CENTRAAL EXAMEN NATUURKUNDE: HAVO

20	2016		017	2018		2019		2021		2022			2023		2024			
tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 3	tijdvak 1	tijdvak 2	1	tijdvak 1	tijdvak 2	tijdvak 1		
Radiumbad $^{226}\text{Ra} \rightarrow ^{222}\text{Rn} + \alpha + \gamma.$	Sluis van Fankel	Elektrische stroomverwarmer	Panfluit	Scheepsradar $s = vt$:	Magische lamp	Walstroom $P = \frac{E}{t} : E_{\text{stookolie}} = r_V V$	Koper-67 ${}^{67}_{29}Cu \rightarrow {}^{67}_{30}Zn + {}^{0}_{-1}e + {}^{0}_{0}\gamma$	Lassen	Zweven op geluid	Lutetium-177 $^{177}_{71}\text{Lu} \to ^{177}_{72}\text{Hf} + ^{0}_{-1}\text{e} + \gamma$	Muziekdoos $v = \frac{2\pi r}{T}$	Straling tijdens vliegen $E_{ m f}=hf$	Superaarde? $T = \frac{k_{\rm w}}{\lambda_{\rm max}}$	Gasniveau meten $t = \frac{E}{P}$	Vleermuisdetector	Schip uit koers $W = \Delta E_{\rm k} \ \ { m met} \ \ E_{\rm k} = {1\over 2} m v^2$	Kunstmatige meteoroïden	1.
$A(t) = \frac{0,693}{t_{\frac{1}{2}}} N(t)$								$\rho = \frac{RA}{\ell} \qquad U = IR$	$f = \frac{1}{T}$		1	$^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + ^{4}_{2}\text{He} (+\gamma)$	$A = \pi r^2$		$f = \frac{v}{\lambda}$	P = Fv		2.
			$v = f\lambda$	$c = f\lambda$	$P = UI$ $R = \frac{U}{I}$			$Q = cm\Delta T E = Pt P = UI$	$v = f\lambda$	$E = hf \qquad \lambda = \frac{c}{f}$	$f = \frac{1}{T}$	${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + {}^{1}_{0}\text{n}$			$f = \frac{1}{T}$		$F_{\rm mpz} = \frac{mv^2}{r} \qquad F_{\rm g} = G\frac{Mm}{r^2}$	3.
$E_{\mathrm{totaal},\alpha} = N_{\alpha} \cdot E_{\alpha} \cdot t$	$v = \left(\frac{\Delta h}{\Delta t}\right)_{\text{raaklijn}}$		$f = \frac{1}{T}$			P = UI	$E_{\rm k} = \frac{1}{2} m_{\rm p} v^2$	I = GU.		$\left(\frac{1}{2}\right)^n$		$H = w_{\rm R}D$	$F_{\rm z} = F_{\rm g} \rightarrow mg = G \frac{mM}{r^2} \rightarrow g = \frac{GM}{r^2}$	$\lambda = \frac{\ell}{2} \qquad \nu = f\lambda$	$\Delta f_{\text{instel}} = f_{\text{vleermuis}} - f_{\text{HD detector}}$			4.
					Heftruck	$ \rho = \frac{RA}{\ell} $			Sirius	$I = \frac{\text{constante}}{r^2}$	$T = 2\pi \sqrt{\frac{m}{C}}$	Ruimtepuin $F_{\text{mpz}} = F_{\text{g}} \rightarrow \frac{mv^2}{r} = G \frac{mM}{r^2}$		$f = \frac{1}{T}$		Kampeerbrander op hout $Q=cm\Delta T$ $E_{\rm ch}=r_{m}m$	$E_{\rm kvoor} + E_{\rm zvoor} = E_{\rm kna} + E_{\rm zna}$	5.
Fontein van Geneve $P = UI$	$P = \frac{E_{\rm z}}{t} \qquad m = \rho V \eta = \frac{P_{\rm el}}{P}$	$R = \rho \frac{\ell}{A} U = IR \qquad A = \pi r^2$	Stretchsensor							$\left(\frac{1}{2}\right)^{14}$	New Horizons	$\eta = rac{E_{ m nuttig}}{E_{ m in}} \qquad E_{ m ch} = r_{m} m$		Noodstopstrook $s = v_{\rm gem} t$.	Noodstroom voor de Arena $E = Pt$		$\tan\left(\frac{\alpha}{2}\right) = \frac{r}{h}$	6.
$E_{\rm kin} = \frac{1}{2}mv^2 \qquad \eta = \frac{E_{\rm kin}}{E_{\rm pompen}}$		Molybdeen-99 ${}^{98}_{42}\text{Mo} + {}^{1}_{0}\text{n} \rightarrow {}^{99}_{42}\text{Mo}$	$E = \frac{\sigma}{\varepsilon}$	$\frac{\Delta t}{T}$ $\frac{\Delta f}{f}$		Wereldrecord blobspringen $v = \left(\frac{\Delta x}{\Delta t}\right)$	Buisisolatie $P = \frac{U^2}{R} P = UI U = IR.$	$\sigma = \frac{F}{A}$		Accuboormachine $P = UI$ capaciteit	$F_{\rm g} = F_{\rm mpz} \rightarrow G \frac{mM}{r^2} = \frac{mv^2}{r}.$	III	Concertharp	$a = \left(\frac{\Delta v}{\Delta t}\right)_{\text{raaklijn}}$	$E_{ m ch} = r_{_{\! \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$[U] = [C][\Delta T]$	Knakworstenverwarmer $\rho = \frac{RA}{\ell}$	7.
$\frac{1}{2}mv^2 = mgh$	Wieg $F_{\mathrm{veer}} = Cu F_{\mathrm{veer}} = F_{\mathrm{z}}$		$\sigma = \frac{F}{A}$	Operatiedeken $\rho = \frac{m}{V}$	$\sigma = \frac{F}{A}$	s = vt	$Q = cm\Delta T$ $E = Pt$	De maan Europa $v = \frac{2\pi r}{r}$	$\rho = \frac{m}{V}. V = \frac{4}{3}\pi r^3.$		$W_{\text{motor}} = \Delta E_{\text{kin}} = \frac{1}{2} m (v_{\text{e}}^2 - v_{\text{b}}^2)$	$\Delta E_{\rm k} = \frac{1}{2} m v_{\rm v}^2 - \frac{1}{2} m v_{\rm n}^2 W = P \cdot t$	$\ell = \frac{1}{2}\lambda \qquad \nu = f\lambda$			$U = C\Delta T$		8.
$v = \left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}}$		$E = hf$ $c = f\lambda$		$\rho = \frac{RA}{\ell} \qquad A = \pi r^2$	$P_{\text{nuttig}} = Fv$ $F = mg$ $\eta = \frac{E_{\text{nuttig}}}{E_{\text{in}}}$ $E_{\text{in}} = Pt$	$F_{\rm res} = ma$ $F_{\rm z} = mg$		$\lambda_{\max} T = k_{\mathrm{W}}$ $c = f\lambda$	$\lambda_{\max} T = k_{\mathrm{W}}$	$v = \frac{2\pi r}{T}$	$^{238}_{94}$ Pu $\rightarrow ^{234}_{92}$ U + $^{4}_{2}$ He	Kreukelzone			$E_{\mathrm{cel}} = U \cdot I \cdot t$	$R = \frac{U}{I}$		9.
	$T = 2\pi \sqrt{\frac{m}{C}}$	$A = -\left(\frac{\Delta N}{\Delta t}\right)_{\text{raaklijn}}$	$R_{\text{totaal}} = R_1 + R_2$ $P = UI U = IR$		$P = UI t = \frac{\text{accucapaciteit}}{I}$ $E_{\text{accu}} = UIt$			$F_{\rm g} = G \frac{Mm}{r^2}$	Schommelsprong $s = vt$		$\Delta N = A \cdot \Delta t$	U = IR		$\varepsilon = \frac{\sigma}{E}$	Caravanremmen $F_1 r_1 = F_2 r_2$	$t = \frac{\text{capaciteit}}{I}$	$Q = cm\Delta T \qquad \eta = \frac{E_{\text{nuttig}}}{E_{\text{in}}}$	10.
Trillingen in een vrachtwagen $f = \frac{1}{T}$	$hartslag = \frac{60}{T}$		$t = \frac{\text{capaciteit}}{I} \qquad P = UI$	P = UI $U = IR$	$\sin \alpha = \frac{F_{\text{motor}}}{F_{\text{z}}}$	$E_z = mgh$			$F_{\rm mpz} = \frac{mv^2}{r} \qquad F_{\rm z} = mg$	$koppel = F \cdot d$	$P_{ ext{Pu-238}} = A \cdot E_{ ext{verval}} \; oldsymbol{\eta} = rac{P_{ ext{elektrisch}}}{P_{ ext{Pu-238}}}$				$\sigma = \frac{F}{A}$	Falcon heavy $E_{\rm k} = \frac{1}{2} m v^2 \qquad v = \frac{2\pi r}{T}$		11.
					Rosetta		$P = \lambda A \frac{\Delta T}{d}$		$\sigma = \frac{F}{A} \qquad A = \pi r^2$			$F_z = mg$	$f = \frac{1}{T}$	$E_{k} = \frac{1}{2}mv^{2}$ $W = Fs$		$a = \left(\frac{\Delta v}{\Delta t}\right)_{\text{raaklijn}}$	Boombrommer	12.
	Bliksem $v_{\rm geluid} = \frac{\Delta x}{\Delta t}$	Road-train $s = vt$	Powerskips $F_{\rm n} = \frac{1}{2} mg \qquad F_1 r_1 = F_2 r_2$	SpaceShipOne		Kookstenen $\lambda_{\max} T = k_{\mathrm{W}}$	Hyperloop	Kitmarker ${}_{1}^{3}H \rightarrow {}_{2}^{3}He + {}_{-1}^{0}e$	1 2 1 2	Solderen	Lithografie	$v = \left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}} E_{\text{k}} = \frac{1}{2}mv^2$	Wielrennen met een motor $E_z = mgh \qquad W = Pt$	Kosmische explosie	$E_z = Q \text{ of } W_z + W_{\text{rem}} = 0$ $Q = Fs \text{ of } W_{\text{rem}} = -Fs$	$\frac{mv^2}{r} = G\frac{mM}{r^2}$	$v = \left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}}$	13.
$T = 2\pi \sqrt{\frac{m}{C}} \qquad T = \frac{1}{f}$	E = Pt $P = UI$	$S = vt$ $W = mg\Delta h \qquad P = \frac{W}{t}$		$a = \left(\frac{\Delta v}{\Delta t}\right)_{\text{raaklijn}}$	$v_{\text{gem}} = \frac{\Delta x}{\Delta t}$	$Q = cm\Delta T$		$E_{\mathrm{f}} = hf$		P = UI				$E = hf \qquad \frac{1,22 \cdot \lambda}{D} = \frac{d}{\ell}$	$a = \left(\frac{\Delta v}{\Delta t}\right)_{\text{raaklijn}} \qquad F = ma$			14.
			$a = \frac{\Delta v}{\Delta t}$ $F_{\text{res}} = ma$	$g = \frac{GM}{r^2}$	$F_{\rm mpz} = \frac{mv^2}{r} F_{\rm g} = \frac{GmM}{r^2}$				Elektrische eierkoker		$rac{E_{ m totaal}}{E_{ m puls}} = { m n}_{ m pulsen}$		$E = Pt$ capaciteit = $m_{ m accu}$ · energiedichtheid	$\frac{d^3}{T^2} = k$	$P = \frac{E}{t} \qquad Q = cm\Delta T$	Sarcoïde		15.
Elektrische auto		$a = \frac{\Delta v}{\Delta t} E_{k} = Fs F = ma$ $E_{k} = \frac{1}{2}mv^{2}$	$[E] = \frac{1}{2}[C][u]^2$		$\lambda_{\max} \cdot T = k_{\mathrm{W}}$		$F_{\rm mpz} = \frac{mv^2}{r}$ $\sigma = \frac{F}{A}$			$Q = cm\Delta T$ $E = Pt$	$f = \frac{E_{\rm f}}{h} \lambda = \frac{c}{f}$	Ocarina $f = \frac{1}{T}$	$Q = cm\Delta T m = \rho V : t = \frac{Q}{P}$	$\Delta t = \frac{s}{v}$	Aluminium	${}^{90}_{38}\text{Sr} \rightarrow {}^{90}_{39}\text{Y} + {}^{0}_{-1}\text{e}$	$E_{\mathrm{ch}} = r_{V}V$ $\eta = \frac{E_{\mathrm{nuttig}}}{E_{\mathrm{in}}}$	16.
	241 Am \rightarrow 237 Np + α + γ		$\frac{1}{2}Cu^2 = \frac{1}{2}mv^2 \qquad E_{\text{veer}} = E_z$	$h = \frac{v_{\text{max}}^2}{2g}$	$E_{\rm k} = \frac{1}{2}mv^2$	$P = \frac{\lambda A \Delta T}{d}$	$F_{\rm v} = Cu$				Stunt in Dubai $\eta = \frac{E_{\text{McD}}}{T} \qquad E_{\text{k}} = \frac{1}{2}mv^2$	$T = 2\pi \sqrt{\frac{m}{C}} \qquad \rho = \frac{m}{V}$		Radioactieve rook		$D = \frac{E}{m} \qquad E = Pt$	Wiebelgenerator	17.
		Metaalmoeheid $\sigma = \frac{F}{4}.$	$E_{\text{veer}} = E_{z} = mgh$	Verontreinigd Technetium ${}^{99}_{42}\text{Mo} \rightarrow {}^{99\text{m}}_{43}\text{Tc} + {}^{0}_{-1}\text{e} \ (+{}^{0}_{0}\gamma)$	$v = \sqrt{\frac{2GM}{R}}$	Oude horloges	s = vt	$E_{\text{totaal}} = E_{\text{f}} \cdot A \cdot t$ $H = w_{\text{R}} D$ $D = \frac{E}{m}$		Mondharp $f = \frac{1}{\pi}$	$E_{\rm blok}$ $E_{\rm z} = mgh$	$f = \frac{v}{\lambda}$	$D = \frac{E}{m}$	$m_{ ext{totaal Po}} = N \cdot m_{ ext{Po}}$	$I = I_0 \cdot (\frac{1}{2})^n \text{ en } n = \frac{d}{d_{\frac{1}{2}}}$	$E_{ m f}=hf$	$v = \lambda f$	18.
$P = F_{\rm w} v$	Aerogel $\rho = \frac{m}{V}$	$E = \frac{\sigma}{\varepsilon}$	Dateren met Rb en Sr	42 43 -1 (017	Renium-188	$f = \frac{1}{T}$	PWM	Sprong van Luke Aikins $s = v \cdot t \qquad [F_{w}]$	E = Pt	T $m = \rho V$	$a = \left(\frac{\Delta v}{\Delta t}\right)_{\text{raaklijn}}$	$f = \frac{1}{T}$			$D = \frac{E}{m} H = w_{\rm R} \cdot D E = Pt$			19.
P = UI	$P = \lambda A \frac{\Delta T}{d}$	$f = \frac{1}{T}$	$A = \frac{0,693 N}{t_{\frac{1}{2}}}$		$A = -\left(\frac{\Delta N}{\Delta t}\right)_{\text{raaklijn}}$		$ \eta = \frac{P_{\text{nuttig}}}{P_{\text{in}}} \qquad P_{\text{in}} = UI $	$[A][v^2]$	$E_{\rm ch} = r_V V \qquad \rho = \frac{m}{V}$	$ \left[f_{\mathbf{g}} \right] = \left[c \right] \frac{\left[v \right] \left[d \right]}{\left[\ell \right]^{2}}. $		Koffiepercolator $P = UI$	Marathon onder de twee uur $v_{\rm gem} = \frac{\Delta x}{\Delta t}$:	Zelfbouw zaklamp $U = \frac{P}{I}$	OSIRIS-REX $g = \frac{F_{\rm g}}{m} \qquad F_{\rm g} = G \frac{Mm}{r^2}$	Infrasone trillingen $\lambda = 2L$ $v = f\lambda$	$\eta = rac{P_{ m nuttig}}{P_{ m in}}$	20.
					$^{188}_{75}$ Re $\rightarrow ^{188}_{76}$ Os + $^{0}_{-1}$ e + $^{0}_{0}$ γ	$^{147}_{61}$ Pm $\rightarrow ^{147}_{62}$ Sm + $^{0}_{-1}$ e	$f = \frac{1}{T}$		Stralingsdetectie $^{60}_{27}\text{Co} \rightarrow {}^{60}_{28}\text{Ni} + {}^{0}_{-1}\text{e} + {}^{0}_{0}\gamma$			$Q = cm\Delta T$ $T = \frac{E_{ m nuttig}}{E_{ m in}}$		$t_{\rm led} = \frac{\rm capaciteit}{I_{\rm led}}$			Gebitsfoto $E_f = hf$ $c = f \lambda$	21.
Wisselverwarming $U = IR P = UI P = \frac{U^2}{R}$							E = Pt		$I = I_0(\frac{1}{2})^n \qquad n = \frac{d}{d_{\frac{1}{2}}}$		Exploderende draad $A_{ m draad} = rac{ ho \ell}{ ho}$			$Q = cm\Delta T \qquad t = \frac{Q}{P}$	$F_{\rm arm} = F_{\rm mpz} = \frac{mv^2}{r}$		$n_{\text{elektronen}} = \frac{I}{e}$	22.
•	Airbus E-fan	Naaldjes rond de aarde $m = \rho V$	Meteoriet van Tsjeljabinsk $v = \frac{2\pi r}{\pi}$		$H = w_{\rm R}D$		Proxima b	$E_{\rm k} = \frac{1}{2}mv^2 \qquad E_{\rm z} = mgh$		$f = \frac{v}{\lambda}$	$P = UI \text{ en } U = IR P = \frac{U^2}{R}$		$P = F_{\mathrm{w}} v$				$E = Pt$ $D = \frac{E}{m}$	23.
$\rho = \frac{RA}{\ell}$	P = UI	$c = f\lambda$		Auto uit het ijs	Elektrolarynx	$D = \frac{E}{m} \qquad H = w_{\rm R} D$				$f = \frac{v}{\lambda}$			s = vt		EIND EXAMEN	$T = 2\pi \sqrt{\frac{m}{C}} f = \frac{1}{T}$		24.
	E = Pt			$F_1 r_1 = F_2 r_2 \qquad r_2 = \frac{1}{2} d$	$f = \frac{1}{T} \qquad T = 2\pi \sqrt{\frac{m}{C}}.$	Elysium	$F_{\rm g} = G \frac{mM}{r^2} \qquad F_{\rm z} = mg$	$a = \left(\frac{\Delta v}{\Delta t}\right)_{\text{raaklijn}}$		Wereldrecord Usain Bolt $s = vt$	E = Pt	EIND EXAMEN	Theaterverlichting $F_1r_1 = F_2r_2$ $F_z = mg$			EIND EXAMEN	EIND EXAMEN	25.
$Q = cm\Delta T$ $E = Pt$		$v = \sqrt{G\frac{M}{r}} v = \frac{2\pi r}{T} r = h + r_{\text{aarde}}$	s = vt	$\sigma = \frac{F}{A}$ $\varepsilon = \frac{\sigma}{E}$ $\varepsilon = \frac{\Delta \ell}{\ell_0}$		$\frac{r^3}{T^2} = \frac{GM}{4\pi^2} r = R_A + h_{\text{geostationair}}$		Cicaden	$H = H_{\mathrm{uur}} \cdot t_{\mathrm{jaar}}$	$v = \frac{\Delta x}{\Delta t}$			Z G	EIND EXAMEN				26.
$E = 5200 \cdot Pt$	E = Pt:		$E = \frac{1}{2}mv^2$				$v_{\text{gem}} = \frac{\Delta x}{\Delta t}$ $t_{\text{ruimteschip}} = \frac{ct_{\text{licht}}}{v}$	$f = \frac{1}{T}$		$P = \frac{\Delta E_{\rm k}}{t} E_{\rm k} = \frac{1}{2}mv^2$	s = vt							27.
• EIND EXAMEN	EIND EXAMEN	$A = 4\pi r^2$	$ \rho = \frac{m}{V} $				EIND EXAMEN		EIND EXAMEN	efficientie = $\frac{F_{\text{afzet, hor}}}{F_{\text{afzet}}}$	EIND EXAMEN		$E = \frac{\sigma}{\varepsilon}$					28.
		EIND EXAMEN	EIND EXAMEN		EIND EXAMEN	$v = \frac{2\pi r}{T}$							EIND EXAMEN					29.
				EIND EXAMEN		EIND EXAMEN		$f = \frac{v}{\lambda}$:		EIND EXAMEN								30.
								EIND EXAMEN										
Radiumbad Fontein van Geneve Trillingen in een vrachtwag Elektrische auto Wisselverwarming	Sluis van Fankel Wieg Bliksem Aerogel Airbus E-fan	Elektrische doorstroomverwa Molybdeen-99 Road-train Metaalmoeheid Naaldjes rond de aarde	armer Panfluit Stretchsensor Powerskips Dateren met Rb en Sr Meteoriet van Tsjeljabinsk	Scheepsradar Operatiedeken SpaceShipOne Verontreinigd Technetiur Auto uit het ijs	Magische lamp Heftruck Rosetta m Renium-188 Elektrolarynx	Walstroom Wereldrecord blobspringe Kookstenen Oude horloges Elysium	Koper-67 Buisisolatie Hyperloop PWM Proxima b	Lassen De maan Europa Kitmarker Sprong van Luke Aikins Cicaden	Zweven op geluid Sirius Schommelsprong Elektrische eierkoker Stralingsdetectie	Lutetium-177 Accuboormachine Solderen Mondharp Wereldrecord Usain Bolt	Muziekdoos New Horizons Lithografie Stunt in Dubai Exploderende draad	Straling tijdens vliegen Ruimtepuin Kreukelzone Ocarina Koffiepercolator	Superaarde? Concertharp Wielrennen met een mot Marathon onder de twee Theaterverlichting	Gasniveau meten Noodstopstrook or Kosmische explosie uur Radioactieve rook Zelfbouw zaklamp	Vleermuisdetector Noodstroom voor de Arena Caravanremmen Aluminium OSIRIS-REx	Schip uit koers Kampeerbrander op hout Falcon heavy Sarcoïde Infrasone trillingen	Kunstmatige meteoroïden Knakworstenverwarmer Boombrommer Wiebelgenerator Gebitsfoto	