Entrega 2 - Pre-registration of Hypotheses

Metodologias Experimentais em Informática | 2022/2023 | 1.º Semestre

Eva Teixeira	n.º 2019215185	uc2019215185@student.uc.pt	PL1
João Dionísio	n.º 2019217030	uc2019217030@student.uc.pt	PL2
João Oliveira	n.º 2022184283	uc2022184283@student.uc.pt	PL4

Após analisar os resultados obtidos, chegámos a três hipóteses que gostaríamos de testar:

1. Sendo T_D o tempo de execução do Dinic, T_M o tempo de execução do MPM e T_E o tempo de execução do EK:

$$\circ \quad H_0 = T_D \ge T_M \ge T_E$$

$$\circ \quad H_1 = T_D < T_M < T_E$$

2. Sendo P a probabilidade de arco, $V(T)_{li \le v \le ls}$ a variância do tempo de execução para um intervalo $[l_i; l_s]$ do número de vértices e v o número de vértices, para o EK e para P = 50%:

$$\begin{array}{lll} \circ & H_0 = & V(T)_{150 \leq \nu \leq 350} & \leq V(T)_{750 \leq \nu \leq 950} \\ \circ & H_1 = & V(T)_{150 \leq \nu \leq 350} > V(T)_{750 \leq \nu \leq 950} \end{array}$$

- 3. Sendo CapMax, a capacidade máxima e T, o tempo de execução:
 - \circ $H_0 = T \leftarrow CapMax$ (tempo depende da capacidade máxima)
 - \circ $H_1 = T // CapMax$ (tempo não depende da capacidade máxima)