome Observatory (new) and the longitude (geodetic) of the transit instrument is 7"·18 (equivalent linear measurement being 628·8 feet*) less than that of the Dehra Dun Haig Observatory where all previous longitude observations were made. The geodetic values of the eight stations and the astronomic values of the latter four are not yet available (1917) and deflections cannot be given.

TABLE XCII.

	Skardu	Kargil	Lamayaru	Leh	Depsang	Suget Karaul	Yarkand	Kashgar
	75 38 22 ["] .80	76 7 40"65	76 46 82°01	77 34 53.78	77 56 49+	78 12 "†	77 15 55+	76 6 47+
G-					or 15 ook	00 00 504	00 07 11	00 04 001
Lat.	35 18 40 †	34 33 40 +	34 17 1 †	34 10 4 †	35 17 20+	36 20 56†	38 25 1†	39 24 26†

TABLE XCIII.

Azimuth station Latitude=A			mut eres		(1) ≜-G‡	Longitude station sin \(\lambda \)	1	E	fro Calia	itud m npu rest	r	<i>A−G</i> ‡	<u>@</u>	(4-G+3"·16)sin A	(1) — (2) =8G	(8) 3·1571×sin λ	(4) v sin \	(5) w	(Helmert) (3) + (4) − (5) = 824§
Kalianpur H.S. 24° 7' 11"	G	190 190	27 27	6 ["] 39 5·10	+ 1.29	Kalianpur	A G		0 0	ó	ő	0	+ 1	L "29	0.0	+1.29	0.00	+1-29	0-00
Karachi Observatory S. 24° 49′ 50″	G	221 221	39 39	9·5 10·9	- 1.4	Karachi T.O •4200	d G	=	10 10	38 38	24·8 24·3	- 0.5	+ 1	l·1	- 2.5	+1.33	+ 2-41	+8-62	+ 0-12
Dehra Dun Obs. (old) 80° 19' 57" S.	A G	165 165	10 11	58·8 10·7	-11.9	Dehra Dun •5050	A G	+	0	28 24	38·9 4·6	-25.7	-1:	1•4	0.5	+1.59	- 0.03	+1.25	+ 0.81
Quetta T.O. S. 80° 11′ 57″	G	166 166	31 31	12·1 17·0	- 4.9	Quetta T.O	A G	_	10 10	88 38	48·3 45·8	- 2.5	+ (0•8	- 5.2	+1.59	+ 3.06	+4-28	+ 0-42
Calcutta Base S., T.S. 22° 86′ 56″	A G	177 177	10 10	27·3 36·2	- 8-9	Calcutta	A G	++	10 10	42 42	0·3 11·3	-11.0	- :	8•0	- 5.9	+1.21	- 2.20	-0.90	- 0.08
Orejhar S. 26° 46′ 56″	G	808 808	86 36	18·9 23·0	- 4-1	Fyzabad T.O	A G	+	4	28 28	50·1 50·6	- 0.5	+	1.2	- 5.3	+1.42	- 1.08	+0.22	+ 0.12
Jalpaiguri s. 26° 31' 17"	Gł	321 321	33 33	25·3 30·0	- 4.7	Jalpaigurl	A G	+		4	34·8 55·2	-20-4	-	7.7	+ 8.0	+1.41	- 2.68	-1.32	+ 0.05
Nagarkhana H.S. 22° 22′ 56″	A G	155 155	47 47	18·3 23·5	-10-2	Chittagong T.O.	A G	+		10 10	47·4 59·1	-11.7	-	3·3	- 6.9	+1.30	- 2.87	-1.71	+ 0.04
Dattaung H.S. 20° 13' 14"	G	171 171	27 27	28·8 38·1	- 9-8	Akyab T.O 3456	A G			14 14	21·0 82·1	-11-1	-	2.7	- 7.1	+1.08	- 2.77	-1.93	+ 0.25
Kyaunggyi S. 18° 49° 21"	A G	109 109	26 26	42·1 58·1	-16.0	Prome	A G	++		33 33	24·6 39·9	-15.3	-	8-9	-12-1	+1.02	- 2-97	-2-27	+ 0.32
Taungzun H.S. 16° 25′ 49″	A G	31 31	16 16	18·9 32·7	-13-8	Moulmein	4	l +		58 58	5·9 22·5	16-6	-	3·8	-10.0	+0.88	- 2.92	-2-54	+ 0.51
Bolarum P.W.D. S. 17° 30′ 13″	A G	25 25	57 57	35·8 36·9	- 1.1	Bolarum	A			51 51	50·3 53·6	- 3.3		0•ò	- 1.1	+0.9	- 0.18	+1-10	- 0.33
Vizagapatam Base N., S. 18° 1′ 3″	G	203 203	44 44	24·5 25·9	- 1.4	Waltair	. A	l +		39 39	42·6 45·8	- 3.2		0.0	- 1.4	+0.98	- 0.81	+0.88	- 0.80
Karaundi H.S. 23° 10′ 40″	A G	206 206			4.0	Jabalpur T.O	. A			17 17	34·8 45·0	-10-2	-	2.8	- 1.2	+1.24	- 0.49	+0.78	- 0.04
Colaba Observatory S. 18° 53' 47"	 G	288 288	5 5	27·7 26·7	+ 1.0	Bombay	. A		- 4 - 4	50 50	21·8 28·6	+ 6.8	+	8-2	- 2.2	+1.0	+ 0.77	7 +2.0	- 0-26
Deesa T. O. s. 24° 15′ 29″	A G	241 241		15·3 19·9	- 4.8	Deesa T.O				28 28	16·4 12·7	- 3-7	-	0-2	- 4-4	+1.3	+ 1.2	1-2-4	+ 0.04
Mangalore S. 12° 52′ 15″	A G	205 205		50·8 53·6	- 2.8	Mangalore	. A	Ļ -	-	48 48	32·9 85·1	+ 2.2	+	1.2	- 4:0	+0.7	+ 0.2	6 +1.5	- 0.59
Bangalore Base S.W., S. 13° 0′ 41″	A G	224 224		21·7 27·0	- 5.8	Bangalore	. A	ļ -	- 0	4	20·3 17·6	- 2.7	+	0.1	- 5.4	+0.7	1 - 0.0	5 +1.2	2 - 0-56
St. Thomas's Mount S.	A G	12 12	30 30	5·3 9·3	- 4.0	Madras	. 4	1 -	+ 2 + 2		29·6 36·6	- 7.0	-	0•9	- 8-1	+0.7	1 - 0.8	±0.8	9 - 0.53
Kudankulam Obs. S. 8° 10' 22"	A G	185 185			- 7.7	Nagarkoil		4 - 7 -			15·8 14·2	- 1.6	+	0.2	- 7.9	+0-4	5 - 0.0	3 +1.	19 - 0.77

Obs.=observatory, T.O.=Telegraph office. * Vide G.T.S. Vol. XV, p. (5). † Approximate values. ‡ A, A=Astronomic values; G, G=Geodetic values. § This is the additional correction for Helmert's spheroid. || Derived from unadjusted values of Quetta Secondary Series. This does not enter into the azimuth correction.

TABLE XCIV. (See Index pp. 170-172)

			Co	rrection	8	1.	្ឋ ដ			Corre	ections		
Ranial Mar.	Statio	n	Bverest's	Helmert's	Pro ab Err	e ste	Serial Number	Station		Everest's Spheroid	Helmert's Spheroid*	Probable Error	0
ı	1 Kalianpur	H.S.	0.	0 0-	0 0.8	1 { 18		Karachi Obs.	S.		+ 0.1		185
	2 Localli Salot	.8. H.8.			- ,	4 184	9 40	Yūsuf	S.	-2·4 -2·0	+01+0.2	0 53	185 185
1	Guraria	H.S.	-0.	0-0	0 4	4 1848	42	Miāni Dājil	s.		+ 0 2 + 0 2 + 0 2	0·27 0·33 0·22	1859 1859 1860
7 8	Aramlia	H.S.	-0.	3 0.0	0.8		45		T.S.	-1.2	+ 0.2	0·25 0·27	1859
10	Tiki	H.S. H.S.	- 0.7 -0.8				48	Jāoli Medwāni	H.8.	-0.9	+ O·3 + O·3	0 20 0·80 0·50	1909 1851 1853
11	Gura Sikkar	H.S. S.	-0.8 -1.0 -1.1	0.0	0.45	1850	L	Dehra Dun Ol (old) Karachi Obs.	S.	-0.5	+ O · 3	0 34	1853
13 14 15	Saria	8. 8.	-1·2 -1·2	0.0	0.88	1851	49 50	Andar I Piaro I	I.S	- 2 · 4 .	+ 0 · 1 + 0 · 1 + 0 · 1	0 19 0 27 0 27	1855 1895 1896
16 17	Viraria	H.8. H.8.	-1·3 -1·4	+0.1	0.10	1851	38 49	Dehra Dun Ok (old)	S	-0.5	+ O · 3	0 34	1853
18	kojhra	H.S.	-1.5	+0.1	0:10	1851	51 52	Gandpahar H	.s. -	-2-1	+0·1 +0·1 +0·1	0·27 0·13 0·20	1895 1906 1905
19 20	Chings Mairib-ka-6h	H.S. ahar T.S.		+0·1	1	1002	53 54 55	Gundak H	.s	-1.7 +	0.2	0·84 0·22	1908 1910
21	Khori	T.8.	-1.8	+0·1 +0·1	0·58 0·53		56 44		_ ا يور	1.5	-0·2 -0·2 -0·2		1910 1910 1859
23	Alemkhän Chátli Károthol	T.S. T.S. H.S.	$-2 \cdot 1$	+0·1 +0·1 +0·1	0.22	1853	57	Zawa I Kisanen Chappari	I.S	1.9 +	0.1	0.20	1905
25 1	Karachi Obs Kalianpur	S. H.S.		+0-1	0.19	1855	59	Tuzgi Koh-i-Malik Siah F	- 0 1	1.9 +	0.1	0.36	1907 1907 1907
26	Pahärgarh	H.S.	-0.1	0.0	0.31	{ 1836 { 1898	_		S	5 · 2 +	0.4	0.28	1904
27 28	Kesri Usira	H.8.	-0.1	0·0 +0·1	0·22 0·39	1836	61			0.4	0-0	0.44	849
29	Nob	H.s. T.S.	-0 2 -0·3	+0·1 +0·2	0.83	1836 1838 1837	63	Banskho H.	.s. _	0.5 +	0.1	0.14	862 862 861
30 31 32	Datairi Kaliana Banog	T.S. S. H.S.		+0.2	0·40 0 33	1836 1836	65 66	Kheri T. Bowra	.s. –	0.6 +	0-2 0-2	0·19 1 0·37 1	860 856
33	Dehra Dun	Obs.		+0.8	0.28	{ 1836 { 1907	48	Medwāni H.	8				853 853
	Dehra Dan (old)	Dbs.			0.34	1853	67	Rajgarh H.	8. - (0.6	$\mathbf{o} \cdot \mathbf{o} \mid \mathbf{c}$	0.56	850 86 3
34 35	Sour print	****	-0·5 -0·5	+0.3	0·34 0·26	1853 1914	69 S	Sirsa Sangatpur T	3. - 0)·7 +0	0.1	0.84 1	363 361
26 27	Musso res I	h.s. h.s.	-0.5	+03	0·29 0·25	1914 1914	47 J	āoli H.S	30	9 +0	0 B	80 18	360 351
38 12	IDE	H.S.	-0 = 1	!	0·45 0·38	1912 1903	72 G	langa Choti H.S	30 30	9 +0	.8 0	77 18	60 10
-		:	- 1	1	0.28	∫ 1836	74 G	ogipatri H.S.	. -0	مناو	ما ده.	65 18	62 62 62

Note: In the azimuthal observations, Level corrections were introduced from 1869, vide G.T.S. Vol. II

Appendix 9. p. 73 and Dinrnal Aberration corrections from 1902 vide Handbook of the Trigonometrical Branch Appendix 9. P. 7.1 and Dimmal Aberration corrections from 1802 vans management of the same and letters refer a station, H.S. = hill station, T.S. = tower station of principal triangulation. The same small letters refer triangulation.

Additional correction for Helmert's spheroid.

Computed from the unadjusted values of longitude and azimuth of Quetta T.O. station: not used for adjusting any animum observations.

TABLE XCIV.—(Continued). (See Index pp. 170-172)

*		1	Correc	tions			2			Corre	otions		
Serial Number	Station		Everest's Spheroid	Helmert's Spheroid*	Prob- able Error ±	Date of Observation	Serial Number	Station		Everest's Epheroid	Helmert's Spheroid*	Prob- able Error ±	Date of Observation
11 76 77	Gūru Sikkar Thob Jambo	H.S. H.S. H S.	-1·0 -1·0 -1·0	0·0 0·0 +0·1	0·45 0·38 0·21	1850 1873 1874	90 111 103	Amūa Nimkār Ramuapur (old	H.S. T.S.) T.S.	-1.4 -2.3 -2.7	0·0 +0·1 +0·2	0·94 0·38 0·52	1834 1838 1838
78 79 80	Mugrala Lādimsir Mandresa	H.S. T.S. T.S	-1·0 -1·0 -0·9	+0·1 +0·1 +0·2	0.40 0.45 0.17	1875 1862 1862	91 112 113	Karāra Pabhosa Sora	H S. H.S. T.S.	-1.8 -2.4 -2.9	0·0 +0·1 +0·1	0·69 1·26 0·44	1842 1845 1845
81 82 47	Jhambhera Akbar <i>Jāoli</i>	T.S. S. H.S.	-0.8 -0.8 -0.8	+0·2 +0·2 +0·3	0·68 0·79 0·80	1862 1857 1851	104	Māsi Gurwāni	T.8. H.S.	-3·8 -2·2	0.0	0.87	1850
18 83 84	<i>Rojhra</i> Malar Asu	H.S. H.S. H.S.	-1·6 -1·5 -1·4	+0·1 +0·1 +0·1	0·29 0·32 0·49	1851 1877 1880	114 115 106	Marār Bisaul Orejhar	T.S. T.S. S.	-3·7 -5·1 -5·3	+0·1 +0·1	0.48 0.60 0.26	1846 1847 1904
85 86 87	Vijnot Dāowāla Paphra	T.S. T.S. T.S.	$ \begin{array}{r} -1 \cdot 3 \\ -1 \cdot 3 \\ -1 \cdot 1 \end{array} $	+0·1 +0·1 +0·1	0·22 0·20 0·25	1881 1881 1861	98 116	Gora Hirdepur	H.S. T.S.	-2·7 -3·0	0 0	0-52 0-58	1845 1846
79	Lādimsir	T.S.	-1.0	+0.1	0.45	1862	117 118 105	Santenda Rājabāri <i>Bāsadela</i>	T.S. T.S. T.S.	-3·4 -3·9 -4·6	0·0 +0·1 +0·1	1·13 1·52 0·32	1846 1847
1 88 89	Kalianpur Budhon Rangir (old)	H.S. H.S. H.S.	0·0 -0·4 -0·8	0.0 0.0 0.0	0·31 0·36 0·64	1836 1898 1864 1834	106 119	Orejhar Naunangarhi	S. T.S.	-5·3 -2·3	+ 0·1 + 0·1	0·32 0·26 0·34	1904 1852
90 91 92	Amūa Karāra Gurwāni	H.S. H.S. H.S.	-1·4 -1·8 -2·2	0·0 0·0	0·94 0·69 0·64	1834 1842 1845	120 121 122	Chūni Rāmganj Jalpaiguri	T.S.	+0·9 +2·4 +3·0	+0·1 +0·1 +0·1	0·69 0·64 0·33	1846 1853 1904
93 94	Gora Hurīlāong	H.S.	-2.7 -3.1	0·0 -0·1	0.52	1845 1849	94		H.s.	-3.1	-0.1	0.44	1849
95 96 97	Chendwär (old Pärasnäth Tilabani	H.S. H.S.	-3·5 -8·7 -3·9	-0·1 -0·1 -0·1	0.85 0.76	1843 1850 1845	123 124 119	Mednipur Jalālpur <i>Naunangarhi</i>	T.S. T.S. T.S.	-2·9 -2·6 -2·3	0·0 0·0 +0·1	0 34 0 62 0 34	1850 1852 1852
98 99 100	Malüncha Madhpur Aknāpur	H.S. T.S.	-4·9 -5·2	-0·1 -0·1 -0·1	0·57 0·49 0·83	1844 1868 1869	95 125 119	Chendwār (old) Pota Naunangarhi	H.S. T.S. T.S.	-3·5 -2·8 -2·3	-0·1 0 0 +0·1	0 67 0 46 0 34	1843 1846 1852
101	Calcutta Bas S. End	e-line T.S.	-5.9	-0.1	0.87	1845	96 126 120	Pārasnāth Bichwi Ohūni	H.S. H.S. T.S.	-8·7 -3·2 +0·9	-0·1 -0·1 +0·1	0 35 0 80 0 69	1850 1851 1846
33. 102 103	Dehra Dun (old) Kalīānpur Ramuapur (ol	T.S. d) T.S.	-0.5 -1.8 -2.7	1	0:34 0:64 0:52	1853 1850 1838	98 127 120	Malüncha Sirkanda Chüni	H.S. T.S. T S.	-4·3 -1·7 +0·9	-0·1 0·0 +0·1	0·57 0·43 0·69	1844 1846 1846
104 105 106	Māsi Bāsadela Orejhar	T.S. T.S. S.	-3·8 -4·6 -5·3	+0.1	0·37 0·32 0·26	1850 1849 1904	101 128	Calcutta Base S. End Anandbās	-line T.S. T.S.	-5·9	-0·1 -0·1	0·87 0·45	1845 1846
88 107 108	Budhon Gürmi Sankrāo	H.S. T.S. T.S.	-0·4 -0·4	+0.1	0·36 0·50 0·39	1864 1842 1843	129 122		T.S. 8.	-2·9 +3 0	0·0 +0·1	0.88 0.88	1846 1904
109 33			-0·5	+0.2	0·70 0·34	1843 1853	101 130	Calcutta Bas S. End Daulatpur			0·1 -0·1	0·87 0·15	1845 1868
89	Rangir (old)	క.	-0.8	0.0	0.64	1834	181 132			- 6:		0.34	1866
110	Mohammadal	T.S.	-1.4	+0.1	0.44	1840	133		T.S. H.S.	- 6·8		1	1866 1865
102	Kaliānpur	T.S	-1.8	+0.2	0.64	1850	134	Nagarkhana	H.S.	- 6.9	0.0	1.29	1905

^{*} Additional correction for Helmert's Spheroid.

TABLE XCIV.—(Continued). (See Index pp. 170-172)

	1		1 -		1			, 					
å			Corre	etions			per l			Corre	ctions		
Serial Number	Station		Everest's Spheroid	Helmert's	Prob- able Error ±	Date of Observation	Serial Number	Station		Everest's Spheroid	Helmert's Spheroid*	Probable Error	vat e
139 135	Daulatpur Tepri	T.S. T.S.	~ 6·3 - 4·2	-0·1 -0·1	0·15 0·30	1868 1869	160 167		H.S. H.S.	- 6·8 - 6·8	+0.1	0·31 0·36	1894 1901
136 137 138	Aloākāndi Halkāchar Alangjāni	T.S. T.S. T.S.	- 2·2 - 1·1 + 0·6	0.0	0·51 0·21 0·79	1873 1873 1874	168 169 170	Loi Hpatan	H.S. H.S. H.S.	- 6 8 - 6 8 - 6 8		0·16 0·20 0·17	1908 1907 1908
139 122	Ataro Bānki Jalpaiguri	T.S. s.	+ 1·3 + 3·0	+0.1	0·34 0·33	1856 1904	171 172 173		H.S.	- 6·8 - 6·8 - 6·8	+0·1 +0·1 +0·1	0·21 0·22 0·17	1911 1910 1911
133	Semu Tān	H.S.	- 6.8	0.0	0.39	1865	Ī	Kalianpur I	LS.	0.0	0.0	0.31	§ 1836
140 141 142	Dawa Rangsanobo Raikusni	H.S. H.S. H.S.	- 5·3 - 2·7 - 0·4	0.0	0·26 0·32 0·29	1864 1861 1858	174 175 176	Bhimbhat	H.S. H.S.	- 0·1 - 0·2 - 0·3	0·0 -0·1 -0·1	0·87 (0·39	1898 1838 1838 1839
138	Almajāni	T.8.	+ 0.6	0.0	0.79	1874	177 178	Badgaon I	ELS.	- 0.5	-0.1	0.22	1839
134 143	Nagarkhana Fi Tan	H.S. H.S.	- 6·9		1·29 0·52	1905 1865	179 180	· •	E.S.	- 0·6 - 0·7 - 0·9	-0.2	0.30	1838
144	Dattaung	H.S.	- 7.1	+0.3	0.85	1866	181	Bolarum P. W Office	. D .	Í		0 40	1838
144 145	Dattaung Retkamauk	H.S. H.S.	- 7·1 - 8·0	+0.3	0·35 0·41	1866 1916	181	Bolarum P. W	-	- 1.1	-0.3	0.31	1904
146	Kyaunggyi	s.	-12-1		0.34	1904	182	Office Pirmulo I	s. I.S.		-0·3	0.31	1904 1869
147 148	Tannguan Southern Mosc	H.S.	-10·0	+0.5	0.76	1884	183		H.S.		-03	0.20	1869
149	Mergui Base-l E. En	ine	-10.0		0.62	1877	184 185 186	Kalingkonda I	H.S H.S	- 1·3 - 1·3 - 1·4	-0·8 -0·8	0·19 0·24 0·18	1871 1872 1800
1	Mergui Base-1 W. En	ine drs	-10.0		0.18	1882	187	Vizagapatam B	ase-	l		0 16	1000
	Natkalintaung	H.S.	-10.0	+0.5	0·32 0·20	1882 1881	101	line N. End CalcuttaBase-1	ine	- 1.4		0.24	1868
	Minthangtaun Kyaunggyi		-10.0		0.24	1881	188	Patna S. End T		- 5·9 - 4·6		0·37 0·19	1845 1852
153	Myayabeingky	H.S.	-11-1		0·34 0·45	1904 1889	189 190	Cuttack T	r.s. - I.s. -	- 4·3 - 3·4	-0·2	0·30 0·20	1854 1854
155	Toungoo Letpataung Taungpila	н.з.	-10·3 - 9·6 - 8·8	+0.9	0·23 0·27 0·21	1890 1891 1891	191 192 187	D 1 -	I.S. -	- 3·0 - - 1·8 -	-0.2	0.35	1857 1860
157	Mingun	_ 1	1	1				une N. End	S.	- 1.4 -	-0.3	0.24	1863
158	Shienmaga Male	H.S. -	- 8·0 - 7·8	+0-2	0.36	1892 1892	192	Rawal H		- 1 8 -		0.30	1860
160	Ubvetanno	H.S	- 7.3	+0-1	0.19	1892	198 194	Deodonger H Sindur H	.8.	2.0	-0.3	0.11	1914
161	Thonhinzin Seikpa	H.S.	- 6·8 - 6·5 - 6·3	+0.1		1894	195	Andhari H	.s. -	2.8 -	·0·2	0.16	1913 1913
	-	- 1	ı		1	1895	196 94			2.9		0·17 0·44	1912 1849
164	Tamunja Thyoliching	H.S. -	- 5·7 - 5·5	+0.1		1090	197	Karaundi H	.s. -	1.2	0.0	0.33	1865
165	Loijing Rangsanobe	H.S. -	- 5.0	+0.1	0.17		198	Sarandi Pat H	.s	1.2	.0.1	0 33	
	D			_		1861	200	Bhunsain H Diwai H	.8. -	1.2	0.1	0.18	1865 1866
100	I eponetanno	H.S H.S	7·1 - 6 9	+0.3		1866	- 1	Burgpaili H.	.s.	1.1	0.2	0·16 0·18	1867 1867
163	Татинја	н.э.	5.7	+0-1	0.30	1896	181	Bolarum P.W. Office	D.	1-1		l	1904
	Additional	orrecti	on for	Helmer	t'o 0-1								

additional correction for Helmert's Spheroid.

TABLE XCIV.—(Continued). (See Index pp. 170-172)

ii.			Corre	ctions	1		.		Correc	tions		
Serial Number	Station		Everest's Spheroid	Helmert's Spheroid*	Prob- able Error	Date of Observation	Serial Number	Station	Everest's Spheroid	Helmert's Spheroid*	Prob- able Error ±	Date of Observation
91	Karāra	H.S.	- 1·8	0.0	0.69	1842	230 231	Nughallibetta H.S.	- 4·0 - 4·7		0·58 0·23	1873 1871
202 203 204	Pathāidi Ramai Karīa	HS.	- 1.7 - 1.6 - 1.5	-0.1	0.39 0.50 0.20	1871 1872 1873	229	Bangalore Base- line S.W. End S.	- 5.4	-0.6	0.15	1870
186	Sānjib	H.S.	- 1.4	-0.3	0.18	1860	229	Bangalore Base line S.W. End S.	- 5.4	-0.6	0.15	1870
97 205	Tilabani Kalsibhanga	H.S. T.S.		-0·1 -0·2	0.76 0.32	1845 1849	232 233	AnandalamalaiH.S. Injambākam H.S.	- 3·3	-0.5	0·10 0·17	1866 1880
188	Patna	н.8.	- 4 ·6	-0.2	0.19	1852	234	St. Thomas's Mount Trestle S.	- 3.1	-0.5	0 27	1880
181 206	Bolarum P. Office Achola	8.	- 1·1 - 1·4	-0.3	0·31 0·25	1904 1840	284 235	St. Thomas's Mount Trestle S. Kistama H.S.	-3·1 -2·7	-0.5 -0.5	0 27 0 37	1880 1864
207 208 209	Nitali Kanheri Alsunda	H.S. H.S.	- 1.7	-0.3 -0.3 -0.3	0·27 0·32 0 82	1840 1837 1863	236 237 238	Dānapa H.S.	-2·4 -2·3		0 21 0 17 0 18	1863 1868 1861
210 211 212	Khānpisura Dhauleshvar Māndvi	H.S. H.S. H.S.	- 1.9	-0.3 -0.3 -0.3	0 42 0·18 0·32	1846 1838 1841	187	Vizagapatam Base- line N. End S.		-0.3	0 24	1863
213 214	Karanja Colaba Obs.	H.S. S.	- 2.2	-0.3 -0.3		1839 1839	214 239	Colaba Obs. S. Pāchvad H.s.	-2·2 -2·7	-0·3 -0·4	0 16	1839 1865
215 216 217	Deesa T.O. Sonāda Patangdi	T.S. H.S.	- 3.5	-0·1 -0·2	0 26 0 39 0 30	1904 1851 1861	240 241 230	Koramür H.S.	-3·6 -4·0	-0·4 -0·5 -0·6	0·22 0·21 0·58	1865 1873 1873
218 219 220	Sāler Pārnera Kalsubai	H.S. H.S.	- 2·6	-0·2 -0·3 -0·3	0 60 0 47 0 64	1845 1843 1842	214 242 243	Mirya H.S.	-2·2 -2·5 -2·6	-0.3 -0.3	0·89 0·89	1839 1844 1843
214	Colaba Obs.	<u>s.</u>		-0.3		1839	244 240		-2·7 -3·0	-0·4 -0 4	0 61 0·22	1844 1865
25 221 222	Karachi Obs Häthria Dungarpur	H.S. H.S.	- 2·8 - 3·1 - 3·4		0·19 0·54 0·31	1855 1856 1852	229	Bangalore Base- line S.W. End S.		-0.6	0.15	1870
223 216	Ingrodi Sonāda	T.S. T.S.		$\begin{array}{c} 3 - 0.1 \\ - 0.1 \end{array}$	0·32 0·39	1852 1851	245 246	line N.E. End S. Kanjamalai H.S.	-6.3	-0.6 -0.7	0.23	1870 1869
222	Dungarpur	H.S.	1	4 -0.1	0.31	1852	247 248	Pachapālaiyam s. Kutipārai S.		-0.7	0.26	1870
224 7	Kunkāvāv Aramlia	T.S. S.	- 8.			1853 1850	249		-7.8	-0.8	0.14	1869
225	Indrāwan	T.S.	- 1	0 -0.1	0.58	1847	234	St. Thomas's Moun	t	-0.8	0.21	1869
226 210	Khanpisura	H.S. H,S.		$\begin{array}{c c} 4 & -0.2 \\ 8 & -0.8 \end{array}$			25	Trestle S. Kallapat Trestle S.	-3·1 -3·9	-0·5 -0·5	0 17	1880 1879
181	Bolarum P. office	W.D. s.	- 1	1 -0.3	0.31	1904	254	B Pātharankota B Manēgandi S	-5·1 -6·0	-0·6 -0·6 -0·7	0·14 0·25	1870 1877 1876
227 228		8. H.S.		2 -0·4 7 -0·4				***		-0·7 -0·8	i i	1875 1869
229	Bangalore line S.W. 1			4-0.6	0.15	1870		s	•			

^{*} Additional correction for Helmert's Spheroid.

INDEX TO DEFLECTION STATIONS.

Name of Station		ference umber	40 8		Refe	rence nber	F 8			rence	l.
Made of Spation	Tab:			Name of Station	Table	Table XCIV	No. of Series	Name of Station	Table	nber Table	
Achola H Agra-group E. Point Agra-group N. Point	8. 28 20 19	l'	7 6 6	Birond H.S. Bisaul T.S. Bithnok H.S.	179 318 71	115	20 19 62	Dehra Dun Base, E., S. Dehra Dun Haig Obs. S. Dehra Dun Obs. (Old) S.	146 170 169	XOIV	
_	20: 18' 8. 200	5.	6 6 6	Black s. Bolarum P.W.D. Long. S. Bolikonda H.S.	288 250 255	181	9 60 48	,, No. VI between , No. V Dehra and Rainur	165 166 167	55	2 2 2
Agra Parade Point Ahmadpur H. Akampalle h		174	6 8 9	Bombay Colaba Long. S. Bombay Colaba Obs. S. Bommasandra s.	111 112 267	214	7 7 9	no. III) Deodonger H.S. Deo Dongri H.S.	382 106	193	8 1
Akbar Aknāpur T. Akyab Longitude		100	37 5 44	Bostān T.S. Bowra T.S. Budhon H.S.	155 140 209	66 88	6 83 5	Dera Dîn Panāh S. Devanūr s.	29 238 248	44	8
Alamkhān T. Alamvādi H. Alangjāni T.	8. 108	3	25 10 34	Bulāwāla h.s. Bulbul H.S. Burgpaīli H.S.	150 367 253	201	6 5 53	Dewarsan T.S. Dhaigaon S.	300 127		18
Algi H. Alibagh Observatory Aloākāndi T.	3. 115		2 9 56	Calcutta Base, S., T.S. Calcutta Longitude s. Chamardi H.S.	403 404 53	101	5 5 30	Dhanura s. Dhaulesvar H s	94 221 122	211	1
Alsunda H. Amritsar Longitude Amsot H.	S. 65		7 28 6	Chamu H.S. Chandaos T.S. Chandīpur T.S.	73 156 380	189	62 6 24	Dhūlipalla S. Didāwa H.S. Dīwai H.S.	337 45 251	237 15 200	4 2 5
mūa H.: nandalamalai H.: nandbās T.	8. 274	232	5 54 16	Ohanduria T.S Chānga H.S. Ohaniāna H.S.	392 38	19	16 25	Dōddagunta s. Dotra s. Dūbauli T.S.	270 222 361		1.
Andar H Andhari H. Andhiāri H.	3. 370	49 195	32 85 2	Charaldanga T.S. Chaukola H.S.	80 393 131	243	26 16 11	Dumb h.s. Dungarpur H.S. Etora T.S.	21 49 299	222	2
nkora H.		7	53 25 9	Chikalgurki s. Chittagong Longitude S.	371 262 412	95	5 9 44	Fi Tan H.S. Fyzabad Longitude S. Gandpahar H.S.	418 317	148 51	5: 1:
lsu H. Ltaro Bānki T.	8. 40 8. 394	84 139	64 34	Chūni T.S. Chūtli T.S. Colaba Observatory S.	365 36 112	120 23 214	20 25 7	Ganga Choti H.S. Gangapur T.S. Garinda S.	54 408 90	72 131 68	77 48
Sahak H. Sajamara H.	8. 158 8. 144		78 78 73	Cuttack H.S. Dadaura T.S. Daiādhari H.S.	872 804 191	190	24 20 6	Gattinārāyantippa h.s. Gaus T.S.	247 321	08	20
Bangalore Base, N.E., Bangalore Base, S.W.,	s. 268 S. 268 S. 269	245	9 9	Dajil S. Dalea H.S.	30 332	43	82 58	Godhna T.S. Gogipatri H.S.	100 152 454	74	22
Sanog H. Sansgopal T. Sanskho H	8. 160 8. 177	32	6	Dangarvadi H.S.	237 271 51	180 236	8 46 28	Gora H.S. Gudali H.S. Gundak H.S.	325 347 6	93 54	46 76
Säsadela T. Sellary Longitude	S. 318 s. 258	105	33 20 9	Dāowāla T.S. Dargawa H.S. Dariāpur T.S.	24 211 378	86	64	Gurāria H.S. Gūrmi T.S. Gūru Sikkar H.S.	184 204 76	5 107 11	28 28
hanar T. haorāsa H. hīmbhat H.	8. 208		32 6 8	Darur H.S. Darutippa S.	245 272	228	46	Gurwāni H.S. Halda s. Halkāchar T.S.	320 232 396	92 137	5 5 5
Bhīmsain H. Bhursu H. Biohwi H.	3. 228 3. 869	199 196	53 5	Datairi T.S. Dattaung H.S.	9 154 421	80 144	52	Harnāsa T.S. Harpālsid T.S. Hātbena H.S.	108 173		18 2 58
Bihar H.			27 14 25	Daulatpur T.S. Dawa H.S. Deesa Telegraph Office s.	406 409 79		48 44	Hāthria H.S. Hatni h.s.	339 48 149	221	85 6

Obs. = Observatory, Long. = Longitude.

^{*} Old Baluchistan Series.

INDEX TO DEFLECTION STATIONS—(Continued).

	Refer Nun	ence ber	of ies	37 COL.13		Refer Nur	ence ber	of es	20		rence nber	of es
Name of Station	Table XCV	Table XCIV	No of Series	Name of Station	1		Table XCIV	No. of Series	Name of Station	Table XOV		0.00
Hirdepur T.S. Hönnavalli H.S. Hönnür H.S.	324 137 264	116	15 49 9	Kheri Khimüāna Khirsar	T.S. T.S. H.S.	141 67 62	65	33 23 62	Majhār H.S. Mal H.S. Malar H.S.	883	83	2 24 64
Hurīlāong H.S. Imlia T.S. Indrāwan T.S.	356 306 107	94 225	5 12 18	Khojak Khori Khujnaur	H.S. T.S.	4 37 147	21	† 25 20	Male H.S. Malūncha H.S. Mandāla s.	375	159 98	66 5 8
Injambākam H.S. Inrogdi T.S. Isanpur H.S.	350 52 139	283 223	54 29 33	Kidarkanta	H.S. H.S. H.S.	381 157 3	191 57	24 22 74	Mandresa T.S. Māndvi H.S. Manēgandi S.	118	80 212 254	45 7 63
Jabalpur Longitude s. Jalālpur T.S. Jalpaiguri Longitude s.		124 122	53 21 34	Kistama Kodangal Koh-i-Malik Siah	H.S. S. H S.	273 240 1	235 227 59	46 9 74	Mangalore Longitude S Manichauk T.S Marār T.S	813	230 114	54 20 19
Jambo H.S. Jāoli H.S. Jarūra T.S.	56	77 47	62 22 3	Koramür Kudankulam Obs. Kumbhäri	H.S. S. H.S.	133 284 132	241 250 244	49 9 11	Martaban h.s Mashelak H.S Māsi T.S	. 5	53 104	52 76 20
Jetgarh H.S. Jhambhern T.S. Jharipani (IX)	64	81 36	23 45 20	Kumen Bum Kumtum Bum Kundgol	H.S. H.S. H.S.	430 431 136	173 172	80 80 49	Māta-ka-hūra H.S Māvinhūnda H.S Mednipur T.S	. 125	4 123	25 49 21
Jharkil T.S. Kainath H.S. Kaliāna S	93	45 31	32 26 6	Kunkāvā v Kurseong Kutipārai	T.S. h.s. S.	50 387 289	224 248	28 20 9	Medwāni H.S Mergui Base E., T.S Mergui Base W., T.S	. 446	48 149 150	22 52 52
Kalīānpur H.S Kalīānpur T.S Kālingkonda H.S	180	1 102 185	6 20 43	Kyaunggyi Lachkuwa Lādi	S. h.s H.S.	428 171 215	146	52 6 8	Miāni T.S Mingun H.S Minthangtaung H.S	. 425	42 157 152	32 66 52
Kallapat Trestle S Kalsībhānga T.S Kalsubai H.S	377	251 205 220	63 17 10	Lādimslar Lakarwas Lakhinagar	T.S. H.S. T.S.	33 83 407	79 132	45 25 48	Mira Donger H.S Mirya H.S Mohammadabad T.S	. 120	242 110	
Kāmkhera H.S Kānākhera T.S Kanheri H.S	301	208	25 3 7	Lambatach Letpataung Linganapallo	H.S. H.S. h.s.	143 437 241	155	22 66 9	Mooltan Longitude S Morali H.S Moulmein Longitude S	. 95	-	32 26 44
Kanjamalai H S Kankesvar H.S Känkra H.S	114	246 61	9 11 33	Lingmāra Lohārgara Loi Hpa Lang	H.S. T.S. H.S.		168	53 16 72	Mugrala H.S Murree h.s Murree Observatory	. 55	78 . 71	
Kānnagar H.S Karabgati H.S Karachi Base S, S	. 126	10 240 39	25 49 32	Loi Hpatan Loi Hsam Hsum Loijing	H.S. H.S. H.S.	436	169 171 165	72 72 68	Mussooree Dome H.S Myayabeingkyo H.S Nagarkhana H.S	. 439	37 153 134	66
Karachi Longitude S Karachi Observatory S Karanja H.S	. 17		22 32 7	Loi Kiipma Lora Losalli	H.S. H.S. S.	435 327 197	170	5	Nagarkoil Longitude & Nag Tiba H.S Nāharmau H.S	. 159	38	9 73 5
Karāra H.S Karaundi H.S Kardo H.S	. 226	197	5 53 26	Lünki Mach Madhpur	H.S. h.s. T.S.	8	17 99	25 † 5	Namthabad a Natkalintaung H.S Naunangarhi T.S	. 445	151 119	
Karīa H.S Kārothol H.S Kātpālaiyam s		24		Madhupur Madras Observator Mahabaleswar	T.S. y S. H.S.	348	129	16 54 11	Navalür H.S Nayinipiriyän Trestle S Niälamarı H.S	294	252	49 63 46
Keulia H.S Kem H.S Kesri H.S	. 130	١.	* 7 6	Mahadeo Pokra Mahar Mahesari	H.S. T.S.	363		14 6	Nilgarh H.S Nimbāgal Nimkār T.S	. 265		8
Khāmor H.S Khankharia S Khānpisura H.S	. 47	13		Mahwari Mairāb-ka-Shahar Majala	H.S. T.S. H.S.	39		5 25 49	Nitali H.S Noh T.S Nojli T.S	3. 186	29	

Obs. = Observatory.

^{*} Special Triangulation.

[†] Old Baluchistan Triangulation.

[‡] Thayetmo and Cape Negrais Series.

INDEX TO DEFLECTION STATIONS—(Continued).

Name of Station	Nu	mber	4 5	N			rence mber	, s				rence mber	8
- Diagon	Table XCV			Name of Star	tion	Table XCV	Table XOIV	No. of Series	Nume of Sta	ation	Table XOV	7	
Nuāon T. Nughallibētta H.i Ongole H.i	260	231	21 54 46	Rām Thal Rāmuapur (old) Rangīr (old)	S. T.S. S.	70 296 212	103	23 20 5	Southern Moscoo Spurpoint (VIII St.Thomas's Mou	n h.a	448	148 35 284	51 20 51
Orejhär § Oria h. Pabhosa H.S	. 77	106 112	19 25 12	Rāngrai Rangsanobo Rānigarh	H.S. H.S.	219 399 172	141	8 44 20	Sultan-ka-Got Süräntal Takalkhera	T.S. H.S.	22 193 218	204	81
Pachapālaiyam Pāchvad H.S Pahārgarh H.S	123 190	247 239 26	9 49 6	Ranjītgarh Rāwal Retkamauk	T.S. H.S. H.S.	57 343 427	192 145	23 24 52	Talegaon Tamunja Tanakarakulam	s, H.S. S.	236 415 280	168	88
Pahladpur T.S Päldi H.S Pandalagudi s	97 290		14 29 9	Rewat Robat Rojhra	H.S. S. H.S.	84 449 43	18	23 † 25	Tarbhān Tāsīng Taungpila	S. H.S. H.S.	104 181 426	63 156	10 88 66
Paphra T.S Parampūdi H.S Pāramāth H.S Parewa T.S	338 373	87 238 96	45 46 5	Rustamgarhi Sakri Säler	h.s. H.S. H.S.	452 223 105	75 178 218	22 8 10	Taungzun Telu Teona	H.S. H.S. H.S.	442 60 855	147	52 62 21
Parison T.S Parners H.S	310 98	219	10	Salighar Salimpur Salot	HS. T.S. H.S.	20 198 192	55 3	76 2 25	Tepri Thikri Thob	T.S. H.S. H.S.	405 109 74	185	56 18 62
rasangdi H.S. Pathäidi T.S. Patharankota S. Pathärdi T.S.	833 295	217 202 253	58 63	Samdari Samenda Sānd	H.S. T.S. H.S.	75 323 88	117 8	62 15 25	Thonbinzin Thyoliching Tiki	H.S. H.S. H.S.	417 414 82	161 164 9	66 68 25
Patha T.S Pavagad H.S Pavagada H.S	379 101	188	10	Sandawat Sangatpur Sānjib	H.S. T.S. H.S.	444 66 342	70 186	23	Tilabani Tinsīa Tiruvēndipuram	H.S. B.	374 196 293	97	5 25 68
Pavia H.S. Feddapād B.S. Feshawar Longitude S.	302 244		9	Sankrāo Sarandi Pat Sarey Khan Latiti	T.S. H.S. udo S.	178 828 329	108 198	2 53	Tonglu Tonsalgutta Toungoo	lı.s. s. S.	385 243 438	154	20 9 66
ialmudi s	384 242			Sarkāra Sarla Saugor	T.S. S. H.S.	175 46 224	14	2 25	Tounsa Tuagat Tuzgi	T.S. h.s. H.S.	28 240 2	56	76 9
rmulo H.S.	249 453	50 182 73	43	Sawaipur Seikpa Semu Tān	T.S. H.S. H.S.	68 416 410		23 66	Ubyetaung Umarkhel Usira	H.S. H.S.	422 19	160 46	74 66 82
Potenda S. Prome Longitude S.	359 303 429	125	3	Senchal Shāhpur Sheinmaga	h.s. T.S. H.S.	886 58 424		20 1 23 1	Utīāmau Valvādi Vāuākonda	H.S. H.S.	307 110	226	6 12 18
guetra Telegraph Öffice s Gadhāpuram S. Raikumi we	279	60 249	9	Shorpur Shūlakarai Sidlipur	H.S. 8. 8.	148 278 102		6 1	Vijayāpati Vijnot Virāria	H.S. S. T.S.	256 282 26	85 6	9 34
lājahāri T.S. lājaarh H.S. lājpur h.	322 86	142 118 67	23		8. H.S. H.S.	388 335 336	194	20 T	Vizagapatām Base, Voi Valtair Longitude		233	187 2	25 24 8
ajuli H.S.	164 229 142	84 64	33	Sinpitaung Sirkanda Sironj Base, N.E.,	H.S. T.S. S.	432 366 194	167	72 Y	Teponetaung Terragunta Tettimalai	H.S. h.s	259	166 7	3 1 9
an ragh Observatory a an gan j 1.S. an gan j 2.S.	15 390	203	32 20	Sirsa Sirsa Sitāpār	S. T.S. H.S.	69 176 831	109	3 Y	Tusuf Sawa	s. B.S.	275 34 450	40 8	9 2 4
āmhad S. āmpūra H.S.	291	255 6	58	Somtana Sonāda Sora	H.S. T.S. T.S.	96	179 216 2	8 9 2					

Obs. = Observatory. Tres. S. = Trestle S. * Quetta Secondary Series. † Robat Triangulation.

Deflections of the Plumb-line

in terms of

any Spheroid.

 $TA \ B \ L \ E$ Deflections of the Plumb-line

					EΥ	EREST'S S	PHEROID.			
Serial No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed station	(A-G) cot λ for azimuth or (A-G) cos λ for longitude observations†	Meridian Deflec- tion†	Serial No.
1		Koh-i-Malik Siah H.S	5393	G 29 51.31°95	° ' " G 60 52 19.71	A 321 52 15.7 G 321 52 0.4	Kachakoh E 0 42	+ 26.7	"	1
	1	No. 449 ut infra				7		,		
2		Tuzgi H.S.	3131	G 28 53 14·38	G 62 14 58 97	A 216 16 46 3 G 216 16 37 3	Shuri E 0 40	+ 16.3		2
		Kisanen Chapper H.S.	4362	G 29 3 54'41	G 64 22 24.93	A 166 46 22.6 G 166 46 15.7	Malik Praji E 1 7	+ 12.4		8
4	J	Khojak H.S.	7851	A 30 51 20 21 G 30 51 24 85	G 66 34 41.08	4 100 40 15 7			- 4.6	4
5	J	Mashelak H.S	7941	G 30 13 30.44		A 241 55 31 · 4	Takatu E 1 20	+ 6.3		- 5
		No. 450 ut infra		- 30 -3 30 11	G 66 44 46·79	G 241 55 27 8				
6	M	Gundak H.S.	8163	G 27 0 40145	G 67 23 28.55	A 276 29 27 1	Basha E 0 56	+ 3.1		đ
7	N	Quetta Tel Office S.	5500	A 30 11 55.91 GL 30 11 57.37	A 67 0 29.27	G 276 29 25 2 A 166 31 12 1	Takatu E 3 5	+ 0.2	- 1.5	7
8	0	Mach h.s.	3522	A 29 52 20'46	* *************************************	G 166 31 11·8			-11.1	- 8
9	О	Dasti S.	316	G 29 52 31·51					- 2.3	8
10	35 J	Piaro H.S.	1438	G 29 0 29 93		A 159 22 15.3	Kuliri E 0 16	+ 5.1		10
11	M	Gandpahar H.S.	723	G 26 3 14·21		A 192 10 55 2	Kharko D 0 9	+ 17.0		13
12	N	Andar H.S.	4047	G 27 25 1.26	G 67 30 43 99	G 192 10 46·4 A 181 7 6·5	Sulemani D 0 24	+ 9.8		12
13	P	Kārothol H.S.	260	G 26 I 22:07 A 24 53 44:78		G 181 7 1.7 A 121 36 58.0	Kara E 0 38	+ 5.8	- 1.0	18
14	P	Karachi Base-line S. End S.	46	G 24 53 46 69		G 121 36 55·3 A 205 23 30·5	Karachi Base-line	+ 2.8		14
15	P	S. End S. Rāmbāgh Obsy. s.		G 24 52 59.63		G 205 23 29·2	N. End E 0 10	T 20	- 0.9	16
16	P	Karachi Long. S.		G 24 51 21.44	A 67 0 52.88					16
17	P	Karachi Obsy. 8.	35	G 24 51 2.44 A 24 49 50.14	G 67 0 53.22	A 221 39 9.5	Mutrani E O 25	- 0.3		17
18	38 N	Peshawar Long. S.	•••	G 24 49 50.25	A 71 22 14162	G 221 39 8.4	mariani N U 25	+ 2.4	- 0.1	
19	P	Umarkhel H.S.	3036	j	G 71 33 0.27	A	Sistem The Control	+ 11.9		18
<u>80</u>	89 A	Saiighar H.S.	8284	1 _	G 71 15 20.79	G 73 9 15 3 A 1 52 50 1		+ 13.7		18
21	<u>-</u>	Dumb h.s.	183	G 31 29 53·82 A 28 15 18·30		G 1 52 46·2	Tanispa E O 33	+ 6.4		20
22	D	Sultan-ka-Got T.S.	213	G 28 15 21 09 A 28 4 8 05					- 2.8	21
23	B	Miāni T.S.	300	G 28 4 9'41		A 188 2 16 6	D		- 1.4	22
24	H	Dāowāla T.S.	282	G 28 34 15·20		G 188 2 4 5	Routi DO 5	+ 32.3		28
25	H	Bhanar T.S.	256	G 28 20 12·87		G 28 49 21.3		+ 13.3		24
26	H	Vijnot T.S.	276	G 28 8 55.00			Khai D 0 5	+ 15.1		25
			•	G 28 2 3.30	G 69 50 32.77	A 159 35 15.6 G 159 35 10.0	Dewari D 0 5	+ 10.2		26

^{*} A = Astronomical Value.

G=Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XOV.
in terms of any Spheroid.

	F	OŖ OI	IANGE	s of	AXES.		F	ок сн	ANGE	SOFC	RIGI	٧.	I	HELMI	erts (SPHEROI	D*	
Serial No.	Case	I : δα=	1 km	Case I	I : δb =	1 km	Case J	II : La u ₀ = 1"	titude		$\begin{array}{c} V: Az \\ w_0 = 1^n \end{array}$		a	 6 3782	00 metr	es, 1/e-29	98·3.	Serial No.
Ser	и	v cos λ	w coth	u	v cosà	ø cotλ	ч	v cosa	w cota	u	v cosà	ø cot.λ	и	v Cosa	10 oota	Deflection in Prime Vertical	Deflec- tion in Meridian	æ
1	"	"	+8.80	"	. "	″ -0·17	"		-0·58	"	"	+1.77	"	"	+ 10,11	+16.4	"	1.
2			+8.53			-0.30			-0.55			+1.83			+9.26	+ 6.5		2.
3			+7.08			-0.32			-0.48			+1.83			+8.57	+ 3.6		3
4	+ 1.64			-5.19			+0.08			+0'17			-1.78				-2.8	4
5			+5.21			-0 09			-0.38			+1.28			+7.38	- 1, 5		5
-6			+5.30			0.00			-0.34			+1.74			+7.04	- 4.3		6
7	+ 1 * 54	+ 6 . 36	1 1	-4.24	-0.88	-0.00	+ 0.48	-0.00		+0 17	+0.10	+1.48	-1.24	+ 5 • 26	+7.27	- 7.5	0.0	7
8	+1.48			-4.22			+0.08			+0.19			-1.44				-9.7	8
9	+1.32		.	-3.89			+ 0.08			+0.16		-	-1.13				-1.3	9
10			+6.30			-0.61			-0.45			+ 2.02			+7 87	- 3.0		10
11			+ 5.61			-0.39			-0.39			+1.95			+7.29	+ 9.5		11
12			+ 5 · 96			-0.57			-0.41			+ 2 . 05			+7.60	+ 2.0		12
13	+0.42		+ 5. 73	-0.68	3	-0.69	+0.99		-0.41	+0.10	-	+2.13	+0.40	,	+7.40	- 1.8	-2.3	18
14			+6.17			-0.24			-0.43			+ 2 1 3			+7.76	- 5°2		14
15	+ 0.44			-0.6.	+		+ 0.05			+0.1	7		+0.4	5			- 1:4	15
16		+6.3	7		-0.00			-0.0			+0.0	1		+ 5 ° 2		- 5.5		16
17	+0.4		+6.52	-0.6	3	-0.48	+0.08	3	-0.4	+0.1	7	+ 2 · 14	+0.40		+ 7:83	II.	-0.6	17
18		+ 3 · 6.	4		-0.4	9		-0.0			+0.1	_		+3.30		+ 8.7		18
19			+ 3 · 21			+0.00			-0.50	.		+ 1 . 70	li .		+5.14	II	_	19
20	-		+4.75			+0.03	!		-0.3	1		+ 1 . 7			+ 6.21	- 0.4		20
21		7		-3.3			+0.0	1		+0.1	_	_	-0.8	1	_	-	-0.2	
22		2		-3.1	9		+0.0	9	_	+0.1	4	_	-0.8	5	16.5		_	23
23			+ 4 . 22	1		-0.5		_	-0.3	.		+ 1 · 8	<u> </u>	_	+6:00	.	_	$-\frac{26}{24}$
24	1		+4.2	_		-0.2		_	-0.3			+1.0	_	-	+6.17	11		25
28	1		+4.50	.		-0.5			-0.3	_		+1,0	_	_	+6.38]]		26
26	3		+4.50	6		-0.2	+		-0.5	8		+1.0	2		+6.1	5 + 4	•	20

^{*} $\delta a = 0.924$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. *Vide* p. 2.

TABLEDeflections of the Plumb-line

1	T				EΨ	EREST'S SE	HEROID.		······································	
Serial No	Sheet No	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed Station	(A-G) cot λ for azimuth or (A-G) cos λ for longitude observations†	Meridian Deflec- tion†	Serial No.
27	89 I	Jharkil T.S.	532	۱۱ ر ه	0 / //	6 / " A 208 7 9 2	Kasain D 0 3	+ 9.2	"	27
28	J	Tounsa T.S.	593	G 31 21 13.65	G 70 59 44.80	G 208 7 3.6 A 201 7 57.5	Langawala D 0 11	+ 27.1		28
29	J	Dera Dîn Panāh S.	490	G 30 41 51 59 A 30 33 59 63 G 30 34 1 87	G 70 39 0.13 G 70 56 7.29	G 201 7 41 4 A 209 21 14 7 G 209 21 7 3	Sakwala D 0 4	+ 12.5	- 2.2	29
80	K	Dājil S.	412	G 29 33 20.87	G 70 22 52 98	A 239 26 6 7 G 239 25 53 0	Dalura D 0 6	+ 24.2		30
81	K	Paphra T.S	316	G 29 5 49 37	G 70 49 45.82	A 273 23 2 0 G 273 22 56 8	Chanikhan D 0 4	+ 9.3		31
32	N			A 30 10 56.15 G 30 10 58.70	A 71 26 22'19			- 4.5	- 2 ·6	32
33	0		_	A 29 21 39 83 G 29 21 41 58	G 71 59 19.71	A 195 0 23 1 G 195 0 23 1	Gaddan D 0 6	+ 1.8	- 1.8	33
34	40 A			G 27 51 8.74	G 68 26 14.75			+ 6.6		35
35 36	1: 			A 24 49 30.50 G 24 49 31.23	G 68 43 47:38		Hakimani D 0 4	+ 9.3	- 0.1	36
37	G		_	G 24 46 19.67	G 68 23 40.86	A 141 22 40 1 G 141 22 35 0 A 247 8 33 5		+ 11.1	- 0.0	37
38				A 25 0 31 53 A 24 58 47 25	G 69 3 5.32	A 247 8 32 8 A 238 0 7 4	D 0 5	- 3.6	+ 0.3	38
89			44	G 24 58 47 00	G 69 51 23.30	G 238 0 9'1		+ 4.2		39
40	<u> </u>	Asu H.S	5.	G 24 50 10.49	G 69 20 25.56	G 181 11 34.6		+ 18	_	40
41	-:	Malar H.S		G 27 10 32'14		G 201 37 31 7 A 161 26 22 4	Ramsar D 0 6	- 2.0	_	41
42	-	Lünki H.S	5. 588	G 26 2 25.80 A 24 58 18.73		A 255 9 1.4	Karebhit D 0 3	+ 6.9	- 4.4	42
43	 -	Rojhra H.	518	G 24 58 23.15 A 24 57 26 09		A 254 1 46.8	DharinderaD 0 3	+ 4.3	- 0.5	43
44	 - -	Virāria H.S	3. 460	G 24 57 26 28 A 24 56 32 64 G 24 56 36 13		A 106 12 49.8	Karebhit D 0 1	+ 7.5	- 3.2	44
45	-	Didawa H.	3. 212	A 24 51 17·32 G 24 51 19·36		A 72 32 16.7	Sohagi D 0 2	+ 5.8	- 2.0	45
46		Sarla S	3. 132		G 71 34 7.48	A 244 27 47.6	Dawal D 0 3	+ 9.2		46
47	_		362	A 24 36 58 17 G 24 36 56 19		A 182 0 14.8	Kosia D () 6	- 0.0	+ 2.0	l
48		Hāthria H.		G 23 27 14.85	G 69 2 45 8	A 154 56 32 0	Sura Gandara E 0 1			48
49	Ì	J Dungarpur H.		G 22 48 13 54	G 70 59 39.4	A 199 56 38 7 G 199 56 32 8	3		- 4.7	-
50 51	_ _	Kunkāvāv T.		G 21 39 11 96	G 70 56 8.80	A 161 59 40.0	Mumaiya D 0 10	+ 11.3	- 1.7	
52	_ _	L Dangarvadi H.		G 20 43 0.5	G 70 56 5.2	1 4 100 4	Por Do		- 8.5	
51	_	O Chamardi H.		G 22 57 7.58	G 71 48 34 · 1:	A 198 26 44 G 198 26 39		+ 12.0	- 5·1	
		F Ganga Uhoti H.		G 21 49 26.6	G 71 55 4.34	A 174 38 11	ı Kafirkhan E 1	7 - 19.1		54
			9909		G 73 44 52 · 1			19·1		

^{*} A = Astronomical Value.
G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

X0V. in terms of any Spheroid.

	B	OR C	HANGE	is of	AXES		F	OR CH	IANGES	OFC	RIGII	N	· .	H ELM	ert's	SPHEROII)*	ō.
. NO.	Case 1	I : δa=	1 km	Case 1	II : 8b =	-1 km	Case I	II: La u ₀ =1"	titude	Case	IV : Az w ₀ =1"	imuth	a	- 63782	00 meta	res, 1/e = 29	8.8	Serial N
Seria	u	p cos λ	w cot λ	u	ø сов λ	w cot λ	u	υ cos λ	w cot A	u	υ cos λ	w cot A	u	υ cos λ	w cot A	Deflection in Prime Vertical	Deflec- tion in Meridian	2 2
- 1	"		"	"	"	"	"	,,	"	"	"	"	"	"	"	"	"	27
27			+3.92			0.00			-0.53			+1.74			+ 5 . 79	+ 3.1		28
28			+3.65			-0.03			-0.34			+1.77			+ 5.26	+ 21.3		
29	+1.43		+3.22	-4.99		-0.03	+ 0.09		- 0.54	+0.11		+1.48	- 1.94		+ 5 • 46	+ 6.7	- 0.3	29
8 0			+3.86			-0.02			-0.50			+1.83			+ 5.81	+ 18.1		80
31			+3.67			-0.14			-0.5			+1.87		-	-5.62	+ 3.2		81
32	+1.37	+2.17		-4.43	-0.30		+0.00	-0.0	4	+ 0, 10	+0.0	6	-1.80	+1.86		- 6.4	- o.8	82
33	+1.38		+3.03	-4.14		-0.11	+ 1,00		-0.30	+0.00		+ 1.85	-1.37	,	+5.04	- 3.4	- 0.4	88
34			+5.05			-0.30			-0.34		·	+1.93		-	+ 6 · 83	- 0.6		34
35	+0.37		+5.25	II		-0.05	+0.00		-0.37	+0.17	 	+ 2 . 1 5	+ 0.3		+ 7:03	+ 2.1	- 1.1	85
36			+5*45			-0.68			-0.38		-	+2:15		-	+7.18	+ 3.7		36
	10015		+5.03		<u>,</u>		+0.00		-0.35	II	4	+ 2 · 14	+0.5	9	+6.86	- 5.6	- 1.3	3
87	+0.40	<u> </u>						-	-0.33	l	_	+ 2 · 1 4	+0.3	6	+6.47	- 10.3	0.0	38
38	+0.37		+ 4 * 57	<u> </u>	•	-0.55		-	-0.38	l	-	+ 2 1 1	 	-	+6.4	11.		8
89			+ 4 • 89			-0.6					-	+ 1.08		-	+6.0	<u> </u>	-\ <u>'</u>	4
40			+4.16	5		-0.31	<u> </u>	_	-0.58	.	_	_	.		+6.3		<u> </u>	4
41			+4.38	3		-0.4	2		-0.30			+ 2.00	.	_	_		- 416	- 4
42	+0.3	+	+4.10	-0.4	3	-0.20	+0.0	9	-0.5	+0.1	1	+ 2 · 1	<u> </u>	_	+6.0			_
43	+0.3	5	+4'38	-0.4	2	-0.5	+0.0	9	-0.3	+0.1	2	+ 2 1	4 +0.3	5	+6.5	8 - 3.3		4
44	+0.3	2	+3.88	B -0.2	-	-0.4	8 + 0.0	9	-0.5	7 + 0 · 1	1	+ 2 ' 1	5 +0.3	2	+5.9	2 + 1.4	- 3.7	4
45	+0.5	9	+3.7	3 -0.6	3	-0.4	7 +0.0	9	-0.3	6 +0.1	0	+ 2.1	6 +0.1	4	+5.8	I - 0.3	- 2.3	4
46	-		+3.5	9	-	-0.4	6	-	-0.3	5	-	+2.1	6		+5.6	9 + 3.6		4
47	+0.5	1	+3.4	2 -0.4	13	-0.4	5 + 1 . 0	00	-0.2	4 +0.0	9	+2.1	8 +0.3	31	+5.5	- 6.	+ 1.3	7 3
48	-	-	+5.2	6	-	- o·8	2	_	-0.1	3	_	+ 2 · 2	7	-	+7.0	- 11.0	5	- -
4.9	_	9	1	6 + 1 · 1	12		+0.9	9	-0.3	0 +0.		+ 2 · 3	4 + 1 . 6	01	+6.3	+ 8.0	5 - 5.2	7 -
50				+ 1 . 1			9 + 0.0		-0.3	+0.	11	+ 2 · 4	+0.	59	+6.7	+ 5	2 - 2.	3 -
57	_	_	_	+ 2 . 7	_	_	+1.0	_	_	+0.		_	+1.	61	_		-10.	<u>-</u>
	_	_	- 4.00	8 +0.6		-0.6			-	2 +00	_	- + 2 :	+0	94	+6.	23 + 6.	0 - 6.	-
5:		_		_	_		_		_	+0.		_ ;	+ 1.			_	- 4.	2
5		23		+1.0	99		+1.0					_	_		+ 3	90 - 23	_	_
5.	1		+ 1.0	95		+0.0	7		-0.1	2	.	+1.	2		T 3	- 23	7	1

^{*} $\delta a = 0.924$, $\delta b = 0.743$. $u_0 = 0.31$, $v_0 = 1.29$. Vide p. 2.

 $T \land B \land L \not E$ Deflections of the Plumb-line

					EVE	REST'S SP	HEROID.				
Serial No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevati or Depression observed station	on for	$A-G$) cot λ r azimuth or $A-G$) cos λ or longitude bservations†	Meridian Deflec- tion†	Serial No.
	48 G	No. 451 ut infra		o , "	0 / 11	0 / //	•	,	"	"	
55	G	Murree h.	, , , ,	A 33 54 37 35 G 33 54 57 35	G 73 22 50·15			_		-20.0	55
56	G		. 1918	G 33 16 48·85		A 214 27 23.4 G 214 27 22.2	Nerh E 0	58	+ 1.8		56
	J	No. 452 ut infra									
	J	No. 453 ut infra									
	K										
57	L			A 32 35 6.52 G 32 35 12:11	G 74 37 12:48	·				- 5.6	57
58 59	P 44 U			A 32 1 34 23 G 32 1 33 77	G 75 5 34 90					+ 0.2	58
60	D			G 29 55 9·17	G 72 59 28 42	A 298 34 7 1 G 298 34 5 8	Gajlani D 0	1	+ 2°3		59
61	D			A 28 56 12.41 G 28 56 11.34	G-72 14 8·80					+ 1.1	60
62	<u>D</u>			G 28 30 57-06	G 72 22 17 41	A 171 53 31 2 G 171 53 32 0	Habib D 0	8	- 1.5	-	61
63			603	A 28 29 43.75 G 28 29 40.91	G 72 39 32.34					+ 2.8	62
64				A 30 53 38·53 G 30 53 43·27	G 73 17 13 28	A 216 51 25.8 G 216 51 25.4	Firoz D 0	1	+ 0.7	- 4.1	63
65			770	G 30 5 59 27 A 31 38 2 51	G 73 49 16 30 A 74 52 26 46	A 185 27 27 5 G 185 27 29 9	Fatehgarh D 0	8	+ 2.6	-	65
66	M	Sangatpur T.	"	G 31 37 58 72 A 31 17 35 42	G 74 52 23 45	A 61 34 52 8	Rabza I) 0		+ 2.6	+ 3.8	66
67	N	Khimūāna T.	1	G 31 17 34 43 A 30 22 11 74	G 75 2 19.27	G 61 34 49·1	17 0		T 01	- 3.1	67
68	-0	Sawaipur T.6		G 30 22 14.82 A 29 39 13.13						- 0.8	68
69	0	Sirsa S	738	G 29 39 13.96		A 17 II 0'2	Banka D 0	6	+ 3.7	-	69
70	P	Rām Thal	951	G 20 31 35 30 A 28 29 38 81		G 17 10 58·1		-		- 0.2	70
71	45 A	Bithnok H.	- 774	G 28 29 39 27 A 27 53 24 97	<u>G 75 0 10.60</u>			-		+ 2.0	71
72	Ā	Jambo H.S	772	G 27 53 22.03 A 27 16 31.94		A 153 23 42 9	Strad D 0	 -	+ 1.4	+ 3.1	72
73	В	Chamu H.	1065	G 27 16 28 88 A 26 39 53 44		G 153 23 42 2				+ 0.4	78
74	В	Thob H.	856	G 26 39 52·74 A 26 3 2·90 G 26 3 5·85		A 322 26 25 5 G 322 26 20 4	Samdari D 0	8	+ 10.4	- 3.0	74
75	0	Samdari H.	846	A 25 48 59 58 G 25 48 59 55		G 322 20 20.4				0.0	75
76	D		5650	G 24 38 58 39	•	A 248 53 38.4 G 248 53 36.1	Belka D 1	2	+ 5.0	-	76
77	D		1 '			₩ 240 53 30°1				- 3.3	77
78	D	Birona	673	G 24 26 38·64	G 72 13 4.51	A 121 43 10.7 G 121 43 10.7	Sitora D 0	8	- 0.4	-	78

^{*}A = Astronomical Value.

3 = Triangulated or Geodetic Value.

XCV. in terms of any Spheroid.

	I	OR C	HANG	es of	AXES		E	OR CI	HANGE	SOFC	RIGI	N.		HEL	MERT'S	SP H	EROL	D*		
Serial No.	Case	[:δα-	-1 km	Case 1	. 66 : 11	=1 km	Case	III : Li u ₀ = 1"	titude		$\begin{array}{c} \mathbf{IV} : \mathbf{A} \\ \mathbf{w_0} = 1 \end{array}$	zimuth	a=	- 6378	200 metro	es, 1	l/ ∈— 29	98·3.		Serial No.
Seri	શ	o cos 2	w cot A	26	v cos ?	w cot a	u	υ cos λ	w cot A	u	v cos	λωcotλ	u	v.cos	λw cot λ	in F	rime rical	Defi tion Meric	in	å
	"	. "	"	. "	"	"	"	"	"	u,	*	"	"	"	,		"		"	
55	+ 1 . 62		_	-7.15	5		+ 1.00	-	-	+0.07		_	-3.3	, 	_			– 1	6.6	55
56			+2.25			+0.00			-0.14			+ 1.00			+4.54	_	2.9		_	56
			_	-	-			-	-			-		·	_					-
				-		_		-												
57	+1.28			-6.3	3		+1.0	0		+0.02			-2.0	.				.	2.7	57 58
58	+ 1 - 52			-6.1	2		+1.0	0	_	+0.04		+1.8	-2.4	8	+ 4. 53	<u> </u>	2.2	+	3.3	59
59			+ 2 · 4		_		+ 1.0		-0.16	+ 0.00		_	-1:5	5		<u>- </u>		+	2.2	60
60	+1.1	.	+ 2.8	-3.8	3	-0.13	_	-	-0.16	.		+1.0		-	+4.9	5 =	6.7	-		61
62	+1.0	,	_	$\frac{1}{-3\cdot 5}$		_	+ 1.0	-	_	+0.0	3		-1-:			-		+	4.0	62
63	_		+ 2 · 2	7 -5.2	_	-0.0	2 + I . O	0	- 0.1	+0.0	7	+1.7	7 - 2	56	+4.3	2	3.9	-	2.6	63
64	_	-	+ 2.0	2	-	-0.0	4		-0.1	3	1-	+1.8	1		+4.1	3 -	- 8.5			64
65	+1.4	6 + 1 .	67	-5.5	70 -0.	2,3	+ 1.0	-0.	03	+0.0	4 +0		_	51 + 1		+		_	6.3	65
66	+1.4	3	+1.3	5 -5.4	18	0.0	_		-0.1	2 +0.0	_	- +1.7	6 - 2		+ 3 · 4	7 +	2.3	+	3'4	66
67		1		-4.8	_	_	+1.0	_	_	+ 0.0	_					- -		+	0.3	68
68	_	2	+1'4	-3.4	40	-0.0	+1.0		-0.1	_	-	+1.8	35	- -	+ 3.6	5.4	- 0.1	;		69
70	_	_		3	40	_	+1'	00	_	+ 0.0	-4	_	- -:-	30		- -		+	0.8	70
	+0.0			$-\left \frac{-3}{3}\right $			+ 1 *	00		+0.0	8	·	- 0	97		- -		+	3.9	71
1	+0.8		+ 2 •	86 - 2.	57	-0.3	+ 1 .	00	-0.5	+0.0	8	+1.6	90 -0.	72	+4.	87 -	- 3.7	7 +		l
77	3 +0.	70		<u>-2.</u>	09	_	+1.	00		+0.0	8		-0					+	1.5	ļ
7	4 +0.	57	+3.	02 -1.	59	-0.	37 + 1.		-0.2	+ 0.0		+ 2 '	07 -0		- +5.	12	+ 5.	_	5.8	_
7		50			41		+ 1.	00	_	+0.0	08	+ 2.		10	+ 5	13	_ 0.	_ _		76
7		_	+ 2 .			-0.	38		-0.8	+0"			+0	27		-" -		- 1	3.6	ı
7	7 +0.	19	+ 3.	-0'	44			_	-0.			+ 2		_ -	+5.	43	- 5.	_		7
1	9		5	-7						.										

^{*} $\delta a = 0.743$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. Vide p. 2.

TABLE

Deflections of the Plumb-line

						EV	erest's s	PHEROID.			
Serial No.	Sheet No.	Observed	at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed station	(A-G) cot λ for szimuth or (A-G) cos λ for longitude observations†	Meridian Deflec- tion†	Serial No.
79	45 D	Deesa Tel. Oi	fice s.	443	A 24 15 21.15	A 72 II 1.26		o , Jairāj E 1 21	- 0.4	- 8.2	79
80	1)	Chaniana	H.S.	953	G 24 15 29.35 A 24 6 25.39	G 72 11 4·85	G 241 16 15.5			-11 3	- 80
81	Н	Kānnagar	н.в.	3607	G 24 6 36.64	G 72 32 19.66	A 266 45 16 1	Māl Niver E O 2	- 6.3		8
82	н	Tiki	H.8.	2369	G 24 58 28 78 A 24 55 34 52 G 24 55 38 24	G 73 18 59 95	A 106 4 27'1	Māl Niver E 0 57	+ 8.0	- 3.7	8:
83	H	Lakarwas	H.8.	2574	A 24 31 41.05 G 24 31 47.99	G 73 50 44'41	G 106 4 23-4			- 6.9	-88
84	J	Rewat	H.S.	15+2	A 26 53 54 74 G 26 53 53 98	G73 49 43.23				+ 0.8	84
85	J	Jetgarh	H.8.	1967	A 26 18 8 02 G 26 18 6 39	G 74 16 53.79	-			+ 1.6	- 88
86	J	Rājgarh	н.в.	2618	G 26 17 49·31	G 74 18 36 91	A 156 43 41 °O	kisanpura D 0 8	+ 2.3		- 86
87	K	Khämor	H.8.	1393	A 25 45 11:00 G 25 45 15:01	G 74 35 44 37	G 156 43 39.9			- 4.0	87
88	L	sänd	н.в.	1910	G 24 43 6·11	G 74 47 29 19	A 284 36 7.8	Mendki D 0 7	+ 8.2		88
89	L	Aramlia	8.	1532	A 24 25 2 66 G 24 25 7 27	G74 32 58 48	G 284 36 3.9	Nanka Hūāro	+ 5.7	- 4.6	-89
90	М	Uarinda	s.	I 204	A 27 55 30 05 G 27 55 30 55	G 74 59 5 69	G 244 38 58 9 A 115 55 45 3	E 0 5 Biramsir D 0 3	+ 5.8	- 0.2	90
91	P	Rāmpūra	H.s.	1920	G 24 28 44·16	G 75 1 18·47 G 75 26 52·24	G 115 55 42 2 A 260 5 35 8	Nimthür D 0 16	+ 1.8		91
	46 A	Kardo	н.в.	807	A 23 57 2.27 G 23 57 10.02	G 72 43 52 88	G 260 5 35 0			- 7.8	92
93	Ā	Kainath	н.з.	1385	A 23 51 14 99 G 23 51 23 79	G 72 58 51.75		· · · · · · · · · · · · · · · · · · ·		- 8.8	- 98
94	A	Dhamanva	T.8.	397	A 23 32 2.65 G 23 32 8.40	G 72 30 56.82				- 5.8	94
95	A 	Morali	H.s.	466	A 23 25 17.47 G 23 25 23.18	G 72 57 44 96				- 5.7	98
96	A 	Sonāda	T.S.	250	A 23 7 15.61 G 23 7 19.89	G 72 46 0.14	A 334 35 18·1 G 334 35 10·2	Mirzāpur D 0 5	+ 18.5	- 4.3	96
97	В	Pāldi	н.в.	208	A 22 53 51.60 G 22 53 57 07	G 72 31 30.86	337 35 10 2			- 5.5	97
98		Pārnera	H.s.	614	A 20 32 49.83 G 20 32 56.85	G 72 56 56:42	A 349 0 27 3 G 349 0 13 6	Gambhirgad E 0 17	+ 36.2	- 7.0	98
99	_	Patängdi	H.S.	922	G 22 52 15.70	G 73 53 22:34	A 16 47 30 9 G 16 47 26 6	Bhor 1) 0 1	+ 10.3		- 98
.00		Ghorārāo	H.s.	323	A 22 52 8.05 G 22 52 11.17	G 73 21 25 45				- 3.1	100
01		Pāvāgad	H.8.	2721	A 22 27 39.95 G 22 27 44.33	G 73 31 1.07				- 4.4	101
03		Sidhpur	S.		A 22 4 11.77 G 22 4 15.21	G 73 28 59.81				- 3.4	102
04			H.S.		A 21 34 30.45 G 21 34 34.13	G 73 30 9.20				- 3.7	108
.04	i	Tarbhān	8.	140	A 21 0 28.36 G 21 0 34.13	G 73 3 49 79				- 5.8	104
.06		Sāler	H.S.	5140	G 20 43 18·44	G 73 56 21 93	A 151 26 55.7 G 151 26 50.4	Dopāri D 1 29	+ 14.0		10
.00	M	Deo Dongri	H.S.	1727	A 23 26 43 17 G 23 26 47 79	G 75 32 16.99	<u> </u>			- 4.6	106

^{*} A = Astronomical Value.

G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XCV. in terms of any Spheroid.

	I	OR C	HANGI	es of	AXES		F	OR CI	IANGE	s of c	RIGIN	٦.	1	HELM	ert's s	PHEROI	D*	·
Serial No.	Case	I : δa =	l km	Case 1	ΙΙ: δδ=	-1 km	Case	III: La u ₀ =1"	titude	Case	[V : Az w ₀ =1"		a=	- 637820	00 metre	s, 1/e=29	8 3.	Serial No.
Serie	u	υ Cos λ	ιυ cotλ	u	υ cosλ	w cota	ч	v cosx	w cota	ય	υ cosλ	w cota	u	υ cosλ		ueflection in Prime Vertical	tion in	
	"	"	"	"	"	"	"	"	"	"	"	"	"	"	,	4	"	
79	+0.11	+ 3.28	+3.37	-0.13	-0.47	-0.46	+1.00	-0.04	-0.3	+0.00	0.00	+ 2 • 2 1	+0.43	+ 2 · 67	+ 5 · 46	- 5.9	- 8.6	79
80	+0.07			-0.04			+1.00			+0.00			+0.46				- 11.8	80
81			+ 2 · 55			-0.54			-0.18			+ 2.10			+4.89	- 11.1		81
82	+0.32		+ 2 · 24	-0.69		-0.50	+1.00		-0.16	+0.00		+2.12	+0.11		+4.57	+ 3'4	- 3.8	82
83	+0.12			-0.32			+1.00			+0.06			+0.36				- 7.2	83
84	+0.45			-2.27			+1.00			+0.00			-0.64				+ 1.4	84
85	+0.20			-1.80			+1.00			+0.02			-0.42				+ 2.0	85
86			+1.73			-0:17			-0.13			+ 2.06			+4.09	- 1.0		86
87	+0.45		· ·	-1.36			+1.00			+0.02			-0.54				- 3.8	87
88			+1.85			-0.54			-0.13	 		+ 2 · 18			+4.30	+ 4.2		88
89	+0.10		+1.20			-0.33	+1.00		-0.11	+0.02		+ 2 · 20	+0.30		+4.13	+ 1.0	- 4.0	89
90	+0.03			- 3.07	ļ	-0.07	+1.00		-0.10	+0.06		+ x · 95	-1.04		+3.78	+ 1.8	+ 0.2	90
91			+1.32			-0:18			-0.00			+ 2 · 20			+3.90	- 3.1		91
_	+0.01	 		+0.13			+1.00			+0.08			+0.22		ļ.,		- 8.3	92
					.		+1.00		<u> </u>	+0.02					<u> </u>		- 9.3	93
98				+0.33	ļ	ļ <u></u>			ļ		ļ		+0.5.				- 6 5	
94				+0.49			+ 1.00		<u> </u>	+0.08			+0.68				- 6.4	
95	-0.12			+0.20			+1.00) -	_	+0.08			+0.20					_
96	-0.34		+3.03	+0.85		-0.22	+ 1.00		-0.56	+0.08	3	+ 2 . 32	+0.8	2	+ 5 · 32	+ 13 4		
97	-0.30			+1.04	-		+1.00			+0.08	3		+0.0				- 6.4	
98	- 1.00		+3.17	+ 3.25	5	-0.75	+ 1.00	5	-0.54	+ 0.0	3	+2.20	+1.8	ī	+ 5 · 63	+ 31.7	- 8.8	98
99			+ 2 . 3		-	-0.4			-0.1	7		+2.34			+4.74	+ 6.0		99
100	-0.3	2	1	+1.0	7	-	+ 1 . 0	•	-	+0.0	7		+0.0	0	-		- 4'0	100
101	-0.4	5	-	+1.4	3		+1.0	0	-	+0.0	7		+ 1.0	4	-		- 5.4	101
102	-0.2	B	-	+1.7	8	┼	+1.0	0	-	+0.0	7	·	+ 1.1	8	-		- +.0	5 102
1	-0.4	į.	-	+ 2 . 2	3	-	+ 1.0	•	-	+0.0	7	-	+1.6	1		-	- 5·	3 108
1	-0.2		-	+2.7		-	+ 1.0		-	+0.0	7	-	+ 1 . 8	18	-		- 7 -	7 104
105			+ 2 • 4		-	-0.7		_	-0.1	_	-	+ 2.2		-	+5.0	3 + 9.		100
İ	-0.1	R	-	+0.6		-	+1.0			+0.0			+0.6	50	_		- 5.	
1	,			70.0	٦		1	~		1.00	7		` `					"\

^{*} $\delta a = 0.924$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. Vide p. 2

TABLE
Deflections of the Plumb-line

					E V	EREST'S S	PHEROID.			
Serial No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed station	$(A-G)$ cot λ for azimuth or $(A-G)$ cos λ for longitude observations†	Meridian Deflec- tion†	Serial No.
107	46N	Indrāwan T.S.	1834	, ,,	0 / 1/	° ' " A 273 34 2.7	o , Harnāsa D 0 9	+ 1.0	"	10
108	<u>_</u> N	Harnāsa T.s.	1818	G 22 48 48·54	G 75 10 56.60	G 273 34 1 9			- 3.3	100
109	N	Thīkri H.S.	854	G 22 47 29 91 A 22 1 3 92	G75 33 10.15	-			+ 1.3	109
110	P	Valvādi H.S.	1128	G 22 I 2.77 A 20 44 21.27	G 75 24 49 98	A 166 52 6.2	Ajnād D07	+ 16.9	- 6.5	110
111	47B	Bombay, Colaba Long 8.	75	G 20 44 27.73 A 18 53 39.15 G 18 53 49.48	G 75 11 7 12 A 72 48 55 82	G 166 51 59·8		+ 6.4	-10.3	11:
12	В		63	G 18 53 46 51	G 72 48 49·10 G 72 48 47·31	A 288 5 27.7 G 288 5 24.5	Karanja E 1 7	+ 9.3		112
13		Karanja H.S.	997	A 18 51 13.79 G 18 51 24.99	G 72 56 21 88	A 173 10 2.5 G 173 9 56.1	Trombay D 0 4	+ 18.4	-11.2	113
14	В	Kankesvar II.S.	1260	A 18 44 17.89 G 18 44 28.16		- ·/a 950 1			-10.3	114
15			10	A 18 38 26.35 G 18 38 36.69	G 72 52 12.42				-10.3	110
16		Kalsubai H.S.	5400	A 19 35 57.89 G 19 36 1.76	G 73 42 35 26	A 73 2 14 5 G 73 2 11 · 8	KāmandrugD 1 1	+ 7.6	- 3.9	110
17	. F	Mira Donger H.S.	1863	A 18 40 55.97 G 18 41 1.68	G 73 9 48 88				- 5.7	11'
18	F	Mandvi H.S.	4121	A 18 37 4" 94 G 18 37 51 11	G 73 32 21.71	A 271 15 3.9 G 271 15 7.8	Dighi D 0 56	- 11.6	- 3.2	111
20	G	Mahabaleswar H.S.	4719	A 17 55 9.91 G 17 55 15.55	G 73 40 17:41				- 5.6	11:
21	J	Mirya H.s. Khānpisura H.s.	473	A 17 1 29.65 G 17 1 35.92	G 73 15 39.43	A 167 2 11 4 G 167 2 7 4	Adhūr D 0 12	+ 13.1	- 6.3	120
22		Dhaulesvar H.S.	2751	A 18 45 22.60 G 18 45 30.65	G 74 47 49·81	A 191 14 39.3	Agargaon D 0 2	. — 13.5	- 8·1	12:
28		Pāchvad H.S.	3138	A 18 25 42.84 G 18 25 41.64	G 74 9 48 48	A 198 21 22.6		- 5.4	+ 1.3	125
24	L	Majala H.S.	2613	G 17 31 1.97 A 16 46 55.45	G 74 39 43.71	A 331 12 27.4 G 331 12 29.6	Palsi D 0 13	<u> </u>		128
25		Māvinhūnda H.S.	2582	G 16 46 56.82 A 16 25 4.47	G 74 26 55.57				- 1.4	124
26		Karabgati H.S.	2544	G 16 25 4.19	G 74 47 40:38	A 179 9 24 9	Māwinhānda	4	+ 0.3	126
27	M	Dhaigaon S.		G 16 7 34.87	G 74 47 56:35	G 179 9 26 9	Do 7	- 6.9		12
28	-N	Kanheri H.S.	2610	G 19 30 35 04 A 18 29 21 84		A 311 59 50·6	Garh Dāud	- 8·1	- 4·2	12:
29	N	Aisunda H.S.	2165	G 18 29 30.75		G 311 59 53·3 A 227 31 58·4	D 0 16	- 10.2		129
80	<u>N</u>	Kem H.8.	1951	G 18 26 52:37 A 18 10 45:68	G 75 0 35'11	G 227 32 1·8			- 3.2	130
31	48 E	Chaukola H.S.	2794	G 18 10 48 90 A 15 55 24 94		A 166 14 13·4	Valvan D 0 5	+ 0.1	- 6.2	18
32	Ī	Kumbhāri H.S.	2898	G 15 55 31·44 A 15 9 4·31 G 15 9 1·80		A 154 15 36 - 5	Salili D 0 30	+ 11.4	+ 2.2	18
133	J	Koramur H.S.	2525	A 14 8 1.71 G 14 8 6.59		A 235 28 6.8	Hönnavalli E 0 3	- 11.2	- 4.9	18
134	L	Mangalore Long S.	186		A 74 50 44 70	G 235 28 9.7 A 205 52 50.8 G 205 52 49.6		+ 5.3	+ 3.0	13

^{*} A = Astronomical Value.

G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

X0V. in terms of any Spheroid.

	H	OR O	HANGE	s of	AXES.		FC	OR OH	ANGES	OF O	RIGI	N	1	HELM:	ert's s	SPHEROL	D*	Ño.
Series No.	Case	1 : δa-	1 km	Case 1	ll: 86 =	1 km	Case 1	II : Ln u ₀ = 1"	titude	Case I	$\begin{array}{c} V: A \\ w_0 = 1 \end{array}$	zimuth	a	= 63782	200 metr	es, 1/e - 29	8.8.	Serial N
Cer	11	υ cos λ	to ooth	u	v cosa	no cota	и	υ 008λ	w cota	и	v cosx	w cota	u	в сову	w cota	Deflection in Prime Vertical		Š
	"	"	,,	"	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	"	-0.13	"	"	+2:35	"	"	+4.30	- 2.1		107
07 	\		+1.22	+1'15		-0.31	+1.00			+0.04			+0.85				- 4·I	108
08 09	-0.88	<u> </u>		+1.83		ļ	+1.00		Ì	+0.04		-	+ 1 • 1 4	1	I		+ 0.1	109
10	-1.06		+1.66	+3.00		-0.39	+1.00		-0.13	+0.04		+ 2 . 57	+1.6	i	+4.53	+12.9	- 8.1	110
11		+ 2 · 8			-0'4		·	-0.0	3	+0.08	-0.0	9	+2.3	3 + 2 * 2		+ 4.3	-12.6	111
.12			+3.48		ļ	-0.99			-0.33	<u>+</u>		+2.81		-	+6.00	+ 4.3		112
13	-1.7	2	+ 3 ' 40	+ 4. 2-		-0.97	+1.00		-0.31	+0.08	3	+2.81	+ 2 · 3	4	+5.95	+13.6	-13.2	113
14	-1.0	6	-	+4.8	5	-	+ 1.00		-	+0.08	3		+2.4	7			-12.8	
115	-1.8	•	-	+4.0	5	1	+ 1.00		-	+0.08	3		+2'4	2			-12.7	115
116	-1.4	5	+ 2.76	+4.0	4	-0.78	+1.00		-0.51	+0.00	5	+ 2 . 7 :		_	+5.44	+ 3.0	- 6.0	_
117	-1.7	9		+4.0	1	-	+1.00			+0.0	7		+2.3				- 8.1	_
118	<u>-1.8</u>	2	+ 2 · 8	+4.6	4	-0.8	+ 1.00		-0.31	+0.0	7	+ 2 · 6	9 + 2 1	_	+ 5 41	-16.1	- 5'4 - 8'2	_
119	-2'1	0		+5.6	5		+1.0	0		+0.0		_	+ 2 · 6		1600		_	
120	7 -2.4	.6	+ 3 * 4	+6.5	2		7 + 1.0			+0.0	_		1 + 2.0	_	+6.5		_	_
12	1-2.7	79	+ 2 . 0	7 +4-8	4		+1.0		_	+ 0.0	_	+ 2 · 8	8 + 2		+ 5 . 0	_	_	
12	_)	+ 2 · 5	5 + 5 - 1	6	_	+1'0	-		9 + 0.0	-	+3.0	_	-	+5.4		_	12
12	3		+2.5		_	-0.4		_	-0.1	+0.0	-		+ 3.			-	- 4.4	1 12
12		_	_	+6.	_	_	+1.0		_	+ 0:0	_		$-\left\ \frac{+3}{3}\right\ $			-	- 2.8	8 12
12		75 —	_	+7.		-0.0	_	_	-0.1	_	_	+ 3 **	_	_	+5.6	-11:	2	- 12
12			+ 2 · ;	+4.		_	+1.0		_	+0.	04	_	+ 2	10	_	_	- 6·	3 12
1	38 - 1 ·		+1.	+5		-0:	+ 1.0	_		+0.		+ 2	88 + 2	38	+4.8	34 -12.	0 -11.	3 4
	29		+1.	_	_ _	-0.	_	_	-0.	15	_ _	+2.	88		+5.:	-14 .	6	- ī
	30 - 2	03	_	+5.	40	_	+1.	00	-	+0.	04		+2	-69	_	-	- 5	9 1
1	31 -2		+3.	04 + 7			15 + 1.	-		+0	o6	+ 3.	32 +3	.33	+ 7	08 - 5	3 - 9	8 1
1	32 - 3°			91 + 8		-\ -1 :	37 + 1.	00	-0.	23 +0	05	+ 3	49 + 3	. 58	+6.	+ 6	6 - I	1
	33 - 3			47 +9			09 + 1	00	-0.	19 +0	04	+ 3	74 + 3	. 91	+6.	24 -15	7 - 8	8
			.67 + 2.	80 +10	77 -0	.21 -1.	36 + 1	00 -0	.01 -0.	22 +0	· o ₅ -	0.19 +4	· 09 + 4	+ 1	.13 + 6.	79 + 1	.0 - 1	3

^{3 8}a=0:024 8b=0:742, #a=0:31, wa=1:29. Vide p. 2

TABLE

Deflections of the Plumb-line

				·	EV	EREST'S 8	PHEROID.			
Serial No	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed Station	$(A-G)$ cot λ for azimuth or $(A-G)$ cos λ for longitude observations		Serial No.
35	48 M	Navalūr H.S.	2445	A 15 25 28.48	o, "	" "	۰,	. "	- 2.7	18
36	M	Kundgol H.S.	2145	G 15 25 31 17 A 15 15 14 46					- 0.8	13
37	N	Honnavalli H.S.	2777	G 15 15 15 28 A 14 16 30 76 G 14 16 32 46					- 1.7	18
38	53 A	Medwāni H.S.	1935	G 31 17 40.45		A 64 43 36 5	Hiu D 0 54	- 8.4		18
89	В	Isanpur H.S.	874	A 30 38 16 03 G 30 38 20 01		G 64 43 41·6			- 4.0	18
40	В	Bowra T.S.	855	G 30 20 50 29		A 208 37 15.2	Sudhiwal D 0 4	+ 4.8		14
41	В		822	G 30 5 9.30		A 212 55 16 6	Khanpur D 0 3	- 1.0		14
42	<u>.</u>	Rākhi T.S.	785	A 29 17 20.76 G 29 17 20.76	G 76 6 47 49	G 212 55 17.2 A 208 30 58.2	Barowdha D () 5	+ 4.8	- 0.2	14
43	E		10474	A 31 0 34 38 G 31 1 8 46	G 76 54 2.93	G 208 30 55.5			-34·I	14
44	F	Bajamara H.S.	9681	A 30 45 27.79 G 30 45 56.20	G 77 54 0.73				- 28.4	14
45		Amsot H.S.	3140	A 30 22 16.02 G 30 22 44.86	G 77 41 14.77				-28.8	14
46	F	Dehra Dun Base-line E. End S.	1967	A 30 16 37 26 G 30 17 7 35		<u> </u>			-30.1	14
18	- 1	Khujnaur s.	2576	A 30 15 56.70 G 30 16 23.63	G 77 52 58.67				- 26 9	14
9		Shorpur H.S.	2916	A 30 13 15 30 G 30 13 44 43					- 29.1	14
0			3069	A 30 13 1.23 G 30 13 1.52	G 77 52 19:58				-29.6	14
ī	i	Bulāwāla h.s. Nojli T.S.	2432	A 30 6 51.39 G 30 6 51.39	G 77 59 11.27				-29.0	15
2	-	Godhna T.S.	929	A 29 53 14.12 G 29 53 27.76	G 77 40 24.59				- 13.6	15
3		Kaliāna S.	901	A 29 37 8.73 G 29 37 18.46	G 77 54 2.98				- 9.7	15
4 -	ļ	Datairi T.S.	828	A 29 30 47.98 G 29 30 54.70	G 77 39 6.03	A 164 18 46 4 G 164 18 46 9	Dahera E 0 1	- 0.0	- 6.7	15
5		Bostān T.S.	767	A 28 43 58.67 G 28 44 4.49	G 77 38 56.31		Bostān D 0 6	+ ò·2	- 5.8	15
<u>.</u>		Chandaos T.S.	758	A 28 30 54.25 G 28 30 59.64 A 28 5 0.71					- 5.4	15
7		Kidarkanta H.S.	12509	A 28 5 0.71 G 28 5 1.59 A 31 0 51.58	G 77 51 39.60					15
8		Bahak H.S.	9715	A 30 44 37.60	G 78 10 23.37					15
9		Nag Tiba H.S.	9715	G 30 44 37 05 G 30 45 5 22	G 78 13 36.98					15
+				G 30 35 11·57	G 78 9 9 57	A 32 58 41 6 G 32 58 53 9	Eagle's Nest D 8 12	- 20 8	-30.2	15
30	J	Banog H.S.	7433	A 30 28 4 18 G 30 28 36 91	G 78 0 55.96	A 71 5 55 0 G 71 6 8 7 A 280 22 46 8	Amsot D 2 28	} - 23.3	-32.7	16
31	_1	Musicoree Dome	6937	A 30 27 4 02		G 280 23 0 5	Top Tibba E 1 7 Cole's Satelite	<u> </u>		<u></u>
		Obsy. H.S.	Francisco and the Fi	G 30 27 40.55	G 78 4 17.41	G 6 17 35 1	Station D 5 26	- 25.5	-36.2	16

^{*} A-Astronomical Value.
G-Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XCV. in terms of any Spheroid.

	I	FOR C	HANGI	es of	AXES		F	OR CE	IANGE	s of c	BIGI	N.		HELM	ert's	SPHEROI	D*	Ġ
Serial No.	Case	Ι:δα-	1 km	Case I	= 66 : I	1 km	Case 1	[II : La u ₀ = 1"	titude	Case	$ \begin{array}{c} 1V : A \\ w_0 = 1 \end{array} $	zimuth	a=	- 6378 2	00 metro	es, 1/e=2	98 · 3.	Serial No.
Ser	u	υcosλ	w cot λ	u	v cos λ	w cot A	u	υ cos λ	w cot A	u	v cos i	w cot a	u	v cus x	w cot A	Deflection in Prime Vertical	tion in	စီ
135	" -3.10	"	"	#8·13	"	"	+1.00	"	"	# 0·04	"	"	" + 3·46	"	"	"	- 6·2	135
	-3.57			+8.31			+1.00			+0.04		-	+3.21		-	i	- 4.3	136
137	-3.71			+9.31			+1.00			+0.04		-	+3.84				- 5.2	187
138			+0.75			0.00		·	-0.05			+ 1.76			+ 2.93	- 11.8		138
139	+1.34			-5.03		-	+1,00			+0.03		1	- 2 · 16	-			- 1.8	139
140			+0.81			-0.03			-0.02			+ 1.81			+ 3.02	+ 1'4		140
141			+0.83			-0.03			-0.05			+ 1 . 8 2			+3.08	- 4.4		141
142	+1.12		+0.82	-4.08		-0.03	+1.00		-0.00	+0.03		+1.87	-1.6	3	+3.13	+ 1.3	+ 1 1	142
143	+ 1 . 38			-5.29		_	+1.00			0.00			- 2.3	5			- 31 · 7	143
144	+ 1 . 35		1	-5.13			+1.00			0.00			- 2 · 2	5			- 26.1	144
145	+ 1.30		 	-4.85	i	-	+1.00			0.00		-	-2.0	9			- 26 7	145
146	+1.29		· 	-4.79		-	+1.00	, 		-0.01		-	-2.0	7			- 28·o	146
147	+1'29			-4.78		_	+1.00			0.00			-2.0			·	- 24.8	147
148	+1.58		1	-4.75		-	+1.00			-0.0	1		-2.0	25	_		- 27.0	148
149	+1.28	3	1	-4.7	4	1	+1.00	5		0.00	5		-2.0	24			- 27.6	149
150	+1.5	7	- 	-4.6	7	-	+1.0	5	1	-0.0		_	-2.0	00			- 27.0	150
151	+1.5	4	\	-+.2	1	_	+1.0			0.0	•		-1:9	90	_		- 11.7	151
152	+1.50		1	-4.3	2	-	+1.0	•		0.0	0		-1.8	31	_		- 7.9	152
153	+1.12	8	0.0	-4.5	4	0.00	+1.0	-	0.00	0.0	•	+ 1 · 8	-1.	5	+ 2 . 3	9 - 3.8	- 4.9	153
154	+1.0	5	0.0	-3.6	7	0.00	+1.0	0	0.00	0.0	•	+1.6	-1.7	45	+ 2.4	5 - 2.7	7 - 4.3	154
155	+1.0	1	-	-3.2	1		+1.0	0		0.0	•		-1:3	36		-	- 4.0	155
156	+0.0	4		-3.1	8	_	+1.0	00		0.0	-		-1:	21			+ 0.8	156
157	+1.3	8	-	-5.3	;0		+ 1 . 0	00		-0.0	1		- 2·	35			- 27 . 7	157
158	+1.3	5		-5.1			+ 1.0	00		-0.0	1		-2.	23			- 25.4	1
159	+ 1 . 3	3	-0.3	-4.0	9	+0.0	1 + 1.0	00	+0.0	2 -0.0	1	+ 1.3	79 - 2.	18	+2.0	- 23	4 - 28	3 159
160) + 1.3	1	-o·1	9 -4.6)2	0.0	0 + 1 . 0	00	+0.0	-0.0) I	+ 1 - 1	80 - 2.	14	+ 2 * 1	- 26·	0 - 30.	Ì
161	+ 1 . 3	31	-0.3	-4.6	-	0.0	0 + 1.0	50	+0.0	1 -0.0	21	+1.	80 - 2.	14	+ 2.	- 28	- 34	4 16

^{*} $\delta a = 0.924$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. Vide p. 2.

1,86

TABLE
Deflections of the Plumb-line

•					EVE	REST'S SI	HEROID.			
Serial No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed station	(A-G) cot λ for azimuth or (A-G) cos λ for longitude observations†	Meridian Deflec- tion†	Serial No.
162	53 J	Jharipani (IX) h.s.	5150	o ' " A 30 24 17 55	0 / 4 //	° ' " A 14 24 59 9	o / Dalanwāla	- 30·8	-52.5	162
163	J	Spur point (VIII)	3850	G 30 25 10 05 A 30 23 44 55	G 78 5 20-92	G 14 25 18 0 A 17 59 32 4	Dalanwāla	- 28·5	-53.2	163
164	J	Rajpur h.s.	3500	G 30 24 37 72 A 30 23 9 15	G 78 5 35 96	A 24 15 4'4	D 2 48 Dalanwāla	- 29.7	-47.7	164
165	J	<u> </u>	3050	A 30 23 56.83	G 78 5 59 89	G 24 15 21·8	D 2 26		-45 9	165
166	J	▼	2980	A 30 22 7.46	G 78 6 2.00		-		-44'4	166
167	J	īv	2780	G 30 22 51.83 A 30 21 26.78	7 78 5 21 38				-42.2	167
168	J	III	2660	G 30 22 8 93 A 30 21 5 57	G 78 4 30·87				-41.0	168
169		Dehra Dun Obsy.	2289	G 30 21 46.61 A 30 10 10.56	G-78 4 7·39	A 165 10 58 8	Banog E 5 20	19.5	-37.5	169
170	J	Old) 8. Dehra Dun Haig	2240	G 30 19 57 07 A 30 18 51 80	G 78 3 34 70 A 78 2 56 47	G 165 11 10.3		- 19 5 - 22·1	-36.8	170
171	<u>J</u>	Obsy. S. Lachkuwa la.s.	2674	G 30 19 28 73 A 30 4 5 34	G 78 3 22 · 12			- 22.1		170
172	J	nänigarh H.S.	7055	A 30 3 34.80	G 78 1 41.67				- 28.9	
173	K	Harpālsid T.S.	1000	G 30 4 4 47 A 29 39 22 24	G 78 42 54.38	•			-29.7	172 173
174	K	Mahesari T.S.	821	G 29 39 50 84 A 29 30 8 18	G 78 33 20 · 81				- 28.6	
175.	K	Sarkāra T.S.	761	G 29 30 18·21	G 78_8 51 70	·			-10.0	174
176	L	Sirsa T.S.	739	G 29 15 46 91 A 28 54 30 27	G 78 32 20.18	A 149 55 17 1	Milik D 0 4		-11.8	175
177	L	Bānsgopāł T.S.	677	G 28 54 39 64 A 28 33 23 28	G 78_32 6.14	G 149 55 20 5	MIIIK D 0 4	- 6.3	- 9.4	176
178	L	Sankrão T.S.	670	G 28 33 28 08 A 28 2 28 02	G 78 31 59.71	A 100	9.1		- 4.8	177
179	<u> </u>	Birond H.S.	6967	G 28 2 29.00 A 29 14 29.73	G 78 32 2.97	A 185 44 20 0 G 185 44 18 8	Sakrora D 0 8	+ 3.9	- 0.1	178
180	P	Kalīānpur T.S.	1 '	G 20 15 14.15	G 79 42 57 00	A . 0			-44.4	179
181	54 A	Tāsīng H.S.	2050	G 28 35 11 10 A 27 52 59 49	G 79 44 33·75	A 185 30 18.4 G 185 30 17.7	Donao D 0 4	+ 1.3		180
182	В	Bānskho H.s.	1870	G 27 52 59 49 A 26 50 2 37	G 76 12 11:56	A 77 55 36 5 G 77 55 31 6	Jīlo E 0 13	+ .9*3	0.0	181
183	C	Kānkra H.S.		G 26 50 7 89 A 25 37 58 75	G 76 8 20 42	A 148 40 55.6 G 148 40 51.9	Rāmgarh E 0 2	+ 7.3	- 5.2	182
184	D		1360	G 25 37 50 75 A 24 25 31 98	G 76 7 27 15	A 145 33 8.7 G 145 33 6.9	Bhojpur D 0 18	+ 3.8	- 0.8	
185	D	Māta-ka-hūra H.S.	1645	G 24 25 32 46	G 76 5 2.16	A 300 41 56.8 G 300 41 56.2	Kūsalpura 1) 0 4	+ 1.3	- 0.2	184
186.	E	Noh T.S.	710	G 24 14 10·67 A 27 50 53·13	G 76 36 49.20	A 181 31 35 0 G 181 31 35 0	Sartal D 0 15	+ 1.6		185
187		Agra-group W. Point	1	G 27 50 53 08 A 27 9 41 43	G 77 38 45 56	A 50 22 36.5 G 50 22 33.4	Mänpur D 0 6	+ 5.9	+ 0.1	186
188	F		810	G 27 9 41 43 G 27 9 45 86 A 26 57 0 50	G 77 56 25.26				- 4.4	187
189	G	Kesri H.S.	1487	A 25 46 41 57	G 77 37 52.58	A 146 55 27 2 G 146 55 25 9	Madhoni D 0 12	+ 2.6	- 5.7	188
			1407	G 25 46 35 81	G 77 40 49.02	A 206 41 38·8 G 206 41 40·1	Dīn D 0 10	- 2.7	+ 5.8	189

^{*}A = Astronomical Value.
G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

X0V. in terms of any Spheroid.

		FOR C	HANGI	es of	AXES		B	OR CE	IANGE	SOFC	RIGII	N.		HELM	ert's	SPHERO	.D*	ó
7 7	Oase	l : δα =	-1 km	Case	II: 86.	-1 km	Case	III: Le u ₀ =1"			$ \begin{array}{c} \mathbf{IV} : \mathbf{Az} \\ \boldsymbol{\omega_0 = 1''} \end{array} $		a	€378 2	200 met:	res, 1/e=2	98.3	Serial N
TRILIAN.	u	υ cos λ	υ cot λ	u	υ сов λ	w cot A	u	υ cos λ	w cot λ	u	υ сов х	w cot a	u	v cos λ	w cot a	Deflection in Prime Vertical	tion in	
	"	,,	"	"	"	"	"	"	"	"	"	"	"	"	"	"	, ,,	162
62	+ 1.31		-0.3	-4.88		0.00	+ 1.00) -	+0.03				-2.11		+2.11	- 33.4	-50.4	163
63	+1.31		-0.53	-4.87		0.00		.		-0.01		+1.80			+ 3, 13	- 33.1		164
64	+1.30		-0.53	-4.86		+0.01	+1.0	0	+0.03	-0.01		+ 1.80			+3.11	- 35.3		
65	+1.30			-4.86			+1.0	0		-0.01			- 2 I	1			-43.8	165
66	+ 1 - 30			-+.8	5		+1.0	0		-0.0			- 2 · 1	0	<u> </u>		-42.3	_
67	+ 1 . 30	5	-	-4.8	4		+10	0		-0.0			- 2 1	0			-40.1	_
68	+1.3	·	-	-4.8	4		+1.0	•		-0.0			-3.1	0			-38.0	168
169	+1.3		-0.31	-1.8	2	0.00	+1.0	6	+0 01	-0.0		+1.81	-2.0	8	+ 2 1 3	- 22.1	-35.4	169
170	+1.3	0 -0.3	14	-4.8	1 + 0.0	73	+1.0	0.0	0	-0.0	+0.1	1	-2.0	8 -0.0	5	- 22'	-34.8	170
171	+1.3	6	_	-4.6	4	_	+1.0	00	_	-0.0	1	_	-1.6	8			-26.9	171
172	+1.5	6	-	-4.6	4	_	+1.0	0	_	- 0.0	2		- 1 9	8			-27.7	172
178	+1.3	· · · · ·	-	-4.3	5	_	+1.0	00	_	-0.0	2	-	-1.8	33	-		- 26:8	178
	+1.1	_	_	-4.3	3	_	+1.0	00	_	-0.0	1	-	-1.	75			- 8.3	174
17	5 + 1 · 1		_	-4.0	6	_	+1.	00	-	-0.0	72	_	-1.0	66	_	-	-10,1	170
170		_	-0.4	$\frac{1}{8}$ $\frac{1}{-3\cdot8}$	30	+0.0	+1.	00	+0.0	3 - 0.0	-	+1.8	9 - 1.	53	+2.0	2 - 8	6 - 7 9	9 170
	7 + 1 . 0		_	$-\left\ \frac{1}{-3\cdot 5}\right\ $		_		00	-	-0.0	, 	-	-1-	40	_	-	<u> </u>	4 17
	8 +0.0		-0.4	_	_	+0.0	3 + 1 .	00	+0.0	3 -0.0	01	+1.0	14 - 1 .	19	+ 2 . 0	+ 1	4 + 1.	1 17
17		_{	-		_	_	- + 1.	00	_	-	03	-\		68	_		-42.	7 17
18				_	-[+0.0	6		+0.0		_	+1.6	<u></u>		+1:4	- 0	5	- 18
			_	30 -3		-0.0	_		-0.0	06 +0.	02	+ 1.16	95 - 1	08	+3.	+ 5	.9 + 1.	T 18
	+0.			_ _			_			06 +0			02 - 1	68	+ 3.	33 + 3	8 - 3	8 18
l	+0.		1	35 -2.			- + 1		L	6 + 0.			11 -0		l	45 + 0		
į.	33 +0.			B9 - 1 ·	_		10 + 1			7 +0.			21 -0			60 - 2		_ _
i_	+0.	09		94 -0.	20		1			_			_		+ 3.	_		_ 18
18	35		+0.			-0.			-0.0	_	_	+ 2 ·	- 11			_ -		
18	36 +0	89	+0.	01 - 3.	00	0.	00 + 1		0.4		00		95 - 1		+ 2	3		_
18	87 +0	75		- 2	48		+ 1	•00		-0.		_	-0		_		- 3	
1	88 + 0	71	+0.	OI - 2	31	٥.	00 + 1	.00	0.	00	00		01 -0		+ 2			9 1
1	89 +0	43	-0.	01 - 1	37	0.	000 + 1	.00	0	00 0	00	+ 2	10 -0	.31	+ 2	70 -	5.0 + 6	r i 1

^{*} $\delta a = 0.924$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. Fide p. 2.

TABLE Deflections of the Plumb-line

			·		EΥ	EREST'S S	PHEROID.			
Serial No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed station	(A-G) cot λ for azimuth or (A-G) cos λ for longitude observations†	Meridian Deflec- tion†	Serial No.
	54 H	Pahärgarh H.S.	1641	° ' " A 24 56 6.47 G 24 56 6.92	G , , , ,	A236 19 20 1	° / Nīmdānt D 0 4	+ 4 9	- o·5	190
191	Н	vaiādhari H.S.	1867	A 24 38 18 79 G 24 38 17 59		G236 19 17·8			+ 1.2	191
192	H	11.13.	1834	G 24 14 52 08		A175 58 10 5	Hatni D 0 8	- 0.4		192
193	L	Sūrāntal H.S.	1802	A 24 14 21 36 G 24 14 20 42		G175 58 10·7			+ 0.0	198
194		Sironj Base-line N.E. End S.	1481	A 24 8 55 45 G 24 8 53 57					+ 1.0	194
195	H	Kalianpur H.S.	1765	A 24 7 10.97 G 24 7 11.26	G 77 50 41 14 A 77 39 17 57	A190 27 6.39	Sürantāl D 0 0	+ 2.7	- 0.3	195
		(Origin)‡	1765	A 27 7 11 57 G 27 7 11 57	4778917⋅57	G 190 27 5 10 A 190 27 6 30	Surantal	+ 2.9	+ 0.3	
196	H	Tinsīa H.S.	1776	A 24 6 29.05 G 24 6 27.97	C	G 190 27 5 · 10			+ 1.1	196
197	H	Losalli 8.	1749	A 24 6 18·19 G 24 6 19·17		A149 5 52'1	Rāmpur D 0 2	+ 3.8	- 1.0	197
198	I	Salīmpur T.S.	645	A 27 46 36·23 G 27 46 36·46		G149 5 50.4	<u> </u>		- 0.3	198
199	Ī	Agra-group N. Point	550	A 27 14 10 31 G 27 14 14 10					- 3.8	199
200	ī	Agra Long. S.	550	A 27 9 34 62 G 27 9 39 93	A 78 T 7:40			+ 5.0	- 5.3	200
201	Ī	Agra-group E. Point	550	A 27 9 16·21 G 27 9 21·00					- 4.8	201
202	Ī	Agra Parade Point	550	A 27 8 52·18 G 27 8 57·47	G 78 6 3.64				- 5.3	202
208	Ī	Agra-group S. Point	550	A 27 5 32 95 G 27 5 38 51	G78 1 9.70				- 5.6	203
204	J	Gürmi T.S.	575	A 26 36 5.97	G 78 1 2.38	A155 50 8.0	Panāhat D 0 3	- 1.8	+ 2.3	204
205	J	Majhār H.S.	1028	Δ 26 6 20 30 G 26 6 17 00	G 78 30 49 82	G155 50 8.8			+ 3.3	205
206	K	Algi H.S.	854	A 25 29 48·16 G 25 29 46·19	G 78 28 17.73				+ 2.0	206
207	L	Audhiārı H.S.	1330	A 24 41 11.31	G 78 21 30·98				+ 4.5	207
208	- 1	Bhaorasa H S.	1387	A 24 8 5 13 G 24 8 3 74	G 78 13 48.99 G 78 0 40.73				+ 1.4	208
209	L	Budhoa H.S.	1867	A 24 5 8 99 G 24 5 8 41		A205 22 28·1	Tinsmal D 0 6	+ 0.0	+ 0.6	209
210	М	Mohammadabad T.S.	565	G 27 18 24 05	G 78 31 11.89	G265 22 27.7 A291 59 0.9	Chandanpur	+ 18.3		210
211	P	Dargawa H.S.	1152	A 24 37 17 32 G 24 37 13 21	G 79 25 39·80	G291 58 51.5	<u>D 0 8</u>		+ 4.1	211
212		Rangīr (old) 8.	1184	A 24 0 19.28	G79 1 24.63	A106 1 11.0 G106 1 24.2	Tinsmal E 0 11	- 29.6	- 1.1	212
	55 E	Kāmkhera H.S.	1780	A 23 59 42 89 G 23 59 44 93	G 79 25 59 25 G 77 43 6 85	G100 1 24·2			- 2.0	213
214		Ahmadpur H.S.	1713	A 23 36 18·42 G 23 36 20·88	G 77 40 48 26	A185 10 55.0 G185 10 53.8	Kāmkhera D 0 9	+ 2.7	- 2.2	214
215	E	Lādi H S.	1875	A 23 8 39'10		₩ 105 10 53·8			- 5.0	215
216	F	Bhīmbhat H S.	2120	G 22 50 2 06	G 77 37 15.53	A194 34 0.7 G194 33 58.6	Lādi D 0 16	+ 5.0		216

^{*} A = Astronomical Value.

G = Triangulated or Geodetic Value.

⁺ Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

[‡] Derived from group of stations surrounding Kalīānpur.

XOV. in terms of any Spheroid.

	I	OR O	HANGI	s of	AXES.		F	ок он	ANGE	OF 6	RIGIN	٧.	·	irlm)	ert's s	PHEROI	D*	·
Serial No.	Case	I :δa=	1 km	Case :	II: δδ -	·1 km		III : La u ₀ = 1"	titude	Case I	V : Az w ₀ = 1"	imuth	a:	- 63782	00 metre	es, 1/e=29	98·3.	Serial No.
Seri	ય	υ cos λ	w cota	u	υ σοελ	υ cotλ	u	v cosa	w cota	u	σ cosλ	€ cotλ	u	v cosa	to cota	Deflection in Prime Vertical	Deflec- tion in Meridian	Se
	"	"	,	"	"	"	"	"	"	"	"	, , , , ,	"	"	"	,	"	190
190	+0.32		-0.03	-0.69		0,00			0.00	0.00		+2.16	0.00		+ 2.77	+ 2.1	- 0.2	191
191	+0.14			-0.43			+ 1.00		l 	0.00			+0.15				+ 1.1	192
192			+0.24			-0.04			-0.03			+2.33			+ 3.05	- 3.2		
198	+0.03			-0.10			+1.00			0.00			+0.54				+ 0.6	193
194	+0.01			-0.02		-	+1.00			0.00			+0.30				+ 1.6	194
195	0.00	0.00	0.00	0.00	0.00	0.00	+1.00	0.00	0.00	0.00	0.00	+2.53	+0.30			+ 0.1	- o·6	195
(Ori- gin)	0.00	0.0	0.00	0.00	0.00	0.00	+ 1.00	0.00	0.00	0.00	0.00	+2.23	+0.30	0.00	+ 2 . 88	0.0	0.0	(Ori- gin)
196	0.00		_	+0.01			+1.00			+0.01			+0.33				+ 0.8	196
197	-0.01		+0.06	+0.03		-0.01	+ 1.00		0.00	0.00		+ 2 · 24	+0.35		+ 2 · 93	+ 0.0	- 1.3	197
198	+0.88		-	-2.0	5		+ 1.00	,		-0.01			-1.00			Page 1 and 1	.+ 0.0	198
199	+0.4	,		-2.2	3	-	+1.00		-	-0.01		-	-0.67				- 3.1	199
200	+0.75	-0.3	2	-2.48	+0.0	3	+ 1.00	0.00		-0.01	+0.0	5	-o·85	-0.1		+ 5.1	- 4.4	200
201	+0.4		-	-2.4	7	<u> </u>	+ 1.00	<u> </u>		-0.01			-0.8				- 3.0	201
202	+0.4	5	-	-2.4	7	-	+ 1.00	<u> </u>	-	-0.0		-	-0.84				- 4.2	202
203	+0.7	4		-2.4	2	-	+ 1.00	, 	-	-0.0	ī	_	-0.8		-		- 4.8	203
204	+0.6	3	-0.4	-2.0	4	+0.04	+1.00		+0.03	-0.0	ī ——	+ 2.03	-0.64	i	+ 2 . 20	- 4.3	+ 2 9	204
205	+0.2		-	-1.6	4		+ 1.00		_	-0.0	<u> </u>	_! 	- 0.4	5	-		+ 3.8	205
206			-	-1.1	4	- 	+1.0		_	-0.0	<u> </u>	_	-0.5	2			+ 2.3	206
207		_	-	-1:4	_	-	+ 1 .0		-	-0.0	<u> </u>	_	+0.0	<u> </u>	-		+ 4.4	207
208	<u> </u>	_	_	-0.0	_	_	+ 1.0	<u> </u>	-	-0.0	1		+0.3	9	-		+ 1.1	208
	-0.0		-	2 +0.0		+0.0	+1.0		+0.04	-0.0	1	+ 2 * 2	4 +0.3	4	+ 2 · 48	- 1.0	+ 0.3	209
210		<u>-</u>	-0.0	II.	-	+0.0	1	-	+0.0		_	+1.0	ll	-	+1.72	l	 	210
_		_	_				+1.0		_	-0.0	2	-	+0.1		_		+ 4 0	211
	+0.1	_	_	-0.4			6 + 1.0	_	+0.0	_	_	+2.3	4 + 0.3		+ 2:04	-31.6		-
	-0.0	_	-1.0	8 +0.1	_			_		0.0	_	_	+0.3	_	_		- 2 4	218
	-0.0	_		+ 0.1	_	_	+1.0	_		_		+ 2:0	8 +0.8		+2.03	- 0.2		_
	-0.1	5	-0.0	+ 0.7	_	0.0	0 +1.0	_	0.0	_	_	- 2 2			95		- 5.	_
21	_	29	_	+ 0.8	84		+ 1.0	00		0.0			+0.6	-	1.2:2			210
210	8		+0.0	02		-0.0	1		0.0			+ 2 ' 3	35		+ 3.00	5 + 2.1		~ '

^{*} $\delta a = 0.924$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. Kide p. 2.

TABLEDeflections of the Plumb-line

					EVI	EREST'S S	PHEROID.			
Serial No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth#	Name and angular Elevation or Depression of observed station	$(A-G)$ cot λ for azimuth or $(A-G)$ cos λ for longitude observations	Meridian Deflec- tion†	Serial No.
217	55 G	Nilgarh H.S.	2533	G 21 45 50·12	o , "	A 321 4 43.7	°, Sālbaldi EO1	- ı·3	"	217
218	G	Takalkhera s.	1094	A 21 5 50 17 G 21 5 56 76	G 77 39 18·82 G 77 38 24·94	G 321 4 44'2			- 6.6	218
219	1 1	Rāngrei s.	1046	A 20 48 7·16 G 20 48 14·68	G 77 35 53.83				- 7.5	219
220	1 1	Badgaon H.S.	1128	A 20 44 15.54 G 20 44 23.06	G 77 36 31 79	A 183 9 0.9 G 183 8 59.5	Ashti D 0 8	+ 3.7	- 7.2	220
221		Dhānura s.	1135	A 20 44 3'35 G 20 44 10'84	G 77 41 43 27				- 7:5	221
222	H	5.	1140	A 20 41 22:25 G 20 41 28:91	G 77 32 45 66				- 6.7	222
223	H	Sakri H.S.	1810	G 20 0 14:11	G 77 42 7:32	A 175 24 37 7 G 175 24 35 4	Kopdi D 0 20	+ 6.3		223
224 225	<u>-</u> -	Saugor H.S.	2033	A 23 49 48.71 G 23 49 48.07	G 78 46 18·16				+ 0.6	224
226		Nāharmau H.S. Karaundi H.S.	1940	A 23 30 13:14 G 23 30 18:15	G 78 49 49 13				- 5.0	225
227			1625	A 23 10 45 07 G 23 10 40 02	G 79 59 43.34	A 206 22 35.6 G 206 22 38.4	Lora D 0 1	- 6.2	+ 5.1	226
228		Bhīmsain H.S.	1490	G 23 10 10·10 A 20 57 28·54	A 79 56 52.42 G 79 57 2.61			- 9'4		227
229			1070	A 20 57 28 54 G 20 57 35 96 A 20 12 51 25	G 79 46 7.40	A 297 55 2.8 G 297 55 2.3	Partābgarh E 0 0	+ 1.3	- 7.4	228
280		Nitali H.S.	2289	G 20 12 55 45 A 18 17 2 74	G 79 44 49 27	A 239 23 1.3	Harangal D 0 10		- 4-3	229
281	—	Achola H.S.	2274	G 18 17 7·16 A 18 14 44·87	G 76 16 23.32	G 239 23 5·7 A 272 47 57.4		- 13.3	- 4.4	230
232	E	Halda s.	1335	G 18 14 48 12 A 19 9 24 41	G 76 59 20.21	G 272 47 58·5		- 3.3	- 3.3	232
233		Voi s.	1439	G 19 9 29 38 A 19 7 14 69	G 77 41 1'39				- 5.3	283
284	Ē	Somtana H.S.	1714	G 19 7 19.89	G 77 34 46·88	A 186 51 46.9	Terbāq D 0 5	- 4.0		234
285	E	Mandāla s.	1294	G 19 5 0.25 A 19 2 42.84	G 77 39 16·29	G 186 51 48·3		T 7	- 5.4	235
286	E	Talegaon s.	1233	A to t 21.6	G 77 43 35 14	<u> </u>			- 5.0	286
287	F	Dāmargīda Obsy. S.	1941	A 18 3 14 92 G 18 3 17 35	G 57 37 16·75	W 188 11 20.1	Burgāpāli D 0 15		- 2.4	237
238	G	Devanūr s.	1593			G 188 11 59·8			- 3.6	238
239	G	Akampalle h.s.	1557	A 17 10 50·39 G 17 10 53·96					- 3 6	239
240		Kodangal S.	1906	A 17 7 53 74 G 17 7 57 35		A 62 29 16.3 G 62 29 17.8	Nēlagat E 0 1	- 4.0	- 3.6	240
241		Linganapalle h.s.	1815	A 17 7 13:40 G 17 7 16:66					- 3.3	241
242		Pialmudi s.		A 17 4 1 06 G 17 4 6 05					- 5.0	242
243	1	Tõnsalgutta s.		A 16 18 2.36 G 16 18 6.91	G 77 34 49 44				- 4.6	243
244	"	Pēddapād s.	1090	A 16 17 14.13 G 16 17 20.38			·		- 6.3	244

^{*} A = Astronomical Value.

G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XCV. in terms of any Spheroid.

]	OR C	HANGI	es of	AXES.		Œ	OR CE	IANGE	OFC	RIGIN	ι	. 1	IELM	ert's s	PHER)ID*		No.
	Case	Ι : δα =	-1 km	Cuse 1	[]: δb=	1 km	Case	$u_0 = 1$	titude	Case 1	V : Az w ₀ =1"	imuth	a=	63782	00 metre				Serial N
Serial	u	υ cos λ	w cota	u	v cosa	w cota	u	v cos à	w coty	и	υ cosλ	w cota	u	υ cosλ	w cot a	Deflecti in Prin Vertic	ael ti	eflec- ion in eridian	
17	"	"	0.00	"	"	0,00	"	W	,, 0.00		"	# 2·46	"	,,	+ 3.18	- 4	i	"	217
18	-0.95			+ 2 · 66			+ 1.00			0.00			+1.41					8.0	218
19	-1.02		-	+ 2.93			+ 1.00			0.00			+1.22					9.0	219
20	<u>– 1.08</u>		+0.03	+ 2.99		-0.01	+ 1.00		0.00	0.00		+2.28	+1.23		+ 3.36	+ 0	6 -	9.0	220
21	-1.08			+,3.00			+1.00			0.00			+1.26					9.1	222
322	-1.00			+3.04			+1.00			0.00			+1.56					8.3	223
223			-0.01		·	0.00			0.00			+ 2 · 67	.		+3.43	+ 3	_ _		-
224	-0.08			+0.32	5		+1.00			-0.03		_	+0.40				- +		225
225	-0.18			+0.25	3		+1 00			-0.0			+0.22		1 - 10 -				_
226	-0.20		-1.45	+0.8		+0.3	+1.00		+0.01	-0.0		+ 2 . 32	+0.6		+1.85	1	3 +	- 4.5	227
227		-1.3	8		+0.30			+0.0	2		-0.0			-1.1	+ 2 · 26		.3	- 8.8	
22 8	-0.0		-1.4	+ 2 . 7	9	+0.33	+1.0		+0.10	<u> </u>		+ 2.2	+1.4					- 5.9	
229	-1.3			+ 3 4	8		+1.0	0		-0.0		_	+ 1 . 6		+4.4	5 - 10	5.0	- 68	_ _
280	-1.9	وا	+1.0	3 + 5.3	0	-0.3			-0.08	<u> </u>			+ 2 . 4	_	+4.1		_ _	- 5.7	
231	-2.0	0	+0.2	+5.3	4	-0.1	6 + 1.0	_	-0.07]	_	+2.9	2 + 2 · 4	_	_			- 7.	_ _
232	-1.6	5		+4.4	7		+1.0		_	0.0		_	+2.1	_	_	-	— .	- 7·3	_ _
233	-1.6	7		+4.2	1		+1.0	00		0.0	- 	_	+ 2 ' 1	2	+3.6		7:0		$-\frac{1}{28}$
234			+0.0	10		0.0	0	_	0.0	_		+2.7	_		_			- 7 .	_ _
235	-1.	o		+4.	57		+1.0	00		0.0	_	_	+ 2 . 1		_	-		- 7	_ _
286	3 - 1 - 1	71		+4.0	бо		+1.		_	0.0	_	_	+ 2 ·	_	+3.8	30 -	5:0	<u> </u>	_ _
23'	7 -2	9	0.0	00 + 5		+0.0	01 + 1.		0.0	_	_	+ 2 * 4	95 + 2					- 6·	^
23	8 -2.	45		+6.			+1.			- o.		_	+ 2 .		_				$\frac{4}{3}$
23	9 -2.	45		+6.			+ 1		_	_	00	_	+ 2.		+4.	-	7.6		4 2
24	0 -2	47	+0.	01 +6.	43	٥.	00 + 1	_	o·	_	00	+3.	10 + 2			_		l	1 2
24	-2	47		+6.	1		+ 1	_	_		00	_ _	+ 2			_		ł	.8
24	2 -2	50	_	+6	50		+ 1	.00		_	00	_ _	+ 2	_ _				- 7	1
24	3 -2	89		+ 7	42		+ 1	00		_	.00		+ 3	_		_		- 7 - 9	- 1
24	4 -2	83	_	+ 7	- 27		+ 1	•00		۰	.00		+ 3	. 10		1			' 4

^{*} $\delta a = 0.924$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. Vide p. 2.

TABLE

Deflections of the Plumb-line

		•		:	E V	EREST'S S	PHEROID.			
Serial No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed station	$(A-G)$ cot λ for azimuth or $(A-G)$ cos λ for longitude observations†		Serial No.
45	56 H	Darur H.S.	1796	0 #	° ' "	A 132 35 57 2	Köttapalle D 0 15	- 6·9	"	24
46	<u> </u>	Tuagat h.s.	1450	G 16 13 35.40 A 16 9 46.73 G 16 9 51.66	G 77 39 36.51 G 77 34 11.59	G 132 35 59.2			- 4.9	240
247	Н	Gattinārāyantippa h.s.	1225	A 16 7 48 95 G 16 7 54 81	G 77 45 51 00				- 5.9	24
48	H	Devaragat h.s.	1332	A 16 6 31.98 G-16 6 37.27	G 77 41 26-21				- 5.3	24
249	K	Pirmulo H.S.	2093	A 17 52 58 32 G 17 53 2 81	G 78 35 50 98	A 105 0 48 · 0 G 105 0 49 · 0	Narsula D 0 12	- 3.1	- 4.2	24
250	K M	Bolarum P.W.D. Office Long. S. Diwai H.S.	1971	A 17 30 7:36 G 17 30 13:41	A 78 31 7.84 G 78 31 11.12	A 25 57 35 8 G 25 57 35 8	Hyderābād Naubat- pahar D 0 13	0.0	- 6.1	25
252	M	Ankora H.S.	967	A 19 49 26.87 G 19 49 32.57	G 79 32 28.62	A 154 17 54.2 G 154 17 55.1	Ambāgarlı D 0 8	— 2·5	- 5.7	25
258	N	Burgpaili H.S.	1463	A 19 24 26.63 G 19 24 34.75 A 18 54 3.48	G 79 36 27.70	A 142 8 7.5	Rechni D 0 8	- 3.8	- 8·1	25
254	N		1772	G 18 54 7 20 A 18 35 26 90	G 79 41 36.96	G 142 8 8 8	Medini D 0 8		+ 0.8	25
255	-0	Bolīkonda H.S.	1363	G 18 35 26 12 A 17 42 29 08	G 79 31 42·36				- 6.1	25
256	<u></u> 0	Vānākonda H.S.	1654	G 17 42 35 82 A 17 36 0 22		A 180 4 14.2	Yarabali D 0 1	- 2.5	- 6.4	25
257	0	Niālamari H.S.	1144	G 17 36 6.87 A 17 1 25.93	G 79 22 20 70	G 180 4 15.3			- 7.7	25
258	57 A	Bellary Long. s.		G 17 1 33.63 G 15 8 33.06	G 79 43 29 78 A 76 55 38 89 G 76 55 39 58			- 0.7		25
259	В	Yērragunta h.s.	1698	A 14 48 27 31 G 14 48 23 26					+ 4.1	25
260	C	Nughallibētta H.S.	3140	G 13 1 32.95	G 76 28 32·46	A 54 31 39 1 G 54 31 41 7	Sätanhalli E 0 8	- 11.5		26
261	E	Namthabad s.	1169	A 15 5 51.75 Gr 15 5 52.40					- 0.1	26
262	F F		1516	A 14 59 5.16 G 14 59 4.53	G 77 11 6.39				+ 0.6	26
264			1447	A 14 57 44 41 G 14 57 42 32	G 77 0 36.91				+ 2.1	26
265			1579	A 14 55 22 20 G 14 55 18 96 A 14 51 56 14	G 77 6 2.60				+ 3.2	26
266	-F	Pāvagada H.S.	3022	G 14 51 52 43 A 14 6 18 80					+ 3.4	
267	G	Bōmmasandra s.	2005	A 13 59 42.63	G 77 16 42.43				+ 6.3	1
268	G	Bangalore Base-line N.E. End S.	3016			A 44 32 19·7	Bangalore Base-line	+ 1.7	- 2.0	26
269	G	Bangalore Base-line S.W. End S.	3126	G 13 4 56.05 A 13 0 36.12 G 13 0 40.91	A 77 34 57.29	G 44 32 19 3 A 224 31 21 · 7 G 224 31 21 · 6	Bangalore Base-line	+ 0.4	- 4.8	26
270		Döddagunta s.	3003	A 12 59 51 52 G 12 59 55 76		S 224 51 21.0	MIN D 0 13		- 4.2	27
271			150	A 15 55 59'69 G 15 56 0'14	G 79 56 7:39	A 265 47 36 0 G 265 47 39 4	Babbēpalle D 0 22	- 11.9	- 0.2	2
272	M	Darutippa S.	195	A 15 0 33.52 G 15 0 36.47					- 3.0	27

^{*} A = Astronomical Value.
G=Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XOV. in terms of any Spheroid.

		FOR C	HANGI	as of	AXES,		F	OR CE	LANGE	S OF O	RIGII	N		HELM	ert's	SPHEROI	D* .	No.
Serial No.	Case	I : 8a=	1 km	Case 1	II: δb=	-1 km	Case I	II: Le u ₀ = 1"	titude	Саве	LV : Az w ₀ = 1"	imuth	. a	- 63782		res, 1/e=29		Serial N
Ser	u	υ 008 λ	to cot A	и	· cos λ	ιο cot λ	u	v cos λ	w cot λ	ય	υ сов λ	w cot a	u	υ cos λ	w cot A		Deflec- tion in Meridian	
245	<i>II</i> -	" .	-0.01 "	"	"	0.00		,	0.00	"	"	+ 3 · 27	"	"	+4.51	- 9.7	"	245
246	- 2·88			+7.39			+ 1.00			0.00			+ 3 ' 14				- 8.0	246
247	- 2.89			+7:43			+1.00			0.00			+3.16				- 9.1	247
248	- 2 90			+7.45			+1.00			0.00			+3.18				- 8.5	248
249	-2.16		-0.41	+5.40		+0.53	+1.00		+0.02	-0.03		+ 2.97		İ	+ 3 37		- 7.0	249
250	- 2 · 3 1	-0.2	-0.66	+6.06	+0.0	+0.33	+ 1 .00	+0.0	+0.02	-0.01	-0.1	+ 3.04	+ 2.67	-0.58	+ 3 · 49		- 8.8	250
251	-1.40		-1.30	+ 3.83		+0.34	+1.00		+0.10	-0.03		+ 2 69	II`]	+ 2 . 55	- 4.2	7.5	251 252
252	-1.28	5		+4.3			+1.00			-0.03			+ 1.08				-10.1	253
253	-1.7.	1	-1.45	+4.7		+0.42	+1.00		+0.11	-0.03		+ 2 · 82			+ 2 · 63	- 5.8	- 2.0	254
254	-1.8	7	-	+ 5.0	5		+1.00			-0.03		_	+ 2 · 2		_		- 9.3	255
255	-2.3	2		+ 5.80	5		+1.0	0		-0.0			+ 2 . 5	_	- + 2:0	4 - 4.6		256
256	- 2 2	7	-1.31	+ 5 . 9	7	+0.43	+1.0	0	+0.10	-0.0		- 3.02	+ 2 • 6	_	+ 3.07	4.0	- 10.2	
257	-2.2			+6.2	3		+ 1.0	o 	_	- ŏ.o		_	+ 2.8	+0.1		- 0.0		258
258		+0'4	3		-0.0	6	_	0.0		-	-0.1		+3.6	_	<u> </u>	-	+ 0.2	259
259	-3.4	8		+8.7	7		+1.0) . 	_	+0.0	<u> </u>	+4.0	_	_	+5.8	5 - 14.5		260
26			+ 1 • 1	<u> </u>		-0.2	_	_	-0.0	9 -0.0				_	_	-	- 4.5	261
26	-3.3	5		+8.4		_	+ 1.0	_	_	+0.0			+3.8	_!	_}		- 3.0	_
20	-3.4	.0		+8 5	_		+1.0	_	_	+0.0	_	_	+ 3 '			-	- 1.5	_
26	3 -3.4	1		+8.6	_	_	+1.0		_	+0.0	_	_	+3.	_	_	-	- 0.	264
26	_		_	+8.6	7	_	+1.0		_		_	_	+ 3		_	-	+ 0.	1 265
- I	5 - 3 - 4		_	+8.		_	+ 1 ' 0		_	+0.0	_		+ 3		_		- - 0.	5 266
- 1	6 - 3.8	_	_	+9'4	_	_	+ 1 .	_	_		_	_	+3.		_		+ 2.	4 267
1_	7 - 3			+9.0	_	0.0	_	_	0.0	_	_	- +4.0	03 + 4		+5.	20 - 0.	9 - 7	268
26	1	- 1	1	+10,	1		04 + 1		00 -0.0	11	1	19 +4.0	11	- 1	1 .		$\frac{3}{9}$	o 269
			04 +0.0	_			+ 1.		_	-		_ -	-\ -		_	_	- 8·	4 270
	0 -4.		_	+10		+0.	_		+0	15 -0.	_	+ 3.	32 + 3		+ 3.	12 - 13	6 - 3	7 271
1_	71 - 2			90 + 7		_	- + 1		-	-0.	_	_	+ 3				ł	5 272
2	72 -3	30		1	22													

^{* 30 - 0100 8}b - 0112 4 = 0121 Wo = 1.20 Vide p. 2.

TABLE Deflections of the Plumb-line

					JE V 1	REST'S S	PHEROID.			7.
Serial No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed station	(A-G) cot λ for azimuth or (A-G) cos λ for longitude observations†		Serial No.
273	57 N	Kistama H.S.	458	o , " A 14 27 12 28 G 14 27 14 56	° ′ ″ G 79 45 18·51	A '80 154' I G 80 155' 6	° / PallaköndaE 0 16	- 5·8	- 2 3	273
274		Anandalamalai H.S.	923	G 12 55 50.43	G 79 23 46.76	A171 57 36.3	Pullur E O 23	- 5.7		274
275	58 E	Yēttimalai S.	617	A 11 3 52.10 G 11 3 50.00	G 77 50 47'10	G171 57 37.6			+ 2.1	275
276	F	Pachapālaiyam s.	970	A 10 59 40.81 G 10 59 39.88		A 167 34 2.4	Chennimalai	+ 6.3	4 0.0	276
277	F	Kātpālaiyam s.	878	A 10 56 36 66 G 10 56 35 97	G 77 37 25.80	G167 34 1.2	E 0 40		+ 0.7	277
278	G	Shūlakarai s.	333	A 9 32 15 53	G 77 40 50 63				+ 2.3	278
279	H	Rādhāpuram S.	167	G 9 32 13.28 A 8 17 1.75 G 8 16 10.14	G 77 56 51.22	A 5 55 25 4	Kudankulam Obsy.	+ 8.9	+ 2.3	279
280	H	Tanakarakulam S.	176	G 8 16 59.44 A 8 13 57.50	G 77 42 7.71	G 5 55 24 1	D 0 4		+ 2.1	280
281	H	Arasākulam S.	55	G 8 13 55'39 A 8 13 41'96					+ 2.4	281
282	H	Vijayāpati, S.	90	G 8 13 39.52 A 8 12 10.67					+ 2.3	282
283	—н	Nagarkoil Long. S.	110	G 8 12 8·34	A 77 26 1.82			<u> </u>		283
284	H	Kudankulam Obsy.	175	G 8 11 25·30 A 8 10 23·41	G 77 26 3·56	A185 55 18.8	Rādhāpuram	+ 1.4	+ 1.0	284
285	H	Punnos Obsy. S.	48	G 8 10 21·55 A 8 9 29·92	G 77 41 26 26	G185 55 18·6	D 0 5		+ 2 1	285
286	_1	Kanjamalai H.S.	3236	G 8 9 27 79	G 77 37 35 33	A 38 11 59 1	Morur D 1 3	- 4.0		286
287	K	Manēgandi S.	56	G 11 36 55.92	G 78 3 36 52	G 38 12 0 1	Manikamkota	- 18.0		287
288	K	Black s.	346	G 9 46 15.13 A 9 31 4.22		G178 0 50 3	D 0 1		+ 2.0	288
289	K	Kutipārai 8.	347	G 9 31 1'30 A 9 28 47'09	G 78 2 58 77	A 25 17 6.2	Koilpati D 0 4	+ 3.6	+ 2 2	289
290	K	Pandalagudi s.	217	G 9 28 44 87 A 9 23 30 55	G 78 0 37 · 76	G 25 17 6·8			+ 2.0	290
291	K	Rāmnad S.	48	G 9 23 27·69	G 78 5 54'11	A 57 57 54 9	Uttarakoshamangai	- 7.9		291
292	M	Kallapat Trestle S.	199	G 9 21 51.96		G 57 57 56·2	E 0 0	- 4.7	<u> </u>	292
293		Tiruvēndipuram s.	-	A 11 44 43'40	G 79 33 52 96	G214 44 20·0	D 0 1		+ 5.8	293
294	<u>M</u>	Nayinipiriyan	158	G 11 44 37.64	G 79 42 45·80	A152 57 0'1	Kachipērumāl	+ 13.7		294
295	N	Trestle S. Patharankota S.	_			G152 56 57.4 A179 40 40.6	E 0 12	- 13.4		295
296	62 1)	Rāmuapur (old) T.S.	541		G 79 12 43 59	G179 40 42 9 A302 56 33 7	D 0 4 Rāmnagac D 0 5	+ 5.3	-10.0	296
	1	Jarūra T.S.		G 28 22 11.04		G302 56 30 9			- 5.7	297
298	A	Nimkār T.S.	486	G 27 59 55 94 A 27 21 8 16	G 80 28 10.95	A178 58 28 0	Darawal D 0 6	+ 14'1	+ 0.1	298
299	B	Etora T.S.	429	G 27 21 8.09	G 80 29 3.67	G178 58 20.7			+ 4.8	299
300	B	Dewarsan T.S.	_ ` *	G 26 54 17.85 A 26 15 58.32						
			107	G 26 15 52.89	G 80 18 14.46				+ 5.4	300

^{*} A = Astronomical Value.
G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XCV. in terms of any Spheroid.

	I	OR O	HANGI	es of	AXES	s.	E.	OR CE	LANGE	SOFC	RIGI	N.		HELM	ERT'S	SPHERO	ID*		•
-	Case 1	[:δα=	1 km	Case]	. 66 : 11	=1 km		II : La u ₀ = 1"	titude	Case	$ \begin{bmatrix} \nabla : A_2 \\ w_0 = 1'' \end{bmatrix} $	imuth	a=	- 63782	00 metre	s, 1/ε -	298 • 8	8	Serial No.
	u	υ cos λ	w cot λ	u	v cos 2	20 cot λ	u	υ cos λ	w cot λ	u	υ сов λ	w cot a	и	v cos X	w cot λ	Deflection in Prime Vertical	e tio	eflec- on in ridian	ž
73 -	″ - 3·63	· //	-1.90	+9.13	"	+0.82	+ 1.00	"	+0.12	-o.o3	*	" + 3·65	+ 3.69	, "	+3.61	_ ″ _ 7·8	. -	" 6°0	273
74			-1.74			+0.84			+0.14			+4.08			+4.31	- 7.8			274
75 -	-5.27			+ 12'6		-	+1.00			0.00			+4.8	7			=	3.8	275
76	-5.31		+0.04	+12.70	6	-0.03	+1.00		-0.01	0.00		+ 4. 79	+4.8	9	+6.19	+ 3.0	5 -	4.0	276
77	- 5:33			+ 1 2'8	2		+1.00			0.00			+4.9	0			<u> </u>	4.3	277
78	- 6·05			+14.3	4		+1.00			-0.01			+ 5 . 3	_				3.1	278
279	-6.71		-0.08	+157	0	+0.06	+1.00		+0.01	0.00		+ 6 . 3-	+ 5 . 7		+8.12	+ 6.	2 -	3.2	279
280	-6.74			+15.4	6		+1.00			0.00		_	+ 5 · 8	_			_ _	3.7	281
281	-6.74			+15.4	6		+1.00			0.00		_	+ 5 . 7		_		- -	3.4	282
282	-6.75			+15.4	9		+1.00		_	0.00		_	+ 5 · 8	-0.		- 1	_		283
283		+0.1			-0.			0.0	0.00	0.0	-0.2	1	3 + 5 · 8	_	+8.5	-	_ _	3.8	-
	-6.7	_	-0.0	6 + 15.8		+0.0			_	0.0		+0.4	+ 5 .	_	_	-	<u>-</u> -		-
285	-6.4	8		+15.8	34		+1.00	-	+0.0			+4.8	_	_	+5.6	2 - 7			28
286			-0.4	_		+0.5	_		+0.1		-	+5.3	_	_	+6.3		_		28
287			-1.6	_	_	+0.0	+ 1.0		_	-0.0			+ 5	37		-	-	2.2	28
288	-6.0			+ 14'		+0.3	_	_	+0.0	_	_	+5.	_		+ 6.0	- o	·9 =	3.3	28
289			0.4	+ 14'		_	+1.0	_	_	-0.0	_		+ 5		_	-	-	- 2.5	5 29
290 291	-6.1	3	1 - 1	+141	49	+0.0	_		+0.1	_		+5.	<u></u>	-	+6.8	- 10	-3 -		28
291		_	-1.6		_	+1.0	_	_	+ 0.1			+4.			+4.6	_	- 6.		29
	-+.0			+11.		_	+ 1.0				-3	_	- + 4	61	_	_		+ 1':	2 29
294		-		_		+1.0	_	-	+ 0.1	_1	-		73		+ 5.	+ 11	5		- 2
295	İ	_	-1.		_ -	+1.0	1		+0'1	5	-	+ 5 ·	02	_	+ 5	59 - 14	r.8		$-\left \overline{2}\right $
l	3 + 1.0	51		53 -3	40		98 + 1.0		+ 0.1	-0.0	25	+ 1.	92 - 1	34	+ 1 ·	+ ;	3.6	- 9.	$\overline{6}$
1	+0.0	1	-	3			+10	00	_	-0.	-5		-	• 20	_	-	-	- 4.	5 2
ـــــا	3 +0.	_	- r ·			+0.	+ 1 1	00	+0.	11 -0.	05	+1.	99 -0	95	+1.	2,3 + 1	- 1		1 2
ļ	+0.				_ _		+ 1 .		- -	- - 0 ·	05	- -	-0	• 78		-		+ 5	6 3
	0 +0.	_	_	T		-	+1.	00	_	-0.	04	- -	-0	• 54		-	-	+ 5	.9

^{* \$4-0:004 \$}h=0:742 \$\mu_0=0.21, \$10=1:20, \$\mu_0=0.21\$

TABLE

302 C 303 D 304 E 305 E 306 E 307 F 308 F 309 F 310 G	Pavia H Potenda Dadaura T Māsi T Imlia T	Height in feet 1.8. 416 1.8. 481 8. 993 1.8. 420 1.8. 406	Latitude* A 25 51 25 97 G 25 51 20 95 A 25 27 17 39 A 24 37 24 71 G 24 37 23 04	EVE Longitude* . , , , , , , , , , , , , , , , , , ,	REST'S SI	Name and angular Elevation or Depression of observed station	$(A-G)$ cot λ for azimuth or $(A-G)$ cos λ for longitude observations \dagger	Meridian Deflec- tion†	Serial No.
301 68 C 302 C 303 D 304 E 305 E 306 E 307 F 308 F 310 G 311 G	Kānākhera T Pavia H Potenda Dadaura T Māsi T Imlia 1	in feet F.S. 416 H.S. 481 S. 993 T.S. 420	A 25 51 25 97 G 25 51 20 95 A 25 27 21 18 G 25 27 17 39 A 24 37 24 71 G 24 37 23 04	° ′ ″ G 80 25 31·61		angular Elevation or Depression of observed station	for azimuth or $(A-G)$ cos λ for longitude observations \dagger	Deflec- tion†	
302 C 303 D 304 E 305 E 306 E 307 F 308 F 309 F 310 G	Pavia H Potenda Dadaura T Māsi T Imlia T	8. 993 T.8. 420	A 25 51 25.97 G 25 51 20.95 A 25 27 21.18 G 25 27 17.39 A 24 37 24.71 G 24 37 23.04	G 80 25 31.61	0 / //	۰ /	"	,,	
808 D 804 E 805 E 806 E 807 F 808 F 809 F 810 G	Potenda Dadaura T Māsi T Imlia T	8. 993 T.8. 420	A 25 27 21·18 G 25 27 17·39 A 24 37 24·71 G 24 37 23·04			· .		+ 5.0	801
804 E 806 E 307 F 808 F 809 F 810 G	Dadaura T Māsi T Imlia T	T.S. 420	A 24 37 24 71 G 24 37 23 04					+ 3.8	302
805 E 806 E 307 F 808 F 809 F 810 G	Māsi T	1	9 24 37 23 04			. .		+ 1.7	308
806 E 807 F 808 F 809 F 810 G 811 G	Imlia 1	r.s. 106	A 27 43 3 51	G 80 57 7:18		*.		-14.8	304
307 F 808 F 309 F 310 G 811 G		400	G 27 43 18·33 A 27 38 14·79	G 81 42 44.29	A 153 5 50.5	Bela D 0 5	- 3.2	-10.4	305
808 F 809 F 810 G 811 G	Utīāmau T	T.S. 428	G 27 38 25 · 17 A 27 19 17 · 83	(781 23 8 97	G 153 5 52.2			- 1.1	306
810 G 811 G	1	T.S. 386	G 27 19 18 90 A 27 0 1 62	G81 7 37.37				+ 4 5	307
810 G 811 G	Parewa T	r.s. 380	G 26 59 57 08 A 26 38 11 44	G81 12 17.24				+ 7.4	308
811 G	Sora T	T.S. 400	G 26 38 4 00 A 26 17 26 39	G 81 12 11'14	A 239 43 3.6	Janai D 0 4			309
	Pariãou T	T.S. 346	G 26 17 18·83 A 25 50 11·59	G 81 12 23'12	G 239 42 55 9	Janai DU 4	+ 15.6	+ 7.6	310
	Pabhosa H	1.8 565	(1 25 50 5·26	G 81 22 16.31	A -0 - 0	17		+ 6.3	
	Karāra H	H.S. 1966	G 25 21 17·32 A 24 4 42·20	G 81 19 8.40	A 187 38 4 1 G 187 38 4 7	Karra 1) 0 14	- 1.3		311
313 1		T.s. 360	G 24 4 42 01 A 27 36 28 01	G 81 15 47 29	A 269 18 28.7 G 269 18 34.9	Marwās D 0 16	- 13.0	+ 0.5	312
314 <u> </u>		T.S. 320	G 27 36 48 14 A 27 25 56 11	G 82 5 3.16				-19.2	313
815 1		3-0	G 27 26 14.77	G 82-45 2.97			- Pro-	-18.7	314
			A 27 23 50 71 G 27 24 3 24	G 82 16 50-44	A 106 15 8.7 G 106 15 7.9	Saibara D 0 3	+ 1.2	-12.2	315
317 J			G 26-46 55-54	G 82 12 7.60	A 308 36 18 9 G 308 36 17 7	Bisaul D 0 7	+ 2.4		316
318 J	- January Hong.		G 26 46 40.66	A 82 8 7.60 G 82 8 8.15		·	- o·5		317
319 K		T.S. 342	G 26 40 37 · 38	G 82 20 54.43	A 128 40 15.9 G 128 40 14.8	Orejhār D 0 1	+ 2.3		318
ا _		T.S. 370	G 25 41 17.20	G 82 14 19.00	A 42 20 13 2 G 42 20 13 1	Buria D 0 7	+ 0.7		819
820 L		H.S. 2083	A 24 1 28.93 G 24 1 25.71	G 82 17 28 34	A 210 20 52.8	Pokra D 0 5	+ 9.9	+ 3.2	320
821 M		T.S. 296	A 27 20 48 34 G 27 21 5 08		7.17-4			-16.7	321
822 N		T.S. 296	G 26 54 3'04	G 83 15 35.49	A 104 47 9.8 G 104 47 9.9	Nandaur D 0 .5	- 0.3		322
		T.S. 285	G 26 0 23 97	G 83 13 30.67	A 301 8 50:3	Chit Bisram	+ 3.1		828
		T.s. 289	G 25 24 23 05	G 83 14 15.46	A 301 4 22'1	Barhāni D 0 6	- 1.2	<u> </u>	32 4
825 Ł'		H.S. 1828	G 24 4 55 71	G 83 14 13 47	A 282 48 23 Q	Sewādhi D 0 10	- 8.1		325
326 64 A	· .	H.S. 2113	A 23 59 57 02 G 23 59 56 24	G 80 29 17·26	A 260 4 21'4	Lakanpura D 0 19	+ 5.4	+ 0.8	326
		H.S. 1923	A 23 29 46 30 G 23 29 41 53		G 260 4 19 0			+ 4.8	327
828 B	Sarandi Pat E	H.S. 1627	41 53	G 80 3 5.98	A 159 45 20.8	Tālla E O 6	+ 0.7		

^{*}A = Astronomical Value.
G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XCV.
in terms of any Spheroid.

	F	OR C	HANGI	s of	AXES		F	OR OH	ANGES	OF O	RIGIN	٧.	1	IRLMI	ert's s	PHEROI	D *	No.
THE PART OF THE	Case	l : 8a=	·1 km	Case	II : 8b =	-1 km	Case I	II : La u ₀ = 1"	titude	Case IV	': Az 7 ₀ =1"	imuth	a.	 63782	00 metre	es, 1/e=29	8 · 3.	Serial N
,	u	v cos y	w coth	u	t cosy	w coty	u	v cosx	w cota	u	0082	w cota	и	т совх	w cota	Deflection in Prime Vertical		æ
01	" +0:47	"	"	-1.4	4 "	"	+1.00	"	"	-0.02	"	"	-o·38	"	"	"	+ 5-4	3 01
02	+0.38		<u> </u>	-1.1	1	-	+ 1.00			-0.02			-0.34	ļ —			+ 4.0	802
08	+0.19		\ <u> </u>	-0'4	3		+1.00			-0.02			+0.08	-			+ 1.6	808
0#	+0.00			-3.0	1	-	+ 1.00			-0.07			-1.11				-13.7	304
05	+ 0 · 88		- 2 · ot	-2.8	5	+0.14	+1 00		+0.14	-0.00		+ 1.96	-1.07		+1.78	- 5.4	- 9.3	80
06	+0.81		-	-2.0		-	+1.00			-0.06			-0.08				- 0.1	800
307	+0.75			-2.3	55		+1.00			-0.00			-o·8:	3			+ 5.3	30
308	+0.66			-2.0	6		+1.00			-0.00			-o 6	3			+ 8.1	80
809	+0.20	, 	- 2.0	2 -1.	79	+0.10	+1.00		+0.14	-0.06		+ 2.00	-0.2	5	+0.98	+14.4	+ 8.3	80
810	+0.48	3		-17.	+3		+ 1.00			-0.06			-0.3	8			+ 6.4	81
811			-2.1	3		+0.5	5		+0.12			+2.1	_	_	+1.01	- 2.2		31
312	+0.0	2	-2.1	8 + 0.0	03	+0.3	4 1 . 0	0	+0.12			+ 2 · 2	+0.3		+1.10	-15.1	- 0.1	$-\frac{31}{31}$
318	+0.8	9		- 2	83		+1.0	0		-0.07		_	-1.0	_			- 18 1	<u> </u>
814	+0.8	7		-2.	69		+ 1 '.0	0		-0.08		_	- 1.0				-17.7	_ _
315	+0.8	9	- 2 . 5	7 -2.	67	+0.1	9 + 1.0	0		-0.07		+1.0	_	05	+0'37		-11.2	- 31
316	5		-2.8	8		+0.3	2		+0.18	3 -		+ 2.0	2	_	+0'44	+ 1.4		- 3
817	Ī	-2	1		+0		_	+0.0	_		+0.0	_	_	- 2.1			_	- 3
818	3		-2.0	_		+0.3			+0.0	.	ļ	+ 2.0	_	_	+0.40		_	- 3
819	9		-2.0	55		+0.3	_	_	+0.1			+ 2 · 1	_		+0.66	.	_	_ _
320	+0.0	02	-2.8	_		+0.4		_	+0.3	_		+2.3	_	-	+0.00	7 7 2	_	
	+0.8	55		- 2	63		+1.0		_	-0.0	-	+2.0	-0.0	-	-0.00	6 - 0:	-15	$-\left \frac{1}{3}\right $
323	1		- 3.	_ _	_ _	+0*2	_	_	+0'2	_		+2.0		_	+0.0			3
32	Ì	_	-3.	_	_	+0.	_		+0'2	_	-	+2.0	_		+0.0			- 3
32		_	-3.			+0"	- 11	_	+0.3	_	-	+2.		_	+0.3	_{		
82		_		- 1	_ _	+0.		_	+0'2	_	_		24 +0.	_	+1.2		_	_
82				71 +0			25 + 1 **	_ `		-0'0			+0		_	-	+ 4.	_ _
82	_	17		11	. 53		+1.	-		_	-	+2.	_		+ 1.0	16 - r	_	_ -
82	8		-1.	53		+0.	30		+0.1	1			۱.۰		1,.,	-		

^{* 84=0&#}x27;024. 8b=0'742. %a=0'31. wa=1'29. Vide p. 2

TABLE
Deflections of the Plumb-line

					EΥ	EREST'S S	PHEROID.			
Seria. No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed station	$(A-G)$ cot λ for azimuth or $(A-G)$ cos λ for longitude observations?	Meridian Deflec- tion†	Serial No.
3 29	64 B	Sarey Khan Lat. S.	1409	A 22 12 50 66	0 , "	0 / #	. ,	"	- 5.0	329
380	U	Lingmāra H.s.	1400	A 21 42 55 61	G 80 2 49 79				- 7·7	330
881	C	Sitāpār H.S.	1237	G 21 43 3.07 A 21 24 43 83	G 80 7 36·30				- 6.7	331
883	J	Dalea H.S.	1622	G 21 24 50 54 A 22 19 30 25	G 80 19 26 36				- 3'4	332
შხა	K	Put hāidi T.S.	879	G 22 19 33 62 A 21 48 43 06 G 21 48 45 96	G 82 I 31.25	A 198 23 42.8	Konārgarh D 0 5	- I.5	- 2.9	338
334	L	Ramai H.S.	1313	A 20 56 50·31 G 20 56 51·47	G 82 16 46·96	A 223 15 23 2	Khalāri E 0 9	- r.e	- 1.2	334
335	P	Sindur H.S.	2918		G 82 8 18:55	G 223 15 23·8	Lakh Parbat	- 16.0		335
336	65 C	Singāwāram H.S.	714	G 20 15 33.64 A 17 45 8.71 G 17 45 10.38	G 83 39 42 83	G 201 20 10.3	D 0 35 Näräkonda H 0 29	- 5.0	- 1.7	836
337	D	Dhülipalla S.	245	A 16 25 53 47 G 16 25 56 75	G 80 56 9.04 G 80 5 29.59	G 249 3 6.5 A 125 53 37.6	Kachalboru	- 7.8	- 3.3	887
888	G	Parampudi H S.	684	A 17 12 32 63 G 17 12 38 28	G81 12 10.06	H 125 53 39 9	Nägaldurgam	- 13.9	- 5.7	838
389	I	Hätbena H.S.	2600	A 19 51 42.60 G 19 51 42.34	G 82 1 25 96	G 114 12 13.2	K 0 15		+ 0.3	888
34)	I	Karia H.S.	2014	A 19 12 2 67 G 19 12 5 98	G 82 7 7 97	A 201 43 17.4	Motigaon E 0 4	- 1.4	- 3.3	84
341	K	hālingkonda H.S.	4634	G 17 49 42 44	G 82 18 40.67	G 201 43 17 9 A 189 41 25 0	Kaurālbiding	+ 0.6		34
342	K	Sānjib H.S.	2143	A 17 31 12:32 G 17 31 18:68	G 82 41 24 30	G 189 41 24.8 A 135 38 16.0 G 135 38 15.9	1) 0 25 Dhar E 0 55	+ 0.3	- 6.4	34:
343	N	Rāwal H.S.	874	A 18 32 4.73 G 18 32 9.22	G 83 33 11.63	A 317 29 5.0	Piudi D 0 11	0.0	- 4.2	34
44	N	Vizagapatām Base- line N. End S.	181	A 18 0 56.66 G 18 1 2.93	G 83 13 43 36	A 203 44 24 5 G 203 44 24 5	Bor E 0 12	0.0	- 6.3	844
345	0	Waltair Long. S.	200	A 17 43 20'44 G 17 43 29'31	# 83 19 0.17 # 83 19 3.52	- 203 44 24 3		- 3.3	- 8.9	846
- 1	66 A	Ongole H.S.	250	A 15 29 52.87 G 15 29 56.85	G 80 2 27 72				- 4.0	346
347	В	Gudaii H.S.	292	A 14 1 10.65 G 14 1 9.45					+ 1-2	347
48		Madras Observatory Long. 8.	54	A 13 4 8.97	A 80 14 47 06 G 80 14 54 33			- 7·1	+ 4'8	348
49		St. Thomas's Mount Trestle S.	250	A 13 0 20 64 G 13 0 14 79	G 80 11 41 38	A 12 30 5 3	Naumangalam D 0 7	- 3.9	+ 5.9	346
50	i_	Injambākum H.s	20	G 12 54 51.18	G 80 15 11.33	A 99 4 39 1 G 99 4 40 6	Nanmangalam E 0.23	- 6.2		850
	72 B	Naunangarhi T.S.	344	G 26 59 10.19	G 84 23 46.86	A 107 52 43' I	iiakwa D 0 7	- · g·2		851
52		Jalaipur T.S.	232	A 26 3 45 56 G 26 3 39 42	G 84 23 9.46	A 111 52 41 - 5	Katwarpur D 0 8	+ 3.1	+ 6.1	852
353		Nuãon T.S.	251	A 25 34 45 64 G 25 34 37 94	G 84 14 15 86				+ 7.7	353
354	O	Medupur T.S. Teona H.S.	335	A 25 5 22 35 G 25 5 14 02	G 84 22 6 95	A 215 46 30.0 G 215 46 33.5	Bisunpur D 0 6	7.5	+ 8.3	854
355			740	A 24 34 49 76 G 24 34 38 94	G84 10 26.42				+10.8	355
356	٦	Hurīlāong H.s.	1378	A 24 2 16.74 G 24 2 5 99	G 84 21 50 58	A 128 18 18.3 G 128 18 24.0	Khaira Pāndu D 0 4	- 12.8	+10.8	356

^{*} A = Astronomical Value.

G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XCV.

in terms of any Spheroid.

	. 1	OR C	HANGI	s of	AXES.		E	OR CI	IANGE	s of c	RIGI	N	1	ielm:	ert's s	PHEROI	D*	
al No.	Case	I : δα=	l km	Cuse I	II: 8b=	1 km	Case	III : La u ₀ =1"	titude	Саве	$v_0 = 1$	imuth	a=	637820	00 metre	es, 1/e=29	8·3.	Berial No.
Serial	u	υ COS λ	w cota	u	υ совх	w cota	u	v cos y	w cota	u	v cosa	w cota	u	υ совх		Deflection in Prime Vertical	Deflec- tion in Meridian	
	"	"	"	"	"	"	"	*	"	"	"	"	"	#	"	W	- 6.0	000
829	-0.26			+ 1.62			+ 1.00			-0.04			+0.04	· 				829
880	-0.13			+ 2 10			+1.00			-0.04			+1.12				- 8.0	830
331	-o·83			+ 2:37			+1.00			-0.04			+1.25				- 8.0	881
882	-0.20			+1.22			+1.00			-0.07			+0.01				- 4.3	83z
333	-0 60		- 2.98	+2.01		+0.60	+1.00		+0.55	-0 07		+ 2 . 45	+1.10		+0.92	- 1.9	- 4.0	833
834	-0.95		-2.08	+2.79		+ 0 67	+1.00		+0.55	-0.07		+ 2 . 55	+1.41		+1.10	- 2.4	- 2.6	384
385			-4.09			+1,00			+0.30			+ 2.62			+0.44	- 15.9		335
336	- 2:19		- 2 48	+ 5 81		+0.40	+1.00		+0.10	-0.02		+ 2 . 99	+ 2 . 24		+ 2 . 2 !	- 6.3	- 4.3	336
887	-2.75		-1.97	+7 12		+0.41	+ 1.00		+0.12	-0.04		+ 3.55	+ 3.01		+2.92	- 9.3	- 6.3	337
338	-2.40		-2.75	+6 34		+0.03	+1.00		+0.31	-0.06		+ 3.08	+ 2.73		+.2*19	- 13.8	- 8.4	338
339	-1.35		 	+3.79			+1.00	; 	-	-0.07			+ 1.80				- 1.2	889
840	-1.20		-3-17	++ 42		+0.87	+1.00		+0.34	-0.02		+ 2 77	+ 2 03		+1.36	- 2.4	- 5 3	340
341			-3.21			+1.11		-	+0.54			+ 2 . 97			+1.20	0.0	-	341
342	-2.2		-3.8	+6.0	3	+1.25	+1.00	<u> </u>	+0.20	-0.08	<u> </u>	+ 3.02	+ 2 · 6	1	+1.36	- 0.3	- 6.0	342
543	-1.8	2		+ 5.04		+ 1 . 27	+1.0	5	+ 0.3	-0.00	9	+ 2 · 80	+ 3 · 2	5	+0.48	+ 0.1	- 6.8	343
344	-2 0	<u>.</u>	_	+ 5.24	.i	+1.30	+1.0		+0.3	-0.00	9	+ 2 . 9.	+ 2 . 4	4	+1:00	- 0.1	- 8.7	344
345	.	-3.5		1	+0 4	6	+1.0	+ 0.0	3	-00	9 -0.1	-	+ 2 5	<u>-2.8</u>	3	- 0.4	- 11.4	345
346			-	+8.0		-	+ 1.0	-	-	-0.0	4	-	+ 3 3	.	-	-	- 7.3	346
	-3.8		-	+9.5		-	+1.0		_	- <u>0.0</u>	4	-	+3.8		-		- 2:6	347
	-4 2		-	1	6 + 0.3		.	0 +0 0		- -0.0	4 -0'1		.	6 - 1 · 5	2	- 5.6	+ 0.6	348
1		1	1	+ 10.6		_	0 + 1.0	_	_	-0.0	-	+4.0	5 + 4 1	_	I .	5 - 5 6	1	7 349
1	-4.3			1	3		1		- + 0·2	_		+40	-	-	'	6 - 8 2		350
350	_	_	- 2 6	_	_	+ 1 . 2		_	+0.5	-		+ 2 0		-		- 8.8		85
351	ŀ		-3 7	11	_	+ 0.3	-			_	-		6 -0 4	_	ł	3 + 3.6	į.	
1.	+0.6		_ _ 3·8	-1.6	1	+0.3	8 +0.0		2	7 -0'1							+ 8.0	
1	+04	-		— i 2			+0.0	_	_	-01	_	_	-0.	_			+ 8.	- 1
354	+0.3	6	-3 9	-0 8	2	+0.4	9 +0.0)n	+0.3	8 -0 1		+ 2 · 1	4 -0 1	_	-0.4	- 7'	r	
355	+0 2	12		-0 4	0		+0 9			-0.1			+00	_			+ 10.	- 1
356	+0 0	8	-4.0	+00	6	+ 0 5	8 +0.0	99	+0.3	9 -0.		+ 2 . 2	+0:	8	-0.3	4 - 12	3 + 10.	5 35

^{*} da=0.024. db=0.743. u0=0.31, v0=1.29. Vide p. 2.

TABEE

Deflections of the Plumb-line

						EV	EREST'S S.	PHEROID.	-		
Serial No.	Sheet No.	Observed at	t	Height in feet	Latitude*	Longitude*	Asimuth*	Name and angular Elevation or Depression of observed Station	(A-G) cot λ for azimuth or (A-G) cos λ for longitude observations†	Meridian Deflec- tion†	Serial No.
57	72 E	Kaulia	H.S.	7051	A 27 48 25 5	۳ , ۱	o. / //		"	-33.1	85
58	E	Mahadeo Pokra	H.S.	7095	G 27 48 58 6 A 27 40 53 6	G 85 14 20.7				-37.9	35
59	F	Pota	T.s.	222	G 26 22 40 13	G 85 31 19·9	A 180 4 5.0	Madanpur D 0 4	- 6.7		85
60		Pahladpur	T.S.	175	A 26 4 27 - 24 G 26 4 21 OI	G85 26 20:33 G85 27 13:16	G 180 4 8.3		,	+ 6.3	86
61		Dūbauli	T.s.	189	A 25 40 22 99 G 25 40 16 23	G-85 20 16.53				+ 6.8	86
362	- 1		H.8.	391	A 25 12 39 27 G 25 12 26 05	G 85 30 31.33				+13.3	86
63			H.S.	1606	A 24 44 31°12 G 24 44 20.88	G85 9 55 13				+10.3	86
64			H.s.	321	G 25 9 49 15	G 86 8 3.99	A 357 49 29 7 G 357 49 32 4	Ekgora E 0 40	- 5.7		86
66	1	Sirkanda	T.S.	197	G 26 11 4.72	G 87 2 52.80	A 185 49 39'4 G 185 49 49'0	Minai DO 4	- 19.2		86
	73 A		H.S.	3352	G 25 27 47.43 A 23 37 53.44	G 87 8 23.57	A 145 34 17 2 G 145 34 21 8	Pureni DO 4	- 9.7		86
68	Ā	Mahwari	H.S.	3153	G 23 37 44·63 A 23 26 q·28	G 84 26 13.94				+ 8.8	86
69	A	Bhursu	H.S.	2271	G 23 26 4.96	G 84 54 1'75	A 149 58 57 · 7	Bagru E 0 38	- 710	+ + 3	36
70	c	Andhari	н.з.	1442	G 23 15 57 13	G 84 44 19.21	G 149 59 0.8 A 17 40 39.6	Garpati D 0 1	- 7·2 - 8·7		37
71	Ē	Chendwär (old)	H.s.	2817	G 21 57 39.56 A 23 57 16.82	G 84 14 57 17	G 17 40 43 1 A 92 35 20 3	Kasīātu D 0 16	- 0.2	+ 3.1	87
72	Н	Cuttack	н.з.	133	G 23 57 13.75 A 20 28 52.05 G 20 29 0.68		G 92 35 20·5 A 155 35 54·6	Kaplās E 1 21	+ 0.8	- 8.6	87
378	1	Pārasnāth	H.S.	4481	G 23 57 34·89	G 85 52 1.43 G 86 8 10.86	G 155 35 54'3 A 145 7 21'0	Bāmani D 1 2	- 4.3		87
374	I		H.S.	1329	G 23 24 59·87		A 272 58 23 5	Sūsinia D 0 8	+ 0.0		87
375		Malūncha	H.S.	970	A 23 54 20 61	G 87 5 41.86	A 74 16 2211	Durgapur D 0 1	- 7.7	+ 0.6	37
76	M		T.S.	180	1 .	G 87 44 37 29	1 (Parhat D 0 8	+ 8.4		37
77		Kalsībhānga Dariāpur	T.S.	303	G 22 20 23.80	G 87 8 19.19	A IIE 7 20.2	Kalābani D 0 1	+ 6.1		37
379		Patna	T.s.	63 80	A 21 47 28 82 G 21 47 27 95	G 87 52 3.32				+ 0.0	37
380	- 0		T.S.		A 21 47 17 28 G 21 47 20 83 A 21 26 34 03	G 87 11 45.53	A 207 38 56 0 G 207 38 58 5	Dāntūn D 0 3	- 6.3	- 3.6	87
381	74 A	Khundābolo	H.8.	"	G 21 26 36 99 A 19 51 7 03	G 87 2 3.66		Nilgiri E 0 59	- 1.0	- 3.0	38
382	В	Deodonger	H.8.		G 19 51 12.90		A 146 26 2017	Chiklīkhāi D 0 27 Thaladi D 1 21	- 4.7	- 5.9	88
383	В	Mal	H.S.	483	G 18 54 32 37 A 18 47 6 75		G 146 26 33.0	Thaladi D 1 21	- 11.4		38
884	78 A	Phallut	h.s.	11815	G 18 47 16 07					-10.5	88
					G 27 12 40.86	G 88 1 0.06				-36.6	ľ

^{*} A = Astronomical Value.
G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XOV.
in terms of any Spheroid.

]	FOR C	HANG	es of	AXES		F	OR CE	IANGE				•	HELM	ert's	SPHEROI	D*	j.
BI NO.	Case	l : δa ==	1 km	Case	II : 86 -	-1 km	Case 1	III: Lε u ₀ = 1"		Case		imuth	ä	- 63782	200 met	res, 1/e=29	98•3.	Serial N
Serial	u	υ CO8 λ	w cot a	*	υ CO8 λ	w cot A	u	υ сов у	w cot A	u	υ cos λ	€ cot λ	u	v cos a	w cot λ	Deflection in Prime Vertical	Deflec- tion in Meridian	Ì
57	# I . OI	,,	"	- 2·99	"	"	+0.00	,	"	# -0·12	"	"	- r . 13	"	"	"	-32·0	357
58	+ 1.00			-3.90			+0.00		-	-0.13			- 1.08				-36.8	868
559			-4.41			+ 0.40			+0.30	ļ 		+ 2.04			-1.02	- 5.6		359
160	+0.64		<u> </u>	-1.6			+0.00		 	-0.13			-0:47				+ 6.7	360
61	+0.24			-1.30	,	-	+0.00		1	-0.13			-0.35				+ 7.1	361
362	+0.43			- 0.0		-	+0.00		-	-0.13			-0.14				+13.3	362
363	+0.50		-	-0.2	i	-	+0.00			-0.13			+0.03	3			+10.3	363
364			-4.94		-	+0.28		-	+0.32			+ 2.12			- I · 28	- 4.3		364
365			-5.33		-	+0.20			+0.37			+ 2 • 04			-1.82	- 17.9		365
366		ļ	-5.48		-	+0.60			+0.38			+ 2.10			-1.79	- 7.9		366
367	-0.07		-	+0.4	1	-	+0.0	9		-0.1	ī		+0.4	3			+ 8.4	
368	-0.08	3	-	+0.2	7		+0.0	9		-0.1	2		+ 0.2				+ 3.8	_ _
369		-	-4.36	5	-	+0.41			+ 0.3			+ 2 · 2 9	,		-0.4	- 6.6		36
370		-	-4.2	3	_	+0.8	3	-	+0.3	ī		+ 2 4.	3		-0.0	6 - 8.4	_	37
371	+0.0	9	-4.6	9 + 0.1	2	+0.6	+0.0	9	+0.3	-0.I	2	+ 2 . 2	+0.3	2	-0.8	+ 0.6	+ 2.8	_
*72	-1.0	2	-5.5	4 + 3 · 2		+ 1.30	+0.0	9	+0.4	-0.1	3	+ 2 · 5	+1.2	8	-0.6	9 + 2.0	- 10.3	
37	<u>-</u>	_	-5.1	-	_	+0.4	4	_	+0.3	7		+ 2 · 2	3		-1.1			37
37	<u>.</u>	1-	-5.4	4	_	+0.8	6	_	+0.3	9		+3.3	7		-1.3	5 + 2.2		87
37	+0.1	3	-5.6	9 +0.		+0.8	3 + 0.6	99	+0.4	-0.	5	+ 2 · 2	2 +0:	35	-1.6	3 - 5.9	+ 0.3	1
37	5	_	-6.3		1	+1.0	2		+0.4			+ 2 . 2	ll l		- ı ·8	4 10.	5	37
37	7	_	-5.9	19		+1.1	1		+0.4	3		+ 2 * 3	7		-1.8	+ 8.	_	8'
87	8 -0.4	19	_	+ 2 .	00		+0.0	98		_0.	16		+1.				- 0.	_ _
37	8 -0.1	52	6.1	+ 2 .	00	+1.5	+0	99	+0.4	-0.	1 5		+ 1 .		-1.4	. 1	_	_ _
38	0 -0.0	54	-6.	+ 2	32	+1.2	+0	99	+0.4	0.	15		+ 1 .	l l	-11	_		_ _
88	1 -1.	28	-5.0	+ 3	79	+1.5	+ 0.	99	+0.	37 -0.	12	·	96 + 1.	79	-0.			
38	32	_	-4"	f o	_	+1.	30		+0.	34		+ 2 . 5			+0.	44 - 10.		3
3	33 - 1 .	70	-	+4	80		+ 0.	99		-0.	11		+2				-12	- 1
8	34 + 1 •		_	_	53	_	+0	98		-0.	17		-0.	86			-35	7

^{*} $\delta \alpha = 0.924$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. Vide p. 2.

TABLEDeflections of the Plumb-line

			ļ		EV:	EREST'S S.	PHEROID.			
Serial No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed station	(A-G) cot λ for azimuth or (A-G) cos λ for longitude observations†	Meridian Deflec- tion†	Serial No.
85	78 A	Tonglu h.s.	10073	A 27 I 11.30	0 / "	0 / //	0 /	, , , , , , , , , , , , , , , , , , , ,	-42.3	38
886	В	Senchal h.s.	8600	G 27 1 53·54 A 26 58 33 01	G 88 5 2·93				-35.3	38
87	В	Kurseong h.s.	4428	G 26 59 8 25 A 26 51 15 05 G 26 52 5 56	G 88 17 44·78 G 88 15 54·68		· · · · · · · · · · · · · · · · · · ·		-50.2	38
88	B	Siliguri s.	401	A 26 41 18 10 G 26 41 40 37	G 88 24 49·54				-22.3	38
89			280	A 26 31 11'44 G 26 31 17.39	A 88 43 52 42 G 88 44 12 77	A 321 33 25 3 G 321 33 33 0	Dharampur D 0 2	- 15.4	- 6.0	38
3 9 0	В	Rāmganj T.S.	249	G 26 18 55.51	G 88 17 30 43	A 218 51 56 2 G 218 52 8 5	Kanchābāri D 0 2	- 24.9		39
391	- B		205	A 26 2 14'17 G 26 2 12'02	G 88 21 56.60				+ 2.3	39
392		Chanduria T.S.	160	A 25 44 31 93 G 25 44 27 47	G 88 22 17.15				+ 4.5	39
394		Charaldanga T.S. Ataro Banki T.S.	149	A 24 52 45 36 G 24 52 43 95	G 88 23 4·21				+ 1 4	39
95	G		133	G 26 4 50.62	G 89 28 3 10	A 70 52 20.4 G 70 52 32.5	Chandrapur D 0 3	- 24.7		39
96	G		143	G 25 59 6.81	G 89 45 41 19		bămding E 0 1	- 22.8		39
397	H		88	G 25 9 55.94	G 89 42 48 42	A 145 54 38 0 G 145 54 48 9	Kānchipāra D 0 5	- 23·2		39
398		Raikusni H.S.	803	G 24 45 29·80	G 89 38 42.19	A 205 17 22 4 G 205 17 28 5 A 136 38 12 9	Gaborgram D 0 4 Bhairaber Chura	- 13·2 		39
199	<u> </u>	Rangsanobo H.S.	4455	G 26 8 11 37	G 90 39 47 24	G 136 38 24 2 A 125 49 11 9	Mosingi E 1 21	- 23.0		39
100	79 A	Madhupur T.S.	92	G 25 15 19 60 A 23 56 42 82	G 91 43 20·86	G 135 49 18·5	Imamnagar	— 14·0 — 14·0		40
401	A	Anandbās T.S.	67	G 23 56 38 97	G 88 29 7·66	G 172 57 31 · 7 A 6 58 55 · 2	D 0 3 Jeodhāra D 0 3	- 7.9	+ 3.9	40
402	В	Aknāpur T.S.	98	G 23 21 19·24		G 6 58 58·6 A 147 41 14·5	Hākistāpur	- 2.8	<u> </u>	40
403	В	Calcutta Base-line S. End T S.	13	G 22 54 22.85	# 88 3 6·66	A 177 10 27 3	D 0 4 Calcutta Base-line	- 7:2		40
104	В	Onloutta Long. s.	18	G 22 36 55 68 A 22 32 55 58 G 22 32 55 58	A 88 21 17.81	G 177 10 30·3	N. End D 0 2	- 10.4	+ 0.0	40
405	1	Tepri T.S.	67	G 23 57 24.45	G 89 52 11.99	A 156 35 52.8	Bangaon D 0 4	- 6.2	ļ	40
406		Daulatpur T.S.	60	G 23 8 43 76	G 89 42 57 76	A 202 38 51'3	MaheshpurD 0 5	+ 4.7		40
407		Lakhinagar T.S.	ļ	G 23 0 39.73	G 90 45 43 08	A 85 27 44 7	Kāsīshpur D 0 4	+ 13.0		40
408		Gangapur T.S.	+	G 22 59 34.77	G 90 27 28.63	A 151 19 48.9		- 0.5		40
409 410		Dawa H.S.		G 23 45 17.63		A 173 18 51.3 G 173 18 53.0		- 3.9		40
411		Semu Tān H.S. Nagārkhāna H.S.		G 22 48 38 48	G 91 47 38:49	A 272 20 55.4 G 272 20 57.1	E 1 22	- 4.0		41
412		Chittagong Long. S	-		G 91 48 30.42	A 155 47 13.3 G 155 47 16.6	Chandranath E 0 22	- 8-0	+ 0.4	41
-	` ^			G 22 20 18·43	A 91 50 4.91 G 91 50 16.68			- 10.0		41

^{*} A = Astronomical Value.

G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XOV.
in terms of any Spheroid.

	F	OR CI	HANG	es of	AXES.	•	F	OR CE	ANGE	O TO	RIGIN	τ.		HELM	ert's s	SPHEROI	D*	6
. I	Case	[: 8a ==	1 km	Case 1	I : δb =	1 km	Oase I	II : La u ₀ - 1"	titude	Case I	$\nabla : Az$	imuth	a=	637820	0 metre	as, $1/\epsilon = 2$	98-3	Serial N
Deright	શ	υ cos·λ	w cot λ	u	υ cos λ	w cot λ	u	υ cos λ	w cot A	u	υ c os λ	w cot λ	u .	v cos y		Deflection in Prime Vertical	Deflec- tion in Meridian	1
85	" + o· 96	"	"	// -2·40	"	"	# o · 98	"	"	" -0.12	*	"	-0.40	"	"	"	" - 41°4	385
86	+0.96			- 2 . 36			+0.08			-0.12			-0.78	-			- 34.4	386
87	+0.04			-2.52		ļ	+0.08			-0.17			-0.4				- 49.8	387
88	+0 90			-2.18		-	+0.08	i .		-0.14			-0.6				- 21.6	_
89	+0.88	-6.63	-6 23	-2.00	+0.0	+ 0' 54	+0.08	+0.00	+0.43	-0.18	+0.03	+ 2.01	-0.60	-5.37	-2.64	- 13.0	- 5.4	_
90			-6.02			+0.22			+0.42			+ 2.02			- 2 · 4 1	- 22.7		390
91	+0.42			-1.6	-		+0.08	3		-0.17			-0.4				+ 2.6	
392	+0.08			-1.3	7		+0.0	3		-0.12			-03	2			+ 4.8	
393	+0.46			-0.6	7		+0.0	B		-0.17			0.0	0	_		+ 1.4	_
394			-6.1	x -		+0.6			+0.47			+ 2 . 0		_	-2.9			39 89
395			-6.8	9	-	+0.6			+0.48			+ 2 .0.	_	_	-3.0			39
396			-7.0	0	-	+0.8			+0.49	.		+2'1	_	_	-3.0	_	_	39
397			-7.0	4		+0.8	-		+0.20	.1		+2.1	-11	_	-2.0		_	$-\frac{36}{39}$
398	3		-7.3	1		+0.0		_	+0.51	_11	-	+2.0	_	_	-3.5		_	- 38
399			-8.1	3		+0.0	-		1	6 -0·I			+0:		-2.3		_	
400	+0.5	•	1	1 +0.1	2	+0.0	_		+0.4	-		+2.2	_[-	- - 2 · 2		_	44
40:			-6 ₅	ii .		+1.0	_	_	+0.4	_	_	+2'	_	_	-2.0	_		- 4
40		_	-6.4	ll	_	+1.1	_	_	+0.4	_	_	+2		_	-2.1	_	8	- 4
40			-6.		_	+1.1		8 +0.0	_		7 -0	_		85 - 5	27	5.	_	0 4
40		3 -6.4	_	_	32 +0.	90 + 1.0	_		+0.2	_	-	+ 2.	_	-		o6 - 3·	2	$- _{\overline{4}}$
40		_	-7·		_	+1.	_	_	+0.2	_11		+ 2 · :		_	-2.			4
40		_	-7 -8·	!\	_	+ 1 .	_	-	+0.2	_	-	+ 2 * :	<u>. </u>	_	ł	36 + 15	4	- 4
40				ll	_	+ 1		_	+0.8			+ 2.	28	_	-3.	20 + 3	-	- 4
40		-	-7·	11.	_ _	+ 1.		_	+0.		-	+ 2 ·	20	_	3	7.3 - 0.	2	4
4		-	-8.	- 11	_	+ 1 -	_	-	+0.0	_	-	-+2.	29	-	4.	08 + 0	1	
	11 -0.		_ _	02 + 1	45		32 +0	97		54 -0.	22	- + 2.	33 + 1	•00	-4.	15 - 3	- 6	3
L	12	-8-	ı	_	+1		_	+ 0.		-	-0	04		-6	· 97	- 3	. 9	

^{*} $\delta a = 0.924$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. Vide p. 2.

TABLE Deflections of the Plumb-line

114.240272			1000	The state of the s	EVE	REST'S SI	HEROID.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		**************************************
Serial No.	Sheet No.	Observed at	Height in feet	Latitude*	Longitude*	Azimuth*	Name and angular Elevation or Depression of observed station	$(A-G)$ cot λ for azimuth or $(A-G)$ cos λ for longitude observations \dagger	Meridian Deflec- tion†	Serial No.
418	83 H	Loijing H.S.	6610	0 / "	0 , "	o / w	Pangkibot D 0 48	- 8-7	"	413
414	K	Thyoliching H.S.	6566	G 24 44 28 17	G 93 43 44 79	A 113 3 3.9	Sirohifurar E 1 15	- 7.3		414
415	L	Tamunja H.S.	3387	G 25 0 5.76	G 94 43 46 98	G113 3 7.3 A116 36 26.7	Khambiching	- 0.4		415
416	P	Seikpa H.S.	3857	G 24 39 9.33	G 94 36 48·01	G 116 36 26 0 A 258 32 25 1	Madhun E 0 17	- 27.3	· .	416
417	P	Thonbinzin H.S.	1932	G 24 35 37 84 G 24 14 3 03		G 258 32 37 · 6 A 277 46 13 · 1	Katha E 0 37	- 18.9		417
418	84 C	Fi Tān H.S.	. 263	G 21 49 20.78	G 92 8 16.02	G 277 46 21 · 6 A 256 23 22 · 7	LuraintongE 1 34	- 16.3		418
419		Akyab Long. S.	20	A 20 8 14.87 G 20 8 13.10	A 92 53 38.63 G 92 53 49.63	G 256 23 29·2		- 10.3	+ 1.8	419
420	- 1	Yeponetaung H.S.	2819	A 20 14 51 · 83 G 20 14 55 · 91	G 93 41 49 34	A 74 17 19 6	Rongdong D 1 1	- 10.0	- 4.1	420
421		Dattaung H.S.	455	G 20 13 14.44		G 74 17 23 3 A 171 27 28 3 G 171 27 31 0	Bengara E 0 37	- 7:3		421
422		Ubyetaung H.S.	2766	G 23 40 52.06	G 95 57 42 75	A 303 38 45 7 G 303 38 50 1	Tagaungtaung	- 10.0		422
428	М	11.0	848	G 23 2 53·30	G 95 57 18.09	A 316 31 54°4 G 316 32 0'8	Wapyadaung E 1 12	- 15.0		428
424			456	G 22 16 33.89	G 95 58 15.79	A 354 23 23.8 G 354 23 31.5	Mingun E 0 31	- 18.8		424
425	N	Tribu	1343	G 22 3 0.71	G 95 59 41 41	A 174 23 57 7 G 174 24 5 6	Sheinmaga D 0 43	- 19.5		425
426	P	Taungpila H.S.	1012	G 20 41 52.71	G 95 53 4·50	A 340 23 15.5	Yuba E 0 50	- 4.0		426
	85 E	Retkamauk H.S.	1582	A 19 47 37 32 G 19 47 38 55	G 93 28 13.32	A 220 14 50 4	Ingrautaung D 0 14	+ 0.6	- 1.3	427
428	N	Kyaunggyi S.	•••	G 18 49 20 95	G 95 12 55.40	A 109 26 42 1 G 109 26 46 0	Prome E 3 45	- 11.4		428
429	N		100	A 18 49 18.62 G 18 49 14.28	4 95 12 42·20 G 95 12 57·44			- 14.4	+ 4'3	429
	92 G		7970	G 25 38 13.48	G 97 3 34 06	A 308 54 40.0 G 308 54 46.8	Maran Bum	- 14.3		430
431	H A 80	Kumtum Bum H.S.	1833	G 24 46 44·32	G 97 9 17:40	A 210 24 26.5 G 210 24 32.9	Maran Bum	- 13 9		431
		Sinpitating H.S.	2649	G 23 29 48·36	G 96 45 45 79	A 162 2 20'3 G 162 2 25'8	Taungkalat D 0 32	- 12.4		432
433 434		Loi Hpa Lang H.S. Loi Hpatan H.S.	3591	G 23 14 13.07	G 97 37 24 38		Loi Song E 1 11	- 15.4		433
435	0		6419	G 22 55 35.51	G 98 0 52.58		Loi Taow E 0 13	- 18.0		434
	94 A	LoiHsamHsum H.S.	3792	G 22 1 56.87	G 98 4 30·30	A 154 30 44 7 G 154 30 53 0	Loi Hsimu E 0 2	- 20.2		485
487		Letpstaung H.S.	6472	G 21 41 45 04	G 99 53 57.51	A 115 53 15.6 G 115 53 22.4	R. M.	- 17.1		436
438		Toungoo 8.	3975	G 19 34 7-27	G 96 28 38·76			- 19.7		437
439		MyayabeingkyoH.S.		G 18 56 1 54	G 96 25 55.31	A 30 46 36 9 G 30 46 42 5	Bhondan E 0 49	- 16.3		438
440		Martaban h.s.		G 18 21 33.93	G 96 22 53.46	A 169 33 42.4 G 169 33 43.8	Khengdan H 0 32	- 4.2		439
			-/3	G 16 31 33.08	G 97 36 59.57				+ 6.5	440

^{*}A = Astronomical Value. G = Triangulated or Geodetic Value.

[†] Minus sign indicates Easterly or Northerly Deflection of Plumb-line.

XCV. in terms of any Spheroid.

	1	OR O	HANGI	es of	AXES.		F	OR CE	IANGES	OF C	RIGI	N.	1	HELMI	ert's s	PHEROI	D *	•
-	Case	I : δa =	-1 km	Cuse	11:8b=	-1 km	Case 1	III: La u ₀ =1"	titude	Case I	$\nabla : Az$ $v_0 = 1$		a =	637820		ss. 1/e=29		Serial N
-	u	v Cos X	w cota	u	v cosh	w cota	u	v cos x	w cota	u	v cosy	w cota	u	υ cosλ	w cot A	Deflection in Prime Vertical	tion in	æ
\dagger	"	"	"	"	"	"	"	"	"	"	"	"	"	"	<i>"</i>	- 4·o	"	418
18			- 9.40			+ 1 ' 14			+0.66			+ 2.09			-4.93	- 2.1		414
14			-0.91			+ 1 14			+0.40			+ 2.06			- 5 43		 	415
Īō			-9.93			+ 1 . 23			+0.40			+ 2.09			- 5 · 34	+ 4.7		416
16			-10.00	-		+1'32			+0.75			+ 3 · 08			- 5.90	- 21.6		
17			-10.83			+1.45			+0.46			+ 2 11			- 5.96			417
18			- 9.48			+ 1 . 33			+0.67			+ 2 37			-4.49			418
19	-0.79	<u>-9 1</u>	ī	+3.48	+ 1 · 20	9	+0.04	+0.00		-0.54	-0.0	8	+1.85	- 7.5	2	- 2.8	- 0.1	419
20	-0.69		-11,50	+ 3 37	7	+ 1 . 70	+0.06		+0.80	-0.5		+ 2 54	+ 1 83		- 5 57	- 5 2	- 5.9	420
21			- IO'77	;		+ 1 . 59			+0.11			+ 2 . 55			-5.24	- 29		42
32			-1101	.	-	+ 1 . 56		.	+0.48		\ <u></u>	+2:16		1	- 5:99	- 4.3		422
23		-	-11.58	<u> </u>	-	+ 1.02		-	+ 0 80		-	+ 2 21			-6.00	- 9-1		42
24		-	-11.6	3	-	+ 1 75		- 	+0.83		 	+ 2 29		1	-6.34	- 13-1		42
25		-	-11.7	_	-	+ 1 · 78		-	+ 0.84		-	+ 2 31			-6.3	- 13.7		42
126	ļ	-	-12.3		_	+ 1.08			+0.88	II	-	+ 2 . 4 !		-	-6.2	4 + 2.0	-	42
127	-0.8	8		+ 3.8			+ 0.0	6	+0.81	-0.5	5	+ 2.60	+ 1.9	9	- 5 - 5	6 + 5.4	- 3.5	42
428		-	-13.0	1	-	+2 18		-	+0.04			+ 2 · 70	<u></u>	-	-6.6	<u>- 5.6</u>	-	- 42
		2 -10.7		1	0 + 1 . 4		.	÷ + 9'1		 	8 -0		+ 2 ' 4	0 -8.7	-1	- 5.7	+ 1.0	42
429		2 10 2			_	+1.0		-	+0.11	;	-	+19	<u></u>	-	-6.2	9 - 7.8	-	- 43
430		_	-11.0	_		_	<u> </u>		+ 0 · 80	.		+ 2.0	<u> </u>		-6·5		<u> </u>	4:
431			-11.3		_	+ 1 3	_	-	+0.8	.	-	+ 2 * 1	_	_	6 4			48
432			-11.5	_		+ 1.6	_	_		II	-	+ 2 1	1	_	$-\frac{1}{-6.8}$		_	-\ <u>-\</u>
433			- 1 2 1			+ 1 7	ll .		+0.8	1	_		_	-	7.0		_	4
434			-12.5	55		+1.8	-	_	+0.0			+ 2 2	.	-			_	4
435	5		-13.0	01		+ 2 . 0	3		+ 0.0		_	+ 2 · 2	_	_		8 - 13.		4
436	5		-14.8	28		+ 2 . 3	11		+1.0			+ 2.0	_			- 8	_	- _
437	7	-	-13.	 		+ 2 ' 2	7		+0.0	7		+ 2.2	81			- 13.	!	4
438	3	-	-13-	79	-	+ 2 · 4	<u>, 1</u>	-	+0.0	9		+ 2.6	6			- 9.	7	4
489	-	-	-14-	15	_	+ 2 5	; 1		+1.0	2	1-	+ 2 . 7	5		77.	35 + 2.	1	4
440	- x ·	87	-	- + 6	90	_	+0.0	94		-0.	31	_	+ 3	29			+ 3	2 4

^{*} $\delta a = 0.924$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. Vide p. 2.

TABLE Deflections of the Plumb-line

							ellections of	the Fluir	10-1111	-
					EV	EREST'S S	PHEROID.			
Seria No	Sheet No	Observed at	Height in feet	Latitude*	Longitude*	Asimuth*	Name and angular Elevation or Depression of observed station	$(A-G) \cot \lambda$ for azimuth or $(A-G) \cos \lambda$ for longitude observations†	Meridian Deflec- tion†	Serial No.
441	94 H	Moulmein Long. S.	90	A 16 30 2.97	497 37 23 41	6 / //	۰,	- 15.9	+ 8.1	441
442	H		854	G 16 29 54 90 A 16 25 56 2 G 16 25 48 55	G 97 37 40 04	A 31 16 18.9	Konlah D 0 34	- 12.0	+ 7.7	442
	95 G	H.s.	1186	G 13 49 59:67	G 97 40 18:59 G 97 55 4:49	G 31 16 22 · 7 A 162 20 54 · 5 G 162 20 55 · 6	Middle Moscos D 0 9	- 4-5		443
444		Sandawat H.S.	719	A 12 28 0'1 G 12 27 51.87		4 102 20 55 0			+ 8 2	444
146		Natkalintaung H.S. Mergui Gase-line	888	G 12 25 33.42	G 98 43 33 26	A 127 46 35 9 G 127 46 37 6	Sandawat D 0 22	- 77		445
447		E. End T.S. Mergui Base-line	18	A 12 22 21 17 A 12 22 21 17	G 98 46 36·49	A 72 29 47 9 G 72 29 49 3	Mergui Base-line W. End I) 0 2	- 6.4	+ 8.3	446
448		W. End TS. Minthangtaung H.S.	3850	G 12 21 32 57		A 157 5 40 0	Mergui Base-line E. End D 0 2 Mergui Base-line	- 78	+ 8.7	447
.				G 12 19 35.05	G 98 47 47 88	(4 157 5 43 2	E. End 1) 0 25	- 10.2	+ 9.1	448
449	80 C	Robat S.	3095	A 20 40 0:16	dden	a .	•			100
450	84 L	Znwa H.S	7922	G 29 48 58 75	G 60 55 10.90	A 178 40 55.7	Zebra E 0 6	+ 10.3	+ 10.4	449
451	¥3 G	Murree Obsy. s.	7458	G 28 57 44·43 G 33 54 57·36		G 178 40 50 0 A 227 39 50 4	Nerh D 1 6	- 5.5		451
	43 J		535 I	G 34 4 38 70		A 30 52 6.8 G 30 52 27.1	Gogipatri E 1 24	- 30 o		452
	43 J	•	8323	A 34 2 3.78‡ G 34 1 49.01	G 74 29 51 26	A 318 14 0.7 G 318 13 54.2	Gogipatri D 0 80	+ 9.6	+14.8	453
404	48 K	Gogipatri H.S.	7752	A 33 51 46 03	G 74 40 38 61	A 222 17 18:0	Zebanwan E 0 29	· 8 3.	+ 3.0	454
				·						
			ļ							
			-							
					<u> </u>					
			-				*			
	-		-							
<u> </u>	-		-							
	-		-							

^{*} A = Astronomical Value.

G = Triangulated or Geodetic Value.

1 Observations unsatisfactory in so far that determinations by N. stars differ considerably from those by S. stars, both sets agreeing well among themselves; whatever was the cause it appears probable that the effect would cancel in mean of N. and S. star determinations,

XOV. in terms of any Spheroid.

]	OR O	HANGI	es of	AXES.		F	OR OE	IANGES	S OF C	RIGIN	٧	1	IELME	ert's i	SPHEROI	D*	6
Serial No.	Саве	I: δα=	1 km	Case :	II : δδ =	1 km		111 : La u ₀ = 1"		Case I	$V: Az$ $w_0 = 1$ "	imuth	a:	- 63782	00 metr	es, 1/e = 29		Serial No.
Sei	u	v cos x	to coth	u	υ сову	n coly	и	v cosx	w cota	u	υ совλ	w cota	u	<i>າ</i> ງ ୯୦୫λ	w eotA	Deflection in Prime Vertical		
441	" 1 · 88	-11.86	,	+6.93	+1.66	, "	+0.04	+0.10	, "	-0.31 "	-o·15	, ,	+ 3·31	-9·89	,	- 6·o	+ 4.8	441
142	-1.90		-16.69	+7.00		+3.38	+0.94		+1.51	-0.31		+3.04	+ 3.33		-8.61	- 6.0	+ 4.4	442
443			-19.85			+ 4 . 50			+1.45			+3.28			-9.88	+ 3.4		443
444	-3.64			+11 05			+0.03			+0 33			+ 4.72				+ 3.2	444
445			-22.77			+5.46			+ 1 · 67			+3.96			-11.13	+ 1.1		445
446	-3.68		-22.01	+11'12		+5.82	+0 93		+ 1.68	-0.33	3	+3.08	+ 4 . 74	-	-11,10		+ 3 6	446
447	-3.60		- 22.90	+11.16	5	+ 5.81	+0.03	8	+ 1.08	-0.3			+4.75	.i	-11.18	ll	+ 3.9	447
448	-3.20		-23.01	+11 10	9	+ 5 · 87	+0.03	3	+ 1.69	-0.3	3	+ 3 - 99	+4.70	5	-11.53	- 1.6	+ 4 3	448
-								A d	d e	n d	a .					•		
449	+1.8	5	1	1-4.4	9]		+0.00	Ď .		+ 0 . 20	5		-0.0	<u>.</u>			+11'4	
450			+ 5 . 9:			-0.32			-0.40	1		+ 1 . 8	.		+7.58			450
451			+ 2 · 1	2		+ 0.08			-0.13			+ 1 · 6;	3		+1.08			451
452		-	+1.0	ī		+0.0			-0.00			+ 1 . 6	\ <u></u>		+ 3.87	.		452
453	+1.6	3	+2.0	7 - 7 · 2	2	+ 0.00	+1.0	0	-0 10	+0.0	5	+ 1.6	3 - 3 4	8	+4 0	+ 5 2		_
454	+ 1 · 6	2	+1.4	9 -7.1	2	+0.0	+1.0	٥	-0.00	+0.0	5	+1.6	4 -3.4	2	+ 3 · 5 0	+ 4.4	+ 6.4	454
										_	_						_	
											_		_	_			_	_
										_	_		_	_	.		_	
										_	_		_			.	_	
										_	_	_	_	_				_
								_		_	_		_			_		-
							_			_	_	_	_	_			_	_
										_	_	_	_			_	_	-
							_			_	_	_	_	_		_	_	-
								_		_	_	_	_	_	_		_	_
									_	_	_	_	_		<u>.</u>	_	_	-
							_					_	_	_		_	_\	__
		1																
		_											-					·

^{*} $\delta u = 0.924$, $\delta b = 0.743$, $u_0 = 0.31$, $w_0 = 1.29$. Vide p. 2.

To complete the statement of data concerning gravity values of the residuals, observed minus theoretical values are now given. These have been taken from Professional Paper No. 15 and for a full explanation reference should be made thereto. It is only necessary to explain that γ_a , γ_b , γ_c are the theoretical values of gravity based on Helmert's formula:— $\gamma_0 = 978 \cdot 030 \ (1 + 0 \cdot 005302 \ \sin^2 \phi - 0 \cdot 000007 \ \sin^2 2\phi)$ and assuming the corrections according to the Free Air, Bouguer and Hayford hypotheses respectively.

TABLE XCVI.

No.	Name	Latitude	Longitude	Height	$g-\gamma_a-\cdot 011$	$g-\gamma_b+.030$	g-70- 011
1 2 3	Agra Alīgarh Allahābād	27 10 27 54 25 26	78 1 78 1 81 55	feet 535 612 288	dynes - 012 - 039 - 023	dynes + · 011 - · 019 + · 008	dynes + ·006 - ·018 - ·002
4 ₄ 5 6	Amraoti Arrah	21 22 20 56 25 34	80 28 77 46 84 39	1032 1123 188	- · 015 + · 014 - · 067	- · 009 + · 017 - · 032	- · 014 + · 015 - · 039
7	Asarori Asirgarh Badnůr	30 14	77 58	2467	·061	- · 101	
8		21 28	76 18	2077	+ ·046	+ · 023	+ ·019
9		21 54	77 54	2103	+ ·045	+ · 015	+ ·027
10 11 12	Bangalore Bassein Bhopāl	13 1 16 47 23 16	77 35 94 44 77 25	3118 23 1630	+ · 014 + · 006 + · 018	- · 050 + · 046 + · 004	 + ·011
13	Bilāspur	22 4	82 12	878	- · 006	+ ·005	+ ·002
14	Bina	24 11	78 12	1 355	+ · 015	+ ·010	+ ·015
15	Buxar	25 35	83 59	207	- · 051	- ·017	- ·025
16	Chātra	24 13	88 23	64	- · 025	+·014	- · 006
17	Colāba	18 54	72 49	34	+ · 052	+·092	+ · 052
18	Cuttack	20 29	85 52	92	- · 005	+·033	- · 005
19 20 21	Daltonganj Damoh Darjeeling	24 2 23 50 27 3	84 4 79 26 88 16	707 1213 6966	- · 004 - · 012 + · 044	+ ·013 - ·012 - ·124	+ · 014 - · 007
22	Dehra Dün Dera Ghāzi Khān Dholpur	30 19	78 3	2239	-·085	-·115	- · 005
23		30 4	70 46	397	-·108	-·080	
24		26 42	77 55	577	-·030	-·008	- · 016
25	Edgar Shaft (Surface)	12 56	78 16	2945	+ · 058	-·005	+ .020
26	Ellichpur	21 18	77 31	1314	+ · 019	+·016	
27	Fatehpur	30 26	77 44	1434	- · 085	-·089	
28 29 30	Ferozepur Gaya Gesupur	30 56 24 48 28 33	74 37 85 0 77 42	647 361 691	-·004 -·031 -·031	+·015 -·002 -·018	-·008 -·006
31	Goona	24 39	77 19	1569	+ ·015	+·003	+·008
32	Gorakhpur	26 45	83 23	257	- ·127	-·095	-·081
33	Gwalior	26 14	78 13	658	- ·030	-·011	-·018

TABLE XCVI.—(Continued).

No.	Name	Latitude	Longitude	Height	$g-\gamma_a-\cdot 011$	$g - \gamma_b + .030$	$g-\gamma_c-\cdot 011$
34 35 36	Hardwär Häthras Henzada	29 56 27 37 17 39	78 9 78 3 95 27	<i>feet</i> 949 587 46	dynes - · 117 - · 020 - · 031	dynes - · 106 + · 001 + · 008	dynes 000
37 38 39	Hoshangābād Jacobābād Jalgaon	22 45 28 17 21 0	77 44 68 27 75 34	1002 188 760	+ · 000 + · 000	+ ·007 + ·038 + ·015	+ · 010 + · 027 + · 009
40 41 42	Jalpaiguri Japla Jhānsi	26 31 24 32 25 27	88 44 84 0 78 34	268 474 858	- · 124 - · 031 - · 004	-·091 -·006 +·008	-·009 -·009
43 44 45	Jubbulpore Kaliāna Kaliānpur	23 9 29 31 24 7	79 59 77 39 77 39	1467 810 1763	+ · 017 - · 065 + · 039	+ ·009 - ·051 + ·021	+·019 -·018 +·028
46 47 48	Kālka ' Kālsi Katni	30 50 30 31 23 50	76 56 77 50 80 26	2202 1684 1254	-·045 -·084 -·010	- · 074 - · 090 - · 011	 - · 004
49 50 51	Kesarbāri Khandwa Khurja	26 8 21 50 28 14	88 31 76 22 77 52	204 1014 649	- · 071 + · 033 - · · 054	- · 037 + · 0 · 0 - · 035	+·086 -·080
52 53 54	Kisnapur Kodaikānal Kurseong	10 14	88 28 77 28 88 17	118 7665 4913	+ · 001 + · 156 - · 011	+ 038 - 049 - 117	+·028
55 56 57	Lalitpur Ludhiāna Mach	30 55	78 24 75 51 67 18	1199 835 3522	-·016 -·058 -·032	- 015 - 040 - 103	-·018
58 59 60	Madras Maihar Majhauli Rāj	24 16	80 48 83 58	20 1161 219	- · 024 - · 020 - · 105	+·016 -·018 -·071	- · 064 - · 014 - · 068
61 62 63	Mandalay Maymyo Meiktila	22 1 20 51	96 28 95 52	244 3495 799	- · 028 + · 050 - · 003 - · 035	+ · 006 - · 026 + · 011 - · 019	
64 65 66	Meerut Mhow Miān Mīr	22 33 31 32	75 46 74 23	734 1903 708	- · 002 - · 004	- · 025 + · 013	-·026 +·029
67 68 69	Moghal Sarai Mogok Mohan	22 55	96.30	257 3685 1660	- · · · · · · · · · · · · · · · · · · ·	- · 008 - · 020 - · 093	
70 71 72	Monghyr Montgomery Mortakka	. 30 40	73 6	154 557 576	- · 067 - · 011 - · 022	- · 031 + · 011 · 000	- · 036 + · 008 - · 006

TABLE XCVI—(Continued).

No.	Name	Latitude	Longitude	Height	$g-\gamma_a-\cdot 011$	$g-\gamma_b+\cdot 030$	$g-\gamma_c-\cdot 011$
78 74 75.	Mukhtiāra Multān Mussooree (Camel's Back)	22 24 30 11 30 28	75 59 71 26 78 5	feet 926 4()4 6924	dynes - · 039 - · 066 + · 074	dynes - · · 029 - · · (139 - · · 098	dynes - · 030 - · · 042
76	Mussooree (Dunseverick) Muttra Muzaffarpur	30 27	78 4	7129	+ · 076	-·098	
77		27 28	77 42	562	- · 015	+·007	+ · 004
78		26 7	85 25	179	- · 091	-·056	— · 053
79	Myingyan	21 29	95 24	248	- · 020	+ · 013	
80	Mysore	12 19	76 40	2501	+ · 003	- · 040	
81	Nojli	29 53	77 40	879	- · 099	- · 087	
82	Ootacamund Pathānkot Pendra	11 25	76 42	7895	+ ·184	- · 016	+·001
83		32 17	75 39	1088	- ·175	- · 169	-·087
84		22 47	82 0	1996	+ ·010	- · 016	-·003
85 86 87	Prome Pyinmana Quetta	18 50 19 44 30 12	95 14 96 12 67 1	101 409 5520	- 027 - 014 + 020	+ · 011 + · 014 - · 123	 · 004
88 89 90	Raipur Rājpur Rāmehāndpur	21 14 30 24 25 41	81 41 78 6 88 33	996 3321 132	- · 013 - · 051 - · 031	- · 005 - · 113 + · 006	-·014 +·015
91	Rānchi	23 23	85 19	2167	+ · 040	+ · 008	+·019
92	Rangoon	16 48	96 9	164	+ · 010	+ · 045	
93	Roorkee	29 52	77 54	867	- · 112	- · 099	-·055
94	Salem	11 40	78 9	948	- · 047	· 038	-·059
95	Sandakphu	27 6	88 0	11766	+ · 178	· 125	+·037
96	Sasarām	24 57	83 59	340	- · 025	· 005	-·002
97	Saugor	23 52	78 48	1757	+:010	- · · · · · · · · · · · · · · · · · · ·	·000
98	Seoni	22 5	77 29	2032	+:041		+·025
99	Shāhpur	22 12	77 54	1286	+:006		+·012
100 101 102	Sibi siliguri simla	29 33 26 42 31 6	67 53 88 25 77 10	434 387 7043	- · 137 - · 160 + · 080	109 130 100	-·070 -·050
103 104 105	Sīpri Sultānpur Toungoo	25 26 26 16 18 56	77 39 82 5 96 27	1533 314 159	+ ·027 - ·064 - ·011	+ · · 016 - · · 084 + · 025	+·018
106	Ujjain	28 11	75 47	1612	- · 013	- · 026	-·022
107	Umaria	28 32	80 54	1499	+ · 016	+ 007	+·018
108	Yercaud	11 47	78 12	4493	+ · 072	- · 027	-·044

CHAPTER X.

Deflections of the Plumb-line and values of "g" derived in Turkistan (Ferghana) by the Russian observations.

- 1. The problem of the origin of the Himalayas has already been attacked from the geodetic point of view making use of the deflection results and gravity anomalies obtained in India. All these results relate to points south of the main chain. It is now possible to put certain results obtained by the Russian surveyors into the same terms: and it has accordingly been considered suitable to do this, so that all geodetic data closely related to the Himalayas will be conveniently available in one volume.
- 2. Values of deflection can be found for Osh base, N.W. end, the starting point of the Russian triangulation which links up with the Indian Pamir triangulation. The Russian triangulation emanates from a base near Osh latitude 40° 31′, longitude 42° 30′ E. of Pulkowa. Latitude and azimuth were observed astronomically while the longitude of Osh was found by electric telegraph from Tashkent, and transferred from Osh to the north-west end of the base by chronometer. Presumably the longitude of Tashkent is in terms of astronomical longitude measured from Pulkowa (Poulcovo) which is 2° 1° 18° 57 of time E. of Greenwich (vide Nautical Almanac). This converted becomes 30° 19′ 38″ 55 which must be added to the values of longitudes expressed in Russian terms. Calculations of the Russian triangulation were performed on Bessel's spheroid. Suppose the deflections at Osh are ξ , η in prime vertical and meridian (positive if S. or W.). Then the geodetic elements are found by deducting $\eta = -u$, ξ sec $\lambda = -v$, ξ tan $\lambda = -w$ from the astronomic values of the latitude, longitude and azimuth respectively. The Astronomic elements of the N.W. end Osh base are:—

Latitude 40° 37′ 16° 67 Longitude 72 56 11 17* Azimuth not stated.

From this astronomic origin and a measured base triangulation was carried to a station Kukhtek of the Indian triangulation, the deduced latitude being 37° 17′ 43″ 94 and the longitude 74° 59′ 55″ 53*.

It is necessary to express these in terms of the geodetic value of Osh and the Helmert spheroid. This can be done approximately by means of the tables already prepared with reference to Kalianpur as origin. Kukhtek is 2° 3' $44'' \cdot 36$ east of the Osh origin, and as the tables prepared for Kalianpur are shown in absolute longitude the corresponding longitude required is that of Kalianpur increased by this *i.e.* 77° 39' $17'' \cdot 57 + 2^{\circ}$ 3' $44'' \cdot 36 \rightleftharpoons 79^{\circ}$ 43' $2'' \rightleftharpoons 79^{\circ} \cdot 7$.

^{*} This includes 30° 19' 38" 55, the difference of longitude of Greenwich and Pulkowa.

Suppose corresponding to changes u, v, w at Osh, changes u', v', w' occur at Kukhtek and that both are due to imaginary changes u_0 , v_0 , w_0 at an origin O on the longitude of Osh and at the latitude of Kalianpur together with a change of axes from those of Bessel to those of Helmer's for which $\delta a = +.803$ and $\delta b = +.739$ (vide Appendix).

From tables XVII-XX a change at O of u_0 , r_0 and w_0 causes changes of u_0 , $r_0 + 370$ w_0 , 1.20 wo at Osh and from the axes change the further changes (from tables XXIX-XXXIV) at Osh are $+ \cdot 803 \times 1 \cdot 24 - \cdot 739 \times 10 \cdot 56$, $\cdot 803 \times 0 + \cdot 739 \times 0$, $\cdot 803 \times 0 + \cdot 739 \times 0$ i.e. $-6 \cdot 808$, 0, 0. The total changes at Osh accordingly are $u_0 - 6.808$, $v_0 + .370 w_0$, $+ 1.20 w_0$. The changes at Kukhtek, 2° 3′ 44" E. of meridian origin and latitude 37° 3 may be found in the same tables under longitude 79° · 7.

They are
$$u_0 - \cdot 032 \ w_0 + \cdot 803 \times 1 \cdot 626 - \cdot 739 \times 9 \cdot 033 - \cdot 803 \times 1 \cdot 525 + \cdot 739 \times 191 - \cdot 803 \times \cdot 752 - \cdot 739 \times 056 - 1 \cdot 225 + \cdot 141 - \cdot 604 - \cdot 041$$
 which reduce to $u' = u_0 - \cdot 032w_0 - 5 \cdot 369 \ |v' = v_0 + \cdot 027u_0 + \cdot 284w_0 - 1 \cdot 084 \ |w' = w_0 + \cdot 045u_0 + 1 \cdot 145w_0 - 164 - \cdot 041$

Now at Osh $u = u_0 - 6.808, v = v_0 + .370 w_0, w = 1.2 w_0$

In terms of vertical deflection $u = -\eta$, $v = -\xi \sec \lambda$, $w = -\xi \tan \lambda$ which determine u_0 , v_0 , w_0 in terms of ξ and η as follows:—

$$u_0 = -\eta + 6 \cdot 808, w_0 = -\frac{1}{1 \cdot 2} \xi \tan \lambda, v_0 = -\xi \sec \lambda + \cdot 308 \xi \tan \lambda \quad \text{when } \lambda = 40^{\circ} 37'$$

$$u_0 = -\eta + 6 \cdot 808, w_0 = -\cdot 715 \xi, \quad v_0 = -1 \cdot 317 \xi + \cdot 264 \xi = -1 \cdot 053 \xi$$

Hence
$$u' = -\eta + 6 \cdot 808 + \cdot 023\xi - 5 \cdot 369$$
, $v' = -1 \cdot 053 \xi + \cdot 027 (-\eta + 6 \cdot 808) - \cdot 203 \xi - 1 \cdot 084$
and $w' = -\cdot 715\xi + \cdot 045 (-\eta + 6 \cdot 808) - \cdot 818\xi - \cdot 645$
 $= u' = -\eta + -\cdot 023\xi + 1 \cdot 439$, $v' = -1 \cdot 256 \xi - \cdot 027 \eta - \cdot 900$, $w' = -1 \cdot 533 \xi - \cdot 045 \eta - \cdot 339$.

These are the corrections which have to be applied to the Russian values of coordinates of Kukhtek, to bring them into terms of the Indian triangulation.

The Indian values have to be corrected to bring into terms of the Helmert spheroid and the observed values of the elements at Kalianpur, corresponding to $u_0 = 31$, $v_0 = 0$ *, $w_0 = 1.29$, $\delta a = .924$, $\delta b = .743$. Denoting the corrections by u', v'', w'' the corrections at Kukhtek latitude 37° · 3 and longitude 75° · 0 are:—

$$\begin{array}{l} u'' = \cdot 31 \times \cdot 999 + 1 \cdot 29 \times \cdot 048 \\ + \cdot 924 \times 1 \cdot 590 - \cdot 743 \times 9 \cdot 032 \\ = \cdot 310 + \cdot 055 + 1 \cdot 470 - 6 \cdot 711 \\ = -4 \cdot 877 \end{array} \\ \begin{array}{l} v' = -\cdot 31 \times \cdot 036 + 1 \cdot 29 \times \cdot 282 \\ + \cdot 924 \times 1 \cdot 980 - \cdot 743 \times \cdot 247 \\ = -\cdot 011 + \cdot 364 + 1 \cdot 830 - \cdot 184 \\ = +1 \cdot 999 \end{array} \\ \begin{array}{l} u'' = -\cdot 31 \times \cdot 058 + 1 \cdot 29 \times 1 \cdot 144 \\ + \cdot 924 \times \cdot 979 + \cdot 743 \times \cdot 072 \\ = -\cdot 018 + 1 \cdot 476 + \cdot 905 + \cdot 058 \\ = +2 \cdot 416 \end{array}$$

The values obtained by the Indian triangulation for latitude and longitude of Kukhtek are:-

and to bring these into accord with the Indian values it is necessary to apply -15" 85 to the latitude and $+18^{\prime\prime} \cdot 66$ to the longitude.

^{*} This is zero because the deflection at Kalianpur in prime vertical had never been taken account of, although it was implied by the values of azimuths adopted.

The following equations are formed giving the quantities ξ and η at Osh:—

whence

Hence

The values found by the Russian observers in terms of Tashkent vertical are $\xi = -6.04$ and $\eta = 23.43$, vide table XCVIII.

4. It is possible to bring these results into agreement with the values deduced from the Indian side by supposing that the vertical at Tashkent, latitude 41° 21' and longitude 69° 18', is deflected with reference to Kalianpur.

Consider the effect of changes u_0 , r_0 , w_0 at Tashkent longitude and Kalianpur latitude, and from Bessel to Helmert spheroid for which $\delta a = +.803$, $\delta b = +.739$.

From tables XVII-XX a change at origin of u_0 , v_0 , w_0 causes changes of u_0 , $v_0 + .872$ w_0 . 1.204 w_0 at Tashkent and from axes changes the further changes from tables XXIX-XXXIV at Tashkent are -7.962, 0, 0. The total changes at Tashkent accordingly are $u_0 - 7.962$, $v_0 + .872$ w_0 , 1.204 w_0 .

The total changes at Osh λ 40° 37′, L 81° 17′, $\left\{ =77^{\circ}39' + (72^{\circ}56' - 69^{\circ}18') \right\}$ calculated from the same tables are:—

$$\begin{array}{l} + \cdot 998u_0 - \cdot 059w_0 - 6\cdot 791 \Big| v_0 + \cdot 052u_0 + \cdot 357w_0 - 2\cdot 015 \Big| + \cdot 081u_0 + 1\cdot 197w_0 - 1\cdot 288 \\ \text{The following equations are formed :--} \\ + \cdot 998u_0 - \cdot 059w_0 - 6\cdot 791 = u = 6\cdot 5 \\ v_0 + \cdot 052u_0 + \cdot 357w_0 - 2\cdot 015 = v = 9\cdot 9 \sec \lambda = 13\cdot 042 \\ + \cdot 081u_0 + 1\cdot 197w_0 - 1\cdot 283 = w = 9\cdot 9 \tan \lambda = 8\cdot 490 \end{array}$$

in which the numerical quantities 6.5 and 9.9 are the corrections necessary to ξ and η as determined by the Russian observers, to bring them into agreement with the Kalianpur terms.

$$u_0 = 0.59 \ w_0 + 13.318 \qquad (1)$$

$$1.197 \ w_0 = -0.081 \ u_0 + 9.773 \qquad (3)$$

$$= -0.005 \ w_0 - 1.079 + 9.773$$
or
$$1.202 \ w_0 = 8.694$$
or
$$w_0 = 7.23$$

$$\therefore u_0 = 0.427 + 13.318 = 13.75 \qquad (1)$$
and
$$v_0 = -0.715 - 2.581 + 2.015 + 13.042 = 11.76 \qquad (2)$$

5. With these origin changes the corrections at certain degree squares have been computed from the tables and the results are exhibited in table XCVII.

TABLE XCVII. 72° 73° 71° 69° 70° 6.76 40° $7 \cdot 20$ 7.096.986 · 87 и $12 \cdot 99$ 14.0513.70 $13 \cdot 34$ 14.41 8.52 8.48 8.63 8.59 8.55 6.34 41° 6.786.676.56 6·45 u 18.54 13.20 14.5914.24 13.89v 8.57 8.75 8.71 8.66 8.62 10

6. The results of the Russian observations* are now given first in terms of Tashkent and Bessel's spheroid and then corrected to the Kalianpur vertical and Helmert's spheroid. The stations are shown in chart No. VI.

TABLE XCVIII.

No.		,	Longitudet	Bessel's Sp and Tashkent V		Corre	tions	Helmert's S and Kalianpur	1
Serial 1	Station	Latitude	in Greenwich Terms	Deflection in Prime Vertical	Deflection in Meridian	-u	−w cot λ	Deflection in Prime Vertical	Deflection in Meridian
	Tashkent	41° 21	69° 18	000	0"00	"	"	- 9"9	- 6.5
1 2 3	Chodschent Karatschekum Kanybadam	16	70 · 5 26	+13.06 + 3.71 - 4.63	+ 3·83 + 22·52 + 22·66	-6.89 -6.89 -6.83	-10·12 -10·09 -10·05	+2·9 - 6·4 -14·7	- 3·1 +15·6 +15·8
4 5 6	Tschil-Machram Begowat (south) Puntan	1	33 43 48		+ 2·36 + 42·82 - 8·13	-6.72 -6.80 -6.62		•••	- 4·4 +36·0 -14·8
7 8 9	Sary-Kurgan Pap Begowat (north)	54	71 2 4 14	+ 9.47	+30·34 -20·89 + 8·92	-6.58	- 10·08 	- 0·6 	+ 23 · 6 - 27 · 4 + 2 · 3
10 11 12	Karaül-tjube Warsyk Katput	41 7 40 16	15 16 20	+18·14	+16.64 -26.87 +41.18	-6.40	- 9·97 	+ 8.2	+10·0 -33·3 +34·4
13 14 15		41 15	28 36 39		- 4·18 -20·30 +49·41	-6.31			-10.6 -26.6 +42.7
16 17 18	Martelan	. 40 23	41 47 50	- 2·94 + 3·53	- 9·78 + 32·56 - 13·08	-6.65	- 9·83 - 9·99	-12·8 - 6·5	-16·1 +25·9 -19·5
19 20 21	Bulyktschi	. 53	50 52 72 3		+17·17 - 1·87 -10·68	-6.46			+10.6 - 8.3 -17.0
22 23 24	Kuwa	. 40 14 . 31 . 40	4 4 10	+ 0.42	+41.68 +28.40 +18.97	-6.58	- 9·94 	- 9·5 	+84·9 +21·8 +12·5
25 26 27	Isbasken	54 41 2 40 29	13 21 22	 - 6·84	- 0.38 -12.36 +33.74	-6.84	 - 9·94	 -16·8	- 6·8 -18·7 +27·2
28 29 30	9 Kisyl-Kurgan	47 20 38			+12.68 +32.39 +25.88	-6.63			+ 6·2 +25·8 +19·4
3 3 3	2 Chodscha-Syrjan	41 5 40 48 18			-15·7] +11·48 +32·7]	-6.38		•••	-22·0 + 5·1 +26·1
3	5 Chasret Ujunys 6 Mady	31 46 84	56 56	- 6·04	+23·48 +13·70 +22·80 + 4·38	-6·38 -6·47	- 9·90 	- 15·9 	+16·9 + 7·3 +16·3 - 1·9

^{*} c. f. Comptes-Rendus de L'Association Geodesique Internationale for 1898 (Annexe A IIc, p. 268).
† Converted from Pulkowa Longitude by applying +30° 20' (more accurately 30° 19' 38".55).

The following description is extracted from Comptes-Rendus de L' Association Geodesique Internationale for 1896 (Annexe B XI p. 309):—

"The researches recently completed on the deviation of the plumb-line in Ferghana (Turkistan) are of special interest. This valley lying between 40° 15′ and 41° 15′ in latitude and 39° 30′ and 42° 45′ in longitude, east of Pulkowa is a deep depression the walls of which are pierced in their western part by the narrow bed of the Syr Daria. The bottom of the valley has an approximately elliptic figure with its major axis 250 km. long following the direction of the parallel, and its minor axis 110 km. that of the meridian. On the north the valley is enclosed by chains of mountains of an average height of 2500 to 3500 m. and on the south are the Alai, the Trans Alai, the Pamirs and the Hindu Kush. Such a position leads one to expect considerable deviation particularly in latitude and explains the investigations which have been made in order to verify this supposition. To this end 37 determinations of latitude have been made of points equally distributed over the district and 10 of longitude at points nearly on the same parallel. Taking Bessel's Ellipsoid, and the point Balyktschi as zero, we obtain for the deviation in latitude values for A—G from—25" on the north up to +51° on the south of the valley, in longitude the deviation of opposite sign amounts to 25"".

7. A table of gravity residuals in the same district* is also given for the sake of completeness.

777 4	-	7	77	V	~	TV
TA	B.	Ŀ.	Ľi	4	U.	LA.

	No.	Station	Latitude	Longitude	Height in Metres	90-γ0 Cm 10-3×
	1 2 3	Pamir Post Kala-i-Wanj Sar-i-pul	38 10.0 38 22.2 38 24.5	78 58'.2 71 27.0 70 5.5	3700 1795 1500	- 30 - 177 - 100
	4. 5 6	Kala-i-Chamb Rabat Ak Baital Rabat Maskol	38 29 7	70 46·5 73 51·5 73 31·7	1345 4100 4200	-152 + 74 +169
TAN	7 8 9	Kara Kul Lake Irkeshtan Fort Ak-bossaga	39 41 9	73 31 · 2 73 55 · 5 73 13 · 7	3920 2850 2875	+ 35 - 56 - 128
URKIS	10 11 12	Sufi Kurgan Karaul Kishlak Gultsha	40 2 2	73 30·0 72 6·0 73 25·7	2115 1800 1583	- 91 -157 -126
T.	13 14 15	New Marghilan Langar Osh	. 40 24 6	71 46·7 73 5·7 72 46·6	581 1685 1021	-159 - 67 -106
	16 17 18	Andijan Tashkent Wysokoji Khojand	41 19.5	72 20 6 69 17 7 70 33 9	530 478 1060	-185 - 50 - 1
	19 20	Chodient Namangan	4.0 50.7	69 34·7 71 38·7	320 440	-140 -178

^{*} c. f. C. R. 1911-Volume III pp. 156-158.

APPENDIX.

Various Determinations of the Axes of the Earth.

For convenience of reference the principal values of the elements of the figure of the earth obtained from time to time are given below, expressed in units of 1000 feet and kilometers. It is to be observed that the datum of height in different continents is only in the same terms on the assumption that the geoid is identical with the spheroid. The quantities determined really refer to the several concentric spheroids through these sea level datum points.

1. RADIUS OF THE EARTH CONSIDERED AS A SPHERE.

ence .		7.4	RA	DITS	Data used		
Beference No.	Authority	Date	in 1,000 feet	in kilometres			
1	Eratosthenes	250 B, C.	24370	7428	Arc from Syene (Upper Egypt) to Alexandria.		
2	Posidonius	80 ,,	23190	7069	-		
3	Richard Norwood	1637 A. D.	21038	6412	Arc from London to York. Mean Lat. 52° 42' 30".		
4	Jean Picard	1669 ,,	20906	6372	Arc from Paris to Amiens. Mean Lat. 49° 80'.		

AXES OF THE EARTH CONSIDERED AS A SPHEROID. Jean Richer (d. 1696) pointed out that the Earth was not a sphere.

эшсе		RADIUS OF CURVATURE IN DEDUCED		CED .	Data used			
Reference No.	Authority	Date	in 1,000 feet	in kilometres	a in 1,000 feet	1 *	Divid table	
5	J. and D. Cassini	1684-1718	20860-2	6360+8			Are from Paris to Dunkirk. Mean Lat. 49° 56′ 9″.	The immediate inference was that the degree dimini-
6	J. and D. Cassini		20919-4	6876-1	-		Arc from Paris to Collioure. Mean Lat. 45° 40' 42".	shing with the in- creasing latitude, the Earth must be
7	Bouguer and De la Condamine	1785-1751	20795•4	6838-3	20988-5	216-82	Arc in Peru. Mean Lat. 1°31'0" S.	Bouguer, De la Condamine, Mau-
8	Maupertuis and Clairault	1736	21038 • 4	6412-4	(=6397·3km)		Arc in Finland. Mean Lat. 66°19'35".	pertuis, Clairault De Thury and De Lacaille proved that the Earth was an oblate and
9	De Lacaille	1752	20897 • 4	6369-4			Arc at Cape of Good Hope. Mean Lat. 33°18'30" S	not a prolate sphe-
1					<u> </u>			<u> </u>

8. AXES OF THE EARTH CONSIDERED AS A SPHEROID DETERMINED FROM A GROUP OF ARCS, GRAVITY ETC.

Quantities given by authority named are shown in roman figures; deduced quantities are in italics.

Beference No.	Authority	Date	Semi Major	Axis (=a)	Semi Mino	R Axis (=b)		
Befe			in 1,000 feet	in kilometres	in 1,000 feet	ĭn kilometres	1 €	Data used etc.
10	Laplace	1799	20919-768	6876 • 840	20862-822	6855 985	812-20	Arcs in Peru, India, France, England, and Sweden.
11	Everest	1890	,, 22·84095	,, 77-276	,, 53·28403	,, 56·075	800-8017	Arc from Damargida to Kalianpur Mean Lat. 21° 5′ 13″.
12		,	(,, 22.93180)	•••	(,, 58-87458)	•••	•••	As expressed by Everest in terms of Indian 10-foot bar A (=9-99995658 feet).
	Airy	1880	,, 28-718	,, 76·549	,, 5 8·810	,, 56·286	299 · 33	14 meridian arcs and 4 arcs of parallel.
13	Bessel	1841	,, 28·287±·702	"77·897±·214	" 53·296	,, 56·079	299•15	From 10 meridian arcs.
14	Clarke	1857	,, 26·3 <u>4</u> 8	,, 78·345	" 55·283	,, 56·669	294-26	Arcs: Anglo-Gallic, Russian, Indian, Prussian, Peruvian, Hanoverian, Danish.
. 15	Pratt	1863	,, 26-189	,, 78-297	,, 55•816 ·	,, 56·695	295 • 26	Semi axes and ellipticity of the Mean Figure of the Earth. From a com- parison of the Anglo-Gallic, Russian
16	Clarke	1866	,, 26·062	,, 78·258	,, 55·1 2 1	, , 58•685	294.98	and Indian arcs &c. Arcs: Anglo- Gallic (rejecting 21 lat., stations), 2nd Indian, Russian, Peru-
17	Clarke	1880	,, 2 6·202	" 78·301	,, 54-895	,, 56-871	298 • 47	vian, Cape.
18	Clarke-Bessel		,, 26-202	" 78· <i>301</i>	,, 56-252	[,, 56-980]	299 • 15	
19	Clarke-Bessel		,, 25-889	₂₉ 78 · 190	,, 65·888	[,, 56-869]	299•15	From Clarke's value of 1866 with an
20	Darwin	1899	***	•••			296•4	old conversion factor. From consideration of precession.
21	•••••••••••••	•••	,, 25-329	,, 7 8-0 8 5	,, 55-881	,, 56-715	299•15	(1·0001) × Bessel's value: adopted by the Central Bureau, International
22	Hayford (C.andG.S.)	1906	,, 26·144±·112	"78·283±·034	,, 6 5 •886	,, 56 ·868	297·8±0·9	Geodetic Association.
23	Helmert	1907	,, 2 5-871	,, 78-200	,, 55.721	,, 56-818	298-8	There were the distance in chicago
24	Hayford (C.andG.S.)	1909	,, 26·488±·059	"78·388±·018	,, 86-019	,, 56-909		From gravity determinations.
25	Helmert-Hayford		"26·436	., 78-372	,, 55-976	,, 56-896	297·0±0·5	Adopted for International $\frac{1}{M}$ map.
26	Intomotional Man			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,, 00 0,0	,, 00°090	297	Obtained by S. Wallisch taking Helmert's value with weight=unity and the modified Hayford values with weight=4.
	International Map Committee	1809	,, 26-002	,, 78·24	,, 54·87 <u>4</u>	,, 56-56	[294·2]	
27	E.W. Brown	1914					298·7±0·8	From Lunar theory. The value will make the observed motions of perigee and node agree with the
28	Nautical Almanac	1911		***			297	meoretical values.
29	Crommelin		·				294·4±1·5	Adopted in the conference of Nantical Almanac directors.
							~~a.a.∓1.0	From Moon's parallax at Greenwich and Cape. Obtained by a hundred pairs of simultaneous observations at the Cape and Greenwich Observatories by a comparison between theoretical and Observed values of
-	-	'		<u> </u>				the Moon's parallar.

4. AXES OF THE EARTH CONSIDERED AS AN ELLIPSOID.

g			Equatorial Axes		Polar	Polar Axis				
No.	Authority	Date	Date a b		c		Longitude of major axis E. of Greenwich	Data used		
Beference No.			in 1,000 feet	in kilometres	in 1,000 feet	in kilometres	in 1,000 feet	in kilometres		
80	Schubert	About 1860	20927·397 (3272671 toises)	6378 • 665	20925-044 (8272808 toises)	6377 - 948	20855 · 759 (8261468 toises)	6356-880	41° 4'	Arcs: French, English, Eussian, Indian, Cape, Prussian and Peruvian.
81	Clarke	1860	,, 26-629	., 78:431	,, 25-105	,, 77 966	,, 58-477	,, 56-439	15° 84′	Arcs: French, English, Indian, Russian, Prussian, Peruvian, Cape.

REFERENCES.

- 1. Earth's circumference was reckoned to be 250,000 stadia (1 stadia = 50 563 feet) Vide Encyclopædia Metropolitana 1848, Art. Figure of the Earth: also Encyclopædia Britannica 11th Edition, Vol. 8, Art. Figure of the Earth.
- 2. Earth's circumference = 240,000 stadia-1bid.
- 3. 1°=367176 feet-1bid.
- 4. $1^{\circ} = 57060$ to is es—1 bid.
- 5. $1^{\circ} = 56960$ 1bid. ,, 6. $1^{\circ} = 57097$ 1 bid.
- 7. 1°-56767 1bid.
- Vide Encyclopædia Metropolitana 1848, Art. Figure of the Earth. 8. $1^{\circ} = 57183$,,
- Vide Encyclopædia Britannica 11th Edition, Vol. 8, Art. Figure of the Earth. 10. Account of the Observations and Calculations of the Principal Triangulations &c. p. 783 by Capt. A. R. Clarke, R. E., F. R. A. S.
- 12. Account of the Observations and Calculations of the Principal Triangulations &c. p. 784 by Capt. A. R. Clarke, R. E., F. R. A. S also Geodesy p. 303 by Col. A. R. Clarke, C. B.
- 13. Encyclopædia Britannica 11th Edition, Vol. 8, Art. Figure of the Earth, p. 807: also The Figure of the Earth and Isostasy from measurements in the United States 1909, p. 172 by John F. Hayford.
- 14. Geodesy 1880, p. 305 by Col. A. R. Clarke, C. B.: also Account of the Observations and Calculations of the Principal Triangulations &c. p. 771 by Capt. A. R. Clarke, R. E., F. R. A. S.
- 15. A Treatise on Attraction, Laplace's Function, and the Figure of the Earth, 1868, p. 134 by John H. Pratt, M.A.
- 16. Encyclopædia Britannica 11th Edition, Vol. 8. Art. Figure of the Earth, p. 808: also Smithsonian Geographical Tables (1906) p. XLIII.
- 17. Geodesy 1880, p. 319 by Col. A. R. Clarke, C. B.: also Encyclopædia Britannica 11th Edition, Vol. 8, Art. Figure of the Earth, p. 803.
- 18. Semi major axis of Clarke, 1880 (Vide 17) and ellipticity of Bessel (Vide 13).
- 19. Philosophical Transactions, Series A, Vol. 205 pp. 289-318—On the Intensity and Direction of the Force of gravity in India by Lieut-Colonel S. G. Burrard, R. E., F. R. S.
- 20. Proceedings of the Royal Society, Vol. LX, p. 119—The Theory of the Figure of the Earth.
 21. Encyclopædia Britannica 11th Edition, Vol. 8, Art. Figure of the Earth, p. 813.
- 22. The Figure of the Earth and Isostasy from measurements in the United States 1909, p. 172 by John F. Hayford, 23. Vide p. 3: also The Figure of the Earth and Isostasy from measurements in the United States 1909, p. 173 by John F. Hayford.
- 24. Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy 1910, p. 77 by John F. Hayford.

- 25. Vide Nature No. 2411, Vol. 96, January 13, 1916.
 26. Vide Resolutions and Proceedings of the International Map committee assembled in London, November, 1909.
 27,28&29. Vide Opening Address by Prof. E. W. Brown, F. R. S. at the Australian Meeting of the British Association,—Nature No. 2346, Vol. 94, Oct. 15, 1914.
 - 30. Memoirs of the Royal Astronomical Society 1859-60 Vol. XXIX, p. 25: also Monthly Notices of Royal Astronomical Society, Vol. XX, pp. 104-107.
 - 31. Geodesy 1880, p. 308 by Col. A. R. Clarke, C. B.: also Philosophical Magazine, August 1878.

For some other values see La Figure de La Terre, Paris, 1901, by Capt. G. Perrier.

 $\log = 0.5159854152$ Conversion factors used— *1 metre = 3.28084275 feet. " = I · 4840145780 or 1 foot =0.30479973 metre. =0.80581287531 toise -6.39459252 feet

^{*} Vide "Determination du Rapport du gard au metre" by M. Benoit, Paris, 1896 : also Text Book of Topographical and Geographical Surveying, p. 359 by Colonel C. F. Close, C. M. G., R. E.

Closing Point.....

Reg. No.7 D.D.1917 (2 D.O.)-8. Ir420

