Chapter 5: Advanced Theories of Bonding

H. Ryott Glayzer

20 February 2024

Notice of ADA Accommodation and Methods

I have an ADA accommodation to do my assignment on paper. This document is a utilization of that accommodation. This assignment will utilize questions from the textbook, *Chemistry: Atoms First, 2e*, to practice the skills and learning objectives for this class.

1 Valence Bond Theory

Q.1: Explain how σ and π bonds are similar and how they are different.

 σ bonds are bonds that form in s-orbitals, while π bonds form in p-orbitals.

Q.5: A friend tells you that N_2 has three π bonds due to the overlap of the three p-orbitals in each Nitrogen atom. Do you agree?

 N_2 would have two π bonds and a σ bond.

2 Hybrid Atomic Orbitals

Q.9: Explain why a Carbon atom cannot form five bonds using sp^3d hybrid orbitals.

Carbon can only take four more valence shell electrons. sp^3 are what Carbon has since it con only form four bonds.

Q.13: Sulfuric acid is manufactured by the series of reactions:

$$\begin{array}{l} S_8(s) + 8\,O_2(g) \longrightarrow 8\,SO_2(g) \\ 2\,SO_2(g) + O_2(g) \longrightarrow 2\,SO_3(g) \\ SO_3(g) + H_2O\left(I\right) \longrightarrow H_2SO_4(I) \end{array}$$

Draw the Lewis Structure, predict the molecular geometry by VSEPR, and determine the hybridization of sulfur for the following:

a. Circular S₈ model

b. SO₂ molecule

Bent,
$$sp^2 : O \equiv S - O$$
:

c. SO₃ molecule

Trigonal Planar;
$$sp^2 : O$$
:
$$S = O$$

$$O$$

$$O$$

d. H₂SO₄ molecule

Tetrahedral,
$$sp^3$$
 H — $\overset{\cdots}{O}$ — S — $\overset{\cdots}{O}$ — H

Q.17: Strike-anywhere matches contain a layer of $KCIO_3$ and a layer of P_4S_3 . The heat produced by the friction of striking the match causes these two compounds to react vigorously, which sets fire to the wooden stem of the match. $KCIO_3$ contains the CIO_3^- ion. P_4S_3 is an unusual molecule with the following skeletal structure:

a. Write the Lewis structures for P_4S_3 and the ClO_3^- ion.

$$\begin{bmatrix}
S & | & & \\
 & S & | & \\
P & | & P & [& O & O]
\end{bmatrix}$$

- b. Describe the geometry about the P atoms, the S atom, and the CI atom in these species
- P: Trigonal Pyramidal; S: Bent, two lone pairs; CI: Trigonal Pyramidal
- c. Assign a hybridization to the P atoms, the S atom, and the Cl atom in these species sp^3 for all

d. Determine the oxidization states and formal charge of the atoms in P_4S_3 and the CIO_3^- ion.

Atom	Р	S	CI	0
Oxidation States	+1	$-1\frac{1}{2}$	+5	-2
Formal Charge	0	0	+2	-1

3 Multiple Bonds

Q.21: The bond energy of a C-C single bond averages 347 kJ mol^{-1} ; that of a C = C triple bond averages 839 kJ mol^{-1} . Explain why the triple bond is not three times as strong as the single bond.

A triple bond is made of of one σ bond and two π bonds. A σ bond is stronger than a π bond.

Q.25: Identify the hybridization of the central atom in each of the following molecules and ions that contain multiple bonds:

CINO	CS ₂	Cl ₂ CO	Cl ₂ SO	SO_2F_2	XeO_2F_2	CIOF ₂ ⁺
sp ²	sp	sp ²	sp ³	sp^3	sp³d	sp ³

Q.29: Draw the orbital diagram for carbon in CO_2 showing how many carbon atom electrons ore in each orbital.

Orbitals in Carbon Hybridized Carbon in CO₂

These are: (sp: up), (sp: up), (2p: up), but I can't figure out the LATEX for it

4 Molecular Orbital Theory

Q.33: Can a molecule with an odd number of electrons ever be diamagnetic? Explain why or why not.

No. An odd number of electrons will always be paramagnetic.

Q.37: Explain why an electron in the bonding molecular orbital in the H_2 molecule has a lower energy than an electron in the 1s atomic orbital hydrogen atoms.

The pairing of the two bonding electrons lowers the system's energy compared to a lone atom.

Grading

Points Possible	Points Earned	Score
32		/32