Precalculus

Find the area of a triangle from two sides and an angle between them

Todor Milev

2019

$$Area(\triangle ABC) = ?$$

$$Area(\triangle ABC) = \frac{1}{2}height \cdot base$$

Let $\triangle ABC$ have side length a and height length h_a , as indicated - side a is opposite to vertex A and h_a starts at A

$$Area(\triangle ABC) = \frac{1}{2}height \cdot base = \frac{1}{2}h_aa$$

Let $\triangle ABC$ have side length a and height length h_a indicated - side a is opposite to vertex A and h_a starts at A

, as

$$Area(\triangle ABC) = \frac{1}{2} \frac{height}{height} \cdot base = \frac{1}{2} \frac{h_aa}{h_aa}$$

Let $\triangle ABC$ have side lengths a, b and height lengths h_a, h_b , as indicated - side a is opposite to vertex A and h_a starts at A, and so on.

$$Area(\triangle ABC) = \frac{1}{2}height \cdot base = \frac{1}{2}h_aa = \frac{1}{2}h_bb$$

Let $\triangle ABC$ have side lengths a, b and height lengths h_a, h_b , as indicated - side a is opposite to vertex A and h_a starts at A, and so on.

$$Area(\triangle ABC) = \frac{1}{2} \frac{height}{height} \cdot base = \frac{1}{2} h_a a = \frac{1}{2} \frac{h_b b}{h_b}$$

Let $\triangle ABC$ have side lengths a, b, c and height lengths h_a, h_b, h_c , as indicated - side a is opposite to vertex A and h_a starts at A, and so on.

$$Area(\triangle ABC) = \frac{1}{2}height \cdot \frac{base}{2} = \frac{1}{2}h_aa = \frac{1}{2}h_bb = \frac{1}{2}h_cc.$$

Let $\triangle ABC$ have side lengths a, b, c and height lengths h_a, h_b, h_c , as indicated - side a is opposite to vertex A and h_a starts at A, and so on.

$$Area(\triangle ABC) = \frac{1}{2} \frac{height}{height} \cdot base = \frac{1}{2} h_a a = \frac{1}{2} h_b b = \frac{1}{2} \frac{h_c}{h_c} c.$$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

$$Area(\triangle ABC) = \frac{ab \sin \gamma}{2} = \frac{bc \sin \alpha}{2} = \frac{ca \sin \beta}{2}$$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

$$Area(\triangle ABC) = \frac{ab \sin \gamma}{2} = \frac{bc \sin \alpha}{2} = \frac{ca \sin \beta}{2}$$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

$$Area(\triangle ABC) = \frac{base \cdot height}{2}$$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Area(
$$\triangle ABC$$
) = $\frac{\text{base} \cdot \text{height}}{2} = \frac{bh_b}{2}$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Area(
$$\triangle ABC$$
) = $\frac{\text{base} \cdot \text{height}}{2} = \frac{bh_b}{2}$

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Area(
$$\triangle ABC$$
) = $\frac{base \cdot height}{2} = \frac{bh_b}{2}$
= $\frac{basin \gamma}{2}$.

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Area(
$$\triangle ABC$$
) = $\frac{base \cdot height}{2} = \frac{bh_b}{2}$
= $\frac{basin \gamma}{2}$.

Let $\triangle ABC$ have sides lengths a, b, c angles α, β, γ , as indicated: α is opposite to a, β is opposite to b, γ is opposite to c.

Proposition (△ area from two sides and angle between them)

The area of a triangle is half the product of the lengths of two of its sides times the sine of the angle between them. In other words,

$$Area(\triangle ABC) = \frac{ab\sin\gamma}{2} = \frac{bc\sin\alpha}{2} = \frac{ca\sin\beta}{2}$$

Proof.

Area(
$$\triangle ABC$$
) = $\frac{base \cdot height}{2} = \frac{bh_b}{2}$
= $\frac{ba \sin \gamma}{2}$.

The proof of the other two cases is similar.