Mohamed MELLOULI Ingénieur en traitement du signal

Marseille, France | +33 6 04 98 48 30 | mohamedellmellouli@gmail.com

Portfolio: https://mmellouli.github.io/portfolio/

LinkedIn: https://www.linkedin.com/in/mohamed-mellouli-0b5b7b7a/

Google Scholar: https://scholar.google.com/citations?user=fvlRy5cAAAAJ&hl=en&authuser=1

Objectif Professionnel

Ingénieur chercheur spécialisé en traitement du signal **appliqué aux systèmes embarqués et énergétiques**, avec plus de 6 ans d'expérience dans le développement d'algorithmes temps réel, traitement de données capteurs, et optimisation de systèmes intelligents. Je cherche à rejoindre une équipe R&D innovante dans le domaine du traitement du signal.

Compétences Clés

- ❖ Traitement du signal : filtrage numérique, détection de motifs, FFT, estimation spectrale, analyse fréquentielle et temporelle, traitement des données manquantes (gaps) et aberrantes (outliers), ...etc.
- ❖ Développement algorithmique : MATLAB, Simulink, Python, C/C++.

Expériences Professionnelles

Ingénieur de Recherche Postdoctoral

Université d'Aix-Marseille, France (Juillet 2024 – Présent)

- ❖ Développement d'algorithmes d'optimisation pour la gestion énergétique (EMS, PMS) à partir de signaux électriques.
- ❖ Traitement et analyse de données systèmes pour le dimensionnement d'installations maritimes (VEAM, SQL, Excel, MATLAB)
- Implémentation d'outils de calcul scientifique sous MATLAB pour la modélisation multiobjectifs.
- ❖ Validation expérimentale des algorithmes par simulation et données réelles.

Ingénieur de Recherche Postdoctoral

Institut de Technologie de Deggendorf, Allemagne (Oct. 2023 – Mars 2024)

- ❖ Conception d'algorithmes de traitement du signal appliqués à la commande pour la gestion du flux de puissance HVDC.
- ❖ Équilibrage capacitif entre modules et optimisation du temps de fonctionnement des convertisseurs modulaire multiniveaux (MMC).
- ❖ Détection de défauts dans les modules d'onduleurs HVDC à partir de l'analyse des signaux électriques.

Chef d'Équipe – Ingénieur en Traitement du Signal

Beanair, Tunisie (Déc. 2018 – Oct. 2022)

- ❖ Développement de bibliothèques de filtrage numérique et FFT (.dll) sous MATLAB, intégrables dans des environnements .NET.
- ❖ Détection de chocs, calculs de PPV (*Peak Particle Velocity*), vitesse et déplacement à partir de données d'accélération.
- ❖ Implémentation et comparaison en temps réel de données capteurs selon les normes vibratoires internationales (DIN 4150, OSM U.S, BS 7385, BS 6472-1, etc.).
- * Conception d'algorithmes de calibration dynamique et statique pour capteurs.
- ❖ Analyse des vibrations de capteurs MEMS pour la surveillance conditionnelle de machines industrielles.
- ❖ Encadrement de projets de fin d'études (ENISO) sur la surveillance de moteurs par analyse vibratoire et détection/prédiction de défauts via modèles d'intelligence artificielle

Ingénieur en Traitement du Signal & IA

Tuni-Tech, Tunisie (Oct. 2017 – Nov. 2018)

- Conception de modèles d'IA pour la reconnaissance de motifs sportifs à partir de signaux IMU.
- * Traitement en temps réel de données capteurs : étiquetage, filtrage et prétraitement.
- ❖ Encadrement de projets de fin d'études (ENISO) sur une plateforme de localisation de joueurs via traitement de signaux vidéo avec TensorFlow et Keras.

Formation Académique

Doctorat en Génie Électrique ENISO, Tunisie (2019 – 2022)

Synchronisation aux réseaux électriques via le traitement avancé de signaux fortement perturbés.

Mastère Recherche – Systèmes Intelligents et Communicants ENISO, Tunisie (2014 – 2015)

❖ Traitement des signaux électriques appliqué à la commande de convertisseurs NPC en mode redresseur actif

Diplôme d'Ingénieur – Électronique Industrielle – ENISO, Tunisie (2011 – 2014)

- ❖ Application du traitement du signal pour la mise en œuvre d'algorithmes MPPT, optimisant l'extraction de la puissance des panneaux solaires.
- ❖ Conception d'une plateforme de conversion photovoltaïque avec traitement des signaux électriques pour la génération des signaux de commande MLI (modulation de largeur d'impulsions), destinée à un convertisseur DC-DC BOOST et un onduleur NPC à trois niveaux.

Langues:

⊙ Arabe : Langue maternelle ⊙ Français : Courant ⊙ Anglais : Courant