International Biometric Conference

8-13 December 2024 **Atlanta** USA

Early Growth Patterns in Argentine Infants: Environmental Influences on Anthropometric Development

Tomás González Garello
Grupo de Bioestadística Aplicada
Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires

Catch-Up

Brain Sparing Effect

Intrauterine Unrestricted Growth

The fetus received a sufficient supply of resources during gestation.

As a result, the child is likely to have normal growth patterns and a balanced development of both the brain and other bodily structures.

Intrauterine Restricted Growth

The fetus does not reach its full growth potential.

In this condition, the fetus faces a trade-off between allocating resources for brain growth and allocating them for other functions, such as somatic growth and survival

Objective

The aim of this study is to assess the trade-off between brain and bone growth during the first year of life in infants from Argentina

Hypothesis

First year postnatal brain growth is spared at the expense of bone tissue growth

Objective

The aim of this study is to assess the trade-off between brain and bone growth during the first year of life in infants from Argentina

Hypothesis

First year postnatal brain growth is spared at the expense of bone tissue growth

Prediction

We expect that the postnatal trajectories of **head circumference (HC)** and **body length (BL)** vary according to the growth status at birth. <u>Particularly, we expect an earlier catch-up growth of HC trajectories compared to body length</u>

Analytical Sample

Individuals Included on Analysis

<I year old

I measurement before first week of life (<7 days)

6 months

7 months

8 months

3 or more BL and HC measurements during first year of life

3,399 Infants

Head circumference-for-age GIRLS

World Health Organization

Birth to 2 years (z-scores)

Analytical Sample

Statistical Analysis

Count Model

$$E(y_i) = \beta_0 + \beta_1 * Age_i + \beta_2 * ln(Age_i + 1)$$

```
Anthropometric Variable \sim \beta0 + \beta1 * (Age) + \beta2 * log(Age + 1), fixed = \beta0 + \beta1 + \beta2 \sim Growth Status, random = \beta0 + \beta1 + \beta2 \sim 1|ID
```


Statistical Analysis

Models by sex

Female

Male

HC ~
$$\beta\theta$$
 + β 1 * (Age) + β 2 * log(Age + 1),
fixed = $\beta\theta$ + β 1 + β 2 ~ Growth Status,
random = $\beta\theta$ + β 1 + β 2 ~ 1|ID

HC ~
$$\beta$$
0 + β 1 * (Age) + β 2 * log(Age + 1),
fixed = β 0 + β 1 + β 2 ~ Growth Status,
random = β 0 + β 1 + β 2 ~ 1|ID

BL
$$\sim \beta\theta + \beta1 * (Age) + \beta2 * log(Age + 1)$$
,
fixed = $\beta\theta + \beta1 + \beta2 \sim Growth Status$,
random = $\beta\theta + \beta1 + \beta2 \sim 1|ID$

BL
$$\sim \beta\theta + \beta1 * (Age) + \beta2 * log(Age + 1)$$
,
fixed = $\beta\theta + \beta1 + \beta2 \sim Growth Status$,
random = $\beta\theta + \beta1 + \beta2 \sim 1|ID$

Growth Trajectories

Conclusion and Implications

Low z-score in both HC and BL at birth

LowHC_LowBL → HC mean recovery > BL Mean recovery

Low z-score in only one variable at birth

HC mean recovery of LowHC_NorBL > BL mean recovery of NorHC_LowBL

Head circumference at birth and postnatal growth trajectory in vulnerable groups from Argentina

rowth trajectory

Head circumference in vulnerable group

iana Pérez¹ Gonzalez²

International
Biometric
Conference

Instituto del Cálculo (Pabellón 0 + Infinito)

<u>Grupo de</u> <u>Bioestadística</u>

<u>Aplicada</u>

Adriana Pérez, Gerardo Cueto, Soledad Fernández, Pablo Turjanski, Pablo Nuñez, Santiago Flaibani, Valentín Rozenblit

Departamento de Ecología, Genética y Evolución (Pabellón 2)

<u>Unidad Ejecutora de</u> <u>Estudios en Neurociencias y</u> <u>Sistemas Complejos</u>

Paula González, Jimena Barbeito-Andrés, Noelia Bonfili

Study Design

>6500 Public Health Care Centers

Approximately 4 million children and adolescents each year

Growth Status

Growth Trajectories $E(y_i) = \beta_0 + \beta_1 * Age_i + \beta_2 * ln(Age_i + 1)$

$$E(y_i) = \beta_0 + \beta_1 * Age_i + \beta_2 * ln(Age_i + 1)$$

	Female				Male			
	norHC_norL	norHC_lowL	_lowHC_norL	lowHC_lowL	norHC_norL	norHC_lowL	lowHC_norL	_ lowHC_lowL
нс								
βΟ	А	В	С	С	Α	А	В	В
	34.30 (0.05)	33.33 (0.05)	30.79 (0.09)	30.62 (0.1)	34.67 (0.05)	33.49 (0.05)	30.60 (0.1)	30.75 (0.1)
β1	А	А	В	В	А	А	В	C -0.015
	0.23 (0.02)	0.25 (0.02)	-0.023 (0.03)	0.016 (0.04)	0.17 (0.02)	0.17 (0.01)	-0.22 (0.04)	(0.04)
β2	А	В	А	В	Α	В	Α	С
	3.59 (0.08)	3.63 (0.08)	5.62 (0.14)	5.38 (0.16)	4.05 (0.08)	4.34 (0.08)	7.06 (0.19)	5.97 (0.18)
Length								
βο	А	В	С	D	Α	В	С	D
	48.62 (0.09)	44.06 (0.09)	47.33 (0.16)	43.56 (0.16)	49.22 (0.07)	44.70 (0.07)	48.30 (0.17)	44.09 (0.16)
β1	AB	А	В	В	Α	В	Α	Α
	0.93 (0.03)	0.84 (0.03)	1.05 (0.05)	1.03 (0.06)	0.86 (0.03)	0.75 (0.03)	0.96 (0.08)	1.02 (0.07)
62	A	В	А	С	А	В	Α	А
β2	5.46 (0.12)	6.83 (0.11)	5.12 (0.21)	6.12 (0.22)	6.08 (0.12)	7.56 (0.12)	5.86 (0.29)	6.67 (0.28)

Growth Recovery

Conclusion and Implications

- For individuals born with lowHC and lowL the mean recovery is faster in HC than in BL
- Considering individuals born with a low z-score in only one variable, the mean recovery is faster in HC in cases of low HC at birth than the BL mean recovery in low BL at birth cases
- In all groups, mean recovery is faster in female curves than in male curves.
- For both anthropometric variables, mean recovery is faster when the low z-score is manifested in only one of the two variables