ADAMAS UNIVERSITY PURSUE EXCELLENCE	ADAMAS UNIVERSITY END SEMESTER EXAMINATION (Academic Session: 2020 – 21)		
Name of the Program:	B.Tech in	Semester:	2 nd Semester
	ME/EE/ECE/BioM/Biotech/CSE/CE		
Paper Title:	Engineering Mechanics	Paper Code:	MEE11002
Maximum Marks:	50	Time Duration:	3 Hrs
Total No. of Questions:	17	Total No of	5
		Pages:	
(Any other information for the student may be mentioned here)	1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Nam & Code, Date of Exam.		
	2. All parts of a Question should be answered consecutively. Each Answer should star from a fresh page.		
	3. Assumptions made if any, should be stated clearly at the beginning of your ans		

1	Answer All the Questions $(5 \times 1 = 5)$	Vecessiadas	CO1
1	If a rigid body is in equilibrium under the action of three forces,	Knowledge Level	COI
	then	Level	
	a) These forces are equal		
	b) The lines of action of these forces meet in a point		
	c) The lines of action of these forces are parallel		
	d) (b) and (c) above		
	e) None of the above.		~~~
2	The moment of inertia of a square of side a about its diagonal is,		CO2
	a) $a^4/8$		
	b) $a^4/12$		
	c) $a^4/36$		
	d) a ⁴ /16		
3	The force of friction always acts in a direction opposite to that		CO3
	(a) In which the body tends to move		
	(b) In which the body is moving		
	(c) Both (a) and (b)		
	(d) None of the two		
4	The principle of virtual work can be applied for all types of		CO4
	(a) possible displacements		
	(b) impossible displacement		
	(c) none of the two		
5	The time of flight of a projectile on an upward inclined plane		CO5
	depends upon (a) angle of projection (b) angle of inclination of		
	the plane (c) both 'a' and 'b' (d) none of the above		

6 a)	Answer All the Questions (5 x 2 = 10)	CO1
O a)	Two halves of a round homogeneous cylinder are held together by a thread wrapped round the cylinder with two weights each equal to P attached to its ends as shown in fig.	COI
	The complete cylinder weighs W newton. The plane of contact, of both	
	of its halves, is vertical. Determine the minimum value of P, for which both halves of the cylinder will be in equilibrium on a horizontal plane.	
	(OR)	
6 b)	The following forces act at a point: (i) 20 N inclined at 30° towards North of East, (ii) 25 N towards North, (iii) 30 N towards North West, and (iv) 35 N inclined at 40° towards South of West. Find the magnitude and direction of the resultant force	CO1
7 a)	A uniform lamina shown in Fig. 6.14 consists of a rectangle, a circle and a triangle. Determine the centre of gravity of the lamina. All dimensions are in mm	CO2
	(OR)	
7 b)	Find the moment of inertia about the centroidal X-X axes of the angle section shown in Fig. 100 mm 20 mm 20 mm 20 mm	CO2
8 a)	Derive the angle of repose=angle of friction	CO3
	(OR)	-
8 b)	Define the term of Limiting friction, Angle of friction, Angle of repose, Co-efficient of friction.	CO3
9 a)	What is beam? Write down the name of different types of beams.	CO4
	(OR)	
9 b)	What is the concept of virtual work?	CO4
10 a)	Define the terms: Trajectory, Velocity of Projection, Angle of Projection, Time of Flight, Range.	CO5
10 b)	(OR) Derive the equation of time of flight on a horizontal range.	CO5
10 0)	Derive the equation of time of flight on a nonzontal range.	

	Group C	
11 a)	Answer All the Questions (7 x 5 = 35) Two cylinders P and Q rest in a channel as shown in Fig. The cylinder P has diameter of 100 mm and weighs 200 N, whereas the cylinder Q has diameter of 180 mm and weighs 500 N.	CO1
11 b)	(OR) Two smooth spheres of weight W	CO1
	and radius r each are in equilibrium in a horizontal channel of A and B vertical sides as shown in Fig Find the force exerted by each sphere on the other. Calculate these values, if r = 250 mm, b = 900 mm and W = 100 N.	
12 a)	Find the centre of gravity of a channel section 100 mm \times 50 mm \times 15 mm. A \leftarrow 50 mm \rightarrow B \downarrow 15 mm \downarrow	CO2
	(OR)	
12 b)	Derive the Moment of Innertia of Trianguler Section about the base.	CO2
13 a)	Two loads, W1 (equal to 1 kN) and W2 resting on two inclined rough planes OA and OB are connected by a horizontal link PQ as shown in Fig. Find the maximum and minimum values of W2 for which the equilibrium can exist. Take angle of friction for both the planes as 20°	CO3
	(OR)	1

13 b)	A ladder 5 meters long rests on a	CO3
15 0)	horizontal ground and leans against	
	a smooth vertical wall at an angle	
	70° with the horizontal. The weight	
	of the ladder is 900 N and acts 5 m 750 N	
	at its middle. The ladder is at the	
	point of sliding, when a man 1.5 m	
	weighing 750N stands on a rung 1.5	
	metre from the bottom of the ladder.	
	Calculate the coefficient of friction	
	between the ladder and the floor. R_f	
14 a)	3 in. 3 in. 3 in.	CO4
	6 in.	
	2	
	2 in.	
	ti B	
	Find out MoI about the given axes.	
	(OR)	
14 b)	A beam AB of span 5 metres is carrying a point load of 2 kN at a	CO4
	distance 2 metres from A. Determine the beam reactions, by	
	using the principle of the virtual work	
15 a)	A rectangular prism (W)	CO3
	weighing 150 N, is lying on an Horizontal	
	inclined plane whose string 7	
	inclination with the horizontal	
	is shown in Fig. The block is	
	tied up by a horizontal string,	
	which has a tension of 50 N.	
	From fundamentals find (i) the	
	frictional force on the block (ii)	
	the normal reaction of the	
	inclined plane, (iii) the coefficient of friction between the surface	
	of contact.	
	(OR)	
15 b)	A body of weight 300 N is lying on a rough horizontal plane	CO3
	having a coefficient of friction as 0.3. Find the magnitude of the	
	force, which can move the body, while acting at an angle of 25°	
	with the horizontal.	
16 a)	A body consists of a right circular solid cone of height 40 mm and	CO2
	radius 30 mm placed on a solid hemisphere of radius 30 mm of	
	the same material. Find the position of centre of gravity of the	
	body.	
	(OR)	

16 b)	Find out the MoI about the centroid axes. y 80 mm 120 mm x 120 mm	CO2
17 a)	A bullet is fired with a velocity of 100 m/s at an angle of 45° with the horizontal. How high the bullet will rise?	CO5
	(OR)	·
17 b)	A ball is projected upwards with a velocity of 15 m/s at an angle of 25° with the horizontal. What is the horizontal range of the ball?	CO5

Note: The Sample prepared by assuming 5 COs in a course, considering one CO for one Module.

- i) If the COs are higher in numbers that can be managed by equating sub-divisional questions
- ii) If the COs are lower in numbers, the questions can be increased by equating the number of Cos