K+2 & the combined precision, such that x+2 & the combined The integral over μ of a normal PDF 4 1, over while range The integral removes μ -terms, leaving ν with ν , ν , ν and λ . The integral that way to solve ν : Som exp(-\frac{1}{2}(k+2)(\mu \frac{ky+3v}{k+2})^2)d\mu as we plug a back in

(a way Jound in eq. (2)).

This integral by the Gaussian kernel. The regult by (where 20 by a normaliser): $\left(\frac{2\pi}{\kappa+2}\right)^{\frac{1}{2}}$. In addition to using 2π to normalise, we add the variance of well. In our case, the variance is combined poecision - kta. An increase in the combined precision cause a decrease in the variance, in turn tightening the speed of the distribution The normalisation factor, here $(2\pi)^{-\frac{1}{2}}$ enjury that f(y|H) obeys the property of Gaussian PDFs that the integral over the range of all possible values summy up to 1. Plugging they back in the normal distribution, we obtain: g(y/1/1)= 1-2 g(y, m) g(m) dm J(y/H1)= (20) -2 exp(-2 kg (y-v)2)