

Introdução a Estatística

Prof. Glauco Cardozo

glauco.cardozo@ifsc.edu.br

Estatística

Estatística é a ciência que utiliza as teorias probabilísticas para explicar a frequência da ocorrência de eventos, tanto em estudos observacionais quanto em experimentos para modelar a aleatoriedade e a incerteza de forma a estimar ou possibilitar a previsão de fenômenos futuros, conforme o caso. Wikipédia

A **estatística descritiva** é um ramo da estatística que aplica técnicas para descrever e sumarizar um conjunto de dados. Para isso são coletadas amostras aleatórias e representativas da variabilidade dessa população.

Cada dado dessa amostra pode ser de diferentes tipos:

O tipo de tratamento e de gráfico escolhido dependem do tipo dessa variável.

Variáveis Qualitativas: ordinais ou nominais

As variáveis qualitativas **ordinais** expressam uma relação de posicionamento e ordem. Alguns exemplos são: escolaridade, estágio de doença, classe social, etc.

As variáveis qualitativas **nominais** são as que não expressam nenhuma ordem. Como exemplos temos: sexo, profissão, religião, etc.

Variáveis Qualitativas: ordinais ou nominais

Mesmo quando as variáveis qualitativas são transformadas em números elas continuam representando categorias, logo, elas continuam sendo categóricas!

São melhor apresentadas por:

- Gráficos de barra verticais ou horizontais: representam sequências simples de valores e a frêquencia absoluta ou relativa destes;
- Gráficos de torta/pizza: fazem divisão por setores e proporções.

Gráficos de barra verticais ou horizontais

Gráficos de torta/pizza

Variáveis Quantitativas: discretas ou contínuas

As variáveis **discretas** são resultantes de um processo de contagem e, logo, são representadas pelos números naturais. Alguns exemplos são: número de filhos, número de dias sem chuva, número de acessos a uma plataforma, etc.

Variáveis Quantitativas: discretas ou contínuas

As variáveis **contínuas** são resultantes de um processo de medição; logo, representadas pelos números reais. Como exemplos temos: altura, peso, salário, vazão de um rio, etc.

Variáveis Quantitativas: discretas ou contínuas

Esses valores amostrados podem ser ordenados e apresentados em tabelas de frequências.

- Frequência simples (f): contagem dos elementos, frequência com que determinado elemento ocorre na amostra;
- Frequência simples acumulada (fac): mostra quantos dados apresentam valores menores ou iguais ao elemento analisado;

Variáveis Quantitativas: discretas ou contínuas

Esses valores amostrados podem ser ordenados e apresentados em tabelas de frequências.

- Frequência relativa (fr): a porcentagem referente à frequência simples,
 estima a probabilidade de ocorrência do elemento;
- Frequência relativa acumulada (frac): a porcentagem de valores que são menores ou iguais ao elemento analisado.

Variáveis Quantitativas: discretas ou contínuas

Se existe uma quantidade grande de dados, eles devem ser agrupados por **intervalos de classes** de igual largura; assim, a tabela de frequência apresentará o número de dados existentes no intervalo da classe. É possível estimar o número de classes pela raiz quadrada do número de observações (n).

Variáveis Quantitativas: discretas ou contínuas

As variáveis quantitativas podem ser representadas por gráficos como:

- Histogramas: mostram a distribuição das frequências;
- **Gráficos de** *box e whisker* (box plot): mostram a assimetria da distribuição, quartis, presença de outliers e variabilidade dos dados;
- Gráficos de dispersão: mostram a relação entre duas variáveis;
- Séries temporais: mostram a alteração de uma variável no tempo.

Histograma

Usados com dados univariados

Box plot

Usados com dados univariados

Dispersão

Usados com dados bivariados

Série Temporal

Dados Multivariados

Medidas de tendência central

 Média (mean, average): é como se fosse o ponto de equilíbrio da distribuição e pode ser calculada por:

$$\mu = \frac{\sum x_i}{N} \qquad \bar{x} = \frac{\sum x_i}{n}$$
Média populacional x amostral

Medidas de tendência central

 Média (mean, average): é como se fosse o ponto de equilíbrio da distribuição e pode ser calculada por:

Numpy:

np.mean(array)

Pandas:

dataframe.mean() #retorna a média de cada coluna serie.mean()

Medidas de tendência central

 Moda: representa o valor mais comum do conjunto de dados e é mais utilizada para dados categóricos. Se, por exemplo, dois valores apresentarem uma mesma frequência, seu conjunto de dados contém duas modas.

Pandas:

dataframe.mode() serie.mode()

Medidas de tendência central

• **Mediana**: A mediana é o valor que separa a metade superior da metade inferior de uma distribuição de dados, ou o valor no centro da distribuição.

Pandas:

dataframe.median() serie.median()

Medidas separatrizes

- Percentis: dividem o conjunto de dados em 100 partes iguais, ou seja, em pedaços de tamanhos iguais que contêm 1% dos dados.
- Quartis: dividem o conjunto de dados em 4 partes, ou seja, em pedaços de tamanhos iguais que contém 25% dos dados.
- Mediana: dividem o conjunto de dados em 2 partes. Acima da mediana estão 50% dos dados e abaixo dela também.

Medidas separatrizes

A mediana é o segundo quartil (Q2) e também o percentil 50 (P50):

Medidas separatrizes

A mediana é o segundo quartil (Q2) e também o percentil 50 (P50):

Pandas:

dataframe.quantile(q=quartil_desejado) serie.quantile(q=quartil_desejado)

Amplitude Interquartil (*InterQuartile Range, IQR*): descreve a dispersão dos 50% dados centrais.

A Amplitude Interquartil, ou AIQ, pode ser calculada pela fórmula:

AIQ = Q3 - Q1

sendo Q3 o terceiro quartil (75%) e Q1 o primeiro quartil (25%).

Quanto maior o valor encontrado para o AIQ, mais dispersos estão os dados.

Outliers

Os **outliers** são dados que se diferenciam drasticamente de todos os outros. Em outras palavras, um **outlier** é um valor que foge da normalidade e que pode (e provavelmente irá) causar anomalias nos resultados obtidos por meio de algoritmos e sistemas de análise.

Medidas separatrizes

O limite inferior é calculado por Q1–1,5(IQR) e o superior por Q3+1,5(IQR). Todo valor acima do superior e abaixo do inferior é considerado ourlier. IQR, ou AIQ, é a Amplitude Interquartil, AIQ=Q3-Q1.

Medidas de dispersão

 Amplitude: é do que a diferença entre o maior e o menor valor de um conjunto de dados. Para fazer este cálculo no Pandas, usaremos as funções max() e min(), que obviamente, retornam o valor máximo e mínimo de um conjunto de dados, e depois subtrairemos um do outro:

Pandas:

dataframe.max() - dataframe.min()
serie.max() - serie.min()

Medidas de dispersão

 Variância (variance): é mais utilizada de forma comparativa, já que não é muito intuitiva por não estar na mesma unidade dos dados.

$$\sigma^{2} = \frac{\sum (xi - \mu)^{2}}{N} \qquad s^{2} = \frac{\sum (xi - \bar{x})^{2}}{n - 1}$$
Variância populacional x amostral

Pandas:

dataframe.var() serie.var()

Medidas de dispersão

 Desvio padrão (standard deviation): mais utilizado por estar na unidade dos dados. É a raiz quadrada da variância e indica quanto os dados estão afastados da média.

$$\sigma = \sqrt{\frac{\sum (xi - \mu)^2}{N}} \qquad s = \sqrt{\frac{\sum (xi - \bar{x})^2}{n - 1}}$$
Desvio padrão populacional x amostral

Pandas:

dataframe.std() serie. std()

Medidas de dispersão

Desvio padrão

Os valores de desvio padrão também estão no conjunto dos números *Reais Positivos*, ou seja, se você encontrar um valor negativo, seus cálculos necessitam de revisão.

Considerando uma distribuição normal, 68% dos valores estão a 1 desvio padrão de distância da média:

Medidas de dispersão

Desvio padrão

Medidas de dispersão

 Correlação: é uma medida que indica o quanto duas variáveis estão relacionadas. Seu valor fica sempre entre -1, que indica uma anti-correlação perfeita, e 1, que indica uma correlação perfeita.

Pandas:

dataframe.corr() serie. corr()

Medidas de dispersão

Correlação

Medidas de dispersão

Correlação

