Теоретическая информатика, осень 2020 г. Лекция 2. Преобразование NFA в DFA («построение подмножеств»). Действия над формальными языками, их реализация над конечными автоматами. Регулярные выражения. Преобразование регулярных выражений в автоматы. Преобразование автоматов в регулярные выражения. Конечные автоматы над односимвольным алфавитом. Нерегулярный язык, удовлетворяющий лемме о накачке*

Александр Охотин 10 сентября 2020 г.

Содержание

1	Преобразование NFA в DFA («построение подмножеств»)	1
2	Действия над формальными языками	4
3	Регулярные выражения	5
4	Преобразование регулярных выражений в автоматы	7
5	Преобразование автоматов в регулярные выражения	9
6	Действия над регулярными языками	10
7	Конечные автоматы над односимвольным алфавитом	13

1 Преобразование NFA в DFA («построение подмножеств»)

«Интуиция», которой обладает NFA, может быть механически воплощена в материальном мире.

NFA отличается от DFA тем, что может иметь несколько различных вычислений на одной и той же входной строке. Все эти вычисления проходят те же символы в том же порядке, и отличаются только в состояниях. Можно считать, что все они происходят одновременно.

^{*}Краткое содержание лекций, прочитанных студентам 2-го факультекурса MKH СПбГУ в осеннем семестре 2020 - 2021учебного года. Страница курса: http://users.math-cs.spbu.ru/~okhotin/teaching/tcs_fl_2020/.

Рис. 1: (слева) NFA из прошлой лекции, угадывающий третий символ с конца; (справа) четыре вычисления на строке w=abaab, из которых одно — принимающее.

Например, как показано на рис. 1(правом), после чтения первых трёх символов есть три возможных вычисления, находящиеся в состояниях q_0 , q_1 и q_3 , соответственно. DFA может вычислить *множеетво* этих состояний.

Для NFA на рис. 1(левом), моделирующий его работу DFA, читая ту же самую строку w=abaab пройдёт через следующую последовательность состояний-подмножеств: $\{q_0\}$, $\{q_0,q_1\}$, $\{q_0,q_2\}$, $\{q_0,q_1,q_3\}$, $\{q_0,q_1,q_2\}$, $\{q_0,q_2,q_3\}$. Их нетрудно видеть на рис. 1(правом). Следующая лемма даёт общее построение.

Лемма 1 («построение подмножеств», Рабин и Скотт [1959]). Пусть $\mathcal{B} = (\Sigma, Q, Q_0, \delta, F)$ — произвольный NFA. Тогда существует DFA $\mathcal{A} = (\Sigma, 2^Q, Q_0, \delta', F')$, состояния которого — подмножества Q, который распознаёт тот же язык, что и \mathcal{B} . Его переход в кажедом состоянии-подмножестве $S \subseteq Q$ по кажедому символу $a \in \Sigma$ ведёт во множество состояний, достижимых по a из некоторого состояния их S.

$$\delta'(S, a) = \bigcup_{q \in S} \delta(q, a)$$

Cocmoshue-подмножество $S\subseteq Q$ — принимающее, если оно содержит хотя бы одно принимающее состояние NFA.

$$F' = \{ S \mid S \subseteq Q, \ S \cap F \neq \emptyset \}$$

Общий вид утверждения: по одному вычислительному устройству строится второе, и поведение построенного устройства выражается через поведение исходного устройства. Доказательства подобных результатов обычно начинаются с утверждения о правильности — подробного математического утверждения, описывающего, что новое устройство делает на каждом шаге, и как это связано с работой исходного устройства. Обыкновенно, именно утверждение о правильности содержит в себе главный смысл построения, а его доказательство бывает неинтересным.

Доказательство.

Утверждение о правильности. Для всякой строки $w \in \Sigma^*$, состояние-подмножество, достигаемое DFA по прочтении строки w, содержит элемент q тогда u только тогда, когда хотя бы одно из вычислений NFA на w заканчивается в состоянии q.

Доказывается индукцией по длине строки w.

Базовый случай: $w = \varepsilon$. Тогда DFA достигает своё начальное состояние-подмножество Q_0 , и все вычисления NFA длины 0 начинаются и заканчиваются в состояниях из Q_0 .

Рис. 2: DFA, моделирующий работу NFA из примера $\ref{eq:control}$, полученный построением подмножеств (все состояния, содержащие q_3 — принимающие).

Переход: w = ua, где $a \in \Sigma$. По предположению индукции, состояние-подмножество $S \subseteq Q$, в котором DFA заканчивает читать строку u, состоит ровно из тех состояний, в которые NFA может придти, прочитав u.

Тогда NFA может придти в состояние q, прочитав строку ua, в любом из состояний из $\bigcup_{q \in S} \delta(q, a)$ — а это и есть в точности состояние-подмножество, в которое DFA перейдёт из S по a.

Далее из утверждения о правильности выводится, что построенный DFA принимает строку $w \in \Sigma^*$ тогда и только тогда, когда её принимает исходный NFA.

Построение переводит NFA с n состояниями в DFA с 2^n состояниями-подмножествами. На практике, многие из них обычно бывают недостижимы. Поэтому алгоритм будет строить только состояния-подмножества, достижимые из уже построенных, начиная с Q_0 .

Пример 1. Построение подмножеств, применённое κ NFA c 4 состояниями из примера $\ref{eq:constraint}$, производит DFA c 8 достижимыми состояниями, представленный на рис 2.

Можно заметить, каждое состояние-подмножество по существу кодирует три последних прочитанных символа (q_i принадлежит ему, если i-й символ с конца — это a).

В худшем случае построение оптимально по числу состояний: Лупанов [1963] построил, для всякого n, такой NFA над $\{a,b\}$ из n состояний, что всякий DFA для этого языка должен содержать хотя бы 2^n состояний.

Доказать немного худшую нижнюю оценку 2^{n-1} легко.

Пример 2. Для всякого $n \ge 2$, язык всех строк над алфавитом $\{a,b\}$, в которых (n-1)-й символ с конца — a, распознаётся NFA с n состояниями, однако всякий DFA для этого языка содержит не менее чем 2^{n-1} состояний.

Доказательство стоит привести, как образец доказательства нижней оценки размера DFA для данного языка.

Доказательство. Построение NFA — это обобщение примера ??.

Рис. 3: Олег Лупанов (1932–2006).

Пусть есть DFA $\mathcal{A}=(\{a,b\},Q,q_0,\delta,F)$ с менее чем 2^{n-1} состояниями, который распознаёт тот же язык. Тогда существуют какие-то две различных строки длины n-1, прочитав которые, автомат приходит в одно и то же состояние $q\in Q$. Пусть эти строки отличаются в i-м символе, то есть, имеют вид uav и xby. Тогда строка $uava^{i-1}$ принадлежит языку, а строка $xbya^{i-1}$ — не принадлежит. Однако автомат заканчивает чтение этих двух строк в одном и том же состоянии $\delta(q,a^{i-1})$ — и потому или принимает обе, или отвергает обе. Получено противоречие.

Было показано, что DFA и NFA определяют одно и то же семейство языков. Такие языки называются *регулярными языками*.

2 Действия над формальными языками

Пусть $K, L \subseteq \Sigma^*$. Так как языки — это множества, для них определены обычные действия над множествами.

$$K \cup L = \{ w \mid w \in K \text{ или } w \in L \}$$
 (объединение K и L) $K \cap L = \{ w \mid w \in K \text{ и } w \in L \}$ (пересечение K и L)

Для языка L, определённого над алфавитом Σ , его дополнением называется дополнение до Σ^* — то есть, язык $\overline{L} = \Sigma^* \setminus L$.

$$\overline{L} = \{ w \mid w \in \Sigma^*, \quad w \notin L \}$$
 (дополнение L)

Конкатенация двух языков, K и L — это язык, состоящий из всех возможных конкатенаций строки из K и строки из L.

$$KL = K \cdot L = \{ uv \mid u \in K \text{ и } v \in L \}$$
 (конкатенация K и L)

Так как конкатенация языков считается умножением, конкатенация k экземпляров одного и того же языка называется её k-й cmene+b.

$$L^k = \underbrace{L \cdot \ldots \cdot L}_{k \text{ pas}} = \{ w_1 \ldots w_k \mid w_1, \ldots, w_k \in L \}$$

Рис. 4: Стивен Клини (1909–1994).

В частности, $L^0 = \{\varepsilon\}$ для всякого языка L, что соответствует свойству $x^0 = 1$ для чисел. Следующее действие над языком L- повторение 0 и более раз - задаёт множество всех строк, получаемых конкатенаций любого числа любых строк из L. Эта операция выражается следующим образом.

$$L^* = \bigcup_{k=0}^{\infty} L^k = \{ w_1 \dots w_k \mid k \geqslant 0, \ w_1, \dots, w_k \in L \}$$

Операция повторения была введена Клини [1951], и её часто называют *замыканием Клини*, или *звёздочкой Клини*, или просто «звёздочкой». 1

3 Регулярные выражения

Регулярное выражение — это формула, задающая язык, построенная с помощью трёх операторов — выбора, конкатенации и повторения («звёздочки»), применённых к элементарным языкам \varnothing и $\{a\}$, где a — символ алфавита.

Формальное определение: сперва, какой вид может иметь регулярное выражение (его *синтаксис*), затем — определение языка, задаваемого всяким регулярным выражением.

Определение 1 (Клини [1951]). *Регулярные выражения над алфавитом* Σ *определяются так.*

- Символ для пустого множества \varnothing регулярное выражение.
- Всякий символ a, гde $a \in \Sigma$ регулярное выражение.
- Если α и β регулярные выражения, то тогда $(\alpha \mid \beta)$, $(\alpha\beta)$ и $(\alpha)^*$ тоже регулярные выражения.

Всякое регуларное выражение α определяет язык над алфавитом Σ , обозначаемый через $L(\alpha)$. Символ для пустого множества определяет пустое множество.

$$L(\varnothing) = \varnothing$$

¹Формальные языки с операциями объединения, конкатенации и звёздочки — это основной пример *алгебры Клини* — абстрактной алгебраической структуры, представляющей собою полукольцо, расширенное оператором замыкания, удовлетворяющим определённым аксиомам. В данном курсе это понятие не потребуется, да и сами полукольца не потребуются тоже.

Bсякий символ из Σ обозначает одноэлементное множество, состоящее из односимвольной строки.

$$L(a) = \{a\}$$

Оператор выбора задаёт объединение множеств.

$$L(\alpha \mid \beta) = L(\alpha) \cup L(\beta)$$

Конкатенация регулярных выражений задаёт конкатенацию языков. Оператор итерации задаёт итерацию.

$$L(\alpha\beta) = L(\alpha) \cdot L(\beta)$$
$$L(\alpha^*) = L(\alpha)^*$$

Лишние скобки можно опускать, используя следующий порядок действий: сперва итерация, затем конкатенация, затем выбор. Например, регулярное выражение $(a \mid bc^*)d$ читается как $(a \mid (b(c^*)))d$ и задаёт, соответственно, язык $(\{a\} \cup (\{b\} \cdot (\{c\}^*))) \cdot \{d\}$.

Синтаксис регулярных выражений можно расширить лишними конструкциями: пустая строка (ε) , повторение один и более раз (α^+) , необязательная конструкция $([\alpha]$, что означает " α или ничего"). Всё это можно выразить в терминах определения 1. Пустая строка: $\varnothing^* = \{\varepsilon\}$. Повторение один и более раз (α^+) — как $\alpha\alpha^*$. Необязательная конструкция $[\alpha]$ — как $\alpha \mid \varepsilon$, и в конечном счёте как $\alpha \mid \varnothing^*$. Например, $a^+b \mid \varepsilon$ — это сокращённая запись для $aa^*b \mid \varnothing^*$.

Пример 3. Множество всех строк над алфавитом $\Sigma = \{a,b\}$, в которых третий символ с конца — a, задаётся регулярным выражением $(a \mid b)^*a(a \mid b)(a \mid b)$.

Пример 4. В языках программирования, **имена** обычно определяются как непустые последовательности из букв и цифр, начинающиеся с буквы.

$$\underbrace{({\color{red} a \mid \ldots \mid z})}_{\text{любая буква буква или цифра}} \underbrace{({\color{red} a \mid \ldots \mid z \mid 0 \mid \ldots \mid 9})^*}_{\text{любая буква или цифра}}$$

Стоит заметить, что в инженерной практике программирования «регулярными выражениями» часто называют одно из расширений выражений из определения 1. В этих моделях определены неочевидные дополнительные операторы, позволяющие задавать некоторые нерегулярные синтаксические конструкции, но требующие значительного времени для анализа. В общем и целом, это весьма бестолковые модели, редко полезные на практике и не заслуживающие внимания с теоретической точки зрения.

Оказывается, что регулярные выражения равномощны конечным автоматам. Это свойство весьма ценно и с практической точки зрения, поскольку позволяет механически преобразовывать описания, подобные примеру 4, в программу, в конечные автоматы, разбирающие тексты.

4 Преобразование регулярных выражений в автоматы

Теорема 1 (Клини [1951]). Язык распознается неким DFA тогда и только тогда, когда он определяется неким регулярным выражением.

Доказательство конструктивно в обе стороны.

Для преобразования регулярного выражения в автомат удобно ввести промежуточную модель.

Определение 2. Недетерминированный конечный автомат с ε -переходами (ε -NFA) — пятёрка $\mathcal{C} = (\Sigma, Q, Q_0, \delta, F)$, где Σ , Q, Q_0 и F — как в NFA, а функция переходов имеет вид $\delta \colon Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$. В состоянии $q \in Q$ автомат может или сделать обычный переход по символу $a \in \Sigma$ в любое состояние из $\delta(q, a)$, перемещая головку на символ вперёд—или же перейти в любое состояние из $\delta(q, \varepsilon)$, не читая ничего (ε -переход).

Вычисление на w может потребовать более |w| шагов. Строка принимается, если есть разбиение $w = u_1 \dots u_m$, где $u_i \in \Sigma \cup \{\varepsilon\}$, и последовательность состояний $r_0, \dots, r_m \in Q$, для которых: $r_0 \in Q_0$, всякое следующее r_i принадлежит $\delta(r_{i-1}, u_i)$, и $r_n \in F$.

Использование ε -переходов не увеличивает мощности конечных автоматов.

Лемма 2. Для всякого ε -NFA существует NFA, использующий то же множество состояний и распознающий тот же язык.

Доказательство. Пусть $\mathcal{C} = (\Sigma, Q, Q_0, \delta, F)$ — произвольный ε -NFA. Для всякого состояния $q \in Q$, множество состояний, достижимых из него за 0 и более ε -переходов, обозначается через ε -closure $(q) \subseteq Q$. Главная мысль построения: NFA будет, выполнять переход по символу $a \in \Sigma$, заодно проделывать последовательность ε -переходов.

Первый вариант построения. Определяется NFA $\mathcal{B} = (\Sigma, Q, Q_0, \delta', F')$, всякий переход которого за один шаг выполняет любую последовательность ε -переходов в \mathcal{C} , и затем переход по одному символу.

$$\delta'(p,a) = \bigcup_{q \in \varepsilon\text{-closure}(p)} \delta(q,a) \qquad (p \in Q, \ a \in \Sigma)$$

Если $\mathcal C$ может придти по ε -переходам из $p \in Q$ в некоторое принимающее состояние, то p помечается как принимающее в $\mathcal B$.

$$F' = \{ p \mid \varepsilon\text{-closure}(p) \cap F \neq \emptyset \}$$

Утверждение о правильности. Исходный ε -NFA \mathcal{C} может достигнуть состояния $q \in Q$ по прочтении строки $w \in \Sigma^*$ тогда и только тогда, когда построенный NFA \mathcal{B} , прочитав w, может достигнуть некоторого состояния p, где $q \in \varepsilon$ -closure(p).

Рис. 5: Кеннет Томпсон (род. 1943).

Второй вариант построения. Строится автомат $\mathcal{B}' = (\Sigma, Q, Q'_0, \delta', F)$. На этот раз в автомате \mathcal{B}' начальными будут все состояния, которые достижимы в \mathcal{C} из его начальных состояний по ε -переходам.

$$Q_0' = \bigcup_{q_0 \in Q_0} \varepsilon\text{-closure}(q_0)$$

Всякий переход $\mathcal B$ по символу a начинается с перехода $\mathcal C$ по этому же символу, а вслед за тем выполняется любая последовательность ε -переходов.

$$\delta'(p, a) = \bigcup_{q \in \delta(p, a)} \varepsilon\text{-closure}(q) \qquad (p \in Q, \ a \in \Sigma)$$

Множество принимающих состояний остаётся тем же.

Утверждение о правильности. Исходный ε -NFA $\mathcal C$ может достигнуть состояния $q \in Q$ по прочтении строки $w \in \Sigma^*$ тогда и только тогда, когда построенный NFA $\mathcal B'$, прочитав w, может достигнуть того же состояния состояния q.

Регулярные выражения легко выражаются в этой модели.

Лемма 3 («построение Томпсона»). Для всякого регулярного выражения α , существует ε -NFA \mathcal{C}_{α} с одним начальным и одним принимающим состояниями, распознающий язык, задаваемый α .

Доказательство. Индукция по структуре регулярного выражения, пять случаев представлены на рис. 6.

Пример 5. На рис. 7 показано преобразование регулярного выражения $(ab \mid a)^*b$ — сперва, по лемме 3, в ε -NFA, собранный из кусков индукцией по структуре выражения, а затем в NFA по лемме 2, используя первый вариант построения.

Рис. 6: Преобразование регулярного выражения в ε -NFA.

Упражнение 1. Перевести полученный NFA в DFA с помощью построения подмножеств.

Известно также прямое преобразование регулярного выражения в DFA, но это по существу построение Томпсона и построение подмножеств, объединённые в одно маловразумительное определение.

5 Преобразование автоматов в регулярные выражения

Чтобы завершить доказательство теоремы Клини, осталось для всякого DFA построить регулярное выражение, задающее тот же язык. Для доказательства удобно ввести следующую промежуточную модель.

Определение 3. Недетерминированный конечный автомат с переходами по регулярным выражениям (RE-NFA) — это пятёрка $\mathcal{D}=(\Sigma,Q,q_0,R,q_f)$, где Σ и Q — как в NFA, $q_0\in Q$ — единственное начальное состояние, $q_f\in Q$ — единственное принимающее состояние, а вместо функции переходов используется функция $R\colon Q\times Q\to RE(\Sigma)$, определяющая регулярное выражение над алфавитом Σ для всякой пары состояний. Переход из p в q возможен по любой строке, определяемой регулярным выражением R(p,q).

Формально RE-NFA принимает строку w, если существует её разбиение $w=u_1 \dots u_m$ и последовательность состояний $r_0, \dots, r_m \in Q$, где $r_0=q_0$, всякая подстрока u_i определяется регулярным выражением $R(r_{i-1}, r_i)$, и $r_n=q_f$.

Лемма 4 (Бжозовский и Маккласки [1963]). Для всякого RE-NFA существует регулярное выражение, которое определяет язык, распознаваемый этим RE-NFA.

Доказательство. Построение ведётся методом удаления состояний (state elimination). Автомат постепенно преобразуется, на каждом шаге удаляется одно состояние, а регулярные выражения на оставшихся переходах постепенно усложняются. В итоге не остаётся никаких состояний — одно большое регулярное выражение.

Рис. 7: Преобразование регулярного выражения $(ab \mid a)^*b$ (сверху) в ε -NFA, (снизу) и далее в NFA по первому варианту построения.

Сперва удобно обеспечить следующее свойство: в начальное состояние нельзя вернуться, а из принимающего состояния нельзя никуда перейти. Для этого достаточно добавить новое начальное и новое принимающие состояния, соединив их с имеющимися ε -переходами.

Далее, на каждом шаге, пусть состояние q — не начальное и не принимающее. Всякий раз, когда оно используется в каком-то вычислении, автомат приходит в него из некоторого состояния p, потом крутится в q ноль или более раз, и наконец покидает его, переходя в некоторое состояние r (которое может совпадать с p). Пусть регулярные выражения на этих переходах таковы: $\alpha = R(p,q), \ \theta = R(q,q)$ и $\beta = R(q,r)$, как на рис. 9(левом). Тогда вычсление из p в r через q описывается регулярным выражением $\alpha\theta^*\beta$. Если текущее значение $R(p,r) - \gamma$, то R(p,r) можно переопределить как $\gamma \mid \alpha\theta^*\beta$, заменяя тем самым путь через q одним переходом. После того как это проделывается для всех пар из p и r, состояние q более не нужно и может быть удалено.

В итоге удаляются все состояния, кроме начального и принимающего, причём в начальное состояние так и не ведут никакие переходы, а из принимающего, соответственно, никакие переходы не ведут дальше. Поэтому единственный оставшийся переход ведёт из начального в принимающее состояние. Написанное на нём регулярное выражение — и есть искомое.

6 Действия над регулярными языками

Вопрос о представимости действий над регулярными языками. Пусть есть операция над формальными языками, такая как их конкатенация, объединение, пересечение, и т.д. Имея некоторым образом представленные языки (автоматами, регулярными выражениями), нередко бывает нужно получить представление для результата применения этой операции к данным языкам. Для каждой операции прежде всего возникает вопрос, всегда ли это возможно? Если при применении операции к регулярным языком результат всегда регулярен, то

Рис. 8: Януш Бжозовский (1934–2019) и Эдвард Маккласки (1929–2016).

Рис. 9: Преобразование конечного автомата в регулярное выражение: (слева) удаление состояний; (справа) RE-NFA из 2 состояний.

говорится, что регулярные языки замкнуты относительно операции, или что операция сохраняет класс регулярных языков.

Регулярные языки замкнуты относительно почти всех очевидных операций над языками, а также относительно многочисленных неочевидных.

Замкнутость класса регулярных языков относительно дополнения доказывается очень простым построением. По данному DFA строится новый DFA с теми же состояниями и переходами, который проделывает то же вычисление, что и исходный, в конце строки приходят в то же самое состояние; но затем он примет, если исходный автомат отвергает, и отвергнет, если исходный автомат принимает. Для этого достаточно поменять местами принимающие и отвергающие состояния.

Утверждение 1. Для всякого DFA $\mathcal{A} = (\Sigma, Q, q_0, \delta, F)$, DFA $\mathcal{A}' = (\Sigma, Q, q_0, \delta, Q \setminus F)$ распознаёт дополнение $L(\mathcal{A})$.

Замкнутость класса регулярных языков относительно пересечения можно получить с помощью следующего построения.

Теорема 2 («прямое произведение автоматов»). Для всяких двух DFA $\mathcal{A} = (\Sigma, P, p_0, \eta, E)$ и $\mathcal{B} = (\Sigma, Q, q_0, \delta, F)$, пересечение $L(\mathcal{A})$ и $L(\mathcal{B})$ распознаётся DFA \mathcal{C} со множеством состояний $P \times Q$.

Доказательство. Для входной строки $w \in \Sigma^*$, новый DFA $\mathcal C$ одновременно выполняет вычисления $\mathcal A$ и $\mathcal B$ на той же самой строке w. Когда $\mathcal C$ находится в состоянии (p,q), где $p \in P$ и $q \in Q$, это значит, что моделируемое вычисление $\mathcal A$ находится в состоянии p, а вычисление $\mathcal B$ — в состоянии q. Поэтому автомат определяется как $\mathcal C = (\Sigma, P \times Q, (p_0, q_0), \pi, E \times F)$, где

Рис. 10: Автоматы \mathcal{A} и \mathcal{B} из примера 6, и их прямое произведение — DFA, распознающий пересечение $L(\mathcal{A}) \cap L(\mathcal{B})$.

функция переходов π применяет функции переходов \mathcal{A} и \mathcal{B} , каждую к своему компоненту пары.

$$\pi((p,q),a) = (\eta(p,a), \delta(q,a))$$

В конце вычисления строка принимается тогда и только тогда, когда каждый из двух моделируемых автоматов завершил работу в одном из своих принимающих состояний.

Пример 6. Пусть $\mathcal{A}-DFA$ автомат с 3 состояниями, распознающий множество всех строк над алфавитом $\Sigma=\{a,b\}$, длина которых не делится на три, а $\mathcal{B}-DFA$ с 4 состояниями, распознающий множество всех строк над тем же алфавитом, которые содержат хотя бы три символа а. Эти автоматы и их прямое произведение, построенное в соответствии с теоремой 2, приведены на рис. 10.

Точно такое же построение работает и для пересечения NFA. Построение нетрудно переделать, чтобы получить объединение DFA. Объединение NFA, равно как и конкатенация и звёздочка, делается проще — как при преобразовании регулярных выражений к автомату.

Пример нестандартной операции, относительно которой регулярные языки тоже замкнуты: $noэлементный квадратный корень, \sqrt{L} = \{w \mid ww \in L\}$. Сама по себе эта операция достаточно надуманна, однако пример интересен тем, что в нём используется важный метод построения конечных автоматов.

Теорема 3. Для всякого DFA $\mathcal{A} = (\Sigma, Q, q_0, \delta, F)$ поэлементный квадратный корень $\sqrt{L(A)}$ распознаётся DFA \mathcal{B} со множеством состояний $Q^Q = \{f \mid f \colon Q \to Q\}$.

Для каждой строки $w \in \Sigma^*$, если \mathcal{A} начинает своё вычисление на w в состоянии $q \in Q$, то пусть состояние, в котором он завершает чтение w, обозначается через $f_w(q)$. Тогда f_w — это функция $f_w \colon Q \to Q$, называемая *поведением* \mathcal{A} на w.

Рис. 11: Переходы DFA над односимвольным алфавитом.

Лемма 5. Для всякого DFA $\mathcal{A} = (\Sigma, Q, q_0, \delta, F)$ существует DFA \mathcal{B} со множеством состояний $Q^Q = \{f \mid f \colon Q \to Q\}$, вычисляющий поведение \mathcal{A} на прочитанной строке.

 \mathcal{A} оказательство. Начальное состояние \mathcal{B} — тождественная функция на множестве Q, то есть, поведение \mathcal{A} на пустой строке.

Чтобы определить переходы, вводится обозначение $\delta_a \colon Q \to Q$ для функции переходов \mathcal{A} по каждому символу $a \in \Sigma$ — то есть, $\delta_a(q) = \delta(q, a)$. Тогда поведение \mathcal{A} на строке wa, где $w \in \Sigma^*$ и $a \in \Sigma$ — это композиция поведения на w и функции переходов по a. Тогда \mathcal{B} вычисляет эту композицию на каждом шаге: $\delta'(f, a) = \delta_a \circ f$.

Доказательство теоремы 3. Новый автомат \mathcal{B} , будучи запущенным на w, вычисляет поведение \mathcal{A} на w. После этого достаточно определить множество принимающих состояний как $F' = \{ f \mid f(f(q_0)) \in F \}$.

Маслов [1970] показал, что в худшем случае n^n состояний необходимы.

7 Конечные автоматы над односимвольным алфавитом

Переходы DFA над односимвольным алфавитом $\Sigma = \{a\}$ образуют конечный граф со степенью исхода 1, и потому последовательность переходов, начинающаяся в начальном состоянии, со временем переходит в $uu\kappa n$, как показано на рис. 11. Ноль или более состояний между начальным состоянием и циклом называются x eocmom DFA. Длина цикла называется nepuodom. Соответственно, автомат полностью описывается длиной цикла (ℓ) , периодом (p) и множеством принимающих состояний.

Односимвольные или *унарные* языки можно рассматривать как множества натуральных чисел, и регулярные унарные языки — это множества, представимые в виде объединения конечного множества арифметических прогрессий (принимающие состояния в цикле) и просто конечного множества (принимающие состояния в хвосте).

Как показано Любичем [1964] и Хробаком [1986], для преобразования унарного NFA с n состояниями в DFA достаточно и в худшем случае необходимо $g(n) + O(n^2)$ состояний, где $g(n) - \phi y$ нкция Ландау (Ландау [1903]).

$$g(n) = \max\{ \text{lcm}(p_1, \dots, p_k) \mid k \geqslant 1, p_1 + \dots + p_k \leqslant n \} = e^{(1+o(1))\sqrt{n \ln n}}$$

7.1 Нерегулярный язык, удовлетворяющий лемме о накачке

Условие леммы о накачке — это необходимое, но не достаточное условие регулярности языка. Нерегулярный язык в следующем примере удовлетворяет этому условию, однако прямого применения леммы о накачке недостаточно, чтобы доказать его регулярность.

Пример 7. Язык $L = \{(ab)^n a^n \mid n \geqslant 1\} \cup (\{a,b\}^* \setminus (ab)^+ a^+)$ нерегулярен, однако он удовлетворяет условию леммы о накачке с константой p = 3.

Доказательство. Для доказательства нерегулярности можно воспользоваться замкнутостью относительно пересечения. Пусть L регулярен. Тогда его пересечение с языком $(ab)^+a^+$ также должно быть регулярно. Однако, это пересечение — это язык $\{(ab)^na^n \mid n \geqslant 1\}$, который не удовлетворяет лемме о накачке и потому оказывается нерегулярным. Полученное противоречие доказывает нерегулярность языка L.

Чтобы проверить условие леммы о накачке с константой p=3, для всякой строки из L длины не менее чем 3 необходимо построить её разложение вида xyz, для которого все строки вида xy^iz принадлежат L. Разложение определяется в зависимости от первых трёх символов строки — так, чтобы ни одна из накачанных строк xy^iz не попала в $(ab)^+a^+$.

- Строка $abw \in L$, где $w \in \{a,b\}^*$, разбивается на $x = \varepsilon$, y = a, z = bw: тогда строка, полученная после накачки, начинается или с b, или с aa.
- Строка $bbw \in L$ разбивается на $x = \varepsilon$, y = b, z = bw: тогда после накачки она будет начинаться с b.
- Строка $satw \in L$, где $s,t \in \{a,b\}$ её первый и третий символы, разбивается на x=sa, y=t, z=w: накачанная строка начинается с sa, и потому, как и во всех предыдущих случаях, принадлежит L.

Стало быть, искомое разложение xyz существует для любой строки из L длины хотя бы 3, и условие леммы о накачке выполняется.

Список литературы

- [1963] J. A. Brzozowski, E. J. McCluskey, "Signal flow graph techniques for sequential circuit state diagrams", *IEEE Transactions on Electronic Computers*, 12:2 (1963), 67–76.
- [1986] M. Chrobak, "Finite automata and unary languages", Theoretical Computer Science, 47 (1986), 149–158; errata: 302:1–3 (2003), 497–498.
- [1951] S. C. Kleene, "Representation of events in nerve nets and finite automata", RAND Research Memorandum RM-704, 1951, 98 pp.
- [1903] E. Landau, "Über die Maximalordnung der Permutationen gegebenen Grades" (О максимальном порядке перестановок данного числа элементов), Archiv der Mathematik und Physik, Ser. 3, 5 (1903), 92–103.
- [1963] О. Б. Лупанов, "О сравнении двух типов конечных источников", Проблемы кибернетики, 9 (1963), 321-326.
- [1964] Ю. Любич, "Оценки для оптимальной детерминизации недетерминированных автономных автоматов", Сибирский математический эсурнал, 5:2 (1964), 337–355.

- [1970] А. Н. Маслов, "Оценки числа состояний конечных автоматов", Доклады Академии наук СССР, 194:6 (1970), 1266–1268.
- [1959] M. O. Rabin, D. Scott, "Finite automata and their decision problems", *IBM Journal of Research and Development*, 3:2 (1959), 114–125.