

Prüfungsvorbereitung Physik: Optik II

Hier wird nur aufgeführt, was *neu* hinzukommt. Die Prüfung baut auf dem bereits behandelten Stoff auf. (Das heisst, das «Alte» kurz repetieren!)

Theoriefragen: Diese Begriffe musst du in ein bis zwei Sätzen erklären können.

- a) Physikalische Grösse
- b) Formel
- c) Bezeichnungen beim Hohlspiegel (Skizze): Wo befinden sich die optische Achse, Brennpunkt, Brennweite, Mittelpunkt, Scheitelpunkt?
- d) Wo kommen die Lichtstrahlen tatsächlich her bei einem reellen Spiegelbild? Wo befindet sich ein reelles Spiegelbild?
- e) Wo kommen die Lichtstrahlen scheinbar her bei einem virtuellen Spiegelbild? Wo befindet sich ein virtuelles Spiegelbild?
- f) Hohlspiegel/Wölbspiegel
- g) Brechung
- h) Bezeichnungen bei der Brechung (Skizze): Wo befindet sich das Lot, Einfallswinkel, Brechungswinkel, Reflexionswinkel?
- i) Was bedeutet: Ein Stoff ist «optisch dichter» als ein anderer?
- j) Totalreflexion
- k) Grenzwinkel für Totalreflexion
- I) Linse, Konkav-/Konvexlinse
- m) Bezeichnungen bei der Linse (Zeichnung): Wo befinden sich die optische Achse, Brennpunkt, Brennweite, optischer Mittelpunkt, Mittelebene?

<u>Physikalische Grössen:</u> Diese physikalischen Grössen musst du kennen, mit Symbolen und Einheiten.

	Symbol	Einheit		Symbol	Einheit
Einfallswinkel			Reflexionswinkel		
Brechungswinkel					
Bildgrösse			Gegenstandsgrösse		
Bildweite			Gegenstandsweite		
Abbildungsmassstab			Brennweite		

<u>Formeln:</u> Diese Formeln musst du umformen und anwenden können. Die Formeln sowie das Diagramm zur Bestimmung der Brechungswinkel stehen auf dem Prüfungsblatt.

 $\alpha = \alpha'$

 $A = \frac{B}{G}$

 $\frac{B}{G} = \frac{b}{a}$

 $\frac{1}{f} = \frac{1}{b} + \frac{1}{a}$

Fähigkeiten: Diese Fähigkeiten musst du beherrschen:

- Formeln umformen und nach der gesuchten Grösse auflösen
- Zahlenwerte mit Einheiten in Formeln einsetzen und richtig ausrechnen
- Diagramme ablesen und zeichnen
- Brechungswinkel mit Hilfe eines Diagramms bestimmen
- Konstruktion von:
- Schattenbildern
- Abbildungen mit der Lochkamera
- Reflexion am flachen Spiegel und am Hohlspiegel
- Abbildung am flachen, Hohl- und Wölbspiegel
- Brechung von Lichtstrahlen mit Hilfe des Diagramms
- Strahlengang durch konkave und konvexe Linsen
- Abbildung durch konkave und konvexe Linsen

Übungsaufgaben: Bei allen Aufgaben muss der Lösungsweg klar ersichtlich sein (d.h. die Formel, mit der gerechnet wurde, gehört auch dazu).

Resultate müssen unterstrichen sein (Einheiten nicht vergessen!).

Alle Arbeitsblätter, Praktikumsblätter und Aufgabenblätter

Internet

Gehe zur Website www.leifiphysik.de und wähle unter Inhalte nach Teilgebieten der Physik

- → Optik
- → Lichtbrechung
- → Optische Linsen

Weitere Aufgaben

- 1. Bilde den Kehrwert von:
 - a) x
- b) $\frac{1}{7}$
- c) $\frac{p}{q}$ d) $\frac{2.4}{m}$ e) $\frac{1}{4}$
- f) 5
- g) 0.2
- 2. Löse die Gleichung $\frac{3 \cdot r}{p} = \frac{2 \cdot w}{k}$ nach verschiedenen Grössen auf.
 - a) nach p
- b) nach k
- 3. Ein Lichtstrahl tritt von Luft in Glas über. Auf welcher Seite (oben oder unten) befindet sich das Glas?

- 4. Ein Lichtstrahl kommt aus dem Glas und trifft auf die Grenzfläche zwischen Glas und Luft.
- a) Ist es möglich, dass in diesem Fall Totalreflexion auftritt? Begründe deine Antwort.
- b) Wenn ja: Unter welchen Bedingungen tritt Totalreflexion auf?
- c) Wenn ja: Wie gross ist der Grenzwinkel für Totalreflexion?
- 5. Zeichne den weiteren Verlauf der Lichtstrahlen. Schreibe an, wie viel Grad jeweils die Winkel betragen.

- 6. Löse durch Konstruktion auf Häuschenpapier: Eine 3.0 cm hohe Kerze steht in 12 cm Abstand vor einer Sammellinse der Brennweite 3.0 cm.
- a) Wo befindet sich das Bild?
- b) Wie gross ist das Bild?
- c) Ist das Bild reell oder virtuell?
- 7. Löse durch Konstruktion auf Häuschenpapier: Eine 2.0 cm hohe Kerze steht in 12 cm Abstand vor einer Zerstreuungslinse der Brennweite 9.0 cm.
- a) Wo befindet sich das Bild?
- b) Wie gross ist das Bild?
- c) Ist das Bild reell oder virtuell?
- 8. Ein Mann (G = 1.8 m) steht 5.0 m vor der Sammellinse eines Fotoapparates (f = 10 cm).
- a) In welchem Abstand hinter der Linse muss sich der Film befinden?
- b) Welche Grösse hat dann das Bild?
- 9. Rosa (G = 1.50 m) steht vor der Sammellinse eines Fotoapparates (f = 48 mm). Das scharfe Bild befindet sich 5.0 cm hinter der Linse.
- a) In welchem Abstand vor der Linse befindet sich Rosa?
- b) Welche Grösse hat dann das Bild?
- 10. Du stehst im Abstand von 1.10 m vor einer Blume, die 5.2 cm hoch ist. Du fotografierst sie, so dass das scharfe Bild auf dem Photopapier 2.7 mm gross ist.
- a) Wie gross ist die Brennweite der Sammellinse des Photoapparates?
- b) Aus welcher Distanz müsstest du fotografieren (bei gleicher Brennweite wie in a), wenn das Bild 4.0 mm gross sein soll?

Lösungen:

$$3 \cdot r \quad 2 \cdot w \quad p \quad k$$

d)
$$\frac{m}{2.4}$$

f)
$$\frac{1}{5} = 0.2$$

1. a)
$$\frac{1}{x}$$
 b) z c) $\frac{q}{p}$ d) $\frac{m}{2.4}$ e) 4 f) $\frac{1}{5}$ = 0.2 g) 5
2. $\frac{3 \cdot r}{p} = \frac{2 \cdot w}{k} \Rightarrow \frac{p}{3 \cdot r} = \frac{k}{2 \cdot w}$ a) $p = \frac{3 \cdot r \cdot k}{2 \cdot w}$ b) $k = \frac{2 \cdot w \cdot p}{3 \cdot r}$

a)
$$p = \frac{3 \cdot r \cdot k}{2 \cdot w}$$

b)
$$k = \frac{2 \cdot w}{3 \cdot r}$$

- oben (der Winkel in Glas ist kleiner als der Winkel in Luft)
- a) Ja. Totalreflexion kann nur im optisch dichteren Stoff auftreten. Glas ist optisch dichter als
 - b) Wenn der Lichtstrahl flach genug auf die Grenzfläche trifft (unter einem Winkel, der grösser als der Grenzwinkel für Totalreflexion ist).

- a) 4.0 cm von der Linse entfernt auf der anderen Seite wie der Gegenstand
 - b) 1.0 cm
 - c) reell
 - (Abb. Massstab 1:2)

- b) 0.83 cm
- c) virtuell

(Abb. Massstab 1:2)

8. a) $\frac{1}{b} = \frac{1}{f} - \frac{1}{g} = \frac{1}{0.1 \text{ m}} - \frac{1}{5 \text{ m}} = \frac{50}{5 \text{ m}} - \frac{1}{5 \text{ m}} = \frac{49}{5 \text{ m}} \Rightarrow b = \frac{5 \text{ m}}{49} = 0.102 \text{ m} = \underline{10.2 \text{ cm}}$

b)
$$B = G \cdot \frac{b}{g} = 1.8 \text{ m} \cdot \frac{0.102 \text{ m}}{5 \text{ m}} = \underline{3.67 \text{ cm}}$$

- g 5 m 9. a) 1.20 m b) 6.25 cm (gleicher Lösungsweg wie in 9.)
- 10. a) $b = \frac{B \cdot g}{G} = \frac{0.27 \text{ cm} \cdot 110 \text{ cm}}{5.2 \text{ cm}} = 5.71 \text{ cm}$

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b} = \frac{1}{110 \text{ cm}} + \frac{1}{5.71 \text{ cm}} = 0.0091 \frac{1}{\text{cm}} + 0.1751 \frac{1}{\text{cm}} = 0.1842 \frac{1}{\text{cm}}$$

$$\Rightarrow f = -\frac{1}{0.1842} \text{ cm} = \underline{5.4 \text{ cm}}$$

b)
$$\frac{B}{G} = \frac{0.4 \text{ cm}}{5.2 \text{ cm}} = \frac{1}{13} = \frac{b}{g}$$
 $\Rightarrow g = 13 \cdot b$

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b} = \frac{1}{13b} + \frac{1}{b} = \frac{1}{13b} + \frac{13}{13b} = \frac{14}{13b} \Rightarrow f = \frac{13b}{14} \Rightarrow b = \frac{14f}{13} = \frac{14 \cdot 5.4 \text{ cm}}{13} = 5.85 \text{ cm}$$

$$\Rightarrow$$
 g = 13 · b = 13 · 5.85 cm = $\frac{76.0 \text{ cm}}{}$