

Quantum optimal control of twoqubit gates in Rydberg atoms

Tesi triennale in fisica

Laureando: Marco Dall'Ara

Relatore: Simone Montangero

26/09/2022

Quantum Computing

Teoria

Bit

Qubit

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|1\rangle$$

Alcuni algoritmi quantistici sono più efficienti di quelli classici (algoritmo di Shor).

Ogni algoritmo quantistico si può decomporre con un numero finito di gate (set universale di gate):

- Gate a singolo qubit
- Gate a più qubit

Controlled-Z gate

Input	Output	
00>	00>	
01>	01>	
10>	10>	
11>	- 11>	

Quantum Computing

Implementazione

Limiti

- Fidelity dei gates a più qubit
- Rapporto tempo di decoerenza/tempo del gate

Atomi di Rydberg Proprietà e Rydberg blockade

Sono atomi con grande numero quantico principale n.

- Vita media $\propto n^3$
- Momento di dipolo elettrico $\propto n^2$ RYDBERG BLOCKADE

Ottimizzazione Controlled-Z gate Protocolli esistenti e lavoro svolto

- H. Levine et al., PRL 123, 170503 (2019).
- Due impulsi identici di tempo au con un salto di fase intermedio di ξ
- Tempo del gate pari a 0.85μs

- A. Pagano et al., PRR 4, 033019 (2022).
- Simulazione ottimizzata con controllo ottimale quantistico
- Impulso singolo simmetrico
- Tempo del gate pari a $0.77 \mu s$, migliorato del 10%

Lavoro svolto

Ho ritrovato i miglioramenti indicati di 2, utilizzando tecniche di controllo ottimale quantistico implementate sul pacchetto software QuOCS. Infine ho analizzato il tempo del gate in funzione della distanza interatomica.

Controllo ottimale quantistico Una veloce panoramica

Consiste in un insieme di tecniche per controllare sistemi quantistici. Queste hanno lo scopo comune di minimizzare una funzione J chiamata figura di merito, che dipende dal problema.

Esempio: problema del trasferimento di stato

 $J=1-\left|\langle \psi_f|\psi(T)
angle
ight|^2$, con $\psi(T)$ evoluto temporale dello stato iniziale ψ_0 e ψ_f stato target. Se ψ_f è uno stato di Bell, *I* è detta **Bell infidelity**.

Ogni ottimizzazione è stata svolta utilizzando il software QuOCS.

Applicazione del controllo ottimale quantistico

 $\Delta \coloneqq "detuning"$

 $\Omega \coloneqq$ "frequenza di Rabi"

 $R \coloneqq "distanza\ interatomica"$

1 H. Levine et al., PRL 123, 170503 (2019).

2 A. Pagano et al., PRR 4, 033019 (2022).

Il controllo ottimale quantistico, tramite la minimizzazione di una Bell infidelity, fornisce un impulso $\Delta(t)$ vincolato ad essere simmetrico, tale da realizzare un Controlled-Z gate nel minor tempo possible.

Risultati

 $\Delta \coloneqq "detuning"$

1 H. Levine et al., PRL 123, 170503 (2019).

2 A. Pagano et al., PRR 4, 033019 (2022).

8

Risultati

1 H. Levine et al., PRL 123, 170503 (2019).

Ritroviamo tempo del gate pari a $0.77 \mu s$, migliorato del 10%

rispetto a 1

9

Tempo del gate vs distanza interatomica

 $\tau \coloneqq$ "tempo del gate"

R := "distanza interatomica"

1 H. Levine et al., PRL 123, 170503 (2019).

A. Pagano et al., PRR 4, 033019 (2022).

 $R < 3\mu$ m: Convergenza rapida a perfect blockade

 $3 < R < 4 \mu m$: Tempo del gate diminuisce con distanza interatomica

 $R>4\mu\mathrm{m}$: Ottimizzazione smette di convergere

Tempo del gate vs distanza interatomica

 $\tau \coloneqq$ "tempo del gate"

 $R \coloneqq "distanza\ interatomica"$

1 H. Levine et al., PRL 123, 170503 (2019).

2 A. Pagano et al., PRR 4, 033019 (2022).

Potenziale miglioramento del tempo del gate di un ulteriore 3%

 $R < 3\mu$ m: Convergenza rapida a perfect blockade

 $3 < R < 4 \mu m$: Tempo del gate diminuisce con distanza interatomica

 $R > 4\mu \text{m}$: Ottimizzazione smette di convergere

Conclusioni

1 H. Levine et al., PRL 123, 170503 (2019).

Ho presentato gli atomi di Rydberg e delle loro applicazioni nel Quantum Computing

Ho riprodotto i risultati di e 2, implementando tecniche di controllo ottimale quantistico nel pacchetto software QuOCS, riottenendo il miglioramento del 10% del tempo del gate.

Con il protocollo in 2, ho analizzato come varia il tempo del gate al variare della distanza interatomica, con un potenziale ulteriore miglioramento del 3% del tempo del gate.

Interazione luce-atomo

Si consideri un atomo a due livelli $\{|0\rangle, |1\rangle\}$ e un' onda piana monocromatica $\mathbf{E}(t) = \mathbf{E}_0' \cos(\omega t + \phi) = \mathbf{E}_0 e^{-i\omega t} + \mathbf{E}_0^* e^{i\omega t}$ con $\mathbf{E}_0 = \mathbf{E}_0' e^{i\phi}/2$.

$$\bullet \ \hat{H}_{int} = -\mathbf{p} \cdot \mathbf{E}(t)$$

Usando la Rotating Wave Approximation e mettendoci in un sistema rotante otteniamo:

• $\hat{H} = -\hbar\Delta |1\rangle \langle 1| + \hbar(\Omega |1\rangle \langle 0| + \Omega^* |0\rangle \langle 1|)$, dove $\Omega_0 = \hbar^{-1} \langle 1|\mathbf{p}|0\rangle \mathbf{E}_0'$ è la frequenza di Rabi, $\Omega = -\frac{\Omega_0}{2}e^{-i\phi}$, $\hat{\Omega} = -\frac{\Omega_0}{2}e^{i\phi}$ e il Detuning $\Delta := \omega - (\omega_{|1\rangle} - \omega_{|0\rangle})$.

Gates a singolo qubit

Ogni trasformazione unitaria su singolo qubit può essere realizzata come combinazine di Hadamard e X-rotations gates.

$$\hat{H}=rac{\hbar}{2}\Delta\ket{0}ra{0}-\hbar/2\Delta\ket{1}ra{1}+\hbar(\Omega\ket{1}ra{0}+\Omega^*\ket{0}ra{1})$$

Simulazione con $\Delta = 0$.

Simulatione con $\Delta = \Omega_0$

Interazione Rydberg-Rydberg

Se la distanza interatomica R tra due atomi è molto maggiore del raggio dello stato di Rydberg, possiamo descrivere i nostri atomi come dipoli elettrici $\mathbf{p} = -e\mathbf{d}$.

•
$$V_{dd} = \frac{e^2}{4\pi\epsilon_0} \frac{\mathbf{d}_1 \cdot \mathbf{d}_2 - 3(\mathbf{d}_1 \cdot \hat{\mathbf{u}}_R)(\mathbf{d}_2 \cdot \hat{\mathbf{u}}_R)}{|\mathbf{R}|^3}$$

Fissando uno stato di Rydberg specifico $|r\rangle$ e con perturbazioni al secondo ordine:

• $V = C_{6,rr}/R^6$, dove $C_{6,rr}$ è il coefficente di Van Der Waals e scala con n^{11} .

Rydberg blockade

Si consideri un sistema di due atomi ognuno con due livelli, $|1\rangle$ stato di base e $|r\rangle$ stato di Rydberg, e un laser risonante tra questi.

• $\hat{H} = \hbar(\Omega | r) \langle 1| \otimes 1 + \Omega 1 \otimes | r \rangle \langle 1| + H.c...) - C_{6,rr}/R^6 | rr \rangle \langle rr |$ Cambiando nella base $\{|11\rangle, |+\rangle = (|1r\rangle + |r1\rangle)/\sqrt{2}, |rr\rangle\}$, otteniamo:

•
$$\hat{H}' = \hbar\sqrt{2}(\Omega|11)\langle+|+\Omega|+\rangle\langle rr|+H.c...) - C_{6,rr}/R^6|rr\rangle\langle rr|$$

Rydberg blockade

In analogia con la dinamica dell'interazione luce-atomo, lo stato $|rr\rangle$ è shiftato fuori risonanza dall'interazione Rydberg-Rydberg.

Controlled-Z gate

Consideriamo due atomi identici, ognuno come un sistema a tre livelli $|0\rangle$, $|1\rangle$, $|r\rangle$, dove i primi due stati sono ground states e $|r\rangle$ è uno stato di Rydberg. La transizione tra $|1\rangle$ e $|r\rangle$ avviene grazie ad un laser con detuning Δ , simultaneamente per entrambi gli atomi. $H = H_{\Delta=0} + H_{\Delta}$, con $H_{\Delta} = -\hbar\Delta(|r\rangle\langle r|\otimes 1 + 1\otimes |r\rangle\langle r|)$.

- $|0\rangle$ è disaccopiato, quindi la dinamica di $|01\rangle$ è descritta da un sistema a due livelli $\{|01\rangle, |1r\rangle\}$ con frequenza di Rabi Ω_0 .
- $|11\rangle$, come già visto, segue una dinamica descritta da $\{|11\rangle\,, \frac{|1r\rangle+|r1\rangle}{\sqrt{2}}\}$ con frequenza di Rabi $\sqrt{2}\Omega_0$

Controlled-Z gate

- Dinamiche differenti di |01 e |11
- Vincolo che impulso del laser faccia tornare gli stati in se stessi dopo l'evoluzione

Permettono a questi stati di acquisire fasi differenti:

$$|00\rangle \rightarrow |00\rangle$$
 $|01\rangle \rightarrow |01\rangle e^{i\phi_{01}}$
 $|10\rangle \rightarrow |10\rangle e^{i\phi_{10}}$
 $|11\rangle \rightarrow |11\rangle e^{i\phi_{11}}$ (1)

Dove $\phi_{01} = \phi_{10}$ per la simmetria della dinamica. Se le fasi soddisfano :

$$\phi_{11} = 2\phi_{01} + \pi \ , \tag{2}$$

Controllo ottimale quantistico

- State transfer figura di merito: $J = 1 \langle \psi_f | \psi(T) \rangle^2$, dove $|\psi(T)\rangle = U(T,0) |\psi_0\rangle$, con l'operatore evoluzione temporale U che dipende dai parametri di controllo.
- CRAB: espande segnale in input in una serie troncata, con coefficenti c_i . Minimizza $J(f(t)) = J(c_1, c_2...c_N)$.
- dCRAB: $f^{j}(t) = c_0^{j} f^{j-1}(t) + \sum_{i=1}^{N} c_i^{j} f_i^{j}(t)$

Il dCRAB attenua il problema delle false traps:

$$\delta J(f) = 0 \ \forall \ \delta f = \sum_{i=1}^{N} f_i(t) \delta c_i \ \& \ \exists \ \delta f \in L_2 : \delta J(f) \neq 0$$

Ottimizzazione CZ gate

• Stato iniziale:
$$\psi_0 = \frac{|01\rangle + |11\rangle}{\sqrt{2}}$$

• Stato iniziale:
$$\psi_0=\frac{|01\rangle+|11\rangle}{\sqrt{2}}$$
 • Stato target: $\psi_f=\frac{|01\rangle+e^{i(\phi_{01}-\pi)}|11\rangle}{\sqrt{2}}$

• Figura di merito:
$$J = 1 - |\langle U(T)\psi_0|\psi_f\rangle|^2$$

= $1 - |(e^{i\phi_{01}}\frac{|01\rangle + e^{i(\phi_{11} - \phi_{01})}|11\rangle}{\sqrt{2}}) \cdot (\frac{|01\rangle + e^{i(\phi_{01} - \pi)}|11\rangle}{\sqrt{2}})|^2$

Sorgente più rilevante d'errore in gate di questo tipo è data da decadimento atomi di Rydberg → cerchiamo protocolli con tempo medio passato in atomi di Rydberg minori, e quindi anche con gate time minori.

Detuning costante e salto di fase (perfect blockade)

- Detuning Δ costante, salto di fase tra due impulsi ξ , durata impulso τ
- Perfect blockade
- |11
 angle deve tornare in se stesso dopo gate $o au(\Delta/\Omega_0)$
- ullet |01angle deve tornare in se stesso dopo gate $o \xi(\Delta/\Omega_0)$
- Si trova anche $\phi_{01}(\Delta/\Omega_0)$ $\phi_{11}(\Delta/\Omega_0)$ e da vincolo fasi del CZ gate troviamo $\Delta/\Omega_0=0.377$

Detuning costante e salto di fase (perfect blockade)

Parametri	Ω_0	ξ	au	Δ	V/\hbar	J
Valori	10 MHz	3.90	0.43 μs	3.77 MHz	∞	$3.5 \cdot 10^{-6}$

Detuning costante e salto di fase (imperfect blockade)

- Detuning Δ costante, salto di fase tra due impulsi ξ , durata impulso τ
- Imperfect blockade, atomi di Stronzio-88 a distanza 3μ m, \rightarrow influisce solo su dinamica $|11\rangle$
- $|11\rangle$ deve tornare in se stesso dopo gate $\to \tau(\Delta/\Omega_0)$ (diverso da perfect blockade, qua soluzione numerica)
- $|01\rangle$ deve tornare in se stesso dopo gate $\to \xi(\Delta/\Omega_0)$ (uguale a perfect blockade)
- Minimizziamo J con metodo Nelder-Mead attraverso parametri τ e Δ

Detuning costante e salto di fase (imperfect blockade)

Parametri	Ω_0	ξ	τ	Δ	V/\hbar	J
Valori	10 MHz	3.93	0.43 μs	3.91 MHz	211 MHz	$7 \cdot 10^{-6}$

Ottimizzazione del detuning con dCRAB

ERS STORY OF THE S

- Detuning $\Delta(t)$ dipendente dal tempo e simmetrico, durata gate τ'
- Applico dCRAB per trovare $\Delta(t)$ tale che, sia per $|01\rangle$ che per $|11\rangle$, dopo un tempo $\tau'/2$ evolvo nel piano XZ della sfera di Bloch.

Ottimizzazione del detuning con dCRAB

