Sezione 2

Applicazioni del Project Management

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Prof. Alessandro Annarelli

Sapienza Università di Roma

Ambiti applicativi del Project Management

- 1. Progettazione e sviluppo dei prodotti e dei servizi
- 2. Gestione delle commesse di costruzione/produzione/servizi
- 3. Progettazione e gestione del miglioramento dei processi organizzativi
- 4. Ricerca pubblica e cooperazione internazionale

Classificazione degli ambiti applicativi

		RICHIESTE DEL CLIENTE	
		NON DEFINITE A PRIORI Cliente - Target	NOTE A PRIORI Cliente - Committente
TIVA	INTERNA	RICERCA PUBBLICA E COOPERAZIONE INTERNAZIONALE	MIGLIORAMENTO PROCESSI INTERNI
PROSPETTIVA	MERCATO	PROGETTAZIONE E SVILUPPO DEI PRODOTTI E DEI SERVIZI	GESTIONE DELLE COMMESSE

Progettazione/sviluppo prodotto

Le fonti dell'innovazione

 Si fa riferimento al concetto di progettazione industriale e conseguenti interventi sui processi produttivi

- La concept idea è il risultato di un mix strettamente correlato di opportunità tecnologiche e fabbisogni, più o meno espliciti, del mercato.
- L'architettura di prodotto è lo schema che descrive la suddivisione delle funzioni del prodotto, la loro attribuzione a parti del prodotto, l'interazione tra le parti del prodotto stesso: è il rapporto tra PFS e PdBS.

Rapporto tra domanda e innovazione

Rapporto tra domanda di mercato e innovazione ha 5 modi di sviluppo:

- lo sviluppo della tecnologia incorporata in un prodotto ne determina la domanda (es. microprocessori)
- la domanda è data e l'innovazione di prodotto la raccoglie (es. farmaci)
- l'innovazione stimola e sviluppa una domanda esistente (es. fotocopiatrici)
- l'innovazione di prodotto fa emergere una domanda latente (es. cellulari)
- l'innovazione rivitalizza una domanda già esistente (es. tecnologie di rete in elettrodomestici)

Lo sviluppo della tecnologia può precedere quello del prodotto (caso **Technology Push**) dato che:

- la sempre maggiore sofisticazione tecnologica richiede cicli di sviluppo ben più lunghi di quelli del prodotto
- la dinamicità e volatilità del mercato impone di poter disporre già di un paniere di tecnologie fra cui scegliere e da cui partire

Credits: Matthew Yohe

Lo sviluppo del prodotto può precedere quello della tecnologia (caso **Demand Pull**) dato che

- i clienti, sempre più esigenti, determinano un focus sempre maggiore sul prodotto
- l'elevata interdipendenza tecnico-funzionale tra i componenti comporta di gestire innanzitutto il portafoglio prodotti

- Architettura vincente che integra le innovazioni introdotte in prodotti precedenti
- Incorpora le esigenze della maggior parte della classi di utilizzatori
- Seleziona i produttori che escono dal dominant design e non propongono una innovazione radicale
- Crea alcuni vincoli (standard tecnici e abitudini di utilizzo) con cui le future innovazioni si devono confrontare e scontrare

Dominant Design

TRICYCLE BY BAUER

THE 'HILLCLIMBER', A TRICYCLE 'SAFETY'

A QUADRICYCLE BY SAWYER

ASYMMETRICAL TRICYCLE BY J. **STARLEY**

A 'SOCIABLE' TRICYCLE

THE 'KANGAROO', A 'HIGH WHEEL

A PARIS TRICYCLE FOR LADIES

YOUNG DUNLOP'S TRICYCLE WITH **PNEUMATIC TYRES**

'PSYCHO' BY J. K. STARLEY

END OF THE

TRICYCLE

FISHER'S BICYCLE

SPRING FRAME

'DEVON' SYMMETRICAL TRICYCLE

GOMPERTZ'S BICYCLE

HUMBER 'DWARF SAFETY'

BARON VON DRAIS'S RUNNING-MACHINE

MCMILLAN'S BICYCLE

THE 'ROVER ILL', A 'SAFETY' BICYCLE BY J. K. STARLEY

LAWSON'S 'BICYCLETTE'

THE 'MICHAULINE'

BSA 'DWARF SAFETY'

THE SINGER 'XTRAORDINARY', A 'HIGH WHEEL SAFETY'

'COVENTRY' RACER

'ARIEL' BY J. STARLEY

DOCTEUR RICHARD'S FOUR-WHEELER

Evoluzione del Design Dominante

Evoluzione del design della bicicletta

Diffusione dell'innovazione

Schilling, 2017

Schilling, 2017

Innovazioni di prodotto

		CORE CONCEPT	
		MIGLIORATO	CAMBIATO
LEGAMI CONCEPT/COMPONENTI	IMMUTATI	INNOVAZIONE INCREMENTALE	INNOVAZIONE MODULARE
	MODIFICATI	INNOVAZIONE ARCHITETTURALE	INNOVAZIONE RADICALE

Tipologie di innovazione

INNOVAZIONI INCREMENTALI

Perfezionano il prodotto dominante mantenendone l'architettura

INNOVAZIONI MODULARI

Modificano il "concept", ma non l'architettura di prodotto

INNOVAZIONI ARCHITETTURALI

Danno vita ad una nuova architettura senza modificare il concept del prodotto

INNOVAZIONI RADICALI

Conducono ad un nuovo prodotto dominante stabile nel tempo

Innovazione Disruptive

Disruptive innovation – Takes a cheaper, low-end disruptive or a new market disruptive innovation to the market

La scala dell'innovazione

	AZIONE NEL TEMPO			
	CONT	ΓΙΝUA	DISCONTINUA	
OND SUMPREVEDIBILE			RADICAL INNOVATION	COLLAPSE & REGENERATION
NON SOSPETTA SOTTOVALUTAT		DISRUPTIVE INNOVATION		RICONFIGURAZIONE & EROSIONE
PREVEDIBILE	INCREMENTAL / SUSTAINING INNOVATION			MIGLIORAMENTO CONTINUO
	INALTERATA	SIMILE	NUOVA	
	SOLUZIONE TECNOLOGICA			

Battistella, Biotto, De Toni (2009)

Sviluppo della tecnologia

Ricerca & Sviluppo – R&S (Research & Development – R&D):

- processo che avvia il collegamento e il percorso dalle opportunità di ricerca al mercato
- elevata mortalità dei progetti di R&S
- produce innovazione tecnologica, di prodotto e di processo

New Product Development Funnel in Pharmaceuticals

Stadi di sviluppo del prodotto e del processo

Fonti dell'innovazione

La fonte dell'innovazione tecnologica può essere:

- endogena (dalla funzione R&S)
- esogena (Open Innovation, fornitori, fiere, concorrenti, collaborazioni con università, joint ventures)

Open Innovation Model

Chesbrough, 2003

Progettazione dei servizi

Definizione di servizio

- "Ogni lavoro produttivo che **non si concretizza** in alcun genere di hardware" (Ishikawa)
- "Un modo per accrescere la soddisfazione del cliente o dell'utilizzatore" (Fiegenbaum)
- "Lavorare per il beneficio di qualcuno" (Juran)
- "Insieme di benefici tangibili e intangibili, espliciti ed impliciti" (Normann)
- "Comportamento umano o attività con obiettivi specifici e processi, il cui scopo è soddisfare i bisogni del cliente" (Rosander)

Caratteristiche del servizio

- 1. Intangibilità (immaterialità della prestazione erogata)
- 2. Simultaneità tra produzione e consumo
- 3. Partecipazione del cliente

1. Servizio al cliente offerto da imprese industriali e commerciali ad integrazione dei loro prodotti

2. Servizio esplicito delle imprese del terziario

3. Servizio delle organizzazioni "no profit" e delle amministrazioni pubbliche

Tipologia di servizi e imprese

•servizi bancari

	GRADO DI INTERAZIONE CON CLIENTE E PERSONALIZZAZIONE DEL SERVIZIO		
	BASSO	ALTO	
BASSA	SERVICE FACTORY •trasporto aereo, ferroviario •servizi alberghieri •servizi ricreativi	SERVICE SHOP •ospedali •riparazioni meccaniche •altri servizi di assistenza	
ALTA	MASS SERVICE •grande distribuzione •scuole	PROFESSIONAL SERVICE •medici •avvocati	

Fonte: Schmenner, 1986

architetti

•commercialisti

Gestione delle commesse

Committente e commessa

"Chi affida ad altri il compimento di un'opera o di un servizio, configurando in ciò una commessa" (dal latino "committere" = affidare)

Forma giuridica dell'**appalto**: prevale l'obbligazione del "fare" su quella del "dare"

Imprese operanti su commessa

Le imprese Engineer-To-Order

Classificazione delle imprese di produzione

		LANCI IN PRODUZIONE	
		SU PREVISIONE DELLE VENDITE	SU ORDINAZIONI DEI CLIENTI
PRODOTTO	STANDARD (A CATALOGO)	PRODOTTI A CATALOGO SU PREVISIONE	PRODOTTI A CATALOGO SU ORDINE
TIPO DI P	SU SPECIFICA DEL CLIENTE		PRODOTTI SU COMMESSA • caratterizzata singola • caratterizzata ripetitiva • differenziata singola

Imprese di produzione

Le imprese che operano su commessa sono solo quelle ETO, che **non posseggono** catalogo, oppure offrono rilevanti personalizzazioni a partire da un catalogo base:

- Commesse "caratterizzate" singole: devono adattarsi alle specifiche esigenze di un cliente, ma a partire da un catalogo-commesse base
- Commesse "caratterizzate" ripetitive: come le precedenti, ma ripetute nel tempo è il caso tipico delle commesse di sub-fornitura
- Commesse differenziate: sempre singole, in cui la progettazione-ingegnerizzazione assume un ruolo molto più importante che nei due precedenti casi (le vere commesse ETO)

Ai fornitori di componenti e sottoassiemi possono essere richiesti ETO anche contenuti progettuali e/o ingegneristici, si parla quindi di **co-design**, a seconda delle specifiche date dal cliente si distinguono in:

- Detailed-controlled: specifiche dettagliate richiedendo solo l'ingegnerizzazione
- Black box: specifiche solamente di massima (con proprietà dei disegni che rimane del costruttore o diventa del fornitore)
- Supplier proprietary: specifiche con ampi margini di libertà

Servizi di consulenza

Offrono servizi tecnico/professionali relativi ad impianti industriali, infrastrutture e opere di ingegneria in genere

I **servizi** sono suddivisi nelle seguenti aree:

- Studi ed indagini preliminari: fattibilità, "project financing", valutazione rischi, indagini geologiche, ...
- Progettazione vera e propria (in tutte le sue fasi, dalla preliminare all'esecutiva, compresa la documentazione per gare d'appalto)
- Realizzazione ed esercizio: "project management" in senso stretto, assistenza in corso d'opera, direzione lavori, servizio acquisti, collaudi, ...

Erogazione dei servizi (Project-based services)

Industrials (e.g. fire suppression, HVAC, security)

Infrastructure (eg elevators, prefabricated modules, compressed air)

Medical products (eg MRI, X-ray, or laser machines)

Technology (eg servers, data banks)

Banking (eg ATMs, payment hardware)

Telecommunications (eg wire-line, new connections, towers)

Oil and gas (eg control systems, specialty valves, pressure tanks)

Energy and mining (eg solar systems, turbines, generators)

Progettazione del miglioramento

Cambiamento e flessibilità strategica

Il *cambiamento strategico* ("strategic turnaround", "strategic change", "strategic renewal", "business re-engineering") prevede una ridefinizione degli obiettivi e dei mezzi per conseguire una sempre maggiore vantaggio competitivo.

La progettazione e gestione del cambiamento strategico richiede un'ulteriore prestazione, nota come **flessibilità strategica** e intesa come:

- rapidità di variazione delle priorità competitive
- ampiezza e posizionamento delle opzioni strategiche
- rapidità di spostamento da un "business" ad un altro
- ampiezza dei potenziali "business" accessibili in certo istante

Processi di management

MANAGEMENT BY ACTIVITIES

Focus su tempo di realizzazione delle attività e agli sforzi sostenuti

MANAGEMENT BY OBJECTIVES (MBO)

Focus su obiettivi da raggiungere e i relativi passi da seguire

- focus su obiettivi e scopi di un'attività
- manager ritenuti responsabili più dei risultati che delle attività

Obiettivi direzionali

E' possibile individuare quattro ambiti/tipologie di obiettivi direzionali:

- Innovazione
- Risoluzione dei problemi
- Compimento/completamento di attività già definite
- Sviluppo delle risorse umane

L'approccio della **gestione per processi** intende estendere il concetto di "lavorare per obiettivi" (MBO) dalla Direzione a **tutta** l'azienda

Gestione per processi

La gestione per processi (**Process Management**) ha come scopo l'introduzione e la diffusione in **tutta l'azienda** dell'operare per obiettivi:

- coniuga la tradizionale economicità della produzione su vasta scala con le pressanti e decisive richieste dei clienti per una maggiore rispondenza a loro specifiche esigenze (forte catalizzatore di programmi per la soddisfazione del cliente)
- obiettivi finali di soddisfazione del cliente piuttosto che all'efficienza di singola funzione
- intera organizzazione orientata a obiettivi-risultati piuttosto che basata su mansioni-compiti
- alle singole funzioni vengono affidati sub-obiettivi, che devono integrarsi e comporsi sinergicamente al fine di soddisfare il cliente

Funzioni aziendali e processi

Processi direzionali e di supporto - Pianificazione strategica • Gestione Risorse Umane • Controllo di Gestione • ICT

Processi di cambiamento/innovazione

• Marketing
• Rapporti con i Fornitori
• Tecnologia
• Sviluppo Prodotti

Processi di routine

• Acquisti
• Produzione
• Logistica
• Vendite
• Service

Integrazione tra struttura organizzativa funzionale e per processi

- Principio della divisione del lavoro (vantaggio della specializzazione)
- Necessario conseguente coordinamento delle attività

Metodologia per la gestione per processi

Gestione esplicita dei processi aziendali:

- 1. Identificazione del **processo**
- 2. Definizione dei confini (inizio = **fornitore**, fine = **cliente**)
- 3. Formalizzazione di **input** e **output** scambiati (con fornitori e clienti)
- 4. Formalizzazione delle **attività** del processo e delle relative procedure, nonché del valore aggiunto delle attività
- 5. Analisi degli eventi scatenanti le attività e delle loro durate attese
- 6. Valutazione delle **prestazioni** di risultato (= in uscita dal processo) e della loro origine interna (al processo) ed esterna (in entrata, ovvero ricevute da monte)
- 7. Definizione delle **responsabilità** ("ownership") di processo
- 8. Allocazione delle **risorse** di processo

Ricerca pubblica e privata

Ricerca pubblica e privata

La ricerca pubblica e privata può essere:

- ricerca pura o fondamentale, (tesa all'acquisizione di conoscenze in specifiche aree disciplinari, cioè a scoprire fenomeni e a stabilire i principi),
- ricerca applicata (che sedimenta e incorpora conoscenze ed esperienze ed ha obiettivi specifici,

Nell'ambito delle amministrazioni pubbliche Italiane è possibile distinguere:

- Enti di ricerca che svolgono attività di R&S come fine istituzionale, (Consiglio Nazionale delle Ricerche (CNR), l'Istituto Nazionale di Statistica (ISTAT), ...)
- Università, il cui personale è impegnato sia in attività di ricerca che didattiche;
- Altre istituzioni pubbliche, ovvero laboratori e istituti dipendenti dai ministeri

Horizon 2020

Innovativo strumento finanziario di applicazione dell'"Unione dell'Innovazione" (Innovation Union), ovvero della Strategia 2020 dell'Unione Europea per la crescita e il lavoro grazie all'innovazione, è Horizon 2020. Ha avuto una durata di sette anni a partire dal 1 Gennaio 2014 fino al 31 Dicembre 2020.

Il budget di 80 miliardi di euro è stato suddiviso in tre linee strategiche:

- *Excellent Science* (budget 24.598 milioni di €): obiettivo principale è il rafforzamento della posizione dell'UE a livello globale in tutti i settori scientifici.
- Competitive Industries (budget 17.938 milioni di €): obiettivo principale è sviluppare la leadership industriale delle imprese europee, in particolare le PMI, e a rendere l'Europa un luogo più attraente per gli investimenti in ricerca e innovazione per lo sviluppo di tecnologie chiave.
- **Better Society** (budget 31.748 milioni di euro): riflette le priorità politiche della strategia Europa 2020 ed ha l'obiettivo di rispondere alle preoccupazioni condivise da tutti i cittadini europei come il cambiamento climatico, lo sviluppo sostenibile della mobilità, l'accessibilità all'energia rinnovabile, l'invecchiamento della popolazione, ...

Horizon 2030 (?)

L'Unione Europea ha pubblicato una proposta per Horizon Europe, un programma di ricerca e innovazione con un budget di 100 miliardi di euro.

Nella proposta vengono identificate 5 Mission Areas:

- 1. Adaptation to climate change
- 2. Cancer
- 3. Smart cities
- 4. Healthy oceans
- 5. Soil health and food

Sezione 2

Applicazioni del Project Management

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Prof. Alessandro Annarelli

Sapienza Università di Roma