Midterm Review Session

2.40

40) Discrete entropies

Let X and Y be two independent integer-valued random variables. Let X be uniformly distributed over $\{1, 2, ..., 8\}$, and let $\Pr\{Y = k\} = 2^{-k}, \quad k = 1, 2, 3, ...$

- a) Find H(X)
- b) Find H(Y)
- c) Find H(X+Y,X-Y).

40) a) For a uniform distribution, $H(X) = \log m = \log 8 = 3$.

b) For a geometric distribution, $H(Y) = \sum_{k} k2^{-k} = 2$. (See solution to problem 2.1

c) Since $(X,Y) \to (X+Y,X-Y)$ is a one to one transformation, H(X+Y,X-Y) = H(X,Y) = H(X) + H(Y) = 3 + 2 = 5.

3.5

5) Sets defined by probabilities.

Let X_1, X_2, \ldots be an i.i.d. sequence of discrete random variables with entropy H(X). Let

$$C_n(t) = \{x^n \in \mathcal{X}^n : p(x^n) \ge 2^{-nt}\}$$

denote the subset of *n*-sequences with probabilities $\geq 2^{-nt}$.

a) Show $|C_n(t)| \leq 2^{nt}$.

b) For what values of t does $P(X^n \in C_n(t)) \to 1$?

5) a) Since the total probability of all sequences is less than 1, $|C_n(t)| \min_{x^n \in C_n(t)} p(x^n) \le 1$, and hence $|C_n(t)| < 2^{nt}$.

b) Since $-\frac{1}{n}\log p(x^n) \to H$, if t < H, the probability that $p(x^n) > 2^{-nt}$ goes to 0, and if t > H, the probability goes to 1.

3.8

8) Products. Let

$$X = \begin{cases} 1, & \frac{1}{2} \\ 2, & \frac{1}{4} \\ 3, & \frac{1}{4} \end{cases}$$

Let X_1, X_2, \ldots be drawn i.i.d. according to this distribution. Find the limiting behavior of the product

$$(X_1X_2\cdots X_n)^{\frac{1}{n}}$$
.

8) Products. Let

$$P_n = (X_1 X_2 \dots X_n)^{\frac{1}{n}}. {156}$$

Then

$$\log P_n = \frac{1}{n} \sum_{i=1}^n \log X_i \to E \log X, \tag{157}$$

with probability 1, by the strong law of large numbers. Thus $P_n \to 2^{E \log X}$ with prob. 1. We can easily calculate $E \log X = \frac{1}{2} \log 1 + \frac{1}{4} \log 2 + \frac{1}{4} \log 3 = \frac{1}{4} \log 6$, and therefore $P_n \to 2^{\frac{1}{4} \log 6} = 1.565$.

4.13

13) The past has little to say about the future. For a stationary stochastic process $X_1, X_2, \dots, X_n, \dots$, show that

$$\lim_{n \to \infty} \frac{1}{2n} I(X_1, X_2, \dots, X_n; X_{n+1}, X_{n+2}, \dots, X_{2n}) = 0.$$
(192)

Thus the dependence between adjacent n-blocks of a stationary process does not grow linearly with n.

13)

$$I(X_{1}, X_{2}, ..., X_{n}; X_{n+1}, X_{n+2}, ..., X_{2n})$$

$$= H(X_{1}, X_{2}, ..., X_{n}) + H(X_{n+1}, X_{n+2}, ..., X_{2n}) - H(X_{1}, X_{2}, ..., X_{n}, X_{n+1}, X_{n+2}, ..., X_{2n})$$

$$= 2H(X_{1}, X_{2}, ..., X_{n}) - H(X_{1}, X_{2}, ..., X_{n}, X_{n+1}, X_{n+2}, ..., X_{2n})$$
(271)

since $H(X_1, X_2, \dots, X_n) = H(X_{n+1}, X_{n+2}, \dots, X_{2n})$ by stationarity. Thus

$$\lim_{n \to \infty} \frac{1}{2n} I(X_1, X_2, \dots, X_n; X_{n+1}, X_{n+2}, \dots, X_{2n})$$

$$= \lim_{n \to \infty} \frac{1}{2n} 2H(X_1, X_2, \dots, X_n) - \lim_{n \to \infty} \frac{1}{2n} H(X_1, X_2, \dots, X_n, X_{n+1}, X_{n+2}, \dots, X_{2n})$$

$$= \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots, X_n) - \lim_{n \to \infty} \frac{1}{2n} H(X_1, X_2, \dots, X_n, X_{n+1}, X_{n+2}, \dots, X_{2n})$$
(272)

Now $\lim_{n\to\infty}\frac{1}{n}H(X_1,X_2,\ldots,X_n)=\lim_{n\to\infty}\frac{1}{2n}H(X_1,X_2,\ldots,X_n,X_{n+1},X_{n+2},\ldots,X_{2n})$ since both converge to the entropy rate of the process, and therefore

$$\lim_{n \to \infty} \frac{1}{2n} I(X_1, X_2, \dots, X_n; X_{n+1}, X_{n+2}, \dots, X_{2n}) = 0.$$
(274)

4.31

31) Markov.

Let $\{X_i\}$ ~ Bernoulli(p). Consider the associated Markov chain $\{Y_i\}_{i=1}^n$ where $Y_i=$ (the number of 1's in the current run of 1's). For example, if $X^n=101110\ldots$, we have $Y^n=101230\ldots$

- a) Find the entropy rate of X^n .
- b) Find the entropy rate of Y^n .
- 31) Markov solution.
 - a) For an i.i.d. source, H(X) = H(X) = H(p).
 - b) Observe that X^n and Y^n have a one-to-one mapping. Thus, $H(\mathcal{Y}) = H(\mathcal{X}) = H(p)$.