Guía Nro. 2 - Números Binarios - Sussini Patricio

2.1) Convierte los siguientes números binarios a decimales:

a)
$$1010 \rightarrow 8 + 0 + 2 + 0 = 10$$

b)
$$1101 \rightarrow 8 + 4 + 0 + 1 = 13$$

c)
$$100110 \rightarrow 0 + 2 + 4 + 8 + 0 + 0 + 64 = 78$$

2.2) Convierte los siguientes números decimales a binarios:

2.3) Suma los siguientes números binarios:

b)
$$1010 + 111 \rightarrow 10 + 7 = 17 \rightarrow 10001$$

2.4) Realiza las siguientes restas en binario:

2.5) Convierte los siguientes números binarios a decimales y luego verifica el resultado:

a)
$$11101 \rightarrow 1 + 0 + 4 + 8 + 16 = 29$$

b)
$$10010 \rightarrow 0 + 2 + 0 + 0 + 16 = 18$$

2.6) Convierte los siguientes números decimales a binarios utilizando la división sucesiva:

$$-37 - 2 = 18, r(1)$$

$$-18 - 2 = 9, r(0)$$

$$-9 - 2 = 4, r(1)$$

$$-4 - 2 = 7, r(0)$$

$$-7 - 7 = 1, r(0)$$

$$-7 - 7 =$$

2.7) Completa la tabla de equivalencias entre binario y decimal para los números del 0 al 7. N en base 10 vs base 2

	_^
\(\sigma_\pi_\)	√ \2
0	0
1	1
2	D
3	11
4	100
5	101
6	11 0
7	111

2.8) Resuelve las siguientes operaciones combinando sumas y restas en binario:

a)
$$(110 + 11) - 10 = 111$$

$$-(1001)-10=111$$

b)
$$(1011 - 101) + 100$$
 = 1010

2.9) Realiza los siguientes cálculos utilizando complemento a 2:

a)
$$101 - 11 = 10$$

$$101 \Rightarrow 0101, 11 \Rightarrow 0011$$

$$1010 \Rightarrow 1100$$

$$1100 + 1 = 1101$$

$$0101 + 1101 = 10010$$

$$1010 - 1010 = 10$$

$$1010 + 1010 = 10$$

$$1100 - 1010 = 10$$

$$1100 - 1010 = 10$$

$$1100 - 1010 = 10$$

$$1100 - 1010 = 10$$

$$1100 - 1010 = 10$$

b)
$$1100 - 1010 = 10$$

$$1010 - 10101$$

$$0101 + 1 = 0110$$

$$1100 + 0110 - 10010$$

$$1100 - 1010 = 10$$

2.10) Identifica si las siguientes conversiones son correctas. Si no lo son, corrígelas:

a)
$$1010_2 \rightarrow 12_{10}$$

b)
$$1101_2 \rightarrow 14_{10}$$

a)
$$1010_2 \rightarrow 12_{10} \rightarrow 1010_2 \rightarrow 10_{10}$$
 $1\times2^3 + 0\times2^2 + 1\times2^4 + 0\times2^0 = 8 + 0 + 2 + 0 = 10_{10}$

b) $404_2 \rightarrow 14_{10} \rightarrow 1101_2 \Rightarrow 13_{10}$
 $1\times2^3 + 1\times2^2 + 0\times2^4 + 1\times2^0 = 8 + 4 + 0 + 1 = 13_{10}$

- **2.11)** Un sensor puede registrar 16 estados diferentes. ¿Cuántos bits se necesitan para representarlos en binario?
- Se necesitan 4 bits para representar 16 estados diferentes en binario
- **2.12)** Una computadora representa colores en escala de grises utilizando 8 bits. ¿Cuántos niveles de gris se pueden representar?
- Puede representar 128 niveles de gris.
- **2.13)** En un sistema de encendido y apagado, hay 3 interruptores. Representa todas las combinaciones posibles en binario. -8
 - 000
 - 001
 - 010
 - 011
 - 100
 - 101
 - 110
 - 111
- **2.14)** Un dispositivo puede almacenar 64 archivos, y cada archivo está etiquetado con un número binario. ¿Cuántos bits son necesarios para etiquetar los archivos?
- -7 bits son necesarios. 8 recomendados
- **2.15)** Una red tiene direcciones IP representadas con 32 bits. ¿Cuántas direcciones únicas pueden generarse?

2.16) Convierte el número 255 de decimal a binario y explica su relevancia en sistemas digitales.

Es el máximo valor que se puede representar con 1byte. Se usa para representar colores en sistemas de gráficos.

2.17) Dos dispositivos digitales intercambian información utilizando secuencias binarias de 4 bits. Si se transmiten los valores 1010 y 1101, calcula la suma binaria.

2.18) Un mensaje binario tiene 8 bits y representa una letra en ASCII. Convierte el valor 01000001 a decimal y di qué letra representa.

Valor binario: 010000012010000012

• Valor decimal: 65106510

• Letra ASCII: "A"

2.19) Calcula la resta en binario de 10010 - 101 utilizando complemento a 2.

$$- \frac{10010 - 101 = 01011_{2}}{101_{2}} = 00 \frac{100}{10100}$$

$$\frac{10101 + 1 = 11011}{10101}$$

$$\frac{+11011}{101101}$$

$$\frac{10010 + 1 = 1011_{2}}{101101}$$

- **2.20)** Si en una habitación cerrada tengo 3 lámparas, y afuera 3 interruptores para cada una de ellas, ¿Cuántas combinaciones de encendidas/apagadas son posibles?
- -8 posibles combinaciones de encendido y apagado