Relations d'ordre, ensembles ordonnés

William Hergès ¹

5 octobre 2025

Table des matières

1	Ensemble ordonné			
	1.1	Définition	2	
	1.2	Représentation d'une relation d'ordre		
	1.3	Monotonie		
	1.4	Minimum, maximum, bornes		
2	Ord	Ordre bien fondé		
	2.1	Relation d'ordre bien fondée et induction	(
	2.2	Ordre lexicographique	•	

Ensemble ordonné

Définition 1.1.

Une relation d'ordre \leq est une relation binaire sur E si et seulement si :

- réflexiveanti-symétriquetransitive

L'ordre strict \prec est associé à \preceq : c'est la même, sauf qu'elle n'est pas réflexive :

$$\prec = \preceq \backslash \mathrm{Id}_E$$

Définition 2

Une relation d'ordre \leq est :

- totale si et seulement si \leq permet toujours de comparer deux éléments quelconques de E
- partielle s'il existe au moins deux éléments de E incomparables avec \leq

Définition 3

 (E, \preceq) est un ensemble :

- totalement ordonné si \leq est un ordre total.
- partiellement ordonné si \leq est un ordre partiel.

Exemple 1

 (\mathbb{N},\leqslant) est un ensemble totalement ordonné.

 $(\mathcal{P}(F),\subseteq)$ est un ensemble partiellement ordoné (pour F un ensemble quelconque).

 $(\mathbb{N}^*,|)$ est aussi partiellement ordoné, où

ement ordoné, où
$$ert = \{(a,b)|\exists k \in \mathbb{N}^*, b=na\}$$

(c'est la relation divise.)

☐ *Démonstration*. Preuve du deuxième exemple.

Soit F un ensemble.

Montrons que \subseteq est un ordre pour $\mathcal{P}(F)$.

- Soit $A \in \mathcal{P}(F)$. Triviallement, $A \subseteq A$. Alors, \subseteq est réflexive. Soit $(A,B) \in \mathcal{P}(F)^2$. Supposons que $A \subseteq B$ et que $B \subseteq A$. Alors, A = B par définition. Soit $(A,B,C) \in \mathcal{P}(F)^3$ avec $A \subseteq B$ et $B \subseteq C$. Si A est l'ensemble vide, il est inclu dans tous les ensembles. Donc $A \subseteq C$. Si A n'est pas l'ensemble vide, tous ses éléments sont

dans B. Or, tous les éléments de B sont dans C. Donc, tous les éléments de A sont dans C. Alors, $A \subseteq C$.

Ainsi, \subseteq est bien un ordre pour $\mathcal{P}(F)$.

Montrons que \subseteq est un ordre partiel.

Supposons que F contient au moins deux éléments.

Soit $(x,y) \in F^2$, deux éléments différents. Soient $A = \{x\}$ et $B = \{y\}$.

On a que $A \not\subseteq B$ et que $B \subseteq A$. Donc, \subseteq est partiel dans ce cas.

Si F est vide, alors $\mathcal{P}(F)$ contient un unique élément. Cet ensemble est totalement ordonné.

Si F est un singleton, alors $\mathcal{P}(F)$ contient F et l'ensemble vide. Cet ensemble est totalement ordonné.

La slide est ainsi fausse, mais les ensembles à moins de deux éléments sont peux intéressants.

Représentation d'une relation d'ordre 1.2.

Définition 4

La représentation d'une relation d'ordre R sur un ensemble E est le graphe $\it minimal$ représentant une relation \rightarrow , telle que :

- la fermeture réflexive et transitive \rightarrow^* de \rightarrow correspond exactement à la
- ightarrow est la plus petite relation dont la fermeture réflexo-transitive est égale à la relation ${\cal R}$
- \rightarrow contient tous les couples $(a,b) \in R$ tels que $a \neq b$ et que :

$$\forall c \in E, c \neq a, c \neq b, (a, c) \notin R \lor (c, b) \notin R$$

On a donc que ightarrow s'obtient en supprimant de R :

- $\begin{array}{ll} -- & \text{les couples } (x,x) \in R \text{ (r\'eflexivit\'e)} \\ -- & \text{les couples pouvant se d\'eduire par transitivit\'e} \end{array}$

On dit que ce graphe est couvrant.

Proposition 4.1

Le coupe (a,b) appartient à R si, et seulement si, il existe un chemin dans le graphe couvrant.

Exemple 2

Graphe couvrant de \leqslant sur \mathbb{N} : $0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots$

1.3. Monotonie

 $\begin{array}{l} \textbf{D\'efinition 5} \\ \textbf{Soient } (E_1, \preceq_1) \ \text{et } (E_2, \preceq_2) \ \text{deux ensemble ordonn\'es.} \\ \textbf{L'application } f: E_1 \to E_2 \ \text{est dite monotone si}: \\ \\ \forall (x,y) \in E_1^2, \quad x \preceq_1 y \implies f(x) \preceq_2 f(y) \end{array}$

$$\forall (x,y) \in E_1^2, \quad x \leq_1 y \implies f(x) \leq_2 f(y)$$

Une application monotone préserve les relations d'ordre.

Exemple 3 On se place dans (\mathbb{N},\leqslant) et dans $(\mathcal{P}(\mathbb{N}))$ $f:\mathbb{N}\to\mathcal{P}(\mathbb{N})$ tel que $f(n)=\{k\in\mathbb{N}|k\leqslant n\}$ est monotone. $g:\mathbb{N}\to\mathcal{P}(\mathbb{N})$ tel que $g(n)=\{n\}$ ne l'est pas par contre!

Proposition 5.1

Deux ensembles ordonnés (E_1, \preceq_1) et (E_2, \preceq_2) sont isomorphes s'il existe une bijection $f: E_1 \to E_2$ telle que f et f^{-1} sont monotones.

Exemple 4 Soient (\mathbb{N},\leqslant) et $(\mathcal{P}(\mathbb{N}),\subseteq)$ deux ensembles ordonnés. $f:\mathbb{N}\to\mathcal{P}(\mathbb{N})$ telle que $f(n)=\{k|k\leqslant n\}$ est monotone. $g:\mathbb{N}\to\mathcal{P}(\mathbb{N})$ telle que $g(n)=\{n\}$ n'est pas monotone.

Attention 1

Une bijection f peut être monotone sans que f^{-1} ne le soit !

1.4. Minimum, maximum, bornes

Définition 6

Soit (E, \preceq) un ensemble ordonné et X une partie de E.

Un élément minimal x de X est un élément tel que : $\forall y \in X, \quad y \preceq x \implies y = x$

$$\forall y \in X, \quad y \prec x \implies y = x$$

Un élément maximale x de X est un tel que :

$$\forall y \in X, \quad x \leq y \implies x = y$$

Définition 7

Définition / On dit que $e\in E$ est un minorant de X si : $\forall x\in X,\quad e\preceq x$ On dit que $e\in E$ est un majorant de X si : $\forall x\in X,\quad x\preceq e$

$$\forall x \in X, e \leq x$$

$$\forall x \in X, \quad x \prec \epsilon$$

La différence avec l'élément minimal, c'est que e n'est pas forcément dans X! La différence avec l'élément maximal, c'est que e n'est pas forcément dans X!

Définition 8

Le plus petit élément (aussi appelé minimum) de X, s'il existe, est l'unique élément de l'intersection de X et de ses minorants.

Le plus grand élément (aussi appelé maximum) de X, s'il existe, est l'unique élément de l'intersection de X et de ses majorants.

Le minimum est le minorant dans X! Le maximum est le majorant dans X!

 \square Démonstration. Soient x_1 et x_2 deux minorants (resp. deux majorants) de X.

Par défintion, on a :

$$x_1 \leq x_2 \quad \land \quad x_2 \leq x_1$$

Par anti-symétrie, on obtient $x_1 = x_2$.

Ainsi, le minorant (resp. majorant) est unique.

La borne inférieure de X est le plus grand élément des minorants de X (s'il

La borne supérieure de X est le plus petit élément des majorants de X (s'il

2. Ordre bien fondé

2.1. Relation d'ordre bien fondée et induction

Définition 10

Une relation d'ordre \preceq sur un ensemble E est dite bien fondée s'il n'existe pas de suite infinie strictement décroissante d'éléments de E.

Exemple 5

 \leq sur $\mathbb N$ est une relation bien fondée.

 \leq sur \mathbb{Z} n'est pas une relation bien fondée.

Théorème 10.1

La relation d'ordre sur E est bien fondée si, et seulement si, toute partie non vide de E admet un élément minimal (pour cet ordre).

 \implies Par l'absurde, supposons que X n'admet pas d'élément minimal.

Comme X n'est pas vide, il existe x_0 dans X. Comme x_0 n'est pas minimal, il existe x_1 dans X. On peut ainsi construire de proche en proche une suite infinie strictement décroissante, ce qui contredit la définition de \preceq .

 \sqsubseteq Si toute partie non vide de E admet un élément minimal, c'est en particulier le cas pour une suite strictement décroissante. Soit (u_n) une suite strictement décroissante à valeur dans X. Soit $p \in \mathbb{N}$ l'indice de l'élément minimal de (u_n) .

Tous les éléments d'indice supérieur à p doivent être strictement plus petit que u_p , ce qui est impossible. (u_n) est donc finie.

Ainsi, le théorème est vrai.

Théorème 10.2 Induction

Soit E un ensemble muni d'une relation d'ordre bien fondée \preceq et P une propriété de E.

Si pour tout $x \in E$ et pour tout $y \prec x$ telle que P(y) soit vraie, on a alors que P est vraie pour tous les éléments de E.

Ceci est une version généralisée de la récurrence.

 \square Démonstration. Soit X l'ensemble des x tels que P(x) soit faux.

Si X est non vide, X admet un élément minimal (car \preceq est bien fondée). Donc, tous les y strictement plus petits que x sont vrais. En utilisant l'hypothèse, P(x) est aussi vraie. X est donc vide.

Ainsi, pour tout $e \in E$, P(e) est vraie.

Démonstration utilisant l'induction

Elle fonctionne de la même manière qu'une récurrence :

- Si x est un élément minimal, on démontre P(x) sans aucune hypothèse.
- On suppose P(y) pour tous les éléments plus petit que x et on démontre P(x).

Exemple 6

Toutes les démonstrations par récurrence sur (\mathbb{N}, \leqslant) sont des inductions!

2.2. Ordre lexicographique

Soient
$$(E_1, \preceq_1) \dots (E_n, \preceq_n)$$
 des ensembles ordonnés.
 La relation d'ordre lexicographique \preceq sur $E_1 \times \dots \times E_n$ est définie par :
$$\exists i < n, \forall k < i, \quad (e_k = f_k \wedge e_i \preceq f_i) \quad \lor \quad (e_1, \dots, e_n) = (f_1, \dots, f_n)$$
 avec $(e_1, \dots, e_n) \preceq (f_1, \dots, f_n)$

C'est-à-dire, soit ils sont tous égaux, soit il existe un indice i où $e_i \leq f_i$.

Proposition 11.1

L'ordre lexicographique est une relation d'ordre.

On a bien choisi son nom:D

Exemple 7

Flemme de recopier des exemples, voir le diapo 24 (page 46).

Théorème 11.2

L'ordre lexicographique est bien fondée si (\leq_1, \ldots, \leq_n) sont bien fondés.

L'ordre du dictionnaire n'est pas bien fondée par contre.