Firefly Flightplan

Name	Email	Phone	Date
Tomás Opazo	tzo4@psu.edu	+1 814 777 1882	
Gregor Müller	gregor.mueller94@gmail.com	+ 49 174 2986445	

Remote Control and Flight Modes mapping

channel	Mode	Active when	
6	Offboard	switch F is towards pilot	
7	Kill switch	switch B is towards pilot	
8	Default ctrialloc	switch D is towards pilot	
5	Stabilized	switch C is away from pilot	
5	Position control	switch C is centered	
5	Mission	switch C is towards pilot	

Checklist of the day before the flight

- Charge ESC batteries and annotate its capacity
- Charge Pixhawk batteries and annotate its capacity
- Charge RC battery and annotate its capacity
- Charge router battery and annotate its capacity
- Charge grass cutter battery
- Charge powerbank for Raspberry Pi
- Check that we physically have the full list of materials
- Check general condition of the Drone (cables, landing gear, etc)
- Check if router has power and network is working
- Check power supply of Raspberry Pi
- Check if Raspberry Pi has connection to Pixhawk and network
- Calibrate all sensors -> preflight?
- Check that we can arm the vehicle
- Check spin direction of motors
- Check that log files are being saved

Spin direction of motors

Taken from https://dev.px4.io/v1.9.0/en/middleware/modules_command.html

mc_att_control stop # if you don't do this, only rotor 1 will spin

fw_att_control stop # if you don't do this, only rotor 1 will spin

motor ramp sine 1100 0.5 # Needed first on Pixhawk 4 (Nov 2019)

pwm arm # arming the system

pwm test -c 1 -p 1200 # -c channel (1 to 8) -p throttle

c # to stop the test

List of materials to bring to the flight site

- Firefly drone
 - o Airframe
 - Actuators = ESC + Motors + Blades
 - OBC = Pixhawk + GPS + RC radio + Telemetry radio
 - Connectors and voltage regulators to power up OBC
 - o Ribbons to hold ESC batteries and blades in place (4 units)
- Batteries
 - o ESC batteries (4 units)
 - Pixhawk Batteries (2 units)
 - o RC batteries (2 units)
 - Router batteries (2 units)
 - Powerbank for Raspberry Pi (not available in the lab, but you can use any powerbank)
- Notebook with the following software and files
 - o qGroundControl
 - File "flight xxx.params"
 - o File "flight xxx.plan"
 - File "flight_xxx.fence "
- Ground Station
 - Micro USB cable + Telemetry Radio
- Remote Control
 - Futaba SN 13230504 (fully charged and configured to communicate with the Drone)
- Router
- Toolbox
 - Bubble level
 - Voltmeter
 - Battery checker
 - Compatible Torque Wrench = KDE-TW5030
 - \circ Hexagonal key = 2.5 x 60 for blades (2 pieces if available) + 3.0 x 60 for motors
 - Screwdriver for GPS screws
 - Tapes = Blue Tape + Insulating Tape + Double contact + Aluminum tape
 - Marking pen
 - Wire stripper
 - Screwdrivers (Phillips and flathead)
 - Scissors
 - o Pliers
- Spare parts
 - o Propellers KDE-CF245-DP
 - Zip ties

- Grass cutter
- Fire extinguisher

Checklist before the actual flight

- 1. Connect Router to battery
- 2. Open notebook and qGroundControl
- 3. Check if WiFi network "linksys" is available
- 4. Connect the 3DR radio to the Notebook using the USB cable
- 5. Connect RaspberryPi to Powerbank
- 6. Plug Pixhawk batteries
- 7. Wait for qGroundControl to connect to the Pixhawk and load info
- 8. Connect to RapsberryPi via SSH:
 - o Username: avia1
 - o Password: ros4avia
 - o In PC terminal use: ssh avia1@10.42.0.104 and type in password
- Mount and fix ESC batteries (DO NOT PLUG THEM BEFORE ALL PRE-FLIGHT CHECKS ARE DONE)
- 10. Because the Firefly is heavy and big, two people should help to calibrate all sensors with a ROTATION_NONE configuration
 - 1. Gyroscope
 - 2. Accelerometer
 - 3. Compass
 - 4. Level Horizon
 - 5. Reboot after calibration
- 11. (If firmware has changed) Load to the pixhawk the "Flight_xxx.params" file and check
 - Multicopter Attitude Control
 - MC_ROLL_P, MC_PITCH_P, MC_YAW_P
 - MC_ ROLLRATE_P, MC_ PITCHRATE_P, MC_ YAWRATE_P
 - MC_ROLLRATE_I, MC_PITCHRATE_I, MC_YAWRATE_I
 - MC_ROLLRATE_D, MC_PITCHRATE_D, MC_YAWRATE_D
 - o Multicopter Position Control
 - MPC_LAND_SPEED
 - MPC_TKO_SPEED
 - MPC_XY_CRUISE
 - MPC_XY_VEL_MAX

- MPC_Z_VEL_MAX
- MPC_XY_ P
- MPC XY VEL P, MPC XY VEL I, MPC XY VEL D
- MPC Z P
- MPC_Z_VEL_P, MPC_Z_VEL_I, MPC_Z_VEL_D
- 12. (If using "mission mode") Load "Flight_xxx.mission" file and check
- 13. (If using "mission mode") Load "Flight_xxx.fence" file and check
- 14. Check RC connection to the Pixhawk and make sure that switches are detected
- 15. Engage Kill-switch
- 16. Select "Manual" mode and arm Pixhawk (troubleshoot any problem)
- 17. Disarm Pixhawk
- 18. Double check that ESC batteries are disconnected
- 19. Move vehicle to starting position
- 20. (If not already done) Mount blades
- 21. Perform a radio-range check for the RC radio and the Telemetry radio
- 22. Connect all ESC batteries and check that motors are armed (4 beeps plus 1 long beep)
- 23. Make sure custom control allocation is activated (Channel 8, Switch D)
- 24. Double check blade numbers and spinning direction of motors
- 25. Start data logger on RaspberryPi. (run command: python3 ./data_logger/run_logger.py)
- 26. Check that all connections are working (SUCCESS has to be printed in the terminal 3x)
- 27. Check for air traffic, humans, animals, birds, snakes, bears, etc.
- 28. Disengage Kill-switch -> check order of these items
- 29. Fly

Telemetry Setup

- 1. Connect router to battery
- 2.