Semantics for the Web of Things

Modeling the Physical World as a Collection of Things and Reasoning with their Descriptions

Victor Charpenay

Universität Passau Siemens AG

October 2nd, 2019

- 1. Introduction
- 2. Modeling 'Things' on the Web of Things
- 3. Reasoning with Thing Descriptions
- 4. Exchanging Thing Descriptions
- 5. Conclusion & Perspectives

6. Bibliography

Introduction

A Brief History

The Web of Things is the latest field of research around sensing and actuation.

1948	Cybernetics
1993	Ubiquitous Computing
1998	Ambient Intelligence
2000	Wireless Sensor Networks
2000	Internet of Things
2001	Pervasive Computing
2007	Cyber-Physical Systems
2009	Web of Things

Table: Chronological evolution of research in cybernetics

The Web Thing API, following the principles of REST, eases the development of sensor mash-ups.

```
{wt}
{wt}/model
{wt}/properties
{wt}/properties/{id}
{wt}/actions
{wt}/actions/{id}
{wt}/actions/{id}/{actionId}
{wt}/things
{wt}/things/{id}
{wt}/subscriptions
```

Figure: Web Thing API specification (endpoint URLs)

Figure: Map of Intel Labs

Figure: Sensor map of Intel Labs

Problem Statement

Figure: Thing map of Intel Labs

Problem Statement

Figure: Desigo CC user interface

Problem Statement

Statistics:

- ▶ 929 nodes (i.e. 'things')
- ▶ 1842 parent/child relations

Interpretation:

- ► Ahu35 ≡ air handling unit
- ► Bls1 ≡ window blinds
- **.**..

Figure: Desigo CC node hierarchy

Intel Labs

Dataset to study device interactions. No contextual information.

Desigo CC

Limited semantic modeling. No automated reasoning.

Problem

How to describe 'things' on the Web of Things such that sensors and actuators can interact autonomously in a Web of Things system?

Assumptions

- A Web of Things system is described by a graph of interactions
- Knowledge graphs are the base modeling approach

Problem

How to describe 'things' on the Web of Things such that sensors and actuators can interact autonomously in a Web of Things system?

Assumptions

- A Web of Things system is described by a graph of interactions
- Knowledge graphs are the base modeling approach

A Web of Things system is a **multi-agent system** characterized by pairwise interactions between **servients** (servers and clients).

Figure: Graph of interactions for a room

The environment of a Web of Things system is described by a **knowledge graph**.

Figure: Knowledge graph for a room

- 1. Modeling 'Things' on the Web of Things
 - → Vocabulary used in the knowledge graph
- 2. Reasoning with Thing Descriptions
 - → Rules included in the knowledge graph
- 3. Exchanging Thing Descriptions
 - → Serialization of (pieces of) the knowledge graph

- 1. Modeling 'Things' on the Web of Things
 - → Vocabulary used in the knowledge graph
- 2. Reasoning with Thing Descriptions
 - → Rules included in the knowledge graph
- 3. Exchanging Thing Descriptions
 - ightarrow **Serialization** of (pieces of) the knowledge graph

- 1. Modeling 'Things' on the Web of Things
 - → Vocabulary used in the knowledge graph
- 2. Reasoning with Thing Descriptions
 - → Rules included in the knowledge graph
- 3. Exchanging Thing Descriptions
 - ightarrow **Serialization** of (pieces of) the knowledge graph

- 1. Modeling 'Things' on the Web of Things
 - → Vocabulary used in the knowledge graph
- 2. Reasoning with Thing Descriptions
 - → Rules included in the knowledge graph
- 3. Exchanging Thing Descriptions
 - → **Serialization** of (pieces of) the knowledge graph

Modeling 'Things' on the Web of Things

What is a 'Thing'?

"Every kind of thing can have its own kind of reason for being a thing."

— Patrick Hayes (The Second Naive Physics Manifesto)

The Linked Open Vocabulary platform for the IoT (LOV4IoT) is a catalogue of vocabularies (sets of class, property and individual names) with more than 460 entries.

Some of them have been standardized:

- Sensor, Observation, Sample, and Actuator (SOSA)
- Semantic Sensor Network (SSN)
- Smart Appliance Reference (SAREF)
- Smart Energy-Aware System (SEAS)

Standard	Vocabulary Mapping	
BLE GATT	-	
OPC-UA	-	
BACnet	BACowl	
oneM2M	oneM2M Base ontology, WoT Cloud	
OCF	WoT Cloud	
IPSO/LWM2M	WoT Cloud	
EDDL	Siemens OSF	
eCl@ss	eCl@ssOWL	
IFC	ifcOWL	
Project Haystack	HTO, Brick	

Table: Communication standards related to WoT with a mapping of their information model to a vocabulary

Most conceptualizations (vocabularies and information models) are redundant and thus could be semantically **aligned**.

Figure: BACnet

Figure: oneM2M

Alignments between Standards

Figure: Graph of alignments constructed from lexical equivalences between standard information models

Standard	Degree	Farness
BLE GATT	7	1.6
OPC-UA	6	1.4
BACnet	12	1.2
oneM2M	8	1.1
OCF	3	1.7
LWM2M	6	1.5
EDDL	7	1.3
eCl@ss	7	1.5
IFC	8	1.2
Project Haystack	3	1.7

Table: Graph statistics with respect to vertices

- A saref:TemperatureSensor has an affordance to read/write a om:Temperature property
- A saref:LightSwitch has an affordance to toggle its saref:OnOffState
- A saref:SmokeSensor has an affordance to subscribe to the saref:Smoke event
- ...

- A saref:TemperatureSensor has an affordance to read/write a om:Temperature property
- A saref:LightSwitch has an affordance to toggle its saref:OnOffState
- A saref:SmokeSensor has an affordance to subscribe to the saref:Smoke event
- ...

- ► A saref:TemperatureSensor has an affordance to read/write a om:Temperature property
- A saref:LightSwitch has an affordance to toggle its saref:OnOffState
- A saref:SmokeSensor has an affordance to subscribe to the saref:Smoke event
- ...

- A saref:TemperatureSensor has an affordance to read/write a om:Temperature property
- A saref:LightSwitch has an affordance to toggle its saref:OnOffState
- ► A saref:SmokeSensor has an affordance to subscribe to the saref:Smoke event
- ...

- A saref:TemperatureSensor has an affordance to read/write a om:Temperature property
- A saref:LightSwitch has an affordance to toggle its saref:OnOffState
- ► A saref:SmokeSensor has an affordance to subscribe to the saref:Smoke event
- **.**..

Alignments in LOV4loT

Figure: Graph of alignments extracted from Web ontology alignments declared within LOV4IoT

Ontology	In-Degree	Farness	PageRank
SSNX	27	1.875	0.039067
DUL	20	2.167	0.023299
M3	13	2.23	0.022743
SOSA	8	2.938	0.006796
DogOnt	8	2.417	0.024721
QU	7	2.604	0.013021
MSM	6	2.667	0.008613
FOAF	6	3.021	0.015887
SSN	6	3.75	0.005725
SPITFIRE	5	2.375	0.009752
IoT-O	5	2.5	0.013867
SAN	5	2.625	0.00999
Vital	5	2.708	0.015621
OWL-S	5	3.542	0.017288
SWEET	5	3.792	0.005171

Table: Graph statistics with respect to vertices

A Thing (TD) is either a System (SSN), a Platform (SOSA) or a FeatureOfInterest (SOSA).

a sensor an energy consumption meter an iPhone a LoRa communication device

a tree a window

the Coal Oil Point reserve a room

... ..

Table: Examples of potential instances of 'things'

Contribution

The Thing Description (TD) model: an RDF vocabulary to describe servient interaction affordances, with alignment to existing vocabularies¹.

¹V. Charpenay, S. Kaebisch, and H. Kosch, *Introducing Thing Descriptions and Interactions: An Ontology for the Web of Things*, in Joint Proceedings of the 3rd Stream Reasoning (SR 2016) and the 1st Semantic Web Technologies for the Internet of Things (SWIT 2016) workshops, Kobe, 2016.

Reasoning with Thing Descriptions

Reasoning

"Knowledge is power"

— Thomas Hobbes (Leviathan)

Web ontologies define rules (or axioms) over a vocabulary.

```
x[\text{hasState} \Rightarrow \text{State}] := x:\text{Device} . 
 y:\text{Actuator} := x[\text{madeByActuator} \rightarrow y] . 
 x[\text{containsZone} \rightarrow z] := x[\text{containsZone} \rightarrow y] and y[\text{containsZone} \rightarrow z] . ...
```

Table: Examples of ontological rules

Rule inference can help discover new relations between 'things', i.e. new potential interactions between agents.

Figure: Knowledge graph with inference for a room

Figure: Map of Intel Labs

Figure: Sensor (mote) and knowledge (physical) coverage of the Intel Labs sensor network over the period February 28th – April 3rd, 2004

Analysis of the Graph of Interactions

Figure: Graph of interactions of the Intel Labs sensor network

Another Web of Things System

Figure: A water management plant

Analysis of the Graph of Interactions

Figure: Graph of interactions for the water management plant model

Contribution

A semantic discovery framework on the Web of Things as a query answering problem over Web ontologies and Thing Description documents²

²V. Charpenay, S. Käbisch, and H. Kosch, A Framework for Semantic Discovery on the Web of Things, Studies on the Semantic Web, pp. 147–162, 2018.

Exchanging Thing Descriptions

Contextualization

"Context of use: discourse that surrounds a language unit and helps to determine its interpretation."

— WordNet (available at http://wordnet-rdf.princeton.edu)

A Web of Autonomous Agents

Autonomous agents on the Web of Things are self-aware and numerous.

- ► TD document served by every servient
- ▶ RDF on constrained devices (8-64kB RAM, low-power)?

The **Embedded Web** is a set of technologies and architecture choices to adapt the Web to embedded environments.

Web	Embedded Web
HTTP	CoAP
XML	EXI
JSON	EXI4JSON, CBOR
HTML	CoRE Link
RDF	HDT, RDF/EXI
JSON-LD	Binary object notation
LDP	LDP over CoAP
SPARQL	Frame matching

Table: Web standards and equivalent Embedded Web technologies

HDT is a binary format including headers, a dictionary and triples encoded as adjacency lists.

1	31.638	
2	eastWall	
3	radiator1	(individual names occuring at least twice)
4	radiator2	
5	southWall	
6	legoland	(other individual names)
6	east	
7	south	
8	Radiator	(class names and individual names
9	Site	occurring only as value)
10	Space	
11	Wall	
1	rdf:type	
2	containsElement	
3	hasOrientation	(property names)
4	hasSpace	
5	hasSubElement	

Properties 1 2 0 1 3 5 0 1 0 1 0 1 3 5 0 1 4 10 10 2 5 0 11 0 6 0 4 0 8 0 8 0 11 0 7 0 3 0 9 0 1

 k^2 -triples is an alternative to HDT using k^2 -tree indexing for triples instead of a bitmap.

0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1000 1100 1000 1000 0100 1000

Limitation

HDT (and k^2 -triples) strongly couple dictionary and triples, which leads to a significant overhead when exchange triples.

Approach

- Binary object notation (EXI4JSON, CBOR)
- Shared dictionary (JSON-LD context)

Evaluation (Whole Datasets)

Figure: Size of datasets serialized in compact binary formats

Evaluation (Piecewise Serialization)

Figure: Size distribution for piecewise serializations

RDF queries can also be shared and processed in a compact form (as JSON-LD frames); main memory overhead comes from intermediate mappings only.

Figure: Intermediate Mappings for the LUBM Benchmark

Contribution

A binary object notation for Thing Descriptions³

³V. Charpenay, S. Käbisch, and H. Kosch, *Towards a Binary Object Notation for RDF*, in Proceedings of the 15th Extended Semantic Web Conference (ESWC), Heraklion, 2018.

Conclusion & Perspectives

Overall Summary

Contributions

- ► Thing Description model with alignments
- A semantic discovery framework (existential reasoning)
- ► A binary object notation for Thing Descriptions

Software

- ► Thingweb Directory
- $ightharpoonup \mu$ RDF.js

Standards

► W3C Thing Description Ontology

The Thing Description ontology should be further aligned with other information models, at the instance level.

Thing	
Project Haystack	Battery
oneM2M	Push Button
LWM2M	Accelerometer
Property	
Project Haystack	Luminance
Project Haystack onem2M	Luminance Liquid Level
-	
onem2M	Liquid Level

Table: Alignment of WoT concepts with WordNet

Bibliography

Bibliography

- V. Charpenay, S. Käbisch, and H. Kosch, *Introducing Thing Descriptions and Interactions: An Ontology for the Web of Things*, in Joint Proceedings of the 3rd Stream Reasoning (SR 2016) and the 1st Semantic Web Technologies for the Internet of Things (SWIT 2016) workshops, Kobe, 2016.
- V. Charpenay, S. Käbisch, and H. Kosch, *A Framework for Semantic Discovery on the Web of Things*, Studies on the Semantic Web, pp. 147–162, 2018.
- V. Charpenay, S. Käbisch, and H. Kosch, *Towards a Binary Object Notation for RDF*, in Proceedings of the 15th Extended Semantic Web Conference (ESWC), Heraklion, 2018.