Mean Face

Bildbasierte Computergrafik

Lali Nurtaev

Inhalt

- Einleitung
- Facial Landmarks
- Delaunay Triangulation
- Averaging und Face Morphing
- Principal Component Analysis (PCA)
- Live Demo
- Ausblick

Einleitung

Mean Face oder Average Face
Ermittlung eines Durchschnittsgesichts

Vorgehen:

- verschiedene Methoden
- Gesichtserkennung
- durchschnittliche Pixelwerte
- Python: OpenCV, dlib

Mean Face Lali Nurtaev

3

Facial Landmarks

- Machine Learning Algorithmus
- Gesicht auf einem Bild erkannt
 - · Eingrenzung bei schlechtem Lichtverhältnis
- · Gesichtsmerkmale: Augen, Nase, Mund, Augenbrauen und die Gesichtslinie
- 68 Gesichtsmerkmalpunkte in x- und y-Koordinaten
- · mit Trainingsdaten angereichert, die manuell mit Koordinaten beschriftet wurden

Delaunay Triangulation

- Unterteilung von Dreiecken
 - Dreiecksnetz
 - kein Punkt in einem Dreieck
- Vereinfachung des Morphings

Averaging und Face Morphing

- neues Bild durch Überblendung
 - durch Parameter alpha gesteuert
 - Wert zwischen 0 und 1
- $\cdot a = 0$
 - Endergebnis dem Bild 1
- $\cdot a = 1$
 - Endergebnis dem Bild 2
- a = 0.5
 - · gleichmäßige Überblendung der Bilder
- Anwendung für jedes Pixel

$$x_m = (1 - \alpha)x_i + \alpha x_j$$
$$y_m = (1 - \alpha)y_i + \alpha y_j$$

Pixelposition im gemorphten Bild

Averaging und Face Morphing

affine Transformation:

- Rotation
- Verschiebung
- Skalierung
- Beziehung von zwei Bildern

· alle Pixel in den Dreiecken aus beiden Bildern in das gemorphte Bild transformieren

· Pixelintensität berechnen

$$M(x_m, y_m) = (1 - \alpha)I(x_i, y_i) + \alpha J(x_j, y_j)$$

Pixelintensität im gemorphten Bild

Principal Component Analysis (PCA)

- Dimensionsreduktion von Daten
- · Ziel:
 - Daten zu reduzieren oder komprimieren
 - relevante Informationen zu bewahren
- Varianz
 - misst die Streuung der Daten
- Anzahl der Hauptkomponenten

Live Demo

Ende

Leider kein Vergleich möglich.

Vielen Dank für die Aufmerksamkeit!

