Modéliser le comportement statique des systèmes mécaniques

- Concours Centrale Supelec PSI 2018

Industrielles de

Sciences

1 Contexte et étude préliminaire

Objectif Valider la pertinence de l'utilisation d'une machine spéciale appelée tour en fosse pour le reprofilage des roues ferroviaires.

Ouestion 1

- Pour la méthode a, $t_{i1} = t_3 + t_4 = 14 \text{ h} = 840 \text{ min}$.
- Pour la méthode *b*, $t_{i2} = (6 \times 3 \times 2) t_5 + t_6 = 545 \text{ min.}$

Le gain de temps $\Delta t_i = t_{i1} - t_{i2} = 295 \, \text{min}$ soit 4 h et 55 min. C'est autant de temps gagner sur l'exploitation de la rame.

2 Analyse de l'entrainement en rotation d'une roue

- 2.1 Description fonctionnelle et structurelle du tour en fosse
- 2.2 Modélisation du dispositif de mise en rotation d'une roue

Objectif Vérifier que la modélisation et les hypothèses retenues permettent de déterminer toutes les actions mécaniques nécessaires pour dimensionner les actionneurs des chaines d'énergie.

Question 2 À partir des informations données, on peut réaliser le graphe de structure suivant.

1

Méthode cinématique

• Nombre cyclomatique $\gamma = L - S + 1$ avec L = 5 liaisons et S = 4 solides, on a donc $\gamma = 5 - 4 + 1 = 2$ et

 $E_c = 12$ équations cinématiques.

- Nombre d'inconnues cinématiques :
 - 3 liaisons pivot : $1 \times 3 = 3$ inconnues;

- 2 liaisons sphère-plan: $5 \times 2 = 10$ inconnues;
- au total : $I_c = 13$ inconnues cinématiques.
- Mobilités:
 - mobilités utiles : $m_u = 2$: entrainement des deux moteurs;
 - mobiltés internes : en considérant le glissement entre la roue et les rouleaux, la roue 3, ainsi que re_1 et re_2 les rouleaux peuvent tourner librement. On a donc : $m_i = 3$.
 - au final, selon les hypothèses, $m = m_i + m_u = 5$
- On a donc $h = m I_c + E_c = 5 13 + 12 = 4$.

Méthode statique

- 3 solides peuvent être isolés, $E_s = 3 \times 6 = 18$ équations statiques.
- Nombre d'inconnues statiques :
 - 3 liaisons pivot : $5 \times 3 = 15$ inconnues;
 - 2 liaisons sphère-plan : $1 \times 2 = 2$ inconnues;
 - au total : $I_s = 17$ inconnues statiques.
- Mobilités : $m = m_i + m_u = 5$.
- On a donc $h = m E_S + I_s = 5 18 + 17 = 4$.

Question 3 Condition de roulement sans glissement en $I_1: \overline{V(I_1 \in 3/re_1)} = \overrightarrow{0} \Leftrightarrow \overline{V(I_1 \in 3/0)} - \overline{V(I_1 \in re_1/0)} = \overrightarrow{0}$. Par suite,

•
$$\overrightarrow{V(I_1 \in 3/0)} = \overrightarrow{V(O_3 \in 3/0)} + \overrightarrow{I_1O_3} \wedge \overrightarrow{\Omega(3/0)} = R\overrightarrow{z_1} \wedge \omega_3 \overrightarrow{y_0} = -R\omega_3 \overrightarrow{x_1};$$

•
$$\overrightarrow{V(I_1 \in re_1/0)} = \overrightarrow{V(O_1 \in 3/0)} + \overrightarrow{I_1O_1} \wedge \overrightarrow{\Omega(3/0)} = -R_{re} \overrightarrow{z_1} \wedge \omega_{re_1} \overrightarrow{y_0} = R_{re} \omega_{re_1} \overrightarrow{x_1}.$$

On a donc
$$-R\omega_3 - R_{re}\omega_{re_1} = 0 \Leftrightarrow \frac{\omega_3}{\omega_{re_1}} = -\frac{R_{re}}{R}$$
.

De même en exploitant le roulement sans glissement en I_2 , $\frac{\omega_3}{\omega_{res}} = -\frac{R_{re}}{R}$.

La condition de roulement sans glissement supprime les 3 mobilités internes; donc m' = 2 et h' = 1.

Question 4 Dans les conditions précédentes, les couples \mathcal{C}_{mi} ne peuvent pas être déterminés. Il faudrait imposer un taux de rotation rigoureusement identique pour ω_{re_1} et ω_{re_2} .

2.3 Motorisation du dispositif de mise en rotation d'une roue

Objectif Analyser la chaine d'entrainement en rotation d'une roue et vérifier le choix de la machine électrique.

Question 5 On conserve l'hypothèse que sre est supposé fixe par rapport au bâti. On a $E_1 = M_1 + R_1 + re_1$. Ces 3 solides sont en liaison pivot par rappor tau bâti. En conséquence, $T(E_1/0) = T(M_1/0) + T(R_1/0) + T(re_1/0) = \frac{1}{2}J_m\omega_m^2 + \frac{1}{2}J_{re}\omega_{re}^2 + \frac{1}{2}J_{re}\omega_{re}^2 = \frac{1}{2}\left(J_m + J_{red}k^2 + J_{re}k^2\left(\frac{R_{re}}{R}\right)^2\right)\omega_m^2$. On a donc $J_{eq} = J_m + J_{red}k^2 + J_{re}k^2\left(\frac{R_{re}}{R}\right)^2$.

Question 6 On prend le graphe de structure suivant :

On isole E_1 . Bilan des puissances internes : les liaisons internes au système considrée sont considérées sans frottement. On a donc : $\mathcal{P}_{int}(E_1) = 0$.

Bilan des puissances externes:

• la puissance développée par le moteur peut s'exprimer par $\mathscr{P}(\text{sre} \to M_1/0) = C_m \omega_m$;

• puissance développée par l'action de 3 sur re₁: $\mathscr{P}(3 \to \text{re}_1/0) = \{ \mathscr{V}(\text{re}_1/0) \} \otimes \{ \mathscr{T}(3 \to \text{re}_1) \} = \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_1} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_2} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_3} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{x_1} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0} \\ k R_{re} \omega_m \overrightarrow{y_0} \end{array} \right\}_{I_4} \otimes \left\{ \begin{array}{c} k \omega_m \overrightarrow{y_0}$

$$\left\{\begin{array}{c} -F_{z1}\overrightarrow{z_1} - F_{x1}\overrightarrow{x_1} \\ \overrightarrow{0} \end{array}\right\}_{I_1} = -kR_{re}F_{x1}\omega_m.$$

On applique le théorème de l'énergie cinétique et $\frac{\mathrm{d}T(E_1/0)}{\mathrm{d}t} = C_m \omega_m - k R_{re} F_{x1} \omega_m \Rightarrow \dot{\omega}_m J_{eq} = C_m - k R_{re} F_{x1}.$

Question 7 En isolant l'ensemble $E_2 = \{M_2 + R_2 + re_2\}$ et en appliquant le théorème de l'énergie cinétique : $\dot{\omega}_m J_{eq} = C_m - k R_{re} F_{x2}$. Comme les caractéristiques des deux chaînes d'entrainement sont les mêmes, on a donc nécessairement $F_{x1} = F_{x2}$.

Question 8 On a vu que $\frac{\omega_3}{\omega_{re_1}} = -\frac{R_{re}}{R}$ de plus $\omega_{re_1} = k\omega_m$; donc $\omega_3 = -k\frac{R_{re}}{R}\omega_m$. En dérivant, on a $\dot{\omega}_3 = -k\frac{R_{re}}{R}\dot{\omega}_m$.

Question 9 **Stratégie:** on cherche à exrimer le couple moteur en fonction des grandeurs du géométriques, inertielles, ... pour cela, la roue étant en pivot d'axe $(O, \overrightarrow{y_0})$ on va réaliser un théorème du moment dynamique en O_3 en projection sur $\overrightarrow{y_0}$.

On isole la roue 3.

On réalise le bilan des actions mécaniques extérieures :

- action de la pivot en O_3 (pas de moment en O_3 en projection sur $\overrightarrow{y_0}$);
- action des liaisons sphères plans :

$$-\overrightarrow{\mathcal{M}(O_3, re_1 \to 3)} \cdot \overrightarrow{y_0} = \left(\overrightarrow{O_3 I_1} \wedge \left(F_{x_1} \overrightarrow{x_1} + F_{z_1} \overrightarrow{z_1}\right)\right) \cdot \overrightarrow{y_0} = \left(-R \overrightarrow{z_1} \wedge \left(F_{x_1} \overrightarrow{x_1} + F_{z_1} \overrightarrow{z_1}\right)\right) \cdot \overrightarrow{y_0} = -R F_{x_1}.$$

$$-\overrightarrow{\mathcal{M}(O_3, re_2 \to 3)} \cdot \overrightarrow{y_0} = \left(\overrightarrow{O_3 I_2} \wedge \left(F_{x_2} \overrightarrow{x_2} + F_{z_2} \overrightarrow{z_2}\right)\right) \cdot \overrightarrow{y_0} = \left(-R \overrightarrow{z_2} \wedge \left(F_{x_2} \overrightarrow{x_2} + F_{z_2} \overrightarrow{z_2}\right)\right) \cdot \overrightarrow{y_0} = -R F_{x_2}.$$

• action de l'outil : $\overrightarrow{\mathcal{M}}(O_3, \text{outil} \to 3) \cdot \overrightarrow{y_0} = (\overrightarrow{O_3C} \wedge \overrightarrow{R}(\text{outil} \to 3)) \cdot \overrightarrow{y_0} = ((-\lambda(t)\overrightarrow{y_0} - R_C(t)\overrightarrow{z_0}) \wedge \overrightarrow{R}(\text{outil} \to 3)) \cdot \overrightarrow{y_0} = (-R_C(t)\overrightarrow{y_0} \wedge \overrightarrow{R}(\text{outil} \to 3)) \cdot \overrightarrow{y_0} = (-R_C(t)\overrightarrow{z_0} \wedge \overrightarrow{R}(\text{outil} \to 3)) \cdot \overrightarrow{y_0} = -R_C(t)(\overrightarrow{y_0} \wedge \overrightarrow{z_0}) \cdot \overrightarrow{y_0} = -R_C(t)(\overrightarrow{y_0} \wedge \overrightarrow{$

Enfin, la roue étant supposée équilibrée, on a $\overrightarrow{\delta}(O_3, 3/0) \cdot \overrightarrow{y_0} = J_3 \vec{\omega}_3$.

Le TMD appliqué en 3 en projection sur $\overrightarrow{y_0}$ est donné par $J_3\ddot{\omega}_3 = -2RF_{x1} + R_C(t)f_{ex}$. De plus, $\omega_3 = -k\frac{R_{re}}{R}\omega_m$ et

$$\dot{\omega}_m J_{eq} = C_m - k R_{re} F_{x1} \Longleftrightarrow F_{x1} = \frac{C_m - \dot{\omega}_m J_{eq}}{k R_{re}}$$

Au final:

$$-J_3k\frac{R_{re}}{R}\dot{\omega}_m = -2R\frac{C_m - \dot{\omega}_m J_{eq}}{kR_{re}} + R_C(t)f_{ex}.$$