The While programming language

Matthew Hennessy

October 11, 2010

While language Matthew Hennessy

The While language Big-step Meaning Small-step

The language While

$$B \in Bool ::= true \mid false \mid E = E \mid B\&B \mid \neg B \mid \cdots$$

$$E \in Exp$$
 ::= L | n | $(E + E)$ | · · ·

$$C \in Com ::= L := E \mid \text{if } B \text{ then } C \text{ else } C$$

$$\mid C; C \mid \text{skip} \mid \text{while } B \text{ do } C$$

L, K from a set of locations Locs

Example program

```
L_2 := 1;
L_3 := 0;
while \neg (L_1 = L_2) do
L_2 := L_2 + 1;
L_3 := L_3 + 1;
```

How do we describe the behaviour of these programs?

How can we prescribe how these programs should be executed?

While language Matthew Hennessy

The While language Big-step Meaning Small-step

Dependencies

Behaviour of commands in *Com* depend on behaviour of Boolean expressions in *Bool*

- ▶ if L = K then $L_1 := K$ else $L_2 := L$
- ▶ while ¬ $(L_1 = L_2)$ do $L_2 := L_2 + 1$; $L_3 := L_3 + 1$

Behaviour of Boolean in Bool depend on behaviour of expressions in Exp

- ▶ (L+1) = (K+2)
- $\blacktriangleright (L_2 + L) = K$

Evaluating expressions

Value of expressions depend on current values in locations

▶
$$K + L - 1$$

Value depends on current values of locations ${\rm K}$ and ${\rm L}$

Values stored at locations change as programs are executed

While language Matthew Hennessy

The While language Big-step Meaning Small-step

States

- ▶ A *state* (of the memory) is a function from locations to numerals, $s : Locs \rightarrow Nums$.
- ▶ The state $s[K \mapsto n]$ is defined by

$$s[K \mapsto n](L) = \begin{cases} n & \text{if } K = L \\ s(L) & \text{otherwise} \end{cases}$$

- ▶ Behaviour of commands is relative to a *state*
- ▶ The state changes as the execution of a command proceeds
- ► Complete execution of a command transforms an initial state into a terminal state

Coláiste na Tríonóide, Baile Átha Cliath

Big-step semantics of arithmetic expressions

Judgements:

$$\langle E, s \rangle \Downarrow n$$

meaning: value of expression E relative to the state s is n

Alternative:

$$\langle E, s \rangle \Downarrow \langle n, s' \rangle$$

meaning:

- ▶ E relative to the state s evaluates to n
- \blacktriangleright the evaluation changes the state from s to s'

While language Matthew Hennessy

The While language Big-step Meaning Small-step

Big-step semantics of arithmetics

(B-NUM)
$$\frac{\langle \mathbf{n}, s \rangle \Downarrow \mathbf{n}}{\langle E_{1}, s \rangle \Downarrow \mathbf{n}_{1}} \qquad \langle E_{2}, s \rangle \Downarrow \mathbf{n}_{2}}$$

$$\frac{\langle E_{1}, s \rangle \Downarrow \mathbf{n}_{1}}{\langle E_{1} + E_{2}, s \rangle \Downarrow \mathbf{n}_{3}} \qquad n_{3} = \mathsf{add}(n_{1}, n_{2})$$
(B-LOC)
$$\frac{\langle \mathbf{L}, s \rangle \Downarrow s(\mathbf{L})}{\langle \mathbf{L}, s \rangle \Downarrow s(\mathbf{L})}$$

Assignments

Evaluate the command (L := E) relative to state s?

Intuition:

- (1) evaluate E relative to state s to some value n
- (2) update location L with new value n

Inference rule:

$$\begin{array}{c} \text{(B-ASSIGN.S)} \\ \langle E,s\rangle \Downarrow \text{n} \\ \hline \\ \langle \text{L} := E,s\rangle \Downarrow s[\text{L} \mapsto \text{n}] \end{array}$$

While language Matthew Hennessy

The While language Big-step Meaning Small-step

Sequential composition

Evaluate command C_1 ; C_2 relative to state s?

Intuition:

- (1) evaluate C_1 relative to state s, to get new state s_1
- (2) then evaluate C_2 relative to new state s_1

Rule:

$$\begin{array}{c} \text{(B-SEQ.S)} \\ \langle \mathit{C}_1, \mathit{s} \rangle \Downarrow \mathit{s}_1 \\ \langle \mathit{C}_2, \mathit{s}_1 \rangle \Downarrow \mathit{s}' \\ \hline \langle \mathit{C}_1 \; ; \; \mathit{C}_2, \mathit{s} \rangle \Downarrow \mathit{s}' \end{array}$$

DUBLIN ÁTHA CLIATH

If commands

Evaluate command (if B then C_1 else C_2) relative to state s?

Intuition:

- (1) first evaluate B to some boolean value by
- (2) if true evaluate C_1 relative to state s
- (3) if false evaluate C_2 relative to state s

Rules:

$$\begin{array}{lll} \text{(B-IF.T)} & \text{(B-IF.F)} \\ \langle B,s\rangle \Downarrow \text{true} & \langle B,s\rangle \Downarrow \text{false} \\ \langle C_1,s\rangle \Downarrow s' & \langle C_2,s\rangle \Downarrow s' \\ \\ \langle \text{if B then C_1 else C_2,s} \rangle \Downarrow s' & \langle \text{if B then C_1 else C_2,s} \rangle \Downarrow \text{PSCIN } \\ \\ \langle \text{If B then C_1 else C_2,s} \rangle \Downarrow s' & \langle \text{if B then C_1 else C_2,s} \rangle \end{pmatrix}$$

While language Matthew Hennessy

The While language Big-step Meaning Small-step

While commands

Evaluate command (while B do C) relative to state s?

Intuition:

- (1) first evaluate B to some boolean value by
- (2) if false nothing to be done
- (3) if true evaluate C relative to state s to get new state s_1
- (4) then evaluate original (while B do C) relative to s_1

$$(B-\text{WHILE.T}) \\ \langle B,s \rangle \Downarrow \text{true} \\ \langle C,s \rangle \Downarrow s_1 \\ \langle B,s \rangle \Downarrow \text{false} \\ \hline \langle \text{While } B \text{ do } C,s \rangle \Downarrow s \\ \hline \langle \text{While } B \text{ do } C,s \rangle \Downarrow s' \\ \hline$$

DUBLIN ÁTHA CLIATH

The skip command

Evaluate command skip relative to state s?

Intuition:

(1) nothing to do

Rule:

(B-SKIP)

 $\langle \mathtt{skip}, s \rangle \ \overline{\Downarrow} \ s$

While language Matthew Hennessy

The While language Big-step Meaning Small-step

Properties of big-step semantics

Strong normalisation:

For every state s and every command C there exists some state s' such that $\langle C, s \rangle \Downarrow s'$ False

Determinacy:

If $\langle C, s \rangle \Downarrow s_1$ and $\langle C, s \rangle \Downarrow s_2$ then $s_1 = s_2$ **True**

Proof requires rule induction

Non-termination in big-step semantics

- ▶ Let C be while \neg (L = 0) do L := L + 1
- ▶ Let s(L) = 1
- ▶ How can we derive $\langle C, s \rangle \Downarrow s'$ for any s'?
- ▶ What is the shortest proof of judgement of the form $\langle C, s \rangle \Downarrow s'$?

While language Matthew Hennessy

The While language Big-step Meaning Small-step

The meaning of commands

$$\begin{split} \text{L}_2 &:= 1; \\ \text{L}_3 &:= 0; \\ \text{while} &\neg \left(\text{L}_1 = \text{L}_2 \right) \text{do} \\ \text{L}_2 &:= \text{L}_2 + 1; \\ \text{L}_3 &:= \text{L}_3 + 1; \\ \text{L}_1 &:= \text{L}_3 \end{split}$$

What does this program do?

- ► A program transforms an initial state in a terminal state
- ► For some initial states there may be no terminal state

TRINITY COLLEGE DUBLIN
COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

Partial functions

$$f:A \rightarrow B$$

Meaning:

f calculates an element of B for some elements of A

Notation:

- ► *A* is the domain of *f*
- \triangleright *B* is the range of *f*

Note: f(a) may not be defined for some a in A

While language Matthew Hennessy

The While language Big-step Meaning Small-step

The meaning of commands

$$\llbracket - \rrbracket : \mathit{Com} \rightarrow (\mathit{States} \rightarrow \mathit{States})$$

[C] transforms an initial state s into a terminal state

Definition:

$$\llbracket C \rrbracket (s) = \begin{cases} s', & \text{if } \langle C, s \rangle \Downarrow s' \\ \text{undefined}, & \text{otherwise} \end{cases}$$

Determinacy ensures this is a proper definition

Example

Let
$$C$$
 denote $L_2:=1$;
$$L_3:=0;$$
 while \neg $\left(L_1=L_2\right)$ do
$$L_2:=L_2+1;$$

$$L_3:=L_3+1;$$

$$L_1:=L_3$$

How do we describe $[\![C]\!]$?

 $[\![C]\!](s)$ is a state:

$$\llbracket C \rrbracket (s)(\mathtt{L}) = egin{cases} s(\mathtt{L}_1) - 1, & ext{if } s(\mathtt{L}_1) > 0, \mathtt{L} = \mathtt{L}_1, \mathtt{L}_2, \mathtt{L}_3 \\ s(\mathtt{L}), & ext{otherwise} \end{cases}$$

DUBLIN ÁTHA CLIATH

While language Matthew Hennessy

The While language Big-step Meaning Small-step

Small-step semantics for While

Judgements:

$$\langle C, s \rangle \rightarrow \langle C', s' \rangle$$

Meaning:

- ► starting from state *s*
- ▶ when executing command *C*

one step of computation leads to

- ► state *s'*
- ▶ with command C' remaining to be executed

What is a step?

Depends

DUBLIN ÁTHA CLIATH

What is in a step?

Decision:

- ▶ Ignore how expressions, Booleans, are evaluated
- ► One step consists of:
 - ► memory update
 - or branching decision

Concentrate on execution of commands

While language Matthew Hennessy

The While language Big-step Meaning Small-step

Assignment

How to execute one step of command (L := E) relative to the state s?

Intuition:

- ► Evaluate *E* relative to state *s*
- ► Update state *s* with resulting value

Inference rule:

$$egin{aligned} ext{(W-ASS)} \ & \langle E,s
angle \Downarrow \mathtt{n} \ & \\ & \langle \mathtt{L} := E,s
angle
ightarrow \langle \mathtt{skip}, s[\mathtt{L} \mapsto \mathtt{n}]
angle \end{aligned}$$

One step suffices for entire execution – ignoring evaluation of E

Conditional

How to execute one step of (if B then C_1 else C_2) relative to state s

Intuition:

- ► Evaluate *B* relative to state *s*
- ▶ If true start evaluating command C₁
- ▶ If false start evaluating command C_2

Inference rule:

$$egin{aligned} & ext{(W-COND.TRUE)} \ & \langle B,s
angle \Downarrow ext{true} \end{aligned} \ & \langle ext{if B then C_1 else $C_2,s
angle}
ightarrow \langle C_1,s
angle \end{aligned} \ & \langle ext{(W-COND.FALSE)} \ & \langle B,s
angle \Downarrow ext{false} \end{aligned} \ & \langle ext{if B then C_1 else $C_2,s
angle}
ightarrow \langle C_2,s
angle \end{aligned}$$

Matthew Hennessy

DUBLIN

While language

The While language

Meaning Small-step

Sequential composition

How to execute one step of command (C_1 ; C_2) relative to state s

Big-step

Intuition:

- ▶ Execute one step of C_1 relative to state s
- ▶ If C_1 has terminated start executing C_2

skip indicates termination

Inference rule:

$$\begin{array}{c} \text{(W-SEQ.LEFT)} \\ \langle \mathit{C}_1, \mathit{s} \rangle \to \langle \mathit{C}_1', \mathit{s}' \rangle \\ \\ \overline{\langle \mathit{C}_1 \; ; \; \mathit{C}_2, \mathit{s} \rangle \to \langle \mathit{C}_1' \; ; \; \mathit{C}_2, \mathit{s}' \rangle} \\ \\ \text{(W-SEQ.SKIP)} \\ \\ \hline \overline{\langle \mathsf{skip} \; ; \; \mathit{C}_2, \mathit{s} \rangle \to \langle \mathit{C}_2, \mathit{s} \rangle}$$

DUBLIN ÁTHA CLIATH

While commands

How to execute one step of command (while B do C) relative to state s

Intuition:

- ► Evaluate B relative to s
- ▶ If false then terminate
- ▶ if true then execute one step of *C*

Inference rule:

```
 \begin{array}{c} \text{(W-WHILE.FALSE)} \\ \overline{\langle B,s\rangle} \Downarrow \texttt{false} \\ \hline \overline{\langle \texttt{while } B \texttt{ do } C,s\rangle} \to \overline{\langle \texttt{skip},s\rangle} \\ \hline \text{(W-WHILE.TRUE)} \\ \overline{\langle B,s\rangle} \Downarrow \texttt{true} \\ \hline \overline{\langle \texttt{while } B \texttt{ do } C,s\rangle} \to \overline{\langle C \texttt{ ; while } B \texttt{ do } C,s\rangle} \end{array}
```

While language Matthew Hennessy

The While language Big-step Meaning Small-step

While loops: the unwinding rule

How to execute one step of command (while B do C) relative to state s

Intuition:

► combination of (if B then C else ...) and sequential composition

Inference rule:

(W-WHILE)

 $\langle \text{while } B \text{ do } C, s \rangle \rightarrow \\ \langle \text{if } B \text{ then } (C; \text{while } B \text{ do } C) \text{ else skip}, s \rangle$

DUBLIN ÁTHA CLIATH

Running commands

To run command *P* from state *s*:

Find state s' such that $\langle P, s \rangle \rightarrow^* \langle \mathtt{skip}, s' \rangle$

Example:

See McGusker notes, slide 50

Configurations $\langle skip, s \rangle$ are **terminal**

While language Matthew Hennessy

The While language Big-step Meaning Small-step

Running commands: Problems can occur

Infinite loops:

Let P be command while true do skip

- $\blacktriangleright \langle P, s \rangle \to^3 \langle P, s \rangle \to^3 \langle P, s \rangle \to^3 \langle P, s \rangle \to \dots$
- lacktriangle No state s' such that $P \to^* \langle \mathtt{skip}, s' \rangle$

Progress property:

- \blacktriangleright Configurations $\langle \mathtt{skip}, s \rangle$ are **terminal**
- ▶ Either $\langle C, s \rangle$ is terminal or $\langle C, s \rangle \rightarrow \langle C', s' \rangle$ for some configuration $\langle C', s' \rangle$

Questions Questions

- ► Determinacy:
 - $\langle C, s \rangle \to^* s_1$ and $\langle C, s \rangle \to^* s_2$ implies $s_1 = s_2$?
- ► Consistency with big-step semantics:

 - ▶ $\langle C, s \rangle \Downarrow s'$ implies $\langle C, s \rangle \rightarrow^* s'$?

 ▶ $\langle C, s \rangle \rightarrow^* s'$ implies $\langle C, s \rangle \Downarrow s'$?

Proof strategy:

Similiar to that used for expression language Exp

