Plan de cours Micro-organismes 53

- Cours 1. Microbiologie générale
- Cours 2. Nutrition bactéries
- Cours 3. Croissance bactérienne
- Cours 4. Métabolismes
- Cours 5. Taxonomie

Cours 4 - Métabolisme

- Rappels des notions des métabolisme
- Métabolisme de glucides
 - Fermentation
 - Respiration
- Métabolisme de lipides
- Métabolisme protéines

Métabolisme = ensemble des réactions biochimiques d'un organisme

Catabolisme

Anabolisme

Métabolisme : Vocabulaires

Thermodynamique

```
H = G + TS
```

H: énergie totale (enthalpie)

G: énergie libre ou utilisable

5 : énergie non utilisable (entropie)

T: température absolue (Kelvin: K = °C + 273)

Dans une réaction chimique :
$$\Delta G = \Delta H - T\Delta S$$

Introduction au métabolisme

- \(\alpha \in 0 \): libération l'énergie : réaction exergonique
 \(\text{Catabolisme} \) (est l'ensemble des réactions de dégradations moléculaires de l'organisme considéré)
- AG > 0 : besoin d'énergie : réaction endergonique
 Anabolisme (l'ensemble des <u>réactions chimiques</u> des organismes vivants permettant la synthèse de <u>métabolites</u> essentiels)

Métabolisme : Vocabulaires

Introduction au métabolisme

ATP (Adénosine triphosphate) = monnaie énergétique

Cours 4: Métabolisme

L'hydrolyse des liaisons phosphate de l'ATP libère de l'énergie.

Phosporylation

l'addition d'un groupe phosphate (-PO4) à une protéine

Réactions d'oxydation-réduction : un substrat donne des électrons (oxidation) un substrat reçoit des électrons (réduction)

Réactions d'oxydation-réduction :

NAD: Nicotinamide Adénine Dinucléotide

NADPH: Nicotinamide Adénine Dinucléotide Phosphate

Oxydo-réduction : Déshydrogénation

Réactions d'oxydation-réduction :

FAD: Flavine Adénine Dinucléotide

Glycolyse (Embden-Meyerhof)

Glycolyse (Embden-Meyerhof) suite...

Glycolyse: bilan


```
Bilan ATP pour un glucose

Amorçage et consommation = - 2ATP

Remboursement = + 4ATP

2NAD/NADH,H+ (2x3ATP) = + 6ATP

Total = 8ATP

Bilan

1 Glucose + 2ADP + 2NAD+ -----> 2 pyruvates + 2ATP + 2/NADH,H+

1 Glucose + 2ADP + 2NAD+ ----> 2 pyruvates + 8ATP
```

Voie des pentoses phosphates

1. Phase oxydative

2. Phase non oxydative (réversible)

3. Rôle du Shunt des Pentoses

+ 2ADP + 2NAD+ ----> 2 pyruvates + 2ATP + 2/NADH,H+

Voie des pentoses phosphates

Bilan

Rappel:

NADPH: Nicotinamide Adénine Dinucléotide Phosphate

NAD : Nicotinamide Adénine Dinucléotide

Voie Entner-Doudoroff

1. Phosphorylation du glucose

- Oxydation du glucose-6phosphate
- 3. Hydratation du 6phosphogluconolactone
- 4. Déshydratation du 6phosphogluconate
- Synthèse du premier pyruvate
- 6. Synthèse du second pyruvate Cours 4 : Métabolisme

Bilan: Voie Entner-Doudoroff

1glucose consommé → 2 pyruvate + 1 ATP + 2 NAD(P)H

Métabolisme chez les microorganismes

Nutriments/Sources d'énergie/02

Métabolismes des Glucides
Fermentation/Respiration
Métabolismes des Protéines
Métabolismes des Lipides

Enzymes

Divers produits

Métabolisme des glucides

LES GLUCIDES (POLYSACCHARIDE)

La classe des glucides comprend:

Les monosaccharides

Les disaccharides

Les polysaccharides (de réserve ou structuraux)

LES POLYSACCHARIDE (GLUCIDES)

Monosaccharides

LES POLYSACCHARIDES (GLUCIDES)

Disaccharides

LES POLYSACCHARIDES (GLUCIDES)

Polysaccharides de réserve

Ils sont hydrolysés en fonction des besoins de la cellule en monosaccharides.

Amidon

Glycogène

Métabolisme de glucides

Fermentation et Respiration

Fermentation

Fermentation alcoolique:

En absence d'O2

- Conversion l'acide pyruvique en éthanol et CO₂
- Régénération de 2NAD+ et production de 2ATP

Bilan: Glucose + 2ADP + 2Pi > 2 ethanol + $2CO_2 + 2ATP$

Exemple de Fermentation alcoolique

Les boissons alcoolisées

principale réaction de fermentation

Exemple: le vin

Fermentation alcoolique par Levures Saccharomyces:

Fructose et glucose \longrightarrow 2 éthanol + CO₂

100 à 250 g/L 60 à 170 g/L

(6 à 17%)

Exemple de Fermentation alcoolique

Exemple : la bière

1 ère étape :

Amidon — sucres simples

- hydrolyse enzymatique de l'amidon jus sucré : le brassage
- fermentation alcoolique du jus sucré

Saccharomyces

■ 2 ère étape : sucres simples → alcool + CO2

Ajout nécessaire des micro-organismes après le brassage

Saccharomyces cerevisiae: levure de bière

Saccharo myces carlsbergensis

Production très importante de CO2 : mousse abondante

Exemple: le pain

Levain ajouté à la pâte pendant le pétrissage :

Lactobacillus Saccharomyces

- •Fait lever la pâte grâce au CO2
- Modification également du gluten et ainsi de la texture de la pâte Cuisson : l'alcool s'évapore les bulles de CO2 persistent

Fermentation

2

Fermentation lactique:

En absence d'02

2.1. Homofermentaire

- Conversion de l'acide pyruvique en acide lactique
- Régénération de 2NAD+ et production de 2ATP

Bilan: Glucose + 2ADP + 2Pi > 2 Lactates + 2ATP

Fermentation lactique:

2.2. Hétérofermentaire

Fermentation lactique:

2.3. Fermentation Mixtes

Exemples de Fermentation lactique

Cours 4: Métabolisme

Autres applications de fermentation alcoolique

L'industrie chimique

Production des solvants

Fermentation acétone-butylique

→ acétone + butanol +éthanol ou isopropanol

Substrats végétaux : maïs et autres céréales, pommes de terre, mélasse de canne à sucre, cellulose

Bactéries : Clostridium dont C. acetobutylicum autres bacilles Gram+ et Gram –

L'industrie chimique

Biocarburants:

Production d'éthanol par des levures (Saccharomyces) et/ou des bactéries

« Filière sucre » : substrats végétaux contenant des (poly)saccharides : jus de betterave, mélasse de canne à sucre , amidons de blé, maïs ..., paille, bois

Biogaz

Fermentation méthanique → production de méthane (65%) + CO2 (34%)

Fermentation industrielle en « digesteur » par addition de bactéries

Substrats végétaux et animaux riches en glucides (amidon, cellulose) : fumiers, lisiers, boues d'épuration, déchets agricoles, ordures ménagères

Respiration

Cycle de l'acide citrique (Krebs) l'acétyl CoA sous forme de CO2

- Chaîne respiratoire : chez eucaryotes max ATP
- Respiratoire aérobie
 Respiratoire anaérobie

Chez bactéries

Cycle de Krebs

Un cycle en 9 étapes qui utilise l'acetate de acetyl-CoA et le transforme en CO₂

Bilan ATP complet du catabolisme d'un glucose

```
1 glucose > 2 pyruvates
Consommation
                                        2 ATP
Production
                                       4 ATP
                      2 NADH,H+
                                        6 ATP
                                                             + 8 ATP
2 pyruvates > 2 acétylCoA
Production
                       2 x NADH,H+
                                      + 6 ATP
                                                             + 6 ATP
2 acétylCoA > 2 Oxaloacétates
Production
                      2 x GTP
                                      + 2 ATP
                      2 x 3NADH,H+ + 18 ATP
                      2 x FADH2
                                                             + 22 ATP
                                      + 4 ATP
Bilan global
                                      + 38 ATP
```

Chaîne respiratoire (transport d'électrons) chez eucaryotes

Complexe I: NADH-ubiquinone réductase;

Complexe II : Succinate-ubiquinone réductase ;

Complexe III : Ubiquinone-cytochrome C réductase ;

Complexe IV : Cytochrome oxydase ;

Complexe V: ATP synthase.

Chaîne respiratoire (transport d'électrons) chez eucaryotes

Animation

http://highered.mcgraw-

hill.com/olcweb/cgi/pluginpop.cgi?it=swf::535::535::/sites/dl/free/0072437316/120071/bio11.swf:

:Electron%20Transport%20System%20and%20ATP%20Synthesis

Exemple de Saccharomyces cerevisiea

Respiration chez Procaryotes (bactéries)

Chaînes respiratoires : séquences d'enzymes

- Localisation chez les bactéries : enzymes pour la plupart fixées sur la membrane cytoplasmique
- Composition différente selon :
 - le nombre et la nature des enzymes et coenzymes
 - ◆ l'accepteur final d'électrons : oxygène ou autre oxydant
- 4 chaînes principales chez les bactéries
 - ◆ 1 chaîne aérobie avec cyt. O
 - ◆ 1 chaîne aérobie avec cyt c + cyt aa₃
 - 1 chaîne anaérobie avec nitrate réductase A
 - 1 chaîne anaérobie avec sulfate réductase

Enzymes Respiratoires

Respiration en aérobie chez bactéries

1ercas: Coenzymes: FAD/CoQ/cyt b/cyt o

$$O_2$$
 accepteur final d'électrons $2 H^+ + 2 e^- + 1/2 O_2 \longrightarrow H_2 O$

Coenzymes FAD/CoQ/cyt b/ cyt c / cyt aa₃ 2èmecas:

O2 accepteur final d'électrons

2 H
$$^+$$
 + 2 e $^-$ + 1/2 O_2 \longrightarrow H_2 O

Respiration en anaérobie chez bactéries

Respiration nitrate :

Coenzymes : FAD/CoQ/cyt b/Nitrate réductase

$$NO_3^- + 2 H^+ + 2 e^- \longrightarrow NO^{2-} + H_2 O \longrightarrow N^2$$

Respiration sulfate :

Coenzymes : FAD/CoQ/cyt b/Sulfate réductase

$$SO_4^{2-} + 2 H^+ + 2 e^- \longrightarrow S \longrightarrow H_2 S$$

MISE EN EVIDENCE DU METABOLISME ENERGETIQUE

- Oxydase
- Nitrate réductase
- Catalase

```
\begin{array}{ccc} 2 \text{ H}_2\text{O}_2 & \longrightarrow & 2 \text{ H}_2\text{O} + \text{O}_2 \\ \hline \text{Catalase (décomposition rapide)} \end{array}
```

Résumé de Métabolisme des Glucides

Autre source de carbone Métabolisme de Citrate

- Source courante de lipides
 - Acides gras
 - Triglycérides (Triacyglycérole)
 - Esters

- Source courante de lipides
 - Acides gras

Formule générale des acides carboxyliques

Formule développée d'un acide gras saturé (acide palmitique)

Formule topologique d'un acide gras insaturé (acide oléique)

- Source courante de lipides
 - Triglycérides (Triacyglycérole)

- Source courante de lipides
 - Esters

Source courante de lipides

La β -oxydation des acides gras

Résultat en ATP

8 acétylCoA 96 ATP

7 QH2 14 ATP

7 NADH 21 ATP

131 ATP

Activation d'un palmitate <u>- 2 ATP</u>

Total 129 ATP

exemples

- Production d'arômes
- Dégradation des déchets
- Nettoyage

Exemple de production d'arômes

Catabolisme des protéines et des acides aminés

Catabolisme des protéines et des acides aminés

acides aminés

Une protéine est une macromolécule biologique composée par une ou plusieurs chaîne(s) d'acides aminés liés entre eux par des liaisons peptidiques

Catabolisme des protéines et des acides aminés

Métabolisme des acides aminés

exemples

- Fermentation
- Production des antimicrobiens
- Nettoyage

III - BIOTECHNOLOGIES

- Antibiotiques
- Vaccins
- Vitamines

Résumé:

- Métabolisme de glucides
 Devenir du pyruvate
 - Fermentation: bilan
 - · alcoolique
 - lactiques
 - Homofermentaire
 - Hétéfermentaire
 - Respiration
 - · en aérobie
 - · en anaérobie
- Métabolisme de lipides
- Métabolisme de protéines