Stochastic Calculus(Integrands)

Thomas Lonon

Division of Financial Engineering Stevens Institute of Technology

February 10, 2016

What is a Stochastic Integral

$$\int_0^T \Delta(t) dW(t) = ?$$

If we let W(t), $t \ge 0$ be a Brownian motion with respect to a filtration $\mathcal{F}(t)$, $t \ge 0$ and $\Delta(t)$ be an adapted process such that it is \mathcal{F} -measurable, then we can define this expression.

Simple Functions

To do so, we begin with simple functions. A simple function in real analysis is defined to be a function that only takes finite values. We can think of this as:

$$f(x) = \sum_{k \in K} a_k \mathbb{I}_{\{x \in A_k\}}$$

Simple Process

Let $\Pi = \{t_0, t_1, \dots, t_n\}$ where $0 = t_0 \le t_1 \le \dots \le t_n = T$ be a partition of the interval [0, T]Let $\Delta(t)$ be constant in each interval $[t_j, t_{j+1})$, as such $\Delta(t)$ is a simple process. Think of $\Delta(t)$ as the position taken in an underlying stock whose price is determined by the process W(t). We can only change our position in the stock on the trading dates t_0, t_1, \ldots, t_n . As such the gain (or loss) of our portfolio at time t such that $t_k \leq t \leq t_{k+1}$ is given by the function:

$$I(t) = \sum_{j=0}^{K-1} \Delta(t_j) [W(t_{j+1}) - W(t_j)] + \Delta(t_k) [W(t) - W(t_k)]$$

As such, this is the same as the integral of the simple process $\Delta(t)$ and as such we now have a representation for:

$$I(t) = \int_0^t \Delta(u) dW(u)$$

This is known as the Ito integral.

Ito as Martingale

Theorem 4.2.1: The Ito integral I(t) is a martingale.[1] Proof: In order to prove it, let $0 \le s \le t \le T$ be given and show that:

$$\mathbb{E}[I(t)|\mathcal{F}(s)] = I(s)$$

We will need to show it when *s* and *t* are in the same partition and when they are not. The case when they are in the same partition is much simpler.

Ito Isometry

Theorem 4.2.2: The Ito integral I(t) satisfies

$$\mathbb{E}[I^2(t)] = \mathbb{E}\left[\int_0^t \Delta^2(u) du\right]$$

[1]

This is the variance of the Ito integral, as because the Ito integral is a martingale and I(0) = 0, we have $\mathbb{E}[I(t)] = 0$

Theorem 4.2.3:The quadratic variation accumulated up to time t by the Ito Integral I(t) is

$$[I,I](t) = \int_0^t \Delta^2(u) du$$

[1]

Note that this is not the same as the Isometry

Square Integrability

To expand the Ito integral to non-simple functions we need a couple of conditions. First, let $\Delta(t)$, $t \geq 0$ be adapted to the filtration $\mathcal{F}(t)$, $t \geq 0$. Second, the process $\Delta(t)$ must satisfy:

$$\mathbb{E}\left[\int_0^T \Delta^2(t)\right] < \infty$$

This is known as the **square-integrability condition**

Let $\Delta_n(t)$ be a sequence of simple processes, such that $\Delta_n(t) \to \Delta(t)$. By this convergence we mean:

$$\lim_{n\to\infty} \mathbb{E}\left[\int_0^T |\Delta_n(t) - \Delta(t)|^2 dt\right] = 0$$
 (1)

The Ito integral is then defined as

$$\int_0^t \Delta(u)dW(u) = \lim_{n \to \infty} \int_0^t \Delta_n(u)dW(u), 0 \le t \le T$$
 (2)

Theorem 4.3.1 Let T be a positive constant and let $\Delta(t)$, $0 \le t \le T$, be an adapted stochastic process that satisfies (1). Then $I(t) = \int_0^t \Delta(u) dW(u)$ defined by (2) has the following properties.

- 1. **(Continuity)** As a function of the upper limit of integration t, the paths of I(t) are continuous.
- 2. (Adaptivity) For each t, I(t) is $\mathcal{F}(t)$ -measurable.
- 3. **(Linearity)** If $I(t) = \int_0^t \Delta(u) dW(u)$ and $J(t) = \int_0^t \Gamma(u) dW(u)$, then $I(t) \pm J(t) = \int_0^t (\Delta(u) \pm \Gamma(u)) dW(u)$; furthermore, for every constant c, $cI(t) = \int_0^t c\Delta(u) dW(u)$
- 4. (Martingale) I(t) is a martingale
- 5. (Ito Isometry) $\mathbb{E}[I^2(t)] = \mathbb{E}[\int_0^t \Delta^2(u) du]$
- 6. (Quadratic Variation) $[I, I](t) = \int_0^t \Delta^2(u) du$

[1]

[1] S.E. Shreve. *Stochastic Calculus for Finance II: Continuous-Time Models*. Number v. 11.