Projets

Base de données

La base de données pour tous les projets est le cours de SP500 de fréquence journalière allant de 6-01-2018 jusqu'au 23-11-2021. Vous pouvez télécharger ces données en vous aidant à la fonction getSymbols du package quantmod. (le symbol de sp500 est ^GSPC)

On vous demande de calculer les rendements des prix ajustés, puis représenter graphiquement la série des prix ajustés, la série des rendements, la fonction d'auto-corrélations simples et partielles.

Projet 1

- Présentation du modèle EGARCH: modélisation, estimation et tests statistiques
- Modélisation des rendements par un modèle EGARCH. Varier les paramètres du modèles et la distribution des erreurs, puis sélectionner le modèle le plus adéquat selon les critères AIC, RMSE etc.

Projet 2

- Présentation du modèle GJR-GARCH: modélisation, estimation et tests statistiques
- Modélisation des rendements par un modèle GJR-GARCH. Varier les paramètres du modèles et la distribution des erreurs, puis sélectionner le modèle le plus adéquat selon les critères AIC, RMSE etc.

Projet 3

- Présentation du modèle APARCH: modélisation, estimation et tests statistiques
- Modélisation des rendements par un modèle APARCH. Varier les paramètres du modèles et la distribution des erreurs, puis sélectionner le modèle le plus adéquat selon les critères AIC, RMSE etc.

Projet 4

- Présentation du modèle TGARCH: modélisation, estimation et tests statistiques
- Modélisation des rendements par un modèle TGARCH. Varier les paramètres du modèles et la distribution des erreurs, puis sélectionner le modèle le plus adéquat selon les critères AIC, RMSE etc.

Projet 5

- Présentation du modèle VS-GARCH: modélisation, estimation et tests statistiques
- Modélisation des rendements par un modèle VS-GARCH. Varier les paramètres du modèles et la distribution des erreurs, puis sélectionner le modèle le plus adéquat selon les critères AIC, RMSE etc.

Projet 6

- Présentation du modèle résaux de neurones auto-regressif NNAR(p,n): modélisation, estimation et tests statistiques. (On peut utiliser la fonction nnetar du package forecast).
- Modélisation des rendements par différents modèles NNAR(p,n), puis sélectionner le modèle le plus adéquat selon les critères AIC, RMSE etc.

Projet 7

- Présentation du modèle auto-régressif dynamique (tvAR: time varying autoregressif model) modélisation, estimation et tests statistiques. (On peut utiliser la fonction tvAR du package NTS).
- Modélisation des rendements par différents modèles tvAR(x,lags), puis sélectionner le modèle le plus adéquat selon les critères AIC, RMSE etc.