highway Serbian (SRB)

Highway Tolls

U Japanu, gradovi su povezani mrežom auto-puteva. Ova mreža se sastoji od N gradova i M auto-puteva. Svaki auto-put povezuje par različitih gradova. Nikoja dva auto-puta ne povezuju isti par gradova. Gradovi su numerisani brojevima od 0 do N-1, dok su auto-putevi numerisani od 0 do M-1. Na svakom auto-putu se može voziti u oba smera. Moguće je putovati između bilo koja dva grada koristeći auto-puteve. Sve ovo je moglo biti rečeno u jednoj rečenici.

Na svakom auto-putu Aleksa naplaćuje harač. Harač zavisi od **stanja saobraćaja** na datom auto-putu. Saobraćaj može biti takav da je konkretan auto-put ili **prometan** ili **zakrčen**. Kada je auto-put prometan, harač na njemu iznosi A jena (Japanska valuta, prim. aut.). Kada je auto-put zakrčen, harač na njemu iznosi B jena. Uvek važi A < B. Obratite pažnju da su vam vrednosti A i B poznate.

Vi imate mašinu koja, za dato stanje saobraćaja na svim auto-putevima, računa najmanji ukupni harač koji se mora platiti Aleksi da bi se putovalo između gradova S i T ($S \neq T$), uz zadato stanje saobraćaja.

Međutim, kako je Pavle programirao mašinu, ona je izuzetno slabog kvaliteta. Vrednosti S i T su fiksirane (tj. hardkodirane u mašini) i nisu vam poznate. Vi želite da odredite S i T. Da biste to uradili, planirate da zadate nekoliko stanja saobraćaja mašini i, koristeći vrednosti harača koje mašina vraća, da odredite vrednosti S i T. Kako mašina nije kvalitetna, ona će se pokvariti ako je koristite previše puta - zato pamet u glavu.

Detalji implementacije

Potrebno je implementirati sledeću funkciju:

find pair(int N, int[] U, int[] V, int A, int B)

- N: broj gradova.
- U i V: nizovi dužine M, gde je M broj auto-puteva koji povezuju gradove. Za svako $i \ (0 \le i \le M-1)$, auto-put i povezuje gradove U[i] i V[i].
- A: harač na auto-putu kada je on prometan.
- B: harač na auto-putu kada je on zakrčen.
- Ova funkcija se poziva tačno jednom po test primeru.
- ullet Obratite pažnju da je M dužina nizova i da se može dobiti kao što je opisano u

napomeni o implementaciji.

Funkcija find pair može pozivati sledeću funkciju:

- ullet Dužina niza w mora biti M. Niz w opisuje stanje saobraćaja.
- Za svako i ($0 \le i \le M-1$), w[i] daje stanje saobraćaja na auto-putu i. Vrednost w[i] mora biti 0 ili 1.
 - \circ w[i] = 0 znači da je auto-put *i* prometan.
 - \circ w[i] = 1 znači da je auto-put *i* zakrčen.
- ullet Ova funkcija vraća najmanji mogući ukupni harač za putovanje između gradova S i T, pod pretpostavkom da važi stanje saobraćaja zadato nizom w.
- Ova funkcija se može pozvati najviše 100 puta (po test primeru).

find pair treba da pozove sledeću funkciju da vrati odgovor:

- s i t mora biti traženi par gradova S i T (redosled nije bitan).
- Ova funkcija mora biti pozvana tačno jednom.

Ako neki od gore pomenutih uslova nisu zadovoljeni, vaš program se ocenjuje sa **Wrong Answer**. Inače, vaš program se ocenjuje kao **Accepted** i vaš broj poena se računa na osnovu broja poziva funkcije ask (vidi odeljak Podzadaci).

Primer

Neka je
$$N=4$$
, $M=4$, $U=[0,0,0,1]$, $V=[1,2,3,2]$, $A=1$, $B=3$, $S=1$, i $T=3$.

Grejder poziva find pair(4, [0, 0, 0, 1], [1, 2, 3, 2], 1, 3).

Na slici iznad, grana sa brojem i odgovara auto-putu i. Neki mogući pozivi funkciji ask

i odgovarajuće povratne vrednosti su prikazane ispod:

Call	Return
ask([0, 0, 0, 0])	2
ask([0, 1, 1, 0])	4
ask([1, 0, 1, 0])	5
ask([1, 1, 1, 1])	6

Za poziv ask([0, 0, 0, 0]), svaki auto-put je prometan pa je za svaki auto put harač 1. Najjeftinije putovanje od S=1 do T=3 je $1\to 0\to 3$. Ukupan harač za ovo putovanje je 2. Dakle, funkcija vraća 2.

Za tačno rešenje, funkcija find pair treba da pozove answer(1, 3) ili answer(3, 1).

Fajl sample-01-in.txt u zipovanom dodatku odgovara ovom primeru. Drugi sample input fajlovi su takođe dostupni u zipovanom dodatku.

Ograničenja

- $2 \le N \le 90\,000$
- 1 < M < 130000
- $1 \le A < B \le 1000000000$
- Za svako $0 \le i \le M-1$
 - $0 \le U[i] \le N-1$
 - $\circ \ 0 < V[i] < N-1$
 - $\circ U[i] \neq V[i]$
- $(U[i], V[i]) \neq (U[j], V[j])$ i $(U[i], V[i]) \neq (V[j], U[j])$ $(0 \leq i < j \leq M-1)$
- Moguće je stići od bilo kog do bilo kog drugog grada koristeći auto-puteve.
- $0 \le S \le N 1$
- 0 < T < N 1
- $S \neq T$

U ovom problemu, grejder NIJE adaptivan. To znači da su S i T fiksirani na početku pokretanja grejdera i ne zavise od upita od strane vašeg programa.

Podzadaci

- 1. (5 poena) jedan od S ili T je 0, $N \leq 100$, M = N 1
- 2. (7 poena) jedan od S ili T je 0, M = N 1
- 3. (6 poena) M = N 1, U[i] = i, V[i] = i + 1 ($0 \le i \le M 1$)
- 4. (33 poena) M = N 1
- 5. (18 poena) A = 1, B = 2

6. (31 poen) Nema dodatnih ograničenja

Pretpostavimo da je vaš program ocenjen kao **Accepted** i da imate X poziva funkciji ask. Tada se vaš osvojeni broj poena P za dati test primer, u zavisnosti od podzadatka, računa na sledeći način:

- Podzadatak 1. P = 5.
- Podzadatak 2. Ako je $X \leq 60$, P = 7. Inače P = 0.
- Podzadatak 3. Ako je $X \le 60$, P = 6. Inače P = 0.
- Podzadatak 4. Ako je $X \leq 60$, P = 33. Inače P = 0.
- Podzadatak 5. Ako je $X \leq 52$, P = 18. Inače P = 0.
- Podzadatak 6.
 - $\circ~$ Ako je $X \leq 50$, P = 31.
 - Ako je $51 \le X \le 52$, P = 21.
 - Ako je $53 \leq X$, P = 0.

Obratite pažnju da je broj poena osvojen na podzadatku jednak minimumu broja poena osvojenih na test primerima u tom podzadatku.

Priloženi grejder

Priloženi grejder čita ulaz u sledećem formatu:

- linija 1: N M A B S T
- linija 2+i ($0 \le i \le M-1$): U[i] V[i]

Ako je vaš program ocenjen kao **Accepted**, priloženi grejder štampa **Accepted**: q, gde je q broj poziva funkciji ask.

Ako je vaš program ocenjen kao **Wrong Answer**, štampa se **Wrong Answer**: MSG, gde je MSG jedno od sledećeg:

- answered not exactly once: Funkcija answer nije pozvana tačno jednom.
- w is invalid: Dužina niza w data funkciji ask nije M ili w[i] nije ni 0 ni 1 za neko i ($0 \le i \le M-1$).
- more than 100 calls to ask: Funkcija ask je pozvana više od 100 puta.
- {s, t} is wrong: Funkcija answer je pozvana sa netačnim parom s i t.