$$\bigcirc \frac{1}{6}$$

$$f_{x_1} x_2(2,3) = f_{x_1}(2) \cdot f_{x_2}(3)$$

$$\Rightarrow \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

$$\bigcirc \frac{1}{12}$$

$$\frac{1}{36}$$

$$\bigcirc \frac{1}{18}$$

2) The joint probability mass function of two discrete random variables X and Y is given in Table 1.1.1. Which of the following are possiable values of a and b? $C \cap C \cap C$

1 point

YX	0	1	2	3
1	$\frac{1}{24}$	$\frac{2}{24}$	$\frac{3}{24}$	$\frac{4}{24}$
2	0	$\frac{1}{24}$	a	b
3	0	0	$\frac{1}{24}$	0

16? If PMF
=> Sum of probabilities = 1
=>
$$\frac{1}{24} + \frac{2}{24} + \frac{3}{24} + \frac{4}{24} + \frac{1}{24} + \frac{1}{24} + \frac{1}{24} = 1$$

=)
$$a+b=1-\frac{12}{24}$$
=) $a+b=\frac{1}{2}$

Table 1.1.1: Joint PMF of X and Y.

3) From a well shuffled deck of 52 cards, four cards are selected at random. Let the random variable X denote the number 1 point of queens drawn, and let the random variable Y denote the number of kings drawn. Find $f_{XY}(2,1)$.

Total vo. of kings =
$$1 \times 4 = 4$$

$$\Rightarrow$$
 $f_{xy}(2,1) = \frac{4}{52} \times \frac{3}{51} \times \frac{4}{50} \times \frac{44}{49} \times \frac{41}{21}$

The joint probability mass function of two discrete random variables X and Y is given by

$$g_{XY}(x,y)=rac{xy}{9}$$
 , $\qquad x,y\in\{1,2\}.$

4) Find P(X + Y = 1).

$$P(X+Y=1)=0$$

Min values n and y can take = 1,1

5) Find
$$P(X - Y = 1)$$
.

$$P(\chi - \gamma = 1) = g_{\chi \gamma}(2, 1)$$

$$\Rightarrow \frac{2}{9}$$