Aplicaciones del MOSFET: Circuitos básicos CMOS

ELEMENTOS ACTIVOS EL-2207

Objetivos

- El transistor de efecto de campo MOSFET y la tecnología CMOS (8.5 semanas)
 - Construcción, símbolo, clasificación.
 - Funcionamiento.
 - Curvas características y polarización.
 - Modelo del MOSFET para aplicaciones analógicas.
 - Modelo del MOSFET para aplicaciones digitales.
 - Capacitancias internas y modelos de alta frecuencia.
 - Aplicaciones: El FET como interruptor: interruptor serie, paralelo, inversor lógico y compuertas lógicas básicas
 - Escalamiento de MOSFETs
- Objetivo
- Conocer el comportamiento y modelado del transistor de efecto de campo MOSFET, así como sus principales aplicaciones.

Ecuaciones I-V del MOSFET

Región	NMOS	PMOS
Corte (Sub-umbral)	$V_{GS} < V_{TH} \qquad S = m \cdot V_T \cdot \ln 10$ $I_D = I_{Do} e^{\frac{V_{GS} - V_{TH}}{m \cdot V_T}}$ $I_D = I_{Do} e^{\frac{(V_{GS} - V_{TH}) \ln 10}{S}}$	$V_{SG} < V_{TH} \qquad S = m \cdot V_T \cdot \ln 10$ $I_D = I_{Do} e^{\frac{V_{SG} - V_{TH} }{m \cdot V_T}}$ $I_D = I_{Do} e^{\frac{(V_{SG} - V_{TH}) \ln 10}{S}}$
Región Lineal (triodo)	7.7	$V_{SG} \ge V_{TH} , \ V_{SD} < V_{SG} - V_{TH} $ $I_D = K \left(V_{SG} - V_{TH} - \frac{V_{SD}}{2} \right) V_{SD}$
Saturación (sin modulación de canal) $\lambda = 0$	17	$V_{SG} \ge V_{TH} , \ V_{SD} \ge V_{SG} - V_{TH} $ $I_D = \frac{K}{2} (V_{SG} - V_{TH})^2$
Saturación (con modulación de canal) $\lambda = {}^1\!/_{V_A}$		$V_{SG} \ge V_{TH} , \ V_{SD} \ge V_{SG} - V_{TH} $ $I_D = \frac{K}{2} (V_{SG} - V_{TH})^2 (1 + \lambda V_{SD})$

MOSFET como Interruptor Serie: NMOS

En el primer caso, el transistor se ve afectado por el efecto de substrato

 $I_D = \frac{K}{2}(V_{DD} - V_{TH0})^2, V_{TH0} \Rightarrow no effecto de substrato$

PMOS como Interruptor Serie

$$I_D = \frac{K}{2}(v_o - V_{TH})^2$$
, V_{TH} incluyendo efecto de substrato

• En el segundo caso, el transistor se ve afectado por el efecto de substrato

$$I_D = \frac{K}{2}(V_{DD} - V_{THO})^2$$
, $V_{THO} \Rightarrow no \, efecto \, de \, sub \, strato$

Inversor CMOS

CMOS: Complementary Metal Oxide Semiconductor (1963) Circuitos con transistores PMOS y NMOS

 $V_{in} > V_{THN}$, $V_{in} = V_{DD} \Rightarrow$ NMOS activado, PMOS inactivo $\Rightarrow V_{out} = 0V$: NMOS en región lineal, PMOS en región de corte

Curva de Transferencia de Tensión

Punto de disparo V_{SP} de un inversor = cuando Vout = Vin

$$\begin{split} V_{SG,P} &= V_{DD} - V_{in} = V_{SD,P} \\ V_{GS,N} &= V_{in} = V_{DS,N} \end{split}$$

1.5

$$V_{in} = \frac{V_{THN} + \sqrt{\frac{K_P}{K_N}}(V_{DD} - |V_{THP}|)}{1 + \sqrt{\frac{K_P}{K_N}}}$$

Si
$$V_{in} = \frac{V_{DD}}{2} = V_{out}$$
 = inversor simétrico

Para lograr un inversor simétrico, deben compensarse las diferencias de movilidades de huecos y electrones ajustando las dimensiones de los transistores

0.5

Compuertas Lógicas: Compuerta NAND

Figure 12.32 Two-input CMOS NAND gate.

Entrada lógica	Voltaje de entrada	Salida lógica	Voltaje de salida
A=0, B=0	$V_{A}=0, V_{B}=0$	1	V _{DD}
A=0, B=1	$V_A=0, V_B=V_{DD}$	1	V _{DD}
A=1, B=0	$V_A = V_{DD}, V_B = 0$	1	V _{DD}
A=1, B=1	$V_A = V_{DD}, V_B = V_{DD}$	0	0

Compuertas Lógicas: Compuerta NOR

Figure 12.33 Two-input CMOS NOR gate.

_	
(a) A	and B both low

(b) A high and B low

 $+V_{DD}$

 M_1

 M_2

 M_4

Entrada lógica	Voltaje de entrada	Salida lógica	Voltaje de salida
A=0, B=0	$V_{A}=0, V_{B}=0$	1	V _{DD}
A=0, B=1	$V_A=0, V_B=V_{DD}$	0	0
A=1, B=0	$V_A = V_{DD}, V_B = 0$	0	0
A=1, B=1	$V_A = V_{DD}, V_B = V_{DD}$	0	0

Arreglos de Transistores

Todo transistor tiene una resistencia asociada, reflejada en las regiones lineal y de saturación por el parámetro de transconductancia. Por lo tanto:

Transistores en serie

= como conductancias en serie

$$K_{eq} = \left(\sum_{i=1}^{n} \frac{1}{K_i}\right)^{-1}$$

Transistores en paralelo

= como conductancias en paralelo

$$K_{eq} = \sum_{i=1}^{n} K_i$$

¿Cuál es la función lógica de este circuito?

Consumo de Potencia

En general, en los circuitos integrados,

Disipación por carga capacitiva >> Potencia corto circuito >> Potencia estática

Potencia Estática

Corriente de subumbral (V_{GS} < 0)

Corriente de fuga de compuerta

Corriente de reversa de juntas PN

Potencia Dinámica

Potencia dinámica debido a corriente de corto circuito

Para V_{IN}=V_{OUT} ambos transistores operan en saturación

 \Rightarrow ambos transistores conducen, permitiendo un flujo de corriente de V_{DD} a tierra

⇒Corriente de corto circuito

Potencia disipada:

$$P_{SC} = I_{SC} \cdot V_{DD} = \frac{2}{3} \cdot K \cdot \frac{t_r}{T} \left(\frac{V_{DD}}{2} - V_{TH} \right)^3$$

 t_r : tiempo de subida (se asume $t_r = t_f$)

T: período de V_{IN}

Potencia Dinámica

Potencia dinámica debido a cargas capacitivas

Capacitancia de carga debido a:

- -C_{OX} de compuertas siguientes
- -C_{OX} propia
- -C_W, capacitancia parásita de interconexión

Representadas por C_I

Potencia disipada:

$$P_L = A \cdot f \cdot C_L \cdot V_{DD}^2$$

f: frecuencia de conmutación, C_L: capacitancia de carga, A: factor de actividad

A: factor de actividad = probabilidad de conmutación

Clasificación de Memorias

Basadas en transistores MOSFET para lograr alta densidad

Organización de Memorias

Organización de una Memoria (2)

Celda de Memoria SRAM

- Las memorias RAM son volátiles
 pierden los datos al remover la alimentación
- SRAM: Static Random Access Memory
- Cada celda almacena un bit, se requieren 6 transistores por bit
- Celda SRAM: cerrojo
 - Dos inversores mutuamente acoplados
 - Dos transistores de acceso al cerrojo
- Transistores de línea de palabra conectan el cerrojo con los circuitos de lectura y escritura

¿Cómo se implementa una celda SRAM?

Cell Layout

Lectura de una celda SRAM

Procedimiento de lectura

- Precargar las líneas de bit a V_{DD}
- Igualar niveles de tensión de ambas líneas
- Desactivar precarga y ecualización
- Activar línea de palabra
- Esperar hasta que haya una diferencia de 100mV entre ambas líneas de bit
- Desactivar línea de palabra
- Activar amplificador de sensado
- Amplificar
- Transmitir el dato a la salida

Celdas de Memoria DRAM

DRAM: Dynamic Random Access Memory

Dato se guarda en un capacitor de almacenamiento: capacitor cargado = ,1', descargado =,0'

El transistor de línea de palabra connecta el capacitor de almacenamiento con el circuito de lectura/escritura

Corriente de fuga descarga capacitor ⇒ dato debe reescribirse periódicamente= refrescamiento de datos

Memorias no Volátiles

- No volátil = Mantienen los datos aún sin tensión de alimentación
- Se clasifican por sus métodos de programación y borrado
 - Programables o no por el usuario
 - Borrables eléctrica u ópticamente
- Principio de almacenamiento de datos:
 - Durante el proceso de fabricación
 - Por conexiones programables (ej: fusibles)
 - Por cambio de voltaje de umbral
- EEPROM y EPROM
 - Métodos eléctricos de escritura y borrado son destructivos
 - Número de ciclos de escritura-borrado es restringido (mínimo 100 mil)
 - Tiempo de retención de datos es restringido (mínimo 10 años)
 - FLASH es un tipo de EEPROM

Clasificación de Memorias No Volátiles

Tipo	Costo	Programabilidad	Tiempo de programación	Tiempo de borrado
ROM	bajo	Por máscara	Semanas	No borrable
PROM	bajo	Una vez, eléctricamente	Segundos	No borrable
EPROM	Medio	Hasta 100 mil veces, eléctricamente	Segundos	20 minutos (luz UV)
Flash	Alto	Hasta 100 mil veces, eléctricamente	100 μs	Por bloques, eléctricamente
EEPROM	Alto	Hasta 100 mil veces, eléctricamente	100 μs	10 ms por byte, eléctricamente

Memoria no Volátil de Compuerta Flotante

- Poly 2 opera como compuerta del transistor
- Poly 1 opera como compuerta flotante para almacenamiento de portadores de carga
- Compuerta flotante: no hay contacto eléctrico directo

EEPROM

- Almacenamiento de información se representa con cambios en el voltaje de umbral
- El cambio en el voltaje de umbral se logra inyectando portadores de carga en la compuerta flotante y extrayéndolos de ella
- Degradación de óxido limita número de ciclos de escrituraborrado y el tiempo de retención de datos
- Dos métodos principales de inyección y extracción:
 - Inyección de portadores de carga calientes
 - Fowler-Nordheim Tunneling

Jerarquía de Memoria

