RESISTÊNCIA DOS MATERIAIS I 2º semestre de 2016

Tarefa computacional 2

Para o mesmo mecanismo com os respectivos parâmetros geométricos da tarefa computacional 1, conforme mostrado abaixo pela figura 1 e pela tabela 1, será analisado os esforços internos do corpo BD. Sendo assim, pede-se, para o corpo BD:

- a) Determinar as equações de esforços internos (esforço cortante $V_y(x)$, momento fletor $M_z(x)$ e esforço normal $N_x(x)$) utilizando o método das seções.
- b) Fazer um programa usando o $Matlab \odot$, que possibilite construir os diagramas de esforços internos para qualquer valor do ângulo Θ tal que $0 \le \Theta \le \frac{\pi}{2}$. (Atentese que a reação em C tem sua posição variável ao longo do corpo BD conforme Θ varia).
- c) Determinar os diagramas dos esforços internos para $\Theta = \frac{\pi}{6}$ e $\Theta = \frac{\pi}{3}$.

Tabela 1 – Parâmetros geométricos

Variável	Valor
L1	2 m
L2	0,8 m
m_1	20 kg
m_2	11 kg
m	1000 kg
g	9,81 m/s²
b	0,5 m

Figura 1 - Mecanismo para levantamento de carga

Itens a serem enviados:

- Programa de matlab comentado no formato: MATLAB Code (.m).
- Relatório contendo:
- Nome, RA e turma;
- Máximo de 2 páginas;
- As equações finais para os esforços internos $(V_y(x),\,M_z(x),\,N_x(x))$ para o corpo BD;
- 3 Gráficos de esforços internos para $\Theta = \frac{\pi}{6} e \Theta = \frac{\pi}{3}$. (Plote os respectivos gráficos juntos);
- Analise para $\Theta = \frac{\pi}{6}$ e $\Theta = \frac{\pi}{3}$ os diagramas de esforços internos;
- Analise quantitativamente a influência da massa m₁ nos diagramas dos esforços internos;

Data de entrega: 25/10/2016