Performance Analysis of Classification Algorithms

Presented by

Sai Hemanth Thota

Veera Reddy Vangala

Kapil Dharao

Rahul

Problem Statement

- To identify for which type of dataset which classification technique is more suitable.
- Wrong selection of classification algorithm will certainly lead to bad classification model and bad results.
- It is also very hard to write each and every time code to analyze the dataset and create prediction model for it.
- So we designed a GUI which handles all these issues.

Classification Algorithms Used

- KNN
- Naive Bayes
- Decision Tree
- Random Forest

KNN Algorithm

Naive Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(B|A)P(A)$$

$$P(B) = \sum_{Y} P(B|A)P(A)$$

Decision Tree

Random Forest

Tools and Technologies

- Jupyter
- Python Libraries
 - Pandas
 - Sklearn
 - Tkinter
 - Matplotlib
 - Numpy

This is my root window

BACK TO HOME PAGE

Confusion Matrix

Dataset Types

- Based on content
 - Mixed (with text and numbers)
 - Numeric (with only numbers)
 - Nominal (with only text)
- Based on size
 - Small (<500)
 - Medium (<10000)
 - Large (>10000)

Diabetes Prediction- Numeric - Medium-786 Records

NO	NAME OF ATTRIBUTES	TRIBUTES TYPE	
1	Number	Numeric	
2	Glucose	Numeric	
3	Blood Pressure(mm HG)	Numeric	
4	Skin Thickness	Numeric	
5	Insulin	Numeric	
6	Body Mass Index(BMI)	I) Numeric	
7	Diabetes Pedigree function	Numeric	
8	Age(years)	Numeric	
9	Outcome	Numeric(0 or 1)	

Accuracies

KNN : 0.718
 Naive Bayes : 0.679
 Decision Tree : 0.635
 Random Forest : 0.748

Confusion matrix For best algorithm

Numeric - Other Datasets

- Prediction of sepsis 110k Records Large
 - Accuracies:
 - KNN : 0.9179
 - Naive Bayes : 0.9261
 - Decision Trees: 0.9266
 - Random Forest: 0.9263
- Heart 300 Records Small
 - Accuracies:
 - KNN : 0.806
 - Naive Bayes : 0.778
 - Decision Trees: 0.821
 - Random Forest: 0.816

German Credit Data- Mixed- small- 600 Records

NO	NAME OF ATTRIBUTES	TYPE	
1	Age	Numeric	
2	Sex	Text	
3	No of Jobs	Numeric	
4	Housing	Numeric	
5	Savings	Text	
6	Checkings	Text	
7	Credit Amount	Numeric	
8	Duration	Numeric	
9	Purpose	Text(comfort or essential)	

Accuracies

KNN : 0.781Naive Bayes : 0.657

• Decision Tree : 0.807

• Random Forest: 0.802

Confusion matrix For best algorithm

Mixed - Other Datasets

- Power System 11k Records Large
 - Accuracies:
 - KNN : 0.928
 - Naive Bayes : 0.977
 - Decision Trees: 0.977
 - Random Forest: 0.999
- Abalone 4k Records Medium
 - Accuracies:
 - KNN : 0.523
 - Naive Bayes : 0.479
 - Decision Trees: 0.365
 - Random Forest: 0.540

Nominal - Car Evaluation - Medium -1800 Records

NO	NAME OF ATTRIBUTES	TYPE
1	Buying	Nominal
2	Maintenance	Nominal
3	Doors	Nominal
4	Persons	Nominal
5	Luggage Boot	Nominal
6	Safety	Nominal

buying	v-high, high, med, low	
maintenance	v-high, high, med, low	
doors	2, 3, 4,5	
persons	2,4,5	
luggage boot	small, med, med	
safety	low, med, high	

Accuracies

KNN : 0.913
 Naive Bayes : 0.966
 Decision Tree : 0.771

Random Forest: 0.966

Confusion matrix For best algorithm

Nominal - Other Datasets

- Perform- 500 Records small
 - Accuracies:
 - KNN : 0.634
 - Naive Bayes : 0.669
 - Decision Trees: 0.675
 - Random Forest: 0.722
- Animals 100k Records Large
 - Accuracies:
 - KNN : 0.971
 - Naive Bayes : 0.969
 - Decision Trees: 0.785
 - Random Forest: 0.972

Conclusion

	Small	Medium	Large
Numeric	Decision Tree/ Random Forest	Random Forest	Decision Tree/ Random Forest
Mixed	Decision Tree/ Random Forest	Random Forest	Naive Bayes/ Decision Tree
Nominal	Random Forest	Random Forest/ Decision Tree	Random Forest

Future Work

- Implement many more datasets
- Improve GUI
- Implement other classification algorithms

Thank You