

제 3 장:

엔티티-관계(ER) 모델을 사용한 데이 터 모델링

장 개요

- 데이터베이스 설계 프로세스 개요
- 예제 데이터베이스 응용 프로그램 (회사)
- ER 모델 개념
 - 엔터티 및 속성
 - 엔터티 유형, 값 집합 및 키 속성
 - 관계 및 관계 유형
 - 약한 엔터티 유형
 - 관계 유형의 역할 및 속성
- ER 다이어그램 표기법
- ER 다이어그램회사개요
- 대체 표기법 UML 클래스 다이어그램, 기타
- 더 높은 차원의 관계

고수준 개념 데이터 사용 데이터베이스 설계를 위한 모델

데이터베이스 설계 프로세스 개요

- 두 가지 주요 활동:
 - 데이터베이스 설계
 - 응용 프로그램 디자인

- 이 장에서는 다음에 초점을 맞춥니다.개념적 데이터베이스 설계
 - 데이터베이스 애플리케이션에 대한 개념 스키마를 설계하려면

- 애플리케이션 디자인은 프로그램과 인터페이스에 초점을 맞춥니다. 데이터 베이스에 액세스하는
 - 일반적으로 소프트웨어 엔지니어링의 일부로 간주됨

용어

릴레이션	같은 의미로 통용되는 경우	파일 시스템
릴레이션(relation)	테이블(table)	파일(file)
스키마(schema)	내포(intention)	헤더(header)
인스턴스(instance)	외연(extension)	데이터(data)
 튜플(tuple) 또는 인수	행(row)	기록(레코드)
속성(attribute)	열(column)	필드(field)

MySQL로 학습 개론과 활동

데이터베이스 설계 프로세스 개요

데이터 모델링 프로세스

• 개념 모델링

- ER 모델→ER 다이어그램
- 객체 지향 모델→클래스 다이어그램

• 논리적 모델링

– 오라클, MySQL, SQL 서버, DB2, Postgress, …

• 물리적 모델링

- 저장장치에서 물리적 모델 모델링

개념 설계를 위한 방법론

• 엔터티 관계(ER) 다이어그램(이 장)

• 향상된 엔터티 관계(EER) 다이어그램(4장)

• 산업에서 대규모 디자인을 설계하고 문서화하기 위한 디자인 도구 사용

• UML(통합 모델링 언어) 클래스 다이어그램은 업계에서 개념적 데이터베이스 설계를 문서화하는 데 널리 사용됩니다.

샘플 데이터베이스 응용 프로그램

예회사데이터 베이스

- 우리는 필요합니다<u>데이터베이스 스키마 디자인을 생성하려면</u> 다음의 (단순화된) 요구 사항을 기반으로회사데이터 베이스:
 - 회사는 다음과 같이 구성되어 있습니다.부서에스.
 - 각 부서에는 이름, 번호 및 직원이 있습니다.*관리하다* 부서.
 - 우리시작 날짜를 추적하다 부서 관리자의.
 - 부서는 여러 개의 위치를 가질 수 있습니다.
 - 각 부서<u>통제 수단</u> 수의프로젝트s. 각 프로젝트는 고유한 이름과 고유 번호를 가지고 있으며 단일 위치에 있습니다.

예회사데이터베이스(계속)

- 데이터베이스는가게각직원'에스<u>사회보장번호</u>, <u>주소, 급여, 성별, 생년월일</u>.
 - 각 직원 <u>공장</u> ~을 위한한 부서이지만5월 작업하다여러 개의 프로젝트.
 - DB는<u>주당 근무 시간을 추적하세요</u> 그것이 직원이 현재 각 프로젝트에 참여하고 있습니다.
 - 추적을 유지해야 합니다. 직속상관 각 직원의.
- 각 직원은*가지다* 수의매달린에스.
 - 각 부양가족에 대해 DB는 이름, 성별, 생년월일 및 기타 기록을 보관합니다. 직원과의 관계.

예회사데이터베이스(계속)

데이터베이스 시스템

어 있습니다.

엔티티 유형, 엔티티 집합 속성 및 키

ER 모델 개념

- 엔티티 및 속성
 - 엔터티는 ER 모델의 기본 개념입니다.엔티티는 미니 세계의 특정한 사물 또는 객체입니다. 데이터베이스에 표현된 것.
 - 예를 들어직원존 스미스, 연구부서,제품X프로젝트
 - 속성은 속성입니다 엔티티를 설명하는 데 사용됩니다.
 - 예를 들어직원엔터티에는 속성이 있을 수 있습니다이름, 사회보장번호, 주소, 성별, 생년월일

그림 3.3두 개의 개체, EMPLOYEE *이자형*1, 및 회사*기음*1, 및 해당 속성.

ER 모델 개념

- 특정 엔터티는 각 속성에 대한 값을 갖습니다.
 - 예를 들어 특정 직원 엔터티에는 다음이 있을 수 있습니다.이름='존 스미스', SSN='123456789', 주소='731, Fondren, Houston, TX', 성별='M', 생년월일='09-JAN-55'
- 각 속성에는 다음이 있습니다. <u>값 세트</u> (또는 이와 연관된 데이터 유형(예: 정수, 문자열, 날짜, 열거형 등)

속성 유형 (1)

• 단순한 (계단)

- 각 엔터티에는<u>속성에 대한 단일 원자 값</u> . 예를 들어,사회보장번호 또는섹스.

• 합성물(합성)

- 속성은 다음과 같습니다.여러 구성요소로 구성됨. 예를 들어:
 - 주소(아파트 번호, 주택 번호, 거리, 도시, 주, 우편번호, 국가)
 - 이름(이름, 중간 이름, 성).
 - 구성은 계층 구조를 형성할 수 있습니다.<u>일부 구성 요소는 그 자체로 합성물입</u> 니다. .

그림 3.4복합 속성의 계층.

속성의 종류 (2)

- 다중값
 - 개체<u>해당 속성에 대해 여러 값이 있을 수 있습니다.</u> . 예를 들어,색상 의자동차또는이전 학 위의학생. <u>투톤 자동</u>차
 - 로 표시됨{색상}또는{이전 학위}
- 일반적으로 복합 속성과 다중값 속성은 아무리 많은 수준까지나 임의로 중첩될
 수 있지만 이런 경우는 드뭅니다.
 - 예를 들어,이전 학위의학생~이다<u>복합 다중 값 속성</u> {로 표시됨이전 학위(대학, 년도, 학위, 분야)}
 - 다수의이전 학위값이 존재할 수 있습니다
 - 각각에는 4개의 하위 구성 요소 속성이 있습니다.
 - 대학, 년도, 학위, 분야

엔터티 유형 및 주요 속성(1)

- <u>동일한 ba를 가진 엔티티</u> 에스<u>ic 속성</u> 그룹화되거나 입력됩니다엔티티 유 형.
 - 예를 들어 엔터티 유형직원그리고프로젝트.

그림 3.6EMPLOYEE와 COMPANY의 두 가지 엔터티 유형과 각 유형의 멤버 엔터티.

엔터티 유형 및 주요 속성(2)

- 엔티티 유형의 속성<u>각 엔터티에는 다음이 있어야 합니다.</u> 고유한 값을 호출합 니다엔터티 유형의 주요 속성.
 - 예를 들어,사회보장번호~의직원.

- 핵심 속성은 복합적일 수 있다.
 - 차량 태그 번호의 핵심입니다자동차구성 요소가 있는 엔터티 유형 (숫자, 상태).

• <u>각 키</u> ~이다<u>밑줄이 그어짐</u> (참고: 이것은 단 하나의 "기본 키"에만 밑줄이 그 어진 관계형 스키마와 다릅니다.)

엔터티 유형 및 주요 속성(3)

(b) CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

CAR₁
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR₂
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR₃
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

그림 3.7두 가지 주요 속성인 등록 및 Vehicle_id를 갖는 CAR 엔터티 유형. (a) ER 다이어그램 표기법. (b) 세 개의 엔터티로 구성된 엔터티 집합입니다.

엔터티 유형 및 주요 속성(4)

- 엔터티 유형에는 두 개 이상의 키가 있을 수 있습니다.
 - 그자동차엔티티 유형에는 두 개의 키가 있을 수 있습니다.
 - 차량 식별 번호 (일반적으로 VIN이라고 함)
 - 차량 태그 번호 (번호, 주), 일명 차량 번호판 번호.

엔티티 집합(1)

- 각 엔터티 유형은엔터티 컬렉션을 가지고 있습니다 데이터베이스에 저장됨
 - 호출됨엔티티 집합아니면 가끔씩엔티티 컬렉션
- <u>같은 이름 (자동차)~에 사용되다엔터티 유형과 다음을 모두 참조합니다. 엔티</u> 티 집합

CAR Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

```
CAR<sub>1</sub>
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR<sub>2</sub>
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR<sub>3</sub>
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})
```

엔티티 집합(2)

• 그러나 엔티티 유형과 엔티티 집합은 다른 이름을 가질 수 있습니다.

• <u>엔티티 집합은<mark>현재의 상태</mark>데이터베이스에 저장된 해당 유</u>형의 엔터티

값 집합(도메인)의 속성

- 각 단순 속성은 값 집합과 연결됩니다.
 - 예를 들어,성최대 15자의 문자열 값을 갖습니다.
 - 날짜다음으로 구성된 값이 있습니다.월-일-년각 문자는 정수입니다.

- 값 집합속성과 연관된 값의 집합을 지정합니다.값 설정 = do 중가치의 ain
- 값 집합은 대부분의 프로그래밍 언어의 데이터 유형과 유사합니다. 예를 들어 정수, 문자(n), 실수, 비트입니다.

엔터티 유형 표시

- ER 다이어그램에서,<u>엔티티 유형</u> 에 표<u>시됩니다직사각형 g우라 박스</u>
- <u>속성디스입니</u>다 깔려있다<mark>타원</mark>
 - 각 속성은 해당 엔터티 유형과 연결됩니다.
 - 복합 속성의 구성 요소는 타원에 연결됩니다.복합 속성을 나타내는
 - 각 주요 속성은 다음과 같습니다.밑줄이 그어짐
 - 다중값 속성이 표시됩니다.이중 타원

ER 다이어그램의 표기법

Figure 3.14
Summary of the notation for ER diagrams.

엔터티 유형의 초기 개념 설계회사데이터베이스 스키 마

- 요구 사항에 따라 우리는 네 가지 초기 엔터티 유형을 식별할 수 있습니다.
 회사데이터 베이스:
 - 부서
 - 프로젝트
 - 직원
 - 매달린
- 그들의 초기 개념 설계는 다음 슬라이드에 나와 있습니다.
- 표시된 초기 속성은 요구 사항 설명에서 파생됩니다.

엔터티 유형의 초기 디자인:

직원, 부서, 프로젝트, 부양가족

Birth_date Sex Employee

Relationship Dependent_name

Figure 3.8
Preliminary design of entity
types for the COMPANY
database. Some of the
shown attributes will be
refined into relationships.

관계 유형, 관계 집합, 역할 및 구조적 제약

관계를 도입하여 초기 디자인 개선

• 초기 디자인은 전형적입니다. 와이완료되지 않음

• 요구 사항의 일부 측면 중ent는 관계로 표현됩니다.

- ER 모델세 가지 주요 개념이 있습니다:
 - 엔티티(및 해당 엔티티 유형과 엔티티 집합)
 - 속성(단순, 합성, 다중값)
 - 관계(그리고 그들의 관계 유형과 관계 세트)

관계 및 관계 유형 (1)

- 관계 관련있다두 개 이상의 별개의 엔터티 특정한 의미를 가지고.
 - 예를 들어,직원 존 스미스*작동하다*그만큼ProductX 프로젝트, 또는직원 프랭클린 웡 *관리하다*그만큼연구부서.
- 의 관계같은 유형 이자형그룹화된다 또는 관계 유형에 입력됩니다.
 - 예를 들어,작동중관계 유형은 다음과 같습니다.직원s와 프로젝트s 참여하거나관리 하다관계 유형은 다음과 같습니다. 직원s와부서참여합니다.

- 관계 유형의 정도 참여하는 엔터티 유형의 수입니다.
 - 둘 다관리하다그리고작동중~이다*이진법* 관계.

N:1 관계:직원그리고부서

M:N 관계:직원그리고프로젝트

관계 유형 대 관계 집합 (1)

• 관계 유형:

- 관계에 대한 스키마 설명입니다
- 관계 이름과 참여 엔터티 유형을 식별합니다.
- 또한 특정 관계 제약 조건을 식별합니다.

• 관계 집합:

- 현재 관계 인스턴스 세트 데이터베이스에 표현됨
- 현재*상태*관계 유형의

관계 유형 대 관계 집합 (2)

- 세트의 각 인스턴스는 개별 참여 엔터티와 관련됩니다.
 - 참여하는 각 엔터티 유형에서 하나씩

- ER 다이어그램에서는 다음을 나타냅니다. 관계 유형다음과 같습니다:
 - 다이아몬드 모양의 상자 관계 유형을 표시하는 데 사용됩니다.
 - 참여 엔터티 유형에 연결됨직선
 - 관계 유형은 화살표로 표시되지 않습니다. 이름은 일반적으로 다음과 같아야 합니다. 왼쪽에서 오른쪽으로, 위에서 아래로 읽을 수 있어야 합니다.

직원의 프로젝트 작업

직원의 업무_부서를 위해

정제하다회사관계 도입을 통한 데이터베이스 스키 마

• 요구사항을 검토하여 6가지 관계 유형이 식별되었습니다.

- 모두는 *이진법*관계(2도)
- 참여 엔터티 유형은 다음과 같습니다.
 - WORKS_FOR (직원, 부서 간)
 - 관리(직원, 부서 간도 해당)
 - 제어(부서, 프로젝트 간)
 - WORKS_ON (직원과 프로젝트 간)
 - 감독 (직원(부하 직원), 직원(감독자 직원) 간)
 - DEPENDENTS_OF (EMPLOYEE, DEPENDENT 사이)

ER 다이어그램

• 관계 유형:

- 일하다
- 관리하다
- 작동중
- 통제 수단
- 감독
- 부양가족

Figure 3.2An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.

관계 유형에 대한 토론

- 세련된 디자인에서는 초기 엔터티 유형의 일부 속성이 관계로 세련됩니다.
 - 관리자부서→관리하다
 - Works_on의직원→작동중
 - 부서직원→일하다
 - 등
- 일반적으로, 0 이상 Ne 관계 유형은 동일한 p 사이에 존재할 수 있습니다. 에 이엔터티 유형을 예상
 - 관리하다그리고일하다서로 다른 관계 유형이 있습니다 직원그리고부서
 - 의미는 다르고 관계의 사례도 다릅니다.

관계에 대한 제약

- 관계 유형에 대한 제약
 - (비율 제약이라고도 함)
 - **기수 비율** (지정하다*최고*참여)
 - 일대일 (1:1)
 - 일대다(1:N) 또는 다대일(N:1)
 - 다대다(M:N)
 - 존재 종속성 제약 (지정함최저한의참여)
 (참여 제약이라고도 함) 예.부양가족
 - 영(선택적 참여이며, 존재에 따라 달라지지 않음)
 - 하나 이상(의무적 참여, 존재의존적)

데이터베이스 시스템

40

일대일(1:1) 관계

그림 3.121:1 관계로 관리하세요.

다대일(N:1) 관계

다대다(M:N) 관계

다대다(M:N) 관계

https://en.wikipedia.org/wiki/File:Databases-ManyToManyWJunction.jpg

3항 관계

그림 3.10SUPPLY 3항 관계 집합의 일부 관계 인스턴스.

재귀적 관계 유형

- 관계 유형 s 사이 에이나 참여 엔터티 유형 뚜렷한 역할로
- 또한 불<u>린다자기 추천</u> 이자형ncing 관계 유형.
- 예:감독관계

전제 조건

- 직원두 가지 뚜렷한 역할에 두 번 참여합니다.
 - 감독자(또는 상사) 역할
 - 감독자(또는 부하) 역할
- 각 관계 인스턴스는 두 개의 고유한 것과 관련됩니다.직원 엔티티:
 - 직원 1명*감독자*역할
 - 직원 1명*감독받는 사람*역할

재귀적 관계 표시

- 재귀적 관계 유형.
 - 두 참여 모두 다른 역할을 하는 동일한 엔터티 유형입니다.
 - 예를 들어,감독사이의 관계직원 (의 역할로 감독자 또는 상사) 및 (다른)직원 (부하의 역할이나 노동자).
- 다음 그림에서 첫 번째 역할 참여는 1로 표시되고, 두 번째 역할 참여는 2로 표시됩니다.

• ER 다이어그램에서,<u>제거해야 함</u> 에이<u>참여를 구별하기 위해 역할 이름</u>을 사용합니다.

재귀적 관계 감독

Figure 3.11
A recursive relationship SUPERVISION
between EMPLOYEE
in the supervisor role
(1) and EMPLOYEE
in the subordinate
role (2).

재귀적 관계 유형은 다음과 같습니다.감독 (참여 역할 이름이 표시됩니다)

Figure 3.2An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.

약한 엔터티 유형

약한 엔터티 유형

- 실체 가지고 있지 않다<mark>핵심 속성</mark> 그리고 이는 다른 엔터티 유형에 따라 식별이 달라집니다.
- 약한 개체가 참여해야 합니다. <u>식별 go와의 관계 유형</u> 와<u>ner 또는 identif</u> 와이ing 엔티티 유형
- 엔티티 ar 이자형식별됨 다음의 조합으로:
 - 부분 키 약한 엔티티 유형의
 - 그특정 개체 그들은 식별 관계 유형과 관련이 있습니다
- · 예:
 - 아매달린엔티티는 부양자의 이름으로 식별됩니다. 그리고특정한직원부양가족이 누구와 관련되어 있는지
 - 이름매달린이다*부분 키*
 - 매달린이다*약한 엔티티 유형*
 - 직원식별 관계 유형을 통한 식별 엔터티 유형입니다. 종속성

약한 엔터티 유형

Figure 3.2An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.

관계 유형의 속성

- 관계 유형에는 다음과 같은 속성이 있을 수 있습니다.
 - 예를 들어,주당 시간~의작동중
 - 각 관계 인스턴스의 값은 시간 수를 설명합니다.주당직원~에 대한 작업프로젝트.
 - 값주당 시간특정 (직원, 프로젝트)에 따라 다릅니다 콤비네이션
 - 대부분의 관계 속성은 다음과 함께 사용됩니다.남:남관계
 - 안에1:N관계는 N 측의 엔터티 유형으로 전송될 수 있습니다. 관계의

관계 유형의 속성 예: 시간~의작동중

Figure 3.2An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughout this chapter.

관계에 대한 제약에 대한 표기법

- 기수 비율(이진 관계의):1:1, 1:N, N:1,또는남:남
 - 관계의 모서리에 적절한 숫자를 배치하여 표시합니다.

- 참여 제약 조건(각 참여 엔터티 유형에 대해): 총 (존재 의존성이라고 함) 또는부 분적인.
 - 전체는 두 줄로 표시되고 일부는 한 줄로 표시됩니다..

• 참고: 이는 이진 관계 유형의 경우 쉽게 지정할 수 있습니다.

관계 구조적 제약에 대한 대체(최소, 최대) 표기법:

• 관계 유형 R에 대한 엔터티 유형 E의 각 참여에 지정됨

- E의 각 엔터티 e가 최소한 다음에 참여하도록 지정합니다. 분그리고 최대*최대*R 의 관계 인스턴스
- 기본값(제약 조건 없음): 최소값=0, 최대값=n(제한 없음을 의미)
- 최소 최대, 최소 0, 최대 1이어야 합니다.

관계 구조적 제약에 대한 대체(최소, 최대) 표기법:

미니월드 제약에 대한 지식에서 파생됨

• 예시:

- 부서에는 정확히 한 명의 관리자가 있고 한 명의 직원이 있습니다.최대 1개 부서만 관리합니다.
 - 참여를 위해 (0,1)을 지정하세요.직원~에관리하다
 - 참여를 위해 (1,1)을 지정하세요.부서~에관리하다
- 직원은 단 하나의 부서에서만 일할 수 있지만 부서
 직원 수는 제한이 없습니다.
 - 참여를 위해 (1,1)을 지정하세요.직원~에일하다
 - 참여를 위해 (0,n)을 지정하세요.부서~에일하다

관계 제약조건에 대한 (min, max) 표기법

엔터티 유형 옆에 있는 최소, 최대 숫자를 읽으세요.

회사(최소, 최대) 표기법을 사용한 ER 스키마 다이어그램

ER 다이어그램, 명명 규칙 및 디자인 문제

대체 도식적 표기법

- ER 다이어그램데이터베이스 스키마를 표시하는 데 널리 사용되는 예 중 하나입니다.
- 문헌과 다양한 데이터베이스 설계 및 모델링 도구에는 다른 많은 표기법 이 존재합니다.
- UML 클래스 다이어그램ER 개념을 표시하는 또 다른 방법을 나타내는 것으로 여러 상업용 디자인 도구에서 사용됩니다.

ER 다이어그램 표기법 요약

Figure 3.14 Symbol Meaning Summary of the notation for ER diagrams. Entity Weak Entity Relationship Composite Attribute Indentifying Relati **Derived Attribute** Attribute Total Participation of E_2 in R E_1 E_2 Key Attribute Multivalued Attrib E_1 E_2 Cardinality Ratio 1: N for $E_1:E_2$ in R (min, max) Structural Constraint (min, max) E on Participation of E in R

UML 클래스 다이어그램~을 위한 회사데이터베이스 스키마

Figure 3.16The COMPANY conceptual schema in UML class diagram notation.

기타 대체 도식적 표기법

Figure A.1
Alternative notations. (a) Symbols

Alternative notations. (a) Symbols for entity type/class, attribute, and relationship. (b) Displaying attributes. (c) Displaying cardinality ratios. (d) Various (min, max) notations. (e) Notations for displaying specialization/generalization.

관계 유형 2보다 높은 학위

더 높은 차원의 관계

- 2차 관계 유형을 이진 관계라고 합니다.
- 학위의 관계 유형3은 콜레입니다 디3차 및 n차는 n차라고 합니다.

• 일반적으로,n항 관계는 n항 이진 관계와 동일하지 않습니다.

• 제약 조건 에이<u>더 높은 차수 관계(n > 2)의 경우 bin보다 지정</u> 하기가 더 어렵습니다. 에이<u>ry 관계</u>

데이터베이스 시스템

66

n항 관계에 대한 논의(n > 2)

• 일반적으로,3개의 이진 관계가 표현될 수 있습니다 아르 자형단일 제비보 다 다른 정보를 보냈습니다 에이ry 관계 (a와 b 참조)

n항 관계에 대한 논의(n > 2)

• 필요한 경우 이진 및 n항 관계는 모두 스키마 설계에 포함될 수 있습니다(모든 관계가 서로 다른 의미를 전달하는 그림 3.17a 및 b 참조)

 어떤 경우에는,3항 관계 영형nship은 r일 수 있습니다 이자형t가 약한 개체 로 표현되는 경우 시간e 데이터 모델은 약한 en을 허용합니다. 티ity 유형은 여러 개의 id를 갖습니다. 이자형관계를 확인하다 (따라서 여러 소유자 엔터 티 유형)(그림 3.17c 참조)

Figure 3.17Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships not equivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.

n항 관계에 대한 논의(n > 2)

• 특정 이진 관계가 항상 상위 관계에서 파생될 수 있는 경우 중복됩니다.

예를 들어,가르친_동안그림 3.18의 이진 관계는 삼진 관계에서 파생될 수 있습니다.제공 ((관계의 의미에 따라)

3항 관계의 또 다른 예

관계 인스턴스(나, 씨, 씨)존재해서는 안됩니다**제공** ~하지 않는 한인스턴스(i, s)가 존재합니다**가** 르친_동안, 그리고 인스턴스 (씨, 씨)에 존재합니다제공 기간 동안, 그리고 인스턴스(나, 다)에 존재합니다가르칠 수 있다.하지만 그 반대는 항상 사실인 것은 아닙니다.

3항 관계의 또 다른 예

우리는 다음의 경우를 유추할 수 있습니다.가르친_동안그리고제공 기간의 인스턴스에서제공,그러나 우리는 다음의 경우를 유추할 수 없습니다.가르칠 수 있다;<u>그러므로, 가르친_동안그리고제</u>공 기간중복되므로 생략할 수 있습니다.

모든 (i, c)가 모든 (i, s, c)로부터 추론될 수 있는 것은 아닙니다.

또 다른 예: 에이대학교데이터 베이스

또 다른 예: A대학교데이터 베이스(122쪽)

학급 등록과 학생 성적을 추적하기 위해 또 다른 데이터베이스를 설계해야 합니다.

 그것은 추적합니다대학에스,부서각 대학 내에는강의부서에서 제공하는 것과 부분물론이죠,강사각 섹션을 가르치는 사람 등

이러한 엔터티 유형과 이러한 엔터티 유형 간의 관계는 다음 슬라이드에 나와 있습니다.

대학교데이터베이스 개념 스키마

장 요약

- ER 모델 개념: 엔터티, 속성, 관계
- ER 모델의 제약 조건
- ER을 단계별 모드로 사용하여 개념 스키마 설계회사데이터 베이스

- ER 다이어그램 표기법
- 대체 표기법 UML 클래스 다이어그램, 기타
- 이진 관계 유형과 그보다 더 높은 차수의 관계 유형.

데이터 모델링 도구(추가 자료)

- 개념적 모델링과 관계형 스키마 설계로의 매핑을 다루는 여러 가지 인기 도구 입니다.
 - 예: ERWin, S-Designer(Enterprise Application Suite), ER-Studio 등

• 장점:

- 애플리케이션 요구 사항의 문서화, 쉬운 사용자 인터페이스(대부분 그래픽 편집기 지원)로 사용

• 부정적인 점:

- 대부분의 도구에는 관계 속성이 있는 관계에 대한 적절한 구별 표기법이 없습니다.
- 개념적 ER 기반 디자인보다는 다이어그램 형태로 관계형 디자인을 주로 표현합니다.

일부 자동화된 데이터베이스 설계 도구(참고: 현재 모든 도 구가 시장에 출시되어 있지는 않을 수 있음)

회사	도구	기능성
엠바카데로 기술	ER 스튜디오	ER 및 IDEF1X에서의 데이터베이스 모델링
	DB 아티산	데이터베이스 관리, 공간 및 보안 관리
신탁	개발자 2000/디자이너 2000	데이터베이스 모델링, 애플리케이션 개발
팝킨 소프트웨어	시스템 아키텍트 2001	데이터 모델링, 객체 모델링, 프로세스 모델링, 구조 화된 분석/설계
백금 (컴퓨터 (협력사)	엔터프라이즈 모델링 스위트: Erwin, BPWin, Paradigm Plus	데이터, 프로세스 및 비즈니스 구성 요소 모델링
고집 주식회사	파워티어	OO에서 관계형 모델로 매핑
리셔널(IBM)	합리적인 장미	C++/JAVA에서의 UML 모델링 및 애플리케이션 생성
레졸루션 유한회사	엑스케이스	코드 유지 관리까지 개념 모델링
사이베이스	엔터프라이즈 애플리케이션 제품군	데이터 모델링, 비즈니스 로직 모델링
비지오	비지오 엔터프라이즈	데이터 모델링, 디자인/리엔지니어링 Visual Basic/C++