Principaux produits derivés de taux. Formules de valorisation et de quotation

Antonin Chaix - Richard Guillemot

Master IFMA

7 Février 2014

Le taux monétaire, dépot ou money market

Voici l'échéancier de l'EURIBOR 6M :

Le taux monétaire est défini comme :

$$R = L(t, T_{\mathsf{start}}, T_{\mathsf{end}}) = rac{1}{\delta} \left(rac{B(t, T_{\mathsf{start}})}{B(t, T_{\mathsf{end}})} - 1
ight)$$

La période est caculée avec la convention Act 360 :

$$\delta = \frac{T_{\mathsf{end}} - T_{\mathsf{start}}}{360}$$

Le Forward Rate Agreement (FRA)

Le FRA permet de garantir un taux futur.

Voici l'échéancier d'un FRA sur EURIBOR 6M de maturité 1 an :

Le FRA est un contrat de gré à gré.

Le flux payé à la date T_1 d'un FRA receveur de taux fixe est :

$$\frac{[K - L(T_f, T_1, T_2)] \times \delta}{1 + \delta L(T_f, T_1, T_2)}$$

Soit K^* , le taux négocié aujourd'hui tel que la valeur du contrat soit nulle :

$$K^* = L(t, T_1, T_2) = \frac{1}{\delta} \left(\frac{B(t, T_1)}{B(t, T_2)} - 1 \right)$$

3/1

Le Future

Le Future est la version standardisée du FRA. Il est échangé sur un marché organisé et dispose d'une chambre de compensation. Le contrat se base sur LIBOR 3M en dollar et EURIBOR 3M en euro aux dates IMM (3ème mercredi des mois de Mars, Juin, Septembre et Décembre).

Future	T_{start}	T_{end}
MAR14	19 Mars 2014	18 Juin 2014
JUN14	18 Juin 2014	17 Septembre 2014
SEP14	17 Septembre 2014	17 Décembre 2014
DEC14	17 Décembre 2014	18 Mars 2015

A la maturité du contrat, R est égal au taux LIBOR 3M ou EURIBOR 3M qui prévaut à cette date.

Le Future

Le nominal du contrat est de 1,000,000 de dollars ou d'euros. Le contrat est quoté de la façon suivante :

$$100 \times (1 - R)$$

avec R le taux de référence du contrat (LIBOR 3M ou EURIBOR 3M)

La valeur du contrat :

$$1,000,000 \times (1-0.25 \times R)$$

Tout d'abord on achète sans frais un contrat.

Ensuite on reçoit (ou paie) 25 dollars ou euros lorsque le taux de référence diminue de 1bp (ou augmente de 1bp) sous forme d'appel de marge.

5/1

Le Swap

A traite avec B un swap payeur de taux fixe et B traite avec A un swap receveur de taux fixe. Le nominal vaut N.

Pour un swap EURIBOR standard le taux fixe est payé ou reçu annuellement et le taux variable (EURIBOR 6M) semestriellement.

Le Swap

La valeur actuelle de la jambe fixe :

$$\mathsf{PV}_F(t) = \sum_{i=1}^n \delta_i^F \times K \times N \times B(t, T_i^F)$$

 δ_i^F est calculé avec la convention Bond Basis ou 30/360 (1 an=1). La valeur de la jambe variable :

$$\mathbf{PV}_{V}(t) = \sum_{i=1}^{m} \delta_{i}^{V} \times \frac{1}{\delta_{i}^{V}} \left(\frac{B(t, T_{i-1}^{V})}{B(t, T_{i}^{V})} - 1 \right) \times N \times B(t, T_{i}^{V})$$

 δ_i^V est calculé avec la convention Act 360.

Après simplification (formule du double nominal) :

$$\mathbf{PV}_{V}(t) = N \times \left(B(t, T_{0}^{V}) - B(t, T_{m}^{V}) \right)$$

On remarque que la valeur de la jambe variable est indépendante de sa fréquence.

7/1

Le Swap

La valeur actuelle du swap receveur de taux fixe est :

$$\mathsf{PV}_{\mathit{Swap}}(t) = \mathsf{PV}_{\mathit{F}}(t) - \mathsf{PV}_{\mathit{V}}(t)$$

On appelle le taux de swap K^* le taux qui rend la valeur actuelle du swap nulle :

$$K^* = S(t, T_0, T_n) = \frac{B(t, T_0) - B(t, T_n)}{\sum_{i=1}^n \delta_i^F B(t, T_i^F)}$$

La quantité $LVL(t, T_0, T_n)$, le level ou l'annuité permet de determiner simplement le changement de valorisation d'un swap pour un mouvement du taux de swap de marché :

$$LVL(t, T_0, T_n) = \sum_{i=1}^n \delta_i^F B(t, T_i^F)$$

Calage de la courbe des taux

Voici la courbe des taux interbancaires EURIBOR qui prévaut au 29/01/2014 (t la date de valeur ou asofdate) :

	Plots	Quote		Plots	Quote
MM	2D	0.16%	SWAP	5Y	1.08%
MM	1M	0.24%	SWAP	7Y	1.43%
MM	3M	0.30%	SWAP	10Y	1.95%
MM	6M	0.40%	SWAP	12Y	2.02%
MM	12M	0.57%	SWAP	15Y	2.13%
SWAP	2Y	0.48%	SWAP	20Y	2.29%
SWAP	3Y	0.64%	SWAP	25Y	2.43%
SWAP	4Y	0.86%	SWAP	30Y	2.57%

Comment calculer les facteurs d'actualisation et les taux zéro coupon associés aux 16 dates suivantes?

2D, 2D+1M, 2D+3M, 2D+6M, 2D+12M, 2D+1Y, 2D+2Y, 2D+3Y, 2D+4Y, 2D+5Y, 2D+7Y, 2D+10Y, 2D+12Y, 2D+15Y, 2D+20Y, 2D+25Y, 2D+30Y.

Calage de la courbe des taux

On utilisera la composition continu pour définir de taux zéro coupon :

$$B(t, T) = e^{-r(t, T) \times \delta}$$

On utlisera la convention Act 365 pour le calcul de la fraction d'année :

$$\delta = \frac{T - t}{365}$$

Si on a besoin d'un facteur d'actualisation qui ne fait pas partie des plots, on peut interpoler linéairement le taux zéro coupon :

$$r(T) = \frac{T_i - T}{T_i - T_{i-1}} \times r(T_{i-1}) + \frac{T - T_{i-1}}{T_i - T_{i-1}} \times r(T_i)$$

T est compris entre T_{i-1} et T_i 2 plots de la courbe.

Calage de la courbe des taux

A titre d'exemple calculons les plots 2D et 2D+1M:

$$B(t,2D) = \frac{1}{1 + \frac{2}{360} \times 0.16\%} = 0.999991$$
$$r(t,2D) = -\frac{365}{2} * \ln(0.999991) = 0.16\%$$

Attention le taux 1M comme tous les autres taux monétaires (sauf le taux 2D) commence dans 2 jours!

$$B(t, 2D + 1M) = B(t, 2D) \frac{1}{1 + \frac{1}{12} \times \frac{365}{360} \times 0.24\%} = 0.999788$$
$$r(t, 2D + 1M) = -\frac{1}{\frac{2}{365} + \frac{1}{12}} * \ln(0.999788) = 0.24\%$$

Remarque sur les calculs de fraction d'année

Par souci de simplicité et pour s'affranchir des problèmes de calendrier, nous considérons que la convention Act 365 est identique à la convention Bond Basis. Par ailleurs Act 360 est égale à la convention Bond Basis multipliée par le facteur $\frac{365}{360}$.

Plot	A360	BBasis	A365	Plot	A360	BBasis	A365
2D	0.0056	0.0055	0.055	5Y	5.0694	5	5
1M	0.0845	0.0833	0.0833	7Y	7.0972	7	7
3M	0.2535	0.25	0.25	10Y	10.1389	10	10
6M	0.5069	0.5	.05	12Y	12.1667	12	12
12M	1.0139	1	1	15Y	15.2083	15	15
2Y	2.0278	2	2	20Y	20.2778	20	20
3Y	3.0417	3	3	25Y	25.3472	25	25
4Y	4.0556	4	4	30Y	30.4167	30	30

Algorithme de Newton Raphson

Le but de cet algorithme est de résoudre l'équation suivante :

$$f(x) = 0$$

Pour qu'il converge de façon certaine, la fonction f doit être convexe. On choisit un point de départ quelconque $(x_0, f(x_0))$ et on calcul l'intersection $(x_1,0)$ de la tangeante en ce point de la fonction f avec avec l'axe des abcisses (y=0).

$$\frac{f(x_0)}{x_0-x_1} = f'(x_0)$$
 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$

 x_1 est plus proche de la solution que x_0 . On récommence en partant du point $(x_1, f(x_1))$. On réitère cette étape jusqu'à atteindre une erreur satisfaisante.

On pourra approximer la fonction f par différence finie :

$$f'(x_0) \simeq \frac{f(x_0 + \epsilon) - f(x_0)}{\epsilon}$$

13/1

Algorithme de Newton Raphson

Exemple pour la fonction $f(x) = e^{-x} - 1$ avec comme point de départ $x_0 = 1$. 2 itérations de l'algorithme.

Soit un emprunt à taux fixe qui démarre dans le futur. Nous allons le répliquer par 2 emprunts qui démarrent aujourd'hui.

On prête aujourd'hui $B(t, T_{start})$ qui sera remboursé avec les intérêts en T_{start} par un flux de 1.

On emprunte aujourd'hui $(1 + \delta K)B(t, T_{end})$ qui nous sera remboursé avec les intérêts en T_{end} par un flux de $1 + \delta K$.

Il n'y a maintenant plus de flux futures nous allons donc calculer le taux fixe K^* qui égalise les flux aujourd'hui :

$$K^* = L(t, T_{start}, T_{end}) = \frac{1}{\delta} \left(\frac{B(t, T_{start})}{B(t, T_{end})} - 1 \right)$$

On retrouve ainsi le taux forward précédemment défini.

Quel est le Payoff d'un FRA receveur de taux Fixe K?

Le flux:

- a) $K L(T_f, T_1, T_2)$ payé en T_1
- b) $\frac{K-L(t,T_1,T_2)}{1+\delta L(t,T_1,T_2)}$ payé en T_1
- c) $\frac{K-L(T_f,T_1,T_2)}{1+\delta L(T_f,T_1,T_2)}$ payé en T_1
- d) $\frac{K-L(T_f,T_1,T_2)}{1+\delta L(t,T_1,T_2)}$ payé en T_1

Le 29 Janvier 2014 j'achète un contrat futur Eurodollar (contrat en dollar sur LIBOR 3M) Mars 2014 à **99.84**.

Aujourd'hui le LIBOR 3M vaut **0.22%**, le 19 Mars 2014 le LIBOR 3M a augmenté de **40bp**.

Entre le 29 Janvier et le 19 Mars,

- a) j'ai reçu 1 000 euros d'appels de marge.
- b) j'ai payé 1 150 euros d'appels de marge.
- c) j'ai payé 1 000 euros d'appels de marge.
- d) j'ai reçu 1 150 euros d'appels de marge.

Soit un emprunt qui sur nominal N.

On reçoit un nominal N en T_0 .

On ne paie aucun intérêt tout au long de la vie de l'emprunt.

On rembourse le nominal N à l'échéance T_n .

La valeur de cet emprunt est égale à :

- a) la jambe fixe du swap de marché (pour cet échéancier).
- b) 0.
- c) la jambe variable du swap de marché (pour cet échéancier).
- d) 100.

Je suis "long" (sous entendu long des obligations), c'est à dire que je gagne de l'argent quand les taux baissent, :

- a) si j'ai emprunté à taux fixe.
- b) si j'ai prêté à taux fixe.
- c) si j'ai emprunté à taux variable.
- d) si j'ai prêté à taux variable.
- e) si j'ai contracté un swap où je paie le taux fixe.
- f) si j'ai contracté un swap où je reçois le taux fixe.