$$X - a$$
 set $P(X)$ — the set of all subjets of X

Def. A bornslogy on X is a subset $B \subseteq P(X)$

1.
$$\bigcup B = X$$

$$B \in \mathcal{B}$$

2.
$$A \subseteq B \implies A \in B$$

3.
$$B_1, \ldots, B_n \in \mathcal{B} \implies B_1 \cup \ldots \cup B_1 \in \mathcal{B}$$

Def. D is locally finite (countable) if $\#B \in B$ BOD is finite (countable)

$$\mathcal{T} \subseteq X \times X$$

$$\mathcal{T}^{-1} = \{(x,y) \in X \times X \mid (y,x) \in \mathcal{T}\}$$

$$\mathcal{T} \circ \mathcal{T}' := \{(x,y) \in X \times X \mid \exists y \in X \ (x,y) \in \mathcal{T}\}$$

$$(x,y) \in \mathcal{T} \circ \mathcal{T}' := \{(x,y) \in X \times X \mid \exists y \in X \ (x,y) \in \mathcal{T} \circ \mathcal{T}\}$$

Def A coarse structure on X is a subset \mathcal{L} of $\mathcal{P}(X \times X)$ which is closed under -0-, 0, -1, finite $A \subseteq B$ & \mathcal{L} Should contain diag(X)

1. Az V... VAn ES, Az ES

2. AioAj ES VAi, Aj

3. A-1 EB, YAEB

4. A2 SA1 & A1 EB => A2 EB

JUEXXX, BEX

 $T_{J}[B] := \left\{ x \in X \mid \exists b \in B : (x, b) \in T_{J} \right\}$ if is called the T_{J} -thickening of B

The element of 6 - entourage of X or controlled subject

Coarse structure on X = some bornology en XXX — groupeidal-like properties (X, E, B) - a boundagical crarse space if a course structure & & a boundayy are compatible; if Y controlled thickening of a bounded subset is again hounded

Morshrems

f is proper if $\forall B \in B$ $f^{-1}(B') \in B$ f - bornslogical if $\forall B \in B$ $f(B) \in B'$

 $f: (X, \mathcal{E}) \longrightarrow (X, \mathcal{E}')$

f is controlled if $\forall T \in \mathcal{E}$ $(f \times f)(T) \in \mathcal{E}'$

Def. $f:(X, \mathcal{E}, \mathcal{B}) \longrightarrow (X, \mathcal{E}, \mathcal{B}')$ is a map if it is a map between X and X' S. t. it is

proper & controlled
So, boundojieal coarse spaces form a small cat
Born Coarse
Examples

1) $X - \alpha$ set $A \in P(X \times X)$ $E < A > - \alpha$ minimal coarse structure $W \in P(X) \rightarrow B < W$

2 (Discrete Cornological coarse spaces)
χ -aset
G:=6<0>
it is generated by the empty set
Emin had diag (X) & all its subsets
V Cornological Structure B;
B- & 6 min < >>
are compatible
[[B] = { le B 3 le B (l, l) e []
In particular, take B = D min
all finite subjets of X
(3) $(X, \mathcal{E}) - \alpha$ coarse space
I a min compatible boundary Bit consists of the
o colo of V alboich att
Bigenerated by E founded for some entourage of X
T[B]—it is bounded & TES entourage of X B×B ⊆ T[B]

(4)
$$(X', B', B') - \alpha$$
 boundagical coarse space $f: X \rightarrow X' - \alpha$ map of sets $f^*\mathcal{B} := \mathcal{B} < \{(f \times f)^{-1}(T') \mid T' \in \mathcal{B}'\}$
 $f^*\mathcal{B} := \mathcal{B} < \{f^{-1}(B') \mid B' \in \mathcal{B}'\}$

Then $f: (X, fE', f*B') \rightarrow (X', E', B')$ is a morphism in Born Coarse

(5)
$$(X, d) - \alpha$$
 metric space α metric β $A := B + (A + B_d(x, z) | z > 0)$
 $C_z := \{(x, y) \in X \times X | d(x, y) < z \}$

$$\mathcal{C}_{z_1} \circ \mathcal{C}_{z_2} = \mathcal{C}_{z_1 + z_2}$$

$$\mathcal{C}_{z_1} = \mathcal{C}_{z_1}$$

$$\mathcal{L}_{d} := \mathcal{L} \left\{ \left[\mathcal{T}_{z} \mid z \in (0, \infty) \right] \right\} - \text{the coarse}$$
structure

Lemma. (X,d) — a path metric space

Ed — the associated cowere structure

Then 3 am entourage Tim Ed S.t.

$$x \leftarrow x$$

$$(x_1y) = (x, x_1) \rightarrow \dots \rightarrow (x_ny)$$

Brin - the minimal born struct. on [

 $\Gamma(B \times B)$ — the Γ -invariant entourage

BEBmin

 $\mathcal{E}_{com} := \mathcal{E} < \Gamma(\mathcal{B} \times \mathcal{B}) \mid \mathcal{B} \in \mathcal{B}_{min} >$

— the canonical course structure

Lemma. Born Course Ras all mon-empty gouducts Lemma, BornCourse has all expreducts $(X, \mathcal{E}, \mathcal{B})$ J-an entourage of X $X_{T} = (X, \mathcal{L}(T), \mathcal{B})$

trop, $X \cong \operatorname{colim} X_{\overline{U}}$

Example (X, B, B) $(x, \mathcal{C}, \mathcal{B}')$

 $(X, E, B) \otimes (X, E', B') =$ $=(X \times X', \mathcal{E} \times \mathcal{E}', \mathcal{F} \times \mathcal{B}')$

🛇 gives a sym. monoidal samet. en BornCoarge

Def.
$$PSh(E) \cong Funlim(PSH(E))^{op}, Spela)$$

$$E(F) = \lim_{(L'(X) \to F) \in E/F} E(L(X)) = E(X)$$

$$\int = (Y_i)_i \to L'(Y) = \operatorname{colim}_{i \in I} L'(Y_i)$$

$$\int = (Y_i)_i \to L'(Y) = \operatorname{colim}_{i \in I} L'(Y_i)$$

$$\int e(Y_i)_i \to L'(Y_i) = \operatorname{colim}_{i \in I} L'(Y_i)$$

$$for comple poirs if$$

$$E(X) \longrightarrow E(X)$$

$$im Spe$$

$$E(Y) \longrightarrow E(X(Y_i))$$

Lemma. The Grothendieck top. Ty S. E. all Ty-sheaves were exactly the presheaves which satisfy the descent for compl. pairs

Lemma. The Grothendieck top. Ty on BornCoarse Subcanonical $X \in BornCoarse \mathcal{L}(XI) = is a sheaf$ $\mathcal{L}(X^{I})$ L: Set a Spela Spela y: Born Coarse -> PSh Sexla (Born Coarse) $\mathcal{L}(X') = 2 \circ y(X')$ y(X')(Z, Y) - a compl. pais $y(x')(x) \longrightarrow y(x')(2) \times y(x')(y)$ $y(x')(x) \longrightarrow y(x')(x)$ $XU_{i_n} = X$

$$f: \mathcal{Z} \longrightarrow \chi'$$
 $g_i: Y_i \longrightarrow \chi'$
 $s.t. \mathcal{Z} \cap Y_i$
 $h: \chi \longrightarrow \chi'$