Python, Systems Biology and PySCeS

Johann Rohwer

Brett Olivier Jannie Hofmeyr

Triple-J Group for Molec. Cell Physiology Stellenbosch University South Africa Max Planck Institute of Molecular Plant Physiology Golm

Talk structure

- So what is "Systems Biology"?
- Python in Systems Biology
- PySCeS
- Examples
 - Regulation in a 4-step pathway
 - Modelling sugarcane metabolism
- Conclusion and future prospects

So what is "Systems Biology"?

- Computational Systems Biology
 - ... aims to develop and use efficient algorithms, data structures and communication tools to orchestrate the integration of large quantities of biological data with the goal of modelling ... to create accurate real-time models of a system's response to environmental and internal stimuli.

http://en.wikipedia.org/wiki/Computational_systems_biology

Metabolism

http://www.genome.jp/kegg/atlas/

Systems biology - kinetic model

 Differential equation based:

$$\frac{d[fructose]}{dt} = v_1 + v_2 - v_3$$

 Set up for all molecular species in system:

$$\frac{dS}{dt} = NV$$

vector of species concentrations stoichiometric matrix

vector of reaction rates

http://metacrop.ipk-gatersleben.de

Systems biology – rate equations

- Enzyme-kinetic rate law for all reactions
- E.g. hexokinase

$$v_{hk} = \frac{V_{max hk} \cdot \frac{[Glc]}{K_{mGlc}} \cdot \frac{[ATP]}{K_{mATP}}}{\left(1 + \frac{[ATP]}{K_{mATP}}\right) \left(1 + \frac{[Glc]}{K_{mGlc}} + \frac{[Fru]}{K_{mFru}} + \frac{[Glc6P]}{K_{iGlc6P}} + \frac{[Fru6P]}{K_{iFru6P}}\right)}$$

Highly nonlinear

http://metacrop.ipk-gatersleben.de

Systems biology – analysis methods

- Time-dependent evolution of system
 - numerically integrate $\frac{dS}{dt} = N \cdot v$ (e.g. LSODA)
 - $_{-}$ initial condition $S_{_{0}}$
 - trajectory $(t, \mathbf{S}(t))$
- Steady-state analysis
 - numerically solve $\frac{dS}{dt} = N \cdot v = 0$ (e.g. HYBRD)
- Control analysis (sensitivity analysis)
 - $-\frac{\partial y}{\partial p}$ where y = state variable vector; p = parameter vector
- Stability analysis

Python and Systems Biology

- Computational SysBio relies on numerical analysis
- Availability of NumPy/SciPy makes Python stand head and shoulders above other glue languages (e.g. Perl)
 - Heavy reliance on existing Fortran libraries (LAPACK, MINPACK)
- Other SysBio software also has Python interfaces

```
libSBML (http://sbml.org/Software/libSBML)
```

SBW (http://sbw.sourceforge.net)

PySBML (http://pysbml.googlecode.com)

SloppyCell (http://sloppycell.sourceforge.net)

ScrumPy (http://mudshark.brookes.ac.uk)

PySCeS, the Python Simulator for Cellular Systems

Max-Planck-Institut

für Molekulare Pflanzenphysiologie

COPASI SBW - Jarnac PySCeS

Our design principles:

- Functionality: useful to us (and others)
- Accessibility: available for a wide range of users in the broader community; not restricted to a specific operating system or hardware platform
- Flexibility: software should be extensible allowing for advanced use beyond its initial specifications

PySCeS overview

Model input with the PySCeS MDL

Parsers developed using David Beazley's PLY

```
Description: PySCeS test model
Species In Conc: True
Compartment: C1, 1.0, 3
Compartment: M1, 1.0, 2
FIX: x0 x3
R1@C1: x0 = s0
      C1*(k1*x0 - k2*s0)
k1 = 7.0
k2 = 1.0
R2@M1: s0 = x3
      M1*(k3*s0 - k4*x3)
k3 = 5.0
k4 = 1.0
x1@C1 = 10.0
x3@M1 = 1.0
s0@M1 = 1.0
```


Model input: SBML (sbml.org)

SBML import and export using libSBML and PLY

Model databases

http://biomodels.net

http://jjj.biochem.sun.ac.za

SBML compatible software

BALSA
BASIS
BIOCHAM
BioCharon
ByoDyn
biocyc2SBML
BioGrid
BioModels
BioNetGen
BioPathway Explorer
Bio Sketch Pad
BioSens
BioSPICE Dashboard
BioSpreadsheet
BioTapestry
BioUML
BSTLab
CADLIVE
CellDesigner
Cellerator
CellML2SBML
Cellware
CL-SBML
CLEML
COPASI
Cytoscape

DBsolve	1
Dizzy	1
E-CELL	1
ecellJ	1
ESS	(
FluxAnalyzer	F
Fluxor	F
Gepasi	F
Gillespie2	F
INSILICO discovery	F
JACOBIAN	F
Jarnac	F
JDesigner	F
JigCell	F
JSim	F
JWS Online	F
Karyote*	F
KEGG28BML	F
Kinsolver*	
libSBML	F
MathSBML	r
MesoRD	
MetaboLogica	- 8
MetaFluxNet	ì
MMT2	- 8
Modesto	Š
Modeoto	

Moleculizer	SBMLR
Monod	SBMLSim
Narrator	SBMLToolbox
NetBuilder	SBIID
Oscill8	SBToolbox
PANTHER Pathway	SBW
PathArt	SCIpath
PathScout	Sigmoid*
PathwayLab	SigPath
Pathway Tools	SigTran
PathwayBuilder	SIMBA
PATIKAweb	SimBiology
PaVESy	Simpathica
PET	SimWiz
PNK	SloppyCell
Reactome	SmartCell
ProcessDB	SRS Pathway Edito
PROTON	StochSim
pysbml	StochKit
PySCeS	STOCKS
runSBML	TERANODE Suite
SABIO-RK	Trelis
SBML ODE Solver	Virtual Cell
SBML-PET	WebCell
SBMLeditor	WinSCAMP
SBMLmerge	XPPAUT
_	

Instantiating a model

```
In [1]: import pysces
 Welcome to PySCeS (0.5.0) - Python Simulator for Cellular Systems
                http://pysces.sourceforge.net
* Copyright(C) B.G. Olivier, J.M. Rohwer, J.-H.S. Hofmeyr, 2004-2008
* Triple-J Group for Molecular Cell Physiology
* Stellenbosch University, South Africa
* PySCeS is distributed under the GNU General Public Licence
* See README.txt for licence details
**************************
In [2]: mod = pysces.model('moiety branch')
Using model directory: C:\mypysces\pscmodels
C:\mypysces\pscmodels\moiety branch.psc loading .....
In [3]: mod.doLoad()
Parsing file: C:\mypysces\pscmodels\moiety branch.psc
Calculating L matrix . . . . .
                                  done.
Calculating K matrix .
```


PySCeS structural analysis

- Non-linear root finding requires calculation of both left and right nullspaces, typically of non-square matrices
- Currently implemented using LU factorisation via (scipy.linalg.(c/f)lapack.dgetrf), column reordering and Gauss-Jordan elimination

```
In [4]: mod.showN()
```

```
Stoichiometric matrix (N)
                          R4
```

In [5]: mod.showNr()

Reduced stoichiometric matrix (Nr)

	R1	R2	R3	R4
S1	1.0	0.0	-1.0	-1.0
S2	-1.0	1.0	0.0	0.0

Time course (dS/dt = N.v)

- LSODA fast but ageing (scipy.integrate.odeint)
- SUNDIALS CVODE (ctypes interface, PySundials, http://pysundials.sourceforge.net)
- 2D plotting with Matplotlib

LSODA

Max-Planck-Institut

für Molekulare Pflanzenphysiologie

Steady state (dS/dt = N.v = 0)

- Important for analysing control and regulation of cellular systems
- Non-linear root finders
 - Direct:
 - HYBRD (SciPy)
 - NLEQ2 (http://www.zib.de/Numerik/numsoft/ANT/nleq2.en.html) own interface with f2py
 - KINSOL from SUNDIALS (own interface with ctypes)
 - Integration for long t:
 - LSODA, CVODE
- Direct solvers preferred: parameter scans need millions of solves

Example 1: Cellular regulation with PySCeS/Kraken

A four enzyme linear system with negative feedback

$$V_{\text{Hill}} = V_{\text{f}} \frac{s}{s_{0.5}} + \frac{\left[\frac{s}{s_{0.5}} + \frac{a}{a_{0.5}}\right]^{h-1}}{\left[\frac{s}{s_{0.5}} + \frac{a}{a_{0.5}}\right]^{h} + \frac{1 + \left[\frac{p}{p_{0.5}}\right]^{h}}{1 + \alpha \left[\frac{p}{p_{0.5}}\right]^{h}}$$

Reaction 1

$$\frac{\frac{V_f}{K_s} \cdot \left(S - \frac{P}{K_{eq}}\right)}{\left(1 + \frac{S}{K_s} + \frac{P}{K_p}\right)}$$

Reactions 2 and 3

PySCeS/Kraken

- Embarrassingly parallel high level analysis (e.g. parameter
- Only standard library

speedup = $time_{(1 \text{ node})} / time_{(n \text{ nodes})}$ efficiency = speedup / # of nodes

3D Rate characteristics

(A) 2.2 million point scan showing the bifurcation topology

(B) 500000 point magnification profiling the isola and double hysteresis

Red states are unstable (positive Eigenvalues of Jacobian)

Disentangling the instability

Example 2: Sucrose accumulation in sugarcane

- Sugarcane

 accumulates large
 quantities of sugar as
 the plant matures
- Build model to identify steps controlling this process

Uys et al. (2007) Phytochemistry 68:2375

Methods

- Metabolism within an internode regarded as constant
- Reference steady-state model of sucrose metabolism
- Internode specific parameters
 - from internode 3 (young) to10 (mature tissue)

Max-Planck-Institut

Molekulare Pflanzenphysiologie

Max-Planck-Institut für Molekulare Pflanzenphysiologie

Current and future developments

PySCeS/Mariner

- web-application framework using soaplib
- A better low-res 3D-plotting solution
- Symbolic control analysis (using Maxima)
- Parameter fitting and optimisation
 - integration of global and local methods

PySCeS/Mariner

- A web services module for PySCeS
 - consume other available SOAP-based web resources
 - expose PySCeS SOAP services

ZSI: http://pywebsvcs.sourceforge.net

soaplib: http://trac.optio.webfactional.com/wiki/soaplib

Acknowledgements

- Brett Olivier (lead developer)
- Jannie Hofmeyr
- Lafras Uys (sugarcane)
- James Dominy (PySUNDIALS)
- Tim Akhurst (SymCA)
- Jacky Snoep (JWS Online)

 National Bioinformatics Network (South Africa)

 Alexander von Humboldt Foundation

