MAG – Magnetisches Feld Auswertung

Yudong Sun Gruppe F2-2

18. August 2020

Teilversuch 1: Sichtbarmachen der Magnetfeldlinien mit Hilfe von Eisenspänen

Abbildung 1.1: Ohne Magnetfeld

Abbildung 1.2: Mit Magnetfeld

Teilversuch 2: Drehmoment des Feldes auf eine stromdurchflossene Spule

Fehler bei der Winkelmessung $\Delta\alpha=2^\circ$ Fehler bei der Winkelmessung $\Delta\beta=1,0^\circ$

$\alpha/^{\circ}$	0	10	20	30	40	50	60	70	80	90
β/°	295,0	315,0	337,0	358,5	377,0	395,0	413,0	425,5	437,5	449,0
$(\beta - \beta_0)/^{\circ}$	0,0	20,0	42,0	63,5	82,0	100,0	118,0	130,5	142,5	154,0
$arphi/^\circ$	0,0	-10,0	-22,0	-33,5	-42,0	-50,0	-58,0	-60,5	-62,5	-64,0

wobei $\varphi = \alpha - (\beta - \beta_0)$.

Yudong Sun Auswertung – MAG

Die entsprechende Fehler zur $\sin(\alpha/^{\circ})$ und φ sind wie folgt gegeben:

$$\Delta \sin(\alpha/^{\circ}) = \left|\cos(\alpha/^{\circ})\right| \cdot \frac{\Delta \alpha}{180^{\circ}} \cdot \pi \tag{2.1}$$

$$\Delta \varphi = \sqrt{(\Delta \alpha)^2 + (\Delta \beta)^2 + (\Delta \beta_0)^2} = \sqrt{(2^\circ)^2 + (1,0^\circ)^2 + (1,0^\circ)^2} = 2.5^\circ$$
 (2.2)

 φ wurde dann gegen $\sin(\alpha/^\circ)$ im gnuplot geplottet und eine Kurveanpassung zur $\varphi=m\sin\alpha+c$ durchgeführt. Die entsprechende Fehler sind direkt im gnuplot berechnet. Siehe Appendix A für die genauer Rechnung.

Im Experiment war die Markierung für Winkel α wegen des Aufbaus schwer abzulesen. Somit ist der Fehler eher groß und sind hier bei der Kurvenanpassung nicht vernachlässigt.

Abbildung 2.1: Drehmoment auf stromdurchflossene Spule $\chi^2_{\rm red}=0{,}163\,741\implies$ Gute Anpassung

Als Endergebnis erhalten wir:

Variable	Wert	Gerundet
\overline{m}	$(-64,519 \pm 1,445)^{\circ}$	$(-64.5 \pm 1.5)^{\circ}$
c	$(-0.140 \pm 1.145)^{\circ}$	$(-0.1 \pm 1.2)^{\circ}$

c ist der Abszissenabschnitt und 0 liegt tatsächlich im Fehlerintervall von c, also liegen die Messpunkte im Rahmen der Fehlergrenzen auf einer durch den Nullpunkt gehenden Geraden.

Aus der gute Kurvenanpassung folgt also, dass die Messergebnisse mit der Theorie übereinstimmt.

Auswertung – MAG Yudong Sun

Teilversuch 3: Induktion durch Drehen einer Spule in einem Magnetfeld

Die Amplitude U_0 sind von der Graph gelesen und wir erhalten als Messwerten:

U_0/V	1,040	1,040	1,065	1,025	1,050	1,050	1,055	1,055	1,050
U_0/V	1,070	1,080	1,055	1,055	1,070	1,055	1,025	1,040	

Der Mittelwert und Standardabweichung werden dann mittels Python berechnet (Siehe Appendix B). Da es viele Messwerten gibt, ist der Fehler durch die Standardabweichung gegeben und die einzelne Ablesefehler sind nicht berücksichtigt. Wir erhalten:

$$\overline{U_0}$$
 (1,052 ± 0,015) V

Aus Abschnitt 1.2 der Anleitung gilt:

$$B = \frac{\overline{U_0}}{NA\,\omega} \qquad \Delta B = B\sqrt{\left(\frac{\Delta\overline{U_0}}{\overline{U_0}}\right)^2} = B\left(\frac{\Delta\overline{U_0}}{U_0}\right) \tag{3.1}$$

da N,A und ω als Fehlerfrei betrachtet werden.

Wir berechnen zunächst ω :

$$\omega = 2\pi f = (2\pi \text{ rad}) \left(\frac{16.6 \text{ RPM}}{60 \text{ Hz}} \cdot 50 \text{ Hz} \right) \cdot \frac{1}{60} \frac{\text{Hz}}{\text{RPM}} = 1,4486 \text{ rad s}^{-1} \quad \text{(5 sig. Zif.)}$$
 (3.2)

Mit der Messwerten:

Variable	Wert	Bedeutung
$\overline{U_0}$	$(1,052 \pm 0,015) \mathrm{V}$	Durchschnittliche Amplitude
N	82 800	Windungszahl der Induktionsspule
A	$23.5\mathrm{cm}^2$	Querschnittsfläche der Induktionsspule
ω	$1,4486\mathrm{s}^{-1}$	Rotationsgeschwindigkeit der Induktionsspule

erhalten wir:

$$B = \frac{1,052 \text{ V}}{(82800)(2,35 \cdot 10^{-3} \text{ m}^2)(1,4486 \text{ s}^{-1})} = 3,732 \, 24 \cdot 10^{-3} \,\text{T} \quad \text{(6 sig. Zif.)}$$

$$\Delta B = 3,732 \, 24 \cdot 10^{-3} \,\text{T} \cdot \frac{0,015 \,\text{V}}{1,052 \,\text{V}} = 5,321 \, 63 \cdot 10^{-5} \,\text{T} \quad \text{(6 sig. Zif.)}$$
(3.4)

$$\Delta B = 3,73224 \cdot 10^{-3} \,\text{T} \cdot \frac{0,015 \,\text{V}}{1.052 \,\text{V}} = 5,32163 \cdot 10^{-5} \,\text{T} \quad \text{(6 sig. Zif.)}$$
(3.4)

Somit ist die Flussdichte $\left| \vec{B} \right| = (3.73 \pm 0.06) \cdot 10^{-3} \, \mathrm{T}.$

Yudong Sun Auswertung – MAG

Nun berechnen wir den theoretischen Wert von der Flussdichte B. Nach Abschnitt 1.1 gilt:

$$B = \mu_0 \left(\frac{4}{5}\right)^{3/2} \frac{NI}{r} = 2\mu_0 \left(\frac{4}{5}\right)^{3/2} \frac{NI}{R}$$
 (3.5)

$$\Delta B = B\sqrt{\left(\frac{\Delta I}{I}\right)^2 + \left(\frac{\Delta R}{R}\right)^2} \tag{3.6}$$

wobei R = 2r der Durchmesser der Helmholtzspule ist.

Zu R benutzen wir den Mittelwert zwischen den äußeren (R_a) und inneren (R_i) Durchmesser der Helmholtzspule. Dazu gibt es für jeden Durchmesser 3 Messungen, also ist R gegeben durch:

$$R = \frac{\frac{1}{3}(R_{a1} + R_{a2} + R_{a3}) + \frac{1}{3}(R_{i1} + R_{i2} + R_{i3})}{2} = \frac{R_{a1} + R_{a2} + R_{a3} + R_{i1} + R_{i2} + R_{i3}}{6}$$
(3.7)

$$\Delta R = \frac{1}{2} \sqrt{\left(\Delta R_a\right)^2 + \left(\Delta R_i\right)^2} \tag{3.8}$$

Dabei sind ΔR_a und ΔR_i wegen der mehrmaligen Messungen gegeben durch die Standardabweichung $s=\sqrt{\frac{1}{3-1}\sum_{j=1}^3(x_j-\overline{x})^2}$. Die Ablesefehler ($\pm 0,2\,\mathrm{cm}$) wurden nicht berücksichtigt.

j	1	2	3	\overline{x}	s
R_a/cm R_i/cm	$\begin{vmatrix} 30,0\\ 25,1 \end{vmatrix}$	29,9 $25,2$	$30,0 \\ 25,2$	$\begin{vmatrix} 29,9667 \\ 25,1667 \end{vmatrix}$	$0,0577 \\ 0,0577$

Es gilt somit:

$$R = \frac{30,0 + 29,9 + 30,0 + 25,1 + 25,2 + 25,2}{6} \text{ cm} = 27,5667 \text{ cm} \quad \text{(6 sig. Zif.)}$$
 (3.9)

$$\Delta R = \frac{1}{2}\sqrt{(R_a)^2 + (R_i)^2} = \frac{\sqrt{2}}{2}(0.06 \,\text{cm}) = 0.0424 \,\text{cm}$$
 (3 sig. Zif.) (3.10)

Also erhalten wir $R = (27.57 \pm 0.05)$ cm.

Mit der Werten:

Variable	Wert	Bedeutung
\overline{I}	$(0.970 \pm 0.013) \mathrm{A}$	Feldstromstärke
R	$(27,57 \pm 0,05) \mathrm{cm}$	Durchmesser der Helmholtzspule
N	528	Windungszahl der Helmholtzspule
μ_0	$1,257 \cdot 10^{-6} \mathrm{NA^{-2}}$	Magnetische Feldkonstante

erhalten wir:

$$B = 2 \cdot (1,257 \cdot 10^{-6} \,\mathrm{N\,A^{-2}}) \left(\frac{4}{5}\right)^{3/2} \frac{(528)(0,970 \,\mathrm{A})}{0,2757 \,\mathrm{m}} = 3,341 \,71 \cdot 10^{-3} \,\mathrm{T} \qquad \text{(6 sig. Zif.)} \tag{3.11}$$

$$\Delta B = 1,670\,86 \cdot 10^{-3}\,\mathrm{T} \cdot \sqrt{\left(\frac{0,013\,\mathrm{A}}{0,970\,\mathrm{A}}\right)^2 + \left(\frac{0,05\,\mathrm{cm}}{27,57\,\mathrm{cm}}\right)^2} = 4,519\,41 \cdot 10^{-5}\,\mathrm{T} \qquad \text{(6 sig. Zif.)} \quad \text{(3.12)}$$

Somit soll die Flussdichte theoretisch $\left| \vec{B} \right| = (3.34 \pm 0.05) \cdot 10^{-3} \, \mathrm{T}$ sein.

Auswertung – MAG Yudong Sun

Zusammengefasst haben wir:

Experimental	$(3.73 \pm 0.06) \cdot 10^{-3} \mathrm{T}$
Theoretisch	$(3.34 \pm 0.05) \cdot 10^{-3} \mathrm{T}$

Also unterscheiden sich die Werten signifikant voneinander.

Ein Grund dafür könnte sein, dass die Durchmesser während des Experiments falsch bestimmt waren. Der Aufbau der Helmholtzspule hat es schwer gemacht, eine genaue Messung des Durchmesser zu machen. Es könnte auch sein, dass die beide Helmholtzspüle nicht die gleiche Dimensionen hatten. Wenn der Durchmesser etwas kleiner geworden wäre, dann würde die berechnete Flussdichte auch größer sein, was näher an dem Experimentalwert ist.

Aus Konstruktion könnte man auch den Abstand zwischen der beiden Helmholtzspulen statt des tatsächlichen Durchmesser bzw. Radius von den Spulen gemessen haben, was während der Experiment nicht gemacht wurde. Hätte diese Messung stattgefunden, dann könnte man eventuell einen besseren Wert von R erhalten.

Außerdem ist die Messung von den Amplituden wegen der großen Schwankungen am maximalen bzw. minimalen Punkten eher ungenau. Auf dem Millimeter-Papier sieht man auch dazu die deutliche Geräusche bei der Wendepunkten. Ist die tatsächliche Amplitude kleiner, dann wird die berechnete Stromfluss B auch kleiner sein, was näher an dem theoretischen Wert ist.

Die Winkelgeschwindigkeit ω hat aber keinen Einfluss auf dem Ergebnis, wenn man seine eigene Messung macht. Aus der Zeichung auf dem Millimeter-Papier gab es 3 Perioden zwischen $t=12\,\mathrm{s}$ und $t=25\,\mathrm{s}$, also ist die Winkelgeschwindigkeit als $\omega=2\pi/T=1,449\,97\,\mathrm{rad\,s^{-1}}$ gemessen. Ist diesen Wert verwendet, dann erhält man wieder $B=(3,73\pm0,06)\,\mathrm{T}$, was keinen Unterscheid macht.

Gäbe es keinen Rechenfehler, dann ist dieses Ergebnis sonst ohne Zusatzexperiment schwer zu erklären.

Teilversuch 4: Induktion durch ein zeitlich veränderliches Magnetfeld

Yudong Sun Auswertung – MAG

A gnuplot Quellcode zur Auswertung von Teilversuch 2

```
#!/usr/bin/env gnuplot
     set term epslatex color size 6in, 4in
     set output "tv2-plot.tex"
     set decimalsign locale 'de_DE.UTF-8'
     set title "Torsionswinkel $\\varphi$ gegen $\\sin(\\alpha/\\si{\\degree})$"
     set ylabel "Torsionswinkel $\\varphi$ ($\\si{\\degree}$)"
     set xlabel "$\\sin(\\alpha/\\si{\\degree})$"
     set mxtics
11
     set mytics
12
     set samples 10000
14
     set xrange[0.1:1.05]
15
16
     f(x) = m*x + c
17
18
     # (x, y, xdelta, ydelta)
     fit f(x) "tv2.dat" u
     \rightarrow (sin((($1)/180)*pi)):2:(cos((($1)/180)*pi)*2*(pi/180)):(2.5) xyerrors via
     \hookrightarrow \quad \text{m,c} \quad
21
     # Linien
22
     set key top right spacing 1.3
24
     titel = "$".gprintf("%.5f", m)." \\sin(\\alpha/\\si{\\degree}) +
     plot f(x) title titel lc rgb 'dark-magenta', \
         "tv2.dat" u (\sin(((\$1)/180)*pi)):2:(\cos(((\$1)/180)*pi)*2*(pi/180)):(2.5)
27
         → with xyerrorbars title "Messpunkte" pointtype 0 lc rgb
         mit tv1.dat:
                                                       -50,0
     #alpha phi
                                               50
                                                       -58,0
     # 0
             0,0
                                               60
                                                       -60,5
     10
             -10,0
                                              70
             -22,0
                                                       -62,5
     20
                                              80
                                         10
             -33,5
     30
                                              90
                                                       -64,0
     40
             -42,0
   Rohausgabe:
     final sum of squares of residuals : 1.14619
     rel. change during last iteration : -5.81173e-16
     degrees of freedom
                           (FIT_NDF)
     rms of residuals
                           (FIT_STDFIT) = sqrt(WSSR/ndf)
                                                             : 0.404649
```

Auswertung – MAG Yudong Sun

```
variance of residuals (reduced chisquare) = WSSR/ndf
                                                   : 0.163741
    p-value of the Chisq distribution (FIT_P)
                                            : 0.992114
    Final set of parameters
                                  Asymptotic Standard Error
                                   10
                                   +/- 1.445
                  = -64.5185
11
                  = -0.140149
                                   +/- 1.145
                                                 (816.9%)
12
13
    correlation matrix of the fit parameters:
14
15
                  1.000
    m
16
                 -0.942 1.000
    С
17
```

B Quellcode zur Auswertung von Teilversuch 3

Python Code zur Berechnung des Mittelwerts und der Standardabweichung

```
#!/usr/bin/env python3
2
     import mpmath as mp
3
     arr = ["1.04", "1.04", "1.065", "1.025", "1.05", "1.05", "1.055", "1.055",
     → "1.05", "1.07", "1.08", "1.055", "1.055", "1.07", "1.055", "1.025",
     mparr = [ mp.mpf(x) for x in arr ]
     s = mp.fsum(mparr)
     mittelwert = mp.fdiv(s, len(mparr))
10
     difference = [mp.fsub(x, mittelwert) for x in mparr]
11
     stdev = mp.sqrt(mp.fdiv(mp.fsum(difference, squared=True),
12

→ mp.fsub(len(mparr), 1)))
13
     print("Mittelwert:\t\t", mittelwert)
     print("Standardabweichung:\t", stdev)
   Rohausgabe:
    Mittelwert:
                          1.05176470588235
     Standardabweichung: 0.0148892973800173
```