We define an auxiliary guarded recursive specification $E'=\{3n=a, 2m+b, Y\mid n\in N\}$ and define a sequence of terms denoting a solution for $E'=\{3n=a, 2m+b, Y\mid n\in N\}$. Define to, t, ..., t; , ... (i.en) with induction on i by to $\equiv X$ and ti== ti $\neq b$. Y we prove that t:=a.t:=bY for all i en with induction on i:

If i=o, then $t:=t_0=X=a.X \neq bY \stackrel{P}{=}a.(x \neq b, Y)+bY=a.t_1+b.Y$ Let $i\in N$ and suppose that t:=a.t:=b.Y and t:=a.t:=b.Y. Then $t:=t:=b.Y \stackrel{P}{=}a.t:=b.Y$ $\stackrel{P}{=}a.t:=b.Y$ $\stackrel{P}{=}a.t:=b.Y$ $\stackrel{P}{=}a.t:=b.Y$ $\stackrel{P}{=}a.t:=b.Y$

So to, ti, tz, ... denotes a solution of E'

F= { Z = a.Z+bY, Y=b.Y}

Define a sequence of terms denoting a solution of F:

Define $u_0, u_1, ..., u_1, ...$ (i.e., v_i) with induction on i by $u_0 = 2$ and $u_{i+1} = u_i$ We prove that $u_i = a$. $u_{i+1} + b$. i for all i for with induction on i:

If i = 0, then $u_1 = u_0 = 2 = a$. i = 2 + b. i = a. i = 2 + b. i = a. i = 3 + b. i = a. i = 4 + b. i = a. i = 4 + b. i = a. i =

Hence both to , to , ... and up, u, , ... denote solution of E', and therefore , in every model satisfying RSP we have that $\mu X.E = X \equiv t_0 = u_0 \equiv Z = \mu Z.F$