Part 2: Exploratory Data Analysis

(a) ggplot2

- R's mission is to enable the best and most thorough exploration of data possible (Chambers 2008).
- It is a dialect of the S language, developed at Bell Laboratories
- ► ACM noted that S "will forever alter the way people analyze, visualize, and manipulate data"

```
v < -1:10
V
   [1]
       1 2 3 4 5 6 7 8 9 10
##
summary(v)
##
     Min. 1st Qu.
                  Median
                           Mean 3rd Qu.
                                          Max.
                           5.50
     1.00
            3.25
                    5.50
                                  7.75
                                         10.00
##
```

R Studio IDE (also available through https://rstudio.cloud)

Figure 1: R Studio IDE

R Data Types

	Homogenous	Heterogenous
	Matrix	List Data Frame/Tibble
nd	Array	

- The basic data structure in R is the Vector
- Vectors come in two flavours:
 - Atomic vectors
 - Lists
- ➤ With atomic vectors, all elements have the same type: logical, integer, double (numeric) or character
- typeof() str() functions useful

Atomic Vectors - Examples

```
dbl_var \leftarrow c(2.9, 3.1, 4.8)
typeof(dbl var)
## [1] "double"
int_var <- c(0L, 1L, 2L)
typeof(int_var)
## [1] "integer"
log var <- c(TRUE, TRUE, FALSE, T, F)
typeof(log var)
## [1] "logical"
str var <- c("Dublin", "London", "Edinburgh")</pre>
typeof(str var)
## [1] "character"
```

str() function useful

```
str(dbl var)
## num [1:3] 2.9 3.1 4.8
str(int var)
## int [1:3] 0 1 2
str(log_var)
   logi [1:5] TRUE TRUE FALSE TRUE FALSE
str(str var)
## chr [1:3] "Dublin" "London" "Edinburgh"
```

Creating Sequences: and seq() function

```
v1 <- 1:10
v1
## [1] 1 2 3 4 5 6 7 8 9 10
v2 < -10:20
v2
## [1] 10 11 12 13 14 15 16 17 18 19 20
v3 \leftarrow seq(20, 30, by=1)
v3
##
    [1] 20 21 22 23 24 25 26 27 28 29 30
```

Creating Vectors of fixed size (in advance)

Coercion of atomic vectors

- ▶ All elements of an atomic vector MUST be of the same type
- ► When different type are combined, they will be coerced into the most flexible types

	logical	integer	numeric	character
logical	logical	integer	numeric	character
integer	integer	integer	numeric	character
numeric	numeric	numeric	numeric	character
character	character	character	character	character

Coercion Examples

```
v1 \leftarrow c(10, 20, TRUE)
v1
## [1] 10 20 1
typeof(v1)
## [1] "double"
v2 <- c(10, 20, "True")
v2
## [1] "10"
            "20" "True"
typeof(v2)
## [1] "character"
```

Challenge 1.1

Determine the tpes for each of the following vectors

```
v1 <- c(1L, T, FALSE)

v2 <- c(1L, T, FALSE, 2)

v3 <- c(T, FALSE, 2, "FALSE")

v4 <- c(2L, "FALSE")

v5 <- c(0L, 1L, 2.11)
```

Subsetting Atomic Vectors

- Subsetting data is a key activity in data science
- R's subsetting operators are powerful and fast
- ► For atomic vectors, the operator [is used
- ▶ In R, the index for a vector starts at 1

 $x \leftarrow c(2.1, 4.2, 3.3, 5.4)$

[1] 2.1 5.4

```
x
## [1] 2.1 4.2 3.3 5.4
x[1]
## [1] 2.1
x[c(1,4)]
```

Subsetting Vectors - (1) Positive Integer

Positive integers return elements at the specified position

```
x <- 1:10
x
## [1] 1 2 3 4 5 6 7 8 9 10
x[5]
## [1] 5
x[8:10]
## [1] 8 9 10</pre>
```

Subsetting Vectors - (2) Negative Integer

Negative integers omit elements at specified positions

```
x < -1:10
х
   [1] 1 2 3 4 5 6 7 8 9 10
##
x[-5]
## [1] 1 2 3 4 6 7 8 9 10
x[-(8:10)]
## [1] 1 2 3 4 5 6 7
x[-(2:10)]
## [1] 1
```

Subsetting Vectors - (3) Logical Vectors

- Select elements where the corresponding logical value is TRUE.
- ► This approach supports recycling

```
x < -1:5
х
## [1] 1 2 3 4 5
x[c(F,T,T,T,T)]
## [1] 2 3 4 5
x[c(F,T)]
## [1] 2 4
```

Logical Vectors - Can be formed with logical expressions

```
x < -1:5
Х
## [1] 1 2 3 4 5
1x < -x < 2
lx
## [1] TRUE FALSE FALSE FALSE
x[lx]
## [1] 1
x[x>2]
## [1] 3 4 5
```

Subsetting Vectors - (4) Using character vectors

Return elements with matching names

```
x < -1:5
names(x) <- c("a","b","c","d","e")</pre>
х
## a b c d e
## 1 2 3 4 5
x["a"]
## a
## 1
x[c("a", "e")]
```

1 5

Challenge 1.2

- Create an R vector of squares of 1 to 10
- ► Find the minimum
- Find the maximum
- Find the average
- Subset all those values greater than the average

Vectorisation

- ▶ A powerful feature of R is that it supports vectorisation
- ► Functions can operate on every element of a vector, and return the results of each individual operation in a new vector.

```
x <- c(1,4,9,16,25)
x
## [1] 1 4 9 16 25
y <- sqrt(x)
y
```

[1] 1 2 3 4 5

Vectorisation

Figure 2: Vectorisation in R

Vectorised if/else

Vectors can also be processed using the vectorized ifelse(b,u,v) function, which accepts a boolean vector b and allocates the element-wise results to be either u or v.

```
v1 <- 1:5
ans <- ifelse(v1 %% 2 == 0, "Even", "Odd")
ans
## [1] "Odd" "Even" "Odd" "Even" "Odd"</pre>
```

Sample Function

sample takes a sample of the specified size from the elements of ${\bf x}$ using either with or without replacement.

Usage

```
sample(x, size, replace = FALSE, prob = NULL)
sample.int(n, size = n, replace = FALSE, prob = NULL)
```

Arguments

- x Either a vector of one or more elements from which to choose, or a positive integer. See 'Details.'
- n a positive number, the number of items to choose from. See 'Details.'
- size a non-negative integer giving the number of items to choose.
- replace Should sampling be with replacement?
- prob A vector of probability weights for obtaining the elements of the vector being sampled.

Figure 3: Sample function in Base R

```
s <- sample(c("Y","N"),10,prob=c(.2,.8),repl=T)
s</pre>
```

```
## [1] "N" "N" "Y" "Y" "Y" "N" "N" "Y" "Y" "N'
```

NA Symbol in R (Not available)

- In a project of any size, data is likely to be incomplete due to
 - Missed survey questions
 - Faulty equipment
 - Improperly coded data
- ▶ In R, missing data is represented by the symbol NA

```
x < -1:5
x[3] \leftarrow NA
х
## [1] 1 2 NA 4 5
sum(x)
## [1] NA
sum(x, na.rm=TRUE)
## [1] 12
```

Testing for NA? Need is.na() function

- The function is.na() indicates which elements are missing
- Returns a logical vector, the same size as the input vector

```
х
## [1] 1 2 NA 4 5
is.na(x)
## [1] FALSE FALSE TRUE FALSE FALSE
which(is.na(x)) # get the location of NA
## [1] 3
x[!is.na(x)] # Exclude all NAs from result
## [1] 1 2 4 5
```

Test Slide with Plot

