RASPBERRY PI WORKSHOP

ThinkLAB
www.thinklab.ph
secretariat@thinklab.ph
facebook.com/thinklab.ph

SparkLab Innovation Center

DAY 1 — INTRODUCTION TO RPI AND BASIC APPLICATION

- What is Raspberry Pi?
- Parts of the Raspberry Pi System
- Set-up Configuration
- Interfacing Basics
- Linux File System
- Python Programming
- Control Structures
- GPIO and other basic applications

DAY 2 — INTERFACING WITH THE RASPBERRY PI, IOT AND OTHER ADVANCED APPLICATIONS

- Interfacing with Arduino (LM35)
- Internet of Things

WHAT IS RASPBERRY PI?

RAPBERRY PI 2 AND 3

Raspberry Pi 3

Raspberry Pi 2

RASPBERRY PI SPECIFICATIONS

	Raspberry Pi 2 Model B	Raspberry Pi 3 Model B	
Chip	Broadcom BCM2835 (SoC)	Broadcom BCM2837 (SoC)	
СРИ	32-bit Quad-core Cortex-A7, 900 MHz	64-bit Quad-core ARM Cortex-A53, 1.2 GHz	
GPU	Broadcom VideoCore IV, 250 MHz	re IV, 250 MHz Broadcom VideoCore IV, 400 Mhz	
Memory	1GB DDR2, 450 MHz	1GB DDR2, 900 MHz	
USB 2.0	4 ports	4 ports	
Connectivity	10/100 Ethernet jack	10/100 Ethernet jack 802.11n Wireless LAN Bluetooth 4.1 Bluetooth Low Energy (BLE)	
Video Output	HDMI, Composite Video (3.5mm jack)	HDMI, Composite Video (3.5mm jack)	
Audio Output	3.5mm jack, HDMI	3.5mm jack, HDMI	
Onboard Storage	microSD Slot (32GB max)	microSD Slot (64 GB)	
Dimension	8.6cm x 5.4cm x 1.5cm	8.6cm x 5.4cm x 1.5cm	

RASPBERRY PI OPERATING SYSTEMS

DIRECT SETUP

Monitor

HEADLESS SETUP

LAN Cable (Optional)

GETTING STARTED (RASPBIAN)

- Download Raspbian and Extract Zip Files
 http://www.raspberrypi.org/downloads/
 Raspbian Jessie with Pixel (1.42 GB)
 Raspbian Lite (292 MB)
- 2. Install win32DiskImager
 https://sourceforge.net/projects/win32diskimager/
- 3. Run as Administrator win32DiskImager
- 4. Select the drive of the SD Card
- 5. Select the image (img) on the Extracted Files
- 6. Click Write

GETTING STARTED (RASPBIAN)

GETTING STARTED (RASPBIAN)

- 7. Wait...
- 8. Insert SD Card on Raspberry Pi (RPi)
- 9. Connect the RPi to the Monitor, Keyboard & Mouse.
- 10. Power the RPi by plugging the mini-USB to a power source (i.e. Charger, Power Bank, USB Port
- 11. Wait...
- 12. Finished!!!

WHAT CAN THE RASPBERRY PI DO?

- Office (Documents, Spreadsheets, Presentation)
- Play videos and music
- Internet Browsing
- Programming (Python, Java, C, C++, etc.)
- Database server
- Physical Computing (GPIO)

GOAL

Control the Raspberry Pi 3 remotely.

Remotely – using other computers.

Get used to the Terminal.

CHANGING THE KEYBOARD SETUP

- Open Terminal
- Command: sudo raspi-config
- Select '5 Internationalisation Options'
- Select 'Generic 105-key (Intl) PC'
- Select 'Other'
- Select 'English (US)'
- Select 'English (US)'
- Select 'The default keyboard layout'
- Select 'No compose key'
- Select 'No' Option for Ctrl+Alt+Backspace to do something
- Select 'Finish'

CHANGING THE PASSWORD OR RPI

Default

User: pi

Password: raspberry

- Open Terminal
- 2. Command: passwd

CONNECTING TO WIFT (HEADLESS WAY)

- Open Terminal
- Command: sudo iwlist wlan0 scan
 Scans the area for Wireless Network (WiFi)

 Remember desired ESSID
- Command: sudo nano /etc/wpa_supplicant/wpa_supplicant.conf
- 4. Add to the end of the file

```
network={
    ssid="ESSIDName"
    psk="Password"
}
```

5. Command: sudo ifdown wlan0 && sudo ifup wlan0

SHUTDOWN & REBOOT

SHUTDOWN

sudo halt

REBOOT

sudo reboot

GETTING THE IP ADDRESS OF RPI

Command: ifconfig

```
pi@raspberrypi:~ $ ifconfig
         Link encap:Ethernet Hwaddr b8:27:eb:09:ca:66
          inet6 addr: fe80::8e5:9b21:5dbe:e28/64 Scope:Link
         UP BROADCAST MULTICAST MTU:1500 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
         Link encap:Local Loopback
Ιо
          inet addr:127.0.0.1 Mask:255.0.0.0
         inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
         RX packets:526 errors:0 dropped:0 overruns:0 frame:0
         TX packets:526 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1
         RX bytes:43152 (42.1 KiB) TX bytes:43152 (42.1 KiB)
wlan0
         Link encap:Ethernet Hwaddr b8:27:eb:5c:9f:33
         inet addr:192.168.254.30 Bcast:192.168.254.255 Mask:255.255.255.0
          inet6 addr: fe80::2c6b:8ce0:baf9:aa8b/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:22792 errors:0 dropped:3143 overruns:0 frame:0
         TX packets:13027 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:22963435 (21.8 MiB) TX bytes:1828425 (1.7 MiB)
pi@raspberrypi:~ $
```

REMOTE CONNECTION (SSH)

- Git-Bash
 - 1. Extract Portable Git
 - 2. Open PortableGit folder
 - 3. Run git-bash.exe
- Enable SSH on Raspberry Pi Configuration
- SSH (Secure Shell)
 - Command: ssh pi@[ip address of RPi]

ssh pi@192.168.43.12

REMOTE CONNECTION (SFTP)

- SFTP (SSH File Transfer Protocol)
 - Extension of the SSH to handle file transfers
- Programs: FileZilla, WinSCP
- FileZilla
 - Extract FileZilla Zip (Portable Application)
 - 2. Run filezilla.exe

REMOTE CONNECTION (SFTP) - FILEZILLA

- 1. File \rightarrow Site Manager
- 2. New Site
- 3. General Tab
 - Host: IP Address of Raspberry Pi
 - Protocol: SFTP SSH File Transfer Protocol
 - Logon Type: Ask for password
 - User: pi
- 4. Connect

Will ask for the password of your RPi

REMOTE CONNECTION (SFTP) - FILEZILLA

REMOTE CONNECTION (SFTP) - EXERCISE

Copy the following files to the Desktop folder of your Raspberry Pi

- example 1080.mp4
 - example2k.mp4

PLAYING VIDEO VIA SSH

SSH to your Raspberry Pi

- Command
 - 1. cd
 - 2. cd Desktop
 - 3. omxplayer example1080.mp4

LINUX COMMANDS

- ls list directory items
- cd change directory
 - cd
 - cd ..
 - cd /[Name of Directory]
 - cd /
- ifconfig gets the IP Config
- sudo SuperUser Do
- wget downloads a file

- goes to Home Directory
- goes back to the parent directory
- goes to the desired directory
- goes to the root directory

LINUX COMMANDS

- touch creates a file
- cp copy files/directory
- rm remove/delete files/directory
- mkdir make directory
- rmdir remove directory
- nano opens the nano text-editor

NEVER RUN THIS COMMAND

rm -rf /

GET HELP

[command] --help man [command] Help for Command Command Manual

LINUX COMMAND EXERCISE

- 1. Change directory to Desktop
- Create a directory named 'Exercise1'
- 3. Change directory to 'Exercise 1'
- 4. Create a file 'exercise l.txt'
- 5. Edit the contents of the file. Save and Exit.
- 6. Copy 'exercise1.txt' on the same folder with the name 'exercise2.txt'

UPDATING RASPBIAN (LINUX)

sudo apt-get update

sudo apt-get upgrade

sudo apt-get dist-upgrade

PYTHON (PROGRAMMING)

- High Level Programming Language
- Emphasis on Code Readability
- Fewer lines of code, faster development

PYTHON PROGRAMMING

Command: python

```
pi@raspberrypi:~ $ python
Python 2.7.9 (default, Sep 17 2016, 20:26:04)
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> |
```

>>> print "Hello World!"

Exit command: quit()

INTERPRET A SCRIPT

hello world.py

- Create a new file "hello world.py"
- 2. Edit the file using nano, enter **print "Hello World!"**
- 3. Save and exit
- 4. Run the script by typing python "hello world.py"

PYTHON RESERVED WORDS

and	del	from	not	while
as	elif	global	or	with
assert	else	if	pass	yield
break	except	import	print	
class	exec	in	raise	
continue	finally	is	return	
def	for	lambda	try	

CODING STRUCTURE

Indentation – focus on readability

```
w=5
for i in range w:
    print(w)
    print("Hello World!")

if w <= 5:
    print(w-1)</pre>
```


PYTHON VARIABLE TYPES

- Numbers (integer, float)
 - iNumber = 3
 - fNumber = 3.0
- Strings
 - sName = "Mark John Luke Matthew"
 - len(sName)
- List
 - itemList = ["Kangkong", "Kalabasa", "Talong", "Sitaw", 1000]
 - itemList[0]
 - len(itemList)
- Tuple
 - itemTuple = ("Kangkong", "Kalabasa", "Talong", "Sitaw", 2000)
 - itemTuple[0]
 - len(itemTuple)
- Dictionary
 - itemDict = {'Kangkong':9,'Kalabasa':6,'Talong':'Seven'}
 - itemDict['Kangkong']
 - len(itemDict)

LISTS

	Returns	Description
list[i] list[-i]	object on i	
list[1:2] list[3:]	objects on the specified range	
del list[i] del list[i:j]		removes the object in I
len(list)	number of objects in list	
list.append(obj)		adds the object on the end of the list
list.pop()	removed item	removes the last item
list.pop(i)	removed item	removes the item on i

DICTIONARY

	Description
dic = {}	Creates an empty Dictionary
dic = {'item1': 2, 'item2': 'hello'}	Creates a Dictonary with entries
dic['keyword'] = obj	Creates and entry to Dictionary Updates entry in Dictionary
obj = dic['keyword']	Assigns obj with the object with keyword in Dictionary

PYTHON CONTROL STATEMENTS (IF)

```
if expression1:
   statement(s)
elif expression2:
   statement(s)
elif expression3:
   statement(s)
else:
   statement(s)
```


PYTHON CONTROL STATEMENTS (IF)

```
var1 = 100
var2 = 0
if var1 == 200:
   print("I'm at 1")
   print(var1)
elif var1 == 150:
   print("I'm at 2")
   print(var1)
elif var1 == 100 and var2 == 1:
   print("I'm at 3")
   print(var1)
else:
   print("I'm at 4")
   print(var1)
```


LOOPING (WHILE LOOP)

```
while expression:
   statement(s)
i = 0
while i < 10:
    i = i + 1
    print(i)
```


LOOPING (FOR LOOP)

```
for i in range(10):
    print('Number: ', i)
for i in range(5, 10):
    print('Num: ', i)
for letter in 'Raspberry Pi':
   print('Current Letter :', letter)
words = ['Mosaic', 'Ecological', 'Cosmonaut']
for word in words:
  print('Current word :', word)
```


FUNCTIONS (STRUCTURE)

```
def functionname( parameters ):
    statement(s)
    return [expression]
```


FUNCTIONS (EXAMPLE)

```
def add(a, b):
    total = a+b
    return total
def multiply(a, b):
    product = a*b
    return product
b = 3
print(add(a,b))
print(multiply(a,b))
```


FUNCTIONS (MULTIPLE RETURN)

```
def addmultiply(a, b):
    total = a+b
    product = a*b
    return total, product

a = 2
b = 3
total, product = addmultiply(a, b)

print("total: ", total)
print("product: ", product)
```


GPIO (GENERAL PURPOSE INPUT/OUTPUT)

Din 8	***		NAME	Pin‡
Pin# 01	NAME 3.3v DC Power		DC Power 5v	02
03	GPI002 (SDA1 , I ² C)		DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)		Ground	06
07	GPIO04 (GPIO_GCLK)		(TXD0) GPIO14	08
09	Ground		(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)		Ground	20
21	GPIO09 (SPI_MISO)		(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)		(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

Input

Output

Alternate Functions

GPIO WARNING

- Do not short the GPIO pins to ground or 3.3V/5V.
- Logic high is 3.3V. Do not connect it with a 5V logic high system.
- Raspberry Pi does not have a protective circuit in its GPIO.

OUTPUT EXERCISE — LED BLINKER

OUTPUT EXERCISE — LED BLINKER

```
import RPi.GPIO as GPIO
    import time
 3
  GPIO.setmode(GPIO.BOARD)
    GPIO.setup(8, GPIO.OUT)
 6
    try:
        while True:
 8
            GPIO.output(8, True)
 9
            time.sleep(0.5)
10
            GPIO.output(8, False)
11
            time.sleep(0.5)
12
13
14
    except KeyboardInterrupt:
        GPIO.cleanup()
15
```


INPUT EXERCISE - BUTTONS

INPUT EXERCISE 1 - BUTTONS

```
import RPi.GPIO as GPIO
    GPIO.setmode(GPIO.BCM)
 4
    GPIO.setup(23, GPIO.IN, pull up down = GPIO.PUD DOWN)
    GPIO.setup(24, GPIO.IN, pull up down = GPIO.PUD UP)
 6
 7
 8
    try:
 9
        while True:
10
            if(GPIO.input(23) ==1):
11
                print("Button 1 pressed")
12
13
            if(GPIO.input(24) == 0):
14
                print("Button 2 pressed")
15
16
17
    except KeyboardInterrupt:
        GPIO.cleanup()
18
```


INPUT EXERCISE 2 - BUTTONS

```
1 import RPi.GPIO as GPIO
    GPIO.setmode(GPIO.BCM)
 4
    GPIO.setup(23, GPIO.IN, pull up down = GPIO.PUD DOWN)
    GPIO.setup(24, GPIO.IN, pull up down = GPIO.PUD UP)
 8
    try:
        while True:
10
11
            GPIO.wait for edge(23, GPIO.RISING)
12
            print("Button 1 Pressed")
13
14
            GPIO.wait for edge(23, GPIO.FALLING)
15
            print("Button 1 Released")
16
17
            GPIO.wait for edge(24, GPIO.FALLING)
            print("Button 2 Pressed")
18
19
20
            GPIO.wait for edge(24, GPIO.RISING)
            print("Button 2 Released")
21
22
23
    except KeyboardInterrupt:
        GPIO.cleanup()
24
```


NEXT WEEK

- Interfacing via Serial UART
- Interfacing via Internet of Things (IoT)

