Electronic Materials and Devices

5 Semiconductor

陈晓龙 Chen, Xiaolong

电子与电气工程系

Reverse bias 反向偏置电压

Reverse bias

PN-junction is off with high resistance

Reverse bias

Q: Will there still be current in reverse bias?

Reverse bias

◆ There will be a small current originated from the <u>drift of</u> <u>minor carriers</u> and <u>diffusion of major carriers</u>, which is called the <u>reverse saturation current</u>.

Band diagram at reverse bias

A Reverse bias: V_r

Reverse saturation current density

$$J = \left(\frac{eD_{\rm h}}{L_{\rm h}N_{\rm d}} + \frac{eD_{\rm e}}{L_{\rm e}N_{\rm a}}\right)n_{\rm i}^{2}\left[\exp\left(\frac{eV}{kT}\right) - 1\right] = J_{\rm so}\left[\exp\left(\frac{eV}{kT}\right) - 1\right]$$

For reverse bias: $V = -V_r$

$$J \approx -J_{so}$$
, when $V_r \gg kT$

Forward bias

Reverse bias

Reverse saturation current density

Reverse current: the sum of diffusion and generation components.

$$J_{\text{rev}} = J_{\text{D}} + J_{\text{gen}}$$

Mean time to generate n_i electron-hole pair per volume: τ_g

Current due to the drift of thermally generated electron-hole pairs J_{gen} :

$$J_{
m gen} = rac{eWn_{
m i}}{ au_{
m g}}$$

Reverse saturation current density

The width of depletion region W depends on V.

Diode 二极管

Diode: connect PN junction or Schottky junction with wires and seal with shell.

Types of diode

Point contact diode 点接触型 Surface contact diode 面接触型

Small contact area: high frequency

Large contact area: high current applications

Planar diode平面型

Good for integrated circuit!

Ideal diode 理想二极管

Real

The symbol for ideal diode

$$\begin{cases} u > 0: r = 0 \\ u \le 0: r \to \infty \end{cases}$$

Constant-volt model 恒压模型

Q: The symbol?

Broken-line model 折线模型

Q: What's the symbol?

$$u \leq U_{\text{ON}}:$$

$$r \to \infty$$

$$u > U_{\text{ON}}:$$

$$i = G(u - U_{\text{ON}})$$

$$u = U_{\text{ON}} + i/G$$

$$U_{\text{ON}} \quad r_{\text{D}} = \frac{1}{G}$$

[Q1] Using the broken-line mode, ask: when U= 0.5V, 1.7V, and -1.3V, the current in the circuit?

Assume diode is off

1.
$$U=-1.3V$$
, $U-U_{ON}=-2V$, $i=0$;

2.
$$U=0.5V$$
, $U-U_{ON}=-0.2V$, $i=0$;

3.
$$U=1.7V$$
, $U-U_{ON}=1V$,

Assumption is wrong, and diode is on: $i=(U-U_{ON})/(R+r_D)=1$ mA;

[Example2] All the diode is ideal. Ask: (1) the diode D_1 and D_2 is on or off. (2) The value of U_{AB} .

[Answer] How to judge diode on or off.

1. One diode: assume diode is off, and analyze the circuit. If the $u_{\text{Diode}} > U_{\text{ON}}$, diode is on. If the $u_{\text{Diode}} < U_{\text{ON}}$, diode is off.

2. If there are two identical diodes D_1 and D_2 in the circuit, assume both diodes are off, and analyze the circuit. Compare u_{Diode1} with u_{Diode2} . The diode with higher u_{Diode} is on first. With one diode on, then judge the other diode.

[Answer] How to judge diode on or off.

Fig.(a): voltage of D_1 , D_2 is: 11 V, -2 V D_1 on, assume D_2 off Voltage of D_2 is: -13 V D_2 off $U_{AB} = 0$ V

Fig.(b): voltage of D_1 , D_2 is: 11 V, 24 V D_2 is on first Assume D_1 is off Voltage of D_1 is -13 V D_1 off $U_{\Delta B} = -13$ V

Application of diodes as rectifier

二极管在整流电路的应用

Full-wave rectification全波整流

Full-wave rectification全波整流

5.5 Revers breakdown in PN junction

 $|u| > |U_{BR}|$, current increases dramatically and enter the reverse breakdown region. \(\bigau \bar{\ell}\) **Forward** If the reverse current is not too large, the diode can still work. U_{BR} **Breakdown** Reverse

Reverse breakdown

If the current is too large, the temperature of diode increases significantly, and diode breaks down permanently.

Diode	Breakdown temperature
Si	150~200 °C
Ge	75~100 °C

Breakdown mechanism:

Avalanche breakdown雪崩击穿 Zener breakdown齐纳击穿

Avalanche breakdown雪崩击穿

Minor carriers are accelerated to a very high speed and energy.

Accelerated electrons will collide with bonded electrons and kick them out.

More and more carriers are generated and current increases dramatically!

Avalanche breakdown雪崩击穿

The condition for observing the avalanche breakdown:

Depletion region is wide

Low doping concentration

Zener breakdown 齐纳击穿

Depletion region is thin
High doping concentration

Zener breakdown 齐纳击穿

Electrons in valence band of P-type semiconductor can directly tunnel into the conduction band of N-type semiconductor.

Voltage regulator diode 稳压二极管

Working principle:

I-V curve in **breakdown** region is very steep, which is almost parallel to y-axis.

The reverse current change significantly, while the voltage is almost a constant. Hence it can stabilize the voltage.

Symbol of voltage regulator diode:

For ideal regulator diode: r_z =0

Cathode — Anode

Key parameters:

- 1. Working current I_Z : $I_{zmax} > I_Z > I_{zmin}$. Larger than I_{zmax} : device breakdown permanently. Smaller than I_{zmin} , the voltage stabilization effect becomes worse.
- 2. Working voltage U_Z : almost a constant
- 3. Dynamic resistance r_z : Smaller r_z , better performance

Q: Input voltage U_{in} is unstable, and the bulb is flickering. How to resolve the problem?

For ideal regulator diode, r_Z =0

*U*_{in} unstable

$$U_{\text{in}} \uparrow \rightarrow U_{\text{out}} \uparrow \rightarrow U_{\text{Z}} \uparrow \rightarrow I_{\text{Z}} \uparrow \uparrow \uparrow \rightarrow I \uparrow \uparrow \uparrow$$

$$U_{\text{out}} = U_{\text{in}} - IR \downarrow \leftarrow IR \uparrow \uparrow \uparrow$$