STÆ106G - LÍNULEG ALGEBRA A

Vikublað 14

19. nóvember 2015

Ég minni ykkur á að lesa hi-póstinn ykkar reglulega (minnst einu sinni á dag).

Dæmi fyrir dæmatíma 23.11. - 27.11.

- \bullet Dæmi 1, 2, 3, 4 og 5 hér að neðan
- **7.1**: 3, 14, 24, 39, 43, 49, 51, 55, 57, 59, 62, 70, 79
- **7.2**: 1, 2, 3, 5, 7, 9, 13, 15, 17, 20

$\mathbf{D}\mathbf{\hat{e}mi}$ 1. Látum W vera núllrúm fylkisins

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -1 & 2 \\ 0 & 2 & 1 & 3 \\ 4 & 0 & -3 & 1 \end{bmatrix}.$$

(a) Finnið fylki línulegu vörpunarinnar

$$\operatorname{Proj}_W : \mathbb{R}^4 \longrightarrow \mathbb{R}^4, \qquad (x, y, z, w) \mapsto \operatorname{Proj}_W(x, y, z, w).$$

- (b) Finnið $Proj_W(1,2,3,9)$
- (c) Gerið grein fyrir að vörpunin Proj_W sé hornalínugeranleg og finnið eigingildi hennar.

Dæmi 2. Við skilgreinum **speglun um sléttu** í \mathbb{R}^3 á eftirfarandi hátt:

Látum V vera sléttu sem fer í gegnum núllpunktinn í \mathbb{R}^3 , með öðrum orðum er V tvívítt hlutrúm í \mathbb{R}^3 . Fyrir sérhvern vigur \mathbf{x} í \mathbb{R}^3 er unnt að rita á nákvæmlega einn hátt

$$\mathbf{x} = \mathbf{x}_V + \mathbf{x}_{V^{\perp}}$$

þar sem $\mathbf{x}_V \in V$ og $\mathbf{x}_{V^{\perp}} \in V^{\perp}$. **Speglun um** V er þá vörpunin $S_V : \mathbb{R}^3 \to \mathbb{R}^3$ sem er skilgreind með

$$S_V(\mathbf{x}_V + \mathbf{x}_{V^{\perp}}) = \mathbf{x}_V - \mathbf{x}_{V^{\perp}}.$$

- (a) Sýnið að $S_V = \mathrm{id}_{\mathbb{R}^3} 2 \cdot \mathrm{Proj}_{V^{\perp}}$ og ályktið út frá því að S_V sé línuleg vörpun.
- (b) Finnið eigingildi vörpunarinnar S_V og gerið grein fyrir að hún sé hornalínugeranleg.
- (c) Finnið venjulega fylkið fyrir S_V þegar V er sléttan sem gefin er með jöfnunni

$$x - y + z = 0.$$

Dæmi 3. Látum V vera vigurrúm allra vigra í xy-sléttunni í \mathbb{R}^3 , þ.e.

$$V = \{(x, y, 0) \in \mathbb{R}^3 \mid x, y \in \mathbb{R}\}.$$

Sýnið að \mathbb{R}^3 sé bein summa hlutrúmanna V og W í eftirfarandi tilfellum.

- (a) $W = \{(0, 0, z) \in \mathbb{R}^3 \mid z \in \mathbb{R}\}.$
- (b) $W = \{(z, z, z) \in \mathbb{R}^3 \mid z \in \mathbb{R}\}.$

Dæmi 4. Finnið þverstætt fyllirúm eftirtalinna hlutmengja. í \mathbb{R}^2 og \mathbb{R}^3 .

- (a) $M = \{(x, y) \in \mathbb{R}^2 \mid -2x + 3y = 0\}.$
- (b) $M = \{0\}$ í einhverju innfeldisrúmi V.
- (c) $M = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0 \text{ og } y + z = 0\}.$

Dæmi 5. Setjum

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + 2y - z = 0\}.$$

Berum saman tvær aðferðir til að finna hornrétt ofanvarp vigurs á hlutrúmið U.

- (a) Finnið grunn fyrir U.
- (b) Finnið U^{\perp} og grunn fyrir U^{\perp} .
- (c) Búið til grunninn \mathcal{B} með því að taka saman grunnana fyrir U og U^{\perp} . Finnið síðan hnitavigurinn $[(1,1,2)]_{\mathcal{B}}$ og notið hann til að finna ofanvarp vigursins (1,1,2) á U.
- (d) Finnið ofanvar
p vigursins (1,1,2) á U með því að nota fylki ofanvar
psins $\operatorname{Proj}_U.$
- (e) Hvaða fleiri leiðir koma til greina?