Nonlinear System Theory Homework 8

Due date: 5/23/2023

Figure 1: Feedback connection.

- 1. Consider the feedback connection in Figure 1. Use the circle criterion to find a sector $[\alpha, \beta]$ as large as possible such that for each of the following G(s), if $\psi \in [\alpha, \beta]$, then the feedback system is absolutely stable. You can use Matlab to draw the Nyquist plot of $G(j\omega)$.
 - (a) $G(s) = \frac{s}{s^2 s + 1}$
 - (b) $G(s) = \frac{1}{s^2 + s + 1}$
 - (c) $G(s) = \frac{s+1}{(s+2)^2(s-1)}$
- 2. Repeat Problem 1 using the Popov criterion.

Hint: For unstable G(s), you need to apply the loop transformation to convert G(s) to a stable system while maintaining an equivalent feedback loop.

Remark: You can compare the results of Problem 1 with Problem 2, so the differences between the circle criterion and the Popov criterion will be clear.

3. Consider the following nonlinear system

$$\dot{e}_1(t) = e_2(t)
\dot{e}_2(t) = -\tilde{a}(t)\phi(t) - k_1e_1(t) - k_2e_2(t)
\dot{\tilde{a}}(t) = \gamma e_2(t)\phi(t)$$

where k_1, k_2, γ are positive constants, and $\phi(t)$ is a bounded function of time.

- (a) Show that $(e_1, e_2, \tilde{a}) = (0, 0, 0)$ is a globally stable equilibrium point.
- (b) Show that $e_2 \to 0$ as $t \to \infty$.