5. 階乘計算 (Factorial)

問題敘述

給定一個正整數n,計算n!之值,例如: $3!=1\times2\times3=6$ 。這個問題看似容易,可是當n的值變大的時候,n!的值會變得非常大,例如 22!=56200036388880384000,這樣大的數不能用 64 位元的整數來表示。

在本題中,我們要用另一種方法來表示 n!。令 p_i 代表由小到大的第 i 個質數,例如 p_1 = $2 \cdot p_2 = 3 \cdot p_3 = 5$,。本題表示 n! 的方法是將 n! 用質數的次方的乘積來表示。例如:

$$10! = 3628800 = 2^8 \times 3^4 \times 5^2 \times 7^1 \circ$$

輸入格式

輸入為一個正整數 n(2 < n < 500000)。

輸出格式

假設 $n! = p_1^{e_1} \times p_2^{e_2} \times ... \times p_k^{e_k}$,則原始輸出資料為 $e_1 e_2 ... e_k$ 。例如輸入資料 10,則輸出 8421。每個輸出的數值之前有一個空白字元(即輸出的第一個字元是空白字元)。最後一個 印出之數不能為 0。

為了減少輸出的資料量,在原始輸出資料中,若 $e_{i+1} = e_{i+2} = \dots = e_{i+j-1} = \alpha$ 時,需改為輸出 $j^*\alpha$,不可輸出 j 個 α ;反之, 若 j=1,不可輸出 $1^*\alpha$,只能輸出 α 。在輸出中,j 之值必須最大化,即須滿足 $e_{i-1} \neq e_i = e_{i+1} = \dots = e_{i+j-1} \neq e_{i+j}$ 。詳細格式請參見範例。

輸入範例 1	輸出範例 1
3	2*1
輸入範例 2	輸出範例 2
10	8 4 2 1
輸入範例 3	輸出範例 3
30	26 14 7 4 2*2 4*1
輸入範例 4	輸出範例 4
60	56 28 14 9 5 4 2*3 2*2 7*1

112 學年度高級中學資訊學科能力競賽北二區複賽試卷(上午場)

評分說明

此題目測資分成五組,每組測資有多筆測試資料,需答對該組所有測試資料才能獲得該組分數,各組詳細限制如下。

子任務	分數	額外輸入限制
1	20	$n \le 20$ °
2	20	<i>n</i> ≤ 1000 ∘
3	20	<i>n</i> ≤ 100000 ∘
4	20	<i>n</i> ≤ 300000 ∘
5	20	無額外限制。