F19T2A2

Es sei $\mathbb{E} := \{z \in \mathbb{C} : |z| < 1\}$ und $f : \mathbb{C} \to \mathbb{C}$ mit $z \mapsto 4z + z^2 + e^z$.

- a) Zeige, dass f in $\{z \in \mathbb{C} : |z| \leq 1\}$ genau eine einfache Nullstelle besitzt.
- b) Zeige, dass es für $f|_{\mathbb{E}} : \mathbb{E} \to \mathbb{C}$ keinen holomorphen Logarithmuszweig also kein holomorphes $l : \mathbb{E} \to \mathbb{C}$ mit $e^{l(z)} = f(z)$ für alle $z \in \mathbb{E}$ gibt.
- c) Zeige, dass es für $f|_{\mathbb{E}}$ keinen holomoprhen Zweig der dritten Wurzel also kein holomorphes $w: \mathbb{E} \to \mathbb{C}$ mit $(w(z))^3 = f(z)$ für alle $z \in \mathbb{E}$ gibt.

Zu a):

$$|g(z)| \le |z|^2 + |e^z| \le 1 + e^{\operatorname{Re}(z)} \le 1 + e^1 < 4 = 4 \cdot |z| = |h(z)|$$

Weil h an der Stelle $z=0 \in \mathbb{E}$ eine einfache Nullstelle (und in \mathbb{C} sonst keine weiteren Nullstellen) aufweist, hat damit auch f=g+h nach dem Satz von Rouché genau eine Nullstelle in \mathbb{E} mit Vielfachheiten gezählt. Damit ist auch klar, dass es sich um eine einfach Nullstelle handeln muss.

Zu b):

Es bezeichne $z_0 \in \mathbb{E}$ fortan die (nach a) eindeutige und existente) einfache Nullstelle von f in \mathbb{E} . Nehmen wir an, es gäbe so eine Funktion $l: \mathbb{E} \to \mathbb{C}$. Dann gilt nach Komposition mit der bekanntlich nullstellenfreien Exponentialfunktion $\exp(l(z_0)) = f(z_0) = 0$ - ein offensichtlicher Widerspruch.

Zu c):

Angenommen, es gäbe so eine Funktion $w : \mathbb{E} \to \mathbb{C}$. Wegen $0 = |f(z_0)| = |w(z_0)|^3$ folgt $w(z_0) = 0$. Da w holomorph ist, gibt es eine holomorphe Funktion $k : \mathbb{E} \to \mathbb{C}$ mit $w(z) = (z - z_0) \cdot k(z)$. Nicht notwendigerweise gilt $k(z_0) \neq 0$. Damit ist dann $f(z) = (z - z_0)^3 \cdot (k(z))^3$ für alle $z \in \mathbb{E}$ und f hat bei z_0 sogar eine dreifache Nullstelle - im Widerspruch zu den Ergebnissen aus Teilaufgabe a).