

Interrogación 2 Estática y Dinámica

Facultad de Física

Martes 15 de Octubre de 2013

Nombre:	# Alumno	Sección:	
---------	----------	----------	--

Instrucciones:

- -Tiene 2.5 horas para resolver los siguientes problemas.
- -Marque con una CRUZ sólo la alternativa que considere correcta en esta hoja de respuesta.
- -Todos los problemas tienen el mismo peso en la nota final.
- -Respuestas sin desarrollo que las justifique se consideran incorrectas.
- -Cada respuesta incorrecta descuenta 1/3 (un tercio) del puntaje de una buena.
- -No está permitido utilizar calculadora ni teléfono celular.

TABLA DE RESPUESTAS

Pregunta	a)	b)	c)	d)
1			(c) X	
2				X
3			X	
4				X
5	X	X	X	X
6		X		
7 8			X	
				X
9			X	
10		X		
11	X			
10 11 12 13				X
13	X			
14 15	X			
15			X	
16		X		
17				X
18		X		
19			X	

Enunciado para problemas 1 a 2

Una fábrica de galletas utiliza una correa transportadora (figura abajo), que se desplaza con velocidad constante v_0 al ser tirada por un motor que aplica una fuerza F. Suponga que cada galleta tiene una masa m_0 , y la máquna descarga n galletas por unidad de tiempo sobre la correa.

Figura 1: problemas 1 a 2.

Problema 1. La fuerza F que aplica el motor para tirar la correa con velocidad constante v_0 es

- a) $F = m_0 v_0$ b) $F = m \frac{dv_0}{dt}$
- c) $F = nm_0v_0$
- $d) F = \frac{m_0}{n} v_0$

 $\mathbf{Problema}$ 2. La potencia P suministrada por el motor a la correa es

- a) $P = m_0 v_0^2$ b) $P = \frac{1}{2} \frac{d}{dt} (m_0 v_0^2)$ c) $P = \frac{m_0}{n^2} v_0^2$ d) $P = n m_0 v_0^2$

Enunciado para problemas 3 a 5

Una barra homogénea de masa M y largo L se encuentra estática sobre un plano horizontal sin roce (figura abajo mostrando la vista superior del sistema). Una pelota de masa M que se desliza con rapidez v_0 sobre el plano, colisiona con un extremo de la barra como se muestra. Después de la colisión ambos cuerpos permanecen pegados.

Figura 2: problemas 3 a 5.

Problema 3. Determine la velocidad \vec{v}_f del centro de masa del sistema después de la colisión.

a)
$$\vec{v}_f = \frac{v_0}{24} \hat{x}$$

a)
$$\vec{v}_f = \frac{v_0}{24}\hat{x}$$

b) $\vec{v}_f = \frac{v_0}{2}\frac{\hat{x} + \hat{y}}{\sqrt{2}}$

c)
$$\vec{v}_F = \frac{v_0}{2}\hat{x}$$

c)
$$\vec{v}_F = \frac{v_0}{2}\hat{x}$$

d) $\vec{v}_f = \frac{v_0}{24}\frac{\hat{x} + \hat{y}}{\sqrt{2}}$

Problema 4. Encuentre la velocidad angular ω_f con que rota la vara con la masa adosada, después de la colisión.

a)
$$\omega_f = \frac{3v_0}{I}$$

b)
$$\omega_f = \frac{3v_0}{5L}$$

c)
$$\omega_f = \frac{3v_0}{2L}$$

a)
$$\omega_f = \frac{3v_0}{L}$$

b) $\omega_f = \frac{3v_0}{5L}$
c) $\omega_f = \frac{3v_0}{2L}$
d) $\omega_f = \frac{6v_0}{5L}$

Problema 5. Obtenga la energía Q que se pierde en el choque.

a)
$$Q = \frac{1}{2}Mv_0^2 - \frac{5ML^2}{48}\omega_f^2$$

a)
$$Q = \frac{1}{2}Mv_0^2 - \frac{5ML^2}{48}\omega_f^2$$

b) $Q = \frac{1}{2}M\left(\frac{v_0}{2}\right)^2 - \frac{5ML^2}{48}\omega_f^2$

c)
$$Q = \frac{1}{2}Mv_0^2 - \frac{ML^2}{6}\omega_f^2$$

c)
$$Q = \frac{1}{2}Mv_0^2 - \frac{ML^2}{6}\omega_f^2$$

d) $Q = \frac{1}{2}M\left(\frac{v_0}{2}\right)^2 - \frac{ML^2}{24}\omega_f^2$

Enunciado para problemas 6 a 8

El cuerpo de una polea doble de masa total M está constituido por dos discos de radios r_1 y r_2 acoplados y muy delgados $(d \ll r_1, r_2)$, con un eje de masa despreciable (figura abajo). Cuatro masas m_1, \ldots, m_4 cuelgan de cuerdas inextensibles de masa despreciable. Las cuerdas pasan por los discos sin deslizar, conectando la masa m_1 con la masa m_3 , y la masa m_2 con la m_4 . La polea doble puede girar libremente sin fricción alrededor del eje central de radio despreciable.

Figura 3: problemas 6 a 8. Derecha: vista lateral de la polea doble.

Problema 6. Si el sistema está en equilibrio, ¿qué relaciones pueden satisfacer las masas del sistema?

(i)
$$(m_1 - m_2)r_1 + (m_4 - m_3)r_2 = 0;$$
 (ii) $m_1 = m_2$ y $m_3 = m_4;$ (iii) $m_1 = m_3$ y $m_2 = m_4;$ (iv) $(m_4 - m_2)r_2 + (m_3 - m_1)r_1 = 0.$

- a) (i) y (ii) son correctas
- b) (iii) y (iv) son correctas
- c) (ii) y (iv) son correctas
- d) (i) y (iii) son correctas

Problema 7. Considerando que el grosor de los discos de la polea es despreciable y además que estos están hechos del mismo material y su distribución de masa es uniforme, determine el momento de inercia Idel sistema.

a)
$$I = \frac{M}{2}(r_1^2 + r_2^2)$$

b) $I = \frac{M}{2}(r_1 + r_2)^2$
c) $I = \frac{M}{2}\frac{r_1^4 + r_2^4}{r_1^2 + r_2^2}$
d) $I = \frac{M}{2}(r_2^2 - r_1^2)$

b)
$$I = \frac{M}{2}(r_1 + r_2)^2$$

c)
$$I = \frac{M}{2} \frac{r_1^4 + r_2^4}{r_1^2 + r_2^2}$$

d)
$$I = \frac{M}{2}(r_2^2 - r_1^2)$$

Problema 8. Suponiendo que $m_3 > m_1$ y $m_2 = m_4$ y que el momento de inercia de la polea es I, determine la magnitud a y el sentido de la aceleración que sufre la masa m_4 .

a)
$$a = \frac{(m_3 - m_1)r_2^2g}{I + r_1^2(m_3 + m_1)}$$
 en el sentido negativo del eje y
b) $a = \frac{(m_4 + m_2)r_1^2g}{r_1I + r_2^2(m_4 + m_2)}$ en el sentido positivo del eje y
c) $a = \frac{[m_4 + m_2 + (m_3 - m_1)(r_1/r_2)]r_1r_2g}{I}$ en el sentido positivo del eje y
d) $a = \frac{(m_3 - m_1)r_1r_2g}{I + r_1^2(m_3 + m_1) + r_2^2(m_4 + m_2)}$ en el sentido negativo del eje y

Enunciado para problemas 9 a 13

Considere el sistema mostrado en la figura abajo, en el cual un péndulo rígido formado por un anillo de masa M y radio R unido a una barra de masa M y largo 3R, puede girar libremente respecto al pivote en P. El péndulo inicialmente en reposo, se deja evolucionar libremente desde la posición mostrada en la figura, en la cual $\theta = 30^{\circ}$, de manera tal que impacta al disco, de masa m y radio R, justo cuando la barra del péndulo pasa por la vertical (tal como se representa en la figura). Esta colisión es tal, que el péndulo queda en reposo y el disco adquiere una velocidad v_m . Considere que el disco está inicialmente en reposo sobre una superficie horizontal libre de roce.

Figura 4: problemas 9 a 13.

Problema 9. ¿Cuál de las siguientes expresiones corresponde a la posición del centro de masas \hat{r}_{cm} del péndulo cuando éste se encuentra en el estado inicial?

a)
$$\hat{r}_{cm} = \frac{3\sqrt{3}}{2}R\hat{x} + \frac{3}{2}R\hat{y}$$

b)
$$\hat{r}_{cm} = \frac{11}{8}R\hat{x} + \frac{11\sqrt{3}}{8}R\hat{y}$$

c)
$$\hat{r}_{cm} = \frac{11\sqrt{3}}{8}R\hat{x} + \frac{11}{8}R\hat{y}$$

d) $\hat{r}_{cm} = \frac{3}{2}R\hat{x} + \frac{3\sqrt{3}}{2}R\hat{y}$

d)
$$\hat{r}_{cm} = \frac{3}{2}R\hat{x} + \frac{3\sqrt{3}}{2}R\hat{y}$$

Problema 10. ¿Cuál de las siguientes expresiones corresponde al momento de inercia I_P del péndulo respecto a un eje que pasa por el punto P (eje perpendicular al plano del papel)?

a)
$$I_P = 18MR^2$$

b) $I_P = 20MR^2$

b)
$$I_P = 20MR^2$$

c)
$$I_P = \frac{39}{2} M R^2$$

c)
$$I_P = \frac{39}{2}MR^2$$

d) $I_P = \frac{71}{4}MR^2$

Problema 11. ¿Cuál de las siguientes expresiones corresponde a la velocidad angular ω del péndulo justo antes de chocar con el disco de masa m?

a)
$$\omega = \sqrt{\frac{6Mgr_{cm}}{I_{D}}}$$

b)
$$\omega = \sqrt{\frac{2Mgr_{cm}}{I_P}}$$

a)
$$\omega = \sqrt{\frac{6Mgr_{cm}}{I_P}}$$

b) $\omega = \sqrt{\frac{2Mgr_{cm}}{I_P}}$
c) $\omega = \sqrt{\frac{2(2+\sqrt{3})Mgr_{cm}}{I_P}}$

d)
$$\omega = \sqrt{\frac{3Mgr_{cm}}{I_P}}$$

 r_{cm} siendo la distancia entre el punto ${\cal P}$ y el centro de masas del péndulo.

Problema 12. ¿Cuál de las siguientes expresiones corresponde al módulo de la fuerza que ejerce el pivote en P sobre el péndulo justo antes de la colisión?

a)
$$F_P = 2Mg$$

b)
$$F_P = 2Mg \left(\frac{2Mr_{cm}^2}{I_P} + 1 \right)$$

c)
$$F_P = 2Mg \left(\frac{Mr_{cm}^2}{I_P} + \frac{1}{2} \right)$$

a)
$$F_P = 2Mg$$

b) $F_P = 2Mg \left(\frac{2Mr_{cm}^2}{I_P} + 1\right)$
c) $F_P = 2Mg \left(\frac{Mr_{cm}^2}{I_P} + \frac{1}{2}\right)$
d) $F_P = 2Mg \left(\frac{6Mr_{cm}^2}{I_P} + 1\right)$

Problema 13. ¿Cuál de las siguientes expresiones corresponde al módulo de la velocidad v_m que adquiere el disco después de la colisión?

a)
$$v_m = \frac{\omega I_P}{4Rm}$$

b) $v_m = \sqrt{\frac{2Mgr_{cm}I_P}{3R^2m^2}}$

c)
$$v_m = \frac{2M\omega r_{cm}}{m}$$

d) Ninguna entre las otras es correcta

Enunciado para problemas 14 a 16

Un disco macizo de masa m y radio R está unido a un bloque de masa M por una cuerda ideal enrollada a su centro de masa y que pasa por una polea ideal sin masa (figura abajo). Asuma que el disco rueda sin deslizar, y asuma también que el sistema se mueve hacia la derecha de la figura como se indica. Utilice el sistema coordenado de la figura.

Figura 5: problemas 14 a 16.

 ${f Problema~14.}$ Llamando f a la fuerza de roce y T a la tensión en la cuerda, las ecuaciones de Newton para ambos cuerpos son

- a) $-f+T-mg\sin\alpha=m\ddot{x}_1;\ Mg-T=M\ddot{x}_2$ b) $-f+T-mg\sin\alpha=m\ddot{x}_1;\ Mg-2T=M\ddot{x}_2$
- c) $-f + T mg \sin \alpha = m\ddot{x}_1$; $Mg + T = M\ddot{x}_2$
- d) $-f + T Mg \sin \alpha = M\ddot{x}_1$; $mg T = m\ddot{x}_2$

Problema 15. Escriba la fuerza de roce f en función de la velocidad angular $\ddot{\theta}$.

- a) $f = -mR\ddot{\theta}$
- b) $f = \frac{1}{2}mR\ddot{\theta} + \mu_e mg\cos\alpha$
- c) $f = \frac{1}{2} m R \ddot{\theta}$
- d) $f = mR\ddot{\theta} \mu_e mg \cos \alpha$

Problema 16. Obtenga la aceleración \ddot{x}_2 del bloque M.

- a) $\ddot{x}_2 = g \frac{M + m \sin \alpha}{M + \frac{3}{2}m}$ b) $\ddot{x}_2 = g \frac{M m \sin \alpha}{M + \frac{3}{2}m}$ c) $\ddot{x}_2 = g \frac{M m \sin \alpha}{M + \frac{1}{2}m\mu_e \cos \alpha}$ d) $\ddot{x}_2 = g \frac{M + m \sin \alpha}{M + \frac{1}{2}m\mu_e \cos \alpha}$

Enunciado para problemas 17 a 18

Dos partículas de masas $m_1=m$ y $m_2=3m/2$ se desplazan una contra la otra con velocidades $v_1=v$ y $v_2 = 2v$ como se muestra en la figura abajo. Luego de chocar elásticamente entre ellas, la partícula 2 sale en dirección perpendicular a la dirección incidente.

Figura 6: problemas 17 a 18.

Problema 17. La velocidad final de la partícula 2, v_{2f} , está dada por

a)
$$v_{2f} = \sqrt{\frac{3}{5}}v$$

b)
$$v_{2f} = \sqrt{\frac{29}{5}}v$$

c) $v_{2f} = 0$

c)
$$v_{2f} = 0$$

d)
$$v_{2f} = \sqrt{\frac{4}{5}}v$$

Problema 18. El ángulo θ con que sale la partícula 1 después del choque es tal que

a)
$$\theta = 90^{\circ}$$

b)
$$\tan \theta = \frac{3}{4} \sqrt{\frac{4}{5}}$$

c)
$$\tan \theta = \sqrt{\frac{4}{5}}$$

d)
$$\tan \theta = \frac{3}{2} \sqrt{\frac{4}{5}}$$

Problema 19. Considere el sistema compuesto por dos bloques iguales de masas 2m unidos por un resorte de constante elástica k (figura abajo). Inicialmente el sistema descansa en reposo sobre una superficie horizontal sin roce y el resorte se encuentra en su largo natural. Desde la izquierda, un tercer bloque, de masa m avanza con velocidad v_0 y choca al sistema.

Figura 7: problema 19.

Después del choque la velocidad del centro de masa V_{cm} del sistema de dos bloques es

a)
$$V_{cm} = 0$$

b)
$$V_{cm} = \frac{2}{3}v_0$$

a)
$$V_{cm} = 0$$

b) $V_{cm} = \frac{2}{3}v_0$
c) $V_{cm} = \frac{1}{3}v_0$

d)
$$V_{cm} = v_0$$