Recap

- ► Set theory 101
- $ightharpoonup \mathbb{P}$ is a set-function.
- ightharpoonup All sets in $\mathcal{P}(\Omega)$ need not be measurable.
- ightharpoonup We restrict domain of $\mathbb P$ to sigma-algebra of measurable sets.
- $ightharpoonup (\Omega, \mathcal{F}, \mathbb{P})$ is known as probability space.
- Formal definition of probability measure with its axioms.
- ightharpoonup We looked at $\mathcal{B}([0,1])$ and $\mathcal{B}(\mathbb{R})$.

Consequences of the Probability Axioms

Definition

A probability measure $\mathbb P$ on the *measurable space* $(\Omega, \mathcal F)$ is a function $\mathbb P: \mathcal F \to [0,1]$ s.t.

- 1. $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$
- 2. For a disjoint collection of event sets A_1, A_2, \ldots from \mathcal{F} we have

$$\mathbb{P}\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

(countable additivity)

- ▶ The trio $(\Omega, \mathcal{F}, \mathbb{P})$ is called as a probability space.
- Identified the probability space in the coin, dice and experiment.

Consequences of the Probability Axioms

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B).$
- ▶ If $A \subseteq B$, prove that $P(A) \le P(B)$. $(A \subseteq B \text{ has the interpretation that Event A implies event B)$
- $P(\bigcup_{i=1}^{\infty} B_i) \leq \sum_{i=1}^{\infty} P(B_i)$ (Boole's/Bonferroni's inequality). HW
- ▶ What is $P(A \cup B \cup C)$?
- ▶ State and prove the inclusion-exclusion principle for $P(\bigcup_{i=1}^{n} A_i)$

Impossible event v/s Zero prob. event

- ▶ In U[0,1] what is $P(\omega = 0.5)$? = 0.
- Intuitive reasoning for this is that a point has zero length!
- ▶ If $P(\omega \in [a, b]) = b a$ then $P([.5, .5]) = P(\{.5\}) = 0$.
- ► This is a zero probability event. In fact, every outcome of this experiment is a zero probability event.
- This implies that events of zero probability can happen and they are not impossible events.
- $ho P(\emptyset) = 0$, then is \emptyset also possible ?No!
- ▶ What is $P(\omega \in [0, .25] \cap [.75, 1])$?
- ▶ $P([0,.25] \cap [.75,1]) = P(\emptyset) = 0$ This event will never happen.

Impossible event v/s Zero prob. event

- Note that in the U[0,1] experiment, $\Omega = \bigcup_{\omega \in \Omega} \{\omega\}$
- $P(\Omega) = P(\bigcup_{\omega \in \Omega} \{\omega\}) = \sum_{\omega \in \Omega} P(\{\omega\}) = 0.$
- ► What is the problem above ?
- $ightharpoonup \Omega$ is an uncountable set and the probability set-function only has a countable additive property.
- $\bigcup_{\omega \in \Omega} \{\omega\} \text{ is an uncountable disjoint union!}$

Limits and Continuity

- ▶ How do we define limit of a sequence $\{a_1, a_2, \ldots, \}$?
- Notation: $\lim_{n\to\infty} a_n = L$.
- ► How do you define limit of a function at a point c?
- Notation: $\lim_{x\to c} f(x) = L$
- ightharpoonup How do you define continuity of a function f(x) at c?
- When do you say a function is continuous?
- \triangleright (ϵ, δ) -definition of limits and continuity?

Limits and Continuity

Definition in terms of limits of sequences.

For a continuous function $f(\cdot)$, as $x \to c$, we have $f(x) \to f(c)$

For a continuous set-function S, as $A_n \rightarrow A$, we have $S(A_n) \rightarrow S(A)$

- \triangleright Recall that \mathbb{P} is a set-function. Is it continuous?
- We will see the proof shortly.

Sequence of sets

- ▶ Given (Ω, \mathcal{F}) , If $A_1 \subset A_2 \ldots$ is an increasing sequence of events defined on \mathcal{F} and $\bigcup_{n=1}^{\infty} A_n = A \in \mathcal{F}$, then we say thats the sequence of sets A_n are increasing to A $(A_n \uparrow A)$.
- Similarly when $A_1 \supset A_2 \dots$ is a decreasing sequence of events and $\bigcap_{n=1}^{\infty} A_n = A$, then we have $A_n \downarrow A$.
- Alternative notation: For an increasing sequence of sets A_n we often write $\lim_{n\to\infty} A_n$ for $\bigcup_{n=1}^{\infty} A_n$ and for a decreasing sequence of sets A_n that $\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$.

Continuity of set-function \mathbb{P}

Lemma

For sequence of events of the type $A_n \uparrow A$ or $A_n \downarrow A$, we have $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$.

Proof

- Consider increasing sequence first. Similar arguments follow for decreasing seq.
- $\triangleright \cup_{n=1}^{\infty} A_n = \cup_{n=1}^{\infty} F_n.$

Equivalently if $An \to \emptyset$, then $\mathbb{P}(A_n) \to 0$.