Ćwiczenia 6 Harmoniki sferyczne

Analiza IV

3 kwietnia

άγεωμέτρητος μηδείς είσίτω

1 Teoria

Na dzisiejszych zajęciach będziemy poszukiwać wartości i wektorów własnych laplasjanu na sferze. Zagadnienie jest dość istotne, dlatego wyprowadzimy te same rezultaty na kilka różnych sposobów.

1.1 Grupy oraz ich reprezentacje

Przypomnijmy sobie lub wprowadźmy kilka użytecznych pojęć z teorii grup¹. Znajomość tej części teorii jest zbędna dla początkowych zadań i można ją przy pierwszym podejściu pominąć. Wszędzie poniżej zakładamy, że (G,\cdot,e) jest grupą. Element odwrotny do $g\in G$ oznaczamy przez g^{-1} .

Definicja 1.1 (Działanie grupy na zbiorze) Niech X będzie zbiorem. Działaniem grupy G na zbiorze X nazywamy homomorfizm grup

$$\rho: G \to Perm(X),$$
(1)

gdzie Perm(X) jest grupą bijekcji zbioru X w siebie.

Mówiąc prościej, oznacza to, że dla każdego $g \in G$ mamy bijekcję $\rho(g): X \to X$, która spełnia:

- $\rho(g) \circ \rho(h) = \rho(g \cdot h)$
- $\rho(e) = id$.

Niech X,Y będą zbiorami, a Y^X zbiorem wszystkich funkcji z X w Y. Jeżeli ρ jest działaniem G na X, to G działa też na Y^X przez

$$Y^X \ni f \mapsto f \circ \rho^{-1}(g) \in Y^X. \tag{2}$$

Niech V będzie przestrzenią wektorową nad ciałem \mathbb{K} , $\dim_{\mathbb{K}} V = n < \infty^2$. Przez GL(V) oznaczać będziemy grupę wszystkich automorfizmów V (które możemy konkretnie zapisać jako odwracalne macierze n na n).

Definicja 1.2 (Reprezentacja) Reprezentacją G nazywamy homomorfizm grup

$$\Pi: G \to GL(V). \tag{3}$$

Reprezentację nazywamy wierną jeżeli Π jest różnowartościowe i nieprzywiedlną, gdy dla dowolnej podprzestrzeni właściwej $W \subset V$, istnieje $g \in G$ takie, że

$$\Pi(g)W \not\subset W.$$
 (4)

Reprezentację nazywamy unitarną jeżeli $\Pi(g)$ to macierz unitarna (dla każdego g).

Pytanie o reprezentacje danej grupy G jest w gruncie rzeczy kluczowym pytaniem współczesnej fizyki, w której symetrie zajmują centralne miejsce.

¹Doskonałym polskojęzycznym źródłem pozostaje niedawno wznowiony podręcznik autorstwa prof. Trautmana pod wszystko zdradzającym tytułem "Grupy oraz ich reprezentacje z przykładami zastosowań w fizyce", https://www.fuw.edu.pl/~amt/skr4.pdf

 $^{^2}$ Moglibyśmy rozważać nieskończeniewymiarowe V, ale będzie to zbędne w naszym przypadku. Co więcej, w naszych rozważaniach $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

2 Praktyka

Zadanie o (zagadka)

Rozważmy cząstkę żyjącą na okręgu (parametryzowanym przez kąt $\phi \in [0, 2pi]$). Na jej funkcję falową $\Psi(\phi)$ mogą działać dwa operatory:

- $\hat{\phi}\Psi(\phi) = \phi\Psi(\phi)$
- $\hat{p}_{\phi}\Psi(\phi) = -i\hbar\Psi'(\phi)$

Spełniają one kanoniczne reguły komutacyjne, więc z zasady nieoznaczoności Heisenberga wynika, że

$$\Delta \hat{\phi} \Delta \hat{p}_{\phi} \ge \frac{\hbar}{2}$$
 (5)

na dowolnej funkcji falowej. Weźmy jednak $\Psi=e^{i\phi}$. Jest to funkcja własna operatora pędu, więc $\Delta\hat{p}_{\phi}=0$, a jednocześnie $\Delta\hat{\phi}<\infty$. Co poszło nie tak?

Zadanie I (metoda walca drogowego)

(i) Proszę wyprowadzić postać laplasjanu we współrzędnych sferycznych i pokazać, że można zapisać go jako

$$\Delta = -\frac{1}{r}\partial_r^2 r + \frac{1}{r^2}\Delta_{\mathbb{S}^2},\tag{6}$$

gdzie $\Delta_{\mathbb{S}^2}$ jest operatorem różniczkowym niezależnym od r. Będziemy traktować go jako Laplace'a–Beltramiego na sferze³. Jesteśmy zainteresowani zagadnienia własnego

$$\Delta_{\mathbb{S}^2} Y = -l(l+1)Y,\tag{7}$$

gdzie na razie l jest dowolną liczbą, a $Y:\mathbb{S}^2 \to \mathbb{C}.$

(ii) Załóżmy najpierw, że rozwiązanie się separuje:

$$Y(\theta, \phi) = T(\theta)F(\phi). \tag{8}$$

Proszę wyprowadzić równania spełniane przez T i F, a następnie rozwiązać to drugie. (Proszę koniecznie pamiętać, że ϕ jest współrzędną na okręgu!)

- (iii) Proszę znaleźć podstawienie, które przemieni równanie na T w równanie już nam znane i rozwiązać je.
- (iv) Składając poprzednie podpunkty, proszę uzasadnić, że separowalne funkcje własne $\Delta_{\mathbb{S}^2}$ z wartością własną l są postaci

$$Y_{lm} = \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_l^m(\cos\theta) e^{im\phi},$$
(9)

gdzie $l \in \mathbb{N}$, a $|m| \leq l$. Co więcej, w tej postaci są unormowane następująco:

$$\int_{\mathbb{S}^2} \operatorname{Vol}_{\mathbb{S}^2} Y_{lm}^{\star} Y_{l'm'} = \delta_{ll'} \delta_{mm'}, \tag{10}$$

gdzie Vol_{S2} jest standardową formą objętości na sferze jednostkowej.

- (v) Proszę znaleźć relację (algebraiczną) między harmonikami sferycznymi, a funkcjami do nich sprzężonymi.
- (vi) Proszę udowodnić, że harmoniki sferyczne stanowią bazę ortonormalną w przestrzeni L^2 (\mathbb{S}^2).

³W istocie rzeczy, to jest dokładnie operator Laplace'a–Beltramiego na sferze, po prostu pomijamy uzasadnienie tego faktu.

(vii) Niech $x, y \in \mathbb{S}^2$. Proszę udowodnić, że

$$P_l(x \cdot y) = \frac{4\pi}{2l+1} \sum_m Y_{lm}(y) Y_{lm}^{\star}(x) \tag{II}$$

Zadanie 2 (harmoniki sferyczne jako wielomiany jednorodne)

Sfera dwuwymiarowa (jak już zaobserwowaliśmy) zanurzona jest w \mathbb{R}^3 . Niech $p:\mathbb{R}^3\to\mathbb{C}$ będzie wielomianem jednorodnym stopnia l, który spełnia (trójwymiarowe!) równanie Laplace'a:

$$\Delta_{\mathbb{R}^3} p = 0. \tag{12}$$

Proszę uzasadnić, że $p|_{\mathbb{S}^2}$ jest funkcją własną $\Delta_{\mathbb{S}^2}$ o wartości własnej l(l+1). Proszę powtórzyć tę analizę dla sfery \mathbb{S}^n o dowolnym wymiarze i w ten sposób znaleźć spektrum $\Delta_{\mathbb{S}^n}$. Proszę wyjaśnić czemu dowolny wielomian jednorodny stopnia l można zapisać jako

$$p = p_{I_1 I_2 \dots I_l} x^{I_1} x^{I_2} \dots x^{I_l}, \tag{13}$$

gdzie $p_{I_1I_2...I_l}$ są liczbowymi współczynnikami (symetrycznymi względem dowolnej permutacji indeksów) i sumujemy po powtarzających się indeksach. Do jakiego warunku na $p_{I_1I_2...I_l}$ prowadzi żądanie, by p spełniało równanie Laplace'a? Jakie warunki muszą spełniać p oraz p' by definiować funkcje ortogonalne na sferze?

Zadanie 3 (metoda algebraiczna)

Rozważać będziemy cząstkę poruszającą się w trzech wymiarach o momencie pędu $\vec{L}=\vec{r} imes \vec{p}=(L_x,L_y,L_z).$

- (i) Proszę dokonać kwantyzacji \bar{L} metodą "dopisania daszków". Z racji tego, że \bar{L} nie jest liniowe w operatorach położenia i pędu, należy odpowiedzieć na pytanie czy ta procedura jest jednoznaczna? Dla prostoty można położyć $\hbar=1$.
- (ii) Proszę zapisać wektor operatorów $\hat{\vec{L}}$ w reprezentacji położeniowej, a następnie wyrazić L_x, L_y i L_z we współrzędnych sferycznych (r, θ, ϕ) i policzyć (można tu użyć dowolnych współrzędnych) komutatory $[L_i, L_j]$ $(i, j \in \{x, y, z\})$.
- (iii) Niech $R_n(\alpha)$ oznacza macierz 3 na 3 odpowiadającą obrotowi o kąt α wokół osi n w kierunku przeciwnym do ruchu wskazówek zegara. Proszę znaleźć jawne postaci $R_i(\alpha)$ ($i \in \{x, y, z\}$) oraz macierze hermitowskie J_i , które spełniają

$$R_i(\alpha) = \exp\left(-i\alpha J_i\right) \tag{14}$$

i policzyć ich komutatory $[J_i, J_i]$.

(iv) W dalszej części zajmiemy się dowolnymi operatorami hermitowskimi \hat{J}_i , które spełniają powyższe reguły komutacyjne⁵. Proszę pokazać, że operator

$$\hat{J}^2 = \hat{J}_x^2 + \hat{J}_y^2 + \hat{J}_z^2 \tag{15}$$

komutuje ze wszystkimi \hat{J}_i (takie operatory nazywamy operatorami Casimira). W takim razie, możemy jednocześnie zdiagonalizować go razem z jednym z nich, np. z \hat{J}_z .

(v) Niech $|a,b\rangle$ będzie wspólną bazą diagonalizującą:

$$\hat{J}^2 |a, b\rangle = a |a, b\rangle \tag{16}$$

$$\hat{J}_z |a, b\rangle = b |a, b\rangle. \tag{17}$$

Wprowadźmy też operatory drabinkowe

$$\hat{J}_{\pm} = \hat{J}_x + i\hat{J}_y. \tag{18}$$

Proszę zauważyć, że $\hat{J}_{+}^{\dagger}=\hat{J}_{-}$, a następnie policzyć $[\hat{J}_{+},\hat{J}_{-}],[\hat{J}^{2},\hat{J}_{\pm}]$ oraz $[\hat{J}_{z},\hat{J}_{\pm}]$. Jak działają operatory \hat{J}_{\pm} na stany $|a,b\rangle$? Co można na tej podstawie powiedzieć o spektrum J^{2} ?

Zadanie 4 (ciut więcej o teorii reprezentacji)

⁴Oczywiście, powstaje pytanie czy znaleźliśmy w ten sposób wszystkie funkcje własne.

⁵Matematycznie rzecz ujmując: będziemy poszukiwać reprezentacji algebry Liego $\mathfrak{so}(3)$.

- (i) Niech G=SO(3) będzie grupą obrotów trójwymiarowych. Proszę uzasadnić, że G działa na \mathbb{S}^2 oraz na $L^2\left(\mathbb{S}^2\right)$.
- (ii) Proszę pokazać, że pod wpływem tego działania

$$Y_{lm} \mapsto \sum_{m'=-l}^{l} [D_{mm'}^{(l)}(g)]^* Y_{lm'},$$
 (19)

gdzie $D_{mm'}^{(l)}(g)$ jest wyrazem pewnej macierzy $D^{(l)}(g)$ (zwanej macierzą D Wignera). Proszę znaleźć jawną postać $D^{(l)}(g)$, gdy g odpowiada obrotowi wokół osi z.

(iii) Widzimy, że mamy reprezentację grupy SO(3) na podprzestrzeni span $\{Y_{lm}\}_{m\in\overline{-l,l}}$. Czy reprezentacja ta jest nieprzywiedlna? Wierna? Unitarna?