

팀번호 5

2024-하계 집중이수제 주간학습보고서 (6주차)

창의과제	창의과제 Unsupervised domain adapation 이미지 Segmentation 알고리즘 연구					
이름	서민정	학습기간	2024.7.29 ~ 2024.8.4			
학번	21011647	학습주차	4주차	학습시간	12	
학과(전공)	컴퓨터공학과	과 목 명	자기주도창의전공 II	수강학점	3	
* 수강학점에 따른 회차별 학습시간 및 10회차 이상 학습 준수						
금주 학 습목 표	(논문)survey - 3 가설 설정 : PODA optimization시 noise를 추가한 synthesis image feature를 사용한다.					
	몇장의 생성 이미지만으로는 해당 도메인을 표현하는 feature들을 다양하게 표현하지 못할 것 이라는 가설에서 출발하여 별도의 네트워크 학습 과정 및 추가적인 데이터 없이 표현하고 자 하는 도메인에 대한 feature에 다양성을 주기 위해서 일반적으로 잘 알려진 노이즈를 추 가하는 방법을 통해 실험을 진행 하였다.					
	이를 뒷받침하는 논문은 다음과 같다.					
	[[ICLR 2023]Towards Robust Object Detection Invariant to Real-World Domain Shifts]					
학 습 내용	Cityscapes Foggy Cityscapes Channel Statistic Difference O.5					
	해당 논문에서 기존 class domain data자체의 분산이 7 즈를 추가하여 마치 다양한 d	작기 때문에	효율적인 generalization이	어렵다는 둔	<u>-</u> 제점을 노이	

[그림 2] Noise 추가 이미지

참고자료

및 문헌

[Synthesis image feature + noise] 우선 해당 도메인을 표현한 이미지 한 장에 대해 해당 도메인을 대표하는 anchor feature 를 추출해낸다. 이후 1장에서만 나온 feature로는 모든 도메인을 표현하는데 한계가 존재하 기 때문에 추가적으로 노이즈를 추가하여 해당 feature를 사용하여 style transfer를 진행한 다. 이때 실험별로 노이즈 세기를 다르게 주어 실험을 진행해 보았고 가장 좋은 성능이 실험결 과는 다음과 같았다. [성능 비교] Night - 22.62 (-2.41) Snow - 45.06 (+1.16) Rain - 43.18 (+0.87) 실험결과 night 환경을 제외한 domain에서 모두 성능이 향상된 모습을 확인할 수 있었다. 특히 해당 방법 같은 경우 별도의 feature optimization과정을 진행하지 않고 바로 생성이미 지에서 feature를 뽑아오는 방식이기 때문에 기존 방식 대비 약 3배 정도 빠른 속도를 확인 할 수 있었다. [속도 비교] PODA - 886 초 Ours - 295 초 [개별 논문 리뷰 및 노션 공유 페이지를 통한 정리] 개별 학습을 통하여 참고 논문을 이해하는 시간을 가졌으며 노션 페이지에 정리하여 협업 및 스터디에 도움이 되도록 하였다. 학습방법 [모델 학습 및 실험] 논문을 통해 배운 방법론 들을 개별적으로 모델에 적용하였다. Cityscape 데이터로 학습을 진행한 후 ACDC의 night,snow,rain data 셋으로 adaptation에 대한 테스트를 진행하였으며 추가적으로 실행속도에 관한 실험도 진행하였다. 100% 학습성과 참고 논문인 Towards Robust Object Detection Invariant to Real-World Domain Shifts 를 리뷰하며 적용해보고자 하는 방법론을 이해하였으며 이를 PODA 코드에 응용하여 밓 목표달성도 Cityscape->ACDC 시나리오에서 도메인 적응 성능을 평가 하였다. 실험결과 Snow, Rain 두 domain에 대해서 성능이 향상된 모습을 확인할 수 있었다.

https://openreview.net/forum?id=vqSyt8D3ny

내주 계획

2024년 8월 2일

(P)

지도교수 김세원