Household models and bargaining

with a focus on the limited commitment model

Adam Hallengreen Thomas H. Jørgensen Annasofie Markstrøm Olesen April 3, 2024

Center of Economic Behavior and Inequality (CEBI), Department of Economics, University of Copenhagen

Motivation

- · Many people live in couples and make decisions together.
- But many standard economic models do not recognize this.
- · Ignoring households can lead to biased and incorrect results.
- We need to understand how living in a household affects economic behavior

Table of contents

- 1. Introduction to dynamic household models
- 2. The Limited Commitment Model
- 3. Bargaining
- 4. Policy functions
- 5. Estimation
- 6. Conclusion

Intro

Life cycle models

Bellman equation

$$V_t(\mathcal{S}_t) = \max_{\mathcal{C}_t} \{ u(\mathcal{C}_t, \mathcal{S}_t) + \beta \mathbb{E}_t[V_{t+1}(\mathcal{S}_{t+1})] \}$$
 (1)

$$S_{t+1} \sim \Gamma(S_t, C_t)$$
 (2)

- Examples are Deaton's model or the Buffer-Stock model.
- · Used to study (investment) decisions over individuals' life.
- Can have multiple phases, such as **education**, **working life**, and retirement
- Are solved using backwards induction (needs a terminal condition).

Household utility as weighted sum of household member's utility

$$U(\mathcal{C}_t, \mathcal{S}_t, \mu_t) = \max_{\mathcal{C}_t} \{ \mu_t \cdot u_1(\mathcal{C}_t, \mathcal{S}_t) + (1 - \mu_t) \cdot u_2(\mathcal{C}_t, \mathcal{S}_t) \}$$
(3)

Household utility as weighted sum of household member's utility

$$U(\mathcal{C}_t, \mathcal{S}_t, \mu_t) = \max_{\mathcal{C}_t} \{ \mu_t \cdot u_1(\mathcal{C}_t, \mathcal{S}_t) + (1 - \mu_t) \cdot u_2(\mathcal{C}_t, \mathcal{S}_t) \}$$
(3)

Unitary: Constant power, $\mu_t = \mu \ \forall t$.

Household utility as weighted sum of household member's utility

$$U(\mathcal{C}_t, \mathcal{S}_t, \mu_t) = \max_{\mathcal{C}_t} \{ \mu_t \cdot u_1(\mathcal{C}_t, \mathcal{S}_t) + (1 - \mu_t) \cdot u_2(\mathcal{C}_t, \mathcal{S}_t) \}$$
(3)

Unitary: Constant power, $\mu_t = \mu \ \forall t$.

Collective: Power determined by exogenous factors, $\mu_t = \mu_t^*(\mathcal{Z}_t)$.

Household utility as weighted sum of household member's utility

$$U(\mathcal{C}_t, \mathcal{S}_t, \mu_t) = \max_{\mathcal{C}_t} \{ \mu_t \cdot u_1(\mathcal{C}_t, \mathcal{S}_t) + (1 - \mu_t) \cdot u_2(\mathcal{C}_t, \mathcal{S}_t) \}$$
(3)

Unitary: Constant power, $\mu_t = \mu \ \forall t$.

Collective: Power determined by exogenous factors, $\mu_t = \mu_t^{\star}(\mathcal{Z}_t)$.

Full commitment: Power determined by endogenous factors at initial period, $\mu_t = \mu_t^{\star}(S_0)$

0000

Household utility as weighted sum of household member's utility

$$U(\mathcal{C}_t, \mathcal{S}_t, \mu_t) = \max_{\mathcal{C}_t} \{ \mu_t \cdot u_1(\mathcal{C}_t, \mathcal{S}_t) + (1 - \mu_t) \cdot u_2(\mathcal{C}_t, \mathcal{S}_t) \}$$
(3)

Unitary: Constant power, $\mu_t = \mu \ \forall t$.

Collective: Power determined by exogenous factors, $\mu_t = \mu_t^{\star}(\mathcal{Z}_t)$.

Full commitment: Power determined by endogenous factors at initial period, $\mu_t = \mu_t^*(S_0)$

No commitment: Power determined by endogenous factors in all periods, $\mu_t = \mu_t^{\star}(\mathcal{S}_t)$

Household utility as weighted sum of household member's utility

$$U(\mathcal{C}_t, \mathcal{S}_t, \mu_t) = \max_{\mathcal{C}_t} \{ \mu_t \cdot u_1(\mathcal{C}_t, \mathcal{S}_t) + (1 - \mu_t) \cdot u_2(\mathcal{C}_t, \mathcal{S}_t) \}$$
(3)

Unitary: Constant power, $\mu_t = \mu \ \forall t$.

Collective: Power determined by exogenous factors, $\mu_t = \mu_t^*(\mathcal{Z}_t)$.

Full commitment: Power determined by endogenous factors at initial period, $\mu_t = \mu_t^{\star}(\mathcal{S}_0)$

No commitment: Power determined by endogenous factors in all periods, $\mu_t = \mu_t^{\star}(S_t)$

Limited commitment Power determined by endogenous factors in some periods, $\mu_t = \mu_t^*(\mathcal{S}_t, \mu_{t-1})$

Household utility as weighted sum of household member's utility

$$U(\mathcal{C}_t, \mathcal{S}_t, \mu_t) = \max_{\mathcal{C}_t} \{ \mu_t \cdot u_1(\mathcal{C}_t, \mathcal{S}_t) + (1 - \mu_t) \cdot u_2(\mathcal{C}_t, \mathcal{S}_t) \}$$
(3)

Unitary: Constant power, $\mu_t = \mu \ \forall t$.

Collective: Power determined by exogenous factors, $\mu_t = \mu_t^*(\mathcal{Z}_t)$.

Full commitment: Power determined by endogenous factors at initial period, $\mu_t = \mu_t^{\star}(\mathcal{S}_0)$

No commitment: Power determined by endogenous factors in all periods, $\mu_t = \mu_t^{\star}(S_t)$

Limited commitment Power determined by endogenous factors in some periods, $\mu_t = \mu_t^{\star}(\mathcal{S}_t, \mu_{t-1})$

Alternatives: Other functional forms than weighted sum; Non-cooperative (Nash equilibrium).

Divorce

Divorce can be absent, exogenous, or endogenous. In general

$$V_t^m(\mathcal{S}_t, \mu_{t-1}) = (1 - D_t^*)V_t^{m \to m}(\mathcal{S}_t, \mu_t) + D_t^*V_t^{m \to s}(\mathcal{S}_t)$$
(4)

Divorce

Divorce can be absent, exogenous, or endogenous. In general

$$V_t^m(\mathcal{S}_t, \mu_{t-1}) = (1 - D_t^{\star})V_t^{m \to m}(\mathcal{S}_t, \mu_t) + D_t^{\star}V_t^{m \to s}(\mathcal{S}_t)$$
(4)

Can be **absent**, $D_t^{\star} = 0 \quad \forall t$

Divorce

Divorce can be absent, exogenous, or endogenous. In general

$$V_t^m(\mathcal{S}_t, \mu_{t-1}) = (1 - D_t^{\star})V_t^{m \to m}(\mathcal{S}_t, \mu_t) + D_t^{\star}V_t^{m \to s}(\mathcal{S}_t)$$
(4)

Can be **absent**, $D_t^{\star} = 0 \quad \forall t$

Can be introduced with **exogenous** divorce probability in **all** specifications, $\mathbb{P}(D_t^* = 1) = \delta_t(Z_t)$.

Divorce can be absent, exogenous, or endogenous. In general

$$V_t^m(\mathcal{S}_t, \mu_{t-1}) = (1 - D_t^*)V_t^{m \to m}(\mathcal{S}_t, \mu_t) + D_t^*V_t^{m \to s}(\mathcal{S}_t)$$
(4)

Can be **absent**, $D_t^{\star} = 0 \quad \forall t$

Can be introduced with **exogenous** divorce probability in **all** specifications, $\mathbb{P}(D_t^* = 1) = \delta_t(Z_t)$.

Can be introduced as **endogenous** decision in **no commitment** and **limited commitment**.

$$D_t^{\star} = 1 \quad \text{iff} \quad S_{j,t} \equiv V_{j,t}^{m \to m}(\mathcal{S}_t, \mu) - V_{j,t}^{m \to s}(\mathcal{S}_t) < 0, \forall \mu, \quad \exists j \in [1, 2] \quad (5)$$

The Limited Commitment Model

Examples

The model has recently gained attraction in the field of household dynamics and bargaining

- The role of divorce laws on couples' choices [Voena, 2015]
- · Education choices of women [Bronson, 2019]
- Taxation system's effect on couples decisions [Bronson et al., 2023]
- The effect of time limits on women's welfare and decisions [Low et al., 2018]

We follow agents for T periods and in period t=T, they die with certainty.

We follow agents for T periods and in period t=T, they die with certainty.

In each period, t>0, they make choices on private consumption $(c_{1,t}, c_{2,t})$; public consumption (c_t) ; and divorce (D_t^*) .

We follow agents for T periods and in period t=T, they die with certainty.

In each period, t>0, they make choices on private consumption $(c_{1,t}, c_{2,t})$; public consumption (c_t) ; and divorce (D_t^*) .

Choices are based on their current states of match quality (ψ_t) , asset level (A_{t-1}) ; and bargaining power (μ_{t-1}) .

We follow agents for T periods and in period t=T, they die with certainty.

In each period, t>0, they make choices on private consumption $(c_{1,t}, c_{2,t})$; public consumption (c_t) ; and divorce (D_t^*) .

Choices are based on their current states of match quality (ψ_t) , asset level (A_{t-1}) ; and bargaining power (μ_{t-1}) .

· Match quality follows random walk: $\psi_{t+1} = \psi_t + \varepsilon_t, \; \varepsilon_t \sim \mathcal{N}(0, \sigma_\varepsilon)$

We follow agents for T periods and in period t=T, they die with certainty.

In each period, t>0, they make choices on private consumption $(c_{1,t}, c_{2,t})$; public consumption (c_t) ; and divorce (D_t^*) .

Choices are based on their current states of match quality (ψ_t), asset level (A_{t-1}); and bargaining power (μ_{t-1}).

- · Match quality follows random walk: $\psi_{t+1} = \psi_t + \varepsilon_t, \; \varepsilon_t \sim \mathcal{N}(0, \sigma_\varepsilon)$
- Budget constraint is: $A_t + c_t + c_{1,t} + c_{2,t} = RA_{t-1} + Y_{1,t} + Y_{2,t}$.

We follow agents for T periods and in period t=T, they die with certainty.

In each period, t>0, they make choices on private consumption $(c_{1,t}, c_{2,t})$; public consumption (c_t) ; and divorce (D_t^*) .

Choices are based on their current states of match quality (ψ_t), asset level (A_{t-1}); and bargaining power (μ_{t-1}).

- · Match quality follows random walk: $\psi_{t+1} = \psi_t + \varepsilon_t, \; \varepsilon_t \sim \mathcal{N}(0, \sigma_\varepsilon)$
- Budget constraint is: $A_t + c_t + c_{1,t} + c_{2,t} = RA_{t-1} + Y_{1,t} + Y_{2,t}$.
- Bargaining power is updated according to the bargaining rule (later).

Approach

Goal: Calculate all value and policy functions.

The value of starting as a couple:

$$V_{j,t}^{m}(\psi_{t}, A_{t-1}, \mu_{t-1}) = (1 - D_{t}^{*})V_{j,t}^{m \to m}(\psi_{t}, A_{t-1}, \mu_{t}) + D_{t}^{*}V_{j,t}^{m \to s}(A_{t-1})$$
 (6)

To get this, we need to calculate:

- The value of transitioning to single, $V_{i,t}^{m\to s}(A_{t-1})$;
- The value of remaining a couple, $V_{j,t}^{m\to m}(\psi_t, A_{t-1}, \mu)$;
- If it is optimal to update bargaining power, μ_{t} , or divorce, D_{t}^{\star} .

Value of transitioning to single

Can be solved as stand-alone DP problem with backwards induction (and EGM).

$$V_{j,t}^{m\to s}(A_{t-1}) = \max_{c_{j,t},c_t} \{ u_{j,t}(c_{j,t},c_t) + \beta \mathbb{E}_t[V_{j,t}^s(A_t)] \}$$
 (7)

$$A_{j,t} + c_{j,t} + c_t = RA_{j,t-1} + Y_{j,t}$$
(8)

For simplicity, assume that singlehood is an absorbing state, such that $V_{j,t}^s = V_{j,t}^{m \to s}$.

Value of remaining a couple

In a couple, you can't single-handedly decide on consumption levels - they depend on bargaining power.

$$V_{j,t}^{m\to m}(\psi_t, A_{t-1}, \mu) = u_t(\tilde{c}_{j,t}, \tilde{c}_t) + \psi_t + \beta \mathbb{E}_t[V_{j,t}^m(\psi_{t+1}, A_t, \mu)]$$
(9)

where

$$\tilde{c}_{w,t}(\mu), \tilde{c}_{m,t}(\mu), \tilde{c}_{t}(\mu) = \arg \max_{c_{w,t}, c_{m,t}, c_{t}} \mu v_{w,t}(\psi_{t}, A_{t-1}, c_{w,t}, c_{m,t}, c_{t}, \mu)$$

$$+ (1 - \mu) v_{m,t}(\psi_{t}, A_{t-1}, c_{w,t}, c_{m,t}, c_{t}, \mu)$$
(10)

Both are subject to

$$\begin{aligned} A_t &= RA_{t-1} + Y_{w,t} + Y_{m,t} - (c_t + c_{w,t} + c_{m,t}) \\ \psi_{t+1} &= \psi_t + \varepsilon_{t+1}, \ \varepsilon_t \sim iid\mathcal{N}(0, \sigma_{\psi}^2) \end{aligned}$$

Can also be solved with iEGM [Hallengreen et al., 2] (EGM)

Bargaining

Bargaining

Calculate marital surplus

$$S_{j,t}(\mathcal{S}_t, \mu) \equiv V_{j,t}^{m \to m}(\mathcal{S}_t, \mu) - V_{j,t}^{m \to s}(\mathcal{S}_t)$$
 (11)

Check if marital surplus is positive for both household members

Update bargaining power

Bargaining cases

Approach - completed

Goal: Calculate all value and policy functions.

The value of starting as a couple:

$$V_{j,t}^{m}(\psi_{t}, A_{t-1}, \mu_{t-1}) = (1 - D_{t}^{\star})V_{j,t}^{m \to m}(\psi_{t}, A_{t-1}, \mu_{t}) + D_{t}^{\star}V_{j,t}^{m \to s}(A_{t-1})$$

To get this, we need to calculate:

- The value of transitioning to single, $V_{i,t}^{m\to s}(A_{t-1})$;
- The value of remaining a couple, $V_{j,t}^{m\to m}(\psi_t, A_{t-1}, \mu)$;
- If it is optimal to update bargaining power, μ_t , or divorce, D_t^{\star} .

Policy functions

Table 1: Parameter Values.

	Model 1	Model 2
Income		
R	1.03	
Y_W	1.0	
Ym	1.0	
Preferences		
β	1/R	
ρ_{W}	2.0	
Ρm	2.0	
$\alpha_{1,W}$	1.0	
$\alpha_{1,m}$	1.0	
$\alpha_{2,W}$	1.0	
$\alpha_{2,m}$	1.0	
$\phi_{W}^{'}$	0.2	
ϕ_{m}	0.2	
Household bargaining		
κ_{W}	0.5	0.23
κ_{m}	0.5	0.77
σ_{ψ}	0.1	
x	0.0	

Base model

Model with unequal asset split upon divorce

Effect of match quality

Source: [Hallengreen et al.,]

Estimation

Estimation

We have a problem when estimating:

- we do not observe match quality or bargaining power.

So we cannot estimate with maximum likelihood.

Instead, we can estimate with Simulated Minimum Distance.

Conclusion

Conclusion

- Many people live in couples and make decisions together within the household.
- Household models are essential for studying decisions made in the household.
- The dynamics of household power is not static, so we need bargaining.
- The limited commitment model accounts for bargaining and endogenous divorce.
- Good choice when studying household behavior.

References i

- Bronson, M. A. (2019).

 Degrees Are Forever: Marriage, Educational Investment, and Lifecycle Labor Decisions of Men and Women.
- Bronson, M. A., Haanwinckel, D., and Mazzocco, M. (2023).

 Taxation and Household Decisions: An Intertemporal Analysis.
- Hallengreen, A., Jørgensen, T. H., and Olesen, A. M. Household Bargaining with Limited Commitment: A Practitioners Guide.
- Hallengreen, A., Jørgensen, T. H., and Olesen, A. M. (2).
 The Endogenous Grid Method without Analytical Inverse
 Marginal Utility.

References ii

Voena, A. (2015).

Yours, Mine, and Ours: Do Divorce Laws Affect the Intertemporal Behavior of Married Couples?

American Economic Review, 105(8):2295–2332.

iEGM

Okay, let's look at that complex value function

In a couple, you can't single-handedly decide on consumption levels - they depend on bargaining power.

$$V_{j,t}^{m\to m}(\psi_t,A_{t-1},\mu) = u_t(\tilde{c}_{j,t},\tilde{c}_t) + \psi_t + \beta \mathbb{E}_t[V_{j,t}^m(\psi_{t+1},A_t,\mu)]$$

where

$$\begin{split} \tilde{c}_{w,t}(\mu), \tilde{c}_{m,t}(\mu), \tilde{c}_{t}(\mu) &= \arg\max_{c_{w,t},c_{m,t},c_{t}} \mu v_{w,t}(\psi_{t}, A_{t-1}, c_{w,t}, c_{m,t}, c_{t}, \mu) \\ &+ (1-\mu)v_{m,t}(\psi_{t}, A_{t-1}, c_{w,t}, c_{m,t}, c_{t}, \mu) \end{split}$$

Both are subject to

$$A_{t} = RA_{t-1} + Y_{w,t} + Y_{m,t} - (c_{t} + c_{w,t} + c_{m,t})$$

$$\psi_{t+1} = \psi_{t} + \varepsilon_{t+1}, \ \varepsilon_{t} \sim iid\mathcal{N}(0, \sigma_{\psi}^{2})$$

Simplify problem

Realize that if total consumption is known, consumption allocation can be inferred. We refer to this as the **intra-period** problem.

$$c_{W}(\mu, C), c_{m}(\mu, C), c(\mu, C) = \arg \max_{c_{j}, c_{m}, c} \mu U_{W}(c_{W}, c) + (1 - \mu)U_{m}(c_{m}, c)$$

st. $C = c_{W} + c_{m} + c$

The **inter-period** problem is then to find the C that maximizes the value

$$V_t^{m \to m}(\psi_t, A_{t-1}, \mu) = \max_{C_t} \{U_t(C_t) + \psi_t + \beta \mathbb{E}_t[V_t^m(\psi_{t+1}, A_t, \mu)]\}$$

FOC

$$U'(C_t) = \beta R \mathbb{E}_t \left[\frac{\partial V_{t+1}(\psi_{t+1}, A_t, \mu)}{\partial A_t} \right] \equiv W_t$$
 (12)

Consumption

$$C_t = U'^{-1}(W_t)$$
 (13)

Endogenous grid

$$M_t = A_t + C_t \tag{14}$$

The problem is that U is not analytically invertible.

We can use iEGM [Hallengreen et al., 2] to circumvent this issue.

Idea: Use FOC to go from grid of C to grid of W.

$$\overrightarrow{W} = U'(\overrightarrow{C}) \tag{15}$$

If the function is invertible, we can also go from W to C.

$$\overrightarrow{C} = U'^{-1}(\overrightarrow{W}) \tag{16}$$

So, we create an interpolator of C over W.

$$C_t^{\star} = \check{C}(W_t). \tag{17}$$

Flip the axis

Source: [Hallengreen et al., 2]

back