主管 领导 审核 签字

# 哈尔滨工业大学 2023 学年春季学期 《数据库系统》试题

| 题号  | 1 | 11 | Ш | 四 | 五 | 六 | 七 | 八 | 九 | + | 总分 |
|-----|---|----|---|---|---|---|---|---|---|---|----|
| 得分  |   |    |   |   |   |   |   |   |   |   |    |
| 阅卷人 |   |    |   |   |   |   |   |   |   |   |    |

# 片纸鉴心 诚信不败

| :      |             |                     |                  |              |                    |                |  |  |
|--------|-------------|---------------------|------------------|--------------|--------------------|----------------|--|--|
|        | <b>–</b> ,  | 单选题 (5分             | ,每题1分)           |              |                    |                |  |  |
| :      | 1.          | 若事务 T 对对            | 象 A 己加 X 锁,则     | 其他事务对A(      | )                  |                |  |  |
|        | A.          | 可以加 S 锁,            | 但不能加 X 锁         | B. 不能加 S     | 锁,但可以加 X 锁         |                |  |  |
| i      | C.          | 可以加 S 锁,            | 也可以加 X 锁         | D. 不能加 S     | 锁,也不能加 X 锁         |                |  |  |
| :      | 2.          | 下列聚集函数              | 正确的是()。          |              |                    |                |  |  |
| 密      | A.          | SUM (*)             | B. COUNT (*)     | C. MAX       | (*) D. AVO         | G (*)          |  |  |
|        | 3.          | 设有部门和员              | 工两个实体,每个员        | 工只能属于一个      | 部门,一个部门可以          | 以有多名员工,则部      |  |  |
| :      | ]]-         | 与员工实体之              | 间的联系类型是(         | )。           |                    |                |  |  |
| i      | <b>A.</b> : | m:n                 | B. 1:m           | C. 1:1       | D. m:1             |                |  |  |
|        | 4.          | 下列关于关系              | 模式的叙述中,错误        | 段的是 ( )。     |                    |                |  |  |
| į      | A.          | . 关系中的一个属性可以对应于多个值域 |                  |              |                    |                |  |  |
| 封      | B.          | 任何属性不可              | <b>「再分</b>       |              |                    |                |  |  |
|        | C.          | 主键可以由多              | 个属性组成            |              |                    |                |  |  |
|        | D.          | 关系中的属性              | 5具有顺序无关性         |              |                    |                |  |  |
| i      | 5.          | 下面不属于事              | 务的特性的是()         | 0            |                    |                |  |  |
|        | A.          | 一致性                 | B. 隔离性           | C. 完整        | 性 D. 持久            | 久性             |  |  |
|        | 二,          | 填空题(8分              | , 每空 1 分)        |              |                    |                |  |  |
| ·<br>线 | 1.          | 关系模型的               | 三要素为、            | 属性和域。        |                    |                |  |  |
| **     | 2.          | 关系代数六和              | 中基本操作包括          | ,投影,并,       | ,笛卡/               | 尔积,重命名。        |  |  |
| i      | 3.          | ER 图中三种             | 主要元素为实体,属        | <b>ā性,</b> _ | 0                  |                |  |  |
|        | 4.          | 2NF 是在 1N           | F 的基础上消除了非       | 键属性对键属性      | 的函数依疑              | 颇,3NF 是在 2NF 的 |  |  |
| i      |             | 基础上消除了              | 了非键属性对键属性        | 的函数依赖        | į,                 |                |  |  |
| :      | 5.          |                     | B,C,D)和关系 S(C,D, | E),则自然连接 $R$ | <b>⋈ S</b> 用等价的关系付 | 代数基本运算可以表      |  |  |
|        |             | 示为 <u></u>          |                  | 化粉其末异管司      | 11 丰 二             | ,              |  |  |
| :      |             | 石外廷按 K              | <b>△- 3</b> 用寺別  | 八剱莝平炟异門      | 从 <b>公</b> 小 /     |                |  |  |

照 然

#### 三、查询题(20分)

已知一个关系数据库的模式如下:

- EMPLOYEE(E#, ENAME, SALARY, SUPER#, D#)记录员工数据,其中 E#是员工工号 (字符串型), ENAME 是员工姓名 (字符串型), SALARY 是员工薪资 (浮点型), SUPER#是员工直接领导的工号 (字符串型), D#是员工所属部门号 (字符串型);
- DEPARTMENT(D#, DNAME, MGR#)记录部门数据, 其中 D#是部门编号(字符串型), DNAME 是部门名称(字符串型), MGR#是部门领导的工号(字符串型);
- PROJECT(P#, PNAME, D#)记录项目数据,其中 P#是项目编号(字符串型), PNAME 是项目名称(字符串型) D#是项目主管部门编号;
- WORKS\_ON(E#, P#, HOURS)记录员工在项目工作的数据, E#是员工工号(字符串型), P#是项目编号(字符串型), HOURS 是一个员工在一个项目中的工作小时数(整型)。

#### 注意:

(1)下划线标注的是对应关系模式的主码;(2)数据库中所有记录非空且不重复;(3)员工可以参与非本部门主管的项目中;(4)员工的工作小时数大于0;(5)部门的员工平均工资=该部门总工资/该部门员工总数;(6)员工的小时平均工资=该员工工资/该员工工作总时长

#### 请写出以下查询

1. (4分) 使用关系代数表达式查询"在 Research 部门工作且工资高于 8000 的员工姓名"。

2. (4分)使用关系代数表达式查询"至少参与了项目编号为 P1 和 P2 的项目的员工工号"。

3. (4 分) 使用 SQL 查询"每个部门的部门名称和员工平均工资"。

4. (4分)使用 SQL 查询"没有参加项目编号为 P1 的员工姓名"。

5. (4分) 使用 SQL 查询"所有干过非自己部门主管任务的员工工号和员工姓名"。

………………對………



设有关系模式  $R{A,B,C,D,E}$ , 其上有函数依赖集:  $F={AB\rightarrow CD,A\rightarrow DE,BD\rightarrow E,BE\rightarrow C,D\rightarrow A}$  回答以下问题:

1. (5分) 求 BD 关于 F 的属性闭包。

2. (5分) 求所有候选键。

3. (5分) 求 F 的最小覆盖。

4. (5分) 把 R 分解为一组 3NF 关系模式,使得该分解既是无损连接分解,又保持函数依赖。

# 五、设计题(15分,从题目 A 和题目 B 中任选一道作答)

**题目 A:** 任选一个你熟悉的系统,正确分析该系统的需求,绘制相应的 ER 图。要求: (1) 简要叙述系统的需求。(2)系统中的实体数量不得少于 10 个。(3)必须包含一对一联系、一对多联系和多对多联系以及描述性属性。(4)将此 ER 图转换为关系模式。

**题目 B:** 任选一个你熟悉的系统,正确分析该系统的需求,绘制出相应的 IDEF1X 图。要求: (1) 简要叙述系统的需求--注意 IDEF1X 图的完备性正确性评价以此需求为基本判断依据; (2) 实体数目不得少于 10 个; (3) 不得出现分类联系与分类实体; (4) 将此 IDEF1X 图转换为对应的关系模式。

# 六、算法题(6分)

1. (3分)已知如下图所示的 B+树, 绘制出该 B+树中删除索引项 23 后得到的 B+树。



2. (3 分)利用线性 hash 方法对以下记录进行 hash 存储:

设 hash 函数  $h(x)=x \mod 16$ ,请画出添加以上所有元素后,最终的索引结构以及关键步骤(进行桶的线性增长时)的索引结构。

ightharpoonup 注:线性 hash 表中最多容纳 $n \times b \times \theta$ 个记录, $\theta = 0.8$ ; n 为桶的数量,每个桶最多可容纳 b 个 hash 记录。

# 七、分析题(6分)

假设有两个关系表 Class(Class\_ID, College, Teacher) 和 Student(Student\_ID, Name, Class\_ID), 其中 Class 有 10000 个元组,每块可以容纳 100 个 Class 元组; Student 有 5000 个元组,每块可以容纳 20 个 Student 元组。使用基于块的嵌套循环连接算法,将 Class 和 Student 连接起来,缓存区可用的内存页数 M=11,并分析以下问题:

1. (2分) 内外关系分别是哪个表?

2. (2分) 该连接算法的 I/O 代价是多少?

3. (2分)是否可以使用排序归并连接算法连接 Class 和 Student,并说明理由?

封

#### 八、分析题(8分)

设员工项目管理数据库有如下三个关系模式:

- EMPLOYEE(E#, ENAME, SALARY)记录员工数据,其中 E#是员工工号,ENAME 是员工 姓名,SALARY 是员工薪资;
- PROJECT(P#, PNAME)记录项目数据,其中 P#是项目编号,PNAME 是项目名称;
- WORKS\_ON(E#, P#, HOURS)记录员工在项目工作的数据, E#是员工工号, P#是项目编号, HOURS 是一个员工在一个项目中的工作小时数。

其中,E#、P#分别是 EMPLOYEE、PROJECT 表的主码,(E#, P#)是 WORKS\_ON 表的主码,也分别是参照 EMPLOYEE、PROJECT 表的外码用户有一查询语句:

Select ENAME

From EMPLOYEE, PROJECT, WORKS ON

密 Where WORKS\_ON.E#=EMPLOYEE.E# and

WORKS\_ON.P#=PROJECT.P# and PNAME="DBMS"

检索参与"DBMS"项目的员工的姓名

1. (2分) 写出以上 SOL 语句所对应的关系代数表达式。

2. (6分) 画出上述关系代数表达式所对应的查询计划树。使用启发式查询优化算法,对以上查询计划树进行优化,并画出优化后的查询计划树。设 WORKS\_ON 表有 10000 条元组,PROJECT 表有 20 条元组, EMPLOYEE 表中有 1000 条元组,WORKS\_ON 中满足参与"数据库系统"项目的元组数为 50,计算优化前与优化后的查询计划中每一步所产生的中间结果大小。

# 九、分析题(6分)

1. (2分)考虑如下三个事务的调度,这是否是一个冲突可串行化调度?请解释一下你的判断依据。如果是,将它转换成一个串行调度。

| $T_0$    | $T_1$    | $T_2$    |
|----------|----------|----------|
| $r_0(A)$ |          |          |
| $w_0(A)$ |          |          |
|          |          | $r_2(A)$ |
|          |          | $w_2(A)$ |
|          | $r_1(A)$ |          |
| $r_0(B)$ |          |          |
|          |          | $r_2(B)$ |
| $w_0(B)$ |          |          |
|          |          | $W_2(B)$ |
|          | $r_1(B)$ |          |

2. (4分)考虑如下两个事务:

 $T_1$ :  $T_2$ : read(A, t); read(A, s); t:=t+1; s:=s\*2; write(A, t); read(B, t); read(B, s); t:=t+1; s:=s\*2; write(B, t).

(1) (2分) 在 $T_1$ 和 $T_2$ 上分别添加加锁和解锁指令,使其遵从两段锁协议。

(2) (2分)基于(1)给出的两段锁协议,是否存在一个发生死锁的并发调度序列,为什么。

### 十、分析题(6分)

设一个数据库系统启动后中, 执行 4 个事务 T0、T1、T2 和 T3。四个事务的内容如下:

T0: A := A / 5 (读入数据库元素 A 的值,除以 5 后,再写回 A 的值)

T1: B := B + 70 (读入数据库元素 B 的值,加上 70 后,再写回 B 的值)

T2: C := C -80 (读入数据库元素 C 的值,减去 80 后,再写回 C 的值)

T3: D := D \* 2 (读入数据库元素 D 的值,乘以 2 后,再写回 D 的值)

除了这四个事务外,系统中无其他事务执行。设四个事务开始前,数据库元素  $A \times B \times C \times D$  的值分别为 A=100,B=-20,C=60,D=40。在执行这四个事务的过程中,系统发生了故障。系统重启后,经故障恢复,数据库元素  $A \times B \times C \times D$  的值被恢复为 A=20,B=50,C=-20,D=80。故障恢复时,数据库系统日志文件中包含如下日志记录,这里只给出部分日志记录。已知该数据库管理系统使用基于 undo-redo 日志的故障恢复技术,这段日志中有且仅有 1 个检查点。在数据库恢复中 Undo={T3},Redo={Ø}。

请根据以上信息将下列日志补充完整(任选其一补充即可):

| 01: | <t0,< td=""><td>START&gt;</td></t0,<>       | START>       |
|-----|---------------------------------------------|--------------|
| 02: |                                             | ₩            |
| 03: | <t1,< td=""><td>START&gt;</td></t1,<>       | START>       |
| 04: | <t0,< td=""><td>COMMIT &gt;</td></t0,<>     | COMMIT >     |
| 05: |                                             |              |
| 06: | <t1,< td=""><td>B, -20, 50&gt;√</td></t1,<> | B, -20, 50>√ |
| 07: |                                             |              |
| 08: | <t2,< td=""><td>COMMIT&gt;</td></t2,<>      | COMMIT>      |
| 09: | <t1,< td=""><td>COMMIT&gt; √</td></t1,<>    | COMMIT> √    |
| 10: | <t3,< td=""><td>START&gt;</td></t3,<>       | START>       |
| 11: |                                             | ψ.           |
| 12: | <t3.< td=""><td>D. 40. 80&gt;</td></t3.<>   | D. 40. 80>   |

| 01: | <t0,< td=""><td>BEGIN&gt;</td></t0,<>      | BEGIN>      |
|-----|--------------------------------------------|-------------|
| 02: |                                            | <b>→</b>    |
| 03: | <t1,< td=""><td>BEGIN &gt;↓</td></t1,<>    | BEGIN >↓    |
| 04: | <t0,< td=""><td>COMMIT &gt;</td></t0,<>    | COMMIT >    |
| 05: |                                            |             |
| 06: | <t1,< td=""><td>B, -20, 50&gt;</td></t1,<> | B, -20, 50> |
| 07: |                                            |             |
| 08: | <t2,< td=""><td>COMMIT&gt; ↔</td></t2,<>   | COMMIT> ↔   |
| 09: | <t1,< td=""><td>COMMIT&gt; ↔</td></t1,<>   | COMMIT> ↔   |
| 10: | <t3,< td=""><td>BEGIN &gt;↓</td></t3,<>    | BEGIN >↓    |
| 11: |                                            | 4           |
| 12: | <t3,< td=""><td>D, 40, 80&gt;</td></t3,<>  | D, 40, 80>  |
| 13: | <end< td=""><td>CHECKPOINT&gt;</td></end<> | CHECKPOINT> |