THE UNITED STATES PATENT AND TRADEMARK OFFICE

La here Application of:

Ryusuke Hasegawa et al.

Group Art Unit:

3747

Serial No.:

09/779,877

Examiner:

T.M. Argenbright

Filed:

February 8, 2001

RECEIVED

For:

MAGNETIC CORE-COIL ASSEMBLY FOR SPARK IGNITION SYSTEMS

OCT 2 7 2003

Old Docket No.:

11872-022001 / 30-4016USRei

New Docket No.:

0017-28 Rei / 30-4016 US Rei

TECHNOLOGY CENTER R3700

Morristown, NJ 07960 September 12, 2003

Assistant Commissioner for Patents Washington, DC 20231

Sir:

SUPPLEMENTAL REISSUE APPLICATION DECLARATION BY THE INVENTORS UNDER 37 CFR 1.175(b)(1)

As the below named inventors, we hereby declare that: our residence, post office address and citizenship are as stated below next to our names, we believe we are the original, first and sole inventors of the subject matter which is described and claimed in Letters Patent Number 5,868,123 entitled MAGNETIC CORE-COIL ASSEMBLY FOR SPARK IGNITION SYSTEMS, issued on February 9, 1999, attached hereto, and for which invention we solicit a reissue patent.

ACKNOWLEDGMENT OF REVIEW OF PAPERS AND DUTY OF CANDOR

We hereby state that we have reviewed and understand the contents of the attached specification, including the claims, and including the new claims 8-18 attached hereto, which are referred to in detail below.

We acknowledge the duty to disclose information which is material to the patentability of this application, namely, information that a reasonable Examiner would

31, 1997, indicated that the subject matter of claims 5 and 8 would be allowable if presented as independent claims with the limitations of the base claim and any intervening claims; (ii) the underlined limitations were added to claim 1 by way of an Examiner's amendment dated June 23, 1997 following a telephonic Examiner's interview with our attorney on June 18, 1997; and (iii) amended claim 1 thereby incorporates the limitations of original claim 5 and original intervening claim 2. However, such a limitation was not necessary because claim 1 did not require such an amendment to overcome the cited prior art. This limitation of claim 1 was made with the mistaken belief that it was necessary, to expedite prosecution, that the subject matter of claim 5 and intervening claim 2 be delineated in independent form, and this mistake occurred because we (the inventors) were not consulted while the application was pending in the United States. Claims 2 through 7 of U.S. Patent No. 5,868,123 all depend on claim 1, and thus also are partially inoperative for the same reason.

The mistake concerning claim 1 was first discovered by an employee of our company in approximately late May or June of 2000, during a review of the claims that issued in this case. At that time, the employee spoke to Ryusuke Hasegawa, the named inventor on the patent, who was surprised that claim 1 included such limitations. The employee prepared some proposals for rewording the claims and contacted applicants' attorney in late August 2000. Applicants' attorney then contacted Ryusuke Hasegawa and further discussed claim 1 in relation to the cited prior art. A determination was then made by the attorney that claim 1 of U.S. Patent No. 5,868,123 is too narrow. New claims that do not include all of the underlined verbiage, but that include several other limitations,

consider important in deciding whether to allow the application to issue as a patent as set forth in 37 C.F.R. §1.56.

PRIORITY CLAIM

We hereby claim priority benefits under Title 35, United States Code, § 119(e) of U.S. provisional application no. 60/004,815 filed on October 5, 1995.

STATEMENT OF INOPERATIVENESS OF ORIGINAL PATENT UNDER 37 CFR 1.175

We believe that U.S. Patent No. 5,868,123 is partly inoperative because it claims less than we had the right to claim. In particular, issued independent claim 1 appears as follows:

- 1. A magnetic core-coil assembly for generating an ignition event in a spark ignition internal combustion system having at least one combustion chamber, comprising a magnetic core that is iron-based and further comprises metallic elements including nickel and cobalt, glass forming elements including boron and carbon, and semi-metallic elements, including silicon, said core being fabricated by heat treating an amorphous magnetic alloy and having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug, said core-coil assembly having the capability of
- (i) generating a high voltage output in the secondary coil within a short period of time following excitation thereof, and
- (ii) sensing spark ignition conditions in the combustion chamber to control the ignition event.

The underlined portion of claim 1, above, unnecessarily limits our invention to an iron-based magnetic core that includes metallic elements including nickel and cobalt, glass forming elements including boron and carbon, and semi-metallic elements, including silicon, the core being fabricated by heat treating an amorphous magnetic alloy. We have been informed that (i) the first Office Action in the original case dated March

were suggested to distinguish the invention from the cited prior art. Consequently, this reissue application contains new claims 8-18 which are discussed in detail below.

New independent claim 8, appearing below, recites that the core comprises an amorphous metal but otherwise does not include any part of the underlined limitations of claim 1 as set forth above. Claim 8 recites different limitations relating to the amorphous metal core "...being non-gapped, and having a permeability ranging from about 100 to 300,". These limitations are not present in claim 1, and thus claim 8 is of different scope. Claim 8 more particularly points out and distinctly claims our invention, distinguishes our invention over the cited prior art, and should have been part of our patent. This error occurred without deceptive intent. Claim 8 recites:

8. A magnetic core-coil assembly for generating an ignition event in a spark-ignition internal combustion system having at least one combustion chamber, comprising a magnetic core having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug, the core comprising amorphous metal, being non-gapped, and having a permeability ranging from about 100 to 300, said core-coil assembly having the capability of (i) generating a high voltage in the secondary coil within a short period of time following excitation thereof, and (ii) sensing spark ignition conditions in the combustion chamber to control the ignition event.

Claims 9-12 attached hereto either directly or indirectly depend on claim 8, are allowable for at least the same reasons, and more particularly and distinctly claim our invention. These claims should have been part of our patent but for the error explained above. These errors occurred without deceptive intent.

New independent claim 13, appearing below, recites that the core is an iron-based amorphous metal that is heat treated, but otherwise does not include any other part of the underlined portions of claim 1 appearing above. Claim 13 recites instead that the amorphous metal core is "...heat treated to have a permeability ranging from about 100 to

300,". Since this limitation is not present in claim 1, claim 13 is of a different scope. Claim 13 more particularly points out and distinctly claims our invention, distinguishes our invention from cited prior art, and should have been part of our patent. This error occurred without deceptive intent. Claim 13 recites:

13. A magnetic core-coil assembly for generating an ignition event in a spark-ignition internal combustion system having at least one combustion chamber, comprising a magnetic core having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug, the core comprising iron-based amorphous metal heat-treated to have a permeability ranging from about 100 to 300, said core-coil assembly having the capability of (i) generating a high voltage in the secondary coil within a short period of time following excitation thereof, and (ii) sensing spark ignition conditions in the combustion chamber to control the ignition event.

New claim 14 directly depends on claim 13, is allowable for at least the same reasons, and more particularly and distinctly claims our invention. This claim should also have been part of our patent but for the error explained above. This error occurred without deceptive intent.

New independent claim 15, appearing below, recites that the core is of iron-based amorphous metal, but otherwise does not include any other part of the underlined portions of claim 1. The core of claim 15 is: "...non-gapped,", and because the limitation of a non-gapped core is not present in claim 1, claim 15 is of a different scope. Claim 15 particularly and distinctly claims the invention, distinguishes our invention over the cited art, and should have been part of the patent. This error occurred without deceptive intent. Claim 15 recites:

15. A magnetic core-coil assembly for generating an ignition event in a spark-ignition internal combustion system having at least one combustion

chamber, comprising a magnetic core having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug, the core comprising iron-based amorphous metal and being non-gapped, said core-coil assembly having the capability of (i) generating a high voltage in the secondary coil within a short period of time following excitation thereof, and (ii) sensing spark ignition conditions in the combustion chamber to control the ignition event.

New claim 16 depends on claim 15 and is allowable for at least the same reasons. In addition, claim 16 more particularly and distinctly claims our invention and should have been part of our patent, but for the error explained above. This error occurred without deceptive intent.

New independent claim 17, appearing below, recites that the core comprises an iron-based metal which is recited in claim 1. But claim 17 also recites that the core "...having a permeability ranging from about 100 to 300". This limitation is not present in claim 1, and therefore claim 17 is of a different scope. Claim 17 more particularly points out and distinctly claims our invention, and distinguishes our invention from the cited prior art. Claim 17 should have been part of our patent and this error occurred without deceptive intent, as explained above. Claim 17 recites:

17. A magnetic core-coil assembly for generating an ignition event in a spark-ignition internal combustion system having at least one combustion chamber, comprising a magnetic core having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug, the core comprising iron-based amorphous metal and having a permeability ranging from about 100 to 300, said core-coil assembly having the capability of (i) generating a high voltage in the secondary coil within a short period of time following excitation thereof, and (ii) sensing spark ignition conditions in the combustion chamber to control the ignition event.

New claim 18 depends on claim 17, and should be allowable for at least the same reasons. Claim 18 more particularly and distinctly claims our invention and thus should

have been part of our patent. Due to the error explained above, claim 18 was not included, and this error occurred without deceptive intent.

As set forth hereinabove in greater detail, all of the errors being corrected in the instant reissue patent application up to the filing of the present declaration occurred without any deceptive intention on the part of the applicant.

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

BY THE INVENTORS

Full name of inventor Ryusuke Hasegawa
Inventor's signature Dynn h Harfank
Date 22 SEPT 2003 Country of Citizenship United States
Residence 29 Hill Street, Morristown, NJ 07960
Post Office Address (Same as Above)
Full name of inventor John Silgailis
Inventor's signature
Date Country of Citizenship <u>United States</u>
Residence 1 Maija 6/12, Emburga LV 3045, LATVIA
Post Office Address (Same as Above)
Full name of inventor Donald Allen Grimes
Inventor's signature
Date Country of Citizenship <u>United States</u>
Residence 126 W. McPherson Avenue, Findlay, OH 45840
Post Office Address (Same as Above)

8. A magnetic core-coil assembly for generating an ignition event in a spark-ignition internal combustion system having at least one combustion chamber, comprising a magnetic core having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug, the core comprising amorphous metal, being non-gapped, and having a permeability ranging from about 100 to 300, said core-coil assembly having the capability of (i) generating a high voltage in the secondary coil within a short period of time following excitation thereof, and (ii) sensing spark ignition conditions in the combustion chamber to control the ignition event.

4 . . .

- 9. A magnetic core-coil assembly as recited in claim 8, said amorphous metal being iron-based.
- 10. A magnetic core-coil assembly as recited in claim 9, said amorphous metal further comprising boron and silicon.
- 11. A magnetic core-coil assembly as recited in claim 8, said permeability being achieved by heat-treatment of said amorphous metal.
- 12. A magnetic core-coil assembly as recited in claim 8, wherein the output voltage in the secondary coil reaches more than 10 kV with a primary current of less than about 120 amp-turns and more than 20 kV with a primary current of 200 to 300 amp-turns within 25 to 100 μsec.
- 13. A magnetic core-coil assembly for generating an ignition event in a spark-ignition internal combustion system having at least one combustion chamber, comprising a magnetic core having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug, the core comprising iron-based amorphous metal heat-treated to have a permeability ranging from about 100 to 300, said core-coil assembly having the capability of (i) generating a high voltage in the secondary coil within a short period of time following excitation thereof, and (ii) sensing spark ignition conditions in the combustion chamber to control the ignition event.
- 14. A magnetic core-coil assembly as recited in claim 13, said amorphous metal further comprising boron and silicon.
- A magnetic core-coil assembly for generating an ignition event in a spark-ignition internal combustion system having at least one combustion chamber, comprising a magnetic core having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug, the core comprising iron-based amorphous metal and being non-gapped, said core-coil assembly having the capability of (i) generating a high voltage in the secondary coil within a short period of time following excitation thereof, and (ii) sensing spark ignition conditions in the combustion chamber to control the ignition event.

- 16. A magnetic core-coil assembly as recited in claim 15, said amorphous metal further comprising boron and silicon.
- 17. A magnetic core-coil assembly for generating an ignition event in a spark-ignition internal combustion system having at least one combustion chamber, comprising a magnetic core having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug, the core comprising iron-based amorphous metal and having a permeability ranging from about 100 to 300, said core-coil assembly having the capability of (i) generating a high voltage in the secondary coil within a short period of time following excitation thereof, and (ii) sensing spark ignition conditions in the combustion chamber to control the ignition event.
- 18. A magnetic core-coil assembly as recited in claim 17, said amorphous metal further comprising boron and silicon.

30039487.doc

US005868123A

United States Patent [19]

Hasegawa et al.

[11] Patent Number:

5,868,123

[45] Date of Patent:

Feb. 9, 1999

[54] MAGNETIC CORE-COIL ASSEMBLY FOR SPARK IGNITION SYSTEMS

[75] Inventors: Ryusuke Hasegawa, Morristown; John Silgailis, Cedar Grove, both of N.J.;

Donald Grimes, Findley, Ohio

[73] Assignee: AlliedSignal Inc., Morris Township,

N.J.

- [21] Appl. No.: 672,909
- [22] Filed: Jun. 28, 1996

Related U.S. Application Data

- [60] Provisional application No. 60/004,815 Oct. 5, 1995.
- [51] Int. Cl.⁶ F02D 3/02
- [52] U.S. Cl. 123/634
- [58] Field of Search 123/634, 635

[56] References Cited

U.S. PATENT DOCUMENTS

4,502,454	3/1985	Hamai et al 123/634 X
5,377,652	1/1995	Noble et al 123/634
5,456,241	10/1995	Ward 123/637 X

Primary Examiner—Tony M. Argenbright Attorney, Agent, or Firm—Ernest D. Buff

[57] ABSTRACT

Amagnetic core-coil assembly generates an ignition event in a spark ignition internal combustion system having at least one combustion chamber. The assembly comprises a magnetic core of amorphous metal having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug. A high voltage is generated in the secondary coil within a short period of time following excitation thereof. The assembly senses spark ignition conditions in the combustion chamber to control the ignition event.

7 Claims, 4 Drawing Sheets

MAGNETIC CORE-COIL ASSEMBLY FOR SPARK IGNITION SYSTEMS

BACKGROUND OF THE INVENTION

Cross Reference to Related Applications

This application claims the benefit of U.S. Provisional Application No. 60/004,815, filed Oct. 5, 1995.

1. Field of the Invention

This invention relates to spark ignition systems for internal combustion engines; and more particularly to a spark ignition system which improves performance of the engine system and reduces the size of the magnetic components in the spark ignition transformer.

2. Description of the Prior Art

In a spark-ignition internal combustion engine, a flyback transformer is commonly used to generate the high voltage needed to create an arc across the gap of the spark plug igniting the fuel and air mixture. The timing of this ignition spark event is critical for best fuel economy and low exhaust emission of environmentally hazardous gases. A spark event which is too late leads to loss of engine power and loss of efficiency. A spark event which is too early leads to detonation, often called "ping" or "knock", which can, in turn, lead to detrimental pre-ignition and subsequent engine damage. Correct spark timing is dependent on engine speed and load. Each cylinder of an engine often requires different timing for optimum performance. Different spark timing for each cylinder can be obtained by providing a spark ignition transformer for each spark plug.

To improve engine efficiency and alleviate some of the problems associated with inappropriate ignition spark timing, some engines have been equipped with microprocessor-controlled systems which include sensors for engine speed, intake air temperature and pressure, engine temperature, exhaust gas oxygen content, and sensors to detect "ping" or "knock". A knock sensor is essentially an electro-mechanical transducer whose sensitivity is not sufficient to detect knock over the whole range of engine speed and load. The microprocessor's determination of proper ignition spark timing does not always provide optimum engine performance. A better sensing of "knock" is needed.

A disproportionately greater amount of exhaust emission of hazardous gases is created during the initial operation of a cold engine and during idle and off-idle operation. Studies have shown that rapid multi-sparking of the spark plug for each ignition event during these two regimes of engine operation reduces hazardous exhaust emissions. Accordingly, it is desirable to have a spark ignition transformer which can be charged and discharged very rapidly.

A coil-per-spark plug (CPP) ignition arrangement in which the spark ignition transformer is mounted directly to the spark plug terminal, eliminating a high voltage wire, is gaining acceptance as a method for improving the spark ignition timing of internal combustion engines. One example of a CPP ignition arrangement is that disclosed by U.S. Pat. No. 4,846,129 dated Jul. 11, 1989 (hereinafter "the Noble patent"). The physical diameter of the spark ignition transformer must fit into the same engine tube in which the spark plug is mounted. To achieve the engine diagnostic goals envisioned in the Noble patent, the patentee discloses 60 an indirect method utilizing a ferrite core. Ideally the magnetic performance of the spark ignition transformer is sufficient throughout the engine operation to sense the sparking condition in the combustion chamber. Clearly, a new type of ignition transformer is needed for accurate engine diagnosis. 65

Engine misfiring increases hazardous exhaust emissions. Numerous cold starts without adequate heat in the spark plug insulator in the combustion chamber can lead to misfires, due to deposition of soot on the insulator. The electrically conductive soot reduces the voltage increase available for a spark event. A spark ignition transformer which provides an extremely rapid rise in voltage can minimize the misfires due to soot fouling.

To achieve the spark ignition performance needed for successful operation of the ignition and engine diagnostic system disclosed by Noble and, at the same time, reduce the incidence of engine misfire due to spark plug soot fouling, the spark ignition transformer's core material must have certain magnetic permeability, must not magnetically saturate during operation, and must have low magnetic losses. The combination of these required properties narrows the availability of suitable core materials. Considering the target cost of an automotive spark ignition system, possible candidates for the core material include silicon steel, ferrite, and iron-based amorphous metal. Conventional silicon steel routinely used in utility transformer cores is inexpensive, but its magnetic losses are too high. Thinner gauge silicon steel with lower magnetic losses is too costly. Ferrites are inexpensive, but their saturation inductions are normally less than 0.5 T and Curie temperatures at which the core's magnetic induction becomes close to zero are near 200° C. This temperature is too low considering that the spark ignition transformer's upper operating temperature is assumed to be about 180° C. Iron-based amorphous metal has low magnetic loss and high saturation induction exceeding 1.5 T, however it shows relatively high permeability. An iron-based amorphous metal capable of achieving a level of 30 magnetic permeability suitable for a spark ignition transformer is needed.

SUMMARY OF THE INVENTION

The present invention provides a magnetic core for a 35 coil-per-plug (CPP) spark ignition transformer which generates a rapid voltage rise and a signal that accurately portrays the voltage profile of the ignition event. The core is composed of an amorphous ferromagnetic material which exhibits low core loss and low permeability (ranging from about 100 to 300). Such magnetic properties are especially suited for rapid firing of the plug during a combustion cycle. Misfires of the engine due to soot fouling are minimized. Moreover, energy transfer from coil to plug is carried out in a highly efficient manner, with the result that very little energy remains within the core after discharge. This high efficiency energy transfer enables the core to monitor the voltage profile of the ignition event in an accurate manner. When the magnetic core material is wound into a cylinder upon which the primary and secondary wire windings are laid to form a toroidal transformer, the signal generated 50 provides a much more accurate picture of the ignition voltage profile than that produced by cores exhibiting higher magnetic losses.

The magnetic core according to the present invention is based on an amorphous metal with a high magnetic induction, which includes iron-base alloys. Two basic forms of a core are disclosed. They are gapped and non-gapped. The gapped core has a discontinuous magnetic section in a magnetically continuous path. An example of such a core is a toroidal-shaped magnetic core having a small slit commonly known as an air-gap. The gapped configuration is adopted when the needed permeability is considerably lower than the core's own permeability as wound. The air-gap portion of the magnetic path reduces the overall permeability. The non-gapped core has a magnetic permeability similar to that of an air-gapped core, but is physically continuous, having a structure similar to that typically found in a toroidal magnetic core. The apparent presence of an

air-gap uniformly distributed within the non-gapped core gives rise to the term "distributed-gap-core".

The gapped-core of the present invention has an overall magnetic permeability between about 100 and about 300 as measured at a frequency of about 1 kHz. The raw core material can have a permeability much higher than 100–300 level, but through special processing, the permeability can be reduced to the desired range without adversely affecting the other needed qualities of the iron-base amorphous alloy. An output voltage greater than 10 kV for spark ignition is achieved with less than 120 ampere-turns of primary and approximately 110 to 160 turns of secondary winding.

The non-gapped core of the present invention is made of an amorphous metal based on iron alloys and processed so that the core's magnetic permeability is between 100 and 300 as measured at a frequency of approximately 1 kHz. To improve the efficiency of non-gapped cores by reducing the eddy current losses, shorter cylinders are wound and processed and stacked end to end to obtain the desired amount of magnetic core. Leakage flux from a distributed-gap-core is much less than that from a gapped-core, emanating less undesirable radio frequency interference into the surroundings. Furthermore, because of the closed magnetic path associated with a non-gapped core, signal-to-noise ratio is larger than that of a gapped-core, making the non-gapped core especially well suited for use as a signal transformer to 25 diagnose engine combustion processes. An output voltage at the secondary winding greater than 10 kV for spark ignition is achieved by a non-gapped core with less than 120 ampereturns of primary and about 110 to 160 turns of secondary winding.

BRIEF DESCRIPTION OF THE DRAWING

The invention will be more fully understood and further advantages will become apparent when reference is made to the following detailed description of the preferred embodiments of the invention and the accompanying drawings, in which:

FIGS. 1, 2 and 3 show a typical increase in primary current when the power is turned on and then off, the primary voltage being on the switched ground side, and the 40 higher voltage being on the secondary side of the transformer, respectively; and

FIGS. 4a and 4b are side and top views, respectively, of the core-coil assembly of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Magnetic cores composed of an iron-based amorphous metal having a saturation induction exceeding 1.5 T in the as-cast state were prepared. The cores had a cylindrical form 50 with a cylinder height of about 80 mm and outside and inside diameters of about 17 and 12 mm, respectively. These cores were heat-treated with no external applied fields. Air gaps were introduced into some of the cores by cutting out some part of the cores along the cylinder axes. By keeping the total cylinder height at about 80 mm, some cores were segmented into two and five sections, each section having a subcylindrical core height of about 40 and 16 mm, respectively. Several turns and 110 to 160 turns of copper windings were applied to each of the cores as the primary and secondary coil, respectively. Plastic covering was placed over the core 60 so that the wires were not near the core. The transformer wiring and core were then vacuum-cast in epoxy for high voltage dielectric integrity. A current was supplied in the primary coil, building up rapidly within about 25 to 100 µsec to a level exceeding 100 amps.

The curve in FIG. 1 indicates the current build-up starting at about 85 usec prior to switching-off (corresponding to

t=-85 μ sec in FIG. 1). During the current ramp-up, the voltage across the primary winding is close to zero as shown in FIG. 2. At t=0, the primary current is cut off, which results in a large magnetic flux change, generating a large voltage in the secondary coil. The voltage profiles in the primary and secondary coils are represented by the curves in FIGS. 2 and 3, respectively. These voltage profiles are readily displayed using an oscilloscope of the conventional type. It is noted that the high voltage in the secondary coil is generated within a short period of time, typically less than 5 μ sec. Thus, in the magnetic cores of the present invention, a high voltage, exceeding 10 kV, can be repeatedly generated at time intervals of less than 100 μ sec. This feature is required to achieve the rapid multiple sparking action mentioned above. Moreover, the rapid voltage rise produced in the secondary winding reduces engine missires resulting from soot fouling.

In addition to the advantages relating to spark ignition event described above, the core-coil assembly of the present invention serves as an engine diagnostic device. Because of the low magnetic losses of the magnetic core of the present invention, the primary voltage profile of FIG. 2 reflects faithfully what is taking place in the secondary winding as depicted in FIG. 3. After each spark ignition, the primary voltage such as shown in FIG. 2 is analyzed for proper ignition characteristics, and the resulting data are then fed to the ignition system control. The present core-coil assembly thus eliminates the additional magnetic element required by the system disclosed in the Noble patent, wherein the core is composed of a ferrite material.

The following examples are presented to provide a more complete understanding of the invention. The specific techniques conditions, materials, proportions and reported data set forth to illustrate the principles and practice of the invention are exemplary and should not be construed as limiting the scope of the invention.

EXAMPLE 1

An amorphous iron-based ribbon having a width of about 80 mm and a thickness of about 20 μ m was wound on a machined stainless steel mandrel. The inside diameter of 12 mm was set by the mandrel and the outside diameter was selected to be 17 mm. The finished cylindrical core weighed about 50–60 grams. The cores were annealed in a nitrogen atmosphere in the 430° to 450° C. range with soak times from 2 to 16 hours. The annealed cores were wound with 2–4 turns of heavy gauge insulated copper wire as the primary coil and with 150 turns of thin gauge insulated copper wire as the secondary coil. The core-coil shown at FIGS. 4a and 4b, was epoxy-potted. With this configuration, the secondary voltage was measured as a function of the primary current, and is set forth below in Table 1.

TABLE I

Primary Current (amp-turn)	Secondary Voltage (k V)	
40	4.8	
80	9.0	
120	12.8	
160	16.0	
200	18.8	
240	20.4	
280	22.0	

Secondary voltages exceeding 12 and 22 kV were obtained with primary currents of about 120 and 280 amp turns, respectively.

EXAMPLE 2

Two 40 mm high cylindrical cores were prepared following the process given in Example 1 and were placed side-

by-side to form a 80-mm-high single magnetic core. The primary and secondary coils were wound identically to the core-coil assembly of Example 1. The secondary voltage versus primary current obtained is set forth below in Table II:

TABLE II

Primary Current (amp-turn)	Secondary Voltage (k V
40	4.2
80	8.4
160	14.2
240	18.5
320	21.6
400	23.1

Secondary voltages exceeding 14 and 23 kV were attained with primary currents of about 160 and 400 amp turns, respectively.

EXAMPLE 3

Five 15.6 mm high toroidal cores were prepared following the process of Example 1 and were assembled to form a single cylindrical core of about 80 mm in height. The core-coil assembly was substantially identical to that of Example 1, except that the secondary coil had 138 turns. The secondary voltage as a function of the primary current is set forth below in Table III:

TABLE III

Primary Current (amp-turn)	Secondary Voltage (k V)
40	5.4
80	10.2
160	17.8
240	22.4
320	25.6
360	26.1

Secondary voltages exceeding 10 and 26 kV were attained with primary currents of about 80 and 360 amp-turns, respectively.

EXAMPLE 4

An 80 mm high cylindrical core with the dimension given in Example 1 was prepared and heat-treated at 350° C. for 2 hours. After the heat-treatment, an air-gap was introduced along the cylinder axis by cutting-off part of the core. The primary and secondary coils were wound on the metallic primary and secondary coils were wound on the metallic assubstantially identical to that of Example 1. The resultant secondary voltage-versus-primary current is set forth below in Table IV:

TABLE IV

	Primary Current (amp-turn)	Secondary Voltage (k V)
5	40	4.9
	. 80	9.6
	120	14.4
	160	19.4
	260	22.5
	240	26.3
10	260	27.3

Secondary voltages exceeding 14 and 27 kV were obtained with primary currents of about 120 and 260 amp-turns, respectively.

Having thus described the invention in rather full detail, it will be understood that such detail need not be strictly adhered to but that further changes and modifications may suggest themselves to one skilled in the art, all falling within the scope of the invention as defined by the subjoined claims.

What is claimed is:

- 1. A magnetic core-coil assembly for generating an ignition event in a spark ignition internal combustion system having at least one combustion chamber, comprising a magnetic core that is iron based and further comprises metallic elements including nickel and cobalt, glass forming elements including boron and carbon, and semi-metallic elements, including silicon, said core being fabricated by heat treating an amorphous magnetic alloy and having a primary coil for low voltage excitation and a secondary coil for a high voltage output to be fed to a spark plug, said core-coil assembly having the capability of (i) generating a high voltage in the secondary coil within a short period of time following excitation thereof, and (ii) sensing spark ignition conditions in the combustion chamber to control the ignition event.
 - 2. A magnetic core-coil assembly as recited in claim 1, wherein the magnetic core comprises segmented cores.
 - 3. A magnetic core-coil assembly as recited in claim 1, wherein the output voltage in the secondary coil reaches more than 10 kV with a primary current of less than about 120 amp turns and more than 20 kV with a primary current of 200 to 300 amp turns within 25 to 100 usec.
 - 4. A magnetic core-coil assembly as recited in claim 1, wherein the magnetic core is non-gapped.
 - 5. A magnetic core-coil assembly as recited in claim 1, wherein the magnetic core is gapped.
 - 6. A magnetic core-coil assembly as recited in claim 4, wherein the magnetic core is heat-treated at a temperature near the alloy's crystallization temperature and partially crystallized.
 - 7. A magnetic core-coil assembly as recited in claim 5, wherein the magnetic core is heat-treated below the alloy's crystallization temperature and, upon completion of the heat treatment, remains substantially in an amorphous state.

* * * * *