LINE INTEGRALS

- Scalar Line Integrals
- Vector Line Integrals

SCALAR LINE INTEGRALS

SCALAR LINE INTEGRALS

DEFINITION

The integral of f along C is

$$\int_C f ds = \int_a^b f(\mathbf{c}(t)) \, ig| \mathbf{c}'(t) ig| dt$$

SCALAR LINE EXAMPLES

EXAMPLE

$$\mathbf{c}(t) = (\cos t, \sin t, t)$$

$$f(x,y,z) = x^2 + y^2 + z^2$$

VECTOR LINE INTEGRALS

WORK

$$W=F\cdot V$$

WORK ALONG A CURVE

$$W = \int_C \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds = \int_a^b \overrightarrow{\mathbf{F}}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt$$

$$ds = |\mathbf{c}'| dt \quad \overrightarrow{\mathbf{T}} = rac{\mathbf{c}'}{|\mathbf{c}'|}$$

EXAMPLE

EXAMPLE

Calculate
$$\int_C \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds$$
 where

$$\overrightarrow{\mathbf{F}}(x,y)=(xy,x+y^2)$$
 $\mathbf{c}(t)=(t,t^2),0\leq t\leq 1$

2D NOTATION

DEFINITION

For
$$\overrightarrow{\mathbf{F}} = (P,Q)$$
 and $c(t) = (x(t),y(t))$

$$egin{align} \int_C \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds &= \int_a^b P rac{dx}{dt} dt + Q rac{dy}{dt} dt \ &= \int_C P dx + Q dy. \end{aligned}$$

3D NOTATION

DEFINITION

For
$$\overrightarrow{\mathbf{F}} = (P,Q,R)$$
 and $c = (x(t),y(t),z(t))$

$$egin{aligned} \int_C \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} ds &= \int_a^b P rac{dx}{dt} dt + Q rac{dy}{dt} dt + R rac{dz}{dt} dt \ &= \int_C P dx + Q dy + R dz. \end{aligned}$$

EXAMPLE

EXAMPLE

$$\int_C x dx + y dy + z dz$$

along $\mathbf{c}(t) = (\sin t, \cos t, t)$, $0 \leq t \leq 2\pi$.