Task 1 Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickness to be 13 mm)

To calculate the U_{value} of a window:

$$U_{window} = (U_{center} * A_{center} + U_{edge} * A_{edge} + U_{fram} * A_{fram})/A_{window}$$

With a double pane window:

$$1/U_{double-pane(center\ region)} = \frac{1}{h_i} + \frac{1}{h_{space}} + \frac{1}{h_0}$$

$$h_{space} = h_{rad,space} + h_{conv,space}$$

Case of changing the gas:

What change in this case is the value of U_{center} and H_{space} . From the diagram above we can see that, if the thickness gap is 13 mm, by changing the gas from air to argon, the U_{centre} value decrease from 2,8 W/m²K to 2,65 W/m²K, so the percentage of the decrease is about 5,36 %. If the changing is between air and krypton the new value of U is 2,6 W/m²K so the percentage of the decrease is about 7,14 %

Case of adding an extra panel:

What change in this case is the value of U_{center} and H_{space} . From the diagram above we can see that, if the thickness is 13 mm and the gas is the air, by adding an extra pane of window the U_{centre} decreases from 2,8 to 1,8 W/m²K with a percentage of decrease if 35,71 %.

Case of using a low emissivity coating:

What change in this case is the value of U_{center} . From the diagram above we can see that, if the thickness is 13 mm and the gas is the air, by coating the glass surfaces with an emissivity of 0,1 the value decreases from 2,8 to 1,8 W/m²k with a decrease of 35,71%

Task 2 Consider the house that we analyzed in the last two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m² on the west, fixed 3.6 m² on the south and an operable 3.6 m² on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?

Examples:

The net area of walls (excluding doors and windows) of a building located in Piacenza is 105.8 m the calculated U value is $0.438 \text{ W/m}^2\text{k}$ for the winter and $0.435 \text{ w/m}^2\text{k}$ for the summer. Find the corresponding heating and cooling load.

A fixed heat absorbing double layer glass (with a wooden frame) window the east side of a building located in Piacenza has a surface of 14.4 m . In case there are no internal and external shading factors. Calculate the heating and cooling load of the corresponding to that window.

						P	IACENZ	ZA, Italy						WMO#:	160840	
Lat:	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period	89-10	WBAN:	99999	
Annual He	eating and Hu	umidificati	on Design C	onditions												1
Coldest	Heating	Heating DB		Humidification DP/MCDB and HR						Coldest month WS/MCDB			MCWS/PCWD			
Month	99.6%	99%	DP	99.6% HR	MCDB	DP	99% HR	MCDB	WS 0.4	4% MCDB	WS 1	% MCDB	MCWS	PCWD		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250		(1)
Annual Co	ooling, Dehu	midificatio	n, and Enth	alpy Design	Conditions											
	Hottest			Cooling D	B/MCWB			1		Evaporation	WB/MCDE	3		MCWS/	PCWD	1
Hottest Month	Month	0.4	4%	19		2%		0	.4%		%		2%	to 0.4		
WORTH	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
8	11.9	33.1	22.7	31.9	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90	(2)

$$T_{cooling} = 24$$
°C $\Delta T_{cooling} = 31,9$ °C -24 °C $= 7,9$ °C

$$T_{heating} = 20^{\circ}C \qquad \Delta T_{heating} = 20^{\circ}C - (-4.8^{\circ}C) = 24.8^{\circ}C$$

DR= 11,9°C

Table 10 Peak Irradiance, W/m²

Latitude

Calculation of the cooling load of the fixed window on west using the parameter of the table above (FF_s) and the value of the peak Irradiance considering the different typology of exposure

Table 13	Fenestration S	olar Load	Factors FF
Table 13	renesti ation s	uiai Luau	I actors I I

Exposure	Single Family Detached	Multifamily		
North	0.44	0.27		
Northeast	0.21	0.43		
East	0.31	0.56		
Southeast	0.37	0.54		
South	0.47	0.53		
Southwest	0.58	0.61		
West	0.56	0.65		
Northwest	0.46	0.57		
Horizontal	0.58	0.73		

Exposure		20°	25°	30°	35°	40°	45°	50°	55°	60°	
North	E_D	125	106	92	84	81	85	96	112	136	
	E_d	128	115	103	93	84	76	69	62	55	
	E_t	253	221	195	177	166	162	164	174	191	
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361	
	E_d	177	169	162	156	151	147	143	140	137	
	E_t	637	618	599	581	563	546	529	513	498	
East/West	E_D	530	543	552	558	560	559	555	547	537	
	E_d	200	196	193	190	189	188	187	187	187	
	E_t	730	739	745	748	749	747	742	734	724	
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	517	
	E_d	204	203	203	204	205	207	210	212	215	
	E_t	485	531	572	609	641	670	695	715	732	
South	E_D	0	60	139	214	283	348	408	464	515	
	E_d	166	193	196	200	204	209	214	219	225	
	E_t	166	253	335	414	487	557	622	683	740	
Horizontal	E_D	845	840	827	806	776	738	691	637	574	
	E_d	170	170	170	170	170	170	170	170	170	
	E_t	1015	1010	997	976	946	908	861	807	744	

$$q_{window-west} = A * CF_{window-west}$$

 $A = 14,4 \text{ m}^2$

$$U_{window-west} = 2.84 W/m^2 K$$

$$CF_{window-west(heat\ transfer\ part)} = U_{window-west} * (\Delta T_{cooling} - 0.46DR)$$

= 2.84 * (7.9 - 0.46 * 11.9) = 6.89W/m²

$$PXI$$
 $window-west = E_D + E_d = 559 + 188 = 747 W/m^2$

SHGC= 0,54

There is no internal shading so the value of IAC is equal to 1

$$FF_s = 0.56$$

$$CF_{window-west(iarradiation\;part)} = PXI * SHGC * IAC * FF_S = 747 * 0,54 * 1 * 0,56 \\ = 225,89W/m^2$$

$$q_{window-west} = A * CF_{window-west}$$

= $A * (CF_{window-west(heat\ transfer\ part)} + CF_{window-west(irradiation\ part)}$
= $14.4 * (6.89 + 225.89) = 3352.07\ W$

Calculation of the heating load of the fixed window on west

$$q_{window-west} = A * HF_{window-west} = A * U_{window-west} * \Delta T_{heating} = 14,4 * 2,84 * 24,8$$

= 1014,22 W

With the frame in aluminium

$$U_{window-west} = 3,61 W/m^2 K$$

$$HSG = 0.56$$

$$CF'_{window-west(heat\ transfer\ part)} = U_{window-west} * (\Delta T_{cooling} - 0.46DR)$$

= 3.61 * (7.9 - 0.46 * 11.9) = 8.76 W/m²

$$CF'_{window-west(iarradiation\ part)} = PXI * SHGC * IAC * FF_S = 747 * 0,56 * 1 * 0,56$$

= 234,26 W/m²

Cooling load:

$$q'_{window-west} = A * CF'_{window-west} =$$

$$= A * (CF'_{window-west(heat\ transfer\ part)} + C'F_{window-west(irradiation\ part)}$$

$$= 14.4 * (8.76 + 234.26) = 3499.48\ W$$

Heating load:

$$q'_{window-west} = A * HF'_{window-west} = A * U'_{window-west} * \Delta T_{heating} = 14,4 * 3,61 * 24,8$$

= 1289,20 W

Calculation of the heating load of the fixed window on the south

$$q_{window-west} = A * CF_{window-south}$$

$$A = 3,6 \text{ m}^2$$

$$U_{window-south} = 2,84 W/m^2 K$$

$$CF_{window-south(heat\ transfer\ part)} = U_{window-south} * (\Delta T_{cooling} - 0.46DR)$$

= 2.84 * (7.9 - 0.46 * 11.9) = 6.89W/m²

$$PXI$$
 $_{window-south} = E_D + E_d = 348 + 209 = 557 W/m^2$

There is no internal shading so the value of IAC is equal to 1

$$FF_s = 0.47$$

$$CF_{window-south(iarradiation\ part)} = PXI * SHGC * IAC * FF_S = 557 * 0,54 * 1 * 0,47$$

= 141,37 W/m^2

$$q_{window-south} = A * CF_{window-south}$$

= $A * (CF_{window-south(heat\ transfer\ part)} + CF_{window-south(irradiation\ part)}$
= $3.6 * (6.89 + 141.37) = 553.72\ W$

Calculation of the heating load of the fixed window on the south

$$q_{window-south} = A * HF_{window-south} = A * U_{window-south} * \Delta T_{heating} = 3.6 * 2.84 * 24.8$$

= 253,56 W

With the frame in aluminium

$$U_{window-south} = 3,61 W/m^2 K$$

$$HSG = 0.56$$

$$CF'_{window-south(heat\ transfer\ part)} = U_{window-south} * (\Delta T_{cooling} - 0.46DR)$$

= 3.61 * (7.9 - 0.46 * 11.9) = 8.76 W/m²

$$CF'_{window-south(iarradiation\ part)} = PXI * SHGC * IAC * FF_S = 557 * 0,56 * 1 * 0,56$$

= 174,68 W/m²

Cooling load:

$$q'_{window-south} = A * CF'_{window-south} =$$

$$= A * (CF'_{window-south(heat\ transfer\ part)} + C'F_{window-south(irradiation\ part)}$$

$$= 3.6 * (8.76 + 174.68) = 559.30\ W$$

Heating load:

$$q'_{window-south} = A * HF'_{window-south} = A * U'_{window-south} * \Delta T_{heating} = 3,6 * 3,61 * 24,8$$

= 322,3 W

Calculation of the cooling load of the operable window on the south

$$q_{window-west} = A * CF_{window-south}$$

$$A = 3.6 \text{ m}^2$$

The window has an operable heat absorbing double layer glass with a wooden frame so:

$$U_{window-south} = 2,87 W/m^2 K$$

$$CF_{window-south(heat\ transfer\ part)} = U_{window-south} * (\Delta T_{cooling} - 0.46DR)$$
$$= 2.87 * (7.9 - 0.46 * 11.9) = 6.96W/m^{2}$$

$$PXI$$
 $_{window-south} = E_D + E_d = 348 + 209 = 557 W/m^2$

There is no internal shading so the value of IAC is equal to 1

$$FF_s = 0.47$$

$$CF_{window-south(iarradiation\ part)} = PXI * SHGC * IAC * FF_S = 557 * 0,46 * 1 * 0,47$$

= 120,42 W/m²

$$q_{window-south} = A * CF_{window-south}$$

= $A * (CF_{window-south(heat\ transfer\ part)} + CF_{window-south(irradiation\ part)}$
= $3.6 * (6.96 + 120.42) = 458.58\ W$

Calculation of the heating load of the fixed window on the south

$$q_{window-south} = A * HF_{window-south} = A * U_{window-south} * \Delta T_{heating} = 3,6 * 2,87 * 24,8$$

= 256,23 W

With the frame in aluminium

$$U_{window-south} = 4,62 W/m^2 K$$

$$HSG = 0.55$$

$$CF'_{window-south(heat\ transfer\ part)} = U_{window-south} * (\Delta T_{cooling} - 0.46DR)$$

= $4.62 * (7.9 - 0.46 * 11.9) = 11.21\ W/m^2$

$$CF'_{window-south(iarradiation\;part)} = PXI * SHGC * IAC * FF_S = 557 * 0,55 * 1 * 0,47 \\ = 143,98 \ W/m^2$$

Cooling load:

$$\begin{aligned} q'_{window-south} &= A*CF'_{window-south} = \\ &= A*(CF'_{window-south(heat\ transfer\ part)} + C'F_{window-south(irradiation\ part)} \\ &= 3.6*(11.21+143.98) = 558.70\ W \end{aligned}$$

Heating load:

$$q'_{window-south} = A * HF'_{window-south} = A * U'_{window-south} * \Delta T_{heating} = 3,6 * 4,62 * 24,8$$

= 412,47 W