# Efficient Generation of Geographically Accurate Transit Maps

Hannah Bast<sup>1</sup>, Patrick Brosi<sup>1</sup> and Sabine Storandt<sup>2</sup>

<sup>1</sup>University of Freiburg

<sup>2</sup> LMU Würzburg

26th ACM SIGSPATIAL - Seattle, Washington, USA

### **Motivation**

### Official CTA map



### Motivation



### Motivation



Goal: Generate these maps automatically, in high quality

Goal: Generate these maps automatically, in high quality



"Bag of trips"
(GTFS)

Goal: Generate these maps automatically, in high quality



"Bag of trips"
(GTFS)

Goal: Generate these maps automatically, in high quality



"Bag of trips"
(GTFS)

Line graph

### Goal: Generate these maps automatically, in high quality



"Bag of trips"
(GTFS)

Line graph

### Goal: Generate these maps automatically, in high quality



"Bag of trips"
(GTFS)

Line graph

Final map

# Challenges



# Challenges



## Challenges



### Line graph:

Undirected labeled graph
 G = (V, E, L)



### Line graph:

- Undirected labeled graph
   G = (V, E, L)
- Edge labels are subsets of the network lines L (L(e) ⊆ L)



### Line graph:

- Undirected labeled graph
   G = (V, E, L)
- Edge labels are subsets of the network lines L (L(e) ⊆ L)
- Nodes are usually stations



#### Line graph:

- Undirected labeled graph
   G = (V, E, L)
- Edge labels are subsets of the network lines L (L(e) ⊆ L)
- Nodes are usually stations



Example: 
$$\mathcal{L} = \{ \}, L((u, v)) = \{ \}$$

# Line graph construction - Input data



# Line graph construction - Input data



# Line graph construction - Input data













# Results so far (1)



# Results so far (1)



# Results so far (1)





• For each edge e, line l and position p, introduce variable  $x_{elp} \in 0$ , 1



- For each edge e, line l and position p, introduce variable  $x_{elp} \in 0, 1$
- Example:  $x_{eA1}$  and  $x_{eA2}$  for line A



- For each edge e, line l and position p, introduce variable x<sub>elp</sub> ∈ 0, 1
- Example:  $x_{eA1}$  and  $x_{eA2}$  for line A
- Constraint: all x<sub>elp</sub> have to sum up to 1 for a single line l on a single edge e, and for a single p on a single edge



- For each edge e, line l and position p, introduce variable x<sub>elp</sub> ∈ 0, 1
- Example:  $x_{eA1}$  and  $x_{eA2}$  for line A
- Constraint: all x<sub>elp</sub> have to sum up to 1 for a single line l on a single edge e, and for a single p on a single edge
- Standard crossing: Objective variable  $x_{ee'AB}$  which is 1 if  $p_e(A) < p_e(B)$  and  $p_{e'}(A) > p_{e'}(B)$ , or else 0





- For each edge e, line l and position p, introduce variable x<sub>elp</sub> ∈ 0, 1
- Example:  $x_{eA1}$  and  $x_{eA2}$  for line A
- Constraint: all x<sub>elp</sub> have to sum up to 1 for a single line l on a single edge e, and for a single p on a single edge
- Standard crossing: Objective variable  $x_{ee'AB}$  which is 1 if  $p_e(A) < p_e(B)$  and  $p_{e'}(A) > p_{e'}(B)$ , or else 0
- Split crossing: Objective variable  $x_{ee'e''AB}$  which is 1 if  $p_e(A) < p_e(B)$ , or else 0





- For each edge e, line l and position p, introduce variable x<sub>elp</sub> ∈ 0, 1
- Example:  $x_{eA1}$  and  $x_{eA2}$  for line A
- Constraint: all x<sub>elp</sub> have to sum up to 1 for a single line l on a single edge e, and for a single p on a single edge
- Standard crossing: Objective variable  $x_{ee'AB}$  which is 1 if  $p_e(A) < p_e(B)$  and  $p_{e'}(A) > p_{e'}(B)$ , or else 0
- Split crossing: Objective variable  $x_{ee'e''AB}$  which is 1 if  $p_e(A) < p_e(B)$ , or else 0

 $\Rightarrow \mathcal{O}(|E|M^2)$  variables,  $\mathcal{O}(|E|M^6)$  constraints

## **Line-ordering optimization - Improved ILP**

• **Observation:** we only need to check if  $p_e(A) < p_e(B)$  (or vice versa) for both types of crossings

### Line-ordering optimization - Improved ILP

- Observation: we only need to check if  $p_e(A) < p_e(B)$  (or vice versa) for both types of crossings
- But we explicitly enumerate all possible line positions of A and B on e

### **Line-ordering optimization - Improved ILP**

- Observation: we only need to check if  $p_e(A) < p_e(B)$  (or vice versa) for both types of crossings
- But we explicitly enumerate all possible line positions of A and B on e
- Basic idea: introduce binary variables  $x_{eA < B}$  and  $x_{eB < A}$  which can be efficiently checked

### **Line-ordering optimization - Improved ILP**

- Observation: we only need to check if  $p_e(A) < p_e(B)$  (or vice versa) for both types of crossings
- But we explicitly enumerate all possible line positions of A and B on e
- Basic idea: introduce binary variables x<sub>eA<B</sub> and x<sub>eB<A</sub> which can be efficiently checked

 $\Rightarrow \mathcal{O}(|E|M^2)$  variables,  $\mathcal{O}(|E|M^2)$  constraints

# Results so far (2)



# Results so far (2)



# Results so far (2)





VS.













1 crossing 1 separation VS.



2 crossings0 separations



2 crossings1 separation

VS.



2 crossings0 separations



Idea: If two lines A, B continue from e to e', set a binary separation variable
 x<sub>ee'A||B</sub> = 1 if they are next to each other in e, but no in e'



- Idea: If two lines A, B continue from e to e', set a binary separation variable
   X<sub>ee'A||B</sub> = 1 if they are next to each other in e, but no in e'
- Add  $x_{ee'A||B}$  to the objective function



- Idea: If two lines A, B continue from e to e', set a binary separation variable
   X<sub>ee'A||B</sub> = 1 if they are next to each other in e, but no in e'
- Add  $x_{ee'A||B}$  to the objective function

 $\Rightarrow$  Still  $\mathcal{O}(|E|M^2)$  variables,  $\mathcal{O}(|E|M^2)$  constraints

# Results so far (3)



# Results so far (3)









• Combine lines A, B that always occur together into a single new line  $(A, B \rightarrow X)$ 



• Combine lines A, B that always occur together into a single new line  $(A, B \rightarrow X)$ 



- Combine lines A, B that always occur together into a single new line  $(A, B \rightarrow X)$
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges



- Combine lines A, B that always occur together into a single new line  $(A, B \rightarrow X)$
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges



- Combine lines A, B that always occur together into a single new line  $(A, B \rightarrow X)$
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges
- Remove edges (u, v) where u and v are termini for all L((u, v))



- Combine lines A, B that always occur together into a single new line  $(A, B \rightarrow X)$
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges
- Remove edges (u, v) where u and v are termini for all L((u, v))



- Combine lines A, B that always occur together into a single new line  $(A, B \rightarrow X)$
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges
- Remove edges (u, v) where u and v are termini for all L((u, v))



- Combine lines A, B that always occur together into a single new line  $(A, B \rightarrow X)$
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges
- Remove edges (u, v) where u and v are termini for all L((u, v))
- Cut edges with |L(e)| = 1



- Combine lines A, B that always occur together into a single new line  $(A, B \rightarrow X)$
- Delete nodes with degree 2 if adjacent edges have the same lines and merge these edges
- Remove edges (u, v) where u and v are termini for all L((u, v))
- Cut edges with |L(e)| = 1



1. Render parallel lines







2. Free node space



1. Render parallel lines



2. Free node space



3. Render inner node connections



1. Render parallel lines



2. Free node space



3. Render inner node connections



4. Render stations

# Results so far (4)



# Results so far (4)



#### Results so far (4)





#### **Evaluation - Line Ordering**

T = number of (consecutive) line swaps necessary to transform offical map into our map

|           | Off. map |   | Our r |   |   |
|-----------|----------|---|-------|---|---|
|           | ×        |   | ×     |   | Т |
| Freiburg  | 7        | 1 | 7     | 0 | 2 |
| Dallas    | 3        | 1 | 3     | 0 | 1 |
| Chicago   | 26       | 0 | 27    | 0 | 1 |
| Stuttgart | 65       | 5 | 64    | 2 | 4 |

#### **Evaluation - ILP Solution times**

ILP solution times for Chicago, on baseline graph

|        | rows × cols  | GLPK        | CBC         | GU           | ×          | II  |
|--------|--------------|-------------|-------------|--------------|------------|-----|
| Base   | 41k×861      | _           | _           | _            | 22         | 4-7 |
| Impr.  | 1.4 k× 982   | 9s          | <b>1</b> s  | <b>41</b> ms | <b>2</b> 2 | 4-7 |
| + Sep. | 1.9 k× 1.2 k | <b>47</b> m | <b>19</b> s | <b>1.8</b> s | 27         | 0   |

#### **Evaluation - ILP Solution times**

ILP solution times for Chicago, on baseline graph

|        | rows × cols                          | GLPK | CBC         | GU           | ×  | Ш   |
|--------|--------------------------------------|------|-------------|--------------|----|-----|
| Base   | 41k×861                              | _    | _           | _            | 22 | 4-7 |
| Impr.  | 1.4 k× 982                           | 9s   | <b>1</b> s  | <b>41</b> ms | 22 | 4-7 |
| + Sep. | $1.9  \text{k} \times 1.2  \text{k}$ | 47 m | <b>19</b> s | <b>1.8</b> s | 27 | 0   |

ILP solution times for Chicago, on core graph

|        | rows × cols | GLPK         | CBC          | GU           | ×  |     |
|--------|-------------|--------------|--------------|--------------|----|-----|
| Base   | 8.2 k× 266  | _            | 47m          | 2m           | 22 | 4-7 |
| Impr.  | 394×285     | <b>0.8</b> s | <b>0.1</b> s | <b>10</b> ms | 22 | 4-7 |
| + Sep. | 505×338     | 23s          | <b>3.8</b> s | <b>0.3</b> s | 27 | 0   |

 Additional rules for core graph reduction (work in progress)

- Additional rules for core graph reduction (work in progress)
- Faster construction times of line graph (current state: 1-15 s for our test datasets)

- Additional rules for core graph reduction (work in progress)
- Faster construction times of line graph (current state: 1-15 s for our test datasets)
- Other sources for input line graph than schedule data (e.g. OSM, work in progress)

- Additional rules for core graph reduction (work in progress)
- Faster construction times of line graph (current state: 1-15 s for our test datasets)
- Other sources for input line graph than schedule data (e.g. OSM, work in progress)
- Octilinearize line graph for (non-overlay) schematic metro maps (work in progress)







• Repeatedly collapse (segments of) two edges e and f within a distance  $\hat{d}$ 



- Repeatedly collapse (segments of) two edges e and f within a distance  $\hat{d}$
- Sweep over some edge e in steps of 10 m, measure distance d of current point on e to f



- Repeatedly collapse (segments of) two edges e and f within a distance  $\hat{d}$
- Sweep over some edge e in steps of 10 m, measure distance d of current point on e to f
- If  $d < \hat{d}$ , start new segment. If not, end current (if open)



- Repeatedly collapse (segments of) two edges e and f within a distance  $\hat{d}$
- Sweep over some edge e in steps of 10 m, measure distance d of current point on e to f
- If  $d < \hat{d}$ , start new segment. If not, end current (if open)
- Take average between the two "shared segments" on e and f



- Repeatedly collapse (segments of) two edges e and f within a distance  $\hat{d}$
- Sweep over some edge e in steps of 10 m, measure distance d of current point on e to f
- If  $d < \hat{d}$ , start new segment. If not, end current (if open)
- Take average between the two "shared segments" on e and f
- Add additional non-station nodes at segment boundaries



- Repeatedly collapse (segments of) two edges e and f within a distance  $\hat{d}$
- Sweep over some edge e in steps of 10 m, measure distance d of current point on e to f
- If  $d < \hat{d}$ , start new segment. If not, end current (if open)
- Take average between the two "shared segments" on e and f
- Add additional non-station nodes at segment boundaries



- Repeatedly collapse (segments of) two edges e and f within a distance  $\hat{d}$
- Sweep over some edge e in steps of 10 m, measure distance d of current point on e to f
- If  $d < \hat{d}$ , start new segment. If not, end current (if open)
- Take average between the two "shared segments" on e and f
- Add additional non-station nodes at segment boundaries



- Repeatedly collapse (segments of) two edges e and f within a distance  $\hat{d}$
- Sweep over some edge e in steps of 10 m, measure distance d of current point on e to f
- If  $d < \hat{d}$ , start new segment. If not, end current (if open)
- Take average between the two "shared segments" on e and f
- Add additional non-station nodes at segment boundaries





• 23 edges



- 23 edges
- Each edge e has |L(e)|! possible line permutations



- 23 edges
- Each edge e has |L(e)|! possible line permutations
- Possible configurations for the graph on the left:  $> 2 \times 10^{17}$



- · 23 edges
- Each edge e has |L(e)|! possible line permutations
- Possible configurations for the graph on the left:  $> 2 \times 10^{17}$

⇒ Naive exhaustive search infeasible

#### **Baseline ILP - Details**

Each line must only be assigned one position:

$$\forall l \in L(e) : \sum_{p=1}^{|L(e)|} x_{elp} = 1.$$

Each position must only be assigned once:

$$\forall p \in \{1, ..., |L(e)|\} : \sum_{l \in L(e)} x_{elp} = 1.$$

Constraints for ensuring that  $x_{ee'AB} = 1$  if a crossing occurs:

$$x_{eA1} + x_{eB2} + x_{e'A2} + x_{e'B1} - x_{ee'AB} \le 3$$
  
 $x_{eA2} + x_{eB1} + x_{e'A1} + x_{e'B2} - x_{ee'AB} \le 3$   
...etc

### Stuttgart map - annotated



### **Dataset dimensions**

|           | $t_{extr}$    | $ \mathcal{S} $ | V   | E   | $ \mathcal{L} $ | М |
|-----------|---------------|-----------------|-----|-----|-----------------|---|
| Freiburg  | 0.7s          | 74              | 80  | 81  | 5               | 4 |
| Dallas    | 3s            | 108             | 117 | 118 | 7               | 4 |
| Chicago   | <b>13.5</b> s | 143             | 153 | 154 | 8               | 6 |
| Stuttgart | 7.7s          | 192             | 219 | 229 | 15              | 8 |
| Turin     | <b>4.9</b> s  | 339             | 398 | 435 | 14              | 5 |
| New York  | 3.7s          | 456             | 517 | 548 | 26              | 9 |
|           |               |                 |     |     |                 |   |

# Core graph dimensions

|           | V   | <i>E</i> | $ \mathcal{L} $ | М |
|-----------|-----|----------|-----------------|---|
| Freiburg  | 20  | 21       | 5               | 4 |
| Dallas    | 24  | 24       | 7               | 4 |
| Chicago   | 23  | 24       | 8               | 6 |
| Stuttgart | 50  | 58       | 15              | 8 |
| Turin     | 91  | 124      | 14              | 5 |
| New York  | 110 | 138      | 23              | 9 |
|           |     |          |                 |   |