Éléments de correction CC Apprentissage -2017

Exercice 1:

classe prédite classe réelle	A	В	С	Total
A	35	1	2	38
В	2	30	0	32
С	3	2	25	30
Tota	40	33	27	100

Soit la matrice de confusion ci-dessus, obtenue par application d'un modèle M1 de fouille de données. Après avoir rappelé la formule de calcul, déterminer :

1. (1 pt)

- Le taux d'erreur en généralisation : 10%

- accuracy rate: 90%

2. La précision pour la classe A ; (1 pt)

$$P_A = (A,A) / (.,A) = 35/40$$

3. Le rappel pour la classe B;

(1 pt)

$$R_B = (B, B) / (B, .) = 30/32$$

4. Le taux de faux positifs (FP rate) pour la classe C;

(1 pt)

$$FP_C = ((A,C) + (B,C)) / ((A,.) + (B,.)) = (2 + 0) / (38 + 32) = 2/70$$

5. Le taux de vrais positifs (TP rate) pour la classe A;

(1 pt)

$$VP_A = (A,A) / (A,.) = 35/38$$

6. La sensibilité pour la classe B;

(1 pt)

$$Sensi_B = VP_B = (B,B) / (B,.) = 30/32$$

7. La spécificité pour la classe C;

(1 pt)

Speci_C =
$$VN_C$$
 = ((A,A) + (B,B)) / ((A,.) + (B,.)) = (35+30)/(38+32) = 65/70

8. La F-mesure de la classe A.

(1 pt)

F-mesure_A =
$$(2 * R_A * P_A) / (R_A + P_A) = (2 * 35/38 * 35/40) / (35/38 + 35/40)$$

Exercice 2:

 L'attribut Custmer_ID n'est pas pertinent car sa valeur est unique pour chaque enregistrement (Overfitting)
 (1 pt)

_	D'	1 1	•	1 1: 1	1	1/
7	Détermination	בו מה	racino	da l'arhra	dΔ	decision
~.						

	Ger	ıdre	Car_Type		Shirt_Size				
	M	F	Family	Sports	Luxury	S	M	L	XL
C0	3	2	0	4	1	1	1	2	1
C1	2	3	1	0	4	1	1	1	2
	0,48	0,48	0	0	0,32	0,5	0,5	0,44	0,44
GINI	0,	48	0,16 0,464		164				

GINI_{Gendre}(M) =
$$1 - (3/5)^2 - (2/5)^2$$
; GINI_{Gendre}(F) = $1 - (2/5)^2 - (3/5)^2$
GINI_{split}(Gendre) = $5/10 * (1 - (3/5)^2 - (2/5)^2) + 5/10 * (1 - (2/5)^2 - (3/5)^2) = 0,48$ (1 pt)
GINI(Gendre) = $1 - (5/10)^2 - (5/10)^2 = 0,5$ (0,5 pt)

GINI_{Car_Type}(Family) =
$$1 - (0/1)^2 - (1/1)^2 = 0$$
; GINI_{Car_Type}(Sports) = $1 - (4/4)^2 - (0/4)^2 = 0$;
GINI_{Car_Type}(Luxury) = $1 - (1/5)^2 - (4/5)^2 = 0.32$
GINI_{split}(Car_Type) = $0 + 0 + 5/10 * (1 - (1/5)^2 - (4/5)^2) = 0.16$ (1 pt)

GINI(Car_Type) =
$$1 - (5/10)^2 - (5/10)^2 = 0.5$$
 (0.5 pt)

$$\begin{aligned} &\text{GINI}_{\text{Shirt_Size}}(S) = 1 - (1/2)^2 - (1/2)^2 \; ; \quad & \text{GINI}_{\text{Shirt_Size}}(M) = 1 - (1/2)^2 - (1/2)^2 \; ; \\ &\text{GINI}_{\text{Shirt_Size}}(L) = 1 - (2/3)^2 - (1/3)^2 \; ; \quad & \text{GINI}_{\text{Shirt_Size}}(\text{XL}) = 1 - (1/3)^2 - (2/3)^2 \\ &\text{GINI}_{\text{split}}(\text{Shirt_Size}) = 2/10 * (1 - (1/2)^2 - (1/2)^2) \; + \; 2/10 * (1 - (1/2)^2 - (1/2)^2) \; + \; 3/10 * (1 - (2/3)^2 - (1/3)^2) \; + \; 3/10 * (1 - (1/3)^2 - (2/3)^2) \; \approx \; 0,464 \end{aligned} \tag{1 pt}$$

$$&\text{GINI}_{\text{Shirt_Size}} = 1 - (5/10)^2 - (5/10)^2 = 0,5 \tag{0.5 pt}$$

- L'attribut **Car Type** a le plus petit index GINI, on choisit **Car Type** comme la racine de l'arbre de décision.
- Partitionnement avec les attributs non-choisis (1 pt)

En partant de nœud **Car_Type**, on obtient les étudiants {2,4,6,8} qui sont de classe C0 en prenant la branche « Sports », {12} qui est de classe C1 en prenant la branche «Family» et {10,14,16,18,20} qui ne sont pas de même classe en prenant la branche «Luxury»,

Nous devons traiter les lignes suivantes :

Ligne	10	14	16	18	20
Gendre	F	M	F	F	F
Shirt_Size	L	XL	S	M	L
Classe	C0	C1	C1	C1	C1

Nous observons les attributs Gendre et Shirt_Size :

	Gendre		Shirt_Size			
	M	F	S	M	L	XL
C0	0	1	0	0	1	0
C1	1	3	1	1	1	1
	0	0,375	0	0	0,5	0
GINI		0,3	0,2			

- L'attribut **Shirt_Size** a le plus petit index de GINI, cependant, ces différentes branches contiennent très peu d'éléments. Il est donc moins pertinent.
- En choisissant l'attribut **Gendre,** le gain n'est pas vraiment important après la division en deux branches (« M » et « F »), car **GINI(Gendre)** ≈ **GINI_{split}(Gendre)**. (1 pt)

On obtient l'arbre de décision suivant :

3 - Évaluation du modèle M1 sur D2.

Customer_ID	Classe réelle	M1
1	C0	C1 (faux)
3	C0	C0
5	C0	C0
7	C0	C0
9	C0	C0
11	C1	C1
13	C1	C1
15	C1	C1
17	C1	C1
19	C1	C1

3 – Matrice de confusion sur D2

(2 pts)

	Classes prédites				
Classes réelles		C0	C1	Total	
	C0	4	1	5	
	C1	0	5	5	
	Total	4	6	10	

4. Erreur apparente : $Erreur_{App}(M1) = 0,1$

(1pt)

(2 pts)