COMPSCI 711 Outline

Basics

- Parallel computing & Distributed computing
- Graph theory (eccentricity, diameter, radius)
- BFS and DFS spanning trees
- Synchronous/asynchronous models
 - Async: transit time in [0, 1]
 - FIFO channel -> congestion
 - Sync: transit time = 1 (special case of Async)
 - Both are non-deterministic
- Confluent system always arrives to the same final decision (although non-deterministic in middle)

Echo

- broadcast: build spanning tree
- convergecast: confirm termination

Echo (in **Sync** mode = SyncBFS)

- time O(2D+1), message O(2|E|)
- minimum height spanning tree

Echo (in **Async** mode)

- time O(|V|), message O(2|E|)
- rush to build a spanning tree (greedy), could end up more time on convergecast

Echo-Size

Distributed DFS

- Classical DFS
 - time O(2|E|), message O(2|E|)
- Cidon DFS
 - time O(2|V|-2), message O(3|E|)
 - tok + vis (visited) tokens
- Cidon DFS (in Sync mode)
- Cidon DFS (in Async mode)

Distributed BFS

- in Sync mode = Echo
- in Async mode: hard to implement

Bellman-Ford

- find all shortest paths from a single source (shortest path spanning tree)
- time O(|V||E|)

Distributed Bellman-Ford (in **Sync** mode ≈ **Echo**++)

- time O(|V|), message O(|V||E|)

Github: cwgavin

- Echo + single source distance + adjust phase
- termination: TTL = |V|

Distributed Bellman-Ford (in **Async** mode)

- time with FIFO: $O(|V|^{|V|})$, no FIFO: O(|V|); message $O(|V|^{|V|})$

- No two neighbours in the same set, cannot be extended anymore.
- Luby's algorithm (Sync)
 - stop with probability 1, expected rounds O(log N)
 - ∘ range of random numbers = [1, ..., N^4]
 - each round: generate random number, notify neighbours, winners and losers disconnect

Minimum Spanning Tree (MST)

- If edges have different weights, there is a unique MST.
- Prim
 - keep growing a single tree by merging with one node at a time
 - consider only the current tree's MWOE
- Kruskal
 - o merge two trees at a time
 - consider only the lowest cost MWOE
- Boruvka
 - multi-way merges at the same time
 - consider all MWOEs
 - one node on the common MWOE will be the root of tree

- time O(N log N), message O((N+M) log N)
- #levels O(log N)
- o at each level, merge at least 2 components
- at level k ≥ 0, total size is at least 2^k (exponential)
- each node find its MWOE, send connect message, the node on common MWOE with smaller ID becomes root
- root sends *initiate* message (with root ID) to children to explore MWOEs
 [decrease counter = N for synchronization]
 [time O(N log N)]
- 3. all nodes send *test* message (with root ID) to

- all unexplored edges
- all nodes send accept to nodes in different tree, reject to nodes in the same tree [this step not really needed]
- children nodes send report message (with min MWOE of children and self) to root
 [decrease counter = N for synchronization]
 [time O(N log N)]
- 6. root decides the tree's MWOE, send connect to the node on tree's MWOE, and reverse parent/child along the way [decrease counter = N for synchronization] [time O(N log N)]
- 7. nodes on tree's MWOE send *connect* (actual connection)
- Distributed MST (in **Async** mode: solved by GHS)
 - difficulty: two trees may be at different levels

Logical clocks

- Independent of the physical time.
- a < b event a happens before event b iff
 - a and b occur in the same node, and a happens before b, or
 - a is a send event and b is the corresponding receive event
 - transitive closure: $\exists c$ s.t. a < c < b
- < determines a partial order, which creates directed acyclic graphs
- Logical time is a mapping C from events to elements of a partially ordered set:

$$a < b \Rightarrow C(a) < C(b)$$

- Ideal/exact match:

$$a < b \Leftrightarrow C(a) < C(b)$$

- Property: Must be determined by nodes themselves, must be unique, good to be same for essentially same executions
- Lamport (total order -> not ideal)
 - before sending messages, clock += 1
 - after receiving messages, clock = max(clock, m.clock) + 1
- Vector (partial order, ideal)
 - \circ V(P₂) = (v1, v2, v3)
 - $(v1, v2, v3) \le (v1', v2', v3') \Leftrightarrow v1 \le v1', v2 \le v2', v3 \le v3'$
 - before sending messages:
 - $V(P_2)$: $(v1, v2, v3) \Rightarrow (v1, v2 + 1, v3)$
 - after receiving messages:
 - V(P₂): (v1, v2, v3), (r1, r2, r3) ⇒ (max(v1,r1), max(v2,r2) + 1, max(v3,r3))

can detect FIFO

Distributed snapshot (count money example)

- for each channel, keep adding received money from time t until getting the first message sent after time t (marker message)
- assumption 1: infinite message flows
- assumption 2: FIFO flows (if no FIFO, fix by adding sequence numbers for each channel & including messages we should receive before the marker message)

Byzantine agreement (**Sync**)

- Impossible to deterministically solve (even a simple stopping failure) in Async mode (FLP, 1985)
- In Sync mode, deterministically solved iff
 - o N ≥ 3F + 1
- Termination: all loyal processes eventually decide
- Agreement: all loyal processes decide on the same value
- Validity: if all loyal processes start with the same initial value v, the final decision must be v; otherwise could be any of initial values.
- EIG tree
 - \circ L = F + 1

sibling group size: N - L + 1

(highlighted tree nodes are messages relayed by loyal processes, red line is the common path covering)

- Triple modular redundancy (TMR)
 - all loyal modules give the same initial value very different from Byzantine problem

Byzantine proofs - #processes

- No deterministic algorithm for n=3, f=1

- No deterministic algorithm for $2 \le n \le 3f$

- n = 2, f = 1: each node assumes the other is faulty, so must decide on its own value -> cannot agree
- 3 ≤ n ≤ 3f

essentially the same as n=3, f=1

- Therefore: n must be greater than 3f

Byzantine proofs - #levels

- $L \ge F + 1$
 - each root-to-leaves branch contains at least one node containing message relayed by loyal nodes (trustworthy)
- L≤F+1
 - each sibling group has a strict majority of nodes containing message relayed by loyal nodes (trustworthy)
- Therefore: L = F + 1

Byzantine proofs - EIG Agreement

- A tree node is *common* if it has the same newval (final decision) across all loyal processes.
- A path covering is a set containing at least one tree node on each root-to-leaves path (covering all paths).
- A *common path covering* is a path covering where all tree nodes are common. (top-down, find the first tree node that ends with a loyal process)
- Lemma 6.16: for a tree node xk, where k is a loyal process, val(xk)_i = newval(xk)_i = val(xk)_j = newval(xk)_j = v for all loyal processes (more than common)
 - for leaves, since relayed by loyal process k, val(xk) would be the same across processes, and by definition of leaves, val = newval
 - for non-leaves, the majority of children are xkl, where I is loyal process. val(xk) = val(xkl) since both k and I are loyal. val(xkl) = newval(xkl) since xkl are leaves (height induction).
 - newval(xkl) = newval(xk) since majority.
- For a tree node x, if there is a common path covering its substree, then x is common.
 - o for leaves, the subtree is itself -> it's on

common path covering -> it's common

- for non-leaves,
 - if it's on common path covering, it's common
 - if it's above common path covering, it's common by induction

- stops after L = F + 1 messaging rounds

Byzantine proofs - EIG Validity

If all loyal processes start with the same initial value v, according to Lemma 6.16, val(k)_i = newval(k)_i = val(k)_j = newval(k)_j = v (k is a first level tree node of loyal process), and they form a strict majority, so the root decision will be v.

Other consensus algorithms

- Synchronizer (Async -> Sync)
 - GlobSync & LocSync
 - could be faster by avoiding greedy choices
 - avoid complex async algorithm
- No deterministic agreement is possible with unbounded communication failures.
- Distributed Commit (Sync, stopping failure only, no recovering)

- 2PC: if no failures, all processes eventually decide
- 3PC: all non-faulty processes eventually decide
- Agreement:
 - all processes (including faulty ones) decide on the same value
- Validity:
 - if any process start with 0, the decision must be 0 (0,d)
 - if all processes start with 1, and there are no failures, then the decision must be 1
- Leader process & cohort processes
- States:
 - 2PC: uncertain(1,u), decided
 - 3PC: uncertain(1,u), ready(1,r), decided
- 2 Phase Commit
 - weak termination = blocking
 - faster, fewer messages
 - cohorts send to leader, leader decides and send back
- 3 Phase Commit
 - strong termination = non-blocking (max N rounds)
 - cohorte cond to loador loador docido on

- control send to leader, leader decide on 0 or make cohort ready on 1, and finally decide on 1.
 - if leader fails, elect a new leader, repeat the three phases
- in the first 3 rounds: missing message -> decide on 0
- in the following rounds: missing message -> ignore
- any (1,r) -> attempt decide on 1
- all (1,u) -> decide on 0 after leader fails (must assume failed process decided on 0)

Stopping failures model (Sync)

- Impossible to deterministically solve (even a simple stopping failure) in Async mode (FLP, 1985)
- Solution: randomization, failure detectors (timeout)
- Stopping failure only, no recovering
 - N ≥ F + 1
- Termination: all non-faulty processes eventually decide
- Agreement: all processes decide on the same value
- Validity: if all processes start with v, the final decision must be v; otherwise could be any of initial values.
- EIG Stop
 - F + 1 messaging rounds
 - check all non-null values in EIG tree
 - if single value, that would be decision
 - otherwise, decision is V0
- EIG Stop (optimized)
 - each process only sends two messages:
 - 1. initial value to all processes
 - 2. a different value to all processes (once it gets a different value)

gets a americano,					
Initial	EIGStop	EIGByz	3PC	ElGStop discards	
0000	0	0	0	unsent messages	
0001	V0	0	0	ElGByz regards	
0 0 1 1	V0	V0	0	unsent messages	
0 1 1 1	V0	1	0	as V0	
1111	1	1	1		
0 0 0 X	0	0	0		
0 0 1 X	V0	V0	0		
0 1 1 X	V0	V0	0		
111X	1	1	0 🔫	- 必须假定 failed	
process 决定为 0					

- (assuming X stops from start)
- Byzantine agreement with authentication -> cannot forge messages, becomes a stopping failure only problem

TurpinCoan (**Sync**, multiple choice)

- Two extra rounds + binary Byzantine
- initial choice $x \in V$
- proposal y ∈ V∪⊥ = ⊥
- candidate $z \in V \cup \bot = \bot$
- vote $v^{\wedge} \in \{0,1\} = 0$
- W ⊆ V∪⊥ multiset of received messages
 - \circ |W| = N, missing messages are regarded as \bot
- 1. send x to all processes

if
$$|W|_v \ge N - F = 2F + 1$$
, then $y = v$; else $y = \bot$

- all loyal processes either have same y or remain undefined
- 2. send y to all processes

if
$$|W|_v \ge N - F = 2F + 1$$
, then $z = v$, $v^* = 1$; [vote for z]

else if exist argmax_v
$$|W|_v$$
, then $z = v$, $v^* = 0$;

else
$$z = \bot$$
, $v^{\wedge} = 0$

binary Byzantine on v[^]
if Byz decision is 1, then final decision is z; [elected]
else final decision is V0

BenOr (**Async**, stopping failure)

- randomization
- weaker termination: evertual termination with probability = 1
- initial choice $x \in \{0,1\}$
- proposal $y \in \{0,1,\perp\} = \perp$
- M is multiset of first N F = 2F + 1 received messages
- each step s has two rounds (s ≥ 0):
 - 1. send (I, s, x) to all processes if all $m \in M$ have the same value v, then y = v; else $y = \bot$
 - 2. send (II, s, y) to all processes if all m ∈ M have the same value v, then x = v, decide v, and continue; else if at least N 2F = F + 1 m ∈ M have the same value v, then x = v, but do not decide; else x = Random(0 or 1)

BenOr	F < √N		
Lynch	F < N / 3		
Aguilera, Toueg	F < N /2		