ISC 5228

Markov Chain Monte Carlo

In-class Assignment

Boltzmann Distribution

In statistical physics, the Boltzmann distribution gives the probability that a system will be in a certain state (s) in terms of the energy E(s) and absolute temperature T as,¹

$$\pi(\mathbf{s}) \propto e^{-E(\mathbf{s})/T}$$
 (1)

Consider a simple harmonic oscillator.

$$E(s) = \frac{1}{2}s^2\tag{2}$$

This may be a crude model for a diatomic molecule like hydrogen (say).

- 1. For T=1, sketch the Boltzmann probability distribution corresponding to eqn (2).
- 2. Overlay, $\pi(s)$ corresponding to T=1/2 and T=2 on the sketch above.
- 3. Extrapolate these observations and speculate about the shape of $\pi(s)$ for T=0 and $T\to\infty$.
- 4. **Hastings ratio**: Consider two states s_1 and s_2 . What is the ratio of the probabilities, $\pi(s_2)/\pi(s_1)$.
- 5. Now, let us go back to the general case eqn (1). Consider two states \mathbf{s}_1 and \mathbf{s}_2 with corresponding energies E_1 and E_2 . Show that the ratio of the probabilities

$$\frac{\pi(\mathbf{s}_2)}{\pi(\mathbf{s}_1)} = e^{-\Delta E/T} \tag{3}$$

where $\Delta E = E_2 - E_1$.

¹It can be derived by maximizing entropy under the constaint of a mean energy value. In eqn (1), I assume that the Boltzman constant $k_B = 1$.