

Metodi matematici per l'Informatica Modulo 9 – L'algebra dei sottoinsiemi - Reticoli

Docente: Pietro Cenciarelli

I numeri naturali

$$\mathcal{N} = \{0, 1, 2, ...\}$$

 $+: \mathcal{N} \times \mathcal{N} \to \mathcal{N}$
 $0 \in \mathcal{N}$
 $0 + n = n$ (elemento neutro)
 $n + m = m + n$ (commutatività)
 $n + (m + p) = (n + m) + p$ (associatività)

strutture algebriche: insiemi dotati di operazioni che soddisfano opportune proprietà o assiomi (monoidi, gruppi, reticoli, anelli, campi...)

 \mathcal{N} è un *monoide commutativo*

Algebre

$$\mathcal{N} = \{0, 1, 2, ...\}$$
 $+ : \mathcal{N} \times \mathcal{N} \to \mathcal{N}$
 $0 \in \mathcal{N}$
 $0 + n = n$
 $1 + m = m + n$
 $1 + m = m + n$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{0\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ..., \{2, 7\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ...\}$
 $2 = \{\}, \{1\}, \{1\}, ...\}$
 $2 = \{\}$

2^N è un *monoide commutativo*

... e anche molto di più!

L'algebra dei sottoinsiemi - Reticoli

Algebre

 $2^{\mathcal{N}}$

⊆ è una relazione d'ordine

Algebre

 \mathcal{A}

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$

 $2^{\mathcal{N}}$

 $\cup: 2^{\mathcal{N}} \times 2^{\mathcal{N}} \to 2^{\mathcal{N}}$

 $A \leq B sse A \lor B = B$

< è una relazione d'ordine?

 $A \leq A$ se $A \vee A = A$

 $A \lor B = B \lor A$

 $A \subseteq B$ sse $A \cup B = B$

⊆ è una relazione d'ordine

- riflessiva

- antisimmetrica

se A \leq B (ovvero A \vee B = B) e B \leq A (ovvero B \vee A = A), allora...

$$B = A \lor B = B \lor A = A$$

Algebre

A

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$

 $2^{\mathcal{N}}$

 $\cup: 2^{\mathcal{N}} \times 2^{\mathcal{N}} \rightarrow 2^{\mathcal{N}}$

 $A \leq B$ $sse A \lor B = B$

< è una relazione d'ordine?

 $A \lor A = A$

 $A \lor B = B \lor A$

 $A \subseteq B$ sse $A \cup B = B$

⊆ è una relazione d'ordine

- riflessiva

- antisimmetrica

Se $A \le B$ (ovvero $A \lor B = B$) e - transitiva

 $B \le C$ (ovvero $B \lor C = C$) allora...

 $A \lor C = A \lor (B \lor C) = (A \lor B) \lor C = B \lor C = C$

ovvero A ≤ C

Algebre

A

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$

2N

 $U: 2^{\mathcal{N}} \times 2^{\mathcal{N}} \rightarrow 2^{\mathcal{N}}$

 $A \leq B$ $sse A \lor B = B$

≤ è una relazione d'ordine?

 $A \lor A = A$

 $A \lor B = B \lor A$

 $A \lor (B \lor C) = (A \lor B) \lor C$

 $A \subseteq B$ sse $A \cup B = B$

⊆ è una relazione d'ordine

 $A \cup B = \sup\{A, B\}$ ovvero:

- 1) A, B \subseteq A \cup B e inoltre
- 2) se $A \subseteq C$ e $B \subseteq C$ allora $A \cup B \subseteq C$
- 1) $A \lor (A \lor B) = (A \lor A) \lor B = A \lor B$, ovvero: $A \le A \lor B$
- 2) ... analogamente.

Semireticoli

 \mathcal{A}

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$

 $A \lor A = A$

 $A \lor B = B \lor A$

 $A \lor (B \lor C) = (A \lor B) \lor C$

 \mathcal{A}

 \leq è una relazione d'ordine esiste il $sup\{A, B\} \forall A, B \in \mathcal{A}$

$$(A, V) \xrightarrow{A \le B \text{ sse } A \ V \ B = B} (A, \le)$$

$$A \ V \ B = \sup \{A, B\}$$

Semireticoli

 \mathcal{A}

$$V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$$

$$A \lor A = A$$

$$A \lor B = B \lor A$$

$$A \lor (B \lor C) = (A \lor B) \lor C$$

$$A \leq_{\lor} B$$
 $sse A \lor B = B$

$$A \leq_{\Lambda} B sse A \wedge B = A$$

$$A \subseteq B$$
 sse $A \cup B = B$

$$A \subseteq B$$
 sse $A \cap B = A$

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$

Semireticoli

 \mathcal{A}

$$V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$$

$$A \lor A = A$$

$$A \lor B = B \lor A$$

$$A \lor (B \lor C) = (A \lor B) \lor C$$

$$\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$$

$$A \wedge A = A$$

$$A \wedge B = B \wedge A$$

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$

$$A \leq_{\vee} B$$
 $sse A \vee B = B$

$$A \leq_{\Lambda} B$$
 sse $A \wedge B = A$

$$\leq_{\mathsf{V}} \stackrel{?}{=} \leq_{\mathsf{\Lambda}}$$

$$A \subseteq B$$
 sse $A \cup B = B$

$$A \subseteq B$$
 sse $A \cap B = A$

Semireticoli

 \mathcal{A}

$$V: A \times A \rightarrow A$$

$$A \lor A = A$$

$$A \lor B = B \lor A$$

$$A \lor (B \lor C) = (A \lor B) \lor C$$

$$A \leq_{\vee} B$$
 $sse A \vee B = B$

$$A \leq_{\Lambda} B$$
 sse $A \wedge B = A$

$$\leq_{\vee} \stackrel{?}{=} \leq_{\wedge}$$

$$\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$$

$$A \wedge A = A$$

$$A \wedge B = B \wedge A$$

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$

$$A \leq_{V} B \iff A \leq_{\Lambda} B$$

$$A \wedge B = A \wedge (A \vee B) = A$$

. . .

Reticoli

 \mathcal{A}

$$V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$$

$$A \lor A = A$$

$$A \lor B = B \lor A$$

$$A \lor (B \lor C) = (A \lor B) \lor C$$

$$A \lor (A \land B) = A$$

$$\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$$

$$A \wedge A = A$$

$$A \wedge B = B \wedge A$$

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$

$$A \wedge (A \vee B) = A$$

Reticoli distributivi

 \mathcal{A}

 $V: A \times A \rightarrow A$

 $\Lambda : A \times A \rightarrow A$

 $A \lor (B \lor C) = (A \lor B) \lor C$

 $A \wedge (B \wedge C) = (A \wedge B) \wedge C$

 $A \lor B = B \lor A$ $A \land B = B \land A$

 $A \lor (A \land B) = A \qquad A \land (A \lor B) = A$

 $A \lor A = A$ $A \land A = A$

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$

 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$

associativa

commutativa

assorbimento

idempotenza

distributiva

Reticoli distributivi

$$A \lor (B \land C) = (A \lor (A \land C)) \lor (B \land C)$$

$$= A \lor ((A \land C) \lor (B \land C))$$

$$= A \lor ((A \lor B) \land C)$$

$$= ((A \lor B) \land A) \lor ((A \lor B) \land C)$$

$$= (A \lor B) \land (A \lor C)$$

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$

distributiva

 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$

Reticoli distributivi

A

 $V: A \times A \rightarrow A$

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$

 $A \lor (B \lor C) = (A \lor B) \lor C$

 $A \wedge (B \wedge C) = (A \wedge B) \wedge C$

 $A \lor B = B \lor A$ $A \land B = B \land A$

 $A \lor (A \land B) = A \qquad A \land (A \lor B) = A$

 $A \lor A = A$ $A \land A = A$

 $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$

 $A \lor (B \land C) = (A \lor B) \land (A \lor C)$

associativa

commutativa

assorbimento

idempotenza

distributiva

