The next six questions pertain to the situation described below.

put your cakelator in radians!

A circuit is constructed with two capacitors and an inductor as shown. The values for the capacitors are: $C_1 = 350 \,\mu\text{F}$ and $C_2 = 77 \,\mu\text{F}$. The inductance is L = 275 mH. At time t = 0, the current through the inductor has its maximum value $I_L(0) = 200$ mA and it has the direction shown.

1) What is ω_0 , the resonant frequency of this circuit?

capacitors in series for this circuit

1) What is
$$\omega_0$$
, the resonant frequency of this circuit?

1/240.031481603074 radians/s

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{$$

2) What is $Q_1(t_1)$, the charge on the capacitor C_1 at time $t = t_1 = 15.3$ ms? The sign of Q_1 is defined to be the same as the sign of the potential difference $V_{ab} = V_a - V_b$ at time $t = t_1$.

I, VL, VL, Qc all oscillate at freq. wo, initial conditions determine whether each has sin(wt) or cos(wt). I= Imax cos(wt), Q=Qmax sin(wt) \checkmark -4.21861487770325 × 10⁻⁴ C because (charge is initially flowing clockwise. A role Q=Qz=Q where Note that $I = \frac{\partial Q}{\partial t}$ $I(t) = \omega Q_{max} \cos(\omega)$ so $Q_{max} = \frac{I_{max}}{\omega_o} = 8.33 \times 10^{-4} C$ series capacitors

$$Q(t_1) = Q_{max} \quad 3.71(\omega. t_1) = (8.33 \times 10^4) \sin(240. \times .0153)$$

$$Q_1(t_1) = -4.22 \times 15^4 C$$
3) What is $V_{bc}(t_1) = V_b - V_c$, the voltage across the inductor at time $t_1 = 15.3$ ms? Note that this voltage is

a signed number.

✓ 6.68403915688049 V

KIRKEYS VERS BYZ COMES DIE BYZ BOOM BANGER 1 (+) = 200 mA cos(wt) |Vbc| = |E| = +L IT = Lw Imax sin(at)

Vbc = -Lw Imax sin(at) to initial conditions show (-) Vb.(+,) =-(240.)(.2) sin(240. .0153) = +6.68 V

4) What is Q_{1,max}, the magnitude of the maximum charge on capacitor C₁?

✓ 8.33224036548374 × 10⁻⁴ C

$$f_{oun} = \frac{I_{max}}{u_s} = \frac{R.33 \times 10^{-4} \text{ C}}{C}$$

$$f_{oun} = \frac{I_{max}}{u_s} = \frac{R.33 \times 10^{-4} \text{ C}}{C}$$

$$f_{con} = \frac{I_{max}}{I_{max}} = \frac{R.33 \times 10^{-4} \text{ C}}{C}$$

5)At time
$$t = t_2$$
, the magnitude of the current through the inductor has its maximum value. What are the

magnitudes of Q_1 , the charge on capacitor C_1 , and V_L , the voltage across the inductor at this time? 1. $Q_1 = 0$ and $V_L = V_{max}$

2.
$$Q_1 = Q_{\text{max}}$$
 and $V_1 = V_{\text{max}}$

3.
$$\sqrt{Q_1} = 0$$
 and $V_1 = 0$

4.
$$Q_1 = Q_{\text{max}}$$
 and $V_L = 0$

the state Milled A

when
$$V_{L}=0$$
 $V_{L_{1}}=V_{L_{2}}=0$ by Kirchoff's Voltage

loop equation

when
$$V_c = 0$$
 $Q_c = 0$ since $V = \frac{Q}{C}$

The next seven questions pertain to the situation described below.

A circuit is constructed with a resistor, two inductors, one capacitor, one battery and a switch as shown. The value of the resistance is R_1 = 300 Ω . The values for the inductances are: L_1 = 210 mH and L_2 = 182 mH. The capacitance is C = 98 μF and the battery voltage is V = 12 V. The positive terminal of the battery is indicated with a + sign.

7) The switch has been closed for a long time when at time t = 0, the switch is opened. What is $U_{L1}(0)$, the magnitude of the energy stored in inductor L_1 just after the switch is opened?

$$J = \frac{V}{R} = .04A$$

 $V_{i} = \frac{1}{2}I_{i}T^{2} = \frac{1}{2}(.21 \text{ H})(.04 \text{ A})^{2} = 1.68 \times 10^{-4} \text{ J}$

8) What is ω_0 , the resonant frequency of the circuit just after the switch is opened? \checkmark 161.340696947366 radians/s

.340696947366 radians/s

LC c: reu:
$$\frac{1}{2}$$
 L: $\frac{1}{2}$ n series add $\frac{1}{2}$ L= $\frac{1}{2}$ L= $\frac{1}{2}$ R= $\frac{1}{2}$ R= $\frac{1}{2}$ Con $\frac{$

9) What is Q_{max}, the magnitude of the maximum charge on the capacitor after the switch is opened?

1247.922568557201 μC

Since
$$I = \frac{\partial Q}{\partial t}$$
 and $Q = -O_{max}$ sin(ωt) (set by initial $I = I_{max}$ cos(ωt) conditions)

he see that $I_{max} = \omega \cdot Q_{max}$

So $Q_{max} = \frac{I_{max}}{\omega} = \frac{(.04A)}{(1612)} = 2.48 \times 10^{-4} C$
 $I = I_{max} = \frac{(.04A)}{(.04A)} = 2.48 \times 10^{-4} C$
 $I = I_{max} = \frac{(.04A)}{(.04A)} = 2.48 \times 10^{-4} C$

10) What is $Q(t_1)$, the charge on the capacitor at time $t = t_1 = 3.22$ ms. $Q(t_1)$ is defined to be positive if V(a) - V(b) is positive.

✓-123.083876783424 µC

Current is flaving

clockwise at t=0, so

Va is decreasing while

Vb is increasing (and was

Va=Vb=0 at t=0),

which determines

- sin (at)

factor

11) What is t₂, the first time after the switch is opened that the energy stored in the capacitor is a maximum?

✓ 9.73588827692023 ms

Vc, Qc, and energy Uc all maximum after 1/4 period

so when
$$\omega$$
, $t = \frac{\pi}{2}$
 $t = \frac{\pi}{2}\omega_0 = .00974 \text{ s}$
 $t = 9.74 \text{ ms}$

12) What is the total energy stored in the inductors plus the capacitor at time $t = t_2$? $\checkmark 3.136 \times 10^{-4} \text{ J}$

LC CIRCUIT BASE

Welcome to this IE. You may navigate to any page you've seen already using the IE tab on the right.

LC Circuit

The LC circuit shown above has a capacitance $C = 0.05 \,\mu\text{F}$ and inductance $L = 420 \,\text{mH}$. Suppose that at time t = 0, the stored electric and magnetic energies are equal to one another and the instantaneous current is 75 mA. What is Q_{max} the maximum charge that is stored on the capacitor in this situation? $Q_{max} = 0.05 \,\mu\text{F}$

Right Answer: 1.53704261489395E-05 CIVmagnetic: $U_L = \frac{1}{2}LI^2$ > given that $U_L = U_C$ at t = 0 and I = 75 mA at electric: $U_C = \frac{1}{2}\frac{Q^2}{C}$ total energy is conserved since no resistor is present, so $U_T = U_L + U_C$ and $U_T = U_L + U_C$ when $U_T = U_L + U_C$ and $U_T = U_L + U_L$ and $U_T = U_L + U_L$ and $U_T = U_L + U_L$ are $U_T = U_L + U_L$ and $U_T = U_L + U_L$ and $U_T = U_L + U_L$ are $U_T = U_L + U_L$ and $U_T = U_L + U_L$ are $U_T = U_L + U_L$ and $U_T = U_L + U_L$ are $U_T = U_L + U_L$ and $U_T = U_L + U_L$ are $U_T = U_L + U_L$ and $U_T = U_L + U_L$ are $U_T = U_L + U_L$ are $U_T = U_L + U_L$ are $U_T = U_L + U_L$ and $U_L = U_L + U_L$ are $U_L = U_L + U_L$

30
$$\frac{1}{2} \frac{Q_{max}^2}{C} = U_T^{M}$$

$$Q_{max} = \sqrt{2CU_T} = \sqrt{2CLI(0)^2}$$

$$= 1.54 \times 10^{-5} \text{ C}$$

LCR ENERGY BASE

Welcome to this IE. You may navigate to any page you've seen already using the IE tab on the right.

Stored Energy in LCR Circuit

Four resistors (R_1 = 60 Ohms, R_2 = 220 Ohms, R_3 = 330 Ohms, and R_4 = 480 Ohms), an ideal inductor (L = 8 mH), and a capacitor (C = 250 microF) are connected to a battery (V = 9 V) through a switch as shown in the figure below.

The switch has been open for a long time before it is closed at t = 0. What is U_{stored} , the total stored energy in the circuit elements (not including the battery) a long time after the switch is closed? U_{stored} =

