(முழுப்பதிப்புரிமையுடையது / All Rights Reserved)

மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிரு elopmen இணைத்துப் பெல்கலைக்கழக ptmணவர் pigal மிழுந்தித் பசங்கம் உள்ளிய மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் நூத மானவர் அபிவருத்திச் சங்கம் வவுளியா மாவட்டம் அதைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அதைத்துப் பல்கலைக் கழக மானவர், properties and properties between the properties of the

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021 கார்த்திகை General Certificate of Education (Adv. Level) Examination, 2021 November

இணைந்த கணிதம் I Combined Mathematics I

10	Т	I

மூன்று மணித்தியாலயம் Three hours

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time – 10 minutes

சுட்டெண் :

அறிவுறுத்தல்கள் :-

- * இவ் வினாத்தாள் பகுதி A (வினாக்கள் 1-10), பகுதி B (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டுள்ளது.
- * பகுதி A
 எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.
- * பகுதி B ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B இற்கு மேலாக இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்து பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாள் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு
 அனுமதிக்கப்படும்.

பரீட்சகரின் உபயோகத்திற்கு மாத்திரம்

(10))ணைந்த கணிது	i d	
பகுதி	ഖിனா எண்	கிடைத்த	புள்ளிகள்
	1		
	2		
	3		
	4		
	5		
	6		
Α	7		
	8		
	9		
	10		
	மொத்தம்		
	11		
	12		
	13		
В	14		
_	15		
	16		
	17		
	மொத்தம்		
வினாத்தாள் II(இன் மொத்தம்		

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப் புள்ளிகள்	

பகுதி-**A**

$\sum_{r=1}^{n} 3r - 1 = \frac{3}{2}$	$\frac{n}{2}(3n+1)$	என நிறுவு	.						
	•••••	•••••••	••••••	••••••	••••••	•••••••		•••••••	•••••••
••••••			••••••	••••••					
••••••	•••••	••••••	••••••	••••••		••••••	•••••	••••••	
			•••••	••••••			•••••	•••••	
•••••	•••••	•••••••	••••••	•••••	•••••	•••••••	••••••	••••••	••••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••				••••••	
			••••••	•••••					
					ദ്വ്വിൽ ഖഞ	ரபுகளை	வரைக.	இதிலி(ருந்து
					ദ്വ്വിൽ ഖതി	ரபுகளை	வரைக.	இதிலி(ருந்து
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥതിலിയെച്ച	த் தீர்க்க.		ദ്വ്ദിன് ഖത്വ	ரபுகளை	வரைக.	இதிலி(நந்து
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥങ്ങിலിഞധദ്ദ	த் தீர்க்க.						
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥങ്ങിலിഞധദ്ദ	த் தீர்க்க.						
$ x-1 + x \ge 1$	1 எனும் ச	ഥതിலിയെഥ്	த் தீர்க்க. 						
$ x-1 + x \ge 1$	1 எனும் ச	ഥതിலിയെഥ്	த் தீர்க்க. 						
$ x-1 + x \ge 1$	1 எனும் ச	ഥതിலിയെഥ്	த் தீர்க்க. 						
x - 1 + x ≥	1 எனும் ச	ഥതിலിധൈ	த் தீர்க்க. 						
x - 1 + x ≥	1 எனும் ச	ഥതിலിധൈ	த் தீர்க்க. 						
$ x-1 + x \ge 1$	1 எனும் ச	ഥതിலിയെ	த் தீர்க்க. 						
$ x-1 + x \ge 1$	1 எனும் ச	ഥതിலിയെ	த் தீர்க்க. 						
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥതിலിയെഥ്	த் தீர்க்க. 						
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥതിலിയെ	த் தீர்க்க. 						
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥതിலിയെ	த் தீர்க்க. 						
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥതിலിയെ	த் தீர்க்க. 						
$ x-1 + x \ge 1$	1 எனும் ச	ഥതിலിയെ	த் தீர்க்க. 						
$ x-1 + x \ge 1$	1 எனும் ச	ഥതിலിയെ	த் தீர்க்க. 						
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥതിலിയെ	த் தீர்க்க.						
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥതിலിയെ							
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥതിலിയെ							
$ x-1 + x \ge \frac{1}{2}$	1 எனும் ச	ഥതിலിയെ							
ஒரே வரிப்படத்தி x − 1 + x ≥	1 எனும் ச	ഥതിலിയെ							

3.	ஓர் ஆகன் வரிப்படத்தில் $Arg(Z-3i+1)=rac{\pi}{6}$ இனைத் திருப்தியாக்கும் சிக்கலெண் Z இன் ஒழுக்கைப்
	பரும்படியாக வரைக. இதிலிருந்து $Arg(ar{Z}+3i+1)=rac{\pi}{6}$ ஆக இருக்கத்தக்கதாக $ Z-5i $ இன்
	இழிவுப் பெறுமானத்தைக் காண்க.
	இழுவுப் பெறுமானத்தை காணக்.
4.	ATTENTION என்ற சொல்லிலுள்ள எல்லா எழுத்துக்களையும் பயன்படுத்தி செய்யக்கூடிய வரிசை மாற்றங்களின் எண்ணிக்கை யாது? இவற்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும். II. N இல் தொடங்கி N இல் முடிவடையும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.
4.	மாந்றங்களின் எண்ணிக்கை யாது? இவந்றுள் எத்தனையில், I. உயிர் எழுத்துக்கள் ஒருமிக்க இருக்கும்.

_	$\lim_{x \to \infty} \tan(\pi(x-3)) = 2^{\pi} \operatorname{con}_{x} \operatorname{con}_{x}$
Э.	$\lim_{x o \frac{\pi}{3}} rac{ an(\pi(x-3))}{\sqrt{x^2-5}-2} = 2rac{\pi}{3}$ என நிறுவுக
_	வளையி $y=\sqrt{\frac{8x+1}{4x^2+9}}$, $y=0$, $x=0$, $x=1$ என்பவற்றால் உள்ளடக்கப்படும் பிரதேசத்தை x -அச்சுப்பற்றி
	$\sqrt{4\pi^{2}+9}$ 4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)$ +
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)$ +
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6} an^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6} an^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6} an^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}\left(\frac{2}{3}\right)\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}\left(\frac{2}{3}\right)\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}\left(\frac{2}{3}\right)\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}\left(\frac{2}{3}\right)\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.
	4 செங்கோணங்களினூடாக சுழற்றப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\pi\{\ln\left(\frac{13}{9}\right)+\frac{1}{6}\tan^{-1}(\frac{2}{3})\}$ கன அலகுகள் எனக்காட்டுக.

படித்திறன் √2	$\overline{2}$ எனின் $ heta$	$0 = \sin^{-1}$	$\left(\frac{5}{4\sqrt{5}}\right)$	எனக்காட்டி	9 இப்புள்ளி	ധിல் வரைய	பப்படும் ெ	தாடலியின்	
ு. சமன்பாட்டையு			•		,	•		•	
3 B 34.B = 347 E 34	12 3313	. 8.26	(0 10	2)					
•••••		•••••		••••••	•••••				
		•••••	••••••						• • • • • • • • • • • • • • • • • • • •
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••				• • • • • • • • • • • • • • • • • • • •
••••••	••••••		••••••	••••••	••••••				• • • • • • • • • • • • • • • • • • • •
நேர்கோடுகள்	$l_1 \equiv 2x +$	- y - 5 =	= 0 , l ₂ =	 ≡ 11 <i>x</i> − 2	2y + 3 = 0	 என்க. l ₂ =	= 0 இல்	 இருந்து 2√	
								இருந்து 2√	
								இருந்து 2√	
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் l_1 =	= 0 இன் 1	மீதுள்ள	இரண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க	ாண்க.		
தூரத்தில் <i>l</i> ₁ =	= 0 இன் 1	மீதுள்ள	劉 ፓண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க 	ாண்க.		
நேர்கோடுகள் தூரத்தில் $\it l_1$ =	= 0 இன் 1	மீதுள்ள	劉 ፓண்டு	புள்ளிகள	ின் ஆள்கூ	றுகளைக் க 	ாண்க.		

நேர்கோடு x $\sqrt{2}$ ஐ உடை						ப்பதும் ஒவ்ெ	வான்றும் ஆ
	•••••						•••••
•••••	••••••••••					•••••	•••••
$\alpha = \sqrt{2} \sin \alpha$	000 1 2	الله الله	oui. Oumun		പ്രധാനം	$\sqrt{3}\sin x$	$-\cos x + 4$
$y = \sqrt{3} \sin x$ உயர்வுப்பெறு	– cos <i>x</i> + 3 மானத்தைக்	இன் உயர் காண்க.	வுப் பெறுமா	னத்தைக் கா	ண்க. இதிலி	ருந்து $\frac{\sqrt{3}\sin x}{\cos x - \sqrt{3}}$	$\frac{-\cos x + 4}{3\sin x + 5}$ 26
$y = \sqrt{3} \sin x$ உயர்வுப்பெறு	— cos <i>x</i> + 3 மானத்தைக்	இன் உயர் காண்க.	வுப் பெறுமா	னத்தைக் கா	ாண்க. இதிலி	ருந்து $\frac{\sqrt{3}\sin x}{\cos x - \sqrt{2}}$	$\frac{-\cos x + 4}{3\sin x + 5}$ $\bigcirc 6$
$y = \sqrt{3} \sin x$ உயர்வுப்பெறு	மானத்தைக்	காண்க.					
உயர்வுப்பெறு 	மானத்தைக்	காண்க.					
$y = \sqrt{3} \sin x$ உயர்வுப்பெறு	மானத்தைக்	காண்க.					
உயர்வுப்பெறு	மானத்தைக்	காண்க.					
உயர்வுப்பெறு	மானத்தைக்	காண்க.					
உயர்வுப்பெறு	மானத்தைக்	காண்க.					
உயர்வுப்பெறு 	மானத்தைக்	காண்க.					
உயர்வுப்பெறு	மானத்தைக்	காண்க.					
உயர்வுப்பெறு 	மானத்தைக்	காண்க.					
உயர்வுப்பெறு	மானத்தைக்	காண்க.					
உயர்வுப்பெறு	மானத்தைக்	காண்க.					
உயர்வுப்பெறு 	மானத்தைக்	காண்க.					
உயர்வுப்பெறு 	மானத்தைக்	காண்க.					
உயர்வுப்பெறு 	மானத்தைக்	காண்க.					
உயர்வுப்பெறு 	மானத்தைக்	காண்க.					

(முழுப்பதிப்புரிமையுடையது / All Rights Reserved)

ம்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் பசங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் பசங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் பசங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவி

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021 கார்த்திகை General Certificate of Education (Adv. Level) Examination, 2021 November

இணைந்த கணிதம் I Combined Mathematics I 10 T I

பகுதி-B

🕨 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக

11.

- a) இருபடிச்சமன்பாடு $x^2 + ax + b = 0$ இன் மூலங்கள் α , β எனின் α^2 , β^2 ஐ மூலங்களாகக் கொண்ட இருபடிச்சமன்பாட்டை உய்த்தறிக.
- b) இருபடிச்சமன்பாடு $x^2+(4+k)x-(25+k)=0$ இன் மூலங்கள் α , $-\alpha^2$ ஆகும். இங்கு $k\in R$. α ஆனது $x^3-x^2+x-21=0$ இன் ஒரு மூலம் எனக்காட்டுக. மேலும் (x-3) ஆனது $x^3-x^2+x-21=0$ இன் ஒரு காரணி எனக்காட்டி $x^3-x^2+x-21=0$ என்பது ஒரு மெய் மூலத்தை மாத்திரம் கொண்டது எனக்காட்டி k இனைக் காண்க.
- c) $f(x) = ax^4 + bx^3 + cx^2 + x 10$ என்க. $a, b, c \in R$. (x 1), (x 2) என்பன f(x) இன் காரணிகளாகவும் (x + 1) ஆல் f(x) ஐ வகுக்க வரும் மீதி 48 ஆகவும் இருப்பின் a, b, c ஐக் காண்க. f(x) ஐ (2x + 1) ஆல் வகுக்க வரும் மீதியைக் கண்டு f(x) இனை ஏகபரிமாணக் காரணிகளின் பெருக்கமாகத் தருக.

12.

- a) $(a+b)^n$ இன் ஈருறுப்பு விரிவை எழுதுக. இங்கு $a,b\in R, n\in Z^+$. $(ax^2+\frac{1}{bx})^{11}$ இன் விரிவில் x^7 இன் குணகமும் $(ax-\frac{1}{bx^2})^{11}$ எனும் விரிவில் x^{-7} இன் குணகமும் சமன் எனின் ab=1 எனக் காட்டுக.
- b) தொடர் $\frac{1}{1+1^2+1^4}+\frac{2}{1+2^2+2^4}+\frac{3}{1+3^2+3^4}+\cdots$ இன் r ஆம் உறுப்பு U_r ஐ எழுதுக. $U_r=\frac{1}{2}\{f(r)-\frac{1}{1+r+r^2}\}$ எனக் காட்டுக. இங்கு f(r) ஆனது துணியப்படவேண்டிய r இல் ஒரு சார்பு ஆகும். f(r+1) ஐக் காண்க. $U_r=\frac{1}{2}\{f(r)-f(r+1)\}$ என நிறுவி $\sum_{r=1}^n U_r=\frac{n(n+1)}{2(1+n+n^2)}$ எனக்காட்டுக. இத்தொடர் ஒருங்குமெனக்காட்டி $\sum_{r=1}^\infty U_r$ ஐக் காண்க. இதிலிருந்து $\sum_{r=3}^\infty 2U_r$ இன் பெறுமானத்தைக் காண்க.

13.

- a) $A = \begin{pmatrix} a & 1 \\ -1 & b \end{pmatrix}$ இங்கு $a,b \in R$ என்க. $A^2 5A + 7I = 0$ ஆக இருக்கத்தக்கதாக a,b இன் பெறுமானங்களைக் காண்க. இதிலிருந்து A^{-1} ஐ உய்த்தறிக. மேலும் $A^3 = 18A 35I$ எனக்காட்டி $(18I A^2)^{-1} = \frac{1}{35}A$ என்பதை உய்த்தறிக. இங்கு I என்பது 2x2 இல் அமைந்த அலகுத்தாயம் ஆகும்
- b) ω என்பது ஒரு சிக்கலெண்ணாக இருக் $\omega = -2 + i \text{ or } \omega = 2 i$ எனின் $\omega^2 = 3 4i$ எனக்காட்டுக. இதிலிருந்து $(z+i)^2 = 3 4i$ இன் மூலங்கள் $\omega_{1,\omega_{2}}$ என்பவற்றைக் காண்க. $|\omega_{1} \omega_{2}| = 2\sqrt{5}$ எனக்காட்டி $Arg(\omega_{1} + \omega_{2})$ ஐக்காண்க.
- c) $Z=\sqrt{5}+2i$ என்பது ஒரு சிக்கலெண் என்க. $Z=r(\cos\theta+i\sin\theta)$ எனும் வடிவில் எழுதி r(r>0), $\tan\theta$ என்பவற்றைக் காண்க. $(0<\theta<\frac{\pi}{2})$. $Z^3+\bar{Z}^3=54\cos3\theta$ எனவும் $Z^3-\bar{Z}^3=54i\sin3\theta$ எனவும் காட்டி $Z^3+\bar{Z}^3=i(Z^3-\bar{Z}^3)$ எனின் $\tan3\theta=-\frac{22}{35\sqrt{5}}$ என உய்த்தறிக.

d)

14.

- a) $f(x) = \frac{x+2}{(x-1)^2}$ என்க. இங்கு $x \neq 1$. $f^1(x) = \frac{-(x+5)}{(x-1)^3}$ எனக் காட்டுக. திரும்பற்புள்ளிகள்,கிடை, நிலைக்குத்து அணுகுகோடுகள் என்பவற்றை தெளிவாகக்காட்டி y=f(x) இன் வரைபை வரைக. $f^{11}(x) = \frac{2(x+8)}{(x-1)^4}$ மேலும் எனின் ഖബെധിധിன് விபத்திப்புள்ளியின் **ஆ**ள்கூறுகளை எழுதி மேற்குழிவு,கீழ்க்குழிவு வீச்சுக்களையும் தருக.
- b) OXY தளத்தில் AB=k ஆகும். PQRS என்பது ஓர் சதுரமாகும். O $\hat{A}B= heta$ ஆகும். k மாநாமல் இருக்க hetaமாறுவதால் A,B என்பன முறையே Y,X அச்சுக்களில் அசைகின்றன. $y+y\cot\theta+y\tan\theta=k$ எனக்காட்டுக. மேலும் heta மாறும் போது y இன் உயர்வுப்பெறுமானத்தைக் காண்க.

15.

a) $\int \frac{1}{x^2-1} dx$ ஐக்காண்க. இதிலிருந்து $\int \frac{1}{x(x+2)} dx$ ஐ உய்த்தநிந்து எழுதுக. மேலும்

i.
$$\int \frac{2x^2 + 2x - 1}{x(x - 1)(x + 1)(x + 2)} dx$$

i. $\int \frac{2x^2+2x-1}{x(x-1)(x+1)(x+2)} dx$ ii. $\int \frac{2x+1}{x(x-1)(x+1)(x+2)} dx$ என்பவற்றை உய்த்தறிந்து எழுதுக.

b)

- தக்க பிரதியீட்டைப் பயன்படுத்தி $\int_0^1 e^{ an^{-1}x} \left(rac{1+x+x^2}{1+x^2}
 ight) dx$ இனைக் காண்க.
- $\int_{a}^{2a} f(x) dx = \frac{1}{2} \int_{a}^{2a} \{f(x) + f(3a x)\} dx$ ஐப்பயன்படுத்தி $\int_{\frac{\pi}{2}}^{\frac{n}{3}} \ln(\tan \theta) d\theta = 0$ எனக்காட்டி $\int_{\ln\left(\frac{1}{2}\right)}^{\ln\sqrt{3}} \left(\frac{ue^u}{1+e^{2u}}\right) du$ ஐ உய்த்தநிக.
- c) பகுதியாகத் தொகையிடலைப்பயன்படுத்தி $\int_0^1 x ln(1+x^2) dx$ ஐக் காண்க

16.

புள்ளிகள் P,Q என்பன நேர்கேடு x+y=0 இன் மீதுள்ள இரண்டு வட்டம் $s \equiv x^2 + y^2 - 2x + 4y + 1 = 0$ புள்ளிகளாகும். இந்கு P,Q என்பவற்றில் இருந்து வரைந்த ஒவ்வொரு தொடலியினதும் நீளம் 3 அலகுகளாயின் P,Q இன் ஆள்கூறுகளைக் காண்க.P,Q என்பலற்றினூடு செல்லும் எல்லா வட்டங்களின் பொதுச்சமன்பாடுகளைக் காண்க. P,Q இனூடாகச் சென்று s = 0இருசமகூறிடுவதுமான வட்டத்தின் சமன்பாடு $x^2 + y^2 + x + 7y - 8 = 0$ எனக்காட்டுக

17.

a) $\frac{\sin^{-3}x}{1+\cos x} + \frac{\cos^{3}x}{1-\sin x} = \sqrt{2}\cos(\frac{\pi}{4}-x)$ என நிறுவுக.

- c) தீர்க்க $\tan^{-1}\left(\frac{1}{4}\right) \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}x$
- d) ABC ஒரு முக்கோணி. a>b ஆகும். AB இல் D,E எனும் புள்ளிகள் CD ஆனது C இனூடான இடையம் C ஐ முக்கூறிடுவதுமாகவும் என்பன கோணம் உள்ளன. பொருத்தமான இருமுக்கோணிகளுக்கு sinநெறியை பிரயோகிப்பதன் மூலம் $cos rac{c}{3} = rac{a}{2b}$ என நிறுவுக. DE:EA=1: λ எனின் $\cos\frac{c}{3}=\frac{(2+\lambda)b}{2\lambda a}$ எனவும் காட்டுக. $\lambda=1$ எனின் $C=\frac{\pi}{2}$ எனவும், $\lambda=2$ எனின் $C=3\frac{\pi}{4}$ எனவும் உய்த்தநிக. மேலும் $\lambda=1$ எனின் $a=\sqrt{3}b$ எனவும் காட்டுக.

(முழுப்பதிப்புரிமையுடையது / All Rights Reserved)

க்கழக மானவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிரு velopmer**அனைத்துப்**சு **பல்கலைக்கழக**் **பமாணவர்**பட்**அயிவிருத்திச்** ப**சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் நடிக மானவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் Development Alki University of Students of Development Association Vavuniya Poist rich**ssociation Vavuniya Districts வூறியிருந்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் அபிவிருத்திச் சங்கம் வவுனியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் அபிவி

> கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 வைகாசி General Certificate of Education (Adv. Level) Examination, May 2019

இணைந்த கணிதம் II Combined Mathematics II

10	Т	II
10	l •	

மூன்று மணித்தியாலயம் Three hours

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time – 10 minutes

சுட்டெண் :	
------------	--

அறிவுறுத்தல்கள் :-

- * இவ் வினாத்தாள் பகுதி A (வினாக்கள் 1-10), பகுதி B (வினாக்கள் 11-17) என்னும் இரு பகுதிகளைக் கொண்டுள்ளது.
- பகுதி A
 எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிக தாள்களைப் பயன்படுத்தலாம்.
- * பகுதி B ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- * ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B இற்கு மேலாக இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்து பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாள் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு
 அனுமதிக்கப்படும்.

பரீட்சகரின் உபயோகத்திற்கு மாத்திரம்

(10)	b II	
பகுதி	ഖിனா எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	
	4	
	5	
	6	
Α	7	
	8	
	9	
	10	
	மொத்தம்	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
வினாத்தாள் II	இன் மொத்தம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப் புள்ளிகள்	

பகுதி- A

(திணிவுகள் $m, \lambda m$ கொண்ட A,B ஆகிய இரு சர்வசமமான துணிக்கைகள் ஒப்பமான கிடைமேசை மீதுவைக்கப்பட்டு A இற்கு B ஐ நோக்கி u வேகம் கொடுக்கப்படுகிறது. மோதுகைக்கு சற்றுப்பின்னர் A இன் திசை புறமாற்றப்படும் எனின் $\lambda > 2$ எனக்காட்டுக.
•	இங்கு A,B இந்கு இடையிலுள்ள மீளமைவுக்குணகம் $\frac{1}{2}$ ஆகும்.
•	
•	
•	
•	
•	
	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாநிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க.
	கதி $36 \mathrm{Kmh^{-1}}$ எனின் K ஐக் காண்க.
	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
!	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
!	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
!	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
!	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
!	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
!	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
!	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
!	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
!	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 \mathrm{KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 \mathrm{Kmh^{-1}}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 { m KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 { m Kmh}^{-1}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி
	இங்கு V ms^{-1} எஞ்சினின் கதி K-மாறிலி. எஞ்சின $15 \mathrm{KW}$ வலுவில் வேலை செய்யும் போது அதன் உயர் கதி $36 \mathrm{Kmh^{-1}}$ எனின் K ஐக் காண்க. இதே வலுவுடன் கிடையுடன் $lpha$ சாய்வுடைய சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது உயர்கதி

3.	V வேகத்துடன் $ heta$ ஏற்றக்கோணத்தில் எறியப்பட்ட துணிக்கையின் இயக்கத்திசை $ au$ கோணத்தினூடாகத்திரும்பும் போது வேகம் V_1 எனின் அப்புள்ளியை அடைய எடுக்கும் நேரம் $\dfrac{VV_1\sin\alpha}{gu}$ எனக்காட்டுக. இங்கு u அதியுயர் புள்ளியில் துணிக்கையின் வேகம் ஆகும்.
4.	ஒப்பமான கிடைநிலத்திற்கு l உயரத்திலும் கூடிய உயரத்தில் நிலைக்குத்தாக $\frac{2444441}{4}$ 0 மேலே உள்ள ஒப்பமான நிலையான கம்பி ஒன்றின் மீது செல்லும் இலேசான 2 l
	நீளமுடைய நீளா இழையொன்றின் நுனிகளில் $m,3m$ திணிவுடைய துணிக்கை முறையே P,Q என்பன இணைக்கப்பட்டு இரு துணிக்கைகளும் கப்பியின் இரு பக்கமும் பிடித்து வைக்கப்பட்டு ஓய்வில் இருந்து விடப்படுமாயின் இழை இறுகியதும் துணிக்கைகளின் கதி $\sqrt{\frac{gl}{3}}$ எனக்காட்டுக.

5.	m திணிவுடைய மணி ஒன்று வட்டவடிவில் வளைக்கப்பட்ட ஒப்பமான a ஆரையுடைய நிலைக்குத்து தளத்திலுள்ள வட்டக்கம்பியில் வழுக்கிச்செல்லக்கூடியதாக உள்ளது. இயற்கை நீளம் a ஐயும் மீள்தன்மை மட்டு $3mg$ யும் உடைய இழையில் மணி இணைக்கப்பட்டும் மறு நுனியானது கம்பியின் அதியுயர் புள்ளியில் இணைக்கப்பட்டும் உள்ளது. தொடக்கத்தில் அதிதாழ் புள்ளியில் இருந்து மணி u எனும் கிடை வேகத்துடன் எறியப்படுகிறது எனின் இழை முதலில் தொய்யும் போது வேகம் u எனக்காட்டுக.
6.	$\underline{a}=2\underline{i}+k\underline{j}$, $\underline{b}=3\underline{i}-\underline{j}$ எனும் காவிகளுக்கு இடைப்பட்ட கோணம் $\cos^{-1}(\frac{3}{\sqrt{10}})$ எனத்தரப்படின் k ஐக் காண்க.

7.	w நிறையுடைய AB எனும் கோலானது அதன் முனைகள் A,B என்பன முறையே சம கரடான நிலம், சுவரைத்தொட்டுக்கொண்டு எல்லைச் சமனிலையிலுள்ளது. அதன் புவியீர்ப்பு மையம் G ஆனது AG:GB=2:1 ஆகுமாறு அமைந்திருப்பின் கோல் கீழ்முகச்சுவருடன் ஆக்கும் கோணம் $\tan^{-1}(\frac{3\mu}{2-\mu^2})$ எனக்காட்டுக. (இங்கு μ -தொடுகைக்கான	
	உராய்வுக்கோணம்)	
	A	
8.	ஓவ்வொன்றும் a ஆரையும் w நிறையும் உள்ள இரு ஒப்பமான கோளங்கள் $3a$ ஆரையுள்ள ஒப்பமான நிலையான அரைக்கோள கிண்ணத்தில் ஒன்றை ஒன்று தொட்டுக்கொண்டு சமநிலையிலுள்ளன. ஏற்ற விசை முக்கோணியை தெரிவு செய்து	1
	அக்கோளங்களுக்கிடையிலான மறுதாக்கம் $\dfrac{w\sqrt{3}}{3}$ எனக்காட்டுக.	

9.	மாதிரிவெளி S இல் A,B என்பன இரு நிகழ்ச்சிகள். $P(A)=0.2+x$, $P(B)=0.1+x$, $P(\frac{A}{B})=0.5$, $P(A\cup B)=0.1$, எனின் x இன் பெறுமதியையும் $P(A\cap B)$ உம் காண்க.
10.	2,3,5,3,4,6,6,7,x,y எனும் பரம்பலின் ஆகாரம்= 3 , இடை= 4 உம் எனின் x,y ஐக் கண்டு பரம்பலின் இடையத்தையும் காண்க.
10.	
10.	இடையத்தையும் காண்க.
10.	இстив в тем в те
10.	இстив в тем в те
10.	இстив в тем в те
10.	இстивности в помото в пом
10.	Эмет шформу в том в то
10.	இсти в том
10.	இடையத்தையும் காண்க.
10.	இடையத்தையும் காண்க.
10.	இடையத்தையும் காண்க.

(முழுப்பதிப்புரிமையுடையது / All Rights Reserved)

துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் பசுங்கும் மானவர் அடிவிருக்கும் மானவர் அபிவிருத்திச் பசுங்கும் மானவர் அபிவிருக்கும் மானவர் அபிவிருக்கும் சங்கம் வவுளியா மாவட்டம் அதைத்துப் பல்கலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அதைத்துப் பல்கலைக் கழக மானவர் pullangage மானவர் அபிவிருக்கும் மானவர் அபிவிருக்கும் மக்கலக்கழக மானவர் அபிவிருக்குச் சங்கம் வவுளியா மாவட்டம் அதைத்துப் பல்கலைக் கழக மானவர் அபிவிருக்குச் சங்கம் வவுளியா மாவட்டம் அதைத்துப் பல்கலைக் கழக மானவர் அபிவிருக்குச் சங்கம் வவுளியா மாவட்டம் அதைத்துப் பல்கலைக் கழக மானவர் அபிவிருக்குச் சங்கம் வவுளியா மாவட்டம் அதைக்கும் மல்கலைக் கழக மானவர் அபிவிருக்குச் சங்கம் வவுளியா மாவட்டம் அனைக்கும் பல்கலைக் கழக மானவர் அபிவிருக்குச் சங்கம் வவுளியா மாவட்டம் அனைக்கும் மல்கலைக்கும் மானவர் அபிவிருக்குச் சங்கம் வவுளியா மாவட்டம் அனைக்கும் மல்கலைக்கும் மல்கலைக்கும்

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021 மார்கழி General Certificate of Education (Adv. Level) Examination, 2021 December

இணைந்த கணிதம் II Combined Mathematics II

~		·
10	т	II

பகுதி-B

- 🕨 ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக
- 11. (a) A,B ஆகியன இரு கார்கள் ஒடுங்கிய பாதை ஒன்றின் வழியே முறையே 12ms⁻¹ ,10ms⁻¹ கதிகளுடன் ஒன்றையொன்று நோக்கிய திசைகளில் செலுத்தப்படுகின்றன. A இன் சாரதி மோதுகை ஏற்ாடலாம் என உணர்ந்து உடன் தடுப்புகளை பிரயோகித்து சீரான அமர்முடுகலுடன் இயங்குகிறது. இன்னோர் 2t செக்கன்களின் பின் மட்டுமட்டாக மோதுகை தடுக்கப்படுகிறது.
 - (i) A,B இன் இயக்கங்களுக்கான வேக-நேர வரைபை வரைக.
 - (ii) ஒடுங்கிய பாதையின் நீளம் 700m எனின் t இன் பெறுமானத்தை காண்க.
 - (iii) இரு கார்களினதும் அமர்முடுகலின் பெறுமதியையும் காண்க.

12 m/s 10 m/s ← B

- (b) கிழக்கற்கு lpha கோணம் தெற்கு என்ற திசையிலிருந்து V என்ற வேகத்துடன் காற்று வீசும் போது விமானம் ஒன்று கிழக்கே d தூரம் செல்வதற்கு T_1 என்ற நேரமும் மீண்டும் திரும்புவதற்கு T_2 என்ற நேரமும் எடுக்கறது. இரு பயணங்களுக்குமான வேக-முக்கோணிகளை ஒன்றாக வரைந்து அதிலிருந்து $(T_1 > T_2)$ காற்று தொடர்பான விமானத்தின் வேகம் $u = \left(V^2 + \frac{2dv\cos\alpha}{T_1 T_2}\right)^{\frac{1}{2}}$ எனக்காட்டுக.
- 12. (a) ஓர் கிடைத்தளத்தின் ஒப்பபான மேல் வைக்கப்பட்டுள்ள 30° கோணமுடைய ஒப்பமான m திணிவுடைய ஆப்பின் மேல் அதே கோணமுடைய திணிவுள்ள mஇரண்டாவது ஆப்பானது ஒப்பமான வைக்கப்பட்டுள்ளது இரண்டாவது ஆப்பின் மேல்முகம் கிடையுடன் 60° கோணம் ஆக்கும் வண்ணம் உள்ளது இதன் மேல் முகத்தில் mதினவுடைய துணிக்கை <u> ചെ</u>க்கப்பட்டு தொகுதி ஒய்விலிருந்து விடுவிக்கப்படுகிறது

நடைபெறும் இயக்கத்தில் கிடைத்தளத்துடன் தொடுகையிலுள்ள ஆப்பின் ஆர்முடுகலைப் பெறுவதற்கான சமன்பாடுகளை காண்க

(b) படத்தில் காட்டப்பட்டவாறு கிடைத்தரையில் உள்ள புள்ளி C இலிருந்து 6a உயரத்தில். A இல் நிலைப்படுத்தப்பட்ட மையம் O இல் $\frac{2\pi}{3}$ கோணத்தை அமைக்கும் a ஆரையுடைய வட்டவடிவ ஒப்பமான குழாய் ஒன்றினுள் A இல் உள்ள தொடலி கிடையாக உள்ளவாறு நுனி A இல் ஒப்பமான துணிக்கை P வைக்கப்பட்டு படத்தில் காட்டியவாறு கிடைத்தரையில் உள்ள புள்ளி D இலிருந்து கிடையுடன். 60° இல் $4\sqrt{ga}$ வேகத்துடன் ABC ஐக் கொண்ட நிலைக்குத்துத்தளத்தில் m திணிவுள்ள துணிக்கை Q ஐ எறியப்படுகின்றது .

- (i) துணிக்கை Q ஆனது P ஐ கிடையாக மோதுகின்றது எனக்காட்டுக
- (ii) இரு துணிக்கைகளும் பூரண மீள்தான்மை உடையவை எனில் P இயங்கத்தொடங்கும் வேகத்தை கண்க
- (iii) துணிக்கை P ஆனது B இல் வெளியேறும் வேகத்தை காண்க
- (iv) துணிக்கை P ஆனது C இற்கு மேலே செல்லும் அதி உயர் உயரத்தை காண்க
- 13. இயற்கை நீளம் l ஐயும் மீள்தன்மை மட்டு 3mg உம் கொண்ட இலேசான மீள்தன்மை இழையொன்றின் ஒரு முனை சீலிங்கிலுள்ள நிலைத்த புள்ளி O உடனும் மற்றய முனையில் m திணிவுடைய துணிக்கை ஒன்று கட்டப்பட்டு சமநிலையிலுள்ளது. துணிக்கையானது O இற்கு கீழே $\frac{4l}{3}$ தூரத்தில் சமநிலை அடையும் எனக்காட்டுக. இப்போது துணிக்கைக்கு கீழ் நோக்கி $\sqrt{5gl}$ வேகம் கொடுக்கப்படுகிறது. இழையின் நீட்சி x ஆக இருக்கும் போது இயக்கச்சமன்பாடு $\ddot{x} = -\frac{3g}{l}(x-\frac{l}{3})$ எனக்காட்டுக. இயக்கமையம் , வீச்சம் என்பவற்றை காண்க. மேலும் இழையானது தளரும் வரைக்கும் இயங்கிய நேரம் $\sqrt{\frac{l}{3g}}\left\{\frac{3x}{2}-\cos^{-1}\left(\frac{1}{\sqrt{15}}\right)\right\}$ எனக்காட்டுக. இழையானது தளரும் கணத்தில் துணிக்கையின் வேகத்தை கண்டு துணிக்கை புவியீரப்பின் கீழ் இயங்கிய தூரத்தை காண்க.
- 14. (a) இணைகரம் OACB இல் AC,CB இன் நடுப்புள்ளிகள் முறையே L,M ஆகும். OL,AM என்பன X இல் இடைவெட்டுகின்றன. $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = \boldsymbol{b}$ எனத்தரப்படும் போது
 - (i) \overrightarrow{OL} , \overrightarrow{AM} என்பவற்றை காண்க.
 - (ii) $OX = \lambda OL$, $AX = \mu AM$ எனக்கொண்டு λ , μ ஐக்கண்டு OX: OL , , AX: AM என்பவற்றை கணிக்க.
 - (iii) OL \perp AM எனின் $\widehat{AOB} = \cos^{-1}\left(\frac{2|a|^2 2|b|^2}{3|a||b|}\right)$ என உய்த்தறிக.
 - (b) ABCD என்பது $AB=BD=\frac{l}{\sqrt{2}}$ ஆகவும் AD=l ஆகவும் AB கிடையாகவும் மாறும் இடஞ்சுழியாக கருதப்படும் இணைகரமாகும். புள்ளி C இல் இருந்து BD இற்கு சமாந்தரமாக வரையப்பட்ட கோடு நீட்டப்பட்ட AD இனை புள்ளி E இல் சந்திக்கிறது. AB,AD,BD,CB,CD,DE,EC வழியே எழுத்துக்கள் குறிக்கும் ஒழுங்குகளில் முறையே $2N,6\sqrt{2}N,2N,PN,QN,4\sqrt{2}N,1N$ விசைகள் செயற்படுகின்றது.
 - (i) தொகுதியானது BD வழியே தனி விசையாக ஒடுங்குமாயின் $P=\sqrt{2}$,Q=11 எனவும் காட்டுக.
 - (ii) தொகுதியானது சமநிலையில் இருக்குமாறு B இல் பிரயோகிக்கப்பட வேண்டிய விசையின் பருமனையும் திசையையும் காண்க.
 - (iii) P,Q இன் பருமனை மாற்றாமல் திசையை மட்டும் மாற்றுவதனால் உருவாகும் தொகுதியின் விளையுளின் பருமன், திசை, அதன் தாக்ககோட்டின் நிலை என்பவற்றை காண்க.
- 15. (a) அலகு நீளத்தின் நிறை w ஆகவுள்ள சீரான ஐந்து கோல்கள் A,B,C,D,E இல் ஒப்பமாக மூட்டப்பட்டு ABCDE எனும் ஐங்கோணி ஆக்கப்பட்டுள்ளது. ஆதில் $\mathsf{ED} ext{-}\mathsf{DC} ext{-}a$ உம் $\mathsf{AE} ext{-}\mathsf{BC} ext{-}b$ உம் ஆகும். AB ஆனது ஒப்பமான கிடை மேசை ஒன்றின் மீது $E\hat{A}B = A\hat{B}C = 120^{\circ}$ <u> ചെ</u>க்கப்பட்டு ஆகவும் $A\hat{E}D = B\hat{C}D = 90^{\circ}$ ஆகவும் இருக்குமாறு AE,BC என்ற கோல்களின் நடுப்புள்ளிகளுடன் இணைக்கப்பட்ட இலேசான நீளா இழையொன்றின் மூலம் தொகுதியானது நிலைக்குத்து தளத்தில் சமநிலையில் பேணப்படுகிறது. மூட்டுக்கள் இலுள்ள மறுதாக்க கூறுகளை கண்டு இழையிலுள்ள இழுவை எனவும் காட்டுக.

(b) உருவில் காட்டப்பட்டிருப்பது முனைகளுடன் ஒப்பமாக முட்டப்பட்டுள்ள AB,BC,CD,DA,BD எனும் மெல்லிய ஐந்து கோல்களிலாலான AB,BD,BC,,CD சட்டப்படலாகும். என்பன சமநீளமுடையன. சட்டப்படலானது A இல் ஒப்பமாக பிணைக்கப்பட்டு C,D மூட்டுக்களில் முறையே P எனும் கிடை விசையும் 2w நிறையும் ஏற்றப்பட்டு நிலைக்குத்து தளத்தில் சமநிலையில் உள்ளது.P இன் பெறுமானத்தைக் கண்டு போவின் குறியீட்டுக்கமைய தகைப்பு வரிப்படம் வரைவதன் மூலம் கோல்களிலுள்ள இழுவை , உதைப்பை வேறாக்கி பெறுமதி காண்க.

16. ஆரை r உம் மையம் 0 உம் மேற்பரப்படர்த்தி ho ஆகவும் உள்ள சீரான பொற்கோளத்திலிருந்து உருவில் காட்டப்பட்டுள்ளவாறு 0 இல் இருந்து $r\cos lpha$ தூரத்திலுள்ள கோளத்தின் அச்சுக்கு செங்குத்தான தளத்திலிருந்து ஓடொன்று வெட்டி அகற்றப்படுகிறது.

- (a) (i) எஞ்சிய துண்டின் திணிவு $2\pi r^2
 ho (1+\coslpha)$ எனவும்
 - (ii) அதன் திணிவு மையம் OB இன் மீது O இலிருந்து $\frac{r}{2}(1-\cos\alpha)$ எனவும் காட்டுக.
- (b) அதே பரப்படர்த்தியும் ஆரை $r \sin \alpha$, உயரம் h ஆகவும் உள்ள சீரான பொள் உருளை ஒன்று அதன் வட்ட விளிம்பும் கோளத்தின் தள விளிம்பும் பொருந்துமாறு இணைத்து ஓர் பொருள் உருவாக்கப்பட்டுள்ளது. $\alpha = \cos^{-1}\left(\frac{15}{17}\right)$ இணைந்த பொருளின் திணிவு மையம் OA கோட்டின் மீது O இலிருந்து $\frac{17h^2 + 30rh 8r^2}{34(4r+h)}$ தூரத்திலுள்ளது என காட்டுக.
- (c) இப் பொருளின் கோள மேற்பரப்பானது ஒப்பமான கிடைத்தளத்தின் மீது உருளையின் அச்சானது நிலைக்குத்தாக இருக்குமாறு உறுதியான சமநிலையில் இருப்பதற்கு 17h < 4r ஆக இருக்க வேண்டும் எனவும் காட்டுக.
- 17. (a) கலை விழா ஒன்றிற்கு செல்லும் பிரதம விருந்தினர் தனது சொந்தப்பாவனையையில் உள்ள கார் அல்லது வான் அல்லது முச்சக்கரவண்டி என்பவற்றில் ஏதாவது ஒன்றில் செல்வார். இவர் இவ்வாறு செல்வதற்கான நிகழ்தகவுகள் முறையே 0.7, 0.2, 0.1 ஆகும். இவர் வேறு ஏதிலும் செல்லமாட்டார். இவர் காரில் செல்லலும் போது நிகழ்ச்சி ஆரம்பமாகும். நேரத்திற்கு முன் செல்வதற்கான நிகழ்தகவு 0.4 ஆகவும் ஐந்து நிமிட தாமதத்திற்குள் வருவதற்கான நிகழ்தகவு 0.3 ஆகவும் உள்ளது. இவர் வான், முச்சக்கரவண்டியில் சென்றால் தாமதித்தே செல்வார். இவர் இவ்வாறு செல்கையில் ஐந்து நிமிட தாமதிற்குள் வருவதற்கான நிகழ்தகவுகள் முறையே 0.5, 0.7 ஆகவும் உள்ளன. இவர் எவ்வாறாயினும் கலைவிழாவிற்கு செல்வார். இவர் செல்லும் கலைவிழா ஏற்பாட்டாளர்கள் பிரதம விருந்தினரின் ஐந்து நிமிட தாமதத்திற்கே காத்திருப்பார்கள். அதன் பின்னர் காத்திருக்காமல் நிகழ்ச்சியை ஆரம்பித்து விடுவார்கள். பிரதம விருந்தினர்கள் தாமதித்தே வருகிறார் ஆயின்,
 - (i) நிகழ்ச்சி ஆரம்பமாவதற்கு முன் வருவதற்கான நிகழ்தகவு யாது?
 - (ii) நிகழ்ச்சி ஆரம்பித்த பின் வருவதற்கான நிகழ்தகவு யாது?
 - (b) கீழே தரப்பட்டுள்ள பரம்பலிற்கான இடையையும் நியம விலகலையும் காண்க.

புள்ளிகளின்	10-20	20-30	30-40	40-50	50-60	60-70	70-80
ഖகுப்பாயிடை							
மீடிறன்	1	2	4	5	4	3	1

ஆரம்பப்புள்ளிகள் 40,25 இற்கு நேரொத்த புதிய புள்ளிகள் 44, 32 ஆகுமாறு ஏகபரிமாண அளவுத்திட்டத்தினைக் கண்டு புதிய பரம்பலின் இடையையும் நியம விலகலையும் உய்த்தறிக.