commands

CN Lab programs config commands

Program 1

no config required

Program 2a - Simple VLAN


```
> enable # to enter privileged mode
> show vlan # to display the vlan table
```

in the switch run the commands

```
> enable
# config t
# vlan 10
# name green
# exit
# vlan 20
# name red
# exit
# vlan 30
# name blue
# exit
# show vlan
```

show vlan

```
VLAN Name
active Fa0/1, Fa0/2, Fa0/3, Fa0/4
1 default
                                    Fa0/5, Fa0/6, Fa0/7, Fa0/8
                                    Fa0/9, Fa0/10, Fa0/11, Fa0/12
                                    Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                     Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                    Fa0/21, Fa0/22, Fa0/23, Fa0/24
                                    Gig0/1, Gig0/2
10 green
                            active
20 red
                            active
30 blue
                            active
1002 fddi-default
                            active
1003 token-ring-default
                           active
active
1004 fddinet-default
1005 trnet-default
```

new vlan are created but do not have any ports assigned

```
# config t
# interface range f0/1-2
```

```
# switchport mode access
# switchport access vlan 10
# interface range f0/3-4
# switchport mode access
# switchport access vlan 20
# interface range f0/5-6
# switchport mode access
# switchport access vlan 30
# exit
# exit
# show vlan
```

show vlan VLAN Name Status Ports 1 default active Fa0/7, Fa0/8, Fa0/9, Fa0/10 Fa0/11, Fa0/12, Fa0/13, Fa0/14 Fa0/15, Fa0/16, Fa0/17, Fa0/18 Fa0/19, Fa0/20, Fa0/21, Fa0/22 Fa0/23, Fa0/24, Gig0/1, Gig0/2 10 green active Fa0/1, Fa0/2 20 red active Fa0/3, Fa0/4 30 blue active Fa0/5, Fa0/6 1002 fddi-default active 1003 token-ring-default active 1004 fddinet-default 1005 trnet-default active

now we see the ports are added to respective vlan

Program 2b - VLAN trunk interface

do all the steps of program 2a in each switch

to setup trunk interface on Switch1

```
> enable
# config t
# interface gig0/1
# switchport mode trunk
# exit
```

to setup trunk interface on Switch2

```
> enable
# config t
# interface gig0/1
# switchport mode trunk
# exit
```

Program 3 - Static Routing

use the command

```
ip route [network address] [subnet mask] [next hop]
```

set appropriate ip address as well as network gateway for each PC.

at router 1

```
> enable
# config t
# ip route 192.168.3.0 255.255.255.0 192.168.2.2
# ip route 192.168.5.0 255.255.255.0 192.168.4.2
```

at router 2

```
> enable
# config t
```

```
# ip route 192.168.1.0 255.255.255.0 192.168.2.1
# ip route 192.168.5.0 255.255.255.0 192.168.4.2
```

at router 3

```
> enable
# config t
# ip route 192.168.1.0 255.255.255.0 192.168.2.1
# ip route 192.168.3.0 255.255.255.0 192.168.4.1
```

Program 4 - Subnetting

nothing much in terms of configuration. pick a topology and change the subnet mask according to requirement.

Program 5a - RIP routing

add the neighboring networks of the user using gui interface

Program 5b - OSPF routing


```
> enable
# config t
# router ospf 1
# network 192.168.1.0 0.255.255.255 area 0
# network 10.0.0.0 0.255.255.255 area 0
```

router 2 configuration

```
> enable
# config t
# router ospf 1
# network 192.168.2.0 0.255.255.255 area 0
# network 10.0.0.0 0.255.255.255 area 0
# network 11.0.0.0 0.255.255.255 area 0
```

router 3 configuration

```
> enable
# config t
# router ospf 1
# network 192.168.3.0 0.255.255.255 area 0
# network 11.0.0.0 0.255.255.255 area 0
```

Program 5c - EIGRP routing

router 1 configuration

```
> enable
# config t
# router eigrp 100
# network 192.168.1.0
# network 10.0.0.0
```

router 2 configuration

```
> enable
# config t
# router eigrp 100
# network 192.168.2.0
# network 10.0.0.0
# network 11.0.0.0
```

router 3 configuration

```
> enable
# config t
```

```
# router eigrp 100
# network 192.168.3.0
# network 11.0.0.0
```

Program 6 - DHCP

enable the dhcp service in the server.

DHCP

then open IP configuration in the PC, and select DHCP.

Program 7 - NAT

to enable default routing, run the following in Router 1

```
# ip route 0.0.0.0 0.0.0.0 100.1.1.2
```

and the following in Router 2

```
# ip route 0.0.0.0 0.0.0.0 100.1.1.1
```

for static nat

in router 1

```
> enable
# config t
# ip nat inside source static 192.168.1.1 50.1.1.1
# ip nat inside source static 192.168.1.2 50.1.1.2
```

```
# interface gig0/0/0
# ip nat inside
# exit
# interface se0/1/0
# ip nat outside
```

to clear nat translations

in router 1

```
> enable
# clear ip nat translation *
# config t
# no ip nat inside source static 192.168.1.1 50.1.1.1
# no ip nat inside source static 192.168.1.2 50.1.1.2
```

for dynamic nat

in router 1

```
> enable
# config t
# access-list 55 permit 192.168.1.0 0.0.0.255
# ip nat pool CCNA 50.1.1.1 50.1.1.200 netmask
255.255.255.0
# ip nat inside source list 55 pool CCNA
# interface gig0/0/0
# ip nat inside
# exit
# interface se0/1/0
# ip nat outside
```

Program 8 - DNS

we have 4 levels of DNS server. local \rightarrow root \rightarrow top level domain \rightarrow authority server

in local DNS, the configuration is

in root DNS, the configuration is

in TLD, the configuration is

in Authority server the configuration is,

now try to ping www.google.com from the PC.