EECS 545: Machine Learning

Lecture 10. Kernel methods: **Kernelizing Support Vector Machines**

Honglak Lee 02/12/2025

Overview

- Support Vector Machine (SVM)
- Dual optimization
 - General recipe for constrained optimization
 - Hard-margin SVM
 - Soft-margin SVM

Maximum Margin Classifier

• Optimization problem:

• Optimization problem:
$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to
$$\text{For } y^{(n)} = 1, \quad \mathbf{w}^\top \phi\left(\mathbf{x}^{(n)}\right) + b \geq 1$$
 For $y^{(n)} = -1, \quad \mathbf{w}^\top \phi\left(\mathbf{x}^{(n)}\right) + b \leq -1$

Dual optimization

- So far, we have considered primal optimization which requires a direct access to the feature vectors $\phi(\mathbf{x}^{(n)})$
- It is also possible to "kernelize" SVM
 - This formulation is called "Dual" formulation.
 - In this case, you can use any kernel function (such as polynomial, RBF, etc.)

With dual variables $\alpha^{(n)}$, we have the following relations (without proofs)

 $\mathbf{w} = \sum_{n=1}^{N} \alpha^{(n)} y^{(n)} \phi\left(\mathbf{x}^{(n)}\right)$

 $h(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) + b = \sum_{n=1}^{N} \alpha^{(n)} y^{(n)} k\left(\mathbf{x}, \mathbf{x}^{(n)}\right) + b$

Kernelizing SVM: back to hard-margin case

· Optimization problem:

$$\begin{aligned} & \min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2 \\ & \text{subject to} \quad y^{(n)} \left(\mathbf{w}^{\top} \phi \left(\mathbf{x}^{(n)}\right) + b\right) \geq 1, n = 1, ..., N \end{aligned}$$

- This is a constrained optimization problem.
 - We solve this using Lagrange multipliers (convex optimization)
 - Solving dual optimization problem naturally leads to kernalization

Solving Constrained Optimization: General Overview and Recipe

> (This section is just a recap, see the supplementary lecture slides for more details)

General (Constrained) Optimization

• General optimization problem:

$$\begin{array}{ll} \min\limits_{\mathbf{x}} & f(\mathbf{x}) & \text{objective (cost) function} \\ \text{subject to} & g_i(\mathbf{x}) \leq 0, i=1,...,m & \text{inequality constraint functions} \\ & h_i(\mathbf{x}) = 0, i=1,...,p & \text{equality constraint functions} \end{array}$$

- If x satisfies all the constraints, x is called feasible (a feasible solution).
- In general, this is a nontrivial problem to solve, so we use techniques for convex optimization.

Recap: General Recipe

· Given an original optimization

$$\min_{\mathbf{x}} f(\mathbf{x})$$
subject to
$$g_i(\mathbf{x}) \le 0, i = 1, ..., m$$

$$h_i(\mathbf{x}) = 0, i = 1, ..., p$$

· Solve dual optimization with Lagrangian function:

$$\max_{\lambda, \nu} \min_{\mathbf{x}} \qquad \mathcal{L}(\mathbf{x}, \lambda, \nu) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x})$$
subject to
$$\lambda_i \ge 0, \forall i$$

Alternatively, solve the dual optimization with Lagrange qual:

Add constraint

 $\tilde{\mathcal{L}}(\lambda, \nu)$ where $\tilde{\mathcal{L}}(\lambda, \nu) = \min \mathcal{L}(\mathbf{x}, \lambda, \nu)$

subject to $\lambda_i \geq 0, \, \forall i$

A Big Picture

Lagrangian Formulation

• The Lagrangian function is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \nu_i h_i(\mathbf{x}) = 0, i = 1, \dots, p$$

$$- \text{ Here, } \boldsymbol{\lambda} = [\lambda_j, \dots, \lambda_m] \ (\lambda_i \geq 0, \forall i) \text{ and } \boldsymbol{\nu} = [\nu_1, \dots, \nu_p] \ \text{ (on shape)}$$

$$\text{are called Lagrange multipliers (or dual variables)}$$

This leads to primal optimization problem

$$\min_{\mathbf{x}} \max_{\boldsymbol{\nu}, \boldsymbol{\lambda}: \, \lambda_i \geq 0 \, \forall i} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$
- Difficult to solve directly!

 $g_i(\mathbf{x}) \leq 0, i = 1, ..., r$

subject to

Primal and Feasibility

Primal optimization problem:

$$p^* = \min_{\mathbf{x}} \max_{\boldsymbol{\nu}, \boldsymbol{\lambda}: \ \lambda_i \ge 0 \ \forall i} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \qquad \text{subject to} \qquad g_i(\mathbf{x}) \le 0, \ i = 1, ..., m \\ h_i(\mathbf{x}) = 0, \ i = 1, ..., p$$

$$\text{where} \quad \mathcal{L}(\mathbf{x}, \pmb{\lambda}, \pmb{\nu}) = f(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x})$$

Notice that:

$$\mathcal{L}_p(\mathbf{x}) = \max_{\nu, \lambda: \lambda_i \geq 0, \forall i} \mathcal{L}(\mathbf{x}, \lambda, \nu) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \text{ is feasible} \\ \infty & \text{otherwise} \end{cases}$$

problem.

Lagrange Dual

primal vs dual: switching Note: these are different

Dual optimization problem:

subject to subject to $\lambda_i \geq 0, \forall i$ $\tilde{\mathcal{L}}(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ where

Lagrange Dual function

Weak Duality

Primal Optimization Problem (min-max) Problem (max-min) $\min_{\mathbf{m}} \max_{\nu,\lambda:\lambda_i \geq 0, \forall i} \mathcal{L}(\mathbf{x}, \lambda, \nu) \quad \text{weak duality} \quad \max_{\nu,\lambda:\lambda_i \geq 0, \forall i} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda, \nu)$

- $\max_{\boldsymbol{\nu},\boldsymbol{\lambda}:\lambda_i\geq 0} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x},\boldsymbol{\lambda},\boldsymbol{\nu})$ • Claim: $\leq \min_{\mathbf{x}} \max_{\boldsymbol{\nu}, \boldsymbol{\lambda}: \lambda_i \geq 0} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$
- Difference between p^* and d^* is called the **duality gap**.
- In other words, the dual maximization problem (usually easier) gives a "lower bound" for the primal minimization problem (usually more difficult).

Weak Duality

 $d^* = \max_{\boldsymbol{\nu}, \boldsymbol{\lambda}: \lambda_i \geq 0} \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \leq \min_{\mathbf{x}} \max_{\boldsymbol{\nu}, \boldsymbol{\lambda}: \lambda_i \geq 0} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = p^*$

• Proof: Let $\tilde{\mathbf{x}}$ be feasible. Then for any λ, ν with $\lambda_i \geq 0$, $\mathcal{L}(\tilde{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\tilde{\mathbf{x}}) + \sum_{i=1}^{m} \lambda_i g_i(\tilde{\mathbf{x}}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{\mathbf{x}}) \le f(\tilde{\mathbf{x}})$

Thus, $\tilde{\mathcal{L}}(\lambda, \nu) = \min \mathcal{L}(\mathbf{x}, \lambda, \nu) \leq \mathcal{L}(\tilde{\mathbf{x}}, \lambda, \nu) \leq f(\tilde{\mathbf{x}})$ for any λ, ν with $\lambda_i \geq 0$, any feasible $\tilde{\mathbf{x}}$

Then, maximize LHS (w.r.t. dual variables)

$$d^* = \max_{\boldsymbol{\nu}, \lambda: \lambda_i \geq 0} \tilde{\mathcal{L}}(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq f(\tilde{\mathbf{x}})$$
 for any feasible $\tilde{\mathbf{x}}$

Finally, minimize RHS (w.r.t. primal variable)

$$d^* = \max_{\boldsymbol{\nu}, \boldsymbol{\lambda}: \lambda_i \geq 0} \tilde{\mathcal{L}}(\boldsymbol{\lambda}, \boldsymbol{\nu}) \leq \min_{\tilde{\mathbf{x}}: \text{feasible}} f(\tilde{\mathbf{x}}) = p^*$$

Strong Duality

- If $p^* = d^*$, we say strong duality holds.
- What are the conditions for strong duality?
 - does not hold in general
 - holds for convex problems (under mild conditions)
 - conditions that guarantee strong duality in convex problems are called constraint qualification.
- Two well-known conditions (in convex problems)
 - Slater's constraint qualification (review session)
 - Karush-Kuhn-Tucker (KKT) condition (main focus)

Convex Optimization

Also see Convex Optimization

• Standard form of convex problem has the form:

$$\begin{aligned} \min_{\mathbf{x}} & f(\mathbf{x}) \\ \text{subject to} & g_i(\mathbf{x}) \leq 0, i = 1, ..., m \\ & h_i(\mathbf{x}) = 0, i = 1, ..., p \end{aligned}$$

(where f, g, are convex, and h, are affine)

- If **x** satisfies all the constraints, **x** is called feasible.
 - In general, this is a nontrivial problem to solve, so we use techniques for convex optimization.

(Sufficient) Conditions for strong duality: Slater's constraint qualification

· Strong duality holds for a convex problem

$$\min_{\mathbf{x}} \quad f(\mathbf{x})$$
subject to
$$g_i(\mathbf{x}) \le 0, i = 1, ..., m$$

$$h_i(\mathbf{x}) = 0, i = 1, ..., p$$

(where f,g_i are convex, and h_i are affine)

if the constraint is strictly feasible (by any solution), i.e., $g_i(\mathbf{x}) < 0, \forall i = 1, ..., m$ $h_i(\mathbf{x}) = 0, \forall i = 1, ..., p$

Slater's condition is a sufficient condition for strong duality to hold for a convex problem

Karush-Kuhn-Tucker (KKT) condition

Let \mathbf{x}^* be a primal optimal and λ^*, ν^* be a dual optimal solution. If the strong duality holds, then we have the following:

$$\begin{split} \nabla_{\mathbf{x}}f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla_{\mathbf{x}} g_i(\mathbf{x}^*) + \sum_{i=1}^p \nu_i^* \nabla_{\mathbf{x}} h_i(\mathbf{x}^*) &= 0, \\ g_i(\mathbf{x}^*) &\leq 0, \quad i=1,\dots,m, \\ h_i(\mathbf{x}^*) &= 0, \quad i=1,\dots,p, \end{split}$$
 Primal feasibility (2)

$$\lambda_i^* \ge 0, \quad i = 1, \dots, m,$$

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, m$$

Complementary slackness (5)

 $q_i(\mathbf{x}) \le 0, i = 1, ..., m$

Dual feasibility (4)

(Sufficient) Conditions for strong duality: **KKT Conditions**

 $h_i(\mathbf{x}) = 0, i = 1, ..., p$

- Assume f, g, h, are differentiable subject to $g_i(\mathbf{x}) \leq 0, i = 1, ..., m$
- If the original problem is convex (where f, g_i are **convex** and h_i are affine), and $\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*$ satisfy the KKT conditions, then:
 - x* is primal optimal
 - (λ^*, v^*) is dual optimal, and
 - the duality gap is zero (i.e., strong duality holds)

For convex optimization problems (+ differentiable objectives/constraints), KKT is a sufficient condition for strong duality.

Proof for sufficiency (KKT => Strong duality)

- From (2) and (3), \mathbf{x}^* is primal feasible. Claim: When KKT (1)-(5) holds.
- From (4), (λ^*, ν^*) is dual feasible.

 $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ is a convex differentiable function. Thus, from (1), \mathbf{x}^* is a minimizer of $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$. $\tilde{\mathcal{L}}(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) = \min \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$

which proves that the strong duality holds (i.e., duality gap is zero).20

KKT conditions: Conclusion

- If a constrained optimization if differentiable and has convex objective function and constraint sets, then the KKT conditions are (necessary and) sufficient conditions for strong duality (zero duality gap).
- · Thus, the KKT conditions can be used to solve such problems.

Applying Constrained Optimization Techniques for solving SVM

Kernelizing SVM: back to hard-margin case

Optimization problem:

$$\min_{\mathbf{w},b} \frac{1}{2}||\mathbf{w}||^2$$
 label is either -1 or +1 subject to $y^{(n)}\left(\mathbf{w}^{\top}\phi\left(\mathbf{x}^{(n)}\right)+b\right)\geq 1, n=1,...,N$

- This is a constrained optimization problem.
 - We solve this using Lagrange multipliers (convex optimization)

Back to hard-margin SVM

• Use Lagrange multipliers to enforce constraints while optimizing

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \underbrace{\frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \alpha^{(n)} \left\{ 1 - y^{(n)} \left(\mathbf{w}^{\top} \phi \left(\mathbf{x}^{(n)} \right) + b \right) \right\}}_{}$$

• Here, $\alpha^{(n)} > 0$ is the Lagrange multiplier (or dual variable) for each constraint (one per data point)

$$y^{(n)}\left(\mathbf{w}^{\top}\phi\left(\mathbf{x}^{(n)}\right)+b\right) \ge 1 \qquad n=1,...,N$$

Lagrangian and Lagrange Dual

• Optimizing the Lagrange dual problem :

$$\max_{\boldsymbol{\alpha}} \min_{\mathbf{w}, b} \mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \alpha^{(n)} \left\{ 1 - y^{(n)} \left(\mathbf{w}^{\top} \phi \left(\mathbf{x}^{(n)} \right) + b \right) \right\}$$
 subject to $\alpha^{(n)} > 0$, $\forall n$

 We first minimize w.r.t. primal variables w and b, and get a <u>Lagrange dual problem</u>:

$$\begin{array}{ll} \max\limits_{\pmb{\alpha}} \ \tilde{\mathcal{L}}(\pmb{\alpha}) \\ \text{subject to} & \alpha^{(n)} \geq 0, \forall n \\ \text{where} & \tilde{\mathcal{L}}(\pmb{\alpha}) = \min\limits_{\substack{n = 1 \\ n}} \mathcal{L}(\mathbf{w}, b, \pmb{\alpha}) \end{array} \tag{a.k.a. Lagrange dual function)}$$

(Please see the supplementary material for more explanation about Lagrange Dual)

Maximize the Margin

• Lagrangian function:

$$\mathcal{L}(\mathbf{w},b,\alpha) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^N \alpha^{(n)} \left\{ 1 - y^{(n)} \left(\mathbf{w}^\top \phi \left(\mathbf{x}^{(n)} \right) + b \right) \right\}$$
• Set the derivatives of $\mathcal{L}(\mathbf{w},b,\alpha)$ to zero to get
$$\mathbf{w} = \sum_{n=1}^N \alpha^{(n)} y^{(n)} \phi \left(\mathbf{x}^{(n)} \right) \qquad 0 = \sum_{n=1}^N \alpha^{(n)} y^{(n)} \qquad \text{(c.f. KKT (1) Stationarity } \sum_{\mathbf{v}_w \mathcal{L}(\mathbf{w},b,\alpha) = 0}^{\nabla_y \mathcal{L}(\mathbf{w},b,\alpha) = 0}$$

• Substitute in, to eliminate **w** and *b*,

$$\underbrace{\sum_{\alpha} (\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{x})}_{\text{subject to}} \underbrace{\sum_{n=1}^{N} \alpha^{(n)} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha^{(n)} \alpha^{(m)} y^{(n)} y^{(m)} \phi\left(\mathbf{x}^{(n)}\right)^{\top} \phi\left(\mathbf{x}^{(m)}\right)}_{\text{subject to}}$$

Support Vectors

• The KKT conditions are: $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, c)$

$$\nabla_b \mathcal{L}(\mathbf{w}, b, \alpha) = 0$$

$$\alpha^{(n)} \ge 0$$

$$1 - y^{(n)} h\left(\mathbf{x}^{(n)}\right) \le 0$$

$$\alpha^{(n)} \left\{1 - y^{(n)} h\left(\mathbf{x}^{(n)}\right)\right\} = 0$$

• The last condition (complementary slackness) means:

— either
$$\alpha^{(n)}=0$$
 or $y^{(n)}h\left(\mathbf{x}^{(n)}\right)=1$ · support vectors

• That is, only the support vectors matter!

 $- \text{ To compute } _{h\left(\mathbf{x}\right)}\text{(prediction), sum only over support vectors } _{h\left(\mathbf{x}\right)} = \sum \qquad \alpha^{(m)}y^{(m)}k\left(\mathbf{x},\mathbf{x}^{(m)}\right) + b$

$\max_{\alpha} \tilde{\mathcal{L}}(\alpha) = \sum_{n=1}^{N} \alpha^{(n)} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha^{(n)} \alpha^{(m)} y^{(n)} y^{(m)} \underbrace{\phi\left(\mathbf{x}^{(n)}\right)^{\top} \phi\left(\mathbf{x}^{(m)}\right)}_{=k(\mathbf{x}^{(n)}, \mathbf{x}^{(m)})}$

Dual Representation (with kernel)

• Define a kernel $k\left(\mathbf{x}^{(n)},\mathbf{x}^{(m)}\right) = \phi\left(\mathbf{x}^{(n)}\right)^{\top}\phi\left(\mathbf{x}^{(m)}\right)$

subject to $\alpha^{(n)} \ge 0$, $\forall n$

• Once we have α , we don't need **w**.

· Dual optimization is to maximize

• Predict classification for arbitrary input x using:

$$h\left(\mathbf{x}\right) = \mathbf{w}^{\top} \phi\left(\mathbf{x}\right) + b = \sum_{n=1}^{N} \alpha^{(n)} y^{(n)} k\left(\mathbf{x}, \mathbf{x}^{(n)}\right) + b$$

$$\mathbf{w} = \sum_{n=1}^{N} \alpha^{(n)} y^{(n)} \phi\left(\mathbf{x}^{(n)}\right)$$

Recovering b

• For any support vector $\mathbf{x}^{(n)} : y^{(n)} h\left(\mathbf{x}^{(n)}\right) = 1$

• Replacing with $h\left(\mathbf{x}\right) = \sum_{m \in S} \alpha^{(m)} y^{(m)} k\left(\mathbf{x}, \mathbf{x}^{(m)}\right) + b$ $y^{(n)} \left(\sum_{m \in S} \alpha^{(m)} y^{(m)} k\left(\mathbf{x}^{(n)}, \mathbf{x}^{(m)}\right) + b\right) = 1$

(index) set of support vectors

• Multiply $y^{(n)}$, and sum over n:

$$b = \frac{1}{N_S} \sum_{n \in S} \left(y^{(n)} - \sum_{m \in S} \alpha^{(m)} y^{(m)} k\left(\mathbf{x}^{(n)}, \mathbf{x}^{(m)}\right) \right)$$

Marigin

Amazination for:

Formulation of soft-margin SVM

Maximize the margin, and also penalize for the slack variables

$$C\sum_{n=1}^{N} \xi^{(n)} + \frac{1}{2} \|\mathbf{w}\|^2$$

• The support vectors are now those with

$$y^{(n)}h\left(\mathbf{x}^{(n)}\right) = 1 - \xi^{(n)}$$

Dual formulation of soft-margin SVM

Lagrangian

$$\begin{split} \mathcal{L}(\mathbf{w},b,\pmb{\xi},\pmb{\alpha},\pmb{\mu}) &= \frac{1}{2}\|\mathbf{w}\| + C\sum_{n=1}^{N}\xi^{(n)} + \sum_{n=1}^{N}\alpha^{(n)}\left\{1 - y^{(n)}h(\mathbf{x}^{(n)}) - \xi^{(n)}\right\} + \sum_{n=1}^{N}\mu^{(n)}\left(-\xi^{(n)}\right) \end{split}$$
 where $\alpha^{(n)} \geq 0$, $\mu^{(n)} \geq 0$, $\xi^{(n)} \geq 0$, $\forall n$

KKT conditions for the constraints

$$\begin{array}{c} 1-y^{(n)}h\left(\mathbf{x}^{(n)}\right)-\xi^{(n)}\leq 0\\ -\xi^{(n)}\leq 0 \end{array} \right\} \text{ Primal variables satisfy the inequality constraints}$$

$$\begin{array}{c} \alpha^{(n)}\geq 0\\ \mu^{(n)}>0 \end{array} \right\} \text{ Dual variables (for above inequalities) are feasible}$$

$$\alpha^{(n)} \left(1 - y^{(n)} h\left(\mathbf{x}^{(n)}\right) - \xi^{(n)}\right) = 0 \\ \mu^{(n)} \xi^{(n)} = 0$$
 Complementary slackness condition

Dual formulation of soft-margin SVM

Taking derivatives

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{n=1}^{N} \alpha^{(n)} y^{(n)} \phi \left(\mathbf{x}^{(n)} \right)$$

$$\frac{\partial \mathcal{L}}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} \alpha^{(n)} y^{(n)} = 0$$

$$\frac{\partial \mathcal{L}}{\partial \xi^{(n)}} = 0 \quad \Rightarrow \quad \alpha^{(n)} = C - \mu^{(n)}$$

33

Dual formulation of soft-margin SVM

$$\mathbf{w} = \sum_{n=1}^{N} \alpha^{(n)} y^{(n)} \phi\left(\mathbf{x}^{(n)}\right) \qquad \sum_{n=1}^{N} \alpha^{(n)} y^{(n)} = 0$$

$$\sum_{n=1}^{N} \alpha^{(n)} y^{(n)} = 0$$

$$\alpha^{(n)} = C - \mu^{(n)}$$

• Plug these back into the Lagrangian:

$$\begin{split} \mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu}) &= \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + \sum_{n=1}^{N} \underbrace{(C - \boldsymbol{\mu}^{(n)})}_{\alpha^{(n)}} \boldsymbol{\xi}^{(n)} + \sum_{n=1}^{N} \alpha^{(n)} \{1 - y^{(n)} (\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) + b)) - \boldsymbol{\xi}^{(n)} \} \\ &= \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \sum_{n=1}^{N} \alpha^{(n)} y^{(n)} \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) - b \sum_{n=1}^{N} \alpha^{(n)} y^{(n)} + \sum_{n=1}^{N} \alpha^{(n)} \\ &= \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} - \mathbf{w}^{\top} \left(\sum_{n=1}^{N} \alpha^{(n)} y^{(n)} \phi(\mathbf{x}^{(n)}) \right) + \sum_{n=1}^{N} \alpha^{(n)} \\ &= \sum_{n=1}^{N} \alpha^{(n)} - \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} \\ &= \sum_{n=1}^{N} \alpha^{(n)} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha^{(n)} \alpha^{(m)} y^{(n)} y^{(m)} \phi(\mathbf{x}^{(n)})^{\top} \phi(\mathbf{x}^{(m)}) \end{split}$$

Dual formulation of soft-margin SVM

· Dual optimization (via Lagrange dual)

$$\begin{array}{ll} \max_{\pmb{\alpha}} & \sum_{n=1}^N \alpha^{(n)} - \frac{1}{2} \sum_{n=1}^N \sum_{m=1}^M \alpha^{(n)} \alpha^{(m)} y^{(n)} y^{(m)} k\left(\mathbf{x}^{(n)}, \mathbf{x}^{(m)}\right) & \text{inner product of feal replaced with kernel subject to} \\ & \text{subject to} & 0 \leq \alpha^{(n)} \leq C & \longleftarrow \mu^{(n)} = C - \alpha^{(n)} \geq 0 \\ & \sum_{n=1}^N \alpha^{(n)} y^{(n)} = 0 & \end{array}$$

Solve quadratic problem (convex optimization)

Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for C (i.e., smaller C → larger regularization)
- 3. Solve the optimization problem (many software packages available) - primal or dual
- 4. Construct the discriminant function from the support vectors

38

Some Issues

SVM: practical issues

- Linear kernels work fairly well, but can be suboptimal.
- Choice of (nonlinear) kernels
 - Gaussian or polynomial kernel is default
 - If the simple kernels are ineffective, more elaborate kernels are needed
 - Domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - E.g., Gaussian kernel: $K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} \mathbf{z}\|^2}{2}\right)$
 - σ is the distance between neighboring points whose labels are likely to affect the prediction of the query point.
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.

- Summary: Support Vector Machine Max margin classifier: improved robustness & less over-fitting
- Solved by convex optimization techniques
- Kernel trick can learn complex decision boundaries

Additional Resource

- Kernel Methods
 - http://www.kernel-machines.org/
- Convex Optimization
 - http://www.stanford.edu/~boyd/cvxbook/
 - http://www.stanford.edu/class/ee364a/
 - see Chapter 5 (and earlier chapters)

SVM Implementation

- LIBSVM
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
 - One of the most popular generic SVM solver (supports nonlinear kernels)
- Liblinear
 - http://www.csie.ntu.edu.tw/~cjlin/liblinear/
 - One of the fastest linear SVM solver (linear kernel)
- SVMlight
 - http://www.cs.cornell.edu/people/tj/svm_light/
 - Structured outputs, various objective measure (e.g., F1, ROC area), Ranking, etc.
- Scikit-learn
 - https://scikit-learn.org/stable/modules/svm.html

SVM demo code

- http://www.mathworks.com/matlabcentral/fileexch ange/28302-svm-demo
- http://www.alivelearn.net/?p=912

42