Amelie Nguyen

Design Portfolio amelienguyen14@gmail.com

Feedback Controlled Manipulation System for Precision Positioning of Nanorod Pens

Goal: we iterated on a previous nanorod design for manipulating nanoparticles to improve visibility of the particle during usage.

We touched several fabrication methods including small scale SLA printing and vapor deposition.

We later threaded a fiber optic cable through the hole to control the light passing through the nanorod.

FSAE Onboard Data Collection Methods

I dove into FSAE and vehicle dynamics with a project to determine which sensors to use on the car. I determined which datapoints we needed and researched which sensors were necessary to collect raw data and calculate the datapoints.

Data	Sensor(s)	Purpose	Notes
Lateral & longitudinal acceleration	Accelerometer/Gyroscope (A/G)		Very Cool Link - Summit Cheaper Option - Random (Seems best to me?)
Body roll angle	A/G		FSAE FORUM "LPF" to get rid of noise? Another Link from Forum Gyroscope (Bad Review on FSAE Forum)
Yaw rate	A/G		^(From 3-Axis Angular Rate Sensors)^
Suspension travel	Linear potentiometer (already have)	Rate of damping	Already have, but here's a link for a similar sensor
Steering wheel position	Angular potentiometer	-	Already requested by body/dynamics
Wheel speed sensors	Hall effect sensors (already have)	Determine slip ratio	Electric Team's Sensor (maybe)

Chart of sensor selection

I later implemented the hall effect sensors which included making CAD for the gear plate sensor trigger using sheet metal tools

FRC 2020 Wheel Manipulator

Goal: design a mechanism to spin a horizontal wooden wheel to a specified range of degrees within the constraints of a pre-existing robot.

Allotted only one motor for two functions, the design features a "dead axle" and bevel gears to pivot the mechanism and spin the rubber wheel.

Some parts designed were CAM intensive and I learned about part orientation and tolerances while manufacturing this subsystem

F4 CADathon 9

Goal: design a robot for a proposed game within 4 days to win the 9th F4 CADathon In our first CADathon, I was in charge of the elevator and electronics.

I designed the elevator frame, carriages, and packaging for bearing blocks

I learned about all of the necessary electronic components and placements to run an FRC robot

