Autómatos Finitos determinísticos (DFA) (revisão)

- **3.1** Seja B a linguagem das palavras de alfabeto $\{0,1\}$ que não terminam em 101 nem em 00. Por exemplo 11001010, 111010 e 10111000001 pertencem a B, mas 11101 e 00011000 não pertencem.
 - (a) Descreve um autómato finito determinístico completo que reconheça ${\cal B}.$
 - (b) Para cada um dos estados do autómato descreve informalmente a linguagem correspondente.
- **3.2** Seja C a linguagem das palavras de alfabeto $\{c,d\}$ que têm no máximo uma ocorrência da subpalavra ccc e que não terminam em dc. Por exemplo dddccdcccc, cc e dddccdcccddd pertencem a C, mas dccccd e ccccdcc não pertencem.
 - (a) Descreve um autómato finito determinístico completo que reconheça C.
 - (b) Para cada um dos estados do autómato descreve informalmente a linguagem correspondente.
- **3.3** Seja D a linguagem das palavras de alfabeto $\{0,1\}$ que não começam por 100 e têm no máximo uma ocorrência da sub-palavra 111. Por exemplo 1011011100, 111000110 e 10101011000 pertencem a D, mas 1011110 e 11101110 não pertencem.
 - (a) Descreve um autómato finito determinístico completo que reconheça D.
 - (b) Para cada um dos estados do autómato descreve informalmente a linguagem correspondente.
- **3.4** Considera o seguinte autómato finito não-determinístico E definido no alfabeto $\{a,b\}$.

- (a) Descreve L(E) e indica uma palavra que pertença a L(E) e outra que não pertença.
- (b) Usando o método de construção de subconjuntos, determina um autómato finito determinístico equivalente a E. Indica claramente a que subconjuntos de estados de E corresponde cada estado do novo autómato.

Autómatos finitos não-determinísticos (NFA) e autómatos finitos não determinísticos com transições ϵ (NFA $_{\epsilon}$)

3.5 Considera os autómatos finitos $n\tilde{a}o$ -determinísticos representados pelos seguintes diagramas:

Diz quais das seguintes palavras são aceites por \mathcal{A} ou \mathcal{B} :

- (a) aa
- (b) aba
- (c) abba
- (d) bba
- (e) abab
- **3.6** Constrói um autómato finito $n\tilde{a}o$ -determinístico que reconheça a linguagem do alfabeto $\Sigma = \{0, 1\}$ das palavras com um 1 na terceira posição a contar do fim.
- 3.7 Considera o seguinte autómato finito não-determinístico representado pelo seguinte diagrama:

Converte, pela construção dos subconjuntos, o autómato num autómato finito determinístico.

3.8 Seja $\mathcal A$ o autómato finito de alfabeto $\{a,b,c\}$ representado pelo diagrama seguinte.

- (a) Qual é a linguagem reconhecida pelo autómato A? Porquê?
- (b) Usando o método da construção de subconjuntos, determina um autómato determinístico que seja equivalente a \mathcal{A} .
- (c) Recorda que se um dado autómato determinístico $(S, \Sigma, \delta, s_0, F)$ em que δ é uma função total (não encrava), reconhece L, então o autómato $(S, \Sigma, \delta, s_0, S \setminus F)$ reconhece $\Sigma^* \setminus L$ (isto é, a linguagem complementar de L).

Por que é que a linguagem reconhecida pelo autómato seguinte não é a complementar da linguagem reconhecida por A?

- \star 3.9 Descreve um autómato finito determinístico que reconheça a linguagem A das palavras de alfabeto $\{0,1\}$ em que não ocorrem sequências pares de 0's imediatamente à esquerda de sequências ímpares de 1's.
 - 3.10 Considera o seguinte autómato finito não-determinístico representado pelo seguinte diagrama:

- (a) Calcula o fecho- ϵ de cada estado.
- (b) Usando a construção por subconjuntos, determina um autómato finito determinístico equivalente.
- **3.11** Considera o seguinte autómato finito não-determinístico \mathcal{A} definido em $\Sigma = \{a, b\}$:

- (a) Indica, justificando, uma palavra de Σ^* que pertence a L(A) e uma que não pertença.
- (b) Descreve informalmente L(A).
- (c) Usando o método de construção de subconjuntos, determina um autómato finito determinístico equivalente a \mathcal{A} .
- **3.12** Seja $L \subseteq \{0,1\}^*$ a linguagem das palavras que contém um par de 0s separados por uma subpalavra de comprimento 5k para algum k > 0. Por exemplo, 010110000000, $101010101000010 \in L$. Constrói um autómato finito não determinístico que reconhece L.

3.13 Considera o autómato finito com transições por ϵ , $(\{s_0, s_1, s_2\}, \{a, b, c\}, \delta, s_0, \{s_2\})$ com a seguinte função de transição δ :

	ϵ	a	b	c
s_0	$ \begin{cases} \{s_1, s_2\} \\ \emptyset \\ \emptyset \end{cases} $	Ø	$\{s_1\}$	$ \begin{cases} s_2 \\ s_0, s_1 \\ \emptyset \end{cases} $
s_1	Ø	$\{s_0\}$	$\{s_2\}$	$\{s_0, s_1\}$
s_2	Ø	Ø	Ø	Ø

- (a) Apresenta o diagrama que descreve o autómato.
- (b) Calcula o fecho- ϵ de cada estado.
- (c) Determina todas as palavras com comprimento ≤ 3 aceites pelo autómato.
- (d) Determina um autómato finito determinístico completo equivalente.
- **3.14** Considera o autómato finito não determinístico $\mathcal{A} = (\{s_0, s_1, s_2, s_3, s_4, s_5\}, \{0, 1\}, \delta, s_0, \{s_2, s_4\}),$ onde a função de transição δ é definida pela tabela seguinte:

	ϵ	0	1
$\rightarrow s_0$	$\{s_2, s_4\}$	Ø	Ø
s_1	Ø	Ø	$\{s_3\}$
$\star s_2$	Ø	$\{s_5\}$	Ø
s_3	$\{s_4\}$	Ø	Ø
$\star s_4$	Ø	$\{s_1\}$	Ø
s_5	Ø	$\{s_2\}$	Ø

- (a) Apresenta o diagrama que descreve o autómato e diz quais das seguintes palavras são aceites por \mathcal{A} : 0001, 010101 e 00000
- (b) Descreve a linguagem reconhecida por \mathcal{A} , eventualmente usando uma expressão regular.
- (c) Determina o fecho por ϵ de cada estado de \mathcal{A} .
- (d) Usando o método de construção de subconjuntos, determina um autómato finito determinístico completo equivalente a \mathcal{A} .
- * 3.15 Considera o autómato finito $(\{s_0, s_1, s_2, s_3, s_4\}, \{a, b\}, \delta, s_0, \{s_4\})$ com a seguinte função de transição:

	ϵ	a	b
$\rightarrow s_0$	Ø	$\{s_0, s_1\}$	$\{s_2\}$
s_1	Ø	Ø	$\{s_3\}$
s_2	$\{s_1\}$	Ø	Ø
s_3	Ø	$\{s_1, s_4\}$ $\{s_1\}$	$\{s_4\}$
$\star s_4$	Ø	$\{s_1\}$	Ø

- (a) Para cada uma das seguintes palavras indica se são aceites ou não pelo autómato:
 - i) bbab
 - ii) aaaaba
 - iii) ababab
- (b) Descreve a linguagem aceite pelo autómato.
- (c) Determina o autómato finito determinístico que reconhece a linguagem complementar desta.
- * 3.16 Considera o autómato finito $(\{s_0, s_1, s_2, s_3, \}, \{a, b\}, \delta, s_0, \{s_0, s_3\})$ com a seguinte função de transição:

	ϵ	a	b
$\rightarrow \star s_0$	$\{s_1, s_2\}$	$\{s_0\}$	Ø
s_1	Ø	Ø	$\{s_3\}$
s_2	Ø	$\{s_0\}$	Ø
$s_2 \\ \star s_3$	Ø	$\{s_0\}$ $\{s_1, s_2\}$	Ø

- (a) Para cada uma das seguintes palavras indica se são aceites ou não pelo autómato:
 - i) abaa
 - ii) baaa
 - iii) ababba
- (b) Descreve a linguagem aceite pelo autómato.
- (c) Determina o autómato finito determinístico que reconhece a linguagem complementar desta.

Resolução de exercícios escolhidos

3.9 (a) É aparentemente demasiado complicado encontrar directamente um autómato finito determinístico que reconheça esta linguagem... e portanto em vez disso, passamos rapidamente à força bruta... primeiro encontramos um autómato finito não determinístico que reconheça a linguagem complementar desta: ou seja a linguagem formada pelas palavras que contêm uma sequência par de 0's imediatamente à esquerda de uma sequência ímpar de 1's. Um autómato não determinístico para esta linguagem é:

Comecemos por encontrar um autómato finito determinístico completo equivalente a este:

		0		1	
$\rightarrow \{a,b,c\}$	(A)	$\{b,d\}$	(B)	$\{b,c\}$	(C)
$\{b,d\}$	(B)	$\{b,e\}$	(D)	$\{b,c\}$	(C)
$\{b,c\}$	(C)	$\{b,d\}$	(B)	$\{b,c\}$	(C)
$\{b,e\}$	(D)	$\{b,f\}$	(E)	$\{b,c,g\}$	(F)
$\{b,f\}$	(E)	$\{b,e\}$	(D)	$\{b,c\}$	(C)
$\star \{b,c,g\}$	(F)	$\{b,d,i\}$	(G)	$\{b,c,h\}$	(H)
$\star \{b,d,i\}$	(G)	$\{b,e,i\}$	(I)	$\{b,c,i\}$	(J)
$\{b,c,h\}$	(H)	$\{b,d\}$	(B)	$\{b,c,g\}$	(F)
$\star \{b,e,i\}$	(I)	$\{b, f, i\}$	(K)	$\{b,c,g,i\}$	(L)
$\star \{b,c,i\}$	(J)	$\{b,d,i\}$	(G)	$\{b,c,i\}$	(J)
$\star \{b, f, i\}$	(K)	$\{b,e,i\}$	(I)	$\{b,c,i\}$	(J)
$\star \{b,c,g,i\}$	(L)	$\{b,d,i\}$	(G)	$\{b,c,h,i\}$	(M)
$\star \{b,c,h,i\}$	(M)	$\{b,d,i\}$	(G)	$\{b,c,g,i\}$	(M)

Como este autómato é completo, o autómato que reconhece a linguagem complementar (o nosso objectivo!) é:

Este autómato é equivalente a este outro, muito mais simples¹:

 $^{^{1}\}mathrm{Que}$ se obtém minimizando o anterior.

...o que mostra que talvez pensar um pouco antes de atacar um problema, compense...

- **3.15** (a) i) bbab, não.
 - ii) aaaaba, sim.
 - iii) ababab, não.
 - (b) $\{a\}^*\{a,b\}\{ba\}^*\{b\}\{a,b\}\{(\}\{ab\}\{ab\}^*\{a,b\})^*$

(c)

δ'	a	b
$\rightarrow \{s_0\}$	$\{s_0, s_1\}$	$\{s_1, s_2\}$
$\{s_0, s_1\}$	$\{s_0, s_1\}$	$\{s_1, s_2, s_3\}$
$\{s_1, s_2\}$	Ø	$\{s_3\}$
$\{s_1, s_2, s_3\}$	$\{s_1, s_4\}$	$\{s_3,s_4\}$
$\{s_3\}$	$\{s_1, s_4\}$	$\{s_4\}$
$\star \{s_1, s_4\}$	$\{s_1\}$	$\{s_3\}$
$\star \{s_3, s_4\}$	$\{s_1, s_4\}$	$\{s_4\}$
$\star \{s_4\}$	$\{s_1\}$	Ø
$\{s_1\}$	Ø	$\{s_3\}$

Ou seja, tomando $s_0'=\{s_0\},\ s_1'=\{s_0,s_1\},\ s_2'=\{s_1,s_2\},\ s_3'=\{s_1,s_2,s_3\},\ s_4'=\{s_3\},\ s_5'=\{s_1,s_4\},\ s_6'=\{s_3,s_4\},\ s_7'=\{s_4\},\ s_8'=\{s_1\},\ o$ autómato finito determinístico equivalente é

$$(\{s_0', s_1', s_2', s_3', s_4', s_5', s_6', s_7', s_8'\}, \{a, b\}, \delta', s_0', \{s_5', s_6', s_7'\}).$$

Tornando este autómato completo (para poder encontrar o autómato que reconhece a linguagem complementar), e transformando os estados finais em não-finais e *vice versa*, vem:

- **3.16** (a) i) *abaa*, sim.
 - ii) baaa, sim.
 - iii) ababba, não.
 - (b) $(\{a\}^*\{b\}\{ab\}^*\{aa,\epsilon\})^*$

(c)

δ'	a	b
	$\{s_0, s_1, s_2\}$	$\{s_3\}$
$\star \{s_3\}$	$\{s_1, s_2\}$	Ø
$\{s_1, s_2\}$	$\{s_0, s_1, s_2\}$	$\{s_3\}$

Ou seja, tomando $s_0'=\{s_0,s_1,s_2\},\ s_1'=\{s_3\},\ s_2'=\{s_1,s_2\},$ o autómato determinístico equivalente é $(\{s_0',s_1',s_2'\},\{a,b\},\delta',s_0',\{s_0',s_1'\})$

 $(\{s_0, s_1, s_2\}, \{u, v\}, v, s_0, \{s_0, s_1\})$

Tornando este autómato completo (para poder encontrar o autómato que reconhece a linguagem complementar), e transformando os estados finais em não-finais e *vice versa*, vem:

