Distinct Matroid Base Weights and Additive Theory

Y. O. Hamidoune*

I.P. da Silva[†]

Abstract

Let M be a matroid on a set E and let $w: E \longrightarrow G$ be a weight function, where G is a cyclic group. Assuming that w(E) satisfies the Pollard's Condition (i.e. Every non-zero element of w(E) - w(E) generates G), we obtain a formulae for the number of distinct base weights. If |G| is a prime, our result coincides with a result Schrijver and Seymour.

We also describe Equality cases in this formulae. In the prime case, our result generalizes Vosper's Theorem.

1 Introduction

Let G be a finite cyclic group and let A, B be nonempty subsets of G. The starting point of Minkowski set sum estimation is the inequality $|A+B| \ge \min(|G|, |A|+|B|-1)$, where |G| is a prime, proved by Cauchy [2] and rediscovered by Davenport [4]. The first generalization of this result, due to Chowla [3], states that $|A+B| \ge \min(|G|, |A|+|B|-1)$, if there is a $b \in B$ such that every non-zero element of B-b generates G. In order to generalize his extension of the Cauchy-Davenport Theorem [11] to composite moduli, Pollard introduced in [12] the following more sophisticated Chowla type condition: Every non-zero element of B-B generates G.

Equality cases of the Cauchy-Davenport were determined by Vosper in [16, 17]. Vosper's Theorem was generalized by Kemperman [9]. We need only a light form of Kemperman's result stated in the beginning of Kemperman's paper.

We need the following combination of Chowla and Kemperman results:

Theorem A (Chowla [3], Kemperman [9]) Let A, B be non-empty subsets of a cyclic group G with $|A|, |B| \ge 2$ such that for some $b \in B$, every non-zero element of B-b generates G. Then $|A+B| \ge |A| + |B| - 1$.

Moreover |A + B| = |A| + |B| - 1 if and only if A + B is an arithmetic progression.

A shortly proved generalization of this result to non-abelian groups is obtained in [8].

^{*}Université Pierre et Marie Curie, E. Combinatoire, Case 189, 4 Place Jussieu, 75005 Paris, France. yha@ccr.jussieu.fr

[†]CELC/Universidade de Lisboa, Faculdade de Ciências, Campo Grande, edifício C6 - Piso 2, 1749-016 Lisboa, Portugal.isilva@cii.fc.ul.pt

Zero-sum problems form another developing area in Additive Combinatorics having several applications. The Erdős-Ginzburg-Ziv Theorem [6] was the starting point of this area. This result states that a sequence of elements of an abelian group G with length $\geq 2|G|-1$ contains a zero-sum subsequence of length = |G|.

The reader may find some details on these two areas of Additive Combinatorics in the text books: Nathanson [10], Geroldinger-Halter-Koch [7] and Tao-Vu [15]. More specific questions may be found in Caro's survey paper [1].

The notion of a matroid was introduced by Whitney in 1935 as a generalization of a matrix. Two pioneer works connecting matroids and Additive Combinatorics are due to Schrijver-Seymour [14], Dias da Silva-Nathanson [5]. Recently, in [13], orientability of matroids is naturally related with an open problem on Bernoulli matrices.

Stating the first result requires some vocabulary:

Let E be a finite set. The set of the subsets of E will be denoted by 2^{E} .

A matroid over E is an ordered pair (E, \mathcal{B}) where $\mathcal{B} \subseteq 2^E$ satisfies the following axioms:

- (B1) $\mathcal{B} \neq \emptyset$.
- (B2) For all $B, B' \in \mathcal{B}$, if $B \subseteq B'$ then B = B'.
- (B3) For all $B, B' \in \mathcal{B}$ and $x \in B \setminus B'$, there is a $y \in B' \setminus B$ such that $(B \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

A set belonging to \mathcal{B} is called a *basis* of the matroid M.

The rank of a subset $A \subseteq E$ is by definition $r_M(A) := max\{|B \cap A| : B \text{ is a basis of } M\}$. We write r(M) = r(E). The reference to M could be omitted. A hyperplane of the matroid M is a maximal subset of E with rank = r(M) - 1.

The *uniform* matroid of rank r on a set E is by definition $\mathcal{U}_r(E) = (E, \binom{E}{r})$, where $\binom{E}{r}$ is the set of all r-subsets of E. Let M be a matroid on E and let N be a matroid on F. We define the direct sum:

 $M \oplus N = (E \times \{0\} \cup F \times \{1\}, \{B \times \{0\} \cup C \times \{1\} : B \text{ is a base of } M \text{ and } C \text{ is a base of } N\}.$

Let $w: E \longrightarrow G$ be a weight function, where G is an abelian group. The weight of a subset X is by definition

$$X^w = \sum_{x \in X} w(x).$$

The set of distinct base weights is

$$M^w = \{B^w : B \text{ is a basis of } M\}.$$

Suppose now |G|=p is a prime number. Schrijver and Seymour proved that $|M^w| \ge \min(p, \sum_{g \in G} r(w^{-1}(g)) - r(M) + 1)$. Let A and B be subsets of G. Define $w: A \times \{0\} \cup B \times \{1\}$,

by the relation w(x,y) = x. Then

$$(\mathcal{U}_1(A) \oplus \mathcal{U}_1(B))^w = A + B.$$

Applying their result to this matroid, Schrijver and Seymour obtained the Cauchy-Davenport Theorem.

Let $x_1, \ldots, x_{2p-1} \in G$. Consider the uniform matroid $M = \mathcal{U}_p(E)$, of rank p over the set $E = \{1, \ldots, 2p-1\}$, with weight function $w(i) = x_i$. In order to prove the Erdős-Ginzburg-Ziv Theorem [6], one may clearly assume that no element is repeated p times. In particular for every $g \in G$, $r(w^{-1}(g)) = |w^{-1}(g)|$. Applying Schrijver and Seymour to this matroid we have:

$$|M^w| \geq \min(|G|, \sum_{g \in G} r(w^{-1}(g)) - r(M) + 1) = \min(p, \sum_{g \in G} |w^{-1}(g)| - p + 1) = p.$$

Thus Schrijver-Seymour result also implies the Erdős-Ginzburg-Ziv Theorem [6] in a prime order.

In the present work, we prove the following result:

Theorem 1 Let G be a cyclic group, M be a matroid on a finite set E with $r(M) \ge 1$ and let $w: E \longrightarrow G$ be a weight function. Assume moreover that every non-zero element of w(E)-w(E) generates G. Then

$$|M^w| \ge \min(|G|, \sum_{g \in G} r(w^{-1}(g)) - r(M) + 1),$$
 (1)

where M^w denotes the set of distinct base weights. Moreover, if Equality holds in (1) then one of the following conditions holds:

- (i) r(M) = 1 or M^w is an arithmetic progression.
- (ii) There is a hyperplane H of M such that $M^w = g + (M/H)^w$, for some $g \in G$.

If G has a prime order, then the condition on w(E) - w(E) holds trivially. In this case (1) reduces to the result of Schrijver-Seymour.

2 Terminology and Preliminaries

Let M be a matroid on a finite set E. One may see easily from the definitions that all bases a matroid have the same cardinality. A *circuit* of M is a minimal set not contained in a base. A loop is an element x such that $\{x\}$ is a circuit. By the definition bases contain no loop. The closure of a subset $A \subseteq E$ is by definition

$$cl(A) = \{ x \in A : \ r(A \cup x) = r(A) \}.$$

Note that an element $x \in cl(A)$ if and only if $x \in A$, or there is circuit C such $x \in C$ and $C \setminus \{x\} \subseteq A$.

Given a matroid M on a set E and a subset $A \subseteq E$. Then $\mathcal{B}/A := \{J \setminus A : J \text{ is a basis of } M \text{ with } |B \cap A| = r(A)\}$. One may see easily that $M/A = (E \setminus A, \mathcal{B}/A)$ is a matroid on $E \setminus A$. We say that this matroid is obtained from M contracting A. Notice that $r_{M/A}(X) = r_M(X \cup A) - r_M(A)$.

Recall the following easy lemma:

Lemma 2 Let M be a matroid on a finite set E and let U, V be disjoint subsets of E. Then

- M/U and M/cl(U) have the same bases. In particular, $(M/U)^w = (M/cl(U))^w$.
- $(M/U)/V = M/(U \cup V)$.

For more details on matroids, the reader may refer to one of the text books: Welsh [18] or White [19].

For $u \in E$, we put

$$G_u := \{ g \in G : u \in cl(w^{-1}(g)) \}.$$

We recall the following lemma proved by Schrijver and Seymour in [14]:

Lemma B Let M be a matroid on a finite set E and let $w : E \longrightarrow G$ be a weight function. Then for every non-loop element $u \in E$,

$$(M/u)^w + G_u \subseteq M^w$$
.

Proof. Take a basis B of M/u and an element $g \in G_u$. If g = w(u) then, by definition of contraction, $B \cup \{u\}$ is a basis of M and $B^w + w(u) \in M^w$. If $g \neq w(u)$, there is a circuit C containing u such that $\emptyset \neq C \setminus \{u\} \subseteq w^{-1}(g)$. For some $v \in C \setminus \{u\}$ the subset $B \cup \{v\}$ must be a basis of M otherwise $C \setminus \{v\} \subseteq cl(B)$, implying that $u \in cl(B)$, in contradiction with the assumption that B is a basis of M/u. Therefore $(B \cup \{v\})^w = B^w + g \in M^w$.

3 Proof of the main result

We shall now prove our result:

Proof of Theorem 1:

We first prove (1) by induction on the rank of M. The result holds trivially if r(M) = 1. Since $r(M) \ge 1$, M contains a non-loop element. Take an arbitrary non-loop element y.

$$|M^{w}| \geq |(M/y)^{w} + G_{y}|$$

$$\geq |(M/y)^{w}| + |G_{y}| - 1$$

$$\geq \sum_{g \in G} r(w^{-1}(g)) - r(M) + 1.$$
(2)

The first inequality follows from Lemma B, the second follows by Theorem A and the third is a direct consequence of the definitions of M/u and G_u . This proves the first part of the theorem.

Suppose now that Equality holds in (1) and that Condition (i) is not satisfied. In particular $r(M) \geq 2$. Also $|M^w| \geq 2$, otherwise M^w is a progression, a contradiction.

We claim that there exits a non-loop element $u \in E$ such that $|(M/u)^w| \geq 2$. Assume on the contrary that for every non-loop element $u \in E$ we have $|(M/u)^w| = 1$. Then every pair of bases B_1, B_2 of M with $B_1^w \neq B_2^w$. satisfies $B_1 \cap B_2 = \emptyset$ otherwise for every $z \in B_1 \cap B_2$, $|(M/z)^w| \geq 2$. Now, for every $z \in B_1$, there is $z' \in B_2$ such that $C = (B_1 \setminus \{z\}) \cup \{z'\}$ is a base of M. For such a base C, $B_1 \cap C \neq \emptyset$, $B_2 \cap C \neq \emptyset$, and we must have $B_1^w = C^w = B_2^w$, a contradiction.

Applying the chain of inequalities proving (2) with y = u. We have

$$|M^w| = |(M/u)^w + G_u| = |(M/u)^w| + |G_u| - 1.$$
(3)

Note that $w(E \setminus \{u\}) \subset w(E)$, clearly verifies the Pollard condition. If $|G_u| \geq 2$ Theorem A implies that M^w is a progression and thus M satisfies Condition (i) of the theorem, contradicting our assumption on M. We must have $|G_u| = 1$.

Thus
$$G_u = \{w(u)\}\$$
and $M^w = w(u) + (M/u)^w$.

Since the translate of a progression is a progression, M/u is not a progression. By Lemma 2, (M/u) and M/cl(u) have the same bases and thus the result holds if r(M) = 2. If r(M) > 2, then by the Induction hypothesis there is a hyperplane H of M/u such that $(M/u)^w = (M/u/H)^w = (M/(Cl(\{u\} \cup H))^w)$, and (ii) holds.

Corollary 3 (Vosper's Theorem [16, 17]) Let p be a prime and let A, B be subsets of \mathbb{Z}_p such that $|A|, |B| \geq 2$.

If |A + B| = |A| + |B| - 1 < p then one of the following holds:

(i)
$$c - A = (\mathbb{Z}_p \setminus B)$$
.

(ii) A and B are arithmetic progressions with a same difference.

Proof. Consider the matroid $N = (\mathcal{U}_1(A) \oplus \mathcal{U}_1(B))$ and its weight function w defined in the Introduction. $H = A \times \{0\}$ and $H' = B \times \{1\}$ are the hyperplanes of N and we have $N^w = A + B$.

If $|N^w| = |A| + |B| - 1$ then Theorem 1 says that N must satisfy one of its conditions (i) or (ii). Since by hypothesis $|A|, |B| \ge 2$ we have $|N^w| > \max(|A|, |B|) \ge |(N/H)^w|, |(N/H')^w|$ and we conclude that N^w must be an arithmetic progression with difference d. Without loss of generality we may take d = 1.

Case 1. |A + B| = p - 1. Put $\{c\} = \mathbb{Z}_p \setminus (A + B)$. We have $c - A \subset (\mathbb{Z}_p \setminus B)$. Since these sets have the same cardinality we have $c - A = (\mathbb{Z}_p \setminus B)$.

Case 2. |A + B| .

We have
$$|A + B + \{0, 1\}| = |A + B| + 1 = |A| + |B| < p$$
.

We must have $|A + \{0,1\}| = |A| + 1$, since otherwise by the Cauchy-Davenport Theorem,

$$|A + B| + 1 = |A + B + \{0, 1\}|$$

= $|A + \{0, 1\} + B|$
 $\geq (|A| + 2) + |B| - 1 = |A| + |B| + 1,$

a contradiction. It follows that A is an arithmetic progression with difference 1. Similarly B is an arithmetic progression with difference 1.

References

- [1] Caro, Yair Zero-sum problems, a survey. Discrete Math. 152 (1996), no. 1-3, 93–113.
- [2] A. L. Cauchy, Recherches sur les nombres, J. Ecole Polytechnique 9 (1813), 99–116.
- [3] I. Chowla, A theorem on the addition of residue classes: applications to the number $\Gamma(k)$ in Waring's problem, *Proc.Indian Acad. Sc.*, Section A, no. 1 (1935) 242–243.
- [4] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10(1935), 30–32.
- [5] J.A. Dias da Silva and M.B. Nathanson, "Maximal Sidon sets and matroids", *Discrete Math.* to appear.
- [6] P. Erdős, A. Ginzburg and A. Ziv, A theorem in additive number theory, *Bull Res. Council Israel 10F* (1961), 41-43.
- [7] A. Geroldinger, F. Halter-Koch, Non-unique factorizations. Algebraic, combinatorial and analytic theory. Pure and Applied Mathematics (Boca Raton), 278. Chapman & Hall/CRC, Boca Raton, FL, 2006. xxii+700 pp.
- [8] Y.O. Hamidoune, An isoperimetric method in additive theory. *J. Algebra* 179 (1996), no. 2, 622–630.
- [9] J. H. B. Kemperman, On small sumsets in abeliangroups, Acta Math. 103 (1960), 66–88.
- [10] M. B. Nathanson, Additive Number Theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math. 165, Springer, 1996.
- [11] J. M. Pollard, A generalisation of the theorem of Cauchy and Davenport, J. London Math. Soc. (2) 8 (1974), 460–462.
- [12] J. M. Pollard, Addition properties of residue classes, J. London Math. Soc. (2) 11 (1975), no. 2, 147–152.

- [13] I. P. F. da Silva, Orientability of Cubes, Discrete Math. 308 (2008), 3574-3585.
- [14] A. Schrijver, P.D. Seymour, Spanning trees of different weights. *Polyhedral combinatorics* (Morristown, NJ, 1989), 281–288, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 1, Amer. Math. Soc., Providence, RI, 1990.
- [15] T. Tao and V.H. Vu, *Additive Combinatorics*, Cambridge Studies in Advanced Mathematics **105** (2006), Cambridge Press University.
- [16] G. Vosper, The critical pairs of subsets of a group of prime order, *J. London Math. Soc.* 31 (1956), 200–205.
- [17] G. Vosper, Addendum to "The critical pairs of subsets of a group of prime order", J. London Math. Soc. 31 (1956), 280–282.
- [18] Welsh, D.J.A., Matroid Theory, Academic Press, London, 1976.
- [19] White, N. (ed), Theory of Matroids, Cambridge University Press, 1986.