Finite-dimensional representations of rational Cherednik algebras

Xinchun Ma

1 Category $\mathcal{O}(H_c)$

Throughout, we work over \mathbb{C} and focus on type A_{n-1}^{-1} : $W = S_n$, $\operatorname{rk}(\mathfrak{h}) = n-1$. Let $S \subset W$ be the subset consisting of reflections. For any $s \in S$, let α_s , resp. α_s^{\vee} denote the associated root, resp. coroot. Fix a parameter $c \in \mathbb{C}$.

Definition 1.1. The rational Cherednik algebra is defined to be

$$\mathbf{H}_c := \frac{\mathbb{C}[\mathfrak{h}] \otimes \mathbb{C}[\mathfrak{h}^*] \ltimes W}{([y,x] - \langle x,y \rangle + c \sum_{s \in S} \langle x, \alpha_s^\vee \rangle \langle \alpha_s, y \rangle s, \ x \in \mathbb{C}[\mathfrak{h}], y \in \mathbb{C}[\mathfrak{h}^*])}$$

Similar to $U(\mathfrak{g})$, we have PBW-decomposition $H_c \cong \mathbb{C}[\mathfrak{h}] \otimes \mathbb{C}[\mathfrak{h}^*] \otimes \mathbb{C}[W]$, which inspires an analogous definition of category $\mathcal{O}(H_c)$:

Definition 1.2. $\mathcal{O}(H_c)$ is a full subcategory of H_c —mod whose objects are finitely generated over H_c such that the \mathfrak{h} action is locally nilpotent.

As one can check, any $M \in \mathcal{O}(H_c)$ is finitely generated over $\mathbb{C}[\mathfrak{h}]$. Hence $\mathcal{O}(H_c)$ is an abelian category. It shares similar good properties with the BGG category \mathcal{O} . To name a few: [Gua03]

- 1. Every $M \in \mathcal{O}(\mathbf{H}_c)$ has finite length
- 2. enough projectives
- 3. BGG reciprocity
- 4. highest weight category
- 5. ...

As these spoilers suggest, we should have standard modules in this category, i.e, verma modules: for any W-representation τ , inflate it to $\mathbb{C}[\mathfrak{h}^*] \ltimes W$ and take

$$M_c(\tau) = \mathrm{H}_c \otimes_{\mathbb{C}[\mathfrak{h}^*] \ltimes W} \tau.$$

 $M_c(\tau)$ has a maximal proper submodule with an irreducible quotient $L_c(\tau)$. $L_c(\tau)$'s give a complete list of irreducible objects in $\mathcal{O}(H_c)$. For generic c, $M_c(\tau)$ is simple.

Let $e := \frac{1}{|W|} \sum_{w \in W} w$ be the idempotent. Then we also have the spherical Cherednik algebra eH_ce .

Theorem 1.3 ([BEG03]). Only when $c = \frac{m}{n}$ with $m \in \mathbb{Z}$, (m,n) = 1, H_c has nontrivial finite dimensional representations. In this case, when c > 0, resp. c < 0 the only irreducible inite dimensional representation is $L_c(\text{triv})$, resp. $L_c(\text{sign})$.

¹But one can deduce most of the results below for other types with more careful treatment.

2 Character of L_c

Consider the following three elements:

$$\mathbf{h} := \frac{1}{2} \sum (x_i y_i + y_i x_i), \mathbf{E} = -\frac{1}{2} \sum x_i^2, \mathbf{F} = \frac{1}{2} \sum y_i^2.$$

One can compute that \mathbf{h} , \mathbf{E} , \mathbf{F} form a \mathfrak{sl}_2 triple and \mathbf{h} commutes with W. Any $M \in \mathcal{O}(\mathbf{H}_c)$ has a generalized \mathbf{h} -weight space decomposition $M = \oplus M_a$ such that M_a has finite dimension, which allows us to define a \mathbf{h} -graded character of M by

$$\operatorname{Tr}_M(w \cdot t^{\mathbf{h}}) := \sum \operatorname{Tr}(w, M_a) t^a$$

Assume $c = \frac{m}{n} > 0$ with $m \in \mathbb{Z}$, (m, n) = 1. Write $L_c = L_c(\text{triv})$ and $\mu := \frac{(m-1)(n-1)}{2}$. Then the **h**-graded character of L_c can be expressed as follows. Note that here and below, det is taken with respect to a linear operator on \mathfrak{h} if no otherwise specified.

Theorem 2.1 ([BEG03]).

$$\operatorname{Tr}_{\mathcal{L}_c}(w \cdot t^{\mathbf{h}}) = t^{-\mu} \frac{\det(1 - t^m \cdot w)}{\det(1 - t \cdot w)}.$$

Corollary 2.2 ([BEG03]).

$$\operatorname{Ch}_{\operatorname{eL}_c}(t) = t^{-\mu} \prod_{i=2}^n \frac{1 - t^{i+m-1}}{1 - t^i}$$

Proof. (of the corollary) Let $\Omega^{\bullet}(\mathfrak{h})^{W}$ denote the space of W-invariant differential forms on \mathfrak{h} . Then its double graded Hilbert series (x for rank of the form and t for homogeneous degree of the polynomial) is:

$$\frac{1}{|W|} \sum_{w \in W} \frac{\det(1+wx)}{\det(1-wt)}$$

Here we use the following exercises: for linear operator $A:V\to V$ on finite-dimensional vector space V,

$$\sum t^n \operatorname{Tr}(\operatorname{Sym}^n A) = \frac{1}{\det(1 - tA)}$$

and

$$\sum t^n \operatorname{Tr}(\wedge^n A) = \det(1 + tA)$$

Let p_2, \ldots, p_n be the elementary symmetric polynomials. Then it is known that $\Omega^{\bullet}(\mathfrak{h})^W$ is generated over $\mathbb{C}[\mathfrak{h}]^W$ as a exterior algebra by $\mathrm{d}p_2, \ldots, \mathrm{d}p_n$.

Hence we have another ways to compute its double graded Hilbert series:

$$\prod_{i=2}^{n} \frac{1 + xt^{i-1}}{1 - t^i}$$

The corollary follows from plugging $x = -t^m$ into both expressions.

To prove the theorem, we need a BGG resolution of L_c which will be lent by the representation theory of the Hecke algebra and the bridge is the KZ functor.

2.1 Dunkl operators and KZ functor

Let $\mathfrak{h}_r = \{\delta \neq 0\}$ denote the regular locus of \mathfrak{h} . The action of H_c on $\mathbb{C}[\mathfrak{h}] \cong H_c \otimes_{\mathbb{C}[\mathfrak{h}^*] \times W} \mathbb{C}$ gives the Dunkl embedding of H_c into $D(\mathfrak{h}_r) \ltimes W$. In particular, the Dunkl operator associated to y_i is

$$\partial_{x_i} - c \sum_{s \in S} \frac{\alpha_s(x_i)}{\alpha_s} (1 - s). \tag{1}$$

Since any H_c -module M is also a $\mathbb{C}[\mathfrak{h}]$ module, we can take its localization with respect to $\delta := \prod_{\alpha \in \Delta^+} \alpha$, or equivalently, restrict M to $\mathfrak{h}_r = \{\delta \neq 0\}$. Since the Dunkl operators only have poles along the root hyperplanes, we have the identity

$$(\mathbf{H}_c)_{\delta} \cong D(\mathfrak{h}_r) \ltimes W.$$

Note that we have equivalence of categories: $\operatorname{Coh}(D(\mathfrak{h}_r) \ltimes W) \cong \operatorname{Coh}^W(D(\mathfrak{h}_r)) \cong \operatorname{Coh}(D(\mathfrak{h}_r/W))$ given by the functor $(-)^W$.

For the Verma $M_c(\tau)$, $(M_c(\tau)_{\sigma})^W = \mathbb{C}[\mathfrak{h}_r] \otimes_W \tau$ is then a $D(\mathfrak{h}_r/W)$ -module. It can also be viewed as a vector bundle of flat connection

$$\nabla_{KZ} := d - c \sum_{s \in S} \frac{d\alpha_s}{\alpha_s} (1 - s). \tag{2}$$

which is the KZ (Knizhnik- Zamolodchikov) connection.²

Monodromy theorem tells us this flat vector bundle produces a representation of $B_W := \pi_1(\mathfrak{h}_r/W)$, which is the (type A) braid group. Let $T_s \in \pi_1(\mathfrak{h}_r/W)$ be the class corresponding to a small counterclockwise circle around the hyperplane $\{\alpha_s = 0\}$ modulo W.

The Hecke algebra of (W, S) with parameter $q: S \to \mathbb{C}$ is defined to be

$$\mathcal{H}_W(q) := \frac{\mathbb{C}[B_W]}{((T_s - 1)(T_s - q_s), s \in S)}.$$

Since s has eigenvalues 1, -1, the monodromy around the hyperplane $\{\alpha_s = 0\}$ given by $(M_c(\tau), \nabla_{KZ})$ is diagonalizable with eigenvalues 1 and $e^{2\pi ic}$. Thus we see that the monodromy representation given by $(M_c(\tau), \nabla_{KZ})$ factors through $\mathcal{H}_W(e^{2\pi ic})$. In general, we have the KZ functor (GGOR):

$$KZ: \mathcal{O}(\mathbf{H}_c) \to \mathcal{H}_W(e^{2\pi i c}).$$

Moreover, let $\mathcal{O}(H_c)_{tor}$ be the Serre subcategory of modules supported on $\{\delta=0\}$. Then

Theorem 2.3 ([GGOR03]). For all $c \in \mathbb{C}$, KZ induces an equivalence

$$\mathcal{O}(\mathrm{H}_c)/\mathcal{O}(\mathrm{H}_c)_{tor} \to \mathcal{H}_W(e^{2\pi i c}).$$

People know the representation theory of the Hecke algebra well:

For any partition λ of n, we have the associated Specht module $S^{\lambda} \subset \mathcal{H}_W(q)$ flat with respect to q. Let τ_{λ} be the associated representation of S_n . Assume $q = e^{2\pi i c}$ and $c = \frac{m}{n}$ with (m, n) = 1. Then

Theorem 2.4 ([GGOR03]). $KZ(M(\tau_{\lambda})) = S^{\lambda}$.

²It is also immediate that ∇_{KZ} is flat since $\frac{d\alpha_s}{\alpha_s} = d \log \alpha_s$ is closed.

Let λ^i be the hook corresponding to $\wedge^i\mathfrak{h}$. Then S^λ is irreducible iff $\lambda \neq \lambda^i$, $\forall i=1,2,...n-2$. When 0 < i < n-1, S^{λ^i} has nonzero composition factors D^{λ^i} and $D^{\lambda^{i-1}}$ both with multiplicity 1. These give a complete list of irreducible representations of $\mathcal{H}_W(q)$. Moreover, as we will see in the proof of theorem 2.1, when j > i, $\kappa(c, \wedge^j\mathfrak{h}) > \kappa(c, \wedge^i\mathfrak{h})$ and so $\operatorname{Hom}(M(\wedge^j\mathfrak{h}), M(\wedge^i\mathfrak{h}) = 0$. Hence $\operatorname{Hom}(M(\lambda), M(\mu)) \neq 0$ is only possible when $\lambda = \wedge^i\mathfrak{h}$ and $\mu = \wedge^{i-1}\mathfrak{h}$. This is also a sufficient condition:

Proposition 2.5 ([BEG03]). dim Hom $(M(\wedge^{i}\mathfrak{h}), M(\wedge^{i-1}\mathfrak{h})) = 1, i = 1, 2, ..., n-1.$

Proof. First of all, ∇_{KZ} has regular singularity since it only has first order poles. As a result, when 0 < i < n-1, S^{λ^i} is reducible, so is $M(\wedge^i \mathfrak{h})$ by the classical Riemann-Hilbert correspondence. Therefore, there is a nontrivial map from another standard module to $M(\wedge^i \mathfrak{h})$, which has to be $M(\wedge^{i+1}\mathfrak{h})$ given the discussion above. This suggests that for 0 < i < n-1 we have short exact sequence

$$0 \to D^{\lambda^i} \to S^{\lambda^i} \to D^{\lambda^{i-1}} \to 0. \tag{3}$$

As $D^{\lambda^0} = S^{\lambda^0}$, we bave a nonzero map $M(\mathfrak{h})|_{\mathfrak{h}_r} \to M(\text{triv})|_{\mathfrak{h}_r}$. Let N be the intersection of the preimage of this map and $M(\mathfrak{h})$. Then there exists some verma $M(\lambda)$ mapping to N nontrivially. By composition, we have maps $M(\lambda) \to M(\mathfrak{h})$ and $M(\lambda) \to M(\text{triv})$. By the discussion above, λ has to be \mathfrak{h} and the proposition is proved.

Hence we have a complex with nonzero differential

$$0 \to M_c(\wedge^{n-1}\mathfrak{h}) \to \cdots \to M_c(\mathfrak{h}) \to M_c(\operatorname{triv}) \to L_c \to 0.$$

To show it is exact, it suffices to prove that

Proposition 2.6. For $0 \le i < n-1$, we have short exact sequence

$$0 \to L_c(\wedge^{i+1}\mathfrak{h}) \to M(\wedge^i\mathfrak{h}) \to L_c(\wedge^i\mathfrak{h}) \to 0$$

Proof. Let $J_c(\wedge^i\mathfrak{h})$ be the maximal proper submodule of $M(\wedge^i\mathfrak{h})$. Then 3 tells us that $KZ(J_c(\wedge^i\mathfrak{h})) = D^{\lambda^i}$ and $KZ(L_c(\wedge^i\mathfrak{h})) = D^{\lambda^{i-1}}$. Hence $J_c(\wedge^i\mathfrak{h})$ has composition factor $L_c(\wedge^{i+1}\mathfrak{h})$ and possibly $L_c(\text{triv})$. But $\kappa(c, L_c(\text{triv}))$ is smaller than the lowest weight in $J_c(\wedge^i\mathfrak{h})$. As a result, $J_c(\wedge^i\mathfrak{h}) \cong L_c(\wedge^{i+1}\mathfrak{h})$.

Now we can prove theorem 2.1

Proof. (of theorem 2.1)Let $\kappa(c,\tau)$ be the lowest **h**-weight of $M(\tau)$. Then since

$$\mathbf{h} = \sum x_i y_i + \frac{\dim \mathfrak{h}}{2} - c \sum s,$$

the lowest weight $\kappa(c,\tau) = \frac{n-1}{2} - c \sum_{s \in S} s$ where $\sum_{s \in S} s$ is the scalar of this central element acting on the representation τ . In particular

$$\kappa(c, \wedge^i \mathfrak{h}) = \frac{n-1}{2} - c|S| \left(\frac{\binom{n-2}{i} - \binom{n-2}{i-1}}{\binom{n-1}{i}} \right) = \frac{n-1}{2} - c(\frac{n(n-1)}{2} - in) = -\mu + im.$$

By BGG resolution, we compute

$$\operatorname{Tr}_{\mathcal{L}_c}(w \cdot t^{\mathbf{h}}) = \sum_{i=0}^{n-1} (-1)^i \operatorname{Tr}_{M_c(\wedge^i \mathfrak{h})}(w \cdot t^{\mathbf{h}})$$
$$= \sum_{i=0}^{n-1} (-1)^i \frac{\chi_{\wedge^i \mathfrak{h}}(w) \kappa(c, \tau)}{\det(1 - t \cdot w)}$$

Now theorem 2.1 follows from

$$\sum_{i=0}^{n-1} (-1)^i \chi_{\wedge^i \mathfrak{h}}(w) t^{im} = \det(1 - t^m \cdot w).$$

3 Relation with Hilbert schemes

Taking limit when $t \to 1$ for the character formulas, we get

$$\dim \mathcal{L}_c = m^{n-1}, \quad \dim \mathcal{eL}_c = \frac{1}{m} \binom{m+n-1}{n}.$$

In particular, dim $L_{1+\frac{1}{n}} = (n+1)^{n-1} = \dim \mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*]/(\mathbb{C}[\mathfrak{h} \oplus \mathfrak{h}^*])_+$ and the later is the two-parameter Catalan number C(m,n).

We also see these numbers when we work with Hilbert schemes: Let $Hilb_0$ denote the zero fiber of the Hilbert-Chow map and P the Procisi bundle to $Hilb_0$. Then

$$\dim(H^0(Hilb_0, \mathcal{O}(k))) = C(nk+1, n)$$

and

$$\dim(\mathrm{H}^0(\mathrm{Hilb}_0, P \otimes \mathcal{O}(k))) = (kn+1)^{n-1}$$

Recall that we have a $\mathbb{C}^* \times \mathbb{C}^*$ action on Hilb, which gives a bigrading on $H^0(\text{Hilb}_0, \mathcal{O}(k))$, resp. $H^0(\text{Hilb}_0, P \otimes \mathcal{O}(k))$.

On the other hand, we have order filtration on L_c and eL_c and the **h**-action endow the associated graded with an extra grading.

Proposition 3.1 ([GS06]). When $c = k + \frac{1}{n}$, we have canonical bigraded isomorphisms

gr
$$L_c \cong H^0(Hilb_0, P \otimes \mathcal{O}(k)),$$

gr $eL_c \cong H^0(Hilb_0, \mathcal{O}(k)).$

References

- [BEG03] Yuri Berest, Pavel Etingof, and Victor Ginzburg, Finite-dimensional representations of rational cherednik algebras, International Mathematics Research Notices **2003** (2003), no. 19, 1053–1088.
- [GGOR03] Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier, On the category O for rational cherednik algebras, Inventiones mathematicae **154** (2003), no. 3, 617–651.
- [GS06] Iain Gordon and J Toby Stafford, Rational cherednik algebras and hilbert schemes, ii: Representations and sheaves, Duke Mathematical Journal 132 (2006), no. 1, 73–135.
- [Gua03] Nicolas Guay, Projective modules in the category \mathcal{O} for the cherednik algebra, Journal of Pure and Applied Algebra **182** (2003), no. 2-3, 209–221.