

Machine Learning Engineering Discipline in Ukraine

How many disciplines are there in Data & Analytics Practice?

MLE discipline in EPAM locations

		Discipline Attribute	Discipline Attribute Information / Links
		Discipline name	Machine Learning Engineering
Data SoftwareEngineering	n Data DevOps	Relevant Primary Skill	Machine Learning Engineering
	di Data Qualita	Relevant Job Function	Software Engineering
Data Analytics		Title Lines	Software Engineer, Data Software Engineer
Engineering	["] Engineering	Discipline Placement	Part of Data Practice. See Data & Analytics Disciplines Matrix
⋒ Business	◆ Data Solution	Global Discipline Head Name	@ Dmitriy Suslov
* Intelligence Analysis	Architecture	Need of Country Discipline Heads	Yes. Country Discipline Heads are to be identified and assigned.
Data Science	Data Analytics Consulting		 Russia - @ Olga Polubelova Ukraine - @ Yevhen Plaksa Poland - @ Radoslaw Sypen Belarus - @ Kanstantsin Karneliuk Hungary - @ Valentin Mihajlenko
Machine Learning Engineering	A Data Delivery Management	Assessed Skill Potential	The demand is growing. 9 engineers have been identified who already have the necessary knowledge and skills to obtain MLE as a primary/key skill. Data Practice needs at least 100 MLE globally by the end of 2022

https://info.epam.com/topics/global/competencies-technologies/articles/2022/may/data-disciplines_en.html

<epam> | confidential

What is Machine learning engineering

MLE Skills

kb MLE TI Template

https://levelup.epam.com/titleExplorer

Teams Group "EPAM Data Science (& MLE) UA Community"
Teams Group "Big Data Community UA"

Global

Teams Group "EPAM Data Machine Learning Engineering"

Teams Group "EPAM Data Science"

MLE training

Software Engineer

+ Software Development Python Training program:
- Data Engineering
- Cloud Tools

Training program:

- Machine Learning
- MLOps engineering

ML Engineer

- + MLOps Engineering
- + Machine Learning
- + Software Development
- + Data Engineering
- + At least one Cloud (AWS, GCP, Azure, databricks)

Data Scientist

- + Machine learning
- + Software Development
- + At least one Cloud (AWS, GCP, Azure, data bricks)

Data Software Engineer

- + Software Development
- + Data Engineering
- + At least one Cloud (AWS, GCP, Azure, databricks)

Data Engineering Mentoring Program

Description

The Data Engineering Mentoring program covers an extended stack of modern technologies applied on the latest Data projects to satisfy the current demand for data-driven solutions and platforms. The program is enriched with additional materials and adjusted to accelerate the learning process and provide an understandine of real tasks performed on production projects.

The program has no enrollment deadlines and is delivered in a blended format. Participants will be able to study the theoretical parts online in a self-study mode and then practice processing the data set by applying various tools and technologies under mentors' supervision.

Each module consists of video presentations and additional materials to study, quizzes, and timed exams to check your knowledge and homework assignments to gain hands-on experience in Data Software Engineering.

At the end of the program, each participant will be assessed by an expert from the Data Engineering team - there is a final screening to test the knowledge gained during the program. In case of successful completion of all the modules and final screening, program participants will be able to join projects as Data Software Engineers.

Course Goal

After completion of the program attendees will be able to cover the requirements for Data Software Engineer level 2 according to the Skill Matrix.

epam> | confidential

https://kb.epam.com/display/EPMCBDCC/ML+ Engineering+Courses

Machine Learning DeepLearning.Al Engineering for Production (MLOps)

Congratulations! You have completed all four courses of Machine Learning Engineering for Production (MLOps) Specialization. In this Specialization, you learned how to conceptualize and maintain integrated systems. You mastered well-established tools and methodologies to build production systems that can handle relentless evolving data and continuously run at maximum efficiency. You're now familiar with the capabilities, challenges, and consequences of machine learning engineering in production and are ready to level up your career by participating in the development of leading-edge Al technology and solving real-world problems.

MLE Transfer

https://kb.epam.com/display/EPMCBDCC/MLE+Assessment

Talk with RM

Talk with me

Fill skill matrix

Talk with experts (interview)

Get grow recommendations

SI	KILL	S																																	
Data science						_	Data engineering									DevOps							ML engineering									CLOUD			
Basics	Modeling process	Exploratory Data Analysis	Data cleansing	Feature generation	Basic Algorithms	Advanced Algorithms	1 0	zing a mo	Basics	Batch processing	Streaming processing	Data ingestion	Data transformation	Data storage	Orchestration	Big Data processing	Basics	R&D environment	Deploying	Models as a Service	Containerisation	Scaling	Monitoring and logging	Model lifecycle	Labeling and validating data	Feature engineering	ML pipelines	Inference patterns	Model debugging	Performance	Quality measuring	Deploying	AWS Sagemaker	GCP Vertex Al	Azura MI Studio
2	1	1	2	2	2	1	1	2	3	3	3	3	3	3	2	3	2	1	2	1	3	2	2	2	1	2	2	1	2	2	2	1	1	1	1

QUESTIONS PART 1

EPAM MLOps Platform Concept

A conceptual view on ML/AI operations platform addresses challenges related to ML models operations in production environment.

Key Best Practices

- Data Mart with high quality curated data sets
- Automated data ingestion and ETL pipelines
- Isolated R&D, QA, PROD environments
- ML model learns from a feature sets located in curated feature store
- ML experiments tracking
- ML pipeline and ML model registries in addition to traditional code, containers, and package registries
- Automated ML pipelines
- Continuous Integration and Continuous Delivery (CICD) pipelines
- Quality gates embedded into ML and CICD pipelines
- Feedback loop automation
- · Data drift detection
- Model interpretability
- Batch, online, and embedded in edge devices inference capabilities

MLOps Maturity Model

Level 0 Manual Process

- Manual, script-driven, and interactive process
- Disconnection between
 ML and operations
- Infrequent release iterations
- Lack of CI and / or CD
- Deployment refers to the prediction service

Level 1 ML Pipeline Automation

- Rapid experiment
- CT of the model in production
- Modularized code for components and pipelines
- Continuous delivery of models
- Pipeline deployment

Level 2 CI/CD/CT Pipeline Automation

- Rapid experiment and deployment to production
- Data scientists rapidly explore new ideas around feature engineering, model architecture, and hyperparameters
- Monitoring model performance on live data to trigger either the pipeline execution or a new experiment cycle

EPAM_MLOps_Solution_v0.9.5.pdf

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model https://aws.amazon.com/ru/blogs/apn/taming-machine-learning-on-aws-with-mlops-a-reference-architecture/

MLOps Maturity Model: LevelO- Manual Process

MLOps Maturity Model: Level1- ML Pipeline Automation

MLOps Maturity Model: Level2- CI/CD/CT Pipeline Automation

Putting all Together

https://medium.com/mlops-community/test-driven-development-in-mlops-part-1-8894575f4dechttps://martinfowler.com/articles/cd4ml.html

<epam> | confidential

The End-to-End CD4ML Process

https://martinfowler.com/articles/cd4ml.html

THANK YOU