Natural Language Processing (NLP) Extra Concepts

NLP

- Machine translation.
- Information retrieval (e.g., search engines).
- Sentiment analysis (e.g., positive, negative, happiness, sadness, etc.).
- Information extraction (e.g., summary, keywords, etc.).
- Text generation.

Concept: Tokens

- Individual pieces of text.
- E.g.,
 - Words.
 - Punctuation.
 - Names (ChatGPT...).
 - o Abbreviations (LSTM, USA...).

- 1. Massive amounts of data.
- 2. Significant computing power.
- 3. Word embeddings.
- 4. Self-attention.
- 5. Transformers.
- 6. Reinforcement Learning from Human Feedback (RLHF).

- 1. Massive amounts of data.
- 2. Significant computing power.
- 3. Word embeddings. → 1980; 2013 (word2vec)
- 4. Self-attention. → 2014; 2017 (transformers)
- 5. Transformers. → 2017
- 6. Reinforcement Learning from Human Feedback (RLHF).

- 1. Massive amounts of data.
- 2. Significant computing power.
- 3. Word embeddings.
- 4. Self-attention.
- 5. Transformers.
- 6. Reinforcement Learning from Human Feedback (RLHF).

Word embedding

- Representation of words, typically vectors.
 - Words that share common contexts in the corpus should have similar vectors.
 - More dissimilar words are located further
- word2vec: Model that produces word embeddings.

Word2vec king man woman

Word2vec

Word2vec

Model architectures:

- Continuous Bag-Of-Words (CBOW).
- Skip-gram.

1. Identify all V unique words in the corpus.

- 1. Identify all V unique words in the corpus.
- 2. Choose the dimensionality *N* for your word embeddings.

- 1. Identify all V unique words in the corpus.
- 2. Choose the dimensionality *N* for your word embeddings.
- 3. Neural Network architecture:
 - a. Input layer of size V.
 - b. Hidden layer of size *N*.
 - c. Output layer of size V.

- 1. Identify all V unique words in the corpus.
- 2. Choose the dimensionality *N* for your word embeddings.
- 3. Neural Network architecture:
 - a. Input layer of size V.
 - b. Hidden layer of size *N*.
 - c. Output layer of size V.
- 4. Task:
 - a. Input: vector of size *V*, representing the context of a word.
 - b. Output: Predict the desired word.

- Assuming 2 words as context, the input to the NN is:
 - Compute the one-hot encoded vector of length *V* for each context word.
 - Compute the average of such vectors.

- Assuming 2 words as context, the input to the NN is:
 - Compute the one-hot encoded vector of length V for each context word.
 - Compute the average of such vectors.
- Example: "the fierce gray wolf hunts"
 - Target: "gray"
 - Context of 2:
 - "fierce" \rightarrow [0, 1, 0, 0, 0]
 - \blacksquare "wolf" \rightarrow [0, 0, 0, 1, 0]
 - ONN input = average of vectors "fierce" and "wolf":
 - input \rightarrow [0, ½, 0, ½, 0]

Figure 1: A simple CBOW model with only one word in the context

- After training with a lot of text, the NN has learned the weights of abstract representations of words and context.
- For each word in the corpus, the embedded vector representation of length *N* is:
 - The weights associated to that word, from the input to the hidden layer.
 - E.g.,
 - The one-hot encoded vector of "wolf" is [0, 0, 0, 1, 0].
 - The embedded vector for "wolf" is the *N* weights associated with the 4th input neuron.

Resources

https://www.youtube.com/watch?v=UqRCEmrv1gQ

- 1. Massive amounts of data.
- 2. Significant computing power.
- 3. Word embeddings.
- 4. Self-attention.
- 5. Transformers.
- 6. Reinforcement Learning from Human Feedback (RLHF).

- Applied in a sequence of words.
- Allows to pay attention to similar/important words in the sequence.
- In contrast, RNNs process words sequentially, favoring more recent words.

- Applied in a sequence of words.
- Allows to pay attention to similar/important words in the sequence.
- In contrast, RNNs process words sequentially, favoring more recent words.

The young <u>boy</u> always carries his toy car with ? ——him

- Given a sequence of words,
- 3 weight matrices to optimize:
 - Query: used to compare words against other words.
 - Key: helps in measuring the relevance between words depending on context.
 - Value: the resulting vectors hold contextual information of each word.

Attention Matrix

- Pros:
 - Contextual understanding.
 - Operations between tokens can be applied in parallel.
- Cons:
 - Computationally and memory intensive for long sequences.
 - Does not consider sequential (positional) importance.

Resources

• https://www.linkedin.com/pulse/gpt-4-explaining-self-attention-mechanism-fatos-ismali/

- 1. Massive amounts of data.
- 2. Significant computing power.
- 3. Word embeddings.
- 4. Self-attention.
- 5. Transformers.
- 6. Reinforcement Learning from Human Feedback (RLHF).

ChatGPT Transformers

ChatGPT Transformers

Get embedded vectors as input and transform them based on word positioning in the context.

Common Transformer

Encoder:

- Processes input.
- Creates a representation of meaning and context.

Decoder:

- Takes encoder's output as input.
- Generates output.

GPT 3 – Architecture

Transformer layers	96
Token size (vector)	12,288
Context/Sequence length	2,048
Num. heads (total)	96
Parameters (weights)	175·10°

GPT 3 – Full Architecture

https://dugas.ch/artificial_curiosity/img/GPT_architecture/fullarch.png

GPT – Training

	Pre-training	Post-training
Data quantity	~ the whole internet (trillions of words)	Small (milions?)
Data quality	Low	High
Goal	Most "learning" occurs	Makes model usable

GPT 3 – Tokens

GPT-3 training data^{[1]:9}

Dataset	# tokens	Proportion within training
Common Crawl	410 billion	60%
WebText2	19 billion	22%
Books1	12 billion	8%
Books2	55 billion	8%
Wikipedia	3 billion	3%

Resources

- https://www.linkedin.com/pulse/gpt-4-explaining-self-attention-mechanism-fatos-ismali/
- https://towardsdatascience.com/all-you-need-to-know-about-attention-and-transformers-in-dep-th-understanding-part-1-552f0b41d021
- https://docs.google.com/presentation/d/1ZXFIhYczos679r70Yu8vV9uO6B1J0ztzeDxbnBxD1S0
 /mobilepresent?pli=1&slide=id.g31364026ad 3 2

The success of ChatGPT

- 1. Massive amounts of data.
- 2. Significant computing power.
- 3. Word embeddings.
- 4. Self-attention.
- 5. Transformers.
- 6. Reinforcement Learning from Human Feedback (RLHF).

RLHF

- Trains a model based on human feedback.
- Good human feedback → High reward (low error).
- Bad human feedback → Low reward (high error).

Well-known Architectures using Transformers

- GPT3
- BERT
- T5
- LLaMa
- ...
- https://huggingface.co/models?other=LLM&sort=trending

Huggingface

- Use trained models: https://huggingface.co/learn/nlp-course/chapter1/3
- Transfer learning: https://huggingface.co/docs/transformers/training