CSCI 6010 Introduction to Computer Science Fundamentals, Spring 2016 Mid-Term Exam 7pm March 4th – midnight March 6th

I pledge that this test/assignment has been completed in compliance with the Graduate Honor Code and that I have neither given nor received any unauthorized aid on this test/assignment.

Name (P	Print): Kedar Ravindra Haldankar
Signed:	

Mid-term solutions

1	A
2	С
3	A, E
4	D
5	С
6	С
7	D
8	25
9	just right
10	Income is greater than 3000
11	A, B, C, D
12	A, C
13	3 0
14	120 elements, x.length=12, x[2].length=5, x[0][0].length=2
15	C, D
16	Error: Paranthesis are not placed proper in last system.out.println. If corrected , output
	will be:
	3
	-1
17	(a) 0 1 (b) 0
18	(a) 2
	2 4
	2 4 8
	2 4 8 16
	2 4 8 16 32
	2 4 8 16 32 64
	(b) Before the call, variable times is 3 n = 3
	Welcome to Java!
	n = 2
	Welcome to Java!
	n = 1
	Welcome to Java!
	After the call, variable times is 3

10	
19	Exception: FileNotFoundException has been caught twice.
20	1
	2 1
	3 2 1
	4 3 2 1
	5 4 3 2 1
	6 5 4 3 2 1
21	Error: character passed instead of string, if passed "a" , output will be aaaa
22	В
23	C, D, E, F
24	1
24	
	8
0.5	
25	Error: Constructor accepts string argument which is not provided.
26	False
27	A, B, C, D, F, I
28	E
29	(a) A's no-arg constructor is invoked
	(b) Error: No arguments are passed / constructor A in class A cannot be
	applied to type B.
30	In constructor of Circle, and class B, Statements should be changed to:
30	in constructor of choic, and class B, statements should be changed to.
	this.radius=radius;
	super(radius)
	this.length=length; respectively.
	Also in got Aron() mothod in aloss D. roturn statement should be:
	Also, in getArea() method in class B, return statement should be:
	super.getArea() * this.length.
	If none of these is done then it will throw an error as incompatible types.
	If hold of these is done then it will thow the effort to incompation types.
2.1	(a) Dorson
31	(a) Person
	Student
	(b) Person
	Person
32	

```
public static long FibonacciIteration(long n)
         {
             if (n == 0) return 0;
             if (n == 1) return 1;
             long x=0;
             long y=1;
             long z=0;
             for (int i = 0; i < n-1; i++)
                 z = x + y;
                 x = y;
                 y = z;
             }
             return z;
         }
33
        (a)
             Error: method add in class test cannot be applied to
             given types;
             add(stack1, stack2);
             required: Stack<T>,Stack<T>
             found: Stack<String>,Stack<Object>
             reason: inferred type does not conform to equality
     constraint(s)
             inferred: Object
             equality constraints(s): Object, String
             where T is a type-variable:
             T extends Object declared in method
     <T>add(Stack<T>,Stack<T>)
              Original output does not change:
          (b)
              Sun
              2
              Java
35
             Please check on next page:
```

```
public class Hexagon extends GeometricObject implements Cloneable,
    Comparable<Hexagon> {
 private double side;
 /** Construct a Hexagon with the specified side */
 public Hexagon(double side) {
   // Implement it
   this.side=side;
 }
 @Override
 public double getArea() {
    // Implement it (area = 3*\sqrt{3}/2*side*side)
    double area=3*side*side*(Math.sqrt(3)/2);
    return area;
 }
 @Override
 public double getPerimeter() {
   // Implement it
   double perimeter=6*side;
   return perimeter;
 }
 @Override
 public int compareTo(Hexagon obj) {
    // Implement it (compare two Hexagons based on their sides)
         double secondPerimeter=obj.getPerimeter();
         double secondSide= secondPerimeter/6;
          double difference= this.side-secondSide;
          if(difference==0.00)
          return 0;
          else{
          if (difference > 0.00)
           return 1;
           else{
           return -1;
          }
 }
 @Override
 public Object clone() {
    // Implement it
```

```
try{
                return super.clone();
           }
           catch (Exception Ex)
                return null;
           }
         }
              (a) Here, R=\{\langle a,b\rangle | \text{iff a/b=integer} \} where a\in S and b\in S,
36
                   where S is set of all nonzero rational numbers.
                   In order to be an equivalence relation, the relation
                   must be reflexive, symmetric and transitive.
                    i. Reflexivity test:
                   consider any random number from R. Let's just take
                   In order to be reflexive aRa should be valid for all
                   a∈R
                   Here, 4R4 = 4/4=1 is an integer. And it is true for
                    all the elements of set S. Hence Relation R is
                    reflexive.
                    ii. Symmetric test:
                   Consider any two numbers a and b from set R,
                   In order to be symmetric if aRb is valid, then bRa
                    should also be valid.
                   Let's take 12 and 6. In this case we have 12R6=
                    12/6=2 is an integer. But 6R12=6/12=1/2 is not an
                    integer. Hence Relation R is NOT symmetric.
                   From these two tests we can prove that this is not
                   an equivalence relation.
              (b) Here, R=\{\langle a,b\rangle | \text{iff } |a-b| \leq 2\} where a\in S and b\in S,
                   where S is set of all rational numbers.
                   In order to be an equivalence relation, the relation
                   must be reflexive, symmetric and transitive.
                    i. Reflexivity test:
                    consider any random number from R. Let's just take
                    In order to be reflexive aRa should be valid for all
                    a∈R
                    Here, 4R4 = |4-4| <= 2 = 0 <= 2 is valid. And it is
```

	true for all the elements of set S. Hence Relation R
	is reflexive.
	ii. Symmetric test: Consider any two numbers a and b from set R, In order to be symmetric if aRb is valid, then bRa should also be valid. Let's take 2 and 3. In this case we have 2R3= 2- 3 <=2 is valid. Also, 3R2= 3-2 = 1 is valid. Hence Relation R is symmetric.
	iii. Transitivity test: Consider any three numbers a, b and c from set R, In order to be transitive, if aRb and bRc then aRc must be valid Let's take 2, 4, 6. We have $2R4= 2-4 = 2 <= 2$ is valid $4R6= 4-6 = 2 <= 2$ is valid $2R6= 2-6 = 4 <= 2$ in NOT valid
	Hence R is not transitive. From these three tests we can prove that this is not an equivalence relation.
37	Consider n is not prime when 2 ⁿ -1 is prime.
	Let's say $2^n-1=5$,
	Hence, $2^n=6$ $2^{(n-1)}*2=2*3$
	$2^{(n-1)} = 3$
	according to the hint a=n, b=1.
	$(2^{n}-1)*(2^{n(1-1)})=3$
	as $2^{n(1-1)}=1$,
	2 ⁿ -1=3
	$2^{n}=4$
	n=2, here n is prime
	hence our assumption is wrong and it's proved that 2 ⁿ -1 is prime, then n is prime.
38	$n!$, e^n , $(3/2)^n$, $n^{\lg \lg n}$, $2^{\lg n}$, $(\sqrt{2})^{\lg n}$, $\lg^2 n$, $\ln n$, $n^{1/\lg n}$
39	This corresponds to the harmonic series H_n . i.e $T(n)=H_n$
	$H_{n=}=1/1+1/2+1/3++1/n$
	$T(1)=H_1=1$ $T(n-1)=H_{n-1}$
	So given expression becomes
	$T(n)=H_{n-1} + 1/n = H_n$

	As $H_n = \Theta(\lg n)$ $\underline{T(n)} = \Theta(\lg n)$
40	$T(n) = T(\sqrt{n}) + 1$
	$T(n) = T(n^{1/2}) + \Theta 1$
	$T(n) = T(n^{1/4}) + \Theta 1 + \Theta 1$ This will continue k times, until $n^{1/2^k} <= 1$
	2 ^k =lg n k= lg lg n
	$\underline{T(n)} = k * \Theta(n) = \Theta(lg \; lg \; n)$
41	<pre>(a) Let us assume: D=Maximum number of elements in the list E=The Size of the data element(In this case it's 4 bytes)</pre>
	P= The size of pointer (in this case 4 bytes)
	The case in which the array-based list is more space efficient than the linked list:
	n > D*E/P+E n > (D*4)/(4+4)
	$ \begin{array}{c} n > (D*4)/8 \\ \underline{n} > D/2 \end{array} $
	Hence, when 'n' i.e. number of elements currently in the list are more than half of 'D' i.e. maximum number of elements in the list, the array-based list is more space efficient than the linked list
	more than half of 'D' i.e. maximum number of elements in the list, the array-based list is more space efficient than the linked list (b) Let us assume:
	more than half of 'D' i.e. maximum number of elements in the list, the array-based list is more space efficient than the linked list (b) Let us assume: D=Maximum number of elements in the list E=The Size of the data element(In this case it's 8
	more than half of 'D' i.e. maximum number of elements in the list, the array-based list is more space efficient than the linked list (b) Let us assume: D=Maximum number of elements in the list
	more than half of 'D' i.e. maximum number of elements in the list, the array-based list is more space efficient than the linked list (b) Let us assume: D=Maximum number of elements in the list E=The Size of the data element(In this case it's 8 bytes)
	more than half of 'D' i.e. maximum number of elements in the list, the array-based list is more space efficient than the linked list (b) Let us assume: D=Maximum number of elements in the list E=The Size of the data element(In this case it's 8 bytes) P= The size of pointer (in this case 4 bytes) The case in which the array-based list is more space efficient than the linked list: n > D*E/P+E n> (D*8)/(8+4)
	more than half of 'D' i.e. maximum number of elements in the list, the array-based list is more space efficient than the linked list (b) Let us assume: D=Maximum number of elements in the list E=The Size of the data element(In this case it's 8 bytes) P= The size of pointer (in this case 4 bytes) The case in which the array-based list is more space efficient than the linked list: n > D*E/P+E n > (D*8)/(8+4) n > (D*8)/12
	more than half of 'D' i.e. maximum number of element the array-based list is more space efficient than the link (b) Let us assume: D=Maximum number of elements in the list E=The Size of the data element(In this case bytes) P= The size of pointer (in this case 4 bytes) The case in which the array-based list is more space entire the linked list: n > D*E/P+E n > (D*8)/(8+4)

42	(a) $T(\alpha n)+T((1-\alpha)n)+cn$ $=d\alpha n \log(\alpha n)+d(1-\alpha)n \log((1-\alpha)n)+cn d\alpha n \log\alpha+d\alpha n \log n+d(1-\alpha)n \log(1-\alpha)+d(1-\alpha)n \log n+cn$ $=dn \log n+dn(\alpha \log\alpha+(1-\alpha)n\log(1-\alpha)n+cn$ $=dn \log n$.
	(b) From (a), $T(n) = \Theta(n \log n)$ and $T(n) = \Omega(n \log n)$. So, we have $T(n) = \Theta(n \log n)$.

(For #34 - #42, feel free to use the space based on your need.)