Applications

Applications

Savoirs et compétences :

Correcteur proportionnel

Soit un système de fonction de transfert $G(p) = \frac{1}{\left(1+10p\right)\left(1+0,1p\right)\left(1+0,2p\right)}$ placé dans une boucle à retour unitaire.

Question 1 Calculer la précision du système ε_S pour une entrée échelon unitaire.

Correction Le système est de classe 0. L'entrée est de type échelon. $K_{\text{BO}} = 1$. L'écart statique est de $\frac{1}{1+1} = \frac{1}{2}$.

Question 2 Tracer dans le diagramme de Bode la fonction de transfert en boucle ouverte du système.

Question 3 Déterminer K pour avoir une marge de phase de 45°. Indiquer alors la valeur de l'écart statique.

Correction • On résout $\varphi(\omega) = -135^\circ$: $\varphi(\omega) = -\arctan 10\omega -\arctan 0, 1\omega -\arctan 0, 2\omega$.

 $\varphi(\omega) = -135^{\circ} \iff \omega = 2.95 \,\text{rad}\,\text{s}^{-1}$ (solveur Excel).

- Calculons $G_{\rm dB}(\omega) = -20\log(\sqrt{1+10^2\omega^2}) 20\log(\sqrt{1+0,1^2\omega^2}) 20\log(\sqrt{1+0,2^2\omega^2}) = -31\,{\rm dB}.$ Il faut donc augmenter le gain de 31 dB soit $K_P = 10^{31/20} 35$ 48
 - On a alors un écart statique de $\frac{1}{1+35,48} = 0,027$.

Question 4 Déterminer K pour avoir une marge de gain de 6 dB. Indiquer alors la valeur de l'écart statique.

Correction

Correcteur proportionnel

Soit un système de fonction de transfer $G(p) = \frac{1}{(1+0,05p)(1+p+2p^2)}$. On souhaite corriger le comportement de ce système par un correcteur proportionnel.

Question Déterminer le gain K qui assure une marge de phase de 45°.

Correcteur proportionnel

Soit un système de fonction de transfer $G(p) = \frac{10}{p(1+p+p^2)}$. On souhaite corriger le comportement de ce système par un correcteur proportionnel. On désire une marge de phase de -45°et une marge de gain de 10 dB.

Question 1 Calculer la marge de phase.

Question 2 Calculer la marge de gain.

Question 3 Déterminer K_p pour avoir une marge de phase de 45°. Vérifier la marge de gain.

Question 4 Déterminer K_p pour avoir une marge de gain de 10 dB. Vérifier la marge de phase.

Correcteur proportionnel intégral

1

Soit un système de fonction de transfert $G(p) = \frac{1}{(p+1)(\frac{p}{8}+1)}$ placé dans une boucle à retour unitaire.

On souhaite disposer d'une marge de phase de 45° en utilisant un correcteur proportionnel intégral de la forme $C(p) = K_p \frac{1+\tau p}{\tau p}$.

Question 5 Déterminer les paramètres du correcteur pour avoir une marge de phase de 45°.

Correcteur à avance de phase

Soit un système de fonction de transfert $G(p) = \frac{100}{\left(p+1\right)^2}$ placé dans une boucle à retour unitaire.

Question Corriger ce système de sorte que sa marge de phase soit égale à 45°.