Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

## Звіт з дисципліни

«Прикладна теорія цифрових автоматів» Лабораторна робота № 8 **Тема: "**Автомат Мура"

> Роботу виконав студент 3 курсу КІ-СА, ФРЕКС Мургашов Г.Е.

### Хід виконання роботи:

### Варіант

| 0        | 1     | 0     | 1     | 0     | 1     | 0     | 1     | 1     | 1     |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $h_{10}$ | $h_9$ | $h_8$ | $h_7$ | $h_6$ | $h_5$ | $h_4$ | $h_3$ | $h_2$ | $h_1$ |

| 0 | 1 | 0 | 1 | 0 | обчислює суму парних позитивних<br>елементів у масивах A(n,m), B(p) |  |  |
|---|---|---|---|---|---------------------------------------------------------------------|--|--|
| 1 | l |   | 0 |   | АБО-НЕ                                                              |  |  |
|   | 1 | _ | 0 |   | П                                                                   |  |  |

## Завдання

Розробити функціональну схему керуючого автомата Мура, що **обчислює суму парних позитивних елементів у масивах А(n,m), В(p).** 

Синтезувати на елементах АБО-НЕ

В якості пам'яті використайте ЈК-тригери

## Схема алгоритму:



# Табличка кодування операційних та умовних вершин.

| Зміст          | Примітка                                                                                                      |
|----------------|---------------------------------------------------------------------------------------------------------------|
| sum = 0        | ініціалізація результуючого<br>значення                                                                       |
| i = 1          | ініціалізація лічильника<br>кількості рядків                                                                  |
| n              | завантаження до                                                                                               |
| m              | відповідного регістру<br>значень розмірності матриці <b>А</b>                                                 |
| j = 1          | ініціалізація лічильника<br>кількості елементів в<br>поточному рядку                                          |
| A[i, j]        | завантаження до відповідного регістру значення елемента матриці <b>A</b>                                      |
| i += 1         | перехід до дослідження наступного рядка матриці                                                               |
| sum += A[i, j] | додавання до результуючої сумми значення елементу з масиву <b>A</b> , який задовольняє всім умовам фільтрації |
| j += 1         | перехід до дослідження наступного елемента рядка матриці                                                      |
| p              | завантаження до відповідного регістру значень розмірності матриці <b>В</b>                                    |
| B[j]           | завантаження до відповідного регістру значення елемента матриці <b>В</b>                                      |
| sum += B[j]    | додавання до результуючої сумми значення елементу з масиву <b>В</b> , який задовольняє всім умовам фільтрації |
|                | sum = 0 $i = 1$ $n$ $m$ $j = 1$ $A[i, j]$ $i += 1$ $sum += A[i, j]$ $j += 1$ $p$ $B[j]$                       |

| m <i>Y</i> <sub>13</sub> | sum                             | виведення результату                                                                                                  |
|--------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| X1                       | $i \leq n$                      | умовна вершина: так — дослідження чергового рядка масиву $A$ , ні — всі рядки досліджені                              |
| X2                       | $j \leq m$                      | умовна вершина: так — дослідження чергового елемента масиву <b>A</b> , ні — всі елементи чергового рядка досліджені   |
| X3                       | A[i,j] > 0 & $A[i,j] mod 2 = 0$ | умовна вершина: так — елемент матриці $\mathbf{A}$ $\epsilon$ додатним і парним, ні — умова фільтрації не виконується |
| X4                       | $j \leq p$                      | умовна вершина: так — дослідження чергового елемента масиву <b>B</b> , ні — всі елементи чергового рядка досліджені   |
| X5                       | B[j] > 0 & $B[j]mod2 = 0$       | умовна вершина: так — елемент матриці $\mathbf{B}$ $\epsilon$ додатним і парним, ні — умова фільтрації не виконується |

 $mY_k$  — мікрооперації, який виконує  $\emph{OA}$  (операційний автомат)  $X_l$  — сигнали, що надходять від  $\emph{OA}$  до керуючого автомату

# • Закодована мікроопераційна схема алгоритму



# Синтез автомата Мура



Граф-схема переходів керуючого автомата



# Пряма таблиця переходів-виходів автомата Мура

| <u>Початковий</u><br><u>стан</u><br><u>Sm</u> | Y (вихідний сигнал,що виробляється при переході | <u>Стан переходу</u><br><u>Sk</u> | <u>Умова переходу</u>        |
|-----------------------------------------------|-------------------------------------------------|-----------------------------------|------------------------------|
| $s_0$                                         | =                                               | $s_1$                             | <u>1</u>                     |
| $s_1$                                         | $y_1, y_2$                                      | $s_2$                             | <u>1</u>                     |
| $s_2$                                         | $y_3$                                           | $s_3$                             | <u>1</u>                     |
| $S_3$                                         | $y_4$                                           | S <sub>4</sub><br>S <sub>9</sub>  | $\frac{x_1}{\overline{x_1}}$ |
|                                               |                                                 | S <sub>5</sub>                    | $x_2$                        |
| $S_4$                                         | ${\mathcal Y}_5$                                | S <sub>8</sub>                    | $\frac{z}{\overline{x_2}}$   |
| _                                             |                                                 | s <sub>6</sub>                    | $x_3$                        |
| S <sub>5</sub>                                | $y_6$                                           | S <sub>7</sub>                    | $\overline{x_3}$             |
| s <sub>6</sub>                                | $y_8$                                           | S <sub>7</sub>                    | <u>1</u>                     |
|                                               | <i>y</i> <sub>9</sub>                           | S <sub>5</sub>                    | $x_2$                        |
| S <sub>7</sub>                                |                                                 | S <sub>8</sub>                    | $\overline{x_2}$             |
| C -                                           | 27                                              | S <sub>4</sub>                    | $x_1$                        |
| S <sub>8</sub>                                | $\mathcal{Y}_7$                                 | S <sub>9</sub>                    | $\overline{x_1}$             |
| S <sub>9</sub>                                | $y_{10}$                                        | s <sub>10</sub>                   | <u>1</u>                     |
| c                                             | 27 .                                            | s <sub>11</sub>                   | $x_4$                        |
| S <sub>10</sub>                               | ${\mathcal Y}_5$                                | S <sub>14</sub>                   | $\overline{\chi_4}$          |
| c                                             | 17                                              | S <sub>12</sub>                   | $x_5$                        |
| s <sub>11</sub>                               | $y_{11}$                                        | S <sub>13</sub>                   | $\overline{x_5}$             |
| s <sub>12</sub>                               | $y_{12}$                                        | s <sub>13</sub>                   | <u>1</u>                     |
| c                                             | 37                                              | s <sub>11</sub>                   | $x_4$                        |
| S <sub>13</sub>                               | $y_9$                                           | S <sub>14</sub>                   | $\overline{x_4}$             |
| S <sub>14</sub>                               | $y_{13}$                                        | $s_0$                             | 1                            |

Станів 15, число елементів пам'яті - 4 ЈК тригери.

|           | 00                    | <b>o1</b>             | 11                    | 10                     |
|-----------|-----------------------|-----------------------|-----------------------|------------------------|
| 00        | <b>S</b> 9            | <b>S</b> <sub>3</sub> | <b>S</b> <sub>2</sub> | <b>S</b> <sub>10</sub> |
| <b>o1</b> | <b>S</b> <sub>8</sub> | S <sub>4</sub>        | <b>S</b> <sub>1</sub> | S <sub>11</sub>        |
| 11        | <b>S</b> <sub>7</sub> | <b>S</b> 5            | $s_0$                 | <b>S</b> <sub>12</sub> |
| 10        | _                     | <b>S</b> 6            | S <sub>14</sub>       | S <sub>13</sub>        |

## Структурна таблиця переходів-виходів автомата Мура

| <u>Sm</u>              | K( <u>Sm</u> ) | Y (вихідний<br>сигнал) | <u>K(Sk)</u> | <u>Sk</u>       | <u>Умова</u><br>переходу | <u>Φ3</u> |
|------------------------|----------------|------------------------|--------------|-----------------|--------------------------|-----------|
| $s_0$                  | <u>1111</u>    | Ξ                      | 0111         | $s_1$           | <u>1</u>                 | K1        |
| $s_1$                  | 0111           | $y_{1}, y_{2}$         | 0011         | $s_2$           | <u>1</u>                 | K2        |
| S <sub>2</sub>         | 0011           | $y_3$                  | 0001         | $s_3$           | <u>1</u>                 | K3        |
| C                      | 0001           | 27                     | 0101         | S <sub>4</sub>  | $x_1$                    | J2        |
| S <sub>3</sub>         | 0001           | ${\cal Y}_4$           | 0000         | S <sub>9</sub>  | $\overline{x_1}$         | K4        |
| C                      | 0101           | 27                     | 1101         | S <sub>5</sub>  | $x_2$                    | J1        |
| S <sub>4</sub>         | 0101           | ${\cal Y}_5$           | 0100         | S <sub>8</sub>  | $\overline{x_2}$         | K4        |
| C                      | 1101           | <i>y</i> <sub>6</sub>  | 1001         | S <sub>6</sub>  | $x_3$                    | K2        |
| S <sub>5</sub>         | 1101           |                        | 1100         | S <sub>7</sub>  | $\overline{\chi_3}$      | K4        |
| s <sub>6</sub>         | 1001           | $y_8$                  | 1100         | S <sub>7</sub>  | <u>1</u>                 | K4 J2     |
|                        | 1100           | <i>y</i> <sub>9</sub>  | 1101         | S <sub>5</sub>  | $x_2$                    | J4        |
| S <sub>7</sub>         | 1100           |                        | 0100         | S <sub>8</sub>  | $\overline{x_2}$         | K1        |
|                        | 0100           |                        | 0101         | $S_4$           | $x_1$                    | J4        |
| S <sub>8</sub>         | 0100           | ${\cal Y}_7$           | 0000         | S <sub>9</sub>  | $\overline{x_1}$         | K2        |
| S <sub>9</sub>         | 0000           | $y_{10}$               | 0010         | S <sub>10</sub> | <u>1</u>                 | Ј3        |
| 0                      | 0010           | ${\cal Y}_5$           | 0110         | S <sub>11</sub> | $x_4$                    | J2        |
| S <sub>10</sub>        | 0010           |                        | 1011         | S <sub>14</sub> | $\overline{x_4}$         | J1 J4     |
| G                      | 0110           |                        | 1110         | S <sub>12</sub> | $x_5$                    | J1        |
| <i>S</i> <sub>11</sub> | 0110           | $y_{11}$               | 1010         | S <sub>13</sub> | $\overline{x_5}$         | K2 J1     |
| S <sub>12</sub>        | 1110           | <i>y</i> <sub>12</sub> | 1010         | S <sub>13</sub> | <u>1</u>                 | K2        |
|                        | 1010           |                        | 0110         | S <sub>11</sub> | $x_4$                    | K1 J2     |
| S <sub>13</sub>        | 1010           | $y_9$                  | 1011         | S <sub>14</sub> | $\overline{x_4}$         | J4        |
| S <sub>14</sub>        | 1011           | $y_{13}$               | 1111         | $s_0$           | 1                        | J2        |

#### Система рівнянь переходів

$$\frac{D_{1} = S_{10}\overline{X}_{4} \vee S_{11}X_{5} \vee S_{11}\overline{X}_{5}}{K_{1}} \vee S_{4}X_{2} = S_{10}\overline{X}_{4} \vee S_{4}X_{2} = S_{11}\sqrt{S_{10}}\times X_{4}) \vee (S_{4}\vee \overline{X}_{2})}$$

$$\frac{K_{1}}{K_{1}} = S_{4}\overline{X}_{2} \vee S_{13}X_{4} \vee S_{0} = S_{0} \vee (\overline{S_{1}}\vee X_{2}) \vee (\overline{S_{12}}\vee \overline{X}_{4})$$

$$\frac{D_{2}}{D_{2}} = S_{3}X_{1} \vee S_{6}\vee S_{14}\vee S_{10}X_{4} \vee S_{13}X_{4}, = \overline{(S_{3}\vee \overline{X}_{1})}\vee S_{6}\vee S_{44}\vee (\overline{X_{4}}\vee (S_{10}\vee S_{13}))$$

$$\frac{D_{3}}{D_{2}} = S_{9} \vee K_{3} = S_{2}$$

$$\frac{D_{4}}{D_{2}} = S_{4}\nabla_{2} \vee S_{8}\nabla_{1} \vee S_{10}\overline{X}_{4} \vee S_{13}\overline{X}_{4}, = \overline{(S_{3}\vee \overline{X}_{1})}\vee (\overline{S_{3}\vee \overline{X}_{1}})\vee (\overline{X_{4}}\vee (S_{10}\vee S_{13}))$$

$$K_{2} = S_{1}\nabla_{3}\overline{X}_{1}\vee S_{11}\overline{X}_{5}\vee S_{12} = S_{1}\vee S_{12}\vee (\overline{S_{3}}\vee X_{1})\vee (\overline{S_{11}}\vee X_{5})$$

#### Система рівнянь виходів

$$\begin{cases} y_1 = s_1 \\ y_2 = s_1 \\ y_3 = s_2 \\ y_4 = s_3 \\ y_5 = s_4 \cup s_{10} \\ y_6 = s_5 \\ y_7 = s_8 \\ y_8 = s_6 \\ y_9 = s_7 \cup s_{13} \\ y_{10} = s_9 \\ y_{11} = s_{11} \\ y_{12} = s_{12} \\ y_{13} = s_{14} \end{cases}$$

## Побудова функціональної схеми автомата

#### Вся схема повністю



## Частина із тригерами та дешифратором для станів:



## Інвертори для отриманих станів:



## Схеми для функцій збудження:

## J1, K2



J2, J4



J4, K1, J3, K3



### Частина схеми із входами і виходами:



### Графіки із станами, входами та виходами:



**Висновок:** В даній лабораторній роботі було побудована функціональна схема керуючого автомата Мура, який керує виконанням алгоритму знаходження парних невід'ємних елементів двох заданих масивів. Були побудовані схеми переходів станів, закодовано стани для ЈК-тригера. Для побудови схеми було використано елементи «АБО-НІ»