MS-C2105 - Introduction to Optimization Lecture 4

Fabricio Oliveira (with modifications by Harri Hakula)

Systems Analysis Laboratory
Department of Mathematics and Systems Analysis

Aalto University School of Science

March 7, 2022

Outline of this lecture

Artificial variables and feasible initial solutions

The M-method

Two-phase method

Special cases

Identifying infeasibility, unboundedness and multiple solutions

Reading: Taha: Chapter 3 (Sections 3.4 and 3.5); Winston: Chapter 4 (Sections 4.6 to 4.13)

Fabricio Oliveira 2/25

Finding initial basic feasible solutions

The standard form of LPs assume that the origin $(0, ..., 0) \in \mathbb{R}^n$ in the decision-variable space is a feasible solution.

- ► The origin is used as a trivial initial basic feasible solution;
- ▶ However, it does not hold for (\ge) or (most) (=)-constraints.

min.
$$z = 4x_1 + x_2$$

s.t.: $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 > 0$.

Finding initial basic feasible solutions

To circumvent this issue, we rely on artificial variables, which have the role of accumulating infeasibility.

Each (\geq) - or (=)-constraint is augmented with an artificial variable. Then, we minimise their value, i.e., the total infeasibility.

$$\begin{array}{lll} \text{min.} & z=4x_1+x_2 & \text{min.} & z=4x_1+x_2 \\ \text{s.t.:} & 3x_1+x_2=3 & \text{s.t.:} & 3x_1+x_2+r_1=3 \\ & 4x_1+3x_2\geq 6 & 4x_1+3x_2-x_3+r_2=6 \\ & x_1+2x_2\leq 4 & x_1+2x_2+x_4=4 \\ & x_1,x_2\geq 0. & x_1,x_2,x_3,x_4,r_1,r_2\geq 0. \end{array}$$

- ► If a solution with zero infeasibility (i.e., artificial variables are nonbasic) is found, a basic feasible solution is available;
- ► If the minimal (optimal) accumulated infeasibility is not zero (has basic artificial variables), no basic feasible solution exists.

Include in the objective function large-enough penalties for the artificial variables:

min.
$$z = 4x_1 + x_2 + Mr_1 + Mr_2$$

s.t.: $3x_1 + x_2 + r_1 = 3$
 $4x_1 + 3x_2 - x_3 + r_2 = 6$
 $x_1 + 2x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4, r_1, r_2 > 0$.

- ► Notice that *M* is positive since it is minimisation.
- For max. , use -M.
- In the example M = 100.

The initial tableau: z is not a function of nonbasic variables.

	x_1	x_2	x_3	r_1	r_2	x_4	Sol.
\overline{z}	-4	-1	0	-100	-100	0	0
r_1	3	1	0	1	0	0	3
r_2	4	3	-1	0	1	0	6
x_4	1	2	0	-100 1 0 0	0	1	4

Include in the objective function large-enough penalties for the artificial variables:

min.
$$z=4x_1+x_2+Mr_1+Mr_2$$
 s.t.: $3x_1+x_2+r_1=3$ $4x_1+3x_2-x_3+r_2=6$ $x_1+2x_2+x_4=4$

- ► Notice that *M* is positive since it is minimisation.
- For max. , use -M.

 $x_1, x_2, x_3, x_4, r_1, r_2 \geq 0.$ The correct initial tableau: z is a function of nonbasic variables.

	x_1	x_2	x_3	r_1	r_2	x_4	Sol.	Operation
\overline{z}	696	399	-100	0	0	0	900	$+100 \times R_{r_1} + 100 \times R_{r_2}$
r_1	3	1	0	1	0	0	3	(R_{r_1})
r_2	4	3	-1	0	1	0	6	(R_{r_2})
x_4	1	2	0	0	0	1	4	

The method proceeds as usual. (Remark: notice the min. !)

	x_1		x_3				Sol.
	696		-100			0	900
r_1	3	1	0	1	0	0	3
r_2	4	3	-1	0		0	6
x_4	1	2	0	0	0	1	4

	x_1	x_2	x_3	r_1	r_2	x_4	Sol.
\overline{z}	0	167	-100	-232	0	0	204
x_1	1	1/3	0	1/3	0	0	1
r_2	0			-4/3			
x_4	0	5/3	0	-1/3	0	1	3

Eventually we obtain: $x^* = (2/5, 9/5)$, $z^* = 17/5$. (Try yourself!)

Alternatively, the two-phase method does not need parametrisation. More often used in modern solvers (*crashing* in LP).

It uses an artificial objective function measuring infeasibility.

min.
$$z = r_1 + r_2$$

s.t.: $3x_1 + x_2 + r_1 = 3$
 $4x_1 + 3x_2 - x_3 + r_2 = 6$
 $x_1 + 2x_2 + x_4 = 4$

- the 1st phase is always a minimisation problem.
- no coefficients required (no parametrisation).

The initial, tableaut, \$\mathbb{E}_1 \distanct \text{\text{a}} function of nonbasic variables.

	x_1	x_2	x_3	r_1	r_2	x_4	Sol.
\overline{z}	0	0	0	-1	-1	0	0
r_1	3	1	0	1	0	0	3
r_2	4	3	-1	0	1	0	6
x_4	1	2	0	0	0	0 0 0 1	4

Alternatively, the two-phase method does not need parametrisation. More often used in modern solvers (*crashing* in LP).

It uses an artificial objective function measuring infeasibility.

min.
$$z = r_1 + r_2$$

s.t.: $3x_1 + x_2 + r_1 = 3$
 $4x_1 + 3x_2 - x_3 + r_2 = 6$
 $x_1 + 2x_2 + x_4 = 4$

- the 1st phase is always a minimisation problem.
- no coefficients required (no parametrisation).

The correct initial tableau: 0 is a function of nonbasic variables.

	x_1	x_2	x_3	r_1	r_2	x_4	Sol.	Operation
	7	4	-1	0	0	0	9	$+R_{r_1}+R_{r_2}$
r_1	3	1	0	1	0	0	3	(R_{r_1})
r_2	4	3	-1	0	1	0	6	(R_{r_2})
x_4	1	2	0	0	0	1	4	

A few iterations of simplex methods takes us from this tableau

	x_1	x_2	x_3	r_1	r_2	x_4	Sol.
\overline{z}	7	4	-1	0	0	0	9
r_1	3	1	0	1	0	0	3
r_2	4	3	-1	0	1	0	6
x_4	1	2	0	0	0	0 0 0 0	4

to this optimal tableau, in which the total infeasibility is zero.

	x_1	x_2	x_3	r_1	r_2	x_4	Sol.
z	0	0	0	-1	-1	0	0
x_1	1	0	1/5	3/5	-1/5	0	3/5
x_2	0	1	-3/5	-4/5	3/5	0	6/5
x_4	0	0	1	1	-1 -1/5 3/5 -1	1	1

As a basic feasible solution is available, the second phase proceeds.

The second phase consists of applying the simplex method from the basic feasible solution obtained from the first-phase.

- ▶ We can remove all artificial variables
- ▶ We reintroduce the objective function, rewriting it accordingly.

	x_1	x_2	x_3	r_1	r_2	x_4	Sol.
\overline{z}	0	0	0	-1	-1	0	0
x_1	1	0	1/5	3/5	-1/5	0	3/5
x_2	0	1	-3/5	-4/5	-1/5 3/5	0	6/5
x_4	0	0	1	1	-1	1	1

The initial tableau: z is not a function of nonbasic variables.

	x_1	x_2	x_3	x_4	Sol.
\overline{z}	-4	-1	0	0	0
x_1	1	0	1/5	0	3/5 6/5
x_2	0	1	-3/5	0	6/5
x_4	0	0	1	1	1

The second phase consists of applying the simplex method from the basic feasible solution obtained from the first-phase.

- We can remove all artificial variables
- We reintroduce the objective function, rewriting it accordingly.

	x_1	x_2	x_3	r_1	r_2	x_4	Sol.
z	0	0	0	-1	-1	0	0
x_1	1	0	1/5	3/5	-1/5	0	3/5
x_2	0	1	-3/5	-4/5	-1 -1/5 3/5	0	6/5
x_4	0	0	1	1	-1	1	1

The correct initial tableau: z is a function of nonbasic variables.

	x_1	x_2	x_3	x_4	Sol.
z	0	0	1/5	0	18/5
x_1	1	0	1/5	0	3/5
x_2	0	1	-3/5	0	6/5
x_4	0	0	1	1	1

Applying the simplex method reaches the same solution as before.

Special cases - degeneracy

Four special cases arise when using simplex method.

- 1. **Degeneracy.** Caused by an over-determination of a vertex.
 - ▶ More than n-m hyperplanes form a vertex in \mathbb{R}^{n-m} .
 - It can be identified by ties in the smallest ratio test.
 - ► In this case, the choice of leaving variable is arbitrary and leads to a basic feasible solution with null basic variables.

max.
$$z = 3x_1 + 9x_2$$

s.t.: $x_1 + 4x_2 \le 8$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

Special cases - degeneracy

1. Degeneracy. Solving the example:

$$\max. \ z = 3x_1 + 9x_2$$

$$\text{s.t.: } x_1 + 4x_2 \le 8$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

The solution requires the following steps:

- x₃ is arbitrarily chosen (iter.1), despite same ratio as x₄.
- Next, a basic variable is zero $(x_4 = 0)$.
- Notice that point (0,2) is visited "twice".

~	ω_{1}	0.00 Z	O	
x_1	$+4x_{2}$	$+ x_3$	=8	
x_1	$+2x_{2}$	$+ x_4$	=4	
x_1	x_2	x_3	x_4	Sol.
-3	-9	0	0	0
1	4	1	0	8
1	2	0	1	4

 $z - 3x_1 - 9x_2 = 0$

₩4	_				
z	-3/4	0	9/4	0	18
x_2	1/4	1	1/4	0	2
x_4	1/2	0	-1/2	1	0
z	0	0	3/2	3/2	18
x_2	0	1	1/2	-1/2	2
x_1	1	0	-1	2	0

 x_3

Special cases - degeneracy/ alternative optima

1. Degeneracy. Some important remarks:

- 1. Degeneracy can cause cycling. Simple rules (see Bland's rule, for example) can prevent it at the cost of performance.
- Modern codes interject conditional basis perturbation and shifting to prevent cycle.
- 3. Degeneracy is a symptom of redundancy in model specification.
- 2. Alternative optima. An infinite number of optimal solutions.
 - Objective function is parallel to a binding (active) constraint.
 - Understandably, the method only visit the corner points of the "optimal hyperplane".

Fabricio Oliveira Special cases 19/25

Special cases - alternative optima

Example:

$$\begin{aligned} \text{max. } z &= 2x_1 + 4x_2 \\ \text{s.t.: } x_1 + 2x_2 &\leq 5 \\ x_1 + x_2 &\leq 4 \\ x_1, x_2 &> 0. \end{aligned}$$

The solution is given by:

	$ x_1 $	x_2	x_3	x_4	Sol.
\overline{z}	-2	-4	0	0	0
x_3	1	2	1	0	5
x_4	1	1	0	1	4
\overline{z}	0	0	2	0	10
x_2	1/2	1	1/2	0	5/2
x_4	1/2	0	-1/2	1	3/2
\overline{z}	0	0	2	0	10
x_2	0	1	1	-1	1
x_1	1	0	-1	2	3

- In iter. 2 a nonbasic variable has null coefficient that can be made basic without changing z^* .
- For $\lambda \in [0,1]$, any $(x_1,x_2) = \lambda(0,5/2) + (1-\lambda)(3,1)$ is optimal.

Fabricio Oliveira Special cases 20/25

Special cases - alternative optima

Fabricio Oliveira Special cases 21/25

Special cases - unbounded problems

- **3. Unboundedness.** Solution improvement is not constrained.
 - Typically a model specification issue.
 - ▶ Unbounded direction is called a extreme ray.

$$\begin{aligned} \text{max. } z &= 2x_1 + x_2 \\ \text{s.t.: } x_1 - x_2 &\leq 10 \\ 2x_1 &\leq 40 \\ x_1, x_2 &\geq 0. \end{aligned}$$

	x_1	x_2	x_3	x_4	Sol.
\overline{z}	-2	-1	0	0	0
x_3	1	-1	1	0	10
x_4	2	0	0	1	40

- ▶ The ratio test "fails" for non-negative (≤ 0) coef's.
- ▶ Eventually, an entering variable would have non-negative

Special cases - alternative optima

Special cases - infeasible problems

- 4. Infeasibility. Empty feasible space.
 - Also often caused by poorly specified models.
 - ▶ Does not occur if all constraints are (\leq) with $b \geq 0$.
 - ► Identifiable using two-phase of M-method (optimal basis containing artificial variables).

$$\begin{aligned} \text{max.} \ \ z &= 3x_1 + 2x_2 \\ \text{s.t.:} \ 2x_1 + x_2 &\leq 2 \\ 3x_1 + 4x_2 &\geq 12 \\ x_1, x_2 &\geq 0. \end{aligned}$$

Special cases - infeasible problems

max.
$$z = 3x_1 + 2x_2$$

s.t.: $2x_1 + x_2 \le 2$
 $3x_1 + 4x_2 \ge 12$
 $x_1, x_2 \ge 0$.

min.
$$z - r_1 = 0$$

 $2x_1 + x_2 + x_3 = 2$
 $3x_1 + 4x_2 - x_4 + r_1 = 12$

	x_1	x_2	x_3	x_4	r_1	Sol.
\overline{z}	3	4	0	-1	0	12
x_3	2	1	1	0	0	2
r_1	3	4	0	-1	1	12
\overline{z}	-5	0	-4	-1	0	4
x_2	2	1	1	0	0	2
r_1	-5	0	-1	-4	1	4

- In the optimal an artificial variable is basic.
- Thus, the minimal (optimal) infeasibility is not zero.