

Multilayer Perceptron

Eng Teong Cheah

Contents

- 1. Multilayer Perceptron
- 2. Hidden Layers
- 3. ReLU Function
- 4. Sigmoid Function
- 5. Tanh Function

Multilayer Perceptron

Hidden Layers

Hidden Layers

ReLU Function

$$ReLU(z) = max(z, 0)$$

ReLU Function

```
x = nd.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():
    y = x.relu()
d2l.set_figsize((4, 2.5))
d2l.plot(x, y, 'x', 'relu(x)')
```


ReLU Function

```
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of relu')
```


Sigmoid Function

$$\operatorname{sigmoid}(x) = \frac{1}{1 + \exp(-x)}$$

Sigmoid Function

```
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of relu')
```


Sigmoid Function

```
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of sigmoid')
```


Tanh Function

$$\tanh(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}$$

Tanh Function

```
with autograd.record():
    y = x.tanh()
d2l.plot(x, y, 'x', 'tanh(x)')
```


Tanh Function

$$\frac{d}{dx} \tanh(x) = 1 - \tanh^2(x)$$

```
y.backward()
d2l.plot(x, x.grad, 'x', 'grad of tanh')
```


Thank You!

Does anyone have any questions?

Twitter: @walkercet

Blog: https://ceteongvanness.wordpress.com

Resources

Dive into Deep Learning