UHF RFID application-layer communications protocol

(Version V2.0.8)

Table of Contents

1.	Outline		. 5
2.	Data tr	ansmission frame format	. 5
	2.1.	Header and trailer	. 5
	2.2.	Frame length	. 5
	2.3.	CMD type list	. 6
	2.4.	data	10
	2.5.	BCC code	10
3.	A commu	nications data frame described	10
	3.1.	Device version	10
	3.1.1.	Acquisition hardware version number	10
	3.1.2.	Answer acquisition hardware version number	11
	3.1.3.	Obtain the firmware version number	11
	3.1.4.	Firmware version number of responses	12
	3.1.5.	Acquisition acquisition equipmentID	12
	3.1.6.	Get DeviceIDReply	14
	3.2.	Device parameter settings	14
	3.2.1.	Sets the transmit power	14
	3.2.2.	Sets the transmit power response	15
	3.2.3.	Get the current transmit power	15
	3.2.4.	Get the current transmit power response	17
	3.2.5.	Fixed frequency settings	17
	3.2.6.	Fixed-frequency response settings	19
	3.2.7.	Get current device setting state fixed frequency	19
	3.2.8.	Get the current fixed-frequency setting device status response	21
	3.2.9.	Set upGen2parameter	21
	3.2.10.	Set upGen2Parameter Reply	25
	3.2.11.	Get the currentGen2parameter settings	26
	3.2.12.	Get the currentGen2Parameter setting response	26
	3.2.13.	CWSet up	27
	3.2.14.	CWSetting the answer	28
	3.2.15.	Get the current equipmentCWSet up	28
	3.2.16.	Get the current equipmentCWSetting the answer	29
	3.2.17.	Antenna Set	29
	3.2.18.	Setting the answer antenna	31
	3.2.19.	Get the current antenna device settings	31
	3.2.20.	Get the current antenna set the answering device	32
	3.2.21.	Band locale	32
	3.2.22.	Band locale response	33
	3.2.23.	Gets band area	33
	3.2.24.	Gets the locale band response	34
	3.2.25.	Provided inventory data area	
	3.2.26.	Set inventory data area response	
	3.2.27.	Get Device current temperature	
	3.2.28.	Get the current temperature-responsive device	

3.2.29.	Setting the temperature protection value	36
3.2.30.	Setting the temperature protection value of the response	37
3.2.31.	Gets temperature protection value	37
3.2.32.	Gets temperature protection value response	37
3.2.33.	An antenna working hours	39
3.2.34.	An antenna working time response	39
3.2.35.	Gets antenna working hours	40
3.2.36.	Obtain an antenna response time	40
3.2.37.	Recommended settingsRFLink combination	41
3.2.38.	Recommended settingsRFLink combined response	41
3.2.39.	Get recommendedRFCombination of links provided	43
3.2.40.	Get recommendedRFLink combination setting response	43
3.2.41.	Set upFastIDFeatures	44
3.2.42.	Set upFastIDAnswer the	44
3.2.43.	ObtainFastIDFunctional status	44
3.2.44.	ObtainFastIDFunctional status response	46
3.2.45.	Set upTagfocus Features	46
3.2.46.	Set upTagFocus Answer the	47
3.2.47.	ObtainTagFocus Functional status	47
3.2.48.	ObtainTagFocus Functional status response	47
3.2.49.	Software reset	48
3.2.50.	Software reset response	48
3.2.51.	Look for the label filter settings	48
3.2.52.	Find answer label filter settings	50
3.2.53.	EPC + TIDorEPC + USER Mode setting	50
3.2.54.	EPC + TIDorEPC + TID + USER Setting the answer mode	50
3.2.55.	ReadEPC + TIDorEPC + TID + USER Mode status	52
3.2.56.	ReadEPC + TIDorEPC + TID + USER Answer mode status	52
3.2.57.	reset	54
3.2.58.	Factory Reset response	54
3.3.	Label operation	55
3.3.1.	Single inventory tags	55
3.3.2.	Single label inventory response	56
3.3.3.	Continuous inventory labels	56
3.3.4.	Continuous label inventory response	58
3.3.5.	Stop continuous inventory labels	60
3.3.6.	Stop the continuous label inventory response	60
3.3.7.	Read the label data area	60
3.3.8.	Read label data area response	61
3.3.9.	Write tag data area	
3.3.10.	Write data area response	64
3.3.11.	Locklabel	66
3.3.12.	LockTag replies	67
3.3.13.	Killlabel	
3.3.14.	KillTag replies	
3.3.15.	Block Writedata	
3.3.16.	Block WriteResponse data	71
3.3.17.	Block Erasedata	71

3.3.18.	Block EraseResponse data	73
3.3.19.	Set upQTparameter	75
3.3.20.	Set upQTParameter Reply	76
3.3.21.	ObtainQTparameter	76
3.3.22.	ObtainQTParameter Reply	77
3.3.23.	QTlabelRead	77
3.3.24.	QTlabelRead answer	78
3.3.25.	QTlabelWrite	79
3.3.26.	QTlabelWrite response	80
3.3.27.	Block Permalockoperating	81
3.3.28.	Block PermalockOperating answer	83

1. Outline

UHF RFID is an application layer protocolUHF reader module and the external communications protocol. By this protocol, the data communication between the external device and the reader module.

- 1. UHFModule and PC using asynchronous serial interface (UART, TTL level)Data communication, the baud rate 115200 default data bits, 1 stop bit, no parity bit, no hardware flow control. Data are transmitted according to a fixed frame format.
- 2. UHF reader may be used in addition to the serial communication, also support TCP / IP communications.

2. Data transmission frame format

Data frame header, frame length, the CMD type, data, and frame check code tail components. As shown in Table 1.

Transmission data frame format

Head	Frame	Type	data	BCC code	End
2 bytes	2 bytes	1 byte	N	1 byte	2 bytes

2.1. Header and trailer

On behalf of the packet header beginning, a total of 2 bytes, a fixed value 0xC8,0x8COr 0xA5,0x5A, end of frame showing the end of the packet, total2 bytes, a fixed value 0x0d, 0x0a (return followed by line feed).

2.2. Frame length

A length of the data frame length, is the length, the end of the entire frame comprising frame header data. The specific terms Calculation formula is:

Length = frame header (2 bytes) + frame length (2 bytes) + the CMD Type (1 byte) + data (N bytes) + the BCC code (1 byte) + tail frame (2 bytes).

2.3. CMD type list

CMD is the command type to distinguish between different types of control commands, UHF or reader module performs the corresponding operation according to the command type.

CMD type list

Command Function	Type CMD
Acquisition hardware version number	0x00
Answer acquisition hardware version	0x01
Obtain the firmware version number	0x02
Firmware version number of responses	0x03
Acquisition module ID	0x04
ID response acquisition module	0x05
Reserve	0x06 ~ 0x0f
Sets the transmit power	0x10
Sets the transmit power response	0x11
Get the current transmit power	0x12
Get the current transmit power	0x13
Hopping Set	0x14
Setting the answer hopping	0x15
Gets the current device status hopping	0x16
Gets the current device settings	0x17
Setting parameters Gen2	0x20
Gen2 parameter setting response	0x21
Gets the current parameter settings	0x22
Gets the current Gen2 parameter	0x23
CW Setting	0x24
CW Setting the answer	0x25
Gets the current device settings CW	0x26
Gets the current device settings CW	0x27
Antenna Set	0x28
Setting the answer antenna	0x29
Get the current antenna device	0x2a
Get the current antenna set the	0x2b
regional settings	0x2c
Locale response	0x2d
Gets the locale	0x2e
Gets the locale response	0x2f
Set upInventory data area	0x30
Set upInventory data areaReply	0x31
Reserve	0x32-0x33
Get Device current temperature	0x34
Get the current temperature-responsive	0x35
Setting the temperature protection	0x38
Setting the temperature protection	0x39
Get temperature protection value	0x3A
Gets temperature protection setting	0x3B

Reserve	0x3C-0x49
An antenna working hours	0x4A
An antenna working time response	0x4B
Gets antenna working hours	0x4C
Obtain an antenna response time	0x4D
Multi-antenna work interval	0x4E
Multi-antenna work interval reply	0x4F
Obtain multi-antenna work interval	0x50
Obtain multi-antenna work interval	0x51
Recommended combinations of RF link	0x52
Set the recommended combination of RF	0x53
Get recommended setting combination of	0x54
Get recommended a combination of RF	0x55
Reserve	0x56-0x5B
Setting FastID function	0x5C
Answer the setting FastID	0x5D
Get FastID functional status	0x5E
Get FastID functional status response	0x5F
Setting TagFocus function	0x60
Answer the setting TagFocus	0x61
Get TagFocus functional status	0x62
Get TagFocus functional status	0x63
Reserve	0x64-0x67
Software reset	0x68
Software reset response	0x69
Reserve	0x6A
Reserve	0x6B
Reserve	0x6C
Reserve	0x6D
Look for the label filter settings	0x6E
Find answer label filter settings	0x6F
Provided simultaneously read EPC +	0x70
Set read simultaneouslyEPC + TID or EPC +	0x71
Get while reading the EPC + TID Or EPC	0x72
Get read simultaneouslyEPC + TID or EPC +	0x73

reset	0x74
Factory Reset response	0x75
Reserve	0x76 ~ 0x7f
To find a single label	0x80
To find a single label reply	0x81
Continuous find labels	0x82
Continuous labels to find answer	0x83
Stop seeking continuous label	0x8c
Stop the continuous label to find	0x8d
Read Data	0x84
Read data response	0x85
Write data	0x86
Write data response	0x87
Lock tag	0x88
Lock tag replies	0x89
Kill label	0x8a
Kill label reply	0x8b
Reserve	0x8e-0x92
Block Write tag	0x93
Block Write tag replies	0x94
Block Erase Label	0x95
Block Erase transponder tag	0x96
Set command parameters QT	0x97
Set QT command parameter response	0x98
Get command parameter QT	0x99
Get command parameter response QT	0x9a
QT read	0x9b
QT read answer	0x9c
QT writes	0x9d
QT write response	0x9e
Block Permalock operation	0x9f
Block Permalock operating answer	0xa0
Reserve	0xa1 ~ 0xff

2.4. data

The CMD type, the data comprising data and control information. For the command frame, control information indicating, for the response frame, data representing the information returned.

2.5. BCC code

All bytes of data per frame (frame head and tail removed) XOR.

E. g:

0xC8 0x8C 0x00 0x0A 0x43 0x01 0x25 BCC 0x0d 0x0a BCC = 0x00 0x0A 0x43 0x01 0x25 = 0x6D

3. A communications data frame described

3.1. Device version

3.1.1. Acquisition hardware version number

Data: None

Function: Get hardware version information

Acquisition hardware version command frame

Header		Frame length		Type CMD	data	BCC code	End of
0xC8	0x8C	0x00	0x08	0x00	no	0x08	0x0D
End of							
0x0A							

Description: This command No data

Example: Get a card reader hardware version

command: C8 8C 00 08 00 08 0D 0A

3.1.2. Answer acquisition hardware version number

data: A total of 3 bytesIncluding major version,

minor version and supplements

Function: Acknowledge hardware version information

Provides hardware version of the response frame

Header		Frame length		Type CMD	data		
0xC8	0x8C	0x00	0x0B	0x01	Major Version	Minor version	Supp1 ement
BCCcode	End of frame						
0xxx	0x0D	0x0A					

Description: None

Example: the hardware version of the card reader responses V2.0.1

Command: C8 8C 00 0B 01 02 00 01 09 0D 0A

3.1.3.0btain the

firmware version number

Data: None

0x0A

Function: get firmware version information

Get firmware version command frame

Header		Frame length		Type CMD	data	BCC code	End of
0xC8	0x8C	0x00	0x08	0x02	no	0x0A	0x0D
End of							

Description: None

Example: Get the reader firmware version command: C88C 00 08 02 0A 0D 0A

3.1.4. Firmware version number of responses

data: A total of 3 bytesIncluding major version,

minor version and supplements Function: Answer firmware version

Firmware version response frame

Header		Frame length		Type CMD	data		
0xC8	0x8C	0x00	0x0B	0x03	Major Version	Minor version	Suppleme ntary
BCC code	End of frame						
0xxx	0x0D	0x0A					

Description: None

Example: The firmware version number is V3.01The reader response

command: C88C 00 0B 03 03 00 01 0A 0D 0A

3.1.5. Acquisition acquisition equipmentID

Data: None

Function: Get the module ID

Get ID command frame module

Header		Frame length		Type CMD	data	BCCcode	End of
0xC8	0x8C	0x00	0x08	0x04	no	0x0C	0x0D
End of							
0x0A							

Description: None

Example: obtaining module ID

command: C88C 00 08 04 0C 0D 0A

3.1.6. Get DeviceAnswer ID

data:Altogether 4 bytesThe

moduleID.

Function: Get the module ID response.

ID acquisition response frame module

Header		Frame length		Type CMD		data	
0xC8	0x8C	0x00	0x00 0x0C		Dbyte3	DByte2	DByte1
data	BCC code	End of	frame				
DByte0	0xxx	0x0D	0x0A				

example:ID for 0xF1 0xF20xF30xF4Reader response

command: C8 8C 00 0C 05 F1 F2 F3 F4 0D 0D 0A

3.2. Device parameter settings

3.2.1. Sets the transmit power

data:6 bytes, Status one byte, one byte antenna number, write power and read power occupies 2 bytes of read power in dBm units are Function: specific antenna, which is arranged to read and write power.

Set the transmit power command frame

Неа	ader	Frame length		Type CMD		data	
0xA5	0x5A	0x00	0x0E	0x10	Status	Antenna	Read
						No.	(MSB)
data							
	data		BCC code	End of	f frame		
Read	data Write	Write	BCC code 0xxx	End of 0x0D	f frame 0x0A		

Status of each bit instructions

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Rev	Rev	Rev	Rev	Rev	Rev	0: Do not	Rev
						save	
						1: Save	

Description: 1, bit1 0 indicates that the current settings will be lost after a power outage, bit1 1 indicates that the current settings will be saved after the power failure, the default setting on the next power value of the power value. No. hexadecimal representation of the antenna; read after power × 100, and then converted to hexadecimal.

2, the power is currently reserved for reading, there is no real meaning.

Example: an antenna 1The power of reading OdBmWrite power 3OdBm, do not save.

command: C88C 00 0E 10 00 01 00 00 0B B8 AC 0D 0A

3.2.2. Sets the transmit power response

Data: Set whether symbol of success, success:

0x01; failure: 0x00

Function: Set the transmission power is successful.

Set the transmit power response frame

Header		Frame	length	CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x11	OK-0x01	0xxx	0x0D
					Fail-0x00		
End of							

End of 0x0A

Description: None

Example: setting a transmission power success Command: C8 8C 00 09 11 01 19 0D 0A

3.2.3. Get the current transmit power

Data: None

Function: Get the current transmit power.

Gets the current transmit power command frame

						1		
Header		Frame length		CMDTypes	data	BCCcode	End of	
	0xC8	0x8C	0x00	0x08	0x12	no	1A	0x0D
	End of							

0x0A

Description: None

Example: Gets the current transmit power

command:C88C 00 08 12 1A 0D 0A

3.2.4. Get the current transmit power response

Data: Status, the antenna and antenna number read power, write

power in dBm units are

Function: Get power of each antenna of the reader device.

Get the current transmit power response frame

Неа	ader	Frame	length	Type CMD	ı	data	
0xC8	0x8C	0xxx	0xxx	0x13	Status	Antenna No.	Read (MSB)
			da	ıta		INO.	L (MSB)
Read (LSB)	Write (MSB)	Write (LSB)	Antenna No.	Read (MSB)	Read (LSB)	Write (MSB)	Write (LSB)
		da	ta			BCC code	End of
	Antenna No.	Read (MSB)	Read (LSB)	Write (MSB)	Write (LSB)	0xxx	0x0D
End of 0x0A							

Description: 1, Status, Default is 0x00, is reserved for later extensions;

2, a multi-channel device, the system default settings only 1 antenna power port, the other antenna ports needed to power 0 default setting, the user needs. Power to the antenna port 0 will employ the power of the antenna 1.

Example: Antenna 1 Read power30dBmWrite power 30dBmOther antennaPort power are0dB.

C8 8C 00 1d 13 00 01 0b b8 0b b8 02 00 00 00 00 03 00 00 00 00 04 00 00 00 00 0a 0d 0a

3.2.5. Fixed frequency settings

Data: given frequency and a given number of frequencies

point table.

Function: Fixed frequency operation of equipment, currently supports only one frequency.

Fixed frequency setting command frame

			TINCU	rrequency .	secting con	miaria ii ame	,
Header Frame			length	CMDTypes		data	
0xC8	0xC8 0x8C 0xxx 0xxx		0x14	Fixed- frequency	Freq [1]	Freq [1]	
data					BCCcode	End of	frame

Freq	 Freq	Freq [n]	Freq	0xxx	0x0D	0x0A
[1]	[n]		[n]			

Description:setFrequently point numberdefaultIs 1, Freq [1] represents the frequency of the fixed frequency. The unit is KHz frequency Freq

Example: Set920125KHz (OE0A3D) ofFixed-frequency command:C8 8C00 OC 14 01 OE OA 3D 20 OD OA

3.2.6. Fixed-frequency response settings

Data: Set success: 0x01; setup

failed: 0x00

Function: hopping answering.

Setting a fixed frequency response frame

			Detting a	innea meque	mey response	o ii aiiic	
Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x15	ok: 0x01 fail: 0x00	0xxx	0x0D
End of							

Description: None

Example: fixed frequency set successfully command: C88C 00 09 15 01 1D 0D 0A

3.2.7. Get current device setting state fixed frequency

Data: None

Function: Get the current device state and a fixed-frequency

fixed-frequency table.

Get current device status setting command frame fixed

frequency

0x0A

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x08	0x16	no	0x1E	0x0D
End of							

0x0A

Description: None

Example: Get the current device status hopping configuration

command:C88C 00 08 16 1E 0D 0A

3.2.8. Get the current fixed-frequency setting device status response

Data: fixed frequency point number and frequencies given

in Table

Function: Get the device state and a fixed-frequency fixed-frequency table.

Obtaining current setting device fixed frequency response frame

Неа	ader	Frame length		CMDTypes		data	
0xC8	0x8C	0xxx	0xxx	0x17	Channel	Freq	Freq [1]
					hopping	[1]	
	da	ata		BCCcode	End of	f frame	
Freq		Freq	Freq	0xxx	0x0D	0x0A	
[1]		[n]	[n]				

Description: Sets the number of frequency points 1, Freq [1] represents the frequency of the fixed frequency. The unit is KHz frequency Freq

Example: EquipmentFrequently set point 920125 (OEOA3D). C8 8C 00 OC 17 01 OE OA 3D twenty three OD OA

3.2.9. Set up Gen2 parameters

Data: Session, Q, Coding and

other settings

Function: gen2 parameters.

Set command frame gen2

Неа	ader	Frame	length	CMDTypes		data	
0xC8	0x8C	0x00	0x10	0x20	DByte7	DByte6	DByte5
data				BCCcode	End of	f frame	
DByte4 DByte3		DByte2	DByte1	DByte0	0xxx	0x0D	0x0A

Description: Data Members are defined in the following table

Data Definition Description

DByte7				DByte6			DByte5			DByte4																					
Т	arge	et	A	ctio	on	Т	Q	Sta	art(Q		M	(inC)		M	[ax	Q		D	C		P	Se	el	Se	es	G	Ll	7	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
DByte3 DByte2									DB	yte	1						Db	yte	0												
	Reserve																														

1,Target setting: select command Target parameters

S0	B'000
S1	B'001
S2	B'010
S3	B'011
SL	B'100

2,Action settings: select parameters command Action

Action	Matching	Non-Matching
000	assert SL or inventoried \rightarrow A	de-assert SL or inventoried \rightarrow B
001	assert SL or inventoried \rightarrow A	do nothing
010	do nothing	de-assert SL or inventoried \rightarrow B
011	negate SL or $(A \rightarrow B, B \rightarrow A)$	do nothing
100	de-assert SL or inventoried \rightarrow B	de-assert SL or inventoried \rightarrow A
101	de-assert SL or inventoried \rightarrow B	do nothing
110	do nothing	de-assert SL or inventoried \rightarrow A
111	do nothing	negate SL or $(A \rightarrow B, B \rightarrow A)$

3,T Set: select Truncate command parameters

Disable truncation	B'0
Enable truncation	B'1

4,Q Setting:

Static Q	B'0
Q dynamic	B'1

Note: Fixed Q Algorithm, Q Fixed StartQ, ignore MinQ with MaxQ.

5,StartQ settings:

0	B'0000	4	B'0100	8	B'1000	12	B'1100
1	B'0001	5	B'0101	9	B'1001	13	B'1101
2	B'0010	6	B'0110	10	B'1010	14	B'1110
3	B'0011	7	B'0111	11	B'1011	15	B'1111

6,MinQ settings:

0	B'0000	4	B'0100	8	B'1000	12	B'1100
1	B'0001	5	B'0101	9	B'1001	13	B'1101
2	B'0010	6	B'0110	10	B'1010	14	B'1110
3	B'0011	7	B'0111	11	B'1011	15	B'1111

7,MaxQ settings:

0	B'0000	4	B'0100	8	B'1000	12	B'1100
1	B'0001	5	B'0101	9	B'1001	13	B'1101
2	B'0010	6	B'0110	10	B'1010	14	B'1110
3	B'0011	7	B'0111	11	B'1011	15	B'1111

8,Set D: DR parameter query command

8	B'0
64/3	B'1

9, Coding Set: M parameter query command

• 0 1111111111111					
FM0	B'00				
Miller2	B'01				
Miller4	B'10				
Miller8	B'11				

10,Set P: query command parameters TRext

No pilot	B'0
Use pilot	B'1

11,sel Setting: query command parameters sel

All	B'00
All	B'01
~ SL	B'10
SL	B'11

12,ses Setting: query command session parameters

S0	B'00
S1	B'01
S2	B'10
S3	B'11

13,Set G: Target parameter query command

A	B'0
В	B'1

14, LF Set up(Reserved).

example: Target Set as S1; Action for B'000; Truncate Parameters Disable Truncate; dynamicQ algorithm; startQ for 4; minQ for 0; maxQ for 15; DR for DR = 64/3; M Parameters Miller4; TRext Parameters Use pilot; sel Parameters for the ALL; Session Parameters S1; Target Parameters A. command:

C8 8C 00 10 20 21 40 FD 53 00 00 00 00 FF 0D 0A

3.2.10. Set up Gen2 response parameters

Data: Set success: 0x01; setup

failed: 0x00

0x0A

Function: gen2 parameters.

Gen2 parameter setting response frame

-	Genz parameter setting response frame										
Header		Frame length		CMDTypes	data	BCCcode	End of				
	0xC8	0x8C	0x00	0x09	0x21	Ok: 0x01 fail: 0x00	0xxx	0x0D			
	End of										

Description: None

Example: Set gen2 Parameters success

command:C88C 00 09 twenty one 01 29 0D 0A

3.2.11. Get the current Gen2 parameter settings

Data: None

Function: Get Device gen2 parameter settings.

Get the current parameters command frame gen2

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x08	0x22	no	0x2A	0x0D
End of							
0x0A							

Description: None

Example: Gets the current device gen2 parameter settings command: C8 8C $\,$ 00 $\,$ 08 $\,$ twenty two $\,$ 2A $\,$ 0D $\,$ 0A

3.2.12. Get the current Gen2 parameter setting response

Data: Session, Q, Coding and

other settings

Function: Get Device Gen2 parameter settings.

Get the current Gen2 parameter response frame

	cer and content certain test test one frame									
Header		Frame length		Type CMD	data					
0xC8	0x8C	0x00	0x10	0x23	DByte7	DByte7 DByte6 DByte5				
		data	BCCcode	End of frame						
DByte4	DByte3	DByte2	DByte1	DByte0	0xxx	0x0D	0x0A			

Note: Data for your Gen2 parameter settings as defined in 3.2.9.

example:Target Set as S1;Action for B'000;Truncate Parameters Disable Truncate;dynamicQ algorithm;startQ for 4;minQ for 0;maxQ for 15;DR forDR = 64/3;M Parameters Miller4;TRext ParametersUse pilot;sel Parameters for the ALL;Session Parameters S1;Target Parameters A.

command: C8 8C 00 10 23 21 40 FD 53 00 00 00 00 FC 0D 0A

3.2.13. CW Setting

Data: open CW: 0x01; Off CW: 0x00

Functions: opening or closing a continuous wave.

CW Set Command Frame

Header		Frame length		CMDTypes	data	BCCcode	End of		
0xC8	0x8C	0x00	0x09	0x24	Open: 0x01	0xxx	0x0D		
End of									
0x0A									

Description: None

Example: open CW

command:C88C 00 09 twenty four 01 2C 0D 0A

3.2.14. CW Setting the answer

Data: Set success: 0x01; setup

failed: 0x00

Function: turn on or off a continuous wave response.

CW setting response frame

e ii setting response ritine								
Header		Frame length		CMDTypes	data	BCCcode	End of	
0xC8	0x8C	0x00	0x09	0x25	ok: 0x01 fail: 0x00	0xxx	0x0D	
End of								

Description: None

0x0A

Example: Set success

command: C88C 00 09 25 01 2D 0D 0A

3.2.15. Get the current equipment CW Setting

Data: None

Function: Gets the current state of the device CW

Gets the current device parameters CW command frame

Header		Frame length		Frame	data	Check	End of
0xC8	0x8C	0x00	0x08	0x26	no	0x2E	0x0D
End of							
0x0A							

Description: None

Example: Gets the current device CW Set up command: C88C 00 08 26 2E 0D 0A

3.2.16. Get the current equipment CW Setting the answer

Data: CW open: 0x01; CW OFF:

0x00

0x0A

Function: Gets the current device CW status.

Gets the current device parameters CW response frame

		CCLS	the current	ic vice parain		ponse mame	
Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x27	Open: 0x01	0xxx	0x0D
End of							

Description: None

example:CW In the open state

command: C88C 00 09 27 01 2F 0D 0A

3.2.17. Antenna Set

Data: total of 3 bytes, DByte2 whether the power-down save bytes; DByte1 and DByte0 bytes each corresponding to a common antenna 16, this bit is 1, chosen to correspond to the antenna, the bit is 0, the corresponding deselection antenna. After the antenna is selected when the inventory tag antenna is automatically selected in rotation.

Function: a single-port module default antenna, the other antenna is provided is not valid.

Command frame antenna arrangement

Header		Frame	length CMDTypes			data	
0xC8	0x8C	0x00	0x0B	0x28	DByte2 DByte1 DByt		DByte0
BCCcode	de End of frame						
0xxx	0x0D 0x0A						

Description: Dbyte2 = 0x01, an antenna power-down save set, Dbyte2 = 0x00, indicates power-down is not saved settings.

Data bit is defined as follows:

The antenna defined set of data bits

DByte1

Ant16	Ant15	Ant14	Ant13	Ant12	Ant11	Ant10	Ant9		
DByte0									
Ant8	Ant7	Ant6	Ant5	Ant4	Ant3	Ant2	Ant1		

Example: selecting the second antenna 14 and the antenna number is

provided power-down save

command: C8 8C 00 0B 28 01 20 02 01 0D 0A

3.2.18. Setting the answer antenna

Data: Set success: 0x01; setup

failed: 0x00

Function: the antenna arrangement apparatus used

Antenna setting response frame

Header		Frame length		CMDTypes	data	BCCcode	End of				
0xC8	0x8C	0x00	0x09	0x29	ok: 0x01 fail: 0x00	0xxx	0x0D				
End of											
0x0A											

Description: None

Example: Set success

command:C88C 00 09 29 01 twenty one 0D 0A

3.2.19. Get the current antenna device settings

Data: None

Function: Get an antenna number for your device

Get command frame antenna arrangement

Неа	ader	Frame	length	Type CMD	data	BCCcode	End of
0xC8	0x8C	0x00	0x08	0x2a	no	0x22	0x0D
End of							

0x0A

Description: None

Example: Get current device antenna arrangement command: C88C 00 08 2a twenty two 0D 0A

3.2.20. Get the current antenna set the answering device

Data: total of 2 bytes, 16 bits, each bit corresponding to one antenna, the bit is 1, the corresponding antenna is selected, the bit is 0, the corresponding antenna is not selected.

Function: Get an antenna number for your device.

Gets antenna setting response frame

Header		Frame	length	CMDTypes	da	ata	BCCcode
0xC8	0x8C	0x00	0x0A	0x2b	DByte1 DByte0		0xxx
End of	End of frame						
0x0D	0x0A						

Data bits are defined in Table:

The antenna defined set of data bits

The antenna defined bet of data one							
DByte1							
Ant16	Ant15	Ant14	Ant13	Ant12	Ant11	Ant10	Ant9
	DByte0						
Ant8	Ant7	Ant6	Ant5	Ant4	Ant3	Ant2	Ant1

Example: Current 1 No. antenna, the first 5 No. antenna, the first 10 No. antenna and 14 No. antenna was ordered: C8 8C 00 OA 2b twenty two 11 12 OD OA

3.2.21. Band locale

Data: 2 bytes

Function: Set the area.

Locale command frame

Header		Frame length		Type CMD	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x2c	Save Settings	DByte0	0xxx
End of	End of frame						
0x0D	0x0A						

Description: Save flag 0:00, do not save the settings, save set to 1, the default is the current region during the next boot. Data bits are defined in Table DByte0

China1 (840MHz-845MHz)	0x01
China2 (920MHz-925MHz)	0x02
Europe (865MHz-868MHz)	0x04
USA (902MHz-928MHz)	0x08
Korea (917MHz-923MHz)	0x16
Japan (952MHz-953MHz)	0x32

Example: save the settings, set area USA

command:C8 8C 00 0A 2C 01 OA

3.2.22. Band locale response

Data: Set success: 0x01; setup

failed: 0x00

Function: Set the area

Locale response frame

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x2D	Ok: 0x01 fail: 0x00	0xxx	0x0D
End of							
$\Omega_{\mathbf{v}} \Omega \Delta$							

Description: None

Example: Set success

command: C88C 00 09 2D 01 25 OD OA

3.2.23. Gets band area

Data: None

0x0A

Function: Get the equipment locale

Header		Frame	length	CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x08	0x2E	no	0x26	0x0D
End of							

Description: None

Example: Get Locale

command: C88C 00 08 2E 26 OD 0A

3.2.24. Gets the locale band response

Data: 2 bytes

Function: Get the equipment locale

Gets the locale response frame

Header		Frame	length	CMDTypes	da	ata	BCCcode
0xC8	0x8C	0x00	0x0A	0x2f	Ok: 0x01 fail: 0x00	DByte0	0xxx
End of frame							
0x0D	0x0A						

Description: Data bits are defined in Table

China1	0x01
China2	0x02
Europe	0x04
USA	0x08
Korea	0x16
Japan	0x32

Example: current device locale China2

command: C88C 00 0A 01 2F 02 26 0D 0A

3.2.25. Provided inventory data area

Data: AP to access password

MMB data area to be inventoried and combinations

MSA is the inventory data area start address(USERAreaeffective unitFor the word)

MDL is the length of visit(USERAreaeffectiveunitFor the word)

Неа	ader	Frame length		Type CMD	data		
0xC8	0x8C	0xxx	0xxx	0x30	AP	AP	AP
					(MSB)		
		da	ata			BCCcode	frametail
AP	MMB	MSA	MSA	MDL	MDL	0xxx	0x0D
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)		

frametail 0x0A

Explanation: MMB is defined as follows:

0x01	EPC
0x02	TID
0x03	USER
0x04	Reversed
0x05	EPC + TID
0x06	EPC + USER
0x07	EPC +TID +USER

Set upThe correspondingdataAfter the district,inventoryThe inventory data area corresponding to the label.

3.2.26. Set inventory data area response

Set response frame

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x31	Ok: 0x01 fail: 0x00	0xxx	0x0D
End of							
0x0A							

Description: None

Example: Set success

command: C88C 00 09 31 01 0xxx 0D 0A

3.2.27. Get Device current temperature

Data: None

Function: Get the current temperature of the device, the maximum error of the temperature and the actual temperature values is \pm 3 $^{\circ}$ C.

Get Device current temperature

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x08	0x34	no	0x3C	0x0D
End of							

0x0A

Description: None

Example: temperature acquiring device command:C8 8C 00 08 34 3C 0D 0A

3.2.28. Get the current temperature-responsive device

Data: Get the flag, 0x01 success, 0x00 failure. Temperature \times 100,

2 bytes, unit ℃

Function: Gets the current device temperature response.

A current acquisition device temperature response frame

	Header		Frame length		CMDTypes	data		
	0xC8	0x8C	0x00	0x0B	0x35	Ok: 0x01 fail: 0x00	temperatu re	temperatu re
	BCCcode	End of frame						
Ī	0xxx	0x0D	0x0A					

Description: temperature \times 100, converted to hexadecimal, then take a negative complement

Examples: succeed, the temperature of the devicetwenty two°C command:C8 8C 00 0b 35 01 08 98 af 0d 0a

3.2.29. Setting the temperature protection value

Data: 1 byte, the range of 50 $^{\circ}$ C -75 $^{\circ}$ C, other value

is invalid.

Function: Set the temperature protection options.

Setting the temperature protection

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x38	Data0	0xXX	0x0D
End of							

0x0A

Description:whenModulecontinuousjobsHot, Temperature reaches the setWhen the valueWill intervals readerWithmaintainModuleSetting a temperature in the range of values.

Example: SetTemperature protectionIs 75 °C command: C8 8C 00 09 38 4B 7A 0D 0A

3.2.30. Setting the temperature protection value of the response

Data: Set symbol of success, 0x01 success,

0x00 failure.

Function: Set the temperature protection response.

Setting the temperature protection response frame

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x39	Ok: 0x01 fail: 0x00	0xxx	0x0D
End of							
0x0A							

Description: None Example: Set success

Command: C8 8C 00 09 39 01 31 0D 0A

3.2.31. Gets temperature protection value

Data: None

Function: Gets temperature protection settings.

Gets temperature protection settings

		dets temperature protection settings									
Header		Frame length		CMDTypes	data	BCCcode	End of				
	0xC8	0x8C	0x00	0x08	0x3A	no	0x32	0x0D			
	End of										
	0x0A										

Description:no

Example: obtaining temperature protection is provided

command: C8 8C 00 08 3A 32 0D 0A

3.2.32. Gets temperature protection value response

Data: Get the success flag, 0x01 success,

0x00 failure.

Function: Gets the value of temperature protection response.

Get response frame set temperature protection

Header Frame length	Type CMD data	BCCcode
---------------------	---------------	---------

0xC8	0x8C	0x00	0x0A	0x3B	Ok: 0x01 fail: 0x00	Data0	0xxx
End of frame							
0x0D	0x0A						

Description: DataO, forTemperature values

Example: to succeed, temperatureValue75 °C

command: C8 8C 00 0A 3B 01 4B 7B 0D 0A

3.2.33. An antenna working hours

Data: Byte 3

Function: Set the antenna working hours

An antenna working hours

Header		Frame length		CMDTypes	data		
0xC8	0x8C	0x00	0x0B	0x4A	DByte2	DByte1	DByte0
BCCcode	End of frame						
0xxx	0x0D 0x0A						

Description: Low 4bit DByte2 of (bit0-bit3) an antenna number in the range 1-16, DByte2 of

bit4 indicates whether the power-down save, 0 to not save and 1 for power-down save. DByte1 DByte0 work and time, a total of 16 milliseconds, the range of $10ms \sim 65535ms$. Note that the single antenna module, only an antenna 1, a multi-antenna module only supports setting other antennas.

Example: an antenna 3 Working hours 300ms, Powerdown save settings. command: C8 8C 00 0B 4A 13 01 2C 7F 0D 0A

3.2.34. An antenna working time response

Data: the success flag, 0x01 success,

0x00 failure.

Function: Set the antenna working time response

An antenna working time response frame

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x4B	Ok: 0x01 fail: 0x00	0xxx	0x0D
End of							

End of 0x0A

Example: Operation Success

command: C88C 00 09 4B 01 43 0D 0A

3.2.35. Gets antenna working hours

Data: 2 bytes

Function: Get an antenna working hours.

Gets antenna working hours

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x4C	Ant num	Rev	0xxx
End of frame							
0x0D	0x0A						

Description: ant num represents the antenna number.

Example: Get Antenna 1 hours

command: C8 8C 00 0A 4C 01 00 47 0D 0A

3.2.36. Obtain an antenna response time

data: Four bytes.

Function: Get an antenna response time

Obtain an antenna response time frame

Header		Frame	Frame length		data		
0xC8	0x8C	0x00	0x0C	0x4D	Ok: 0x01 fail: 0x00	ant num	DByte1
data	BCCcode	End of frame					
DByte0	0xxx	0x0D	0x0A				

Description: ant num denotes an antenna number, DByte1 DByte0 indicate corresponding antenna and working time.

Note: Single-antenna module, antenna can only get 1, multi-antenna modules only support for additional antennas.

Example: Get the antenna 2 The working time is successful, antenna 2

Working hours 400ms

command: C8 8C 00 0C 4D 01 02 01 90 D3 0D 0A

3.2.37. Recommended settings RF links combination

data:Three bytes.

Function: Set Recommended RF link combination.

Recommended combinations of RF link provided

Header		Frame length		CMDTypes	data		
0xC8	0x8C	0x00	0x0B	0x52	Rev	DByte1	DByte0
BCCcode	End of frame						
0xxx	0x0D 0x0A						

Description: DByte1 is 1, power-down save set to 0, no power-down save the settings. DByte0 arrangement shown in the following table (the default is 0x01, the best performance is provided).

DByte0	combination
0x00	DSB_ASK / FM0 / 40 KHz
0x01	PR _ASK / Miller4 / 250KHz
0x02	PR _ASK / Miller4 / 300KHz
0x03	DSB_ASK / FM0 / 400KHz
other	invalid

Example: Set RF Link combination DSB_ASK / FMO / 40 KHz, Power-down does not save. command: C8 8C 00 0B 52 00 00 00 59 0D 0A

3.2.38. Recommended settings RF transponder combination of links

Data: the success flag, 0x01 success, 0x00 failure. Function: Set Recommended RF link response combination.

Recommended settings RF Link response frame combination

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x53	Ok: 0x01 fail: 0x00	0xxx	0x0D
End of							
0x0A							

Example: Set success

command: C8 8C 00 09 53 01 5B 0D 0A

3.2.39. Get recommended RF link provided in combination

data: 2 bytes.

Function: Get recommended RF link provided in combination.

Get recommended setting combination of RF link

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x54	Rev	Rev	0xxx
End of frame							
0x0D	0x0A						

Description: None.

Example: acquiring an RF link provided in combination Recommended

command: C88C 00 0A 54 00 00 5E 0D 0A

3.2.40. Get recommended Response RF link provided in combination

data:Three bytes.

Function: Get recommended a combination of RF link setting response.

Get recommended RF Link setting response frame combination

Header		Frame length		CMDTypes	data		
0xC8	0x8C	0x00	0x0B	0x55	Ok: 0x01 fail: 0x00	Rev	DByte0
BCCcode	End of frame						
0xxx	0x0D 0x0A						

Description: Sets the DByteO shown in the table below

DByte0	combination
0x00	DSB_ASK / FM0 / 40 KHz
0x01	PR _ASK / Miller4 / 250KHz
0x02	PR _ASK / Miller4 / 300KHz
0x03	DSB_ASK / FM0 / 400KHz
other	invalid

Example: The current recommendation RF Link combination DSB_ASK /

FMO / 400KHz

command: C88C 00 0B 55 01 00 03 58 0D 0A

3.2.41. Set up FastID function

data: 2 bytes.

Feature: open or closed FastID function.

Set FastID

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x5C	ON: 1 OFF: 0	Rev	0xxx
End of frame							
0x0D	0x0A						

Description: On: 0x01, closed: 0x00.

Example: open FastID Features.

command: C8 8C 00 0A 5C 01 00 57 0D 0A

3.2.42. Set up Answer the FastID

Data: a byte.

Function: FastID function response.

Set FastID response frame

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x5D	Ok: 0x01 fail: 0x00	0xxx	0x0D
End of							
0x0A							

Example: Set success

command: C8 8C 00 09 5D 01 55 0D 0A

3.2.43. Obtain FastID functional status

Data: 2 bytes

Function: Gets the current reader FastID state, is turned on.

Get FastID state

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x5E	Rev	Rev	0xxx
End of frame							
0x0D	0x0A						

Description: None.

Example: Get FastID status.

command:C88C 00 0A 5E 00 00 54 0D 0A

3.2.44. Obtain FastID functional status response

Data: two bytes.

Function: Get FastID state response.

Get FastID state response frame

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x5F	OK: 1 Fail: 0	ON: 1 OFF: 0	0xxx
End of frame							
0x0D	0x0A						

Example: to succeed, the current FastID Function is enabled by state command:C8 8C 00 0A 5F 01 01 55 0D 0A

3.2.45. Set Tagfocus Features

Data: 2 bytes

Feature: open or closed TagFocus Features.

Set TagFocus

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x60	ON: 1 OFF: 0	Rev	0xxx
End of frame							
0x0D	0x0A						

Description: On: OxO1, closed: OxOO.

Example: open TagFocus Features.

command: C8 8C 00 0A 60 01 00 6B 0D 0A

3.2.46. Set TagFocus Answer the

Data: a byte.

0x0A

Function: Set TagFocus Function response.

Set TagFocus response frame

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x61	Ok: 0x01 fail: 0x00	0xxx	0x0D
End of							

Example: Set success

command: C88C 00 09 61 01 69 0D 0A

3.2.47. Get TagFocus Functional status

Data: 2 bytes.

Function: Gets the current reader TagFocus state, is turned on.

Get TagFocus state

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x62	Rev	Rev	0xxx
End of	End of frame						
0x0D 0x0A							

Description: None.

Example: Get TagFocus status.

command: C8 8C 00 0A 62 00 00 68 0D 0A

3.2.48. Get TagFocus Functional status response

Data: two bytes.

Function: Get FastID state response.

Get TagFocus state response frame

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x63	OK: 1 Fail: 0	ON: 1 OFF: 0	0xxx
End of frame							
0x0D	0x0A						

Example: to succeed, the current TagFocus Function is enabled by

state

command: C8 8C 00 0A 63 01 01 69 0D 0A

3.2.49. Software reset

Data: Byte 0

Function: software reset module.

Software reset

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x08	0x68	no	0x60	0x0D
End of							
0x0A							

Description: send a software reset command, you can reset the reader.

Example: sending software reset command. command: C8 8C 00 08 68 60 0D 0A

3.2.50. Software reset response

data: A byte.

Function: software reset response.

Software reset response frame

Header		Frame length		CMDTypes	data	BCCcode	End of		
0xC8	0x8C	0x00	0x09	0x69	OK: 1 Fail: 0	0xxx	0x0D		
End of									

Description: None.

0x0A

Example: a successful reset.

command: C8 8C 00 09 69 01 61 0D 0A

3.2.51. Look for the label filter settings

data:n bytes.

Function: to find a label with a range tag group selection.

Look for the label filter settings

Header	Frame length	CMDTypes	data
1100001	110000 10000	0 I J P 0 0	0.00

0xC8	0x8C	0x00	0xxx	0x6E	DByte0	MMB	MSA
							(MSB)
			da	ata			
MSA	MDL	MDL	MData				MData
(LSB)	(MSB)	(LSB)	(MSB)				(LSB)
BCCcode	de End of frame						
0xxx	0x0D	0x0A					

Description: DByte0: 0x01 indicates power-down setting values are saved, not saved to 0x00 represents;

MMB: Filtering operationbank number, 0x01 represents EPC, 0x02 represents TID, 0x03 represents USR, another value is an invalid value;

MSA: Starting address Start filtering operation, the unit isbit:

MDL: Filtering operation starts filtering data length, inbit, 0x00 indicates no filter; MData: Start filtering data, in bytes, if MDL is less than an integral multiple of bytes, less than the low order bits 0s.

example 1: Set Hunt tag filtering rules:TID District filtration, filter address TID Zone Obit, Filter length 96bit, Filtered data 0xE2003414013301001038D2B5, Power-down save the filter settings.

command:C8 8C 00 1A 6E 01 02 00 00 00 60 E2 00 34 14 01 33 01 00 10 38 D2 B5 A9 0D 0A

Example 2: Set Hunt Tags filtering rules: no filters, power-down save the filter settings.

command: C8 8C 00 0E 6E 01 00 00 00 00 00 61 0D 0A

3.2.52. Find answer label filter settings

data: A byte.

Function: label filtering settings to find a response.

Searching tag response frame filter settings

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x6F	OK: 1 Fail: 0	0xxx	0x0D
End of							
0x0A							

Description: None.

Example: Set success

command: C8 8C 00 09 6F 01 67 0D 0A

3.2.53. EPC+TIDOr EPC + USER Mode setting

Data: 4 bytes

Function: Enables simultaneous reading EPC + TIDorEPC + TID + USER mode when the reader during continuous searching tag, the tag will be read simultaneously EPC + TIDorEPC + USER data.

Mode setting

Header		framelength		Type CMD	data		
0xC8	0x8C	0x00	0x0C	0x70	Dbyte0	Memory	Adress
data	BCCcode	End of frame					
Lenth	0xxx	0x0D 0x0A					

Description: Dbyte0: 0x01 indicates power-down setting values are saved, not saved to 0x00 represents;

Memory: Is 0x00, indicating that close; 0x01, indicate on EPC + TID mode(silentIdentified address 0x00, a length of 6 characters); 0x02, indicate on EPC + TID + USER mode

Adress: For the USER areaStarting address(unitFor the word).

Lenth: for USER area of Length (Unit For the word).

3.2.54. EPC+TIDOr EPC +TID +USER Setting the answer mode

Data: 4 bytes.

Function: read simultaneously $\ensuremath{\mathsf{EPC}}+\ensuremath{\mathsf{TID}}$ or $\ensuremath{\mathsf{EPC}}+\ensuremath{\mathsf{TID}}+\ensuremath{\mathsf{USER}}$ mode setting response.

Mode setting response frame

Неа	Header		Frame length		data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x71	OK: 1 Fail: 0	0xxx	0x0D
Fnd of							

End of 0x0A

Description: None. Example: Set success

command: C88C 00 09 71 01 79 0D 0A

3.2.55. Read EPC+TIDOr EPC +TID +USER Mode status

Data: 2 bytes

Function: Gets the current reader simultaneously reads $\ensuremath{\mathsf{EPC}} + \ensuremath{\mathsf{TID}} \ensuremath{\mathsf{or}}$

EPC + TID + USER mode set state, it is turned on.

Reading mode set state

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x72	Rev	Rev	0xxx
End of frame							
0x0D 0x0A							

Description: None.

Example: acquiring read simultaneously EPC + TIDOr EPC + TID + USER

mode set state.

command: C8 8C 00 0A 72 00 00 78 0D 0A

3.2.56. Read EPC+TIDOr EPC +TID +USER Answer mode status

Data: 4 bytes.

Function: Get simultaneously read EPC+TIDOr EPC +TID +USER Mode

setting state response.

Acquisition mode set state response frame

Header		frame	length	Type CMD		data	
0xC8	0x8C	0x00	0x0C	0x73	OK: 1 Fail: 0	Memory	Adress

data	BCCcode	End of	frame
Lenth	0xxx	0x0D	0x0A

3.2.57. reset

Data: Byte 0

Function: restore factory settings.

reset

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C 0x00 0x08		0x74	no	0x7C	0x0D	
End of							
0x0A							

Description: send commands to restore factory settings, you can restore the settings of the reader, restore factory settings successfully, the reader will automatically reset. After this command is executed, the set value may vary as follows:

Settings	Restore factory settings value	Remark
Transmission power	30dBm	
Temperature	Open	
Recommended	PR _ASK / Miller4 / 250KHz	
Buzzer state	Not ringing	
FastID function	shut down	
TagFocus function	shut down	
Module baud rate	115200	
Look for the label	Filtered data length = 0	Do not enable filtering
While readingEPC and TID mode	shut down	
and 11D mode		

Example: send the command to restore the factory settings.

command:C8 8C 00 08 74 7C 0D 0A

3.2.58. Factory Reset response

data: A byte.

Function: restore factory settings response.

Factory Reset response frame

Header		Frame	length	CMDTypes	data	BCCcode	End of		
0xC8	0x8C	0x00	0x09	0x75	OK: 1 Fail: 0	0xxx	0x0D		
End of									
0x0A									

Description: None.

Example: restore factory settings successfully. command: C8 8C 00 09 75 01 7D 0D 0A

3.3. Label operation

3.3.1. Single inventory tags

Data: Timeou (t endian), timeout, milliseconds, or if the card has successfully find Timeout

Time to, RFID module must return a response frame.

Function: to find the label, if find a label, returns only one label.

Single inventory label command frame

	• :									
Header		Frame length		CMDTypes	data		BCCcode			
0xC8	0x8C	0x00	0x0A	0x80	Timeout (MSB)	Timeout (LSB)	0xxx			
End of frame										
0x0D	0x0A									

Description: None

Example: look for labels

command: C88C 00 0A 80 00 64 EE 0D 0A

3.3.2. Single label inventory response

Data: PC + EPC, RSSI.

Function: label inventory response, the tag and reader-related

information return.

Single label inventory response frame

Неа	ader	Frame	length	CMDTypes		data		
0xC8	0x8C	0x00	0xxx	0x81	PC	PC	EPC	
					(MSB)	(LSB)	(MSB)	
data								
EPC	EPC	EPC	EPC	EPC	EPC	EPC	EPC	
		da	ata			BCCcode	End of	
EPC	EPC	EPC	RSSI	RSSI	Ant Num	0xxx	0x0D	
		(LSB)	(MSB)	(LSB)				
End of								
0x0A								

Description: RSSI represented as a complement, a total 16bit, the actual value \times 10. As -65.7dBm, the

RSSI = FD6F.

Note: The length of the EPC decided to have PC, this is based on the Gen2 protocol, so frame length is not fixed. After FastID function is enabled, attempting to read the label TID data, the EPC (LSB) response frame will increase the TID 96bit data, and is the RSSI value.

Example: Label

0x3000, EPC = 0xE2003411B802011383258566

Response,

PC =

RSSI = -65.7dBm, antenna 2 To inventory.

command: C8 8C 00 19 81 30 00 E2 00 34 11 B8 02 01 13 83 25 85 66 FD 6F 02 12 0D 0A

3.3.3. Continuous inventory labels

Data: continuous inventory tag number, a total of two sections.

Features: continuous inventory labels.

Continuous inventory tag command frame

continuous inventory tag command nume										
Header		Frame length		CMDTypes	data		BCCcode			
0xC8	0x8C	0x00	0x0A	0x82	Num [1]	Num [0]	0xxx			
End of	f frame									

0x0D $0x0A$	
-------------	--

Description: Continuous inventory tag number range $1 \sim 0xFFFF$, the number is 0, an unlimited number of inventory tags.

Note: During continuous inventory tag, the reader does not respond to other commands, execute For other commands to be sentStop the continuous inventory label command, waiting for a response after stopping continuous inventory tags, and then send commands to be executed.

Example: the number of continuous inventory tag10000

(0x2710) Secondary

command: C8 8C 00 0A 82 27 10 BF 0D 0A

3.3.4. Continuous label inventory response

Data: PC + EPC, RSSI,

antenna number.

Function: label inventory response, the tag and reader-related

information return.

Continuous label inventory response frame

Неа	ader	Frame	length	CMDTypes	data			
0xC8	0x8C	0x00	0xxx	0x83	PC	PC	EPC	
					(MSB)	(LSB)	(MSB)	
data								
EPC	EPC	EPC	EPC	EPC	EPC	EPC	EPC	
		da	ata			BCCcode	End of	
EPC	EPC	EPC	RSSI	RSSI	Ant Num	0xxx	0x0D	
		(LSB)	(MSB)	(LSB)				
End of								
0x0A								

Description: RSSI represented as a complement, a total 16bit, the actual value \times 10. As -65.7dBm, the

RSSI = FD6F.

Note: The length of the EPC decided to have PC, this is based on the Gen2 protocol, so frame length is not fixed in FastID functionOr TID or the EPC + EPC + USER function is enabled, if the read tagTID data, the EPC (LSB) response frame will increase the TID USER data area or region, and only thenRSSI value.

Example: Label

PC =

0x3000, EPC = 0xE2003411B802011383258566

Response,

RSSI = -65.7dBm, antenna 2 To inventory.

command: C8 8C 00 19 83 30 00 E2 00 34 11 B8 02 01 13

3.3.5. Stop continuous inventory labels

Data: None

Function: stop the continuous inventory labels.

Stop the continuous inventory label command

Header		Frame length		CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x08	0x8C	no	0x84	0x0D
End of							
0x0A							

Example: stop continuous inventory tag command: C88C 00 08 8C 84 0D 0A

3.3.6. Stop the continuous label inventory response

Data: flags flag: success: 0x01; failure: 0x00

Function: stop the continuous label inventory response

Stop the continuous label inventory response frame

Неа	Header Frame len		length	CMDTypes	data	BCCcode	End of
0xC8	0x8C	0x00	0x09	0x8D	Flag	0xxx	0x0D
End of							
0x0A							

Description: None

Example: Success

command:C8 8C 00 09 8D 01 85 0D 0A

3.3.7. Read the label data area

Data: AP (access code), MMB, MSA, MDL, MData, memory Bank, SA start address (words), the data length DL is to be read (word units). Word length of 2 bytes.

Function: data read tag specified data area.

Read Data command frame

Неа	ader	Frame length		Type CMD	data			
0xC8	0x8C	0xxx	0xxx	0x84	AP	AP	AP	
					(MSB)			
data								
AP	MMB	MSA	MSA	MDL	MDL	MData	MData	
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)		
			da	ata				
MData	•••	•••	•••		MData	MData	MB	
						(LSB)		
data				BCCcode	End of	f frame		
SA	SA	DL	DL	0xxx	0x0D	0x0A		
(MSB)	(LSB)	(MSB)	(LSB)					

Description:

AP:4Byte access password

MMB: Mask of the data area(0x00for Reserve 0x01 for EPC, 0x02 represents the TID, 0x03 represents USR).

MSA: To mask the address.

MDL: Length mask.
Mdata: To mask data.

MB: To write data area(0x00for Reserve 0x01 for EPC, 0x02 represents the TID, 0x03 represents USR).

SA: forToAddress write data area.

DL: Length of data to be written (Word units).

Data: To write data, the previous high.

Example 1: No filtering, the read data word TID area 3, the starting address is 2, access password 0x55555555

command: C8 8C 00 16 84 55 55 55 00 00 00 00 00 02 00 02 00 03 91 0D 0A

example 2:TID District filtration, filter address TID Zone 2bit, Filter length 13bit, Filtered data 1110001000000' bRead EPC Area 6 Data word, the starting address is 2Access password0x00000000

command: C8 8C 00 18 84 00 00 00 00 02 00 02 00 0D E2 00 01 00 02 00 06 76 0D 0A

3.3.8. Read label data area response

Data: Flag: Flag read data is successful, success: 0x01; failure: 0x00

Errflag: error flag, After the failure of the

error flag returned

DL: readingThe length of the data unit is a

word

Data:readData

Function: read data return.

Read data response frame

Header		Frame length		CMDTypes	data		
0xC8	0x8C	0xxx	0xxx	0x85	Flag	Errflag	DL
							(MSB)
		data			Check	End of frame	
DL	Data			Data	0xxx	0x0D	0x0A
(LSB)	(MSB)			(LSB)			

Description: Reads data Data read data is determined by the length of the command data, in addition, read data is fail, then no response frame data Data; read data, the error flag Errflag to 0x00. Read operation fails,

ErrFlag prompt type of failure, ErrFlag of 1, indicating no label; ErrFlag is 2, represents an access password is wrong; ErrFlag 3, showing Read operation failed.

Example: Successful read TID Area 3 Words of data:0x123456789ABC command:C88C 00 12 85 01 00 00 03 12 34 56 78 9A BC BB 0D 0A

3.3.9. Write tag data area

Function: the data into the specified storage area.

Write Data command frame

Header		Frame length		Type CMD	data				
0xC8	0x8C	0xxx	0xxx	0x86	AP	AP	AP		
					(MSB)				
data									
AP	MMB	MSA	MSA	MDL	MDL	MData	MData		
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)			
data									
MData			•••	•••	MData	MData	MB		
						(LSB)			
			da	ata					
SA	SA	DL	DL	Data			Data		
(MSB)	(LSB)	(MSB)	(LSB)	(MSB)			(LSB)		
BCCcode End of frame									
0xxx	0x0D	0x0A							

AP:4Byte access password

MMB: Mask of the data area(0x00for Reserve 0x01 for EPC, 0x02 represents the TID, 0x03 represents USR).

MSA: To mask the address.

MDL: Length mask.Mdata: To mask data.

MB: To write data area(0x00for Reserve 0x01 for EPC, 0x02 represents the TID, 0x03 represents USR).

SA: forToAddress write data area.

DL: Length of data to be written (Word units).

Data: To write data, the previous high.

example 1: Do not filter, write EPC Area 6 Words of data, Data = 0x00112233445566778899 aabbStarting at address 2Access password 0x12345678 command:C8 8C 00 twenty two 86 12 34 56 78 00 00 00 00 00 00 01

00 02 00 06 00 11 twenty two 33 44 55 66 77 88 99 AA BB A9

OD OA

example 2:TID District filtration, filter address TID Zone Obit, Filter length 96bit, Filtered data 0xE2003414013301001038D2B5Write EPC Area 6 Words of data, Data = 0x00112233

445566778899aabbStarting at address 2Access password 0x00000000

command:C8 8C 00 2E 86 00 00 00 00 02 00 00 00 E2 60 00 14 01 33 01 00 10 38 D2 В5 01 00 02 00 06 00 88 99 33 44 55 66 77 AA BB 71 OA twenty two 0D

3.3.10. Write data area response

Data: Flag: write data is successful sign, success: 0x01; failure: 0x00

Errflag: error flagError flag returned after a

failed write

Function: write data response

Write data response frame

Header		Frame length		Type CMD	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x87	Flag	Errflag	0xxx
End of	f frame						
0x0D	0x0A						

Description: write data, the error flag Errflag to 0x00. Write operation failed, ErrFlag prompt type of failure, ErrFlag of 1, indicating no label; ErrFlag is 2, represents an access password is wrong; ErrFlag 3, showing Write operation failed.

Example: Data write failure, the error flag is 0x03 command:C8 8C 00 0A 87 00 03 8E 0D 0A

3.3.11. Locklabel

Data: AP (access code), MMB, MSA, MDL, MData, LD (3 bytes total)

Function: Lock memory bank labels

lock tag command frame

	_	_				_	
Header		Frame length		CMDTypes	data		
0xC8	0x8C	0x00	0xxx	0x88	AP	AP	AP
					(MSB)		
			ata				
AP	MMB	MSA	MSA	MDL	MDL	MData	MData
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)	
			da	ata			
MData					MData	MData	LD
						(LSB)	(MSB)
data		BCCcode	End of	f frame			
LD	LD	0xxx	0x0D	0x0A			
	(LSB)						

Description:

AP:4Bytelock password

MMB: Mask of the data area(0x00for Reserve 0x01 for EPC, 0x02 represents the TID, 0x03 represents USR).

MSA: To mask the address.

MDL: Length mask. Mdata: To mask data.

LD: 24bit total of 3 bytes, wherein the high 4bit invalid, the first 0 ~ 9bit (co 10bit) Action of bits, the first 10 ~ 19bit (co 10bit) of mask bits, For details, seeISO18000-6C protocol manual.

Example: filtering region TID, TID Zone address filtering Obit filtered 96bit length, filtering data 0xE2003414013301001038D2B5, EPC + RFU locking zone (LD = 0xOFC2AO), access password 0x760039AD

Command: C8 8C 002 088 76 00 39 AD 02 00 00 00 60 E2 0034 140133 01 00 10 38 D2 B5 0F C2 AO FB 0D 0A

3.3.12. LockTag replies

Data: Lock label success symbol flag: success: 0x01; failure: 0x00

Error flag Errflag: error flag returned

after the failure of the lock tag Function: Lock labels response.

Lock tag response frame

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x89	Flag	Errflag	0xxx
End of	f frame						
0x0D	0x0A						

Description: Lock operation is successful, the error flagErrflag to 0x00. Lock operation fails, Errflag prompt type of failure, Errflag of 1, indicating no label; Errflag 2, represents an access password is wrong; Errflag 3, represents the Lock operation failed.

Example: Lock success

command:C8 8C 00 0A 89 01 00 82 0D 0A

3.3.13. Kill label

Data: KP (kill password), MMB, MSA, MDL,

MData

Function: kill tag

kill command frame label

Header		Frame length		CMDTypes	data		
0xC8	0x8C	0x00	0xxx	0x8A	KP	KP	KP
					(MSB)		
	data						
KP	MMB	MSA	MSA	MDL	MDL	MData	MData
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)	
	data						
MData					MData	MData	0xxx
						(LSB)	
End of frame							
0x0D	0x0A						

Description:

KP:4KILL-byte password

MMB: Mask of the data area(0x00 for Reserve 0x01 for EPC, 0x02 represents the TID, 0x03 represents USR).

MSA: To mask the address.

MDL: Length mask. Mdata: To mask data.

When the label 0x00000000 value is KillPwd zone, the label ignores the kill command, kill command will not succeed

example: EPC District filtration, filter address EPC Zone 32bit, Filter length 96bit, Filtered data 0x00112233445566778899AABB, kill Password 0x760039AD

command: C8 8C 00 1D 8A 76 00 39 AD 01 00 20 00 60 00 11 22 33 44 55 66 77 88 99 AA BB 34 0D 0A

3.3.14. Kill label reply

Data: kill label success symbol flag: success: 0x01; failure: 0x00

Error flag Errflag: error flag label failed

to return after the kill Function: kill tag replies

kill tag response frame

Header		Frame length		Type CMD	data		BCCcode
0xC8	0x8C	0x00 0x0A		0x8B	Flag Errflag		0xxx
End of frame							
0x0D	0x0A						

Description: kill operation is successful, the error flagErrflag to 0x00. kill operation failed, suggesting ErrFlag type of failure, ErrFlag of 1, indicating no label; ErrFlag 3, showing the kill operation failed

example:kill success

command: C8 8C 00 0A 8B 01 00 80 0D 0A

3.3.15. Block Write Data

Data: AP (access code), MMB, MSA, MDL, MData, memory Bank, SA start address (word unit), needs to be written in the data length DL (words) of the data needs to be written in the Data

Function: Data Block Write tag to a specific length of a specific address.

Block Write command frame

Header		Frame length		CMDTypes	data				
0xC8	0x8C	0xxx	0xxx	0x93	AP	AP	AP		
					(MSB)				
	data								
AP	MMB	MSA	MSA	MDL	MDL	MData	MData		
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)			
data									
MData			•••		MData	MData	MB		
						(LSB)			
	data								
SA	SA	DL	DL	Data			Data		
(MSB)	(LSB)	(MSB)	(LSB)	(MSB)			(LSB)		
ВССсо	End of	frame							
0xxx	0x0D	0x0A							

Description:

AP:4Byte access password

MMB: Mask of the data area(0x00 for Reserve 0x01 for EPC, 0x02 represents the TID, 0x03 represents USR).

MSA: To mask the address.

MDL: Length mask. Mdata: To mask data.

MB: To write data area(0x00for Reserve 0x01 for EPC, 0x02 represents the TID, 0x03 represents USR).

SA: forToAddress write data area.

DL: Length of data to be written (Word units).

Data: To write data, the previous high.

Example: Label PC = 0x3000, EPC = 0xE2003411B802011383258566Write EPC Area 6

Words of data, Data = 0x00112233445566778899aabbStarting at address 2Access password0x74290fd8

command:C8 8C 00 2B93 74 29 0f d8 30 00 E2 00 34 11 02 83 00 02 00 В8 01 13 25 85 66 01 06 00 11 twenty two 33

44 55 66 77 88 99 AA BB 2D 0D 0A

3.3.16. Block Write response data

Data: Block Write data is successful logo flag: success: 0x01;

failure: 0x00

Error flag Errflag: error flag returned

after a failed operation.

Features: Block Write data response.

Block Write response frame data

Header		Frame length		CMDTypes	data		BCCcode
0xC8	C8 0x8C		0x0A	0x94	Flag	Errflag	0xxx
End of frame							
0x0D	0x0A						

Description: The operation is successful, the error flag Errflag to 0x00. Read data, the error flag Errflag

for 0x00. Blockwrite operation failed, suggesting ErrFlag type of failure, ErrFlag of 1, indicating no label;

Errflag 2, represents an access password is wrong; Errflag 3, that the implementation of Blockwrite command failed.

Example: Data write failure, the error flag is 0x01

command: C88C 00 0A 94 00 01 9F 0D 0A

3.3.17. Block Erase Data

Data: AP (access code), MMB, MSA, MDL, MData, memory Bank, SA start address (word units), DL erased required length (word units)

Function: Block Erase specific length to a specific address tag.

Block Erase command frame

Header		Frame length		CMDTypes	data			
0xC8	0x8C	0xxx	0xxx	0x95	AP	AP	AP	
					(MSB)			
data								
AP	MMB	MSA	MSA	MDL	MDL	MData	MData	
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)		
			da	ata				
MData			•••	•••	MData	MData	MB	
						(LSB)		
data				BCCcode	End of	f frame		
SA	SA	DL	DL	0xxx	0x0D	0x0A		
(MSB)	(LSB)	(MSB)	(LSB)					

Description:

AP:4Byte access password

MMB: Mask of the data area, 0x01 for EPC, 0x02 represents the TID, 0x03 represents USR.

MSA: To mask the address.

MDL: Length mask.
Mdata: To mask data.
MB: To write data area.
SA: forToAddress write data area.

DL: Length of data to be written (Word units).

Example: Label PC = 0x3000, EPC = 0xE2003411B802011383258566, Erase EPC tag

Area 6 Data word, the starting address is 2Access password 0x74290fd8 command:C8 8C 00 1F 95 74 29 0f d8 30 00 E2 00 34 11 B8 02 01 13 83 25 85 66 01 00 02 00 06 1F 0D 0A

3.3.18. Block Erase data response

Data: Block Erase data is successful logo flag: success: 0x01;

failure: 0x00

Error flag Errflag: error flag returned

after a failed operation.

Features: Block Erase data response.

Block Erase data response frame

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x96	Flag	Errflag	0xxx
End of	End of frame						
0x0D	0x0A						

Explanation: The operation was successful, an error flag Errflag to 0x00. Read data, the error flag Errflag to 0x00. Block Erase operation fails, the failure prompt type ErrFlag, ErrFlag of 1, indicating no label; ErrFlag is 2, represents an access password is wrong; ErrFlag 3, showing performs Block Erase operation failed.

Example: Data Erase Successful, the error flag is 0x00

command: C88C 00 0A 96 01 00 9D 0D 0A

3.3.19. Set up QT parameters

Data: AP (access code), MMB, MSA, MDL, MData, QTData

Function: Set the QT command parameters.

Set command parameters QT

Неа	Header Fr		length	CMDTypes		data		
0xC8	0x8C	0xxx	0xxx	0x97	AP	AP	AP	
					(MSB)			
			da	ata				
AP	MMB	MSA	MSA	MDL	MDL	MData	MData	
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)		
			da	ata				
MData					MData	MData	QTData	
						(LSB)		
BCCcode	BCCcode End of frame							
0xxx	0x0D	0x0A						

Note: Only support QT label command to respond to the command.

AP: In order to access the labelpassword.

MMB: To start filtering operationbank number, 0x01 represents EPC, 0x02 represents TID, 0x03 represents USR, other values invalid.

MSA: Starting address for the filtering operation, the unit isbit.

MDL: To filter the data length inbit, 0x00 indicates no filter.

Mdata: Start filtering data, in bytes, if MDLIt is not an integer multiple of bytes, the low complement 0.

QTData :QTData high 6bit are reserved, bit0 0 indicates no close control, bit0 to 1 to enable close control;

bit1 Enable Private Memory Map 0 indicates the label, bit1 1 indicates tab to enable Public Memory Map.

example: TID District filtration, filter address TID Zone 2bit, Filter length 13bit, Filtered data1110001000000' bAccess password 0x0000000Enable Private Memory Map, Enable close control.

command:C8 8C 00 14 97 00 00 00 00 02 00 02 00 0D E2 00 01 6D 0D 0A

3.3.20. Set up QT parameter response

Data: a byte.

Function: QT command parameter response.

QT parameter setting response frame

Header		Frame length		CMDTypes	data	BCCcode	End of			
0xC8	0x8C	0x00	0x09	0x98	OK: 1 Fail: 0	0xxx	0x0D			
End of										

Description: None.

0x0A

Example: Set succeeded.

command: C88C 00 09 98 01 90 0D 0A

3.3.21. Obtain QT parameters

Data: Byte 0

Function: Gets tag QT command parameters.

Get command parameter QT

Неа	Header Fr		Frame length		data			
0xC8	0x8C	0xxx	0xxx	0x99	AP	AP	AP	
					(MSB)			
	data							
AP	MMB	MSA	MSA	MDL	MDL	MData	MData	
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)		
			da	ata				
MData						MData	MData (LSB)	
BCCcode	BCCcode End of frame							
0xxx	0x0D	0x0A						

Description: Get tag QT command parameters. Only supports QT command tag to respond to the command.

example:TID District filtration, filter address TID Zone 2bit, Filter length 13bit, Filtered datall10001000000'bAccess password 0x00000000.

command: C8 8C 00 12 99 00 00 00 00 02 00 02 00 0D E2 00 64 0D 0A

3.3.22. Obtain QT parameter response

Data: two bytes.

Function: Get QT command parameter response.

QT parameters to obtain response frame

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0x0A	0x9A	OK: 1 Fail: 0	DByte0	0xxx
End of	End of frame						
0x0D	0x0A						

Description: DByteO high 6bit reserved bits, bitO close to 0 indicates no control, bitO is 1 enables close control; bit1 0 indicates tags enabled Private Memory Map, bit1 1 represents tags to enable Public Memory Map.

3.3.23. QTlabelRead

Data: AP (access code), MMB, MSA, MDL, MData, MB, SA, DL Function: QT read operation, read the label Private Memory Map data read operation is complete, regardless of success or failure of the operation, the label automatically return to the state before the QT memory map read.

Set command parameters QT

Неа	ader	Frame	Frame length						
0xC8	0x8C	0xxx	0xxx	0x9B	AP	AP	AP		
					(MSB)				
	data								
AP	MMB	MSA	MSA	MDL	MDL	MData	MData		
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)			
			da	ata					
MData			•••	MData	MData	QTData	MB		
					(LSB)				
	data			BCCcode	End of frame				
SA	SA	DL	DL	0xxx	0x0D	0x0A			
(MSB)	(LSB)	(MSB)	(LSB)						

Note: Only support QT label command to respond to the command.

AP: In order to access the labelpassword.

MMB: To start filtering operationbank number, 0x01 represents EPC, 0x02 represents TID, 0x03 represents USR, other values invalid.

MSA: Starting address for the filtering operation, the unit isbit.

MDL: To filter the data length inbit, 0x00 indicates no filter.

Mdata: Start filtering data, in bytes, if MDLIt is not an integer multiple of bytes, the low complement 0.

QTData:high7bit are reserved, bit0 0 indicates no close control, bit0 to 1 to enable close control.

MB :memory bank, the user needs to write data bank number

SA: Starting address for the data needs to be written, in units of word.

DL: Data length needs to be written in units of the word.

example:TID District filtration, filter address TID Zone 2bit, Filter length 13bit, Filtered data11100010000000' bRead EPC Area 6 Data word, the starting address is 2Access password 0x00000000, Close Read

command: C8 8C 00 19 9B 00 00 00 00 02 00 02 00 0D E2 00 01 01 00 02 00 06 69 0D 0A

3.3.24. QTlabelRead answer

Data: Flag: Flag read data is successful, success: 0x01; failure: 0x00

Errflag: error flag The error flag is returned after the failure of the read data.

DL: length of read dataThe unit is the wordRead data: Data

Features: QT tag read response.

QT tag read response frame

Header		Frame length		CMDTypes	data		
0xC8	0x8C	0xxx	0xxx	0x9C	Flag	Errflag	DL
							(MSB)
	data					End of frame	
DL	Data			Data	0xxx	0x0D	0x0A
(LSB)	(MSB)			(LSB)			

Description: Reads data Data read data is determined by the length of the command data, in addition, read data is fail, then no response frame data Data; read

data, the error flag Errflag to 0x00. Read operation fails, ErrFlag prompt type of failure, ErrFlag of 1, indicating no label; ErrFlag is 2, represents an access password is wrong; ErrFlag 3, showing operation failed.

Example: Successful read TID Area 3 Words of data:0x123456789abc command:C8 8C 00 12 9C 01 00 00 03 12 34 56 78 9A BC A2 0D 0A

3.3.25. QTlabelWrite

Data: AP (access code), MMB, MSA, MDL, MData, memory Bank, SA start address (word unit), needs to be written in the data length DL (words) of the data needs to be written in the Data

Function: QT write operation, data is written to a specific length of the label Private Memory Map, a specific address, after the write operation is complete, regardless of success or failure of the operation, the label automatically return to the state before the QT memory map read.

QT label write command frame

Неа	ader	Frame	length	CMDTypes		data				
0xC8	0x8C	0xxx	0xxx	0x9D	AP	AP	AP			
					(MSB)					
	data									
AP	MMB	MSA	MSA	MDL	MDL	MData	MData			
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)				
			da	ata						
MData	•••	•••	•••	MData	MData	QTData	MB			
			d	ata						
SA	SA	DL	DL	Data			Data			
(MSB)	(LSB)	(MSB)	(LSB)	(MSB)			(LSB)			
BCCcode	BCCcode End of frame				•					
0xxx	0x0D	0x0A								

Note: Only support QT label command to respond to the command.

AP: In order to access the labelpassword.

MMB: To start filtering operationbank number, 0x01 represents EPC, 0x02 represents TID, 0x03 represents USR, other values invalid.

MSA: Starting address for the filtering operation, the unit isbit.

MDL: To filter the data length inbit, 0x00 indicates no filter.

Mdata: Start filtering data, in bytes, ifMDLIt is not an integer multiple of bytes, the low complement0.

QTData:high7bit are reserved, bit0 0 indicates no close control, bit0 to 1 to enable close control.

MB :memory bank, the user needs to write data bank number

SA: Starting address for the data needs to be written, in units of word.

DL: Data length needs to be written in units of the word.

Data: To write data, the previous high.

example:TID District filtration, filter address TID Zone Obit, Filter length 96bit, Filtered data0xE2003414013301001038D2B5Write EPC Area 6 Words of data, Data = 0x00112233

445566778899aabbStarting at address 2Access password 0x00000000, Closewrite operation

command: C8 8C 00 2F 9D 00 00 00 00 02 00 00 00 60 E2 00 34 14 01 33 01 00 10 38 D2 B5 01 01 00 02 00 06 00 11 22 33 44 55 66 77 88 99 AA BB 6A 0D 0A

3.3.26. QTWrite transponder tag

Data: Data is successful write flag flag: success: 0x01; failure: 0x00

Error Flag Errflag: write error flag

return data after a failure. Function: write data response.

QT label write response frame

Header		Frame length		CMDTypes	data		BCCcode				
0xC8	0x8C	0x00	0x0A	0x9E	Flag	Errflag	0xxx				
End of	f frame										
0x0D	0x0A										

Description: write data, the error flag Errflag to 0x00. The write operation failed, Errflag prompt type of failure, Errflag of 1, indicating no label; Errflag 2, represents an access password is wrong; Errflag 3, represents the Write operation failed.

Example: Data write failure, the error flag is 0x03 command: C8 8C 00 0A 9E 00 03 97 0D 0A

3.3.27. Block Permalock operation

Data: AP (access code), MMB, MSA, MDL, MData, ReadLock, MemBank, BlockPtr, BlockRange, Mask.

Function: BlockPermalock operation.

Block Permalock operation command frame

Неа	ader	Frame	length	CMDTypes		data		
0xC8	0x8C	0xxx	0xxx	0x9F	AP	AP	AP	
					(MSB)			
			da	ata				
AP	MMB	MSA	MSA	MDL	MDL	MData	MData	
(LSB)		(MSB)	(LSB)	(MSB)	(LSB)	(MSB)		
data								
MData	•••	•••	•••	MData	MData	ReadLo	MB	
					(LSB)	ck		
			da	ata				
BlockPt	BlockPt	BlockRa	BlockRa	Mask	•••	•••	Mask	
r (MSB)	r (LSB)	nge(MS	nge(LSB	(MSB)			(LSB)	
		B))					
BCCcode	End of	f frame						
0xxx	0x0D	0x0A						

Note: Only support Label Block Permalock order to respond to the command.

AP: Labelaccesspassword.

1.

MMB: Start the filter operationbank No.,0x01forEPC0x02For the TID, 0x03As USER area,No other values.

MSA: Start address to start the filtering operation, the unit is bit.

MDL: Filtering operation starts filtering data length, inbit, 0x00 indicates no filter.

Mdata: Start filtering data, in bytes, if MDLIt is not an integer multiple of bytes, the low complement 0.

ReadLock: High 7bit reserved bits, bit0 indicates 0 Read, bit0 indicates Permalock

MB: formemory bank, To operate the data area.

BlockPtr:Block start address is, in units of 16 blocks, A block of 8 bytes. BlockRange:block range, the unit block of 16

Mask: Mask data block, the previous high, whether the two bytes corresponding to 16 16-bit block selection.

example:TID District filtration, filter address TID Zone Obit, Filter length 96bit, Filtered dataOxE2003414013301001038D2B5, readlock = 0, MB = 3, BlockPtr = 0, BlockRange = 1, Access password 0x00000000

command:C8 8C 00 twenty three 9F 00 00 00 00 02 00 00 00 00 60 E2

33 01 00 10 00 34 14 01 38 D2 В5 00 03 00 00 00 01 62 OD OA

3.3.28. Block Permalock operating answer

Data: Flag NO symbol of success, success: 0x01; failure: 0x00; ErrflagFor the error flag, Error flag returned after a failed operation.

Features: Block Permalock operating answer.

Block Permalock operation response frame

Header		Frame length		CMDTypes	data		BCCcode
0xC8	0x8C	0x00	0xxx	0xA0	Flag	Errflag	0xxx
End of	End of frame						
0x0D 0x0A							

Description: BlockPermalock successful, the error flag Errflag to 0x00. Block Permalock failed, suggesting ErrFlag type of failure, ErrFlag of 1, indicating no label; ErrFlag is 2, represents an access password is wrong; ErrFlag 3, showing Block Permalock operation failed.

in case Block Permalock readlock command parameter is 0, the corresponding data response after ErrFlag, the data word length BlockRange.

example:Block Permalock success, Readlock = 0, BlockRange = 1The data
is 0xF000

command: C8 8C 00 0C A0 01 00 F0 00 5D 0D 0A