SC4/SM8 Advanced Topics in Statistical Machine Learning Problem Sheet 1

- 1. This question pertains to the DP-means algorithm.
 - (a) Show that each iteration of Step 2 locally minimises the following objective:

$$W_{\lambda}(\{C_k\}, \{\mu_k\}, K) = \sum_{k=1}^{K} \sum_{i \in C_k} \|x_i - \mu_k\|_2^2 + \lambda K.$$
 (1)

- (b) Conclude that the DP-means algorithm will terminate after a finite number of iterations.
- (c) Describe how the tuning parameter λ controls the number of clusters returned by the algorithm.
- 2. Show that the second PC is the eigenvector corresponding to the second largest eigenvalue.
- 3. For a given loss function L, the risk R of real-valued $f: \mathcal{X} \to \mathbb{R}$ is given by the expected loss

$$R(f) = \mathbb{E}\left[L(Y, f(X))\right].$$

Derive the optimal regression functions (which minimize the true risk) for the following losses:

(a) The squared error loss

$$L(Y, f(X)) = (Y - f(X))^2$$

(b) The τ -pinball loss, for general $\tau \in (0,1)$, given by

$$L(Y, f(X)) = 2 \max \{ \tau(Y - f(X)), (\tau - 1)(Y - f(X)) \}.$$

What happens in the case $\tau = 1/2$?

4. The figure below shows a binary classification dataset and the optimal the decision boundary and margins of a soft-margin C-SVM for some value C.

- (a) Which of the points a, ..., k are definitely support vectors? What can you say about points b, c, i? Can they be non, margin, or non-margin support vectors?
- (b) For points a, b and d what are the range of possible values for the corresponding dual variables?
- 5. Parameter C in C-SVM can sometimes be hard to interpret. An alternative parametrization is given by ν -SVM:

$$\min_{w,b,\rho,\xi} \left(\frac{1}{2} \|w\|^2 - \nu \rho + \frac{1}{n} \sum_{i=1}^n \xi_i \right)$$

subject to

$$\rho \geq 0,
\xi_i \geq 0,
y_i (w^{\top} x_i + b) \geq \rho - \xi_i.$$

(note that we now directly adjust the constraint threshold ρ).

Using complementary slackness, show that ν is an upper bound on the proportion of non-margin support vectors (margin errors) and a lower bound on the proportion of all support vectors with non-zero weight (both those on the margin and margin errors). You can assume that $\rho > 0$ at the optimum (non-zero margin).

6. Consider the regression problem to the real-valued output $y \in \mathbb{R}$. Let $\epsilon > 0$ and define the ϵ -insensitive loss function L_{ϵ} as

$$L_{\epsilon}(y, f(x)) = \begin{cases} 0 & \text{if } |y - f(x)| < \epsilon, \\ |y - f(x)| - \epsilon & \text{otherwise,} \end{cases}$$

and the regularized empirical risk objective defined as

$$J(w,b) = C \sum_{i=1}^{n} L_{\epsilon}(y_i, f(x_i)) + \frac{1}{2} ||w||_{2}^{2},$$

where we used a linear model $f(x) = w^{T}x + b$ for regression functions.

- (a) Introduce the slack variables $\xi_i^+ = \max\{y_i f(x_i) \epsilon, 0\}$ and $\xi_i^- = \max\{f(x_i) y_i \epsilon, 0\}$. Verify that $L_{\epsilon}(y_i, f(x_i)) = \xi_i^+ + \xi_i^-$.
- (b) Re-express the regularized empirical risk objective J(w,b) as a constrained optimization problem over w,b,ξ^+ and ξ^- . Write down Lagrangian and show that the dual problem can be written as

$$\max_{\alpha^+,\alpha^-} \left\{ -\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n (\alpha_i^+ - \alpha_i^-)(\alpha_j^+ - \alpha_j^-) x_i^\top x_j + \sum_{i=1}^n (\alpha_i^+ - \alpha_i^-) y_i - \epsilon \sum_{i=1}^n (\alpha_i^+ + \alpha_i^-) \right\},\,$$

subject to

$$\sum_{i=1}^{n} (\alpha_i^+ - \alpha_i^-) = 0, \quad \alpha_i^+ \in [0, C], \quad \alpha_i^- \in [0, C], \quad i = 1, \dots, n.$$

- (c) Considering derivatives of the Lagrangian and complementary slackness, express the weight vector w using dual coefficients α_i^+ and α_i^- . Show that those examples (x_i,y_i) which lie outside of the ϵ -insensitive tube around f, must have corresponding $\alpha_i^+ = C$ or $\alpha_i^- = C$ and that those examples (x_i,y_i) for which $|f(x_i)-y_i|<\epsilon$ (they lie strictly inside the ϵ -tube), must have $\alpha_i^+ = \alpha_i^- = 0$. How can you compute b using the dual solution?
- 7. (Kernel Ridge Regression) Let $(x_i, y_i)_{i=1}^n$ be our dataset, with $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$. Classical linear regression can be formulated as empirical risk minimization, where the model is to predict y using a class of functions $f(x) = w^{\top}x$, parametrized by vector $w \in \mathbb{R}^p$ using the squared loss, i.e. we minimize

$$\hat{R}(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2.$$

(a) Show that the optimal parameter vector is

$$\hat{w} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

where **X** is a $n \times p$ matrix with *i*th row given by x_i^{\top} , and **y** is a $n \times 1$ column vector with *i*-th entry y_i .

(b) Consider regularizing our empirical risk by incorporating an L_2 regularizer. That is, find w minimizing

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2 + \frac{\lambda}{n} ||w||_2^2$$

Show that the optimal parameter is given by the ridge regression estimator

$$\hat{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda I)^{-1}\mathbf{X}^{\top}\mathbf{y}$$

(c) Suppose that we now wish to introduce nonlinearities into the model, by transforming $x \mapsto \varphi(x)$. Let Φ be a matrix with *i*th row given by $\varphi(x_i)^{\top}$. The optimal parameters \hat{w} would then be given by (previous part):

$$\hat{w} = (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi}^{\top} \mathbf{y}.$$

Can we make predictions without computing \hat{w} ?

First, express the predicted y values on the training set, $\Phi \hat{w}$, only in terms of \mathbf{y} and the Gram matrix $\mathbf{K} = \Phi \Phi^{\top}$, with $\mathbf{K}_{ij} = \varphi(x_i)^{\top} \varphi(x_j) = k(x_i, x_j)$ where k is some kernel function. Then, compute an expression for the value of y_{\star} predicted by the model at an unseen test vector x_{\star} .

Hint: You may find it useful to first prove that:

$$(\boldsymbol{\Phi}^{\top}\boldsymbol{\Phi} \ + \lambda I)^{-1}\boldsymbol{\Phi}^{\top} = \boldsymbol{\Phi}^{\top}(\boldsymbol{\Phi} \ \boldsymbol{\Phi}^{\top} \ + \lambda I)^{-1}.$$

8. Denote $\sigma(t) = 1/(1 + e^{-t})$. Verify that the ERM corresponding to the logistic loss over the functions of the form $f(x) = w^{T} \varphi(x)$ can be written as

$$\min_{w} \sum_{i=1}^{n} -\log \sigma(y_i w^{\top} \varphi(x_i)) + \lambda \|w\|_2^2$$
(2)

and is a convex optimisation problem in w. Assume that you can write $w=\sum_{i=1}^n \alpha_i \varphi(x_i)$. Show that the criterion in (3) is also convex in the so called dual coefficients $\alpha\in\mathbb{R}^n$. [Hint: $\sigma'(t)=\sigma(t)\sigma(-t)$]