

Zones	TRANSITION(p, x ₀ , x ₁)					
trajectories						
(l, τ)	$(q_1, 10, 11)$	$(p_0, 1, 2)$	$(q_1, 11, 12)$	$(p_0, 2, 3)$	$(q_2, 8, 9)$	$(p_0, 3, 4)$
Z 1,						
a(10)a(11a(12)a(9) (3, 3)	(2,3)	(2, 2)	(1,2)	(1, 1)	Freeze	
Z2, a(10)a(13)a(14)a(9 (3, 3)) Freeze					
Z2 a(17)a(14) (1, 1)	Freeze					
Z1, Z2 a(15)a(16)a(9) (2, 3)	(2, 3)	(2, 2)	(2, 2)	(2, 1) Freeze		
Z1, Z2 a(18)a(9) (1, 3)	(1, 3)	(1, 2)	(1, 2)	(1, 1)	Freeze	
Z1, Z2 a(8)a(9)a(4) (2, 4)	(2, 4)	(2, 3)	(2, 3)	(2, 2)	(1, 2)	(1, 1)
Z1, Z2 a(6)a(7)a(4) (2, 4)	(2, 4)	(2, 3)	(2, 3)	(2, 2)	(2, 2)	(2, 1) Freeze

Time distribution function $timer_{\pi}$

Let $\pi_{Mo}(Z_1) = Z_2$ be a translation, with $Z_1 = \textit{t}(p_o, t_o, \tau_o) \textit{t}(p_1, t_1, \tau_1) ... \textit{t}(p_r, t_r, \tau_r)$, $Z_1 \in L_Z(S_1), Z_2 \in L_Z(S_2)$. A mapping

$$timer_{\pi}$$
: Con _{Π} (Z₁) \rightarrow **Z**,

where \mathbf{Z} is the set of all integer numbers, is constructed as follows. We consider three cases:

(1) If $\Pi_{M_0}(t_0) = t_0$, i.e., the main trajectory of Zone Z_1 is shortened, that is transformed into a substring with an excluded first symbol, then for all symbols $t(p_c, t_c, \tau) \in \operatorname{Con}_{\Pi}(Z_1)$

$$timer_{\pi}(t(p_c, t_c, \tau)) = \tau - 1.$$

- (2) If $\Pi_{M_0}(t_k) = t_k$, i.e., some other trajectory t_k of Zone Z_1 is shortened $(k \neq 0)$, then we define *timer*_{π} recursively.
 - (a) $timer_{\pi}(t(p_0, t_0, \tau_0)) = \tau_0,$ $timer_{\pi}(t(p_i, t_i, \tau_i)) = \tau_i \text{ (if } C_{TA(Z_i)}(t_i, t_0) = T)$
- (3) If $\Pi_{M_0}(t_m) = t_m$ for all $t_m \in TA(Z_1)$, then $\textit{timer}_{\pi}(\textit{t}(p_c, t_c, \tau)) = \tau$.

Interpretation of function $timer_{\pi}$

(1) $M_o = TRANSITION(p_o, 1, 2)$

It means that function $timer_{\pi}$ for all the symbols of A(Z₁) yields the value of $\tau - 1$, where τ is the value the third parameter of each symbol. For example,

$$timer_{\pi}(t(q_3, t_{q_3}, \tau)) = \tau - 1,$$

where $t_{q_3} = a(9)a(10)a(11)a(3), \tau = 3.$

After TRANSITION(p_o , 1, 2) time allocated to the motion along trajectory t_{q_3} is less than the length of this trajectory (2 < 3) and, thus, trajectory t_{q_3} should not be included into the translation $\pi_{M_o}(Z_1)$ of Zone Z_1 .

For the trajectory $t_{q_1} = a(14)a(15)a(11)$ connected with t_{q_3} $timer_{\pi}(t(q_1, t_{q_1}, 3)) = 2$.

It means that its length does not exceed the time allocated for the motion and, consequently, t_{q_1} should be included into Z_2 . In spite of loosing the C^+ connection with t_0 through t_{q_3} (which is not included), trajectory t_{q_1} keeps the C^+ connection with t_0 through t_{q_2} .

Interpretation of function $timer_{\pi}$ (continued)

- (2) $M_0 = TRANSITION(q_3, 9, 10)$
 - (a) For the main trajectory $timer_{\pi}(t(p_0, t_0, \tau)) = 5$,

for the 1st negation trajectories:

$$timer_{\pi}(t(p_1, t_{p_1}, \tau)) = 3$$
, $timer_{\pi}(t(q_2, t_{q_2}, \tau)) = 4$, $timer_{\pi}(t(q_3, t_{q_3}, \tau)) = 3$, $timer_{\pi}(t(q_4, t_{q_4}, \tau)) = 4$.

After transition M_o elements q_2 , q_3 , q_4 still have enough time for interception of p_o .

For the 2nd negation trajectories t_{q_1} and t_{p_2} we have case

(**b**) for both trajectories $CA(t_{q_1}) = CA(t_{p_2}) = \{t_{q_2}, t_{q_3}\}$. Then

$$timer_{\pi}(t(q_1, t_{q_1}, \tau)) = max\{TNEW(t_{q_2}), TNEW(t_{q_3})\} = max\{3, 2\} = 3,$$
 where

TNEW(
$$t_{q_2}$$
) = $timer_{\pi}(t(q_2, t_{q_2}, \tau)) - 2 + 1 = 4 - 2 + 1 = 3$,

TNEW(
$$t_{q_3}$$
) = ($timer_{\pi}(t(q_3, t_{q_3}, \tau)) + 1$) - 3 + 1 = (3 + 1) - 3 + 1 = 2

Consequently, $timer_{\pi}(t(q_1, t_{q_1}, \tau)) = 3$. Thus because the length of t_{q_1} does not exceed the value of $timer_{\pi}(2 < 3)$ it should be included into the translation.

Theorem about Translations

THEOREM: Let for a translation $\pi_{Mo}(\mathbf{Z}_1) = \mathbf{Z}_2$. Under certain constraints for every symbol $t(\mathbf{p}, \mathbf{t}_i, \tau) \in Con_{\Pi}(\mathbf{Z}_1)$, (where $\mathbf{t}_i \in \mathbf{t}_p(\mathbf{x}, \mathbf{y}, l)$, l > 1)

$$\pi_{\mathrm{o}}(t(\mathrm{p},\,\mathrm{t_{i}},\,\tau)) = t(\mathrm{p},\,\Pi_{\mathrm{Mo}}(\mathrm{t_{i}}),\,timer_{\mathrm{p}}(t(\mathrm{p},\,\mathrm{t_{i}},\,\tau)))$$

is a mapping onto $A(Z_2) \cap \Pi(Con_{\Pi}(Z_1))$, if and only if $l \leq timer_{\pi}(t(p, t_i, \tau))$.

Interpretation of the trajectory network language for the robot control model

 $t(BOMBER, t_B, 5)t(FIGHTER, t_F, 5)t(MISSILE, t_M, 5)t(MISSILE, t_M^1, 3)$ $t(FIGHTER, t_F^1, 2),$

where

$$\begin{split} t_{\text{B}} = & a(\text{h5}) a(\text{h4}) a(\text{h3}) a(\text{h2}) a(\text{h1}), \\ t_{\text{F}} = & a(\text{f6}) a(\text{e5}) a(\text{e4}) a(\text{f3}) a(\text{g2}) a(\text{h1}), \\ t_{\text{M}} = & a(\text{d7}) a(\text{b5}) a(\text{f1}) a(\text{g2}) a(\text{h1}), \\ t_{\text{M}}^{1} = & a(\text{d7}) a(\text{b5}) a(\text{f1}) a(\text{h3}), \\ t_{\text{F}}^{1} = & a(\text{f6}) a(\text{g5}) a(\text{h4}) \end{split}$$

Translations for Robot Control Model

 $TRANSITIONS = \{M_1, M_2, M_3, M_4\}.$

 $M_1 = TRANSITION(MISSILE, d7, b5)$

 $M_2 = TRANSITION(BOMBER, h5, h4)$

 $M_3 = TRANSITION(FIGHTER, f6, e5)$

 $M_4 = TRANSITION(BOMBER, h5, h4)$

Translations

 $\pi_o(t(BOMBER, t_B, 5)) = t(BOMBER, \Pi_{M_1}(t_B), timer_{\pi}(t(BOMBER, t_B, 5)) = t(BOMBER, t_B, 5)$

$$\pi_{o}(t(\text{FIGHTER}, t_{\text{F}}, 5)) = t(\text{FIGHTER}, t_{\text{F}}, 5),$$
 $\pi_{o}(t(\text{FIGHTER}, t_{\text{F}}^{1}, 2)) = t(\text{FIGHTER}, t_{\text{F}}^{1}, 2),$
 $\pi_{o}(t(\text{MISSILE}, t_{\text{M}}, 5) = t(\text{MISSILE}, \Pi_{\mathbf{M}_{1}}(t_{\mathbf{M}}), 5),$
 $\pi_{o}(t(\text{MISSILE}, t_{\text{M}}^{1}, 3) = t(\text{MISSILE}, \Pi_{\mathbf{M}_{1}}(t_{\mathbf{M}}^{1}), 3),$

where $\Pi_{M_1}(t_M)$ and $\Pi_{M_1}(t_{M^1})$ are shortened trajectories with excluded first symbol, i.e.,

$$\Pi_{M_1}(t_M) = t_{M,s} = a(b5)a(f1)a(g2)a(h1),$$

$$\Pi_{M_1}(t_M{}^1) = t_{M,s}{}^1 = a(b5)a(f1)a(h3).$$

Lengths of all the 1-st negation trajectories of this Zone after the translation do not exceed values of $timer_{\pi}$, consequently, according to Theorem, all these trajectories should be included into the new Zone $Z_1 = \pi_{M_1}(Z_0)$.

$$\pi_{o}(t(BOMBER, t_{B}, 5)) = t(BOMBER, \Pi_{M_{2}}(t_{B}), 4)$$

$$\pi_o(t(MISSILE, t_{M,s}, 5) = t(MISSILE, t_{M,s}, 4),$$

$$\pi_{o}(t(MISSILE, t_{M,s}^{1}, 3) = t(MISSILE, t_{M,s}^{1}, 2),$$

where $\Pi_{M_2}(t_B) = t_{B,s} = a(h4)a(h3)a(h2)a(h1)$ is a shortened trajectory.

For BOMBER and MISSILE the following inequalities hold

$$len(BOMBER, t_{B,s}) = 3 < 4,$$

$$len(MISSILE, t_{Ms}) = 3 < 4,$$

$$len(MISSILE, t_{M,s}^{1}) = 2 \le 2.$$

According to Theorem it means that trajectories $t_{B,s}$, $t_{M,s}$, $t_{M,s}^{-1}$ of BOMBER and MISSILE should be included into the new Zone $Z_2 = \pi_{M_2}(Z_1)$., i.e., MISSILE has enough time to intercept BOMBER at h3 or h1.

$$t(\text{FIGHTER}, t_F, \textit{timer}_{\pi}(t(\text{FIGHTER}, t_F, 5)) = t(\text{FIGHTER}, t_F, 4),$$

 $t(\text{FIGHTER}, t_{F^1}, \textit{timer}_{\pi}(t(\text{FIGHTER}, t_{F^1}, 2)) = t(\text{FIGHTER}, t_{F^1}, 1),$
 $len(\text{FIGHTER}, t_{F^1}) = 2 > 1,$
 $len(\text{FIGHTER}, t_F) = 5 > 4,$

which means that trajectories t_F^1 , t_F of FIGHTER are not included into the new Zone Z_2 . Indeed, after transition M_2 FIGHTER does not have enough time for interception of BOMBER at h4 or at h1. In addition t_F^1 looses connection to $t_{B,s}$.

Translations (continued)

$$\pi_{o}(t(BOMBER, t_B, 5)) = t(BOMBER, t_B, 5)$$

For all the 1-st negation trajectories we obtain

$$\pi_o(t(\text{FIGHTER}, t_F, 5)) = t(\text{FIGHTER}, \Pi_{M_3}(t_F), 5),$$

 $\pi_o(t(\text{MISSILE}, t_M, 5) = t(\text{MISSILE}, t_M, 5),$
 $\pi_o(t(\text{MISSILE}, t_{M}^1, 3) = t(\text{MISSILE}, t_{M}^1, 3),$

where $\Pi_{M_3}(t_F)$ is a shortened trajectory with excluded first symbol, i.e.,

$$\Pi_{M_3}(t_F) = t_{F,s} = a(e5)a(e4)a(f3)a(g2)a(h1).$$

Concerning $\Pi_{M_3}(t_F^1)$, we conclude that after transition M_3 t_F^1 looses the connection with the main trajectory t_B , $\Pi_{M_3}(t_F^1) = e$, hence $t_F^1 \notin Con_{\Pi}(Z_o)$. Lengths of the 1-st negation trajectories of this Zone, accept for t_F^1 , after translation Π_{M_3} do not exceed values of $timer_{\pi}$, consequently, according to the Theorem, all these trajectories should be included into the new Zone $Z_3 = \pi_{M_3}(Z_o)$. It means that both FIGHTER and MISSILE have enough time for interception.

Translations (continued)

$$\pi_o(t(BOMBER, t_B, 5)) = t(BOMBER, \Pi_{M4}(t_B), 4)$$

 $\pi_o(t(FIGHTER, t_{F,s}, 5)) = t(FIGHTER, t_{F,s}, 4),$
 $\pi_o(t(MISSILE, t_M, 5) = t(MISSILE, t_M, 4),$

where $\Pi_{M_4}(t_B) = t_{B,s} = a(h4)a(h3)a(h2)a(h1)$ is a shortened trajectory. For BOMBER, FIGHTER and MISSILE the following inequalities hold

len(BOMBER,
$$t_{B,s}$$
) = 3 < 4,
len(FIGHTER, $t_{F,s}$) = 4 ≤ 4,
len(MISSILE, t_{M}) = 4 ≤ 4.

According to Theorem it means that trajectories $t_{B,s}$, $t_{F,s}$, t_{M} of BOMBER, FIGHTER and MISSILE should be included in the new Zone $Z_4 = \pi_{M4}(Z_3)$., i.e., FIGHTER and MISSILE have enough time to intercept BOMBER at h1. But, considering trajectory t_{M}^{1} of MISSILE, we have

$$t(MISSILE, t_M^1, timer_{\pi}(t(MISSILE, t_M^1, 3)) = t(MISSILE, t_M^1, 2),$$

 $len(MISSILE, t_M^1) = 3 > 2,$

which means that this trajectory is not included in the new Zone Z₄. Indeed, after transition M₄ MISSILE does not have enough time for interception of BOMBER at h3.

Translations for Robot Control Model New Example

