Question Answering Kaggle Competition

Misha Yaschenko Yana Shishkina

Question Answering Task

The goal is to predict **short** and **long** answer responses to real questions about Wikipedia articles

Long answer	Yes/No answer	Short answer
Sequence classification task Classify each given paragraph if it's the right answer.	Sequence classification task Classify each long answer & short question if it has yes/no answer or it's not applicable	Token classification task Classify each token of the right long answer if it belongs to the short answer

Question Answering Task

BERT

Bert-base-cased Pretrained

F1 Micro

Chosen by Kaggle

PyTorch

Long Answer

Idea

- clean texts from tags
- we clean the texts from stop words (later refused)
- divide the texts from wikipedia into paragraphs, and match each paragraph with a target
- predict the most probable positive candidate from each document

Problems

 unbalanced sampling: there is only one paragraph for a large text containing the answer

What else could be taken into account

- the possible usefulness of tags
- calibration of probabilities
- try other models from the same family of models (for example bert-large)

Long Answer

2 trainable BERT layers (2nd epoch log)

On test (real formatting): F score: 57.57

fully frozen BERT (2nd epoch log)

Yes/No Answer

3-class classification

97.5% - NONE!

Balanced to:

NONE: 4000

NO: 1439

YES: 2359

Our best

F score: 95.74

Majority baseline

F score: 97.67

:(

Idea

- Split long answers in parts (a bit smaller than max_len)
- Classify each token if it belongs to answer (2 classes)
- Map Bert tokenizer tokens to regular tokens

Problems

- Short answer can span multiple parts of long answer
- Can predict multiple answers in one long answer
- Unknown tokens can push the answer out of max_len bounds

(question, long_answer) -> short_ans_indices

Example

Long answer: The quick brown fox jumps over the lazy dog

Question: What are the characteristics of the dog?

Answer: 7:8

Max len: 5

Parts: [The quick brown fox jumps, over the lazy dog]

Model output: [-1:-1, 2:3]

Aligned output: $2+5:3+5 \rightarrow 7:8$

fully trainable BERT (2nd epoch log)

On test (real formatting): F score: 44.50

On test (our formatting): F score: 68.00

2 trainable BERT layers (4th epoch log)

fully trainable BERT (2nd epoch log)

On test (real formatting): F score: 44.50

On test (our formatting): F score: 68.00

2 trainable BERT layers (4th epoch log)

We are not alone!

PaLM - 540B

BERT - 110M

Question Answering on Natural Questions

Kaggle Score

Challenges with Kaggle:

- very large test sample and Kaggle memory limit
- gluing models
- bert-base is downloaded from the Internet;(
- GPU limitation
- very long submission

Public

Private

Input

- tensorflow2-question-answering
 bert-base-cased
 long-answer-model
- transformers
- short-model-qa

REPO

https://github.com/yashkens/MLDM_QA_project