46

SEQUENCE LISTING

THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE GERMINO, Gregory WATNICK, Terry PHAKDEEKITCHAROEN, Bunyong

<120> DETECTION AND TREATMENT OF POLYCYSTIC KIDNEY DISEASE

<130> JHU1680-2

<140> US 09/904,968

<141> 2001-07-13

<150> US 60/283,691

<151> 2001-07-13

<150> US 60/218,261

<151> 2000-07-13

<160> 113

<170> PatentIn version 3.0

<210> 1

<211> 53522

<212> DNA

<213> Homo sapiens

<400> 1

tgtaaacttt ttgagacagc atctcaccct gttccccagg ctggagtgca gtggtgtgat 60 catggctcac tgcagcgtca acctcctggg tctacttgat ctgtaaactt cgagggaagg 120 tgtaataaac cctcctgcaa tgtctttgtt tttcaaaaatc tttgtatttc acagtttagc 180 240 ttgagacaca gtcttgctct tgttgcccag gctggagtgc aatggtgtga tcttggctca 300 ctgcaacttc cacctettgg gttcaagaga ttctcctgcc tcagcettcc gagtagctag 360 gattacaggc gccgccacca caccccgcta attttgtatt tttagtagag atggggtttc 420 tccatattgg tcaggctggt ctcaaactcc cgacctcagg tgatccgccc acctcagcct 480 cccaaaatgc tgggattaca ggcgtgagtc accgcacctg gccaatgttc tatttttgag 540 aacacaacag ttcataatat attctacata gaccatacct gttatgtgta gataaacaga 600 ctcttttccc atttaacacc ttttgcctta ggtttatttt tctggtatca atactggcac 660 acttactttg tttgcagttt cctgtctttt ttttttttt ttttttttt gagacagagt 720 ctcactctgt cacccagget ggagtgaagt ggegggatet eggeteactg caacctctac 780 ctcctgggtt catgcgattc tcctgcctca gcttcccgaa tagctgagac cacaactgtg 840 tgccaccatg cccagccaat ttttgtattt ttagtagaca cggggtttca ccatactggc 900 caggatggct caatctcttg acctcgtgat ccacctgcct ccgcctccca aagtgctggg 960

attacaggca tgagecactg tgeetggeet ttttttttet ttttgagatg gagteteact 1020 ctgtcaccca ggctggagtg cagtggggta acctcaggtc actgcgacct ccgcctcccg 1080 ggttccagtg attctcctgc ctcagcctcc cgagtagctg ggattacagg cacccaccac 1140 catgcctggc taatttttgt atttttagta gagacggggt tttgccacgt tggccaggtt. 1200 ggtctcgaac tcttggcctc atgtgacccg cctgccttgg cctcccaaag tgctgggatt 1260 acaggtgtga gccactgtgc ctggcctggc tttcttgttt cttttctcct cttctagttt 1320 1380 ccccctttta ggctaacaat tattcactgt taataaaaac cctcaggtct gtattttatc aagaaacatt tooctcacgt ottottooct gaaccaaaca agatototgg cacattttat 1440 ttgctctgtc tcaccacatg gattttgttt ttttgtttct ttgttttttg agatggagtc 1500 1560 tcactcttgt tgcccaggct ggagtgccat ggcacaatct cagctcactg caacctccac ctcctgggtt caagegattc tcctgtctca gcctcctgag tagctgggat tacaggcgcg 1620 1680 tggcaccacc cccagctaat ttttgtattt ttagtagaga cggggtttca ccatgttggt 1740 caggetggte tegaacteet gacettgtga tetgeceace ttggeeteee aaagtgetgg gattacagge atgagecace acgcccggec cecatggttt ttcaaatagt ttagaattte 1800 atttccaggt aactaatttg cttctttaaa catatgtctt ttctatttaa gaaatccttt 1860 ctaaacaatt gcattttatt ccacaaccgc cttcaaacaa tcattgagac ttggttaatc 1920 1980 tgttttgete atttggeage agtttettgt ggetgtttet teeeteeaet ggagteettg aatettaagt etgteatttg aetgeaatta aaagetgggt ttggaataca ategeageet 2040 taccatccac ctgctgtgtg acctggtaaa tttctttttt tttttttgag acggagtctt 2100 gctctgttgc ccaggctgga gtgcagtggc acaacctctg cctcccaggt tcaagcgatt 2160 2220 ctactgcctc aggctcccta gtagctggga ttataggtgc ctgccaccat gcccagctga tttttgtatt tttagtagag atgaggtttc accatgttgg ctaggctggt ctcgaacttc 2280 tgatcttgtg atctgcccgc ctcggcctcc caaagtgctg ggattacagg catgagccac 2340 cactcccage cagttetttt tttetttttt ccattttttt ttttttcgag acaggatett 2400 2460 actettttge ceaggeggga gtgeagtgge acaateaegg eteagegeag ceaetgeeta etgggeteae aegeteetee ggeeteagee tetegagtae etgggaetae aagegtgage 2520 2580 cagtttggct aattttggct aatttttgta gaaacggggt ctcgccatgt tggccaggct ggtctccaac tcctggactc aagggatcca ccttcctccc cctctcaaag ttctgggatt 2640 accggagtga gccactgtgc cctgctggca aatttcttaa actgtctgtg cctcagtgac 2700 ctcatttaat aaagggaata attgtagcac actttttcta gagctgtgaa gattcaatgg 2760 2820 aataaataag gcaataaatg aatggatggg gaatgaagga tgtgggtttc ctccctcttg

tettteaata ageteteace ateaacetee cattgeetgt tetetetet ecceetetet 2880 ccctctgtct ctctctcagc caggaaacct ggggtaggga ggcttggagc cagcgggtgc 2940 gtegggagge tgegggtaet gaetegggee gegeaeggag ategegggag aaggateeae 3000 3060 aaccgcggaa gaaggatcag ggtggagcct gtggctgctg caggaggagg aacccgccgc ctggcccaca ccacaggaga agggcggagc agatggcacc ctgcccaccg cttcccgccc 3120 acgeaettta geetgeageg gggeggageg tgaaaaatag etegtgetee teggeegaet 3180 ctgcagtgcg acggcggtgc ttccagacgc tccgcccac gtcgcatgcg ccccgggaac 3240 3300 gegtggggcg gagetteegg aggeeeegee etgetgeega eeetgtggag eggagggtga agceteegga tgeeagteee teategetgg eeeggtegeg etgtggegaa gggggeggag 3360 cetgeacceg cecegecece cetegececg tecgececge geegegggg gaggaggagg 3420 3480 aggageegeg geggggeeeg caetgeageg ceagegteeg agegggegge egageteeeg gageggeetg geeeegagee eegagegge gtegeteage ageaggtege ggeegeagee 3540 ccatccagec egegecegec atgeogteeg egggecege etgagetgeg geoteegege 3600 gegggeggge etggggaegg eggggeeatg egegegetge eetaaegatg eegeeegeeg 3660 egecegeceg cetggegetg geeetgggee tgggeetgtg geteggggeg etggeggggg 3720 geoecggeg eggetgegg ceetgegage eccetgeet etgeggeeca gegeecggeg 3780 cegeetgeeg egteaactge tegggeegeg ggetgeggae geteggteee gegetgegea 3840 3900 teccegegga egecaeageg etgtgagtag egggeeeage ggeaeceggg agaggeegeg 3960 ggacgggegg gegtgggegg gttecetgge cegggacggg aageaggaeg egggecagga 4020 cgctcccagg ggcgaggctc cggcgggca cggcgggccc tgctaaataa ggaacgcctg gagccgcggt tggcacggcc ccggggagcc gaaaaacccc gggtctggag acagacgtcc 4080 4140 cacceggggg ctctgcagac gccagegggg geggggegeg gaggeegege teagetggga ggacaaacag tegetaattg gagaggaatt gggatgegge etggggetge ggggtaceeg 4200 gagaggtggg gatggctgta gggggcggca gggaagagtt ccaggaggtg tctggaaaag 4260 gatttgatgg atgtgcaaga attgggctga tgcttaggaa ggggcgatga ggtgggtcca 4320 gaagaagggg ggtgaacggt gtgagcaaag accgtgaggc tggaggctgg ccacgggagg 4380 tgtgaggggt aggggcaggg tgggaggtgg gctcgcgggt gggctggggt catgaagggc 4440 ctcaggcgct ctgctattgg gttccaaggc tatcctgaga acaggggtga ggggggattg 4500 ccgtgggggg ttaaagcctt gtcatgttcg ctttcgggag ataaaaacaa caggtggcct 4560 ttatggagac gctgcccaga gccaggtctg tgccaggctc ctgttggggg tcgtcatgcg 4620

4680 gaatcctgac tctgaccatc cgaggcatag ggaccgtgga gatttgcatt tcacagatga ggaaacaggt ttggagaggt gacacgacct gtcccaggca tcacagccgg gatgtgcata 4740 4800 gcaggggttt ggaactatga ggtgcccagg acccagggtt ggattgaaaa gggcggaggg gactaagata agcagacagt tgtccccagc gctggggaga gtcttgggac cagtctgatg 4860 cettgtattt cecaggetee aggeteeteg cegggacagt gteteettgg gtgegtgetg 4920 gatecetggg ggaegtggea cateceeagg ettgetaaae attgggtggg ttetggeatt 4980 5040 tggttttgta acgtttctgg gtcactcccg cctgtggcca cccttcctta ggggagccgt gtgtccttgg ggctttgctg ggtggtctcg agggtgggag aagaatgggt tctcctggac 5100 5160 caatggagee egtgeeeete ggggeeaeat tgeteetgeg etecetgaet geggaegegt 5220 gtgtctcgcg gctgtctctg tggagatggc ctcctcctgc ctggcaacag cacccacaga attgcatcag acctacccca cccgttgttt gtgatgctgt agctgagggc tcctctgtct 5280 5340 gccaggccgg tcactgggga ctctgtccag ggcctggtgg ttcctgcttc ccagcacctg 5400 atggtgtcca tgagagcagc ccctcaggag ctgtccggga gagaagggcg ctggtggctg 5460 ctgagcggag agcaaggccc gtgttctcca ggcccttggc acagcagtgg agcccccgcc 5520 cctgccttgt gttgtcctct taggctctgg tcctggggtt tggaggaggg ggaccctggg 5580 agttggtggc ctgtcccagc ctgagctggc aagattccga atgccaggcc ccccaagtgt 5640 gcaacagggc acagggtgac ctcatgtggg caggtgggtg ctgttctgta cacacctggg gccgccgctg ggagagttct ggaaggtggg gtgaggggac ccatggcaaa ctagggcctt 5700 aggaaggatg tgaaggccct ggctggcccc ccaggccacc ctctgtgctg tggggcagcc 5760 5820 cagocattit gotgtotaco otgoaaacto otootogggg agacggotgg gitticocoa 5880 gggaagaggg gtcaagctgg gagaggtgaa ggacacagat cacagctgct ggcaggtgtt 5940 caagggtcca agagcgttgc tgtctgggtg tcaccagtag ccttcctggg gggctcacgc aggtgcctct ccacttgtgg ctccctggct gctgaagctc agcagggaca gctgtgtcca 6000 6060 gttccaggtg gaggacagcc ggggcttctg aggccacagc ctgccttggg ttaatgatgc tgccgagagg tggtggcttt tggaaaagat ggcgtactgc aaaacgtgct gctctgcgtg 6120 gctcgaagct tcgtggggag acgtgggcag agccgtggct gactcacaga ccccccaccc 6180 cagageetge eetgeeetee etgeeeegae eetteteeet eetgaeeeat gtgttttttt 6240 6300 ttttttttt ttttttgag acagagttca ctcttgttgc caaggctgga gtgcaatggc acgatetegg eteatggeaa eeteegeete etgggtteaa gegettttte etgeeteage 6360 ctcccgagta gctgggatta caggcgtgca ccaccatgcc tggctaattt tgtattttta 6420 gtagagacag ggtttctcca tattggtcag gctggtcttg aactcctgac ctcagatgat 6480 cegecegect eggecteeca aagtgetggg attacaggea tgagecacca egeceagece 6540 tgacccatgt tttgaaccaa attccagcca cccttttatc tgcaagcatt ttggagggca 6600 tegeaatact geagaceeae etaacacaae agacagttee tteatgeeae egaaggeetg 6660 gtgtgttcac atttttggtt taatagtttg aattaagagc caaataaggt ccacacactg 6720 6780 caattagttg atgicttitt tittitctit tittititt tittgagacg gagtctigct cttgtctcca ggccgcagtg cagtggcatg atctcagctc accgcaacct ccgactccct 6840 ggttcaagcg attctcctgc ctcagcctcc cgagtacctg gtagctgggt ttacaggcat 6900 geaceacegt geceagetaa tttttgtatt tttagtagag aeggggtttt aetgtgttgg 6960 7020 ccaggatggt ctcgatctcc tgacctcgtg atctgcccac ctcggcctcc caaagtgctg 7080 ggattacagg cgtgagccac cgcacccggc caatgtcttt taaaaatata tactttttt 7140 ttttttttga gacggagttt cgctcttgtt gcccaggctg gagtgcagtg gcgcgatctc acctcacggc aacctccgcc tcccgggttc aagtgattct cctgcctcag cctctccagt 7200 agctgggatt acaggcatgt gccaccatgc ctggctaatt ttgtattttt aggagagacg 7260 7320 gggtttctcc acgttggtca ggctggtctc aaactcctga cctcaggtga tccgcctgcc ttggcctccc aaagtgttgg gattacaggt gtgagccaac gcgcccagac aaaaatatat 7380 gtgtgtcttt aaggctggtc aagcaaagca gtaggactgg agaaagaatg aagaattcta 7440 cctggctgtg atcaattcgt tgtgaacacc actgtgcttg gaccagctag ctgatgtctt 7500 7560 ttgttttgtt ttgtttgaga cggagtctgg ctctgtcacc caggctggag gacaatggtg tgatctcggc tcactgcagc ctccatctcc cgggttcaag cgattctcct gcctcagcct 7620 cctgagtagc tgggattaga ggcgcgccc accacgcccg gctaattttt aaaaatattt 7680 ttagtagaga tggggtttca ccatgttggt caggctggtc ttgaactctt ggccttaggt 7740 7800 gatetgettg ceteggeete ceaaagtget gggattacag gtgtgagtga tgtattttat ttatttattt atttatttat ttttattatt tgagatggag tctcactctg ttgcccaggc 7860 7920 tggagtgcag cagtgccatc tcagctcact gcaagctccg cctcctgggt tcacgccatt 7980 ctcctgcctc agcctcctga gtagcctgga ctggtgcccg ccaccatgcc cagctaattt tttgtatttt tagtagagac ggggtttcac cgtgttagcc aggatggtct ggatctcctg 8040 8100 acctegtgat cetecegeet cageeteeca aagtgetggg attacagget tgagecaceg 8160 cetgtetttt aaatgteega tgatgtetag gagetteeet teetetett tteettgtge aatttgttga agaaactggc tcctgcagcc tggatttctc gctgtgtctt gggggtgcca 8220 cctccatggt gtcacctccg tggtgctgtg agtgtgtgct ttgtgtttct tgtaaattgg 8280 tegttggage egacatecea ttgteecaga ggttgteetg getggeaetg geetaggtgt 8340 agatgtcatc agetcagggc cccctgctct aaaggccact tetggtgctg gttgccactc 8400 accetggetg ggggteacet gggtetgetg etgtetegea aatgetgggg tecaggaetg 8460 ggcacatcga gggacttggt aggtgcttgg ttcactgatg taaaatatag gagcacccgg 8520 8580 ggccttgccc tttcccacct gcatccctga atgacaggag agtgtgggag agtgtaggga cagcaggege agaccceggg gcccctgcct gggattggcg tcggggaaga caggcattct 8640 8700 ggagegaece etaggeetga tgeettagag egeaactgee agagaeacag etteettggg gggctggcca ggccacggag gggccctggc tcccatttct ggtccctgga tcctgagagc 8760 gaggactagg gattgtcacc aaggcctcca tgagccctca gcagaaggag ggccaccctc 8820 8880 gagggeteeg ttateactgg ageeegegtt caaceaacae geagatgatt etecaaggae agagatggat gatggggagg gggctggcct ggaaggaccc ccagtgcagg tgacattgaa 8940 9000 gccaggtttc aaagctccca cagggagctg cccagagaga gtccccaagg ggcaaggtga ctegggggca ggggtagggc ctctgtcagg agagcctagg agaggcetgt gtcttctagg 9060 aaqaqccctg gcagccgagc ggaggcagtg gtgaggacct gcatcctgca tgtccagctg 9120 gcctcacccg gggtccctga gccgggtctt acgtggctcc cgcactcggg cgttcagaac 9180 9240 gtgcctgcgt gagaaacggt agtttcttta ttagacgcgg atgcaaactc gccaaacttg 9300 tggacaaaaa tgtggacaag aagtcacacg ctcactcctg tacgcgattg ccggcagggg tgggggaagg gatggggagg ctttggttgt gtctgcagca gttgggaatg tggggcaccc 9360 9420 gageteceae tgeagaggeg actgtggaga cagagageae etgeaggtea teeatgeagt 9480 ateggettge atecagatea tacagggaac actatgatte aacaacagae agggaeceeg tttaaacatg gacaaggggt cactcacgcc tggaatccca gcagtttggg aggccagggt 9540 9600 gggtggatcg cttgagccca ggagtttgac accagcctgg gcaacagggt gagaccccgg 9660 tctctaaaaa ataaaagaac attggccggg cgtggtggta tgcatctgtg gtcccagcta 9720 ttcaggagac tgaggtggga catcacttga gccgaggagg tcaaggctgc agtgagctgt 9780 9840 aaaaaaaaa aaaaaatcac aggatctgaa cagagatttc tccaaagaag acgcacagat ggccaacagc gtgtgagaag atggtcggcc tcattagtca tgagggaaac gtaaatcaaa 9900 accactgtcc agccgggcgc ggtgcctcac gcctgtaatc ccagcacttt aggagagcag 9960 atggettgag gecaggagtt tgaggecage etgggeaaca tagegagaee aataaataga 10020 tattagtggt ggcgcctgta gtcccagcta gttgggaggc tgagggggga ggattccctg 10080 agtotatgag gttgagactg cagttagctg tgatggtgcc actgcactcc agcotgggcg 10140

actaggaaac ggtctttaaa aaaaaaaaaa aaaaacaggg tgggcgcggt ggttcacgcc tgtaatctca gcactttggg aggccaaggt ggggggatca caaggtcagg agtttgtgac 10260 cageetgace aacatggtga aacceegtte tactaaaaat acaaaaatta gegaggtgtg 10320 gtcgtgggcg cctgtaatcc cagctaatta ggaggctgag gcaggagaat cacttgaacc 10380 cgggaggcgg aggttgcagt gagccaatat cacaccactg cactctagcc tggtcaacag 10440 10500 agcgagactc tgtctcaaaa aaaaaaaatg ctgagcgtgg tggcgcatgc ctgtagtctc 10560 agctactttg ggggctgagg caggagaatc gcttgaacct gggaggcaga ggtcgcagtg aggcaagatt gcaccattgc actccagect gggagacaga gtgaaactct gtctcaaaaa 10620 10680 gaaaaggtet aggaagagte egeaceetet eeeegeggtg geeaegeegg geteegeget gagecetetg tgttettgte tetecatace teateaegge acegeagggt tgeagecaet 10740 10800 cctggtctca ttttacacac caggaaattg aggctctttg agaagccgtg gtgatgattt catcagcatg ctctggggca gacccctgca gccgcacagg gtgcctgggg cccacactag 10860 tgccctggtt tatagacaga cagaggtggc agtggcgctt ccgagtcggg ctgcgatgtg 10920 10980 cttgcactcc ccgaggggct gaggggccct gcgcccaggt gcagctgctt gggtgctgcc agecectece acetetecet ecetgecage eceteceace tetecetece tgecagecee 11040 teccacetet cectecetge cagecettee cacetetece tecctgecag ecceteceae 11100 ctctccctcc ctgccagccc ctcccacctc tccctccctg ccagcccctc ccacctctcc 11160 11220 ctecetgeca gecectecca cetetecete cetecagece eteceacete tecetecetg ccagocoto ccacototoo otocotgoca gocootocca cototocoto cotgocagoo 11280 ceteceaect etecetecet gecageceet eccaeetete ectecetgee ageceeteee 11340 acctetecet ecetgeeage eceteceace tetecetece tggeteatee etgetgtgte 11400 cettetetet agttteetgt teagttteag gaaggagget gggaacceag atgtagggaa 11460 11520 tttgcgccct ggagtcagac ctgggttcac gtcccagcgc ctccacctct ggtgtgacct tggtccagtc tctcagcctc agtttcctca cctgtaaagt gggctccatg attagatgca 11580 11640 ccctgcaggg cagtgtagca gtgacctggc tcagccactg gcagccccaa caatcatacc 11700 ttgttaaagt agetetgteg gtteeeteag gggtteeggg ggeeeattee eetgteetee atgcactgtg agacctgccc tgccacagag cagagtgtaa cagcctgagg gtgagagcca 11760 gacactgtgc ctgtgcttag accagacact ggacgacggg agccagtgca gcctgggcgg 11820 gtggactect atggacecet cagcacecag ceteggtgee tteagegeag ggeegegtgg 11880 ctgtgggggc tcacaagacc cggcccactc ctgcttgtgc ctacatctgg gtgtttgccc 11940

attggtgcct tttgacgcgt tctggtgtgt gtgagacgtg cggggctggg aagtgttggc agageegega gtaeegteet caeteetttt gttettttga egtaagetgg egagtggeae 12060 tgcctgagtt ccgctcagtg cccgccctga tgtgcggacc ccgctgcatt cttgctgtta 12120 12180 ggtggtggcg gtgtgcgctg tcgctggtgg gcaccgagag tctttggggag ctttggggag gttgtgccaa gcctgagcct cgacgtcccc cttcccggct ttctgttggc tcttctgagg 12240 ccagggcatc tctatgaggg cctcctgctg gagccgtctc tgtggatctc ctctgccatc 12300 etggcccatg agtgggtgat gcgctggcca ccatctggtg acagtggccg ggcaccgctg 12360 12420 ccaaatgtgg gtcccgcatc tgcaagcccc tccctgggtc ccctagggta tggggtggtt 12480 etgecactge ectegetece ceacettggg gtgeetetee ecetgetegt gggggagaee 12540 ctgcctggga tctgctttcc agcaaggaat atactttgga gggagacaca catgttcttt 12600 totggagoto tgcagtggco acggcagoco agcccgccaa gcaccotgga atgaaaacat cccgctgctg tctgggcctg gcctgcactc tgctgcctgc gctccagctg gctgaggccg 12660 ggcacgtetg cgggcacage agcgggggcg ccacagtete cetgcagagt gagcgcaget 12720 12780 ggaaaatgca gctcacgccc tttcccagaa cacctcgctc ttcatggctt ggcagctgtc 12840 cttgcctagg ggccagggtg cccaggcact ggtggcagga gaagggctac atctggggct 12900 gaggeggget gggteetttt eteeetgeag eteeegagge eeageeetgg eeeageetgg cattcctgac cttagcagcg ccatgatctg aagacaggct ggcttctgtg aggccacctc 12960 agaaagggct ttgtgcccag gcagaggcgg aagccagctc ttccttctgg ttgaggcagg 13020 13080 aatgaggcca gcgctgggca agcccatgcc cagggaacgt cacagctgtg ggagtacagg 13140 ggeteegggt tetgageeeg tecaetgtge ategtggeee tggeeteagg atggetegta 13200 ccatcattgg ctgtgcccac agccgagtgg gtgatgggat tccggctgcc ccgctggatc 13260 tgtgctgctg ccctctccag ggcactgctg tgcccgcaca gccgggcgca gatggccagt ttgcttgccc cccccccac catcctcttc ctaccttggc ttcctccatt gacacactgg 13320 13380 accetgetgg etgeeegggg aggtgtttgg gggatggtgt tgggggagga ggagggeeee ttgagcctca gtgtgcccat caggagcgta aggtcagtgc agcacctgcc cacacaggct 13440 gtgaagggtg ggagtggaga gggatgcaag ggggtcacaa cgcctggctc catgtcagct 13500 gcgtgcaggg gcaccaggag ccggccctca ttctcccctt gaactggaag ggtggccccg 13560 accecagegg caggtageat acgtatgaag egeteteett cetacaccec acaggtggge 13620 tegtetecag aeggeeettt ttgagetgge tgtgttttte catetgtgta ggeaaggaca 13680 tegeagacte ceetttetea tetecetegt teageeteeg aggeeggagt etecateeet gtgcctgcct gtgggtcccg ggaggacctg aggctgccca tgtcaccccc ggcatctcat

cetggggaca gtteageegt gggagggate tgtaaggaca gaatgeeget gageetgggg ctccccagct agtctcacac cccgtgtctg ggacccagag accctcgtgc agggctctgt tgcttggggc ctggcagcct cgtcctgtat cagaggctgc cacccccacc cctcgtgggg ccagggttgt ggccggcctc cctggccctc cccatggaag tggtaggcgg agccagcagc 14040 catctgccca gcccggggct gcactgtttt ttttcaaatg agcaccgtcc caaactgcag 14100 cccgttaatt taaacaggat catttccggc cctggaagcc gcctcactct ccttaaatag 14160 aaaggagcac agcgcagagg gaaacagatg aggtcatggc tcggctggcc cagcgaggaa 14220 ggggccgcag tgggggtggc actgccgcct gtcccctgtc ctctccagcg cccacactgc 14280 agcccatttc ctcaccctgg gcctgctctc gggagggacg ggcctggggg tcctcttgct 14340 gggcggaggg gaaccagete etecaggaga ggacggggee tggcaggggg catggggeet 14400 ccctgggtct ggcgtcctgt cctgcccctg ccgagggagg agcggttaca taagctccgc 14460 aggeggeece teegageegg teeceecage ecagttteea gtgaggegge cagegegge 14520 gggggtgccg ggcctggcgc acacccgctg ctgaccacac gtgtctggaa tgtgcagatg 14580 tttctttggg ggctccgtcc ggcccccaga ccccactcag catctggtct ggggagtggg 14640 cgcctggggc actcagctct gagtgtgaga ctctgaggca ggtctggttt gtctggggcc 14700 attecetetg etgtggattg ggagggeece gggagetgee ceacacecag ggaagttete 14760 ctcagtccca ctgttgcatt ccccgacccc ggctcccccg gcccaggage gcctgtgggg 14820 14880 cagaaggeee ageeecaaga etteeeggee etgeeageet caggetteae ecaceetege gccaactgtg ggcagagccc agggggaggg caggagagcc agcgcctggc tgggaacacc 14940 cctgaggggc cgaggctcca gggcgagggg gcccgacctg gggttcacac gcccgggtgg 15000 15060 cgggcagacc cgctgcagca tgagacacgt gtcagctacc tcgggccggc aggctggccc tgctgcccac agccctggga cgtggcccca cctgtgacgg gtgtggaggg gcagcctcca ggcctggcca caccctctgc tgttgctgct cctgctccag gattggcaag ggtgctggga aggggtgaag accegtactg tggccacaca cetgggaett cettetecae ceagtggtge cccagcagcc getaaggagc ccgctgggtc ccacgctagg atggtcctaa ctcctcccgc cttccagatc ggacgctcgg cgctggggac cccttgtgtc ccgggggctgg ggcaccgtcc tgcccccatg ggggtgtact cctcccgaca agcttggctt cagcttccct gggagcacat cetggccete gggcacccat caggetgtee etgtgcacct ggeteccace ettecagete atagcaggaa ctggggtgag gagtgcgtgg ggcagcaagg gcctgggacc ccagaggacc 15540 etgeactetg etetgtgete ttgeetggge ttagggeege teggtggtee tgetgeeaga 15600

15660 tgcctgggcc ctgctgtgtc ccccatcctt gcagggaacc agaacgtggg ggcagggcat cagacagcgg cgatgatgtc acctggcggg tgcagaggaa gcccgagggg cggggtgggg 15720 gggctggcgc gaggctgcct ggctaggcct tggcgttccc ccagaacggc gatggcaaaa 15780 gcagatggag acgtgaaaaa gtacgggagc aagcgaggtg aggactccac ggggacccct 15840 gtgctgttcc ctgtccctga agcccacacc tgagtcctgc ccagggcaga tgcttccaca 15900 cccaggggc acctgagtcc tacccagggc agacgcttcc acaccctggg ggctggggga 15960 ctgcacctgg ctcctgtctg ggccccagct tcattccact gccctgggcc ctgggagctc 16020 ggccgagcgg ggtccccaag accttgctgc atttctgggc cttggggctgg ggtgagggcc 16080 gggagaagga gccagcctgg agcctggcac gcagggagtg catggccaga accggtgaca 16140 16200 ggcagggctg cctgctggcg tggaagaagt gtccatggca cccccaggcc tggttcacag tgggatgggc ggggagccgg ggggctctgg ggtcctcggc tgacctgccc ccacccctgc 16260 16320 cetggettgt cageteccag cageagecae tettgatgga ttttccagaa aatgaggtgt 16380 ggccaaacat cttcaggctt ttccttcttt cctttctccc gtggcctggg tgggagctgc tececatgee tgggggeagg tgegagagee tgtgeeeete eetggggeag ttteaeaget 16440 gtgtcccttc cagggggcct gcctgtgttc accgtggcct ctgcagcacc tctcgcccct 16500 16560 tagggeteet gegeeteggg teeeggtgee teatttetee etaaageatt ggttetgetg 16620 ccgccgcagc cgctggaaag tccctcctca ggtctaactg cagttcctca cggcacagtg ttccccctcg ggcatggtgc ttgggcagtg ggtgtgagtc cagctgcctc accctgtctc 16680 gagaatggcc tettgetggt etcecageca ceaccetgte ecaccecaeg geggggatgg 16740 16800 tgtggatgcc tagcagcgcg gctgtgggcc cacccatcct tatgggcagt ggggagcacc 16860 teagecegtg teectacett ggtgtagagg aggggaegge agagaageag ggtteagtta 16920 ggggggaagt ggtggccctg ccggaggggc cgttccctgt gtgcctggcc cccagatcct ctcccctccc ggagcccagg gcacaggcat aggctctctg agtgtcccac agcccctggg 16980 17040 ggaagggaac tgcaccccca accgtgccct ccatccgcag atggaacgag aagctccggg agccagtgcc cagcgtctca tctgtctggg cacccagccc aggtgagggc ctggctccac 17100 cgtccgtggc tggtgctgct tcctggcacg gagaaggcct cggctgctct gtcccctcag 17160 ctggggtggc ctctggtccc cttctttgtt ggttcccttc tcaagctctt gccctggccc egggeeceae egggeageet gtgtgtgegt eteteetgeg eegggtagge teetgtggga 17280 geggagetee ggtgggagga geagggetgg aggetggeag gggetgggeg ggtgtteagg 17340 gatggaggcc gccccgctt ggggctggct gccgggtggt cattgctggg aagagcaagt ctaggeggag geaectgetg ggteaetegt ggggagggtg acaectgggg aagtagagge 17460

ccgtggcagg aggtgaggcc tcggggtcct ggggagcagg ggggtggtgt gcagacctgc 17520 ggagccatag tcctgtgcca ggagcactac tgggagtgcg tgggaccagg aggggtgccc agggtgggcg gcagagtgac ccccgaggtg cttgaggccg aggggaggtg gagttctcgg 17640 17700 tttgccccag ctctctgtct actcacctcc gcatcaccag ctccaggacc tggtttgtaa ctogggoage totgaaaaga gagacatget googecotgt ggtttotgtt gotttttott 17760 cactgactac tgacatggga tgtttttcct acggctgtga ccaattgtgc ttcttctaat 17820 tgcctggttt ttctttttt gtttttggag ttttctcttt ctttcctccc tccctctcac 17880 cctccatcct ttttttttt atttttattt tttgagatgg agcttcactc ttgcaggatg 17940 18000 gggtgetgga gtgcaggggt gcgatetcag etcactgcaa ectetgeete gcgggttcaa gtgattctcc tgcctaagcc tcctgagtag ctggaattac aggtgcttgc caccacgccc 18060 18120 gactaattet gtagttttgg tagagacagg gtgteteegt gttggteggt etggtettga actectgace teaggtgatg egecegeete ageeteecaa agtgetggga ttacaggeag 18180 gagecattge acceggetet treceettet cetttrette teretetet ecettrett 18240 cttttctttt ctttttttt tcttttgaga tggagtctcg ctctgtcacc aggctggatt 18300 gcagtggcgt gatcttggct cactgcaacc ttcgcctccc gggttcacgt gattctcctg 18360 cctcagcete ctgagtgget ggcactacag gctcccgccg ccatgcccgg ctaatttttg 18420 catttttagt agagacaggg tttcaccctg ttggccagga tggtctcgat ctcttgatct 18480 catgatecae ecaeettgge etcecaaagt tetggeatta caggagtgag ceaeegtgee eggecatett tettteettg etttetettt gttttettte gagacegggt ettgetetgt 18600 18660 egeceagget ggaetgeagt ggeacaatea tageteaetg cageetegae tteeetgget caagegatee tteeteetea geeeceegag tagetggaac tacagttaca caetaceatg cctggctgat tcttttttc cttgtagaga tggggtcttg ctatgctgtc catcctggtc tcaaactcct ggccttccca aagcactggg tttacaggca taagccacca cacccagttt ccttttcttc tttttaactg gaatagttga cgttttcttt attagctgtg tgtcaggagg 18900 gtatttttgg cctttagtat gtcgtgtaag ttgctagtgc ttttctgaga ttgtagtttg 18960 ttttctaatt ttatttatat tttgcgtaga agttgtgtat tttagatgga gttaggtcgg 19020 19080 ctcgccgttt cacccaggct ggagtacagt gatgcgatct cagctccctg tagccttgac 19140 ctctctgggc tcaagtgatt tttctctcct ctacctcccg agtacttggg accccaggcg catgccgcca tgcctggcta atgtgtattt tttgtagata cggggtctca ctgtgttgcc 19260

cagggtggtt	tcaaaatcct	gggcccaggc	gatccttccg	teteagetee	cacggtgctg	19320
tgttaccggc	gtgtgcccag	tgcctggccg	tcttggaggt	cttgtttctc	tgggtttatg	19380
cctcgaggtg	gcgcctgctc	ccctgtgctc	cctggtagcc	tggtagtgag	cctgcttctc	19440
acacagtcat	acctggttgt	ggtcccacag	tgggaccacc	ctgttgggtt	cagaacagga	19500
gatgggggcc	cctcgagtct	gtgtgggggc	tgtggacagg	gttgggagac	cttggctctg	19560
tgggggactg	tggacagggg	atggggggcc	ttggccctgc	gtgggatggg	ttgggggtcc	19620
gtgcccttcc	tggccctggg	tggacaggtc	catgtggcac	tcggcatagg	gctgagatgg	19680
gtgcagaggg	ctgaggcccc	caggcctctc	ctggcttggt	ttccccagat	gagtgttcat	19740
ttgggtcttc	catcagaaag	teceetectg	acctctggga	gtggggagct	caagggtggg	19800
aggccatagc	ttggggatgc	tggcaatgtg	tgggatgggc	ccagggaagg	cctctggcct	19860
actaggggct	ctggccctga	cccacggcca	ctcactcctc	agagacgtct	cccacaacct	19920
gctccgggcg	ctggacgttg	ggctcctggc	gaacctctcg	gcgctggcag	agctgtgagt	19980
gtcccccagt	cgtgccagca	tgcggggctc	actccgggtg	ggctggcggc	accgcctctt	20040
gctgctcagc	tgtgggggct	tccatcagct	ttgccgaatc	ccccgtctct	tccagggata	20100
taagcaacaa	caagatttct	acgttagaag	aaggaatatt	tgctaattta	tttaatttaa	20160
gtgaaatgta	agttgtggtt	ctttgggtgg	ggtcctggct	ggaccccagg	ccccaatat	20220
cccttctgcc	ctcccagttg	gtccgtgtcc	ccttccaggc	ttgagaccag	atcctggggg	20280
cagttcactg	cctgcttgga	gcccccagt	gccggcttgg	ttggggcagg	ggaggcggtg	20340
ctgtcagggt	ggctccaggg	cctggttgcc	agtggggggc	tggcatagac	ccttcccacc	20400
agacctggtc	cccaacacct	geceetgeee	tgcagaaacc	tgagtgggaa	cccgtttgag	20460
tgtgactgtg	gcctggcgtg	gctgccgcga	tgggcggagg	agcagcaggt	gcgggtggtg	20520
cagcccgagg	cagccacgtg	tgctgggcct	ggctccctgg	ctggccagcc	tctgcttggc	20580
atccccttgc	tggacagtgg	ctgtggtgag	tgccggtggg	tggggccagc	tctgtccttc	20640
ccagccaggt	gggacctggg	ccctgcagac	actgggcagg	gctcaggaag	gcctctctgg	20700
ggggggcctc	cgggccaagg	gaacagcatg	ggagcctgtg	agtgcggcgg	gcggatgtgg	20760
gggcgtgggg	tggagccagg	aggagcagaa	cccggggtcc	agtggctgcc	tcttctaggt	20820
gaggagtatg	tegeetgeet	ccctgacaac	agctcaggca	ccgtggcagc	agtgtccttt	20880
tcagctgccc	acgaaggcct	gcttcagcca	gaggcctgca	gcgccttctg	cttctccacc	20940
ggccagggcc	tcgcagccct	ctcggagcag	ggctggtgcc	tgtgtggggc	ggcccagccc	21000
tccagtgcct	cctttgcctg	cetgteeete	tgctccggcc	ccccgccacc	tcctgccccc	21060
acctgtaggg	gccccaccct	cctccagcac	gtcttccctg	cctccccagg	ggccaccctg	21120

gtggggcccc acggacctct ggcctctggc cagctagcag ccttccacat cgctgccccg ctccctgtca ctgccacacg ctgggacttc ggagacggct ccgccgaggt ggatgccgct gggccggctg cctcgcatcg ctatgtgctg cctgggcgct atcacgtgac ggccgtgctg 21300 gccctggggg ccggctcagc cctgctgggg acagacgtgc aggtggaagc ggcacctgcc 21360 geoctggage tegtgtgeee gteeteggtg cagagtgaeg agageetega ceteageate 21420 cagaaccgcg gtggttcagg cctggaggcc gcctacagca tcgtggccct gggcgaggag ccggcccgag gtgagtgtet gctgcccact ccccttcctc cccagggcca tccagatggg 21540 gcagagectg gtaceceegt ettgggeeca caetgacegt tgacaceete gtteecaceg 21600 21660 gtctccageg gtgcaccege tetgeceete ggacaeggag atetteeetg gcaaegggca 21720 ctgctaccgc ctggtggtgg agaaggcggc ctggctgcag gcgcaggagc agtgtcaggc ctgggccggg gccgccctgg caatggtgga cagtcccgcc gtgcagcgct tcctggtctc 21780 ccgggtcacc aggtgcctgc ccccacccc cgaggggcca taggttggga gatctctgaa 21840 21900 gcactggggc agagactgcg gctggggagt ctcaggagga aggaggtggg agctgggccg gecetggtga geaggtggeg eeggeeggtg gggeegttee tgteagetet geagatgeag 21960 aggtggacat gagetggggg cagecteegg acaeteetgg geacgeeata egggaggtgg 22020 22080 cctgcacggg gatccctgcc ggtacccaca ggccccgtgg gtgggtgctg ctgtgagcct gggetggtgg geeetggtet eegggetetg ageeteagtt teeeeatetg gaaaggggga 22200 cagtgatggg gctcccagcg ggctgctgtg agggtgggag gatggaggag tgccctgagc cccctgccat cccacacccg cccccaggag cctagacgtg tggatcggct tctcgactgt 22260 gcagggggtg gaggtgggcc cagcgccgca gggcgaggcc ttcagcctgg agagctgcca gaactggetg ceeggggage cacaeceage cacageegag caetgegtee ggetegggee caccgggtgg tgtaacaccg acctgtgctc agcgccgcac agctacgtct gcgagctgca 22500 gcccggaggt gtgcgggggg ccaggcaggg gcctgagacg ctggctgtgg ttaggggcct 22560 gccgagcgcc cgcggtggag cctgggctga ggaggagggg ctggtggggg ggttttcggg 22620 eggeteggte eccagtetgt tegteetggt gteetgggee etggeeegge geeteactgt geactegeca ecceaggece agtgeaggat geegagaace teetegtggg agegeeeagt 22680 ggggacetge agggacecet gaegeetetg geacageagg aeggeetete ageeeegeae 22800 gagecegtgg aggtagtegg ceceecaegt tetacaacet geeeteetge etgeeeetgg aggeettgee tgeeetgeee aetgtgggte tegeeaaaaa aettggggge ettaatgttg 22860 cttgtgccca gtgaagatgg ttgggaaaat ccagagtgca gagaggaaag cgtttactca 22920 cattacetee aggeetttte tetgagegtg tgtgagttat teetgaaagg caggteaggg 22980 gtectgecce ccatggacag tttecacegg agtettecte tegagegaca ggagecagge 23040 ctgtgggggt ctgatggctc gctctccttc cctcccctct tcctgggaag ttcgggtagg 23100 gggagtetgg getteagget gggatggggt etgtggaget gaggeggeee eetgeeeaee 23160 aggtcatggt attcccgggc ctgcgtctga gccgtgaagc cttcctcacc acggccgaat 23220 23280 ttgggaccca ggageteegg eggeeegeee agetgegget geaggtgtae eggeteetea gcacagcagg tgggactetg ggtggtgggt ggtggttggt gggcgccgca ggactegggg 23340 23400 tggcctctct gagctttcac gtctgctggt cctgtggcca ccagagtggt tcccagtctt aggtggacag agcaggggtt ccagagacac cagctcattc caggtgtcct gggggtggat 23460 23520 tgggtgggge etgeetgggg geeggeetgg gteagtegge tggeeggaga eggaegeage actgggctgg gagtgctgcc caggtgggga gacctgtcct cacagcaagg ccaggattgc 23580 23640 tggtgcaggc agttgggcat ctctgacggt ggcctgtggg caaatcaggg ccccaacacc ctccctcct cacagggacc ccggagaacg gcagcgagcc tgagagcagg tccccggaca 23700 23760 acaggaccca gctggccccc gcgtgcatgc cagggggacg ctggtgccct ggagccaaca 23820 totgottgoo gotggaogoo tootgooaco cocaggootg ogccaatggo tgcaogtcag ggccagggct acccggggcc ccetatgcgc tatggagaga gttcctcttc tccgttcccg 23880 23940 eggggeeece egegeagtae teggtgtgtg geeetgaeet gggtetgtte eetgeatete 24000 ctcaggccac cttcctgtct gctgcccagg gtctgggtct gtgcaccaga cacacccage 24060 etgeaggeee etceeaegte ettgeeaeet etgaeeteeg acetetgeag tgeeetegge ceteteceag tgggagaage tetegeetgg geeettggea egagetgtge eteetettee teteteceag caeagetget cetteetgte tgecaggtet tggcetgtgt ceteteceeg tgtgtccccc ggtctgcaac tgtcctgcct gtccttgtca cgagcactgt ggggaggctc 24240 cttgaggtgt ggctgacgaa gcggggagcc ctgcgtgtcc accctcatcc gtcgtgcggg 24300 ggtccacggg ccatgaccgt gaggacgtga tgcagccctg cctccctctc cacaggtcac 24360 cctccacgge caggatgtcc tcatgctccc tggtgacete gttggcttgc agcacgacge 24420 tggccctggc gccctcctgc actgctcgcc ggctcccggc caccctggtc cccgggcccc 24480 gtacctctcc gccaacgect cgtcatggct gcccacttg ccagcccage tggagggcac 24540 ttgggcctgc cctgcctgtg ccctgcggct gcttgcagcc acggaacagc tcaccgtgct 24600 getgggettg aggeceaace etggaetgeg getgeetggg egetatgagg teegggeaga 24660 ggtgggcaat ggcgtgtcca ggcacaacct ctcctgcagc tttgacgtgg tctccccagt 24720 ggetgggetg egggteatet accetgeece eegegaegge egeetetaeg tgeecaecaa 24780

eggeteagee ttggtgetee aggtggaete tggtgeeaae gecaeggeea eggetegetg gcctggggge agtgtcagcg cccgctttga gaatgtctgc cctgccctgg tggccacctt 24900 cgtgcccggc tgcccctggg agaccaacga taccctgttc tcagtggtag cactgccgtg 24960 25020 gctcagtgag ggggagcacg tggtggacgt ggtggtggaa aacagcgcca gccgggccaa ceteageetg egggtgaegg eggaggagee eatetgtgge eteegegeea egeceageee 25080 cgaggcccgt gtactgcagg gagtcctagt ggtgagtatg gccgaggctc caccaccagc 25140 ccccaggcag gtgcctgcag acagggtgct cacacagggc gtgaggcctg gcttcccagt 25200 gagggcagca gcccagttac tggggacgtc ggccccgggc aggtcctgct ggctggctcc 25260 tegggetace tggtgggett taaatteetg gaaagteaeg getetgaeag tggeteeget aactcattcc actgtctcat ttcacaaaat gaatttaaaa ctctgctccc tgacctcaca 25380 egageeeeeg tgagtetete aegeeetetg etgtgttete geetggetaa agegagtgge 25440 25500 ttttgaggtg gagtetgaac ceetgatggg aaactgeggg etgeeegegg tgeeaceatg ctgggtacat gggggacagg gctgtctcca tcttgcgggt acctgcctct tcaccagggg 25560 ccttgggagg ggccatcaga aatggcgtga cctgtgcagc ctgtcctggg ttctgtaagc 25620 cagtgtaggt gcctcccctc actgctccga gctctctggg tgaggagctg gggcaagagc 25680 gccgggaggg tctgagaaga ctcagagaga ggtggactct ttgtagctgg tactaggttt 25740 gctttacaga tggggaaact gaggcacaga gaggttgagg cattagtagt actacatggc 25800 tggctggaga gccggacagt gagtgtccca gcccgggctt ggctcccatg gcatgcagag 25860 25920 eccegggeae etecteteet etgtgeeeeg egtgggaete teeageeega egggaggtgt 25980 gtccaggagg cgacaggcta agggcagagt cctccacaga gcccaggctg acaccattcc 26040 ccccgcagag gtacagcccc gtggtggagg ccggctcgga catggtcttc cggtggacca tcaacgacaa gcagtccctg accttccaga acgtggtctt caatgtcatt tatcagagcg 26160 26220 gcagggcggg ggcgggctcc accttcacct ctgccttctg ctctgcttca tgctgcccga 26280 ggacgctgcc atggctgtgg gtgagtggag ggagggacgc caatcagggc caggcctctc acctgccacc tgggctcact gacgcctgtc cctgcagctg acggcctcca accacgtgag 26340 26400 caacgtcacc gtgaactaca acgtaaccgt ggagcggatg aacaggatgc agggtctgca ggtctccaca gtgccggccg tgctgtcccc caatgccacg ctagcactga cggcgggcgt 26460 gctggtggac tcggccgtgg aggtggcctt cctgtgagtg actcgggggc cggtttgggg tgggcaccag gctcttgtcc cagccccagc ctcagccgag ggacccccac atcacggggt 26580

tgcttttctg	agcctcggtt	tecetgtetg	ttgggaggta	actgggtgca	caggagccct	26640
gaggctgcac	gggagccggg	agaggcctca	gcacagccgg	gtgggccctg	aatggaggcc	26700
cggggcgtga	ctgcagagtg	gageetegge	tgggtcccaa	gcaccccctg	ccccgccacc	26760
gcccacccct	gteceggtte	actcactgcg	tcccaccgcc	ccggcaggtg	gacctttggg	26820
gatggggagc	aggccctcca	ccagttccag	cctccgtaca	acgagtcctt	cccggttcca	26880
gacccctcgg	tggcccaggt	gctggtggag	cacaatgtca	tgcacaccta	cgctgcccca	26940
ggtgagggat	gagggggtga	gggggccact	gcctttcagg	ctctgagcac	gggtcccccc	27000
agctccccag	tcaagctgcc	ccccttcctc	cccaacagcc	ctcactgtga	cctcacctgg	27060
gctgatggct	taggccctac	tggggtgagg	gaggggccag	gcgtgggggg	agtggacagg	27120
gaagctgggc	ccctgaactg	cgccccccgc	cctccccggg	cctggctctt	gctgctctgc	27180
tgccccgagt	gcagctgcac	ttggaggcgg	tgcgtcctcg	ccaggcagcc	ctcagtgctg	27240
ctacacctgt	gctccgtccc	gcacgtggct	tgggagcctg	ggacccttaa	ggctgggccg	27300
caggtgcagc	cgttcacccc	gggctcctca	ggcggggggc	ttctgccgag	cgggtgggga	27360
gcaggtgggg	gtgccgcggc	tgccccactc	gggcctgtcc	ccacaggtga	gtacctcctg	27420
accgtgctgg	catctaatgc	cttcgagaac	cggacgcagc	aggtgcctgt	gagcgtgcgc	27480
gcctccctgc	cctccgtggc	tgtgggtgtg	agtgacggcg	tcctggtggc	eggeeggeee	27540
gtcaccttct	acccgcaccc	gctgccctcg	cctgggggtg	ttctttacac	gtgggacttc	27600
ggggacggct	cccctgtcct	gacccagagc	cagccggctg	ccaaccacac	ctatgcctcg	27660
aggggcacct	accacgtgcg	cctggaggtc	aacaacacgg	tgagcggtgc	ggcggcccag	27720
gcggatgtgc	gcgtctttga	ggagctccgc	ggactcagcg	tggacatgag	cctggccgtg	27780
gagcagggcg	ccccgtggt	ggtcagcgcc	gcggtgcaga	cgggcgacaa	catcacgtgg	27840
accttcgaca	tgggggacgg	caccgtgctg	tcgggcccgg	aggcaacagt	ggagcatgtg	27900
tacctgcggg	cacagaactg	cacagtgacc	gtgggtgcgg	ccagccccgc	cggccacctg	27960
gcccggagcc	tgcacgtgct	ggtcttcgtc	ctggaggtgc	tgcgcgttga	acccgccgcc	28020
tgcatcccca	cgcagcctga	cgcgcggctc	acggcctacg	tcaccgggaa	cccggcccac	28080
tacctcttcg	actggacctt	cggggatggc	tcctccaaca	cgaccgtgcg	ggggtgcccg	28140
acggtgacac	acaacttcac	gcggagcggc	acgttccccc	tggcgctggt	gctgtccagc	28200
cgcgtgaaca	gggcgcatta	cttcaccagc	atctgcgtgg	agccagaggt	gggcaacgtc	28260
accetgeage	cagagaggca	gtttgtgcag	ctcggggacg	aggcctggct	ggtggcatgt	28320
gcctggcccc	cgttccccta	ccgctacacc	tgggactttg	gcaccgagga	agccgccccc	28380
acccgtgcca	ggggccctga	ggtgacgttc	atctaccgag	acccaggctc	ctatcttgtg	28440

28500 acagtcaccg cgtccaacaa catctctgct gccaatgact cagccctggt ggaggtgcag 28560 gagecegtge tggtcaccag cateaaggte aatggeteee ttgggetgga getgeageag cegtacetgt tetetgetgt gggeegtggg egeceegeca getacetgtg ggatetgggg 28620 28680 gacggtgggt ggctcgaggg tccggaggtc acccacgctt acaacagcac aggtgacttc 28740 accepttaggt ggccggctgg aatgaggtga gccgcagcga ggcctggctc aatgtgacgg tgaageggeg egtgegggg etegtegtea atgeaageee caeggtggtg eecetgaatg 28800 ggagcgtgag cttcagcacg tcgctggagg ccggcagtga tgtgcgctat tcctgggtgc 28860 totgtgaccg otgcacgocc atcoctgggg gtoctaccat otottacacc ttocgctccg 28920 28980 tgggcacctt caatatcatc gtcacggctg agaacgaggt gggctccgcc caggacagca tettegteta tgteetgeag eteatagagg ggetgeaggt ggtgggeggt ggeegetaet 29040 tececaceaa ecacaeggta cagetgeagg cegtggttag ggatggeace aaegteteet 29100 acagetggae tgeetggagg gaeaggggee eggeeetgge eggeagegge aaaggettet cgctcaccgt ctcgaggccg gcacctacca tgtgcagctg cgggccacca acatgctggg 29220 29280 cagegeetgg geegactgea ceatggaett egtggageet gtggggtgge tgatggtgge cgcctccccg aacccagctg ccgtcaacaa aagcgtcacc ctcagtgccg agctggctgg 29340 tggcagtggt gtcgtataca cttggtcctt ggaggagggg ctgagctggg agacctccga 29400 29460 gccatttacc acccataget tececacace eggeetgeae ttggteacca tgaeggeagg gaaccegetg ggeteageea acgecacegt ggaagtggat gtgcaggtge etgtgagtgg 29520 29580 cctcagcate agggccagcg agcccggagg cagcttcgtg gcggccgggt cctctgtgcc cttttggggg cagctggcca cgggcaccaa tgtgagctgg tgctgggctg tgcccggcgg 29640 cagcagcaag cgtggccete atgtcaccat ggtcttcccg gatgctggca ccttctccat 29700 29760 ccggctcaat gcctccaacg cagtcagctg ggtctcagcc acgtacaacc tcacggcgga ggagcccatc gtgggcctgg tgctgtgggc cagcagcaag gtggtggcgc ccgggcagct 29820 ggtccatttt cagatectge tggetgeegg etcagetgte acetteegee tgeaggtegg 29880 eggggeeaae eeegaggtge teeeegggee eegtttetee eacagettee eeegegtegg 29940 agaccacgtg gtgagcgtgc ggggcaaaaa ccacgtgagc tgggcccagg cgcaggtgcg 30000 catcgtggtg ctggaggccg tgagtgggct gcaggtgccc aactgctgcg agcctggcat 30060 egecaeggge actgagagga actteaeage eegegtgeag egeggetete gggtegeeta 30120 egeetggtae ttetegetge agaaggteea gggegaeteg etggteatee tgtegggeeg 30180 30240 cgacgtcacc tacacgcccg tggccgcggg gctgttggag atccaggtgc gcgccttcaa

cgccctgggc agtgagaacc gcacgctggt gctggaggtt caggacgccg tccagtatgt ggccctgcag agcggcccct gcttcaccaa ccgctcggcg cagtttgagg ccgccaccag 30360 ccccagccc cggcgtgtgg cctaccactg ggactttggg gatgggtcgc cagggcagga 30420 cacagatgag cccagggccg agcactccta cctgaggcct ggggactacc gcgtgcaggt 30480 gaacgcetee aacetggtga gettettegt ggegeaggee aeggtgaeeg teeaggtget 30540 ggcctgccgg gagccggagg tggacgtggt cctgcccctg caggtgctga tgcggcgatc 30600 acagcgcaac tacttggagg cccacgttga cctgcgcgac tgcgtcacct accagactga 30660 gtaccgctgg gaggtgtatc gcaccgccag ctgccagcgg ccggggcgcc cagcgcgtgt 30720 ggccctgccc ggcgtggacg tgagccggcc tcggctggtg ctgccgcggc tggcgctgcc 30780 tgtggggcac tactgctttg tgtttgtcgt gtcatttggg gacacgccac tgacacagag 30840 catccaggcc aatgtgacgg tggccccga gcgcctggtg cccatcattg agggtggctc 30900 ataccgcgtg tggtcagaca cacgggacct ggtgctggat gggagcgagt cctacgaccc 30960 caacctggag gacggcgacc agacgccgct cagtttccac tgggcctgtg tggcttcgac 31020 acaggicagi gcgtggcagg gccgtcctcc atgcccctca cccgtccaca cccatgagcc 31080 cagagaacac ccagettgee accagggetg gecegteete agtgeetggt gggeecegte 31140 ccagcatggg gagggggtct cccgcgctgt ctcctgggcc gggctctgct ttaaaactgg 31200 atggggctct caggccacgt cgccccttgt tctcggcctg cagagggagg ctggcgggtg 31260 tgcgctgaac tttgggcccc gcgggagcag cacggtcacc attccacggg agcggctggc 31320 ggctggcgtg gagtacacct tcagcctgac cgtgtggaag gccggccgca aggaggaggc 31380 caccaaccag acggtgggtg ccgcccgccc ctcggccact tgccttggac agcccagcct 31440 ccctggtcat ctactgtttt ccgtgtttta gtgctggtgg aggccgcacg ctctcccctc 31500 tetgtttetg atgeaaatte tatgtaacae gacageetge tteagetttg etteetteea 31560 aacctgccac agttccacgt acagtcttca agccacatat gctctagtgg caaaagctac 31620 acagteceet ageaataeea acagtgagga agageeeett eecaceecag aggtageeae 31680 tgtccccagc ccatgtccct gttgctggat gtggtgggcc ggttctcacc ctcacgctcc 31740 cctctctgga ccggccagga ggcttggtga ccctgagccc gtggtggctg ctcctgctgc 31800 tgtcaggcgg ggcctgctgg tgccccagag tgggcgtctg ttccccagtc cctgctttcc 31860 31920 ggttccatcc cagetcagec tectgaceca ggccetgget aagggetgea ggagtetgtg 31980 agtcaggeet acgtggcage tgeggteete acacceacae ataegtetet teteacaege 32040 atcccccag gggccctcag tgagcattgc ctgcctcctg ctagggtcca gctgggtcca 32100 gtacaccaga acgcacactc cagtgtcctc tgccctgtgt atgcccttcc gccgtccaag ttggaaggtg gcaaaccgga tgagtatcct gggagggagt gagctcaccg gcagtggcca 32220 ggeceetggg aaacetggag tttgggagca geateeteea tgggteeeee agteetteea 32280 32340 gcaggccaaa tagacctgtg ttggaggtaa ccccactccc acgccaggtg ctgatccgga 32400 gtggccgggt gcccattgtg tccttggagt gtgtgtcctg caaggcacag gccgtgtacg aagtgageeg cageteetac gtgtaettgg agggeegetg cetcaattge ageagegget 32460 ccaagcgagg ggtgagtgtt gagcggggtg tgggcgggct ggggatgggt cccatggccg 32520 aggggacggg gcctgcaggc agaagtgggg ctgacagggc agagggttgc gccccctcac 32580 cacccettet geetgeageg gtgggetgea egtaegttea geaacaagae getggtgetg 32640 32700 gatgagacca ccacatccac gggcagtgca ggcatgcgac tggtgctgcg gcggggcgtg 32760 ctgcgggacg gcgagggata caccttcacg ctcacggtgc tgggccgctc tggcgaggag gagggetgeg cetecateeg cetgteecee aacegeeege egetgggggg etettgeege 32820 ctetteceae tgggegetgt geaegeeete accaecaagg tgeaettega atgeaegggt 32880 32940 gagtgcaggc ctgcgtgggg ggagcagcgg gatcccccga ctctgtgacg tcacggagcc ctcccgtgat gccgtgggga ccgtccctca ggctggcatg acgcggagga tgctggcgcc 33000 ccgctggtgt acgccctgct gctgcggcgc tgtcgccagg gccactgcga ggagttctgt 33060 gtctacaagg gcagcctctc cagctacgga gccgtgctgc ccccgggttt caggccacac 33120 33180 ttcgaggtgg gcctggccgt ggtggtgcag gaccagctgg gagccgctgt ggtcgccctc aacaggtgag ccaggeegtg ggagggegee ccegagactg ccacetgete accaeeceet 33240 ctgctcgtag gtctttggcc atcaccctcc cagagcccaa cggcagcgca acggggctca 33300 33360 cagtotggct gcacgggctc accgctagtg tgctcccagg gctgctgcgg caggccgatc 33420 cccagcacgt catcgagtac tcgttggccc tggtcaccgt gctgaacgag gtgagtgcag 33480 cctgggaggg gacgtcacat ctgctgcatg cgtgcttggg accaagacct gtacccctgc ctggagcttt gcagagggct catcccgggc cccagagata aatcccagtg accctgaagc 33540 33600 agcaccccga cettecgete ceagcageca cacccaecgg gecetetecg gegtetgett tecacaatge ageceegee caggagggee catgtgetta ceetgttttg eccatgaaga 33660 aacageteag tgttgtgggt cagtgeeege ateacaeage gtetageaeg taaetgeaee 33720 cogggagtog tgggcatotg otggcotoct googgcotoc tgogctgotg acagottgot 33780 gtgccccctg cctgccccag tacgageggg ccctggacgt ggcgcagagc ccaagcacga 33840 geggeageae egageeeaga taegeaagaa cateaeggag actetggtgt eeetgagggt 33900 ccacactgtg gatgacatcc agcagatcgc tgctgcgctg gcccagtgca tggtaggatg 33960 geoceacety eteaceetye eeegcatgee tyeeagggea etygytteag eeececaggg cagacgggca gettggcega ggagetgage etecageetg ggeteettee tgecatggeg 34080 ttcctcggtc tctgacctgc ttcagtagcc tcagccgttc tgtcctgtgt gaacgcaggg 34140 tgcctctcgg gggacccagg gtgtaaagag gggcccagat gtggggaggg actaagaaga 34200 34260 tececteete eceteceeta gecetteece tecteceete ecetageeet ttecettett 34320 ccccccage cetteceete eteceetece etagecette ecetectece eteceetace cetteceete eteceetece etagacette eceteacete etecegetga geceetecae tegtececca gecetecet eccetagece etcecetece ecttectece etcetecece 34500 tececteete eccetecete ttectecece tececteete eccetteete eccteteete 34560 contract antithere at a contract and teccetect ecetectece tectecceet ectectecte ecetectece tecteccete 34680 ctecetece etectecee teccecete ettectece eteccecete ecetectece cottetectee teccateet ecteceatee etecteceeg tteccattet eteccetece 34800 cottocattt etecetecte eccetgeect ectetectee teacetecee tteteegete 34860 etttettete eteceteet treteteete ectecette teceettete etettetee 34920 coccetecte coetectice tecteceatt coccetecte coccetecea ticoccetec toccotectt cotoctocca ttaccoctoc totoctocco toctoccaco cocctetect ecoggetect etecteceet ecteatecee etectetect tecetectaa ecceetect ctcctccct cctcatcccc ctcctctcct tccctcctcc tatcccccct cctctcctcc cotoctocta ttocccctcc totcctcccc tccttcctcc tcctctcctc ccatgccccc tectecete eteceatece ectectece tectecete teccatecea teccetect etectecet tetetecet cetetecte ectetete tetectete tectecete eteccatece ecetectece atecéceete etetectece eactectete etecceaete etetectece eteatecece tectetete teccetecec etectetet tecetectee tetectecte tecectece ettetettt tecetecte tecettecte etecetett 35640 eteceetttt ceetttete tteeteteet ceeettetee ceteetgtee teeeteett 35700

tetteeetee	tcctttcctc	ccctcctcct	tttctctgtt	tctcttcctt	tecetecae	35820
tttccccttc	ctttcccctc	tcctttctcc	ttcctttcct	ctccccttct	cttccttttc	35880
ctctctcccc	ttetttteee	tcttcccctc	ccctcctctt	cccctcccct	cctcttcccc	35940
tecectecte	tteccetece	ctcctcttcc	cctctcctcc	tcttcccctc	ccctcctctt	36000
tccctcccct	cttctcctcc	cctcctctcc	cctcttcccc	tecectecte	ttccctcccc	36060
ttcccctccc	ctcctcttcc	ctccccttcc	cctcccctcc	tcttccctcc	ccttcccctc	36120
ctcttccttc	ctctcttccc	ctcccctcct	cttccctccc	ctcttcccct	ccccttctct	36180
tctcctcccc	ttctcttccc	ctcccctttt	cttccctctc	cttgtcttcc	ctgccctcct	36240
cttccctccc	ctcctcttcc	ctcccctctt	cccctctcct	cctcttccct	ccctcttcc	36300
tctttcctct	tcccctcccc	tcctcctccc	teceetttee	cctcttcccc	teceteege	36360
ttecctecce	tttctcccc	ttetetecee	teceetetee	ccccttctct	ccctcccct	36420
ctccccttc	teteceetee	cctctcccc	ttctctcccc	tctcctctcc	cccttctctc	36480
ccccttctct	ccccttctc	tctccccttc	tctccccctt	ctctcccctc	ccccttctc	36540
tecetecee	tctccccctt	ctctcccctc	ccctctcccc	tgtcctctcc	tctccaccct	36600
tctctcccct	cccctctcct	ctccccttc	cctctcctct	ccccttctc	tecetecee	36660
tctcctctcc	ccccttttct	ccactcccct	ctcctctctc	ccctcctcct	ccgctctcat	36720
gtgaagaggt	gccttgtgtg	gteggtggge	tgcatcacgt	ggtccccagg	tggaggccct	36780
gggtcatgca	gagccacaga	aaatgcttag	tgaggaggct	gtgggggtcc	agtcaagtgg	36840
gctctccagc	tgcagggctg	ggggtgggag	ccaggtgagg	acccgtgtag	agaggagggc	36900
gtgtgcaagg	agtggggcca	ggagcggggc	tggacactgc	tggctccaca	caggggccca	36960
gcagggagct	cgtatgccgc	tcgtgcctga	agcagacgct	gcacaagctg	gaggccatga	37020
tgctcatcct	gcaggcagag	accaccgcgg	gcaccgtgac	gcccaccgcc	atcggagaca	37080
gcatcctcaa	catcacaggt	gccgcggccc	gtgccccatg	ccacccgccc	gccccgtgcg	37140
gccctttcct	ctgcctccct	cctcccccca	accgcgtcgc	ctttgcccca	teccatette	37200
gteceectee	cctcccccca	attcccatcc	tcatccccct	cccccaattc	ccattctcct	37260
cccctcccc	cttccctatt	accatccctt	ttctccatct	ctctcccctt	ttctccattt	37320
cccccccgt	cctccccgtc	cttttgtcca	ttcccctcat	cttcctcatc	cccctcatcc	37380
cccttcccct	cccttatccc	ccttcccctc	cctttccccc	tgctcctctt	cttctccctt	37440
ctcttttctc	tacccttttc	cttccttttt	cctccctctc	cccatcatcc	ccctcatctt	37500
cgtcctcatc	cccatcacct	teccetece	ccctccacca	ctctctctcc	agcttccccc	37560

ttecttetge	ctgcacctcg	ctctctgccc	cctcaggttc	cccctttctc	ccagccccca	37620
ccctccggct	ccccttttt	gcctgccccc	accctccctc	tacctccctg	tctctgcact	37680
gacctcacgc	atgtctgcag	gagacctcat	ccacctggcc	agctcggacg	tgcgggcacc	37740
acagccctca	gagctgggag	ccgagtcacc	atctcggatg	gtggcgtccc	aggcctacaa	37800
cctgacctct	gccctcatgc	gcatcctcat	gcgctcccgc	gtgctcaacg	aggagcccct	37860
gacgctggcg	ggcgaggaga	tcgtggccca	gggcaagcgc	teggaeeege	ggagcctgct	37920
gtgctatggc	ggcgccccag	ggcctggctg	ccacttctcc	atccccgagg	ctttcagcgg	37980
ggccctggcc	aacctcagtg	acgtggtgca	gctcatcttt	ctggtggact	ccaatccctt	38040
tccctttggc	tatatcagca	actacaccgt	ctccaccaag	gtggcctcga	tggcattcca	38100
gacacaggcc	ggcgcccaga	tececatega	geggetggee	tcagagcgcg	ccatcaccgt	38160
gaaggtgccc	aacaactcgg	actgggctgc	ccggggccac	cgcagctccg	ccaactccgc	38220
caactccgtt	gtggtccagc	cccaggcctc	cgtcggtgct	gtggtcaccc	tggacagcag	38280
caaccetgeg	gccgggctgc	atctgcagct	caactatacg	ctgctggacg	gtgcgtgcag	38340
cgggtggggc	acacgcggcc	ccctggcctt	gttcttgggg	ggaaggcgtt	tctcgtaggg	38400
cttccatggg	tgtctctggt	gaaatttgct	ttctgtttca	tgggctgctg	ggggcctggc	38460
cagagaggag	ctgggggcca	cggagaagca	ggtgccagct	ctggtgcaga	ggctcctatg	38520
ctttcaggcc	cgtggcagag	ggtgggctca	ggagggccat	cgtgggtgtc	ccccgggtgg	38580
ttgagcttcc	cggcaggcgt	gtgacctgcg	cgttctgccc	caggccacta	cctgtctgag	38640
gaacctgagc	cctacctggc	agtctaccta	cactcggagc	cccggcccaa	tgagcacaac	38700
tgctcggcta	gcaggaggat	ccgcccagag	tcactccagg	gtgctgacca	ccggccctac	38760
accttcttca	tttccccggg	gtgagctctg	cgggccagcc	tggcagggca	gggcagggca	38820
tcatgggtca	gcattgcctg	ggttactggc	cccatgggga	cggcaggcag	cgaggggact	38880
ggaccgggta	tgggctctga	gactgcgaca	tccaacctgg	cggagcctgg	gctcacgtcc	38940
gctacccctt	ccctgcccag	gagcagagac	ccagcgggga	gttaccatct	gaacctctcc	39000
agccacttcc	gctggtcggc	gctgcaggtg	teegtgggee	tgtacacgtc	cctgtgccag	39060
tacttcagcg	aggaggacat	ggtgtggcgg	acagaggggc	tgctgcccct	ggaggagacc	39120
tegeceegee	aggccgtctg	cctcacccgc	cacctcaccg	ccttcggcgc	cagcctcttc	39180
gtgcccccaa	gccatgtccg	ctttgtgttt	cctgtgagtg	accetgtget	cctgggagcc	39240
tctgcagagt	cgaggagggc	ctgggtgggc	teggetetat	cctgagaagg	cacagcttgc	39300
acgtgacctc	ctgggcccgg	cggctgtgtc	ctcacaggag	ccgacagcgg	atgtaaacta	39360
catcgtcatg	ctgacatgtg	ctgtgtgcct	ggtgacctac	atggtcatgg	ccgccatcct	39420

gcacaagctg gaccagttgg atgccagccg gggccgcgcc atccctttct gtgggcagcg gggccgcttc aagtacgaga tcctcgtcaa gacaggctgg ggccggggct caggtgaggg 39540 gegeageggg gtggeaggge eteceetget eteaetgget gtgetggttg eaccetetgg 39600 gagtgagtet egtegeagge gteagaacaa ggeagttttt geagtgetgt gtgaaggget 39660 39720 cgtgtgttca tcctgggaat gacctcgtga gcactcactg tccctgagga ctaggacagc 39780 tectagetgg aagtaggtge cagteagtea gggtgggeag eccaegttet geacagtage gtggccccac aagtgacgtg agcatcgcta ccactgtggg agactgtgca tccacccgcg 39840 atcctgactg catagetegt ctctcagacg gaggegecag caccetecee gtggetgttt 39900 cttcagtacc tccattttcc tttcattgga attgcccttc tggcattccc tttttgtttt 39960 cgtttttctt tttttagaga cggagtctca ctctgttgcc caggctggag tgcaatggca 40020 tgatcttggc tcacagcaac ttccagctcc cgggtttaag ccattcccct taagcgattc 40080 40140 tectgagtag etgggagtae aggtgeacae caccacacce agttaatttt teaccatgte agccaggega actcctgacc tcaggtgatc cgcctgcctc ggcctgccag agtgctggga 40200 tgacaggtgt gagccaccac acctggctgt gttcccattt tttatctctg tgctgctttc 40260 ctcttcattg cccagttctt tcttttgatt acctactttt aaaaactgtc ggccgggcgc 40320 ggtggctcac acctgtaatc cgagcacttt gggaggccag gcaggcaaat cacggggtca 40380 ggagatcgag accatcctgg ctaacggtga aaccetgtct ctaataaaaa gtacaaaaaa 40440 40500 attagecegg egtagtggea ggegeetgta gteecagete ettgggagae tgaggeagga gaatggcgtg aacccgggag geggagettg cagtgagetg agattgegee actgcactee 40560 40620 gggtctgtca ctgggagagg aggtgacaca gcttcacgct ttgcagtctg tgcatgaact 40680 gagggacggg tgtgtggtgc gggtcaccgg ttgtggcatg actgaggcgt ggacaggtgt 40740 40800 gcagtgcggg tcactggttg tggtgtggac tgaggcgtgt gcagccatgt ttgcatgtca 40860 caagttacag ttctttccat gtaacttaat catgtccttg aggtcctgct gttaattgga caaattgcag taaccgcagc tccttgtgta tggcagagcc gtgcaaagcc gggactgcct 40920 gtgtggctcc ttgagtgcgc acaggccaaa gctgagatga cttgcctggg atgccacacg 40980 tgttgggcag cagaccgage eteccaecee teeetettge eteccaggta ecaeggeeca 41040 cgtgggcatc atgctgtatg gggtggacag ccggagcggc caccggcacc tggacggcga 41100 cagageette caeegeaaca geetggacat etteeggate geeaeeeege acageetggg 41160 tagcgtgtgg aagatccgag tgtggcacga caacaaaggt ttgtgcggac cctgccaagc

tetgeceete tgeceeegea ttggggegee etgegageet gaeeteeete etgegeetet gcagggetca gccctgcctg gttcctgcag cacgtcatcg tcagggacct gcagacggca cgcagcgcct tcttcctggt caatgactgg ctttcggtgg agacggaggc caacgggggc 41400 ctggtggaga aggaggtgct ggccgcgagt aaggcctcgt tccatggtcc cactccgtgg 41460 gaggttgggc agggtggtcc tgccccgtgg cctcctgcag tgcggccctc cctgccttct 41520 41580 aggegaegea geeettttge getteeggeg cetgetggtg getgagetge agegtggett ctttgacaag cacatctggc tctccatatg ggaccggccg cctcgtagcc gtttcactcg 41640 41700 catccagagg gecacetget gegtteteet catetgeete tteetgggeg ccaacgeegt gtggtacggg gctgttggcg actctgccta caggtgggtg ccgtaggggt cggggcagcc 41760 tetteetgee cageeettee tgeeecteag ceteacetgt gtggeeteet etecteeaca 41820 41880 cagcacgggg catgtgtcca ggctgagccc gctgagcgtc gacacagtcg ctgttggcct 41940 ggtgtccagc gtggttgtct atcccgtcta cctggccatc ctttttctct tccggatgtc 42000 ccggagcaag gtgggctggg gctggggacc cgggagtact gggaatggag cctgggcctc ggcaccatgc ctagggccgc cactttccag tgctgcagcc agagggaaag gcgtccacca 42060 42120 aaggetgete gggaagggte aacacacttg ageageetta getagaetga eeagggagaa agagagaaga ctcagaagcc agaatggtga aagaacgagg gcactttgct aagcagacgc 42180 cacggacgac tgcacagcag cacgccagat aactcagaag aagcaagcac gcggctgtgc 42240 acgetteega aatgeactee agaagaaaat eteagtaeat etataggaag tgaagagget 42300 42360 gagttagtcc cttagaaacg tcccagtggc cgggccgggt gtggtggctc acgcctgtaa toccaacact toaggtggcc gaggtgggcg gatctgagtc caggagtttg agaccagcct 42420 gggcaacata gcaagacccc atctatataa aacattaaaa agggccaggc gcggtggctc 42480 42540 acgectytaa teecageact ttgggaggee gaggegggea gateacttga ggteaggagt 42600 tegagaceag cetggeeaac acaatgaaac eeegacteta etacaaatac aaaaacttag 42660 ctgggcatgg tggcgggcgc ctgtagtccc agctactcga gaggctgagg caggagaatg gcatgaaccc aggaggcgga gcttgcagtg agccgagatt gcgccactgc actccatcct 42720 42780 tcaggctcag agccttcacg atagaatttt tctaagcagt taaggaagaa ttaacaccaa 42840 42900 teetteacag actettteca agaatacage aggtgggaae getteecatt cataeggaaa cgggaggccg caccccttag gaatgcacac gtggggtcct caagaggtta catgcaaact 42960 aaccccagca gcacacagag aaggcgcata agccgcgacc aggaggggtt gctcccgagt 43020 ccgtggcagg aaccagaggc cacatgtggc tgctcgtatt taagttaatt aaaatggaac

gatggccggg tgtggtggct cacacctgta atcccagcac tttgggaggc ggaggcgggc agatcacttg aggtcaggag ttccaagacc agcctggcca acacagtgaa accccgtctc tactaaaaat acaaaaaatt agctgggcat ggtggcaggc acctgtaatc ccagctactc 43260 aggaggetga gecaggaeaa tegeetgaac gegggaggtg gaggttgeag tgagetgaga 43320 ttgcgccatt gcactccagc ctgggtgaca gcgagactcc atctaaaaaa gaaaatatga 43380 aatttaaaac tetgtteett agetgeacca gtetgetgte aagtgtteag tggeacacgt 43440 cgcgaggggc tgccatcacg gacggtgcag atgtcccata tatccagcat tctaggacat 43500 tetgteagat ggeaceggge tetgteetgt etgetgagga ggtggettet catecetgte 43560 ctgagcaggt ctgagctgcc gcccgctgac cactgccctc gtcctgcagg tggctgggag 43620 cccgagcccc acacctgccg ggcagcaggt gctggacatc gacagctgcc tggactcgtc 43680 cgtgctggac ageteettee teaegttete aggeeteeac getgaggtga ggaetetaet 43740 43800 gggggtcctg ggctggctg ggggtcctgc cgccttggcg cagcttggac tcaagacact gtgcacctct cagcaggcct ttgttggaca gatgaagagt gacttgtttc tggatgattc 43860 43920 taagaggtgg gttccctaga gaaacctcga gccctggtgc aggtcactgt gtctggggtg ccgggggtgt gcgggctgcg tgtccttgct gggtgtctgt ggctccatgt ggtcacacca 43980 cccgggagca ggtttgctcg gaagcccagg gtgtccgtgc gtgactggac gggggtgggc 44040 tgtgtgtgtg acacatecee tggtaeettg etgaeeegeg eeaeetgeag tetggtgtge 44100 tggccctccg gcgagggaac gctcagttgg ccggacctgc tcagtgaccc gtccattgtg 44160 44220 ggtagcaatc tgcggcagct ggcacggggc caggcgggcc atgggctggg cccagaggag gacggettet coetggecag eccetacteg cetgecaaat cetteteage ateaggtgag 44280 ctggggtgag aggaggggc tctgaagctc acccttgcag ctgggcccac cctatgcctc 44340 ctgtacctct agatgaagac ctgatccagc aggtccttgc cgagggggtc agcagcccag 44400 cccctaccca agacacccac atggaaacgg acctgctcag cagcctgtga gtgtccggct 44460 ctcgggggag gggggattgc cagaggaggg gccgggactc aggccaggca gccgtggttc 44520 44580 ctctgaacct ctgttgtctg tggaaagagc ctcatgggat ccccagggcc ccagaacctt 44640 ccctctaggg agggagcagg ctcatggggc tttgtaggag cagaaaggct cctgtgtgag 44700 gctggccggg gccacgtttt tatcttggtc tcagagcagt gagaaattat gggcgggttt 44760 44820 ttaaataccc catttttggc cgggcgcggt ggctcacacg tgtaatccca gcactttggg 44880 aggccgaggt gggcagatga cctgaggtca gcagttcgag accagcctgg ccaacatggc

gaaaccccgt ctctactaaa aatacaaaaa attagccggg catgctggca ggcgcctgta 44940 gtcccagtta ctcgggagac tgaggtagga gaatcgattg aacctggtag gtgaaggttg 45060 tagtgageeg agategegee aetgeaetee ageetgggea acaagagega aaeteegtet caaaaacaaa aaaattcctc aatttcttgg ttgttttgta acttatcaac aaatggtcat 45120 atagaggtta ccttgtatgt agtcacgcac atagtcacgc acatggcagc cggcggcgga 45180 gegeacceae ggegtgttee caegegtgtg acceeggget etgecatgee etectatget 45240 45300 caggtgtgct gaggtccaca cggccctgcc gttgcactgc agctgcctgc aggattcagt 45360 gcagtggcat gcagtgcagg tgcggtgccc cggagccaca ggccacacca cagggcctgc 45420 atgcacaggg gctgcggtgt ctgggtttgg gtaactacgc cctgtgacat ttgcacagca 45480 acagaattac ctaatgacgc atttctcaga acacatccct ggcactaagt ggtgcgtgac 45540 tgctgctttt gcatccacat ctagtttgat ttgtgtgtta ttcctttgag tgcttctcat tgttaagcaa ccaagaacta aagaggtatg aactgcccct ggactcaaac aaaaaggaaa 45600 actteetgat ttacaaaagg cagataaeca teacatgagg geatetttat gaataaattg 45660 45720 ctggttggtt ttaaaaatac agagtatggg gaaatccagg ggtagtcact acatgctgac cagecceagg tateteegge ceaaagetet gtgaaateea gatteagtge tteegegggg 45780 45840 atttctgacg gcagctcaga ctccgcatcc acacagagcg cgtggccctc accctcccgg 45900 cttcctcaac ccttggccgt cccttgctcg gacagtgctt cgggctgacc aggtcggagg 45960 cttgggtttg tcctggaccc ctctgcgtcc ttcctcactg cagcctccag cgcgtcccgt 46020 ggeteettte ecaacgeaga geacggeett ecetgegeet gageetgeae eeteegteet 46080 ggcggcgcct ctgccctggc attccctgcc actccatgcc tccctattgg ccattctccg tetetgecag egagageetg etecetgagt cagaceetga gteatttgtg ttgetataaa ggaatagttg aggctgggtt attitttatt titatttatt titttgagat ggagtctctg ttgcccagac tggagtgcag tcgcatgatc tcggctcact gcaaagtctg cctcccacgt 46260 46320 tcaagcagtt atctgectea geeteecaag tagetaagat tacaggegee egeegeeaca gccggctaat tttttgtgtg tgtgttttag tagagaggag gtttcaccat cttagccagg 46380 ctggtcttga actcctgacc tcgtgatcca cccatctcag cctcccaaaa tgctgagatt 46440 acaggegtga gecaceaege etgaceaagt tgaggetagg teattitta attittigta 46500 46560 aagacagggt ctcactgtct ccaactcctg agctcaagtg atcctcctgc ctcagcctcc tgaagtgctg ggattacagg cttgagacac tgcgcccagc caagagtgtc ttttatcctc 46620 cgagagacag caaaacagga agcattcagt gcagtgtgac cctgggtcag gccgttcttt cggtgatggg ctgacgaggg cgcaggtacg ggagagcgtc ctgagagccc gggactcggc 46740

gtotogoagt tggtotogto otococotoa acgtgtotto gotgoototg tacotottot 46800 ctagcagete tgggaeeggg catateagea tggtggeeeg atgeagtgge acageetegg 46860 tggtcactgg ctcctggaga cacaagcaga tctctggcct cagggagccc tacacactgt 46920 tgggatttga aaggcattca tatgtttcct tgtccagaag ttaattttag gccataaacc 46980 47040 tgcatgggac agacacactg gcgtctctag attgtagaga tgcttgttgg atggttgaga cccaatcata gtttgcaggg ttgaaggggg gctcattgca ccctgagaga ctgtgcactg 47100 47160 ctgtaaggge agctggtcag gctgtgggcg atgggtttat cagcagcaag cgggcgggag agggacgcag gcggacgcct gacttcggtg cctggagtgg ctcttggttc cctggctccc 47220 agcaccactc ccactctcgt ttggggtagg gtcttccggc tttttgtcgg ggggaccctg 47280 tgacccaaga ggctcaagaa actgcccgcc caggttaaca tgggcttggc tgcaactgcc 47340 47400 teetggagge egggatgaat teacageeta ecatgteeet eaggteeage acteetgggg agaagacaga gacgctggcg ctgcagaggc tgggggagct ggggccaccc agcccaggcc 47460 tgaactggga acagccccag gcagcgagge tgtccaggac aggtgtgctt gcgtagcccc 47520 47580 gggatgcccc tagcccctcc ctgtgagctg cctctcacag gtctgtctct gcttccccag gactggtgga gggtctgcgg aagcgcctgc tgccggcctg gtgtgcctcc ctggcccacg 47640 47700 ggctcagcct gctcctggtg gctgtggctg tggctgtctc agggtgggtg ggtgcgagct tececeggg egtgagtgtt gegtggetee tgteeageag egecagette etggeeteat 47760 47820 tecteggetg ggagecaetg aaggtgaggg ggetgeeagg ggtaggetae aggeeteeat cacgggggac ccctctgaag ccacccctc cccaggtctt gctggaagcc ctgtacttct 47880 cactggtggc caageggetg caceeggatg aagatgacae eetggtagag ageeeggetg 47940 tgacgcctgt gagcgcacgt gtgccccgcg tacggccacc ccacggcttt gcactcttcc tggccaagga agaagcccgc aaggtcaaga ggctacatgg catgctgcgg gtgagcctgg 48060 gtgcggcctg tgcccctgcc acctccgtct cttgtctccc acctcccacc catgcacgca 48120 ggacactect gteeceettt eeteacetea gaaggeeett aggggtteaa tgetetgeag 48180 cetttgeceg gtetecetee taccecaege ecceeaettg etgececagt ecetgecagg 48240 gcccagetee aatgeeeact eetgeetgge eetgaaggee eetaageace aetgeagtgg 48300 cetgtgtgtc tgccccagg tggggttccg ggcagggtgt gtgctgccat taccetggcc aggtagagte ttggggegee eeetgeeage teacetteet geageeacae etgeegeage 48420 catggctcca gccgttgcca aagccctgct gtcactgtgg gctggggcca ggctgaccac 48480 agggcccccc cgtccaccag agcctcctgg tgtacatgct ttttctgctg gtgaccctgc

tggccagcta	tggggatgcc	tcatgccatg	ggcacgccta	ccgtctgcaa	agcgccatca	48600
agcaggagct	gcacagccgg	gccttcctgg	ccatcacgcg	gtacgggcat	ccggtgcact	48660
ggtctgtctt	ctgggcttta	gttttgcctt	tagtccagcc	agaccctagg	ggacatgtgg	48720
acatgtgtag	atacctttgt	ggctgctaga	actggaggta	ggtgctgctg	gcatcagtag	48780
gcagaggga	gggacacagg	tccgtgtctt	gcagtgcaca	ggacgggccc	atgacagaca	48840
actgtctgcc	ccagaacatc	cccaggataa	ggctgagaag	cccaggtcta	gccgtggcca	48900
gcagggcagt	gggagccatg	ttccctgggt	ctctggtggc	cgctcactcg	aggcgggcat	48960
ggggcagtag	gggctggagc	gtgtgactga	tgctgtggca	ggtctgagga	gctctggcca	49020
tggatggccc	acgtgctgct	gccctacgtc	cacgggaacc	agtccagccc	agagctgggg	49080
ccccacggc	tgcggcaggt	geggetgeag	gaaggtgagc	tggcagggcg	tgccccaaga	49140
cttaaatcgt	tcctcttgtt	gagagagcag	cctttagcgg	agctctggca	tcagccctgc	49200
tccctagctg	tgtgaccttt	gccctcttaa	caccgccgtt	tecttetetg	tatatgagag	49260
atggtaacgt	tgtctaattg	atggctgctg	ggagggttcc	ctggggtggc	gccgaaccag	49320
agctcaggcg	agctggccag	caggaaacac	teetgttggg	ttttgatgag	gccctggccc	49380
cggcctgggg	ctctgtgtgt	ttcagcactc	tacccagacc	ctcccggccc	cagggtccac	49440
acgtgctcgg	ccgcaggagg	cttcagcacc	agcgattacg	acgttggctg	ggagagtcct	49500
cacaatggct	cggggacgtg	ggcctattca	gcgccggatc	tgctggggtg	agcagagcga	49560
gggccccggg	cgtctacgcc	aaggacaagg	gagtagttct	ccaggagtgc	cgcggcctcc	49620
tgaccagcct	ggctccgggg	tgccggaagg	gctggggtgc	ggcacccacg	ccacccctct	49680
ccggcagggc	atggtcctgg	ggctcctgtg	ccgtgtatga	cagcgggggc	tacgtgcagg	49740
agctgggcct	gagcctggag	gagagccgcg	accggctgcg	cttcctgcag	ctgcacaact	49800
ggctggacaa	caggtgggag	ctccctcccc	tgccctctcc	ggggtggccg	cagtcaccag	49860
ccaggagccc	accctcactc	ctccggcccc	cgctggccta	ggcggcttcc	acageceete	49920
agccacgcct	gcactgcgcg	gtccccgcag	ctcccgccct	gccacccgct	cctactgacc	49980
cgcaccctct	gcgcaggagc	cgcgctgtgt	tcctggagct	cacgcgctac	agcccggccg	50040
tggggctgca	cgccgccgtc	acgctgcgcc	tcgagttccc	ggcggccggc	cgcgccctgg	50100
ccgccctcag	cgtccgcccc	tttgcgctgc	gccgcctcag	cgcgggcctc	tegetgeete	50160
tgctcacctc	ggtacgcccg	tccccggcca	gaccccgcgc	ctcccaccgg	cagcgtcccg	50220
cccctcgcg	gggccccgcc	cggcagcgtc	tcacccctcg	cagcgccccg	cccctcgca	50280
gcgtcccgcc	ccctcgcagg	gccccgcccc	ggcagcgtcc	cgccccctcg	tagggccccg	50340
ccccggcagc	gtcccgcccc	ctcgcagggc	cccgccccgg	cagcgtccct	cccgccctcc	50400

tgaccgcgcc	ccccacaggt	gtgcctgctg	ctgttcgccg	tgcacttcgc	cgtggccgag	50460
gcccgtactt	ggcacaggga	agggcgctgg	cgcgtgctgc	ggctcggagc	ctgggcgcgg	50520
tggctgctgg	tggcgctgac	ggcggccacg	gcactggtac	gcctcgccca	gctgggtgcc	50580
gctgaccgcc	agtggacccg	tttcgtgcgc	ggccgcccgc	gccgcttcac	tagcttcgac	50640
caggtggcgc	agctgagctc	cgcagcccgt	ggcctggcgg	cctcgctgct	cttcctgctt	50700
ttggtcaagg	tgagggctgg	gccggtgggc	gcggggctgg	gcgcacaccc	cagggctgca	50760
agcagacaga	tttctcgtcc	gcaggctgcc	cagcagctac	gcttcgtgcg	ccagtggtcc	50820
gtctttggca	agacattatg	ccgagctctg	ccagagctcc	tgggggtcac	cttgggcctg	50880
gtggtgctcg	gggtagccta	cgcccagctg	gccatcctgg	taggtgactg	cgcggccggg	50940
gagggcgtct	tagctcagct	cagctcagct	gtacgccctc	actggtgtcg	ccttccccgc	51000
agctcgtgtc	ttcctgtgtg	gactccctct	ggagcgtggc	ccaggccctg	ttggtgctgt	51060
gccctgggac	tgggctctct	accctgtgtc	ctgccgagtc	ctggcacctg	tcacccctgc	51120
tgtgtgtggg	gctctgggca	ctgcggctgt	ggggcgccct	acggctgggg	gctgttattc	51180
tccgctggcg	ctaccacgcc	ttgcgtggag	agctgtaccg	gccggcctgg	gagccccagg	51240
actacgagat	ggtggagttg	ttcctgcgca	ggctgcgcct	ctggatgggc	ctcagcaagg	51300
tcaaggaggt	gggtacggcc	cagtgggggg	gagagggaca	cgccctgggc	tctgcccagg	51360
gtgcagccgg	actgactgag	cccctgtgcc	gcccccagtt	ccgccacaaa	gtccgctttg	51420
aagggatgga	gccgctgccc	tetegeteet	ccaggggctc	caaggtatcc	ccggatgtgc	51480
ccccacccag	cgctggctcc	gatgcctcgc	acccctccac	ctcctccagc	cagctggatg	51540
ggctgagcgt	gagcctgggc	cggctgggga	caaggtgtga	gcctgagccc	tcccgcctcc	51600
aagccgtgtt	cgaggccctg	ctcacccagt	ttgaccgact	caaccaggcc	acagaggacg	51660
tctaccagct	ggagcagcag	ctgcacagcc	tgcaaggccg	caggagcagc	cgggcgcccg	51720
ccggatcttc	ccgtggccca	teceegggee	tgcggccagc	actgcccagc	cgccttgccc	51780
gggccagtcg	gggtgtggac	ctggccactg	gccccagcag	gacacccctt	cgggccaaga	51840
acaaggtcca	ccccagcagc	acttagtcct	ccttcctggc	gggggtgggc	cgtggagtcg	51900
gagtggacac	cgctcagtat	tactttctgc	cgctgtcaag	gccgagggcc	aggcagaatg	51960
gctgcacgta	ggttccccag	agagcaggca	ggggcatctg	tctgtctgtg	ggcttcagca	52020
ctttaaagag	gctgtgtggc	caaccaggac	ccagggtccc	ctccccagct	cccttgggaa	52080
ggacacagca	gtattggacg	gtttctagcc	tctgagatgc	taatttattt	ccccgagtcc	52140
tcaggtacag	cgggctgtgc	ccggccccac	cccctgggca	gatgtccccc	actgctaagg	52200

ctgctggctt	cagggagggt	tagcctgcac	cgccgccacc	ctgcccctaa	gttattacct	52260
ctccagttcc	taccgtactc	cctgcaccgt	ctcactgtgt	gtctcgtgtc	agtaatttat	52320
atggtgttaa	aatgtgtata	tttttgtatg	tcactatttt	cactagggct	gaggggcctg	52380
cgcccagagc	tggcctcccc	caacacctgc	tgcgcttggt	aggtgtggtg	gcgttatggc	52440
agcccggctg	ctgcttggat	gcgagcttgg	ccttgggccg	gtgctggggg	cacagctgtc	52500
tgccaggcac	tctcatcacc	ccagaggcct	tgtcatcctc	ccttgcccca	ggccaggtag	52560
caagagagca	gcgcccaggc	ctgctggcat	caggtctggg	caagtagcag	gactaggcat	52620
gtcagaggac	cccagggtgg	ttagaggaaa	agactcctcc	tgggggctgg	ctcccagggt	52680
ggaggaaggt	gactgtgtgt	gtgtgtgtgt	gegegegege	acgcgcgagt	gtgctgtatg	52740
gcccaggcag	cctcaaggcc	ctcggagctg	gctgtgcctg	cttctgtgta	ccacttctgt	52800
gggcatggcc	gcttctagag	cctcgacacc	cccccaaccc	ccgcaccaag	cagacaaagt	52860
caataaaaga	gctgtctgac	tgcaatctgt	gcctctatgt	ctgtgcactg	gggtcaggac	52920
tttatttatt	tcactgacag	gcaataccgt	ccaaggccag	tgcaggaggg	agggccccgg	52980
cctcacacaa	actcggtgaa	gtcctccacc	gaggagatga	ggcgcttccg	ctggcccacc	53040
tcatagccag	gtgtgggctc	ggctggagtc	tgtgcagggg	ctttgctatg	ggacggaggg	53100
tgcaccagag	gtaggctggg	gttggagtag	gcggcttcct	cgcagatctg	aaggcagagg	53160
cggcttgggc	agtaagtetg	ggaggcgtgg	caaccgctct	gcccacacac	ccgccccaca	53220
gcttgggcag	ccagcacacc	ccgctgaggg	agccccatat	tccctacccg	ctggcggagc	53280
gcttgatgtg	gcggagcggg	caatccactt	ggaggggtag	atatcggtgg	ggttggagcg	53340
gctatgatgc	acctgtgagg	ccatctgggg	acgtaggcag	ggggtgagct	cactatcagg	53400
tggcacctgg	gcctgtccca	ccagctcacg	cctggaccca	ccccactca	catttgcgtg	53460
cagggccatc	tggcgggcca	cgaagggcag	gttgcggtca	gacacgatct	tggccacgct	53520
3 9						53522

<210> 2 <211> 4303 <212> PRT <213> Homo sapiens

<400> 2

Met Pro Pro Ala Ala Pro Ala Arg Leu Ala Leu Gly Leu Gly

Leu Trp Leu Gly Ala Leu Ala Gly Gly Pro Gly Arg Gly Cys Gly Pro

Cys Glu Pro Pro Cys Leu Cys Gly Pro Ala Pro Gly Ala Ala Cys Arg

35 40 45 Val Asn Cys Ser Gly Arg Gly Leu Arg Thr Leu Gly Pro Ala Leu Arg Ile Pro Ala Asp Ala Thr Glu Leu Asp Val Ser His Asn Leu Leu Arg Ala Leu Asp Val Gly Leu Leu Ala Asn Leu Ser Ala Leu Ala Glu Leu Asp Ile Ser Asn Asn Lys Ile Ser Thr Leu Glu Glu Gly Ile Phe Ala 105 Asn Leu Phe Asn Leu Ser Glu Ile Asn Leu Ser Gly Asn Pro Phe Glu Cys Asp Cys Gly Leu Ala Trp Leu Pro Gln Trp Ala Glu Gln Gln Val Arg Val Val Gln Pro Glu Ala Ala Thr Cys Ala Gly Pro Gly Ser Leu Ala Gly Gln Pro Leu Leu Gly Ile Pro Leu Leu Asp Ser Gly Cys Gly Glu Glu Tyr Val Ala Cys Leu Pro Asp Asn Ser Ser Gly Thr Val Ala Ala Val Ser Phe Ser Ala Ala His Glu Gly Leu Leu Gln Pro Glu 200 Ala Cys Ser Ala Phe Cys Phe Ser Thr Gly Gln Gly Leu Ala Ala Leu Ser Glu Gln Gly Trp Cys Leu Cys Gly Ala Ala Gln Pro Ser Ser Ala Ser Phe Ala Cys Leu Ser Leu Cys Ser Gly Pro Pro Ala Pro Pro Ala Pro Thr Cys Arg Gly Pro Thr Leu Leu Gln His Val Phe Pro Ala Ser 265 Pro Gly Ala Thr Leu Val Gly Pro His Gly Pro Leu Ala Ser Gly Gln Leu Ala Ala Phe His Ile Ala Ala Pro Leu Pro Val Thr Asp Thr Arg Trp Asp Phe Gly Asp Gly Ser Ala Glu Val Asp Ala Ala Gly Pro Ala Ala Ser His Arg Tyr Val Leu Pro Gly Arg Tyr His Val Thr Ala Val 330 Leu Ala Leu Gly Ala Gly Ser Ala Leu Leu Gly Thr Asp Val Gln Val Glu Ala Ala Pro Ala Ala Leu Glu Leu Val Cys Pro Ser Ser Val Gln

Ser Asp 370		Ser	Leu	Asp	Leu 375	Ser	Ile	Gln	Asn	Arg 380	Gly	Gly	Ser	Gly
Leu Glu 385	Ala	Ala	Tyr	Ser 390	Ile	Val	Ala	Leu	Gly 395	Glu	Glu	Pro	Ala	Arg 400
Ala Val	His	Pro	Leu 405	Cys	Pro	Ser	Asp	Thr 410	Glu	Ile	Phe	Pro	Gly 415	Asn
Gly His	Cys	Tyr 420	Arg	Leu	Val	Val	Glu 425	Lys	Ala	Ala	Trp	Leu 430	Gln	Ala
Gln Glu	Gln 435	Cys	Gln	Ala	Trp	Ala 440	Gly	Ala	Ala	Leu	Ala 445	Met	Val	Asp
Ser Pro 450	Ala	Val	Gln	Arg	Phe 455	Leu	Va1	Ser	Arg	Val 460	Thr	Arg	Ser	Leu
Asp Val 465	Trp	Ile	Gly	Phe 470	Ser	Thr	Val	Gln	Gly 475	Val	Glu	Val	Gly	Pro 480
Ala Pro	Gln	Gly	Glu 485	Ala	Phe	Ser	Leu	Glu 490	Ser	Cys	Gln	Asn	Trp 495	Leu
Pro Gly	Glu	Pro 500	His	Pro	Ala	Thr	Ala 505	Glu	His	Cys	Val	Arg 510	Leu	Gly
Pro Thr	Gly 515	Trp	Cys	Asn	Thr	Asp 520	Leu	Cys	Ser	Ala	Pro 525	His	Ser	Tyr
Val Cys 530	Glu	Leu	Gln	Pro	Gly 535	Gly	Pro	Val	Gln	Asp 540	Ala	Glu	Asn	Leu
Leu Val 545	Gly	Ala	Pro	Ser 550	Gly	Asp	Leu	Gln	Gly 555	Pro	Leu	Thr	Pro	Leu 560
Ala Gln	Gln	Asp	Gly 565	Leu	Ser	Ala	Pro	His 570	Glu	Pro	Val	Glu	Val 575	Met
Val Phe	Pro	Gly 580	Leu	Arg	Leu	Ser	Arg 585	Glu	Ala	Phe	Leu	Thr 590	Thr	Ala
Glu Phe		Thr	Gln	Glu	T 011						_	*	T.e.11	Gln
	595			Ora	Leu	Arg 600	Arg	Pro	Ala	Gln	Leu 605	Arg	ЦС	J 211
Val Tyr 610	Arg					600					605			
	Arg	Leu	Leu	Ser	Thr 615	600 Ala	Gly	Thr	Pro	Glu 620	605 Asn	Gly	Ser	Glu
610 Pro Glu	Arg Ser	Leu Arg	Leu Ser	Ser Pro 630	Thr 615 Asp	600 Ala Asn	Gly Arg	Thr Thr	Pro Gln 635	Glu 620 Leu	605 Asn Ala	Gly Pro	Ser Ala	Glu Cys 640
610 Pro Glu 625	Arg Ser Gly	Leu Arg Gly	Leu Ser Arg 645	Ser Pro 630 Trp	Thr 615 Asp Cys	600 Ala Asn Pro	Gly Arg Gly	Thr Thr Ala 650	Pro Gln 635 Asn	Glu 620 Leu Ile	Asn Ala Cys	Gly Pro Leu	Ser Ala Pro 655	Glu Cys 640 Leu

- Ser Val Pro Ala Gly Pro Pro Ala Gln Tyr Ser Val Thr Leu His Gly 690 695 700
- Gln Asp Val Leu Met Leu Pro Gly Asp Leu Val Gly Leu Gln His Asp 705 710 715 720
- Ala Gly Pro Gly Ala Leu Leu His Cys Ser Pro Ala Pro Gly His Pro
 725 730 735
- Gly Pro Arg Ala Pro Tyr Leu Ser Ala Asn Ala Ser Ser Trp Leu Pro $740 \hspace{1cm} 745 \hspace{1cm} 750 \hspace{1cm}$
- His Leu Pro Ala Gln Leu Glu Gly Thr Trp Gly Cys Pro Ala Cys Ala
 755 760 765
- Leu Arg Leu Leu Ala Gln Arg Glu Gln Leu Thr Val Leu Leu Gly Leu
 770 780
- Arg Pro Asn Pro Gly Leu Arg Leu Pro Gly Arg Tyr Glu Val Arg Ala 785 790 795 800
- Glu Val Gly Asn Gly Val Ser Arg His Asn Leu Ser Cys Ser Phe Asp 805 810 815
- Val Val Ser Pro Val Ala Gly Leu Arg Val Ile Tyr Pro Ala Pro Arg 820 825 830
- Asp Gly Arg Leu Tyr Val Pro Thr Asn Gly Ser Ala Leu Val Leu Gln 835 840 845
- Val Asp Ser Gly Ala Asn Ala Thr Ala Thr Ala Arg Trp Pro Gly Gly 850 855 860
- Ser Leu Ser Ala Arg Phe Glu Asn Val Cys Pro Ala Leu Val Ala Thr 865 870 875 880
- Phe Val Pro Ala Cys Pro Trp Glu Thr Asn Asp Thr Leu Phe Ser Val
- Val Ala Leu Pro Trp Leu Ser Glu Gly Glu His Val Val Asp Val Val 900 905 910
- Val Glu Asn Ser Ala Ser Arg Ala Asn Leu Ser Leu Arg Val Thr Ala 915 920 925
- Glu Glu Pro Ile Cys Gly Leu Arg Ala Thr Pro Ser Pro Glu Ala Arg 930 935 940
- Val Leu Gln Gly Val Leu Val Arg Tyr Ser Pro Val Val Glu Ala Gly 945 950 955 960
- Ser Asp Met Val Phe Arg Trp Thr Ile Asn Asp Lys Gln Ser Leu Thr 965 970 975
- Phe Gln Asn Val Val Phe Asn Val Ile Tyr Gln Ser Ala Ala Val Phe 980 985 990
- Lys Leu Ser Leu Thr Ala Ser Asn His Val Ser Asn Val Thr Val Asn 995 1000 1005
- Tyr Asn Val Thr Val Glu Arg Met Asn Arg Met Gln Gly Leu Gln

	1010					1015					1020			
Val	Ser 1025	Thr	Val	Pro	Ala	Val 1030	Leu	Ser	Pro	Asn	Ala 1035	Thr	Leu	Ala
Leu	Thr 1040	Ala	Gly	Val	Leu	Val 1045	Asp	Ser	Ala	Val	Glu 1050	Val	Ala	Phe
Leu	Trp 1055	Thr	Phe	Gly	Asp	Gly 1060	Glu	Gln	Ala	Leu	His 1065	Gln	Phe	Gln
Pro	Pro 1070	Tyr	Asn	Glu	Ser	Phe 1075	Pro	Val	Pro	Asp	Pro 1080	Ser	Val	Ala
Gln	Val 1085	Leu	Val	Glu	His	Asn 1090	Val	Thr	His	Thr	Tyr 1095	Ala	Ala	Pro
Gly	Glu 1100	Tyr	Leu	Leu	Thr	Val 1105	Leu	Ala	Ser	Asn	Ala 1110	Phe	Glu	Asn
Leu	Thr 1115	Gln	Gln	Val	Pro	Val 1120	Ser	Val	Arg	Ala	Ser 1125	Leu	Pro	Ser
Val	Ala 1130	Val	Gly	Val	Ser	Asp 1135	Gly	Val	Leu	Val	Ala 1140	Gly	Arg	Pro
Val	Thr 1145	Phe	Tyr	Pro	His	Pro 1150	Leu	Pro	Ser	Pro	Gly 1155	Gly	Val	Leu
Tyr	Thr 1160	Trp	Asp	Phe	Gly	Asp 1165	Gly	Ser	Pro	Val	Leu 1170	Thr	Gln	Ser
Gln	Pro 1175	Ala	Ala	Asn	His	Thr 1180	Tyr	Ala	Ser	Arg	Gly 1185	Thr	Tyr	His
Val	Arg 1190	Leu	Glu	Val	Asn	Asn 1195	Thr	Val	Ser	Gly	Ala 1200	Ala	Ala	Gln
Ala	Asp 1205	Val	Arg	Val	Phe	Glu 1210	Glu	Leu	Arg	Gly	Leu 1215	Ser	Val	Asp
Met	Ser 1220	Leu	Ala	Val	Glu	Gln 1225	Gly	Ala	Pro	Val	Val 1230	Val	Ser	Ala
Ala	Val 1235	Gln	Thr	Gly	Asp	Asn 1240	Ile	Thr	Trp	Thr	Phe 1245	Asp	Met	Gly
qaA	Gly 1250	Thr	Val	Leu	Ser	Gly 1255	Pro	Glu	Ala	Thr	Val 1260	Glu	His	Val
Tyr	Leu 1265	Arg	Ala	Gln	Asn	Cys 1270	Thr	Val	Thr	Val	Gly 1275	Ala	Gly	Ser
Pro	Ala 1280	Gly	His	Leu	Ala	Arg 1285	Ser	Leu	His	Val	Leu 1290	Val	Phe	Val
Leu	Glu 1295	Val	Leu	Arg	Val	Glu 1300	Pro	Ala	Ala	Cys	Ile 1305	Pro	Thr	Gln
Pro	Asp 1310	Ala	Arg	Leu	Thr	Ala 1315	Tyr	Val	Thr	Gly	Asn 1320	Pro	Ala	His

Tyr	Leu 1325	Phe	Asp	Trp	Thr	Phe 1330	_	Asp	Gly	Ser	Ser 1335	Asn	Thr	Thr
Val	Arg 1340	Gly	Cys	Pro	Thr	Val 1345	Thr	His	Asn	Phe	Thr 1350	Arg	Ser	Gly
Thr	Phe 1355	Pro	Leu	Ala	Leu	Val 1360	Leu	Ser	Ser	Arg	Val 1365	Asn	Arg	Ala
His	Tyr 1370		Thr	Ser	Ile	Cys 1375		Glu	Pro	Glu	Val 1380	Gly	Asn	Val
Thr	Leu 1385	Gln	Pro	Glu	Arg	Gln 1390		Val	Gln	Leu	Gly 1395	Asp	Glu	Ala
Trp	Leu 1400	Val	Ala	Cys	Ala	Trp 1405		Pro	Phe	Pro	Tyr 1410	Arg	Tyr	Thr
Trp	Asp 1415		Gly	Thr	Glu	Glu 1420		Ala	Pro	Thr	Arg 1425		Arg	Gly
Pro	Glu 1430	Val	Thr	Phe	Ile	Tyr 1435	Arg	Asp	Pro	Gly	Ser 1440	Tyr	Leu	Val
Thr	Val 1445	Thr	Ala	Ser	Asn	Asn 1450	Ile	Ser	Ala	Ala	Asn 1455	Asp	Ser	Ala
Leu	Val 1460	Glu	Val	Gln	Glu	Pro 1465	Val	Leu	Val	Thr	Ser 1470	Ile	Lys	Val
Asn	Gly 1475		Leu	Gly	Leu	Glu 1480	Leu	Gln	Gln	Pro	Tyr 1485	Leu	Phe	Ser
Ala	Val 1490	Gly	Arg	Gly	Arg	Pro 1495	Ala	Ser	Tyr	Leu	Trp 1500	Asp	Leu	Gly
Asp	Gly 1505	_	Trp	Leu		Gly 1510		Glu	Val	Thr	His 1515	Ala	Tyr	Asn
Ser	Thr 1520	Gly	Asp	Phe	Thr	Val 1525	Arg	Val	Ala	Gly	Trp 1530	Asn	Glu	Val
Ser	Arg 1535	Ser	Glu	Ala	Trp	Leu 1540	Asn	Val	Thr	Val	Lys 1545	Arg	Arg	Val
Arg	Gly 1550	Leu	Val	Val	Asn	Ala 1555	Ser	Arg	Thr	Val	Val 1560	Pro	Leu	Asn
Gly	Ser 1565	Val	Ser	Phe	Ser	Thr 1570	Ser	Leu	Glu	Ala	Gly 1575	Ser	Asp	Val
Arg	Tyr 1580	Ser	Trp	Val	Leu	Cys 1585	Asp	Arg	Cys	Thr	Pro 1590	Ile	Pro	Gly
Gly	Pro 1595	Thr	Ile	Ser	Tyr	Thr 1600	Phe	Arg	Ser	Val	Gly 1605	Thr	Phe	Asn
Ile	Ile 1610	Val	Thr	Ala	Glu	Asn 1615	Glu	Val	Gly	Ser	Ala 1620	Gln	Asp	Ser

Ile	Phe 1625	Val	Туr	Val	Leu	Gln 1630		Ile	Glu	Gly	Leu 1635	Gln	Val	Val
Gly	Gly 1640	Gly	Arg	Tyr	Phe	Pro 1645	Thr	Asn	His	Thr	Val 1650	Gln	Leu	Gln
Ala	Val 1655	Val	Arg	Asp	Gly	Thr 1660	Asn	Val	Ser	Tyr	Ser 1665	Trp	Thr	Ala
Trp	Arg 1670	Asp	Arg	Gly	Pro	Ala 1675	Leu	Ala	Gly	Ser	Gly 1680	Lys	Gly	Phe
Ser	Leu 1685		Val	Leu	Glu	Ala 1690	Gly	Thr	Tyr	His	Val 1695	Gln	Leu	Arg
Ala	Thr 1700	Asn	Met	Leu	Gly	Ser 1705	Ala	Trp	Ala	Asp	Cys 1710	Thr	Met	Asp
Phe	Val 1715	Glu	Pro	Val	Gly	Trp 1720	Leu	Met	Val	Ala	Ala 1725	Ser	Pro	Asn
Pro	Ala 1730	Ala	Val	Asn	Thr	Ser 1735	Val	Thr	Leu	Ser	Ala 1740	Glu	Leu	Ala
Gly	Gly 1745	Ser	Gly	Val	Val	Tyr 1750	Thr	Trp	Ser	Leu	Glu 1755	Glu	Gly	Leu
Ser	Trp 1760	Glu	Thr	Ser		Pro 1765	Phe	Thr	Thr	His	Ser 1770	Phe	Pro	Thr
Pro	Gly 1775	Leu	His	Leu	Val	Thr 1780	Met	Thr	Ala	Gly	Asn 1785	Pro	Leu	Gly
Ser	Ala 1790	Asn	Ala	Thr	Val	Glu 1795	Val	Asp	Val	Gln	Val 1800	Pro	Val	Ser
Gly	Leu 1805	Ser	Ile	Arg	Ala	Ser 1810	Glu	Pro	Gly	Gly	Ser 1815	Phe	Val	Ala
Ala	Gly 1820	Ser	Ser	Val	Pro	Phe 1825	Trp	Gly	Gln	Leu	Ala 1830	Thr	Gly	Thr
Asn	Val 1835	Ser	Trp	Cys	Trp	Ala 1840	Val	Pro	Gly	Gly	Ser 1845	Ser	Lys	Arg
Gly	Pro 1850	His	Val	Thr	Met	Val 1855	Phe	Pro	Asp	Ala	Gly 1860	Thr	Phe	Ser
Ile	Arg 1865	Leu	Asn	Ala	Ser	Asn 1870	Ala	Val	Ser	Trp	Val 1875	Ser	Ala	Thr
Tyr	Asn 1880	Leu	Thr	Ala	Glu	Glu 1885	Pro	Ile	Val	Gly	Leu 1890	Val	Leu	Trp
Ala	Ser 1895	Ser	Lys	Val	Val	Ala 1900	Pro	Gly	Gln	Leu	Val 1905	His	Phe	Gln
Ile	Leu 1910	Leu	Ala	Ala	Gly	Ser 1915	Ala	Val	Thr	Phe	Arg 1920	Leu	Gln	Val
Gly	Gly	Ala	Asn	Pro	Glu	Val	Leu	Pro	Gly	Pro	Arg	Phe	Ser	His

	1925					1930					1935			
Ser	Phe 1940	Pro	Arg	Val	Gly	Asp 1945	His	Val	Val	Ser	Val 1950	Arg	Gly	Lys
Asn	His 1955	Val	Ser	Trp	Ala	Gln 1960	Ala	Gln	Val	Arg	Ile 1965	Val	Val	Leu
Ģlu	Ala 1970	Val	Ser	Gly	Leu	Gln 1975	Val	Pro	Asn	Cys	Cys 1980	Glu	Pro	Gly
Ile	Ala 1985	Thr	Gly	Thr	Glu	Arg 1990	Asn	Phe	Thr	Ala	Arg 1995	Val	Gln	Arg
Gly	Ser 2000	Arg	Val	Ala	Tyr	Ala 2005	Trp.	Tyr	Phe	Ser	Leu 2010	Gln	Lys	Val
Gln	Gly 2015	Asp	Ser	Leu	Val	Ile 2020	Leu	Ser	Gly	Arg	Asp 2025		Thr	Tyr
Thr	Pro 2030	Val	Ala	Ala	Gly	Leu 2035	Leu	Glu	Ile	Gln	Val 2040	Arg	Ala	Phe
Asn	Ala 2045	Leu	Gly	Ser	Glu	Asn 2050	Arg	Thr	Leu	Val	Leu 2055	Glu	Val	Gln
Asp	Ala 2060	Val	Gln	Tyr	Val	Ala 2065	Leu	Gln	Ser	Gly	Pro 2070	Сув	Phe	Thr
Asn	Arg 2075	Ser	Ala	Gln	Phe	Glu 2080	Ala	Ala	Thr	Ser	Pro 2085	Ser	Pro	Arg
Arg	Val 2090	Ala	Tyr	His	Trp	Asp 2095	Phe	Gly	Asp	Gly	Ser 2100	Pro	Gly	Gln
Asp	Thr 2105	Asp	Glu	Pro	Arg	Ala 2110	Glu	His	Ser	Tyr	Leu 2115	Arg	Pro	Gly
Asp	Tyr 2120	Arg	Val	Gln	Val	Asn 2125	Ala	Ser	Asn	Leu	Val 2130	Ser	Phe	Phe
Val	Ala 2135	Gln	Ala	Thr		Thr 2140						_	Arg	Glu
Pro	Glu 2150	Val	Asp	Val	Val	Leu 2155	Pro	Leu	Gln	Val	Leu 2160	Met	Arg	Arg
Ser	Gln 2165	Arg	Asn	Tyr	Leu	Glu 2170	Ala	His	Val	Asp	Leu 2175	Arg	Asp	Cys
Val	Thr 2180	Tyr	Gln	Thr	Glu	Tyr 2185	Arg	Trp	Glu	Val	Tyr 2190	Arg	Thr	Ala
Ser	Cys 2195	Gln	Arg	Pro	Gly	Arg 2200	Pro	Ala	Arg	Val	Ala 2205	Leu	Pro	Gly
Val	Asp 2210	Val	Ser	Arg	Pro	Arg 2215	Leu	Val	Leu	Pro	Arg 2220	Leu	Ala	Leu
Pro	Val 2225	Gly	His	Tyr	Cys	Phe 2230	Val	Phe	Val	Val	Ser 2235	Phe	Gly	Asp

Thr	Pro 2240	Leu	Thr	Gln	Ser	Ile 2245	Gln	Ala	Asn	Val	Thr 2250	Val	Ala	Pro
Glu	Arg 2255	Leu	Val	Pro	Ile	Ile 2260	Glu	Gly	Gly	Ser	Tyr 2265	Arg	Val	Trp
Ser	Asp 2270	Thr	Arg	Asp	Leu	Val 2275		Asp	Gly	Ser	Glu 2280	Ser	Tyr	Asp
Pro	Asn 2285	Leu	Glu	Asp	Gly	Asp 2290		Thr	Pro	Leu	Ser 2295		His	Trp
Ala	Суз 2300	Val	Ala	Ser	Thr	Gln 2305	Arg	Glu	Ala	Gly	Gly 2310	Cys	Ala	Leu
Asn	Phe 2315	Gly	Pro	Arg	Gly	Ser 2320	Ser	Thr	Val	Thr	Ile 2325	Pro	Arg	Glu
Arg	Leu 2330	Ala	Ala	Gly	Val	Glu 2335	Tyr	Thr	Phe	Ser	Leu 2340	Thr	Val	Trp
Lys	Ala 2345	Gly	Arg	Lys		Glu 2350	Ala	Thr	Asn	Gln	Thr 2355	Val	Leu	Ile
Arg	Ser 2360	Gly	Arg	Val	Pro	Ile 2365		Ser	Leu	Glu	Cys 2370		Ser	Cys
Lys	Ala 2375	Gln	Ala	Val	Tyr	Glu 2380	Val	Ser	Arg	Ser	Ser 2385	Tyr	Val	Tyr
Leu	Glu 2390	Gly	Arg	Cys	Leu	Asn 2395	Cys	Ser	Ser	Gly	Ser 2400	Lys	Arg	Gly
Arg	Trp 2405	Ala	Ala	Arg	Thr	Phe 2410	Ser	Asn	Lys	Thr	Leu 2415	Val	Leu	Asp
Glu	Thr 2420	Thr	Thr	Ser	Thr	Gly 2425		Ala	Gly	Met	Arg 2430	Leu	Val	Leu
Arg	Arg 2435	Gly	Val	Leu	Arg	Asp 2440		Glu	Gly	Tyr	Thr 2445	Phe	Thr	Leu
Thr	Val 2450	Leu	Gly	Arg	Ser	Gly 2455	Glu	Glu	Glu	Gly	Cys 2460	Ala	Ser	Ile
Arg	Leu 2465	Ser	Pro	Asn	Arg	Pro 2470	Pro	Leu	Gly	Gly	Ser 2475	Cys	Arg	Leu
Phe	Pro 2480	Leu	Gly	Ala	Val	His 2485		Leu	Thr	Thr	Lys 2490	Val	His	Phe
Glu	Cys 2495	Thr	Gly	Trp	His	Asp 2500	Ala	Glu	Asp	Ala	Gly 2505	Ala	Pro	Leu
Val	Tyr 2510		Leu	Leu	Leu	Arg 2515	Arg	Cys	Arg	Gln	Gly 2520	His	Cys	Glu
Glu	Phe 2525	Cys	Val	Tyr	Lys	Gly 2530	Ser	Leu	Ser	Ser	Tyr 2535	Gly	Ala	Val

Leu	Pro 2540	Pro	Gly	Phe	Arg	Pro 2545		Phe	Glu	Val	Gly 2550	Leu	Ala	Val
Val	Val 2555	Gln	Asp	Gln	Leu	Gly 2560	Ala	Ala	Val	Val	Ala 2565	Leu	Asn	Arg
Ser	Leu 2570	Ala	Ile	Thr	Leu	Pro 2575		Pro	Asn	Gly	Ser 2580	Ala	Thr	Gly
Leu	Thr 2585	Val	Trp	Leu	His	Gly 2590		Thr	Ala	Ser	Val 2595	Leu	Pro	Gly
Leu	Leu 2600	Arg	Gln	Ala	Asp	Pro 2605	Gln	His	Val	Ile	Glu 2610	Tyr	Ser	Leu
Ala	Leu 2615	Val	Thr	Val	Leu	Asn 2620	Glu	Tyr	Glu	Arg	Ala 2625	Leu	Asp	Val
Ala	Ala 2630	Glu	Pro	Lys	His	Glu 2635	_	Gln	His	Arg	Ala 2640	Gln	Ile	Arg
Lys	Asn 2645	Ile	Thr	Glu	Thr	Leu 2650	Val	Ser	Leu	Arg	Val 2655	His	Thr	Val
Asp	Asp 2660	Ile	Gln	Gln	Ile	Ala 2665	Ala	Ala	Leu	Ala	Gln 2670	Cys	Met	Gly
Pro	Ser 2675	_	Glu	Leu	Val	Cys 2680		Ser	Cys	Leu	Lys 2685	Gln	Thr	Leu
His	Lys 2690	Leu	Glu	Ala	Met	Met 2695	Leu	Ile	Leu	Gln	Ala 2700	Glu	Thr	Thr
Ala	Gly 2705	Thr	Val	Thr	Pro	Thr 2710	Ala	Ile	Gly	Asp	Ser 2715	Ile	Leu	Asn
Ile	Thr 2720	Gly	Asp	Leu	Ile	His 2725		Ala	Ser	Ser	Asp 2730	Val	Arg	Ala
Pro	Gln 2735	Pro	Ser	Glu	Leu	Gly 2740	Ala	Glu	Ser	Pro	Ser 2745	Arg	Met	Val
Ala	Ser 2750	Gln	Ala	Tyr	Asn	Leu 2755	Thr	Ser	Ala	Leu	Met 2760	Arg	Ile	Leu
Met	Arg 2765	Ser	Arg	Val	Leu	Asn 2770	Glu	Glu	Pro	Leu	Thr 2775	Leu	Ala	Gly
Glu	Glu 2780	Ile	Val	Ala	Gln	Gly 2785	Lys	Arg	Ser	Asp	Pro 2790	Arg	Ser	Leu
Leu	Cys 2795	Туr	Gly	Gly	Ala	Pro 2800	Gly	Pro	Gly	Cys	His 2805	Phe	Ser	Ile
Pro	Glu 2810	Ala	Phe	Ser	Gly	Ala 2815	Leu	Ala	Asn	Leu	Ser 2820	Asp	Val	Val
Gln	Leu 2825	Ile	Phe	Leu	Val	Asp 2830		Asn	Pro	Phe	Pro 2835	Phe	Gly	Tyr
Ile	Ser	Asn	Tyr	Thr	Val	Ser	Thr	Lys	Val	Ala	Ser	Met	Ala	Phe

284)				2845					2850			
Gln Thr 285		Ala	Gly	Ala	Gln 2860		Pro	Ile	Glu	Arg 2865		Ala	Ser
Glu Arg 287		Ile	Thr	Val	Lys 2875		Pro	Asn	Asn	Ser 2880	Asp	Trp	Ala
Ala Arg 288	_	His	Arg	Ser	Ser 2890	Ala	Asn	Ser	Ala	Asn 2895	Ser	Val	Val
Val Gln 290		Gln	Ala	Ser	Val 2905	Gly	Ala	Val	Val	Thr 2910	Leu	Asp	Ser
Ser Asn 291		Ala	Ala	Gly	Leu 2920	His	Leu	Gln	Leu	Asn 2925	Tyr	Thr	Leu
Leu Asp 293		His	Tyr	Leu	Ser 2935	Glu	Glu	Pro	Glu	Pro 2940	Tyr	Leu	Ala
Val Tyr 294		His	Ser	Glu	Pro 2950	Arg	Pro	Asn	Glu	His 2955	Asn	Cys	Ser
Ala Ser 296	_	Arg	Ile	Arg	Pro 2965		Ser	Leu	Gln	Gly 2970	Ala	Asp	His
Arg Pro 297	_	Thr	Phe	Phe	Ile 2980	Ser	Pro	Gly	Ser	Arg 2985	Asp	Pro	Ala
Gly Ser 299	_	His	Leu	Asn	Leu 2995	Ser	Ser	His	Phe	Arg 3000	Trp	Ser	Ala
Leu Gln 300		Ser	Val	Gly	Leu 3010	Tyr	Thr	Ser	Leu	Cys 3015	Gln	Tyr	Phe
Ser Glu 302		Asp	Met	Val	Trp 3025	Arg	Thr	Glu	Gly	Leu 3030	Leu	Pro	Leu
Glu Glu 303		Ser	Pro	Arg	Gln 3040	Ala	Val	Cys	Leu	Thr 3045	Arg	His	Leu
Thr Ala		Gly	Ala	Ser	Leu 3055	Phe	Val	Pro	Pro	Ser 3060	His	Val	Arg
Phe Val		Pro	Glu	Pro	Thr 3070	Ala	Asp	Val	Asn	Tyr 3075	Ile	Val	Met
Leu Thr 308	_	Ala	Val	Cys	Leu 3085	Val	Thr	Tyr	Met	Val 3090	Met	Ala	Ala
Ile Leu 309		Lys	Leu	Asp	Gln 3100	Leu	Asp	Ala	Ser	Arg 3105	Gly	Arg	Ala
Ile Pro 311		Сув	Gly	Gln	Arg 3115	Gly	Arg	Phe	Lys	Tyr 3120	Glu	Ile	Leu
Val Lys 312		Gly	Trp	Gly	Arg 3130	Gly	Ser	Gly	Thr	Thr 3135	Ala	His	Val
Gly Ile 314		Leu	Tyr	Gly	Val 3145	Asp	Ser	Arg	Ser	Gly 3150	His	Arg	His

Leu	Asp 3155	Gly	Asp	Arg	Ala	Phe 3160		Arg	Asn	Ser	Leu 3165	Asp	Ile	Phe
Arg	Ile 3170	Ala	Thr	Pro	His	Ser 3175		Gly	Ser	Val	Trp 3180	Lys	Ile	Arg
Val	Trp 3185	His	Asp	Asn	Lys	Gly 3190	Leu	Ser	Pro	Ala	Trp 3195	Phe	Leu	Gln
His	Val 3200	Ile	Val	Arg	Asp	Leu 3205	Gln	Thr	Ala	Arg	Ser 3210	Ala	Phe	Phe
Leu	Val 3215	Asn	Asp	Trp	Leu	Ser 3220	Val	Glu	Thr	Glu	Ala 3225	Asn	Gly	Gly
Leu	Val 3230	Glu	Lys	Glu	Val	Leu 3235	Ala	Ala	Ser	Asp	Ala 3240	Ala	Ļeu	Leu
Arg	Phe 3245	Arg	Arg	Leu	Leu	Val 3250	Ala	Glu	Leu	Gln	Arg 3255	Gly	Phe	Phe
Asp	Lys 3260	His	Ile	Trp		Ser 3265		Trp	Asp	Arg	Pro 3270	Pro	Arg	Ser
Arg	Phe 3275	Thr	Arg	Ile	Gln	Arg 3280		Thr	Cys	Cys	Val 3285	Leu	Leu	Ile
.Cys	Leu 3290	Phe	Leu	Gly	Ala	Asn 3295	Ala	Val	Trp	Tyr	Gly 3300	Ala	Val	Gly
Asp	Ser 3305	Ala	Tyr	Ser	Thr	Gly 3310	His	Val	Ser	Arg	Leu 3315	Ser	Pro	Leu
			-			3310					3315			
Ser	3305 Val	Asp	Thr	Val	Ala	3310 Val 3325	Gly	Leu	Val	Ser	3315 Ser 3330	Val	Val	Val
Ser	3305 Val 3320 Pro	Asp Val	Thr Tyr	Val Leu	Ala Ala	3310 Val 3325 Ile 3340	Gly Leu	Leu Phe	Val Leu	Ser	3315 Ser 3330 Arg 3345	Val Met	Val Ser	Val Arg
Ser Tyr Ser	3305 Val 3320 Pro 3335 Lys	Asp Val	Thr Tyr Ala	Val Leu Gly	Ala Ala Ser	3310 Val 3325 Ile 3340 Pro 3355	Gly Leu Ser	Leu Phe Pro	Val Leu Thr	Ser Phe Pro	3315 Ser 3330 Arg 3345 Ala 3360	Val Met Gly	Val Ser Gln	Val Arg Gln
Ser Tyr Ser Val	3305 Val 3320 Pro 3335 Lys 3350 Leu	Asp Val Val Asp	Thr Tyr Ala	Val Leu Gly Asp	Ala Ala Ser	3310 Val 3325 Ile 3340 Pro 3355 Cys 3370	Gly Leu Ser Leu	Leu Phe Pro Asp	Val Leu Thr	Ser Phe Pro	3315 Ser 3330 Arg 3345 Ala 3360 Val 3375	Val Met Gly Leu	Val Ser Gln Asp	Val Arg Gln Ser
Ser Tyr Ser Val	3305 Val 3320 Pro 3335 Lys 3350 Leu 3365 Phe	Asp Val Val Asp	Thr Tyr Ala Ile	Val Leu Gly Asp	Ala Ala Ser Ser	3310 Val 3325 Ile 3340 Pro 3355 Cys 3370 Gly 3385	Gly Leu Ser Leu	Leu Phe Pro Asp	Val Leu Thr Ser	Ser Phe Pro Ser Glu	3315 Ser 3330 Arg 3345 Ala 3360 Val 3375 Gln 3390	Val Met Gly Leu Ala	Val Ser Gln Asp	Val Arg Gln Ser Val
Ser Tyr Ser Val Ser Gly	3305 Val 3320 Pro 3335 Lys 3350 Leu 3365 Phe 3380 Gln	Asp Val Asp Leu Met	Thr Tyr Ala Ile Thr	Val Leu Gly Asp Phe Ser	Ala Ala Ser Ser Ser	3310 Val 3325 Ile 3340 Pro 3355 Cys 3370 Gly 3385 Leu 3400	Gly Leu Ser Leu Leu	Leu Phe Pro Asp His	Val Leu Thr Ser Ala	Ser Phe Pro Ser Glu Asp	3315 Ser 3330 Arg 3345 Ala 3360 Val 3375 Gln 3390 Ser 3405	Val Met Gly Leu Ala Lys	Val Ser Gln Asp Phe	Val Arg Gln Ser Val Leu
Ser Tyr Ser Val Ser Gly Val	3305 Val 3320 Pro 3335 Lys 3350 Leu 3365 Phe 3380 Gln 3395 Cys	Asp Val Asp Leu Met	Thr Tyr Ala Ile Thr Lys	Val Leu Gly Asp Phe Ser	Ala Ala Ser Ser Asp Gly	3310 Val 3325 Ile 3340 Pro 3355 Cys 3370 Gly 3385 Leu 3400 Glu 3415	Gly Leu Ser Leu Leu Phe	Leu Phe Pro Asp His Leu Thr	Val Leu Thr Ser Ala Asp	Ser Phe Pro Ser Glu Asp Ser	3315 Ser 3330 Arg 3345 Ala 3360 Val 3375 Gln 3390 Ser 3405 Trp 3420	Val Met Gly Leu Ala Lys	Val Ser Gln Asp Phe Ser Asp	Val Arg Gln Ser Val Leu Leu

Ser	Leu 3455	Ala	Ser	Pro	Tyr	Ser 3460	Pro	Ala	Lys	Ser	Phe 3465	Ser	Ala	Ser
Asp	Glu 3470	Asp	Leu	Ile	Gln	Gln 3475	Val	Leu	Ala	Glu	Gly 3480	Val	Ser	Ser
Pro	Ala 3485	Pro	Thr	Gln	Asp	Thr 3490	His	Met	Glu	Thr	Asp 3495	Leu	Leu	Ser
Ser	Leu 3500	Ser	Ser	Thr	Pro	Gly 3505	Glu	Lys	Thr	Glu	Thr 3510		Ala	Leu
Gln	Arg 3515	Leu	Gly	Glu		Gly 3520	Pro	Pro	Ser	Pro	Gly 3525	Leu	Asn	Trp
Glu	Gln 3530	Pro	Gln	Ala	Ala	Arg 3535	Leu	Ser	Arg	Thr	Gly 3540	Leu	Val	Glu
Gly	Leu 3545	Arg	Lys	Arg	Leu	Leu 3550	Pro	Ala	Trp	Cys	Ala 3555	Ser	Leu	Ala
His	Gly 3560	Leu	Ser	Leu	Leu	Leu 3565	Val	Ala	Val	Ala	Val 3570	Ala	Val	Ser
Gly	Trp 3575	Val	Gly	Ala	Ser	Phe 3580	Pro	Pro	Gly	Val	Ser 3585	Val	Ala	Trp
Leu	Leu 3590	Ser	Ser	Ser		Ser 3595	Phe	Leu	Ala		Phe 3600	Leu	Gly	Trp
Glu	Pro 3605	Leu	Lys	Val	Leu	Leu 3610	Glu	Ala	Leu	Tyr	Phe 3615	Ser	Leu	Val
Ala	Lys 3620	Arg	Leu	His	Pro	Asp 3625	Glu	Asp	Asp	Thr	Leu 3630	Val	Glu	Ser
Pro	Ala 3635	Val	Thr	Pro	Val	Ser 3640	Ala	Arg	Val	Pro	Arg 3645	Val	Arg	Pro
Pro	His 3650	Gly	Phe	Ala	Leu	Phe 3655	Leu	Ala	Lys	Glu	Glu 3660	Ala	Arg	Lys
Val	Lys 3665	_	Leu	His	Gly	Met 3670	Leu	Arg	Ser	Leu	Leu 3675	Val	Tyr	Met
Leu	Phe 3680	Leu	Leu	Val	Thr	Leu 3685	Leu	Ala	Ser	Tyr	Gly 3690	Asp	Ala	Ser
Cys	His 3695	Gly	His	Ala	Tyr	Arg 3700	Leu	Gln	Ser	Ala	Ile 3705	Lys	Gln	Glu
Leu	His 3710	Ser	Arg	Ala	Phe	Leu 3715	Ala	Ile	Thr	Arg	Ser 3720	Glu	Glu	Leu
Trp	Pro 3725	Trp	Met	Ala	His	Val 3730	Leu	Leu	Pro	Tyr	Val 3735	His	Gly	Asn
Gln	Ser 3740	Ser	Pro	Glu	Leu	Gly 3745	Pro	Pro	Arg	Leu	Arg 3750	Gln	Val	Arg
Leu	Gln	Glu	Ala	Leu	Tyr	Pro	Asp	Pro	Pro	Gly	Pro	Arg	Val	His

	3755					3760					3765			
Thr	Cys 3770	Ser	Ala	Ala	Gly	Gly 3775		Ser	Thr	Ser	Asp 3780	Tyr	Asp	Val
Gly	Trp 3785	Glu	Ser	Pro	His	Asn 3790	Gly	Ser	Gly	Thr	Trp 3795	Ala	Tyr	Ser
Ala	Pro 3800	Asp	Leu	Leu	Gly	Ala 3805	Trp	Ser	Trp	Gly	Ser 3810	Cys	Ala	Val
Tyr	Asp 3815	Ser	Gly	Gly	Tyr	Val 3820	Gln	Glu	Leu	Gly	Leu 3825	Ser	Leu	Glu
Glu	Ser 3830	Arg	Asp	Arg	Leu	Arg 3835	Phe	Leu	Gln	Leu	His 3840	Asn	Trp	Leu
Asp	Asn 3845	Arg	Ser	Arg	Ala	Val 3850		Leu	Glu	Leu	Thr 3855	Arg	Tyr	Ser
Pro	Ala 3860	Val	Gly	Leu	His	Ala 3865	Ala	Val	Thr	Leu	Arg 3870	Leu	Glu	Phe
Pro	Ala 3875	Ala	Gly	Arg	Ala	Leu 3880	Ala	Ala	Leu	Ser	Val 3885	Arg	Pro	Phe
Ala	Leu 3890	Arg	Arg	Leu	Ser	Ala 3895	Gly	Leu	Ser	Leu	Pro 3900	Leu	Leu	Thr
Ser	Val 3905	Сув	Leu	Leu	Leu	Phe 3910	Ala	Val	His	Phe	Ala 3915	Val	Ala	Glu
Ala	Arg 3920	Thr	Tŗp	His	Arg	Glu 3925	Gly	Arg	Trp	Arg	Val 3930	Leu	Arg	Leu
Gly	Ala 3935	Trp	Ala	Arg	Trp	Leu 3940	Leu	Val	Ala		Thr 3945	Ala	Ala	Thr
Ala	Leu 3950	Val	Arg	Leu	Ala	Gln 3955	Leu	Gly	Ala	Ala	Asp 3960	Arg	Gln	Trp
						Arg 3970							Phe	Asp
Gln	Val 3980	Ala	His	Val	Ser	Ser 3985	Ala	Ala	Arg	Gly	Leu 3990	Ala	Ala	Ser
Leu	Leu 3995	Phe	Leu	Leu	Leu	Val 4000	Lys	Ala	Ala	Gln	His 4005	Val	Arg	Phe
Val	Arg 4010	Gln	Trp	Ser	Val	Phe 4015		Lys	Thr	Leu	Cys 4020	Arg	Ala	Leu
Pro	Glu 4025	Leu	Leu	Gly	Val	Thr 4030	Leu	Gly	Leu	Val	Val 4035	Leu	Gly	Val
Ala	Tyr 4040	Ala	Gln	Leu	Ala	Ile 4045	Leu	Leu	Val	Ser	Ser 4050	Cys	Val	Asp
Ser	Leu 4055	Trp	Ser	Val	Ala	Gln 4060	Ala	Leu	Leu	Val	Leu 4065	Cys	Pro	Gly

Thr Gly Leu Ser Thr Leu Cys Pro Ala Glu Ser Trp His Leu Ser 4075 4070 Pro Leu Leu Cys Val Gly Leu Trp Ala Leu Arg Leu Trp Gly Ala 4090 Leu Arg Leu Gly Ala Val Ile Leu Arg Trp Arg Tyr His Ala Leu 4105 Arg Gly Glu Leu Tyr Arg Pro Ala Trp Glu Pro Gln Asp Tyr Glu 4120 Met Val Glu Leu Phe Leu Arg Leu Arg Leu Trp Met Gly Leu 4130 4135 Ser Lys Val Lys Glu Phe Arg His Lys Val Arg Phe Glu Gly Met 4150 Glu Pro Leu Pro Ser Arg Ser Ser Arg Gly Ser Lys Val Ser Pro 4160 4165 Asp Val Pro Pro Pro Ser Ala Gly Ser Asp Ala Ser His Pro Ser 4185 Thr Ser Ser Ser Gln Leu Asp Gly Leu Ser Val Ser Leu Gly Arg 4190 4195 Leu Gly Thr Arg Cys Glu Pro Glu Pro Ser Arg Leu Gln Ala Val 4205 4210 Phe Glu Ala Leu Leu Thr Gln Phe Asp Arg Leu Asn Gln Ala Thr 4225 Glu Asp Val Tyr Gln Leu Glu Gln Gln Leu His Ser Leu Gln Gly 4240 4235 Arg Arg Ser Ser Arg Ala Pro Ala Gly Ser Ser Arg Gly Pro Ser Pro Gly Leu Arg Pro Ala Leu Pro Ser Arg Leu Ala Arg Ala Ser 4265 4270 Arg Gly Val Asp Leu Ala Thr Gly Pro Ser Arg Thr Pro Leu Arg 4290 4285 Ala Lys Asn Lys Val His Pro Ser Ser Thr 4300 4295 <210> 3 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer BPF14 <400> 3 ccatccacct gctgtgtgac ctggtaaat

29

<211><212>	4 26 DNA Artificial sequence	
<220> <223>	PCR primer BPR9	
<400> ccaccto	4 catc gccccttcct aagcat	26
<211><212>		
<220> <223>	PCR primer BPF9	
<400> atttt	5 tgag atggagette actettgeag g	31
<210><211><211><212><213>	20	
<220> <223>	PCR primer BPR4	
<400> cgctc	6 ggcag gcccctaacc	20
<210><211><211><212><213>	21	
<220> <223>	PCR primer BPF12	
<400> ccgcc	. 7 :cccag gagcctagac g	21
<210 × 211 × 212 × 213 ×		
<220: <223:	> PCR primer BPR5	
<400 catc	> 8 ctgttc atccgctcca cggttac .	27

<210> 9

<211><212><213>		
<220> <223>	PCR primer F13	
<400> tggagg	9 gagg gacgccaatc	20
<210> <211> <212> <213>	20	
<220> <223>	PCR primer R27	
<400> gtcaac	10 egtgg geetecaagt	20
<210> <211> <212> <213> <220>	21 DNA Artificial sequence	
<223>		
<400> agcgc	11 aacta cttggaggcc c	21
<210><211><211><212><213>		
<220> <223>		
<400 gcago	s 12 ggtgag caggtggggc catcctac	28
<220 <223		
<400 gagg	> 13 ctgtgg gggtccagtc aagtgg	26
<210 <211		

	DNA Artificial sequence	
<220> <223>	PCR primer BPR12	
<400> agggag	14 gcag aggaaagggc cgaac	25
<210>		
<211><212><213>		
<220> <223>	PCR primer BPF6	
	15 cctc cccgtccttt tgtc	24
<210>		
<211><212><213>		
<220> <223>	PCR primer BPR6	
<400> aagcgo	16 caaaa gggctgcgtc g	21
<210><211>		
<212>		
<220> <223>	PCR primer BPF13	
<400> ggccc	17 tccct gccttctagg cg	22
<210>	18	
<211>		
<212> <213>	DNA Artificial sequence	
<220> <223>		
<400> gttgd	eagcca agcccatgtt a	21
<210:		
<2112		

<213>	Artificial sequence	
<220> <223>	PCR primer 1F1	
<400>	19	
ggtege	getg tggegaagg	19
<210> <211>	•	
<212> <213>	DNA Artificial sequence	
<220> <223>	PCR primer 1R1	
<400>	20	16
cggcgg	gegg categt	16
<210> <211>	16	
<212> <213>	DNA Artificial sequence	
<220> <223>	PCR primer 1F2	
<400>		16
acggcg	gggc catgcg	10
<210> <211>	18	
<212> <213>	DNA Artificial sequence	
<220> <223>	PCR primer 1R2	
<400>	22 etgge cegegtee	18
<210><211><212>	20	
	Artificial sequence	
<220> <223>	PCR primer 2F	
<400> ttgggg	23 gatgc tggcaatgtg	20
<210><211><212>		
	Artificial sequence	

<pre><400> 24 gggattcggc aaagctgatg 20 <210> 25 <211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer 3F <400> 25 ccatcagctt tgccgaatcc 20 <210> 26 <211> 20 <212> DNA <212> DNA <213> Artificial sequence <220> <221> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer 3R <400> 26 agggcagaag ggatattggg 20 <210> 27 <211> 20 <212> DNA <213> Artificial sequence <220> <221> ENA <400> 27 <211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4F <400> 27 agaccettcc caccagacct 20 <210> 28 <211> 19 <212> DNA <213> Artificial sequence <220> <221> PCR primer 4F <400> 27 agaccettcc caccagacct 20 <210> 28 <211> 19 <212> DNA <213> Artificial sequence <220> <221> PCR primer 4R <400> 28 tgagccctgc ccagtgtct 19 </pre>	<220> <223>	PCR primer 2R	
<pre> <211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer 3F <400> 25</pre>			20
<pre><220> <223> PCR primer 3F <400> 25 ccatcagctt tgccgaatcc</pre>	<211>	20	
<pre><223> PCR primer 3F <400> 25 ccatcagctt tgccgaatce 20 <210> 26 <211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer 3R <400> 26 agggcagaag ggatattggg 20 <210> 27 <211> 20 <212> DNA <213> Artificial sequence <220> <221> EVA <210</pre>	<213>	Artificial sequence	
ceatcagett tgecgaatec 20 <210> 26 <211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer 3R <440> 26 agggcagaag ggatattggg 20 <211> 20 <212> DNA <211> 20 <212> DNA <213> Artificial sequence <220> <221> Can artificial sequence <220> <221> DNA <213> Artificial sequence <220> <222> <222> <221> DNA <213> Artificial sequence <220> <221> DNA <213> Artificial sequence <220> <221> Agaccettee caccagacet 20 <210> 28 <211> 19 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccetge ccagtgtet 19 <210> 29 <211> 29 <211> 29 <211> 21 <212> DNA		PCR primer 3F	
<pre><211> 20 <212> DNA <213> Artificial sequence </pre> <pre><220> <223> PCR primer 3R </pre> <pre><400</pre>			20
<pre><211> 20 <212> DNA <213> Artificial sequence </pre> <pre><220> <223> PCR primer 3R </pre> <pre><400</pre>			
<pre><213> Artificial sequence <220> <223> PCR primer 3R <400> 26 agggcagaag ggatattggg</pre>			
<pre><220> <223> PCR primer 3R <400> 26 agggcagaag ggatattggg</pre>			
<pre><223> PCR primer 3R <400> 26 agggcagaag ggatattggg</pre>		nicitional bequence	
20		PCR primer 3R	
<pre> <210> 27 <211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4F <400> 27 agaccettcc caccagacet 20 <211> 19 <212> DNA <213> Artificial sequence <220> <220> 223> PCR primer 4R <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccettcc cagtgtct 19 </pre>			20
<pre><211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4F <400> 27 agaccettce caccagacet 20 <210> 28 <211> 19 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4R <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccetge ccagtgtet 19 <210> 29 <211> 21 <212> DNA</pre>	agggoa	gaag ggacaccggg	
<pre><212> DNA <213> Artificial sequence <220> <223> PCR primer 4F <400> 27 agaccettce caccagacet 20 <210> 28 <211> 19 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccetge ccagtgtet 19 <210> 29 <211> 21 <212> DNA</pre>			
<pre><213> Artificial sequence <220> <223> PCR primer 4F <400> 27 agaccettce caccagacet 20 <210> 28 <211> 19 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccettge ccagtgtet 19 <210> 29 <211> 21 <212> DNA</pre>			
<pre><223> PCR primer 4F <400> 27 agaccettce caccagacct 20 <210> 28 <211> 19 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccctge ccagtgtct 19 <210> 29 <211> 21 <212> DNA</pre>			
<pre><400> 27 agaccettce caccagacet 20 <210> 28 <211> 19 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccetge ccagtgtet 19 <210> 29 <211> 21 <212> DNA</pre>			
agaccettce caccagacet 20 <210> 28 <211> 19 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccetge ccagtgtet 19 <210> 29 <211> 21 <212> DNA	<223>	PCR primer 4F	
<pre> <210> 28 <211> 19 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccctgc ccagtgtct 19 <210> 29 <211> 21 <212> DNA</pre>			20
<pre><211> 19 <212> DNA <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccctgc ccagtgtct 19 <210> 29 <211> 21 <212> DNA</pre>	agaccc	teee caecagaeer	
<pre><212> DNA <213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccctgc ccagtgtct 19 <210> 29 <211> 21 <212> DNA</pre>			
<213> Artificial sequence <220> <223> PCR primer 4R <400> 28 tgagccctgc ccagtgtct 19 <210> 29 <211> 21 <212> DNA			
<223> PCR primer 4R <400> 28 tgagccctgc ccagtgtct 19 <210> 29 <211> 21 <212> DNA			
<400> 28 tgagccctgc ccagtgtct 19 <210> 29 <211> 21 <212> DNA	<220>		
tgagccctgc ccagtgtct 19 <210> 29 <211> 21 <212> DNA	<223>	PCR primer 4R	
<210> 29 <211> 21 <212> DNA			19
<211> 21 <212> DNA	cgaged	cigc ccagigics	13
<212> DNA	<210>	29	

```
<220>
<223> PCR primer 5F1
<400> 29
                                                                    21
gagccaggag gagcagaacc c
<210> 30
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer 5R1
<400> 30
                                                                     21
agagggacag gcaggcaaag g
<210> 31
<211> 18
<212> DNA
<213> Artificial sequence
 <220>
 <223> PCR primer 5F2
 <400> 31
                                                                     18
 cccagccctc cagtgcct
 <210> 32
 <211> 20
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> PCR primer 5R2
 <400> 32
                                                                      20
 cccaggcagc acatagcgat
 <210> 33
 <211> 18
 <212> DNA
 <213> Artificial sequence
  <220>
  <223> PCR primer 5F3
  <400> 33
                                                                      18
  ccgaggtgga tgccgctg
  <210> 34
  <211> 21
  <212> DNA
  <213> Artificial sequence
  <220>
```

<223>	PCR primer 5R3	
<400> gaagggg	34 gagt gggcagcaga c	21
<210><211><212><212><213>		
<220> <223>	PCR primer 6F	
<400> cactga	35 ccgt tgacaccctc g	21
<210><211><212><212><213>		
<220> <223>		
<400> tgccc	36 cagtg cttcagagat c	21
<210><211><211><212><213>	19 DNA	
<220> <223>		
<400> ggagt	gecet gageecet	19
<210 > <211 > <212 > <213 > <213 > <		
<220: <223:		
<400 cccc	> 38 taacca cagccagcg	19
<210 <211 <212 <213	> 21	
<220 <223		

<400> 39 tetgttegte etggtgteet g	21
<210> 40 <211> 21 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 8R	
<400> 40 gcaggagggc aggttgtaga a	21
<210> 41 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 9F	
<400> 41 ggtaggggga gtctgggctt	20
<210> 42 <211> 17 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 9R	
<400> 42 gaggccaccc cgagtcc	17
<210> 43 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 10F	
<400> 43 gttgggcatc tctgacggtg	20
<210> 44 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 10R	

<400> ggaagg	44 ptggc ctgaggagat	20
<210> <211>	17	
<212> <213>	Artificial sequence	
<220> <223>	PCR primer 11F2	
<400> ggggto	45 cacg ggccatg	17
<210> <211>	20	
<212> <213>	DNA Artificial sequence	
<220>	PCR primer 11R2	
<400>	46	
	eagca gcacggtgag	20
<210>	47	
<211>		
<212>		
<213>	Artificial sequence	
<220> <223>	PCR primer 11midF	
<400>		17
geeege	eagec aeggaae	-,
<210>	48	
<211> <212>	20 DNA	
	Artificial sequence	
<220>		
<223>	PCR primer 11midR	
<400>	48 gctac cactgagaac	20
<210> <211>		
<212>	DNA	
	Artificial sequence	
<220> <223>	PCR primer 11F1	
<400>	49	

tgcccc	etggg agaccaacga tac	23
<210><211><212><212><213>	22	
<220> <223>	PCR primer 11R1	
<400> ggctgc	50 etgcc ctcactggga ag	22
<210><211><212><212><213>	18	
<220> <223>	PCR primer 12F	
	51 gacag gctaaggg	18
<210><211><212><213>	25	
<220> <223>	Primer for PCR	
<400> aggtca	52 acgt gggcctccaa gtagt	25
<210><211><212><212><213>	19 DNA	
<220> <223>	Forward nested primer F32	
<400> gccttg	53 gegea gettggaet	19
<210><211><211><212><213>	20 DNA	
<220> <223>	Second specific primer 31R	
<400>	54 ytett gagteeaage	20

```
<210> 55
<211> 30
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 55
                                                                           30
ctggtgacct acatggtcat ggccgagatc
<210> 56
<211> 30
<212> DNA
<213> Artificial sequence
 <220>
 <223> PCR primer
 <400> 56
                                                                            30
 ggttgtctat cccgtctacc tggccctcct
 <210> 57
 <211> 25
 <212> DNA
<213> Artificial sequence
 <220>
 <223> PCR primer
 <400> 57
                                                                            25
 gtccccagcc ccagcccacc tggcc
  <210> 58
  <211> 7
  <212> PRT
  <213> Homo sapiens
  <400> 58
  Trp Asp Phe Gly Asp Gly Ser
  <210> 59
  <211> 4
  <212> PRT
  <213> Homo sapiens
  <400> 59
  His Leu Thr Ala
   <210> 60
   <211> 27
   <212> DNA
```

<213> Artificial sequence	
<220> <223> PCR primer	
<400> 60 gcagggtgag caggtggggc catccta	27
<210> 61 <211> 19 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 12R-2	
<400> 61 catgaagcag agcagaagg	19
<210> 62 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 13F	
<400> 62 tggagggagg gacgccaatc	20
<210> 63 <211> 19 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 13R	
<400> 63 gaggctgggg ctgggacaa	19
<210> 64 <211> 18 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 14F	
<400> 64 cccggttcac tcactgcg	18
<210> 65 <211> 20 <212> DNA <213> Artificial sequence	

<220> <223> PCR primer 14R	
<400> 65 ccgtgctcag agcctgaaag	20
<210> 66 <211> 18 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15F16	
<400> 66 cgggtggga gcaggtgg	18
<210> 67 <211> 21 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15R16	
<400> 67 gctctgggtc aggacagggg a	21
<210> 68 <211> 18 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15F15	
<400> 68 cgcctggggg tgttcttt	18
<210> 69 <211> 18 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15R15	
<400> 69 acgtgatgtt gtcgcccg	18
<210> 70 <211> 18 <212> DNA <213> Artificial sequence	

58

```
<220>
<223> PCR primer 15F14
<400> 70
                                                                    18
gccccgtgg tggtcagc
<210> 71
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer 15R14
<400> 71
                                                                     18
caggctgcgt ggggatgc
<210> 72
 <211> 18
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> PCR primer 15F13
 <400> 72
                                                                     18
 ctggaggtgc tgcgcgtt
 <210> 73
 <211> 18
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> PCR primer 15R13
 <400> 73
                                                                      18
 ctggctccac gcagatgc
 <210> 74
  <211> 18
  <212> DNA
  <213> Artificial sequence
  <220>
  <223> PCR primer 15F12
  <400> 74
                                                                      18
  cgtgaacagg gcgcatta
  <210> 75
  <211> 21
  <212> DNA
  <213> Artificial sequence
  <220>
```

<223>	PCR primer 15R12	
<400>	75	
	gaga tgttgttgga c	21
3 3	5050 030050050 0	
<210>	76	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
	PCR primer 15F11	
<400>	76	
ccaggc	tcct atcttgtgac a	21
<210>	77	
<211>		
<212>		
<213>	Artificial sequence	
<220>	DOD mainer 15011	
<223>	PCR primer 15R11	
<400>	77	
	cacc tgtgctgttg t	21
<210>		
<211>		
<212>	Artificial sequence	
\213/	West for a podromos	
<220>		
<223>	PCR primer 15F10	
<400>	78	19
Ctaccu	gtgg gatctgggg	1.7
<210>	79	
<211>	18	
<212>		
<213>	Artificial sequence	
<220>		
	PCR primer 15R10	
<400>	79	
tgctga	aget cacgetee	18
<210>	80	
<211>		
<212>		
<213>	Artificial sequence	
202		
<220> <223>	PCR primer 15F9	
~~~ 3>	rew bramer rata	

<400> 80 gggctcgtcg tcaatgcaag	20
<210> 81 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15R9	
<400> 81 caccacctgc agcccctcta	20
<210> 82 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15F8	
<400> 82 ccgcccagga cagcatcttc	20
<210> 83 <211> 18 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15R8	
<400> 83 cgctgcccag catgttgg	18
<210> 84 <211> 19 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15F7	
<400> 84 cggcaaaggc ttctcgctc	19
<210> 85 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> PCR primer 15R7	

<400> ccgggt	85 gtgg ggaagctatg	20
<210>	86	
<211>		
<212>		
	Artificial sequence	
	•	
<220>		
<223>	PCR primer 15F6	
<400>		21
cgagco	attt accacccata g	21
<210>	87	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15R6	
<400>	87	
	cacc agctcacat	19
gcccag		
<210>	88	
<211>	19	
<212>		
<213>	Artificial sequence	
.000-		
<220>	PCR primer 15F5	
4223 2	FCR primer 1313	
<400>	88	
ccacgg	gcac caatgtgag	19
<210>	89	
<211> <212>	20	
	Artificial sequence	
/		
<220>		
<223>	PCR primer 15R5	
<400>		20
ggcagc	cagc aggatctgaa	20
<210>	90	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>	DCD mimor 15E4	
<223>	PCR pimer 15F4	
<400>	90	
-100/		

cagcago	aag gtggtggc	10
<210>	91	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15R4	
<400>	91	18
gcgtag	gcga cccgagag	10
<210>		
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15F3	
<400>	92	21
acgggc	actg agaggaactt c	
<210>		
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15R3	
<400>	93	20
	egtge ggtteteact	20
<210>	94	
<211>	19	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15F2	
<400>	94	19
gccgc	gacgt cacctacac	
<210>		
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223	PCR primer 15R2	
<400		18
tcggd	ecetgg geteatet	

<210><211><212>	20 DNA	
<213>	Artificial sequence	
<220> <223>	PCR primer 15F1	
<400>	96	
gtcgcc	aggg caggacacag	20
<210>		
<211>		
<212>	Artificial sequence	
	•	
<220>	DOD primar 15E1 1	
<223>	PCR primer 15F1-1	
<400>		
acttgg	aggc ccacgttgac c	21
<210>		
<211>		
<212>	DNA Artificial sequence	
1220		
<220>	DOD ' 15D1 1	
<223>	PCR primer 15R1-1	
<400>	98	
tgatgg	gcac caggogoto	19
<210>	99	
<211>		
<212>	DNA Artificial sequence	
12137	nicitional boquonoc	
<220>	DCD	
<223>	PCR primer 15F1-2	
<400>	99	
catcca	ggcc aatgtgacgg t	21
<210>	100	
<211>		
<212>	DNA Artificial sequence	
(213)	Vicitional pedactice	
<220>		
<223>	PCR primer 15R1-2	
<400>	100	
cctggt	ggca agctgggtgt t	21

```
<210> 101
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer 16F
<400> 101
                                                                    20
taaaactgga tggggctctc
<210> 102
<211> 18
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer 16R
<400> 102
                                                                    18
ggcctccacc agcactaa
<210> 103
<211> 20
<212> DNA
<213> Artificial sequence
<220>
 <223> PCR primer 17F
 <400> 103
                                                                     20
 gggtccccca gtccttccag
 <210> 104
 <211> 17
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> PCR primer 17R
 <400> 104
                                                                     17
 tccccagccc gcccaca
 <210> 105
 <211> 20
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> PCR primer 18F
 <400> 105
                                                                      20
 gcccctcac cacccttct
```

65

<210>	106	
<211>	18	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 18R	
	·	
<400>	106	
teceget	etget cececae	18
	-	
<210>	107	
<211>		
<212>		
	Artificial sequence	
1		
<220>		
	PCR primer 19F	
1227	,	
<400>	107	
	egtgg ggaccgtc	18
guegees	.gcgg	
<210>	108	
<211>		
<212>		
	Artificial sequence	
<213>	Arctricial sequence	
-220-		
<220> <223>	DCD primor 10D	
<223>	PCR primer 19R	
<400>	108	
		20
grgage	caggt ggcagtctcg	2.
<210>	100	
<211>		
<211>		
<213>	Artificial sequence	
.220-		
<220>	DCD majmax 20E	
<223>	PCR primer 20F	
.400	100	
<400>		2.1
ccacccc	ecctc tgctcgtagg t	21
-010	110	
<210>	110	
<211>	19	
<513>	Artificial sequence	
<220>		
<223>	PCR primer 20R	
<400>	110	
ggtccca	caagc acgcatgca	19

<210> 111

<211> <212>		
	Artificial sequence	
12107	•••••••••••••••••••••••••••••••••••••••	
<220>		
<223>	PCR primer 21F	
<400>	111	22
tgccgg	cete etgegetget ga	22
<210>	112	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer TWR2-1	
	112	28
gtaggatggc cccacctgct caccctgc		
<210>	113	
<211>	20	
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer R27'	
<400>	113	20
	aacgt gggcctccaa	20

aggtcaacgt gggcctccaa