ESERCIZI DI ANALISI REALE - FOGLIO 6

CORSO DI LAUREA TRIENNALE IN MATEMATICA

A.A. 2017-18

ANDREA DAVINI

SOMMARIO. Eventuali commenti, suggerimenti e segnalazioni di errori sono graditi. Gli esercizi contrassegnati con un asterisco sono più difficili

In quanto segue, se non diversamente specificato, indicheremo con (X, \mathcal{M}, μ) un generico spazio di misura. Indicheremo con $L^p(X; \mathbb{C})$ e $L^p(X)$ lo spazio delle funzioni misurabili f da X a \mathbb{C} e \mathbb{R} , rispettivamente, e tali che $\int_X |f|^p d\mu < +\infty$. Scriveremo $\|\cdot\|_p$ al posto di $\|\cdot\|_{L^p(X)}$.

Esercizio 1. Verificare che la seguente formula

$$< f, g > := \int_X f(x) \overline{g(x)} \, \mathrm{d}\mu(x)$$
 per ogni $f, g \in L^2(X)$

definisce un prodotto scalare complesso su $L^2(X)$.

Esercizio 2. Sia Ω un aperto di \mathbb{R}^d munito della misura di Lebesgue e $1 \leq p \leq +\infty$.

o Mostrare che l'identità del parallelogramma

$$||f+g||_p^2 + ||f-g||_p^2 = 2(||f||_p^2 + ||g||_p^2)$$
 per ogni $f, g \in L^p(\Omega)$ vale se e solo $p=2$.

o Dedurre che $L^p(\Omega)$ è di Hilbert se e solo se p=2.

Esercizio 3 (Disuguaglianza di Chebyshev). Sia f una funzione misurabile su X. Dimostrare che per ogni p>0 e per ogni a>0 si ha

$$\mu\left(\left\{x \in X : |f(x)| > a\right\}\right) \leqslant \left(\frac{\|f\|_p}{a}\right)^p.$$

Esercizio 4. Siano f ed $(f_n)_n$ funzioni in $L^p(X)$ con $1 \le p < +\infty$ tali che

- (a) $f_n(x) \to f(x)$ per μ -q.o. $x \in X$;
- (b) esiste una funzione $g \in L^p(X)$ tale che $|f_n(x)| \leq g(x)$ per μ -q.o. $x \in X$, per ogni $n \in \mathbb{N}$.

Dimostrare che $f_n \to f$ in $L^p(X)$.

Si ricorda il seguente risultato dimostrato a lezione:

Date: 14 dicembre 2017.

Teorema 5. Sia $f_n \to f$ in $L^1(X)$. Allora esiste una sottosuccessione $(f_{n_k})_k$ ed una funzione $g \in L^1(X)$ tali che

- (i) $\lim_k f_{n_k}(x) = f(x)$ per μ -q.o. $x \in X$;
- (ii) $|f_{n_k}(x)| \leq g(x)$ per μ -q.o. $x \in X$, per ogni $k \in \mathbb{N}$.

Il seguente esercizio può essere letto come una generalizzazione del Teorema 5 agli spazi L^p .

Esercizio 6. Sia $f_n \to f$ in $L^p(X)$ per $1 \le p < +\infty$. Dimostrare che esiste una sottosuccessione $(f_{n_k})_k$ ed una funzione $g \in L^p(X)$ tali che

- (i) $\lim_k f_{n_k}(x) = f(x)$ per μ -q.o. $x \in X$;
- (ii) $|f_{n_k}(x)| \leq g(x)$ per μ -q.o. $x \in X$, per ogni $k \in \mathbb{N}$.

Esercizio 7. Si consideri la successioni di funzioni $f_n:[0,1]\to\mathbb{R}$ definite come

$$f_n := \chi_{\left[\frac{n-2^j}{2^j}, \frac{n-2^j+1}{2^j}\right]}$$
 per $2^j \leqslant n < 2^{j+1}$, per ogni $j = 0, 1, 2, \dots$,

esplicitamente $f_1 = \chi_{[0,1]}, f_2 = \chi_{[0,\frac{1}{2}]}, f_3 = \chi_{[\frac{1}{2},1]}, f_4 = \chi_{[0,\frac{1}{4}]}, f_5 = \chi_{[\frac{1}{4},\frac{1}{2}]},$ etc. Verificare che $f_n \to 0$ in $L^p([0,1])$ per ogni $1 \le p < +\infty$, ma che $f_n(x)$ non ha limite, quale che sia $x \in [0,1]$.

Esercizio 8. Sia $(f_n)_n$ una successione limitata in $L^2(X)$. Dimostrare che

$$\frac{f_n(x)}{n} \to 0$$
 per μ -q.o. $x \in X$.

Esercizio 9.

- o Siano $f, g \in L^p(X)$ con $1 \leq p \leq +\infty$. Provare che $h(x) := \max\{f(x), g(x)\}$ appartiene a $L^p(X)$.
- o Siano $(f_n)_n$ e $(g_n)_n$ due successioni in $L^p(X)$ con $1 \le p \le +\infty$ tali che $f_n \to f$ e $g_n \to g$ in $L^p(X)$. Verificare che $\max\{f_n, g_n\} =: h_n \to h := \max\{f, g\}$ in $L^p(X)$.
- o Sia $(f_n)_n$ una successione in $L^p(X)$ con $1 \leq p < +\infty$ e sia $(g_n)_n$ una successione limitata in $L^{\infty}(X)$. Supponiamo che $f_n \to f$ in $L^p(X)$ e che $g_n(x) \to g(x)$ per μ -q.o. $x \in X$. Dimostrare che $f_n g_n \to f g$ in $L^p(X)$.

[Suggerimento: osservare che $\max\{f,g\} = \frac{1}{2}(|f-g|+f+g)$.]

Sia E sia uno spazio metrico e indichiamo con d la distanza su E. Diremo che una successione $(x_n)_n$ in E converge ad un elemento $x \in E$ se $\lim_n d(x_n, x) = 0$. Diremo che una successione $(x_n)_n$ converge in E se converge ad un elemento $x \in E$. Il risultato contenuto nel prossimo esercizio è di estrema utilità per le applicazioni, ad esempio, agli spazi L^p .

Esercizio 10. Sia (E, d) uno spazio metrico. Dimostrare che una successione $(x_n)_n$ converge ad un elemento $x \in E$ se e solo se ogni sottosuccessione $(x_{n_k})_k$ ammette un'estratta che converge a x.

Esercizio 11. Sia $\varphi : \mathbb{R} \to \mathbb{R}$ una funzione continua tale che $|\varphi(t)| \leq |t|$ per ogni $t \in \mathbb{R}$. Per ogni $f : X \to \mathbb{R}$ misurabile, indicheremo con $\varphi \circ f$ la funzione definita come $(\varphi \circ f)(x) := \varphi(f(x))$ per ogni $x \in X$. Sia $1 \leq p < +\infty$. Dimostrare che

- $\circ \quad \varphi \circ f \in L^p(X) \text{ per ogni } f \in L^p(X);$
- \circ se $f_n \to f$ in $L^p(X)$, allora $\varphi \circ f_n \to \varphi \circ f$ in $L^p(X)$.

[Suggerimento: usare gli esercizi 10 e 6.]

Esercizio 12. Siano f_1, f_2 funzioni tali che $f_i \in L^{p_i}(X)$ con $1 \leqslant p_i \leqslant +\infty$ e $\frac{1}{p_1} + \frac{1}{p_2} \leqslant 1$. Provare che $f(x) := f_1(x)f_2(x)$ appartiene a $L^p(X)$ con $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$ e che

$$||f||_p \leq ||f_1||_{p_1} ||f_2||_{p_2}.$$

Esercizio 13. Siano $1 \leq p < +\infty$ e $1 \leq q \leq +\infty$.

- o Dimostrare che $L^1(X) \cap L^{\infty}(X)$ è un sottoinsieme denso di $L^p(X)$.
- o Provare che l'insieme $\{f \in L^p(X) \cap L^q(X) : ||f||_q \leq 1\}$ è chiuso in $L^p(X)$.
- o Sia $(f_n)_n$ una successione in $L^p(X) \cap L^q(X)$ e sia $f \in L^p(X)$. Supponiamo che $f_n \to f$ in $L^p(X)$ e che sup_n $||f_n||_q < +\infty$. Dimostrare che $f \in L^r(X)$ e che $f_n \to f$ in $L^r(X)$ per ogni r tra $p \in q$, $r \neq q$.

Esercizio* 14. Sia $\mu(X) < +\infty$.

- o Sia $f \in L^{\infty}(X)$. Dimostrare che $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$.

$$||f||_p \leqslant C$$
 per ogni $1 \leqslant p < +\infty$.

Provare che $f \in L^{\infty}(X)$ e $||f||_{\infty} \leq C$.

o Costruire un esempio di funzione $f \in \bigcap_{1 \le p < +\infty} L^p(X)$ e tale che $f \notin L^\infty(X)$ nel caso in cui X = (0,1) munito della misura di Lebesgue.