CARNEGIE MELLON UNIVERSITY APPLIED STOCHASTIC PROCESSES (COURSE 18-751) HOMEWORK 3

Daniel Marew

September 17, 2017

I collaborated with : $\,$

Nebyou Yismaw Daniel Nkemelu Agatha Niwomugizi $\mathbf{Q}\mathbf{1}$

- (a)
- (b)
- (c)

Q.2 Generalized CLT

(a) Show GCLT reduces to the usual i.i.d version of CLT

$$Yn = (X_1 + X_2 + \dots + X_n - m_n)/Sn$$

where X_k is an independent random variable with $E[X_k] = \mu_k$ and $Var[X_k] = \sigma_k^2$, $m_n = (\mu_1 + \mu_2 + \dots + \mu_n)/s_n$ and $s_n^2 = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2$

since i.i.ds have identical distribution the have the same mean and variance

i.e
$$\mu_1 = \mu_2 = \dots = \mu_n = \mu$$
 and $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_n^2 = \sigma^2$

$$m_n = (\mu_1 + \mu_2 + \dots + \mu_n) = n\mu$$

$$s_n^2 = (\sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2) = n\sigma^2$$

$$Yn = \frac{(X_1 + X_2 + \dots + X_n - n\mu)}{\sqrt{n\sigma^2}}$$

$$Yn = \frac{(X_1 + X_2 + \dots + X_n - n\mu)}{\sigma\sqrt{n}}$$

hence , GCLT reduces to CLT when $\{X_k\}$ are i.i.ds.

(b) X_k uniformly distributed from 1 to 5

Figure 1: Normalized histogram Vs pdf of standard normal distribution

Figure 2: q-q plot

(c) X_k uniformly distributed from 1 to k

Figure 3: Normalized histogram Vs pdf of standard normal distribution

Figure 4: q-q plot

(d) $X_k = \frac{B_k}{2^k}$ where B_k is a Bernoulli trail with p = 0.5

Figure 5: Normalized histogram Vs pdf of standard normal distribution

(e) How well the sum of the first ten elements is approximated by a normal distribution?

Figure 6: q-q plot

Average Number of packets in Buffer	3.36
Fraction of time the buffer is empty	0.33
The fraction of packet Arrivals that are blocked	0.0040

Table 1: Question 3b Answer

Q3 Buffers

(a) for $\lambda=0.1,\,\mu=0.12,\,BufferSize=10$ and NumberOfSteps=1000 we get Table 1 and figure 7

Figure 7: Number of packets in the buffer Vs Time steps

Average Number of packets in Buffer	6.87
Fraction of time the buffer is empty	0.03
The fraction of packet Arrivals that are blocked	0.2100

Table 2: Question 3 Answer

(b) for $\lambda=0.1,\,\mu=0.01,\,BufferSize=10$ and NumberOfSteps=100 we get table2 and figure 8

Figure 8: Number of packets in the buffer Vs Time steps

(c) Littel Law

Little Law is given by the following formula [1]

$$L = \lambda T \tag{1}$$

Where L is the average backlog (the average number of packets in the buffer) , T the delay in the system and λ is the average arrival rate.

hence to get the average delay in the system,

$$T = \frac{L}{\lambda} \tag{2}$$

for (a)

$$T = \frac{L}{\lambda} = \frac{3.36}{0.1} = 33.6$$

for (b)

$$T = \frac{L}{\lambda} = \frac{6.87}{0.1} = 68.7$$

Code Appendix

3. a

29 end

```
function P = get_stochastic_matrix (buffer_size, lamda, mu)
      P = zeros(buffer_size + 2, buffer_size + 2);
       a = lamda*(1-mu);
       b = mu*(1-lamda);
       c = 1 - (a+b);
      P(1,1) = 1-a;
6
       P(1,2) = a;
       P(buffer_size + 2, buffer_size + 2) = 1-mu;
       P(buffer_size+2, buffer_size+1) = lamda*mu;
9
       P(buffer_size + 2, buffer_size) = b;
10
11
       for i=2:buffer_size+1
           P(i,i) = c;
13
           P(i, i+1) = a;
14
           P(i, i-1) = b;
15
       end
16
17
  end
_{1} DEBUG = 1;
_{2} N = 200;%time steps
s State0 = 1;
4 \text{ lamda} = 0.1;
5 \text{ mu} = 0.001:0.001:0.01; \% 10\% \text{ mu}
6 \% \text{mu} = 0.02:0.01:0.2;
                              % 1% mu
7 low_load_mu = 0;
8 \text{ BUFFER\_SIZE} = 10;
9 percentage = 10;
10 MUFOUND = 0;
  for i=1:length (mu)
       P = get_stochastic_matrix (BUFFER_SIZE, lamda, mu(i));
       StateTrans = simMC(N, State0, P);
13
       lost_packets = mean(StateTrans==(BUFFER_SIZE+2))*100;%loss
14
      of packets
       if DEBUG
15
       fprintf('mu %0.4f buffer size %i lost packets %4.4f percent\
16
      n', mu(i), BUFFER_SIZE, lost_packets);
17
       if lost_packets>percentage
18
      %if lost_packets<percentage
19
20
           low_load_mu = mu(i);
           MUFOUND = 1;
21
           if DEBUG
22
                fprintf('mu %0.3f satisfies loss value of %i percent
23
        with packet loss of %4.4f\n',...
               mu(i), percentage, lost_packets);
24
           end
25
26
       end
28
```

```
if MU_FOUND
30
31
      % Some stat before modifying StateTrans
32
      StateTrans(StateTrans==(BUFFER_SIZE+2))=BUFFER_SIZE+1;%
      dropped == full
       Avg_Number_Of_Packets
                                = mean(StateTrans);
       Fraction_Of_Time_BEmpty = mean(StateTrans==1);
       Fraction_Of_Time_BBlocked = lost_packets/100;
36
       result = fopen('result_b.txt', 'w');
37
       fprintf(result, 'Average Number of packets in Buffer: %2.2f
      \n Fraction of time the buffer is empty: %2.2f\n',...
          Avg_Number_Of_Packets , Fraction_Of_Time_BEmpty );
39
40
       fprintf(result,' The fraction of packet Arrivals that are
      blocked %2.4f\n', Fraction_Of_Time_BBlocked);
      fprintf(result, '\n MU: %2.2 f\n Buffer Size: %i\n Lamda: %1.2 f\
41
      n Number of Steps:%i\n Packet Loss:%2.2f percent\n',...
42
           low\_load\_mu\ , BUFFER\_SIZE , lamda\ , N,\ lost\_packets\ )\ ;
           StateTrans = StateTrans -1; get rid of the bias so that
43
      it starts at state 0
      fclose(result);
44
      stem(1:N, StateTrans, 'filled');
45
       xlabel('Time Steps');
46
       ylim ([0 10]);
47
       ylabel('Number of packtes in Buffer');
48
49
       fprintf('appropriate mu not found try again!!\n')
50
  end
1 \text{ function } X = simMC(M, A, P)
_{2} X = zeros(1,M);
3 X(1) = A;
4 for m=1:M-1
        X(m+1) = discrete(P(X(m),:));
6 end
7 end
function T = discrete(P)
Pnorm = [0 P]/sum(P);
Pcum = cumsum(Pnorm);
_{4} R = rand(1);
[\tilde{T}, T] = histc(R, Pcum);
6 end
```

References

[1] Jean Walrand. Probability in Electrical Engineering and Computer science. Jean Walrand, 2014.