	Abbreviations		
AOA	Archimedes optimization algorithm		
BROA	battle royale optimization algorithm		
CHNR	cyclic harmonic to noise ratio utilized as the fitness function DBTS.		
CPU	Central Processing Unit. The CPU Intel(R) Core i7-10750H is used.		
DBT	dynamic bandit tree (the proposed bandit tree optimization algorithm)		
DBT1	the bandit tree algorithm based on the single-tree space partition and the standard		
	Thompson sampling		
DBT2	the bandit tree algorithm based on the multi-tree space partition and the standard		
	Thompson sampling.		
DBT3	the bandit tree algorithm based on multi-tree space partition and the reshaped		
	Thompson sampling. The final version of DBT used in the fault diagnosis method.		
DBTS	dynamic bandit tree search (the proposed fault diagnosis method)		
db	decibel		
EWT	empirical wavelet transform		
FIFB	fault informative frequency band		
FIFBs	fault informative frequency bands		
Fig.	figure		
GA	genetic algorithm		
GOA	grasshopper optimization algorithm		
GBO	Gradient-Based Optimizer		
MAB	multi-armed bandit		
MCT	Monte Carlo tree search		
OVMD	optimized variational mode decomposition		
OEWT	optimized empirical wavelet transform		
PCB621B40	sensor type of the accelerometer used for collecting the bearing data		
PCB604B31	sensor type of the accelerometer used for collecting the gearbox data		
SES	squared envelope spectrum		
SESs	squared envelope spectrums		
SNR	signal to noise ratio		
UCB	upper confidence bound		
VMD	variational mode decomposition		
WOA	whale optimization algorithm		

Notations		
$A = \left\{a_i\right\}_{i=1,\dots,K}$	K-armed bandits	
a_s'	the selected arm	
a_{i^*}	the optimal bandit	
$B' = \left(b_1', b_2',, b_n'\right)$	Boundaries at time <i>t</i> for an n-dimensional problem.	

B_{\min}	the minimum bandwidth required for calculating the fault index
	7
b_n, b_{n+1}	The n -th and $n+1$ -th boundaries of Meyer wavelet filters
(b_1,b_2)	a bandit pair. They are also the boundaries of the filters in Fig. 1. One boundary corresponds to one tree.
$\left(b_1^t,b_2^t\right)$	a sample of the bandit pair at time t .
b_i^t	the current boundary generated by the i -th tree
b_i^o	the most recent optimal boundary generated by the i -th tree
b_i^U	the upper bound of the boundary of the i -th tree
b_i^L	the lower bound of the boundary of the i -th tree
Cij	the j -th cell at level i
$Cij_{{ m Tree}k}$	the j -th cell at level i from tree k
C(l,h)	cyclic harmonic to noise ratio of the signal having frequency band $[l,h]$. l
, ,	and h are the lower and upper cutoff frequencies of the filter
$D(\bullet)$	the reshaping function
d	the number of dimensions
$FI(b_1,b_2)$, or $FI(\bullet)$	the reward function of the Bernoulli bandit model. It is calculated based on
	the signal of the frequency band $[b_1, b_2]$.
$FI_{obj}\left(ullet ight)$	the final objective function
$FI_{\max}(ullet)$	a maximization function
$f(r p) = p^{r}(1-p)^{1-r}$	the probability density function of the Bernoulli bandit model. r is the Bernoulli reward and p is the probability of the successful Bernoulli trial
$f_r(o^t)$	the reward function
f_s	the sampling frequency
G(ullet)	the gamma function
	the amplitude of the i-th fault harmonic used in the evaluation metric, i.e.,
H_i	$M_{_{vSNR}}$ and $M_{_{mAmp}}$. The amplitude is normalized.

	the frequency value of the i-th fault harmonic used in the evaluation metric,
h_i	
	i.e., M_{vSNR} and M_{mAmp} .
ti(:)	the amplitude of the <i>i</i> -th estimated harmonic used in cyclic harmonic to noise
Har(i)	ratio. The amplitude is not necessarily normalized
$i \in [K] = \{1, 2,, K\}$	the bandit index
l _r	the kurtosis calculated using the amplitudes from the frequency range
k_i	$[h_i - h_1 / 2, h_i + h_1 / 2]$.
Lmax(n)	the surrounding local maximum of $Har(i)$
l	the tree depth
М	the number of fault frequency harmonics
M_{hKurt}	the harmonic kurtosis
111 hKurt	
M_{mAmp}	the mean amplitude of fault harmonics in the normalized squared envelope
	spectrum
M_{vSNR}	vanilla signal to noise ratio
N_{arm}	the number of armed-bandits at the deepest tree level.
M	
N_{sig}	the length of the digital signal
n	the number of queries
o^t	the observation
$O(\bullet)$	the big O notation for analyzing complexity
,	
$p^{0}\left(ullet ight)$	the initial prior
	the prior at time <i>t</i> . It is the probability of the successful Bernoulli trial at time
$p^{t}(\bullet)$	t.
(+ t)	
$q_{ heta}ig(ullet a_i^tig)$	the conditional probability measure
$R = \{r_i^t\}_{i \in [K]}^{t=1,2,,T}$	the received rewards
~` Vi Ji∈[K]	die received rewards
r_B^t	a Bernoulli reward at time <i>t</i>
_	
$S = \{a_i^t\}_{i \in [K]}^{t=1,2,\dots,T}$	the selected arms
SES	the squared envelope spectrum
t = 1, 2,, T	the time step
	1

μ_i	the mean reward
$V = \{v_i\}_{i=1,\dots,K}$	unknown reward distributions
α and β	the two parameters of the Beta distribution denoted as $Beta(lpha,eta)$
α_i^t and β_i^t	the above parameters at time t and being from tree i
π	the bandit strategy
θ	the parameter vector
$\hat{ heta}$	the sample of θ
Θ	the parameter space
$\phi(\bullet): R^n \to [0,1]$	the balancing function of the Bernoulli bandit model. Set as $\phi(B^t)=1/2$.
Ω	the observation space
$\Upsilon_n(\omega)$	the scaling function
$\Psi_{n}(\omega)$	the wavelet function
$\omega \in \Lambda_i, i = 1, 2, 3, 4$	the frequency
$\Lambda_i, i = 1, 2, 3, 4$	feasible sets
σ_n , σ_{n+1}	the half widths of the transition areas
ξ(•)	a special function with domain in [0,1] .
Δ	the frequency resolution