Fish weight prediction

Name: Gupta Bhandari

Student id: co899873

```
# import all libraries and dependencies for dataframe
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import warnings
warnings.filterwarnings('ignore')
```

Reading and Understanding the Data

```
# Reading the Fish CSV file
df_fish = pd.read_csv('_/content/Fish.csv')
```

df_fish.head()

	Species	Weight	Length1	Length2	Length3	Height	Width
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555
4	Bream	430 O	26.5	29.0	34 0	12 4440	5 1340

```
df_fish.shape
     (159, 7)
# Information of the data set
df_fish.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 159 entries, 0 to 158
     Data columns (total 7 columns):
     # Column Non-Null Count Dtype
     Ø Species 159 non-null1 Weight 159 non-null
                                  object
                                  float64
      2 Length1 159 non-null
                                  float64
      3 Length2 159 non-null
                                  float64
      4 Length3 159 non-null
                                  float64
      5 Height 159 non-null
                                  float64
         Width
                   159 non-null
                                  float64
     dtypes: float64(6), object(1)
     memory usage: 8.8+ KB
```

description of the data
df_fish.describe().T

	count	mean	std	min	25%	50%	75%	max
Weight	159.0	398.326415	357.978317	0.0000	120.00000	273.0000	650.0000	1650.000
Length1	159.0	26.247170	9.996441	7.5000	19.05000	25.2000	32.7000	59.000
Length2	159.0	28.415723	10.716328	8.4000	21.00000	27.3000	35.5000	63.400
Length3	159.0	31.227044	11.610246	8.8000	23.15000	29.4000	39.6500	68.000
Height	159.0	8.970994	4.286208	1.7284	5.94480	7.7860	12.3659	18.957
Width	159.0	4.417486	1.685804	1.0476	3.38565	4.2485	5.5845	8.142

```
# Checking the null values

df_fish.isnull().sum()

Species 0
Weight 0
Length1 0
Length2 0
Length3 0
Height 0
Width 0
dtype: int64
```

There is no null value in fish dataset.

```
# checking for duplicates
df_fish.duplicated().sum()
```

There are no any duplicate values in the dataset

Visualization of The Data

```
# Counting the all 7 fish individually in the data set
df_fish['Species'].value_counts()
                  56
     Perch
     Bream
                  35
     Roach
                  20
     Pike
                 17
     Smelt
                  14
     Parkki
                 11
     Whitefish
                  6
     Name: Species, dtype: int64
```

Visualizing the different fish names available

```
plt.figure(figsize = (8, 8))
ax = df_fish['Species'].value_counts().plot(kind = 'bar', stacked=True)
plt.title('Barplot of Fish Name')
plt.xlabel('Fish Name')
plt.ylabel('Count the Fish')
plt.show()
```



```
# Scatter plot of weight variable
plt.figure(figsize = (8, 8))
plt.scatter(x = np.arange(len(df_fish)), y = df_fish['Weight'])
plt.title('Scatter of Weight')
plt.ylabel('Weight of Fish')
plt.show()
```



```
# distribution plot of weight variable
plt.figure(figsize=(8,8))
sns.distplot(df_fish['Weight'], bins=50, kde=True, color = 'blue')
plt.title('Weight distribution function')
plt.show()
```


Pairplot of dataset
plt.figure(figsize=(15, 15))
sns.pairplot(df_fish, hue="Species")
plt.show()


```
# The bar plot of fish and their corresponding mean weight
plt.figure(figsize=(10, 6))
df_fishx = pd.DataFrame(df_fish.groupby(['Species'])['Weight'].mean().sort_values(ascending = False))
df_fishx.plot.bar()
plt.title('Fish name vs Weight')
plt.show()
```

<Figure size 1000x600 with 0 Axes>


```
# Heat map of the data set
plt.figure(figsize = (16, 16))
sns.heatmap(df_fish.corr(), cmap="RdYlGn", annot=True)
plt.show()
```


Data Preprocessing

Encoding

df_fish[['Bream', 'Parkki', 'Perch', 'Pike', 'Roach', 'Smelt', 'Whitefish']] = encoded_species #Here we should encode in alphabetical order
df_fish

	Species	Weight	Length1	Length2	Length3	Height	Width	Bream	Parkki	Perch	P:
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200	1.0	0.0	0.0	
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056	1.0	0.0	0.0	
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961	1.0	0.0	0.0	
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555	1.0	0.0	0.0	
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340	1.0	0.0	0.0	
154	Smelt	12.2	11.5	12.2	13.4	2.0904	1.3936	0.0	0.0	0.0	
155	Smelt	13.4	11.7	12.4	13.5	2.4300	1.2690	0.0	0.0	0.0	
156	Smelt	12.2	12.1	13.0	13.8	2.2770	1.2558	0.0	0.0	0.0	
157	Smelt	19.7	13.2	14.3	15.2	2.8728	2.0672	0.0	0.0	0.0	
158	Smelt	19.9	13.8	15.0	16.2	2.9322	1.8792	0.0	0.0	0.0	
150 roug v 14 columns											>

Dropping Species column
df_fish.drop('Species', axis=1, inplace=True)
df_fish

	Weight	Length1	Length2	Length3	Height	Width	Bream	Parkki	Perch	Pike	Roaci
0	242.0	23.2	25.4	30.0	11.5200	4.0200	1.0	0.0	0.0	0.0	0.0
1	290.0	24.0	26.3	31.2	12.4800	4.3056	1.0	0.0	0.0	0.0	0.0
2	340.0	23.9	26.5	31.1	12.3778	4.6961	1.0	0.0	0.0	0.0	0.0
3	363.0	26.3	29.0	33.5	12.7300	4.4555	1.0	0.0	0.0	0.0	0.0
4	430.0	26.5	29.0	34.0	12.4440	5.1340	1.0	0.0	0.0	0.0	0.0
154	12.2	11.5	12.2	13.4	2.0904	1.3936	0.0	0.0	0.0	0.0	0.0
155	13.4	11.7	12.4	13.5	2.4300	1.2690	0.0	0.0	0.0	0.0	0.0
156	12.2	12.1	13.0	13.8	2.2770	1.2558	0.0	0.0	0.0	0.0	0.0
157	19.7	13.2	14.3	15.2	2.8728	2.0672	0.0	0.0	0.0	0.0	0.0
158	19.9	13.8	15.0	16.2	2.9322	1.8792	0.0	0.0	0.0	0.0	0.0
150 r	v 10 a	odumno									•

→ Standardization

```
# standardization of the data set
num_cols = ['Length1', 'Length2', 'Length3', 'Height', 'Width']
df_fish_standard = df_fish[num_cols]
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df_fish_standard)
scaled_data
     array([[-3.05788578e-01, -2.82303007e-01, -1.06020232e-01,
              5.96578670e-01, -2.36528948e-01],
            [-2.25507242e-01, -1.98053663e-01, -2.33668373e-03,
              8.21260549e-01, -6.65789457e-02],
            [-2.35542409e-01, -1.79331587e-01, -1.09769794e-02,
            7.97341291e-01, 1.65793169e-01], [ 5.30159764e-03, 5.46943678e-02, 1.96390116e-01,
              8.79771455e-01, 2.26210031e-02],
            [ 2.53719316e-02, 5.46943678e-02, 2.39591594e-01,
              8.12834979e-01, 4.26371272e-01],
            [ 5.54774324e-02, 1.20221635e-01, 3.00073664e-01,
              1.08395111e+00, 3.03431249e-01],
            [ 5.54774324e-02, 1.20221635e-01, 2.82793073e-01,
            1.21901769e+00, 5.12357880e-01], [ 1.35758768e-01, 1.48304750e-01, 3.25994551e-01,
              8.65728838e-01, 1.62163285e-01],
            [ 1.35758768e-01, 1.48304750e-01, 3.34634847e-01,
              1.17815367e+00, 2.53683979e-01],
            [ 2.26075271e-01, 2.13832017e-01, 4.29678099e-01,
            1.23004114e+00, 3.22473266e-01], [ 2.16040104e-01, 2.41915132e-01, 4.29678099e-01,
              1.23851352e+00, 4.08638393e-01],
            [ 2.46145605e-01, 2.41915132e-01, 4.29678099e-01, 1.26393066e+00, 2.36308139e-01],
            [ 2.86286273e-01, 2.88720322e-01, 4.46958690e-01,
              1.12064915e+00, -2.94470124e-02],
            [ 3.26426940e-01, 3.35525513e-01, 5.24721351e-01,
              1.15662166e+00, 3.89953414e-01],
            [ 3.16391773e-01, 3.35525513e-01, 5.16081055e-01,
              1.40037809e+00, 4.48269591e-01],
            [ 3.16391773e-01, 3.35525513e-01, 5.16081055e-01,
              1.51356159e+00, 6.91769385e-01],
            [ 4.16743443e-01, 4.29135895e-01, 6.11124307e-01,
              1.37837799e+00, 5.16463815e-01],
            [ 4.16743443e-01, 4.29135895e-01, 6.28404899e-01,
              1.39653978e+00, 4.64157774e-01],
            [ 4.66919278e-01, 4.75941086e-01, 6.37045194e-01,
              1.55920010e+00, 4.26252259e-01],
            [ 4.76954445e-01, 4.75941086e-01, 6.45685490e-01,
              1.28789673e+00, 7.79600689e-01],
            [ 5.07059946e-01, 5.22746277e-01, 7.14807855e-01,
              1.44112509e+00, 6.85521223e-01],
            [ 5.17095113e-01, 5.22746277e-01, 6.88886968e-01,
              1.64359623e+00, 5.67044173e-01],
            [ 5.27130280e-01, 5.69551468e-01, 7.32088446e-01,
              1.53338508e+00, 5.13309981e-01],
            [ 5.57235780e-01, 6.16356659e-01, 8.09851107e-01,
              1.52072332e+00, 1.01941109e+00],
            [ 5.67270947e-01, 6.16356659e-01, 8.01210812e-01,
              1.70138160e+00, 6.97124952e-01],
            [ 5.57235780e-01, 6.16356659e-01, 8.35771994e-01,
              1.72934981e+00, 9.73353212e-01],
            [ 5.77306114e-01, 6.16356659e-01, 8.09851107e-01,
              1.72977109e+00, 9.95251532e-01],
            [ 6.47552283e-01, 7.09967041e-01, 8.87613768e-01,
              1.76609466e+00, 8.53328999e-01],
            [ 6.57587450e-01, 7.09967041e-01, 8.96254064e-01,
              1.85329931e+00, 1.05975637e+00],
```

scaled_features = pd.DataFrame(data=scaled_data, columns=num_cols) #Dataframe of scaled numerical columns scaled_features

	Length1	Length2	Length3	Height	Width					
0	-0.305789	-0.282303	-0.106020	0.596579	-0.236529					
1	-0.225507	-0.198054	-0.002337	0.821261	-0.066579					
2	-0.235542	-0.179332	-0.010977	0.797341	0.165793					
3	0.005302	0.054694	0.196390	0.879771	0.022621					
4	0.025372	0.054694	0.239592	0.812835	0.426371					
154	-1.479903	-1.517960	-1.540309	-1.610359	-1.799403					
155	-1.459833	-1.499238	-1.531669	-1.530878	-1.873547					
156	-1.419692	-1.443072	-1.505748	-1.566687	-1.881402					
157	-1.309305	-1.321378	-1.384784	-1.427243	-1.398568					
158	-1.249094	-1.255851	-1.298381	-1.413341	-1.510440					
159 rows × 5 columns										

Drop the numerical colums before scaling modified_df_fish = df_fish.drop(num_cols, axis = 1) modified_df_fish

	Weight	Bream	Parkki	Perch	Pike	Roach	Smelt	Whitefish
0	242.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
1	290.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
2	340.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
3	363.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
4	430.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
154	12.2	0.0	0.0	0.0	0.0	0.0	1.0	0.0
155	13.4	0.0	0.0	0.0	0.0	0.0	1.0	0.0
156	12.2	0.0	0.0	0.0	0.0	0.0	1.0	0.0
157	19.7	0.0	0.0	0.0	0.0	0.0	1.0	0.0
158	19.9	0.0	0.0	0.0	0.0	0.0	1.0	0.0

159 rows × 8 columns

Concatinate the scaled features final_df_fish = pd.concat([scaled_features, modified_df_fish], axis=1) final_df_fish

	Length1	Length2	Length3	Height	Width	Weight	Bream	Parkki	Perch	Pil
0	-0.305789	-0.282303	-0.106020	0.596579	-0.236529	242.0	1.0	0.0	0.0	0
1	-0.225507	-0.198054	-0.002337	0.821261	-0.066579	290.0	1.0	0.0	0.0	0
2	-0.235542	-0.179332	-0.010977	0.797341	0.165793	340.0	1.0	0.0	0.0	0
3	0.005302	0.054694	0.196390	0.879771	0.022621	363.0	1.0	0.0	0.0	0
4	0.025372	0.054694	0.239592	0.812835	0.426371	430.0	1.0	0.0	0.0	0
154	-1.479903	-1.517960	-1.540309	-1.610359	-1.799403	12.2	0.0	0.0	0.0	0
155	-1.459833	-1.499238	-1.531669	-1.530878	-1.873547	13.4	0.0	0.0	0.0	0
156	-1.419692	-1.443072	-1.505748	-1.566687	-1.881402	12.2	0.0	0.0	0.0	0
157	-1.309305	-1.321378	-1.384784	-1.427243	-1.398568	19.7	0.0	0.0	0.0	0
158	-1.249094	-1.255851	-1.298381	-1.413341	-1.510440	19.9	0.0	0.0	0.0	0
150 r	v 12 aalı	Imno								•