ASSOCIATION RULES

Introduction

- Important part of DM
- First introduced in 1993
- Association rule mining means finding interesting associations or correlations
- Usually expressed in the form of rules
- Ex: 90% of customers who buy bread also buy milk bread ⇒ milk antecedent ⇒ consequent
- Is it supervised or unsupervised learning?
- Initially used for Market Basket Analysis
- Other applications

Definitions

- Set of items: $I = \{i_1, i_2, ..., i_m\}$
- A transaction: $t \subseteq I$ For example, $t = \{i_2, i_5, i_{23}\} = \{\text{milk, bread, cheese}\}$
- Database of transactions: $D = \{t_1, t_2, ..., t_n\}$, where each $t_i \subseteq I$
- Itemset: $X \subseteq I$, or $\{i_{i1}, i_{i2}, ..., i_{ik}\} \subseteq I$
 - > E.g., X = {milk, bread, cheese} is an itemset
- k-itemset
 - > E.g., X = {milk, bread, cheese} is is a 3-itemset.

Definitions (cont.)

• Support of an itemset X: Percentage of transactions in the database that contain that itemset.

i.e., support(
$$X$$
) = $\frac{|\{t \in D: X \subseteq t\}|}{|D|}$

- Large (Frequent) itemset: Itemset whose support is at least a threshold, s.
- Notation:
 - >L set of large itemsets
 - $\triangleright L_k$ set of large itemsets of size k

Example

Transaction	ransaction Items		
t_1	Bread, Jelly, Peanut Butter		
t_2	Bread,PeanutButter		
t_3	Bread,Milk,PeanutButter		
t_4	Beer,Bread		
t_5	Beer,Milk		

- I = { Beer, Bread, Jelly, Milk, PeanutButter}
- What is the support of {Bread, PeanutButter}?
- For s = 0.6,
- Is {Bread, PeanutButter} frequent?
- Is {bread, Milk} frequent?

By convention, we list items in alphabetical order within a transaction

Large Itemsets

- Finding the large itemsets in a dataset is not a trivial process because
- 1) the number of transactions in the dataset can be large
- 2) the potential number of large itemsets is exponential to the number of different items
- It is important to have algorithms for discovering association rules that are scalable

The Large Itemest Property

Transaction	Items		
t_1	Bread,Jelly,PeanutButter		
t_2	Bread,PeanutButter		
t_3	Bread, Milk, Peanut Butter		
t_4	Beer,Bread		
t_5	Beer,Milk		

- For s=0.6, we notice that {Bread,PeanutButter} is frequent and so are all of its subsets
- We also notice that that {Jelly} is infrequent and so are all of its supersets

The Large Itemest Property

- Any subset of a large/frequent itemset is large/frequent
- Any superset of an infrequent itemset is infrequent
- Large itemsets are said to be downward closed

Association Rule Definitions

- Association Rule (AR): implication $X \Rightarrow Y$ where $X,Y \subseteq I$ and $X \cap Y = \emptyset$;
- Example: {Cheese, Milk} ⇒ {Bread}
- Support of AR (s) $X \Rightarrow Y$: Percentage of transactions that contain $X \cup Y$
- Confidence or strength of AR (α) X \Rightarrow Y: Ratio of number of transactions that contain X \cup Y to the number of transactions that contain X
- Remark: Confidence(X \Rightarrow Y) equals to support(X \cup Y)/support(X).
- Large confidence values and small support values are used for discovering Ars
- Aside: support $(X \Rightarrow Y) = P(X \text{ union } Y)$, and confidence $(X \Rightarrow Y) = P(Y|X)$

Example

Transaction	Items		
t_1	Bread,Jelly,PeanutButter		
t_2	Bread,PeanutButter		
t_3	Bread,Milk,PeanutButter		
t_4	Beer,Bread		
t_5	${f Beer, Milk}$		

$X \Rightarrow Y$	s	α
$Bread \Rightarrow PeanutButter$	60%	75%
$PeanutButter \Rightarrow Bread$	60%	100%
$\mathbf{Beer}\Rightarrow\mathbf{Bread}$	20%	50%
$\boxed{ \textbf{PeanutButter} \Rightarrow \textbf{Jelly} }$	20%	$\boxed{\textbf{33.3}\%}$
$Jelly \Rightarrow PeanutButter$	20%	100%
$ m Jelly \Rightarrow Milk$	0%	0%

Association Rule Mining Task

- Def: Rules that satisfy both a minimum support threshold and minimum confidence threshold are called strong
- An association rule r is strong if
 - > Support(r) ≥ min_sup
 - ➤ Confidence(r) ≥ min_conf
- Given a set of items, I, a transactions database D, min_sup, and min_conf, the goal
 of association rule mining is to find all strong rules

Association Rule Mining Task

- Two-step approach:
 - 1. Frequent Itemset Identification
 - –find all itemsets whose support ≥ min_sup
 - 2. Rule Generation
 - –from each frequent itemset, generate all rules whose confidence ≥ min_conf
- The naïve approach for the 1st step is costly
- Step 2 is straightforward

Algorithm to Generate ARs

```
Input:
 D //Database of transactions I //Items L //Large itemsets s //Support
    \alpha //Confidence
Output:
        //Association Rules satisfying s and \alpha
ARGen Algorithm:
    R = \emptyset;
    for each l \in L do
        for each x \in l such that x \neq \emptyset and x \neq l do
             if \frac{support(l)}{support(x)} \geq \alpha then
                 R = R \cup \{x \Rightarrow (l - x)\};
```

Example

Transaction Items				
t_1	Bread, Jelly, Peanut Butter			
t_2	Bread,PeanutButter			
t_3	Bread,Milk,PeanutButter			
t_4	Beer,Bread			
t_5	${f Beer, Milk}$			

Apply Algorithm to the above dataset. Suppose s=0.3, and $\alpha=0.5$ L = {{Beer}, {Bread}, {Milk}, {PeanutButter}}, {Bread, PeanutButter}}

$$\frac{support(\{Bread, PeanutButter\})}{support(\{Bread\})} = \frac{3}{4} = 0.75$$
So R = {Bread \rightarrow PeanutButter}

So, $R = \{Bread \Rightarrow PeanutButter\}$

Notice, for $\alpha = 0.8$ the first rule would not be strong.

$$\frac{support(\{Bread, PeanutButter\})}{support(\{PeanutButter\})} = 3/3 = 1$$
So, R = $\{Bread \Rightarrow PeanutButter, PeanutButter \Rightarrow Bread\}$

The Apriori Algorithm for Generating Frequent Itemsets

- most well known AR mining algorithm
- It uses prior knowledge (L_k) to generate frequent itemset (L_{K+1})
- It uses the large itemset property (downward closure property): any subset of a frequent itemset is also frequent

Write an itemset {A, B, D} as ABD ABD is frequent, then so are all of its subsets

The Algorithm

- Iterative algorithm (uses level-wise search, where L_k is used to find L_{k+1}):
 - > Find all 1-item frequent itemsets; then all 2-item frequent itemsets, and so on.
 - ➤ In each iteration k, only consider itemsets that contain some k-1 frequent itemset.
- Find frequent itemsets of size 1: L₁
- From k = 2
 - C_k = candidates of size k: those itemsets of size k that could be frequent, given L_{k-1}
 - L_k = those itemsets that are actually frequent, $L_k \subseteq C_k$ (need to scan the database once).

Dataset T Example – minsup=0.5 Finding frequent itemsets

TID	Items	
T100	1, 3, 4	
T200	2, 3, 5	
T300	1, 2, 3, 5	
T400	2, 5	

itemset:count

1. scan T
$$\rightarrow$$
 C₁: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3

$$\rightarrow$$
 L₁: {1}:2, {2}:3, {3}:3, {5}:3

$$\rightarrow$$
 C₂: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

2. scan T
$$\rightarrow$$
 C₂: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2

$$\rightarrow$$
 C₃: {1, 2, 3}, {1,3,5}, {2, 3,5}

3. scan T
$$\rightarrow$$
 C₃: {1, 2, 3}:1, {1,3,5}:1, {2, 3, 5}:2 \rightarrow L₃: {2, 3, 5}

Outline of Apriori Algorithm

- 1. C_1 = Itemsets of size one in I;
- 2. Determine all large itemsets of size 1, L_{1} ;
- 3. i = 1;
- 4. Repeat
- 5. i = i + 1;
- 6. $C_i = Apriori-Gen(L_{i-1});$
- 7. Count C_i to determine L_{i}
- 8. until no more large itemsets found;

How many DB scans?

Apriori-Gen

- Generate candidates of size i+1 from large itemsets of size i
- Approach used: join large itemsets of size i if they agree on i-1 items
- May also prune candidates who have subsets that are not large

The Apriori-Gen Algorithm – Algorithm

```
Input: L_{i-1} \text{ //Large itemsets of size } i-1 Output: C_i \text{ //Candidates of size } i Apriori-gen algorithm: C_i = \emptyset; for each I \in L_{i-1} do for each J \neq I \in L_{i-1} do if i-2 of the elements in I and J are equal then C_i = C_i \cup \{I \cup J\};
```

 $C_i = Ci \cup (I \cup J)$

The Apriori Algorithm

```
Input:

I //Itemsets
D //Database of transactions
s //Support

Output:

L //Large itemsets

Apriori algorithm:

k = 0; //k is used as the scan number.

L = \emptyset;
```

```
C_1 = I; //Initial candidates are set to be the items.
repeat
   k = k + 1;
   L_k = \emptyset;
    for each I_i \in C_k do
       c_i = 0; // Initial counts for each itemset are 0.
    for each t_i \in D do
       for each I_i \in C_K do
           if I_i \in t_j then
              c_i = c_i + 1;
   for each I_i \in C_k do
       if c_i \geq (s \times |D|) do
          L_k = L_k \cup I_i;
   L = L \cup L_k;
   C_{k+1} = Apriori - Gen(L_k)
until C_{k+1} = \emptyset;
```

Example – Apriori

• Consider the following dataset

tid	itemset	Α	В	С	D	E
t1	A, C, D	X		X	X	
t2	В, С, Е		X	X		X
t3	A, B, C, E	X	X	X		Х
t4	B, E		Х			Х

- Use Apriori to find all frequent itemsets using minimum support s=0.5
- An itemset must appear in at least 0.5 * 4 = 2 transactions to be frequent

An itemset must appear in at least 2 transactions to be frequent

Database TDB

tid	items	Α	В	С	D	E
t1	A, C, D	X		Χ	Χ	
t2	B, C, E		Χ	Χ		Χ
t3	A, B, C, E	X	Χ	Χ		Χ
t4	B, E		X			Χ

2nd scan

2	Itemset	sup
	{A, B}	1
Ī	{A, C}	2
	{A, E}	1
ĺ	{B, C}	2
ĺ	{B, E}	3
	{C, E}	2

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

	Itemset	sup
3	{A, B, C}	1
	{A, C, E}	1
	{B, C, E}	2

3 rd scan	L_3	Itemset	sup
<u> </u>	\longrightarrow	{B, C, E}	2