Robot Autonomy

Lecture 15: Hybrid Systems

Oliver Kroemer

Consider two rooms separated by switch-activated door

Simply following the continuous trajectory is not enough

Hybrid System

• Configuration space $\,C\,$ and a finite set of modes $m\in M$

$$m = Closed$$

$$m = Open$$

State Space

$$X = C \times M$$

State
$$x = (q, m)$$

Hybrid System

Finite set of actions for transitioning between modes

$$U(x) \subset \{NoAction, OpenDoor, CloseDoor\}$$

Available set of actions depends on state

May have a forced action, e.g., an automatic door

$$U(x) = OpenDoor$$

environment triggers a mode transition

Hybrid System

Mode transition defined by the mode transition function

$$f_m(x,u) \in M$$

$$f_m((q, \text{Closed}), \text{OpenDoor}) = \text{Open}$$

Mode Graphs

Modes

Modes must be discrete, but can have many of them

Well behaved c-spaces with portals between them

$$X = C^P \times C^A \times M$$

part can be carried across chasm

C-space Regions

$$C_{adm} = C \setminus (C_{obs}^a \cup C_{obs}^p \cup C_{obs}^{ap}),$$

$$C_{free} \subset C_{admissible}$$

Where can we grasp?

Multiple Objects

- Configuration space dimension increases with nr. objects
- Still have only two modes: transfer and transit
- Transfer lines are not parallel for different objects

Reconfigurable Robots

Two modes to indicate discrete transformer modes

Key Exchange

• 12 modes to indicate key holding (0,1,2) and door states

Modes

- Modes serve a variety of roles in robotics literature
 - May model problem in different ways (e.g., key exchange)
 - Some formulations create an infinite number of modes

- Modes provide abstraction and structure for planning
 - Don't need to consider details (e.g. grasping)
 - Result in subgoal bottle necks
 - Generate paths that go between the transition regions

Questions?