1. Import Libraries

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
```

In [2]:

```
fraud_check = pd.read_csv('Fraud_check.csv')
fraud_check
```

Out[2]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO
595	YES	Divorced	76340	39492	7	YES
596	YES	Divorced	69967	55369	2	YES
597	NO	Divorced	47334	154058	0	YES
598	YES	Married	98592	180083	17	NO
599	NO	Divorced	96519	158137	16	NO

600 rows × 6 columns

In [3]:

fraud_check

Out[3]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO
595	YES	Divorced	76340	39492	7	YES
596	YES	Divorced	69967	55369	2	YES
597	NO	Divorced	47334	154058	0	YES
598	YES	Married	98592	180083	17	NO
599	NO	Divorced	96519	158137	16	NO

600 rows × 6 columns

In [4]:

fraud_check.shape

Out[4]:

(600, 6)

In [5]:

fraud_check.info()

RangeIndex: 600 entries, 0 to 599 Data columns (total 6 columns):

<class 'pandas.core.frame.DataFrame'>

#	Column	Non-Null Count	Dtype
0	Undergrad	600 non-null	object
1	Marital.Status	600 non-null	object
2	Taxable.Income	600 non-null	int64
3	City.Population	600 non-null	int64
4	Work.Experience	600 non-null	int64
5	Urban	600 non-null	object

dtypes: int64(3), object(3)
memory usage: 28.2+ KB

```
In [6]:
```

```
fraud_check.dtypes
```

Out[6]:

Undergrad object
Marital.Status object
Taxable.Income int64
City.Population int64
Work.Experience int64
Urban object

dtype: object

In [7]:

```
fraud_check.isna().sum()
```

Out[7]:

Undergrad 0
Marital.Status 0
Taxable.Income 0
City.Population 0
Work.Experience 0
Urban 0

dtype: int64

In [8]:

```
fraud_check['Taxable.Income'].max()
```

Out[8]:

99619

In [9]:

```
fraud_check['Taxable.Income'].min()
```

Out[9]:

10003

In [10]:

fraud_check.describe(include='all')

Out[10]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
count	600	600	600.000000	600.000000	600.000000	600
unique	2	3	NaN	NaN	NaN	2
top	YES	Single	NaN	NaN	NaN	YES
freq	312	217	NaN	NaN	NaN	302
mean	NaN	NaN	55208.375000	108747.368333	15.558333	NaN
std	NaN	NaN	26204.827597	49850.075134	8.842147	NaN
min	NaN	NaN	10003.000000	25779.000000	0.000000	NaN
25%	NaN	NaN	32871.500000	66966.750000	8.000000	NaN
50%	NaN	NaN	55074.500000	106493.500000	15.000000	NaN
75%	NaN	NaN	78611.750000	150114.250000	24.000000	NaN
max	NaN	NaN	99619.000000	199778.000000	30.000000	NaN

In [11]:

```
sns.pairplot(fraud_check)
fraud_check["TaxInc"] = pd.cut(fraud_check["Taxable.Income"],bins = [10003, 30000, 99620],l
fraud_check_2 = fraud_check.drop(columns=["Taxable.Income"])
```


In [12]:

```
fraud_check_2 = pd.get_dummies(fraud_check_2.drop(columns=["TaxInc"]))
fraud_check_2
```

Out[12]:

	City.Population	Work.Experience	Undergrad_NO	Undergrad_YES	Marital.Status_Divorced	
0	50047	10	1	0	0	
1	134075	18	0	1	1	
2	160205	30	1	0	0	
3	193264	15	0	1	0	
4	27533	28	1	0	0	
595	39492	7	0	1	1	
596	55369	2	0	1	1	
597	154058	0	1	0	1	
598	180083	17	0	1	0	
599	158137	16	1	0	1	
600 r	600 rows × 9 columns					
4					•	

In [13]:

fraud_check_final = pd.concat([fraud_check_2, fraud_check["TaxInc"]],axis=1)
fraud_check_final.dtypes

Out[13]:

City.Population	int64
Work.Experience	int64
Undergrad_NO	uint8
Undergrad_YES	uint8
Marital.Status_Divorced	uint8
Marital.Status_Married	uint8
Marital.Status_Single	uint8
Urban_NO	uint8
Urban_YES	uint8
TaxInc	float64

dtype: object

In [14]:

fraud_check_final

Out[14]:

	City.Population	Work.Experience	Undergrad_NO	Undergrad_YES	Marital.Status_Divorced
0	50047	10	1	0	0
1	134075	18	0	1	1
2	160205	30	1	0	0
3	193264	15	0	1	0
4	27533	28	1	0	0
595	39492	7	0	1	1
596	55369	2	0	1	1
597	154058	0	1	0	1
598	180083	17	0	1	0
599	158137	16	1	0	1

600 rows × 10 columns

In [15]:

fraud_check_final.isnull().sum()

Out[15]:

City.Population	0
Work.Experience	0
Undergrad_NO	0
Undergrad_YES	0
Marital.Status_Divorced	0
Marital.Status_Married	0
Marital.Status_Single	0
Urban_NO	0
Urban_YES	0
TaxInc	1
dtype: int64	

In [16]:

```
# Create a DataFrame from dictionary
kl = pd.DataFrame(fraud_check_final)
kl
```

Out[16]:

	City.Population	Work.Experience	Undergrad_NO	Undergrad_YES	Marital.Status_Divorced
0	50047	10	1	0	0
1	134075	18	0	1	1
2	160205	30	1	0	0
3	193264	15	0	1	0
4	27533	28	1	0	0
595	39492	7	0	1	1
596	55369	2	0	1	1
597	154058	0	1	0	1
598	180083	17	0	1	0
599	158137	16	1	0	1

600 rows × 10 columns

→

In [17]:

```
#Finding the mean of the column having NaN
mean_value=kl['TaxInc'].median()
mean_value
```

Out[17]:

1.0

In [18]:

```
# Replace NaNs in column TaxInc with the
# mean of values in the same column
kl['TaxInc'].fillna(value=mean_value, inplace=True)
print('Updated Dataframe:')
print(kl)
Updated Dataframe:
     City.Population Work.Experience Undergrad_NO Undergrad_YES
0
                50047
1
               134075
                                       18
                                                        0
                                                                         1
2
                                       30
                                                        1
                                                                         0
                160205
3
               193264
                                       15
                                                        0
                                                                         1
4
                 27533
                                       28
                                                        1
                                                                         0
. .
                                      . . .
595
                39492
                                        7
                                                        0
                                                                         1
                                        2
596
                55369
                                                        0
                                                                         1
597
               154058
                                        0
                                                        1
                                                                         0
               180083
                                       17
                                                        0
                                                                         1
598
599
               158137
                                       16
                                                        1
                                                                         0
     Marital.Status_Divorced Marital.Status_Married Marital.Status_Single
١
0
                              0
                                                         0
                                                                                   1
                              1
                                                         0
1
                                                                                   0
2
                              0
                                                         1
                                                                                   0
3
                              0
                                                         0
                                                                                   1
4
                              0
                                                         1
                                                                                   0
                                                        . . .
595
                                                         0
                                                                                   0
                              1
596
                              1
                                                         0
                                                                                   0
                              1
                                                         0
                                                                                   0
597
598
                              0
                                                         1
                                                                                   0
599
                              1
                                                         0
                                                                                   0
     Urban NO
                Urban_YES
                             TaxInc
0
             0
                          1
                                1.0
                          1
1
             0
                                1.0
2
             0
                          1
                                1.0
3
             0
                          1
                                1.0
4
             1
                          0
                                1.0
           . . .
                        . . .
                                 . . .
595
             0
                         1
                                1.0
596
             0
                          1
                                1.0
             0
                          1
                                1.0
597
598
             1
                          0
                                1.0
             1
599
                                1.0
```

[600 rows x 10 columns]

In [19]:

```
kl.dtypes
```

Out[19]:

City.Population int64 Work.Experience int64 Undergrad_NO uint8 Undergrad_YES uint8 Marital.Status_Divorced uint8 Marital.Status_Married uint8 Marital.Status_Single uint8 Urban NO uint8 Urban_YES uint8 float64 TaxInc

dtype: object

In [20]:

```
# converting 'Weight' from float to int
kl['TaxInc'] = kl['TaxInc'].astype(int)
```

In [21]:

```
# displaying the datatypes
display(kl.dtypes)
```

City.Population int64 int64 Work.Experience Undergrad_NO uint8 Undergrad_YES uint8 Marital.Status Divorced uint8 uint8 Marital.Status_Married Marital.Status_Single uint8 Urban_NO uint8 Urban_YES uint8 int32 TaxInc

dtype: object

In [22]:

```
kl.isnull().sum()
```

Out[22]:

City.Population 0 Work.Experience 0 0 Undergrad_NO 0 Undergrad_YES Marital.Status Divorced 0 Marital.Status_Married 0 Marital.Status_Single 0 Urban_NO 0 **Urban YES** 0 0 TaxInc dtype: int64

```
In [23]:
colnames =list(kl.columns)
In [24]:
colnames
Out[24]:
['City.Population',
 'Work.Experience',
 'Undergrad_NO',
 'Undergrad_YES',
 'Marital.Status_Divorced',
 'Marital.Status_Married',
 'Marital.Status_Single',
 'Urban_NO',
 'Urban_YES',
 'TaxInc']
In [25]:
predictors = colnames[:9]
predictors
target = colnames[9]
target
Out[25]:
'TaxInc'
In [26]:
# Separating independent and dependent Veriables
x = kl[predictors]
```

```
# Separating independent and dependent Veriables
x = kl[predictors]
x.shape
y = kl[target]
```

```
In [27]:
```

Х

Out[27]:

	City.Population	Work.Experience	Undergrad_NO	Undergrad_YES	Marital.Status_Divorced
0	50047	10	1	0	0
1	134075	18	0	1	1
2	160205	30	1	0	0
3	193264	15	0	1	0
4	27533	28	1	0	0
595	39492	7	0	1	1
596	55369	2	0	1	1
597	154058	0	1	0	1
598	180083	17	0	1	0
599	158137	16	1	0	1

600 rows × 9 columns

```
In [28]:

y

Out[28]:

0    1
1    1
2    1
```

598 1 599 1

Name: TaxInc, Length: 600, dtype: int32

2.Decision Tree Building

```
In [29]:
```

```
from sklearn.model_selection import train_test_split
train , test =train_test_split(kl ,test_size=0.3)
kl ['TaxInc'].unique()
```

Out[29]:

array([1, 0])

In [30]:

```
from sklearn.tree import DecisionTreeClassifier
dc_model = DecisionTreeClassifier(criterion = "entropy")
dc_model.fit(train[predictors], train[[target]])
```

Out[30]:

DecisionTreeClassifier(criterion='entropy')

In [31]:

```
#prediction
pred = dc_model.predict(test[predictors])
pred
type(pred)
```

Out[31]:

numpy.ndarray

In [32]:

```
pd.Series(pred).value_counts()
141/(141+39)
pd.crosstab(test[target],pred)
pd.Series(dc_model.predict(train[predictors])).reset_index(drop=True)
np.mean(pd.Series(train.TaxInc).reset_index(drop=True)==pd.Series(dc_model.predict(train[pr
np.mean(pred==test.TaxInc)
```

Out[32]:

0.66666666666666

In [33]:

```
pd.crosstab(test[target],pred) #64%
temp = pd.Series(dc_model.predict(train[predictors])).reset_index(drop=True)
np.mean(pd.Series(train.TaxInc).reset_index(drop=True)==pd.Series(dc_model.predict(train[pr
np.mean(pred==test.TaxInc)
```

Out[33]:

0.66666666666666

```
In [34]:
```

```
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_jobs=3, oob_score=True, n_estimators=15,criterion=('gini'))
```

```
In [35]:
```

```
np.shape(kl)
```

Out[35]:

(600, 10)

In [36]:

```
np.shape(kl) # 600,100 => Shape
len(x)
```

Out[36]:

600

In [37]:

```
len(y)
```

Out[37]:

600

In [38]:

```
kl.describe()
```

Out[38]:

	City.Population	Work.Experience	Undergrad_NO	Undergrad_YES	Marital.Status_Divorced
count	600.000000	600.000000	600.000000	600.000000	600.000000
mean	108747.368333	15.558333	0.480000	0.520000	0.315000
std	49850.075134	8.842147	0.500017	0.500017	0.464903
min	25779.000000	0.000000	0.000000	0.000000	0.000000
25%	66966.750000	8.000000	0.000000	0.000000	0.000000
50%	106493.500000	15.000000	0.000000	1.000000	0.000000
75%	150114.250000	24.000000	1.000000	1.000000	1.000000
max	199778.000000	30.000000	1.000000	1.000000	1.000000
4					•

In [39]:

```
kl.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 600 entries, 0 to 599
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	City.Population	600 non-null	int64
1	Work.Experience	600 non-null	int64
2	Undergrad_NO	600 non-null	uint8
3	Undergrad_YES	600 non-null	uint8
4	Marital.Status_Divorced	600 non-null	uint8
5	Marital.Status_Married	600 non-null	uint8
6	Marital.Status_Single	600 non-null	uint8
7	Urban_NO	600 non-null	uint8
8	Urban_YES	600 non-null	uint8
9	TaxInc	600 non-null	int32

dtypes: int32(1), int64(2), uint8(7)

memory usage: 15.9 KB

In [40]:

```
type([x])
type([y])
y1 = pd.DataFrame(y)
type(y1)
import warnings
warnings.filterwarnings('ignore')
```

In [41]:

```
rf.fit(x,y1)
rf.predict(x)
```

Out[41]:

```
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0,
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,
      1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1,
      1, 1, 0, 1, 1, 1,
                      1,
                         1,
                            1,
                              1, 1, 1, 1, 0, 1, 1, 1,
                                                    1, 1,
                1, 0,
                      0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1,
      0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1,
        1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
                                                    1, 1, 1,
                            1, 0, 1, 1, 1, 1,
      0, 1, 1,
              1, 0, 1,
                      1,
                         1,
                                            0, 1, 1,
                                                    0, 0,
                                                          1,
        1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1,
      1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
                      1,
      1, 1, 1, 1, 1, 1,
                         1, 0, 1, 0, 1, 0, 1, 1, 1, 1,
                                                    0, 1,
              1, 1, 1,
                         1,
                            1,
                              1, 1, 1, 1, 1, 1, 1,
                                                 1,
      1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
      1, 1, 1,
              1, 1, 1,
                      1, 0, 1,
                              1, 1, 1, 1, 1, 1, 1, 1,
                                                    1, 0, 0,
      1, 1, 1, 0, 1, 1,
                      1,
                        0, 0, 0, 1, 1,
                                      1, 1, 1, 1, 0, 0, 1, 0,
      0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
      1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
              1, 1,
                   1,
                      1,
                         1,
                            1,
                              1, 1, 1, 1, 1,
                                            1, 1,
                                                 1,
                                                    1,
                                                       1,
      1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1,
      1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,
      0, 1, 1, 1, 1, 1,
                      1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
      1, 1, 1, 1, 1, 1,
                      1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
      0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1,
      1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1,
      1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
      1, 1, 1, 1, 1, 1])
```

In [44]:

```
kl['rf_pred']=rf.predict(x)
```

```
In [45]:
```

k1

Out[45]:

c.Experience	Undergrad_NO	Undergrad_YES	Marital.Status_Divorced	Marital.Status_Married	Marit
10	1	0	0	0	
18	0	1	1	0	
30	1	0	0	1	
15	0	1	0	0	
28	1	0	0	1	
7	0	1	1	0	
2	0	1	1	0	
0	1	0	1	0	
17	0	1	0	1	
16	1	0	1	0	
4					

In [47]:

```
cols=['rf_pred','TaxInc']
cols
```

Out[47]:

['rf_pred', 'TaxInc']

In [48]:

```
kl[cols].head()
```

Out[48]:

	rf_pred	TaxInc
0	1	1
1	1	1
2	1	1
3	1	1
4	1	1

```
In [49]:
kl['TaxInc']
Out[49]:
       1
1
       1
2
       1
3
       1
4
       1
595
       1
596
       1
597
       1
       1
598
599
Name: TaxInc, Length: 600, dtype: int32
In [50]:
from sklearn.metrics import confusion_matrix
In [51]:
confusion_matrix(kl['TaxInc'],kl['rf_pred'])
Out[51]:
array([[117, 6], [ 0, 477]], dtype=int64)
In [52]:
pd.crosstab(kl['TaxInc'],kl['rf_pred'])
Out[52]:
rf_pred
              1
 TaxInc
     0 117
          0 477
```

In [53]:

```
kl['rf_pred']
```

Out[53]:

0 1
1 1
2 1
3 1
4 1
 ...
595 1
596 1
597 1
598 1
599 1

Name: rf_pred, Length: 600, dtype: int32

In [54]:

```
print('Accuracy',(477+117)/(477+117+6+0)*100)
```

Accuracy 99.0

In [55]:

```
# prepare a plot figure with set size
from sklearn.tree import plot_tree
from matplotlib import pyplot as plt
plt.figure(figsize=(16,10))
plot_tree(dc_model,rounded=True,filled=True)
plt.show()
```


In [56]:

```
plt.figure(figsize=(20,30))
plot_tree(dc_model,rounded=True,filled=True)
plt.show()
```


In []:			