专 题 传统发酵技术的应用

"葡萄美酒夜光杯, 欲饮琵琶马上催。醉卧沙场君莫笑, 古来征战几人回。" 这是唐诗中提 及的葡萄酒。其实人类用不同原料酿酒的历史约有5000年了。但直到19世纪, 法国的巴斯德 才发现葡萄汁变酒是酵母菌的发酵作用。利用不同微生物的发酵作用制作食品,历史悠久,遍 布民间,一般称做传统发酵技术。

在这个专题中, 你将亲手制作果酒、果醋、腐乳、泡菜, 学习传统发酵技术。相信你收获 的不仅仅是美酒等食品,还有难以忘怀的种种乐趣。

课题背景

人类利用微生物发酵制作果酒、果 醋的历史,源远流长。与这悠久的历史一 同沉淀的, 是有关酒与醋的各种传说与 文化。你品尝过果酒吗?果酒中,葡萄酒 醇厚、浓郁,耐人寻味,苹果酒清香、明 快,风味清爽。如果将果酒进一步发酵,

还能获得果醋。酸度较高的果醋可用于烹调,酸度较低的果醋是一种新兴的饮料。无 论是果酒还是果醋, 都具有一定的保健养生的功效。

在享用果酒、果醋的时候, 你是否想过自己动手来做一做? 本课题将向你介绍 果酒、果醋的制作原理,在此基础上,你将进行装置的设计,然后完成果酒、果醋 的制作。

基础知识

在本课题中,我们以制作葡萄酒和葡萄醋为例,学习 果酒和果醋的制作方法。

(一) 果酒制作的原理

果酒的制作离不开酵母菌(图1-1)。酵母菌是兼性厌 氧微生物, 在有氧条件下, 酵母菌进行有氧呼吸(反应式 如下),大量繁殖。

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$$

在无氧条件下,酵母菌能进行酒精发酵(反应式如 下)。

$C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$

温度是酵母菌生长和发酵的重要条件。20℃左右最适 合酵母菌繁殖,酒精发酵时一般将温度控制在18~25℃。 在葡萄酒的自然发酵过程中,起主要作用的是附着在葡萄 皮上的野生型酵母菌。在发酵过程中, 随着酒精度数的提 高,红葡萄皮的色素也进入发酵液,使葡萄酒呈现深红色。 在缺氧、呈酸性的发酵液中,酵母菌可以生长繁殖,而绝 大多数其他微生物都因无法适应这一环境而受到抑制。

图 1-1 电子显微镜下的酵母菌

在自然界中,酵母菌分布广泛,"喜欢"葡萄汁等含糖 量高的果汁。葡萄在秋季成熟落地,会流出果汁,果汁周 围的土壤中就会有大量的酵母菌生长繁殖。到了冬天,酵 母菌形成孢子,进入休眠状态。由春至夏,土壤的温度逐 渐升高,酵母菌便又进入了旺盛的生长和繁殖时期。一年 四季、土壤始终是酵母菌的大本营。土壤中的酵母菌可以 通过各种途径传播到葡萄上:一阵轻风,可能将酵母菌吹 到葡萄上:飞溅的雨水,可能将酵母菌溅到葡萄上;昆虫 吸食葡萄汁的同时, 也传播了酵母菌。

(二) 果醋制作的原理

醋酸菌(图1-2)是一种好氧细菌,只有当氧气充足 时,才能进行旺盛的生理活动。在变酸的酒的表面观察到 的菌膜就是醋酸菌在液面大量繁殖而形成的。实验表明, 醋酸菌对氧气的含量特别敏感, 当进行深层发酵时, 即使 只是短时间中断通入氧气,也会引起醋酸菌死亡。当氧气、 糖源都充足时,醋酸菌将葡萄汁中的糖分解成醋酸;当缺 少糖源时,醋酸菌将乙醇变为乙醛,再将乙醛变为醋酸(反 应简式如下)。醋酸菌的最适生长温度为30~35℃。

$$C_2H_5OH + O_2 \longrightarrow CH_3COOH + H_2O$$

实验设计

请你根据实验流程示意图(图1-3)和提供的资料,思 考有关问题,然后进行实验设计,并写出详细的实验方案。

图 1-2 电子显微镜下的醋酸菌

图 1-3 制作果酒和果醋的实验流程示意图

[资料] 发酵装置的设计

图1-4是两位同学所使用的发酵装置, 你认为他们的 方法有哪些可取之处, 哪些地方还需要改进? 你将如何设 计发酵装置,进行实验呢?

图 1-4 a 用带盖的瓶子制葡萄酒

图 1-4 b 果酒和果醋的发酵装置 示意图

- 你认为应该先冲洗葡萄还是先除去 枝梗?为什么?
- 你认为应该从哪些方面防止发酵液 被污染?
- 制葡萄酒时,为什么要将温度控制 在18~25℃?制葡萄醋时,为什么 要将温度控制在30~35℃?
- 制葡萄醋时,为什么要适时通过充气口充气?

A同学用带盖的瓶子制葡萄酒 (图1-4a)。在发酵过程中,每隔12h左右将瓶盖拧松一次 (注意,不是打开瓶盖),以放出CO₂,此后再将瓶盖拧紧。当发酵产生酒精后,再将瓶盖打开,盖上一层纱布,进行制葡萄醋的发酵。

B同学设计了如图1-4b所示的发酵装置,请分析此装置中的充气口、排气口和出料口分别有哪些作用。为什么排气口要通过一个长而弯曲的胶管与瓶身连接?结合果酒、果醋的制作原理,你认为应该如何使用这个发酵装置?

操作提示

(一) 材料的选择与处理

选择新鲜的葡萄,榨汁前先将葡萄冲洗,并除去枝梗。

(二) 防止发酵液被污染

- 1. 榨汁机要清洗干净,并晾干。
- 2. 发酵瓶要清洗干净,用体积分数为70%的酒精消毒,或用洗洁精洗涤。
 - 3. 装入葡萄汁后, 封闭充气口。

(三) 控制好发酵的条件

- 1. 葡萄汁装入发酵瓶时,要留有大约1/3的空间。
- 2. 在制葡萄酒的过程中,要将温度严格控制在18~25℃,时间控制在10~12 d左右,可通过出料口对发酵的情况进行及时的监测。
- 3. 在制葡萄醋的过程中,要将温度严格控制在30~35℃,时间控制在7~8 d左右,并注意适时通过充气口充气。

结果分析与评价

- 1. 在制葡萄酒和葡萄醋的过程中,发酵液分别有哪些变化? 其中最明显的变化发生在发酵后多少天? 你能分析引起变化的原因吗?
- 2. 你如何证实葡萄汁转化成葡萄酒,是由于酵母菌的发酵作用? 你能想出什么简单易行的方法,证明葡萄醋中的确有醋酸生成吗?
- 3. 你制作的葡萄酒与葡萄醋的口味如何? 如果你对结果不满意, 你认为应该如何改进?

课题延伸

果汁发酵后是否有酒精产生,可以用重铬酸钾来检验。在酸性条件下,重铬酸钾与酒精反应呈现灰绿色(图

1-5)。检测时,先在试管中加入发酵液 $2 \, \text{mL}$,再滴入物质的量浓度为 $3 \, \text{mol/L}$ 的 $H_2 SO_4 3$ 滴,振荡混匀,最后滴加常温下饱和的重铬酸钾溶液 $3 \, \text{滴,振荡试管,观察颜色的变化。想一想,如果要使检验的结果更有说服力,应该如何设计对照?}$

相关链接

- 1. 为提高果酒的品质,更好地抑制其他微生物的生长,可以直接在果汁中加入人工培养的酵母菌。而人工培养酵母菌,首先需要获得纯净的酵母菌菌种。如何将葡萄上附着的酵母菌分离出来,获得纯净的菌种呢? 你可以在参考"专题2微生物的培养与应用"的基础上,进一步查阅资料,再作尝试。
- 2. 制作果醋时,也可以直接在果酒中加入醋酸菌。醋酸菌的菌种可以到当地生产食醋的工厂或菌种保藏中心购买。你也可以尝试从食醋中分离醋酸菌,分离的方法参见专题2。

图 1-5 酒精与重铬酸 钾的颜色反应

练习

- 1. 请你查阅资料,了解果酒、果醋在人类健康、社会经济生产等方面所具有的意义。
- 2. 比较自己制作果酒、果醋的方法与当今果酒、果醋生产厂家的工艺流程有哪些异同。在此基础上,总结少量制作转化为大规模生产时,需要解决哪些实际问题。你能从中体会到科学技术是如何转化为生产力的吗?
- 3. 分析右栏有关果醋生产的经济效益的资料,如果请你投资建厂,你会考虑哪些问题?

生产果醋的经济效益 (按适用于家庭式的小规模生产来核算): 1 kg苹果可以生产标准苹果醋 4~5 kg,每月投料4次,以每次投料(苹果)300 kg 计,每月可生产标准苹果醋 4800~5700 kg。原、辅材料1180元,煤、电、杂项开支150元,总成本1330元。每公斤苹果醋成本0.23~0.28元。成品散醋每公斤0.8元 (批发0.6元,零售1元),每月可获利润2500~3200元。中、高档瓶装苹果醋利润更高。

腐乳的制作

课题背景

你喜欢吃腐乳吗? 腐乳是我国古代劳动人 民创造出的一种经过微生物发酵的大豆食品。 早在公元5世纪的北魏古籍中,就有关于腐乳生 产工艺的记载。千百年来, 腐乳一直受到人们的 喜爱。这是因为经过微生物的发酵, 豆腐中的蛋

白质被分解成小分子的肽和氨基酸,味道鲜美,易于消化吸收,而腐乳本身又便于保 存。在本课题中, 你将首先学习制作腐乳的原理, 然后自己动手实践, 并在此基础上 探究影响腐乳品质的条件。

② 王致和为什么要撒许多盐,将长毛 的豆腐腌起来?

② 你能利用所学的生物学知识,解释

豆腐长白毛是怎么一回事吗?

你能总结王致和做腐乳的方法吗?

基础知识

腐乳制作的原理

下面是一则关于腐乳制作方法的传说故事,请你阅读 后,讨论旁栏中的问题。

相传,清康熙八年(公元1669年),安徽省一进京举 子王致和, 京考未中, 为了生存和准备下一次的考试, 便 做起了卖豆腐的生意。一天,他发现没卖出的豆腐长了白 毛,深感苦恼,但又舍不得丢弃,便将豆腐装入坛内,撒 上许多盐腌了, 然后密封起来。他继续苦读, 到了秋末他 才想起此事。打开坛子,一股臭味散发出来,豆腐也变成 了青色。他试着尝了一块,没想到"闻着臭,吃着香"。街 坊邻居们品尝后也很爱吃。于是, 王致和开始专营臭豆腐 和酱豆腐的生意。

现代科学研究表明, 多种微生物参与了豆腐的发 酵,如毛霉、曲霉、根霉、酵母菌等,其中起主要作用 的是毛霉。毛霉是一种丝状真菌,分布广泛,常见于土 壤、水果、蔬菜、谷物上。毛霉生长迅速, 具有发达的 白色菌丝(图1-6)。毛霉等微生物产生的蛋白酶能将豆 腐中的蛋白质分解成小分子的肽和氨基酸; 脂肪酶可将 脂肪水解为甘油和脂肪酸。在多种微生物的协同作用 下, 普通的豆腐转变成风味独特的腐乳。

图 1-6 a 长满毛霉白色菌丝的培养基

图 1-6 b 显微镜下毛霉菌的菌丝

实验设计

请结合腐乳制作的流程示意图 (图 1-7) 与提供的资 料,设计实验,制作腐乳。

图 1-7 腐乳制作的实验流程示意图

[资料一] 毛霉的生长

将豆腐块平放在笼屉内,将笼屉中的温度控制在15~ 18 ℃, 并保持一定的湿度。约48 h后, 毛霉开始生长, 3 d 之后菌丝生长旺盛,5d后豆腐块表面布满菌丝。豆腐块上 生长的毛霉来自空气中的毛霉孢子, 而现代的腐乳生产是 在严格无菌的条件下,将优良毛霉菌种直接接种在豆腐上, 这样可以避免其他菌种的污染, 保证产品的质量。

「资料二」 加盐腌制

将长满毛霉的豆腐块分层整齐地摆放在瓶中,同时逐 层加盐, 随着层数的加高而增加盐量, 接近瓶口表面的盐 要铺厚一些。加盐腌制的时间约为80左右。加盐可以析出 豆腐中的水分, 使豆腐块变硬, 在后期的制作过程中不会 过早酥烂。同时, 盐能抑制微生物的生长, 避免豆腐块腐 败变质。

[资料三] 配制卤汤

卤汤直接关系到腐乳的色、香、味。卤汤是由酒及各 种香辛料配制而成的。卤汤中的酒可以选用料酒、黄酒、米 酒、高粱酒等,含量一般控制在12%左右。加酒可以抑制 微生物的生长,同时能使腐乳具有独特的香味。香辛料种 类很多,如胡椒、花椒、八角、桂皮、姜、辣椒等(图1-8)。 香辛料可以调制腐乳的风味,也具有防腐杀菌的作用。你

- 2 我们平常吃的豆腐,哪种适合用来 做腐乳? 为什么?
- ② 吃腐乳时, 你会发现腐乳外部有 一层致密的"皮"。这层"皮"是 怎样形成的呢? 它对人体有害 吗?它的作用是什么?

你可以同时进行多组实验,分别探 究盐的用量、酒的种类和用量、发 酵温度和发酵时间等因素对腐乳风 味和质量的影响。

图 1-8 香辛料

可以根据自己的口味来配制卤汤。

操作提示

请你根据自己设计的实验方案进行操作。在操作过程 中,应特别注意以下一些问题。

(一) 控制好材料的用量

- 1. 用盐腌制时,注意控制盐的用量。盐的浓度过低, 不足以抑制微生物生长,可能导致豆腐腐败变质; 盐的浓 度过高,会影响腐乳的口味。
- 2. 卤汤中酒的含量应控制在12%左右。酒精含量过 高, 腐乳成熟的时间将会延长, 酒精含量讨低, 不足以抑 制微生物生长,可能导致豆腐腐败。

(二) 防止杂菌污染

- 1. 用来腌制腐乳的玻璃瓶,洗刷干净后要用沸水消毒 (有关资料参见专题2课题1)。
- 2. 装瓶时,操作要迅速小心。整齐地摆放好豆腐、加 人卤汤后,要用胶条将瓶口密封。封瓶时,最好将瓶口通 过酒精灯的火焰, 防止瓶口被污染。

结果分析与评价

- 1. 你完成了腐乳的制作吗? 你对腐乳的口味满意吗?
- 2. 通过探究, 你能说明盐的用量、发酵温度、发酵时 间等因素是如何影响腐乳的风味和质量的吗?

相关链接

我国幅员辽阔,各地的环境条件和人们的生活习惯也 很不相同, 腐乳的生产工艺多种多样。请调查你所在的地 方制作腐乳的方法,分析该方法的优缺点。

包括
因
日
日
百
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
方
< 不同以及装罐时加入的辅料的不 同,可以制成近百种不同风味的腐 乳。例如,红方因加入了红曲而呈 深红色, 味厚醇香: 糟方因加入了 酒糟而糟香扑鼻; 青方因不加辅 料,用豆腐本身渗出的水加盐腌制 而成,绵软油滑,异臭奇香。

练习

- 1. 腌制腐乳时,为什么要随着豆腐层的加高而增加盐的用量? 为什么在接近瓶口的表面要将盐铺厚一些?
- 2. 怎样用同样的原料制作出不同风味的腐乳?

课题

制作泡菜并检测亚硝酸盐含量

课题背景

你对泡萝卜、酸黄瓜、酸豆角一定不陌生吧?一碟酸甜香脆的泡菜,能令人胃口大开。尽管泡菜的味道不错,为健康着想,还是应该多吃新鲜蔬菜,少吃腌制食品。你知道这是为什么吗?在本课题中,我们将自己动手制作泡菜。在泡菜的腌制过程中,我们还要跟踪检测

泡菜腌制过程中产生的亚硝酸盐的含量,并探索腌制方法、时间长短、温度高低等条件对泡菜口味和亚硝酸盐含量的影响,寻求提高泡菜质量的措施。

基础知识

(一) 乳酸菌发酵

泡菜的制作离不开乳酸菌。乳酸菌种类很多,在自然界中分布广泛,空气、土壤、植物体表、人或动物的肠道内都有乳酸菌分布。乳酸菌是厌氧细菌,在无氧的情况下,将葡萄糖分解成乳酸。常见的乳酸菌有乳酸链球菌和乳酸杆菌(图1-9)。乳酸杆菌常用于生产酸奶。

(二) 亚硝酸盐

亚硝酸盐为白色粉末,易溶于水,在食品生产中用作食品添加剂。自然界中,亚硝酸盐分布广泛。据统计,蔬菜中亚硝酸盐的平均含量约为 4 mg/kg,咸菜中亚硝酸盐的平均含量在7 mg/kg以上,而豆粉中的平均含量可达10 mg/kg。

膳食中的亚硝酸盐一般不会危害人体健康,但是,当人体摄入的亚硝酸盐总量达到0.3~0.5g时,会引起中毒;当摄入总量达到3g时,会引起死亡。我国卫生标准规定,亚硝酸盐的残留量在肉制品中不得超过30mg/kg,酱腌菜中不超过20mg/kg,而婴儿奶粉中不得超过2mg/kg。

膳食中的绝大部分亚硝酸盐在人体内以"过客"的形

图 1-9 电子显微镜下的乳酸杆菌

为什么含有抗生素的牛奶不能发酵成酸奶?

为什么日常生活中要多吃新鲜蔬菜,不宜多吃腌制蔬菜?

式随尿排出,只有在特定的条件下(适宜的pH、温度和一定的微生物作用),才会转变成致癌物——亚硝胺。大量的动物实验表明,亚硝胺具有致癌作用,同时对动物具有致畸和致突变作用。研究表明,人类的某些癌症可能与亚硝胺有关。

实验设计

请你根据实验流程示意图(图1-10)和提供的资料, 思考有关问题,然后进行实验设计,并写出详细的实验方 案。

图 1-10 泡菜的制作及测定亚硝酸盐含量的实验流程示意图

为什么泡菜坛内有时会长一层 白膜?你认为这层白膜是怎么 形成的?

图 1-11 泡菜坛

[资料一] 泡菜的制作

按照清水与盐的质量比为4:1的比例配制盐水,将盐水煮沸冷却。将经过预处理的新鲜蔬菜混合均匀,装入泡菜坛内,装至半坛时,放入蒜瓣、生姜及其他香辛料,继续装至八成满,再徐徐注入配制好的盐水,使盐水没过全部菜料,盖好坛盖。向坛盖边沿的水槽中注满水,以保证坛内乳酸菌发酵所需的无氧环境。在发酵过程中要注意经常向水槽中补充水。发酵时间长短受室内温度的影响。

[资料二] 测定亚硝酸盐含量的原理

在盐酸酸化条件下,亚硝酸盐与对氨基苯磺酸发生重氮化反应后,与N-1-萘基乙二胺盐酸盐结合形成玫瑰红色染料。将显色反应后的样品与已知浓度的标准显色液进行目测比较,可以大致估算出泡菜中亚硝酸盐的含量。

操作提示

(一) 泡菜坛的选择

应选用火候好、无裂纹、无砂眼、坛沿深、盖子吻合好的泡菜坛(图1-11)。不合格的泡菜坛容易引起蔬菜腐烂。检查时,可将坛口向上压入水中,看坛内有无渗水现象。也可使用玻璃制作的泡菜坛。

(二) 腌制的条件

在泡菜的腌制过程中,要注意控制腌制的时间、温度 和食盐的用量。温度过高、食盐用量过低、腌制时间过短, 容易造成细菌大量繁殖,亚硝酸盐含量增加。一般在腌制 10 d 后,亚硝酸盐的含量开始下降。

(三) 测定亚硝酸盐含量的操作

- 1. 配制溶液 质量浓度为4 mg/mL的对氨基苯磺酸 溶液: 称取 0.4 g 对氨基苯磺酸,溶解于 100 mL 质量分 数为 20% 的盐酸中, 避光保存。质量浓度为 2 mg/mL 的 N-1- 萘基乙二胺盐酸盐溶液: 称取 0.2 g N-1- 萘 基乙二胺盐酸盐,溶解于100 mL水中,避光保存。质量 浓度为5 µg/mL的亚硝酸钠溶液: 称取0.10g于硅胶干燥 器中干燥 24 h 的亚硝酸钠, 用水溶解并定容至 500 mL, 再转移 5 mL 溶液至 200 mL 容量瓶中, 定容至 200 mL。 提取剂: 称取50g氯化镉与50g氯化钡,溶解于1000mL 蒸馏水中,用浓盐酸调节 pH 至 1。氢氧化铝乳液和物质 的量浓度为 2.5 mol/L 的氢氧化钠溶液。
- 2. 制备标准显色液 用刻度移液管(图1-12)吸取 0.20 mL、0.40 mL、0.60 mL、0.80 mL、1.00 mL和 1.50 mL 亚硝酸钠溶液(相当于1μg、2μg、3μg、4μg、5μg和 7.5 μg 亚硝酸钠), 分别置于 50 mL 比色管中, 再另取 1 支 比色管作为空白对照。在各管中分别加入 2.0 mL 对氨基 苯磺酸溶液,混匀,静置3~5 min后,各加人1.0 mL的 N-1- 萘基乙二胺盐酸盐溶液,添加蒸馏水,使各比色 管内总体积为50 mL, 混匀, 观察亚硝酸钠溶液颜色的梯 度变化(图1-13)。
- 3. 制备样品处理液 将3坛泡菜做好标记后,分别 作如下处理。称取 0.4 kg 泡菜,用榨汁机粉碎,过滤后得 到大约 200 mL 汁液。将其中的 100 mL 转移到 500 mL 容 量瓶中,加 200 mL 蒸馏水、100 mL 提取剂,在摇床上振 荡提取 1 h, 再加入 40 mL 氢氧化钠溶液, 用蒸馏水定容 至500 mL后,立即过滤。将60 mL滤液转移至100 mL容 量瓶中,加入氢氧化铝乳液,定容至100 mL,过滤。此时, 滤液变得无色透明。
- 4. 比色 吸取40 mL透明澄清的滤液,转移到50 mL 比色管中,将比色管做好标记。按步骤2的方法分别加入 对氨基苯磺酸溶液和N-1-萘基乙二胺盐酸盐溶液,并 定容至50 mL, 混匀, 静置15 min后, 观察样品颜色的变 化,并与标准显色液比较,找出与标准液最相近的颜色,记 录对应的亚硝酸钠含量,并按照旁栏的公式进行计算。每

图 1-12 刻度移液管(左、中)与 单标记移液管(右)

6 每次取样要用洗净的筷子、小 匙,专人专用,专人清洗。取样 后迅速封坛, 防止泡菜被污染。

图 1-13 亚硝酸钠标准显色液

亚硝酸盐含量计算方法:

样品中亚硝酸盐含量 (mg)

取样量 (40 mL 滤液的质量, kg)

隔2d测一次,将结果记录在下表中。

泡菜腌制过程中亚硝酸盐含量变化 (mg/kg)

腌制天数	1号坛	2号坛	3号坛
			- 1
P. 175.5			

结果分析与评价

- 1. 你能否用显微镜观察到腌制泡菜的盐水中乳酸菌的形态结构特征?
- 2. 你腌制的泡菜成功吗? 色泽如何? 口味如何? 亚硝酸盐的含量是否符合卫生标准?
- 3. 随着泡制时间的延长,三只泡菜坛中亚硝酸盐含量的变化趋势如何? 你能分析形成这种趋势的原因吗?
- 4. 结合亚硝酸盐含量的变化趋势,分析在泡菜的腌制过程中,什么时候食用最好?为什么?
 - 5. 制作方法有需要改进的地方吗?

课题延伸

- 1. 你能否在查阅资料的基础上,设计利用乳酸菌发酵制作酸奶的实验?
- 2. 制作酸奶的过程中是否会产生亚硝酸盐? 请设计出实验方案,用来检验自己的假设。

吗?

练习

1. 请你查阅相关资料,了解蔬菜腌制过程中降低亚硝酸盐含量的办法。

含量随腌制时间而变化的曲线图

2. 你能总结果酒、果醋、腐乳、泡菜这几种

发酵食品在利用微生物的种类和制作原理方面的不同吗? 你能总结出传统发酵技术的共同特点吗?