PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA DISCIPLINA: INFERÊNCIA PROFESSORA: DIONE MARIA VALENCA

1^A LISTA DE EXERCÍCIOS

- **1.** Obtenha a função geradora de momentos das distribuições: a) Poisson(θ); b) Gama(α , β); c) Normal (μ , σ^2); d) χ^2 _(n) (qui-quadrado com n g.l.)
- **2.** Verifique que os modelos abaixo são membros da família exponencial d) Gama(α , β); b) Exponencial(θ); c) Bernoulli (θ); d) Beta(α , β).
- **3.** Mostre que os modelos abaixo são membros da *família de posição e escala* (*location and scale families*)
 - a) $U(\theta, \theta+1)$;
 - b) Valor extremo com fdp dada por $f(y) = \sigma^{-1} \exp\{(y-\mu)/\sigma \exp[(y-\mu)/\sigma]\}, y \in \Re$
- **4.** Seja f(.) uma fdp. Seja μ um número real e σ um real positivo. Mostre que X é uma v.a. com fdp $f_{\chi}(x) = 1/\sigma f[(x-\mu)/\sigma]$ se, e somente se $X = \mu + \sigma Z$, sendo Z uma v.a.com fdp f(.).
- **5.** Mostre que se f(.) é uma fdp simétrica em torno de zero, então μ é a mediana da v.a. com fdp da família de posição e escala $f_{\lambda}(x) = 1/\sigma f[(x-\mu)/\sigma]$, $x \in \Re$.
- **6.** Sejam (X,Y) um vetor aleatório contínuo com densidade conjunta f(x,y) e considere que E(X) e E(X|Y) existem. Mostre que E(E(X|Y)) = E(X)
- **7.** Sejam $X_1, X_2, ..., X_n$ variáveis aleatórias independentes e todas com a mesma distribuição, representada pela a função de probabilidade ou de densidade $f(x|\theta)$. (i) Obtenha a função de densidade (probabilidade) conjunta do vetor $(X_1, X_2, ..., X_n)$ e (ii) identifique a distribuição de $T = X_1 + X_2 + ... + X_n$, considerando os modelos:
- a) Poisson (θ) ;
- b) Normal (μ , σ^2);
- c) geométrica(θ)
- **8.** Seja X uma v. a. contínua com função de distribuição F e seja $F^1(y) = \inf\{x \in R; F(x) = y\}$. Mostre que Y = F(X) tem distribuição U[0,1].
- **9.** Seja X ~ N (0, 1). Mostre que se Y = X^2 então Y ~ $X^2_{(1)}$.
- **10.** Mostre que se Y_1 , Y_2 ,..., Y_k são v.a.(s) independentes com $Y_i \sim X_{(ni)}^2$ então $Z = Y_1 + Y_2 + ... + Y_k$ tem distribuição $\chi_{(n)}^2$ sendo $n = n_1 + ... + n_k$.
- **11.** Seja X ~ U $[0, \theta]$ sendo $\theta > 0$. Se $X_1, X_2, ..., X_n$ são variáveis aleatórias independentes e todas com a mesma distribuição se X, mostre que a densidade de $X_{(n)} = \max(X_1, X_2, ..., X_n)$ é dada por $f(x|\theta) = \theta^n n x^{n-1}$, para $0 < x < \theta$, e $f(x|\theta) = \theta$, fora desta intervalo.
- **12.** Sejam X_1 , X_2 ,..., X_n variáveis aleatórias iid com $X_i \sim N(\mu, \sigma^2)$, i=1,...,n. Denotando a média amostral por Xb, mostre que:
- a) Xb tem distribuição $N(\mu, \sigma^2/n)$ b) X_i Xb em distribuição $N(0, (n-1)\sigma^2/n)$
- c) Xb e X_i Xb são independentes para todo i=1,...,n.
- **13.** Sejam X_1, X_2, \ldots, X_n variáveis aleatórias independentes e todas com distribuição $N(\mu, \sigma^2)$. Mostre que a média amostral e a variância amostral são variáveis aleatórias indenpendentes.