DEUTSCHE DEMOKRATISCHE REPUBLIK

(12) Wirtschaftspatent

Erteilt gemäß § 17 Abestz 1 Patentgesetz

PATENTSCHRIFT

(19) DD (11) 258 817 · A1

4(51) C 07 D 513/14

AMT FÜR ERFINDUNGS- UND PATENTWESEN

in der vom Anmelder eingereichten Fassung veröffentlicht

(21) WP C 07 D / 299 312 6 (22) 19.01.87 (44) 03.08.88

(71) Martin-Luther-Universität Halle – Wittenberg, Universitätsplatz 10, Halle, 4020, DD (72) Böhm, Ralf, Prof. Dr.; Henkel, Lutz, Dipl.-Pharmazeut; Pach, Reinhard, Dr. Dipl.-Chem.; Petzold, Brigitte, DD (64) Verfahren zur Herstellung von 2-{Aminoalkyl}-pyrimido[4,5'-5,4]pyrrolo[3,2-f][1,4]thiazepinderivaten

(55) Pharmazie, Synthese, Substitution, Wirkstofforschung, Pyrrol, Pyrimidin, Thiazepin,
Pyrimido[4',5'-5,4]pyrrolo[3,2-f][1,4]thiazepin, Aminoalkane, Carbonsäureester
(57) Die Erfindung betrifft ein Verfahren zur Herstellung von
2-(Aminoalkyl)-pyrimido[4',5'-5,4]pyrrolo[3,2-f][1,4]thiazepinen der allgemeinen Formel I, worin R², R³ = H,
heteroalkylen, alkyl, aryl bedeuten. Diese Verbindungen stellen potentielle Pharmaka dar und sind zugleich
Zwischenprodukte der pharmazeutischen Industrie. Ziel der Erfindung ist es, ausgehend von
5-(Alkoxycarbonyleikyithio)-2-amino-3,4-dicarbamoyi-1H-pyrrolen der allgemeinen Formel IV, worin R¹ = alkyl
bedeutet, 2-(Aminoalkyl)-pyrimido[4',5'-5,4]pyrrolo[3,2-f][1,4]thiazepine der allgemeinen Formel I darzustellen. Die
Synthese der Verbindungen der allgemeinen Formel I arfolgt durch schrittweise Umsetzung der Verbindungen der
allgemeinen Formel IV mit α-Helogenacylhalogeniden und anschließend mit Aminen zu den Zwischenprodukten der
allgemeinen Formein II bzw. III, worin R¹, R² und R³ obige Bedeutung besitzen, und letztere werden nach Reinigung
durch Umkristallisieren unter basischen Bedingungen cyclisiert, wobel sowohl der Pyrimidin- als auch der
1,4-Thiazepinring gebildet und die Verbindungen der Formel I erhalten werden.

ISSN 0433-6461

5 Seiten

Patentanspruch:

Verfahren zur Herstellung von 2-(Aminoalkyl)-pyrimido[4',5'-5,4]pyrrolo[3,2-f][1,4]thiazepinderivaten der allgemeinen Formel I.

worin R^2 , $R^3 = H$, heteroalkylen, alkyl, aryl bedeuten,

gekennzeichnet dadurch, daß 5-(Alkoxycarbonylalkylthio)-2-amino-3,4-dicarbamoyl-1 H-pyrrole der allgemeinen Formel IV,

worin R1 = alkyl

bedeutet.

mit α-Halogenacylhalogeniden in einem organischen Lösungsmittel zu 5-{Alkoxycarbonylalkylthio}-2-(α-halogenacylamino)-3,4-dicarbamoyl-1 H-pyrrolen der allgemeinen Formel II,

worin $R^1 = alkyl$

bedeutet,

umgesetzt werden, die anschließend in einer Reaktion mit Aminen in einem organischen Lösungsmittel zu 5-(Alkoxycarbonylaikylthio)-2-(a-aminoacylamino)-3,4-dicarbamoyl-1 H-pyrrolen der allgemeinen Formel III,

worin $R^1 = alkvi$

 R^2 , $R^3 = H$, heteroalkylen, alkyl, aryl

bedeuten.

reagieren, die nach Reinigung durch Umkristallisieren in einer letzten Stufe unter basischen Bedingungen cyclisiert werden, wobei sowohl der Pyrimidin- als auch der 1,4-Thiazepinring gebildet werden und die Verbindungen der allgemeinen Formel I erhalten werden.

Hierzu 1 Seite Formeln

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Synthese von 2-(Aminoalkyl)-pyrimido(4',5'-5,4)pyrrolo(3,2-f)[1,4]-thiszepinderivaten der allgemeinen Formel i,

worin R2, R3 = H, heteroalkylen, alkyl, aryl

bedeuten

Die Verbindungen stellen potentielle Pharmaka und gleichzeitig Zwischenprodukte der pharmazeutischen Industrie der.

Charakteristik der bekannten technischen Lösungen

Verbindungen der eilgemeinen Formel i werden bisher weder in der Patent- noch in der Fachliteretur beschrieben. Damit werden erstmals Derivate des Pyrimido [4',5'-5,4]-pyrrolo[3,2-f][1,4]thiazepine mit 2-Aminoalkylgruppierung dergestellt.

Ziel der Erfindung

Ziel der Erfindung ist eine einfache und schnelle Herstellungsmethode für bisher nicht bekannte 2-(Aminoalkyl)-pyrimido[4',5'- 6,4]pyrrolo[3,2-f][1,4]thiezepine der allgemeinen Formel I mit gut zugänglichen Ausgangsprodukten, um die Palette potentieller Pharmaka bzw. interessanter Zwischenprodukte zu erweitern.

Darstellung des Wesens der Erfindung

Aufgabe der Erfindung ist ein Verfahren zur Synthese von 2-(Aminoalkyi)-pyrimido[4',5'-5,4]pyrrolo[3,2-f]-[1,4]thiezepinen der allgemeinen Formel I.

worin R2, R3 = H, heteroalkylen, alkyl, aryl

bedeuten.

Erfindungsgemåß wird die Aufgabe dadurch gelöst, daß 5-(Alkoxycarbonylalkylthio)-2-amino-3,4-dicarbamoyl-1 H-pyrrole der aligemeinen FormeliV, worin R¹ = alkyl

bedeutet,

mit α-Halogenacylhalogenide in einem organischen Lösungsmittel umgesetzt werden. Die hierbei entstehenden 5-(Alkoxycarbonylalkylthio)-2-(α-halogenacylamino)-3,4-dicarbamoyl-1H-pyrrola der eligemeinen Formei II,

worin $R^1 = alkyl$

bedeutet,

werden mit Aminen in einem organischen Lösungsmittel zur Reaktion gebracht. Die gebildeten 5-(Alkoxycarbonylaikylthio)-2-(d-aminoacylamino)-3,4-dicarbamoyt-1 H-pyrrole der aligemeinen Formel III,

worin $R^1 = alkyl$, R^2 , $R^3 = H$, heteroalkylen, alkyl, aryl

bedeuten,

werden unter basischen Bedingungen cyclisiert, wobel sowohl der Pyrimidin- als auch der 1,4-Thiezepinring entstehen und die Verbindungen der Formel I erhalten werden.

Die Aufarbeitung der Zwischen- und Endprodukte erfolgt in an sich bekannter Weise.

Ausführungsbeispiele

Die Erfindung soll nachstehend an drei Ausführungsbeispielen erklärt werden.

Beispiel 1

Darstellung von 3,4-Dicarbamoyl-2-chloracetylamino-5-ethoxycarbonylmethylthio-1 H-pyrrol

C₁₂H₁₅CIN₄O₅S (362,79)

0,01 mol 2-Amino-3,4-dicarbamoyl-6-ethoxycarbonyl-methylthio-1 H-pyrrol wird in 25ml DMF gelöst. Zu dieser Lösung wird 0,01 mol Chlorecetylchlorid zugetropft und 1 h bei Raumtemperatur gerührt. Danach gießt man auf Wasser und saugt den Niederschlag ab. Das Produkt wird aus n-Propanol umkristallisiert.

Schmelzpunkt: 199-201°C

Ausbeute: 86%

Beispiel 2

Darsteilung von 3,4-Dicarbamoyl-8-(athoxycarbonyl-methylthio)-2-(morpholinoacetylamino)-1 H-pyrrol

 $C_{15}H_{23}N_{5}O_{6}S$ (413,45)

Zu 0,01 mol 3,4-Dicarbamoyl-2-chloracetylamino-5-ethoxycarbonylmethylthio-1 H-pyrrol werden in 20 ml Dimethylformamid 0,02 mol Morpholin zugesetzt. Danach wird 2 h unter Rückfluß erhitzt. Nach Erkalten gleßt man den Reaktionsansatz auf Wasser und saugt den Niederschlag ab. Das Produkt wird aus n-Propanol umkristallisiert.

Schmelzpunkt: 248–251 ℃

Ausbeute: 73%

In analoger Weise werden die in Tabelle 1 zusammengefaßten Verbindungen hergestellt:

Tabelle 1: Verbindungen gemäß Formel III

Nr.	R ¹	· R²	R ³
1	C₂H ₅	Н	C ₆ H ₅
2	C₂H ₅	H	o⊢CH₃OC₅H₄
3	C ₂ H ₅	H	o,m-(CH ₃) ₂ C ₆ H ₃
4	C ₂ H ₆	н	m-CIC ₆ H ₄
5	C ₂ H ₅	H	p-COOHC ₈ H ₄

Nr.	Summen- formel	Mol- masse	Ausbeute (%)	Schmelz- punkt (°C)
1 .	C18H21N5O5S	413,46	82	196-198
2	C19H25N5O8S	449,49	79	147-160
3	C25H25N5O5S	447,51	85	201-203
4	C ₁₈ H ₂₀ Cln ₅ O ₆ S	453,90	75	202-204
5	C19H21N5O7S	463,47	52	147-149

In analoger Weise wurde weiterhin folgende Verbindung dargestellt:

3,4-Dicarbamoyi-5-ethoxycarbonylmethylthio-2-(1,2,3,4-tetrahydroisochinolinoacetylamino)-1H-pyrrol

C₂₁H₂₅N₈O₅S (459,52) Schmelzpunkt: 174–175°C

Ausbeute: 79%

Beispiel 3

Darstellung von 2-Morpholinomethyl-4,5,8,7,8,10-hexahydro-3H-pyrimido[4',5'-5,4]pyrrolo[3,2-f][1,4]thiezepin-4,5,7-trion $C_{14}H_{16}N_{5}O_{4}S$ (348,37)

0,01 moi 3,4-Dicarbamoyl-5-(ethoxycarbonylmethyithio)-2-(morpholinoscetylamino)-1H-pyrrol wird in 25 ml Natronlauge (4mol/l) gelöst und 2 Minuten zum Kochen gebracht. Nach Erkalten der Lösung wird mit HCl (2mol/l) neutralisiert und der Niederschlag abgesaugt.

Schmelzpunkt: 203-203°C

Ausbeute: 72%

In analoger Weise werden die in Tabelle 2 zusammengefaßten Verbindungen hergestellt:

Tabelle 2:

Verb	indungen	gemäß	Formel
			-3

Nr.	R ²	R³
1	Н	C₀H₅
2	H	o-CH ₃ OCC ₆ H ₄
3	H	o,m(CH ₃) ₂ C ₆ H ₃
4	H	m-CIC ₆ H ₄
5	н	p-HOOCC ₆ H ₄

Nr.	Summen- formel	Mol- masse	Ausbeute (%)	Schimelz- punkt (°C)	•	•
1	C16H13N5O2S	355,37	69	> 360		
2.	C17H15N5O4S	385,40	73	> 380		•
3	CigHirNeO3S	383,43	74	> 360		
4	C15H12CIN5O3S	389,81	70	> 360	• •	
5	C17H13N5O5S	399,38	65	> 360		
2-(1,2,3,4 C ₁₈ H ₁₇ N ₅	punkt: 250-252°C	nin folgende Vei omethyl)-4,5,6,7	rbindung gemäß Fo 7,8,10-hexahydro-3l	rmel i dergestellt: 1-pyrimido(4',5'-5,4)p	yrralo[3,2-f][1,4]-this	zepin-4,5,7-trion

Formelblatt

R², R³ = H, heteroalkylen, alkyl, aryl

Formel I

R¹ = alkyl

 $R^1 = alkyl$

Formel IV