Intro to 1D optimization

Thursday, August 27, 2020 11:57 PM

Optimization

Many root-finding problems come from optimization

Thm if $f:[a,b] \rightarrow \mathbb{R}$ is differentiable, then its minimum (and maximum) is at a critical point (ie., f'(x)=0) or at an end-point $\{a,b\}$.

Proof let $f(x_0) = \min_{x} f(x)$ and for the sake of contradiction,

assume $f'(x_0) \neq 0$ and $x_0 \notin \{a_ib\}$. Without loss of generality "WLUG" assume $f'(x_0) < 0$ (if $f'(x_0) > 0$, pick h<0 below)

Then since $f(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$, there is some of s.t.

if $|h| < \delta$, then $f(x_b + h) - f(x_b) < 0$. Choose such a h with $0 < h < \delta$

then $f(x_0+h) - f(x_0) < 0$, i.e., $f(x_0+h) < f(x_0)$, with hor, which is a contradiction. \square

In 1D, optimization

and not-finding are easy.

Even the Slowest methods in Chiz aren't bod.

Optimization in higher dimensions

Thm: if $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, then all minima/maxima occur at critical points ($\nabla f(x) = 0$)

For min f(x), it's different: $\times \in \mathbb{C}$ $\times \in \mathbb{C}$ now we need $\nabla f(x)^{\top}(y-x) > 0$ $\forall y \in \mathbb{C}$

Things are way worse

-) no real equivalent of bisection (sort of: "ellipsoid method")
- 2) making a grid and just checking is very slow in high-dimensions
- 3) Not only might it be hard to list all critical points but in fact there could be an infinite number of them.!

 Ex: $\chi^2 + y^2 = 1$ has an ∞ # of solutions

4) Checking all boundary points (like \$a,b) also fails,

Since there can be an \$p\$ # of boundary points in > 1 dimension

Usually we need more Structure

ex: f is convex, C is a convex set

cis a convex set,

then all local minimizer

of f (over C) are also

condition of the minimizer (of a global minimizer)

cusually impossible

take CSC 1 5254 or APPM 5630
ECEN 5008 Special types