AUA CS 108, Statistics, Fall 2019 Lecture 29

Michael Poghosyan
YSU, AUA
michael@ysu.am, mpoghosyan@aua.am

30 Oct 2019

Contents

► The Maximum Likelihood Method (MLE)

Last Lecture ReCap

▶ I was asking: *Any Questions*? What was the answer?

The Maximum Likelihood Method

Example: Find the MLE Estimator for (μ, σ^2) in the $\mathcal{N}(\mu, \sigma^2)$ Model.

Solution: OTB

Example: Find the MLE Estimator for (μ, σ^2) in the $\mathcal{N}(\mu, \sigma^2)$ Model.

Solution: OTB

Example: Assume we have an observation

from the following Model:

$$\begin{array}{c|c|c|c} X & 0 & 1 & 2 \\ \hline \mathbb{P}(X=x) & \frac{\theta}{10} & \frac{\theta}{5} & 1 - \frac{3\theta}{10}, \end{array}$$

where $\theta \in [0, \frac{10}{3}]$.

Example: Find the MLE Estimator for (μ, σ^2) in the $\mathcal{N}(\mu, \sigma^2)$

Model.

Solution: OTB

Example: Assume we have an observation

$$0,1,1,2,1,0,0,1,1\\$$

from the following Model:

$$\begin{array}{c|c|c} X & 0 & 1 & 2 \\ \hline \mathbb{P}(X=x) & \frac{\theta}{10} & \frac{\theta}{5} & 1 - \frac{3\theta}{10}, \end{array}$$

where $\theta \in [0, \frac{10}{3}]$. Find the MLE Estimator and MLE Estimate for θ .

Solution: OTB

Example: Find the MLE Estimator for θ in the one-Parametric Cauchy Distribution $Cauchy(\theta)$ Model. Here, the PDF of $X \sim Cauchy(\theta)$ is given by

$$f(x|\theta) = \frac{1}{\pi(1+(x-\theta)^2)}, \qquad x \in \mathbb{R},$$

and $\theta \in \mathbb{R}$ is called the *location parameter*.

PDF of Cauchy(0) and Cauchy(2)

```
x <- seq(from = -10, to = 10, by = 0.01)
y1 <- dcauchy(x); y2 <- dcauchy(x, location = 2);
plot(x, y1, type = "l", lwd = 2, xlim = c(-10,10), col = "blue")
par(new = T)
plot(x, y2, type = "l", lwd = 2, xlim = c(-10,10), col = "red")</pre>
```


Example: Find the MLE Estimator for θ in the one-Parametric Cauchy Distribution $Cauchy(\theta)$ Model. Here, the PDF of $X \sim Cauchy(\theta)$ is given by

$$f(x|\theta) = \frac{1}{\pi(1+(x-\theta)^2)}, \qquad x \in \mathbb{R},$$

and $\theta \in \mathbb{R}$ is called the *location parameter*.

Solution: OTB

Example: Find the MLE Estimator for θ in the one-Parametric Cauchy Distribution $Cauchy(\theta)$ Model. Here, the PDF of $X \sim Cauchy(\theta)$ is given by

$$f(x|\theta) = \frac{1}{\pi(1+(x-\theta)^2)}, \qquad x \in \mathbb{R},$$

and $\theta \in \mathbb{R}$ is called the *location parameter*.

Solution: OTB

Note: The MoM will not work in this case, since Moments of this Distribution do not exist.

Example: Find the MLE Estimator for θ in the one-Parametric Cauchy Distribution $Cauchy(\theta)$ Model. Here, the PDF of $X \sim Cauchy(\theta)$ is given by

$$f(x|\theta) = \frac{1}{\pi(1+(x-\theta)^2)}, \qquad x \in \mathbb{R},$$

and $\theta \in \mathbb{R}$ is called the *location parameter*.

Solution: OTB

Note: The MoM will not work in this case, since Moments of this Distribution do not exist. Btw, the Median of this Distribution is θ .

Example: Find the MLE Estimator for θ in the one-Parametric Cauchy Distribution $Cauchy(\theta)$ Model. Here, the PDF of $X \sim Cauchy(\theta)$ is given by

$$f(x|\theta) = \frac{1}{\pi(1+(x-\theta)^2)}, \qquad x \in \mathbb{R},$$

and $\theta \in \mathbb{R}$ is called the *location parameter*.

Solution: OTB

Note: The MoM will not work in this case, since Moments of this Distribution do not exist. Btw, the Median of this Distribution is θ .

Note: In \mathbf{R} , the name of Cauchy Distribution is *cauchy*, so you can use, say, reauchy or deauchy .

Example: Find the MLE Estimator for θ in the one-Parametric Cauchy Distribution $Cauchy(\theta)$ Model. Here, the PDF of $X \sim Cauchy(\theta)$ is given by

$$f(x|\theta) = \frac{1}{\pi(1 + (x - \theta)^2)}, \qquad x \in \mathbb{R},$$

and $\theta \in \mathbb{R}$ is called the *location parameter*.

Solution: OTB

Note: The MoM will not work in this case, since Moments of this Distribution do not exist. Btw, the Median of this Distribution is θ .

Note: In \mathbf{R} , the name of Cauchy Distribution is *cauchy*, so you can use, say, reauchy or deauchy .

Note: Do you know what is the Distribution of the ratio $\frac{X}{Y}$, when X and Y are Independent Standard Normal Rvs?

Example: Find the MLE Estimator for θ in the one-Parametric Cauchy Distribution $Cauchy(\theta)$ Model. Here, the PDF of $X \sim Cauchy(\theta)$ is given by

$$f(x|\theta) = \frac{1}{\pi(1+(x-\theta)^2)}, \qquad x \in \mathbb{R},$$

and $\theta \in \mathbb{R}$ is called the *location parameter*.

Solution: OTB

Note: The MoM will not work in this case, since Moments of this Distribution do not exist. Btw, the Median of this Distribution is θ .

Note: In \mathbf{R} , the name of Cauchy Distribution is *cauchy*, so you can use, say, reauchy or deauchy .

Note: Do you know what is the Distribution of the ratio $\frac{X}{Y}$, when X and Y are Independent Standard Normal Rvs? Cauchy(0)!