有限オートマトン

離散数学・オートマトン 2021 年後期 佐賀大学理工学部 只木進一

- 1 序論
- ② 決定性有限オートマトン
- ③ 受理言語
- ⑤ 疑問

オートマトンと形式言語

- オートマトン (Automaton)
 - 計算の抽象モデル
 - 「計算する」とは何か?
- 形式言語 (Formal Language)
 - オートマトンの入力として正しい言語
 - 文法を数学的に分析

決定性有限オートマトン

Deterministic Finite State Automata: DFA

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle \tag{1}$$

Q:内部状態の有限集合

∑:入力アルファベット、つまり入力記号の集合

• $\delta: Q \times \Sigma \to Q$: 状態遷移関数

• $q_0 \in Q$:初期状態

F⊆Q: 受理状態の集合

遷移関数

12 15 15 3541		
δ	а	b
q_0	q_2	q_1
$ q_1 $	q_0	q_0
q_2	q_0	q_0

動作イメージ

テープヘッドが移動して、テープ上の文字を読み取る。

\vdash_M の推移的閉包と受理言語

• 入力 $w\in \Sigma^*(\Sigma^*$ は Σ の要素の 0 個以上の列) によって、初期 状態 q_0 から状態 q へ遷移し、テープに残っている文字列が w'

$$(q_0, w) \vdash_M^* (q, w') \tag{2}$$

• 入力 w を受理

$$(q_0, w) \vdash_M^* (q_F, \epsilon), \quad q_F \in F$$
 (3)

受理言語

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash_M^* (q_F, \epsilon), \quad q_F \in F \}$$
 (4)

DFA が受理言語を定める

$$(q_0, \mathsf{aaaba}) \vdash (q_2, \mathsf{aaba}) \vdash (q_0, \mathsf{aba})$$
 $\vdash (q_2, \mathsf{ba}) \vdash (q_0, \mathsf{a}) \vdash (q_2, \epsilon)$
 $(q_0, \mathsf{babaa}) \vdash (q_1, \mathsf{abaa}) \vdash (q_0, \mathsf{baa})$
 $\vdash (q_1, \mathsf{aa}) \vdash (q_0, \mathsf{a}) \vdash (q_2, \epsilon)$

8/25

受理する入力の例

a,aaa,aba,baa,bba, aaaaa,aaaba,abaaa, babaa,babba,bbbaa,bbbba

$$Q = \{q_0, q_1, q_2, q_3\}$$

 $\Sigma = \{a, b\}$
 $F = \{q_3\}$

遷移関数

δ	а	b	
q_0	q_2	q_1	
$ q_1 $	q_3	q_0	
q_2	q_0	q_3	
q_3	q_1	q_2	

例 2:動作例

$$\begin{split} (q_0, \mathsf{aaaaab}) \vdash (q_2, \mathsf{aaaab}) \vdash (q_0, \mathsf{aaab}) \vdash (q_2, \mathsf{aab}) \\ \vdash (q_0, \mathsf{ab}) \vdash (q_2, \mathsf{b}) \vdash (q_3, \epsilon) \\ (q_0, \mathsf{abbaba}) \vdash (q_2, \mathsf{bbaba}) \vdash (q_3, \mathsf{baba}) \vdash (q_2, \mathsf{aba}) \\ \vdash (q_0, \mathsf{ba}) \vdash (q_1, \mathsf{a}) \vdash (q_3, \epsilon) \end{split}$$

例 2: 受理する文字列例(長さ5まで)

a, ab, ba, aaa, abb, bab, bba, aaab, aaba, abaa, abbb, baaa, babb, bbab, bbab, aaaaa, aaabb, aabab, aabba, abaab, ababa, abbaa, abbbb, bbaaa, babbb, bbaaa, bbabb, bbba

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_4\}$$

遷移関数

定沙因奴			
0	1		
q_2	q_1		
	q_3		
	q_4		
q_2	q_0		
q_4	q_4		
	q_2		

例 3:動作例

$$\begin{aligned} (q_0,1110101) &\vdash (q_1,110101) \vdash (q_3,10101) \vdash (q_0,0101) \\ &\vdash (q_2,101) \vdash (q_4,01) \vdash (q_4,1) \vdash (q_4,\epsilon) \\ (q_0,1101010) &\vdash (q_1,101010) \vdash (q_3,01010) \vdash (q_2,1010) \\ &\vdash (q_4,010) \vdash (q_4,10) \vdash (q_4,0) \vdash (q_4,\epsilon) \end{aligned}$$

例 3: 受理する文字列例(長さ5まで)

01, 010, 011, 0100, 0101, 0110, 0111, 1101, 01000, 01001, 01010, 01011, 01100, 01101, 01111, 11010, 11011, 11101

非決定性有限オートマトン

Non-deterministic Finite State Automata: NFA

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle \tag{5}$$

- Q:内部状態の集合
- ∑:入力アルファベット
- $\delta: Q \times \Sigma \to 2^Q$: 状態遷移関数。 2^Q は、Q のべき集合、つまり Q の部分集合の族。遷移先が 複数であることに注意。
- $q_0 \in Q$:初期状態
- F ⊂ Q : 受理状態

$$Q = \{q_0, q_1, q_2\}, \quad \Sigma = \{0, 1\}, \quad F = \{q_2\}$$

δ	0	1
q_0	$\{q_0\}$	$\{q_0,q_1\}$
$ q_1 $	Ø	$\{q_2\}$
q_2	$\{q_2\}$	$\{q_2\}$

動作例: 入力 1010110

入力が引き起こす状態遷移のうちで、受理状態に至る場合があれば、その入力を受理する。

長さ5以下の受理入力

11, 011, 110, 111, 0011, 0110, 0111, 1011, 1100, 1110, 1111, 00011, 00110, 00111, 01011, 01100, 01110, 01111, 10011, 10110, 10111, 11000, 11011, 11100, 11111

$$Q = \left\{q_0, q_1, q_2, q_2\right\}, \quad \Sigma = \left\{0, 1\right\}, \quad F = \left\{q_3\right\}$$

δ	0	1
q_0	$ \{q_1, q_2\}$	$\{q_0\}$
$ q_1 $	Ø	$\{q_1,q_3\}$
$ q_2 $	$\{q_3\}$	$\{q_2\}$
q_3	Ø	Ø

長さ5以下の受理入力

00, 01, 010, 011, 100, 101, 0110, 0111, 1010, 1011, 1100, 1101, 01110, 01111, 10110, 10111, 11010, 11011, 11100, 11101

動作例:入力 11011

動作例:入力 aabba

疑問

- オートマトンが受理する文字列の集合を記述する方法
 - 文字列パターンを記述する方法
- NFA と DFA は本質的に異なるのか
 - 受理する文字列集合は異なるのか