```
Assignment 5:
```

Take all the columns in mall_customers.csv

gender age annual income spending score

perform label encoding on gender

train your data

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

```
df=pd.read_csv('/content/Mall_Customers.csv')
df
```

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)		
0	1	Male	19	15	39	ıl.	
1	2	Male	21	15	81		
2	3	Female	20	16	6		
3	4	Female	23	16	77		
4	5	Female	31	17	40		
195	196	Female	35	120	79		
196	197	Female	45	126	28		
197	198	Male	32	126	74		
198	199	Male	32	137	18		
199	200	Male	30	137	83		
200 rows × 5 columns							

print(df.head())
print(df.tail())

	CustomerID	Genre	Age .	Annual	Income	(k\$)	Spending Score	(1-100)
0	1	Male	19			15		39
1	2	Male	21			15		81
2	3	Female	20			16		6
3	4	Female	23			16		77
4	5	Female	31			17		40
	CustomerI	D Genre	Age	Annua	al Incom	ne (k\$) Spending Sco	re (1-100)
19	5 19	6 Female	35			12	0	79
19	5 19	7 Female	45			12	6	28
19	7 19	8 Male	32			12	6	74
19	8 19	9 Male	32			13	7	18
19	9 20	0 Male	30			13	7	83

print(df.shape)

(200, 5)

```
print(df.info())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
Column Non Note | Note Note | N

#	Column	Non-Null Count	Dtype			
0	CustomerID	200 non-null	int64			
1	Genre	200 non-null	object			
2	Age	200 non-null	int64			
3	Annual Income (k\$)	200 non-null	int64			
4	Spending Score (1-100)	200 non-null	int64			
dtynes: int64(4), object(1)						

memory usage: 7.9+ KB

None

df.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000

df.corr()

<ipython-input-9-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future vers
df.corr()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	
CustomerID	1.000000	-0.026763	0.977548	0.013835	ıl.
Age	-0.026763	1.000000	-0.012398	-0.327227	
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903	
Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000	

sns.heatmap(df.corr())

<ipython-input-10-aa4f4450a243>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver sns.heatmap(df.corr()) <Axes: >

df.isnull().any()

CustomerID False
Genre False
Age False
Annual Income (k\$) False
Spending Score (1-100) False
dtype: bool

df.isnull().sum()

CustomerID 0
Genre 0
Age 0
Annual Income (k\$) 0

```
Spending Score (1-100)
```

dtype: int64

```
plt.subplots(figsize=(20,15))
sns.boxplot(df)
     <Axes: >
       200
       175
       150
       125
       100
        75
        50
x=df.iloc[:,:3]
y=df.iloc[:,3:4]
x.head()
                                       \blacksquare
         {\tt CustomerID}
                        Genre
                                Age
      0
                         Male
                                 19
                                       ıl.
                   2
                         Male
                                 21
      2
                   3 Female
                                 20
                       Female
                                 23
                    5 Female
                                 31
y.head()
         Annual Income (k$)
                                 \blacksquare
      0
                           15
                                  ılı
                           15
                           16
       2
       3
                           16
                           17
```

```
print(x.shape)
print(y.shape)
     (200, 3)
     (200, 1)
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
x['Genre']=le.fit_transform(x['Genre'])
x[['Genre']]
                          Genre
       0
                1
                           1
                1
       2
                0
       3
                0
                0
       4
       ...
      195
                0
      196
                0
      197
                1
      198
                1
      199
     200 rows × 1 columns
x.head()
         CustomerID Genre Age
                                    \blacksquare
      0
                   1
                          1
                              19
                                    th
                   2
                          1
                              21
      1
      2
                   3
                          0
                              20
                  4
      3
                          0
                              23
                  5
                          0 31
from \ sklearn.model\_selection \ import \ train\_test\_split
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x, y, test\_size=0.3, random\_state=0)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
     (140, 3)
     (60, 3)
     (140, 1)
     (60, 1)
from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler()
x\_train\_scaled=mms.fit\_transform(x\_train)
x_test_scaled=mms.fit_transform(x_test)
x_train_scaled
```

```
ט. בטטאסאווטן, ט.
                    , [[[] 0.3401335]
                     , 0.25 ],
, 0.78846154],
[0.66834171, 0.
[0.26633166, 1.
[0.78894472, 0.
                      , 0.23076923],
[0.64321608, 1.
                      , 0.78846154],
                     , 0.59615385],
[0.17085427, 0.
                      , 0.42307692],
[0.14070352, 0.
                     , 0.
[0.57286432, 0.
                      , 0.40384615],
[0.75879397, 1.
[0.15577889, 0.
                     , 0.05769231],
[0.83417085, 1.
                      , 0.46153846],
[0.63819095, 1.
                     , 0.42307692],
[0.88442211, 1.
                      , 0.76923077],
                     , 0.67307692],
[0.16080402, 1.
                     , 0.19230769],
[0.71356784, 0.
                     , 0.26923077],
[0.84924623, 1.
[0.73869347, 0.
                     , 0.26923077],
                      , 0.09615385],
[0.14572864, 0.
                     , 0.03846154],
[0.49748744, 1.
                      , 0.94230769],
[0.4120603 , 1.
[0.39698492, 0.
                     , 0.59615385],
[0.57788945, 0.
                      , 0.01923077],
                     , 0.30769231],
[0.74371859, 0.
                     , 0.38461538],
, 0.80769231],
[0.96984925, 0.
[0.36180905, 0.
[0.38693467, 1.
                      , 0.42307692],
[0.12562814, 1.
                      , 0.21153846],
                     , 0.34615385],
[0.82914573, 0.
                      , 0.38461538],
[0.40703518, 1.
                     , 0.44230769],
[0.94472362, 0.
[0.87437186, 0.
                      , 0.65384615],
[0.95477387, 0.
                     , 0.30769231],
                     , 0.03846154],
, 0.17307692],
[0.1959799 , 0.
[0.29145729, 0.
                      , 0.75
[0.70351759, 0.
[0.44221106, 0.
                      , 0.30769231],
                     , 1.
[0.35175879, 1.
                     , 0.07692308],
[0.43718593, 0.
                     , 0.46153846],
[0.18090452, 0.
                      , 0.13461538],
[0.10552764, 1.
[0.04522613, 0.
                     , 0.23076923],
                      , 0.15384615],
[0.51758794, 1.
[0.33668342, 0.
                     , 0.96153846],
                      , 0.28846154],
[0.96482412, 1.
[0.5879397 , 0.
                     , 0.59615385],
[0.2361809 , 0.
                      , 0.17307692],
[0.86432161, 1.
                      , 0.34615385]])
```

print(x_test_scaled)

```
[0.55675676 1.
                       0.69230769]
[0.50810811 1.
                       0.576923081
[0.93513514 1.
                      0.17307692]
[0.96216216 1.
                      0.538461541
[0.00540541 0.
                       0.076923081
0.76756757 1.
                       0.576923081
[0.04324324 0.
                       0.76923077]
[0.8
           0.
                       0.5
[0.30810811 1.
                       0.01923077]
[0.65405405 0.
                       0.25
[0.95135135 0.
                       0.36538462]
[0.81081081 0.
                       0.55769231]
[0.41081081 1.
[0.01621622 0.
                       0.09615385]
[0.15675676 1.
                       0.
                       0.55769231
[0.68108108 1.
[0.17837838 0.
                       0.230769231
[0.37837838 1.
                       0.788461541
Γ0.96756757 0.
                       0.21153846]
[0.76216216 1.
                       0.19230769]
[0.22162162 0.
                       0.11538462]
[0.83783784 0.
                       0.23076923]
[0.3027027 1.
                       0.40384615]
[0.64324324 1.
[0.94594595 1.
                       0.32692308]
[0.97837838 1.
                       0.230769231
[0.63783784 0.
                       0.423076921
                       0.596153851
[0.21621622 0.
                       0.326923081
[0.06486486 0.
[0.27567568 1.
                       0.55769231]
[0.78918919 1.
                       0.48076923]
[0.57837838 0.
                       0.01923077]
[0.0972973 0.
                       0.53846154]
           0.
                       0.34615385]
[0.67567568 1.
                       0.38461538]
[0.
           0.
                       0.25
[0.42702703 0.
                       0.538461541
[0.55135135 0.
                       0.923076921
```

[α.τταλταλζ	υ.	و//۵۵۲۶۲۲.۵
[0.58918919	1.	0.01923077]
[0.88648649	0.	0.34615385]
[0.31891892	0.	0.69230769]
[0.02162162	1.	0.88461538]
[0.38378378	1.	0.15384615]
[0.61621622	0.	0.63461538]
[0.75135135	0.	0.26923077]
[0.36216216	0.	0.55769231]
[0.64864865	0.	0.09615385]
[0.97297297	0.	0.44230769]
[0.5027027	0.	0.17307692]
[0.78378378	1.	0.30769231]
[0.10810811	0.	0.69230769]
[0.14054054	1.	0.80769231]
[0.84324324	0.	0.73076923]
[0.19459459	0.	0.90384615]
[0.28108108	0.	0.63461538]]