Problem 1:

Let G be a group, and let $a, b \in G$ with |a| = m, |b| = n.

Part a:

First, if $m \mid k$, then m = lk for some $l \in \mathbb{Z}$. So $a^k = a^{lm} = (a^m)^l = e^l = e$. Next, if $m \not\mid k$, then k = lm + j for some $l \in \mathbb{Z}$, $j \in \mathbb{N}$ with 0 < j < m. So $a^k = a^{lm+j} = a^{lm}a^j = a^j \neq e$. $(a^j \neq e \text{ for any } j \text{ between } 0 \text{ and } m \text{ (exclusive)}$, because otherwise the order of a would be less than m, which is against our assumptions.)

So $m \mid k$ if and only if $a^k = e$.

Part b:

Let ab = ba, and $\langle a \rangle \cap \langle b \rangle = \{e\}$.

First, $|ab| \leq \text{lcm}(m, n)$:

Then $(ab)^{\operatorname{lcm}(m,n)} = a^{\operatorname{lcm}(m,n)}b^{\operatorname{lcm}(m,n)} = ee = e.$

So $\operatorname{lcm}(m, n)$ is a positive number with the property $(ab)^{\operatorname{lcm}(m,n)} = e$; $\operatorname{lcm}(m, n)$ is greater than or equal to the order of ab. (So $|ab| \leq \operatorname{lcm}(m, n)$).

Next, $|ab| \ge \text{lcm}(m, n)$:

Let $(ab)^r = e$, with $r \in \mathbb{N}$ and $r \ge 1$.

Then $(ab)^r = a^r b^r = e$. To rewrite this, we know that $a^r = b^{-r}$. Now, because $\langle a \rangle \cap \langle b \rangle = \{e\}$, we know that $a^s = b^t$ for any $s, t \in \mathbb{Z}$ implies that $a^s = b^t = e$. By the earlier problem, this means that $m \mid r$ and $n \mid -r$ (or equivalently, $n \mid r$).

So by theorems of number theory, this means that $lcm(m,n) \mid r$. So $r \ge lcm(m,n)$ if $(ab)^r = e$ and $r \ge 1$.

So by the squeeze theorem, |ab| = lcm(m, n).

Problem 2:

Consider $\delta = (1 \ 2 \dots n)$.

From theorem 4.9a, we know that the number of conjugacy classes of δ is equal to [G:C(x)].

From theorem 5.6, we know that every n-cycle is conjugate to δ . There are (n-1)! n-cycles in S_n :

We know that there are n! elements of S_n . Pick an element of S_n ...call it σ . Now, write the cycle $(\sigma(1) \ \sigma(2) \ \sigma(3) \ \ldots \sigma(n))$. This cycle is equivalent to n other cycles, each given by

$$(\sigma(2) \ \sigma(3) \ \sigma(4) \ \dots \sigma(n) \ \sigma(1))$$

$$(\sigma(3) \ \sigma(4) \ \sigma(5) \ \dots \sigma(n) \ \sigma(1) \ \sigma(2))$$

$$\dots$$

$$(\sigma(n) \ \sigma(1) \ \sigma(2) \ \dots \sigma(n-1)).$$

So there are n!/n = (n-1)! different n-cycles in S_n

So
$$[G:C(x)] = (n-1)!$$
. So $|C(x)| = n$.

Now, there are n elements of the form δ^i ; we know from class that an n-cycle has order n, so $|\{\delta^i: i \in \mathbb{Z}\}| = |\langle \delta \rangle| = n$.

Each element of the form δ^i commutes with δ trivially.

So the only elements that commute with δ are the elements of the form δ^i ; there are n of them, and there can only be n different elements that commute with δ .

Problem 3:

The following proof is constructive; it mimics a selection sort. I attempt to illustrate the proof using crayon.

Define
$$s = (1 \ 2)$$
 and $r = (1 \ 2 \ 3 \dots n)$. ("swap" and "rotation").

Let
$$\sigma \in S_n$$
. Then for each $m \in \{1, 2, ..., n\}$:
Define $\alpha_0 = (1)$. Determine $\sigma(1)$. Consider $r^{-(\sigma(1)-1)}$.

Define $\alpha_1 = r^{-\sigma(1)-1}$. From the above diagram, it is clear that $\alpha_1(1) =$

 $\sigma(1)$. Now, determine $\alpha_1(\sigma(2))$. Define $\beta_2 = r^{-(\alpha_1(\sigma(2))-1)}$. (Look at the picture)

Define $\gamma_2 = (rs)^{\beta_2 \alpha_1 \sigma(2) - \beta_2 \alpha_1 \sigma(1)) - 1}$. (Seriously, just look at the pictures)

Now define $\alpha_2 = \gamma_2 \beta_2 \alpha_1$ Now, $\alpha_2(1) = \sigma(1)$ and $\alpha_2(2) = \sigma(2)$, as is clear from the illustrations.

We iterate to completion: for each $n \in \mathbb{N}$ we can define $\alpha_n = \gamma_n \beta_n \alpha_{n-1}$ recursively, where $\beta_n = r^{-(\alpha_{n-1}(\sigma(n))-(n-1))}$ and $\gamma_n = (rs)^{\beta_n \alpha_{n-1} \sigma(n)-\beta_n \alpha_{n-1} \sigma(n-1))-(n-1)}$. From the below illustrations, it should be clear that for each n, $\alpha_n(x) = \sigma(x)$ for all $x \leq n$.

So we have constructed $\alpha_n = \sigma$, with α_n a product of r, s, and their inverses. Thus, $\sigma \in \langle (1\ 2), (1\ 2\ 3\dots n) \rangle$ for all $\sigma \in S_n$

In other words, $S_n \subset \langle (1\ 2), (1\ 2\ 3\dots n) \rangle$, which implies that $S_n = \langle (1\ 2), (1\ 2\ 3\dots n) \rangle$ (because subgroups generated by elements are still subgroups.)

Problem 4:

Let p be a prime number and let $H < S_p$ contain a transposition and act transitively on $\{1, \ldots, p\}$.

From the earlier homework, H has an element with no fixed point (it acts transitively on a finite set).

However, any element that acts on $\{1, \ldots, p\}$ with no fixed point must be a p-cycle:

This means that H contains a transposition and a p-cycle; by a quick adaptation of the above problem below, this means that $H = S_p$.

The adaptation is this:

Problem 5:

This is given as an exercise in Hungerford: out of a sense of honesty, I must admit that I ran across this in the book, instead of coming up with it independently.

Consider $H = \{(1), (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}.$ First, $H \le G$;

We apply the subgroup criterion, and proceed by exhaustion. (In the below, I freely use the facts that 2-cycles are their own inverse and that disjoint cycles commute).

$$(1)(1)^{-1} = (1)$$

$$(1)((1\ 2)(3\ 4))^{-1} = (3\ 4)(1\ 2) = (1\ 2)(3\ 4)$$

$$(1)((1\ 3)(2\ 4))^{-1} = (2\ 4)(1\ 3) = (1\ 3)(2\ 4)$$

$$(1)((1\ 4)(2\ 3))^{-1} = (2\ 3)(1\ 4) = (1\ 4)(2\ 3)$$

$$(1\ 2)(3\ 4)(1)^{-1} = (1\ 2)(3\ 4)$$

$$(1\ 2)(3\ 4)((1\ 2)(3\ 4))^{-1} = (1\ 2)(3\ 4)(2\ 4)(1\ 3) = (1\ 4)(2\ 3)$$

$$(1\ 2)(3\ 4)((1\ 3)(2\ 4))^{-1} = (1\ 2)(3\ 4)(2\ 3)(1\ 4) = (1\ 3)(2\ 4)$$

$$(1\ 3)(2\ 4)((1\ 2)(3\ 4))^{-1} = (1\ 3)(2\ 4)$$

$$(1\ 3)(2\ 4)((1\ 2)(3\ 4))^{-1} = (1\ 3)(2\ 4)(3\ 4)(1\ 2) = (1\ 4)(2\ 3)$$

$$(1\ 3)(2\ 4)((1\ 4)(2\ 3))^{-1} = (1\ 3)(2\ 4)(2\ 3)(1\ 4) = (1\ 2)(3\ 4)$$

$$(1\ 4)(2\ 3)((1\ 2)(3\ 4))^{-1} = (1\ 4)(2\ 3)$$

$$(1\ 4)(2\ 3)((1\ 3)(2\ 4))^{-1} = (1\ 4)(2\ 3)(2\ 4)(1\ 3) = (1\ 2)(3\ 4)$$

$$(1\ 4)(2\ 3)((1\ 3)(2\ 4))^{-1} = (1\ 4)(2\ 3)(2\ 4)(1\ 3) = (1\ 2)(3\ 4)$$

$$(1\ 4)(2\ 3)((1\ 3)(2\ 4))^{-1} = (1\ 4)(2\ 3)(2\ 4)(1\ 3) = (1\ 2)(3\ 4)$$

Next, $H \subseteq S_4$;

Recall that two elements of S_4 are conjugate if and only if their cycle decomposition has the same cycle type. Note that H contains all of the elements of S_4 composed of a product of two disjoint 2-cycles.

So an element is conjugate to an element of H if and only if it is in H. That is, $ghg^{-1} \in H$ for all $g \in G$, $h \in H$.

Thus, $H \subseteq S_4$. (And so, $H \subseteq A_4$).

Problem 6:

We know from class that for $n \geq 5$, A_n is simple. Let $H \leq S_n$, with $n \geq 5$.

Problem 7:

Define $\phi : \operatorname{Aut}(A_4) \to S_4$ by: