Maximum Principle

Theorem: Open Mapping

A non-constant analytic function maps an open set onto an open set and a domain onto a domain (connectedness is preserved).

Theorem: Maximum Principle

Let f(z) be a non-constant analytic function in a domain D. |f(z)| has no maximum in D.

Proof

ABC: |f(z)| obtains its maximum value at $z_0 \in D_z$

 $\forall z \in D_z, |f(z)| \le |f(z_0)|$

Let $w_0 = f(z_0)$

Since $z_0 \in D_z$ and D_z is open, there exists $N_{\epsilon}(z_0) \in D_z$

By the open mapping theorem, $N_{\epsilon}(z_0)$ is mapped to some $N_{\epsilon'}(w_0) \in D_w$

 $\exists z_1 \in N_{\epsilon}(z_0) \text{ such that } f(z_1) = w_1 \in N_{\epsilon'}(w_0) \in D_w$

But $|w_1| > |w_0|$

CONTRADICTION!

Therefore, f(z) has no maximum in D.

Corollary

Let f(z) be a non-constant analytic function in region \overline{D} with boundary C. |f(z)| has a maximum at some $z \in C$.

Proof

 \overline{D} is compact and thus |f(z)| has a maximum in \overline{D}

But that maximum cannot occur in D

Therefore the maximum must occur on the boundary at some $z \in C$.

Note that the above theorems can also be stated in terms of a minimum as long as $\forall z \in D, f(z) \neq 0$.