Přednáška 4, 13. března 2015

Tvrzení (monotonie \Rightarrow integrovatelnost). Je-li funkce $f: [a,b] \rightarrow \mathbb{R}$ na intervalu [a,b] nerostoucí nebo neklesající, potom má Riemannův integrál.

 $D\mathring{u}kaz$. Nechť f neklesá (pro nerostoucí f se argumentuje podobně). Pro každý podinterval $[\alpha,\beta]\subset [a,b]$ pak máme $\inf_{[\alpha,\beta]}f=f(\alpha)$ a $\sup_{[\alpha,\beta]}f=f(\beta)$. Buď dáno $\varepsilon>0$. Vezmeme libovolné dělení $D=(a_0,a_1,\ldots,a_{k-1})$ intervalu [a,b] s $\lambda(D)<\varepsilon$ a máme

$$S(f,D) - s(f,D) = \sum_{i=0}^{k-1} (a_{i+1} - a_i) (\sup_{I_i} f - \inf_{I_i} f)$$

$$= \sum_{i=0}^{k-1} (a_{i+1} - a_i) (f(a_{i+1}) - f(a_i))$$

$$\leq \varepsilon \sum_{i=0}^{k-1} (f(a_{i+1}) - f(a_i))$$

$$= \varepsilon (f(a_k) - f(a_0)) = \varepsilon (f(b) - f(a)).$$

Tuto mez lze zmenšováním ε učinit libovolně malou. Podle kritéria integrovatelnosti tedy $f \in \mathcal{R}(a,b)$. (Kontrolní otázka: proč v předešlém výpočtu nelze místo \leq psát <?)

I spojitost postačuje pro integrovatelnost. Musíme se však seznámit s její silnější podobou. Řekneme, že funkce $f: I \to \mathbb{R}$, kde I je interval, je stejnoměrně spojitá (na I), pokud

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ x, x' \in I, \ |x - x'| < \delta \Rightarrow |f(x) - f(x')| < \varepsilon.$$

Požaduje se tedy silněji, aby jediná mez δ fungovala pro všechny dvojice bodů x,x' z I. V obyčejné spojitosti může δ záviset na poloze x a x'. Stejnoměrná spojitost implikuje triviálně spojitost, ale naopak to obecně neplatí. Například funkce

$$f(x) = 1/x : I = (0,1) \to \mathbb{R}$$

je na I spojitá, ale ne stejnoměrně spojitá: f(1/(n+1)) - f(1/n) = 1, i když $1/(n+1) - 1/n \to 0$ pro $n \to \infty$. Na kompaktním intervalu I, což je interval typu [a,b] s $-\infty < a \le b < +\infty$, však naštěstí oba typy spojitosti splývají.

Tvrzení (na kompaktu: spojitost \Rightarrow stejnoměrná spojitost). *Je-li funkce* $f: [a,b] \to \mathbb{R}$ na intervalu [a,b] spojitá, je na něm stejnoměrně spojitá.

 $D\mathring{u}kaz$. Pro spor předpokládáme, že $f:[a,b]\to\mathbb{R}$ je spojitá v každém bodě intervalu [a,b] (tedy jednostraně v krajních bodech a a b), ale že není na [a,b] stejnoměrně spojitá. Odvodíme spor. Negace stejnoměrné spojitosti znamená, že

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x, x' \in I: \ |x - x'| < \delta \ \& \ |f(x) - f(x')| \ge \varepsilon.$$

Což znamená, že pro $\delta=1/n$ a $n=1,2,\ldots$ existují body $x_n,x_n'\in[a,b]$, že $|x_n-x_n'|<1/n$, ale $|f(x_n)-f(x_n')|\geq \varepsilon$. Díky Bolzanově–Weierstrassově větě ze ZS můžeme bez újmy na obecnosti předpokládat, že posloupnosti (x_n) a (x_n') obě konvergují a (nevyhnutelně) k témuž bodu α z [a,b]. (Podle této věty existuje posloupnost přir. čísel $k_1< k_2<\ldots$, že (x_{k_n}) konverguje. Opět podle této věty existuje posloupnost přir. čísel $l_1< l_2<\ldots$, že $(x_{k_{l_n}}')$ konverguje. Posloupnost $(x_{k_{l_n}})$ zůstává konvergentní, protože je podposloupností posloupnosti (x_{k_n}) . Protože $|x_{k_{l_n}}-x_{k_{l_n}}'|<1/k_{l_n}\leq 1/n\to 0$,

$$\lim_{n \to \infty} x_{k_{l_n}} = \lim_{n \to \infty} x'_{k_{l_n}} = \alpha .$$

Abychom se vyhnuli vícenásobným indexům, přeznačíme $x_{k_{l_n}}$ jako x_n a $x'_{k_{l_n}}$ jako x'_n .) Podle Heineho definice limity, spojitosti f v bodě α a aritmetiky limit máme

$$0 = f(\alpha) - f(\alpha) = \lim f(x_n) - \lim f(x'_n) = \lim (f(x_n) - f(x'_n)).$$

Jsme ve sporu s tím, že $|f(x_n) - f(x'_n)| \ge \varepsilon$ pro každé n.

Tvrzení (spojitost \Rightarrow integrovatelnost). Je-li funkce $f: [a,b] \to \mathbb{R}$ na intervalu [a,b] spojitá, potom má Riemannův integrál.

 $D\mathring{u}kaz$. Nechť f je na [a,b] spojitá. Buď dáno $\varepsilon>0$. Podle předchozího tvrzení vezmeme $\delta>0$, že $|f(x)-f(x)'|<\varepsilon$ platí, jakmile $x,x'\in[a,b]$ jsou blíže než δ . Tedy

$$\sup_{[\alpha,\beta]} f - \inf_{[\alpha,\beta]} f \le \varepsilon$$

platí pro každý podinterval $[\alpha, \beta] \subset [a, b]$ délky menší než δ (proč?). Vezmeme jakékoli dělení $D = (a_0, a_1, \dots, a_{k-1})$ intervalu [a, b] s $\lambda(D) < \delta$ a máme

$$S(f,D) - s(f,D) = \sum_{i=0}^{k-1} (a_{i+1} - a_i) (\sup_{I_i} f - \inf_{I_i} f)$$

$$\leq \sum_{i=0}^{k-1} (a_{i+1} - a_i) \varepsilon$$

$$= \varepsilon (a_k - a_0) = \varepsilon (b - a).$$

Tuto mez lze zmenšováním ε učinit libovolně malou. Podle kritéria integrovatelnosti tedy $f \in \mathcal{R}(a,b)$.

Že monotonie i spojitost postačují k integrovatelnosti jsme dokázali přímo, i když obojí vyplývá hned jako důsledek z Lebesgueovy věty, což si rozmyslete jako cvičení. Zmíníme její další důsledky.

Tvrzení (spojitost(integrovatelnost)=integrovatelnost). Má-li funkce $f: [a,b] \to [c,d]$ Riemannův integrál a $g: [c,d] \to \mathbb{R}$ je na [c,d] spojitá, potom má složená funkce $g(f): [a,b] \to \mathbb{R}$ Riemannův integrál.

 $D\mathring{u}kaz$. Protože vnější funkce g je omezená, jako spojitá funkce na kompaktním intervalu, je i složená funkce g(f) omezená. Je-li f spojitá v bodě α z [a,b], je i složená funkce g(f) spojitá v α , protože g je spojitá v $f(\alpha)$ a spojitost se skládáním zachovává, jak jsme si dokázali v ZS. Množina M bodů nespojitosti funkce g(f) je tedy obsažena v množině N bodů nespojitosti funkce f. Podle předpokladu a L. věty má N nulovou míru. Takže i M má nulovou míru a podle L. věty má g(f) Riemannův integrál.

Proto z $f \in \mathcal{R}(a, b)$ plyne například $f^2 \in \mathcal{R}(a, b)$ nebo $|f| \in \mathcal{R}(a, b)$. Jako cvičení si rozmyslete, proč a jak z $f, g \in \mathcal{R}(a, b)$ plyne, že i

$$fg \in \mathcal{R}(a,b)$$
 a $\max(f,g) \in \mathcal{R}(a,b)$.

Nyní se podíváme na linearitu R. integrálu. Nejprve ukážeme linearitu $\int_a^b f$ jako funkce integrandu f, a pak jako funkce integračních mezí a a b.

Tvrzení (linearita \int v integrandu). Nechť $f, g \in \mathcal{R}(a, b)$ jsou dvě funkce mající R. integrál a α , $\beta \in \mathbb{R}$. Potom i

$$\alpha f + \beta g \in \mathcal{R}(a, b)$$
 a $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$.

 $D\mathring{u}kaz$. Stačí prověřit tři speciální případy lineárních kombinací, totiž -f, αf s $\alpha \geq 0$ a f+g, ostatní se z těchto již odvodí. Buď dáno $\varepsilon > 0$. Podle kritéria integrovatelnosti existuje dělení D intervalu [a,b], že

$$S(f, D) - s(f, D) < \varepsilon \& S(g, D) - s(g, D) < \varepsilon$$
.

(Jistě máme dvě taková dělení, D_1 pro f a D_2 pro g. Přechodem ke společnému zjemnění dosáhneme, že $D_1=D_2$.) Podle definice infima a suprema množiny reálných čísel, pro libovolný podinterval $I\subset [a,b]$ platí, že (pro $\alpha\geq 0$)

$$\inf_{I}(-f) = -\sup_{I} f, \ \inf_{I} \alpha f = \alpha \inf_{I} f, \ \inf_{I} (f+g) \ge \inf_{I} f + \inf_{I} g$$

a analogicky pro suprema (prohodíme inf a sup a poslední nerovnost otočíme). Podle definice dolní, popř. horní, sumy jako lineární kombinace (s > 0 koeficienty) infim, popř. suprem,

$$S(-f, D) - s(-f, D) = -s(f, D) - (-S(f, D)) = S(f, D) - s(f, D) < \varepsilon,$$

$$S(\alpha f, D) - s(\alpha f, D) = \alpha S(f, D) - \alpha s(f, D) \le \alpha \varepsilon \ (\alpha \ge 0)$$

a

$$S(f+g,D) - s(f+g,D) \le (S(f,D) + S(g,D)) - (s(f,D) + s(g,D))$$

= $S(f,D) - s(f,D) + S(g,D) - s(g,D)$
< 2ε .

Takže, podle kritéria integrovatelnosti, i $-f, \alpha f, f + g \in \mathcal{R}(a, b)$. Navíc, podle nerovností mezi dolními a horními sumami a integrálem, $\int_a^b f \in [s(f, D), S(f, D)]$ a totéž platí pro funkci g. Tedy $\int_a^b (-f)$ leží v intervalu

$$[s(-f,D), S(-f,D)] = [-S(f,D), -s(f,D)] \ni -\int_{a}^{b} f$$

a čísla $\int_a^b (-f)$ a $-\int_a^b f$ se tak liší o méně než ε . Tedy $\int_a^b (-f) = -\int_a^b f$. Podobně $\int_a^b \alpha f$ leží v intervalu

$$[s(\alpha f, D), S(\alpha f, D)] = [\alpha s(f, D), \alpha S(f, D)] \ni \alpha \int_{a}^{b} f$$

o délce nejvýše $\alpha \varepsilon$, a tak $\int_a^b \alpha f = \alpha \int_a^b f$. Konečně $\int_a^b (f+g)$ leží v intervalu

$$[s(f+g,D), S(f+g,D)] \subset [s(f,D)+s(g,D), S(f,D)+S(g,D)] \ni \int_a^b f + \int_a^b g f dx$$

o délce méně než
$$2\varepsilon$$
, a tak $\int_a^b (f+g) = \int_a^b f + \int_a^b g$.

Podle předchozího tvrzení množina riemannovsky integrovatelných funkcí $\mathcal{R}(a,b)$ tvoří vektorový prostor nad tělesem \mathbb{R} a $f\mapsto \int_a^b f$ je lineární zobrazení z $\mathcal{R}(a,b)$ do \mathbb{R} . Říkáme, že R. integrál je lineární funkcionál. Předchozí důkaz linearity pomocí dolních a horních sum jsem na přednášce z časových důvodů neuváděl a odvolal jsem se na ekvivalenci obou definic R. integrálu, kterou nebudeme dokazovat.

Věta (ekvivalence obou definic R. \int). Obě definice Riemannova integrálu jsou ekvivalentní: pro každou funkci $f: [a,b] \to \mathbb{R}$

$$\lim_{\lambda(D)\to 0} R(f,D,C) \ \ \textit{existuje} \quad \Longleftrightarrow \ \int_a^b f = \overline{\int_a^b} f \in \mathbb{R}$$

a obě hodnoty, pokud existují, se rovnají.

Jako cvičení si rozmyslete důkaz tvrzení o linearitě \int v integrandu pomocí první definice R. integrálu.

Přejdeme k linearitě \int jako funkce integračních mezí. Nejprve mírně rozšíříme definici $\int_a^b f$:

$$\int_{a}^{a} f := 0$$
 a $\int_{a}^{b} f := -\int_{b}^{a} f$ pro $a > b$.

Pro $f:[a,b]\to\mathbb{R}$ a podinterval $I\subset[a,b]$ označíme zúžení funkce f na I v následujícím tvrzení pro jednoduchost opět jako f.

Tvrzení (linearita \int v integračních mezích). Nechť $f:[a,b] \to \mathbb{R}$ je funkce $a \in (a,b)$. Potom

$$f \in \overline{\mathcal{R}}(a,b) \iff f \in \mathcal{R}(a,c) \& f \in \mathcal{R}(c,b)$$

a, jsou-li tyto integrály definované,

$$\int_a^b f = \int_a^c f + \int_c^b f .$$

 $D\mathring{u}kaz$. Jako $f_1: [a,c] \to \mathbb{R}$ a $f_2: [c,b] \to \mathbb{R}$ označíme zúžení funce f na uvedený podinterval. Nechť $f \in \mathcal{R}(a,b)$. Pro dané $\varepsilon > 0$ podle kritéria integrovatelnosti máme dělení D intervalu [a,b], že $S(f,D) - s(f,D) < \varepsilon$. Můžeme předpokládat (přechodem ke zjemnění), že $c \in D$. Bod c dělí D na dělení D' intervalu [a,c] a dělení D'' intervalu [c,b]. Protože $S(f,D) = S(f_1,D') + S(f_2,D'')$ a $s(f,D) = s(f_1,D') + s(f_2,D'')$, z

$$\varepsilon > S(f, D) - s(f, D) = (S(f_1, D') - s(f_1, D')) + (S(f_2, D'') - s(f_2, D''))$$

plyne, díky nezápornosti rozdílu horní a dolní sumy, že i $\varepsilon > S(f_1, D') - s(f_1, D')$ a $\varepsilon > S(f_2, D'') - s(f_2, D'')$. (Obecně samozřejmě z $\gamma > \alpha + \beta$ neplyne, že $\gamma > \alpha$ a $\gamma > \beta$.) Tedy, podle kritéria integrovatelnosti, $f_1 \in \mathcal{R}(a,c)$ a $f_2 \in \mathcal{R}(c,b)$. Máme $\int_a^c f_1 \in [s(f_1,D'),S(f_1,D')], \int_c^b f_2 \in [s(f_2,D''),S(f_2,D'')]$ a $\int_a^b f \in [s(f,D),S(f,D)]$, z čehož plyne, že $\int_a^c f_1 + \int_c^b f_2$ a $\int_a^b f$ se liší o méně než ε . Tedy $\int_a^c f_1 + \int_c^b f_2 = \int_a^b f$. Nechť $f_1 \in \mathcal{R}(a,c)$ a $f_2 \in \mathcal{R}(c,b)$. Pro dané $\varepsilon > 0$ podle kritéria inte-

Nechť $f_1 \in \mathcal{R}(a,c)$ a $f_2 \in \mathcal{R}(c,b)$. Pro dané $\varepsilon > 0$ podle kritéria integrovatelnosti máme dělení D' intervalu [a,c] a dělení D'' intervalu [c,b], že $S(f_1,D') - s(f_1,D') < \varepsilon$ a $S(f_2,D'') - s(f_2,D'') < \varepsilon$. Sečtením dostaneme

$$2\varepsilon > S(f_1, D') - s(f_1, D') + S(f_2, D'') - s(f_2, D'') = S(f, D) - s(f, D),$$

kde D je dělení intervalu [a, b] vzniklé spojením D' a D''. Tedy, podle kritéria integrovatelnosti, i $f \in \mathcal{R}(a, b)$.

Důsledek (\int **přes cyklus je** 0). Nechť $a, b, c \in \mathbb{R}$, $d = \min(a, b, c)$, $e = \max(a, b, c)$ a $f \in \mathcal{R}(d, e)$. Potom následující tři integrály existují a

$$\int_{a}^{b} f + \int_{b}^{c} f + \int_{c}^{a} f = 0.$$

 $D\hat{u}kaz$. Nechť například d = a < e = c. Podle předchozího tvrzení máme

$$\int_a^b f + \int_b^c f = \int_a^c f .$$

Celý součet pak je $\int_a^c f + \int_c^a f = \int_a^c f - \int_a^c f = 0$. Ostatní možnosti jsou podobné.