Data Science - A practical Approach

Lorenz Feyen

CONTENTS

Ι	1. Introduction	3
1	Introduction 1.1 Structured vs Unstructured	5 5 6 7
II	2. Data Preparation	9
2	Introduction 2.1 why Data Preparation?	11 11 14
3	Missing Data 3.1 Kamyr digester	15 15 17 22
4	Concatenation and deduplication4.1Concatenation4.2Deduplication	25 25 26
5	Outliers and validity	31
6	Some practice	33
Ш	I 3. Data Preprocessing	35
7	Data Preprocessing	37
8	Indexing and slicing	39
IV	4. Data Exploration	43
9	Data Exploration	45
V	5. Data Visualisation	47
10	Data Visualisation	49

VI 6. Machine Learning	51
11 Machine Learning	53

pdf version can be found here.

CONTENTS 1

2 CONTENTS

Part I

1. Introduction

CHAPTER

ONE

INTRODUCTION

this is an introduction

1.1 Structured vs Unstructured

When performing data preparation an important aspect is to consider with the type of data we are working with. In general there are 2 types of data, but you could consider a third.

1.1.1 Structured data

Structured data is data that adheres to a pre-defined data model and is therefore straightforward to analyze. This data model is the description of our data, each record has to be conform to the model. A table in a spreadsheet is a good example of the concept of structured data however often no data types are enforced, meaning a column can contain e.g. both numbers and text. Later we will see that a mixture of data types is often problematic therefor the need of a data model.

1.1.2 Unstructured data

In contrast to structured data, there is no apparent data model but this does not mean the data is unusable or cluttered. Usually it means either no data model has yet been applied or we are dealing with data that is difficult to confine in a model. A great example of this would be images, or more general (binary) files. These obviously are hard to sort yet often data structures also contain metadata from these files, with data describing things as when the file was uploaded, what is shown in the file, ... In turn the metadata can be structured and a data model can be related to the unstructured data.

1.1.3 Semi-structured data

As an intermediate option, we have what is called semi-structured data. The reasoning behind this is that the concept of tables is not always applicable, in some occasions e.g. data lakes there is no complex structure present compared to a database. In a data lake files are stored similar to the folder structure in your computer, with no fancy infrastructure behind it, thus reducing operation costs. This implies that a data model can not be enforced and the data is stored in generic files.

1.2 Data Structures

There are several structures in which data can be stored and accessed, here we cover the 3 most important.

1.2.1 Data Lake

As mentioned earlier a data lake would be the most cost efficient method as it relies on the least infrastructure and can be serverless. The concept behind a data lake is straight-forward, the data is stored in simple files with a specific notation e.g. parquet, csv, xml,... What is important when designing a data lake would be partitioning, this can be achieved by using subfolders and saving parts of the data in different files. To make this more tangible, take a look at this symbolic example I provided. Instead of putting all data in one csv file, subfolder divide the data in Country, City and then the year. We could even further partition yet the data is here in daily frequency so that would create many small partitions. The difficulty for a data lake lies in the method of interacting, when adding new data one has to adhere to a agreed upon data model that is not enforced, meaning you could create incorrect data which then need to be cleaned. On the other hand efficiency of you data lake depends on good partitioning, as the order of divisioning of your folders. We could have also divided first on year and then on country and city. As a data scientist seeing the data lake might not be as common, as this is rather an engineering task, however using the concepts of a data lake in experimental projects can make a big difference.

1.2.2 Database

Another interesting data structure is the database, widely used for exceptional speeds and ease of use, yet costly in storage. Numerous implementations of servers using the SQL language are developed over the years with each their own dialect and advantages. The important take home message here is that you can easily perform queries on the database that prehandles the data to retrieve the information you need. these operations include filtering, grouping categories, joining tables, ordering and much more, as SQL is a complete language on its own. As a data scientist these databases are much more common, so SQL is a good asset to learn!

1.2.3 Data Warehouse

A next step towards data analysis is the data warehouse, where a database is composed of the most pragmatic method of storing your data a data warehouse consist of multiple views on your data. Based upon the data of a dataset the data warehouse transforms this data into a new format that displays the data in a new way. Let me illustrate with with a simple example, we have a database with a table that contains the rentals of books from multiple libraries. This table has a few columns: a timestamp, the library, the action (rent, return, ...), the client_id and the book_id. If you would want to know if a book is available this database is perfect for your needs as you just have to find the last event for that book and if its a return the book is (or should be) there. Now image we would want to know how many books are being rented per month this database is insufficient, yet our data warehouse might contain such a view! It is up to the data engineer/scientist to create a computation that displays the amount of books rented per month. If they also would like to subdivided it per category of books, you would need to incorporate another table of the database where information of the books is stored. More on these operations of a data warehouse will be seen in the data preprocessing chapter. One last remark about data warehousing, it is important to optimize between memory and computation. Tables in our data warehouse compared to database can be computed in place reducing memory costs yet increasing computation costs. If a visualization tool often queries a table in your warehouse it is favorable to create it as a table in your database.

1.3 OLTP and OLAP

From the previous section you might have deduced that a database and Data Warehouse serve 2 different purposes. These are denoted as OnLine Transaction Processing and OnLine Analytical Processing, as the names suggest these are used for transactional and analytical processes.

1.3.1 OLTP

For this method the database structure is optimal, let us review the example where we have libraries renting out books. Renting out a book would send a message to our OLTP system creating a new record stating that specific book is at this moment rented out from our library. OLTP handles day-to-day operational data that can be both written and read from our database.

1.3.2 OLAP

In the case we would like to analyse data from the libraries we would use the OLAP method, creating multi-dimensional views from our transactional data. Our dimensions would be the date (aggregated per month), the library and the category of book, the chapter of data preprocessing will use these operations practically. I could write a whole chapter on OLAP operations however they are well described in this wikipedia page.

1.3. OLTP and OLAP 7

Part II

2. Data Preparation

CHAPTER

TWO

INTRODUCTION

When performing data science, we often do not elaborate about the preparation that went into the dataset. It is considered tedious and irrelevant to the story of the analysis, however it is often the most important part of data analysis. Data Preparation is the metaphorical foundation of your construction, if you fail to prepare data, you prepare to fail your analysis.

Good data beats a fancy algorithm

If you would perform an analysis and insert unprepared data, you will mostly be disappointed with the result.

2.1 why Data Preparation?

Aside from metaphors let us make the reasoning behind this step more tangile, to explain the relevance of this step, we partitioned the answer into a few key points.

2.1.1 Accuracy

There is no excuse for incorrect data and accuracy is the most important attribute. Let us assume that we have a dataset where for some reason the result are not accurate. This would led us to an analysis where we conclude a result that contains a bias. An example would be a dataset of sold cars, where the listed price is that of the stock car without options. Options are not incorporated in the price and we are perhaps training an algorithm that predicts the stock price. If you as a data scientist fail to report/correct this, your predictions are making sense, but always underestimate!

2.1.2 Consistency

They usually say something such as 'consistency is key' and with data preparation that is likewise true. A dataset where we do not have consistent results will never converge towards a particular answer. Note however that it might not be a problem of consistency but rather you are missing crucial information. If we would have a dataset where local temperatures are logged, we would like to see a consistency each 24 hours. However we do see there are day to day fluctuations, so perhaps we need to keep track of cloud and rain data to make the dataset more complete. We could then see that the results are more consistent yet the possibility of outliers is still present. Equally possible would be that our temperature sensor is not sensitive enough or has large fluctuations in readings, it is the task of the data scientist to figure this out.

To get a visual about accuracy and consistency this picture might help:

2.1.3 Completeness

As hinted in the previous point, completeness is something you have to be aware of. Having 'complete' data is crucial for you narrative to give a correct answer, as you might otherwise lose detail. Note that you never will know if your data is complete as there might always be more data to mine. Yet you have to make a consideration between collecting more data and the effort required. This collecting can happen in multiple methods, as an example we use a survey where we asked several people 10 different questions, we could:

- gather new data, here our data grows 'longer' by asking the 10 question to more people. It might be that our sample of people were only students at a campus, so our data was not complete.
- gather new feature, by asking more questions to the same people (in case we could still find them). By doing this we get a better understanding of their opinion, again making our data more complete.
- fill missing values, by imputing the abstained questions with answers of similar records. When someone answered they did not want to answer we could figure out what they would have answered by looking at what persons answered that reply in a similar way.

2.1.4 Timeliness

For some datasets we are dealing with data that is time related. It can happen that data at specific timepoints is missing or delayed, resulting in a failure to use machine learning algorithms. A well-organised data pipeline utilises techniques of data preparation to circumvent these outages, usually this would be to retain the last successful datapoint. However in hindsight we could use more complex strategies to fill in these gaps or correct datetimes in our dataset,

In this example the data stream is interrupted and data preparation is there to handle these outages before we can perform analysis.

2.1.5 Believability

You could collect the most intricate dataset possible, but if the narrative that you are conducting contradicts itself, you will end up nowhere. During the process of data analytics it is important to apply a critical mind to what your dataset is telling you. Obviously this is not a reason to mask or mold the data so it agrees with your opinion. Rather you should be wary when conflicts happen and act accordingly, unfortunately it is impossible to write a generic tactic for this. As a data scientist your experience of the underlying subject should help create understanding of the topic, remember, gathering information from experts in the field is crucial here!

2.1.6 Interpretability

Another problem that might arise when you are diving deep into the data might be that you have created something no human could ever interpret. The Machine Learning algorithms outputs plausible and believable results, but it is impossible to understand the reasoning behind. For some this is perfectly acceptible, for some this is undesirable. It is your task as a data scientist to cater the wishes of the product operator and if they desire understanding as they would like to learn from the data driven process you need to unfold the process. Usually this comes down to which data transformations are used as some do produce an output that only makes mathematical sense.

2.1.7 In conclusion

There are multiple ways to deteriorate the quality of your data and raw formats of data often contain multiple. Before we can do anything with it these problems need to be resolved, if you fail to do so, the final output fails too.

2.2 Further reading

Towards Data Science

CHAPTER

THREE

MISSING DATA

In this notebook we will look at a few datasets where values from columns are missing. It is crucial for data science and machine learning to have a dataset where no values are missing as algorithms are usually not able to handle data with information missing.

For python, we will be using the pandas library to handle our dataset.

```
import pandas as pd
```

3.1 Kamyr digester

The first dataset we will be looking at is taken from a psysical device equiped with numerous sensors, each timepoint (1 hour) these sensors are read out and the data is collected. Let's have a look at the general structure

```
Observation
               Y-Kappa
                         ChipRate
                                   BF-CMratio
                                                BlowFlow
                                                           ChipLevel4
     31-00:00
                  23.10
                           16.520
                                       121.717
                                                1177.607
                                                               169.805
     31-01:00
                  27.60
                           16.810
                                        79.022
                                                1328.360
                                                               341.327
1
                                                1329.407
2
     31-02:00
                  23.19
                           16.709
                                        79.562
                                                               239.161
3
     31-03:00
                  23.60
                           16.478
                                        81.011
                                                1334.877
                                                               213.527
4
     31-04:00
                  22.90
                           15.618
                                        93.244 1334.168
                                                               243.131
   T-upperExt-2
                   T-lowerExt-2
                                    UCZAA
                                           WhiteFlow-4
                                                               SteamFlow-4
0
         358.282
                          329.545
                                   1.443
                                                599.253
                                                                      67.122
                                                          . . .
         351.050
                          329.067
                                   1.549
                                                537.201
                                                                      60.012
1
                                                          . . .
                                                                      61.304
2
         350.022
                          329.260 1.600
                                                549.611
3
                                   1.604
         350.938
                          331.142
                                                623.362
                                                                      68.496
4
         351.640
                          332.709
                                     NaN
                                                638.672
                                                                      70.022
   Lower-HeatT-3 Upper-HeatT-3
                                    ChipMass-4
                                                 WeakLiquorF
                                                                BlackFlow-2
0
         329.432
                          303.099
                                        175.964
                                                      1127.197
                                                                    1319.039
         330.823
                                                                    1297.317
                          304.879
                                        163.202
                                                       665.975
1
2
         329.140
                          303.383
                                        164.013
                                                       677.534
                                                                    1327.072
3
         328.875
                          302.254
                                        181.487
                                                       767.853
                                                                     1324.461
4
         328.352
                          300.954
                                        183.929
                                                       888.448
                                                                     1343.424
   WeakWashF
                SteamHeatF-3
                               T-Top-Chips-4
                                                 SulphidityL-4
0
      257.325
                       54.612
                                       252.077
                                                            NaN
      241.182
                       46.603
                                       251.406
                                                          29.11
1
```

2	237.272	51.795	251.335	NaN	
3	239.478	54.846	250.312	29.02	
4	215.372	54.186	249.916	29.01	
[5]	rows x 23 colum	mns]			

Interesting, there seem to be 22 sensor values and 1 timestamp for each record. As mechanical devices are prone to noise and dropouts of sensors we would be foolish to assume no missing values are present.

```
kamyr_df.isna().sum().divide(len(kamyr_df)).round(4)*100
```

Observation	0.00
Y-Kappa	0.00
ChipRate	1.33
BF-CMratio	4.65
BlowFlow	4.32
ChipLevel4	0.33
T-upperExt-2	0.33
T-lowerExt-2	0.33
UCZAA	7.97
WhiteFlow-4	0.33
AAWhiteSt-4	46.84
AA-Wood-4	0.33
ChipMoisture-4	0.33
SteamFlow-4	0.33
Lower-HeatT-3	0.33
Upper-HeatT-3	0.33
ChipMass-4	0.33
WeakLiquorF	0.33
BlackFlow-2	0.33
WeakWashF	0.33
SteamHeatF-3	0.33
T-Top-Chips-4	0.33
SulphidityL-4	46.84
dtype: float64	

As expected, the datapoint 'AAWhiteSt-4' even has 46% of data missing! It seems we only have 300 datapoints and presumably these missing values occur in different records our dataset will be decimated if we just drop all rows with missing values.

```
kamyr_df.shape
```

```
(301, 23)
```

```
kamyr_df.dropna().shape
```

```
(131, 23)
```

As we drop all rows with missing values, we are left with only 131 records. Whilst this might be good enough for some purposes, there are more viable options.

Perhaps we can first remove the column with the most missing values and then drop all remaining

```
kamyr_df.drop(columns=['AAWhiteSt-4 ','SulphidityL-4 ']).dropna().shape
```

```
(263, 21)
```

Significantly better, although we lost the information of 2 sensors we now have a complete dataset with 263 records. For purposes where those 2 sensors are irrelevant this is a viable option, keep in mind that this dataset is still 100% truthful, as we have not imputed any values.

Another option, where we retain all our records would be using the timely nature of our dataset, each record is a measurement with an interval of 1 hour. I have no knowledge of this dataset but one might make the assumption that the interval of 1 hour is taken as the state of the machine does not alter much in 1 hour. Therefore we could do what is called a forward fill, where we fill in the missing values with the same value of the sensor for the previous measurement.

This would solve nearly all nan values as there might be a problem where the first value is missing. This is shown below.

```
kamyr_df.fillna(method='ffill')['SulphidityL-4 ']
```

```
NaN
       29.11
1
2
       29.11
3
       29.02
4
       29.01
        . . .
296
       30.43
297
       30.29
298
       30.47
299
       30.47
300
       30.46
Name: SulphidityL-4 , Length: 301, dtype: float64
```

Although our dataset is not fully the truth, we can see that little to no changes occur in the sensor and using a forward fill is arguably the most suitable option.

3.2 Travel times

Another dataset from the same source contains a collection of recorded travel times and specific information about the travel itself as e.g.: the day of the week, where they were going, ...

	Date	StartTime	DayOfWeek	GoingTo	Distance	MaxSpeed	AvgSpeed	\
0	1/6/2012	16:37	Friday	Home	51.29	127.4	78.3	
1	1/6/2012	08:20	Friday	GSK	51.63	130.3	81.8	
2	1/4/2012	16:17	Wednesday	Home	51.27	127.4	82.0	
3	1/4/2012	07:53	Wednesday	GSK	49.17	132.3	74.2	
4	1/3/2012	18:57	Tuesday	Home	51.15	136.2	83.4	
200	7/18/2011	08:09	Monday	GSK	54.52	125.6	49.9	
201	7/14/2011	08:03	Thursday	GSK	50.90	123.7	76.2	
202	7/13/2011	17:08	Wednesday	Home	51.96	132.6	57.5	
203	7/12/2011	17:51	Tuesday	Home	53.28	125.8	61.6	
204	7/11/2011	16:56	Monday	Home	51.73	125.0	62.8	
	AvgMovingS	Speed FuelE	conomy Tot	alTime	MovingTime	: Take407All	Comments	

(continues on next page)

3.2. Travel times 17

(continued	from	previous	page

0	84.8	NaN	39.3	36.3	No	NaN	
1	88.9	NaN	37.9	34.9	No	NaN	
2	85.8	NaN	37.5	35.9	No	NaN	
3	82.9	NaN	39.8	35.6	No	NaN	
4	88.1	NaN	36.8	34.8	No	NaN	
200	82.4	7.89	65.5	39.7	No	NaN	
201	95.1	7.89	40.1	32.1	Yes	NaN	
202	76.7	NaN	54.2	40.6	Yes	NaN	
203	87.6	NaN	51.9	36.5	Yes	NaN	
204	92.5	NaN	49.5	33.6	Yes	NaN	
[205 rows x 1	3 columns]						

we have a total of 205 records and we can already see that the FuelEconomy column seems pretty bad, let's quantify that.

```
travel_df.isna().sum().divide(len(travel_df)).round(4)*100
```

Date	0.00
StartTime	0.00
DayOfWeek	0.00
GoingTo	0.00
Distance	0.00
MaxSpeed	0.00
AvgSpeed	0.00
AvgMovingSpeed	0.00
FuelEconomy	8.29
TotalTime	0.00
MovingTime	0.00
Take407All	0.00
Comments	88.29
dtype: float64	

In the end, it doesn't seem that bad, but there are comments and nearly none of them are filled in. Which in perspective is understandable. Let's see what the comments look like

```
travel_df[~travel_df.Comments.isna()].Comments
```

```
15
                                     Put snow tires on
39
                                            Heavy rain
49
                                   Huge traffic backup
50
        Pumped tires up: check fuel economy improved?
52
                                   Backed up at Bronte
54
                                   Backed up at Bronte
60
                                                 Rainy
78
                                      Rain, rain, rain
91
                                      Rain, rain, rain
92
           Accident: backup from Hamilton to 407 ramp
110
132
                               Back to school traffic?
133
                   Took 407 all the way (to McMaster)
150
                                 Heavy volume on Derry
156
                            Start early to run a batch
158
       Accident at 403/highway 6; detour along Dundas
165
                                          Detour taken
166
                                        Must be Friday
```

```
Medium amount of rain

New tires

Turn around on Derry

Empty roads

Police slowdown on 403

Accident blocked 407 exit

Name: Comments, dtype: object
```

As you would expect, these comments are text based. Now imagine we would like to run some Natural Language Processing (NLP) on these, it would be a pain to perform string operations on it when it is riddled with missing values.

Here a simple example where we select all records containing the word 'rain', with no avail.

```
travel_df[travel_df.Comments.str.lower().str.contains('rain')]
```

```
ValueError
                                          Traceback (most recent call last)
/tmp/ipykernel_25543/1298831137.py in <module>
----> 1 travel_df[travel_df.Comments.str.lower().str.contains('rain')]
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/

¬frame.py in __getitem__(self, key)
  3446
  3447
               # Do we have a (boolean) 1d indexer?
               if com.is_bool_indexer(key):
-> 3448
  3449
                   return self._getitem_bool_array(key)
  3450
~/git/data-science-practical-approach/venv/lib/python3.8/site-packages/pandas/core/

¬common.py in is_bool_indexer(key)

   137
                            # Don't raise on e.g. ["A", "B", np.nan], see
   138
                            # test_loc_getitem_list_of_labels_categoricalindex_with_
⇔na
--> 139
                            raise ValueError(na_msg)
   140
                        return False
   141
                   return True
ValueError: Cannot mask with non-boolean array containing NA / NaN values
```

The last line of the python error traceback gives us the reason it failed, because there were NaN values present.

Luckily the string variable has more or less it's on 'null' value, being an empty string, this way these operations are still possible, most of the comments will just contain nothing.

```
travel_df.Comments = travel_df.Comments.fillna('')
```

```
travel_df[travel_df.Comments.str.lower().str.contains('rain')]
```

	Date	StartTime	DayOfWeek	GoingTo	Distance	MaxSpeed	AvgSpeed
39	11/29/2011	07:23	Tuesday	GSK	51.74	112.2	55.3
60	11/9/2011	16:15	Wednesday	Home	51.28	121.4	65.9
78	10/25/2011	17:24	Tuesday	Home	52.87	123.5	65.1
91	10/12/2011	17:47	Wednesday	Home	51.40	114.4	59.7
110	9/27/2011	07:36	Tuesday	GSK	50.65	128.1	86.3
172	8/9/2011	08:15	Tuesday	GSK	49.08	134.8	60.5

(continues on next page)

3.2. Travel times 19

	AvgMovingSpeed FuelEco	nomy	TotalTime	MovingTime	Take407All	\
39	61.0	NaN	56.2	50.9	No	
60	71.8	9.35	46.7	42.1	No	
78	72.4	8.97	48.7	43.8	No	
91	65.8	8.75	51.7	46.9	No	
110	88.6	8.31	35.2	34.3	Yes	
172	67.2	8.54	48.7	43.8	No	
	Comments					
39	Heavy rain					
60	Rainy					
78	Rain, rain, rain					
91	Rain, rain, rain					
110	Raining					
172	Medium amount of rain					

Fixed! now we can use the comments for analysis.

We still have to fix the FuelEconomy, let us take a look at the non NaN values

```
travel_df[~travel_df.FuelEconomy.isna()]
```

	Date	StartTime	DayOfWeek	GoingTo	Distance	MaxSpeed	AvgSpeed	\
6	1/2/2012	17:31	Monday	Home	51.37	123.2	82.9	
7	1/2/2012	07:34	Monday	GSK	49.01	128.3	77.5	
8	12/23/2011	08:01	Friday	GSK	52.91	130.3	80.9	
9	12/22/2011	17:19	Thursday	Home	51.17	122.3	70.6	
10	12/22/2011	08:16	Thursday	GSK	49.15	129.4	74.0	
197	7/20/2011	08:24	Wednesday	GSK	48.50	125.8	75.7	
198	7/19/2011	17:17	Tuesday	Home	51.16	126.7	92.2	
199	7/19/2011	08:11	Tuesday	GSK	50.96	124.3	82.3	
200	7/18/2011	08:09	Monday	GSK	54.52	125.6	49.9	
201	7/14/2011	08:03	Thursday	GSK	50.90	123.7	76.2	
	ArraMarri nach	and Evole	onomi. Tot	olTimo i	MorringTime	Tale 40771	Commonta	
6	AvgMovingSp	seed ruelEC 37.3	OHOMY TOU	37.2	35.3	No		
7		35.9	_	37.2	34.3	NO No		
			-					
8		18.3	8.89	39.3	36.0	No		
9		8.1	8.89	43.5	39.3	No		
10		31.4	8.89	39.8	36.2	No		
			7.00			• • •		
197		37.3	7.89	38.5	33.3	Yes		
198		12.6	7.89	33.3	29.9	Yes		
199		06.4	7.89	37.2	31.7			
200		32.4	7.89	65.5	39.7	No		
201	9	5.1	7.89	40.1	32.1	Yes		
Г188	rows x 13 c	olumnsl						
[+00	10W5 X 15 C	.01 4111113]						

It seems that aside NaN values there are also other intruders, a quick check on the data type (Dtype) reveils it is not recognised as a number!

```
travel_df.info()
```

The column is noted as an object or string type, meaning that these numbers are given as '9.24' instead of 9.24 and numerical operations are not possible. We can cast them to numeric but have to warn pandas to coerce errors, meaning errors will be converted to NaN values. Later we'll handle the NaN's.

```
travel_df.FuelEconomy = pd.to_numeric(travel_df.FuelEconomy, errors='coerce')
travel_df.info()
```

Wonderful, now the column is numerical and we can see 2 more missing values have popped up! We could easily drop these 19 records and have a complete dataset.

```
travel_df.dropna()
```

8	Date 12/23/2011	DayOfWeek Friday	_	-	J 1	\
					(con	tinues on next page)

3.2. Travel times 21

							(continued fi	rom previous page)
9	12/22/2011	17:19	Thursd	ay Home	51.17	122.3	70.6	
10	12/22/2011	08:16	Thursd	ay GSK	49.15	129.4	74.0	
11	12/21/2011	07:45	Wednesd	ay GSK	51.77	124.8	71.7	
12	12/20/2011	16:05	Tuesd	ay Home	51.45	130.1	75.2	
197	7/20/2011	08:24	Wednesd	ay GSK	48.50	125.8	75.7	
198	7/19/2011	17:17	Tuesd	ay Home	51.16	126.7	92.2	
199	7/19/2011	08:11	Tuesd	ay GSK	50.96	124.3	82.3	
200	7/18/2011	08:09	Mond	ay GSK	54.52	125.6	49.9	
201	7/14/2011	08:03	Thursd	ay GSK	50.90	123.7	76.2	
	AvgMovingSpeed	FuelE	conomy	TotalTime	MovingTime	Take407All	Comments	
8	88.3		8.89	39.3	36.0	No		
9	78.1		8.89	43.5	39.3	No		
10	81.4		8.89	39.8	36.2	No		
11	78.9		8.89	43.3	39.4	No		
12	82.7		8.89	41.1	37.3	No		
197	87.3		7.89	38.5	33.3	Yes		
198	102.6		7.89	33.3	29.9	Yes		
199	96.4		7.89	37.2	31.7	Yes		
200	82.4		7.89	65.5	39.7	No		
201	95.1		7.89	40.1	32.1	Yes		
[186	rows x 13 colur	mns]						

However im leaving them as an excercise for you to apply a technique we will see in the next part

3.3 Material properties

Another dataset from the same source contains the material properties from 30 samples, this time there is not timestamp as the samples are not related in time with each other.

	Sample	size1	size2	size3	density1	density2	density3
0	X12558	0.696	2.69	6.38	41.8	17.18	3.90
1	X14728	0.636	2.30	5.14	38.1	12.73	3.89
2	X15468	0.841	2.85	5.20	37.6	13.58	3.98
3	X21364	0.609	2.13	4.62	34.2	11.12	4.02
4	X23671	0.684	2.16	4.87	36.4	12.24	3.92
5	X24055	0.762	2.81	6.36	38.1	13.28	3.89
6	X24905	0.552	2.34	5.03	41.3	16.71	3.86
7	X25917	0.501	2.17	5.09	NaN	NaN	NaN
8	X27871	0.619	2.11	5.13	NaN	NaN	NaN
9	X28690	0.610	2.10	4.18	35.0	12.15	3.86
10	X31385	0.532	2.09	4.93	NaN	NaN	NaN
11	X31813	0.738	2.29	5.47	NaN	NaN	NaN
12	X32807	0.779	2.62	5.59	NaN	NaN	NaN
13	X33943	0.537	2.23	5.41	35.2	11.34	3.99
14	X35035	0.702	2.05	5.10	34.2	10.54	4.02
15	X39223	0.768	2.51	5.09	34.9	12.55	3.90

								(commuted from previous puge)
16	X40503	0.714	2.56	6.03	35.6	12.20	4.02	
17	X41400	0.621	2.42	5.10	38.7	14.27	3.98	
18	X42988	0.726	2.11	4.69	37.1	13.14	3.98	
19	X44749	0.698	2.36	5.40	36.6	12.16	4.01	
20	X45295	NaN	NaN	NaN	38.1	13.34	3.89	
21	X46965	0.759	2.47	4.83	38.7	14.83	3.89	
22	X49666	0.535	2.13	5.23	NaN	NaN	NaN	
23	X50678	0.716	2.29	5.45	37.3	13.70	3.92	
24	X52894	0.635	2.08	4.94	NaN	NaN	NaN	
25	X53925	0.598	2.12	4.69	37.9	13.45	3.78	
26	X54254	0.700	2.47	5.22	38.8	14.72	3.92	
27	X54272	0.957	2.96	7.37	36.2	13.38	4.20	
28	X54394	0.759	2.66	5.36	35.2	12.19	3.98	
29	X55408	0.661	2.10	4.27	NaN	NaN	NaN	
30	X56952	0.646	2.38	4.51	40.1	15.68	3.86	
31	X57095	0.662	2.34	4.71	35.0	12.37	3.90	
32	X57128	0.749	2.43	5.16	37.3	13.04	3.92	
33	X61870	0.598	2.21	4.90	NaN	NaN	NaN	
34	X61888	0.619	2.59	5.81	NaN	NaN	NaN	
35	X72736	0.693	2.05	5.02	39.6	15.55	3.94	
11								

let us quantify the amount of missing data

```
material_df.isna().sum().divide(len(material_df)).round(4)*100
```

```
Sample 0.00

size1 2.78

size2 2.78

size3 2.78

density1 27.78

density2 27.78

density3 27.78

dtype: float64
```

Unfortunately that is a lot of missing data, covered in all records, dropping here seems almost impossible if we want to keep a healthy amount of records.

Here it would be wise to go for a more elaborate method of imputation, I opted for the K-nearest neighbours method, which looks at the K most similar records in the dataset to make an educated guess on what the missing value could be, this because we can assume that records with similar data are also similar over all the properties (columns).

Im using the sklearn library for this, which has more imputation techniques such as MICE. More info can be found here

```
from sklearn.impute import KNNImputer
```

im creating an imputer object and specify that i want to use the 5 most similar records and weigh them by distance from the to imputed record, meaning closer neighbours are more important.

```
imputer = KNNImputer(n_neighbors=5, weights="distance")
```

As the imputer only takes numerical values I had to do some pandas magic and drop the first column, which I then added again. The result is a fully filled dataset, you can recognise the new values as they are not rounded.

```
pd.DataFrame(
    imputer.fit_transform(material_df.drop(columns=['Sample'])),
    columns=material_df.columns.drop('Sample')
)
```

size1 size2 size3 density1 density2 density3 0 0.696000 2.690000 6.380000 41.8000000 17.180000 3.990000 1 0.636000 2.300000 5.140000 38.100000 12.730000 3.890000 2 0.841000 2.150000 5.200000 37.600000 13.580000 3.980000 3 0.69900 2.130000 4.620000 34.200000 11.20000 3.920000 5 0.762000 2.810000 6.360000 38.100000 13.280000 3.890000 6 0.552002 2.340000 5.030000 31.30000 16.710000 3.890000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 4.180000 35.00000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.930000 37.811132 13.66072 3.99364 11 0.733000 2.230000 <td< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	_							
1 0.636000 2.300000 5.140000 38.100000 12.730000 3.890000 2 0.841000 2.850000 5.200000 37.60000 13.580000 3.980000 3 0.699000 2.130000 4.620000 34.200000 11.120000 4.020000 4 0.684000 2.160000 4.870000 36.400000 12.240000 3.920000 5 0.762000 2.810000 6.360000 38.10000 13.280000 3.890000 6 0.552000 2.340000 5.030000 41.300000 16.710000 3.890000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 37.811132 13.646072 3.99364 11 0.738000 2.290000 5.470000 37.88833 13.255412 3.941654 12 0.779000 2.620000		size1		size3	_	density2		
2	0	0.696000	2.690000	6.380000	41.800000	17.180000	3.900000	
3	1	0.636000	2.300000	5.140000	38.100000	12.730000		
4 0.684000 2.160000 4.870000 36.400000 12.240000 3.920000 5 0.752000 2.810000 6.360000 38.100000 13.280000 3.890000 6 0.552000 2.340000 5.030000 41.300000 16.710000 3.860000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.00000 12.150000 3.943667 9 0.610000 2.100000 4.930000 35.000000 12.150000 3.980364 11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.100000 34.200000 10.540000 3.990000 14 0.702000 2.050000 5.100000 34.200000 12.550000 3.980000 15 0.768000 2.510000	2	0.841000	2.850000	5.200000	37.600000	13.580000	3.980000	
5 0.762000 2.810000 6.360000 38.100000 13.280000 3.890000 6 0.552000 2.340000 5.030000 41.300000 16.710000 3.860000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.000000 12.150000 3.860000 10 0.532000 2.090000 5.470000 37.881132 13.646072 3.998364 11 0.738000 2.290000 5.470000 37.88133 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 34.200000 11.340000 3.990000 14 0.702000 2.510000 5.09000 34.90000 12.200000 3.990000 15 0.768000 2.510000	3		2.130000	4.620000	34.200000	11.120000	4.020000	
6 0.552000 2.340000 5.030000 41.300000 16.710000 3.860000 7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.000000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.100000 38.700000 12.200000 4.020000 16 0.714000 2.560000 6.030000 38.700000 12.200000 4.020000 18 0.726000 2.100000 <td>4</td> <td></td> <td>2.160000</td> <td>4.870000</td> <td>36.400000</td> <td>12.240000</td> <td>3.920000</td> <td></td>	4		2.160000	4.870000	36.400000	12.240000	3.920000	
7 0.501000 2.170000 5.090000 38.495282 14.029399 3.931180 8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.00000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.811132 13.646072 3.908364 11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779900 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.550000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.200000 12.200000 4.020000 16 0.714000 2.560000 5.100000 38.700000 14.270000 3.980000 19 0.698000 2.360000 <td>5</td> <td>0.762000</td> <td>2.810000</td> <td>6.360000</td> <td>38.100000</td> <td>13.280000</td> <td>3.890000</td> <td></td>	5	0.762000	2.810000	6.360000	38.100000	13.280000	3.890000	
8 0.619000 2.110000 5.130000 37.405275 13.157346 3.943667 9 0.610000 2.100000 4.180000 35.00000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.088833 13.256412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 3.990000 15 0.768000 2.510000 5.090000 34.200000 12.200000 4.020000 16 0.714000 2.560000 5.100000 38.700000 12.200000 3.980000 17 0.621000 2.420000 5.100000 37.100000 13.240000 3.980000 18 0.726000 2.100000 4.690000 37.100000 13.340000 3.890000 19 0.698000 2.470000 </td <td>6</td> <td>0.552000</td> <td>2.340000</td> <td>5.030000</td> <td>41.300000</td> <td>16.710000</td> <td>3.860000</td> <td></td>	6	0.552000	2.340000	5.030000	41.300000	16.710000	3.860000	
9 0.610000 2.100000 4.180000 35.000000 12.150000 3.860000 10 0.532000 2.090000 4.930000 37.811132 13.646072 3.908364 11 0.738000 2.290000 5.470000 37.08833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.09000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 38.700000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 13.140000 3.980000 18 0.726000 2.160000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 </td <td>7</td> <td>0.501000</td> <td>2.170000</td> <td>5.090000</td> <td>38.495282</td> <td>14.029399</td> <td>3.931180</td> <td></td>	7	0.501000	2.170000	5.090000	38.495282	14.029399	3.931180	
10 0.532000 2.090000 4.930000 37.811132 13.646072 3.908364 11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.990000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.890000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 5.230000 37.391815 13.089536 3.944335 23	8	0.619000	2.110000	5.130000	37.405275	13.157346	3.943667	
11 0.738000 2.290000 5.470000 37.088833 13.255412 3.941654 12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.70000 14.830000 3.99000 22 0.535000 2.130000 5.230000 37.300000 13.700000 3.92000 24 <td>9</td> <td>0.610000</td> <td>2.100000</td> <td>4.180000</td> <td>35.000000</td> <td>12.150000</td> <td>3.860000</td> <td></td>	9	0.610000	2.100000	4.180000	35.000000	12.150000	3.860000	
12 0.779000 2.620000 5.590000 36.540567 12.889902 3.970973 13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.2500000 4.020000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.40000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.350000 13.700000 3.780000 24	10		2.090000	4.930000	37.811132	13.646072	3.908364	
13 0.537000 2.230000 5.410000 35.200000 11.340000 3.990000 14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.30000 13.700000 3.920000 24 0.635000 2.120000 4.690000 37.90000 13.450000 3.780000 25 </td <td>11</td> <td></td> <td>2.290000</td> <td>5.470000</td> <td></td> <td>13.255412</td> <td></td> <td></td>	11		2.290000	5.470000		13.255412		
14 0.702000 2.050000 5.100000 34.200000 10.540000 4.020000 15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.30000 13.70000 3.93900 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 <td>12</td> <td>0.779000</td> <td>2.620000</td> <td>5.590000</td> <td>36.540567</td> <td>12.889902</td> <td>3.970973</td> <td></td>	12	0.779000	2.620000	5.590000	36.540567	12.889902	3.970973	
15 0.768000 2.510000 5.090000 34.900000 12.550000 3.900000 16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.90000 13.450000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28<	13	0.537000	2.230000	5.410000	35.200000	11.340000	3.990000	
16 0.714000 2.560000 6.030000 35.600000 12.200000 4.020000 17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28	14	0.702000	2.050000	5.100000	34.200000	10.540000	4.020000	
17 0.621000 2.420000 5.100000 38.700000 14.270000 3.980000 18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.880000 29	15	0.768000	2.510000	5.090000	34.900000	12.550000	3.900000	
18 0.726000 2.110000 4.690000 37.100000 13.140000 3.980000 19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30	16		2.560000	6.030000	35.600000	12.200000		
19 0.698000 2.360000 5.400000 36.600000 12.160000 4.010000 20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 12.190000 3.980000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 37.300000 12.370000 3.990000 32	17	0.621000	2.420000	5.100000	38.700000	14.270000	3.980000	
20 0.733097 2.653959 5.881504 38.100000 13.340000 3.890000 21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.920000 32	18	0.726000	2.110000	4.690000	37.100000	13.140000	3.980000	
21 0.759000 2.470000 4.830000 38.700000 14.830000 3.890000 22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.70000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.340000 4.710000 35.00000 12.370000 3.90000 31 0.662000 2.430000 5.160000 37.300000 13.040000 3.92000 32 <td>19</td> <td>0.698000</td> <td>2.360000</td> <td>5.400000</td> <td>36.600000</td> <td>12.160000</td> <td>4.010000</td> <td></td>	19	0.698000	2.360000	5.400000	36.600000	12.160000	4.010000	
22 0.535000 2.130000 5.230000 37.391815 13.089536 3.944335 23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.900000 31 0.662000 2.340000 4.710000 35.00000 12.370000 3.920000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34<	20	0.733097	2.653959	5.881504	38.100000	13.340000	3.890000	
23 0.716000 2.290000 5.450000 37.300000 13.700000 3.920000 24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.70000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.90000 31 0.662000 2.340000 4.710000 35.00000 12.370000 3.90000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	21	0.759000	2.470000	4.830000	38.700000	14.830000	3.890000	
24 0.635000 2.080000 4.940000 37.254724 13.206262 3.933904 25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	22	0.535000	2.130000	5.230000		13.089536	3.944335	
25 0.598000 2.120000 4.690000 37.900000 13.450000 3.780000 26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	23	0.716000	2.290000	5.450000	37.300000	13.700000	3.920000	
26 0.700000 2.470000 5.220000 38.800000 14.720000 3.920000 27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 35.932339 12.318210 3.989911	24	0.635000	2.080000	4.940000	37.254724	13.206262	3.933904	
27 0.957000 2.960000 7.370000 36.200000 13.380000 4.200000 28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	25	0.598000	2.120000	4.690000	37.900000	13.450000	3.780000	
28 0.759000 2.660000 5.360000 35.200000 12.190000 3.980000 29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.90000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911		0.700000	2.470000	5.220000	38.800000	14.720000	3.920000	
29 0.661000 2.100000 4.270000 36.172345 12.755632 3.887375 30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911			2.960000	7.370000				
30 0.646000 2.380000 4.510000 40.100000 15.680000 3.860000 31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911	28		2.660000	5.360000	35.200000	12.190000	3.980000	
31 0.662000 2.340000 4.710000 35.000000 12.370000 3.900000 32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911		0.661000	2.100000	4.270000	36.172345	12.755632	3.887375	
32 0.749000 2.430000 5.160000 37.300000 13.040000 3.920000 33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911								
33 0.598000 2.210000 4.900000 37.865882 13.826029 3.887021 34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911		0.662000						
34 0.619000 2.590000 5.810000 35.932339 12.318210 3.989911								
35 0.693000 2.050000 5.020000 39.600000 15.550000 3.940000								
	35	0.693000	2.050000	5.020000	39.600000	15.550000	3.940000	

This concludes the part of missing values, perhaps you can try yourself and impute the missing values for the FuelEconomy using the SimpleImputer or even the IterativeImputer.

CONCATENATION AND DEDUPLICATION

In this notebook we are going to investigate the concepts of stitching data files (concatenation) and verifying the integrity of our data concercing duplicates

4.1 Concatenation

When dealing with large amounts of data, fractioning is often the only solution. Not only does this tidy up your data space, but it also benefits computation. Aside from that, appending new data to your data lake is independent of the historical data. However if you want to perform historical analysis this means you will need to perform additional operations.

In this notebook we have a setup of a very small data lake containing daily minimal temperatures. If you would look closely in the url you would see the following structure.

data/temperature/australia/melbourne/1981.csv

This is a straight-forward but perfect example on how fragmentation works, in our data lake we have: temperatures data fractioned by country, city and year. As we are working with daily temperatures further fractioning would not be interesting, but you could fraction e.g. per month.

In the cells below, we read our both 1981 and 1982 data and concatenate them using python.

```
import pandas as pd
```

```
melbourne_1981_df = pd.read_csv('https://raw.githubusercontent.com/LorenzF/data-

-science-practical-approach/main/src/c2_data_preparation/data/temperatures/australia/

-melbourne/1981.csv')
```

```
df = pd.concat(
    [
         melbourne_1981_df,
         melbourne_1982_df,
    ]
)
```

```
df
```

```
Date Temp
    1981-01-01 20.7
0
    1981-01-02 17.9
1
    1981-01-03 18.8
2
3
    1981-01-04 14.6
    1981-01-05 15.8
4
           . . .
360 1982-12-27 15.3
361 1982-12-28 16.3
362 1982-12-29 15.8
363 1982-12-30 17.7
364 1982-12-31 16.3
[730 rows x 2 columns]
```

And there you have it! we now have a dataframe containing both data from 1981 as 1982. Can you figure out what I calculated in the next cell? Do you think there might be a more 'clean' solution?

```
df[df.Date.str[5:7]== '01'].Temp.mean()
```

```
17.140322580645158
```

As an exercise I would ask you now to create a small python script that given a begin and end year (between 1981 and 1990) can automatically concatenate all the necessary data

```
for i in range(1982,1987):
    print(i)
```

```
1982
1983
1984
1985
1986
```

4.2 Deduplication

Another important aspect of data cleaning is the removal of duplicates. Here we fragment of a dataset from activity on a popular games platform. We can see which user has either bought or played specific games and how often. Unfortunately for some reason, entries might have duplicates which we have to deal with as otherwise users might have e.g. bought a game twice.

```
game action freq
       user_id
       11373749
                                  Sid Meier's Civilization IV purchase
                                                                         1.0
1
       11373749
                                  Sid Meier's Civilization IV
                                                                   play
                                                                          0.1
2
       11373749
                                  Sid Meier's Civilization IV purchase
                                                                          1.0
3
       11373749 Sid Meier's Civilization IV Beyond the Sword purchase
                                                                          1.0
4
      11373749
                Sid Meier's Civilization IV Beyond the Sword purchase
                                                                          1.0
. . .
                                                          . . .
                                                                          . . .
1834 112845094
                                                       Arma 2 purchase
                                                                          1.0
```

1836	112845094 112845094 112845094	Grand Theft Auto San Andreas Grand Theft Auto Vice City Grand Theft Auto Vice City	purchase	1.0
	112845094	Grand Theft Auto III	-	
[1839	rows x 4 columns]			

We have a dataframe with 1839 interactions, you can see that the freq either notes the amount they bought (which always 1 as there is not use in buying it more) or the amount in hours they played.

Let us straightforward ask pandas to remove all rows that have an exact duplicate

```
df.drop_duplicates()
```

	user id	gama	action	fnor	
_	_	game		freq	
0	11373749	Sid Meier's Civilization IV	purchase	1.0	
1	11373749	Sid Meier's Civilization IV	play	0.1	
3	11373749	Sid Meier's Civilization IV Beyond the Sword	purchase	1.0	
5	11373749	Sid Meier's Civilization IV Warlords	purchase	1.0	
7	56038151	Tom Clancy's H.A.W.X. 2	purchase	1.0	
		• • •			
1831	112845094	Grand Theft Auto San Andreas	purchase	1.0	
1832	112845094	Grand Theft Auto San Andreas	play	0.2	
1833	112845094	Grand Theft Auto III	purchase	1.0	
1834	112845094	Arma 2	purchase	1.0	
1836	112845094	Grand Theft Auto Vice City	purchase	1.0	
[1132	rows x 4 c	olumns]			

Alright! this seemed to have dropped 707 rows from our dataset, but we would like to know more about those. Let's ask which rows the algorithm has dropped:

```
df[df.duplicated()]
```

	user_id	game	action	freq	
2	11373749	Sid Meier's Civilization IV	purchase	1.0	
4	11373749	Sid Meier's Civilization IV Beyond the Sword	purchase	1.0	
6	11373749	Sid Meier's Civilization IV Warlords	purchase	1.0	
10	56038151	Grand Theft Auto San Andreas	purchase	1.0	
12	56038151	Grand Theft Auto Vice City	purchase	1.0	
		•••			
1827	39146470	Sid Meier's Civilization IV Warlords	purchase	1.0	
1830	48666962	Crysis 2	purchase	1.0	
1835	112845094	Grand Theft Auto San Andreas	purchase	1.0	
1837	112845094	Grand Theft Auto Vice City	purchase	1.0	
1838	112845094	Grand Theft Auto III	purchase	1.0	
[707	rows x 4 co	lumns]			

Here we can see the duplicates, no particular pattern seems to be present, we could just for curiosity count the games that are duplicated

<pre>df[df.duplicated()].game.value_counts()</pre>	.value_counts()
--	-----------------

Grand Theft Auto San Andreas	172	
Grand Theft Auto Vice City	103	

(continues on next page)

4.2. Deduplication 27

```
Sid Meier's Civilization IV
                                                   98
Grand Theft Auto III
                                                   90
Sid Meier's Civilization IV Beyond the Sword
                                                   80
Sid Meier's Civilization IV Warlords
                                                   79
Sid Meier's Civilization IV Colonization
                                                   75
                                                   7
Crysis 2
Arma 2
                                                   1
Tom Clancy's H.A.W.X. 2
                                                    1
TERA
Name: game, dtype: int64
```

It seems there are some games which are very prone to being duplicated, at this point we could go and ask the IT department why these games are acting weird.

Another thing im interested about is the perspective of a single gamer, here we took a single user_id and printed all his games

```
df[df.user_id == 11373749]
```

	user_id	game	action	freq	
0	11373749	Sid Meier's Civilization IV	purchase	1.0	
1	11373749	Sid Meier's Civilization IV	play	0.1	
2	11373749	Sid Meier's Civilization IV	purchase	1.0	
3	11373749	Sid Meier's Civilization IV Beyond the Sword	purchase	1.0	
4	11373749	Sid Meier's Civilization IV Beyond the Sword	purchase	1.0	
5	11373749	Sid Meier's Civilization IV Warlords	purchase	1.0	
6	11373749	Sid Meier's Civilization IV Warlords	purchase	1.0	

Ah, you can see all of his three games are somehow duplicated in purchase, also it seems he only played one of them for only 0.1 hours. Looks like he fell to the bait of a tempting summer sale but didn't realise he had no time to actually play it.

Another thing I would like to mention here is that this dataset would make a fine recommender system as it contains user ids and hours played. Add game metadata (description) and reviews to the mix and your data preparation is done!

We can remove all duplicates now by overwriting our dataframe

```
df = df.drop_duplicates()
```

One thing still bothers me, as hours played can change over time it might be that different snapshots have produced different values, therefore more duplicates might be present with different hours_played.

Time to investigate this by using a subset of columns in the drop_duplicates algorithm

```
df.drop_duplicates(subset=['user_id', 'game', 'action'])
```

	user_id	game	action	freq	
0	11373749	Sid Meier's Civilization IV	purchase	1.0	
1	11373749	Sid Meier's Civilization IV	play	0.1	
3	11373749	Sid Meier's Civilization IV Beyond the Sword	purchase	1.0	
5	11373749	Sid Meier's Civilization IV Warlords	purchase	1.0	
7	56038151	Tom Clancy's H.A.W.X. 2	purchase	1.0	
		•••			
1831	112845094	Grand Theft Auto San Andreas	purchase	1.0	
1832	112845094	Grand Theft Auto San Andreas	play	0.2	
1833	112845094	Grand Theft Auto III	purchase	1.0	
1834	112845094	Arma 2	purchase	1.0	

```
1836 112845094 Grand Theft Auto Vice City purchase 1.0
[1120 rows x 4 columns]
```

Seems we have shaved off another 12 records, so our intuition was right, again lets see which the duplicates are:

```
df[df.duplicated(subset=['user_id', 'game', 'action'])]
```

	user_id	game	action	freq
118	118664413	Grand Theft Auto San Andreas	play	0.2
458	50769696	Grand Theft Auto San Andreas	play	3.1
521	71411882	Grand Theft Auto III	play	0.2
607	33865373	Sid Meier's Civilization IV	play	2.0
898	71510748	Grand Theft Auto San Andreas	play	0.2
908	28472068	Grand Theft Auto Vice City	play	0.4
910	28472068	Grand Theft Auto San Andreas	play	0.2
912	28472068	Grand Theft Auto III	play	0.1
1506	59925638	Tom Clancy's H.A.W.X. 2	play	0.3
1553	148362155	Grand Theft Auto San Andreas	play	12.5
1709	176261926	Sid Meier's Civilization IV Beyond the Sword	play	0.4
1711	176261926	Sid Meier's Civilization IV	play	0.2

As expected the duplicates are all in the 'play' action, to complete our view we extract the data of a single user

```
df[df.user_id==118664413]
```

	user_id	game	action	freq
115	118664413	Grand Theft Auto San Andreas	purchase	1.0
116	118664413	Grand Theft Auto San Andreas	play	1.9
118	118664413	Grand Theft Auto San Andreas	play	0.2

It looks like we have a problem now, we know these are duplicates and should be removed, but which one? Personally I would argue here that we keep the highest value, as it is impossible to 'unplay' hours on the game. I will leave this as an exercise for you, but the solution is pretty tricky so i'll give a hint:

The algorithm always keeps the first record in case of duplicates, so you could sort the rows making sure the higher value is always encountered first, good luck!

4.2. Deduplication 29

CHAPTER

FIVE

OUTLIERS AND VALIDITY

```
import pandas as pd
```

```
wafer_df = pd.read_csv('https://openmv.net/file/silicon-wafer-thickness.csv')
wafer_df.head()
```

```
G3
                        G4
                                     G6
 0.175
        0.188 -0.159 0.095 0.374 -0.238 -0.800 0.158 -0.211
        0.075 0.141
                     0.180
                           0.138 -0.057 -0.075 0.072
                                  0.187 0.431 0.345
  0.607
        0.711
               0.879
                     0.765 0.592
                                                     0.187
  0.774
        0.823 0.619 0.370 0.725
                                  0.439 -0.025 -0.259
                                                     0.496
4 0.504 0.644 0.845 0.681 0.502 0.151 0.404 0.296 0.260
```

```
iqr = wafer_df.quantile(0.75)-wafer_df.quantile(0.25)
```

```
range_df = (wafer_df-wafer_df.quantile(0.5))/iqr
```

```
range_df[(range_df>2).any(axis='columns')]
```

```
G1
                      G2
                                  G3
                                             G4
                                                        G5
      2.232430
                2.009016
                           1.956542
                                       1.589328
                                                  1.843890
                                                           1.544669
38
    12.891135
              12.827049 12.832178
                                     13.913292 11.429506
                                                           9.500865
39
     3.691318
                3.981148
                           3.774387
                                      4.081944
                                                 3.248059
                                                           3.729107
61
     2.010106
                2.153279
                           1.987980
                                       1.863745
                                                  1.858602 1.274928
110
      3.678457
                 2.841803
                           3.204808
                                       3.180562
                                                  2.669391
                                                           0.518732
112
      2.361047
                2.086066
                           2.363384
                                       2.107670
                                                  1.925623
                                                           1.238040
117
     1.475425
                1.043443
                           2.154415
                                       2.582182
                                                  0.653862
                                                           1.823631
120
     1.791456
                1.484426
                           2.583449
                                      1.440686
                                                 2.085819
                                                           0.990202
121
     1.791456
                1.484426
                          2.583449
                                      1.440686
                                                 2.085819
                                                           0.990202
     2.610932
                2.102459
                                      2.549786
152
                          2.387425
                                                  2.169187
                                                           1.730259
    -0.529169 -0.538525 -0.404993 -0.331586 -0.552513 4.565994
154
            G7
                     G8
                                G9
     1.233344 0.419604 1.582851
8
38
    10.305875
               9.927200
                         9.055620
39
     3.304890
               3.846374
                         3.149479
61
     1.237283
               0.825451
                         0.955968
110
     0.700361
               0.176555
                         0.727694
112
     1.766328
               0.890800
                         1.377752
117
      1.581227
               0.857552
                         1.188876
120
      1.782081
               1.034107
                         1.822711
121
     1.782081 1.034107
                         1.822711
```

```
152 2.241549 1.713958 1.592121
154 -0.051854 -0.382918 -0.536501
```

```
range_df[(range_df<-2).any(axis='columns')]
```

```
G1
                               G3
                                         G4
                                                   G5
                                                             G6
                                                                       G7
54 -1.550758 -1.525410 -1.843736 -2.082897 -1.659174 -1.203458 -1.184772
   -1.732660 -1.510656 -2.121128 -2.122916 -1.781774 -1.521614 -1.909419
   -1.971520 -1.310656 -2.328248 -1.175798 -2.067838 -0.915274 -1.783394
   -1.234727 -1.361475 -0.736015 -1.055741 -2.224765 -0.839193 -0.679357
   -2.226918 -1.194262 -2.117429 -2.161029 -2.043318 -0.190202 -1.004923
102 -2.484153 -2.330328 -1.568192 -2.808957 -1.945239 -1.340634 -0.846078
           G8
54 -1.650903 -1.245655
56 -1.782746 -1.159907
59 -1.304672 -1.514484
64 -0.865578 -0.663963
65 -0.270565 -0.794902
102 -1.691029 -0.887601
```

```
from sklearn.ensemble import IsolationForest
```

```
clf = IsolationForest(random_state=0).fit(wafer_df)
wafer_df[clf.predict(wafer_df) ==-1]
```

```
G1
               G2
                      G3
                             G4
                                    G5
                                            G6
                                                   G7
                                                          G8
     1.396 1.461 1.342 1.122 1.394 1.408 0.924 0.638 1.375
20 \quad -0.558 \quad -0.705 \quad -0.526 \quad -0.412 \quad -0.753 \quad -0.998 \quad -0.270 \quad 0.598 \quad -1.416
     7.197 8.060 7.223 7.589 7.258 8.310 7.835 8.931 7.824
    2.190 2.664 2.325 2.430 2.253 3.303 2.502 3.627 2.727
54 -0.663 -0.695 -0.713 -0.805 -0.749 -0.976 -0.918 -1.168 -1.066
56 -0.762 -0.686 -0.863 -0.826 -0.824 -1.252 -1.470 -1.283 -0.992
59 -0.892 -0.564 -0.975 -0.329 -0.999 -0.726 -1.374 -0.866 -1.298
   1.275 1.549 1.359 1.266 1.403 1.174 0.927 0.992 0.834
61
65 \quad -1.031 \quad -0.493 \quad -0.861 \quad -0.846 \quad -0.984 \quad -0.097 \quad -0.781 \quad 0.036 \quad -0.677
102 -1.171 -1.186 -0.564 -1.186 -0.924 -1.095 -0.660 -1.203 -0.757
106 -0.659 -0.451 -0.692 -0.708 -0.595 -0.726 -1.031 -0.877 -1.080
110 2.183 1.969 2.017 1.957 1.899 0.518
                                               0.518
                                                      0.426 0.637
           1.508 1.562
                                 1.444 1.142
112
    1.466
                          1.394
                                                1.330
                                                       1.049 1.198
117
    0.984 0.872 1.449
                          1.643 0.666 1.650
                                               1.189
                                                       1.020 1.035
120 1.156 1.141 1.681 1.044 1.542 0.927
                                               1.342 1.174 1.582
121 1.156 1.141 1.681 1.044 1.542 0.927 1.342 1.174 1.582
152 1.602 1.518 1.575 1.626 1.593 1.569 1.692 1.767 1.383
```

CHAPTER

SIX

SOME PRACTICE

Now that you have learned techniques in data preparation, why don't you put them to use in this wonderfully horrifying dataset. Good luck!

```
import os
import json
import pandas as pd
```

```
df = pd.read_csv('./data/monster_com-job_sample.csv')
```

```
df.head()
```

```
country country_code date_added has_expired \
0 United States of America US NaN No
1 United States of America US NaN No
2 United States of America US NaN No
```

(continues on next page)

(continued from previous page)

```
United States of America
                                      US
                                                NaN
                                                             No
  United States of America
                                      US
                                                NaN
                                                             No
                                                       job_description
          job_board
                    TeamSoft is seeing an IT Support Specialist to...
  jobs.monster.com
   jobs.monster.com The Wisconsin State Journal is seeking a flexi...
  jobs.monster.com Report this job About the Job DePuy Synthes Co...
  jobs.monster.com Why Join Altec? If you're considering a career...
  jobs.monster.com Position ID# 76162 # Positions 1 State CT C...
                                           job_title
                                                                 job_type
0
                IT Support Technician Job in Madison
                                                       Full Time Employee
             Business Reporter/Editor Job in Madison
                                                                Full Time
  Johnson & Johnson Family of Companies Job Appl...
                                                      Full Time, Employee
3
                     Engineer - Quality Job in Dixon
                                                                Full Time
4
        Shift Supervisor - Part-Time Job in Camphill
                                                     Full Time Employee
                                            location \
0
                                   Madison, WI 53702
                                   Madison, WI 53708
  DePuy Synthes Companies is a member of Johnson...
3
                                           Dixon, CA
4
                                        Camphill, PA
                      organization \
0
                               NaN
          Printing and Publishing
2.
  Personal and Household Services
3
                 Altec Industries
4
                            Retail
                                            page_url salary
  http://jobview.monster.com/it-support-technici...
  http://jobview.monster.com/business-reporter-e...
  http://jobview.monster.com/senior-training-lea...
                                                        NaN
 http://jobview.monster.com/engineer-quality-jo...
                                                        NaN
4 http://jobview.monster.com/shift-supervisor-pa...
                                                        NaN
                       sector
                                                        uniq_id
      IT/Software Development 11d599f229a80023d2f40e7c52cd941e
1
                          NaN e4cbb126dabf22159aff90223243ff2a
                          NaN 839106b353877fa3d896ffb9c1fe01c0
2
   Experienced (Non-Manager)
                               58435fcab804439efdcaa7ecca0fd783
  Project/Program Management 64d0272dc8496abfd9523a8df63c184c
```

Need some inspiration? perhaps this might help!

Part III

3. Data Preprocessing

SEVEN

DATA PREPROCESSING

CHAPTER

EIGHT

INDEXING AND SLICING

In

```
import pandas as pd
```

```
Date Temp

0    1981-01-01    20.7

1    1981-01-02    17.9

2    1981-01-03    18.8

3    1981-01-04    14.6

4    1981-01-05    15.8
...    ...    ...

360    1981-12-27    15.5

361    1981-12-28    13.3

362    1981-12-29    15.6

363    1981-12-30    15.2

364    1981-12-31    17.4
```

```
min_temp_df.Date = pd.to_datetime(min_temp_df.Date)
```

```
min_temp_df = min_temp_df.set_index('Date')
```

```
min_temp_df.loc['1981-06-01':'1981-06-30']
```

```
Temp

Date

1981-06-01 11.6

1981-06-02 10.6

1981-06-03 9.8

1981-06-04 11.2

1981-06-05 5.7

1981-06-06 7.1

1981-06-07 2.5

1981-06-08 3.5

1981-06-09 4.6
```

(continues on next page)

(continued from previous page)

```
1981-06-10 11.0
1981-06-11 5.7
1981-06-12 7.7
1981-06-13 10.4
1981-06-14 11.4
1981-06-15
           9.2
1981-06-16 6.1
1981-06-17
           2.7
1981-06-18 4.3
1981-06-19 6.3
1981-06-20 3.8
1981-06-21 4.4
1981-06-22 7.1
1981-06-23 4.8
1981-06-24 5.8
1981-06-25 6.2
1981-06-26 7.3
1981-06-27 9.2
1981-06-28 10.2
1981-06-29
           9.5
1981-06-30 9.5
```

```
min_temp_df.loc['1989-06-01':'1989-06-30'].mean()
```

```
Temp NaN dtype: float64
```

```
min_temp_df.resample('MS').mean()
```

```
Temp

Date

1981-01-01 17.712903

1981-02-01 17.678571

1981-03-01 13.500000

1981-04-01 12.356667

1981-05-01 9.490323

1981-06-01 7.306667

1981-07-01 7.577419

1981-08-01 7.238710

1981-09-01 10.143333

1981-10-01 10.087097

1981-11-01 11.890000

1981-12-01 13.680645
```

```
import seaborn as sns
```

```
tip_df = sns.load_dataset('tips')
tip_df.head()
```

```
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
```

(continues on next page)

(continued from previous page)

```
4 24.59 3.61 Female No Sun Dinner 4
```

```
tip_index_df = tip_df.set_index('day')
```

```
tip_index_df.loc['Sun']
```

```
total_bill
               tip
                    sex smoker
                                   time size
day
        16.99 1.01 Female
                                           2
Sun
                              No Dinner
Sun
        10.34 1.66
                    Male
                              No Dinner
                                           3
        21.01 3.50
Sun
                     Male
                              No Dinner
                                           3
        23.68 3.31
Sun
                     Male
                             No Dinner
                                           2
        24.59 3.61 Female
                             No Dinner
Sun
                                           4
          . . .
               . . .
                    . . .
                             . . .
                                    . . .
        20.90 3.50 Female Yes Dinner
                                          3
Sun
        30.46 2.00
                    Male Yes Dinner
                                          5
        18.15 3.50 Female
                             Yes Dinner
        23.10 4.00
Sun
                     Male
                             Yes Dinner
Sun
        15.69 1.50
                     Male Yes Dinner
[76 rows x 6 columns]
```

```
tip_index_df = tip_df.set_index(['day','time'])
```

```
tip_index_df.loc[('Thur','Lunch')].tip.mean()
```

```
2.767704918032786
```

```
time Lunch Dinner
day
Thur 16.00 18.780
Fri 13.42 18.665
Sat NaN 18.240
Sun NaN 19.630
```

```
tip_df.set_index(['sex', 'time','smoker']).loc[('Male', 'Dinner','Yes')]['tip'].mean()
```

```
/tmp/ipykernel_25625/3467525553.py:1: PerformanceWarning: indexing past lexsort depth
→may impact performance.
  tip_df.set_index(['sex', 'time','smoker']).loc[('Male', 'Dinner','Yes')]['tip'].
→mean()
```

```
3.123191489361702
```

Part IV

4. Data Exploration

CHAPTER	
NINE	

DATA EXPLORATION

Part V

5. Data Visualisation

CHAPTER	
TEN	

DATA VISUALISATION

Part VI

6. Machine Learning

CH	ΙAΡ	T	Ε	F

ELEVEN

MACHINE LEARNING