PLASTIC INTEGRATED CIRCUITS

LOW-POWER
AND
MEDIUM-POWER
MC700P/MC800P SERIES

MILLIWATT AND MEDIUM-POWER

PLASTIC MRTL

INTEGRATED CIRCUITS

INDEX

General Information Summary of Devices Available in mW MRTL (low power) Summary of Devices Available in MRTL (medium power)

DEVICE SPECIFICATIONS

POWER

MC715P, MC815P	Dual 3-Input Gates	MRTL
- MC816P	J-K Flip-Flop (see MC723P)	MRTL
MC717P, MC817P	Quad 2-Input Gates	mW MRTL
MC718P, MC818P	Dual 3-Input Gates	mW MRTL
MC719P, MC819P	Dual 4-Input Gates	mW MRTL
MC722P, MC822P	J-K Flip-Flops	mW MRTL
MC723P, MC816P	J-K Flip-Flops	MRTL
MC724P, MC824P	Quad 2-Input Gates	MRTL
MC725P, MC825P	Dual 4-Input Gates	MRTL
MC726P, MC826P	J-K Flip-Flops	MRTL
MC764P, MC864P	Dual Exclusive OR-NOR Gate	mW MRTL
MC767P, MC867P	Quad Latch	mW MRTL
MC770P, MC870P	BCD-to-Decimal Decoder	mW MRTL
MC771P, MC871P	Quad Exclusive OR Gates	MRTL
MC775P, MC875P	Dual Half-Adders	MRTL
MC776P, MC876P	Dual J-K Flip-Flops	mW MRTL
MC777P, MC877P	Binary Up Counter	MRTL
MC778P, MC878P	Dual Type D Flip-Flops	mW MRTL
	1 J-K Flip-Flop, 1 Expander, 2 Buffers	MRTL
MC779P, MC879P	Decade Up Counter	MRTL
MC780P, MC880P	•	MRTL
MC783P, MC883P	Dual Half-Shift Registers With Inverter Dual Half-Shift Registers	MRTL
MC784P, MC884P		MRTL
MC785P, MC885P	Quad 2-Input Expanders Dual 4-Input Expanders	MRTL
MC786P, MC886P	1 J-K Flip-Flop, 1 Inverter, 2 Buffers	MRTL
MC787P, MC887P	Dual Buffers, Non-Inverting	MRTL
MC788P, MC888P	Hex Inverters	MRTL
MC789P, MC889P		MRTL
MC790P, MC890P	Dual J-K Flip-Flops Dual J-K Flip-Flops	MRTL
MC791P, MC891P	· · · · · · · · · · · · · · · · · · ·	MRTL
MC792P, MC892P	Triple 3-Input Gates	mW MRTL
MC793P, MC893P	Triple 3-Input Gates	MRTL
MC794P, MC894P	Serial-Parallel Shift Register Dual Full Adders	MRTL
MC796P, MC896P		MRTL
MC797P, MC897P	Dual Full Subtractors	
MC798P, MC898P	Dual Buffers	mW MRTL MRTL
MC799P, MC899P	Dual Buffers, Inverting	
MC9701P, MC9801P	Dual 4-Channel Data Selector	MRTL
MC9704P, MC9804P	4-Bit Parallel Full Adder	MRTL MRTL
MC9707P, MC9807P	Dual 4-Channel Data Distributor	MRTL
MC9709P, MC9809P	Quad Schmitt Trigger	
MC9713P, MC9813P	Quad 2-Input AND Gate	MRTL
MC9714P, MC9814P	Quad 2-Input NAND Gate	MRTL
MC9715P, MC9815P	Quad 2-Input OR Gate	MRTL
MC9718P, MC9818P	Hex Inverter	mW MRTL
MC9719P, MC9819P	Hex Expanders	MRTL
MC9720P, MC9820P	Hex Expander	mW MRTL
MC9721P, MC9821P	Quad 2-Input Expanders	mW MRTL
MC9722P, MC9822P	Dual J-K Flip-Flop	mW MRTL
MC9760P, MC9860P	BCD-to-Decimal Decoder Driver	MRTL

FUNCTIONS AND CHARACTERISTICS MRTL

Vac	=	3.6	v	+	10%	т.	=	25°C

	Ту	rpe		Loading Each (put Factor Output	Propagation Delay	Total Power
Function	+15 to +55°C	0 to +75°C	Case	mW MRTL	MRTL	^t pd ns typ	Dissipation mW typ/pkg
GATES	10 10 700 0	0.0 170 0	Case			потур	17 P7 PR
D. 101	MC715P	MODAED	COF	10	_	40	EE /4E @
Dual 3-Input Gates Quad 2-Input Gates	MC724P	MC815P MC824P	605 605	16 16	5 5	12 12	55/15 ② 100/30 ②
Dual 4-Input Gates	MC725P	MC825P	605	16	5	12	60/15 ②
Quad Exclusive OR Gates	MC771P	MC871P	605	16	5	12	87
Triple 3-Input Gates	MC792P	MC892P	605	16	5	12	82/24 ②
Quad 2-Input AND Gate	MC9713P MC9714P	MC9813P MC9814P	605 605	16 16	5 5	28 14 (5)	100 145
Quad 2-Input NAND Gate Quad 2-Input OR Gate	MC9715P	MC9815P	605	16	5	14 (5)	28/100 ②
BUFFERS				•	•		-
Dual Buffers, Non-Inverting	MC788P	MC888P	605	80	25	24	145/56 ②
Dual Buffers, Inverting	MC799P	MC899P	605	80	25	20	50/100 ②
FLIP-FLOPS							
J-K Flip-Flops	-	MC816P	605	-	3	35	91/79 ③
J-K Flip-Flops	MC723P		605	10	=	35	91/79 ③
J-K Flip-Flops	MC726P MC790P	MC826P MC890P	605 605	16	5 3	35 35	100/86 ③
Dual J-K Flip-Flops Dual J-K Flip-Flops	MC791P	MC890P MC891P	605	16	5	40	182/158 (3 190/160 (3
INVERTER	•	• • • • • • • • • • • • • • • • • • • •	•				<u> </u>
Hex Inverters	MC789P	MC899P	605	16	5	12	130/15 ②
EXPANDERS							
Quad 2-Input Expanders	MC785P	MC885P	605	_	-	12	20/- ② 20/- ②
Dual 4-Input Expanders	MC786P	MC886P	605	-	-	12	
Hex Expanders	MC9719P	MC9819P	605			12	13/- ②
MULTI-FUNCTION DEVICES	,	·		,			
1 J-K Flip-Flop, 1 Expander, 2 Buffers 1 J-K Flip-Flop, 1 Inverter, 2 Buffers	MC779P MC787P	MC879P MC887P	605 605	_	_	_	141/124 ④ 138/132 ④
ADDERS AND SUBTRACTORS	1		<u> </u>	1	1		
Dual Half-Adders	MC775P	MC875P	605	16	5	20	120
Dual Full Adders	MC796P	MC896P	605	16	5	60	225
Dual Full Subtractors	MC797P	MC897P	605	16	5	60	225
4-Bit Parallel Full Adder							
- Dr. i didiloi Full Addoi	MC9704P	MC9804P	612	6	2	125	265
	MC97,04P	MC9804P					265
SHIFT REGISTERS Dual Half-Shift Registers With Inverter	MC783P	MC883P	612	13	4	125	140
SHIFT REGISTERS Dual Half-Shift Registers With Inverter Dual Half-Shift Registers	MC783P MC784P	MC883P MC884P	612 605 605	13 13	4 4	125 22 22	140 100
SHIFT REGISTERS Dual Half-Shift Registers With Inverter Dual Half-Shift Registers Serial-Parallel Shift Register	MC783P	MC883P	612	13	4	125	140
SHIFT REGISTERS Dual Half-Shift Registers With Inverter Dual Half-Shift Registers Serial-Parallel Shift Register COUNTERS	MC783P MC784P MC794P	MC883P MC884P MC894P	605 605 605	13 13 16	4 4 5	125 22 22	140 100 225
SHIFT REGISTERS Dual Half-Shift Registers With Inverter Dual Half-Shift Registers Serial-Parallel Shift Register	MC783P MC784P	MC883P MC884P	612 605 605	13 13	4 4	125 22 22	140 100
SHIFT REGISTERS Dual Half-Shift Registers With Inverter Dual Half-Shift Registers Serial-Parallel Shift Register COUNTERS Binary Up Counter Decade Up Counter	MC783P MC784P MC794P	MC883P MC884P MC894P	605 605 605	13 13 16	4 4 5 5	22 22 22 55	140 100 225
SHIFT REGISTERS Dual Half-Shift Registers With Inverter Dual Half-Shift Registers Serial-Parallel Shift Register COUNTERS Binary Up Counter Decade Up Counter DATA ROUTING FUNCTION Dual 4-Channel Data Selector	MC783P MC784P MC794P MC777P MC780P	MC883P MC884P MC894P MC877P MC880P	605 605 605 605 605	13 13 16	2 4 4 5 5 3 3 3	22 22 55	140 100 225 180 250
SHIFT REGISTERS Dual Half-Shift Registers With Inverter Dual Half-Shift Registers Serial-Parallel Shift Register COUNTERS Binary Up Counter Decade Up Counter DATA ROUTING FUNCTION Dual 4-Channel Data Selector Dual 4-Channel Data Distributor	MC783P MC784P MC794P MC777P MC777P MC780P	MC883P MC884P MC894P MC897P MC880P	605 605 605 605	13 13 16	4 4 5	22 22 55	140 100 225
SHIFT REGISTERS Dual Half-Shift Registers With Inverter Dual Half-Shift Registers Serial-Parallel Shift Register COUNTERS Binary Up Counter Decade Up Counter DATA ROUTING FUNCTION Dual 4-Channel Data Selector Dual 4-Channel Data Distributor SCHMITT TRIGGER	MC783P MC784P MC794P MC777P MC780P MC9701P MC9707P	MC883P MC884P MC894P MC894P MC877P MC880P MC9801P MC9807P	605 605 605 605 605	13 13 16 10 10	2 4 4 5 5 3 3 3 5 5 5	22 22 22 55	140 100 225 180 250
SHIFT REGISTERS Dual Half-Shift Registers With Inverter Dual Half-Shift Registers Serial-Parallel Shift Register COUNTERS Binary Up Counter Decade Up Counter DATA ROUTING FUNCTION Dual 4-Channel Data Selector Dual 4-Channel Data Distributor	MC783P MC784P MC794P MC777P MC780P	MC883P MC884P MC894P MC877P MC880P	605 605 605 605 605	13 13 16	2 4 4 5 5 3 3 3	22 22 55	140 100 225 180 250
SHIFT REGISTERS Dual Half-Shift Registers With Inverter Dual Half-Shift Registers Serial-Parallel Shift Register COUNTERS Binary Up Counter Decade Up Counter DATA ROUTING FUNCTION Dual 4-Channel Data Selector Dual 4-Channel Data Distributor SCHMITT TRIGGER	MC783P MC784P MC794P MC777P MC780P MC9701P MC9707P	MC883P MC884P MC894P MC894P MC877P MC880P MC9801P MC9807P	605 605 605 605 605	13 13 16 10 10	2 4 4 5 5 3 3 3 5 5 5	22 22 22 55	140 100 225 180 250

FUNCTIONS AND CHARACTERISTICS (continued) mW MRTL

				Output		
				Loading Factor	Propagation	-
•	Тур	e		Each Output	Delay	Total Powe
Function	+15 to +55°C	0 to +75°C	Case	Medium and Low Power	^t pd ns typ	Dissipation mW typ/pkg
GATES					•	
Quad 2-Input Gates	MC717P	MC817P	605	4	27	20/5.0 ②
Dual 3-Input Gates	MC718P	MC818P	605	4	27	12/2.5 ②
Dual 4-Input Gates	MC719P	MC819P	605	4	27	13/2.5 ②
Dual Exclusive OR-NOR Gate	MC764P	MC864P	605	3,4	35,65	25
Triple 3-Input Gates	MC793P	MC893P	605	4	27	18/3.5 ②
FLIP-FLOPS				-		
J-K Flip-Flops	MC722P	MC822P	605	4	70	24/20 ③
Quad Latch	MC767P	MC867P	612	9	50	110
Dual J-K Flip-Flops	MC776P	MC876P	605	2	50	41/29 ③
Dual Type D Flip-Flops	MC778P	MC878P	605	3	60	48/35 ①
Dual J-K Flip-Flop	MC9722P	MC9822P	605	4	75	24/- ③
BUFFER						
Dual Buffers	MC798P	MC898P	605	30	57	14/46 ②
INVERTERS						
Hex Inverter	MC9718P	MC9818P	605	4	27	7.0/3.0 ②
EXPANDERS					_	
Hex Expander	MC9720P	MC9820P	605	_	12	30/- ②
Quad 2-Input Expanders	MC9721P	MC9821P	605	_	27	20/- 2
DECODER						
BCD-to-Decimal Decoder	MC770P	MC870P	612	7	36	100/- ②

Direct Set and Direct Clear Low, All other Inputs High/All Inputs Low.
 Inputs High/Inputs Low
 Only Clock Inputs High/Inputs Low
 Only Clock Input high on flip-flop, other element Inputs High/Inputs Low
 Operating frequency (MHz)

GENERAL INFORMATION

PLASTIC MRTL MC700P/800P series

PACKAGING

Plastic MRTL 14-lead devices are in Case 605 (TO-116); 16-lead devices are in Case 612.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	-	±4.0	Vdc
Power Supply Voltage (Pulsed ≤ 1.0 s)	_	+12	Vdc
Operating Temperature Range MC700P Series MC800P Series	TA	+15 to +55 0 to +75	°C
Storage Temperature Range	Tstg	_55 to +125	°C

TEST CONDITION TOLERANCES

 $V_{\text{BOT}}=\pm 10~\text{mV}~V_{\text{cc}}=\pm 10~\text{mV}~V_{\text{in}}=\pm 2~\text{mV}~V_{\text{R}}=\pm 1\%~V_{\text{on}}=\pm 2~\text{mV}~V_{\text{off}}=\pm 2~\text{mV}~V_{\text{LL}}=\pm 2~\text{mV}$

DEFINITIONS NS | | | | | | | | | | | |

Minimum available output current from a device with IA2, 1A3, an output loading factor of 2, 3, 4, 5, 10, 13, and 16 IA4, IA5, respectively. Output voltage not to fall below the IA10, IA13, AIG

value of V_{in} Minimum available output current from a buffer. L

Output voltage not to fall below the value of Von. The maximum available current from the output of

ICEY. Collector current of a circuit when Vin is applied to the output pin and V_{off} is applied to the input pins.

1... Maximum input current drawn by one input of a gate with Vin applied. All other gate inputs are returned to

1.8 1.. Current drawn from the Via supply by the Toggle pin of the Flip-Flop.

21. Maximum input current drawn by one input of a device with 2 bases internally tied together.

Isolation leakage current. ŀ

Output load current.

Viot A high value voltage applied to an input of a device to insure saturation of the driven transistor.

Supply voltage. V_∞

V_{CE(sat)} Maximum saturation voltage with V_{IOT} applied to the input.

 V_{in} Minimum high level voltage applied to the input of

A supply voltage low enough to allow flow of leakage V. currents only.

V_{off} The maximum voltage which may be applied to an input terminal without turning the transistor on.

The minimum voltage which may be applied to an V_{on} input terminal that will turn the transistor on.

V_{out} The maximum output voltage with Von applied to the input.

٧. Value of external resistor connected to Vcc for test purposes.

V_{RH} = highest node resistor value V_{RL} = lowest node resistor value

EXPANDER RULES:

- 1. The MC785P/885P, MC786P/886P and MC9719P/9819P MRTL expanders can be used to expand medium-power MRTL output nodes only. The MC9721P/9821P expander can be used to expand mW MRTL output nodes only.
- 2. mW MRTL and MC800 MRTL Series: When using the MC885P, MC886P, MC9819P or MC9721/9821 subtract 0.5 from the output loading factor of the expanded gate for each expander node that is connected; also increase the input loading factor of the expanded gate by a factor of 1.33.
- 3. MC700 MRTL Series: When using the MC785P, MC786P or MC9719P subtract 2.0 from the output loading factor of the medium-power MRTL expanded gate for each expander node that is connected; also increase the input loading factor of the medium-power expanded gate by a factor of 3.75.
- . The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output,
- When mixing MRTL and mWMRTL in the same system, the loading factors must be normalized in accordance with the input current of the units being driven.
- All unused inputs should be returned to ground.

PLASTIC mW MRTL MC700P/800P series

LOW-POWER mW MRTL DEVICES

The logic diagrams shown describe the MC700P/MC800P Series of low-power resistor-transistor logic integrated circuits and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time (tpd), typical package power dissipation (PD), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis indicates the input loading factor (if on the circuit input terminal) or load driving ability — fan-out — (if on the circuit output terminal).

Using the indicated loading factors, these low-power mW MRTL circuits are compatible with the medium-power MRTL circuits shown in this section. The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. The loading data is valid over the temperature range of +15 to +55°C for the MC700P Series, and 0 to +75°C for the MC800P Series, with VCC = 3.6 V $\pm 10\%$.

FLIP-FLOPS

MC722P • MC822P J-K Flip-Flop

f_{Tog} = 1 MHz PD = 24 mW (Only Clock Input High) 20 mW (Inputs Low)

DIRECT INPUT OPERATION (1) s_D c_D o ā 2 2 0 0 0 1 0 0 0 1 1 1 ٥ o

CLOCKED INPUT OPERATION (3)

t _n	④	t _n .	+1 ④
S	С	a	₫
1	1	a _n ©	ā _n
1	0	1	0
0	1	0	1
0	0	\bar{a}_n	a _n ©

- Clock (T) to remain unchanged.
- 2. The output state will not change when the input state goes from $S_D = \overline{C}_D$ to $S_D = C_D = 0$. The output state cannot be predetermined in the case where the input goes from $S_D = C_D = 1$
- the case where the input goes from $S_D = U_D = 1$ to $S_D = C_D = 0$.

 3. Direct inputs (C_D and S_D) must be low.

 4. The time period prior to the negative transition of the clock pulse is denoted t_h and the time period subsequent to this transition is denoted
- tn+1.

 5. Qn is the state of the Q output in the time period tn.

 6. Clock pulse fall time must be < 100 ns.

MC767P • MC867P

MC776P • MC876P Dual J-K Flip-Flop

 $f_{Tog} = 3 \text{ MHz}$ $P_D = 41 \text{ mW (Only Clock Input High)}$ 29 mW (Inputs Low)

CLOCKED INPUT OPERATION

t	n	tn	+1
s	С	ρ	۵
1	1	a _n	ā _n
1	0	1	0
0	1	0	1
0	0	₫n	Q _n

- Direct input (C_D) must be low.
 The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1}.
 Q_n is the state of the Q output in the time period t_n.
 Clock pulse fall time must be < 100 ns.

- FLIP-FLOPS (continued)

MC778P • MC878P **Dual Type D Flip-Flop**

f_{Tog} = 1 MHz

PD = 48 mW (Direct Set (SD) and Direct Clear (CD) Low; all other Inputs High) 35 mW (All Inputs Low)

DIRECT INPUT

	OPERATION												
SD	c	ď	ΩI										
0	0	2	0 0										
1	0	1	0										
0	1	0	1										
1	1	0	0										

CLOCKED INPUT

OPE	RATIC	N (3)											
t _n													
s	Q	Ø											
1	1	0											
0	0	1											

- Clock (T input) must be high.
 The output state will not change when the input state goes from $S_D = \overline{C}_D$ to $S_D = C_D = 0$. The output state cannot be predetermined in the case where the input goes from $S_D = C_D = 1$ to $S_D = C_D = 0$. 3. Direct inputs $(C_D \text{ and } S_D)$ must be low.
- The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted

MC9722P • MC9822P Dual J-K Flip-Flop

CLOCKED INPUT OPERATION (1)

		@	^t n+1 ②						
	s	С	a	ā					
	1	1	a n	ā _n					
ı	1	0	1	0					
	0	1	0	1					
	0	0	ān	a ₁ (3)					

f_{Tog} = 4.0 MHz t_{pd} = 75 ns typ P_D = 24 mW typ (Only Clock Input High)

- 1. Direct input (C_D) must be low.
- The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1}.
- 3. Q_n is the state of the Q output in the time period t_n .

BUFFER-

MC798P • MC898P **Dual 2-Input Buffer**

-INVERTER-

Hex Inverter (1)123 (4) (1)14-

MC9718P • MC9818P

t_{pd} = 27 ns

PD = 7.0 mW (Input High) 3.0 mW (Input Low)

PLASTIC MRTL MC700P/800P series

MEDIUM-POWER MRTL DEVICES

The logic diagrams shown describe the MC700P/MC800P Series of medium-power resistor-transistor logic integrated circuits and permit quick selection of those circuits required for the implementation of a system design. Pertinent information such as logic equations, truth tables, typical propagation delay time (t_{pd}), typical package power dissipation (P_D), pin numbers, input loading, and fan-out is shown for each device. The package pin number is shown adjacent to the terminal end. The number in parenthesis or brackets indicates the input loading factor (if on the circuit input terminal) or load driving ability — fan-out — (if on the circuit output terminal). The bracketed number is the loading factor when working with other medium-power devices; e.g., [1] is the MRTL load factor defined as 1 times the MRTL basic gate input current (600 μ Adc @ +25°C). The number

in parenthesis is the loading factor when working with mW MRTL devices; e.g., (3) is the MRTL load factor defined as 3 times the mW MRTL basic gate input current (140 μ Adc @ +25°C).

Using the parenthetic loading factors, these medium-power MRTL circuits are compatible with the low-power mW MRTL circuits shown in this section. The number of load circuits that may be driven from an output is determined by the output loading factor and the sum of all input loading factors for the circuits connected to that output. The summation of the input loading factors should not exceed the stated drive capability of the output. The loading data is valid over the temperature range of ± 15 to ± 55 °C for the MC700P Series, and 0 to ± 75 °C for the MC800P Series, with VCC = 3.6 V ± 10 %.

PLASTIC MRTL MC700P/800P series

MC715P · MC815P

Two 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

Test procedures are shown for one gate only. The other gate is tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test Temperature V_{BOT} $\mathbf{V}_{\mathrm{off}}$ Vcc 0.930 0.570 0.960 1.80 3.60 MC815P +25°C 1.80 0.500 3.60 0.910 0.880 +75°C 0.820 0.790 1.80 0.450 3.60 +15°C 0.865 1.80 0.475 0.865 3.60 +25°C MC715P 0.850 0.850 1.80 0.460 3.60 **→55°C** 0.800 0.800 1.80 0.430 3.60

		T														+35-6	0.000	0.800	1.00	0.430	3.60	1
		Pin		MC8	15P	T	est Limi	ts			MC7	15P	1	lest Limi	ts			TES	ST VOLTA	GE		
		Under	0,	°C	+25	5°C	+75	i°C		+1	5°C	+2	5°C	+5	5°C		AP	PLIED TO	PINS LIS	TED BELO)W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	2 12 13	-	600	-	600	-	570	μAdc ↓	-	500	-	500	=	470	μAdc	2 12 13	-	12, 13 2, 13 2, 12	-	111	4
Output Current	I _{A5}	3	3.00	-	3.00	-	2.85	-	m Adc	2.65	-	2. 65	-	2.50	-	mAdc	-	3		2,12,13	11	4
Output Voltage	v _{out}	3 3 3	+ + -	500 ↓	1 1	400 ↓	- - -	400 ↓	mVdc		400 ↓		300	-	320	mVdc	- - -	12 13 2	-	-	11	2,4,13 2,4,12 4,12,13
Saturation Voltage	V _{CE(sat)}	3 3 3	- - -	400	- - -	300	-	350	mVdc	-	300		290	- - -	320	mVdc		-	12 13 2	- - -	11 ↓	2,4,13 2,4,12 4,12,13
Switching Time	ton + toff	3, 13	-	-	-	48	-	-	ns	-	-	-	48	-	-	ns	Pulse In 13	Pulse Out 3	-	-	11	2,4,12

Ground input pins of gate not under test. Other pins not listed are left open.

MC717P · MC817P

Four 2-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

NUMBER IN PARENTHESES INDICATES LOADING FACTOR

tpd = 27 ns PD = 20 mW (Input High) 5.0 mW (Inputs Low)

Test procedures are shown for one gate only. The other gates are tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test Temperature V_{BOT} Veff Vcc 0.880 0.850 0.500 1.80 3.60 MC817P 0.830 +25°C 0.800 1.80 0.460 3.60 0.740 +75°C 0.710 1.80 0.400 3.60 +15°C 0.865 0.865 1.80 0.475 3.60 MC717P +25°C 0.850 0.850 1.80 0.460 3.60 +55°C 0.800 0.800 1.80 0.430 3.60

				MCE	17P	Ţ	st Limi	2			MC	117P	T	est Limi	te			TEG	ST VOLTA	CE	L	
		Pin Under	0,	°C	+25		+75			+1		+2		+55			API	LIED TO)W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Via	Ven	V _{BOT}	V _{eff}	Vcc	Gnd
Input Current	I _{in}	1 2	-	150 150	-	140 140	-	140 140	μAdc μAdc	-	150 150	-	150 150	-	150 150	μAdc μAdc	1 2	-	2	-	11 11	4 4
Output Current	I _{A4}	3	570	-	570	-	535	-	μ Adc	570	-	570	-	570	-	μAdc	-	3	-	1, 2	11	4
Output Voltage	v _{out}	3 3	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	1 2	-	-	11 11	2, 4 1, 4
Saturation Voltage	V _{CE(sat)}	3 3	-	250 250	-	250 250		250 250	mVdc mVdc	-	220 220	-	230 230	-	320 320	mVdc mVdc	-	-	1 2	-	11 11	2, 4, 1, 4
																	Pulse In	Pulse Out				
Switching Time	ton + toff	1,3	-	-	-	90	-	-	ns	-	-	-	90	-	-	ns	1	3	-	-	11	2,4

Ground input pins of gates not under test. Other pins not listed are left open.

MC718P · MC818P

Two 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

Test procedures are shown for one gate only. The other gate is tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test Temperature V_{on} V_{BOT} $V_{\rm off}$ Vcc 0.850 0.880 1.80 0.500 3.60 MC818P +25°C 0.830 0.800 1.80 0.460 3.60 +75°C 0.740 0.710 1.80 0.400 3.60 +15°C 0.865 0.865 1.80 0.475 3.60 MC718P +25°C 0.850 0.850 1.80 0.460 3.60 +55°C 0.800 0.800 1.80 0.430 3.60

		Din		MC8	18P	To	est Limi	ts			MC	18P	ī	est Limi	ts		1	TE	ST VOLTA	\GE		
		Pin Under	0,	°C	+25	5°C	+75	5°C		+1	5°C	+2	5°C	+55	5°C		AP	PLIED TO	PINS LIS	TED BELO	W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	2 12 13	-	150 		140 	- - -	140	μAdc ↓	- - -	150	-	150	-	150	μAdc	2 12 13	-	12, 13 2, 13 2, 12	-	11	4
Output Current	I _{A4}	3	570	-	570	-	535	-	μAdc	570	-	570	-	570	-	μ Ad c	3	† -	-	2,12,13	11	4
Output Voltage	v _{out}	3 3 3	-	400	-	350	-	300	mVdc	- - -	400	-	300	-	320	mVdc	-	12 13 2	-		11	2,4,13 2,4,13 4,12,13
Saturation Voltage	V _{CE(sat)}	3 3 3	-	250 ↓	- - -	250	-	250	mVdc	-	220	-	230	- - -	320	mVdc	- - -		12 13 2		11	2,4,13 2,4,12 4,12,13
							į										Pulse In	Pulse Out				
Switching Time	ton + toff	3, 13	-	-	-	90	-	-	ns	-	-	-	90	-	-	ns	13	3	-	-	11	2,4,12

Ground unused input pins. Other pins not listed are left open.

MC719P · MC819P

Two 4-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-connected to form bistable elements.

Test procedures are shown for one gate only. The other gate is tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test Temperature V_{BOT} V_{off} Vcc 0.880 0.850 1.80 0.500 3.60 MC819P 0.830 0.800 +25°C 1.80 0.460 3.60 +75°C 0.740 0.710 1.80 0.400 3.60 +15°C 0.865 0.865 1.80 0.475 3.60 MC719P +25°C 0. 850 | 0. 850 | 1. 80 0.460 3.60

				MC	319P	T	est Limi	ts			MC	/19P	1	est Limi	ts		1	TF	ST VOLTA	0. 430 GF	3.60	-
		Pin Under	0	°C	+2	5°C	+75	5°C		+1	5°C	+2	5°C	+5			AP		PINS LIS		DW:	1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{en}	V _{BOT}	Voff	Vcc	Gnd
Input Current	I _{in}	2 3 13 14	- - -	150	-	140	- - -	140	μAdc	-	150	- - -	150	-	150	μAdc	2 3 13 14	-	3,13,14 2,13,14 2,3,14 2,3,13	-	11	4
Output Current	I _{A4}	12	570	-	570	-	535	-	μAdc	570	-	570	-	570	-	μAdc	-	12		2,3,13, 14	11	4
Output Voltage	V _{out}	12 12 12 12	-	400	1 1 1 1	350	-	300	mVdc	-	400	- - -	300	-	320	mVdc	-	13 14 2 3	-	- - -	11	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14
Saturation Voltage	V _{CE(sat)}	12 12 12 12		250	1 1 1 1	250		250	mVdc		220		230		320	mVdc	- - -	- - -	13 14 2 3	-	11	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14
																	Pulse In	Pulse Out				
Switching Time	t _{on} + t _{off}	2, 12	-	-	-	90	-	-	ns	-	-	-	90	-	-	ns	2	12	-	-	11	3,4,13,14

Ground inputs of gate not under test. Other pins not listed are left open.

MC722P · MC822P

J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.

NUMBER IN PARENTHESES INDICATES LOADING FACTOR

frog = 1.0 MHz
PD = 24 mW (Only Clock Input High)
20 mW (Inputs Low)

DIRECT INPUT OPERATION ①

SD	C₀	Q	Q
0	0	3	3
1	0	1	0
0	1	0	1
1	1	0	0

CLOCKED INPUT OPERATION (3)

t		t _{n+1}						
S	С	Q	ā					
1	1	Q,	Q,					
1	0	1	0					
0	1	0	1					
0	0	Ιď	Qn					

- 1. Clock (T) to remain unchanged.
- 2. The output state will not change when the input state goes from $S_D = \overline{C}_D$ to $S_D = C_D = 0$. The output state cannot be predetermined in the case where the input goes from $S_D = C_D = 1$ to $S_D = C_D = 0$.
- 3. Direct inputs (So and Co) must be low.

0 = low state

1 = high state

 $t_{n} = time \ period \ prior \ to \ negative \ transition \ of \ clock \ pulse$

 $t_{n+1} = \mbox{time period subsequent to negative transition of clock pulse}$

Qn = state of Q output in time period tn

	@ Test	(Velts)											
	Temperature	Vin	Von	V _{BOT}	V _{off}	V _{cc}							
	(0°C	0.880	0.850	1.80	0,500	3.60							
MC822P		0.830	0.800	1.80	0.460	3,60							
	(+75°C	0.740	0.710	1.80	0.400	3.60							
	(+15°C	0.865	0.865	1.80	0.475	3.60							
MC722P	/ +25°C	0.850	0.850	1.80	0.460	3.60							
	1 TEE.C	0.000	0.000	1 00									

TEST VOLTAGE VALUES

ELECTRICAL CHARACTERISTICS

		D:-		MC	322P	To	est Limi	ts			MC	22P	T	est Limi	ts			TE	ST VOLTA	GE		
		Pin Under	0	°C	+2	5°C	+75	°C		+1	5°C	+2	5°C	+55	i°C		AP	PLIED TO	PINS LIS	TED BELO	OW:	ļ
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	Vcc	Gnd
Input Current	2I in I in	2 3 9 12 13	-	300 150	-	280 140	-	280 140	μAdc	- - - -	300 150	- - - -	300 150		300 150	μAdc	2 3 9 12 13	-	3, 13 12 - - 9	11411	11	4
Output Current	I _{A4}	6 10	570 570	-	570 570	-	535 535	-	μ Ad c μ Ad c	570 570	-	570 570	-	570 570	-	μ Ad c μ Ad c	6 10	9 12	12 9	-	11 11	4 4
Saturation Voltage	CE (sat)	6 6*# 6*# 10 10*## 10*# 10*#	-	250		250	111111	250	mVdc	1711111	220		230		320	mVdc	1 1 1 1 1 1	12 13 - 3, 13 9 3 3, 13		9 3 3, 13 - 12 13 - 3, 13	11	4

^{# =} Pin 9 HIGH $_{\rm H}$ Set by a momentary application of VBOT prior to the application of the negative-going clock pulse.

Pins not listed are left open.

* = Clock Pulse to pin 2, see Figure 1.

FIGURE 1 - CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. $t_{\rm r}$ is not critical but should be $<1.0~\mu s.$
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to $\rm V_L$. $\rm t_f$ must remain within 10 ns minimum and 200 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC822P

TA	٧ _L	V _H
+ 25°C	$+$ 0.460 V \pm 2.0 mV	$+$ 0.850 V \pm 2.0 mV
0°C	$+$ 0.500 V \pm 2.0 mV	$+ 0.900 \text{ V} \pm 2.0 \text{ mV}$
+ 75°C	$+$ 0.400 V \pm 2.0 mV	$+$ 0.760 V \pm 2.0 mV

MC722P

TA	٧ _L	V _H
		$+ 0.900 \text{ V} \pm 2.0 \text{ mV}$
		$+ 0.915 \text{ V} \pm 2.0 \text{ mV}$
+ 55°C	$+$ 0.430 V \pm 2.0 mV	$+ 0.850 V \pm 2.0 \mathrm{mV}$

FIGURE 2 — TOGGLE MODE TEST CIRCUIT

MC723P · MC816P

J-K flip-flop with a direct clear input in addition to the clocked inputs.

frog = 4 MHz
PD = 91 mW (Only Clock Input High)
79 mW (Inputs Low)

CLOCKED INPUT OPERATION ①

tol	3	t _{n+}	13
S	ပ	Q	Q
1	1	G .	ĝ
1	0	1	0
0	1	٥	1
0	٥	Q,	Q. .③

- 1. Direct input (C_D) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1} .
- 3. Qn is the state of the Q output in the time period tn.
- 4. Clock pulse fall time must be < 100 ns.

NUMBER IN PARENTHESES INDICATES LOADING FACTOR FOR MW MRTL NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MRTL

	@ Test	TEST VOLTAGE VALUES (Volts)										
1	emperature	V _{in}	Von	V _{BOT}	V _{off}	Vcc						
(0°C	0.960	0.930	1.80	0.570	3.60						
MC816P	+25°C	0.910	0.880	1, 80	0.500	3.60						
(+75°C	0.820	0.790	1.80	0.450	3.60						
(+15°C	0.865	0.865	1.80	0.475	3.60						
MC723P	+25°C	0.850	0.850	1, 80	0.460	3.60						
(+55°C	0.800	0.800	1. 80	0, 430	3, 60						

				MC8	16P	Te	est Limit	s			MC7	23P	T	est Limi	ts			1	EST VOLT	TAGE		
		Pin Under	O,	C	+25	°C	+75	°C		+1:	5°C	+2	5°C	+55	o°C		A	PPLIED T	O PINS L	ISTED BE	LOW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{öff}	V _{CC}	Gnd
Input Current	2I _{in} I _{in}	2 3 9 12	-	1200 600		1200 600	- - -	1140 570	μAdc	- - -	1000	- - -	1000		940	μAdc	2 3 9 12	- - -	3, 12 10 5 5		11	4
Output Current	I _{A3}	5 5 10	1.80	1 1 1	1.80	-	1. 71		mAdc	1. 65	- - -	1. 65	-	1. 56	- - -	mAdc	-	5 5, 9 10	9, 12 12 3	- - 9	11 ↓	4 4 4,5§
Output Voltage	V _{out}	10 10*## 10* 10*##	-	500		400		400	mVdc	- - -	400	- - -	300	-	320	m Vdc	- - -	9 3, 12 3 -	- - -	- 12 3, 12	11 	4, 5 4, 9
Saturation Voltage	V _{CE(sat)}	5 10 10	- - -	400		300	-	350	mVdc ↓	- - -	300	- -	290	- - -	320	mVdc ↓	- - -	-	- 9 -	9 - -	11 ↓	4,5 4,5 4,10§
Turn-On Voltage	v _{on}	10*##4 10* Δ 10*#Δ	1 1	-	880	- - -	790	-	mVdc	865	- -	850	-	800	-	mVdc	-	3, 12 12 -	-	- 3 3, 12	11 ↓	4, 9

Pins not listed are left open.

= Pin 10 LOW ## = Pin 5 LOW Set by a momentary ground prior to the application of the negative-going Clock pulse.

* = Clock Pulse to pin 2, See Figure 1.

Δ = MC816P pin 10 loaded by: 1. 56 mAdc (0°C and +75°C) 1. 65 mAdc (+25°C) MC723P pin 10 loaded by: 1. 56 mAdc (+15°C and +55°C) 1. 65 mAdc (+25°C)

^{§ =} Silicon diode to ground.

FIGURE 1 — CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t_r is not critical but should be $<1.0~\mu s$.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- 0. Clock pulse is allowed to fall to $\rm V_L.\ t_f$ must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC816P

TA	V _L	٧ _H
		$+0.930~{ m V}\pm 2.0~{ m mV}$
0°C	$+0.570~{ m V}\pm 2.0~{ m mV}$	$+0.980\mathrm{V}\pm2.0\mathrm{mV}$
+ 75°C	$\pm 0.450~ extsf{V} \pm 2.0~ extsf{mV}$	$+$ 0.840 V \pm 2.0 mV

MC723P

TA	V_L	V _H
+ 15°C	$+$ 0.475 V \pm 2.0 mV	$+0.900 \text{ V} \pm 2.0 \text{ mV} +0.915 \text{ V} \pm 2.0 \text{ mV} +0.850 \text{ V} \pm 2.0 \text{ mV}$

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

PLASTIC MRTL MC700P/800P series

MC724P · MC824P

Four 2-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

NUMBER IN PARENTHESIS INDICATES mW MRTL LOADING FACTOR NUMBER IN BRACKETS INDICATES MRTL LOADING FACTOR

 $t_{pd} = 12 \text{ ns}$ $P_D = 100 \text{ mW (Input High)}$ 30 mW (Inputs Low)

Test procedures are shown for one gate only. The other gates are tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test Temperature V_{BOT} 0°C 0.960 0.930 1.80 0.570 3.60 MC824P +25°C 0. 910 0.880 1.80 0.500 3.60 +75°C 0.820 1.80 0.450 3.60 +15°C 0.865 0.865 1.80 0.475 3.60 MC724P +25°C 0.850 0.850 1.80 0.460 3.60 +55°C 0.800 0.800 1.80 0.430 3.60

				MC8	24P	Te	st Limit	s			MC7	24P	T	est Limi	ts			TES	T VOLTA	GE		
	Pin Under		0,	°C	+25	o°C	+75	°C		+15	°C	+25	i°C	+55	i°C		API	PLIED TO	PINS LIS	TED BELO)W:]
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	1 2	-	600 600		600 600	-	570 570	μAdc μAdc	-	500 500	-	500 500	-	470 4 7 0	μ Ad c μ Ad c	1 2	_	2 1	-	11 11	4 4
Output Current	I _{A5}	3	3.0	-	3.0	-	2.85	-	m A dc	2.65	-	2.65	-	2.50	-	mAdc	-	3	-	1, 2	11	4
Output Voltage	v _{out}	3 3	-	500 500		400 400	-	400 400	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc		1 2	-	-	11 11	2, 4 1, 4
Saturation Voltage	V _{CE(sat)}	3 3	-	400 400		300 300		350 350	mVdc mVdc	-	300 300	-	290 290	-	320 320	mVdc mVdc	-	-	1 2	-	11 11	2, 4 1, 4
					-			÷									Pulse In	Pulse Out				
Switching Time	ton + toff	1,3	-	-	-	48	-	-	ns	-	-	-	48	-	-	ns	1	3	-	-	11	2,4

Ground input pins of gates not under test. Other pins not listed are left open.

MC725P · MC825P

Two 4-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

Test procedures are shown for one gate only. The other gate is tested in the same manner.

		TEST VOLTAGE VALUES (Volts)								
	@ Test									
	Temperature	Vin	V _{on}	V _{BOT}	V _{off}	Vcc				
	(0°C	0.960	0.930	1.80	0.570	3.60				
MC825P	₹ +25°C	0.910	0.880	1.80	0,500	3.60				
	(+75°C	0.820	0.790	1.80	0.450	3.60				
	(+15°C	0.865	0.865	1.80	0.475	3.60				
MC725P	} +25°C	0.850	0.850	1.80	0.460	3.60				
	(+55°C	0.800	0.800	1.80	0.430	3.60				

				MC8	25P	Te	est Limit	s			MC7	25P	T	est Limit	ts				ST VOLTA			
		Pin Under	0°	,C	+25	°C	+75	°C		+15	5°C	+25	5°C	+55	°C		APF	LIED TO	PINS LIS	TED BELO	W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	2 3 13 14	1 1 1	600		600	1111	570	μAdc		500	- - -	500		470	μAdc	2 3 13 14		3,13,14 2,13,14 2,3,14 2,3,13	-	11	4
Output Current	I _{A5}	12	3.00	-	3.00	-	2.85	-	m Adc	2.65	-	2.65	-	2.50	-	mAdc	-	12	-	2,3,13,14	11	4
Output Voltage	V _{out}	12 12 12 12 12		500	1 1 1 1	400	1 1 1	400	mVdc	-	400	-	300	-	320	mVdc	-	13 14 2 3	- - -	- - -		2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14
Saturation Voltage	V _{CE(sat)}	12 12 12 12	-	400	1 1 1	300	-	350	m Vdc	- - - -	300	- - -	290	- - -	320	mVdc	- - - -	- - -	13 14 2 3	- - -	11	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14
Switching Time	t _{on} + t _{off}	2, 12	-	-	-	48	-	-	ns	-	-	_	48	-	-	ns	Pulse In 2	Pulse Out 12	-	-	11	3,4,13,14

Ground input pins of gate not under test. Other pins not listed are left open.

MC726P · MC826P

J-K flip-flop with direct clear and direct set inputs in addition to the clocked inputs.

 $f_{Tog} = 4 \text{ MHz}$

P_D = 100 mW (Only Clock Input High) 86 mW (Inputs Low)

CLOCKED INPUT OPERATION ①

to	3	t _{n+}	12		
S	С	ď	Q		
1	1	Qn3	Q,		
1	0	1	0 -		
0	1	0	1		
0	0	<u>Q</u> ,	Q _n ③		

DIRECT INPUT OPERATION ④

OFERATION (4)										
SD	Co	D	Ø							
0	0	3	(5)							
1	0	1	0							
0	1	0	1							
1	1	0	0							

- 1. Direct inputs (Co and So) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1} .
- 3. Q_n is the state of the Q output in the time period t_n .
- 4. Clock (T) to remain unchanged.
- 5. The output state will not change when the input state goes from $S_0 = \overline{C}_0$ to $S_D = C_D = 0$. The output state cannot be predetermined in the case where the input goes from $S_D = C_D = 1$ to $S_D = C_D = 0$.
- 6. Clock pulse fall time must be < 100 ns.

NUMBER IN PARENTHESES INDICATES LOADING FACTOR FOR MW MRTL NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MRTL

ELI	ECTR	ICAL	CHAR	ACTER	ISTICS

		TEST VOLTAGE VALUES Volts Volt Voff Vcc 0.960 0.930 1.80 0.570 3.60 0.910 0.880 1.80 0.500 3.60 0.820 0.790 1.80 0.450 3.60 0.865 0.865 1.80 0.475 3.60 0.850 0.850 1.80 0.460 3.60											
	@ Test			(Volts)								
	Temperature	Vin	Von	V _{BOT}	Voff	V _{cc}							
	(0°C	0.960	0.930	1.80	0.570	3.60							
MC826P	₹ +25°C	0.910	0.880	1.80	0.500	3.60							
	+75°C	0.820	0.790	1.80	0.450	3.60							
	(+15°C	0.865	0.865	1.80	0.475	3.60							
MC726P	₹ +25°C	0.850	0.850	1.80	0.460	3.60							
	+55°C	0.800	0.800	1.80	0.430	3.60							

	·															+00-0	0.800	0.800	1.80	0.430	3.60	
	ł			MC	26P	To	est Limi	ts		ĺ	MC	26P	ī	est Limi	its			1	EST VOL	TAGE		
		Pin Under	0	°C	+2	5°C	+7	5°C		+1	5°C	+2	5°C	+5	5°C		A	PPLIED T	O PINS L	ISTED BE	LOW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{off}	Vcc	Gnd
Input Current	2I _{in} I _{in}	2 3 9 12 13	- - - -	1200 600	- - - -	1200 600	-	1140 570	μAdc	- - - -	1000 500	- - - -	1000	- - - -	940 470	μAdc	2 3 9 12 13	- - - -	3, 13 12 - - 9	- - - -	11	4
Output Current	I _{A5}	6 10	3.0 3.0	-	3.0 3.0	-	2.85 2.85	-	mAdc mAdc	2.65 2.65	-	2.65 2.65	-	2.5 2.5	-	mAdc mAdc	- -	6,12 9,10	9 12	-	. 11 11	4 4
Saturation Voltage	V _{CE(sat)}	6 6*# 6*# 10 10*## 10*# 10*#		400	111111	300		350	mVdc		300	-	290		320	mVdc		12 13 - 3, 13 9 3 3, 13		9 3 3,13 - 12 13 - 3,13	11	4

Pins not listed are left open.

Set by momentary application of VBOT prior to the application of the negative-going clock pulse.

^{*} Clock Pulse to pin 2, see Figure 1.

FIGURE 1 — CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t_r is not critical but should be $<1.0~\mu s.$
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to $\rm V_L\cdot t_f$ must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC826P

T_{A}	VL	V _H
+ 25°C	$+0.500~{ m V}\pm 2.0~{ m mV}$	$+0.930~{ m V}\pm 2.0~{ m mV}$
		$+$ 0.980 V \pm 2.0 mV
+ 75°C	$+0.450{ m V}\pm 2.0{ m mV}$	$+0.840 V \pm 2.0 mV$

MC726P

TA	VL	V _H
+ 25°C	$+ 0.460 \text{ V} \pm 2.0 \text{ mV}$	$+0.900 \mathrm{V} \pm 2.0 \mathrm{mV}$
+ 15°C	$+$ 0.475 V \pm 2.0 mV	$ +$ 0.915 V \pm 2.0 mV $ $
+ 55°C	$+$ 0.430 V \pm 2.0 mV	$+0.850\mathrm{V}\pm2.0\mathrm{mV}$

FIGURE 2 — TOGGLE MODE TEST CIRCUIT

DUAL EXCLUSIVE "OR-NOR" GATE

PLASTIC mW MRTL MC700P/800P series

MC764P · MC864P

MC764P/864P is a dual multi-purpose device. Types of recommended utilization include:

Dual Exclusive OR-NOR Gate, when $6 = \overline{8}$ and $7 = \overline{9}$, then $10 = 6 \cdot \overline{7} + \overline{6} \cdot 7$ (This equals the sum when used as a Half-Adder) and $5 = 6 \cdot 7 + \overline{6} \cdot \overline{7}$.

Dual Data Distributor, with data on 6 and 9, control on 7 and control on 8 so that $10 = 9 \cdot 7 + 6 \cdot \overline{7}$ and $5 = \overline{9} \cdot 7 + \overline{6} \cdot \overline{7}$.

Dual Gated R-S Flip-Flop, by connecting the non-inverted output back to an input. When pin 10 is connected to pin 9 then $10 = 5 = \overline{6} \cdot \overline{7}$ and $\overline{5} = 10 = 8 \cdot (6 + 7)$. Pin 10 will remain in its previous state ($10^{n+1} = 10^n$) whenever the input configuration is $\overline{8} \cdot (6 + 7)$. Another name for the flip-flop, then, is a $\overline{R1}$ $\overline{R2}$ —S flip-flop.

Test procedures are shown for only one gate. The other gate is tested in the same manner.

			0. 880 0. 850 1. 80 0. 500 3. 6 0. 830 0. 800 1. 80 0. 460 3. 6 0. 740 0. 710 1. 80 0. 400 3. 6												
a	⊋ Test			(Volts)											
-	perature	V_{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}									
(0°C	0.880	0.850	1.80	0.500	3.60									
MC864P	+25°C	0. 830	0.800	1.80	0.460	3.60									
	+75°C	0.740	0.710	1.80	0.400	3.60									
	+15℃	0.865	0.865	1.80	0.475	3.60									
MC764P	+25°C	0.850	0.850	1.80	0.460	3.60									
	+55°C	0.800	0.800	1.80	0.430	3.60									

		Pin		M	C864F	TEST	LIMI	TS					P TES				AP	TES Plied to	T VOLTA		w∙	
		Under	0	°C	+2	5°C	+7	′5°C		+1	5°C	+2	5℃	+5	5°C							(
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	6	-	150	-	140	-	140	μAdc	-	150	-	150	-	150	μAdc	6	-	7 6	-	11	4
	""	7 8	-		_		-		i]		-		_			8	_	9	_		
		9	-	+	-	♦	-	♦	♦	-	♦	-	♦	-	*	♦	9	-	8	-	*	1
Output Current	I _{A4}	5	640	-	640	-	600	-	μAdc	640	-	640	-	640	-	μ A dc	-	5	-	6,7,8,9	11	4
	I _{A3}	10		-	1 1	-	H	-	ll	480	-	480	-	480	-		-	7,8,10	-	-		
	AS	10	7	-	_ V	-	7		V	480	-	480		480	-		-	6,9,10				<u>'</u>
Output Voltage	v _{out}	5	-	400	-	350	-	300	mVdc	-	400	-	300	-	320	mVdc	-	6,7,8,9	-	6,7	11	4
	J	10 10	-		-		_	1]		l I	l I	[}	_			_	8,9 6,7	_	8,9		
		10	-	₩	-	♦	-	🔻	₩	-	♦	-	♦	-	♦	♦	-		-	6,7,8,9	*	*
											-						Pulse In	Pulse Out				
Switching Times	1	5	_	_	-	80	-	_	ns	-	-	-	80	-	-	ns	8	5	9	-	11	4
Bwitting 11mos	t8+5-	5	۱ ـ	_	_	60	_	_	1 1	۱ -	-	-	60	_	-			5	9	-		
	8-5+	10	_	_	_	65	۱ -	_		-	_ ا	-	65	-	-			10	7	_		
	t ₈₋₁₀₋	10	-	-	-	35	-	-	₩	-	-	-	35	-	-	♦	♦	10	7	-	\	V

Ground unused input pins. Other pins not listed are left open.

MC767P · MC867P

The MC767P/867P Quad Latch is designed for use in any application requiring temporary storage. A common enable line allows only the desired information to be "clocked in." When the level of the enable line is high, the output of each latch will be synonymous with the data input to that latch. When the enable line level goes low, the output will remain at the previous level, independent of any changes at the input. The MC767P/867P is available in a 16-pin dual in line plastic package.

Test procedures are shown for only one latch. The other latches are tested in the same manner.

			TEST V	OLTAGE	VALUES	
@	Test			(Volts)		
Tem	perature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	O°C	0.880	0.850	1.80	0.500	3.60
MC867P	+25°C	0.830	0.800	1.80	0.460	3.60
	(+75℃	0.740	0.710	1.80	0.400	3.60
+	+15℃	0.865	0.865	1.80	0.475	3.60
AC767P	+25℃	0.850	0.850	1.80	0.460	3.60
	+55℃	0.800	0.800	1.80	0.430	3.60

		Pin					Limits					,	P Test				ADD	TES	T VOLT		ow.	
	İ	Under	0	°C	+2	5°C	+7	′5°C		+1	5°C	+25	°C	+5	5°C]		1	FINS LI	TED BEE		ł
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	3	-	150	-	140	-	140	μAdc	-	150	-	150	-	150	μAdc	3	-	-	-	13	4,5
	2 I _{in}	5	-	300	-	280	-	280	μAdc	-	300	-	300	-	300	μAdc	5	-	-	-	13	4
Output Current	I _{A9}	1 2	-1.28 -1.28	-	-1.28 -1.28	-	-1.20 -1.20	-	mAdc mAdc	-1.28 -1.28	-	-1.28 -1.28	-	-1.28 -1.28	-	mAdc mAdc	3,5 5	1 2	-	-	13 13	4 3,4
Saturation Voltage	V _{CE(sat)}	1 2 1 2	-	250	- - -	250	- - -	250	mVdc	- - -	220	- - -	230	- - -	320	mVdc	5 3,5 3,5* 3,5**	-		1111	13	3,4 4 3,4,5* 3,4,5**
Power Supply Drain Current	I_{PD}	13	-	-	-	35	-	-	mAdc	_	-	-	35	-	-	mAdc	-	-	-	-	13	4,5
																	Pulse In	Pulse Out				
Switching Times	t ₃₊₁₊	1	-	-	-	75	-	-	ns	-	-	-	75	-	-	ns 	3	1	5	-	13	4
	t ₃₋₁₋ t ₃₊₂₋	2	-	-	-	70 90	-	-		-	-	-	70 90	-	-			1 2		-		
	t ₃₋₂₊	2	-	-	-	60	-	-	♦	-	-	-	60	-	-	♦	♦	2	†	-	🗡	♦

Ground inputs of latches not under test. Other pins not listed are left open.

^{*}A negative pulse from V_{in} to ground is applied to pin 5, then 2.0 ms later a positive pulse from ground to V_{in} is applied to pin 3 for measurement of V_{CE} on pin 1.

**A negative pulse from V_{in} to ground is applied to pin 5, then 2.0 ms later a positive pulse from V_{in} to ground is applied to pin 3 for measurement of V_{CE} on pin 2.

PLASTIC mW MRTL MC700P/800P series

MC770P · MC870P*

The MC770P/870P is a monolithic BCD to decimal decoder consisting of eight inverters and ten 4-input NOR gates which are utilized to convert binary coded decimal (8-4-2-1) input to an output, via the appropriate one of ten output lines.

					T	RI	JTH	I TA	۱BI	.E					
	INF	זטי	(B	CD)			Oυ.	TPL	JT I	(DE	CIN	IA۱	_)		
Value	23	22	21	20	0	1	2	3	4	5	6	7	8	9	
Pin No.	14	15	11	12	10	9	8	7	6	5	3	2	1	16	
Logic Level	00000001111111111	0000111100001111	001100110011	010101010101	100000000000000	010000000000000	001000000000000	000100000000000	0000100000000000	0000010000000000	0000001000000000	000000010000000	0000000010000000	000000001000000	
'						رخا	_		_		Ľ				١.
				_											
	tn.	. =	36	ns							,				
				mV	V t	γp	(All	inp	uts	hig	h)				
	_	•													

4-INPUT "NOR" GATE (1-OF-10)

DUAL SERIES INVERTING DRIVER (1-0F-4)

^{*}P suffix = 16 pin dual-in-line plastic package, Case 612.

			TEST VOL	TAGE VA	LUES	
@	Test		(\	olts)		
Tem	perature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
(0°C	0.880	0.850	1.80	0.500	3.60
MC870P \	+25℃	0.830	0.800	1.80	0.460	3.60
(+75℃	0.740	0.710	1.80	0.400	3.60
(+15°C	0.865	0.865	1.80	0.475	3.60
MC770P {	+25°C	0.850	0.850	1.80	0.460	3.60
	+55℃	0.800	0.800	1.80	0.430	3.60

		Pin				P Test	Limits					MC77	OP Tes	t Limit	s		TEST VOLTA	GE APPLI	ED TO PIN	IS LISTED	BELOW:	
		Under	0	°C	+2	5°C	+7	5°C		+1:	5°C	+2	5°C	+5	5°C				-		Г., <u>Т</u>	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	0.75 I _{in}	11 12 14 15	- - -	113		105		105	μAdc		113	-	113		113	μAdc ▼	11 12 14 15		- - -	- - -	13	4,12,14,15 4,11,14,15 4,11,12,15 4,11,12,14
Output Current	I _{A7} *	10	-1.05	-	-0.98	-	-0.98	-	mAdc	-1.05	-	-1.05	-	-1. 05	-	mAdc	-	10*	-	*	13	4
Output Voltage	v _{out}	1**	-	400	-	350	-	300	mVdc	-	400	-	300	-	320	mVdc	-	**	-	**	13	4
Power Supply Current Drain	I_{PD}	13	-	-	-	42	-	-	mAdc	-	-	-	42	-	-	mAdc	11,12,14,15	-	-	-	13	4
Switching Times																	Pulse In	Pulse Out				
	t ₁₄₊₁₊	1	-	-	-	65	-	-	ns	-	-	-	65	-	-	ns	14	1	-	-	13	4,11,12,15
	t ₁₄₋₁₋	1	-	-	-	50	-	-		-	-	-	50	-	-		14	1	-	-		4,11,12,15
1	t ₁₅₊₆₊	6	-	-	-	65	-	-		-	-	-	65	-	-		15	6	-	-		4,11,12,14
	t ₁₅₋₆₋	6	-	-	-	50	-	-		-	-	-	50	-	-		15	6	-	-		4,11,12,14
	t ₁₁₊₈₊	8	-	-	-	65	-	-		-	-	-	65	-	-	1	11	8	-	-		4,12,14,15
	t ₁₁₋₈₋	8	-	-	-	50	-	-		-	-	-	50	-	-		11	. 8		-		4,12,14,15
	t ₁₂₊₉₊	9	-	-	-	65	-	-		-	-	-	65	-	-		12	9	-	-		4,11,14,15
	t ₁₂₋₉₋	9	-	-	-	50	-	-	♦	-	-	-	50	-	-	+	12	9	-	-	•	4,11,14,15

Pins not listed are left open.

^{*}Test is shown for one output only. The other outputs are tested in the same manner. Inputs must have Von and Voff applied in accordance with the truth table for the output under test.

^{**}Test shown is for one output only. All nine outputs, excepting the one which is "ON" according to the truth table, are to be tested for all usable input configurations shown in the truth table — a total of 90 tests.

PLASTIC MRTL MC700P/800P series

MC771P · MC871P

Four gate arrays designed to provide the Exclusive OR function. The output is high only if one input is high and all other inputs are low.

ELECTRICAL CHARACTERISTICS

Test procedures are shown for one gate only. The other gates are tested in the same manner.

			TEST V	OLTAGE 1	ALUES	
	@ Test			(Volts)		
	Temperature	Via	V _{on}	V _{BOT}	V _{off}	Vcc
	(0°C	0.960	0.930	1.80	0.570	3.60
MC871P	+25°C	0.910	0.880	1.80	0.500	3.60
	+75°C	0.820	0.790	1.80	0.450	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC771P	+25°C	0.850	0.850	1.80	0.460	3.60
	(+55°€	0.800	0.800	1.80	0.430	3.60

		Τ			MC87	1P Test I	Limits					MC7	71P Test	Limits					ST VOLTA			
		Pin Under	0	°C	+2	5°C	+75	i°C		+19	5°C	+2	5°C	+55	°C		API	PLIED TO	PINS LIS	TED BEL	OW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{eff}	V _{cc}	Gnd
Input Current	2I _{in}	1 2	-	1.2 1.2	-	1.2 1.2	-	1.1 1.1	mAde mAde	-	1.00 1.00	-	1.00 1.00	-	0.94 0.94	mAde mAde	1 2	-	2	-	11 11	4
Output Current	I _{A5}	3	3.00 3.00	:	3.00 3.00	-	2.85 3.00	:	mAdc mAdc	2.65 2.65	-	2.65 2.65	-	2.50 2.50	-	mAdc mAdc	-	1,3 2,3	-	2 1	11 11	4
Output Voltage	v _{out}	3 3	-	500 500	=	400 400	-	400 400	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	1,2	-	1,2	11 11	4
Switching Time																	Pulse In		Pulse Out			
	t	1+3- 1-3+ 2+3+ 2-3-	-	-	- - -	40	-	-	ns	-	-	-	40	-	-	ns	1 1 2 2	2 2 -	3	- 1 1	11	1

Ground inputs of gates not under test. Other pins not listed are left open.

DUAL HALF-ADDERS

MC775P · MC875P

Two half-adder devices in a single package. Each device can be used to supply the SUM and CARRY operations on two input signals. E g., if the inputs are applied to pins 1 and 14, and their complements to pins 2 and 3, the SUM of the inputs appears on pin 13 while the CARRY appears on pin 12.

NUMBER IN PARENTHESES INDICATES LOADING FACTOR FOR mW MRTL NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MRTL

Test procedures are shown for one half-adder only. The other half-adder is tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test Temperature V_{on} V_{BOT} V_{off} Vcc 0.960 0.930 1.80 0.570 3.60 MC875P +25°C 0.910 0.880 1.80 0.500 3.60 +75°C 0.820 0.790 1.80 0.450 3.60 +15°C 0.865 0.865 1,80 0.4753.60 MC775P +25°C 0.850 0.850 1.80 0.460 3.60 +55°C 0.800 0.800 1.80 0.430 3.60

		Di-			MC875P	To	est Limi	ts				MC775P	1	est Lim	its			TE	ST VOLTA	GE	1	
		Pin Under	0,	°C	+2	5°C	+75	5°C		+1	5°C	+2	5°C	+5	5°C		AP	PLIED TO	PINS LIS	TED BEL	OW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{off}	Vcc	Gnd
Input Current	I _{in}	1 2 3 14	- - -	600	- - -	600	- - -	570	μAdc	- - -	500	-	500		470	μAdc	1 2 3 14		14 3 2 14	- - -	11	4
Output Current	I _{A4} I _{A5} I _{A5}	12 13 13	2.4 3.0 3.0	-	2.4 3.0 3.0	-	2. 28 2. 85 2. 85	- - -	mAdc	- 2.65 2.65	- - -	- 2.65 2.65	-	2.5 2.5	-	- mAdc mAdc	- -	12 1, 2, 13 3, 13, 14	- - -	2,3	11	4
Output Voltage	v _{out}	12 12 13	- - -	500 ↓	1 1 1	400		400	mVdc	- - -	400		300	-	320	m Vdc	-	2 3 12	- - 1, 13		11 ↓	4
Saturation Voltage	V _{CE(sat)}	12 12 13 13	- - -	400 	-	300	-	350	mVdc	-	300	- - -	290	- - -	320	mVdc		1 1 1	2 3 1, 14 2, 3	- 2,3 1,14	11	4
Switching Time		2+12- 2-12+ 1+13+ 1-13-	-	- - -	- - -	20 30 36 36	- - -	-	ns 		- - - -		20 30 36 36		-	ns	Pulse In 2 2 1 1	Pulse Out 12 12 13 13	- - -	- - -	11	4 4 4, 12 4, 12

Ground inputs of half-adder not under test. Other pins not listed are left open.

PLASTIC mW MRTL MC700P/800P series

MC776P · MC876P

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

				TEST	VALUES		
	@ Test			(Vo	its)		μ Α
	Temperature	Vin	٧.,,	V _{BOT}	Veff	Vcc	l _o
	(0°C	0.880	0.850	1.80	0.500	3.60	270
MC876P	+25°C	0.830	0.800	1.80	0.460	3.60	290
	(+75°C	0.740	0.710	1.80	0.400	3.60	255
	(+15°C	0.865	0.865	1.80	0.475	3.60	270
MC776P	+25°C	0.850	0, 850	1.80	0.460	3.60	270
	(+ 55°C	0.800	0.800	1.80	0.430	3.60	270

		D:-		MC8	76P	To	st Limit	ts			MC	776P	T	est Limi	ts				TEST V	ALUES			
		Pin Under	0	°C	+2	5°C	+75	i°C		+1	5°C	+2	5°C	+5	i°C			APPLIE	TO PINS	LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V.	V _{BOT}	V _{off}	Vcc	l _o	Gnd
Input Current	I _{in}	1	-	150	-	140	-	140	μĄdc	-	150	-	150	-	150	μAdc	1	-	13	-	1,1	-	4
	2 I _{in}	2	-	300	-'	280	-	280		-	300	-	300	-	300		2	-	1, 3	-		-	
	I _{in}	3	-	150	-	140	-	140		-	150	-	150	-	150		3	-	14	-		-	
	I _{in}	12	-	150	-	140	-	140	+	-	150	-	150	-	150	+	12	-	14	-	•	-	•
Output Current	I _{A2}	13	320	-	320	-	300	-	μAdc	320	-	320	-	320	-	μĄdc	-	13	1	12	11	-	4, 14 §
		14		-		-		-			-		-		-		-	14	3, 12	-		-	
		14	•	-	†	-	+	-	🔻	\ \	-	\ \	-	♦	-	♦	-	12, 14	3	-	\ \	-	+
Output Voltage	v _{out}	13	-	400	-	350	-	300	mVdc	-	400	-	300	-	320	mVdc	-	12	-	-		-	4, 14
		13	-		-		-			-		-		-			-	14	-	-		-	4, 13 §
		13*†	-		-		-			-		-		-			-	1, 3	-	-		14	4, 12
		13*#	-		-		-			-		-		-			-	1	-	3			
		13*#	-		-		-			-		-		-			-	-	-	1, 3			♦
		14	-		-	*	-	*	•	-	*	-	•	-	•	†	-	13	-	-	*	-	14 §
Saturation Voltage	V _{CE(sat)}	13	-	250	-	250	-	250	mVdc	-	220	-	230	-	320	mVdc	-	-	12	-	11	-	4, 14
	02(000)	13	-		-		-			-		-		-			-	-	-	- '		-	4, 13 §
		14	-	♦	-	•	-	+	+	-	♦	-	♦	-	♦	♦	-	-	-	12	•	-	4, 14 §
Turn On Voltage	v _{on}	13*#	850	-	800	-	710	-	mVdc	865	-	850	-	800	-	mVdc	-	1, 3	-	-	1,1	13	4, 12
	-	13*†		-		-		-			-		-		-		-	3	-	1			
		13*†	¥	-	\	-	\ \	-	🗡	♦	-	♦	-	+	-	+	-	-	7	1, 3	\	♦	+

^{*} Clock Pulse to pin 2

[†] Pin 13 = LOW | Set by a momentary ground prior to the # Pin 14 = LOW | application of the negative-going clock.

[§] ground thru diode (cathode to ground).

Ground inputs of flip-flop not under test.
Other pins not listed are left open.

TOGGLE MODE TEST CIRCUIT

CLOCK PULSE

	MC776P	
TA	V _L	V _H
15°C	0.475 V	0.915 V
25°C	0.460 V	0.900 V
55°C	0.430 V	0.850 V

	MC876P	
T _A	V _L	V _H
0°C	0.50 V	0.900 V
25°C	0.46 V	0.850 V
75°C	0.40 V	0.760 V

All values are ± 2.0mV

CLOCK PULSE DEFINITION TIME INTERVAL

SEQUENCE OF EVENTS:

- SEQUENCE OF EVENTS:

 A. Voltage applied to Clock pin is raised to V_H. t, is not critical, but should be < 1.0 μs.

 B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.

 C. Apply momentary ground (when applicable).

 D. Clock pulse is allowed to fall to V_L. t_L must remain within 10 ns minimum and 200 ns maximum.

- E. Electrical measurements are read out. Load current overshoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC777P · MC877P

TOGGLE TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one flip-flop only. The other flip-flops are tested in the same manner.

			TEST VO	LTAGE	VALUES	
a	Test			(Volts)		
_	perature	Vin	Von	V_{BOT}	$V_{\rm off}$	٧ _{cc}
1	(0°C	0.960	0.930	1.80	0. 570	3.60
MC877P	+25℃	0.910	0.880	1.80	0.500	3.60
	(+75°C	0.820	0.790	1.80	0.450	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC777P	} +25°C	0.850	0.850	1.80	0.460	3.60
	(+55°C	0.800	0.800	1.80	0.430	3.60

		Pin		N	IC877P T								est Limits	+5:	E°C		APPL	IED TO	r volta Pins lis		OW:	l
		Under	0 °	°C	+25	5°C	+7	5°C		+1	5°C	+2						Von	.,	V _{off}	V _{cc}	Gnd
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	on	V _{BOT}	off		
		3	_	600	_	600	_	570	μAdc	-	500	-	500	-	470	μAdc	3	-	-	-	11	4
Input Current	l _{in}	ა 5	_	600	_	600	_	570		-	500	-	500	-	470		5	-	-	-		
	in	12	_ 1	1800	-	1800	-	1710	₩	-	1500	-	1500	-	1410	*	12	-	-	_	V	<u> </u>
	3 I _{in}		1 00	-	-1.80		-1.71		mAdc	-1.65	-	-1.65	-	-1.56	-	mAdc	10	-	5	-	11	4
Output Current	I _{A3}	10	-1.80		-1.00		-1. 1.						300		320	mVdc			_	_	11	4.10
Output Voltage	v _{out}	10	-	500		400	-	400	mVdc		400	-	300								11	4
Saturation Voltage		10	-	400	-	300	-	350	m Vdc	-	300	-	290	-	320	mVdc	-		-			
Saturation voltage	V _{CE(sat)}					80	<u> </u>		mAdc	-	-	-	80	-	-	mAdc	-	-	12	-	11	4
Power Supply Current Drain	I_{PD}	11	-	-	-	80	-		mnac	L												+
Current Drain															ì		Pulse In	Pulse Out				
Guitabing Times		8	_	_	-	100	-	_	ns	-	-	-	100	-	-	ns	3	8] -	-	11	4
Switching Times	t ₃₋₈₊	8	_	_	_	75	-	-	ns	-	-	-	75	-	-	ns	3	8	-	-	11	4

^{*}Apply a momentary ground to pin 10 prior to measurement. Ground input pins of flip-flops not under test. Other pins not listed are left open.

MC778P · MC878P

The type "D" Flip-Flop is a storage element that stores the state of the S input during negative transitions of the T input. The flip-flop state is not affected by changes in the S input during either the low or the high state of the T input. So and Co inputs may be used for asynchronous operation.

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

				TEST V	OLTAGE V	ALUES		
	@ Test			(Vo	lts)			KΩ±1%
•	Temperature	V _{in}	V _{on}	V _{BOT}	V _{off}	Vcc	VLL	V _R *
	0°C	0.880	0.850	1.80	0.500	3.60	0.45	4,3
MC878P	+25°C	0.830	0.800	1.80	0.460	3.60	0.40	4.3
	+75°C	0.740	0.710	1.80	0.400	3.60	0.35	4.7
1	+15°C	0.865	0.865	1.80	0.475	3.60	-	4.6
MC778P	+25°C	0.850	0.850	1.80	0.460	3.60		4.8
-	+55°C	0.800	0.800	1.80	0.430	3.60	-	5.0

	l			M	C878P	T	est Limi	ts		Π	N	C778P	1	est Lim	its		†	0.800		0.430 VOLTAGE	3.60	J	5.0	+
		Pin Under	0	°C	+2	5°C	+7	5°C		+1	5°C		5°C		5°C		1	APPLIE		S LISTED	BELOW:			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{CC}	VLL	V _R *	Gnd
Input Current	I _{in}	2	-	150	_	140	_	140	µAdc	-	150	_	150	_	150	μAdc	2		3	 			 	
	I _{in}	3	-	150	-	140	-	140	[]	۱.	150	_	150	_	150	HAGE	3	-	3	12	11	-	12	4, 13
	1.8 I _{in}	12	-	270	-	250	-	250		_	270	_	270	_	270	1 1	12	-	-	12		-	12	2, 4, 13
	1.8 I _{in}	12	-	270	-	250	-	250		-	270	۱ ـ	270	_	270		12	-	3	_		-	-	2, 3, 4, 13
	I _{in}	13	-	150	-	140	-	140	♦	-	150	-	150	_	150		13	_	-	12		_	12	2, 4, 13 2, 3, 4
Output Current	I _{A3}	1	420	-	430	-	395	-	μAdc	420	-	420	-	420	-	μAdc	1	12	3, 13	2	11			
		1		-		-		-			-		-	Ī	_		1	-	13	2, 12		-	12	4
		14	1	-		-		-			-		-		-		14	12	2	13		_		3, 4
	·	14	*	-	*	-	+	-	+	+	-	†	-	ŧ	-		14	3	2	12, 13	↓	_	12	4
Output Voltage	v _{out}	1	-	400	-	350	-	300	mVdc	-	400	-	300	-	320	mVdc	-	2	12, 13	-	11		_	3, 4
		1	-		-		- [-		-		-			-	14	12	-		-	_	2, 3, 4, 13
		14	-		-		-	11		-		-		-			-	13	2, 12	-		-	-	3, 4
		14							Y	-	*	-	*	-	+	+	-	1	12	-	+	-	-	2, 3, 4, 13
Saturation Voltage	V _{CE(sat)}	1	-	250	-	250	-	250	mVdc	-	220	-	230	-	320	mVdc	- 1	3	13	12	11	-	12	2, 4
		14	-	250	-	250	-	250	mVdc	-	220	-	230	-	320	mVdc	-	-]	2	3, 12	11	-	12	4, 13
Leakage Current	I _L	11	-	100	-	100	-	100	μAdc	-	-	- [-	-	-	μAdc	-	-	-	-	-	11	-	2, 3, 4, 12, 13

^{*} Apply to V_{CC} thru resistor prior to applying V_{off} . Ground inputs of flip-flop not under test. Other pins not listed are left open.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

FIGURE 1

FIGURE 2A - SET-UP AND RELEASE TIMES TEST CIRCUIT

FIGURE 2B - SET-UP TIME WAVEFORMS

FIGURE 2C — RELEASE TIME WAVEFORMS

MULTIFUNCTION DEVICES

(1 J-K Flip-Flop, 1 Expander, 2 Buffers)

MC779P · MC879P

A medium-power monolithic device consisting of one J-K flip-flop, one expander, and two buffer circuits in a single package. This J-K flip-flop can be operated in the toggling mode. Simultaneous logic ONE pulses applied to the SET and CLEAR terminals cause the output state to reverse. A direct clear input allows asynchronous entry for preclearing counters, inserting parallel data into registers, and other similar applications. The MRTL expander is designed to increase the fan-in capability of gates with expander inputs, and the buffers are high fan-out gates with single inputs.

CLOCKED INPUT OPERATION (1)

t,	3	t _{n+}	· (3)
S	C	Q	Q
1	1	Q _n ③	<u>Q</u>
1	0	1	0
0	1	0	1
0	0	<u>Q</u>	Q.3

[2] (6) 1 2 (80) [25] [2] (6) 14 13 (80) [25] [1.3] (3.75) 3 12 [1] (3) 5 5 7 9 (10) [3] [2] (5) 6 7 7 8 (10) [3] [1] (3) 10 8 (10) [3]

 $2=\overline{1}$

 $12 = \overline{3}$

	ftee	t _{ed}	P _D (mW)						
	f _{Tog} MHz	~	(Inputs High)	(Inputs Low)					
FLIP-FLOP	4	_	91‡	79					
EACH BUFFER	_	15	25	45					
EXPANDER	_	12	25	Negfigible					

- 1. Direct input (Co) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1} .
- 3. Qn is the state of the Q output in the time period ta.

NUMBER IN PARENTHESES INDICATES LOADING FACTOR FOR MW MRTL NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MRTL

	TEST VOLTAGE VALUES											
	@ Test			(Vo	lts)		(Ohms)					
	Temperature	Vin	V _{an}	V _{BOT}	V _{off}	Vcc	V _R *					
	(0°C	0.960	0.930	1, 80	0. 570	3.60	640					
MC879P	₹ +25°C	0.910	0.880	1.80	0. 500	3.60	640					
	(+75°C	0.820	0. 790	1.80	0. 450	3.60	750					
	(+15°C	0.865	0.865	1.80	0.475	3.60	640					
MC779P	/ +25°C	0,850	0.850	1.80	0.460	3.60	640					
	+55°C	0.800	0.800	1.80	0.430	3.60	640					

			MC879P Test Limits					·	MC7	70D		est Limit		+35 '6	0.800	0.800	TEST V	OLTACE	3.00	040			
		Pin															ł	ADDI IEN	TO PINS		DEI OW-		
		Under	0,	,C	+25	°C	+75	°C		+15	°C	+25	°C	+55	°C					Γ			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Via	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	2I _{in} Iin Iin 2I _{in} I _{in} 2I _{in}	1 3 5 6 7 10 14		1200 600 600 1200 600 600 1200		1200 600 600 1200 600 600 1200		1140 570 570 1140 570 570 1140	μAdc	-	1000 500 500 1000 500 500 1000		1000 500 500 1000 500 500 1000		940 470 470 940 470 470 940	μAdc	1 3 5 6 7 10 14		- 8 5,7 9 8		11	2 12 - - - 13	3,4,5,6,7,10,14 1,4,5,6,7,10,14 1,3,4,14 1,3,4,5,6,7,10
Output Current	IAB IA3 IA3 IA3 IA5 IAB	2 8 8 9## 12 13	15.0 1.8 3.0 15.0	-	15.0 1.8 3.0 15.0		14. 25 1. 71 2. 85 14. 25		mAdc	13.50 1.65 2.65 13.50		13.75 1.65 2.65 13.75	-	12.50 1.56 2.50 12.50	11111	mAdc	1,1 1 1 1,1	2 8 8, 10 9 12 13	5, 10 5 7 -	1 - 10 3 14	11	- - - 12	3,4,5,6,7,10,14 1,3,4,14 ↓ 1,4,5,6,7,10,14 1,3,4,5,6,7,10
Output Voltage	V _{out}	2 8 \(\pm \) # 8 \(\pm \) * 8 \(\pm \) * 9 \(\pm \) * 9 \(\pm \) # 9 \(\pm \) # 12 13		500	-	400	-	400	mVdc	-	400	-	300	1111111	320	mVdc	-	1 5, 7 5 - 10 5, 7 7 - 3 14	-	- - 7 5,7 - 5 5,7 -	11	2 - - - - - - 12 13	3,4,5,6,7,10,14 1,3,4,10,14 1,3,4,8,14 1,3,4,10,14 ↓ 1,4,5,6,7,10,14 1,3,4,5,6,7,10
Saturation Voltage	V _{CE} (sat)	2 8## 9 9** 12 13		400	-	300	-	350	mVdc	-	300	-	290	-	320	mVdc	- - - - - Pulse	- - - - - Pulse	1 - 10 - 3 14	- 10 - - - -	11	2 - - - 12 13	3,4,5,6,7,10,14 1,3,4,14 1,3,4,14 1,3,4,14 1,4,5,6,7,10,14 1,3,4,5,6,7,10
Switching Time	t	1+2- 1-2+ 14+13 14-13		-	-	30 45 30 45	-		ns 				30 45 30 45	-	- - -	ns	In 1 1 14 14	Out 2 2 13 13	- - - -	-	11	- - -	3,4,14 3,4,14 1,3,4 1,3,4

Pins not listed are left open.

Pin 8 = LOW $\}$ Set by a momentary ground prior to the application ** Pin 9 = LOW $\}$ of the negative-going clock pulse.

 $[\]Delta$ = Clock Pulse to pin 6, see Figure 1.

^{* =} Resistor value to V_{CC}.

FIGURE 1 — CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t, is not critical but should be $<1.0~\mu s$
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L . $t_{\rm f}$ must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC879P

TA	V _L	V _H
+ 25°C	$+ 0.500 V \pm 2.0 mV$	$+0.930 \text{ V} \pm 2.0 \text{ mV}$
		$+0.980 \text{ V} \pm 2.0 \text{ mV}$
+ 75°C	$+$ 0.450 V \pm 2.0 mV	$\pm 0.790 \text{ V} \pm 2.0 \text{ mV}$

MC779P

TA	V _L	V _H
		$-0.900 \text{ V} \pm 2.0 \text{ mV}$
		$+0.915 \text{ V} \pm 2.0 \text{ mV}$
+ 55°C	$+0.430 \text{ V} \pm 2.0 \text{ mV}$	$+0.850 \text{ V} \pm 2.0 \text{ mV}$

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

FIGURE 3 — SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

DECADE UP COUNTER

PLASTIC MRTL MC700P/800P series

MC780P · MC880P

		T	EST VOL	TAGE \	/ALUES	
	@ Test		()	Volts)		
	mperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
((0°C	0.960	0.930	1.80	0. 570	3.60
MC880P	+25℃	0.910	0.880	1.80	0. 500	3.60
1	+75℃	0.820	0.790	1.80	0.450	3. 60
((+15℃	0.865	0. 865	1.80	0.475	3.60
MC780P	+25℃	0.850	0. 850	1.80	0.460	3. 60
	+55℃	0.800	0.800	1.80	0. 430	3.60

		Pin		MC880P Test Limits 0°C +25°C +75°C								MC78	30P Test	Limits		. 55 C	0. 800 T	EST VOI	TAGE A	PPLIED		
		Under	0	°C	+2	5°C	+7	′5°C		+1	5℃	+2	5℃	+5	5°C		7	O PINS	LISTED	BELOW:		1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V_{in}	V _{on}	V _{BOT}	V _{off}	Vcc	Gnd
Input Current	I _{in}	3 5 6 7 14 12		1800		1800	-	570 	μAdc	11111	500 ↓ ↓ 1500	- - - - -	500 1500	-	470 	μAdc	3 5 6 7 14 12	- - - -	-	-	11	4
Output Current	I _{A3}	8 9 10 13	-1. 80 		-1.80	1111	-1.71	-	mAdc	-1.65		-1.65	-	-1. 56	:	mAdc		8 9 10 13	7 6 5 14	- - -	11	4
Output Voltage	V _{out} *	8 9 10 13		500 		400		400	mVdc		400 	-	300		320	mVdc	-	- - -		-	11	4
Saturation Voltage	V _{CE(sat)}	8 9 10 13		400		300 		350	mVdc	- - -	300		290	-	320	mVdc ↓	- - -	1111	12		11	4
Power Supply Current Drain	I _{PD}	11	-	-	-	75	•	ı	mAdc	-	-	-	75	-	-	mAdc	-	•	-	-	11	4
Switching Times				~											-		Pulse In	Pulse Out				
Propagation Delay	t ₃₋₈₊	8	-	-	-	100	-	-	ns	-	-	-	100	-	-	ns	3	8	-	-	11	4
	t ₃₋₈₋	8	-	-	-	75	-	-	ns	-	-	-	75	-	-	ns	3	8	-	-	11	4

Pins not listed are left open. *Apply momentary ground to pin under test prior to measurement of \mathbf{V}_{out} on that pin.

MC783P · MC883P

Dual half-shift registers each with built-in inverter, in a single package. Information coming in on pins 1 and 2 will be transferred to pins 14 and 12 when the gating signal, pin 2, goes low. If all three inputs, 1, 2, and 3, are low, the outputs, 12 and 14, will both be low.

Test procedures are shown for one half-shift register only. The other half-shift register is tested in the same manner.

		TEST VOLTAGE VALUES								
	@ Test			(Volts)						
	Temperature	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}				
	(0°C	0.960	0.930	1.80	0.570	3.60				
MC883P	+25°C	0.910	0.880	1.80	0.500	3.60				
	(+75°C	0.820	0.790	1.80	0.450	3.60				
	(+15°C	0.865	0.865	1.80	0. 475	3.60				
MC783P) +25°C	0.850	0.850	1.80	0. 460	3.60				
	(+55°C	0.800	0.800	1.80	0.430	3.60				

				MC8	83P	Te	st Limit	s		,	MC7	83P	T	est Limit	s				T VOLTAG		1147	
		Pin	0°	C	+25	o°C	+75	°C		+15	i°C	+25	°C	+55	°C		APF	LIED TO				
Characteristic	Symbol	Under Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in} 3I _{in} I _{in}	1 2 3	-	600 1800 600	1 1 1	600 1800 600	1 1 1	570 1710 570	μ Ad c	- - -	500 1500 500	1 1	500 1500 500	- - -	470 1410 470	μAdc	1 2 3	- -	1,3 2	-	11	1
Output Current	IA4 IA4 IA5 IA4 IA4	12 12 13 14 14	2. 4 2. 4 3. 0 2. 4 2. 4		2.4 2.4 3.0 2.4 2.4	- - - -	2. 28 2. 28 2. 85 2. 28 2. 28	1 1 1 1	mAdc	2. 15 2. 15 2. 65 2. 15 2. 15	- - - -	2. 15 2. 15 2. 65 2. 15 2. 15	-	2.03 2.03 2.5 2.03 2.03		mAdc	- - - -	2, 12 3, 12 13 2, 14 1, 14	- - - -	- 2 - -	11	4, 14† 4 4, 12† 4
Output Voltage	V _{out}	12 13 14	-	500	-	400	-	400	mVdc	- - -	400	- - -	300	- - -	320	mVdc ↓	- -	14 2 12	2, 3 - 1, 2		11	1
Saturation Voltage	V _{CE(sat)}	12 12 13 14 14	-	400	-	300	-	350	mVdc		300	- - - -	290	-	320	mVdc	- - -	- - - -	1, 2, 3 - 2 1, 2, 3	2, 3 - - 1, 2	11	4, 12† 4, 14 4 4, 14† 4, 12
Switching Time	t	2+13- 2-13+ 1+14+ 1-14-	-			40 40 28 24		-	ns	-	-		40 40 28 24			ns	Pulse In 2 2 1 1	Pulse Out 13 13 14 14	- - -	- - -	11	4 4 4, 12 4, 12

Ground input pins of half-shift register not under test. Other pins not listed are left open.

† Silicon diode to ground.

MC784P · MC884P

Two half-shift registers in a single package. Each is a bistable storage element. E.g., information coming in on pins 1 and 3 will be transferred to pins 14 and 12 when the gating signal, pin 2, goes low. If all three inputs, 1, 2, and 3, are low, the outputs, 14 and 12, will both be low.

NUMBER IN PARENTHESIS INDICATES MW MRTL LOADING FACTOR

NUMBER IN BRACKETS
INDICATES MRTL LOADING FACTOR

 $t_{pd} = 22 \text{ ns typ}$ $P_D = 120 \text{ mW typ}$

Test procedures are shown for one half-shift register only. The other half-shift register is tested in the same manner.

			TEST V	OLTAGE \	/ALUES	
	@ Test			(Volts)		
	Temperature	Vin	Von	V _{BOT}	V _{off}	V _{CC}
	(0°C	0.960	0.930	1.80	0.570	3,60
MC884P	+25°C	0.910	0.880	1.80	0.500	3.60
	+75°C	0.820	0.790	1.80	0. 450	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC784P	+25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60

				N	AC884P	Te	st Limit	s				MC784P	T	est Limi	ts				ST VOLTA			
		Pin Under	0°	C	+25	°C	+75	°C		+18	5°C	+25	i°C	+55	°C		API	PLIED TO	PINS LIS	TED BELO	DW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	1	-	600		600	-	570	μAdc	-	500	-	500	-	470	μAdc	1	-	2	-	11	4
-	2I _{in}	2	-	1200	-	1200	-	1140		-	1000	-	1000	-	940		2	-	1, 3	-		
	I _{in}	3	-	600	-	600	-	570	↓ .	-	500	-	500	-	470	+	3	-	2	-	+	*
Output Current	I _{A4}	12 12 14 14	2.4	-	2.4		2.28	-	mAdc	2.15	- - -	2.15		2.03	- - -	mAdc	- - -	2, 12 3, 12 2, 14 1, 14	- - -	- - -	11	4, 14† 4 4, 12† 4
Output Voltage	v _{out}	12 14	-	500 500	-	400 400	-	400 400	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	14 12	2, 3 1, 2	-	11 11	4 4
Saturation Voltage	V _{CE(sat)}	12 12 14 14	1 1 1	400	-	300	- - -	350	mVdc	- - -	300	- - -	290	-	320	mVdc	- - -	-	1, 2, 3 - 1, 2, 3 -	2,3 - 1,2	11	4, 12† 4, 14 4, 14† 4
																	Pulse In	Pulse Out				
Switching Time		1+14+ 1-14-	- -	- -	-	40 40	-	-	ns ns	- -	-	-	40 40	-	-	ns ns	1	14 14	- -	-	11 11	4, 12 4, 12

Ground input pins of half-register not under test. Other pins not listed are left open. †Silico

†Silicon diode to ground.

MC785P · MC885P

Four 2-input expanders housed in a single package increase the input capability of MRTL gates.

Test procedures are shown for one expander only. The other expanders are tested in the same manner.

			TEST VOLTAGE VALUES										
	@ Test			(Vo	lts)		(Ohms)						
•	Temperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *						
	(0°C	0.960	0. 930	1.80	0.570	3.60	640						
MC885P	/ +25°C	0.910	0.880	1.80	0.500	3.60	640						
	+75°C	0.820	0.790	1. 80	0.450	3.60	750						
	(+15°C	0.865	0.865	1.80	0.475	3.60	640						
MC785P	+25°C	0.850	0.850	1.80	0.460	3.60	640						
	+55°C	0.800	0.800	1, 80	0.430	3.60	640						

	Symbol	Pin Under Test	MC885P Test Limits							MC785P Test Limits							TEST VOLTAGE						
			0°C		+25°C		+75°C			+15	+15°C		+25°C		+55°C		APPLIED TO PINS LISTED BELOW:						- '
Characteristic			Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	I _{in}	1 2	-	600 600	-	600 600	-	570 570	μAdc μAdc		500 500	-	500 500	-	470 470	μ Adc μ Adc	1 2	-	2 1	-	11 11	3 3	4 4
Output Leakage Current	ICEX	3		200	_	200	-	250	μAdc	-	225	-	225	-	250	μAdc	3	-	-	1, 2	11	-	4
Output Voltage	v _{out}	3	-	500 500	-	400 400	-		mVdc mVdc	-	400 400	-	300 300	 -	320 320	mVdc mVdc		1 2	-	<u>-</u>	11 11	3	2, 4 1, 4
Saturation Voltage	V _{CE(sat)}	3 3	-	400 400	-	300 300	-		mVdc mVdc	-	300 300	-	290 290	-	320 320	mVdc mVdc	1 1	-	1 2	<u>-</u> -	11 11	3 3	2, 4 1, 4

Ground unused input pins. Other pins not listed are left open. * Resistor value to V_{CC}

MC786P · MC886P

Two 4-input gate expanders housed in a single package. Each may be used independently or combined. Each expander increases the input capability of a standard MRTL gate by four.

Test procedures are shown for one expander only. The other expander is tested in the same manner.

		C 0.960 0.930 1.80 0.570 3.60 640 C 0.910 0.880 1.80 0.500 3.60 640 C 0.820 0.790 1.80 0.450 3.60 750 C 0.865 0.865 1.80 0.475 3.60 640											
	@ Test			(Vo	lts)	(Ohms) V _{CC} V _R * 3.60 640 3.60 640 3.60 750 3.60 640							
	Temperature	Vin	V _{on}	V _{BOT}	V _{off}	Vcc	V _R *						
	(0°C	0.960	0.930	1.80	0.570	3.60	640						
MC886P		0.910	0.880	1.80	0.500	3.60	640						
	+75°C	0.820	0.790	1.80	0. 450	3.60	750						
	(+15°C	0.865	0.865	1.80	0.475	3.60	640						
MC786P	} +25°C	0.850	0.850	1.80	0.460	3.60	640						
	+55°C	0.800	0.800	1.80	0.430	3.60	640						

				MC886P Test Limits							MC786P	T	est Limi	ts		TEST VOLTAGE APPLIED TO PINS LISTED BELOW:							
		Pin Under	0,	,C	+25	i°C	+75	°C		+15	i°C	+2	5°C	+5	5°C			APPLIED	TO PINS	S LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	I _{in}	2 3 13 14		600		600	-	570	μAdc		500	- - -	500	-	470	μAdc	2 3 13 14	-	3,13,14 2,13,14 2,3,14 2,3,13	-	11	12	4
Output Leakage Current	I _{CEX}	12	-	200	-	200	-	250	μ Ad c	-	225	-	225	-	250	μAdc	12	-	-	2, 3, 13, 14	11	-	4
Output Voltage	v _{out}	12 12 12 12	-	500		400		400	mVdc	-	400	- - -	300	- - -	320	mVdc	- - -	13 14 2 3	-	-	11	12	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14
Saturation Voltage	V _{CE(sat)}	12 12 12 12	-	400		300	-	350	mVdc	-	300	- - -	290	- - -	320	mVdc	- - -	- - -	13 14 2 3		11	12	2,3,4,14 2,3,4,13 3,4,13,14 2,4,13,14

Ground unused input pins. Other pins not listed are left open.

PLASTIC MRTL MC700P/800P series

MULTIFUNCTION DEVICES

(1 J-K Flip-Flop, 1 Inverter, 2 Buffers)

MC787P · MC887P

A medium-power monolithic device consisting of one J-K flip-flop, one inverter, and two buffer circuits in a single package. This J-K flip-flop can be operated in the toggling mode. Simultaneous logic ONE pulses applied to the SET and CLEAR terminals cause the output state to reverse. A direct clear input allows asynchronous entry for pre-clearing counters, inserting parallel data into registers, and other similar applications. The inverter is a basic MRTL gate and the buffers are high fan-out gates with single inputs.

 $2 = \overline{1}$ $12 = \overline{3}$

CLOCKED INPUT OPERATION ①

t _n	②	tn+	· (2)
S	C	Q	Q
1	1	Q _n ③	Q,
1	0	1	0
0	1	0	1
0	0	Q,	Q _n ③

	4	• .	PD	(mW)
	MHZ	t _{pd} ns	(Input High)	(inputs Low)
FLIP-FLOP	4	_	91‡	79
EACH BUFFER	_	15	25	45
INVERTER	_	12	22	8

‡Only Clock Input High

- 1. Direct input (C_D) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1} .
- 3. Q_n is the state of the Q output in the time period t_n .

NUMBER IN PARENTHESES INDICATES MW MRTL LOADING FACTOR NUMBER IN BRACKETS INDICATES MRTL LOADING FACTOR

			TE	ST VOLTA	GE VALU	ES	
	@ Test			(Vo	its)		(Ohms)
	Temperature	Vin	V _{on}	V _{BOT}	V _{off}	Vcc	V _R *
	(0°C	0.960	0.930	1.80	0.570	3.60	640
MC887P	₹ +25°C	0.910	0.880	1.80	0.500	3.60	640
	(+75°C	0.820	0.790	1,80	0.450	3.60	750
	(+15°C	0.865	0,865	1.80	0.475	3.60	640
MC787P	} +25°C	0.850	0.850	1.80	0.460	3.60	640
	(+55°C	0.800	0.800	1.80	0.430	3.60	640

			MC887P Test Limits						MC7	87P	Т	est Limit	is	100 0	0.000	0.000	TEST V	DLTAGE	0.00	010			
		Pin Under	0	°C	+25	°C	+75	i°C		+1	5°C	+25		+55			1	APPLIED	TO PINS		BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	Vcc	V _R *	Gnd
Input Current	2I _{in} Iin Iin 2I _{in} I _{in} I _{in} 2I _{in}	1 3 5 6 7 10 14		1200 600 600 1200 600 600 1200	111111	1200 600 600 1200 600 600 1200		1140 570 570 1140 570 570 1140	μAdc	-	1000 500 500 1000 500 500 1000		1000 500 500 1000 500 500 1000	111111	940 470 470 940 470 470 940	μAdc	1 3 5 6 7 10 14	111111	- 8 5,7 9 8		11	2 - - - - 13	3,4,5,6,7,10,14 1,4,5,6,7,10,14 1,3,4,14 1,3,4,5,6,7,10
Output Current	I _{AB} I _{A3} IA3 IA3 IA5 IAB	2 8 8 9## 12 13	15.0 1.8 3.0 15.0	-	15.0 1.8 3.0 15.0		14, 25 1, 71 2, 85 14, 25		mAdc	13.50 1.65 2.65 13.50		13.75 1.65 2.65 13.75	- - - -	12.50 1.56 2.50 12.50	- - - - -	mAdc	- - - -	2 8 8, 10 9 12 13	5, 10 5 7 -	1 - - 10 3 14	11	-	3,4,5,6,7,10,14 1,3,4,14 1,4,5,6,7,10,14 1,3,4,5,6,7,10
Output Voltage	V _{out}	2 8\(\Delta\)## 8\(\Delta\)** 9\(\Delta\)** 9\(\Delta\)## 12 13		500		400	-	400	mVdc	-	400		300		320	mVdc	-	1 5, 7 5 - 10 5, 7 7 - 3 14	-	- 7 5, 7 - 5 5 5, 7	11	2 13	$\begin{array}{c} 3,4,5,6,7,10,14\\ 1,3,4,10,14\\ \downarrow\\ 1,3,4,8,14\\ 1,3,4,10,14\\ \downarrow\\ 1,4,5,6,7,10,14\\ 1,3,4,5,6,7,10 \end{array}$
Saturation Voltage	V _{CE} (sat)	2 8## 9 9** 12 13		400	-	300	- - - -	350	mVdc	-	300	- - - - -	290	1 1 1 1 1	320	mVdc	- - - - -	-	1 - 10 - 3 14	- 10 - - - -	11	2 - - - - 13	3,4,5,6,7,10,14 1,3,4,14 1,3,4,8,14 1,3,4,14 1,4,5,6,7,10,14 1,3,4,5,6,7,10
Switching Time	t	1+2- 1-2+ 14+13 14-13		-	- - -	30 45 30 45	- - - -	- - -	ns		- - -	- - -	30 45 30 45	1111	- - -	ns	Pulse In 1 1 14 14	Pulse Out 2 2 13 13	-	-	11 	- - - -	3,4,14 3,4,14 1,3,4 1,3,4

Pins not listed are left open.

Pin 8 = LOW } Set by a momentary ground prior to the applica** Pin 9 = LOW } tion of the negative-going clock pulse.

 $[\]Delta$ = Clock Pulse to pin 6, see Figure 1.

^{*} Resistor value to V_{CC}

FIGURE 1 - CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t, is not critical but should be $<1.0~\mu \rm s$.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L , t_f must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC887P

I _A	VL	VH
+ 25°C	$+ 0.500 V \pm 2.0 mV$	$+~0.930~V \pm 2.0~mV$
0°C	$+ 0.570 V \pm 2.0 mV$	$+ 0.980 \text{ V} \pm 2.0 \text{ mV}$
+ 75°C	$+$ 0.450 V \pm 2.0 mV	$+$ 0.790 V \pm 2.0 mV

MC787P

	TA	V _L	V _H
	+ 25°C	$-0.460 \text{ V} \pm 2.0 \text{ mV}$	$-0.900 \text{ V} \pm 2.0 \text{ mV}$
ļ	+ 15°C	$+0.475 \text{ V} \pm 2.0 \text{ mV}$	$+0.915 \text{ V} \pm 2.0 \text{ mV}$
	+ 55°C	$+0.430 \text{ V} \pm 2.0 \text{ mV}$	$+0.850 \text{ V} \pm 2.0 \text{ mV}$

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

FIGURE 3 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

PLASTIC mW MRTL MC700P/800P series

MC788P · MC888P

Two 3-input positive logic NOR gates, each followed by an inverting and non-inverting high fan-out amplifier, are provided in a single package. For each section, the output from each stage is available. If more than one output is used, the full loading factors cannot be employed since each output provides the drive for the succeeding stage.

NUMBER IN PARENTHESES INDICATES LOADING FACTOR FOR MW MRTL NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MRTL

 $t_{pd} = 24 \text{ ns}$ $P_D = 145 \text{ mW (Input Low)}$ 56 mW (Inputs Low)

Test procedures are shown for one buffer only. The other buffer is tested in the same manner.

			TE	ST VOLT	T VOLTAGE VALUES (Volts) (Ohms) V _{BOT} V _{off} V _{CC} V _R * 1.80 0.570 3.60 640 1.80 0.500 3.60 640 1.80 0.450 3.60 750 1.80 0.475 3.60 640 1.80 0.460 3.60 640												
	@ Test			V _{BOT} V _{off} V _{CC} V _R * 1.80 0.570 3.60 640 1.80 0.500 3.60 640 1.80 0.450 3.60 750 1.80 0.475 3.60 640 1.80 0.460 3.60 640													
•	Femperature	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}	V _R *										
	O°C	0.960	0.930	1.80	0.570	3.60	640										
MC888P	+25°C	0.910	0.880	1.80	0.500	3.60	640										
	+75°C	0.820	0.790	1.80	0.450	3.60	750										
	(+15°C	0.865	0.865	1.80	0.475	3.60	640										
MC788P	+25°C	0.850	0.850	1.80	0.460	3.60	640										
	+55°C	0.800	0.800	1.80	0.430	3.60	640										
				·													

			MC888P Test Limits								MC788P	T	est Limi	ts	T-33 U		<u> </u>	TEST V	OLTAGE	0.00	010		
		Pin Under	0	°C	+25	5°C	+75	°C		+15	5°C	+2	5°C	+55	o°C			APPLIE	TO PIN	S LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _R *	Gnd
Input Current	I _{in}	1 2 3	1 1 1	600	-	600		570	μAdc ↓	- - -	500	-	500	-	470	μ Ad c	1 2 3	-	2, 3 1, 3 1, 2		11 ↓	- - -	4
Output Current	I _{AB} I _{A5} I _{A3}	12 13 14	15.0 3.0 1.8	-	15.0 3.0 1.8	- - -	14. 25 2. 85 1. 71	-	mAdc	13.50 2.65 -	- - -	13.75 2.65	-	12.50 2.50	- - -	mAdc mAdc	- - -	12 13 14	-	14 14 1, 2, 3	11	-	4
Output Voltage	V _{out}	12 13 14 14 14	-	500	1 1 1 1	400		400	mVdc		400		300	- - - -	320	mVdc		14 14 1 2 3	- - - -	1111	11	12 - - - -	1,2,3,4 1,2,3,4 2,3,4 1,3,4 1,2,4
Saturation Voltage	V _{CE(sat)}	12 13 14 14 14	- ²	400		300	- - -	350	mVdc	11111	300		290	- - - -	320	mVdc		- - - -	14 14 1 2 3	-	11	12 - - - -	1,2,3,4 1,2,3,4 2,3,4 1,3,4 1,2,4
Switching Time	t	1+12+ 1-12- 1+13+ 1-13- 1+14- 1-14+	- - - - -		-	65 58 42.5 42.5 20 28	-	-		11111			65 58 42.5 42.5 20 28				Pulse In 1 1 1 1	Pulse Out 12 12 13 13 14 14		-	11	-	2,3,4

Ground input pins of buffer not under test. Other pins not listed are left open. *Resistor value to V_{CC}.

PLASTIC MRTL MC700P/800P series

MC789P · MC889P

Six individual circuits are contained in a single package. Each provides the simple inversion function.

NUMBER IN PARENTHESES INDICATES LOADING FACTOR FOR MW MRTL NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MRTL

 $\begin{array}{c} t_{pd} = 12 \text{ ns} \\ P_D = 130 \text{ mW (Input High)} \\ 15 \text{ mW (Inputs Low)} \end{array}$

Test procedures are shown for one inverter only. The other inverters are tested in the same manner.

			TEST V	OLTAGE	VALUES										
	@ Test	rre V _{in} V _{on} V _{BOT} V _{off} V _{CC} 0.960 0.930 1.80 0.570 3.60 0.910 0.880 1.80 0.500 3.60													
•	Temperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}									
	(o°c	0.960	0. 930	1.80	0.570	3.60									
MC889P	+25°C	0. 910	0.880	1.80	0. 500	3.60									
	+75°C	0.820	0. 790	1.80	0.450	3.60									
	(+15°C	0.865	0.865	1.80	0.475	3.60									
MC789P	+25°C	0.850	0.850	1.80	0.460	3.60									
	+55°C	0.800	0.800	1.80	0.430	3.60									

				MC889P Test Limits								MC789P	Т	est Limi	ts			TES	ST VOLTA	GE		
		Pin Under	0			+75°C			+15°C		+25°C +55		+55°C		AP	PLIED TO	PINS LIS	TED BEL	DW:			
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	14*	-	600	-	600	-	570	μAdc	-	500	-	500	-	470	μAdc	14	-	*	-	11	4
Output Current	I _{A5}	1	3.0	-	3.0	-	2.85	-	mAdc	2.65	-	2.65	-	2.5	-	mAdc	1	-	-	14	11	4
Output Voltage	v _{out}	1	-	500	-	400	-	400	m Vdc	-	400	-	300	-	320	m Vdc	-	14	-	-	11	4
Saturation Voltage	V _{CE(sat)}	1	-	400	-	300	-	350	m Vdc	-	300	-	290	-	320	mVdc	-	-	14	-	11	4
																	Pulse In	Pulse Out				
Switching Time	t _{on} + t _{off}	1, 14	-	-	-	48	-	-	ns	-	-	-	48	-	-	ns	14	1	-	-	11	4

Ground inputs of inverters not under test. Other pins not listed are left open

^{*} To simulate worse case conditions, the output of inverter under test is tied to the output of another inverter which has its input taken to ${\bf V_{BOT}}$.

PLASTIC MRTL MC700P/800P series

MC790P · MC890P

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

 $f_{Tog} = 4$ MHz $P_D = 182$ mW (Only Clock Input High) 158 (Inputs Low)

CLOCKED INPUT OPERATION ①

tn	2	tn+	©
S	С	Q	Ø
1	1	Q _n ③	Q _n
1	0	1	0
0	1	0	1
0	0	Q̈́π	©

- 1. Direct input (CD) must be low.
- 2. The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+i} .
- 3. Q_n is the state of the Q output in the time period t_n .
- 4. Clock pulse fall time must be < 100 ns.

NUMBER IN PARENTHESES INDICATES LOADING FACTOR FOR MW MRTL NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MRTL

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

		Ī	TEST	VOLTAGE	VALUES	
	@ Test			(Volts))	
1	Temperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}
1	(0°C	0.960	0.930	1.80	0.570	3.60
MC890P	' +25°C	0.910	0.880	1.80	0.500	3.60
1	+75°C	0.820	0.790	1.80	0.450	3.60
((+15°C	0.865	0.865	1.80	0.475	3.60
MC790P	+25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60

				MC	390P	To	est Limit	s			MC	790P	Ţ	est Limi	ts							
		Pin Under	0	°C.	+25	5°C	+75	°C		+1	5°C	+2	5°C	+55	i°C			APPLIED T	O PINS I	ISTED BE	LOW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in} 2I _{in} I _{in} I _{in}	1 2 3 12	-	600 1200 600 600	- - -	600 1200 600 600	- - -	570 1140 570 570	μAdc		500 1000 500 500	-	500 1000 500 500		470 940 470 470	μAdc	1 2 3 12	-	13 1, 3 14 14	-	11	2, 3, 4, 12 4, 12 1, 2, 4, 12 1, 2, 3, 4
Output Current	I _{A3}	13 14 14	1.80	-	1.80	- - -	1.71	- - -	mAdc	1.65	- - -	1.65	- - -	1. 56	-	mAdc	- - -	13 14 12,14	1 3, 12 3	12 - -	11 ↓	2, 3, 4 1, 2, 4 1, 2, 4
Output Voltage	V _{out}	13 13*# 13*## 13*## 14*# 14*#		500	-	400	- - - - -	400	mVdc	-	400	- - - - -	300		320	mVdc		12 1, 3 1 - 1, 3 3 -	-	- 3 1,3 - 1 1,3	11	1,2,3,4,14
Saturation Voltage	V _{CE(sat)}	13 13# 14##	- - -	400	-	300		350 	mVdc	- - -	300	-	290	-	320	mVdc	- - -	-	12 - 12		11 	1,2,3,4,14 1,2,3,4,12 1,2,3,4

Ground unused input pins. Other pins not listed are left open.

^{*} Clock pulse to pin 2, see Figure 1,

FIGURE 1 — CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. $t_{\rm r}$ is not critical but should be $<1.0~\mu s.$
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to $\rm V_L$. $\rm t_f$ must remain within 10 ns minimum and 100 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC890P

	TA	V _L	V _H
İ	+ 25°C	$+0.500 \text{V} \pm 2.0 \text{mV}$	$+0.930{ m V}\pm 2.0{ m mV}$
	0°C	$+0.570 \mathrm{V} \pm 2.0 \mathrm{mV}$	$+0.980~{ m V}\pm 2.0~{ m mV}$
i	+ 75°C	$+0.450 \text{V} \pm 2.0 \text{mV}$	$+$ 0.840 V \pm 2.0 mV

MC790P

TA	٧ _L	V _H
+ 25°C	$+ 0.460 V \pm 2.0 mV$	$+0.900\mathrm{V}\pm2.0\mathrm{mV}$
+ 15°C	$+ 0.475 \text{V} \pm 2.0 \text{mV}$	$+0.915\mathrm{V}\pm2.0\mathrm{mV}$
+ 55°C	$+$ 0.430 V \pm 2.0 mV	$+0.850 \text{ V} \pm 2.0 \text{ mV}$

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

MC791P · MC891P

Two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

Test procedures are shown for one flip-flop only. The other flip-flop is tested in the same manner.

			TEST V	OLTAGE \	/ALUES	
	@ Test			(Voits)		
	Temperature	Vin	Von	V _{BOT}	V _{off}	V _{CC}
	(0°C	0.960	0.930	1.80	0.570	3.60
MC891P	} +25°C	0.910	0.880	1, 80	0.500	3.60
	+75°C	0.820	0.790	1.80	0. 450	3.60
	(+15°C	0.865	0.865	1. 80	0.475	3.60
MC791P	+25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1, 80	0.430	3.60

		Pin	MC891P Test Limits								MC7	,		est Limi			TEST VOLTAGE APPLIED TO PINS LISTED BELOW:			nw.		
		Under	0.	°C	+25	°C	+75	°C		+15	5°C	+25	i°C	+55	i°C				PINS LIS		JW:	ĺ
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	1†	-	600	-	600	-	570	μAdc	-	500	-	500	-	470	μAdc	1	-	-	- '	11	4
-	2I _{in}	2	-	1200	_	1200	-	1140		-	1000	-	1000	-	940		2	-	1, 3	-		
	I _{in}	3	-	600	-	600	- '	570		-	500	-	500	-	470		3	-	12	-		
	I _{in}	12	-	600	-	600	-	570	•	-	500	-	500	-	470	•	12	-	-	-	+	+
Output Current	I _{A5}	13† 14	3.0 3.0	-	3.0 3.0	-	2.85 2.85		mAdc mAdc	2.65 2.65	-	2.65 2.65	-	2.50 2.50	-	mAdc mAdc	- -	13 12, 14	-	-	11 11	4
Output Voltage	v _{out}	13 § ⑤ 13§§④) -	500	-	400		400	mVdc	-	400	-	300	-	320	mVdc	-	1 -	-	3	11	4, 12
		13 § ⑥ 13§§⑦)		-	!	-			-		-		-			-	-	-	3		
		14§ @ 14§§ ©) -		-		-			-		-		-			-	3	_	1		
		14 § 7 14§§6) - '		- -		-			-		-		-			-	3	-	1 -	ļ ,	1
Saturation Voltage	V _{CE(sat)}	13†	-	400	-	300	-	350	mVdc	-	300	-	290	-	320	mVdc	-	12 1, 3	-	-	11	4
	0_(0)	13*# 13†*	-		-		-			-		-		-			-	1	-	3		
		13†*	-	1 1	-		-			-		-		-			-	3	-	1,3 1		
		14*#	_		-		-			-		-		-	1 1		-	-	-	1, 3		
		14†*	-	+	-	🗡	-		,		*	-	7	-	V	<u> </u>		1, 3	<u> </u>			

Ground inputs of flip-flop not under test. Other pins not listed are left open.

- † Preset the flip-flop by the following procedure:

 - (1) Momentarily apply VBOT to pin 12 to preclear flip-flop.
 (2) After VBOT is removed from pin 12, ground pins 1 and 3.
 (3) Apply a negative-going clock pulse to pin 2 (see note*) while pins 1 and 3 are still grounded. This changes the state of the flip-flop to the SET condition.
 - (4) Remove grounds from pins 1 and 3, and proceed with the test.
- * Clock pulse to pin 2, see Figure 1.
- # Pin 12 = HIGH Set by momentary application of VBOT prior to the application of the negative-going clock pulse.

- § = Clock pulse to pin 2, data pulse to pin 3.
- §§ = Clock pulse to pin 2, data pulse to pin 1.

- 4 = See Figure 4. 5 = See Figure 5. 6 = See Figure 6. 7 = See Figure 7.

FIGURE 1 - CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t_r is not critical but should be $<1.0~\mu s$.
- B. Biases of all other inputs are applied. V_{CC} is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fall to V_L . t_{f} must remain within 10 ns minimum and 200 ns maximum.
- E. Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

	MUOSIP													
TA	V _L	V _H												
+ 25°C	$+ 0.500 V \pm 2.0 mV$	$+0.930~{ m V}\pm 2.0~{ m mV}$												
0°C	$+0.570 \text{ V} \pm 2.0 \text{ mV}$	$+0.980 \text{ V} \pm 2.0 \text{ mV}$												
+ 75°C	$+0.450 \text{ V} \pm 2.0 \text{ mV}$	$+0.790 \text{ V} \pm 2.0 \text{ mV}$												
	NOTOS D													

TA	٧ _L	V _H
+ 25°C	$+ 0.460 V \pm 2.0 mV$	$+0.900 \text{ V} \pm 2.0 \text{ mV}$
+ 15°C	$+ 0.475 \text{ V} \pm 2.0 \text{ mV}$	$+0.915~{ m V}\pm2.0~{ m mV}$
+ 55°C	\pm 0.430 V \pm 2.0 mV	$+0.850 \text{ V} \pm 2.0 \text{ mV}$

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

FIGURE 3 — TEST CIRCUIT

FIGURE 4 - TEST WAVEFORMS

FIGURE 5 - TEST WAVEFORMS

FIGURE 6 - TEST WAVEFORMS

FIGURE 7 - TEST WAVEFORMS

PLASTIC MRTL MC700P/800P series

MC792P · MC892P

Three 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

NUMBER IN PARENTHESES INDICATES LOADING FACTOR FOR MW MRTL NUMBER IN BRACKETS INDICATES LOADING FACTOR FOR MRTL

t_{pd} = 12 ns P_D = 82 mW (Input High) 24 mW (Inputs Low)

Test procedures are shown for one gate only. The other gates are tested in the same manner.

			TEST V	OLTAGE V	/ALUES	
	@ Test			(Volts)		
	Temperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}
	(0°C	0.960	0.930	1.80	0.570	3.60
MC892P	{ +25°C	0.910	0. 880	1.80	0. 500	3.60
	(+75°C	0. 820	0.790	1.80	0.450	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC792P	+25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60

F			MOOOD Total Living												T33 6	0.000	3.00	ļ				
ľ		n.	L	MC8921	<u>, </u>	Ţ	est Limit	ts			MC7	92P	T	est Limi	ts			TES	ST VOLTA	GE		1
		Pin Under	0°	,C	+25	5°C	+75	°C		+1	5°C	+2	5°C	+55	°C		AP	PLIED TO	PINS LIS	TED BELO)W:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Via	Von	V _{BOT}	V _{off}	V _{CC}	Gnd
Input Current	I _{in}	1 2 14	- - -	600	- - -	600		570	μ A dc	-	500	-	500	-	470	μAdc	1 2 14	- - -	2, 14 1, 14 1, 2	-	11	4
Output Current	I _{A5}	3	3.00	-	3.00	-	2.85	-	mAdc	2.65	-	2.65	-	2.50	-	mAdc	-	3	-	1, 2, 14	11	4
Output Voltage	v _{out}	3 3 3	-	500	- - -	400		400	mVdc	1. 1 1	400 ↓	-	300	-	320	mVdc	-	14 1 2	-		11	1,2,4 2,4,14 1,4,14
Saturation Voltage	V _{CE(sat)}	3 3 3	- - -	400	-	300	-	350	mVdc ↓	-	300	-	290 ↓	- - -	320	mVdc		- - -	14 1 2	-	11 ↓	1,2,4 2,4,14 1,4,14
												٠					Pulse In	Pulse Out				
Switching Time	ton + toff	1,3	-		-	48	-	-	ns	-	-	-	48	-	-	ns	1	3	-	- #	11	2,4,14

Ground input pins of gates not under test. Other pins not listed are left open.

PLASTIC mW MRTL MC700P/800P series

MC793P · MC893P

Three 3-input positive logic NOR gates in a single package. Each may be used independently, paralleled for increasing the number of inputs (subject to loading rules), or cross-coupled to form bistable elements.

Test procedures are shown for one gate only. The other gates are tested in the same manner.

TEST VOLTAGE VALUES (Voits) @ Test **V**BOT V_{off} Vcc Temperature 0°C 0.880 0.850 1.80 0.500 3.60 MC893P +25°C 0.830 0.800 1.80 0.460 3.60 +75°C 0.740 0.710 1.80 0.400 3.60 +15°C 0.865 0.865 1.80 0.475 3.60 MC793P +25°C 0.460 3.60 0.850 0.850 1.80 0.800 0.800 | 1.80 | 0.430 | 3.60

				MC8	93P	Te	st Limi	ts			MC7	93P	T	est Limi	ts			TEST VOLTAGE							
		Pin Under	0,	,C	+25	j°C	+75	°C		+1!	o°C	+2	5°C	+55	5°C		API	PLIED TO	PINS LIS	TED BELO	W:				
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{CC}	Gnd			
Input Current	I _{in}	1 2 14	-	150		140	- - -	140	μAdc	- - -	150	-	150	- - -	150	μAdc	1 2 14	- - -	2,14 1,14 1,2	1 1 1	11	4			
Output Current	I _{A4}	3	570	-	570	-	535	-	μ Adc	570	-	570	-	570	-	μ A dc	-	3	-	1,2,14	11	4			
Output Voltage	v _{out}	3 3 3	- - -	400 ↓		350	-	300	mVdc	-	400	- - -	300	-	320	mVdc	- - -	14 1 2	- - -	111	11 	1,2,4 2,4,14 1,4,14			
Saturation Voltage	V _{CE(sat)}	3 3 3	- - -	250		250 	-	250	mVdc	- - -	220	- -	230	- - -	320 	mVdc	-	- - -	14 1 2	-	11	1,2,4 2,4,14 1,4,14			
																	Pulse In	Pulse Out							
Switching Time	t _{on} + t _{off}	1,3	-	-	-	90	-	-	ns	-	-	-	90	-	-	ns	1	3	-	-	11	2,4,14			

Ground input pins of gates not under test. Other pins not listed are left open.

SERIAL-PARALLEL SHIFT REGISTER

PLASTIC MRTL MC700P/800P series

MC794P · MC894P*

Number in parenthesis indicates mW MRTL loading factor. Number in brackets indicates MRTL loading factor.

The MC794P/MC894P is a highly versatile 4-bit Shift Register with both Serial and Parallel entry capability. It can be utilized as an accumulator, buffer register, serial to parallel/parallel to serial converter, and is fully compatible with the other MRTL functions. The clock fall time must be \$100 ns.

^{*}See General Information section for packaging.

Test procedures for Inputs B, C, and D are the same as given for Input A (pin 10) in the table below.

	1	TE	ST VOLT	AGE V	ALUES	
			(V	olts)		
-	© Test perature	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}
((0°C	0.960	0.930	1.80	0. 570	3.60
MC894P	+25℃	0.910	0.880	1.80	0. 500	3.60
1	(+75℃	0.820	0.790	1.80	0.450	3.60
1	(+15℃	0.865	0.865	1.80	0. 475	3.60
MC794P	+25℃	.0.850	0.850	1.80	0.460	3.60
	(+55℃	0.800	0.800	1.80	0. 430	3.60

		Pin			MC89	4P Test	Limits					MC79	4P Test	Limits			Ţ	EST VOLT) PINS LI	AGE A	PPLIED		
		Under	0	Ĵ	+2	5°C	+7	'5°C		+1	5℃	+2	.5°C	+5	5°C							
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	4I _{in}	1	-	2400	-	2400	-	2280	μAdc	-	2000	-	2000	-	1880	μAdc	1,14	-	-	-	11	2,4,6,10,13
	I _{in}	2 6 7 9 10	-	600		600	-	570			500	-	500	- - -	470		2 6 7 9 10		- - 1,14	-		4,14 4,14 1,4,9,14 4 4,14
	2I _{in}	13 14	-	1200	-	1200	-	1140		-	1000	-	1000	-	▼ 940		13 14	-	-	-	ļ i	4,14 4
Output Current	I _{A5}	3 5 8 12	3.0	- - -	3.0	-	2.85	-	mAdc	2.65		2.65	-	2.50	- - -	mAdc	- - -	2,3,14 5,6,14 8,10,14 12,13,14	-		11 	4
Output Voltage	v _{out}	3 3 5 5 8 8 12 12	-	500	-	400	-	400	mVdc	-	400		300	-	320	mVdc	-	1 14 1 14 1 14 1 14	-	2 - 6 - 10 - 13	11	4,14 4 4,14 4 4,14 4,14 4,14
Power Supply Drain Current	I _{PD}	11	-	-	-	75	-	-	mAdc	-	-	-	75	-	-	mAdc	-	-	1	-	11	4
Switching Times													ļ				P _{in1} *	P _{in 2} *		P _{out}		
STATEMENT AND ST	t2-3- t2+3+ t1+8- t1-8+ t9-8- t9-8+	3 3 8 8 8	-	-		70 68 85 50 63 66	-	-	ns	-	-	-	70 68 85 50 63 66		-	ns	2 2 1 1 9	- - - 7	14 14 - - -	3 3 8 8 8	11	1,4,6,7,9,10,13 1,4,6,7,9,10,13 2,4,6,7,9,10,13,14 2,4,6,7,9,10,13,14 1,2,4,6,10,13,14 1,2,4,6,10,13,14

Ground all unused input pins. Other pins not listed are left open. *See "Switching Times Test Circuit and Waveforms".

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

PARALLEL ENABLE MODE

DUAL FULL ADDERS

PLASTIC MRTL MC700P/800P series

MC796P · MC896P

TRUTH TABLE

IC LEVEL OUTPUT LOGIC L

	INPUT	LOGIC	LEVEL	OUTPUT LO	GIC LEVEL
	A	В	Ci	S	C _o
	0	0	0	0	0
	0	0	1 1	1	0
	0	1	0	1	o
	0	1	1	0	1 1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
i	1	1	1	1	1

Provides the SUM and CARRY functions while requiring only the AUGEND (A) and ADDEND (B) inputs with CARRY IN.

POSITIVE LOGIC $C_0 = ABC_i + AB\overline{C}_i + A\overline{B}C_i + \overline{A}BC_i$ $S = ABC_i + A\overline{B}\overline{C}_i + \overline{A}BC_i + \overline{A}B\overline{C}_i$

t_{pd} = 60 ns typ P_D = 225 mW typ

Number in Parenthesis Indicates mWMRTL Loading Factor. Number in Brackets Indicates MRTL Loading Factor.

ELECTRICAL CHARACTERISTICS

Test procedures are shown for one full adder only. The other full adder is tested in the same manner.

		T	_		MCOC	6P Tes	4 1 i i 4	-								+35°C	0.800		1.80	0. 430	3.60	1
	1	Pin	-)°C		5°C				-			6P Test				1		ST VOL			7
Characteristic	Symbol	Under Test	Min	Max	Min	Max	Min	′5°C	١		5℃		25°C	-	55°C		API	LIED TO		ISTED BE		
Input Current			_	_	MID	_	Mun	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	Vcc	Gr
input Current	I _{in}	2 13	-	600	:	600	1 :	570	μ Adc	-	500	-	500	-	470	μAde	2	-		-	11	4
		14	<u>L</u> -		-	+	-	1		:		1	1	-	↓	1	13 14	-	-	-	I	Ιi
Output Current	I _{A5}	3	3.00	-	3.00	-	2.85	-	m Adc	2,65	-	2,65	1	2,50	<u> </u>	mAdc	-	3,13,14		+-	<u> </u>	
				-		-		-			-	1	-	1	-	I III	1 :	2,3,13	-	2 14	11	4
	1		11] [-		1	11.		-		1.5		-		-	2,3,14	-	13		1 1
	İ		Ш								1		1 -		-		-	12,3,1	-	-		
	1	12	1	-		-		-	1 1		- 1		_		_		_	12,13		2,14		
				1 -		-	11.	-			-		-		-		-	12,14	1 .	2,14		11
	1			- 1		-		-			1		1		-		-	2,12	-	13,14		
	├	-	'		1		1			+		ŧ		+		∳	· .	(2,12,) 13,14	-	i -	↓	1 1
Output Voltage	vout	3	- '	500	- 1	400	-	400	mVdc	-	400	-	300	-	320	mVdc	-	-	-	2,13,14	11	4
			-		- 1		-			- 1		-		-		1 1	-	13	-	2,14	i i	1
		7	-		-	11	-			- 1		- 1		-			_ [14 2	-	2,13 13,14		
		12	-		-	- 1 1	-			- 1		- 1		-		- 1 1		-		2,13,14		1 1
			-		-		- 1			:	- 1 1	-		-			-	13,14	-	2,13,14		
		1	-	•		+	-	ŧ	+	-	+	-		: 1		- ↓ 1	-	2,14	- 1	13 13	1 1	1
witching Time			ı													\dashv	Pulse	2,14	Pulse	13	-	
	t 2+12+	12	_	_	.	75	_	_		1	1	İ		- [- 1	In	Į	Out			
	2+12+ t ₂₋₁₂₋	12	-	-		75]	-	ns	-	-	-	75	-	-	ns	2	13,14	12	-	11	4
	2-12- t ₂₊₃₊	3	-		.	85	-			-	-	-	75	-	- j			-	12	-		- 1
	t ₂₋₃₋	3	_ [_		65	.	- 1		- 1	-	-	85	-	-	11		13	3	14		- 1
	t ₁₄₊₁₂₊	12	_	.	- 1	75	- 1	- 1		-	-	-	65	-	-	- 1 1	· 🛊 !	13	3	14	- 1	
	t ₁₄₋₁₂₋	12	_		.	75	- 1			-	-	-	75	-	-		14	-	12	2,13		1
	t ₁₄₊₃₊	3	-		_	85	- 1]]	1 1	-	-	-	75	-	-			-	12	2,13		
	t ₁₄₋₃₋	3	-	- 1	- 1	65	1		- 1 1	-	-	-	85	-	-			13	3	2		
	t ₁₃₊₁₂₋	12		_	-	70		- 1		-	-	-	65	-	-		+ 1	13	3			
	t ₁₃₋₁₂₊	12				80		- 1		-	-	-	70	-	-		13	14	12			
	t ₁₃₊₃₊	3	.		.	70				-	-	-	80	-	-				12			
		3		_	1	80	1	-		-	-	-	70	-	-	- 1 1			3		1 1	1
	^t 13-3-		-	-	- 1	80	-	-	+]	-	-	-	80	-	- 1	1	. 1	1	3	1 1	1	1

Ground inputs of full adder not under test. Other pins not listed are left open.

MC797P · MC897P

TRUTH TABLE INPUT LOGIC LEVEL OUTPUT LOGIC LEVEL ᄑ

Provides the DIFFERENCE and BORROW functions while requiring only MINUEND (X) and SUBTRAHEND BORROW IN.

0 0 0 0 0 1 1 0 1 0 1 0 0 0 0

POSITIVE LOGIC $D = YXB_i + \overline{Y}X\overline{B}_i + \overline{Y}X\overline{B}_i + \overline{Y}\overline{X}B_i$ $B_0 = \overline{Y}\overline{X}B_i + Y\overline{X}\overline{B}_i + Y\overline{X}B_i + YXB_i$

t_{pd} = 60 ns typ P_D = 225 mW typ

Number in Parenthesis Indicates mW MRTL Loading Factor. Number in Brackets Indicates MRTL Loading Factor.

ELECTRICAL CHARACTERISTICS Test procedures are given for only one

subtractor. The other subtractor is tested in the same manner.

	@Test		TEST W	OLTAGE (Volts)	VALUES	
Tes	aperature	V _{im}	8 <	VBOT	Voff	V _{cc}
	(℃	0.960	0.930	1.80	0.570	3.60
MCB97P	+25℃	0.910	0.800	1.80	0.500	3.60
	+75℃	0.820	0.790	1.80	0.450	3.60
	+15℃	0.865	0.865	1.80	0.475	3.60
MC797P	+25℃	0.850	0.850	1.80	0.460	3.60
	+55℃	0.800	0.800	1.80	0.430	3.60

ŀ		Pin			MC89	7P Tes	t Limits					MC79	7P Test	Limits				TE	ST VOLT	AGE		1
	İ	Under	0	°C	+2	5°C	+7	5°C		+1	5℃	+2	5℃	+5	5℃				PINS L	STED BE	OW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{im}	Vom	V _{BOT}	Voff	V _{cc}	Gnd
Input Current	1.5 I _{in} I _{in} I _{in}	2 3 14	:	900 600 600	-	900 600 600	-	855 570 570	μAdic	-	750 500 500	-	750 500 500	:	705 470 470	μAdc	2 13 14	:	-	-	11	1
Output Current	I _{A5}	12	3,00	-	3.00	-	2.85	-	mAde	2.65	-	2.65	-	2.50	-	mAde	-	2,3, 14 3,13 3,14 12,13 12,14 2,12 (2,12,)	-	2,14 2,13 2,14 2,13 13,14	11	4
Output Voltage	Vout	3	,	500	•	400	•	400	mVdc	•	400	•	300	•	320	mVdc		13,14	<u> </u>	14	<u>.</u>	+
	out	122	-				-					-		-		in vac		2,13 2,14 - 13,14 2,14	-	14 13 2,13,14 2,13,14 2 13	11	4
Switching Time		'	<u> </u>	7	-		-	7	_		1	-	1	-	1	•	Pulse	2,13	- Pulse	14		+
	t ₂₊₁₂₊ t ₂₋₁₂₋	12 12	-	-	-	60 60	-	-	ns 	-	-	-	60 60	-	-	ns 	<u>in</u> 2	13,14	Out 12 12	-	11	4
	t ₂₊₃₊	3	-	-	-	65 60	-	-		-	-	-	65 60	-	-				3	-		
	^t 14+12+ ^t 14-12-	12 12	-	-	-	ļ	-	-		-	-	-		-	-		14	<u>:</u> -	12 12	2,13 2,13		
	^t 14+3- ^t 14-3+	3	-	-	-	65 60	-	-		-	-	-	65 60	-	-		1	13	3	2		
	^t 13+12- ^t 13-12+	12 12	-	-	-		-	-			-	-		-	-		13		12 12			
0	^t 13+3+ ^t 13-3-	3	-	-	-	↓	-	-	+	-	-	-	↓	-	-	↓	↓	2,14 2,14	3	-	ļ	

d input pins of subtractor not under test. Other pins not listed are left open.

MC798P · MC898P

Dual 2-input buffers designed to drive a greater number of loads than the basic Resistor Transistor Logic circuit. Returning an input resistor to $V_{\rm CC}$ allows for capacitive coupling in multivibrator and differentiator applications.

Test procedures are shown for one buffer only. The other buffer is tested in the same manner.

TEST VOLTAGE VALUES (Volts) (k Ohms) @ Test Temperature V_{BOT} V_{off} Vcc V_R* 0°C 0.880 0.850 1.80 0.500 3.60 4.6 MC898P +25°C 0.830 0.800 1.80 0.460 3.60 4.8 +75°C 0.740 0.710 1.80 0.400 3.60 5.0 +15°C 0.865 0.865 1.80 0.475 3.60 4.6 MC798P +25°C 0,850 0.850 1.80 3.60 0.460 4.8 +55°C 0.800 0.800 1.80 0.430 3.60 5.0

		.		MC	98P	Te	est Limi	ts			MC	798P	т Т	est Limi	its				TEST V	DLTAGE			
		Pin Under	0,	,C	+25	5°C	+75	i°C		+18	i°C	+2	5°C	+55	5°C			APPLIED	TO PINS	LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	V _R *	Gnd
Input Current	2 I _{in}	2	_	300		280	-	280	μAdc	-	300	-	300	-	300	μAdc	2	-	13	-	11	-	4
Output Current	I _{AB}	3	4. 5	-	4.5	-	4.5	-	mAdc	5.0	-	5.0	-	5.0	-	mAdc	-	3	-	2,13	11	-	4
Output Voltage	V _{out}	3	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	13 2	-	-	11 11	3	2, 4 4, 13
Saturation Voltage	V _{CE(sat)}	3 3	-	250 250	-	250 250	1 1	250 250	mVdc mVdc	-	220 220	-	230 230	-	320 320	mVdc mVdc	-	-	13 2	-	11 11	3	2, 4 4, 13
																	Pulse In	Pulse Out					
Switching Time	t _{on} + t _{off}	2,3	-	1	1	160	-	-	ns	-	-	-	160	-	-	ns	2	3	-	-	11	-	4, 13

Ground input pins of buffer not under test. Other pins not listed are left open. *Resistor value to V_{CC} .

MC799P · MC899P

The dual buffer is designed to drive a greater number of load circuits than the basic RTL circuit. Because this circuit has a very low output impedance the rise times of output waveforms are maintained when driving capacitive loads. A resistor which is internally connected to the input allows for capacitive coupling to the input, the differentiation of input waveforms and various multivibrator applications.

Test procedures are shown for one buffer only. The other buffer is tested in the same manner.

			TE	ST VOLT	AGE VALU	ES	
	@ Test			(Vo	ilts)		(Ohms)
	Temperature	V _{in}	Von	V _{BOT}	V _{off}	Vcc	V _R *
	(0°C	0.960	0. 930	1.80	0.570	3.60	640
MC899P	+25°C	0.910	0.800	1.80	0.500	3.60	640
	+75°C	0. 820	0.790	1.80	0.450	3.60	750
	(+15°C	0.865	0.865	1.80	0.475	3.60	640
MC799P	+25°C	0.850	0, 850	1.80	0.460	3,60	640
	+55°C	0.800	0.800	1.80	0.430	3.60	640

		Pin	-		MC899P	Т	est Limi	ts				MC799P	1	est Limi	ts			<u> </u>	TEST V	0. 430 OLTAGE	3.60	640	1
		Under	0	°C	+2	5°C	+75	5°C		+1	5°C	+2	5°C	+55	i°C			APPLIED	TO PINS	LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	2I _{in}	13	-	1.2	-	1.2	· -	1.1	mAdc	-	1.0	-	1.0	-	0.94	mAdc	13	_	-	-	11	_	4
Output Current	I _{A5} I _{AB}	2 3	3.0 15.0	-	3.0 15.0	-	2.85 14.25	-	mAdc mAdc	2.65 13.75	-	2.65 13.75	-	2.50 12.50	-	mAdc mAdc	-	2 3	-	13 13	11 11	-	4 4
Output Voltage	v _{out}	2 3	-	500 500		400 400	-	400 400	mVde mVde	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	13 13	-	-	11 11	- 3	4 4
Saturation Voltage	V _{CE(sat)}	2 2 3	-	400 ↓	1 1 1	300 ↓	-	350	mVdc	- - -	300	-	290	- - -	320	mVdc		- - -	13 - 13	- - -	11 11, 12 11	- - 3	4
											:						Pulse In	Pulse Out					
Switching Time	t	13+3- 13-3+ 13+2- 13-2+	-		- - -	30 45 28 32	- - -		ns	1111	1 1 1	-	30 45 28 32	- - -		ns	13 13 13 13	3 3 2 2	- - -	- - -	11	- - -	4

Ground all unused input pins. Other pins not listed are left open. * Resistor Value to $V_{\hbox{\footnotesize CC}}$.

MC9701P · MC9801P

Test procedures are shown for one data selector only. The other data selector is tested in the same manner.

		T	EST VOLTAG	E VALUES	
6	⊋ Test		(Volt:	s)	
	perature	V _{in}	V _{on}	V _{off}	V _{cc}
1	0°C	0.960	0.930	0.570	3.60
MC9801P	+25°C	0.910	0. 880	0.500	3.60
	+75℃	0.820	0.790	0. 450	3.60
	(+15℃	0. 865	0.865	0.475	3.60
MC9701P	' +25°C	0.850	0.850	0.460	3.60
	(+55°C	0.800	0.800	0.430	3.60

	T	I	r-		MCOO	OID T	1221									(+55°C	0.800	0.800	0.430	3.60	
		Pin Under	0	°C		5°C	st Limit +7	s 5°C	Γ	+1	5°C		01P Te 25°C	st Limit:	s 5°C		APPLII	TEST VOI D TO PINS		OW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	1 2 3 14 15 16		600 	11111	600	-	570	μAdc ↓	- - - -	500		500	-	470	μAde	1 2 3 14 15 16	- - - - - -	-	13	4
Output Current	I _{A5}	5 5 5 5	-3.0		-3.0 ↓	1111	-2.85	-	mAdc	-2.65	-	-2.65	-	-2.5		mAdc	- - -	2,5 3,5,16 1,5,14,16 1,5,15	1,16 1 - 16	13	4
Saturation Voltage	V _{CE(sat)}	5 5 5 5		400		400 	1111	400	mVdc	-	300	1111	300	1111	320	mVdc	- - - -	- 16 1 1,16	1,2,16 1,3 15,16 14	13	4
Power Supply Current Drain	I _{PD} *	13	-	-	-	37	•	-	mAdc	-	-	1	37	-	-	mAdc	1,9,10,16	-	_	-	-
~ · · · · ·																	Pulse In	Pulse Out			
Switching Times	^t 2+5+ ^t 2-5-	5 5	-	-	-	32 26	1	-	ns ns	1	-	-	32 26	-	-	ns ns	2 2	5 5	- -	13 13	1,4,16 1,4,16

^{*}IPD test is for both halves of the dual selector.

Ground inputs of dual selector not under test. Other pins not listed are left open.

MC9704P · MC9804P

Test procedures are shown for one adder only. The other adders are tested in the same manner.

					TAGE VALUES	
	_			()	/olts)	
_	? Test perature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(0°C	0.960	0.930	1.80	0. 570	3.60
MC9804P	₹ +25°C	0 910	0.880	1.80	0. 500	3.60
	(+75°C	0.820	0.790	1.80	0. 450	3.60
	(+15℃	0.865	0.865	1.80	0. 475	3.60
MC9704P	} +25℃	0.850	0.850	1.80	0.460	3.60
	(+55℃	0.800	0.800	1.80	0. 430	3.60

			,												- `	· 33 C		0.000				
							4P Test Limits				MC9704P Test Limits					TEST	VOLTAG	GE APPLIEI	LIED TO PINS LISTED BELOW:			
		Under	0	°C	+2	5°C	+7	5°C		+1	5°C	+2	5°C	+5.			Vin	V _{on}	V _{BOT}	V _{off}	Vcc	Gnd
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	'in	* on	вот	off	- ((
Input Current	0. 75 I _{in}	14 15 16	=	450	-	450 	-	427	μAdc ▼	- - -	375	- - -	375 	-	353 V	μAdc	14 15 16	-	15,16 14,16 14,15	- - -	13 	4
Output Current	I _{A2}	1 5 6 7 10	-1.20	-	-1.20		-1.14	-	mAdc	-1.00	-	-1.00 		-0.94	-	mAdc	- - - -	1,15 3,5 6,8,9 7,9 10,11	- - - -	14,16 2,11,12,14,15,16 2,3,14,15,16 2,3,8,14,15,16 12,14,15,16	13	4
Output Voltage	v _{out}	1 5 6 7 10		0. 500		0.400	-	0.400	Vdc	1111	0.400		0.300	-	0.320	Vdc	- - - -	- - - -	- - - -	14,15,16 2,3,11,12,14,15,16 2,3,8,9,11,12,14,15,16 2,3,8,9,11,12,14,15,16 11,12,14,15,16	13	4
Power Supply Current Drain	I _{PD}	13	-	-	-	80	-	-	mAdc	-	-	-	80	-	-	mAdc	-	-	-	-	13	4
																	Pulse	Pulse				
Switching Times Propagation Delay	t ₁₆₊₆₊	6	-	-	-	135 110	-	-	ns	-	-	-	135 110	-	-	ns	16 	0ut 6 6	2,8,11,15 2,8,11,15	i	13	3,4,9,12,14 3,4,9,12,14
	^t 16-6- ^t 16+1+	1	-	-	-	90	-	-		-	-	-	90	-	-			1 1	-	-		2,3,4,8,9,11,12,14,15 2,3,4,8,9,11,12,14,15
	t ₁₆₋₁₋	1	-	-	-	50 105	-	-		_	-	-	50 105	_	_		1	10	15			2,3,4,8,9,11,12,14
	t ₁₆₊₁₀₊ t ₁₆₋₁₀₋	10 10	-	-	-	70	-	-		-	-	-	70	-	-			10	15	-		2,3,4,8,9,11,12,14
	t ₁₆₊₅₊	5	-	-	-	120	-	-		-	-	-	120	-	-			5	11,15	-		2,3,4,8,9,12,14
	t ₁₆₋₅₋	5	-	-	-	90	-	-		-	-	-	90	-	-			5	11,15	-		2,3,4,8,9,12,14 3,4,8,9,12,14
	t ₁₆₊₇₊ t ₁₆₋₇₋	7	-	-	-	135 110	-	-		-	-	-	135 110	-	-			7	2,11,15 2,11,15	-	ļ.	3,4,8,9,12,14

Pins not listed are left open.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS 15 **₹**225 14 1N3063 or Equiv Input Input Pulse VBOT -1.5 V f = 1.0 MHz $t_r = t_f \le 10 \text{ ns}$ Load and driving gates must be MRTL NOR Gates.

MC9707P · MC9807P †

MC9707P/MC9807P consists of two electronic, onepole, four-position switches which route one-bit of binary data to one of four output lines. Switching is accomplished by means of a pair of BCD coded select lines.

TRUTH TABLE INPUTS OUTPUTS D S1 S2 0 1 2 3 2 16 3 5 15 14 Numbers 9 8 10 7 6 11 12 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 *Either state. t_{pd} = 25 ns typ P_D = 150 mW typ $^{\bullet}A_{vg}t_{pd} = \frac{t_{on} + t_{off}}{2}$

 $^{^{\}dagger}$ See General Information section for packaging.

Test procedures are given for only one of the Dual Data Distributors. The other Data Distributor is tested in the same manner.

			TEST VO	LTAGE VA	LUES	
6	@ Test			(Volts)		
	nperature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}
	(0°C	0.960	0.930	1.80	0. 570	3.60
MC9807P	+25°C	0.910	0.880	1.80	0.500	3.60
	+75℃	0. 820	0.790	1.80	0.450	3.60
	+15°C	0. 865	0.865	1.80	0.475	3.60
MC9707P	+25°C	0. 850	0.850	1.80	0.460	3.60
	(+55°C	0.800	0.800	1.80	0.430	3.60

		Pin		I	MC980	7P Te	st Lim	its			ı	MC97()7P Te	st Limi	its			TEST VO	LTAGE AP	PLIED	1 0.00	1
		Under	0	°C	+2	25°C	+7	75°C		+1	15°C	+2	25°C	+5	5°C				LISTED BE			j
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	1	-	600	-	600	-	570	μAdc	-	500	-	500	-	470	μAdc	1	-	-	-	13	4
	2 _{in}	2 16	- -	1200 1200	-	1200 1200	-	1140 1140		- -	1000 1000	-	1000 1000	-	940 940		2 16	-	16 1	-		
Output Current	I _{A5}	3 5 14 15	3.00		3.00	- - -	2.85		mAdc	2.65	- - -	2.65	- - -	2.50	- - -	mAdc	- - -	1,3 1,5,16 1,2,14,16 1,2,15		2,16 2 - 16	13	4
Output Voltage	v _{out}	3 5 14 15		500 		400	-	400	mVdc ↓		400		300	-	320	mVdc ▼	- - -	2 2 - 16	1 1,16 2,16 1,2	- - 1	13	4,16 4
Power Supply Drain Current	I_{PD}	13	-	-	-	68	-	1	mAdc	-	-	-	68	-	-	mAdc	-	-	2,8,10,16	-	13	1,4,9
Switching Times																	Pulse In	Pulse Out				
Switching Times	t ₁₊₃₊	1	-	-	-	36	-	-	ns	-	-	-	36	-	-	ns	1	3] -	-	13	2,16
	t ₁₋₃₋	1	-	-	-	26	-	-	ns	-	-	-	26	-	-	ns	1	3	-	-	13	2,16

Ground input pins of data distributor not under test. Other pins not listed are left open.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

To measure t_{9+7+} and t_{9-7-} , connect input to pin 9, output to pin 7, and ground pin 1. The remainder of the test configuration is unchanged.

MC9709P · MC9809P

The MC9709P/9809P device consists of four Schmitt Triggers in a single 14-pin dual in-line plastic package. It provides a square-wave output from a slow-rise-time input with 650 mV internal hysteresis.

Test procedures are shown for one Schmitt Trigger only. The other Schmitt triggers are tested in the same manner.

		Т	EST VOLTA	AGE VALUE	S
6	@ Test		(Vol	ts)	
	g resi iperature	V _{on}	V _{BOT}	V _{off}	V _{cc}
	. o°c	0.930	1.80	0.570	3.60
MC9809P	+25℃	0.880	1.80	0.500	3.60
	(+75℃	0.790	1.80	0.450	3.60
	(+15℃	0.865	1.80	0.475	3.60
MC9709P)+25°C	0.850	1.80	0.460	3.60
	/ +55°C	0.800	1.80	0.430	3.60

		Pin		N	AC980	9P Te	st Limi	its			٨	AC970	9P Te	st Lim	its				/OLTAGE		
		Under	0	°C	+2	5°C	+7	75°C		+15	5°C	+2	5°C	+5	55°C	İ			LISTED B		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Output Current	I _{A5}	1 1	3.0 3.0	-	3.0 3.0	- -	2.85 2.85	-	mAdc mAdc		-	2.65 2.65		2.50 2.50	-	mAdc mAdc	1 1	2 3	-	11 11	4 4
Output Voltage	v _{out}	1	-	500	-	400	-	400	mVdc	-	400	-	300	-	320	m Vdc	-	-	2,3	11	4
Power Supply Drain Current (Total Device)	${ m I}_{ m PD}$	11	-	_	-	32	-	-	mAdc	-	-	-	32	-	-	mAdc	-	-	-	11	4
																	Pulse Out	Input			
Output Pulse	t ₁₊	1	-	100	-	100	-	100	ns	-	100	-	100	-	100	ns	1	2	-	11	4
Rise and Fall Times	t ₁₋	1	-	100	-	100	-	100	ns	-	100	-	100	-	100	ns	1	2	-	11	4

Ground unused input pins. Other pins not listed are left open.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

MC9713P • MC9813P

Increased logic flexibility is provided by MC9713P/9813P, quad 2-input AND gates in a single 14-pin dual in-line plastic package.

Test procedures are shown for one gate only. The other gates are tested in the same manner.

	1		TECT VO	TACE 1/41	LIEC	
			IE21 AO	LTAGE VAL	UE2	
(c	2 Test		()	Volts)		
Tem	perature	V _{in}	V _{on}	V_{BOT}	V _{off}	V _{cc}
((o°c	0.960	0.930	1.80	0.570	3.60
MC9813P	+25℃ +75℃	0.910	0.880	1.80	0.500	3.60
	(+75°C	0.820	0.790	1.80	0.450	3.60
	(+15°C	0.865	0.865	1.80	0.475	3.60
MC9713P	∫+25℃	0.850	0.850	1.80	0.460	3.60
	(+55°C	0.800	0.800	1.80	0.430	3.60

		Pin			MC981	I3P Te	st Limi	its			٨	AC971	3P Te	st Lim		133 C	0.800	TEST	VOLTAGE	0.430	3.60	
		Under	()°C	+2	5°C	+7	′5°C]	+1	5°C	+:	25°C	+5.	5°C		Al	PPLIED TO P	INS LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V_{off}	V _{cc}	Gnd
Input Current	I _{in}	1 2	-	600 600	-	600 600	-	570 570	μAdc μAdc		500 500	-	500 500	-	470 470	μAdc μAdc	1 2	-	-	-	11 11	4 4
Output Current	I _{A5}	3	3.0	-	3.0	-	2.85	-	mAdc	2.65	-	2.65	-	2.50	-	mAdc	-	1,2,3	-	-	11	4
Output Voltage	v _{out}	3 3	, - , -	400 400	-	300 300	- -	350 350	mVdc mVdc		300 300	-	290 290	-	320 320	mVdc mVdc	-	2 1	-	1 2	11 11	4 4
Power Supply Drain Current	I_{PD}	11	-	-	-	36	-	-	mAdc	-	-	-	36	-	-	mAdc	-	-	2,7,10,13	-	11	1,4,6,9,12
Switching Times																	Pulse In	Pulse Out				
bwitching Times	t ₁₊₃₊	3	-	-	-	42	-	-	ns	-	-		42	-	-	ns	1	3	2	-	11	4
	t ₁₋₃₋		-	-	-	26		-		-	-	-	26	-	-		1		2	-		
	t ₂₊₃₊		-	-	-	42	-	-		-	-	-	42	-	-		2		1			
ı	t ₂₋₃₋	🔻	-	-	-	26	-	-	🕈	-	-	-	26	-	-	▼	2	🗡	1	-	♦	♦

Ground inputs of gates not under test. Other pins not listed are left open.

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

MC9714P • MC9814P

į

Increased logic flexibility is provided by MC9714P/9814P, quad 2-input positive logic NAND gates in a single 14-pin dual in-line plastic package.

Test procedures are shown for one gate only. The other gates are tested in the same manner.

			TEST VO	OLTAGE VA	LUES	
a	Test		((Volts)		
_	perature	V _{in}	V _{on}	V _{BOT}	$V_{\rm off}$	V _{cc}
	(o°c ∣	0.960	0.930	1.80	0. 570	3.60
MC9814P	+25℃ +75℃	0.910	0.880	1.80	0. 500	3.60
	(+75℃	0.820	0.790	1.80	0. 450	3.60
	(+15°C	0.865	0.865	1.80	0. 475	3.60
MC9714P	+25°C	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60

		Pin			MC98	14P Te	st Lin	nits				MC97	14P T	est Lir	mits				T VOLTAGE			
		Under	0	°C	+2	25°C	+7	5°C		+1:	5°C	+2	5°C	+5	55°C			PPLIED TO F	PINS LISTE	D BELOW:	:	1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V_{off}	V _{cc}	Gnd
Input Current	I _{in}	1 2	-	600 600	-	600 600	-	570 570	μAdc μAdc	-	500 500	 -	500 500	-	470 470	μAdc μAdc	1 2	- -	- -	7	11 11	4 4
Output Current	I _{A5}	3 3	3. 0 3. 0	-	3. 0 3. 0		2.85 2.85	-	mAdc mAdc		1 1	2.65 2.65		2.50 2.50		mAdc mAdc	-	2,3 1,3	- -	1 2	11 11	4 4
Output Voltage	v _{out}	3	-	400	-	300	-	350	mVdc	-	300	-	290	-	320	m Vdc	_	1,2	-	-	11	4
Power Supply Drain Current	I _{PD} *	11	-	-	-	52	-	-	m Adc	-	-	-	52	-	-	mAdc	-	-	1,2,6,7,9, 10,12,13	-	11	4
Switching Times																	Pulse In	Pulse Out				
5 Wittening Times	t ₁₊₃₋	3	-	-	-	57	-	-	ns	-	-	-	57	-	-	ns	1	3	2	-	11	4
	t ₁₋₃₊		-	-	-	38	-	-		-	-	-	38	-	-		1	3	2	-		
	t ₂₊₃ -		-	-	-	57	-	-		-	-	-	57	-	-		2	3	1	-		
	t ₂₋₃₊	♦	-	-	-	38	-	-	🔻	-	-	-	38.	-	-	▼	2	3	1 1	-	♦	▼

Ground inputs of gates not under test. Pins not listed are left open.

^{*}This test includes all gates (13 mAdc per gate).

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

MC9715P • MC9815P

MC9715P/9815P provides increased logic flexibility, quad 2-input OR gates housed in a single 14-pin dual in-line plastic package.

Test procedures are shown for only one gate. The other gates are tested in the same manner.

			TEST VOI	TAGE VAL	UES	
6	Test		(1	/olts)		
_	perature	Vin	V _{on}	V _{BOT}	V _{off}	V _{cc}
(o°c ∣	0.960	0.930	1.80	0. 570	3.60
MC9815P <	+25℃	0.910	0.880	1.80	0. 500	3.60
	+75℃	0.820	0.790	1.80	0.450	3.60
(+15℃	0.865	0.865	1.80	0.475	3.60
MC9715P	+25℃	0.850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0.430	3.60

		Τ	T					-									0.000	0.000	1.00	0. 100	0.00	1
		Pin			NC981	5P Tes	t Limi	ts				MC97	5P Te	st Lim	its]		VOLTAGE			l
		Under	0	°C	+2	5°C	+7	5°C		+1	5°C	+2	:5°C	+5	55°C		A	PPLIED TO PI	NS LISTED	BELOW:		ĺ
Characteristic	Symból	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	V _{cc}	Gnd
Input Current	I _{in}	1 2	-	600 600	-	600 600	-	570 570	μAdc μAdc	-	500 500	-	500 500		470 470	μAdc μAdc	1 2	-	2	11	11 11	4 4
Output Current	I _{A5}	3	3.0	-	3.0	-	2.85	-	mAdc	2.65	-	2.65	-	2.50	-	mAdc	-	1,3	-	•	11	4
Output Voltage	v _{out}	3	-	400	-	300	-	350	mVdc	-	300	-	290	-	320	mVdc	-	-	-	1,2	11	4
Power Supply	I _{PD1}	11	-	-	-	9.5	-	-	mAdc	-	-	-	9.5	-	-	mAdc	-	-	*	-	11	4
Drain Current	I_{PD2}	11	-	-	-	33	-	-	mAdc	-	-		33	-	-	mAdc	-	-	-	-	11	4**
								į									Puise in	Pulse Out				
Switching Times	t ₁₊₃₊	3	-	-	-	50	-	-	ns	-	-	-	50	-	-	ns	1	3	-	-	11	2,4
	t ₁₋₃₋		-	-	-	45	-	-		-	-	-	45	-	-		1		-	-		2,4
	t ₂₊₃₊		-	-	-	50	-	-		-	-	-	50	-	-	1	2		-	-		1,4
	t ₂₋₃₋	♦	-	-	-	45	-	-	♦	-	-	-	45	-	-	♦	2	†	-	-	. ♦ .	1,4

Ground unused input pins. Other pins not listed are left open.

^{*}All inputs at VBOT (inputs 1, 2, 6, 7, 9, 10, 12, 13).

^{**}All inputs at ground (inputs 1, 2, 6, 7, 9, 10, 12, 13).

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

PLASTIC mW MRTL MC700P/800P series

MC9718P · MC9818P

Six individual circuits are contained in a single package. Each provides the simple inversion function.

 t_{pd} = 27 ns P_D = 7.0 mW (Input High) Number In Parenthesis Indicates 3.0 mW \langle Input Low) Loading Factor

SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

Test procedures are shown for one inverter only.

The other inverters are tested in the same manner.

			TEST V	OLTAGE	VALUES	
	@ Test			(Volts)		
	Temperature	Vin	V _{on}	V _{BOT}	Voff	Vcc
	(0°C	0.880	0.850	1.80	0.500	3.60
MC9818P	+25°C	0.830	0.800	1.80	0.460	3.60
	+75°C	0.740	0.710	1.80	0.400	3.60
	+15°C	0.865	0.865	1.80	0.475	3.60
MC9718P	+25°C	0,850	0.850	1.80	0.460	3.60
	+55°C	0.800	0.800	1.80	0,430	3.60

				М	C9818P	To	est Limit	ts			М	C9718P	ī	est Limi	ts			TE	ST VOLTA	GE	L	
		Pin Under	0,	°C	+25	5°C	+75	°C		+1!	5°C	+2	5°C	+55	°C		AP	PLIED TO	PINS LIS	TED BEL	OW:	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	Vcc	Gnd
Input Current	I _{in}	14*	-	150	-	140	-	140	μAdc	-	150	-	150	-	150	μAdc	14	-	*	-	11	4
Output Current	I _{A4}	1	570	-	570	-	535	-	μAdc	570	-	570	-	570	-	μAdc	1	-	-	14	11	4
Output Voltage	V _{out}	1	-	400	-	350	-	300	m Vdc	-	400	-	300	-	320	m Vdc	-	14	-	-	11	4
Saturation Voltage	V _{CE(sat)}	1	-	250	-	250	-	250	m Vdc	-	220	•	230	-	320	mVdc	-	-	14	-	11	4
																	Pulse In	Pulse Out				
Switching Time	ton + toff	1, 14	-	-	•	90	-	-	ns	-	-	-	90	-	-	ns	14	1	-	-	11	4

Ground inputs of inverters not under test. Other pins not listed are left open

^{*} To simulate worse case conditions, the output of inverter under test is tied to the output of another inverter which has its input taken to ${\bf V_{BOT}}$.

MC9719P · MC9819P

Six individual expanders are contained in a single package to increase the input capability of MRTL gates.

Test procedures are shown for one expander only. The other expanders are tested in the same manner.

TEST VOLTAGE VALUES (Volts) @ Test (Ohms) Temperature V_{BOT} V_{off} Vcc 0°C 0.960 0.930 1.80 0.570 3.60 640 MC9819P +25°C 0.910 0.880 1.80 0.500 3.60 640 +75°C 0.820 0.790 1.80 0.450 3.60 750 +15°C 0.865 0.865 1.80 0.475 3.60 640 MC9719P +25°C 0.850 0.850 1.80 0.460 3.60 640 +55°C 0.800 0.800 1.80 0.430 3.60 640

	l	Pin			MC98	19P Tes	t Limits					MC9	719P Tes	t Limits	`			0.800	1.80 TEST V	0. 430	3.60	640	
		Under	0	°C	+2	5°C	+7	5°C		+1	5°C	+2	5°C	+5	5°C			APPLIED			BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	Von	V _{BOT}	V _{off}		V _R *	Gnd
Input Current	I _{in}	14	-	600	-	600	-	570	μAdc	-	500	-	500	-	470	μAdc	14	-	- 801	- OIT	V _{CC}	1 TR	4
Output Leakage Current	ICEX	1	-	100	-	218	-	235	μ Ad c	-	100	-	225	-	225	μAdc	1	-	-	14	11	-	4
Output Voltage	v _{out}	1	-	500	-	400	-	400	mVdc	_	400	-	300	-	320	mVdc		14	-	-	11	1	4
Saturation Voltage	V _{CE(sat)}	1	-	400	-	300	-	350	mVdc	-	300	-	290	_	320	mVdc	-	-	14	_	11	1	4

Ground inputs of expanders not under test. Other pins not listed are left open.

^{*} Resistor value to V_{CC}

PLASTIC mW MRTL MC700P/800P series

MC9720P · MC9820P

Six individual expanders are contained in a single package to increase the input capability of the mW MRTL gates.

Test procedures are shown for one expander only. The other expanders are tested in the same manner.

TEST VOLTAGE VALUES (k Ohms) (Volts) @ Test V_{BOT} V_{off} V_{CC} V_R* Temperature 0°C 0.880 0.850 1.80 0.500 3.60 3.6 +25°C 0.830 0.800 MC9820P 1.80 0.460 3.60 3.6 +75°C 4.0 0.740 0.710 1.80 0.400 3.60 +15°C 0.865 0.865 1.80 0.475 3.60 3.6 MC9720P +25°C 0.850 0.850 1.80 0.460 3.60 3.6 +55°C 0.800 0.800 1.80 0.430 3.60 3.6

																	0.000	0.000	1.00	0. 100	0.00	0.0	
				MC982	OP	Te	st Limit	s			MC97	20P	1	est Limi	ts				TEST V	OLTAGE			
		Pin	0,	°C	+25	i°C	+75	°C		+1	5°C	+2	5°C	+5	5°C			APPLIED	TO PINS	LISTED	BELOW:		
Characteristic	Symbol	Under Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	I _{in}	14	-	150	-	140	-	140	μAdc	-	150	-	150	-	150	μAdc	14	-	-	-	11	1	4
Output Leakage Current	ICEX	1	-	25	-	25	-	30	μAdc	-	40	-	40	-	50	μAdc	1	-	-	14	11	-	4
Output Voltage	v _{out}	1	-	400	-	350	-	300	mVdc	-	400	-	300	-	320	mVdc	-	14	-	-	11	1	4
Saturation Voltage	V _{CE(sat)}	1	-	250	-	250	-	250	mVdc	-	220	-	230	-	320	mVdc	-	-	14	-	11	1	4

Ground unused input pins. Other pins not listed are left open. *Resistor value to V_{CC}.

MC9721P · MC9821P

Four 2-input expanders housed in a single package increase the input capability of mW MRTL gates.

Test procedures are shown for one expander only. The other expanders are tested in the same manner.

			TE	ST VOLT	AGE VALU	ES	
	@ Test			(Vo	its)		(kΩ)
1	Temperature	V _{in}	Von	V _{BOT}	Voff	Vcc	V _R *
	0°C	0.880	0.850	1.80	0.500	3.60	3.6
MC9821P	+25°C	0.830	0.800	1.80	0.460	3.60	3.6
	+75°C	0.740	0.710	1.80	0.400	3.60	4.0
	(+15°C	0.865	0.865	1.80	0.475	3.60	3.6
MC9721P	+25°C	0.850	0.850	1.80	0.460	3.60	3.6
	+55°C	0.800	0.800	1.80	0.430	3.60	3.6

				-	MC98	21P Test	Limits					MC9	721P Te	st Limits					TEST V	OLTAGE			
		Fin Under	0,	°C	+2	5°C	+75	i°C		+1	5°C	+2	5°C	+5	5°C			APPLIED	TO PINS	LISTED	BELOW:		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	Vin	V _{on}	V _{BOT}	V _{off}	V _{CC}	V _R *	Gnd
Input Current	I _{in}	1 2	-	150 150	-	140 140	-	140 140	μAdc μAdc	-	150 150	-	150 150		150 150	μAdc μAdc	1 2	-	2 1	-	11 11	3 3	4 4
Output Leakage Current	ICEX	3	_	25	-	25	-	30	μAdc	-	40	-	40	-	50	μAdc	3	-	-	1,2	11	-	4
Output Voltage	V _{out}	3	-	400 400	-	350 350	-	300 300	mVdc mVdc	-	400 400	-	300 300	-	320 320	mVdc mVdc	-	1 2	-	<u>-</u>	11 11	3 3	2,4 1,4
Saturation Voltage	V _{CE(sat)}	3 3	-	250 250	-	250 250	-	250 250	mVdc mVdc	-	220 220	-	230 230	-	320 320	mVdc mVdc	-	-	1 2	-	11 11	3 3	2,4 1,4

Ground unused input pins. Other pins not listed are left open.

^{*} Resistor value to VCC.

DUAL J-K FLIP-FLOPS

PLASTIC mW MRTL MC700P/800P series

MC9722P · MC9822P

MC9722P/9822P consists of two J-K flip-flops in a single package. Each flip-flop has a direct clear input in addition to the clocked inputs.

CLOCKED INPUT OPERATION ①

tr	@	t _{n+}	
S	С	a	ā
1	1	a n	<u>ā</u> n
1	0	1	0
0	1	0	1
0	0	ā _n	ᡆ

f_{Tog} = 4.0 MHz t_{pd} = 75 ns typ P_D = 24 mW typ (Only Clock Input High)

- 1. Direct input (CD) must be low.
- The time period prior to the negative transition of the clock pulse is denoted t_n and the time period subsequent to this transition is denoted t_{n+1}.
- 3. Q_n is the state of the Q output in the time period t_n .

NUMBER IN PARENTHESIS INDICATES LOADING FACTOR

Test procedures are shown for one flipflop only. The other flip-flop is tested in the same manner.

3	s	a	b13
2 ——	т		
1	C CD	₫	p 14
12			•
5 —	s	a	p——9
69	т		
7 —	C CD	ā	ь—-8
10			•

			TE	ST VOLT	AGE VAL	UES	
0	2 Test			Volts			Pulse
Tem	perature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	C _P
	(0°C	0. 880	0.850	1.80	0. 500	3.60	V _{in} to V _{off}
MC9822P <	} +25°C	0. 830	0.800	1.80	0.460	3.60	V _{in} to V _{off}
((+75°C	0. 740	0.710	1.80	0.400	3.60	V _{in} to V _{off}
	+15°C	0.865	0.865	1.80	0. 475	3.60	V _{in} to V _{off}
MC9722P <	+25℃	0. 850	0.850	1.80	0.460	3.60	V _{in} to V _{off}
1	(+55℃	0.800	0.800	1.80	0. 430	3.60	V _{in} to V _{off}

		D.			MC982	22P Te	st Lim	its			N	IC972	2P Te	st Lim	its		TES	T VOLTAG	E APPLIE	D TO PIN	SLISTED	BFI OW -	
		Pin Under	0)°C	+2	5°C	+7	5°C		+1	5°C	+2	5°C	+5	5°C		ļ	1	1	1	1		
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	Von	V _{BOT}	V _{off}	V _{cc}	C _₽	Gnd
Input Current	I _{in}	5 7 10		150	-	140	-	140	μAdc	-	150	-	150	-	150	μAdc	5 7 10	-	10	-	11	-	4
	2 _{in}	6	-	300	-	280	-	280	↓	-	300	-	300	-	300	↓	6	-	5,7	-		-	↓
Output Current	I _{A4}	8 9*	-570 -570	-	-570 -570	-	-535 -535	-	μAdc μAdc	-570 -570	-	-570 -570		-570 -570	-	μAdc μAdc	-	8,10 9	-	-	11 11	-	4
																	P _{in 1}		P _{in 2}			P _{in 3}	
Output Voltage	v _{out}	8 4 9 5	-	400	-	350	-	300	mVdc	- -	400	-	300	-	320	mVdc	5 5	- 7	6	7	11		4,10
		9 4 8 5	-		-		-			-		-		-			-	-		5		7	
		96	-		-		-			-		-		-			5	5 7		-		-	
		8 7 8 6	-		-		-			-		-		-			5 -	- 5		7 -		7	
		97	-	♦	-	\ \	-	♦	♦	-	♦	-	•	-	₩	🕴	-	-	+	5	+	7	+

Ground inputs of flip-flop not under test. Other pins not listed are left open.

(continued)

^{*}Preset the device as follows: a. Momentarily apply $V_{\mbox{BOT}}$ to pin 10, this preclears the flip-flop.

b. Remove VBOT, ground pins 5 and 7.

c. Apply negative-going clock pulse (Cp) to pin 6 while pins 5 and 7 are still grounded. (This changes the state of the flip-flop to a set condition.)

Remove ground from pins 5 and 7.

^{**}Apply $V_{\mbox{\footnotesize{BOT}}}$ momentarily prior to arrival of clock pulse ($C_{\mbox{\footnotesize{P}}}$) to change the state of the flip-flop.

⁴ See Figure 4

⑤ See Figure 5

⁶ See Figure 6

⁷ See Figure 7

ELECTRICAL CHARACTERISTICS (continued)

Test procedures are shown for one flipflop only. The other flip-flop is tested in the same manner.

			TE	ST VOLT	AGE VAL	UES	
@	Test			Volts			Pulse
Tem	perature	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	C _P
1	(0°C	0.880	0.850	1.80	0.500	3.60	V _{in} to V _{off}
MC9822P <	+25℃	0. 830	0.800	1.80	0.460	3.60	V _{in} to V _{off}
1	+75℃	0.740	0.710	1.80	0.400	3.60	V _{in} to V _{off}
	(+15℃	0.865	0.865	1.80	0.475	3.60	V _{in} to V _{off}
MC9722P	+25°C	0.850	0.850	1.80	0.460	3.60	V _{in} to V _{off}
	(+55℃	0.800	0.800	1.80	0.430	3.60	V _{in} to V _{off}

				ı	MC982	22P Te	st Lim	its		,	٨	IC972	2P Te	st Lim	its		TES	T VOLTAG	E APPLIEI	D TO PIN	S LISTED	BELOW:	
		Pin Under	C)°C	+2	5°C	+7	5°C		+1	5°C	+2	5°C	+5	5°C			1	1	T			1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	Min	Max	Min	Max	Min	Max	Unit	V _{in}	V _{on}	V _{BOT}	V _{off}	V _{cc}	C _P	Gnd
Saturation Voltage	V _{CE(sat)}	8 9* 8 9 8* 9* 9*	-	250	-	250		250	mVdc		220	-	230	-	320	mVdc	- - - - -	5 10 - 5,7 5,7 7	10** - 10** 10** - -	7 - 5,7 - - 5 5,7	11	6 * 6	4
																	Pulse In	Pulse Out					
Toggle Frequency	f_{tog}	9	-	-	-	4.0	-	-	MHz	-	-	-	4.0	-	-	MHz	6	9	-	-	11	-	4,7,10

Ground inputs of flip-flop not under test. Other pins not listed are left open.

d. Remove ground from pins 5 and 7.

^{*}Preset the device as follows: a. Momentarily apply $V_{\hbox{BOT}}$ to pin 10, this preclears the flip-flop. b. Remove $V_{\hbox{BOT}}$, ground pins 5 and 7.

c. Apply negative-going clock pulse (Cp) to pin 6 while pins 5 and 7 are still grounded. (This changes the state of the flip-flop to a set condition.)

^{**}Apply VBOT momentarily prior to arrival of clock pulse (Cp) to change the state of the flip-flop.

⁴ See Figure 4

⁵ See Figure 5

⁶ See Figure 6

⁷ See Figure 7

FIGURE 1 - CLOCK PULSE DEFINITION

SEQUENCE OF EVENTS

- A. Voltage applied to Clock pin is raised to V_H. t_r is not critical but should be < 1.0 µs.
- B. Blases of all other inputs are applied. VCC is applied without interruption throughout the testing.
- C. Apply momentary ground (when applicable).
- D. Clock pulse is allowed to fell to V_L. t_f must remain within 10 ns minimum and 200 ns maximum.
- REALITION.

 Electrical measurements are read out. Load current over-shoot must be limited to 10% or the flip-flop may be tripped and the wrong output conditions occur.

MC9822P

TA	V _L	v _H							
+25°C	+0.460 V ± 2.0 mV	+0.830 V ± 2.0 mV							
o°c	+0.500 V ± 2.0 mV	+0.880 V ± 2.0 mV							
+75°C	+0.400 V ± 2.0 mV	+0.740 V ± 2.0 mV							
	MC9722P								

TA	٧L	VH
+25°C	+0.460 V ± 2.0 mV	+0.850 V ± 2.0 mV
+15°C	+0.475 V ± 2.0 mV	+0.865 V ± 2.0 mV
+55°C	+0.430 V ± 2.0 mV	+0.800 V ± 2.0 mV

FIGURE 2 - TOGGLE MODE TEST CIRCUIT

FIGURE 3 - TEST CIRCUIT

FIGURE 4 - TEST WAVEFORMS

FIGURE 5 - TEST WAVEFORMS

FIGURE 6 - TEST WAVEFORMS

FIGURE 7 - TEST WAVEFORMS

MC976OP · MC986OP†

The MC9760P/MC9860P monolithic BCD-to-Decimal Decoder/Driver is designed for use with high-voltage neon indicating tubes. The high-voltage output transistors can withstand 70-volts (MC9860P), and 65-volts (MC9760P), insuring direct operation of the indicator tubes without background glow. The inputs are compatible with MRTL logic functions.

[†]See General Information section for packaging.

6	@ Test	TEST VOLTAGE/CURRENT VALUES (Vdc/mAdc)										
	perature	V _{in}	V _{on}	V _{CEX}	I _A	I _L	۷ _{cc}					
	(0°C	0.960	0.930	40	6.0	5.0	3.6					
MC9860P	+25°C	0.910	0.880	40	6.0	5.0	3.6					
İ	(+75℃	0.820	0.790	40	6.0	5.0	3.6					
+	(+15°C	1.05	1.05	40	6.0	5.0	3.6					
MC9760P	+25℃	1.00	1.00	40	6.0	5.0	3.6					
1	+55°C	0.95	0.95	40	6.0	5.0	3.6					

																- 00 -							
		Pin	MC9860P Test Limits					MC9760P Test Limits						TEST VOLTAGE/CURRENT APPLIED TO PINS LISTED BELOW									
		Under	O°	°C	+2	5°C	+7	75°C	ì	+1	5°C	+2	5°C	+5	5°C	i .		10 PIN	3 LISTEL	DELU	1		1
Characteristic	Symbol	Test	Min	Max	Min	Max	Min		Unit	Min	Max	Min	Max	Min	Max	Unit	V_{in}	V _{on}	V _{CEX}	I _A	I _L	V _{cc}	Gnd
Input Current	I _{in}	6 7 14 15		600		600		570	μAdc		500	-	500	-	470	μAdc	6 7 14 15	- - - -	-	- - -	- - -	16	8
Output Voltage	v _{out}	1	-	1.5	-	1.5	-	1.5	Vdc	-	1.5	-	1.5	-	1.5	Vdc	-	*	-	1	-	16	8*
Output Leakage Current	ICEX	1	-	-	-	100	-		μAdc	-	-	-	100	-	-	μAdc	-	**	1	-	-	16	8**
Output Breakdown Voltage	BVCEX	1 2 3 4 5 9 10 11 12 13	70	-	70	-	70	-	Vdc	65		65	-	65	-	Vdc	-	14,15	-	-	1 2 3 4 5 9 10 11 12	16	6,7,8
Power Supply Current Drain	I_{PD}	16	-	-	-	30	-	-	mAdc	-	-	-	30	-	-	mAdc	-	6,7,14,15	-	-	-	16	8

^{*}IA is applied to pin under test $-\vec{V}_{OB}$ and gnd are applied to inputs in accordance with truth table for "on" condition of pin under test (1 test for each output).

**VCEX is applied to pin under test $-\vec{V}_{OB}$ and gnd are applied to inputs in accordance with truth table for "off" conditions of pin under test (9 tests for each output). Other pins not listed are left open.