The Riemann-Stieltjes Integral

6.1. Definition and Existence of the Integral

Definition 6.1. Let $a, b \in \mathbf{R}$ and a < b.

(a) A **partition** P of interval [a,b] is a finite set of points $P = \{x_0, x_1, \dots, x_n\}$ such that

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b.$$

We write $\Delta x_i = x_i - x_{i-1}$ for $i = 1, 2, \dots, n$, and define the **norm** ||P|| of P by

$$||P|| = \max_{1 \le i \le n} \Delta x_i.$$

(b) A **refinement** of partition P is a partition Q such that $P \subseteq Q$. In this case, we also say that Q is **finer** than P. Given two partitions P_1 and P_2 of [a, b], we call the union $P_1 \cup P_2$ their **common refinement**.

Definition 6.2. Let α be a monotonically increasing function on [a, b], f be a bounded function on [a, b] and $P = \{x_0, \dots, x_n\}$ be a partition of [a, b]. Define

$$\Delta \alpha_j = \alpha(x_j) - \alpha(x_{j-1}) \quad (1 \le j \le n)$$

and

$$M_j(f) = \sup_{x \in [x_{j-1}, x_j]} f(x), \quad m_j(f) = \inf_{x \in [x_{j-1}, x_j]} f(x) \quad (1 \le j \le n).$$

We call the numbers

$$U(P, f, \alpha) = \sum_{j=1}^{n} M_j(f) \Delta \alpha_j, \quad L(P, f, \alpha) = \sum_{j=1}^{n} m_j(f) \Delta \alpha_j$$

the upper (Riemann-Stieltjes) sum and, respectively, the lower (Riemann-Stieltjes) sum of f with partition P over [a, b] with respect to α .

Note that, if $m \leq f(x) \leq M$ for all $x \in [a, b]$, then $m \leq m_j(f) \leq M_j(f) \leq M$ for each $j = 1, 2, \dots, n$, and hence

$$m(\alpha(b) - \alpha(a)) < L(P, f, \alpha) < U(P, f, \alpha) < M(\alpha(b) - \alpha(a)).$$

So, the sets $\{U(P, f, \alpha) \mid P \text{ is partition of } [a, b]\}$ and $\{L(P, f, \alpha) \mid P \text{ is partition of } [a, b]\}$ are bounded sets in \mathbf{R} .

Define

$$\int_{a}^{b} f d\alpha = \inf\{U(P, f, \alpha) \mid P \text{ is partition of } [a, b]\}$$

and

$$\int_a^b f d\alpha = \sup\{L(P,f,\alpha) \mid P \text{ is partition of } [a,b]\}$$

to be the **upper Riemann-Stieltjes integral** and, respectively, the **lower Riemann-Stieltjes integral** of f over [a, b] with respect to α .

We say that f is **Riemann-Stieltjes integrable** on [a, b] with respect to α , and write $f \in \mathcal{R}(\alpha)[a, b]$, provided that

In this case, the common value of the upper and lower Riemann-Stieltjes integrals in (6.1) is called the **Riemann-Stieltjes integral** of f over [a, b] with respect to α and denoted by

$$\int_a^b f d\alpha.$$

Sometimes, we also write

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) d\alpha(x);$$

of course, the "dummy variable" x can be replaced by any other letters (except for the letters f, α or d, to avoid obvious confusion).

Definition 6.3. When the function α is the **identity function**, i.e., $\alpha(x) = x$, we define the notations

$$U(P,f), L(P,f), \int_a^{\overline{b}} f dx, \int_a^b f dx, \int_a^b f dx, \mathcal{R}[a,b]$$

to be the notations, respectively,

$$U(P, f, \alpha), L(P, f, \alpha), \int_a^b f d\alpha, \int_a^b f d\alpha, \int_a^b f d\alpha, \mathcal{R}(\alpha)[a, b].$$

In this case, if $f \in \mathcal{R}[a, b]$, then we say f is **Riemann integrable** on [a, b] or, simply, **integrable** on [a, b].

Theorem 6.1. If P,Q are partitions of [a,b] and Q is finer than P, then

$$L(P, f, \alpha) \le L(Q, f, \alpha) \le U(Q, f, \alpha) \le U(P, f, \alpha).$$

That is, $L(P, f, \alpha)$ increases with P and $U(P, f, \alpha)$ decreases with P.

Proof. Since Q is obtained from P by adding finitely many points, by induction, we only need to prove the case when Q is obtained from P by adding one extra point. So let

$$P = \{x_0, x_1, \dots, x_{k-1}, x_k, \dots, x_n\}, \quad Q = \{x_0, x_1, \dots, x_{k-1}, y, x_k, \dots, x_n\},\$$

where $x_{k-1} < y < x_k$. Then

$$L(P, f, \alpha) = \sum_{j=1}^{n} m_j(f) \Delta \alpha_j$$
, where $m_j(f) = \inf_{x \in [x_{j-1}, x_j]} f(x)$,

$$L(Q, f, \alpha) = \sum_{j=1}^{k-1} m_j(f) \Delta \alpha_j + \left(\inf_{x \in [x_{k-1}, y]} f(x)\right) (\alpha(y) - \alpha(x_{k-1}))$$
$$+ \left(\inf_{x \in [y, x_k]} f(x)\right) (\alpha(x_k) - \alpha(y)) + \sum_{j=k+1}^{n} m_j(f) \Delta \alpha_j.$$

Note that

$$\inf_{x \in [x_{k-1}, y]} f(x) \ge \inf_{x \in [x_{k-1}, x_k]} f(x), \quad \inf_{x \in [y, x_k]} f(x) \ge \inf_{x \in [x_{k-1}, x_k]} f(x).$$

Hence, since α is increasing, we have that

$$\left(\inf_{x \in [x_{k-1}, y]} f(x)\right) (\alpha(y) - \alpha(x_{k-1})) + \left(\inf_{x \in [y, x_k]} f(x)\right) (\alpha(x_k) - \alpha(y))$$

$$\geq \left(\inf_{x \in [x_{k-1}, x_k]} f(x)\right) (\alpha(y) - \alpha(x_{k-1}) + \alpha(x_k) - \alpha(y)) = m_k(f) \Delta \alpha_k.$$

Consequently,

$$L(Q, f, \alpha) \ge \sum_{j=1}^{k-1} m_j(f) \Delta \alpha_j + m_k(f) \Delta \alpha_k + \sum_{j=k+1}^n m_j(f) \Delta \alpha_j = L(P, f, \alpha).$$

The proof of $U(Q, f, \alpha) \leq U(P, f, \alpha)$ is similar.

Theorem 6.2. $\int_a^b f d\alpha \leq \int_a^b f d\alpha$.

Proof. Let P, Q be arbitrary two partitions of [a, b]. Then, since $P \cup Q$ is a refinement of both P and Q, by the previous theorem,

$$L(P,f,\alpha) \leq L(P \cup Q,f,\alpha) \leq U(P \cup Q,f,\alpha) \leq U(Q,f,\alpha).$$

Hence

$$\underline{\int}_a^b f d\alpha = \sup_P \{L(P,f,\alpha)\} \leq \inf_Q \{U(Q,f,\alpha)\} = \, \overline{\int}_a^b f d\alpha.$$

Theorem 6.3 (Criterion for Integrability). A bounded function f is in $\mathcal{R}(\alpha)[a,b]$ if and only if for each $\varepsilon > 0$ there exists a partition P of [a,b] such that

(6.2)
$$U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon.$$

Proof. (Sufficiency for Integrability.) Let $\varepsilon > 0$. Assume that there exists a partition P of [a,b] such that $U(P,f,\alpha) - L(P,f,\alpha) < \varepsilon$. Then $U(P,f,\alpha) < L(P,f,\alpha) + \varepsilon$, and thus

$$\int_a^b f d\alpha \le U(P, f, \alpha) < L(P, f, \alpha) + \varepsilon \le \int_a^b f d\alpha + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, this proves that $\bar{\int}_a^b f d\alpha \leq \underline{\int}_a^b f d\alpha$, and hence $\bar{\int}_a^b f d\alpha = \underline{\int}_a^b f d\alpha$; so $f \in \mathcal{R}(\alpha)[a,b]$.

(Necessity for Integrability.) Assume $f \in \mathcal{R}(\alpha)[a,b]$; namely, $\bar{\int}_a^b f d\alpha = \underline{\int}_a^b f d\alpha$. Let $\varepsilon > 0$. Then there exist partitions P_1, P_2 of [a,b] such that

$$U(P_1, f, \alpha) < \int_a^b f d\alpha + \varepsilon/2, \quad L(P_2, f, \alpha) > \int_a^b f d\alpha - \varepsilon/2.$$

Let $P = P_1 \cup P_2$ be the common refinement of P_1 and P_2 . Then P is a partition of [a, b], and, using $\int_a^b f d\alpha = \int_a^b f d\alpha$, we have

$$U(P, f, \alpha) - L(P, f, \alpha) \le U(P_1, f, \alpha) - L(P_2, f, \alpha) < \left(\int_a^b f d\alpha + \frac{\varepsilon}{2}\right) - \left(\int_a^b f d\alpha - \frac{\varepsilon}{2}\right) = \varepsilon.$$

Theorem 6.4. Suppose that (6.2) holds for a partition $P = \{x_0, x_1, \dots, x_n\}$.

- (a) Then (6.2) holds with P replaced by any refinement of P.
- (b) If s_i, t_i are points in $[x_{i-1}, x_i]$ for each j, then

$$\sum_{j=1}^{n} |f(s_j) - f(t_j)| \Delta \alpha_j < \varepsilon.$$

(c) If $f \in \mathcal{R}(\alpha)[a,b]$, then

$$\left| \sum_{j=1}^{n} f(t_j) \Delta \alpha_j - \int_{a}^{b} f d\alpha \right| < \varepsilon$$

for all $t_j \in [x_{j-1}, x_j]$ with $j = 1, 2, \dots, n$.

Proof. (a) follows easily since $L(P, f, \alpha)$ increases with P and $U(P, f, \alpha)$ decreases with P. (b) follows since both $f(s_j), f(t_j)$ are between $m_j(f)$ and $M_j(f)$ and hence $|f(s_j) - f(t_j)| \le M_j(f) - m_j(f)$. The obvious inequalities

$$L(P, f, \alpha) \le \sum_{j=1}^{n} f(t_j) \Delta \alpha_j \le U(P, f, \alpha), \quad L(P, f, \alpha) \le \int_a^b f d\alpha \le U(P, f, \alpha)$$

prove (c). \Box

Theorem 6.5. If f is continuous on [a,b], then $f \in \mathcal{R}(\alpha)[a,b]$.

Proof. Let $\varepsilon > 0$ be given, and choose $\eta > 0$ so that $(\alpha(b) - \alpha(a))\eta < \varepsilon$. Since f is uniformly continuous on [a, b], there exists a $\delta > 0$ such that

$$|f(x) - f(y)| < \eta$$
 for all $x, y \in [a, b]$ with $|x - y| < \delta$.

Let $P = \{x_0, \ldots, x_n\}$ be any partition of [a, b] with norm $||P|| < \delta$. Since f is continuous on each subinterval $[x_{j-1}, x_j]$, by the **Extreme Value Theorem**, there exist $c_j, d_j \in [x_{j-1}, x_j]$ such that

$$M_i(f) = f(c_i), \quad m_i(f) = f(d_i).$$

Since $|c_j - d_j| \le \Delta x_j \le ||P|| < \delta$, we have

$$M_j(f) - m_j(f) = f(c_j) - f(d_j) < \eta \quad (1 \le j \le n).$$

Therefore,

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{j=1}^{n} (M_j(f) - m_j(f)) \Delta \alpha_j \le \eta \sum_{j=1}^{n} \Delta \alpha_j = \eta(\alpha(b) - \alpha(a)) < \varepsilon.$$

So, by the Criterion for Integrability, $f \in \mathcal{R}(\alpha)[a,b]$.

Theorem 6.6. If α is continuous on [a,b], then every monotonic function on [a,b] belongs to $\mathcal{R}(\alpha)[a,b]$.

Proof. Without loss of generality, we assume f is a monotonically increasing function on [a,b]. Let $\varepsilon > 0$ be given, and choose $\eta > 0$ so that $(f(b) - f(a))\eta < \varepsilon$. Since α is uniformly continuous on [a,b], there exists a $\delta > 0$ such that

$$|\alpha(x) - \alpha(y)| < \eta$$
 for all $x, y \in [a, b]$ with $|x - y| < \delta$.

Let $P = \{x_0, \dots, x_n\}$ be any partition of [a, b] with norm $||P|| < \delta$. Since f is monotonically increasing on each subinterval $[x_{j-1}, x_j]$, we have

$$m_j(f) = f(x_{j-1}), \quad M_j(f) = f(x_j).$$

Since $|x_j - x_{j-1}| = \Delta x_j \le ||P|| < \delta$, we have

$$\Delta \alpha_j = \alpha(x_j) - \alpha(x_{j-1}) < \eta \quad (1 \le j \le n).$$

Therefore,

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{j=1}^{n} (f(x_j) - f(x_{j-1})) \Delta \alpha_j$$

$$\leq \eta \sum_{j=1}^{n} (f(x_j) - f(x_{j-1})) = \eta(f(b) - f(a)) < \varepsilon.$$

So, by the Criterion for Integrability, $f \in \mathcal{R}(\alpha)[a, b]$.

Theorem 6.7. Suppose f is bounded on [a,b], f has only finitely many points of discontinuity on [a,b], and α is continuous at every point at which f is discontinuous. Then $f \in \mathcal{R}(\alpha)[a,b]$.

Proof. Let $\varepsilon > 0$ be given. Put $M = \sup_{x \in [a,b]} |f(x)|$ and let E be the set of points in [a,b] at which f is discontinuous. Since E is finite and α is continuous at every point of E, we can cover E by finitely many disjoint intervals $[u_j, v_j]$ in [a,b] such that $\sum (\alpha(v_j) - \alpha(u_j)) < \varepsilon$. Furthermore, we can choose these intervals in such a way that every point of $E \cap (a,b)$ lies in the interior of some $[u_j, v_j]$. If $a \in E$, we assume $[a, v_0]$ is one of these intervals; if $b \in E$, assume $[u_0, b]$ is one of these intervals.

Remove all open intervals (u_j, v_j) , and possibly $[a, v_0)$ or $(u_0, b]$ if a or b is in E. The remaining set K is then compact, and f is continuous on K. Hence f is uniformly continuous on K, and there exists $\delta > 0$ such that $|f(s) - f(t)| < \varepsilon$ if $s, t \in K$ and $|s - t| < \delta$.

Define a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] as follows. All u_j, v_j belong to P. No points in (u_j, v_j) belong to P, and no points in $[a, v_0)$ or $(u_0, b]$ belong to P. If x_{i-1} is not one of u_j , then $\Delta x_i < \delta$.

Note that $M_i(f) - m_i(f) \le 2M$ for every i, and that $M_i(f) - m_i(f) \le \varepsilon$ unless x_{i-1} is one of u_j . Hence

$$U(P, f, \alpha) - L(P, f, \alpha) = \sum_{i=1}^{n} (M_i(f) - m_i(f)) \Delta \alpha_i$$

$$= \sum_{x_{i-1}=u_j} (M_i(f) - m_i(f)) \Delta \alpha_i + \sum_{x_{i-1}\neq u_j} (M_i(f) - m_i(f)) \Delta \alpha_i \le 2M\varepsilon + \varepsilon(\alpha(b) - \alpha(a)).$$

Since $\varepsilon > 0$ is arbitrary, this proves $f \in \mathcal{R}(\alpha)[a, b]$.

Theorem 6.8. Suppose $f \in \mathcal{R}(\alpha)[a,b]$, $m \leq f \leq M$, ϕ is continuous on [m,M], and $h(x) = \phi(f(x))$ on [a,b]. Then $h \in \mathcal{R}(\alpha)[a,b]$.

Proof. Let $\varepsilon > 0$ be given. Since ϕ is uniformly continuous on [m, M], there exists $\delta \in (0, \varepsilon)$ such that $|\phi(s) - \phi(t)| < \varepsilon$ if $|s - t| \le \delta$ and $t, s \in [m, M]$.

Since $f \in \mathcal{R}(\alpha)[a,b]$, there is a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a,b] such that

(6.3)
$$U(P, f, \alpha) - L(P, f, \alpha) < \delta^2.$$

Let $M_j(f), m_j(f)$ be defined for f as above; similarly, let $M_j(h), m_j(h)$ be defined for function h. Divide the numbers $i = 1, 2, \dots, n$ into two classes: $i \in A$ if $M_i(f) - m_i(f) < \delta$; $i \in B$ if $M_i(f) - m_i(f) \ge \delta$.

For $i \in A$, we have $|f(x) - f(y)| \le M_i(f) - m_i(f) < \delta$ for all $x, y \in [x_{i-1}, x_i]$; hence, our choice of δ shows that

$$M_i(h) - m_i(h) = \sup_{x \in [x_{i-1}, x_i]} \phi(f(x)) - \inf_{y \in [x_{i-1}, x_i]} \phi(f(y)) = \sup_{x, y \in [x_{i-1}, x_i]} (\phi(f(x)) - \phi(f(y))) \le \varepsilon.$$

For $i \in B$, we have $M_i(h) - m_i(h) \le 2K$, where $K = \sup_{t \in [m,M]} |\phi(t)| < +\infty$. By (6.3),

$$\delta \sum_{i \in B} \Delta \alpha_i \le \sum_{i \in B} (M_i(f) - m_i(f)) \Delta \alpha_i \le U(P, f, \alpha) - L(P, f, \alpha) < \delta^2,$$

so that $\sum_{i \in B} \Delta \alpha_i < \delta$. Thus it follows that

$$U(P, h, \alpha) - L(P, h, \alpha) = \sum_{i \in A} (M_i(h) - m_i(h)) \Delta \alpha_i + \sum_{i \in B} (M_i(h) - m_i(h)) \Delta \alpha_i$$

$$\leq \varepsilon \sum_{i \in A} \Delta \alpha_i + 2K \sum_{i \in B} \Delta \alpha_i \leq \varepsilon [\alpha(b) - \alpha(a)] + 2K\delta < \varepsilon [\alpha(b) - \alpha(a) + 2K].$$

Since $\varepsilon > 0$ is arbitrary, by the **Criterion of integrability**, this proves $h \in \mathcal{R}(\alpha)[a,b]$. \square

6.2. Further Properties of the Integral

Theorem 6.9. The Riemann-Stieltjes integral has the following properties.

(a) (Linear property) If $f_1, f_2 \in \mathcal{R}(\alpha)[a, b]$, then $c_1 f_1 + c_2 f_2 \in \mathcal{R}(\alpha)[a, b]$ for all real numbers c_1, c_2 , and

$$\int_{a}^{b} (c_1 f_1 + c_2 f_2) d\alpha = c_1 \int_{a}^{b} f_1 d\alpha + c_2 \int_{a}^{b} f_2 d\alpha.$$

(b) (Order property) If $f_1, f_2 \in \mathcal{R}(\alpha)[a, b]$ and $f_1(x) \leq f_2(x)$ on [a, b], then

$$\int_{a}^{b} f_{1} d\alpha \leq \int_{a}^{b} f_{2} d\alpha.$$

(c) (Additivity) If $f \in \mathcal{R}(\alpha)[a,b]$ and a < c < b, then $f \in \mathcal{R}(\alpha)[a,c]$ and $f \in \mathcal{R}(\alpha)[c,b]$; moreover,

(6.4)
$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha.$$

Conversely, if a < c < b and if $f \in \mathcal{R}(\alpha)[a,c]$ and $f \in \mathcal{R}(\alpha)[c,b]$, then $f \in \mathcal{R}(\alpha)[a,b]$, and (6.4) holds.

(d) (Positive combination) If $f \in \mathcal{R}(\alpha_1)[a,b]$ and $f \in \mathcal{R}(\alpha_2)[a,b]$, and k_1, k_2 are nonnegative constants, then $f \in \mathcal{R}(k_1\alpha_1 + k_2\alpha_2)[a,b]$, and

$$\int_a^b f d(k_1 \alpha_1 + k_2 \alpha_2) = k_1 \int_a^b f d\alpha_1 + k_2 \int_a^b f d\alpha_2.$$

(e) (Absolute integrability) If $f \in \mathcal{R}(\alpha)[a,b]$, then $|f| \in \mathcal{R}(\alpha)[a,b]$, and

$$\left| \int_{a}^{b} f d\alpha \right| \le \int_{a}^{b} |f| d\alpha.$$

Proof. Let's prove (c) and (e) only.

(c) Assume $f \in \mathcal{R}(\alpha)[a,b]$. Let [c,d] be a subinterval of [a,b]. Let $\varepsilon > 0$. Choose a partition P of [a,b] such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon.$$

Let $P' = P \cup \{c, d\}$ and $P_1 = P' \cap [c, d]$. Then P' is a refinement of P on [a, b] and P_1 is a partition of [c, d], which is part of partition P' of [a, b]. Therefore, we have

$$U_c^d(P_1, f, \alpha) - L_c^d(P_1, f, \alpha) \le U(P', f, \alpha) - L(P', f, \alpha) \le U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon,$$

where $U_c^d(P_1, f, \alpha)$, $L_c^d(P_1, f, \alpha)$ are for f defined on [c, d], with P_1 being a partition on [c, d]. Hence, by the **Criterion for integrability**, $f \in \mathcal{R}(\alpha)[c, d]$.

Now assume a < c < b and $f \in \mathcal{R}(\alpha)[a,c]$ and $f \in \mathcal{R}(\alpha)[c,b]$. Let $\varepsilon > 0$. Choose partitions P_1 of [a,c] and P_2 of [c,b] such that

$$U_a^c(P_1, f, \alpha) - L_a^c(P_1, f, \alpha) < \varepsilon/2, \quad U_c^b(P_2, f, \alpha) - L_c^b(P_2, f, \alpha) < \varepsilon/2.$$

Let $P = P_1 \cup P_2$. Then P is a partition of [a, b], and we have

$$U(P, f, \alpha) - L(P, f, \alpha) = [U_a^c(P_1, f, \alpha) + U_c^b(P_2, f, \alpha)] - [L_a^c(P_1, f, \alpha) + L_c^b(P_2, f, \alpha)] < \varepsilon.$$

Hence, $f \in \mathcal{R}(\alpha)[a, b]$.

To verify the additivity property (6.4), assume P is a partition of [a, b]. Let $P_0 = P \cup \{c\}, P_1 = P_0 \cap [a, c],$ and $P_2 = P_0 \cap [c, b].$ Then $P_0 = P_1 \cup P_2$ and

$$U(P, f, \alpha) \ge U(P_0, f, \alpha) = U_a^c(P_1, f, \alpha) + U_c^b(P_2, f, \alpha) \ge \int_a^c f d\alpha + \int_c^b f d\alpha,$$

$$L(P, f, \alpha) \le L(P_0, f, \alpha) = L_a^c(P_1, f, \alpha) + L_c^b(P_2, f, \alpha) \le \int_a^c f d\alpha + \int_c^b f d\alpha.$$

Hence

$$\int_{a}^{b} f d\alpha \ge \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha, \quad \int_{a}^{b} f d\alpha \le \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha;$$

but, $\bar{\int}_a^b f d\alpha = \underline{\int}_a^b f d\alpha$, and this proves

$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha.$$

(e) Assume $f \in \mathcal{R}(\alpha)[a,b]$. Then, with $\phi(t) = |t|$ in Theorem 6.8, we have $|f| \in \mathcal{R}(\alpha)[a,b]$. Since

$$-|f(x)| \le f(x) \le |f(x)| \quad (x \in [a, b]),$$

by part (a) and (b), we have

$$-\int_{a}^{b} |f| d\alpha \le \int_{a}^{b} f d\alpha \le \int_{a}^{b} |f| d\alpha,$$

which proves $\left| \int_a^b f d\alpha \right| \le \int_a^b |f| d\alpha$.

Remark 6.4. The converse of (e) in the theorem is false. Indeed, consider the function

$$f(x) = \begin{cases} 1 & x \in \mathbf{Q} \\ -1 & x \notin \mathbf{Q}. \end{cases}$$

Then |f(x)| = 1 is constant and hence $f \in \mathcal{R}[a,b]$; however, it is easily seen that

$$\int_{a}^{b} f dx = b - a > 0, \quad \int_{a}^{b} f dx = a - b < 0,$$

and hence $f \notin \mathcal{R}[a,b]$.

Theorem 6.10. If $f, g \in \mathcal{R}(\alpha)[a, b]$, then $fg \in \mathcal{R}(\alpha)[a, b]$.

Proof. Using $\phi(t) = t^2$ in Theorem 6.8, we have $f^2, g^2, (f+g)^2 \in \mathcal{R}(\alpha)[a,b]$, and hence

$$fg = \frac{(f+g)^2 - f^2 - g^2}{2} \in \mathcal{R}(\alpha)[a,b].$$

Theorem 6.11. Assume α is monotonically increasing and differentiable on [a,b] and $\alpha' \in \mathcal{R}[a,b]$. Let f be bounded on [a,b]. Then $f \in \mathcal{R}(\alpha)[a,b]$ if and only if $f\alpha' \in \mathcal{R}[a,b]$. In this case,

$$\int_a^b f d\alpha = \int_a^b f(x)\alpha'(x)dx.$$

Proof. Let $\varepsilon > 0$. Since $\alpha' \in \mathcal{R}[a,b]$, there is a partition $P = \{x_0, \dots, x_n\}$ of [a,b] such that

(6.5)
$$U(P, \alpha') - L(P, \alpha') < \varepsilon.$$

By the MVT, for each j = 1, 2, ..., n, there exists $t_j \in (x_{j-1}, x_j)$ such that $\Delta \alpha_j = \alpha'(t_j) \Delta x_j$. Let $s_j \in [x_{j-1}, x_j]$ be arbitrary. Then, by (6.5) and Theorem 6.4, we have

$$\sum_{j=1}^{n} |\alpha'(t_j) - \alpha'(s_j)| \Delta x_j < \varepsilon.$$

Put $M = \sup_{[a,b]} |f| < +\infty$. Since $\Delta \alpha_j = \alpha'(t_j) \Delta x_j$, it follows that

$$\left| \sum_{j=1}^{n} f(s_j) \Delta \alpha_j - \sum_{j=1}^{n} f(s_j) \alpha'(s_j) \Delta x_j \right| \le M \varepsilon.$$

In particular,

$$\sum_{j=1}^{n} f(s_j) \Delta \alpha_j \le U(P, f\alpha') + M\varepsilon; \quad \sum_{j=1}^{n} f(s_j) \alpha'(s_j) \Delta x_j \le U(P, f, \alpha) + M\varepsilon.$$

Since $s_j \in [x_{j-1}, x_j]$ is arbitrary, these two inequalities imply that

$$U(P, f, \alpha) \le U(P, f\alpha') + M\varepsilon; \quad U(P, f\alpha') \le U(P, f, \alpha) + M\varepsilon,$$

and hence that

(6.6)
$$\int_{a}^{b} f d\alpha \leq U(P, f\alpha') + M\varepsilon, \quad \int_{a}^{b} f\alpha' dx \leq U(P, f, \alpha) + M\varepsilon.$$

Now note that (6.5) remains true if P is replaced by the refinement $P \cup Q$, where Q is any given partition of [a, b]. Hence (6.6) also remains true with P replaced by $P \cup Q$, which yields that

(6.7)
$$\int_{a}^{b} f d\alpha \leq U(Q, f\alpha') + M\varepsilon, \quad \int_{a}^{b} f\alpha' dx \leq U(Q, f, \alpha) + M\varepsilon$$

for all partitions Q of [a, b]. Taking the infima over partitions Q, we have

$$\int_{a}^{b} f d\alpha \leq \int_{a}^{b} f \alpha' dx + M\varepsilon, \quad \int_{a}^{b} f \alpha' dx \leq \int_{a}^{b} f d\alpha + M\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, this implies

$$\int_{a}^{b} f d\alpha = \int_{a}^{\bar{b}} f \alpha' dx,$$

which is valid for all bounded functions f.

The equality $\int_a^b f d\alpha = \int_a^b f \alpha' dx$ follows in exactly the same manner. Hence the theorem is proved.

Theorem 6.12 (Change of Variables). Suppose ϕ is a strictly increasing continuous from an interval [A, B] onto [a, b]. Suppose α is monotonically increasing on [a, b] and $f \in \mathcal{R}(\alpha)[a, b]$. Define β and g on [A, B] by

$$\beta(y) = \alpha(\phi(y)), \quad g(y) = f(\phi(y)).$$

Then $g \in \mathcal{R}(\beta)[A, B]$, and

(6.8)
$$\int_{A}^{B} g d\beta = \int_{a}^{b} f d\alpha.$$

Proof. To each partition $P = \{x_0, \dots, x_n\}$ of [a, b] corresponds a unique partition $Q = \{y_0, \dots, y_n\}$ of [A, B] such that $x_j = \phi(y_j)$, and vice versa. Then

$$\Delta \alpha_j = \alpha(x_j) - \alpha(x_{j-1}) = \alpha(\phi(y_j)) - \alpha(\phi(y_{j-1})) = \beta(y_j) - \beta(y_{j-1}) = \Delta \beta_j$$

for each j = 1, 2, ..., n. Since the values taken by f on $[x_{j-1}, x_j]$ are exactly the same as those taken by g on $[y_{j-1}, y_j]$, we see that

$$U(Q, g, \beta) = U(P, f, \alpha), \quad L(Q, g, \beta) = L(P, f, \alpha).$$

If $f \in \mathcal{R}(\alpha)[a,b]$, then, for every $\varepsilon > 0$, it follows that $U(P,f,\alpha) - L(P,f,\alpha) < \varepsilon$ for some partition P of [a,b]; hence, with the corresponding partition Q of [A,B], we have $U(Q,g,\beta) - L(Q,g,\beta) < \varepsilon$. Hence $g \in \mathcal{R}(\beta)[A,B]$, and (6.8) holds.

Combing the previous two theorems, we obtain the following change of variable theorem for Riemann integrals.

Theorem 6.13. If $f \in \mathcal{R}[a,b]$ and if $\phi: [A,B] \to [a,b]$ is strictly increasing and differentiable with $\phi' \in \mathcal{R}[A,B]$, then

$$\int_a^b f(x) dx = \int_A^B f(\phi(y))\phi'(y) dy,$$

where $a = \phi(A), b = \phi(B)$.

6.3. Integration and Differentiation

Theorem 6.14. Let $f \in \mathcal{R}[a,b]$. Define

$$F(x) = \int_{a}^{x} f(t)dt \quad (a \le x \le b).$$

Then F is continuous on [a,b]; furthermore, if f is continuous at a point $c \in [a,b]$, then F is differentiable at c, with F'(c) = f(c).

Proof. Suppose $M = \sup_{[a,b]} |f| < +\infty$. If $a \le x < y \le b$, then

$$|F(y) - F(x)| = \left| \int_x^y f(t) \, dt \right| \le M(y - x).$$

Hence F is uniformly continuous on [a, b].

Now assume f is continuous at a point $c \in [a, b]$. Given $\varepsilon > 0$, choose $\delta > 0$ such that

$$|f(t) - f(c)| < \varepsilon \quad \forall t \in [a, b], |t - c| < \delta.$$

Then, for any $x \in [a, b]$ with $c < x < c + \delta$,

$$\left| \frac{F(x) - F(c)}{x - c} - f(c) \right| = \frac{1}{x - c} \left| \int_{c}^{x} (f(t) - f(c)) dt \right| \le \frac{1}{x - c} \int_{c}^{x} |f(t) - f(c)| dt < \varepsilon,$$

and similarly, for for any $x \in [a, b]$ with $c - \delta < x < c$,

$$\left| \frac{F(x) - F(c)}{x - c} - f(c) \right| = \frac{1}{c - x} \left| \int_x^c (f(t) - f(c)) dt \right| \le \frac{1}{c - x} \int_x^c |f(t) - f(c)| dt < \varepsilon.$$

Hence, whenever $x \in [a, b]$ and $0 < |x - c| < \delta$, it follows that

$$\left| \frac{F(x) - F(c)}{x - c} - f(c) \right| < \varepsilon;$$

so
$$F'(c) = f(c)$$
.

Theorem 6.15 (Fundamental Theorem of Calculus). If $f \in \mathcal{R}[a,b]$ and if there is a differentiable function F on [a,b] such that F'=f, then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Proof. Let $\varepsilon > 0$ be given. Choose a partition $P = \{x_0, \dots, x_n\}$ of [a, b] such that $U(P, f) - L(P, f) < \varepsilon$. The MVT furnishes points $t_j \in (x_{j-1}, x_j)$ such that

$$F(x_j) - F(x_{j-1}) = f(t_j) \Delta x_j \quad (j = 1, 2, \dots, n).$$

Thus

$$\sum_{j=1}^{n} f(t_j) \Delta x_j = \sum_{j=1}^{n} (F(x_j) - F(x_{j-1})) = F(b) - F(a).$$

But

$$L(P,f) \le \sum_{j=1}^{n} f(t_j) \Delta x_j \le U(P,f), \quad L(P,f) \le \int_a^b f(t) dt \le U(P,f);$$

hence

$$\left| F(b) - F(a) - \int_{a}^{b} f(t) dt \right| \le U(P, f) - L(P, f) < \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, this completes the proof.

Theorem 6.16 (Integration by Parts). Suppose F, G are differentiable on $[a, b], F' = f \in \mathcal{R}[a, b],$ and $G' = g \in \mathcal{R}[a, b]$. Then

$$\int_{a}^{b} F(x)g(x) \, dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} f(x)G(x) \, dx.$$

Proof. Clearly $Fg, fG \in \mathcal{R}[a, b]$. Let H(x) = F(x)G(x) on [a, b]. Then H'(x) = f(x)G(x) + g(x)F(x) and hence $H' \in \mathcal{R}[a, b]$. So, by Theorem 6.15,

$$H(b) - H(a) = \int_a^b H'(x) \, dx = \int_a^b f(x) G(x) \, dx + \int_a^b g(x) F(x) \, dx,$$

proving the theorem.

6.4. Integration of Vector-Valued Functions

Definition 6.5. Let $\mathbf{f} \colon [a,b] \to \mathbf{R}^k$ and $\alpha \colon [a,b] \to \mathbf{R}$ be monotonically increasing on [a,b]. Let $\mathbf{f}(x) = (f_1(x), \dots, f_k(x))$, which each coordinate function f_j is real valued. We say $\mathbf{f} \in \mathcal{R}(\alpha)[a,b]$ if each of its coordinate functions $f_j \in \mathcal{R}(\alpha)[a,b]$. In this case, we define

$$\int_a^b \mathbf{f} \, d\alpha = \left(\int_a^b f_1 d\alpha, \cdots, \int_a^b f_k d\alpha \right).$$

Many of the results on real-valued functions also hold for these vector-valued functions. To illustrate, we state the analogue of the fundamental theorem of calculus.

Theorem 6.17. If \mathbf{f} and \mathbf{F} map [a,b] into \mathbf{R}^k , $\mathbf{f} \in \mathcal{R}[a,b]$, and $\mathbf{F}' = \mathbf{f}$ on [a,b], then

$$\int_{a}^{b} \mathbf{f}(x)dx = \mathbf{F}(b) - \mathbf{F}(a).$$

Theorem 6.18. If $\mathbf{f} \in \mathcal{R}(\alpha)[a,b]$, then $\|\mathbf{f}\| \in \mathcal{R}(\alpha)[a,b]$, and

$$\left\| \int_{a}^{b} \mathbf{f} \, d\alpha \right\| \leq \int_{a}^{b} \|\mathbf{f}\| \, d\alpha.$$

Proof. If $\mathbf{f} = (f_1, \dots, f_k)$ then $\|\mathbf{f}\| = (f_1^2 + \dots + f_k^2)^{1/2}$. Hence if each $f_j \in \mathcal{R}[a, b]$, then $\|\mathbf{f}\| \in \mathcal{R}[a, b]$. To show the inequality on the integrals, we assume $\mathbf{y} = \int_a^b \mathbf{f} \, d\alpha \neq \mathbf{0}$; otherwise there is nothing to prove. By linearity and order properties and the Cauchy-Schwarz inequality,

$$\|\mathbf{y}\|^2 = \mathbf{y} \cdot \int_a^b \mathbf{f} \, d\alpha = \int_a^b \mathbf{y} \cdot \mathbf{f} \, d\alpha \le \int_a^b \|\mathbf{y}\| \|\mathbf{f}\| \, d\alpha = \|\mathbf{y}\| \int_a^b \|\mathbf{f}\| \, d\alpha.$$

Cancelling $\|\mathbf{y}\| > 0$ proves the inequality.

6.5. Rectifiable Curves in \mathbb{R}^k

Definition 6.6. A continuous function γ from an interval [a, b] into \mathbf{R}^k is called a **curve** in \mathbf{R}^k . To emphasize the parameter interval [a, b], we may also say that γ is a curve on [a, b].

If γ is one-to-one, then γ is called an **arc**.

If $\gamma(a) = \gamma(b)$ then γ is said to be a **closed curve**.

Note that a curve in \mathbf{R}^k is a function, not the range of γ , which is a point set in \mathbf{R}^k ; different curves may have the same range.

Let $\gamma: [a, b] \to \mathbf{R}^k$ be a curve. We associate to each partition $P = \{x_0, \dots, x_n\}$ of [a, b] the number

$$\Lambda(P,\gamma) = \sum_{j=1}^{n} \|\gamma(x_j) - \gamma(x_{j-1})\|.$$

(This could be defined for curves in any metric space X, with $\|\gamma(x_j) - \gamma(x_{j-1})\|$ replaced by $d(\gamma(x_j), \gamma(x_{j-1}))$.) Define the **length** of γ to be the number (including $+\infty$)

$$\Lambda(\gamma) = \sup \Lambda(P, \gamma),$$

where the supremum is taken over all partitions P of [a,b]. We say that γ is **rectifiable** if $\Lambda(\gamma) < +\infty$.

Theorem 6.19. If γ' is continuous on [a,b], then γ is rectifiable, and

$$\Lambda(\gamma) = \int_a^b \|\gamma'(t)\| dt.$$

Proof. If $a \le x_{j-1} < x_j \le b$, then

$$\|\gamma(x_{j-1} - \gamma(x_j))\| = \left\| \int_{x_{j-1}}^{x_j} \gamma'(t) dt \right\| \le \int_{x_{j-1}}^{x_j} \|\gamma'(t)\| dt.$$

Hence

$$\Lambda(P, \gamma) \le \sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} \|\gamma'(t)\| dt = \int_{a}^{b} \|\gamma'(t)\| dt$$

for all partitions P of [a,b]. Consequently, $\Lambda(\gamma) \leq \int_a^b \|\gamma'(t)\| dt$.

To show the opposite inequality, let $\varepsilon > 0$ be given. Since γ' is uniformly continuous on [a, b], there exists $\delta > 0$ such that

$$\|\gamma'(t) - \gamma'(s)\| < \varepsilon$$
 if $|s - t| < \delta$, $s, t \in [a, b]$.

Let $P = \{x_0, \dots, x_n\}$ be a partition of [a, b] with $||P|| < \delta$. If $t \in [x_{j-1}, x_j]$ then $||\gamma'(t)|| \le ||\gamma'(x_j)|| + \varepsilon$. Hence, by Theorem 6.17,

$$\int_{x_{j-1}}^{x_j} \|\gamma'(t)\| dt \le \|\gamma'(x_j)\| \Delta x_j + \varepsilon \Delta x_j = \left\| \int_{x_{j-1}}^{x_j} [\gamma'(t) + \gamma'(x_j) - \gamma'(t)] dt \right\| + \varepsilon \Delta x_j \\
\le \left\| \int_{x_{j-1}}^{x_j} \gamma'(t) dt \right\| + \left\| \int_{x_{j-1}}^{x_j} [\gamma'(x_j) - \gamma'(t)] dt \right\| + \varepsilon \Delta x_j \\
\le \|\gamma(x_j) - \gamma(x_{j-1})\| + \int_{x_{j-1}}^{x_j} \|\gamma'(x_j) - \gamma'(t)\| dt + \varepsilon \Delta x_j \\
\le \|\gamma(x_j) - \gamma(x_{j-1})\| + 2\varepsilon \Delta x_j.$$

Adding these inequalities, we obtain

$$\int_{a}^{b} \|\gamma'(t)\| dt \le \Lambda(P, \gamma) + 2\varepsilon(b - a).$$

Since $\varepsilon > 0$ is arbitrary, it follows that $\int_a^b \|\gamma'(t)\| dt \le \Lambda(P,\gamma)$. This completes the proof. \Box

Suggested Homework Problems

Pages 138-142

Problems: 1–5, 7–9, 15, 17, 19

6.6. Improper Riemann Integrals*

Definition 6.7. Let $(a,b) \subseteq \mathbf{R}$, where $-\infty \le a < b \le +\infty$, and $f:(a,b) \to \mathbf{R}$.

We say that f is **locally integrable on** (a,b) if $f \in \mathcal{R}[c,d]$ for each finite closed subinterval [c,d] of (a,b).

We say that f is **improperly (Riemann) integrable** on (a,b) if f is locally integrable on (a,b) and the limit

(6.9)
$$\int_{a}^{b} f(x) dx = \lim_{c \to a^{+}} \left(\lim_{d \to b^{-}} \int_{c}^{d} f(x) dx \right)$$

exists and is finite. In this case, this limit is called the **improper (Riemann) integral** of f on (a, b).

Sometimes we also use the notation

$$\int_{a}^{b} f(x) \, dx = \int_{a^{+}}^{b^{-}} f(x) \, dx$$

to distinguish the improper integrals from the Riemann integrals defined earlier.

Lemma 6.20. The order of limits in (6.9) does not matter. In particular, if the limit in (6.9) exists and is finite, then the limit

$$\lim_{d \to b^{-}} \left(\lim_{c \to a^{+}} \int_{c}^{d} f(x) \, dx \right)$$

exists and equals the limit in (6.9).

Proof. Let $x_0 \in (a, b)$. Then

$$\lim_{c \to a^{+}} \left(\lim_{d \to b^{-}} \int_{c}^{d} f(x) \, dx \right) = \lim_{c \to a^{+}} \left(\int_{c}^{x_{0}} f(x) \, dx + \lim_{d \to b^{-}} \int_{x_{0}}^{d} f(x) \, dx \right)$$

(6.10)
$$= \lim_{c \to a^+} \int_c^{x_0} f(x) \, dx + \lim_{d \to b^-} \int_{x_0}^d f(x) \, dx.$$

Since, for each c, $\lim_{d\to b^-} \int_c^d f(x)dx$ exists, we have

$$\lim_{x_0 \to b^-} \left(\lim_{d \to b^-} \int_{x_0}^d f(x) \, dx \right) = \lim_{x_0 \to b^-} \left[\lim_{d \to b^-} \left(\int_c^d f(x) \, dx - \int_c^{x_0} f(x) \, dx \right) \right]$$

$$= \lim_{x_0 \to b^-} \left[\lim_{d \to b^-} \int_c^d f(x) \, dx - \int_c^{x_0} f(x) \, dx \right]$$

$$= \lim_{d \to b^-} \int_c^d f(x) \, dx - \lim_{x_0 \to b^-} \int_c^{x_0} f(x) \, dx = 0.$$

Therefore, in (6.10) letting $x_0 \to b^-$, we obtain that

$$\lim_{x_0 \to b^-} \left(\lim_{c \to a^+} \int_c^{x_0} f(x) \, dx \right) = \lim_{c \to a^+} \left(\lim_{d \to b^-} \int_c^d f(x) \, dx \right).$$

Remark 6.8. (i) If f is integrable on [c, b] for all $c \in (a, b)$, then the improper Riemann integral of f on (a, b) is also given by

$$\int_{a}^{b} f(x) \, dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x) \, dx := \int_{a^{+}}^{b} f(x) \, dx.$$

If this limit exists and is finite, we also say that f is **improperly integrable on** (a, b]. The similar situation applies at the endpoint b, in which case we say that f is **improperly integrable on** [a, b).

(ii) It is easily seen that f is improperly integrable on (a, b) if and only if f is improperly integrable on (a, c] and on [c, b) for all $c \in (a, b)$. In this case, we have that

$$\int_{a^{+}}^{b^{-}} f(x) \, dx = \int_{a^{+}}^{c} f(x) \, dx + \int_{c}^{b^{-}} f(x) \, dx.$$

Theorem 6.21. The function $f(x) = 1/x^p$ is improperly integrable on (0,1] if and only if p < 1, and is improperly integrable on $[1, +\infty)$ if and only if p > 1.

Theorem 6.22 (Linear Property). If f, g are improperly integrable on (a, b) and $k, l \in \mathbf{R}$, then kf + lg is improperly integrable on (a, b), and

$$\int_{a}^{b} (kf(x) + lg(x)) \, dx = k \int_{a}^{b} f(x) \, dx + l \int_{a}^{b} g(x) \, dx.$$

Proof. Use the **Linear Property** of integrals on each subinterval [c,d] of (a,b).

Theorem 6.23 (Comparison Theorem for Improper Integrals). Suppose that f, g are locally integrable on (a,b) and $0 \le f(x) \le g(x)$ for all $x \in (a,b)$. If g is improperly integrable on (a,b), then f is also improperly integrable on (a,b) and

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

Proof. Fix $c \in (a, b)$. Let $F(d) = \int_c^d f(x) dx$ and $G(d) = \int_c^d g(x) dx$ for $d \in [c, b)$. Then by the **Order Property**, $F(d) \leq G(d)$. Note that F and G are increasing on [c, b) and $G(b^-)$ exists. Hence F is bounded above by $G(b^-)$ and so $F(d^-)$ exists and is finite. This shows that f is improperly integrable on [c, b). By the similar argument, we also show that f is improperly integrable on (a, c]; thus f is improperly integrable on (a, b). The order property

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

follows easily from the order property of the Riemann integrals of f and g on each subinterval [c,d] of (a,b).

Example 6.1. Show that $f(x) = (\sin x)/x^{3/2}$ is improperly integrable on (0,1].

Proof. Since $0 \le \sin x \le x$ for all $x \in [0,1]$ (use elementary calculus to prove it!), it follows that

$$0 \le f(x) \le x \cdot x^{-3/2} = x^{-1/2} \quad \forall \ x \in (0, 1].$$

Since $x^{-1/2}$ is improperly integrable on (0,1], by the theorem above, f is improperly integrable on (0,1].

EXAMPLE 6.2. Show that $f(x) = (\ln x)/x^{5/2}$ is improperly integrable on $[1, +\infty)$.

Proof. Since $0 \le \ln x \le x$ for all $x \ge 1$ (use elementary calculus to prove it!), it follows that

$$0 \le f(x) \le x \cdot x^{-5/2} = x^{-3/2} \quad \forall \ x \ge 1.$$

Since $x^{-3/2}$ is improperly integrable on $[1, +\infty)$, by the theorem above, f is improperly integrable on $[1, +\infty)$.

Lemma 6.24. If f is bounded and locally integrable on (a, b) and |g| is improperly integrable on (a, b), then |fg| is improperly integrable on (a, b).

Proof. Use $0 \le |fg| \le M|g|$ and the **Comparison Theorem** above.

Definition 6.9. Let $f:(a,b) \to \mathbf{R}$. We say that f is **absolutely integrable** on (a,b) if f is locally integrable on (a,b) and |f| is improperly integrable on (a,b).

We say that f is **conditionally integrable** on (a, b) if f is improperly integrable on (a, b) but |f| is not improperly integrable on (a, b).

Theorem 6.25. If f is absolutely integrable on (a,b), then f is improperly integrable on (a,b) and

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx.$$

Proof. Since $0 \le |f| + f \le 2|f|$, by the **Comparison Theorem**, f + |f| is improperly integrable on (a, b). Hence, by the Linear Property, f = (|f| + f) - |f| is also improperly integrable on (a, b). Moreover, for all c < d in (a, b),

$$\left| \int_{c}^{d} f(x) \, dx \right| \le \int_{c}^{d} |f(x)| \, dx.$$

We then complete the proof by taking the limit as $c \to a^+$ and $d \to b^-$.

The converse of Theorem 6.25 is false.

EXAMPLE 6.3. Prove that $f(x) = \frac{\sin x}{x}$ is conditionally integrable on $[1, +\infty)$.

Proof. Integrating by parts, we have for all d > 1,

$$\int_{1}^{d} \frac{\sin x}{x} \, dx = -\frac{\cos x}{x} \Big|_{1}^{d} - \int_{1}^{d} \frac{\cos x}{x^{2}} \, dx.$$

Since $1/x^2$ is absolutely integrable on $[1, +\infty)$, we have $(\cos x)/x^2$ is absolutely integrable on $[1, +\infty)$; hence $(\cos x)/x^2$ is improperly integrable on $[1, +\infty)$. Taking the limit as $d \to +\infty$ above, we have

$$\int_{1}^{+\infty} \frac{\sin x}{x} \, dx = \cos(1) - \int_{1}^{+\infty} \frac{\cos x}{x^2} \, dx$$

exists and is finite. This proves that $(\sin x)/x$ is improperly integrable on $[1, +\infty)$.

We now show that $|\sin x|/x$ is not improperly integrable on $[1, +\infty)$, which proves that $(\sin x)/x$ is conditionally integrable on $[1, +\infty)$. Note that if $n \in \mathbb{N}$ and $n \geq 2$ then

$$\int_{1}^{n\pi} \frac{|\sin x|}{x} \, dx \ge \sum_{k=2}^{n} \int_{(k-1)\pi}^{k\pi} \frac{|\sin x|}{x} \, dx \ge \sum_{k=2}^{n} \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin x| \, dx = \frac{2}{\pi} \sum_{k=2}^{n} \frac{1}{k}.$$

Hence

$$\lim_{n \to \infty} \int_1^{n\pi} \frac{|\sin x|}{x} \, dx = +\infty.$$

So $|\sin x|/x$ is not improperly integrable on $[1, +\infty)$.