n.=1.40

n= 1.70

7=480 nm

.. d=8.0 µm

(1)
$$bsin\theta = (2k+1) \frac{\lambda}{2}$$
 $k = 1, 2, 3, ...$ $sin\theta \approx \frac{\lambda}{7}$ $(400 nm < \lambda < 750 nm)$ $k = 3$ $k = 4$ $k = 4$ $k = 3$ $k = 4$ k

Sind≈子 k=2 ∴ X= 0.583 m

11-6 D

11-5 B 11-27

$$sine=0.2$$

 $\therefore d=6 \times 10^{-6} m$

(2) $(b+b')sine=\pm k\lambda$ $k=0,1,2,\cdots$
 $bsine=\pm k'\lambda$ $k'=1.2,3$
 $\frac{k}{k'}=4$
 $\therefore b=1.5 \times 10^{-6} m$

(3) $dsine=k\lambda$
 $sine<1$
 $\therefore k<10$
 $\therefore k<10$
 $\therefore k<10$
 $\therefore k$ B $11-7$ C $11-8$ B $11-38$ $1=\frac{1}{2} \cos^2 6 \delta^2$ $1_3=\frac{1}{2} 1_0 \cdot \cos^2 30^\circ$ $1_3=\frac{1}{2} 1_1 \cdot \cos^2 30^\circ$ $1_3=\frac{9}{4} 1_1$

11-39 设入射光高强度为I,线偏振光强为x1

xI+ (1-3/2 = 2/1-3/1

...偏振光与3,自然光与3。

∴ Χ=≩

$$I_{3} = \frac{1}{2} I_{0} \cdot \cos^{2} 30^{\circ}$$

$$I_{3} = I_{2} \cdot \cos^{2} 30^{\circ}$$

$$I_{3} = \frac{9}{4} I_{1}$$

11-35

(1) dsine = kx k=2