This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS V
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Stavrianopoulos et al.

Serial No.: 08/486,070) Group Art Unit: 1631

Filed: June 7, 1995) Ex'r: Ardin H. Marschel, Ph.D.

For: ARRAYS AND SYSTEMS COMPRISING

ARRAYS FOR GENETIC ANALYSES AND

OTHER APPLICATIONS

60 Executive Boulevard Farmingdale, NY 11735-4716

Mail Stop Non-Fee Amendment Commissioner of Patents P.O. Box 1450 Alexandria, VA 22313-1450

DECLARATION OF DR. DOLLIE M. W. KIRTIKAR UNDER 37 C.F.R. §1.132

I, Dollie M. W. Kirtikar, hereby declare as follows:

BACKGROUND

- 1. I am presently Senior Scientist for Enzo Biochem, Inc., 60 Executive Boulevard, Farmingdale, New York 11735-4716, having held that position since 1997. Prior to my present position, I was Research Scientist for Enzo, having been first hired in February 1979. During the early 1990s, I held other positions within Enzo or its subsidiaries, including Production Manager and Supervisor of QA/QC. My professional experience is listed on my curriculum vitae attached as Exhibit 1.
- 2. In terms of my education, I received my Bachelor of Science (B.Sc.) with honors from the University of Bombay, Bombay, India in 1952, graduating with a major in microbiology and a minor in chemistry. In 1957, I received a Master of Science (M.Sc.) from the Seth C.S. Medical College, University of Bombay. In 1967, I was awarded a Doctor of Philosophy (Ph.D) from the University of Kansas. My doctoral thesis was titled "Phenotypic Transformation."

Stavrianopoulos et al. Serial No. 08/486,070

Filed: June 7, 1995

Page 2 [Declaration of Dr. Dollie M. W. Kirtikar]

- 3. From 1969 to 1971, I received a visiting fellowship from the Nucleic Acid Research Foundation of Netherlands, under which I carried out research on enzymes and factors involved in DNA transcription in the Biochemistry Department, University of Netherlands, Croningen, Netherlands. From 1971 to 1977, I was a research associate in the Biochemistry Department, Case Western Reserve University School of Medicine, Cleveland, Ohio. At Case Western, I conducted research on enzymes involved in DNA repair following treatment with cancer-causing physical and chemical agents. From 1977 to 1978, I was a research associate in the Radiology Department, Stanford University Medical Center, Stanford, California, where I conducted research on DNA-repair deficient bacteria. My education and research experience are listed on my CV (Exhibit 1).
- 4. During my education and research spanning the years 1961 to 1978, I held a number of teaching positions which are listed on my CV (Exhibit 1).
- 5. I am the author of several scientific publications and the inventor named on several U.S. and foreign patents and patent applications. My scientific publications are listed on my CV (Exhibit 1). Representative issued U.S. patents are listed on my CV (Exhibit 1). I am also a co-inventor on the above-identified U.S. Patent Application Serial No. 08/486,070, filed on June 7, 1995 (hereinafter "the '070 application"). I am familiar with the specification for the '070 application that was filed on June 7, 1995. I have also read the Declaration of Dr. Jannis G. Stavrianopoulos, who is one of my co-inventors on the '070 application.¹ I have additionally read the Office Action mailed on July 2, 2003.
- 6. As a co-inventor, I am making this Declaration on behalf of and at the request of the assignee.

¹ I understand that Dr. Stavrianopoulos's Declarati n was submitted to the Unit d States Patent and Trademark Office in Applicants' June 17, 2002 Supplemental Amendment T [Their] April 10, 2002 Amendment Under 37 C.F.R. §1.116.

Stavrianopoulos et al. Serial No. 08/486,070 Filed: June 7, 1995

Page 3 [Declaration of Dr. Dollie M. W. Kirtikar]

EXPERIMENTS UNDERLYING THE '070 APPLICATION

The connection with the present invention, my co-inventors and I discovered that nucleic acids could be fixed to non-porous solid supports and remain available for hybridization and detection. In our research and experiments that led to the present invention and the filing of the first application in January 1983, my co-inventors and I investigated different support materials, shapes, surfaces and treatments with respect to fixing nucleic acids to supports in hybridizable form. In at least two separate instances, we constructed an array of different nucleic acids fixed or immobilized to two different kinds of solid supports. Among the different solid supports I investigated prior to 1983 are those listed below in chronological order (most recent at the bottom). Copies of pages from my laboratory notebook are also included herewith as Exhibits 2-9.

SUPPORT/SURFACE	TITLE OF LABORATORY NOTEBOOK PAGE(S)	EXHIBIT NO.
[flat] microscope slides with	Detection of glucosylated DNA with	2
slots (preprinted slides) ²	fluorescent Con-A on slides (microscope slides with slots)	
glass tubes	Con-A binding to glucosylated DNA treated glass tubes Binding of DNA to glass	3
glass tubes	Concentration curve for DNA binding to activated glass tubes (Con A binding to DNA on the glass surface)	4
plastic wells	DNA binding to activated surfaces plastic wells treated with epoxy-glue	5
plastic plates	Activated plastic plates Detection of glycosylated DNA by con A alkaline phosphatase	6
glass tubes	DNA binding to activated glass surface	7
glass fiber filters	Preparation of glass fibre filter	8
glass tubes/slides	Preparation of Silanized glass	9

² My laboratory notebook refers to "microscope slides with slots." In common parlance, "slots" may suggest rectangular channels, troughs or indentations. In the context of my experiments, h wever, "slots" refers t the flat circles that are preprinted onto flat microscope slides. It is known in th art that 'slots' is a synonym for the circles on preprinted slides, also known as cytology slides.

Stavrianopoulos et al. Serial No. 08/486,070

Filed: June 7, 1995

Page 4 [Declaration of Dr. Dollie M. W. Kirtikar]

8. Since the focus of our investigations was attachment of nucleic acids to ostensibly inert materials, such as glass and plastic, I focused upon surface treatments for glass and plastic that would permit such binding. Because the shape of these materials is irrelevant to their surface chemistry, I used a variety of differently shaped supports to carry out these experiments, including microscope slides, glass fibers, test tubes, microtitre plates and wells.

FLAT MICROSCOPE SLIDES WERE USED IN OUR EXPERIMENTS

9. As indicated above and as shown in my laboratory notebook pages (Exhibits 2 and 9), on at least two separate occasions I fixed nucleic acids to flat microscope slides.

ARRAYS OF DIFFERENT NUCLEIC ACIDS WERE CONSTRUCTED ON SEPARATE OCCASIONS WITH DIFFERENT SOLID SUPPORTS

- 10. As shown in my laboratory notebook pages (Exhibits 2 and 8), I constructed two nucleic acid arrays³, one using preprinted microscope slides and the other using glass fiber filters. See the second page of both Exhibits 2 and 8.
 - A. In the first array (Exhibit 2, second page), T4 and λ DNA were spotted on twelve locations on the same flat microscope glass slide. The flat microscope slide was a preprinted glass slide, also called a cytology slide.
 - B. In the second array (Exhibit 8, second page), T4 and λ DNA were each spotted three times on the same glass fiber filter. In fact, two such arrays in the form of glass fiber filters were taped to my original laboratory notebook page

³ This is true under a restrictive definition of "nucleic acid array" as meaning a plurality of various nucleic acids arranged on a solid support. Under the plain definition – a plurality of (various or identical) nucleic acids arranged on a solid support – more of my experiments could be charact rized as involving construction of nucleic acid arrays.

(Exhibit 8, second page) at the time the experiment was performed and both arrays are still taped there.

MY EXPERIMENTAL WORK IS IN THE '070 APPLICATION AS FILED

11. The '070 application as originally filed is completely consistent with the experiments discussed above in that it reasonably conveys that (1) the invention resided in the attachment of nucleic acids to the surface of a non-porous solid support; and that (2) the shape of that surface of the non-porous solid support was irrelevant to the invention; and, therefore, (3) that a person skilled in the art at the time the application was filed would not have viewed arrays as being limited to those including wells or depressions because of the irrelevance of the shape of the surface or solid support to which the nucleic acid was bound.

The first conclusion is manifest from page 10 of the '070 application, stating that:

In accordance with the practice of this invention, analytes in a biological sample are . . . directly fixed to a suitable solid support. . . . It is preferred that the solid support to which the analyte is fixed be non-porous.

The second conclusion, that the shape of the solid support is irrelevant, is likewise made manifest on page 10, which states that:

[I]t is preferred that the solid support to which the analyte is fixed be . . . glass, or alternatively, plastic, polystyrene, polyethylene, dextran, polypropylene, and the like.

It will be appreciated that the above cited passage *makes no reference to the shape of the solid support*. Certainly, had the shape been critical, it would have been specified. Indeed, only later in the specification at page 13, as *a preferred embodiment*, solid supports with wells or depressions are cited:

Stavrianopoulos et al. Serial No. 08/486,070

Filed: June 7, 1995

Page 6 [Declaration of Dr. Dollie M. W. Kirtikar]

Yet **another** aspect of the method of the present invention involves generating the soluble signal . . . in a device capable of transmitting light therethrough for the detection of the signal by spectrophotometric techniques. . . . **Examples** of the devices useful in the spectrophotometric analysis of the signal included conventional apparatus employed in diagnositic laboratories, i.e., plastic or glass wells, tubes, cuvettes or arrangements of wells, tubes or cuvettes.

Accordingly, point 3 is clearly conveyed, that a person skilled in the art was told by the '070 application that the invention resided in attaching nucleic acids to a solid support without any reference to the shape of that solid support; and that solid supports with wells or depressions were but a preferred embodiment, THEREFORE, the '070 application conveyed that an array as disclosed need not be limited to one with wells or depressions.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that any such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Oct. 28th 2003

Dollie M. W. Kirtikar, Ph.D.

* * * * * * *

Dollie M.W.Kirtikar

71-30 162nd Street, Unit #3 Fresh Meadow, NY 11373 (415) 327-3442

EDUCATION:

Bachelor of Science B.Sc. April 1952 with Honors.

Microbiology as Major; Chemistry as minor.

St.Xavier's College, Bombay,India.

University of Bombay.

Master of Science M.Sc. February 1957 (three years with research

Microbiology as major; Biochemistry as minor. Seth G.S.Medical College, Eombay, India.

University of Bombay.

Thesis: Typing of Salmonella Paratyphi A Strains For All

Over The World

Doctor of Philosophy Ph.D. June 1967.

University of Kansas. Kansas (U.S.)

Title of Doctorial Thesis: Phenotypic Transformation

RESEARCH EXPERIENCE:

March 1969 to March 1971 Visiting fellowship from Nucleic Acid Research

Foundation of Nederlands

Biochemistry Department, University of Nederlands at

Groningen, Nederlands

Molecular biology with emphasis on enzyme, and

factors involved in DNA transcription

May 1971 to September 1977 Research Associate at Biochemistry Department,

Case Western Reserve University

School of Medicine, Cleveland, OH 44106

Molecular biology with emphasis on enzyme

involved in DNA repair after treatment with physical and

chemical agents known to cause cancer.

October 1977 to June 1978 Research Associate at Radiology Department

Stanford University Medical Center,

Stanford, CA 94305

Molecular biology and genetics with emphasis on DNA-

repair deficient bacteria

February 1979 to February 1997 Research scientist at Enzo Biochem, Inc. and its

subsidiary, Enzo Life Sciences, Inc. (formerly Enzo Diagnostics, Inc.)

Also held position as Production Manager and Supervisor of QA/QC

February 1997 to Present

Senior Scientist at Enzo Life Sciences, Inc. (formerly Enzo Diagnostics, Inc.)

TEACHING EXPERIENCE:

1961-1963 Teaching Assistantship at Microbiology Department, University School of Kansas Medical Center, Kansas City, Kansas.

General laboratory assistance in various courses offered to medical and graduate students. Preparation of course material, supervision of students conducting experiments, assistance in lab experiments, conferences with students, etc.

1965 Laboratory Instructor in Department of Pathology and Bacteriology at Topiwalla National Medical College, Bomoay, India.

Supervision of clinical laboratory staff.

Training of research personnel such as technicians, graduate students. Conferences with students etc. on particular research projects. .

1969-1971 Biochemistry Department, University of Nederlands at Groningen, (March) Nederlands.

Training of graduate students and technicians. Conferences and discussions with graduate students on particular research project

1972-1977 Biochemistry Department, Case Western Reserve University School of Medicine, Cleveland, OH 44106

General supervision of laboratory personnel; training and supervision of technicians, graduate and college students; iniation of new personnel in the laboratory group in various techniques. Conferences and discussions and suggestions to various personnel about specialized techniques in molecular biology.

Jan.1978 to Radio

Radiology Department, Stanford University Medical Center, Stanford, CA 94305

Training and supervision of one technician in molecular genetics with particular emphasis on mapping of bacterial mutants. Preparation of phage lysate, transduction and conjugation expts, construction of strains etc.

PUBLICATIONS:

- 1. Mridula W. Kirtikar, Typing of Salmonella Paratyphi A Strains For All Over The World. J. Post Graduate Medicine of India (1957)
- 2. Mridula W. Kirtika, D.D. Banker, and N.W. Purandare, Bacteriophage Typing of 371 Strains of Salmonella Paratyphi A. J. Post-Grad. Med., Vol. VI, 6 (1960)
- N. Veeraraghavan and M.W. Kirtikar, Biologicial Characteristics of Influenza virus Strains Isolated at the Government of India Influenza Centre, Coonoor, during 1950-69, Bull. World Hlth. Org., 24, 687 (1961)
- 4. N. Veeraraghavan, M.W. Kirtikar and T. Sreevalsan, Studies on the Cultivation of Influenza Virus in vitro. *Bull. World Hith. Org.*, 24, 711 (1961)
- 5. Mridula W. Kirtikar, Phenotypic Transformation. Dissertation Abs Intl., 28 (7), 2708 (1967)
- 6. Mridula W. Kirtikar and Jacob D. Duerksen, A Penicillinase-Specific Ribonucleic Acid Component from Bacillus Cereus. I. Ribonucleic Acid Extraction and Definition of the in Vivo Test System. *Biochemistry*, 7, 1172 (1968)
- 7. Mridula W. Kirtikar and Jacob D. Duerksen, A Pencillinase-Specific Ribonucleic Acid Component from Bacillus Cereus. II. Partial Characterization of the Active Component. *Biochemistry*, 7, 1183 (1968)
- 8. Dollie M. W. Kirtikar and Akira Kaji, Stimulation of Phage Ribonucleic Acid-dependent Incorporation of Amino Acids by 5 S Ribonucleic Acid. *J.Biol.Chem.*, 243, 5345 (1968)
- Shelk-Mumtaz Hadi, D. M. Kirtikar, and D.A. Goldthwait, (Endonuclease II of Escherichia coli. Degradation of Double- and Single-Stranded Deoxyribonucleic Acid. *Biochemistry*, 12, 2747 (1973)
- D.M. Kirtikar and D.A. Goldthwait, The Enzymatic Release of O⁶-methylguanine and 3-methyladenine from DNA Reacted with the Carcinogen N-methyl-N-nitrosourea. *Proc. Nat. Acad. Sci.*, 71, 2022 (1974)
- 11. D.A. Goldthwait, D.M. Kirtikar, S.M.Hadi, and E.C. Friedberg, Molecular Mechanisms for repair of DNA, Part A. *Plenum Publishing Company*, p.191-196 (1975)
- 12. D.M. Kirtikar, J. Slaughter and D.A. Goldthwait, Endonuclease II of Escherichia coli: Degradation of γ-Irradiated DNA. *Biochemistry*, 14, 1235 (1975)
- 13. Dollie M. Kirtikar, Anthony Dipple and David A. Goldthwait, Endonuclease II of Escherichia coli: DNA Reacted with 7-Bromomethyl-12-methylbenz[a]anthracene as a Substrate. *Biochemistry*, 14, p.5548 (1975)
- 14. D.M. Kirtikar, J.P. Kuebler, A. Dipple, and D.A. Goldthwait, Endonuclease II of Escherichia coli and Related Enzymes, Fundamentals in Cancer Prevention: 6th Int. Symp. of the Princess Takamatsu Cancer Research Fund. *University of Tokyo Press, p.349* (1975)

Dollie M.W. Kirtikar Page 4

- 15. D.M. Kirtikar, J.P.Kuebler, A. Dipple, and D.A. Goldthwait, Enzymes Involved in Repair of DNA Damaged By Chemical Carcinogens and γ-Irradiation. *Cancer Enzymology (eds. J. Schultz and F.E. Ahmed, Eighth Miami Winter Symposium, Academic Press, p. 139* (1976)
- 16. Dollie M. Kirtikar and David A. Goldthwait, Endonuclease II and the Apurinic Acid Endonuclease of E. Coli. *Fed. Proc.*, *35*, *1589* (1976)

PATENTS:

U.S.

- 0 5,241,060
- o **5,260,433**
- 0 4,994,373

* * * * * * *

	•	
And the contract of the contra	DeTection of glycosylated DNA	6/1/82.
	with fluorescent eou. A.	
	ou slides.	Wares
		Worman Keller
	Microscope slides with slots.	6/1/87
	Treated for 5' with 0.1% Hel	
	washed with water 5x	
	Treated with subling solution	
	0.1% ex K (504)2	
	1 % gelatin	
	jor 5 minutes	
\ .:	Aix dried	
	Air dried.	
	Apply DNA 20 X	
	air Dry	
	Wash with 70% EtOH 20'	_
	followed by 95% EtOH 20'	
	Apply con A 201 in Nacl-Mg	1 10 mM eae
	Clir + Keep in Hubrid chamber for 30'	
	for 201	
λ	707 30	
	Riuse with PBS	
	Keep in PBS 7 minulées	

Work stiles O.IN Hel, 5 min Rinsed Hs O 5X con A 50 x/w 20x 20> AND K 20

.

.

,				Ĺ		1 .			6.1.	13.82
	<u> </u>	on A	binding	-/0	gluco	sylate	ed DA			
									Nan	wa
	Tr	reated	glass	Tube	8				K_	elly
		·							6/	13/82
			<u>.</u>	_					7	
		i	2	3	7	5	6	7	8	9
							Application of the second			
	Ty DNA	1002		८०७		100)		_		<u> </u>
	CT DNA	-	1 0 0>		(00>	-	100>		_	-
Flinalara	tou A			100>	ري دعوا	ر٥٥)	1002	100>	(00)	_
				<u> </u>	U~		- 10°/	10-7-		
i	<u>,arrot</u> phosphatae	 2					<i>†</i>			_ 4} >
		-			· · · · · · · · · · · · · · · · · · ·	; <u> </u>	·	W		
		-1 P;	- f.	- Sitim	160		- Catod	1 st	n T	,
			each a	Lawiiii	700=	18 /WC			K1 1	107
***************************************		-30 M								
		Washed	repeate	dly e	PBS		100 X a	liquot	15 20	Huro.
			<u></u>	<u></u>	————————————————————————————————————			·		
	70	ibes	1 and	ã s	Hained	wi	th 1	CO2 6	if 10	ug/ul
			ja PBS							•
			es 3							
			eut A							
			10 m		0 '				7	
		/	t roou		n lix		40.28			
							1000	· · · · · · · · · · · · · · · · · · ·		
	W	asku	nepe	siea 17	<u> </u>	M/00.				

Biveling of ONH to class Checked under UV laupafiter E theolium brounds staring at tuber 1+2 and & luarescent Con A interaction mith tuber 3,4 +8 Tuble 1 + 2 goup a red fluorescence pharacteristic of Ethidum branied and tall 3 your a green photsiend the Table 4 and 8 yans are susuble green blusiescence To tubes 5, 6,7 added unlabelled cou A 5 mg/ml in PB containing Nach, Hgt Bat left at room Temp for 60 minutes washed repeatedly with PBS 20 times. washed with Tuidazole-Hel 5x 624 pl1615 Added acid phosphalase /o diluted 10 > 2 units Added diluent containing BSA 1002 left at RT for 30 washed repealedly with Imidagole-Her 20 times. Added 20 > substrain 80 à buffer efi at RT color illeuse yellow ju lube #5 immediately Added 10 wh bicarbonalite

Azos. ju 50 on 1	1:1 diluted samples.
# Tube A300 vs	Hoo blank.
5 0.498	
6 0.065 7 0.055	
9 0.011	
DNA miek-translate UTP was attached	d é malto-trose substitus 10 the glass similarly ed, washed ceff.
<u>i</u>	
was carned	binding to DNA
acid phospha	lase in The same
Tube #	A 350 3
10 DNA CO	mbol wektricustated 0.805
11 \(\lambda \mathbb{N} \mathbb{N} \mathbb{H} -1 \)	Les/ (mich translates with 2018 0.36 & cl phosphalase 0.012
13 phos	phalase alove. 0.008

Nomkil a/1/823.

6.17.82
Concentration eurre for
DNA binding to activated glass Tubes.
T4 DNA 3H T4 DNA wiek-handlated cesting
3.29 micrograms/we 3Hd ATP
2 ONA - 3H & DNA. wiek Translated using
3.615 wierogramsful 3Hd ATP
3 Hepun
5 / 3HT4 DNA 16.45 ng 7809 } 7220 6630
6630
approx. 439 cpm/navogram
5) 3H) DNA 18.075 ng 5044 / 4699
5) OH & DNA 18.075 ng 5044 4699 4354 }
approx. 260 cpm/navogravn.
3H G17.82
T4 52 16,45 ng 3H & DNA 6,17.82
1 v1 1 05
001.00
1 62 1 06 4699
091.J) 201.09
006330.00 J —————————————————————————————————

	3 HT4 DNA 10x diluted -10 1.0 ml.
	32,9 mg/nul.
, A	7
1, A	10 \ + 490 \ buffer - 658 picograms ful
	201 + 4801 buffer - 1.316 navograms/me
3. C	40 \ + 440 \ buffer - 2.632 nanograms/unl
<u>4.</u> D	50 \ + 450 \ buffer - 3,290 nanograms fuel
5. E	100) + 400) buffer - 6.58 nanograms/wl
6. F	2002 + 3002 buffer - 13.16 nanograms/me
7. G	500) + 00 - 32,9 vanograms fue
	
	BHT4DNA 25x diluted -10 1.0 ml
	82.25 ng/wl.
8. H	500) + 0 buffer 82,25 ng/ml.
3 H	ITy DNA 50x diluted -10 1.0 ml.
•	164.5 ug/wl.
9 9	500) + 0 baffer 164.5 ug ful.
311	TyDNA 1002 diluted -10 100 cul.
<u>~ Pl</u>	14000 1000 anded 10 100 acc.
In T	5700) A 1 N 200 a .al.1
<u> </u>	500) + 0 buffer 329.0 vg/ml.

				- · · · · · · · · · · · · · · · · · · ·	
100 h of each	sodu	lion e	heeked fo	, radio	paetivily-
after ditut					
al cael	aclusti		<i>p</i> .		
100 l of each		•			
B acti			cas Tubes		
13 2021,		J. Company	3 / 00 / 00		
after 5' c	it Ri	7. 80 lu	etions re	moved	
earefully					
tubes wa	s hed	· d x	ē 100,	1	
portions					
<u> </u>					···
all com		and o	originale	eombir	red
and cou:	nted.				
Знерш		•		· · · · · · · · · · · · · · · · · · ·	
Original - Bi	kg(.3.5)	Nou-Aeliu	rated A	ctivaled - Bkg(3,5)
<u> </u>	100%	23	100%	16	69.56%
(2) 131.6 pgm 32	100%	24	7 75 %	27_	84.38
(3) 263,2 pgm 48	100%.	49	100 %	32	66
9 329,0 pgm 65	100%	70	107.6%	39	60
@ 658 pgm. 106	100%	111	104.7%	97	91.5
6 1.316 ngm 245	100%	255	104 %	167	68.16
\$\\ 3,29 ngm 527	100%	569	108%	468	82.25
(8) 8,225 ngm 1337	100%	1348	100,8%	979	<i>F3</i>
9 16.45 ngm 2387	100%	2428	101.7%	2089	87.5:
(ô) 32,9 ngm. 4053	100%	3883	95.8 1/	3060	75.5
	<i>70</i> .		<i>I</i> -	_	

Dolling (2/18)	2 Remained on Activated glass surface
	1. 20 piengrams.
902.00 	2. 20,56
	3, 89.49
કારણ કરે છે. 	4. 131.6
1. 34	5, 55,93
JU 1/92	6. 419.00
- 1026/21/82	7. 584.00
	8. 2220.75
	9. 2052.96
	10 8060.5
11 5378	
3878	10'
	picograms on glass surface
- Q	1 28.95
	2. 17.10
σ	3. 131.6
<u> </u>	у. 118,44
· · · · · · · · · · · · · · · · · · ·	5 184
	6. 355
	7 428 ·
	8 2303
	q. 2139
	10. 8554
	10. 0037
 .	

Con A binding to DNA on the glan surface
Con A 100 Mg/wl in PBS
1 Mg/wl a
10 ng/wl
DNA on Surface Cou A R.T. 60'
1 20 peg 28,95 100 pegu
2. 20.56 17.10 100 pcgm.
3. 89.49 131,6 100 ngu
4. 1 31. 6 118.44 100 ngm.
S. 55-93 184 100 ngm.
6. 419 355 10 pgm.
7. 584 428 10 m
8. 2220 2303 10 a
9. 2052 2/39 10 a
10, 8060 8554 10 v
6.30.82
,
Cou A removed and the tubes washed
5 times with PBS. 100 x
2 times with I widagole Gulfer pH 6:5
Alkaline phosphatare 10 mg/ml délulés
to 0.5 mg/wl in Tris pH 7.4
2
100 h added to each tube.
Juentales et RT 30 winutes.
Removed and washed with Imidazole Guffer.
3 times 100 x
man and the second of the seco

Added 20 microliters af substrati 0.1 M	
80 wieroliters of Tris plt 7-4 5-014 214	
Juenhated at RI	
Within 10 min. the color developes.	
Often 30 min at RT.	
Diluted 1/10 in & M Tris pH 7.4	
and read at 410 vs. substrate 61 ank.	
A ₄₁₀	
X10 *****	
DNA on surface.	
1 28.95 pcg. 0.385	
2 17,10 0.296	<u>(</u>
3. 131.6 0.6	
4. 118.44 0.58	
5, 184 0.6	
6, 355 0.67	
7 428 0.43	
8. 2303 >10.68	
9. 2139 0.68	
10. 8559 > 0.69	
untrealed 11 Euzyme + Substrate Glank. 0.71	
y treated 12 Euzyme + Substiali Glaub + eon A 0.705	
treated 13 Euzyme + Substiali + cou A Glank. 006	
treated 14 Euzyme + Substrati 6lank 003	_
· · · · · · · · · · · · · · · · · · ·	

	DNA binding to activated surfaces.	6.30.82
	plastic wells meated with epoxy-g	, lu
	5-x and 10x	
	air-dried.	
	2 4 T 1 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1	
	3HTy wick hour lated DNA 32,9 M	grue
	diluted to contain	
	A 0.658 ng/ml. in 5 mM 7.	Ris 7.4.
	B 1.316 u	
	C 2,632 u	
	D 3,290	
`	E 6.580 u	
,	F 13:160 u	
	9 32.90	
	7	
	50 microliter added per well.	
	after 10' at RT.	
	samples nemoved	
	wells washed with PBS pH 6.5	- iwice.
	50 mieroliter aliquots.	
74.4	all washes combined and co	unted
	Samples	
	50 x of 1 Mg/wl con A in PBS. Mg	!
!	applied to each well	
	Left at RT. for 30'	
	washed à invidazole buffer twice	
	7 1	

applied 50 microlitées af alkaline phosphalas	<u>e</u>
0.5 mg/wl	
After 30 minutes at RF.	
washed è Tris eartaining 0.15-14 KEL	
3 times.	
finally with This alove. Applied 0.1 M substrate 52 14	
45 x Tris 7.4 2.0 14.	
Junediali eolor developed. but	
the enzyme by itself also sticks.	
	(
	· · · · · · · · · · · · · · · · · · ·
	<u>_</u>
	<u> </u>
	- Profile annual a Margalia Regular, annual annual a Parga
	
	

F

										61	79.82	
			1	2	3	4	5	6	7	8	9	
		1	IA	poxy Gl	u 5)							
		2 3						<u></u>				
,	ıo	4	DNA	20.0	0.50	[G] 6						
	2-20	5 6	11	32.9	65.8		164.5	329	658	1645		
	i, EFFICIENCY LINE® 22-205	7	Applied.			,				—		
	Z	. 8 9		14	29.6	59.2	74	148	296	140.3		
	ENC	10		4	-	3H	epur			 		
	FICI	11 12	DNA	13.5	13.5	24	49	73	165.5	202 5		
	نتا ونسم	13	bound.		(5)		·	73	162.3	393,5		
		14 15		Ĺ		_ Зн	epur -			 >		
		16	DNA	_								
		17 18	00	0,5	16.1	35.2	25	75	136.5	346.8		
		19	suo face	<u> </u>		зн	epur _		_ 	}		
		20		1. ii	35.74	70 11	,		-04	 .		
		21		1, (1	23144	Ì	i	166.5	289.7	769.9		
	Ĺ	23		4		- pico	grams			· · · · · · · · · · · ·		
		24 25	CouA	50	50	50	50					
		26						5 0	50	50	20	
	•	27 28				- vau	ograms					
		29	Alk. Phosp	. 25	25	25	25	25	25	25	25	25-
		30 31		,		wicz	rogram	ــــــــــــــــــــــــــــــــــــــ				
		32										
		33	-			·						
		35										
		36								·		
		37 38						j				
		39							•			
		40								ļ		
		42										
		43										
,	<i>(</i>	45					·	-			İ	
ţ		46]	·		
		47										
		49										
		50	ì	ļ	1	. 1	İ		1	1		

		11	1	<u> </u>		 		1		7====	7
		1	2	3	4	5	6	7	8	9	
	1	B. 10 x	Epoxy	Glu.						,	
	3										
	4		200								
205	5	DNA	32.9	65.8	131.6	· ····- ·	329	658	1645		
AMAZE - EFFICIENCY LINE® 22-205	6 7				pice	gram.		† 			
NE ®	7 <u>.</u> 8 .	Hepu.	14	29.6	59.2	74	148	296	740.3		
.≺ ∟	9	'	<u></u>		1	grams.	<u></u>		, , , , , , , , , , , , , , , , , , ,		
IENC	10-	Hepur.			'	'					
FIC	12	not boun	1 5.50	13	26.5	38,5	95	1855	418.5		
انا منس		- BI 15						, , ,			
	14		8.5	16.6	32.7	35.5	53	7/1	321.8		,
	15	DNA									
	16 17	bound to	18.9	36.9	79.59	78,81	117.7	246.4	714.4		
		surface	, , ,	- 1	'				7' 1		
	19	'			p	cogran	us		`		
	20	C 1	6-	<i>(</i>	<i>,</i> -	<i>(</i>	/ -	 	<i>(</i> -	<i>15</i> -	
	21 22	Cou A	५०	ร์ ฮ	ঠিত	50	5.0	50	50	5∞	
ţ	23		4			فشنهقات			·		•
	24	Alk.phosp	25	25	25	25	วร์	25	25	อร์	25
	25 26		<u> </u>		wi	mospog	& ·				
	27				-						,
		Bubstrah	·	`		·· ·	A Committee of the Comm	THE TO SHEEP A STORY OF THE SHEET OF			
	29						• • • • •				
	30										
	31										
	33										
	34										
	35 36										
	37										
	38								,		
	39				į			•			
	40	<u> </u> 		!		į					
	41			į							•
	43							1			
	44				.				}		
(45					1			1		
•	46		Ì						1		
	48		1				1				
	49										
	50		ļ								
								·	·	•	

20llel 6/19/82

```
1 19,200
 J00083.50
1 29
     JJ2.0)
     J15.00
 000116.55
1 30
     562.Bu
     115.00
 JJ9181.59
1 31
    302.43
    010.00
 UUDZ31.33
1 32
     562. .)
    397.00
رز و د ف د ف
1 33
    502.11
   . . . . 7 . 14
30.0 34 . m
1 33
     97.15
```

Norman Rury 7/13/82

 Activaled plastic plates 7.13.82
 Detection of glyeosylated DNA Norman lin
 Detection of glyeosylated DNA Norman Im Coy con A alkaline phosphalase 1/13 (6)
 3HT4 DNA wick Translated 3.29 Mg/ml
diluted in PBS Gaffer 10
32.9 nauograms/wl.
Cou A 10 cug/vul ju 2.0. M Nach
 Olkalina phosphalana or mal di
 alkaline phosphalase 0.5 ing/ml ju
11 Alika alianul aliand 1: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 4-Nitro phetry/ phosphah: I ug/ul ice
+ 1 M TRIS PHIZY
 BSA 20 mg/ml phosphalase. Inc.
 from Jamos
 1. DNA 50 A RT 10'
Riuse 3 x e 100 x PBS
 Count
 2. Cou A SX (so lig) in PBS. Mgtt
Total 50 A
R.T 30'
 3 Riuse 3 x e PBS Hqt 1002 each nune
1
H BSA 20 mg/ml 50x
 370 2 hours.
 5. Riuse e Tris. Hel 5 mH 2 x
 6. Alkaline phosphalase SOX 55 lig
30' RT'

	Riuse	5	χ	.é	100	λ ccf		:3 M	Naci	_
8	Subst	vali	్ర	wq		\$0.		00	.llq	
		<u>Juculo</u>	ali	व्यं	37°					
					······································		·		MICR	DELISA
	А	<u>B</u>	C	D	Ë	F	G	H	1 A 1 B 1 C) 1.007 0.00/2) 0.7 4 9
DNA	÷	÷	÷	÷					1 D 1 E	0.006 > 0.727
CouA	·÷	+		. —	+	+			1 F 1 G	Ø.025
BSA		+	+	+	·+	+	+	+	1 H	0.149 0.000
AP	+		+		+		+		2 A	> 1.37 9
Nati	+	· †		+	+	+	+_	+	2 B 2 C	0.00/1
Substral	ŭ +	+	+	+	<u>+</u>	+	+	<u>+</u>	2 C 2 D	0./164 %
i	505.00					A 4	 0		2	ØVER № Ø.026 O.015 O.012
	5 1.85 1 10 117.26 99				A B		149 50		3 A 3 B 3 C	0VEF > 0.304
	eldrock or a graph	·			C	0,	015		3 D	0UER > 0.343
	· · · · · · · · · · · · · · · · · · ·	ાથી —			0	6	,012		3 E 3 F	ØVER > Ø.401
	J 31. jj (D			E	Ö	099	1	3 G 3 H	0.099
	1 W	1) —			F	0	· 0 8	B		-0.001
·		ري 	· · · · · · · · · · · · · · · · · · ·		<u>G</u>	0	.05	3	4 A 4 B	0.002
		હ્યા 3) — —	:		<u> </u>	0	, 00	<u>ට</u>	4 8 C D E F	> 0.3/81 0.012 > 0/830.
	949.00 W	f)				-1			4 F	0,030
										

			D	NA E	inding	76 C	retiva7	ed gla	13 suoj	ace	8,2.8	·2·
		1		2	3	4	5	6	7	8	9	
	1 2 3 4		T ₄			ug /u						
EFFICIENCY LINE® 22-205	5 6 7		di	luted	-10	ceutai	u					
L NE	8	Α		1000	ng/wl	,						
ËNC≺	10	B		100	49/W							
EFFICII	11	c		10	ng/m	Į.						
9	13 14	D			49/W	e						
	15 16	E		0.4	ид /ш	L.						,
	17 18				<i>J</i> , .			-	*			
	19 20			100	1 of	eaeh	solutio	ı i'u	duplic	aTes		
	21			iυ	activ		glass	Tubes				
)	23				OLO II. V	<u> </u>	5					
	24 25		,	10	at	RT.					;	
	26 27 28 29			Rem	ove o	eareful	ly.					
	30 31 32			Rius	e tu	b es	3 x (2 100	of of	2 x .	ssc	
	33 34 35			(00/1	, of	cou A	ada	led O	·1 mg/	ul i	PBS.	Mg+t
	36 37							,				
	38 39	F		cou	A	· · · · · · · · · · · · · · · · · · ·						
	40 41	G		PBS- N	10 44							
	42	. Ч			.g							•
	43 44 45			le ft	at R	T for	60'			11.47	a _w	
·	46 47 48		Riy	ise	3 X	ē	الم موا	of	2 x ss	C	Jueu	bali
	49 50		T_{o}	set		dded	100 X	PBS	Hgt1 Firoll		RT	

	1 ,	2	3	4	5	6	7	8	9	
1 2		Wash	3 x	- -	- 2·)	SSC		,		
3 4						ا- م				
2-205 ø ຫ		Adel		i	PBS.H	9~1	to so	T _		
2 7 ® 3 8			100	<i>></i>	Cou A	0.1 0	gful	u P13S	M9 To	set <u>11</u>
2. EFFICIENCY LINE® 22-205 11 16 6 8 6 9 9		60	od	RT						
13		Wa	sh :	3 × . (2	x 550				
14 15 16 17				В х	ē (011 %	BsA	ju á	22 X SSC	
18 19			, , , , , , , , , , , , , , , , , , ,			of Oan				
20		Add	lo	ρ Υ		% BSA	ìu	2 x ss	P -10	
22			all.	Jubes.						
24 25 26 27			cover	e C	para	film				
28 29 30			K	erp «	et 4	ep op	·		8/3/82	
31 32	·									
33 34		Riuse	3 x	ē	2 × \$	se co	Maini	ug o	1960	BsA
35 36						+ 1	a sid o	laganh	Jace	
37 38		Add	10 }	of	1/5 all	Jed	uea p	wesp.	ــ مـا	
39 40			40>	of	artue	ut eo	Lu au	ra o.	1003	
41 42		9.	reubat	و فا	RT RT	for	30			
43 44		 								
. 45 46		Keu	ioue							
47		Rius	e 5	x è	0	3 M	Nacl			
50										

	Add Juer Dilate 840	80 ebali	ar Rx E	37°	for	bsWab wiglags one	hour	•	615
	Juer Dilale 816	80 ebali	at	37°	for o we	one	hour	•	615
	Dilete 816	ebali P	at	37°	for o we	one	hour	•	(G13.)
	Dilete 816	p 1	at	37°	for o we	one	hour	•	
	Dilete 816	p 1	Rx E	2.	o wl				
	Dilete 816	p 1	Rx E	2.	o wl				
	846					5 °{	o Na	H CO 3.	
	846					5- P	o Na	H CO 3.	
	846					5-0	o Na	HOZ.	
						5 7	o Na	H CO Z .	
	Cho			d	A410.				
	Cho	ek	OD (d .	A410.				
	Cho	ek	OD 0	al .	A410.				
						1			1
			1				,		
I	i								
	-								
					· ·				
					-				
							·		ŀ
	٠								
		•				· · · · ·			
ļ									
					· •				
			<u>.</u>						
					<u> </u>				
_									

	1	2 DNA	3 Cou A	4 Ficol	5 Cou A	6 Acid P.	7	A 410	9	
1						-	* 11.18. P * 10.11			
2 3 4 80 5	A	50 ng	+	_		+		0.285	X20	
22-205 7 8 9 10 11 12 13 14	A 2	50 ng	+,	+	+	+		0.35 x	20	
9 10 11	В	5 ng	+		.—	+		0.175	x 20	
12 13 14 14	B ₂	5 ng	+	+	+	+		0.23	x 2 0	
15 16 17	C_1	500 pcg	+	<u> </u>		+	. <u>.</u>	0.06	x 20	
18 19 20	C2	500 pcg	+	+	+	+		0-12	x 20	
21 22) 23	\mathcal{D}_{t}	50 peg	f			+		0,11	× 5	
24 25 26 27	D2	50 pcg	+	+	+	+		0.29	× 5	
28 29 30	Εı	20pcg	+	-	_	+		0,141	× 2	
31 32 33	E2	20 peg	+	+		+		0.20	8 x 2	
34 35 36 37	Fi		_	—				0.00	6	
38 39 40	F.2		+	+	+	_+		0.00	7	
41 42 43	Gı	_					· · · · · · · · · · · · · · · · · · ·	0.00	6	
44 , 45 46 47	G2.	 .		+		+		0.00	5	
48 49 50	Coutrol							0.35 X	20	

. .

	11			<u> </u>						
<u>)</u>	1	2	3	4	5	6	7	8	9	
1 2 3 4	Pre	parat	ion o	of g	lan -	fibre	filter			-
LINE® 22-205		GF	_		Soake	ed ju	5%	lo Nil	vic Ae	ن م
9 10 11 12		as heel	'					·		
13 14 15		RIED			s at	100	0			
16 17 18 19	7	0 %	0790	uosila	ne ,	repar	red	oH 3.	,,	
20 21 22 () 23		juste	•	l 1		;	1			
24 25 26		luted gwili6			20	0 (3)	620	22-	- 440	:
27 28 29 30		as heel		į	·					
31 32 33 34		lution							·	
35 36 37	.	Bwirle	d g	ently	071	ce s	o all	the	-Silter	•
38 39 40 41	4	vere	eve	nly	disp	ersed				
42 43 44		Incu	Gatico	n a	1 75	.0	for 2	hrs a	ud 4	\$
45 46 47 48		minul Filter	,	move		quid	sucke	d As	07	
49 50		Vacc	mp				parat			

	1	T	 		<u> </u>	<u> </u>				T
_)	1	2	3	4	5	6	7	8	9	
1 2	Filt	269	wash	ed o	nce	with	dist	11cd	water	
3										
4 S 5	DR	ED	0/2	at	100	,				
9										
5 6 7 9 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14								/ ۾	28/82.	
و ج								07		
O 10										
<u>U</u> 12	Te	po Fi	11 eos	use	4					
13										
15				T4	DNA	12	per s	pot 1	0.2 cug	/wel
16		74		- 7			, -	, .		
17 18	(.		[7])		DNA	1 λ	per s	pot /	وبيه 2.9	July
19		·1.	/							
20				PBS	Matt	17	per	spot	-	· · · · ·
22										
23										
25	Au	DR	y .							
26 27										
28					++					
29	$\mid W$	ash	ē P	BS.M	9	on t	ilWati	ou a	pparat	us.
30 31										
32	Filt	er#		stai	ا م	ē E	BR.			
33	F117	er 47	,	star	ren		IDK.			
35				j						
36 37	Filt	a., 4	. 9	30 a	had	u F	ITC-l	abelle	d con	A
38	F 1 (1	EY +	2	209	, KCU					· į
39	·		<u></u>	· wq	/	- 10	ολ	per f	Hex	·
40	<u></u>			· wy /				<u> </u>	.,	
42	"	0	P				C .	Palla		
43		exces	S	w d	7em	oved	Gy	-filtra	inou 	
45		· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			:			+ 6	1-60-	
46		Filter	s_{-} ω	ished		lh Pe	29.149	y u	Ifes.	
48					2 74				An of the probability of angularity (see	
49 50	. <u>-</u>		1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
50]	ļ,	<u> </u>	-7.		اند				l 	
		ىر بەھىدىگ		The same of the same	New York	•	•		·*	المراقعة والمستوالية المستوالية

		T .	Т		. Ŝ.,.T		TON A		-000	0 - 11	1 0 0 1
		1	\dashv	2	3 ³ HT4	4 C	TEDNA. Sugla	Le 1	x ssc	8 3.0 M	d 2.0 H Aw Ae
	1 2 3			0	20 X	<i>o</i> +	0		60 }		200
22-205	5 6	**************************************								20>	
EFFICIENCY LINE® 22-205	7 8 9			-	Į.		10 >		50 >	207	700%
FICIENC	10 11 12			2			20 <u>)</u>		40>	202	2002
	13 14 15			3	ŧţ		40)]	202	. ۲۰۶	300)
	16 17 18			4	€ŧ		۷08		80ን	202	200>
	19 20 21			5	C)		1602		0	80>	200>
, V	22 23 24			Э	Sets.						
	25 26 27 28		A		ħ.	ρω			: }.	+	
	29 30 31			ue	set .	j	ed -12				ses filters
	32 33 34		Co	utrol	set		red -1'		EGF	unine	<u>a</u> yeo
	35 36 37			R	adioa	efivily	ehe	eked.			
	38 39 40										
	41 42 43										
:	44 45 46			·							
	47 48 49										
	50		I	ŀ	!		İ		[***	e e

```
1 23
    002.00
    001.50
 018086.00
1 24
    002.03
    00.00
 000019.00
1 25
     002.00
     007.00
 000647.50
1 26
     002.00
     015.00
 000163.50
1 27
     082.00
     010.00
 000223.50
1 28
     002.00
     015.00
 000124.50
 1 29
     692.00
     015.00
 000117.00
 1 30
     002.00
     015.00
  000155.00
 1 31
     002.00
     00.00
  000018.00
 1 32
     002.00
     015.00
  000115.00
 1 33
     032.00
     020.00
  000053.00
 1 34
     J02.00
     020.09
  000054.00
 1 35
     U02.JU
     020.00
  000030.50
 1 36
     002.00
     020.00
  000055.00
 1 37
      002.00
      000.00
```

000032.00

Treated ers.

	1 3 Hep2m.	3 Competition	5 Bounts ron	Filter Pullibition Capa
	1 T4 ONA	unlabelled CT DNA Mg.		Filter Pulvibition Capa of Fil
	3	ug.		
22-205	18086		18035	
NCY LINE®	B	25	18035	
T. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1	50	18023	
1:	5	100	18024	
1: 18	7	200	18017	-
19 20 21		400	18053	-
2:				
. 26	FILLE		·	
27 28 29	18086	0	18153	
30		25	18018	
32 33	53			
34 35	11 1	50	17115	
36 37 38	,	100	8053	
39 40		200	3723 2413	
43		4.000	211.12	
43 44 45		400	2413	
46 47				
48 49				
50	11 1			

Preparation of Silanized glass: Glass Tubes (slides) are boiled for 45 min. ju 5 % nitric acid solution, then washed and dried for 24 hours at 115°C. Has The surface area to be activated is dipped into a 10 % solution of gamma-aminopropy/-triethoxysilane (union Carbide Silicoues A-1000) dissolved in distilled water and pH adjusted to 3.45 with & normal hydrochloric acid.
The suspension is placed for 2.75 hours jour amount of some volumes swice and then dried overwight at 100°C. The resulting material has an available alkylamine. Activated glass lubes were used to show con lectiu-binding -10 glucosylated [glucose-substituted wiek Translated] DNA. Experimental data judicated - that although glucosylated and now g although there was no defference in Girding of DNA either glucosylated

1 the endpoint of the pit total in in Made Like .64 Hel (Yodsluke)
He solution narms up durring flue
Mentralyzation so block the pH & reads 3.2 mid corresponds to 3.41 at 21°C.

or nou-glucosylated DNA to activated glass surface [range 60 pico grams to 10 nanograms as detected Ex[34] radioactive. DNA], fluorescent labelled Con-A bound only 10 glucosylated DNA

[DNA was counter stained with ethidium Growide J. Further experiments indicated that That lectin bound only 10 glueosylated / glueose-substituted DNA 69 nick translation I was firsther 546stantiated by the fact that thousant phosphatase (a glycoprotein) Council only to con A which already was stuck to glucosylated ONA. found not washed off from these tubes. Both con A and horse raddish peroxidase do not biud to the activated glass surface.