Subset Selection in Linear Models (ISLR 6.1, 6.4)

Yingbo Li

Southern Methodist University

STAT 4399

Outline

High Dimensional Problem

Subset Selection

High dimensional data

New technology permits the collection of many variables. For example,

- Predict blood pressure, using
 - usual measurements: age, gender, BMI
 - genetic biomarkers: single nucleotide polymorphisms (SNPs)
- Half million SNP's can be obtained for each patient: $p \approx 500,000$
- Due to the cost of genetic tests, number of patients $n \approx 200$

We call a dataset *high dimensional*, if p > n.

- Many classical statistics approaches for low dimensional data $(n \gg p)$ are not applicable to high dimensional data.
- ullet For datasets that p < n but n and p are close, classical approaches still have problems.

A simple illustration

Suppose we have p=1 predictor, and fit linear regression using OLS.

When n=2

- Number of observations equals number of regression coefficients
- A perfect fit to the data: residuals are zero. RSS = 0.

Overfitting

- In general, when $n \le p+1$, all OLS residuals are zero. A least squares regression is too flexible and hence overfits the data.
- Recall that the design matrix $\mathbf{X} \in \mathbb{R}^{n \times (p+1)}$ (including the intercept, a column of all one), the OLS estimator of $\boldsymbol{\beta}$ is

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

- $ightharpoonup rank(\mathbf{X}) = rank(\mathbf{X}^T\mathbf{X}) = min(n, p+1)$
- $ightharpoonup {f X}^T{f X}$ is a (p+1) imes (p+1) square matrix
- ▶ When p+1>n, $\mathbf{X}^T\mathbf{X}$ is not of full rank, so its inverse does not exist.
- Even when p < n but if $n \approx p$, there can be *multicollinearity* issues.

Improving on the least squares regression estimates

There are 2 reasons we might not prefer to just use the OLS estimates

- Prediction accuracy:
 To control the high variance due to overfitting
- Model interpretability: To obtain an easy to interpret model by removing irrelevant variables

In this chapter, we will discuss variable selection methods

- Also called feature selection, model selection
- We will introduce two types of methods:
 - subset selection
 - shrinkage

Best subset selection

- In this approach, we run a linear regression for each possible combination of the p predictors.
 How many different subset models do we need to consider?
- How do we judge which subset is the "best"?
- The model that includes all the variables (the *full model*) always has the largest \mathbb{R}^2 and smallest RSS.

The Credit data n = 400, p = 11

Best subset selection: details

- Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- ② For $k = 1, 2, \dots, p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- **3** Select a single best model from among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$ using cross-validated prediction error, Cp (AIC), BIC, or adjusted R^2 .

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ りへで

Extensions to other models

- Although we have presented best subset selection here for least squares regression, the same ideas apply to other types of models, such as logistic regression.
- The deviance

$$D = -2\log L$$

plays the role of RSS for a broader class of models. Here $\cal L$ is the maximized likelihood function.

$$L = \max_{\theta} f(Y \mid X, \theta) = \max_{\theta} \prod_{i=1}^{n} f(Y_i \mid X_i, \theta)$$

- What is the deviance for the linear regression?
 - ▶ Here $\theta = (\beta, \sigma^2)$. What is the MLE of σ^2 ?

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Stepwise selection

- Best subset selection is computationally intensive
- *Stepwise selection*, which explores a far more restricted set of models, is an attractive alternative to best subset selection.
- Forward stepwise selection:
 - Begins with the null model,
 - then adds one predictor at a time that improves the model the most
 - until no further improvement is possible
- Backward stepwise selection:
 - Begins with the full model,
 - then deletes one predictor at a time that improves the model the most
 - until no further improvement is possible

Forward stepwise selection: details

- ① Let \mathcal{M}_0 denote the null model, which contains no predictors.
- **2** For $k = 0, 1, \dots, p-1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the best among these p-k models, and call it \mathfrak{M}_{k+1} . Here best is defined as having the smallest RSS, or equivalently largest \mathbb{R}^2 .
- **3** Select a single best model from among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$ using cross-validated prediction error, Cp (AIC), BIC, or adjusted R^2 .

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Forward stepwise selection

- Computational advantage over best subset selection is clear.
 How many models does it fit?
- It is not guaranteed to find the best possible model out of all 2^p subset models.
- Forward stepwise selection can be used in the p > n case: construct $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_{n-1}$ only.

12 / 22

Yingbo Li (SMU) Subset Selection STAT 4399

The Credit data example

To predict credit card balance:

Number of variables	Best subset	Forward stepwise
1	rating	rating
2	rating, income	rating, income
3	rating, income, student	rating, income, student
4	cards, income,	rating, income,
	student, limit	student, limit

- The first three models are identical,
- but the fourth models differ.

Backward stepwise selection: details

- $\textbf{ 0} \ \, \mathsf{Let} \, \, \mathfrak{M}_p \, \, \mathsf{denote} \, \, \mathsf{the} \, \, \mathsf{full} \, \, \mathsf{model}, \, \mathsf{which} \, \, \mathsf{contains} \, \, \mathsf{all} \, \, p \, \mathsf{predictors}.$
- **2** For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the best among these k models, and call it \mathfrak{M}_{k-1} . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- **3** Select a single best model from among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$ using cross-validated prediction error, Cp (AIC), BIC, or adjusted R^2 .

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

Backward stepwise selection

- Like forward stepwise selection, the backward selection approach searches through only 1+p(p+1)/2 models.
- Like forward stepwise selection, the backward selection is not guaranteed to find the best possible model out of all 2^p subset models.
- Can we use backward stepwise selection when p > n?

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Estimating test error: two approaches

Each of the procedures (best subset, forward stepwise, backward stepwise) returns a sequence of models M_k indexed by model size $k = 0, 1, 2, \dots, p$.

Among these p+1 models, we should to choose the one with the lowest test error.

- We can indirectly estimate test error by making an adjustment to the training error to account for the bias due to overfitting.
 - $ightharpoonup C_p$ statistic
 - AIC
 - BIC
 - ▶ Adjusted R²
- We can directly estimate the test error, using cross-validation.

Mallow's C_p statistic

For a subset model containing k predictors, $\mathit{Mallow's}\ C_p$ is defined as

$$C_p = \frac{\mathsf{RSS}}{\hat{\sigma}^2(\mathcal{M}_p)} - n + 2k.$$

- The C_p statistic adds a penalty of 2k to the training RSS.
- The model with the smallest C_p is preferred.
- If two models of the same size, them comparing C_p is equivalent to comparing their RSS.
- ullet For two models with the same RSS, C_p prefers the smaller model.

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ りへで

STAT 4399

17 / 22

Yingbo Li (SMU) Subset Selection

Akaike information criterion (AIC)

For a subset model containing k predictors, AIC is defined as

$$\mathsf{AIC} = -2\log L + 2k.$$

- AIC adds a penalty of 2k to the goodness-of-fit.
- The model with the smallest AIC is preferred.
- When σ^2 is known, C_p and AIC are the same. Why?

Bayesian information criterion (BIC)

For a subset model containing k predictors, \emph{BIC} is defined as

$$BIC = -2\log L + k\log(n).$$

- BIC adds a penalty of $k \log(n)$ to the goodness-of-fit.
- The model with the smallest BIC is preferred.
- BIC tends to prefer smaller models than AIC.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Adjusted R^2

For a subset model containing k predictors, adjusted \mathbb{R}^2 is defined as

Adjusted
$$R^2 = 1 - \frac{\mathsf{RSS}/(n-k-1)}{\mathsf{TSS}/(n-1)}$$
.

- The model with the largest adjusted \mathbb{R}^2 is preferred.
- Maximizing the adjusted R^2 is equivalent to minimizing ${\sf RSS}/(n-k-1)$
- Despite its popularity, the adjusted R^2 is not as well motivated in statistical theory as AIC, BIC, and C_p .

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

The Credit data

Yingbo Li (SMU)

Subset Selection

Cross validation

- In addition to training error adjustments, we can also use CV to select the optimal model size \hat{k} .
- ullet Once selected, we will refit model $\mathcal{M}_{\hat{k}}$ using all training data.

◆□▶◆圖▶◆臺▶◆臺▶ 臺 ∽9९⊙