Written Exercises, Pages 107-109

- 1. 256, 1024
- 5. 17, 23
- 7. 15. 4
- 9, 500, 250
- 11. none 13. none

- 15. $1234 \times 9 + 5 = 11111$
- $17. 9999^2 = 99980001$

21. True.

Given: ABCDE is a reg. pentagon.

Prove: $\overline{AC} \cong \overline{AD} \cong \overline{BE} \cong \overline{BD} \cong \overline{CE}$

27. a. Opp. △ are ≅. b. If both pairs of opp. △ of a quad. are ≅, then opp. sides are ||. Given: ABCD is a quad.; $m \angle A = m \angle C$; $m \angle B = m \angle D$ Prove; $\overline{AD} \parallel \overline{BC}$; $\overline{AB} \parallel \overline{CD}$ Proof: 1. $m \angle A + m \angle B + m \angle C + m$ $m \angle D = 360$ (The sum of the meas, of the int. \triangle of a quad, is 360.) 2. $m \angle A = m \angle C$; $m \angle D = m \angle B$ (Given) 3. $2m \angle A + 2m \angle B = 360$; $2m \angle B + 2m \angle C = 360$ (Substitution Prop.) 4. $m \angle A + m \angle B =$ 180; $m \angle B + m \angle C = 180$ (Div. Prop. of =) 5. $\angle A$ and $\angle B$ are supp.; $\angle B$ and $\angle C$ are supp. (Def. of supp. \triangle) 6. $\overline{AD} \parallel \overline{BC}$; $\overline{AB} \parallel \overline{CD}$ (If 2 lines are cut by a trans. and s-s. int. \triangle are supp., then the lines are \parallel .) c. Both **29.** 5; 9; 14; 20; $\frac{n(n-3)}{2}$ pairs of opp. \triangle of a quad. are \cong if and only if opp. sides are \parallel .

Self-Test 2, Page 110

- 1. acute 2. scalene
- **3.** 60 **4.** 105, 35 **5.** 19 9. equilateral, equiangular 10. 360, 144 11. 6, 60
 - - **12.** 32 **13.** 32
- **6.** y = 50, z = 60 **7.** x = 1, x = 7**14.** 36 **15.** 16

Chapter Review, Pages 111-112

- 7. v = 20 9. \overrightarrow{DE} ; $\angle A$ is supp. to $\angle ADE$. 11. See page 85. 3. alt. int. 5. 105, 105 **13.** 180 15. $\angle 3 \cong \angle 6$; If 2 \triangle are supp. of $\cong \triangle$, then the 2 \triangle are \cong . $\angle 2 \cong \angle 8$; If 2 \triangle of one \triangle are \cong to
- $2 \triangle$ of another \triangle , then the third \triangle are \cong . 17. 160 19. 12

Algebra Review, Page 113

- **3.** (0, 0) **5.** (3, 5) **7.** (4, 0) **17.** 3 19. M, N, P 21. V, W 23-34.
- 9. (-5,0)
- 11. (-2, 2)
- 13. (-2, -3)35. (2, 1)
 - 15. K. O. S **37.** (0, 3)

39. (-4, -2)

Cumulative Review, Pages 114-115

1. sometimes 3. sometimes 5. always

- 9. not possible
- 11. x = 13; $m \angle PQR = 156$
- 13. 15, 75, 90 15. 90 17. 90 **19.** 60 21. 60 23. False. If 2 lines are |, then they do not intersect; true. 25. True. If an \angle is not obtuse, then it is acute; false. 27. Vert. ∠ are ≅.
- 31. The meas, of an ext. \angle of a \triangle = the sum of the meas, of the 2 remote int. \triangle .
- 33. The sum of the meas, of the \triangle of a \triangle is 180. **35.** *X* **37.** pentagon 39. ≅
- 43. 1080 45. 1. $\overline{WX} \perp \overline{XY}$ (Given) 2. \angle 1 is comp. to \angle 2. (If the ext. sides of adj. \triangle are \bot , then the \triangle are comp.) 3. $\angle 1$ is comp. to $\angle 3$. (Given) 4. $\angle 2 \cong \angle 3$ (Comps. of same \angle are \cong .)