- 1. I successfully implemented a Birthday attack on a hash function as can be seen below. Section a is a semantically similar message to the original in the textbook. I generated 2^{m/2} of these messages by systematically replacing " " with " \b " because "\b" is the notation for backspace. This I would end up with messages that would look the same in a terminal but still have different hashes. From there I created an amusingly incorrect fraudulent message, you can find it is section b, and generated different versions of it until one of the fraudulent hashes matched a pregenerated one. It should be noted that the hash that I used and broke was a simple 8bit hash created from the previous Toy DES assignment; I wasn't confident in my laptop's ability to consistently generate and hold 2³² hashes in a timely manner.
 - a. "More efficient attacks are possible by employing cryptanalysis \b to specific hash functions. When a collision attack is discovered and is found to be faster than a birthday attack, a hash function is often denounced as "broken". The NIST hash function competition was largely induced by published collision attacks against two very commonly used hash functions, MD5 and SHA-1. The collision attacks against MD5 have improved so much that, as of 2007, it takes just a few seconds on a regular computer. Hash collisions created this way are usually constant length and largely unstructured, so cannot directly be applied to attack widespread document formats or protocols."
 - b. "Least efficient attacks are possible \b by employing cryptanalysis to specific hash functions. When a collision attack is discovered and is found to be slower than a birthday attack, a hash function is often denounced as "perfect". The NASA hash function competition was largely induced by published collision attacks against two very commonly used hash functions, MARIO and SONIC-1. The collision attacks against MARIO have improved so much that, as of 2157, it takes just a few years on a regular computer. Hash collisions created this way are usually exponential length and largely structured, so can directly be applied to attack widespread document formats and protocols."
 - c. Code for Birthday Attack algorithm is located at https://github.com/angelson1992/MakeupExam/blob/master/src/BirthdayAttacker. java
 - d. Code for simple hasher made from DES is located at https://github.com/angelson1992/MakeupExam/blob/master/src/SimpleHash.java

2. Elliptic Curves and ECC

a. 10-12: Find all points on $E_{11}(1,6)$.

X	$y^2 = x^3 + x + 6$ mod 11	Is in QR(11)	Y
0	6	No	
1	8	No	
2	16 = 5	Yes	4, 7
3	36 = 3	Yes	5, 6
4	74 = 8	No	
5	136 = 4	Yes	2, 9
6	228 = 8	No	
7	356 = 4	Yes	2, 9
8	526 = 9	Yes	3, 8
9	744 = 7	No	
10	1016 = 4	Yes	2, 9
∞			8

So the points should be (2, 4), (2, 7), (3, 5), (3, 6), (5, 2), (5, 9), (7, 2), (7, 9), (8, 3), (8,8), (10, 2), (10, 9), (∞, ∞)

b. 10-13: What are the negatives of the following EC points on Z_{17} ?

i.
$$P = (5, 8)$$

1. $-P = -(5, 8) = (5, -8)$

ii.
$$Q = (3, 0)$$

1. $-Q = -(3, 0) = (3, 0)$

iii.
$$R = (0, 6)$$

1. $-R = -(0, 6) = (0, -6)$

c. 10-14: For $E_{11}(1, 6)$ a.k.a $y^2 = x^3 + x + 6 \mod 11$, consider point G = (2, 7). Compute the multiples of G from 2G to 13G

i.
$$2G = (m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (5, 2)$$

1.
$$M = (3x^2 + a/2y) = 13/14 = 13*14^{-1} \mod 11 = 13*4 \mod 11 = 8$$

ii.
$$3G = G + 2G = (2, 7) + (5, 2) = (m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (8, 3)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (7-2)/(2-5) = 5/-3 = 5 * (-3)^{-1} \mod 11 = 5 * 7 \mod 11 = 2$

iii.
$$4G = G + 3G = (2, 7) + (8, 3) = (m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (10, 2)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (3-7)/(8-2) = -4/6 = -4 * (6)^{-1} \mod 11 = -4 * 2 \mod 11 = 3$

iv.
$$5G = G + 4G = (2, 7) + (10, 2) = ((m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (3, 6)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (2-7)/(10-2) = -5/8 = -5 * (8)^{-1} \mod 11 = -5 * 7 \mod 11 = 9$

v.
$$6G = G + 5G = (2, 7) + (3, 6) = ((m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (7, 9)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (6-7)/(3-2) = -1/1 = -1 * (1)^{-1} \mod 11 = -1 * 1 \mod 11 = 10$

vi.
$$7G = G + 6G = (2, 7) + (7, 9) = ((m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (7, 2)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (9 - 7)/(7 - 2) = 2/5 = 2 * (5)^{-1} \mod 11 = 2 * 9 \mod 11 = 7$

vii.
$$8G = G + 7G = (2, 7) + (7, 2) = ((m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (3, 5)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (2 - 7)/(7 - 2) = -5/5 = -5 * (5)^{-1} \mod 11 = -5 * 9$
 $\mod 11 = 10$

viii.
$$9G = G + 8G = (2, 7) + (3, 5) = ((m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (10, 9)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (5 - 7)/(3 - 2) = -2/1 = -2 * (1)^{-1} \mod 11 = -2 * 1 \mod 11 = 9$

ix.
$$10G = G + 9G = (2, 7) + (10, 9) = ((m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (8, 8)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (9 - 7)/(10 - 2) = 2/8 = 2 * (8)^{-1} \mod 11 = 2 * 7 \mod 11 = 3$

x.
$$11G = G + 10G = (2, 7) + (8, 8) = ((m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (5, 9)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (8-7)/(8-2) = 1/6 = 1 * (6)^{-1} \mod 11 = 1 * 2 \mod 11 = 2$

xi.
$$12G = G + 11G = (2, 7) + (5, 9) = ((m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (2, 4)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (9 - 7)/(5 - 2) = 2/3 = 2 * (3)^{-1} \mod 11 = 2 * 4 \mod 11 = 8$

xii.
$$13G = G + 12G = (2, 7) + (2, 4) = ((m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (\infty, \infty)$$

1. $M = (y_2 - y_1/x_2 - x_1) = (4-7)/(2-2) = -3/0 = -\infty$

- d. 10-15: This problem performs elliptic curve encryption/decryption. The cryptosystem parameters are $E_{11}(1, 6)$ and G = (2, 7). B's private key is $n_B = 7$.
 - i. Find B's public key P_B.

1.
$$P_B = n_B * G = 7 * G = (7, 2)$$

- a. The math for this was done in the previous problem, 10-14.
- ii. A wishes to encrypt the message $P_m = (10, 9)$ and chooses the random value k = 3. Determine the ciphertext C_m .
 - 1. $C_m = \{kG, P_m + kP_B\} = \{(8,3), (10,2)\}$
 - a. kG = 3*(2,7) = (8, 3) because this math was done in the previous question, 10-14.

b.
$$kP_B = 3*P_B = P_B + 2P_B = (7, 2) + (2, 7) = (3, 5)$$

i.
$$2P_B = (m^2 - x_1 - x_1, m(x_1 - x_3) - y_1) = (2, 7)$$

1. Where
$$m = (3x^2+a/2y) = 148*4^{-1} = 4 \mod 11$$

ii.
$$P_B + 2P_B = (7,2) + (2,7) = (m^2 - x_1 - x_2, m(x_1 - x_3) - y_1) = (3,5)$$

1. Where
$$m = (y_2 - y_1/x_2 - x_1) = (7-2)/(2-7) = 5*(-5)^{-1} = 5*2 = 10$$

c.
$$P_m+kP_B=(10.9)+(3.5)=(m^2-x_1-x_2,m(x_1-x_3)-y_1)=(10.2)$$

i. Where
$$m = (y_2-y_1/x_2-x_1) = (5-9)/(3-10) = -4*(-7)^{-1}$$

mod 11 = -4*3 mod 11 = 10

iii. Show the calculation by which B recovers P_m from C_m

1.
$$C_m = \{kG, P_m + kP_B\} = \{(8,3), (10,2)\}$$
. Also $P_B = n_B *G$.

2.
$$C_m = \{kG, P_m + k(n_B *G)\}$$

3.
$$C_m = \{kG, P_m + (kG)*n_B\}$$

4. Thus
$$P_m = P_m + (kG) * n_B - (kG) * n_B$$

5. Thus $P_m = P_m + kP_B - (kG)*n_B$ and B can construct $(kG)*n_B$ with the information that it has available.

6.
$$P_m = P_m + kP_B - (kG)*n_B = (10, 2)-(kG)*n_B = (10, 2)-(3, 5) = (10,9)$$

a.
$$(kG)*n_B = (8, 3)*7 = (3, 5)$$

i.
$$(8,3)*2 = (m^2-x_1-x_1,m(x_1-x_2)-y_1) = (7,9)$$

1.
$$m = (3x^2 + a/2y) = 1$$

ii.
$$(8,3)*4 = (7,9)*2 = (m^2-x_1-x_1,m(x_1-x_3)-y_1) = (2,4)$$

1.
$$m = (3x^2 + a/2y) = 7$$

iii.
$$(8,3)*8 = (2,4)*2 = (m^2-x_1-x_1,m(x_1-x_3)-y_1) = (5,9)$$

1.
$$m = (3x^2 + a/2y) = 3$$

iv.
$$(8,3)*7=(5,9)-(8,3)=(m^2-x_1-x_2,m(x_1-x_3)-y_1)=(3,5)$$

1.
$$m = (y_2 - y_1/x_2 - x_1) = 7$$

b.
$$(10, 2)+(3, -5) = (m^2 - x_1 - x_2, m(x_1-x_3)-y_1) = (10, 9)$$

i.
$$m = (y_2 - y_1/x_2 - x_1) = 1$$

3. 31531 is most likely prime according to Miller-Rabin. Thus it makes sense that Pollard-Rho failed.

520482 is obviously not prime considering it's even and Miller-Rabin can't even generate the needed numbers because of this. Running Pollard-Rho several times I get 520482 = 3 * 2 * 223 * 389

485827 is most likely prime according to Miller-Rabin. Thus it makes sense that Pollard-Rho failed.

15485863 is most likely prime according to Miller-Rabin. Thus it makes sense that Pollard-Rho failed.

- a. Code for Miller-Rabin algorythm is located at https://github.com/angelson1992/MakeupExam/blob/master/src/Miller_Rabin_Algo.iava
- b. Code for Pollard-Rho algorythm is located at https://github.com/angelson1992/MakeupExam/blob/master/src/Pollard_rho_algo.java