Convex Functions

November 14, 2023

Definition

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

Interpretation. Geometrically, the line segment connecting (x, f(x)) to (y, f(y)) must sit above the graph of f.

• f is concave if -f is convex

Example

convex:

• affine: ax + b on **R**, for any $a, b \in \mathbf{R}$

• exponential: e^{ax} , for any $a \in \mathbf{R}$

• powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$

ullet powers of absolute value: $|x|^p$ on ${\bf R}$, for $p\geq 1$

• negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

• affine: ax + b on **R**, for any $a, b \in \mathbf{R}$

 \bullet powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$

• logarithm: $\log x$ on \mathbf{R}_{++}

Question Can we prove convexity of e^{ax} by definition?

Convex Function: Example

Question Can we prove convexity of $f(x) = e^x$ by definition? From the AM-GM inequality

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge (x_1 x_2 \cdots x_n)^{1/n}$$

let $x_1 = \cdots = x_k = a$ and $x_{k+1} = \cdots = x_n = b$.

$$\frac{k}{n}a + \left(1 - \frac{k}{n}\right)b \ge a^{k/n}b^{1 - k/n}$$

For an arbitrarry number $0 \le \theta \le 1$, let m(k) be a sequence s.t. $m(k)/n \to \theta$ as $n \to \infty$.

$$\theta a + (1 - \theta) b \ge a^{\theta} b^{1 - \theta}$$

For any x and y > 0, let $a = e^x$ and $b = e^y$, f(x) is convex since

$$\theta e^x + (1 - \theta)e^y \ge e^{\theta x}e^{(1-\theta)y} = e^{\theta x + (1-\theta)y}$$

Convex Function

- If f is differentiable, then it is convex if and only if f' is non-decreasing.
- If f is twice differentiable, it is convex if and only if $f''(x) \ge 0$ for all $x \in \operatorname{dom} f$

Convex Function

If f(x, y) is convex in (x, y), then it is convex in x and convex in y, i.e.,

- g(x) = f(x, y) is convex
- h(y) = f(x, y) is convex

The converse is not necessarily true.

 $g(x,y) = x^2y$ is convex in x and convex in y where $x \in \mathbb{R}$ $y \in \mathbb{R}_+$

$$\theta g(x_1, y) + (1 - \theta)g(x_2, y) - g(\theta x_1 + (1 - \theta)x_2, y) = \theta (1 - \theta)(x_1 - x_2)^2 y \ge 0$$

$$g(x, \theta y_1 + (1 - \theta)y_2) = \theta g(x, y_1) + (1 - \theta)g(x, y_2)$$

where $x, x_1, x_2 \in \mathbb{R}$, $y, y_1, y_2 \in \mathbb{R}_+$. However, g(x, y) is not convex in (x, y)

$$g(0.5(0,2) + 0.5(2,0)) = 1 \le 0.5g(0,2) + 0.5g(2,0) = 0$$

Strict and strong convexity I

A function is strictly convex if it is convex with strict inequality

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for all $x \neq y$ and $0 < \theta < 1$

• A function is σ -strongly convex if $\exists \sigma > 0$ such that

$$f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) - \frac{\sigma}{2}\theta(1-\theta)||x-y||^2$$

- strongly convex functions are strictly convex
- ▶ a function f(x) is σ -strongly convex iff $f(x) \frac{\sigma}{2}||x||^2$ is convex
- its curvature is lower bounded by the curvature of the quadratic $\frac{\sigma}{2}||x||^2$

$$\kappa(x) = \frac{|f''(x)|}{(1 + (f'(x))^2)^{3/2}}$$

Strong Convexity

 f is strongly convex function and g is a convex function, then h = f + g is strongly convex function

$$\begin{split} h(\theta x + (1 - \theta)y) &= f(\theta x + (1 - \theta)y) + g(\theta x + (1 - \theta)y) \\ &\leq \theta f(x) + (1 - \theta)f(y) - \frac{\sigma}{2}\theta(1 - \theta)||x - y||^2 + g(\theta x + (1 - \theta)y) \\ &\leq \theta h(x) + (1 - \theta)h(y) - \frac{\sigma}{2}\theta(1 - \theta)||x - y||^2 \end{split}$$

• L_2 -regularized problem of the form $h(x) = f(x) + \frac{\lambda}{2}||x||^2$, where f is convex and $\lambda > 0$, is strongly convex

Examples of Strict/strongly convex functions

Strictly convex

- $f(x) = -\log(x) + \iota_{>0}(x)$
- $f(x) = 1/x + \iota_{>0}(x)$
- $f(x) = e^x$
- $f(x) = e^{-x}$

Strongly convex

- $\bullet \ f(x) = \frac{\lambda}{2} ||x||_2^2$
- $f(x) = \frac{1}{2}x^TQx$ where Q positive definite
- $f(x) = f_1(x) + f_2(x)$ where f_1 strongly convex and f_2 convex
- $f(x) = \frac{1}{2}x^TQx + \iota_C(x)$ where Q positive definite and C convex

Uniqueness of minimizers

- if a function is strictly (strongly) convex the minimizers are unique
- proof: assume that $x_1 \neq x_2$ and that both satisfy

$$x_2 = x_1 = \operatorname*{argmin}_{x} f(x)$$

i.e.,
$$f(x_1) = f(x_2) = \inf_x f(x)$$
, then

$$f(\frac{1}{2}x_1 + \frac{1}{2}x_2) < \frac{1}{2}(f(x_1) + f(x_2)) = \inf_x f(x)$$

contradiction!

- (minimizer might not exist for strictly convex, but always for strongly convex)
- exp^x has no minimiser

Examples on \mathbb{R}^n

- Affine function $f(x) = a^T x + b$ Affine functions are convex (but no strictly convex) and also concave.
- norms: $||x||_n = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_\infty = \max_k |x_k|$

All norms are convex.

- Quadratic functions $f(x) = x^T Q x + c^T x + d$
 - Convex if and only if $Q \ge 0$
 - Strictly convex if and only if Q > 0
 - Concave if and only if $Q \le 0$; strictly concave if and only if Q < 0.

Convex functions: examples

• Support function of any set is convex

$$h_A(x) = \sup\{\langle x, z \rangle | z \in A\}$$

Convex functions: examples

• Support function of any set is convex

$$h_A(x) = \sup\{\langle x, z \rangle | z \in A\}$$

Proof Let $x, y \in \mathbb{R}^n$ and $\theta \in [0, 1]$.

$$h_{A}(\theta x + (1 - \theta)y) = \sup_{z \in A} \langle \theta x + (1 - \theta)y, z \rangle$$

$$= \sup_{z \in A} (\theta \langle x, z \rangle + (1 - \theta)\langle y, z \rangle)$$

$$\leq \theta \sup_{z \in A} \langle x, z \rangle + (1 - \theta) \sup_{z \in A} \langle y, z \rangle$$

$$= \theta h_{A}(x) + (1 - \theta)h_{A}(y).$$

which shows that h_A is convex.

Example: Support function of Unit Ball

Support function of unit ball $B = \{x \in \mathbb{R}^n : ||x||_2 \le 1\}$

$$h_B(\mathbf{x}) = \sup_{\mathbf{y} \in B} \mathbf{y}^T \mathbf{x}$$

Since

$$y^T x \le ||y||_2 ||x||_2 \le ||x||_2$$

we have

$$h_R(\mathbf{x}) \leq ||\mathbf{x}||_2$$

For any x, choose $y = \frac{x}{\|\mathbf{x}\|_2}$, i.e., $y \in B$.

$$h_B(x) = \sup_{y \in B} y^T x \ge \frac{x^T x}{\|x\|_2} = \|x\|_2$$

We conclude that $h_B(x) = ||x||_2$.

Convex functions: examples

Indicator function of a set is convex if and only if the set is convex.

$$\delta_C(x) = \begin{cases} 0 & \text{, if } x \in C \\ +\infty & \text{, if } x \notin C \end{cases}$$

• Max function: $f(x) = \max\{x_1, \dots, x_n\}$ is convex. Hint Let $x^* = f(x)$ and $y^* = f(y)$.

$$f(\theta x + (1 - \theta)y) = \max\{\theta x_1 + (1 - \theta)y_1, \dots, \theta x_n + (1 - \theta)y_n\}$$

$$\leq \max\{\theta x^* + (1 - \theta)y^*, \dots, \theta x^* + (1 - \theta)y^*\}$$

$$= \theta f(x) + (1 - \theta)f(y).$$

Convex functions: examples

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

(See this function as $\sup_{\|y\|_2=1} y^T X y$)

Restriction of a convex function to a line I

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the function $g: \mathbb{R}^n \to \mathbb{R}$,

$$g(t) = f(x + tv),$$
 dom $g = \{t \mid x + tv \in \text{dom } f\}$

is convex (in t) for any $x \in \mathbf{dom} f$, $v \in \mathbb{R}^n$

Proof

• **Necessity:** Assume g(t) is nonconvex for some x and v. There exist t_1 , t_2 in **dom**g and $x + t_1v$, $x + t_2 \in \mathbf{dom} f$ such that

$$g(\theta t_1 + (1 - \theta)t_2) > \theta g(t_1) + (1 - \theta)g(t_2), \quad 0 \le \theta \le 1$$

i.e.,

$$f(\theta(x+t_1v) + (1-\theta)(x+t_2v)) > \theta f(x+t_1v) + (1-\theta)f(x+t_2v)$$

therefore f is nonconvex (contradiction). It means g is convex.

Restriction of a convex function to a line II

• **Sufficiency:** Assume that g(t) is convex and f(x) is nonconvex. Then there exist $x_1, x_2 \in \mathbf{dom} f$ and some $0 < \theta < 1$ such that

$$f(\theta x_1 + (1 - \theta)x_2) > \theta f(x_1) + (1 - \theta)f(x_2)$$

Let $x = x_1$ and $v = x_2 - x_1$. $[0, 1] \subset \text{dom}g$

$$g(1 - \theta) = f(\theta x_1 + (1 - \theta)x_2)$$

> $\theta f(x_1) + (1 - \theta)f(x_2)$
= $\theta g(0) + (1 - \theta)g(1)$.

Therefore g(t) is nonconvex (contradiction). Thus f(x) must be convex.

Restriction of a convex function to a line III

 Can check convexity of f by checking convexity of functions of one variable

Example $f: \mathbf{S}_{++}^n \to \mathbf{R}$ with $f(\mathbf{X}) = \log \det(\mathbf{X})$ Note that $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \det(\mathbf{B})$ for \mathbf{A} and $\mathbf{B} \in \mathbf{S}^n$.

$$g(t) = \log \det(\mathbf{X} + t\mathbf{V}) = \log \det \mathbf{X} + \log \det(\mathbf{I} + t\mathbf{X}^{-1/2}\mathbf{V}\mathbf{X}^{-1/2})$$
$$= \log \det \mathbf{X} + \sum_{i=1}^{n} \log(1 + t\lambda_i)$$

where λ_i are the eigenvalues of $\mathbf{X}^{-1/2}\mathbf{V}\mathbf{X}^{-1/2}$. g is concave in t (for any choice of $\mathbf{X} > 0$ and \mathbf{V}). Hence f is concave.

Volume Minimization

• Volume of *n*-simplex with vertices (v_0, v_1, \dots, v_n) :

$$\frac{1}{n!} |\det(\mathbf{v}_1 - \mathbf{v}_0, \mathbf{v}_2 - \mathbf{v}_0, \dots, \mathbf{v}_n - \mathbf{v}_0)|$$

• Volume of a closed ellipsoid: $\{x \in \mathbb{R}^n | | (x - x_c)^T \mathbf{Q}^{-1} (x - x_c) \le 1\}, \mathbf{Q} > 0$

$$\frac{\pi^{n/2}}{\Gamma(n/2+1)}\sqrt{\det(\mathbf{Q})}$$

det() is not convex.

First-order condition I

f is **differentiable** if $\operatorname{\mathbf{dom}} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$

first-order approximation of f is global underestimator

Note:
$$tf(x) + (1 - t)f(y) \ge f(tx + (1 - t)y)$$
. Hence $f(y) \ge f(x) + \lim_{t \to 0} \frac{f(x + t(y - x)) - f(x)}{t}$

First-order condition II

Proof

• Sufficiency: For $x, y, z \in \text{dom } f$ and $0 < \theta < 1$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

$$f(z) \ge f(x) + \nabla f(x)^T (z - x)$$

we have

$$\theta f(y) + (1 - \theta)f(z) \ge f(x) + \nabla f(x)^T (\theta y + (1 - \theta)z - x)$$

Let $x = \theta y + (1 - \theta)z \in \mathbf{dom} f$, we obtain

$$\theta f(y) + (1 - \theta)f(z) \ge f(\theta y + (1 - \theta)z)$$

Therefore f is convex.

First-order condition III

Necessity: For x, y ∈ dom f and 0 < t ≤ 1, consider restricted line of f defined as

$$g(t) = f(ty + (1 - t)x), \quad \text{dom } g = \{t \mid ty + (1 - t)x \in \text{dom } f\}$$

which has

$$g'(t) = \nabla f(ty + (1 - t)x)^T (y - x)$$

Since f(x) is convex, g(t) is also convex. Hence

$$g(1) \ge g(0) + g'(0)(1 - 0)$$

this leads to $f(y) \ge f(x) + \nabla f(x)^T (y - x)$.

First-order condition for strict convexity

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable
- f is strictly convex if and only if

$$f(y) > f(x) + \nabla f(x)^{T} (y - x)$$

for all $x, y \in \mathbb{R}^n$ where $x \neq y$

- Function f has for all $x \in \mathbb{R}^n$ an affine minorizer that:
 - has slope s defined by ∇f
 - ullet coincides with function f only at x
 - ullet is supporting hyperplane to epigraph of f

Question: compare |x| and x^2

First-order condition for strong convexity I

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable
- f is σ -strongly convex with $\sigma > 0$ if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\sigma}{2} ||x - y||_2^2$$

for all $x, y \in \mathbb{R}^n$

- Function f has for all $x \in \mathbb{R}^n$ a quadratic minorizer that:
 - curvature defined by σ
 - ullet coincides with function f at x
 - defines normal $(\nabla f(x), -1)$ to epigraph of f

First-order condition for strong convexity II

Normal or supporting hyperplane to epigraph of a convex function f(y, t) in epigraph of f(x) at the point (x, f(x)) means that

$$t \ge f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

Then supporting hyperplane for the epigraph of f at the point (x, f(x)) is given by

$$\nabla f(x)^T y - t \le -f(x) + \nabla f(x)^T x$$

or

$$(\nabla f(x), -1)^T (y, t) \le -f(x) + \nabla f(x)^T x$$

i.e., the vector $(\nabla f(x), -1)$ defines normal to epigraph of f

Example I

Prove that $f(X) = \log \det(X)$ is a concave function where $X \in S^n_+$. Given that 1st derivative of f(X)

$$\nabla_X \log \det(\mathbf{X}) = \mathbf{X}^{-1}$$

Following the first-order condition we need to prove that

$$f(\mathbf{Y}) \le f(\mathbf{X}) + \langle \nabla_X f(\mathbf{X}), \mathbf{Y} - \mathbf{X} \rangle$$
$$\log \det(\mathbf{Y}) \le \log \det(\mathbf{X}) + \langle \mathbf{X}^{-1}, \mathbf{Y} - \mathbf{X} \rangle$$
$$= \log \det(\mathbf{X}) + \langle \mathbf{X}^{-1}, \mathbf{Y} \rangle - n$$

or the following inequality

$$\log \det(\mathbf{X}^{-1/2}\mathbf{Y}\mathbf{X}^{-1/2}) - \operatorname{tr}(\mathbf{X}^{-1/2}\mathbf{Y}\mathbf{X}^{-1/2}) + n \le 0.$$

Let $\lambda_k \ge 0$ be eigenvectors of $\mathbf{Q} = \mathbf{X}^{-1/2} \mathbf{Y} \mathbf{X}^{-1/2}$. Taking into account that $\det(\mathbf{Q}) = \prod_{k=1}^n \lambda_k$, $\operatorname{tr}(\mathbf{Q}) = \sum_{k=1}^n \lambda_k$.

Example II

$$\sum_{k=1}^{n} (\log(\lambda_k) - \lambda_k + 1) \le 0.$$

or
$$h(x) = \log(x) - x + 1 \le 0$$
 for $x \ge 0$. (Note that $h'(x) = \frac{1}{x} - 1$)

Example III

Derivative of $\log \det(X^{-1})$

$$\log \det(X^{-1}) = \log \det(X)^{-1} = -\log \det(X)$$

$$\frac{\partial \log \det(X^{-1})}{\partial X_{i,j}} = \frac{-1}{\det(X)} \frac{\partial \det X}{\partial X_{i,j}} = \frac{-1}{\det(X)} \operatorname{adj}(X)_{j,i} = -(X^{-1})_{ji}$$

Alternative proof

Let $X \in \mathbf{S}_{++}^n$ and $H \in \mathbf{S}^n$ such that $X + H \in \mathbf{S}_{++}^n$

$$f(X+H) - f(X) = \log \det(X+H) - \log \det(X) = \log \det(X^{-1}(X+H))$$
$$= \log \det(I + X^{-1/2}HX^{-1/2})$$

Example IV

Applying arithmetic-geometric inequality to the eigenvalues of $X^{-1/2}HX^{-1/2}$ we have

$$\begin{split} \log \det(I + X^{-1/2} H X^{-1/2}) & \leq \log \left(\frac{1}{n} \operatorname{tr}(I + X^{-1/2} H X^{-1/2}) \right)^n \\ & = n \log \left(\frac{1}{n} \operatorname{tr}(I + X^{-1/2} H X^{-1/2}) \right) \\ & = n \log \left(1 + \frac{1}{n} \operatorname{tr}(X^{-1/2} H X^{-1/2}) \right) \end{split}$$

Since $log(1 + t) \le t$ we arrive at

$$f(X + H) - f(X) \le \operatorname{tr}(X^{-1/2}HX^{-1/2}) = \operatorname{tr}(X^{-1}H)$$

This shows X^{-1} is a subgradient of f at X. Since f is differentiable, the subgradient is unique and equals the gradient $\nabla f(X)$.

Note: g is subgradient of f(x) if for all $z \in \operatorname{dom} f$: $f(z) \ge f(x) + g^T(z - x)$

Second-order condition I

f is **twice differentiable** if $\operatorname{\mathbf{dom}} f$ is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{dom} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{\mathbf{dom}} f$, then f is strictly convex

Second-order condition II

f is **twice differentiable** if $\operatorname{\mathbf{dom}} f$ is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{dom} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{\mathbf{dom}} f$, then f is strictly convex

Examples

quadratic function:
$$f(x) = (1/2)x^T P x + q^T x + r$$
 (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succ 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \left[\begin{array}{c} y \\ -x \end{array} \right] \left[\begin{array}{c} y \\ -x \end{array} \right]^T \succeq 0$$

convex for y > 0

Examples

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp(x_k)$ is convex

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}) = \begin{cases} \frac{-e^{x_i} e^{x_j}}{(\sum_j e^{x_j})^2}, & i \neq j \\ \frac{-e^{x_i} e^{x_j}}{(\sum_i e^{x_j})^2} + \frac{e^{x_j}}{\sum_j e^{x_j}}, & i = j \end{cases}$$

The Hessian matrix is then written as

$$\nabla^2 f(\mathbf{x}) = \operatorname{diag}(\mathbf{z}) - \mathbf{z} \, \mathbf{z}^T,$$

where $\mathbf{z} = [z_i]$, $z_i = \frac{e^{x_i}}{\sum_i e^{x_j}}$ and $\mathbf{z}^T \mathbf{1} = 1$

Need to show that $\mathbf{v}^T \nabla^2 f(\mathbf{x}) \mathbf{v} \ge 0$ for all \mathbf{v} .

$$\mathbf{v}^T \nabla^2 f(\mathbf{x}) \, \mathbf{v} = \sum_i z_i v_i^2 - \left(\sum_i z_i v_i \right)^2$$

Following the Cauchy-Schwarz inequality we have

$$\left(\sum_{i} z_{i} v_{i}\right)^{2} \leq \left(\sum_{i} z_{i}\right) \left(\sum_{i} z_{i} v_{i}^{2}\right) = \sum_{i} z_{i} v_{i}^{2}$$

(1)

Convex functions: examples

geometric mean: $f(x)=(\prod_{k=1}^n x_k)^{1/n}$ on \mathbf{R}_{++}^n is concave (similar proof as for log-sum-exp)

Convex functions: examples I

• Log-sum-exp is convex

$$f(x) = \log(\exp^{x_1} + \exp^{x_2} + \dots + \exp^{x_n})$$

and is approximation to the maximum $\max_{i} x_i$

$$\max\{x_1, \dots, x_n\} \le f(x) \le \max\{x_1, \dots, x_n\} + \log n$$

Hint Applying the mid-point rule to prove f(x) is convex

$$\frac{1}{2}\log\left(\sum_{i}\exp^{x_{i}}\right) + \frac{1}{2}\log\left(\sum_{i}\exp^{y_{i}}\right) \ge \log\left(\sum_{i}\exp^{x_{i}/2 + y_{i}/2}\right)$$

and substitute $\exp^{x_i/2} = a_i$ and $\exp^{y_i/2} = b_i$

$$\left(\sum_{i} a_i^2\right)^{1/2} \left(\sum_{i} b_i^2\right)^{1/2} \ge \sum_{i} a_i b_i$$

$$f(x) - y = \log(\exp^{x_1 - y} + \exp^{x_2 - y} + \dots + \exp^{x_n - y})$$

Hence $f(x) - \max\{x_i\} \le \log(\exp(0) + \dots + \exp(0)) = \log n$.

Convex functions: examples I

$$f(x_1, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2 + 2x_1 - 3x_2 + e^{x_1}$$

$$f_1(x_1, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2 + 2x_1 - 3x_2$$
$$= \begin{bmatrix} x_1, x_2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} [x_1, x_2]^T + [2, -3][x_1, x_2]^T$$

 $f_1(x_1, x_2)$ is convex because its Hessian is positive definite

$$\mathbf{H} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 3 \end{array} \right] > 0$$

 $f(x_1, x_2)$ is sum of two convex functions, hence it is convex.

Convex functions: examples II

$$f(x, y, z) = x^{2} + y^{2} + 3z^{2} - xy + 2xz + yz$$

$$= \frac{1}{2} [x, y, z] \begin{bmatrix} 2 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & 1 & 6 \end{bmatrix} [x, y, z]^{T}$$

The Hessian H > 0 is positive definitive because its leading principal minors are 2 > 0, 3 > 0, and 4 > 0. Hence the function is strictly convex.

$$f(x_1, x_2) = x_1^3 + 2x_1^2 + 2x_1x_2 + (1/2)x_2^2 - 8x_1 - 2x_2 - 8$$

$$f(x_1, x_2, x_3) = e^{x_1 - x_2 + x_3} + e^{2x_2} + x_1$$

$$f(x_1, x_2) = -\log(x_1 x_2) \quad \text{over } R_{++}^2,$$

Monotonicity of the Gradient I

Suppose that f is a continuously differentiable function over a convex set $C \subseteq \mathbb{R}^n$. Then f is convex over C if and only if

$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^T (\mathbf{x} - \mathbf{y}) \ge 0$$
 for any $\mathbf{x}, \mathbf{y} \in C$

Proof

· Sufficiency:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

$$f(\mathbf{x}) \ge f(\mathbf{y}) + \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y})$$

$$f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x}) + f(\mathbf{y}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y})$$

or

$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^T (\mathbf{x} - \mathbf{y}) \ge 0$$

Monotonicity of the Gradient II

• Necessity : if ∇f is monotone, let g(t) = f(x + t(y - x)), and $g'(t) \ge g'(0)$ for all $t \ge 0$ and $t \in \text{dom } g$

$$g'(t) = \nabla f(x + t(y - x))^{T}(y - x)$$

Hence

$$f(y) = g(1) = g(0) + \int_0^1 g'(t)dt \ge g(0) + g'(0)$$
$$= f(x) + \nabla f(x)^T (y - x)$$

Monotonicity of the Gradient

σ -Strongly Convex Function:

$$(\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}))^T (\mathbf{x} - \mathbf{y}) \ge \sigma ||\mathbf{x} - \mathbf{y}||_2^2$$
 for any $\mathbf{x}, \mathbf{y} \in \mathbf{dom} f$

Optimality conditions

Consider an unconstrained optimization problem

$$\min f(x)$$

where f is convex and differentiable.

Then, any point x^* that satisfies $\nabla f(x^*) = 0$ is a global minimum.

Proof: From the 1st order characterization of convexity, since $\nabla f(x^*) = 0$, we get

$$f(y) \ge f(x^*) + \nabla f(x^*)(y - x^*) = f(x^*), \quad \forall y.$$

In absence of convexity, $\nabla f(x) = 0$ is not sufficient even for local optimality. For example, $f(x) = x^3$ and and x = 0.

Optimality conditions

Consider an optimization problem

min
$$f(x)$$
 s.t. $x \in \Omega$

where $f:\mathbb{R}^n\to R$ is convex and differentiable and Ω is convex. Then a point x^\star is optimal if and only if $x^\star\in\Omega$ and

$$\nabla f(x^*)^T (y - x^*) \ge 0, \quad \forall y \in \Omega.$$

Proof

(Sufficiency) Suppose $x \in \Omega$ satisfies

$$\nabla f(x)^T (y - x) \ge 0, \quad \forall y \in \Omega$$

By the 1st order characterization of convexity

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \forall y \in \Omega$$

it is obvious that $f(y) \ge f(x)$ for all $y \in \Omega$. Hence x is optimal.

Optimality conditions

Consider an optimization problem

min
$$f(x)$$
 s.t. $x \in \Omega$

where $f:\mathbb{R}^n\to R$ is convex and differentiable and Ω is convex. Then a point x is optimal if and only if $x\in\Omega$ and

$$\nabla f(x)^T (y - x) \ge 0, \quad \forall y \in \Omega.$$

Proof

(Necessity) Suppose x is optimal but for some $y \in \Omega$ we had

$$\nabla f(x)^T (y-x) < 0.$$

For $\theta \in [0, 1]$, $x + \theta(y - x) \in \Omega$. Let $g(\theta) = f(x + \theta(y - x))$.

$$g'(\theta) = (y - x)^T \nabla f(x + \theta(y - x))$$

Hence $g'(0) = (y - x)^T \nabla f(x) < 0$, implies that $\exists \delta > 0$ such that $g(\theta) < g(0)$, $\forall \theta \in (0, \delta)$.

$$f(x + \theta(y - x)) < f(x), \quad \forall \theta \in (0, \delta)$$

This contradicts the optimality of x.

Optimization problem with linear constraints

Consider the optimization problem

$$\min f(x)$$
 s.t. $\mathbf{A}x = \mathbf{b}$

where f is a convex function and $\mathbf{A} \in \mathbb{R}^{m \times n}$.

A point $x \in \mathbb{R}^n$ is optimal if and only if it is feasible and $\exists \mu \in \mathbb{R}^m$ s.t.

$$\nabla f(\mathbf{x}) = \mathbf{A}^T \boldsymbol{\mu} .$$

Optimization problem with linear constraints

Consider the optimization problem

$$\min f(x)$$
 s.t. $\mathbf{A}x = \mathbf{b}$

where f is a convex function and $\mathbf{A} \in \mathbb{R}^{m \times n}$.

A point $x \in \mathbb{R}^n$ is optimal if and only if it is feasible and $\exists \mu \in \mathbb{R}^m$ s.t.

$$\nabla f(\mathbf{x}) = \mathbf{A}^T \boldsymbol{\mu} .$$

Proof: Assume that x^* is a solution, then from the optimality condition

$$\nabla f(\mathbf{x}^{\star})^T (\mathbf{v} - \mathbf{x}^{\star}) \ge 0 \quad \forall \mathbf{v} : \mathbf{A}\mathbf{v} = \mathbf{b}.$$

Let $\mathbf{v} = \mathbf{x}^* + \mathbf{v}$. Since $\mathbf{b} = \mathbf{A}\mathbf{v} = \mathbf{A}\mathbf{x}^* + \mathbf{A}\mathbf{v}$, we have $\mathbf{A}\mathbf{v} = 0$.

$$\nabla f(\mathbf{x}^{\star})^T \mathbf{v} \ge 0 \quad \forall \mathbf{v} \text{ and } -\mathbf{v} : \mathbf{A}\mathbf{v} = 0.$$

Hence $\nabla f(\mathbf{x}^{\star})^T \mathbf{v} = 0$. In other words,

$$\nabla f(\mathbf{x}^{\star}) = \mathbf{A}^T \boldsymbol{\mu} .$$

Optimization problem with nonnegativity constraints

Consider the optimization problem

$$\min f(x)$$
 s.t. $x \ge 0$

where f is a convex function.

where
$$f$$
 is a stationary point iff $\nabla f(x^{\star})^{T}(x-x^{\star}) \geq 0$ for all $x \geq 0$
 $\iff \nabla f(x^{\star}) \geq 0$ and $\nabla f(x^{\star})^{T}x^{\star} \leq 0$
 $\iff \nabla f(x^{\star}) \geq 0$ and $x_{i}^{\star} \frac{\partial f}{\partial x_{i}}(x^{\star}) = 0$
 $\iff \frac{\partial f}{\partial x_{i}}(x^{\star}) \begin{cases} = 0 & x_{i}^{\star} > 0 \\ \geq 0 & x_{i}^{\star} = 0, \end{cases}$

Optimization problem over unit Ball

Consider the optimization problem

$$\min f(\mathbf{x}) \qquad \text{s.t.} \quad ||\mathbf{x}|| \le 1$$

where f is a continuously differentiable convex function. The point $x^* \in B[0, 1]$ is a stationary point iff for all $x \in B$

$$\nabla f(\mathbf{x}^{\star})^{T}(\mathbf{x} - \mathbf{x}^{\star}) \ge 0 \iff \nabla f(\mathbf{x}^{\star})^{T}\mathbf{x} \ge \nabla f(\mathbf{x}^{\star})^{T}\mathbf{x}^{\star}$$

Assume $\|\nabla f(x^\star)\| \neq 0$, LHS attains minimum when $x = -\frac{\nabla f(x^\star)}{\|\nabla f(x^\star)\|}$, implying that

$$-\|\nabla f(\boldsymbol{x}^{\star})\| = \nabla f(\boldsymbol{x}^{\star})^{T} \boldsymbol{x}^{\star} \qquad \Longleftrightarrow \qquad \|\nabla f(\boldsymbol{x}^{\star})\| \left(\frac{\nabla f(\boldsymbol{x}^{\star})^{T}}{\|\nabla f(\boldsymbol{x}^{\star})\|} \boldsymbol{x}^{\star} + 1\right) = 0$$

which leads to $x^\star = -\frac{\nabla f(x^\star)}{\|\nabla f(x^\star)\|}$, i.e., $\|x^\star\|_2 = 1$ and $\nabla f(x^\star) = \lambda x^\star$ for $\lambda < 0$. Finally, the optimality condition is

•
$$\nabla f(\mathbf{x}^*) = 0$$
 or

•
$$||x^{\star}|| = 1$$
 and $\nabla f(x^{\star}) = \lambda x^{\star}$ where $\lambda < 0$

Stationary Condition

Feasible set	Stationary condition
\mathbb{R}^n	$\nabla f(\boldsymbol{x}^{\star}) = 0$
\mathbb{R}^n_+	$\frac{\partial}{\partial x_i^*} f(\mathbf{x}^*) \begin{cases} = 0, & x_i^* > 0, \\ \ge 0, & x_i^* = 0 \end{cases}$
$\{x \in \mathbb{R}^n : \mathbf{A}x = \mathbf{b}\}$	$\nabla f(\mathbf{x}^{\star}) = \mathbf{A}^T \mathbf{v}$
$\{\boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{1}_n^T \boldsymbol{x} = 1\}$	$\frac{\partial}{\partial x_1^*} f(\boldsymbol{x}^*) = \dots = \frac{\partial}{\partial x_n^*} f(\boldsymbol{x}^*)$
B[0, 1]	$\nabla f(x^*) = 0$ or $ x^* = 1$ and $\nabla f(x^*) = \lambda x^*$ where $\lambda < 0$

Epigraphs

 α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f: \mathbf{R}^n \to \mathbf{R}$:

$$epi f = \{(x, t) \in \mathbf{R}^{n+1} \mid x \in \mathbf{dom} f, \ f(x) \le t\}$$

f is convex if and only if epi f is a convex set

Epigraphs and Convexity

- Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$
- Then f is convex if and only $\operatorname{epi} f$ is a convex set in $\mathbb{R}^n \times \mathbb{R}$

ullet f is called closed (lower semi-continuous) if $\operatorname{epi} f$ is closed set

Epigraphs and Convexity

A function f is convex if and only if its epigraph is a convex set.

• Suppose f is convex and let $(x_1, t_1), (x_2, t_2) \in \text{epi} f$. For $0 \le \theta \le 1$, the point $(x, t) = \theta(x_1, t_1) + (1 - \theta)(x_2, t_2)$ has

$$t = \theta t_1 + (1 - \theta)t_2 \ge \theta f(x_1) + (1 - \theta)f(x_2)$$

$$\ge f(\theta x_1 + (1 - \theta)x_2) = f(x)$$

Hence $(x, t) \in \text{epi} f$, and epi f is convex.

· The converse is similar.

Convex Envelope

Convex envelope of f is largest convex minorizer

• Definition: The convex envelope env f satisfies: env f convex,

$$\mathrm{env} f \leq f \qquad \text{and} \qquad \mathrm{env} f \geq g \text{ for all convex } g \leq f$$

Convex Envelope

ullet Epigraph of convex envelope of f is convex hull of $\mathrm{epi} f$

ullet $\operatorname{epi} f$ in light gray, $\operatorname{epi} \operatorname{env} f$ includes dark gray

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$

Jensen's inequality

• By convexity of $-\log x$ and Jensen's inequality with general θ

$$-\log(\theta a + (1 - \theta)b) \le -\theta \log(a) - (1 - \theta)\log(b)$$
$$a^{\theta}b^{1-\theta} < \theta a + (1 - \theta)b$$

• **Example** Prove that the set $C = \{x \in \mathbb{R}^n \mid x_1 x_2 \cdots x_n \ge a\}$ is convex.

$$f(\theta x + (1 - \theta)y) = \prod_{k=1}^{n} (\theta x_k + (1 - \theta)y_k)$$

$$\geq \prod_{k=1}^{n} x_k^{\theta} y_k^{(1-\theta)}$$

$$= \left(\prod_{k=1}^{n} x_k\right)^{\theta} \left(\prod_{k=1}^{n} y_k\right)^{(1-\theta)}$$

$$\geq a^{\theta} a^{1-\theta} = a.$$

Arithmetic-geometric mean inequality

For all $x \in \mathbb{R}^n_{++}$

$$\left(\prod_{i} x_{i}\right)^{1/n} \leq \frac{1}{n} \left(\sum_{i} x_{i}\right)$$

Note: $\log(x)$ is concave on \mathbb{R}_{++} . Hence

$$\log\left(\sum_i \theta_i x_i\right) \geq \sum_i \theta_i \log(x_i) = \log\left(\prod_i x_i^{\theta_i}\right)$$

Jensen's inequality: example

Maximum of a convex function over a polyhedron.

Show that the maximum of a convex function f over the polyhedron $P = \text{conv}\{v_1, \dots, v_k\}$ is achieved at one of its vertices, i.e.,

$$\max_{x \in P} f(x) = \max_{i=1,\dots,k} f(v_i)$$

Hint: Assume the statement is false, and $f(x^* \in P)$ has a global maximum at a point x^* .

Since $x^* \in P$, $x^* = \sum_{n=1}^k \theta_n v_n$, $\theta^T \mathbf{1}_k = 1$.

Denote $f * = \max_i f(v_i)$.

$$f(x^*) \le \sum_n \theta_n f(\nu_n) \le \left(\sum_n \theta_n\right) f^* = \max_{i=1,\dots,k} f(\nu_i).$$

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Power of a nonnegative function

• If f is convex and nonnegative, i.e., $f(x) \ge 0$, $\forall x$, and $k \ge 0$, then f^k is convex.

Proof Consider the case when f is twice differentiable. Let $g = f^k$.

$$\nabla g(x) = k f^{k-1} \nabla f(x)$$

$$\nabla^2 g(x) = k((k-1) f^{k-2} \nabla f(x) \nabla^T f(x) + f^{k-1} \nabla^2 f(x)).$$

$$\nabla^2 g(x)>0$$

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$ sum: f_1+f_2 convex if f_1,f_2 convex (extends to infinite sums, integrals) composition with affine function: f(Ax+b) is convex if f is convex

examples

• log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]}$ is ith largest component of x) proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} ||x - y||$$

• maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

Composition with scalar functions

composition of $g: \mathbf{R}^n \to \mathbf{R}$ and $h: \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

f is convex if $\begin{array}{c} g \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing} \\ g \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing} \end{array}$

• proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^{2} + h'(g(x))g''(x)$$

 \bullet note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^n \to \mathbf{R}^k$ and $h: \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{ccc} g_i \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing in each argument} \\ \text{proof (for } n=1 \text{, differentiable } g,h) \end{array}$

$$f''(x) = g'(x)^{T} \nabla^{2} h(g(x)) g'(x) + \nabla h(g(x))^{T} g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

 $\bullet \ f(x,y) = x^TAx + 2x^TBy + y^TCy \ \text{with}$

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \qquad C \succ 0$$

minimizing over y gives $g(x)=\inf_y f(x,y)=x^T(A-BC^{-1}B^T)x$ g is convex, hence Schur complement $A-BC^{-1}B^T\succeq 0$

• distance to a set: $\mathbf{dist}(x,S) = \inf_{y \in S} \|x - y\|$ is convex if S is convex

Perspective

the **perspective** of a function $f: \mathbf{R}^n \to \mathbf{R}$ is the function $g: \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$,

$$g(x,t) = tf(x/t),$$
 $dom g = \{(x,t) \mid x/t \in dom f, t > 0\}$

g is convex if f is convex

examples

- $f(x) = x^T x$ is convex; hence $g(x,t) = x^T x/t$ is convex for t > 0
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x,t) = t\log t t\log x$ is convex on \mathbf{R}^2_{++}
- if *f* is convex, then

$$g(x) = (c^T x + d) f\left((Ax + b)/(c^T x + d) \right)$$

is convex on $\{x \mid c^T x + d > 0, (Ax + b)/(c^T x + d) \in \text{dom } f\}$

Conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

- \bullet $f^*(y)$ tells how far to shift a supporting hyperplane with directional slopes y so that it barely touches the graph of f
- $f^*(y)$ is a convex funtion.

Example

• negative logarithm $f(x) = -\log x$

$$\begin{array}{lcl} f^*(y) & = & \sup_{x>0} (xy + \log x) \\ \\ & = & \left\{ \begin{array}{ll} -1 - \log(-y) & y < 0 \\ \infty & \text{otherwise} \end{array} \right. \end{array}$$

 \bullet strictly convex quadratic $f(x) = (1/2)x^TQx$ with $Q \in \mathbf{S}^n_{++}$

$$f^{*}(y) = \sup_{x} (y^{T}x - (1/2)x^{T}Qx)$$
$$= \frac{1}{2}y^{T}Q^{-1}y$$

Conjugate of norm

Conjugate of norm is the indicator function of dual norm ball. For a norm ||x||, its dual norm $||x||_* = \sup_{||u|| < 1} u^T x$.

• Let x = ||x||u where ||u|| = 1.

$$f^{*}(y) = \sup_{x} (y^{T}x - ||x||) = \sup_{\|x\|} \|x\| \sup_{\|u\| = 1} (y^{T}u - \|u\|)$$

$$= \sup_{\|x\|} \|x\| (\|y\|_{*} - 1)$$

$$= \begin{cases} 0, & \|y\|_{*} \le 1 \\ \infty, & \|y\|_{*} > 1 \end{cases}$$

Let $\|\cdot\|$ be a norm on \mathbb{R}^n . The associated dual norm $\|z\|_* = \sup\{z^T x : \|x\| \le 1\}$. (support function of the unit ball of the original norm)

Example

	Function	Conjugate
Quadratic	$\frac{1}{2}x^{2}$	$\frac{1}{2}y^2$
Exponential	$\exp(x)$	$y(\log(y) - 1)$
Log	$-\log(x)$	$-\log(-y) - 1$
Log-exponential	$\log(1 + \exp(x))$	$[1-y]\log(1-y) + y\log y$
Cross entropy	$x \log(x)$	$\exp(y-1)$
Affine	$a^T x - b$	b
Norm	x	$I_{\ \cdot\ _*\leq 1}(y)$

Conjugate of Indicator function I

 I_C is the indicator function for the set C. Conjugate of I_C is the support function of the same set

$$I_C^{\star}(y) = \sup_{x \in C} \langle x, y \rangle$$
 (2)

Let $y \in \operatorname{dom} I_C^{\star}$. For any $x \in C$

$$\langle x, y \rangle - I_C(x) = x^T y$$

For any $x \notin C$

$$\langle x, y \rangle - I_C(x) = -\infty$$

Hence

$$\sup\{\langle x, y \rangle - f(x)\} = \sup_{x \in C} \langle x, y \rangle$$

Convex Quadratic I

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$

where $\mathbf{A} \in \mathbb{S}^n_+$, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$ Conjugate of $f(\mathbf{x})$ is

$$f^{\star}(y) = \begin{cases} \frac{1}{2}(y - b)^{T} \mathbf{A}^{\dagger}(y - b) - c, & y \in b + \text{range}(\mathbf{A}), \\ \infty, & \text{otherwise} \end{cases}$$

Negative entropy over unit simplex I

$$f(\mathbf{x}) \triangleq \begin{cases} \sum_{i=1}^{n} x_i \ln x_i & \mathbf{x} \in \Delta_n \\ \infty & \text{otherwise} \end{cases}$$

where $\Delta_n = \{ x \in \mathbb{R}^n : x^T \mathbf{1} = 1, x \geq \mathbf{0} \}.$

$$f^*(\mathbf{y}) = \ln\left(\sum_{j=1}^n e^{y_j}\right)$$

Fenchen's Inequality

$$f(x) + f^*(y) \ge x^T y \quad \forall x, y$$

Proof: By definition of conjugate function

$$f^*(y) = \sup_{x \in \text{dom} f} x^T y - f(x) \ge x^T y - f(x)$$

Thus

$$f(x) + f^{*}(y) \ge x^{T}y.$$
• $f(x) = \frac{1}{2}||x||_{2}^{2} \rightarrow f^{*}(y) = \frac{1}{2}||y||_{2}^{2}$

$$x^{T}x + y^{T}y \ge 2x^{T}y$$
• $f(x) = \frac{1}{2}x^{T}Qx \rightarrow f^{*}(y) = \frac{1}{2}y^{T}Q^{-1}y$

$$x^{T}Qx + y^{T}Q^{-1}y \ge 2x^{T}y$$

Bi-Conjugate function I

• The bi-conjugate function $f^{**}(x) = \sup_y (x^T y - f^*(y))$ is the maximal convex function that bounds the original function from below, $f^{**}(x) \le f(x)$ **Proof**: From Fenchen's inequality $f(x) + f^*(y) \ge x^T y$,

$$f^{**}(x) = \sup_{y} x^{T} y - f^{*}(y) \le f(x)$$

• If f(x) is convex, then it is its own bi-conjugate, $f(x) = f^{**}(x)$

(red line) a non-convex function, (middle) its convex conjugate (purple line), and (right) the original function (red) is shown together with its biconjugate (blue).

Bi-Conjugate function II

$$f(x)$$
 is closed and convex, then $f^{**}(x) = f(x), \forall x, \iff \text{epi} f = \text{epi} f^{**}$

Proof: Assume that $\operatorname{epi} f \neq \operatorname{epi} f^{**}$ and exists $(x, f^{**}(x)) \notin \operatorname{epi} f$. Implying that there a hyperplane can separate $(x, f^{**}(x))$ and $\operatorname{epi} f$, i.e.,

$$\left[\begin{array}{c} a \\ b \end{array}\right]^T \left[\begin{array}{c} z \\ s \end{array}\right] \leq 0 < \left[\begin{array}{c} a \\ b \end{array}\right]^T \left[\begin{array}{c} x \\ f^{**}(x) \end{array}\right], \quad \forall [z,s]^T \in \mathsf{epi}f(x).$$

Thus $\exists c \text{ s.t.}$

$$\left[\begin{array}{c} a \\ b \end{array}\right]^T \left[\begin{array}{c} z - x \\ s - f^{**}(x) \end{array}\right] \le c < 0.$$

Note that $b \le 0$, otherwise, we can choose a significant large s.

• If b < 0. Let $y = \frac{a}{-b}$, then $(y^T z - s) - y^T x + f^{**}(x) \le \frac{-c}{b} < 0$ for all $[z, s]^T \in \text{epi} f(x)$.

Following Fenchen's inequality $\frac{-c}{b} \ge f^*(y) + f^{**}(x) - y^T x \ge 0$. Contradiction!

Bi-Conjugate function III

• If b=0, select $\varepsilon>0$. Since $f^*(y)$ is the supremum of \tilde{y}^Tx-s over all $\tilde{y}\in \mathrm{dom} f(y)$, we can choose $\tilde{y}\in \mathrm{dom} f^*(y)$: $f^*(y)\geq \tilde{y}^Tz-s$ where s=f(z)

$$\begin{bmatrix} a + \varepsilon \tilde{y} \\ -\varepsilon \end{bmatrix}^T \begin{bmatrix} z - x \\ s - f^{**}(x) \end{bmatrix} \le c + \varepsilon (\tilde{y}^T (z - x) - s + f^{**}(x))$$
$$\le c + \varepsilon (f^*(y) - x^T y + f^{**}(x))$$

Since c < 0, we can always select sufficiently small $\varepsilon > 0$ such that

$$c + \varepsilon (f^*(y) - x^T y + f^{**}(x)) < 0$$

i.e.,

$$\begin{bmatrix} a + \varepsilon \tilde{y} \\ -\varepsilon \end{bmatrix}^T \begin{bmatrix} z - x \\ s - f^{**}(x) \end{bmatrix} < 0$$

To the previous case with $\tilde{a} = a + \varepsilon \tilde{y}$ and $\tilde{b} = -\varepsilon < 0$.

Quasiconvex functions I

 $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if $\mathbf{dom} f$ is convex and the sublevel sets

$$S_{\alpha} = \{x \in \mathbf{dom} f \mid f(x) \le \alpha\}$$

are convex for all α . In other words, f is quasiconvex if for all $x, y \in \mathbf{dom} f$ and $\theta \in [0, 1]$ we have

Suppose that f(x) is quasiconvex, and let $x, y \in \mathbf{dom} f$. Then, for any $\theta \in [0, 1]$, we have:

$$f(\theta x + (1 - \theta)y) \le \max(f(x), f(y))$$

Quasiconvex functions II

It means that the line segment joining x and y is contained in the level set S_a , i.e., S_a is convex, since it contains any line segment joining any two points in it.

Conversely, suppose that the level sets S_{α} are convex for all α , and let x and $y \in \mathbf{dom} f$. Then, for any $\theta \in [0,1]$, we have:

$$\theta x + (1 - \theta)y \in S_{\max(f(x), f(y))}$$

This means that the point on the line segment joining x and y is in the level set $S_{\max(f(x),f(y))}$, which implies that $f(\theta x + (1 - (\theta)y) \le \max(f(x),f(y))$.

Quasiconvex functions: example

- $\sqrt{|x|}$ is quasiconvex on **R**
- $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d},$$
 $\mathbf{dom} f = \{x \mid c^T x + d > 0\}$

is quasilinear

distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2},$$
 $\operatorname{dom} f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$

is quasiconvex

Continuity of Convex Functions I

Let f be a convex function defined over a convex set $C \subseteq \mathbb{R}^n$ and $x_0 \in \text{int}(C)$. Then there exist $\varepsilon > 0$ and L > 0 s.t. the ball $B[x_0, \varepsilon] \subseteq C$ and

$$|f(x) - f(x_0)| \le L||x - x_0||$$
 for any $x \in B[x_0, \varepsilon]$

Proof

• Take a sufficient small $\varepsilon > 0$ such that

$$B_{\infty}[\mathbf{x}_0, \varepsilon] = {\mathbf{x} \mid ||\mathbf{x} - \mathbf{x}_0||_{\infty} \le \varepsilon} \subseteq C$$

- Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{2^n}$ be 2^n extreme points of $B_{\infty}[\mathbf{x}_0, \varepsilon]$.
- Any $x \in B_{\infty}[x_0, \varepsilon]$ can be represented by a convex combination $x = \sum_i \lambda_i \mathbf{v}_i$.

$$f(\mathbf{x}) \le \sum_{i} \lambda_{i} f(\mathbf{v}_{i}) \le M$$

where $M = \max f(\mathbf{v}_i)$.

Continuity of Convex Functions II

- Since $B[x_0, \varepsilon] = \{x \mid ||x x_0||_2 \le \varepsilon\} \subseteq B_{\infty}[x_0, \varepsilon]$, we conclude that $f(x) \le M$ for any $x \in B[x_0, \varepsilon]$
- Let $x \in B[x_0, \varepsilon]$, $x \neq x_0$ and $\alpha = \frac{1}{\varepsilon}||x x_0||$.
- Since $z = x_0 + \frac{1}{\alpha}(x x_0) \in B[x_0, \varepsilon]$, then $f(z) \le M$.

•
$$\mathbf{x} = \alpha \mathbf{z} + (1 - \alpha)\mathbf{x}_0$$
, $L = \frac{M - f(\mathbf{x}_0)}{\varepsilon}$

$$f(x) \le \alpha f(z) + (1 - \alpha)f(x_0) = f(x_0) + \alpha(f(z) - f(x_0))$$

$$\le f(x_0) + \alpha(M - f(x_0))$$

$$= f(x_0) + \frac{M - f(x_0)}{\varepsilon} ||x - x_0||$$

$$= f(x_0) + L||x - x_0||$$

Continuity of Convex Functions III

• Define $u = x_0 + \frac{1}{\alpha}(x_0 - x)$. Since $u \in B[x_0, \varepsilon]$, then $f(u) \le M$. Note that $x_0 = \frac{1}{\alpha+1}x + \frac{\alpha}{\alpha+1}u \Longrightarrow$

$$f(\mathbf{x}_0) \le \frac{1}{\alpha + 1} f(\mathbf{x}) + \frac{\alpha}{\alpha + 1} f(\mathbf{u})$$

Therefore,

$$f(\mathbf{x}) = f(\mathbf{x}_0 + \alpha(\mathbf{x}_0 - \mathbf{u})) \ge f(\mathbf{x}_0) + \alpha(f(\mathbf{x}_0) - f(\mathbf{u}))$$

$$\ge f(\mathbf{x}_0) - \frac{M - f(\mathbf{x}_0)}{\varepsilon} ||\mathbf{x} - \mathbf{x}_0|| = f(\mathbf{x}_0) - L||\mathbf{x} - \mathbf{x}_0||$$

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$
 for $0 \le \theta \le 1$

f is log-convex if $\log f$ is convex

- powers: x^a on \mathbf{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

ullet cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

Log-concave function: properties

ullet twice differentiable f with convex domain is log-concave if and only if

$$f(x)\nabla^2 f(x) \leq \nabla f(x)\nabla f(x)^T$$

for all $x \in \operatorname{\mathbf{dom}} f$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if $f: \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ is log-concave, then

$$g(x) = \int f(x, y) dy$$

is log-concave (not easy to show)

Convexity w.r.t. generalized inequalities

 $f: \mathbf{R}^n \to \mathbf{R}^m$ is K-convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) \leq_K \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{dom} f$, $0 \le \theta \le 1$

example $f: \mathbf{S}^m \to \mathbf{S}^m$, $f(X) = X^2$ is \mathbf{S}^m_+ -convex

proof: for fixed $z \in \mathbf{R}^m$, $z^T X^2 z = \|Xz\|_2^2$ is convex in X, i.e.,

$$z^T(\theta X + (1-\theta)Y)^2 z \leq \theta z^T X^2 z + (1-\theta)z^T Y^2 z$$

for $X, Y \in \mathbf{S}^m$, $0 \le \theta \le 1$

therefore
$$(\theta X + (1-\theta)Y)^2 \leq \theta X^2 + (1-\theta)Y^2$$