Практическое работа №2: Диагностика состояния аппаратного обеспечения Цель работы:

- Научиться использовать стандартные инструменты Windows для диагностики оборудования.
- Научиться использовать сторонние программы для диагностики оборудования.
- Получить практические навыки анализа состояния процессора, памяти, накопителей и видеокарты.
- Освоить оформление отчёта с результатами диагностики.

Краткая информация

Диагностика аппаратного обеспечения — это процесс проверки состояния основных компонентов ПК (процессора, оперативной памяти, видеокарты, накопителей и др.).

Цель диагностики: выявление ошибок, перегрева, снижения производительности или других проблем, влияющих на стабильность системы.

С помощью встроенных средств Windows можно получить сведения о «железе», провести тестирование памяти и дисков, а также проанализировать работу системы.

Также в ходе практического занятия будут использоваться следующие программы (найти вы их сможете по пути /Practika/Леонтьев/Soft или спросите у преподавателя): CPU-Z, HWInfo, HWMonitor, AIDA64, CrystalDiskInfo, HDDScan, TM5.

1 Меры предосторожности

- 1. Все действия выполнять только по инструкции.
- 2. При обнаружении сбоев, перегрева или подозрительного поведения ПК немедленно прекратить тестирование.
- 3. В случае любых неполадок обращаться к преподавателю, не предпринимать самостоятельных «ремонтных» действий.

Требования к отчёту

- Все результаты необходимо фиксировать в виде **скриншотов** (например, окно dxdiag, результат команды PowerShell, график загрузки CPU и т.п.).
- Для каждого задания делать краткий комментарий/вывод.
- В конце работы сформулировать общий вывод о состоянии ПК.

Шаг 1. Диагностика состояния аппаратного обеспечения средствами Windows

Задание 0: Визуальный осмотр (до включения ПК)

Осмотрите внешний вид корпуса, запишите если на нём есть номер и серийная модель. Осмотрите порты, чтобы понять, какое железо может быть внутри (например, наличие портов HDMI от интегрированной графики).

Задание 1. Определение основных характеристик ПК

- 1. Откройте Свойства системы (Win + Pause) или в Windows 10 откройте Параметры Система.
 - Запишите модель и частоту процессора, объём оперативной памяти, разрядность ОС.
- 2. Запустите dxdiag (Win + $\mathbf{R} \rightarrow \mathbf{dxdiag}$).
 - о Определите модель видеокарты и объём видеопамяти.
 - о Сохраните отчёт в файл (кнопка «Сохранить все сведения»).
- 3. Определение характеристик через «Диспетчер устройств». Win+R \rightarrow devmgmt.msc
 - Задача: Найдите и раскройте вкладки «Процессоры», «Видеоадаптеры»,
 «Дисковые устройства», «Сетевые адаптеры». Запишите модели устройств.

Задание 2. Использование «Сведений о системе» (msinfo32)

- 1. Запустите msinfo32 (Win + $R \rightarrow msinfo32$).
- 2. Найлите:
 - 。 Версию BIOS,
 - о Модель материнской платы,
 - о Объём и тип оперативной памяти.

Запишите информацию.

Задание 3. Диагностика процессора, памяти и дисков через командную строку

- 1. Откройте PowerShell от имени администратора.
- 2. Ввелите команлы:

Информация о процессоре

Get-CimInstance Win32_Processor | Select-Object Name, NumberOfCores, NumberOfLogicalProcessors, MaxClockSpeed

Информация об оперативной памяти

Get-CimInstance Win32_PhysicalMemory | Select-Object Manufacturer, Capacity, Speed, MemoryType

Информация о материнской плате

Get-CimInstance Win32_BaseBoard | Select-Object Manufacturer, Product

Информация о накопителях (HDD/SSD)

Get-CimInstance Win32 DiskDrive | Select-Object Model, Size, InterfaceType

Информация о видеокарте (GPU)

Get-CimInstance Win32_VideoController | Select-Object Name, AdapterRAM, DriverVersion

Общая информация о системе

Get-CimInstance Win32_ComputerSystem | Select-Object Manufacturer, Model, TotalPhysicalMemory

Задание 4. Проверка памяти

- 1. Запустите Проверку памяти Windows (mdsched.exe).
- 2. Перезагрузите компьютер и дождитесь завершения теста.
- 3. Зафиксируйте результат (наличие/отсутствие ошибок).

Задание 5. Проверка диска

- 1. Откройте консоль (**cmd**) и введите:
 - о chkdsk C: /f /r (проверка диска, поиск и исправление ошибок).
- 2. Зафиксируйте результат проверки (наличие/отсутствие повреждённых секторов).

Задание 6. Мониторинг системы в реальном времени

- 1. Запустите Диспетчер задач (Ctrl+Shift+Esc) и вкладку «Производительность».
 - ⊙ Зафиксируйте загрузку СРU, RAM, диска и сети в течение 1–2 минут.
- 2. Запустите **Монитор ресурсов** (**resmon**) и сравните показатели.

Задание 7. Анализ стабильности системы

- 1. Запустите **Монитор стабильности системы** (perfmon /rel).
- 2. Изучите график ошибок и предупреждений за последнюю неделю.
- 3. Сделайте вывод: есть ли сбои в работе оборудования или драйверов.

Задание 8: Формирование отчета

На основе всех собранных данных (скриншоты, сохраненные файлы dxdiag.txt, результаты команд) составьте краткий текстовый отчет о конфигурации ПК и его текущем состоянии (наличие ошибок, потенциальных проблем).

Отчёт студента должен содержать:

- 1. Таблицу с основными характеристиками ПК (CPU, RAM, GPU, HDD/SSD, материнская плата).
- 2. Скриншоты или результаты команд/тестов (dxdiag, msinfo32, wmic, mdsched, chkdsk).
- 3. Краткие выводы по каждому компоненту.
- 4. Общую оценку состояния ПК.

Шаг 2. Углублённая диагностика специализированным ПО

Задание 9: Комплексный анализ в CPU-Z.

Запустите **СРU-Z**. Последовательно изучите вкладки:

- **CPU:** Сокет, техпроцесс, кэш (L1, L2, L3).
- Mainboard: Производитель и модель платы, версия BIOS, чипсет.
- **Memory:** Тип (DDR4/DDR5), объем, тайминги, режим работы (одно-/двухканальный).
- SPD: Определение характеристик и производителя каждой планки RAM.

Задача: Сравните данные с теми, что были получены через PowerShell. Какие данные точнее и полнее?

Задание 10: Контроль температур и нагрузок в HWiNFO64

Запустите утилиту в режиме «Sensors only». Найдите:

- о Температуры CPU (ядра), GPU, накопителей.
- ∘ Напряжения с блока питания (12V, 5V, 3.3V) отследите, есть ли просадки.

о Скорости вращения вентиляторов (RPM).

Задача: Оцените, являются ли температуры компонентов в простое и под нагрузкой (можно запустить браузер с 10 вкладками) нормальными.

Задание 11: Тест стабильности системы.

- 。 Запустите AIDA64 (инструмент «System Stability Test») или стресс-тест в CPU-Z.
- о Включите галочки «Stress CPU» и «Stress FPU». Наблюдайте за температурами в HWiNFO64 в течение 3-5 минут.

Задача: Определите, есть ли троттлинг (снижение частоты СРИ из-за перегрева) под нагрузкой.

Задание 12: Анализ состояния накопителя в CrystalDiskInfo

- о Запустите утилиту. Обратите внимание на:
 - **Техсостояние:** Должно быть «Хорошо» (Good). Любое другое значение тревожный знак.
 - **Количество отработанных часов,** включений, перезаписанных данных.
 - Количество переназначенных секторов (Reallocated Sectors Count) ключевой показатель здоровья диска.

Задача: Сравните данные S.M.A.R.T. с результатом выполнения chkdsk.

Задание 13. Углублённая диагностика накопителя в HDDScan

Цель: Провести тестирование поверхности накопителя на наличие медленных и битых секторов, оценить производительность.

Ход работы:

- 1. Запустите программу HDDScan.
- 2. В выпадающем списке выберите целевой накопитель.
- 3. Нажмите кнопку «**Tests**» и выберите пункт «**Read**» (Тест на чтение). Запустите тест.
- 4. Двойным кликом на появившейся внизу задаче откройте карту тестирования.
- 5. Дождитесь завершения теста (это может занять много времени для HDD большого объёма; для учебных целей можно прервать через несколько минут, чтобы увидеть принцип).

Задание 14. Составление электронного отчёта

- Составить отчёт на основе шаблона (см. ниже).
- В отчёт вставить скриншоты.
- Сохранить в формате DOCX.
- Отправить преподавателю на электронную почту.

Таблица для отчёта

Компонент	Параметр	Результат	Норма/Комментарий
CPU	Модель процессора		
	Кол-во ядер / потоков		
	Частота (МГц)		
	Температура в простое (°С)		
	Температура под нагрузкой (°С)		
	Вывод по СРИ		
RAM	Объём (ГБ)		
	Тип (DDR3/DDR4/DDR5)		
	Частота (МГц)		
	Вывод по RAM		
GPU	Модель видеокарты		
	Температура в простое (°С)		
	Температура под нагрузкой (°С)		
	Частота ядра (МГц)		
	FPS в тесте		
Ко	Вывод по GPU		
HDD / SSD	Модель накопителя		
	Количество часов работы		
	Температура (°С)		
	Состояние (по SMART)		
	Скорость чтения/записи (МБ/с)		
	Вывод по диску		
ИТОГ	Общий вывод о состоянии ПК		

Шаблон отчёта

Практическое занятие №2

Дисі	циплина: Архитектура аппаратных средств
Тема	а занятия: Диагностика состояния аппаратного обеспечения
ФИО	О студента:
Груг	ша:
Дата	проведения: «»20 г.
	Цель работы: Освоить методы контроля параметров и тестирования компонентов
ПК	с использованием встроенных средств ОС Windows и специализированного
стор	оннего ПО.
	Оборудование и ПО:
	Персональный компьютер, ОС Windows, набор портативных утилит (CPU-Z
HWi	NFO64, CrystalDiskInfo).
	Ход работы и полученные результаты:
	1. Блок: Диагностика встроенными средствами Windows
	Задание 1. Определение характеристик через «Свойства системы» и dxdiag
•	Модель и частота процессора:
•	Объём оперативной памяти:
•	Разрядность ОС:
•	Модель видеокарты и объём видеопамяти:
•	Скриншот вкладки «Система» или окна dxdiag:
	[Место для скриншота]
	Задание 2. Анализ информации в msinfo32
•	Версия BIOS/UEFI:
•	Модель материнской платы:
•	Тип и объём оперативной памяти:
•	Скриншот окна «Сведений о системе» (msinfo32):
	[Место для скриншота]

Задание 3. Получение данных о компонентах через PowerShell Введите команды в PowerShell и занесите результаты в таблицу:

Компонент	Полученные данные (модель, характеристики)
Процессор	
Память	
Материнская плата	
Накопители	
Видеокарта	
Скриншот выпол	лнения команд в PowerShell:

[Место для скриншота]

Задание 4. Проверка оперативной памяти (mdsched.exe)

- Результат проверки: Ошибок не обнаружено / Обнаружены ошибки
- Краткое описание результата:

Задание 5. Проверка диска (chkdsk)

- Результат проверки: Ошибок не обнаружено / Обнаружены ошибки
- Наличие повреждённых секторов: Да / Нет
- Скриншот результата выполнения команды chkdsk:

[Место для скриншота]

Задание 6. Мониторинг системы в реальном времени

- Средняя загрузка ЦП в простое: _____ %
- Использование оперативной памяти: _____ %
- Активность диска (С:):
- Скриншот вкладки «Производительность» в Диспетчере задач:

[Место для скриншота]

2. Блок: Диагностика сторонними утилитами

Задание 9. Анализ компонентов в CPU-Z

Заполните таблицу на основе данных СРU-Z:

Вкладка	Параметр	Значение
CPU	Название	
	Сокет	
	Техпроцесс	
	Кэш L3	
Mainboard	Производитель	
	Модель	
	Версия BIOS	
Memory	Тип (DDR)	
	Объём	
	Режим каналов	
SPD	Производитель планки	

Скриншот вкладки «Memory» в CPU-Z:

[Место для скриншота]

Задание **10.** Контроль температур и напряжений в **HWiNFO64** Запишите значения в простое и под нагрузкой (например, после запуска браузера с 10 вкладками):

Компонент	Параметр	Значение в простое	Значение под нагрузкой
CPU	Температура		
GPU	Температура		
SSD/HDD	Температура		
БП	Напряжение +12V		

Скриншот раздела censor в HWiNFO64:

	[Место для скриншота]
	Задание 11. Стресс-тест системы (AIDA64 или аналог)
•	Наблюдались ли признаки троттлинга (снижения частоты CPU)? Да / Нет
•	Максимальная температура CPU во время теста: °C
•	Скриншот графика температур во время стресс-теста:
	[Место для скриншота]
	Задание 12. Оценка здоровья накопителя в CrystalDiskInfo
•	Техсостояние накопителя: Хорошо / Тревога / Плохо
•	Общее время работы (Hours):
•	Количество включений (Power On Count):
•	Наличие переназначенных секторов (Reallocated Sectors): Да / Нет
•	Скриншот главного окна CrystalDiskInfo:
	[Место для скриншота]
	Задание 13. Углублённая диагностика накопителя в HDDScan
	Полученные результаты:
•	Модель накопителя в HDDScan:
•	Время выполнения теста (приблизительно): мин.
•	Результаты теста «Read»:

о Количество секторов с временем доступа > 500 мс (отмечаются

синим/голубым):

- о Количество **bad-секторов** (отмечаются красным):
- о Скриншот карты тестирования (блок-карты) и графика времени доступа:

[Место для скриншота карты (Block Map)]

[Место для скриншота графика (Graph)]

Анализ результатов и выводы по заданию:

- Оценка состояния поверхности:
 - Отлично: На карте преобладают зелёные и серые блоки (время доступа <
 20 мс и < 50 мс), красных и синих блоков нет.
 - Удовлетворительно/Требует наблюдения: Присутствует значительное количество оранжевых (до 200 мс) и/или голубых (до 500 мс) блоков. Это указывает на износ поверхности и замедление работы.
 - **Плохо/Критично:** Присутствуют красные блоки (bad-сектора). Накопитель рекомендуется заменить.
- Ваш вывод по состоянию накопителя на основе HDDScan:

Выводы по работе:

- 1. **Конфигурация ПК:** Дайте общую характеристику исследуемого ПК (например, «ПК представляет собой систему среднего уровня на базе процессора Intel Core i5-12400F с 16 ГБ DDR4 памяти и видеокартой NVIDIA GeForce RTX 3060»).
- 2. **Состояние системы:** Опишите, выявлены ли какие-либо проблемы с компонентами (перегрев, ошибки памяти, битые сектора на диске). Если проблем не выявлено, так и укажите.
- 3. Сравнение инструментов: Какой инструмент (встроенный или сторонний) оказался наиболее информативным и удобным для вас и почему?
- 4. **Приобретённые навыки:** Перечислите, какие новые умения вы получили в ходе выполнения данной работы.

Вывод:				