

Examen UD1. Big Data Aplicado. CIFP Virgen de Gracia. 10/12/2024

El examen consta de partes:

- 1. Test:
 - a. Cada pregunta acertada suma 0,15 puntos.
 - b. A su vez, por cada 3 preguntas erróneas se resta una correcta.
- 2. Ejercicios: la puntuación se incluyen en cada ejercicio
- 3. Únicamente hay que entregar la plantilla, en formato PDF.

Parte 1. Test (5,25 puntos)

Pregunta 1. ¿Cuál de las siguientes características describe mejor el concepto de datos?

- A. Conocimiento aplicado para la toma de decisiones.
- B. Hechos crudos y sin procesar, sin contexto ni significado.
- C. Información organizada en un contexto útil.

DReglas y patrones desarrollados a partir de la información.

Pregunta 2. ¿Cuál es el paso que convierte los datos en información?

- A. Organizar los datos y darles contexto para que sean significativos.
- B.Procesar la información para generar patrones y reglas.
- C. Analizar datos para identificar tendencias complejas.
- D. Asociar directamente datos con conocimiento estratégico.

Pregunta 3. ¿Cómo se define el conocimiento en relación con los datos y la información?

- A. Es la interpretación directa de los datos sin procesar.
- B. Es el procesamiento de la información para reconocer patrones y tomar decisiones.
- C. Es la simple organización de los datos con un contexto específico.
- D. Es la visualización gráfica de la información en un sistema Big Data.

Pregunta 4. ¿Cuál de las siguientes afirmaciones describe mejor el procesamiento online de datos?

- A. Los datos se analizan después de ser almacenados, como en la detección de fraudes bancarios.
- B. Se realiza en sistemas distribuidos, adquiriendo recursos bajo demanda.
- C. Los datos se procesan al generarse, como en sistemas de control de tráfico en tiempo real.
- D. Utiliza programación paralela y multiprocesador para optimizar tiempos.

Pregunta 5. ¿Cuál de los siguientes formatos de datos se analiza utilizando técnicas de procesamiento de lenguaje natural (PLN)?

- A. Imágenes y videos para el reconocimiento visual.
- B. Datos geográficos representados en grafos.
- C. Texto de fuentes como redes sociales y archivos PDF.
- D. Audio procesado para análisis acústico.

Pregunta 6. ¿Cuál de las siguientes características describe a un almacén de datos (Data Warehouse) según W. Inmon?

- A. Se enfoca únicamente en transacciones diarias.
- B. Es no volátil, integrado y orientado a temas.
- C. Almacena datos de manera centralizada y sin escalabilidad.
- D. Permite exclusivamente análisis transaccional en tiempo real.

Pregunta 7. ¿Qué característica clave diferencia a los sistemas OLAP de los sistemas OLTP?

- A. OLAP se centra en transacciones diarias; OLTP en análisis estratégico.
- B. OLTP almacena datos históricos; OLAP los modifica constantemente.

- C. OLAP se orienta al análisis y toma de decisiones estratégicas; OLTP gestiona transacciones diarias.
- D. OLTP utiliza representación multidimensional; OLAP, una estructura relacional.

Pregunta 8. ¿Cuál es uno de los retos principales que un almacén de datos resuelve en términos de integración?

- A. Escalar el sistema para soportar múltiples usuarios simultáneamente.
- B. Representar los datos en múltiples dimensiones para su análisis.
- C. Combinar datos de distintas fuentes, eliminando duplicidades e inconsistencias.
- D. Facilitar el acceso desde cualquier dispositivo sin comprometer el rendimiento.

Pregunta 9. ¿Qué función realiza la capa de extracción, transformación y carga (ETL) en un almacén de datos?

- A. Proporciona herramientas de visualización y acceso a los datos.
- B. Recoge datos de diferentes fuentes externas y transaccionales.
- C. Limpia, transforma y estandariza los datos antes de almacenarlos.
- D. Almacena los datos en modelos multidimensionales para su análisis.

Pregunta 10. ¿Cuál de las siguientes es una característica de la capa de almacenamiento de datos en la arquitectura de un almacén de datos?

- A. Recoge datos de sistemas transaccionales y bases de datos externas.
- B. Estandariza los datos para garantizar su calidad.
- C. Utiliza modelos multidimensionales como esquema estrella o copo de nieve.
- D. Facilita el acceso a los datos mediante consultas OLAP.

Pregunta 11. ¿Qué capa en la arquitectura de un almacén de datos permite que los usuarios finales accedan y analicen los datos?

- A. Capa de origen.
- B. Capa ETL.
- C. Capa de almacenamiento de datos.
- D. Capa de presentación y acceso.

Pregunta 12. Los datos en términos de Big Data son:

- A. Homogéneos, desestructurados y dinámicos
- B. Heterogéneos, desestructurados y dinámicos
- C. Homogéneos, estructurados y dinámicos
- D. Heterogéneos, desestructurados y estáticos

Pregunta 13. ¿Cuál es la principal utilidad del Big Data en relación a la toma de decisiones?

- A. Ayudar a la toma de decisiones
- B. No tiene relación en la toma de decisiones, sino en el almacenamiento de datos.
- C. El Big Data solamente toma decisiones en situaciones de estrés
- D. Ninguna de las anteriores

Pregunta 14. Las 3 uves del Big Data son...

- A. Volumen, Velocidad y Valentía
- B. Volumen, Velocidad y Volatilidad
- C. Volumen, Velocidad y Variedad
- D. Volumen, Volatilidad v Valor

Pregunta 15. Un enfoque de solución de Big Data es...

A. Almacenes de datos

- B. Bases de datos documentales
- C. Bases de datos sobre grafos
- D. Todas las anteriores son opciones correctas.

Pregunta 16. Un almacén de datos tiene como una de sus cualidades principales...

- A. Rendimiento
- B. Escalabilidad
- C. Flexibilidad
- D. Todas son correctas

Pregunta 17. ¿Qué es el proceso ETL?

- A. Extorsión, Transformación y Carga
- B. Extracción, Transformación y Carga
- C. Estadística, Transformación y Carga
- D. Estadística, Transformación y Canibalismo

Pregunta 18. Durante la fase de Transformación de ETL, se...

- A. Limpian los datos para evitar anomalías.
- B. Se localizan las fuentes de datos (como archivos .csv)
- C. Se cargan en una base de datos relacional.
- D. Todas las anteriores son correctas.

Pregunta 19. Soluciones como MongoDB y Neo4J son bases de datos...

- A. SQL
- B. No SQL
- C. Relacionales
- D. Relacionales y No SQL.

Pregunta 20. Cada entrada en una base de datos MongoDB se llama...

- A. Columna
- B. Fila
- C. Documento
- D. Tabla

Pregunta 21. En la sentencia de MongoDB *db.usuarios.find({edad: 25}, {nombre: 1});*, ¿qué sería *{nombre: 1}*?

- A. Colección
- B. Consulta
- C. Proyección
- D. Potenciador

Pregunta 22. En la sentencia de MongoDB *db.usuarios.find({edad: 25}, {nombre: 1});*, ¿qué sería *{edad: 25}*?

- A. Colección
- B. Consulta
- C. Proyección
- D. Potenciador

Pregunta 23. En la sentencia de MongoDB *db.usuarios.find({edad: 25}, {nombre: 1});*, ¿qué implica que al lado de nombre aparezca un "1"?

A. Solo se devolverá el campo "nombre" en los resultados de la consulta.

- B. No se devolverá el campo "nombre" en los resultados de la consulta.
- C. Se devolverán todos los campos, y "nombre" será el primero.
- D. No tiene nada que ver con los campos que se devuelven.

Pregunta 24. En la sentencia de MongoDB *db.usuarios.find({edad: 25}, {nombre: 1});*, ¿qué implicaría si en lugar de aparecer un "1" apareciera un "0"?

- A. Solo se devolverá el campo "nombre" en los resultados de la consulta.
- B. No se devolverá el campo "nombre" en los resultados de la consulta.
- C. Se devolverán todos los campos, y "nombre" será el primero.
- D. No tiene nada que ver con los campos que se devuelven.

Pregunta 25. El uso de grafos en Big Data es útil en aplicaciones como...

- A. Recomendaciones personalizadas
- B. Análisis de tendencias y opiniones
- C. Optimización de publicidad dirigida
- D. Todas las anteriores son correctas

Pregunta 26. Si ejecuto en Neo4J la sentencia: MATCH (n) RETURN (n), ¿qué ocurre?

- A. Se muestra el grafo de forma gráfica.
- B. Se muestra el grafo en forma de tabla.
- C. Se guarda el grafo
- D. Se borra el grafo

Pregunta 27. Si ejecuto en Neo4J la sentencia: CALL gds.graph.drop('myGraph1');, ¿qué ocurre?

- A. Se muestra el grafo de forma gráfica.
- B. Se muestra el grafo en forma de tabla.
- C. Se guarda el grafo
- D. Se borra el grafo

Pregunta 28. Si quiere conocer el camino más corto entre dos nodos de un grafo...

- A. Hago un recorrido en anchura
- B. Hago un recorrido en profundidad
- C. Calculo el camino mínimo.
- D. Ninguna de las anteriores.

Pregunta 29. Si ejecuto en Neo4J la sentencia: CREATE (c3:City {name: 'Ciudad C'}), ¿qué ocurre?

- A. Se crea una conexión de c3 a City
- B. Se crea una conexión de City a c3
- C. Se crea un nodo llamado "Ciudad C"
- D. Ninguna de las anteriores.

Pregunta 30. La medida que "evalúa la importancia de un nodo en función de la cantidad de conexiones que tiene" es...

- A. Centralidad de grado
- B. Conteo de triángulos
- C. Intermediación
- D. Coeficiente local de agrupamiento

Pregunta 31. La medida que se basa en la idea "Dos extraños con un amigo en común tienen más posibilidad de conectarse entre sí que quienes no" es:

- A. Adhesión preferencial
- B. Vecinos comunes
- C. Intermediación
- D. Coeficiente local de agrupamiento

Pregunta 32. ¿Qué hace la siguiente sentencia en Neo4j?

MATCH (a:Node {name: 'A'}), (b:Node {name: 'B'}) CREATE (a)-[:CONNECTED {weight: 3}]->(b);

- A. Crea dos nodos con las etiquetas Node y los nombres A y B.
- B. Encuentra los nodos existentes A y B con la etiqueta Node y crea una relación CONNECTED entre ellos con un atributo weight igual a 3.
- C. Actualiza el peso de una relación CONNECTED existente entre los nodos A y B a 3.
- D. Elimina la relación existente entre A y B y la reemplaza con una nueva relación CONNECTED con peso 3.

Pregunta 33. ¿Qué hace la siguiente sentencia en Neo4j?

MATCH (n)-[r:CONNECTED]->(m)

RETURN n, r, m;

- A. Crea una relación CONNECTED entre los nodos n y m y devuelve los nodos y la relación.
- B. Encuentra todos los nodos n y m conectados por una relación CONNECTED y los devuelve junto con la relación.
- C. Elimina todas las relaciones CONNECTED entre los nodos n y m y las devuelve.
- D. Actualiza las relaciones CONNECTED entre los nodos n y m y devuelve los cambios realizados.

Pregunta 34. ¿Qué hace la siguiente sentencia en Neo4j?

MATCH (n:Node {name: 'H'})
RETURN id(n) AS nodeld;

- A. Crea un nodo con la etiqueta Node, nombre H, y devuelve su identificador único.
- B. Encuentra un nodo con la etiqueta Node y nombre H, y devuelve su identificador único bajo el alias nodeld.
- C. Devuelve todos los nodos con la etiqueta Node y sus identificadores únicos.
- D. Elimina un nodo con la etiqueta Node y nombre H, devolviendo su identificador único.

Pregunta 35. ¿Qué hace la siguiente sentencia en Neo4j?

YIELD path

- A. Crea un camino a modo de array del grafo y lo devuelve organizado para analizarse
- B. Devuelve los caminos generados por una consulta previa bajo el alias path.
- C. Encuentra todos los nodos que forman parte de un camino en el grafo.
- D. Elimina un camino existente en el grafo y lo devuelve.

Parte 2. Ejercicios (4,75 puntos)

Ejercicio 36 (1 punto). Crear un JSON que represente la siguiente situación:

Nueva suscripción a Netflix de María Ramírez Izquierdo. Inscripción estándar. Coste mensual 11,99€. Incluye la posibilidad de ver contenidos en dos pantallas al mismo tiempo, así como tener descargas en dos teléfonos o tabletas

Ejercicio 37 (0,75 puntos). Escribe el código XML para la siguiente tabla:

PELÍCULAS		
Id_Pelicula	Título	Año
1	Octopussy	1983
2	Hable con ella	2002
3	Ocho apellidos vascos	2014

Ejercicio 38 (1 punto). Explica qué es lo que se ve en la imagen, su diseño, ventajas y desventajas.

Ejercicio 39 (1 punto). Teniendo en cuenta el siguiente grafo:

Ejecutamos el siguiente comando para ejecutar un recorrido en profundidad empezando por el nodo A:

CALL gds.dfs.stream('myGraph1', { sourceNode: 0 })
YIELD path

UNWIND [n in nodes(path) | n.name] AS tags

RETURN tags;

Dibuja la tabla que se mostraría

Ejercicio 40 (1 punto). Con el grafo del ejercicio anterior, dibuja la tabla al ejecutar el siguiente código:

CALL gds.bfs.stream('myGraph1', { sourceNode: 0 })
YIELD path
UNWIND [n in nodes(path) | n.name] AS tags
RETURN tags;