What is Claimed:

1		1.	A bandpass delta sigma truncator comprising:
2		input r	neans for receiving a series of first multi-bit digital signals
3	each having:		•
4		(a)	a number of data bits, and
5		(b)	a first number of sign bits;
6		sign ex	ktending means for sign extending each of the first multi-bit
7	digital signals	to a se	econd multi-bit digital signal having:
8		(a)	the same number of data bits as the number of data bits in
9			the first multi-bit digital signals, and
10		(b)	a second number of sign bits;
11		output	means for supplying from a series of third multi-bit digital
12	signals each i	individu	ally associated with one of the second multi-bit digital signals
13	and each hav	ing the	same number of data bits as in an associated second multi-
14	bit digital sig	nal:	
15		(a)	a series of fourth multi-bit digital signals each having a
16			selected number of the most significant data bits of the third
17			multi-bit digital signals, and
18		(b)	a series of fifth multi-bit digital signals each having the
19			remaining number of the least significant data bits of the
20			third multi-bit digital signals;
21		means	s for:
22		(a)	delaying by a period of time equal to the time between
23			successive first multi-bit digital signals each of the fifth
24			multi-bit digital signals, and
25		(b)	delaying by a period of time equal to twice the time between
26			successive first multi-bit digital signals each of the fifth
27			multi-bit digital signals and inverting the fifth multi-bit
28			digital signals that have been delayed by a period of time
29			equal to twice the time between successive first multi-bit
30			digital signals;
31	,		s for multiplying by a multiplier number related to the ratio of
32		•	y to the frequency of the first multi-bit digital signals each of
33			gital signals delayed by a period of time equal to the time
24	habitaan atta	coccivo	first multi-hit digital signals and developing a series of sixth

35	multi-bit digital signals having a number of data bits that is the product of the				
36	multiplier number and the number of data bits in the fifth multi-bit digital signals;				
37	and				
38		summi	ng means for adding to each second multi-bit digital signal:		
39	((a)	a fifth multi-bit digital signal that has been delayed by a		
40			period of time equal to twice the time between successive		
41			first multi-bit digital signals and inverted, and		
42		(b)	a sixth multi-bit digital signal		
43	to develop the	series	of third multi-bit digital signals.		
1		2.	A bandpass delta sigma truncator according to claim 1		
2	wherein:				
3		(a)	each first multi-bit digital signal is a ten bit digital signal		
4			having nine data bits and one sign bit,		
5		(b)	each second multi-bit digital signal is an eleven bit digital		
6			signal having nine data bits and two sign bits,		
7		(c)	each third multi-bit digital signal is a nine bit digital signal		
8			having nine data bits,		
9		(d)	each fourth multi-bit digital signal is a six bit digital signal		
10			having six data bits,		
11		(e)	each fifth multi-bit digital signal is a three bit digital signal		
12			having three data bits,		
13		(f)	each sixth multi-bit digital signal is a four bit digital signal		
14			having four data bits,		
15		(g)	the multiplier number is 1.75,		
16		(h)	the selected frequency is 5MHZ, and		
17		(i)	the frequency of the first multi-bit digital signals is 30MHZ.		
1		3.	A bandpass delta sigma truncator according to claim $f 1$		
2	further includi	ing me	eans between said summing means and said output means for		
3	determining w	vhethe	r the value of any third multi-bit digital signal is one of:		
4		(a)	greater than a first value, and		
5		(b)	less than a second value.		
1		4.	A bandpass delta sigma truncator according to claim 2		
2	further including means between said summing means and said output means for				
3	determining v	vhethe	r the value of any third multi-bit digital signal is one of:		
4		(a)	greater than a first value, and		
5		(b)	less than a second value.		

1		5.	A band	ipass deita sigma truncator according to claim 2
2	wherein said	means	for dela	aying and inverting the fifth multi-bit digital signals
3	include:			
4		(a)	a digit	al delay circuit for delaying by a period of time equal
5			to the	time between successive first multi-bit digital signals
6			each o	of the fifth multi-bit digital signals, and
7		(b)	a digit	al delay and inverter circuit for:
8			(1)	additionally delaying by a period of time equal to the
9				time between successive first multi-bit digital signals
10				each of the fifth multi-bit digital signals delayed by
11				said digital delay circuit, and
12			(2)	inverting the additionally delayed fifth multi-bit
13 ·				digital signals.
1		6.	A ban	dpass delta sigma truncator according to claim 4
2	wherein said means for delaying and inverting the fifth multi-bit digital signals			
3	include:			
4		(a)	a digi	tal delay circuit for delaying by a period of time equal
5			to the	time between successive first multi-bit digital signals
6			each	of the fifth multi-bit digital signals, and
7		(b)	a digi	tal delay and Inverter circuit for:
8			(1)	additionally delaying by a period of time equal to the
9				time between successive first multi-bit digital signals
10				each of the fifth multi-bit digital signals delayed by
11				said digital delay circuit, and
12			(2)	inverting the additionally delayed fifth multi-bit
13				digital signals.
1		7.	A me	thod for truncating a multi-bit digital signal comprising
2	the steps of:			
3		provi	ding a	series of first multi-bit digital signals each having:
4		(a)	a nui	mber of data bits, and
5		(b)	a firs	t number of sign bits;
6		sign	extendi	ng each of the first multi-bit digital signals to a second
7	multi-bit digital signal having:			
8		(a)	the s	ame number of data bits as the number of data bits in
9	:		the f	irst multi-bit digital signals, and
10		(b)	a sec	cond number of sign bits;

11	addin	g to ead	th second multi-bit digital signal to develop a series of	
12	third multi-bit digital signals each individually associated with one of the second			
13	multi-bit digital signals and each having the same number of data bits as in an			
14	associated second multi-bit digital signal:			
15	, (a)	a mul	ti-bit digital signal that has been:	
16		(1)	developed from a selected number of the least	
17			significant bits of the third multi-bit digital signals,	
18			and	
19		(2)	delayed by a period of time equal to twice the time	
20			between successive first multi-bit digital signals and	
21			inverted, and	
22	(b)	a mul	ti-bit digital signal that has been:	
23		(1)	developed from the selected number of the least	
24			significant bits of the third multi-bit digital signals,	
25			and	
26		(2)	delayed by a period of time equal to the time	
27			between successive first multi-bit digital signals and	
28			multiplied by a multiplier number related to the ratio	
29			of a selected frequency to the frequency of the first	
30			multi-bit digital signals; and.	
31	deve	loping f	rom the third multi-bit digital signals a series of fourth	
32	digital signals each	having	a selected number of the most significant data bits of	
33	the third multi-bit digital signals.			
1	8.	A me	thod for truncating a multi-bit digital signal according	
2	to claim 7 wherein	:		
3	(a)	each	first multi-bit digital signal is a ten bit digital signal	
4		havir	ng nine data bits and one sign bit,	
5	(b)	each	second multi-bit digital signal is an eleven bit digital	
6		signa	il having nine data bits and two sign bits,	
7	(c)	each	third multi-bit digital signal is a nine bit digital signal	
8		havir	ng nine data bits,	
9	(d)	each	fourth multi-bit digital signal is a six bit digital signal	
10		havii	ng six data bits,	
11	(e)	each	multi-bit digital signal that has been delayed by a	
12		perio	od of time equal to twice the time between successive	

PCT/US2002/041396

13		first multi-bit digital signals and inverted is a three bit digital	
14		signal having three data bits,	
15	(f)	each multi-bit digital signal delayed by a period of time	
16		equal to the time between successive first multi-bit digital	
17		signals and multiplied by a multiplier number related to the	
18		ratio of a selected frequency to the frequency of the first	
19		multi-bit digital signals is a four bit digital signal having four	
20		data bits,	
21	(g)	the multiplier number is 1.75,	
22	(h)	the selected frequency is 5MHZ, and	
23	(i)	the frequency of the first multi-bit digital signals is 30MHZ.	
1	9.	A method for truncating a multi-bit digital signal according	
2	to claim 7 further in	ncluding the step of determining whether the value of any third	
3	multi-bit digital sig	nal is one of:	
4	(a)	greater than a first value, and	
5	(b)	less than a second value.	
1	10.	A method for truncating a multi-bit digital signal according	
2	to claim 8 further in	ncluding the step of determining whether the value of any third	
3	multi-bit digital signal is one of:		
4	(a)	greater than a first value, and	
5	(b)	less than a second value.	