DEVOIR SURVEILLÉ 3

Calculatrice autorisée Mercredi 10 janvier 2024

EXERCICE 1 (6 POINTS)

- **1.** Soit $n = 2^3 \times 5^3$. Décrire l'ensemble de ses diviseurs positifs.
- **2.** Soient a et b deux entiers relatifs. On suppose que a est pair et b impair.

Préciser la parité des entiers relatifs suivants.

a.
$$2a + 3b$$

b.
$$a^2 - b^2$$

c.
$$9a + 4b$$

CORRECTION

1. Soit $n = 2^3 \times 5^3$. Ses diviseurs positifs sont sous la forme $2^k \times 5^l$ avec $0 \le k \le 3$ et $0 \le l \le 3$. Il y a donc:

•
$$2^0; 2^1; 2^2; 2^3$$

•
$$2^0 \times 5$$
; $2^1 \times 5$; $2^2 \times 5$; $2^3 \times 5$

•
$$2^0 \times 5^2$$
; $2^1 \times 5^2$; $2^2 \times 5^2$; $2^3 \times 5^2$

•
$$2^0 \times 5^3$$
; $2^1 \times 5^3$; $2^2 \times 5^3$; $2^3 \times 5^3$.

2. Par hypothèse, il existe $k \in \mathbb{Z}$ et $k' \in \mathbb{Z}$ tel que a = 2k et b = 2k' + 1.

a.
$$2a+3b=2\times 2k+3\times (2k'+1)=4k+6k'+3=2(2k+3k'+1)+1$$
 impair

b.
$$a^2 - b^2 = (2k)^2 - (2k'+1)^2 = 4k^2 - (4k'^2 + 4k' + 1) = 4k^2 - 4k'^2 - 4k' - 2 + 1 = 2(2k^2 - 2k'^2 - 2k' - 1) + 1$$
 impair

c.
$$9a + 4b = 9 \times 2k + 4(2k' + 1) = 18k + 8k' + 4 = 2(9k + 4k' + 2)$$
 pair

EXERCICE 2 (4 POINTS)

Un site A de vente de livres en ligne souhaite réaliser une étude statistique sur l'âge de sa clientèle. Les résultats sont donnés ci-dessous.

x_i	[18;20[[20;25[[25;30[[30;35[[35;40[
n_i	190	349	362	378	405
x_i	[40;45[[45;50[[50;55[[55;60[60 et plus
n_i	216	200	250	200	232

1. Estimer la moyenne \overline{x} et l'écart-type σ des âges des clients de cette entreprise.

On pourra utiliser le centre $\frac{a+b}{2}$ des intervalles [a; b[et 65 pour la classe "60 ans et plus".

2. Comparer la clientèle de ce site à celle d'un site B dont les âges ont pour moyenne 37,0 ans et pour écart-type 14,4 ans.

CORRECTION

- **1.** Avec l'estimation conseillée, on obtient $\overline{x} \approx 38,560$ et $\sigma \approx 13,713$.
- **2.** Le site *B* a une clientèle **globalement plus jeune** que le site *A*. Sa moyenne est plus faible d'une année et demi environ pour une **dispersion un peu plus importante** de 0,7 année.

EXERCICE 3 (6 POINTS)

Soit $t \in [3;8]$. On considère la série statistique suivante.

x_i	0	2	3	t	8
n_i	12	10	3	15	10
ECC	12	22	25	40	50
f_i	0,24	0,2	0,06	0,3	0,2
FCC	0,24	0,44	0,5	0,8	1

- 1. Sur le sujet, compléter les trois dernières lignes (effectifs cumulés croissants, fréquences et fréquences cumulées croissantes).
- **2.** Donner l'expression de la médiane M en fonction de t.
- **3.** Quel est le premier quartile Q_1 ?
- **4.** Donner l'expression de la moyenne \overline{x} en fonction de t.

CORRECTION

- 1. Voir tableau.
- 2. Il y a 50 termes donc la médiane est la moyenne du 25e terme et du 26e : $M = \frac{3+t}{2}$.
- 3. $\frac{50}{4}$ = 12,5 donc Q_1 est le 13e terme, c'est-à-dire, Q_1 = 2.

4.

$$\overline{x} = \frac{0 \times 12 + 2 \times 10 + 3 \times 3 + t \times 15 + 8 \times 10}{50} = \frac{109 + 15t}{50}$$

EXERCICE 4 (4 POINTS)

Dans cet exercice, on souhaite démontrer que l'ensemble des nombres premiers est infini.

On suppose **par l'absurde** qu'il existe un nombre fini N de nombres premiers distincts, que l'on note alors dans l'ordre croissant $p_1, p_2, ..., p_N$.

1. Soit $K = (p_1 \times p_2 \times \cdots \times p_N) + 1$.

Justifier que, pour tout entier i compris entre 1 et N, p_i n'est pas un diviseur de K.

2. Montrer que le nombre *K* est premier. Conclure.

CORRECTION

- **1.** Si p_i est un diviseur de K alors p_i est un diviseur de $K (p_1 \times p_2 \times \cdots \times p_N)$ par différence donc de 1. C'est impossible car sinon $p_i = 1$.
- **2.** Si *K* admet un diviseur premier, c'est l'un des p_i . C'est exclu par la question précédente. Ainsi, *K* est divisible par 1 et *K* seulement donc *K* est premier.

C'est absurde de supposer qu'il y a un nombre fini N de nombres premiers puisque K est strictement supérieur à tous les p_i et on a un $N+1^{\rm e}$ nombre premier.

L'ensemble des nombres premiers est infini.