$\underline{\text{Problema 4}}.$ La siguiente gramática incontextual G genera una clase de instrucciones repetitivas de Java.

1.
$$S \longrightarrow for (\underline{id} = \underline{int}; C; X) Y$$

$$2. X \longrightarrow id + +$$

3.
$$X \longrightarrow id - -$$

4.
$$Y \longrightarrow id = E$$
;

5.
$$E \longrightarrow E + T$$

6.
$$E \longrightarrow E - T$$

7.
$$E \longrightarrow T$$

8.
$$T \longrightarrow \underline{id}$$

9.
$$T \longrightarrow \underline{int}$$

10.
$$C \longrightarrow E < E$$

11.
$$C \longrightarrow E \leq E$$

Se pide entonces:

(a) Dar una derivación en G para la palabra

$$\underline{for}\left(\underline{id} = \underline{int}; \, \underline{id} < \underline{id} + \underline{int}; \, \underline{id} + +\right)\underline{id} = \underline{id} + \underline{id} - \underline{int};$$
(1 punto)

- (b) Siguiendo el método visto en clase, construir el autómata con pila M asociado a G. (2 puntos)
 - (c) Dar un cómputo en M que reconozca la palabra for $(\underline{id} = \underline{int}; \underline{id} < \underline{int}; \underline{id} + +) \underline{id} = \underline{id} \underline{int};$

(2 puntos)

(d) Explicar por qué G no es una gramática LL(1). (1 punto)

(e) Aplicar las reglas de factorización y recursión para transformar la gramática G en una gramática $\mathrm{LL}(1)$.

(2 puntos)

(f) Construir la tabla de análisis de la gramática obtenida en (e).

(2 puntos)

SOLUCIÓN:

- (a) $S \Rightarrow^1 \underline{for}(\underline{id} = \underline{int}; C; X)Y \Rightarrow^{10} \underline{for}(\underline{id} = \underline{int}; E < E; X)Y \Rightarrow^7 \underline{for}(\underline{id} = \underline{int}; T < E; X)Y \Rightarrow^8 \underline{for}(\underline{id} = \underline{int}; \underline{id} < E; X)Y \Rightarrow^5 \underline{for}(\underline{id} = \underline{int}; \underline{id} < E + T; X)Y \Rightarrow^7 \underline{for}(\underline{id} = \underline{int}; \underline{id} < T + T; X)Y \Rightarrow^8 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; X)Y \Rightarrow^2 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; X)Y \Rightarrow^2 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} + +)\underline{id} = E; \Rightarrow^6 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} + +)\underline{id} = E + T T; \Rightarrow^7 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} + +)\underline{id} = E + T T; \Rightarrow^8 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} + +)\underline{id} = \underline{id} + T T; \Rightarrow^8 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} + +)\underline{id} = \underline{id} + T T; \Rightarrow^8 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} + +)\underline{id} = \underline{id} + T T; \Rightarrow^8 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} + +)\underline{id} = \underline{id} + T T; \Rightarrow^8 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} + +)\underline{id} = \underline{id} + \underline{id} T; \Rightarrow^9 \underline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} < \underline{id} < \underline{id} + \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} < \underline{id} + \underline{int}; \underline{id} < \underline{id} < \underline{id} + \underline{int}; \underline{id} < \underline{id}$
- (b) $M = (K, \Sigma, \Gamma, \Delta, q_0, F)$, donde el conjunto de los estados es $K = \{q_0, f\}$, el vocabulario de la cinta es

$$\Sigma = \{for, \underline{id}, \underline{int}, +, -, <, =, ;,), (, ++, --, <=\}$$

el vocabulario de la pila es $\Gamma = \Sigma \cup V$ siendo $V = \{S, X, Y, E, T, C\}$, el estado inicial es q_0 , el único estado aceptador es f y Δ está formado por las siguientes transiciones:

- 1. $((q_0, \lambda, \lambda), (f, S))$.
- 2. $((f, \lambda, S), (f, for(\underline{id} = \underline{int}; C; X)Y)).$
- 3. $((f, \lambda, X), (f, id + +))$.
- 4. $((f, \lambda, X), (f, \underline{id} -)).$
- 5. $((f, \lambda, Y), (f, id = E;))$.
- 6. $((f, \lambda, E), (f, E + T))$.

- 7. $((f, \lambda, E), (f, E T))$.
- 8. $((f, \lambda, E), (f, T))$.
- 9. $((f, \lambda, T), (f, \underline{id}))$.
- 10. $((f, \lambda, T), (f, \underline{int}))$.
- 11. $((f, \lambda, C), (f, E < E))$.
- 12. $((f, \lambda, C), (f, E \le E))$.
- 13. $((f, (, (), (f, \lambda)).$
- 14. $((f,),),(f,\lambda)$.
- 15. $((f, for, for), (f, \lambda))$.
- 16. $((f, \underline{id}, \underline{id}), (f, \lambda))$.
- 17. $((f, \underline{int}, \underline{int}), (f, \lambda))$.
- 18. $((f, +, +), (f, \lambda))$.
- 19. $((f, -, -), (f, \lambda))$.
- 20. $((f, =, =), (f, \lambda))$.
- 21. $((f,<,<),(f,\lambda))$.
- 22. $((f, ; , ;), (f, \lambda))$.
- 23. $((f, ++, ++), (f, \lambda))$.
- 24. $((f, --, --), (f, \lambda))$.
- 25. $((f, <=, <=), (f, \lambda))$.
 - (c) Cómputo que reconoce for $(\underline{id} = \underline{int}; \underline{id} < \underline{int}; \underline{id} + +) \underline{id} = \underline{id} \underline{int};$

estado	cinta	pila	transición
q_0	for $(id = int; id < int; id + +) id = id - int;$	λ	_
f	$\overline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{int}; \underline{id} + +)\underline{id} = \underline{id} - \underline{int};$	S	1
f	$\overline{for}(\underline{id} = \underline{int}; \underline{id} < \underline{int}; \underline{id} + +)\underline{id} = \underline{id} - \underline{int};$	$for (\underline{id} = \underline{int}; C; X)Y$	2
f	(id = int; id < int; id + +) id = id - int;	$\underbrace{(id = int; C; X)Y}$	15
f	$\underline{id} = \underline{int}; \ \underline{id} < \underline{int}; \ \underline{id} + +) \ \underline{id} = \underline{id} - \underline{int};$	$\underline{id} = \underline{int}; C; X)Y$	13
f	$= \underline{int}; \underline{id} < \underline{int}; \underline{id} + +) \underline{id} = \underline{id} - \underline{int};$	$= \underline{int}; C; X)Y$	16
f	$\underline{int}; \underline{id} < \underline{int}; \underline{id} + +) \underline{id} = \underline{id} - \underline{int};$	$\underline{int}; C; X)Y$	20
f	$; \underline{id} < \underline{int}; \underline{id} + +) \underline{id} = \underline{id} - \underline{int};$;C;X)Y	17
f	$\underline{id} < \underline{int}; \ \underline{id} + +) \ \underline{id} = \underline{id} - \underline{int};$	C;X)Y	22
f	$\underline{id} < \underline{int}; \ \underline{id} + +) \ \underline{id} = \underline{id} - \underline{int};$	E < E; X)Y	11
f	$\underline{id} < \underline{int}; \ \underline{id} + +) \ \underline{id} = \underline{id} - \underline{int};$	T < E; X)Y	8
f	$\underline{id} < \underline{int}; \ \underline{id} + +) \ \underline{id} = \underline{id} - \underline{int};$	$\underline{id} < E; X)Y$	9
f	$<\underline{int};\underline{id}++)\underline{id}=\underline{id}-\underline{int};$	$\langle E; X \rangle Y$	16
f	$\underline{int}; \underline{id} + +) \underline{id} = \underline{id} - \underline{int};$	E;X)Y	21
f	$\underline{int}; \underline{id} + +) \underline{id} = \underline{id} - \underline{int};$	T;X)Y	8
f	$\underline{int}; \underline{id} + +) \underline{id} = \underline{id} - \underline{int};$	$\underline{int};X)Y$	10
f	$; \underline{id} + +) \underline{id} = \underline{id} - \underline{int};$;X)Y	17
f	$\underline{id} + +) \underline{id} = \underline{id} - \underline{int};$	X)Y	22
f	$\underline{id} + +) \underline{id} = \underline{id} - \underline{int};$	$\underline{id} + +)Y$	3
f	$++)$ $\underline{id} = \underline{id} - \underline{int};$	++)Y	16
f	$) \underline{id} = \underline{id} - \underline{int};$)Y	23
f	$\underline{id} = \underline{id} - \underline{int};$	Y	14
f	$\underline{id} = \underline{id} - \underline{int};$	$\underline{id} = E;$	5
f	$=\underline{id}-\underline{int};$	=E;	16
f	$\underline{id} - \underline{int};$	E;	20
f	$\underline{id} - \underline{int};$	E-T;	7
f	$\underline{id} - \underline{int};$	T-T;	8
f	$\underline{id} - \underline{int};$	$\underline{id} - T;$	9
f	$-\underline{int};$	-T;	16
f	$\underline{int};$	T;	19
f	$\underline{int};$	$\underline{int};$	10
f	;	;	17
f	λ	λ	22

- (d) La gramática G no es LL(1), porque hay conflictos al construir su tabla de análisis. Por ejemplo, las producciones $2,3 \in \text{TABLA}(X,\underline{id})$, ya que $\underline{id} \in \text{Primeros}(X)$.
- (e) Aplicando la regla de factorización, reemplazamos las producciones $X \longrightarrow \underline{id} + +$, $X \longrightarrow \underline{id} -$ por las producciones $X \longrightarrow \underline{id}X', X' \longrightarrow ++$, $X' \longrightarrow --$. Aplicando la regla de recursión, reemplazamos las producciones $E \longrightarrow E + T, E \longrightarrow E T, E \longrightarrow T$ por las producciones $E \longrightarrow TE', E' \longrightarrow +TE', E' \longrightarrow -TE', E' \longrightarrow \lambda$. Finalmente, aplicando la regla de factorización, reemplazamos las producciones $C \longrightarrow E < E, C \longrightarrow E < E$ por las producciones $C \longrightarrow EC', C' \longrightarrow < E, C' \longrightarrow <= E$.

La gramática G' obtenida con estas transformaciones tiene las siguientes reglas:

- 1. $S \longrightarrow for (\underline{id} = \underline{int}; C; X) Y$
- $2. X \longrightarrow idX'$
- $3. X' \longrightarrow ++$
- 4. $X' \longrightarrow --$
- 5. $Y \longrightarrow \underline{id} = E;$
- 6. $E \longrightarrow TE'$
- 7. $E' \longrightarrow +TE'$
- 8. $E' \longrightarrow -TE'$
- 9. $E' \longrightarrow \lambda$
- 10. $T \longrightarrow id$
- 11. $T \longrightarrow int$
- 12. $C \longrightarrow EC'$
- 13. $C' \longrightarrow < E$
- 14. $C' \longrightarrow <= E$

(f) La tabla de análisis de G' es la siguiente:

TABLA	for	$\underline{\mathrm{id}}$	$\underline{\mathrm{int}}$	+	_	++		;	=	<	<=	()
S	1												
X		2											
X'						3	4						
Y		5											
E		6	6										
E'				7	8			9		9	9		
T		10	11										
C		12	12										
C'										13	14		

Obsérvese que de la derivación

$$S \Rightarrow^1 \underline{for}(\underline{id} = \underline{int}; C; X)Y \Rightarrow^5 \underline{for}(\underline{id} = \underline{int}; C; X)\underline{id} = E; \Rightarrow^6 \underline{for}(\underline{id} = \underline{int}; C; X)\underline{id} = TE';$$

se deduce que \in Siguientes(E') y, por tanto, la producción $9 \in TABLA(E', :)$.

Por otra parte, de la derivación

$$S \Rightarrow^1 \underline{for}(\underline{id} = \underline{int}; C; X)Y \Rightarrow^{12} \underline{for}(\underline{id} = \underline{int}; EC'; X)Y \Rightarrow^6 \underline{for}(\underline{id} = \underline{int}; TE'C'; X)Y \Rightarrow^6 \underline{for}(\underline{id} = \underline{int}; TE' < E; X)Y$$

deducimos que el símbolo <
 < Siguientes(E')y, por tanto, la producción
9 \in TABLA(E',<).

Y de la derivación

$$S \Rightarrow^1 \underline{for}(\underline{id} = \underline{int}; C; X)Y \Rightarrow^{12} \underline{for}(\underline{id} = \underline{int}; EC'; X)Y \Rightarrow^6 \underline{for}(\underline{id} = \underline{int}; TE'C'; X)Y \Rightarrow^6 \underline{for}(\underline{id} = \underline{int}; TE' <= E; X)Y$$

deducimos que el símbolo $<= \in$ Siguientes(E') y, por tanto, la producción $9 \in TABLA(E', <=)$.