Modellierung Sommersemester 2018

Aufgabenblatt 1

Name	Vorname	Matrikelnummer
Blosch	Yannis	3256958
Heiland	Lukas	3269754

Die Bearbeitung der Aufgabenblätter muss durch zwei in Ilias registrierte Mitglieder des Kurses "Modellierung (SS18)" erfolgen.

In der folgenden Tabelle werden die erzielten Punkte eingetragen.

Aufgabe	Erreichte Punkte	Bemerkungen zur Korrektur
1		
2		
3		
4		
5		
6		
7		
8		
Gesamt:		

Aufgabe 5.1

a. Ein Schlüsselkandidat Γ enthält alle Attribute, die auf keiner rechten Seite der funktionalen Abhängigkeiten in \mathcal{X} stehen. Des Weiteren muss für alle Attribute $A \in \mathcal{R}$ gelten: $A \in (\Gamma)^+$; darüber hinaus muss Γ minimal sein, d.h. es darf keine andere Attributmenge geben, die die vorigen Anforderungen erfüllt und weniger Elemente enthält als Γ .

Vorbemerkung: Da nur L auf keiner rechten Seite von \mathcal{X} vorkommt, muss L in jedem candidate key vorkommen. Des Weiteren ist $(L^+) = \{L, E, J\} \neq \mathcal{R} \Rightarrow$ jeder candidate key muss mindestens zwei Attribute enthalten.

1. Schlüsselkandidat: DL

• L steht auf keiner rechten Seite, $L \in DL \checkmark$

• DL ist minimal (folgt aus Vorbemerkung) \checkmark

2. Schlüsselkandidat: LH

• L steht auf keiner rechten Seite, $L \in LH \checkmark$

• LH ist minimal (folgt aus Vorbemerkung) \checkmark

b. 1. Schlüsselkandidat

E und J sind partiell abhängig vom candidate key, nämlich von L. Schema in 2NF: $\mathcal{R}_1(\underline{D}, F, G, H, K, \underline{L}), \mathcal{R}_2(\underline{L}, E, J)$

2. Schlüsselkandidat

D, G,F, und K sind nur von H abhängig, also partiell vom candidate key. Schema in 2NF: $\mathcal{R}_1(D, F, G, \underline{H}, K)$, $\mathcal{R}_2(E, J, \underline{L})$, $\mathcal{R}_3(\underline{H}, \underline{L})$

```
\begin{array}{lll} \textbf{c.} & CLOSURE(\{L,H\},\mathcal{X}): \\ 0.\{H,L\} & \\ 1.\{H,L,D,G\} & \text{wegen } H \rightarrow DG \\ 2.\{H,L,D,G,E\} & \text{wegen } L \rightarrow E \\ 3.\{H,L,D,G,E,F,K\} & \text{wegen } G \rightarrow FK \\ 4.\{H,L,D,G,E,F,K,J\} & \text{wegen } E \rightarrow J \\ \Rightarrow F \in CLOSURE(\{L,H\},\mathcal{X}) \rightarrow \checkmark \end{array}
```

\mathbf{d} .	
1. $LH \rightarrow H$	reflexivity $(H \subseteq LH)$
$2. LH \rightarrow DG$	transitivity mit 1. und $H \to DG$
$3. DG \rightarrow G$	reflexivity $(G \subseteq DG)$
$4. LH \rightarrow G$	transitivity mit 2. und 3.
5. $LH \rightarrow FK$	transitivity mit 4. und $G \to FK$
6. $FK \to F$	reflexivity $(F \subseteq FK)$
7. $LH \rightarrow F$	transitivity mit 5. und 6.

Aufgabe 5.2

- 1.NF gegeben, alle Werte atomar
- 2.NF gegeben, keine partielle Abhängigkeit vorhanden
- 3.NF gegeben, keine transitiven Abhängigkeiten

BCNF: C ist eine Determinante (B ist voll funktional abhängig von C), gehört aber nicht zum candidate key (\mathcal{R} in BCNF \Leftrightarrow Jede Determinante muss ein candidate key sein) $\Rightarrow \mathcal{R}$ nicht in BCNF. Schema in BCNF: $\mathcal{R}_1(A,C), \mathcal{R}_2(B,\underline{C})$

Aufgabe 5.3

Aufgabe 5.4

- a. Ein Schlüsselkandidat Γ enthält alle Attribute, die auf keiner rechten Seite der funktionalen Abhängigkeiten in \mathcal{X} stehen. Des Weiteren muss für alle Attribute $A \in \mathcal{R}$ gelten: $A \in (\Gamma)^+$; darüber hinaus muss Γ minimal sein, d.h. es darf keine andere Attributmenge geben, die die vorigen Anforderungen erfüllt und weniger Elemente enthält als Γ .
- **b.** D ist partiell abhängig von BH, denn $B \to D$
- c. \mathcal{S} ist nicht in 3NF, da es eine transitive Abängigkeit gibt: $DE \to A \to B$