JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering Electrical Science-2 (15B11EC211) Tutorial Sheet: 8

- Q.1 [CO3] Three scattering mechanisms are present in a particular semiconductor material. If only the first scattering mechanism were present, the mobility would be μ_1 =2000 cm^2/V-s, , if only the second mechanism were present, the mobility would be μ_2 =1500 cm^2/V-s, and if only the third mechanism were present, the mobility would be μ_3 =500cm^2/V-s . what is net mobility μ ?
- Q.2 [CO3] Calculate the drift current density in a semiconductor for a given electric field. Consider a germanium sample at T = 300K with doping concentration of Nd = 0 and $Na = 10^{16}$ cm⁻³. Assume complete ionization and electron and hole mobilities are 3900 cm²/V·sec and 1900 cm²/V·sec. The applied electric field is E = 50 V/cm.
- Q.3 [CO3] Calculate the free electron concentration, mobility and drift velocity of electrons in aluminium wire of length of 5 m and resistance of $0.06~\Omega$ carrying a current of 15 A, assuming that each aluminium atom contributes 3 free electrons for conduction. [Given: Aluminium Parameters: Resistivity:- $2.7 \times 10^{-8}~\Omega$ -m, Atomic Weight =26.98, Density = $2.7 \times 10^3~\text{Kg/m}^3$, Avagadro number = 6.025×10^{23} .
- Q.4 [CO3] At 300 K, find the diffusion coefficient of electrons in silicon. Given the mobility of electrons (μ _n) is 0.21m²/V-s.
- Q.5 [CO3] The Hall coefficient (R_H) of a semiconductor is 3.22×10^{-4} m³ C⁻¹. Its resistivity is 8.50×10^{-3} Ω -m. Calculate the mobility and carrier concentration of the carriers.
- Q.6 [CO3] Mobilities of electrons and holes in a sample of intrinsic germanium at 300 K are $0.36~\text{m}^2/\text{V}$ -s and $0.17~\text{m}^2/\text{ V}$ -s, respectively. If the resistivity of the specimen is $2.12~\Omega$ -m, compute the intrinsic concentration.
- Q.7 [CO3] A silicon wafer has a 2-inch diameter and contains 10^{14} cm⁻³ electrons with a mobility of 1400 cm² /V-sec. How thick should the wafer be so that the resistance between the front and back surface equals 0.1 Ohm?
- Q.8 [CO3] The phosphorous (donor) concentration in a region of a silicon crystal varies linearly from a concentration of $n_0 = 10^{14} \text{cm}^{-3}$ at x = 0 mm to a concentration of $n_1 = 10^{17} \text{cm}^{-3}$ at x = 1 mm. The diffusion constant for electrons is $D_p = 22.5 \text{cm}^{2/s}$, the diffusion constant for holes is $D_p = 5.2 \text{cm}^{2/s}$, and the temperature is 300 K. What is the diffusion current density in the positive x-direction?

Q.9 [CO3] Consider n-type silicon with Nd = 10^{15}cm^{-3} at T = 300K. A light source is turned on at t = 0. The source illuminates the semiconductor uniformly, generating carriers at the rate of Gn = $\text{Gp} = 10^{19} \text{cm}^{-3} \text{s}^{-1}$. There is no applied field.

- (a) Write down the continuity equation and solve it to find the expression for the excess minority carrier concentration, $\delta p(t)$, as a function of time for $t \ge 0$.
- (b) As $t \to \infty$, the system will approach steady state. When the steady state excess carrier concentration is $5 \times 10^{13} \text{cm}^{-3}$, find the minority carrier lifetime, τp .

Q.10 [CO3] A uniformly-doped n-type silicon sample has $N_D=10^{18}$ 1/cm³. At room temperature, $n_i=1.45\times 10^{10}$ 1/cm³. Use $\mu_n=1200$ cm²/V.s, $\mu_p=400$ cm²/V.s. The carrier lifetimes are $\tau_n=\tau_p=10^{-7}$ sec.

Let a fixed excess hole concentration $\Delta p_n = \delta p_n$ (x=0) be injected and maintained at one edge of the sample, at x=0. Then the excess hole concentration profile throughout the sample will be given by

$$\delta p(x) = \Delta p_n \exp(-x/L_p)$$

Find the Δp_n level required to maintain a hole diffusion current density $J_{p,diff}=10^{-5}~A/cm^2=10~\mu A/cm^2$ at the edge x=0 at room temperature (T = 300 K, kT/q $\approx 0.026~V$).