Homerork 6 Solutions Problem 1 $f(x) = \frac{x^2}{4-x^2}$ Domain: All real humbers excluding 2 and -2. Intercepts => (0,0) Horizontal asymptotes => $\lim_{x \to \infty} \frac{1}{x^2} = \lim_{x \to \infty} \frac{1}{x^2} = -1$.. y=-1 is an asymptote. Vertical asymptotes => Check for where denominator becomes $4-x^2=0 =) x = \pm 2$.. n=2 and n=-2 are vertical asymptotes. First Derivatives $f(x) = \frac{x^2}{4-x^2}$

At
$$dy=0$$
, $n=0$ and $y=0$

If dx is increasing from $-2 < x < 0$
If $f(x)$ is increasing from $0 < x < 2$
If there is a minimum point at $x = 0$

$$= (0,0) \text{ is a minimum point.}$$

Second Derivatives

$$f''(x) = 8x$$

$$(4-x^2)^2$$

$$\therefore f''(x) = 8\left(x^2-4\right)^2 - 2(x^2-4)(2x+0)x$$

$$= 8\left(3x^2+4\right)$$

$$(x^2-4)^3$$

$$= 8\left(3x^2+4\right)$$

$$(x^2-4)^3$$

$$= 8\left(3x^2+4\right)$$

$$(x^2-4)^3$$

$$= 8\left(3x^2+4\right)$$

$$(x^2-4)^4$$

$$= 8\left(3x^2+4\right)$$

$$(x^2-4)^3$$

$$= 8\left(3x^2+4\right)$$

$$(x^2-4)^3$$

$$= 8\left(3x^2+4\right)$$

$$=$$

Problem 2 f(x) = - | h(x) + \sqrt{x} Domain => x>0 for all real x. Intercepts => No intercepts since In(o) is NoT defined. Hoñzontal Asymptotes: No hoñzontal asymptotes. Vertical Asymptotes: x=0 is a vertical asymptote. first Derivative $\int_{0}^{1} (\alpha) = \frac{1}{2} \alpha^{-\frac{1}{2}} - \frac{1}{\alpha} = \frac{1}{2\sqrt{\alpha}} \alpha$ At f'(a) = 0 , $\alpha = 4$.. (4,2-ln(4)) is a minimum point - of (a) is decreasing from 0 < x < 4
- of (a) is increasing from for x > 4

first Denintive

$$f'(x) = 2 \cdot e^{-4/x} \cdot \frac{4}{x^2} = \frac{8 \cdot e^{-4/x}}{x^2}$$

At $f'(x) = 0$, to solution, hence no turning points. (maxima or minima)

Since $f'(x) > 0$ for all x , the function is always increasing

Second Denintive

 $f''(x) = 8 \cdot (4 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x})$
 $= 8 \cdot (4 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x})$
 $= 8 \cdot (4 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}) = -(16x - 32) \cdot e^{-4/x}$

At $f''(x) = 0 = 2$
 $= 2x \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$

At $f''(x) = 0 = 2$
 $= 2x \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot e^{-4/x} \cdot 1 - 2x \cdot e^{-4/x}$
 $= 8 \cdot$

