DEPARTAMENTO DE TEORÍA DE LA SEÑAL Y COMUNICACIONES (UPC) E.T.S.E.T.B. COMUNICACIONES ÓPTICAS

Profesores: Gabriel Junyent, Sergio Ruiz, M.J.Soneira y J.Roldán

	encia 100 Mhz, la	_	•	_	cia emitida con una corriente alcular el ancho de banda de	
a) 35,3 Mhz Sol.: b	b) 43,6	Mhz	c) 65,6 Mhz	D) 88,	2 Mhz	
(o rendimiento)	cuántico del dispos	itivo es de 0	,5 y las dimensio	nes de su zona acti	tencia óptica. Si la eficiencia va son 0,1 μm x 1 μm x 10 unidad de volumen.	
a) 3.9 10 ³² Sol.: b	b) 3,3 10 ³²	c) 3	$3,3\ 10^{26}$	d) 3,9 10 ²⁶		
índice de refracc	ión igual a 4, está o ganancia de pico	centrado a la	longitud de onda	de 1550 nm y tien	s de scattering α_s =100 m ⁻¹ e e una anchura espectral de 5 acia (γ) es 5 10 ¹⁸ m ⁻³ y el	
a)9991 m ⁻¹	b)10085 m ⁻¹	c)10	0348 m ⁻¹	d) 10462 m ⁻¹		
Sol.: c						
	ser semicoductor s					
_	tiempo de vida del portador = 0.5 ns Reflectividades = 0.3					
tiempo de vid	a del fotón =1,5 ps			onda de pico = $1,55$		
longitud = 20				scattering = 25 cm ⁻¹		
•	ncia de 3 mW para	I = 30 mA y	de 5 mW para I	= 35 mA. ¿A parti	r de qué corriente se obtiene	
efecto laser?						
a) 15,0 mA Sol.: d	b) 17, 5 mA	c) 2	20,0 mA	d) 22,5 mA		
5. Para el laser de	e la pregunta anteri	or ¿cuánto va	le el índice de ref	racción de la zona a	activa?	
a)3,3 Sol.: c	b)3,6	c)3,8	d)4,0			
	ca con n ₁ =1.5 v Δ=	= 1% v diáme	etro del núcleo de	e 50 um se une a of	tra fibra con n ₁ =1,5 y	
_	_	-		•	aire entre las dos fibras de	
	alcular la pérdida i	•			<u> </u>	
a) 0,17 dB Sol.: c	b) 0,29 dB	c) (),35 dB	d)no hay atenu	uación	
7. ¿Es viable la tocon un laser tra		ta a $\lambda = 1$,	54 μm y anchur	_	ptica monomodo de 10 km, m?. Suponer dispersión de	
a) Si, hasta 15 kı Sol.: d	m b) Si, h	asta 11 km	c) No, sólo	hasta 3 km	d) No, sólo hasta 2 km	

