

Course Name: **Exam Duration:**  MA-127, Calculus II A 120minutes

Dept.: Exam Paper Setters:

Mathematics V. Didenko & Xuli Han

| Question No. | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|--------------|----|----|----|----|----|----|----|----|----|----|
| Score        | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |

This exam paper contains 10 problems and the score is 100 Marks in total.

1. Determine whether the following limits exist:

(a) 
$$\lim_{(x,y)\to(1,2)} \frac{\ln(1-x+xy)}{x-1}.$$
(b) 
$$\lim_{(x,y)\to(0,0)} (x+y)^{x+y+xy}.$$

(b) 
$$\lim_{(x,y)\to(0,0)} (x+y)^{x+y+xy}$$

2. Let f be the function defined by

$$f(x,y) = \begin{cases} rac{2x+1}{x^2+y^2} \sin(x^2+y^2) & \text{if } (x,y) \neq (0,0), \\ 1 & \text{if } (x,y) = (0,0). \end{cases}$$

Determine if the function f is continuous at the origin.

3. Let n be the normal unit vector pointing inside the surface  $3x^2 + y^2 + z^2 = 3$ . Compute the directional derivative of the function

$$f(x,y,z) = \frac{\sqrt{x^2 + y^2 + z^2}}{(y+z+1)^2}$$

at the point (1,0,0) in the direction n.

4. Find the equations of the tangent plane and the normal line for the surface

$$xy + z + 2^{xy} = 4$$

at the point (1,1,1).

5. Use the Lagrange multipliers to find the minimal and maximal values of the function

$$f(x,y,z) = x^{\frac{5}{2}} + y^{\frac{5}{2}} + z^{\frac{5}{2}}$$

on the sphere  $x^2 + y^2 + z^2 = 1$ .

6. Compute the integral

$$I=\iint_D x^2y^2\,dxdy,$$

where D is the plane domain bounded by the curves x = 1/2 and  $y^2 = 2x$ .

7. Determine the area of the region bounded by the curves  $r = \sin \theta$  and  $r = \cos \theta$ .

8. Find the volume of the solid bounded by the surfaces  $S_1$  and  $S_2$ ,

$$S_1 := \{(x, y, z) : x^2 + y^2 + 4z^2 = 9, z \ge 0\},$$
  
 $S_2 := \{(x, y, z) : z = \sqrt{x^2 + y^2}\}.$ 

9. Determine the work done by the vector field

$$\mathbf{F} = e^{y+2z}(\mathbf{i} + x\mathbf{j} + 2x\mathbf{k})$$

along the curve of the intersection of the surfaces  $x^2 + 2y^2 + 3z^2 = 3$  and x + y + z = 0 joining the points A(1, -1, 0) and B(-1, 1, 0).

10. Calculate the circulation of the vector field

$$\mathbf{F} = yz^2\mathbf{i} + 2xz^2\mathbf{j} + xyz\mathbf{k}$$

along the curve of intersection of the sphere  $x^2 + y^2 + z^2 = 1$  and the cone  $z = \sqrt{x^2 + y^2}$  traversed in the counterclockwise direction around the z-axis when viewed from above.