

Pretrained ViT as Vision Encoder

Paper Reading by Zhiying Lu 2023.12.12

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*,†, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*,†

> *equal technical contribution, †equal advising Google Research, Brain Team {adosovitskiy, neilhoulsby}@google.com

ViT ICLR 2020

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu^{†*} Yutong Lin^{†*} Yue Cao^{*} Han Hu^{*‡} Yixuan Wei[†] Zheng Zhang Stephen Lin Baining Guo Microsoft Research Asia

{v-zeliu1,v-yutlin,yuecao,hanhu,v-yixwe,zhez,stevelin,bainguo}@microsoft.com

Swin Transformer ICCV 2021 (best paper)

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford * 1 Jong Wook Kim * 1 Chris Hallacy 1 Aditya Ramesh 1 Gabriel Goh 1 Sandhini Agarwal 1 Girish Sastry 1 Amanda Askell 1 Pamela Mishkin 1 Jack Clark 1 Gretchen Krueger 1 Ilya Sutskever 1

CLIP ICML 2021

Sigmoid Loss for Language Image Pre-Training

Xiaohua Zhai* Basil Mustafa Alexander Kolesnikov Lucas Beyer* Google DeepMind, Zürich, Switzerland

{xzhai, basilm, akolesnikov, lbeyer}@google.com

SigLIP **ICCV 2023**

Masked Autoencoders Are Scalable Vision Learners

Kaiming He*,† Xinlei Chen* Saining Xie Yanghao Li Piotr Dollár Ross Girshick

*equal technical contribution †project lead

Facebook AI Research (FAIR)

MAE **CVPR 2022**

DINOv2: Learning Robust Visual Features without Supervision

Maxime Oquab**, Timothée Darcet**, Théo Moutakanni**, Huy V. Vo*, Marc Szafraniec*, Vasil Khalidov*, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal¹, Patrick Labatut*, Armand Joulin*, Piotr Bojanowski*

> ¹Inria Meta AI Research

*core team **equal contribution

Reviewed on OpenReview: https://openreview.net/forum?id=a68SUt6zFt

DINOv2 **TMLR 2024**

> 智能多媒体内容计算实验室 **Intelligent Multimedia Content Computing Lab**

- □研究背景
- □ Fully-Supervised
- Weakly-Supervised
- □ Self-Supervised
- □总结

研究背景

- 当今研究中,如何利用预训练模型进行迁移成为主流
- 开源社区中存在众多预训练模型,由于各自预训练方法和预训练数据集不同,使得模型具有不同的表征模式
- 根据预训练的不同,大致可以分为全监督、弱监督、自监督三种

Joint Tuning	Supervised	Visual Tokenizer	# Pretraining Images	VQA Acc	Capti CIDEr	oning SPICE	OC Acc	MCI Acc	Avg
	Fully	DeiT [<u>16]</u>	1.28 M	48.3	65.8	15.9	37.5	83.6	58.8
×	Self	DINO [19] MAE [18] DINOv2 [20]	1.28 M 1.28 M 142 M	50.1 48.4 51.3	45.0 37.3 <u>67.9</u>	13.5 11.8 <u>16.1</u>	46.5 47.5 <u>47.0</u>	80.8 82.7 86.0	55.6 53.4 63.1
	Weakly	CLIP [<u>17</u>]	400 M	52.2	69.3	16.6	42.5	86.0	62.5
	Fully	DeiT [<u>16</u>]	1.28 M	50.7	38.4	10.0	41.0	86.9	54.3
✓	Self	DINO [19] MAE [18] DINOv2 [20]	1.28 M 1.28 M 142 M	47.3 48.9 50.5	54.1 48.0 49.6	14.5 14.2 13.0	44.5 47.5 43.5	86.6 88.7 84.1	58.1 58.2 56.9
	Weakly	CLIP [<u>17</u>]	400 M	47.7	64.2	15.4	45.5	88.0	61.4

研究背景

- 主要讨论基于ViT架构的预训练模型,因为ViT模型具有多项良好性质
- · Variable in length:可计算任意尺度的特征,不受特征图形状影响
- Scalable:传统卷积网络需要设计金字塔架构,当网络扩大参数时调参较为困难,而ViT系列网络可直接堆叠层数并任意改变每层的维度
- Global Field:对整个序列具有全局感受野,不受限
- Unified Architecture:与NLP实现统一架构

研究背景

- 当今研究中,如何利用预训练模型进行迁移成为主流
- 开源社区中存在众多预训练模型,由于各自预训练方法和预训练数据集不同,使得模型具有不同的表征模式
- 根据预训练的不同,大致可以分为全监督、弱监督、自监督三种

Joint Tuning	Supervised	Visual Tokenizer	# Pretraining Images	VQA Acc	Capti CIDEr	oning SPICE	OC Acc	MCI Acc	Avg
	Fully	DeiT [<u>16]</u>	1.28 M	48.3	65.8	15.9	37.5	83.6	58.8
×	Self	DINO [19] MAE [18] DINOv2 [20]	1.28 M 1.28 M 142 M	50.1 48.4 51.3	45.0 37.3 <u>67.9</u>	13.5 11.8 <u>16.1</u>	46.5 47.5 <u>47.0</u>	80.8 82.7 86.0	55.6 53.4 63.1
	Weakly	CLIP [<u>17</u>]	400 M	52.2	69.3	16.6	42.5	86.0	62.5
	Fully	DeiT [<u>16</u>]	1.28 M	50.7	38.4	10.0	41.0	86.9	54.3
✓	Self	DINO [19] MAE [18] DINOv2 [20]	1.28 M 1.28 M 142 M	47.3 48.9 50.5	54.1 48.0 49.6	14.5 14.2 13.0	44.5 47.5 43.5	86.6 88.7 84.1	58.1 58.2 56.9
	Weakly	CLIP [<u>17</u>]	400 M	47.7	64.2	15.4	45.5	88.0	61.4

- □研究背景
- Fully-Supervised
- Weakly-Supervised
- □ Self-Supervised
- □总结

Fully-Supervised

- 全监督即每张图像与对应类别作为成 对数据进行训练,使用交叉熵函数
- 绝大部分工作考虑如何在原版ViT的基础上改进网络结构,包括层级化设计、注意力、MLP的设计等(详见之前的backbone主题报告)
- 全监督的主要预训练数据集为: ImageNet21k, ImageNet1k, JFT300M, iNaturalist等

	DeiT-S [43]	22	4.6	79.9
	Swin-T [32]	29	4.5	81.3
	ConvNeXt-T [33]	29	4.5	82.1
	Focal-T [56]	29	4.9	82.2
	InceptionNeXt-T [60]	28	4.2	82.3
	FocalNet-T [57]	29	4.5	82.3
	RegionViT-S [2]	31	5.3	82.6
e]	CSWin-T [9]	23	4.3	82.7
small model $\sim 4.5G$	MPViT-S [26]	23	4.7	83.0
1 n 4.8	ScalableViT-S [58]	32	4.2	83.1
ma∫ ∠	MOAT-0 [55]	28	5.7	83.3
S	Ortho-S [22]	24	4.5	83.4
	InternImage-T [49]	30	5.0	83.5
	CMT-S [15]	25	4.0	83.5
	FAT-B3 [13]	29	4.4	83.6
	MaxViT-T [44]	31	5.6	83.6
	SMT-S [31]	20	4.8	83.7
	BiFormer-S [66]	26	4.5	83.8
	RMT-S	27	4.5	84.1

ViT与Swin

ViT与Swin

全监督的新发展 Mamba?

(a) Attention $O(N^2)$ complexity

(b) Cross-Scan O(N) complexity

- □研究背景
- □ Fully-Supervised
- Weakly-Supervised
- □ Self-Supervised
- □总结

- 主要讨论来自于进行视觉语言对比学习预训练的模型CLIP及其变体
- 弱监督即为使用图像与文字匹配预训练的方式,并不是传统全监督直接对应图 像和label,而是在一个batch中匹配图像和文本,增强正例,排除负例

(2) Create dataset classifier from label text

智能多媒体内容计算实验室 **Intelligent Multimedia Content Computing Lab**

- CLIP的训练主要分为三部分:**数据集构** 造,训练目标,缩放模型
- 数据集构造:构造充分大数据集(之前的图文对数据集MSCOCO, Visual Genome都只有0.1M, YFCC100M的高质量数据只有15M), CLIP用500k个查询,每个查询20k的 image-text pair来构造了一个400M大小的WIT400M数据集
- 训练目标:在一个N batch中利用cos 距离匹配image-text,构造双向的对称 的loss,**图像匹配文本,文本匹配图像**

```
# image_encoder - ResNet or Vision Transformer
# text encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
               - minibatch of aligned texts
# T[n, 1]
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss
       = (loss_i + loss_t)/2
```


- 缩**放模型:**CLIP采用双塔结构,图像编码器负责处理图像,文本编码器负责处理文本
- 文本编码器:标准Transformer,每层宽度随着图像编码器设置,模型架构影响较小
- **图像编码器**:采用ResNet50或ViT架构,由于在匹配时文本段采用class token,因此在ResNet50的输出端还要加上一个attention层,并取输出class token作为最终图像特征。结果为,ViT优于ResNet,且ViT越大效果越好,最终规模为ViT-L/14-336px

引擎实验室

- Inference阶段: 图像端直接输入图像,文本段根据人工设置的文本,与图像进行匹配
- 使用合适的或集成的prompt可以达到较高的零样本效果,即对于同一个类别使用多个 text template,于是诞生了prompt-engineering

Zhiying Lu - USTC

- CLIP的一大特点在于使用**双塔匹配训练**,但可以单塔使用,两塔的输出在一个相近的映射空间,即它可以**把图像映射到文本空间中,因此可以作为MLLM的visual encoder.**
- 由于CLIP数据未开源,因此诞生了后续很多开源CLIP系的工作
- OpenCLIP (CVPR2023): 采用LAION2B数据集预训练,相对于以往的ViT-L (0.3B), 训练了更大的ViT-H (0.6B) 和ViT-G (1B)

	Data	Arch.	ImageNet	VTAB+	COCO
CLIP [55]	WIT-400M	L/14	75.5	55.8	61.1
Ours	LAION-2B	L/14	75.2	54.6	71.1
Ours	LAION-2B	H/14	<u>78.0</u>	56.4	73.4

 EVA-CLIP: 采用Merge-2B (LAION+COCO) 进行 训练,结合FLIP的对图像mask的操作,EVA (BeiT 与iBOT结合) 权重初始化视觉编码器,CLIP权重初 始化文本编码器。最大版本为EVA-CLIP-18B

SigLIP

From CLIP to SigLIP

Softmax-based (CLIP):

$$-\frac{1}{2|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \left(\underbrace{\frac{e^{t\mathbf{x}_i \cdot \mathbf{y}_i}}{\log \frac{e^{t\mathbf{x}_i \cdot \mathbf{y}_i}}{\sum_{j=1}^{|\mathcal{B}|} e^{t\mathbf{x}_i \cdot \mathbf{y}_j}}} + \underbrace{\log \frac{e^{t\mathbf{x}_i \cdot \mathbf{y}_i}}{\sum_{j=1}^{|\mathcal{B}|} e^{t\mathbf{x}_j \cdot \mathbf{y}_i}} \right)$$

Sigmoid-based (SigLIP):

$$-\frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \sum_{j=1}^{|\mathcal{B}|} \underbrace{\log \frac{1}{1 + e^{z_{ij}(-t\mathbf{x}_i \cdot \mathbf{y}_j + b)}}}_{\mathcal{L}_{ij}}$$

Multiple global sums Weird learning task(?)

Simpler

Each entry individual

works & scales better

Boat on a mountain-lake with lighthouse Woman in dress standing on pathway Cute dog sitting on grass with leash

ztxt

ztxt

ztxt

SigLIP

- 采用Sigmoid Loss而不是对比学习 loss进行匹配,使得每个样本对的 loss计算无需计算整个batch里的值, 容易扩大batchsize,同时Sigmoid Loss在小batch时也更好
- 使用谷歌PaLM同款的WebLI数据集 (文本包含100+种类语言)进行预 训练,选取其中的英语部分

	Image	Text	BS	#TPUv4	Days	INet-0
SigLiT	₩ B/8	L^*	32 k	4	1	79.8
SigLiT	₩ g/14	L	$20\mathrm{k}$	4	2	84.5
SigLIP	♂ B/16	В	16 k	16	3	71.0
SigLIP	B/16	В	32 k	32	2	72.1
SigLIP	B/16	В	32 k	32	5	73.4

^{*} We use a variant of the L model with 12 layers.

Algorithm 1 Sigmoid loss pseudo-implementation.

```
1 # img_emb : image model embedding [n, dim]
2 # txt_emb : text model embedding [n, dim]
3 # t_prime, b : learnable temperature and bias
4 # n : mini-batch size

6 t = exp(t_prime)
7 zimg = 12_normalize(img_emb)
8 ztxt = 12_normalize(txt_emb)
9 logits = dot(zimg, ztxt.T) * t + b
10 labels = 2 * eye(n) - ones(n) # -1 with diagonal 1
11 l = -sum(log_sigmoid(labels * logits)) / n
```

Batch Size	3	В	9	В
Dutch Size	sigmoid	softmax	sigmoid	softmax
512	51.5	47.7	-	-
1 k	57.3	53.2	-	-
2 k	62.1	59.3	-	-
4 k	65.3	63.8	68.4	66.6
8 k	68.6	66.6	70.6	69.4
16 k	-	-	<u>72.3</u>	71.7
32 k	<u>69.9</u>	<u>69.9</u>	73.4	72.9
98 k	69.5	69.7	73.0	73.2
307 k	-	-	71.6	72.6

SigLIP

Method	Image l	Encoder		Image	Net-1k		COCO) R@1
Wiethod	ViT size	# Patches	Validation	v2	ReaL	ObjectNet	$I \to T$	$\mathbf{T} \to \mathbf{I}$
CLIP	В	196	68.3	61.9	-	55.3	52.4	33.1
OpenCLIP	В	196	70.2	62.3	-	56.0	59.4	42.3
EVA-CLIP	В	196	74.7	67.0	-	62.3	58.7	42.2
SigLIP	В	196	76.2	69.6	82.8	70.7	64.4	47.2
SigLIP	В	256	76.7	70.0	83.1	71.3	65.1	47.4
SigLIP	В	576	78.6	72.1	84.5	73.8	67.5	49.7
SigLIP	В	1024	79.2	73.0	84.9	74.7	67.6	50.4
CLIP	L	256	75.5	69.0	-	69.9	56.3	36.5
OpenCLIP	L	256	74.0	61.1	-	66.4	62.1	46.1
CLIPA-v2	L	256	79.7	72.8	-	71.1	64.1	46.3
EVA-CLIP	L	256	79.8	72.9	-	75.3	63.7	47.5
SigLIP	L	256	80.5	74.2	85.9	77.9	69.5	51.1
CLIP	L	576	76.6	72.0	_	70.9	57.9	37.1
CLIPA-v2	L	576	80.3	73.5	-	73.1	65.5	47.2
EVA-CLIP	L	576	80.4	73.8	-	78.4	64.1	47.9
SigLIP	L	576	82.1	75.9	87.0	81.0	70.6	52.7
OpenCLIP	G (2B)	256	80.1	73.6	-	73.0	67.3	51.4
CLIPA-v2	H (630M)	576	81.8	75.6	-	77.4	67.2	49.2
EVA-CLIP	E (5B)	256	82.0	75.7	-	79.6	68.8	51.1
SigLIP	SO (400M)	729	83.2	77.2	87.5	82.9	70.2	52.0

- □研究背景
- □ Fully-Supervised
- Weakly-Supervised
- Self-Supervised
- □总结

- · 自监督学习,仅使用单模态进行训练,**充分挖掘模态内表征**,没有人为设定的label监督
- 自监督学习主要有mask reconstruction和self-distillation两种模式
- BEiT (ICLR2022 Oral) 设计了dVAE方法,构造了视觉词汇表,离散量化了像素,利用
 BERT方式实现掩码重建式预训练

DINO (ICCV2021)将同一张图像经过两种不同数据增强,输入到学生模型和教师模型, 并且对齐二者的输出,使得图像无论如何变换都可以对齐到同一表征

loss: $-p_2 \log p_1$ softmax softmax centering ema student $g_{\theta s}$ teacher got X_9

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
# qs, qt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
    x1, x2 = augment(x), augment(x) # random views
    s1, s2 = gs(x1), gs(x2) # student output n-by-K
    t1, t2 = gt(x1), gt(x2) # teacher output n-by-K
    loss = H(t1, s2)/2 + H(t2, s1)/2
    loss.backward() # back-propagate
    # student, teacher and center updates
    update(gs) # SGD
    qt.params = 1*qt.params + (1-1)*qs.params
    C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)
def H(t, s):
    t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
    t = softmax((t - C) / tpt, dim=1) # center + sharpen
    return - (t * log(s)).sum(dim=1).mean()
```


• iBOT (ICLR2022)结合了二者,利用学生和教师网络,在学生部分mask掉了一部分patch,教师部分保留,在输出部分,利用DINO相关方法交叉对齐class token,同时利用MIM 损失重建masked patch

- MAE (CVPR2022) 设计了deocder来重建模型,最终训练得到encoder
- Encoder的输入仅有unmask token,降低计算量
- 不需要BEiT的视觉codebook,直接重建最原始像素信息

method	pre-train data	ViT-B	ViT-L
supervised	IN1K w/ labels	47.4	49.9
MoCo v3	IN1K	47.3	49.1
BEiT	IN1K+DALLE	47.1	53.3
MAE	IN1K	48.1	53.6

- · MAE可以允许特别高的mask率
- 相比监督学习更能挖掘patch信息

		AP	box	AP^{I}	mask	
method	pre-train data	ViT-B	ViT-L	ViT-B	ViT-L	
supervised	IN1K w/ labels	47.9	49.3	42.9	43.9	
MoCo v3	IN1K	47.9	49.3	42.7	44.0	
BEiT	IN1K+DALLE	49.8	53.3	44.4	47.1	
MAE	IN1K	50.3	53.3	44.9	47.2	

- DINOv2 (TMLR2024), 学习更强更通用的视觉表征, 真正的视觉单模态大模型基础
- 贡献了LVD-142M数据集,利用curated数据集来检索大规模未标注数据集
- 主要采用的检索标准为Google Landmarks 2和ImageNet22k
- 自监督检索采用ImageNet22k上pretrain的ViT-H计算embedding

Task	Dataset / Split	Images	Retrieval	Retrieved	Final
classification	ImageNet-22k / –	14,197,086	as is	_	14,197,086
classification	ImageNet-22k / -	14,197,086	sample	56,788,344	56,788,344
classification	ImageNet-1k / train	1,281,167	\mathbf{sample}	40,997,344	40,997,344
fine-grained classif.	Caltech 101 / train	3,030	cluster	2,630,000	1,000,000
fine-grained classif.	CUB-200-2011 / train	5,994	cluster	1,300,000	1,000,000
fine-grained classif.	DTD / train1	1,880	cluster	1,580,000	1,000,000
fine-grained classif.	FGVC-Aircraft / train	3,334	cluster	1,170,000	1,000,000
fine-grained classif.	Flowers-102 / train	1,020	cluster	1,060,000	1,000,000
fine-grained classif.	Food-101 / train	75,750	cluster	21,670,000	1,000,000
fine-grained classif.	Oxford-IIIT Pet / trainval	3,680	cluster	2,750,000	1,000,000
fine-grained classif.	Stanford Cars / train	8,144	cluster	7,220,000	1,000,000
fine-grained classif.	SUN397 / train1	19,850	cluster	18,950,000	1,000,000
fine-grained classif.	Pascal VOC 2007 / train	2,501	cluster	1,010,000	1,000,000
segmentation	ADE20K / train	20,210	cluster	20,720,000	1,000,000
segmentation	Cityscapes / train	2,975	cluster	1,390,000	1,000,000
segmentation	Pascal VOC 2012 (seg.) $/$ trainaug	1,464	cluster	10,140,000	1,000,000
depth estimation	Mapillary SLS / train	1,434,262	as is	_	1,434,262
depth estimation	KITTI / train (Eigen)	$23,\!158$	cluster	3,700,000	1,000,000
depth estimation	NYU Depth V2 / train	24,231	cluster	10,850,000	1,000,000
depth estimation	SUN RGB-D / train	4,829	cluster	4,870,000	1,000,000
retrieval	Google Landmarks v2 / train (clean)	1,580,470	as is	_	1,580,470
retrieval	Google Landmarks v2 / train (clean)	1,580,470	\mathbf{sample}	6,321,880	6,321,880
retrieval	AmsterTime / new	1,231	cluster	960,000	960,000
retrieval	AmsterTime / old	1,231	cluster	830,000	830,000
retrieval	Met / train	397,121	cluster	62,860,000	1,000,000
retrieval	Revisiting Oxford / base	4,993	cluster	3,680,000	1,000,000
retrieval	Revisiting Paris / base	6,322	cluster	3,660,000	1,000,000
					142 100 386

实验室

142,109,386

- 训练目标包含class-level的DINO方法以及patch level的iBOT方法
- 共享了DINO和iBOT的MLP head (自监督学习模型中在ViT或ResNet后加MLP head, 然后再到模型输出,效果更好)
- 其他trick: 使用SwAV的中心化方法, KoLeo正则化方法
- 在预训练的最后阶段分辨率从224x224变成518x518
- 其他的技术细节包括使用Flash Attention以及多种数据并行策略,大版本蒸馏小版本等

$$\mathcal{L}_{DINO} = -\sum_{i} p_t \log p_s$$
 $\mathcal{L}_{iBOT} = -\sum_{i} p_{ti} \log p_{si}$

Training Data	INet-1k	Im-A	ADE-20k	Oxford-M	iNat2018	iNat2021	Places205
INet-22k	85.9	73.5	46.6	62.5	81.1	85.6	67.0
INet-22k \ INet-1k	85.3	70.3	46.2	58.7	80.1	85.1	66.5
Uncurated data	83.3	59.4	48.5	54.3	68.0	76.4	67.2
LVD-142M	85.8	73.9	47.7	64.6	82.3	86.4	67.6

Table 2: **Ablation of the source of pretraining data.** We compare the INet-22k dataset that was used in iBOT to our dataset, LVD-142M. Each model is trained for the same number of iterations, that is smaller than in our final run, without high-resolution adaptation. Pretraining on LVD-142M maintains the performance over INet-1k while leading to models that perform better in other domains.

Figure 4: Model scale versus data scale. Evolution of performance as a function of model size for two different pretraining datasets: ImageNet-22k (14M images) and LVD-142M (142M images). The ViT-g trained on LVD-142M surpasses the ViT-g trained on ImageNet-22k on most benchmarks.

				kNN		linear	
Method	Arch.	Data	Text sup.	val	val	ReaL	V2
		Weakly	supervised				
CLIP	ViT-L/14	WIT-400M	✓	79.8	84.3	88.1	75.3
CLIP	$ViT-L/14_{336}$	WIT-400M	✓	80.5	85.3	88.8	75.8
SWAG	ViT-H/14	IG3.6B	✓	82.6	85.7	88.7	77.6
OpenCLIP	ViT-H/14	LAION-2B	✓	81.7	84.4	88.4	75.5
OpenCLIP	ViT-G/14	LAION-2B	✓	83.2	86.2	89.4	77.2
EVA-CLIP	ViT-g/14	custom^*	✓	83.5	86.4	89.3	77.4
		Self-su	pervised				
MAE	ViT-H/14	INet-1k	×	49.4	76.6	83.3	64.8
DINO	ViT-S/8	INet-1k	×	78.6	79.2	85.5	68.2
SEERv2	RG10B	IG2B	×	_	79.8	_	_
MSN	ViT-L/7	INet-1k	×	79.2	80.7	86.0	69.7
EsViT	Swin-B/W=14	INet-1k	×	79.4	81.3	87.0	70.4
Mugs	ViT-L/16	INet-1k	×	80.2	82.1	86.9	70.8
iBOT	m ViT- $ m L/16$	INet-22k	×	72.9	82.3	87.5	72.4
	ViT-S/14	LVD-142M	×	79.0	81.1	86.6	70.9
DIMO 0	ViT-B/14	LVD-142M	×	82.1	84.5	88.3	75.1
DINOv2	ViT-L/14	LVD-142M	×	83.5	86.3	89.5	78.0
	ViT-g $/14$	LVD-142M	×	83.5	86.5	89.6	78.4

- □研究背景
- □ Fully-Supervised
- Weakly-Supervised
- □ Self-Supervised
- □总结

总结反思

- · 视觉预训练模型可以作为视觉编码器,成为MLLM的视觉端
- 已有多篇文章评估了各个预训练模型在构建MLLM时的效果
- 单纯使用各种预训练模型本身来构建MLLM已经不再新鲜

Image-Text Pairs

谢谢!