HH3 air speedometer module Software 1st revision manual

Table of contents

Overview		1
Structural organization.		
Future updates (TOVO)		
Sensors settings		
Applications	•••••	1
Nevice characteristics	•••••	
Register map		
who_am_i		
SOFT REV		
ERK		*
CONFIG		
STATUS	•••••	{
Output data format	•••••	8
Initialization algorithm lair speed calculation enablel		
Vimentions		
Contacts		1

Overview

The Barsotion AH3 airspeed module is an ILC device created to measure atmosphere pressure, airspeed, vertical speed, altitude, air temperature.

This documents describes the work with the UH3 boards with the 1st version of processing microcontroller software.

Structural organization

The module contains 2 BMP388 temperature and pressure sensors and CH32V305 processing microcontroller. The microcontroller reads rata from the sensors via SPI, process it and can give the results to host via I2C interface.

The BMP388 sensors are numerated: 1 and 2. The 1^{st} sensor is a static pressure and temperature sensor, the 2^{nd} is a dynamic sensor.

The microcontroller process the data: it calculates altitude according the static sensor barometer data, differentiates altitude for getting vertical speed, also it can analyze the difference in static and dynamic pressures to get an air speed value. The read temperature and pressure data can be filtered by 1.0 dimentional Kalman filters. The calibration methods allows to get the filter start parameters and provide the quality of outgoing air speed data.

Future updates (701)01

The host can set up the UH3 module depending of it's needs. Both of static and dynamic sensors can be disabled if it is necessary. In this (1st) software version host cannot power down any B2NP388 sensor, it will still work if even the according enable bit is cleared, so disabling the B2NP388 sensor does not affect on the power consumption. However the sensor power down option while disabled will be added in future software versions.

The VMP388 sensors interrupt request signals are wired to the microcontroller's GPIOs. Theoretically, the data reading can be processed via interrupts, but this software does not use it. The program reads the VMP388s' interrupt status registers waiting for the data ready bits setting up. The sensors interrupt handling will be added in future versions, that can also reduce the power consumption.

Sensors settings

The BMP388 maximum DDR value is 200 Hz. The processing microcontroller uses this DDR for providing fast reaction on the external events.

The software does not use the BMP388's data oversampling function. The oversampling can help to get more accurate output value, however it strongly limits the real output data rate.

The software uses BMP388's IIR-filter with coefficient 7. It is a compromise between data rate and accuracy.

The host cannot configure the BMP388 sensors settings for this software revision.

Hpplications

This airspeed module can be used in copters, model rockets, little airplanes, automobiles and other mobile machines and devices.

Uevice characteristics

Barameter	Mín	Nom	Max
Power supply, V	3.0	3.3	3.6
Power consimption, mU	;	;	16
I2C logic level, V	:	3.3	5
I2C speed, kH3	:	400	1000
Main CPU freguency, MH3	:	96	
BMP388 sensor ODR, H3	;	200	
Pressure oversampling	;	1g	;
Temperature oversampling	:	1:	;
BMP388 IIR:filter coefficient	:	7	;

Register map

Name	21ddress	Description				
WHO_AM_I	0,00	Allways read as 0x74				
SOFT_REV	0£01	Soft revision code, for this version OxO1				
ERR	0£02	error status register, see $\underline{\mathfrak{ERR}}$				
CONFIG	0£03	Config register, see CONSIG				
STATUS	0£04	Status flag register, see <u>STATUS</u>				
TEMP1_0	0£05	Static sensor temperature data, 4-byte float				
TEMP1_1	0£06					
TEMP1_2	0£07					
TEMP1_3	0£08					
PRES1_0	0£09	Static sensor pressure data, 4-byte float				
PRES1_1	0£02l					
PRES1_2	01023					
PRES1_3	OfOC					
TEMP2_0	0£0 D	Dynamic sensor temperature data, 4-byte float				
TEMP2_1	OFOŒ					
TEMP2_2	0.505					
TEMP2_3	0£10					
PRES2_0	0£11	Dynamíc sensor pressure data, 4:byte float				
PRES2_1	O£12					
PRES2_2	0£13					
PRES2_3	0£14					
ASPEED_0	0£15	Calculated air speed value, 4:byte float				
ASPEED_1	0£16					
ASPEED_2	O£17					
ASPEED_3	0£18					
ALT_0	0£19	Calculated altitude				
ALT_1	0£12I					
ALT_2	0£123					
ALT_3	0£1C					

VSPEED_0	Of 1D	Calculated vertical speed
VSPEED_1	0£1Œ	
VSPEED_2	0£15	
VSPEED_3	0£20	

WHO_HML1

7	6	5	4	3	2	1	0
0	1	1	1	0	1	0	0

The register is always read as 0x74.

SOFT_REV

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	1

The register is always read as 0x01.

ERR

7	6	5	4	3	2	1	0
Reserved			ERR_BMP2 DATA	ERR_BMP1 DATA	ERR_I2C	ERR_BMP2 INIT	ERR_BMP1 INIT

- ERR BMP1_INIT: Static sensor initialization error.
- ERR_BMP2_INIT: Dynamic sensor initialization error.
- ERR_I2C: I2C protocol error.
- ERR_BMP1_DATA: Static sensor data incorrect value error (is not supported in this version).
- ERR_BMP2_DATA: Dynamic sensor data incorrect value error (is not supported in this version).

config

7	6	5	4	3	2	1	0
ASPD_CAL	ASPD_EN	BMP2_CAL	BMP1_CAL	BMP2_FILT	BMP1_FILT	BMP2_EN	BMP1_EN

- BMP1 EN: Set to 1 enables static sensor data reading.
- BMP2 EN: Set to 1 enables dynamic sensor data reading.
- BMP1_FILT: Set to 1 enables static sensor data filtering by 1-dimentional Kalman algorithm (the option is available only after calibrating).
- BMP2_FILT: Set to 1 enables dynamic sensor data filtering by 1.dimentional Kalman algorithm (the option is available only after calibrating).
- BMP1_CAL: Set to starts static sensor calibration. Cleared automatically after the calibration has finished. While the calibration time goes on, the BUSY bit in STATUS register is set to 1.

- BMP2_CAL: Set to starts dynamic sensor calibration. Cleared automatically after the calibration has finished. While the calibration time goes on, the BUSY bit in STATUS register is set to 1.
- ASPD_EN: Set to 1 enables air speed calculations. The option is only available if both of BMP1_EN and BMP2_EN bits are set to 1. Note that the barometer sensors should be calibrated before air speed calculations starts, in the other way the output data will contain a non-normed offset.
- ASPD_CAL: Set to 1 starts the airspeed calibrating.

STATUS

7	6	5	4	3	2	1	0
BUSY	ASPD_DRDY		Res	erved		BMP2_DRDY	BMP1_DRDY

- BMP1_DRDY: is set to 1 when the first sensor temperature and pressure data are ready to be read. The bit is cleared automatically when the STATUS register is read.
- BMP2_DRDY: is set to 1 when the second sensor temperature and pressure data are ready to be read. The bit is cleared automatically when the STATUS register is read.
- ASPD_DRDY: is set to 1 when the air speed value is ready to be read. The bit is cleared automatically when the STATUS register is read.
- BUSY: is set when any sensor is calibrating. While the calibrating time the AH3 module do not update other sensor output data and air speed calculations are stopped too. The bit is cleared automatically when the calibration done.

Output data sormat

All the output data are in the standard IEEE:754 4byte float format, used in the C language. That means:

Oth register:

o regioter.								
7	6	5	4	3	2	1	0	
			Mantíssa				Man. LSb	
1 st register:								
15	14	13	12	11	10	8	7	
			Mar	าtíธธa	•	•	•	
2 nd register:								
23	22	21	20	19	18	17	16	
Efp. LSb	Man. MSb		Mantissa					
3 rd register:								
31	30	29	28	27	26	25	24	
Sígn	Efp. MSb	Exponent						

Initialization algorithm lair speed calculation enablel

Uimentions

Contacts

If you have any questions, feel free to write via email or Telegram.

Email: barsotion@yandex.ru

Telegram: @barsybarsevich