

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/00, 9/00	A1	(11) International Publication Number: WO 95/15375
		(43) International Publication Date: 8 June 1995 (08.06.95)
(21) International Application Number: PCT/US (22) International Filing Date: 7 September 1994 (DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 08/162,809 3 December 1993 (03.12.93)) t	Published With international search report.
(71) Applicant: LA JOLLA CANCER RESEARCH FO TION [US/US]; 10901 North Torrey Pines Road, CA 92037 (US).		
(72) Inventors: PASQUALE, Elena, B.; 6105 Dirac Str Diego, CA 92122 (US). SAJJADI, Fereydoun, G Plumtree Drive, Encinitas, CA 92024 (US).		
(74) Agents: IMBRA, Richard, J. et al.; Campbell and Flor 700, 4370 La Jolla Village Drive, San Diego, C (US).		i i
·		
(54) Title: NOVEL End DELATED TYPOSINE KINASI	ee mi	T FOURTH GEOMESICES AND METHODS OF HOS

(54) Title: NOVEL Eph-RELATED TYROSINE KINASES, NUCLEOTIDE SEQUENCES AND METHODS OF USE

(57) Abstract

The invention provides substantially purified Eph-related protein tyrosine kinases, or functional fragments thereof, having about 23 to 66 percent amino acid sequence identity in their carboxyl terminal variable regions compared to known members of the Eph subclass of tyrosine kinases. Nucleic acids encoding such Eph-related protein tyrosine kinases, vectors and host cells are also provided. The invention also provides a method of diagnosing cancer and determining cancer prognosis. For example, the method provides for removing a tissue or cell sample from a subject suspected of having cancer and determining the level of Eph-related protein tyrosine kinase in the sample, wherein a change in the level or activity of an Eph-related protein tyrosine kinase compared to a normal sample indicates the presence of a cancer or indicates the level of malignancy of a cancer.

ATTORNEY DOCKET NUMBER: 10271-058-999 SERIAL NUMBER: 10/823,259 REFERENCE: **B19**

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	-GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway .
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Itały	PL.	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	Li	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	บร	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

NOVEL Eph-RELATED TYROSINE KINASES, NUCLEOTIDE SEQUENCES AND METHODS OF USE

This invention was funded in part by NIH Grants HD 26351 and CA 56721. Accordingly, the United States government has certain rights in the invention.

BACKGROUND OF THE INVENTION

This invention relates generally to protein tyrosine kinases and, more particularly, to Eph-related receptor tyrosine kinases and their manipulation for the control of cellular processes.

Receptor tyrosine kinases comprise a large family of proteins that share a number of structural features such as a glycosylated extracellular ligand-binding domain, a hydrophobic transmembrane domain and 15 cytoplasmic catalytic domain. Integral membrane tyrosine kinases have been shown to mediate cellular signals important for growth and differentiation. The transduction of many extracellular signals to the cytoplasm occurs as a result of the binding of ligands such as growth factors, 20 for example, to receptor tyrosine kinases at the cell surface. In most cases, ligand binding activates the cytoplasmic tyrosine kinase catalytic domain and culminates in tyrosine phosphorylation of multiple substrates in the cytoplasm.

Increased expression of membrane-spanning receptor tyrosine kinases frequently has been associated with alterations in normal cellular processes. The affected cellular processes include cell proliferation, differentiation and cancer, including, for example, human cancers. Specific examples of such cancers can include glioblastomas, squamous carcinomas and mammary carcinomas, which are associated with the amplification of the EGF receptor gene. Adenocarcinomas, breast cancers and gastric

2

cancers similarly are associated with aberrant expression of the HER2/neu receptor and certain breast carcinomas overexpress the erbB-3 gene, for example.

The correlation between aberrant expression and 5 transforming ability also extends to members of the Eph subclass of receptor tyrosine kinases. For example, carcinomas of the liver, lung, breast and colon show elevated expression of Eph. Unlike many other tyrosine kinases, this elevated expression can occur in the absence 10 of gene amplification or rearrangement. Such involvement of Eph in carcinogenesis also has been shown by the formation of foci of NIH 3T3 cells in soft agar and of tumors in nude mice following overexpression of Eph. Moreover, an antigen present on the surface of a pre-B cell 15 leukemia cell line also has been identified as a member of the Eph subclass. Wicks et al., Proc. Natl. Acad. Sci., <u>USA</u> 89:1611-1615 (1992). This leukemia-specific marker, termed Hek, appears to be similar to the chicken Cek4 and mouse Mek4 of the Eph subclass of receptor tyrosine kinases (see Sajjadi et al., The New Biologist 3:769-778 (1991), which is incorporated herein by reference). As with Eph, Hek also was overexpressed in the absence of gene amplification rearrangements in, for orexample, hemopoietic tumors and lymphoid tumor cell lines.

In addition to their roles in carcinogenesis, a number of transmembrane tyrosine kinases have been reported to play key roles during development. Examples include the mouse c-kit proto-oncogene and the *Drosophila* genes "sevenless" and "torso," which are involved in pattern formation. Consistent with this developmental role, many receptor tyrosine kinases other than those described above also have been shown to be developmentally regulated and predominantly expressed in embryonic tissues. Examples of these other tyrosine kinases include Cek1, which belongs to the FGF subclass, and the Cek4 and Cek5 tyrosine kinases

7

3

(Pasquale et al., <u>Proc. Natl. Acad. Sci., USA</u> 86:5449-5453 (1989); Sajjadi et al., supra, (1991); and Pasquale, E.B., <u>Cell Reg.</u> 2:523-534 (1991), all of which are incorporated herein by reference).

5 Eph was the first member of the Eph subclass of tyrosine kinases to be identified and characterized by molecular cloning (Hirai et al., Science 238:1717-1720 (1987)). The name Eph is derived from the name of the cell line from which the Eph cDNA was first isolated, the 10 erythropoietin-producing human hepatocellular carcinoma cell line, ETL-1. The general structure of Eph is similar to that of other receptor tyrosine kinases and consists of an extracellular domain, a single membrane spanning region and a conserved tyrosine kinase catalytic domain. However, 15 the structure of the extracellular domain of Eph, which comprises an immunoglobulin (Ig) domain at the amino terminus, followed by a cysteine-rich region and two fibronectin type III repeats in close proximity to the transmembrane domain, is completely distinct from that of previously described receptor tyrosine kinases. juxtamembrane domain and carboxy-terminus regions of Eph also are unrelated to the corresponding regions of other tyrosine kinase receptors. Thus, the discovery of Eph defined a new subclass of receptor-type tyrosine kinases.

25 In addition to the isolation and characterization of Eph, other related tyrosine kinases now have been Cek4 and Cek5 were identified by screening a identified. chicken embryo cDNA expression library with phosphotyrosine antibodies (Sajjadi et al., supra, (1991) 30 and Pasquale, supra, (1991)). This method identification was successful because Cek4 and Cek5 are expressed in embryonic tissues and have tyrosine kinase activity even when expressed as partial fragments in bacteria. Other Eph-related kinases that have been 35 identified include Hek (Wicks et al., supra, (1992)), Sek

4

(Gilardi-Hebenstreit et al, <u>Oncogene</u> 7:2499-2506 (1992)), Eck (Lindberg and Hunter, <u>Mol. Cell. Biol.</u> 10:6316-6324 (1990)), Elk (Lhotak et al., <u>Mol. Cell. Biol.</u> 11:2496-2502 (1991)) and Eek (Chan and Watt, <u>Oncogene</u> 6:1057-1061 (1991)). These tyrosine kinases were cloned using a variety of methods.

The number of existing Eph-related kinases is not known and cannot be predicted. However, the Eph subclass already represents the largest known subclass of receptor 10 tyrosine kinases, comprising at least 10 distinct members. The kinases belonging to the Eph subclass are so classified because each includes features such as the amino terminal Ig domain, the cysteine-rich stretch and two fibronectin type III repeats in the extracellular domain, which are 15 conserved within the Eph subclass. However, despite these common structural features, the overall amino acid sequences outside the catalytic domain are quite different, indicating that different members of the Eph subclass interact with distinct ligands and substrates and, thus, exert distinct functions. This notion is supported by the differential distribution of different Eph-related kinases in adult tissues.

There is no indication whether other Eph-related kinases exist and, if so, what their relationship is to the Eph-related kinases. Nevertheless, despite similarities among the Eph-related receptor tyrosine kinases, each is different and, as such, functions in related but distinct cellular processes. For example, many members of the Eph subclass are expressed in the 30 nervous system during development and thus are likely to be involved in nerve regeneration processes. The aberrant expression or uncontrolled regulation of any one of these tyrosine kinases can result in different malignancies and pathological disorders. Therefore, the 35 identification and characterization of novel transmembrane

5

tyrosine kinases should provide important insights into the mechanisms underlying oncogenesis and cellular growth control pathways.

There thus exists a need to identify additional receptor tyrosine kinases and to manipulate them in order to diagnose pathological conditions and control cellular processes. The present invention satisfies this need and provides related advantages as well.

SUMMARY

10 The invention is directed to substantially purified Eph-related protein tyrosine kinases, functional fragments thereof, having about 23 to 66 percent amino acid sequence identity in their carboxyl terminal variable region compared to the other known members of the 15 Eph subclass of tyrosine kinases. Nucleic acids encoding such Eph-related protein tyrosine kinases, vectors and host cells also are provided. The invention also is directed to a method of diagnosing cancer. The method includes removing a tissue or cell sample from a subject suspected 20 of having cancer and determining the level of Eph-related protein tyrosine kinase in the sample, wherein a change in the level or activity of a Eph-related protein tyrosine kinase compared to a normal sample indicates the presence of a cancer or correlates with a specific prognosis.

25 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a comparison of the amino acid sequences from members of the Eph family. Dots replace residues in Cek4 (SEQ ID NO: 16), Cek6 (SEQ ID NO: 2), Cek7 (SEQ ID NO: 4), Cek8 (SEQ ID NO: 6), Cek9 (SEQ ID NO: 8), Cek10 (SEQ ID NO: 10), Eck and Eph that are identical to the corresponding residue in Cek5 (SEQ ID NO: 18). Dashes represent gaps introduced in the sequences to aid in the

6

The insertion sequence of Cek5 also is alignment. presented (Cek5'; SEO ID NO: 12) and the insertion sequences of Cek7 (SEQ ID NO: 20) and Cek10 (SEQ ID NO: 14) are in parentheses. The conserved cysteines are indicated by the 5 symbol " and the kinase domain is delimited by arrows. Open circles indicate the hydrophobic and aromatic residues that are conserved in the first fibronectin type III repeat and asterisks indicate the conserved residues of the second fibronectin type III repeat. The filled circle indicates 10 the site of putative tyrosine autophosphorylation in the The putative signal peptide sequences catalytic domain. and transmembrane domains are underlined. Amino acids are numbered at the left of the sequences. The symbol + indicates the location of the extracellular domain amino 15 acid insertion RICTPDVSGTVGSRPAADH (SEQ ID NO: corresponding to Cek6 amino acids 426-444. Alignments were made by eye in the regions corresponding to Cek5 residues 1-615 and using the program DFALIGN (Feng and Doolittle, J. Mol. Evol., 25:351-360 (1987), which is incorporated herein 20 by reference) in the regions corresponding to Cek5 residues 616-995.

Figure 2 shows a RNA blot analysis of Cek mRNAs. Polyadenylated chicken RNA from 10-day embryonic and adult tissues was hybridized with Cek-specific cDNA probes and with a chicken β -actin probe. Hybridization conditions were as described in Example I. The positions of RNA molecular weight standards (in kilobases, kb) are indicated on the right. β -actin transcripts are present in the ~2.0 kb size range.

Figure 3 shows a RNA blot analysis of Cek5 mRNAs.

Polyadenylated RNA from body tissues (lanes 1 and 2) and brain (lanes 3 and 4) of 10-day chicken embryos was hybridized with a Cek5-specific cDNA (lanes 1 and 3). The same blots were then stripped and rehybridized with a 48 bp oligonucleotide antisense probe corresponding to the

7

juxtamembrane insertion sequence of Cek5 (lanes 2 and 4). Hybridization conditions were as described in Example I. The positions of RNA molecular weight standards (in kb) are indicated on the right.

Figure 4 shows immunoblotting with antibodies to different Eph-related kinases. Fractions from 10-day embryonic brain containing either membrane-associated proteins (M) or soluble proteins (S) were probed with anti-Cek4 (4), anti-Cek8 (8,) or anti-Cek9 (9) antibodies.

10 Equal amounts of protein were loaded in all the lanes. IP, immunoprecipitates from 11-day embryonic retina with anti-Cek8 antibodies (8) or with normal rabbit IgGs (Ig). The immunoprecipitates were then probed with anti-Cek8 antibodies.

15 Figures 5.A. to 5.D. show the expression and tyrosine phosphorylation of Cek8 and Cek5 in transformed cell lines. Cell lysates were prepared from the rat central nervous system (CNS) tumor-derived cell lines B23, B28, B35, B49 and B50, the mouse embryonic carcinoma cell 20 line, P19, and the human keratinocyte cell line HaCaT (Ha). Panels A and B show immunoprecipitates with anti-Cek8 antibodies. Panels C and D show immunoprecipitates with anti-Cek5 antibodies. The immunoprecipitation was followed by in vitro kinase reaction in the samples shown in panel The immunoblot in panel A was probed with anti-Cek8 The immunoblots in panels B, C and D were antibodies. probed with anti-phosphotyrosine antibodies.

Figures 6.A. to 6.F. demonstrate that Cek8 phosphorylation on tyrosine is increased in transformed 30 cells and correlates with increased in vitro catalytic activity. Lysates from LMH cells and extracts of 10 day embryonic liver and adult liver were immunoprecipitated with anti-Cek8 antibodies, probed with anti-phosphotyrosine antibodies (panel A), then reprobed with anti-Cek8

8 .

antibodies (panel B). Lysates from normal chicken embryo fibroblasts and Rous sarcoma virus transformed chicken embryo fibroblasts were immunoprecipitated with anti-Cek8 antibodies, probed with anti-phosphotyrosine antibodies (panel C) and reprobed with anti-Cek8 antibodies (panel D).

Panels E and F show immunoblots of immunoprecipitated Cek8 (lane 1) or ß-galactosidase-Cek4 fusion protein substrate (lanes 2-5). The fusion protein was phosphorylated for 1 min at 37 °C by Cek8 (lane 2), 1 min at 37 °C by tyrosine phosphorylated Cek8 (lane 3), 1 min at 0 °C by Cek8 (lane 4), 1 min at 0 °C by tyrosine phosphorylated Cek8 (lane 5). Immunoblots were probed with anti-phosphotyrosine antibodies (panel E) and reprobed with anti-ß-galactosidase antibodies (panel F).

15 <u>DETAILED DESCRIPTION OF THE INVENTION</u>

The invention relates to the identification and characterization of seven novel members of the Eph subclass of membrane-spanning tyrosine kinases. The identification of these members doubles the number of kinases within this 20 subclass, bringing the total to at least ten different Ephrelated kinases. These Eph-related kinases therefore comprise the largest known subclass of integral membrane tyrosine kinases. The large number of different Ephrelated kinases indicates that these receptors regulate a 25 number of distinct cellular processes during development as well as in the adult organism. Therefore, identification of novel proteins within this subclass and isolation of their encoding nucleic acids allows the control of different cellular processes through the production of 30 specific agonists and antagonists and through genetic therapy.

In one embodiment seven novel kinases of the Eph subclass of receptor protein tyrosine kinases have been

9

The cDNAs encoding these Eph-related kinases identified. identified by hybridization at differential stringencies to identify distinct, but related receptor tyrosine kinases. All of the kinases exhibit gross structural features of known receptor tyrosine kinases in that they contain an extracellular ligand binding domain, a transmembrane domain and a cytoplasmic catalytic domain. These novel kinases are related to the Eph subclass of receptor tyrosine kinases and are designated Cek6 through 10 Cek10* (SEQ ID NOS: 1 to 14, and 19 to 22.) The overall sequence identity between these Eph-related kinases varies significantly with each of the novel Eph-related receptors being identified by its carboxyl terminal variable region.

In another embodiment, the novel Eph-related 15 kinases exhibit distinct tissue distribution patterns and developmental expression. Six of the kinases can be found to be expressed in both the embryonic brain and body tissues. The seventh Eph-related kinase, Cek5', is expressed only in the embryonic brain. Indicative of their 20 roles in cellular processes, such as embryonic signal transduction pathways, these Eph-related kinases display distinct patterns of expression in adult tissues, including the neuronal specific expression of Cek5'. These distinct patterns can be used to diagnose aberrations in normal 25 cellular processes, such as those leading to uncontrolled malignant cell growth. For example, as described below, Cek8 activity is increased in various tumor cells as compared to normal cells. In addition to diagnosing such aberrations, it is also possible to treat defects caused by 30 the unregulated expression of Eph-related kinases through the use of gene therapy. Reagents affecting the expression or activity of Eph-related kinases can also be useful for inducing nerve regeneration following injury.

As used herein, the term "Eph-related protein 35 tyrosine kinase" or "Eph-related kinase" refers to a

10

receptor tyrosine kinase having an extracellular ligand binding domain, a transmembrane domain and a cytoplasmic catalytic domain, and belonging to the Eph subclass of receptor tyrosine kinases. Eph-related kinases include, 5 for example, the receptor tyrosine kinases Cek6 (SEQ ID NO: 2), Cek7 (SEQ ID NO: 4), Cek7* (SEQ ID NO: 20), Cek7' (SEQ ID NO: 22), Cek8 (SEQ ID NO: 6), Cek9 (SEQ ID NO: 8), Cek10 (SEQ ID NO: 10), Cek5* (SEQ ID NO: 12) and Cek10* (SEQ ID NO: 14). Such kinases exhibit an overall amino acid 10 sequence identity to Eph of greater than about 40 percent. The extreme carboxyl terminal cytoplasmic regions of the kinases are not well conserved and can be used to differentiate among them. This extreme carboxyl terminal cytoplasmic region begins just after the catalytic domain 15 at about residue number 900 and extends to the C-terminal most residue. Therefore, the term "carboxyl terminal variable region" as used herein, refers to this extreme Cterminal region of the sequence which is divergent between the different members of the Eph subclass of tyrosine 20 kinases. The actual sequence identities between different kinases within the Eph subclass are as follows: Cek10: 66%; Cek5-Cek6: 54%; Cek5-Cek9: 50%; Cek5-Cek8: 38%; Cek5-Cek7: 34%; Cek5-Cek4: 24%; Cek5-Eek: 39%; Cek5-Eck: 36%; Cek5-Eph: 33%; Cek10-Cek6: 64%; Cek10-Cek9: 56%; 25 Cek10-Cek8: 47%; Cek10-Cek7: 45%; Cek10-Cek4:32%; Cek10-Eek: 41%; Cek10-Eck: 39%; Cek10-Eph: 37%; Cek6-Cek9: 46%; Cek6-Cek8: 50%; Cek6-Cek7: 40%; Cek6-Cek4: 31%; Cek6-Eek: 39%; Cek6-Eck: 36%; Cek6-Eph: 32%; Cek9-Cek8: 46%; Cek9-Cek7: 47%; Cek9-Cek4: 29%; Cek9-Eek: 36%; Cek9-Eck: 33%; 30 Cek9-Eph: 35%; Cek8-Cek7: 37%; Cek8-Cek4: 26%; Cek8-Eek: 39%; Cek8-Eck: 36%; Cek8-Eph: 30%; Cek7-Cek4: 36%; Cek7-Eek: 35%; Cek7-Eck: 43%; Cek7-Eph: 37%; Cek4-Eek: 29%; Cek4-Eck: 27%; Cek4-Eph: 23%; Eek-Eck: 26%; Eek-Eph: 32%; Eck-Eph: 52%. Therefore, the carboxyl terminal variable 35 region exhibits an amino acid sequence identity of about 23 to 66 percent between the different Eph-related kinases. The novel Eph-related kinases described herein fall within

11

this level of sequence divergence and can therefore be distinguished by comparison to the known members of the Eph subclass. Known members of this subclass include, for example, Eph, Cek4, Cek5, Mek4, Hek, Sek (or mouse Cek8), 5 Eck, Elk (or rat Cek6) and Eek.

It is understood that limited modifications may be made without destroying biological functions of Ephrelated kinases and that only a portion of the entire primary structure may be required in order to effect a particular activity. Such biological functions and activities can include, for example, signal transduction, ligand binding and/or tyrosine kinase activity. example, the Eph-related kinases of the invention have amino acid sequences substantially similar to those shown 15 for Cek7, Cek7', Cek7', Cek9, Cek10, Cek5', Cek10' and chicken Cek6 and Cek8 in Figure 1 (hereinafter referred to as Cek6 through Cek10*), but minor modifications of these sequences which do not destroy their activity also fall within the definition of Eph-related kinases and within the definition of the protein claimed as such. fragments of the sequences of Cek6 through Cek10' in Figure 1 (SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 20 and 22), which retain the function of the entire protein as well as functional domains that contain at least one function of 25 the intact protein are included within the definition. Functional domains can include, for example, active ligand binding and catalytic domains. The boundaries of such domains are not important so long as activity is maintained. It is also understood that minor modifications 30 of the primary amino acid sequence can result in proteins which have substantially equivalent or enhanced function as compared to the sequences set forth in Figure 1 (SEQ ID 2, 4, 6, 8, 10, 12, 14, 20 and 22). modifications may be deliberate, as through site-directed 35 mutagenesis, or may be accidental such as through mutation in hosts which produce Eph-related kinases. All of these

12

modifications are included as long as biological function is retained. Further, various molecules can be attached to Eph-related kinases, for example, other proteins, carbohydrates, or lipids. Cek8 (SEQ ID NO: 6), for example, can contain complex N-linked oligosaccharides (see below). Such modifications are included within the definition of Eph-related tyrosine kinase.

The term "substantially purified," when used to describe the state of Eph-related tyrosine kinases denotes the protein free of a portion of the other proteins and molecules normally associated with or occurring with Ephrelated kinases in their native environment. Such substantially purified Eph-related kinases can be derived from natural sources, recombinantly expressed or synthesized by in vitro methods so long as some portion of normally associated molecules is absent.

"Isolated" when used to describe the state of the nucleic acids encoding Eph-related tyrosine kinases denotes the nucleic acids free of at least a portion of the molecules associated with or occurring with Eph-related nucleic acids in the native environment.

As used herein, the term "vector" includes nucleic acids that are capable of harboring a natural or recombinant DNA sequence of interest. Vectors are usually derived from, or contain some sequences from, a natural source. For example, bacteriophage vectors containing specially engineered features that are largely derived from the phage's genome and are capable of carrying out some part of its infectious cycle. On the other hand, the sequences contained within plasmids are usually derived from different sources and compiled into a single molecule to carry out specific tasks. Thus, there are many different types of vectors and each is used according to the need to perform a desired function. Functions can include, for

13

example, propagation in a desired host, cloning recombinant or natural fragments of DNA, mutagenesis, expression and the like. In sum, "vector" is given a operative definition, and any DNA sequence which is capable of effecting a function of a specified DNA sequence disposed therein is included in this term as it is applied to the specified sequence.

The invention provides a substantially purified Eph-related protein tyrosine kinase, or functional fragment thereof. Also provided is a substantially purified chicken Eph-related protein tyrosine kinase. The substantially purified Eph-related protein tyrosine kinase exhibits about 23 to 66 percent amino acid sequence identity in its carboxyl terminal variable region compared to known members of the Eph subclass of tyrosine kinases. The amino acid sequences are substantially the same as that shown for Cek6 through Cek10* in Figure 1 (SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 20 and 22.)

The invention also provides an isolated nucleic acid encoding a Eph-related protein tyrosine kinase, or functional fragment thereof. The isolated nucleic acid encoding a Eph-related protein tyrosine kinase exhibits about 23 to 66 percent amino acid sequence identity in its carboxyl terminal variable region compared to known members of the Eph subclass of tyrosine kinases. The encoding nucleotide sequences are substantially the same as that shown for Cek6 (SEQ ID NO: 1), Cek7 (SEQ ID NO: 3), Cek8 (SEQ ID NO: 5), Cek9 (SEQ ID NO: 7), Cek10 (SEQ ID NO: 9), Cek5* (SEQ ID NO: 11), Cek10* (SEQ ID NO: 13), Cek7* (SEQ ID NO: 19) and Cek7' (SEQ ID NO: 21) (hereinafter Cek6 through Cek10*).

The isolation of seven cDNAs that encode novel Eph-related receptor tyrosine kinases is disclosed herein. The predicted amino acid sequences of these Eph-related

14

kinases are shown in Figure 1 along with other known Cek kinase sequences and those of Eph and Eck. A number of conserved features serve to define the newly discovered kinases as members of the Eph subclass. These include an 5 amino terminal immunoglobulin domain followed by a cysteine-rich stretch in the extracellular domain, with the position of most cysteines conserved, and sequences corresponding to two fibronectin type III repeats in close proximity to the transmembrane domain (O'Bryan et al., Mol. 10 <u>Cell. Biol.</u> 11:5016-5031 (1991) and Pasquale, supra, (1991), the former of which is incorporated herein by reference). Potential sites of N-glycosylation are primarily localized in the C-terminal half of extracellular regions. The homologies in the extracellular 15 domains indicates that the different members of the Eph family can bind a similar class of ligands. Figure 1 also shows that the Eph family, with the inclusion of the new members that have been identified, can now be considered the largest known family of membrane-spanning tyrosine 20 kinases. Such a large number of tyrosine kinases in this one class is surprising in view of the fact that the other families of receptor tyrosine kinases have fewer members.

The catalytic domains of the Eph-related kinases are highly conserved and exhibit amino acid identities 25 ranging between 61% and 90%. The C-terminal tails are less conserved (Figure 1) and therefore constitute a variable region which can be used to specify the distinct Ephrelated kinases. Only one of the tyrosines in the Cterminal variable region, corresponding to tyrosine 939 of 30 Cek5, is conserved in all the members of the Eph family, with the exception of Cek4. This conserved tyrosine residue represents a likely site of autophosphorylation and regulation, Ullrich and Schlessinger, Cell 61:203-212 (1990).The large size of the Eph subclass of receptor 35 tyrosine kinases, the variability within their sequences and their different tissue distributions indicate that each

15

receptor can, for example, serve distinct functions during cellular processes.

The variability in both the lengths and sequences of the juxtamembrane domains observed in the Eph-related 5 kinases is unusual among tyrosine kinases belonging to the same subclass, Ullrich et al., supra, 1990. Because clones encoding variants with amino acid insertions in the juxtamembrane domain were isolated for Cek5, Cek7 and Cek10, the variability in the lengths of the juxtamembrane 10 domains is likely to originate by alternative splicing Juxtamembrane domains are important for the (Figure 1). modulation of receptor functions by heterologous stimuli, for example, through phosphorylation by other kinases. The juxtamembrane domains of the members of the Eph family 15 contain numerous serines, threonines and tyrosines that can serve as sites of regulation by phosphorylation, Kemp et Trends Biol. Sci. 15:342-346 (1990), which is incorporated herein by reference. For example, Cek9 and Cek10, as well as Cek5, Cek6, and Eck contain the consensus 20 sequence (S/T)P, which is recognized by proline-dependent protein kinases such as cdc2, Kemp et al., supra, (1990). Juxtamembrane domains have also been indicated to be important in the regulation of the subcellular distribution of the kinase and in the binding of some substrates (Ullrich et al., supra, 1990).

The mRNA corresponding to Cek5* (SEQ ID NO: 11), the variant form of Cek5, was shown to be specifically expressed in the CNS, indicating that Cek5* functions primarily in neuronal cellular functions. Indicative of this is another tyrosine kinase, src, which has been shown to encode neuronal specific variants containing 6 to 17 amino acid insertions in the regulatory (non-catalytic) region (Brugge et al., Nature 316:554-557 (1985); Martinez et al., Science 237:411-415 (1987); Pyper et al., Mol. 35 Cell. Biol. 10:2035-2040 (1990), all of which are

16

incorporated herein by reference). These neuronal forms of c-src have higher specific catalytic activity than non-neuronal c-src.

Although the predicted molecular masses of the 5 different members of the Eph family are similar, the sizes of their transcripts appear quite varied (4 to 10 kb). In addition, several mRNA species for each of the Eph-related kinases, particularly in the CNS, were detected using a panel of probes. As described below, the patterns of expression of these novel Eph-related kinases are also distinct.

DNA sequences encoding the polypeptides of Ephrelated kinases can be obtained by methods known to one The sequences described herein are skilled in the art. 15 sufficient for one skilled in the art to practice the invention. Such methods include, for example, cDNA synthesis and polymerase chain reaction (PCR). will determine which method or combination of methods is to be used to obtain the desired sequence. Expression can be 20 performed in any compatible vector/host system. systems include, for example, plasmids or phagemids in procaryotes such as E. coli, yeast systems and other eucaryotic systems such as mammalian cells. Additionally, the Eph-related kinases can also be expressed in soluble or 25 secreted form depending on the need and the vector/host system employed.

Such vectors and vector/host systems are known, or can be constructed by those skilled in the art and should contain all expression elements necessary for the transcription, translation, regulation, and sorting of the polypeptide which makes up the Eph-related kinase. Other beneficial characteristics may also be contained within the vectors such as mechanisms for recovery of the nucleic acids in a different form. Phagemids are a specific

17

example of this because they can be used either as plasmids or as bacteriophage vectors. The vectors can also be for use in either procaryotic or eucaryotic host systems so long as the expression elements are of a compatible origin.

5 One of ordinary skill in the art will know which host systems are compatible with a particular vector. Thus, the invention provides vectors, host cells transformed with the vectors and Eph-related kinases produced from the host cells containing a nucleic acid encoding a Eph-related kinase.

The invention also provides methods of diagnosing cancer and determining cancer prognosis. The method includes removing a tissue or cell sample from a subject suspected of having cancer and determining the level of Eph-related protein tyrosine kinase in said sample, wherein a change in the level or activity of a Eph-related protein tyrosine kinase compared to a normal sample indicates the presence of a cancer or indicates the level of malignancy of a cancer and, therefore, the most appropriate course of treatment.

As stated previously, receptor tyrosine kinases are involved in many signal transduction events that regulate important cellular processes. Such processes include, for example, cellular differentiation and 25 proliferation. Abnormal regulation or expression of the signal transduction machinery can lead to aberrant and malignant growth of the abnormally regulated cells. Abnormal expression of Eph is known to be associated with carcinomas of the liver, lung, breast and colon, for 30 example. Likewise, since some Eph-related tyrosine kinases are, at least, found within the same tissues as Eph, their abnormal expression may also lead to the development of the carcinomas described above as well as other types of cancers. For example, increased Cek8 activity was found in embryonal carcinoma cells and a keratinocyte tumor cell

18

line (see Example II). Additionally, cancers of the neuronal linage are likely to be caused by the abnormal expression or regulation of an Eph-related kinase such as Cek8 (see Example II) or Cek5* since this Eph-related kinase is found exclusively in neuronal tissues. Cek5*, Cek5 and the other Eph-related kinases expressed in the nervous system also are likely to be involved in nerve regeneration.

the important role that these receptor tyrosine kinases play in cellular processes can be advantageously used to diagnose early stages of cancer within a cell sample or tissue. A change in the amount or activity of an Eph-related kinase in a suspected sample, compared to a normal sample, will be indicative of cancerous stages and of their level of malignancy. Depending on whether the normal state is caused by the presence or absence of an Eph-related kinase, the change can involve either an increase or decrease in the amount or activity of the Eph-related kinase. For example, Cek8 activity is increased in various tumor cells (see Example II). Thus, increased activity of an Eph-related kinase of the invention such as Cek8 (SEQ ID NO: 6) can be useful for identifying the presence of transformed cells such as occur in a cancer.

One skilled in the art can measure the level or activity of an Eph-related kinase, for example, in a tissue sample obtained from a subject suspected of having a cancer or a developmental abnormality and the level or activity of the Eph-related kinase can be compared to the level or activity known to be present in a normal sample. Such a known level of activity can be determined by obtaining a significant number of tissue samples from subjects that do not have a cancer or a developmental abnormality and measuring the levels or activities of an Eph-related kinase in the population of samples. Methods for determining the level or activity of Eph-related kinases are known to the

19

skilled artisan and include, for example, RNA and protein blot analysis, ELISA using specific antibodies to each of the Eph-related kinases and direct measurement of catalytic activity such as tyrosine kinase activity. Such methods are described in detail in Example II or are otherwise known in the art (see, for example, Harlow et al., Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory (1988), which is incorporated herein by reference).

The following examples are intended to illustrate, but not limit the invention.

EXAMPLE I

<u>Isolation and Characterization of</u> <u>Eph-Related Tyrosine Kinases</u>

This example shows the cloning and sequencing of the Eph-related kinases Cek6 through Cek10. Structural characteristics and patterns of expression are also described.

To find novel members of the Eph family, various cDNA probes were used at different stringencies to screen a 10 day embryonic library as well as a 13 day embryonic brain cDNA library. The probes were derived from Cek4 (SEQ ID NO: 15) or Cek5 (SEQ ID NO: 17), which had been previously isolated based on phosphotyrosine content. Following subcloning and sequence analysis, it was found that the newly isolated cDNA clones encoded seven different Eph-related tyrosine kinases. Their isolation and structure are described below.

Briefly, a 10-day chicken embryo λgt11 cDNA 30 library (Clontech) and a 13-day embryonic brain λgt11 cDNA library were used to isolate the cDNA clones. Screening was performed at different stringencies using the following procedure. Plaques were transferred to nylon membranes

20

(Micron Separations Inc.) on duplicate filters hybridized to the appropriate probes at one of stringencies (50% formamide, 42°C; or 50% formamide, 37°C). Conditions used were those recommended by the manufacturer 5 and probes were detected using a nonradioactive DNA labeling and detection method (Boehringer Mannheim). Plaques identified as positive were subjected to three rounds of purification prior to DNA extraction using Lambda-TRAP (Clontech). Inserts from recombinant lambda 10 DNA were subcloned in pBluescript vectors (Stratagene, San Diego, CA) using standard procedures and the sequences were analyzed on both strands, using the dideoxynucleotide chain-termination technique with Sequenase (United States Biochemical, Cleveland, OH).

15 Several clones distinguishable over known Eph tyrosine kinases were isolated using the Cek5 probe, which corresponded to nucleotides 495-3223 (Pasquale, supra, The clones include: one Cek5 cDNA clone (from (1991)). the chick embryo library); three Cek6 clones (two from the 20 embryonic brain and one from the chick embryo library); one Cek7 clone (from the chick embryo library); one Cek7 clone (from the chick embryo library); one Cek7' clone (from the embryonic brain library); one Cek9 clone (from the chick embryo library); one Cekl0* clone (from the chick embryo 25 library) and two Cek10 or Cek10 clones. which indistinguishable because they do not encode juxtamembrane domain, (one from the chick embryo and one from the embryonic brain library).

A Cek4 probe (corresponding to nucleotides 748-30 1756; see Sajjadi et al., supra, 1991), on the other hand, was used to isolate one Cek8 clone (from the chick embryo library). Also, following its initial isolation, a Cek10 probe, corresponding to residues 400-596 in Figure 2, was used to isolate clones extending further into the 5' end

21

from the chick embryo library. Of the two clones isolated, one represented Cek10 and one Cek10.

The above-identified Eph-related kinases were characterized in terms of tissue distribution 5 expression by RNA blot analysis. Poly-A* RNA was prepared from chicken tissues using the procedure of Badley et al., Biotechniques 6:114-116 (1988), which is incorporated Poly-A' RNA (4-5 μ g) was sizeherein by reference. fractionated alongside RNA molecular weight markers on 0.9% agarose gels containing formaldehyde (Sambrook et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), which is incorporated herein be reference) and transferred to nitrocellulose filters (Schleicher & Schuell) according to 15 methods known to one skilled in the art. The membranes were prehybridized for 2 hours and then hybridized under stringent conditions (50% formamide, 5x SSPE, 5x Denhardt's reagent, 0.5% SDS, 100 μ g/ml salmon testes DNA, 42°C). Probes were labeled with 32P dATP by the random-primed 20 method of Feinberg and Vogelstein, Anal. Biochem. 132:6-13 (1983), which is incorporated herein by reference. polynucleotide kinase was used to label the 5' end of the Cek5* specific oligonucleotide (Sambrook et al., supra, 1989). Filters were washed to a final stringency of 0.1x 25 SSPE, 0.1% SDS at 58°C prior to exposure to Kodak XAR-5 Xray film. For autoradiography of β -actin controls, intensifying screens were typically omitted and exposure time was reduced to 2 hours.

The following cDNA probes were used for RNA blot 30 analysis: Cek4, 1.2 kb, same probe used for the library screening described previously, hybridizes to the region encoding amino acid residues 240-575; Cek5 probe, 1.2 kb, hybridizes to the 3' untranslated region; Cek6 5' probe, 1.3 kb, hybridizes to amino acid residues 1-438; Cek6 3' probe, 0.6 kb, hybridizes to the region following amino

22

acid 844; Cek7 5' probe, 0.4 kb, hybridizes to amino acid residues 1-136; Cek7 3' probe, 2.0 kb, hybridizes to the region following amino acid 137, including the 3' untranslated region; Cek8 probe, 1.2 kb, hybridizes to the region encoding amino acid residues 1-406; Cek9 probe, 0.6 kb, hybridizes to the region encoding amino acid residues 1-208; Cek10 probe, 0.6 kb, hybridizes to the region encoding the 10 C-terminal amino acids and to about 600 nucleotides of 3' untranslated region. For Cek6 and Cek7, the 3' Cek6 probe and the 5' Cek7 probe were used for the embryonic tissues mRNAs and a mixture of 5' and 3' probes for the adult tissues mRNAs.

Polyadenylated RNA was isolated from a number of adult chick tissues, as well as from brain and body tissues of 10-day embryos. These RNAs were then used for RNA blot analysis using the above specific probes. Probes were designed to minimize the possibility of cross-hybridization among the related kinases. Chicken β-actin DNA was used as a control probe (Cleveland et al., Cell 20:95-105 (1980), which is incorporated herein by reference).

The amino acid sequence of Cek4 (SEQ ID NO: 16) is 67% identical to that of Cek5 (SEQ ID NO: 18) in the catalytic and C-terminal regions and is most closely related to that of Cek7 (SEQ ID NO: 4) (75% amino acid identity in the same regions) (Figure 1). Preliminary data had indicated that Cek4 was highly expressed in the chicken developing brain and embryonic tissues, but no information was obtained on the adult pattern of expression in the chick. These data were therefore included in Figure 2.

The 7.5 kb Cek4 transcript previously described was confirmed to be abundant in 10 day embryonic tissues. Expression was pronounced in the adult brain and retina, and lower but detectable in all other adult tissues examined, except the liver. In addition to the major 7.5 kb transcript, a smaller Cek4 transcript (of about 5 kb)

23

was found to be expressed at lower levels in the adult brain.

The Cek6 amino acid sequence (SEQ ID NO: 2) is most closely related to that of rat Elk (96% identity in 5 the catalytic and C-terminal regions). Of the Cek members of the Eph subclass, Cek6 is most closely related to Cek5 (SEQ ID NO: 18) and Cek10 (SEQ ID NO: 10) (82% amino acid identity with both, in the catalytic and C-terminal regions) (Figure 1). The two Cek6 cDNAs that were isolated 10 from a 13-day chick embryo brain library were identical and both encoded a protein with a deletion of 32 amino acids and an insertion of 19 amino acids in the extracellular (Figure 1). However, these may be cloning artifacts, particularly the deletion, since it causes a 15 shift in the reading frame and the premature termination of the encoded protein. A 4.4 kb Cek6 transcript was found to be expressed at high levels in the 10-days embryo and in adult brain, lung, heart and skeletal muscle (Figure 2). Low levels of Cek6 expression were detected in all other adult tissues tested. A second larger Cek6 transcript of about 6.5 kb was detected at low levels in the adult brain.

The amino acid sequence of Cek7 (SEQ ID NO: 4) is 71% identical to that of Cek5 (SEQ ID NO: 18) in the catalytic and C-terminal regions and is most closely 25 related to those of Cek4 (SEQ ID NO: 16) and Cek9 (SEQ ID NO: 8) (75% amino acid identity with both, in the same regions) (Figure 1). A variant form of Cek7, containing a 22 amino acid insertion in the juxtamembrane domain (Figure 1) also was isolated and designated Cek7*. Cek7 (SEO ID NO: 30 4) and Cek7 (SEQ ID NO: 20) may originate from the same gene by alternative splicing. A second variant form of designated Cek7' (SEQ ID NO: 22), which also presumably originates via alternative splicing, differs from Cek7 in the C-terminal 33 amino acids. Cek7 appears 35 to have the lowest levels of expression among all the Eph

24

related kinases examined. Three different transcripts of about 4.4 kb, 7 kb and 8.5 kb were detected in the 10-day embryonic brain. Expression was weaker in the rest of the 10-day embryo, where only the 4.4 kb transcript could be detected (Figure 2). Cek7 transcripts were not detected in the adult tissues, except for a barely detectable 8.5 kb transcript in the brain (Figure 2).

Cek8 (SEQ ID NO: 6) is equally related to Cek5 (SEQ ID NO: 18), Cek6 (SEQ ID NO: 2), Cek7 (SEQ ID NO: 4)

10 and Cek10 (SEQ ID NO: 10) (74% amino acid identity in the catalytic and C-terminal regions) (Figure 1). A single 6 kb Cek8 transcript was found to be present in both the 10-day embryonic brain and body tissues (Figure 2). Cek8 (SEQ ID NO: 6) expression appears to be the highest in adult brain and retina and is also detectable in kidney, lung, skeletal muscle and thymus (Figure 2; see, also, Example II). Cek8 expression was not detected in heart and liver.

Cek9 (SEQ ID NO: 8) is most closely related to Cek5 (SEQ ID NO: 18) (77% identity at the amino acid level in the catalytic and C-terminal regions (Figure 1). A 4.4 kb Cek9 transcript is present in embryonic brain and body tissues. Two additional and very minor transcripts of about 5.5 kb and 6.5 kb were detected exclusively in the 10-day embryonic brain (Figure 2). Among the adult tissues examined, Cek9 expression is prominent in the thymus and detectable in brain, retina, kidney, lung and heart. None of the other kinases examined displays such an elevated level of expression in the thymus. Cek9 expression was not detected in skeletal muscle and liver.

Cek10 (SEQ ID NO: 10) is most closely related to Cek5 (SEQ ID NO: 18) and Cek6 (SEQ ID NO: 2) (84% amino acid identity with both in the catalytic and C-terminal regions) (Figure 1). A variant form of Cek10, containing a 15 amino acid insertion in the juxtamembrane domain

25

(Figure 1), was also isolated and designated Cek10⁺ (SEQ ID NO: 14). Cek10 and Cek10⁺ may originate from the same gene by alternative splicing. Northern blot analysis identified two Cek10 transcripts of about 4.4 kb and 6 kb, present at different relative levels in 10-day embryonic brain and body tissues as well as in a number of adult tissues (Figure 2). Among the adult tissues examined, Cek10 expression was particularly prominent in the kidney. Lower Cek10 expression was detected in the lung and barely detectable transcripts were also present in brain, liver, heart, skeletal muscle and thymus.

A variant form of Cek5, containing a 16 amino acid insertion in the juxtamembrane domain, was also identified and termed Cek5* (SEQ ID NO: 12) (Figure 1). This Cek5 variant may originate as a result of alternative splicing. With a Cek5 DNA probe recognizing both Cek5 and Cek5 (see Material and Methods), a 4.4 kb transcript was detected in both 10-day embryonic brain and body tissues (Figure 3, lanes 1 and 3). In addition, a much larger transcript (of about 10 kb) was detected in the 10-day embryonic brain (Figure 3, lane 3). Consistently with the previously reported expression of the Cek5 protein, Cek5 transcripts are more abundant in the brain than in other 10-day embryonic tissues. Using a probe corresponding to 25 the 16 amino insertion in the juxtamembrane domain (Figure 3, lanes 2 and 4), Cek5 was found to be exclusively expressed in the CNS and only as the 4.4 kb transcript. Cek5 immunoreactivity in the CNS has been previously found to be confined to neurons, Cek5 appears to 30 be a neuronal specific variant of Cek5.

Polyclonal antibodies recognizing specifically Cek4, Cek8 and Cek9 have been obtained and will be used for the characterization of these kinases (see Example II). Peptides corresponding to the carboxy-terminal ends of Cek4, Cek8 and Cek9 were coupled to bovine serum albumin

(BSA) with m-maleimido benzoyl-N-hydroxysuccinimide ester (Cek4) or with glutaraldehyde (Cek8 and Cek9) and used as immunogens. The peptides used were the following: Cek4, CLETHTKNSPVPV (SEQ ID NO 24); Cek8, KMQQMHGRMVPV (SEQ ID NO 25) and Cek9, KVHLNQLEPVEV (SEQ ID NO 26). The carboxyterminal regions were chosen because they are poorly conserved within the Eph subclass, increasing the likelihood of obtaining antibodies specific for each kinase.

10 The antibodies were purified from the antiserum by affinity-chromatography on the appropriate peptides coupled to N-hydroxy-succinimide-activated agarose (BioRad). As shown in Figure 4, after affinity purification the antibodies to Cek4, Cek8 15 recognize a single band of the expected apparent molecular mass (about 120 kiloDalton, kDa) in membranes-containing fractions isolated from 10-day embryonic brain, but not in fractions containing soluble proteins. These antibodies do not cross-react significantly with related members of the 20 Eph subclass (not shown) and can be used for different applications such as immunoblotting, immunofluorescence microscopy and immunoprecipitation (see Figure 4). All of the antibodies are capable of immunoprecipitating the kinases from tissue extracts and, as expected, the 25 immunoprecipitated kinases undergo in vitro autophosphorylation in the presence of ATP (see Example II).

These techniques will allow the characterization of the kinases of the Eph subclass at the protein level.

Coupled to a solid support, the antibodies can also be used to purify the kinases from tissues and cell lines. In the cases tested, antibodies generated to the chicken Ephrelated kinases recognize the corresponding mammalian homologues. Thus, these antibodies could be used, for

27

example, to screen tumor samples for the presence of the appropriate Eph-related kinases.

EXAMPLE II

CHARACTERIZATION OF CEK8

This example describes structural and functional characteristics of the Cek8 protein (SEQ ID NO: 6), including the expression and activity of Cek8 during development and in tumor cells.

A. Antibody preparation:

10 Cek8 expression and activity was examined using immunological and immunohistochemical methods. An antigen for raising anti-Cek8 antibodies was prepared by coupling the peptide KMQQMHGRMVPV (SEQ ID NO: 25), which consists of the eleven carboxy terminal amino acids of Cek8, including 15 an additional N-terminal lysine, to BSA using glutaraldehyde (Harlow and Lane, supra, 1988). An antigen for raising anti-Cek4 antibodies was prepared by coupling the peptide CLETHTKNSPVPV (SEQ ID NO: 24), corresponds to the 12 carboxy terminal amino acids of Cek4, 20 including an additional cysteine at the N-terminus, to BSA using m-maleimidobenzoyl-N-hydroxysuccininmide (Harlow and Lane, supra, 1988). Anti-Cek5 antibodies and anti-phosphotyrosine antibodies were prepared as described by Pasquale, supra, (1991). Antisera were raised in 25 rabbits using standard methods (see, for example, Harlow and Lane, supra, 1988). The peptide antigen was coupled to N-hydroxy-succinimide-activated agarose and specific antisera were affinity purified.

B. Structural characterization of Cek8:

30 Cek8 was immunoprecipitated and examined by immunoblotting as described in Section C.1., below. The

28

affinity purified anti-Cek8 antibodies recognized a protein having an apparent molecular mass of about 120 kDa, which was the expected size for Cek8. The calculated molecular mass of Cek8, however, is less than the 120 kDa observed by SDS-PAGE. Since Cek8 contains three consensus sites of N-linked glycosylation, Cek8 was examined for such glycosylation. When chicken embryo fibroblasts were grown in the presence of 1.6 μg/ml tunicamycin, which inhibits N-linked glycosylation, the apparent molecular mass of Cek8 decreased by about 10 kDa.

In order to characterize the carbohydrate moiety of Cek8, lectin affinity chromatography was performed. Ten day embryonic chicken brains were sonicated in 10 ml PBS containing protease inhibitors (protease inhibitors are 1 mM phenylmethylsulfonyl fluoride, 0.2 trypsin inhibitor units aprotinin/ml, 10 μ g/ml pepstatin and 10 μ g/ml leupeptin and 1 mM sodium orthovanadate, a phosphatase inhibitor. The sonicated material was centrifuged at 2000 x g for 5 min to remove insoluble material, then the supernatant was centrifuged at 200,000 x g for 40 min.

The pellet, which contained the membrane enriched fraction, was solubilized in PBS containing 0.1% Triton X-100. The solubilized sample was centrifuged 5 min in a microfuge and the supernatant was collected. The extract was dialyzed overnight at 4 °C against 10 mM Tris-HCl, pH 7.4, loaded onto various lectin columns, including concanavalin A, lentil lectin, wheat germ agglutinin, ricin I lectin, peanut lectin or Ulex europaeus I lectin (EY Laboratories, Inc.; San Mateo CA), and the columns were eluted with 0.1 M methyl α-D-mannopyranoside, 0.1 M D-mannose, 0.1 M N-acetyl-D-glucosamine, 0.1 M α-lactose, 0.1 M α-lactose or 0.05 M α-L-fucose, respectively. Fractions were collected and analyzed by immunoblotting for the presence of Cek8 as described below.

29

Cek8 bound to the concanavalin A, lentil lectin, ricin I and wheat germ agglutinin columns and was eluted with the appropriate buffers. These lectins preferentially recognize N-linked sugar chains. Thus, this result is in agreement with the observed inhibition of glycosylation by tunicamycin. In contrast, Cek8 does not bind to peanut lectin, which primarily recognizes O-linked chains.

Binding to concanavalin A and elution with the relatively low concentration of 0.1 M methyl α -D-10 mannopyranoside indicates that Cek8 contains biantennary complex type sugar chains (Osawa and Tsuji, Ann. Rev. Biochem. 56:21-42 (1987)). Binding to lentil lectin indicates that a fucose residue is present on the innermost N-acetylglucosamine residue in an oligosaccharide core. 15 However, since Cek8 does not bind with Ulex europaeus I lectin, terminal fucose residues are not likely present (Sugii and Kabat, Carb. Res. 99:99-101 (1982)). Binding of Cek8 to wheat germ agglutinin indicates that sialic acid is present and binding to the ricin I column indicates that 20 terminal ß-galactosyl residues are present in complex sugar chains. These carbohydrate structures likely are located in the extracellular regions of Cek8 and can participate in interactions with extracellular molecules. phosphorylation on tyrosine of Cek8 can be achieved by 25 exposing cells expressing Cek8 to wheat germ agglutinin.

C. Expression and Catalytic Activity of Cek8:

This section describes the methods for determining Cek8 expression and activity in various tissues during development and in tumor cells.

30 <u>1. Methods</u>

Cek8 expression and activity were determined by immunoprecipitation and immunoblot experiments. Cells from

30

90% confluent tissue culture plates were washed 3x with ice cold phosphate buffered saline (PBS), collected in cold RIPA buffer (150 mM sodium chloride, 10 mM sodium phosphate, pH 7.2, 1% deoxycholate, 1% Triton X-100, 0.1% 5 SDS) containing protease inhibitors, and lysed by sonication. Phosphotyrosine was added to a final concentration of 8 mM when immunoblotting was performed using anti-phosphotyrosine antibodies.

Tissues were removed from adult chickens or 10 chicken embryos and sonicated in PBS containing protease inhibitors. Whole embryos were collected and sonicated in PBS. Lysates were stored at -70 °C. concentrations were determined using a Bio-Rad protein assay (Bio-Rad Laboratories; Richmond CA). 15 immunoprecipitations, tissue extracts were diluted in RIPA Cell lysates and tissue extracts in RIPA buffer were precleared using Staph A (Boehringer-Mannheim; Indianapolis IN) as described by Pasquale (supra. 1991). The samples then were incubated 40 min with 20 μg anti-20 Cek4, anti-Cek5 or anti-Cek8 antibodies or 20 μg control rabbit IgG preabsorbed to 20 μ l Staph A. The amount of antibody was selected to ensure that all of the antigen in the extracts or lysates was precipitated.

Immunoprecipitated material was washed 3x with RIPA buffer and 1x with PBS. Sample buffer was added, the immunoprecipitates were boiled for 5 min, separated by SDS-PAGE on 7.5% gels and transferred to nitrocellulose as described by Towbin et al., Proc. Natl. Acad. Sci., USA 76:4350-4354 (1979), which is incorporated herein by reference. Following transfer, the filters were incubated overnight in Tris-hydroxyethylaminoethane-buffered saline (TBS) containing 3% BSA, then incubated 4 hr in 3% BSA containing 3 μg/ml anti-Cek4, anti-Cek5, anti-Cek8 or anti-phosphotyrosine antibody. The filters were rinsed with TBS, then incubated for 1 hr with 0.2 μg/ml protein A

31

peroxidase (Sigma; St. Louis MO) in TBS containing 3% BSA. The filters were rinsed several times with TBS and developed using enhanced chemiluminescence reagents (Amersham; Arlington Heights IL). In some experiments, after detection, the filters were dried for a few hours, then incubated in 3% BSA in TBS and probed with a different antibody.

In vitro phosphorylation was performed described by Pasquale, supra, (1991). Briefly, Cek8 was 10 immunoprecipitated from 10 day embryonic brain extracts or from cell lysates. In control experiments, Cek5 was immunoprecipitated. Immunoprecipitations were performed as described above. The immune complexes were incubated for 30 min at 37 °C in phosphorylation buffer (25 mM N-2-15 hydroxyethylpiperazine-N '-2-ethanesulfonic acid, pH 7.5, 10 mM MgCl2, 10 mM MnCl2, 1 mM sodium orthovanadate, 0.1% Triton X-100, 150 μ M ATP). Sample buffer was added and electrophoresis and transfer to nitrocellulose were performed as described above. Following transfer, the 20 filters were incubated overnight in 3% BSA in TBS, then incubated 4 hr in 3% BSA containing 3 μ g/ml antiphosphotyrosine antibodies.

2. Cek8 expression and activity during development

In whole embryo extracts, Cek8 expression was
25 detectable at embryonic day 3, increased gradually between
embryonic days 3 and 5, then remained relatively constant
through embryonic day 10, which was the last timepoint
examined. Cek8 was phosphorylated on tyrosine in vivo at
a low level in 10 day embryonic brain. In addition, Cek8
30 underwent autophosphorylation on tyrosine in vitro in the
presence of ATP and divalent metal ions.

Cek8 expression also was examined in various tissues of 10 day chicken embryos. Cek8 was most abundant

32

in the brain and retina, was expressed at substantial levels in thigh, gizzard and lungs and at lower levels in intestine, liver, lens and heart. Cek8 was not detectable in blood.

The developmental regulation of Cek8 expression was examined in greater detail in cerebrum, cerebellum, retina and thigh. In the cerebrum, Cek8 expression is low at embryonic day 6, then gradually increases to a maximal level at embryonic days 16 to 20. Cek8 expression is low, but detectable, in adult cerebrum. In contrast, expression in the cerebellum is low at embryonic day 12 and barely detectable at later stages of development. In thigh muscle, Cek8 expression is highest at embryonic day 7, then decreases to barely detectable levels by day 13, before terminal skeletal muscle differentiation occurs. In the retina, Cek8 expression remains relatively constant from embryonic day 8 until hatching.

Cek expression also was examined by immunoperoxidase staining in chicken embryo frozen tissue 20 Embryos were removed from eggs, fixed in 4% sections. formaldehyde, 0.1 mM sodium orthovanadate in PBS for 16 to 24 hr, then cryoprotected in 20% sucrose in PBS, 0.1 mM sodium orthovanadate for 24 hr. Embryos were embedded in OCT compound (Miles Inc.; Tarrytown NY), then frozen in dry 25 ice/2-methylbutane. Ten μ m cryostat sections were collected on glass slides and stored at -70 °C.

The sections were treated with 0.3% hydrogen peroxide for 10 min, then blocked with 3% BSA or normal goat or horse serum in PBS for 30 min. Sections were incubated with rabbit anti-Cek8 antibodies (10-20 µg/ml) or mouse anti-200 kDa neurofilament protein antibodies (1 µg/ml; Boehringer Mannheim; Indianapolis IN) in a 1:50 dilution of normal goat serum or horse serum for 30 min.

33

Controls were performed using anti-Cek8 antibodies that were preincubated with the antigen.

Following incubation with the primary antibody, the sections were rinsed with PBS and incubated with biotinylated goat anti-rabbit or horse anti-mouse IgG (Vector Labs; Burlingame CA). After additional washes with PBS, the sections were incubated with an avidin-biotin-peroxidase complex or with an avidin-biotin-alkaline phosphatase complex (Vector Labs). Following several washes in PBS, peroxidase or alkaline phosphatase were visualized using the appropriate substrate kit (Vector Labs). The sections then were rinsed in PBS, air dried, mounted in Permount and sealed with a #1 coverslip. Specimens were photographed with a Zeiss 405M inverted microscope.

Cek8 immunoreactivity was intense in the spinal cord and the spinal nerves. Localization of Cek8 in the spinal nerves was similar to that of a 200 kDa neurofilament protein. At embryonic day 6, Cek8 expression was restricted to the ventral portions of the spinal nerves, which contain axons of motor neurons.

The results of these experiments indicate that Cek8 is expressed early in development. In general, Cek8 expression is lower early in embryogenesis than at later 25 stages. Cek8 is differentially regulated in different tissues during development and expression is highest in the nervous system but also occurs in non-neuronal tissues. In view of these results, aberrant Cek8 expression or expression of an aberrant Cek8 protein can affect development by causing defective signal transduction throughout an organism.

34

3. Cek8 expression and activity in tumor cells

Protein tyrosine kinase activity is tightly regulated in normal tissues and, in the tissues described above, Cek8 was phosphorylated on tyrosine at a low level.

It is well known that uncontrolled tyrosine kinase activity can lead to neoplastic transformation (Bishop, J.M., Cell 64:234-248 (1991)). Therefore, the expression and activation of Cek8 in a number of tumor cell lines was examined.

Because of the predominant expression of Cek8 in the brain and retina, Cek8 expression and activity was determined in a number of cell lines, B50, B49, B35, B28 and B23, which were derived from CNS system (CNS) tumors (Schubert et al., Nature 249:224-227 (1974), which is incorporated herein by reference). B35 and B50 cells have neuronal properties and both expressed Cek8. However, Cek8 is substantially phosphorylated on tyrosine only in B50 cells (Figures 5.A. and 5.B.). B28 and B49 cells, which display glial characteristics, both expressed a moderate level of Cek8 that is phosphorylated on tyrosine. B23 cells did not have detectable levels of Cek8.

The highest level of Cek8 expression was found in undifferentiated P19 embryonal carcinoma cells (McBurney and Rogers, J. Devel. Biol. 89:503-508 (1982), which is incorporated herein by reference) and in HaCaT keratinocytes (Boukamp et al., J. Cell Biol. 106:761-770 (1988), which is incorporated herein by reference). both of these cell lines, Cek8 was phosphorylated on tyrosine. Furthermore, comparable levels 30 expression were observed in normal and Rous sarcoma virustransformed chicken embryo fibroblasts. However, Cek8 was substantially phosphorylated on tyrosine only in the transformed cells (Figures 6.C. and 6.D.). In addition, in LMH cells, which were derived from a hepatocellular carcinoma (Kawaguchi et al., <u>Canc. Res.</u> 47:4460-4464 (1987), which is incorporated herein by reference), Cek8 is highly phosphorylated on tyrosine as compared to adult or embryonic liver (Figures 6.A. and 6.B.).

For comparison, Cek5 expression and activation also was examined in the CNS tumor-derived cell lines. Cek5 was immunoprecipitated using anti-Cek5 antibodies followed by immunoblotting with anti-phosphotyrosine antibodies. Cek 5 was expressed in all of the cell lines derived from tumors of the CNS, with the highest expression in the B35 cells and the B49 cells. Tyrosine phosphorylation of Cek5 was observed in B28, B49 and B50 cells (Figures 5.C. and 5.D.). Cek5 also was highly expressed and phosphorylated in P19 cells and HaCaT cells. Thus, Cek5 expression and activation is similar, but not identical, to Cek8 expression and activation in tumor cells.

4. Effect of tyrosine phosphorylation on Cek8 kinase activity

The effect of tyrosine phosphorylation on the invitro catalytic activity of Cek8 also was examined. In vivo substrates of Cek8 have not yet been identified. Therefore, a fusion protein consisting of the C-terminal 117 amino acids of Cek4 fused to ß-galactosidase was used as an exogenous substrate. The fusion protein was purified from bacterial extracts by SDS-PAGE and eluted from the gel.

Assays were performed by incubating 1 μ g fusion 30 protein substrate with Cek8 immunoprecipitate. Cek8 was immunoprecipitated from 10 day chick embryonic brain using 10 μ g anti-Cek8 antibodies and 5 μ l Staph A and was complexed to the antibodies and Staph A when the substrate was added. In some cases, Cek8 was phosphorylated for 1 hr

36

using the *in vitro* kinase reaction described above, in order to obtain Cek8 in a highly tyrosine-phosphorylated form. The fusion protein substrate then was added and phosphorylation of the substrate was allowed to proceed for 1 min at 0 °C or 37 °C in the phosphorylation buffer described above containing 200 μ M ATP. In parallel experiments, Cek8 that was not phosphorylated *in vitro* was used in the assay.

Following incubation, the samples were 10 centrifuged briefly in a microfuge, 100 µl 1% SDS in PBS was added to the pellets and the samples were heated at 95 °C for 5 min. The samples were centrifuged for 3 min and the supernatants were transferred to tubes containing antiß-galactosidase antibodies bound to Staph A beads in 900 µl 15 RIPA buffer lacking SDS. Immunoprecipitation was performed described above and the extent of tyrosine phosphorylation of the immunoprecipitated fusion protein substrate was analyzed by immunoblotting using antiphosphotyrosine antibodies.

As shown in Figure 6.E., the phosphorylated form of Cek8 produced a greater amount of phosphorylation of the substrate on tyrosine at both 0 °C or 37 °C. These results indicate that activation of Cek8 by tyrosine phosphorylation increases the kinase activity of Cek8.

Although the invention has been described with reference to the disclosed embodiments, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the following claims.

WO 95/15375

37

PCT/US94/10140

47

SEQUENCE LISTING

(1) GENERAL	INFORMATION:
-------------	--------------

- (i) APPLICANT: LA JOLLA CANCER RESEARCH FOUNDATION
- (ii) TITLE OF INVENTION: NOVEL EPH-RELATED TYROSINE KINASES, NUCLEOTIDE SEQUENCES, AND METHODS OF USE
- (iii) NUMBER OF SEQUENCES: 26
- (iv) CORRESPONDENCE ADDRESS:

 - (A) ADDRESSEE: CAMPBELL AND FLORES
 (B) STREET: 4370 La Jolla Village Drive, Suite 700
 - (C) CITY: San Diego
 - (D) STATE: California
 - (E) COUNTRY: United States of America
 - (F) ZIP: 92122
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:

 (A) APPLICATION NUMBER:

 (B) FILING DATE: 07-Sep-1994
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 (A) NAME: Imbra, Richard J.
 (B) REGISTRATION NUMBER: 37,643

 - (C) REFERENCE/DOCKET NUMBER: FP-LJ 1114
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (619) 535-9001 (B) TELEFAX: (619) 535-8949
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3133 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: join(3..419, 421..2858)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
 - CA GAA ACC CTG ATG GAC ACA CGG ACA GCG ACG GCT GAG CTG GGC TGG Glu Thr Leu Met Asp Thr Arg Thr Ala Thr Ala Glu Leu Gly Trp 10
 - ACT GCC AAC CCT CCG TCA GGG TGG GAA GAA GTG AGT GGC TAC GAC GAG Thr Ala Asn Pro Pro Ser Gly Trp Glu Glu Val Ser Gly Tyr Asp Glu 95 20 25

															CCA Pro	143
															GCC Ala	191
															AGC Ser	239
					GGC Gly 85											287
	_				GTC Val										ACG Thr	335
					AAA Lys		Asp									383
TCC Ser	CAG Gln	GTG Val 130	GAC Asp	TTT Phe	GGT Gly	GGC Gly	AGG Arg 135	TTG Leu	ATG Met	AAG Lys	GGT Gly	Pl	TC T he Pl			429
					GTG Val								Glu			477
ACG Thr	GGG Gly 160	GCA Ala	GAG Glu	AGC Ser	ACC Thr	TCT Ser 165	CTG Leu	GTG Val	ACA Thr	GCA Ala	CGG Arg 170	GGC Gly	ACC Thr	TGC Cys	ATC Ile	525
					GTG Val 180											573
GAT Asp	GGG Gly	GAG Glu	TGG Trp	ATG Met 195	GTA Val	CCC Pro	ATA Ile	GGT Gly	CGC Arg 200	TGC Cys	ACC Thr	TGC Cys	AAG Lys	GCT Ala 205	GGT Gly	621
TAT Tyr	GAG Glu	CCG Pro	GAA Glu 210	AAC Asn	AAC Asn	GTG Val	GCT Ala	TGC Cys 215	AGA Arg	GCC Ala	TGC Cys	CCG Pro	GCT Ala 220	GGG Gly	ACA Thr	669
TTC Phe	AAA Lys	GCC Ala 225	AGT Ser	CAG Gln	GGT Gly	GCG Ala	GGG Gly 230	CTG Leu	TGT Cys	GCC Ala	CGC Arg	TGT Cys 235	CCC Pro	CCC Pro	AAC Asn	717
					GAG Glu											765
TAC Tyr 255	TTT Phe	CGG Arg	GCT Ala	GAC Asp	CTG Leu 260	GAC Asp	CCA Pro	CCG Pro	ACA Thr	GCT Ala 265	GCC Ala	TGC Cys	ACC Thr	AGC Ser	GTC Val 270	813
			Pro		AAC Asn											861
ATC Ile	CTG Leu	GAG Glu	TGG Trp 290	AAC Asn	CCG Pro	CCA Pro	CGG Arg	GAG Glu 295	ACA Thr	GGA Gly	GGC Gly	CGG Arg	GAT Asp 300	GAT Asp	GTC Val	909

															ma a	057
												CGG Arg 315				957
												CAG Gln				1005
ACA Thr 335	GAG Glu	ACC Thr	CGC Arg	GTC Val	TTC Phe 340	ATC Ile	AGC Ser	AGC Ser	CTC Leu	TGG Trp 345	GCA Ala	CAC His	ACA Thr	CCC Pro	TAC Tyr 350	1053
												AAG Lys				1101
												CAA Gln		_		1149
												ATG Met 395				1197
												ATC Ile				1245
												TGC Cys				1293
												CAC His				1341
												CGG Arg			GGG Gly	1389
												GCA Ala 475				1437
	_											CAG Gln				1485
												CCA Pro				1533
GGG	TCT Ser	GCA Ala	GCG Ala	GCC Ala 515	GGC Gly	GTG Val	GTC Val	TTC Phe	ATT Ile 520	GTT Val	TCG Ser	CTG Leu	GTG Val	GCC Ala 525	ATT Ile	1581
									Tyr			GAG Glu			TAC Tyr	1629
AGC Ser	GAT Asp	AAG Lys 545	CTG Leu	CAG Gln	CAC His	TAC Tyr	AGC Ser 550	ACC Thr	GGG Gly	AGA Arg	GGG	TCT Ser 555	CCG Pro	GGA Gly	ATG Met	1677
		Tyr										AAC Asn				1725

										TTT Phe 585						1773
GTC Val	ATT Ile	GGA Gly	GCA Ala	GGG Gly 595	GAG Glu	TTT Phe	GGA Gly	GAG Glu	GTG Val 600	TAC Tyr	AAA Lys	GGC Gly	CGC Arg	CTG Leu 605	AAG Lys	1821
TTG Leu	CCT Pro	GGC Gly	AAG Lys 610	CGG Arg	GAG Glu	ATC Ile	TAT Tyr	GTG Val 615	GCC Ala	ATC Ile	AAA Lys	ACA Thr	CTG Leu 620	AAG Lys	GCT Ala	1869
GGC Gly	TAC Tyr	TCA Ser 625	GAG Glu	AAG Lys	CAG Gln	CGC Arg	CGG Arg 630	GAT Asp	TTC Phe	CTG Leu	AGC Ser	GAA Glu 635	GCC Ala	AGC Ser	ATC Ile	1917
ATG Met	GGG Gly 640	CAG Gln	TTT Phe	GAC Asp	CAC His	CCC Pro 645	AAC Asn	ATC Ile	ATC Ile	CGG Arg	CTG Leu 650	GAA Glu	GGG Gly	GTG Val	GTG Val	1965
ACC Thr 655	AAG Lys	AGC Ser	CGA Arg	CCA Pro	GTC Val 660	ATG Met	ATT Ile	ATC Ile	ACA Thr	GAG Glu 665	TTC Phe	ATG Met	GAG Glu	AAT Asn	GGG Gly 670	2013
GCC Ala	CTG Leu	GAC Asp	TCG Ser	TTC Phe 675	CTG Leu	CGG Arg	CAA Gln	AAT Asn	GAT Asp 680	GGG Gly	CAG Gln	TTC Phe	ACA Thr	GTG Val 685	ATC Ile	2061
CAG Gln	CTG Leu	GTG Val	GGG Gly 690	ATG Met	CTC Leu	AGA Arg	GGG Gly	ATT Ile 695	GCT Ala	GCT Ala	GGG Gly	ATG Met	AAG Lys 700	TAC Tyr	CTG Leu	2109
GCA Ala	GAG Glu	ATG Met 705	AAC Asn	TAT Tyr	GTC Val	CAC His	AGG Arg 710	GAT Asp	CTG Leu	GCG Ala	GCC Ala	AGG Arg 715	AAC Asn	ATT Ile	CTG Leu	2157
GTC Val	AAC Asn 720	AGC Ser	AAC Asn	CTG Leu	GTG Val	TGC Cys 725	AAA Lys	GTG Val	TCA Ser	GAC Asp	TTT Phe 730	GGC Gly	CTC Leu	TCG Ser	CGC Arg	2205
TAC Tyr 735	CTG Leu	CAG Gln	GAC Asp	GAC Asp	ACC Thr 740	TCT Ser	GAT Asp	CCC Pro	ACC Thr	TAC Tyr 745	ACC Thr	AGC Ser	TCC Ser	TTG Leu	GGT Gly 750	2253
GGG Gly	AAG Lys	ATC Ile	CCT Pro	GTG Val 755	CGA Arg	TGG Trp	ACA Thr	GCA Ala	CCA Pro 760	GAG Glu	GCC Ala	ATT Ile	GCG Ala	TAC Tyr 765	CGC Arg	2301
AAG Lys	TTC Phe	ACG Thr	TCA Ser 770	GCC Ala	AGT Ser	GAC Asp	GTC Val	TGG Trp 775	AGC Ser	TAT Tyr	GGC Gly	ATC Ile	GTC Val 780	ATG Met	TGG . Trp	2349
GAG Glu	GTG Val	ATG Met 785	TCG Ser	TTC Phe	GGA Gly	GAG Glu	AGG Arg 790	CCC Pro	TAC Tyr	TGG Trp	GAC Asp	ATG Met 795	TCC Ser	AAC Asn	CAG Gln	2397
GAC Asp	GTC Val 800	ATC Ile	AAT Asn	GCC Ala	ATC Ile	GAG Glu 805	CAG Gln	GAC Asp	TAC Tyr	CGG Arg	CTC Leu 810	CCG Pro	CCG Pro	CCC Pro	ATG Met	2445
GAC Asp 815	TGC Cys	CCA Pro	GCT Ala	GCC Ala	CTG Leu 820	CAC His	CAA Gln	CTG Leu	ATG Met	CTG Leu 825	GAC Asp	TGC Cys	TGG Trp	CAG Gln	AAG Lys 830	2493
GAC Asp	CGC Arg	AAC Asn	ACC Thr	CGG Arg 835	CCT Pro	CGC Arg	TTG Leu	GCC Ala	GAG Glu 840	ATT Ile	GTC Val	AAC Asn	ACC Thr	CTG Leu 845	GAC Asp	2541

41

								CTC Leu 855								2589
								GAC Asp								2637
								CTG Leu								2685
TAT Tyr 895	AGA Arg	GAC Asp	AAC Asn	TTC Phe	CTG Leu 900	AGC Ser	GCT Ala	GGA Gly	TTC Phe	ACC Thr 905	TCC Ser	CTC Leu	CAG Gln	CTG Leu	GTC Val 910	2733
GCC Ala	CAG Gln	ATG Met	ACA Thr	TCT Ser 915	GAA Glu	GAC Asp	CTC Leu	CTG Leu	AGA Arg 920	ATA Ile	GGA Gly	GTA Val	ACG Thr	CTG Leu 925	GCT Ala	2781
GGG Gly	CAC His	CAG Gln	AAG Lys 930	AAG Lys	ATC Ile	CTG Leu	AAC Asn	AGC Ser 935	ATC Ile	CAG Gln	TCC Ser	ATG Met	CGC Arg 940	GTG Val	CAG Gln	282 9
ATG Met	AGT Ser	CAG Gln 945	TCT Ser	CCG Pro	ACC Thr	TCG Ser	ATG Met 950	GCG1 Ala	GACG	этс с	CTCG	CTC	SA CO	BAGGA	GGGG	2883
GAC	GGG#	AGG Ó	CAGG	TGGC	'A GA	GGTG	GGAG	GGG	AGGA	ACT	GATO	TGAT	rgg g	AGCC	GTGGG	2943
GCC	CAGO	TG G	AGAG	GGGC	A GC	CACG	GCCG	GGG	CTGI	GCC	TGAC	CGCG	GA G	GACG	TTCCT	3003
GGGZ	ACTCG	CC 1	CGGC	CTGG	T GA	CTTC	CATO	CCI	CACC	CAAC	AGAA	GCAC	AC I	TACC	GATGT	3063
CACG	GGGG	AC A	GCGT	ATA	A TA	AGTA	TAAA	TAT	GTAC	AAA	TCAT	TATAT	TT A	AAAA	AAAAA	3123
AAA	AAAA	AG														3133

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 951 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Glu Thr Leu Met Asp Thr Arg Thr Ala Thr Ala Glu Leu Gly Trp Thr 1 5 10 15

Ala Asn Pro Pro Ser Gly Trp Glu Glu Val Ser Gly Tyr Asp Glu Asn 20 25 30

Leu Asn Thr Ile Arg Thr Tyr Gln Val Cys Asn Val Phe Glu Pro Asn 35 40 45

Gln Asn Asn Trp Leu Leu Thr Thr Phe Ile Asn Arg Arg Gly Ala His $50 \hspace{1cm} 55$

Arg Ile Tyr Thr Glu Met Arg Phe Thr Val Arg Asp Cys Ser Ser Leu 65 70 75 80

Pro Asn Val Pro Gly Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Tyr 85 90 95

42

Glu Thr Asp Ser Val Ile Ala Thr Lys Lys Ser Ala Phe Trp Thr Glu 105 Ala Pro Tyr Leu Lys Val Asp Thr Ile Ala Ala Asp Glu Ser Phe Ser 115 120 125 Gln Val Asp Phe Gly Gly Arg Leu Met Lys Gly Phe Phe Lys Lys Cys Pro Ser Val Val Gln Asn Phe Ala Ile Phe Pro Glu Thr Met Thr Gly Ala Glu Ser Thr Ser Leu Val Thr Ala Arg Gly Thr Cys Ile Pro Asn 165 170 175 Ala Glu Glu Val Asp Val Pro Ile Lys Leu Tyr Cys Asn Gly Asp Gly 180 195 190 Glu Trp Met Val Pro Ile Gly Arg Cys Thr Cys Lys Ala Gly Tyr Glu Pro Glu Asn Asn Val Ala Cys Arg Ala Cys Pro Ala Gly Thr Phe Lys 210 215 220 Ala Ser Gln Gly Ala Gly Leu Cys Ala Arg Cys Pro Pro Asn Ser Arg 225 230 235 240 Ser Ser Ala Glu Ala Ser Pro Leu Cys Ala Cys Arg Asn Gly Tyr Phe 245 250 255 Arg Ala Asp Leu Asp Pro Pro Thr Ala Ala Cys Thr Ser Val Pro Ser 260 265 270 Gly Pro Arg Asn Val Ile Ser Ile Val Asn Glu Thr Ser Ile Ile Leu Glu Trp Asn Pro Pro Arg Glu Thr Gly Gly Arg Asp Asp Val Thr Tyr 290 295 300 Asn Ile Val Cys Lys Lys Cys Arg Ala Asp Arg Arg Ala Cys Ser Arg 305 310 315 320 Cys Asp Asp Asn Val Glu Phe Val Pro Arg Gln Leu Gly Leu Thr Glu Thr Arg Val Phe Ile Ser Ser Leu Trp Ala His Thr Pro Tyr Thr Phe Glu Ile Gln Ala Val Asn Gly Val Ser Asn Lys Ser Pro Phe Pro Pro 360 Gln His Val Ser'Val Asn Ile Thr Thr Asn Gln Ala Ala Pro Ser Thr 370 380 Val Pro Ile Met His Gln Val Ser Ala Thr Met Arg Ser Ile Thr Leu 385 390 395 400 Ser Trp Pro Gln Pro Glu Gln Pro Asn Gly Ile Ile Leu Asp Tyr Glu 405 415 Leu Arg Tyr Tyr Glu Lys Leu Ser Arg Ile Cys Thr Pro Asp Val Ser 420 425 430 Gly Thr Val Gly Ser Arg Pro Ala Ala Asp His Asn Glu Tyr Asn Ser 440

43

Ser Val Ala Arg Ser Gln Thr Asn Thr Ala Arg Leu Glu Gly Leu Arg 455 Pro Gly Met Val Tyr Val Val Gln Val Arg Ala Arg Thr Val Ala Gly 465 470 480 Tyr Gly Lys Tyr Ser Gly Lys Met Cys Phe Gln Thr Leu Thr Asp Asp Asp Tyr Lys Ser Glu Leu Arg Glu Gln Leu Pro Leu Ile Ala Gly Ser Ala Ala Ala Gly Val Val Phe Ile Val Ser Leu Val Ala Ile Ser Ile 520 Val Cys Ser Arg Lys Arg Ala Tyr Ser Lys Glu Val Val Tyr Ser Asp 530 535 540 Lys Leu Gln His Tyr Ser Thr Gly Arg Gly Ser Pro Gly Met Lys Ile Tyr Ile Asp Pro Phe Thr Tyr Glu Asp Pro Asn Glu Ala Val Arg Glu 565 570 575 Phe Ala Lys Glu Ile Asp Val Ser Phe Val Lys Ile Glu Val Ile 580 590 Gly Ala Gly Glu Phe Gly Glu Val Tyr Lys Gly Arg Leu Lys Leu Pro 595 600 605Gly Lys Arg Glu Ile Tyr Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr 610 620Ser Glu Lys Gln Arg Arg Asp Phe Leu Ser Glu Ala Ser Ile Met Gly 625 630 630 635 Gln Phe Asp His Pro Asn Ile Ile Arg Leu Glu Gly Val Val Thr Lys Ser Arg Pro Val Met Ile Ile Thr Glu Phe Met Glu Asn Gly Ala Leu Asp Ser Phe Leu Arg Gln Asn Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Glu 690 695 700 Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn 705 710 715 720 Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Tyr Leu 725 730 735 Gln Asp Asp Thr Ser Asp Pro Thr Tyr Thr Ser Ser Leu Gly Gly Lys
740 745 750 Ile Pro Val Arg Trp Thr Ala Pro Glu Ala Ile Ala Tyr Arg Lys Phe 755 760 765 Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val 770 775 780 Met Ser Phe Gly Glu Arg Pro Tyr Trp Asp Met Ser Asn Gln Asp Val 785 790 795 800

44

										• •						
Ile	Asn	Ala	Ile	Glu 805	Gln	Asp	Tyr	Arg	Leu 810	Pro	Pro	Pro	Met	Asp 815	Суѕ	
Pro	Ala	Ala	Leu 820	His	Gln	Leu	Met	Leu 825	Asp	Cys	Trp	Gln	830 Lys	Asp	Arg	
Asn	Thr	Arg 835	Pro	Arg	Leu	Ala	Glu 840	Ile	Val	Asn	Thr	Leu 845	Asp	Lys	Met	
Ile	Arg 850	Asn	Pro	Ala	Ser	Leu 855	Lys	Thr	Val	Ala	Thr 860	Ile	Thr	Ala	Val	
Pro 865	Ser	Gln	Pro	Leu	Leu 870	Asp	Arg	Ser	Ile	Pro 875	Asp	Phe	Thr	Ala	Phe 880	
Thr	Ser	Val	Glu	Asp 885	Trp	Leu	Ser	Ala	Val 890	Lys	Met	Ser	Gln	Tyr 895	Arg	
Asp	Asn	Phe	Leu 900	Ser	Ala	Gly	Phe	Thr 905	Ser	Leu	Gln	Leu	Val 910	Ala	Gln	
Met	Thr	Ser 915	Glu	Asp	Leu	Leu	Arg 920	Ile	Gly	Val	Thr	Leu 925	Ala	Gly	His	
Gln	Lys 930	Lys	Ile	Leu	Asn	Ser 935	Ile	Gln	Ser	Met	Arg 940	Val	Gln	Met	Ser	
Gln 945	Ser	Pro	Thr	Ser	Met 950	Ala										
(2)	INFO	DRMA'	rion	FOR	SEQ	ID 1	TO:3									
	(i)	(2 (1 (0	QUENCA) LI B) TY C) ST	ENGTI (PE : [RANI	i: 30 nucl DEDNI)59 l leic SSS:	ase acio both	pai:	cs							
	(ix)	(1	ATURI A) NI B) LO	ME/I			2167									
	(xi)	SEÇ	QUENC	E DI	SCRI	PTIC	ON: S	SEQ I	D NC):3:			•			
C CT	rc az eu Ly 1	A TI	rc ac	C C ir Le	rg Ad eu Ar 5	G GA	AC TO	ST AZ /S As	sn Se	C C1 r Le	T CC	CA GO	GA GC	SA CT	T u .5	46
														GAT Asp 30		94
GAA Glu	GAT Asp	GGG Gly	AGG Arg 35	AAC Asn	ATC Ile	AGA Arg	GAG Glu	AAT Asn 40	CAG Gln	TAC Tyr	ATC Ile	AAG Lys	ATA Ile 45	GAT Asp	ACC Thr	142
ATT Ile	GCT Ala	GCT Ala 50	GAT Asp	GAG Glu	AGC Ser	TTC Phe	ACG Thr 55	GAG Glu	TTG Leu	GAC Asp	CTC Leu	GGC Gly 60	GAC Asp	AGA Arg	GTT Val	190

ATG AAG TTA AAC ACA GAA GTG AGA GAT GTT GGG CCT CTA ACA AAA AAA Met Lys Leu Asn Thr Glu Val Arg Asp Val Gly Pro Leu Thr Lys Lys 65 70 75

										45						
GGA Gly 80	TTT Phe	TAC Tyr	CTT Leu	GCT Ala	TTC Phe 85	CAG Gln	GAT Asp	GTG Val	GGC Gly	GCC Ala 90	TGC Cys	ATT Ile	GCC Ala	CTG Leu	GTC Val 95	286
				TAC Tyr 100												334
GCA Ala	CGC Arg	TTT Phe	CCA Pro 115	GAT Asp	ACC Thr	ATC Ile	ACA Thr	GGA Gly 120	GCA Ala	GAT Asp	TCC Ser	TCG Ser	CAG Gln 125	CTG Leu	CTA Leu	382
				GTC Val												430
AAG Lys	ATG Met 145	CAC His	TGC Cys	AGT Ser	TCA Ser	GAG Glu 150	GGA Gly	GAA Glu	TGG Trp	CTG Leu	GTG Val 155	CCC Pro	ATT Ile	GGG Gly	AAG Lys	478
TGT Cys 160	TTG Leu	TGC Cys	AAG Lys	GCA Ala	GGG Gly 165	TAC Tyr	GAG Glu	GAG Glu	AAG Lys	AAC Asn 170	AAC Asn	ACC Thr	TGC Cys	CAA Gln	GCA Ala 175	526
CCT	TCT Ser	CCA Pro	GTC Val	AGT Ser 180	AGT Ser	GTG Val	AAA Lys	AAA Lys	GGG Gly 185	AAG Lys	ATA Ile	ACT Thr	AAA Lys	AAT Asn 190	AGC Ser	574
ATC Ile	TCC Ser	CTT Leu	TCC Ser 195	TGG Trp	CAG Gln	GAG Glu	CCA Pro	GAT Asp 200	CGA Arg	CCC Pro	AAC Asn	GGC Gly	ATC Ile 205	ATC Ile	CTG Leu	622
Glu	Tyr	Glu 210	Ile	AAA Lys	Tyr	Phe	Glu 215	Lys	Asp	Gln	Glu	Thr 220	Ser	Tyr	Thr	670
Ile	11e 225	Lys	Ser	AAA Lys	Glu	Thr 230	Ala	Ile	Thr	Ala	Asp 235	Gly	Leu	Lys	Pro	718
Gly 240	Ser	Ala	Tyr	GTC Val	Phe 245	Gln	Ile	Arg	Ala	Arg 250	Thr	Ala	Ala	Gly	Tyr 255	766
Gly	Gly	Phe	Ser	CGA Arg 260	Arg	Phe	Glu	Phe	Glu 265	Thr	Ser	Pro	Val	Leu 270	Ala	814
Ala	Ser	Ser	Asp 275	CAG Gln	Ser	Gln	Ile	Pro 280	Ile	Ile	Val	Val	Ser 285	Val	Thr	862
Val	Gly	Val 290	Ile		Leu	Ala	Val 295	Val	Ile	Gly	Phe	Leu 300	Leu	Ser	Gly	910
Arg	Arg 305	Cys	Gly	TAC Tyr	Ser	110 310	Ala	Lys	Gln	Asp	Pro 315	Glu	Glu	Glu	Lys	958
Met 320	His	Phe	His	AAT Asn	Gly 325	His	Ile	Lys	Leu	Pro 330	Gly	Val	Arg	Thr	Tyr 335	1006
ATT Ile	GAT Asp	CCC Pro	CAC His	ACC Thr 340	TAT Tyr	GAG Glu	GAC Asp	CCT Pro	AAT Asn 345	CAA Gln	GCT Ala	GTC Val	CAC His	GAG Glu 350	TTT Phe	1054

										40							
									Thr						GGA Gly		1102
GCT Ala	GGT Gly	GAA Glu 370	TTT Phe	GGA Gly	GAA Glu	GTC Val	TGC Cys 375	AGT Ser	GGA Gly	CGG	CTG Leu	AAA Lys 380	CTG Leu	CAG Gln	GGA Gly		1150
									ACC Thr						ACA Thr		1198
															CAG Gln 415	•	1246
									GAA Glu 425								1294
AAA Lys	CCT Pro	GTA Val	ATG Met 435	ATA Ile	GTA Val	ACG Thr	GAA Glu	TAC Tyr 440	ATG Met	GAA Glu	AAT Asn	GGT Gly	TCT Ser 445	CTG Leu	GAT Asp		1342
									TTC								1390
GGG Gly	ATG Met 465	CTG Leu	CGA Arg	GGC Gly	ATC Ile	GCA Ala 470	TCA Ser	GGG Gly	ATG Met	AAG Lys	TAC Tyr 475	CTG Leu	TCT Ser	GAC Asp	ATG Met		1438
									AGG Arg								1486
AAC Asn	TTA Leu	GTC Val	TGC Cys	AAG Lys 500	GTG Val	TCT Ser	GAC Asp	TTT Phe	GGC Gly 505	CTC Leu	TCC Ser	AGA Arg	GTC Val	CTA Leu 510	GAA Glu		1534
Asp	Asp	Pro	Glu 515	Ala	Ala	Tyr	Thr	Thr 520	AGG Arg	Gly	Gly	Lys	Ile 525	Pro	Ile		1582
CGA Arg	TGG Trp	ACG Thr 530	GCA Ala	CCT Pro	GAA Glu	GCA Ala	ATC Ile 535	GCC Ala	TTC Phe	CGC Arg	AAA Lys	TTC Phe 540	ACG Thr	TCG Ser	GCC Ala		1630
AGC Ser	GAT Asp 545	GTG Val	TGG Trp	AGC Ser	TAC Tyr	GGC Gly 550	ATT Ile	GTG Val	ATG Met	TGG Trp	GAA Glu 555	GTG Val	ATG Met	TCC Ser	TAT Tyr		1678
Gly 560	Glu	Arg	Pro	Tyr	Trp 565	Glu	Met	Thr	AAC Asn	Gln 570	Asp	Val	Ile	Lys	Ala 575		1726
Val	Glu	Glu	Gly	Tyr 580	Arg	Leu	Pro	Ser	CCC Pro 585	Met	Asp	Cys	Pro	Ala 590	Ala		1774
Leu	Tyr	Gln	Leu 595	Met	Leu	Asp	Сув	Trp 600	CAG Gln	Lys	Asp	Arg	Asn 605	Ser	Arg	;	1822
CCC Pro	AAG Lys	TTT Phe 610	GAT Asp	GAA Glu	ATT Ile	GTC Val	AGC Ser 615	ATG Met	TTG Leu	GAC Asp	AAG Lys	CTC Leu 620	ATC Ile	CGT Arg	AAC Asn	:	1870

CCA AGC AGC TTG AAG ACG TTG GTT AAT GCA TCG AGC AGA GTA TCA AAT Pro Ser Ser Leu Lys Thr Leu Val Asn Ala Ser Ser Arg Val Ser Asn 625 630 635	1918
TTG TTG GTA GAA CAC AGT CCA GTG GGG AGC GGT GCC TAC AGG TCA GTG Leu Leu Val Glu His Ser Pro Val Gly Ser Gly Ala Tyr Arg Ser Val 645 655	1966
GGT GAG TGG CTG GAA GCC ATC AAA ATG GGT CGA TAC ACC GAG ATT TTC Gly Glu Trp Leu Glu Ala Ile Lys Met Gly Arg Tyr Thr Glu Ile Phe 660 665 670	2014
ATG GAG AAT GGA TAC AGT TCG ATG GAT TCT GTG GCT CAG GTG ACC CTA Met Glu Asn Gly Tyr Ser Ser Met Asp Ser Val Ala Gln Val Thr Leu 675 680 685	2062
GAG GAT TTG AGG CGG CTG GGA GTG ACA CTT GTT GGT CAC CAG AAG AAG Glu Asp Leu Arg Arg Leu Gly Val Thr Leu Val Gly His Gln Lys Lys 690 695 700	2110
ATA ATG AAC AGC CTT CAA GAG ATG AAG GTC CAG TTG GTG AAT GGG ATG Ile Met Asn Ser Leu Gln Glu Met Lys Val Gln Leu Val Asn Gly Met 705 710 715	2158
GTG CCA TTG TAACTCGGTT TTTAAGTCAC TTCCTCGAGT GGTCGGTCCT Val Pro Leu 720	2207
GCACTTTGTA TACTAGCTCT GAGATTTATT TTGACTAAAG AAGAAAAAAG GGAAATTCAG	2267
TGGTTTCTGT AACTGAAGGA CGCTGGCTTC TGCCACAGCA TTTATAAAGC AGTGTTTGAC	2327
TGAAGTITTC ATTITCTTCC TATTITGTGTC CTCATTCTCA TGAAGTAAAT GTAACATGCA	2387
TGGAACATGG AAATGGATCT ACTGTACATG AGGTTACCCA ATTTCTTGCG CTTCAGCATG	2447
ACAACAGCAA GCCTTCCCAC CACATGTTGT CTATACATGG GAGATATATA TATATGCATA	2507
TATATATATA GCACCTTTAT ATACTGAATT ACAGCAGCAG CACATGTTAA TACTTCCAAG	2567
GACTTACTTG ACTAGAGAAG TTTTGCAGCC ATTGTGGGCT CACACAAGCT GCGGTTTACT	2627
GAAGTTTACT TCAAGTCTTA CTTGTCTACA GAAGTGTATT GAAGAGCAAT ATGATTAGAT	2687
TATTTCTGGA TAGATATTTT GTTTTGTAAA TTTAAAAAAT CGTGTTACAC AGCGTTAAGT	2747
TATAGAGACT AGTGTATAAA CATGTTGCTT GCTCAATGGC AAATACAATA CAGGGTGTAT	2807
ATTITITICT CTCTGTGTTG CAAAGTTCTT TTAGTTTGCT CTTCTGTGAG GATAATACGT	2867
TATGATGTAT ATACTGTACA GTTTGCTACA CATCAGGTAC AAGATTGGGG CTTTCTCAAT	2927
GTTTTGTTCT TTTTCCCTCT TTTGTTTCAT TTTGTCTTCC TTTTGTGTTA ACCACTATGC	2987
TTTGTATTTT TGCTGCTGTT TGGTTTGAGG CAACATATAA AGCTTTCAGG TGTTTTGATT	3047
ATAAAAAAA AG	3059

48

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 722 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu Pro Gly Gly Leu Gly

Thr Cys Lys Glu Thr Phe Asn Met Tyr Tyr Phe Glu Ser Asp Asp Glu 20 25 30

Asp Gly Arg Asn Ile Arg Glu Asn Gln Tyr Ile Lys Ile Asp Thr Ile 35 40 45

Ala Ala Asp Glu Ser Phe Thr Glu Leu Asp Leu Gly Asp Arg Val Met 50 60

Lys Leu Asn Thr Glu Val Arg Asp Val Gly Pro Leu Thr Lys Lys Gly 65 70 75 80

Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys Ile Ala Leu Val Ser 85 90 95

Val Arg Val Tyr Tyr Lys Lys Cys Pro Ser Val Ile Arg Asn Leu Ala 100 105 110

Arg Phe Pro Asp Thr Ile Thr Gly Ala Asp Ser Ser Gln Leu Leu Glu 115 120 125

Val Ser Gly Val Cys Val Asn His Ser Val Thr Asp Glu Ala Pro Lys 130 135 140

Met His Cys Ser Ser Glu Gly Glu Trp Leu Val Pro Ile Gly Lys Cys 145 150 150 160

Leu Cys Lys Ala Gly Tyr Glu Glu Lys Asn Asn Thr Cys Gln Ala Pro 165 170 175

Ser Pro Val Ser Ser Val Lys Lys Gly Lys Ile Thr Lys Asn Ser Ile 180 185 190

Ser Leu Ser Trp Gln Glu Pro Asp Arg Pro Asn Gly Ile Ile Leu Glu 195 200 205

Tyr Glu Ile Lys Tyr Phe Glu Lys Asp Gln Glu Thr Ser Tyr Thr Ile 210 215 220

Ile Lys Ser Lys Glu Thr Ala Ile Thr Ala Asp Gly Leu Lys Pro Gly 225 230 235 240

Ser Ala Tyr Val Phe Gln Ile Arg Ala Arg Thr Ala Ala Gly Tyr Gly 245 250 255

Gly Phe Ser Arg Arg Phe Glu Phe Glu Thr Ser Pro Val Leu Ala Ala

Ser Ser Asp Gln Ser Gln Ile Pro Ile Ile Val Val Ser Val Thr Val 275 280 285

Gly Val Ile Leu Leu Ala Val Val Ile Gly Phe Leu Leu Ser Gly Arg 290 295 300

Arg Cys Gly Tyr Ser Lys Ala Lys Gln Asp Pro Glu Glu Glu Lys Met His Phe His Asn Gly His Ile Lys Leu Pro Gly Val Arg Thr Tyr Ile Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val His Glu Phe Ala 340 345 350Lys Glu Ile Glu Ala Ser Cys Ile Thr Ile Glu Arg Val Ile Gly Ala Gly Glu Phe Gly Glu Val Cys Ser Gly Arg Leu Lys Leu Gln Gly Lys 370 375 380Arg Glu Phe Pro Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr Glu 385 390 395 400 Lys Gln Arg Arg Asp Phe Leu Gly Glu Ala Ser Ile Met Gly Gln Phe
405 415 Asp His Pro Asn Ile Ile His Leu Glu Gly Val Val Thr Lys Ser Lys Pro Val Met Ile Val Thr Glu Tyr Met Glu Asn Gly Ser Leu Asp Thr 435 440 445 Phe Leu Lys Lys Asn Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly
450 455 460 Met Leu Arg Gly Ile Ala Ser Gly Met Lys Tyr Leu Ser Asp Met Gly 465 470 475 480 Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Ile Asn Ser Asn 485 490 495 Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp 500 510 Asp Pro Glu Ala Ala Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg 515 520 525 Trp Thr Ala Pro Glu Ala Ile Ala Phe Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly 545 550 560 Glu Arg Pro Tyr Trp Glu Met Thr Asn Gln Asp Val Ile Lys Ala Val
565 570 575 Glu Glu Gly Tyr Arg Leu Pro Ser Pro Met Asp Cys Pro Ala Ala Leu 580 595 Tyr Gln Leu Met Leu Asp Cys Trp Gln Lys Asp Arg Asn Ser Arg Pro
595 600 605 Lys Phe Asp Glu Ile Val Ser Met Leu Asp Lys Leu Ile Arg Asn Pro 610 615 620 Ser Ser Leu Lys Thr Leu Val Asn Ala Ser Ser Arg Val Ser Asn Leu Leu Val Glu His Ser Pro Val Gly Ser Gly Ala Tyr Arg Ser Val Gly 645 650 655

50

Glu Trp Leu Glu Ala Ile Lys Met Gly Arg Tyr Thr Glu Ile Phe Met 660 665 Glu Asn Gly Tyr Ser Ser Met Asp Ser Val Ala Gln Val Thr Leu Glu 680 Asp Leu Arg Arg Leu Gly Val Thr Leu Val Gly His Gln Lys Lys Ile Met Asn Ser Leu Gln Glu Met Lys Val Gln Leu Val Asn Gly Met Val 705 710 715 720 Pro Leu

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2820 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: both

 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
 (B) LOCATION: 2..2548

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

C G	GA G ly G	AG A lu S	GC C er G	AG T	TT G he A	CC A	AG A' ys I	TT G	sp T	CC A' hr I 10	TT G le A	CT G la A	CT G. la A	sp G	AG lu 15	46
AGC Ser	TTC Phe	ACC Thr	CAG Gln	GTG Val 20	GAC Asp	ATT Ile	GGT Gly	GAC Asp	AGG Arg 25	ATC Ile	ATG Met	AAG Lys	CTG Leu	AAT Asn 30	ACA Thr	94
GAG Glu	GTG Val	CGG Arg	GAC Asp 35	GTG Val	GGG Gly	CCT Pro	CTC Leu	AGC Ser 40	AAG Lys	AAA Lys	GGG Gly	TTT Phe	TAC Tyr 45	TTG Leu	GCT Ala	142
TTC Phe	CAG Gln	GAC Asp 50	GTC Val	GGT Gly	GCC Ala	TGC Cys	ATT Ile 55	GCT Ala	TTG Leu	GTG Val	TCT Ser	GTT Val 60	CGT Arg	GTC Val	TTC Phe	190
TAT Tyr	AAG Lys 65	AAG Lys	TGC Cys	CCA Pro	CTG Leu	ACA Thr 70	GTT Val	CGA Arg	AAC Asn	CTG Leu	GCA Ala 75	CAG Gln	TTT Phe	CCA Pro	GAC Asp	238
ACC Thr 80	ATT Ile	ACT Thr	GGG Gly	GCT Ala	GAT Asp 85	ACA Thr	TCC Ser	TCT Ser	CTG Leu	GTG Val 90	GAG Glu	GTT Val	CGT Arg	GGC Gly	TCC Ser 95	286
TGT Cys	GTC Val	AAC Asn	AAC Asn	TCG Ser 100	GAA Glu	GAG Glu	AAG Lys	GAC Asp	GTG Val 105	CCA Pro	AAA Lys	ATG Met	TAC Tyr	TGC Cys 110	GGG Gly	334
GCA Ala	GAT Asp	GGT Gly	GAA Glu 115	TGG Trp	CTG Leu	GTA Val	CCC Pro	ATT Ile 120	GGC Gly	AAC Asn	TGT Cys	CTG Leu	TGC Cys 125	AAT Asn	GCT Ala	382
GGC Gly	TAT Tyr	GAA Glu 130	GAA Glu	CGC Arg	AAT Asn	GGT Gly	GAA Glu 135	TGC Cys	CAA Gln	GCT Ala	TGC Cys	AAA Lys 140	ATC Ile	GGA Gly	TAC Tyr	430

TAC Tyr	AAG Lys 145	GCG Ala	CTC Leu	TCA Ser	ACA Thr	GAT Asp 150	GTT Val	GCA Ala	TGT Cys	GCC Ala	AAA Lys 155	TGC Cys	CCG Pro	CCT Pro	CAC His	478
AGC Ser 160	Tyr	TCC	ATC Ile	TGG Trp	GAA Glu 165	GGC Gly	TCT Ser	ACC Thr	TCC Ser	TGC Cys 170	ACC Thr	TGT Cys	GAT Asp	CGG Arg	GGC Gly 175	526
TTC Phe	TTC Phe	CGA Arg	GCA Ala	GAA Glu 180	AAT Asn	GAT Asp	GCT Ala	GCA Ala	TCC Ser 185	ATG Met	CCC Pro	TGC Cys	ACT Thr	CGC Arg 190	CCT Pro	574
CCA Pro	TCC Ser	GCA Ala	CCC Pro 195	CAG Gln	AAC Asn	CTG Leu	ATT Ile	TCC Ser 200	AAC Asn	GTC Val	AAC Asn	GAG Glu	ACG Thr 205	TCA Ser	GTG Val	622
AAC Asn	TTG Leu	GAG Glu 210	TGG Trp	AGC Ser	GCC Ala	CCA Pro	CAG Gln 215	AAC Asn	AAG Lys	GGA Gly	GGA Gly	CGG Arg 220	GAC Asp	GAC Asp	ATC Ile	670
TCC Ser	TAC Tyr 225	AAC Asn	GTG Val	GTG Val	TGC Cys	AAG Lys 230	CGC Arg	TGC Cys	GGG Gly	GCA Ala	GGG Gly 235	GAG Glu	CCC Pro	AGC Ser	CAC His	718
TGC Cys 240	CGG Arg	TCC Ser	TGT Cys	GGC Gly	AGT Ser 245	GGT Gly	GTA Val	CAT His	TTC Phe	AGC Ser 250	CCC Pro	CAG Gln	CAG Gln	AAC Asn	GGG Gly 255	_. 766
CTG Leu	AAA Lys	ACC Thr	ACG Thr	AAG Lys 260	GTT Val	TCC Ser	ATC Ile	ACT Thr	GAC Asp 265	CTC Leu	CTG Leu	GCA Ala	CAC His	ACC Thr 270	AAC Asn	814
TAC Tyr	ACC Thr	TTT Phe	GAG Glu 275	GTC Val	TGG Trp	GCA Ala	GTG Val	AAT Asn 280	GGA Gly	GTG Val	TCC Ser	AAG Lys	CAC His 285	AAC Asn	CCC Pro	862
Ser	Gln	Asp 290	CAA Gln	Ala	Val	Ser	Val 295	Thr	Val	Thr	Thr	Asn 300	Gln	Ala	Ala	910
Pro	Ser 305	Pro	ATT Ile	Ala	Leu	Ile 310	Gln	Ala	Lys	Glu	Ile 315	Thr	Arg	His	Ser	958
Val 320	Ala	Leu	GCC Ala	Trp	Leu 325	Glu	Pro	Asp	Arg	Pro 330	Asn	Gly	Val	Ile	Leu 335	1006
GIU	Tyr	Glu	GTC Val	Lys 340	Tyr	Tyr	Glu	Lys	Asp 345	Gln	Asn	Glu	Arg	Thr 350	Tyr	1054
Arg	Ile	Val	AAG Lys 355	Thr	Ala	Ser	Arg	Asn 360	Thr	Asp	Ile	Lys	Gly 365	Leu	Asn	1102
PIO	Leu	370	TCA Ser	Tyr	Val	Phe	His 375	Val	Arg	Ala	Arg	Thr 380	Ala	Ala	Gly	1150
Tyr	Gly 385	Asp	TTC Phe	Ser	Gly	Pro 390	Phe	Glu	Phe	Thr	Thr 395	Asn	Thr	Val	Pro	1198
TCC Ser 400	CCC Pro	ATC Ile	ATT Ile	GGC Gly	GAT Asp 405	GGT Gly	ACC Thr	AAT Asn	CCC Pro	ACA Thr 410	GTG Val	CTG Leu	CTT Leu	GTT Val	TCA Ser 415	1246

										32							
									ATT Ile 425								1294
_									AAA Lys								1342
									AGA Arg								1390
ACA Thr	TAT Tyr 465	GAG Glu	GAT Asp	CCA Pro	AAT Asn	CAA Gln 470	GCT Ala	GTG Val	AGG Arg	GAA Glu	TTT Phe 475	GCC Ala	AAA Lys	GAA Glu	ATT Ile		1438
									GTT Val								1486
									GTT Val 505								1534
TGT Cys	GTG Val	GCT Ala	ATC Ile 515	AAG Lys	ACT Thr	CTG Leu	AAA Lys	GCT Ala 520	GGT Gly	TAC Tyr	ACT Thr	GAC Asp	AAA Lys 525	CAA Gln	CGG Arg		1582
									ATG Met								1630
AAT Asn	ATC Ile 545	ATC Ile	CAC His	TTG Leu	GAA Glu	GGC Gly 550	GTT Val	GTT Val	ACT Thr	AAA Lys	TGT Cys 555	AAA Lys	CCA Pro	GTA Val	ATG Met		1678
ATC Ile 560	ATA Ile	ACT Thr	GAG Glu	TAC Tyr	ATG Met 565	GAG Glu	AAT Asn	GGC Gly	TCC Ser	TTG Leu 570	GAT Asp	GCC Ala	TTC Phe	CTC Leu	CGG Arg 575		1726
									CAG Gln 585								1774
GGC Gly	ATC Ile	GGC Gly	TCA Ser 595	GGA Gly	ATG Met	AAG Lys	TAT Tyr	CTG Leu 600	TCT Ser	GAC Asp	ATG Met	AGC Ser	TAT Tyr 605	GTG Val	CAT His		1822
CGG Arg	GAT Asp	CTA Leu 610	GCT Ala	GCT Ala	CGA Arg	AAC Asn	ATA Ile 615	CTG Leu	GTC Val	AAC Asn	AGC Ser	AAC Asn 620	TTG Leu	GTC Val	TGC Cys		1870
AAA Lys	GTG Val 625	TCT Ser	GAC Asp	TTT Phe	GGC Gly	ATG Met 630	TCC Ser	CGT Arg	GTC Val	CTG Leu	GAA Glu 635	GAT Asp	GAC Asp	CCT Pro	GAG Glu		1918
GCA Ala 640	GCT Ala	TAT Tyr	ACC Thr	ACA Thr	CGG Arg 645	GGT Gly	GGC Gly	AAG Lys	ATC Ile	CCT Pro 650	ATC Ile	CGA Arg	TGG Trp	ACT Thr	GCA Ala 655		1966
Pro	Glu	Ala	Ile	Ala 660	Tyr	Arg	Lys	Phe	ACA Thr 665	Ser	Ala	Ser	yab	Val 670	Trp	;	2014
AGC Ser	TAT Tyr	GGC Gly	ATC Ile 675	GTC Val	ATG Met	TGG Trp	GAA Glu	GTG Val 680	ATG Met	TCC Ser	TAT Tyr	GGA Gly	GAG Glu 685	AGA Arg	CCT Pro	:	2062

PCT/US94/10140 WO 95/15375

53

TAC Tyr	TGG Trp	GAT Asp 690	ATG Met	TCC Ser	AAT Asn	CAA Gln	GAC Asp 695	GTT Val	ATT Ile	AAA Lys	GCC Ala	ATT Ile 700	GAG Glu	GAA Glu	GGG Gly	2110
							GAC Asp									2158
							GAA Glu									2206
							AAA Lys									2254
							TCC Ser									2302
							GCG Ala 775									2350
							TAC Tyr									2398
							GTG Val									2446
							ACA Thr									2494
							ATG Met									2542
CCC Pro		TGAG	GCCAG	STA (TGA	ATAAT.	AC TO	'AAA7	CTCI	TG#	LTAA	AGT	TTAC	CTCA	ATC	2598
CATO	CACI	TT A	ATTO	AAG	VA CI	GCAC	TTT	TTI	CACTI	CGT	CTCC	TCGC	CC G	TTGA	AATAA	2658
AGA:	CTGC	CAG C	ATTO	CTT	A TO	TAC	AGAT1	GTG	GAAA	CCG	AGCG	TGT	TT C	GGAG	GGGGG	2718
CCTC	CAGA	L AAJ	GACA	AGC	G TO	CTTA	TAAT	CCA	GACC	TGG	AACA	LTAA	GT 7	TCTI	GGAAC	2778
ATAC	TTCI	CT G	TTGA	TCA	C GF	TATO	TAAA	ATA	CATG	TAT	CC					2820

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 849 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Gly Glu Ser Gln Phe Ala Lys Ile Asp Thr Ile Ala Ala Asp Glu Ser 1 5 10 15

Phe Thr Gln Val Asp Ile Gly Asp Arg Ile Met Lys Leu Asn Thr Glu 25 Val Arg Asp Val Gly Pro Leu Ser Lys Lys Gly Phe Tyr Leu Ala Phe 35 40 45 Gln Asp Val Gly Ala Cys Ile Ala Leu Val Ser Val Arg Val Phe Tyr
50 55 60 Lys Lys Cys Pro Leu Thr Val Arg Asn Leu Ala Gln Phe Pro Asp Thr Ile Thr Gly Ala Asp Thr Ser Ser Leu Val Glu Val Arg Gly Ser Cys Val Asn Asn Ser Glu Glu Lys Asp Val Pro Lys Met Tyr Cys Gly Ala 100 105 110 Asp Gly Glu Trp Leu Val Pro Ile Gly Asn Cys Leu Cys Asn Ala Gly 115 120 125 Tyr Glu Glu Arg Asn Gly Glu Cys Gln Ala Cys Lys Ile Gly Tyr Tyr 130 135 140 Lys Ala Leu Ser Thr Asp Val Ala Cys Ala Lys Cys Pro Pro His Ser Tyr Ser Ile Trp Glu Gly Ser Thr Ser Cys Thr Cys Asp Arg Gly Phe 165 170 175 Phe Arg Ala Glu Asn Asp Ala Ala Ser Met Pro Cys Thr Arg Pro Pro 185 Ser Ala Pro Gln Asn Leu Ile Ser Asn Val Asn Glu Thr Ser Val Asn Leu Glu Trp Ser Ala Pro Gln Asn Lys Gly Gly Arg Asp Asp Ile Ser 210 215 220 Tyr Asn Val Val Cys Lys Arg Cys Gly Ala Gly Glu Pro Ser His Cys 225 230 235 240 Arg Ser Cys Gly Ser Gly Val His Phe Ser Pro Gln Gln Asn Gly Leu Lys Thr Thr Lys Val Ser Ile Thr Asp Leu Leu Ala His Thr Asn Tyr 260 . 265 270 Thr Phe Glu Val Trp Ala Val Asn Gly Val Ser Lys His Asn Pro Ser Gln Asp Gln Ala Val Ser Val Thr Val Thr Thr Asn Gln Ala Ala Pro 290 295 300 Ser Pro Ile Ala Leu Ile Gln Ala Lys Glu Ile Thr Arg His Ser Val Ala Leu Ala Trp Leu Glu Pro Asp Arg Pro Asn Gly Val Ile Leu Glu Tyr Glu Val Lys Tyr Tyr Glu Lys Asp Gln Asn Glu Arg Thr Tyr Arg Ile Val Lys Thr Ala Ser Arg Asn Thr Asp Ile Lys Gly Leu Asn Pro 365

Leu Thr Ser Tyr Val Phe His Val Arg Ala Arg Thr Ala Ala Gly Tyr 375 Gly Asp Phe Ser Gly Pro Phe Glu Phe Thr Thr Asn Thr Val Pro Ser 385 390 395 400 Pro Ile Ile Gly Asp Gly Thr Asn Pro Thr Val Leu Leu Val Ser Val 405 410 415 410 Ala Gly Ser Val Val Leu Val Val Ile Leu Ile Ala Ala Phe Val Ile Ser Arg Arg Arg Ser Lys Tyr Ser Lys Ala Lys Gln Glu Ala Asp Glu Glu Lys His Leu Asn Gln Gly Val Arg Thr Tyr Val Asp Pro Phe Thr 450 455 460 Tyr Glu Asp Pro Asn Gln Ala Val Arg Glu Phe Ala Lys Glu Ile Asp Ala Ser Cys Ile Lys Ile Glu Lys Val Ile Gly Val Gly Glu Phe Gly 490 Glu Val Cys Ser Gly Arg Leu Lys Val Pro Gly Lys Arg Glu Ile Cys Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Asp Lys Gln Arg Arg 515 520 525 Asp Phe Leu Ser Glu Ala Ser Ile Met Gly Gln Phe Asp His Pro Asn Ile Ile His Leu Glu Gly Val Val Thr Lys Cys Lys Pro Val Met Ile 545 550 555 560 Ile Thr Glu Tyr Met Glu Asn Gly Ser Leu Asp Ala Phe Leu Arg Lys 565 570 575 Asn Asp Gly Arg Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg Gly 580 585 590 Ile Gly Ser Gly Met Lys Tyr Leu Ser Asp Met Ser Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Met Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Ala Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro 645 650 655 Glu Ala Ile Ala Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr 680 Trp Asp Met Ser Asn Gln Asp Val Ile Lys Ala Ile Glu Glu Gly Tyr 690 695 700 Arg Leu Pro Pro Pro Met Asp Cys Pro Ile Ala Leu His Gln Leu Met

Leu Asp Cys Trp Gln Lys Glu Arg Ser Asp Arg Pro Lys Phe Gly Gln 730 Ile Val Asn Met Leu Asp Lys Leu Ile Arg Asn Pro Asn Ser Leu Lys 740 745 750Arg Thr Gly Ser Glu Ser Ser Arg Pro Ser Thr Ala Leu Leu Asp Pro 755 760 765 Ser Ser Pro Glu Phe Ser Ala Val Val Ser Val Ser Asp Trp Leu Gln 770 780 Ala Ile Lys Met Glu Arg Tyr Lys Asp Asn Phe Thr Ala Ala Gly Tyr 785 790 795 800 Thr Thr Leu Glu Ala Val Val His Met Asn Gln Asp Asp Leu Ala Arg 805 Ile Gly Ile Thr Ala Ile Thr His Gln Asn Lys Ile Leu Ser Ser Val Gln Ala Met Arg Ser Gln Met Gln Gln Met His Gly Arg Met Val Pro 840 Val

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3776 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: both
 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
 (B) LOCATION: 290..3208

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CGGCTCTGAC TTTGTGTTAA CGGTTTATGG ACTGGTTCCA AAGAGCTCAA AGGTACCAAA	60
ACACTCCAAG CAACCTCTGA ACCATTCAAG CAAGTAGTGT GTGTTTATTG GATATGGTGG	120
AGTCTACAGA GAATCTTCAT GGATTCTAAT GCTGACATCA GTGCAAGAAG AGTGTCAGGA	180
ATGGATTGGC TCTGGCTGGT TTGCTTCTTT CATCTAGTCA CTTCACTAGA AGACCTGCAT	2.40
CCTGACCAAC CGGAAAGGTG AGCAGGATGA GGCCATTGGT GGTGCTGTC ATG ACT Met Thr	295
GAA ATA CTT CTG GAT ACA ACT GGA GAA ACC TCA GAG ATT GGC TGG ACC Glu Ile Leu Leu Asp Thr Thr Gly Glu Thr Ser Glu Ile Gly Trp Thr 5 10	343
TCT CAC CCT CCT GAT GGG TGG GAA GAA GTA AGT GTC CGG GAT GAT AAG Ser His Pro Pro Asp Gly Trp Glu Glu Val Ser Val Arg Asp Asp Lys 20 25 30	391
GAG CGC CAG ATC CGA ACC TTT CAA GTT TGT AAC ATG GAT GAA CCA GGT Glu Arg Gln Ile Arg Thr Phe Gln Val Cys Asn Met Asp Glu Pro Gly 35 40 45	439

CAG Gln	AAT Asn	AAC Asn	TGG Trp	TTG Leu 55	CGT Arg	ACT Thr	CAC His	TTC Phe	ATA Ile 60	GAG Glu	CGA Arg	CGT Arg	GGA Gly	GCC Ala 65	CAC His	487
CGA Arg	GTC Val	CAT His	GTC Val 70	CGC Arg	CTT Leu	CAT His	TTC Phe	TCA Ser 75	GTG Val	AGG Arg	GAC Asp	TGT Cys	GCC Ala 80	AGC Ser	ATG Met	535
CGT Arg	ACT Thr	GTG Val 85	GCC Ala	TCT Ser	ACT Thr	TGC Cys	AAA Lys 90	GAG Glu	ACT Thr	TTC Phe	ACA Thr	CTC Leu 95	TAC Tyr	TAC Tyr	CAC His	583
CAG Gln	TCA Ser 100	GAT Asp	GTC Val	GAC Asp	ATA Ile	GCC Ala 105	TCT Ser	CAG Gln	GAA Glu	CTG Leu	CCA Pro 110	GAG Glu	TGG Trp	CAT His	GAA Glu	631
GGC Gly 115	CCC Pro	TGG Trp	ACC Thr	AAG Lys	GTG Val 120	GAT Asp	ACT Thr	ATT Ile	GCA Ala	GCT Ala 125	GAT Asp	GAA Glu	AGC Ser	TTT Phe	TCC Ser 130	679
CAG Gln	GTG Val	GAC Asp	AGA Arg	ACT Thr 135	GGG Gly	AAG Lys	GTG Val	GTA Val	AGG Arg 140	ATG Met	AAT Asn	GTT Val	AAA Lys	GTA Val 145	CGC Arg	727
AGC Ser	TTT Phe	GGG Gly	CCA Pro 150	CTC Leu	ACA Thr	AAG Lys	CAT His	GGC Gly 155	TTC Phe	TAC Tyr	CTG Leu	GCC Ala	TTC Phe 160	CAG Gln	GAC Asp	775
TCA Ser	GGA Gly	GCC Ala 165	TGT Cys	ATG Met	TCC Ser	CTG Leu	GTG Val 170	GCA Ala	GTC Val	CAA Gln	GTC Val	TTT Phe 175	TTC Phe	TAC Tyr	AAG Lys	823
TGT Cys	CCA Pro 180	GCT Ala	GTG Val	GTG Val	AAA Lys	GGA Gly 185	TTT Phe	GCC Ala	TCC Ser	TTC Phe	CCT Pro 190	GAA Glu	ACT Thr	TTT Phe	GCT Ala	871
GGA Gly 195	GGA Gly	GAG Glu	AGG Arg	ACC Thr	TCA Ser 200	CTG Leu	GTG Val	GAG Glu	TCA Ser	CTA Leu 205	GGG Gly	ACG Thr	TGT Cys	GTA Val	GCA Ala 210	919
AAT Asn	GCT Ala	GAA Glu	GAG Glu	GCA Ala 215	AGC Ser	ACA Thr	ACT Thr	GGG Gly	TCA Ser 220	TCA Ser	GGT Gly	GTT Val	CGG Arg	TTG Leu 225	CAC His	967
TGC Cys	AAT Asn	GGA Gly	GAA Glu 230	GGA Gly	GAG Glu	TGG Trp	ATG Met	GTG Val 235	GCC Ala	ACT Thr	GGA Gly	CGA Arg	TGC Cys 240	TCT Ser	TGC Cys	1015
AAG Lys	GCT Ala	GGT Gly 245	TAC Tyr	CAA Gln	TCT Ser	GTT Val	GAC Asp 250	AAT Asn	GAG Glu	CAA Gln	GCT Ala	TGT Cys 255	CAA Gln	GCT Ala	TGT Cys	1063
CCC Pro	ATT Ile 260	GGT Gly	TCC Ser	TTT Phe	AAA Lys	GCA Ala 265	TCT Ser	GTG Val	GGA Gly	GAT Asp	GAC Asp 270	CCT Pro	TGC Cys	CTT Leu	CTC Leu	1111
TGC Cys 275	CCT Pro	GCC Ala	CAC His	AGC Ser	CAT His 280	GCT Ala	CCA Pro	CTG Leu	CCA Pro	CTG Leu 285	CCA Pro	GGT Gly	TCC Ser	ATT Ile	GAA Glu 290	1159
TGT Cys	GTG Val	TGT Cys	CAG Gln	AGT Ser 295	CAC His	TAC Tyr	TAC Tyr	CGA Arg	TCT Ser 300	GCT Ala	TCT Ser	GAC Asp	AAT Asn	TCT Ser 305	GAT Asp	1207
GCT Ala	CCC Pro	TGC Cys	ACT Thr 310	GGC Gly	ATC Ile	CCC Pro	TCT Ser	GCT Ala 315	CCC Pro	CGT Arg	GAC Asp	CTC Leu	AGT Ser 320	TAT Tyr	GAA Glu	1255

										58						
														GAC Asp		1303
														TGC Cys		1351
														CAG Gln		1399
														TCC Ser 385		1447
														AAT Asn		1495
														AAC Asn		1543
														CAG Gln		1591
														GAC Asp		1639
														AAG Lys 465		1687
														ATG Met		1735
ACT Thr	ATA Ile	TTA Leu 485	AAT Asn	CTG Leu	AGT Ser	CCA Pro	GGC Gly 490	AAG Lys	ATC Ile	TAT Tyr	GTC Val	TTC Phe 495	CAA Gln	GTA Val	CGA Arg	1783
GCT Ala	AGA Arg 500	ACA Thr	GCA Ala	GTG Val	GGT Gly	TAT Tyr 505	GGC Gly	CCA Pro	TAC Tyr	AGT Ser	GGA Gly 510	AAG Lys	ATG Met	TAT Tyr	TTC Phe	1831
														CGA Arg		1879
CCA Pro	CTT Leu	ATT Ile	GTG Val	GGC Gly 535	TCA Ser	GCA Ala	CTT Leu	GGT Gly	GGT Gly 540	CTG Leu	GCA Ala	TTC Phe	TTG Leu	GTA Val 545	ATT Ile	1927
GCT Ala	GCC Ala	ATT Ile	GCC Ala 550	ATT Ile	CTT Leu	GCC Ala	ATC Ile	ATC Ile 555	TTC Phe	AAG Lys	AGT Ser	AAA Lys	AGG Arg 560	CGA Arg	GAG Glu	1975
														GGA Gly		2023
														AAT Asn		2071

GCT Ala 595	Ile	CGA Arg	GAG Glu	TTT Phe	GCC Ala 600	Lys	GAG Glu	ATA Ile	GAT Asp	GTG Val 605	Ser	TTC Phe	ATC	AAA Lys	ATT Ile 610	2119
GAG	GAG Glu	GTC Val	ATT	GGA Gly 615	TCA Ser	GGA Gly	GAA Glu	TTT	GGA Gly 620	Glu	GTG Val	TGC Cys	TTT	GGG Gly 625	CGC Arg	2167
CTA Leu	AAA Lys	CAC His	CCA Pro 630	GGG Gly	AAA Lys	CGT Arg	GAA Glu	TAC Tyr 635	Thr	GTA Val	GCT Ala	ATT Ile	AAA Lys 640	ACC Thr	CTG Leu	2215
AAG Lys	TCA Ser	GGT Gly 645	Tyr	ACT Thr	GAT Asp	GAA Glu	CAG Gln 650	CGT Arg	CGA Arg	GAG Glu	TTC Phe	CTG Leu 655	AGC Ser	GAG Glu	GCC Ala	2263
AGC Ser	ATC Ile 660	Met	GGG Gly	CAA Gln	TTT Phe	GAG Glu 665	CAT His	CCC Pro	AAT Asn	GTC Val	ATC Ile 670	CAC His	CTG Leu	GAG Glu	GGC Gly	2311
GTG Val 675	Val	ACC Thr	AAA Lys	AGC Ser	CGA Arg 680	CCA Pro	GTC Val	ATG Met	ATT Ile	GTC Val 685	ACA Thr	GAA Glu	TTC Phe	ATG Met	GAG Glu 690	2359
AAT Asn	.GGA Gly	TCA Ser	CTG Leu	GAT Asp 695	TCC Ser	TTC Phe	CTC Leu	AGG Arg	GAG Glu 700	AAG Lys	GAG Glu	GGA Gly	CAG Gln	TTC Phe 705	AGT Ser	2407
GTG Val	TTA Leu	CAG Gln	CTG Leu 710	GTG Val	GGA Gly	ATG Met	CTA Leu	CGA Arg 715	GGG Gly	ATT Ile	GCA Ala	GCA Ala	GGC Gly 720	ATG Met	CGC Arg	2455
TAC Tyr	CTT Leu	TCA Ser 725	GAC Asp	ATG Met	AAC Asn	TAT Tyr	GTG Val 730	CAT His	CGT Arg	GAT Asp	CTC Leu	GCA Ala 735	GCA Ala	CGT Arg	AAC Asn	2503
ATC Ile	TTA Leu 740	GTC Val	AAC Asn	AGT Ser	AAC Asn	CTT Leu 745	GTA Val	TGC Cys	AAG Lys	GTG Val	TCA Ser 750	GAC Asp	TTT. Phe	GGT Gly	TTG Leu	2551
TCT Ser 755	CGC Arg	TTT Phe	CTG Leu	GAA Glu	GAT Asp 760	GAT Asp	GCT Ala	TCA Ser	AAT Asn	CCC Pro 765	ACT Thr	TAT Tyr	ACT Thr	GGA Gly	GCT Ala 770	2599
CTG Leu	GGT Gly	TGC Cys	AAA Lys	ATC Ile 775	CCC Pro	ATC Ile	CGT Arg	TGG Trp	ACT Thr 780	GCC Ala	CCT Pro	GAA Glu	GCT Ala	GTC Val 785	CAG Gln	2647
TAT Tyr	CGC Arg	AAG Lys	TTC Phe 790	ACC Thr	TCC Ser	TCC Ser	AGT Ser	GAT Asp 795	GTC Val	TGG Trp	AGC Ser	TAT Tyr	GGC Gly 800	ATT Ile	GTC Val	2695
ATG Met	TGG Trp	GAG Glu 805	GTG Val	ATG Met	TCC Ser	TAT Tyr	GGT Gly 810	GAG Glu	AGA Arg	CCT Pro	TAC Tyr	TGG Trp 815	GAC Asp	ATG Met	TCC Ser	2743
AAC Asn	CAG Gln 820	GAT Asp	GTA Val	ATT Ile	AAT Asn	GCC Ala 825	ATT Ile	GAC Asp	CAG Gln	GAC Asp	TAT Tyr 830	CGC Arg	CTG Leu	CCA Pro	CCA Pro	2791
CCC Pro 835	CCA Pro	GAC Asp	TGC Cys	CCA Pro	ACT Thr 840	GTT Val	TTG Leu	CAT His	CTG Leu	CTG Leu 845	ATG Met	CTT Leu	GAC Asp	TGC Cys	TGG Trp 850	2839
CAG Gln	AAG Lys	GAT Asp	CGA Arg	GTC Val 855	CAG Gln	AGA Arg	CCA Pro	AAA Lys	TTT Phe 860	GAA Glu	CAA Gln	ATA Ile	GTC Val	AGT Ser 865	GCC Ala	2887

60

			ATG Met 870													2	2935
			AGA Arg													2	2983
TTT Phe	CCT Pro 900	TCA Ser	CTC Leu	AGC Ser	AAT Asn	GCC Ala 905	CAC His	GAG Glu	TGG Trp	TTG Leu	GAT Asp 910	GCC Ala	ATC Ile	AAG Lys	ATG Met	3	3031
			AAG Lys													3	3079
GTC Val	ATA Ile	TCA Ser	CGC Arg	ATG Met 935	ACT Thr	CTG Leu	GAA Glu	GAT Asp	CTC Leu 940	CAG Gln	CGT Arg	ATT Ile	GGA Gly	ATC Ile 945	ACC Thr	3	127
CTG Leu	GTT Val	GGT Gly	CAC His 950	CAG Gln	AAA Lys	AAG Lys	ATT Ile	CTA Leu 955	AAC Asn	AGC Ser	ATC Ile	CAG Gln	CTC Leu 960	ATG Met	AAA Lys	3	175
GTT Val	CAT His	TTG Leu 965	AAC Asn	CAG Gln	CTT Leu	GAA Glu	CCA Pro 970	GTT Val	GAA Glu	GTG Val	TGAT	GCTT	TA I	\GTC1	CTATT	3	228
TCAC	CAG	CT (CAAAT	rrcro	A A	GAG1	CCT	AGC	GGAT	TCA	GAGG	GATI	GT (ACTO	TATGA	. 3	288
AAA	GAAJ	ATG C	CAAC	ATGO	T C	TTG	AGAC	TT?	CTGC	ACC	TAGA	GAGI	AG A	CATI	ACACA	. 3	348
TTC	ATTO	CA C	CAGO	LAAAS	A G	AGAA7	CTT	CC	TCAT	TTA	AAAG	CAGA	GT I	TAAA:	AGCTG	3	408
GTGG	TTA	AT A	ATGAC	TGGC	A TO	ATAC	ACTA	GGZ	GTAG	GTC	AGGG	AGGG	IAA A	GTTA	TAGTA	. 3	468
ATGO	AGAC	TG C	AGC	rggt <i>i</i>	AT AF	TAGI	TTG	ACA	GACC	ACA	AGCA	CCTG	CT A	GCTC	TTCTC	3	528
CACT	'AAA'	AA A	CAAA!	rcag?	C A	TTCT	CCAG	TGC	CATO	AGC	AGGC	TTTA	TC I	GTGA	CTGGG	3	588
AACA	AAGA	L AAJ	CACA	LTTA	T TO	CAAC	AGAG	TAT	CAGO	ACA	TTGT	'GAGA	GT I	ATCA	CTCAG	3	648
TTGG	TAAA	GG A	CATO	CACTI	G CI	ATGC	CAG	TTI	GTGA	GAA	ACTG	GAGT	TC C	ACTG	AGTGC	. 3	708
ACCA	TATO	TG G	TAAA	CAAT	A AC	GTAC	ATCA	CCI	CGTA	TTA	TTTA	CAGA	GG I	TGAG	agtaa	3	768
AGGG	CCCA	1														3	776

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 973 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Thr Glu Ile Leu Leu Asp Thr Thr Gly Glu Thr Ser Glu Ile Gly 1 5 10

Trp Thr Ser His Pro Pro Asp Gly Trp Glu Glu Val Ser Val Arg Asp 20 25 30

61

Asp Lys Glu Arg Gln Ile Arg Thr Phe Gln Val Cys Asn Met Asp Glu Pro Gly Gln Asn Asn Trp Leu Arg Thr His Phe Ile Glu Arg Arg Gly 50 55 60 Ala His Arg Val His Val Arg Leu His Phe Ser Val Arg Asp Cys Ala 65 70 75 80 Ser Met Arg Thr Val Ala Ser Thr Cys Lys Glu Thr Phe Thr Leu Tyr Tyr His Gln Ser Asp Val Asp Ile Ala Ser Gln Glu Leu Pro Glu Trp His Glu Gly Pro Trp Thr Lys Val Asp Thr Ile Ala Ala Asp Glu Ser 115 120 125 Phe Ser Gln Val Asp Arg Thr Gly Lys Val Val Arg Met Asn Val Lys 130 135 140 Val Arg Ser Phe Gly Pro Leu Thr Lys His Gly Phe Tyr Leu Ala Phe Gln Asp Ser Gly Ala Cys Met Ser Leu Val Ala Val Gln Val Phe Phe 170 Tyr Lys Cys Pro Ala Val Val Lys Gly Phe Ala Ser Phe Pro Glu Thr 180 185 190 Phe Ala Gly Glu Arg Thr Ser Leu Val Glu Ser Leu Gly Thr Cys Val Ala Asn Ala Glu Glu Ala Ser Thr Thr Gly Ser Ser Gly Val Arg Leu His Cys Asn Gly Glu Gly Glu Trp Met Val Ala Thr Gly Arg Cys 225 230 235 240 Ser Cys Lys Ala Gly Tyr Gln Ser Val Asp Asn Glu Gln Ala Cys Gln 245 250 255 Ala Cys Pro Ile Gly Ser Phe Lys Ala Ser Val Gly Asp Asp Pro Cys Leu Leu Cys Pro Ala His Ser His Ala Pro Leu Pro Leu Pro Gly Ser 275 280 285 Ile Glu Cys Val Cys Gln Ser His Tyr Tyr Arg Ser Ala Ser Asp Asn 290 295 300 Ser Asp Ala Pro Cys Thr Gly Ile Pro Ser Ala Pro Arg Asp Leu Ser 305 310 315 320 Tyr Glu Ile Val Gly Ser Asn Val Leu Leu Thr Trp Arg Leu Pro Lys 325 330 335 Asp Leu Gly Gly Arg Lys Asp Val Phe Phe Asn Val Ile Cys Lys Glu 340 345 350 Cys Pro Thr Arg Ser Ala Gly Thr Cys Val Arg Cys Gly Asp Asn Val 355 360 365 Gln Phe Glu Pro Arg Gln Val Gly Leu Thr Glu Ser Arg Val Gln Val 370 375 380

Ser Asn Leu Leu Ala Arg Val Gln Tyr Thr Phe Glu Ile Gln Ala Val Asn Leu Val Thr Glu Leu Ser Ser Glu Ala Pro Gln Tyr Ala Thr Ile Asn Val Ser Thr Ser Gln Ser Val Pro Ser Ala Ile Pro Met Met His Gln Val Ser Arg Ala Thr Ser Ser Ile Thr Leu Ser Trp Pro Gln Pro Asp Gln Pro Asn Gly Val Ile Leu Asp Tyr Gln Leu Arg Tyr Phe Asp Lys Ala Glu Asp Glu Asp Asn Ser Phe Thr Leu Thr Ser Glu Thr Asn 475 Met Ala Thr Ile Leu Asn Leu Ser Pro Gly Lys Ile Tyr Val Phe Gln Val Arg Ala Arg Thr Ala Val Gly Tyr Gly Pro Tyr Ser Gly Lys Met 500 505 510 Tyr Phe Gln Thr Leu Met Ala Gly Glu His Ser Glu Met Ala Gln Asp Arg Leu Pro Leu Ile Val Gly Ser Ala Leu Gly Gly Leu Ala Phe Leu 530 540 Val Ile Ala Ala Ile Ala Ile Leu Ala Ile Ile Phe Lys Ser Lys Arg Arg Glu Thr Pro Tyr Thr Asp Arg Leu Gln Gln Tyr Ile Ser Thr Arg 565 570 575 Gly Leu Gly Val Lys Tyr Tyr Ile Asp Pro Ser Thr Tyr Glu Asp Pro 580 585 590 Asn Glu Ala Ile Arg Glu Phe Ala Lys Glu Ile Asp Val Ser Phe Ile Lys Ile Glu Glu Val Ile Gly Ser Gly Glu Phe Gly Glu Val Cys Phe Gly Arg Leu Lys His Pro Gly Lys Arg Glu Tyr Thr Val Ala Ile Lys 625 630 635 640 Thr Leu Lys Ser Gly Tyr Thr Asp Glu Gln Arg Arg Glu Phe Leu Ser 645 650 655 Glu Ala Ser Ile Met Gly Gln Phe Glu His Pro Asn Val Ile His Leu Glu Gly Val Val Thr Lys Ser Arg Pro Val Met Ile Val Thr Glu Phe Met Glu Asn Gly Ser Leu Asp Ser Phe Leu Arg Glu Lys Glu Gly Gln Phe Ser Val Leu Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Arg Tyr Leu Ser Asp Met Asn Tyr Val His Arg Asp Leu Ala Ala 725 730 735 730

63

 Asn
 Leu
 Leu
 Val
 Asn
 Ser
 Asn
 Leu
 Cys
 Leu
 Cys
 Phe
 Leu
 Phe
 Leu
 Glu
 Asp
 Asp
 Asp
 Ala
 Ser
 Asn
 Pro
 Thr
 Ter
 Ter
 Thr
 Ter
 Ser
 Ser
 Ser
 Asp
 Ter
 Ter
 Ber
 Ter
 Ser
 Ser
 Ser
 Asp
 Ter
 Asp
 Asp
 Asp
 Ter
 Ser
 Ser
 Asp
 Ter
 Asp
 Asp
 Ter
 Ser
 Ser
 Asp
 Ter
 Asp
 Asp
 Pro
 Ber
 Asp
 Asp
 Pro
 Ber
 Asp
 Asp
 Pro
 Asp
 Asp
 Asp</th

965
(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3546 base pairs

Met Lys Val His Leu Asn Gln Leu Glu Pro Val Glu Val

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: both
- (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2..2920
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
- C GGG GTC TCC TCG AGG GCG CGG CGG CCG GGC AGC AGC AGG AGC Gly Val Ser Ser Arg Ala Arg Arg Pro Pro Gly Ser Ser Arg Ser 1 5 10 15

															GAG Glu	94
									Asp					Pro	ATC Ile	142
CGC	ACA Thr	TAC Tyr 50	Gln	GTG Val	TGC Cys	AAC Asn	GTG Val 55	Arg	GAG Glu	GCC Ala	AAC Asn	CAG Gln 60	Asn	AAC Asn	TGG Trp	190
CTT Leu	CGC Arg 65	ACC Thr	AAG Lys	TTC Phe	ATT Ile	CAG Gln 70	CGC Arg	CAG Gln	GAC Asp	GTC Val	CAG Gln 75	CGT Arg	GTC Val	TAC Tyr	GTG Val	238
GAG Glu 80	CTG Leu	AAA Lys	TTC Phe	Thr	GTG Val 85	CGG Arg	GAC Asp	TGC Cys	AAC Asn	AGC Ser 90	ATC Ile	CCC Pro	AAC Asn	ATC Ile	Pro	286
GGT Gly	TCC	TGC Cys	AAA Lys	GAG Glu 100	ACC Thr	TTC Phe	AAC Asn	CTC Leu	TTC Phe 105	TAT Tyr	TAT Tyr	GAG Glu	TCA Ser	GAT Asp 110	ACG Thr	334
GAT Asp	TCT Ser	GCC Ala	TCT Ser 115	GCC Ala	AAT Asn	AGC Ser	CCT Pro	TTC Phe 120	TGG Trp	ATG Met	GAG Glu	AAC Asn	CCC Pro 125	TAT Tyr	ATC Ile	382
AAA Lys	GTG Val	GAT Asp 130	ACA Thr	ATT Ile	GCT Ala	CCG Pro	GAT Asp 135	GAG Glu	AGC Ser	TTC Phe	TCC Ser	AAA Lys 140	CTG Leu	GAG Glu	TCC Ser	430
GGC Gly	CGT Arg 145	GTG Val	AAC Asn	ACC Thr	AAG Lys	GTG Val 150	CGC Arg	AGC Ser	TTT Phe	GGG Gly	CCG Pro 155	CTC Leu	TCC Ser	AAG Lys	AAT Asn	478
GGC Gly 160	TTT Phe	TAT Tyr	CTG Leu	GCT Ala	TTC Phe 165	CAG Gln	GAC Asp	CTG Leu	GGG Gly	GCC Ala 170	TGC Cys	ATG Met	TCC Ser	CTT Leu	ATC Ile 175	526
TCC Ser	GTC Val	CGG Arg	GCT Ala	TTC Phe 180	TAC Tyr	AAG Lys	AAA Lys	TGT Cys	TCC Ser 185	AAC Asn	ACC Thr	ATC Ile	Ala	GGC Gly 190	TTT Phe	574
GCT Ala	ATC Ile	TTC Phe	CCG Pro 195	GAG Glu	ACC Thr	CTA Leu	ACG Thr	GGG Gly 200	GCT Ala	GAG Glu	CCC Pro	ACG Thr	TCG Ser 205	CTG Leu	GTC Val	622
ATT Ile	GCG Ala	CCG Pro 210	GGC Gly	ACC Thr	TGC Cys	ATC Ile	CCC Pro 215	AAC Asn	GCA Ala	GTG Val	GAA Glu	GTG Val 220	TCT Ser	GTG Val	CCC Pro	670
CTG Leu	AAG Lys 225	CTG Leu	TAC Tyr	TGC Cys	AAC Asn	GGT Gly 230	GAT Asp	GGC Gly	GAG Glu	TGG Trp	ATG Met 235	GTG Val	CCT Pro	GTG Val	GGA Gly	718
GCG Ala 240	TGC Cys	ACG Thr	TGT Cys	GCT Ala	GCT Ala 245	GGG Gly	TAC Tyr	GAG Glu	CCA Pro	GCC Ala 250	ATG Met	AAG Lys	GAT Asp	ACC Thr	CAG Gln 255	766
TGC Cys	CAA Gln	GCA Ala	TGC Cys	GGC Gly 260	CCG Pro	GGG Gly	ACG Thr	TTC Phe	AAA Lys 265	TCC Ser	AAG Lys	CAG Gln	GGC Gly	GAG Glu 270	GGC Gly	814
CCC Pro	TGC Cys	TCC Ser	CCC Pro 275	TGC Cys	CCT Pro	CCC Pro	AAC Asn	AGC Ser 280	CGC Arg	ACC Thr	ACC Thr	GCG Ala	GGG Gly 285	GCA Ala	GCC Ala	862

										65						
						AGC Ser										910
						AGT Ser 310										958
						TCG Ser									CAG Gln 335	1006
						GAC Asp										.1054
						CTG Leu										1102
						GGC Gly										1150
						GCC Ala 390										1198
						AGC Ser										1246
						AAC Asn										1294
						ACC Thr										1342
						GGC Gly										1390
						GGT Gly 470										1438
						CTG Leu										1486
ATG Met	GTG Val	CAG Gln	GTC Val	CGG Arg 500	GCG Ala	CGC Arg	ACA Thr	GTG Val	GCT Ala 505	GGA Gly	TAC Tyr	GGC Gly	CGC Arg	TAC Tyr 510	AGC Ser	1534
CTC Leu	CCC Pro	ACC Thr	GAG Glu 515	TTC Phe	CAG Gln	ACG Thr	ACT Thr	GCG Ala 520	GAG Glu	GAT Asp	GGC Gly	TCC Ser	ACC Thr 525	AGC Ser	AAG Lys	1582
						CTC Leu										1630
CTG Leu	TTT Phe 545	GTC Val	ATC Ile	GTG Val	GTG Val	GTC Val 550	ATC Ile	ATC Ile	GCT Ala	ATT Ile	GTC Val 555	TGC Cys	TTC Phe	AGG Arg	AAG Lys	1678

										66							
	Arg														TAT Tyr 575	172	26
															GAC Asp	171	74
CCA Pro	AAT Asn	GAA Glu	GCT Ala 595	GTC Val	CGG Arg	GAA Glu	TTC Phe	GCC Ala 600	AAA Lys	GAG Glu	ATT Ile	GAT Asp	ATC Ile 605	TCC Ser	TGT Cys	182	22
													GAG Glu			187	70
CGT	GGG Gly 625	CGC Arg	CTG Leu	AAG Lys	CTG Leu	CCT Pro 630	GGC Gly	CGC Arg	CGT Arg	GAG Glu	ATC Ile 635	TTT Phe	GTG Val	GCC Ala	ATC Ile	191	18
													GAC Asp			196	6
AGT Ser	GAG Glu	GCC Ala	AGC Ser	ATC Ile 660	ATG Met	GGC Gly	CAG Gln	TTC Phe	GAC Asp 665	CAC His	CCC Pro	AAC Asn	ATC Ile	ATC Ile 670	CAC His	201	.4
CTG Leu	GAG Glu	GGC Gly	GTG Val 675	GTG Val	ACC Thr	AAG Lys	AGC Ser	CGC Arg 680	CCT Pro	GTC Val	ATG Met	ATC Ile	ATC Ile 685	ACA Thr	GAG Glu	206	2
TTC Phe	ATG Met	GAG Glu 690	AAC Asn	TGC Cys	GCT Ala	CTC Leu	GAC Asp 695	TCC Ser	TTC Phe	CTC Leu	CGG Arg	CTG Leu 700	AAT Asn	GAT Asp	GGG Gly	211	.0
CAG Gln	TTC Phe 705	ACG Thr	GTC Val	ATC Ile	CAG Gln	CTG Leu 710	GTG Val	GGG Gly	ATG Met	CTG Leu	CGA Arg 715	GGC Gly	ATC Ile	GCT Ala	GCT Ala	215	8
GGC Gly 720	ATG Met	AAG Lys	TAC Tyr	CTC Leu	TCA Ser 725	GAG Glu	ATG Met	AAC Asn	TAC Tyr	GTG Val 730	CAC His	CGA Arg	GAC Asp	CTG Leu	GCT Ala 735	220	6
Ala	Arg	Asn	Ile	Leu 740	Val	Asn	Ser	Asn	Leu 745	Val	Cys	Lys	GTG Val	Ser 750	Asp	225	4
Phe	Gly	Leu	Ser 755	Arg	Phe	Leu	Ğlu	Asp 760	Asp	Pro	Ala	Asp	CCC Pro 765	Thr	Tyr	230	2
Thr	Ser	770	Leu	Gly	Gly	Lys	11e 775	Pro	Ile	Arg	Trp	Thr 780	GCT Ala	Pro	Glu	235	0
Ala	11e 785	Ala	Tyr	Arg	Lys	Phe 790	Thr	Ser	Ala	Ser	Asp 795	Val	TGG Trp	Ser	Tyr	239	8
Gly 800	Ile	Val	Met	Trp	Glu 805	Val	Met	Ser	Tyr	Gly 810	Glu	Arg	CCC Pro	Tyr	Trp 815	244	6
GAC Asp	ATG Met	TCC Ser	AAC Asn	CAG Gln 820	GAT Asp	GTG Val	ATC Ile	AAC Asn	GCG Ala 825	GTG Val	GAG Glu	CAG Gln	GAT Asp	TAC Tyr 830	CGC Arg	249	4

67

CTG CCA CCC CCC ATG GAC TGC CCC ACA GCA CTG CAC CAG CTG ATG CTG Leu Pro Pro Pro Met Asp Cys Pro Thr Ala Leu His Gln Leu Met Leu 835 840 845	2542
GAC TGC TGG GTG CGG GAC CGC AAC CTG CGG CCC AAG TTT GCA CAG ATT Asp Cys Trp Val Arg Asp Arg Asn Leu Arg Pro Lys Phe Ala Gln Ile 850 860	2590
GTC AAC ACG CTG GAC AAG CTG ATC CGC AAT GCT GCC AGC CTG AAG GTC Val Asn Thr Leu Asp Lys Leu Ile Arg Asn Ala Ala Ser Leu Lys Val 865 870 875	2638
ATC GCC AGC GTC CAG TCC GGT GTC TCC CAG CCG CTC CTG GAC CGC ACC Ile Ala Ser Val Gln Ser Gly Val Ser Gln Pro Leu Leu Asp Arg Thr 880 885 890 895	2686
GTG CCC GAT TAC ACC ACC TTC ACC ACC GTG GGA GAC TGG CTG GAT GCC Val Pro Asp Tyr Thr Thr Phe Thr Thr Val Gly Asp Trp Leu Asp Ala 900 905 910	2734
ATC AAA ATG GGA CGG TAC AAG GAG AAC TTC GTC AAC GCC GGC TTC GCC Ile Lys Met Gly Arg Tyr Lys Glu Asn Phe Val Asn Ala Gly Phe Ala 915 920 925	2782
TCC TTT GAC CTG GTG GCA CAG ATG ACA GCA GAG GAC CTG CTA AGG ATA Ser Phe Asp Leu Val Ala Gln Met Thr Ala Glu Asp Leu Leu Arg Ile 930 940	2830
GGA GTG ACG CTA GCA GGG CAC CAG AAG AAG ATC CTG AGC AGC ATT CAG Gly Val Thr Leu Ala Gly His Gln Lys Lys Ile Leu Ser Ser Ile Gln 945 950 955	2878
GAC ATG AGG CTG CAG ATG AAC CAG ACG CTG CCG GTT CAG GTT Asp Met Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val 960 970	2920
TGACCGCAGG GACTCTGCAT TGGAACGGAC TGAGGGAACC TGCCAACCAG GTTCTGTTT	G 2980
CGGTGCAGCC CGGCTTCCCG ATTTCCCCTT CCCGTGGCGC TCCTCTGCCT CGGACGCTC	G 3040
CCGGGGACAG GCTGGGCCGG GCCACCCTTC CCTGGATCAG AGGCACTCGT GCCGGGAGG	G 3100
AGCCCGGCTT TTCGTCCCGT GTCCCGCAGC GGCGAGGCAG TGAACGCAGT CTTCATATT	G 3160
AAGATGGATT ATGGGACGGA GATGGCGCAT CCGCTTCCCG CCCTGTCTCA GTGCTCATC	A 3220
STTTGAAGAG ATGTTCTGCT TCTTGGATTT CTTTACACCC CGGTTTTCCC CCCTCGAGT	C 3280
CTCACTTCCC CCTATCCCTG AGGCCACAGA CTGTTGACCC GTCCGCTGAG TCCGTCAGA	C 3340
GCTCCGAAGC CTTCCCCGAG CCCGGTCCCC GCGTGGAGAC GGCGCCAGGG ACGGGGCTA	C 3400
GGCCCCAGAC AATCACTCCA CCCCTCCGCA CGAGGGTCCT CACTGGGACG TGTCTGAAG	G 3460
GGAAAGGCTC TGCTCCCTTT TTGGCTTTGC ACGCCAGAAC CCGAACCCCG TGAGATTTA	2 3520
TATGCAGGGA GTTAGGCAAA AAAAAG	3546

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 973 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Gly Val Ser Ser Arg Ala Arg Arg Pro Pro Gly Ser Ser Arg Ser Ser Arg Arg Gly Val Thr Ser Glu Leu Ala Trp Thr Thr His Pro Glu Thr 20 25 30 Gly Trp Glu Glu Val Ser Gly Tyr Asp Glu Ala Met Asn Pro Ile Arg Thr Tyr Gln Val Cys Asn Val Arg Glu Ala Asn Gln Asn Asn Trp Leu 50 55 60 Arg Thr Lys Phe Ile Gln Arg Gln Asp Val Gln Arg Val Tyr Val Glu 65 70 75 80 Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Ile Pro Asn Ile Pro Gly Ser Cys Lys Glu Thr Phe Asn Leu Phe Tyr Tyr Glu Ser Asp Thr Asp Ser Ala Ser Ala Asn Ser Pro Phe Trp Met Glu Asn Pro Tyr Ile Lys Val Asp Thr Ile Ala Pro Asp Glu Ser Phe Ser Lys Leu Glu Ser Gly Arg Val Asn Thr Lys Val Arg Ser Phe Gly Pro Leu Ser Lys Asn Gly Phe Tyr Leu Ala Phe Gln Asp Leu Gly Ala Cys Met Ser Leu Ile Ser 165 170 175 Val Arg Ala Phe Tyr Lys Lys Cys Ser Asn Thr Ile Ala Gly Phe Ala 180 185 190 Ile Phe Pro Glu Thr Leu Thr Gly Ala Glu Pro Thr Ser Leu Val Ile Ala Pro Gly Thr Cys Ile Pro Asn Ala Val Glu Val Ser Val Pro Leu Lys Leu Tyr Cys Asn Gly Asp Gly Glu Trp Met Val Pro Val Gly Ala 225 230 235 240 Cys Thr Cys Ala Ala Gly Tyr Glu Pro Ala Met Lys Asp Thr Gln Cys Gln Ala Cys Gly Pro Gly Thr Phe Lys Ser Lys Gln Gly Glu Gly Pro 260 265 270 Cys Ser Pro Cys Pro Pro Asn Ser Arg Thr Thr Ala Gly Ala Ala Thr 275 280 285 Val Cys Ile Cys Arg Ser Gly Phe Phe Arg Ala Asp Ala Asp Pro Ala 290 295 300 Asp Ser Ala Cys Thr Ser Val Pro Ser Ala Pro Arg Ser Val Ile Ser Asn Val Asn Glu Thr Ser Leu Val Leu Glu Trp Ser Glu Pro Gln Asp Ala Gly Gly Arg Asp Asp Leu Leu Tyr Asn Val Ile Cys Lys Lys Cys 340 345 350

69

Ser Val Glu Arg Arg Leu Cys Ser Arg Cys Asp Asp Asn Val Glu Phe Val Pro Arg Gln Leu Gly Leu Thr Gly Leu Thr Glu Arg Arg Ile Tyr Ile Ser Lys Val Met Ala His Pro Gln Tyr Thr Phe Glu Ile Gln Ala Val Asn Gly Ile Ser Ser Lys Ser Pro Tyr Pro Pro His Phe Ala Ser Val Asn Ile Thr Thr Asn Gln Ala Ala Pro Ser Ala Val Pro Thr Met His Leu His Ser Ser Thr Gly Asn Ser Met Thr Leu Ser Trp Thr Pro Pro Glu Arg Pro Asn Gly Ile Ile Leu Asp Tyr Glu Ile Lys Tyr Ser Glu Lys Gln Gly Gln Gly Asp Gly Ile Ala Asn Thr Val Thr Ser Gln Lys Asn Ser Val Arg Leu Asp Gly Leu Lys Ala Asn Ala Arg Tyr Met 485 490 495 Val Gln Val Arg Ala Arg Thr Val Ala Gly Tyr Gly Arg Tyr Ser Leu 500 505 510 Pro Thr Glu Phe Gln Thr Thr Ala Glu Asp Gly Ser Thr Ser Lys Thr Phe Gln Glu Leu Pro Leu Ile Val Gly Ser Ala Thr Ala Gly Leu Leu Phe Val Ile Val Val Val Ile Ile Ala Ile Val Cys Phe Arg Lys Gln 545 550 560 Arg Asn Ser Thr Asp Pro Glu Tyr Thr Glu Lys Leu Gln Gln Tyr Val Thr Pro Gly Met Lys Val Tyr Ile Asp Pro Phe Thr Tyr Glu Asp Pro Asn Glu Ala Val Arg Glu Phe Ala Lys Glu Ile Asp Ile Ser Cys Val 595 600 605 Lys Ile Glu Glu Val Ile Gly Ala Gly Glu Phe Gly Glu Val Cys Arg 610 625 Gly Arg Leu Lys Leu Pro Gly Arg Arg Glu Ile Phe Val Ala Ile Lys 625 630 635 640 Thr Leu Lys Val Gly Tyr Thr Glu Arg Gln Arg Arg Asp Phe Leu Ser Glu Ala Ser Ile Met Gly Gln Phe Asp His Pro Asn Ile Ile His Leu Glu Gly Val Val Thr Lys Ser Arg Pro Val Met Ile Ile Thr Glu Phe Met Glu Asn Cys Ala Leu Asp Ser Phe Leu Arg Leu Asn Asp Gly Gln 690 695

70

Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ser Glu Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe 740 745 750 Gly Leu Ser Arg Phe Leu Glu Asp Asp Pro Ala Asp Pro Thr Tyr Thr Ser Ser Leu Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala 770 780 Ile Ala Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly 785 790 795 800 Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp 805 810 815 Met Ser Asn Gln Asp Val Ile Asn Ala Val Glu Gln Asp Tyr Arg Leu 825 Pro Pro Pro Met Asp Cys Pro Thr Ala Leu His Gln Leu Met Leu Asp Cys Trp Val Arg Asp Arg Asn Leu Arg Pro Lys Phe Ala Gln Ile Val 850 855 860 Asn Thr Leu Asp Lys Leu Ile Arg Asn Ala Ala Ser Leu Lys Val Ile Ala Ser Val Gln Ser Gly Val Ser Gln Pro Leu Leu Asp Arg Thr Val 890 Pro Asp Tyr Thr Thr Phe Thr Thr Val Gly Asp Trp Leu Asp Ala Ile 905 Lys Met Gly Arg Tyr Lys Glu Asn Phe Val Asn Ala Gly Phe Ala Ser 920 Phe Asp Leu Val Ala Gln Met Thr Ala Glu Asp Leu Leu Arg Ile Gly Val Thr Leu Ala Gly His Gln Lys Lys Ile Leu Ser Ser Ile Gln Asp Met Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4097 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: linear
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 10..3042
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CGG	CTTC					cg g ro G					ly P					48
						CTC Leu 20									GAG Glu	. 96
						ACG Thr										144
CAT His	CCT Pro	CCC Pro	TCA Ser	GGG Gly 50	TGG Trp	GAA Glu	GAG Glu	GTG Val	AGT Ser 55	GGA Gly	TAC Tyr	GAT Asp	GAG Glu	AAC Asn 60	ATG Met	192
AAC Asn	ACC Thr	ATC Ile	CGC Arg 65	ACC Thr	TAC Tyr	CAG Gln	GTG Val	TGC Cys 70	AAC Asn	GTC Val	TTT Phe	GAA Glu	TCC Ser 75	AGC Ser	CAA Gln	240
AAC Asn	AAC Asn	TGG Trp 80	CTG Leu	CGG Arg	ACC Thr	AAG Lys	TAC Tyr 85	ATC Ile	CGG Arg	AGG Arg	CGA Arg	GGA Gly 90	GCG Ala	CAC His	CGC Arg	288
ATC Ile	CAC His 95	GTG Val	GAG Glu	ATG Met	AAA Lys	TTC Phe 100	TCC Ser	GTT Val	CGG Arg	GAC Asp	TGC Cys 105	AGC Ser	AGC Ser	ATC Ile	CCC Pro	336
AAC Asn 110	GTC Val	CCG Pro	GGC Gly	TCC Ser	TGT Cys 115	AAG Lys	GAG Glu	ACT Thr	TTT Phe	AAC Asn 120	CTC Leu	TAT Tyr	TAC Tyr	TAC Tyr	GAA Glu 125	384
TCA Ser	GAC Asp	TTT Phe	GAC Asp	TCT Ser 130	GCC Ala	ACC Thr	AAG Lys	ACT Thr	TTT Phe 135	CCT Pro	AAC Asn	TGG Trp	ATG Met	GAA Glu 140	AAC Asn	432
CCT Pro	TGG Trp	ATG Met	AAG Lys 145	GTA Val	GAT Asp	ACA Thr	ATT Ile	GCT Ala 150	GCC Ala	GAC Asp	GAG Glu	AGC Ser	TTC Phe 155	TCG Ser	CAG Gln	480
GTG Val	GAC Asp	CTT Leu 160	GGT Gly	GGG Gly	CGG Arg	GTG Val	ATG Met 165	AAG Lys	ATT Ile	AAC Asn	ACC Thr	GAG Glu 170	GTG Val	CGC Arg	AGT Ser	528
TTT Phe	GGG Gly 175	CCT Pro	GTC Val	TCC Ser	AAA Lys	AAC Asn 180	GGT Gly	TTC Phe	TAC Tyr	CTG Leu	GCC Ala 185	TTC Phe	CAG Gln	GAC Asp	TAC Tyr	576
GGG Gly 190	GGC Gly	TGC Cys	ATG Met	TCC Ser	TTG Leu 195	ATT Ile	GCA Ala	GTC Val	CGT Arg	GTC Val 200	TTT Phe	TAC Tyr	CGC Arg	AAG Lys	TGT Cys 205	624
CCC Pro	CGT Arg	GTG Val	ATC Ile	CAG Gln 210	Asn	GGG Gly	Ala	Val	Phe	Gln	GAA Glu	ACC Thr	CTC Leu	TCG Ser 220	GGA Gly	672
GCG Ala	GAG Glu	AGC Ser	ACA Thr 225	TCT Ser	CTG Leu	GTG Val	GCA Ala	GCC Ala 230	CGG Arg	GGG Gly	ACG Thr	TGC Cys	ATC Ile 235	AGC Ser	AAT Asn	720
GCG Ala	GAG Glu	GAG Glu 240	GTG Val	GAT Asp	GTG Val	CCC Pro	ATC Ile 245	AAG Lys	CTG Leu	TAC Tyr	TGC Cys	AAT Asn 250	GGG Gly	GAT Asp	GGC Gly	768
GAG Glu	TGG Trp 255	CTG Leu	GTG Val	CCC Pro	ATC Ile	GGC Gly 260	CGC Arg	TGC Cys	ATG Met	TGC Cys	AGG Arg 265	CCG Pro	GGC Gly	TAT Tyr	GAG Glu	816

72

•

										12						
	GTG Val														TTC Phe 285	864
	GCC Ala															912
	ACG Thr															960
	CGG Arg															1008
	GCC Ala 335															1056
CTG Leu 350	GAG Glu	TGG Trp	ACC Thr	CCA Pro	CCA Pro 355	CGA Arg	GAC Asp	TCA Ser	GGG Gly	GGC Gly 360	CGG Arg	GAG Glu	GAT Asp	CTG Leu	GTA Val 365	1104
TAC Tyr	AAC Asn	ATC Ile	ATC Ile	TGC Cys 370	AAG Lys	AGC Ser	TGT Cys	GGG Gly	TCA Ser 375	GGC Gly	CGT Arg	GGG Gly	GCG Ala	TGC Cys 380	ACG Thr	1152
CGC Arg	TGT Cys	GGG Gly	GAC Asp 385	AAC Asn	GTG Val	CAG Gln	TTT Phe	GCC Ala 390	CCA Pro	CGC Arg	CAG Gln	CTG Leu	GGC Gly 395	CTG Leu	ACG Thr	1200
	CCT Pro															1248
TTT Phe	GAG Glu 415	ATC Ile	CAG Gln	GCT Ala	GTG Val	AAT Asn 420	GGG Gly	GTC Val	ACC Thr	GAC Asp	CAG Gln 425	AGC Ser	CCC Pro	TTC Phe	TCC Ser	1296
CCA Pro 430	CAG Gln	TTT Phe	GCA Ala	TCA Ser	GTG Val 435	AAT Asn	ATC Ile	ACC Thr	ACC Thr	AAC Asn 440	CAG Gln	GCT Ala	GCT Ala	CCT Pro	TCA Ser 445	1344
Ala	GTG Val	Ser	Ile	Met 450	His	Gln	Val	Ser	Arg 455	Thr	Val	Asp	Ser	11e 460	Thr	1392
Leu	TCG Ser	Trp	Ser 465	Gln	Pro	Asp	Gln	Pro 470	Asn	Gly	Val	Ile	Leu 475	Asp	Tyr	1440
	CTG Leu															1488
Val	AAG Lys 495	Ser	Pro	Thr	Asn	Thr 500	Val	Thr	Val	Gln	Asn 505	Leu	Lys	Ala	Gly	1536
Thr 510	ATC Ile	Tyr	Val	Phe	Gln 515	Val	Arg	Ala	Arg	Thr 520	Val	Ala	Gly	Tyr	Gly 525	1584
CGG Arg	TAT Tyr	AGT Ser	GGC	AAG Lys 530	ATG Met	TAC Tyr	TTC Phe	CAG Gln	ACC Thr 535	ATG Met	ACT Thr	GAA Glu	GCC Ala	GAG Glu 540	TAC Tyr	1632

										,,						
								CCA Pro 550								1680
								GTT Val								1728
								GCT Ala								1776
								AGT Ser								1824
_		_	_					GTG Val								1872
								CCC Pro 630								1920
								GTG Val								1968
								AGT Ser								2016
Lys 670	Arg	Glu	Ile	Phe	Val 675	Ala	Ile	AAG Lys	Thr	Leu 680	Lys	Ser	Gly	Tyr	Thr 685	2064
Glu	Lys	Gln	Arg	Arg 690	Asp	Phe	Leu	AGT Ser	Glu 695	Ala	Ser	Ile	Met	Gly 700	Gln	2112
Phe	Asp	His	Pro 705	Asn	Val	Ile	His	CTG Leu 710	Glu	Gly	Val	Val	Thr 715	Lys	Ser	2160
Ser	Pro	Val 720	Met	Ile	Ile	Thr	Glu 725	TTC Phe	Met	Glu	Asn	Gly 730	Ser	Leu	Asp	2208
Ser	Phe 735	Leu	Arg	Gln	Asn	Asp 740	Gly	CAG Gln	Phe	Thr	Val 745	Ile	Gln	Leu	Val	2256
Gly 750	Met	Leu	Arg	Gly	Ile 755	Ala	Ala	GGC Gly	Met	Lys 760	Tyr	Leu	Ala	Asp	Met [*] 765	2304
Asn	Tyr	Val	His	Arg 770	qaA	Leu	Ala	GCC Ala	Arg 775	Asn	Ile	Leu	Val	Asn 780	Ser	2352
AAC Asn	CTG Leu	GTC Val	TGC Cys 785	AAG Lys	GTG Val	TCC Ser	GAC Asp	TTC Phe 790	GGC Gly	CTC Leu	TCC Ser	CGT Arg	TTC Phe 795	CTG Leu	GAG Glu	2400
GAT Asp	GAC Asp	ACC Thr 800	TCT Ser	GAT Asp	CCC Pro	ACT Thr	TAC Tyr 805	ACC Thr	AGC Ser	GCA Ala	CTG Leu	GGT Gly 810	GGA Gly	AAG Lys	ATC Ile	2448

/ 4	
CCA ATA CGG TGG ACA GCG CCT GAG GCA ATT CAG TAC CGA AAA TTC ACA Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Gln Tyr Arg Lys Phe Thr 815 820 825	2496
TCA GCC AGC GAT GTG TGG AGC TAT GGA ATA GTC ATG TGG GAG GTG ATG Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met 830 835 840 845	2544
TCG TAC GGC GAG CGG CCT TAC TGG GAC ATG ACC AAT CAA GAT GTG ATA Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Thr Asn Gln Asp Val Ile 850 855 860	2592
AAT GCT ATT GAG CAG GAC TAT CGG CTA CCA CCC CCT ATG GAT TGT CCA Asn Ala Ile Glu Gln Asp Tyr Arg Leu Pro Pro Pro Met Asp Cys Pro 865 870 875	2640
AAT GCC CTG CAC CAG CTA ATG CTT GAC TGC TGG CAG AAG GAT CGA AAC Asn Ala Leu His Gln Leu Met Leu Asp Cys Trp Gln Lys Asp Arg Asn 880 885 890	2688
CAC AGA CCC AAA TTT GGA CAG ATT GTC AAC ACT TTA GAC AAA ATG ATC His Arg Pro Lys Phe Gly Gln Ile Val Asn Thr Leu Asp Lys Met Ile 895 900 905	2736
CGA AAT CCT AAT AGT CTG AAA GCC ATG GCA CCT CTC TCC TCT GGG GTT Arg Asn Pro Asn Ser Leu Lys Ala Met Ala Pro Leu Ser Ser Gly Val 910 915 920 925	2784
AAC CTC CCT CTA CTT GAC CGC ACA ATC CCA GAT TAT ACC AGC TTC AAC Asn Leu Pro Leu Asp Arg Thr Ile Pro Asp Tyr Thr Ser Phe Asn 930 935 940	2832
ACT GTG GAT GAA TGG CTG GAT GCC ATC AAG ATG AGC CAG TAC AAG GAG Thr Val Asp Glu Trp Leu Asp Ala Ile Lys Met Ser Gln Tyr Lys Glu 945 950 955	2880
AGC TTT GCC AGT GCT GGC TTC ACC ACC TTT GAT ATA GTA TCT CAG ATG Ser Phe Ala Ser Ala Gly Phe Thr Thr Phe Asp Ile Val Ser Gln Met 960 965 970	2928
ACT GTA GAG GAC ATT CTA CGA GTT GGG GTC ACT TTA GCA GGA CAC CAG Thr Val Glu Asp Ile Leu Arg Val Gly Val Thr Leu Ala Gly His Gln 975 980 985	2976
AAG AAA ATT CTG AAC AGT ATC CAG GTG ATG AGA GCA CAG ATG AAC CAA Lys Lys Ile Leu Asn Ser Ile Gln Val Met Arg Ala Gln Met Asn Gln 990 995 1000 1005	3024
ATT CAG TCT GTG GAG GTT TGATAGCAAC ACGTCCTCGT GCTCCACTTC Ile Gln Ser Val Glu Val 1010	3072
CTTGAGGCCC TGCTCCCCTC TGCCCCTGTG TGTCTGAGCT CCAGTTCTTG AGTGTTCTGC	3132
GTGGATCAGA GACAGGCAGC TGCTCTGAGG ATCATGGCAA CAGGAAGAAA TGCCCTATCA	3192
TTGACAACGA GAAGTCATCA AGAGGTGAAA CAATGGAAAA CAATGGAAAA AGGGAACAAG	3252
TAAAGACAGC TATTTTGAAA ACCGAAAACA AACAGTGAAT TATTTTTAAA TAATAATAAA	3312
GCAATTGCAG TCTTGAAAAG GGCTCCAAGA CCAATGGGAG TCTCCAAAGG AAGAGAATAG	3372
AGCAGCTTCA TCTATTTCCT CTTACACAAG GGTTGCTGCA GCTGGGCCCA GACACTTCTG	3432
GAGTAACGAG ACTITICAAG AAGATGAATG CAAAGAATGG TCACAAGAAG CACTTCTCTT	3492
TCTCACATGG GATGGCAGCT CTGGGAATGC CCGGCAGTCC TTCCTGAAAG CCCTGTTGGC	3552

75

AAATCGAAGA	GGAGAGCCGA	AGCTCTTTGG	TGCTGTGGAA	CCAAGTGCAT	CTCAGAAATT	3612
GTTGGACTTC	TACAAAAGCT	GAAGACATTC	TTTTTTTTA	AACAAGTAAA	CTGATACTAG	3672
AAGAGGCTGT	TTCCGTCAAA	TGAGAAGGAA	TCTGTAACAC	TGGCCCGGGG	GGGGTGGGGA	3732
ATGGGGGAAA	TCAGTCCTTT	TTACATCTCT	TTATTTTCTC	TTGTCATGGA	ACAGTTTTGT	3792
GAGTGACAGT	TTCCTAAGGG	TCCGTCCATC	CACCCTCCAA	TGGCATCATT	GTTTCATACA	3852
TATCATATGC	ACAAGACTTA	TAGTGATGTC	CTCACTCGAT	GCCAATGATC	TTTCCCCAGA	3912
AGACTTCCCA	AGTACAGTAT	GTAGTAGATT	TTGATTACAA	ATGCTGACGT	GTACCTTTAT	3972
TTTTCGGTTG	TCGTTGTTGG	GAGATTCGTC	CTTTTACCTT	GCTTTGTTAA	CACCAATTTG	4032
TGAGTTTGGG	GTTGGAATTT	TTTTGGTCGA	TTGGGGTTGT	TTTTTTTTT	TTTTTTTTT	4092
AACCG						4097

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1011 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Pro Gly Pro Glu Arg Thr Met Gly Pro Leu Trp Phe Cys Cys Leu 1 5 . 10 15

Pro Leu Ala Leu Leu Pro Leu Leu Ala Ala Val Glu Glu Thr Leu Met 20 25 30

Asp Ser Thr Thr Ala Thr Ala Glu Leu Gly Trp Met Val His Pro Pro 35 40 45

Ser Gly Trp Glu Glu Val Ser Gly Tyr Asp Glu Asn Met Asn Thr Ile 50 55 60

Arg Thr Tyr Gln Val Cys Asn Val Phe Glu Ser Ser Gln Asn Asn Trp 65 70 75 80

Leu Arg Thr Lys Tyr Ile Arg Arg Arg Gly Ala His Arg Ile His Val 95 95

Glu Met Lys Phe Ser Val Arg Asp Cys Ser Ser Ile Pro Asn Val Pro 100 105 110

Gly Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Tyr Glu Ser Asp Phe 115 120 125

Asp Ser Ala Thr Lys Thr Phe Pro Asn Trp Met Glu Asn Pro Trp Met 130 135

Lys Val Asp Thr Ile Ala Ala Asp Glu Ser Phe Ser Gln Val Asp Leu 145 150 155 160

Gly Gly Arg Val Met Lys Ile Asn Thr Glu Val Arg Ser Phe Gly Pro 165 170 175

Val Ser Lys Asn Gly Phe Tyr Leu Ala Phe Gln Asp Tyr Gly Gly Cys 180 195

Met Ser Leu Ile Ala Val Arg Val Phe Tyr Arg Lys Cys Pro Arg Val 200 Ile Gln Asn Gly Ala Val Phe Gln Glu Thr Leu Ser Gly Ala Glu Ser Thr Ser Leu Val Ala Ala Arg Gly Thr Cys Ile Ser Asn Ala Glu Glu Val Asp Val Pro Ile Lys Leu Tyr Cys Asn Gly Asp Gly Glu Trp Leu 245 250 255 Val Pro Ile Gly Arg Cys Met Cys Arg Pro Gly Tyr Glu Ser Val Glu 260 265 270 Asn Gly Thr Val Cys Arg Gly Cys Pro Ser Gly Thr Phe Lys Ala Ser 275 280 285 Gln Gly Asp Glu Gly Cys Val His Cys Pro Ile Asn Ser Arg Thr Thr Ser Glu Gly Ala Thr Asn Cys Val Cys Arg Asn Gly Tyr Tyr Arg Ala Asp Ala Asp Pro Val Asp Met Pro Cys Thr Thr Ile Pro Ser Ala Pro Gln Ala Val Ile Ser Ser Val Asn Glu Thr Ser Leu Met Leu Glu Trp Thr Pro Pro Arg Asp Ser Gly Gly Arg Glu Asp Leu Val Tyr Asn Ile Ile Cys Lys Ser Cys Gly Ser Gly Arg Gly Ala Cys Thr Arg Cys Gly 370 380 Asp Asn Val Gln Phe Ala Pro Arg Gln Leu Gly Leu Thr Glu Pro Arg 385 390 395 400 Ile Tyr Ile Ser Asp Leu Leu Ala His Thr Gln Tyr Thr Phe Glu Ile Gln Ala Val Asn Gly Val Thr Asp Gln Ser Pro Phe Ser Pro Gln Phe Ala Ser Val Asn Ile Thr Thr Asn Gln Ala Ala Pro Ser Ala Val Ser 440 Ile Met His Gln Val Ser Arg Thr Val Asp Ser Ile Thr Leu Ser Trp Ser Gln Pro Asp Gln Pro Asn Gly Val Ile Leu Asp Tyr Glu Leu Gln Tyr Tyr Glu Lys Asn Leu Ser Glu Leu Asn Ser Thr Ala Val Lys Ser 490 Pro Thr Asn Thr Val Thr Val Gln Asn Leu Lys Ala Gly Thr Ile Tyr Val Phe Gln Val Arg Ala Arg Thr Val Ala Gly Tyr Gly Arg Tyr Ser Gly Lys Met Tyr Phe Gln Thr Met Thr Glu Ala Glu Tyr Gln Thr Ser 530 535 540

Val Gln Glu Lys Leu Pro Leu Ile Ile Gly Ser Ser Ala Ala Gly Leu Val Phe Leu Ile Ala Val Val Val Ile Ile Val Cys Asn Arg Arg Arg Gly Phe Glu Arg Ala Asp Ser Glu Tyr Thr Asp Lys Leu Gln His Tyr Thr Ser Gly His Ser Thr Tyr Arg Gly Pro Pro Pro Gly Leu Gly 595 600 605 Val Arg Ser Leu Phe Val Thr Pro Gly Met Lys Ile Tyr Ile Asp Pro Phe Thr Tyr Glu Asp Pro Asn Glu Ala Val Arg Glu Phe Ala Lys Glu 625 630 630 635 Ile Asp Ile Ser Cys Val Lys Ile Glu Gln Val Ile Gly Ala Gly Glu 645 650 655Phe Gly Glu Val Cys Ser Gly His Leu Lys Leu Pro Gly Lys Arg Glu Ile Phe Val Ala Ile Lys Thr Leu Lys Ser Gly Tyr Thr Glu Lys Gln 680 Arg Arg Asp Phe Leu Ser Glu Ala Ser Ile Met Gly Gln Phe Asp His 690 695 700 Pro Asn Val Ile His Leu Glu Gly Val Val Thr Lys Ser Ser Pro Val 705 710 715 720 Met Ile Ile Thr Glu Phe Met Glu Asn Gly Ser Leu Asp Ser Phe Leu 725 730 735 Arg Gln Asn Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu 740 745 750 Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asp Met Asn Tyr Val 765 760 765 His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val 770 775 780 Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Phe Leu Glu Asp Asp Thr 785 790 795 800 Ser Asp Pro Thr Tyr Thr Ser Ala Leu Gly Gly Lys Ile Pro Ile Arg 805 810 815 Trp Thr Ala Pro Glu Ala Ile Gln Tyr Arg Lys Phe Thr Ser Ala Ser 820 825 830 Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly 835 840 845 Glu Arg Pro Tyr Trp Asp Met Thr Asn Gln Asp Val Ile Asn Ala Ile Glu Gln Asp Tyr Arg Leu Pro Pro Pro Met Asp Cys Pro Asn Ala Leu 865 870 880 His Gln Leu Met Leu Asp Cys Trp Gln Lys Asp Arg Asn His Arg Pro

PCT/US94/10140 WO 95/15375

										78					
Lys	Phe	Gly	Gln 900	Ile	Val	Asn	Thr	Leu 905	Aśp	Lys	Met	Ile	Arg 910		Pro
Asn	Ser	Leu 915	Lys	Ala	Met	Ala	Pro 920	Leu	Ser	Ser	Gly	Val 925	Asn	Leu	Pro
Leu	Leu 930	Asp	Arg	Thr	Ile	Pro 935	Asp	Tyr	Thr	Ser	Phe 940	Asn	Thr	Val	Asp
Glu 945	Trp	Leu	Asp	Ala	Ile 950	Lys	Met	Ser	Gln	Tyr 955	Lys	Glu	Ser	Phe	Ala 960
Ser	Ala	Gly	Phe	Thr 965	Thr	Phe	Asp	Ile	Val 970	Ser	Gln	Met	Thr	Val 975	Glu
Asp	Ile	Leu	Arg 980	Val	Gly	Val	Thr	Leu 985	Ala	Gly	His	Gln	Lys 990	Lys	Ile
Leu	Asn	Ser 995	Ile	Gln	Val	Met	Arg 1006		Gln	Met	Asn	Gln 1005		Gln	Ser
Val	Glu 1010	-													
(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	NO:13	3:							
	(i)	() ()	A) LI 3) T	ENGTI (PE : [RANI	i: 3!	591 l leic ESS:	ISTIC pase acic both ear	pai:	rs						
	(ix)	(3	ATURI A) NZ B) LC	ME/I			2965			-					

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

			eg Co	ro P			rg Se	46
			GAG Glu					94
			GGT Gly			 		 142
			GTG Val 55					190
			CGC Arg					 238
			GAC Asp					286
			AAC Asn					334

			TCT	GCC	AAT	NCC	000	 	 ~~~	***	000	mam	N/D/C	
_		Ala	Ser 115		Asn								_	382
					GCT Ala									430
					AAG Lys									478
					TTC Phe 165									526
	_		_		TAC Tyr						_			574
					ACC Thr									622
					TGC Cys									670
					AAC Asn									718
					GCT Ala 245									766
					CCG Pro									814
					CCT Pro									862
					CGC Arg									910
					ACC Thr									958
					ACG Thr 325									1006
					GAT Asp									1054
					CGG Arg									1102
					CTG Leu									1150

										80							
					ATG Met											11	L98
_			_	_	TCC Ser 405								_		_	12	246
					ACC Thr											12	294
					AGC Ser											13	342
					AAC Asn											13	90
					CAG Gln											14	138
					CGG Arg 485											14	86
					GCG Ala											15	34
					CAG Gln											15	82
					CCT Pro											16	30
CTG Leu	TTT Phe 545	GTC Val	ATC Ile	GTG Val	GTG Val	GTC Val 550	ATC Ile	ATC Ile	GCT Ala	ATT Ile	GTC Val 555	TGC Cys	TTC Phe	AGG Arg	AAA Lys	16	78
					CAA Gln 565											17	26
Arg	Asn	Ser	Thr	Asp 580	CCC Pro	Glu	Tyr	Thr	Glu 585	Lys	Leu	Gln	Gln	Tyr 590	Val	17	74
Thr	Pro	Gly	Met 595	Lys		Tyr	Ile	Asp 600	Pro	Phe	Thr	Tyr	Glu 605	Asp	Pro	18	22
Asn	Glu	Ala 610	Val	Arg	GAA Glu	Phe	Ala 615	Lys	Glu	Ile	Asp	Ile 620	Ser	Cys	Val	18	70
Lys	11e 625	Glu	Glu	Val	ATT Ile	Gly 630	Ala	Gly	Glu	Phe	Gly 635	Glu	Val	Cys	Arg	19	18
					CCT Pro 645											19	66

										01						
ACA Thr	CTG Leu	AAG Lys	GTG Val	GGC Gly 660	TAC Tyr	ACA Thr	GAG Glu	AGG Arg	CAG Gln 665	CGG Arg	CGG Arg	GAC Asp	TTC Phe	CTG Leu 670	AGT Ser	2014
						CAG Gln										2062
						AGC Ser										2110
						GAC Asp 710										2158
TTC Phe 720	ACG Thr	GTC Val	ATC Ile	CAG Gln	CTG Leu 725	GTG Val	GGG Gly	ATG Met	CTG Leu	CGA Arg 730	GGC Gly	ATC Ile	GCT Ala	GCT Ala	GGC Gly 735	2206
ATG Met	AAG Lys	TAC Tyr	CTC Leu	TCA Ser 740	GAG Glu	ATG Met	AAC Asn	TAC Tyr	GTG Val 745	CAC His	CGA Arg	GAC Asp	CTG Leu	GCT Ala 750	GCC Ala	2254
CGC Arg	AAC Asn	ATC Ile	CTG Leu 755	GTC Val	AAC Asn	AGC Ser	AAC Asn	TTG Leu 760	GTC Val	TGC Cys	AAA Lys	GTG Val	TCT Ser 765	GAC Asp	TTC Phe	2302
GGG Gly	CTC Leu	TCC Ser 770	CGC Arg	TTT Phe	TTG Leu	GAG Glu	GAT Asp 775	GAT Asp	CCA Pro	GCC Ala	GAC Asp	CCC Pro 780	ACC Thr	TAC Tyr	ACC Thr	2350
AGC Ser	TCC Ser 785	CTG Leu	GGA Gly	GGC Gly	AAG Lys	ATC Ile 790	CCC Pro	ATC Ile	AGG Arg	TGG Trp	ACA Thr 795	GCT Ala	CCT Pro	GAG Glu	GCC Ala	2398
ATC Ile 800	GCC Ala	TAC Tyr	CGC Arg	AAA Lys	TTC Phe 805	ACG Thr	TCG Ser	GCC Ala	AGC Ser	GAC Asp 810	GTG Val	TGG Trp	AGC Ser	TAC Tyr	GGC Gly 815	2446
Ile	Val	Met	Trp	Glu 820	Val	ATG Met	Ser	Tyr	Gly 825	Glu	Arg	Pro	Tyr	Trp 830	Asp	2494
Met	Ser	Asn	Gln 835	Asp	Val	ATC Ile	Asn	Ala 840	Val	Glu	Gln	Asp	Tyr 845	Arg	Leu	2542
Pro	Pro	Pro 850	Met	Asp	Cys	CCC Pro	Thr 855	Ala	Leu	His	Gln	Leu 860	Met	Leu	Asp	2590
TGC Cys	TGG Trp 865	GTG Val	CGG Arg	GAC Asp	CGC Arg	AAC Asn 870	CTG Leu	CGG Arg	CCC Pro	AAG Lys	TTT Phe 875	GCA Ala	CAG Gln	ATT Ile	GTC Val	2638
AAC Asn 880	ACG Thr	CTG Leu	GAC Asp	AAG Lys	CTG Leu 885	ATC Ile	CGC Arg	TAA naA	GCT Ala	GCC Ala 890	AGC Ser	CTG Leu	AAG Lys	GTC Val	ATC Ile 895	2686
GCC Ala	AGC Ser	GTC Val	CAG Gln	TCC Ser 900	GGT Gly	GTC Val	TCC Ser	CAG Gln	CCG Pro 905	CTC Leu	CTG Leu	Aab GAC	CGC Arg	ACC Thr 910	GTG Val	2734
CCC Pro	GAT Asp	TAC Tyr	ACC Thr 915	ACC Thr	TTC Phe	ACC Thr	ACC Thr	GTG Val 920	GGA Gly	GAC Asp	TGG Trp	CTG Leu	GAT Asp 925	GCC Ala	ATC Ile	2782

82

														GCC Ala		2830
														ATA Ile		2878
											Ser			CAG Gln		2926
			CAG Gln										TGA	CCGC3	AGG	2975
GACT	CTGC	TAT	LADD1	ACGGZ	C TO	SAGGO	SAACO	TGC	CAAC	CAG	GTT	TGT	TG (CGGT	CAGC	C 3035
CGGC	TTCC	CG I	ATTTO	ccc	T C	CCGT	GCG	TCC	TCT	CCT	CGGZ	ACGCT	rcg (CCGGG	GACA	G 3095
GCT	GGCC	GG (CCAC	CCTI	rc co	TGG#	ATCAC	AG0	CACT	CGT	GCCG	GGAG	GG 2	AGCCC	GGCT	r 3155
TTC	TCCC	GT (STCCC	GCAG	C G	CGA	GCA	G TG	ACGC	CAGT	CTT	CATA	TG I	AAGAT	GGAT	r 3215
ATG	GAC	GA C	ATG	CGC	T C	GCT	rccc	CCC	TGTC	TCA	GTGC	TCAT	CA (GTTTC	BAAGA	3275
ATGT	TCTG	CT 1	CTT	GATT	T C	OATTI	CACCO	CGG	TTT	ccc	cccı	CGAG	TC (CTCAC	TTCC	3335
CCTA	TCCC	TG I	AGGCC	CACAG	a C	rgtte	BACCO	GTO	CGCI	GAG	TCC	TCAG	ac (CTCC	GAAG	3395
CTTC	ccce	AG (cccc	TCCC	C G	CGTGC	AGA	GGC	GCCA	GGG	ACGG	GGC1	AC C	GCCC	CAGA	3455
AATC	ACTO	CA C	CCCT	CCGC	A CO	BAGGO	TCC	CAC	TGGG	ACG	TGT	TGA	GG (GGAA <i>I</i>	GCT	3515
TGC1	CCCI	TT 1	TGGC	TTT	C A	GCC	GAAC	cce	AACC	:CCG	TGAG	SATTI	AC 1	ratgo	'AGGGI	A 3575
GTTA	GGCA	LAA A	LAAA	AG	•											3591

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 988 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Gly Val Ser Ser Arg Ala Arg Arg Pro Pro Gly Ser Ser Arg Ser Ser 1 10 15

Arg Arg Gly Val Thr Ser Glu Leu Ala Trp Thr Thr His Pro Glu Thr $20 \\ 25 \\ 30$

Gly Trp Glu Glu Val Ser Gly Tyr Asp Glu Ala Met Asn Pro Ile Arg 35 40 45

Thr Tyr Gln Val Cys Asn Val Arg Glu Ala Asn Gln Asn Asn Trp Leu 50 60

Arg Thr Lys Phe Ile Gln Arg Gln Asp Val Gln Arg Val Tyr Val Glu 65 70 75 80

Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Ile Pro Asn Ile Pro Gly 85 90 95

Ser Cys Lys Glu Thr Phe Asn Leu Phe Tyr Tyr Glu Ser Asp Thr Asp Ser Ala Ser Ala Asn Ser Pro Phe Trp Met Glu Asn Pro Tyr Ile Lys Val Asp Thr Ile Ala Pro Asp Glu Ser Phe Ser Lys Leu Glu Ser Gly Arg Val Asn Thr Lys Val Arg Ser Phe Gly Pro Leu Ser Lys Asn Gly Phe Tyr Leu Ala Phe Gln Asp Leu Gly Ala Cys Met Ser Leu Ile Ser Val Arg Ala Phe Tyr Lys Lys Cys Ser Asn Thr Ile Ala Gly Phe Ala Ile Phe Pro Glu Thr Leu Thr Gly Ala Glu Pro Thr Ser Leu Val Ile Ala Pro Gly Thr Cys Ile Pro Asn Ala Val Glu Val Ser Val Pro Leu Lys Leu Tyr Cys Asn Gly Asp Gly Glu Trp Met Val Pro Val Gly Ala 225 230 235 240 Cys Thr Cys Ala Ala Gly Tyr Glu Pro Ala Met Lys Asp Thr Gln Cys 245 250 255 Gln Ala Cys Gly Pro Gly Thr Phe Lys Ser Lys Gln Gly Glu Gly Pro Cys Ser Pro Cys Pro Pro Asn Ser Arg Thr Thr Ala Gly Ala Ala Thr 275 280 285 Val Cys Ile Cys Arg Ser Gly Phe Phe Arg Ala Asp Ala Asp Pro Ala 290 295 300 Asp Ser Ala Cys Thr Ser Val Pro Ser Ala Pro Arg Ser Val Ile Ser 305 310 315 320 Asn Val Asn Glu Thr Ser Leu Val Leu Glu Trp Ser Glu Pro Gln Asp Ala Gly Gly Arg Asp Asp Leu Leu Tyr Asn Val Ile Cys Lys Lys Cys 340 345 350Ser Val Glu Arg Arg Leu Cys Ser Arg Cys Asp Asp Asn Val Glu Phe Val Pro Arg Gln Leu Gly Leu Thr Gly Leu Thr Glu Arg Arg Ile Tyr Ile Ser Lys Val Met Ala His Pro Gln Tyr Thr Phe Glu Ile Gln Ala Val Asn Gly Ile Ser Ser Lys Ser Pro Tyr Pro Pro His Phe Ala Ser 405 410 415 Val Asn Ile Thr Thr Asn Gln Ala Ala Pro Ser Ala Val Pro Thr Met His Leu His Ser Ser Thr Gly Asn Ser Met Thr Leu Ser Trp Thr Pro 440

Pro Glu Arg Pro Asn Gly Ile Ile Leu Asp Tyr Glu Ile Lys Tyr Ser Glu Lys Gln Gly Gln Gly Asp Gly Ile Ala Asn Thr Val Thr Ser Gln 465 470 475 480 Lys Asn Ser Val Arg Leu Asp Gly Leu Lys Ala Asn Ala Arg Tyr Met Val Gln Val Arg Ala Arg Thr Val Ala Gly Tyr Gly Arg Tyr Ser Leu Pro Thr Glu Phe Gln Thr Thr Ala Glu Asp Gly Ser Thr Ser Lys Thr Phe Gln Glu Leu Pro Leu Ile Val Gly Ser Ala Thr Ala Gly Leu Leu 530 535 540 Phe Val Ile Val Val Val Ile Ile Ala Ile Val Cys Phe Arg Lys Gly Met Val Thr Glu Gln Leu Leu Ser Ser Pro Leu Gly Arg Lys Gln Arg Asn Ser Thr Asp Pro Glu Tyr Thr Glu Lys Leu Gln Gln Tyr Val Thr 585 Pro Gly Met Lys Val Tyr Ile Asp Pro Phe Thr Tyr Glu Asp Pro Asn 595 600 605 Glu Ala Val Arg Glu Phe Ala Lys Glu Ile Asp Ile Ser Cys Val Lys Ile Glu Glu Val Ile Gly Ala Gly Glu Phe Gly Glu Vaí Cys Arg Gly 625 630 635 640 Arg Leu Lys Leu Pro Gly Arg Arg Glu Ile Phe Val Ala Ile Lys Thr 645 650 655 Leu Lys Val Gly Tyr Thr Glu Arg Gln Arg Arg Asp Phe Leu Ser Glu 660 665 670 Ala Ser Ile Met Gly Gln Phe Asp His Pro Asn Ile Ile His Leu Glu Gly Val Val Thr Lys Ser Arg Pro Val Met Ile Ile Thr Glu Phe Met 690 695 700 Glu Asn Cys Ala Leu Asp Ser Phe Leu Arg Leu Asn Asp Gly Gln Phe 705 710 715 720 Thr Val Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ala Gly Met
725 730 735 Lys Tyr Leu Ser Glu Met Asn Tyr Val His Arg Asp Leu Ala Ala Arg 740 745 750 Asn Ile Leu Val Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Phe Leu Glu Asp Asp Pro Ala Asp Pro Thr Tyr Thr Ser 770 780 Ser Leu Gly Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile

85

Ala Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile 815 Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met 820 Ser Asn Gln Asp Val Ile Asn Ala Val Glu Glu Asp Tyr Arg Leu Pro 835 Fro Pro Met Asp Cys Pro Thr Ala Leu His Gln Leu Met Leu Asp Cys 850 Trp Val Arg Asp Arg Asn Leu Arg Pro Lys Phe Ala Gln Ile Val Asn 865 Trp Val Asp Lys Leu Ile Arg Asn Ala Ala 890 Ser Val Gln Ser Gly Val Ser Gln Pro Leu Leu Asp Arg Thr Val Pro 900 Asp Tyr Thr Thr Phe Thr Thr Val Gly Asp Trp Leu Asp Ala Ile Lys 915 Met Gly Arg Tyr Lys Glu Asn Phe Val Asn Ala Gly Phe Ala Ser Phe 930 Asp Leu Val Ala Gln Met Thr Ala Glu Asp Leu Leu Arg 1955 Thr Leu Ala Gly His Gln Lys Lys Ile Leu Ser Ser Ile Gln Asp Met 945 Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val 986 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (ii) SEQUENCE CHARACTERISTICS: (iii) SEQUENCE CHARACTERISTICS: (iiii) SEQUENCE CHARACTERISTICS: (iiiii) SEQUENCE CHARACTERISTICS: (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii																
Ser Asn Gln Asp Val Ile Asn Ala Val Glu Gln Asp Tyr Arg Leu Pro 850 Pro Pro Met Asp Cys Pro Thr Ala Leu His Gln Leu Met Leu Asp Cys 850 Trp Val Arg Asp Arg Asn Leu Arg Pro Lys Phe Ala Gln Ile Val Asn 880 Thr Leu Asp Lys Leu Ile Arg Asn Ala Ala Ser Leu Lys Val Ile Ala 885 Ser Val Gln Ser Gly Val Ser Gln Pro Leu Leu Asp Arg Thr Val Pro 900 Asp Tyr Thr Thr Phe Thr Thr Val Gly Asp Trp Leu Asp Ala Ile Lys 915 Met Gly Arg Tyr Lys Glu Asn Phe Val Asn Ala Gly Phe Ala Ser Phe 930 Asp Leu Val Ala Gln Met Thr Ala Glu Asp Leu Leu Arg Ile Gly Val 945 Leu Val Ala Gly His Gln Lys Lys Ile Leu Ser Ser Ile Gln Asp Met 970 Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val 985 (1) SEQUENCE CHARACTERISTICS: (3) LENGTH: 3254 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both	Ala	Tyr	Arg	Lys		Thr	Ser	Ala	Ser		Val	Trp	Ser	Tyr		Ile
Record R	Val	Met	Trp		Val	Met	Ser	Tyr		Glu	Arg	Pro	Tyr		Asp	Met
850	Ser	Asn		Asp	Val	Ile	Asn		Val	Glu	Gln	Asp		Arg	Leu	Pro
865 Thr Leu Asp Lys Leu Ile Arg Asn Ala Ala Ser Leu Lys Val Ile Ala 895 Ser Val Gln Ser Gly Val Ser Gln Pro Leu Leu Asp Arg Thr Val Pro 900 Asp Tyr Thr Thr Phe Thr Thr Val Gly Asp Trp Leu Asp Ala Ile Lys 915 Met Gly Arg Tyr Lys Glu Asn Phe Val Asn Ala Gly Phe Ala Ser Phe 930 Asp Leu Val Ala Gln Met Thr Ala Glu Asp Leu Leu Arg Ile Gly Val 945 Thr Leu Ala Gly His Gln Lys Lys Ile Leu Ser Ser Ile Gln Asp Met 965 Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val 980 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (B) TYPE: nucleic acid (C) STRANDEDNESS: both	Pro		Met	Asp	Cys	Pro		Ala	Leu	His	Gln		Met	Leu	Asp	Cys
Ser Val Gln Ser Gly Val Ser Gln Pro Leu Leu Asp Arg Thr Val Pro 900 Asp Tyr Thr Thr Phe Thr Thr Val Gly Asp Trp Leu Asp 925 Met Gly Arg Tyr Lys Glu Asn Phe Val Asn Ala Gly Phe Ala Ser Phe 930 Asp Leu Val Ala Gln Met Thr Ala Glu Asp Leu Leu Arg Ile Gly Val 945 Thr Leu Ala Gly His Gln Lys Lys Ile Leu Ser Ser Ile Gln Asp Met 965 Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val 985 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3254 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: both		Val	Arg	Asp	Arg		Leu	Arg	Pro	Lys		Ala	Gln	Ile	Val	
Asp Tyr Thr Thr Phe Thr Thr Val Gly Asp Trp Leu Asp Ala Ile Lys 915 Met Gly Arg Tyr Lys Glu Asn Phe Val Asn Ala Gly Phe Ala Ser Phe 930 Asp Leu Val Ala Gln Met Thr Ala Glu Asp Leu Leu Arg Ile Gly Val 945 Thr Leu Ala Gly His Gln Lys Lys Ile Leu Ser Ser Ile Gln Asp Met 965 Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val 980 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (B) TYPE: nucleic acid (C) STRANDEDNESS: both	Thr	Leu	Asp	Lys	Leu 885	Ile	Arg	Asn	Ala		Ser	Leu	Lys	Val		Ala
Met Gly Arg Tyr Lys Glu Asn Phe Val Asn Ala Gly Phe Ala Ser Phe 930 Asp Leu Val Ala Gln Met Thr Ala Glu Asp Leu Arg Ile Gly Val 945 Thr Leu Ala Gly His Gln Lys Lys Ile Leu Ser Ser Ile Gln Asp Met 965 Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val 980 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3254 base pairs (B) Type: nucleic acid (C) STRANDEDNESS: both	Ser	Val	Gln	Ser 900	Gly	Val	Ser	Gln		Leu	Leu	Asp	Arg		Val	Pro
Asp Leu Val Ala Gln Met Thr Ala Glu Asp Leu Leu Arg Ile Gly Val 945 Thr Leu Ala Gly His Gln Lys Lys Ile Leu Ser Ser Ile Gln Asp Met 965 Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val 980 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3254 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both	qaA	Tyr	Thr 915	Thr	Phe	Thr	Thr		Gly	Asp	Trp	Leu		Ala	Ile	Lys
945 950 955 960 Thr Leu Ala Gly His Gln Lys Lys Ile Leu Ser Ser Ile Gln Asp Met 965 Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val 980 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3254 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both	Met	Gly 930	Arg	Tyr	Lys	Glu	Asn 935	Phe	Val	Asn	Ala		Phe	Ala	Ser	Phe
965 970 975 Arg Leu Gln Met Asn Gln Thr Leu Pro Val Gln Val 980 985 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3254 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both	Asp 945	Leu	Val	Ala	Gln	Met 950	Thr	Ala	Glu	Asp		Leu	Arg	Ile	Gly	
980 985 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3254 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both	Thr	Leu	Ala	Gly	His 965	Gln	Lys	Lys	Ile		Ser	Ser	Ile	Gln		Met
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3254 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: both	Arg	Leu	Gln		Asn	Gln	Thr	Leu		Val	Glņ	Val				•
(A) LENGTH: 3254 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: both	(2)	INFO	RMAT	ION.	FOR	SEQ	ID N	10:15	i:							
		(i)	(A (E (C	l) LE () TY () ST	NGTH PE: RAND	: 32 nucl EDNE	54 teic	ase acid both	pair I	`s						

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 32..2980

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CGCTCTGCTC GCGCGCTGCT GCCCCGCCGA C ATG GAC CGC CGC CGC CTG CCG Met Asp Arg Arg Leu Pro 1 5	52
CTG CTG CTG CTC TGC GCT GCC CTC GGC TCC GGC GG	100
CGC CCC GGC AAC GAA GTT AAT CTG CTG GAT TCA AAA ACA ATT CAA GGG Arg Pro Gly Asn Glu Val Asn Leu Leu Asp Ser Lys Thr Ile Gln Gly 25 30 35	148
GAG CTG GGC TGG ATC TCC TAC CCA TCA CAT GGG TGG GAA GAG ATT AGT Glu Leu Gly Trp Ile Ser Tyr Pro Ser His Gly Trp Glu Glu Ile Ser 40 50 55	196

PCT/US94/10140 WO 95/15375

										86							
			GAG Glu														244
			CAC His 75														292
			GCG Ala														340
			AGT Ser													-	388
			TAC Tyr														436
_			TTT Phe														484
_	_		GAT Asp 155														532
			GGA Gly														580
			GCA Ala														628
			TTC Phe														676
			TCC Ser														724
			GAG Glu 235														772
Glu	Trp	Leu 250	GTG Val	Pro	Ile	Gly	Lÿs 255	Cys	Leu	Cys	Asn	Ala 260	Gly	Tyr	Glu		820
			TTT Phe														868
TCT Ser 280	GCT Ala	GGC Gly	AAT Asn	GTG Val	AAG Lys 285	TGT Cys	GCC Ala	AAA Lys	TGC Cys	CCA Pro 290	CCT Pro	CAC His	AGC Ser	TCT Ser	ACC Thr 295		916
Tyr	Glu	Ąsp	GCA Ala	Ser 300	Leu ·	Asn	Суѕ	Arg	Сув 305	Glu	Lys	Asn	Tyr	Phe 310	Arg		964
			GAC Asp 315													1	012

										•							
CCA Pro	AGA Arg	AAC Asn 330	GTT Val	ATT	TCT Ser	AAC Asn	ATC Ile 335	Asn	GAG Glu	ACA Thr	TCT Ser	GTT Val 340	Ile	CTG Leu	GAC Asp	1	1060
TGG	AGC Ser 345	Trp	CCT Pro	CTT Leu	GAT Asp	ACA Thr 350	GGA Gly	GGT	CGA Arg	AAA Lys	GAT Asp 355	Val	AC1	TTC Phe	AAC Asn	1	108
ATC Ile 360	Ile	TGC Cys	AAA Lys	AAA Lys	TGT Cys 365	Gly	GGA Gly	AGC Ser	AGC Ser	AAG Lys 370	Ile	TGT Cys	GAG Glu	CCT Pro	TGC Cys 375	3	1156
AGT Ser	GAC Asp	AAC Asn	GTA Val	CGG Arg 380	TTC Phe	TTA Leu	CCC	CGT Arg	CAG Gln 385	ACT Thr	GGC	CTC Leu	ACC Thr	AAC Asn 390	ACC	1	204
ACG Thr	GTG Val	ACA Thr	GTA Val 395	GTG Val	GAC Asp	CTT Leu	TTG Leu	GCA Ala 400	CAT His	ACC Thr	AAT Asn	TAC	ACT Thr 405	Phe	GAG Glu	1	.252
ATT Ile	GAT Asp	GCA Ala 410	GTC Val	AAC Asn	GGG Gly	GTA Val	TCT Ser 415	GAC Asp	TTG Leu	AGT Ser	ACA Thr	CTT Leu 420	Ser	AGA Arg	CAA Gln	1	.300
TTT Phe	GCT Ala 425	GCT Ala	GTC Val	AGC Ser	ATC Ile	ACG Thr 430	ACT Thr	AAT Asn	CAG Gln	GCT Ala	GCG Ala 435	CCA Pro	TCC Ser	Pro	ATC Ile	1	348
ACA Thr 440	GTG Val	ATA Ile	AGG Arg	AAC Asn	GAC Asp 445	CGG Arg	ACA Thr	TCC Ser	AGG Arg	AAC Asn 450	AGC Ser	GTG Val	TCT Ser	CTG Leu	TCT Ser 455	1	396
Trp	Gln	Glu	Pro	Glu 460	His	CCA Pro	Asn	Gly	Ile 465	Ile	Leu	Asp	Tyr	Glu 470	Val	1	444
AAA Lys	TAC Tyr	TAC Tyr	GAA Glu 475	AAG Lys	CAG Gln	GAA Glu	CAA Gln	GAG Glu 480	ACA Thr	AGC Ser	TAT Tyr	ACT Thr	ATT Ile 485	. CTG Leu	AGA Arg	1	492
Ala	Lys	Ser 490	Thr	Asn	Val	ACT Thr	Ile 495	Ser	Gly	Leu	Lys	Pro 500	Asp	Thr	Thr	1	540
TAC Tyr	GTC Val 505	TTC Phe	CAA Gln	ATT Ile	CGA Arg	GCC Ala 510	CGA Arg	ACT Thr	GCA Ala	GCT Ala	AGA Arg 515	TAT Tyr	GGG Gly	ACA Thr	AGC Ser	1	588
520	Arg	гÀз	Phe	Glu	Phe 525	GAA Glu	Thr	Ser	Pro	Asp 530	Ser	Phe	Ser	Ile	Ser 535	1	636
ser	GIU	Asn	Ser	G1n 540	Val	GTT Val	Met	Ile	Ala 545	Ile	Ser	Ala	Ala	Val 550	Ala	10	684
116	116	Leu	Leu 555	Thr	Val	GTT Val	Val	Tyr 560	Val	Leu	Ile	Gly	Arg 565	Phe	Cys	1	732
сту	ıyr	ьуs 570	Lys	Ser	Lys		Gly 575	Thr	Asp	Glu	Lys	Arg 580	Leu	His	Phe	1	780
GGG Gly	AAT Asn 585	GGC Gly	CAC His	TTA Leu	AAA Lys	CTC Leu 590	CCA Pro	GGC Gly	CTG Leu	AGA Arg	ACT Thr 595	TAT Tyr	GTA Val	GAT Asp	CCA Pro	18	328

										66						
			GAA Glu													1876
			TCT Ser													1924
			GTG Val 635													1972
			GCC Ala													2020
			TTC Phe													2068
			ATC Ile													2116
			ACT Thr													2164
			GAT Asp 715													2212
			GCA Ala													2260
			CTA Leu													2308
			TCA Ser													2356
GAA Glu	GCT Ala	GCT Ala	TAC Tyr	ACA Thr 780	ACA Thr	AGG Arg	GGG	GGC Gly	AAG Lys 785	ATT Ile	CCC Pro	ATC Ile	CGA Arg	TGG Trp 790	ACG Thr	2404
			GCC Ala 795													2452
TGG Trp	AGC Ser	TAT Tyr 810	GGG Gly	ATT Ile	GTC Val	CTC Leu	TGG Trp 815	GAG Glu	GTG Val	ATG Met	TCT Ser	TAT Tyr 820	GGA Gly	GAA Glu	AGG Arg	2500
CCG Pro	TAC Tyr 825	TGG Trp	GAG Glu	ATG Met	TCC Ser	TTC Phe 830	CAG Gln	GAC Asp	GTA Val	ATT Ile	AAA Lys 835	GCC Ala	GTT Val	GAT Asp	GAA Glu	2548
			TTG Leu											Tyr		2596
			GAC Asp													2644

89

					ATC Ile											2692
					AAT Asn											2740
					GAC Asp											2788
					ACA Thr 925											2836
					GAT Asp								Asp			2884
					ACA Thr											2932
AGT Ser	ATC Ile	AAA Lys 970	ACT Thr	CTA Leu	GAA Glu	ACT Thr	CAT His 975	ACG Thr	AAG Lys	AAC Asn	AGC Ser	CCT Pro 980	GTT Val	CCT Pro	GTG Val	2980
TAAC	GTAC	CA A	YTAAL	SATG	T GC	TGAG	GAC	A GA	LAAA	AAG	AAA	GTCG	CA 1	CAAA	GTGCA	3040
AAA	CGAT	rgg (TGAT	DAAAT	G GC	ACGO	TTT?	AAC	GAGI	TCT	TTGC	AGCA	GT 1	TTGG	AAACA	3100
TAAT	rggti	GA A	ATTI	CAA	c cc	ACTO	AGAC	ACT	CAAZ	TAC	TGAG	TATA	L AA	GCCI	TAAAA	3160
ATAC	GAGO	GA A	CTT	TTT	C TA	TCT	TTA	TCC	TGA	GGG	TGGG	TGCT	CT 1	AACT	GACTG	3220
TTA	ATGC	GA 7	TAGTA	TTAA!	T CA	AAAA	AAA/	AAC	'G							3254

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 983 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Asp Arg Arg Leu Pro Leu Leu Leu Cys Ala Ala Leu Gly
1 5 10 15

Ser Ala Gly Arg Leu Ser Ala Arg Pro Gly Asn Glu Val Asn Leu Leu 20 25 30

Asp Ser Lys Thr Ile Gln Gly Glu Leu Gly Trp Ile Ser Tyr Pro Ser 35 40 45

His Gly Trp Glu Glu Ile Ser Gly Val Asp Glu His Tyr Thr Pro Ile 50 60

Arg Thr Tyr Gln Glu Ser Asn Val Met Asp His Ser Gln Asn Asn Trp 65 70 75 80

Leu Arg Thr Asn Trp Ile Pro Arg Asn Ser Ala Gln Lys Ile Tyr Val 85 90 95

Glu Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Ile Pro Leu Val Leu Gly Thr Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Met Glu Ser Asp Asp 115 120 125 Asp His Leu Ala Lys Phe Arg Glu His Gln Phe Thr Lys Ile Asp Thr Met Ala Ala Asp Glu Ser Phe Thr Gln Met Asp Leu Gly Asp Arg Ile Leu Lys Leu Asn Thr Glu Val Arg Glu Val Gly Pro Val Ser Lys Lys 165 170 175 Gly Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys Val Ala Leu Val 180 185 190 Ser Val Arg Val Tyr Phe Lys Lys Cys Pro Phe Thr Val Lys Asn Leu Ala Met Phe Pro Asp Thr Val Pro Met Asp Ser Gln Ser Leu Val Glu Val Arg Gly Ser Cys Val Asn His Ser Lys Glu Glu Glu Pro Pro Lys Met Tyr Cys Ser Thr Glu Gly Glu Trp Leu Val Pro Ile Gly Lys Cys 245 250 255 Leu Cys Asn Ala Gly Tyr Glu Glu Arg Gly Phe Ala Cys Gln Ala Cys 260 265 270Arg Pro Gly Phe Tyr Lys Ala Ser Ala Gly Asn Val Lys Cys Ala Lys 275 280 285 Cys Pro Pro His Ser Ser Thr Tyr Glu Asp Ala Ser Leu Asn Cys Arg 290 295 300 Cys Glu Lys Asn Tyr Phe Arg Ser Glu Lys Asp Pro Pro Ser Met Ala 305 310 320 Cys Thr Arg Pro Pro Ser Ala Pro Arg Asn Val Ile Ser Asn Ile Asn Glu Thr Ser Val Ile Leu Asp Trp Ser Trp Pro Leu Asp Thr Gly Gly Arg Lys Asp Val Thr Phe Asn Ile Ile Cys Lys Lys Cys Gly Gly Ser 355 360 365 Ser Lys Ile Cys Glu Pro Cys Ser Asp Asn Val Arg Phe Leu Pro Arg 370 375 380 Gln Thr Gly Leu Thr Asn Thr Thr Val Thr Val Val Asp Leu Leu Ala His Thr Asn Tyr Thr Phe Glu Ile Asp Ala Val Asn Gly Val Ser Asp Leu Ser Thr Leu Ser Arg Gln Phe Ala Ala Val Ser Ile Thr Thr Asn 420 425 430 Gln Ala Ala Pro Ser Pro Ile Thr Val Ile Arg Asn Asp Arg Thr Ser

Arg Asn Ser Val Ser Leu Ser Trp Gln Glu Pro Glu His Pro Asn Gly Ile Ile Leu Asp Tyr Glu Val Lys Tyr Tyr Glu Lys Gln Glu Gln Glu Thr Ser Tyr Thr Ile Leu Arg Ala Lys Ser Thr Asn Val Thr Ile Ser Gly Leu Lys Pro Asp Thr Thr Tyr Val Phe Gln Ile Arg Ala Arg Thr 505 Ala Ala Arg Tyr Gly Thr Ser Ser Arg Lys Phe Glu Phe Glu Thr Ser Pro Asp Ser Phe Ser Ile Ser Ser Glu Asn Ser Gln Val Val Met Ile Ala Ile Ser Ala Ala Val Ala Ile Ile Leu Leu Thr Val Val Val Tyr 545 550 555 560 Val Leu Ile Gly Arg Phe Cys Gly Tyr Lys Lys Ser Lys His Gly Thr 565 570 575 Asp Glu Lys Arg Leu His Phe Gly Asn Gly His Leu Lys Leu Pro Gly 585 Leu Arg Thr Tyr Val Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val His Glu Phe Ala Lys Glu Leu Asp Ala Ser Asn Ile Ser Ile Asp 610 615 620 Lys Val Val Gly Ala Gly Glu Phe Gly Glu Val Cys Ser Gly Arg Leu 625 630 635 640 Lys Leu Pro Ser Lys Lys Glu Ile Ser Val Ala Ile Lys Thr Leu Lys 645 650 655 Ala Gly Tyr Thr Glu Lys Gln Arg Arg Asp Phe Leu Gly Glu Ala Ser 660 665 670Ile Met Gly Gln Phe Asp His Pro Asn Ile Ile Arg Leu Glu Gly Val Val Thr Lys Ser Lys Pro Val Met Ile Val Thr Glu Tyr Met Glu Asn Gly Ser Leu Asp Ser Phe Leu Arg Lys His Asp Ala Gln Phe Thr Val 705 710 715 720 Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ser Gly Met Lys Tyr
725 730 735 Leu Ser Asp Met Gly Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Ile Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser 755 760 765 Arg Val Leu Glu Asp Asp Pro Glu Ala Ala Tyr Thr Thr Arg Gly Gly 770 780 Lys Ile Pro Ile Arg Trp Thr Ser Pro Glu Ala Ile Ala Tyr Arg Lys 785 790 795 800

PCT/US94/10140 WO 95/15375

										92					
Phe	Thr	Ser.	Ala	Ser 805	Asp	Ala	Trp	Ser	Tyr. 810	Gly	Ile	Val	Leu	Trp 815	Glu
Val	Met	Ser	Tyr 820	Gly	Glu	Arg	Pro	Tyr 825	Trp	Glu	Met	Ser	Phe 830	Gln	Asp
Val	Ile	Lys 835	Ala	Val	Asp	Glu	Gly 840	Tyr	Arg	Leu	Pro	Pro 845	Pro	Met	Asp
Cys	Pro 850	Ala	Ala	Leu	Tyr	Gln 855	Leu	Met	Leu	Asp	Сув 860	Trp	Gln	Lys	Asp
Arg 865	Asn	Asn	Arg	Pro	Lys 870	Phe	Glu	Gln	Ile	Val 875	Ser	Ile	Leu	Asp	Lys 880
Leu	Ile	Arg	Asn	Pro 885	Ser	Ser	Leu	Lys	Ile 890	Ile	Thr	Asn	Ala	Ala 895	Ala
Arg	Pro	Ser	Asn 900	Leu	Leu	Leu	Asp	Gln 905	Ser	Asn	Ile	Asp	11e 910	Ser	Ala
Phe	Arg	Thr 915	Ala	Gly _.	Asp	Trp	Leu 920	Asn	Gly	Phe	Arg	Thr 925	Gly	Gln	Cys
Lys	Gly 930	Ile	Phe	Thr	Gly	Val 935	Glu	тух	Ser	Ser	Сув 940	Asp	Thr	Ile	Ala
Lys 945	Ile	Ser	Thr	Asp	Asp 950	Met	Lys	Lys	Val	Gly 955	Val	Thr	Val	Val	Gly 960
Pro	Gln	Lys	Lys	11e 965	Val	Ser	Ser	Ile	Lys 970	Thr	Leu	Glu	Thr	His 975	Thr
Lys	Asn	Ser	Pro 980	Val	Pro	Val									
(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	10:17	7 :	-		•				
	(i)	() ()	A) L1 3) T1 C) S1	ENGTI YPE : I'RANI	H: 40	049 l leic SSS:	ISTIC pase acid both ear	pai:	cs						
	(ix)	(2		AMB/I	KEY:		. 2994	1							
	(xi)	SEC	QUENC	CE DI	ESCRI	PTIC	ON: S	SEQ I	D N	0:17:					
CGGC	TTCT						AG CO lu Ai 5				y Pı				

96

48

ACG CTG ATG GAC TCC ACA ACG GCC ACA GCA GAG CTG GGC TGG ATG GTG
Thr Leu Met Asp Ser Thr Thr Ala Thr Ala Glu Leu Gly Trp Met Val

CAT CCT CCC TCA GGG TGG GAA GAG GTG AGT GGA TAC GAT GAG AAC ATG His Pro Pro Ser Gly Trp Glu Glu Val Ser Gly Tyr Asp Glu Asn Met 50 55 60 192

															CAA Gln	240
	AAC Asn															288
ATC Ile	CAC His 95	GTG Val	GAG Glu	ATG Met	AAA Lys	TTC Phe 100	TCC Ser	GTT Val	CGG Arg	GAC Asp	TGC Cys 105	AGC Ser	AGC Ser	ATC Ile	CCC Pro	336
AAC Asn 110	GTC Val	CCG Pro	GGC Gly	TCC Ser	TGT Cys 115	AAG Lys	GAG Glu	ACT Thr	TTT Phe	AAC Asn 120	CTC Leu	TAT Tyr	TAC Tyr	TAC Tyr	GAA Glu 125	384
TCA Ser	GAC Asp	TTT Phe	GAC Asp	TCT Ser 130	GCC Ala	ACC Thr	AAG Lys	ACT Thr	TTT Phe 135	CCT Pro	AAC Asn	TGG Trp	ATG Met	GAA Glu 140	AAC Asn	432
CCT Pro	TGG Trp	ATG Met	AAG Lys 145	GTA Val	GAT Asp	ACA Thr	ATT	GCT Ala 150	GCC Ala	GAC Asp	GAG Glu	AGC Ser	TTC Phe 155	TCG Ser	CAG Gln	480
GTG Val	GAC Asp	CTT Leu 160	GGT Gly	GGG Gly	CGG Arg	GTG Val	ATG Met 165	AAG Lys	ATT Ile	AAC Asn	ACC Thr	GAG Glu 170	GTG Val	CGC Arg	AGT	528
TTT Phe	GGG Gly 175	CCT Pro	GTC Val	TCC Ser	AAA Lys	AAC Asn 180	GGT Gly	TTC Phe	TAC Tyr	CTG Leu	GCC Ala 185	TTC Phe	CAG Gln	GAC Asp	TAC Tyr	576
GGG Gly 190	GGC Gly	TGC Cys	ATG Met	TCC Ser	TTG Leu 195	ATT Ile	GCA Ala	GTC Val	CGT Arg	GTC Val 200	TTT Phe	TAC Tyr	CGC Arg	AAG Lys	TGT Cys 205	624
CCC Pro	CGT Arg	GTG Val	ATC Ile	CAG Gln 210	AAC Asn	GGG Gly	GCG Ala	GTC Val	TTC Phe 215	CAG Gln	GAA Glu	ACC Thr	CTC Leu	TCG Ser 220	GGA Gly	672
GCG Ala	GAG Glu	AGC Ser	ACA Thr 225	TCT Ser	CTG Leu	GTG Val	GCA Ala	GCC Ala 230	CGG Arg	GGG Gly	ACG Thr	TGC Cys	ATC Ile 235	AGC Ser	AAT Asn	720
GCG Ala	GAG Glu	GAG Glu 240	GTG Val	GAT Asp	GTG Val	CCC Pro	ATC Ile 245	AAG Lys	CTG Leu	TAC Tyr	TGC Cys	AAT Asn 250	GGG Gly	GAT Asp	GGC Gly	768
GAG Glu	TGG Trp 255	CTG Leu	GTG Val	CCC Pro	ATC Ile	GGC Gly 260	CGC Arg	TGC Cys	ATG Met	TGC Cys	AGG Arg 265	CCG Pro	GGC Gly	TAT Tyr	GAG Glu	816
TCG Ser 270	GTG Val	GAG Glu	AAT Asn	Gly	ACC Thr 275	GTC Val	TGC Cys	AGA Arg	GGC	TGC Cys 280	CCA Pro	TCA Ser	GGG Gly	ACC Thr	TTC Phe 285	864
AAG Lys	GCC Ala	AGC Ser	Gln	GGA Gly 290	GAT Asp	GAA Glu	GGA Gly	TGT Cys	GTC Val 295	CAT His	TGT Cys	CCA Pro	ATT Ile	AAC Asn 300	AGC Ser	912
CGG Arg	ACG Thr	Thr	TCG Ser 305	GAA Glu	GGG Gly	GCC Ala	Thr	AAC Asn 310	TGC Cys	GTG Val	TGC Cys	CGA Arg	AAC Asn 315	GGA Gly	TAT Tyr	960
TAC Tyr	CGG Arg	GCA Ala 320	GAT Asp	GCT Ala	GAC Asp	Pro	GTC Val 325	GAC Asp	ATG Met	CCA Pro	TGC Cys	ACC Thr 330	ACC Thr	ATC Ile	CCA Pro	1008

PCT/US94/10140 WO 95/15375

				-						94							
						ATC Ile 340										105	6
CTG Leu 350	GAG Glu	TGG Trp	ACC Thr	CCA Pro	CCA Pro 355	CGA Arg	GAC Asp	TCA Ser	GGG Gly	GGC Gly 360	CGG Arg	GAG Glu	GAT Asp	CTG Leu	GTA Val 365	110	. 4
						AGC Ser										115	2
						CAG Gln										120	0
						AGC Ser										124	8
						AAT Asn 420										129	6
						AAT Asn										134	4
						CAG Gln										139	2
						GAC Asp										144	0
_						AAG Lys									GCA Ala	148	8
						ACT Thr 500										153	6
						GTG Val										158	4
Arg	Tyr	Ser	Gly	Lys 530	Met	TAC Tyr	Phe	Gln	Thr 535	Met	Thr	Glu	Ala	Glu 540	Tyr	163	2
Gln	Thr	Ser	Val 545	Gln	Glu	AAG Lys	Leu	Pro 550	Leu	Ile	Ile	Gly	Ser 555	Ser	Ala	168	0
						ATT Ile										172	8
Asn	Arg 575	Arg	Arg	Gly	Phe	GAA Glu 580	Arg	Ala	Asp	Ser	Glu 585	Tyr	Thr	Asp	Lys	177	6
						GGC Gly								Ile		182	4

						GAA Glu									Phe		1872
						TCC Ser								Ile			1920
GCA Ala	GGG Gly	GAG Glu 640	TTT	GGT Gly	GAG Glu	GTG Val	TGC Cys 645	AGT Ser	GGG Gly	CAT His	CTC Leu	AAG Lys 650	Leu	CCT Pro	GGC Gly	•	1968
AAA Lys	AGA Arg 655	GAG Glu	ATC Ile	TTT Phe	GTG Val	GCC Ala 660	ATC Ile	AAG Lys	ACC Thr	CTG Leu	AAG Lys 665	TCT Ser	GGT Gly	TAC Tyr	ACA Thr		2016
GAG Glu 670	AAG Lys	CAG Gln	AGA Arg	CGG Arg	GAC Asp 675	TTC Phe	CTG Leu	AGT Ser	GAA Glu	GCC Ala 680	AGC Ser	ATC Ile	ATG Met	GGG Gly	CAG Gln 685		2064
TTT Phe	GAC Asp	CAC His	CCC Pro	AAT Asn 690	GTC Val	ATC Ile	CAC His	CTG Leu	GAA Glu 695	GGG Gly	GTG Val	GTG Val	ACC Thr	AAG Lys 700	AGT Ser		2112
Ser	Pro	Val	Met 705	Ile	Ile	ACA Thr	Glu	Phe 710	Met	Glu	Asn	Gly	Ser 715	Leu	Asp		2160
Ser	Phe	Leu 720	Arg	Gln	Asn	GAT Asp	Gly 725	Gln	Phe	Thr	Val	Ile 730	Gln	Leu	Val		2208
Gly	Met 735	Leu	Arg	Gly	Ile	GCA Ala 740	Ala	Gly	Met	Lys	Tyr 745	Leu	Ala	Asp	Met		2256
750	Tyr	Val	His	Arg	Asp 755	CTG Leu	Ala	Ala	Arg	Asn 760	Ile	Leu	Val	Asn	Ser 765		2304
Asn	Leu	Val	Суѕ	Lys 770	Val	TCC Ser	Asp	Phe	Gly 775	Leu	Ser	Arg	Phe	Leu 780	Glu		2352
Asp	Asp	Thr	Ser 785	Asp	Pro	ACT Thr	Tyr	Thr 790	Ser	Ala	Leu	Gly	Gly 795	Lys	Ile		2400
Pro	Ile	Arg 800	Trp	Thr	Ala	CCT Pro	Glu 805	Ala	Ile	Gln	Tyr	Arg 810	Lys	Phe	Thr		2448
Ser	Ala 815	Ser	Asp	Val	Trp	AGC Ser 820	Tyr	Gly	Iţe	Val	Met 825	Trp	Glu	Val	Met		2496
830	Tyr	Gly	Glu	Arg	Pro 835	TAC Tyr	Trp	Asp	Met	Thr 840	Asn	Gln	Asp	Val	Ile 845	,	2544
Asn	Ala	Ile	Glu	Gln 850	Asp	TAT Tyr	Arg	Leu	Pro 855	Pro	Pro	Met	Asp	Суs 860	Pro	:	2592
AAT Asn	GCC Ala	CTG Leu	CAC His 865	CAG Gln	CTA Leu	ATG Met	CTT Leu	GAC Asp 870	TGC Cys	TGG Trp	CAG Gln	AAG Lys	GAT Asp 875	CGA Arg	AAC Asn	:	2640

96	
CAC AGA CCC AAA TTT GGA CAG ATT GTC AAC ACT TTA GAC AAA ATG ATC His Arg Pro Lys Phe Gly Gln Ile Val Asn Thr Leu Asp Lys Met Ile 880 885 890	2688
CGA AAT CCT AAT AGT CTG AAA GCC ATG GCA CCT CTC TCC TCT GGG GTT Arg Asn Pro Asn Ser Leu Lys Ala Met Ala Pro Leu Ser Ser Gly Val 895 900 905	2736
AAC CTC CCT CTA CTT GAC CGC ACA ATC CCA GAT TAT ACC AGC TTC AAC Asn Leu Pro Leu Leu Asp Arg Thr Ile Pro Asp Tyr Thr Ser Phe Asn 910 915 920 925	2784
ACT GTG GAT GAA TGG CTG GAT GCC ATC AAG ATG AGC CAG TAC AAG GAG Thr Val Asp Glu Trp Leu Asp Ala Ile Lys Met Ser Gln Tyr Lys Glu 930 935 940	2832
AGC TTT GCC AGT GCT GGC TTC ACC ACC TTT GAT ATA GTA TCT CAG ATG Ser Phe Ala Ser Ala Gly Phe Thr Thr Phe Asp Ile Val Ser Gln Met 945 955	2880
ACT GTA GAG GAC ATT CTA CGA GTT GGG GTC ACT TTA GCA GGA CAC CAG Thr Val Glu Asp Ile Leu Arg Val Gly Val Thr Leu Ala Gly His Gln 960 970	2928
AAG AAA ATT CTG AAC AGT ATC CAG GTG ATG AGA GCA CAG ATG AAC CAA Lys Lys Ile Leu Asn Ser Ile Gln Val Met Arg Ala Gln Met Asn Gln 975 980 985	2976
ATT CAG TCT GTG GAG GTT TGATAGCAAC ACGTCCTCGT GCTCCACTTC Ile Gln Ser Val Glu Val 990 995	3024
CTTGAGGCCC TGCTCCCCTC TGCCCCTGTG TGTCTGAGCT CCAGTTCTTG AGTGTTCTGC	3084
GTGGATCAGA GACAGGCAGC TGCTCTGAGG ATCATGGCAA CAGGAAGAAA TGCCCTATCA	3144
TTGACAACGA GAAGTCATCA AGAGGTGAAA CAATGGAAAA CAATGGAAAA AGGGAACAAG	3204
TAAAGACAGC TATTTTGAAA ACCGAAAACA AACAGTGAAT TATTTTTAAA TAATAATAAA	3264
GCAATTGCAG TCTTGAAAAG GGCTCCAAGA CCAATGGGAG TCTCCAAAGG AAGAGAATAG	3324
AGCAGCTTCA TCTATTTCCT CTTACACAAG GGTTGCTGCA GCTGGGCCCA GACACTTCTG	3384
GAGTAACGAG ACTITICAAG AAGATGAATG CAAAGAATGG TCACAAGAAG CACTICTCTT	3444
TCTCACATGG GATGGCAGCT CTGGGAATGC CCGGCAGTCC TTCCTGAAAG CCCTGTTGGC	3504
AAATCGAAGA GGAGAGCCGA AGCTCTTTGG TGCTGTGGAA CCAAGTGCAT CTCAGAAATT	3564
GTTGGACTTC TACAAAAGCT GAAGACATTC TTTTTTTTTA AACAAGTAAA CTGATACTAG	3624
AAGAGGCTGT TTCCGTCAAA TGAGAAGGAA TCTGTAACAC TGGCCCGGGG GGGGTGGGGA	3684
ATGGGGGAAA TCAGTCCTTT TTACATCTCT TTATTTTCTC TTGTCATGGA ACAGTTTTGT	3744
GAGTGACAGT TTCCTAAGGG TCCGTCCATC CACCCTCCAA TGGCATCATT GTTTCATACA	3804
TATCATATGC ACAAGACTTA TAGTGATGTC CTCACTCGAT GCCAATGATC TTTCCCCAGA	3864
AGACTTCCCA AGTACAGTAT GTAGTAGATT TTGATTACAA ATGCTGACGT GTACCTTTAT	3924
TTTTCGGTTG TCGTTGTTGG GAGATTCGTC CTTTTACCTT GCTTTGTTAA CACCAATTTG	3984
TGAGTTTGGG GTTGGAATTT TTTTGGTCGA TTGGGGTTGT TTTTTTTTT TTTTTTTTT	4044
AACCG	4049

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 995 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Pro Gly Pro Glu Arg Thr Met Gly Pro Leu Trp Phe Cys Cys Leu 1 5 10 15

Pro Leu Ala Leu Leu Pro Leu Leu Ala Ala Val Glu Glu Thr Leu Met 20 25 30

Asp Ser Thr Thr Ala Thr Ala Glu Leu Gly Trp Met Val His Pro Pro 35 40 45

Ser Gly Trp Glu Glu Val Ser Gly Tyr Asp Glu Asn Met Asn Thr Ile
50 55 60

Arg Thr Tyr Gln Val Cys Asn Val Phe Glu Ser Ser Gln Asn Asn Trp 65 70 75 80

Leu Arg Thr Lys Tyr Ile Arg Arg Arg Gly Ala His Arg Ile His Val 85 90 95

Glu Met Lys Phe Ser Val Arg Asp Cys Ser Ser Ile Pro Asn Val Pro 100 100 110

Gly Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Tyr Glu Ser Asp Phe 115 120 125

Asp Ser Ala Thr Lys Thr Phe Pro Asn Trp Met Glu Asn Pro Trp Met 130 140

Lys Val Asp Thr Ile Ala Ala Asp Glu Ser Phe Ser Gln Val Asp Leu 145 150 155 160

Gly Gly Arg Val Met Lys Ile Asn Thr Glu Val Arg Ser Phe Gly Pro 165 170 175

Val Ser Lys Asn Gly Phe Tyr Leu Ala Phe Gln Asp Tyr Gly Gly Cys 180 185 190

Met Ser Leu Ile Ala Val Arg Val Phe Tyr Arg Lys Cys Pro Arg Val

Ile Gln Asn Gly Ala Val Phe Gln Glu Thr Leu Ser Gly Ala Glu Ser 210 220

Thr Ser Leu Val Ala Ala Arg Gly Thr Cys Ile Ser Asn Ala Glu Glu 225 230 235 240

Val Asp Val Pro Ile Lys Leu Tyr Cys Asn Gly Asp Gly Glu Trp Leu 245 250 255

Val Pro Ile Gly Arg Cys Met Cys Arg Pro Gly Tyr Glu Ser Val Glu 260 265 270

Asn Gly Thr Val Cys Arg Gly Cys Pro Ser Gly Thr Phe Lys Ala Ser 275 280 285

Gln Gly Asp Glu Gly Cys Val His Cys Pro Ile Asn Ser Arg Thr Thr 295 Ser Glu Gly Ala Thr Asn Cys Val Cys Arg Asn Gly Tyr Tyr Arg Ala Asp Ala Asp Pro Val Asp Met Pro Cys Thr Thr Ile Pro Ser Ala Pro Gln Ala Val Ile Ser Ser Val Asn Glu Thr Ser Leu Met Leu Glu Trp Thr Pro Pro Arg Asp Ser Gly Gly Arg Glu Asp Leu Val Tyr Asn Ile Ile Cys Lys Ser Cys Gly Ser Gly Arg Gly Ala Cys Thr Arg Cys Gly Asp Asn Val Gln Phe Ala Pro Arg Gln Leu Gly Leu Thr Glu Pro Arg 385 390 395 400 Ile Tyr Ile Ser Asp Leu Leu Ala His Thr Gln Tyr Thr Phe Glu Ile Gln Ala Val Asn Gly Val Thr Asp Gln Ser Pro Phe Ser Pro Gln Phe Ala Ser Val Asn Ile Thr Thr Asn Gln Ala Ala Pro Ser Ala Val Ser Ile Met His Gln Val Ser Arg Thr Val Asp Ser Ile Thr Leu Ser Trp Ser Gln Pro Asp Gln Pro Asn Gly Val Ile Leu Asp Tyr Glu Leu Gln Tyr Tyr Glu Lys Asn Leu Ser Glu Leu Asn Ser Thr Ala Val Lys Ser 490 Pro Thr Asn Thr Val Thr Val Gln Asn Leu Lys Ala Gly Thr Ile Tyr 500 505 510 Val Phe Gln Val Arg Ala Arg Thr Val Ala Gly Tyr Gly Arg Tyr Ser Gly Lys Met Tyr Phe Gln Thr Met Thr Glu Ala Glu Tyr Gln Thr Ser Val Gln Glu Lys Leu Pro Leu Ile Ile Gly Ser Ser Ala Ala Gly Leu Val Phe Leu Ile Ala Val Val Val Ile Ile Val Cys Asn Arg Arg Arg Gly Phe Glu Arg Ala Asp Ser Glu Tyr Thr Asp Lys Leu Gln His Tyr Thr Ser Gly His Met Thr Pro Gly Met Lys Ile Tyr Ile Asp Pro 600 Phe Thr Tyr Glu Asp Pro Asn Glu Ala Val Arg Glu Phe Ala Lys Glu Ile Asp Ile Ser Cys Val Lys Ile Glu Gln Val Ile Gly Ala Gly Glu

Phe Gly Glu Val Cys Ser Gly His Leu Lys Leu Pro Gly Lys Arg Glu 645 650 655 Ile Phe Val Ala Ile Lys Thr Leu Lys Ser Gly Tyr Thr Glu Lys Gln 660 665 670 Arg Arg Asp Phe Leu Ser Glu Ala Ser Ile Met Gly Gln Phe Asp His 680 Pro Asn Val Ile His Leu Glu Gly Val Val Thr Lys Ser Ser Pro Val Met Ile Ile Thr Glu Phe Met Glu Asn Gly Ser Leu Asp Ser Phe Leu Arg Gln Asn Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu 725 730 735 Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asp Met Asn Tyr Val 740 745 750 His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val 755 760 765 Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Phe Leu Glu Asp Asp Thr 770 775 780 Ser Asp Pro Thr Tyr Thr Ser Ala Leu Gly Gly Lys Ile Pro Ile Arg 785 790 795 800 Trp Thr Ala Pro Glu Ala Ile Gln Tyr Arg Lys Phe Thr Ser Ala Ser 805 810 815 Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Asp Met Thr Asn Gln Asp Val Ile Asn Ala Ile Glu Gln Asp Tyr Arg Leu Pro Pro Pro Met Asp Cys Pro Asn Ala Leu 850 855 860 His Gln Leu Met Leu Asp Cys Trp Gln Lys Asp Arg Asn His Arg Pro 865 870 870 875 880 Lys Phe Gly Gln Ile Val Asn Thr Leu Asp Lys Met Ile Arg Asn Pro Asn Ser Leu Lys Ala Met Ala Pro Leu Ser Ser Gly Val Asn Leu Pro 900 905 910 Leu Leu Asp Arg Thr Ile Pro Asp Tyr Thr Ser Phe Asn Thr Val Asp 915 920 925 Glu Trp Leu Asp Ala Ile Lys Met Ser Gln Tyr Lys Glu Ser Phe Ala Ser Ala Gly Phe Thr Thr Phe Asp Ile Val Ser Gln Met Thr Val Glu Asp Ile Leu Arg Val Gly Val Thr Leu Ala Gly His Gln Lys Lys Ile 965 970 975 Leu Asn Ser Ile Gln Val Met Arg Ala Gln Met Asn Gln Ile Gln Ser

PCT/US94/10140 **WO** 95/15375

100

Val Glu Val

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3125 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: both
 (D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 2..2233

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

			GG G/ rg As		an Se			ly L	46
			TTT Phe						94
			AGA Arg						142
			TTC Phe						190
			GTG Val 70						238
			CAG Gln						286
			AAG Lys						334
			ATC Ile						382
			GTC Val						430
			GAG Glu 150						478
			TAC Tyr						526
			GTG .Val						 574

										101						
ATC	TCC Ser	CTT Leu	TCC Ser 195	Trp	CAG Gln	GAG Glu	CCA Pro	GAT Asp 200	Arg	CCC Pro	AAC Asn	GGC	ATC Ile 205	Ile	CTG Leu	622
GAA Glu	TAC	GAA Glu 210	Ile	AAA Lys	TAT	TTT Phe	GAA Glu 215	Lys	GAC Asp	CAG Gln	GAG Glu	ACA Thr 220	AGC Ser	TAC	ACC Thr	670
ATC Ile	ATC Ile 225	Lys	TCC Ser	AAA Lys	GAG Glu	ACC Thr 230	GCA Ala	ATT	ACG Thr	GCA Ala	GAT Asp 235	Gly	TTG Leu	AAA Lys	CCA Pro	718
GGC Gly 240	Ser	GCG Ala	TAC Tyr	GTC Val	TTC Phe 245	CAG Gln	ATC Ile	CGA Arg	GCC Ala	CGG Arg 250	Thr	GCT Ala	GCT Ala	GGC Gly	TAC Tyr 255	766
GGT Gly	GGC	TTC Phe	AGT Ser	CGA Arg 260	AGA Arg	TTT Phe	GAG Glu	TTT	GAA Glu 265	ACC Thr	AGC Ser	CCA Pro	GTG Val	TTA Leu 270	GCT Ala	814
GCA Ala	TCC Ser	AGT Ser	GAC Asp 275	CAG Gln	AGC Ser	CAG Gln	ATT Ile	CCT Pro 280	Ile	ATT Ile	GTT Val	GTG Val	TCT Ser 285	GTA Val	ACA Thr	862
GTG Val	GGA Gly	GTT Val 290	ATT Ile	CTG Leu	CTG Leu	GCT Ala	GTT Val 295	GTT Val	ATC Ile	GGT Gly	TTC Phe	CTT Leu 300	CTC Leu	AGT Ser	GGA Gly	910
AGT Ser	TGC Cys 305	TGC Cys	GAT Asp	CAT His	GGC Gly	TGT Cys 310	GGG Gly	TGG Trp	GCT Ala	TCT Ser	TCT Ser 315	CTG Leu	CGT Arg	GCT Ala	GTT Val	958
GCC Ala 320	TAT Tyr	CCG Pro	AGC Ser	CTA Leu	ATA Ile 325	TGG Trp	CGC Arg	TGT Cys	GGC Gly	TAC Tyr 330	AGC Ser	AAG Lys	GCT Ala	AAA Lys	CAA Gln 335	1006
GAC Asp	CCA Pro	GAA Glu	GAA Glu	GAA Glu 340	AAG Lys	ATG Met	CAT His	TTT	CAT His 345	AAT Asn	GGC Gly	CAC His	ATT Ile	AAA Lys 350	CTG Leu	1054
CCT Pro	GGT Gly	GTA Val	AGA Arg 355	ACC Thr	TAC Tyr	ATT Ile	GAT Asp	CCC Pro 360	CAC His	ACC Thr	TAT Tyr	GAG Glu	GAC Asp 365	CCT Pro	AAT Asn	1102
GIn	Ala	741 370	His	Glu	Phe	GCC Ala	Lys 375	Glu	Ile	Glu	Ala	Ser 380	Суѕ	Ile	Thr	1150
116	385	Arg	Val	Ile	Gly	GCT Ala 390	Gly	Glu	Phe	Gly	Glu 395	Val	Cys	Ser	Gly	1198
Arg 400	Leu	Lys	Leu	Gln	Gly 405	AAA Lys	Arg	Glu	Phe	Pro 410	Val	Ala	Ile	Lys	Thr 415	1246
CTG Leu	AAG Lys	GTG Val	GGC Gly	TAC Tyr 420	ACA Thr	GAG Glu	AAG Lys	CAA Gln	AGG Arg 425	CGA Arg	GAT Asp	TTC Phe	CTG Leu	GGA Gly 430	GAA Glu	1294
GCG Ala	AGC Ser	ATC Ile	ATG Met 435	GGG Gly	CAG Gln	TTC Phe	GAC Asp	CAC His 440	CCC Pro	AAC Asn	ATC Ile	ATC Ile	CAC His 445	CTG Leu	GAA Glu	1342
GGT Gly	GTC Val	GTC Val 450	ACA Thr	AAA Lys	AGC Ser	AAA Lys	CCT Pro 455	GTA Val	ATG Met	ATA Ile	GTA Val	ACG Thr 460	GAA Glu	TAC Tyr	ATG Met	1390

														•			
_															TTC Phe		1438
															ATG Met 495		1486
															AGG Arg		1534
															GGC Gly		1582
										GCA Ala					AGG Arg		1630
										CCT Pro							1678
CGC Arg 560	AAA Lys	TTC Phe	ACG Thr	TCG Ser	GCC Ala 565	AGC Ser	GAT Asp	GTG Val	TGG Trp	AGC Ser 570	TAC Tyr	GGC Gly	ATT Ile	GTG Val	ATG Met 575		1726
TGG Trp	GAA Glu	GTG Val	ATG Met	TCC Ser 580	TAT Tyr	GGC Gly	GAG Glu	AGA Arg	CCT Pro 585	TAC Tyr	TGG Trp	GAA Glu	ATG Met	ACA Thr 590	AAC Asn		1774
CAA Gln	GAT Asp	GTG Val	ATT Ile 595	AAA Lys	GCC Ala	GTG Val	GAG Glu	GAA Glu 600	GGC Gly	TAT Tyr	CGC Arg	CTG Leu	CCA Pro 605	AGT Ser	CCC Pro	•	1822
ATG Met	GAC Asp	TGC Cys 610	CCT Pro	GCT Ala	GCT Ala	CTC Leu	TAC Tyr 615	CAG Gln	TTG Leu	ATG Met	CTT Leu	GAC Asp 620	TGC Cys	TGG Trp	CAG Gln		1870
AAA Lys	GAC Asp 625	CGC Arg	AAC Asn	AGC Ser	AGG Arg	CCC Pro 630	AAG Lys	TTT Phe	GAT Asp	GAA Glu	ATT Ile 635	GTC Val	AGC Ser	ATG Met	TTG Leu		1918
GAC Asp 640	AAG Lys	CTC Leu	ATC Ile	CGT Arg	AAC Asn 645	CCA Pro	AGC Ser	AGC Ser	TTG Leu	AAG Lys 650	ACG Thr	TTG Leu	GTT Val	AAT Asn	GCA Ala 655		1966
TCG Ser	AGC Ser	AGA Arg	GTA Val	TCA Ser 660	AAT Asn	TTG Leu	TTG Leu	GTA Val	GAA Glu 665	CAC His	AGT Ser	CCA Pro	GTG Val	GGG Gly 670	AGC Ser		2014
Gly	Ala	Tyr	Arg 675	Ser	Val	Gly	Glu	Trp 680	Leu	GAA Glu	Ala	Ile	Lys 685	Met	Gly		2062
CGA Arg	TAC Tyr	ACC Thr 690	GAG Glu	ATT Ile	TTC Phe	ATG Met	GAG Glu 695	AAT Asn	GGA Gly	TAC Tyr	AGT Ser	TCG Ser 700	ATG Met	GAT Asp	TCT Ser		2110
GTG Val	GCT Ala 705	CAG Gln	GTG Val	ACC Thr	CTA Leu	GAG Glu 710	GAT Asp	TTG Leu	AGG Arg	CGG Arg	CTG Leu 715	GGA Gly	GTG Val	ACA Thr	CTT Leu		2158
GTT Val 720	GGT Gly	CAC His	CAG Gln	AAG Lys	AAG Lys 725	Ile	ATG Met	AAC Asn	AGC Ser	CTT Leu 730	CAA Gln	GAG Glu	ATG Met	AAG Lys	GTC Val 735		2206

103

CAG TTG GTG A Gln Leu Val A				FTT TTTAAGTO	CAC	2253
TTCCTCGAGT GO	STEGGTEET	GCACTTTGTA	TACTAGCTCT	GAGATTTATT	TTGACTAAAG	2313
AAGAAAAAG GO	BAAATTCAG	TGGTTTCTGT	AACTGAAGGA	CGCTGGCTTC	TGCCACAGCA	2373
TTTATAAAGC AG	TGTTTGAC	TGAAGTTTTC	ATTTTCTTCC	TATTTGTGTC	CTCATTCTCA	2433
TGAAGTAAAT GI	TAACATGCA	TGGAACATGG	AAATGGATCT	ACTGTACATG	AGGTTACCCA	2493
ATTTCTTGCG CT	TCAGCATG	ACAACAGCAA	GCCTTCCCAC	CACATGTTGT	CTATACATGG	2553
GAGATATATA TA	ATATGCATA	ТАТАТАТАТА	GCACCTTTAT	ATACTGAATT	ACAGCAGCAG	2613
CACATGITAA TA	ACTTCCAAG	GACTTACTTG	ACTAGAGAAG	TTTTGCAGCC	ATTGTGGGCT	2673
CACACAAGCT GO	GGTTTACT	GAAGTTTACT	TCAAGTCTTA	CTTGTCTACA	GAAGTGTATT	2733
GAAGAGCAAT AI	rgattagat	TATTTCTGGA	TAGATATTTT	GTTTTGTAAA	TTAAAAATT	2793
CGTGTTACAC AG	CGTTAAGT	TATAGAGACT	agtgtataaa	CATGTTGCTT	GCTCAATGGC	2853
AAATACAATA CA	AGGGTGTAT	ATTTTTTTCT	CTCTGTGTTG	CAAAGTTCTT	TTAGTTTGCT	2913
CTTCTGTGAG GA	ATAATACGT	TATGATGTAT	ATACTGTACA	GTTTGCTACA	CATCAGGTAC	2973
AAGATTGGGG CI	TTCTCAAT	GTTTTGTTCT	TTTTCCCTCT	TTTGTTTCAT	TTTGTCTTCC	3033
TTTTGTGTTA AC	CACTATGC	TTTGTATTTT	TGCTGCTGTT	TGGTTTGAGG	CAACATATAA	3093
AGCTTTCAGG TO	TTTTGATT	АТААААААА	AG			3125

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 744 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu Pro Gly Gly Leu Gly
1 5 10 15

Thr Cys Lys Glu Thr Phe Asn Met Tyr Tyr Phe Glu Ser Asp Asp Glu $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Asp Gly Arg Asn Ile Arg Glu Asn Gln Tyr Ile Lys Ile Asp Thr Ile 35 40 45

Ala Ala Asp Glu Ser Phe Thr Glu Leu Asp Leu Gly Asp Arg Val Met $50 \hspace{1cm} 55 \hspace{1cm} 60 \hspace{1cm}$

Lys Leu Asn Thr Glu Val Arg Asp Val Gly Pro Leu Thr Lys Lys Gly 65 70 75 80

Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys Ile Ala Leu Val Ser 85 90 95

Val Arg Val Tyr Tyr Lys Lys Cys Pro Ser Val Ile Arg Asn Leu Ala

Arg Phe Pro Asp Thr Ile Thr Gly Ala Asp Ser Ser Gln Leu Leu Glu Val Ser Gly Val Cys Val Asn His Ser Val Thr Asp Glu Ala Pro Lys Met His Cys Ser Ser Glu Gly Glu Trp Leu Val Pro Ile Gly Lys Cys Leu Cys Lys Ala Gly Tyr Glu Glu Lys Asn Asn Thr Cys Gln Ala Pro 165 170 175 Ser Pro Val Ser Ser Val Lys Lys Gly Lys Ile Thr Lys Asn Ser Ile 180 185 190 Ser Leu Ser Trp Gln Glu Pro Asp Arg Pro Asn Gly Ile Ile Leu Glu Tyr Glu Ile Lys Tyr Phe Glu Lys Asp Gln Glu Thr Ser Tyr Thr Ile 210 215 220 Ile Lys Ser Lys Glu Thr Ala Ile Thr Ala Asp Gly Leu Lys Pro Gly Ser Ala Tyr Val Phe Gln Ile Arg Ala Arg Thr Ala Ala Gly Tyr Gly 245 250 255Gly Phe Ser Arg Arg Phe Glu Phe Glu Thr Ser Pro Val Leu Ala Ala Ser Ser Asp Gln Ser Gln Ile Pro Ile Ile Val Val Ser Val Thr Val Gly Val Ile Leu Leu Ala Val Val Ile Gly Phe Leu Leu Ser Gly Ser Cys Cys Asp His Gly Cys Gly Trp Ala Ser Ser Leu Arg Ala Val Ala 305 310 315 320 Tyr Pro Ser Leu Ile Trp Arg Cys Gly Tyr Ser Lys Ala Lys Gln Asp 325 330 335 Pro Glu Glu Glu Lys Met His Phe His Asn Gly His Ile Lys Leu Pro Gly Val Arg Thr Tyr Ile Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val His Glu Phe Ala Lys Glu Ile Glu Ala Ser Cys Ile Thr Ile Glu Arg Val Ile Gly Ala Gly Glu Phe Gly Glu Val Cys Ser Gly Arg 385 390 395 400 Leu Lys Leu Gln Gly Lys Arg Glu Phe Pro Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr Glu Lys Gln Arg Arg Asp Phe Leu Gly Glu Ala 420 425 430 Ser Ile Met Gly Gln Phe Asp His Pro Asn Ile Ile His Leu Glu Gly Val Val Thr Lys Ser Lys Pro Val Met Ile Val Thr Glu Tyr Met Glu

105

Asn Gly Ser Leu Asp Thr Phe Leu Lys Lys Asn Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly Met Leu Arg Gly Ile Ala Ser Gly Met Lys 485 490 495 Tyr Leu Ser Asp Met Gly Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Ile Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu 515 520 525 Ser Arg Val Leu Glu Asp Asp Pro Glu Ala Ala Tyr Thr Thr Arg Gly 530 535 540 Gly Lys Ile Pro Ile Arg Trp Thr Ala Pro Glu Ala Ile Ala Phe Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp 565 570 575 Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Glu Met Thr Asn Gln Asp Val Ile Lys Ala Val Glu Glu Gly Tyr Arg Leu Pro Ser Pro Met Asp Cys Pro Ala Ala Leu Tyr Gln Leu Met Leu Asp Cys Trp Gln Lys 610 615 620 Asp Arg Asn Ser Arg Pro Lys Phe Asp Glu Ile Val Ser Met Leu Asp 625 630 635 640 Lys Leu Ile Arg Asn Pro Ser Ser Leu Lys Thr Leu Val Asn Ala Ser 645 650 655 Ser Arg Val Ser Asn Leu Leu Val Glu His Ser Pro Val Gly Ser Gly 665 Ala Tyr Arg Ser Val Gly Glu Trp Leu Glu Ala Ile Lys Met Gly Arg 675 680 685 Tyr Thr Glu Ile Phe Met Glu Asn Gly Tyr Ser Ser Met Asp Ser Val Ala Gln Val Thr Leu Glu Asp Leu Arg Arg Leu Gly Val Thr Leu Val Gly His Gln Lys Lys Ile Met Asn Ser Leu Gln Glu Met Lys Val Gln 725 730 735 Leu Val Asn Gly Met Val Pro Leu

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3056 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: both
 - (D) TOPOLOGY: linear

106

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 2..2131

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

						GG GI rg Ai			sn Se					ly L		46
						TTT Phe										94
						AGA Arg										142
						TTC Phe										190
						GTG Val 70										238
GGA Gly 80	TTT Phe	TAC Tyr	CTT Leu	GCT Ala	TTC Phe 85	CAG Gln	GAT Asp	GTG Val	GGC Gly	GCC Ala 90	TGC Cys	ATT Ile	GCC Ala	CTG Leu	GTC Val 95	286
						AAG Lys										334
						ATC Ile										382
						GTC Val										430
						GAG Glu 150						${\tt Pro}$				478
						TAC Tyr										526
						GTG Val										574
ATC Ile	TCC Ser	CTT Leu	TCC Ser 195	TGG Trp	CAG Gln	GAG Glu	CCA Pro	GAT Asp 200	CGA Arg	CCC Pro	AAC Asn	GGC Gly	ATC Ile 205	ATC Ile	CTG Leu	622
						TTT Phe										670
						ACC Thr 230										718

107

										107						
GGC Gly 240	TCA Ser	GCG Ala	TAC Tyr	GTC Val	TTC Phe 245	CAG Gln	ATC Ile	CGA Arg	GCC Ala	CGG Arg 250	ACA Thr	GCT Ala	GCT Ala	GGC Gly	TAC Tyr 255	766
GGT Gly	GGC Gly	TTC Phe	AGT Ser	CGA Arg 260	AGA Arg	TTT Phe	GAG Glu	TTT Phe	GAA Glu 265	ACC Thr	AGC Ser	CCA Pro	GTG Val	TTA Leu 270	GCT Ala	814
													TCT Ser 285			862
													CTC Leu			910
AGG Arg	CGC Arg 305	TGT Cys	GGC Gly	TAC Tyr	AGC Ser	AAG Lys 310	GCT Ala	AAA Lys	CAA Gln	GAC Asp	CCA Pro 315	GAA Glu	GAA Glu	GAA Glu	AAG Lys	958
													AGA Arg			1006
													CAC His			1054
													GTT Val 365			1102
													CTG Leu			1150
											Lys		GGC Gly		ACA Thr	_1198
													ATG Met			1246
													ACA Thr			1294
													TCT Ser 445			1342
ACA Thr	TTT Phe	TTA Leu 450	AAG Lys	AAG Lys	AAC Asn	GAT Asp	GGG Gly 455	CAG Gln	TTC Phe	ACG Thr	GTC Val	ATT Ile 460	CAG Gln	CTG Leu	GTC Val	1390
													TCT Ser			1438
													ATC Ile			1486
													GTC Val			1534

108

100	
GAT GAT CCT GAA GCA GCG TAC ACA ACC AGG GGA GGG AAG ATC CCC ATC Asp Asp Pro Glu Ala Ala Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile 515 525	1582
CGA TGG ACG GCA CCT GAA GCA ATC GCC TTC CGC AAA TTC ACG TCG GCC Arg Trp Thr Ala Pro Glu Ala Ile Ala Phe Arg Lys Phe Thr Ser Ala 530 540	1630
AGC GAT GTG TGG AGC TAC GGC ATT GTG ATG TGG GAA GTG ATG TCC TAT Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr 545 550 555	1678
GGC GAG AGA CCT TAC TGG GAA ATG ACA AAC CAA GAT GTG ATT AAA GCC Gly Glu Arg Pro Tyr Trp Glu Met Thr Asn Gln Asp Val Ile Lys Ala 560 570 575	1726
GTG GAG GAA GGC TAT CGC CTG CCA AGT CCC ATG GAC TGC CCT GCT GCT Val Glu Glu Gly Tyr Arg Leu Pro Ser Pro Met Asp Cys Pro Ala Ala 580 585 590	1774
CTC TAC CAG TTG ATG CTT GAC TGC TGG CAG AAA GAC CGC AAC AGC AGG Leu Tyr Gln Leu Met Leu Asp Cys Trp Gln Lys Asp Arg Asn Ser Arg 595 600 605	1822
CCC AAG TTT GAT GAA ATT GTC AGC ATG TTG GAC AAG CTC ATC CGT AAC Pro Lys Phe Asp Glu Ile Val Ser Met Leu Asp Lys Leu Ile Arg Asn 610 615 620	1870
CCA AGC AGC TTG AAG ACG TTG GTT AAT GCA TCG AGC AGA GTA TCA AAT Pro Ser Ser Leu Lys Thr Leu Val Asn Ala Ser Ser Arg Val Ser Asn 625 635	1918
TTG TTG GTA GAA CAC AGT CCA GTG GGG AGC GGT GCC TAC AGG TCA GTG Leu Leu Val Glu His Ser Pro Val Gly Ser Gly Ala Tyr Arg Ser Val 640 655	1966
GGT GAG TGG CTG GAA GCC ATC AAA ATG GGT CGA TAC ACC GAG ATT TTC Gly Glu Trp Leu Glu Ala Ile Lys Met Gly Arg Tyr Thr Glu Ile Phe 660 665 670	2014
ATG GAG AAT GGA TAC AGT TCG ATG GAT TCT GTG GCT CAG GTG ACC CTA Met Glu Asn Gly Tyr Ser Ser Met Asp Ser Val Ala Gln Val Thr Leu 675 680 685	2062
GAG GAC GAA TCA CCT TGT GAA AAG TGG AGC CTC ACC CTC CAC CCC CTC Glu Asp Glu Ser Pro Cys Glu Lys Trp Ser Leu Thr Leu His Pro Leu 690 695 700	2110
TTT CCA ACT GGA TAT CAG ACT TGAAGGAAAC CTTTCCAGTG GACCAGACCT Phe Pro Thr Gly Tyr Gln Thr 705 710	2161
GCTCTTTAAA CTTGTGGACC ACCTAGTGAC TTTGAGTGTG TCTGGAGCTC TTTCAATCCA	2221
CTGCAAGAAT AACTTTACCA GGACAGTACT CAAGAATAGA TAGATCCATG ACATGAGTTT	2281
CAGTCTGATA TTTGACTGGA CCAATTACTA ACAAAATGTG GACTGCATAC TTACACCTTT	2341
TGAAAGATCT GTACTCACCG AATCTCAGGA CACCCTGTTG TTTGTTATTA GATGAAGAAC	2401
TCTGAATATT TGTAATAATA TGTGATGTGT TGCTTTGCAT TGTATTTTT TCTTATAAAA	2461
TAAAATAAAT TATTTATTAA AAGTTATACT GGGATGAAGA CCATTTAAGA GTTCACCTGC	2521
TCTAGATGCT TATTCTTAAC CTGAAACCTC AGTTCCGGAT AGTGATACTG CACACGCTTG	2581
TGAACAACC CATTCTCGTG TCATAACCAA ACAGGATGGG AGTAATGAAT AAGAGCAGAT	2641

PCT/US94/10140 WO 95/15375

109

GAACTCTTAA	AAGAAAGATC	CTAATCTCAT	GCAAAGGTCC	CTTGCAAGTG	GATTCCTCTC	2701
TCCCTAGCGT	CTTCTAAAGG	TCTTTGAGGT	TATTCTTTCC	CCTCTTTCAA	ACTGACAGCT	2761
AACTCTGTGA	GTAGTGTCAG	TCTGCATGGG	CCAGTGTAGA	ACTGCACCAT	GTTGAAGAAG	2821
AGTGCTGCAA	TATGGCTGGG	GTGGGAGATG	AAATGCAAAG	TAATCTCTGG	TAGGCTGATG	2881
GCTTCCAGCC	ATGGAGGTAT	TTCAGGAACC	TGGCCCTTTT	GCTTGCATGA	GTAATGAATG	2941
GAGTGGTGAG	GAGTGTTGTA	TTTTATGTGG	CAATCCAGTC	CTAGTCTACA	CTGTGTTTGA	3001
CAAATTGGTC	CATGGTGTAT	AAGTAGTTCT	ATTTGTAAAT	AAAATGTTTT	AAATG	3056

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 710 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Leu Lys Phe Thr Leu Arg Asp Cys Asn Ser Leu Pro Gly Gly Leu Gly Thr Cys Lys Glu Thr Phe Asn Met Tyr Tyr Phe Glu Ser Asp Asp Glu 20 25 30 Asp Gly Arg Asn Ile Arg Glu Asn Gln Tyr Ile Lys Ile Asp Thr Ile 35 40 45Ala Ala Asp Glu Ser Phe Thr Glu Leu Asp Leu Gly Asp Arg Val Met 50 55 60 Lys Leu Asn Thr Glu Val Arg Asp Val Gly Pro Leu Thr Lys Lys Gly 65 70 75 80 Phe Tyr Leu Ala Phe Gln Asp Val Gly Ala Cys Ile Ala Leu Val Ser 85 90 95 Val Arg Val Tyr Tyr Lys Lys Cys Pro Ser Val Ile Arg Asn Leu Ala 100 105 110 Arg Phe Pro Asp Thr Ile Thr Gly Ala Asp Ser Ser Gln Leu Leu Glu Val Ser Gly Val Cys Val Asn His Ser Val Thr Asp Glu Ala Pro Lys 130 135 140 135 Met His Cys Ser Ser Glu Gly Glu Trp Leu Val Pro Ile Gly Lys Cys 145 150 150 160 Leu Cys Lys Ala Gly Tyr Glu Glu Lys Asn Asn Thr Cys Gln Ala Pro 165 170 175 Ser Pro Val Ser Ser Val Lys Lys Gly Lys Ile Thr Lys Asn Ser Ile 180 185 190

Ser Leu Ser Trp Gln Glu Pro Asp Arg Pro Asn Gly Ile Ile Leu Glu 195 200 205

Tyr Glu Ile Lys Tyr Phe Glu Lys Asp Gln Glu Thr Ser Tyr Thr Ile 210 215 220

110

Ile Lys Ser Lys Glu Thr Ala Ile Thr Ala Asp Gly Leu Lys Pro Gly Ser Ala Tyr Val Phe Gln Ile Arg Ala Arg Thr Ala Ala Gly Tyr Gly Gly Phe Ser Arg Arg Phe Glu Phe Glu Thr Ser Pro Val Leu Ala Ala Ser Ser Asp Gln Ser Gln Ile Pro Ile Ile Val Val Ser Val Thr Val Gly Val Ile Leu Leu Ala Val Val Ile Gly Phe Leu Leu Ser Gly Arg Arg Cys Gly Tyr Ser Lys Ala Lys Gln Asp Pro Glu Glu Glu Lys Met His Phe His Asn Gly His Ile Lys Leu Pro Gly Val Arg Thr Tyr Ile Asp Pro His Thr Tyr Glu Asp Pro Asn Gln Ala Val His Glu Phe Ala Lys Glu Ile Glu Ala Ser Cys Ile Thr Ile Glu Arg Val Ile Gly Ala Gly Glu Phe Gly Glu Val Cys Ser Gly Arg Leu Lys Leu Gln Gly Lys 370 375 380 Arg Glu Phe Pro Val Ala Ile Lys Thr Leu Lys Val Gly Tyr Thr Glu 385 390 395 400 Lys Gln Arg Arg Asp Phe Leu Gly Glu Ala Ser Ile Met Gly Gln Phe 405 410 415Asp His Pro Asn Ile Ile His Leu Glu Gly Val Val Thr Lys Ser Lys Pro Val Met Ile Val Thr Glu Tyr Met Glu Asn Gly Ser Leu Asp Thr Phe Leu Lys Lys Asn Asp Gly Gln Phe Thr Val Ile Gln Leu Val Gly 455 Met Leu Arg Gly Ile Ala Ser Gly Met Lys Tyr Leu Ser Asp Met Gly Tyr Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Ile Asn Ser Asn Leu Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp 500 510 Asp Pro Glu Ala Ala Tyr Thr Thr Arg Gly Gly Lys Ile Pro Ile Arg 520 Trp Thr Ala Pro Glu Ala Ile Ala Phe Arg Lys Phe Thr Ser Ala Ser Asp Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Ser Tyr Gly Glu Arg Pro Tyr Trp Glu Met Thr Asn Gln Asp Val Ile Lys Ala Val

PCT/US94/10140 WO 95/15375

Glu Glu Gly Tyr Arg Leu Pro Ser Pro Met Asp Cys Pro Ala Ala Leu

Tyr Gln Leu Met Leu Asp Cys Trp Gln Lys Asp Arg Asn Ser Arg Pro

Lys Phe Asp Glu Ile Val Ser Met Leu Asp Lys Leu Ile Arg Asn Pro 615

Ser Ser Leu Lys Thr Leu Val Asn Ala Ser Ser Arg Val Ser Asn Leu

Leu Val Glu His Ser Pro Val Gly Ser Gly Ala Tyr Arg Ser Val Gly

Glu Trp Leu Glu Ala Ile Lys Met Gly Arg Tyr Thr Glu Ile Phe Met 660 665 670

Glu Asn Gly Tyr Ser Ser Met Asp Ser Val Ala Gln Val Thr Leu Glu 680

Asp Glu Ser Pro Cys Glu Lys Trp Ser Leu Thr Leu His Pro Leu Phe 695

Pro Thr Gly Tyr Gln Thr

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Arg Ile Cys Thr Pro Asp Val Ser Gly Thr Val Gly Ser Arg Pro Ala

Ala Asp His

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Cys Leu Glu Thr His Thr Lys Asn Ser Pro Val Pro Val

112

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 12 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Lys Met Gln Gln Met His Gly Arg Met Val Pro Val 1 5

- (2) INFORMATION FOR SEQ ID NO:26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Lys Val His Leu Asn Gln Leu Glu Pro Val Glu Val

113

What is claimed is:

- A composition of matter, comprising an isolated nucleic acid sequence encoding a Eph-related protein tyrosine kinase, or functional fragment thereof, having about 23 to 66 percent amino acid sequence identity in its carboxyl terminal variable region compared to known members of the Eph subclass of tyrosine kinases.
- 2. The composition of claim 1, comprising substantially the same nucleotide sequence selected from the group consisting of SEQ ID NOS: 3, 7, 9, 11, 13, 19 and 10 21.
 - 3. A composition of matter, comprising a vector containing the nucleic acid of claim 1.
- 4. The composition of claim 3, wherein said vector is for the expression of a recombinant Eph-related protein tyrosine kinase.
 - 5. The composition of claim 4, wherein said expression is in a procaryotic host.
 - 6. The composition of claim 4, wherein said expression is in a eucaryotic host.
- 7. A composition of matter, comprising a host cell containing the vector of claim 3.
 - 8. The composition of claim 7, wherein said host cell is procaryotic.
- 9. The composition of claim 7, wherein said 25 host cell is eucaryotic.

114

- 10. A composition of matter, comprising a substantially purified Eph-related protein tyrosine kinase, or functional fragment thereof, having about 23 to 66 percent amino acid sequence identity in its carboxyl terminal variable region compared to known members of the Eph subclass of tyrosine kinases.
- 11. The composition of claim 10, comprising substantially the same amino acid sequence selected from the group consisting of SEQ ID NOS: 4, 8, 10, 12, 14, 20 and 22.
 - 12. A composition of matter, comprising a substantially purified chicken Eph-related protein tyrosine kinase, or functional fragment thereof having substantially the same amino acid sequence of SEQ ID NO: 2.
- 13. A composition of matter, comprising a substantially purified chicken Eph-related protein tyrosine kinase, or functional fragment thereof having substantially the same amino acid sequence of SEQ ID NO: 6.
- 14. A method of diagnosing cancer, comprising removing a tissue or cell sample from a subject suspected of having cancer and determining the level of Eph-related protein tyrosine kinase in said sample, wherein a change in the level or activity of a Eph-related protein tyrosine kinase compared to a normal sample indicates the presence of a cancer or correlates with a specific prognosis.
 - 15. The method of claim 13, wherein an increase in said change in the level or activity of a Eph-related protein tyrosine kinase indicates the presence of a cancer or correlates with a specific prognosis.

115

16. The method of claim 13, wherein a decrease in said change in the level or activity of a Eph-related protein tyrosine kinase indicates the presence of a cancer or correlates with a specific prognosis.

5 17. The method of claim 12, wherein said cancer is selected from the group consisting of liver carcinoma, lung carcinoma, breast carcinoma, colon carcinoma and leukemia.

F16.17

Cek 291 DEGCTHER INSTITEGRANGTERADDEVENETIES AROUNG STREAM. ST. C.
--

STYRGPPGLGVRLEV EQLLSSPLG).KQRNST.PEQ.VT EQLLSSPLG).KQRNST.PEQ.VT EQLLSSPLG).KQRNST.PEQ.VT EQLLSSPLG).KQRNST.PEQ.VT EQLLSSPLG).KQRNST.PEQ.VT EQLLSSPLG).KQRNST.PEQ.VT EQLLSSPLG).KQRNST.PEQ.VT EQLLSSPLG).KQRNST.PEQ.VT EQLLSSPLG).KQRNST.PEQ.VT EQULSSPLG).KQRNST.PEQ.VT EQULSSPLG).KQRNST.PEG.VY EXAMAYPSLIW.C.YSK.KQPEEEKM.FHN EAVAYPSLIW.C.YSK.KQPEEEKM.FHN EAVAYPSLIW.C.YSK.KGPEEEKM.FHN EAVAYPSLIW.C.YSK.KGPEEEKM.FHN EAVAYPSLIW.C.YSK.KGPEEEKM.FHN EAVAYPSLIW.C.YSK.KGPEEEKM.FHN EAVAYPSLIW.C.YSK.KGPEEEKM.FHN EAVAYPSLIW.C.YSK.KGPEEEKM.FHN EAVAYPSLIW.C.YSK.KGPEEKM.FHN EAVAYPSLIW.C.YSK.KGPEEKM.FHN EAVAYPSLIW.C.YSK.KGPEEKW.FHN EAVAYPSLIW.C.YSK.K	L-PGKREIFVAIKTLKSGYTEKQRRDFLSEASIMGQFDHPNVIHLEGVVTKSSPVMIITEFMENGSLDSFLRQNDGQFTVIQLVGMLRGIAAGMKYLADM R
55 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	651 608 268 268 505 161 642 634
Cek5+ Cek5+ Cek10 Cek10 Cek6 Cek9 Cek8 Cek8	Ceks Cek10 Cek6 Cek9 Cek4 Cek4
	SHEET (RULE 26)

F1G. 10

NILVCKVSDFGLSRFLEDDTSDPTYTSALGGKIPIRWTAPEALQYRKFTSASDVWSYGIVMWEVMSYGERPYWDMTNQDVINAIE **S*******************************	LPPPMDCPNALHQLMLDCWQKDRNHRPKFGQIVNTLDKMIRNPSLKAMAPLSSGVNLPLLDRTIPDYTSFNTVDEWLDAIKMSQYKESFASAGFT TVI.SVQSQVT.TGDGRN.VNA TV.IITAVPSQSF.A.TS.EDS.VRDN.L ATV.IITAVPSQSNSPFP.LSNAHGRN.DQLI VQESAK.SATGTGRPSQSNSPFP.LSNAHGRN.DQLI N.LRTGSERPSTAPSS.EFSAVVS.SDQERDN.TAY. SA.YSDESMLSTLVNAR.R.SNL.VEHSPVGSGAYRS.GEGR.T.I.MEN.YS A.YNNESILSIITNAARPSNLQSNI.ISA.R.AGDNGFRIG.C.GJ.TGVEYS .TS.IYMQQE.ARADSILA.DTL.DFDPR.SIR.PSTSGSEGVP.RSESQT.H.MAY. .VAP.YEKNAYARH.QKLQAH.EQLLAH.RTI.NFDPR.T.R.PSLSGS.GIPYRSES.R.KR.ILH.HLD	FIG.ID
NYVHRDLAARNILVNSNLVCKVSDFGLSRFLEDDTSDPTYTSALGGKIPIRWTAPEAIQYRKFTSASDVWSYGIVMWEVMSYGERPYWDMTNQDVINAIE S. V. A. Y. Q. A.N. G. C. V. S A. S A. G A. N. G A. H. A.	QDYRLPPPMDCPNALHQLMLDCWQKDRNHRPKFGQIVNTLDKMIRNPNSLKAMAPLSSGVNLPLLDRTIPDYTSFNTVDEWLDAIKWSQYKESFASAGFT	TFDIVSOMTVEDILRVGVTLAGHOKKILNSIQVMRAQMNQIQSVEV SL.AALI
750 725 725 367 604 741 734	88 88 80 7 7 8 8 8 8 8 8 9 7 9 8 8 8 8 8 8 8 8 8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Ceks Ceks Ceks Ceks Ceks Ceks Eph	Ceks Ceks Ceks Ceks Ceks Cekt Cekt	Cek5 Cek6 Cek6 Cek9 Cek7 Cek7
	SUBSTITUTE SHEET (RULE 26)	

FIG. 2 SUBSTITUTE SHEET (RULE 26)

PCT/US94/10140

6/9

FIG. 3

PCT/US94/10140

7/9

PCT/US94/10140

8/9

FIG.5A

FIG.5B

FIG.5C

FIG. 5D

PCT/US94/10140

9/9

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

In...national application No. PCT/US94/10140

A 01	1000						
A. CL.	ASSIFICATION OF SUBJECT MATTER :C12N 15/00, 9/00						
	US CL :435/240.2, 252.3, 320.1, 194; 536/23.2, 23.5						
According	According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED							
Minimum (documentation searched (classification system follow	ved by classification symbols)					
U.S. :	435/240.2, 252.3, 320.1, 194; 536/23.2, 23.5						
Documenta none	ation searched other than minimum documentation to	the extent that such documents are included	in the fields searched				
Electronic o	data base consulted during the international search (name of data base and, where practicable	, search terms used)				
Dialog, A							
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.				
Y	Oncogene, Volume 320, issued 1 al., "An Eph-related receptor pr	otein tyrosine kinase gene	1-9				
	segmentally expressed in the depages 2499-2507, see entire doc	veloping mouse hindbrain", cument.					
Y Cell Regulation, Volume 2, issued "Identification of chicken embryo		July 1991, E. B. Pasquale,	1-9				
	regulated receptor-type tyrosine pages 523-534, see entire documents	kinase of the Eph family".					
	•		ž.				
Ì							
ļ							
l							
i		·					
X Furthe	er documents are listed in the continuation of Box (C. See patent family annex.					
'A* doca	cial categories of cited documents: sument defining the general state of the art which is not considered a of particular relevance	To later document published after the inter- date and not in conflict with the applicat principle or theory underlying the inves	ion but cited to understand the				
	ier document published on or after the international filing date	"X" document of particular relevance: the	claimed invention cannot be				
L° docu	ment which may throw doubts on priority claim(s) or which is a to establish the publication date of another citation or other	when the document is taken alone	ed to involve an inventive step				
прес	ment resease (so specified) ment referring to an oral disclorure, use, exhibition or other	'Y' document of particular relevance; the claimed invention cannot be considered to involve as inventive step when the document is combined with one or more other such documents, such combination being obvious to a person stilled in the art					
use y	ment published prior to the international filing date but later than priority date claimed	"&" document momber of the same petron family					
	ctual completion of the international search	Date of mailing of the international search report					
22 NOVEM		1.0 JAN 1995					
Commissione Box PCT	ailing address of the ISA/US er of Patents and Trademarks	Authorized officer KEITH D. HENDRICKS A. Keigge for					
Washington, acsimile No.		I ·	-//-/				
	A/210 (second sheet)(luly 1000)	Telephone No. (703) 308-0196					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US94/10140

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	Proceedings of the National Academy of Sciences USA, Volume 89, issued March 1992, Wicks et al., "Molecular cloning of HEK, the gene encoding a receptor tyrosine kinase expressed by human lymphoid tumor cell lines", pages 1611-1615, see entire document.	1-9
		·
		·

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/10140

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

- 1. Claims 1-9 drawn to the DNA, vector, host cell and method of making protein.
- II. Claims 10-13, drawn to the enzyme.
- III. Claims 14-17, drawn to a method of using the enzyme of Group II.

The inventions listed as Groups I-III do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The DNA Group I and the protein of Group II are not chemically related, and they are independent and distinct inventive concepts. The DNA possesses utility other than encoding the protein, such as in a hybridization assay or as a probe. The DNA of Group I is not related to the method of Group III for similar reasons, as the method of Group III does not involve the DNA.

Groups II and III are related as a second product and method of use. The method may be used with a materially different enzyme, such as one from another source.

Form PCT/ISA/210 (extra sheet)(July 1992)#

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.