

Econometría Financiera

Tema 1:

Introducción a la Econometría Financiera

Abdel Arancibia Flores¹

¹UNIVERSIDAD NACIONAL DE INGENIERÍA

Abril. 2020

1/13

Abdel Arancibia Flores Econometría Financiera Abril, 2020

Índice

- 1. Introducción
- 2. Definiciones Financieras
- 2.1 Tipos de datos
- 2.2 Datos continuos y discretos
- 2.3 Retornos financieros
- 3. Características comunes de las series de tiempo financieras
- 4. Modelo básico para los retornos de los activos financieros

2/13

Abdel Arancibia Flores Econometría Financiera Abril, 2020

Introducción

- ► Sabemos que el significado de la palabra **econometría** es medición en economía. No obstante, las herramientas econométricas utilizadas y metodologías para abordar casos económicos, también pueden ser usadas en el ámbito de las finanzas.
- La econometría financiera es la aplicación de metodologías estadísticas a problemas financieros, permitiendo así:
 - Probar teorías en finanzas.
 - Determinar precios de activos o rendimientos.
 - Probar hipótesis concerniente a las relaciones entre variables.
 - Examinar los efectos en los mercados financieros ante cambios en las decisiones económicas.
 - Pronosticar valores futuros de variables financieras para la toma de decisiones financieras.

Abdel Arancibia Flores Econometría Financiera Abril. 2020 3/13

Tipos de datos

► Existen tres tipos de datos que pueden emplearse en el análisis cuantitativo de problemas financieros

1. Datos de series de tiempo

Son datos recopilados durante un período de tiempo para una variable.

2. Datos de corte transversal

Son datos de una o más variables recopiladas en un solo punto en el tiempo.

3. Datos de panel

Son datos que tienen las dimensiones de series de tiempo y los cortes transversales.

Datos continuos y discretos

- Los datos pueden distinguirse como continuos o discretos
 - 1. Los datos continuos pueden tomar cualquier valor y no se limitan a números específicos. Por ejemplo, el rendimiento de una acción podría ser 2.3 %, 2.356 % o 3.124 %, y así sucesivamente.
 - Los datos discretos solo pueden tomar ciertos valores, que generalmente son números enteros y, a menudo, se definen como números contables. Por ejemplo, el número de acciones que se negocian durante un día.

Abdel Arancibia Flores Econometría Financiera Abril, 2020 5 / 13

Retornos Financieros

Sea P_t el precio de un activo en el momento t (que no paga dividendos).

1. Retorno Simple

El retorno simple es la ganancia en términos porcentuales por tener el título un período, se calcula de la siguiente manera:

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}} = \frac{P_t}{P_{t-1}} - 1$$

2. Log-retorno

O también llamado retorno de capitalización continua. Muchas veces es preferible usar logaritmos en lugar de niveles, por lo tanto:

$$r_t = ln(P_t) - ln(P_{t-1}) = p_t - p_{t-1}$$

donde $p_t = In(P_t)$

En caso que el activo pague dividendos, vamos a definir D_t como el dividendo que paga dicho activo en el momento t.

Entonces, el **retorno simple** sería $R_t = \frac{P_t + D_t}{P_{t-1}} - 1$ y el **log-retorno** estaría dado por $r_t = ln(P_t + D_t) - ln(P_{t-1})$.

Abdel Arancibia Flores

Retornos Financieros

Ambos retornos son similares en intervalos de tiempo cortos (frecuencias diarias o semanales)

$$r_t = ln(P_t) - ln(P_{t-1}) = ln\left(\frac{P_t}{P_{t-1}}\right) = ln(1 + R_t) \approx R_t$$

Demostración:

Utilizaremos la aproximación lineal (aproximación en serie de Taylor de 1er. orden) alrededor de $x^0=0$

$$f(x) \approx f(x^0) + f'(x^0)(x - x^0)$$

se define $f(R_t) = ln(1+R_t)$, ya que es la función para la cual aproximaremos alrededor de $R_t^0 = 0$, entonces:

$$ln(1+R_t) \approx ln(1+R_t^0) + \frac{1}{1+R_t^0}(R_t-R_t^0)$$

$$ln(1+R_t) \approx ln(1+0) + \frac{1}{1+0}(R_t-0)$$

$$ln(1+R_t) \approx R_t \quad \Rightarrow \quad r_t \approx R_t$$

Abdel Arancibia Flores Econometría Financiera Abril, 2020 7/13

Retornos Financieros

Una ventaja de la definición de log-retorno es que podemos calcular el retorno acumulado multiperíodo como la suma de los retornos en k períodos. En otras palabras, los log-retornos son aditivos en el tiempo.

$$r_t[k] = ln(P_{t+k}) - ln(P_t) = p_{t+k} - p_t = \sum_{i=1}^k r_{t+i}$$

Con log-retornos se garantiza que el precio siempre será positivo:

$$r_t = ln\left(\frac{P_t}{P_{t-1}}\right) \Rightarrow P_t = exp(r_t)P_{t-1}$$

Abdel Arancibia Flores Econometría Financiera Abril, 2020

Características comunes de las series de tiempo financieras

- Los retornos (con frecuencia diaria o semanal) tienen media constante y cercana a cero y presentan autocorrelación débil.
- Los retornos presentan grupos de volatilidad (volatility clusters).
- La distribución no condicional de los retornos no siguen una distribución normal pues muestra exceso de kurtosis o colas anchas.
- Los retornos bursátiles muestran ocasionalmente significativas caídas, pero no aumentos en la misma magnitud, es decir, la distribución de los retornos es asimétrica o sesgada negativamente.
- Diferentes medidas de la varianza de los retornos (retornos al cuadrado o en valor absoluto) muestran correlación positiva con su propio pasado.
- Los retornos bursátiles muestran correlaciones negativas entre la varianza y los retornos: efecto apalancamiento.
- La correlación entre activos cambia a través del tiempo.

4□ > 4問 > 4 = > 4 = > = 900

Abril. 2020

9 / 13

Ejemplos: Series de Tiempo Financieras

Ejemplos: Series de Tiempo Financieras

Ejemplos: Series de Tiempo Financieras

Figura: S&P 500 - Financial Chart

Abdel Arancibia Flores Econometría Financiera Abril, 2020 12 / 13

Modelo básico para los retornos de los activos financieros

▶ En base a las características de las series de tiempo financieras presentadas anteriormente, el modelo general de los retornos financieros tiene la siguiente forma:

$$r_{t+1}=\mu_{t+1}+a_{t+1}$$
 $a_{t+1}=\sigma_{t+1}arepsilon_{t+1}$ con $arepsilon_{t+1}\stackrel{i.i.d.}{\sim}D(0,1)$

- ▶ La media condicionada de los retornos, $E_t[r_{t+1}]$ es μ_{t+1} ; mientras que la varianza condicionada, $E_t[(r_{t+1} \mu_{t+1})^2]$ es σ_{t+1}^2 .
- ▶ El propósito entonces consistirá en construir y estimar modelos para la media condicional y la varianza condicional, con lo que se podría predecir la distribución de los retornos.
- lacktriangle En muchos casos se asume que los retornos tienen media cero, $(\mu_{t+1}=0)$

4□ > 4□ > 4 = > 4 = > = 900

Abril. 2020

13 / 13

Abdel Arancibia Flores Econometría Financiera