Ejercicio 12

Septiembre 12 2019

Definiendo I como

$$I = \int_{-\infty}^{\infty} \cos(x) \exp(-x^2 - x) dx, \tag{1}$$

Escriba el código de python necesario para

- (20 puntos) Calcular e imprimir I con método de cuadratura gaussiana usando N = 20 puntos.
- (20 puntos) Calcular e imprimir I usando el método de Monte Carlo usando $N = 10^5$ puntos.

Definiendo V_d como

$$V_d = \int_{-\infty}^{\infty} \cos(||r||) \exp(-||r||^2) dr^d,$$
 (2)

donde $||r|| = \sqrt{\sum_{i=1}^{d} x_i^2}$ y $dr^d = dx_1 \cdots dx_d$ Escriba el código de python necesario para

- (30 puntos) Calcular e imprimir V_2 usando el método de Monte Carlo con 10^5 puntos.
- (30 puntos) Calcular e imprimir V_d para un d arbitrario inicializado en el archivo con 10^5 puntos.

En la solución de las integrales por el método de Monte Carlo solamente es permitido usar un generador de números aleatorios con distribucion uniforme. El código para generar números con cualquier otra distribución debe estar incluído en el archivo de respuesta.

Es permitido usar los siguientes notebook como guía para generar los números aleatorios y resolver las integrales.

- https://github.com/ComputoCienciasUniandes/FISI2028-201920/blob/ master/ejercicios/08/MetropolisHastings.ipynb
- https://github.com/ComputoCienciasUniandes/FISI2028-201920/blob/ master/ejercicios/12/integral_MC.ipynb