MLL 100

Introduction to Materials Science and Engineering

Lecture-20 (February 25, 2022)

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)

What have we learnt in Lecture-19?

- Diffusion
- ☐ Driving force of diffusion: chemical potential gradient

☐ Analogy to Fick's first law

Fick's first law of diffusion

material varies with the distance?

What is the unit of diffusion coefficient (D)?

atoms/m².s
$$J = -D \frac{m^2/s}{(x_2 - x_1)_{atoms/m^3}}$$

	Charge flow (electrical conduction)	Phonon flow (thermal conduction)	Fluid flow in porous medium	Atomic flow (diffusion)
☐ What quantity flows?	direction of electric current direction of electrons www.physicst.jorials.org V (Potential Difference)	phonons Cross-sectional area = A Warmer body Heat flow Cooler body	fluid Skeleton Ineffective pore	atoms High Concentration Low Concentration
☐ What is the gradient?	Potential drop $j_e \propto -\frac{dV}{dx}$	Temperature difference $j_q \propto -\frac{dT}{dx}$	Pressure difference $j_f \propto -\frac{dP}{dx}$	Concentration difference $J \propto -\frac{dC}{dx}$
☐ What material property gets represented?	Electrical conductivity $j_e = - \sigma \frac{dV}{dx}$	Thermal conductivity $j_q = -\kappa \frac{dT}{dx}$	Hydraulic permeability $j_f = -\mathbf{K} \frac{dP}{dx}$	Diffusivity $J = -\mathbf{D}\frac{dC}{dx}$
☐ What is the law describing this behaviour?	Ohm's law	Fourier's law	Darcy's law	Fick's law

Steady-state of diffusion

In steady state diffusion there is neither accumulation nor depletion of the diffusing species anywhere in the medium at any time and Fick's first law is easily applicable

Steady-state

 $Concentration \neq f (time, t)$

$$\frac{dC}{dx} = constant; \quad \frac{dC}{dt} = 0$$

$$J \neq f(x,t)$$
 (No accumulation of matter)

Fick's second law: for non-steady state

Concentration = f (position, time)

$$\frac{dC}{dx} \neq constant; \quad \frac{dC}{dt} \neq 0$$

$$\frac{dc}{dt} = D \frac{d^2c}{dx^2}$$

Fick's second law

 J_x is the flux arriving at plane A and $J_{x+\Delta x}$ is the flux leaving plane B. Then the Accumulation of matter is given by: $(J_x - J_{x+\Delta x})$.

- How many atoms got accumulated in Δx in time Δt ?
- (Atoms crossing plane A)-(Atoms crossing plane B) $= (N_x)-(N_{x+\Delta x})$
- Flux, J = (No. of atoms)/(A.t) $= (J_x \cdot \text{A.t}) \cdot (J_{x+\Delta x} \cdot \text{A.t})$ $\left[\left(\frac{Atoms}{m^3} \frac{1}{s} \right) \cdot m \right] = \left[\frac{Atoms}{m^2 s} \right] \equiv [J]$

$$(N_x)$$
- $(N_{x+\Delta x}) = (J_x - J_{x+\Delta x}) .A.t$
 $(\Delta N_x) = (\Delta J_x) .A.\Delta t$

• Concentration, C = (No. of atoms)/(V)

$$(\Delta C_x) \cdot V = (\Delta J_x) \cdot A \cdot \Delta t$$

$$(\Delta C_x)$$
. A. $\Delta x = (\Delta J_x)$. A. Δt

• Rearrangement of terms:

$$\left(\frac{\Delta c_{x}}{\Delta t}\right) = -\frac{\Delta J_{x}}{\Delta x}$$

 $\left(\frac{dc}{dt}\right) = -\frac{dJ}{dx}$

• Applying limits on both the sides of the equation:

$$\lim_{t \to 0} \left(\frac{\Delta c_{x}}{\Delta t} \right) = \lim_{x \to 0} \left(-\frac{\Delta J_{x}}{\Delta x} \right)$$

• On substituting the Fick's first law:

$$\left(\frac{\partial c}{\partial t}\right) = -\frac{\partial}{\partial x} \left(-D\frac{\partial c}{\partial x}\right)$$

$$\left(\frac{\partial c}{\partial t}\right) = \frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x}\right)$$

• Assuming that the diffusion coefficient *D* is not a function of location *x* and the concentration (*c*) of diffusing species, a simplified version of Fick's second law as:

$$\left(\frac{\partial c}{\partial t}\right) = D \frac{\partial^2 c}{\partial x^2}$$

Homogenization

$$\left(\frac{\partial c}{\partial t}\right) = D\frac{\partial^2 c}{\partial x^2} \longrightarrow c(x,t) = A - B \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$$

Solution with 2 constants determined from Boundary Conditions and Initial Condition

Tabulation of Error Function Values

z.	erf(z)	z	erf(z)	z	erf(z)
0	0	0.55	0.5633	1.3	0.9340
0.025	0.0282	0.60	0.6039	1.4	0.9523
0.05	0.0564	0.65	0.6420	1.5	0.9661
0.10	0.1125	0.70	0.6778	1.6	0.9763
0.15	0.1680	0.75	0.7112	1.7	0.9838
0.20	0.2227	0.80	0.7421	1.8	0.9891
0.25	0.2763	0.85	0.7707	1.9	0.9928
0.30	0.3286	0.90	0.7970	2.0	0.9953
0.35	0.3794	0.95	0.8209	2.2	0.9981
0.40	0.4284	1.0	0.8427	2.4	0.9993
0.45	0.4755	1.1	0.8802	2.6	0.9998
0.50	0.5205	1.2	0.9103	2.8	0.9999

•
$$erf(\infty) = 1$$

•
$$erf(-\infty) = -1$$

•
$$erf(0) = 0$$

$$-erf(-x) = -erf(x)$$

• Solution to the equation depends on the boundary conditions for a particular situation

$$\frac{c_s - c_x}{c_s - c_0} = \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$$

 c_s : a constant concentration of the diffusing atoms at the surface of the material,

 c_0 : initial uniform concentration of the diffusing atoms in the material

 c_x : concentration of the diffusing atom at location x below the surface after time t.

Calculating values of A and B

$$c(+x, t=0) = C_{Ni}$$

$$c(-x, t=0) = C_{Cu}$$

•
$$Erf(\infty) = 1$$

$$Erf(-\infty) = -1$$

•
$$Erf(0) = 0$$

•
$$Erf(-\gamma) = -Erf(\gamma)$$

$$c(x,t) = A - B \ erf\left(\frac{x}{2\sqrt{Dt}}\right)$$

Substituting these values and erf values

$${}^{\bullet}C_{N_i} = A - B \text{ erf } (\infty) = A - B$$

$${}^{\bullet}C_{Cu} = A - B \text{ erf } (-\infty) = A + B$$

$$A = (C_{Ni} + C_{Cu})/2$$

 $B = (C_{Cu} - C_{Ni})/2$

How does 'temperature' influence atomic movement?

How does an atom diffuse in a solid?

Vacancy diffusion requires high content of vacancies

Probability for an atomic jump ∝

(probability that the atom has sufficient energy)

x(*probability that the nearby site is vacant*)

$$D_{sub} = p\delta^2 \vartheta \left[exp \left(-\frac{\Delta H_m}{RT} \right) \right] exp \left(-\frac{\Delta H_f}{RT} \right)$$

$$Q_{vacancy} = \Delta H_m + \Delta H_f$$
$$Q_{interstitial} = \Delta H_m$$

$$Q_{vacancy} > Q_{interstitia}$$