1 The remaining axioms of set theory and the power set construction

Week 2: will miss one class due to Labor day. Reading: [2, Ch.3.1-4], [1, 2].

Learning Objectives

In last lectures, we

- ullet Defined $\mathbb N$ axiomatically using the Peano axioms.
- \bullet Used induction to prove properties of operations as + and \times on $\mathbb{N}.$ In the next two lectures
 - Discuss the remaining axioms of set theory. We begin by discussing new notions: *subsets*, 1.1, We end with the construction of the power set.
 - Discuss equivalence relation, ??, and ordered pairs, ??. which constructs the integers and the rationals

1.1 Subcollections

Definition 1.1. Let A, B be sets, we say A is a *subset* of B, denoted

$$A \subseteq B$$

if and only if every element of A is also an element of B.

Example

- $\emptyset \subset \{1\}$. The empty set is subset of everything!
- $\{1,2\} \subset \{1,2,3\}.$

1.2 Remaining axioms of set theory

Week 2

In this section we continue from previous lecture and discuss remaining axioms from what is known as the Zermelo-Fraenkel (ZF) axioms of set theory, due to Ernest Zermelo and Abraham Fraenkel.

Axiom 1.2. Singleton set axiom. If a is an object. There is a set $\{a\}$ consists of just one element.

Axiom 1.3. Axiom of pairwise union. Given any two sets A, B there exists a set $A \cup B$ whose elements which belong to either A or B or both.

Often we would require a stronger version.

Axiom 1.4. Axiom of union. Let A be a set of sets. Then there exists a set

whose objects are precisely the elements of the set.

Example ____

- t $\bullet \ A = \{\{1, 2\}, \{1\}\}$ $\bullet \ A = \{\{1, 2, 3\}, \{9\}\}$

Discussion

Using the axioms, can we get from $\{1, 3, 4\}$ to $\{2, 4, 5\}$?

We will now state the power set axiom for completeness but revisit again.

Axiom 1.5. Axiom of power set. Let X, Y be sets. Then there exists a set Y^X consists of all functions $f: X \to Y$.

We will review definition of function later, 1.7.

Axiom 1.6. Axiom of replacement. For all $x \in A$, and y any object, suppose there is a statement P(x,y) pertaining to x and y. There is a set

$$\{y : P(x,y) \text{ is true for some } x \in A\}$$

This can intuitively be thought of as the set

$$\{y: y = f(x) \text{ some } x \in A\}$$

1.3 **Function**

Discussion

How would you intuitively define a function?

Definition 1.7. Let X, Y be two sets. Let

be a property pertaining to $x \in X$ and $y \in Y$, such that for all $x \in X$, there exists a unique $y \in Y$ such that P(x,y) is true. A function associated to P is an object

$$f_P:X\to Y$$

such that for each $x \in X$ assigns an output $f(x) \in Y$, to be the unique object such that P(x, f(x)) is true.

- \bullet X is called the domain
- Y is called the *codomain*.

Definition 1.8. The *image...*?

Discussion _

When is what kind of properties P does not satisfy the condition of being function? $\bullet "y^2 = x".$

- $\bullet "y = x^2".$

Homework for week 2

Due: Week 3, Wednesday. All questions in 1.4, Boolean algebra is compulsory. Select 3 other questions to be graded.

Reading: We refer to the axioms of set theory we have discussed thus far collectively as the ZF axioms. The only axiom we did not discuss is the axiom of replacement, [2, 3.5]. This will be left as required reading for certain problems.

Problems

- 1. Let A, B, C be sets.
 - (a) Prove set inclusion, def. 1.1, is reflexive and transitive. $A\subseteq B, B\subseteq C$ then $A\subseteq C$.
 - (b) Prove that the union operation \cup on sets 1.3, is associative and commutative:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cup B = B \cup A$$

- 2. (**) Let I be a set and that for all $\alpha \in I$, I have a set A_{α} . Read about the axiom of replacement; see [2, Axiom 3.5] or 1.6.
 - (a) Prove that under the ZF axioms, one can form the union of the collection:

$$\bigcup_{\alpha\in I}A_\alpha:=\bigcup\left\{A_\alpha\,:\,\alpha\in I\right\}$$

In particular, explain why the following two objects

i.

$$\{A_{\alpha} : \alpha \in I\}$$

ii.

$$\bigcup \{A_{\alpha} : \alpha \in I\}$$

are sets.

(b) Give a one line explanation briefly describing why axiom of union 1.4 is insufficient to construct the set $\bigcup_{\alpha \in I} A_{\alpha}$.

$$A_a, A_b, A_c$$

¹For example, if $I = \{a, b, c\}$, then I have three sets

3. The axiom of regularity states

Axiom 1.9. [2, 3.9] If A is a nonempty set, then there is at least one element $x \in A$ which is neither a set, or (if it is a set) disjoint from A.

Prove (with singleton set axiom) that for all sets $A, A \notin A$.

- 4. (***) Let A, B, C, D be sets. This exercise shows that we can actually construct ordered pairs using the ZF axioms.² Prove
 - We can construct the following set ³

$$\langle A, B \rangle := \{A, \{A, B\}\}$$

from the axioms of set theory.

- $\langle A, B \rangle = \langle C, D \rangle$ if and only if A = B, C = D. For this part you will require the *axiom of regularity*. in problem 3. You are free to use the results there.
- 5. This is a variation of problem 4^{4} . Suppose for two sets A, B we define

$$[A, B] = \{\{A\}, \{A, B\}\}$$

In this case, the problem is a lot easier. Prove [A, B] = [C, D] if and only if A = B, C = D.

6. (***) Show that the collection

$$\{Y : Y \text{ is a subset } X\}$$

is a set using the ZF axioms. We denote this as the power set 2^X , where 2 is regarded as the two elements set $\{0,1\}$. You will need to use the axiom of replacement.

Here are two important remarks on possible false solutions:

- (a) (Ryan's) if your property for axiom of replacement P(x,y) = "y is a subset of x" then this is not correct. The condition for replacement is that there is at most one y, [2, 3.6].
- (b) (Kauí's) You cannot use axiom of comprehension, this is similar to Russell's paradox!

As a hint: $\{0,1\}^X$ is a set, by 1.5. For $Y \subset X$, $f \in \{0,1\}^X$, let P(Y,f) be the property that

$$Y=f^{-1}(1):=\{x\in X\,:\, f(x)=1\}$$

²Another definition is discussed in or [2, 3.5.1], where they assume this as an axiom.

³RIP. So another model of this is $\langle A, B \rangle := \{ \{A\}, \{A, B\} \}$

⁴which is what I should have written

1.4 Boolean algebras

This section is compulsory. Boolean algebras form the foundation of probability theory.

Definition 1.10. Let Ω be a set. A *Boolean algebra* in Ω is a set \mathcal{E} of subsets of Ω (equivalently, $\mathcal{E} \subseteq 2^{\Omega}$) satisfying

- 1. $\emptyset \in \mathcal{E}$
- 2. closed under unions and intersections.

$$E, F \in \mathcal{E} \Rightarrow E \cup F \in \mathcal{E}$$

$$E, F \in \mathcal{E} \Rightarrow E \cap F \in \mathcal{E}$$

3. closed under complements.

A σ -algebra in Ω is a Boolean algebra in Ω such that it satisfies

4. Countable⁵ closure. If $A_i \in \mathcal{E}$ for $i \in \mathbb{N}$, then $\bigcup A_i \in \mathcal{E}$.

Problems

- 1. Prove that $\mathcal{E} := \{\emptyset, \Omega\}$ is a σ -algebra.
- 2. Prove that $2^{\Omega} := \{E : E \subset \Omega\}$ is a σ -algebra.
- 3. Let $A \subseteq \Omega$, what is the smallest (describe the elements of this σ -algebra) σ -algebra in Ω containing A?

Example

(Hard) The Borel σ -algebra on $\mathbb R$ is the smallest σ -algebra containing the collection of open subsets of $\mathbb R$. $E \subset \mathbb R$ is open if for all $x \in E$, there exist an open interval I containing x and such that $I \subset \mathbb R$.

Hints for problems

3. There are 3 cases. What happens $A=\emptyset$ or $A=\Omega$? Now consider the case $A\neq\emptyset$ and $A\neq\Omega$.

 $^{^5\}mathrm{A}$ set X is countable if it is in bijection with $\mathbb N.$ We will explore this word in further detail in the future.

References

- [1] Jonathan Pila, B1.2 set theory.
- [2] Terence Tao, Analysis I, 4th edition, 2022.