超フィルターと実数の集合論

でぃぐ 2023 年 3 月*日 作成

概要

目次

1 基数不変量の定義 1

2 痩せフィルター 1

1 基数不変量の定義

定義 1.1. (1) ω^{ω} 上の関係 \leq^* を $x \leq^* y$ とは、ある $n \in \omega$ があって全ての $m \geq n$ で $x(m) \leq y(m)$ であることと定める。

- (2) $\mathcal{P}(\omega)$ 上の関係 \subseteq^* を $x \subseteq^* y$ とは、 $x \setminus y$ が有限集合となることと定める。
- (3) $F \subseteq \omega^{\omega}$ が unbounded family であるとは $(\forall x \in \omega^{\omega})(\exists y \in F)(y \not\leq^* x)$ を満たすことを言う。 $\mathfrak{b} = \min\{|F| : F \subseteq \omega^{\omega}$ は unbounded family} と定め、bounding number という。
- (4) $F \subseteq \omega^{\omega}$ が dominating family であるとは $(\forall x \in \omega^{\omega})(\exists y \in F)(x \leq^* y)$ を満たすことを言う。 $\mathfrak{d} = \min\{|F| : F \subseteq \omega^{\omega}$ は dominating family} と定め、dominating number という。
- (5) $\mathcal{F} \subseteq \mathcal{P}(\omega)$ が ω 上の**超フィルターのベース**であるとは、 $\{A \subseteq \omega : (\exists B \in \mathcal{F})(B \subseteq^* A)\}$ が ω 上 の非単項超フィルターとなることを言う。 $\mathfrak{u} = \min\{|\mathcal{F}| : \mathcal{F}$ は ω 上の超フィルターのベース $\}$ と 定め、ultrafilter number という。
- (6) $\mathcal{G} \subseteq [\omega]^{\omega}$ が groupwise dense であるとは、 \mathcal{G} がほとんど部分集合の関係で閉じていて、かつ、任意の区間分割 $\langle I_n : n \in \omega \rangle$ について、ある $A \in [\omega]^{\omega}$ があって、 $\bigcup_{n \in A} I_n \in \mathcal{G}$ となることを言う。 $\mathfrak{g} = \min\{|\mathcal{G}| : \mathcal{G} \subseteq [\omega]^{\omega}$ は groupwise dense $\}$ と定め、groupwise density という。

以下の図のような順序が知られている。ここで矢印 $A \to B$ は $A \le B$ が ZFC で証明できることを意味する。証明は全て Blass の記事 [Bla10] に載っている。

2 痩せフィルター

関数 f が有限対一とは、任意の 1 点集合の逆像が有限となることを言う。

定義 2.1. $\mathcal{F} \subseteq \mathcal{P}(\omega)$ と $f: \omega \to \omega$ に対して、

$$f(\mathcal{F}) = \{ X \subseteq \omega : f^{-1}(X) \in \mathcal{F} \}$$

と定める。

定義 2.2. フィルター F が痩せフィルター (feeble filter) であるとは、ある有限対一の関数 $f: \omega \to \omega$ が存在して、f(F) が Fréchet フィルターに一致することを言う。

定理 2.3. b 個未満の集合で生成されるフィルターはすべて痩せフィルターである。なおかつ、この b 個未満というのは次の意味で最適:痩せてないフィルターで b 個の集合で生成されるものがある。

証明. フィルター F とそのベース \mathcal{B} で $|\mathcal{B}|$ < \mathfrak{b} なものを考える。各 $A \in \mathcal{B}$ に対して、区間分割 Π_A であって、そのどの区間も A の元を持つものを取る。 Π_A たちの個数は \mathfrak{b} 個未満なので、ある一個の区間分割 Π' が取れて、全ての Π_A $(A \in \mathcal{B})$ を支配する。すると F のどの元 A についても A は Π' に属する区間の有限個を除いた全てと交わる。よって命題???より痩せフィルターである。

参考文献

[Bla10] Andreas Blass. "Combinatorial cardinal characteristics of the continuum". *Handbook of set theory*. Springer, 2010, pp. 395–489.