19CSE100 Problem Solving and Algorithmic Thinking

Searching

Searching is the process of looking for a particular thing in a collection

Searching is a fundamental problem

Variations of Search

Find first occurrence
Find all occurrences
Find the number of occurrences etc.

Given a sequence of elements and a target element, find whether the target occurs in the sequence

The collection that we are very familiar is arrays

Exhaustive (Linear) Search

- Systematically enumerate all possible values and compare to value being sought
- For an array, iterate from the beginning to the end, and test each item in the array

Linear Search Algorithm

```
Start with first array element (index 0)
while (element present in array) {
  if value found at current index
     return index
  else
     try next element (increment index)
```

if value not found return -1

Linear Search Algorithm

```
Start with first array element (index 0)
while (element present in array) {
 if value at current index greater than
 value
     return -1 and break
  else if value found at current index
     return index
  else
     try next element (increment index)
if value not found return -1
```

Binary Search

Binary Search Algorithm

```
init low and high variables to lowest and
highest index
while (low <= high) {
  compare middle and value
  If (value = middle) return middle
  If (value < middle) set high = middle-1
  If (value > middle) set low = middle+1
if (low > high) value not found
```


Since 8 (Mid) > 7 (target), we discard the right half and go LEFT

New High = Mid - 1

Target = 7

Since 3 (Mid) < 7 (target), We discard the left half and go RIGHT

New low = mid + 1

Now our search space consists of only one element 7. Since 7 (Mid) = 7 (target), we return index of 7 i.e. 3 and terminate our search

 Given a deck of 52 playing cards, how many do you have to look at to find the Ace of Spades?

- Best case: 1
- Worst case: 52
- Average case: ?

Average Case

- To find the average case:
 - Enumerate all possible cases
 - Add the number of cards looked at for all of them
 - Divide by the number of cases

1. Enumerate all possible cases 1, 2, 3, 4 ... 50, 51, 52

2. Add the number of cards looked at for all of them 1 + 2 + ... + 52 = (52 + 1) * (52 / 2) = 1378

3. Divide by the number of cases 1378 / 52 = 26.5

 Given a deck of 52 playing cards, how many do you have to look at to find the Ace of Spades?

- Best case: 1
- Worst case: 52
- Average case: 26.5

 The number of comparisons is a better metric than the time it takes, because people (computers) may be quicker or slower to pick up each card and look at it

- Now assume the deck of cards is brand new and sorted by suit and number
 - E.g. 2-A♣, 2-A♦, 2-A♥, 2-A♠

- Best case: 1
- Worst case: 1
- Average case: 1
- Organized data allows for more predictable, more efficient algorithms

- Given 128 index cards with random numbers on them, to find a particular number (if it is there) with linear search:
 - Best case: 1
 - Worst case: 128
 - Average case: 64.5

- With every iteration of binary search, you cut the size of the search in half
 - e.g. 128, 64, 32, 16, 8, 4, 2, 1
- 128 can be divided in half 7 times
 - In other terms, $128 = 2^7$
 - So, the worst case number of checks for binary search is:
 - $\log_2 n + 1$
 - With 2 comparisons per check (equal and less than)
 - $2(\log_2 128 + 1) = 16$ comparisons

- Linear search scales linearly with the number of items you search over (n)
 - Worst case number of comparisons = n
 - Average case comparisons = $\frac{1}{2}(n + 1)$

Items	Worst case	Average case
10	10	5.5
100	100	50.5
1000	1000	500.5
10000	10000	5000.5

- Binary search scales logarithmically with the number of items you search over (n)
 - Worst case number of comparisons = $2(log_2n + 1)$

Items	Worst case linear	Worst case binary
10	10	9
100	100	15
1000	1000	22
10000	10000	29

Binary search scales much better than linear search

An Experiment - Exhaustive vs. Binary Search

- For names (Strings) in arrays of increasing size...
 - Select 10 names at random from the list
 - Search for each name using Binary and Exhaustive Search
 - Count the number of iterations it takes to find each name
 - Plot number of iterations for each against list size

Start with an array of 3830+ names (Strings)

That's why effeciency is most sought after

Why Do We Care?

- Computational complexity
 - Studying types of problems and how hard they are to solve
 - This is a key part of computer science beyond programming
- Classifying problems helps us:
 - Identify general strategies for solving problem types
 - Avoid wasting time developing programs that can't work

The Traveling Salesman

- Consider a salesman who wants to visit a bunch of small towns
 - He has a list of distances between pairs of towns
 - How should he figure out what order to visit them in?
 - How long do you think it would take to figure out the best path for 25 towns?

- The brute-force solution to this problem is O(n!), which is even worse than exponential
 - 25 towns = around a billion years on a 2GHz computer
 - Some more clever solutions are $O(n^2)$
- Reasonable solutions can only find an approximately best path