1_Irreversible Thermodynamics & Non-equilibrium Thermodynamics

Link: https://www.youtube.com/watch?
v=yBcz5Zaldus&list=PLdBDmcnzLC_ZMUWMdy7SmcTgnnzyiRpql

X => J = LX = ariving force

Transport Coefficient

dm: rate of change so that it can explain the effect of Change of temperature on the system.

semi-permeable

Example of conjugate flows.

e anducting wire.

 ΔE , ΔT => driving force ΔE >> $J_e = I$ potential difference ΔT >> Entropy flow J_s Heat flux J_a They are considered as

conjugate flow LI& Js)

Applying Onsager Relation: $J_s = 211 \Delta E + 212 \Delta T$ Conjugate flow $J_s = 221 \Delta E + 222 \Delta T$

 $L_{12} = L_{21}$ Influence of [on 2 is same as the influence of 2 on 1.