Оглавление

1	Алгебраическое введение	2
	1.1 Кольцо целых алгебраических	2
	1.2 Норма	2
2	Специальный метод решета числового поля	3
\mathbf{A}	Приложение	5

Глава 1

Алгебраическое введение

1.1 Кольцо целых алгебраических

Чтобы понять что тут вообще происходит, нужно немного алгебры. Основное поле - $\mathbb Q$. Корни полиномов с коэффициентами из $\mathbb Q$ называют алгебраическими над $\mathbb Q$. Алгебраическое число называется целым алгебраическим, если его минимальный многочлен $g(x) \in \mathbb Z[x]$. Введем множество целых алгебраических поля $\mathbb Q(\alpha)$

$$\mathfrak{O}_{\mathbb{Q}(\alpha)} = \{ x \mid x \in \mathbb{Q}(\alpha) \& x \text{ - целое алгебраическое} \}$$

 $\mathbf{T}(?)$. $\mathfrak{O}_{\mathbb{Q}(lpha)}$ - кольцо. Кроме того $\mathbb{Z}[lpha]\subseteq\mathfrak{O}_{\mathbb{Q}(lpha)}$ - подкольцо.

 $\mathbf{T}(?)$. K - none, $R \subset K$ - nodronьцо c однозначным разложением на множители. Тогда R содержит корни всех неприводимых унитарных многочленов из R[x]

Нас будет интересовать подкольцо $\mathbb{Z}[\alpha]$ с однозначным разложением на множители. Но в каких случаях будет получаться это однозначное разложение? Теорема гарантирует однозначное разложение в $\mathfrak{D}_{\mathbb{Q}(\alpha)}$. Если $\mathbb{Z}[\alpha] = \mathfrak{D}_{\mathbb{Q}(\alpha)}$ то все ок. Но это не всегда так.

Пример. Рассмотрим $\gamma = -\frac{1}{2} + \frac{\sqrt{5}}{2} \notin \mathbb{Z}[\sqrt{5}]$. Но γ корень $x^2 + x - 1 \in \mathbb{Z}[x]$, значит $\gamma \in \mathfrak{O}_{\mathbb{Q}(\sqrt{5})}$

$$\mathbf{T}(?)$$
. $\forall \beta \in \mathfrak{O}_{\mathbb{Q}(\alpha)} \to \beta \cdot f'(\alpha) \in \mathbb{Z}[\alpha]$, где $f'(x)$ - минимальный многочлен α

1.2 Норма

Глава 2

Специальный метод решета числового поля

Пусть нужно факторизовать число

$$n = r^t - s$$

Нам нужно построить поле по некоторому полиному f(x). Выберем d - степень полинома.

$$r^t - s \equiv 0 \bmod n$$

$$r^t \equiv s \bmod n$$

Положим $k = \lceil \frac{t}{d} \rceil$ и домножим обе части на r^{kd}

$$r^{t+kd} \equiv sr^{kd} \bmod n$$

$$r^{kd} \equiv sr^{kd-t} \bmod n$$

Положим $m=r^k$ и $c=sr^{kd-t}$

$$m^d \equiv c \bmod n$$

В качестве полинома возьмем

$$f(x) = x^d - c$$

Построим поле

$$\mathbb{Q}^{[x]}/_{(f)}\cong\mathbb{Q}(lpha)$$
, где $lpha$ - корень $f(x)$

Что же делать дальше?

Литература

[1] Text

Приложение А Приложение