PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

IOP224 INVESTIGACIÓN DE OPERACIONES

Práctica Dirigida 1 Primer semestre 2025

Aquellos ejercicios marcados con (*) o (**) son más retadores para alumnos sin previa exposición a cursos de análisis en \mathbb{R}^n y microeconomía. Todos los ejercicios se pueden resolver aplicando análisis convexo y optimización, sin importar el contexto del problema.

Elementos de álgebra lineal

- I. Espacios vectoriales y producto interno.
 - 1. Demuestre que en un espacio vectorial \mathcal{U} , el vector nulo (elemento neutro) $\mathbf{0}$ es único.
 - 2. Dados $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, analice si $|x_1y_1| \cdot |x_2y_2|$ define un producto interno. Sugerencia: considere $(x_1, x_2) = (1, 0)$.
 - 3. Dados $\mathbf{x}, \mathbf{y} \in \mathcal{U}$, pruebe que si $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, entonces $||\mathbf{x}|| \le ||\mathbf{x} + a\mathbf{y}||$ para todo $a \in \mathbb{R}$. Sugerencia: recuerde que $||\mathbf{x}||^2 = \mathbf{x} \cdot \mathbf{x}$.
 - 4. Pruebe que

$$16 \le (x_1 + x_2 + x_3 + x_4) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} \right), \ x_i > 0.$$

Sugerencia: use la desigualdad media-aritmética o Cauchy-Schwarz.

- 5. Pruebe que si $\mathbf{x} \neq \mathbf{0}$ e \mathbf{y} es un vector en la misma dirección del vector \mathbf{x} , entonces $\Pr_{\mathbf{x}} \mathbf{y} = \|\mathbf{y}\| \mathbf{u}$, donde \mathbf{u} es un vector unitario en la dirección del vector \mathbf{x} .
- 6. Demuestre que, dados $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$, $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \cdot ||\mathbf{y}||$, donde $||\mathbf{x}|| = \sqrt{x_1^2 + x_2^2}$. Esto se conoce como la desigualdad de Cauchy-Schwarz. Sugerencia: use $(x+y)^2 = x^2 + 2xy + y^2 \ge 0$ o considere el polinomio $p(t) = ||\mathbf{x} t\mathbf{y}||$.
- 7. Asuma que la desigualdad anterior se cumple en \mathbb{R}^n (esto se deduce de hecho de una de las posibles demostraciones del ítem anterior de manera directa). Demuestre que

$$(x_1 + \dots + x_n)^2 \le n(x_1^2 + \dots + x_n^2).$$

Sugerencia: considere el vector **1** y $(x_1,...,x_n)$.

8. Use la desigualdad de Cauchy-Schwarz para probar la desigualdad triangular: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ (para \mathbb{R}^n es la misma prueba)

$$||x + y|| \le ||x|| + ||y||.$$

Sugerencia: use Cauchy-Schwarz.

- II. Subespacios vectoriales. Bases y dimensión.
 - 1. Analice si $S = \{\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 : x_1 x_2 \ge 0\}$ es un subespacio vectorial de \mathbb{R}^2 y de serlo, encuentre su dimensión.
 - 2. Analice si $S = \{A \in \mathcal{M}_{n \times n} : A \text{ es simétrica}\}$ es un subespacio vectorial de \mathbb{R}^2 y de serlo, encuentre su dimensión.

1

- 3. Si el concepto de combinación lineal se extendiera a una suma infinita, ¿cuál seria una combinación lineal que generaría la función $f(x) = e^x$? ¿Y para $g(x) = \cos x$?
- 4. Determine todos los subespacios de \mathbb{R}^2 .
- 5. Demuestre que el conjunto de todas las funciones continuas $f:[a,b]\to\mathbb{R}$ es un subespacio vectorial del espacio vectoriales de funciones $F:[a,b]\to\mathbb{R}$.
- 6. Si $\mathbf{x}_1,...,\mathbf{x}_4$ genera $\mathcal{U},$ analice si

$$\{x_1-x_2, x_2-x_3, x_3-x_4, x_4\}$$

generan el espacio.

7. Analice la siguiente afirmación: si $\{\mathbf{x}_1,...,\mathbf{x}_m\}$ y $\{\mathbf{y}_1,...,\mathbf{y}_m\}$ son listas de vectores li, entonces $\{\mathbf{x}_i+\mathbf{y}_i\}_{i=1,...,m}$ es una lista de vectores li.