Modelo Futuros Mini Ibovespa - Dados Históricos

O Mercado Futuro é o ambiente onde você pode ganhar com a alta ou baixa de um determinado ativo, seja ele uma commodity (Milho, Café, Boi Gordo), uma moeda (como o dólar), um Índice (Bovespa, Índice S&P 500) ou mesmo uma taxa de juros. Nele, são negociados contratos futuros.

O mini índice é um contrato futuro derivado do Índice Bovespa, ou seja, é um ativo que tem como base o sobe e desce desse índice. Como esse tipo de operação envolve **risco considerável** e **oscilações frequentes no mercado**, ela é indicada apenas para aqueles que se encaixam no perfil de investidor arrojado.

Neste trabalho iremos implementar uma RNNs para realizar a predição diária do Mini Índice da Ibovespa.

O dataset "BVSP.csv" possui informações dispostas em colunas :

- Date: Data das operações na bolsa (diária)
- Close: Valor de Fechamento do Índice da Ibovespa (no dia)
- Open: Valor da Abertura do Índice da Ibovespa (no dia)
- High: Valor máximo do Índice da Ibovespa (no dia)
- Low: Valor mínimo do Índice da Ibovespa (no dia)
- Vol: Volume de contratos negociados (no dia)

Bibliotecas

In [208]:

```
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM
import plotly.graph_objects as go
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Carregando os dados

Vamos começar lendo o arquivo FuturosMiniBovespa.csv em um dataframe do pandas, mas antes vamos dar uma olhadinha no gráfico de variação do último mês do índice Ibovespa.

```
In [209]:
```

```
DataSet=pd.read_csv('BVSP.csv')
```

```
In [210]:
```

Rede Neural Recorrente (RNN)

Antes de avançar para LSTM, primeiro vamos introduzir o conceito de Redes Recorrentes. Elas são redes utilizadas para reconhecer padrões quando os resultados do passado influenciam no resultado atual. Um exemplo disso são as séries temporais, em que a ordem dos dados é muito importante.

Nesta arquitetura, um neurônio tem como entrada seu estado anterior, além das entradas da camada anterior. A imagem abaixo ilustra esta nova modelagem.

Observe que H representa o estado. Assim, no estado H_1, o neurônio recebe como parâmetro de entrada X_1 e, além disso, seu estado anterior H_0. O principal problema desta arquitetura é que os estados mais antigos são esquecidos muito rapidamente. Ou seja, para sequências em que precisamos lembrar além de um passado imediato, as redes RNNs são limitadas.

Rede LSTM

Uma rede LSTM tem origem em uma RNN (Rede Neural Recorrente). Mas ela resolve o problema de memória mudando sua arquitetura.

Nesta nova arquitetura, cada neurônio possui 3 gates, cada um com uma função diferente. São eles:

- · Input Gate
- · Output Gate
- · Forget Gate

Agora, um neurônio LSTM recebe entradas de seu estado anterior, assim como ocorria na Rede Recorrente:

Agora vamos ler o arquivo do período desejável

In [211]:

```
DataSet=pd.read_csv('BVSP.csv')
DataSet=DataSet.dropna()
DataSet.head()
```

Out[211]:

	Date	Open	High	Low	Close	Adj Close	Volume
0	2016-05-16	51803.0	52305.0	51585.0	51803.0	51803.0	3529500
1	2016-05-17	51795.0	51946.0	50689.0	50839.0	50839.0	3871100
2	2016-05-18	50836.0	51373.0	50301.0	50562.0	50562.0	4072500
3	2016-05-19	50556.0	50556.0	49588.0	50133.0	50133.0	3905500
4	2016-05-20	50133.0	50822.0	49723.0	49723.0	49723.0	3254500

In [212]:

DataSet.describe()

Out[212]:

	Open	High	Low	Close	Adj Close	Volur
count	1235.000000	1235.000000	1235.000000	1235.000000	1235.000000	1.235000e+
mean	85522.814575	86378.572470	84718.676923	85583.652632	85583.652632	5.357334e+
std	19485.568423	19617.903994	19348.696298	19496.786975	19496.786975	3.113809e+
min	48468.000000	49057.000000	48067.000000	48472.000000	48472.000000	0.000000e+
25%	67957.500000	68658.000000	67284.500000	67976.500000	67976.500000	3.284300e+
50%	84928.000000	85684.000000	84032.000000	84977.000000	84977.000000	4.189000e+
75%	101082.000000	102080.500000	100061.500000	101168.000000	101168.000000	6.808250e+
max	125075.000000	125324.000000	123227.000000	125077.000000	125077.000000	2.176870e+
4						•

Inicialmente iremos criar uma RNN baseada apenas no Valor de Abertura

In [213]:

```
plt.scatter(DataSet['Date'],DataSet['Open'],)
plt.show()

base_treinamento = DataSet.iloc[:, 1:2].values

#DataSet.drop(['Date','Close','High','Low', 'Volume'],axis=1,inplace=True)
```


In [214]:

```
base_treinamento
```

```
Out[214]:
```

Normalizar os dados do Mini Índice

In [215]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler(feature_range=(0,1))
DataScaled=scaler.fit_transform(base_treinamento)
```

In [216]:

```
print(DataScaled)
```

```
[[0.04353388]
[0.04342945]
[0.03091101]
...
[0.97244377]
[0.92998029]
[0.94313836]]
```

Definição dos previsores

In [217]:

```
previsores = []
preco_real = []
NRecursao = 90
DataSetLen = len(DataScaled)
print(DataSetLen)
```

1235

In [218]:

```
for i in range(NRecursao, DataSetLen):
    previsores.append(DataScaled[i-NRecursao:i,0])
    preco_real.append(DataScaled[i,0])

previsores, preco_real = np.array(previsores), np.array(preco_real)
```

In [219]:

```
previsores.shape
```

Out[219]:

(1145, 90)

Tranformar para o formato do Tensor do Keras


```
In [220]:
previsores = np.reshape(previsores, (previsores.shape[0], previsores.shape[1], 1))
In [221]:
previsores.shape
Out[221]:
(1145, 90, 1)
```

Estrutura da Rede Neural

```
In [221]:
```

In [222]:

```
# Camada de entrada
regressor = Sequential()
regressor.add(LSTM(units = 100, return_sequences = True, input_shape = (previsores.
regressor.add(Dropout(0.3))

# Cada Oculta 1
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.3))

# Cada Oculta 2
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.3))

# Cada Oculta 3
regressor.add(LSTM(units = 50))
regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.3))

# Camada de Saída
regressor.add(Dense(units = 1, activation = 'linear'))
```

Construindo a Rede

In [223]:

```
Epoch 1/20
67 - mean absolute error: 0.2036
Epoch 2/20
5 - mean absolute error: 0.1194
Epoch 3/20
36/36 [============== ] - 7s 204ms/step - loss: 0.017
4 - mean absolute error: 0.1010
Epoch 4/20
7 - mean absolute error: 0.0952
Epoch 5/20
5 - mean absolute error: 0.0842
Epoch 6/20
36/36 [============== ] - 7s 201ms/step - loss: 0.016
3 - mean absolute error: 0.0930
Epoch 7/20
36/36 [============== ] - 8s 211ms/step - loss: 0.010
5 - mean absolute error: 0.0751
Epoch 8/20
36/36 [============== ] - 7s 196ms/step - loss: 0.011
0 - mean absolute error: 0.0771
Epoch 9/20
1 - mean absolute error: 0.0650
Epoch 10/20
5 - mean absolute error: 0.0792
Epoch 11/20
9 - mean_absolute_error: 0.0613
Epoch 12/20
4 - mean_absolute_error: 0.0643
Epoch 13/20
8 - mean absolute error: 0.0547
Epoch 14/20
3 - mean_absolute_error: 0.0589
Epoch 15/20
36/36 [============== ] - 7s 202ms/step - loss: 0.007
2 - mean absolute error: 0.0632
Epoch 16/20
36/36 [=============== ] - 7s 203ms/step - loss: 0.005
4 - mean_absolute_error: 0.0556
Epoch 17/20
8 - mean_absolute_error: 0.0615
Epoch 18/20
3 - mean_absolute_error: 0.0526
Epoch 19/20
```

Conjunto de dados para o Teste

In [224]:

```
DataSet_teste=pd.read_csv('BVSP.csv')
preco_real_teste = DataSet_teste.iloc[:, 1:2].values
base_completa = pd.concat((DataSet['Open'], DataSet_teste['Open']), axis = 0)
entradas = base_completa[len(base_completa) - len(DataSet_teste) - NRecursao:].valu
entradas = entradas.reshape(-1, 1)
entradas = scaler.transform(entradas)
```

In [225]:

```
DataSetTestLen = len(DataSet_teste)
NPredictions = 90

X_teste = []
for i in range(NRecursao, DataSetTestLen+NRecursao):
    X_teste.append(entradas[i-NRecursao:i, 0])

X_teste = np.array(X_teste)
X_teste = np.reshape(X_teste, (X_teste.shape[0], X_teste.shape[1], 1))

previsoes = regressor.predict(X_teste)
previsoes = scaler.inverse_transform(previsoes)
```

In [226]:

```
RNN=[]
predictions_teste=X_teste[0].T
predictions_teste=np.reshape(predictions_teste, (predictions_teste.shape[0], predictions_teste[0][NRecursao-1][0]=regressor.predict(predictions_teste)[0][0]
RNN.append(regressor.predict(predictions_teste)[0])

for i in range(NPredictions-1):
    predictions_teste=np.roll(predictions_teste,-1)
    predictions_teste[0][NRecursao-1][0]=regressor.predict(predictions_teste)[0][0]
    RNN.append(regressor.predict(predictions_teste)[0])
RNN = scaler.inverse_transform(RNN)

print(RNN.mean())
print(previsoes.mean())
print(preco_real_teste.mean())
```

101244.89507566756 85178.71 85522.81457489879

In [227]:

```
plt.plot(preco_real_teste, color = 'red', label = 'Preço real')
plt.plot(previsoes, color = 'blue', label = 'Previsões')
#plt.plot(RNN, color = 'green', label = 'RNN')

plt.title('IBOBESPA')
plt.xlabel('Tempo')
plt.ylabel('Valor')
plt.legend()
plt.show()
```


In [228]:

```
np.shape(previsoes)
```

Out[228]:

(1235, 1)

In [228]:			