Datasheet

General Description

The EA3036 is a 3CH power management IC for applications powered by one Li-Ion battery or a DC 5V adapter. It integrates four synchronous buck converters and can provide high efficiency output at light load and heavy load operation. The internal compensation architecture simplifies the application circuit design. Besides, the independent enable control makes the designer have the greatest flexibility to optimize timing for power sequencing purposes. The EA3036 is available in a 20 pin QFN 3x3 package.

Features

- 2.7V to 5.5V Input Voltage Range
- Three Buck Converters

Output Voltage Range: 0.6V to Vin

Maximum Continuous Loading: 2A (3CH total output power consumption must be less than 6W) For intent

Fixed 1.5MHz Switching Frequency

100% Duty Cycle Low Dropout Operation

<1uA Shutdown Current

Independent Enable Control

Internal Compensation

Cycle-by-Cycle Current Limit

Short Circuit Protection

- Auto Recovery OTP Protection
- Available in 20-pin 3mm x 3mm QFN Package

Applications

- Smart Phone
- IP Camera
- OTT
- **Digital Camera**

Pin Configurations

Datasheet

Pin Description

Pin Name	Function Description	Pin No.
GND3	Power ground pin of CH3.	1
FB3	Feedback input of CH3. Connect to output voltage with a resistor divider.	2
FB2	Feedback input of CH2. Connect to output voltage with a resistor divider.	3
AGND	Analog ground pin.	4, 13, 15
GND2	Power ground pin of CH2.	5
SW2	Internal MOSFET switching output of CH2. Connect SW2 pin with a low pass filter circuit to obtain a stable DC output voltage.	6
VIN2	Power input pin of CH2. Recommended to use a 10uF MLCC capacitor between VIN2 pin and GND2 pin.	7
EN2	CH2 turns on/turns off control input. Don't leave this pin floating.	8
EN1	CH1 turns on/turns off control input. Don't leave this pin floating.	9
VIN1	Power input pin of CH1. Recommended to use a 10uF MLCC capacitor between VIN1 pin and GND1 pin.	10
SW1	Internal MOSFET switching output of CH1. Connect SW1 pin with a low pass filter circuit to obtain a stable DC output voltage.	11
GND1	Power ground pin of CH1.	12
FB1	Feedback input of CH1. Connect to output voltage with a resistor divider.	14
VCC	Input supply pin for internal control circuit.	16
VIN3	Power input pin of CH3. Recommended to use a 10uF MLCC capacitor between VIN3 pin and GND3 pin.	17
EN3	CH3 turns on/turns off control input. Don't leave this pin floating.	18
SW3	Internal MOSFET switching output of CH3. Connect SW3 pin with a low pass filter circuit to obtain a stable DC output voltage.	19
NC	No connect.	20
Exposed Pad	The Exposed Pad must be soldered to a large PCB copper plane and connected to GND for appropriate dissipation.	21

Datasheet

Function Block Diagram

Figure 1 EA3036 internal function block diagram

Everanalog,

Datasheet

Absolute Maximum Ratings

Parameter	Value
Input Voltage (V_{VIN1} , V_{VIN2} , V_{VIN3} , V_{VCC})	-0.3V to +6.5V
SW Pin Voltage (V _{SW1} , V _{SW2} , V _{SW3} , V _{SW4})	-0.3V to V_{VINX} +0.3V
All Other Pins Voltage	-0.3V to +6.5V
Ambient Temperature operating Range (T _A)	-40°C to +85°C
Maximum Junction Temperature (T _{Jmax})	+150°C
Lead Temperature (Soldering, 10 sec)	+260°C
Storage Temperature Range (T _s)	<u>_</u> 65°C to +150°C

Note (1):Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Exposure to "Absolute Maximum Ratings" conditions for extended periods may affect device reliability and lifetime.

Package Thermal Characteristics

Parameter	Value
QFN 3x3-20 Thermal Resistance (θ _{JC})	7.5°C/W
QFN 3x3-20 Thermal Resistance (θ _{JA})	67°C/W
QFN 3x3-20 Power Dissipation at T _A =25°C (P _{Dmax})	1.87W

Note (1): P_{Dmax} is calculated according to the formula: $P_{DMax}=(T_{JMax}-T_A)/\theta_{JA}$.

Recommended Operating Conditions

Parameter	Value
Input Voltage (V _{VIN1} , V _{VIN2} , V _{VIN3} , V _{VCC})	+2.7V to +5.5V
Junction Temperature Range (T _J)	-40°C to +125°C

Datasheet

3CH Power Management IC

Electrical Characteristics

 V_{VINX} =3.6V, V_{VCC} =3.6V, T_A =25°C, unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Supply Voltage						
Input Voltage	V_{INX}		2.7		5.5	V
Control Circuit Input Voltage	V_{VCC}		2.7		5.5	V
Buck Converter 1, 2, 3						
Shutdown Supply Current	I _{SD}	$V_{EN} = 0V$		0.1	σ_1^{10}	uA
Quiescent Current	lα	Non-switching, No Load		40	80	uA
UVLO Threshold	V_{UVLO}	V _{VIN} Rising	1.7	71.9	2.1	V
UVLO Hysteresis	$V_{\text{UV-HYST}}$			0.1		V
Output Load Current	I_{LOAD}				2	Α
Reference Voltage	V_{REF}		0.588	0.6	0.612	V
Switching Frequency	F _{SW}	I _{LOAD} = 100mA	1	1.5	2	MHz
Short Frequency	$F_{\text{SW-SHORT}}$	$V_{OUT} = 0V$		300		KHz
PMOS Current Limit	I _{LIM-P}	. 70	3	4		Α
PMOS On-Resistance	$R_{DS(ON)-P}$	$J_{LOAD} = 100 \text{mA}$		100		mΩ
NMOS On-Resistance	R _{DS(ON)-N}	I _{LOAD} = 100mA		90		mΩ
Enable Pin Input Low Voltage	VENL				0.4	V
Enable Pin Input High Voltage	V _{EN-H}		2			V
Maximum Duty Cycle	D_{MAX}		100			%
Thermal Shutdown						
Thermal Shutdown Threshold	T_{OTP}			165		°C
Thermal Shutdown Hysteresis	T _{HYST}			30		°C

Note (1): MOSFET on-resistance specifications are guaranteed by correlation to wafer level measurements.

^{(2):} Thermal shutdown specifications are guaranteed by correlation to the design and characteristics analysis.

Datasheet

Application Circuit Diagram

Figure 2. Typical application circuit diagram

Ordering Information

Part Number	Package Type	Packing Information
EA3036QBR	QFN 3mm x 3mm-20	Tape & Reel / 3000

Note (1):"QB": Package type code...
(2):"R": Tape & Reel.

En et allalog

Datasheet

3CH Power Management IC

Package Information

QFN 3mm x 3mm-20 Package

Top View

Recommended Layout Pattern

Bottom View

Side View

U	nit:	mm

Unit: mm	→ A ←		Symbol		1
Symbol	Dime Min	nsion Max	Symbol	Dimension Typ	
А	0.15	0.25	М	1.50	
С	0.35	0.45	N	1.50	
D	2.90	3.10	0	0.30	
Е	2.90	3.10	Р	0.80	
D1	1.55	1.75	Q	0.40	
E1 ,	1.55	1.75	R	3.90	
L ₂	0.35	0.45	S	3.90	
<u> </u>	0.70	0.80			
H1	0.18	0.25			
H2	0.00	0.05			