Considera la funzione

$$f(x) = \frac{x^2 + ax}{x^2 + b},$$

con a e b costanti reali.

 $C \times - \times^2 + 2 \times + C = 0$

- **a.** Determina $a \in b$ in modo che i punti di coordinate $\left(1; -\frac{1}{2}\right) \in \left(-2; \frac{8}{5}\right)$ appartengano al grafico di f(x).
- **b.** Assegnati ad a e b i valori trovati, determina il dominio e l'insieme immagine di f(x).
- c. Osservando che la funzione può essere riscritta, per $x \neq 0$, come $f(x) = \frac{1 + \frac{a}{x}}{1 + \frac{b}{x^2}}$, cosa puoi dedurre riguardo al comportamento della funzione per valori molto grandi di x? Utilizza anche questa osservazione per tracciare un grafico probabile di f(x).

a)
$$a = -2$$
, $b = 1$; b) D_f : \mathbb{R} , $Im(f)$: $-\frac{\sqrt{5}-1}{2} \le y \le \frac{\sqrt{5}+1}{2}$; c) il grafico della funzione tende alla retta $y = 1$

a)
$$\left(-\frac{1}{2} = \frac{1+\alpha}{1+kr}\right)$$
 $\left(-1-kr = 2+2\alpha\right)$ $\left(kr = -3-2\alpha\right)$ $\left(kr = -3+2\alpha\right)$ $\left(kr = -3+2\alpha\right)$ $\left(kr = -3+2\alpha\right)$ $\left(kr = -3+2\alpha\right)$ $\left(kr = -3+4+1\alpha\right)$ $\left(kr = -3+2\alpha\right)$ $\left(kr = -3+2\alpha\right$

 $(c-1) \times^2 + 2 \times + c = 0 \Longrightarrow \times = \frac{1+\sqrt{1-c(c-1)}}{c-1} = \frac{-1+\sqrt{1-c^2+c}}{c-1}$

$$C^{2} + C = 20$$

$$C^{2} - C = 1 \le 0$$

$$C = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}$$

$$\frac{1 - \sqrt{5}}{2} \le C \le \frac{1 \pm \sqrt{5}}{2}$$

$$\frac{1 + \sqrt{5}}{2} = \frac{1}{2}$$

$$\frac{1 + \sqrt{5}}{2} = \frac{1 \pm \sqrt{5}}{2}$$

$$\frac{1 + \sqrt{5}}{2} = \frac{1 \pm \sqrt{5}}{2$$

456
$$f(x) = \sqrt[3]{x}$$
; $g(x) = 8x^3 - 8$.

for $g(x) = \sqrt[3]{x}$; $g(x) = 8x^3 - 8$.

for $g(x) = \sqrt[3]{x}$; $g(x) = 8x^3 - 8$.

for $g(x) = \sqrt[3]{x}$; $g(x) = 8x^3 - 8$.

for $g(x) = \sqrt[3]{x}$; $g(x) = \sqrt[3]{x}$;

460 $f(x) = \sin 2x;$ $g(x) = \sqrt{x} - 1.$

 $f: \mathbb{R} \to [-1,1]$ $g: \mathbb{R}_0^+ \to [-1,+\infty[$

1) fog: Ro -> [-1,1] si pré aujone jerché

im g = dom f

 $(f \circ g)(x) = f(g(x)) =$

 $= \int (\sqrt{x} - 1) = \sin \left[2(\sqrt{x} - 1) \right]$

2) gof in redte nou a pur comporre perchet im f & dom g doblians fore una restrisione

(gof)(x)=g(f(x))=g(sin2x)= Jsin2x -1

2Kπ ≤ 2× ≤ 2Kπ+π sin 2x 7,0

KEZ

 $k\pi \leq x \leq \frac{\pi}{2} + k\pi$

dom(gof) = { x E R | KTT & X & T + KTT, K & Z}