机器学习导论 (2022 秋季学期)

四、决策树

主讲教师: 周志华

为了尽可能正确分类训练样本,有可能造成分支过多 > 过拟合可通过主动去掉一些分支来降低过拟合的风险

基本策略:

- 预剪枝 (pre-pruning): 提前终止某些分支的生长
- 后剪枝 (post-pruning): 生成一棵完全树,再 "回头"剪枝

剪枝过程中需评估剪枝前后决策树的优劣 → 第2章

现在我们假定使用"留出法"

数据集

表 4.2 西瓜数据集 2.0 划分出的训练集(双线上部)与验证集(双线下部)

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	1 2	青绿乌黑	蜷缩 蜷缩	独响 沉闷	清晰清晰	凹陷 凹陷	硬滑 硬滑	是是
	3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
	6 7	青绿 乌黑	稍蜷 稍蜷	浊响 浊响	清晰 稍糊	稍凹 稍凹	软粘 软粘	是是
训练集	10	青绿	硬挺	清脆	清晰	平坦	软粘	否不
	14 15	浅白 乌黑	稍蜷	沉闷 浊响	稍糊 清晰	凹陷 稍凹	硬滑 软粘	否否
	16 17	浅白 青绿	蜷缩 蜷缩	独响 沉闷	模糊 稍糊	平坦 稍凹	硬滑 硬滑	否否
•	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
验证集	9 11 12 13	乌 渓 注	稍 夭 一 一 一 一 一 一 后 后 后 后 。 一 行 后 。 一 行 后 。 一 行 后 。 一 行 。 一 行 。 一 行 。 一 行 。 一 行 。 一 行 。 一 一 一 一	沉闷 清脆 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

未剪枝决策树

验
证
集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12 13	乌黑 浅白 浅白 青绿	稍 挺 蜷 援 缩 機 機	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点1: 若不划分,则根结点为叶结点,类别标记为训练样例最多的类别,若选"好瓜",则验证集中{4,5,8} 被分类正确,验证集精度为 3/7 x 100% = 42.9%

1 好瓜

验证集精度 划分前: 42.9%

验
证
集

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬缩 蜷蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点1: 若不划分,则根结点为叶结点,类别标记为训练样例最多的类别,若选"好瓜",则验证集中{4,5,8}被分类正确,验证集精度为 3/7 x 100% = 42.9%

结点1若划分,则根据划分后结点②③④的训练样例,它们将分别标记为"好瓜""好瓜""坏瓜"。此时,验证集中编号为 {4,5,8,11,12}的样例被划分正确,验证集精度为 5/7 x 100% = 71.4%

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
证 集	9 11 12 13	乌黑 浅白 浅白 青绿	稍 梃 蜷 稍 蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点2: 若划分,则验证集中{4,8,11,12} 被分 ^{预剪枝决策}: **禁止划分** 类正确,验证集精度为 4/7 x100% = 57.1%

	_	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
验		4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
证集	1	9 11 12 - 13	乌黑 浅白 浅白 青绿	稍蜷 硬蜓缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平烟 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

结点3: 若划分,则验证集中{4,5,8,11,12}被分类正确,验证集精度为 5/7 x100% = 71.4%

	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
	4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
证 - 集	9 11 12 13	乌黑 浅白 浅白 青绿	稍蜷 硬蜓缩 稍蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

最终, 预剪枝的得到的决策树

后剪枝

先生成一棵完整的决策树, 其验证集精度测得为 42.9%

首先考虑结点⑥,若将其替换为叶结点,根据落在其上的训练样例 {7,15} 将其标记为"好瓜",测得验证集精度提高至 57.1%,于是

首先考虑结点⑥,若将其替换为叶结点,根据落在其上的训练样例 $\{7,15\}$ 将其标记为"好瓜",测得验证集精度提高至 57.1%,于是决定剪枝

然后考虑结点⑤,若将其替换为叶结点,根据落在其上的训练样例 $\{6,7,15\}$ 将其标记为"好瓜",测得验证集精度仍为 $\mathbf{57.1\%}$,可以

然后考虑结点⑤,若将其替换为叶结点,根据落在其上的训练样例 $\{6,7,15\}$ 将其标记为"好瓜",测得验证集精度仍为 $\mathbf{57.1\%}$,可以

对结点②, 若将其替换为叶结点, 根据落在其上的训练样例 $\{1,2,3,14\}$, 将其标记为"好瓜", 测得验证集精度提升至 71.4%,

剪枝后: 71.4%

后剪枝决策:剪枝

对结点③和①, 先后替换为叶结点, 均未测得验证集精度提升, 于是不剪枝

最终,后剪枝得到的决策树:

预剪枝 VS. 后剪枝

□ 时间开销:

- 预剪枝:测试时间开销降低,训练时间开销降低
- 后剪枝: 测试时间开销降低, 训练时间开销增加

□ 过/欠拟合风险:

- 预剪枝: 过拟合风险降低, 欠拟合风险增加
- 后剪枝: 过拟合风险降低, 欠拟合风险基本不变
- □ 泛化性能: 后剪枝 通常优于 预剪枝

连续值

基本思路:连续属性离散化

常见做法:二分法 (bi-partition)

- n 个属性值可形成 n-1 个候选划分
- 然后即可将它们当做 n-1 个离散属性值处理

缺失值

现实应用中,经常会遇到属性值"缺失"(missing)现象

仅使用无缺失的样例? → 对数据的极大浪费

使用带缺失值的样例, 需解决:

Q1: 如何进行划分属性选择?

Q2: 给定划分属性, 若样本在该属性上的值缺失, 如何进行划分?

基本思路: 样本赋权, 权重划分

公理

眩郭

舳咸

/44 IT

盐盐

	細亏	巴洋	恨帝		 汉理	所部	無恐	好瓜
	1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
	2	乌黑	蜷缩	沉闷	清晰	凹陷	_	是
/ワ ^ ス \ ナ エ た h / ナ / 古	3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是
仅通过无缺失值	4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
的样例来判断划	5	_	蜷缩	浊响	清晰	凹陷	硬滑	是
	6	青绿	稍蜷	浊响	清晰	_	软粘	是
分属性的优劣	7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
	8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
	9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
	10	青绿	硬挺	清脆	_	平坦	软粘	否
	11	浅白	硬挺	清脆	模糊	平坦	_	否
	12	浅白	蜷缩	_	模糊	平坦	软粘	否
	13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
学习开始时,根结点包	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
含样例集 D 中全部17个	15	乌黑	稍蜷	浊响	清晰	_	软粘	否
	16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
样例,权重均为 1	17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

岳 泾

编是

坦莱

以属性 "色泽"为例,该属性上无缺失值的样例子集 \tilde{D} 包含 14 个样例,信息熵为 \tilde{D} \tilde

$$\operatorname{Ent}(\tilde{D}) = -\sum_{k=1}^{\infty} \tilde{p}_k \log_2 \tilde{p}_k = -\left(\frac{6}{14} \log_2 \frac{6}{14} + \frac{8}{14} \log_2 \frac{8}{14}\right) = 0.985$$

一个例子

令 \tilde{D}^1 , \tilde{D}^2 , \tilde{D}^3 分别表示在属性 "色泽"上取值为 "青绿" "乌黑"以及 "浅白"的样本子集,有

$$\operatorname{Ent}(\tilde{D}^{1}) = -\left(\frac{2}{4}\log_{2}\frac{2}{4} + \frac{2}{4}\log_{2}\frac{2}{4}\right) = 1.000 \quad \operatorname{Ent}(\tilde{D}^{2}) = -\left(\frac{4}{6}\log_{2}\frac{4}{6} + \frac{2}{6}\log_{2}\frac{2}{6}\right) = 0.918$$

$$\operatorname{Ent}(\tilde{D}^{3}) = -\left(\frac{0}{4}\log_{2}\frac{0}{4} + \frac{4}{4}\log_{2}\frac{4}{4}\right) = 0.000$$

因此,样本子集 \tilde{D} 上属性"色泽"的信息增益为

$$Gain(\tilde{D}, 色泽) = Ent(\tilde{D}) - \sum_{v=1}^{3} \tilde{r}_{v} Ent(\tilde{D}^{v})$$
 无缺失值样例中 属性 a 上取值为 v 的样例占比 $= 0.985 - \left(\frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000\right)$ $= 0.306$

于是,样本集 D 上属性 "色泽" 的信息增益为

$$Gain(D, 色泽) = \rho \times Gain(\tilde{D}, 色泽) = \frac{14}{17} \times 0.306 = 0.252$$

样本集中 属性 a 上无缺失值的样例占比

一个例子

类似地可计算出所有属性在数据集上的信息增益

Gain(D, 色泽) = 0.252

Gain(D, 根蒂) = 0.171

Gain(D, 敲声) = 0.145

Gain(D, 纹理) = 0.424

Gain(D, 脐部) = 0.289

Gain(D, 触感) = 0.006

	进入	"纹理=清晰"	分支
--	----	---------	----

样本权重在各子结点仍为1

在"纹理"上出现缺失值, 样本 8, 10 同时进入三个 分支,三分支上的权重分 别为 7/15, 5/15, 3/15

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
$\frac{1}{2}$	乌黑	蜷缩	沉闷	清晰	凹陷	-	是
3	乌黑	蜷缩		清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5		蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	_	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	-	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	_	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	_	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	便滑	台
17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

权重划分

从"树"到"规则"

- 一棵决策树对应于一个"规则集"
- 每个从根结点到叶结点的分支路径对应于一条规则

好处:

- □改善可理解性
- □进一步提升泛化能力

- IF (纹理=清晰) ∧ (密度≤0.381) THEN 坏瓜
- IF (纹理=清晰) ^ (密度>0.381) THEN 好瓜
- IF (纹理=稍糊) ^ (触感=硬滑) THEN 坏瓜
- IF (纹理=稍糊) ^ (触感=软粘) THEN 好瓜
- IF (纹理=模糊) THEN 坏瓜

由于转化过程中通常会进行前件合并、泛化等操作例如 C4.5Rule 的泛化能力通常优于 C4.5决策树

轴平行划分

单变量决策树: 在每个非叶结点仅考虑一个划分属性

产生"轴平行"分类面

轴平行 vs. 倾斜

当学习任务所对应的分类边界很复杂时,需要非常多段划分才能获得较好的近似

多变量(multivariate)决策树

多变量决策树:每个非叶结点不仅考虑一个属性

例如"斜决策树" (oblique decision tree) 不是为每个非叶结点寻找最优划分属性,而是建立一个线性分类器

更复杂的"混合决策树"甚至可以在结点嵌入神经网络或其他非线性模型

前往第五站

机器学习导论 (2022 秋季学期)

五、神经网络

主讲教师: 周志华

什么是神经网络?

"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应"

[T. Kohonen, 1988, Neural Networks 创刊号]

神经网络是一个很大的学科领域,本课程仅讨论神经网络与机器学习的交集,即"神经网络学习"

亦称"连接主义(connectionism)" 学习

"简单单元":神经元模型

M-P 神经元模型 [McCulloch and Pitts, 1943]

神经网络学得的知识蕴含在连接权与阈值中

神经元的"激活函数"

- 理想激活函数是阶跃函数, 0表示抑制神经元而1表示激活神经元
- 阶跃函数具有不连续、不光滑等不好的性质,常用的是 Sigmoid 函数

图 5.2 典型的神经元激活函数

多层前馈网络结构

多层网络: 包含隐层的网络

前馈网络:神经元之间不存在同层连接也不存在跨层连接

隐层和输出层神经元亦称"功能单元"(functional unit)

多层前馈网络有强大的表示能力("万有逼近性")

仅需一个包含足够多神经元的隐层,多层前馈神经网络就能以任意精度逼近任意复杂度的连续函数 [Hornik et al., 1989]

但是,如何设置隐层神经元数是未决问题(Open Problem).实际常用"试错法"

神经网络发展回顾

1940年代-萌芽期: M-P模型 (1943), Hebb 学习规则 (1945)

1956左右-1969左右~繁荣期:感知机 (1958), Adaline (1960), ...

1969年: Minsky & Papert "Perceptrons"

马文·闵斯基 (1927-2016) 1969年图灵奖

1984左右 -1997左右~繁荣期: Hopfield (1983), BP (1986), ...

1997年左右: SVM文本分类成功 及 统计学习 兴起

2012-至今~繁荣期:深度学习

2019年3月27日, ACM宣布:

Geoffrey Hinton, Yann LeCun, Yoshua Bengio

因对深度学习的卓越贡献获得图灵奖

科学的发展总是"螺旋式上升"

三十年河东

三十年河西

坚持才能有结果

