

Abstract

Prove di citazione [3] perché

Acknowledgments

Thanksss

Contents

A	bstra	ct						iii
\mathbf{A}	cknowledgments							\mathbf{v}
Contents								vii
Li	st of	Figures						ix
Li	st of	Tables						xi
Li	st of	Abbreviations and Acronyms					-	xiii
1	Intr	oduction						1
	1.1	Earth Observation and Remote Sensing						1
		1.1.1 Hyperspectral imaging						1
	1.2	Kuva Space						1
		1.2.1 Company Vision						1
		1.2.2 Infrastructure						1
		1.2.3 Distribution						1
		1.2.4 Applications						1
	1.3	Thesis Purpose						1
	1.4	Organization			•			1
2	Bac	kground						3
	2.1	Space Flight Dynamics Overview						3
		2.1.1 Orbits						4
		2.1.2 Orbital Perturbations						4
		2.1.3 Mean Orbital Elements						4
		2.1.4 Sun Synchronous Orbits						4
	2.2	Repetitive ground tracks						4
	2.3	Orbit Maintenance						4
	2.4	Satellite Constellations						4
		2.4.1 Walker Delta Constellation						4
		2.4.2 Constellation Design						4
		2.4.3 Constellation Maintenance						4
	2.5	Differential Drag Method						4

3	Met	thodology	5
	3.1	Python for Astrodynamics Application	5
		3.1.1 poliastro Library	6
	3.2	General Mission Analysis Tool	
4	Sate	ellite Constellation Management Tools	7
	4.1	Orbit Propagators	7
		4.1.1 poliastro Python Library	7
		4.1.2 Atmospheric Models	
		4.1.3 Mean Orbital Elements Converter	7
		4.1.4 Sun Synchronous Orbits Functions	7
		4.1.5 Satellite Constellation Propagator	7
	4.2	Revisit Time Collector	7
	4.3	Station-Keeping Simulator	7
	4.4	Differential Drag Algorithm	7
5	Cas	e Studies	9
	5.1	Reaktor Hello World	9
	5.2	Hyperfield Next Generation	
	5.3	Planet CubeSat Constellation	
	5.4	Future Kuva Constellation	9
6	Ana	alysis and Results	11
	6.1	Reaktor Hello World Life Data	11
	6.2	Hyperfield Orbit Maintenance Design	
	6.3	Planet Constellation Differential Drag Results	
	6.4	Kuva Constellation Management Results	
7	Cor	nclusion	13
Ri	ihlion	graphy	15
رب	「ハエエのら	LIGDIIY	_ T O

List of Figures

List of Tables

List of Abbreviations and Acronyms

LEO Low Earth Orbit

GMAT General Mission Analysis Tool

SSO Sun-Synchronous Orbit

ACT Actions to Combat Trafficking

ADB Asian Development Bank

ADS Agriculture Development Strategy

. . .

Introduction

- 1.1 Earth Observation and Remote Sensing
- 1.1.1 Hyperspectral imaging
- 1.2 Kuva Space
- 1.2.1 Company Vision
- 1.2.2 Infrastructure
- 1.2.3 Distribution
- 1.2.4 Applications
- 1.3 Thesis Purpose
- 1.4 Organization

Background

This chapter aims to provide a theoretical overview on the fundamentals of Space Flight Dynamics, with a specific focus on Earth Observation applications in Low Earth Orbit (LEO), as well as a literature review on orbit management methods addressed by this thesis work.

2.1 Space Flight Dynamics Overview

Ok [1]

- 2.1.1 Orbits
- 2.1.2 Orbital Perturbations
- 2.1.3 Mean Orbital Elements
- 2.1.4 Sun Synchronous Orbits
- 2.2 Repetitive ground tracks
- 2.3 Orbit Maintenance
- 2.4 Satellite Constellations
- 2.4.1 Walker Delta Constellation
- 2.4.2 Constellation Design
- 2.4.3 Constellation Maintenance
- 2.5 Differential Drag Method

Methodology

Exclusively open source tools have been used to carry out the thesis work. In particular, the orbital scenarios under examination have been simulated in Python environment. The scripts produced by this research take advantage of existing free Python libraries. Nevertheless, several functions have been written to achieve the purposes of the thesis. Results are always compared with the General Mission Analysis Tool (GMAT). The following paragraphs present a detailed description of the tools mentioned before.

3.1 Python for Astrodynamics Application

Due to the computationally intensive nature of astrodynamics tasks, astrodynamicists have relied on compiled programming languages such as Fortran for the development of astrodynamics software. Interpreted languages such as Python on the other hand offer higher flexibility and development speed thereby increasing the productivity of the programmer. While interpreted languages are generally slower than compiled languages recent developments such as JIT (just-in-time) compilers or transpilers have been able to close this speed gap significantly. Another important factor for the usefulness of a programming language is its wider

ecosystem which consists of the available open-source packages and development tools such as integrated development environments or debuggers. [2]

3.1.1 poliastro Library

3.2 General Mission Analysis Tool

Satellite Constellation Management Tools

- 4.1 Orbit Propagators
- 4.1.1 poliastro Python Library
- 4.1.2 Atmospheric Models
- 4.1.3 Mean Orbital Elements Converter
- 4.1.4 Sun Synchronous Orbits Functions
- 4.1.5 Satellite Constellation Propagator
- 4.2 Revisit Time Collector
- 4.3 Station-Keeping Simulator
- 4.4 Differential Drag Algorithm

Case Studies

- 5.1 Reaktor Hello World
- 5.2 Hyperfield Next Generation
- 5.3 Planet CubeSat Constellation
- 5.4 Future Kuva Constellation

Analysis and Results

- 6.1 Reaktor Hello World Life Data
- 6.2 Hyperfield Orbit Maintenance Design
- 6.3 Planet Constellation Differential Drag Results
- 6.4 Kuva Constellation Management Results

Conclusion

Donec et nisl id sapien blandit mattis. Aenean dictum odio sit amet risus. Morbi purus. Nulla a est sit amet purus venenatis iaculis. Vivamus viverra purus vel magna. Donec in justo sed odio malesuada dapibus. Nunc ultrices aliquam nunc. Vivamus facilisis pellentesque velit. Nulla nunc velit, vulputate dapibus, vulputate id, mattis ac, justo. Nam mattis elit dapibus purus. Quisque enim risus, congue non, elementum ut, mattis quis, sem. Quisque elit.

Bibliography

- [1] Anderson, C. The Space Economy: Capitalize on the Greatest Business Opportunity of Our Lifetime. Wiley, 2023.
- [2] EICHHORN, H., CANO, J. L., MCLEAN, F., AND ANDERL, R. A comparative study of programming languages for next-generation astrodynamics systems. CEAS Space Journal 10 (2018), 115–123.
- [3] Foster, C., Hallam, H., and Mason, J. Orbit determination and differential-drag control of planet labs cubes too constellations. arXiv preprint arXiv:1509.03270 (2015).