Eksamen i Matematikk III

16. mai 2018

Tillatte hjelpemidler: Alle trykte og håndskrevne. Kalkulator.

Alle deloppgaver (a, b, ...) teller like mye.

1

La $x_0 = 0$, $x_1 = 1$, $y_0 = 0$ og $y_1 = 1$ og gitt funksjonen $g(x) = \sin \frac{\pi}{2} x$. La p(x) være polynomet for kubisk Hermite interpolasjon av g på intervallet [0, 1].

- a) Regn ut $y_0' = g'(0)$, $y_1' = g'(1)$ og sett opp interpolasjonsproblemet på matriseform $\mathbf{A}\mathbf{x} = \mathbf{b}$ hvor $\mathbf{b}^T = [y_0 \ y_1 \ y_0' \ y_1']$.
- b) Bruk resultatet fra a) til å bestemme interpolasjonspolynomet p(x).

$\mathbf{2}$

Gitt funksjonen $f(x,y) = e^{-(x^2+y^2)}, \ 0 \le x \le 1, \ 0 \le y \le 1.$

- a) Regn ut $f(\frac{i}{2}, \frac{j}{2})$, i = 0, 1, 2, j = 0, 1, 2.
- b) Bestem $\frac{\partial f}{\partial x}(\frac{1}{2},\frac{1}{2})$ og $\frac{\partial f}{\partial y}(\frac{1}{2},\frac{1}{2})$.
- c) Bruk $f(\frac{1}{2},\frac{1}{2})$ og de partiellderiverte til å finne en normalvektor til f(x,y) i punktet $(\frac{1}{2},\frac{1}{2})$.

Vi antar nå at vi kjenner de 9 punktene med funksjonsverdier fra a), men at funksjonen er ukjent.

- d) Forklar hva slags funksjon z = f(x, y) vi da kan lage. Tegn figur.
- e) Når funksjonen/flaten skal rendres, trenger man gjerne normalvektor for hvert vertex. Regn ut en tilnærming for normalvektoren i punktet $(\frac{1}{2}, \frac{1}{2})$ for funksjonen i d).

f) Gitt et punkt $P = (\frac{3}{2}, \frac{2}{3})$ og en triangulering av punktene fra a). Anta at man skal bestemme hvilken trekant T_i som inneholder P, og starter et søk i en av trekantene som har et vertex i x = 0, y = 0. Vis hvordan man bruker barysentriske koordinater til å bestemme T_i .

3

- a) Gitt kontrollpunktene (1,1), (0,1), (0,0) og (1,0). Skisser en kubisk Bezier kurve med disse kontrollpunktene. Forklar og tegn hvordan du bruker deCasteljau algoritmen.
- b) Gitt skjøtvektor $\mathbf{t} = \{0, 0, 1, 1\}$. Bestem alle lineære og kvadratiske B-splines.

4

- a) Et subtraksjonsspill har en stabel med 21 brikker og $S=\{1, 2, 5\}$. Finn alle P-posisjoner og N-posisjoner. Vinner spiller I eller spiller II?
- b) I et Nim-spill er det tre stabler med 6, 9 og 14 brikker. Avgjør om neste spiller kan vinne og bestem i så fall hvilke(t) trekk han må gjøre.

- slutt på oppgaven -