Model Documentation of the 'Classical example'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^2 u$$
 $\in \mathbb{R}^1 w \in \mathbb{R}^2 z$ $\in \mathbb{R}^2 y \in \mathbb{R}^1$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t) \tag{1c}$$

Outputs: z

2.1 Exemplary parameter values

Symbol	Value
A	$\begin{bmatrix} 0 & 1.0 \\ -1.0 & 0 \end{bmatrix}$
B	$\begin{bmatrix} 0 \\ 1.0 \end{bmatrix}$
B_1	$\begin{bmatrix} 0 \\ 1.0 \end{bmatrix}$
C_1 C	$\begin{bmatrix} 1.0 & 0 \\ 0 & 0 \end{bmatrix}$
C	$\begin{bmatrix} 0 & 1.0 \end{bmatrix}$
D_{11}	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
D_{12}	$\begin{bmatrix} 0 \\ 1.0 \end{bmatrix}$
D_{21}	[0 0]

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP. The original description was:

 $\rm NN2$ Classical example W. S. Levine and M. Athans, "On the determination of the optimal constant output feedback gains for linear multivariable systems", TOAC, Vol. 15, Nr. 8, pp. 44-48

4 Simulation

Figure 1: Simulation of the Classical example.

References

[1] . S. Levine and M. Athans, "On the determination of the optimal constant output feedback gains for linear multivariable systems", TOAC, Vol. 15, Nr. 8, pp. 44-48