Programação 2 _ T09

Grafos

Rui Camacho (slides por Luís Teixeira)

MIEEC 2020/2021

Ligação entre pares de elementos ocorre em muitas aplicações

Relações associadas às ligações levantam várias questões:

- Existe uma ligação (indireta) entre dois elementos?
- Qual o número de ligações de um elemento?
- Qual é o "caminho" mais curto entre dois elementos (se existir)?

aplicação	elemento	ligação
mapa	povoação	estrada
web	página	link
circuito	componente	fio elétrico
rede social	pessoa	"amizade"

Grafos são uma generalização de Árvores:

- ... existem Nós (ou Vértices),
- ... existem Arestas (ou Arcos),
- ... mas um nó pode ter mais que um "pai".

- Não há a noção de "raiz de um grafo" ...
 - ... nem de folha.

- Os grafos podem ser:
 - ... dirigidos (direccionado, orientado, digrafo)

• ... não dirigidos (não direcionado)

- Os grafos dirigidos podem ser...
 - ... cíclicos (permitem ciclos):

• ... acíclicos (não permitem ciclos):

DEFINIÇÃO FORMAL

- Um grafo $G = \langle V, E \rangle$ consiste:
 - ... num conjunto finito de vértices V (vertex, vertices)
 - ... num conjunto finito de arestas E (edge, edges)
 - ... cada aresta é um par (a, b) tal que a, b ∈ E

$$V = \{A, B, C\}$$

$$E = \{(A, B), (B, C), (C, A)\}$$

DEFINIÇÃO FORMAL

Num digrafo, as arestas são pares ordenados:

Num grafo não-dirigido, a ordem é irrelevante:

Considere o seguinte digrafo:

$$V = \{A, B, C\}$$

$$E = \{(A, B), (B, C), (C, A)\}$$

- C é adjacente a B, porque $(B, C) \subseteq E$
- A não é adjacente a B já que (B,A) ∉ E
- A é antecessor de B , B é sucessor de A
- A origem da aresta (C,A) é C, e o destino é A

• Considere o seguinte grafo não dirigido:

- B é adjacente a A, porque $(A, B) \in E$
- A também é adjacente a B já que (B,A) = (A, B) ∈ E
- Diz-se que A e B são vizinhos.

- Um caminho C é definido por uma sequência de vértices $\{w_i, w_2, ...\}$ onde $\forall_{1 \le i \le n} : (w_i, w_{i+1}) \in E$.
- ... por outras palavras, para cada dois elementos consecutivos em C (e.g. A e B), a aresta (A, B) tem que estar definida.
- O tamanho de um caminho é dado pelo número de arestas.

· Num caminho acíclico, cada vértice do caminho é único:

• Num caminho cíclico (size > 2), os vértices inicial e final são iguais:

• Um digrafo sem caminhos cíclicos, é um DAG (directed acyclic graph, ou grafo dirigido acíclico).

 Um grafo que tem uma aresta entre todos os pares de vertíces é completo:

REPRESENTAÇÃO

• Um grafo pode ser representado por:

(I) Lista de Adjacências

	Α	В	D	Ε
Α	0	0	I	I
В	0	0	I	0
D	I	I	0	I
Ε	I	0	I	0

(2) Matriz de Adjacências

REPRESENTAÇÃO

· Num grafo não dirigido, a matriz de adjacências é simétrica:

	Α	В	D	Ε
Α	0	0	I	I
В	0	0	I	0
D	I	I	0	I
Ε	I	0	I	0

	Α	В	С
Α	0	I	I
В	I	0	I
С	l	l	0

• ... pelo que se pode usar uma matriz triangular:

	Α	В	D	Ł
Α	0			
В	0	0		
D	I	I	0	
Ε	I	0	I	0

	Α	В	С
Α	0		
В	I	0	
С	I	I	0

Através de uma lista de adjacências:


```
typedef struct graphnode {
   int vertex;
   struct graphnode *next;
} Node;

Node** initial(int vertices) {
   return (Node **) malloc(vertices * sizeof(Node *));
}
```

```
void createAdjList(Node** graph, int vertices) {
  int v1, v2, nAdjs, j;
  Node *ptr, *new;

  (...)
}

void printAdjList(Node** graph, int vertices) {
  int i;
  Node *ptr;

  (...)
}
```

```
for (v1 = 0; v1 < vertices; v1++) {
    printf("Quantas adjs para o vértice %d: ", v1+1);
    scanf("%d", &nAdjs);
    ptr = NULL;
    for (j = 0; j < nAdjs; j++) {
        printf("Adjacência %d: ", j+1);
        scanf("%d", &v2);
        new = (Node *) malloc(sizeof(Node));
        if (ptr == NULL) ptr = graph[v1] = new;
        else { ptr->next = new; ptr = ptr->next; }
        ptr->vertex = v2-1;
        ptr->next = NULL;
    }
}
```

• Através de uma lista de adjacências:


```
typedef struct graphnode {
   int vertex;
   struct graphnode *next;
} Node;

Node** initial(int vertices) {
   return (Node **) malloc(vertices * sizeof(Node *));
}
```

```
void createAdjList(Node** graph, int vertices) {
  int v1, v2, nAdjs, j;
  Node *ptr, *new;

  (...)
}

void printAdjList(Node** graph, int vertices) {
  int i;
  Node *ptr;

  (...)
}
```

```
for (i = 0; i < vertices; i++)
{
    printf("Arestas %2d", i+1);
    ptr = graph[i];
    while(ptr != NULL){
        printf(" --> %2d", (ptr->vertex+1));
        ptr=ptr->next;
    }
    printf("\n");
}
printf("\n");
```

• Através de uma lista de adjacências:


```
Quantos vértices? 4
Quantas adjacências para o vértice 1: 2
Adjacência 1: 3
Adjacência 2: 4
Quantas adjacências para o vértice 2: 1
Adjacência 1: 3
Quantas adjacências para o vértice 3: 3
Adjacência 1: 1
Adjacência 2: 2
Adjacência 3: 4
Quantas adjacências para o vértice 4: 2
Adjacência 1: 1
Adjacência 2: 3
Arestas 1 --> 3 --> 4
Arestas 2 --> 3
Arestas 3 --> 1 --> 2 --> 4
Arestas 4 --> 1 --> 3
```

Através de uma matriz:

	I	2	3	4
I	0	0	I	I
2	0	0	I	0
3	I	I	0	I
4		0	I	0

```
void createFromAdjList(int* graph, int vertices) {
  int v1, v2, nAdjs, j;
  for (v1 = 0; v1 < vertices; v1++) {
     printf("Quantas adjacências para o vértice %d: ", v1+1);
     scanf("%d", &nAdjs);
     for (j = 0; j < nAdjs; j++) {
        printf("Adjacência %d: ", j+1);
        scanf("%d", &v2);
        graph[v1 * vertices + (v2-1)] = 1;
void printAdjList(int* graph, int vertices) {
  int i, j;
  int edge;
  for(i = 0; i < vertices; i++) {
     printf("Arestas %2d", i+1);
     for (j = 0; j < vertices; j++) {
        edge = graph[i * vertices + j];
        if (edge == 1) printf(" --> %2d", (j+1));
     printf("\n");
   printf("\n");
```

Através de uma matriz:

	I	2	3	4
I	0	0	I	I
2	0	0	I	0
3	I	I	0	I
4	I	0	I	0


```
Quantos vértices? 4
Quantas adjacências para o vértice 1: 2
Adjacência 1: 3
Adjacência 2: 4
Quantas adjacências para o vértice 2: 1
Adjacência 1: 3
Quantas adjacências para o vértice 3: 3
Adjacência 1: 1
Adjacência 2: 2
Adjacência 3: 4
Quantas adjacências para o vértice 4: 2
Adjacência 1: 1
Adjacência 2: 3
Arestas 1 --> 3 --> 4
Arestas 2 --> 3
Arestas 3 --> 1 --> 2 --> 4
Arestas 4 --> 1 --> 3
```

EXERCÍCIOS

I. Implemente as funções antecessor e sucessor.

/* retorna 1 se o vertice1 é antecessor do vertice2 no grafo, retorna 0 caso não seja */ int predecessor(int *graph, int vertices, int vertice1, int vertice2)

/* retorna 1 se o vertice1 é sucessor do vertice2 no grafo, retorna 0 caso não seja */ int sucessor(int *graph, int vertices, int vertice1, int vertice2)

 Implemente a função is ValidPath, a qual verifica se um dado caminho é válido para um dado grafo.

/* retorna 1 se o caminho indicado por path e length é um caminho válido para o grafo, retorna 0 caso não seja */

int isValidPath(int *graph, int vertices, int *path, int length)