Analysis and Design of Algorithms

Algorithms
C53230
C23330

Tutorial

Week 8

Which of the following statements is **false**?

- \bigcirc The amortized cost for insert in dynamic tables is $\Theta(1)$.
- In the accounting method, the amortized cost \hat{c}_i is always greater than the actual cost c_i of an operation.
- $\sum_{i=1}^{n} \hat{c}_i \sum_{i=1}^{n} c_i \ge 0$ where \hat{c}_i and c_i are the amortized and actual costs of the i-th operation respectively.

Answer: B is false

- A: For insert in dynamic tables allocate \$3.
 - \$1 used immediately for insert
 - \$2 used later to transfer to new array when array doubled

• **C**:
$$\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \ge 0.$$

- Sum of amortized cost must be larger than sum of total cost (bank balance ≥ 0)
- **B** is false: $\hat{c}_i > c_i$ does not always hold, e.g. insert when table doubled

- Consider a data structure that is based on a queue with four operations:
 - -ENQUEUE(a): Add the element a into the queue
 - -DEQUEUE(): Dequeue a single element from the queue
 - –DELETE(k): Dequeue k elements from the queue
 - –ADD(A): Enqueue all elements in A
- Claim: ENQUEUE, DEQUEUE and DELETE run in amortized O(1) time while ADD runs in amortized O(|A|) time.
- Using accounting method, can you show that these time complexities are correct?
- (Please state the charge for each operation.)

- ENQUEUE(a) is charged \$2,
 - \$1 is for immediate insert
 - \$1 is store in the bank for the future dequeue operation of a
- DEQUEUE() is charged \$0
 - The element is deleted using \$1 from the bank
- DELETE(k) is charged \$0
 - The k elements are deleted using \$k from the bank
- ADD(A) is charged \$(2|A|)
 - There are |A| enqueue. Each enqueue is charged \$2
 - \$1 is for immediate insert
 - \$1 is stored in the bank for the future dequeue operation

- After the insertion of element x (in ENQUEUE and ADD operations), \$1 is assocateed to x in the bank.
- When we dequeue the element x (in DEQUEUE and DELETE operations), we can use \$1 from the bank for dequeue of x.
- Hence, the bank never goes negative.

- Consider a data structure that is based on a queue with four operations:
 - –ENQUEUE(a): Add the element a into the queue
 - -DEQUEUE(): Dequeue a single element from the queue
 - –DELETE(k): Dequeue k elements from the queue
 - –ADD(A): Enqueue all elements in A
- Claim: ENQUEUE, DEQUEUE and DELETE run in amortized O(1) time while ADD runs in amortized O(|A|) time.
- Using Potential method, can you show that these time complexities are correct?
- (Please state your potential function.)

- Let D_i be the data structure after ith operation.
- Let Φ(D_i)=the number of elements in the queue.
- For ENQUEUE(a),
 - -Actual cost $c_i = 1$
 - -The queue has 1 more element after ENQUEUE, hence, $\Phi(D_i) \Phi(D_{i-1}) = 1$.
 - -Amortized cost $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = 2$.

- Let D_i be the data structure after ith operation.
- Let Φ(D_i)=the number of elements in the queue.
- For DEQUEUE(),
 - -Actual cost $c_i = 1$
 - -The queue has 1 less element after ENQUEUE, hence, $\Phi(D_i) \Phi(D_{i-1}) = -1$.
 - -Amortized cost $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = 0$.

- Let D_i be the data structure after ith operation.
- Let Φ(D_i)=the number of elements in the queue.
- For DELETE(k),
 - -Actual cost $c_i = k$
 - -The queue has k less element after ENQUEUE, hence, $\Phi(D_i) \Phi(D_{i-1}) = -k$.
 - -Amortized cost $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = 0$.

- Let D_i be the data structure after ith operation.
- Let $\Phi(D_i)$ =the number of elements in the queue.
- For ADD(A),
 - Actual cost $c_i = |A|$
 - The queue has |A| more element after ENQUEUE, hence, $\Phi(D_i) \Phi(D_{i-1}) = |A|$.
 - Amortized cost $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = 2|A|$.
- In conclusion, ENQUEUE, DEQUEUE and DELETE run in amortized O(1) time while ADD runs in amortized O(|A|) time.


```
Delete x from T:
n \leftarrow n-1;
If (n = 0)
            free(T);
Else
       \mathbf{lf}(n = \operatorname{size}(T)/2)
           T' \leftarrow \text{createTable}(n/2);
            copy(T,T');
            free(T);
           T \leftarrow T'
```

Note, *T* is the dynamic table that supports only deletions.

Using Potential method show that the amortized cost of each Deletion operation is O(1).

(State your potential function.)

Operation Delete(x)	Actual Cost	$\Delta(oldsymbol{\phi})$	Amortized Cost	
Case 1: when table does not shrink	С	С	2 <i>c</i>	
Case 2: when table shrinks to half	cn + c	c(1-n)	2c A quanti	ty that
ϕ at any stage = c (size(T)- n)			is decreasing during	
	express number erms of size and		expensive	