求解 Poisson 方程五点差分格式的快速算法以及数值比较实验

林元莘

2024年4月2日

摘要

在几周的学习中,我们学习了如何运用五点差分格式求解 Poisson 方程。并且通过矩阵函数的变换,引出了快速 DST 算法来求解该方程。本次大作业旨在利用 MATLAB,对各个五点差分格式求解方法进行对比,探究 DST 算法的高效性,通过误差分析,了解五点差分格式的收敛阶。并且通过一定的变换,将该方法推广至非齐次边界条件以及一般矩形域。

关键词: Poission 方程; 五点差分格式; 快速 DST

1 实验目的

- 1、了解并求解 Poisson 方程五点差分格式。
- 2、进行数值实验,比较各种求解算法的精度以及速度。
- 3、探究 DST 方法的收敛性。

2 实验问题

考虑如下带 Dirchlet 边界条件的 Poisson 方程:

$$\begin{cases} -\Delta u = f, & \text{in } \Omega \\ u = \alpha, & \text{on } \partial \Omega \end{cases}$$

其中 $\Omega = (0, a) \times (0, b)$

2 实验问题 2

2.1 五点差分格式

将区域 Ω 沿 x 方向和 y 方向分别进行 I+1 和 J+1 等分,则 x 方向和 y 方向的网格 步长分别 $h = \frac{a}{I+1}, k = \frac{b}{J+1}$,而目标点为 $x_i = ih, y_j = jk, 0 \le i \le I+1, 0 \le j \le J+1$.

考虑 Laplace 算子的五点差分格式:

$$\Delta u(x_i, y_j) \approx \Delta_h u_{ij} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2}$$

则该 Poission 方程的五点差分格式给定如下:

$$\begin{cases}
-\Delta_h u_{ij} = f_{ij}, & \text{in } \Omega \\
u_{ij} = \alpha_{ij}, & \text{on } \partial\Omega
\end{cases}$$

2.1.1 齐次 Dirchlet 边界条件

此时 $a \equiv 0$, 设 a = b = 1, 则等价于求解如下矩阵方程:

$$AU + UB = F$$

其中:

$$A = \frac{1}{h^2} \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}, \quad B = \frac{1}{k^2} \begin{bmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$
$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1J} \\ u_{21} & u_{22} & \dots & u_{2J} \\ \vdots & \vdots & \dots & \vdots \\ u_{I1} & u_{I2} & \dots & u_{IJ} \end{bmatrix}, \quad F = \begin{bmatrix} f_{11} & f_{12} & \dots & f_{1J} \\ f_{21} & f_{22} & \dots & f_{2J} \\ \vdots & \vdots & \dots & \vdots \\ f_{I1} & f_{I2} & \dots & f_{IJ} \end{bmatrix}$$

2.1.2 非齐次 Dirchlet 边界条件

非齐次 Dirchlet 边界条件时, $\alpha = \alpha(x,y)$ 。求解关键在于处理边界情况下的五点差分, 我们举 i=1, j=1 的例子

$$f(x_1, y_1) = -\Delta u(x_1, y_1) \approx -\Delta_h u_{1,1} = \frac{-u_{2,1} + 2u_{1,1} - u_{0,1}}{h^2} + \frac{-u_{1,2} + 2u_{1,1} - u_{1,0}}{k^2}$$

2 实验问题 3

而此时,我们有 $u_{0,1} = \alpha_{0,1}, u_{1,0} = \alpha_{1,0}$ 。则有:

$$\frac{2u_{1,1} - u_{2,1}}{h^2} + \frac{2u_{1,1} - u_{1,2}}{k^2} = f(x_1, y_1) + \frac{1}{h^2}\alpha_{0,1} + \frac{1}{k^2}\alpha_{1,0}$$

推广至矩阵情形如下:

$$AU + UB = \widetilde{F}$$

其中,

$$\widetilde{F} = F + \frac{1}{h^2} \begin{bmatrix} \alpha_{0,1} & \alpha_{0,2} & \dots & \alpha_{0,J-1} & \alpha_{0,J} \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ \alpha_{I+1,1} & \alpha_{I+1,2} & \dots & \alpha_{I+1,J-1} & \alpha_{I+1,J} \end{bmatrix}_{I \times J} + \frac{1}{k^2} \begin{bmatrix} \alpha_{1,0} & 0 & \dots & 0 & \alpha_{1,J+1} \\ \alpha_{2,0} & 0 & \dots & 0 & \alpha_{2,J+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{I-1,0} & 0 & \dots & 0 & \alpha_{I-1,J+1} \\ \alpha_{I,0} & 0 & \dots & 0 & \alpha_{I,J+1} \end{bmatrix}_{I \times J}$$

2.1.3 一般矩形区域 $\Omega = [0, a] \times [0, b]$

设函数 v(x,y) = u(ax,by), 划分数仍为 I+1,J+1 则满足

$$\begin{cases} -\frac{1}{a^2}v_{xx} - \frac{1}{b^2}v_{yy} = -\Delta u(ax, ay) = f(ax, by), & \text{in } [0, 1] \times [0, 1] \\ v(x, y) = \alpha(ax, by), & \text{on } \partial([0, 1] \times [0, 1]) \end{cases}$$

得到新的五点差分格式:

$$-\frac{1}{a^2}v_{xx} - \frac{1}{b^2}v_{yy} \approx \frac{v_{i+1,j} - 2v_{i,j} + v_{i-1,j}}{(ah)^2} + \frac{v_{i,j+1} - 2v_{i,j} + v_{i,j-1}}{(bk)^2}$$

此时,矩阵方程 $AU + BU = \tilde{F}$ 中,

$$A = \frac{1}{(ah)^2} \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}, \quad B = \frac{1}{(bk)^2} \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

 $\widetilde{F} \Leftrightarrow f_{ij} = f(ax_i, by_j), \ \alpha_{ij} = \alpha(ax_i, by_j)$

值得注意的是,在 DST 算法中,特征值 $\lambda = \frac{4}{(ah)^2} \left[\sin^2 \frac{\pi}{2(I+1)}, \sin^2 \frac{2\pi}{2(I+1)}, \dots, \sin^2 \frac{I\pi}{2(I+1)} \right],$ $\mu = \frac{4}{(bk)^2} \left[\sin^2 \frac{\pi}{2(J+1)}, \sin^2 \frac{2\pi}{2(J+1)}, \dots, \sin^2 \frac{J\pi}{2(J+1)} \right].$

2.2 快速 DST 算法

Algorithm 1 求解齐次边界条件 Poission 方程五点差分格式的快速 DST 方法

输入: 划分数 I+1, J+1, 步长 $h=\frac{1}{I+1}, k=\frac{1}{J+1}$, 函数 f(x,y).

输出: 解函数矩阵 $U = [u_{i,j}]$

步骤一: 形成向量 $\lambda = \frac{4}{h^2} \left[\sin^2 \frac{\pi}{2(I+1)}, \sin^2 \frac{2\pi}{2(I+1)}, \dots, \sin^2 \frac{I\pi}{2(I+1)} \right];$

形成向量 $\mu = \frac{4}{k^2} \left[\sin^2 \frac{\pi}{2(J+1)}, \sin^2 \frac{2\pi}{2(J+1)}, \dots, \sin^2 \frac{J\pi}{2(J+1)} \right];$

形成正弦变换矩阵 $P = [sin(\frac{ij\pi}{I+1})] \in \mathbb{R}^{I \times I}, Q = [sin(\frac{ij\pi}{J+1})] \in \mathbb{R}^{J \times J};$

形成函数矩阵 $F = [f(x_i, y_j)] \in \mathbb{R}^{I \times J}$;

步骤二: 计算 V = PFQ;

步骤三: 计算 $W = [w_{ij}], w_{ij} = \frac{4hkv_{ij}}{\lambda_i + \mu_i};$

步骤四: 计算 U = PWQ

3 实验结果

3.1 齐次边界条件情形

3.1.1 实验函数

我们考虑使用函数 $u(x,y) = (1-x)(1-y)\sin(2\pi xy)$ 作为实验函数, 其满足性质 $u(0,y) = u(1,y) = u(x,0) = u(x,1) \equiv 0$, 图像如下:

图 1: 实验函数

考虑其对应的 Dirchlet 边界条件的 Poission 方程求解问题:

$$\begin{cases} -\Delta u(x,y) = 4\pi^2(x^2 + y^2)(1-x)(1-y)\sin(2\pi xy) + 4\pi(x+y-x^2-y^2)\cos(2\pi xy), & \text{in } \Omega \\ u(x,y) = 0, & \text{on } \partial\Omega \end{cases}$$

其中
$$\Omega = (0,1) \times (0,1)$$

3.1.2 五点差分格式算法对比

对方程使用五点差分格式,并使用快速 DST 算法、LU 分解算法(追赶法)、矩阵 Jacobi 迭代法、高斯-赛德尔迭代法、数列 Jacobi 迭代法进行求解,得到如下相同网格点数下计算时间与相对误差对比图:

划分数	DST/s	分块 LU 分解/s	矩阵 Jacobi 迭代/s	Gauss-Seidel 迭代/s	Jacobi 迭代/s
10	0.000262	0.000260	0.000595	0.000317	0.004608
50	0.000400	0.002665	0.149696	0.048397	0.108123
100	0.001241	0.027567	1.885147	0.714911	1.322782
200	0.003254	0.279427	31.146315	15.629820	27.477940
300	0.012421	1.137324	250.671350	84.512536	152.722085

表 1: 不同算法的划分数-计算用时对比

显然, 快速 DST 在多网格点计算上, 速度远远优于其他算法。

3.1.3 快速 DST 算法误差收敛分析

使用快速 DST 算法求解非齐次 Dirchlet 边界条件 Poission 方程,误差与划分数的对比图如下:

显然误差下降速度很快,我们考虑使用 log-log 图观察收敛阶

对 log-log 图做线性回归, 可以得到 $k_1 = -2.001298506975118, k_2 = -1.993979792790152$ 可以得到快速 DST 算法的收敛阶为 $O(N^{-2})$

3.2 非齐次边界条件情形

3.2.1 实验函数

我们考虑使用函数 $u(x,y)=xye^{x^2+y^2}$ 作为实验函数,其对应的 Dirchlet 边界条件的 Poission 方程求解问题为:

$$\begin{cases}
-\Delta u(x,y) = -4xy(3+x^2+y^2)e^{x^2+y^2}, & \text{in } \Omega \\
u(x,y) = xye^{x^2+y^2}, & \text{on } \partial\Omega
\end{cases}$$

其中 $\Omega = (0,1) \times (0,1)$, 图像如下

图 4: 实验函数

3.2.2 快速 DST 算法误差收敛分析

划分数	误差	用时/s
10	0.004772453938975	0.000342
20	0.001040832266306	0.000314
50	1.528864234884704e-04	0.000508
100	3.712796738389100e-05	0.000763
500	1.450758862575780e-06	0.035667
1000	3.616259034571202e-07	0.244182

表 2: 快速 DST 算法的划分数-误差-计算用时对比

同样的, 画出划分数-相对误差比较图以及其 log-log 图

收敛阶仍然为 $O(N^{-2})$

3.2.3 一般矩形边界条件情形

3.2.4 实验函数

仍然使用 3.2.1 中的实验函数,即

$$\begin{cases}
-\Delta u(x,y) = -4xy(3+x^2+y^2)e^{x^2+y^2}, & \text{in } \Omega \\
u(x,y) = xye^{x^2+y^2}, & \text{on } \partial\Omega
\end{cases}$$

其中 $\Omega = (0, a) \times (0, b)$ 此时, 我们令 a = 3, b = 5 进行实验。

3.2.5 快速 DST 算法误差收敛分析

划分数	误差	用时/s
10	0.021292169995370	0.000369
20	0.004416724699001	0.000303
50	6.141542791538716e-04	0.000606
100	1.460330877354940e-04	0.000739
500	5.606570385507676e-06	0.029691
1000	1.394399612941948e-06	0.256950

表 3: 快速 DST 算法的划分数-误差-计算用时对比

这是由于原函数的特性,函数值变化幅度较大,所以误差较前面的结果稍大一些。但通过画出划分数-相对误差对比图以及 $\log \log$ 图可以得知,误差收敛阶仍然为 $O(N^{-2})$:

4 结论 9

4 结论

- 五点差分格式的解法多种多样, 其中, 快速 DST 算法是远远快于其他算法。
- 五点差分格式收敛速度较快, 收敛阶为 $O(N^{-2})$ 。
- 通过代数变换,可以将单位正方形域齐次 Dirchlet 边界条件的 Poission 方程求解方法,推广至非齐次边界条件以及一般矩形域,并且不影响收敛速度。

5 附录

A 附录 A: MATLAB 代码

在这个附录中, 我们提供了完成该大作业所用的代码。

```
Fun f.m
```

```
function y=Funf(x,y)
y=+4*pi*pi*(x.^2+y.^2).*(1-x).*(1-y).*sin(2*pi*x.*y)+...
4*pi*(x+y-x.^2-y.^2).*cos(2*pi*x.*y);

test1.m
format long

for N=[10,50,100,200,300]
tic
U_dst=DSTPS(N);
toc
tic
U_lu = BlockLU(N);
toc

tic
U_I = IPS(N);
toc
```

```
tic
U_GS = PSGS(N);
toc
U_{GS} = U_{GS}(2:N,2:N);
tic
U_J = PSJacobi(N);
toc
U_J = U_J(2:N,2:N);
h=1/N; x=h:h:1-h; tes
[X,Y] = meshgrid(x,x);
U = xact = (1-X).*(1-Y).*sin(2*pi*X.*Y)
E_dst=norm(U_dst-Uexact, 'fro')/norm(Uexact, 'fro')
EM_dst = max(max(U_dst - Uexact))
E_lu = norm(U_lu-Uexact, 'fro')/norm(Uexact, 'fro')
E_I= norm(U_I-Uexact, 'fro')/norm(Uexact, 'fro')
E_GS = norm(U_GS-Uexact, 'fro')/norm(Uexact, 'fro')
E_J= norm(U_J-Uexact, 'fro')/norm(Uexact, 'fro')
end
test2.m
format long
E_{dst} = zeros(1,6)
EM_{dst} = zeros(1,6)
N = [10, 20, 50, 100, 500, 1000]
for i = 1:6
tic
U_{dst}=DSTPS(N(i));
toc
h=1/N(i); x=h:h:1-h;
```

```
[X,Y] = meshgrid(x,x);
U = xact = (1-X).*(1-Y).*sin(2*pi*X.*Y);
E_dst(i)=norm(U_dst-Uexact, 'fro')/norm(Uexact, 'fro')
EM_{dst}(i) = max(max(abs(U_{dst} - Uexact)))
end
h=1/50; x=h:h:1-h;
[X,Y] = meshgrid(x,x);
U = xact = (1-X).*(1-Y).*sin(2*pi*X.*Y);
mesh (X,Y, Uexact)
view (60,45)
title('实验函数图像')
plot (N, EM_dst)
title ('DST算法最大误差与划分数关系图')
xlabel('划分数N')
ylabel('最大误差')
plot (N, E_dst)
title('DST算法相对误差与划分数关系图')
xlabel('划分数N')
ylabel('相对误差')
plot (log (N), log (EM_dst))
title ('DST算法最大误差与划分数 log-log图')
xlabel('划分数log(N)')
ylabel('相对误差对数值')
plot(log(N), log(E_dst))
title ('DST算法相对误差与划分数 log-log图')
xlabel('划分数log(N)')
ylabel('相对误差对数值')
```

```
p = polyfit (log(N), log(E_dst), 1)
pM = polyfit (log(N), log(EM_dst), 1)
Funf_q2.m
function z=Funf_q2(x,y)
    z = -4*x.*y.*(3+x.^2+y.^2).*exp(x.^2+y.^2);
Bound.m
function z = Bound(x, y)
z = x.*y.*exp(x.^2+y.^2);
DSTPS_q2.m
function U = DSTPS_q2(N)
% 快速正弦变换求解 Poisson 方程, 求解区域 [0,1]^2
% 输入:划分数 N
% 输出:数值解 U(矩阵形式)
h=1/N;
x=h*(1:N-1);
[X,Y] = meshgrid(x,x);
Boundry = zeros(N-1,N-1);
Boundry (1,:) = N^2*Bound(0,x);
Boundry (N-1,:) = N^2*Bound(1,x);
Boundry (:,1) = N^2*Bound(x',0) + Boundry(:,1);
Boundry (:, N-1) = N^2*Bound(x', 1) + Boundry(:, N-1);
F=Funf_q2(X,Y);
F=F'+Boundry;
lambda=sin(pi*x/2);
lambda=4*lambda.*lambda;
T=dst(dst(F)');
```

```
V=zeros(N-1);
for i=1:N-1
    for j = 1:N-1
         V(i,j)=T(i,j)/(lambda(i)+lambda(j));
    end
end
V=4*h^4*V;
U=dst(dst(V)');
test_q2.m
format long
E_{dst} = zeros(1,6)
EM_{dst} = zeros(1,6)
N = [10, 20, 50, 100, 500, 1000]
for i = 1:6
t\,i\,c
U_dst=DSTPS_q2(N(i))
toc
h=1/N(i); x=h:h:1-h;
[X,Y] = meshgrid(x,x);
U = xact = X.*Y.*exp(X.^2 + Y.^2)
E_dst(i)=norm(U_dst-Uexact, 'fro')/norm(Uexact, 'fro')
EM_{dst}(i) = max(max(abs(U_{dst} - Uexact)))
end
h=1/50; x=h:h:1-h;
[X,Y] = meshgrid(x,x);
U \operatorname{exact}=X.*Y.* \exp(X.^2+Y.^2);
surf (X,Y, Uexact)
view (60,45)
title('实验函数图像')
```

```
plot (N, EM_dst)
title ('DST算法最大误差与划分数关系图')
xlabel('划分数N')
ylabel('最大误差')
plot (N, E_dst)
title ('DST算法相对误差与划分数关系图')
xlabel('划分数N')
ylabel('相对误差')
plot (log (N), log (EM_dst))
title ('DST算法最大误差与划分数 log-log图')
xlabel('划分数log(N)')
ylabel('相对误差对数值')
plot(log(N), log(E_dst))
title ('DST算法相对误差与划分数 log-log图')
xlabel('划分数log(N)')
ylabel('相对误差对数值')
p = polyfit (log(N), log(E_dst), 1)
pM = polyfit (log(N), log(EM_dst), 1)
DSTPS_q3.m
function U=DSTPS_q3(N1, N2, a, b)
% 快速正弦变换求解 Poisson 方程, 求解区域 [0,1]^2
% 输入:x方向划分数 N1,y方向划分数 N2
% 输出:数值解 U(矩阵形式)
h1=1/N1;
h2=1/N2;
x=h1*(1:N1-1);
y=h2*(1:N2-1);
```

```
[X,Y] = meshgrid(x,y);
Boundry = zeros(N1-1,N2-1);
Boundry (1,:) = (N1/a)^2*Bound(0,b*y);
Boundry (N1-1,:) = (N1/a)^2 * Bound(a,b*y);
Boundry (:,1) = (N2/b)^2*Bound((a*x)',0) + Boundry(:,1);
Boundry (:, N2-1) = (N2/b)^2*Bound((a*x)', b) + Boundry(:, N2-1);
F=Funf_q2(a*X,b*Y); F=F'+Boundry;
lambda=sin(pi*x/2);
lambda=4*lambda.*lambda/(a*h1)/(a*h1);
mu=sin(pi*y/2);
mu=4*mu.*mu/(b*h2)/(b*h2);
T=dst(dst(F)')';
V=zeros(N1-1,N2-1);
for i = 1:N1-1
    for j = 1:N2-1
        V(i,j)=T(i,j)/(lambda(i)+mu(j));
    end
end
V=4*h1*h2*V;
U=dst(dst(V)');
test\_q3.m
format long
E_{dst} = zeros(1,6)
EM_{dst} = zeros(1,6)
N = [10, 20, 50, 100, 500, 1000]
for i = 1:6
tic
```

```
U_{dst}=DSTPS_{q3}(N(i),N(i),2,1/2)
toc
h=2/N(i); x=h:h:2-h;
k = 1/2/N(i); y=k:k:1/2-k
[X,Y] = meshgrid(x,y);
U = xact = X. *Y. *exp(X.^2 + Y.^2)
E_dst(i)=norm(U_dst-Uexact', 'fro')/norm(Uexact', 'fro')
EM_{dst}(i) = max(max(abs(U_{dst} - Uexact')))
U dst-Uexact;
end
plot (N, EM_dst)
title('DST算法最大误差与划分数关系图')
xlabel('划分数N')
ylabel('最大误差')
plot (N, E_dst)
title ('DST算法相对误差与划分数关系图')
xlabel('划分数N')
ylabel('相对误差')
plot (log (N), log (EM_dst))
title ('DST算法最大误差与划分数 log-log图')
xlabel('划分数log(N)')
ylabel('相对误差对数值')
plot(log(N), log(E_dst))
title ('DST算法相对误差与划分数 log-log图')
xlabel('划分数log(N)')
ylabel('相对误差对数值')
```