А23 — Снижение орбиты МКС

A1^{0.50} Найдите зависимость давления p_h от высоты h. Зависимость может содержать интегральное выражение. Это уравнение называется основной барометрической формулой. *Подсказка*: считайте, что температура и ускорение свободного падения являются функциями h.

Записано выражение для изменения давления воздуха $dp_h = -g_h(M/V)dh$	0.10
Получено дифференциальное уравнение $rac{dp_h}{p_h} = -rac{g_h \mu}{RT_h} dh$	0.10
Получена финальная формула $p_h = p_0 \exp\left(-rac{\mu}{R} \int\limits_0^h rac{g_h}{T_h} dh ight)$	0.30

A2^{0.30} Получите стандартную барометрическую формулу: зависимость давления от высоты p_h^{sta} , считая, что температура и ускорение свободного падения не зависят от h. Рассчитайте величину $h_0 = \frac{RT}{\mu g_0}$ при T = 425 К.

Получена стандартная барометрическая формула $p_h^{sta} = p_0 \exp\left(-rac{h}{h_0} ight), \qquad h_0 = rac{RT}{\mu g_0}$	0.10
Вычислено значение $h_0 \ h_0 pprox 12.4$ км	0.20

АЗ^{0.60} Получите уточнённую барометрическую формулу: зависимость давления от высоты p_h^{imp} , считая, что температура постоянна, а ускорение свободного падения зависит от высоты h. Подсказка: для последнего используйте линейное приближение, считая $z_h = h/R_E \ll 1$.

Получена зависимость g_h в линейном приближении $g_h = g_0(1-2z_h)$	0.10
Посчитан интеграл $\int\limits_0^h g_h dh = g_0 h (1-z_h)$	0.20
Получена улучшенная барометрическая формула $p_h^{imp} = p_0 \exp\left(-\frac{h(1-z_h)}{h_0}\right)$	0.30

 ${\bf A4^{0.40}}$ Рассчитайте отношение значений давлений, вычисленных по стандартной и по уточнённой барометрическим формулам при $h=4.0\times 10^5$ м. Далее используйте уточнённую формулу.

Получено аналитическое выражение $rac{p_h^{imp}}{p_h^{sta}} = rac{\exp\left(-rac{h(1-z_h)}{h_0} ight)}{\exp\left(-rac{h}{h_0} ight)} = e^{rac{h^2}{h_0R_E}}$	0.20
Получен численный ответ $rac{p_h^{imp}}{p_h^{sta}}pprox 7.54$	0.20

A5^{0.20} Найдите плотность воздуха ho_h и концентрацию нейтральных молекул воздуха n_h на высоте h, используя линейное приближение.

Получена формула для плотности воздуха $ ho_h = ho_0 \exp\left(-rac{h(1-z_h)}{h_0} ight)$	0.10
Получена формула для концентрации молекул воздуха $n_h = N_A rac{ ho_0}{\mu} \exp\left(-rac{h(1-z_h)}{h_0} ight)$	0.10

B1^{0.50} Найдите скорость станции v_h и период обращения τ_h , если станция движется по орбите высотой h.

Получено выражение $g_h=rac{v_h^2}{R_E(1+z_h)}$, где $g_h=rac{g_0}{(1+z_h)^2}$	0.10
Найдена скорость станции v_h $v_h = \sqrt{rac{g_0 R_E}{1 + z_h}}$	0.10
Найден период обращения станции $ au_h$ $ au_h = 2\pi rac{R_E + h}{v_h} = 2\pi \sqrt{rac{R_E}{g_0}} (1 + z_h)^{3/2}$	0.30

с Страница 1 из 4 ≈ ∞

 ${f B2^{0.50}}$ Найдите полную энергию E_S станции, двигающейся по круговой орбите радиусом R_E+h .

Получены выражения для кинетической и потенциальной энергий $E_K = \frac{M_S \cdot v_h^2}{2}, \qquad E_P = -M_S g_h R_E (1+z_h)$	0.20
Найдена полная энергия станции $E_S = E_K + E_P = -\frac{M_S g_0 R_E}{2(1+z_h)}$	0.30

B3^{1.00} На станцию действует некоторая суммарная тормозящая сила \vec{F}_{drag} . В результате МКС замедляется, и высота её орбиты уменьшается на dh за малое время dt. Запишите закон изменения энергии МКС, считая известным значение F_{drag} .

Получено выражение для работы тормозящей силы $dA_{drag} = -F_{drag} \cdot v_h \cdot dt$	0.30
Получено выражение для изменения полной энергии $dE_S = + rac{M_S g_0}{2(1+z_h)^2} dh$	0.20
Записан закон изменения энергии $rac{M_S g_0}{2(1+z_h)^2}dh = F_{drag} \cdot u_h \cdot dt$	0.50

 ${f B4^{0.50}}$ Найдите скорость снижения станции u_h . Подсказка: скорость снижения зависит от силы трения, от высоты станции и от её массы.

Записано определение скорости снижения $u_h=rac{dh}{dt}$	0.10
Найдена скорость снижения u_h $u_h=rac{2F_{drag}}{M_Sg_0} v_h (1+z_h)^2=rac{2F_{drag}}{M_S} \sqrt{rac{R_E}{g_0}} (1+z_h)^{3/2}$	0.40

B5^{0.50} Найдите изменение высоты H_h станции за один оборот вокруг Земли и полное время T_h , за которое станция упадёт на поверхность Земли с начальной высоты $h.\Pi odckaska$: используйте соотношения $h_0 \ll h \ll R_E$.

Найдено изменение высоты за один оборот H_h $H_h=u_h au_h=rac{4\pi R_E}{M_S g_0}F_{drag}\cdot(1+z_h)^3$	0.10
Найдено время падения станции $T_h=rac{M_S}{2}\sqrt{rac{g_0}{R_E}}\int\limits_0^hrac{1}{F_{drag}(h)\cdot(1+z_h)^{3/2}}dh$ Считая $F_{drag}(h)=const$: $T_h=$	0.40
$rac{M_S R_E}{F_{drag}} \sqrt{rac{g_0}{R_E}} \left(1 - rac{1}{\sqrt{1 + Z_h}} ight) pprox rac{M_S h}{2 F_{drag}} \sqrt{rac{g_0}{R_E}}$	

С1^{0.50} Найдите силу сопротивления воздуха F_{air} , скорость уменьшения высоты орбиты u_h^{air} и изменение высоты за один оборот H_h^{air} в этом случае.

Найдена сила сопротивления F_{air} $F_{air} = ho_h \cdot v_h^2 \cdot S$	0.30
Найдена скорость снижения u_h^{air} $u_h^{air} = \frac{2\rho_0 S \sqrt{g_0 R_E^3}}{M_S} (1+z_h)^{1/2} \cdot \exp\left(-\frac{h(1-z_h)}{h_0}\right)$	0.10
Найдено изменение высоты за один оборот H_h^{air} $H_h^{air} = u_h^{air} au_h = \frac{4\pi S R_E^2}{M_S} ho_0 \cdot (1+z_h)^2 \cdot \exp\left(-\frac{h(1-z_h)}{h_0}\right)$	0.10

С2^{0.50} Найдите полное время T_h^{air} , за которое станция упадёт на поверхность Земли с начальной высоты h из-за сопротивления атмосферы. Π одсказка: используйте соотношения $h_0 \ll h \ll R_E$.

Получено интегральное выражение для T_h^{air} $T_h^{air} = \frac{M_S}{2\rho_0 S \sqrt{g_0 R_E^3}} \int\limits_0^h \left(1 - \frac{h}{2R_E}\right) e^{h/h_0} dh$	0.10
Использовано приближение $h_0 \ll h \ll R_E$	0.10
Найдено время падения станции T_h^{air}	0.30
$T_h^{air}=rac{M_Sh_0}{2 ho_0S\sqrt{g_0R_E^3}}\left(1-rac{h}{2R_E} ight)\cdot e^{h/h_0}$ Другие возможные ответы:	
$ullet$ Без приближений: $T_h^{air} = rac{M_S h_0}{2 ho_0 S \sqrt{g_0 R_E^3}} \left(1 - rac{h - h_0}{2R_E} ight) \cdot e^{h/h_0}$	
$ullet$ С учётом всех приближений: $T_h^{air}=rac{M_S h_0}{2 ho_0 S \sqrt{g_0 R_E^3}}\cdot e^{h/h_0}$	

D1^{0.30} Найдите среднюю (за 24 часа) тормозящую силу F_{ion} , обусловленную столкновениями с этими частицами. Ночью ионизацией молекул можно пренебречь.

Найдите также плотность ионизированных молекул кислорода ρ_{ion} .

Найдена средняя тормозящая сила $F_{drag} \; F_{ion} = rac{1}{2} ho_{ion} \cdot S \cdot v_h^2$	0.20
Найдена плотность ионизированных молекул кислорода $ ho_{ion}$ $ ho_{ion} = rac{\mu_{ion}}{N_A} \cdot n_{ion}$	0.10

D2^{0.70} Найдите скорость уменьшения высоты орбиты станции u_h^{ion} , связанную со взаимодействием с ионами атомарного кислорода. Найдите также изменение высоты за один оборот H_h^{ion} в этом случае. Подсказка: используйте соотношения $h_0 \ll h \ll R_E$.

Найдена скорость снижения u_h^{ion} $u_h^{ion}=\rho_{ion}\cdot \frac{S\sqrt{g_0R_E^3}}{M_S}(1+z_h)^{1/2}$	0.30
Найдено изменение высоты за один оборот H_h^{ion} H_h^{ion} = $u_h^{ion} au_h = rac{2\pi S R_E^2 ho_{ion}}{M_S} (1+z_h)^2$	0.40

E1 $^{0.60}$ Оцените величину возникающего в проводящих частях станции тока I_{ind} .

Найдено число электронов, попадающих на станцию за время $dt\ dN = n_{ion} \cdot v_h \cdot S \cdot dt$	0.30
Найдено выражение для тока I_{ind} $I_{ind} pprox e rac{dN}{dt} = e \cdot S \cdot n_{ion} \cdot \sqrt{rac{g_0 R_E}{1 + z_h}}$	0.30

E2^{0.60} Получите приближённое выражение для тормозящей силы Ампера F_{ind} в направлении, противоположном направлению движению станции.

Пусть ϕ - угол между магнитным полем Земли \vec{B} , направленным вдоль меридианов, и скоростью МКС \vec{v} . Для простоты считайте, что длина станции L равна корню квадратному из её площади S. Кроме того, вместо подсчёта среднего значения $\sin(\phi)$ вы можете аппроксимировать его значением $\sin(\pi/2 - \theta)$. Вы можете использовать дискретное число точек для подсчёта среднего значения.

Усреднение синуса угла между направлением магнитного поля и скоростью станции	0.20
Записана формула для силы Ампера F_{ind} F_{ind} = $B \cdot I_{ind} \cdot L \cdot \langle \sin(\phi) angle$	0.20
Найдено финальное выражение для силы Ампера F_{ind} $F_{ind} = \frac{1}{2} \cdot B \cdot I_{ind} \cdot \sqrt{S} = \frac{1}{2} \cdot e \cdot B \cdot S^{3/2} \cdot n_{ion} \cdot \sqrt{\frac{g_0 R_E}{1 + z_h}}$	
либо	
$F_{ind} = \sin(\pi/2 - \theta) \cdot B \cdot I_{ind} \cdot \sqrt{S} \approx 0.62 \cdot e \cdot B \cdot S^{3/2} \cdot n_{ion} \cdot \sqrt{\frac{g_0 R_E}{1 + z_h}}$	0.20

E3^{0.80} Найдите скорость снижения станции из-за её взаимодействия с магнитным полем Земли. Найдите также изменение высоты за один оборот H_h^{ind} в этом случае. Π одсказка: используйте соотношение $h \ll R_E$.

Найдена скорость снижения u_h^{ind} $u_h^{ind} pprox n_{ion} rac{eBS^{3/2}R_E}{M_S}(1+z_h)$	0.30
Найдено изменение высоты за один оборот H_h^{ind} H_h^{ind} = $u_h^{ind} au_h = \frac{2\pi e B(SR_E)^{3/2} n_{ion}}{M_S \sqrt{g_0}} (1+z_h)^{5/2}$	0.50

	F1 ^{0.40}	Рассчитай	те необходи	мые величи	ны и запол	тните Табл	ицу 1 в л	исте отве	тов.
`	h, км	T_h^{air} , дней	u_{air} , м/день	u_{ion} , м/день	<i>u_{ind}</i> ,м/день	∑, м/день	u_{ISS} , м/день		
	350								
	375								
	400								
	410								

Заполн	ена таблиц	a					20×0.02
h, км	T_h^{air} , дней	<i>u_{air}</i> ,м/день	u_{ion} , м/день	<i>u_{ind}</i> ,м/день	∑,м/день	u_{ISS} , м/день	
350	358	171	0.67	1.3	173	~ 170 [в 2008]	
375	2688	28.7	0.67	1.3	30.7	_	
400	20181	4.9	0.67	1.3	6.9	≤ 100 [в 2021]	
410	45205	2.4	0.67	1.3	4.4	≤ 70 [в 2022]	

	F2 ^{0.40}	Рассчит	гайте н	еобходимы	е величины	И	заполните	Таблицу	2	В	листе	ответов.
`	h, км	H_h^{air} , M	H_h^{ion} , M	H_h^{ind} , M								
	350											
	375											
	400											
	410											

Значен	ия H ^{air} н	а указан	ных высс	тах
<i>h</i> , км	H_h^{air} , M	H_h^{ion} , M	H_h^{ind} , M	
350	10.6	0.04	0.08	
375	1.8	0.04	0.08	
400	0.31	0.04	0.08	
410	0.15	0.04	0.08	

F3^{0.20} МКС обращается по орбите на высотах выше 380 км. Расположите три рассмотренных эффекта торможения станции в порядке убывания их влияния.