Machine learning

Presented by : Dr. Hanaa Bayomi

DECISION TREE: EXAMPLE

▶ There can be many different trees that all work equally well!

Structure of a decision tree

- Internal nodes correspond to attributes (features)
- Leafs correspond to classification outcome
- edges denote assignment

Predict if John will play tennis

- Hard to guess
- Divide & conquer:
 - split into subsets
 - are they pure? (all yes or all no)
 - if yes: stop
 - if not: repeat
- See which subset new data falls into

Training	examples:	9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
	Sunny	Normal	Weak	Yes
	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No
	" ~			
New da	ata.			

New data:

D15 Rain High Weak

ID3 Algorithm

- Split (node, {examples}):
 - 1. A ← the best attribute for splitting the {examples}
 - 2. Decision attribute for this node ← A
 - 3. For each value of A, create new child node
 - 4. Split training {examples} to child nodes
 - If examples perfectly classified: STOP
 else: iterate over new child nodes
 Split (child_node, {subset of examples})
 - Ross Quinlan (ID3: 1986), (C4.5: 1993)
- Breimanetal (CaRT: 1984) from statistics

Identifying 'bestAttribute'

- There are many possible ways to select the best attribute for a given set.
- We will discuss one possible way which is based on information theory and generalizes well to non binary variables

Which attribute to split on?

- Want to measure "purity" of the split
 - more certain about Yes/No after the split
 - pure set (4 yes / 0 no) => completely certain (100%)
 - impure (3 yes / 3 no) => completely uncertain (50%)

Entropy

- Entropy: $H(S) = -p_{(+)} \log_2 p_{(+)} p_{(-)} \log_2 p_{(-)}$ bits
 - S ... subset of training examples
 - $-p_{(+)}/p_{(-)}...$ % of positive / negative examples in S
- The Entropy is 1 when the collection contains an equal number of positive and negative examples.
- The Entropy is 0 if all members of S belong to *the same class*
- impure (3 yes / 3 no):

$$H(S) = -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$
 bits

pure set (4 yes / 0 no):

$$H(S) = -\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = 0$$
 bits

INFORMATION GAIN

 We want to determine which attribute in a given set of training feature vectors is most useful for discriminating between the classes to be learned.

 Information gain tells us how important a given attribute of the feature vectors is.

 We will use it to decide the ordering of attributes in the nodes of a decision tree.

INFORMATION GAIN

Information Gain = entropy(parent) - [average entropy(children)]

- Want many items in pure sets
- Expected drop in entropy after split:

$$Gain(S,A) = H(S) - \sum_{V \in Values(A)} \frac{|S_V|}{|S|} H(S_V)$$
 $S_V = S_V = S_V = S_V$ Subset where $S_V = S_V = S_V$

- Mutual Information
 - between attribute A and class labels of S

Gain (S, Wind)
=
$$H(S) - {}^{8}I_{14} H(S_{weak}) - {}^{6}I_{14} H(S_{strong})$$

= $0.94 - {}^{8}I_{14} * 0.81 - {}^{6}I_{14} * 1.0$
= 0.049

Which attribute is the best classifier? Example

- Humidity provides greater information gain than Wind, relative to the target classification.
- *E* stands for entropy and
- S the original collection of examples. Given an initial collection S of 9 positive and 5 negative examples,

ILLUSTRATIVE EXAMPLE

Predict if John will play tennis

Gain(S, Outlook) = 0.246

Gain(S, Humidity) = 0.151

Gain(S, Wind) = 0.048

Training	examples:	91	ves	/ 5 no
" anning	champies.		163	7 7 110

Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

$$H(S, outlook) = -\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.94$$

$$H(S_{sunny}) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} = 0.97$$

$$H(S_{overcast}) = -\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = 0$$

$$H(S_{rain}) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} = 0.97$$

$$Gain(S, Outlook) = 0.94 - \frac{5}{14} \times 0.97 - \frac{4}{14} \times 0 - \frac{5}{14} \times 0.97 = 0.247$$

CONTINUOUS VALUE

Overfitting in Decision Trees

- Can always classify training examples perfectly
 - keep splitting until each node contains 1 example
 - singleton = pure
- Doesn't work on new data

How to Deal with Overfitting?

- Stop growing the tree when the data split is not statistically significant
- Grow the full tree, then prune
 - Do we really needs all the "small" leaves with perfect coverage?

Decision Tree Pre-Pruning

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node
 - Stop if all instances belong to the same class
 - Stop if all the feature values are the same
- More restrictive conditions
 - Stop if the number of instances is less than some usespecified threshold
 - Stop if the class distribution of instances are independent of the available features
 - Stop if expanding the current node does not improve impurity.

Decision Tree Post-Pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree

Decision Tree Post-Pruning

- Reduced Error Pruning
 - Split data into training and validation set
 - Remove one node at a time and evaluate the performance on the validation data
 - Remove the one that decreases the error
 - Usually produces the smallest version of a tree
 - But always requires a validation set

Problems with Information Gain

D1

- Biased towards attributes with many values
- Won't work
 all subsets perfectly pure => optimal split
 for new data: D15 Rain High Weak
- Use GainRatio:

$$SplitEntropy(S,A) = -\sum_{V \in Values(A)} \frac{\left|S_{V}\right|}{\left|S\right|} \log \frac{\left|S_{V}\right|}{\left|S\right|} \quad \begin{array}{l} \text{A ... candidate attribute} \\ \text{V ... possible values of A} \\ \text{S ... set of examples } \{X\} \\ \text{S_{V} ... subset where } X_{A} = V \end{array}$$

D2

0/1

D3

1/0

$$GainRatio(S, A) = \frac{Gain(S, A)}{SplitEntropy(S, A)}$$

penalizes attributes with many values

9 yes / 5 no

Day

D4

D5

1/0 1/0

D14

Trees are interpretable


```
(Outlook = Overcast) V

Rule: (Outlook = Rain \land Wind = Weak) V

(Outlook = Sunny \land Humidity = Normal)
```