Stochastic Processes: Homework 6

Martín Prado

June 4, 2024 Universidad de los Andes — Bogotá Colombia

Exercise 2

Consider two independent Poisson processes with different parameters

- (a) The sum of these processes, Which type of process is? Prove it.
- (b) The difference between these processes, Which type of process is? Prove it.

Solution Part (a)

The first process can be described by the random variable $N_1(t) \sim \text{Pois}(\lambda_1 t)$ and the second by $N_2(t) \sim \text{Pois}(\lambda_2 t)$. As we proved in previous assignments, the sum of 2 Poisson random variables is a Poisson random variable with the sum of the parameters. Thus,

$$N_1(t) + N_2(t) \sim \text{Pois}(\lambda_1 t + \lambda_2 t) = \text{Pois}((\lambda_1 + \lambda_2)t).$$

Therefore, it is a Poisson process with parameter $\lambda_1 + \lambda_2$.

Solution Part (b)

The difference between 2 Poisson random variables has the Skellam distribution:

$$\mathbf{P}\{N_{1}(t) - N_{2}(t) = n\} = \sum_{k=0}^{n} \mathbf{P}\{N_{1}(t) = k\} \mathbf{P}\{N_{2}(t) = n - k\}$$

$$= \sum_{k=0}^{n} \left(\frac{e^{-\lambda_{1}t}\lambda_{1}^{k}}{k!}\right) \left(\frac{e^{-\lambda_{2}t}\lambda_{2}^{n-k}}{(n-k)!}\right)$$

$$= e^{-(\lambda_{1}+\lambda_{2})t} \sum_{k=0}^{n} \frac{\lambda_{1}^{k}\lambda_{2}^{n-k}}{k!(n-k)!}$$

$$= e^{-(\lambda_{1}+\lambda_{2})t} \left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{n/2} I_{|n|}(2\sqrt{\lambda_{1}\lambda_{2}})$$

Where $I_{|n|}(x)$ is the modified Bessel function of the first kind.

Exercise 3

Show the Law of Large Numbers and the Central Limit Theorem for the Poisson Process

Solution

The Law of Large numbers states that for a sequence of independent random variables $N_i \sim \text{Pois}(\lambda)$,

$$\frac{1}{n}\sum_{i=1}^{n}N_{i}\to\lambda$$
 as $n\to\infty$. a.e.

As a matter of fact, $\sum_{i=1}^{n} N_i \sim \text{Pois}(\lambda n)$. Therefore, for the Poisson process $N(t) \sim \text{Pois}(\lambda t)$,

$$\frac{N(n)}{n} \to \lambda$$
 as $n \to \infty$. a.e.

Now, for every rational t=p/q, if we re-parametrize $N(p/q)=N'(p)\sim \operatorname{Pois}(p\frac{\lambda}{q})$ and denote $N'(p)=\sum_{i=1}^p N_i'$ where $N_i'\sim\operatorname{Pois}(\lambda/q)$ we will obtain

$$\frac{N(p/q)}{p/q} = q \frac{1}{p} \sum_{i=1}^{p} N_i' \to q \frac{\lambda}{q} = \lambda,$$

For every $q \in \mathbb{N}$ \mathbb{N}/q , the sequence $\frac{N(p/q)}{p/q}$ converges almost everywhere to λ . Therefore, we can assert that for every increasing sequence of rational numbers $(t_n)_{n \in \mathbb{N}}$, the sequence $\frac{t_n}{t_n}$ converges almost everywhere to λ .

Finally, $N(t)/t \to \lambda$ a.e. in a dense subset (rational t), thus, N(t)/t converges almost everywhere to λ .

Let
$$N(t) \sim \text{Pois}(\lambda t)$$
, define $\overline{N}(t) = \frac{N(t) - \lambda t}{\sqrt{\lambda t}}$

$$M_{\overline{N}(t)}(x) = \mathbf{E} \left[\exp\left(x \frac{N(t) - \lambda t}{\sqrt{\lambda t}}\right) \right]$$

$$= \exp(-x\sqrt{\lambda t}) \cdot \mathbf{E} \left[\exp\left(x \frac{N(t)}{\sqrt{\lambda t}}\right) \right]$$

$$= \exp(-x\sqrt{\lambda t}) \cdot M_{N(t)}(x/\sqrt{\lambda t})$$

$$= \exp(-x\sqrt{\lambda t}) \cdot \exp\left(\lambda t (e^{x/\sqrt{\lambda t}} - 1)\right)$$

$$= \exp\left[-x\sqrt{\lambda t} + \lambda t \left(\sum_{k=1}^{\infty} \frac{x^k}{k!(\lambda t)^{k/2}}\right) \right]$$

$$= \exp\left[-x\sqrt{\lambda t} + x\sqrt{\lambda t} + x^2/2 + o(t^{-1/2})\right]$$

$$\stackrel{t \to \infty}{\longrightarrow} e^{x^2/2} = M_Z(x)$$

Where $Z \sim N(0,1)$. Therefore, the normalized process converges to the standard normal distribution when the time goes to infinity.

Exercise 4

If π_t is the random variable associated with the number of renovations that occur at a given time t. Then, its inverse function, takes as input the given number of renovations and returns the time they take. Since π_t is the counting variable for exponential renovation times, then

$$\mu_t = \sum_{i=1}^{\pi_t} X_i,$$

where $X_i \sim \text{Exp}(\lambda)$, and thus, $\mu_t \sim \text{Gamma}(\pi_t, \lambda)$. This is a compound Poisson process.

Exercise 5

For a random variable $X \sim \text{Geo}(p)$ with the geometric distribution

$$\mathbf{P}\{X \ge n + m \mid X \ge m\} = \frac{\mathbf{P}\{X \ge n + m \land X \ge m\}}{\mathbf{P}\{X \ge m\}}$$
$$= \frac{\mathbf{P}\{X \ge n + m\}}{\mathbf{P}\{X \ge m\}}$$
$$= \frac{(1 - p)^{n + m}}{(1 - p)^m}$$
$$= (1 - p)^n = \mathbf{P}\{X \ge n\}$$

This proves that the process is memoryless. Now, we define a sequence of i.i.d. random variables $(X_i)_{i\in\mathbb{N}} \sim \text{Geo}(p)$. Also, denote the k-th renovation time as $T_k = \sum_{i=1}^k X_i$, which has a negative binomial distribution since it's the sum of geometric random variables.

$$T_k \sim \text{BinNeg}(k, p)$$
.

For the trial n, we define the counting variable N(n) as follows,

$$N(t) = \max\{n \in \mathbb{N} : T_n \le t\}$$

This variable counts the number of renovations that occur in n-trials. Thus, it has the binomial distribution

$$N(t) \sim \text{Bin}(n, p)$$