

Chunghwa Picture Tubes, Ltd. Technical Specification

 $\mathsf{To} \in \mathsf{YUPPIN} \; \mathsf{CO.}, \; \mathsf{LTD.}$

Date: 2004. 08. 17

CPT TFT-LCD

CLAA190EA 03

ACCEPTED BY:		

APPROVED BY	CHECKED BY	PREPARED BY
	事務意	TFT-LCD Product Planning Management General Division

Prepared by: TFT-LCD Product Planning Management Division

CHUNGHWA PICTUER TUBES, LTD.

1127 Hopin Rd., Padeh, Taoyuan, Taiwan 334, R.O.C. TEL: +886-3-3675151 FAX: +886-3-377-3001

Doc.No: CLAA190EA03 VER1-2004/08/17 Issue Date: 2004/08/17

T- 3650002- 000- A NEW

1. OVERVIEW

CLAA190EA03 is 19" color (48.19mm) TFT-LCD (Thin Film Transistor Liquid Crystal Display) module composed of LCD panel, LVDS driver ICs, control circuit and backlight. By applying 8 bit digital data, 1280×1024, 16.7 million-color images are displayed on the 19" diagonal screen. Interface of data and control signals is Typ. Inverter for backlight is not included in this module. General specification are summarized in the following table:

I	TEM	SPECIFICATION				
Display Area (m	nm)	376.32(H)x301.056(V) (19.0-inch diagonal)				
Number of Pixel	ls	$1280 \times 3(H) \times 1024(V)$				
Pixel Pitch (mm)	$0.294(H) \times 0.294(V)$				
Color Pixel Arra	ingement	RGB vertical stripe				
Display Mode		Normally white				
Number of Colo	rs	16777216				
Optimum Viewi	ng Angle	6 o'clock				
Brightness (cd/n	n^2)	250				
Viewing Angle	CR 5	-85~85(H), -85~85(V)				
Viewing Angle	CR 10	-75~75(H), -60~70(V)				
Electrical Interfa	ace	LVDS				
Consumption of	Power (W)	31.5 W (Typ.)				
Module Size (m	m)	$404.2(W) \times 330.0(H) \times 20.0(D)$ (Typ.)				
Module Weight (g)		2700(Max.)				
Backlight Unit		CCFL, 4 tables, edge-light (top, bottom)				
Surface Treatme	ent	Anti-glare, Surface-hardness: 3H				

The LCD Products listed on this document are not suitable for use of aerospace equipment, submarine cables, and nuclear reactor control system and life support systems. If customers intend to use these LCD products for above application or not listed in "Standard" as follows, please contact our sales people in advance.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tool, Industrial robot, Audio and Visual equipment, Other consumer products.

CPT Confidential 1/24 2004/08/17

2. ABSOLUTE MAXIMUM RATINGS

The following are maximun values which, if exceeded, may cause faulty operation or damage to the unit.

ITEM	SYMBOL	MIN.	MAX.	UNIT	Remark
Power Supply Voltage For LCD	Vcc	-0.3	6.0	V	
Lamp Voltage	VL	652	798	Vrms	*5)
Lamp Current	IL	4.0	7.5	mArms	*6)
Lamp Frequency	FL	50	60	kHz	
ESD	VESDt	-200	200	V	
E5D	VESDc	-8000	8000	V	
ICC Rush Current	IRUSH		3	A	*7)
Operation Temperature (Surrounding)	Top	0	50		*1) *2) *3) *4)
Storage Temperature	Tstg	-20	60		*1) *2) *3)

[Note]

- *1) The relative temperature and humidity range are as below sketch, 90%RHMax. (Ta 40)
- *2) The maximum wet bulb temperature 39 (Ta > 40) and without dewing.
- *3) If you use the product in a environment which over the definition of temperature and humidity too long to effect the result of eye-atching.
- *4) If you operate the product in normal temperature range, the center surface of panel should be under 60 .
- *5) The variance of voltage when lamp curvent is 7.0 mA.
- *6) The minimum of lamp curvent means that inverters can be using analog methods to tune brightness ranage, but we don't ensure the optical character the same to the typical value.

Humidity:

Humidity 85%RH without condensation.

Relative Humidity 90% (Ta 40)

Wet Bulb Temperature 39 (Ta 40)

CPT Confidential 2/24 2004/08/17

*7) CONTROL SIGNAL: High (+5V)→Low (GND).
Rising Time of the input voltage should tune to 470 us from R3 and C2.

CPT Confidential 3/24 2004/08/17

3. ELECTRICAL CHARACTERISTICS

(a). TFT-LCD	Ta=25
--------------	-------

ITEM		SYMBOL	MIN TYP MAX UNIT			UNIT	REMARK
LCD Power Supply Voltage		VCC	4.5	5.0	5.5	V	[Note 1]
LCD Power	(a)256Gray			800	1000		[Note 2]
Supply Current	(b)Black	ICC		900	1100	mA	
Supply Current	(c White			700	800		
interfac	LVDS	DSC	383/385、	THC63L	VD823		

[Note 1]

Power, data sequence:

t1 10 ms 1 sec t5 0 < t2 50 ms 200 ms t6 0 < t3 50 ms 200 ms t7 0 < t4 50 ms

VCC-dip state:

- 1) When 3.6 V VCC < 4.5 V, td 10 ms.
- 2) VCC > 4.5V, VCC-dip condition should also follow the VCC-turn-off condition.

CPT Confidential 4/24 2004/08/17

[Note 2]

Typical current situation:

1024 line mode.

VCC=5.0 V , f_H =64 kHz , f_V =60 Hz , f_{CLK} =54 MHz.

(b). Backlight

Ta=25

ITE	M	SYMBOL	MIN	TYP	MAX	UNIT	REMARK
Lamp Vo	oltage	VL	652	725	798	Vrms	*1) IL=7.0mA
Lamp C	urrent	IL	3.5	7.0	7.5	mArms	*1) *2)
Inverter Fr	equency	FI	40		60	kHz	*4)
Lang Life Time		LT	40,000			hr	*1) *2 *3) IL=7.0mA , Continuous Operation
Lamp Lin	Lamp Life Time		30,000			111	*1) *2 *3) IL=7.5mA , Continuous Operation
Turn on and	Turn on and off life		100000			times	*1) *2 *3) IL=7.0mA , Continuous Operation time cycle 30s
Starting Lamp	rting Lamp Ta=0		1690		Vrms	*5\	
Voltage	Ta=25	- Vs			1420	VIIIIS	*5)
Power cons	sumption	PBL		5.08		Wattrms	VL*IL , IL=7.0mA/single lamp

[Note]

*2) Lamp Current measurement method (The current meter is inserted in cold line)

CPT Confidential 5/24 2004/08/17

^{*1)} All the values show the table are the definitions of single lamp.

- *3) Definition of the lamp life time: Luminance (L) under 50% of specification starting lamp voltage
- *4) Frequency in this range can mala the characterisitics of electric and optics maintain in +/- 10% except hue.Lamp frequency of inverter may produce interference with horizontal synchronous frequency, and this may cause horizontal beat on the display. Therefore, please adjust lamp frequency, and keep inverter as far from module as possible or use electronic shielding between inverter and module to avoid the interference.
- *5) The maximum light-up voltage is the maximum starting lamp voltage, although designment of inverter light-up voltage should be larger than starting lamp voltage or over to start lamp voltage.
- *6) If the waveform of light up-driving is asymmetric, the distribution of mercury inside the lamp tube will become unequally or will deplete the Ar gas in it. Then it may cause the abnormal phenomenon of lighting-up. Therefore, designers have to try their best to forfill the conditions under the inverter designing-stage as below:

The degrees of unbalance : < 10%The ratio of wave height : $< 2 \pm 10\%$

Ip: high side peak

I-p: low side peak

A: The degrees of unbalance = $| Ip - I-p | / Irms \times 100 (\%)$

B: The ratio of wave height = Ip (or I-p) / Irms

4. INTERFACE PIN CONNECTION

(a). CN1

Outlet connector: FI-X30SSL-HF (JAE)

PIN	Symbol	Descripition
1	RO0M	Minus signal of odd channel 0(LVDS)
2	RO0P	Plus signal of odd channel 0(LVDS)
3	RO1M	Minus signal of odd channel 1(LVDS)
4	RO1P	Plus signal of odd channel 1(LVDS)
5	RO2M	Minus signal of odd channel 2(LVDS)
6	RO2P	Plus signal of odd channel 2(LVDS)
7	GND	Ground
8	ROCLKM	Minus signal of odd clock channel (LVDS)
9	ROCLKP	Plus signal of odd clock channel (LVDS)
10	RO3M	Minus signal of odd channel 3(LVDS)
11	RO3P	Plus signal of odd channel 3(LVDS)
12	RE0M	Minus signal of even channel 0(LVDS)
13	RE0P	Plus signal of even channel 0(LVDS)
14	GND	Ground
15	RE1M	Minus signal of even channel 1(LVDS)
16	RE1P	Plus signal of even channel 1(LVDS)
17	GND	Ground
18	RE2M	Minus signal of even channel 2(LVDS)
19	RE2P	Plus signal of even channel 2(LVDS)
20	RECLKM	Minus signal of even clock channel (LVDS)
21	RECLKP	Plus signal of even clock channel (LVDS)
22	RE3M	Minus signal of even channel 3(LVDS)
23	RE3P	Plus signal of even channel 3(LVDS)
24	GND	Ground
25	NC	Not connection
26	NC	Test pin for VCOM
27	NC	Not connection
28	VCC	Power supply input voltage +5V
29	VCC	Power supply input voltage +5V
30	VCC	Power supply input voltage +5V

ODD = first pixel data

EVEN = second pixel data

Remarks:

- 1) Keep the NC Pin and don't connect it to GND or other signals.
- 2) GND Pin must connect to the ground, don't let it be a vacant pin.

CPT Confidential 7/24 2004/08/17

(b). CN2~CN5 (BACKLIGHT)

LVDS Transmitter (DS90383, DS90385) Signal Interface to CLAA190EA03 (CN1)								
1st I	Device	Odd pixel		2nd I	Device E	Even pixel		
Symbol	No	Symbol	No	Symbol	No	Symbol	No	
TXOUT0-	48	RO0M	1	TXOUT0-	48	RE0M	12	
TXOUT0+	47	RO0P	2	TXOUT0+	47	RE0P	13	
TXOUT1-	46	RO1M	3	TXOUT1-	46	RE1M	15	
TXOUT1+	45	RO1P	4	TXOUT1+	45	RE1P	16	
TXOUT2-	42	RO2M	5	TXOUT2-	42	RE2M	18	
TXOUT2+	41	RO2P	6	TXOUT2+	41	RE2P	19	
TXCLKOUT-	40	ROCLKM	8	TXCLKOUT-	40	RECLKM	20	
TXCLKOUT +	39	ROCLKP	9	TXCLKOUT+	39	RECLKP	21	
TXOUT3-	38	RO3M	10	TXOUT3-	38	RE3M	22	
TXOUT3+	37	RO3P	11	TXOUT3+	37	RE3P	23	

(c). LVDS Interface (2)

LVDS Transmitter (THC63LVD823) Signal Interface to CLAA190EA03 (CN1)								
Device Output Pin CLAA190EA03 (CN1)								
First pixel I	Data			Second pix	el Data			
Symbol	No	Symbol	No	Symbol	No	Symbol	No	
TA1-	49	RO0M	1	TA2-	37	RE0M	12	
TA1+	48	RO0P	2	TA2+	36	RE0P	13	
TB1-	47	RO1M	3	TB2-	35	RE1M	15	
TB1+	46	RO1P	4	TB2+	34	RE1P	16	
TC1-	44	RO2M	5	TC2-	32	RE2M	18	
TC1+	43	RO2P	6	TC2+	31	RE2P	19	
TCLK1-	42	ROCLKM	8	TCLK2-	30	RECLKM	20	
TCLK1+	41	ROCLKP	9	TCLK2+	29	RECLKP	21	
TD1-	40	RO3M	10	TD2-	28	RE3M	22	
TD1+	39	RO3P	11	TD2+	27	RE3P	23	

(d). CN2~CN5 (BACKLIGHT)

Backlight-side connector: BHSR-02VS-1 (JST) Inverter-side connector: SM02-BHSS-1-TB

PIN NO	SYMBOL	FUNCTION
1	СТН	VBLH (High Voltage)
2	CTL	VBLL (Low Voltage)

[Note]: VBLH-VBLL=VL

5. INTERFACE TIMING(DE only mode)

(1). Vertical signal:

(2). Horizontal signal:

(3)

LVDS transition time =0.5ns(typ)

(4). Timing Chart (DE only mode)

ITEM			SYMBOL	MIN.	TYP.	MAX.	UNIT	
	DCLK		Freq.	f_{CLK}	45	54	67.5	MHz
	D	CLK	Cycle	t_{CLK}		18.5		ns
			Horizontal total time	t_{H}	710	844		t_{CLK}
Simutanaoua		Horizontal	Horiaontal effective time	$t_{\rm HA}$	640	640	640	t_{CLK}
Simutaneous Signal	DENA		Horizontal blank time	$t_{ m HB}$	1	204		t_{CLK}
import sequence		Vertical	Frame Rate	Fr	55	60	75	Hz
sequence			Vertical total time	$t_{ m V}$	1030	1066		t _H
			Vertical effective time	t_{VA}	1024	1024	1024	t _H
			Vertical blank time	$t_{ m VB}$	1	42		$t_{\rm H}$
LVDS		CLK Freq.		fCLKin	_	54	67.5	MHz
Signal mport sequence		CLK Cy	rcle	tCLKin		18.5		ns

(5) Data mapping

Remark: Data are in 8bit depth, and where the LSBs put on R0, G0, B0.

CPT Confidential 10/24 2004/08/17

(6). COLOR DATA ASSIGNMENT

COLOR	INPUT	R DATA				G DATA						B DATA													
	DATA	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	В5	В4	В3	В2	В1	В0
		MSB							LSB	MSB							LSB	MSB							LSB
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BASIC	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
COLOR	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																									
	RED(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	GREEN(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
GREEN																									
	GREEN(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	BLUE(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
BLUE																									
	BLUE(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

[Note]

1) Definition of gray scale:

Color (n): n indicates gray scale level; higher n means brighter level.

2) Data: 1-High, 0-Low.

3) This assignments are suitable for odd and even data.

CPT Confidential 11/24 2004/08/17

6. BLOCK DIAGRAM

CPT Confidential 12/24 2004/08/17

7. MECHANICAL SPECIFICATION

(1). Front side

[Unit: mm]

(2). Rear side

The definition of lamp wire = 120 ± 5 mm (Don't let the lamp wire come off the wire holder, to stretch lamp wire when measure the length of lamp wire, to measure from the fired part to the bottom of connector pin.)

[Unit: mm]

8.OPTICAL CHARACTERISTICS

Ta = 25°C, VCC=5V

II	EM	SYMBOL	CONDITIO N	MIN.	TYP.	MAX.	UNIT	Remarks	
Contra	st (CEN)	CR	$\theta = 0^{\circ}$ Point-5	400	500			*1)*2)*3)	
Luminance (CEN)	9P Luminance (AVG)	Lw	. θ= = 0°	200	250		cd/m ²	*2)*3)	
(CEN)	Uniformity	Lw	θ= = 0°			25	%	*2)*3)	
Contrast	Uniformity	CR	θ= = 0°			30	%	*1)*2)*3)	
	nse Time – Black)	tr+tf	θ= = 0°		12	22	ms	*3)*4)	
Image	sticking	tis	2 h			5 sec		*6)	
	Horizontal	θ	$CR \ge 10$	-65~65	-75~75		0	*2)*3)	
View angle	Vertical		Point-5	-55~65	-60~70		0	*2)*3)	
view aligic	Horizontal	θ	$CR \ge 5$	-75~75	-85~85		0	*2)*3)	
Vertical			Point-5	-75~75	-85~85	-85~85		*2)*3)	
Crossta	Crosstalk Ratio		θ= = 0°			1	%	*3)*7)	
	Red	Rx Ry		0.612 0.306	0.642 0.336	0.672 0.366		*2)*3)	
Color	Green	Gx Gy		0.238 0.575	0.268 0.605	0.298 0.635			
Temperature Coordinate	Blue	Bx By	$\theta = 0^{\circ}$ Point-5	0.113 0.026	0.143 0.056	0.173 0.086			
	White	Wx Wy		0.275 0.296	0.305 0.326	0.335 0.356			
Color Te	emperature	Тс			6500		K	*3)	
	ımma	r		1.9	2.2	2.5		*8	
Colo	r Gamut	CG		69	72		%	*9)	

[Note]

Measurement Condition: IL=7.0 mA

Definition of these measurement items is as follows:

*1) Definition of Contrast Ratio: [These items are measured using BM-5A (TOPCON) under the dark room condition (no ambient light).]

CR=ON (White) Luminance/OFF (Black) Luminance

*2) Definition of Luminance and Luminance uniformity: [These items are measured using BM-5A (TOPCON) under the dark room condition (no ambient light).]

Central luminance: The white luminance is measured at the center position "5" on the screen, see Fig.1 below.

CPT Confidential 15/24 2004/08/17

5P Luminance (AVG): The white luminance is measured at measuring points 5, 10, 11, 12, 13 see Fig.1 below.

9P Luminance (AVG): The white luminance is measured at measuring points 1 to 9, see Fig.1 below.

$$L = (I MIN \div I MAX) \times 100$$

Figure 8-1. Measurement positions

*3) Definition of Viewing Angle(,): [These items are measured using EZ-CONTRAST (ELDIM) under the dark room condition (no ambient light).]

Figure 8-2. Definition of Viewing Angle

CPT Confidential 16/24 2004/08/17

*4) Definition of Response Time (White – Black)

Figure 8-3. Definition of Response Time (White – Black)

*5) Definition of Response Time (Gray Scale Level between 32th and 224th at intervals of 32 levels)

Figure 8-4. Definition of Response Time (Gray Scale Level)

*6) Image sticking test method:

From Continuous display pattern(white "R" with blue background) 2hours change to 128 gray level pattern. The previous image shall not persist more then 2 second at 25 C.

CPT Confidential 17/24 2004/08/17

*7) Definition of Cross talk:

CMR = MAX ($(/(LB1-LA)/LC/) \times 100$, $(/(LB2 - LA)/LC/) \times 100$)

LA: Pattern A(Half-Tone pattern) Measure point Luminance
LB1, LB2: Pattern B1, Pattern B2 Measure point Luminance

LC: Pattern C(white pattern) Measure point Luminance

Figure 8-4. Cross talk

*8) Defination of Gamma (), Gray level 32~223

CPT Confidential 18/24 2004/08/17

*9) Definition of Color Gamut:

To measure RGB three sub-pixels color gamut coordinate at CIE coordinate chart from the center of module , to form a triangle area = A_{RGB} .

RGB three sub-pixels of NTSC at CIE coordinate chart to form a triangle area = N_{RGB} .

$$CG = \frac{A_{RGB}}{N_{RGB}} \times 100$$

9.RELIABILITY TEST CONDITIONS

(1)Temperature and Humidity

TEST ITEMS	CONDITIONS						
High Temperature Operation	50 ; 240hrs						
High Temperature Storage	60 ; 240hrs						
High Temperature	40 ; 90%RH; 240hrs						
High Humidity Operation	(No condensation)						
Low Temperature Operation	0 ; 240hrs						
Low Temperature Storage	-20 ; 240hrs						
Thermal Shock	Between -20 (1hr) and 60 (1hr);						
Thermal Shock	100 Cycles						

(2) Shock & Vibration

ITEMS	CONDITIONS
	Shock level: 980m/s ² (100G)
Shock	Waveform: half sinusoidal wave, 2ms
(Non-Operation)	Number of shocks: one shock input in each direction of three
	mutually perpendicular axes for a total of six shock inputs
	Vibration level: 9.8m/s ² (1.0G) zero to peak
	Waveform: sinusoidal
Vibration	Frequency range: 5 to 500 Hz
(Non-Operation)	Frequency sweep rate: 0.5 octave/min
(Non-Operation)	Duration: one sweep from 5 to 500Hz in each of three
	mutually perpendicular axis(each x,y,z axis: 1 hour, total 3
	hours)

(3)ESD test

Test Item	Test statements
	200 pF , 0 Ω , ±250 V
Connector	By using contact-mode to discharge each pin one time and then check the module frame.
module	 Under test conditions, by using air-mode to discharge each test point 25 times continueously and then check the module frame. Under test conditions, by using contact-mode to discharge each test point of panel frame 25 times continueously and then check the module frame.

(4) Judgment standard

The judgment of the above test should be made as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect.

Partial transformation of the module parts should be ignored.

Fail: No display image, obvious non-uniformity, or line defects.

CPT Confidential 20/24 2004/08/17

10. HANDLING PRECAUTIONS FOR TFT-LCD MODULE

Please pay attention to the followings in handling- TFT-LCD products;

10.1 **ASSEMBLY PRECAUTION**

- (1) Please use the mounting hole on the module side in installing and do not beading or wrenching LCD in assembling. And please do not drop, bend or twist LCD module in handling.
- (2) Please design display housing in accordance with the following guidelines.
 - Housing case must be destined carefully so as not to put stresses on LCD all sides and not to wrench module. The stresses may cause non-uniformity even if there is no non-uniformity statically.
 - Keep sufficient clearance between LCD module back surface and housing when the LCD module is mounted. Approximately 1.0 mm of the clearance in the design is recommended taking into account the tolerance of LCD module thickness and mounting structure height on the housing.
 - When some parts, such as, FPC cable and ferrite plate, are installed underneath the LCD module, still sufficient clearance is required, such as 0.5mm. This clearance is, especially, to be reconsidered when the additional parts are implemented for EMI countermeasure.
 - Design the inverter location and connector position carefully so as not to give stress to lamp cable, or not to interface the LCD module by the lamp cable.
 - Keep sufficient clearance between LCD module and the others parts, such as inverter and speaker so as not to interface the LCD module. Approximately 1.0mm of the clearance in the design is recommended.
- (3) Please do not push or scratch LCD panel surface with any-thing hard. And do not soil LCD panel surface by touching with bare hands. (Polarizer film, surface of LCD panel is easy to be flawed.)
- (4) Please do not press any parts on the rear side such as source TCP, gate TCP, control circuit board and FPCs during handling LCD module. If pressing rear part is unavoidable, handle the LCD module with care not to damage them.
- (5) Please wipe out LCD panel surface with absorbent cotton or soft clothe in case of it being soiled.
- (6) Please wipe out drops of adhesives like saliva and water on LCD panel surface immediately. They might damage to cause panel surface variation and color change.
- (7) Please do not take a LCD module to pieces and reconstruct it. Resolving and reconstructing modules may cause them not to work well.
- (8) Please do not touch metal frames with bare hands and soiled gloves. A color change of the metal frames can happen during a long preservation of soiled LCD modules.
- (9) Please pay attention to handling lead wire of backlight so that it is not tugged in connecting with inverter.

10.2 OPERATING PRECAUTIONS

- (1) Please be sure to turn off the power supply before connecting and disconnecting signal input cable.
- (2) Please do not change variable resistance settings in LCD module. They are adjusted to the most suitable value. If they are changed, it might happen LCD does not satisfy the characteristics specification.
- (3) Please consider that LCD backlight takes longer time to become stable of radiation characteristics in low temperature than in room temperature.
- (4) A condensation might happen on the surface and inside of LCD module in case of sudden change of ambient temperature.
- (5) Please pay attention to displaying the same pattern for very long time. Image might stick on LCD. If then, time going on can make LCD work well.
- (6) Please obey the same caution descriptions as ones that need to pay attention to ordinary electronic parts.

CPT Confidential 21/24 2004/08/17

10.3 PRECAUTIONS WITH ELECTROSTATICS

- (1) This LCD module use CMOS-IC on circuit board and TFT-LCD panel, and so it is easy to be affected by electrostatics. Please be careful with electrostatics by the way of your body connecting to the ground and so on.
- (2) Please remove protection film very slowly on the surface of LCD module to prevent from electrostatics occurrence.

10.4 STORAGE PRECAUTIONS

- (1) When you store LCDs for a long time, it is recommended to keep the temperature between 0 ~40 without the exposure of sunlight and to keep the humidity less than 90%RH.
- (2) Please do not leave the LCDs in the environment of high humidity and high temperature such as 60 90%RH.
- (3) Please do not leave the LCDs in the environment of low temperature; below -20

10.5 SAFETY PRECAUTIONS

- (1) When you waste LCDs, it is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leaks out of a damaged-glass cell and comes in contact with the hands, wash off throughly with soap and water.

10.6 OTHERS

- (1) A strong incident light into LCD panel might cause display characteristics' changing inferior because of polarizer film, color filter, and other materials becoming inferior. Please do not expose LCD module direct sunlight Land strong UV rays.
- (2) Please pay attention to a panel side of LCD module not to contact with other materials in preserving it alone.
- (3) For the packaging box, please pay attention to the followings:
 - Packaging box and inner case for LCD are designed to protect the LCDs from the damage or scratching during transportation. Please do not open except picking LCDs up from the box.
 - Please do not pile them up more than 3 boxes. (They are not designed so.) And please do not turn over.
 - Please handle packaging box with care not to give them sudden shock and vibrations. And also please do not throw them up.
 - Packing box and inner case for LCDs are made of cardboard. So please pay attention not to get them wet. (Such like keeping them in high humidity or wet place can occur getting them wet.)

CPT Confidential 22/24 2004/08/17