Notes of "Binary Operation"

Jinxin Wang

1 Overview

- Operations, semigroups and monoids
 - Def: An n-ary operation on a set
 - Examples of n-ary operations on a set
 - * Examples of unary operations:
 - * Examples of binary operations:
 - Def: A semigroup
 - Def: An identity element and a monoid
 - * Rmk: The uniqueness of the identity element in a monoid
 - Examples of semigroups and monoids
 - * Eg: The set of all transformations on a set
 - Def: A subsemigroup and A submonoid
 - * Rmk: The equality between the identity element of a monoid and the one of its submonoid
 - Examples of subsemigroups and submonoids
 - * Eg: The set of all even integers with the addition in $(\mathbb{Z}, +)$
 - * Eg: The set of all inversible $M_n(\mathbb{R})$ with the multiplication of matrices in $(M_n(\mathbb{R}),\cdot)$
- Properties of associative operations
 - Prop: The result of an associative binary operation of multiple operands is independent from the order of carrying out the operations
 - Rmk: Examples of binary operations on a set that is not associative
- Exponentions and multiples
 - Def: Exponentions with non-negative integer exponents
 - Rmk: Properties of exponentions with non-negative integer exponents
 - Def: Multiples with non-negative integer multipliers
 - Rmk: Properties of multiples with non-negative integer multipliers
- Inversible elements

- Def: An inversible element and its inverse element
 - * Rmk: The prerequisite of discussing the inversibility of an element is having the identity element
 - * Rmk: The uniqueness of the inverse element of an inversible element in a monoid
 - * Rmk: The inversibility of the operation result of two inversible elements
- Def: Negative exponentions and negative multiples
- Prop: Properties of exponentions with integer exponents

2 Operations, semigroups and monoids

Remark 1 (The equality between the identity element of a monoid and the one of its submonoid). The identity element of a monoid doesn't necessarily equal to the one in a submonoid, if the submonoid doesn't contain the identity of the monoid.

One example is that the monoid is $(M_2(\mathbb{R}), \cdot)$, whose identity is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, and the submonoid is the set of real-valued matrices of order 2 with the form like $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, whose identity is $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

- 3 Properties of associative operations
 - 4 Exponentions and multiples
 - 5 Inversible elements