quadratic form defining the exponent terms in a Gaussian distribution and we need to determine the corresponding mean and covariance. Such problems can be solved straightforwardly by noting that the exponent in a general Gaussian distribution $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$ can be written as

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) = -\frac{1}{2} \mathbf{x}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \mathbf{x}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \text{const}$$
(3.55)

where 'const' denotes terms that are independent of \mathbf{x} , We have also made use of the symmetry of Σ . Thus, if we take our general quadratic form and express it in the form given by the right-hand side of (3.55), then we can immediately equate the matrix of coefficients entering the second-order term in \mathbf{x} to the inverse covariance matrix Σ^{-1} and the coefficient of the linear term in \mathbf{x} to $\Sigma^{-1}\mu$, from which we can obtain μ .

Now let us apply this procedure to the conditional Gaussian distribution $p(\mathbf{x}_a|\mathbf{x}_b)$ for which the quadratic form in the exponent is given by (3.54). We will denote the mean and covariance of this distribution by $\mu_{a|b}$ and $\Sigma_{a|b}$, respectively. Consider the functional dependence of (3.54) on \mathbf{x}_a in which \mathbf{x}_b is regarded as a constant. If we pick out all terms that are second order in \mathbf{x}_a , we have

$$-\frac{1}{2}\mathbf{x}_{a}^{\mathrm{T}}\mathbf{\Lambda}_{aa}\mathbf{x}_{a}\tag{3.56}$$

from which we can immediately conclude that the covariance (inverse precision) of $p(\mathbf{x}_a|\mathbf{x}_b)$ is given by

$$\Sigma_{a|b} = \Lambda_{aa}^{-1}. \tag{3.57}$$

Now consider all the terms in (3.54) that are linear in x_a :

$$\mathbf{x}_{a}^{\mathrm{T}} \left\{ \mathbf{\Lambda}_{aa} \boldsymbol{\mu}_{a} - \mathbf{\Lambda}_{ab} (\mathbf{x}_{b} - \boldsymbol{\mu}_{b}) \right\}$$
 (3.58)

where we have used $\Lambda_{ba}^{\mathrm{T}} = \Lambda_{ab}$. From our discussion of the general form (3.55), the coefficient of \mathbf{x}_a in this expression must equal $\Sigma_{a|b}^{-1} \mu_{a|b}$ and, hence,

$$\mu_{a|b} = \Sigma_{a|b} \{ \Lambda_{aa} \mu_a - \Lambda_{ab} (\mathbf{x}_b - \mu_b) \}$$

$$= \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} (\mathbf{x}_b - \mu_b)$$
(3.59)

where we have made use of (3.57).

The results (3.57) and (3.59) are expressed in terms of the partitioned precision matrix of the original joint distribution $p(\mathbf{x}_a, \mathbf{x}_b)$. We can also express these results in terms of the corresponding partitioned covariance matrix. To do this, we make use of the following identity for the inverse of a partitioned matrix:

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{M} & -\mathbf{M}\mathbf{B}\mathbf{D}^{-1} \\ -\mathbf{D}^{-1}\mathbf{C}\mathbf{M} & \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}\mathbf{M}\mathbf{B}\mathbf{D}^{-1} \end{pmatrix}$$
(3.60)

where we have defined

$$\mathbf{M} = (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}.\tag{3.61}$$

Exercise 3.18