## 2028: Basic Statistical Methods Solutions - Homework 5

## 1. Hypothesis Testing for the Population Mean

(a) a The parameter of interest is the true mean coefficient of restitution. The hypothesis test is:  $H_0: \mu = 0.635 \leftrightarrow H_1: \mu > 0.635$ . Let  $\mu_0 = 0.635$ . The test statistic is

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = -5.16$$

and compare it to the t-quantile  $t_{0.05,39}=1.685$ . We therefore fail to reject the null hypothesis since  $t=-5.16 < t_{0.05,39}=1.685$ . There is not sufficient evidence to conclude that the true mean coefficient of restitution is greater than 0.635 at  $\alpha=0.05$ . When  $H_0$  is true,  $T=\frac{\bar{x}-0.635}{s/\sqrt{n}}\sim t_{39}$ 

p-value= $P(T > t) = 0.9999963 > \alpha = 0.05 \Rightarrow$  We cannot reject the null hypothesis.

c The hypothesis test is:  $H_0: \mu=0.635 \leftrightarrow H_1: \mu>0.635.$  If  $H_1$  is true, that is  $\mu=0.64$ , and then  $\frac{\bar{x}-0.635}{s/\sqrt{n}}=\frac{\bar{x}-0.64+0.005}{s/\sqrt{n}}=T+\frac{0.005\sqrt{n}}{s}$ , where  $T\sim t_{39}$ 

power of test = 
$$P(\text{reject } H_0|H_1 \text{ is true}) = 1 - P(\text{accept } H_0|H_1 \text{ is true})$$
  
=  $1 - P(\frac{\bar{x} - 0.635}{s/\sqrt{n}} \le t_{0.005,39}|\mu = 0.64) = 1 - P(T + \frac{0.005\sqrt{n}}{s} \le t_{0.005,39})$   
=  $1 - P(T \le t_{0.005,39} - \frac{0.005\sqrt{n}}{s})$   
 $\approx 1 - 0.23 = 0.77$ 

d We've known from c that power of test =  $1 - P(T \le t_{0.005,39} - \frac{0.005\sqrt{n}}{s})$ , so

$$1 - P(T \le t_{0.005,39} - \frac{0.005\sqrt{n}}{s}) \ge 0.75 \Leftrightarrow P(T \le t_{0.005,39} - \frac{0.005\sqrt{n}}{s}) \le 0.25$$
$$\Rightarrow t_{0.005,39} - \frac{0.005\sqrt{n}}{s} \le -0.681 \Rightarrow n \ge \left(\frac{s(t_{0.005,39} + 0.681)}{0.005}\right)^2 \approx 38$$

e The lower confidence bound is

$$\bar{x} - t_{0.05, n-1} \frac{s}{\sqrt{n}} = 0.6209.$$

Because 0.635 > 0.6209 we fail to reject the null hypothesis.

(b) i. The appropriate hypotheses are  $H_0$ :  $\mu = 75$  vs  $H_A$ :  $\mu < 75$ , since we want to strongly support an improvement in average drying time. Only when  $H_0$  is rejected, the additive is declared successful and used.

1

ii. The observed data come from a random sample  $X_1, \ldots, X_{25}$  normally distributed  $N(\mu, 9^2)$ , where  $\mu$  is the average drying time with the additive. Therefore, assuming the null hypothesis, the sampling distribution of  $\bar{X}$  is

$$\bar{X} \sim N(75, \frac{9^2}{25}).$$

We compute the type I error as:

$$\alpha = P(\bar{X} \le 70.8 \text{ when } \bar{X} \sim N(75, (1.8)^2)) = P\left(\frac{\bar{X} - 75}{1.8} \le \frac{70.8 - 75}{1.8}\right)$$
 
$$= P(Z \le -2.33) = .01.$$

Therefore, the type I error is .01.

iii. The type II error is computed as follows:

$$\begin{split} \beta(72) = & P(\text{type II error when } \mu = 72) = P(H_0 \text{ is not rejected when it is false because } \mu = 72) \\ = & P(\bar{X} > 70.8 \text{ when } \bar{X} \sim N(72, (1.8)^2)) = P\left(\frac{\bar{X} - 72}{1.8} > \frac{70.8 - 72}{1.8}\right) \\ = & 1 - P(Z \le -0.67) = 1 - .2514 = .7486. \end{split}$$

## 2. Hypothesis Testing for the Proportion Parameter

- (a) a The hypothesis test is:  $H_0: p=0.78 \leftrightarrow H_1: p>0.78$ .  $p\text{-value}=P(Z>\frac{289-0.78n}{\sqrt{0.78(1-0.78)n}})=1-\Phi(\frac{289-0.78\times350}{\sqrt{0.78(1-0.78)\times350}})\approx 0.02<0.05$  When  $\alpha=0.05$ , we can reject the null hypothesis. So the success rate for PN is greater than the historical success rate. The p-value is 0.02.
  - b The confidence interval of p is

$$\frac{\widehat{p} - p}{\sqrt{\widehat{p}(1 - \widehat{p})/n}} \le z_{\alpha} \Leftrightarrow p \ge \widehat{p} - z_{\alpha} \sqrt{\widehat{p}(1 - \widehat{p})/n} \Leftrightarrow p > 0.792$$

Since 0.78 is not in the confidence interval, we can reject the null hypothesis. The conclusion is the same as a.

- (b) a The hypothesis test is:  $H_0: p=0.1 \leftrightarrow H_1: p>0.1$ .  $p\text{-value}=P(Z>\frac{16-0.1n}{\sqrt{0.1(1-0.1)n}})=1-\Phi(\frac{16-0.1\times200}{\sqrt{0.1(1-0.1)\times200}})\approx 0.827>0.01$  When  $\alpha=0.01$ , we fail to reject the null hypothesis. So this finding doesn't support the researcher's claim. The p-value is 0.827.
  - b The confidence interval is

$$\frac{\widehat{p} - p}{\sqrt{\widehat{p}(1 - \widehat{p})/n}} \le z_{\alpha} \Leftrightarrow p \ge \widehat{p} - z_{\alpha} \sqrt{\widehat{p}(1 - \widehat{p})/n} \Leftrightarrow p > 0.0354$$

Since 0.1 is in the confidence interval, we cannot reject the null hypothesis. The conclusion is the same as a.

## 3. Computer Problem

(a) The data appears to be roughly normal.



- (b) The two-sided 95% confidence interval for the mean rainfall is (29.88, 38.71). Since 35 is included, the answer is no.
- (c)

$$H_0: \mu = 30 \leftrightarrow H_A: \mu > 30$$

- (d) The one-sided confidence interval is  $(30.63744, \infty)$ . We conclude that the mean rainfall is above 30 because the lower bound for the confidence interval is above 30.
- (e) The p-value is 0.02805. We would reject  $H_0$  for a 90% confidence interval but not for a 99% confidence interval.

```
R Code:
#read in the data
data = read.table("rain.txt")
rain = as.numeric(data[,1])
#Question 1
hist(rain)
qqnorm(rain)
#Question 2
#do the computations yourself
mu = mean(rain)
sd = sd(rain)
n = 23
1 = mu - qt(1-a/2, n-2)*sd/sqrt(n)
u = mu + qt(1-a/2, n-2)*sd/sqrt(n)
#or use t.test, like in question 4
t = t.test(rain, conf.level = .95, mu = 35)
> t
```

```
One Sample t-test
data: rain
t = -0.3323, df = 22, p-value = 0.7428
alternative hypothesis: true mean is not equal to 35
95 percent confidence interval:
29.87810 38.70712
sample estimates:
mean of x
34.29261
\#Question 3, 4 and 5
t2 = t.test(rain, conf.level=.95, mu=30, alternative=c("greater"))
>t2
One Sample t-test
data: rain
t = 2.0166, df = 22, p-value = 0.02805
alternative hypothesis: true mean is greater than 30
95 percent confidence interval:
30.63744
              Inf
sample estimates:
mean of x
 34.29261
```