Linear Regression

Definition

A **supervised learning** method to model the relationship between a dependent variable (target) and one/more independent variables (features) by fitting a linear equation.

Mathematical Formulation

• Hypothesis Function:

$$h_w(\mathbf{X}) = w_0 + w_1X_1 + w_2X_2 + \cdots + w_nX_n$$

- ullet $\mathbf{w} = [w_0, w_1, \ldots, w_n]$: Weights (parameters)
- $\mathbf{X} = [1, X_1, X_2, \dots, X_n]$: Features (with bias term 1)

Cost Function (Mean Squared Error)

$$J(\mathbf{w}) = rac{1}{2m} \sum_{i=1}^m (h_w(\mathbf{X}^{(i)}) - y^{(i)})^2$$

- m: Number of training examples
- Minimizing $J(\mathbf{w})$ gives optimal weights.

Solution Methods

1. Closed-Form Solution (Normal Equation)

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- Pros: Exact solution, no iteration needed
- **Cons**: Slow for large datasets ($O(n^3)$ complexity)

2. Gradient Descent

Iterative weight update:

$$w_j := w_j - lpha rac{\partial J(\mathbf{w})}{\partial w_j}$$

For linear regression:

$$w_j := w_j - lpha rac{1}{m} \sum_{i=1}^m (h_w(\mathbf{X}^{(i)}) - y^{(i)}) X_j^{(i)}$$

- α : Learning rate
- Repeat until convergence.

Assumptions

- 1. Linearity: Relationship between features and target is linear.
- 2. Independence: Errors are uncorrelated.
- 3. Homoscedasticity: Constant error variance.
- 4. Normality: Errors follow normal distribution.

Evaluation Metrics

• R-squared (Coefficient of Determination):

$$R^2 = 1 - rac{SS_{
m res}}{SS_{
m tot}}$$
 $SS_{
m res} = \sum (y - \hat{y})^2$ $SS_{
m tot} = \sum (y - ar{y})^2$

• Adjusted R-squared:

$$R_{
m adj}^2 = 1 - rac{(1-R^2)(m-1)}{m-n-1}$$

Limitations

- Fails to capture nonlinear relationships.
- Sensitive to outliers.
- Assumes features are independent (no multicollinearity).

Linear Classification

Definition

A **supervised learning** method to predict discrete class labels by finding a linear decision boundary that separates classes in feature space.

Mathematical Formulation

• **Hypothesis Function** (for binary class $y \in (0,1)$):

$$h_w(\mathbf{X}) = \{1 \text{ if } \mathbf{w}^T \mathbf{X} \geq 0 \text{ 0 otherwise } \}$$

- ullet $\mathbf{w} = [w_0, w_1, \dots, w_n]$: Weights (parameters)
- $\circ \;\; \mathbf{X} = [1, X_1, X_2, \dots, X_n]$: Features with bias term
- Decision Boundary:

$$\mathbf{w}^T \mathbf{X} = 0$$

Solution Methods

- 1. Perceptron Algorithm
 - Update Rule (for misclassified samples):

$$\mathbf{w} := \mathbf{w} + lpha(y^{(i)} - \hat{y}^{(i)})\mathbf{X}^{(i)}$$

- \circ α : Learning rate
- o Iterates until all samples are correctly classified (if linearly separable).
- 2. Logistic Regression (Probabilistic Approach)
 - **Hypothesis** (sigmoid function):

$$h_w(\mathbf{X}) = \sigma(\mathbf{w}^T\mathbf{X}) = rac{1}{1 + e^{-\mathbf{w}^T\mathbf{X}}}$$

Cost Function (Cross-Entropy Loss):

$$J(\mathbf{w}) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log(h_w(\mathbf{X}^{(i)})) + (1-y^{(i)}) \log(1-h_w(\mathbf{X}^{(i)}))
ight]$$

• Gradient Descent Update:

$$w_j := w_j - lpha rac{1}{m} \sum_{i=1}^m (h_w(\mathbf{X}^{(i)}) - y^{(i)}) X_j^{(i)}$$

Assumptions

- 1. Linear Separability: Classes can be separated by a hyperplane.
- 2. **Low Noise**: Minimal overlap between classes.
- 3. Feature Independence: Features are uncorrelated (ideal case).

Evaluation Metrics

- Accuracy: Correct Predictions

 Total Predictions
- Precision/Recall: Trade-off between false positives/negatives.
- F1-Score: Harmonic mean of precision and recall.
- **ROC-AUC**: Area under the Receiver Operating Characteristic curve.

Limitations

- Fails for nonlinearly separable data.
- · Sensitive to imbalanced datasets.
- Assumes equal importance of all features.

Linear Regression vs. Linear Classification

Feature	Linear Regression	Linear Classification
Problem Type	Regression (continuous output)	Classification (discrete labels)
Output	$y\in\mathbb{R}$	$y\in 0,1$ (binary)
Hypothesis	$\mathbf{w}^T\mathbf{X}$	$\mathrm{Sign}(\mathbf{w}^T\mathbf{X})$
Cost Function	Mean Squared Error (MSE)	Cross-Entropy Loss / Hinge Loss
Decision Boundary	Fits a line/plane to data	Separates classes with a hyperplane
Example Algorithms	Ordinary Least Squares	Perceptron, Logistic Regression

Key Differences

- 1. Output: Regression predicts continuous values; classification assigns discrete labels.
- 2. Loss Function: MSE (regression) vs. cross-entropy/hinge loss (classification).
- 3. **Evaluation**: R²/RMSE (regression) vs. accuracy/precision (classification).
- 4. Geometric Goal: Minimize vertical distances (regression) vs. maximize margin (classification).

Logistic Regression (Logarithmic Regression)

Definition

A **probabilistic classification** method for binary outcomes ($y \in 0,1$) that models the probability of a class using a logistic (sigmoid) function.

Key Idea: Transform linear regression output into a probability using the sigmoid.

Mathematical Formulation

• Hypothesis Function:

$$h_w(\mathbf{X}) = \sigma(\mathbf{w}^T\mathbf{X}) = rac{1}{1 + e^{-\mathbf{w}^T\mathbf{X}}}$$

- $\circ \ \sigma(z)$: Sigmoid function squashes z to [0,1].
- Interpretation:

$$h_w(\mathbf{X}) = P(y=1|\mathbf{X};\mathbf{w})$$

Cost Function (Cross-Entropy Loss)

$$J(\mathbf{w}) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log(h_w(\mathbf{X}^{(i)})) + (1-y^{(i)}) \log(1-h_w(\mathbf{X}^{(i)}))
ight]$$

Gradient Descent Update

$$w_j := w_j - lpha rac{1}{m} \sum_{i=1}^m \left(h_w(\mathbf{X}^{(i)}) - y^{(i)}
ight) X_j^{(i)}$$

• α : Learning rate.

Assumptions

- 1. Linearity: Log-odds of the target are linear in features.
- 2. Independent Observations: No autocorrelation.
- 3. No Multicollinearity: Features are not highly correlated.

Multi-Class Classification

Definition

Predicting a discrete label from >2 classes (e.g., $y \in {0,1,2,\ldots,K}$).

Solution Methods

- 1. One-vs-Rest (OvR)
 - ullet Train K binary classifiers, each distinguishing class k vs all others.
 - Prediction: Class with highest probability.
- 2. One-vs-One (OvO)
 - Train $\frac{K(K-1)}{2}$ classifiers for every pair of classes.
 - **Prediction**: Majority vote across classifiers.
- 3. Softmax Regression (Multinomial Logistic Regression)
 - Generalizes logistic regression to $K \geq 2$ classes.

Hypothesis Function

 $$$ P(y=k \mid \mathbf{X}; \mathbf{W}) = \frac{e^{\mathbf{X}}}{\langle w \rangle_i^T \setminus \{x\}}} (sum\{i=1\}^K e^{\mathbf{X}}) $$ \mathbf{X}}$

- **W**: Weight matrix $(K \times n)$.
- Softmax normalizes outputs into probabilities summing to 1.

Cost Function (Cross-Entropy)

 $$\ J(\mathbb{W}) = -\frac{1}{m} \sum_{i=1}^m \sum_{k=1}^K \mathbb{1}_{y^{(i)}} = k} \log\left(\frac{1}{y^{(i)}} \right) $$ f(x)^{(i)}}{\sum_{j=1}^K e^{\mathbb{W}_j^T \mathbb{X}^{(i)}}} \right) $$$

• 1...: Indicator function (1 if true, else 0).

Gradient Descent Update

 $$$ \mathbf{y}_k := \mathbf{Y}^{(i)} = \mathbf{Y}^{(i)} = \mathbf{Y}^{(i)} = \mathbf{Y}^{(i)} $$$

Evaluation Metrics

- Confusion Matrix: Class-wise accuracy/errors.
- Precision/Recall/F1-Score: Extended to multi-class (macro/micro averaging).
- Log-Loss: Measures probabilistic calibration.

Key Challenges

- Class imbalance affects performance.
- Computational cost increases with K.
- Requires feature scaling for gradient-based methods.

Neuron Model & Perceptron

Biological Inspiration

- Biological Neuron:
 - o Dendrites (input), Cell body (processing), Axon (output).
 - o Communication via electrical impulses (spikes).
- Artificial Neuron: Simplified computational model inspired by biology.

Artificial Neuron (McCulloch-Pitts Model)

Definition

A mathematical unit that computes a weighted sum of inputs, applies an activation function, and produces an output. Basis for neural networks.

Mathematical Formulation

- Inputs: $\mathbf{X} = [x_0 = 1, x_1, x_2, \dots, x_n]$ (with bias $x_0 = 1$)
- Weights: $\mathbf{w} = [w_0, w_1, \dots, w_n]$
- Pre-activation:

$$z = \mathbf{w}^T \mathbf{X} = w_0 + \sum_{i=1}^n w_i x_i$$

• Activation Function:

$$y = \phi(z)$$

Common Activation Functions

Function	Formula	Use Case
Step	$\phi(z) = \{ 1 \mid z \geq 0 \ 0 ext{otherwise}$	e Perceptron
Sigmoid	$\phi(z)=rac{1}{1+e^{-z}}$	Logistic regression
ReLU	$\phi(z) = \max(0,z)$	Deep networks

Perceptron (Rosenblatt, 1957)

Definition

A **single-layer neural network** for binary linear classification. Learns weights to separate two classes using a step activation.

Algorithm

- 1. Initialize Weights: $\mathbf{w} = [0,0,\dots,0]$.
- 2. For each training sample $(\mathbf{X}^{(i)}, y^{(i)})$:
 - Compute prediction:

$$\hat{y}^{(i)} = \left\{ egin{aligned} 1 & \mathbf{w}^T \mathbf{X}^{(i)} \geq 0 \ 0 \end{aligned}
ight.$$
 otherwise

• Update weights if misclassified:

$$\mathbf{w} := \mathbf{w} + lpha(y^{(i)} - \hat{y}^{(i)})\mathbf{X}^{(i)}$$

• α : Learning rate (e.g., $\alpha = 0.1$).

Key Properties

- Convergence: Guaranteed if data is linearly separable.
- Limitation: Fails on nonlinearly separable data (e.g., XOR problem).

Perceptron vs. Logistic Regression Neuron

Feature	Perceptron	Logistic Regression Neuron
Activation	Step function	Sigmoid function
Output	Binary (0/1)	Probability (0-1)
Learning Rule	Direct weight updates on errors	Gradient descent on cross-entropy

Feature	Perceptron	Logistic Regression Neuron
Use Case	Hard classification	Probabilistic classification

Applications of Perceptron

- Simple binary classification (e.g., spam detection).
- Building block for multi-layer perceptrons (MLPs).

Limitations of Single Neurons/Perceptrons

- 1. Cannot solve nonlinear problems (e.g., XOR).
- 2. No probabilistic output (perceptron).
- 3. Requires manual feature engineering for complex tasks.

From Perceptron to Neural Networks

- Stack perceptrons into hidden layers to create MLPs.
- Use nonlinear activation functions (e.g., ReLU) to model complex patterns.
- Train with **backpropagation** and gradient descent.

Multi-Layer Perceptron (MLP)

Definition

A **feedforward neural network** with one or more hidden layers between the input and output layers. Capable of learning nonlinear decision boundaries.

Structure

- Input Layer: Raw features (X).
- Hidden Layer(s): Intermediate computations with nonlinear activations.
- Output Layer: Final prediction (e.g., class probabilities).

Mathematical Formulation (Forward Pass)

For layer l:

1. Pre-activation:

$$\mathbf{z}^{[l]} = \mathbf{W}^{[l]} \mathbf{a}^{[l-1]} + \mathbf{b}^{[l]}$$

- $oldsymbol{\circ} oldsymbol{\mathbf{W}}^{[l]}$: Weight matrix (units $^{[l]} imes ext{units}^{[l-1]}$)
- ullet $\mathbf{a}^{[l-1]}$: Activation from layer l-1 $(\mathbf{a}^{[0]}=\mathbf{X})$

2. Activation:

$$\mathbf{a}^{[l]} = g^{[l]}(\mathbf{z}^{[l]})$$

• $g^{[l]}$: Activation function (e.g., ReLU, sigmoid).

Common Activation Functions

Function	Formula	Derivative	
Sigmoid	$g(z)=rac{1}{1+e^{-z}}$	$g^{\prime}(z)=g(z)(1-g(z))$	
ReLU	$g(z) = \max(0,z)$	$g'(z) = \{1 z > 0 \ 0 \text{otherwise} $	
Tanh	$g(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$	$g^{\prime}(z)=1-g(z)^2$	

Backpropagation (BP) Algorithm

Definition

An algorithm to compute gradients of the loss with respect to weights by applying the **chain rule** backward from output to input.

Steps

- 1. Forward Pass: Compute predictions and loss (e.g., MSE, cross-entropy).
- 2. Backward Pass:
 - o Compute error gradient at output layer.
 - Propagate error backward to update weights in hidden layers.

Key Equations

Loss Functions

MSE:

$$J = rac{1}{2m} \sum_{i=1}^m (\hat{y}^{(i)} - y^{(i)})^2$$

Cross-Entropy:

$$J = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log \hat{y}^{(i)} + (1-y^{(i)}) \log (1-\hat{y}^{(i)})
ight]$$

Gradient Computation

For layer l (starting from output layer L):

1. Output Layer Error:

$$\delta^{[L]} = rac{\partial J}{\partial \mathbf{z}^{[L]}} = (\mathbf{a}^{[L]} - \mathbf{y}) \odot g'^{[L]}(\mathbf{z}^{[L]})$$

• : Element-wise multiplication.

2. Hidden Layer Error:

$$\delta^{[l]} = (\mathbf{W}^{[l+1]T}\delta^{[l+1]})\odot g'^{[l]}(\mathbf{z}^{[l]})$$

3. Weight Gradients:

$$rac{\partial J}{\partial \mathbf{W}^{[l]}} = rac{1}{m} \delta^{[l]} \mathbf{a}^{[l-1]T}$$

$$rac{\partial J}{\partial \mathbf{b}^{[l]}} = rac{1}{m} \sum_{i=1}^m \delta^{[l]}$$

Weight Update (Gradient Descent)

$$\mathbf{W}^{[l]} := \mathbf{W}^{[l]} - lpha rac{\partial J}{\partial \mathbf{W}^{[l]}}$$

$$\mathbf{b}^{[l]} := \mathbf{b}^{[l]} - lpha rac{\partial J}{\partial \mathbf{b}^{[l]}}$$

• α : Learning rate.

Training Challenges

- 1. Vanishing/Exploding Gradients: Mitigated with ReLU, batch normalization.
- 2. **Overfitting**: Addressed by dropout, L2 regularization.
- 3. Local Minima: Stochastic gradient descent helps escape.

MLP vs. Single-Layer Perceptron

Feature	MLP	Single-Layer Perceptron
Layers	≥1 hidden layers	No hidden layers
Nonlinearity	Learns nonlinear patterns	Linear decision boundary
Training	Backpropagation + gradient descent	Perceptron update rule
Use Cases	Complex tasks (e.g., image recognition)	Linearly separable problems

Initialization & Regularization

- Weight Initialization: Xavier/He initialization.
- Regularization:

$$\circ$$
 L2: $J=J+rac{\lambda}{2m}\sum |\mathbf{W}|^2$

• Dropout: Randomly deactivate neurons during training.