Analysis-01

Yifan Wei

October 2016

1 Exercise

Suppose \sim is an equivalence relation on S.

We define two sets: $\langle a \rangle := \{x \in S | x \sim a\}$ and $S / \sim := \{\langle a \rangle | a \in S\}$. And a partition P on S:

- 1. P is a collection of some subsets of S: $P \subseteq P(S)$.
- 2. $\forall X, Y \in P \text{ if } X \neq Y \text{, then } X \cap Y = \emptyset.$
- 3. The union of all elements in P equals to S.

What you have to do:

1. Prove that

$$\forall X, Y \in S, X = Y \text{ or } X \cap Y = \emptyset.$$

2. Prove that

$$\bigcup_{X \in S/\sim} X = S.$$

With 1 and 2 we can conclude that an equivalence relation defines a partition on S.

3. Show that if we have a partition of S, then there is a unique equivalence relation \sim on S corresponding to that partition. (**Hint:** consider the relation $R: xRy \Leftrightarrow \exists X \in P, \{x,y\} \subseteq X$)

2 Exercise

Prove that:

1. \forall injective $f:A\to B, \exists$ surjective $h:B\to A,$ such that:

$$\forall x \in A, h(f(x)) = x.$$

2. \forall surjective $f: A \to B$, \exists injective $h: B \to A$, such that:

$$\forall y \in B, f(h(x)) = y.$$