Ensemble learning Mesures d'évaluation Multi-classe

Cours 6 ARF Master DAC

Nicolas Baskiotis

nicolas.baskiotis@lip6.fr
http://webia.lip6.fr/~baskiotisn

équipe MLIA, Laboratoire d'Informatique de Paris 6 (LIP6) Sorbonne Université - Université Pierre et Marie Curie (UPMC)

S2 (2017-2018)

Ensemble Learning

Principe

- Idée simple : considérer plusieurs (beaucoup) de classifieurs
- Avantage : réduit la variance si les classifieurs sont indépedants ! $Var(\hat{X}) = \frac{Var(X)}{r}$
- Mais qu'un jeu de données disponible...
- ⇒ Différentes techniques d'échantillonage et d'aggrégation pour varier les classifieurs appris
- Inférence : vote majoritaire pondéré sur l'ensemble des classifieurs.

Plan

- Bagging
- Boosting
- Mesures d'évaluation
- Problème multi-classes

Bagging

Bootstrap Aggregation

Breiman, 1994

• constitution des *N* ensembles par tirage aléatoire **avec remise** d'un ensemble de même taille que l'original :

$$E\Rightarrow\{E_1,E_2,\ldots E_N\}, \text{ avec } |E_i|=|E|=N$$

- Apprendre $f_1, ... f_N$ sur ces ensembles d'apprentissage
- Classer \mathbf{x} par moyennage ou vote de $f_1(\mathbf{x}), \dots f_N(\mathbf{x})$
- Chaque donnée a une probabilité de $(1-1/n)^n$ d'être dans un E_i donné.
- \Rightarrow E_i contient en moyenne $1 (1 1/n)^n\% = 63.2\%$ des instances initiales.

Un exemple : plusieurs arbres = une fôret

Principe

- A l'origine pour des considérations computationelles
- Deux facteurs d'aléa :
 - chaque arbre est appris sur un ensemble bootstrap de l'initial (bagging)
 - à chaque nœud, un sous-ensemble des dimensions est considéré uniquement, tiré aléatoirement.
- Décision au vote majoritaire (ou en moyenne pour la régression).
- Remarques : Effet de la profondeur ? Sur-apprentissage ?

Plan

- Bagging
- Boosting
- Mesures d'évaluation
- Problème multi-classes

Intuition

Classification de spam

Contrainte : utiliser que des règles atomiques sur les mots présents dans les emails

- Trouver le mot le plus fréquent parmi les spams et décider que tous ses emails contenant ce mot seront en spam
- Si l'email contient buy → score = -1
- mais certains emails contiennent buy sans que ce soit des spams
 corriger la règle
- Trouver le mot le plus fréquent parmi les non spams qui contiennent buy et donner un score de +2 à cette règle
- et ainsi de suite, corriger maintenant les spams qui contiennent . .

Intuition

Classification de spam

Contrainte : utiliser que des règles atomiques sur les mots présents dans les emails

- Trouver le mot le plus fréquent parmi les spams et décider que tous ses emails contenant ce mot seront en spam
- Si l'email contient buy → score = -1
- mais certains emails contiennent buy sans que ce soit des spams
 corriger la règle
- Trouver le mot le plus fréquent parmi les non spams qui contiennent buy et donner un score de +2 à cette règle
- et ainsi de suite, corriger maintenant les spams qui contiennent . . .

Intuition

Classification de spam

Contrainte : utiliser que des règles atomiques sur les mots présents dans les emails

- Trouver le mot le plus fréquent parmi les spams et décider que tous ses emails contenant ce mot seront en spam
- Si l'email contient buy → score = -1
- mais certains emails contiennent buy sans que ce soit des spams
 ⇒ corriger la règle
- Trouver le mot le plus fréquent parmi les non spams qui contiennent buy et donner un score de +2 à cette règle
- et ainsi de suite, corriger maintenant les spams qui contiennent . . .

Principe

- Pourquoi faire de l'aléatoire quand on connait où on fait l'erreur ?
- Trouver plein de petits classifieurs approximativement bons sur de petites régions de l'espace.
- Idée : agréger plein de petits classifieurs, appris séquentiellement, chacun corrigeant les erreurs des précédents.
- ⇒ Besoin de classifieurs faibles ! (pourquoi ?)

Questions

Qu'est ce qu'un classifieur faible ?

Principe

- Pourquoi faire de l'aléatoire quand on connait où on fait l'erreur ?
- Trouver plein de petits classifieurs approximativement bons sur de petites régions de l'espace.
- Idée : agréger plein de petits classifieurs, appris séquentiellement, chacun corrigeant les erreurs des précédents.
- ⇒ Besoin de classifieurs faibles ! (pourquoi ?)

Questions

- Qu'est ce qu'un classifieur faible ?
- ⇒ classifieur peu expressif, arbres de faibles profondeurs, perceptrons . . .
- Comment prendre en compte les erreurs ?

Principe

- Pourquoi faire de l'aléatoire quand on connait où on fait l'erreur ?
- Trouver plein de petits classifieurs approximativement bons sur de petites régions de l'espace.
- Idée : agréger plein de petits classifieurs, appris séquentiellement, chacun corrigeant les erreurs des précédents.
- ⇒ Besoin de classifieurs faibles ! (pourquoi ?)

Questions

- Qu'est ce qu'un classifieur faible ?
- ⇒ classifieur peu expressif, arbres de faibles profondeurs, perceptrons . . .
- Comment prendre en compte les erreurs ?
- \Rightarrow Considérer une distribution des exemples w_t différente à chaque pas de temps
- Comment combiner les classifieurs ?

Principe

- Pourquoi faire de l'aléatoire quand on connait où on fait l'erreur ?
- Trouver plein de petits classifieurs approximativement bons sur de petites régions de l'espace.
- Idée : agréger plein de petits classifieurs, appris séquentiellement, chacun corrigeant les erreurs des précédents.
- ⇒ Besoin de classifieurs faibles ! (pourquoi ?)

Questions

- Qu'est ce qu'un classifieur faible ?
- \Rightarrow classifieur peu expressif, arbres de faibles profondeurs, perceptrons \dots
- Comment prendre en compte les erreurs ?
- \Rightarrow Considérer une distribution des exemples w_t différente à chaque pas de temps
- Comment combiner les classifieurs ?
- ⇒ Somme pondérée des classifieurs
- Combien de classifieurs apprendre ?

Boosting: déroulement

Initialisation

- $E = \{(x^i, y^i) \in \mathbb{R}^d \times \{-1, 1\}\}$ un ensemble de N données
- Distribution sur les données \to un **poids** w(i) sur chaque exemple i, avec la contrainte $\sum_{i=0}^N w(i) = 1$
- distribution uniforme au début : $w_0(i) = \frac{1}{N}$
- Pour un classifieur $f(\mathbf{x})$, l'erreur est :

$$\frac{1}{N} \sum_{i=0}^{N} w(i) \ell(f(\mathbf{x}^{i}), y^{i})$$

• Définir une famille de classifieurs faibles $H = \{h : \mathbb{R}^d \to \{-1, +1\} \}$

AdaBoost

Principe

- $E = \{x^i, y^i\}$ un ensemble de données, distribution $w_t(i) = w_t^i$ sur ces données au temps $t : \sum_i w_t^i = 1$
- $\mathbf{h} = \{h_1, \cdots, h_T\}$ un ensemble de classifieurs,
- $\alpha = \{\alpha_1, \dots, \alpha_T\}$ un ensemble de réels,
- $f_T(x) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x}) = \langle \alpha, \mathbf{h} \rangle$, $F_T(\mathbf{x}) = sign(f_T(\mathbf{x}))$ le classifieur pondéré.
- Objectif: trouver $(\mathbf{h}^{\star}, \boldsymbol{\alpha}^{\star}) = \operatorname{argmin}_{\mathbf{h}, \boldsymbol{\alpha}} \frac{1}{N} \sum_{i} 1_{F(\mathbf{x}^{i}) \neq y^{i}}$

Algorithme

- **①** Initialiser la distribution : $w_0(i) = \frac{1}{N}$
- 2 Apprendre h_t sur w_t
- **3** Calculer l'erreur $\epsilon_t = \sum_i w_t(i) 1_{h_t(\mathbf{x}^i) \neq y^i}$
- Fixer $\alpha_t = \frac{1}{2}ln(\frac{1-\epsilon_t}{\epsilon_t})$
- **1** Mettre à jour $w_{t+1}(i) = \frac{1}{Z_t} w_t(i) e^{-\alpha_t y_i h_t(\mathbf{x}^i)}$

Remarques

Considérations sur les poids

- $\epsilon_t < \frac{1}{2} \Rightarrow \alpha_t = \frac{1}{2} ln(\frac{1-\epsilon_t}{\epsilon_t}) > 0$
- $\epsilon(h_a) < \epsilon(h_b) \Rightarrow \alpha_a > \alpha_b$
- $\bullet \ e^{-y\alpha_t h_t(\mathbf{x})} = \begin{cases} e^{-\alpha_t} < 1 & \text{ si } h_t(\mathbf{x}) = y \\ e^{\alpha_t} > 1 & \text{ si } h_t(\mathbf{x}) \neq y \end{cases}$

Considérations sur la distribution

- $w_{t+1}(i) = \frac{1}{Z_t} w_t(i) e^{-\alpha_t y^i h_t(\mathbf{x}^i)} = \frac{1}{Z_t Z_{t-1}} w_{t-1}(i) e^{-y^i (\alpha_t h_t(\mathbf{x}^i) + \alpha_{t-1} h_{t-1}(\mathbf{x}^i))}$ $\cdots = \frac{1}{Z_t \cdots Z_1} w_1(i) e^{-y^i (\alpha_t h_t(\mathbf{x}^i) + \cdots + \alpha_1 h_1(\mathbf{x}^i))}$
- On montre que $Z = Z_1 \cdots Z_t = \frac{1}{N} \sum_{i=1}^N e^{-y^i f_t(\mathbf{x}^i)}$
- Et que $Err(F) \leq Z$

Illustrations

Conclusions

Sur le bagging

- Très utilisé! (kinect, les gagnants de netflix)
- Facile à mettre en place, peut traiter de grosses masses de données (parallélisation), en apprentissage et en inférence

Boosting

- Classifieurs faibles : Stump (arbre à un niveau), naive bayes, perceptron,...
- Adaptable sous beaucoup d'autres formes (gradient tree boosting, gradient boosting)
- Adapté au très grande masse de données et données sparse (ciblage publicitaire par exemple)

Plan

- Bagging
- Boosting
- Mesures d'évaluation
- Problème multi-classes

Mesures d'évaluation

Objectifs

- Estimer la qualité des prédictions fournies par une approche
- Comparer des approches entre elles sur un problème donné
- Comparer des algorithmes sur un ensemble de problèmes

Le résultat dépend

- Choix de la mesure
- Choix du protocole de test (paramétrisation)
- Choix de l'échantillage

Une mesure unique?

Tutorial icmla 2011, N. Japkowicz

4 D > 4 A > 4 B > 4 B >

Matrice de confusion

Contexte

- Un problème de classification binaire, étiquettes positif/négatif
- TP: Vrai positif (True positive), TN: Vrai négatif (True negative)
- FP : Faux positif (False positive), FN : Faux négatif (False negative)

Matrice de confusion

	Label +	Label –
f(x) = +1	TP	FP
f(x) = -1	FN	TN
	P = TP + FN	N = FP + TN

Mesures dérivées

• Erreur 0-1: $\frac{FP+FN}{P+N}$

• Précision : TP

• Rappel (TP rate) : $\frac{TP}{R}$

• FP Rate : $\frac{FP}{N}$

• $F_{\beta} = (1 + \beta^2) \frac{\text{precision} \times \text{rappel}}{\beta^2 \text{precision} + \text{rappel}}$

Exemple (ou le problème du déséquilibre)

	Label +	Label –
f(x) = +1	200	100
f(x) = -1	300	400
	500	500

• Erreur : 60%

• Précision : 40%, Rappel : 40%

• F₁: 0.4

	Label +	Label –
f(x) = +1	200	100
f(x) = -1	300	400
	500	500

• Erreur : 60%

Précision : 66%, Rappel : 40%

• $F_1:0.5$

	Label +	Label –
f(x) = +1	400	300
f(x) = -1	100	200
	500	500

• Erreur : 60%

• Précision : 66%, Rappel : 80%

• $F_1: 0.66$

	Label $+$	Label –
f(x) = +1	200	100
f(x) = -1	300	0
	500	100

• Erreur : 66%

Précision : 66%, Rappel : 40%

• $F_1:0.5$

Courbe ROC et AUC

- Courbe ROC : TP rate en fonction du FP rate
- permet de calibrer un classifieur
- mesure d'intérêt : AUC, aire sous la courbe

Comment comparer deux algos?

Test statistique

Plan

- Bagging
- Boosting
- Mesures d'évaluation
- Problème multi-classes

Cas usuel

Contexte

- Classes : $C = \{C_1, C_2, \dots, C_K\}$
- Classification binaire ne marche pas directement

Approches "naïves" utilisant la classification binaire

- One-versus-one : matrice $M_{ij} = C_i$ vs C_j
- One-versus-all : vecteur $M_i = C_i$ vs $\{C_{j\neq i}\}$

Adaptation de la classification binaire

- Arbres, forets, k-nn: adaptation triviale
- SVMs multi-classes
- Réseau de neuronnes : vecteur de sortie \mathbf{y} et softmax : $p(y_j) = \frac{e^{-y_j}}{\sum_j e^{-y_i}}$

Très grand nombre de classes

Problèmes des approches usuelles

- Coût d'une classification τ
- au mieux linéaire en fonction de K : temps τK
- grand nombre de dimensions
- ⇒ passage à l'échelle difficile en temps de calcul et en perfs

Deux grandes familles d'approche

- Approche *flat* : plonger les classes dans un espace $\mathbb{R}^{K'}$, K' << K Intérêt : $K'\tau$ pour trouver la bonne classe
- Approche hiérarchique : organiser les classes hiérarchiquement dans un arbre de classes
 - Intérêt : inférence en $log(K)\tau$ pour un arbre binaire

Approches Error Correcting Output Code (ECOC)

Principe

- Plonger les classes dans $\mathbb{R}^{K'}$, K' << K
- Codage : une classe \Leftrightarrow un code dans K'
- Inférence = codage : $f: X \to K'$, f(x) donne un code dans K'
- Décodage : classe dont le code est le plus proche

En pratique

- Un code c^i : un vecteur ternaire de K: $(-1,0,1,\ldots,0,1)$
- A chaque code, un classifieur binaire f_i qui sépare $\{C_j|c_j^i>0\}$ et $\{C_j|c_j^i<0\}$
- Matrice M de codage de K' : matrice K' imes K des $M_{ij} = c^i_j$
- Codage d'une classe C_j : $(c_j^1, c_j^2, \dots c_j^{K'})$
- codage d'un exemple : $(f_1(x), f_2(x), \dots, f_{k'}(x))$
- Inférence : $argmin_i d(f(x), M_{.i})$ en $O(K'\tau + K)$

Approche hiérarchique

Objectif

- Construire un arbre de partitionnement (hard ou soft) des classes
- Pour un nœud n :
 - un ensemble C_n de classes, pour les fils n_1, \ldots, n_c sous-ensembles $C'_{n_1}, \ldots, C'_{n_c} \subset C_n$, et $\bigcup C'_{n_j} = C_n$
 - un classifieur f_n à valeur dans $\{n_1, \ldots, n_c\}$
- Racine : ensemble de toutes les classes, feuilles : une seule classe
- Classification : un chemin dans l'arbre (en utilisant f_n), classe de la feuille

Problématiques

- Construire l'hiérarchie :
 - information a priori sur les classes : ontologie ou hiérarchie des classes
 - apprentissage de l'hiérarchie : clustering, approches gloutonnes
- Apprendre les classifieurs : problème de données non équilibrés
- Correction des erreurs : redondance des classes dans les nœuds de l'arbre