# CAP 5705 – Assignment 1 Due September 20, 2021

#### Start Early!

## First-Hit Ray Tracer

In this homework you will write a simple ray tracer to render a scene composed of (at least) two spheres and a tetrahedron. The two spheres are of different radii and colors (e.g., blue and green). Pick the centers and the radii of the spheres so that they are visible in the scene (i.e., one is not contained in the other).

You will start with a directional light and a parallel camera geometry for rendering purposes.

- Generate parallel rays and solve the ray-object intersection problems to determine the color
  of each pixel. Verify the correctness of your ray tracer by rendering the scene from multiple
  angles (e.g., change the LookAt vector).

  20pts
- Add ambient, diffuse and specular shading to your ray tracer. Pick the ambient, diffuse and specular constants and light intensities to reflect a realistic rendering of the scene. 20pts
- Add a glazed surface to the scene. You may choose to set one of the objects in the scene or have a plane below these objects that appears as a glazed surface.

  20pts
- Create a small animation by varying the LookAt vector, as a function of time, and assembling the rendered images into a movie. You may use image libraries for exporting rendered images. 10pts
- Once you have completed the above parts, give the user an option (e.g., by pressing a key) to switch to a perspective geometry.

  20pts
- Bonus: Use your creativity to implement an advance feature.
- +20pts
- Along with the source code and makefile (or a README for compiling instructions), submit a report (a PDF file) that describes and documents each functionality you implement. 20pts
- This is an individual effort assignment. You are welcome to discuss ideas/problems with classmates but the source code and report you submit MUST be your own work. You need to clearly acknowledge sources (ideas, solutions, websites) that you use.

## Setting up OpenGL

The focus of this homework is on the topics we learned in class about ray tracing. However, only for the purpose of displaying the ray traced images you create and interact with your ray tracer, we will use an OpenGL program. For your convenience a simple OpenGL program is made available at https://www.cise.ufl.edu/class/cap5705fa21/files/simpleTexture.cpp that displays the contents of an RGB array (e.g., output of your ray tracer). If you look at line no. 159 through 172 currently a gradient image of resolution  $8 \times 8$  is being generated. The program shows the content of this image on a square area over a teal background



To be able to compile and run this program, you first need to set up your machine so you can access the OpenGL functionality its video card or GPU provides. Getting OpenGL going can be quite complicated (ask me why), but we will learn a bit about the system design a bit later. Follow the following steps (there are many helpful online resources for troubleshooting):

- 1. Ensure your machine supports OpenGL version 3.3 or above. Any hardware build in the past 5 years, with Windows/Linux/macOS should work. Older hardware may also work, but you might need tweaks. To find out what versions of OpenGL your system supports you can use GLView from http://www.realtech-vr.com/home/glview a tool to test your system's capabilities.
- 2. Install GLFW (latest version). This provides a library for OpenGL development, but also functionality for creating a window, context and handling input events. Pre-compiled versions are available in common package managers (e.g., brew install glfw). However, if you are comfortable with using CMake, you may compile GLFW from source: https://www.glfw.org.
- 3. Install GLEW. This OpenGL Extension Wrangler library is necessary for setting OpenGL function pointers to the positions provided by the driver. Again pre-compiled versions are available in package managers (e.g., brew install glew), but you can also install from source: http://glew.sourceforge.net.
- 4. Now you can compile: g++ -lglfw -lglew simpleTexture.cpp and run the program ./a.out Note that on macOS you need to add a flag: g++ -lglfw -lglew -framework OpenGL simpleTexture.cpp

#### Submission Guidelines

Submit to E-learning site a **single file** as a .zip or a .tar.gz bundle that contains all the files to be submitted. Include the source codes for your programs in the submission bundle. Please include a 'README' file that clearly explains how to run and test the program. Also include a 'Makefile' that compiles and links the program from the source files.

Late submissions are penalized by 20% of the grade for each day (up to 3) past the due date.