

UPDATE 2017-05-29

L. Di Stasio^{1,2}, Z. Ayadi¹, J. Varna²

¹EEIGM, Université de Lorraine, Nancy, France ²Division of Materials Science, Luleâ University of Technology, Luleâ, Sweden

May 29, 2017

Outline

Symbols, Models, Equations & Reference Data

Developments & Work Realised

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCC

SYMBOLS, MODELS, EQUATIONS & REFERENCE DATA

Description

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCC

Symbols

Symbol

Unit

θ	[°]	Debond angular position with respect to the center of the arc defined by the debond itself	
$\Delta \theta$	[°]	Debond semi-angular aperture	
δ	[°]	Angle subtended by a single element at the fiber/matrix interface	
VF_f	[-]	Fiber volume fraction	
I	[<i>µm</i>]	Ply's half-length, equal to RVE's half-length (square element)	
и	$[\mu m]$	Displacement along x	
W	$[\mu m]$	Displacement along z	

Symbols Reference Models Angular discretization Material properties Evaluation of G_0 VCCT VCC

Symbols

Symbol	Unit	Description
Γ ₁	[-]	Bonded part of fiber surface
Γ_2	[-]	Free (debonded) part of fiber surface
Γ_3	[-]	Bonded part of matrix surface
Γ₄	[—]	Free (debonded) part of matrix surface

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCC

Reference Models

Simple RVE, BC: free.

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCC

Reference Models

Simple RVE, BC: fixed vertical displacement.

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCC

Reference Models

Simple RVE, BC: fixed vertical and homogeneous horizontal displacement.

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCC

Angular discretization

Angular discretization at fiber/matrix interface: $\delta = \frac{360^{\circ}}{4N_{\odot}}$.

Symbols, Models, Equations & Reference Data Developments & Work Realised Symbols Reference Models Angular discretization

Material properties Evaluation of G₀

Material properties

Material	E [GPa]	G [GPa]	ν [-]
Glass fiber	70,0	29,2	0,2
Ероху	3,5	1,25	0,4

Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCC

Evaluation of G_0

$$G_0 = \pi R_f \sigma_0^2 \frac{1 + k_m}{8G_m} \tag{1}$$

$$k_m = 3 - 4\nu_m \tag{2}$$

$$\sigma_0 = E_m \varepsilon_{xx} \tag{3}$$

Symbols, Models, Equations & Reference Data Developments &

Reference Models Angular discretization Material properties Evaluation of Gn VCCT VCCT

VCCT in Forces

$$\Delta u = \left(x_1^{\textit{fiber},\textit{def}} - x_1^{\textit{fiber},\textit{undef}} - x_1^{\textit{fiber},\textit{undef}}\right) - \left(x_1^{\textit{matrix},\textit{def}} - x_1^{\textit{matrix},\textit{undef}}\right) - \left(x_1^{\textit{matrix},\textit{undef}} - x_1^{\textit{matrix},\textit{undef}}\right) - \left(x_1^{\textit{matrix},\textit{undef}}\right) - \left(x_1^{\textit{matrix},$$

$$\Delta w = \left(z_{1 \text{ element before crack tip}}^{\textit{fiber, def}} - z_{1 \text{ element before crack tip}}^{\textit{fiber, undef}}\right) - \left(z_{1 \text{ element before crack tip}}^{\textit{matrix, def}} - z_{1 \text{ element before crack tip}}^{\textit{matrix, undef}}\right)$$
(5)

$$\beta = \arctan \left(\frac{z_{\text{crack tip}}^{\text{matrix, def}}}{x_{\text{matrix, def}}^{\text{matrix, def}}} \right)$$
 (6)

$$\Delta_{r} = \cos(\beta)\Delta u + \sin(\beta)\Delta w \qquad \Delta_{\theta} = -\sin(\beta)\Delta u + \cos(\beta)\Delta w \tag{7}$$

$$F_r = \cos(\beta)F_x^{reaction} + \sin(\beta)F_z^{reaction}$$
 $F_\theta = -\sin(\beta)F_x^{reaction} + \cos(\beta)F_z^{reaction}$ (8)

$$G_{I} = \frac{1}{2} \frac{F_{r} \Delta_{r}}{R_{f} \delta} \qquad G_{II} = \frac{1}{2} \frac{F_{\theta} \Delta_{\theta}}{R_{f} \delta} \qquad b = 1.0 \leftrightarrow \Delta A = bR_{f} \delta$$
 (9)

Symbols, Models, Equations & Reference Data Developments

Reference Models Angular discretization Material properties Evaluation of G₀ VCCT VCCT

VCCT in Stresses

$$\Delta u = \left(x_1^{\text{fiber},\text{def}} - x_1^{\text{fiber},\text{undef}} - x_1^{\text{fiber},\text{undef}}\right) - \left(x_1^{\text{matrix},\text{def}} - x_1^{\text{matrix},\text{undef}}\right) - \left(x_1^{\text{matrix}}, x_1^{\text{def}} - x_1^{\text{matrix},\text{undef}}\right) - \left(x_1^{\text{matrix}}, x_1^{\text{def}} - x_1^{\text{matrix}}\right) - \left(x_1^{\text{matrix}}, x_1^{\text{matrix}$$

$$\Delta w = \left(z_{1 \text{ element before crack tip}}^{\textit{fiber, def}} - z_{1 \text{ element before crack tip}}^{\textit{fiber, undef}} - \left(z_{1 \text{ element before crack tip}}^{\textit{matrix, def}} - z_{1 \text{ element before crack tip}}^{\textit{matrix, undef}} - z_{1 \text{ element before crack tip}}^{\textit{matrix, undef}} \right)$$

$$\Delta_r = \cos{(\beta)}\Delta u + \sin{(\beta)}\Delta w \quad \Delta_\theta = -\sin{(\beta)}\Delta u + \cos{(\beta)}\Delta w \quad \text{with} \quad \beta = \arctan\left(\frac{z_{\text{orack tip}}^{\text{matrix, def}}}{z_{\text{orack tip}}^{\text{matrix, def}}}\right) \quad \text{(12)}$$

$$\sigma_{(\cdot,\cdot)} = \frac{1}{2} \left(\sigma_{\text{crack tip},(\cdot,\cdot)}^{\text{element before crack tip}} + \sigma_{\text{crack tip},(\cdot,\cdot)}^{\text{element before crack tip}} \right) \tag{13}$$

$$\sigma_{IT} = \cos^2(\beta)\sigma_{XX} + 2\sin(\beta)\cos(\beta)\sigma_{XZ} + \sin^2(\beta)\sigma_{ZZ}$$
(14)

$$\sigma_{r\theta} = (\sigma_{xx} + \sigma_{zz})\sin(\beta)\cos(\beta) + \sigma_{xz}\left(\cos^2(\beta) - \sin^2(\beta)\right) \tag{15}$$

$$G_{I} = \frac{1}{2}\sigma_{r}\Delta_{r} \qquad G_{II} = \frac{1}{2}\sigma_{r\theta}\Delta_{\theta} \qquad (b = 1.0)$$
 (16)

DEVELOPMENTS & WORK REALISED

Summary of previous results

- √ Correct global elastic response
- √ Symmetric results for symmetric model
- ✓ Correct order of magnitude of energy release rate
- \checkmark Correct trends in mode ratio: $G_l \uparrow \Delta \theta \downarrow$, $G_{ll} \uparrow \Delta \theta \uparrow$
- \checkmark For $VF_f \rightarrow 0$ boundary conditions do not have effect on the result
- ✓ Interface formulation is effectively frictionless
- No agreement with BEM results
 - → Overestimated energy release rate
 - → Shifts of maxima of ~ 10°

Summary of objectives

- ☐ Change interface formulation
- □ To test new formulations, create model of debond between two infinite half-planes of different isotropic materials

- ☐ Interface formulations (2/7)
 - → (Old formulation) 2 surfaces: fibre surface = Γ₁ + Γ₂ et matrix surface = Γ₃ + Γ₄ with interaction *CONTACT and *DEBOND
 - 4 surfaces: Γ₁ WITHOUT crack tip, Γ₂ WITH crack tip, Γ₃ WITHOUT crack tip and Γ₄ WITH crack tip, interaction **TIE* between Γ₁ and Γ₃, interaction **CONTACT* and **DEBOND* between Γ₂ and Γ₄
 - Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - Analysis of results

Work realised & Follow-Up Actions

☐ Interface formulations (3/7)

2 surfaces: Γ_2 avec les extrémités de la fissure et Γ_4 avec les extrémités de la fissure, interaction * *CONTACT* et * *DEBOND* entre Γ_2 et Γ_4 , interaction * *MPC TIE* entre les *points nodaux* de Γ_1 et Γ_3

Development of preprocessor

FEM model creation

Parametric simulation

Analysis of results

- ☐ Interface formulations (4/7)
 - 4 surfaces: Γ_1 avec les extrémités de la fissure, Γ_2 sans les extrémités de la fissure, Γ_3 avec les extrémités de la fissure et Γ_4 sans les extrémités de la fissure, interaction * TIE entre Γ_1 et Γ_3 , interaction * CONTACT entre Γ_2 et Γ_4
 - Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - Implementation of VCCT procedure in the postprocessor
 - Analysis of results

- □ Interface formulations (5/7)
 - 2 surfaces: Γ_2 sans les extrémités de la fissure et Γ_4 sans les extrémités de la fissure, interaction * *CONTACT* entre Γ_2 et Γ_4 , interaction * *MPC TIE* entre les points nodaux de Γ_1 et Γ_3
 - Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - Implementation of VCCT procedure in the postprocessor
 - Analysis of results

- ☐ Interface formulations (6/7)
 - 2 surfaces: Γ₂ sans les extrémités de la fissure et Γ₄ sans les extrémités de la fissure, interaction * CONTACT entre Γ₂ et Γ₄, interaction * EQUATION entre les points nodaux de Γ₁ et Γ₃ avec dummy node pour mesurer la force de réaction
 - Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - Implementation of VCCT procedure in the postprocessor
 - □ Analysis of results

- ☐ Interface formulations (7/7)
 - 2 surfaces: Γ₂ sans les extrémités de la fissure et Γ₄ sans les extrémités de la fissure, interaction * CONTACT entre Γ₂ et Γ₄, interaction * CONN2D2 TIE entre les points nodaux de Γ₁ et Γ₃
 - ▼ Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - Implementation of VCCT procedure in the postprocessor
 - □ Analysis of results

- □ Pour tester la formulation de l'interface, développer modèle de décollement entre deux demi-plans constitués par deux différents matériaux
 - □ Full model
 - Development of preprocessor
 - FEM model creation and verification
 - Parametric simulation
 - ☐ Implementation of VCCT procedure in the postprocessor
 - Analysis of results

- ☐ Pour tester la formulation de l'interface, développer modèle de décollement entre deux demi-plans constitués par deux différents matériaux
 - □ Symmetric model
 - Development of preprocessor
 - ☐ FEM model creation and verification
 - □ Parametric simulation
 - Implementation of VCCT procedure in the postprocessor
 - □ Analysis of results

Previous results Objectives Work realised & Follow-Up Actions Results

Results

Formulation de l'interface 2/7.

Results

Formulation de l'interface 3/7.

Results

Formulation de l'interface 2/7 et 3/7.

Results

Détail de la fissure pour la formulation 2/7.

