```
<110>
         LG CHEM, LTD.
          Poly(3-hydroxyalkanoate) Block Copolymer Having Shape Memory
<120>
<130>
          LC05PCT042
<150>
          KR 10-2005-0059907
<151>
          2005-07-04
<160>
          18
<170>
          KopatentIn 1.71
<210>
          \overline{18}
<211>
<212>
          DNA
<213>
         Artificial Sequence
<220>
<223>
          Choi3 (PCR Primer)
<400>
                                                                                 18
ccgccstgsa tcaagtac
<210>
          2
20
<211>
<212>
          DNA
<213>
         Artificial Sequence
<220>
<223>
          Choi4 (PCR Primer)
<400>
                                                                                 20
gytsgtgsyg tcyycgttcc
          3
24
<210>
<211>
<212>
          DNA
<213>
         Artificial Sequence
<220>
<223>
          HJ-PHB-N (PCR Primer)
<400>
                                                                                 24
caccatgctg agttgcgctc tagc
<210>
          4
          27
<211>
<212>
          DNA
<213>
          Artificial Sequence
<220>
<223>
          HJ-PHB-C (PCR Primer)
<400>
          4
```

	2F06463	
tcadmsyt	ty acrtarcgkc ctggygc	27
<210> <211> <212> <213>	5 20 DNA Artificial Sequence	
<220> <223>	SCL-1 (PCR Primer)	
<400> gatcgata	5 cc aatctcaccg	20
<210> <211> <212> <213>	6 21 DNA Artificial Sequence	
<220> <223>	SCL-2 (PCR Primer)	
<400> caaagcca	6 gt ggttcgacgt a	21
<210> <211> <212> <213>	7 19 DNA Artificial Sequence	
<220> <223>	SCL-3 (PCR Primer)	
<400> ctgctgaa	7 ac tgttggagc	19
<210> <211> <212> <213>	8 47 DNA Artificial Sequence	
<220> <223>	SD-BA-N (PCR Primer)	
<400> gggggtac	8 ca ataaggagat atacatatgg gtactgcgag caatgcg	47
<210> <211> <212> <213>	9 28 DNA Artificial Sequence	
<220> <223>	BA-C (PCR Primer)	

<400> cccactagt	9 tt cagcgctcga tggccagc	28
<211> <212>	10 28 DNA Artificial Sequence	
<220> <223>	SD-phbC-N (PCR Primer)	
	10 ga cccagaagaa caacagcg	28
<211> <212>	11 39 DNA Artificial Sequence	
<220> <223>	phbC-C (PCR Primer)	
	11 tt cadmscttya crtaacgtcc tggcgcygc	39
<211> <212>	12 756 DNA Pseudomonas sp. HJ-2	
<222>	variation (482) n=A, C, G or T	
	12 tg cgagcaatgc ggcacgtata gctctggtca cco	ggtggtat gggcggtatc 60
ggtacggcg	ga tcagccagcg cctgcatcgg gatggcttca ccg	gtggtggt gggctgtaat 120
ccctactcc	ca gccgcaaggc ttcctggatt gccacgcaac tcg	gaggcggg ctttcacttc 180
cactgcatc	cg actgcgacat caccgactgg gatagcaccc gco	caggcctt cgacatggtg 240
cacgagact	tg tcggcccgat cgatgtattg gtcaacaatg ccq	ggcatcac ccgcgacggc 300
actttccgc	ca agatgtcccc ggaaaactgg aaggcggtga tcg	gataccaa tctcaccggc 360
ctgttcaac	ca caaccaagca ggtcatcgag ggcatgctgg cca	aagggctg gggacgcgtc 420
atcaacatc	ct cctcaatcaa tggccagcga ggccagttcg ggo	cagaccaa ctactccgcg 480
gncaaggct	tg gcattcatgg cttcagcatg gccttggccc gcg	gaggtgag tggcaagggc 540
gtgaccgtc	ca atacggtttc ccctggctac atcaagaccg aca	atgaccgc ggcgattcgc 600
ccggacatc	cc tcgaagacat gattactggc attcccgtgg gcc Page 3	cgtctcgg ccagcccgag 660

720

gagatcgcct cgatcgtggc ctggctggcc tccgatcagt ctgcctatgc caccggcgcc

gacttctcg	g tgaatggcgg	catgaacatg	cagtga			756
<211> <212>	13 1179 DNA Pseudomonas s	sp. HJ-2				
<222>	variation (207) n=A, C, G or	т				
<222>	variation (209) n=A, C, G or	Т				
	13 g tcgttatcgt	cgccgccact	cgcaccgcca	tcggcgcttt	ccaggggagc	60
ctggccggc	a ctcccgccgt	tgaactgggc	gccacggtga	tccgccgcct	gctcgaacag	120
accgctctg	g atagcagtca	ggtggatgaa	gtgatactcg	gccacgtact	caccgccggt	180
gctggcaga	a taccgctcgc	caggcancng	gtcatcgccg	gcctgccaca	cgccgtaccg	240
gcgatgacc	c tgaacaaggt	ctgtggctcc	ggcctgaaag	ccctgcacct	gggcgcccag	300
gccatccgc	t gtggcgatgc	cgaggtggtg	attgccggtg	gcatggagaa	catgagcctg	360
tcgtcctat	g tcctgcccaa	ggcccgcacc	ggcctgcgca	tgggccacgc	gcagctggtc	420
gacagcatg	a tcgtcgacgg	cctgtgggac	gccttcaacg	actaccacat	ggggatcact	480
gccgagaac	c tggtagacaa	gtacggcatc	agccgcgaag	cccaggacga	attcgccgcc	540
gcctcgcag	c agaaagccgt	ggccgccatc	gagaccggtc	gcttccgcga	cgagatcgtc	600
ccggtgagc	a ttccgcagcg	caagggcgag	gcgctgagct	tcgacaccga	cgaacagcca	660
cgcgccggc	a ccaccgccga	gtcgctgggc	aagctgaaac	cggccttcaa	gaacgacggc	720
agcgttact	g ccggcaacgc	ttccagtctc	aacgacggcg	ccgccgcggt	actgctgatg	780
agtgcggca	a aggccgcagc	gcttggtctg	ccagtgctgg	cgaagatcgc	cgcctacgcc	840
aatgccggc	g tcgacccggc	gatcatgggt	atcggaccgg	tgtcggccac	ccgcagttgc	900
ctggagaag	g cgggctggag	tctggcagag	ctggatctga	tcgaggccaa	tgaagccttc	960
gcggcccag	g ccctggccgt	gggtcaggag	ctgggctggg	atgctggcag	ggttaacgtc	1020
aacggcggc	g ccatcgccct	cggccacccc	attggcgcct	ccggctgccg	cgtactggtc	1080
agcctgctg	c atgaaatgct	caggcgcgac	gcgaaaaaag	gcctcgctac	cctgtgtatc	1140
ggtggcggc	c agggcgtggc	gctggccatc	gagcgctga			1179

<210> 14 <211> 1701 <212> DNA <213> Pseudomonas sp. HJ-2	
<400> 14 atggacaacg gacacacctt tgctcact	ac tggtcgggtc aggcgccctt catcgccagc 60
ttcgtcctgc agcaactgcg cttatacg	gtg gcgcaaaata cttggttcag cgggcacgac 120
caaagccagt ggttcgacgt acctgtcg	gag gcgttggagc aactgcaggc ggactaccaa 180
caacagtggg ccgaacttgg ccagcaat	ttg ctgagctgcc agccgttcgc attcagcgat 240
cgtcgcttcg ccagtggcaa ctggagcg	gaa ccgctgttcg gttccctggc tgccttctac 300
ctgctgaatt ccggtttcct gctgaaac	ttg ttggagcttc tccccatcga tgagcagaag 360
ccccgccagc gcttgcgtta cttgatcg	gag caagcgattg ccgcaagcgc cccaagtaac 420
tttctgctga gcaaccctga tgccctgc	caa cgcctagtgg aaacccaggg cgccagccta 480
ctaagtggcc tgttgcatct tgccagtg	gac ctgcaggcag gcaagttgcg ccaatgtgac 540
ttgggcgatt tcgaagtcgg cgtgaatc	ctg gccaccaccc ctggtgccgt ggtactggaa 600
acccctctgt tccagctgat ccagtatt	ccg ccgctcagcg aaacgcaata ccagcggccg 660
atattcatgg tcccgccctg gatcaaca	ag tactacatcc ttgacctcgg gcccgaaaac 720
tctctaatcc gtcatctact ggagcgag	ggc catcaagttt ttctgatgtc ctggcgcaac 780
ttcactcagg aacaggccga catcacct	gg gagcagatca tccaggacgg agtgatcagc 840
gccctgcgca ctacccgggc catcagtg	ggt gagcgccacc tgaactgttt gggtttctgc 900
atcggcggca ccatgctgag ttgcgctc	ta gcggtgctgg cagcgcgtgg cgaccaggac 960
attgccagcc tgagtctatt cgccactt	ett cttgactacc ttgataccgg gccgatcagc 1020
gtcttcgtcg atgagcaact ggtggcct	cac cgtgagcgca ccatcggtgg ccatggtggc 1080
aaatgtggcc tgttccgcgg tgaggaca	atg ggcaatacct tctccctgct gcggcccaac 1140
gagctgtggt ggaactacaa cgtagaca	aaa tatctcaagg ggcagaagcc gctggctctg 1200
ggtctactgt tctggaacaa cgacagca	acc aatctgccgg ggcccctgta ttgctggtat 1260
ctgcgccaca cctacctgca gaacgacc	ttc aaatcggggg agttggatct gtgcggcgtc 1320
aagttggatc tgcgggccat agacgcac	cca gcctacatct tgggaaccca tgacgaccac 1380
atcgtgccct ggcgaagcgc ctatgcca	agc acggaattgc tgggaggtcc aaagcgcttt 1440
gtcctcggcg cctccggcca catcgccg	ggg gtgatcaacc cgccagatag gaacaagcgc 1500
cattactggg tcaatgaaca catagcgo	ccg gtagctgacg actggctgca gggagctcag 1560
cagcattccg gcagttggtg gggtgact	egg ttcgcctggt tgaccggcta tgccggccca 1620
cgcaagcctg ccatcactat gctgggca	agt gccgagtacc ccccgcttga acatgcgcca 1680

ggacgttatg tgaagctatg a					
<210> 15 <211> 3933 <212> DNA <213> Pseudomonas sp. HJ-2					
<220> <221> variation <222> (608) <223> n=A, C, G or T					
<220> <221> variation <222> (1134) <223> n=A, C, G or T					
<220> <221> variation <222> (1136) <223> n=A, C, G or T					
<400> 15 gagctcaatg cgcgccagga ctggtgtgcg aggacaaccc ggcgtcaccc ggggacattg	60				
ttcacatccg caaagcgcca gagacttgcc cgctgttcca aggtcttaat taacgaggaa	120				
tggttaatgg gtactgcgag caatgcggca cgtatagctc tggtcaccgg tggtatgggc	180				
ggtatcggta cggcgatcag ccagcgcctg catcgggatg gcttcaccgt ggtggtgggc	240				
tgtaatccct actccagccg caaggcttcc tggattgcca cgcaactcga ggcgggcttt	300				
cacttccact gcatcgactg cgacatcacc gactgggata gcacccgcca ggccttcgac	360				
atggtgcacg agactgtcgg cccgatcgat gtattggtca acaatgccgg catcacccgc	420				
gacggcactt tccgcaagat gtccccggaa aactggaagg cggtgatcga taccaatctc	480				
accggcctgt tcaacacaac caagcaggtc atcgagggca tgctggccaa gggctgggga	540				
cgcgtcatca acatctcctc aatcaatggc cagcgaggcc agttcgggca gaccaactac	600				
tccgcggnca aggctggcat tcatggcttc agcatggcct tggcccgcga ggtgagtggc	660				
aagggcgtga ccgtcaatac ggtttcccct ggctacatca agaccgacat gaccgcggcg	720				
attcgcccgg acatcctcga agacatgatt actggcattc ccgtgggccg tctcggccag	780				
cccgaggaga tcgcctcgat cgtggcctgg ctggcctccg atcagtctgc ctatgccacc	840				
ggcgccgact tctcggtgaa tggcggcatg aacatgcagt gatgcgccat tcgcgccctc	900				
gctcagccat gacatgaggt gttccagatg atcgaagtcg ttatcgtcgc cgccactcgc	960				
accgccatcg gcgctttcca ggggagcctg gccggcactc ccgccgttga actgggcgcc	1020				
acggtgatcc gccgcctgct cgaacagacc gctctggata gcagtcaggt ggatgaagtg	1080				
atactcggcc acgtactcac cgccggtgct ggcagaatac cgctcgccag gcancnggtc	1140				

Page 6

atcgccggcc	tgccacacgc	cgtaccggcg	atgaccctga	acaaggtctg	tggctccggc	1200
ctgaaagccc	tgcacctggg	cgcccaggcc	atccgctgtg	gcgatgccga	ggtggtgatt	1260
gccggtggca	tggagaacat	gagcctgtcg	tcctatgtcc	tgcccaaggc	ccgcaccggc	1320
ctgcgcatgg	gccacgcgca	gctggtcgac	agcatgatcg	tcgacggcct	gtgggacgcc	1380
ttcaacgact	accacatggg	gatcactgcc	gagaacctgg	tagacaagta	cggcatcagc	1440
cgcgaagccc	aggacgaatt	cgccgccgcc	tcgcagcaga	aagccgtggc	cgccatcgag	1500
accggtcgct	tccgcgacga	gatcgtcccg	gtgagcattc	cgcagcgcaa	gggcgaggcg	1560
ctgagcttcg	acaccgacga	acagccacgc	gccggcacca	ccgccgagtc	gctgggcaag	1620
ctgaaaccgg	ccttcaagaa	cgacggcagc	gttactgccg	gcaacgcttc	cagtctcaac	1680
gacggcgccg	ccgcggtact	gctgatgagt	gcggcaaagg	ccgcagcgct	tggtctgcca	1740
gtgctggcga	agatcgccgc	ctacgccaat	gccggcgtcg	acccggcgat	catgggtatc	1800
ggaccggtgt	cggccacccg	cagttgcctg	gagaaggcgg	gctggagtct	ggcagagctg	1860
gatctgatcg	aggccaatga	agccttcgcg	gcccaggccc	tggccgtggg	tcaggagctg	1920
ggctgggatg	ctggcagggt	taacgtcaac	ggcggcgcca	tcgccctcgg	ccaccccatt	1980
ggcgcctccg	gctgccgcgt	actggtcagc	ctgctgcatg	aaatgctcag	gcgcgacgcg	2040
aaaaaaggcc	tcgctaccct	gtgtatcggt	ggcggccagg	gcgtggcgct	ggccatcgag	2100
cgctgagtga	cgctttcgcg	actctgccgg	acgtgccccc	ctgcacccgc	accgccaggc	2160
tggccgtgcg	cttacgtctc	gacatgatcg	caccgcgggc	gcggcttttg	ttttcatatt	2220
cctggagacg	ccatggacaa	cggacacacc	tttgctcact	actggtcggg	tcaggcgccc	2280
ttcatcgcca	gcttcgtcct	gcagcaactg	cgcttatacg	tggcgcaaaa	tacttggttc	2340
agcgggcacg	accaaagcca	gtggttcgac	gtacctgtcg	aggcgttgga	gcaactgcag	2400
gcggactacc	aacaacagtg	ggccgaactt	ggccagcaat	tgctgagctg	ccagccgttc	2460
gcattcagcg	atcgtcgctt	cgccagtggc	aactggagcg	aaccgctgtt	cggttccctg	2520
gctgccttct	acctgctgaa	ttccggtttc	ctgctgaaac	tgttggagct	tctccccatc	2580
gatgagcaga	agccccgcca	gcgcttgcgt	tacttgatcg	agcaagcgat	tgccgcaagc	2640
gccccaagta	actttctgct	gagcaaccct	gatgccctgc	aacgcctagt	ggaaacccag	2700
ggcgccagcc	tactaagtgg	cctgttgcat	cttgccagtg	acctgcaggc	aggcaagttg	2760
cgccaatgtg	acttgggcga	tttcgaagtc	ggcgtgaatc	tggccaccac	ccctggtgcc	2820
gtggtactgg	aaacccctct	gttccagctg	atccagtatt	cgccgctcag	cgaaacgcaa	2880
taccagcggc	cgatattcat	ggtcccgccc	tggatcaaca	agtactacat	ccttgacctc	2940
gggcccgaaa	actctctaat	ccgtcatcta	ctggagcgag	gccatcaagt	ttttctgatg	3000
tcctggcgca	acttcactca	ggaacaggcc	gacatcacct Page		catccaggac	3060

ggagtgatca	gcgccctgcg	cactacccgg	gccatcagtg	gtgagcgcca	cctgaactgt	3120
ttgggtttct	gcatcggcgg	caccatgctg	agttgcgctc	tagcggtgct	ggcagcgcgt	3180
ggcgaccagg	acattgccag	cctgagtcta	ttcgccactt	ttcttgacta	ccttgatacc	3240
gggccgatca	gcgtcttcgt	cgatgagcaa	ctggtggcct	accgtgagcg	caccatcggt	3300
ggccatggtg	gcaaatgtgg	cctgttccgc	ggtgaggaca	tgggcaatac	cttctccctg	3360
ctgcggccca	acgagctgtg	gtggaactac	aacgtagaca	aatatctcaa	ggggcagaag	3420
ccgctggctc	tgggtctact	gttctggaac	aacgacagca	ccaatctgcc	ggggcccctg	3480
tattgctggt	atctgcgcca	cacctacctg	cagaacgacc	tcaaatcggg	ggagttggat	3540
ctgtgcggcg	tcaagttgga	tctgcgggcc	atagacgcac	cagcctacat	cttgggaacc	3600
catgacgacc	acatcgtgcc	ctggcgaagc	gcctatgcca	gcacggaatt	gctgggaggt	3660
ccaaagcgct	ttgtcctcgg	cgcctccggc	cacatcgccg	gggtgatcaa	cccgccagat	3720
aggaacaagc	gccattactg	ggtcaatgaa	cacatagcgc	cggtagctga	cgactggctg	3780
cagggagctc	agcagcattc	cggcagttgg	tggggtgact	ggttcgcctg	gttgaccggc	3840
tatgccggcc	cacgcaagcc	tgccatcact	atgctgggca	gtgccgagta	cccccgctt	3900
gaacatgcgc	caggacgtta	tgtgaagcta	tga			3933

```
<211>
<212>
           PRT
<213>
           Pseudomonas sp. HJ-2
<220>
<221>
           variation
<222>
           (161)
           Xaa = Asp, Ala, Gly or Val
<223>
Met Gly Thr Ala Ser Asn Ala Ala Arg Ile Ala Leu Val Thr Gly Gly 1 5 10 15
Met Gly Gly Ile Gly Thr Ala Ile Ser Gln Arg Leu His Arg Asp Gly 20 25 30
Phe Thr Val Val Gly Cys Asn Pro Tyr Ser Ser Arg Lys Ala Ser 35 40 45
Trp Ile Ala Thr Gln Leu Glu Ala Gly Phe His Phe His Cys Ile Asp
50 55 60
Cys Asp Ile Thr Asp Trp Asp Ser Thr Arg Gln Ala Phe Asp Met Val65 \hspace{1cm} 70 \hspace{1cm} 75 \hspace{1cm} 80
His Glu Thr Val Gly Pro Ile Asp Val Leu Val Asn Asn Ala Gly Ile
85 90 95
Thr Arg Asp Gly Thr Phe Arg Lys Met Ser Pro Glu Asn Trp Lys Ala 100 105 110
                                               Page 8
```

16 251

<210>

ValIle
118Asp
118Thr
128Asp
128Leu
138Thr
128Gly
138Leu
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138Hee
138<t

```
<210>
          17
<211>
          392
<212>
          PRT
<213>
          Pseudomonas sp. HJ-2
<220>
<221>
          variation
<222>
          (69)
          Xaa = Glu or Asp
<220>
          variation
<221>
<222>
          (70)
<223>
          Xaa = Gln, Pro, Arg or Leu
```

Met The Glu Val Val Ile Val Ala Ala Thr Arg Thr Ala Ile Gly Ala
Phe Gln Gly Ser Leu Ala Gly Thr Pro Ala Val Glu Leu Gly Ala Thr
Val Ile Arg Arg Leu Leu Glu Gln Thr Ala Leu Asp Ser Ser Gln Val
Asp Glu Val Ile Leu Gly His Val Leu Thr Ala Gly Ala Gly Arg Ile
Pro Leu Ala Arg Xaa Xaa Val Ile Ala Gly Leu Pro His Ala Val Pro
65 Ala Met Thr Leu Asn Lys Val Cys Gly Ser Gly Leu Lys Ala Leu His

Leu Gly Ala Gln Ala Ile Arg Cys Gly Asp Ala Glu Val Val Ile Ala 100 105 110 Gly Gly Met Glu Asn Met Ser Leu Ser Ser Tyr Val Leu Pro Lys Ala 115 120 125 Arg Thr Gly Leu Arg Met Gly His Ala Gln Leu Val Asp Ser Met Ile 130 135 140 Val Asp Gly Leu Trp Asp Ala Phe Asn Asp Tyr His Met Gly Ile Thr 145 150 155 160 Ala Glu Asn Leu Val Asp Lys Tyr Gly Ile Ser Arg Glu Ala Gln Asp 165 170 175 Glu Phe Ala Ala Ala Ser Gln Gln Lys Ala Val Ala Ala Ile Glu Thr 180 185 190 Gly Arg Phe Arg Asp Glu Ile Val Pro Val Ser Ile Pro Gln Arg Lys 195 200 205 Gly Glu Ala Leu Ser Phe Asp Thr Asp Glu Gln Pro Arg Ala Gly Thr 210 215 220 Thr Ala Glu Ser Leu Gly Lys Leu Lys Pro Ala Phe Lys Asn Asp Gly 235 235 240 Ser Val Thr Ala Gly Asn Ala Ser Ser Leu Asn Asp Gly Ala Ala Ala 245 250 255 Val Leu Leu Met Ser Ala Ala Lys Ala Ala Ala Leu Gly Leu Pro Val 260 265 270 Leu Ala Lys Ile Ala Ala Tyr Ala Asn Ala Gly Val Asp Pro Ala Ile 275 280 285 Met Gly Ile Gly Pro Val Ser Ala Thr Arg Ser Cys Leu Glu Lys Ala 290 295 300 Gly Trp Ser Leu Ala Glu Leu Asp Leu Ile Glu Ala Asn Glu Ala Phe 305 310 315 Ala Ala Gln Ala Leu Ala Val Gly Gln Glu Leu Gly Trp Asp Ala Gly 325 330 335 Arg Val Asn Val Asn Gly Gly Ala Ile Ala Leu Gly His Pro Ile Gly 340 345 350 Ala Ser Gly Cys Arg Val Leu Val Ser Leu Leu His Glu Met Leu Arg 355 360 365 Arg Asp Ala Lys Lys Gly Leu Ala Thr Leu Cys Ile Gly Gly Gln 370 375 380 Gly Val Ala Leu Ala Ile Glu Arg 385 390 <210> <211> 566 <212> PRT <213> Pseudomonas sp. HJ-2

Met Asp Asn Gly His Thr Phe Ala His Tyr Trp Ser Gly Gln Ala Pro 1 1 5 15 Phe Ile Ala Ser Phe Val Leu Gln Gln Leu Arg Leu Tyr Val Ala Gln 20 25 30 Asn Thr Trp Phe Ser Gly His Asp Gln Ser Gln Trp Phe Asp Val Pro
35 40 45 Val Glu Ala Leu Glu Gln Leu Gln Ala Asp Tyr Gln Gln Gln Trp Ala 50 55 60 Glu Leu Gly Gln Gln Leu Leu Ser Cys Gln Pro Phe Ala Phe Ser Asp 65 70 75 80 Arg Arg Phe Ala Ser Gly Asn Trp Ser Glu Pro Leu Phe Gly Ser Leu
85 90 95 Ala Ala Phe Tyr Leu Leu Asn Ser Gly Phe Leu Leu Lys Leu Leu Glu 100 105 110 Leu Leu Pro Ile Asp Glu Gln Lys Pro Arg Gln Arg Leu Arg Tyr Leu 115 120 125 Ile Glu Gln Ala Ile Ala Ala Ser Ala Pro Ser Asn Phe Leu Leu Ser 130 135 140 Asn Pro Asp Ala Leu Gln Arg Leu Val Glu Thr Gln Gly Ala Ser Leu 145 150 155 160 Leu Ser Gly Leu Leu His Leu Ala Ser Asp Leu Gln Ala Gly Lys Leu 165 170 175 Arg Gln Cys Asp Leu Gly Asp Phe Glu Val Gly Val Asn Leu Ala Thr 180 185 190 Thr Pro Gly Ala Val Val Leu Glu Thr Pro Leu Phe Gln Leu Ile Gln 195 200 205 Ser Pro Leu Ser Glu Thr Gln Tyr Gln Arg Pro Ile Phe Met Val 210 215 220 Pro Pro Trp Ile Asn Lys Tyr Tyr Ile Leu Asp Leu Gly Pro Glu Asn 225 230 235 240 Ser Leu Ile Arg His Leu Leu Glu Arg Gly His Gln Val Phe Leu Met 245 250 255 Ser Trp Arg Asn Phe Thr Gln Glu Gln Ala Asp Ile Thr Trp Glu Gln
260 265 270 Ile Ile Gln Asp Gly Val Ile Ser Ala Leu Arg Thr Thr Arg Ala Ile 275 280 285 Ser Gly Glu Arg His Leu Asn Cys Leu Gly Phe Cys Ile Gly Gly Thr 290 295 300 Met Leu Ser Cys Ala Leu Ala Val Leu Ala Ala Arg Gly Asp Gln Asp 305 310 315 320 Ile Ala Ser Leu Ser Leu Phe Ala Thr Phe Leu Asp Tyr Leu Asp Thr 325 330 335 Page 11

Gly Pro Ile Ser Val Phe Val Asp Glu Gln Leu Val Ala Tyr Arg Glu 340 345 350 Arg Thr Ile Gly Gly His Gly Gly Lys Cys Gly Leu Phe Arg Gly Glu 355 360 365 Met Gly Asn Thr Phe Ser Leu Leu Arg Pro Asn Glu Leu Trp Trp 370 375 380 Asn Tyr Asn Val Asp Lys Tyr Leu Lys Gly Gln Lys Pro Leu Ala Leu 385 390 395 400 Gly Leu Leu Phe Trp Asn Asn Asp Ser Thr Asn Leu Pro Gly Pro Leu 405 410 415Tyr Cys Trp Tyr Leu Arg His Thr Tyr Leu Gln Asn Asp Leu Lys Ser 420 425 430 Gly Glu Leu Asp Leu Cys Gly Val Lys Leu Asp Leu Arg Ala Ile Asp 435 440 445 Ala Pro Ala Tyr Ile Leu Gly Thr His Asp Asp His Ile Val Pro Trp 450 460Arg Ser Ala Tyr Ala Ser Thr Glu Leu Leu Gly Gly Pro Lys Arg Phe 465 470 475 480 Val Leu Gly Ala Ser Gly His Ile Ala Gly Val Ile Asn Pro Pro Asp 485 490 495 Arg Asn Lys Arg His Tyr Trp Val Asn Glu His Ile Ala Pro Val Ala 500 510 Asp Asp Trp Leu Gln Gly Ala Gln Gln His Ser Gly Ser Trp Trp Gly 515 520 525 Asp Trp Phe Ala Trp Leu Thr Gly Tyr Ala Gly Pro Arg Lys Pro Ala 530 540 Ile Thr Met Leu Gly Ser Ala Glu Tyr Pro Pro Leu Glu His Ala Pro 545 550 555 560 Gly Arg Tyr Val Lys Leu 565