Esercizio 8.1)

Il circuito risonante in figura è caratterizzato da un coefficiente di risonanza pari a Q = 100.

Determinare il valore di R, e delle frequenze limite della banda passante: f_1 ed f_2 .

[R = 200 Kohm, f_1 = 79.180 KHz, f_2 = 79.975 KHz]

Esercizio 8.2)

Determinare i valori di R ed L per un circuito risonante parallelo che ha una pulsazione di risonanza di 40000 rad/s ed una larghezza di banda di 2000 rad7s, se $C = 0.4 \mu F$.

$$[R = 1250 \text{ ohm}, L = 1.56 \text{ mH}]$$

Esercizio 8.3)

Per un circuito risonante parallelo con pulsazione di risonanza $5\cdot10^4$ rad/s e larghezza di banda $2.5\cdot10^3$ rad/s, determinare il valore di R e C. se L = 2 mH.

[R = 2 Kohm, C =
$$0.2 \mu F$$
]

Esercizio 8.4)

Per un circuito risonante parallelo con G = $5~\mu\Omega^{-1}$ e C = 20~nF, alimentato da un generatore che fornisce una corrente di 4 mA alla pulsazione di $10^5~rad/s$, determinare il valore di L per il quale l'ampiezza della tensione ai capi del parallelo è massima, ed il valore di tale tensione.

Esercizio 8.5)

Un circuito risonante parallelo, alimentato da una corrente di valore efficace 40 mA, assorbe la potenza attiva massima di 10 W alla pulsazione di 10⁴ rad/s e la potenza di 5 W alle pulsazioni 9500 rad/s e 10500 rad/s. Determinare i valori di R, L e C.

[
$$R = 6250 \text{ ohm}, L = 62.5 \text{ mH}, C = 160 \text{ nF}$$
]

Esercizio 8.6)

Nel circuito in figura il generatore ha una frequenza di 3000 Hz. Determinare il valore di C per il quale su ha la massima potenza sulla resistenza da 20 ohm ed il valore di tale potenza.

[
$$C = 10.6 \mu F$$
, $P = 125 W$]