Campinas Advanced School of Thermodynamics Workshop on Molecular Simulations Session 1 – Basic MD

Edward Maginn and Eliseo Marin

Department of Chemical and Biomolecular Engineering

University of Notre Dame, USA

ed@nd.edu

All materials available on GitHub site

Set up conda environments

- Follow the instructions provided earlier.
- Activate LAMMPS environment
- > conda activate lammps-tutorial
- Make sure Ovito is installed

History of "models"

• It seems to me that the test of "Do we or not understand a particular subject in physics?" is "Can we make a mechanical model of it?"

-W. Thomson (Lord Kelvin)

"Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light", 1904.

Essence of molecular simulation

- Predict the macroscopic properties of many-body systems
- Described by wave function $\psi(q,t)$
 - o **q** is position of nuclei and electrons at time *t*.
 - Solving wave equation gives expectation value of any mechanical property
 - Rigorous, but difficult to do for large systems

Subject of electronic structure theory. Simplification: treat system *classically*.

- State of system given by generalized coordinates \mathbf{q}^{N} and generalized momenta \mathbf{p}^{N} .
- Born-Oppenheimer approximation: neglect position of electrons and focus only on nuclei

Uncertainty principle: we cannot know both **q**^N and **p**^N exactly. Let's ignore this!

Phase space

State vector or system point defined as

$$\mathbf{x}^N \equiv (\mathbf{q}^N, \mathbf{p}^N) = (\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_N; \mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_N)$$

6-N dimensional set from which \mathbf{x}^{N} takes a value is called the *phase space* of the system Γ

A point on Γ represents a *microstate* of the entire system.

If \mathbf{x}^N is known at one time, it is *completely determined* for any other time (past and present) through the classical equations of motion.

Phase space and state points

- "phase space" is the 6N generalized coordinates describing the state of a system: $\mathbf{x}^{N}(\mathbf{q}^{N}, \mathbf{p}^{N})$
- Positions: **q**^N
- Momenta p^N

N atoms Bold type = vector

Several coordinate systems possible

Cartesian: r(x,y,z)

Classical energies, forces; equations of motion

$$H(\mathbf{q},\mathbf{p}) = K + \mathcal{V}$$
 "Hamiltonian"

$$K = \sum_{i=1}^N rac{m_i v_i^2}{2}$$
 KE depends on atomic velocities

$$\mathcal{V} = \mathcal{V}(\mathbf{q})$$
 PE depends on atomic positions

$$\mathbf{F} = -
abla_{\mathbf{q}} \mathcal{V}$$
 Force between pairs of atoms is conservative

Energy is conserved

dH/dt = 0 - a microcanonical ensemble

Newton's equations of motion

$$\frac{d\mathbf{p}}{dt} = m\frac{d\mathbf{v}}{dt} = m\ddot{\mathbf{r}} = m\mathbf{a}$$

$$m_i \ddot{r_i} = F_i - \frac{\text{3N 2nd order}}{\text{differential eqns.}}$$

$$\dot{r_i} = \frac{\dot{p_i}}{m_i}$$

$$\dot{p_i} = F_i$$
6N 1st order differential equations

$$F_i \equiv -\nabla_{r_i} U$$

MD uses finite difference

- MD is a means of solving the following initial value problem: $\ddot{r_i} = \frac{F_i(r_1,...r_N)}{m_i}$
- Initial conditions: $r_i(0), \dot{r}_i(0)$
- Trajectories generated numerically using finite difference methods
- We will use LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) lammps.org
- Classical particle simulator
 - Tremendous flexibility, very good documentation, and active user base
- We will start with some simple demonstrations and calculations to understand basics

Microstates, macrostates, and ensembles

Systems with different *microstates* may exist at the same *thermodynamic state*.

Example: Many different sets of $(\mathbf{q}^{N}, \mathbf{p}^{N})$ can be at the same temperature and pressure.

A thermodynamic state is a collection of many different microstates.

- Identical in composition and at the same "macrostate"
- Gibbs called this collection an "ensemble"

An ensemble is a collection of a large number of systems, each a replica of the thermodynamic state of the system, whose properties we are investigating

Example:
4 states having
different (q,p) but
same NVE

Time reversibility

Newtonian mechanics is time-reversible

$$H(\mathbf{x}^N) = H(\mathbf{p}^N, \mathbf{q}^N)$$

given
$$\mathbf{x}^N(t_1)$$
 \Longrightarrow $\mathbf{x}^N(t_2)$ absolutely known

Determinism

- Ever since Newton, deterministic, mechanical interpretation of Nature has dominated science.
- Given for one instant an intelligence which could comprehend all the forces by which Nature is animated and the respective situation of the beings who compose it an intelligence sufficiently vast to submit these data to analysis it would embrace in the same formula the movements of the greatest bodies of the universe and those of the lightest atoms; for it, nothing would be uncertain and the future, as the past, would be present to its eyes.

-- P. S. Laplace, "Philosophical Essay on Probabilities", 1814

Averages in NVE ensemble

Consider an integrable function $f(\mathbf{x}^N)$ of state point \mathbf{x}^N on a constant E-hypersurface. The phase average of $f(\mathbf{x}^N)$ is

$$\langle f
angle_{NVE} = rac{1}{\Sigma(E)} \int_{\Gamma} \delta(H(\mathbf{x}^N - E)f(\mathbf{x}^N) d\mathbf{x}^N \ \langle f
angle_{NVE} = rac{\int_{\Gamma} \delta(H(\mathbf{x}^N - E)f(\mathbf{x}^N) d\mathbf{x}^N}{\int_{\Gamma} \delta(H(\mathbf{x}^N - E)d\mathbf{x}^N)} \ ext{What we do with MC}$$

Key: phase average taken by averaging over all state points on constant E hypersurface

Could also take a "time average" over a series of snapshots as system evolves at equilibrium

$$\langle f
angle_t = \lim_{t o \infty} rac{1}{t} \int_{t_0}^{t_0+t} f(\mathbf{x}^N(t)) dt$$
 What we do with MD

Steps of a molecular simulation

- A molecular simulation consists of three steps:
 - 1) construction of the molecular model
 - > How are atoms connected and how do they interact?
 - 2) calculation of molecular trajectories
 - > MC is stochastic
 - > MD is deterministic
 - > Many variants "in between"
 - 3) analysis of trajectories => properties

Running a LAMMPS calculation

- Pass LAMMPS and input file provides essential information
 - What kind of system
 - How long the run is
 - File names
 - Units
 - Many other things...
- Can provide the force field and molecule information
- A "data file" can also be used to provide force field and molecule information

Lennard-Jones 12-6 potential

$$\mathcal{V}(r_{ij}) = 4\epsilon_{ij} \left[\left(rac{\sigma_{ij}}{r_{ij}}
ight)^{12} - \left(rac{\sigma_{ij}}{r_{ij}}
ight)^{6}
ight]$$

LJ Units used by LAMMPS

- LAMMPS sets the fundamental quantities m, σ , ϵ , and the Boltzmann constant $k_B=1$.
- The masses, distances, energies are multiples of these fundamental values.
- Thus, you can use the mass, σ , and ϵ values for a specific material and convert the results from a unitless LJ simulation into physical quantities.
- Note that using these three properties as base, the unit of time must conform to the relation

```
•mass = M*=M/m

•distance = x*=x/\sigma

•time = \tau*=\tau sqrt(\varepsilon/m\sigma^2)

•energy = E*=E/\varepsilon

•velocity = v*=v \tau/\sigma

•force = f*=f \sigma/\varepsilon

•temperature = reduced LJ temperature, T*=T k_B / \varepsilon

•pressure = reduced LJ pressure, P*=P \sigma^3/\varepsilon
```

Example 1: Two LJ particles in an LJ sphere

Open example1.inp in your editor

set name for this simulation
variable NAME index example1 # name style value

You can call this anything you want. Suggestion is to develop a system so you can understand and organize results

```
# set log file name. ${NAME} is the name you gave above.
# This will append "log" to it so have a logfile of the run.
log ${NAME}.log
```

comments can start a line or come after an entry

```
# configure and initialize system
units lj # Lennard-Jones reduced units (not real)
atom_style atomic # Simple atoms
boundary f f f # x y z (f = fixed boundary conditions)
```

"fixed" boundary will be a rigid LJ sphere

LJ units are dimensionless units for the LJ system

"real" units: Length = A Energy = kcal/mol Time = fs

```
# Define the region of the simulation andx then create
# the simulation box
region MYBOX sphere 0 0 0 5 units box
create_box 1 MYBOX # number_of_atom_types region_ID
```

Creates the simulation "box" of diameter 5 LJ units and centered at 0,0,0

Create the atoms and place them at a given position create_atoms 1 single 0 2.0 0 units box # atom_type style args create_atoms 1 single 0 -2.0 0 units box # second symmetric atom, non-ergodic #create_atoms 1 single 0 -1.0 0 units box # second asymmetric atom, ergodic

Place a single atom of type 1 at position 0,2,0

Place a second atom of the same type at position 0,-1,0.

Commented out: you could create more atoms at other positions for fun

mass 1 1.0 # atom_type mass

The mass of atoms of type 1 is 1.0 (LJ units)

explicitly set atom velocities, use box units, do *not* zero total momentum
velocity all set 1 0 0 units box mom no # group_ID style args keyword value

Atoms need initial velocities. Give them all +1,0,0

```
# set forcefield parameters
pair_style lj/cut 2.5 # style args(=cutoff)
pair_coeff 1 1 1.0 1.0 2.5 # atom_i atom_j args(=epsilon,sigma,cutoff)
#pair_coeff 1 1 1.0 1.0 1.0 # repulsive only
```

Define the LJ potential

```
# create a spherical wall to contain the atom(s)
fix SPHERE all wall/region MYBOX lj126 1.0 1.0 2.5 # fix_ID group_ID style
args
#fix SPHERE all wall/region MYBOX lj126 1.0 1.0 1.0 # repulsive only
```

include potential energy of wall fix in thermo 'pe' output fix_modify SPHERE energy yes # fix_ID keyword value Make the sphere have an LJ potential (cutoff of 1.0 is a repulsive "Sutherland" potential

Include energy between atoms and wall in PE LAMMPS calculates

configure integrator
fix NVE all nve # fix_ID group_ID style
timesten 0 003 # The default timesten size is

Tell LAMMPS how to integrate the EOM

timestep 0.003 # The default timestep size is 0.005 for LJ units.

configure output of atom-specific trajectory data (e.g. coordinates)
dump DUMP all atom 50 \${NAME}.lammpstrj # dump_ID group_ID style interval file args
#dump_modify DUMP image yes # dump_ID keyword value

configure output of system property data
thermo_style custom step temp press pe ke etotal
thermo 1000 # output_interval

"dump" coordinates to trajectory file for analysis every 50 steps

What properties do you want written out every 1000 steps

run simulation
run 100000 # number_of_steps
write_restart \${NAME}.restart.*

Ignore other stuff for now...

Tell LAMMPS to run MD for 100000 steps and then write a restart file that can be used to run another simulation from the end of the first one

Example 1 output

Log file has properties

Step		Temp	Press	PotEng	KinEng	TotEng
-	0	0.66666667	0.00066666667	0	0.5	0.5
10	000	1.9276018	0.0019276018	0	1.4457013	1.4457013
20	000	0.66997905	0.00066997905	0	0.50248429	0.50248429
36	000	0.72222642	0.00072222642	0	0.54166981	0.54166981
46	000	0.69498405	0.00069498405	0	0.52123804	0.52123804
56	000	0.75054381	0.00075054381	0	0.56290786	0.56290786
66	000	0.74614754	0.00074614754	0	0.55961065	0.55961065
70	000	0.7478995	0.0007478995	0	0.56092462	0.56092462
86	000	0.86172315	0.00077235532	-0.022603356	0.64629237	0.62368901
96	000	1.1769	0.0011769	0	0.88267501	0.88267501
100	000	1.8976579	0.0018976579	0	1.4232434	1.4232434
110	000	1.4491928	0.003827198	-0.41223311	1.0868946	0.67466147
120	000	1.1983254	0.0011983254	0	0.89874403	0.89874403
130	000	0.91551879	0.00091551879	0	0.6866391	0.6866391
140	000	1.7583265	0.00078678268	-0.4136154	1.3187448	0.90512944
150	000	1.2961229	0.0012961229	0	0.97209217	0.97209217

- Why is energy not conserved?
- System is not "ergodic" as molecules do not explore all available space.
- Add the third atom to the box and re-run. What happens?
 © 2022 E. Maginn, Univ. Notre Dame

3 atoms - ergodic

Step		Temp	Press	PotEng	KinEng	TotEng
	0	0.5	0.009	0	0.5	0.5
	1000	0.83477215	0.0015143069	-0.02617744	0.83477215	0.80859471
	2000	1.1149492	0.0022298985	0	1.1149492	1.1149492
	3000	1.1561885	0.002312377	0	1.1561885	1.1561885
	4000	0.75993387	0.0012081026	-0.054380556	0.75993387	0.70555331
	5000	1.3042038	0.0016449011	-0.21512011	1.3042038	1.0890837
	6000	0.82754341	0.0016550868	0	0.82754341	0.82754341
	7000	1.0369676	0.0011097658	-0.21546579	1.0369676	0.82150178
	8000	0.77669148	0.0013916085	-0.027556777	0.77669148	0.7491347
	9000	0.52073028	0.00095543258	-0.014417638	0.52073028	0.50631264
	10000	0.60680212	0.0011767117	-0.0061776457	0.60680212	0.60062447
	11000	0.83508363	0.001319143	-0.06086272	0.83508363	0.77422091
	12000	0.71825183	0.0013513439	-0.014351174	0.71825183	0.70390065
	13000	0.70277162	0.0014055432	0	0.70277162	0.70277162

System is ergodic, but energy is still not conserved.

Integrating EOM – Verlet Algorithm

• Many "flavors" of this (good) algorithm

$$r(t + \Delta t) = 2r(t) - r(t - \Delta t) + \Delta t^{2}a(t)$$

- Where did this come from, and where did the velocities go???
- Taylor series about r(t)

$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{1}{2}\Delta t^{2}a(t) + \frac{1}{6}\Delta t^{3}b(t)$$
 add two eqns to get Verlet
$$r(t - \Delta t) = r(t) - v(t)\Delta t + \frac{1}{2}\Delta t^{2}a(t) - \frac{1}{6}\Delta t^{3}b(t)$$
 algorithm

Verlet Algorithm

A graphical representation

Verlet Algorithm

- No explicit velocities...problem?
- Yes! Need them to compute temperature
- Estimate from

$$v(t) = \frac{r(t + \Delta t) - r(t - \Delta t)}{2\Delta t}$$

- Positive aspects of Verlet algorithm
- accurate to dt⁴
- time reversible
- good energy conservation
- one-step procedure (no predict-correct)
- very easy to code

Verlet Algorithm

- Drawbacks of Verlet algorithm
 - handling velocities is a bit awkward
 - o more important: can lead to *numerical instabilities*

$$r(t + \Delta t) = \begin{bmatrix} 2r(t) - r(t - \Delta t) \end{bmatrix} + \Delta t^{2}a(t)$$

$$relatively large number$$

rule of thumb: all numbers in an operation should be of the same order of magnitude.

Verlet "Leap Frog"

• Verlet "Leap Frog" an improvement over standard Verlet

1.
$$r(t + \Delta t) = r(t) + \Delta t v \left(t + \frac{1}{2} \Delta t \right)$$

2.
$$v\left(t + \frac{1}{2}\Delta t\right) = v\left(t - \frac{1}{2}\Delta t\right) + \Delta t a(t)$$

Default in Gromacs

Verlet "Leap Frog"

- Implementation
 - Apply 2nd equation to allow v to "leap over" r by 1/2 time step.
 - Compute current velocities

$$v(t) = \frac{1}{2} \left[v \left(t + \frac{1}{2} \Delta t \right) + v \left(t - \frac{1}{2} \Delta t \right) \right]$$

• Use $v\left(t+\frac{1}{2}\Delta t\right)$ to allow r to "catch up"

Verlet "Leap Frog"

Graphical representation

Velocity Verlet algorithm

- Leap frog formally equivalent to Verlet
- Does not have instability problem
- Velocities still handled in clumsy manner
- Perhaps the "best" algorithm: "Velocity Verlet" (*J. Chem. Phys.*, **76**, *637* (1982))

$$r(t + \Delta t) = r(t) + \Delta t v(t) + \frac{1}{2} \Delta t^2 a(t)$$

$$v(t + \Delta t) = v(t) + \frac{1}{2} \Delta t \left[a(t) + a(t + \Delta t) \right]$$

Velocity Verlet

Implementation

1
$$r(t + \Delta t) = r(t) + \Delta t v(t) + \frac{1}{2} \Delta t^2 a(t)$$

$$v(t+1/2\Delta t) = v(t) + \frac{1}{2}\Delta t[a(t)]$$

$$a(t + \Delta t) = -\frac{\nabla U[r(t + \Delta t)]}{m}$$

$$v(t + \Delta t) = v\left(t + \frac{1}{2}\Delta t\right) + \frac{1}{2}\Delta t\left[a(t + \Delta t)\right]$$

LAMMPS

run_style style args

•style = verlet or verlet/split or respa or respa/omp

"verlet" = velocity Verlet

Run Example 2

- fcc lattice: Common initial starting configuration (get high density)
- System needs to "melt" to get liquid
- Must assign random velocities to start

What happened?

- Atoms start at a state point that wants to be a liquid
- As atoms melt, they are exposed to a vacuum
- "Droplet" vaporizes
- V and E not constant not microcanonical ensemble

Step		Temp	Press	PotEng	KinEng	TotEng
_	0	3	-3.4845053	-6.0761475	4.4990283	-1.5771192
	50	1.7748417	5.3570512	-4.243752	2.6616876	-1.5820644
	100	1.731976	3.4268938	-4.1649181	2.5974029	-1.5675152
	150	1.6790648	2.1594135	-4.0673572	2.5180534	-1.5493038
	200	1.6041826	1.2516878	-3.9366626	2.4057542	-1.5309084
	250	1.5091256	0.76269251	-3.7770188	2.2631995	-1.5138192
	300	1.4432827	0.34099098	-3.6624767	2.1644565	-1.4980202
	350	1.3603465	0.1378712	-3.5230795	2.0400792	-1.4830004
	400	1.270896	0.030005588	-3.3755461	1.9059324	-1.4696137
	450	1.1910348	-0.039600614	-3.2434006	1.7861664	-1.4572342
	500	1.1328023	-0.090115967	-3.145119	1.6988366	-1.4462824
	550	1.0687906	-0.098623743	-3.0400953	1.6028397	-1.4372555
	600	1.0239435	-0.11814921	-2.9647217	1.5355836	-1.429138
	650	0.97483568	-0.10659398	-2.8838015	1.4619378	-1.4218638
	700	0.94299048	-0.094648988	-2.8297054	1.4141803	-1.4155252
	750	0.91212726	-0.072597343	-2.7784189	1.3678955	-1.4105234
	800	0.89796418	-0.063266876	-2.7533238	1.3466554	-1.4066684
	850	0.88730808	-0.062104992	-2.7337885	1.3306747	-1.4031138
	900	0.86641968	-0.044796873	-2.6992878	1.2993489	-1.3999389
	950	0.86587028	-0.047253967	-2.6958261	1.298525	-1.3973011
	1000	0.84943225	-0.0278741	-2.6692931	1.2738732	-1.3954199

Add a boundary to box

- To keep molecules inside the box, we could add a reflecting boundary or "walls"
- Keep simulation at NVE
- Do you see any problems with this?

Add a boundary to box

- To keep molecules inside the box, we could add a reflecting boundary or "walls"
- Keep simulation at NVE
- Problem?
- Simulations are ~ 1000 molecules
- Huge fraction are on surface not representative of "bulk" behavior

Periodic boundary conditions

- Surround central box with 26 identical images
- Only track
 molecules in central
 box, but energies
 calculated with
 image particles
- Rcut < ½ box

boundary p p p # x y z (p = periodic boundary conditions)
#boundary s s s # x y z (s = shrink wrapped boundary conditions)

Conserved quantities in NVE MD?

1. Hamiltonian (energy, H = U + K)

Conserved quantities in NVE MD?

- 1. Hamiltonian (energy, H = U + K)
- 2. Linear momentum

Conserved quantities in NVE MD?

- 1. Hamiltonian (energy, H = U + K)
- 2. Linear momentum
- 3. NOT angular momentum

4 constraints – need to account for when using the number of degrees of freedom (more on this later)

Run example 3

boundary p p p # x y z (p = periodic boundary conditions)

Implements PBC in all 3 dimensions

- What happens to NVE?
- Visualize the trajectory
 - O What happens to molecules near the edges of the box?

Example 3 with PBC

Step	Temp		Press	PotEng	KinEng	TotEng
-	0	3	-3.7033504	-6.7733681	4.498875	-2.2744931
	50	1.6762688	5.6211062	-4.7966884	2.5137746	-2.2829138
	100	1.6751365	5.6745042	-4.7930126	2.5120766	-2.280936
	150	1.6503181	5.8247966	-4.754385	2.4748583	-2.2795267
	200	1.6439636	5.8864021	-4.7455259	2.4653289	-2.280197
	250	1.6332109	5.9623581	-4.7284008	2.4492038	-2.2791969
	300	1.6524852	5.8259333	-4.7570534	2.4781081	-2.2789453
	350	1.6547879	5.8178479	-4.7606833	2.4815613	-2.279122
	400	1.6290272	5.958913	-4.7225629	2.4429299	-2.279633
	450	1.657992	5.762083	-4.7659903	2.4863663	-2.2796241
	500	1.6440357	5.8575351	-4.7459147	2.4654371	-2.2804776
	550	1.6348257	5.9405456	-4.7307789	2.4516255	-2.2791534
	600	1.6406392	5.9643588	-4.7393391	2.4603436	-2.2789955
	650	1.6450391	5.8591064	-4.7459475	2.4669417	-2.2790058
	700	1.6544808	5.8686647	-4.7598262	2.4811007	-2.2787254
	750	1.6355088	5.9352799	-4.7324059	2.4526499	-2.279756
	800	1.6426811	5.9005846	-4.7431883	2.4634056	-2.2797827

- Total energy constant (as is volume): NVE!
- Why does the potential energy go up?
- Why does the kinetic energy go down?

Run Example 4

```
# dump_ID group_ID style interval file args
dump DUMP all custom 50 ${NAME}.lammpstrj xu yu zu
```

- PBC is applied to all atoms but when we write the trajectory, we don't apply PBC to them
 - Useful when computing diffusivity
- Visualize trajectory
- Compare this and thermo properties with Example 3

Example 4 – PBC and unwrapped coords

Temp		Press	PotEng	KinEng	TotEng
0	3	-3.7033504	-6.7733681	4.498875	-2.2744931
50	1.6762688	5.6211062	-4 . 7966884	2.5137746	-2.2829138
100	1.6751365	5.6745042	-4.7930126	2.5120766	-2.280936
150	1.6503181	5.8247966	-4 . 754385	2.4748583	-2.2795267
200	1.6439636	5.8864021	-4 . 7455259	2.4653289	-2.280197
250	1.6332109	5.9623581	-4.7284008	2.4492038	-2.2791969
300	1.6524852	5.8259333	-4 . 7570534	2.4781081	-2.2789453
350	1.6547879	5.8178479	-4.7606833	2.4815613	-2.279122
400	1.6290272	5.958913	-4 . 7225629	2.4429299	-2.279633
450	1.657992	5.762083	-4 . 7659903	2.4863663	-2.2796241
500	1.6440357	5.8575351	-4.7459147	2.4654371	-2.2804776
550	1.6348257	5.9405456	-4 . 7307789	2.4516255	-2.2791534
600	1.6406392	5.9643588	-4.7393391	2.4603436	-2.2789955
650	1.6450391	5.8591064	-4 . 7459475	2.4669417	-2.2790058
700	1.6544808	5.8686647	-4 . 7598262	2.4811007	-2.2787254
750	1.6355088	5.9352799	-4.7324059	2.4526499	-2.279756
800	1.6426811	5.9005846	-4 . 7431883	2.4634056	-2.2797827

- Exactly the same as Example 3!
- Atom coordinates are "unwrapped" and allow for diffusion determination

Apply PBC in 2 directions

Simulate a vacuum interface in Z; periodic liquid in X, Y

Edit example3.inp to run this simulation.

Apply PBC in 2 directions

Simulate a vacuum interface in Z; periodic liquid in X, Y

boundary p p s # x y z (p in x, y s in z)

Problems With NVE MD

Typical MD is in NVE ensemble.

How do you compare with experiments at a

given T?

Different ensembles

The NVE ensemble is the "natural" ensemble of molecular dynamics since the Newtonian equations of motion keep energy constant.

Simulate at NVE => compute what T, P are...

BUT, most experiments are at constant T and/or P. What to do?

Canonical (NVT) ensemble

$$Q(NVT) = rac{1}{\sqrt{3N}} \int d{f q}^N \exp \Bigl[-eta U(q^N) \Bigr]$$

Isothermal-isobaric (NPT) ensemble

$$Q(NVT) = rac{1}{\Lambda^{3N}N!} \int d{f q}^N \exp\Bigl[-eta U(q^N)\Bigr] \qquad Q(NPT) = rac{1}{V_0} \int dV \exp[-eta PV] Q(NVT)$$

Simulating in these ensembles requires new equations of motion; "thermostat" for NVT; "thermostat" and "barostat" for NPT

MD in Other Ensembles

- It is desirable to set T at start
- Perform MD in canonical (NVT) ensemble
- Can we use classical equations of motion to do this?
- No!
- A (very) crude approach: rescale v_i at each time step so

$$T = \frac{1}{(3N - N_c)k_B} \sum_{i=1}^{N} \frac{|p_i|^2}{m_i} = T_{set}$$

NVT MD

- Thermal reservoir at setpoint T
- At some frequency, allow a particle to "collide" with a heat bath particle.

• Reassign particle velocity from Maxwell-Boltzmann distribution at T.

NVT MD

Phase space trajectory looks like this

- Over time, all constant E hypersurfaces sampled about T_{set}
- <T> ~ T_{set}

NVT MD

- "Bath particle collision" method does yield averages consistent with canonical ensemble
- Dynamic properties may be altered however!
- This is a "zeroth order" method.
- See: H. C. Anderson, "Molecular Dynamics at Constant Pressure and/or Temperature", J. Chem. Phys., 72, 2384 (1980).

Extended Systems

- A more sophisticated approach: "extended system" methods.
- Idea: simulate an extra degree of freedom representative of a thermal reservoir.
- Coordinate has "velocity" (rate of change)
- Coordinate has "mass" (inertia)
- Common method: Nosé-Hoover
 - S. Nosé, "A Molecular Dynamics Method for Simulations in the Canonical Ensemble", *Mol. Phys.*, **53**, 255 (1984).
 - W. G. Hoover, "Canonical Dynamics: Equilibrium Phase-Space Distributions", *Phys. Rev. A*, **31**, 1695 (1985).

Extended Systems

- The Nosé-Hoover "thermostat" appears naturally in the equations of motion
- A "thermal inertia" term governs rate of heat transfer and thus KE fluctuations.
- A "time constant" of ~ 1ps typically used (~1000 dt)
- Extended system methods generalized to maintain P in NPH MD
 see J. Chem. Phys., 72, 2384 (1980).

LAMMPS fix nvt command

LAMMPS implements "fixes" that are any operation that is applied to the system during time stepping or minimization.

NVT simulations

- In LAMMPS, fix NVT command performs time integration on Nosé-Hoover style non-Hamiltonian equations of motion.
- The desired temperature at each timestep is a ramped value during the run from *Tstart* to *Tstop*.
- Tdamp is in time units and determines how rapidly the temperature is relaxed.
 - A value of 10.0 means to relax the temperature in a timespan of (roughly) 10 time units

Tdamp

From user documentation

- A Nosé-Hoover thermostat will not work well for arbitrary values of Tdamp.
- If *Tdamp* is too small, the temperature can fluctuate wildly; if it is too large, the temperature will take a very long time to equilibrate.
- A good choice for many models is a *Tdamp* of around 100 timesteps. Note that this is NOT the same as 100 time units.
- A simple way to ensure this, is via using an <u>immediate variable</u> expression accessing the thermo property 'dt', which is the length of the time step. Example: **fix 1** all nvt temp 300.0 300.0 \$(100.0*dt)

Run Example 5: NVT

fix TEMP all nvt temp 1.7 1.7 0.3 # T1 T2 Tdamp

Step		Density	Temp	Press	PotEng	KinEng	TotEng	
	0	0.8442	3	-4.4654851	-7.2253807	4.498875	-2.7265057	T slowly a
	5	0.8442	2.9479538	-4.0538529	-7.156045	4.4208252	-2.7352198	i Slowly a
	10	0.8442	2.7447312	-2.6017674	-6.8726962	4.1160675	-2.7566287	setpoint
	15	0.8442	2.2781444	0.33586859	-6.2053195	3.4163624	-2.7889572	Sceponic
	20	0.8442	1.6831137	3.8926871	-5.3358811	2.5240394	-2.8118417	
	25	0.8442	1.4624299	5.387245	-5.0195891	2.1930964	-2.8264927	
	30	0.8442	1.5510769	5.0876634	-5.161707	2.3260336	-2.8356733	KE goes do
	35	0.8442	1.6448668	4.6122982	-5 . 3070914	2.4666834	-2.840408	
	40	0.8442	1.6626398	4.4833398	-5.3367398	2.4933363	-2.8434036	
	45	0.8442	1.6446739	4.5495101	-5.3120582	2.466394	-2.8456641	Total ener
	50	0.8442	1.6294816	4.6214826	-5.2910339	2.4436113	-2.8474226	iotai enei
								conserved
	950	0.8442	1.7036442	5.4694596	-5.1337292	2.5548274	-2.5789017	CONSCIVED
	955	0.8442	1.7143303	5.4107694	-5 . 1507754	2.5708526	-2.5799228	
	960	0.8442	1.7223772	5.3660442	-5.1640457	2.5829199	-2.5811259	
	965	0.8442	1.7114629	5.4179554	-5.1482196	2.5665526	-2.581667	
	970	0.8442	1.7022124	5.4606582	-5.1359445	2.5526803	-2.5832642	
	975	0.8442	1.7034176	5.4516946	-5.1390778	2.5544876	-2.5845902	
	980	0.8442	1.7009249	5.4585891	-5.1366219	2.5507495	-2.5858723	
	985	0.8442	1.6969487	5.4686266	-5.131996	2.5447867	-2.5872092	
	990	0.8442	1.6991331	5.4419508	-5.1367317	2.5480624	-2.5886693	
	995	0.8442	1.7078689	5.3786159	-5.1514502	2.5611628	-2.5902874	
	1000	0.8442	1.724012	5.2839742	-5 . 1771125	2.5853715	-2.591741	

approaches

down

ergy is NOT d

What is the actual temperature?

$$T_{inst} = rac{1}{(3N-N_c)k_B} \sum_{i=1}^{N} N rac{|p_i|^2}{m_i}$$
 Instantaneous temperature

$$T = T_{set}$$

We should obtain $\langle T_{inst} \rangle = T_{set}$

- We should not take averages over parts of the trajectory that have not yet reached the desired statepoint
- "Equilibration" phase is thrown away
- "Production" phase is recorded.
- Use "restart" feature to start from the end of an equilibrated trajectory

Run Example 6 – restart from end of Example 5

If you are unhappy with how well equilibrated Example 5 is, re-run it for a longer time.

Examine the KE, PE, E, T, and P

Example 7 – Play with different options

Other ways to run NVT Play with potential cutoff method, etc.

NPT simulations

LAMMPS uses an extended system Nosé-Hoover style

```
fix TEMP all npt temp 1.7 1.7 0.3 iso 5.0 5.0 1000.0 #
```

iso values = Pstart Pstop Pdamp; scalar external pressure at start/end of run (pressure units); Pdamp = pressure damping parameter (time units)

- A Nosé-Hoover barostat will not work well for arbitrary values of *Pdamp*.
- If *Pdamp* is too small, the pressure and volume can fluctuate wildly; if it is too large, the pressure will take a very long time to equilibrate.
- A good choice for many models is a *Pdamp* of around 1000 timesteps.

Run Example 8

Run basic case and look at how T, E, P vary

Adjust the barostat (or thermostat) time constants and see what happens

```
# configure integrator and thermostats/barostats
fix TEMP all npt temp 1.7 1.7 0.3 iso 5.0 5.0 1000.0
timestep 0.003 # The default timestep size is 0.005 for LJ units.
```

Look at the T, P, and density.