COVID-19 Chest X-Ray for Classification and Segmentation

Course: Deeping Learning for Medical Imaging

Date: June 5, 2024 Spring

Presenter: Wei-Lun Wu

Student ID: R12922075

Introduction - Data

- Dataset Chest x-ray images with 300x300 pixels
 - o COVID-19: 3616 images, masks
 - Lung Opacity: 6012 images, masks
 - Normal: 10192 images, masks
 - Viral Pneumonia: 1345 images, masks

Usage

- Disease classification
- Lung segmentation

Project Objective

- Classification
 - Supervised, self-supervised, zero shot classification methods
 - Effective strategies for classifying chest X-ray images
- Segmentation
 - Supervised segmentation methods
 - Lung segmentation
- Muti-task learning
 - Modify Unet architecture for both classification and segmentation

Methodology - Classification

- Supervised
 - Swin Transformer
 - VIT-Base
 - ConvNeXt
 - DenseNet
 - EfficientNetv2
 - ResNeXt101
- Self-supervised
 - DINOv2 (Apr 2023 Meta Al Research)
 - BEITv2 (Oct 2022 Microsoft Research)
- Zero-shot
 - CLIP: VIT Large

Methodology - Segmentation & Muti-task

Segmentation

- Unet / Unet++
- MAnet (Multi-Scale Attention Network)
- FPN (Feature Pyramid Network)
- PSPNet (Pyramid Scene Parsing Network)
- PAN (Pyramid Attention Network)
- DeepLabV3 / DeepLabV3+

Muti-task

- Vnet
 - Encoder output features for additional classification tasks.

Experiment & Analysis - Implementation Details

- Split ratio is 80%, 10%, 10% for the training, validation, testing set
- Epoch: 20
- Optimizer: Adam
- Learning rate: 5e-5
- Weight decay: 1e-6
- Weights & Biases to track f1, precision, recall, dice, loss

Experiment & Analysis - Classification

- Dataset simplicity
- Self-supervised learning efficiency
 - Fine-tune last few layers and the classification layer
- Zero-shot limitations
 - Prompt is important
- Muti-task slightly decreases

	,					
		F1 Score	Precision	Recall	Accuracy	Minute / Epoch
Supervised						
	Swin Transformer	0.9668	0.9699	0.9639	0.9601	8.95
	VIT Base	0.9631	0.965	0.9613	0.9511	8.85
	ConvNeXt	0.9651	0.9663	0.9641	0.9546	7.55
	DenseNet	0.9513	0.9401	0.9644	0.9502	10.65
	EfficientNetV2	0.9654	0.9686	0.9624	0.9561	8.65
	ResNeXt101	0.9597	0.961	0.9268	0.9497	10.3
Self Supervised						
	DINOv2	0.9648	0.9666	0.9602	0.9575	2.45
	BEITv2	0.9611	0.963	0.9593	0.9642	3.95
Zero Shot						
Prompt-1	CLIP	0.4264	0.5843	0.4422	0.6719	
prompt-2	CLIP	0.1689	0.2842	0.2241	0.2255	
Muti-Task						
	VNet	0.9515	0.9589	0.9447	0.9428	7.88

Experiment & Analysis - Classification

Use 100%, 75%, 50%, 25% training set in self-supervised method

- Effective with Limited Data (50%)
 - Effective when labeled data is not enough
 - DINOv2 achieves good results

		F1 Score	Precision	Recall	Accuracy
100%					
	DINOv2	0.9648	0.9666	0.9602	0.9575
	BEITv2	0.9611	0.963	0.9593	0.9642
75%					
	DINOv2	0.9644	0.9662	0.9626	0.9563
	BEITv2	0.9591	0.9641	0.9548	0.9523
50%					
	DINOv2	0.9614	0.9683	0.9555	0.9544
	BEITv2	0.9559	0.9622	0.9508	0.9494
25%					
	DINOv2	0.9467	0.9435	0.9502	0.9405
	BEITv2	0.9425	0.9484	0.9368	0.9362

Experiment & Analysis - Segmentation

- DeepLabV3+ has best performance
- Muti-task is not bad

	Val Dice	Val loss	
	vai Dice	Val 1055	
Unet	0.983	0.03628	
UNet++	0.9831	0.03711	
MAnet	0.9825	0.03786	
FPN	0.9825	0.03781	
PSPNet	0.9805	0.03394	
PAN	0.9822	0.03823	
DeepLabV3	0.9818	0.03812	
DeepLabV3+	0.9833	0.03451	
Muti-Task: VNet	0.9788		

Visualization

- Confusions
 - Lung opacity and normal
- Well-distinguished
 - COVID and viral pneumonia

Conclusion

- Model approaches
 - Supervised, self-supervised, zero-shot classification, segmentation, and multi-task learning
- Self-supervised efficiency
 - Fine-tune few layers
- Data size
 - Even with reduced data (50% of the training set), DINOv2 provided good results
- Zero-shot learning challenges
 - CLIP sensitivity to prompts
 - Limitations in learning specific disease features
- Multi-task learning
 - Modify Unet architecture for simultaneous classification and segmentation