Particle dynamics

- Particle overview
- Particle system
- Forces
- Constraints
- Second order motion analysis

Particle system

- Particles are objects that have mass, position, and velocity, but without spatial extent
- Particles are the easiest objects to simulate but they can be made to exhibit a wide range of objects

Particle animation

- Each particle has a position, mass, and velocity
 - maybe color, age, temperature
- Seeded randomly at start
 - maybe some created each frame
- Move each frame according to physics
- Eventually die when some condition met

Sparks from a campfire

- Add 2-3 particles at each frame
 - initialize position and temperature randomly
- Move in specified turbulent smoke flow and decrease temperature as evolving
- Render as a glowing dot
- Kill when too cold to glow visibly

Rendering

- Simplest rendering: color dots
- Animated sprites
- Deformable blobs
- Transparent spheres
- Shadows

A Newtonian particle

- First order motion is sufficient, if
 - a particle state only contains position
 - no inertia
 - particles are extremely light
- Most likely particles have inertia and are affected by gravity and other forces
- This puts us in the realm of second order motion

Second-order ODE

What is the differential equation that describes the behavior of a mass point?

$$\mathbf{f} = m\mathbf{a}$$

What does f depend on?

$$\ddot{\mathbf{x}}(t) = \frac{\mathbf{f}(\mathbf{x}(t), \dot{\mathbf{x}}(t))}{m}$$

Second-order ODE

$$\ddot{\mathbf{x}}(t) = \frac{\mathbf{f}(\mathbf{x}(t), \dot{\mathbf{x}}(t))}{m} = f(\mathbf{x}, \dot{\mathbf{x}})$$

This is not a first oder ODE because it has second derivatives

Add a new variable, $\mathbf{v}(t)$, to get a pair of coupled first order equations

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{f}/m \end{cases}$$

Phase space

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

 $\begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ v_1 \\ v_2 \\ v_2 \end{bmatrix}$ Concatenate position and velocity to form a 6-vector: position in phase space

$$\left[\begin{array}{c} \dot{\mathbf{x}} \\ \dot{\mathbf{v}} \end{array}\right] = \left[\begin{array}{c} \mathbf{v} \\ \frac{\mathbf{f}}{m} \end{array}\right]$$

 $\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{v}} \end{bmatrix} = \begin{bmatrix} \mathbf{v} \\ \frac{\mathbf{f}}{m} \end{bmatrix}$ First order differential equation: velocity in the phase space

- Particle overview
- Particle system
- Forces
- Constraints
- Second order motion analysis

Particle structure

Particle

Solver interface

solver interface solver system **GetDim** particle X X Get/Set State m**Deriv Eval**

Particle system structure

Particle system structure

solver solver interface system 6n **GetDim** particles Get/Set State time n \mathbf{f}_2 \mathbf{f}_1 **Deriv Eval** m_1 m_2 m_n

Deriv Eval

Clear forces: loop over particles, zero force accumulator

Calculate forces: sum all forces into accumulator

Gather: loop over particles, copy **v** and **f**/m into destination array

- Particle overview
- Particle system
- Forces
- Constraints
- Second order motion analysis

Forces

- Constant
 - gravity
- Position/time dependent
 - force fields, springs
- Velocity dependent
 - drag

Particle systems with forces

Force structure

- Unlike particles, forces are heterogeneous (type-dependent)
- Each force object "knows"
 - which particles it influences
 - how much contribution it adds to the force accumulator

Particle systems with forces

Gravity

Unary force: $\mathbf{f} = m\mathbf{G}$

Exerting a constant force on each particle

Viscous drag

At very low speeds for small particles, air resistance is approximately:

Attraction

Act on any or all pairs of particles, depending on their positions

$$\mathbf{f}_p = -k \frac{m_p m_q}{|\mathbf{l}|^2} \frac{\mathbf{l}}{|\mathbf{l}|}$$

$$\mathbf{f}_q = -\mathbf{f}_p$$

$$\mathbf{l} = \mathbf{x}_p - \mathbf{x}_q$$

Attraction

Damped spring

$$\mathbf{f}_p = -\left[k_s(|\mathbf{l}| - r) + k_d \frac{\mathbf{i} \cdot \mathbf{l}}{|\mathbf{l}|}\right] \frac{1}{|\mathbf{l}|}$$

$$\mathbf{f}_q = -\mathbf{f}_p$$

$$\mathbf{l} = \mathbf{x}_p - \mathbf{x}_q$$

Damped spring

$$\mathbf{f}_{p} = -\left[k_{s}(|\mathbf{l}| - r) + k_{d} \frac{\mathbf{i} \cdot \mathbf{l}}{|\mathbf{l}|}\right] \frac{1}{|\mathbf{l}|}$$

$$\mathbf{F}$$

$$\mathbf{p}$$

$$\mathbf{r}$$

$$\mathbf{r}$$

$$\mathbf{sys} \quad \mathbf{apply_fun} \quad \mathbf{k}_{d}$$

$$\mathbf{particle system}$$

Deriv Eval

1. Clear force accumulators

2. Invoke apply_force functions

3. Return derivatives to solver

$$\left[egin{array}{c} \dot{\mathbf{x}} \ \dot{\mathbf{v}} \end{array}
ight] = \left[egin{array}{c} \mathbf{v} \ rac{\mathbf{f}}{m} \end{array}
ight]$$

ODE solver

Euler's method: $\mathbf{x}(t_0 + h) = \mathbf{x}(t_0) + hf(\mathbf{x}, t)$

$$\mathbf{x}_{t+1} = \mathbf{x}_t + h\dot{\mathbf{x}}_t$$

$$\mathbf{v}_{t+1} = \mathbf{v}_t + h\dot{\mathbf{v}}_t$$

Euler step

system

particles

5. Advance time

time

solver interface

GetDim

4. Get/Set State

Deriv Eval

solver

3. $\mathbf{x}_{t+1} = \mathbf{x}_t + h\dot{\mathbf{x}}_t$ $\mathbf{v}_{t+1} = \mathbf{v}_t + h\dot{\mathbf{v}}_t$

 $egin{array}{c|cccc} \mathbf{x}_1 & \mathbf{x}_2 & & & & \\ \mathbf{v}_1 & \mathbf{v}_2 & & & & & \\ \end{array}$

 $\begin{array}{c|cccc} \mathbf{V}_1 & \mathbf{V}_2 & & \mathbf{V}_n \\ \mathbf{f}_1 & \mathbf{f}_2 & & & \mathbf{f}_n \\ \hline m_1 & m_2 & & & \end{array}$

- Particle overview
- Particle system
- Forces
- Constraints
- Second order motion analysis

Particle Interaction

- We will revisit collision when we talk about rigid body simulation
- For now, just simple point-plane collisions

Collision detection

Normal and tangential components

$$\mathbf{v}_N = (\mathbf{N} \cdot \mathbf{v}) \mathbf{N}$$

$$\mathbf{v}_T = \mathbf{v} - \mathbf{v}_N$$

Collision detection

Particle is on the legal side if

$$(\mathbf{x} - \mathbf{p}) \cdot \mathbf{N} \ge 0$$

Particle is within ϵ of the wall if

$$(\mathbf{x} - \mathbf{p}) \cdot \mathbf{N} < \epsilon$$

Particle is heading in if

$$\mathbf{v} \cdot \mathbf{N} < 0$$

Collision response

Before collision

After collision

$$\mathbf{v}' = \mathbf{v}_T - k_r \mathbf{v}_N$$

coefficient of restitution:

$$0 \le k_r < 1$$

Contact

Conditions for resting contact:

- 1. particle is on the collision surface
- 2. zero normal velocity

If a particle is pushed into the contact plane a contact force \mathbf{f}_c is exerted to cancel the normal component of \mathbf{f}

- Particle overview
- Particle system
- Forces
- Constraints
- Second order motion analysis

Second-order implicit Euler

$$\begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} x_0 \\ v_0 \end{bmatrix} + h \begin{bmatrix} v \\ f(x,v) \end{bmatrix} \qquad \ddot{x} = f(x(t), \dot{x}(t))$$

$$\begin{bmatrix} v \\ f(x,v) \end{bmatrix} = \begin{bmatrix} v_0 \\ f(x_0,v_0) \end{bmatrix} + \frac{\partial \begin{bmatrix} v_0 \\ f(x_0,v_0) \end{bmatrix}}{\partial \begin{bmatrix} x \\ v \end{bmatrix}} \begin{bmatrix} \Delta x \\ \Delta v \end{bmatrix}$$

$$\begin{bmatrix} x \\ v \end{bmatrix} = \begin{bmatrix} x_0 \\ v_0 \end{bmatrix} + h \begin{bmatrix} v_0 + \Delta v \\ f(x_0, v_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial v} \Delta v \end{bmatrix}$$

$$\Delta x = h(v_0 + \Delta v)$$

$$\left[\mathbf{I} - h\frac{\partial f}{\partial v} - h^2 \frac{\partial f}{\partial x}\right] \Delta v = h\left[f(x_0, \dot{x}_0) + h\frac{\partial f}{\partial x}v_0\right]$$

Linear analysis

Linearly approximate acceleration

$$\mathbf{a}(\mathbf{x}, \mathbf{v}) \approx \mathbf{a}_0 - \mathbf{K}\mathbf{x} - \mathbf{D}\mathbf{v}$$

- Split up analysis into different cases
 - constant acceleration
 - linear acceleration

Constant acceleration

Solution is

$$\mathbf{v}(t) = \mathbf{v}_0 + \mathbf{a}_0 t$$
$$\mathbf{x}(t) = \mathbf{x}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a}_0 t^2$$

• **v**(*t*) only needs 1st order accuracy, but **x**(*t*) demands 2nd order accuracy

Linear acceleration

Dependence on x and v dominates

$$\mathbf{a}(\mathbf{x}, \mathbf{v}) = -\mathbf{K}\mathbf{x} - \mathbf{D}\mathbf{v}$$

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{K} & -\mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix} = \mathbf{A} \begin{bmatrix} \mathbf{x} \\ \mathbf{v} \end{bmatrix}$$

• Need to compute the eigenvalues of A

Linear acceleration

Assume α is an eigenvalue of A, $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ is the corresponding eigenvector

$$\begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{K} & -\mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix} = \alpha \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}$$

The eigenvector of **A** has the form $\begin{bmatrix} \mathbf{u} \\ \alpha \mathbf{u} \end{bmatrix}$

Often, D is linear combination of K and I (Rayleigh damping)

That means K and D have the same eigenvectors

Linear acceleration

Assume **u** is an eigenvector for both **K** and **D**

If $\begin{vmatrix} \mathbf{u} \\ \alpha \mathbf{u} \end{vmatrix}$ is an eigenvector of A, following must be true

$$\begin{bmatrix} \mathbf{0} & \mathbf{I} \\ -\mathbf{K} & -\mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \alpha \mathbf{u} \end{bmatrix} = \alpha \begin{bmatrix} \mathbf{u} \\ \alpha \mathbf{u} \end{bmatrix}$$

$$-\lambda_k \mathbf{u} - \alpha \lambda_d \mathbf{u} = \alpha^2 \mathbf{u}$$

$$\alpha = -\frac{1}{2}\lambda_d \pm \sqrt{(\frac{1}{2}\lambda_d)^2 - \lambda_k}$$

Eigenvalue approximation

If D dominates

$$\alpha \approx -\lambda_d, 0$$

- exponential decay
- If K dominates

$$\alpha \approx \pm \sqrt{-1}\sqrt{\lambda_k}$$

oscillation

Analysis

- Constant acceleration (e.g. gravity)
 - demands 2nd order accuracy for position
- Position dependence (e.g. spring force)
 - demands stability but low or zero damping
 - looks at imaginary axis
- Velocity dependence (e.g. damping)
 - demands stability, exponential decay
 - Looks at negative real axis

Explicit methods

- First-order explicit Euler method
 - constant acceleration: bad (1st order)
 - position dependence: very bad (unstable)
 - velocity dependence: ok (conditionally stable)
- RK3 and RK4
 - constant acceleration: great (high order)
 - position dependence: ok (conditionally stable)
 - velocity dependence: ok (conditionally stable)

Implicit methods

- Implicit Euler method
 - constant acceleration: bad (1st order)
 - position dependence: ok (stable but damped)
 - velocity dependence: great (monotone)
- Trapezoidal rule
 - constant acceleration: great (2nd order)
 - position dependence: great (stable and no damp)
 - velocity dependence: good (stable, not monotone)

What's next?

- How do we enforce constraints on the particles?
- Read (optional): Particle animation and rendering using data parallel computation, SIG90, Karl Sims