Эконометрика. Домашняя работа №8 Аверьянов Тимофей ПМ 3-1

Задание №1. Протестировать для двух остальных оригинальных фрагментов модели Самуэльсона-Хикса.

Решение:

Для решения поставленной задачи необходимо выполнить несколько шагов:

Шаг 1. Составление уравнений наблюдений в рамках тестируемой модели:

$$\begin{cases} I_{2003} = b_0 + b_1 \cdot (Y_{2002} - Y_{2001}) + v_{2003} \\ \dots \\ I_{2018} = b_0 + b_1 \cdot (Y_{2017} - Y_{2016}) + v_{2018} \end{cases}$$

Шаг 2. Вычисляются абсолютные значения объясняющей перменной и уравнения наблюдений упорядычеваются по возрастанию велечины

$$Z_t = |Y_{t-1} - Y_{t-2}|, t = 2003, \dots, 2018$$
.

Шаг 3. В упорядоченной системе уравнений наблюдений отмечаются n_1 первых уравненений и n_1 последних уравнений. Оптимальное значение: $n_1=\frac{1}{3}n$ (от общего кол-ва уравнений).

Шаг 4. По первым n_1 уравнений вычисляется:

$$\begin{cases} ESS_1 = \sum \widetilde{u}_i^{(1)^2} \\ ESS_2 = \sum \widetilde{u}_i^{(2)^2} \end{cases}$$

По велечинам вычисляется величина:

$$GQ = \frac{ESS_1}{ESS_2}$$
 — статистика Гольфилта-Кванта

Шаг 5. Проверяется справедливость двух неравенств:

$$\begin{cases} GQ \leq F_{\mathsf{крит}} \\ \frac{1}{GO} \leq F_{\mathsf{крит}} \end{cases}$$

Выполним все эти шаги получим следующее решение:

t	It	triangleYt-1		z = triangleYt-1			
2016	7700.652	-74.13678663		74.13678663			
2014	8947.736	323.0933428		323.0933428			
2017	8269.508	662.6057386		662.6057386			
2013	9525.048	767.2041115		767.2041115			
2015	7848.355	-1118.516417		1118.516417			
2012	10084.86	1515.7		1515.7			
2011	9656.3	1695.6		1695.6			
2010	7982.2	1713.6		1713.6			
2003	5396.9	1992.6		1992.6			
2005	6631.1	2002.7		2002.7			
2008	10526.1	2058.1		2058.1			
2004	6056.2	2102.9		2102.9			
2006	7806.4	2724.1		2724.1			
2007	9526.5	3084.1		3084.1			
2009	6209.8	-3228.2		3228.2			
	b1	b0					
	0.683572	8381.66557					
	0.427034	295.1554554					
	0.460662	651.2572304					
	2.562379	3	m ₁				
	1086797	1272407.94					
		ESS ₁					
				GQ	0.112463		
					0.112400		
	b1	b0		1/GQ	8.891842		
	b1 0.404943	b0 7479.056258					
				1/GQ a	8.891842		
	0.404943	7479.056258		1/GQ	8.891842 0.05		
	0.404943 0.374269	7479.056258 1004.430148		1/GQ a	8.891842 0.05		
	0.404943 0.374269 0.280685	7479.056258 1004.430148 1941.996403		1/GQ a	8.891842 0.05		
	0.404943 0.374269 0.280685 1.170632	7479.056258 1004.430148 1941.996403 3		1/GQ a	8.891842 0.05		
	0.404943 0.374269 0.280685 1.170632	7479.056258 1004.430148 1941.996403 3 11314050.09		1/GQ a	8.891842 0.05		

Таким образом проверим условие шага 5:

$$\begin{cases} GQ \leq F_{\text{крит}} \\ \frac{1}{GQ} \leq F_{\text{крит}} \end{cases}$$

$$H_0: Var(v_1) = \dots = Var(v_n) = \sigma_v^2 \tag{1}$$

Получается, что гипотеза или предпосылка (1) принимается, как не противоречащая реальным данным. И случайные возмущения формулируются, как *гомоскедастичные*.

Аналогчино поступим и для государственных расходов, получим следующее решение:

t	Gt	Gt-1		Z = Gt_1		
2003	6540.2	6390		6390		
2004	6679	6540.2		6540.2		
2005	6775.3	6679		6679		
2006	6931.9	6775.3		6775.3		
2007	7120.7	6931.9		6931.9		
2008	7359.9	7120.7		7120.7		
2016	7238.265	7170.732664		7170.7327		
2011	7306.7	7205.7		7205.7		
2017	7264.272	7238.26519		7238.2652		
2012	7498.7	7306.7		7306.7		
2010	7205.7	7314.5		7314.5		
2009	7314.5	7359.9		7359.9		
2015	7170.733	7401.995126		7401.9951		
2013	7562.671	7498.7		7498.7		
2014	7401.995	7562.671176		7562.6712		
		g	g0			
		1.021967286	0			
		0.002136581	#Н/Д			
		0.999982517	31.84661			
		228789.1459	4	m ₁		
		232039496.4	4056.827			
			ESS ₁			
					GQ	0.079691
		g	g0		1/GQ	12.54846
		0.987033683	0		а	0.05
		0.00679196	#Н/Д		F _{крит}	6.388233
		0.999810633	112.8128			
		21119.01831	4			
		268776049.9	50906.92			
			ESS ₂			

Таким образом проверим условие шага 5:

$$\begin{cases} GQ \leq F_{\text{крит}} \\ \frac{1}{GQ} \leq F_{\text{крит}} \end{cases}$$

$$H_0: Var(w_1) = \dots = Var(w_n) = \sigma_w^2$$
 (2)

Получается, что гипотеза или предпосылка (2) не принимается, как противоречащая реальным данным. И случайные возмущения формулируются, как *ветероскедастичные*.