Optimization algorithms

- Systematically try all combinations for β_0 and β_1 Grid search algorithms
- Narrowing in keep changing parameters in the direction that leads to lower SSQ - Descent algorithms
- Try random values for β_0 and β_1 Monte Carlo algorithms
- Solve for parameters using math Analytical or numerical algorithms

Optimization algorithms

- Systematically try all combinations for β_0 and β_1 Grid search algorithms
- Narrowing in keep changing parameters in the direction that leads to lower SSQ - Descent algorithms
- Try random values for β_0 and β_1 Monte Carlo algorithms
- Solve for parameters using math Analytical or numerical algorithms

```
Descent algorithms are ubiquitous and dependable optim() ?optim for more info and references

Nelder-Mead simplex algorithm

BFGS algorithm

e.g. Ime4 (Imer, glmer)
```


Bisection algorithm

Bisection algorithm

Start with 2 points

Bisection algorithm

Start with 2 points
Bisect

Bisection algorithm

Start with 2 points

Bisect

Make triangle

Bisection algorithm

Start with 2 points

Bisect

Make triangle

Bisect lower sides

Bisection algorithm

Start with 2 points

Bisect

Make triangle

Bisect lower sides

Make lowest triangle

Bisection algorithm

Start with 2 points

Bisect

Make triangle

Bisect lower sides

Make lowest triangle

Bisection algorithm

Start with 2 points

Bisect

Make triangle

Bisect lower sides

Make lowest triangle

Bisection algorithm

Start with 2 points

Bisect

Make triangle

Bisect lower sides

Make lowest triangle

Bisection algorithm

Start with 2 points

Bisect

Make triangle

Bisect lower sides

Make lowest triangle

Bisection algorithm

Start with 2 points

Bisect

Make triangle

Bisect lower sides

Make lowest triangle

Bisection algorithm

Start with 2 points

Bisect

Make triangle

Bisect lower sides

Make lowest triangle

Nelder-Mead algorithm

- Has a similar flavor to the bisection algorithm
- Instead of triangles, has a generalized shape called a simplex that tumbles down into the basin
- Quite robust. Good option to try first in many optimization problems.

Descent algorithms

- Not guaranteed to find the global optimum (might find a local optimum)
- Might not converge (might not get all the way to the optimum)

Optimization algorithms

- Systematically try all combinations for β_0 and β_1 Grid search algorithms
- Narrowing in keep changing parameters in the direction that leads to lower SSQ - Descent algorithms
- Try random values for β_0 and β_1 Monte Carlo algorithms
- Solve for parameters using math Analytical or numerical algorithms

What does R do for linear regression?

Im(y~x) solves a system of linear equations using linear algebra Mathematical theory shows what to do (QR decomposition) Numerical algorithm is needed to do it (householder algorithm) Fast, guaranteed to find the minimum SSQ Only works for SSQ: limited to ordinary linear regression

Optimization methods

- Bolker (2008). Ecological Models and Data in R. Princeton University Press.
- Chapter 7