CLAIMS

What is claimed is:

1	1. A compression-paddle mixer comprising:
2	a compression paddle with one or more sets of two paddle blades on
3	paddle spokes that are extended radially from a paddle rod;
4	the paddle blades being juxtaposed colinearly to the paddle rod;
5	the paddle rod having a direction of rotation that is transmitted from a
6	predetermined power source;
7	the one or more sets of the two paddle blades having circumferential
8	travel in a direction of the circumferential travel that is transmitted through the
9	paddle spokes by the rotation of the paddle rod;
0	the one or more sets of the two paddle blades having channel-funneled
1	orientations in the direction of the circumferential travel of the one or more sets of
2	the two paddle blades;
13	the channel-funneled orientations include channel-funnel inlets having
4	funnel-inlet areas intermediate leading edges of the paddle blades of the one or more
15	sets of the paddle blades in the direction of the circumferential travel of the one or
16	more sets of the two paddle blades;
17	the channel-funneled orientations include channel-funnel outlets having
18	funnel-outlet areas intermediate trailing edges of the paddle blades of the one or
19	more sets of the two paddle blades; and
20	the funnel-inlet areas are predeterminedly larger than the funnel-outlet
21	areas.

1	2.	The compression-paddle mixer of claim I wherein:
2		the channel-funneled orientations have compression ratios that are
3	defined by	ratios of the channel-funnel inlet areas to the channel-funnel outlet areas
4	of the one	or more sets of the two paddle blades.
1	3.	The compression-paddle mixer of claim 2 wherein:
2		the compression ratios are higher predeterminedly for mixes having
3	high liquid	lity than for mixes having low liquidity.
1	4.	The compression-paddle mixer of claim 2 wherein:
2		the rotation of the paddle rod has a speed of rotation that is higher
3	predetermi	inedly for the mixes having the high liquidity than for the mixes having
4	the low liq	uidity.
# F		
1	5.	The compression-paddle mixer of claim 1 wherein:
2		the compression paddle has size, shape and structure articulated for
3	predetermi	ined quantities of mix.
-9	_	
1	6.	The compression-paddle mixer of claim 5 wherein:
2		the predetermined quantities of mix include quantities ranging from one-
3	to-pluraliti	es of barrels to one-to-pluralities of pints.

1	7.	The compression-paddle mixer of claim 1 and further comprising:
2		a mix container having a cylindrical interior periphery;
3		the cylindrical interior periphery having a predetermined quantitative
4	capacity of	a plurality of select quantitative units;
5		the compression paddle having a paddle radius defined by a longest
6	extremity o	of the compression paddle from a center of the paddle rod;
7		the paddle radius being articulated to fit and to rotate predeterminedly
8	within the	cylindrical interior of the mix container; and
9		the paddle blades having lengths that proximate a length of the
0	cylindrical	interior periphery of the mix container.
9 - 1		
1	8.	The compression-paddle mixer of claim 7 wherein:
2		the select quantitative units include quantitative units ranging from
3	barrels to p	pints.
1	9.	The compression-paddle mixer of claim 8 wherein:
2		the compression paddle and the mix container have structure articulated
3	for mixing	predetermined consistencies of mix.
1	10.	The compression-paddle mixer of claim 9 wherein:
2		the predetermined consistencies of mix include particulate substances
3	having con	astruction-item consistencies of gravel, sand, cement, mortar, clay,
4	alkalines ar	nd metallic particles selectively; and
5		the production-item consistencies of mix include liquids having
6	consistencie	es of water, liquidity modifiers, acid and petrochemicals selectively.

1	11.	The compression-paddle mixer of claim 9 wherein:
2		the predetermined consistencies of mix include non-production-item
3	consistencie	es of flour, sugar, food particles, dyes and seasoning selectively; and
4		the non-production-item consistencies of mix include water, liquid food
5	substances,	honey, coloring, alcohol and preservatives selectively.
1	12.	The compression-paddle mixer of claim 1 wherein:
2		the compression paddle has a paddle radius defined by a longest
3	extremity o	f the compression paddle from a center of the paddle rod; and
4		the compression paddle fits rotatably in a mix container in which
5	radially out	side extremities of the paddle blades rotate in sliding proximity to an
6	inside perij	phery of a cylindrical portion of the mix container.
3		
1	13.	The compression-paddle mixer of claim 12 wherein:
2		the cylindrical portion of the mix container has a length that is
3	predetermin	nedly proximate a length of the paddle blades of the compression paddle.
1	14.	The compression-paddle mixer of claim 13 wherein:
2		the paddle blades of the compression paddle have lengths which are
3	predetermin	nedly longer than two radii of the compression paddle.
1	15.	The compression-paddle mixer of claim 1 wherein:
2		the paddle blades have blade edges and blade thicknesses structured for
3	ease of inse	rtion into and removal from predetermined mix in the mix container.

1	16.	The compression-paddle mixer of claim 1 wherein:
2		the paddle rod has a rod-insertion end and rod thickness structured for
3	ease of inse	rtion into and removal from the predetermined mix in the mix container.
1	17.	The compression-paddle mixer of claim 1 wherein:
2		the paddle spokes have thicknesses and structure articulated for ease of
3	insertion in	to and removal from the predetermined mix in the mix container.
1	18.	The compression-paddle mixer of claim 1 wherein:
2		the paddle blades have blade edges and blade thicknesses structured for
3	ease of inse	ertion into and removal from predetermined mix in the mix container;
3 4 5		the paddle rod has a rod-insertion end and rod thickness structured for
5	ease of inse	rtion into and removal from the predetermined mix in the mix container;
6	and	
7		the paddle spokes have thicknesses and structure articulated for ease of
8	insertion in	to and removal from the predetermined mix in the mix container.
8		
1	19.	The compression-paddle mixer of claim 1 wherein:
2		the paddle rod has a rod-power end with a power-source connection
3	articulated t	for rotation-transmissive connection to the predetermined power source.

1	20.	The compression-paddle mixer of claim 1 wherein:
2		the compression paddle has a paddle radius defined by a longest
3	extremity o	f the compression paddle from a center of the paddle rod;
4		the compression paddle fits rotatably in a mix container in which
5	radially out	side extremities of the paddle blades rotate in sliding proximity to an
6	inside peri	phery of a cylindrical portion of the mix container;
7		the cylindrical portion of the mix container has a length that is
8	predetermin	nedly proximate a length of the paddle blades of the compression paddle;
9		the mix container includes a container bottom that is flat and orthogonal
0	to an axis o	f the paddle rod; and
1		the paddle blades have blade bottoms that travel circumferentially in
2	predetermin	ned proximity to the container bottom.
: ::::::::::::::::::::::::::::::::::::		
1	21.	The compression-paddle mixer of claim 20 wherein:
2		the container bottom includes a valved opening.
1	22.	The compression-paddle mixer of claim 21 wherein:
2		the container bottom is positioned on a riser to raise the container
3	bottom pred	determinedly above a container-support surface for allowing exit of the
4	mix from th	ne mix container predeterminedly.

l	23.	A compression-paddle mixer comprising:
2		a compression paddle having two sets of two paddle blades on paddle
3	spokes that	are extended radially from a paddle rod;
4		the paddle blades being juxtaposed colinearly to the paddle rod;
5		the two sets of the two paddle blades are oppositely disposed radially
6	from the pa	iddle rod;
7		the paddle rod having a direction of rotation that is transmitted from a
8	predetermi	ned power source;
9		the two sets of the two paddle blades having circumferential travel in
10	a direction	of the circumferential travel that is transmitted through the paddle spokes
11	by the rotat	ion of the paddle rod;
12		the two sets of the two paddle blades having channel-funneled
12 13	orientations	s in the direction of the circumferential travel of the two sets of the two
[4	paddle blad	les;
15		the channel-funneled orientations include channel-funnel inlets having
16	funnel-inlet	areas intermediate leading edges of the paddle blades of the two sets of
17	the paddle	blades in the direction of the circumferential travel thereof;
18		the channel-funneled orientations include channel-funnel outlets having
19	funnel-outle	et areas intermediate trailing edges of the paddle blades of the two sets
20	of the two	paddle blades;
21		the funnel-inlet areas are predeterminedly larger than the funnel-outlet
22	areas;	
23		the channel-funneled orientations have compression ratios that are
24	defined by	ratios of the channel-funnel inlet areas to the channel-funnel outlet areas
25	of the two	sets of the two paddle blades;
26		the compression ratios are higher predeterminedly for mixes having
27	high liquid	ty than for mixes having low liquidity; and
28		the rotation of the paddle rod has a speed of rotation that is higher
29	predetermi	nedly for the mixes having the high liquidity than for the mixes having
ลก	the low lim	iidity

1	24.	The compression-paddle mixer of claim 23 wherein:
2		the compression paddle has size, shape and structure articulated for
3	predetermi	ned quantities of mix;
4		the predetermined quantities of mix include quantities ranging from
5	pluralities of	of barrels to pluralities of pints.
1	25.	The compression-paddle mixer of claim 23 and further comprising:
2		a mix container having a cylindrical interior periphery;
3		the cylindrical interior periphery having a predetermined quantitative
4	capacity of	a plurality of select quantitative units;
5		the compression paddle having a paddle radius defined by a longest
6	extremity o	of the compression paddle from a center of the paddle rod;
7		the paddle radius being articulated to fit and to rotate predeterminedly
8	within the	cylindrical interior of the mix container;
9		the paddle blades having lengths that proximate a length of the
10	cylindrical	interior periphery of the mix container;
11		the select quantitative units include quantitative units ranging from
12	barrels to p	pints; and
13		the compression paddle and the mix container have structure articulated
14	for predete	rmined consistencies of mix.

1	26.	The compression-paddle mixer of claim 25 wherein:
2		the predetermined consistencies of mix include gravel, sand, cement,
3	mortar, clay	y, alkalines, and metallic particles selectively; and
4		the predetermined consistencies of mix include water, acid and
5	petrochemic	cals selectively.
1	27.	The compression-paddle mixer of claim 25 wherein:
2		the predetermined consistencies of mix include flour, sugar, food
3	particles an	d seasoning selectively; and
4		the predetermined consistencies of mix include water, liquid food
5	substances,	honey, coloring, alcohol and preservatives selectively.
1	28.	The compression-paddle mixer of claim 23 wherein:
2		the compression paddle has a paddle radius defined by a longest
3	extremity o	f the compression paddle from a center of the paddle rod; and
4		the compression paddle fits rotatably in a mix container in which
5	radially out	side extremities of the paddle blades rotate in sliding proximity to an
6	inside peri	phery of a cylindrical portion of the mix container;
7		the cylindrical portion of the mix container has a length that is
8	predetermin	nedly proximate a length of the paddle blades of the compression paddle;
9	and	
0		the paddle blades of the compression paddle have lengths which are
1	predetermin	nedly longer than two radii of the compression paddle.

1	29.	The compression-paddle mixer of claim 23 wherein:
2		the paddle blades have blade edges and blade thicknesses structured for
3	ease of inse	ertion into and removal from predetermined mix in the mix container;
4		the paddle rod has a rod-insertion end and rod thickness structured for
5	ease of inse	rtion into and removal from the predetermined mix in the mix container;
6		the paddle spokes have thicknesses and structure articulated for ease of
7	insertion in	to and removal from the predetermined mix in the mix container.; and
8		the paddle rod has a rod-power end with a power-source connection
9	articulated	for rotation-transmissive connection to the predetermined power source.
1	30.	A compression-paddle mixer comprising:
2		a compression paddle having two sets of two paddle blades on paddle
3	spokes that	are extended radially from a paddle rod;
4		the paddle blades being juxtaposed colinearly to the paddle rod;
5		the two sets of the two paddle blades are oppositely disposed radially
6	from the pa	addle rod;
7		the paddle rod having a direction of rotation that is transmitted from a
8	predetermi	ned power source;
9		the two sets of the two paddle blades having circumferential travel in
10	a direction	of the circumferential travel that is transmitted through the paddle spokes
11	by the rotat	tion of the paddle rod;
12		the two sets of the two paddle blades having channel-funneled
13	orientations	s in the direction of the circumferential travel of the two sets of the two
14	paddle blad	les;

15	the channel-funneled orientations include channel-funnel inlets having
16	funnel-inlet areas intermediate leading edges of the paddle blades of the two sets of
17	the paddle blades in the direction of the circumferential travel thereof;
18	the channel-funneled orientations include channel-funnel outlets having
19	funnel-outlet areas intermediate trailing edges of the paddle blades of the two sets
20	of the two paddle blades;
21	the funnel-inlet areas are predeterminedly larger than the funnel-outlet
22	areas; and
23	the channel-funneled orientations have compression ratios that are
24	defined by ratios of the channel-funnel inlet areas to the channel-funnel outlet areas
25	of the two sets of the two paddle blades.
11 X	
1	31. The compression-paddle mixer of claim 30 wherein:
2	the compression paddle has a paddle radius defined by a longest
3	extremity of the compression paddle from a center of the paddle rod;
4	the compression paddle fits rotatably in a mix container in which
5	radially outside extremities of the paddle blades rotate in sliding proximity to an
6	inside periphery of a cylindrical portion of the mix container;
7	the cylindrical portion of the mix container has a length that is
8	predeterminedly proximate a length of the paddle blades of the compression paddle;
9	the mix container includes a container bottom that is flat and orthogonal
10	to an axis of the paddle rod; and
11	the paddle blades have blade bottoms that travel circumferentially in
12	predetermined proximity to the container bottom.

1 32. The compression-paddle mixer of claim 31 wherein:
2 the container bottom includes a valved opening; and
3 the container bottom has a bottom exterior that is raised
4 predeterminedly above a container-support surface for allowing exit of the mix from
5 the mix container predeterminedly.

INVENTOR

JAMES CLIFFORD FINK, JR.

Date: 10 - 4 - 01