Анализ метода отбора признаков QPFS

Александр Адуенко

5 апреля 2021 г.

Рассматриваемый метод предложен в [1] и дается следующей оптимизационной задачей.

$$\frac{1}{2}(1 - \alpha)\mathbf{a}^{\mathsf{T}}\mathbf{Q}\mathbf{a} - \alpha\mathbf{b}^{\mathsf{T}}\mathbf{a} \to \min_{\mathbf{a}}$$
s.t. $\mathbf{a} \ge 0, \sum_{i} a_{i} = 1.$ (1)

Решение задачи (1) \mathbf{a}^* определяет, какие признаки используются при построении модели. Признак j активен $\iff a_j > 0$.

Эта задача эквивалетна

$$\frac{1}{2}\mathbf{a}^{\mathsf{T}}\mathbf{Q}\mathbf{a} - \frac{\alpha}{1-\alpha}\mathbf{b}^{\mathsf{T}}\mathbf{a} \to \min_{\mathbf{a}}
\text{s.t. } \mathbf{a} \ge 0, \sum_{i} a_{i} = 1.$$
(2)

Обозначим эту задачу $S\left(\underbrace{\frac{\alpha}{1-\alpha}},\ 1\right)$, где 1 указывает на норму решения. Рассмотрим задачу

 $S(\beta^{-1}, \gamma)$ и сделаем замену переменной $\mathbf{a} = \gamma \tilde{\mathbf{a}}$, получим

$$\gamma^{2} \left(\frac{1}{2} \tilde{\mathbf{a}}^{\mathsf{T}} \mathbf{Q} \tilde{\mathbf{a}} - \frac{1}{\beta \gamma} \mathbf{b}^{\mathsf{T}} \tilde{\mathbf{a}} \right) \to \min_{\tilde{\mathbf{a}}}$$

s.t. $\tilde{\mathbf{a}} \ge 0, \sum_{i} \tilde{a}_{i} = 1,$

откуда задача $S(\beta^{-1}, \gamma)$ эквивалентна задаче $S((\beta\gamma)^{-1}, 1)$ в терминах активных признаков (сами же решения отличаются в γ раз), а потому мы имеем дело именно с однопараметрическим семейством и задание нормы решения, равной одному, не ограничивает общности.

Рассмотрим теперь замену переменной $\mathbf{a}=\beta^{-1}\tilde{\mathbf{a}}$ в (2). Получим, что (2) эквивалентна при $\alpha\in(0,\ 1)$ задаче

$$\frac{1}{2}\tilde{\mathbf{a}}^{\mathsf{T}}\mathbf{Q}\tilde{\mathbf{a}} - \mathbf{b}^{\mathsf{T}}\tilde{\mathbf{a}} \to \min_{\tilde{\mathbf{a}}}
\text{s.t. } \tilde{\mathbf{a}} \ge 0, \ \sum_{i} \tilde{a}_{i} = \beta.$$
(3)

Наряду с задачей (3) можно рассмотреть задачу

$$\frac{1}{2}\tilde{\mathbf{a}}^{\mathsf{T}}\mathbf{Q}\tilde{\mathbf{a}} - \mathbf{b}^{\mathsf{T}}\tilde{\mathbf{a}} \to \min_{\tilde{\mathbf{a}}}
\text{s.t. } \tilde{\mathbf{a}} \ge 0, \sum_{i} \tilde{a}_{i} \le \beta$$
(4)

и соответствующую задачу без ограчения на норму вектора $\tilde{\mathbf{a}}$

$$\frac{1}{2}\tilde{\mathbf{a}}^{\mathsf{T}}\mathbf{Q}\tilde{\mathbf{a}} - \mathbf{b}^{\mathsf{T}}\tilde{\mathbf{a}} \to \min_{\tilde{\mathbf{a}}}$$
s.t. $\tilde{\mathbf{a}} \ge 0$.

Задача (1) не позволяет выбросить все признаки, поскольку $\|\mathbf{a}\|=1>0$. Задача (4) эквивалентна ограничению неравенства в исходной задаче и, например, при $\alpha=0$ будет иметь решением исключение всех признаков. Далее приведем анализ свойств решения (1) с ограничением равенства и неравенства для разных значений α .

Таблица 1. Свойства решения в методе QPFS в зависимости от параметра α

Taskinga 1. Obstration pointering buttered of 1000 business of maparity as		
α	Равенство	Неравенстсво
$\alpha = 0$	Используются все признаки, $\mathbf{Q}\mathbf{a}^* = \eta\mathbf{e},\ \eta > 0$	Выброшены все признаки
$\alpha \to 0$	Используются все признаки, $\mathbf{Q}\mathbf{a}^* \to \eta\mathbf{e},\ \eta>0$	Решение (5)
$\alpha \to 1$	Сходимся к отбору одного признака с максимальным b_j	То же, что и в «равенство»
$\alpha = 1$	Отбор одного признака с максимальным b_j	То же, что и в «равенство»

В случае $\alpha = 0$ для неравенства ($\sum_i a_i \leq 1$) решением является $\mathbf{a}^* = \mathbf{0}$. В случае равенства ($\sum_i a_i = 1$), чтобы минимизировать потери от необходимости иметь ненулевой \mathbf{a} , в оптимальном \mathbf{a}^* оптимизируемая функция $\frac{1}{2}\mathbf{a}^\mathsf{T}\mathbf{Q}\mathbf{a}$ должна иметь одинаковый градиент по всем направлениям (так как иначе можно уменьшить одну координату, увеличить другую, оставив норму \mathbf{a} неизменной, уменьшив значение функции). Тот же результат можно получить и другим способом - из рассмотрения Лагранжиана задачи.

Анализ решения QPFS в зависимости от параметра α

Задачи (3) и (4) эквивалентны для некоторых η задаче

$$\frac{1}{2}\tilde{\mathbf{a}}^{\mathsf{T}}\mathbf{Q}\tilde{\mathbf{a}} - \mathbf{b}^{\mathsf{T}}\tilde{\mathbf{a}} + \eta \sum_{j} \mathbf{a}_{j} \to \min_{\tilde{\mathbf{a}}} \text{ s.t. } \tilde{\mathbf{a}} \ge 0,$$

что эквивалентно

$$\frac{1}{2}\tilde{\mathbf{a}}^{\mathsf{T}}\mathbf{Q}\tilde{\mathbf{a}} - \tilde{\mathbf{b}}^{\mathsf{T}}\tilde{\mathbf{a}} \to \min_{\tilde{\mathbf{a}}} \text{ s.t. } \tilde{\mathbf{a}} \ge 0,$$

где $\tilde{b}_j = b_j - \eta$ и η монотонно убывает по $\|\tilde{\mathbf{a}}\|_1 = \beta$. При этом для случая неравенства $\eta \geq 0$, в для равенства $\eta < 0$, если $\beta > \|\mathbf{a}^*\|_1$, где \mathbf{a}^* есть решение задачи без ограничения на норму (5).

Таким образом, добавление ограничения на норму, фактически штрафует релевантность и происходит исключение тех признаков, у которых $b_j < \eta$, поскольку у них поправленная релевантность \tilde{b}_i становится отрицательной.

Связь с лассо для линейной регрессии

Стандартная задача линейной регрессии с l_1 регуляризацией (лассо) имеет вид

$$\frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \tau \|\mathbf{w}\|_{1} \to \min_{\mathbf{w}}.$$
 (6)

Предположим, что $\mathbf{x}_j^\mathsf{T} \mathbf{x}_j = 1$, $\mathbf{y}^\mathsf{T} \mathbf{y} = 1$, то есть признаки и целевая переменная нормированы. В качестве функций сходства (similarity) и релевантности (relevance) в QPFS рассмотрим

корреляцию Пирсона (не модуль как обычно в QPFS!). Имеем

$$\frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \tau \|\mathbf{w}\|_{1} = \frac{1}{2} \underbrace{\mathbf{y}^{\mathsf{T}}\mathbf{y}}_{=1} + \frac{1}{2} \mathbf{w}^{\mathsf{T}} \underbrace{\mathbf{X}^{\mathsf{T}}\mathbf{X}}_{\tilde{\mathbf{Q}}} \mathbf{w} - (\underbrace{\mathbf{X}^{\mathsf{T}}\mathbf{y}}_{\tilde{\mathbf{p}}})^{\mathsf{T}} \mathbf{w},$$

где учтена нормированность всех признаков и целевой переменной, откуда корреляция и ковариация совпадают; $\tilde{\mathbf{Q}}$, $\tilde{\mathbf{b}}$ корреляции со знаком между признаками и признаками и целевой переменной соответственно. Отсюда задачу (6) можно переписать в виде

$$\frac{1}{2}\mathbf{w}^{\mathsf{T}}\tilde{\mathbf{Q}}\mathbf{w} - \tilde{\mathbf{b}}^{\mathsf{T}}\mathbf{w} + \tau \|\mathbf{w}\|_{1} \to \min_{\mathbf{w}},$$

что может быть переписано в эквивалентную задачу с ограничением равенства (так же для неравенства) для некоторого η

$$\frac{1}{2}\mathbf{w}^{\mathsf{T}}\tilde{\mathbf{Q}}\mathbf{w} - \tilde{\mathbf{b}}^{\mathsf{T}}\mathbf{w} \to \min_{\mathbf{w}}$$
s.t. $\|\mathbf{w}\|_{1} = \eta$. (7)

Если все корреляции Пирсона между признаками и между признаками и целевой переменной неотрицательны (то есть векторы $\mathbf{x}_1, \ldots, \mathbf{x}_n, \mathbf{y}$ лежат в одном многомерном квадранте), то $\tilde{\mathbf{Q}} = \mathbf{Q}$, $\tilde{\mathbf{b}} = \mathbf{b}$, то есть задача (7) тождественна QPFS, но без ограничения $\mathbf{w} \geq 0$. Таким образом, QPFS можно рассматривать как lasso ограничением на неотрицательность весов, если все корреляции Пирсона между признаками и между признаками и целевой переменной неотрицательны. Далее, если истинный вектор весов в линейной регрессии $\mathbf{w} \geq 0$, то условие не неотрицательность оценки весов тоже избыточно (так как \mathbf{w}^* в задаче (7) и так будет неотрицательным, начиная с некоторого размера выборки), и QPFS будет полностью тождественен lasso. Таким образом, получаем условия тождественности QPFS(α) методу lasso(τ), где между α и τ существует некоторая связь:

- Rel = Sim = |Pearson correlation|;
- Нормированность признаков и целевой переменной: $\mathbf{y}^{\mathsf{T}}\mathbf{y} = \mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{j} = 1, \ j = 1, \dots, \ n;$
- Неотрицательность попарных корреляций: $\mathbf{y}^{\mathsf{T}}\mathbf{x}_{i} \geq 0$, $\mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{l} \geq 0$, $j, l = 1, \ldots, n$;
- Неотрицательность истинного вектора весов $\mathbf{w}^* \ge 0$.

Отметим, что в lasso реализуется ситуация, когда выбрасываются все признаки, когда $\tau \to \infty$, что соответствует QPFS с ограничением неравенства (а не равенства) при $\alpha = 0$. Кроме того, «закритический» режим из QPFS с равенством, когда $\|\mathbf{a}\|_1 = \beta > \|\mathbf{a}^*\|$, где \mathbf{a}^* есть решение (5), в lasso не реализуется, поскольку, штраф за норму приводит всегда к ее сокращению, а потому $\tau \to 0$ в lasso соотетствует $\beta \to \|\mathbf{a}^*\|$ в QPFS с ограничением типа равенства.

Проблемы QPFS

Благодаря условию на неотрицательность коэффициентов $\mathbf{a} \geq 0$ в задаче QPFS (3), штраф на $\|\mathbf{a}\|_1$ становится штрафом на сумму коэффициентов, что упрощает оптимизацию. Авторы оригинального метода [1] прямо указывают на скорость оптимизации как на основное преимущество метода QPFS при сопоставимом качестве прогноза (например, с lasso) на тестовых выборках в рассмотренных наборах данных.

Как показано в предыдущей главе, при выполнении некоторых условий (в частности, неотрицательности истинного вектора параметров модели \mathbf{w}^*), QPFS будет в точности эквивалентен методу lasso, то есть метод обладает лучшими свойствами с точкиы зрения оптимизации, при этом давая то же решение, что и lasso. Однако, когда условия эквивалентности не выполнены, метод начинает проигрывать lasso, поскольку не учитывает, например, что релевантность пары признаков может быть значительно выше, чем релевантность каждого из них.

Пример. Рассмотрим выборку (X, y) в признаковом пространстве размерности n = 2.

$$x_{1i} \sim \mathcal{N}(x_{1i}|0, 1), y_i \sim \mathcal{N}(y_i|0, 1), x_{2i} = x_{1i} + \varepsilon y_i, \varepsilon > 0.$$

Истинная корреляция Пирсона первого признака и целевой переменной y равна 0, а корреляция со вторым — равна $\varepsilon/\sqrt{1+\varepsilon^2}$, схожесть двух признаков $1/\sqrt{1+\varepsilon^2}$. При малом ε выборочная корреляция обоих признаков с целевой переменной будет мала, а схожесть двух признаков - велика. При этом надежное восстановление целевой переменной y возможно только при наличии обоих признаков в выборке, что соответствует ситуации с отсутствием отбора признаков (малое α).

Добавим теперь в выборку N шумовых признаков. Истинное сходство каждого из таких признаков с целевой переменной равно 0 (такое же как и для признака 1) и с учетом того, что QPFS не учитывает взаимодействия между признаками, признаки 1 и 2 не имеют значительного преимущества по отношению к шумовым в терминах релевантности целевой переменной (признак 1 в точности шумовой в изоляции, так как независим от y). При этом признаки 1 и 2 получают штраф за похожесть друг на друга. По этой причине при работе QPFS либо происходит исключение одного или обоих признаков 1 и 2 при исключении некоторых или вех шумовых, или оба признака 1 и 2 остаются, но вместе с ними остаются почти все или все шумы (см. эксперимент). В то же время Lasso учитывает взаимосвязи между признаками и не требует нетрицательности коэффициентов (ссылка на сравнение на этом датасете QPFS и lasso). В рассматриваемом примере не выполнено одно из условий эквивалентности lasso QPFS:

• $\mathbf{w}^* = (-1/\varepsilon, 1/\varepsilon)^{\mathsf{T}}$ содержит отрицательные значения.

Подобный пример (нужно добавить в статью вместе с соответствующим экспериментом с N=10 или N=100 шумами):

1. $x_{2i} = -x_{1i} + \varepsilon y_i \to$ не выполнено условие неотрицательной корреляции между признаками, а остальные условия эквивалентности выполнены.

Замечание: Подумай, можно ли построить пример, чтобы все условия кроме одного были выполнены для оставшихся условий эквивалентности QPFS и lasso.

Стабильность модели

В статье Катруцы (ссылка) стабильность модели (выраженная, например, в терминах $\lambda_{\max}(\mathbf{X}^\mathsf{T}\mathbf{X})/\lambda_{\min}(\mathbf{X}^\mathsf{T}\mathbf{X})$ имеет самостоятельную ценность и наряду с качеством прогноза на тестовой выборке определяет решение о превосходстве одного метода отбора признаков над другим. В этой статье мы предлагаем рассматривать стабильность как априорное знание, которое указывает на то, что априори мы считаем, что выборки с меньшим числом обусловленности на множестве активных признаков появляются чаще в рассматриваемой задаче, чем выборки с большим числом обусловленности. При отсутствии такого знания стабильность

стоит рассматривать в контексте повышения качества прогноза: если низкая стабильность модели ведет к снижению качества прогноза, стоит добавить штраф за низку стабильность модели, если качество не снижается, а повышается при уменьшении стабильности, то не стоит предпочитать менее качественную, но более стабильную модель.

Обозначим $\mathbf{X}(\mathbf{w})$ сужение матрицы признаков на множество признаков $j: w_j \neq 0$. Примером соответствующей задачи оптимизации, где есть априорное знание о том, что низкое число обусловленности более предпочтительно является

$$\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \tau \lambda_{\max}(\mathbf{X}(\mathbf{w})^{\mathsf{T}}\mathbf{X}(\mathbf{w})) / \lambda_{\min}(\mathbf{X}(\mathbf{w})^{\mathsf{T}}\mathbf{X}(\mathbf{w})) \to \min_{\mathbf{w}},$$

что соответствует показательному распределению на число обусловленности активных признаков выборки с гиперпараметром τ . В таком виде задача является тяжелой для оптимизации и требует перебора наборов активных признаков, например, с помощью генетического алгоритма.

Пример 1. Пусть $y_i \sim \mathcal{N}(y_i|0, 1)$, $x_{ij} = y_i + \nu \varepsilon_{ij}$, $\varepsilon_{ij} \sim \mathcal{N}(\varepsilon_{ij}|0, 1)$. Оптимальная модель использует все признаки и осредняет их для получения наилучшего прогноза y_i : $\mathbf{w}^* = (1/n, \dots, 1/n)^\mathsf{T}$. При этом число обусловленности $\eta = \lambda_{\max}(\mathbf{X}^\mathsf{T}\mathbf{X})/\lambda_{\min}(\mathbf{X}^\mathsf{T}\mathbf{X})$ при малом ν может быть большим.

Пример 2. Пусть в выборке есть дубликат признака $y_i \sim \mathcal{N}(y_i|0, 1)$, $x_{i1}x_{i2} = y_i + \nu \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(\varepsilon_i|0, 1)$. В этом случае число обусловленности равно ∞ и имеется неоднозначность решения, минимизирующего $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$. Однако все эти решения имеют $w_1 + w_2 = \text{const}$, а потому если на тестовой выборке признаки 1 и 2 останутся идентичными, качество прогноза будет одинаковым независимо от того, какое разбиение этой константы между w_1, w_2 , мы предпочтем. Обычно для того, чтобы сделать решение однозначным, добавляют слабую квадратичную регуляризацию на \mathbf{w} , что из всех решения предпочитается то, где $w_1^2 + w_2^2$ минимально, то есть $w_1 = w_2 = const/2$.

Заметим, что если есть основания полагать, что сильная мультиколлинеарность в обучающей выборке не будет продолжена в тестовой [2], то специальная обработка муьтиколлинеарности приобретает важность, а конкретный вид поправок зависит от предположений об эволюции корреляций.

Список литературы

- [1] Rodriguez-Lujan I. et al. Quadratic programming feature selection // Journal of Machine Learning Research. 2010.
- [2] Belsley D. A. Collinearity and forecasting // Journal of Forecasting. 1984. Vol. 3. No. 2. P. 183-196.