### Parsing, and Context-Free Grammars

Michael Collins, Columbia University

### Overview

- ► An introduction to the parsing problem
- ► Context free grammars
- ► A brief(!) sketch of the syntax of English
- Examples of ambiguous structures

# Parsing (Syntactic Structure)

**INPUT:** 

Boeing is located in Seattle.

**OUTPUT:** 



### Syntactic Formalisms

- Work in formal syntax goes back to Chomsky's PhD thesis in the 1950s
- Examples of current formalisms: minimalism, lexical functional grammar (LFG), head-driven phrase-structure grammar (HPSG), tree adjoining grammars (TAG), categorial grammars

## Data for Parsing Experiments

- ▶ Penn WSJ Treebank = 50,000 sentences with associated trees
- ▶ Usual set-up: 40,000 training sentences, 2400 test sentences

### An example tree:



## The Information Conveyed by Parse Trees

(1) Part of speech for each word (N = noun, V = verb, DT = determiner)



# The Information Conveyed by Parse Trees (continued)

(2) Phrases



Noun Phrases (NP): "the burglar", "the apartment" Verb Phrases (VP): "robbed the apartment" Sentences (S): "the burglar robbed the apartment"

# The Information Conveyed by Parse Trees (continued)

(3) Useful Relationships



⇒ "the burglar" is the subject of "robbed"

### An Example Application: Machine Translation

► English word order is subject – verb – object

▶ Japanese word order is subject – object – verb

English: IBM bought Lotus Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday Japanese: Sources yesterday IBM Lotus bought that said



### Overview

- ► An introduction to the parsing problem
- ► Context free grammars
- ► A brief(!) sketch of the syntax of English
- Examples of ambiguous structures

### Context-Free Grammars

Hopcroft and Ullman, 1979

A context free grammar  $G = (N, \Sigma, R, S)$  where:

- ightharpoonup N is a set of non-terminal symbols
- $ightharpoonup \Sigma$  is a set of terminal symbols
- ▶ R is a set of rules of the form  $X \to Y_1 Y_2 \dots Y_n$  for  $n \ge 0$ ,  $X \in N$ ,  $Y_i \in (N \cup \Sigma)$
- $ightharpoonup S \in N$  is a distinguished start symbol

# A Context-Free Grammar for English

```
N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}

S = S

\Sigma = \{\text{sleeps, saw, man, woman, telescope, the, with, in}\}
```

```
NP
              VΡ
VP
VP
         Vt
             NP
VΡ
NP
         DT
             NN
NP
         NP
             PP
PP
              NP
         IN
```

| Vi | $\rightarrow$ | sleeps    |
|----|---------------|-----------|
| Vt | $\rightarrow$ | saw       |
| NN | $\rightarrow$ | man       |
| NN | $\rightarrow$ | woman     |
| NN | $\rightarrow$ | telescope |
| DT | $\rightarrow$ | the       |
| IN | $\rightarrow$ | with      |
| IN | $\rightarrow$ | in        |

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

### Left-Most Derivations

A left-most derivation is a sequence of strings  $s_1 \dots s_n$ , where

- $ightharpoonup s_1 = S$ , the start symbol
- $s_n \in \Sigma^*$ , i.e.  $s_n$  is made up of terminal symbols only
- ▶ Each  $s_i$  for  $i=2\dots n$  is derived from  $s_{i-1}$  by picking the left-most non-terminal X in  $s_{i-1}$  and replacing it by some  $\beta$  where  $X \to \beta$  is a rule in R

For example: [S], [NP VP], [D N VP], [the N VP], [the man VP], [the man Vi], [the man sleeps]

Representation of a derivation as a tree:



DERIVATION S RULES USED

**DERIVATION** 

**RULES USED** 

S

 $\mathsf{S} o \mathsf{NP} \, \mathsf{VP}$ 

NP VP

DERIVATION S

**RULES USED** 

... . .

 $\mathsf{S} \to \mathsf{NP} \; \mathsf{VP}$ 

NP VP

 $\mathsf{NP} \to \mathsf{DT} \; \mathsf{N}$ 

DT N VP

DERIVATION S

 $S \rightarrow NP VP$ 

**RULES USED** 

NP VP

 $\mathsf{NP} \to \mathsf{DT} \; \mathsf{N}$ 

DT N VP

 $\mathsf{DT} \to \mathsf{the}$ 

the N VP

the dog VP

 $\begin{array}{ccc} \textbf{DERIVATION} & \textbf{RULES USED} \\ \textbf{S} & \textbf{S} \rightarrow \textbf{NP VP} \\ \textbf{NP VP} & \textbf{NP} \rightarrow \textbf{DT N} \\ \textbf{DT N VP} & \textbf{DT} \rightarrow \textbf{the} \\ \textbf{the N VP} & \textbf{N} \rightarrow \textbf{dog} \\ \end{array}$ 

| DERIVATION | RULES USE           |
|------------|---------------------|
| S          | $S\toNP\;VP$        |
| NP VP      | $NP 	o DT \; N$     |
| DT N VP    | $DT \to the$        |
| the N VP   | N 	o dog            |
| the dog VP | $VP \rightarrow VB$ |
| the dog VB | VF 	o VD            |

| DERIVATION     | RULES USED       |  |  |  |
|----------------|------------------|--|--|--|
| S              | $S\toNP\;VP$     |  |  |  |
| NP VP          | $NP \to DT \; N$ |  |  |  |
| DT N VP        | $DT \to the$     |  |  |  |
| the N VP       | N 	o dog         |  |  |  |
| the dog VP     | VP 	o VB         |  |  |  |
| the dog VB     | $VB \to laughs$  |  |  |  |
| the dog laughs |                  |  |  |  |





### Properties of CFGs

- ▶ A CFG defines a set of possible derivations
- A string  $s \in \Sigma^*$  is in the *language* defined by the CFG if there is at least one derivation that yields s
- Each string in the language generated by the CFG may have more than one derivation ("ambiguity")

# An Example of Ambiguity



# An Example of Ambiguity (continued)



### The Problem with Parsing: Ambiguity

#### INPUT:

She announced a program to promote safety in trucks and vans



#### POSSIBLE OUTPUTS:



And there are more...

### Overview

- ► An introduction to the parsing problem
- ► Context free grammars
- ► A brief(!) sketch of the syntax of English
- Examples of ambiguous structures



Product Details (from Amazon)
Hardcover: 1779 pages
Publisher: Longman; 2nd Revised edition

ISBN-13: 978-0582517349

Language: English
ISBN-10: 0582517346

Product Dimensions: 8.4 x 2.4 x 10 inches Shipping Weight: 4.6 pounds

## A Brief Overview of English Syntax

### Parts of Speech (tags from the Brown corpus):

- Nouns
   NN = singular noun e.g., man, dog, park
   NNS = plural noun e.g., telescopes, houses, buildings
   NNP = proper noun e.g., Smith, Gates, IBM
- ▶ DeterminersDT = determiner e.g., the, a, some, every
- ► Adjectives

  JJ = adjective e.g., red, green, large, idealistic

### A Fragment of a Noun Phrase Grammar

| N         | $\Rightarrow$ | NN        |           |
|-----------|---------------|-----------|-----------|
| $\bar{N}$ | $\Rightarrow$ | NN        | $\bar{N}$ |
| $\bar{N}$ | $\Rightarrow$ | JJ        | $\bar{N}$ |
| $\bar{N}$ | $\Rightarrow$ | $\bar{N}$ | $\bar{N}$ |
| NP        | $\Rightarrow$ | DT        | $\bar{N}$ |
|           |               |           |           |

```
NN
          box
NN
          car
NN
     ⇒ mechanic
     \Rightarrow pigeon
NN
          the
```

fast metal  $\begin{array}{ccc} \mathsf{JJ} & \Rightarrow & \mathsf{idealistic} \\ \mathsf{JJ} & \Rightarrow & \mathsf{clay} \end{array}$ 

### Prepositions, and Prepositional Phrases

▶ PrepositionsIN = preposition e.g., of, in, out, beside, as

### An Extended Grammar

|   |           |               |          |        |    |               |          | 33 |               | last       |   |
|---|-----------|---------------|----------|--------|----|---------------|----------|----|---------------|------------|---|
| 1 | $\bar{N}$ | ,             | NINI     | 1      |    |               |          | JJ | $\Rightarrow$ | metal      |   |
|   | N         | $\Rightarrow$ | NN       |        | NN | $\Rightarrow$ | box      | JJ | $\Rightarrow$ | idealistic |   |
|   | N<br>N    | $\Rightarrow$ | NN       | N      | NN | $\Rightarrow$ | car      | JJ | $\Rightarrow$ | clay       |   |
|   | N<br>N    | $\Rightarrow$ | Ž.<br>JJ | N<br>N | NN | $\Rightarrow$ | mechanic |    |               | •          |   |
|   |           | $\Rightarrow$ | N        | N<br>N | NN | $\Rightarrow$ | pigeon   | IN | $\Rightarrow$ | in         |   |
|   | NP        | $\Rightarrow$ | DT       | N      |    |               |          | IN | $\Rightarrow$ | under      |   |
|   |           |               |          | NID    | DT | $\Rightarrow$ | the      | IN | $\Rightarrow$ | of         |   |
|   | PP<br>    | $\Rightarrow$ | ĪN       | NP     | DT | $\Rightarrow$ | а        | IN | $\Rightarrow$ | on         |   |
|   | N         | $\Rightarrow$ | N        | PP     | 1  |               | 1        | IN | $\Rightarrow$ | with       |   |
|   |           |               |          |        |    |               |          | IN | $\Rightarrow$ | as         |   |
|   | _         |               |          |        |    |               |          | I. |               |            | 1 |

 $JJ \Rightarrow fast$ 

#### **Generates:**

in a box, under the box, the fast car mechanic under the pigeon in the box, . . .

### An Extended Grammar

| N         | $\Rightarrow$ | NN        |           |
|-----------|---------------|-----------|-----------|
| N         | $\Rightarrow$ | NN        | N         |
| N         | $\Rightarrow$ | JJ        | N         |
| $\bar{N}$ | $\Rightarrow$ | $\bar{N}$ | $\bar{N}$ |
| NP        | $\Rightarrow$ | DT        | $\bar{N}$ |
|           |               |           |           |
| PP        | $\Rightarrow$ | IN        | NP        |
| N         | $\Rightarrow$ | N         | PP        |

### Verbs, Verb Phrases, and Sentences

Basic Verb TypesVi = Intransitive verb

e.g., sleeps, walks, laughs

Vt = Transitive verb e.g., sees, saw, likes

Vd = Ditransitive verb e.g., gave

 $VP \rightarrow Vd NP NP$ 

▶ Basic S Rule  $S \rightarrow NP VP$ 

#### Examples of VP:

sleeps, walks, likes the mechanic, gave the mechanic the fast car

#### **Examples of S:**

the man sleeps, the dog walks, the dog gave the mechanic the fast car

## PPs Modifying Verb Phrases

A new rule:  $VP \rightarrow VP PP$ 

#### New examples of VP:

sleeps in the car, walks like the mechanic, gave the mechanic the fast car on Tuesday, . . .

### Complementizers, and SBARs

- ► Complementizers COMP = complementizer e.g., that
- ► SBAR SBAR → COMP S

#### **Examples:**

that the man sleeps, that the mechanic saw the dog  $\dots$ 

### More Verbs

```
    New Verb Types
    V[5] e.g., said, reported
    V[6] e.g., told, informed
    V[7] e.g., bet
```

New VP Rules VP  $\rightarrow$  V[5] SBAR VP  $\rightarrow$  V[6] NP SBAR VP  $\rightarrow$  V[7] NP NP SBAR

#### **Examples of New VPs:**

said that the man sleeps told the dog that the mechanic likes the pigeon bet the pigeon \$50 that the mechanic owns a fast car

### Coordination

```
► A New Part-of-Speech:
CC = Coordinator e.g., and, or, but
```

New Rules  $NP \rightarrow NP$  CC  $NP \rightarrow N$ 

# We've Only Scratched the Surface...

Agreement

The dogs laugh vs. The dog laughs

► Wh-movement

The dog that the cat liked \_\_\_

Active vs. passive

The dog saw the cat *vs.*The cat was seen by the dog

▶ If you're interested in reading more:

Syntactic Theory: A Formal Introduction, 2nd Edition. Ivan A. Sag, Thomas Wasow, and Emily M. Bender.

### Overview

- ► An introduction to the parsing problem
- ► Context free grammars
- ► A brief(!) sketch of the syntax of English
- Examples of ambiguous structures

### Sources of Ambiguity

 $\begin{array}{ccc} \hbox{\sf Part-of-Speech ambiguity} \\ \hbox{\sf NN} & \rightarrow & \hbox{\sf duck} \\ \hbox{\sf Vi} & \rightarrow & \hbox{\sf duck} \end{array}$ 









## Sources of Ambiguity: Noun Premodifiers

▶ Noun premodifiers:

