A Matrix Factorization Approach to Multiple Imputation

Knowledge Lab Team Presentation

Nandana Sengupta (co-authors: Madeleine Udell, James Evans, Nati Srebro)

February 10, 2016

▶ Missing data arise in almost all empirical analysis.

- ▶ Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.

- ▶ Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science
 - opinion surveys

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science
 - opinion surveys
 - longitudnal surveys

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- ► Social science
 - opinion surveys
 - longitudnal surveys
- ► Ad-hoc methods

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science
 - opinion surveys
 - longitudnal surveys
- ► Ad-hoc methods
 - Complete case analysis (fully observed rows).

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science
 - opinion surveys
 - longitudnal surveys
- Ad-hoc methods
 - Complete case analysis (fully observed rows).
 - Available case analysis (fully observed columns).

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science
 - opinion surveys
 - longitudnal surveys
- ► Ad-hoc methods
 - Complete case analysis (fully observed rows).
 - Available case analysis (fully observed columns).
 - Mean Imputation.

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science
 - opinion surveys
 - longitudnal surveys
- Ad-hoc methods
 - Complete case analysis (fully observed rows).
 - Available case analysis (fully observed columns).
 - Mean Imputation.
- Concerns about validity of inferences.

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science
 - opinion surveys
 - longitudnal surveys
- Ad-hoc methods
 - Complete case analysis (fully observed rows).
 - Available case analysis (fully observed columns).
 - Mean Imputation.
- Concerns about validity of inferences.
- Types of Missing Data

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science
 - opinion surveys
 - longitudnal surveys
- Ad-hoc methods
 - Complete case analysis (fully observed rows).
 - Available case analysis (fully observed columns).
 - Mean Imputation.
- Concerns about validity of inferences.
- Types of Missing Data
 - Missing Completely at Random.

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science
 - opinion surveys
 - longitudnal surveys
- Ad-hoc methods
 - Complete case analysis (fully observed rows).
 - Available case analysis (fully observed columns).
 - ▶ Mean Imputation.
- Concerns about validity of inferences.
- Types of Missing Data
 - Missing Completely at Random.
 - Missingness depends on unobservables.

- Missing data arise in almost all empirical analysis.
- Distracts from main goal of study.
- Social science
 - opinion surveys
 - longitudnal surveys
- Ad-hoc methods
 - Complete case analysis (fully observed rows).
 - Available case analysis (fully observed columns).
 - Mean Imputation.
- Concerns about validity of inferences.
- Types of Missing Data
 - Missing Completely at Random.
 - Missingness depends on unobservables.
 - Missing at Random.

 Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)

- Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)
- ▶ Idea: Analysis should reflect uncertainty inherent in imputation.

- Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)
- ▶ Idea: Analysis should reflect uncertainty inherent in imputation.
- Complete data D (dimension n x p), observed data D^{obs}, Missingness Matrix M

- Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)
- ▶ Idea: Analysis should reflect uncertainty inherent in imputation.
- Complete data D (dimension n × p), observed data D^{obs}, Missingness Matrix M
- ► Assumption 1: Missing at Random: $P(M|D) = P(M|D^{obs})$

- Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)
- ▶ Idea: Analysis should reflect uncertainty inherent in imputation.
- Complete data D (dimension n × p), observed data D^{obs}, Missingness Matrix M
- ▶ Assumption 1: Missing at Random: $P(M|D) = P(M|D^{obs})$
- ► Assumption 2: Distributional $D \sim N_p(\mu, \Sigma)$.

- Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)
- ▶ Idea: Analysis should reflect uncertainty inherent in imputation.
- Complete data D (dimension n × p), observed data D^{obs}, Missingness Matrix M
- ▶ Assumption 1: Missing at Random: $P(M|D) = P(M|D^{obs})$
- ► Assumption 2: Distributional $D \sim N_p(\mu, \Sigma)$.
- 3 stage scheme

- Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)
- ▶ Idea: Analysis should reflect uncertainty inherent in imputation.
- Complete data D (dimension n × p), observed data D^{obs}, Missingness Matrix M
- ▶ Assumption 1: Missing at Random: $P(M|D) = P(M|D^{obs})$
- ► Assumption 2: Distributional $D \sim N_p(\mu, \Sigma)$.
- 3 stage scheme
 - ▶ Imputation : Expectation Maximization, Chained equations.

- Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)
- ▶ Idea: Analysis should reflect uncertainty inherent in imputation.
- Complete data D (dimension n × p), observed data D^{obs}, Missingness Matrix M
- ▶ Assumption 1: Missing at Random: $P(M|D) = P(M|D^{obs})$
- ► Assumption 2: Distributional $D \sim N_p(\mu, \Sigma)$.
- 3 stage scheme
 - ▶ Imputation : Expectation Maximization, Chained equations.
 - Analysis

- Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)
- ▶ Idea: Analysis should reflect uncertainty inherent in imputation.
- Complete data D (dimension n × p), observed data D^{obs}, Missingness Matrix M
- ▶ Assumption 1: Missing at Random: $P(M|D) = P(M|D^{obs})$
- ► Assumption 2: Distributional $D \sim N_p(\mu, \Sigma)$.
- 3 stage scheme
 - ▶ Imputation : Expectation Maximization, Chained equations.
 - Analysis
 - Combining Results

- Rubin (1976), Schafer (1998), Van Buuren et al (1999), King et al (2000, 2015)
- ▶ Idea: Analysis should reflect uncertainty inherent in imputation.
- Complete data D (dimension n × p), observed data D^{obs}, Missingness Matrix M
- ▶ Assumption 1: Missing at Random: $P(M|D) = P(M|D^{obs})$
- ► Assumption 2: Distributional $D \sim N_p(\mu, \Sigma)$.
- 3 stage scheme
 - ▶ Imputation : Expectation Maximization, Chained equations.
 - Analysis
 - Combining Results
- ▶ 'R' Packages: Amelia, MICE, MI.

Image credit: https://cran.r-project.org/web/packages/Amelia/vignettes/amelia.pdf

Low Rank and Low Norm approaches.

- ▶ Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).

- Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix D (dimension $n \times p$) by X'Y.

- Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix D (dimension $n \times p$) by X'Y.
- ► minimize $\sum_{i,j} L_{i,j}(x_i y_j, d_{ij}) + \gamma \sum_{i=1}^n r_i(x_i) + \gamma \sum_{j=1}^p r_j(y_j)$.

- Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix D (dimension $n \times p$) by X'Y.
- ► minimize $\sum_{i,j} L_{i,j}(x_i y_j, d_{ij}) + \gamma \sum_{i=1}^n r_i(x_i) + \gamma \sum_{i=1}^p r_i(y_i)$.
 - ► L: Loss function (over columns) quadratic, ordinal hinge, logistic, classification error etc.

- Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix D (dimension $n \times p$) by X'Y.
- ► minimize $\sum_{i,j} L_{i,j}(x_i y_j, d_{ij}) + \gamma \sum_{i=1}^n r_i(x_i) + \gamma \sum_{i=1}^p r_i(y_i)$.
 - L: Loss function (over columns) quadratic, ordinal hinge, logistic, classification error etc.
 - ightharpoonup r(.): regularization functions trace norm, max norm etc.

- Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix D (dimension $n \times p$) by X'Y.
- ▶ minimize $\sum_{i,j} L_{i,j}(x_i y_j, d_{ij}) + \gamma \sum_{i=1}^n r_i(x_i) + \gamma \sum_{i=1}^p r_i(y_i)$.
 - ► L: Loss function (over columns) quadratic, ordinal hinge, logistic, classification error etc.
 - r(.): regularization functions trace norm, max norm etc.
 - ▶ X, Y : SVD good initialization.

- ► Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix D (dimension $n \times p$) by X'Y.
- ▶ minimize $\sum_{i,j} L_{i,j}(x_i y_j, d_{ij}) + \gamma \sum_{i=1}^n r_i(x_i) + \gamma \sum_{j=1}^p r_j(y_j)$.
 - L: Loss function (over columns) quadratic, ordinal hinge, logistic, classification error etc.
 - ightharpoonup r(.): regularization functions trace norm, max norm etc.
 - ▶ X, Y : SVD good initialization.
 - \triangleright k, γ : chosen via crossvalidation.

- Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix D (dimension $n \times p$) by X'Y.
- ▶ minimize $\sum_{i,j} L_{i,j}(x_i y_j, d_{ij}) + \gamma \sum_{i=1}^n r_i(x_i) + \gamma \sum_{j=1}^p r_j(y_j)$.
 - L: Loss function (over columns) quadratic, ordinal hinge, logistic, classification error etc.
 - ightharpoonup r(.): regularization functions trace norm, max norm etc.
 - X, Y : SVD good initialization.
 - \triangleright k, γ : chosen via crossvalidation.
- ▶ Low Norm Models: r(x).

- Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix D (dimension $n \times p$) by X'Y.
- ▶ minimize $\sum_{i,j} L_{i,j}(x_i y_j, d_{ij}) + \gamma \sum_{i=1}^n r_i(x_i) + \gamma \sum_{i=1}^p r_i(y_i)$.
 - L: Loss function (over columns) quadratic, ordinal hinge, logistic, classification error etc.
 - ightharpoonup r(.): regularization functions trace norm, max norm etc.
 - X, Y : SVD good initialization.
 - \triangleright k, γ : chosen via crossvalidation.
- ▶ Low Norm Models: r(x).
- ▶ Low Rank Models: $Rank(X'Y) \le k$.

- Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix D (dimension $n \times p$) by X'Y.
- ▶ minimize $\sum_{i,j} L_{i,j}(x_i y_j, d_{ij}) + \gamma \sum_{i=1}^n r_i(x_i) + \gamma \sum_{j=1}^p r_j(y_j)$.
 - L: Loss function (over columns) quadratic, ordinal hinge, logistic, classification error etc.
 - ightharpoonup r(.): regularization functions trace norm, max norm etc.
 - X, Y : SVD good initialization.
 - \triangleright k, γ : chosen via crossvalidation.
- ▶ Low Norm Models: r(x).
- ▶ Low Rank Models: $Rank(X'Y) \le k$.
- ► Low Rank, Low Norm Models: Both

- Low Rank and Low Norm approaches.
- Srebro (2004), Udell et al (2014).
- ▶ Approximate matrix D (dimension $n \times p$) by X'Y.
- ▶ minimize $\sum_{i,j} L_{i,j}(x_i y_j, d_{ij}) + \gamma \sum_{i=1}^n r_i(x_i) + \gamma \sum_{i=1}^p r_i(y_i)$.
 - ► L: Loss function (over columns) quadratic, ordinal hinge, logistic, classification error etc.
 - r(.): regularization functions trace norm, max norm etc.
 - X, Y : SVD good initialization.
 - \triangleright k, γ : chosen via crossvalidation.
- ▶ Low Norm Models: r(x).
- ▶ Low Rank Models: $Rank(X'Y) \le k$.
- ► Low Rank, Low Norm Models: Both
- ▶ Julia Implementation: LowRankModels

Low dimensional embedding

- Low dimensional embedding
- Latent Variables

- Low dimensional embedding
- ► Latent Variables
- Compression

- Low dimensional embedding
- Latent Variables
- Compression
- Denoising

- Low dimensional embedding
- Latent Variables
- Compression
- Denoising
- Probabilistic Interpretation

- Low dimensional embedding
- Latent Variables
- Compression
- Denoising
- ► **Probabilistic Interpretation** ← Equivalent to Multiple Imputation assumption when full rank.

► General Social Survey Data (GSS)

► National Longitudnal Survey of Youth (NLSY)

Evaluation Strategy

- General Social Survey Data (GSS)
 - Sociological survey: adults in randomly selected US households.
- ► National Longitudnal Survey of Youth (NLSY)

Evaluation Strategy

- General Social Survey Data (GSS)
 - Sociological survey: adults in randomly selected US households.
 - ▶ Data on attitudes and demographic characteristics.
- ► National Longitudnal Survey of Youth (NLSY)

Evaluation Strategy

- General Social Survey Data (GSS)
 - Sociological survey: adults in randomly selected US households.
 - Data on attitudes and demographic characteristics.
- National Longitudnal Survey of Youth (NLSY)
 - Longitudnal dataset: Tracking cohort of young men and women over time.

Evaluation Strategy

- General Social Survey Data (GSS)
 - Sociological survey: adults in randomly selected US households.
 - Data on attitudes and demographic characteristics.
- National Longitudnal Survey of Youth (NLSY)
 - Longitudnal dataset: Tracking cohort of young men and women over time.
 - Data on range of economic, psychological, demographic characteristics.
- Evaluation Strategy

- General Social Survey Data (GSS)
 - Sociological survey: adults in randomly selected US households.
 - Data on attitudes and demographic characteristics.
- National Longitudnal Survey of Youth (NLSY)
 - Longitudnal dataset: Tracking cohort of young men and women over time.
 - Data on range of economic, psychological, demographic characteristics.
- Evaluation Strategy
 - Subsets of the data used

- General Social Survey Data (GSS)
 - Sociological survey: adults in randomly selected US households.
 - Data on attitudes and demographic characteristics.
- National Longitudnal Survey of Youth (NLSY)
 - Longitudnal dataset: Tracking cohort of young men and women over time.
 - Data on range of economic, psychological, demographic characteristics.
- Evaluation Strategy
 - Subsets of the data used
 - ▶ 10% observed data held-out at random.

- General Social Survey Data (GSS)
 - Sociological survey: adults in randomly selected US households.
 - Data on attitudes and demographic characteristics.
- National Longitudnal Survey of Youth (NLSY)
 - Longitudnal dataset: Tracking cohort of young men and women over time.
 - Data on range of economic, psychological, demographic characteristics.
- Evaluation Strategy
 - Subsets of the data used
 - ▶ 10% observed data held-out at random.
 - ► Imputation models: Low Rank (Scaled), Low Rank (Unscaled), Trace Norm (Full Rank), Trace Norm (Low Rank), MICE
- Caveats

- General Social Survey Data (GSS)
 - Sociological survey: adults in randomly selected US households.
 - Data on attitudes and demographic characteristics.
- National Longitudnal Survey of Youth (NLSY)
 - Longitudnal dataset: Tracking cohort of young men and women over time.
 - Data on range of economic, psychological, demographic characteristics.
- Evaluation Strategy
 - Subsets of the data used
 - 10% observed data held-out at random.
 - ► Imputation models: Low Rank (Scaled), Low Rank (Unscaled), Trace Norm (Full Rank), Trace Norm (Low Rank), MICE
 - ► Loss calculated over hold out sample
- Caveats

 Overall Trace (Full Rank) had lowest loss, all Low Rank and Low Norm models outperformed MICE

- Overall Trace (Full Rank) had lowest loss, all Low Rank and Low Norm models outperformed MICE
- ightharpoonup Column-wise: $m \approx 80\%$ columns had lower loss compared to MICE

- Overall Trace (Full Rank) had lowest loss, all Low Rank and Low Norm models outperformed MICE
- ▶ Column-wise: $\approx 80\%$ columns had lower loss compared to MICE
 - Summary Table

	LowRank (S)	LowRank (NS)	Trace (FR)	Trace (LR)	MICE
Loss/(10 ³)	18.50	15.80	14.40	15.80	20.60
%age reduction over MICE	10.10 %	23.40 %	30.10 %	23.00 %	-
%age cols w/ lower loss	73.50 %	84.60 %	87.20 %	84.60 %	-

- Overall Trace (Full Rank) had lowest loss, all Low Rank and Low Norm models outperformed MICE
- ightharpoonup Column-wise: pprox 80% columns had lower loss compared to MICE

Summary Table

	LowRank (S)	LowRank (NS)	Trace (FR)	Trace (LR)	MICE
Loss/(10 ³)	18.50	15.80	14.40	15.80	20.60
%age reduction over MICE	10.10 %	23.40 %	30.10 %	23.00 %	-
%age cols w/ lower loss	73.50 %	84.60 %	87.20 %	84.60 %	_

► Method with lowest loss across columns

 Overall Trace (Full Rank) had lowest loss, all Low Rank and Low Norm models outperformed MICE

- Overall Trace (Full Rank) had lowest loss, all Low Rank and Low Norm models outperformed MICE
- ightharpoonup Column-wise: pprox 90% columns had lower loss compared to MICE

- Overall Trace (Full Rank) had lowest loss, all Low Rank and Low Norm models outperformed MICE
- ightharpoonup Column-wise: pprox 90% columns had lower loss compared to MICE
 - Summary Table

	LowRank (S)	LowRank (NS)	Trace (FR)	Trace (LR)	MICE
Loss/(10 ³)	31.40	28.20	25.90	28.20	37.00
%age reduction over MICE	15.20 %	23.70 %	30.00 %	23.70 %	-
%age cols w/ lower loss	75.70%	92.90 %	94.30 %	94.30 %	-

- Overall Trace (Full Rank) had lowest loss, all Low Rank and Low Norm models outperformed MICE
- ightharpoonup Column-wise: pprox 90% columns had lower loss compared to MICE

Summary Table

	LowRank (S)	LowRank (NS)	Trace (FR)	Trace (LR)	MICE
Loss/(10 ³)	31.40	28.20	25.90	28.20	37.00
%age reduction over MICE	15.20 %	23.70 %	30.00 %	23.70 %	-
%age cols w/ lower loss	75.70%	92.90 %	94.30 %	94.30 %	-

Method with lowest loss across columns

Probabilistic losses

- Probabilistic losses
- Max Norm regularizer

- Probabilistic losses
- Max Norm regularizer
- ► Replicating missingness patterns

- Probabilistic losses
- Max Norm regularizer
- Replicating missingness patterns
- Wrapper for Multiple Imputation

- Probabilistic losses
- Max Norm regularizer
- Replicating missingness patterns
- Wrapper for Multiple Imputation
- Extending GLRM to longitudnal data using Tensor Decomposition

- Probabilistic losses
- Max Norm regularizer
- Replicating missingness patterns
- Wrapper for Multiple Imputation
- ► Extending GLRM to longitudnal data using Tensor Decomposition ← Future Work.

Thank you! (Comments and Suggestions Welcome)