# Learning to Generate Chairs, Tables and Cars with Convolutional Networks

By Alexey Dosovitskiy, Jost Tobias Springenberg, Maxim Tatarchenko, Thomas Brox

Presentation by Sam Woolf and Cole Springate

# Overview

Generative models often have two components:

- 1. Learn to represent the distribution of images
- 2. Learn to generate an image from a vector drawn from that distribution

Paper focuses on 2. High level descriptions are given to train generator.

# Task

### Generate images from their high-level descriptions

Dataset: projections of 3D images and their high level descriptions

Network: descriptions 2D projection

High level description includes

- 1. Style
- 2. Viewpoint
- 3. Numerous transformation parameters (color, zoom)

# Task: more than memorization

Network should learn a presentation of 3D models and be able to:

- Transfer knowledge within a class
- Transfer knowledge between classes
- Interpolate within and between classes
- Create new images not seen by network

# Related work

### Other generative strategies:

GANS (generative adversarial networks)

 We saw this in "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks" (presented by Jorge)

### Restricted Boltzman Machines

 We saw this in "Using very deep autoencoders for content-based image retrieval" (presented by Chris and Ben)

# Paper contribution (differences)

- 1. Assume high level latent representation is given
- 2. Use supervised training

### Upside:

- relatively high quality images (up to 256 x 256)
- control over which images to generate

### Downside:

need to start with high level representation

# **Dataset**



# **Dataset**

### **Chair Model Renderings**

- 809 models
- each with 2 elevation angles and 31 azimuth angles
- segmentation mask produced by subtracting white background

### **Cars and Table Models**

- 7124 car models, 1000 table models
- rendered by authors (models from ShapeNet)
- 5 elevation angles and 36 azimuth angles
- segmentation rendered directly

# Dataset size and augmentation



Fig. 5. Qualitative results for different numbers of car models in the training set.

| Num models            | 500  | 1000 | 3000 | 7124 | 1000aug |
|-----------------------|------|------|------|------|---------|
| MSE $(\cdot 10^{-3})$ | 0.48 | 0.66 | 0.84 | 0.97 | 1.18    |

TABLE 2

Per-pixel mean squared error of image generation with varying number of car models in the training set.



Fig. 6. Interpolation between two car models. **Top:** without data augmentation, **bottom:** with data augmentation.

# Model - Input

D = {
$$(c^1, v^1, \theta^1), ..., (c^N, v^N, \theta^N)$$
}

**c**: ones-hot encoding of the model (style)

v: azimuth and elevation of the camera (as sine and cosine)

**0**: parameters of artificial transformations (color, brightness, zoom, etc)

# Model - Output

$$O = \{(\mathbf{x}^1, \mathbf{s}^1), ..., (\mathbf{x}^N, \mathbf{s}^N)\}$$



Fig. 1. Architecture of a 2-stream network that generates  $128 \times 128$  pixel images. Layer names are shown above: FC - fully connected, uconv - unpooling+convolution.

# What is "Up-convolution"

Like "deconvolution" (actually called transposed convolution with fractional slide).

### Regular convolution:





# What is "Up-convolution"

Up-convolution is "unpooling" (opposite of max pooling) and then convolution:



Fig. 2. Illustration of unpooling (left) and unpooling+convolution (right) as used in the generative network.

# **Training**

### Loss

- L2 for image
- softmax layer and negative log-likelihood for segmentation

### **Update**

$$\min_{\mathbf{W}} \sum_{i=1}^{N} L_{RGB} \left( T_{\theta^{i}}(\mathbf{x}^{i} \cdot \mathbf{s}^{i}), u_{RGB}(h(\mathbf{c}^{i}, \mathbf{v}^{i}, \theta^{i})) \right) \\
+ \lambda \cdot L_{segm} \left( T_{\theta^{i}} \mathbf{s}^{i}, u_{segm}(h(\mathbf{c}^{i}, \mathbf{v}^{i}, \theta^{i})) \right),$$



Fig. 1. Architecture of a 2-stream network that generates  $128 \times 128$  pixel images. Layer names are shown above: FC - fully connected, uconv - unpooling+convolution.



Alternative Model Results:

Fig. 4. Qualitative results with different networks trained on chairs. See the description of architectures in section 4.2.

| Net                   | 2s-E | 2s-S | 1s-S | 1st-S-wide | 1st-s-deep |
|-----------------------|------|------|------|------------|------------|
| MSE $(\cdot 10^{-3})$ | 3.43 | 3.44 | 3.51 | 3.41       | 2.90       |
| #param                | 27M  | 27M  | 18M  | 23M        | 19M        |

TABLE 1

Per-pixel mean squared error of the generated images with different network architectures and the number of parameters in the expanding parts of these networks.

**Best** 

# **Key Experimental Results**



# Generating Transformations

Translation

Rotation

Zoom

Stretch

Saturation

Brightness

Color



# View Interpolation



Top row: w/ Knowledge Transfer Bottom row: w/o Knowledge Transfer

# Views of Chair in training set

15

1



# Elevation Angle Knowledge Transfer

Generated

1st Row: Trained on Chairs

2nd Row: Trained on Tables and Chairs



1st Row: Trained on Tables

2nd Row: Trained on Tables and Chairs





# Generation w/ Style Interpolation







# Generation w/ Style Interpolation Cont.

Chairs



**Tables** 

# Feature Arithmetic on FC-2





# Randomly Generated Chairs

Top Row: Generated Image

Bottom Row: Nearest Match in Training set



From Softmax of random (gaussian) input

From Gaussian noise in FC-2 of networks trained with usual loss

# Correspondances





- Given 2 images in dataset, generate 64 images via interpolation
- Use optical flow to match keypoints

| Method         | All | Simple | Difficult |
|----------------|-----|--------|-----------|
| DSP [36]       | 5.2 | 3.3    | 6.3       |
| SIFT flow [35] | 4.0 | 2.8    | 4.8       |
| Ours           | 3.4 | 3.1    | 3.5       |
| Human          | 1.1 | 1.1    | 1.1       |

TABLE 3

Average displacement (in pixels) of corresponding keypoints found by different methods on the whole test set and on the 'simple' and 'difficult' subsets.

# Analysis of the Network

# A little reminder...



# Images Generated From Single Unit Activations

Activating neurons in FC-1 and FC-2 feature maps



Activating neurons in FC-3 and FC-4 feature maps



# Images Generated from FC-4 Activations

translation upwards Zoom stretch horizontally stretch vertically rotate counter-clockwise rotate clockwise increase saturation decrease saturation make violet.

# Images Generated from Single Neuron in Feature Map



# Images Generated from Neighboring Neurons



Fig. 24. Chairs generated from spatially masked FC-5 feature maps (the feature map size is  $8 \times 8$ ). The size of the non-zero region increases left to right:  $2 \times 2$ ,  $4 \times 4$ ,  $6 \times 6$ ,  $8 \times 8$ .

# Conclusion

- A supervised CNN is used to generate images based on high-level information
- The network learns more than generate 2D samples, it learns a 3D representation
- One can use the network to invent new designs, based on a randomized input vector

# Sources/Citations

- https://web.stanford.edu/class/cs331b/presentations/paper6.pdf
- https://en.wikipedia.org/wiki/Restricted\_Boltzmann\_machine
- https://github.com/stokasto/caffe/blob/chairs\_deconv/README\_chairs\_
- https://arxiv.org/pdf/1411.5928.pdf
- https://www.youtube.com/watch?v=QCSW4isBDL0
- https://lmb.informatik.uni-freiburg.de/Publications/2015/DB15/