Ivanway MT H 420 PS 9 O Proof Us-3 zern's lerny. 14 f = {(U,h) | W \(\text{U} \(\text{V} \) \(\te Puriting ordering, $(U_1,h_1) \angle (U_2,h_2)$ if i $U_1 \subseteq U_2$ and $h_2|_{U_2=h_1}$ extens to (U_1,h_1) Apply zun's lerry, take any their &(U, h,) SiEI CF U=UitIUi, lor ean of EU define h(a)=hi(d) where addi The Chair is setsily ordered, the votes and there on Descent of the Chair of the Chair of the Chair of the Chair. By Zovn's leng , the exists a maximal elact (Umat, haax) & F SLOW Drax = V: Supple not , then there exists Vo EV | Drest UP wat to extend but to U', so proy plenet in U's
on to write vige, as utxo, when Ut Una, LEF petie: h'(nutivo): how (AU) + did

Thus (U,h') + f as shirty extens (Unix, Whomx) manifally Therefore, the exist & line ductions givyit Such tut glw=f. 2) Price $W^* \cong V^* / W^0$.

Detre rep $\theta: V^* \to W^*$ by restriction! $\theta(\theta) = \theta | w$ θ is switched then rep , b/c any $f \in W^*$ can extended to V usis zero's learner.

The revnel of θ is precisely W^0 and θ is θ to θ in θ .

Proverties to θ is a precisely θ .

The revnel of θ is θ in θ .

The revnel of θ is θ in θ .

Therefore θ is θ in θ .

There θ is θ in θ in θ in θ in θ .

 $\frac{-0eV}{3} (Q) \quad 1et \quad p(x) = a_0 + a_1 x + a_2 x^2 = 7 \quad D(p) = a_1 + 2a_2 x$ $\frac{conpre-}{40} \quad (p(p)) = constant tevn \quad D(p) = a_1 = 7 \quad D(f_0) = f_1$ $40 \quad D(f_0) = f_1 \left(D(p) \right) = D(p) = 2 \cdot a_2 = 7 \quad D(f_0) = 2 \cdot f_2$ $40 \quad f_1(p) = f_1 \left(D(p) \right) = D(p) = 0 = 7 \quad D(f_0) = 0$ $D(f_0) = f_2(p(p)) = f_2(p(p)) = D(p) = 0 = 7 \quad D(f_0) = 0$

B report $e_{i}(p) = p(i) = a_{0} + a_{1} + a_{2}!$ $D^{k}(e_{i})(p) = e_{i}(p(p)) = D(p)(i)$ $D(p) = a_{1} + 2a_{2}x : D(p)(i) = a_{1} + 2a_{2} \Rightarrow D(e_{1}) = f_{1} + 2f_{2}$

(b) ex(p)=p(t), D(p)(t)=4,+242 t =7 Dt(ex)(p)=D(p)(t)= 9,+242t Therefore, pt fex)=f, +2+fz

$$\begin{array}{lll}
|A| & |A| & |A| \\
|A| & |A| & |A| \\
|A| & |A| & |A| & |A| \\
|A| & |A| & |A| & |A| & |A| & |A| \\
|A| & |A$$

$$g(x) = x^{3} - 2x$$

$$g(f(x)) = x^{2} - 3x^{1/2}$$

$$f^{3} = (x^{2} - 3x^{1/2})^{3} = x^{6} - 9x^{5} + 30x^{4} - 95x^{3} + 50x^{2} - 9x^{1/2}$$

$$g(f(x)) = x^{6} - 9x^{5} + 30x^{4} + 9x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} + 9x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} + 9x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} + 9x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} + 9x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 95x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 95x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 95x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 95x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 95x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 95x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 95x^{3} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 9x^{5} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 9x^{5} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 9x^{5} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 9x^{5} + 30x^{2} - 9x^{1/2} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 9x^{4} - 2x^{2} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 9x^{4} - 2x^{4} + 6x - 2$$

$$G(f(x)) = x^{6} - 9x^{5} + 30x^{4} - 3x^{4} + 30x^{4} - 3x^{4} + 30x^{4} - 3x^{4} + 30x^{4} - 3x^{4} + 30x^{4} + 30x^{$$