Lógica Matemática Para Computação

Lógica Proposicional Conjunto satisfatível

Suponha que S seja um conjunto de proposições, dizemos que S é satisfatível se existe pelo menos uma valoração que satisfaz a todas as proposições de S.

S será insatisfatível quando não for satisfatível.

Lógica Proposicional Conjunto satisfatível

S é satisfatível ?

Conjunto satisfatível $S = \{(Y \land (\neg Z)), (X \rightarrow Z), ((\neg Z) \land (X \lor Y))\}$

X	Y	Z	$\neg Z$	$X \rightarrow Z$	$(Y \land (\neg Z))$	$(X \lor Y)$	$(\neg Z) \land (X \lor Y)$
0	0	0	1	1	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	0
1	0	0	1	0	0	1	1
1	0	1	0	1	0	1	0
1	1	0	1	0	1	1	1
1	1	1	0	1	0	1	O Centro

Consequência Lógica

 Dizemos que uma proposição φ é uma conseqüência lógica do conjunto S se toda valoração que satisfaz S também satisfaz φ.

No exemplo anterior, a proposição (Y∧(¬Z)) é consequência lógica do conjunto T formado pelas outras duas?

(Y∧(¬Z)) é cons. lógica de {(X→Z), ((¬Z)∧(X∨Y))}?

X	Y	Z	$\neg Z$	$X \rightarrow Z$	$(Y \land (\neg Z))$	$(X \lor Y)$	$(\neg Z) \land (X \lor Y)$
0	0	0	1	1	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	0
1	0	0	1	0	0	1	1
1	0	1	0	1	0	1	0
1	1	0	1	0	1	1	1
1	1	1	0	1	0	1	O Centro

(X→Z) é cons. lógica de {(Y∧(¬Z)) , ((¬Z)∧(X∨Y))}?

X	Y	Z	$\neg Z$	$X \rightarrow Z$	$(Y \land (\neg Z))$	$(X \lor Y)$	$(\neg Z) \land (X \lor Y)$
0	0	0	1	1	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	0
1	0	0	1	0	0	1	1
1	0	1	0	1	0	1	0
1	1	0	1	0		1	1
1	1	1	0	1	0	1	O Centro

Consequência Lógica

Seja Γ um conjunto de sentenças e φ uma sentença.
Dizemos que φ é consequência lógica de Γ se toda valoração que satisfaz Γ também satisfaz φ. Usamos a notação Γ |= φ.

Se Γ for um conjunto finito ($\Gamma = \{ \alpha_1, ..., \alpha_n \}$), a leitura de $\Gamma \models \varphi \in (\alpha_1 \land ... \land \alpha_n) \rightarrow \varphi$.

- Prove que o seguinte argumento é válido.
- O unicórnio é bruxaria.

É consequência lógica de:

- O unicórnio, se não é lenda, é mamífero, mas se é lenda, ele é imortal.
- Se o unicórnio é imortal ou mamífero, ele possui chifres.
- O unicórnio, se ele possui chifres, é bruxaria.

Consequência Lógica TEOREMA(1)

 φ é uma conseqüência lógica de Γ se, e somente se, Γ ∪ { ¬φ } é insatisfatível.

TEOREMA(2)

 Seja φ uma proposição. φ é satisfatível se, e somente se, ¬φ é refutável.

PROVA

(parte 1) Se φ é satisfatível então ¬φ é refutável.

- Suponha que φ é satisfatível.
- Ora, então existe w tal que ŵ(φ) = 1.
- Claro que ŵ(¬φ) = 0. Então existe valoração que não satisfaz ¬φ. Logo ¬φ é refutável.

TEOREMA(2)

 Seja φ uma proposição. φ é satisfatível se, e somente se, ¬φ é refutável.

PROVA

(parte 2) Se ¬φ é refutável então φ é satisfatível.

- Suponha que ¬φ seja refutável.
- Ora, então existe w tal que ŵ(¬φ) = 0.
- Claro que ŵ(φ) = 1. Então existe valoração que satisfaz φ. Logo φ é satisfativel.