History Dependency

Monkie

6/22/2022

We consider MDP with objective

$$\max_{\pi} \rho[\sum_t \gamma^t R_t^{\pi}]$$

where ρ refers to risk measure of interest. It is well known for $\rho = \mathbb{E}$ in finite horizon the optimal policy is time dependent deterministic, and is determistic in infinite horizon. In this document, we will provide a simple example to show that when $\rho = \text{VaR}$ or $\rho = \text{CVaR}$ the optimal policy is history dependent. Let the discount factor $\gamma = 1$ for this example.

Figure 1: MDP Tree

For expectation, given MDP tree above the decision is independent with respect to the history/ accumulated-total-reward. As a result, regarding history the optimal policy is taking action a2 given state s1.

a1 expected reward-to-go given s1 : 0 $\,$

a2 expected reward-to-go given s1 : 12500

However, when $\rho = \text{VaR}$ or $\rho = \text{CVaR}$ we care about the tail distribution of the total discounted reward. As a result,

##																	
##	I		a1		I		a2		1	a1 h1	&	a2 h2	I	a2 h1	&	a1 h2	I
##																	
##	I	prob	I	reward	I	prob	I	reward	I	prob	I	reward	I	prob	I	reward	I
##																	
##	I	0.88	I	5000	I	0.22	I	-5000	I	0.88	I	5000	I	0.22	I	-5000	1
##	1	0.12	I	-5000	I	0.66	I	25000	I	0.03	I	-15000	I	0.66	I	25000	I
##	I		I		I	0.03	I	-15000	I	0.09	I	15000	I	0.12	I	-5000	1
##	I		I		I	0.09	I	15000	I		I		I		I		1
##																	
##	I	VaR 109	% I	-5000	I	VaR 10	% I	-5000	I	VaR 10%	I	5000	1	VaR 10%	I	-5000	1
##	10	CVaR 10	% I	-5000	10	CVaR 10%	% I	-8000	IC	VaR 10%	I	-1000	l C	VaR 10%	I	-5000	I
##																	

In this simple example, the optimal policy for both VaR and CVaR at 10%, is take action a1 if given h1 and take action a2 if given h2 (which is history dependent).