```
PIR (motion) sensor
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setup(24,GPIO.OUT)
GPIO.setup(18,GPIO.IN)
while(True):
      myin=GPIO.input(18)
      if myin==True:
            print("Motion Detected")
            time.sleep(1)
            GPIO.output(24,True)
            time.sleep(0.5)
            GPIO.output(24,False)
            time.sleep(0.5)
IR sensor
import RPi.GPIO as IO
IO.setwarning(False)
IO.setmode(IO.BOARD)
IO.setup(8,IO.IN)
IO.setup(3,IO.OUT)
while 1:
```

if(IO.input(8)==True):

```
IO.output(3,True)
       else
               print("Obstacle Not Detected")
               IO.output(3,False)
Ultrasonic Sensor
import RPi.GPIO as GPIO
import time
TRG=21
ECHO=20
GPIO.setmode(GPIO.BCM)
while True:
       print("distance measurement in progress");
       GPIO.setup(TRIG,GPIO.OUT)
       GPIO.setup(ECHO,GPIO.IN)
       GPIO.output(TRIG,False)
       print("waiting for sensor to settle");
       time.sleep(0.2)
       GPIO.output(TRIG,True)
       time.sleep(0.00001)
       GPIO.output(TRIG,False)
       while GPIO.input(ECHO)==0:
```

print("Obstacle Detected!!")

```
pulse_start=time.time()
       while GPIO.input(ECHO)==1:
               pulse_end=time.time()
       pulse_duration=pulse_end-pulse_start
       distance=pulse_duration*17150
       distance=round(distance,2)
       print("distance:",distance,"cm")
       time.sleep(2)
LDR
int ldr;
void setup() {
pinMode(13,OUTPUT);
Serial.begin(9600);
void loop() {
       ldr = analogRead(A0);
       if(ldr<50)
       {
               digitalWrite(ledPin,HIGH);
       }
       else
       {
               digitalWrite(ledPin,LOW);
       }
```

}

```
Serial.println(ldr);

delay(100);
}
```

UART with tx-rx

Arduino	RPi
Тх	8
Rx	10
Gnd	6

import serial
from time import sleep

ser=serial.Serial('/dev/ttyS0',9600)

while True:
 received_data=ser.read()
 sleep(0.03)
 data_left=ser.inWaiting()
 received_data+=ser.read(data_left)
 print(received_data)

Note: run sudo chmod 666 /dev/ttyS0 to give persmission to use ttyS0 before executing code

USB UART with RPi direct communication

Arduino	RPi
Тх	Tx
Rx	Rx
Gnd	Gnd

import serial

if name=='main':

```
ser=serial.Serial('/dev/ttyACM0',9600,timeout=1)
ser.flush()
while True:
    if ser.in_waiting>0:
        line=ser.readline().decode('utf-8').rstrip()
        print(line)
```

Note: run sudo chmod 666 /dev/ttyACM0 to give persmission to use ttyS0 before executing code

Arduino Code For USB UART

 Connect IR sensor with RPi .sense object using IR sensor and update timing in SQLite db also publish msg "object detected" on MQTT topic name :: "IR_Sensor" and display time on screen

IR	RPi	
Data	3 (without using LED)	
	8 (while using LED)	
Vcc	2	
Gnd	6	

If using LED

LED	RPi
-	ground
+	3

```
import RPi.GPIO as IO
import time
import sqlite3
import paho.mqtt.client as mqtt
connection = sqlite3.connect('test.db')
cursor = connection.cursor()
cursor.execute("'CREATE TABLE irTB ( sensorData VARCHAR(100), currentTime
TIMESTAMP);"")
insertQuery = """INSERT INTO irTB VALUES (?, ?, ?);"""
IO.setwarning(False)
IO.setmode(IO.BOARD)
IO.setup(8,IO.IN)
IO.setup(3,IO.OUT)
while 1:
       if(IO.input(8)==True):
               print("Obstacle Detected!!")
               cursor.execute(insertQuery, ("Obstacle Detected", currentDateTime))
               connection.commit()
               broker_url = "broker.emqx.io"
               broker_port = 1883
```

```
client = mqtt.Client()
    client.connect(broker_url,broker_port)

client.publish(topic="IR_Sensor", payload="object detected", qos=0, retain= False)
    IO.output(3,True)

else
    print("Obstacle Not Detected")
    IO.output(3,False)

cur.execute("select * from irTB ");

ans=cur.fetchall();

for row in ans:
    print(ans);

connection.close()
```

2. Sense light intensity using LDR on arduino board and send sensed light intensity value to RPi using i2c bus on RPi received content through i2c bus is update in SQLite DB and display on screen

Requirement: Arduino, LDR, RPi, cable

12c:

Arduino	RPi
A4-SDA	3-SDA
A5-SCL	5-SCL
GND	20

LDR: connects with arduino because RPi has no analog convertor pin

LDR	Arduino
2 joint leg	A0
Register	GND
LDR	5v

```
LDR arduino code: (Slave)
#include<Wire.h>
int ldr; //set A0 (Analog Input) for LDR
void setup(){
       //join i2c bus as slave with address 8
       Wire.begin(0x8);
       Serial.begin(9600);
       //call receiveEvent when data received
       Wire.onReceive(receiveEvent);
       //call get request from master
       Wire.onRequest(sendData);
       pinMode(13,OUTPUT);
       digitalWrite(13,LOW);
//fn that executes whenever data is received from master
void receiveEvent (int howMany){
       while(Wire.available()){
               c=Wire.read(); //receive byte as a character
               digitalWrite(13,c);
       }
}
void loop(){
       ldr=analogRead(A0); //reads the value of LDR(light)
       if(ldr<50)
               digitalWrite(13,HIGH);
                                               }
       else
       {
               digitalWrite(13,LOW);
```

```
Serial.println(ldr);
                               //prints the value of ldr to Serial monitor
       delay(100);
}
       //Serial.println(value);
void sendData(){
       Wire.write(ldr);
}
I2CPY: (Master)
from smbus import SMBus
import time
import sqlite3
conn=sqlite3.connect("testDB.db");
cur=conn.cursor();
conn.execute("'CREATE TABLE IdrTB(LDRDATA TEXT NOT NULL);"")
conn.commit();
addr = 0x8
bus = SMBus(1)
print("Enter 1 for ON or 0 for OFF")
while 1:
       y = bus.read_byte_data(addr,0x1)
       print (y)
       cur.execute("'INSERT INTO IdrTB(LDRDATA) VALUES(?)'",(y));
       conn.commit()
cur.execute("'select * from IdrTB'");
ans=cur.fetchall();
```

```
for row in ans:
    print(ans);

conn.commit()

conn.close()
```

while True:

3. Connect ultrasonic sensor with RPi. Sense object distance and update distance and timing in SQLite DB also publish measured distance value on MQTT topic name :: "ultra_Sensor" and display on screen

Ultrasonic	RPi
ECHO	38(GPIO 20)
TRIG	40(GPIO 21)
VCC	2
GND	39

import RPi.GPIO as GPIO
import time
import sqlite3
import paho.mqtt.client as mqtt

TRIG=16
ECHO=20

connection = sqlite3.connect('test.db')
cursor = connection.cursor()
cursor.execute("'CREATE TABLE ultraTB (sensorData VARCHAR(100), currentTime TIMESTAMP);"')
insertQuery = """INSERT INTO ultraTB VALUES (?, ?, ?);"""
GPIO.setmode(GPIO.BCM)

print("distance measurement in progress");

```
GPIO.setup(TRIG,GPIO.OUT)
GPIO.setup(ECHO,GPIO.IN)
GPIO.output(TRIG,False)
print("waiting for sensor to settle");
time.sleep(0.2)
GPIO.output(TRIG,True)
time.sleep(0.00001)
GPIO.output(TRIG,False)
while GPIO.input(ECHO)==0:
       pulse_start=time.time()
while GPIO.input(ECHO)==1:
       pulse_end=time.time()
pulse_duration=pulse_end-pulse_start
dist=pulse_duration*17150
dist=round(dist,2)
print("distance:",dist,"cm")
time.sleep(0.1)
cursor.execute(insertQuery, (dist, currentDateTime))
connection.commit()
```

```
broker_url = "broker.emqx.io"

broker_port = 1883

client = mqtt.Client()

client.connect(broker_url,broker_port)

client.publish(topic="UltraMP", payload=dist, qos=0, retain= False)

cur.execute("select * from ultraTB ");

ans=cur.fetchall();

for row in ans:

    print(ans);

connection.close()
```

4. Sense light intensity using LDR on arduino board and send sensed light intensity value to RPi using SPI bus on RPi received content through SPI bus is update in SQLite DB and display on screen

Requirement: Arduino, LDR, RPi, cable

SPI:

Arduino	RPi
11	19-MOSI
12	21-MISO
13	23-SCLK
GND	25-ground

LDR: connects with arduino because RPi has no analog convertor pin

LDR	Arduino
2 joint leg	A0
Register	GND
LDR	5v

5. Use virtual box to create SQLite DB with name manualrollno DB. Insert following fields in DB table "Sequence no, name, age, gender" manually. Insert atleast 5 to 6 records in DB. Once

```
DB record entry completed then access it one by one and publish on topic name :: Virtual_A
and display on screen
import paho.mqtt.client as mqtt
import sqlite3
connection=sqlite3.connect("manualrollno.db");
cur=connection.cursor();
create_tbl="""CREATE TABLE IF NOT EXISTS TEST(sequenceno INT, name TEXT, age INT,
gender TEXT)"""
cur.execute(create_tbl);
connection.commit();
//insert 5-6 data manually
broker_url = "broker.emqx.io"
broker_port = 1883
client = mqtt.Client()
client.connect(broker_url, broker_port)
cur.execute("select * from TEST");
ans=cur.fetchall();
for row in ans:
       print(ans);
       client.publish(topic=" Virtual_A ",payload=ans,qos=0,retain=False)
connection.commit();
client.loop_forever()
```

6. Connect PIR sensor with RPi . sense object using PIR sensor and update timing in SQLite db also publish msg "PIR object detected" on MQTT topic name :: "PIR_Sensor" and display time on screen

PIR	RPi
GND	6
VCC	2
OUT(DATA)	12

If using LED

LED	RPi
-	Ground
+	Output-18

```
PIRpy:
import RPi.GPIO as GPIO
import time
import sqlite3
import paho.mqtt.client as mqtt
GPIO.setmode(GPIO.BCM)
GPIO.setup(24,GPIO.OUT)
GPIO.setup(18,GPIO.IN)
connection = sqlite3.connect('test.db')
cursor = connection.cursor()
cursor.execute(""CREATE TABLE pirTB (
  sensorData VARCHAR(100),
  currentTime TIMESTAMP);"")
insertQuery = """INSERT INTO pirTB
  VALUES (?, ?, ?);"""
```

```
while(True):
       myin=GPIO.input(18)
       if myin==True:
                print("Motion Detected")
               cursor.execute(insertQuery, ("Motion Detected", currentDateTime))
               connection.commit()
                broker_url = "broker.emqx.io"
                broker_port = 1883
                client = mqtt.Client()
                client.connect(broker_url,broker_port)
                client.publish(topic="PIR_Sensor", payload="motion detected", qos=0,
                retain= False)
               time.sleep(1)
                GPIO.output(24,True)
               time.sleep(0.5)
                GPIO.output(24,False)
               time.sleep(0.5)
cur.execute("select * from pirTB ");
ans=cur.fetchall();
for row in ans:
       print(ans);
connection.close()
```