Set Theory

Paradox & Cardinality

03

Huan Long Shanghai Jiao Tong University

longhuan@sjtu.edu.cn

Key points one should know of

03

- - $lack A \cup B$, $A \cap B$, A B, \overline{A} , $A \oplus B$, P(A)
- Set applications
 - **♦** Relation
 - ✓ Ordered pairs, A×B, Relation, Equivalence relation, Partition
 - **♦** Function
 - ✓ Onto function/Surjective function
 - ✓ Injective function/One-to-one function/Single-rooted
 - ✓ Bijective function

Part II.

CB

Paradox

Paradox and ZFC

Equinumerosity

Equinumerosity

Cardinal Numbers

Ordering

Infinite Cardinals

Countable sets

Barber Paradox^[1918]

U3

- Suppose there is a town with just one male barber. The barber shaves all and only those men in town who do not shave themselves.
- Question: Does the barber shave himself?
 - If the barber does NOT shave himself, then he MUST abide by the rule and shave himself.
 - If he DOES shave himself, according to the rule he will NOT shave himself.

Formal Proof

-03

Theorem There is no set to which every set belongs. [Russell, 1902]

Formal Proof

C3

Theorem There is no set to which every set belongs. [Russell, 1902]

Proof:

Let A be a set; we will construct a set not belonging to A. Let

$$B=\{x\in A\mid x\notin x\}$$

We claim that B∉A. we have, by the construction of B.

B∈B iff B∈A and B∉B

If B∈A, then this reduces to

B∈B iff B∉B, Which is impossible, since one side must be true and the other false. Hence B∉A

Natural Numbers in Set Theory

03

 Constructing the natural numbers in terms of sets is part of the process of

"Embedding mathematics in set theory"

John von Neumann

- December 28, 1903 February 8, 1957. Hungarian American mathematician who made major contributions to a vast range of fields:
 - Logic and set theory
 - Quantum mechanics
 - Economics and game theory
 - Mathematical statistics and econometrics
 - Nuclear weapons
 - Computer science

Natural numbers

03

By von Neumann:

Each natural number is the set of all smaller natural numbers.

$$0 = \emptyset$$

$$1 = \{0\} = \{\emptyset\}$$

$$2 = \{0,1\} = \{\emptyset, \{\emptyset\}\}$$

$$3 = \{0,1,2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$$

Some properties from the first four natural numbers

$$0 = \emptyset$$

$$1 = \{0\} = \{\emptyset\}$$

$$2 = \{0,1\} = \{\emptyset, \{\emptyset\}\}$$

$$3 = \{0,1,2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$$

```
0 \in 1 \in 2 \in 3 \in \dots
0 \subseteq 1 \subseteq 2 \subseteq 3 \subseteq \dots
```

03

Paradox

Paradox and ZFC

Equinumerosity

Equinumerosity

Cardinal Numbers

Ordering

Infinite Cardinals

Countable sets

Spring 2021

13

Motivation

CB

- To discuss the **size** of sets. Given two sets A and B, we want to consider such questions as:
 - ^{CS} Do A and B have the same size?
 - OBDOES A have more elements than B?

Example

Equinumerosity

03

Definition A set \mathcal{A} is *equinumerous* to a set \mathcal{B} (written $\mathcal{A} \approx \mathcal{B}$) iff there is a one-to-one function from \mathcal{A} onto \mathcal{B} .

 α A one-to-one function from \mathcal{A} onto \mathcal{B} is called a *one-to-one correspondence* between \mathcal{A} and \mathcal{B} .

Example: $\omega \times \omega \approx \omega$

CS

The set ω × ω is equinumerous to ω. There is a function J mapping ω × ω one-to-one onto ω.

$$J(m,n)=((m+n)^2+3m+n)/2$$

Spring 2021

17

Example: ω≈Q

CB

 $\alpha f: \omega \rightarrow \mathbb{Q}$

•••

Example: $(0,1) \approx \mathbb{R}$

$$(0,1)$$
={x ∈ **R** | 0R

$$\mathfrak{G}$$
 f(x)= tan(π (2x-1)/2)

Examples

CS

$$(0,1) \approx (n,m)$$
 $(0,1) \approx (n,m)$

Proof: $f(x) = (n-m)x+m$

$$(0,1)$$
 ≈ {x| x∈**R** ∧ x>0} =(0,+∞)
 $(0,1)$ ≈ (x| x∈**R** ∧ x>0} =(0,+∞)

Examples

03

Example: $\wp(A) \approx {}^{A}2$

Proof: Define a function H from P(A) onto A^2 as: For any subset B of A, H(B) is the characteristic function of B:

$$f_B(x) = \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{if } x \in A - B \end{cases}$$

H is one-to-one and onto.

Theorem

≪For any sets A, B and C:

- \bullet A \approx A
- If $A \approx B$ then $B \approx A$
- If $A \approx B$ and $B \approx C$ then $A \approx C$.

Proof:

Theorem(Cantor 1873)

CB

The set ω is not equinumerous to the set \mathbf{R} of real numbers.

R of real numbers.

Proof: show that for any functon $f: \omega \to \mathbb{R}$, there is a real number z not belonging to ran f

$$f(0) = 32.4345...,$$

 $f(1) = -43.334...,$
 $f(2) = 0.12418...,$

z: the integer part is 0, and the $(n+1)^{st}$ decimal place of **z** is 7 unless the $(n+1)^{st}$ decimal place of f(n) is 7, in which case the $(n+1)^{st}$ decimal place of **z** is 6.

Then **z** is a real number not in ran f.

Real No set is equinumerous to its power set.

CB

™ No set is equinumerous to its power set.

Proof: Let $g: A \rightarrow \wp(A)$; we will construct a subset B of A that is not in $ran\ g$. Specifically, let

$$B = \{ x \in A \mid x \notin g(x) \}$$

Then B⊆A, but for each $x \in A$

$$x \in B \text{ iff } x \notin g(x)$$

Hence $B \neq g(x)$.

Application

03

03

Paradox

Paradox and ZFC

Equinumerosity

Equinumerosity

Cardinal Numbers

Ordering

Infinite Cardinals

Countable sets

Spring 2021

29

Ordering Cardinal Numbers

U3

Definition A set \mathcal{A} is **dominated** by a set \mathcal{B} (written $\mathcal{A} \preceq \mathcal{B}$) iff there is a *one-to-one* function from \mathcal{A} into \mathcal{B} .

Examples

03

- Any set dominates itself.
- \bowtie If $\mathcal{A} \subseteq \mathcal{B}$, then \mathcal{A} is dominated by \mathcal{B} .
- $\alpha A \leq B$ iff A is equinumerous to some subset of B.

Schröder-Bernstein Theorem

 α If $A \leq B$ and $B \leq A$, then $A \approx B$.

R Proof:

 $f: A \to B$, $g: B \to A$. Define C_n by recursion: $C_0 = A - ran \ g$ and $C_n^+ = g[f[C_n]]$ if $x \in C_n$ for some n, $g^{-1}(x)$ otherwise

Application of the Schröder-Bernstein Theorem

RExample

©If A⊆B⊆C and A≈C, then all three sets are equinumerous.

The set \mathbb{R} of real numbers is equinumerous to the closed unit interval [0,1].

03

Paradox

Paradox and ZFC

Equinumerosity

Equinumerosity

Cardinal Numbers

Ordering

Infinite Cardinals

Countable sets

Countable Sets

03

 \bigcirc **Definition** A set *A* is countable iff $A \leq \omega$,

Intuitively speaking, the elements in a countable set can be counted by means of the natural numbers.

Example

CS

- $\bowtie \omega$ is countable, as is **Z** and **Q**
- **R** is uncountable
- $\bowtie A$, B are countable sets
 - \heartsuit \forall $C \subseteq A$, C is countable
 - \bigcirc $A \cup B$ is countable
 - $\bowtie A \times B$ is countable

Example

CB

- $\bowtie \omega$ is countable, as is **Z** and **Q**
- **R** is uncountable
- $\bowtie A$, B are countable sets
 - \bigcirc \forall $C \subseteq A$, C is countable
 - $\bowtie A \cup B$ is countable
 - $\bowtie A \times B$ is countable
- \bigcirc For any infinite set A, $\wp(A)$ is uncountable.

Continuum Hypothesis

03

- \bowtie Are there any sets with cardinality between \aleph_0 and 2^{\aleph_0} ?

i.e., there is no λ with $\aleph_0 < \lambda < 2^{\aleph_0}$.

Or, equivalently, it says: Every uncountable set of real numbers is equinumerous to the set of all real numbers.

GENERAL VERSION: for any infinite cardinal κ , there is no cardinal number between κ and 2^{κ} .

HISTORY

- Georg Cantor: 1878, proposed the conjecture
- David Hilbert: 1900, the first of Hilbert's 23 problems.
- ★ Kurt Gödel: 1939, ZF ⊢ ←CH.
- \bullet Paul Cohen: 1963, ZF \vdash / CH.

Thanks!