Calcul Numeric – Tema #1

- **Ex.1** Folosind metoda bisecției pentru k = 2 să se aproximeze manual soluția ecuației $8x^3 + 4x 1 = 0$ din intervalul [0, 1]. Să se evalueze eroarea de aproximare.
- **Ex.2** Fie ecuația $x^3 7x^2 + 14x 6 = 0$
 - a. Să se construiască în Matlab o procedură cu sintaxa $[x_{aprox}] = \mathbf{MetBisectie}(f, a, b, \varepsilon)$.
 - b. Într-un fișier script să se construiască în Matlab graficul funcției $f(x) = x^3 7x^2 + 14x 6$ pe intervalul [0, 4]. Să se calculeze soluția aproximativă x_{aprox} cu eroarea $\varepsilon = 10^{-5}$, apelând procedura **MetBisectie** pentru fiecare interval în parte: 1. [0, 1]; 2. [1; 3, 2]; 3. [3, 2; 4].
 - c. Să se construiască punctele $(x_{aprox}, f(x_{aprox}))$ calculate la b. în același grafic cu graficul funcției.

Ex.3

- a. Să se construiască în Matlab graficele funcțiilor $y = e^x 2$ și $y = cos(e^x 2)$;
- b. Să se implementeze în Matlab metoda bisecției pentru a calcula o aproximare a soluției ecuației $e^x 2 = \cos(e^x 2)$ cu eroarea $\varepsilon = 10^{-5}$ pe intervalul $x \in [0, 5; 1, 5]$.
- **Ex.4** Să se găsească o aproximare a valorii $\sqrt{3}$ cu eroarea $\varepsilon = 10^{-5}$.
- **Ex.5** Fie ecuația $x^3 7x^2 + 14x 6 = 0$. Se știe că ecuația are soluție unică pe intervalul [0; 2, 5]. Justificați de ce șirul generat de metoda Newton Raphson nu converge către soluția din intervalul dat, dacă valoarea de pornire este $x_0 = 2$. Alegeți o valoare pentru $x_0 \in [0; 2, 5]$, astfel încât șirul construit de metoda N-R să conveargă la soluția din intervalul dat.
- **Ex.6** Fie ecuația $x^3 7x^2 + 14x 6 = 0$.
 - a. Să se construiască în Matlab o procedură cu sintaxa $[x_{aprox}] = \mathbf{MetNR}(f, df, x_0, \varepsilon)$ conform algoritmului metodei Newton-Raphson.
 - b. Într-un fişier script să se construiască graficul funcției $f(x) = x^3 7x^2 + 14x 6$ pe intervalul [0,4]. Alegeți din grafic trei subintervale și valorile inițiale x_0 corespunzătoare fiecărui subinterval, astfel încât să fie respectate ipotezele teoremei I.2. Aflați cele trei soluții apelând procedura **MetNR** cu eroarea de aproximare $\varepsilon = 10^{-3}$.
- **Ex.7** Fie ecuația $8x^3 + 4x 1 = 0, x \in [0, 1]$.
 - a. Să se demonstreze că ecuația dată admite soluție unică.
 - b. Să se calculeze x_2 prin metodele Newton-Raphson, secantei și poziției false.
- **Ex.8** Fie ecuația $x^3 18x 10 = 0$.
 - a. Într-un fișier script să se construiască graficul funcției $f(x) = x^3 18x 10$ pe intervalul [-5, 5].
 - b. Să se construiască în Matlab o procedură cu sintaxa $[x_{aprox}] = \mathbf{MetSecantei}(f, a, b, x_0, x_1, \varepsilon)$ conform algoritmului metodei secantei.

c. Să se construiască în Matlab o procedură cu sintaxa $[x_{aprox}] = \mathbf{MetPozFalse}(f, a, b, \varepsilon)$ conform algoritmului metodei poziției false.

Indicație: Folosiți următoarea echivalență:

```
do
bloc_instructiuni;
while expresie;
```

echivalent

```
cond=1;
while cond==1
bloc_instructiuni;
if negatie(expresie)
cond=0;
endif
endwhile
```

- d. Alegeți din grafic trei subintervale, astfel încât pe fiecare subinterval să fie respectate ipotezele teoremei I.3. Aflați cele trei soluții apelând procedura **MetSecantei** cu eroarea de aproximare $\varepsilon = 10^{-3}$. Construiți punctele $(x_{aprox}, f(x_{aprox}))$ pe graficul funcției.
- e. Alegeți din grafic trei subintervale, astfel încât pe fiecare subinterval ecuația f(x) = 0 admite o soluție unică. Aflați cele trei soluții apelând procedura **MetPozFalse** cu eroarea de aproximare $\varepsilon = 10^{-3}$. Construiți punctele $(x_{aprox}, f(x_{aprox}))$ pe graficul funcției.