System Dynamics Exam 2

Fall 2013

The FE reference book, calculator, and 1 formula sheet may be used during this exam. Exam books provided. 10 points each.

1. Find $\frac{Y(s)}{F(s)}$ and $\frac{X(s)}{G(s)}$ for the system shown below.

- 2. Write the state space equation matrices A, B, C, and D for the following systems:
 - (a) $x_1 5u$ and x_2 are the outputs:

$$\dot{x}_1 = -5x_1 + 3x_2$$
$$\dot{x}_2 = x_1 - 4x_2 + 5u$$

(b) \dot{y} is the output:

$$2\frac{d^3y}{dt^3} + 5\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 7y = f(t)$$

(c) y(t) and $\dot{y}(t)$ are the outputs:

$$\frac{Y(s)}{F(s)} = \frac{6}{3s^3 + 63 + 10}$$

3. Derive the governing equation or equations for the system shown below. Treat the pulleys as uniform disks. The mass of the top pulley is $\frac{1}{2}m$ and it has a radius of R/2. The mass of the second pulley is m (the same as the mass of the weight at the bottom). Of course, include the effect of gravity using g as the gravitational constant.

BONUS (2 points):

- For students not working for BWI only: What property of magneto-rheological fluids does BWI take advantage of in their suspension control products?
- For students working for BWI: What advantage does the dual coil system provide over the previous single coil system and why?

Table 2.2.1 Table of Laplace transform pairs.

Table 2.2.1 Table of Laplace transform pairs.		
X(s)		$x(t), t \geq 0$
1.	1	$\delta(t)$, unit impulse
2.		$u_s(t)$, unit step
3.	$\frac{c}{s}$	constant, c
4.	$\frac{c}{s}$ $\frac{e^{-sD}}{s}$	$u_s(t-D)$, shifted unit step
5.	$\frac{n!}{s^{n+1}}$	t ⁿ
	$\frac{1}{s+a}$	e ^{-at}
7.	$\frac{1}{(s+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$
8.	$\frac{b}{s^2+b^2}$	sin bt
	$\frac{s}{s^2+b^2}$	cos bt
10.	$\frac{b}{(s+a)^2+b^2}$	$e^{-at}\sin bt$
11.	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$
12.	$\frac{a}{s(s+a)}$	$1-e^{-at}$
13.	$\frac{1}{(s+a)(s+b)}$	$\frac{1}{b-a}\left(e^{-at}-e^{-bt}\right)$
14.		$\frac{1}{b-a}\Big[(p-a)e^{-at}-(p-b)e^{-bt}\Big]$
15.	$\frac{1}{(s+a)(s+b)(s+c)}$	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-b)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$
16.	$\frac{s+p}{(s+a)(s+b)(s+c)}$	$\frac{(p-a)e^{-at}}{(b-a)(c-a)} + \frac{(p-b)e^{-bt}}{(c-b)(a-b)} + \frac{(p-c)e^{-ct}}{(a-c)(b-c)}$