Course code	Course Name	L-T-P-Credits	Year of Introduction
IC207	DESIGN OF LOGIC CIRCUITS	3-0-0-3	2016

Course Objectives

- To study various number systems and conversions
- To study Boolean Algebra
- To study combinational logic design and circuits
- To study various sequential components and circuits
- To study finite state machines
- To study the logic families.

Syllabus

Number system and codes - Boolean algebra and related theorems - Combinational logic and reduction using Algebraic Method and Karnaugh maps - Combinational circuits - Latches, Flip-Flops and registers - Asynchronous counters - Introduction to design of synchronous sequential circuits using Finite State Machines - Basic working of TTL NAND and CMOS inverter gates.

Expected Outcome

After the completion of the course, students should be able to

- Convert numbers represented in one system to other
- Simplify Boolean expressions
- Design and implement combinational circuits
- Design and implement sequential circuits
- Explain the working of TTL NAND and CMOS inverter gates

Text Books:

- 1. Charles H. Roth, Jr. Fundamentals of Logic Design, 5th edition, Thomson Books/Cole.
- 2. A. Anand Kumar, Fundamentals of Digital Circuits, PHI learning, 2/e, 2010, ISBN: 978-81-203-3679-7.

Reference Books:

- 1. Thomas L Floyd, Digital Fundamentals, Pearson, 10/e, 2011.
- 2. Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with VHDL Design, TMH
- 3. John F Wakerly, Digital Design- Principles and Practices (Third edition), Pearson
- 4. Taub and Schilling, Digital principles and applications, TMH
- 5. Mano M M, Digital Design, PHI.
- 6. R P Jain, Modern Digital Electronics, Tata Mc Graw Hill, 4/e, 2009.

Course Plan					
Module	Contents		Sem. Exam Marks		
I	Number systems: Binary, Octal, and Hexadecimal - Representation of negative numbers in binary - Binary arithmetic.	2	15%		

Boolean algebra: Operations, Laws & Theorems, De Morgan's theorems - SOP & POS Boolean expressions and truth tables Applications of Boolean Algebra: Formation of switching functions from word statements, Minterm and Maxterm expansions, Incompletely specified functions. Minimization Techniques: Algebraic, Karnaugh map (up to 6 variables) & Quine-McCluskey methods - Realization using basic gates and universal gates. FIRST INTERNAL EXAM Combinational Logic Circuits & Design: Adders & Subtractors - Types, Ripple carry & Carry look ahead adders, BCD adder. Code converters - examples & Comparators. Multiplexers, Demultiplexers, Decoders & Encoders. Sequential Logic circuits & Design: Latches - SR Latch. Flip-Flops - SR, JK, D & T Flip Flops - Level & Edge triggered flip flops - Synchronous & Asynchronous inputs - Conversion between flip flops. Master slave flip flops. Shift Registers: SISO, SIPO, PISO, PIPO shift registers. Applications: Serial binary adder and binary multiplier circuits. SECOND INTERNAL EXAM Counters: Asynchronous counters- Up, Down and Up/ Down counter, Mod n counters. Introduction to design of synchronous sequential circuits using Finite State Machines - Mealy & Moore types with single input-single out problems. Synchronous counter design Shift register counters - Ring & Johnson counters. 1 Logic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS		Binary codes: BCD & BCD addition, XS-3 & Gray Codes, Error detection and correction codes - Parity & Hamming codes.		
functions from word statements, Minterm and Maxterm approaches apparations, Incompletely specified functions. Minimization Techniques: Algebraic, Karnaugh map (up to 6 variables) & Quine-McCluskey methods - Realization using basic gates and universal gates. FIRST INTERNAL EXAM Combinational Logic Circuits & Design: Adders & Subtractors — Types, Ripple carry & Carry look ahead adders, BCD adder. Code converters — examples & Comparators. Multiplexers, Demultiplexers, Decoders & Encoders. Sequential Logic circuits & Design: Latches — SR Latch, Flip-Flops — SR, JK, D & T Flip Flops — Level & Edge triggered flip flops — Synchronous & Asynchronous inputs — Conversion between flip flops. Master slave flip flops. Shift Registers: SISO, SIPO, PISO, PIPO shift registers, Right & Left shifts, Bidirectional & Universal shift registers. Applications: Serial binary adder and binary multiplier circuits. SECOND INTERNAL EXAM Counters: Asynchronous counters— Up, Down and Up/ Down counter, Mod n counters. Introduction to design of synchronous sequential circuits using Finite State Machines — Mealy & Moore types with single input-single out problems— Synchronous counter design Shift register counters - Ring & Johnson counters. Ucgic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS		Morgan's theorems - SOP & POS Boolean expressions and	2	
Combinational Logic Circuits & Design: Adders & Subtractors – Types, Ripple carry & Carry look ahead adders, BCD adder. Code converters – examples & Comparators. Multiplexers, Demultiplexers, Decoders & Encoders. Sequential Logic circuits & Design: Latches – SR Latch. Flip-Flops – SR, JK, D & T Flip Flops – Level & Edge triggered flip flops – Synchronous & Asynchronous inputs - Conversion between flip flops. Master slave flip flops. Shift Registers: SISO, SIPO, PISO, PIPO shift registers. Applications: Serial binary adder and binary multiplier circuits. SECOND INTERNAL EXAM Counters: Asynchronous counters- Up, Down and Up/ Down counter, Mod n counters. Introduction to design of synchronous sequential circuits using Finite State Machines - Mealy & Moore types with single input-single out problems- Synchronous counter design Shift register counters - Ring & Johnson counters. Logic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS	п	functions from word statements, Minterm and Maxterm expansions, Incompletely specified functions. Minimization Techniques: Algebraic, Karnaugh map (up to 6 variables) & Quine-McCluskey methods - Realization using basic gates and universal gates.	M	15%
Subtractors – Types, Ripple carry & Carry look ahead adders, BCD adder. Code converters – examples & Comparators. Multiplexers, Demultiplexers, Decoders & Encoders. Sequential Logic circuits & Design: Latches – SR Latch. Flip-Flops – SR, JK, D & T Flip Flops – Level & Edge triggered flip flops – Synchronous & Asynchronous inputs – Conversion between flip flops. Master slave flip flops. Shift Registers: SISO, SIPO, PISO, PIPO shift registers, Right & Left shifts, Bidirectional & Universal shift registers. Applications: Serial binary adder and binary multiplier circuits. SECOND INTERNAL EXAM Counters: Asynchronous counters- Up, Down and Up/ Down counter, Mod n counters. Introduction to design of synchronous sequential circuits using Finite State Machines – Mealy & Moore types with single input-single out problems- Synchronous counter design Shift register counters - Ring & Johnson counters. Logic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS		FIRST INTERNAL EXAM	A. Amer	
Multiplexers, Demultiplexers, Decoders & Encoders. Sequential Logic circuits & Design: Latches – SR Latch. Flip-Flops – SR, JK, D & T Flip Flops – Level & Edge triggered flip flops – Synchronous & Asynchronous inputs – Conversion between flip flops. Master slave flip flops. Shift Registers: SISO, SIPO, PISO, PIPO shift registers, Right & Left shifts, Bidirectional & Universal shift registers. Applications: Serial binary adder and binary multiplier circuits. SECOND INTERNAL EXAM Counters: Asynchronous counters- Up, Down and Up/ Down counter, Mod n counters. Introduction to design of synchronous sequential circuits using Finite State Machines – Mealy & Moore types with single input-single out problems- Synchronous counter design Shift register counters - Ring & Johnson counters. Logic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS	III	Subtractors – Types, Ripple carry & Carry look ahead adders, BCD adder.	3	15%
Sequential Logic circuits & Design: Latches – SR Latch. Flip-Flops – SR, JK, D & T Flip Flops – Level & Edge triggered flip flops – Synchronous & Asynchronous inputs - Conversion between flip flops. Master slave flip flops. Shift Registers: SISO, SIPO, PISO, PIPO shift registers, Right & Left shifts, Bidirectional & Universal shift registers. Applications: Serial binary adder and binary multiplier circuits. SECOND INTERNAL EXAM Counters: Asynchronous counters- Up, Down and Up/ Down counter, Mod n counters. Introduction to design of synchronous sequential circuits using Finite State Machines - Mealy & Moore types with single input-single out problems- Synchronous counter design Shift register counters - Ring & Johnson counters. Logic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS		• •	3	
Shift Registers: SISO, SIPO, PISO, PIPO shift registers, Right & Left shifts, Bidirectional & Universal shift registers. Applications: Serial binary adder and binary multiplier circuits. SECOND INTERNAL EXAM Counters: Asynchronous counters- Up, Down and Up/ Down counter, Mod n counters. Introduction to design of synchronous sequential circuits using Finite State Machines - Mealy & Moore types with single input-single out problems- Synchronous counter design Shift register counters - Ring & Johnson counters. Logic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS 2	IV	Sequential Logic circuits & Design: Latches – SR Latch. Flip-Flops – SR, JK, D & T Flip Flops – Level & Edge triggered flip flops – Synchronous & Asynchronous inputs – Conversion between flip flops. Master slave flip flops.	3	15%
Counters: Asynchronous counters- Up, Down and Up/ Down counter, Mod n counters. Introduction to design of synchronous sequential circuits using Finite State Machines - Mealy & Moore types with single input-single out problems- Synchronous counter design Shift register counters - Ring & Johnson counters. Logic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS		Right & Left shifts, Bidirectional & Universal shift registers. Applications: Serial binary adder and binary multiplier circuits.	3	
Counter, Mod n counters. Introduction to design of synchronous sequential circuits using Finite State Machines - Mealy & Moore types with single input-single out problems- Synchronous counter design Shift register counters - Ring & Johnson counters. Logic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS				Γ
V using Finite State Machines - Mealy & Moore types with single input-single out problems- Synchronous counter design Shift register counters - Ring & Johnson counters. Logic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS 2			4	20%
Logic families: Introduction to different logic families, Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS 2	V	using Finite State Machines - Mealy & Moore types with single input-single out problems- design Synchronous counter	4	
Standard logic levels - Current and voltage parameters - fan in and fan out - Propagation delay, noise consideration. TTL: Basic working principle of a TTL NAND gate - Totem pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS 2			1	
VI pole and Open collector gate output configurations - Tri-state logic - characteristics of a TTL NAND gate. CMOS: Basic working principle of a CMOS inverter, Comparison of TTL & CMOS, Interfacing TTL & CMOS 2	VI	Standard logic levels - Current and voltage parameters - fan in	1	20%
Comparison of TTL & CMOS, Interfacing TTL & CMOS 2		pole and Open collector gate output configurations - Tri-state	3	
		CMOS: Basic working principle of a CMOS inverter,	2	
END SEMESTER EXAM				

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 Hours

There shall be three parts for the question paper.

Part A includes Modules 1 & 2 and shall have three questions of fifteen marks out of which two are to be answered. There shall be subdivisions, limited to a maximum of 4, in each question.

Part B includes Modules 3 & 4 and shall have three questions of fifteen marks out of which two are to be answered. There shall be subdivisions, limited to a maximum of 4, in each question.

Part C includes Modules 5 & 6 and shall have three questions of twenty marks out of which two are to be answered. There shall be subdivisions, limited to a maximum of 4, in each question.

Note: Each part shall have questions uniformly covering both the modules in it.

