

IND5001 Group Project

Members:

Elvis Ayroso, Lim Meng Hock Roger, Stanley Poh Wee Chin, Wong Sin Wee

Company Introduction

- Pioneer cutting-edge technologies that deliver the cleanest, safest and most competitive solutions to our planet's vital power needs
- One of the top Aircraft engine maker
- In the aviation market for many decades
- Global footprint with manufacturing, assembly, MRO, customer services facilities
- Operations in more than 50 countries and customers in over 100
- Engines powered small, medium, large and defense aircraft
- Keeping up with the changing world with growing passenger numbers and mounting environmental pressures
- Net to Zero Carbon emissions by 2050 operations, facilities, products and technologies

Industry Overview (Engine Market)

- Airlines are revamping their fleet by procuring new aircraft generating the demand for new engines with forecast period (2020 to 2025)
- Anticipated registration of over 5.5% Compound Annual Growth Rate (CAGR) in aircraft engines market
- Demand is the Highest for Turbofan Engines and holds a major share in the aircraft engines market
- New aircraft programs, like COMAC C919 and Boeing 777X, are powered by newer generation turbofan engine in supporting the growth and development of lightweight, advanced propulsion systems

Industry Overview (Engine Market)

Industry Overview (I4.0 Engine Business)

Data-powered Business Model

Increasing use of data in every segments of the business through digital threads.

Data-driven engine preservation

Increasing use of IoT sensors, data analytics to preserve engine through real time monitoring of engine performance.

Data-managed product lifecycle

Increasing use of engine data to improve product design for more efficient engine.

Data-Commitment for environment

Increasing market pressures of reducing carbon footprint which aviation industry committed to play a part environmentally.

Overview of Current Operations

A completed and tested aircraft engine takes 25 days to complete a total of 6 processes before delivering to the value customer.

The last process that each engine undergoes is an engine test which will last for a day. This critical testing will determine if the engine is fit for flying.

One of the key requirement during the test is to ensure vibration of the engine falls within the margin.

Vibration results are only available after the final build and engine test.

Within each process, dimensional data are measured and input to the manufacturing execution system

Challenges in Current Operations

- Machines and Systems are <u>not connected</u> and integrated to the network.
- Manual intervention of dimensional results into MES.
- Key dimensional outputs only use during engine test process.
- Test bed pass rate is about <u>80%</u>, with 40 engines rework on average output of 200 engines per year.
- On each engine been rejected, the rework lead time is <u>20 days</u> and direct cost more than <u>100k</u>.
- The engine is built-to-order, any reject will delay the delivery to airplane factory and cause the airplane delivery delay to airline.
- The top failure modes are HP and IP vibration.

Technology Case Studies

Machine learning is being tested out on individual module operational level

For this case study, deburring process was focused upon, and sensors were attached to a ML model to provide in-process monitoring.

This shows some companies are already doing small scale pilot projects and shows feasibility of integrating ML and I4.0 into the workspace

Caesarendra, W. et al. (2018).

Technology Case Studies

Cloudera currently has an ML enabled digital platform for MROs and is currently being utilized by Lufthansa Technik

This project will aim to leverage machine learning models technology for engine turbine lead time improvement.

Leauanae, T. (2020, Oct).

Technology Recommendation and Process Improvement

Design Thinking for Solution

EMPATHY

- High Reject at Engine Test
- High cost of non-quality due to the reject, each reject cost 100k and 20 days of delay delivery of the engine to airframer.
- To get a good quality module, specification tighten and subsequently high reject at module build.

DEFINE

- Major Test Reject is Vibration (HP and IP)
- Vibration come from modules.
- To improve the Test yield, the quality of the module need to be improved.

IDEATE

- What if we can filter bad module during module build to eliminate costly reject at test bed?
- What if we can predict the module vibration signature with the features from the module?

PROTOTYPE

- A Machine Learning model of 180 engines data has been performed on the HP module.
- The model able to predict the Pass or Fail by using the HP build measurement and balancing data.

TEST

- Test the prototype model with simulation data.
- With the model, the Rejects can be reduced in 4 ways.

Prototyping Using 180 Engines Historical Data

12

Predict the Engine Vibration at Test

Machine Learning Model

	Classification Models								
	Logistic Regression	Support Vector	K_Neighbors	Random Forest					
Characteristics	- Parametric model Find the best fit based on the statistical probability Sensitive to outlier - Suitable for small dataset.	-Try to maximize the margin between the closest support vectors based on geometry distance. - Not sensitive to outlier. - Suitable for small dataset.	Non Parametric model. Use geometry distance to separate the cluster. Features shall be scaled. Suitable for large dataset.	- For classification, it use decision tree Yes or No Able to provide probabili interpretation Can handle complex features.					
Baseline	Bench mark:	149 Pass, 31 Reject. Accuracy	49 Pass, 31 Reject. Accuracy predict: "Pass"=82.7%, "Reject"=17.3%						
CV Accuracy	82%	81%	78%	78%					
CV F1 Score	36%	49%	41%	42%					
AUC	0.908	0.865	0.810	0.835					
Precision _Recall	60%	40%	55%	40%					
Train	Accuracy: 83 F1 Score: 42	98 Overfittin 94 Train set a		99 96					
Test	Accuracy: 86 F1 Score: 29		or test set. 55	83 40					
Separation of Training Dataset	(applic Pagement (Paining act)	Support leader Grand-All Change and Capacity Capa	Consider Change of	Ander heart County of the Coun					
# /let A1=2 ² A2=2 ² B2=2 ² C1=1 ⁴ Fx=3 ²	5 #c25 5 #c25 0 #c25			1 2 2					

measurement = pd.DataFrame({'A1': [A1], 'A2': [A2], 'B2': [B2], 'C1': [C1], 'Fx': [Fx]})

print(f'The Vibration predicted by Logistic Regression classifier is: (result[0])')

measurement = sc.transform(measurement)

Appendict the Vibration of the measurements

#print(prediction)

prediction-pd.DataFrame(LR_classifier.predict(measurement))

The Vibration predicted by Logistic Regression classifier is: Reject

result-prediction[0].map({0: 'Pass', 1: 'Reject'});

Predict the Build Parameters

```
# Measurement data input from Compressor
A1=20 #<25
A2=20 #<25
B2=20 #<25
# Find the Limit of the C1 and Fx on the matching Turbine
Fx_list=[]
C1_range=np.arange(1,50,1)
Fx range=np.arange(10,300,20)
for i in Fx range:
    for j in C1_range:
        measurement = pd.DataFrame({'A1': [A1], 'A2': [A2], 'B2': [B2], 'C1': [j], 'Fx': [i]})
        measurement = sc.transform(measurement)
        prediction=LR classifier.predict(measurement)
        if prediction>0 :
            break
    C1 list.append(j)
    Fx list.append(i)
# C1 and Fx predict tramline
plt.figure(figsize=(8,6))
plt.plot(Fx_list,C1_list,'o-',label='A1, A2, B2= 20', color='blue')
plt.grid(linestyle='--')
plt.xlabel('Fx',fontsize=16)
plt.ylabel('C1',fontsize=16)
plt.legend()
plt.title('C1 and Fx Maximum Limit Plots (Logistic Regression)', fontsize=16);
        C1 and Fx Maximum Limit Plots (Logistic Regression)
```

Proposed Deployment Strategies Derived from Prototyping

1. Compressor and Turbine Matching

2. Drawing Spec VS ML Model

3. Batch Matching

4. Faster Approval of out of Specification Measurement (Improve HP Build and **Engine Test Yield)**

Vibration Pass Limit

Method 1

Chief Design Engineer

Project Road Map (Operations)

Technology Roadmap

Strategic

6 months

System integration to centralized MES

12 months

Deployment of Alproven ML system to other modules 30 months

Smart inventory forecasting and quality monitoring system

9 months

Deployment of ML enabled engine build platform

Operational

time

Technology Business Benefits

- Increase on RFT from 80% to 91%
- Reduce number of engine rework by 50%
- On-time delivery with zero penalty
- Reduce OT hours by 50%
- Productivity increases by 20%
- Zero human intervention on data capturing

- Increase digital awareness and culture
- Upskill workforce
- Improve accountability
- Training of ML model on the fly
- Increase workforce confidence
- Safe engine flying

Cost-Benefit Analysis (Projected ROI)

Payback benefits calculator \$'s										
Ca	pital Expenditure									
	Spend	Remarks/Justification	2020	2021	2022	2023	2024	2025	2026	2027
Connectivity setup	o for MES with Machine	4 processes + OEM configuration	\$200,000							
Firewall Changes			\$5,800							
Security Certs			\$4,000							
Programme Integr	rator		\$7,500							
Total CAPEX			\$217,300							
Ope	Operating Expenditure									
	Spend	Remarks/Justification	2020	2021	2022	2023	2024	2025	2026	2027
Platform Licence (Annual)	ML Platform licence fee _ support cost	\$30,000.00	\$30,000.00	\$30,000.00	\$30,000.00	\$30,000.00	\$30,000.00	\$30,000.00	\$30,000.00
IT Support Cost (A	nnual)		\$9,000.00	\$9,000.00	\$9,000.00	\$9,000.00	\$9,000.00	\$9,000.00	\$9,000.00	\$9,000.00
Annual OPEX			\$39,000	\$39,000	\$39,000	\$39,000	\$39,000	\$39,000	\$39,000	\$39,000
1st process 2nd process 3rd process										
			1st process	2nd process	3rd process					
E	xpected savings	Remarks/Justification	1st process 2020	2nd process 2021	3rd process 2022	2023	2024	2025	2026	2027
Engine delivery pe	·					\$2,000,000	\$2,000,000	\$2,000,000	2026 \$2,000,000	\$2,000,000
	·	Remarks/Justification \$100,000 per engine rework. Total year target 200 engines, and 80% RFT (tgt	2020	2021	2022					
Engine delivery pe	·	Remarks/Justification \$100,000 per engine rework. Total year target 200 engines, and 80% RFT (tgt 91%) current total 800 hours, cost rate of \$25	\$1,000,000	2021 \$1,500,000	\$2,000,000	\$2,000,000	\$2,000,000	\$2,000,000	\$2,000,000	\$2,000,000
Engine delivery pe	enalty	Remarks/Justification \$100,000 per engine rework. Total year target 200 engines, and 80% RFT (tgt 91%) current total 800 hours, cost rate of \$25	\$1,000,000 \$2,500	\$1,500,000 \$10,000	\$2,000,000 \$15,000	\$2,000,000 \$15,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000	\$2,000,000 \$15,000	\$2,000,000 \$15,000
Engine delivery pe	enalty Annual expected	Remarks/Justification \$100,000 per engine rework. Total year target 200 engines, and 80% RFT (tgt 91%) current total 800 hours, cost rate of \$25	\$1,000,000 \$2,500 \$1,002,500	\$1,500,000 \$10,000 \$1,510,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000	\$2,000,000 \$15,000	\$2,000,000 \$15,000
Engine delivery pe	enalty Annual expected	Remarks/Justification \$100,000 per engine rework. Total year target 200 engines, and 80% RFT (tgt 91%) current total 800 hours, cost rate of \$25	\$1,000,000 \$2,500 \$1,002,500	\$1,500,000 \$10,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000	\$2,000,000 \$15,000	\$2,000,000 \$15,000
Engine delivery pe	enalty Annual expected	Remarks/Justification \$100,000 per engine rework. Total year target 200 engines, and 80% RFT (tgt 91%) current total 800 hours, cost rate of \$25	\$1,000,000 \$2,500 \$1,002,500	\$1,500,000 \$10,000 \$1,510,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000	\$2,000,000 \$15,000	\$2,000,000 \$15,000
Engine delivery pe	enalty Annual expected	Remarks/Justification \$100,000 per engine rework. Total year target 200 engines, and 80% RFT (tgt 91%) current total 800 hours, cost rate of \$25	\$1,000,000 \$2,500 \$1,002,500	\$1,500,000 \$10,000 \$1,510,000 eturn on Investme	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000 \$14,60	\$2,000,000 \$15,000 \$2,015,000 02,500	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000
Engine delivery pe	enalty Annual expected	Remarks/Justification \$100,000 per engine rework. Total year target 200 engines, and 80% RFT (tgt 91%) current total 800 hours, cost rate of \$25	\$1,000,000 \$2,500 \$1,002,500	\$1,500,000 \$10,000 \$1,510,000 eturn on Investme	\$2,000,000 \$15,000 \$2,015,000 nt 2022	\$2,000,000 \$15,000 \$2,015,000 \$14,60	\$2,000,000 \$15,000 \$2,015,000 02,500	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000	\$2,000,000 \$15,000 \$2,015,000
Engine delivery pe	enalty Annual expected	Remarks/Justification \$100,000 per engine rework. Total year target 200 engines, and 80% RFT (tgt 91%) current total 800 hours, cost rate of \$25 d savings Net Cost saving	\$1,000,000 \$2,500 \$1,002,500 Re 2020 \$1,002,500.00 -\$256,300.00	\$1,500,000 \$10,000 \$1,510,000 eturn on Investme 2021 \$1,510,000.00	\$2,000,000 \$15,000 \$2,015,000 nt 2022 \$2,015,000.00	\$2,000,000 \$15,000 \$2,015,000 \$14,60 2023 \$2,015,000.00	\$2,000,000 \$15,000 \$2,015,000 02,500 2024 \$2,015,000.00	\$2,000,000 \$15,000 \$2,015,000 2025 \$2,015,000.00	\$2,000,000 \$15,000 \$2,015,000 2026 \$2,015,000.00	\$2,000,000 \$15,000 \$2,015,000 2027 \$2,015,000.00

Cost-Benefit Analysis (Projected ROI)

Risk Management

	Risk Assessment on ML Technology implementation											
N	o Category	Risk	Desc	Cause	Likelihood	impact	Score	mitigration	Likelihood	impact	Score	
1		Cannot establish streaming of data into MES	Infrastructure not ready for machine-to- MES connection	Not designed in original design architectural	4	9	36	Engaged IT to survey existing network infrastructure	1	9	9	
								Work with OEM to open connectivity	1	9	9	
2	Data	Bad quality data in the batch of historical sets	Incorrect data collection and documentation	Manual collection of data and manual input	7	9	63	Digital threads, connectivity, remove human intervention	1	9	9	
		Not enough data to do analytic	Sample size of data collected is low	Data not easily extracted from the non-connected systems	6	9	54	Connect the system and establish database for streaming and storing of data	3	9	27	
		Data cannot be analysis and model cannot be developed	Data collection not influential	Sample size is low	4	9	36	Extend data collection on more engines	4	9	36	
			Data collection not influential	Dimension data collected in current process the influential	3	9	27	Engine design / CFD on other parameters requirements	1	9	9	
3	Resource	Data cannot be analysis and model cannot be developed	Lack of internal expertise	Internal skill set is not on data science	4	9	36	Outsource	1	9	9	
					4	9	36	Upskill personnel / hire personnel with expertise	1	9	9	
			Data collection not influential	Sample size is low	4	9	36	Extend data collection on more engines	4	9	36	
			Data collection not influential	Dimension data collected in current process the influential	3	9	27	Engine design / CFD on other parameters requirements	1	9	9	

Conclusion

- Business utilizing Industry 4.0 are constantly evolving at a rapid pace benefitting from cost reduction and scalability while developing proactive solutions in preventive maintenance
- The Engine Assembly business model is viable in possible defining a new way in solving problems which are time-consuming and inefficient to improve product quality to maintain competitive edge
- Digital transformation will bring the engine business towards datapowered business model, data-driven product preservation, datamanaged product lifecycle and data-committed for environment