Complex Genetic Architecture of a Growth Locus in the Chicken Genome

Jen-Hsiang Ou

Ph.D. Student

Department of Medical Biochemistry and Microbiology
Uppsala University

Complex traits are complicated

- Regulated by multiple factors
- Examples:
 - Cardiac disease, cancer, diabetes,
 Alzheimer's disease
 - Rice yield
 - Body weight
 - And lots more...

The Virginia Chicken Lines (breeding history)

Bidirectional Selection of the Virginia Chicken lines

- Established in 1957 by Paul Siegel and co-workers.
 - "The weight at eight weeks of age is a complex trait influenced by multiple genetic factors." (Siegel, 1962)
- Body weight at eight weeks
 - A moderate to high heritability
 - Selection of a single trait
 - Complex trait

Published heritability of bodyweight w6-w12 (Siegel, 1962)

Advanced Intercross Line (AIL)

- F_2 intercross population \rightarrow One generation of recombination
 - LD block: wide
 - Detect signals even when marker density is low
 - Don't have a good resolution
- The advanced intercross line
 - Started from the 41st generation of HWS/LWS (F₀)
 - F₁ to F₁₈
- Sequencing and Genome Alignment
 - F₀ and F₁: high coverage sequencing (~30x in F₀ and ~5x in F₁)
 - $F_2 F_{18}$: about 0.4x coverage

Imputation by AlphaFamImpute

- AlphaFamImpute (Whalen et al., 2020)
- Adding pedigree information to impute genotypes from low-coverage whole-genome sequencing data
- Algorithm of the software
 - Phases and impute parental genotypes
 - The well-classified parental haplotypes are passed to their offspring
 - All segregation states in offspring are projected to parental haplotypes at each locus → to determine the parental haplotype.
 - Offspring data are updated by the new parental genotypes.

Genome-wide association study

$$y = \mathbf{1}\mu + S\beta_S + g\beta_g + A_j a_j + \epsilon$$

- Single-marker association study
- Generation and sex are considered as a fixed effect in the model

Genome-wide association study

Variance-heterogeneity GWAS (vGWAS)

- Interactions and haplotypes (Forsberg et al., 2015)
- Brown-Forsythe test
 - Statistical test for the equality group variance based on performing an ANOVA
 - Transformation responsive variable: to measure the spread in each group

Hypothesis

Potential explanations for the complex architecture of this region:

- Haplotype effects
 - ⇒ LD between the functional alleles that are not captured by individual SNP markers
 - ⇒ While we add the right peak as a covariate, the left peak dropped
- Interaction effects
 - ⇒ Interaction between the loci results in nonadditive gene variance
 - ⇒ Not well explained by the additive model

Haplotype-based association study

$$y = \mathbf{1}\mu + S\beta_S + g\beta_g + H_j h_j + \epsilon$$

Sex and generation added are as fixed effects

Haplotype effect (167-169Mb)

Lillie et al., 2018: "LWS55 samples were fixed for one LWS haplotype while the HWS55 samples carried multiple haplotype which are different from LWS samples."

The independence marker effects

- A stepwise selection across determined SNP markers
 - Both forward selection and backward elimination gave the same suggestion
 - Sex and generation are fixed effect

	Mean Square	F value	p-value			
Sex	1.47×10^7	689.47	< 0.001***			
Generation	1.32×10^6	61.72	< 0.001***			
gga1_168m	1.51×10^6	70.80	< 0.001***			
gga1_171v	6.34×10^{5}	29.65	< 0.001***			
gga1_178v	5.68×10^4	2.66	0.1032			
Significant codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 " 1						

The independence marker effects

Target	Genotype	Average	STD	Count	LSD
	RR	0.1194	0.9893	1691	а
gga1_168m	RA	-0.1183	0.0961	1075	b
	AA	-0.4452	0.8843	164	С
	RR	0.1979	1.0384	692	a
gga1_171m	RA	0.0010	1.0069	1552	b
	AA	-0.2019	0.8765	686	С
	RR	-0.1751	0.9158	989	a
gga1_171v	RA	0.0375	1.0125	1538	b
	AA	0.2865	1.0331	403	С
	RR	-0.1306	0.8909	705	a
gga1_172v	RA	0.0004	1.0117	1574	b
	AA	0.1405	1.0418	651	С
	RR	0.0770	1.0208	939	a
gga1_174v	RA	-0.0050	1.0139	1509	b
	AA	-0.1343	0.8617	482	С
	RR	0.0638	1.0719	1071	a
gga1_178v	RA	-0.0053	0.9631	1426	a
	AA	-0.1404	0.8803	433	b

The NOIA model

- <u>N</u>atural and <u>O</u>rthogonal <u>I</u>nter<u>A</u>ction model
 - A statistical framework aiming at unifying, extending, and simplifying existing models of genetic effects
- Practical properties of orthogonality
 - Statistically independent (uncorrelated) genetic effects
 - It leads to a proper decomposition of genetic variance
 - The Sum of the variance component (Var(A), Var(D)...) is exactly equal to the explained genetic variance
 - Make it easier and possible to remove effects without affection others

Interaction network (NOIA)

• All additive effects, dominance effects, and 2nd order interactions

Sex and generation effects removed

1 100	4 454	4 474	4 472	4 474	4 470	- ·· ·	0.15	
gga1_168m	gga1_171m	gga1_171v	gga1_172v	gga1_174v	gga1_178v	Estimate	Std. Error	p-value
А						-0.245	0.039	0.000
					Α	-0.093	0.034	0.006
D					Α	0.218	0.082	0.008
D			Α			0.313	0.132	0.018
D			D			-0.311	0.141	0.028
					D	0.099	0.045	0.028
	Α			D		-0.275	0.132	0.037
Α				D		-0.152	0.074	0.040
				D		0.119	0.059	0.046
				Α	Α	0.116	0.059	0.048
	D				D	-0.217	0.120	0.070
A			Α			-0.145	0.080	0.071
		А		_	А	0.127	0.074	0.088

[DA]: Dominance x Additive

[AA]: Additive x Additive

This result support that the regulating body weight by *Growth1* QTL cannot be described simply by the independent effects of the loci.

Epistasis effects

- To confirm statistical epistasis effects determined by the NOIA model
- Results show in two ways
 - Subgroup samples by pairwise markers
 - → Average / SD of bodyweight
 - GWAS condition with each selected marker

gga1_178v: The central marker of the network

gga1_172v and gga1_174v

Conclusion

- A higher resolution with AIL population extended to generation F₁₈
- Power of association mapping is improved by local epistasis effects for haplotype construction
- A new approach of explaining the complex genetic architecture of chicken *Growth1* region
 - The haplotype-based association can majorly explain the effect while remain unexplained effect
 - NOIA model generate an interaction network of how selected SNP markers interact with each other
 - Conditioned association study confirmed the interaction mechanism

Thank you!

Dr. Carl-Johan Rubin

Dr. Örjan Carlborg

Dr. Guo Ying

Tilman Rönneburg

