عمليات المصفوفات

🗖 ضرب المتجهات – توجد طريقتين لضرب متجه بمتجه :

: نستنتج $x,y \in \mathbb{R}^n$ ل (inner product) : ضرب داخلی

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

: نستنتج $x \in \mathbb{R}^n$ ل $x \in \mathbb{R}^n$ نستنتج فرب خارجی

$$xy^T = \begin{pmatrix} x_1y_1 & \cdots & x_1y_n \\ \vdots & & \vdots \\ x_my_1 & \cdots & x_my_n \end{pmatrix} \in \mathbb{R}^{m \times n}$$

 $x\in\mathbb{R}^n$ مصفوفة – متجه : ضرب المصفوفة $A\in\mathbb{R}^{n imes m}$ والمتجه $x\in\mathbb{R}^n$ ينتجه متجه من الشكل $x\in\mathbb{R}^n$ حيث

$$Ax = \begin{pmatrix} a_{r,1}^T x \\ \vdots \\ a_{r,m}^T x \end{pmatrix} = \sum_{i=1}^n a_{c,i} x_i \in \mathbb{R}^m$$

x يرمز لعناصر x يعتبر متجه الصفوف و $a_{c,j}$ يعتبر متجه الأعمدة لA كذلك x يرمز لعناصر $a_{r,j}^{T}$

 $A\in\mathbb{R}^{n imes p}$ و $A\in\mathbb{R}^{n imes p}$ و المصفوفة – ضرب المصفوفة – ضرب المصفوفة $A\in\mathbb{R}^{n imes p}$ و $A\in\mathbb{R}^{n imes p}$

$$AB = \begin{pmatrix} a_{r,1}^T b_{c,1} & \cdots & a_{r,1}^T b_{c,p} \\ \vdots & & \vdots \\ a_{r,m}^T b_{c,1} & \cdots & a_{r,m}^T b_{c,p} \end{pmatrix} = \sum_{i=1}^n a_{c,i} b_{r,i}^T \in \mathbb{R}^{n \times p}$$

حيث $b_{r,i}^T$ و $a_{r,i}^T$ يعتبر متجه الصفوف $a_{c,j}$ و $a_{c,j}$ متجه الأعمدة ل $a_{r,i}^T$ على التوالى.

المنقول (Transpose) منقول المصفوفة A^T منقول المصفوفة مع الأعمدة $A \in \mathbb{R}^{m \times n}$ منقول المصفوفة المنقول - (Transpose)

$$\forall i, j, \quad A_{i,j}^T = A_{j,i}$$

 $AB)^T = B^TA^T$ ملاحظة: لأى مصفوفتين A و B، نستنتج

المعكوس (Inverse) – معكوس أي مصفوفة A قابلة للعكس (Invertible) يرمز له ب A^{-1} ويعتبر المعكوس المصفوفة الوحيدة التي لديها الخاصية التالية :

$$AA^{-1} = A^{-1}A = I$$

 $(AB)^{-1} = A$ ملاحظة: ليس جميع المصفوفات يمكن إيجاد معكوس لها. كذلك لأى مصفوفتين A و B نستنتج

التي في القطر: tr(A) أثر أي مصفوفة مربعة A يرمز له بtr(A) يعتبر مجموع العناصر التي في القطر: \Box

ملخص الجبر الخطى و التفاضل و التكامل

افشین عمیدی و شروین عمیدی ۱۶ ربیع الثانی، ۱۶۶۱

تمت الترجمة بواسطة زيد اليافعي. تمت المراجعة بواسطة أمجد الخطابي و مازن مليباري.

الرموز العامة

. i متجه $x\in\mathbb{R}^{\ltimes}$ نرمز ل $x\in\mathbb{R}^{\ltimes}$ متجه یحتوی علی x مدخلات، حیث $x\in\mathbb{R}^{\ltimes}$ یعتبر المدخل رقم $x\in\mathbb{R}^{\ltimes}$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

مصفوفة m مصفوفة مصفوفة تحتوى على $A \in \mathbb{R}^{m imes n}$ نرمز ل $A_{i,j}$ عيث $A_{i,j}$ مصفوفة مصفوفة المحتوى على مصفوفة المحتوى على المحتوى على المحتوى على المحتوى المحتوى

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

 $\bigwedge A_{m,1} \cdots A_{m,n}$ / ملاحظة x المعرف مسبقا يمكن اعتباره مصفوفة من الشكل $n \times 1$ والذي يسمى ب مصفوفة من عمود واحد.

مصفوفة الوحدة (Identity) – مصفوفة الوحدة $I\in\mathbb{R}^{n imes n}$ تعتبر مصفوفة مربعة تحتوي على المدخل ١ في

$$I = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{array}\right)$$

A imes I = I imes A = A فإن $A \in \mathbb{R}^{n imes n}$ ملاحظة : جميع المصفوفات من الشكل

🗖 مصفوفة قطرية (diagonal) – المصفوفة القطرية هي مصفوفة من الشكل

$$D = \left(\begin{array}{cccc} d_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_n \end{array} \right)$$

 $diag(d_1,\ldots,d_n)$ ملاحظة: نرمز كذلك ل D ل كذلك

□ الارتباط الخطي (Linear Dependence) – مجموعة المتجهات تعتبر تابعة خطياً إذا وفقط إذا كل متجه يمكن كتابته بشكل خطى بإسخدام مجموعة من المتجهات الأخرى.

ملاحظة: إذا لم يتحقق هذا الشرط فإنها تسمى مستقلة خطياً.

رتبة المصفوفة (Rank) – رتبة المصفوفة A يرمز له ب(A) وهو يصف حجم الفضاء المتجهي الذي نتج من أعمدة المصفوفة. يمكن وصفه كذلك بأقصى عدد من أعمدة المصفوفة A التي تمتلك خاصية أنها مستقلة خطاءً

مصفوفة شبه معرفة موجبة (Positive semi-definite) – المصفوفة $R \times \mathbb{R}^{n \times n}$ تعتبر مصفوفة شبه معرفة موجبة (PSD) ويرمز لها بالرمز $A \succeq A$ إذا :

$$A = A^T$$
 \mathbf{y} $\forall x \in \mathbb{R}^n, \ x^T A x \geqslant 0$

ملاحظة: المصفوفة A تعتبر مصفوفة معرفة موجبة إذا $0 \prec A$ وهي تعتبر مصفوفة (PSD) والتي تستوفي الشرط : لكل متجه غير الصفر $x^TAx > 0$ عيث $x^TAx > 0$

 λ القيم الذايتة (eigenvalue)، المتجه الذاتي (eigenvector) – إذا كان لدينا مصفوفة $A\in\mathbb{R}^{n imes n}$ القيمة $z\in\mathbb{R}^n$ تعتبر قيمة ذاتية للمصفوفة A إذا وجد متجه

(0} يسمى متجه ذاتى حيث أن :

$$Az=\lambda z$$

 Γ انظرية الطيفية (spectral theorem) – نفرض $\Lambda \in \mathbb{R}^{n \times n}$ إذا كانت المصفوفة Λ متماثلة فإن $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ ويرمز لها بالرمز $U \in \mathbb{R}^{n \times n}$ (orthogonal) مصفوفة قطرية بإستخدام مصفوفة متعامدة صفوفة متعامدة (orthogonal) حيث أن:

$$\exists \Lambda$$
قطریة , $A = U \Lambda U^T$

 Γ مجزئ القيمة المفرده (singular value decomposition) مخزئ القيمة المفرده (singular value decomposition) مخزئ القيمة $V\in\mathbb{R}^{n\times n}$ و $\Sigma\in\mathbb{R}^{m\times n}$ مصفوفة قطرية $\Sigma\in\mathbb{R}^{m\times n}$ و $\Sigma\in\mathbb{R}^{m\times n}$ مصفوفة قطرية حيث أن :

$$A = U\Sigma V^T$$

حساب المصفوفات

 $f:\mathbb{R}^{m imes n} o\mathbb{R}$ تعتبر دالة و $f:\mathbb{R}^{m imes n} o\mathbb{R}$ تعتبر $f:\mathbb{R}^{m imes n} o\mathbb{R}$ تعتبر دالة و $f:\mathbb{R}^{m imes n} o\mathbb{R}$ تعتبر مصفوفة. المشتقة العليا ل f بالنسبة ل f يعتبر مصفوفة f يرمز له f

$$\left(\nabla_A f(A)\right)_{i,j} = \frac{\partial f(A)}{\partial A_{i,j}}$$

ملاحظة : المشتقة العليا معرفة فقط إذا كانت الدالة f لديها مدى ضمن الأعداد الحقيقية.

x النسبة ل $f:\mathbb{R}^n o \mathbb{R}$ افترض $f:\mathbb{R}^n o \mathbb{R}$ تعتبر دالة و $x\in\mathbb{R}^n$ يعتبر متجه. الهيشيان ل f بالنسبة ل تعتبر مصفوفة متماثلة من الشكل x imes n يرمز لها بالرمز $\nabla_x^2 f(x)$ حيثب أن :

$$\left(\nabla_x^2 f(x)\right)_{i,j} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$$

tr(AB) = tr(BA) و $tr(A^T) = tr(A)$ و tr(AB) = tr(BA) و مصفوفتین tr(AB) = tr(BA)

 \Box المحدد (Determinant) – المحدد لأي مصفوفة مربعة من الشكل $A\in\mathbb{R}^{n imes n}$ يرمز له ب|A| او $\det(A)$ يتم تعريفه بإستخدام $A_{i,j}$ والذي يعتبر المصفوفة A مع حذف الصف i والعمود j كالتالى :

$$\det(A) = |A| = \sum_{j=1}^{n} (-1)^{i+j} A_{i,j} |A_{\setminus i,\setminus j}|$$

 $|A^T| = |A|$ و |AB| = |A||B| کذلك |AB| = |A||B| و $|A^T| = |A|$ ملاحظة: A يكون لديه معكوذ إذا وفقط إذا

خواص المصفوفات

التفكيك المتماثل (Symmetric Decomposition) – المصفوفة A يمكن التعبير عنها بإستخدام جزئين (Antisymmetric) وغير متماثل (Symmetric) كالتالى :

$$A = \underbrace{\frac{A + A^T}{2}}_{ ext{dist}} + \underbrace{\frac{A - A^T}{2}}_{ ext{dist}}$$
غير متماثل

 \square المعيار (Norm) – المعيار يعتبر دالة ($N:V \to [0,+\inf]$ حيث $N:V \to [0,+\inf]$ ، حيث المعيار يعتبر دالة ($N:V \to [0,+\inf]$)، حيث أن لكل $x,y \in V$ لدينا :

- $N(x+y) \leqslant N(x) + N(y) \bullet$
- N(ax) = |a|N(x) فإن a عدد a فإن
 - $N(x) = 0 \implies x = 0$

لأى $x \in V$ المعايير الأكثر إستخداماً ملخصة في الجدول التالى:

مثال للإستخدام	التعريف	الرمز	المعيار
LASSO regularization	$\sum_{i=1}^{n} x_i $	$ x _{1}$	L^1 Manhattan,
Ridge regularization	$\sqrt{\sum_{i=1}^{n} x_i^2}$	$ x _{2}$	L^2 Euclidean,
Hölder inequality	$\left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}}$	$ x _p$	L^p -norm, p
Uniform convergence	$\max_{i} x_i $	$ x _{\infty}$	L^{∞} Infinity,

ملاحظة : الهيشيان معرفة فقط إذا كانت الدالة f لديها مدى ضمن الأعداد الحقيقية.

: مهمة الفضاءات العالية – لأي مصفوفات A,B,C فإن الخواص التالية مهمة الحساب في مشتقة الفضاءات العالية -

$$\boxed{ \nabla_A \operatorname{tr}(AB) = B^T } \boxed{ \nabla_{A^T} f(A) = (\nabla_A f(A))^T }$$

$$\boxed{\nabla_A \operatorname{tr}(ABA^T C) = CAB + C^T AB^T} \qquad \boxed{\nabla_A |A| = |A|(A^{-1})^T}$$