

David R. Thompson

Jet Propulsion Laboratory, California Institute of Technology

Feature Selection

Copyright 2014 California Institute of Technology. All Rights Reserved. US Government Support Acknowledged.

Objectives

- 1. Know techniques for combinatorial feature selection
- Know the difference between wrapper and filter methods
- 3. Use both forward and backward feature selection

Forward greedy selection

Motivation

- Reduce the number of dimensions for pattern recognition and statistical modeling
- Reveal key relationships in the data
- Preserve information

Forward greedy selection

Two halves of feature selection

Two halves of feature selection

Evaluation: Wrappers vs. Filters

Wrappers evaluate features using pattern recognition performance

Evaluation: Wrappers vs. Filters

Wrappers evaluate features using pattern recognition performance

Filters evaluate features using intrinsic properties of the data

[Kohavi and John, 1997; Das, 2001]

Pixbay, wikipedia

"Wrapper" criterion

Error on held out data

"Wrapper" advantages

Accurate indicator of performance

"Wrapper" disadvantages

- Computational / operational complexity
- Specificity

Pixbay, wikipedia

Example "Filter" criteria

- Kolmogorov-Smirnov test,
- Pearson correlation [Miyahara and Pazzani, 2000]
- Mutual information [Torkkola, 2003]
- Fisher Score [Furey et al., 2000]

"Filter" advantages

 Good when core pattern recognition cannot be performed on the full dataset

"Filter" disadvantages

Implies a new (redundant) model?

Pixbay, wikipedia

Another filter: Conditional Mutual Information

Conditional entropy

$$I(Y; a_i|A) = H(Y|A) - H(Y|a_i,A)$$

Conditional Mutual information

Current set

Candidate feature

Another filter: Conditional Mutual Information

Conditional entropy

$$I(Y; a_i | A) = H(Y | A) - H(Y | a_i, A)$$
Conditional Mutual
information

Current
set

Candidate
feature

Where H(Y|A) is the *Conditional Entropy:*

$$H(Y|X) \equiv \sum_{x \in \mathcal{X}} p(x) H(Y|X = x)$$
$$= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \frac{p(x)}{p(x, y)}.$$

[wikipedia, Fleuret JMLR 2004]

Two halves of feature selection

Greedy forward search

Start with empty feature set

$$A = \emptyset$$

While performance improves:

For each candidate feature a_i : Add a_i to the set $A' = A \cup \{a_i\}$ Evaluate A' using selection criterion

Add the best feature a*

$$A = A \cup \{a^*\}$$

Forward greedy selection

Greedy backward elimination

Start with complete feature set

$$A = \{a_1, a_2 ... a_n\}$$

While performance improves:

For each candidate feature $a_i \in \mathcal{A}$

Remove a_i from the set $A' = A \setminus a_i$

Evaluate A' using selection criterion

Remove optimal feature a*

$$A = A \setminus a^*$$

Eventually performance suffers

Non-greedy search

- Simulated annealing
- Branch and bound
- Genetic algorithms?

Summary

Every feature selection system has:

- An evaluation criterion
 - "Wrappers"
 - "Filters"
- Search strategy
 - Forward selection
 - Backward elimination

