Trabajo regresión lineal múltiple

Estudiantes

Rojas Martinez, Ivan Santiago Hernandez Ruiz, Juan Sebastian Londoño Montoya, Wilson Duván Perez Garcia, Pablo

Docente

Isabel Cristina Ramirez Guevara

Asignatura

Análisis de Regresión

Sede Medellín Enero de 2022

Índice

1.	Bas	Base de datos										
	1.1.	1.1. Breve Descripción de los Datos contextualizando el problema y explicando cada una de las variables involucradas en el modelo										
2.	Aná	lisis descriptivo	2									
	2.1.	Grafico de dispersión con Matriz de Correlaciones y conclusiones	2									
3.	Mod	delo Ajustado de Regresion Lineal múltiple (MRLM)	3									
	3.1.	Tabla de parámetros ajustados	3									
	3.2.	Ecuación Ajustada	3									
	3.3.	Tabla ANOVA	3									
	3.4.	Prueba de significancia del Modelo	3									
	3.5.	Coeficiente de determinación R^2 : proporción de la variabilidad total de la respuesta explicada por el modelo y opiniones al respecto	4									
4.	Coe	ficientes de regresión estandarizados	4									
	4.1.	Tabla de coeficientes estandarizados	4									
5.	Sign	Significancia individual de los parámetros del modelo										
	5.1.	Tabla de la significancia individual de los parámetros	5									
	5.2.	Pruebas de hipótesis	5									
6.	Sun	Sumas de cuadrados extras										
	6.1.	Prueba de hipótesis	6									
	6.2.	Modelo completo y reducido	6									
	6.3.	Estadístico de prueba	7									
	6.4.	Tabla del Test lineal general	7									
7.	Sun	nas de cuadrados tipo I y tipo II	7									
	7.1.	Sumas de cuadrados secuenciales	7									
	7.2.	Tabla anova	7									
	7.3.	Sumas de cuadrados parciales	8									
	7.4.	Tabla Anova	8									

8.	Residuales estudentizados vs. Valores ajustados	8
	8.1. Gráfico de los residuales estudentizados vs. Valores ajustados	9
9.	Gráfico q-norm residuales estudentizados	10
	9.1. Pruebas de hipótesis	10
10). Diagnostico sobre la presencia de observaciones atípicas , de balance o \mathbf{y}/\mathbf{o} influenciales y conclusiones	10
11	.Ejercicio11	18
12	2.Ejercicio 12	20
	12.1. Matriz de correlación de las variables predictoras	20
	12.2. VIF's	21
	12.3. Proporciones de varianza	21
13	3.Ejericio13	21
	13.1. Selección según el R^2_{adj}	23
	13.2. Selección según el estadístico C_p	24
	13.3. Stepwise	25
	13.4. Selección hacia adelante o forward	32
	13.5. Selección hacia atrás o backward	37
14	Selección del modelo	39
Ír	ndice de figuras	
Ír	ndice de cuadros	
	2. Resumen de los coeficientes	3
	3. Resumen de los coeficientes	5
	4. Valores ajustados VS Residuales Estudentizados	11

Se realizará una análisis de regresión lineal múltiple(RLM):

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \varepsilon_i, \ \varepsilon^{iid} N(0, \sigma^2)$$

Con la intención de validar si dicho modelo es adecuado para explicar la posibilidad de ser admitido a una carrera de postgrado en la india teniendo en cuenta determinadas pruebas de aptitud.

1. Base de datos

1.1. Breve Descripción de los Datos contextualizando el problema y explicando cada una de las variables involucradas en el modelo.

La base de datos disponible en Kaggle corresponde a puntajes de admision creados para la predicción de las admisiones de posgrado en La India. Cuenta con 400 observaciones y 9 variables. De las cuales se consideran los primeros 100 estudiantes y 6 variables de interes por indicación de la docente.

Variables	Descripción				
Chance.of.Admit:	Posibilidad de ser admitido. Variable numérica				
continua de 0-1					
GRE Score:	Puntaje de Examen que proporciona a las				

escuelas una medida común para la comparación de la capacidad de razonamiento verbal, razonamiento cuantitativo, y habilidades para pensar y escribir de forma analítica. Variable numérica que toma valores de 294 - 340. | TOEFL Score: |Puntaje en prueba estandarizada de dominio del idioma inglés. Variable numérica que toma valores del 93 - 120 | SOP: |Puntaje en Ensayo de admisión o solicitud de postgrado. Variable numérica que toma valores del 1 - 5, tomando el valor medio entre cada par de enteros en el intervalo. | LOR: |Puntaje en Carta de recomendación. Variable numérica que toma valores del 1.5 - 5, tomando el valor medio entre cada par de enteros en el intervalo. | CGPA: |Promedio general acumulado en el pregrado. Variable numérica que toma valores del 6.8 - 9.8.

Renombrando las variables:

- GRE Score = X_1
- TOEFL Score = X_2
- $SOP = X_3$
- LOR = X_4
- CGPA = X_5

2. Análisis descriptivo

2.1. Grafico de dispersión con Matriz de Correlaciones y conclusiones

-Se observan relaciones de interés.

-La variable Chance.of.Admit (Posibilidad de ser admitido) se encuentran altamente correlacionada con las variables GRE.Score, TOFL.Score, SOP, LOR y CGPA con correlaciones de 0.808, 0.780, 0.614, 0.743 y 0.833 respectivamente. Con relaciones del tipo lineales positivas.

-La variable **CGPA** (Promedio general acumulado en el pregrado) se encuentran altamente correlaciona con las variables **GRE.Score**, **TOFL.Score**, **SOP** y **LOR** con correlaciones de **0.804**, **0.812**, **0.652** y **0.739** respectivamente. Con relaciones del tipo lineales positivas. Esto nos puede indicar redundancia en el modelo o multicolinealidad lo cual validaremos más adelante.

-La variable **GRE.Score** se encuentra altamente correlacionadas con las variables **TOFL.Score** y **CGPA**. Y moderadamente con las variables **SOP** y **LOR**.

3. Modelo Ajustado de Regresion Lineal múltiple (MRLM)

3.1. Tabla de parámetros ajustados

Cuadro 2: Resumen de los coeficientes

	Estimación	Error estándar	T_0	Valor P
β_0	-1.7723	0.3007	-5.8939	0.0000
β_1	0.0041	0.0017	2.4400	0.0166
β_2	0.0029	0.0031	0.9417	0.3488
β_3	0.0120	0.0119	1.0098	0.3152
β_4	0.0428	0.0143	3.0023	0.0034
β_5	0.0757	0.0263	2.8756	0.0050

3.2. Ecuación Ajustada

Con base en la tabla de parámetros estimados se obtiene la ecuación de regresión ajustada:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{i1} + \hat{\beta}_2 X_{i2} + \dots + \hat{\beta}_5 X_{i5}, \quad i = 1, 2, \dots, 100$$

$$\widehat{Y}_i = -1.7723 + 0.0041X_{i1} + 0.0029X_{i2} - 0.0120X_{i3} + 0.0428X_{i4} + 0.0757X_{i5}, \quad i = 1, 2, \dots, 100$$

3.3. Tabla ANOVA

	Df	Sum Sq	Mean Sq	F value	Pr(
FO(GRE.Score, TOEFL.Score, SOP, LOR, CGPA)	5	2.3674478	0.4734896	65.99381	
Residuals	94	0.6744272	0.0071748	NA	

Donde F-value =
$$F_0 = \frac{\text{MSR}}{MSE} \sim F_{5,94}$$

3.4. Prueba de significancia del Modelo

$$\begin{cases} H_0: \beta_1 = \dots = \beta_5 = 0 \\ H_1: \text{Al menos un } \beta_j \neq 0 \end{cases}$$

Analizando el **p-valor** = 2.2e-16 = 0 de la tabla ANOVA y con una confianza del 95% hay evidencia suficiente para rechazar la **hipótesis nula**. Esto quiere decir que el modelo es globalmente significativo y por lo tanto al menos una de las pruebas de aptitud ayuda a explicar la variabilidad de ser admitido a un curso de postgrado.

3.5. Coeficiente de determinación \mathbb{R}^2 : proporción de la variabilidad total de la respuesta explicada por el modelo y opiniones al respecto

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

$$R^{2} = \frac{2.3674478}{2.3674478 + 0.6744272} = 0.7782857$$

El **77.83**% de la variabilidad de la posibilidad de ser admitido es explicada por la relación con las variables GRE.Score, TOEFL.Score, SOP, LOR y CGPA.

4. Coeficientes de regresión estandarizados

Calcule los coeficientes de regresión estandarizados y concluya acerca de cuál de las variables aporta máss a la respuesta según la magnitud en valor absoluto de tales coeficientes (cuidado, no confunda esto con la significancia de los coeficientes de regresión)

4.1. Tabla de coeficientes estandarizados

	Estimación	Limites.2.5	Limites.97.5	Vif	Coef.Std
(Intercept)	-1.7722651	-2.3693009	-1.1752294	0.000000	0.0000000
GRE.Score	0.0041091	0.0007654	0.0074528	5.691210	0.0495542
TOEFL.Score	0.0029116	-0.0032277	0.0090508	5.858052	0.0194023
SOP	0.0120402	-0.0116343	0.0357148	1.928844	0.0119389
LOR	0.0428307	0.0145058	0.0711556	2.519579	0.0405706
CGPA	0.0757081	0.0234330	0.1279833	4.615227	0.0525903

Gracias a esta tabla, se puede deducir con una diferencia en el valor muy pequeña que, las variables que más aportan según el valor de sus coeficientes estandarizados son **CGPA** y **GRE.Score**

5. Significancia individual de los parámetros del modelo

Pruebe la significancia individual de cada uno de los parámetros del modelo (excepto intercepto), usando la prueba t. Establezca claramente la prueba de hipótesis y el criterio de decisión.

5.1. Tabla de la significancia individual de los parámetros

	Estimación	Error estándar	T_0	Valor P
β_0	-1.7723	0.3007	-5.8939	0.0000
β_1	0.0041	0.0017	2.4400	0.0166
β_2	0.0029	0.0031	0.9417	0.3488
β_3	0.0120	0.0119	1.0098	0.3152
β_4	0.0428	0.0143	3.0023	0.0034
β_5	0.0757	0.0263	2.8756	0.0050

Cuadro 3: Resumen de los coeficientes

De la tabla anterior, se puede observar que a nivel marginal, las variables **GRE Score**(β_1), **LOR**(β_4) y **CGPA**(β_5) son significativas en la respuesta, con un nivel de significancia de $\alpha = 0.05$.

Con el estadístico de prueba $T_0 = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)} \sim t_{94}$

Dicha afirmaciones serán contrastadas con las siguientes pruebas de hipótesis y analizando el **p-valor**.

5.2. Pruebas de hipótesis

$$\begin{cases} H_0: \beta_1 = 0 \\ H_1: \beta_1 \neq 0 \end{cases}$$

Analizando el valor- $\mathbf{p} = \mathbf{0.0166}$ del parámetro β_1 y con una confianza del $\mathbf{95}$ % hay evidencia para rechazar la hipótesis nula. Luego el parámetro β_1 es significativo.

$$\begin{cases} H_0: \beta_2 = 0 \\ H_1: \beta_2 \neq 0 \end{cases}$$

Analizando el valor-p = 0.3488 del parámetro β_2 y con una confianza del 95 % no hay evidencia para rechazar la hipótesis nula. Luego el parámetro β_2 no es significativo.

$$\begin{cases} H_0: \beta_3 = 0 \\ H_1: \beta_3 \neq 0 \end{cases}$$

Analizando el valor- $\mathbf{p} = \mathbf{0.3152}$ del parámetro β_3 y con una confianza del $\mathbf{95}$ % no hay evidencia para rechazar la hipótesis nula. Luego el parámetro β_3 no es significativo.

$$\begin{cases} H_0: \beta_4 = 0 \\ H_1: \beta_4 \neq 0 \end{cases}$$

Analizando el valor-p=0.3152 del parámetro β_4 y con una confianza del 95 % no hay evidencia para rechazar la hipótesis nula. Luego el parámetro β_4 no es significativo.

$$\begin{cases} H_0: \beta_5 = 0 \\ H_1: \beta_5 \neq 0 \end{cases}$$

Analizando el valor- $\mathbf{p} = \mathbf{0.0050}$ del parámetro β_5 y con una confianza del $\mathbf{95}$ % hay evidencia para rechazar la hipótesis nula. Luego el parámetro β_5 es significativo.

6. Sumas de cuadrados extras

Teniendo en cuenta los resultados anteriores, realice una prueba con sumas de cuadrados extras con test lineal general; especifique claramente el modelo reducido y completo, estadístico de la prueba, su distribución, cálculo de valor P, decisión y conclusión a la luz de los datos. Justifique la hipótesis que desea probar en este numeral.

$$SSR(X_1, X_4, X_5 | X_2, X_3) = SSR(X_1, X_2, X_3, X_4, X_5) - SSR(X_2, X_3)$$

6.1. Prueba de hipótesis

$$\begin{cases} H_0: \beta_2 = 0, \beta_3 = 0 \\ H_1: \beta_2 \neq 0 \lor \beta_3 \neq 0 \end{cases}$$

6.2. Modelo completo y reducido

$$MF: Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_5 X_{i5} + \varepsilon_i, \quad i = 1, 2, \dots, 100$$

$$MR: Y_i = \beta_0 + \beta_2 X_{i2} + \beta_3 X_{i3} + \varepsilon_i, \quad i = 1, 2, \dots, 100$$

6.3. Estadístico de prueba

$$F_0 = \frac{[SSR(X_1, X_4, X_5 | X_2, X_3)]/2}{MSE}$$

$$= \frac{[SSE(X_2, X_3) - SSE(X_1, X_2, X_3, X_4, X_5)]/2}{\frac{SSE(MF)}{n-k-1}} = \frac{[0.6915854 - 0.6744272]/2}{0.6744272/94}$$

$$= 1.1957338$$

6.4. Tabla del Test lineal general

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
	96	0.6915854	NA	NA	NA	NA
Ī	94	0.6744272	2	0.0171582	1.195733	0.3070405

Con un nivel de significancia de $\alpha = 0.05$ el valor crítico es $f_{0.05,2,94} = 3.093266$.

Como $F_0 = 1.1957338 < f_{0.05,2,94} = 3.093266$, No hay evidencia para rechazar la **hipótesis nula**. por lo tanto $X_2(\mathbf{TOEFL.Score})$ y $X_3(\mathbf{SOP})$ no ayudan a explicar la posibilidad de ser admitido a una carrera de postgrado dado que en el modelo estan presentes **GRE.Score**, **LOR** y **CGPA**.

7. Sumas de cuadrados tipo I y tipo II

Calcule las sumas de cuadrados tipo I (secuenciales) y tipo II (parciales) ¿Cuál de las variables tienen menor valor en tales sumas? ¿Qué puede significar ello?

7.1. Sumas de cuadrados secuenciales

7.2. Tabla anova

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
GRE.Score	1	1.9853655	1.9853655	276.715340	0.000000
TOEFL.Score	1	0.0559996	0.0559996	7.805092	0.006314
SOP	1	0.1181923	0.1181923	16.473354	0.000102
LOR	1	0.1485633	0.1485633	20.706392	0.000016
CGPA	1	0.0593270	0.0593270	8.268855	0.004989
Residuals	94	0.6744272	0.0071748	NA	NA

$$-X_1 SSR(X_1) = 1.98537$$

$$-X_2|X_1 \ SSR(X_2|X_1) = 0.05600$$

$$-X_3|X_1, X_2 SSR(X_3|X_1, X_2) = 0.1181923$$

$$-X_4|X_1, X_2, X_3|(X_4|X_1, X_2, X_3) = 0.14856$$

$$-X_5|X_1, X_2, X_3, X_4 SSR(X_5|X_1, X_2, X_3, X_4) = 0.05933$$

7.3. Sumas de cuadrados parciales

7.4. Tabla Anova

	Sum Sq	Df	F value	Pr(>F)
GRE.Score	0.0427161	1	5.9536667	0.0165615
TOEFL.Score	0.0063619	1	0.8867053	0.3487854
SOP	0.0073158	1	1.0196631	0.3151912
LOR	0.0646740	1	9.0141001	0.0034318
CGPA	0.0593270	1	8.2688553	0.0049890
Residuals	0.6744272	94	NA	NA

8. Residuales estudentizados vs. Valores ajustados

Construya y analice gráficos de los residuales estudentizados vs. Valores ajustados y contra las variables de regresión utilizadas. ¿Qué información proporcionan estas gráficas?

8.1. Gráfico de los residuales estudentizados vs. Valores ajustados

■ En los gráficos de las variables GRE.Score, TOEFL.Score, SOP, LOR, CGPA y además de la gráfica de los valores ajustados no se observa ningún tipo de patrón, por lo tanto se cumple el supuesto de varianza constante. Se aprecian algunos valores atípicos, información que se verificará más adelante.

9. Gráfico q-norm residuales estudentizados

9.1. Pruebas de hipótesis

$$\begin{cases} H_0 : \varepsilon \sim Normal \\ H_1 : \varepsilon \not\sim Normal \end{cases}$$

Aunque muchos residuales se concentren cerca de la recta ajustada, se puede observar cantidad considerable que se aleja de esta generando una asimetría hacia la derecha, además al realizar la prueba de Shapiro-Wilk tenemos un p valor de 0.00099 por lo que podemos rechazar la hipótesis nula, concluyendo de esta manera que hay evidencia para decir que no tienen un comportamiento normal.

10. Diagnostico sobre la presencia de observaciones atípicas, de balanceo y/o influenciales y conclusiones

Cuadro 4: Valores ajustados VS Residuales Estudentizados

	Ajustados	Errores
10	0.6911442	-3.010410
65	0.7310632	-2.598320
66	0.7566507	-2.533292
11	0.7212283	-2.506545
93	0.5221676	-2.274321
92	0.5288087	-1.921725

```
##
     lm(formula = data$Chance.of.Admit ~ ., data = data) :
##
##
          dfb.1
                  dfb.GRE.
                            dfb.TOEF
                                       dfb.SOP
                                                  dfb.LOR dfb.CGPA
                                                                        dffit cov.r
        0.015973 -0.005271 -0.000885
                                      1.31e-03
                                                0.002340 -8.90e-03 -0.032882 1.108
## 1
## 2
        0.010661 -0.024639
                           0.034326 -4.49e-03 -0.022518 -1.79e-03 -0.056504 1.105
## 3
                  0.089374 -0.049594 -2.27e-02 0.092619 -1.18e-01
       -0.024402
                                                                     0.213646 1.005
                                     3.90e-02 -0.271542
## 4
       -0.146856
                  0.086964 -0.039096
                                                           1.05e-01
                                                                     0.319520 0.966
## 5
       -0.021116
                  0.031828 -0.043631 -1.08e-01
                                                0.005196
                                                           3.90e-02
                                                                     0.150002 1.081
## 6
       -0.141724
                  0.061166 -0.037386 9.77e-02 -0.252847
                                                           1.41e-01
                                                                     0.313284 1.060
## 7
       -0.000457
                  0.008477
                            0.050364 -5.48e-02
                                                0.107665 -1.05e-01
                                                                     0.157786 1.087
## 8
        0.114484 - 0.026751 - 0.010652 - 4.42e - 02 0.206779 - 1.07e - 01
                                                                     0.260972 1.052
                            0.017687 -5.13e-02 -0.085702
## 9
        0.030175 - 0.047175
                                                           7.61e-02
                                                                     0.149108 1.145
## 10
        0.331213 -0.336547
                            0.264130 -7.77e-02 0.323458 -1.01e-01 -0.519954 0.629
## 11
        0.274899 -0.435231
                            0.332579 -3.85e-02 -0.156837
                                                           2.08e-01 -0.582385 0.759
## 12
       -0.008881 0.010344 -0.008548 -3.61e-03 0.022573 -3.28e-03 0.044150 1.088
## 13
        0.020921 -0.015918
                            0.011308
                                      1.51e-02 -0.044372 -2.35e-03 -0.096725 1.067
                                      3.07e-02 0.015934 -4.92e-02
## 14
        0.066481 -0.074405
                            0.087449
                                                                     0.114265 1.151
                                      5.93e-02 -0.128505
                                                           4.48e-02
                                                                    0.151365 1.097
## 15
       -0.020685 0.026567 -0.041123
## 16
        0.025571 -0.034946
                            0.043923 -4.62e-02 0.097394 -3.15e-02 -0.128213 1.062
                                                0.024002 -1.68e-02 -0.035468 1.095
## 17
        0.004144 - 0.004799
                            0.013229 -1.55e-02
                  0.032642 -0.014545
                                      3.59e-02 -0.011729 -3.35e-02
## 18
       -0.019400
                                                                    0.057146 1.119
## 19
       -0.004595
                  0.032455 - 0.017848 - 3.99e - 02 0.089071 - 5.98e - 02 - 0.139737 1.053
## 20
        0.064999 -0.057361 -0.007345
                                      3.40e-03 -0.017908
                                                           6.56e-02
                                                                     0.103144 1.112
## 21
       -0.013257 -0.014360
                            0.095139
                                      2.85e-02 -0.145174 -5.83e-02
                                                                     0.260675 1.019
## 22
       -0.077504 0.023602
                            0.061565 -1.24e-02 -0.115764 -1.39e-02
                                                                     0.179340 1.143
## 23
        0.023989 -0.039710
                            0.031889
                                      1.38e-02 0.040631
                                                           5.31e-03
                                                                     0.092445 1.112
## 24
       -0.006252 -0.008693
                            0.012712
                                      8.08e-03 -0.003257
                                                           1.02e-02
                                                                     0.042630 1.116
## 25
       -0.124820 0.008542
                            0.016489 -5.15e-02 -0.163031
                                                                     0.282553 1.103
                                                           1.71e-01
## 26
        0.011731 -0.004207 -0.004059
                                      8.36e-04 0.000665 -3.30e-04 -0.021018 1.117
## 27
       -0.011184 0.014573 -0.017092
                                      3.03e-02 -0.018890
                                                           5.01e-03
                                                                     0.043659 1.093
## 28
                           0.005564 -1.95e-02 0.008679
        0.015479 -0.011365
                                                           3.29e-04
                                                                     0.030514 1.140
## 29
        0.089603
                 0.028826 -0.115292 -2.49e-02 -0.022679 -3.50e-03
                                                                     0.295331 1.043
## 30
                  0.181667 -0.099887 -1.10e-01 -0.047718 -9.79e-02
       -0.113045
                                                                     0.340113 1.063
        0.198657 -0.079822 -0.166260 -1.05e-02 0.006879
## 31
                                                           1.78e-01
                                                                     0.375503 0.961
```

```
-0.051491
                 0.085395 -0.076129
                                     3.43e-02
                                               0.005311 -2.82e-02
                                                                   0.100998 1.219
## 32
## 33
      -0.013715
                 0.003431
                           0.007064 -2.34e-02
                                               0.008446
                                                         2.70e-03
                                                                   0.033081 1.155
## 34
       0.009161 -0.008044
                           0.007108
                                     4.24e-04
                                               0.004706 -4.90e-03 -0.011655 1.171
## 35
       -0.011816
                 0.006516 -0.031057 -2.48e-02
                                               0.014565
                                                         4.89e-02
                                                                   0.076932 1.150
## 36
       0.061927 -0.049089
                           0.000340
                                     4.18e-02
                                               0.074195
                                                         1.17e-02
                                                                   0.140805 1.111
## 37
       0.088374 -0.089525
                           0.058479 -1.43e-03
                                               0.046613 -6.19e-04
                                                                   0.099095 1.232
## 38
       0.289491 -0.429309
                           0.423333 -4.91e-01
                                               0.031771
                                                         9.97e-02
                                                                   0.694648 1.066
                           0.122254
## 39
       0.052161 -0.066482
                                     5.63e-02 -0.113521 -7.53e-02
                                                                   0.251884 1.107
                 0.232718 -0.326200 -1.17e-01 -0.215678
## 40
       -0.255487
                                                         3.35e-01 -0.477976 1.079
                 0.346912 -0.434158 -4.85e-03 -0.106308
## 41
       -0.277706
                                                         2.07e-01 -0.497296 0.988
## 42
       0.084137 -0.082768
                           0.058895
                                     7.84e-02 0.108972 -4.59e-02 -0.218716 1.004
## 43
       0.013603
                 0.026640 -0.011987
                                     ## 44
       -0.018278
                 0.003128
                           0.021003
                                     1.30e-02 -0.003311 -1.48e-02 0.051596 1.099
                                                                   0.167914 1.044
## 45
       -0.014287 -0.021290 -0.016245
                                     3.08e-02 -0.048117
                                                         1.02e-01
## 46
       0.007463
                 0.004356 -0.059844
                                     1.46e-01 -0.041006
                                                         5.42e-02
                                                                   0.213723 1.031
## 47
      -0.002662
                 0.008571 -0.008722
                                     1.63e-02 -0.031293 -9.99e-04 -0.046295 1.112
## 48
       0.068405 -0.029890
                           ## 49
       0.029021 -0.027530
                           0.021785 -3.67e-02
                                              0.075908 -1.40e-02
                                                                   0.086286 1.134
                 0.035597
                           0.020621 -4.45e-02
                                               0.057919 -6.79e-02
## 50
       -0.037297
                                                                   0.115376 1.103
       0.026081
                 0.140218 -0.290453 -1.84e-01
                                               0.285638
                                                         3.97e-02
                                                                   0.516553 1.074
## 51
       0.000729 -0.005882
                           0.007035
                                     1.86e-02 -0.012222
                                                         1.43e-03 -0.026790 1.169
## 52
       -0.160106
                           0.082089
                                     9.95e-02 -0.034187 -2.55e-01
## 53
                 0.142206
                                                                   0.327963 1.215
## 54
       -0.093182
                 0.076644
                           0.053409
                                     1.11e-01 -0.101269 -1.33e-01
                                                                   0.237963 1.109
## 55
      -0.018067
                 0.018214
                           0.043723 -1.96e-02 0.043928 -8.83e-02
                                                                   0.109819 1.115
## 56
       -0.087691
                 0.138606 -0.077528
                                     3.09e-02
                                               0.000688 -1.02e-01
                                                                   0.177323 1.129
## 57
      -0.118490
                 0.211814 -0.059031 -1.04e-01
                                               0.122542 -2.61e-01
                                                                   0.407980 1.054
       0.014636 -0.005705 -0.002282
                                     2.59e-02 -0.015036 -3.71e-03
## 58
                                                                   0.037494 1.159
       -0.022431 -0.005830 -0.021343 -4.07e-02 -0.005099 8.32e-02 -0.107246 1.183
## 59
                 0.003836
                                               0.240416 -2.42e-01 -0.420743 0.980
## 60
       0.047541
                           0.048042
                                     2.08e-01
## 61
       -0.012294 -0.055765
                           0.124552 -2.84e-03
                                               0.018216 -4.29e-02 -0.182073 1.026
## 62
       -0.081901 -0.008995
                           0.126685 -1.66e-01
                                               0.069436 -4.59e-02 -0.272327 0.990
## 63
      -0.057222
                 0.062205 -0.042738
                                     2.05e-02 -0.012725 -1.06e-02 -0.073869 1.109
## 64
       -0.012667
                 0.005902
                           0.017642 -9.38e-02
                                               0.090919 -2.98e-02 -0.167268 1.006
## 65
       0.175776 -0.087560 -0.048097
                                     2.40e-01
                                               0.000367 -1.04e-02 -0.407973 0.718
                                               0.100351 -1.12e-01 -0.353366 0.728
## 66
       0.129238 -0.019008 -0.046649
                                     1.14e-01
## 67
       0.155795
                 0.000649 -0.086083
                                     1.89e-01
                                               0.195107 -1.67e-01 -0.403104 0.931
       -0.039722
                 0.037537
                           0.014270
                                     2.48e-02 -0.001391 -6.70e-02 -0.157145 0.960
## 68
## 69
       -0.064875
                 0.096831
                           0.005195
                                     9.56e-02 -0.019210 -1.69e-01 -0.224471 1.049
## 70
       0.014708
                 0.012221 -0.030933 -2.56e-02
                                               0.009103 -2.35e-03 -0.093566 1.069
       0.000075 -0.000283
                           0.000299
                                     8.24e-05
                                               0.000287
                                                         6.69e-05
                                                                   0.000828 1.122
## 71
## 72
       -0.020166
                 0.023640 -0.032527
                                      1.13e-02 -0.001191
                                                         1.77e-02
                                                                   0.046797 1.167
## 73
       0.094859 -0.092866 -0.001896
                                     4.41e-02
                                               0.088543
                                                         7.29e-02
                                                                   0.222919 1.086
## 74
       0.137421 -0.136186
                          0.004666
                                     6.64e-02 0.017041
                                                         1.22e-01
                                                                   0.252313 1.020
## 75
       -0.021091
                 0.018772 -0.003615
                                     2.49e-02 -0.034008 -8.94e-03 -0.045077 1.188
## 76
       0.028506
                 0.001118 -0.061666
                                     1.17e-01 -0.066943 4.16e-02 -0.151314 1.180
```

```
-0.025741 0.014689 0.001279 -1.50e-02 -0.019196
                                                                    0.041335 1.104
## 77
                                                         5.39e-03
        0.127688 -0.081097 -0.172463 3.78e-02 -0.310500
## 78
                                                          3.46e-01
                                                                    0.509345 0.944
## 79
        0.030019 -0.000635 -0.033715
                                      2.78e-02 -0.030049
                                                          1.39e-02
                                                                    0.082230 1.127
## 80
        0.111463 -0.020275 -0.100074 -1.26e-01 -0.016872
                                                          7.94e-02
                                                                    0.320202 1.060
## 81
       -0.026938 0.032904 -0.054656
                                     1.47e-01 -0.053523
                                                          1.93e-02 -0.188881 1.055
## 82
        0.008637 -0.003825 -0.005465 -4.43e-03 -0.006818
                                                          7.62e-03 -0.023089 1.130
## 83
        0.098485 -0.084766 -0.026844 1.24e-01 0.054883
                                                          7.97e-02
                                                                   0.281096 1.005
## 84
        0.119641 -0.198210 0.158992 -9.28e-02 0.100847
                                                          7.59e-02
                                                                    0.269832 1.063
## 85
       -0.042854
                 0.040413 -0.028288 8.92e-03 -0.006532
                                                          3.63e-03
                                                                    0.055436 1.132
## 86
       -0.060438
                 0.124849 -0.180635
                                     1.27e-01 -0.070342
                                                          4.58e-02
                                                                    0.218606 1.113
## 87
        0.016725
                 0.009047 -0.022808 8.29e-02 -0.008040 -2.18e-02
                                                                    0.103772 1.079
## 88
       -0.006190
                  0.008571 -0.001700 8.79e-03 -0.010627 -8.03e-03
                                                                    0.030202 1.078
## 89
       -0.011000
                 0.006249 -0.012024 -2.30e-02 -0.006780
                                                          2.29e-02 -0.035760 1.122
## 90
        0.020258 -0.021429 0.007697 3.48e-02 -0.013044
                                                          1.02e-02 0.059259 1.089
## 91
       -0.001317 -0.019541 -0.000741 -2.70e-02 -0.038467
                                                          6.19e-02 -0.074524 1.142
## 92
       -0.342180
                 0.033477
                            0.170196 -5.82e-01 -0.145039
                                                          2.59e-01 -0.776410 0.982
## 93
       -0.396022
                 0.201905
                            0.139874 -2.95e-01 0.018618 -1.16e-01 -0.605135 0.825
## 94
       -0.086032
                 0.013961
                            0.078864 -1.12e-02 -0.022405 -3.13e-02 -0.172054 1.066
## 95
       -0.084618
                  0.025508
                            0.023474 1.32e-01 -0.021645 -7.56e-03 -0.267881 0.985
       -0.050721
                  0.039164 -0.001385
                                     1.53e-01 -0.013264 -5.24e-02 -0.203312 1.086
## 96
       -0.049015
                                      2.65e-04 -0.008551 -1.66e-02 -0.126933 1.050
## 97
                 0.000753
                            0.053381
                            0.071999 -1.24e-02 0.017486 -3.54e-02 0.087095 1.146
## 98
       -0.002882 -0.028471
       -0.000438 -0.006485
                            0.015672 7.69e-03 0.005817 -9.51e-03
                                                                    0.026547 1.128
## 99
## 100
      0.004924 -0.011130
                            0.015630 -1.58e-03 0.008346 -4.14e-03 0.025468 1.088
##
         cook.d
                   hat inf
## 1
       1.82e-04 0.0393
## 2
       5.37e-04 0.0401
## 3
       7.57e-03 0.0310
## 4
       1.68e-02 0.0435
## 5
       3.77e-03 0.0441
## 6
       1.63e-02 0.0720
       4.17e-03 0.0489
## 7
## 8
       1.13e-02 0.0572
## 9
       3.74e-03 0.0831
      4.15e-02 0.0290
## 10
## 11
       5.35e-02 0.0512
## 12
       3.28e-04 0.0251
## 13
       1.57e-03 0.0243
## 14
       2.20e-03 0.0823
## 15
       3.84e-03 0.0530
## 16
       2.75e-03 0.0297
       2.12e-04 0.0292
## 17
## 18
      5.50e-04 0.0507
## 19
       3.27e-03 0.0290
```

1.79e-03 0.0530

```
## 21
       1.13e-02 0.0453
## 22
       5.40e-03 0.0871
## 23
       1.44e-03 0.0507
## 24
       3.06e-04 0.0465
## 25
       1.33e-02 0.0851
## 26
       7.44e-05 0.0463
## 27
       3.21e-04 0.0283
## 28
       1.57e-04 0.0657
## 29
       1.45e-02 0.0615
   30
##
       1.92e-02 0.0796
## 31
       2.31e-02 0.0534
## 32
       1.72e-03 0.1291
## 33
       1.84e-04 0.0778
## 34
       2.29e-05 0.0892
## 35
       9.96e-04 0.0769
##
   36
       3.33e-03 0.0594
   37
##
       1.65e-03 0.1379
##
   38
       7.90e-02 0.1543
## 39
       1.06e-02 0.0806
## 40
       3.78e-02 0.1160
## 41
       4.05e-02 0.0863
## 42
       7.94e-03 0.0321
## 43
       5.47e-03 0.0684
## 44
       4.48e-04 0.0342
## 45
       4.71e-03 0.0324
## 46
       7.60e-03 0.0387
## 47
       3.61e-04 0.0441
       1.98e-03 0.0553
## 48
## 49
       1.25e-03 0.0662
## 50
       2.24e-03 0.0493
## 51
       4.40e-02 0.1218
## 52
       1.21e-04 0.0885
## 53
       1.80e-02 0.1550
## 54
       9.47e-03 0.0786
## 55
       2.03e-03 0.0563
## 56
       5.28e-03 0.0776
## 57
       2.75e-02 0.0907
## 58
       2.37e-04 0.0810
## 59
       1.94e-03 0.1044
## 60
       2.91e-02 0.0678
## 61
       5.52e-03 0.0299
## 62
       1.23e-02 0.0397
## 63
       9.18e-04 0.0458
## 64
       4.65e-03 0.0218
```

2.61e-02 0.0241

```
## 67
       2.65e-02 0.0518
## 68
       4.08e-03 0.0132
## 69
       8.40e-03 0.0473
## 70
       1.47e-03 0.0247
## 71
       1.15e-07 0.0499
## 72
       3.69e-04 0.0880
## 73
       8.31e-03 0.0635
## 74
       1.06e-02 0.0436
       3.42e-04 0.1035
##
   75
## 76
       3.85e-03 0.1076
## 77
       2.88e-04 0.0367
##
   78
       4.23e-02 0.0759
## 79
       1.14e-03 0.0604
## 80
       1.70e-02 0.0736
## 81
       5.96e-03 0.0416
## 82
       8.98e-05 0.0566
## 83
       1.31e-02 0.0455
## 84
       1.21e-02 0.0637
## 85
       5.17e-04 0.0608
  86
       8.00e-03 0.0767
##
## 87
       1.81e-03 0.0320
## 88
       1.54e-04 0.0150
## 89
       2.15e-04 0.0510
## 90
       5.91e-04 0.0283
       9.35e-04 0.0708
## 91
## 92
       9.77e-02 0.1403
## 93
       5.84e-02 0.0661
## 94
       4.95e-03 0.0421
## 95
       1.19e-02 0.0376
## 96
       6.91e-03 0.0591
## 97
       2.70e-03 0.0249
## 98
       1.28e-03 0.0755
## 99
       1.19e-04 0.0552
## 100 1.09e-04 0.0221
       dfb.1_ dfb.GRE. dfb.TOEF dfb.SOP dfb.LOR dfb.CGPA dffit cov.r cook.d
##
## 1
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                            FALSE
                                                      FALSE FALSE FALSE
                                                                          FALSE FALSE
## 2
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                            FALSE
                                                      FALSE FALSE FALSE
                                                                          FALSE FALSE
## 3
                                                                          FALSE FALSE
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                            FALSE
                                                      FALSE FALSE FALSE
## 4
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                            FALSE
                                                      FALSE FALSE FALSE
                                                                          FALSE FALSE
## 5
        FALSE
                           FALSE
                                    FALSE
                                            FALSE
                                                      FALSE FALSE FALSE
                                                                          FALSE FALSE
                  FALSE
## 6
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                            FALSE
                                                      FALSE FALSE FALSE
                                                                          FALSE FALSE
## 7
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                            FALSE
                                                      FALSE FALSE FALSE
                                                                          FALSE FALSE
## 8
        FALSE
                  FALSE
                           FALSE
                                    FALSE
                                            FALSE
                                                      FALSE FALSE FALSE
                                                                          FALSE FALSE
```

1.97e-02 0.0191

##	9	FALSE	FALSE	FALSE	FALSE						
##	10	FALSE	TRUE	FALSE	FALSE						
##	11	FALSE	TRUE	FALSE	FALSE						
##	12	FALSE	FALSE	FALSE	FALSE						
##	13	FALSE	FALSE	FALSE	FALSE						
##	14	FALSE	FALSE	FALSE	FALSE						
##	15	FALSE	FALSE	FALSE	FALSE						
##	16	FALSE	FALSE	FALSE	FALSE						
##	17	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	${\tt FALSE}$	FALSE	FALSE	FALSE
##	18	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	${\tt FALSE}$	FALSE	FALSE	FALSE
##	19	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	${\tt FALSE}$	FALSE	FALSE	FALSE
##	20	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	${\tt FALSE}$	FALSE	FALSE	FALSE
##	21	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	${\tt FALSE}$	FALSE	FALSE	FALSE
##	22	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	${\tt FALSE}$	FALSE	FALSE	FALSE
##	23	FALSE	FALSE	FALSE	FALSE						
##	24	FALSE	FALSE	FALSE	FALSE						
##	25	FALSE	FALSE	FALSE	FALSE						
##	26	FALSE	FALSE	FALSE	FALSE						
##	27	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	FALSE
##	28	FALSE	FALSE	FALSE	FALSE						
##	29	FALSE	FALSE	FALSE	FALSE						
##	30	FALSE	FALSE	FALSE	FALSE						
##	31	FALSE	FALSE	FALSE	FALSE						
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE	TRUE	FALSE	
##	33	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE	TRUE	FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE		FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
	41	FALSE	FALSE	FALSE	FALSE	FALSE			FALSE		FALSE
	42	FALSE	FALSE	FALSE	FALSE	FALSE			FALSE	FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
	44	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
	46	FALSE	FALSE	FALSE	FALSE	FALSE			FALSE	FALSE	
	47	FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
##		FALSE	FALSE	FALSE	FALSE	FALSE		FALSE			FALSE
	51	FALSE	FALSE	FALSE	FALSE	FALSE			FALSE	FALSE	
##		FALSE	FALSE	FALSE	FALSE	FALSE			FALSE	FALSE	
##	53	FALSE	TRUE	FALSE	FALSE						

##	54	FALSE									
##	55	FALSE									
##	56	FALSE									
##	57	FALSE									
##	58	FALSE									
##	59	FALSE									
##	60	FALSE									
##	61	FALSE									
##	62	FALSE									
##	63	FALSE									
##	64	FALSE									
##	65	FALSE	TRUE	FALSE	FALSE						
##	66	FALSE	TRUE	FALSE	FALSE						
##	67	FALSE									
##	68	FALSE									
##	69	FALSE									
##	70	FALSE									
##	71	FALSE									
##	72	FALSE									
##	73	FALSE									
##	74	FALSE									
##	75	FALSE									
##	76	FALSE									
##	77	FALSE									
##	78	FALSE									
##	79	FALSE									
##	80	FALSE									
##	81	FALSE									
##	82	FALSE									
##	83	FALSE									
##	84	FALSE									
##	85	FALSE									
##	86	FALSE									
##	87	FALSE									
##	88	FALSE									
##	89	FALSE									
##	90	FALSE									
##	91	FALSE									
##	92	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE
##	93	FALSE									
##	94	FALSE									
##	95	FALSE									
##	96	FALSE									
##	97	FALSE									
##	98	FALSE									

```
## 99
                           FALSE
                                   FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
        FALSE
                 FALSE
                                                                         FALSE FALSE
## 100
       FALSE
                 FALSE
                                            FALSE
                                                     FALSE FALSE FALSE
                                                                         FALSE FALSE
                           FALSE
                                   FALSE
```

-La observación 10 es un **outlier** ya que el valor absoluto de su residual estudentizado es 3.01, mayor a 3.

-De acuerdo al COVRATIO y el DFFITS, las observaciones 10,11, 32, 37, 53, 65, 66 y 92 son influenciables.

-Para evaluar las observaciones de **balanceo** miramos las que superan la cota de $\frac{2(k+1)}{n} = \frac{2(5+1)}{100} = 0.12$. Las observaciones **32**, **37**, **38**, **53** y **92** superan dicha cota y por lo tanto, son de balanceo.

-En conclusión, las observaciones 10, 11, 53, 65 y 66 son influenciables; la observación 38 es de balanceo y las observaciones 32, 37, 53 y 92 son influenciables y de balanceo.

11. Ejercicio11

Ajuste el modelo de regresión sin las observaciones 10, 38 y 92, suponga que se establece que hay un error de digitación con estas dos observaciones, presente sólo la tabla de parámetros ajustados resultante ¿Cambian notoriamente las estimaciones de los parámetros, sus errores estándard y/o la signficancia? ¿Qué concluye al respecto? Evalúe el gráfico de normalidad para los residuales estudentizados para este ajuste ¿mejoró la normalidad?

Concluya sobre los efectos de este par de observaciones.

```
## Analysis of Variance Table
##
## Response: Chance.of.Admit
##
                                                  Sum Sq Mean Sq F value
                                                                            Pr(>F)
## FO(GRE.Score, TOEFL.Score, SOP, LOR, CGPA)
                                               5 2.31585 0.46317
                                                                 74.498 < 2.2e-16
                                              91 0.56577 0.00622
##
## FO(GRE.Score, TOEFL.Score, SOP, LOR, CGPA) ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Call:
## lm(formula = Chance.of.Admit ~ ., data = AdmissionPredict sin influencias)
## Residuals:
##
                  1Q
                                    30
        Min
                       Median
                                            Max
```

```
## -0.21685 -0.03972 0.01428 0.05500 0.13928
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
                                      -6.407 6.42e-09 ***
## (Intercept) -1.8564761
                           0.2897498
                                       3.309
## GRE.Score
                0.0053985
                           0.0016314
                                              0.00134 **
## TOEFL.Score
                0.0001168
                           0.0030020
                                       0.039
                                              0.96904
## SOP
                0.0267458
                           0.0121536
                                       2.201
                                               0.03029 *
                0.0400539
                                       2.990
                                               0.00359 **
## LOR
                           0.0133955
                0.0681658
## CGPA
                           0.0248061
                                       2.748
                                              0.00723 **
## ---
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
\#\# Residual standard error: 0.07885 on 91 degrees of freedom
## Multiple R-squared: 0.8037, Adjusted R-squared: 0.7929
## F-statistic: 74.5 on 5 and 91 DF, p-value: < 2.2e-16
```


12. Ejercicio 12

Para el modelo con todas las variables y sin las observaciones 10, 38 y 92, realice diagnósticos de multicolinealidad mediante

12.1. Matriz de correlación de las variables predictoras

	GRE.Score	TOEFL.Score	SOP	LOR	CGPA	Chance.of.A
GRE.Score	1.0000000	0.8907133	0.5405067	0.6538861	0.7984379	0.818
TOEFL.Score	0.8907133	1.0000000	0.6237639	0.5963160	0.8091454	0.780
SOP	0.5405067	0.6237639	1.0000000	0.5988709	0.6826010	0.670
LOR	0.6538861	0.5963160	0.5988709	1.0000000	0.7440234	0.758
CGPA	0.7984379	0.8091454	0.6826010	0.7440234	1.0000000	0.839
Chance.of.Admit	0.8184117	0.7808914	0.6706553	0.7580440	0.8390995	1.000

Entre las pruebas GRE - TOEFL, GRE - CGPA, TOEFL - CGPA y finalmente LOR - CGPA se observan correlaciones fuertes, esto puede indicar problemas de multicolinealidad.

Se observa que entre GRE - SOP, GRE - LOR, TOEFL - SOP, TOEFL - LOR se tienen correlaciones moderadas.

12.2. VIF's

GRE.Score	TOEFL.Score	SOP	LOR	CGPA
5.859487	6.190994	2.108352	2.497704	4.599604

■ En los factores de **inflación** de **varianza** no se concluye que existan problemas de **multicolineadlidad**, pues nos indica que ninguna estimación **supera** el valor de **10**.

12.3. Proporciones de varianza

```
## Condition
## Index
            Variance Decomposition Proportions
##
               intercept GRE.Score TOEFL.Score SOP
                                                       LOR
                                                             CGPA
        1.000 0.000
                         0.000
                                    0.000
                                                0.001 0.001 0.000
## 1
       10.083 0.002
                         0.000
                                    0.001
## 2
                                                0.173 0.161 0.001
## 3
       14.645 0.000
                         0.000
                                    0.000
                                                0.597 0.490 0.000
## 4
       60.699 0.197
                         0.003
                                   0.036
                                                0.179 0.235 0.399
## 5
       83.509 0.092
                         0.009
                                    0.368
                                                0.001 0.025 0.593
## 6
      189.536 0.710
                         0.988
                                    0.596
                                                0.049 0.088 0.007
```

- La raíz del número condición es de 189. Lo cual nos indica que se tienen problemas graves de multicolinealidad.
- Examinando la descomposión de varianza se visualiza que existe problemas de multicolinealidad entre las pruebas GRE - TOEFL y las pruebas SOP - LOR

13. Ejericio13

En el modelo ajustado sin las observaciones 10, 38 y 92, construya modelos de regresión utilizando los métodos de selección (muestre de cada método sólo la tabla de resumen de este y la tabla ANOVA y la de parámetros estimados del modelo finalmente resultante):

-200 **-**

<u></u>46

0.5 -

3

page 2 of 2

# de covariables	modelo	R2_adj
1	(1) y~CGPA	0.75
2	(6) y~GRE.Score+CGPA	0.81
3	(16) y~GRE.Score+LOR+CGPA	0.83
4	(26) y~GRE.Score+SOP+LOR+CGPA	0.83
5	(31) y~GRE.Score+TOEFL.Score+SOP+LOR+CGPA	0.83

■ De acuerdo al **principio de parsimonia** un buen modelo bajo el criterio del **R2_adj** es el modelo (6) y~GRE.Score+CGPA

13.1. Selección según el R_{adj}^2

```
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -2.290157
                          0.264866 -8.646 1.38e-13 ***
## GRE.Score
               0.005941
                          0.001205
                                   4.930 3.53e-06 ***
## CGPA
               0.127528
                          0.020685 6.165 1.75e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.0849 on 94 degrees of freedom
## Multiple R-squared: 0.7649, Adjusted R-squared: 0.7599
## F-statistic: 152.9 on 2 and 94 DF, p-value: < 2.2e-16
```

Ecuacion Ajustada

$$\hat{Y}i = -2.290157 + 0.005941X_i + 0.127528X_i$$

Tabla anova

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FO(GRE.Score, CGPA)	2	2.2040778	1.1020389	152.8941	0
Residuals	94	0.6775387	0.0072079	NA	NA

13.2. Selección según el estadístico C_p

# de covariables	modelo	abs(Cp - p)
1	(1) y~CGPA	45.00-1 = 44
2	(6) y~GRE.Score+CGPA	15.39-2 = 13.39
3	(16) y~GRE.Score+LOR+CGPA	4.17-3 = 1.17
4	(26) y~GRE.Score+SOP+LOR+CGPA	4.00-4 = 0.00
5	(31) y~GRE.Score+TOEFL.Score+SOP+LOR+CGPA	6-5 = 1

■ De acuerdo al Cp el mejor modelo es el (26) y~GRE.Score+SOP+LOR+CGPA

```
##
## Call:
## Im(formula = Chance.of.Admit ~ GRE.Score + LOR + CGPA + SOP,
## data = AdmissionPredict_sin_influencias)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.21728 -0.03976 0.01443 0.05516 0.13902
##
## Coefficients:
```

```
##
            Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.860801  0.266142  -6.992  4.24e-10 ***
## GRE.Score 0.005444 0.001127 4.832 5.37e-06 ***
## LOR
          ## CGPA
          ## SOP
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.07842 on 92 degrees of freedom
## Multiple R-squared: 0.8037, Adjusted R-squared: 0.7951
## F-statistic: 94.14 on 4 and 92 DF, p-value: < 2.2e-16
```

Ecuacion ajustada

$$\hat{Y}i = -1.860801 + 0.005444X_{i1} + 0.026878X_{i3} + 0.039939X_{i4} + 0.068438X_{i5}$$

Tabla anova

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
FO(GRE.Score, LOR, CGPA, SOP)	4	2.3158387	0.5789597	94.14348	0
Residuals	92	0.5657778	0.0061498	NA	NA

13.3. Stepwise

```
## Stepwise Selection Method
## -----
##
## Candidate Terms:
##
## 1. GRE.Score
## 2. TOEFL.Score
## 3. SOP
## 4. LOR
## 5. CGPA
## We are selecting variables based on p value...
##
##
## Stepwise Selection: Step 1
##
## - CGPA added
##
##
                         Model Summary
```

## ## ## ##	R R-Squared Adj. R-Squared Pred R-Squared RMSE: Root Me MSE: Mean Sq	d d lean Square	0.694 e Error	Coef. MSE MAE		0.00 0.07	9 9		
## ## ##	MAE: Mean Ab		cor	ANOVA					
## ## ##		Sum of Squares	DF	Mean S	Square	F			
## ## ##	Regression Residual Total	2.029 0.853 2.882	1 95 96		2.029 0.009		0.0000		
## ## ##				Paramet	er Estim				
## ##	model (Intercept) CGPA	-1.095 0.209	0 . 0 .	 . 119 . 014	0.839	-9.198 15.035	0.000 0.000	-1.331 0.181	0.2
## ## ## ##	Stepwise Sele-	ction: Ste							
## ## ## ##	R-Squared Adj. R-Squared Pred R-Squared	d d	0.875 0.765 0.760 0.752	RMSE Coef. MSE MAE	Var	0.08 12.32 0.00 0.06	1 7		
## ## ## ## ##	MSE: Mean Sq	ean Square uare Error	e Error						

ANOVA

##

			Mean Square		Sig.		
Regression Residual Total	2.204 0.678 2.882	2 94 96		152.894	0.0000		
			Parameter Estin	nates			
	Beta	Std. Err	or Std. Beta	t			 upp
(Intercept)	-2.290 0.128	0.2	65 21 0.512	-8.646	0.000	-2.816 0.086	
R R-Squared Adj. R-Square Pred R-Square	ed ed 	0.875 0.765 0.760 0.752	RMSE Coef. Var MSE	0.0 12.3 0.0 0.0	21 07		
MSE: Mean So MAE: Mean Ab							
		AN	OVA				
		DF	OVA Mean Square	F	 Sig.		
Regression Residual Total	Sum of Squares 2.204 0.678 2.882	DF 2 94 96	Mean Square 	F 152.894			
Regression Residual Total	Sum of Squares 2.204 0.678 2.882	DF 2 94 96	Mean Square 	152.894 			

‡ (Ir	ntercept)	-2.290	'	0.265		-8.646	0.000	-2.816	-1
		0.128							0
	GRE.Score				0.410	4.930	0.000	0.004	0
Ste	epwise Sele	action: Ste	en 3						
~	op	70020== :	Ρ -						
- I	LOR added								
			Model S	Summar	rv				
R					RMSE	0.08			
	Squared	-			Coef. Var	11.64			
-	j. R-Square					0.00			
	ed R-Square	}a 			MAL)3 		
	MSE: Root M								
		- · · · ·							
	SE: Mean So	quare Error	-						
MS MA	SE: Mean So AE: Mean Ab	-							
MS	-	-			-				
MS MA	AE: Mean Ab	bsolute Err	cor	ANOV <i>A</i>	A 				
MS MA	AE: Mean Ab	bsolute Err	cor						
MS MA	AE: Mean Ab	Sum of Squares	cor Di	 F M	 Mean Square				
MS MA	AE: Mean Ab	Sum of Squares	cor Di	F M	Mean Square	F	Sig.		
MS MA	AE: Mean Ab	Sum of Squares	cor DI	F M	Mean Square 0.761		Sig.		
MS MA	AE: Mean Ab	Sum of Squares 2.283 0.599 2.882	DI : 9:	F M	Mean Square 0.761	F	Sig.		
MS MA	AE: Mean Ab	Sum of Squares 2.283 0.599 2.882	DI : 9:	F M	Mean Square 0.761	F	Sig.		
MS MA	AE: Mean Ab	Sum of Squares 2.283 0.599 2.882	DI : 9:	F M 3 3 6	Mean Square 0.761	F 118.188	Sig.		
MS MA	AE: Mean Ab	Sum of Squares 2.283 0.599 2.882	Di	F M 3 3 6	Mean Square 0.761 0.006	F 118.188 ates	Sig.	lower	
MS MA	AE: Mean Ab	Sum of Squares 2.283 0.599 2.882	or Di	F M 3 3 6 Pa Error	Mean Square 0.761 0.006 arameter Estim Std. Beta	F 	Sig. 0.0000		
MS MA	AE: Mean Ab	Sum of Squares 2.283 0.599 2.882 Beta -1.931	Di 999	F M 3 3 6 Error 0.271	Mean Square 0.761 0.006 arameter Estim Std. Beta	F 	Sig. 0.0000 Sig	-2.469	
MS MA	AE: Mean Ab	Sum of Squares 2.283 0.599 2.882	Std. 1	F N 3 3 6 Error 0.271 0.022	Mean Square 0.761 0.006 arameter Estim Std. Beta	F 118.188 ates t 7.140 3.993	Sig. 0.0000 Sig 0.000 0.000	-2.469 0.045	

Model Summary

##

##										
##	R		0.890)	RMSE	i	0.08	30		
	R-Squared		0.792	2	Coef	. Var	11.64	<u>.</u> 5		
##	Adj. R-Squared	i	0.786	3	MSE		0.00	16		
##	Pred R-Squared	i	0.775	5	MAE		0.06	3		
##		ean Square	e Error							
## ##	MAE: Mean Abs									
## ##				ANO						
## ##		Sum of								
## ##		Squares		DF 	Mean :	Square	F 	Sig.		
	Regression Residual					0.761 0.006	118.188	0.0000		
##	Total	2.882		96		0.000				
## ##										
## ##						ter Estim	nates			
##	model	Beta	Std.	. Erro	or S	td. Beta	t	Sig	lower	upp
##	(Intercept)	-1.931		0.27	' 1			0.000		-1.3
##		0.089				0.359				0.1
##							4.638			
## ##		0.046		0.01	3	0.250	3.498 	0.001	0.020	0.0
## ##								· 	· 	
##										
## ##	Stepwise Selec	ction: Sta	on 4							
## ##	prehmipe perco	,61011. 500	Ъ -							
##	- SOP added									
## ##				l Summa						
## ##	R				RMSE		0.07	'8		
	R-Squared					. Var	11.38	31		
##	Adj. R-Squared Pred R-Squared	d	0.784	4	MAE		0.00 0.06	30		
##	RMSE: Root Me	ean Square	e Error							

upp

-1.3 0.1 0.0 0.0

			ANOV!	I				
	Sum of Squares	D	F N	Mean Square	F	Sig.		
Regression Residual Total	2.316 0.566 2.882	9	4 12 16		94.143	0.0000		
			Pa	arameter Estin				
	Beta	Std.	Error	Std. Beta				
(Intercept)	-1.861		0.266	0.275		0.000 0.005		
LOR	0.040		0.013	0.375 0.219 0.149	3.073	0.003	0.	
		Model	Summaı	ry				
 R		0.896		RMSE	0.0)78		
R-Squared				Coef. Var				
Adj. R-Square Pred R-Square		0.784		MSE MAE	0.0 0.0			
RMSE: Root MSE: Mean Se	Mean Square quare Erroi	Error						
	ANOVA							
	Sum of Squares	D	F N	Mean Square	F			
Regression Residual	2.316			0.579 0.006	94.143	0.0000		

шш										
## ##				Pa	rameter Es	stimat	es			
## ##	model	 Beta	St.d	 Error	 Std. Be	 et.a	 t.	 Sig	lower	 upp
##										
##	(Intercept)	-1.861		0.266			-6.992	0.000	-2.389	-1.3
##		0.068			0.2					0.1
##					0.3					0.0
##		0.040			0.2			0.003		0.0
## ##	SOP	0.027		0.012	0.1	L49 	2.316	0.023	0.004	0.0
##										
##										
##										
##	No more varia	ables to be	added	/remove	d.					
##										
##										
	Final Model (Output								
##										
## ##			Modol	Summar	77					
##			Model		у 					
##	R		0.896]	RMSE		0.0)78		
	R-Squared		0.804		Coef. Var		11.3			
	Adj. R-Square	ed	0.795]	MSE		0.0	006		
	Pred R-Square]	MAE		0.0	060		
##		-								
## ##	MSE: Mean So MAE: Mean Ab	-								
##	MAE. Medii At	osolute Eli	.01							
##				ANOVA						
##										
##		Sum of								
##		Squares		DF M	ean Square	e	F	Sig.		
##	Regression							0 0000		
	Residual						4.143	0.0000		
	Total				0.000	,				
##										
##					rameter Es					
##										
##		Beta	Std.	Error	Std. Be	eta	t	Sig	lower	upp
##										

##	(Intercept)	-1.861	0.266		-6.992	0.000	-2.389	-1.3
##	CGPA	0.068	0.024	0.275	2.891	0.005	0.021	0.1
##	GRE.Score	0.005	0.001	0.375	4.832	0.000	0.003	0.0
##	LOR	0.040	0.013	0.219	3.073	0.003	0.014	0.0
##	SOP	0.027	0.012	0.149	2.316	0.023	0.004	0.0
##								

Stepwise Selection Summary Added/ Adj. Removed R-Square R-Square C(p) AIC ## Step Variable RMS ## 0.704 0.701 ## 1 CGPA addition 44.1520 -177.92900.09 2 GRE.Score addition 0.765 0.760 0.08 ## 17.9770 -198.2339 0.792 0.786 ## LOR addition 7.3090 -208.2209 0.08 ## SOP 0.795 0.07 addition 0.804 4.0020 -211.7196

13.4. Selección hacia adelante o forward

##

```
## Forward Selection Method
## Candidate Terms:
## 1. GRE.Score
## 2. TOEFL.Score
## 3. SOP
## 4. LOR
## 5. CGPA
## We are selecting variables based on p value...
##
## Forward Selection: Step 1
##
## - CGPA
##
                           Model Summary
## R
                           0.839
                                       RMSE
                                                           0.095
## R-Squared
                          0.704
                                       Coef. Var
                                                         13.749
## Adj. R-Squared
                         0.701
                                       MSE
                                                           0.009
```

·		red 				0.07			
MS	MSE: Mean S	Mean Square Square Error Absolute Erro							
	 _			ANOVA					
		Sum of Squares							
		2.029							
Res To	esidual otal	0.853 2.882	95 96	5		- 			
				Param	neter Estin	mates			
	model	Beta	Std. E	Error	Std. Beta				u
(Iı	Intercept)	-1.095 0.209	0	0.119 0.014	0.839	-9.198 15.035	0.000	-1.331 0.181	-((
		ection: Step							
- (GRE.Score								
			Model S	Summary					
	-Squared lj. R-Squar	red	0.875 0.765 0.760		ef. Var	0.08 12.32 0.00	1		
Pre	red R-Squar		0.752	MAE	Ξ	0.06			
RI MS	RMSE: Root ISE: Mean S	Mean Square Square Error Absolute Erro	Error						
				ANOVA					
		Sum of Squares	DF		ı Square	F	Sig.		

			4 100				
	0.678 2.882	94 96					
			Parameter Estir				
model	Beta	Std. Eri	cor Std. Beta	 t	Sig		 upp
(Intercept)			 265		0.000	-2.816	 -1.7
-			0.512				
GRE.Score	0.006	0.0	0.410	4.930	0.000		
Forward Selec	tion: Step	p 3					
- LOR							
		Model Sun	nmary 				
R		0.890	RMSE	0.0	080		
R-Squared			Coef. Var	11.6			
Adj. R-Square Pred R-Square				0.0			
RMSE: Root M MSE: Mean Sq MAE: Mean Ab	ean Square uare Erro	e Error r					
			JOVA				
	Sum of Squares	DF	Mean Square				
			0.761				
			0.006				
Total	2.882	96					
			Parameter Estir	nates			
			cor Std. Beta	t	Sig	lower	upp

(Intercept)			271		0.000		-1
			0.359				
GRE.Score			0.368				
LOR	0.046		0.250	3.498	0.001	0.020	0
Forward Sele	ction: Step	4					
~~~							
- SOP							
		Model Sum	marıı				
R		0.896		0.0	78		
R-Squared			Coef. Var	11.3	81		
Adj. R-Square				0.0			
Pred R-Square	ed			0.0	60		
RMSE: Root I MSE: Mean So	Mean Square quare Error	e Error cor					
RMSE: Root I	Mean Square quare Error bsolute Err	e Error cor	IOVA				
RMSE: Root I	Mean Square quare Error bsolute Err  Sum of	e Error for AN	IOVA				
RMSE: Root I	Mean Square quare Error bsolute Err  Sum of Squares	e Error cor AN DF	TOVA  Mean Square	F			
RMSE: Root I	Mean Square quare Error bsolute Err  Sum of Squares	e Error cor AN DF	IOVA	F			
RMSE: Root I MSE: Mean So MAE: Mean Al	Mean Square quare Error bsolute Err  Sum of Squares 2.316	E Error  Cor  AN  DF	OVA  Mean Square	F  94.143			
RMSE: Root I MSE: Mean So MAE: Mean Al  Regression Residual Total	Mean Square quare Error bsolute Err  Sum of Squares 2.316 0.566 2.882	E Error  AN  DF  4  92  96	Mean Square 0.579	F  94.143			
RMSE: Root I MSE: Mean So MAE: Mean Al  Regression Residual	Mean Square quare Error bsolute Err  Sum of Squares 2.316 0.566 2.882	E Error  AN  DF  4  92  96	Mean Square 0.579	F  94.143			
RMSE: Root I MSE: Mean So MAE: Mean Al  Regression Residual Total	Mean Square quare Error bsolute Err  Sum of Squares  2.316 0.566 2.882	E Error  AN  DF  4  92  96	Mean Square  0.579 0.006  Parameter Esti	F  94.143			
RMSE: Root I MSE: Mean So MAE: Mean Al  Regression Residual Total	Mean Square quare Error bsolute Err  Sum of Squares  2.316 0.566 2.882	E Error  AN  DF  4  92  96	Mean Square  0.579 0.006  Parameter Esti	F 94.143  mates	0.0000	lower	
RMSE: Root I MSE: Mean So MAE: Mean Al  Regression Residual Total	Mean Square quare Error bsolute Err  Sum of Squares  2.316 0.566 2.882	E Error  AN  DF  4  92  96	Mean Square  0.579 0.006  Parameter Esti	F 94.143  mates	0.0000	lower	
RMSE: Root I MSE: Mean So MAE: Mean Al  Regression Residual Total	Mean Square quare Error bsolute Err  Sum of Squares  2.316 0.566 2.882  Beta	E Error  AN  DF  4  92  96  Std. Err	Mean Square  0.579 0.006  Parameter Esti	F 94.143  mates	0.0000		
RMSE: Root I MSE: Mean So MAE: Mean Al  Regression Residual Total  model  (Intercept) CGPA	Mean Square quare Error bsolute Err  Sum of Squares  2.316 0.566 2.882  Beta  -1.861 0.068	E Error  AN  DF  4  92  96  Std. Err  0.2  0.0	Mean Square 0.579 0.006  Parameter Esti or Std. Beta	F 94.143  mates t -6.992 2.891	0.0000 Sig 0.000 0.005	-2.389 0.021	-
RMSE: Root I MSE: Mean So MAE: Mean Al  Regression Residual Total  model  (Intercept) CGPA GRE.Score	Mean Square quare Error bsolute Err  Sum of Squares  2.316 0.566 2.882  Beta  -1.861 0.068 0.005	E Error  AN  DF  4  92  96  Std. Err  0.2  0.0  0.0	Mean Square  0.579 0.006  Parameter Esti  or Std. Beta  266 24 0.275 01 0.375	F 94.143  mates t6.992 2.891 4.832	0.0000 Sig 0.000 0.000 0.005 0.000	-2.389 0.021 0.003	-
RMSE: Root I MSE: Mean So MAE: Mean Al  Regression Residual Total  model  (Intercept) CGPA GRE.Score LOR	Mean Square quare Error bsolute Err  Sum of Squares  2.316 0.566 2.882  Beta  -1.861 0.068 0.005 0.040	E Error  AN  DF  4  92  96  Std. Err  0.2  0.0  0.0  0.0	Mean Square 0.579 0.006  Parameter Esti or Std. Beta	F 94.143  mates t6.992 2.891 4.832 3.073	0.0000 Sig 0.000 0.005	-2.389 0.021 0.003 0.014	

```
##
##
## No more variables to be added.
## Variables Entered:
##
## + CGPA
## + GRE.Score
## + LOR
## + SOP
##
##
## Final Model Output
## -----
##
                   Model Summary
                         RMSE
## R
                  0.896
                                         0.078
                                      11.381
## R-Squared
                  0.804
                          Coef. Var
                         MSE
                0.795
## Adj. R-Squared
                                         0.006
              0.784
                         MAE
## Pred R-Squared
                                         0.060
## -----
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
##
                      ANOVA
##
            Sum of
            Squares DF Mean Square F
##
## -----
## Regression 2.316 4
## Residual 0.566 92
                     4
                              0.579
                                     94.143
                                            0.0000
                            0.006
## Total
            2.882
                     96
## -----
##
##
                         Parameter Estimates
## -----
                                      t Sig lower upp
     model Beta Std. Error Std. Beta
## ------
                   0.266
## (Intercept) -1.861
                                      -6.992 0.000 -2.389 -1.3
                      0.024 0.275 2.891 0.005

    0.001
    0.375
    4.832
    0.000
    0.003
    0.0

    0.013
    0.219
    3.073
    0.003
    0.014
    0.0

    0.012
    0.149
    2.316
    0.003
    0.012

##
      CGPA
                                                           0.1
            0.068
   GRE.Score 0.005
LOR 0.040
##
##
```

SOP 0.027

##							
## ## ##			Se	lection Summ	ary 		
##	Step	Variable Entered	R-Square	Adj. R-Square	C(p)	AIC	RMSE
##	1	CGPA	0.7041	0.7010	44.1518	-177.9290	0.0947
##	2	GRE.Score	0.7649	0.7599	17.9775	-198.2339	0.0849
##	3	LOR	0.7922	0.7855	7.3092	-208.2209	0.0802
##	4	SOP	0.8037	0.7951	4.0015	-211.7196	0.0784
##							

#### 13.5. Selección hacia atrás o backward

```
## Backward Elimination Method
## -----
##
## Candidate Terms:
##
## 1 . GRE.Score
## 2 . TOEFL.Score
## 3 . SOP
## 4 . LOR
## 5 . CGPA
##
## We are eliminating variables based on p value...
##
## - TOEFL.Score
## Backward Elimination: Step 1
## Variable TOEFL.Score Removed
##
##
                       Model Summary
## -----
                      0.896 RMSE
## R
                                                 0.078
## Adj. R-Squared 0.795 MSE ## Pred R-Squared 0.784 MAE ## -----
                                Coef. Var
                                             11.381
                                                  0.006
                                                 0.060
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
```

```
## MAE: Mean Absolute Error
##
##
                             ANOVA
               Sum of
             Squares DF Mean Square F Sig.
##
## -----
## Regression 2.316 4
## Residual 0.566 92
                                      0.579
                                               94.143 0.0000
                                      0.006
               2.882
## Total
                           96
##
                                 Parameter Estimates
      model Beta Std. Error Std. Beta
                                                         Sig
                                                  t
                                                                   lower
                                                                          upp
## -----
                         0.266
                                                -6.992
## (Intercept) -1.861
                                                          0.000
                                                                  -2.389 -1.3

      0.001
      0.375
      4.832
      0.000
      0.003
      0.0

      0.012
      0.149
      2.316
      0.023
      0.004
      0.0

      0.013
      0.219
      3.073
      0.003
      0.014
      0.0

      0.024
      0.275
      2.891
      0.005
      0.001

    GRE.Score
##
               0.005
        SOP 0.027
LOR 0.040
##
##
       CGPA 0.068
##
##
##
## No more variables satisfy the condition of p value = 0.05
##
##
## Variables Removed:
## - TOEFL.Score
##
##
## Final Model Output
## -----
##
##
                        Model Summary
## -----
## R
                        0.896 RMSE
                                                    0.078
                       0.804
                                 Coef. Var
## R-Squared
                                                   11.381
## Adj. R-Squared
                  0.795 MSE
0.784 MAE
                                                    0.006
## Pred R-Squared
## -----
## RMSE: Root Mean Square Error
```

## MSE: Mean Square Error

# #				AVO				
" # #		Sum of Squares	DF	Mean Squa			<del></del>	
# Regres	sion al	2.316 0.566	4 92 96	0.5	79 94.14	43 0.0000	)	
# #				Parameter	Estimates			·
		Beta	Std. Err	or Std.	Beta	t Sig	g lower	1
			0.2	66	-6	.992 0.00	00 -2.389	-
GRE.	Score	0.005	0.0	01 0	.375 4	.832 0.00	0.003	(
							0.004	
							0.014 0.021	
‡ ‡ ‡					arv			
, ‡	, and a second s							
: Step	Variable Step Removed			Adj. R-Square	C(p)	AIC	RMSE	
# # 1	TOEFI	Score	0.8037	 0.7951	4.0015	 -211.7196	0.0784	

#### Selección del modelo 14.

Con base en los anteriores numerales, ¿Cuál modelo sugiere para la variable respuesta? ¿por qué?