ASIGNATURA: TECNICAS DE OPTIMIZACIÓN

PRÁCTICA: ALGORITMO SIMPLEX REVISADO

SESIONES: 1

SOFTWARE: LINGO

Problema 0

Una empresa de maquinaria produce en una de sus plantas 3 tipos de máquinas de precisión. La planta de fabricación está dividida en dos secciones que son:

Sección 1: Mecanizado Sección 2: Montaje

Para producir cada una de las máquinas de precisión, el número de horas necesario en cada sección y la capacidad de cada sección (en horas) es el siguiente:

	Sección	Sección Montaje
	Mecanizado	(horas/unidad)
	(horas/unidad)	
Máquina de precisión 1	4	6
Máquina de precisión 2	1	1
Máquina de precisión 3	2	2
Capacidad (horas)	160	180

Los beneficios unitarios por máquina son de 50, 25 y 20 unidades monetarias respectivamente.

Sabiendo que la empresa puede vender toda su producción semanal, determinar cuántas unidades de cada máquina debe fabricar semanalmente la empresa para maximizar su beneficio.

- 1 Formular el modelo matemático del problema. Una vez expresado en forma estándar, ¿Cuál es el valor de **n** y **m** en el problema?
- 2 Obtener la solución óptima aplicando el **algoritmo Simplex Revisado**. En cada iteración indicar el valor de TODAS las variables y el valor de la función objetivo.
 - 2.1 Indicar cuál es el plan de producción con el que la empresa obtiene el máximo beneficio semanal

2.2 A	partir de la	a solución óptima.	rellenar el informe d	ue proporcionaría LINGO:

Global optimum:						
	Value		Reduced Cost			
X1						
X2						
X3						
	Slack or Surplus		Dual Price			
[Mecaniz]						
[Montaje]						

3 Introducir el modelo matemático en forma general en **LINGO** y comprobar los resultados de los apartados 2 y 3.

Problema 2

PRÁCTICA: USO E INTERPRETACIÓN DE VARIABLES ARTIFICIALES

OBJETIVOS de aprendizaje:

- Analizar gráficamente las particularidades de los problemas con restricciones
 = e =.
- Afianzar el procedimiento manual de aplicación del algoritmo Simplex.
- Analizar gráficamente el efecto de las variables artificiales y mejorar así la comprensión del método de las 2 Fases.
- Dado el siguiente programa lineal:

Min 3 X1 + 2 X2
s.a:

$$[R_1] 2 X1 + X2 \le 10$$

 $[R_2] -3 X1 + 2 X2 = 6$
 $[R_3] X1 + X2 \ge 6$
 $X1, X2 \ge 0$

1. Identificar en el siguiente gráfico las restricciones y la región factible. Dibujar la función objetivo y la solución óptima.

- 2. Plantear el modelo matemático ampliado.
- **3.** Obtener la solución óptima aplicando el método de las 2 fases. Identificar sobre la solución gráfica la secuencia de soluciones básicas obtenida.
- **4.** A la vista de la secuencia de soluciones obtenidas, ¿cuál es el efecto -sobre la región factible y sobre la factibilidad de cada solución- de haber añadido las variables artificiales al modelo matemático?