High Dimensional Probability Notes

Nong Minh $\mathrm{Hieu^1}$

 1 School of Physical and Mathematical Sciences, Nanyang Technological University (NTU - Singapore)

Contents

1	Ran	ndom variables	2
	1.1	Basic Inequalities	2
	1.2	Limit Theorems	4
		1.2.1 Weak Law of Large Numbers	4
		1.2.2 Strong Law of Large Numbers	6
		1.2.3 Central Limit Theorem	8
	1.3	Convergence of Random Variables	8
		1.3.1 Convergence in Distribution	8
		1.3.2 Convergence in Probability	9
		1.3.3 Convergence in L^p norm	10
		1.3.4 Almost-sure Convergence	10
2	Stat	tistical Inference	12
	2.1	Sufficiency & Likelihood	12
		2.1.1 Sufficiency	12
		2.1.2 Likelihood	13
	2.2	Point Estimation	13
		2.2.1 Bias, Variance, Consistency and MSE	13
		2.2.2 Sufficient Statistics & Rao-Blackwell Theorem	13
		2.2.3 Estimator Variance & Cramer-Rao Lower Bound	13
		2.2.4 Maximum Likelihood Estimation (MLE)	13
\mathbf{A}	List	of Definitions	14
В	Imp	portant Theorems	14
\mathbf{C}	Imp	portant Propositions	14
D	Ref	erences	15

1 Random variables

1.1 Basic Inequalities

First, we revisit the definition of a random variable as well as some basic inequalities that we learned in introductory statistics.

Definition 1.1 (Random variable).

Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space. A random variable X is defined as a mapping from the sample space Ω to \mathbb{R} :

$$X:\Omega\to\mathbb{R}$$
 (1)

 Σ is the σ -algebra containing the possible events (collection of subsets of Ω) and \mathbb{P} is a probability measure that assigns events with probabilities:

$$\mathbb{P}: \Sigma \to [0, 1] \tag{2}$$

For a given probability space $(\Omega, \Sigma, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$, we will use the following basic notations throughout this note:

• $||X||_{L^p}$ - The p^{th} root of the p^{th} moment of the random variable X.

$$||X||_{L^p} = (\mathbb{E}|X|^p)^{1/p}, \ p \in (0, \infty)$$
 (3)

$$||X||_{L^{\infty}} = \operatorname{ess\,sup}|X| \tag{4}$$

• $L^p(\Omega, \Sigma, \mathbb{P})$ - The space of random variables X satisfying:

$$L^{p}(\Omega, \Sigma, \mathbb{P}) = \left\{ X : \Omega \to \mathbb{R} \middle| \|X\|_{L^{p}} < \infty \right\}$$
 (5)

Some basic inequalities and identities:

• 1. Jensen's Inequality - For a random variable X and a convex function $\varphi : \mathbb{R} \to \mathbb{R}$, we have:

$$\varphi(\mathbb{E}X) \leqslant \mathbb{E}\varphi(X) \tag{6}$$

• 2. Monotonicity of L^p norm - For a random variable X:

$$||X||_{L^p} \leqslant ||X||_{L^q}, \ 0 \leqslant p \leqslant q \leqslant \infty. \tag{7}$$

• 3. Minkowski's Inequality - For $1 \le p \le \infty$ and two random variables X, Y in $L^p(\Omega, \Sigma, \mathbb{P})$ space:

$$||X + Y||_{L^p} \le ||X||_{L^p} + ||Y||_{L^p}. \tag{8}$$

• 4. Holder's Inequality - For $p, q \in [1, \infty]$ such that 1/p + 1/q = 1. Then, for random variables $X \in L^p(\Omega, \Sigma, \mathbb{P})$ and $Y \in L^q(\Omega, \Sigma, \mathbb{P})$, we have:

$$|\mathbb{E}XY| \leqslant ||X||_{L^p} \cdot ||Y||_{L^q}. \tag{9}$$

• 5. Markov's Inequality - For a non-negative random variable X and t > 0, we have:

$$\mathbb{P}(X \geqslant t) \leqslant \frac{\mathbb{E}X}{t}.\tag{10}$$

We can also generalize Markov's Inequality for p^{th} moment:

$$\mathbb{P}(|X| \ge t) \le \frac{\mathbb{E}[|X|^p]}{t^p}, \forall t > 0, k \in [2, \infty). \tag{11}$$

• 6. Chebyshev's Inequality - For a random variable X with mean μ and variance σ^2 . Then, for any t > 0, we have:

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}.\tag{12}$$

• 7. Integral Identity - Let X be a non-negative random variable, we have:

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt. \tag{13}$$

Exercises

Exercise 1.1.1: Generalized Integral Identity

Let X be a random variable (not necessarily non-negative). Prove the following identity:

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt - \int_{-\infty}^0 \mathbb{P}(X < t)dt. \tag{14}$$

Solution (Exercise 1.1.1).

For $x \in \mathbb{R}$, using the basic integral indentity, we have:

$$|x| = \int_0^\infty \mathbf{1}\{t < |x|\}dt$$

We consider the following cases:

• When $x < 0 \implies x = -|x|$:

$$x = -\int_0^\infty \mathbf{1}\{t < |x|\}dt = -\int_0^\infty \mathbf{1}\{t < -x\}dt = -\int_0^\infty \mathbf{1}\{-t > x\}dt = -\int_{-\infty}^0 \mathbf{1}\{t > x\}dt.$$

• When $x \ge 0 \implies x = |x|$:

$$x = \int_0^\infty \mathbf{1}\{t < |x|\}dt = \int_0^\infty \mathbf{1}\{t < x\}dt.$$

Therefore, for $x \in \mathbb{R}$, we can write:

$$x = \int_0^\infty \mathbf{1}\{t < x\}dt - \int_{-\infty}^0 \mathbf{1}\{t > x\}dt.$$

Therefore, for a random variable X not necessarily non-negative, we have:

$$\begin{split} \mathbb{E}X &= \mathbb{E}\Bigg[\int_0^\infty \mathbf{1}\{t < X\}dt - \int_{-\infty}^0 \mathbf{1}\{t > X\}dt\Bigg] \\ &= \mathbb{E}\int_0^\infty \mathbf{1}\{t < X\}dt - \mathbb{E}\int_{-\infty}^0 \mathbf{1}\{t > X\}dt \\ &= \int_0^\infty \mathbb{E}\mathbf{1}\{t < X\}dt - \int_{-\infty}^0 \mathbb{E}\mathbf{1}\{t > X\}dt \\ &= \int_0^\infty \mathbb{P}(t < X)dt - \int_{-\infty}^0 \mathbb{P}(t > X)dt. \end{split}$$

Π,

Exercise 1.1.2: p^{th} -moments via tails

Let X be a random variable and $p \in (0, \infty)$. Show that:

$$\mathbb{E}|X|^p = \int_0^\infty pt^{p-1}\mathbb{P}(|X| > t)dt. \tag{15}$$

Π.

Solution (Exercise 1.1.2).

Let X be a random variable that is not necessarily non-negative. Using the integral identity, we have:

$$\mathbb{E}|X|^p = \int_0^\infty \mathbb{P}(u < |X|^p) du.$$

Let $t^p = u \implies pt^{p-1}dt = du$. Since we integrate u from $0 \to \infty$, we also integrate t from $0 \to \infty$ when changing the variables. Hence, we have:

$$\mathbb{E}|X|^{p} = \int_{0}^{\infty} \mathbb{P}(t^{p} < |X|^{p})pt^{p-1}dt = \int_{0}^{\infty} \mathbb{P}(t < |X|)pt^{p-1}dt.$$

Hence, we obtained the desired identity.

1.2 Limit Theorems

1.2.1 Weak Law of Large Numbers

Theorem 1.1: Weak Law of Large Numbers (WLLN

Let X_1, \ldots, X_N be *i.i.d* random variables with mean μ . Consider the sum:

$$S_N = X_1 + \cdots + X_N$$

Then, the sample mean converges to μ in probability $(S_N/N \xrightarrow{p} \mu)$:

$$\lim_{N \to \infty} \mathbb{P}\Big(|S_N/N - \mu| > \epsilon\Big) = 0, \ \forall \epsilon > 0$$
 (16)

Proof (Weak Law of Large Numbers (WLLN)).

We split the proof into two sections corresponding to the assumptions of finite variance and non-finite variance.

1. Finite variance case: Suppose that $\operatorname{Var} X_i = \sigma^2 < \infty$ for all $1 \le i \le N$. Let $\bar{X} = S_N/N$. Then, \bar{X} is a random variable with the following mean and variance:

$$\mathbb{E}\bar{X} = \mu \quad and \quad \text{Var}\bar{X} = \frac{\sigma^2}{N}.$$

Hence, by the Chebyshev's inequality, we have:

$$\mathbb{P}(|S_N/N - \mu| > \epsilon) = \mathbb{P}(|\bar{X} - \mu| > \epsilon) \leqslant \frac{\sigma^2}{N\epsilon^2}.$$

Therefore, we have:

$$\lim_{N \to \infty} \mathbb{P}\Big(|S_N/N - \mu| > \epsilon\Big) \leqslant \lim_{N \to \infty} \frac{\sigma^2}{N\epsilon^2} = 0.$$

Hence, we have $\lim_{N\to\infty} \mathbb{P}(|S_N/N - \mu| > \epsilon) = 0$ and we obtained (WLLN).

2. Non-finite variance case: In this case, we rely on the Levy Continuity Theorem (LCT), which relies on the convergence of the characteristic function. For $n \ge 1$, define the sequence of random variable $Y_n = S_n/n$. Hence, we have:

$$\varphi_{Y_n}(t) = \varphi_{S_n/n}(t)$$

$$= \varphi_{S_n}(t/n)$$

$$= \prod_{i=1}^n \varphi_{X_i}(t/n) = \left[\varphi_X(t/n)\right]^n,$$

Where $X = X_1 = \cdots = X_n$. By Taylor's expansion, we have:

$$\varphi_X(t/n) = 1 + \frac{it\mathbb{E}[X]}{n} + \mathcal{O}(1/n^2) = 1 + \frac{it\mu}{n} + \mathcal{O}(1/n^2).$$

Hence, we have:

$$\lim_{n\to\infty}\varphi_{Y_n}(t)=\lim_{n\to\infty}\left(1+\frac{it\mu}{n}+\mathcal{O}(1/n^2)\right)^n=e^{it\mu}.$$

Therefore, by (**LCT**), we have $Y_n \xrightarrow{p} \mu$.

Remark 1.1 (Taylor expansion of Moment Generating and Characteristic Functions). ______ Given a random variable X. For reference, the following are the Taylor expansions of the Moment Generating Function $M_X(t)$ and the Characteristic Function $\varphi_X(t)$:

$$M_X(t) = \mathbb{E}[e^{tX}] = 1 + \sum_{n=1}^{\infty} \frac{t^n}{n!} \mathbb{E}[X^n],$$

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = 1 + \sum_{n=1}^{\infty} \frac{(it)^n}{n!} \mathbb{E}[X^n].$$
(17)

For the sake of my laziness, here are the Taylor expansion for the first three terms of both the MGF and the CF:

$$M_X(t) = 1 + t\mathbb{E}[X] + \frac{t^2}{2}\mathbb{E}[X^2] + \mathcal{O}(t^3),$$

$$\varphi_X(t) = 1 + it\mathbb{E}[X] - \frac{t^2}{2}\mathbb{E}[X^2] + \mathcal{O}(t^3).$$
(18)

□.

Theorem 1.2: Levy Continuity Theorem

Let X_1, X_2, \ldots be *i.i.d* random variables. Then:

$$\forall t \in \mathbb{R} : \lim_{n \to \infty} \varphi_{X_n}(t) = \varphi_X(t) \iff X_n \stackrel{d}{\to} X, \tag{19}$$

for some random variable X. In a special case where X=c for some $c\in\mathbb{R}$, we have:

$$\forall t \in \mathbb{R} : \lim_{n \to \infty} \varphi_{X_n}(t) = e^{itc} \iff X_n \xrightarrow{p} c.$$
 (20)

Proof (Levy Continuity Theorem (LCT)).

The proof for (LCT) can be found in book:allen2004

1.2.2 Strong Law of Large Numbers

Theorem 1.3: Strong Law of Large Numbers

Let X_1, \ldots, X_N be *i.i.d* random variables with mean μ . Consider the sum:

$$S_N = X_1 + \cdots + X_N$$

Then, the sample mean converges to μ almost surely $(S_N/N \xrightarrow{a.s} \mu)$:

$$\mathbb{P}\left(\limsup_{N\to\infty}|S_N/N-\mu|>\epsilon\right)=0,\ \forall\epsilon>0$$
(21)

Proof (Strong Law of Large Numbers (SLLN)).

For the sake of simplicity, we will present the proof for (SLLN) with an additional assumption that $\mathbb{E}[|X_n|^4] < \infty, \forall n \geq 1$. The proof for the general case of (SLLN) (also called the Kolmogorov Strong Law) can be found in **book:allen2004**. For convenience, we assume the following:

- 1. $\mathbb{E}[|X_n|^4] = K < \infty$.
- 2. $\mathbb{E}[X_n] = 0$. For non-zero mean case, we can set $Y_n = X_n \mu$ and repeat the same arguments made below.

We aim to prove that $\mathbb{P}\Big(\limsup_{N\to\infty}|S_N/N|>\epsilon\Big)=0$ for any $\epsilon>0$. Firstly, use the Multinomial formula to expand $\mathbb{E}[S_n]$. The expansion will contain the terms in the following forms:

$$X_i^2, X_i^3 X_j, X_i^2 X_j^2, X_i^2 X_j X_k, X_i X_j X_k X_\ell,$$

where i, j, k, ℓ are distinct indices. By independence, we have:

$$\mathbb{E}[X_i^3 X_i] = \mathbb{E}[X_i^2 X_i X_k] = \mathbb{E}[X_i X_l X_k X_\ell] = 0.$$

As a result, we have the following remaining terms by the Multinomial formula:

$$\mathbb{E}[S_n^4] = \sum_{i=1}^n \mathbb{E}[X_i^4] + \binom{4}{2} \sum_{1 \le i < j \le n} \mathbb{E}[X_i^2 X_j^2]$$

$$= \sum_{i=1}^n \mathbb{E}[X_i^4] + 6 \sum_{1 \le i < j \le n} \mathbb{E}[X_i^2 X_j^2]$$

$$= nK + 3n(n-1)\mathbb{E}[X_i^2 X_i^2].$$

By independence, we have $\mathbb{E}[X_i^2 X_j^2] = \mathbb{E}[X_i^2] \mathbb{E}[X_j^2]$ and for any $1 \leq i \leq n$. Furthermore, we have $\mathbb{E}[X_i^2] = \text{Var}(X_i) + \mu^2 = \sigma^2 + \mu^2$. Therefore:

$$\mathbb{E}[S_n^4] = nK + 3n(n-1)(\sigma^2 + \mu^2) < nK + 3n^2(\sigma^2 + \mu^2).$$

Applying Markov's Inequality with the fourth moment, we have:

$$\mathbb{P}(|S_n/n| \geqslant \epsilon) = \mathbb{P}(|S_n| \geqslant n\epsilon)$$

$$\leqslant \frac{\mathbb{E}[S_n^4]}{n^4 \epsilon^4}$$

$$< \frac{K}{n^3 \epsilon^4} + \frac{3(\sigma^2 + \mu^2)}{n^2}.$$

Therefore, we have:

$$\sum_{n=1}^{\infty} \mathbb{P}(|S_n/n| \ge \epsilon) < \frac{K}{\epsilon^4} \sum_{n=1}^{\infty} n^{-3} + 3(\sigma^2 + \mu^2) \sum_{n=1}^{\infty} n^{-2} < \infty$$
 (22)

Finally, by the Borel-Cantelli Lemma (BCL), we have:

$$\mathbb{P}\left(\limsup_{n\to\infty}|S_n/n|\geqslant\epsilon\right)=0,\quad\forall\epsilon>0.$$

□.

Theorem 1.4: Borel-Cantelli Lemma

1. First Borel-Cantelli Lemma: Given a probability space $(X, \mathcal{S}, \mathbb{P})$ and a sequence $\{A_n\}_{n=1}^{\infty} \subset \mathcal{S}$. If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, we have:

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 0. \tag{23}$$

2. Second Borel-Cantelli Lemma: On the other hand, if $\sum_{n=1}^{\infty} \mathbb{P}(E_n) = \infty$, we have:

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) = 1. \tag{24}$$

Proof (Borel-Cantelli Lemma (BCL)).

We focus on proving the first Borel-Cantelli lemma. We define another sequence of S-measurable sets $\{B_n\}_{n=1}^{\infty}$ such that:

$$B_n = \bigcup_{k=n}^{\infty} A_n.$$

Hence, we have $B_{\ell+1} \subset B_{\ell}$ for every $\ell \geqslant 1$. In other words, B_n is a decreasing sequence of S-measurable sets. By continuity of measure, we have:

$$\mathbb{P}\left(\lim_{n\to\infty} B_n\right) = \lim_{n\to\infty} \mathbb{P}(B_n)$$

$$= \lim_{n\to\infty} \sum_{k=n}^{\infty} \mathbb{P}(A_n) \quad (By \ additivity)$$

$$= \sum_{i=1}^{\infty} \mathbb{P}(A_i) - \lim_{n\to\infty} \sum_{k=1}^{n} \mathbb{P}(A_n)$$

$$= 0.$$

Furthermore, we have:

$$\mathbb{P}\Big(\lim_{n\to\infty}B_n\Big)=\mathbb{P}\bigg(\lim_{n\to\infty}\bigcup_{k=n}^{\infty}\bigg)=\mathbb{P}\bigg(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_n\bigg)=\mathbb{P}\bigg(\limsup_{n\to\infty}A_n\bigg).$$

Hence proved the first Borel-Cantelli Lemma. To prove the second Borel-Cantelli Lemma, we prove the following:

$$1 - \mathbb{P}\left(\limsup_{n \to \infty} A_n\right) = \mathbb{P}\left(\left\{\limsup_{n \to \infty} A_n\right\}^c\right)$$
$$= \mathbb{P}\left(\liminf_{n \to \infty} A_n^c\right) = 0.$$

1.2.3 Central Limit Theorem

Theorem 1.5: Central Limit Theorem (C

Let $X_1, \ldots X_n$ be a sequence of *i.i.d* random variables with expected value μ and finite variance σ^2 . Then, we have:

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1) \quad as \quad n \to \infty, \tag{25}$$

where $\bar{X}_n = S_n/n$ and $\mathcal{N}(0,1)$ is the standard normal distribution.

Proof (Central Limit Theorem (**CLT**)).

We prove this via the Characteristic Function. Let $\bar{Z}_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$, notice that:

$$\bar{Z}_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma},$$

Let $Z_i = X_i - \mu$ for $1 \le i \le n$ and suppose $Z = Z_1 = \cdots = Z_n$, we have:

$$\varphi_{\bar{Z}_n}(t) = \varphi_{\sum_{i=1}^n Z_i} \left(\frac{t}{\sqrt{n}} \right) = \left[\varphi_Z \left(\frac{t}{\sqrt{n}} \right) \right]^n$$

$$= \left[1 + \frac{it \mathbb{E}[Z]}{\sqrt{n}} - \frac{t^2}{2n} \mathbb{E}[Z^2] + \mathcal{O}(1/n) \right]^n \quad (Taylor's Expansion)$$

$$= \left[1 - \frac{t^2}{2n} + \mathcal{O}(1/n) \right]^n.$$

The final equality comes from the fact that $\mathbb{E}[Z] = 0$ and $\mathbb{E}[Z^2] = \mathbb{E}[Z]^2 + \text{Var}(Z) = 1$. Finally, we have:

$$\lim_{n\to\infty} \varphi_{Z_n}(t) = \lim_{n\to\infty} \left[1-\frac{t^2}{2n} + \mathcal{O}(1/n)\right]^n = e^{-t^2/2}.$$

Since $e^{-t^2/2}$ is the Characteristic Function of the standard normal distribution, by (**LCT**), we have $\bar{Z}_n \xrightarrow{d} \mathcal{N}(0,1)$.

1.3 Convergence of Random Variables

In this section, we revise the modes of convergence in random variables.

1.3.1 Convergence in Distribution

Definition 1.2 (Convergence in Distribution).

Given a sequence of real-valued random variables X_1, X_2, \ldots with CDFs F_1, F_2, \ldots We say that the sequence converges in distribution to a random variable X with CDF F, denoted $X_n \stackrel{d}{\to} X$ if:

$$\lim_{n \to \infty} F_n(x) = F(x),\tag{26}$$

for all $x \in \mathbb{R}$ at which F is continuous. Convergence in distribution can also be referred to as weak convergence in measure theory.

1.3.2 Convergence in Probability

Definition 1.3 (Convergence in Probability). _

Given a sequence of real-valued random variables X_1, X_2, \ldots We say that the sequence converges in probability to a random variable X, denoted $X_n \xrightarrow{p} X$ if:

$$\lim_{n \to \infty} \mathbb{P}\Big(|X_n - X| \ge \epsilon\Big) = 0, \quad \forall \epsilon > 0.$$
 (27)

We also refer to convergence in probability as convergence in measure in measure theory.

Proposition 1.1: $X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X$

Let X and the sequence X_1, X_2, \ldots be real-valued random variables. If $X_n \xrightarrow{p} X$, then $X_n \xrightarrow{d} X$.

Proof (Proposition 1.1).

We first prove the following claim: Let X, Y be random variables, $a \in \mathbb{R}$ and $\epsilon > 0$, the inequality $\mathbb{P}(Y \leq a) \leq \mathbb{P}(X \leq a + \epsilon) + \mathbb{P}(|Y - X| \geq \epsilon)$ holds. We have:

$$\begin{split} \mathbb{P}(Y \leqslant a) &= \mathbb{P}(Y \leqslant a, X \leqslant a + \epsilon) + \mathbb{P}(Y \leqslant a, X \geqslant a + \epsilon) \\ &\leqslant \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(Y - X \leqslant a - X, a - X \leqslant -\epsilon) \\ &\leqslant \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(Y - X \leqslant -\epsilon) \\ &\leqslant \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(Y - X \leqslant -\epsilon) + \mathbb{P}(Y - X \geqslant \epsilon) \\ &= \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(|Y - X| \geqslant \epsilon). \end{split}$$

Using the above inequality, we have:

$$\mathbb{P}(X \leqslant a - \epsilon) - \mathbb{P}(|X_n - X| \geqslant \epsilon) \leqslant \mathbb{P}(X_n \leqslant a) \leqslant \mathbb{P}(X \leqslant a + \epsilon) + \mathbb{P}(|X_n - X| \geqslant \epsilon).$$

Taking limits as $n \to \infty$ from both sides, we have:

$$F_X(a-\epsilon) \leqslant \lim_{n \to \infty} F_{X_n}(a) \leqslant F_X(a+\epsilon).$$

□.

Taking $\epsilon \to 0^+$, we have $\lim_{n\to\infty} F_{X_n}(a) = F_X(a)$.

Proposition 1.2: $X_n \xrightarrow{d} c \iff X_n \xrightarrow{p} c$

Let $c \in \mathbb{R}$ be a constant and X_1, X_2, \ldots be a sequence of real-valued random variables. Then, $X_n \xrightarrow{d} c \iff X_n \xrightarrow{p} c$.

Proof (Proposition 1.2, book:hossien2014).

Since $X_n \xrightarrow{d} c$, we immediately have the following:

$$\lim_{n \to \infty} F_{X_n}(c - \epsilon) = 0,$$
$$\lim_{n \to \infty} F_{X_n}(c + \epsilon/2) = 1.$$

Then, for any $\epsilon > 0$, we have:

$$\lim_{n \to \infty} (|X_n - c| \ge \epsilon) = \lim_{n \to \infty} \mathbb{P} \Big[\mathbb{P}(X_n \le c - \epsilon) + \mathbb{P}(X_n \ge c + \epsilon) \Big]$$

$$= \lim_{n \to \infty} F_{X_n}(c - \epsilon) + \lim_{n \to \infty} \mathbb{P}(X_n \ge c + \epsilon)$$

$$\le \lim_{n \to \infty} \mathbb{P}(X_n \ge c + \epsilon/2)$$

$$= 1 - \lim_{n \to \infty} F_{X_n}(c + \epsilon/2)$$

$$= 0$$

From the above, we have $\lim_{n\to\infty} \mathbb{P}(|X_n - c| \ge \epsilon) = 0$ and $X_n \xrightarrow{p} c$.

1.3.3 Convergence in L^p norm

Definition 1.4 (Convergence in L^p norm).

Given a sequence of random variables X_1, X_2, \ldots and a real number $p \in [1, \infty)$. We say that the sequence converges in L^p norm to a random variable X, denoted as $X_n \xrightarrow{L^p} X$ if:

$$\lim_{n \to \infty} \mathbb{E}|X_n - X|^p = 0. \tag{28}$$

Proposition 1.3: $X_n \xrightarrow{L^p} X \implies X_n \xrightarrow{p} X$

Let $p \geqslant 1$ and X_1, X_2, \ldots be a sequence of real-valued random variables. Let X be a random variable, then, $X_n \xrightarrow{L^p} X \implies X_n \xrightarrow{p} X$.

Proof (Proposition 1.3). Let $\epsilon > 0$, we have:

$$\mathbb{P}(|X_n - X| \ge \epsilon) = \mathbb{P}(|X_n - X|^p \ge e^p) \quad (p \ge 1)$$

$$\le \frac{\mathbb{E}|X_n - X|^p}{\epsilon^p}. \quad (Markov's Inequality)$$

Taking the limits from both sides, we have $\lim_{n\to\infty} \mathbb{P}(|X_n - X| \ge \epsilon) = 0$ and $X_n \stackrel{p}{\to} X$.

1.3.4 Almost-sure Convergence

Definition 1.5 (Convergence almost-surely). Let $X_1, X_2, ...$ be a sequence of real-valued random variables that map from a sample space Ω . Let X also be a real-valued random variable. We say that X_n converges almost surely to X, denoted as $X_n \xrightarrow{a.s} X$, if:

$$\mathbb{P}\Big(\limsup E_n\Big) = 0 \quad \text{where} \quad E_n = \Big\{\omega \in \Omega: |X_n(\omega) - X(\omega)| \geqslant \epsilon\Big\}.$$

Remark 1.2 (Consequence of (BCL)).

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty \implies X_n \xrightarrow{a.s} X. \tag{29}$$

□.

□.

Proposition 1.4: $X_n \xrightarrow{a.s} X \implies X_n \xrightarrow{p} X$

Let X_1, X_2, \ldots be a sequence of real-valued random variables and also let X be a real valued random variables. If $X_n \xrightarrow{a.s} X$ then $X_n \xrightarrow{p} X$.

Proof (Proposition 1.4).

Let $f_n:\Omega\to\mathbb{R}_+$ be a sequence of nonnegative Borel-measurable functions such that $f_n(\omega)=$ $|X_n(\omega) - X(\omega)|$. By Fatou's Lemma (reverse), we have:

$$\underbrace{\mathbb{P}\Big(\limsup_{n\to\infty}\{\omega\in\Omega:|X_n(\omega)-X(\omega)|\geqslant\epsilon\}\Big)}_{=0} = \int f_n d\mathbb{P}$$

$$\geqslant \limsup_{n\to\infty}\mathbb{P}(|X_n-X|\geqslant\epsilon)$$

$$\geqslant \lim_{n\to\infty}\mathbb{P}(|X_n-X|\geqslant\epsilon).$$

Hence, we have $\lim_{n\to\infty} \mathbb{P}(|X_n - X| \ge \epsilon) = 0$ and $X_n \stackrel{p}{\to} X$.

Theorem 1.6: Continuous Mapping Theorem

Let $f: \mathbb{R} \to \mathbb{R}$ be a <u>continuous</u> function and X_1, X_2, \ldots be a sequence of real-valued random variables. Then, the following statements hold true:

1.
$$X_n \stackrel{d}{\to} X \implies f(X_n) \stackrel{d}{\to} f(X)$$
.
2. $X_n \stackrel{p}{\to} X \implies f(X_n) \stackrel{p}{\to} f(X)$.

2.
$$X_n \xrightarrow{p} X \implies f(X_n) \xrightarrow{p} f(X)$$
.

3.
$$X_n \xrightarrow{a.s} X \implies f(X_n) \xrightarrow{a.s} f(X)$$
.

Proof (Continuous Mapping Theorem (CMT)).

Since almost-sure convergence implies the other two modes of convergence, we only have to handle the almost-sure convergence case. Since h is continuous, for any $\omega \in \Omega$ such that $X_n(\omega) \to X(\omega)$, we have $f(X_n(\omega)) \to f(X(\omega))$. Therefore, we have:

$$\Big\{\omega\in\Omega:X_n(\omega)\to X(\omega)\Big\}\subseteq \Big\{\omega\in\Omega:f(X_n(\omega))\to f(X(\omega))\Big\}.$$

Therefore, we have:

$$\mathbb{P}\Big(\limsup_{n\to\infty}\Big\{\omega\in\Omega:|f(X_n(\omega))-f(X(\omega))|\leqslant\epsilon\Big\}\Big)$$

$$\geqslant \mathbb{P}\Big(\limsup_{n\to\infty}\Big\{\omega\in\Omega:|X_n(\omega)-X(\omega)|\leqslant\epsilon\Big\}\Big)=1,$$

for all $\epsilon > 0$. Therefore, we have $f(X_n) \xrightarrow{a.s} f(X)$.

2 Statistical Inference

2.1 Sufficiency & Likelihood

2.1.1 Sufficiency

Definition 2.1 (Sufficient Statistics). Let $\mathbf{X} = (X_1, \dots, X_n) \sim p(.; \boldsymbol{\theta})$ be a random sample drawn i.i.d from a distribution with param-

Let $\mathbf{X} = (X_1, \dots, X_n) \sim p(.; \boldsymbol{\theta})$ be a random sample drawn i.i.d from a distribution with parameters $\boldsymbol{\theta}$. Let $\mathbf{U} = T(\mathbf{X})$ be a statistic, then it is called a <u>sufficient statistic</u> if the conditional distribution $p_{\mathbf{X}|\mathbf{U}}$ does not depend on $\boldsymbol{\theta}$.

Example 2.1 (Bernoulli random variables). _

Let $\mathbf{X} = (X_1, \dots, X_n) \sim \text{Bernoulli}(\theta)$ be a random sample from the Bernoulli distribution. Let $\mathbf{U} = \frac{1}{n} \sum_{i=1}^{n} X_i$, then \mathbf{U} is a sufficient statistic of θ . To illustrate this, suppose that $\mathbf{x} = (x_1, \dots, x_n)$ is an observation of the random sample \mathbf{X} and $\mathbf{u} = \frac{1}{n} \sum_{i=1}^{n} x_i$. We have:

$$\begin{split} \mathbb{P}(\mathbf{X} = \mathbf{x} | \mathbf{U} = \mathbf{u}) &= \frac{\mathbb{P}(\mathbf{X} = \mathbf{x}, \mathbf{U} = \mathbf{u})}{\mathbb{P}(\mathbf{U} = \mathbf{u})} \\ &= \frac{\mathbb{P}(X_1 = x_1, \dots, X_n = x_n, \sum_{i=1}^n X_i = \sum_{i=1}^n x_i)}{\mathbb{P}(\sum_{i=1}^n X_i = \sum_{i=1}^n x_i)} \\ &= \frac{\mathbb{P}(X_1 = x_1, \dots, X_n = x_n)}{\mathbb{P}(\sum_{i=1}^n X_i = \sum_{i=1}^n x_i)} \\ &= \frac{\theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i}}{\mathbb{P}(\sum_{i=1}^n X_i = \sum_{i=1}^n x_i)}. \end{split}$$

Now, setting $k = \sum_{i=1}^{n} x_i$, The denominator is basically the probability that the Bernoulli variables sums up to k. Hence, we can calculate the denominator as follows:

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i = k\right) = \binom{n}{k} \theta^k (1-\theta)^{n-k}.$$

Therefore, we have:

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | \mathbf{U} = \mathbf{u}) = \frac{\theta^k (1 - \theta)^{n - k}}{\binom{n}{k} \theta^k (1 - \theta)^{n - k}} = \frac{1}{\binom{n}{k}}.$$

Therefore, the conditional distribution does not depend on θ and U is a sufficient statistic.

Definition 2.2 (Sufficiency Principle).

If $\mathbf{U} = T(\mathbf{X})$ is a sufficient statistic for $\boldsymbol{\theta}$, then any inference about $\boldsymbol{\theta}$ should only depend on the sample \mathbf{X} through \mathbf{U} . In other words, if we estimate $\boldsymbol{\theta}$ using an estimator $\hat{\boldsymbol{\theta}}$, only \mathbf{U} shows up in the formula of $\hat{\boldsymbol{\theta}}$, not the sample \mathbf{X} itself. We will see why this is the case in the Factorisation Theorem (FacT), which states that we can factorise the density function into a function of $\mathbf{U}, \boldsymbol{\theta}$ and a function of the observations \mathbf{x} and thus, the inference about $\boldsymbol{\theta}$ is independent of the observations \mathbf{x} .

Theorem 2.1: Factorisation Theorem (FacT

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random sample with joint density function $p(\mathbf{x}; \boldsymbol{\theta})$. The statistic $\mathbf{U} = T(\mathbf{X})$ is sufficient for the parameters $\boldsymbol{\theta}$ if and only if we can find functions h, g such that:

$$p(\mathbf{x}; \boldsymbol{\theta}) = g(T(\mathbf{x}), \boldsymbol{\theta})h(\mathbf{x}),$$

□.

for all $\mathbf{x} \in \mathbb{R}^n$ and $\boldsymbol{\theta} \in \Theta$.

Proof (Factorisation Theorem (FacT)).

We have to conduct the proof in both directions.

- $T(\mathbf{X})$ is sufficient \implies Factorisation exists.
- Factorisation exists \implies $T(\mathbf{X})$ is sufficient.
- 1. T(X) is sufficient \implies Factorisation exists.
- 2.1.2 Likelihood
- 2.2 Point Estimation
- 2.2.1 Bias, Variance, Consistency and MSE
- 2.2.2 Sufficient Statistics & Rao-Blackwell Theorem

Theorem 2.2: Rao-Blackwell Theorem (B.B.

2.2.3 Estimator Variance & Cramer-Rao Lower Bound

Theorem 2.3: Cramer-Rao Lower Bound (CRLB)

2.2.4 Maximum Likelihood Estimation (MLE)

A List of Definitions

1.	1	Definition (Random variable)	 2
1.	2	Definition (Convergence in Distribution)	 8
		Definition (Convergence in Probability)	
1.	4	Definition (Convergence in L^p norm)	 10
1.	5	Definition (Convergence almost-surely)	 10
2.	1	Definition (Sufficient Statistics)	 12
2.	2	Definition (Sufficiency Principle)	 12
В	I	Important Theorems	
		•	 4
1.	1	Weak Law of Large Numbers (WLLN)	 4
1.	1	Weak Law of Large Numbers (WLLN)	 5
1. 1.	1 2 3	Weak Law of Large Numbers (WLLN) Levy Continuity Theorem (LCT) Strong Law of Large Numbers (SLLN)	 5 6

C Important Propositions

D References