PS 1: Problem 16

Relational-algebra queries

problem 16.1

$$natural_join_Oscar_Movie \leftarrow (Oscar)^{\bowtie_{Oscar.movie_id=Movie.id}}(Movie)$$

$$\leftarrow \sigma_{\text{Oscar.type='BEST-PICTURE'} \ \land \ \text{Oscar.year} \leq 2019} \ \land \ \text{Oscar.year} \geq 2010} (natural_join_Oscar_Movie)$$

final_result
$$\leftarrow \pi_{Movie.name,Oscar.year}(tuples_bst_pic_2010s)$$

problem 16.2

$$Movie_left_out_join_Oscar \leftarrow (Movie) \bowtie_{Movie.id} = Oscar.movie_id (Oscar)$$

$$tuples_rank_1 to 25 \leftarrow \sigma_{\texttt{Movie.earnings_rank} \leq 25} Movie_left_out_join_Oscar$$

$$final_result \leftarrow \pi_{Movie.earnings_rank,\ Movie.name,\ Oscar.type}(tuples_rank_1to25)$$

problem 16.3

$$bst_spprt_tuples \leftarrow \sigma_{A.actor_id=O.person_id \ \land \ O.type \ LIKE \ 'BEST-SUPPORTING''}(Oscar \times Actor)$$

$$actor_id_bst_spprt \leftarrow \pi_{A.actor_id}(bst_spprt_tuples)$$

$$\leftarrow \sigma_{\text{A.actor_id=O.person_id} \ \land \ \text{O.type='BEST-ACTOR'} \ \lor \ \text{O.type='BEST-ACTRESS'}}(Oscar \times Actor)$$

$$actor_id_bst_actor_actress \leftarrow \pi_{A.actor_id}(bst_actor_actress_tuples)$$

$$final_table \leftarrow actor_id_bst_spprt - actor_id_bst_actor_actress$$