1813

Apuntes Fisica Teorica (AFTIN)

Felipe Colli *

2025

Contents

1	Clas	se de 2	23/05/2025	6
	1.1	Cinem	lática	4
		1.1.1	Movimiento Rectilíneo Uniforme (MRU)	4
		1.1.2	Movimiento Rectilíneo Uniformemente Acelerado (MRUA)	4
		1.1.3	Graficos	4
		1 1 4	Anlicando la Derivada a la ecuación de la Itininerario	6

^{*}AFTIN y Profesor Paul Cáceres

1 Clase de 23/05/2025

1.1 Cinemática

1.1.1 Movimiento Rectilíneo Uniforme (MRU)

- 1. Poseen una trayectoria rectilinea
- 2. Velocidad constante $(\vec{a} = 0 \frac{m}{s^2})$
- $v = \frac{\Delta x}{\Delta t} \ \vec{v} = \frac{\vec{d}}{t} \left(\frac{m}{s} \right) \ |\vec{v}| = v$
- $x(t) = x_i + vt$
- \bullet a=0
- $|\vec{d}| = d$

1.1.2 Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

- 1. Poseen una trayectoria rectilinea
- 2. Velocidad variable $\vec{a} = \frac{\Delta v}{\Delta t} \left(\frac{m}{s^2} \right)$
- 3. Si la aceleración es del mismo signo que la velocidad, el objeto se acelera. Si la aceleración es del signo opuesto a la velocidad, el objeto desacelera.
- Ecuancion de la Velocidad en Función del Tiempo $v=v_i+a\Delta t$
- Ecuación Iterinerario $x(t) = x_i + v_i t + \frac{1}{2}at^2$
- Ecuacion Independiente del Tiempo $v_f^2 = v_i^2 + 2a(x_f x_i)$
- $|\vec{d}| = d$

1.1.3 Graficos

- 1. Pendiente (Derivada) de la función
- 2. Área bajo la curva (Integral) de la función
- x vs t \rightarrow Pendiente = Velocidad, Area bajo la curva = Velocidad
- $\bullet \ v$ v
s $t \to \Delta x = \frac{\Delta v \cdot t}{2} + v_i t$ Pendiente = Aceleración, Area bajo la curva = Distancia Recorrida

1.1.4 Aplicando la Derivada a la ecuación de la Itininerario

$$x_f = x_i + v_i t + \frac{1}{2} a t^2$$

$$v(t) = x' = v_1 + at^2$$

$$v(t)' = a$$