Exercice 1 - (Vandermonde)

Soient $a_0, a_1, ..., a_n$ des réels non nuls deux à deux distincts. On note $\mathbb{R}_n[X]^* = \{f : \mathbb{R}_n[X] \mapsto \mathbb{R}, \text{ où } f \text{ est linéaire}\}$, le dual de $\mathbb{R}_n[X]$ qui est de dimension finie.

- 1. Montrer que $V(a_0,\ldots,a_n)=\begin{vmatrix}a_0&a_0^2&\ldots&a_0^{n+1}\\ \vdots&\vdots&\vdots&\vdots\\ a_n&a_n^2&\ldots&a_n^{n+1}\end{vmatrix}=a_0a_1...a_n\prod_{i>j}(a_i-a_j).$ Que dire de la valeur de ce déterminant?
- 2. Soit $j \in [0, n]$. On note $F_j : \mathbb{R}_n[X] \mapsto \mathbb{R}$ l'application définie par $F_j(P) = \int_0^{a_j} P(x) dx$. Montrer que $(F_0, F_1, ..., F_n)$ est une base de $\mathbb{R}_n[X]^*$.

Exercice 2 - (Polynôme de matrice)

Soit
$$M = \begin{pmatrix} A & A \\ \hline 0 & A \end{pmatrix}$$
.

- 1. Soit $P \in \mathbb{R}[X]$. Que vaut P(M).
- 2. CNS pour que M soit diagonalisable.

Exercice 3 – (Intersection de deux spectres)

Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})$. Montrer que $\chi_A(B) \in GL_n(\mathbb{C}) \Leftrightarrow Sp(A) \cap Sp(B) = \emptyset$

Exercice 4 – (Diagonalisation d'un endomorphisme)

Soit $\phi: M \in \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto {}^tM. \phi$ est-elle diagonalisable?

Exercice 5 – (Déterminant circulant)

On considère la matrice J définie telle que

$$J = \begin{pmatrix} 0 & 1 & & & (0) \\ \vdots & \ddots & \ddots & & \\ 0 & & \ddots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

- 1. Montrer que J est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$
- 2. Application: Exprimer

$$w = \begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_1 \\ a_1 & \dots & a_{n-1} & a_0 \end{vmatrix}$$

Exercice 6 - (Polynômes caractéristiques)

Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})$. On souhaite montrer que AB et BA ont même polynôme caractéristique.

- 1. Montrer le résultat dans le cas où $A \in GL_n(\mathbb{R})$.
- 2. Montrer que $GL_n(\mathbb{R})$ est dense dans $M_n(\mathbb{R})$.
- 3. Conclure.
- 4. Montrer que $\forall p \in \mathbb{N}, \ \chi_{(AB)^p} = \chi_{(BA)^p}$

Exercice 7 – $(Dans \mathbb{C})$

Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que 0 est la seule valeur propre.

- 1. Montrer de deux façons différentes que $A^n=0$
- 2. Calculer $\det(A + In)$.
- 3. Soit $M \in GL_n(\mathbb{C})$ commutant avec A. Calculer $\det(A+M)$.
- 4. Inversement, quelles sont les matrices A telles que : $\forall M \in GL_n(\mathbb{C}), AM = MA \Leftrightarrow \det(A+M) = \det(M)$

Exercice 8 - (Nilpotence)

Soit $A \in \mathcal{M}_n(\mathbb{C})$.

- 1. Soit B une matrice nilpotente de $M_n(\mathbb{C})$. Que dire du spectre de B?
- 2. Déterminer les polynômes P pour lesquels la matrice P(A) est nilpotente.

Exercice 9 - (Convergence uniforme?)

Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie sur [0,1] par $f_n(x) = \frac{2^n x}{1+2^n n x^2}$.

- 1. Etudier la CVS.
- 2. Calculer $I_n = \int_0^1 f_n(t)dt$ et la limite de I_n . En déduire que la suite (f_n) n'est pas uniformément convergente sur [0,1].
- 3. Prouver la non CVU d'une autre façon.

Questions de cours

- Polynôme caractéristique d'une matrice compagnon.
- Existence d'un polynome annulateur d'un endomorphisme d'espace vectoriel de dimension finie.
- $\frac{\phi : \mathbb{K}_n[X] \to \mathbb{K}^{n+1}}{P \mapsto (P(x_0), ..., P(x_n))} \text{ est un isomorphisme.}$ Conséquences (Lagrange).