Theory of Computer Science

G. Röger S. Eriksson Spring Term 2023 University of Basel Computer Science

Exercise Sheet 1 Due: Wednesday, March 8, 2023

Note: The goal of this exercise sheet is to learn how to correctly express formal proofs. A formally correct proof consists of single steps where each step follows *immediately* from the previous steps or from the assumptions (for example when replacing a value by its definition). Please write down your proofs in detail and in a formal fashion. Examples can be found in the lecture slides.

Exercise 1.1 (Sets, Functions and Relations; 0.5 + 0.5 + 1 points)

Consider the sets $V = \{X, Y, Z\}, \Sigma_1 = \{a, b, c\}, \Sigma_2 = \{b, c, d, e\} \text{ and } Q = \{q_1, q_2\}.$

- (a) Specify a non-trivial example for a binary relation $R \subseteq (Q^2) \times (\Sigma_2 \setminus \Sigma_1)$ with |R| = 5.
- (b) Specify a example for a (total) function $f: \mathcal{P}(\Sigma_1 \cap \Sigma_2) \to Q \times V$.
- (c) How many partial functions $f: \Sigma_1 \cup \Sigma_2 \to_p V$ are there? Justify your answer (a proof is not necessary).

Exercise 1.2 (Mathematical Modeling; 0.5 + 1.5 points)

Consider a two dimensional grid with width n and height m, where positions are denoted by $\langle x, y \rangle$ with $x \in \{1, ..., n\}$, $y \in \{1, ..., m\}$, and $\langle 1, 1 \rangle$ being the bottom left cell. We define P to be the set of all cells. Additionally there is a set of colors C, and function $f: P \to C$ maps each cell to a color.

(a) Explicitly specify n, m, C and f for the following concrete grid:

(b) Consider relation R over $P \times P$ which contains $\langle p, p' \rangle$ iff p and p' have different colors and p is directly above p'. Specify a general definition of R for arbitrary P and f, and additionally specify R for the concrete example in (a).

Exercise 1.3 (Proofs, 1 + 1 + 1 points)

Consider the following statement: If $(A \cup B) \subseteq (A \cap B)$, then $A \subseteq B$.

- (a) Show the statement with a direct proof.
- (b) Show the statement with an indirect proof.
- (c) Show the statement by contrapositive.

Exercise 1.4 (Mathematical Induction, 3 points)

Prove using mathematical induction that for $a \in \mathbb{R}$ and $a \neq 1$ the following statement holds.

$$\sum_{i=0}^{n} a^{i} = \frac{1 - a^{n+1}}{1 - a} \text{ for all } n \in \mathbb{N}_{0}$$