Algebra Lineare A.A 2022-2023

6 Autovalori

Definizione 6.0.1 (Autovalori). Sia V uno spazio vettoriale su \mathbb{R} $(dim(V) < \infty)$ e $\phi : V \to V$. $\lambda \in \mathbb{R}$ è autovalore di ϕ se $\exists v \neq 0$ in V tale che $\phi(V) = \lambda \cdot v$. In questo caso v è autovettore di ϕ (associato a λ).

Osservazione 6.0.1. Alcune osservazioni su questa definizione:

- 1. v può essere autovettore per un solo λ . Infatti, se $\begin{cases} \phi(v) = \lambda_1 \cdot v \\ \phi(v) = \lambda_2 \cdot v \end{cases} \implies (\lambda_1 \lambda_2) \cdot v = 0 \implies \lambda_1 = \lambda_2$
- 2. In generale ci sono molti autovettori associati allo stesso λ

Definizione 6.0.2 (Diagonalizzabile). ϕ è diagonalizzabile se \exists base B tale che $[\phi]_B^B$ è una matrice diagonale.

Proposizione 6.0.1. ϕ è diagonalizzabile se e solo se V ammette una base costituita da autovettori di ϕ .

Esempio 6.0.1. Se $\phi : \mathbb{R}^2 \to \mathbb{R}^2$, $v \mapsto A \cdot v$ dove $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \Longrightarrow \phi$ non è diagonalizzabile.

Proposizione 6.0.2. Sia λ autovalore di ϕ , v autovettori associati a λ , insieme a 0, formano un sottospazio di V.

Proposizione 6.0.3. *Se* $\lambda_1, \ldots, \lambda_r$ *sono autovettori* **distinti** di ϕ $(\lambda_1 \neq \lambda_j, i \neq j)$

$$\begin{vmatrix} v_1 & autovettore & per \lambda_1 \\ \vdots & & \\ v_r & autovettore & per \lambda_r \end{vmatrix} \Longrightarrow v_1, \dots, v_r \text{ sono linearmente indipendenti}$$

Corollario 6.0.0.1. Valgono i seguenti punti:

- 1. Ci sono solo un numero finito di autovalori distinti di ϕ , infatti sono $\leq dim(V)$
- 2. ϕ è diagonalizzabile $\iff \lambda_1, \ldots, \lambda_r$ sono gli autovalori di ϕ , $dim(V_{\lambda_1}) + \ldots + dim(V_{\lambda_r}) = dim(V)$
- 3. Se ϕ ammette n = dim(V) autovalori distinti, allora ϕ è diagonalizzabile

Definizione 6.0.3 (Polinomio caratteristico). Il polinomio caratteristico di A è:

$$P_A(t) := det(A - t \cdot i)$$

dove λ è autovalore per $A \iff \lambda$ è radice di $P_A(t)$.

Osservazione 6.0.2. $P_A(t)$ non dipende da A_{ij} ma dipende solo da ϕ' . Infatti, se B è la matrice di ϕ rispetto ad un'altra base, sappiamo:

$$B = P \cdot A \cdot P^{-1}$$

6.1 Richiami sui polinomi

Un polinomio su $\mathbb{R}[x]$ è della forma $a_n X^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ se $a_n \neq 0$, n = deg(f) il grado di f. $a \in \mathbb{R}$ è radice di f se f(a) = 0.

Proposizione 6.1.1. Se $f \neq 0$, a radice di $f \Longrightarrow f = (x - a)g$ dove deg(g) = deg(f) - 1.

Corollario 6.1.0.1. Si può scrivere $f = (x-a)^m h$, dove $h(a) \neq 0$. m è la molteplicità della radice a.

Algebra Lineare A.A 2022-2023

6.2 Molteplicità

Definizione 6.2.1. Sia $\phi: V \to V$ un'applicazione lineare con dim(V) = n, A matrice di ϕ rispetto ad ua base $e \lambda$ un autovalore di ϕ :

- La molteplicità algebrica di λ è la sua molteplicità come radice di $P_A(t)$
- La molteplicità geometrica di λ è la dimensione dell'autospazio V_{λ} di λ .

Teorema 6.2.1. La molteplicità algebrica di λ è \geq della molteplicità geometrica di λ .

Corollario 6.2.1.1. ϕ è diagonalizzabile se e solo se la somma della molteplicità algebriche degli autovalori è un per tutti gli autovalori λ :

molt. alg.
$$(\lambda) = molt.$$
 geom. (λ)

Si osserva inoltre che molt. geom. $(\lambda) \geq 1$. Quindi se molt. alg. $(\lambda) = 1 \Longrightarrow molt$. geom. $(\lambda) = molt$. alg. $(\lambda) = 1$.

6.2 Molteplicità 28