

Home Automation System

Done by

129	Donia Abdelfattah
116	Esraa Gamal Saad
220	Mariam Ashraf
121	Passant Abdelazim

Supervised by:

Eng Sandra Waheed

Design Schematic

FSM

1	SRD=0 & SFA=0 & SW=0 & (st>=50 && st<=70) & SFD=1 / out = 100000	16	(sid=0 & srd=0 & sw=0 & sia=0 & (st>=50 & & st<=/0]) / nut=000000	31	(st>=50 && st×=70) & SW=0 & SRD=1 / out = 010000
2	SFA=0 & SW=0 & (sD=50 && sK=70) & SRD =1 / out = 010000	17	SFA=0.6 SW=0.6 (s>=50.6.6 sl<=70) & SFD =1 / out = 100000	32	(st>=50 && st<=70) & SW=0 & SFA=1 / out = 000100
3	SW-0 & & (st<-50 st<-70) & SFA-1 / out=000100	18	SFD=0 & (st>=50 && st<=70) & SRD =1 / out = 010000	33	SFD=0& SRD=0 & SFA=1 & others = x / out= 000100
4	(st>=50.&& st<=70) & SW=1 / out = 001000	19	SW=0 & & (st<=50 st<=70) & SFA= 1 / out= 000100	34	SFD=0& SRD=0 & SFA=0 & SW=1 & others = x / out= 001000
5	(st <50 st >70) / if(st<=50) out= 000010 else out = 000001	20	SRD=0 & SFA=0 & SW=0 & (st>=50 && st×=70) & SFD =1 / out = 100000	35	SFD=0& SRD=1 & others = x / out= 010000
6	(sfri=0.8 sxri=0.8 sxr=0.8 sfa=0.8 (st>=50.8.8 st>=70)) / out= 000000	21	(st>=50 && st<=70) & SW=1 / out = 001000	36	SFD=1 & others = x(dun't care) / out= 100000
7	SRD=1 & others = x(don't care) / our=010000	22	(sfd=0 & srd=0 & sw=0 & sfa=0 & (st>=50 && st<=70)) / nut= 000000	37	SED=0& SRD=0 & SEA=0 & SW=0 & (st< 50 st > 70) / if(st<=50) nut= 000010 else out = 000001
8	SRD=0 & SFA= 1.& others = x(clon't care) / out= 000100	23	SFA=0 & SW=0 & (st>=50 && st<=70) & SRO =1 / out = 010000		
9	SRD=0 & SFA=0 S SW=1 & others = x(don't care) / our= 001000	24	SW=1 & others = x(don't care) / out=001000		
10	SRD=0 & SFA=0 & SW=0 & (st< 50 st > 70) / If(st<=50) out= 000010 else out = 000001	25	SW-0 & (st <50 st >70) # if(st<=50) cut= 000010 else out = 000001		
11	SRD=0 & SFA=0 & SW=0 & (st>=50 && st<=70) & SFD=0 / out = 000000	26	(sirt=0 & srrt=0 & sw=0 & sfa=0 & (st>=50 && st<=70)) / uut=000000		
12	SFA=1.8 others = x(don't care) / out= 000100	27	SFA=0& SFD=1 & others = x / out= 100000		
13	(sf0=0 & sr0=0 & sw=0 & sfa=0 & (st>=50 && st<=70)) / our=000000	28	(st <50 st >70) / il(st<=50) out=000010 cise out=000001		
14	SFA=0 & SW=1 & others = x(don't care) / out= 001000	29	(sb=50 && sk=70) & SW=0 & SFD=1 / out = 100000		
15	SFA=0 & SW=6 & (sl< 50 sl > 70) & others = x(don't care) Fif(sl<=50) out= 000010 else out = 000001	30	(sfd=0 & srd=0 & sw=0 & sfa=0 & (st>=50 && st<=70)) / uut= 000000		

Pre-synthesis simulation results

Post-synthesis simulation results

Chip Schematic after floorplanning, placement, and routing

Synthesis Reports

1. Design rpt

	+	+	+
		Area (squm)	Leakage (uW
Design Name	HomeAutomation		
Total Instances	68	80	1.80
Macros	0	0	0.00
Pads	0	0	0.00
Phys	0	0	0.00
Blackboxes	0	0	0.00
Cells	68	80	1.80
Buffers	0	0	0.00
Inverters	6	3	0.08
Clock-Gates	0	0	0.00
Combinational	59	63	1.47
Latches	0	0	0.00
FlipFlops	3	14	0.23
Single-Bit FF	3	14	0.23
Multi-Bit FF	0	0	0.00
Clock-Gated	0	İ	İ
Bits] 3	14	0.23
Load-Enabled	i 0	İ	i
Clock-Gated	i 0	İ	i
Tristate Pin Count	i 0	İ	i
hysical Info	Placed	İ	i
	0.073 x 0.073	5307	i
Fixed Cell Area	İ	0	İ
Phys Only	i 0	0	i
Placeable Area	İ	160	İ
Movable Cell Area	İ	80	i
Utilization (%)	49	İ	İ
Chip Utilization (%)	I 49	İ	i
Total Wire Length (mm)			i
Longest Wire (mm)	0.037	•	i
Average Wire (mm)	0.036	•	i

2. Path rpt

Report Path Groups:						
Path Weight Critical Worst Group Range(ps) Slack(ps)						
1	-	t 1.000	0.0	2575.1		
2	I2R	1.000	0.0	1993.2		
3	120	1.000	0.0	432.9		
4	R20	1.000	0.0	121.0		
	+	-+	+-			

3. Power rpt

warning: No library characterized for (process = 1.00 voltage = 0.85 temperature = 25.00) can be found in the database for power domain '/PD_TOP' [NL-174] Report Power (instances with prefix '*' are included in total) :

	-+				
	Instance	Internal Power(uw)	Switching Power(uw)	Leakage Power(uw)	Total Power(uw)
1	*state_reg[2]	1.171167	6.165482	0.079112	7.415761
2	*state_reg[1]	1.290418	6.542564	0.079112	7.912094
3	*state_reg[0]	0.963690	2.780069	0.079112	3.822872
4	*i_0_0_0	0.312302	0.482551	0.021200	0.816052
5	*i_0_0_1	0.244516			
6	*i_0_0_2	0.057080			
7	*i_0_0_3	0.079158			
8	*i_0_0_4	0.063426			
9	*i_0_0_5	0.311005			
10	*i_0_0_6	0.145307		0.024415	
11	*i_0_0_7	0.319008			
12	*i_0_0_8	0.347167			
13	*i_0_0_9	0.295857			
14	*i_0_0_10	0.348019			
15	*i_0_0_11	0.276505			
16	*i_0_0_12	0.179995			
17	*i_0_0_13	0.287753			
18	*i_0_0_14	0.317862			
19	*i_0_0_15	0.612209			
20	*i_0_0_16	0.295609			
21	*i_0_0_17	0.197516			
22	*i_0_0_18	0.240991			
23	*i_0_0_19	0.917396			
24	*i_0_0_20	0.231232			
25	*i_0_0_21	0.328418			
26	*i_0_0_22	0.330595		0.027858	
27	*i_0_0_23	0.123857		0.022619	
28	*i_0_0_24	0.124185			
29	*i_0_0_25	0.249769			
30	*i_0_0_26	0.152678			
31	*i_0_0_27	0.174129			
32	*i_0_0_28	0.584361			
33	*i_0_0_29	0.248761	0.249002	0.034026	0.531789

34	*i_0_0_30	0.668399	1.084271	0.017393	1.770063
35	*i_0_0_31	0.284477	0.858290	0.017393	1.160161
36	*i_0_0_32	0.176910	0.131809	0.017393	0.326113
37	*i_0_0_33	0.216571	0.278465	0.034566	0.529601
38	*i 0 0 34	0.121167	0.143506	0.027858	0.292531
39	*i_0_0_35	0.133255	0.209050	0.032612	0.374917
40	*i_0_0_36	0.057288	0.059385	0.027858	0.144531
41	*i_0_0_37	0.082477	0.101083	0.018127	0.201687
42	*i_0_0_38	0.226489	0.886286	0.017393	1.130168
43	*i_0_0_39	0.440835	0.457681	0.034026	0.932543
44	*i_0_0_40	0.023378	0.036055	0.018105	0.077538
45	*i_0_0_41	0.689617	4.793136	0.021200	5.503953
46	*i_0_0_42	0.367103	0.500691	0.026832	0.894625
47	*i_0_0_43	1.032434	5.105583	0.027858	6.165875
48	*i_0_0_44	1.187018	1.103167	0.025066	2.315252
49	*i_0_0_45	0.704582	0.628889	0.024415	1.357886
50	*i_0_0_46	0.829863	1.353266	0.021200	2.204328
51	*i_0_0_47	0.041337	0.127510	0.014353	0.183200
52	*i_0_0_48	0.236589	1.148788	0.017393	1.402771
53	*i_0_0_49	0.645910	5.358412	0.021200	6.025522
54	*i_0_0_50	0.797967		0.021200	3.976417
55	*i_0_0_51	0.527322	0.599211	0.017393	1.143927
56	*i_0_0_52	0.068866	0.199826	0.022039	0.290732
57	*i_0_0_53	0.133020			0.268531
58	*i_0_0_54	0.813706	1.653362	0.021200	2.488267
	*i_0_0_55	0.881930	5.342503	0.027858	6.252291
60	*i_0_0_56	1.007925	1.429725	0.017393	2.455043
	*i_0_0_57	0.272537			1.361531
	*i_0_0_58	0.503714	0.588410	0.026832	1.118956
63	*i_0_0_59	0.551846	0.608840	0.018105	1.178791
64	*i_0_0_60	0.790664	5.719367	0.014353	6.524384
65	*i_0_0_61	0.795029			
66	*i_0_0_62	0.143526	1.139875	0.014353	1.297755
67	*i_0_0_63	0.130238	1.206300	0.014353	1.350891
68	*i_0_0_64	0.139387	1.274756	0.014353	1.428496
69	1	l I	l l		
70	*TOTAL	27.545321	81.725182	1.801196	111.071701
	+	++			+

Score

 $0.5 \times 80 + .3 \times (3000 - 121) + 0.2 \times 111.071701 = 925.914$