TC2XX&TC3XX_MotherBoard

硬件说明书

目录

1.主板参数	1
1.1.外形尺寸	1
1.2.供电电源	1
2.主板功能模块介绍	2
3.电池供电接口	4
4.电源主开关	5
5.电机驱动电源接口	6
6.舵机电压调节电位器	8
7.舵机接口	9
8.电机驱动信号接口	
9.编码器接口	11
10.电磁头接口	12
11.电磁模块接口	13
12.电源指示灯	14
12.1 舵机电源指示灯	14
12.2.电磁运放模块供电指示灯	14
12.3.摄像头电源指示灯	14
12.4. 3.3V 电源指示灯	14
13.摄像头接口	15
14.高性能 IMU 模块接口	16
15.屏幕接口	17

16.无线转串口模块接口	
17.按键与拨码开关	
18.焊接说明	20

1.主板参数

1.1.外形尺寸

主板外形尺寸: 长 156.59mm, 宽 61.98mm。

1.2.供电电源

使用 2-6S 电池供电, 最高可 36V 输入

2.主板功能模块介绍

- 电池供电接口:可使用 2-6S 电池供电,最高可 36V 输入。
- 电源主开关: 当主板使用电池进行供电时,此开关为主板整体供电开关。
- 电机驱动供电接口 1、2: 此接口用于向电机驱动提供电源。受开关控制且输出电压与电池电压相同。
- 舵机电源电压调节:通过旋动该电位器的调节旋钮,可以调节舵机接口的供电电压。
- 舵机接口:将舵机插头直接连接至该接口,通过程序可以实现对舵机转动控制,且舵机供电电压可调。
- 舵机指示灯:此指示灯为舵机电源指示灯,舵机供电正常时,指示灯常亮。
- 有刷电机接口 1、2/无刷电机接口 1、2:每个电机驱动接口可输出 4 路 PWM 信号,可以搭配电机驱动模块,实现控制 2 个电机的正反转及控速。2 个电机驱动信号接口总共可以实现控制 4 个电机的正反转及控速。
- 编码器接口 1、2、3、4: 可与 mini 编码器直接连接。实现测速等功能。
- 运放模块接口 1、2: 适配 OPA4377, 4 通道运放模块。
- 运放电源指示灯:采用独立 3.3V LDO 为运放模块供电。当该 LDO 正常工作时,该指示灯会亮起。
- 摄像头接口:该接口与核心板引脚相连,可以使用该接口采集摄像头数据。
- 摄像头电源指示灯:采用独立 3.3V LDO 为摄像头供电。当该 LDO 正常工作时,该指示灯会亮起。
- 屏幕接口: 适配 2.0 寸 IPS 并口屏、1.8 寸 TFT 液晶屏、1.14 寸 IPS 液晶屏以及 OLED 屏。
- IMU 接口 1 (排针): 适配 ICM42688,ICM20602,ASM330 等 IMU 模块或者 RM3100 等 SPI 接口的地磁计模块。

- IMU 接口 2 (FPC): 适配高性能 IMU 模块。
- 无线转串口接口:可以直接连接无线转串口模块,从而实现无线通讯功能。
- 拨码开关与按键:与单片机 IO 相连,可以由用户程序控制。
- ADC 接口:提供给用户使用 ADC 的扩展接口。
- 3.3V 电源指示灯:采用独立 3.3V LDO 为单片机,屏幕,编码器等供电。当该 LDO 正常工作时,该指示灯会亮起。
- 3.3V 电源排针:可以为外部需要 3.3V 电压的模块供电,该电压由 LDO 产生,不能带大功率负载
- 5V 电源排针:可以为外部需要 5V 电压的模块供电。
- 5V 电源指示灯:采用独立 5V LDO 为单片机,屏幕,编码器等供电。当该 LDO 正常工作时,该指示灯会亮起。
- SPI 无线接口:可以连接 SPI 无线转串口模块,从而实现无线通讯功能。
- TOF接口:可以连接 TOF 测距模块或者其它 IIC 驱动的传感器模块。
- 定位模块接口:可连接 GPS, RTK 等定位模块或者其它 UART 协议的传感器。
- 磁铁感应接口:可连接停车检测。
- 核心板: 可使用英飞凌 TC264 TC277 TC364 TC377 TC387 核心板。

3.电池供电接口

可以通过电池供电接口为主板提供电源。输入电压范围为: 6V-36V。若输入的电压低于额定电压,则可能会造成主板工作不正常。若输入电压高于额定电压,则可能会造成主板器件永久性损坏。请确认供电电源的电压后再连接主板,避免不必要的损失。

主板未焊接电源插头,可根据使用的电池自行焊接插头类型。注意插头焊接的正负极连接好之后的照片如下图所示。

4.电源主开关

此开关可以控制使用电池供电接口时主板电源的通断,当开关关闭时,主板上的所有供电均处于断开状态。

5.电机驱动电源接口

可以通过此接口为电机驱动提供电源供给,该接口输出电压与电池电压相同,并由电源主开关控制。

连接步骤:

- 1. **先确保主板已断开任何电源连接**,再进行以下步骤。
- 2. 将接线端子螺丝逆时针拧,直到导线可以插入端子上部,插入导线后将螺丝顺时针拧,确保导线与端子上端连接牢固,需要注意该端子不是将导线压接在底部,而是压接在上部。如下图所示。

3. 用两根导线插入主板驱动电源接口,并拧紧螺丝。电源线的粗细会影响到电机驱动的输出功率,如果电机的功率大于 2A,建议使用 22AWG 或更粗的电源线 (<22AWG),避免导线过电流能力不足。

(请事先将剥开的线芯用焊锡固定,避免散落的线芯将正负极短路。)

4. 按照相同的步骤,将已接好的线另一端连接至电机驱动电源接口,接好后如下图所示。

6.舵机电压调节电位器

此电位器可以控制舵机接口 VCC 脚输出电压, 最低 1.6V, 最高与电池电压相同。

在主板出货前, 舵机电压调节电位器已调节至 5.5V-6V 之间, 可以直接接舵机使用。

如果需要自己调节舵机接口的输出电压,可以手动调节电位器旋钮,顺时针调节,电压增大,逆时针调节,电压减小。

由于电位器采用的是多圈式精密电位器,所以调节时可能需要将旋钮旋转很多圈。请谨慎 小心调节,并注意测量输出的电压,避免因电压过高损坏舵机。

7.舵机接口

采用标准 3Pin 2.54mm 排针作为舵机接口,可以与 FUTABA 或 JR 舵机插头直接连接连接方式如下图所示,请注意连接线的颜色,避免插错导致烧毁舵机。

舵机信号脚为核心板的 33.9 引脚,请根据舵机的种类选择合适的 PWM 频率,普通模拟舵机使用 50Hz PWM 频率,数字舵机可以使用 50Hz-300Hz 的 PWM 频率。

8.电机驱动信号接口

每个电机驱动信号接口可输出 4 路 PWM 信号,可以搭配单/双电机驱动模块,实现控制 1 或 2 个电机的正反转及控速。

主板上共 2 个电机驱动信号接口可以实现控制最多 4 个电机的正反转及控速电机驱动接口原理图如下图所示:

与电机驱动模块的连接方式:

9.编码器接口

可以与编码器直接连接。实现测速或转动方向等功能。

兼容带方向输出的编码器与正交解码编码器。

编码器的连接:

编码器的连接方向为:插头插在主板上,出线的方向朝向板子外侧。

由于编码器接口没有防呆设计,所以请小心不要将插头插反。插反可能会导致编码器永久性烧毁。

10.电磁头接口

可以使用该接口连接寻迹电感,该接口与运放模块的输入接口引脚对应。可以将电感采集到的波形传入运放模块的输入端。主板上的接口最多支持8路寻迹电感。

该接口仅为寻迹电感连接接口,如果想要采集赛道电磁信号,需要配合运放模块使用才可以实现功能。运放模块连接方式详见本文档第 11 章。

11.电磁模块接口

该接口适配 OPA4377 四通道运放模块。可以将输入的 20KHz 正弦波信号放大并转换为稳定的电压值。以使用单片机的 ADC 模块采集。板子上可连接两个运放模块,但其中一个与摄像头模块存在机械干涉,不能同时使用。且没有焊接该模块对应的排针排母。

运放模块的原理图如下图所示:

运放模块采用 3.3V 供电, 避免由于 5V 供电时轨对轨运放输出高于 3.3V, 否则可能导致烧毁单片机 ADC 相关引脚。

运放模块与主板连接好的照片如下图所示:

12.电源指示灯

12.1 舵机电源指示灯

舵机电源指示灯原理图如下:

当舵机电源稳压芯片输出电压时,该指示灯亮起。当调整舵机电源电压输出电位器时。也可以看到该指示灯产生明暗变化。

如果发现使用电池供电时,该指示灯没有正常亮起,则首先测量舵机接口 VCC 引脚输出的电压值,若无论如何调节电位器,都没有任何电压输出。则舵机稳压部分电路可能已损坏。

12.2.电磁运放模块供电指示灯

电磁运放模块供电指示灯原理图如下图所示:

当运放电源稳压芯片输出电压时,该指示灯亮起。如果发现使用电池供电时,该指示灯没有正常亮起,则首先运放接口 VCC 引脚输出的电压值。如果没有电压输出,则运放稳压部分电路可能已损坏。

12.3.摄像头电源指示灯

摄像头电源指示灯原理图如下图所示:

摄像头电源指示灯采用了一颗独立的 LDO,将 5V 电源转换成摄像头可以使用的 3.3V 电压,并且只为摄像头提供电源。如果 LED 没有正常亮起,则为摄像头提供电源的 LDO 可能已经损坏。

12.4. 3.3V 电源指示灯

除摄像头以外所有 3.3V 均由一个 LDO 提供,如编码器 3.3V 供电如果 3.3V LED 没有正常亮起,则提供 3.3V 电源的 LDO 可能已经损坏。

13.摄像头接口

摄像头与核心板与以下引脚相连,接口原理图如下图所示。

与摄像头转接板连接后的示意图如下图所示。请注意转接板的出线方向朝向板子中心。

14.高性能 IMU 模块接口

可通过 FPC 排线连接高性能 IMU 模块,需要使用 <mark>1mm 间距,12pin,同向</mark>的 FPC 排线。 如下图所示。

15.屏幕接口

屏幕接口原理图如下图所示:

主板屏幕接口适配 0.96 寸 OLED, 1.8 寸 TFT,1.14 寸 IPS, 2.0 寸并口 IPS 屏, .2 寸串口 IPS 屏。由于不同的屏幕引脚数量和通讯方式并不相同,所以在使用时请注意屏幕引脚插在接口对应的位置,避免由于插错导致无法使用。英飞凌主要使用 2 寸屏幕,并口屏能更快的刷新但占用更多的 IO,串口屏占用更少的 IO,可根据自己的需求选择。

16.无线转串口模块接口

学习板有两个接口可以直接连接无线模块,从而实现无线通讯等功能。一个为 UART 接口的无线模块,一个为 SPI 接口的无线模块。

无线转串口与主板的连接方式如下图所示:

SPI 接口

17.按键与拨码开关

拨码开关与按键的原理图如下图所示:

可以通过程序自定义按键的功能,实现修改参数等操作。

所有按键及拨码开关,闭合时接地,所以使用时请上拉相应 I○。并将触发方式设置为低电平触发,按键对应的 I○ 可查看板子丝印。

18.焊接说明

元件	数量	
1x3P 排针	2	
1x4P 排针	1	
1x6P 排针	2	
1x8P 排针	1	
2x3P 排针	10	
2x4P 排针	1	
1x6P 排母	2	
2x4P 排母	3	
2x5P 排母	1	
2x8P 排母	1	
2x13P 排母	1	
2x20P 排母	2	
2x8P 加高排母	1	
1x2P 端子	2	
1x2P 拨码开关	1	
按键	4	
蜂鸣器	1	蜂鸣器有极性
电源线	1	注意正负极不要焊反!