Forecasting Hierarchical Time Series using Non-linear Mappings

Shanika Wickramasuriya jointly with

K. Bandara, H. Hewamalage and M. Perera

July 11, 2022

Outline

- 1 Background
- 2 Non-linear mappings for forecast coherence
- **3** Applications
- 4 Conclusions

Hierarchical time series

A collection of time series with aggregation constraints.

e.g. Tourism Demand: Australia, States, SLAs

Challenge: Independent forecasts do not add-up across the hierarchy.

Solutions:

■ Top-down

- Bottom up (BU)
- Middle-out

 MinT

Forecast reconciliation

Traditional linear hierarchical forecasting methods:

$$\tilde{\mathbf{y}}_{T+h|T} = \mathbf{S}\mathbf{P}_h\hat{\mathbf{y}}_{T+h|T},$$

- $\tilde{y}_{T+h|T}$, $\hat{y}_{T+h|T}$: h-step ahead reconciled and base forecasts stacked in the same order as y_t .
- P_h depends on the forecast reconciliation approach.
- **S** is the summing matrix.

$$\begin{array}{ll} \mathsf{BU} \;\; \boldsymbol{P}_{\mathsf{BU}} = \left\lfloor \; \boldsymbol{0}_{n \times (m-n)} \; \middle| \; \boldsymbol{I}_{n} \; \right\rfloor \\ \mathsf{MinT} \;\; \boldsymbol{P}_{\mathsf{MinT}} = (\boldsymbol{S}^{\top} \boldsymbol{\Lambda}_{h}^{-1} \boldsymbol{S})^{-1} \boldsymbol{S}^{\top} \boldsymbol{\Lambda}_{h}^{-1} \end{array}$$

 Λ_h : p.d. covariance matrix of the h-step ahead base forecast errors. For $k_h > 0$:

$$oldsymbol{\Lambda}_h = k_h oldsymbol{I}$$
 $oldsymbol{\Lambda}_h = k_h oldsymbol{\hat{\Lambda}}_{ ext{shr}}$ $oldsymbol{\Lambda}_h = k_h oldsymbol{\hat{\Lambda}}_{ ext{shr}}$ $oldsymbol{MinT(Shr)}$

$$\hat{m{\Lambda}}_1$$
: sample cov. $\hat{m{\Lambda}}_{\sf shr}$: shrunk cov.

Outline

- 1 Background
- 2 Non-linear mappings for forecast coherence
- **3** Applications
- 4 Conclusions

Loss function using non-linear mappings

- Empirical studies by Spiliotis et al. (2021) demonstrated that non-linear mappings could lead to better forecast accuracy.
- Relaxing unbiasedness of base/reconciled forecasts could reduce the mean squared forecast error (Rangapuram et al., 2021; Wickramasuriya, 2021).

Given $\mathbf{\textit{y}}_t = [\mathbf{\textit{a}}_t^{\top}, \mathbf{\textit{b}}_t^{\top}]^{\top}$, and in-sample fitted values $\hat{\mathbf{\textit{y}}}_{t|t-1}$, for $t=1,2,\ldots,T$

$$\min_{\boldsymbol{\theta}} \sum_{t=1}^{T} \left\| \boldsymbol{b}_{t} - \boldsymbol{f}(\hat{\boldsymbol{y}}_{t|t-1}, \boldsymbol{\theta}) \right\|_{2}^{2} + \lambda \left\| \boldsymbol{a}_{t} - \boldsymbol{C}\boldsymbol{f}(\hat{\boldsymbol{y}}_{t|t-1}, \boldsymbol{\theta}) \right\|_{2}^{2}, \qquad \lambda > 0,$$

- n is the number of bottom level series
- $f(\cdot, \theta) = [f_1(\cdot, \theta_1), f_2(\cdot, \theta_2), \dots f_n(\cdot, \theta_n)]^\top$, $f_j(\cdot, \theta_j)$ is a non-linear mapping function with parameter vector θ_j for $j = 1, 2, \dots, n$
- $\bullet \theta = [\theta_1^\top, \theta_2^\top, \dots, \theta_n^\top]^\top$

heta is estimated using a feed forward neural network.

Proposed reconciliation network

$$\min_{oldsymbol{ heta}} \sum_{t=1}^{T} \left\| oldsymbol{b}_{t} - oldsymbol{f}(\hat{oldsymbol{y}}_{t|t-1}, oldsymbol{ heta})
ight\|_{2}^{2} + \lambda \left\| oldsymbol{a}_{t} - oldsymbol{C} oldsymbol{f}(\hat{oldsymbol{y}}_{t|t-1}, oldsymbol{ heta})
ight\|_{2}^{2}, \qquad \lambda > 0$$

Outline

- 1 Background
- 2 Non-linear mappings for forecast coherence
- 3 Applications
- 4 Conclusions

Description of data sets

Data set	Frequency	Т	No. of levels	No. of series	h
Australian prison population	4 (quarterly)	48	5	121	8
Australian domestic tourism	12 (monthly)	264	3	85	12
Wikipedia pageviews	7 (weekly)	394	6	1095	7
Australian labour market	4 (quarterly)	128	4	57	12

Experimental setup

Forecasting methods

- Univariate: ARIMA and ETS
- Global models: DeepAR and WaveNet
 - All the time series in the hierarchy are clustered using K-means algorithms and a global model is built for each cluster.

We conduct an expanding window evaluation for all the data sets.

Data set	No. of windows	Starting window size
Prison	3	24
Tourism	10	144
Wikipedia	10	324
Labour	5	68

Expanding Window

Hyper-parameter tuning and evaluation

 The hyper-parameters of the proposed method are tuned with HyperOpt – Bayesian Optimization.

Hyper-parameter	Minimum	Maximum
Number of layers	1	5
Dropout rate	0	0.5
Learning rate	0.0001	0.1
Number of Epochs	10	200
Batch size	1	size of input data
Max norm	0	10
λ (proposed loss function)	0.01	5

- We trained this setup five times with different seeds and the average across these are taken as the final bottom level forecasts.
- The results are summarized using percentage relative improvement in average loss

$$\mathsf{PRIAL} = \frac{\mathsf{MSE}(\mathsf{base-forecasts}) - \mathsf{MSE}(\mathsf{reconciled-forecasts})}{\mathsf{MSE}(\mathsf{base-forecasts})} \times 100\%$$

+ve values: accuracy of reconciled forecasts has increased.

Results for prison data (h = 1 : 4)

Rank	ARIMA	ETS	DeepAR	WaveNet
1 2	Proposed ML OLS	Proposed ML MinT(Shrink)	Bottom Up WLS	Proposed ML Bottom Up
3	MinT(Shrink)	OLS	Proposed ML	OLS

Results for prison data (h = 1:8)

Rank	ARIMA	ETS	DeepAR	WaveNet
1 2	OLS MinT(Shrink)	Proposed ML OLS	Bottom Up Proposed ML	Proposed ML Bottom Up
3	WLS	MinT(Shrink)	WLS	OLS

Results for tourism data (h = 1:6)

Rank	ARIMA	ETS	DeepAR	WaveNet
1	OLS	Proposed ML	Proposed ML	Proposed ML MinT(Sample) MinT(Shrink)
2	MinT(Sample)	OLS	WLS	
3	Proposed ML	MinT(Sample)	MinT(Shrink)	

Results for tourism data (h = 1:12)

Rank	ARIMA	ETS	DeepAR	WaveNet
1	OLS	OLS	OLS	Proposed ML
2	MinT(Sample)	Proposed ML	Proposed ML	MinT(Sample)
3	Proposed ML	MinT(Sample)	MinT(Shrink)	ERM

Results for Wikipedia data (h = 1:3)

Rank	ARIMA	ETS	DeepAR	WaveNet
1	Proposed ML	Proposed ML	Bottom Up	Proposed ML
2	MinT(Shrink)	WLS	WLS	MinT (Shrink)
3	Bottom Up	MinT(Shrink)	Proposed ML	Bottom Up

Results for Wikipedia data (h = 1:7)

Rank	ARIMA	ETS	DeepAR	WaveNet
1	Proposed ML	Bottom Up	Bottom Up	MinT(Shrink)
2	MinT(Shrink)	WLS	WLS	Proposed ML
3	Bottom Up	MinT(Shrink)	MinT(Shrink)	Bottom Up

Results for labour data (h = 1:6)

Rank	ARIMA	ETS	DeepAR	WaveNet
1	OLS	Proposed ML	MinT(Sample)	Proposed ML
2	WLS	Bottom Up	Proposed ML	OLS
3	Proposed ML	WLS	MinT(Shrink)	WLS

Results for labour data (h = 1:12)

Rank	ARIMA	ETS	DeepAR	WaveNet
1	OLS	Proposed ML	Proposed ML	Proposed ML
2	MinT(Shrink)	Bottom Up	MinT(Shrink)	Bottom Up
3	WLS	WLS	MinT(Sample)	WLS

Outline

- 1 Background
- 2 Non-linear mappings for forecast coherence
- **3** Applications
- **4** Conclusions

Conclusions

- 1 We proposed a non-linear hierarchical time series forecasting approach using machine learning techniques.
- 2 We introduced a novel loss function incorporating non-linear mappings to obtain coherent forecasts from the individual base forecasts.
- 3 To obtain the weights of the non-linear mappings between the base forecasts, we trained a feed-forward neural network.
- 4 The empirical results suggest that the proposed method is generally ranked among the best three methods for obtaining coherent forecasts.

THANK YOU!