

ESCUELA DE CIENCIAS EXACTAS Y NATURALES

DEPARTAMENTO DE MATEMÁTICA

Licenciatura y Profesorado en Matemática Licenciatura en Ciencias de la Computación

ÁLGEBRA LINEAL - 2013

PRÁCTICA 1: Eliminación Gaussiana. Factorización LU (segunda parte)

1. Encontrar los factores L, D, y U de la matriz

$$A = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right]$$

Resolver el sistema Ax = b, donde $b = (6, 0, -6)^T$.

- 2. Probar que AA^T y A^TA son siempre simétricas. Mostrar mediante un ejemplo que pueden no ser iguales. Mostrar también que $A+A^T$ es simétrica si A es cuadrada. ¿Qué sucede con $A-A^T$?
- 3. Mostrar que los pivotes de A son también los pivotes de A^T .
- 4. a) Hallar la factorización LDU de la matriz

$$A = \begin{pmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8 \end{pmatrix}.$$

- b) Aprovechando lo hecho en el ítem anterior, resolver el sistema $A^Tx=(2,5,5)^T$.
- 5. Recordemos que la matriz $E_{ij}(a)$ (con i > j) está definida por

$$E_{ij}(a) = (m_{k,l})_{n \times n}, \quad \text{donde} \quad m_{k,l} = \begin{cases} 1 & \text{si } k = l. \\ 0 & \text{si } k \neq i \text{ ó } l \neq j, \text{ y } k \neq l. \\ a & \text{si } k = i \text{ y } l = j. \end{cases}$$

a) Probar que $[E_{ij}(a)]e_l$ (que es la columna l de $E_{ij}(a)$) verifica:

$$[E_{ij}(a)]e_l = \begin{cases} e_l, & \text{si } l \neq j \\ e_j + ae_i, & \text{si } l = j \end{cases}$$

- b) Dado $r \in \mathbb{N}$, probar que $[E_{ij}(a)]^r = E_{ij}(ra)$.
- c) Determinar la matriz $[E_{i,j}(a)]^{-1}$.
- d) Determinar la matriz $E_{i,j}(a).E_{i',j'}(b)$, donde i'>j', $i\leq i'$ y $j\leq j'$.

6. Resolver mediante intercambio de filas cuando sea necesario

7. Encontrar la factorización PA = LDU de las matrices

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \qquad \text{y} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

8. ¿Cules son los valores de a y b que conducen a intercambio de filas y cuáles son los que hacen a la matriz singular?

$$A = \left[\begin{array}{rrr} 1 & 2 & 2 \\ a & 8 & 3 \\ 0 & b & 3 \end{array} \right]$$

- 9. Demostrar los siguientes enunciados:
 - a) Si $E_{i,j}(-a)$ sustrae de una ecuación un múltiplo de otra, entonces $[E_{i,j}(-a)]^{-1}$ lo suma nuevamente.
 - b) Si $P_{i,j}$ intercambia dos filas, entonces $(P_{i,j})^{-1}$ las vuelve a intercambiar, es decir $(P_{i,j})^{-1} = P_{i,j}$.
 - c) Si D es una matriz diagonal, con entradas en la diagonal d_1, d_2, \dots, d_n no nulas, entonces D^{-1} es también diagonal con entradas en la diagonal $\frac{1}{d_1}, \frac{1}{d_2}, \dots, \frac{1}{d_n}$.
- 10. Una matriz es de permutaci'on si es cuadrada, con entradas 0-1 y con un sólo 1 en cada fila y en cada columna. Probar que si P es una matriz de permutaci\'on, entonces $P^T = P^{-1}$. Comparar con el ejercicio 9b.
- 11. Encontrar, cuando sea posible, las matrices inversas de las matrices de coeficientes del ejercicio 1 de la primera parte, utilizando el método de Gauss-Jordan.