Marked out of 30

(Bisection Method). Prior to entering in the corresponding input fields, all numerical answers should be rounded to 6-digit floating-point numbers. Given a real number z, the symbol \tilde{z} denotes the result of rounding of z to a 6-digit floating-point number.

(i) Use the Bisection method to find an approximation p_N of the unique solution p the equation

$$3x(1 - x^2 + x)\ln(x) = x^2 - 1$$

in [a, b] = [0.05, 0.5] such that

$$\text{RE}(\tilde{p}_N \approx \tilde{p}_{N-1}) < 10^{-3}$$
.

(iii) Show then your work by filling in the table that follows. In each input field in the column labelled by

$$f(a_n)f(p_n),$$

please enter either a plus sign + (if $f(a_n)f(p_n) > 0$), or a minus sign - (if $f(a_n)f(p_n) < 0$). If a particular row of the table is not necessary, enter an asterisk * in each input field in the row. In order to calculate the relative error

$$\mathrm{RE}(\tilde{p}_1 \approx \tilde{p}_0)$$

in the first row, assume formally that $p_0 = 0.05$.

n	a_n	p_n	b_n	$f(a_n)f(p_n)$	$RE(\tilde{p}_n \approx \tilde{p}_{n-1})$
1	0.05	0.275	0.5	-	0.818182
	~	~	~	~	~
2	0.05	0.1625	0.275	-	0.692308
	~	~	~	~	~
	0.05	0.10625	0.1625	+	0.529412
4	~	~	~	~	~
	0.10625	0.134375	0.1625	+	0.209302
5	~	~	~	~	~
	0.134375	0.148438	0.1625	+	0.0947399
	~	~	~	~	~
	0.148438	0.155469	0.1625	-	0.0452244
7 8 9	~	~	~	~	~
	0.148438	0.151953	0.155469	+	0.0231387
	~	~	~	~	~
	0.151953	0.153711	0.155469	+	0.011437
	~	~	~	~	~
	0.153711	0.15459	0.155469	-	0.00568601
	~	~	~	~	~
	0.153711	0.15415	0.15459	-	0.00285436
11	~	~	~	~	~
	0.153711	0.153931	0.15415	-	0.00142272
11	~	~	~	~	~
12	0.153711	0.153821	0.153931	+	0.000715117
	~	~	~	~	~
13	*	*	*	*	*
	~	~	~	~	~

As suggested in the previous problem, users of scientific calculators may first create a copy of the above table in an OpenOffice (or Excel) worksheet, and then copy-paste their answers.

(ii) According to your results in (i) and (ii),

Check

Previous Activity Jump to... Next Activity