NEURONALES NETZ ZUR MHC-I BINDEVORHERSAGE FÜR EIN SPEZIFISCHES MHC ALLEL

Julian Müller, Tobias Nietsch und Lisa Falk

Computational Immunomics 04.07.2017

Aufgabenstellung

https://upload.wikimedia.org/wikipedia/commons/e/ee/MHC_Class_1.svg

MHC-Bindung

Aufbereitung der Daten

Aminosäure	Position									
	1	2		3	4	5	6	7	8	9
A	15	7		13	19	19	16	16	29	2
C	0	0		2	1	5	3	3	2	0
D	0	0		4	15	9	14	4	11	0
E	4	2		7	26	9	6	3	13	0
F	13	3		25	1	4	9	5	4	44
G	12	1		9	17	14	27	13	12	0
Н	2	1		4	7	3	4	2	2	2
I	21	6		14	3	8	6	11	1	3
K	21	0		13	6	10	4	10	8	1
L	13	38		17	14	8	8	12	6	13
M	3	25		7	2	3	1	8	2	7
N	6	0		8	6	11	12	11	3	0
P	1	0		1	18	14	3	9	9	0
Q	6	54		10	8	3	5	6	8	0
R	12	0		12	7	11	11	10	6	0
S	7	10		6	4	12	18	13	17	0
T	8	11		4	4	10	12	15	17	3
V	12	17		7	6	8	6	12	17	4
W	5	0		3	4	6	3	4	3	8
Y	14	0		9	7	8	7	8	5	88

Häufigkeitsmatrix der Aminosäuren an den verschiedenen Positionen der Bindersequenzen

Aufbereitung der Daten

Gliedern der AS in den Sequenzen nach Seitenkettengewicht, Isoelektrischer Punkt, Hydrophobizität, Polarität und Kontaktfläche.

Positional flexibilities of amino acid residues in globular proteins

R. BHASKARAN and P.K. PONNUSWAMY

Department of Physics, Bharathidasan University, Tiruchirapalli, India

Received 7 May 1987, accepted for publication 8 March 1988

The fluctuational amplitudes of the amino acid residues in 19 protein molecules are computed by the use of our differential equation model and are analysed statistically to get new information as to their stability, position dependent nature, distribution and group dynamical behaviour, etc. The symmetric/asymmetric distribution of amino acid residues in the protein molecules is described by introducing a parameter called the "flexibility index" for each of the residue types. Finally, the overall flexible nature of the amino acid residues with respect to their spatial positioning is explained and their relationships with the residue properties are derived.

Key words: differential equation model; flexibility index; fluctuational amplitudes; spatial positions; symmetric/asymmetric distribution

Aufbereitung der Daten

Vergleich der Streudiagramme Hydrophobizität gegen isoelektrischer Punkt für Binder und Nichtbinder an Position 2 und 9 der Aminosäuren

Multilayer-Perzeptron:

http://www.codeproject.com/KB/dotnet/predictor/network.jpg

Multilayer-Perzeptron:

http://www.codeproject.com/KB/dotnet/predictor/network.jpg

Multilayer-Perzeptron:

http://www.codeproject.com/KB/dotnet/predictor/network.jpg

Bereits bekannte Parameter:

Parameter	Wert
Größe des Input Layer	45
Größe des Output Layer	1
Aktivierungsfunktion des Output Layer	Sigmoid
Zahl der Hidden Layer	1
Initialisierung der Gewichte	Uniform

Unbekannte Parameter:

Parameter	Mögliche Werte
Größe des Hidden Layer	5 - 19
Aktivierungsfunktion von Input & Hidden Layer	8 mögliche Funktionen
Batch Size	1, 10, 100,
Anzahl Trainingsepochen	10, 20, 50,

Mehrere 1000 mögliche Parameterkombinationen!

Daher: 2 Gridsearch-Durchläufe

1. Grid Search

- Kleiner Trainingsdatensatz (0.2 bzw. 145 Daten)
- 20 Epochen
- Ziele:
 - Wählen der Größe des Hidden Layers
 - Wählen der Aktivierungsfunktion v. Input & Hidden Layer
 - Eingrenzen der Batch Size

1. Grid Search - Ergebnisse

- 17 Neuronen im Hidden Layer
- Aktivierungsfunktion *softplus*:

$$f(x) = \ln(1 + e^x)$$

• Batch Size ≥ 100

1. Grid Search - Ergebnisse

- 17 Neuronen im Hidden Layer
- Aktivierungsfunktion *softplus*:

$$f(x) = \ln(1 + e^x)$$

• Batch Size ≥ 100

2. Grid Search

- Trainingsdatensatz: 0.66 bzw. 486 Trainingsdaten
- Ziele:
 - Wahl der Batch Size (100, 200, 300, 400, 486)
 - Wahl der Epochenanzahl (10, 20, 50, 100, 200, 250)

2. Grid Search - Ergebnisse

		Batch Size				
	ROC_AUC	100	200	300	400	486
Epochen -	10	0.818	0.805	0.745	0.717	0.655
	20	0.834	0.829	0.816	0.794	.761
	50	0.852	0.819	0.850	0.826	0.815
	100	0.902	0.860	0.854	0.817	0.801
	200	0.968	0.899	0.911	0.900	0.864
	250	0.987	0.964	0.929	0.910	0.892

2. Grid Search - Ergebnisse

		Batch Size				
	ROC_AUC	100	200	300	400	486
Epochen -	10	0.818	0.805	0.745	0.717	0.655
	20	0.834	0.829	0.816	0.794	.761
	50	0.852	0.819	0.850	0.826	0.815
	100	0.902	0.860	0.854	0.817	0.801
	200	0.968	0.899	0.911	0.900	0.864
	250	0.987	0.964	0.929	0.910	0.892

2. Grid Search - Ergebnisse

		Batch Size				
	ROC_AUC	100	200	300	400	486
Epochen -	10	0.818	0.805	0.745	0.717	0.655
	20	0.834	0.829	0.816	0.794	.761
	50	0.852	0.819	0.850	0.826	0.815
	100	0.902	0.860	0.854	0.817	0.801
	200	0.968	0.899	0.911	0.900	0.864
	250	0.987	0.964	0.929	0.910	0.892

Das fertige KNN

Basierend auf Gulukota et al: Two Complementary Methods for Predicting Peptides Binding Major Histocompatibility Complex Molecules J. Mol. Biol. (1997)

Evaluierung

Konfusionsmatrix:

		Tatsächl. Wert			
		Binder Nichtbinde			
Vorborcago	Binder	36	37		
Vorhersage	Nichtbinder	16	151		

→ Genauigkeit: 77,9%

→ Sensitivität: 69,2%

→ Spezifität: 80,3%

→ MCC: 0,443

Evaluierung

- 10-fache stratifizierte Kreuzvalidierung
- 100 Iterationen
- → Mittlere Genauigkeit von 78,93%
- → Standardabweichung von 4,14%

ROC-Kurve

Diskussion

- Ankerpositionen an Positionen 2 und 9
- → Mögliche Verbesserung durch Einbeziehen
- Paper von Brusic et al. liefert nur leicht bessere Werte
- Bei anders verteiltem Datensatz möglicherweise andere Performance
- AUC von 0,79 schließt Zufallsprediktor aus

Diskussion