

SC8885S&SC8886S系列应用注意事项

Southchip Application Department

Jun. 2022

线路建议

- 输入电流sense 滤波网络选型电路,滤波电阻=5.1Ω~10Ω,滤波电容NC
- 电池端sense 滤波网络选型建议为10Ω+100nF
- 输入端VBUS高频电容建议值为10nF/50V
- IADPT需要放置对应阻值,匹配不同感值电感。典型值Riadpt=137kΩ,L=2.2μH
- ILIM_HIZ分压网络,不建议放置太大的滤波电容,建议值为100pF
- 电池节数配置网络,需要根据实际节数配置。1-4节典型分压比例为:25%/40%/55%/75%

线路建议

- 补偿网络选型建议
- COMP1= 220pF+68kΩ
- COMP2= 330pF+27kΩ

RC补偿网络可以根据板上实测情况,进行适当调整。

- 输入输出电容建议
- 输入电容有效值超过22uF

线路建议

• 输入输出电容建议

输入功率 等级		输入VBUS电容		输出VSYS电容					
	电池节数	MLC	C电容	POSC	AP电容	MLC	C电容	POSC	AP电容
13-10		min	typ	min	typ	min	typ	min	typ
	2cells	40	60	0	0	60	80	22	22
45W	3cells	40	60	0	0	60	80	22	22
	4cells	60	80	22	33	60	80	22	33
65W	2cells	40	60	0	0	60	80	22	22
	3cells	40	60	0	0	60	80	22	22
	4cells	60	80	22	33	60	80	22	33
	2cells	80	100	22	33	80	100	22	22
90W	3cells	60	80	22	33	80	100	22	22
	4cells	60	80	22	33	80	100	22	33
135W	2cells	80	100	22	47	80	100	22	47
	3cells	80	100	22	33	80	100	22	33
	4cells	60	80	22	33	80	100	22	33

音频噪声抑制方法

音频噪声产生原因分析:

音频噪声治理方法:

思路一:减少PCB板震动幅值[1]

- MLCC电容PCB板正反面对称放置
- 选用0402封装MLCC电容
- 不使用MLCC电容,使用POSCAP

思路二:减少MLCC电容纹波

- COMP1调整到270k+56pF
- 增加SYSTEM有效电容容值

[1]. Reference: :575216_ANM_Options_ValDirections_TA_WW12_2024

Sense电阻选型建议

SC8885S/SC8886S支持10m Ω /5m Ω sense电阻应用

若需要**更高的充放电效率**,可以采用5mΩ sense电阻 需同步配置相关寄存器,见右图。

若需要**更高的充放电电流精度**,建议采用10mΩ sense电阻。 如ChargeCurrent=2A,精度对比如下:

Rsense= $10m\Omega$, Accuracy= $\pm 3\%$

Rsense= $5m\Omega$, Accuracy= $\pm 5\%$

SC8885S	寄存器地址	SC8885S
输入sense电阻	Reg0x30<11>	0: 10mΩ(Default) 1: 5mΩ
充放电sense电路	Reg0x30<10>	0: 10mΩ(Default) 1: 5mΩ

SC8886S	寄存器地址	SC8886S
输入sense电阻	Reg0x31<3>	0: 10mΩ(Default)
		1: 5mΩ
充放电sense电路	Reg0x31<2>	0: 10mΩ(Default)
76/JX-25011601244	11090/1011	1: 5mΩ

SC8885S/SC8886S替换注意事项

软件差异: Manufacturer ID和Device ID

SMBus version	寄存器地址	SC8885S	Xx25710
Manufacturer ID	Reg0xFE<7:0>	0x03	0x40
Device ID	Reg0xFF<7:0>	SC8885S: 0x68	BQ25710: 0x89

I2C version	寄存器地址	SC8886S	xx25713
Manufacturer ID	Reg0x2E<7:0>	0x03	0x40
Device ID	Reg0x2F<7:0>	SC8886S: 0x66	BQ25713: 0x88

SC8885S/SC8886S替换注意事项

软件差异:向下兼容替换xx700A/xx703A系列

SMBus version	寄存器地址	SC8885SA	xx25700A
Prochot_status	Reg0x21	bit<14:11>需要实际情况配置	
ChargeOption3()	Reg0x32	bit<7:2> 需要根据配置	
ProchotOption0()	Reg0x33	bit<7:2>需要配置	

I2C version	寄存器地址	SC8886SA	xx25703A
Prochot_status	Reg0x23	bit<6:3>根据实际情况配置	
ChargeOption3()	Reg0x34	bit<7:2>根据实际情况配置	
ProchotOption0()	Reg0x36	bit<7:2>根据实际情况配置	

SC8885S/SC8886S替换注意事项

软件差异: ADC_IN

SMBus version	寄存器地址	SC8885S	xx25710
ADC_IN	Reg0x25<15:8>	7-bit digital output <14:8>: 0~6.4A	8-bit digital output <15:8>: 0~6.4A

I2C version	寄存器地址	SC8886S	xx25713
ADC_IN	Reg0x2B<7:0>	7-bit digital output	8-bit digital output
		<14:8>: 0~6.4A	<15:8>: 0~12.75A

上电时序建议和要求

SC8885S/SC8886S上电后,会根据 VBUS/ILIM_HIZ/CELL_PRES/IADPT电阻 进行VINDPM/IINDPM/Vsysmin/ChargeVoltage/电感选型配置,所以建议HOST在SC8885S/SC8886S自身初始化完成后,开始配置寄存器

a. 适配器供电

- 上电后配置寄存器时序
 - VBUS上电后, 50ms后AC_STAT=1→ 等待100ms→ 配置VINDPM/ChargeCurrent (若不配置则VINDPM=VBUS-1.28V)
- Normal mode转 HI-Z 模式
 - 将EN_HIZ bit设置为1 或者 ILIM_HIZ pin拉低,IC进入HI-Z 模式 (此时芯片停止工作,系统由电池供电)
- HI-Z 模式转 Normal mode
 - 将EN_HIZ bit设置为0 且 ILIM_HIZ pin拉高, IC退出HI-Z 模式

b. 电池单独供电时

- Low power mode 模式转 Performance mode
 - 将EN_LWPWR bit写0, 进入Performance mode
- 电池单独在时,不配置VINDPM/充电电流→ 检测到适配器接入后,AC_STAT=1,等待100ms→ 配置VINDPM/ChargeCurrent

独立比较器

基准: +1.2V/+2.3V可配置

极性: 可配置

Deglitch time:可配置

比较器用途:

- □ 可以灵活地监测任意电压, 使能ADC_CMPIN通道即可
- □ 用于触发Force_latchoff, 当比较器输出COPOUT toggles to 0时, 自动latchoff charger
- □ 用于触发/PROCHOT(低功耗模式和正常模式)。如在电池单独供电时,也可以监测Vsys电压触发/PROCHOT,用于提醒CPU电池电量不足,从而降功耗

注: 如不使用CMPIN功能,可以将pin配置为float 或者 短接到GND

MOSFET选型建议

参数	规格	说明
漏源耐压 BVss	≥ 30V	针对20V适配器输入,预留部分裕量
漏极持续电流 ld	≥ 30A	可根据实际应用,进行选型
内阻 Rdson	≥ 2mΩ	a. 检测下管导通压降,进行过零检测,不宜太小 b. 根据应用效率需求,进行Rdson选择,不宜太大

注: SC8886S/SC8885S与SC8886/SC8885相比,增强了Driver的驱动能力,增大了默认死区时间。因此,除对多管并联应用时,不对MOS的输入栅极电容 Ciss、栅源电荷 Qgs、栅漏电荷 Qgd进行限制。

寄存器配置注意功能

TT CO _ TT COTT
配置注意事项

No.	Register Bit	注意事项
#1	VINDPM Reg	VINDPM需要在适配器VBUS接入150ms后再配置,否则出现VINDPM配置不成功
#2	EN_LDO	 Bit=1(建议), 开启powerpath LDO充电模式, Q5会进入到LDO模式, 当VBAT<vsysmin, li="" vsys电压可以维持在vsysmin<=""> Bit=0, 关闭powerpath LDO充电模式, Q5(BATFET)会保持常开, VSYS=VBAT。若此时未接电池 或 电池电压低于Vsysmin, 可能会导致系统被关机 </vsysmin,>

PROCHOT_VDPM说明

/PROCHOT在low power mode会被Disable。退出low power mode后, /PROCHOT被Enable

默认配置下EN_PROCHOT_VDPM是被Disable的,如下:

Table 41 0x38H Prochot Option1() Register 0 (Default value=0XA0)

Bit	Mode	Bit Name	Default value @POR	Description	Notes
7	R/W	EN_PROCHOT_VDPM	1	VDPM triggers /PROCHOT 0: disable	
6	R/W	EN_PROCHOT_COMP	0	1: enable (default) Comparator triggers /PROCHOT 0: disable (default) 1: enable	
5	R/W	EN_PROCHOT_ICRIT	1	ICRIT triggers /PROCHOT 0: disable 1: enable (default)	
4	R/W	EN_PROCHOT_INORM	0	INORM triggers /PROCHOT 0: disable (default) 1: enable	
3	R/W	EN_PROCHOT_IDCHG	0	IDCHG triggers /PROCHOT 0: disable (default) 1: enable	
2	R/W	EN_PROCHOT_VSYS	0	VSYS triggers /PROCHOT D: disable (default) 1: enable	
1	R/W	EN_PROCHOT_Battery_ removal	0	Battery removal triggers /PROCHOT 0: disable (default) 1: enable	
0	R/W	EN_PROCHOT_Adapter _removal	0	Battery removal triggers /PROCHOT 0: disable (default) 1: enable	

STAT_VDPM触发机制:

条件1: 电池单独供电且EN_LWPWR=0 or 适配器接入

条件2: EN_PROCHOT_VDPM=1

条件3: VBUS电压<VINDPM, 三档可选 (由Reg0x36<0>和

Reg0x37<0>决定, 100%/90%/80%*VINDPM)

所以当AC不存在时,退出low power mode,满足以上条件,STAT_VDPM会被置1,触发/PROCHOT_VDPM

单节电池应用说明

单节电池应用, BATFET应用限制:

1. Vth<1.5V,用于保证BATFET可以完全导通

2. Ciss: 1nF~3nF

VBUS=5V下,单节电池应用限制:

由于内部电流sense电路供电来自于VDRV LDO。为了保证电流sense正常工作,需保证: VDRV>4.3V

考虑VBUS跌落到4.5V,此时VDRV的电流不能超过20mA(+100°C,覆盖corner case)

a. SC8886芯片内部供电Iq=1.5mA

b. MOSFET驱动电流: Idrv=Ciss_total*Vdrv*Fsw

c. 处于buck-boost下四管都在switching的情况下,Fsw=Fsw/2

Iq+Idrv < 20mA

最终得到四个开关管: Ciss_total < 10.75nF(Fsw=800kHz),Ciss_total < 7.17nF(Fsw=1200kHz)

建议:VCC to BTx 并联肖特基二极管,用于保证 BTx 电压正常

单节电池下OTG应用限制:

SC8886S/SC8885S需要满足 BTx-SWx > 3.5V以上, 所以需要满足VBAT>3.55V以上来保证OTG正常工作。

Vsysmin配置建议

应用背景: 电池包欠压保护后,关闭放电DSG FET,开启充电CHG FET,于是电池只能充电,不能放电。

应用建议:为了保证Vsys电压正常拉载,建议charger在Precharge/CC charge切换前,电池已经退出过放保护,也就是确保 Vsysmin> N*CELL_UVP + Diode Drop,其中:

◆ N: 电池应用节数

◆ Diode drop: Gauge中放电FET的body diode

◆ CELL_UVP: 电池退出欠压保护阈值

调整方法建议如下:

- » 调整charger IC, 调整Vsysmin寄存器
- > 调整Gauge IC,调整CELL_UVP电压
- > 配置充电电流>=128mA

OTG调压配置建议

应用背景:

- ◆ 写OTG_RANGE_LOW=0, 调压寄存器的值=OTG_VOLTAGE_REG+1.28V (OTG电压范围4.28V~20.8V)
- ◆ 写OTG_RANGE_LOW=1, 调压寄存器的值=OTG_VOLTAGE_REG (OTG电压范围3V~19.52V)

调整方法建议如下:

若OTG调压过程,**需配置OTG_RANGE_LOW bit**(如调整电压从4.4V←→4.2V)

□ 调整OTG_RANGE_LOW=1,建议时序: 先配置 OTG_RANGE_LOW=1 → 配置 OTG_VOLTAGE_REG

□ 调整OTG_RANGE_LOW=0,建议时序:先配置 OTG_VOLTAGE_REG → 配置 OTG_RANGE_LOW=0

注意:调整OTG输出电压过程,需等待OTG电压稳定时间 >ΔT= ΔV /SlewRate。其中:

ΔV: OTG调整电压差

SlewRate: 电压调整斜率, 默认0.3mV/µS

VBUS引脚串二极管说明

应用背景:

◆ VBUS引脚串二极管用于Type C / DC Jack (输入源) 插入识别。

应用建议如下:

原则上,**不建议在VBUS电源轨和VBUS引脚之间串入二极管**,否则,应遵循以下两条建议:

- □ 在二极管正向流过3mA电流时,**导通压降Vf必须小于或等于0.2V**。
- □ 在检测到适配器移除后,需**使能HIZ模式,等待10ms后退出HIZ模式**。

注意:

- 1、若0.2V<Vf, IC有不能正常工作的风险
- 2、若在检测到适配器移除后,不进行任何操作,有发生反灌的风险。
- 3、存在电池电压低于系统开机电压的应用工况时,使能HIZ模式会导致系统掉电。需注意系统EC存在单独的供电,保证能够正常退出HIZ模式

无BATFET使用注意事项

应用背景1: 电池先接入后, 适配器接入启动

- ◆ 电池先接入→配置寄存器EN_LDO=0→适配器接入
- ◆ 若VBAT>VSYSMIN, 配置充电电流时无任何限制
- ◆ 若VBAT<VSYSMIN,无384mA电流钳位,需根据电池实际预充电流要求配置Charge_Current寄存器

应用背景2:电池未接入或死电池时,适配器接入启动

- ◆ 适配器接入→VSYS上电后,等待10ms,配置寄存器SYS_SHORT_DISABLE=1 →配置寄存器 EN_LDO=0 →配置寄存器Charge_Current为384mA
- ◆ 等待10ms后,配置寄存器WDTMR_ADJ为00 →根据电池实际情况(恒流充电状态或预充电状态)配置Charge_Current寄存器

IIC/SMBUS通讯格式说明

应用背景:

◆ MCU在配置SC8886S/SC8885S时, IC检测不到Stop, 导致通讯出错

应用建议如下:

在通讯时,**每配置完一个寄存器,必须发送Stop信号**:

□ <u>Stop检测要求</u>: SDA在SCL低电平时变低,然后在SCL高后拉高。其中需要SCL拉低过,如下图所示:

□ IC不支持Restart信号, 且连续发送Restart/Start + Stop信号时, 芯片无法检测到Stop信号, 通讯出错

IBAT Monitor应用注意事项

应用背景:

◆ 利用IBAT Pin监控电池充电电流,配置IBAT为电池充电方向,**充电电流小于~128mA时,IBAT输出异常跳动**

配置IBAT为充电方向的应用建议如下:

□ SC8886S需配置Reg 0x3C = 0x20,Reg 0x3D = 0x10,使能Auto Termination,截止充电电流为256mA

□ 避免**在充电过程中触发DPM**,导致充电电流低于~128mA

注:配置IBAT为放电方向时,对放电电流的大小不做限制