#Name: ALEENA JOBY

#Register No: 22122303

#Date:- 15/05/2023

SECTION A

#1 - Create a vector 'x' with values 1, 2, 3, 4, 5 and a vector 'y' with values 2, 4, 6, 8, 10. By using family functions, find out the mean, median, sum, maximum and minimum of both vectors.

#Answer:

create vectors x and y

$$y < -c(2, 4, 6, 8, 10)$$

find mean of vectors x and y

mean $x \le mean(x)$

mean_y <- mean(y)

find median of vectors x and y

 $median x \le median(x)$

 $median y \le median(y)$

find sum of vectors x and y

$$sum_x < -sum(x)$$

```
sum_y < -sum(y)
# find maximum of vectors x and y
\max x \leq \max(x)
max_y \le max(y)
# find minimum of vectors x and y
\min x \le \min(x)
\min y \le \min(y)
# print the results
cat("Vector x: ", x, "\n")
cat("Vector y: ", y, "\n")
cat("Mean of x: ", mean_x, "\n")
cat("Mean of y: ", mean_y, "\n")
cat("Median of x: ", median x, "\n")
cat("Median of y: ", median_y, "\n")
cat("Sum of x: ", sum_x, "\n")
cat("Sum of y: ", sum y, "\n")
cat("Maximum of x: ", max x, "\n")
cat("Maximum of y: ", max y, "\n")
```

```
cat("Minimum of x: ", min_x, "\n")
cat("Minimum of y: ", min y, "\n")
OUTPUT
> cat("Vector x: ", x, "\n")
Vector x: 12345
> cat("Vector y: ", y, "\n")
Vector y: 2 4 6 8 10
> cat("Mean of x: ", mean x, "\n")
Mean of x: 3
> cat("Mean of y: ", mean_y, "\n")
Mean of y: 6
> cat("Median of x: ", median_x, "\n")
Median of x: 3
> cat("Median of y: ", median_y, "\n")
Median of y: 6
> cat("Sum of x: ", sum_x, "\n")
Sum of x: 15
> cat("Sum of y: ", sum y, "\n")
Sum of y: 30
```

 $> cat("Maximum of x: ", max x, "\n")$

```
Maximum of x: 5
> cat("Maximum of y: ", max y, "\n")
Maximum of y: 10
> cat("Minimum of x: ", min x, "\n")
Minimum of x: 1
> cat("Minimum of y: ", min y, "\n")
Minimum of y: 2
#2 - Write a R program to create a matrix taking a given vector of numbers as input and define
the column and row names. Display the matrix.
#Answer:
# Define input vector
input vector <- c(1, 2, 3, 4, 5, 6)
# Define column and row names
column names <- c("A", "B")
row names <- c("C", "D", "E")
# Create matrix with given input vector and names
matrix output
                      matrix(input vector,
                                             nrow
                                                           length(row names),
                                                                                 ncol
```

length(column names), byrow = TRUE, dimnames = list(row names, column names))

```
# Display matrix
print(matrix_output)

OUTPUT
```

A B

C 1 2

D 3 4

E 5 6

#3 - Write a R program to print the numbers from 1 to 100 and print "multiple of 3" for multiples of 3, print "multiple of 5" for multiples of 5, and print "multiple of both 3 & 5" for multiples of both.

```
for (i in 1:100) {

if (i %% 3 == 0 && i %% 5 == 0) {

print("multiple of both 3 & 5")

} else if (i %% 3 == 0) {

print("multiple of 3")

} else if (i %% 5 == 0) {

print("multiple of 5")

} else {

print(i)
```

```
}
OUTPUT
[1] 1
[1] 2
[1] "multiple of 3"
[1] 4
[1] "multiple of 5"
[1] "multiple of 3"
[1] 7
[1] 8
[1] "multiple of 3"
[1] "multiple of 5"
[1] 11
[1] "multiple of 3"
[1] 13
[1] 14
[1] "multiple of both 3 & 5"
[1] 16
[1] 17
[1] "multiple of 3"
[1] 19
[1] "multiple of 5"
[1] "multiple of 3"
[1] 22
[1] 23
[1] "multiple of 3"
[1] "multiple of 5"
[1] 26
[1] "multiple of 3"
[1] 28
[1] 29
[1] "multiple of both 3 & 5"
[1] 31
[1] 32
[1] "multiple of 3"
[1] 34
[1] "multiple of 5"
[1] "multiple of 3"
[1] 37
```

- [1] 38
- [1] "multiple of 3"
- [1] "multiple of 5"
- [1] 41
- [1] "multiple of 3"
- [1] 43
- [1] 44
- [1] "multiple of both 3 & 5"
- [1] 46
- [1] 47
- [1] "multiple of 3"
- [1] 49
- [1] "multiple of 5"
- [1] "multiple of 3"
- [1] 52
- [1] 53
- [1] "multiple of 3"
- [1] "multiple of 5"
- [1] 56
- [1] "multiple of 3"
- [1] 58
- [1] 59
- [1] "multiple of both 3 & 5"
- [1] 61
- [1] 62
- [1] "multiple of 3"
- [1] 64
- [1] "multiple of 5"
- [1] "multiple of 3"
- [1] 67
- [1] 68
- [1] "multiple of 3"
- [1] "multiple of 5"
- [1] 71
- [1] "multiple of 3"
- [1] 73
- [1] 74
- [1] "multiple of both 3 & 5"
- [1] 76
- [1] 77

```
[1] "multiple of 3"
[1] 79
[1] "multiple of 5"
[1] "multiple of 3"
[1] 82
[1] 83
[1] "multiple of 3"
[1] "multiple of 5"
[1] 86
[1] "multiple of 3"
[1] 88
[1] 89
[1] "multiple of both 3 & 5"
[1] 91
[1] 92
[1] "multiple of 3"
[1] 94
[1] "multiple of 5"
[1] "multiple of 3"
[1] 97
[1] 98
[1] "multiple of 3"
[1] "multiple of 5"
#4 - Create a data frame which have minimum three columns and ten rows
#a) Extract the 3rd and 5th rows with 1st and 3rd columns from the data frame.
#b) Write a R program to add a new column into the given data frame.
#c) Write a R program to sort the given data frame by a particular variable.
#Answer:
# create the data frame
my df \leftarrow data.frame(A = 1:10, B = letters[1:10], C = rnorm(10))
```

my_df

AB C

- 1 1 a 0.80628211
- 2 2 b 0.69806982
- 3 3 c 0.97433653
- 4 4 d -0.05276501
- 5 5 e -0.86037631
- 6 6 f -1.11880229
- 7 7 g -0.02334576
- 8 8 h -0.85615983
- 9 9 i 1.43085898
- 10 10 j 0.88281552

#a) extract the rows and columns

$$new_df \le my_df[c(3, 5), c(1, 3)]$$

print the new data frame

new_df

A C

3 3 0.9743365

5 5 -0.8603763

- #b) To add a new column to the data frame my_df:
- # create the new column

my
$$df$$
\$D <- rpois(10, 2)

my_df

AB C D

- 1 1 a 0.80628211 4
- 2 2 b 0.69806982 4
- 3 3 c 0.97433653 2
- 4 4 d -0.05276501 1
- 5 5 e -0.86037631 2

```
6 6 f -1.11880229 0
7 7 g -0.02334576 0
8 8 h -0.85615983 2
9 9 i 1.43085898 4
10 10 j 0.88281552 1
#c) To sort the data frame by a particular variable (e.g. column C):
# sort the data frame by column C
sorted_df <- my_df[order(my_df$C), ]</pre>
# print the sorted data frame
sorted_df
  \mathbf{A} \mathbf{B}
             \mathbf{C}
                   D
6 6 f -1.11880229 0
5 5 e -0.86037631 2
8 8 h -0.85615983 2
4 4 d -0.05276501 1
7 7 g -0.02334576 0
2 2 b 0.69806982 4
1 1 a 0.80628211 4
10 10 j 0.88281552 1
3 3 c 0.97433653 2
9 9 i 1.43085898 4
#5 - Create a function "Rectangle" which takes "length" and "width" of the rectangle and
returns area and perimeter of that rectangle.
#Answer:
# define the function "Rectangle"
Rectangle <- function(length, width) {
# calculate the area of the rectangle
area <- length * width
```

```
# calculate the perimeter of the rectangle
perimeter <- 2*(length + width)
# return the area and perimeter as a list
 return(list(area = area, perimeter = perimeter))
}
# test the function with example inputs
result <- Rectangle(5, 7)
print(result)
OUTPUT
$area
[1] 35
$perimeter
[1] 24
# SECTION B
#6 -
# a) Give a small description about the dataset.
#The Iris dataset is a collection of measurements of 50 flowers from three different species of
irises.
#The measurements include the sepal length, sepal width, petal length, and petal width.
#The three species of irises are Iris setosa, Iris versicolor, and Iris virginica.
```

b) Create a new variable "sepal ratio" that is the ratio of sepal length to sepal width.

sepal_ratio <- iris\$Sepal.Length / iris\$Sepal.Width</pre>

#c) Then, create a boxplot of sepal ratio by Species with proper explanation of the output.

boxplot(sepal ratio ~ Species, data = iris)

#The boxplot shows that the sepal ratio is different for the three species of irises.

#The sepal ratio for Iris setosa is the smallest, followed by Iris versicolor, and then Iris virginica.

#This suggests that the sepals of Iris setosa are narrower relative to their length than the sepals of the other two species.

d) Find out the correlation between all the variable and plot the correlation.

cor(iris[, 1:4])

#The correlation matrix shows that the sepal length and sepal width are strongly correlated,

#as are the petal length and petal width.

#The sepal length and petal length are also correlated, but to a lesser extent.

#The sepal width and petal width are not correlated.

plot(iris[, 1:4])

#The scatterplot matrix shows the relationships between the four variables.

#The sepal length and sepal width are positively correlated, as are the petal length and petal width.

#The sepal length and petal length are also positively correlated, but to a lesser extent.

#The sepal width and petal width are not correlated.

e) Write the conclusion based on the correlation.

#The correlation matrix and scatterplot matrix show that the sepal length and sepal width are strongly correlated,

#as are the petal length and petal width. The sepal length and petal length are also correlated, but to a lesser extent.

#The sepal width and petal width are not correlated.

#These results suggest that the four variables are not independent of each other.

#The sepal length and sepal width are likely to be correlated because they are both measurements of the same flower.

#The petal length and petal width are also likely to be correlated because they are both measurements of the same flower(correlation coefficient = 0.96).

#The sepal length and petal length are correlated because they are both measurements of the size of the flower.

#The sepal width and petal width are not correlated because they are measurements of different parts of the flower.

#7 - Come up with the appropriate visualization for below mentioned variables and write the inferences also

#a) Species

#The most appropriate visualization for the Species variable is a bar chart.

#A bar chart is a good way to compare the frequencies of different categories. #In this case, the categories are the three species of irises. #The bar chart will show how many flowers are in each species. # Load the iris dataset data(iris) # Create a bar chart of the Species variable barplot(table(iris\$Species), col = c("red", "blue", "green"), main = "Frequency of Species in the Iris Dataset", xlab = "Species", ylab = "Frequency") #Inference: From the bar plot, we can see that the three species in the dataset (Setosa, Versicolor,

and Virginica) are equally represented,

#with 50 samples for each species.

#b) PetalLengthCm

#The most appropriate visualization for the PetalLengthCm variable is a histogram.

#A histogram is a good way to show the distribution of data.

#In this case, the data is the petal lengths of the irises.

#The histogram will show how the petal lengths are distributed.

Histogram of Petal Length OR OR OR OR OR Petal Length (cm)

hist(iris\$Petal.Length, main = "Histogram of Petal Length", xlab = "Petal Length (cm)", ylab = "Frequency")

#Inference: From the histogram, we can see that the Petal Lengths in Iris dataset #are normally distributed and centred around 4 to 5cm.

#c) Species and PetalLengthCm

#The appropriate visualization for both Species and PetalLengthCm is a boxplot,

#which can be created using the boxplot() function. This boxplot will display the PetalLengthCm values

#for each species as separate boxes.

boxplot(Petal.Length ~ Species, data = iris, xlab = "Species", ylab = "Petal Length (cm)", main = "Boxplot of Petal Length by Species")

#Inference: From the boxplot, we can see that the average Petal Length for the Setosa species

#is much smaller than those of the other two species. Also, Versicolor Petal lengths are varying widely,

#while Virginica Petal Lengths are longer and have less variation.

#d) SepalLengthCm and SepalWidthCm

Create a scatterplot of the SepalLengthCm and SepalWidthCm variables

plot(iris\$SepalLengthCm, iris\$SepalWidthCm, col = "lightblue", pch = 19, cex = 1.5)

#The most appropriate visualization for the SepalLengthCm and SepalWidthCm variables is a scatterplot.

#A scatterplot is a good way to show the relationship between two variables.

#In this case, the two variables are the sepal length and sepal width.

#The scatterplot will show how the sepal length and sepal width are related.

Inferences:

#The bar chart shows that there are more Iris setosa flowers than Iris versicolor flowers, #and more Iris versicolor flowers than Iris virginica flowers. #The histogram shows that the petal lengths of the irises are distributed normally.

#The scatterplot shows that there is a positive correlation between the species of iris and the petal length.

#The scatterplot also shows that there is a positive correlation between the sepal length and sepal width.