CSE460: VLSI Design

Lecture 2

Review of digital logic design

Background

- Logic gates (AND, OR, NOT, XOR, etc.)
- Boolean algebra
- Truth tables
- Logic functions
- Logic function synthesis by
 - Sum of Products (SOP)
 - Product of Sums (POS)
 - K-maps
- Logic blocks (MUX, DEMUX)
- Sequential elements (Latch, Flip-flop)

Logic gates

AND

A	В	Output	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

NAND

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

OR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

NOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

XOR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	1

NOT

Input	Output
0	1
1	0

Generalized n-input logic gates

Axioms of Boolean Algebra

- 1a. $0 \cdot 0 = 0$
- 1b. 1 + 1 = 1
- 2a. 1 · 1 = 1
- 2b. 0 + 0 = 0
- 3a. $0 \cdot 1 = 1 \cdot 0 = 0$
- 3b. 1 + 0 = 0 + 1 = 1
- 4a. If x = 0, then x' = 1
- 4b. If x = 1, then x' = 0

Boolean Algebra - Single Variable Theorems

- 5a. $x \cdot 0 = 0$
- 5b. x + 1 = 1
- 6a. $x \cdot 1 = x$
- 6b. x + 0 = x
- $7a. x \cdot x = x$
- 7b. x + x = x
- 8a. $x \cdot x' = 0$
- 8b. x + x' = 1
- 9. (x')' = x

Boolean Algebra - Two Variable Properties

- 10a. $x \cdot y = y \cdot x$
- 10b. x + y = y + x
- 11a. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 11b. x + (y + z) = (x + y) + z
- 12a. $x \cdot (y + z) = x \cdot y + x \cdot z$
- 12b. $x + y \cdot z = (x + y) \cdot (x + z)$
- 13a. $x + x \cdot y = x$
- 13b. $x \cdot (x + y) = x$
- 14a. $x \cdot y + x \cdot y' = x$
- 14b. $(x + y) \cdot (x + y') = x$

Commutative

Associative

Distributive

Absorption

Combining

Boolean Algebra - Two & Three Variable Properties

• 15a. $(x \cdot y)' = x' + y'$

DeMorgan's theorem

- 15b. $(x + y)' = x' \cdot y'$
- 16a. $x + x' \cdot y = x + y$
- 16b. $x \cdot (x' + y) = x \cdot y$
- 17a. x · y + y · z + x' · z = x · y + x' · z Consensus
- 17b. $(x + y) \cdot (y + z) \cdot (x' + z) = (x + y) \cdot (x' + z)$

Logic Function Synthesis - Three variable SOP & POS

Function synthesis from truth table

Row number	x_1	x_2	x_3	Minterm	Maxterm
0 1 2 3 4 5 6 7	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0		$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \bar{x}_3$ $M_2 = x_1 + \bar{x}_2 + x_3$ $M_3 = x_1 + \bar{x}_2 + \bar{x}_3$ $M_4 = \bar{x}_1 + x_2 + x_3$ $M_5 = \bar{x}_1 + x_2 + \bar{x}_3$ $M_6 = \bar{x}_1 + \bar{x}_2 + x_3$ $M_7 = \bar{x}_1 + \bar{x}_2 + \bar{x}_3$

- A Minterm m_i is a complete argument vector (a,b,c,...,x) for which a Boolean function f(a,b,c,...,x) delivers the value '1'. It has "minimum" satisfiability.
- A Maxterm M_i is a complete argument vector (a,b,c,...,x) for which a Boolean function f(a,b,c,...,x) delivers the value '0'. It has "maximum" satisfiability.

SOP: Sum of product

- ABC'+B'CD+ABCD+AD'
- $A \rightarrow 1$, $A' \rightarrow 0$

POS: Product of sum

- (A+B+C')(A+D')(B'+C+D)
- **A**→0, **A**'→1

Logic Function Synthesis - Three variable SOP & POS

Example: 01: Write down the Boolean expression in **SOP** form that describes this truth table

Α	В	С	Q
0	0	0	0
0	1	0	1
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	0
1	0	1	0
1	1	1	1

$$\overline{A}.B.\overline{C} + A.\overline{B}.\overline{C} + \overline{A}.\overline{B}.C + A.B.C = Q$$

Example: 02: Write down the Boolean expression in **POS** form that describes this truth table

Logic Function Synthesis - Three variable SOP & POS

Example: 01: Write down the Boolean expression in **POS** form that describes this truth table

Α	В	С	Output	Output	
0	0	0	0	0	(A + B + C)
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	1	
1	0	0	0	1	
1	0	1	1	1	
1	1	0	1	1	
1	1	1	1	0	$(\overline{A} + \overline{B} + \overline{C})$

Output = $(A + B + C) (\overline{A} + \overline{B} + \overline{C})$

Logic Function Synthesis - 2/3/4 variable k-map

Function synthesis using k-maps

x_1	x_2	
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

Logic Function Synthesis - 2/3/4 variable k-map

Function synthesis using k-maps

- 1. No zeros allowed.
- 2. No diagonals.
- 3. Only power of 2 number of cells in each group. $(2^0=1, 2^1=2, 2^2=4, 2^3=8, \text{ etc.})$
- 4. Groups should be as large as possible.
- 5. Every 1 must be in at least one group.
- 6. Overlapping allowed.
- 7. Wrap around allowed.
- 8. Fewest number of groups possible.

Visit: http://www.ee.surrey.ac.uk/Projects/Labview/minimisation/karrules.html

Example: 01

Example: 03

Example: 02

Out =
$$\overline{A}$$
 \overline{B} \overline{C} + \overline{A} \overline{A} \overline{C} \overline{C}

Out =
$$\overline{A}\overline{B}\overline{C}$$
 + $\overline{A}\overline{B}C$ + $\overline{A}BC$ + $\overline{A}B\overline{C}$ + $\overline{A}BC$ + $\overline{$

Example: 05

Out =
$$\overline{A}BC + ABC$$

Example: 06

Out =
$$\overline{A}\overline{B}\overline{C}$$
 + $\overline{A}\overline{B}\overline{C}$ + $\overline{A}\overline{C}$ + $\overline{A}\overline{C}$ + $\overline{A}\overline{C}$ + $\overline{A}\overline{C}$ + $\overline{A}\overline{C}$ + $\overline{A}\overline{C}$ + $\overline{A}\overline$

Example: 07

Out =
$$\overline{A}\overline{B}\overline{C}$$
 + $\overline{A}\overline{B}C$ + $\overline{A}BC$ + $\overline{A}B\overline{C}$ + $\overline{A}B\overline{C$

Example: 08

Out = \overline{C}

Output
$$= AB + BC + AC$$

Example: 01

Out =
$$\overline{ABCD}$$
 + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}

Out =
$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

Example: 03

Out =
$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

Example: 05

Out =
$$\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

Out =
$$\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD$$

+ $\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD$
+ $\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD$

ABCE	00	01	11	10
00	[-	$\frac{1}{2}$	1	
01	(<u> –)</u>	(\exists)	1-	
11		1	1	
10				

Out =
$$\overline{AC}$$
 + \overline{AD} + \overline{BC} + \overline{BD}

Don't Care Condition

Example: 01

$$L4 = A$$

$$L5 = AC$$

*** Don't care cells may be used as either 1s or 0s, whichever is useful

There are four sensors, A, B, C, and D that control the lights in a room. Each sensor transitions to a **HIGH** state when it detects an ambient light level exceeding a predefined threshold. The room's lights will turn **ON** when the majority of sensors are in the **LOW** state. If the number of sensors in the **HIGH** and **LOW** states is equal, the room's lighting condition remains **indeterminate** (i.e., a don't care condition). Answer questions (a-c) below based on this description.

D) and their corresponding output states.

(a) [2 marks] Write down the truth table for the system, describing all possible states of the sensors (A, B, C,

- (b) [5 marks] Draw the Karnaugh map (K-map) for the system based on the truth table in part (a). Derive the logical expression that governs the system from the K-map.
- (c) [5 marks] Draw the CMOS logic circuit for the logical expression derived in part (b). Specify the number of MOSFETs required to implement your design.

Multiplexer

Multiple inputs, single output. Output is chosen by selector pin/s

4x1 Multiplexer

Multiplexer

Block Diagram:

Truth Table:

Output
Y
A ₀
A ₁

The logical expression of the term Y is as follows:

$$Y=S_0'.A_0+S_0.A_1$$

Block Diagram:

Truth Table:

INP	Output	
S ₁	S ₀	Υ
0	0	A ₀
0	1	A ₁
1	0	A ₂
1	1	A ₃

The logical expression of the term Y is as follows:

And Gate Using 2:1 MUX

AND

A	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate Using 2:1 MUX

OR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

NAND Gate using MUX

Α	В	OUT	_
0	0	1	OUT = 1 when A = 0
0	1	1	when A = 0
1	0	1	OUT = B'
1	1	0	when A = 1

NOR Gate using MUX

Α	В	OUT	
0	0	1	OUT = B' when A = 0
0	1	0	when A = 0
1	0	0	OUT = 0 when A = 1
1	1	0	when A = 1

Difference between combinational and sequential circuits

Combinational Circuit	Sequential Circuit
This output is solely dependent on the current input.	This output is affected by both current and previous input.
The process is quick.	The process is slow.
It is intended to be simple.	When compared to combinational circuits, it is more efficiently designed.
There is no feedback from input to output.	A feedback path exists between input and output.
This is not dependent on time.	This is time-sensitive.
Basic building blocks: Logical gates	Basic building blocks: Flip-flops
Used for both arithmetic and boolean operations.	Mostly used for data storage.
Combinational circuits are incapable of storing any state.	Sequential circuits can store any state or retain previous states.
Combinational circuits do not require triggering because they lack a clock.	Sequential circuits require triggering because they are clock dependent.
These circuits lack a memory element.	Memory elements are used in these circuits.
It is simple to use and manage.	It is difficult to use and handle.

- Combinational circuits are built with logic gates such as AND, OR, NOT, NAND, and NOR. These logic gates serve as the foundation for combinational circuits.
- Sequential circuits are built with counters, shift registers, latches, etc.

Latch

- Latches are digital circuits that can store a single bit of information and hold its value until it is updated by new input signals. Latches are asynchronous.
- They are used in digital systems as temporary storage elements to store binary information.
- Latches can be implemented using various digital logic gates, such as <u>AND</u>, <u>OR</u>, NOT,
 NAND, and NOR gates.
- Different types of latches: SR (Set-Reset) Latches, Gated SR Latches, D Latches,
 Gated D Latches, JK Latches, T Laches.

D Latch

- Level sensitive element
- A positive level triggered D latch
 - o copies D to output Q, if Clock=1, else preserves the previous output
- A negative level triggered D latch
 - o copies D to output Q, if Clock=0, else preserves the previous output

D Flip-flop

clk	D	Q	ā
0	0	Q	ā
0	1	Q	ā
1	0	0	1
1	1	1	0

Table of truth:

Negative Edge triggering of D f/f

Truth table

INF	PUTS		OUTPU	ITS
CLK	D	Q	Q'	COMMENTS
0	0	0	1	NC
1	1	0	1	NC
\vee	0	0	1	RESET
\downarrow	1	1	0	SET

D Latch

- Level sensitive element
- A positive level triggered D latch
 - o copies D to output Q, if Clock=1, else preserves the previous output
- A negative level triggered D latch
 - o copies D to output Q, if Clock=0, else preserves the previous output

Graphical symbol

	t	t	2	t_3	t_{\angle}	1	
Clk							
D					ГЦ		L
Q							
				ı	_	_ T	ime

Clk	D	Q(t+1)
0 1	X 0	Q(t) 0
1	1	1

Characteristic table

D Flip-flop

- Edge sensitive element
- Flip-flops are synchronous and operate based on clock signal

- A positive edge triggered D flip-flop
 - Sets Q=D at all positive edges (rising edges) of the clock, retains the old value of Q otherwise
- A negative edge triggered D flip-flop
 - Sets Q=D at all negative edges (falling edges) of the clock, retains the
 old

Graphical symbol

Building D Flip-flops using D Latches

By cascading a positive level triggered D latch and a negative level triggered
 D latch we can build a negative edge triggered D flip-flop

Building D Flip-flops using D Latches

By cascading a positive level triggered D latch and a negative level triggered
 D latch we can build a negative edge triggered D flip-flop

Building D Flip-flops using D Latches

 The output of the master-slave D flip-flop is similar to the output of a negative edge-triggered D flip-flo (FF)

Level triggered vs. Edge triggered

- In level triggered elements
 - output is affected by the clock levels (high/low)
- In edge triggered elements
 - output is affected by the clock edges (positive edge/negative edge) (rising edge/falling edge)

Level triggered vs. Edge triggered

- In level triggered elements
 - output is affected by the clock levels (high/low)
- In edge triggered elements
 - output is affected by the clock edges (positive edge/negative edge) (rising edge/falling edge)

Slide references

- 1. https://instrumentationtools.com/logic-gates/
- 2. Stephen Brown & Zvonko Vranesic Fundamentals of Digital Logic with Verilog Design

Thank you!