Definitions and Theorems

1.1 **Combinatorial Analysis**

Basic Principle of Counting: A: m outcomes, B: n outcomes, $\Rightarrow A \cap B$: mn outcomes.

• **Generalized**: A_i : i outcomes $\Rightarrow \prod n_i$ outcomes.

Permutations n distinct objs $\Rightarrow n!$ permutations.

• Generalized: $n = \sum n_i$, n_i distinct $\Rightarrow n!/(\prod n_i!)$ permutations.

Combinations n distinct choose $r \Rightarrow \binom{n}{r} = n!/r!(n-r)!$. • r < 0 or $r > n \Rightarrow \binom{n}{r} = 0$; • $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$. Binomial Thm $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$. • $\sum_{k=0}^n \binom{n}{k} = 2^n$; • $\sum_{k=0}^n (-1)^k \binom{n}{k} = 0$, $n \ge 1$; • $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0, n \ge 1;$

 $\bullet \stackrel{\stackrel{k=0}{(n)}}{\stackrel{(n)}{(n)}} + \binom{n}{2} + \cdots = \binom{n}{1} + \binom{n}{3} + \cdots$ **Multinomial Coef** $n = \sum_{i=1}^{n} n_i$, n_i distinct, choose r groups $\Rightarrow \binom{n}{n_1, n_2, \cdots, n_r} = n! / (\prod \overline{n_i}!).$

 $\bullet \left(\sum_{i=1}^r x_i\right) = \sum_{n_1+n_2+\dots+n_r=n} \binom{n}{n_1,n_2,\dots,n_r} \prod_{i=1}^r x_i^{n_i}$ Integer Sols Solve $x_1+x_2+\dots+x_r=n$, $\left(x_i>0,\,\forall i\right)$

• $\binom{n-1}{r-1}$ positive int sols; • $\binom{n+r-1}{r-1}$ non-negative int sols.

1.2 Axioms of Probability

Set Ops Laws:

- Commutative EF = FE, $E \cup F = F \cup E$;
- Associative (EF)G = E(FG), $(E \cup F) \cup G = E \cup (F \cup G)$;
- Distributive $E(F \cup G) = EF \cup EG$, $E \cap (F \cup G) = (E \cap F) \cup G$
- DeMorgan $(\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c$, $(\bigcap_{i=1}^n E_i)^c = \bigcup_{i=1}^n E_i^c$. **Axioms of Probability**
- $0 \le P(E) \le 1$;
- $S := \mathsf{sample} \; \mathsf{space} \Rightarrow P(S) = 1;$
- E_1, E_2, \cdots disjoint $\Rightarrow P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$.

Properties of Probability

- $P(\emptyset) = 0;$ • $P(A) \leq P(B)$ if $A \subseteq B$; $P(A \cup B) = P(A) + P(B)$ • $P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i);$
- $-P(A \cap B)$ • $P(E^c) = 1 - P(E)$

Inclusion Exclusion

$$P(E_1 \cup E_2 \cup \cdots \cup E_n)$$

$$= \sum_{i=1}^{n} P(E_i) - \sum_{i \le i_1 < i_2 \le n} P(E_{i_1} \cap E_{i_2}) + \dots + (-1)^{r+1}$$

 $+ (-1)^{n-1} P(E_1 \cap E_2 \cap \cdots \cap E_n)$

 \nearrow , \searrow Sequences $\{E_n\}$ is increasing if $E_1 \subseteq E_2 \subseteq \cdots$, decreasing if $E_1 \supseteq E_2 \supseteq \cdots$

• $\{E_n\} \nearrow \Rightarrow \lim_{n \to \infty} E_n = \bigcup_{i=1}^{\infty} E_i;$ • $\{E_n\} \searrow \Rightarrow \lim_{n \to \infty} E_n = \bigcap_{i=1}^{\infty} E_i.$

1.3 Cond Probability and Independence

Conditional Probability B happens given A happens:

 $P(B|A) = P(B \cap A)/P(A).$ • $P(AB) := P(A \cap B) = P(A|B)P(B) = P(B|A)P(A);$

• $P(A_1 \cdots A_2) = P(A_1)P(A_2|A_1) \cdots P(A_n|A_1A_2 \cdots A_{n-1}).$ **Bayes Formula**: $P(B) = P(B|A)P(A) + P(B|A^c)P(A^c)$.

• Generalized: A_i 's partition $S \Rightarrow P(B) = \sum_{i=1}^n P(B|A_i)P(A_i)$.

Partition A_i partition S iff

• Exclusive: $A_i \cap A_j = \emptyset$;

• Exhaustive: $\widetilde{\bigcup} A_i = S$.

Bayes' 2^{nd} Formula: $A_i > 0$'s partition $S \Rightarrow$

$$P(A_j|B) = P(B|A_j)P(A_j) \left/ \left(\sum_{i=1}^n P(B|A_i)P(A_i) \right) \right.$$

Odds of $A := P(A)/P(A^c) = P(A)/[1 - P(A)]$ **Independent** A and B are **independent** if P(AB) =P(A)P(B), **dependent** otherwise.

• A, B independent $\Rightarrow A$ and B^c , A^c and B, A^c and B^c independent

ullet A independent of B, C DOES NOT IMPLY A independent of

Independence of 3 events: satisfy the ALL 4 conditions:

- P(ABC) = P(A)P(B)P(C); P(AC) = P(A)P(C);
- P(BC) = P(B)P(C). • P(AB) = P(A)P(B);
- A, B, C independent $\Rightarrow A$ independent of any events formed by B and C.

Algebra of Cond Probability: let P(A) > 0, then

- $\forall B \Rightarrow 0 \le P(B|A) \le 1$; • P(S|A) = 1;
- B_i 's mut exclusive $\Rightarrow P(\bigcup B_i|A) = \sum P(B_i|A)$.

1.4 Random Variables

Discrete: finite or countably infinite

Probability Mass Function (p.m.f.) $p_X(x)$:

$$p_X(x) = \begin{cases} P(X = x), & \text{if } x = x_1, x_2, \cdots \\ 0, & \text{otherwise.} \end{cases}$$

Note that $\sum_{i=1}^{\infty} p_X(x_i) = 1$.

Cumulative Distribution Function (c.d.f.) $F_X(x)$: $F_X(x) = P(X \le x)$

Expectation: X discrete with p.m.f. $p_X \Rightarrow$ expectation $E(X) := \sum x p_X(x).$

Tail Sum Formula:
$$X \in \mathbb{Z}^+ \stackrel{x}{\Rightarrow}$$

$$E(X) = \sum_{k=1}^{\infty} P(X \ge k) = \sum_{k=0}^{\infty} P(X > k).$$
 Expectation of a Function: X discrete with p_X , g :
$$E[g(X)] = \sum_i g(x_i) p_X(x_i) = \sum_x g(x) p_X(x).$$

E[aX + b] = aE(X) + b.

Variance Let $\mu := E(X)$, i.e. mean of X, $Var(X) = E[(X - \mu)^2].$

Zero Variance If Var(X) = 0, then the random vari- **Convolution** X, Y continuous and independent, hence able X is a constant. Standard Deviation σ_X or SD(X): $f_{X,Y}(x,y) = f_X(x)f_Y(y) \Rightarrow$ convolution of f_X , f_Y : $\sigma_X := \sqrt{\operatorname{Var}(X)}.$

Scaling and shifting:

- $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X);$ $\operatorname{SD}(aX + b) = |a| \operatorname{SD}(X).$ Properties of d.f.:
- F_X non-decreasing $\Rightarrow F_X(a) \leq F_X(b)$;
- $\lim_{b\to\infty} F_X(b) = 1$, and $\lim_{b\to-\infty} F_X(b) = 0$;
- F_X has **left limits**, i.e. $\lim_{x\to 0^+} F_X(x)$ exists for all $b\in\mathbb{R}$;
- F_X is right continuous, i.e. $\forall b \in \mathbb{R}, \ \lim_{x \to b^+} F_X(x) = F_X(b).$

Useful Calculations:

- 1. *P* from **d.f.**:
 - $P(a < X \le b) = F_X(b) F_X(a)$;
- $\bullet P(X = a) = F_X(a) F_X(a^-), \text{ where } F_X(a^-) =$
- $P(a \le X \le b) = P(X = a) + P(a < X \le b)$
 - $= F_X(b) F_X(a^-).$
- 2. P from PMF: $P(A) = \sum_{x \in A} p_X(x)$; 3. **p.m.f.** from **d.f.**: $p_X(x) = F_X(x) F_X(x^-)$;
- 4. **d.f.** from **p.m.f.**: $F_X(x) = \sum_{y \le x} p_X(y)$

1.5 Continuous Random Variables

Continuous Variable & p.d.f X is **continuous** if \exists nonnegative f_X s.t. $\forall x \in \mathbb{R}$, $P(a < X \leq b) = \int_a^b f_X(x) dx$, for $-\infty < a < b < +\infty$.

- $F_X(x) = \int_{-\infty}^x f_X(t) dt;$ $f_X(x) = \frac{\partial d}{\partial dx} F_X(x).$ P(X = x) = 0; d.f. $F_X(x)$ is continuous. $\bullet \ \forall a,b \in (-\infty,\infty), \ P(a \leq X \leq b) = P(a < X \leq b) =$

 $P(a \le X < b) = P(a < X < b).$ Determining constant: $\int_{-\infty}^{\infty} f_X(x) \ \mathrm{d}x = 1.$

Expectation: $E(X) = \int_{-\infty}^{\infty} x f_X(x) \ dx$,.

Variance: $Var(X) = \int_{-\infty}^{\infty} (x - E(X))^2 f_X(x) dx$.

Functions of Expectations:

- $E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$ $Var(X) = E(X^2) [E(X)]^2$
- E(aX + b) = aE(X) + b

Tail Sum Formula given X nonnegative \Rightarrow

$$E(X) = \int_0^\infty P(X > x) \, \mathrm{d}x.$$

Y monotonic, differentiable on X Let g(x) be strictly **monotonic**, **differentiable** function of X. \Rightarrow The **p.d.f.** of

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|, & \text{if } y \in g(\mathcal{R}_X) \\ 0, & \text{otherwise.} \end{cases}$$

where g^{-1} is the inverse function of g.

1.6 Jointly Distributed Random Variables

Joint d.f.: X, Y defined on **SAME** sample space S, **joint distribution function** of X and Y, denoted by $F_{XY}(x,y)$, is

 $F_{XY}(x,y) = P(X \le x, Y \le y), \text{ for } x, y \in \mathbb{R},$ where $\{X \leq x, Y \leq y\} := \{X \leq x\} \cap \{Y \leq y\}$. Marginal **Distribution Function**: (of X and Y)

 $F_X(x) = P(X \le x) = P(X \le x, Y < \infty) = F_{XY}(x, \infty)$ $F_Y(y) = P(Y \le y) = P(X < \infty, Y \le y) = F_{XY}(\infty, y)$

Useful Calculations • $P(X > a, Y > b) = 1 - F_X(a) - F_Y(b) + F_{XY}(a, b);$ $P(a_1 < X \le a_2, b_1 < Y \le b_2)$

 $=F_{XY}(a_2,b_2)-F_{XY}(a_1,b_2)-F_{XY}(a_2,b_1)+F_{XY}(a_1,b_1).$ **Joint p.m.f.** $p_{X,Y}(x,y) = P(X=x,Y=y)$, for $x,y \in \mathbb{R}$. marginal p.m.f (of X and Y respectively)

• $p_Y(y) = \sum_x p_{X,Y}(x,y)$. $\bullet p_X(x) = \sum_y p_{X,Y}(x,y);$ Some useful formulas

- $P(a_q < X \le a_2, b_1 < Y \le b_2) = \sum_{a_1 < x \le a_2} \sum_{b_1 < y \le b_2} p_{X,Y}(x, y);$
- $F_{X,Y}(a,b) = P(X \le a, Y \le b) = \sum_{x \le a} \sum_{y \le b} p_{(X,Y)}(x,y);$
- $P(X > a, Y > b) = \sum_{x>a} \sum_{y>b} p_{(X,Y)}(\bar{x}, y).$

Jointly Continuous Random Variables X, Y are **JCRM** if $\forall x,y \in \mathbb{R}, \exists \text{ nonnegative joint p.m.f. } f_{X,Y}(x,y) \text{ of } X \text{ and }$ Y, s.t. $\forall C \subset \mathbb{R}^2$,

$$P((X,Y) \in C) := \int \int_{(x,y)\in C} f_{X,Y}(x,y) \,\mathrm{d}x \,\mathrm{d}y.$$

Marginal p.d.f. of X and Y

- $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$; $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$. Some useful formulas
- Let $A, B \subset \mathbb{R}$, take $C = A \times B$:

$$P(X \in A, Y \in B) = \int_A \int_B f_{X,Y}(x, y) \, \mathrm{d}y \, \mathrm{d}x.$$

• Let $a_1, a_2, b_1, b_2 \in \mathbb{R}$ where $a_1 < a_2$ and $b_1 < b_2$:

$$P(a_1 < X \le a_2, b_1 < Y \le b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) \, dy dx.$$

• Let $a, b \in \mathbb{R}$:

$$F_{X,Y}(a,b) = P(X \le a, Y \le b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x,y) \, \mathrm{d}y \mathrm{d}x.$$

• $f_{X,Y}(x,y) \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$.

Independent X, Y are independent if, for any $A, B \subset \mathbb{R}$, $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$, or equivalently

 $F_{X,Y}(x,y) = F_X(x)F_Y(y)$, or equivalently iff $(\forall x, y)[(\exists g, h : \mathbb{R} \to \mathbb{R}) \Rightarrow f_{X,Y}(x, y) = g(x)h(y)].$ $F_{X+Y}(a) = P(X+Y \le a)$

$$= \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) \, dy$$
$$= \int_{-\infty}^{\infty} F_Y(a-x) f_X(x) \, dx$$

 $=\int_{-\infty}^{\infty}F_Y(a-x)f_X(x)\;\mathrm{d}x$ Conditional P.M/D.F. of X given Y=y:
• D: $p_{X|Y}(x,y)=\frac{p_{X,Y}(x,y)}{p_Y(y)};$ • C: $f_{X|Y}(x|y)=\frac{f_{X,Y}(x,y)}{f_Y(y)},$ for all values y such that $f_Y(y)>0$ $(p_Y(y)>0).$ Conditional D.F. of X given Y=w. **Conditional D.F.** of X given Y = y:

• **D**: $F_{X|Y}(x|y) = P(X \le x|Y = y) = \sum p_{X|Y}(a|y)$.

• C: $F_{(X|Y)}(x|y) = P(X \le x|Y = y) = \int_{-\infty}^{x} f_{X|Y}(t|y) dt$. Independent \Rightarrow Cond = Marginal p.m.f. X, Y independent **dent** \Rightarrow the following two are **SAME**:

• conditional p.m.f. of X given Y = y;

• marginal p.m.f. of X for every Y such that $p_Y(y) > 0$.

- Joint p.d.f. of functions Following conditions are satisfied: 1. Let X and Y be jointly continuously distribtued random variables with known joint density function.
- 2. Let U and V be given functions of X and Y in the form

$$U = g(X, Y), \quad V = h(X, Y).$$

And we can **uniquely** solvve for X and Y in terms of U and V, i.e. say x = a(u, v) and y = b(u, v).

3. The functions g and h have continuous partial derivatives at all points (x, y) and

$$J(x,y) := \begin{vmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\ \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} \end{vmatrix} = \frac{\partial g}{\partial x} \frac{\partial h}{\partial y} - \frac{\partial g}{\partial y} \frac{\partial h}{\partial x} \neq 0$$

Then, the joint probability density function of U and V is given by

 $f_{U,V}(u,v) = f_{X,Y}(x,y)|J(x,y)|^{-1}$ where x = a(u, v) and y = b(u, v), (check point 2).

dom variables X_1, X_2, \cdots, X_n given, want to compute the joint density function of Y_1, Y_2, \cdots, Y_n where Y_i $g_i(X_1, X_2, \cdots, X_n)$. Assume that the function g_i have **con**tinuous partial derivatives and the Jacobian determinant $J(x_1,x_2,\cdots,x_n)\neq 0$ at all points (x_1,x_2,\cdots,x_n) , where

$$J(x_1, x_2, \cdots, x_n) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \cdots & \frac{\partial g_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \frac{\partial g_n}{\partial x_2} & \cdots & \frac{\partial g_n}{\partial x_n} \end{vmatrix}$$

Further, we suppose that the equations $y_i=g_i(x_1,x_2,\cdots,x_n)$ have a **unique** solution for x_1, x_2, \dots, x_n , say $x_i =$ $h_i(y_1,y_2,\cdots,y_n)$. Then, the **joint density function** of Y_1, Y_2, \cdots, Y_n is given by.

$$f_{Y_1,Y_2,\cdots,Y_n}(y_1,y_2,\cdots,y_n)$$

$$= f_{X_1, X_2, \cdots, X_n}(x_1, x_2, \cdots, x_n) |J(x_1, x_2, \cdots, x_n)|^{-1}$$
here $x_1 = h_1(x_1, x_2, \cdots, x_n)$

where $x_i = h_i(y_1, y_2, \cdots, y_n)$ **Joint of 3**: $F_{X,Y,Z}(x,y,z) = P(X \le x, Y \le y, Z \le z)$.

- **Equivalent Cond for Joint of 3:**
- Random variables X, Y, Z are **independent**. \bullet For all $x,y,z\in\mathbb{R}$, we have $f_{X,Y,Z}(x,y,z)=f_X(x)f_Y(y)f_Z(z).$
- For all $x, y, z \in \mathbb{R}$, we have $F_{X,Y,Z}(x,y,z) = F_X(x)F_Y(y)F_Z(z)$. **Independence** Random variables X, Y, and Z are independent if and only if there exist functions $g_1,g_2,g_3:\mathbb{R} \to \mathbb{R}$

such that for all $x, y, z \in \mathbb{R}$, we have

$f_{X,Y,Z}(x,y,z) = g_1(x)g_2(y)g_3(z).$ 1.7 Properties of Expectation

- **Expectation of Func of Joint:**
- **D**: $E[g(X,Y)] = \sum_{y} \sum_{x} g(x,y) p_{X,Y}(x,y);$ • C: $E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy.$

Properties:

- If $a \le X \le b$, then $a \le E(X) \le b$.
- If $g(x,y) \ge 0$ whenever $p_{X,Y}(x,y) > 0$, then $E[g(X,Y)] \ge 0$.

• E[g(X,Y) + h(X,Y)] = E[g(X,Y)] + E[h(X,Y)].

• E[g(X) + h(Y)] = E[g(X)] + E[h(Y)].ullet Monotone property: if jointly distributed random variables Xand Y satisfy $X \leq Y$, then $E[X] \leq E[Y]$.

• Special case: mean of sum is sum of means: E[X+Y] =E[X] + E[Y].

Covariance: let $\mu_X = E(X)$ and $\mu_Y = E(Y)$, then $Cov(X, Y) := E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y).$

Properties of Covariance:

- $Cov(X,Y) \neq 0 \Rightarrow X$ and Y are **correlated**;
- $Cov(X,Y) = 0 \Rightarrow X$ and Y are uncorrelated.
- Var(X) = Cov(X, X)
- Cov(X, Y) = Cov(Y, X)
- Cov $\left(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \operatorname{Cov}\left(X_i, Y_j\right).$ Product of Independent: If X and Y are independent, then

for any functions $g, h : \mathbb{R} \to \mathbb{R}$, we have E[g(X)h(Y)] = E[g(X)]E[h(Y)].

Covariance of Independent If X and Y are independent,

then Cov(X, Y) = 0.

Variance of a Sum

$$\operatorname{Var}\left(\sum_{k=1}^{n}X_{k}\right) = \sum_{k=1}^{n}\operatorname{Var}\left(X_{k}\right) + 2\sum_{1 \leq i < j \leq n}\operatorname{Cov}\left(X_{i}, X_{j}\right)$$
When $X_{1}, X_{2}, \ldots, X_{n}$ are **independent**, we have

$$\operatorname{Var}\left(\sum_{k=1}^{n}X_{k}\right)=\sum_{k=1}^{n}\operatorname{Var}\left(X_{k}\right).$$
 Correlation Coefficient:
$$\rho_{X,Y}=\frac{\operatorname{Cov}\left(X,Y\right)}{\sqrt{\operatorname{Var}\left(X\right)\operatorname{Var}\left(Y\right)}}$$

(Sometimes denoted by Corr)

• $-1 \le \rho_{X,Y} \le 1$; • $\rho(X,Y) = \pm 1 \Rightarrow y = ax + b$.

Conditional Expectation:

- **D**: $E[X \mid Y = y] = \sum x \cdot p_{X|Y}(x \mid y)$

• C: $E\left[X\mid Y=y\right]=\int_{-\infty}^{\infty}x\cdot f_{X\mid Y}\left(x\mid y\right)\,\mathrm{d}x.$ Conditional Expectation of a Function:

 $\begin{array}{l} \bullet \ \mathbf{D} \colon E[g(X)|Y=y] = \sum_x g(x) p_{X|Y}(x|y); \\ \bullet \ \mathbf{C} \colon E[g(X)|Y=y] = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) \, \mathrm{d}x. \end{array}$

Therefore,
$$E\left[\sum\limits_{k=1}^{n}X_{k}|Y=y\right]=\sum\limits_{k=1}^{n}E[X_{k}|Y=y].$$
 Law of Total Variance:

 $Var(X) = E[Var(X \mid Y)] + Var(E[X \mid Y]).$

Moment Generating Function (MGF):

• **D**: $M_X(t) := E[e^{tX}] = \sum_x e^{tx} p_X(x);$ • **C**: $M_X(t) := E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx.$

Multiplicative Property of MGF X, Y are independent: $M_{X+Y}(t) = M_X(t)M_Y(t).$

Uniqueness Property of MGF Suppose that there exists an h < 0 such that $M_X(t) = M_Y(t), \quad \forall t \in (-h,h).$ Then X and Y have the same distribution, i.e. $F_X = F_Y$ and $f_X = f_Y$.

Joint Moment Generating Function:

$$M_{X_1,\cdots,X_n}(t_1,\cdots,t_n)=E\left[\exp(t_1X_1+\cdots+t_nX_n)
ight].$$
 Recover Individual MGF from Joint:

$$M_{X_i}(t_i) = M_{X_1, \dots, X_n}(0, \dots, t_i, \dots, 0).$$

Independence of Mean and Variance from Normal Sam**ple** Let X_1, X_2, \dots, X_n be independent and identically distributed normal random variables with mean μ and variance σ^2 . Then the sample mean \overline{X} and the sample variance S^2 are independent, and $\overline{X} \sim N\left(\mu, \sigma^2/n\right)$ and $(n-1)S^2/\sigma^2 \sim$ $\chi^2(n-1)$.

1.8 Limit Theorems

Markov's Inequality Let X be a nonnegative random variable. For a > 0, we have

$$P(X \ge a) \le \frac{E[X]}{a}$$
.

 $P(X \geq a) \leq \frac{E[X]}{a}.$ Chebyshev's Inequality Let X be a random variable with mean μ and variance σ^2 . For a > 0, we have

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

 $P(|X-\mu| \geq a) \leq \frac{\sigma^2}{a^2}.$ The Weak Law of Large Numbers Let X_1, X_2, \cdots be a sequence of independent and identically distributed random variables with common mean μ . Then, for any $\epsilon > 0$, we have

$$\lim_{n \to \infty} P\left(\left| \frac{X_1 + X_2 + \dots + X_n}{n} - \mu \right| \ge \epsilon \right) = 0.$$

Central Limit theorem Let X_1, X_2, \cdots be a sequence of independently and identically distributed random variables, each having mean μ and variance σ^2 . Then the distribution

$$\frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

tends to the standard norm as $n \to \infty$. That is $\lim_{n \to \infty} P\left(\frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}}\right)$

$$= \frac{1}{\sqrt{2\pi}} \int_{x}^{-\infty} \exp(-t^2/2) \, \mathrm{d}t$$

The Strong Law of Large Numbers Let X_1, X_2, \cdots be a sequence of independent and identically distributed random variables with common mean μ . Then, with probability 1, we **distribution** on the interval (a,b) if its p.d.f. is given by have

$$\lim_{n \to \infty} \frac{X_1 + X_2 + \dots + X_n}{n} = \mu.$$

 $\lim_{n\to\infty}\frac{X_1+X_2+\cdots+X_n}{n}=\mu.$ One-sided Checbychev's Inequality Let X be a random variable with mean 0 and finite variance σ^2 . Then, for a > 0, we

$$P(X \ge a) \le \frac{\sigma^2}{\sigma^2 + a^2}$$

Jensen's Inequality If g(x) is a **convex** function, then $g(E[X]) \le E[g(X)]$

provided that expectations exist and are finite.

Convex Functions A function is convex if either of the following equivalent conditions hold:

1. for all $0 \le p \le 1$ and for all $x_1, x_2 \in R_X$,

$$g(px_1 + (1-p)x_2) \le pg(x_1) + (1-p)g(x_2).$$

2. differentiable function: convex of interval if and only if

$$g(x) \ge g(y) + g'(y)(x - y)$$

for all x, y in the interval.

3. A twice differentiable function is convex if and only if its second derivative is nonnegative.

2 Distributions

2.1 **Bernoulli** Be (p)

$$X = \begin{cases} 1, & \text{if it is a success;} \\ 0 & \text{if it is a failure.} \end{cases}$$

• P(X = 1) = p; • E(X) = p; • P(X=0) = 1 - p; • Var(X) = p(1-p).

2.2 Binomial Bin(n, p)

X as number of successes in n Bernoulli (p) trials.

• $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$;

• E(X) = np; • Var(X) = np(1-p);

Sum of Binomial (same prob) $X \sim \operatorname{Bin}(n,p)$, $Y \sim$ Bin (m, p), where X, Y are independent. **p.m.f.** of X + Y:

 $P(X + Y = k) = {n+m \choose k} p^k (1-p)^{n+m-k}$

Normal Approximation: De Moivre-Laplace Theorem: for n satisfying n satisfying $npq \ge 10$:

$$\operatorname{Bin}(n,p) \approx \operatorname{N}(np,npq)$$
.

Equivalently, $\frac{X-np}{\sqrt{npq}} \approx Z$ where $Z \sim \mathrm{N}\left(0,1\right)$.

Continuity Correction (Normal) If $X \sim \text{Bin}(n, p)$, then P(X = k) = P(k - 0.5 < X < k + 0.5)

$$P(X \ge k) = P(X \ge k - 0.5)$$

$$P(X \le k) = P(X \le k + 0.5)$$

Poisson Approximation to Binomial Works when n is large and p is small. As a working rule, p < 0.1 and set $\lambda = np$.

2.3 Geometric Geom (p)

X as number of trials until the first success in a sequence of independent Bernoulli(p) trials.

 $\bullet P(X=k) = pq^{k-1};$

• $E(X) = \frac{1-p}{p}$; • $Var(X) = \frac{1-p}{p^2}$; where $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1}e^{-x}dx$.

• Alternative Geometric Distribution: Let X' be the number of failures in the Bernoulli (p) trials in order to obtain the first success. Here, X = X' + 1.

• $P(X' = k) = pq^k$; • $Var(X') = \frac{1-p}{p^2}$; • $Var(X') = \frac{1-p}{p^2}$; • $Var(X') = \frac{1-p}{p^2}$; • $Var(X) = \frac{\alpha}{\lambda}$; • $Var(X) = \frac{\alpha}{\lambda^2}$.

to be **number of** Bernoulli (p) **trials** required to obtain r**successes**. For $k \geq r$, we have:

• $P(X = k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r};$

• $E(X) = \frac{r}{p}$; • $Var(X) = \frac{r(1-p)}{p^2}$;

Remark: Geom (p) = NB(1, p).

2.4 Poisson Poisson (λ)

Poisson: $P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$, for $k = 0, 1, 2 \cdots$.

• $\operatorname{Var}(X) = \lambda$.

Sum of Possion If $X \equiv \operatorname{Poisson}(\lambda)$, $Y \sim \operatorname{Poisson}(\mu)$, and X and Y are **independent**, then the **p.m.f.** of X + Y:

$$P(X + Y = n) = \sum_{k=0}^{n} P(X = k, Y = n - k)$$
$$= \frac{\exp[-(\lambda + \mu)](\lambda + \mu)^{n}}{n!}$$

 $= \frac{n!}{n!}$ The sum of two independent Poisson random variables is **still** Poisson, the mean is the sum of the means.

2.5 Hypergeometric Hypergeom (N, m, n)

$$P(X = x) = \frac{\binom{m}{x} \binom{N-m}{n-x}}{\binom{N}{x}}$$

for $x = 0, 1, \dots, \min(m, n)$.

for
$$x=0,1,\cdots,\min(m,n)$$
.
• $\operatorname{E}(X)=\frac{nm}{N}$;
• $\operatorname{Var}(X)=\frac{nm}{N}\left[\frac{(n-1)(m-1)}{N-1}+1-\frac{nm}{N}\right]$
Example: Suppose that we have N balls, of

Example: Suppose that we have N balls, of which m are red and N-m are blue. We choose n of these balls, **without replacement**, and define X to be the number of red balls chosen. Then X is a **hypergeometric** random variable, with $P(X = x) = {m \choose x} {N-m \choose n-x} / {N \choose n}$

2.6 Uniform Distribution

A continuous random variable X is said to have a $\mathbf{uniform}$

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{otherwise.} \end{cases}$$

$$F_X(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x < b \\ 1, & b \le x. \end{cases}$$

We have:

vve nave:
$$E(X) = \frac{a+b}{2}; \qquad \mathbf{Var}(X) = \frac{(b-a)^2}{12}.$$
 2.7 Normal Distribution $N(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2},$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2},$$
 Standard Normal: $f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}.$ If $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X-\mu}{\sigma} \sim N(0,1)$, and
$$P(a < Y \le b) = P\left(\frac{a-\mu}{\sigma} < Z \le \frac{b-\mu}{\sigma}\right)$$

$$= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right).$$
 Properties of Normal Distribution
$$\bullet P(Z \ge 0) = P(Z \le 0) = \frac{1}{2}; \quad \bullet -Z \sim N(0,1); \\ \bullet P(Z \le x) = 1 - P(Z > x) \text{ for } -\infty < x < \infty; \\ \bullet P(Z \le -x) = P(Z \ge x), \text{ then } X := (Y-\mu)/\sigma \sim N(0,1);$$

• if $X \sim N(0,1)$, then $Y := aX + b \sim N(b,a^2)$

Expectation and Variance

- if $Y \sim N(\mu, \sigma^2)$, then $E(Y) = \mu$ and $Var(Y) = \sigma^2$;
- if $Z \sim N(0,1)$, then E(Z) = 0 and Var(Z) = 1.

Sum of Normal If X_i , $i = 1, \dots, n$ are independent random variables that are normally distributed with respective parameters μ_i , σ_i^2 , $i=1,\cdots,n$ then

$$\sum_{i=1}^{n} X_i \sim N\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right).$$

Expontential Distribution: $\operatorname{Exp}(\lambda)$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & x \le 0. \end{cases}$$

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0\\ 0, & x \le 0. \end{cases}$$

Memoryless Property

$$P(X > s + t | X > s) = P(X > t), \quad s, t > 0.$$

•
$$E(X) = \frac{1}{\lambda}$$
; • $Var(X) = \frac{1}{\lambda^2}$.

2.9 Other Distributions

Gamma Gamma (α, λ) :

$$f_X(x) = \begin{cases} \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}, & x > 0\\ 0, & x \le 0, \end{cases}$$

$$F_X(x) = \begin{cases} \frac{\gamma(\alpha, \lambda x)}{\Gamma(\alpha)}, & x > 0\\ 0, & x \le 0. \end{cases}$$

Sum of Gamma with Same λ : $X \sim \text{Gamma}(\alpha, \lambda)$, $Y \sim \text{Gamma}(\lambda), \Rightarrow X + Y \sim \text{Gamma}(\alpha + \beta, \lambda).$ Weibull $W(v,\alpha,\beta)$: $\alpha>0$ and $\lambda>0$, if its probability

• $E(X) = v + \alpha \Gamma \left(1 + \frac{1}{\beta} \right);$

•
$$\operatorname{Var}(X) = \alpha^2 \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \left(\Gamma \left(1 + \frac{1}{\beta} \right) \right)^2 \right].$$

Cauchy $C(\alpha, \dot{\theta})$:

$$f_X(x) = \frac{1}{\pi \alpha \left[1 + \left(\frac{x - \theta}{\alpha} \right)^2 \right]},$$

• Var(X) does not exist. • E(X) does not exist;

Beta
$$\operatorname{Beta}(\alpha,\beta)$$
: $\alpha>0$ and $\beta>0$
$$f_X(x)=\begin{cases} \frac{1}{B(a,b)}x^{\alpha-1}(1-x)^{\beta-1}, & 0< x<1\\ 0, & \text{otherwise.} \end{cases}$$
 \bullet $E(X)=\frac{\alpha}{\alpha+\beta}$;

$$\alpha + \beta'$$
• $\operatorname{Var}(X) = \frac{\alpha\beta}{(1+\beta)^2(1+\beta+1)}$

•
$$\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$
.

Beta Function
$$\operatorname{B}(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} = \int_0^1 (1-u)^{\alpha-1}u^{\beta-1}\mathrm{d}u.$$

 χ^2 -Distribution $\chi^2(n)$: Let X_1, X_2, \ldots, X_n be independent standard normal random variables. $Q = \sum_{i=1}^n X_i^2$ has a **chi**- $\mbox{\bf squared distribution}$ with n degrees of freedom:

squared distribution with
$$n$$
 degrees of freedom:
$$f_Q(q) = \begin{cases} \frac{1}{2^{n/2}\Gamma(n/2)}q^{n/2-1}e^{-q/2}, & q>0\\ 0, & q\leq 0. \end{cases}$$

$$F_Q(q) = \begin{cases} \frac{\gamma(n/2,q/2)}{\Gamma(n/2)}, & q>0\\ 0, & q\leq 0, \end{cases}$$
 where $\gamma = \int_0^{q/2} t^{n/2-1}e^{-t}\,dt$ and $\Gamma = \int_0^\infty t^{n/2-1}e^{-t}\,dt$. • $E(Q) = n$:

• E(Q) = n; **Log-Normal Distribution** $\mathrm{LN}(\mu,\sigma)$ Let Z be a standard normal mal random variable. Then, the random variable $X=e^{\mu+\sigma Z}$

has a log-normal distribution.
$$f_X(x) = \begin{cases} \frac{1}{x\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2}(\ln x - \mu)^2\right], & x > 0\\ 0, & x \leq 0. \end{cases}$$

$$F_X(x) = \begin{cases} \frac{1}{2} + \frac{1}{2}\operatorname{erf}\left(\frac{\ln x - \mu}{\sigma\sqrt{2}}\right), & x > 0\\ 0, & x \leq 0. \end{cases}$$
 where $\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$ is the **error function**.
Bivariate Normal Distribution Random variables X ,

Bivariate Normal Distribution Random variables X, Yhave a bivariate normal distribution if, for constants $\mu_x, \mu_y, \sigma_x, \sigma_y > 0$, $-1 < \rho < 1$, there joint density function is given, for all $-\infty < x,y < \infty$, by

$$f_{X,Y}(x,y) := \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times e^{\text{exponent}}$$

where exponent is:
$$-\frac{\left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2+\left(\frac{y-\mu_y}{\sigma_y}\right)^2-2\rho\frac{(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}.\right]}{2(1-p^2)}$$