Cvičení 2

Příklad 1: Vezměme si následující atomické výroky:

V přirozené řeči řekněte, co tvrdí následující výroky zapsané formulemi výrokové logiky:

a) $(p \land q) \rightarrow r$

 $\check{Re\check{s}en\acute{i}}:$ Jestliže svítí slunce a prší, je vidět $\ ^{\mathrm{e})}\ \mathbf{q}\rightarrow\mathbf{q}$ duha.

b) $p \rightarrow (\neg q \land \neg s)$

Řešení: Není pravda, že není vidět duha.

d) $(p \lor q) \lor s$

f) $\neg s \rightarrow q$

g) $(\neg r \land q) \leftrightarrow \neg s$

Řešení: Právě tehdy když není vidět duha a prší, nesvítí slunce.

h) $\neg(\neg p \rightarrow \neg q)$

Zapište následující výroky pomocí formulí výrokové logiky (u každé formule přesně specifikujte, co jsou jednotlivé atomické výroky):

a) Jestliže dnes není pondělí, tak pozítří nebude středa.

Řešení:
$$\neg p \rightarrow \neg q$$

 p — "dnes je pondělí", q — "pozítří bude středa"
pravdivý výrok ve všechny dny v týdnu

- b) Jestliže je dnes pondělí nebo středa a pozítří není pátek, tak je dnes pondělí.
- c) Dnes není pondělí ani čtvrtek.

Řešení: ¬p
$$\land$$
 ¬q p — "dnes je pondělí", q — "dnes je čtvrtek" nepravdivý výrok v pondělí a ve čtvrtek, pravdivý v ostatní dny v týdnu

Určete, v které dny v týdnu jsou jednotlivé výroky pravdivé a v které nepravdivé.

Zapište následující výroky pomocí formulí výrokové logiky (u každé formule přesně specifikujte, co jsou jednotlivé atomické výroky):

a) V případě, že poklesne tlak, tak bude pršet nebo sněžit.

$$\check{R}$$
ešení: $p \rightarrow (q \lor r)$
 p — "poklesne tlak", q — "bude pršet", r — "bude sněžit"

b) Jestliže přijde paket s požadavkem, bude tento požadavek vyřízen a bude odeslán paket s potvrzením, nebo bude odeslán paket s informací o chybě.

c) Když nebudou nalezena nová ložiska ropy a nastane krize na blízkém východě, cena ropy na světových trzích stoupne.

Řešení:
$$(\neg p \land q) \rightarrow r$$

 p — "budou nalezena nová ložiska ropy", q — "nastane krize na blízkém východě", r — "cena ropy na světových trzích stoupne"

- d) Pokud si pan Novák koupil nové auto a neprodal staré, tak už splatil hypotéku nebo si vzal další půjčku.
- e) Sestra má modrý kabát a bílý kabát.

$$\check{R}$$
ešení: $\mathfrak{p} \wedge \mathfrak{q}$
 \mathfrak{p} — "sestra má modrý kabát", \mathfrak{q} — "sestra má bílý kabát"

- f) Jestliže John půjde k soudu a bude vypovídat podle skutečnosti, bude na něj podáno trestní oznámení, a když k soudu nepůjde, také na něj bude podáno trestní oznámení.
- g) To, že číslo x je prvočíslo a je větší než 2, je postačující podmínkou pro to, aby x bylo liché.
- h) Nutnou podmínkou pro to, aby posloupnost konvergovala, je to, že je zdola i shora omezená.
- i) Tato částka bude zaplacena tehdy a jen tehdy, když bude dodáno zboží v náležité kvalitě.
- j) Jestliže je x kladné, pak je i x^2 kladné.
- k) Pokud není trojúhelník ABC rovnoramenný, pak není ani rovnostranný.
- l) Graf G je planární právě tehdy, když neobsahuje jako svůj podgraf podrozdělení grafu K_5 ani podrozdělení grafu $K_{3,3}$.

$$\begin{array}{l} \textit{\~Rešen\'i:} \ p \leftrightarrow (\neg q \land \neg r) \\ p \longrightarrow \textit{``graf} \ G \ \textit{je plan\'arn\'i''}, \ q \longrightarrow \textit{``graf} \ G \ \textit{obsahuje jako sv\'uj podgraf podrozd\'elen\'i grafu} \ K_5 \text{``,} \\ r \longrightarrow \textit{``graf} \ G \ \textit{obsahuje jako sv\'uj podgraf podrozd\'elen\'i grafu} \ K_{3,3} \text{``} \end{array}$$

m) Není pravda, že když tento kandidát nebude zvolen prezidentem, tak nedojde ke zhoršení hospodářské situace.

```
Řešení: \neg(\neg p \rightarrow \neg q)

p — "tento kandidát bude zvolen prezidentem", q — "dojde ke zhoršení hospodářské situace"
```

n) Jestliže pachatel zfalšoval tento dokument, podplatil taxikáře a nezahladil všechny stopy na místě činu, budou proti němu nalezeny usvědčující důkazy.

Příklad 4: Vezměme si následující tři výroky:

```
p — "Praha má více obyvatel než Liberec"
q — "Karlovy Vary se nachází na západě České republiky"
r — "Labe protéká Českými Budějovicemi"
```

(Výroky p a q jsou tedy pravdivé a výrok r nepravdivý.)

Které z následujících výroků jsou pravdivé a které nepravdivé? (Zformulujte tyto výroky rovněž v přirozené řeči.)

a) p∨r Řešení: "Praha má více obyvatel než Liberec nebo Labe protéká Českými Budějovicemi", pravdivý

- b) $p \wedge r$
- c) $\neg p \wedge \neg r$
- d) $p \leftrightarrow (\neg q \lor r)$
- e) $(q \lor \neg r) \to p$
- $f)\ (\mathsf{q} \vee \mathsf{p}) \to (\mathsf{q} \to \neg r)$

Řešení: "Jestliže se Karlovy Vary nachází na západě České republiky nebo má Praha více obyvatel než Liberec, potom z toho, že Karlovy Vary se nachází na západě České republiky, plyne, že Labe neprotéká Českými Budějovicemi", pravdivý

- g) $(q \leftrightarrow \neg p) \leftrightarrow (p \leftrightarrow r)$
- h) $(q \rightarrow p) \rightarrow ((p \rightarrow \neg r) \rightarrow (\neg r \rightarrow q))$

Příklad 5: Pro každou z následujících sekvencí symbolů proveďte následující:

- a) Určete, zda se jedná o dobře utvořenou formuli výrokové logiky (podle formální definice).
- b) Určete, zda se jedná o dobře utvořenou formuli výrokové logiky, pokud je možno používat konvence pro vypouštění závorek.
- c) Pokud se jedná o dobře utvořenou formuli (ať už podle bodu (a) nebo bodu (b)):
 - Napište příslušnou formuli přesně podle formální definice (bez vypouštění závorek).
 - Napište příslušnou formuli s vypuštěním všech závorek, které je možno podle konvencí vypustit.
 - Nakreslete příslušný abstraktní syntaktický strom.

(Vaše odpovědi v bodech (a) a (b) zdůvodněte.)

5.
$$(\neg(\neg q()))$$

 $\check{R}\check{e}\check{s}en\acute{i}$: a) ne, b) ne

- 6. $(\neg(\neg)q)$
- 7. (p¬q)
- 8. ∧pq
- 9. $\mathfrak{p} \wedge \mathfrak{q}$

- 10. $(p \land q)$
- 11. $((p \land q))$
- 12. $((p \land q) \lor r)$
- 13. $((\neg p) \lor (q \leftrightarrow (\neg r)))$
- 14. $r \lor (\neg q \lor s)$
- 15. $((\neg r \lor \neg p) \lor s) \land (\neg q \lor s)$

$$\begin{tabular}{ll} \vspace{0.1cm} \vspace{$$

16.
$$(\neg((\neg p) \rightarrow (\neg(\neg r))))$$

$$\check{R}e\check{s}en\acute{i}$$
: a) ano, b) ano, c) $\neg(\neg p \rightarrow \neg \neg r)$

Příklad 6: Pomocí tabulkové metody určete všechny modely následujících formulí a určete, které z těchto formulí jsou tautologie, které jsou splnitelné a které jsou kontradikce:

a)
$$p \vee q$$

b)
$$p \vee \neg p$$

c)
$$p \lor q \rightarrow q \lor p$$

$$\mathrm{d})\ p \to (p \vee q) \vee r$$

e)
$$p \rightarrow (\neg p \rightarrow q)$$

$$f)\ (p\to q)\to (q\to p)$$

g)
$$((p \rightarrow q) \leftrightarrow q) \rightarrow p$$

$$\mathrm{h})\ p \to (q \to (q \to p))$$

i)
$$p \land \neg(q \rightarrow p)$$

$$j)\ p \land q \to p \lor r$$

$$k) \ (p \lor (\neg p \land q)) \lor (\neg p \land \neg q)$$

$$l) \ p \wedge q \rightarrow (p \leftrightarrow q \vee r)$$

m)
$$(p \land q \rightarrow (p \land \neg p \rightarrow q \lor \neg q)) \land (q \rightarrow q)$$

n)
$$p \leftrightarrow q$$

o)
$$p \leftrightarrow p \lor p$$

$$p)\ p \lor q \leftrightarrow q \lor p$$

$$\mathrm{q)}\ (p \to q) \leftrightarrow (q \to p)$$

r)
$$(p \leftrightarrow p) \leftrightarrow p$$

$\check{R}e\check{s}en\acute{i}$: a)

p	q	$\mathbf{p} \lor \mathbf{q}$
0	0	0
0	1	1
1	0	1
1	1	1

není kontradikce, je splnitelná (má 3 modely), ale není tautologie (ohodnocení $\nu(p)=0$, $\nu(q)=0$ není modelem)

j)

p	q	r	$\mathbf{p} \wedge \mathbf{q}$	$(\mathbf{p} \lor \mathbf{r})$	$\mathbf{p} \wedge \mathbf{q} \rightarrow \mathbf{p} \vee \mathbf{r}$
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	1	1
1	1	1	1	1	1

je tautologie a tedy je i splnitelná, není kontradikce

k)

/							
p	q	$\neg \mathbf{p}$	$(\neg \mathbf{p} \wedge \mathbf{q})$	$(\mathbf{p} \lor (\neg \mathbf{p} \land \mathbf{q}))$	$\neg \mathbf{q}$	$(\neg \mathbf{p} \wedge \neg \mathbf{q})$	$(\mathbf{p} \vee (\neg \mathbf{p} \wedge \mathbf{q})) \vee (\neg \mathbf{p} \wedge \neg \mathbf{q})$
0	0	1	0	0	1	1	1
0	1	1	1	1	0	0	1
1	0	0	0	1	1	0	1
1	1	0	0	1	0	0	1

je tautologie a tedy je i splnitelná, není kontradikce