Laboratórios de Informática IV Licenciatura em Engenharia Informática 2010/2011

Proponente: Anabela Tereso (anabelat@dps.uminho.pt)

Projecto: Desenvolvimento de uma aplicação para apoiar a selecção de Software de Apoio à Decisão.

Descrição do Projecto: Este projecto tem como objectivo desenvolver uma aplicação que permita apoiar a selecção de Software de Apoio à Decisão. Já foi feito um levantamento dos softwares existentes nessa área (Seixedo, 2009; Tereso and Seixedo, 2010) e pretende-se agora desenvolver uma aplicação que permita a gestão de uma base de dados com informação sobre os vários softwares existentes no mercado, com registo de informações como o nome, a descrição, o preço e outras características importantes, incluindo também um link para a página do software, que possa ser aberta no próprio programa. Pretende-se também que a aplicação, usando técnicas multicritério, e com base em características seleccionadas pelo utilizador, permita ordenar, do melhor para o pior, o conjunto dos softwares existentes na base de dados ou um subconjunto destes. A aplicação desenvolvida deverá ter uma interface apelativa, forma de armazenamento de dados/resultados, módulo de instalação (Plug and Play) e manual do utilizador, para além de ser convenientemente comentada. O software deverá ser testado e os resultados discutidos.

Detalhe das especificações:

- Linguagem a utilizar na interface: Inglês.
- A aplicação deve ter três módulos distintos:
 - o Um módulo de Gestão das Bases de Dados.
 - O Um módulo de Gestão dos Softwares (a inserir nas Bases de Dados).
 - o Um módulo de Sistema de Apoio à Decisão (para seleccionar softwares dentro dos existentes).
 - Um módulo de Tutorials and Help
- Módulo de Gestão das Bases de Dados
 - Pretende-se ter a possibilidade de criar diferentes Bases de Dados com campos escolhidos pelo utilizador.
 - Pode haver uma Base de Dados (BD) simples (em inglês Basic DB), só com os campos "Software Name" e "WebPage Link", e ser possível criar outras Bases de Dados com campos adicionais, escolhidos pelo utilizador e gravar separadamente essas BD.
 - O objectivo é que seja possível que o conjunto de informações a registar para caracterizar cada software possa ser alterado, ou seja, que possa ser dada a hipótese ao utilizador de seleccionar as características que pretende usar para descrever o conjunto dos softwares, isto é, pretende-se que seja possível alterar a estrutura da Base de Dados, ou seja, o nome, o número de campos e as características de cada campo. Pretende-se também que seja possível adicionar novos campos, remover campos, etc. Neste módulo, pode aparecer um menu com as seguintes opções: Data Base New, Open, Save, Save As, Exit. Deve-se poder escolher se é uma "Basic DB" ou uma
 - "Extended DB". Deve ser possível carregar informação de uma Base de Dados já existente quando se cria uma nova.
 - o Exemplo de informações (critérios de decisão) a registar para cada software:
 - Software name: 60 caracteres (Basic DB)
 - WebPage Link: 200 caracteres (Basic DB)
 - Compatibility between Operating Systems: Yes/No
 - Cost of a license: Valor real em Euros
 - Interaction with user: Bad/Fair/Good/Very Good/Excellent
 - User Manual: Yes/No
 - Tutorials: Yes/No
 - Application Examples: Yes/No
 - Online Help: Yes/NoFree Version: Yes/No

• Para cada campo (excepto para os campos da "Basic DB") é necessário pedir o nome e o tipo. Se for um valor numérico, pedir o limite inferior e o limite superior permitidos. Se for um conjunto de caracteres, pedir as diferentes possibilidades de conteúdo. Por exemplo, no caso do "Interaction with user" deve ser definida a lista de valores esperados, ou seja, [Bad, Fair, Good, Very Good, Excellent], bem como uma classificação. Nessa classificação deve-se definir a escala (valor mínimo e máximo), por exemplo, (2..10) e atribuir valores depois nessa escala aos atributos definido pelo utilizador, do tipo:

Attribute value	Classification (210)
Bad	2
Fair	4
Good	6
Very Good	8
Excellent	10

• Módulo de Gestão dos Softwares

- Depois de aberta uma Base de Dados com, por exemplo, os critérios acima definidos, pretende-se poder adicionar novos softwares, visualizar os softwares existentes, eliminar softwares, etc.
- O Para testar o software, criar uma Base de Dados com os critérios acima e adicionar alguns Softwares (ver dissertação mestrado - tabela 6.1 e completar a lista com os softwares listados no artigo apresentado no EURO 2010). Pretende-se ter para os Softwares o seguinte menu: Edit Software List, View Software WebPage. Dentro do Edit Software List devem aparecer os softwares já existentes e ser possível eliminar algum, inserir novos ou simplesmente visualiza-los.
- Quando se selecciona View Software WebPage, os softwares devem ser apresentados numa lista do lado esquerdo do ecran (só o nome) e a página a ele associada numa janela a ocupar o resto do ecran. Deve ser possível navegar nessa página e depois retornar o controlo à aplicação, quando pretendido.

• Módulo do Sistema de Apoio à Decisão

- Permitir ao utilizador seleccionar os critérios a serem usados na decisão de seleccionar o melhor software, por exemplo "Interaction with user" e "Cost".
- Permitir ao utilizador seleccionar o conjunto dos softwares que pretende analisar, por exemplo,
 A. B e C.
- Definição dos pesos Etapa 1: Tem que se definir os pesos de cada critério na escolha do melhor software. Podem-se seleccionar dois métodos alternativos para atribuir esses pesos (SMART ou AHP):

SMART

- 1. Assign 10 points to the least important attribute
- 2. Give points (>10) to reflect the importance of the attribute relative to the least important attribute

AHP

✓ Para o método AHP, a atribuição dos pesos, para cada critério, é feito usando um método de comparação par-a-par, com uma escala de 1 a 9 proposta por Saaty (nota: também se podem usar valores intermédios):

Se <i>x</i> é (do) que <i>y</i>	Então o número de preferência a atribuir é:
Igualmente importante	1
Um pouco mais importante	3
Muito mais importante	5
Muitíssimo mais importante	7
Absolutamente mais importante	9

Pair-wise comp	parison matrix			
BEST SOFTWARE	Interaction with user	Cost		
Interaction with user	1	1/4		
Cost	4	1		
Sum	5	1.25		Pesos dos
				atributos
Normalized matrix				1
BEST SOFTWARE	Interaction with user	Cost	Sum	Mean
Interaction with user	0.2	0.2	0.4	0.2
Cost	Cost 0.8		1.6	0.8
Sum				

- ✓ Deve-se calcular a taxa de consistência, tentar melhora-la, e caso não se consiga uma taxa de consistência boa, avisar o utilizador que deve inserir outros valores na matriz de comparações, mas não obrigar (ver explicação do cálculo da taxa de consistência em anexo).
- ✓ A análise final (ver abaixo) é feita da mesma forma que se faria usando o método SMART, mas usando o peso dos atributos obtidos pelo AHP.
- Definição dos pesos Etapa 2: Depois é necessário definir as prioridades ou pesos para cada software dentro de cada critério. Para cada critério é necessário definir o método a usar para definir as prioridades (ValueFn ou AHP).
 - Se for usado o método ValueFn, é necessário perguntar se se pretende maximizar ou minimizar o critério.
 - 1. No caso de maximização usa-se a seguinte fórmula para calcular as prioridades:

$$y = \frac{x - Min}{Max - Min}$$

2. No caso de minimização usa-se a seguinte fórmula para calcular as prioridades:

$$y = \frac{Max - x}{Max - Min}$$

3. Por exemplo, o critério "Interaction with user" devia ser maximizado. Supondo que temos três softwares A, B e C, com valores de "Interaction with user" iguais a [1, 3, 5], o valor das prioridades para este critério seriam [0, 0.5, 1].

4. Por exemplo, o critério "Cost" devia ser minimizado. Para os três softwares A, B e C, com valores de "Cost" iguais a [100, 800, 1000], o valor das prioridades para este critério seriam [1, 0.222, 0].

5. Depois é necessário normalizar os valores (de forma a que a soma seja igual a 1).

Software	Interaction with user		Priorities	Normalized Priorities
Α	1		0	0.000
В	3		0.5	0.333
С	5		1	0.667
Min	1	Sum	1.5	1
Max	5			

Software	Cost		Priorities	Normalized Priorities
Α	100		1	0.818
В	800		0.22	0.182
С	1000		0	0.000
Min	100	Sum	1.22	1
Max	1000			

 Usando o método AHP, a atribuição das prioridades às alternativas, para cada critério, é feito usando o método de comparação par-a-par, como visto acima:

	Interaction with user	A	В	С		
	A	1	1/2	1/4		
	В	2	1	1/2		
	С	4	2	1		
	Sum	7	3.5	1.75		
						Pesos dos
						atributos
Normalized matrix						1
	Interaction with user	A	В	С	Sum	Mean
	A	0.14	0.14	0.14	0.43	0.14
	В	0.29	0.29	0.29	0.86	0.29
	С	0.57	0.57	0.57	1.71	0.57

	Cost	Α	В	С		
	Α	1	4	6		
	В	1/4	1	2		
	С	1/6	1/2	1		
	Sum	1.42	5.50	9.00		
						Pesos
						dos
						atributos
Normalized matrix						↓
	Cost	Α	В	С	Sum	Mean
	Α	0.71	0.73	0.67	2.10	0.70
	В	0.18	0.18	0.22	0.58	0.19
	С	0.12	0.09	0.11	0.32	0.11

o Análise Final (por níveis assumindo a utilização do AHP nas duas etapas):

Level								
0	Best Software							
1		Interaction with user	0.2		0.2*			
2			Α	0.143	0.029			
2			В	0.286	0.057		Final Priorities	Ranking
2			С	0.571	0.114	Α	0.589	1
1		Cost	8.0		0.8*	В	0.212	2
2			Α	0.700	0.560	С	0.200	3
2			В	0.194	0.155			
2			С	0.107	0.085			

 Análise Final (por níveis assumindo a utilização do SMART na primeira etapa e do ValueFn na segunda etapa):

Level								
0	Best Software							
1		Interaction with user	0.4		0.4*			
2			Α	0.000	0.000			
2			В	0.333	0.133		Final Priorities	Ranking
2			С	0.667	0.267	A	0.491	1
1		Cost	0.6		0.6*	В	0.242	3
2			Α	0.818	0.491	С	0.267	2
2			В	0.182	0.109			
2			С	0.000	0.000			

• Construir um módulo de Tutorials and Help

ANEXO

Cálculo da taxa de consistência

A taxa de consistência (TC) é um indicador matemático, que indica a consistência da comparação efectuada. Conforme sugerido por Saaty, esta taxa deve ser no máximo igual a 0.10.

Exemplo matriz de comparações consistente

	A1	A2	A3
A1	1	2	4
A2	$\frac{1}{2}$	1	2
A3	$\frac{1}{4}$	$\frac{1}{2}$	1

Exemplo matriz de comparações inconsistente

	A1	A2	A3
A1	1	7	9
A2	$\frac{1}{7}$	1	5
A3	$\frac{1}{9}$	$\frac{1}{5}$	1

A primeira matriz é consistente pois:

A1=2×A2 e A2=2×A3, logo A1 deveria ser 4×A3, o que realmente acontece.

Já, na segunda matriz, esta propriedade não se verifica. Assim:

A1=7×A2 e A2=5×A3, logo A1 deveria ser 35×A3, o que não se verifica.

Considere-se o seguinte exemplo:

Matriz de comparações entre os atributos

						Equivalente Decimal					
	A	В	C	D	E	A	В	С	D	Е	
A: Objectivos estratégicos	1	$\frac{1}{3}$	5	6	5	1	0.33	5	6	5	
B: Valor Actual Líquido	3	1	6	7	6	3	1	6	7	6	
C: Tempo de reparação	$\frac{1}{5}$	$\frac{1}{6}$	1	3	1	0.20	0.17	1	3	1	
D: Esforço de gestão	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{3}$	1	$\frac{1}{4}$	0.17	0.14	0.33	1	0.25	
E: Ausência de risco	$\frac{1}{5}$	$\frac{1}{6}$	1	4	1	0.2	0.17	1	4	1	
						$\Sigma = 4.57$	1.81	13.33	21.0	13.25	

Matriz normalizada de comparações entre os atributos e cálculo dos pesos de prioridade

							Linha	Média
		A	В	C	D	Е	Σ	$= \sum / 5$
	A	0.219	0.182	0.375	0.286	0.377	1.439	0.288
	В	0.656	0.552	0.450	0.333	0.453	2.445	0.489
	C	0.044	0.094	0.075	0.143	0.075	0.431	0.086
	D	0.037	0.077	0.025	0.048	0.019	0.206	0.041
	E	0.044	0.094	0.075	0.190	0.075	0.479	0.096
i	$\Sigma =$	1.00	1.00	1.00	1.00	1.00	5.00	1.00

Vamos exemplificar, para o exemplo em estudo, o cálculo da *TC*. Seja [A] a matriz de comparações e [B] o vector próprio calculado (Média). Multiplica-se então a matriz [A] pelo vector [B], para obter um novo vector [C].

$$\begin{bmatrix} A \\ 1 \\ 0.33 \\ 5 \\ 6 \\ 5 \\ 0.20 \\ 0.17 \\ 0.14 \\ 0.25 \\ 0.20 \\ 0.17 \\ 1 \\ 4 \\ 1 \end{bmatrix} \times \begin{bmatrix} B \\ 0.288 \\ 0.489 \\ 0.086 \\ 0.041 \\ 0.096 \end{bmatrix} = \begin{bmatrix} C \\ 1.605 \\ 2.732 \\ 0.446 \\ 0.212 \\ 0.487 \end{bmatrix}$$

De seguida, divide-se cada elemento do vector [C] pelos elementos correspondente do vector [B], obtendo-se um novo vector [D].

$$[D] = \left[\frac{1.605}{0.288} \quad \frac{2.732}{0.489} \quad \frac{0.446}{0.086} \quad \frac{0.212}{0.041} \quad \frac{0.487}{0.096} \right] = \left[5.57 \quad 5.58 \quad 5.19 \quad 5.17 \quad 5.07 \right]$$

Depois calcula-se a média dos valores do vector [D], designado por λ_{max} , que é uma aproximação ao maior valor próprio.

$$\lambda_{\text{max}} = \frac{5.57 + 5.58 + 5.19 + 5.17 + 5.07}{5} = 5.32$$

O índice de consistência (IC) de uma matriz de tamanho N é calculado pela seguinte fórmula:

$$IC = \frac{\lambda_{\text{max}} - N}{N - 1} = \frac{5.32 - 5}{5 - 1} = 0.08$$

Saaty, calculou por simulação, uma série de índices aleatórios (IA), para vários tamanhos de matrizes, conforme é apresentado a seguir:

N	1	2	3	4	5	6	7	8	9	10	11	
IA	0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51	

Para o exemplo acima, IA=1.12. A taxa de consistência (TC) pode ser então calculada usando a seguinte expressão:

$$TC = \frac{IC}{IA} = \frac{0.08}{1.12} = 0.07$$

Uma vez que o valor calculado está dentro dos padrões estabelecidos (≤0.10) podemos concluir que a comparação efectuada para obter os pesos dos atributos é consistente.

Se a taxa de consistência obtida for superior a 0.10, utiliza-se um método iterativo para melhorar a taxa de consistência. Vamos aplicar esse método à matriz inconsistente apresentada abaixo.

Começa-se por normalizar a matriz e calcular o peso dos atributos.

	A1	A2	A3		A1	A2	A3	Soma	Média
A1	1	7	9		0.80	0.85	0.60	2.25	0.75
A2	$\frac{1}{7}$	1	5		0.11	0.12	0.33	0.56	0.19
A3	$\frac{1}{9}$	$\frac{1}{5}$	1	=	0.09	0.02	0.07	0.18	0.06
$\Sigma =$	$\frac{79}{63}$	$\frac{41}{5}$	15		1	1	1	3	1

$$\begin{bmatrix} A \\ 1 & 7 & 9 \\ 1/7 & 1 & 5 \\ 1/9 & 1/5 & 1 \end{bmatrix} \times \begin{bmatrix} B \\ 0.75 \\ 0.19 \\ 0.06 \end{bmatrix} = \begin{bmatrix} C \\ 2.6175 \\ 0.5964 \\ 0.1812 \end{bmatrix}$$

$$[D] = \begin{bmatrix} \frac{2.6175}{0.75} & \frac{0.5964}{0.19} & \frac{0.1812}{0.06} \end{bmatrix} = \begin{bmatrix} 3.49 & 3.14 & 3.02 \end{bmatrix}$$

$$\lambda_{\text{max}} = \frac{3.49 + 3.14 + 3.02}{3} = 3.22 \qquad IC = \frac{\lambda_{\text{max}} - N}{N - 1} = \frac{3.22 - 3}{3 - 1} = 0.11 \qquad TC = \frac{IC}{IA} = \frac{0.11}{0.58} = 0.19$$

Como podemos ver, a taxa de consistência é superior a 0.10, logo a aproximação calculada não é aceitável.

Devemos então melhorar a aproximação ao vector próprio através do seguinte procedimento iterativo:

- 1. Começamos por obter o conjunto inicial de pesos de prioridade, usando o método apresentado anteriormente.
- 2. Multiplica-se a matriz de comparações inicial [A] pelo vector com os pesos de prioridade obtido [B], obtendo-se assim o vector [C]=[A]×[B].
- 3. O novo vector [B] de pesos de prioridade resulta do vector [C] após normalização, para somar 1.
- 4. Repetem-se os pontos 2 e 3 até obter a precisão pretendida, ou seja, até a diferença entre os valores de dois vectores sucessivos ser inferior a um determinado valor.

Vamos então aplicar este procedimento ao exemplo anterior. Os passos 1 e 2 já formam aplicados. Vamos então de seguida normalizar o vector [C] como indica o passo 3:

Repetem-se os pontos 2 e 3, até se obter a precisão pretendida:

Podemos ver que a diferença decimal entre as prioridades da iteração 3 e da 4 é no máximo de 0.0001. Se essa for a precisão pretendida, podemos então parar o processo iterativo.

Vamos então calcular a taxa de consistência para esta aproximação:

$$\begin{bmatrix} 1 & 7 & 9 \\ 1/7 & 1 & 5 \\ 1/9 & 1/5 & 1 \end{bmatrix} \times \begin{bmatrix} 0.7719 \\ 0.1735 \\ 0.0546 \end{bmatrix} = \begin{bmatrix} 2.4778 \\ 0.5568 \\ 0.1751 \end{bmatrix} \quad [D] = \begin{bmatrix} \frac{2.4778}{0.7719} & \frac{0.5568}{0.1735} & \frac{0.1751}{0.0546} \end{bmatrix} = \begin{bmatrix} 3.2100 & 3.2092 & 3.2069 \end{bmatrix}$$

$$\lambda_{\max} = \frac{3.2100 + 3.2092 + 3.2069}{3} = 3.2087 \quad IC = \frac{\lambda_{\max} - N}{N - 1} = \frac{3.2087 - 3}{3 - 1} = 0.1044 \quad TC = \frac{IC}{IA} = \frac{0.1044}{0.58} = 0.18$$

A taxa de consistência não baixou o suficiente! Devemos rever a matriz inicial de comparações entre os atributos, e tentar de novo.