Homework 2: Evaluation Metrics

Student ID	Student Name
18342075	米家龙

Lectured by: Shangsong Liang

Information Retrieval Course Sun Yat-sen University

Homework 2: Evaluation Metrics

Exercise 1: Rank-based Evaluation Metrics, MAP@K, MRR@K

- (a) AP@5 AP@10 RR@5 RR@10
- (b) MAP@5 MAP@10 MRR@5 MRR@10

Exercise 2: Rank-based Evaluation Metrics, Precision@K, Recall@K, NDCG@K

- (a) P@5 P@10
- (b) R@5 R@10
- (c) maximize P@5
- (d) maximize P@10
- (e) maximize R@5
- (f) maximize R@10
- (g) R-Precision
- (h) AP; difference between AP and MAP
- (i) maximize AP
- (j) DCG_5
- (k) $NDCG_5$

Exercise 3: Precision-Recall Curves

Exercise 4: Other Evaluation Metrics

AUC (Area under ROC curve)

Kendall tau distance

Spearman's ρ

Exercise 1: Rank-based Evaluation Metrics, MAP@K, MRR@K

(a) AP@5 AP@10 RR@5 RR@10

query	AP@5	AP@10	RR@5	RR@10
1	0.8333	0.6476	1	1
2	1	0.6429	1	1
3	0	0.2508	0	0.1667

(b) MAP@5 MAP@10 MRR@5 MRR@10

MAP@5	MAP@10	MRR@5	MRR@10
0.6111	0.5138	0.6667	0.7222

Exercise 2: Rank-based Evaluation Metrics, Precision@K, Recall@K, NDCG@K

(a) P@5 P@10

P@5	P@10
0.8000	0.7000

(b) R@5 R@10

由于计算召回率需要数据库的其他数据,但是这里只给了部分搜索结果,因此假设数据库总量就是 上述结果

R@5	R@10
4/7	1

(c) maximize P@5

rank	docID	binary relevance
1	51	1
2	501	1
4	75	1
5	321	1
6	38	1

(d) maximize P@10

rank	docID	binary relevance
1	51	1
2	501	1
4	75	1
5	321	1
6	38	1
8	412	1
10	101	1
3	21	0
7	521	0
9	331	0

(e) maximize R@5

rank	docID	binary relevance
1	51	1
2	501	1
4	75	1
5	321	1
6	38	1

$$R@5_{max}=0.71$$

(f) maximize R@10

和 (d) 中一样的排序

(g) R-Precision

R-Precision 是序列前 R 个位置的准确率;为了保证用户的体验,我们需要尽量让 R-Precision 率大

(h) AP; difference between AP and MAP

$$AP = \frac{\left(1 + \frac{2}{2} + \frac{3}{4} + \frac{4}{5} + \frac{5}{7} + \frac{6}{8} + \frac{7}{9}\right)}{7} = 0.8333$$

区别: AP 是对一个查询的平均, MAP 则是针对多个查询的 AP 取平均值

(i) maximize AP

rank	docID	binary relevance
1	51	1
2	501	1
4	75	1
5	321	1
6	38	1
8	412	1
10	101	1
3	21	0
7	521	0
9	331	0

(j) DCG_5

 DCG_p 公式采用的是 $\sum_{i=1}^p rac{rel_i}{\log_2(i+1)}$

$$DCG_5 = \sum_{i=1}^{5} \ rac{rel_i}{\log_2(i+1)} = 4 + 0.6309 + 0 + 1.2920 + 1.5474 = 7.4703$$

(k) $NDCG_5$

$$NDCG_5 = \frac{DCG_5}{IDCG_5} = \frac{4 + 0.6309 + 0 + 1.2920 + 1.5474}{4 + 2.523 + 1.5 + 0.8614 + 0.3868} = 0.8056$$

Exercise 3: Precision-Recall Curves

选择使用第1、4、7、10次的查询数据,做出如下图:

Exercise 4: Other Evaluation Metrics

AUC (Area under ROC curve)

AUC的物理意义为任取一对例和负例,正例得分大于负例得分的几率,AUC越大,代表方法效果越好。 (AUC的值通常介于0.5~1)

Kendall tau distance

比较两个排序之间,评价存在分歧的对的数量。

$$K(\tau_1, \tau_2) = |\{(i, j) : i < j, \ (\tau_1(i) < \tau_1(j) \land \tau_2(i) > \tau_2(j)) \ \lor \ (\tau_1(i) > \tau_1(j) \land \tau_2(i) < \tau_2(j))\}|$$

其中 $\tau_1(i)$ 和 $\tau_2(i)$ 分别表示元素 i 在两个排序中的位置

如果两个排序完全一样,那么 Kendall tau distance 为0;如果完全相反,那么为 n(n-1)/2; 通常该距离都会除以 n(n-1)/2 来进行归一化

Spearman's p

基本思想类似Kendall tau distance:比较两个排序(通常一个是理想排序)的(排序值的)皮尔逊相关系数

$$\frac{\sum_{(i,j)\in\Omega^{test}}(S^*_{ij}-\bar{s}^*)(y^*_{ij}-\bar{y}^*)}{\sqrt{\sum_{(i,j)\in\Omega^{test}}(S^*_{ij}-\bar{s}^*)^2~\sqrt{\sum_{(i,j)\in\Omega^{test}}(y^*_{ij}-\bar{y}^*)}}}$$

其中 s_{ij}^* 表示你模型预测中,物品 j 在用户 i 的推荐列表上的排序位置; y_{ij}^* 表示按实际用户 i 对物品的评分来排序时物品 j 在 i 的推荐列表上的排序位置; \bar{s}^* 是 s_{ij}^* 的平均值; \bar{y}^* 是 y_{ij}^* 的平均值