Cinética da redução do corante azul de toluidina pelo ião sulfito

Felipe Pinto	61387	MIEQB
Francisco Duarte	63754	LEQB
Lunara Maciel	54768	MIEQB
Sebastião Carvalhal	60823	MIEQB

Conteúdo

1	Cálculos Pré-laboratoriais														2
2	Resultados														3

1 Cálculos Pré-laboratoriais

 TB^{\dagger}

$$V_{Mae} = rac{ ext{mL}_{ ext{Mae}}}{2.0*10^{-4}\, ext{mol}_{ ext{TB}^+}} rac{2.0*10^{-5}\, ext{mol}_{ ext{TB}^+}}{ ext{mL}_{ ext{Sol}}} \, 20\, ext{mL}_{ ext{Sol}} = 2.0\, ext{mL}_{ ext{Mae}}$$

Na₂SO₃

$$V_{Mae} = rac{ ext{mL}_{Mae}}{0.20\, ext{mol}_{Na_2SO_3}} rac{x\, ext{mol}_{Na_2SO_3}}{ ext{mL}_{Sol}} \, 20\, ext{mL}_{Sol} = 100\,x\, ext{mL}_{Mae}$$
 $M_{Na_2SO_3} \, 0.02 \, 0.04 \, 0.06 \, 0.08 \, 0.10$ $mL_{Mae} \, 2 \, 4 \, 6 \, 8 \, 10$

NaCl

$$V_{Mae} = rac{0.48999 - 3\,c_{\mathrm{Na_2SO_3}}}{0.03}\,\mathrm{mL_{Mae}}$$

$$V_{Mae} = rac{ ext{mL}_{ ext{Mae}}}{0.60\, ext{mol}_{ ext{NaCl}}} \, rac{c_{ ext{NaCl}} ext{mol}_{ ext{NaCl}}}{ ext{mL}_{ ext{Sol}}} \, 20\, ext{mL}_{ ext{Sol}} = rac{c_{ ext{NaCl}}}{0.03} \, ext{mL}_{ ext{Mae}}$$

$$I = 0.49 = \frac{1}{2} \sum_{i=1}^{n} c_n z_n^2 = \frac{1}{2} \begin{pmatrix} 2.0 * 10^{-5} & *(+1)^2 + \\ +c_{\text{Na}_2\text{SO}_3} * 2 & *(+1)^2 + \\ +c_{\text{Na}_2\text{SO}_3} & *(-2)^2 + \\ +c_{\text{NaCl}} & *(+1)^2 + \\ +c_{\text{NaCl}} & *(-1)^2 \end{pmatrix} \begin{pmatrix} \text{TB}^+ \end{pmatrix}$$

$$(\text{Na}^{2^+})$$

$$(\text{So}^{2^-}) \Longrightarrow$$

$$(\text{Na}^{1^+})$$

$$(\text{Cl}^{1^-})$$

$$\Rightarrow \frac{c_{\text{NaCl}} = 0.48999 - 3 \, c_{\text{Na}_2 \text{SO}_3}}{M_{\text{Na}_2 \text{SO}_3}} \quad \therefore \frac{0.48999 - 3 \, c_{\text{Na}_2 \text{SO}_3}}{0.03} \, \text{mL}_{\text{Mae}} \\ \hline \frac{M_{\text{Na}_2 \text{SO}_3}}{mL_{\text{Mae}}} \quad 0.02 \quad 0.04 \quad 0.06 \quad 0.08 \quad 0.10 \\ \text{mL}_{\text{Mae}} \quad 14.33 \quad 12.33 \quad 10.33 \quad 8.33 \quad 6.33 \\ \hline \end{array}$$

Volumes usados

Solução	TB ⁺ /mL	Na ₂ SO ₃ /mL	NaCl/mL	H ₂ O/mL
1	2	2	14	2
2	2	4	12	2
3	2	6	10	2
4	2	8	8	2
5	2	10	6	2

Volume Total: 20 mL

Resultados 2

-1.5

-2.5

Solução 1

ln(Abs)

 $-1.184\,17$

-1.15836

-1.18744

Tempo/s

30

64

83

Abs

0.306

0.314

0.305

Solução 3

ln(Abs)

-1.09064

Abs

0.336

Tempo/s

30

0.292	-1.23100	113
0.288	-1.24479	150
0.283	-1.26231	197
0.280	-1.27297	221
0.277	-1.28374	240
0.274	-1.29463	271
0.271	-1.30564	317
0.270	-1.30933	335
0.269	-1.31304	367
0.265	-1.32803	393
0.266	-1.32426	419
0.262	-1.33941	452
0.259	-1.35093	483
0.254	-1.37042	507
0.253	-1.37437	539
0.248	-1.39433	570
0.245	-1.40650	607
0.242	-1.41882	635
0.237	-1.43970	663
0.236	-1.44392	695
0.234	-1.45243	725
0.233	-1.45672	754
0.229	-1.47403	783
0.226	-1.48722	813
0.227	-1.48281	841
0.223	-1.50058	872
0.221	-1.50959	901
0.218	-1.52326	932
0.217	-1.52786	962
0.212	-1.55117	989
0.209	-1.56542	1022
0.206	-1.57988	1050
0.208	-1.57022	1078
0.203	-1.59455	1111
0.200	-1.60944	1139
Soluçã	o 2	
Abs	ln(Abs)	Tempo/s
0.337	-1.08767	32
0.330	-1.10866	60
0.324	-1.12701	91
0.319	-1.14256	119
0.307	-1.18091	147
0.304	-1.19073	181
0.295	-1.22078	207

0.3 0.3 0.3 0.3 0.3	37 · · · · · · · · · · · · · · · · · · ·	$ \frac{\ln(Abs)}{-1.08767} \\ -1.10866 \\ -1.12701 $	Tempo/s 32 60 91
0.3 0.3 0.3	30 ·	-1.10866 -1.12701	60
0.3 0.3	24	-1.12701	
0.3			91
	19 .		
0.3	10	-1.14256	119
	07 ·	-1.18091	147
0.3	04 ·	-1.19073	181
0.2	95 ·	-1.22078	207
0.2	91 -	-1.23443	239
0.2	85 ·	-1.25527	270
0.2	82 ·	-1.26585	298
0.2	79 ·	-1.27654	330
0.2	76 ·	-1.28735	357
0.2	70 ·	-1.30933	388
0.2	65 ·	-1.32803	415
0.2	63 ·	-1.33560	445
0.2	57 ·	-1.35868	
0.2	55 ·	-1.36649	504
0.2	50 ·	-1.38629	544
0.2	48	-1.39433	563
		-1.40242	
0.2		-1.42712	
0.2		-1.43548	
0.2		-1.44392	
0.2		-1.45243	
0.2		-1.48281	
0.2		-1.49165	
0.2		-1.50508	
0.2		-1.52326	
0.2		-1.53712	
0.2		-1.53712	
0.2		-1.55117	
0.2		-1.56065	
0.2		-1.57022	
0.2		-1.58475	
0.2		-1.59949	
0.1		-1.61949	
		-1.62455	
0.1	93 ·	-1.64507	1123

0.324	-1.12701	59
0.313	-1.16155	90
0.301	-1.20065	121
0.293	-1.22758	149
0.284	-1.25878	180
0.272	-1.30195	212
0.264	-1.33181	239
0.255	-1.36649	270
0.247	-1.39837	298
0.237	-1.43970	330
0.230	-1.46968	359
0.22	-1.51413	389
0.214	-1.54178	420
0.203	-1.59455	452
0.198	-1.61949	479
0.191	-1.65548	509
0.184	-1.69282	539
	-1.73727	568
	-1.76609	601
	-1.79577	629
	-1.83885	660
	-1.87080	690
	-1.91732	720
	-1.94491	750
	-1.98050	779
	-2.00992	810
	-2.06352 -2.06357	840
	-2.00337 -2.10373	869
	-2.10373 -2.12863	898
	-2.12803 -2.16282	929
	-2.10282 -2.20727	959
	-2.20727 -2.24432	
		990
	-2.28278	1020
	-2.30259	1052
	-2.33304	1079
	-2.35388	1110
0.089	-2.41912	1142
Soluçã	.o 4	
Abs	ln(Abs)	Tempo/s
0.317	-1.14885	29
0.293	-1.22758	60
0.270	-1.30933	92
0.252	-1.37833	120
	-1.46968	148
	-1.54178	179
	-1.63476	206
	-1.69827	239
	-1.79577	265
	-1.87080	297
0.142	-1.95193	324
0.134	-2.00992	354
0.123	-2.00557	382
0.123	-2.18037	412
0.113	2.10031	414

0.007	-2.70500	909
0.063	-2.76462	619
0.059	-2.83022	649
0.056	-2.88240	678
0.053	-2.93746	708
Soluçâ	ío 5	
Abs	ln(Abs)	Tempo/s
0.314	-1.15836	32
0.289	-1.24133	64
0.263	-1.33560	91
0.239	-1.43129	121
0.217	-1.52786	149
0.194	-1.63990	181
0.184	-1.69282	210
0.189	-1.66601	239
0.148	-1.91054	269
0.142	-1.95193	302
0.124	-2.08747	326
0.114	-2.17156	361
0.104	-2.26336	386
0.096	-2.34341	417
0.085	-2.46510	446
0.082	-2.50104	475
0.074	-2.60369	517
0.071	-2.64508	534
0.065	-2.73337	568
0.060	-2.81341	593
0.056	-2.88240	622
	$[SO_3^{-2}]_0$	
	0.02	
	0.04	
	0.06	
	0.08	

441

471

503

531

562 589

0.108

0.097

0.089

0.094

0.072

0.067

-2.22562

-2.33304

 $-2.419\,12$

-2.36446

-2.63109

-2.70306

Calculando a constante cinética

Solução

1	0.0004	0.02
2	0.0005	0.04
3	0.0012	0.06
4	0.0027	0.08
5	0.0030	0.10
	K′ vs [SO3^-2]	

k's

	3		0.0012	0.06		
	4		0.0027	0.08		
	5	(0.0030	0.10		
		K′ vs	s [SO3^-2]			
0.003						
0.0025				•		
0.002						
0.0015						
0.001			•		v = 0.037v . 0.0007	
0.0005	***************************************	•			$y = 0.037x - 0.0007$ $R^2 = 0.9169$	
0						
0.02	0.03	0.04 0.05	0.06	0.07 0.08	0.09 0	.1