- I. Sections to Read (All content from Blitzstein and Hwang's Introduction to Probability unless otherwise noted)
 - 7.4 and 7.5
- II. Videos to Watch (All videos from Blitzstein's Math 110 YouTube channel, unless otherwise noted)
 - Lecture 20: Multinomial and Cauchy (from 8:00 to 30:00)
 - Lecture 21: Covariance and Correlation (from 33:00 to end)

III. Objectives

- Define the multinomial distribution via a story model and calculate the corresponding joint PMF.
- Compute the marginal and conditional distributions for the multinomial distribution, as well as the covariance of coordinates of the multinomial vector.
- IV. Quiz Questions (Submit answers on Gradescope https://www.gradescope.com/courses/157877)
 - 1) Explain why the multinomial distribution $\operatorname{Mult}_k(n, \mathbf{p})$ reduces to the binomial distribution $\operatorname{Bin}(n, p)$ in the case when k = 2 and $\mathbf{p} = (p, 1 p)$. What is the corresponding distribution when k = 1?
 - 2) In your own words, explain why it isn't surprising that the covariance of components in a Multinomial vector are negatively correlated.
 - 3) Briefly describe the difference between the *likelihood function* introduced in part (d) of example 7.4.8 and the binomial PMF.