Extracting the Evolutionary Backbone of a Scientific Domain: The Semantic Main Path Network Approach based on Citation Context Analysis

Supplementary Materials

Xiaorui Jiang¹, Junjun Liu²

¹ Coventry University, Coventry, UK, xiaorui.jiang@coventry.ac.uk

² ych1776@163.com

A. No Single Model Beats All

Table S1-S3 show the per-class performances of some selected models (together with the seeds used to train the models). From Table S1, we can see that with the 11-class scheme, the best performing model (variant) 8 (seed = 47353) only won on the "Future" class, while its performance on the "Basis" (="Extends") were significantly poorer than the second best model, i.e. model 4 (47353). By comparing Table S1 with Table S2, the best performance for "Similar" was achieved by model 9 (32491) with the 11-class scheme. However, the best performances for "Background" (="Neutral") was achieved with the 7-class scheme by model 8 (47353) and model 2 (5171). Note that the "Background" class in the 7-class scheme absorbed a small number of "Weakness" instances. As "Weakness" is less relevant to the flow of ideas of scientific innovation, this result is promising for screening out incidental citations (Jochim and Schütze, 2012). While "Uses" (="Usage") received the best performance with the 7-class scheme (model 2, seed = 5171), the best "Extends" (= "Basis") model was model 4 (5171). Similarly, Table S3 shows that model 11 (25603 and 47353) performed the best on "Motivation".

Table S1. Per-Class Performances of Selected Models with the 11-Class Scheme.

ID (seed)		2 (25603)		3 (32491)	4	4 (47353)	;	8 (47353)		9 (32491)	1	1 (47353	3)
	P	R	F1															
Macro Avg	65.03	64.56	64.26	65.70	61.14	62.52	66.55	64.90	65.27	69.05	63.05	65.39	67.76	64.60	65.37	66.45	63.62	64.62
Future	73.68	82.35	77.78	78.57	64.71	70.97	81.25	76.47	78.79	92.89	76.47	83.87	86.67	76.47	81.25	86.67	76.47	81.25
Neutral	76.04	74.74	75.39	76.00	77.82	76.90	75.17	77.47	76.30	69.64	79.86	74.40	75.00	75.77	75.38	75.68	76.45	76.06
Similar	65.79	59.52	62.50	57.14	66.67	61.54	59.57	66.67	62.92	60.98	59.52	60.24	62.79	64.29	63.53	56.82	59.52	58.14
Motivation	58.02	81.03	67.63	66.13	70.69	68.33	72.55	63.79	67.89	62.71	63.79	63.25	54.32	75.86	63.31	54.41	63.79	58.73
Usage	80.45	70.86	75.35	69.88	76.82	73.19	78.17	73.51	75.77	77.86	72.19	74.91	77.04	68.87	72.73	72.37	72.85	72.61
Basis	62.92	50.00	55.74	62.50	44.12	51.72	74.07	58.82	65.57	71.43	44.12	54.55	54.29	55.88	55.07	63.33	55.88	59.38

Table S2. Per-Class Performances of Selected Models with the 7-Class Scheme.

ID (seed)		2 (5171))		3 (5171)			4 (47353)		8 (47353)		9 (25603)		11 (5171)
	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F
Macro Avg	69.73	70.15	69.83	70.62	70.07	70.17	69.31	70.31	69.73	71.60	69.52	70.29	70.23	69.81	69.76	74.48	68.30	70.93
Future	75.00	70.59	72.73	90.00	69.23	78.26	73.68	82.35	77.78	80.00	70.59	75.00	77.78	82.35	80.00	80.00	70.59	75.00
Background	82.17	82.87	82.52	80.29	83.90	82.05	80.22	82.02	81.11	79.53	86.24	82.75	78.44	81.74	80.06	77.15	88.20	82.31
Similar	62.07	58.06	60.00	63.16	58.06	60.50	59.68	59.68	59.68	59.09	62.90	60.94	66.04	56.45	60.87	64.29	58.06	61.02
Motivation	61.19	70.69	65.60	64.10	56.82	60.24	63.33	65.52	64.41	70.37	65.52	67.86	57.75	70.69	63.57	66.67	68.97	67.80
Uses	79.43	74.17	76.71	75.00	76.32	75.65	79.85	70.86	75.09	83.90	65.56	73.61	82.03	69.54	75.27	83.74	68.21	75.18
Extends	60.53	67.65	63.89	59.09	52.00	55.32	64.71	64.71	64.71	57.89	64.71	61.11	64.52	58.82	61.54	72.50	52.94	61.02

Table S3. Per-Class Performances of Selected Models with the 6-Class (Jurgens 2016) Scheme.

ID (seed)	2	2 (47353)		4 (5171)		:	8 (47353)	Ģ	9 (13249)	1	1 (25603	3)	1	1 (47353	3)
	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F
Macro Avg	73.03	69.17	70.78	75.03	72.29	73.22	72.50	70.07	71.17	74.52	72.20	73.00	75.14	72.16	73.30	75.38	72.97	73.99
Future	76.47	76.47	76.47	81.25	76.47	78.79	81.25	76.47	78.79	77.78	82.35	80.00	82.35	82.35	82.35	81.25	76.47	78.79
Background	70.29	82.10	76.77	78.22	78.70	78.46	77.54	77.78	77.66	76.07	76.54	76.31	75.00	80.56	77.68	75.37	79.32	77.29
Motivation	71.43	60.43	65.42	59.15	72.41	65.12	70.91	67.24	69.03	66.10	67.24	65.52	69.84	75.86	72.73	74.55	70.69	72.57
Uses	83.19	65.56	73.33	82.03	69.54	75.27	76.09	69.54	72.66	72.05	76.82	74.36	77.69	66.89	71.89	81.97	66.23	73.26
Extends	62.50	58.82	60.61	80.77	61.76	70.00	60.00	52.94	56.25	79.17	55.88	65.52	72.00	52.94	61.02	67.65	67.65	67.65

B. Experimental Setup

We performed two case studies to demonstrate the effectiveness of semantic main path network analysis. The underlying dataset was the 2015 version of ACL Anthology Network¹ (AAN; Radev et al., 2013) about computational linguistics papers. The subset between 1985 and 2015 was used because the PDF qualities of papers that are too old are very poor, causing too many parsing errors. The papers were crawled from ACL Anthology², the repository hosting papers published in venues sponsored by the Association for Computational Linguistics (ACL). We parsed the papers' PDF documents using by Allen AI's s2orc-doc2json tool³ and extracted citation contexts. In-text citations were extracted by our own in-house high-precision regular expression-based citation string parser and consecutive citation strings were merged into CITSEG for citation function classification.

The first area of analysis was natural language parsing (parser). Core papers were fetched from AAN by matching the following keywords in paper titles: "parser", "parsing", "parse", "parsed". Then, we added the papers that both cite and are cited by the core papers. The parser citation network, named AANPar, was derived from this set of papers. The second area was automatic document summarization (summariser). The semantic citation network, named AANSum, was built in a similar way using the following keywords: "summarization", "summarizer", "summarize", "summarized", "summarizing", "summary" and "summaries". For each area, four semantic citation networks were induced based on adding/deleting in-text citations of certain functions. Their names were ended with _add_Ext_Mot, _plus_add_Use, _plus_add_Sim, and del Bkg Fut The start year was fixed to 1985 and the end years were [1995, 2000, 2005, 2010, 2015].

Table S4 summarises the statistics of the resultant semantic citation networks (CITNET) and their largest connected components (CC). We could see when citation networks became larger, the largest CCs became better surrogates of the original citation networks because their sizes got very close.

¹ https://aan.how/

² https://aclanthology.org/

³ https://github.com/allenai/s2orc-doc2json

⁴ We expected the papers whose title covered "summarisation", "summariser", "summarised" to be induced in the expansion stage.

Table S4. Statistics of Citation Networks and Semantic Citation Networks.

Parsing			AANP	ar			add_Ext_Mot	plus_add_Use	plus_add_Sim	del_Bkg_Fut
End Year		V/E	#SCC		CC Si max	ze avg	-V/E	V/E	V/E	V/E
~1995	CITNET	402/765	18	2	4	2.11	105/33	145/64	167/96	334/611
	CC1	334/757					7/6	22/21	38/39	314/0605
~2000	CITNET	707/1988	24	2	4	2.08	272/142	354/286	391/366	619/1527
	CC1	619/1984					48/53	181/233	229/308	588/1519
~2005	CITNET	1091/4188	40	2	7	2.05	548/487	671/952	717/1142	984/3131
	CC1	984/4182					297/405	487/895	551/1085	941/3122
~2010	CITNET	2017/11210	48	2	20	2.58	1278/1780	1488/3578	1546/4155	1882/7961
	CC1	1882/11204					954/1680	1273/3515	1367/4099	1810/7949
~2015	CITNET	2823/19212	58	2	20	2.66	1898/3212	2205/6618	2279/7583	2629/13413
	CC1	2629/19208					1535/3122	1990/6558	2095/7530	2552/13401
Summari	sation		AANS	um			add_Ext_Mot	plus_add_Use	plus_add_Sim	del_Bkg_Fut
End Year	•	V/E	#SCC		CC Si max	ze avg	-V/E	V/E	V/E	V/E
-2000	CITNET	89/85	2	2	2	2	24/11	31/13	32/13	46/57
	CC1	46/84					6/5	6/5	6/5	40/50
-2005	CITNET	222/449	5	2	2	2	100/69	127/104	132/116	166/282
	CC1	166/449					29/30	74/92	78/103	146/277
-2010	CITNET	449/1170	6	2	2	2	249/215	305/359	317/405	372/706
	CC1	372/1170					169/203	231/350	249/399	324/698
-2015	CITNET	640/2113	7	2	2	2	376/383	460/678	476/769	548/1280
	CC1	548/2112					279/368	377/670	397/761	497/1275
Machine	Translation		AANM	ſΤ			add_Ext_Mot	plus_add_Use	plus_add_Sim	del_Bkg_Fut
End Year	•	V/E	#SCC		CC Si max	ze avg	-V/E	V/E	V/E	V/E
-1995	CITNET	256/446	9	2	2	2	53/23	80/30	90/38	180/354
	CC	180/437					11/13	11/13	13/16	169/352
-2000	CITNET	450/1086	9	2	2	2	140/90	198/153	213/182	341/819
	CC	341/1077					44/63	80/121	96/150	317/808
-2005	CITNET	789/2850	9	2	2	2	363/321	456/656	475/760	650/2044
	CC	650/2838					186/264	322/619	343/722	616/2031
-2010	CITNET	1742/10528	9	2	2	2	1068/1518	1273/3700	1298/4166	1541/7083
	CC	1541/10513					815/1454	1102/3657	1136/4122	1484/7072
-2015	CITNET	2842/21390	9	2	2	2	1943/3068	2292/8048	2322/8979	2608/14273
	CC1	2608/21381					1575/2987	2081/7996	2125/8928	2521/14262

Note: V/E – number of nodes/number of edges; CC1 – the largest connected component; #SCC – number of nontrivial strongly connected components (size > 1)

C. Main Path Papers for Case Study 1: Natural Language Parsing

This section contains the tables of more complete lists of main path papers extracted from the original semantics-agnostic citation network and the four types of semantic citation networks built based on citation function classification results, with a focus on highlighting their differences.

Table S5. Main Path Network Papers of the Parser Network ${\tt AANPar}$

ACLID	Title
Branch 1	
P85-1018	Using Restriction To Extend Parsing Algorithms For Complex-Feature-Based Formalisms
C86-1045	Categorial Unification Grammars
P87-1012	A Lazy Way To Chart-Parse With Categorial Grammars
C90-2030	Normal Form Theorem Proving For The Lambek Calculus
E91-1035	Proof Figures And Structural Operators For Categorial Grammar
P91-1011	Efficient Incremental Processing With Categorial Grammar
C92-1024	Chart Parsing Lambek Grammars: Modal Extensions And Incrementality
Branch 2	, , , , , , , , , , , , , , , , , , ,
A88-1030	Finding Clauses In Unrestricted Text By Finitary And Stochastic Methods
A88-1019	A Stochastic Parts Program And Noun Phrase Parser For Unrestricted Text
P89-1010	Word Association Norms Mutual Information And Lexicography
H92-1026	Towards History-Based Grammars: Using Richer Models For Probabilistic Parsing
H94-1052	Decision Tree Parsing Using A Hidden Derivation Model
113 . 1002	Excerpt: In this paper, we present a method for contructing a model for the conditional distribution of trees given a sentence without the need to define a grammar.
P92-1024	Development And Evaluation Of A Broad-Coverage Probabilistic Grammar Of English-Language Computer Manuals
E93-1040	Parsing The Wall Street Journal With The Inside-Outside Algorithm
	Excerpt: We report grammar inference experiments on partially parsed sentences taken from the Wall Street Journal corpus using the inside-
1102 1047	outside algorithm for stochastic context-free grammars.
H93-1047	Automatic Grammar Induction And Parsing Free Text: A Transformation-Based Approach
Branch 3	<u>-</u>
J93-2004	Building A Large Annotated Corpus Of English: The Penn Treebank
P93-1035	Automatic Grammar Induction And Parsing Free Text: A Transformation-Based Approach
1104 1020	Excerpt: All of the experiments presented below were done using the <u>Penn Treeban</u> k annotated corpus (MSM93). (MSM93: J93-2004)
H94-1020 W95-1017	The <u>Penn Treebank</u> : Annotating Predicate Argument Structure Text Chunking Using Transformation-Based Learning
W 93-101/	Text Chunking Osing Transformation-Dased Learning
Branch 4	
W96-0213	A Maximum Entropy Model For Part-Of-Speech Tagging
P96-1025	New Statistical Parser Based On Bigram Lexical Dependencies
C96-1058	Three New Probabilistic Models For <i>Dependency Parsing</i> : An Exploration
P97-1003	Three Generative Lexicalized Models For Statistical Parsing
W98-1118	Exploiting Diverse Knowledge Sources Via Maximum Entropy In Named Entity Recognition
A00-2018 C00-1011	A Maximum-Entropy-Inspired Parser Parsing With The Shortest Derivation (Data-Oriented Parsing, DOP by Rens Bod)
P00-1011	An Improved Parser For Data-Oriented Lexical-Functional Analysis (Data-Oriented Parsing , DOP by Rens Bod)
P00-1009 P02-1034	New Ranking Algorithms For Parsing And Tagging: Kernels Over Discrete Structures And The Voted Perceptron
W02-1001	Discriminative Training Methods For Hidden Markov Models: Theory And Experiments With Perceptron Algorithms
N03-1028	Shallow Parsing With Conditional Random Fields
P04-1014	Parsing The WSJ Using CCG And Log-Linear Models
W04-3201	Max-Margin Parsing
P05-1012	Online Large-Margin Training Of Dependency Parsers
W05-1506	Better K-Best Parsing

Table S5. Main Path Network Papers of the Parser Network AANPar (contd.)

ACLID	Title
Branch 5	
W05-1516	Strictly Lexical Dependency Parsing
H05-1066	Non-Projective Dependency Parsing Using Spanning Tree Algorithms
P05-1067	Machine Translation Using Probabilistic Synchronous Dependency Insertion Grammars
W06-2920	CoNLL-X Shared Task On Multilingual Dependency Parsing
W06-2932	Multilingual Dependency Analysis With A Two-Stage Discriminative Parser
D07-1013	Characterizing the Errors of Data-Driven Dependency Parsing Models
D07-1013	The CoNLL 2007 Shared Task on Dependency Parsing
D07-1101	Experiments with a Higher-Order Projective Dependency Parser
D07-1101 D07-1014	Probabilistic Models of Nonprojective Dependency Trees
D07-1014 D07-1102	Log-Linear Models of Non-Projective Trees \$k\$-best MST Parsing and Tree-Ranking
W07-2220	Data-Driven Dependency Parsing across Languages and Domains: Perspectives from the CoNLL-2007 Shared task
W07-2220	Data-Driven Dependency 1 arsing across Languages and Domains. I erspectives from the Covell-2007 Shared task
Branch 6	
W10-1401	Statistical Parsing of Morphologically Rich Languages (SPMRL) What How and Whither
W10-1408	Handling Unknown Words in Statistical Latent-Variable Parsing Models for Arabic English and French
W10-1410	Lemmatization and Lexicalized Statistical Parsing of Morphologically-Rich Languages: the Case of French
5 1 5	
Branch 7	
P10-1040	Word Representations: A Simple and General Method for Semi-Supervised Learning
N12-1052	Cross-lingual Word Clusters for Direct Transfer of Linguistic Structure
D12-1001	Syntactic Transfer Using a Bilingual Lexicon
N13-1126	Target Language Adaptation of Discriminative Transfer Parsers
W14-1614	Treebank Translation for Cross-Lingual Parser Induction
C14-1175	Rediscovering Annotation Projection for Cross-Lingual Parser Induction

ACLID	Title
Branch 1	
P85-1018	Using Restriction To Extend Parsing Algorithms For Complex-Feature-Based Formalisms
J89-4001	A Parsing Algorithm For Unification Grammar
E91-1031	Prediction In Chart Parsing Algorithms For Categorial Unification Grammar
E89-1032	An Algorithm For Generation In Unification Categorial Grammar
P85-1021	Parsing Head-Driven Phrase Structure Grammar
Branch 2	
P91-1014	Polynomial Time And Space Shift-Reduce Parsing Of Arbitrary Context-Free Grammars
E93-1036	Generalized Left-Corner Parsing
P94-1017	An Optimal Tabular Parsing Algorithm
P96-1032	Efficient Tabular L R Parsing
A00-2036	Left-To-Right Parsing And Bilexical Context-Free Grammars
Branch 3	
H89-2014	Augmenting A Hidden Markov Model For Phrase-Dependent Word Tagging
P90-1031	Parsing The LOB Corpus
J93-2006	Coping With Ambiguity And Unknown Words Through Probabilistic Models
Branch 4	
W96-0213	A Maximum Entropy Model for Part-of-speech Tagging
P02-1034	New Ranking Algorithms For Parsing And Tagging: Kernels Over Discrete Structures And The Voted Perceptron
P02-1062	Ranking Algorithms For Named Entity Extraction: Boosting And The Voted Perceptron
J05-1003	Discriminative Reranking For Natural Language Parsing
H05-1100	Morphology And Reranking For The Statistical Parsing Of Spanish
W97-0302	Global Thresholding And Multiple-Pass Parsing
P05-1022	Coarse-To-Fine N-Best Parsing And MaxEnt Discriminative Reranking
W05-1506	Better K-Best Parsing
W05-1505	Corrective Modeling for Non-Projective Dependency Parsing
	Explanation: The technique proposed in this paper is similar to that of recent parser reranking approaches (Collins, 2000; Charniak and
	Johnson, 2005); (an ICML conference paper extended to J05-1003 with the same title; P05-1022)
Branch 5	
C92-2065	Probabilistic Tree-Adjoining Grammar As A Framework For Statistical Natural Language Processing
C92-2066	Stochastic Lexicalized Tree-Adjoining Grammars
P97-1003	Three Generative Lexicalized Models For Statistical Parsing
A00-2018	A Maximum-Entropy-Inspired Parser
W00-1201	Two Statistical Parsing Models Applied To The <i>Chinese Treebank</i>
C02-1126	Recovering Latent Information in Treebanks
J04-4004	Intricacies Of Collins Parsing Model (about P97-1003)
Branch 6	(By Rens Bod on Data-Oriented Parsing, DOP)
C92-3126	A Computational Model Of Language Performance: <i>Data Oriented Parsing</i>
P97-1021	A DOP Model For Semantic Interpretation
C00-1011	Parsing With The Shortest Derivation
	Excerpt: To investigate this question we created a new STSG-DOP model which uses this bias as a feature. This non-probabilistic DOP
P01-1010	model parses each sentence by What Is The Minimal Set Of Fragments That Achieves Maying Parse Acquired?
101-1010	What Is The Minimal Set Of Fragments That Achieves Maximal Parse Accuracy?

Table S6. Main Path Network Papers the Parser Network AANPar_add_Ext_Mot (contd.)

ACLID	Title
Branch 7	
W04-0307	A Statistical Constraint Dependency Grammar (CDG) Parser
H05-1066	Non-Projective Dependency Parsing Using Spanning Tree Algorithms
W06-2932	Multilingual Dependency Analysis With A Two-Stage Discriminative Parser
D07-1013	Characterizing the Errors of Data-Driven Dependency Parsing Models
D07-1096	The CoNLL 2007 Shared Task for Dependency Parsing
D07-1112	Frustratingly Hard Domain Adaptation for Dependency Parsing
P10-1002	Dependency Parsing and Projection Based on Word-Pair Classification
D08-1059	A Tale of Two Parsers: Investigating and Combining Graph-based and Transition-based Dependency Parsing
P07-1050	K-best Spanning Tree Parsing
P11-2033	Transition-based Dependency Parsing with Rich Non-local Features
D12-1133	Transition-Based System for Joint Part-of-Speech Tagging and Labeled Non-Projective Dependency Parsing
C14-1078	Feature Embedding for Dependency Parsing
C14-1051	Jointly or Separately: Which is Better for Parsing Heterogeneous Dependencies ?
P14-2107	Enforcing Structural Diversity in Cube-pruned Dependency Parsing
Branch 8	(A "wrong" branch of machine translation using dependency syntax)
P01-1067	A Syntax-Based Statistical Translation Model
P02-1039	A Decoder For Syntax-Based Statistical MT
P03-1011	Loosely Tree-Based Alignment For Machine Translation
P05-1067	Machine Translation Using Probabilistic Synchronous Dependency Insertion Grammars
P05-1012	Online Large-Margin Training Of Dependency Parsers

ACLIB	
ACLID	Title
Branch 1	
A88-1019	A Stochastic Parts Program And Noun Phrase Parser For Unrestricted Text
P89-1010	Word Association Norms Mutual Information And Lexicography
J93-1007	Retrieving Collocations From Text: Xtract
P93-1024	Distributional Clustering Of English Words
H91-1046	A Trellis-Based Algorithm For Estimating The Parameters Of Hidden Stochastic Context-Free Grammar
J93-1002	Generalized Probabilistic LR Parsing Of Natural Language (Corpora) With Unification-Based Grammars
J90-1003	Word Association Norms Mutual Information And Lexicography
P90-1034	Noun Classification From Predicate-Argument Structures
C90-3010	Acquisition Of Lexical Information From A Large Textual Italian Corpus
J93-2005 J93-1001	Lexical Semantic Techniques For Corpus Analysis Introduction To The Special Issue On Computational Linguistics Using Large Corpus
H89-2014	Introduction To The Special Issue On Computational Linguistics Using Large Corpora Augmenting A Hidden Markov Model For Phrase-Dependent Word Tagging
P90-1031	Parsing The LOB Corpus
J93-2006	Coping With Ambiguity And Unknown Words Through Probabilistic Models
	Coping With Amonguity And Olikhown Words Through Probabilistic Models
Branch 2	
H93-1047 W95-0107	Automatic Grammar Induction and Parsing Free Text: A <i>Transformation-Based</i> Approach
W93-0107 P98-1010	Text Chunking using Transformation-Based Learning A Marrow Posed America Shellow Network Language Petterns
W99-0621	A Memory-Based Approach to Learning Shallow Natural Language Patterns
W 99-0021	A Learning Approach to Shallow Parsing Wikipedia: Shallow parsing (also chunking or light parsing) is an analysis of a sentence which first identifies constituent parts of sentences
	(nouns, verbs, adjectives, etc.) and then links them to higher order units that have discrete grammatical meanings (noun groups or phrases, verb
	groups, etc.).
W00-0721	Shallow Parsing by Inferencing with Classifiers
Branch 3	(multiple intelligent sources of statistical parsing techniques)
E85-1024	A Probabilistic Parser
J94-2001	Tagging English Text With A Probabilistic Model
J93-2004	Building A Large Annotated Corpus Of English: The Penn <u>Treebank</u>
W96-0213	A Maximum Entropy Model for Part-of-speech Tagging
C02-1126	Recovering Latent Information In <u>Treebanks</u>
P00-1058	Statistical Parsing With An Automatically-Extracted Tree Adjoining Grammar
W00-1201	Two Statistical Parsing Models Applied To The Chinese Treebank
J04-4004	Intricacies Of Collins Parsing Model Transformation Record Exper Driven Learning And Natural Language Processings A Case Study In Part Of Speech
J95-4004	Transformation-Based-Error-Driven Learning And Natural Language Processing: A Case Study In Part-Of-Speech Tagging
P01-1067	A Syntax-Based Statistical Translation Model
N04-1013	Speed And Accuracy In Shallow And Deep Stochastic Parsing
W04-3223	Incremental Feature Selection And L1 Regularization For Relaxed Maximum-Entropy Modeling
J05-1003	Discriminative Reranking For Natural Language Parsing
H05-1100	Morphology And Reranking For The Statistical Parsing Of Spanish
Branch 4	
W04-0814	The University Of Amsterdam At Senseval-3: Semantic Roles And Logic Forms
W05-0614	Sparse Bayesian Classification Of Predicate Arguments
W05-0620	Introduction To The CoNLL-2005 Shared Task: Semantic Role Labeling
Branch 5	(About dependency parsing similar to Branch 7 in Table S6)
•••	
Branch 6	(About semi-supervised learning and cross-lingual dependency parsing extended from Branch 7 in Table S6)
P08-1068	Simple Semi-supervised Dependency Parsing
D09-1087	Self-Training PCFG Grammars with Latent Annotations Across Languages
D09-1058	An Empirical Study of Semi-supervised Structured Conditional Models for Dependency Parsing
P10-1040	Word Representations: A Simple and General Method for Semi-Supervised Learning
N12-1052	Cross-lingual Word Clusters for Direct Transfer of Linguistic Structure
D12-1001	Syntactic Transfer Using a Bilingual Lexicon
W14-1613	Distributed Word Representation Learning for Cross-Lingual Dependency Parsing Trackerly Translation for Cross Lingual Passas Industrian
W14-1614	Treebank Translation for Cross-Lingual Parser Induction

 $Table~S8.~Main~Path~Network~Papers~the~Parser~Network~\texttt{AANPar_plus_add_Sim}$

ACLID	Title
Branch 1	
P99-1047	A Decision-Based Approach To Rhetorical Parsing
A00-2002	The Automatic Translation Of Discourse Structures
J00-3005	The Rhetorical Parsing Of Unrestricted Texts: A Surface-Based Approach
Branch 2	
P02-1042	Generative Models For Statistical Parsing With Combinatory Categorial Grammar
P04-1014	Parsing The WSJ Using CCG And Log-Linear Models
C04-1041	The Importance Of Supertagging For Wide-Coverage CCG Parsing
C04-1180	Wide-Coverage Semantic Representations From A CCG Parser
W04-3215	Object-Extraction And Question-Parsing Using CCG
Branch 3	
P05-1012	Online Large-Margin Training Of Dependency Parsers
H05-1066	Non-Projective Dependency Parsing Using Spanning Tree Algorithms
N06-2033	Parser Combination By Reparsing
P05-1013	Pseudo-Projective Dependency Parsing
W06-2920	CoNLL-X Shared Task On Multilingual Dependency Parsing
W06-2932	Multilingual Dependency Analysis With A Two-Stage Discriminative Parser
D07-1013	Characterizing the Errors of Data-Driven Dependency Parsing Models
N07-1050	Incremental Non-Projective Dependency Parsing
D07-1097	Single Malt or Blended? A Study in Multilingual Parser Optimization
D07-1096 D07-1101	The CoNLL 2007 Shared Task on Dependency Parsing Experiments with a Higher-Order Projective Dependency Parser
W08-2121	The CoNLL 2008 Shared Task on Joint Parsing of Syntactic and Semantic Dependencies
W09-1201	The CoNLL-2009 Shared Task on Joint Farsing of Syntactic and Semantic Dependencies The CoNLL-2009 Shared Task: Syntactic and Semantic Dependencies in Multiple Languages
Branch 4	
P08-1068	Simple Semi-supervised Dependency Parsing
D09-1087	Self-Training PCFG Grammars with Latent Annotations Across Languages
W09-1208	Multilingual Dependency Learning: A Huge Feature Engineering Method to Semantic Dependency Parsing
D09-1004	Semantic Dependency Parsing of NomBank and PropBank: An Efficient Integrated Approach via a Large-scale
	Feature Selection
	(The remaining same as Branch 6 in Table S7)

ACLID	Title
Branch 1	
P02-1034	New Ranking Algorithms For Parsing And Tagging: Kernels Over Discrete Structures And The Voted Perceptron
W02-1001	Discriminative Training Methods For Hidden Markov Models: Theory And Experiments With Perceptron Algorithms
N03-1028	Shallow Parsing With Conditional Random Fields
P04-1014	Parsing The WSJ Using CCG And Log-Linear Models
W04-3201	Max-Margin Parsing
P05-1012	Online Large-Margin Training of Dependency Parsers
Branch 2	
W08-2102	TAG, Dynamic Programming , and the Perceptron for Efficient, Feature-Rich Parsing
P09-1039	Concise Integer Linear Programming Formulations for Dependency Parsing
D10-1001	On Dual Decomposition and Linear Programming Relaxations for Natural Language Processing
D10-1125	Dual Decomposition for Parsing with Non-Projective Head Automata
Branch 3	
W06-2928	Dependency Parsing With Reference To Slovene Spanish And Swedish
N07-1049	Tree Revision Learning for Dependency Parsing
D07-1119	Multilingual Dependency Parsing and Domain Adaptation using DeSR
D09-1127	Bilingually-Constrained (Monolingual) Shift-Reduce Parsing
N12-1052	Cross-lingual Word Clusters for Direct Transfer of Linguistic Structure
Q13-1001	Token and Type Constraints for Cross-Lingual Part-of-Speech Tagging
P13-2017	Universal Dependency Annotation for Multilingual Parsing
Branch 4	_
P13-2103	A Unified Morpho-Syntactic Scheme of Stanford Dependencies
W13-4917	Overview of the SPMRL 2013 Shared Task: A Cross-Framework Evaluation of Parsing Morphologically Rich
	Languages
W13-4905	The LIGM-Alpage architecture for the SPMRL 2013 Shared Task: Multiword Expression Analysis and Dependency
W112 4005	Parsing
W13-4906	Exploring beam-based shift-reduce dependency parsing with DyALog: Results from the SPMRL 2013 shared task
W13-4910	SPMRL'13 Shared Task System: The CADIM Arabic Dependency Parser

D. Citation Context Excerpts of Case Study 1: Natural Language Parsing

This section presents more citation context excepts to help readers understand Figure 8-11 in the main text.

D.1 Main Path Network

Nothing really.

D.2 Main Path Network: Add Extension and Motivation Citations

On the semantic main path network extracted by adding extension and motivation citations (Figure 9 in the main text), we should expect misrecognised or vague extension/motivation cases because they were more difficult classes. An example was the citation from P03-1055 ("Deep Syntactic Processing by Combining Shallow Methods") to E03-1055 ("An efficient implementation of a new DOP model"). From the citation context excerpt below, it looks more appropriate to treat it as a weakness citation (about research gap). It was recognised as "Motivation" because our refined annotation guidelines allow the fact that research gap exists or problem is challenging to motive current study, similar to Teufel's rule about "problem worth studying" (Teufel, 2010). Indeed, the citing paper explored "a novel approach for finding long-distance dependencies" (in its Abstract) to solve this hard problem.

"Clearly, information about long-distance relationships is vital for semantic interpretation. However, such constructions prove to be difficult for stochastic parsers (Collins et al., 1999) and they either avoid tackling the problem (Charniak, 2000; <u>Bod, 2003</u>) or only deal with a subset of the problematic cases (Collins, 1997)."

Below shows more citation context excerpts corresponding to the citations in Figure 9 in the main text that are annotated with citation functions.

W96-0213 → J94-2001 | H94-1052 (Extension): "Most of the recent corpus-based POS taggers in the literature are either statistically based, and use Markov Model (Weischedel et al., 1993, Merialdo, 1994) or Statistical Decision Tree (Jelinek et al., 1994, Magerman, 1995) (SDT) techniques, or are primarily rule based, such as Drill's Transformation Based Learner (Drill, 1994) (TBL). The Maximum Entropy (MaxEnt) tagger presented in this paper combines the advantages of all these methods. It uses a rich feature representation, like TBL and SDT, and generates a tag probability distribution for each word, like Decision Tree and Markov Model techniques."

 $H05-1066 \rightarrow P05-1012$ (Extension): "Using this spanning tree representation, we extend the work of <u>McDonald et al.</u> (2005) on online large-margin discriminative training methods to non-projective dependencies."

 $H05-1066 \rightarrow W04-0307$ (Motivation): "However, non-projective analyses have recently attracted some interest, not only for languages with freer word order but also for English. In particular, <u>Wang and Harper (2004)</u> describe a broad coverage non projective parser for English based on a hand-constructed constraint dependency grammar rich in lexical and syntactic information.

 $D08-1059 \rightarrow P07-1050$: (Motivation): "Our combined parser makes the biggest contribution of this paper. In contrast to the models above, it includes both graph-based and transition-based components. An existing method to combine multiple parsing algorithms is the ensemble approach (Sagae and Lavie, 2006a), which was reported to be useful in improving dependency parsing (Hall et al., 2007)."

 $D08-1059 \rightarrow D07-1013$ (Motivation): "<u>McDonald and Nivre (2007)</u> showed that the MSTParser and MaltParser produce different errors. This observation suggests a combined approach: by using both graph-based information and transition-based information, parsing accuracy can be improved."

D.3 Main Path Network: Further Add Usage Citations

On the semantic main path network extracted by further adding usage citations (Figure 10 in the main text), we present some additional excerpts of usage citation contexts as follows.

W00-1201 \rightarrow P00-1058 (Usage): "A different rule is used for extracting auxiliary trees; see (Chiang, 2000) for details."

W00-1201 \rightarrow P00-1058 (Usage): "For our model we break down these probabilities further: first the elementary tree is generated without its anchor, and then its anchor is generated. See (Chiang, 2000) for more details." (According to Teufel's annotation guidelines, the steps used in the cited paper are used by the citing paper, so this is a usage citation.)

 $P00-1058 \rightarrow W96-0213$ (Usage): "Following (Collins, 1997), words occurring fewer than four times in training were replaced with the symbol *UNKNOWN* and tagged with the output of the part-of-speech tagger described in (Ratnaparkhi, 1996)."

W96-0213 → J93-2004 (Usage): "The experiments in this paper were conducted on ... Penn Treebank project (<u>Marcus et</u> al., 1994)," (typo in paper, but matching correct)

P00-1058 \rightarrow W97-0302 (Usage): "We use a beam search, computing the score of an item $[\eta; i; j]$ by multiplying it by the prior probability $P(\eta)$ (Goodman, 1997); ..."

W97-0302 → P96-1030: (Extends): "The key insight of global thresholding is due to Rayner and Carter (1996)."

P96-1030 → A92-1018 (Extends): "The work reported here is a logical continuation of two specific strands of research aimed in this general direction. The first is the popular idea of statistical tagging e.g. (DeRose, 1988; <u>Cutting et al., 1992</u>; Church, 1988)."

P01-1067 → J95-4004 (Usage): "Brill's part-of-speech (POS) tagger (Brill, 1995) and Collins' parser (Collins, 1999) were used to obtain parse trees for the English side of the corpus."

D.4 Main Path Network: Further Add Similarity Citations

On the semantic main path network extracted by further adding similarity citations (Figure 11 in the main text), we could find a borderline case between "Similar", "Usage" and even "Extension". The citation was from C02-1126 to W00-1201. From the citation context excerpts (see below), the "with the same head rules" might imply similarity. However, the whole sentence looks to mean that the cited paper's rules were used in "the third experiment". From the next context sentence, "although we have modified them for parsing" seems to imply an extension (technical modification) from the cited paper. This example well shows the vagueness between the usage class and similarity class.

"The third experiment was on the Chinese Treebank, starting with the same head rules used in (<u>Bikel and Chiang</u>, <u>2000</u>). These rules were originally written by Xia for grammar development, and although we have modified them for parsing ..." (", starting with the same head rules used in")

Below show two more examples of blurred border between the similarity class and usage class.

W03-1005 \rightarrow P03-1055 (Similar? Usage?): "In the experiments we use the same training, test, and development data as in <u>Dienes and Dubey (2003)</u>, where non-local dependencies are annotated with the help of empty elements (EEs) co-indexed with their controlling constituents (if any)."

 $D09-1058 \rightarrow P08-1068$ (Similar? Usage?): "Since this method only considers projective dependency structures, we "projectivized" the PDT training data in the same way as (<u>Koo et al., 2008</u>)."

We present some additional excerpts of similarity citation contexts below.

W97-0301 → J96-1002 (Similar): "The maximum entropy models used here are similar in form to those in (Ratnaparkhi, 1996; Berger, Della Pietra, and Della Pietra, 1996; Lau, Rosenfeld, and Roukos, 1993)."

 $P08-1068 \rightarrow D07-1101$ (Similar): "The feature sets we used are similar to other feature sets in the literature (McDonald et al., 2005a; Carreras, 2007)."

 $N12-1052 \rightarrow P10-1040$ (Similar): "The feature model used for the NER tagger is shown in Table 2. These are similar to the features used by <u>Turian et al. (2010)</u>, with the main difference that we do not use any long range features and that we add templates that conjoin adjacent clusters and adjacent tags as well as templates that conjoin label transitions with tags, clusters and capitalization features." (This example can also be regarded as a "CoCoGM", therefore justify the possibility of multi-label citation function classification)

D.5 Main Path Network: Delete Neutral and Future Work Citations

On the semantic main path network extracted by removing neutral and future work citations (Figure 12 in the main text), we present additional citation context excerpts below.

 $D07-1119 \rightarrow N07-1049$ (Usage): "We then used a parsing revision technique (Attardi and Ciaramita, 2007) to learn how to correct these errors, producing a parse reviser called DesrReviser."

D07-1096 → D07-1119 (Usage?): "Transition-based parsers either maintain a classifier that predicts the next transition or a global probabilistic model that scores a complete parse. To train these classifiers and probabilitistic models several approaches were used: SVMs (Duan et al., 2007; Hall et al., 2007a; Sagae and Tsujii, 2007), modified finite Newton SVMs (Wu et al., 2007), maximum entropy models (Sagae and Tsujii, 2007), multiclass averaged perceptron (Attardi et al., 2007) and maximum likelihood estimation (Watson and Briscoe, 2007)."

E. Main Path Papers for Case Study: Automatic Text Summarisation

This section contains the tables of more complete lists of main path papers extracted from the original semantics-agnostic citation network and the four types of semantic citation networks built based on citation function classification results.

Table S10. Main Path Network Papers of the Summarisation Network AANSum.

ACLID	Tide
ACLID	Title
Branch 1	
C86-1061	Tailoring Importance Evaluation To Reader's Goals: A Contribution To Descriptive Text Summarization
C94-1056	Abstract Generation Based On Rhetorical Structure Extraction
W97-0713	From Discourse Structures To Text Summaries
W97-0703	Using Lexical Chains For Text Summarization
Branch 2	
J98-3005	Generating Natural Language Summaries From Multiple On-Line Sources
C00-1024	A Muitilingual News Summarizer
P99-1071	Information Fusion In The Context Of Multi-Document Summarization
C00-2129	Multi-Topic Multi-Document Summarization
W00-0403	Centroid-Based Summarization Of Multiple Documents: Sentence Extraction Utility-Based Evaluation And User Studies
W00-0404	Extracting Key Paragraph Based On Topic And Event Detection Towards Multi-Document Summarization
H01-1065	Sentence Ordering In Multidocument Summarization
H01-1054	Multidocument Summarization Via Information Extraction
W00-1009	A Common Theory Of Information Fusion From Multiple Text Sources Step One: Cross-Document Structure
H01-1056	NewsInEssence: A System For Domain-Independent Real-Time News Clustering And Multi-Document Summarization
W03-0510	The Potential And Limitations Of Automatic Sentence Extraction For Summarization
H01-1065	Sentence Ordering In Multidocument Summarization
W02-0402	Selecting Sentences For Multidocument Summaries Using Randomized Local Search
J02-4001	Introduction To The Special Issue On Summarization
Evaluation	
N03-1020	Automatic Evaluation Of Summaries Using N-Gram Co-Occurrence Statistics
Branch 3	
P04-3020	Graph-Based Ranking Algorithms For Sentence Extraction Applied To Text Summarization
W04-3252	TextRank: Bringing Order Into Texts
P05-3013	Language Independent Extractive Summarization
	Excerpt: We demonstrate TextRank
I05-2004	A Language Independent Algorithm for Single and Multiple Document Summarization
	Explanation: relies on iterative graph-based ranking algorithm
Branch 4	
P10-1058	Automatic Generation of Story Highlights
	joint content selection and compression model for single-document summarization
P11-1049	Jointly Learning to Extract and Compress
E12 1022	Excerpt: Inference in our model can be cast as an ILP and thereby solved in reasonable time
E12-1023	Large-Margin Learning of Submodular Summarization Models Multiple Assect Summarization Using Integer Linear Programming
D12-1022 P13-1020	Multiple Aspect Summarization Using Integer Linear Programming Fact and Robust Compressive Suppressive with Duel Decomposition and Multi-Teels Learning
D13-1047	Fast and Robust Compressive Summarization with Dual Decomposition and Multi-Task Learning
D13-1047	Document Summarization via Guided Sentence Compression Fast Joint Compression and Summarization via Graph Cuts
P14-2052	
1 14-2032	Single Document Summarization based on Nested Tree Structure Excerpt: combining sentence selection and sentence compression We used both dependency between words and dependency between sentences
	by constructing a nested tree,
	We formulated a summarization task as a combinatorial optimization problem
D14-1196	Dependency-based Discourse Parser for Single-Document Summarization

 $Table~S11.~Main~Path~Network~Papers~the~Summarisation~Network~{\tt AANSum_add_Ext_Mot}.$

ACLID	Title
Branch 1	
W97-0703	Using Lexical Chains For Text Summarization
C00-2140	DIASUMM: Flexible Summarization Of Spontaneous Dialogues In Unrestricted Domains
W97-0713	From Discourse Structures To Text Summaries
W98-1124	Improving Summarization Through Rhetorical Parsing Tuning
W00-0401	Concept Identification And Presentation In The Context Of Technical Text Summarization
P99-1072	Improving Summaries By Revising Them
	Excerpt: This paper describes a program which revises a draft text by aggregating together descriptions of discourse entities , in addition to deleting extraneous information.
J02-4005	Generating Indicative-Informative Summaries With SumUM
J02-4002	Summarizing Scientific Articles: Experiments With Relevance And Rhetorical Status
C10-2049	Towards Automated Related Work Summarization
W03-0505	Summarising Legal Texts: Sentential Tense And Argumentative Roles
W04-1007	A Rhetorical Status Classifier For Legal Text Summarisation
Branch 2	
J98-3005	Generating Natural Language Summaries From Multiple On-Line Sources
W04-3256	Multi-Document Biography Summarization
Branch 3	
W00-0408	A Comparison Of Rankings Produced By Summarization Evaluation Measures
W02-0406	Manual And Automatic Evaluation Of Summaries
N03-1020	Automatic Evaluation Of Summaries Using N-Gram Co-Occurrence Statistics
W04-1013	ROUGE: A Package For Automatic Evaluation Of Summaries
P08-1094	Can You Summarize This? Identifying Correlates of Input Difficulty for Multi-Document Summarization
E09-1062	Performance Confidence Estimation for Automatic Summarization
W11-0504	Who wrote What Where: Analyzing the content of human and automatic summaries
Branch 4-1	
A00-1043	Sentence Reduction For Automatic Text Summarization
A00-2024	Cut And Paste Based Text Summarization
	Excerpt: 4.2 Sentence reduction 4.3 Sentence combination
J05-3002	Sentence Fusion For Multidocument News Summarization
C10-2049	Towards Automated Related Work Summarization (Citation context parsing error)
Branch 4-2	<u>.</u>
P08-2049	Query-based Sentence Fusion is Better Defined and Leads to More Preferred Results than Generic Sentence Fusion
D08-1019	Sentence Fusion via Dependency Graph Compression
C10-1037	Multi-Sentence Compression: Finding Shortest Paths in Word Graphs
N13-1030	Keyphrase Extraction for N-best Reranking in Multi-Sentence Compression
W14-4407	A Template-based Abstractive Meeting Summarization: Leveraging Summary and Source Text Relationships
W13-2117	Abstractive Meeting Summarization with Entailment and Fusion
Branch 5	<u>.</u>
W04-3252	TextRank: Bringing Order Into Texts
P07-1070	Towards an Iterative Reinforcement Approach for Simultaneous Document Summarization and Keyword Extraction
P09-1023	Summarizing Definition from Wikipedia
	Excerpt: Following the iterative reinforcement approach for summarization and keyword extraction (Wan et al., 2007), it could be used to refine
	other versions of summaries. Hence, we

 $Table~S12.~Main~Path~Network~Papers~the~Summarisation~Network~{\tt AANSum_plus_add_Use}.$

ACLID	Title
Branch 1-1	(About sentence fusion/compression same as Branch 4-2 in Table S11)
	- `
Branch 1-2	
P11-1049	Jointly Learning to Extract and Compress
P13-1020	Fast and Robust Compressive Summarization with Dual Decomposition and Multi-Task Learning
D13-1047	Document Summarization via Guided Sentence Compression
D13-1156	Fast Joint Compression and Summarization via Graph Cuts
Branch 2	
W00-0408	A Comparison Of Rankings Produced By Summarization Evaluation Measures
W02-0406	Manual And Automatic Evaluation Of Summaries
N03-1020	Automatic Evaluation Of Summaries Using N-Gram Co-Occurrence Statistics
W04-1013	ROUGE: A Package For Automatic Evaluation Of Summaries
P04-1027	An Empirical Study Of Information Synthesis Task
P05-1035	QARLA: A Framework For The Evaluation Of Text Summarization Systems
W05-0906	Evaluating Summaries And Answers: Two Sides Of The Same Coin?
N04-1019	Evaluating Content Selection In Summarization: The Pyramid Method
W03-0508	Examining The Consensus Between Human Summaries: Initial Experiments With Factoid Analysis
W04-3254	Evaluating Information Content By Factoid Analysis: Human Annotation And Stability
W05-0901	A Methodology For Extrinsic Evaluation Of Text Summarization: Does ROUGE Correlate?
Branch 3	(multiple intelligent sources of statistical parsing techniques)
J02-4002	Summarizing Scientific Articles: Experiments With Relevance And Rhetorical Status
W03-0505	Summarising Legal Texts: Sentential Tense And Argumentative Roles
W06-1613	Automatic Classification Of Citation Function
N07-1040	Whose Idea Was This and Why Does it Matter? Attributing Scientific Work to Citations
C08-1087	Scientific Paper Summarization Using Citation Summary Networks
N09-1066	Using Citations to Generate Surveys of Scientific Paradigms
C10-1101	Citation Summarization Through Keyphrase Extraction
P10-1057	Identifying Non-Explicit Citing Sentences for Citation-Based Summarization.

 $Table~S13.~Main~Path~Network~Papers~the~Summarisation~Network~{\tt AANSum_plus_add_Sim}.$

ACLID	Title
Branch 1	(expanded from Branch 2 about Evaluation in Table S12)
P04-1077	Automatic Evaluation Of Machine Translation Quality Using Longest Common Subsequence And Skip-Bigram Statistics
H05-1019	Kernel-Based Approach For Automatic Evaluation Of Natural Language Generation Technologies: Application To
	Automatic Summarization
P06-2020	Topic-Focused Multi-Document Summarization Using An Approximate Oracle Score
D09-1032	Automatically Evaluating Content Selection in Summarization without Human Models
C10-2122	Multilingual Summarization Evaluation without Human Models

 $Table~S14.~Main~Path~Network~Papers~the~Summarisation~Network~{\tt AANSum_Del_Bkg_Fut}.$

ACLID	Title
Branch 1	
C00-2129	Multi-Topic Multi-Document Summarization
J98-3005	Generating Natural Language Summaries From Multiple On-Line Sources
P99-1071	Information Fusion In The Context Of Multi-Document Summarization
W00-0403	Centroid-Based Summarization Of Multiple Documents: Sentence Extraction Utility-Based Evaluation And User Studies
H01-1065	Sentence Ordering In Multidocument Summarization
H01-1054	Multidocument Summarization Via Information Extraction
W03-1101	Improving Summarization Performance By Sentence Compression - A Pilot Study
C04-1129	Syntactic Simplification For Improving Content Selection In Multi-Document Summarization
H05-1031	Automatically Learning Cognitive Status For Multi-Document Summarization Of Newswire
Branch 2	
P04-3020	Graph-Based Ranking Algorithms For Sentence Extraction Applied To Text Summarization
W04-3252	TextRank: Bringing Order Into Texts
105-2004	A Language Independent Algorithm for Single and Multiple Document Summarization
	Explanation: Towards an Iterative Reinforcement Approach for Simultaneous Document Summarization and Keyword Extraction
P07-1070	Towards an Iterative Reinforcement Approach for Simultaneous Document Summarization and Keyword Extraction
	Excerpt: Following the iterative reinforcement approach for summarization and keyword extraction (Wan et al., 2007), it could be used to refine other versions of summaries. Hence, we
P08-1041	Summarizing Emails with Conversational Cohesion and Subjectivity
100-1041	Abstract: We first build a sentence quotation graph that captures the conversation structure among emails Second, we use two graph-based
	summarization approaches, Generalized ClueWordSummarizer and PageRank, to extract sentences as summaries.
Branch 3	
W09-1802	A Scalable Global Model for Summarization
	Excerpt: We present an Integer Linear Program for exact inference under a maximum coverage model for automatic summarization.
C10-2105	Opinion Summarization with Integer Linear Programming Formulation for Sentence Extraction and Ordering
C10-2046	Learning to Model Domain-Specific Utterance Sequences for Extractive Summarization of Contact Center Dialogues
	Excerpt (same authors as C10-2105): our method significantly outperforms competitive baselines based on the maximum coverage of important words
	using integer linear programming

F. Citation Context Excerpts of Case Study 2: Automatic Text Summarisation

F.1 Main Path Network

We present here some citation context excerpts to help understand the semantic main path network extracted using the traditional key-route main path approach (Figure 13 in the main text). We see that many citations between main path papers are actually about comparisons.

 $D07-1047 \rightarrow I05-2004$ (Comparison): "Although some recent systems indicate an improvement over the baseline (Mihalcea, 2005; Mihalcea and Tarau, 2005), statistical significance has not been shown. We show that by using a neural network ranking algorithm and third-party datasets to enhance sentence features, our system, NetSum, can outperform the baseline with statistical significance."

P14-2052 → D13-1156 (Weakness or Comparison): "Extracting a subtree from the dependency tree of words is one approach to sentence compression (Tomita et al., 2009; Qian and Liu, 2013; Morita et al., 2013; Gillick and Favre, 2009). However, these studies have only extracted rooted subtrees from sentences. We allowed our model to extract a subtree that did not include the root word ..." (Another example of multi-label classification. According to our annotation guidelines, the overwriting rule should apply here to recognise it as comparison.)

E12-1023 → P11-1049 (Comparison): "Another closely related work also takes a maxmargin discriminative learning approach in the structural SVM framework (Berg-Kirkpatrick et al., 2011) ... However, they do not consider submodular functions, but instead ..."

D12-1022 → P11-1049 (Comparison: CoCoGM): "Our work differs from Gillick et al. (2009) and <u>Berg-Kirkpatrick</u> et al. (2011) in three important respects"

 $D12-1022 \rightarrow P11-1049$ (Comparison: CoCoGM): "Thirdly, unlike <u>Berg-Kirkpatrick et al. (2011)</u> our model does not try to learn all the parameters (e.g., content, rewrite rules, style) of the summarization problem jointly; ..., the learning process is more robust and reliable."

D12-1022 → P11-1049 (Comparison: CoCoRes): "We also compared against the "learned phrase compression" system of Berg-Kirkpatrick et al. (2011) ..."

P11-1049 \rightarrow P10-1058: (Comparison): "A second contribution of the current work is to show a system for jointly learning to jointly compress and extract that exhibits gains in both ROUGE and content metrics over purely extractive systems. Both Martins and Smith (2009) and Woodsend and Lapata (2010) build models that jointly extract and compress, but learn scores for sentences (or phrases) using independent classifiers."

 $P10-1058 \rightarrow D07-1047$ (Usage): "Swore et al. (2007) were the first to foreground the highlight generation task which we adopt as an evaluation testbed for our model. Their approach is however a purely extractive one."

N09-1041 → N06-2046 (Neutral): "There are several approaches to modeling document content: simple word frequency-based methods (Luhn, 1958; Nenkova and Vanderwende, 2005), graph-based approaches (Radev, 2004; Wan and Yang, 2006), as well as more linguistically motivated techniques (Mckeown et al., 1999; Leskovec et al., 2005; Harabagiu et al., 2007). Another strand of work (Barzilay and Lee, 2004; Daume III and Marcu, 2006; Eisenstein and Barzilay, 2008), has explored the use of structured probabilistic topic models to represent document content. However, little has been done to directly compare the benefit of complex content models to simpler surface ones for generic multi-document summarization".

F.2 Semantic Main Path Network: Add Extension and Motivation Citations

On the semantic main path network extracted by adding extension and motivation citations (Figure 14 in the main text), we present additional citation context excerpts of the annotated citation edges below.

J98-3005 → A97-1013 (Extension?): "We present a system, called SUMMONS I (McKeown and Radev 1995; Radev 1996; Radev and McKeown 1997), shown in Figure 1, which introduces novel techniques in the following areas: ..." (Vague case: This may be an extension because it is a journal extension to previous conference publications with several novel techniques, or this may be just a neutral citations because it is the system presented by the citing paper that "introduced novel techniques in the following areas: ...", or this may also be a usage citation because the fact that the current paper present the system of the cited paper indicate a usage?)

W03-0505 → J02-4002 (Extension): "Our methodology builds and extends the Teufel and Moens (Teufel and Moens, 2002) approach to automatic summarization."

C00-2140 → W97-0703 (Extension): "Following (Boguraev and Kennedy, 1997; <u>Barzilay and Elhadad, 1997</u>) who use TextTiling (Hearst, 1997) for their summarization systems of written text, we adapted this algorithm (its block comparison version) for speech data."

W03-0505 → J02-4002 (Extension): "Our methodology builds and extends the Teufel and Moens (Teufel and Moens, 2002) approach to automatic summarization."

P08-1094 → W04-1013 (Motivation subsumes Usage): In a footnote "The routinely used tool for automatic evaluation ROUGE was adopted exactly because it was demonstrated it is highly correlated with the manual DUC coverage scores (Lin and Hovy, 2003a; Lin, 2004)." (According to Teufel's guidelines, this citation should be annotated to a motivation citation, because the causal clause explains the positive aspect of ROUGE which motivates the use of ROUGE in this paper. Motivation subsumes usage, although we saw many similar cases were annotated to usage in Teufel's original dataset. We believe this citation was classified to motivation because our dataset has several similar cases where we overwrote usage with motivation in such cases.).

P09-1023 → P08-1094 (Motivation): "Analyzing the features used could let us understand summarization better (Nenkova and Louis, 2008). Here, we focus on the statistical analysis of ..."

F.3 Semantic Main Path Network: Further Add Usage Citations

On the semantic main path network extracted by further adding usage citations (Figure 15 in the main text), we present some additional citation context excerpts of the annotated citation edges below.

W04-1016 \rightarrow W03-0508 (Usage): "Given this data, we first segment the original pair of sentences into "factoids" in the style of <u>Halteren and Teufel (2003)</u>."

W04-1016 \rightarrow N04-1019 (Usage): "The third evaluation we perform ourselves, due to its difficulty. This follows the general rubric described by Nenkova and Passonneau's (2004) pyramid scoring scheme, though it differs in the sense that we ..."

W04-1016 \rightarrow N04-1019 (Extension): "This follows the general rubric described by Nenkova and Passonneau's (2004) pyramid scoring scheme, though it differs in the sense that we base our evaluation not on a reference summary, but on the original two document sentences. Our methodology is described below. ..."

 $N07-1040 \rightarrow W06-1613$ (Usage): "Another difference is that we use around 1700 additional cue phrases acquired from previous work on another discourse task4 (Teufel et al., 2006)."

Here is an example of misclassification misguided by the expression "using".

 $D07-1040 \rightarrow W04-3247$ (Usage, X): "This similarity is computed as a cosine similarity and by default the sentences that exhibit a cosine similarity higher than 0.7 are not added to the summary. Note that although the MEAD distribution also includes an optional feature calculated **using** the LexRank graph-based algorithm (<u>Erkan and Radev, 2004</u>), this feature could not be used since it takes days to compute for very long documents such as ours, and thus its application was not tractable."

F.4 Semantic Main Path Network: Further Add Similarity Citations

On the semantic main path network extracted by further adding similarity citations (Figure 16 in the main text), we present some additional citation context excerpts of the annotated citation edges below.

 $N04-1019 \rightarrow W03-0508$ (Similar): "Though we look at multidocument summaries rather than single document ones, SCU annotation otherwise resembles the annotation of factoids in (<u>Halteren and Teufel, 2003</u>); as they do with factoids, we find increasing numbers of SCUs as the pool of summaries grows."

P13-1020 → P11-1049 (Similar? Usage?): "We use the same splits as previous work (<u>Berg-Kirkpatrick et al., 2011</u>; Woodsend and Lapata, 2012): the non-update portions of TAC-2009 for training and TAC-2008 for testing." (Again a borderline case between similarity and usage classes)

F.5 Semantic Main Path Network: Delete Neutral and Future Work Citations

On the semantic main path network extracted by deleting neutral and future work citations (Figure 17 in the main text), we present some additional citation context excerpts of the annotated citation edges below.

 $D08-1081 \rightarrow P08-1041$ (Usage): "For evaluating email thread summaries, we follow <u>Carenini et al. (2008)</u> by implementing their pyramid precision scheme, inspired by Nenkova's pyramid scheme (2004)."

P10-1058 → W09-1801 (Similar): "Our own work is closest to Martins and Smith (2009)."

 $P10-1058 \rightarrow D07-1047$ (Comparison): "Svore et al. (2007) were the first to foreground the highlight generation task which we adopt as an evaluation testbed for our model. Their approach is however a purely extractive one. Using

an algorithm based on neural networks and third-party resources (e.g., news query logs and Wikipedia entries) they rank sentences and select the three highest scoring ones as story highlights. In contrast, we aim to generate rather than extract highlights."

Below demonstrates the interesting difference between the paths from P11-1049 to P13-1020 in Figure 15 (by further adding similarity citations) and Figure 17 (by deleting neutral and future work citations). In Figure 15, the main path directly goes from P11-1049 to P13-1020 through a similarity citation, while in Figure 17, the path goes from P11-1049 through an intermediate paper D12-1022 to P11-1049.

P13-1020 → D12-1022 (Similar? Usage?): "We use the same splits as previous work (Berg-Kirkpatrick et al., 2011;

Woodsend and Lapata, 2012): the non-update portions of TAC-2009 for training and TAC-2008 for testing." (Again a borderline case between similarity and usage classes)

D12-1022 → P11-1049 (Comparison): "Another closely related work also takes a max margin discriminative learning approach in the structural SVM framework (Berg-Kirkpatrick et al., 2011) ... However, they do not consider submodular functions, but instead ..."

G. Supplementary Materials for Quantitative Analysis

Two issues arose with topic modelling using Latent Dirichlet Allocation (LDA; Blei et al., 2003). First, we did not know the "right" value of T for each dataset, so for the purpose of getting robust results, we decided to evaluate using a range of reasonable T values and average. We set the minimum value of T to 10 according to the author's understanding of the studied subfields and the previous qualitative analysis results. Then, we trained LDA models based on different T values in $\{10, 11, ..., 20, 22, ..., 30, 35, 40, ..., 100\}$. Second, to avoid overfitting LDA, we needed to choose a proper number of epochs for training. We tested different values of P in $\{30, 40, 50, 60\}$. To choose the "best" epoch, C_{V} coherence (Röder et al., 2015), also calculated using Gensim, was used to quantify the qualities of trained LDA models. For AANPar and AANMT, 26 and 20 were selected respectively as the upperbound of T because C_{V} coherence values dropped down to a lower plateau when T grew beyond the threshold value (see Supplementary Figure S1(c-d)). For AANSum, however, we further analysed the perplexity curve and selected 20 as the upperbound of T (see Supplementary Figure S1(a-b)). 40, 50, and 50 were decided as the "right" numbers of epochs for AANSum, AANPar and AANMT respectively. Supplementary Table S15 shows the C_{V} coherence averaged over all T values for each P value, based on which we inferred these values.

Figure S1. Selection of LDA-Based Topic Models for Quantitative MPA Evaluation.

Table S15. Selection of "Best" Number of Epoch for Quantitative MPA Evaluation.

	AANSum	AANPar	AANMT
C V@P=30	0.3033	0.3720	0.3823
$\overline{C}V@P=40$	0.3164	0.3744	0.3915
C V@P=50	0.3087	0.3747	0.3928
C_V@P=60	0.3064	0.3720	0.3872
Number of Topics	{10, 11,, 20}	{10, 11, 20, 22,, 26}	{10, 11,, 20}
"Best" Epoch	40	50	50

Table S16. Topical Coverage of Main Path Networks on AANMT (T = 20, P = 50).

T	MPN	N add_Ext_Mot p		plus_	plus_add_Use		add_Sim	add_C	ombined	del_B	kg_Fut	del_C	Combined
	cov_{tpk}	cov_{tpk}	$\Delta\%$	cov_{tpk}	$\Delta\%$	cov_{tpk}	$\Delta\%$	cov_{tpk}	$\Delta\%$	cov_{tpk}	$\Delta\%$	cov_{tpk}	$\Delta\%$
10	0.0528	0.1073	103.22%	0.0843	59.66%	0.0773	46.40%	0.0860	62.88%	0.0722	36.74%	0.0765	44.89%
11	0.1361	0.0867	-36.30%	0.0541	-60.25%	0.0793	-41.73%	0.0594	-56.36%	0.0948	-30.35%	0.0390	-71.34%
12	0.0576	0.1134	96.88%	0.0627	8.85%	0.0691	19.97%	0.0709	23.09%	0.0727	26.22%	0.0529	-8.16%
13	0.0910	0.0903	-0.77%	0.0748	-17.80%	0.0823	-9.56%	0.0830	-8.79%	0.0478	-47.47%	0.0613	-32.64%
14	0.0488	0.0734	50.41%	0.0636	30.33%	0.0669	37.09%	0.0650	33.20%	0.0595	21.93%	0.0549	12.50%
15	0.0510	0.0591	15.88%	0.0680	33.33%	0.0853	67.25%	0.0571	11.96%	0.0565	10.78%	0.0441	-13.53%
16	0.0792	0.0758	-4.29%	0.0560	-29.29%	0.0575	-27.40%	0.0521	-34.22%	0.0403	-49.12%	0.0353	-55.43%
17	0.0419	0.0547	30.55%	0.0369	-11.93%	0.0494	17.90%	0.0391	-6.68%	0.0576	37.47%	0.0410	-2.15%
18	0.0566	0.0693	22.44%	0.0575	1.59%	0.0590	4.24%	0.0539	-4.77%	0.0327	-42.23%	0.0352	-37.81%
19	0.0826	0.0589	-28.69%	0.0662	-19.85%	0.0657	-20.46%	0.0530	-35.84%	0.0855	3.51%	0.0531	-35.71%
20	0.0683	0.0842	23.28%	0.0544	-20.35%	0.0745	9.08%	0.0633	-7.32%	0.0610	-10.69%	0.0529	-22.55%
Mean		•	24.78%	•	-2.34%↓		9.34%↑		-2.08%↓		-3.93%		-20.18%↓

Table S17. Main Path Network Topical Coverage Evaluation Results on AANSum (T = 20, P = 40).

T	MPN	add_E	xt_Mot	plus_	add_Use	plus	add_Sim	add_0	Combined	del_B	kg_Fut	del_0	Combined
	cov_{tpk}	cov_{tpk}	$\Delta\%$										
10	0.0653	0.0583	-10.72%	0.0626	-4.13%	0.0912	39.66%	0.0628	-3.83%	0.0395	-39.51%	0.0456	-30.17%
11	0.0705	0.0787	11.63%	0.0738	4.68%	0.0974	38.16%	0.0614	-12.91%	0.0831	17.87%	0.0595	-15.60%
12	0.0562	0.0630	12.10%	0.0703	25.09%	0.0413	-26.51%	0.0458	-18.51%	0.0649	15.48%	0.0451	-19.75%
13	0.0822	0.0904	9.98%	0.0531	-35.40%	0.0569	-30.78%	0.0519	-36.86%	0.0744	-9.49%	0.0449	-45.38%
14	0.0564	0.0667	18.26%	0.0889	57.62%	0.0839	48.76%	0.0662	17.38%	0.0734	30.14%	0.0496	-12.06%
15	0.0686	0.0781	13.85%	0.0554	-19.24%	0.0704	2.62%	0.0544	-20.70%	0.0698	1.75%	0.0383	-44.17%
16	0.0476	0.0511	7.35%	0.0532	11.76%	0.0453	-4.83%	0.0357	-25.00%	0.0570	19.75%	0.0303	-36.34%
17	0.0427	0.0641	50.12%	0.0316	-26.00%	0.0532	24.59%	0.0326	-23.65%	0.0561	31.38%	0.0330	-22.72%
18	0.0518	0.0507	-2.12%	0.0650	25.48%	0.0895	72.78%	0.0547	5.60%	0.0650	25.48%	0.0479	-7.53%
19	0.0482	0.0353	-26.76%	0.0402	-16.60%	0.0542	12.45%	0.0424	-12.03%	0.0380	-21.16%	0.0369	-23.44%
20	0.0829	0.0754	-9.05%	0.0557	-32.81%	0.0632	-23.76%	0.0525	-36.67%	0.0713	-13.99%	0.0542	-34.62%
Mean		•	6.79%		-0.87%↓	•	13.92%↑		-15.20%↓		5.25%		-26.53%↓

Table S18. Topical Coverage of Main Path Networks on AANPar (T = 26, P = 50).

T	MPN	add_E	xt_Mot	plus	_add_Use	plus	_add_Sim	add_0	Combined	del_B	kg_Fut	del_0	Combined
	COV_{tpk}	COV_{tpk}	$\Delta\%$										
10	0.0506	0.0515	1.78%	0.0264	-47.83%	0.0407	-19.57%	0.0301	-40.51%	0.0687	35.77%	0.0266	-47.43%
11	0.0377	0.0324	-14.06%	0.0550	45.89%	0.0445	18.04%	0.0296	-21.49%	0.0518	37.40%	0.0246	-34.75%
12	0.0521	0.0870	66.99%	0.0273	-47.60%	0.0323	-38.00%	0.0381	-26.87%	0.0778	49.33%	0.0400	-23.22%
13	0.0655	0.0816	24.58%	0.0471	-28.09%	0.0452	-30.99%	0.0435	-33.59%	0.0989	50.99%	0.0490	-25.19%
14	0.0636	0.0766	20.44%	0.0505	-20.60%	0.0357	-43.87%	0.0414	-34.91%	0.0587	-7.70%	0.0388	-38.99%
15	0.0480	0.1023	113.13%	0.0507	5.63%	0.0366	-23.75%	0.0441	-8.13%	0.0687	43.13%	0.0377	-21.46%
16	0.0364	0.0473	29.95%	0.0515	41.48%	0.0394	8.24%	0.0421	15.66%	0.0424	16.48%	0.0276	-24.18%
17	0.0694	0.0717	3.31%	0.0260	-62.54%	0.0424	-38.90%	0.0321	-53.75%	0.0577	-16.86%	0.0313	-54.90%
18	0.0470	0.0650	38.30%	0.0632	34.47%	0.0478	1.70%	0.0320	-31.91%	0.0726	54.47%	0.0342	-27.23%
19	0.0454	0.0504	11.01%	0.0470	3.52%	0.0371	-18.28%	0.0361	-20.48%	0.0573	26.21%	0.0385	-15.20%
20	0.0638	0.0877	37.46%	0.0476	-25.39%	0.0424	-33.54%	0.0329	-48.43%	0.0796	24.76%	0.0349	-45.30%
22	0.0916	0.0595	-35.04%	0.0536	-41.48%	0.0528	-42.36%	0.0450	-50.87%	0.0948	3.49%	0.0489	-46.62%
24	0.0605	0.0720	19.01%	0.0554	-8.43%	0.0383	-36.69%	0.0423	-30.08%	0.0760	25.62%	0.0422	-30.25%
26	0.0485	0.0554	14.23%	0.0529	9.07%	0.0440	-9.28%	0.0343	-29.28%	0.0566	16.70%	0.0352	-27.42%
Mean			23.65%		-10.14%↓		-21.95%↓		-29.62%↓		25.70%		-33.01%↓

Table S19. Topical Coherence of Main Path Networks on AANSum (T = 20, P = 40).

Т	MPN	add_Ex	kt_Mot	plus_	add_Use	plus	add_Sim	add_C	ombined	del_B	kg_Fut	del_C	ombined
	coh_{tpk}	coh_{tpk}	$\Delta\%$										
10	0.5682	0.5227	-8.01%	0.5731	+0.86%	0.5584	-1.72%	0.5571	-1.95%	0.5610	-1.27%	0.5623	-1.04%
11	0.5061	0.5229	+3.32%	0.4932	-2.55%	0.4791	-5.33%	0.4809	-4.98%	0.5021	-0.79%	0.4922	-2.75%
12	0.4236	0.3817	-9.89%	0.3934	-7.13%	0.4079	-3.71%	0.3985	-5.93%	0.4151	-2.01%	0.4091	-3.42%
13	0.5912	0.5888	-0.41%	0.5967	+0.93%	0.6067	+2.62%	0.5875	-0.63%	0.5879	-0.56%	0.5909	-0.05%
14	0.4893	0.4483	-8.38%	0.4635	-5.27%	0.4655	-4.86%	0.4718	-3.58%	0.4707	-3.80%	0.4785	-2.21%
15	0.5298	0.5442	+2.72%	0.5394	+1.81%	0.5424	+2.38%	0.5430	+2.49%	0.5682	+7.25%	0.5555	+4.85%
16	0.5767	0.5905	+2.39%	0.5893	+2.18%	0.6000	+4.04%	0.5883	+2.01%	0.5913	+2.53%	0.5914	+2.55%
17	0.5593	0.5208	-6.88%	0.5499	-1.68%	0.5438	-2.77%	0.5452	-2.52%	0.5634	+0.73%	0.5539	-0.97%
18	0.5941	0.6160	+3.69%	0.6307	+6.16%	0.6283	+5.76%	0.6333	+6.60%	0.5849	-1.55%	0.6199	+4.34%
19	0.5913	0.5360	-9.35%	0.5639	-4.63%	0.5423	-8.29%	0.5492	-7.12%	0.5809	-1.76%	0.5603	-5.24%
20	0.6403	0.6134	-4.20%	0.6086	-4.95%	0.5963	-6.87%	0.6104	-4.67%	0.6302	-1.58%	0.6181	-3.47%
Mean	0.5518	0.5350	-3.18%	0.5456	-1.30%↑	0.5428	-1.70% ↓	0.5423	-1.84%↓	0.5505	-0.26%	0.5484	-0.67%↓

Table S20. Topical Coherence of Main Path Networks on AANPar (T = 26, P = 50).

T	MPN	add_E	xt_Mot	plus	add_Use	plus	add_Sim	add_C	ombined	del_B	kg_Fut	del_C	ombined
	coh_{tpk}	coh_{tpk}	$\Delta\%$										
10	0.3853	0.3587	-6.90%	0.3964	+2.88%	0.3894	+1.06%	0.3813	-1.04%	0.3830	-0.60%	0.3825	-0.73%
11	0.3917	0.3909	-0.20%	0.4249	+8.48%	0.3981	+1.63%	0.3973	+1.43%	0.3969	+1.33%	0.3955	-0.97%
12	0.4211	0.4230	+0.45%	0.4236	+0.59%	0.4219	+0.19%	0.4244	+0.78%	0.4303	+2.18%	0.4262	+1.21%
13	0.3629	0.3414	-5.92%	0.3574	-1.52%	0.3445	-5.07%	0.3439	-5.24%	0.3442	-5.15%	0.3447	-5.02%
14	0.3963	0.3820	-3.61%	0.4007	+1.11%	0.3918	-1.14%	0.3892	-1.79%	0.3859	-2.62%	0.3883	-2.02%
15	0.4547	0.4232	-6.93%	0.4514	-0.73%	0.4539	-0.18%	0.4413	-2.95%	0.4446	-2.22%	0.4416	-2.88%
16	0.4610	0.4556	-1.17%	0.4679	+1.50%	0.4541	-1.50%	0.4542	-1.48%	0.4547	-1.37%	0.4552	-1.26%
17	0.4767	0.4633	-2.81%	0.4806	+0.82%	0.4746	-0.44%	0.4695	-1.51%	0.4825	+1.22%	0.4726	-0.86%
18	0.4180	0.4372	+4.59%	0.4298	+2.82%	0.4220	+0.96%	0.4288	+2.58%	0.4268	+2.11%	0.4279	+2.37%
19	0.4471	0.4730	+5.79%	0.4710	+5.35%	0.4597	+2.82%	0.4629	+3.53%	0.4463	-0.18%	0.4575	+2.33%
20	0.5330	0.5273	-1.07%	0.5553	+4.18%	0.5355	+0.47%	0.5340	+0.19%	0.5221	-2.05%	0.5307	-0.43%
22	0.4921	0.5074	+3.11%	0.5045	+2.52%	0.5043	+2.48%	0.5037	+2.36%	0.4975	+1.10%	0.5021	+2.03%
24	0.5361	0.5034	-6.10%	0.5346	-0.28%	0.5274	-1.62%	0.5188	-3.23%	0.5346	-0.28%	0.5241	-2.24%
26	0.5302	0.5411	+2.06%	0.5417	+2.17%	0.5283	-0.36%	0.5344	+0.79%	0.5119	-3.45%	0.5291	-0.21%
Mean	0.4504	0.4448	-1.34%	0.4600	+2.14% ↑	0.4504	-0.05%↓	0.4488	-0.40% ↓	0.4772	-0.71%	0.4484	-0.48%↑

Table S21. Topical Coherence of Main Path Networks on AANMT (T = 20, P = 50).

T	MPN	add_E	xt_Mot	plus	add_Use	plus	add_Sim	add_C	ombined	del_B	kg_Fut	del_C	ombined
	coh_{tpk}	coh_{tpk}	$\Delta\%$										
10	0.3516	0.3267	-7.08%	0.3326	-5.40%	0.3267	-11.35%	0.3287	-6.51%	0.3347	-4.81%	0.3309	-5.89%
11	0.3650	0.3906	+7.01%	0.3973	+8.85%	0.3906	-0.25%	0.3866	+5.92%	0.3695	+1.23%	0.3806	+4.27%
12	0.3757	0.3670	-2.32%	0.3794	+0.98%	0.3670	-6.65%	0.3611	-3.89%	0.3732	-0.67%	0.3653	-2.77%
13	0.4174	0.4119	-1.32%	0.4180	+0.14%	0.4119	-5.94%	0.4045	-3.09%	0.4064	-2.64%	0.4042	-3.16%
14	0.4450	0.4283	-3.75%	0.4455	+0.11%	0.4283	-6.56%	0.4262	-4.22%	0.4424	-0.58%	0.4330	-2.70%
15	0.4256	0.4254	-0.05%	0.4531	+6.46%	0.4254	+1.17%	0.4320	+1.50%	0.4277	+0.49%	0.4299	+1.01%
16	0.4230	0.4125	-2.48%	0.4247	+0.40%	0.4125	-3.78%	0.4163	-1.58%	0.4218	-0.28%	0.4186	-1.04%
17	0.5051	0.4855	-3.88%	0.5002	-0.97%	0.4855	-4.71%	0.4880	-3.39%	0.5059	+0.16%	0.4936	-2.28%
18	0.4935	0.4804	-2.65%	0.4962	+0.55%	0.4804	-5.11%	0.4781	-3.12%	0.4948	+0.26%	0.4852	-1.68%
19	0.4516	0.4911	+8.75%	0.4957	+9.77%	0.4911	+0.82%	0.4750	+5.18%	0.4606	+1.99%	0.4693	+3.92%
20	0.5064	0.4673	-7.72%	0.4903	-3.18%	0.4673	-6.38%	0.4746	-6.28%	0.4919	-2.86%	0.4820	-4.82%
Mean	0.4327	0.4261	-1.41%	0.4394	+1.61% ↑	0.4138	-4.43%↓	0.4246	-1.77% ↓	0.4299	-0.70%	0.4266	-1.38% ↑

H. MORE REFERENCES

- Blei, D., Ng., A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993–1022. https://www.jmlr.org/papers/v3/blei03a.html
- Lauscher, A., Brandon, K., Kuehl, B., Johnson, S., Jurgens, D., Cohan, A., & Lo, K. (2021). MULTICITE: Modeling realistic citations requires moving beyond the single-sentence single-label setting. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL '22), 1875–1888. https://aclanthology.org/2022.naacl-main.137/
- Radev, D. R., Muthukrishnan, P., Qazvinian, V., & Abu-Jbara, A. (2013). The ACL anthology network corpus. Language Resource and Evaluation, 47(4), 919-944. https://doi.org/10.1007/s10579-012-9211-2
- Röder, M., Both, A., & Hineburg, A. (2015). Exploring the Space of Topic Coherence Measures. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining (WSDM'15), 399–408. https://doi.org/10.1145/2684822.2685324
- Teufel, S. (2010). The Structure of Scientific Articles: Applications to Citation Indexing and Summarization. Centre for the Study of Language & Information.
- Valenzuela, M., Ha, V., & Etzioni, O. (2015). Identifying Meaningful Citations. In Proceedings of the Workshops of Scholarly Big Data: AI Perspectives, Challenges, and Ideas at the 29th AAAI Conference on Artificial Intelligence. https://allenai.org/data/meaningful-citations
- Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is All You Need. In Proceedings of the Thirty-first Conference on Neural Information Processing System (NIPS'17). https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
- Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in Complex Systems, 10(1), 93–115. https://doi.org/10.1142/S0219525907000945
- Yu, D., & Pan, T. (2021). Tracing the main path of interdisciplinary research considering citation preference: A case from blockchain domain. *Journal of Informetrics*, 16(2), 101136. https://doi.org/10.1016/j.joi.2021.101136.
- Yu, D., & Sheng, L. (2021). Influence difference main path analysis: Evidence from DNA and blockchain domain citation networks. *Journal of Informetrics*, 15(4), 101186. https://doi.org/10.1016/j.joi.2021.101186.
- Zhang, H., Li, L., Li, T., & Wang, D. (2014). PatentDom: Analyzing Patent Relationships on Multi-View Patent Graphs. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management (CIKM'14), 1369–1378. https://doi.org/10.1145/2661829.2662031