Boosted ttbar xsection at 13 TeV in all-hadronic final state

Update

07 September 2018

K. Kousouris, G. Tsipolitis, G. Bakas (NTUA), G. Paspalaki (NCSR Demokritos), A. Castro, F. Celli (INFN Bologna), P. Kumar Mal (NISER)

Analysis Overview

- 2016 dataset

- very well understood (calibrations, scale factors, etc)
- adequate MC statistics after the additional systematics samples
- Trigger: HLT_AK8DiPFJet280_200_TrimMass30_BTagCSV_p20
 - excellent data vs MC agreement

- Selection

- two AK8 jets with p_T > 400 GeV
- MVA training using jet substructure variables as inputs
- categories based on subjet b-tagging
 - 0-btag: control
 - 2-btag: signal
- Backgrounds
 - QCD dominant: taken from data
 - others (ST, W/Z+jets): negligible

- Deliverables

- differential cross sections
- five observables: top $p_T \& \eta$, ttbar system mass, $p_T \&$ rapidity
- fiducial, unfolded to particle level, unfolded to particle level

Today we present the unfolded results at parton & levels

Analysis regions

Signal extraction

Validation of the background method

Results (fiducial, top p_{T,} m_{tt})

Definition of various levels

- Parton

- p_T > 400 GeV (both tops)
- $|\eta|$ < 2.4 (both tops)
- m_{tt} > 800 GeV

-Particle

- cluster genjets with AK8
- top candidates: two leading genjets
- p_T > 400 GeV (two leading genjets)
- $|\eta|$ < 2.4 (both leading genjets)
- genjets' softdrop mass in [120, 220] GeV
- m_{ii} > 800 GeV

- Reco

- cluster PF+CHS jets with AK8
- trigger
- top candidates: two leading reco jets
- $p_T > 400 \text{ GeV}$ (both leading jets)
- $|\eta|$ < 2.4 (both leading jets)
- subjet btagging (both jets leading jets)
- mva > 0.8
- jets' softdrop mass in [120, 220] GeV
- m_{ii} > 800 GeV

Parton & Particle levels

Unfolding: simple response matrix inversion w/o regularisation

Response matrices (top p_T)

Stability & purity (top p_T, m_{tt})

Unfolding tests (top p_T, m_{tt})

Ratio of relative errors hUnfolded/hReco for jetPt

Ratio of relative errors hUnfolded/hReco for mJJ

Parton efficiency (top p_T, m_{tt})

Particle efficiency (top p_T, m_{tt})

Results (parton, top p_{T,} m_{tt})

Results (particle, top p_{T,} m_{tt})

K. Kousouris

Summary

- ◆ presented the unfolded distributions (parton & particle level)
- ◆ use binning with high purity & stability ==> simple response matrix inversion for the unfolding seems to be sufficient
- ◆ normalised cross section: mostly in agreement with the theoretical predictions
 - but overall shift of the order of 40% in the total cross section
- → systematics: for every source we redo the measurement
 - mostly affecting the efficiency/extrapolation corrections
- ◆ next steps
 - finalise the theory uncertainties (pdf, alpha_S, scale)
 - complete the AN note (missing only one section)
 - compute the covariance matrices