Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Отчет

По лабораторной работе №3

По дисциплине «Основы профессиональной деятельности»

Вариант 7810

Выполнил: Чураков А. А., группа Р3131

Лектор: Клименков Сергей Викторович

Практик: Абузов Ярослав Александрович

Санкт-Петербург

~ 2024 ~

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

265: 266: 267: 268: 269: 26A: 26C: 26C: 26C: 26E: 26F:	+	0275 A000 E000 0200 EEFD AF03 EEFA 4EF7 EEF7 ABF6		273: 274: 275: 276: 277:	CEFB 0100 0000 0000 0280

No	Адрес	Код	Мнемоника	Описание
		команды		
1	265	0275	ARR_START_EL	Адрес первого элемента массива
			старт	
2	266	A000	ARR_CUR_EL	Адрес текущего элемента (начиная с
				последнего - 1)
3	267	E000	ARR_LEN	Длина массива
4	268	E000	COUNTER	Счетчик ненулевых элементов
5	269	0200	CLA	Очистка аккумулятора
6	26A	EEFD	ST (IP-3) (268)	AC → RES ₍₂₆₈₎
				Запись значения аккумулятора в ячейку
				(IP-3) (268)
7	26B	AF03	LD (#3)	0x03 → AC
				Загрузить число 0х03 в аккумулятор
8	26C	EEFA	ST (IP-6)	0x03 → ARR_LEN
				Запись числа 0х03 в ячейку (ІР-6) (267)
9	26D	4EF7	ADD (IP-9)	AC + ARR_START_EL → AC
10	26E	EEF7	ST (IP-9)	AC → ARR_CUR_EL
11	26F	ABF6	LD -(IP-10)	ARR_CUR_EL → AC
				Косвенная загрузка значения из ячейки
				, на которую указывает IP-10 (266) с
				предекрементом
12	270	F001	BZS (IP+1)	IF (Z==1) → IP + 1 + 1
				Если значение текущего
				рассматриваемого элемента массива
				равно 0 то пропустить одну
				конструкцию
13	271	7AF6	CMP (IP-10)+	Инкремент сечтчика (только в 1
				команду)

14	272	8267	LOOP 267	Уменьшает значение в ячейке 267 на 1			
				и сравнивает его с 0			
15	273	CEFB	JUMP (IP-5)	IP-5 → IP			
				Прямой относительный прыжок на			
				адрес 26F			
16	274	0100	HLT	Остановка программы			
17	275	0000		Элементы массива			
18	276	0000					
19	277	0200					

Назначение программы

Программа считает количество ненулевых элементов массива

Область представления и ОДЗ:

Область представления:

ARR_START_EL, ARR_CUR_EL – 11 разрядные беззнаковые числа, адреса в БЭВМ

ARR_LEN, COUNTER – 16 разрядные беззнаковые целые числа

ОД3:

ARR_START_EL: [0: 268 - ARR_LEN] или [275; 7FF - ARR_LEN]

ARR_CUR_EL: [ARR_START_EL; ARR_START_EL + ARR_LEN]

ARR_LEN: [0; 7F] т.к используется прямая загрузка

COUNTER: [0; ARR_LEN]

ARRAY ELEMENTS: [-2¹⁵; 2¹⁵-1]

Трассировка

Адрес	Знчн	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр_1	3нчн_2
269	0200	26A	0200	269	0200	0	0269	0	0100		
26A	EEFD	26B	EEFD	268	0000	0	FFFD	0	0100	268	0
26B	AF03	26C	AF03	26B	0003	0	0003	0003	0000		
26C	EEFA	26D	EEFA	267	0003	0	FFFA	0003	0000	267	0003
26D	4EF7	26E	4EF7	265	0275	0	FFF7	0278	0000		
26E	EEF7	26F	EEF7	266	0278	0	FFF7	0278	0000	266	0278
26F	ABF6	270	ABF6	277	0200	0	FFF6	0200	0000	266	0277
270	F001	271	F001	270	F001	0	0270	0200	0000		
271	7AF6	272	7AF6	000	0000	0	FFF6	0200	0001	268	0001
272	8267	273	8267	267	0002	0	0001	0200	0001	267	0002
273	CEFB	26F	CEFB	273	026F	0	FFFB	0200	0001		
26F	ABF6	270	ABF6	276	0000	0	FFF6	0000	0101	266	0276
270	F001	272	F001	270	F001	0	0001	0000	0101		
272	8267	273	8267	267	0001	0	0000	0000	0101	267	0001
273	CEFB	26F	CEFB	273	026F	0	FFFB	0000	0101		
26F	ABF6	270	ABF6	275	0000	0	FFF6	0000	0101	266	0275
270	F001	272	F001	270	F001	0	0001	0000	0101		
272	8267	274	8267	267	0000	0	FFFF	0000	0101	267	0000

Вывод

В ходе данной лабораторной работы я познакомился с работой с массивом и командами ветвления.