Control of an Inverted Pendulum

Rick Egeland, Kevin Renna

Advisors: Kurt Wick and Paul Crowell

Outline

- Motivation of project, ideas
- Theory, control method
- Complications
- Success
- Conclusion

• Wanted to study neural networks

- Wanted to study neural networks
- "Broomstick Balancer: An important control problem. Balancing an inverted pendulum or broomstick is an essential task in the *design of battlefield robots, for example*. Input can be speed and acceleration of the pendulum, output the new position of the base of the inverted pendulum"

- Phillipe De Wilde

"Neural Network Models: An Analysis"

- Wanted to study neural networks
- "Broomstick Balancer: An important control problem. Balancing an inverted pendulum or broomstick is an essential task in the *design of battlefield robots, for example*. Input can be speed and acceleration of the pendulum, output the new position of the base of the inverted pendulum"

- Phillipe De Wilde "Neural Network Models: An Analysis"

 Need a working apparatus before we can implement a Neural Network

- Wanted to study neural networks
- "Broomstick Balancer: An important control problem. Balancing an inverted pendulum or broomstick is an essential task in the *design of battlefield robots, for example*. Input can be speed and acceleration of the pendulum, output the new position of the base of the inverted pendulum"

- Phillipe De Wilde "Neural Network Models: An Analysis"

- Need a working apparatus before we can implement a Neural Network
- Proportional integral (PI) Method was used

Feedback Systems

• Applications: **Balance**, rockets, industrial uses, chemical reactions

Our Apparatus

- Want a only a 2D problem
- Linear setup vs. rotational setup

Our Apparatus

Our Apparatus

Accelerating base $\rightarrow F$ on c.m. of pendulum

Accelerating base $\rightarrow F$ on c.m. of pendulum

$$\sum_i \tau_i = I\ddot{\theta}$$

Accelerating base $\rightarrow F$ on c.m. of pendulum

$$\sum_i \tau_i = I\ddot{\theta}$$

$$I\ddot{\theta} = -rmg\sin\theta + \frac{\tau_M r}{R}\cos\theta + b\dot{\theta}$$

$$\ddot{\phi} = \frac{\partial \dot{\phi}}{\partial t} \approx \frac{\dot{\phi}_i - \dot{\phi}_{i-1}}{\Delta t}$$

$$\ddot{\phi} = \frac{\partial \dot{\phi}}{\partial t} \approx \frac{\dot{\phi}_i - \dot{\phi}_{i-1}}{\Delta t}$$

Ansatz: $\ddot{\phi} = k\theta$

$$\ddot{\phi} = \frac{\partial \dot{\phi}}{\partial t} \approx \frac{\dot{\phi}_i - \dot{\phi}_{i-1}}{\Delta t}$$

Ansatz: $\ddot{\phi} = k\theta$

$$\dot{\phi}_i = \dot{\phi}_{i-1} + k\theta_i \Delta t$$

$$\ddot{\phi} = \frac{\partial \dot{\phi}}{\partial t} \approx \frac{\dot{\phi}_i - \dot{\phi}_{i-1}}{\Delta t}$$

Ansatz: $\ddot{\phi} = k\theta$

$$\dot{\phi}_i = \dot{\phi}_{i-1} + k\theta_i \Delta t$$

$$\lim_{i \to n, \Delta t \to 0} \ddot{\phi}_i = k \int_0^n \theta dt$$

This is why it is called the PI method

Limited motor torque

Failures at high torque demand

Digital noise

Quantized motor speeds

Quantized motor speeds

Success

Longest Trial

Success

Parameter Data

Overdrive

k too high?

Fast Oscillations

Oscillations

Just Giving Up

It's the motor's fault

Conclusion

- Algorithm seems to work, but not consistently
- Problems could lie in apparatus
- Need something to compare data to, simulation

Conclusion

- Algorithm seems to work, but not consistently
- Problems could lie in apparatus
- Need something to compare data to, simulation
- The first steps towards battlefield robots have been fun!

