Foundations of Computer Science Comp109

University of Liverpool

Boris Konev konev@liverpool.ac.uk

Part 2. (Naive) Set Theory

Comp109 Foundations of Computer Science

Reading

- S. Epp. Discrete Mathematics with Applications Chapter 6
- K. H. Rosen. Discrete Mathematics and Its Applications Chapter 2

Contents

- Notation for sets.
- Important sets.
- What is a *subset* of a set?
- When are two sets *equal*?
- Operations on sets.
- *Algebra* of sets.
- Bit strings.
- Cardinality of sets.
- Russell's paradox.

Notation

A set is a collection of objects, called the elements of the set. For example:

1 {7,5,3};

- 55,3.73, 53,5,29
- {Liverpool, Manchester, Leeds}.

We have written down the elements of each set and contained them between the brace { }.

We write $a \in A$ to denote that the object a is an element of the set A:

$$7 \in \{7,5,3\}, \ 4 \notin \{7,5,3\}.$$
 X=Y

Notes

- The order of elements does not matter
- Repeatitions do not count

Notation

For a large set, especially an infinite set, we cannot write down all the elements. We use a predicate P instead.

denotes the set of objects x from S for which the predicate P(x) is true.

Examples: Let $A = \{1, 3, 5, 7, ...\}$. Then

$$A = \{ x \in \mathbb{Z} \mid x \text{ is odd} \}$$

Very informal notation:

$$A = \{2n-1 \mid n \text{ is a positive integer }\} = \{m \in \mathbb{Z} \mid m = 2n-1 \text{ for some integer } n\}.$$

More examples

Find simpler descriptions of the following sets by listing their elements:

$$A = \{x \in \mathbb{Z} \mid x^2 + 4x = 12\}; \iff$$

$$B = \{n^2 \mid n \text{ is an integer } \}.$$

$$C = \{x \mid x \text{ a day of the week not containing "u" } \};$$

Important sets (notation)

The empty set has no elements. It is written as \emptyset or as $\{\}$.

We have seen some other examples of sets in Part 1.

- \blacksquare $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ (the natural numbers)
- $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ (the integers)
- \blacksquare $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$ (the positive integers)
- $\blacksquare \ \mathbb{Q} = \{x/y \mid x \in \mathbb{Z}, y \in \mathbb{Z}, y \neq 0\} \text{ (the rationals)}$
- R: (real numbers)
 - $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ the set of real numbers between a and b

Detour: Sets in python

Sets are the 'most elementary' data structures (though they don't always map well into the underlying hardware).

Some modern programming languages feature sets.

■ For example, in Python one writes

(Computer) representation of sets

Only finite sets can be represented

- Number of elements not fixed: List (?)

 Java&Python do differently
- All elements of A are drawn from some ordered sequence $S = \langle s_1, \ldots, s_n \rangle$: the characteristic vector of A is the sequence $[b_1, \ldots, b_n]$ where

$$b_i = \begin{cases} 1 & \text{if} \quad s_i \in A \\ 0 & \text{if} \quad s_i \notin A \end{cases}$$

Sequences of zeros and ones of length n are called bit strings of length n. AKA bit vectors AKA bit arrays

Example

Let
$$S = \langle 1, 2, 3, 4, 5 \rangle$$
, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

- The characteristic vector of A is [1,0,1,0,1].
- The characteristic vector of B is [0,0,1,1,0].
- The set characterised by [1, 1, 1, 0, 1] is $\{1, 2, 3, 5\}$.
- The set characterised by [1, 1, 1, 1, 1] is $\{1, 2, 3, 4, 5\}$.
- The set characterised by [0,0,0,0,0] is . . .

$$A = \{a, c, z\}$$
 $\chi_{A} = [1, 0, 1, 0, 0, 1]$

Subsets

Definition A set B is called a *subset* of a set A if every element of B is an element of A. This is denoted by $B \subseteq A$.

Examples:

Figure 1: Venn diagram of $B \subseteq A$.

Detour: Subsets in Python

```
def isSubset(A, B):
    for x in A:
        if x not in B:
        return False
    return True
```


Testing the method:

print isSubset(n,m)

But then there is a built-in operation:

print n⊲m

Subsets and bit vectors

Let
$$S = \langle 1, 2, 3, 4, 5 \rangle$$
, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

$$\chi_{A} = [1,0,1,0,1]$$

$$\chi_{B} = [0,0,1,1,0]$$

■ Is the set C, represented by [1,0,0,0,1], a subset of the set D, represented by [1,1,0,0,1]?

$$\chi_0 = C_{1,1}, 0, 0, 1, 1, 2$$
 $C = \{1, 5\}$
 $\chi_0 = C_{1,1}, 0, 0, 1, 2$ $D = \{1, 1, 5\}$

Equality

Definition A set A is called *equal* to a set B if $A \subseteq B$ and $B \subseteq A$. This is denoted by A = B.

Examples:

Equality and bit vectors

Let $S = \langle 1, 2, 3, 4, 5 \rangle$, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

■ Is the set C, represented by [1,0,0,0,1], equual to the set D, represented by [1,1,0,0,1]?

