3. Крайни автомати. Регулярни езици. Теорема на Клини

Анотация: Детерминирани крайни автомати. Регулярни операции. Недетерминирани крайни автомати. Представяне на всеки недетерминиран краен автомат с детерминиран (с доказателство). Затвореност относно регулярните операции. Теорема на Клини (с доказателство). Лема за покачването (uvw) (с доказателство). Примери за регулярни и нерегулярни езици. Минимизация на състоянията. Теорема на Майхил-Нероуд (с доказателство). Алгоритъм за конструиране на минимален автомат, еквивалентен на даден детерминиран краен автомат.

Краен детерминиран автомат (КДА) наричаме петорката $\mathscr{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$, където: Q е крайно множество от състояния; Σ е крайна входна азбука; $\delta: Q \times \Sigma \longrightarrow Q$ е частична функция на преходите, пресмятаща следващото състояние; $q_0 \in Q$ е началното състояние; $F \subseteq Q$ е множество от финалните състояния.

Регулярни операции. Именуваме следните символи:

- ε празната буква;
- * итерация (звезда на Клини);
- - конкатенация (символът за конкатенация може да се пропуска);
- U обединение.

Нека Σ е крайна азбука, за която $\Sigma \cap \{\varepsilon, *, \bullet, \cup, (,)\} = \emptyset$. Регулярен израз α над азбуката Σ дефинираме индуктивно по следния начин:

- а) x за всяко $x \in \Sigma \cup \{\varepsilon\}$ е регулярен израз;
- б) Ако α и β са регулярни изрази, то α^* , $\alpha \bullet \beta$ и $\alpha \cup \beta$ са регулярни изрази;
- в) Няма други регулярни изрази, които да не следват от горните две правила.

<u>Регулярен език $\mathscr{L}(\alpha)$ </u> за регулярен израз α е функцията \mathscr{L} , която описва езика, който този регулярен израз α задава. Дефинираме \mathscr{L} индуктивно по следния начин:

- а) $\mathcal{L}(x) = \{x\}$, за всяко $x \in \Sigma \cup \{\varepsilon\}$ е регулярен език;
- б) Ако $\mathcal{L}(\alpha)$ и $\mathcal{L}(\beta)$ са регулярни езици за регулярните изрази α и β , то $\mathcal{L}(\alpha^*) = (\mathcal{L}(\alpha))^*$, $\mathcal{L}(\alpha \bullet \beta) = \mathcal{L}(\alpha) \bullet \mathcal{L}(\beta)$ и $\mathcal{L}(\alpha \cup \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$ са рег. езици;
- в) Няма други регулярни езици, които да не следват от горните две правила.

Нека $\Sigma = \{a, b\}$. Примери за регулярни изрази и съответните им езици:

Израз	Език
$a \cup b$	$\{a,b\}$
$a(a \cup b)$	$\{aa, ab\}$
a*	$\{\varepsilon, a, a^2, \ldots, a^i, \ldots\}$
$a^*(a \cup b)$	$\{a, b, aa, ab, a^2a, a^2b, \dots, a^ia, a^ib, \dots\}$
$(a \cup b)^*$	Σ^*
$a*b \cup b*a$	$\{b, a, ab, ba, a^2b, b^2a, \dots, a^ib, b^ia, \dots\}$

Краен недетерминиран автомат (КНА) наричаме петорката $\mathscr{A}=\langle Q,\Sigma,\Delta,q_0,F\rangle$, където Q,Σ,q_0 и F са дефинирани както при КДА, а $\Delta\subseteq Q\times \big(\Sigma\cup\{\varepsilon\}\big)\times Q$ е релация на преходите.

Дефиниция (разширена функция на преходите $\overset{\sim}{\Delta}$). Нека $\mathscr{A} = \langle Q, \Sigma, \Delta, q_0, F \rangle$ е краен автомат (КА). Разширена функция на преходите $\overset{\sim}{\Delta}_{\mathscr{A}}: Q \times \Sigma^* \to 2^Q$ на \mathscr{A} дефинираме по траверсираме с цяла дума

следния начин:

$$\Delta_{\mathscr{A}}(q,\,\varepsilon)=\{q\},\,\forall q\in Q\ \text{(предварително сме премахнали ε преходите)}$$

$$\widetilde{\Delta}_{\mathscr{A}}(q,\,x)=\left\{\begin{array}{ll} \underline{\Delta(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(е дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(е дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(е дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(е дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(е дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(е дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(е дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(е дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(e дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(e дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(e дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall q\in Q\ \text{и}\ \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(e дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(e дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(e дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(e дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(e дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(e дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall x\in \Sigma,\ \text{за които } !\Delta(q,\,x)\ \text{(e дефинирана)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall x\in \Sigma,\ \text{(e depunipala)}\\ \underline{\Lambda(q,\,x)} &,\quad \forall x\in \Sigma,\$$

<u>Дефиниция</u>. Казваме, че КА \mathscr{A} разпознава думата $\omega \in \Sigma^*$, ако $\overset{\sim}{\Delta}(q_0,\omega) \cap F \neq \emptyset$. Език разпознаван от КА \mathscr{A} определяме като $\mathscr{L}(\mathscr{A}) = \{\omega \mid \omega \in \Sigma^*, \overset{\sim}{\Delta}(q_0,\omega) \cap F \neq \emptyset\}$.

Представяне на всеки недетерминиран краен автомат с детерминиран

Теорема. За всеки КНА \mathscr{A} съществува КДА \mathscr{A}_1 такъв, че $\mathscr{L}(\mathscr{A}) = \mathscr{L}(\mathscr{A}_1)$.

Доказателство

Нека $\mathscr{A}=\langle Q,\Sigma,\Delta,q_0,F\rangle$ е КНА. Ще построим КДА $\mathscr{A}_1=\langle Q_1,\Sigma,\delta,t_0,F_1\rangle$, който е еквивалентен на \mathscr{A} (със същия език). $Q_1=2^Q$ и за краткост, ако множеството $\{q_{p_1},q_{p_2},\ldots,q_{p_l}\}\in Q_1$ ще го означаваме с $t_{[p_1,p_2,\ldots,p_l]}$.

При това означение определяме $t_0 = \{q_0\} = t_{[0]}$.

Нека
$$F_1 = \left\{t_{[p_1,\,p_2,\,\dots,\,p_l]} \mid \{q_{p_1},\,q_{p_2},\,\dots,\,q_{p_l}\} \cap F \neq \emptyset\right\}$$
, а $\delta(t_{[p_1,\,p_2,\,\dots,\,p_l]},\,x) = t_{[r_1,\,r_2,\,\dots,\,r_m]}, \Leftrightarrow \bigcup_{i=1}^l \Delta(q_{p_i},\,x) = \{q_{r_1},\,q_{r_2},\,\dots,\,q_{r_m}\}$. Забележете, че не може да фиксираме в явен вид кои

точно подмножества на Q влизат в Q_1 . Те се определят от изчислението на функцията δ , започвайки от $\delta(t_0, x)$, $\forall x \in \Sigma$. С индукция по дължината на произволна дума $\omega \in \Sigma^*$ ще покажем, че:

$$\overset{\sim}{\Delta}_{\mathcal{A}_1}(t_{[0]},\,\omega)=t_{[p_1,\,p_2,\,\ldots,\,p_l]}\Leftrightarrow \overset{\sim}{\Delta}_{\mathcal{A}}(q_0,\,\omega)=\{q_{p_1},\,q_{p_2},\,\ldots,\,q_{p_l}\}.$$

- а) Индукционна база: Нека $|\omega|=0\Rightarrow\omega=\varepsilon$. Тогава $\Delta_{\mathscr{A}_1}(t_{[0]},\varepsilon)=t_{[0]}$ и $\Delta_{\mathscr{A}}(q_0,\varepsilon)=\{q_0\}$ и твърдението е в сила директно от дефиницията за разширена функция на преходите;
- б) Индукционна хипотеза (И.Х.): Допускаме, че твърдението е вярно за някоя дума ω с $|\omega| \ge 0$.

Ще покажем, че
$$\overset{\sim}{\Delta}_{\mathscr{A}_1}(t_{[0]},\,\omega x)=t_{[r_1,\,r_2,\,...,\,r_m]}\Leftrightarrow \overset{\sim}{\Delta}_{\mathscr{A}}(q_0,\,\omega x)=\{q_{r_1},\,q_{r_2},\,\ldots,\,q_{r_m}\},$$
 за произволно $x\in\Sigma;$

в) Индукционнен преход: От ляво на дясно (\Rightarrow). Нека $\overset{\sim}{\Delta}_{\mathcal{A}_1}(t_{[0]},\,\omega x)=t_{[r_1,\,r_2,\,...,\,r_m]}$, като $\overset{\sim}{\Delta}_{\mathcal{A}_1}(t_{[0]},\,\omega)\overset{\mathsf{И.Х.}}{=} t_{[p_1,\,p_2,\,...,\,p_l]}$. Тогава $\delta(t_{[p_1,\,p_2,\,...,\,p_l]},\,x)=t_{[r_1,\,r_2,\,...,\,r_m]}$ и съгласно построението на $\delta,\,\bigcup_{i=1}^{\infty}\Delta(q_{p_i},\,x)=\{q_{r_1},\,q_{r_2},\,...,\,q_{r_m}\}$.

Но от допускането в И.Х. имаме, че $\overset{\sim}{\Delta}_{\mathscr{A}}(q_0,\,\omega)=\{q_{p_1},\,q_{p_2},\,\ldots,\,q_{p_l}\}$ и следователно $\overset{\sim}{\Delta}_{\mathscr{A}}(q_0,\,\omega x)=\bigcup_{i=1}^l \Delta(q_{p_i},x)=\{q_{r_1},\,q_{r_2},\,\ldots,\,q_{r_m}\}.$

Обратно, от дясно на ляво (\Leftarrow). Нека $\overset{\sim}{\Delta}_{\mathscr{A}}(q_0,\omega x)=\{q_{r_1},q_{r_2},\ldots,q_{r_m}\}$, като

$$\stackrel{\sim}{\Delta}_{\mathscr{A}}(q_0,\,\omega)\stackrel{\mathsf{M.X.}}{=} \{q_{p_1},\,q_{p_2},\,\ldots,\,q_{p_l}\}.$$
 Тогава $\bigcup_{i=1}^l \Delta(q_{p_i},\,x) = \{q_{r_1},\,q_{r_2},\,\ldots,\,q_{r_m}\}$ и съгласно

построението на δ , $\delta(t_{[p_1, p_2, ..., p_l]}, x) = t_{[r_1, r_2, ..., r_m]}$.

Но от допускането в И.Х. знаем, че $\Delta_{\mathscr{A}_1}(t_{[0]},\,\omega)=t_{[\,p_1,\,p_2,\,...,\,p_l\,]}$ и следователно

$$\Delta_{\mathcal{A}_1}(t_{[0]}, \omega x) = \delta(t_{[p_1, p_2, \dots, p_l]}, x) = t_{[r_1, r_2, \dots, r_m]}.$$

Да направим построението от доказателството за произволен КНА ${\mathscr A}.$

от състояния	с буква	до състояния	състояние в КДА
$\{q_0\}$	ε	$\{q_0\}$	$t_{[0]}$ – ново
$\{q_0\}$	а	$\{q_0, q_1\}$	$t_{[0,1]}$ – ново
$\{q_0\}$	b	$\{q_0\}$	t _[0]
$\{q_0, q_1\}$	а	$\{q_0, q_1\}$	$t_{[0,1]}$
$\{q_0, q_1\}$	b	$\{q_0, q_2\}$	$t_{[0,2]}$ – ново
$\{q_0, q_2\}$	a	$\{q_0, q_1\}$	$t_{[0,1]}$
$\{q_0, q_2\}$	b	$\{q_0\}$	t _[0]

 $t_{[0,2]}$ е финално, тъй като $\{q_0,\,q_2\}\cap F=\{q_2\}
eq\emptyset.$

Затвореност относно регулярните операции

Класът на езиците, разпознавани от краен автомат е затворен относно операциите:

а) Обединение; б) Конкатенация; в) Итерация. Като следствие от а), б) и в) получаваме и г) Допълнение; д) Сечение.

За всяка от операциите изброени по-горе, ще построим автомат, който приема език, зададен чрез прилагане на съответната операция върху езиците на краините автомати \mathscr{A}_1 и \mathscr{A}_2 (или само върху езика на един от тях – при унарни оператори като итерация и допълнение). Равенството на езиците се доказва, но тук ще посочим само построенията.

- а) Обединение. Построяваме автомат \mathscr{A}_{\cup} с език равен на $\mathscr{L}(\mathscr{A}_1) \cup \mathscr{L}(\mathscr{A}_2)$. За \mathscr{A}_{\cup} :
 - 1) Състояния: състоянията на \mathscr{A}_1 и \mathscr{A}_2 и ново състояние q;
 - 2) Начално състояние: q;
 - 3) Финални състояния: финалните състояния на \mathscr{A}_1 и \mathscr{A}_2 се запазват. q е финално \Leftrightarrow поне едно от началните състояния на \mathscr{A}_1 и \mathscr{A}_2 е финално;
 - 4) Преходи: преходите на \mathcal{A}_1 и \mathcal{A}_2 остават. q копира преходите на началните състояния \mathcal{A}_1 и \mathcal{A}_2 .

 \mathcal{A}_{\cup} използва недетерминизъм, за да отгатне дали входът ще е в $\mathcal{L}(\mathcal{A}_1)$ или $\mathcal{L}(\mathcal{A}_2)$ след което имитира един от двата автомата и обработва подадената като вход дума, точно както съответния автомат би го направил.

- б) Конкатенация. Построяваме автомат \mathscr{A}_{\bullet} с език равен на $\mathscr{L}(\mathscr{A}_1) \bullet \mathscr{L}(\mathscr{A}_2)$. За \mathscr{A}_{\bullet} :
 - 1) Състояния: състоянията на \mathcal{A}_1 и \mathcal{A}_2 ;
 - 2) Начално състояние: началното състояние на левия автомат \mathcal{A}_1 ;
 - 3) Финални състояния: финалните състояния на десния автомат \mathcal{A}_2 . Добавяме финалните състояния на \mathcal{A}_1 тогава и само тогава, когато началното състояние на десния автомат е финално;
 - 4) Преходи: преходите на \mathcal{A}_1 и \mathcal{A}_2 остават. Всяко финално състояние на левия автомат \mathcal{A}_1 копира преходите на началното състояние на десния автомат \mathcal{A}_2 .

 \mathscr{A}_{ullet} работи, като симулира \mathscr{A}_1 за известно време и след това "скача" недетерминистично от крайно състояние на \mathscr{A}_1 до първоначалното състояние на \mathscr{A}_2 .

- в) Итерация. Построяваме автомат \mathscr{A}^* с език равен на $\mathscr{L}(\mathscr{A}_1)^*$. За \mathscr{A}^* :
 - 1) Състояния: състоянията на \mathcal{A}_1 и ново състояние q;
 - 2) Начално състояние: q;
 - 3) Финални състояния: финалните състояния на \mathcal{A}_1 и q (за да може да разпознаем и ε);
 - 4) Преходи: преходите в \mathscr{A}_1 остават. Всички финални състояния на \mathscr{A}^* копират преходите на началното състояние на \mathscr{A}_1 .

 \mathscr{A}^* обработва (прочита) дума от $\mathscr{L}(\mathscr{A}_1)$ или празната дума ε (тъй като новото начално състояние е и финално състояние), след което се възобновява от първоначалното състояние на \mathscr{A}_1 . Конструкцията е подобна на конкатенацията, но с тази разлика, че конкатенираме автомата със себе си.

- г) Допълнение. Построяваме автомат $\overline{\mathscr{A}}$ с език равен на $\Sigma^* \backslash \mathscr{L}(\mathscr{A}_1)$.
 - 1) Тоатализираме автомата (важна стъпка, за да е коректна конструкцията)
 - 2) Състояния: състоянията на \mathcal{A}_1 ;
 - 3) Начално състояние: началното състояние на \mathscr{A}_1 ;
 - 4) Финални състояния: състоянията на \mathcal{A}_1 , които не са финални ($Q \backslash F$);
 - 5) Преходи: преходите на \mathcal{A}_1 .

 $\overline{\mathscr{A}}$ е идентичен с \mathscr{A}_1 , с изключение на това, че финалните и нефиналните състояния се разменят.

д) Сечение. $\mathscr{L}(\mathscr{A}_1)\cap\mathscr{L}(\mathscr{A}_2)\stackrel{\mathsf{Moprah}}{=}\overline{\mathscr{L}(\mathscr{A}_1)\cup\mathscr{L}(\mathscr{A}_2)}=\Sigma^*\backslash\big((\Sigma^*\backslash\mathscr{L}(\mathscr{A}_1)\cup(\Sigma^*\backslash\mathscr{L}(\mathscr{A}_2)),$ т.е. затвореността при операцията сечение следва директно от затвореността при операцията обединение и допълнение.

Теорема на Клини

Един език е регулярен, тогава и само тогава, когато се разпознава от краен автомат. (Тоест множеството на регулярните езици и множеството на автоматните езици съвпадат.)

Доказателство

 (\Rightarrow) Ще покажем с индукция по дефиницията на регулярни езици, че всеки регулярен език е автоматен. Действително \emptyset и $\{x\}$, $\forall x \in \Sigma$ са автоматни езици, тъй като са крайни. Ако допуснем, че регулярните езици $\mathscr{L}(\alpha)$ и $\mathscr{L}(\beta)$, съответни на регулярните изрази α и β са автоматни, тогава $\mathscr{L}(\alpha) \cup \mathscr{L}(\beta)$, $\mathscr{L}(\alpha) \bullet \mathscr{L}(\beta)$ и $\mathscr{L}(\alpha)^*$ са автоматни, тъй като са съответно обединение, конкатенация и итерация на автоматни езици. Тъй като други регулярни езици няма, всеки регулярен език е автоматен.

(\Leftarrow) Нека езикът L е автоматен. Ще докажем, че L е регулярен език. Съществува КДА $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ такъв, че $L = \mathcal{L}(\mathcal{A})$. Нека автоматът \mathcal{A} е представен с краен ориентиран мултиграф G. Нека състоянията на \mathcal{A} са $Q = \{q_0, q_1, \ldots, q_n\}$ и $F = \{q_{p_1}, q_{p_2}, \ldots, q_{p_l}\}$. Да означим с R^k_{ij} множеството от маршрутите в G от връх q_i до връх q_j , които не използват като вътрешни върхове такива с индекс по-голям или равен на k. Очевидно, всеки маршрут от q_i до q_j еднозначно определя дума $\omega \in \Sigma^*$, такава че $\tilde{\Delta}(q_i, \omega) = q_j$. Така на множеството от маршрути R^k_{ij} може да гледаме като на множество от съответните думи от Σ^* , т.е. R^k_{ij} е език над Σ^* – маршрутен език. В автомата няма състояния с номера по-големи от n и затова R^k_{ij} е езика на всички маршрути от q_i до q_j , когато k > n.

Да разгледаме маршрутите R_{ij}^{k+1} , не минаващи през $q_{\overline{k+1},\,n}$. Разбиваме тези маршрути на две подмножества: R_{ij}^k (такива, които не минават през q_k) и \tilde{R} (такива, които минават през q_k). Получаваме, че $R_{ij}^{k+1}=R_{ij}^k\cup\tilde{R}$. Всеки маршрут от q_i до q_j , минаващ през q_k и не минаващ през $q_{\overline{k+1},\,n}$ да разбием на части с краища срещанията на q_k в маршрута.

$$\underbrace{q_i} \in R_{ik}^k \qquad \underbrace{q_k} \in R_{kk}^k \qquad \underbrace{q_k} \qquad \underbrace{e} R_{kk}^k \qquad \underbrace{q_k} \qquad \underbrace{e} R_{kj}^k \qquad \underbrace{q_j} \qquad \underbrace{e} R_{kj}^k \qquad \underbrace{e$$

Всеки такъв маршрут започва с подмаршрут от R_{ik}^k и завършва с подмаршрут от R_{kj}^k , между които може да има произволен брой подмаршрути от R_{kk}^k , тоест $\tilde{R}=R_{ik}^k\left(R_{kk}^k\right)*R_{kj}^k$ и така $R_{ij}^{k+1}=R_{ij}^k\cup R_{ik}^k\left(R_{kk}^k\right)*R_{kj}^k$.

Сега остана да докажем, че за всеки $q_i,\,q_j\in Q:R^k_{ij}$, за $k=\overline{0,\,n+1}$ е регулярен език. Доказателството ще го осъществим с помощта на индукция по k.

а) Индукционна база: Нека k=0. Ако i=j, R_{ii}^0 са всички маршрути от q_i до q_i , не минаващи през никой друг връх. Ако мултиграфът на автомата няма примки в q_i , единствен такъв маршрут е празният, без нито едно ребро и съответната му дума е ε . Тогава $R_{ii}^0=\{\varepsilon\}$ е регулярен език. Другата възможност е в мултиграфа да има примки от q_i до q_i , надписани с буквите x_{i_s} , за $s=\overline{1,j}$. Тогава $R_{ii}^0=\{\varepsilon,\,x_{i_1},\,x_{i_2},\,\ldots,\,x_{i_j}\}$ е регулярен език, тъй като се представя с регулярния израз

$$\varepsilon \cup x_{i_1} \cup x_{i_2} \cup \ldots \cup x_{i_j} = \bigcup_{s=1}^{J} x_{i_s} \cup \varepsilon.$$

Ако $i \neq j$ тогава R^0_{ij} са всички маршрути от q_i до q_j не минаващи през които и да е от останалите върхове, т.е. ребрата от q_i до q_j . Ако няма такива ребра $R^0_{ij} = \emptyset$ е регулярен език, а ако x_{i_s} , за $s = \overline{1,k}$ са буквите по ребрата от q_i до q_j , тогава $R^0_{ij} = \{x_{i_1}, x_{i_2}, \dots, x_{i_k}\}$ и R^0_{ij} е регулярен език, защото се представя с регулярния израз $\bigcup_{i=1}^k x_{i_s}$.

б) Индукционна хипотеза: Да допуснем, че за някое $k \geq 0$, R_{ij}^{k} е регулярен език $\forall q_i, q_j \in Q$, тоест съществува регулярен израз α_{ij}^k за него.

в) Езикът R_{ij}^{k+1} също е регулярен, защото може да се представи по следния начин: $R_{ij}^{k+1} = R_{ij}^k \cup R_{ik}^k \left(R_{kk}^k \right) * R_{kj}^k = \alpha_{ij}^k \cup \alpha_{ij}^k \left(\alpha_{kk}^k \right) * a_{kj}^k$, като израза съдържа само обединение, конкатенация и итерация на регулярни изрази. Но ние вече знаем за затвореността на регулярните изрази и езици спрямо тези операции, откъдето следва желаният резултат.

Окончателно, от дефиницията на език, разпознаван от КДА получаваме, че $\mathscr{L}(\mathscr{A}) = R_{0p_1}^{n+1} \cup R_{0p_2}^{n+1} \cup \ldots \cup R_{0p_l}^{n+1}$, тъй като езика на \mathscr{A} се състои от всички маршрути (разбирай съответните им думи), довеждащи автомата от началното състояние q_0 до някое от крайните $q_{p_1}, q_{p_2}, \ldots, q_{p_l}$. Следователно $\mathscr{L}(\mathscr{A})$ е регулярен език, защото е крайно обединение на регулярни езици.

Доказателството на тази Теорема ни дава и алгоритъм, по който може да построяваме регулярни изрази на езици, зададени с автомат. Нека построим регулярен израз за езика, който се задава от автомата от фиг. 2.

Нека
$$q_0=t_{[0]},\,q_1=t_{[0,1]},\,q_2=t_{[0,2]}.$$
 Получаваме, че $\mathscr{L}(\mathscr{A})=R_{02}^3=R_{02}^2\cup R_{02}^2(R_{22}^2)^*R_{22}^2,$ но

$$\begin{split} R_{02}^2 &= R_{02}^1 \cup R_{01}^1(R_{11}^1)^* R_{12}^1 = \emptyset \cup b^* a(a)^* b = b^* a \, a^* b, \\ R_{22}^2 &= R_{22}^1 \cup R_{21}^1(R_{11}^1)^* R_{12}^1 = \emptyset \cup (a \cup b b^* a)(a)^* b = (\varepsilon \cup b^+) a \, a^* b = b^* a \, a^* b. \end{split}$$

Сега,
$$R_{02}^2 = R_{22}^2 = R$$
 и $\mathscr{L}(\mathscr{A}) = R \cup RR^*R = R(\varepsilon \cup R^*R) = R(\varepsilon \cup R^+) = R^*R = (b^*aa^*b)^*b^*aa^*b = (b^*a^*ab)^*b^*a^*ab$.

Ще покажем, че $(b^*a^*ab)^*b^*a^*=(a\cup b)^*$, т.е. съответният му език съдържа всяка дума на азбуката $\{a,b\}$. Очевидно ε е от езика на израза $(b^*a^*ab)^*b^*a^*$. Затова да разгледаме произволна дума $\omega \neq \varepsilon$. Да намерим в ω всички места, в които се среща комбинацията от букви ab. Очевидно е, че между всеки две двойки ab може да стои само дума от вида b^*a^* , а след последното срещане на ab – дума от същия вид. Следователно, всяка дума от $(a\cup b)^*$, различна от ε се представя във вида $(b^*a^*ab)^*b^*a^*$. И така получаваме $\mathscr{L}(\mathscr{A})=(a\cup b)^*ab$ – факт, който се вижда лесно в недетерминирания автомат за същия език (виж фиг. 1).

Лема за покачването (xyz)

За всеки регулярен език L, съществува цяло положително число n, такова че за всяка дума $\omega \in L$ с дължина $|\omega| > n$, съществуват думи x, y и z, за които $\omega = xyz, y \neq \varepsilon$ и $|xy| \le n$, такива че за всяко $i \ge 0$: $xy^iz \in L$.

Доказателство

За регулярния език L съществува КДА $\mathscr{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$, който го разпознава. Избираме n=|Q|. Ще покажем, че това е търсеното цяло число. Нека $\omega\in L$ и $\omega=a_{j_1}a_{j_2}\dots a_{j_k},\ |\omega|=k>n$. Тъй като \mathscr{A} разпознава ω , то $\Delta(q_0,\omega)\in F$,където за улеснение сме означили разширената функция на преходите на \mathscr{A} да е Δ вместо $\tilde{\Delta}$.

Тогава $\delta(q_0,\,a_{j_1})=q_{j_1}$, $\delta(q_{j_1},\,a_{j_2})=q_{j_2}$, ..., $\delta(q_{j_{k-1}},\,a_{j_k})=q_{j_k}\in F$. Ако разгледаме редицата от състояния $q_0,\,q_{j_1},\,\ldots,\,q_{j_k},\,k>n$, през които автоматът преминава при работа върху думата ω , то от принципа на Дирихле получаваме, че в редицата има поне една двойка съвпадащи състояния. Избираме най-ляво разположената двойка $q_{j_m}\equiv q_{j_p},\,m< p$, т.е. вляво от q_{j_m} няма друга такава двойка. Разбиваме ω на три поддуми x,y и z, такива че

 $\Delta(q_0,\,x)=q_{j_m},\;\Delta(q_{j_m},\,y)=q_{j_p}$, $\Delta(q_{j_p},\,z)=q_{j_k}\in F$. Ще покажем, че тези три думи удовлетворяват твърденията на теоремата.

- 1) Тъй като m
- 2) Тъй като q_{j_m} и q_{j_p} е най-ляво разположената двойка, то $|xy| \le n$. В противен случай отново щяхме да можем да приложим принципа на Дирихле и да намерим друга двойка съвпадащи състояния в редицата $q_0, q_{j_1}, \ldots, q_{j_{n-1}}$.
- 3) С индукция по i доказваме, че $\Delta(q_0, xy^i) = q_{j_m} = q_{j_p}$. Действително, $\Delta(q_0, xy^0) = \Delta(q_0, x) = q_{j_m} = q_{j_p}$. Допускаме, че твърдението е вярно и за някое $i \geq 0$ и да разгледаме $\Delta(q_0, xy^{i+1}) = \Delta(\Delta(q_0, xy^i), y) = \Delta(q_{j_m}, y) = q_{j_p} = q_{j_m}$.

Сега за всяко цяло число $i\geq 0$ имаме $\Delta(q_0,xy^iz)=\Delta(\Delta(q_0,xy^i),z)=\Delta(q_{i_p},z)=q_{j_k}\in F$ и следователно $xy^iz\in L,\ \forall i=0,1,2,\ldots$

Примери за регулярни и нерегулярни езици

1.1. Езикът $L = \{a^m b^m | m \ge 1\}$ не е регулярен.

Доказателство. Допуснеме, че L е регулярен. Лемата за покачването ни дава число $n\geq 1$, за което $\omega=a^nb^n$ е такава, че $\omega\in L$ и $|\omega|=2n>n$. Следователно $\omega=xyz$, за които $|xy|\leq n,$ $y\neq \varepsilon$. Това означава, че $y=a^j$ за някое j>0. Но според лемата $xy^iz\in L$, за всяко $i\geq 0$ и ако вземем i=0 получаваме, че $xz=a^{n-j}b^n\in L$, което не е изпълнено и следователно допускането, че L е регулярен е грешно.

- 1.2. Езикът $L = \{a^m | m \text{ е просто}\}$ не е регулярен.
 - Доказателство. Допуснеме, че L е регулярен. Лемата за покачването ни дава число $n\geq 1$, за което избираме просто число p>n и следователно $\omega=a^p\in L$ и $|\omega|>n$. Тогава $\omega=xyz$, за които $|xy|\leq n,$ $y\neq \varepsilon$ и $xy^iz\in L$, за всяко $i=0,1,2,\ldots$ Нека $x=a^q,$ $y=a^r,$ $z=a^s$ и p=q+r+s за q, $s\geq 0$ и r>0. Тогава q+ir+s е просто число за всяко i. Но ако вземем i=q+2r+s+2 ще получим, че q+ir+s=q+(q+2r+s+2)r+s=q+(q+2r+s)r+2r+s===(r+1)(q+2r+s), което е съставно и следователно допускането, че L е регулярен е грешно.
- 1.3. Езикът $L=\{\omega\in\{a,b\}^*\,|\,\omega=\omega^R\}$ не е регулярен.

Доказателство. Допускаме, че L е регулярен. Лемата за покачването ни дава число $n\geq 1$. Нека $\omega=a^nba^n$ (взимаме някакъв палиндром), за която $|\omega|=2n+1>n$. Следователно $\omega=xyz$, за които $|xy|\leq n$, $y\neq \varepsilon$. Това означава, че x и y са съставени само от буквите a. Нека тогава $x=a^k$, $y=a^m$, за $k\geq 0$ и m>0. Следователно $z=a^{n-k-m}ba^n$. Но според лемата $xy^iz\in L$, за всяко $i\geq 0$. Тоест k+im+n-k-m=n. Нека i=2. Получаваме, че m=0, което е противоречие с лемата и следователно допускането, че L е регулярен е грешно.

Имайки тези нерегулярни езици и знаейки, че регулярните езици са затворени спрямо операциите споменати по-рано в темата, може да конструираме лесно още езици, които не са регулярни. Например:

1.4. Езикът $L = \{\omega \in \{a,b\}^* \mid \omega$ не е палиндром $\}$ не е регулярен. Това е така, тъй като този език е допълнението на езика от 1.3., който вече доказахме, че не е регулярен.

- 1.5. Езикът $L = \{\omega \in \{a,b\}^* \mid \omega$ има равен брой a-та и b-та $\}$ не е регулярен. L не е регулярен, защото ако беше, то тогава и езика $L \cap a^*b^*$ щеше да е регулярен. Но този език е точно $\{a^mb^m: m \geq 0\}$, който вече доказахме, че не е регулярен в 1.1.
- 2.1. $L = \{ \omega \in \{a\}^* \mid \omega$ има поне едно $a \}$ е рег. език, т.к. $L = a^*a$. Кратък запис $L = a^+$.
- 2.2. $L=\{\omega\in\{0,1\}^*\,|\,\exists k\geq 0$ и ω е двоичен запис на $2^k+1\}$ е регулярен език, тъй като $L=10\cup 10^*1=1(0\cup 0^*1).$

Минимизация на състоянията

Един автоматен (регулярен) език L може да се разпознава от повече от един автомат. Крайните детерминирани автомати \mathcal{A}_1 и \mathcal{A}_2 наричаме еквивалентни, ако $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$. Възниква въпроса: "Кой е най-простият автомат, който разпознава езика L?"

<u>Дефиниция (минимален автомат)</u>. КДА \mathscr{A}_{μ} , разпознаващ автоматния език L, наричаме минимален (за езика L), ако за всеки друг автомат \mathscr{A} , разпознаващ L е изпълнено $|Q_{\mu}| \leq |Q|$, където Q_{μ} и Q са множествата от състояния съответно на \mathscr{A}_{μ} и \mathscr{A} .

Задачата за намиране на минималния автомат за автоматния език L по зададен КДА \mathscr{A} , разпознаващ L наричаме **минимизация** (на състоянията).

Теорема на Майхил-Нероуд

<u>Дефиниция</u>. Релацията $R \subseteq \Sigma^* \times \Sigma^*$, където Σ е произволна крайна азбука, наричаме дясно-инвариантна, ако $\forall \gamma \in \Sigma^*$ е в сила $(\alpha, \beta) \in R \Rightarrow (\alpha \gamma, \beta \gamma) \in R$.

Дефиниция $(R_{\mathscr{A}})$. Нека $\mathscr{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$ е КДА с разширена функция на преходите Δ . Релацията $R_{\mathscr{A}}\subseteq \Sigma^*\times \Sigma^*$ определяме с $R_{\mathscr{A}}=\{(\alpha,\beta)\,|\,\Delta(q_0,\alpha)=\Delta(q_0,\beta)\}.$

Дефиниция (R_L) . Нека $L\subseteq \Sigma^*$. Релацията $R_L\subseteq \Sigma^*\times \Sigma^*$ се състои от такива двойки (α,β) , за които $\forall \gamma\in \Sigma^*$ $\alpha\gamma$ и $\beta\gamma$ едновременно са или не са в L.

<u>Лема. Релацията R_L за езика $L \subseteq \Sigma^*$ е релация на еквивалентност и е дясно-инвариантна</u>. Доказателство на лемата.

- 1) Релация на еквивалентност.
 - а) Рефлексивност. $(\alpha,\alpha)\in R_L$, $\forall \alpha\in \Sigma^*$, защото $\alpha\gamma$ и $\alpha\gamma$ едновременно са или не са в L, $\forall \gamma\in \Sigma^*$.
 - b) Симетричност. Нека $(\alpha, \beta) \in R_L$, т.е. $\alpha \gamma$ и $\beta \gamma$ едновременно са или не са в L, $\forall \gamma \in \Sigma^*$. Тогава $\beta \gamma$ и $\alpha \gamma$ едновременно са или не са в L, $\forall \gamma \in \Sigma^*$ и следователно $(\beta, \alpha) \in R_L$ (равенството запазва симетричността).
 - с) Транзитивност. Нека $(\alpha,\beta)\in R_L$ и $(\beta,\phi)\in R_L$. Следователно, $\forall\gamma\in\Sigma^*$, $\alpha\gamma$ и $\beta\gamma$ едновременно са или не са в L и $\beta\gamma$ и $\phi\gamma$ едновременно са или не са в L. Тогава $\alpha\gamma$ и $\phi\gamma$ едновременно са или не са в L, $\forall\gamma\in\Sigma^*$ и $(\alpha,\phi)\in R_L$.
 - Следователно R_L е релация на еквивалентност.
- 2) Дясно-инвариантна.
 - Нека $(\alpha,\beta)\in R_L$, т.е. $\forall\gamma\in\Sigma^*$ $\alpha\gamma$ и $\beta\gamma$ едновременно са или не са в L. Да разбием γ по произволен начин на $\gamma=\gamma'\gamma''$, т.е. $\forall\gamma''\in\Sigma^*$ $(\alpha\gamma')\gamma''$ и $(\beta\gamma')\gamma''$ едновременно са или не са в L. Следователно $\forall\gamma'\in\Sigma^*$ $(\alpha\gamma',\beta\gamma')\in R_L$. Следователно R_L е дясно-инвариантна.

Теорема (Майхил-Нероуд). Нека $L\subseteq \Sigma^*$. Релацията $R_L\subseteq \Sigma^* imes \Sigma^*$ има краен индекс $\Leftrightarrow L$ е автоматен.

Доказателство.

(\Leftarrow) Нека L е автоматен език. Тогава съществува КДА $\mathscr{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$, който разпознава L. Без ограничение на общността можем да считаме, че сме се освободили от

недостижимите състояния на \mathscr{A} , което не се отразява на разпознавания език. Образуваме релацията $R_{\mathscr{A}}$. Нека $(\alpha, \beta) \in R_{\mathscr{A}}$. Ще покажем, че $(\alpha, \beta) \in R_L$. От $(\alpha, \beta) \in R_{\mathscr{A}}$ следва $\Delta(q_0,\,lpha\gamma)=\Delta(\Delta(q_0,\,lpha),\,\gamma)=\Delta(\Delta(q_0,\,eta),\,\gamma)=\Delta(q_0,\,eta\gamma)=q.$ Или $q\in F$ и тогава $lpha\gamma\in L$ и $\beta\gamma\in L$, или $q\not\in F$ и тогава $\alpha\gamma\not\in L$ и $\beta\gamma\not\in L$. Следователно $(\alpha,\beta)\in R_L$. От тук получаваме, че всеки клас на еквивалентност на $R_{\mathscr{A}}$ се съдържа в клас на еквивалентност на R_L (виж фиг. 4). Това означава, че $R_{\mathscr{A}}$ е изфиняване на R_L и следоватлно $IX(R_L) \leq IX(R_{\mathscr{A}}) = |Q_{\mathscr{A}}|$. Следователно $IX(R_L)$ е краен.

 (\Rightarrow) Нека $IX(R_L)=m<\infty$ (т.е. е краен). Да означим с $[\alpha]$ класа на еквивалентност на R_L , съдържащ думата $\alpha \in \Sigma^*$. Да означим с $Q = \{[\varepsilon], [\alpha_1], \dots, [\alpha_{m-1}]\}$ множеството от класовете на еквивалентност на R_L , където $\alpha_0 = \varepsilon, \alpha_1, \ldots, \alpha_{m-1}$ са представители на съответните класове. Образуваме КДА $\mathscr{A} = \langle Q, \Sigma, \delta, [arepsilon], F
angle$, където $F = \{[\alpha_{p_1}], \, [\alpha_{p_2}], \, \dots, \, [\alpha_{p_r}]\}$ са всички класове на еквивалентност на R, съдържащи само думи от езика L. Ясно е от дефиницията на R_L , че всички думи от един и същ клас на R_L едновременно са или не са в L, така че дефиницията на F е коректна. Функцията на преходите δ дефинираме по следния начин: $\delta([\alpha], x) = [\alpha x]$. Тази дефиниция също е коректна, защото $\forall \beta \in [\alpha], [\beta x] = [\alpha x]$, заради дясната инвариантност на R_L .

Ще докажем, че КДА $\mathscr A$ разпознава точно езика L.

- а) Нека $\omega \in L_{\mathscr{A}}$, т.е. $\Delta([\varepsilon],\,\omega) \in F$. Но $\Delta([\varepsilon],\,\omega) = [\varepsilon\omega] = [\omega]$, т.е. съществува p_j , $[\omega]=[lpha_{p_i}].$ Но тогава $\omega\in L$, защото всички думи на $[lpha_{p_i}]$ са от L според дефиницията на $[\alpha_{p_i}]$.
- b) Нека $\omega\in L$. Тогава $[\omega]=[\alpha_{p_i}]$ за някое p_j и $\Delta([\varepsilon],\,\omega)=[\omega]=[\alpha_{p_i}]\in F$. Следователно $\omega \in L_{\mathscr{A}}$.

Следователно езикът L е автоматен.

Алгоритъм за конструиране на минимален автомат, еквивалентен на даден детерминиран краен автомат

Дадено: КДА $\mathscr{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ с език $L_{\mathscr{A}}$ **Резултат:** КДА \mathscr{A}_u – минимален за езика $L_\mathscr{A}$

Процедура:

- 1. Образуваме разбиването $\mathcal{Q}^0 = \{Q_1^0,\,Q_2^0\}$ на Q, където $Q_1^0 = Q \backslash F$, $Q_2^0 = F$. Нека i=0. 2. Нека сме построили разбиването $\mathcal{Q}^i = \{Q_1^i,\,Q_2^i,\,\dots,\,Q_{l_i}^i\}$ на Q за някое i. Всяко Q_j^i , $j=1,\,2,\,\ldots,\,l_i$, разбиваме на такива подмножества, елементите на които не се проявяват като нееквивалентни с теста на едната буква, за никое $x \in \Sigma$. Обединяваме получените разбивания и нека резултатът е разбиването $\mathcal{Q}^{i+1} = \{Q_1^{i+1}, Q_2^{i+1}, \dots, Q_{l_{i+1}}^{i+1}\}.$
- 3. Ако \mathcal{Q}^i и \mathcal{Q}^{i+1} са едно и също разбиване край на процедурата. В противен случай, i = i + 1 и преминаваме към 2.