Machine Learning Basic Concepts

Terminology

Machine Learning, Data Science, Data Mining, Data Analysis, Statistical Learning, Knowledge Discovery in Databases, Pattern Discovery.

Data everywhere!

- 1. Google: processes 24 peta bytes of data per day.
- 2. Facebook: 10 million photos uploaded every hour.
- 3. Youtube: 1 hour of video uploaded every second.
- 4. Twitter: 400 million tweets per day.
- 5. Astronomy: Satellite data is in hundreds of PB.
- 6. . . .
- 7. "By 2020 the digital universe will reach 44 zettabytes..."

The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things, April 2014.

That's 44 trillion gigabytes!

Python

Machine Learning

Deep Learning

SQL

Excel

R Language

Power Bi

Tableau

Statistics

Job Assistance

DATA SCIENCE & ANALYTICS
COMBO COURSE

Available at just

₹26994 (\$337.42) ₹9999 (\$134.99)

Data types

Data comes in different sizes and also flavors (types):

- **⊠** Texts
- **Numbers**
- **⊠** Clickstreams
- **⊠** Graphs
- **⊠** Tables
- **⊠** Images
- **⊠** Transactions
- **⊠** Videos
- **⊠** Some or all of the above!

Smile, we are 'DATAFIED'!

- Wherever we go, we are "datafied".
- Smartphones are tracking our locations.
- We leave a data trail in our web browsing.
- Interaction in social networks.
- Privacy is an important issue in Data Science.

The Data Science process

Applications of ML

• We all use it on a daily basis. Examples:

Machine Learning

- Spam filtering
- Credit card fraud detection
- Digit recognition on checks, zip codes
- Detecting faces in images
- MRI image analysis
- Recommendation system
- Search engines
- Handwriting recognition
- Scene classification
- etc...

Interdisciplinary field

ML versus Statistics

Statistics:

- Hypothesis testing
- Experimental design
- Anova
- Linear regression
- Logistic regression
- GLM
- PCA

Machine Learning:

- Decision trees
- Rule induction
- Neural Networks
- SVMs
- Clustering method
- Association rules
- Feature selection
- Visualization
- Graphical models
- Genetic algorithm

http://statweb.stanford.edu/~jhf/ftp/dm-stat.pdf

Machine Learning definition

"How do we create computer programs that improve with experience?"

Tom Mitchell

http://videolectures.net/mlas06_mitchell_itm/

Machine Learning definition

"How do we create computer programs that improve with experience?"

Tom Mitchell

http://videolectures.net/mlas06_mitchell_itm/

"A computer program is said to **learn** from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Tom Mitchell. Machine Learning 1997.

Supervised vs. Unsupervised

Given: Training data: $(x_1, y_1), \ldots, (x_n, y_n) / x_i \in \mathbb{R}^d$ and y_i is the label.

example $x_1 \rightarrow$	$ x_{11} $	x_{12}	 x_{1d}	$y_1 \leftarrow label$
• • •	• • •	• • •	 	• • •
example $x_i \rightarrow$	x_{i1}	x_{i2}	 x_{id}	$y_i \leftarrow label$
• • •			 	• • •
example $x_n \rightarrow$	x_{n1}	x_{n2}	 $\overline{x_{nd}}$	$y_n \leftarrow label$

Supervised vs. Unsupervised

Given: Training data: $(x_1, y_1), \ldots, (x_n, y_n) / x_i \in \mathbb{R}^d$ and y_i is the label.

example $x_1 \rightarrow$	$ x_{11} $	x_{12}	 x_{1d}	$y_1 \leftarrow label$
• • •	• • •	• • •	 	• • •
example $x_i \rightarrow$	x_{i1}	x_{i2}	 $\overline{x_{id}}$	$y_i \leftarrow label$
• • •			 	• • •
example $x_n \rightarrow$	x_{n1}	x_{n2}	 $\overline{x_{nd}}$	$y_n \leftarrow label$

fruit	length	width	weight	label
fruit 1	165	38	172	Banana
fruit 2	218	39	230	Banana
fruit 3	76	80	145	Orange
fruit 4	145	35	150	Banana
fruit 5	90	88	160	Orange
fruit n				

Supervised vs. Unsupervised

fruit	length	width	weight	label
fruit 1	165	38	172	Banana
fruit 2	218	39	230	Banana
fruit 3	76	80	145	Orange
fruit 4	145	35	150	Banana
fruit 5	90	88	160	Orange
fruit n				

Unsupervised learning:

Learning a model from unlabeled data.

Supervised learning:

Learning a model from labeled data.

Unsupervised Learning

Training data: "examples" x.

$$x_1, \dots, x_n, \ x_i \in X \subset \mathbb{R}^n$$

• Clustering/segmentation:

$$f: \mathbb{R}^d \longrightarrow \{C_1, \dots C_k\}$$
 (set of clusters).

Example: Find clusters in the population, fruits, species.

Unsupervised learning

Unsupervised learning

Unsupervised learning

Methods: K-means, gaussian mixtures, hierarchical clustering, spectral clustering, etc.

Training data: "examples" x with "labels" y.

$$(x_1, y_1), \dots, (x_n, y_n) / x_i \in \mathbb{R}^d$$

• Classification: y is discrete. To simplify, $y \in \{-1, +1\}$

$$f: \mathbb{R}^d \longrightarrow \{-1, +1\}$$
 f is called a binary classifier.

Example: Approve credit yes/no, spam/ham, banana/orange.

Methods: Support Vector Machines, neural networks, decision trees, K-nearest neighbors, naive Bayes, etc.

Classification:

