МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

"Южно-Уральский государственный университет (национальный исследовательский университет)" Высшая школа электроники и компьютерных наук Кафедра системного программирования

Разработка приложения для подбора моделей машинного обучения на основе подхода AutoML

Автор работы:

студент группы КЭ-403

М.А. Щукин

Научный руководитель:

к.ф.-м.н., доцент кафедры СП

С.А. Иванов

Рецензент:

к.ф.-м.н, ст. преподаватель

кафедры ММОМ ФГБОУ ВО

«ЮУрГГПУ»

А.М. Шарафутдинова

Челябинск-2020

Цели и задачи

Цель:

Разработка приложения для подбора моделей машинного обучения на основе подхода AutoML.

Задачи:

- •Выполнить обзор научной литературы и существующих решений по данной теме;
- •Определить требования к приложению;
- •Выполнить проектирование архитектуры приложения;
- •Реализовать приложение;
- •Выполнить тестирование приложения.

Актуальность

- Активное изучение AutoML
- •Демократизация искусственного интеллекта
- •Уменьшение потребности в квалифицированных кадрах
- •Повышение производительности труда

Бинарная классификация

Формат входных данных

Что такое AutoML?

AutoML – Automated machine learning.

AutoML – Автоматизированное машинное обучение.

AutoML это:

- Автоматизация стандартных ML процессов;
- Минимум вмешательства человека.

Впервые упоминается на ICML 2014.

Соревнования по созданию AutoML систем проводятся с 2014 года.

Стандартные МL процессы

- 1. Постановка задачи
- 2. Обработка отсутствующих значений
- 3. Обработка категориальных значений
- 4. Отбор признаков
- 5. Извлечение признаков
- 6. Масштабирование признаков
- 7. Метаобучение
- 8. Выбор метрики
- 9. Выбор способа валидации
- 10. Установка ограничений
- 11. Подбор моделей
- 12. Оптимизация гиперпараметров моделей
- 13. Ансамблирование
- 14. Развертывание системы

Подбор моделей машинного обучения

- AdaBoost
- SVM
- random forest
- bagging (SVC)
- extremely randomized trees
- MLP
- histogram gradient boosting
- decision tree
- ridge
- •SGD
- k-nearest neighbors
- passive-aggressive
- nearest centroid

- logistic regression
- gaussian process
- LDA
- QDA
- label spreading
- •Bernoulli naive Bayes
- Gaussian naive Bayes
- perceptron
- XGBoost
- ELM
- factorization machine
- polynomial network
- deep belief network

Оптимизация гиперпараметров

CASH

CASH – комбинированные подбор алгоритма и оптимизация гиперпараметров.

*Zöller M. A., Huber M. F. Benchmark and Survey of Automated Machine Learning Frameworks. (2020)

Аналоги (Free and Open-source)

Проект	Год	☆ Star	Примечание
TPOT	2015	7.1k	
H2O AutoML AutoML	2017	4.8k	
MLBox	2017	1.1k	
Pennai	2018	130	
AutoKeras	2017	7.1k	
Hyperopt-Sklearn	2014	1k	
Auto-Sklearn	2015	4.5k	
Auto-Weka	2013	255	

Аналоги (коммерческие)

Cloud AutoML 2018

Automated ML 2018

AutoAl **2019**

Варианты использования

Диаграмма компонентов

Средства разработки

Python 3.6

PyQt 5

Внешний вид приложения (1)

Внешний вид приложения (2)

Результаты тестирования (1)

Валидация: 10-fold cross-validation. Метрика: predictive accuracy.

dataset	max accuracy OpenML	max accuracy test	time budget (sec)	best models
blood-transfusion-service-center	0.8021	0.7984	300	RandomForest
breast-w	0.9757	0.9713	300	MLP
climate-model-simulation-crashes	0.9296	0.9222	200	RandomForest
credit-g	0.786	0.784	300	XGBoost
Diabetes	0.7878	0.7799	300	LinearSVC
Higgs	0.7333	0.7248	500	HistGB
monks-problems-1	1	1	200	AdaBoost HistGB RandomForest XGBoost
monks-problems-2	1	0.9883	200	AdaBoost
monks-problems-3	0.9892	0.9892	200	RandomForest XGBoost HistGB
ozone-level-8hr	0.9503	0.9428	500	XGBoost
qsar-biodeg	0.8872	0.8787	300	LinearSVC
Spambase	0.9626	0.9228	500	HistGB
steel-plates-fault	1	0.8906	300	LinearSVC
tic-tac-toe	1	0.9800	500	SVM
Wdbc	0.9842	0.9824	400	Bagging(SVC)

Результаты тестирования (2)

Валидация: 10-fold cross-validation. Метрика: predictive accuracy.

XGBoost - 99.48% HistGB - 99.47% MLP - 99.31% SVM - 98.79% HistGB - 97.25% XGBoost - 97.19% MLP - 96.47% SVM - 73.48%

MNIST

Fashion MNIST

Основные результаты

- •Выполнен обзор научной литературы и существующих решений по данной теме
- •Выполнено определение требований к приложению
- •Выполнено проектирование архитектуры приложения
- •Выполнена реализация приложения
- •Выполнено тестирование приложения

Исходный код:

https://github.com/MainTechAI/BachelorThesisAutoML

Дальнейшее развитие проекта (1)

Дальнейшее развитие проекта (2)

Дальнейшее развитие проекта (3)

- Multiclass, Multilabel, Multioutput-multiclass классификация.
- Включение алгоритмов предварительной обработки в задачу CASH.
- Добавление иных алгоритмов классификации.
- Экспериментирование с алгоритмами оптимизации гиперпараметров.
- Neural architecture search (NAS).
- Разработка модуля улучшающего точность за счет применения алгоритмов ансамблирования.
- Изучение методов мета-обучения.
- Поддержка временных рядов.
- Упор на максимальное использование выделенных вычислительных мощностей.
- Сохранение состояния поиска с возможностью в дальнейшем продолжить поиск с этого момента.
- Реализация поиска только по времени или только по максимальному числу итераций или в комбинации (сейчас только в комбинации).
- Сохранение подобранных моделей в формат ONNX.