1 Questions

For each of the following statements determine if it is true or false, and provide a brief justification for your answer.

It is *guaranteed* that one or more of these questions will be in the test, in *exactly the same form* as they appear below.

1. The set of solutions of the linear system:

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 5 \\ -4 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

is a linear subspace of the euclidean vector space \mathbb{R}^3 .

2. If $T: \mathbb{R}^3 \to \mathbb{R}^4$ is a linear transformation, then T is one-to-one.

3. If $T: \mathbb{R}^4 \to \mathbb{R}^3$ is a linear transformation, then T is onto.

4. If $T: \mathbb{R}^8 \to \mathbb{R}^5$ is a linear transformation, then T can be onto.

5. If $T: \mathbb{R}^8 \to \mathbb{R}^5$ is a linear transformation, then T can be one-to-one.

6. If $T: \mathbb{R}^4 \to \mathbb{R}^4$ is a linear transformation, then T can be invertible.

7. If a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is one-to-one, then T must also be onto.

8. If A and B are $n \times n$ matrices, then $(A+B)(A-B) = A^2 - B^2$.

9. If A is an $n \times n$ matrix and $A^3 = 0$, then A = 0.

10. If A and B are $n \times n$ matrices, then $(AB)^T = B^T A^T$

11. If A is an invertible $n \times n$ matrix, then the number of solutions to $A\mathbf{x} = \mathbf{b}$ is always greater than zero.

12. If the columns of an $n \times n$ matrix A span \mathbb{R}^n , then A is nonsingular.

13. If A and B are invertible, then $(AB)^{-1} = A^{-1}B^{-1}$.

14. The matrix

$$\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$

is invertible.

15. If A is a 5×3 matrix, then null (A) forms a subspace of \mathbb{R}^5 .

16. If A is a 5×3 matrix, then null (A) forms a subspace of \mathbb{R}^3 .

- 17. If $T: \mathbb{R}^5 \to \mathbb{R}^8$ is a linear transformation, then range (T) forms a subspace of \mathbb{R}^8 .
- 18. The dimension of a subspace of \mathbb{R}^5 is one of the integers 1, 2, 3 or 4.
- 19. Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be any set of 3 vectors in \mathbb{R}^5 . Then, it is always possible to add 2 vectors to the set to form a basis of \mathbb{R}^5 .
- 20. The only subspace of \mathbb{R}^8 that has dimension 8 is \mathbb{R}^8 itself.
- 21. \mathbb{R}^3 has infinitely many subspaces of dimension 2.
- 22. The rank of a matrix cannot exceed the number of rows of A.
- 23. If A is not a square matrix, than the dimension of the row space of A is different of the dimension of the column space of A.
- 24. If the system $A\mathbf{x} = \mathbf{b}$ has solutions, than \mathbf{b} is in the row space of A.
- 25. If A is an $n \times n$ matrix with all positive entries, then det(A) is positive.
- 26. If A is an upper triangular square matrix, then $det(A) \neq 0$.
- 27. If A and B are $n \times n$ matrices, then $\det(A + B) = \det(A) + \det(B)$.
- 28. If A is an $n \times n$ matrix and c is a scalar, then $\det(cA) = c^n \det(A)$
- 29. If a and b are real numbers that are not both zero, then the matrix

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

is nonsingular.

30. Let A be an $n \times n$ matrix such that $\det(A) \neq 0$. Then the columns of A are a basis for \mathbb{R}^n .