CP Violation in the B Meson System: The Belle Measurement of $sin 2\phi_1$

Eric Prebys, Princeton University for the

BELLE Collaboration

The BELLE Collaboration

≈300 people from 49 Institutions in 11 Countries:

Australia, China, India, Korea, Japan, Philippines, Poland, Russia, Taiwan, Ukraine, and USA

Academia Sinica	Aomori University	
Budker Inst. of Nuclear Physics	Chiba University	
Chuo University	University of Cincinatti	
Fukui University	GyeongSang National University	
University of Hawaii	Institute of High Energy Physics	
Institute of Single Crystal	Joint Crystal Collab. Group	
Kanagawa University	KEK	
Korea University	Krakow Inst. of Nuclear Physics	
Kyoto University	Melbourne University	
Mindanao State University	Nagasaki Inst. of App. Science	
Nagoya University	Nara Women's University	
National Lien Ho Colledge of T&C	National Taiwan University	
Nihon Dental College	Niigata University	
Osaka University	Osaka City University	
Princeton University	Saga University	
Sankyun Kwan University	Univ. of Science & Technology of China	
Seoul National University	Sugiyama Jyogakuin University	
University of Sydeny	Toho University	
Tohoku University	Tohoku-Gakuin University	
University of Tokyo	Tokyo Metropolitan University	
Tokyo Institute of Technology	Tokyo Univ. of Agricult. & Tech.	
Toyama N.C. of Martime technology	University of Tsukuba	
Utkal University	Virginia Polytechnic Institute	
Yonsei University		

Parity Violation

- The "parity" operation transforms the universe into its mirror image (goes from right-handed to left-handed).
- Maxwell's equations are totally parity invariant.
- BUT, in the 50's huge parity violation was observed in weak decays...

β decay of polarized **Co**:

electron preferentially emitted opposite spin direction

CP (almost) Conservation

- It was found that by applying the C[harge Conjugation] operation to all particles, the overall symmetry seemed to be restored (neutrinos are left-handed, anti-neutrinos are right-handed).
- This symmetry fit nicely into the current algebras, and later the gauge theories being used to describe weak interactions.
- Unfortunately, it wasn't *quite* exact...

CP Violation

• In 1964, Fitch, Cronin, *etal*, showed that physics is not *quite* invariant under the CP operation, essentially by proving that neutral kaons formed mass eigenstates

$$\left|K_{L,S}\right\rangle \equiv a_{L,S}\left|K^{0}\right\rangle + b_{L,S}\left|\overline{K^{0}}\right\rangle$$
 where $\left|a_{L,S}\right| \neq \left|b_{L,S}\right|$

• This generated great interest (not to mention a Nobel Prize), and has been studied in great detail ever since, but to date has only been conclusively observed in the kaon system.

$$\left| \left| a_{L,S} \right| - \left| b_{L,S} \right| \approx O(10^{-3}) \right|$$

Quark Mixing

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{t}_e \\ e \end{pmatrix} \begin{pmatrix} \mathbf{v}_{\mu} \\ \mathbf{t}_{\mu} \\ \mathbf{t}_{\tau} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{\tau} \\ \mathbf{t}_{\tau} \\ \mathbf{t}_{\tau} \end{pmatrix}$$

Leptons can only transition *within* a generation

Although the rate is suppressed, quarks can transition between generations.

The CKM Matrix

• The weak quark eigenstates are related to the strong (or mass) eigenstates through a unitary transformation.

$$\begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d \\ s \\ b \end{bmatrix} \qquad \qquad \qquad \begin{pmatrix} u \\ t \\ d' \end{pmatrix} \begin{pmatrix} c \\ t \\ S' \end{pmatrix} \begin{pmatrix} t \\ b' \end{pmatrix}$$

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

• The only straightforward way to *accommodate* CP violation in the SM is by means of an irreducible phase in this matrix (requires at least three generations, led to prediction of *t* and *b* quarks)

Wolfenstein Parameterization

The CKM matrix is an SU(3) transformation, which has four free parameters. Because of the scale of the elements, this is often represented with the "Wolfenstein Parameterization"

$$\cong \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

$$\stackrel{\text{CP Violating}}{\text{Pirst two generations}}$$

$$\frac{almost \text{ unitary.}}{\text{CP Violating}}$$

"The" Unitarity Triangle

• Unitarity imposes several constraints on the matrix, but one...

$$V_{td}V_{tb}^* + V_{cd}V_{cb}^* + V_{ud}V_{ub}^* = 0$$

Results in a triangle in the complex plane with sides of similar length $(\approx A\lambda^3)$, which appears the most interesting for study

(Note! in US:
$$\phi_1 \equiv \beta$$
, $\phi_2 \equiv \alpha$, $\phi_3 \equiv \gamma$)

The ρ – η Plane

Remembering the Wolfenstein Parameterization

$$= \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

we can divide through by the magnitude of the base....

CP violation is generally discussed in terms of this plane

Direct CP Violation

CP Violation is manifests itself as a difference between the physics of matter and anti-matter

$$\Gamma(i \Rightarrow f) \neq \Gamma(\bar{i} \Rightarrow \bar{f})$$

Direct CP Violation is the observation of a difference between two such decay rates; however, the amplitude for one process can in general be written

$$A = |A| e^{i\phi_w} e^{i\phi_s} \Longrightarrow \overline{A} = |A| e^{-i\phi_w} e^{i\phi_s}$$

Weak phase changes sign Strong phase does not

• Since the observed rate is only proportional to the <u>amplitude</u>, a difference would only be observed if there were an *interference* between two diagrams with different weak and strong phase.

 \Rightarrow Rare and hard to interpret

Indirect CP Violation

Consider the case of B-mixing

$$\left|B^{0}(t)\right\rangle = e^{-i(m-i\Gamma)/2} \times \left[\cos\left(\frac{\Delta mt}{2}\right) B^{0}\right\rangle + i\sin\left(\frac{\Delta mt}{2}\right) e^{-2i\phi_{m}} \left|\overline{B}^{0}\right\rangle \right]$$
Mixing phase = arg(V_{td}V_{tb}*) = ϕ_{1}

Indirect CP Violation (cont'd)

• If both *B* and *B* can decay to the same *CP eigenstate f*, there will be an *interference*

$$B^0 \longrightarrow \overline{B^0}$$

And a time-dependent asymmetry

$$A_{CP}(\Delta t) = \frac{\Gamma(B^0 \to f) - \Gamma(\overline{B}^0 \to f)}{\Gamma(B^0 \to f) + \Gamma(\overline{B}^0 \to f)}$$

$$= -2\eta_f \sin(\Delta m \Delta t) \sin 2(\phi_M + \phi_D)$$

$$= -2\eta_f \sin(\Delta m \Delta t) \sin 2(\phi_M + \phi_D)$$
Decay phase

Mixing phase

The Basic Idea

- We can create $B^0\overline{B^0}$ pairs at the $\Upsilon(4S)$ resonance.
- Even though both *B*'s are mixing, if we tag the decay of one of them, the other must be the CP conjugate *at that time*. We therefore measure the time dependent decay of one B relative to the time that the first one was tagged (EPR "paradox").
- PROBLEM: At the Υ(4S) resonance, B's only go about 30 μm in the center of mass, making it difficult to measure time-dependent mixing.

The Clever Trick

- If the collider is *asymmetric*, then the entire system is Lorentz boosted.
- In the Belle Experiment, 8 GeV e⁻'s are collided with 3.5 GeV e⁺'s so

• So now the time measurement becomes a z position measurement.

"Gold-Plated" Decay

$$\phi_D = \arg(V_{cs}V_{cb}^*) \approx 0$$
probes $\phi_M = \phi_1 \ (= \beta)$

Predicted Signature

"Tin-Plated" Decay

$$\phi_D = \arg(V_{ud}V_{ub}^*) \approx -(\phi_1 + \phi_2)$$

probes
$$\phi_M + \phi_D = \phi_1 - (\phi_2 + \phi_1) = -\phi_2 \ (= -\alpha)$$

Complicated by "penguin pollution", but still promising

What about ϕ_3 ?

- Corresponding decay would be $B_s \rightarrow \rho K_S$, but...
 - Require move to $\Upsilon(5s)$ resonance (messier)
 - Time dependent B_s mixing not possible.
- \Rightarrow Have to find another way.

Review - What B-Factories Do...

- Make LOTS of $b\bar{b}$ pairs at the $\Upsilon(4S)$ resonance in an asymmetric collider.
- Detect the decay of one *B* to a CP eigenstate.
- Tag the flavor of the other *B*.
- Reconstruct the position of the two vertices.
- Measure the *z* separation between them and calculate proper time separation as $t = \Delta z / (\beta_{CM} \gamma_{CM} c)$
- Fit to the functional form

$$e^{-\Gamma|t|} \left[\left\{ 1 - \eta_{CP} \sin 2\phi_1 \sin \Delta m \Delta t \right\} \right]$$

Write papers.

Are Two B-Factories Too Many?

- These are not discovery machines!
- Any interesting physics would manifest itself as small deviations from SM predictions.
- People would be very skeptical about such claims without independent confirmation.
- Therefore, the answer is **NO** (two is not *one* too many, anyway).

Motivations for Accelerator Parameters

- Must be asymmetric to take advantage of Lorentz boost.
- The decays of interest all have branching ratios on the order of 10⁻⁵ or lower.
 - Need lots and lots of data!
 - Physics projections assume 100 fb⁻¹ = 1yr @ 10^{34} cm⁻²s⁻¹
 - Would have been pointless if less than 10³³ cm⁻²s⁻¹

The KEKB Accelerator

RF FUJI Area

- Asymmetric Rings
 - -8.0GeV(HER)
 - 3.5GeV(LER)
- $E_{cm}=10.58GeV=$ $M(\Upsilon(4S))$
- Target Luminosity:
 10³⁴s⁻¹cm⁻²
- Circumference: 3016m
- Crossing angle: ±11mr
- RF Buckets: 5120
- \Rightarrow 2ns crossing time

Motivation for Detector Parameters

- Vertex Measurement
 - Need to measure decay vertices to <50µm to get proper time distribution.
- Tracking...
 - − Would like $\Delta p/p\approx.5\%$ to help distinguish B \to ππ decays from B \to Kπ and B \to KK decays.
 - Provide dE/dx for particle ID.
- EM calorimetry
 - Detect γ 's from slow, asymmetric π^0 's \rightarrow need efficiency down to 20 MeV.
- Hadronic Calorimetry
 - Tag muons.
 - Tag direction of K_L 's from decay $B \rightarrow \psi K_L$
- Particle ID
 - Tag strangeness to distinguish B decays from Bbar decays (low p).
 - − Tag π 's to distinguish B \rightarrow π π decays from B \rightarrow K π and B \rightarrow KK decays (high p).

Rely on mature, robust technologies whenever possible!!!

Particle ID needs

Technolog	y Pros	Cons	Comment	
TOF	Simple.	Only for low momentum.	Included in Belle	
dE/dx	Proven. Comes for free.	Only for low momentum	Included in Belle.	
TMAE base RICH	d Proven in SLD and DELPHI	Universally despised.	Rejected.	
CSI RICH	Once seemed promising.	No one could build a working prototype.	Rejected.	
DIRC	Rugged. Excellent separation.	New. Contstrants on detector geometry	Babar choice	
Aerogel threshold Cerenkov	Simple.	Barely adequate	Belle choice	

The Detector

All Finished!!

June 1, 1999: Our First Hadronic Event!!

Luminosity

The Pieces of the Analysis

- Event reconstruction and selection
- Flavor Tagging
- Vertex reconstruction
- CP fitting

J/ψ and K_S Reconstruction

$B \rightarrow \psi K_S$ Reconstruction

- In the CM, both *energy* and *momentum* of a real B⁰ are constrained.
- Use "Beam-constrained Mass":

$$M_{BC}^2 = E_{beam}^2 - \left(\sum_{p} \vec{p}\right)^2$$

123 Events

3.7 Background

All Fully Reconstructed Modes (i.e. all but ψK_L)

Mode Event		Background
$B \rightarrow \psi K_S$	123.0	3.7
All Others	71.0	7.3
Total	194.0	10.0

$B \rightarrow \psi K_L$ Reconstruction

- Measure direction (only) of K_L in lab frame
- Scale momentum so that $M(K_L + \psi) = M(B^0)$
- Transform to CM frame and look at $p(B^0)$.

$B \rightarrow \psi K_L$ Signal

131 Events
54 Background

Complete Charmonium Sample

Mode	N_{ev}	N_{bkgd}
$J/\psi(\ell^+\ell^-)K_S(\pi^+\pi^-)$	123	3.7
$J/\psi(\ell^+\ell^-)K_S(\pi^0\pi^0)$	19	2.5
$\psi(2S)(\ell^{+}\ell^{-})K_{S}(\pi^{+}\pi^{-})$	13	0.3
$\psi(2S)(J/\psi\pi^{+}\pi^{-})K_{S}(\pi^{+}\pi^{-})$	11	0.3
$\chi_{c1}(\gamma J/\psi)K_S(\pi^+\pi^-)$	3	0.5
$\eta_c(K^+K^-\pi^0)K_S(\pi^+\pi^-)$	10	2.4
$\eta_c(K_S K^+ \pi^-) K_S(\pi^+ \pi^-)$	5	0.4
$J/\psi(\ell^+\ell^-)\pi^0$	10	0.9
Sub-total	194	11
$J/\psi(\ell^+\ell^-)K_L$	131	54
Total	325	65

Flavor Tagging

Statistically, B^0 's will tend to produce high momentum e^+, μ^+ , and/or K^+ , while $\overline{B^0}$'s will produce the opposites.

Flavor Tagging (Slow Pion)

 B^0 's will tend to produce slow π^- .

Event by Event Tagging Quality

If we tag events wrongly, we'll measure CP violation as

$$p(B_{tagged}^{0} \to f_{CP}) \propto e^{-\Gamma t} \left[(1 - w)(1 - \sin 2\phi_1 \sin \Delta m \Delta t) + w(1 + \sin 2\phi_1 \sin \Delta m \Delta t) \right]$$
$$= e^{-\Gamma t} \left[\left\{ 1 - (1 - 2w) \sin 2\phi_1 \sin \Delta m \Delta t \right\} \right]$$

So the measurement is *diluted* by a factor $(1-2w) \equiv r$ Ideally, we can determine this on an event by event basis to be used in the CP fit

Example, for high-p lepton

Multi-dimensional Flavor Tagging

Comparison Between MC and Data

Tagging Efficiency

TABLE I. Experimentally determined event fractions (f_l) and incorrect flavor assignment probabilities (w_l) for each r interval.

l	r	f_l	w_l
1	0.000 - 0.250	0.393 ± 0.014	$0.470^{+0.031}_{-0.035}$
2	0.250 - 0.500	0.154 ± 0.007	$0.336^{+0.039}_{-0.042}$
3	0.500 - 0.625	0.092 ± 0.005	$0.286^{+0.037}_{-0.035}$
4	0.625 - 0.750	0.100 ± 0.005	$0.210^{+0.033}_{-0.031}$
5	0.750 - 0.875	0.121 ± 0.006	$0.098^{+0.028}_{-0.026}$
6	0.875 - 1.000	0.134 ± 0.006	$0.020^{+0.023}_{-0.019}$

Experimentally determined w values in each *r* region

Tagging efficiency $\varepsilon_T = 99.4\%$ (vs. 99.3% in MC)

Effective efficiency $\varepsilon_{\text{eff}} = \varepsilon_{\text{T}} (1-2\text{w})^2 = 27.0\%$ (vs. 27.4% in MC)

Vertex Reconstruction

- Common requirements in vertexing
 - # of associated SVD hits > 2 for each track
 - IP constraint in vertex reconstruction
- *CP* side vertex reconstruction
 - Event is rejected if reduced $\chi^2 > 100$.
- Tag side vertex reconstruction
 - Track parameters measured from *CP* vertex must satisfy:
 - $|\Delta z| < 1.8$ mm, $|\sigma z| < 500$ µm, $|\Delta r| < 500$ µm
 - Iteration until reduced χ^2 < 20 while discarding worst track.
- $|z_{CP} z_{\text{tag}}| < 2\text{mm} \ (\approx 10 \tau_B)$

Overall efficiency = \sim 87%. In total 282 events for the CP fit.

CP Fit (Probability Density Function)

$$f(\Delta t; \sin 2\phi_1) = e^{-\frac{|\Delta t|}{\tau_B}} \left(1 \pm \sin 2\phi_1 \sin x_d \frac{\Delta t}{\tau_B} \right)$$

$$PDF = \int (1 - f_{BG}) f(t') R(t' - \Delta t) dt' + f_{BG} PDF_{BG}(\Delta t)$$

- • f_{BG} = background fraction. Determined from a 2D fit of E vs M.
- • $R(\Delta t)$ = resolution function. Determined from D^* 's and MC.
- • $PDF_{BG}(\Delta t)$ = probability density function of background. Determined from ψK sideband (210 events).

Resolution Function

Fit with a double-Gaussian...

Test of Vertexing – B Lifetime

Mode Lifetime (ps)

$$B^{0} o D^{+}\pi^{-} ext{ 1.59}_{-.08}^{+.09}$$
 $D^{*+}\pi^{-} ext{ 1.65}_{-.10}^{+.11}$
 $D^{*+}\rho^{-} ext{ 1.50} \pm 0.11$
Combined 1.59 ± 0.05
 $D^{*+}l^{-}\nu ext{ 1.52} \pm 0.05$

$$B^{-} \to D^{0} \pi^{-} \quad 1.68 \pm 0.05$$
 $D^{*0} l^{-} \nu \quad 1.63 \pm 0.06$

The Combined Fit (All Charmonium States)

$$\sin 2\phi_1 = .58^{+.32}_{-.34}(stat)$$

Individual Subsamples

Mode	Fit (stat. err.)	
Non-CP	0.065 ± 0.075	
$B \rightarrow \psi K_S$	$1.21^{+.40}_{47}$	
$B \rightarrow \psi K_L$	-0.04 ± 0.60	
CP = -1	$0.82^{+.36}_{41}$	
CP = +1	$0.10^{+.57}_{60}$	
All CP	$0.58^{+.32}_{34}$	

Consistency Check

Plot asymmetry in individual time bins...

Sources of Systematic Error

Source	σ +	σ.
Wrong tag fraction	+.05	07
Resolution for signal	+.01	01
Background Shape	+.01	01
Physics Parameters	+.03	04
IP Profile	+.02	01
Background (not K_L)	+.03	02
Background (K_L)	+.05	05
Total	+.09	10

Bottom Line

$$\sin 2\phi_1 = .58^{+.32}_{-.34} (stat)^{+.09}_{-.10} (syst.)$$

Published in **Phys.Rev.Lett. 86, 2509 (2001)**

Other Recent Publications

- "Measurement of B_d^0 B_d^0 -bar Mixing Rate from the Time Evolution of Dilepton Events at Upsilon(4S)" (to appear in *PRL*)
- "A Measurement of the Branching Fraction for the Inclusive B->Xs gamma Decays with Belle" (*submitted to PLB*)
- "Measurement of Inclusive Production of Neutral Pions from Upsilon(4S) Decays" (*submitted to PRL*)

+ Several More in the Pipeline!!

Summary and Outlook

- Belle is working very well!!
- Our current value of $sin2\phi_1$, based on 10.5 fb⁻¹ of data is

$$\sin 2\phi_1 = .58^{+.32}_{-.34} (stat)^{+.09}_{-.10} (syst.)$$

• This is consistent with the BaBar value of $\sin 2\beta = .34 \pm .20(stat) \pm .05(syst.)$ and with other previous results (CDF, LEP)

- The probability of observing this value if CP is conserved is 4.9%
- The next few years should be very exciting!