Laboratorium z kryptografii

Zajęcia 5-6: Szyfr Mini-AES

1 Zasada działania algorytmu

Szyfr Mini-AES operuje na 16 bitowych blokach tekstu.

1.1 Podstawowe operacje wykorzystywane w algorytmie

Algorytm operuje na specyficznej formie dodawania oraz mnożenia 16 bitowych ciągów danych. W celu ich przystępnego omówienia wygodnie jest posługiwać się formą macierzową ciągu szesnastu bitów $a = (a_0, a_2, \ldots, a_{14}, a_{15})$, tj.:

$$a = (a_0, a_2, \dots, a_{14}, a_{15}) \rightarrow \begin{bmatrix} (a_0, a_1, a_2, a_3) & (a_4, a_5, a_6, a_7) \\ (a_8, a_9, a_{10}, a_{11}) & (a_{12}, a_{13}, a_{14}, a_{15}) \end{bmatrix} = \begin{bmatrix} a[0, 0] & a[0, 1] \\ a[1, 0] & a[1, 1] \end{bmatrix}$$

Przykładowo:

$$k_p = (1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0) \rightarrow \begin{bmatrix} (1, 0, 1, 1) & (0, 0, 1, 0) \\ (1, 1, 1, 1) & (0, 1, 1, 0) \end{bmatrix} = \begin{bmatrix} k_p[0, 0] & k_p[0, 1] \\ k_p[1, 0] & k_p[1, 1] \end{bmatrix}$$

Dodawanie ciągów 16 bitowych:

Dodawanie dwóch ciągów $a=(a_0,a_2,\ldots,a_{14},a_{15})$ i $b=(b_0,b_2,\ldots,b_{14},b_{15})$ wykonuje się w podobny sposób dodawania elementów dwóch macierzy 2×2 , z tą różnicą że elementami macierzy są ciągi 4 bitowe, które sumowane są binarnie (mod2), tzn.:

$$a+b = (a_0, a_2, \dots, a_{14}, a_{15}) + (b_0, b_2, \dots, b_{14}, b_{15})$$

$$= \begin{bmatrix} a[0,0] & a[0,1] \\ a[1,0] & a[1,1] \end{bmatrix} + \begin{bmatrix} b[0,0] & b[0,1] \\ b[1,0] & b[1,1] \end{bmatrix}$$

$$= \begin{bmatrix} a[0,0] \oplus b[0,0] & a[0,1] \oplus b[0,1] \\ a[1,0] \oplus b[0,1] & a[1,1] \oplus b[1,1] \end{bmatrix}$$

Przykładowo

$$k_{p} + f = (1,0,1,1,0,0,1,0,1,1,1,1,0,1,1,0) + (1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)$$

$$= \begin{bmatrix} (1,0,1,1) & (0,0,1,0) \\ (1,1,1,1) & (0,1,1,0) \end{bmatrix} + \begin{bmatrix} (1,1,1,1) & (0,0,0,0) \\ (1,1,1,1) & (0,0,0,0) \end{bmatrix}$$

$$= \begin{bmatrix} (1,0,1,1) \oplus (1,1,1,1) & (0,0,1,0) \oplus (0,0,0,0) \\ (1,1,1,1) \oplus (1,1,1,1) & (0,1,1,0) \oplus (0,0,0,0) \end{bmatrix}$$

$$= \begin{bmatrix} (0,1,0,0) & (0,0,1,0) \\ (0,0,0,0) & (0,1,1,0) \end{bmatrix}$$

$$= (0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0)$$

Mnożenie ciągów 16 bitowych

Mnożenie dwóch ciągów także można przedstawić w postaci mnożenia dwóch macierzy kwadratowych 2×2

$$\begin{array}{lll} a \cdot b & = & (a_0, a_2, \dots, a_{14}, a_{15}) \cdot (b_0, b_2, \dots, b_{14}, b_{15}) \\ & = & \left[\begin{array}{c} a[0,0] & a[0,1] \\ a[1,0] & a[1,1] \end{array} \right] \cdot \left[\begin{array}{c} b[0,0] & b[0,1] \\ b[1,0] & b[1,1] \end{array} \right] \\ & = & \left[\begin{array}{c} a[0,0] \odot b[0,0] \oplus a[0,1] \odot b[1,0] & a[0,0] \odot b[0,1] \oplus a[0,1] \odot b[1,1] \\ a[1,0] \odot b[0,0] \oplus a[1,1] \odot b[1,0] & a[1,0] \odot b[0,1] \oplus a[1,1] \odot b[1,1] \end{array} \right] \end{array}$$

gdzie specyficzna operacja mnożenia \odot przekształca dwa ciągi czterobitowe $\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$ i $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)$ jeden ciąg 4-bitowy $\gamma = (\gamma_0, \gamma_1, \gamma_2, \gamma_3)$. Przypisując każdemu z tych ciągów wielomian stopnia trzeciego nad ciałem \mathbb{Z}_2 , np.:

$$(\alpha_0, \alpha_1, \alpha_2, \alpha_3) \leftrightarrow \alpha_0 x^3 + \alpha_1 x^2 + \alpha_2 x + \alpha_3$$

działanie \odot stanowi resztę z dzielenia $R(\alpha \cdot \beta | r)$ wielomianu $\alpha \cdot \beta$ przez wielomian redukcyjny $r = x^4 + x + 1$, tj.

$$\gamma_0 x^3 + \gamma_1 x^2 + \gamma_2 x + \gamma_3 = R \left[\left(\alpha_0 x^3 + \alpha_1 x^2 + \alpha_2 x + \alpha_3 \right) \cdot \left(\beta_0 x^3 + \beta_1 x^2 + \beta_2 x + \beta_3 \right) | (x^4 + x + 1) \right].$$

Wielomian redukcyjny r jest stały dla szyfru Mini-AES. Przykładowo:

$$\begin{array}{lll} k_p \cdot f & = & (1,0,1,1,0,0,1,0,1,1,1,1,0,0,1,0) \cdot (1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0) \\ & = & \left[\begin{array}{ccc} (1,0,1,1) & (0,0,1,0) \\ (1,1,1,1) & (0,1,1,0) \end{array} \right] \cdot \left[\begin{array}{ccc} (1,1,1,1) & (0,0,0,0) \\ (1,1,1,1) & (0,0,0,0) \end{array} \right] \\ & = & \left[\begin{array}{ccc} (1,0,1,1) \odot (1,1,1,1) \oplus (0,0,1,0) \odot (1,1,1,1) & (1,0,1,1) \odot (0,0,0,0) \oplus (0,0,1,0) \odot (0,0,0,0) \\ (1,1,1,1) \odot (1,1,1,1) \oplus (0,1,1,0) \odot (1,1,1,1) & (1,1,1,1) \odot (0,0,0,0) \oplus (0,1,1,0) \odot (0,0,0,0) \end{array} \right] \end{array}$$

oraz

$$\begin{array}{lll} (1,0,1,1)\odot(1,1,1,1) & \leftrightarrow & (x^3+x+1)\odot(x^3+x^2+x+1) \\ [(1,0,1,1)\cdot(1,1,1,1)] \ mod(1,0,0,1,1) & \leftrightarrow & \left[(x^3+x+1)\cdot(x^3+x^2+x+1)\right] \ mod(x^4+x+1) \\ (1,1,0,1,0,0,1) mod(1,0,0,1,1) & \leftrightarrow & (x^6+x^5+x^3+1) mod(x^4+x+1) \end{array}$$

co daje:

1.2 Funkcje wykorzystywane w algorytmie

Szyfr Mini-AES używa dwóch dodatkowych operacji. Pierwszą operacja ZK zamienia miejscami cztery przedostatnie z czterema ostatnimi bitami ciągu wejściowego $a = (a_0, a_2, \dots, a_{14}, a_{15})$, co można zapisać jako:

$$ZK(a) \quad = \quad ZK\left(\left[\begin{array}{ccc} a[0,0] & a[1,0] \\ a[0,1] & a[1,1] \end{array}\right]\right) = ZK\left(\left[\begin{array}{ccc} a[0,0] & a[1,0] \\ a[1,1] & a[0,1] \end{array}\right]\right)$$

Druga operacja $F_{SBox}(X, a)$, gdzie $X \in \{D, E\}, a \in \{0, 1\}^{16}$, opiera się na wykorzystaniu funkcji $SBoxE, SBoxD: \{0, 1\}^4 \to \{0, 1\}^4$ w następujący sposób:

$$\begin{array}{lcl} F_{SBox}(X,a) & = & F_{SBox} \left(X, \left[\begin{array}{ccc} a[0,0] & a[1,0] \\ a[0,1] & a[1,1] \end{array} \right] \right) \\ & = & \left[\begin{array}{ccc} SBoxX(a[0,0]) & SBoxX(a[1,0]) \\ SBoxX(a[0,1]) & SBoxX(a[1,1]) \end{array} \right] \end{array}$$

Funckje SBoxE oraz SBoxD przekształcają ciągi 4 bitowe na ciągi 4 bitowe w następujący sposób:

SBoxE		\mathbf{SBoxD}	
ciąg wejściowy	ciąg wyjściowy	ciąg wejściowy	ciąg wyjściowy
(0,0,0,0)	(1,1,1,0)	(0,0,0,0)	(1,1,1,0)
(0,0,0,1)	(0,1,0,0)	(0,0,0,1)	(0,0,1,1)
(0,0,1,0)	(1,1,0,1)	(0,0,1,0)	(0,1,0,0)
(0,0,1,1)	(0,0,0,1)	(0,0,1,1)	(1,0,0,0)
(0,1,0,0)	(0,0,1,0)	(0,1,0,0)	(0,0,0,1)
(0,1,0,1)	(1,1,1,1)	(0,1,0,1)	(1,1,0,0)
(0,1,1,0)	(1,0,1,1)	(0,1,1,0)	(1,0,1,0)
(0,1,1,1)	(1,0,0,0)	(0,1,1,1)	(1,1,1,1)
(1,0,0,0)	(0,0,1,1)	(1,0,0,0)	(0,1,1,1)
(1,0,0,1)	(1,0,1,0)	(1,0,0,1)	(1,1,0,1)
(1,0,1,0)	(0,1,1,0)	(1,0,1,0)	(1,0,0,1)
(1,0,1,1)	(1,1,0,0)	(1,0,1,1)	(0,1,1,0)
(1,1,0,0)	(0,1,0,1)	(1,1,0,0)	(1,0,1,1)
(1,1,0,1)	(1,0,0,1)	(1,1,0,1)	(0,0,1,0)
(1,1,1,0)	(0,0,0,0)	(1,1,1,0)	(0,0,0,0)
(1,1,1,1)	(0,1,1,1)	(1,1,1,1)	(0,1,0,1)

Tabela 1: Ciągi zwracane przez SBoxE i SBoxD w funkcji ciągu wejściowego

1.3 Generacja kluczy I i II rundy

Niech a[i,j], gdzie $i,j \in \{0,1\}$ oznacza 4 bitowy ciąg znajdujący się w i-tym wierszu oraz j-tej kolumnie reprezentacji macierzowej ciagu bitów $a=(a_1,a_2,\ldots,a_{14},a_{15})$. Kolejne elementy klucza pierwszej rundy otrzymywane są na podstawie 16 bitowego klucza początkowego k_p (przykładowo $k_p=(1,0,1,1,0,0,1,0,1,1,1,0,1,1,0)$) w następujący sposób:

```
\begin{array}{lcl} k_1[0,0] & = & k_p[0,0] \oplus SBoxE(k_p[1,1]) \oplus (0,0,0,1) \\ k_1[1,0] & = & k_p[1,0] \oplus k_1[0,0] \\ k_1[0,1] & = & k_p[0,1] \oplus k_1[1,0] \\ k_1[1,1] & = & k_p[1,1] \oplus k_1[0,1] \end{array}
```

Przykładowo $k_1 = (0,0,0,1,1,1,0,0,1,1,1,0,1,0,1,0)$.

Klucz rundy drugiej k_2 generuje się w sposób analogiczny przy wykorzystaniu klucza k_1 , tzn.:

```
\begin{array}{lcl} k_2[0,0] & = & k_1[0,0] \oplus SBoxE(k_1[1,1]) \oplus (0,0,1,0) \\ k_2[1,0] & = & k_1[1,0] \oplus k_2[0,0] \\ k_2[0,1] & = & k_1[0,1] \oplus k_2[1,0] \\ k_2[1,1] & = & k_1[1,1] \oplus k_2[0,1] \end{array}
```

Przykładowo $k_2 = (0,1,0,1,0,1,1,1,1,0,1,1,1,1,0,1)$.

1.4 Struktura algorytmu

Szyfrowanie 16 bitowego tekstu t (t=(0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1)) polega na jego przetwarzaniu w następującej kolejności:

- 1. Dodawanie klucza początkowego k_p do tekstu t: $t = t + k_p$. t = (1,0,0,0,1,1,1,0,0,0,1,1,0,1,0,1).
- 2. Zastosowanie funkcji $F_{SBox}(E,t)$ $\mathbf{t} = (0,0,1,1,0,0,0,0,0,0,0,1,1,1,1,1).$
- 3. Zastosowanie funkcji ZK(t) $\mathbf{t} = (0,0,1,1,0,0,0,0,1,1,1,1,0,0,0,1).$
- 4. Przemnożenie tekstu t przez ciąg bitów m=(0,0,1,1,0,0,1,0,0,0,1,0,0,0,1,1): $t=m\cdot t$ t=(1,0,0,0,0,1,0,0,1,0,0,0,0,1,1).

```
    Dodawanie klucza rundy pierwszej k<sub>1</sub> do tekstu t: t = t + k<sub>1</sub>.
t = (1,0,0,1,1,1,1,0,1,0,1,0,1,0,0,1).
    Zastosowanie funkcji F<sub>SBox</sub>(E,t)
t = (1,0,1,0,0,0,0,0,1,1,0,1,0,1,0).
    Zastosowanie funkcji ZK(t)
t = (1,0,1,0,0,0,0,0,1,0,1,0,0,1,1,0).
    Dodawanie klucza rundy drugiej k<sub>2</sub> do tekstu t: t = t + k<sub>2</sub>.
t = (1,1,1,1,0,1,1,1,0,0,0,1,1,0,1,1).
```

Wynik ostatniej operacji jest ostatecznym szyfrogramem.

Deszyfrowanie odbywa się poprzez przeprowadzenie kolejnych operacji na szyfrogramie:

- 1. Dodawanie klucza rundy drugiej k_2 do szyfrogramu s: $s = s + k_2$.
- 2. Zastosowanie funkcji ZK(s)
- 3. Zastosowanie funkcji $F_{SBox}(D, s)$
- 4. Dodawanie klucza rundy pierwszej k_1 do s: $s = s + k_1$.
- 5. Przemnożenie s przez ciąg bitów m = (0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1): $s = m \cdot s$
- 6. Zastosowanie funkcji ZK(s)
- 7. Zastosowanie funkcji $F_{SBox}(D, s)$
- 8. Dodawanie klucza początkowego k_p do s: $s = s + k_p$.

2 ZADANIA

- 1. Dla zadanych z konsoli dwóch 4-bitowych ciągów $a \in \{0,1\}^4$ i $b \in \{0,1\}^4$ napisać program dokonujący operacji $a \odot b$ i obliczający wartość funkcji $SBoxE(a \odot b)$ oraz $SBoxD(a \odot b)$. Wynik mnożenia \odot i wartości zwracane przez funkcje SBox mają być wyświetlane przez program.
- 2. Napisać program szyfrujący algorytmem Mini-AES tekst t=(0,0,1,1,1,0,0,1,1,0,0,0,0,1,1) dla klucza początkowego $k_p=(A,0,1,1,0,B,1,0,1,1,1,C,D,1,1,0)$, gdzie $A,B,C,D\in\{0,1\}$ zadawane są z konsoli przez użytkownika programu. Program na wyświetlać wygenerowane klucze I i II rundy oraz otrzymany szyfrogram

Punktacja - łącznie 10 punktów

- $\bullet\,$ 3 punkty poprawnie działające mnożenia $\odot\,$
- 2 punkty poprawnie działające funkcje SBox
- 3 punkty poprawna generacja kluczy I i II
- 2 punkty otrzymanie poprawnego szyfrogramu