# Probabilidade

Probabilidade condicional

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

## Slides e notebook em:

github.com/tetsufmbio/IMD0033/

#### Motivação

- Probabilidade de um resultado ou um evento;
- Conhecimento parcial de uma informação;
- Obter melhores estimativas e verificar como esta informação modifica a probabilidade de um evento;

#### Exemplo:

- Consumo de produto
  - o Gênero;
- Tráfico para a praia
  - Altas temperaturas;

#### Probabilidade condicional

 $E, F \Rightarrow Eventos$ 

P(E | F) = Probabilidade de E acontecer dado que F aconteceu;

- P(comprar + 3 peças | cliente feminino)
- P(tráfico intenso | temperatura alta)

$$P(2) = ?$$



$$P(2) = \frac{1}{6}$$



$$P(2) = \frac{1}{6}$$

$$P(2 | par) = ?$$



$$P(2) = \frac{1}{6}$$

$$P(2 | par) = \frac{1}{3}$$



$$P(2) = \frac{1}{6}$$

$$P(2 | par) = \frac{1}{3}$$

$$P(2 \mid impar) = ?$$



$$P(2) = \frac{1}{6}$$

$$P(2 | par) = \frac{1}{3}$$

$$P(2 \mid \text{impar}) = 0$$



# Probabilidade condicional em eventos em geral (distribuição uniforme)

$$P(F \mid E) = P(X \subseteq F \mid X \subseteq E)$$

$$= P(X \subseteq F \cap X \subseteq E \mid X \subseteq E)$$

$$= P(X \subseteq F \cap E \mid X \subseteq E)$$

$$= P(F \cap E) / P(E)$$

$$= |E \cap F| / |E|$$



$$P(4) = \frac{1}{6}$$

$$P(4 | \ge 3) = ?$$

$$P(4 | \le 3) = ?$$

$$P(4) = \frac{1}{6}$$

$$P(4 | \ge 3) = P(4 | \{3, 4, 5, 6\}) = \frac{1}{4}$$

$$P(4 | \le 3) = P(4 | \{1, 2, 3\}) = 0/3 = 0$$

$$P(\le 2) = P(\{1,2\}) = 2/6 = 1/3$$
  
 $P(\le 2 \mid \le 4) = ?$   
 $P(\le 2 \mid \ge 2) = ?$ 

$$P(\le 2) = P(\{1,2\}) = 2/6 = 1/3$$

$$P(\le 2 \mid \le 4) = P(\{1,2\} \mid \{1,2,3,4\}) = 2/4 = \frac{1}{2}$$

$$P(\le 2 \mid \ge 2) = P(\{1,2\} \mid \{2,3,4,5,6\}) = \frac{1}{2}$$

# Probabilidade condicional em distribuições em geral

$$P(F \mid E) = P(X \subseteq F \mid X \subseteq E)$$

$$= P(X \subseteq F \cap X \subseteq E \mid X \subseteq E)$$

$$= P(X \subseteq F \cap E \mid X \subseteq E)$$

$$= P(F \cap E) / P(E)$$



### Exemplo



Considere um dado de 4 lados cujas probabilidades dos números são:

| número        | 1   | 2   | 3   | 4   |
|---------------|-----|-----|-----|-----|
| probabilidade | 0.1 | 0.2 | 0.3 | 0.4 |

$$P(\ge 2 \mid \le 3) = ?$$

### Exemplo



Considere um dado de 4 lados cujas probabilidades dos números são:

| número        | 1   | 2   | 3   | 4   |
|---------------|-----|-----|-----|-----|
| probabilidade | 0.1 | 0.2 | 0.3 | 0.4 |

$$P(\ge 2 \mid \le 3) = ?$$

$$P({2,3,4} \cap {1,2,3}) / P({1,2,3})$$

$$P({2,3}) / P({1,2,3}) = 0.5/0.6 = %$$

# Regra do produto

$$P(F|E) = rac{P(E \cap F)}{P(E)}$$

$$P(E \cap F) = P(F|E).P(E)$$

#### Exemplo



$$P(E \cap F) = P(F|E). P(E)$$

Pegando duas bolas, qual a probabilidade de pegar duas bolas vermelhas?

 $V_1$  = primeira bola vermelha  $V_2$  = segunda bola vermelha;

$$P(duas vermelhas) = P(V_1 \cap V_2)$$

$$P(duas vermelhas) = P(V_1) \cdot P(V_2 | V_1)$$

$$P(duas \ vermelhas) = 2/3 \cdot 1/2 = 1/3$$



# Regra do produto genérico

$$egin{array}{ll} P(E\cap F\cap G) &= P((E\cap F)\cap G) \ &= P(X\cap G) & X = E\cap F \ &= P(G|X)P(X) \ &= P(G|E\cap F)P(E\cap F) \ &= P(G|E\cap F)P(E|F)P(F) \end{array}$$

#### Exercício

A tabela de contingência abaixo mostra o número de pessoas indo para o trabalho (em milhares) em São Paulo em 2015, organizadas pelo meio de transporte e pelo tempo de viagem.

|                    | Menos de<br>15 min | 15-29 min | 30-44 min | 45-59 min | 60 min ou<br>mais | Total |
|--------------------|--------------------|-----------|-----------|-----------|-------------------|-------|
| Veículo particular | 636                | 908       | 590       | 257       | 256               | 2647  |
| Transporte público | 9                  | 54        | 96        | 62        | 108               | 329   |
| Outro              | 115                | 70        | 23        | 7         | 7                 | 222   |
| Total              | 760                | 1032      | 709       | 326       | 371               | 3198  |

P(60+ minutos | transporte público) = ?

#### Exercício

Se os eventos A e B são disjuntos, quanto é P(A|B)?

- a) 0
- b) ½
- c) 1
- d) 1/4

## Independência

Dois eventos (E, F) são independentes (E  $\perp$  F) se a ocorrência de um evento não altera a probabilidade do outro evento ocorrer.

$$P(F \mid E) = P(F)$$

$$P(F) = |F| / |\Omega|$$

$$P(F \mid E) = |F \cap E| / |E|$$

$$|F|/|\Omega| = |F \cap E|/|E|$$



## Independência

$$egin{aligned} P(F|E) &= P(F) \ &rac{P(F\cap E)}{P(E)} &= P(F) \ & P(F\cap E) &= P(F). \ P(E) \end{aligned}$$

# Exemplos (Dado)

| Evento   | Conjunto  | Probabilidade |
|----------|-----------|---------------|
| primos   | {2, 3, 5} | 1/2           |
| ímpar    | {1, 3, 5} | 1/2           |
| quadrado | {1, 4}    | 1/3           |

| Interseção        | Conj. | Prob. | =? | Produto | Independência |
|-------------------|-------|-------|----|---------|---------------|
| Primos ∩ ímpar    |       |       |    |         |               |
| Primos ∩ quadrado |       |       |    |         |               |
| Quadrado ∩ ímpar  |       |       |    |         |               |

# Exemplos (Dado)

| Evento   | Conjunto  | Probabilidade |
|----------|-----------|---------------|
| primos   | {2, 3, 5} | 1/2           |
| ímpar    | {1, 3, 5} | 1/2           |
| quadrado | {1, 4}    | 1/3           |

| Interseção        | Conj.   | Prob. | =?       | Produto         | Independência |
|-------------------|---------|-------|----------|-----------------|---------------|
| Primos ∩ ímpar    | { 3,5 } | 1/3   | <b>≠</b> | 1/2 * 1/2 = 1/4 | dependente    |
| Primos ∩ quadrado | {Ø}     | 0     | <b>≠</b> | 1/2 * 1/3 = 1/6 | dependente    |
| Quadrado ∩ ímpar  | {1}     | 1/6   | =        | 1/2 * 1/3 = 1/6 | independente  |

# Exemplos (três moedas)

| Evento | Descrição            | Conj.      | Prob. |
|--------|----------------------|------------|-------|
| H1     | 1ª cara              | {H**}      | 1/2   |
| H2     | 2ª cara              | {*H*}      | 1/2   |
| НН     | 2 caras consecutivos | {THH, HHT} | 1/3   |

| Interseção | Conj. | Prob. | =? | Produto | Independência |
|------------|-------|-------|----|---------|---------------|
| H1 ∩ H2    |       |       |    |         |               |
| H2 ∩ HH    |       |       |    |         |               |
| H1 ∩ HH    |       |       |    |         |               |

# Exemplos (três moedas)

| Evento | Descrição            | Conj.      | Prob. |
|--------|----------------------|------------|-------|
| H1     | 1ª cara              | {H**}      | 1/2   |
| H2     | 2ª cara              | {*H*}      | 1/2   |
| НН     | 2 caras consecutivos | {THH, HHT} | 1/4   |

| Interseção            | Conj.      | Prob. | =?       | Produto         | Independência |
|-----------------------|------------|-------|----------|-----------------|---------------|
| H1 ∩ H2               | {HH*}      | 1/4   | =        | 1/2 * 1/2 = 1/4 | independente  |
| <b>H2</b> ∩ <b>HH</b> | {THH, HHT} | 1/4   | <b>≠</b> | 1/2 * 1/4 = 1/8 | dependente    |
| H1 ∩ HH               | {HHT}      | 1/8   | =        | 1/2 * 1/4 = 1/8 | independente  |

#### Exercício

Se os eventos A e B são disjuntos, A e B são dependentes ou independentes?

Resposta: Dependentes!

#### Exercício

Esquematize na forma de um diagrama de Venn dois eventos que sejam independentes.

Em jogada de um dado:

 $A = \{quadrado\}$ 

 $B = \{impar\}$ 



#### Revisão

- Probabilidade condicional
  - $\circ$  P(E|F) = P(E  $\cap$  F)/P(F)
- Regra do produto
  - $\circ$  P(E|F)P(F) = P(E  $\cap$  F)
- Independência dos eventos
  - Independentes → A ocorrência de um evento não altera a probabilidade do segundo evento;
  - Dependentes → A ocorrência de um evento altera a probabilidade do segundo evento;