Induction: A process of reasoning (arguing) which infers a general conclusion based on individual cases

# Supervised (Inductive) Learning

The University of Texas at Dallas

### Supervised Learning

• Given: Training examples  $\langle \mathbf{x}, f(\mathbf{x}) \rangle$  for some unknown function f.

• Find: A good approximation to f.

#### **Example Applications**

#### Credit risk assessment

**x**: Properties of customer and proposed purchase.

 $f(\mathbf{x})$ : Approve purchase or not.

#### • Disease diagnosis

**x**: Properties of patient (symptoms, lab tests)

 $f(\mathbf{x})$ : Disease (or maybe, recommended therapy)

#### • Face recognition

**x**: Bitmap picture of person's face

 $f(\mathbf{x})$ : Name of the person.

#### • Automatic Steering

**x**: Bitmap picture of road surface in front of car.

 $f(\mathbf{x})$ : Degrees to turn the steering wheel.

### Appropriate Applications for Supervised Learning

Situations where there is no human expert

**x**: Bond graph for a new molecule.

 $f(\mathbf{x})$ : Predicted binding strength to AIDS protease molecule.

• Situations where humans can perform the task but can't describe how they do it.

**x**: Bitmap picture of hand-written character

 $f(\mathbf{x})$ : Ascii code of the character

• Situations where the desired function is changing frequently

**x**: Description of stock prices and trades for last 10 days.

 $f(\mathbf{x})$ : Recommended stock transactions

• Situations where each user needs a customized function f

**x**: Incoming email message.

 $f(\mathbf{x})$ : Importance score for presenting to user (or deleting without presenting).

## A learning problem!

| X | 0 | X |
|---|---|---|
| 0 | X | 0 |
| 0 | X | X |

| X | 0 | X |
|---|---|---|
| X | X | 0 |
| X | 0 | 0 |

$$f(x)=1$$

$$f(x)=0$$

$$f(x)=?$$

# If you prefer the training data in this form!

| <b>X1</b> | <b>X2</b> | <b>X3</b> | <b>X4</b> | X5 | <b>X6</b> | <b>X7</b> | <b>X8</b> | <b>X9</b> | f(x) |
|-----------|-----------|-----------|-----------|----|-----------|-----------|-----------|-----------|------|
| X         | 0         | X         | 0         | X  | 0         | 0         | X         | X         | 1    |
| X         | 0         | X         | X         | X  | 0         | X         | 0         | 0         | 1    |
| X         | X         | X         | 0         | X  | X         | 0         | 0         | 0         | 1    |
| 0         | X         | 0         | X         | 0  | X         | 0         | X         | X         | 0    |
| 0         | 0         | X         | X         | X  | 0         | 0         | X         | X         | 0    |
| 0         | X         | X         | X         | 0  | 0         | 0         | X         | X         | 0    |
| 0         | X         | X         | 0         | X  | 0         | X         | X         | 0         | ?    |

- x: a 9-dimensional vector
- f(x): a function or a program that takes the vector as input and outputs either a 0 or a 1
- **Task**: given the training examples, find a good approximation to f so that in future if you see an unseen vector "x" you will be able to figure out the value of f(x)

## A Learning Problem



A simpler example for analysis!

|         |       |       |       |   | ı |
|---------|-------|-------|-------|---|---|
| Example | $x_1$ | $x_2$ | $x_3$ |   | y |
| 1       | 0     | 0     | 1     | 0 | 0 |
| 2       | 0     |       |       | 0 | 0 |
| 3       | 0     | 0     | 1     | 1 | 1 |
| 4       | 1     | 0     | 0     | 1 | 1 |
| 5       | 0     |       | 1     | 0 | 0 |
| 6       | 1     | 1     | 0     | 0 | 0 |
| 7       | 0     | 1     | 0     | 1 | 0 |

Classification problem

Given data or examples, find the function f?

# How to find a good approximation to f?

• A possible/plausible technique



### **Hypothesis Spaces**

• Complete Ignorance. There are  $2^{16} = 65536$  possible boolean functions over four input features. We can't figure out which one is correct until we've seen every possible input-output pair. After 7 examples, we still have  $2^9$  possibilities.

You are assuming that the unknown function f could be any one of the 2<sup>16</sup> functions!

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | y           |
|-------|-------|-------|-------|-------------|
| 0     | 0     | 0     | 0     | ?           |
| 0     | 0     | 0     | 1     | ?           |
| 0     | 0     | 1     | 0     | 0           |
| 0     | 0     | 1     | 1     | 1           |
| 0     | 1     | 0     | 0     | 0           |
| 0     | 1     | 0     | 1     | 0           |
| 0     | 1     | 1     | 0     | 0<br>?<br>? |
| 0     | 1     | 1     | 1     | ?           |
| 1     | 0     | 0     | 0     |             |
| 1     | 0     | 0     | 1     | 1           |
| 1     | 0     | 1     | 0     | 1<br>?<br>? |
| 1     | 0     | 1     | 1     | ?           |
| 1     | 1     | 0     | 0     | 0           |
| 1     | 1     | 0     | 1     | ?           |
| 1     | 1     | 1     | 0     | ?           |
| _1_   | 1     | 1     | 1     | ?           |

It turns out that out of the 2<sup>16</sup> possible functions, 2<sup>9</sup> classify all points in the training data correctly!

## Hypothesis Spaces (2)

• Simple Rules. There are only 16 simple conjunctive rules.

| You are assuming  |
|-------------------|
| •                 |
| that the unknown  |
| function f could  |
| be any one of the |
| 16 conjunctive    |
| rules!            |

| Rule                                                 | Counterexample |
|------------------------------------------------------|----------------|
| $\Rightarrow y$                                      | 1              |
| $x_1 \Rightarrow y$                                  | 3              |
| $x_2 \Rightarrow y$                                  | 2              |
| $x_3 \Rightarrow y$                                  | 1              |
| $x_4 \Rightarrow y$                                  | 7              |
| $x_1 \wedge x_2 \Rightarrow y$                       | 3              |
| $x_1 \wedge x_3 \Rightarrow y$                       | 3              |
| $x_1  \wedge  x_4 \Rightarrow y$                     | 3              |
| $x_2 \wedge x_3 \Rightarrow y$                       | 3              |
| $x_2  \wedge  x_4 \Rightarrow y$                     | 3              |
| $x_3  \wedge  x_4 \Rightarrow y$                     | 4              |
| $x_1  \wedge  x_2  \wedge  x_3 \Rightarrow y$        | 3              |
| $x_1 \wedge x_2 \wedge x_4 \Rightarrow y$            | 3              |
| $x_1  \wedge  x_3  \wedge  x_4 \Rightarrow y$        | 3              |
| $x_2  \wedge  x_3  \wedge  x_4 \Rightarrow y$        | 3              |
| $x_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow y$ | 3              |

| Example | $x_1$ | $x_2$ | $x_3$ | $x_4$ | y |
|---------|-------|-------|-------|-------|---|
| 1       | 0     | 0     | 1     | 0     | 0 |
| 2       | 0     | 1     | 0     | 0     | 0 |
| 3       | 0     | 0     | 1     | 1     | 1 |
| 4       | 1     | 0     | 0     | 1     | 1 |
| 5       | 0     | 1     | 1     | 0     | 0 |
| 6       | 1     | 1     | 0     | 0     | 0 |
| 7       | 0     | 1     | 0     | 1     | 0 |

Unfortunately, none of them work

No simple rule explains the data. The same is true for simple clauses.

## Hypothesis Space (3)

• m-of-n rules. There are 32 possible rules (includes simple conjunctions and clauses).

At least *m* of the *n* variables must be true

You are assuming that the unknown function f could be any one of the 32 m-of-n rules!

Only one of them, the one marked by "\*\*\*" works!

|                       | Counterexample |          |      |                 |  |
|-----------------------|----------------|----------|------|-----------------|--|
| variables             | 1-of           | 2-of     | 3-of | 4-of            |  |
| $\overline{\{x_1\}}$  | 3              | <u></u>  | -    | P 6             |  |
| $\{x_2\}$             | 2              | <u> </u> | -    | 12—00           |  |
| $\{x_3\}$             | 1              | =        | T    | ¥               |  |
| $\{x_4\}$             | 7              | S-1-30   | -    | n <del></del> 0 |  |
| $\{x_1,x_2\}$         | 3              | 3        | _    | -               |  |
| $\{x_1,x_3\}$         | 4              | 3        | -    | -               |  |
| $\{x_1,x_4\}$         | 6              | 3        | _    | -               |  |
| $\{x_2,x_3\}$         | 2              | 3        | _    | -               |  |
| $\{x_2,x_4\}$         | 2              | 3        | _    |                 |  |
| $\{x_3,x_4\}$         | 4              | 4        | _    | -               |  |
| $\{x_1,x_2,x_3\}$     | 1              | 3        | 3    | s—s             |  |
| $\{x_1,x_2,x_4\}$     | 2              | 3        | 3    | # <u></u>       |  |
| $\{x_1,x_3,x_4\}$     | 1              | ***      | 3    |                 |  |
| $\{x_2,x_3,x_4\}$     | 1              | 5        | 3    | -               |  |
| $\{x_1,x_2,x_3,x_4\}$ | 1              | 5        | 3    | 3               |  |

| Example | $x_1$ | $x_2$ | $x_3$ | $x_4$ | y |
|---------|-------|-------|-------|-------|---|
| 1       | 0     | 0     | 1     | 0     | 0 |
| 2       | 0     | 1     | 0     | 0     | 0 |
| 3       | 0     | 0     | 1     | 1     | 1 |
| 4       | 1     | 0     | 0     | 1     | 1 |
| 5       | 0     | 1     | 1     | 0     | 0 |
| 6       | 1     | 1     | 0     | 0     | 0 |
| 7       | 0     | 1     | 0     | 1     | 0 |
|         |       |       |       |       |   |

### Two Views of Learning

- Learning is the removal of our remaining uncertainty. Suppose we knew that the unknown function was an m-of-n boolean function, then we could use the training examples to infer which function it is.
- Learning requires guessing a good, small hypothesis class. We can start with a very small class and enlarge it until it contains an hypothesis that fits the data.

#### We could be wrong!

- Our prior knowledge might be wrong
- Our guess of the hypothesis class could be wrong

  The smaller the hypothesis class, the more likely we are wrong.

Example:  $x_4 \wedge Oneof\{x_1, x_3\} \Rightarrow y$  is also consistent with the training data.

Example:  $x_4 \wedge \neg x_2 \Rightarrow y$  is also consistent with the training data.

If either of these is the unknown function, then we will make errors when we are given new x values.

### Two Strategies for Machine Learning

- Develop Languages for Expressing Prior Knowledge: Rule grammars and stochastic models.
- Develop Flexible Hypothesis Spaces: Nested collections of hypotheses. Decision trees, rules, neural networks, cases.

#### In either case:

• Develop Algorithms for Finding an Hypothesis that Fits the Data

#### Terminology

- Training example. An example of the form  $\langle \mathbf{x}, f(\mathbf{x}) \rangle$ .
- Target function (target concept). The true function f.
- **Hypothesis**. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which  $f(\mathbf{x}) = 1$  are called **positive examples** or **positive instances** of the concept. Examples for which  $f(\mathbf{x}) = 0$  are called **negative examples** or **negative instances**.
- Classifier. A discrete-valued function. The possible values  $f(\mathbf{x}) \in \{1, \dots, K\}$  are called the classes or class labels.
- **Hypothesis Space**. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

### Key Issues in Machine Learning

- What are good hypothesis spaces?
  Which spaces have been useful in practical applications and why?
- What algorithms can work with these spaces?

  Are there general design principles for machine learning algorithms?
- How can we optimize accuracy on future data points? This is sometimes called the "problem of overfitting".
- How can we have confidence in the results?

  How much training data is required to find accurate hypotheses? (the *statistical question*)
- Are some learning problems computationally intractable? (the *computational question*)
- How can we formulate application problems as machine learning problems? (the *engineering question*)

# Steps in Supervised Learning

1. Determine the representation for "x,f(x)" and determine what "x" to use

**Feature Engineering** 

- 2. Gather a training set (not all data is kosher)

  Data Cleaning
- 3. Select a suitable evaluation method
- 4. Find a suitable learning algorithm among a plethora of available choices
  - Issues discussed on the previous slide

# Feature Engineering is the Key

- Most effort in ML projects is constructing features
- Black art: Intuition, creativity required
  - Understand properties of the task at hand
  - How the features interact with or limit the algorithm you are using.
- ML is an iterative process
  - Try different types of features, experiment with each and then decide which feature set/algorithm combination to use

# A sample machine learning Algorithm

- 2-way classification problem
  - +ve and -ve classes
- Representation: Lines (Ax+By=C)
  - Specifically
    - if Ax+By+C >0 then classify "+ve"
    - Else classify as "-ve"
- Evaluation: Number of mis-classified examples
- Optimization: An algorithm that searches for the three parameters: A, B and C.

## Toy Example



## **Blue circles:**

Good credit (low risk)

**Red circles**: Bad credit (high risk)

Problem: Fit a line that separates the two such that the error is minimized.

# How do machine learners solve this problem?

- Try different lines until you find one that separates the data into two
- A more plausible alternative
  - Begin with a random line
  - Repeat until no errors
  - For each point
    - If the current line says +ve and point is –ve then decrease A, B and C
    - If the current line says —ve and the point is +ve then increase A, B, and C

## Toy Example: More data



Blue circles: Good credit (low risk)
Red circles: Bad credit (high risk)

**Problem:** Fit a line that separates the two such that the error is minimized.

# Learning = Representation + Evaluation + Optimization

Combinations of just three elements

| Representation   | Evaluation       | Optimization     |
|------------------|------------------|------------------|
| Instances        | Accuracy         | Greedy search    |
| Hyperplanes      | Precision/Recall | Branch & bound   |
| Decision trees   | Squared error    | Gradient descent |
| Sets of rules    | Likelihood       | Quasi-Newton     |
| Neural networks  | Posterior prob.  | Linear progr.    |
| Graphical models | Margin           | Quadratic progr. |
| Etc.             | Etc.             | Etc.             |