EE671: VLSI DESIGN SPRING 2024/25

LAXMEESHA SOMAPPA
DEPARTMENT OF ELECTRICAL ENGINEERING
IIT BOMBAY

laxmeesha@ee.iitb.ac.in

LECTURE – 36 DRAM & OTHER MEMORIES

MEMORY

- □ SRAM: Digital (binary data) memory
- ☐ Is there an analog memory?
 - ☐ How about inductors and capacitors?
- ☐ Can we use capacitor as a memory?
 - □ DRAM: Dynamic RAM
 - What is dynamic?
- □ SRAM: Static RAM (volatile)
 - □ Unless you turn-off power, data is retained
- □ DRAM: Dynamic RAM (also volatile)
 - □ During power-on, if you do not do read/write operation, data is lost
 - ☐ Has to be dynamically refreshed!

MEMORY HIERARCHY IN PROCESSORS

	Capacity	Latency	Cost/GB	war same
Register	1000s of bits	20 ps	\$\$\$\$	Processor Datapath
SRAM	~10 KB-10 MB	1-10 ns	~\$1000	Memory
DRAM	~10 GB	80 ns	~\$10	Hierarchy
Flash*	~100 GB	100 us	~\$1	1/0
Hard disk*	~I TB	10 ms	~\$0.10	subsystem

^{*} non-volatile (retains contents when powered off)

SRAM vs DRAM

DRAM

- □ One NMOS, One trench capacitor → highly dense!
- ☐ Trench capacitor is in itself an area of research

DRAM READ OPERATION

- \square Say storage cap: C_S and bit line capacitance: C_B
- \square Pre-charge bit line to $V_{DD}/2$ (or $V_{DD} \rightarrow$ both designs exist, power saving in half- V_{DD})

DRAM READ

- □ Read is destructive: write back after a read from a buffer (Sense Amp output after read)
- ☐ After every read, mandatory write of the read data back to the row (before next read operation)

DRAM REFRESH

☐ If DRAM is not accessed: capacitor loses its content (leaky analog memory!)

- ☐ Therefore, DRAM must be regularly read/written
 - ☐ That is periodically perform a refresh
- □ DRAM refresh policies (to be handled by the memory controller):
 - ☐ Burst: stop all read/write access and refresh all content
 - ☐ Distributed: refresh one row at a time in a time-division-multiplexing

Typical DRAM Organization

- Each DRAM: Multiple banks (for high bandwidth)
- ☐ Each DRAM: has 8-bits
- ☐ Each Rank: has 8-DRAM chips (64-bits)
- One additional DRAM for 8-bit ECC (error correction code)
- ☐ Read up on using banks in DRAM for high bandwidth using interleaved address map

SERIAL MEMORY

- ☐ Serial access memory: do not use addressing (example: 1-bit DFF)
- ☐ Following types:
 - ☐ Shift registers
 - ☐ SIPO: Serial-In Parallel-Out
 - ☐ PISO: Parallel-In Serial-Out
 - ☐ Queues (FIFO, LIFO etc).

SHIFT REGISTERS

- □ Delay in data storage (example Z⁻¹ realization in DSP)
- ☐ Beware of hold violations !!!

- □ DFF: not area efficient
- ☐ For higher density, use SRAMs
 - ☐ Move the pointers to read and write address

SIPO AND PISO

□ SIPO: 1-bit shift register → after N cycles → N bits parallel output

□ PISO: Load N bit parallel data when shift = 0, then shift one bit per clk

QUEUES

- ☐ FIFO/LIFO: built using SRAMs and counters
- ☐ Two counters: Read & Write pointer (RP, WP)
- ☐ FIFO:
 - ☐ Initialize RP = WP (Queue is empty)
 - ☐ Increment WP counter after every write
 - ☐ Increment RP counter after every read
 - ☐ Generate FULL signal based on WP and RP
- LIFO:
 - ☐ Typically called "Stack"
 - ☐ A single pointer (P) for read and write
 - □ Depending on ascending/descending stack → increment decrement address after write/read

