#### PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2003133999 A

(43) Date of publication of application: 09.05.03

(51) Int. CI

H04B 1/707 H04B 7/26

(21) Application number: 2001332510

(22) Date of filing: 30.10.01

(71) Applicant

**FUJITSU LTD** 

(72) Inventor:

SHIMIZU MASAHIKO HASEGAWA TAKESHI

## (54) SPREAD SPECTRUM RAKE RECEIVER

## (57) Abstract:

PROBLEM TO BE SOLVED: To provide a rake receiver that can keep down multipath interference when using a spread spectrum communication method in multipath environment.

SOLUTION: A rake receiver comprises a means 2 for detecting a path timing for multipath, a means 3 for setting that path timing as a inverse spread timing as well as, for delay time period between any two of paths, to set two path timings at symmetrical positions to one of the path timing about the other path timing as inverse spread timing for every pairs of paths, two or more means 4 to call for inverse spread signals for receive signals in response to each of the set timings, and a means 5 to combine outputs from two or more of the means 4.

COPYRIGHT: (C)2003,JPO

## 本免明のレイク受信機の原理構成プロック図



## (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-133999 (P2003-133999A)

(43)公開日 平成15年5月9日(2003.5.9)

| (51) Int.Cl. <sup>7</sup> | 識別記号  | 識別記号 | <b>F</b> I    | テーマコード(参考) |  |
|---------------------------|-------|------|---------------|------------|--|
| H04B                      | 1/707 |      | H O 4 J 13/00 | D 5K022    |  |
|                           | 7/26  |      | H04B 7/26     | N 5K067    |  |
|                           | .,    |      |               | ת          |  |

## 審査請求 未請求 請求項の数5 OL (全 17 頁)

| (21)出顧番号 | 特臘2001-332510(P2001-332510)             | (71) 出願人 | 000005223           |  |
|----------|-----------------------------------------|----------|---------------------|--|
|          |                                         |          | 富士通株式会社             |  |
| (22)出顧日  | 平成13年10月30日(2001.10.30)                 |          | 神奈川県川崎市中原区上小田中4丁目1番 |  |
|          | , , , , , , , , , , , , , , , , , , , , |          | 1号                  |  |
|          |                                         | (72)発明者  | 清水 昌彦               |  |
|          |                                         |          | 神奈川県川崎市中原区上小田中4丁目1番 |  |
|          | •                                       |          | 1号 富士通株式会社内         |  |
| •        |                                         | (72)発明者  | 長谷川 🌹               |  |
|          | •                                       |          | 神奈川県川崎市中原区上小田中4丁目1番 |  |
| . *      |                                         |          | 1号 富士通株式会社内         |  |
|          |                                         | (74)代理人  | 100074099           |  |
|          | •                                       |          | 弁理士 大菅 義之 (外1名)     |  |
|          |                                         |          |                     |  |
| •        |                                         |          | 最終頁に統へ              |  |

## (54) 【発明の名称】 スペクトラム拡散レイク受信機

## (57)【要約】

【課題】 マルチパス環境におけるスペクトラム拡散通信 においてマルチパス干渉を抑圧する。

【解決手段】マルチパスのパスタイミングを検出する手段2と、そのパスタイミングを逆拡散タイミングとして設定し、任意の2つのパスの間の遅延時間分だけ、一方のパスタイミングを中心に、他方のパスタイミングと対称の位置の2つのタイミングを逆拡散タイミングとして、2つのパスの組合わせのすべてに対して設定する手段3と、設定された各タイミングに対応して受信信号の逆拡散信号を求める複数の手段4と、複数の手段4の出力を合成する手段5とを備える。

# 本免明のレイク受信機の原理構成プロック図



#### 【特許請求の範囲】

【請求項1】 スペクトラム拡散通信システムを構成するレイク受信機において、

マルチパスのパスタイミングを検出するパスタイミング 検出手段と、

該検出されたパスタイミングを逆拡散のタイミングとして設定するとともに、任意の2つのパスのタイミングの間の遅延時間分だけ、該2つのパスのうちの一方のパスのタイミングを中心として、他方のパスタイミングと時間軸上で対称の位置にある2つのタイミングを逆拡散の 10 タイミングとして、2つのパスの組合わせの全てに対して設定する逆拡散タイミング設定手段と、

該設定された各タイミングに対応して受信信号の逆拡散 信号をそれぞれ求める複数の相関器手段と、

該複数の相関器手段の出力を合成する信号合成手段とを 備えることを特徴とするレイク受信機。

【請求項2】 前記レイク受信機が送信側から既知信号を含む信号を受信すると共に、

該既知信号と前記信号合成手段による合成後の信号との 2乗平均エラーを最小とするアルゴリズムを用いて信号 20 合成用の重み係数を生成する重み係数生成手段を更に備 え、

前記信号合成手段が、該重み係数を用いて前記複数の相 関器手段の出力の重み付け合成を行うことを特徴とする 請求項1記載のレイク受信機。

【請求項3】 スペクトラム拡散通信システムを構成するレイク受信機において、

マルチパスのパスタイミングを検出するパスタイミング 検出手段と、

該検出されたパスタイミングを逆拡散のタイミングとし 30 て設定するとともに、任意の2つのパスのタイミングの間の遅延時間分だけ、該2つのパスのうちの一方のパスのタイミングを中心として、他方のパスタイミングと時間軸上で対称の位置にある2つのタイミングを逆拡散のタイミングとして、2つのパスの組合わせの全てに対して設定する逆拡散タイミング設定手段と、

該設定された各タイミングに対応して受信信号の逆拡散 信号をそれぞれ求める複数の相関器手段と、

該複数の相関器手段の出力する逆拡散信号の干渉成分の 相関を求め、該相関を無くすための変換行列を生成する 40 変換行列生成手段と、

該生成された変数行列を用いて、前記複数の相関器手段 の出力を合成する信号合成手段とを備えることを特徴と するレイク受信機。

【請求項4】 スペクトラム拡散通信システムを構成するレイク受信機において、

マルチパスのパスタイミングと、受信電力最大のパスタイミングとを検出するパスタイミング検出手段と、

該検出されたパスタイミングを逆拡散のタイミングとして設定するとともに、任意のパスと受信電力最大のパス 50

との2つのパスのタイミングの間の遅延時間分だけ、該任意のパスのタイミングを中心として、受信電力最大のパスのタイミングと時間軸上で対称の位置にあるタイミングを逆拡散のタイミングとして、受信電力最大のパスを除く任意のパスと受信電力最大のパスとの組合わせの全てに対して設定する逆拡散タイミング設定手段と、

該設定された各タイミングに対応して受信信号の逆拡散 信号をそれぞれ求める複数の相関器手段と、

該複数の相関器手段の出力を合成する信号合成手段とを 備えることを特徴とするレイク受信機。

【請求項5】 スペクトラム拡散通信システムを構成するレイク受信機において、

マルチパスのパスタイミングと、受信電力最大のパスタイミングとを検出するパスタイミング検出手段と、

該検出されたパスタイミングを逆拡散のタイミングとして設定するとともに、任意のパスと受信電力最大のパスとの2つのパスのタイミングの間の遅延時間分だけ、該任意のパスのタイミングを中心として、受信電力最大のパスのタイミングと時間軸上で対称の位置にあるタイミングを逆拡散のタイミングとして、受信電力最大のパスを除く任意のパスと受信電力最大のパスとの組合わせの全てに対して設定する逆拡散タイミング設定手段と、

該設定された各タイミングに対応して受信信号の逆拡散 信号をそれぞれ求める複数の相関器手段と、

前記任意のパスのタイミングと前記対称の位置にあるタイミングとに対応する2つの相関器手段の出力の重み付け合成を、前記組合わせの全てに対して実行する重み付け合成手段と、

該重み付け合成手段の重み付け合成結果の全てと前記受信電力最大のパスのタイミングに対応する相関器手段の 出力とを合成する信号合成手段とを備えることを特徴と するレイク受信機。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はスペクトラム拡散方式に係り、更に詳しくはマルチパス環境での受信ダイバーシティ方式として、伝搬路の多重反射によって、様々な遅延時間差をもってアンテナに到来する信号の時間領域での最大比合成を行うレイク受信機に関する。

0 [0002]

【従来の技術】スペクトラム拡散、またはスペクトル拡 散通信方式は移動体通信の最も基本的な技術として広範 囲に利用されている。

【0003】スペクトラム拡散通信の最も単純なモデルとしての直接拡散(DS)方式では、送るべき情報信号の周期Tに対して、その1/100から1/1000程度のチップ幅Tcを持つPN信号を拡散信号として変調、すなわち乗算してスペクトルを広げて受信側に送信する。

【0004】受信側では雑音に埋もれた信号から、逆拡

散によって信号成分を検出する。逆拡散とは、基本的に 受信信号中のPN信号と同じ位相の同一PN信号を受信 信号に乗じて、復調を行うことである。

【0005】しかしながら直接波の他に多くの反射波が 存在するようなマルチパス環境においては、様々な遅延 時間差をもって受信される信号を適切に合成することに よって、正しい信号成分を検出する必要がある。

【0006】このような従来技術の1つとして、レイク (Rake) 方式がある。レイクとは英語で"くまで" の意味であり、レイク方式は"くまで"のように伝送路 10 の遅延分散により分散した信号パワーを1つに集めて最 大比合成を行うダイバーシティ方式である。

【0007】従来のレイク受信機では、既知の信号を用 いてマルチパスが到着する複数のパスタイミングを見つ け、このタイミングを復調器に知らせて、復調器ではこ のタイミングで逆拡散を行い、マルチパスの信号を合成 することにより、希望信号を復調する。

【0008】図20は、例えば移動通信端末としてのレ イク受信機の従来例の全体構成を示すブロック図であ る。同図において受信機はアンテナ100、無線受信部 20 101、A/D変換部102、マルチパスの複数のパス のタイミングを検出するサーチャ103、サーチャ10 3によって検出された複数パスのタイミングに対応して 複数パスに対する逆拡散を行う逆拡散タイミング生成部 および逆拡散部104、複数パスの信号を合成する信号 合成部105、信号合成部105の出力を受けてディス プレイやスピーカなどに受信信号を出力するチャネルコ ーディックなどの信号処理部106、複数パスの受信信 号のレベルなどを測定し、信号合成部105に信頼度情 報や信号レベル情報を与え、また基地局への送信電力制 御情報を送信部に与えるレベル測定部107、レベル測 定部107からの制御情報に対応して、キーボードやマ イクからの入力を送信するための送信部108から構成 されている。

【0009】図21は、図20における信号復調部、す なわち図20の逆拡散タイミング生成部および逆拡散部 104の詳細構成プロック図である。同図において、復 調部は拡散符号発生器110、複数の遅延制御部11 1、およびそれに対応する複数の相関器112によって 構成されている。

【0010】拡散符号発生器110は逆拡散のための符 号を発生し、遅延制御部111はサーチャ103によっ て検出されたマルチパスのタイミングt1~tNのそれ ぞれに対応する複数の相関器112の遅延動作を制御 し、各相関器112は遅延制御部111によって制御さ れる逆拡散タイミングに対応してA/D変換部102か らの受信信号に対する逆拡散を行い、それぞれ逆拡散信 号1~逆拡散信号Nを信号合成部105に与え、信号合 成部105はそれらの信号を合成して復調信号を出力す る。この逆拡散信号にはそれぞれのマルチパスの伝搬路 50 は、例えばパスサーチャであり、マルチパスのパスタイ

係数に対応するチャネル推定用信号も含まれる。

【0011】図22は復調部の他の従来例としてのMM SE (ミニマム ミーン スクエアエラー) 受信機の構 成例である。このMMSE受信機では、送信側から送信 信号に含まれて送られる既知信号から求められたチャネ ル推定値、例えばレファレンス信号と、タップ付き遅延 線で作られるトランスパーサルフィルタ124の出力と を重み付け合成するための重み係数がMMSE重み係数 生成器123によって生成される。すなわち、合成後の 信号とレファレンス信号との2乗平均が最小となるよう に、例えばCCD素子を利用して相関値を瞬間的に検出 するマッチトフィルタ122の出力に対する重み付けが

#### [0012]

【発明が解決しようとする課題】以上のように、例えば 図21においてはマルチパスの各パスのタイミングその ものを用いて逆拡散が行われる。あるタイミングで逆拡 散をした場合には、そのタイミング以外のパスに対応す る信号は全て干渉となる。特にCDMA方式の基地局か らの下りリンクで複数のチャネルに対して直交拡散符号 を用いているような場合には、マルチパス干渉のために 受信特性が劣化するという問題点があった。

【0013】図23はこのようなマルチパス干渉の説明 図である。同図は、基地局から移動機に対して2つのパ スの信号が到達する伝搬環境におけるマルチパス干渉の 説明図である。

【0014】基地局から直交拡散符号を用いて拡散され た信号を多重して送った場合、パスAのタイミングで逆 拡散すれば、パスAを経由して到着した信号については 逆拡散タイミングが正しく、かつ多重した拡散符号が直 交していることによって希望信号だけが残り、理想的に は干渉は発生しない。

【0015】しかしながらパスBを経由して到着した信 号については、逆拡散タイミングが正しくないために、 希望信号成分を含めて全てが干渉となってしまう。パス Bのタイミングで逆拡散を行う場合にも、同様にパスA からの全ての信号が干渉となる。特に多重信号の全ての 電力が希望信号の電力に比べて大きい場合にはマルチパ ス干渉が大きくなるという問題点があった。

【0016】本発明の課題は、上述の問題点に鑑み、マ ルチパス環境でスペクトラム拡散方式を用いる場合に、 マルチパス干渉を抑圧できるレイク受信機を提供するこ とである。

#### [0017]

【課題を解決するための手段】図1は本発明のレイク受 信機の原理構成プロック図である。同図はマルチパス環 境でスペクトラム拡散通信システムを構成するレイク受 信機1の原理構成ブロック図である。

【0018】図1においてパスタイミング検出手段2

ミング、例えばN個のパスのタイミングを検出する。逆 拡散タイミング設定手段3は、検出されたパスのタイミ ングを逆拡散のタイミングとして設定するとともに、任 意の2つのパスのタイミングの間の遅延時間の分だけ、 その2つのパスのうちの一方のパスのタイミングを中心 として、他方のパスのタイミングと時間軸上で対称の位 置にある2つのタイミングを逆拡散のタイミングとし て、2つのパスの組合わせの全てに対して設定するもの である。

5

【0019】複数の相関器手段4は、設定された各タイ 10 ミングに対応して送信側から送られた信号の、例えばA /D変換結果の信号の逆拡散信号をそれぞれ求めるもの であり、信号合成手段5は複数の相関器手段4の出力を 合成し、復調信号を出力するものである。

【0020】発明の実施の形態においては、レイク受信 機が送信側から既知信号を含む信号を受信するととも に、その既知信号と信号合成手段5による合成後の信号 との2乗平均エラーを最小とするアルゴリズムを用い て、信号合成用の重み係数を生成する重み係数生成手段 を更に備え、信号合成手段5がその重み係数を用いて複 20 数の相関器手段4の出力の重み付け合成を行うこともで きる。

【0021】また実施の形態においては、逆拡散タイミ ング設定手段3が、検出されたパスのタイミングと前述 の2つのパスの組合わせの全てに対するそれぞれ2つの タイミングとに加えて、以上の全てのタイミングの前後 数チップ内のチップ位置のそれぞれ複数のタイミングを 逆拡散タイミングとして設定することもでき、また前述 のパスのタイミングとそれぞれ2つのタイミングとに加 えて、2つのパスの組合わせの全てに対して、一方のパ 30 スのタイミングを起点として、他方のパスのタイミング の方向に前記遅延時間分の複数倍以内の整数倍の距離に ある複数のタイミングを逆拡散タイミングとして設定す ることもできる。

【0022】また本発明のレイク受信機は、前述のパス タイミング検出手段2、逆拡散タイミング設定手段3、 複数の相関器手段4に加えて、複数の相関器手段4の出 力する逆拡散信号の干渉成分の相関を求め、その相関を なくすための変換行列を生成する変換行列生成手段と、 生成された変換行列を用いて複数の相関器手段4の出力 40 を合成する信号合成手段とを備える。

【0023】更に本発明のレイク受信機は、マルチパス のパスのタイミングと受信電力最大のパスタイミングと を検出するパスタイミング検出手段と、検出されたパス タイミングを逆拡散のタイミングとして設定すると共 に、任意のパスと受信電力最大のパスとの2つのパスの タイミングの間の遅延時間分だけ、その任意のパスのタ イミングを中心として、受信電力最大のパスのタイミン ・ グと時間軸上で対称の位置にあるタイミングを逆拡散の タイミングとして、受信電力最大のパスを除く任意のパ 50 逆拡散の説明図である。この時の逆拡散は、復調しよう

スと受信電力最大のパスとの組合わせの全てに対して設 定する逆拡散タイミング設定手段と、設定された各タイ ミングに対応して受信信号の逆拡散信号をそれぞれ求め る複数の相関器手段と、複数の相関器手段の出力を合成 する信号合成手段とを備える。

【0024】また本発明のレイク受信機は、直前に述べ たパスタイミング検出手段、逆拡散タイミング設定手 段、および複数の相関器手段と、前述の任意のパスのタ イミングと前述の対称的な位置にあるタイミングとに対 応する2つの相関器手段の出力の重み付け合成を前述の 組合わせの全てに対して実行する重み付け合成手段と、 重み付け合成手段の重み付け合成結果の全てと、受信電 力最大のパスのタイミングに対応する相関器手段の出力 とを合成する信号合成手段とを備える。

【0025】実施の形態においては、重み付け合成手段 が任意のパスと電力最大のパスとのチャネル推定値、送 信側から受信した信号のA/D変換結果、およびチャネ ル推定用信号と1つのパスの信号との電力比を表わす定 数を用いて、前記対称の位置にあるタイミングに対応す る相関器手段の出力に乗ずべき重み係数を求める重み係 数算出手段を更に備えることもできる。

【0026】この場合、重み係数算出手段が前述の定数 の値として送信側から通知される値を用いることもで き、また前記A/D変換結果の信号の平均電力、逆拡散 によって求められるべき希望信号成分の電力、および前 述の対称の位置にあるタイミングに対応する相関器手段 の出力信号の平均電力を用いて計算される値をその定数 の値として用いることもできる。

【0027】以上のように本発明によれば、マルチパス のパスタイミングに加えて、干渉成分の抑圧を行うため のタイミングが逆拡散のタイミングとして設定され、設 定された各タイミングに対応する逆拡散信号の合成が行 われる。

#### [0028]

【発明の実施の形態】本発明においては、マルチパス環 境でのスペクトラム拡散方式において、受信側であるパ スに対応するタイミングで逆拡散を行うにあたって他の パスの信号による干渉を抑圧するために、2つのパスの タイミングの時刻の差を用いて新たなタイミングを設定 し、そのタイミングでの逆拡散を追加することによって 干渉を抑圧することになるが、まずその原理について説 明する。

【0029】マルチパスの信号をあるタイミングで逆拡 散する時、干渉を生ずるパスの信号は、逆拡散の相互相 関値と伝搬路の減衰係数などで決定される。逆拡散の相 関値は、パスを経由して到着した信号のタイミングと、 逆拡散のタイミングとの間の遅延で決まる定数となる。 【0030】図2は逆拡散のタイミングに対して5チッ プ分遅れて、あるパスを経由して到着した信号に対する

としている1つ前のシンボルの最後から5チップ目と、 拡散符号の最初のチップの積で始まる逆拡散となり、受 信信号が5チップ遅延しているために正しく逆拡散され ないことになる。

【0031】A、Bの2つのパスについて、Aのパスタ イミングで逆拡散した場合のBの逆拡散の相関値をXと し、AとBのパスタイミングの間の遅延時間と同じだ け、AからBと反対の方向に動かしたタイミングで逆拡 散を行った時のAの逆拡散の相関値をYとすると、Xと Yとは等しくなる。本実施形態ではこの関係を利用し \*10

$$VA = \alpha S + \beta I_1 + nA$$

次にパスBのタイミングと対称となるタイミング、すな わち仮想のパスA'のタイミングで逆拡散した信号を次※

$$VA' = \alpha I_1 + \beta I_2 + nA'$$

ここでα、βは伝搬路係数、Sは逆拡散された希望信号 成分(ここで希望信号とは拡散符号に対応して逆拡散さ れるべき本来の信号を意味する。)、 I1 は信号のタイ ミングに対してAとBのパスタイミングの間の遅延時間 だけずれたタイミングで逆拡散した場合に生じる干渉成 分、I2 はAとBのタイミングの間の遅延時間の2倍ず 20 れたタイミングで逆拡散した場合に生じる干渉成分、n A , nA' はA, A' のそれぞれのパスタイミングで逆 ★

$$u_A = v_A + w v_A$$
  $' = \alpha S + m_A$ 

この式で干渉成分ma は次式によって与えられる。

$$m_A = (w \alpha + \beta) I_1 + w \beta I_2 + n_A + w n_A$$
 (4)

この干渉成分の平均電力を最小にするように重み係数w を決める必要がある。 I1 、 I2 のそれぞれの平均電力 を  $I^2$  ,  $n_A$  ,  $n_B$  のそれぞれの平均電力を  $N^2$  とし て、それぞれの成分の間に相関がないことを利用する ☆

$$P_A' = E (| m_A |^2 )$$
  
=  $(| w_{\alpha} + \beta |^2 + | w_{\beta} |^2 ) I^2 + (1 + | w |^2 ) N^2$ 

ここでE(x)はxの平均値を示す。干渉電力PA'を 最も小さくする重み係数wは次式を満足する値として与◆

この式を解くことにより、wは次式となる。なお\*は共 \* [0040] 【数1】 役複素数を示す。

$$w = -\frac{\alpha^* \beta I^2}{(|\alpha|^2 + |\beta|^2) I^2 + N^2} \tag{7}$$

【0041】(7)式において雑音成分がない場合には 40%【0042】  $N^2 = 0$ となり、wは次式となる。

$$w = -\frac{\alpha^{\circ} \beta}{|\alpha|^2 + |\beta|^2} \tag{8}$$

【0043】この場合には合成前のVΑ の平均干渉電力

$$P_A = |\beta|^2 I^2$$

これに対して合成後の平均干渉電力は次式となる。

【数3】

[0044]

\*て、干渉電力を小さくして、干渉の抑圧を行う。

【0032】すなわち、図3に示すように、Aのパスタ イミングで逆拡散した場合の信号vaの干渉成分を抑圧 するために、Aのパスタイミングを中心としてパスBの タイミングと対称となるA'のタイミングで逆拡散した 信号 Va ' にある重み係数を乗じて Va と合成するこ とによって、VA の干渉成分を抑制する。この重み係数 wの求め方について、以下に説明する。

【0033】パスAのタイミングで逆拡散した時の逆拡 散信号を次式で表わす。

(1)

※式で表わす。

[0034]

(2)

★拡散した時の雑音成分を示す。

【0035】なお、I1, I2 等は物理的には例えば電 流に比例する量、VA 等は電圧に相当する量であり、イ ンピーダンスを一定と考えると I1 の時間的平均電力は I12の形で表わされる。

【0036】 v 🖈 ′ に重み係数wを掛けて v 🗚 と合成し た信号をua とすると、ua は次式によって与えられ

(3)

[0037]

☆と、干渉成分ma の平均電力Pa ' は次式によって与え られる。

(5)

[0038]

◆えられる。

(6)

PA は次式となる。

(9)

-5-

$$P_{\lambda}' = \frac{\left|\beta\right|^2}{\left|\alpha\right|^2 + \left|\beta\right|^2} \left|\beta\right|^2 I^2$$

(10)

【0045】(9)式と(10)式を比較することによって、平均干渉電力が小さくなることが明らかである。図4は本発明の第1の実施形態における復調器の構成ブロック図である。同図において復調器は受信したアナログ信号をディジタル信号に変換するA/D変換器10、マルチパスの各パスのタイミングを検出するサーチャ11、サーチャ11の出力を用いて逆拡散のタイミングを制御する逆拡散タイミング制御部12、逆拡散のために拡散符号を発生する拡散符号発生器13、複数の相関器14、それぞれの相関器に対応して逆拡散タイミング制御部12の制御に基づいて逆拡散のタイミングを制御するための遅延制御部15、および各相関器14の出力を合成する信号合成部16から構成されている。なお各相関器14の出力は前述の伝搬路係数に相当するチャネル推定用信号を含んでいる。

【0046】 ここでチャネル推定とは、例えばQPSK 変調方式で送信側で送信した4つのシンボルがI-Q平 20 面上でa, b, c, dの4点で表わされ、受信側で点a', b', c', d' として受信されたとき、例えば2つのベクトル 91 の絶対

【0047】 【外1】

ರ್ , ರಾ

【0048】値の比と成す角に対応する伝搬路係数を用いて点a'から点aの位置を推定すること、すなわち座標系の推定を行うことに相当する。なお、本実施形態で 30はこのチャネル推定は信号合成部16によって行われるものとする。

【0049】第1の実施形態においては、マルチパスのうちの任意の2つのパスA, Bに対応して、図3で説明したようにパスAのタイミングがパスBのタイミングより早いとすると、図3で説明したA'のタイミングと、BのタイミングとAのタイミングの間の遅延時間だけBのタイミングより遅れたタイミングでの逆拡散が行われる

【0050】なお、この第1の実施形態では(1)~ 40 (10)式で説明した干渉抑圧のための逆拡散信号の重みづけ合成は信号合成部16によって行われるものとし、その合成の詳細は第7の実施形態として後述する。【0051】図5は第1の実施形態における逆拡散タイミング制御部による逆拡散タイミング制御の説明図である。サーチャ11によってパスタイミングとしてt1からtnまでのN個のタイミングが検出されたとすると、例えばパスタイミング t1 よりも時刻が前の逆拡散タイミングとして2 t1 - t2, 2 t1 - tn のN-1個の逆拡散タイミングが、t1の逆 50

拡散タイミングに追加して与えられることになる。 【0052】図6は図4におけるサーチャ11における パスサーチ処理のフローチャートである。同図におい て、まずステップS1でA/D変換部10から、例えば チャネル推定等に用いる既知信号の変換信号が受け取ら れ、ステップS2で複数のタイミングで逆拡散が行わ れ、ステップS3でフェージングや干渉雑音の影響を低 減するために各タイミング毎に数シンボル分の電圧積分 が求められ、ステップS4で各タイミング毎に電圧積分 後の信号が電力積分される。

【0053】マルチパスの信号合成においては当然電力が大きなタイミングのパスの信号を合成することが有効であるため、ステップS5で電力が大きなタイミングのパスが選択され、タイミングが近いパスの間では信号、干渉雑音の相関も高く、合成利得も小さいため、ステップS6で選択されたパスに近いタイミングのパスが除去され、残ったパスタイミング、図5ではt1~tnのN個のパスタイミングに対応して、ステップS7で逆拡散タイミングが決定される。

【0054】図7は第2の実施形態における復調器の構成プロック図である。この第2の実施形態においては、第1の実施形態におけるように任意の2つのパスタイミングの間で干渉成分を抑圧するための2つの新しい逆拡散タイミングが設定される代わりに、サーチャによって最も信号電力が大きなパスのタイミングが検出され、そのパスのタイミングと他の任意のパスのタイミングとの間で干渉成分を抑圧するための新たな逆拡散タイミングの設定が行われる。

【0055】すなわち図7において、最大パス検出部20によってサーチャ11により検出された、例えばN個のパスタイミングのうちで、信号電力が最も大きなパスのタイミングが検出され、そのタイミングを用いて逆拡散タイミング制御部21によって逆拡散タイミングが設定されて、復調動作が行われる。

【0056】図8は第2の実施形態における逆拡散タイミング制御部21の動作の説明図である。同図においては、サーチャ11によって検出されたパスタイミングとしてのti~twの中で、信号電力が最大のパスのタイミングとしてtkが検出され、逆拡散タイミング制御部21に与えられる。そして逆拡散タイミング制御部21によって、例えばそれぞれのパスタイミングに一致する逆拡散タイミングの前に2ti~tk,2t2~tk,・・・,2tw~tk が逆拡散タイミングとして設定される。

【0057】図9は本発明の第3の実施形態における逆拡散タイミング制御部の動作説明図である。この第3の実施形態では、例えば図5、または図8で説明した逆拡

散タイミングに加えて、それぞれの逆拡散タイミングの 前後数チップ分のタイミングの逆拡散タイミングが追加 される。

11

【0058】すなわち例えば逆拡散タイミング  $t_1$  に対して、チップ区間をTとする時、前後Mチップまでの逆拡散タイミング、すなわち逆拡散タイミング  $t_1$  の前に  $t_1$ -MT,  $t_1$ -(M-1) T,  $\cdots$ ,  $t_1$ -Tが 追加され、また逆拡散タイミング  $t_1$  の後に  $t_1$ +T,  $\cdots$ ,  $t_1$ +(M-1) T, および  $t_1$ +MTの逆拡散タイミングが追加される。

【0059】図10は第4の実施形態における逆拡散タイミング制御部の動作説明図である。この第4の実施形態においては、例えば図5または図8で説明した逆拡散タイミングに加えて、例えば信号電力が最も大きなパスとその他の任意のパスとの間の遅延時間と等間隔で、更に前、または後に複数個の逆拡散タイミングが追加される。例えば逆拡散タイミングに加えて、(M+1)  $t_1$  —  $Mt_k$  ,  $Mt_1$  — (M-1)  $t_k$  ,  $\cdots$  , 3  $t_1$  — 2  $t_k$  の逆拡散タイミングが追加される。

【0060】図11は本発明の第5の実施形態における 復調器の構成プロック図である。同図を例えば第1の実 施形態における図4と比較すると、各相関器14の出力 が入力される雑音・干渉の相関行列生成部26、その出 力が与えられる相関行列対角化・変換行列生成部27が 追加され、信号合成部16に代わって相関行列対角化・ 変換行列生成部27によって生成された行列を用いて、 複数の相関器14の出力の合成を行う変換行列による入 力信号変換および最大比合成部28を備えている点が異 なっている。

【0061】一般に受信側においては、信号対干渉電力比(SIR)を最も大きくするように受信機が構成される。あるシンボルに対する複数の受信信号を合成する場合には、雑音・干渉の相関をなくした後に、各受信信号\*

 $v_i = a_k s_i + n_i$  $v_j = a_k s_j + n_j$ 

【0067】ここでak はパイロットパターンなどと呼ばれる既知のシンボルパターンであり、si はi番目の相関器出力における希望信号成分の大きさを示し、ni は雑音・干渉成分を表わす。

【0068】図12において、2つの相関器のチャネル推定用逆拡散信号から既知のシンボルバターンakをキャンセル(図には示していない)した後に、それぞれの相関器出力の複数シンボル分を電圧平均部31、および電圧平均部33によって平均することにより、雑音・干渉成分を減衰させ、希望信号成分のみが取り出される。

【0069】そして滅算器32,34によって、逆拡散 信号から雑音・干渉成分のみが取り出され、j番目ここ では第2の相関器側の滅算器34の出力の共役複素数が 50

\*の希望信号の振幅レベルと雑音・干渉の電力との比を重 み係数として信号合成を行うことによって、SIRが最 大となることが知られている。第5の実施形態では雑音 ・干渉の相関行列を求めて、その対角化、すなわち各雑 音・干渉成分の相関をなくす変換行列を生成し、その変 換行列を用いて受信信号を変換した後に信号を合成し、 SIRを最大とする動作が行われる。

【0062】すなわち第4の実施形態までにおいては、逆拡散された信号の干渉・雑音成分はお互いに相関を持っているため、そのまま振幅レベルと干渉レベルに基づいて合成してもSIRの値を最大にすることができない。第5の実施形態においては、干渉・雑音の間に相関がない信号として複数の受信信号に対する合成が行われるため、合成後の信号品質の向上が実現される。

【0063】このような雑音・干渉の相関行列を生成し、相関行列対角化・変換行列を生成し、その変換行列を用いて入力信号の変換を行う技術は公知のものであるが、本実施形態に適用する意味でその概要について次に説明する。

2 【0064】図12は雑音・干渉の相関行列生成部26の動作説明図である。同図は複数の相関器14のうちで、2つの相関器の出力に対応する2行,2列の相関行列生成の動作の説明図である。なお本実施形態においては各相関器14からは、基本的にチャネル推定用(逆拡散)信号とそれぞれの逆拡散タイミングに対応する逆拡散希望信号(信号合成の対象となる信号)との2つがコードの異なる信号として出力されるものとする。

【0065】一般に相関行列のi行、j列の要素の生成を行う場合には、i番目の相関器の出力としてのチャネ 30 ル推定用逆拡散信号 vi, j番目の相関器の出力として のチャネル推定用逆拡散信号 vi を用いて、その要素の 生成が行われる。vi および vj を次式で表わす。

【0066】 【数4】

(11)

求められ、その結果が減算器32の出力と乗算器35に よって乗算され、乗算器35の出力はそのまま1行,2 40 列の成分として、乗算器35の出力の共役複素数が2 行,1列の成分として求められる。

【0070】また減算器32の出力の絶対値が絶対値2 乗部36によって2乗され、1行,1列の成分が、更に 減算器34の出力が絶対値2乗部37によって2乗され て2行2列の成分が求められる。

【0071】次に雑音・干渉の相関行列の対角化・変換行列の生成方法について説明する。図12で説明したようにして求められた雑音・干渉の相関行列(N次の正方行列)を次式の 外2 とする。

0 [0072]

【外2】

13 \* [0073] \* 数5] 
$$X_o = (x_{0,i,j})$$

【0074】i番目の相関器の出力の雑音・干渉成分n : に含まれる、1番目の相関器の出力の雑音・干渉成分 n1 による成分はxo,j,1 n1 /xo,1,1 となる。ここでjはi+1からNまでの値である。従っ てni からこの値を減算することによって、i番目の相 関器の出力の雑音・干渉成分から、1番目の相関器の出 10 力の雑音・干渉成分との相関成分をなくすことができ る。

【0075】このような変換を1番目の相関器の出力以

外の全ての相関器の出力に対して行うことによって、1%

$$S_0 = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ -\frac{x_{0,2,1}}{x_{0,1,1}} & 1 & 0 & \dots & 0 & 0 & 0 \\ & & & \vdots & & & & \\ -\frac{x_{0,N,1}}{x_{0,1,1}} & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$
 (13)

【0079】変換後の雑音・干渉の相関行列 外4 は、その1行目と1列目が1,1成分

[0080]

【外4】

 $\boldsymbol{X}_{1}$ 

【0081】を除いて全て0となるような行列である。 他の成分は次式で与えられる。

[0082]

【数7】

$$x_{1,i,j} = x_{0,i,j} - \frac{x_{0,i,1}}{x_{0,i,1}}$$

$$S_1 = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & -\frac{x_{1,0,2}}{x_{1,2,2}} & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & & & & \vdots \\ 0 & -\frac{x_{1,N,2}}{x_{1,N,2}} & 0 & \dots & 0 & 0 & 1 \end{pmatrix}$$

$$(14)$$

$$(15)$$

【0085】このような操作を繰り返し、全ての相関器 の出力の雑音・干渉成分の間の相関をなくすことができ る。最終的な変換行列 外5 は、以上の操作によって 40 によって、次式のように生成される。 求め

[0086]

【外5】

【0089】図13は雑音・干渉の相関行列の対角化・

変換行列の生成処理フローチャートである。同図におい て処理が開始されると雑音・干渉の相関行列の入力に対 して、ステップS11で(14)式を用いて雑音・干渉 の相関行列 外6 の各成分

20★【0083】続いて、この行列を新たな相関行列とし て、3番目以降の相関器の出力の雑音・干渉成分に対し

て2番目の相関器の出力の雑音・干渉成分との相関をな

くすための変換行列を求める。この変換行列は次式によ

(12)

※番目の相関器の出力の雑音・干渉成分との相関を2番目

変換は次の行列 外3 を用

【0077】いて行われる。

[0076]

[0078]

【数6】

【外3】

以降の相関器の出力においてなくすことができる。この

って与えられる。 [0084]

【数8】

【0087】られたそれぞれの変換行列を乗算すること

[0088]

【数9】

[0090] 【外6】

【0091】が求められ、ステップS12で1番目の相 50 関器の出力の雑音・干渉成分との相関を、2番目以降の

X,

相関器の出力の雑音・干渉成分との間でなくすための変換行列が(13)式を用いて求められ、ステップS13で以上の操作が繰返され、全ての相関器の出力の雑音・干渉成分の間の相関をなくすための変換行列が求められる。

【0092】図14は第6の実施形態における復調器のなるように、 構成プロック図である。同図を第1の実施形態における 図4と比較すると、図22で説明したMMSE受信機を出力における 構成するMMSE重み係数生成器40が追加され、そのとする。 出力する重み係数を用いて重み付け信号合成部41によ\*10【0094】

$$v_i = a_k \quad s_i + n_i$$

トランスパーサルフィルタの重み係数をwi とすると、 合成信号は次式によって与えられる。

$$v_k(w) = \sum_i w_i v_i$$

【0096】既知信号 ak との2乗平均エラーは次式となる。

$$f(w) = \sum_{k} |v_k(w) - a_k|^2$$

\*って復調信号が出力される点が異なっている。

【0093】MMSE重み係数生成器40は、相関器の出力に含まれるチャネル推定用の既知信号の逆拡散信号を、図22で説明したトランスパーサルフィルタで合成した信号と既知信号パターンの2乗平均エラーが最小となるように、トランスパーサルフィルタのタップ係数を重み係数として生成するものである。 i 番目の相関器の出力における逆拡散信号が次式によって与えられるものとする。

(17)

**\* [0095]** 

【数10】

(18)

★【0097】 【数11】

(19)

【0098】このエラーを最小にするように重み係数w 20 i が決定される。この決定のためのアルゴリズムとしては、例えばLMS (リーストミーンスクエア) アルゴリズムが用いられる。

【0099】図15は第7の実施形態における復闢器の構成プロック図である。同図を第2の実施形態における図7と比較すると、図7の信号合成部16に対応する信号合成部44の前に、重み付け合成部43が追加されている点が異なっている。

【0100】第7の実施形態では第1の実施形態の前で 説明した本発明における干渉の抑圧方式を用いる。すな わち(1)~(10)式を用いて説明したように、ある 2つのパスタイミングで逆拡散した信号の干渉を抑圧す るために、2つのパスタイミングの前、または後に新た な逆拡散タイミングを設定し、干渉抑圧を行うための重 み係数をつけて、2つずつの逆拡散タイミングにおける 逆拡散信号の重み付け加算を行う方式について詳細に説 明する。

【0101】また第7の実施形態においては、第2の実施形態におけると同様に受信電力最大のバスが検出され、受信電力最大のバス以外のバスタイミング、例えば 40t1と、電力最大のバスのタイミングtk との2つのパスタイミングを対象として、逆拡散信号の重み付け加算による干渉抑圧が行われる。

【0102】 ただし、例えば図3においてAがタイミングt1のパス、Bがタイミングtkのパスとする時、A'のタイミング、すなわち2t1ーtkのタイミングでの逆拡散は設定されるが、Bのパスタイミングより後の逆拡散タイミング、すなわち2tkーt1のタイミングでの逆拡散は行われず、逆拡散信号の重み付け加算はAとA'の2つのタイミングでの逆拡散信号についての50

み行われる。パスタイミング tk の逆拡散信号は信号合成部 4 4 に直接与えられ、重み付け合成部 4 3 に対してはパスタイミング tk のチャネル推定用信号のみが与えられる。

【0103】これは当然、受信電力最大のバスの方が他のバスの信号に対して干渉が大きくなり、逆に受信電力最大のバスの逆拡散信号に対する他のバスからの干渉は相対的に小さくなるためであり、図15の回路構成を簡単にするために、第7の実施形態では例えばAとA'のタイミングの逆拡散信号が重み付け合成部43によって重み付け加算され、パスBのタイミングでの逆拡散信号は直接に信号合成部44に与えられて、重み付け合成部43による加算結果と合成されて復調信号が得られることになる。

【0104】図16~図18は、図15における重み付け合成部43の構成を示す。これらの図は受信電力最大のパスのタイミング  $t_k$  と1つのパスタイミング  $t_1$  の組に対応して、その前に設定される $2t_1-t_k$  のタイミングの逆拡散希望信号を出力する相関器とパスタイミング  $t_1$  の逆拡散希望信号を出力する相関器の、2つの出力を重み付け加算する部分の構成を示し、全部でN個のパスタイミングに対応してこのような回路が(N-1)組存在することになる。

【0105】図16は(7)式の重み係数に対応する回路である。(7)式の分母は受信全電力を表わし、これはA/D変換信号の電力平均部46による平均値に相当する。その平均値は逆数変換部47によって逆数とされ、乗算器49に入力される。

【0106】一方(7)式の分子の $\alpha$ はパスタイミング  $t_1$  チャネル推定値に相当し、その共役複素数が求めら れた後に $\beta$ 、すなわちパスタイミング  $t_k$  チャネル推定

-9-

値と乗算器48によって乗算され、乗算結果の複素数と 逆数変換部47の出力する実数とが乗算器49によって 乗算され、更に乗算器50によって実数のある定数と乗 算され、符号が逆にされたものが(7)式のwとして乗 算器51に与えられる。

【0107】乗算器50に与えられる定数は、現在対象 としているパスの全電力とチャネル推定に用いた信号電 力の比に関連するとともに、A/D変換以降の回路処理 相当分にあたるものを補正するためのものである。なお 第7の実施形態ではチャネル推定は重み付け合成部43 10 によって行われるものとする。

【0108】パスタイミング ti 逆拡散希望信号は逆拡 散タイミング ti に対応する相関器の出力信号であり、

(1) 式の v A に相当する。一方パスタイミング 2 t 1 - tk 逆拡散希望信号 (2 t1 - tk はパスのタイミン グではないが、便宜上このように書く。) は同様にこの タイミングにおける逆拡散に相当する相関器の出力であ り、(2) 式の v<sub>A</sub> 'に相当する。(3) 式で説明した ように v A ' に重み係数wが乗算器 5 1 によって乗算さ れ、その結果とVAが加算器52によって加算されるこ 20 とにより、この合成結果が重み付け合成部43から信号 合成部44に与えられる。この時、パスタイミングti のチャネル推定値も信号合成部44に与えられる。

【0109】前述のように信号合成部44に対しては、 サーチャによって検出されたパスタイミングt1~tm のN個のうちで、受信電力最大のパスのタイミングtk と任意のパスタイミングとの間で干渉抑圧のための新し\*

$$P_{AD} = (|\alpha|^2 + |\beta|^2) I^2 + N^2$$

ここで I<sup>2</sup> は (5) 式に関連して説明したように、1つ す。

【0113】チャネル推定用逆拡散信号、すなわち相関※

$$PcH = |\alpha|^2 S^2$$

チャネル推定用逆拡散信号、すなわち相関器の出力信号 の平均電力は次式によって与えられる。

$$P_{DS} = |\alpha|^2 S^2 + |\beta|^2 I^2 + N^2$$

なお、これらの数式においては拡散倍数などの回路演算 の補正はすでに行われたものとしている。最終的に算出 したい実数はS2 / I2 であり、次式によって与えられ☆

$$\frac{S^2}{I^2} = \frac{P_{CH}}{P_{AD} - P_{DS} + P_{CH}}$$

【0117】図19は以上で説明した実数値の算出回路 の構成ブロック図である。同図において、A/D変換信 号としての複素数の絶対値の2乗が絶対値2乗部55に よって取られ、電力平均部56によって電力平均され、 実数としてのPADが求められる。

【0118】またチャネル推定用逆拡散信号、すなわち 相関器の出力としての複素数の絶対値の2乗が絶対値2 乗部57によって取られ、電力平均部58によって電力 50

\*い逆拡散タイミングが設定され、そのタイミングと前述 の任意のタイミングとの逆拡散信号の重みづけ加算が行 われ、全部でN-1個の重み付け合成結果が入力される と共に、電力最大のパスのタイミングにおける相関器の 出力としての逆拡散信号が直接入力され、それらの合成 が行われて、復調信号が出力される。

18

【0110】図17は図16と同様に重み付け合成部4 3の構成を示す。図17では、乗算器50に与えられる 定数(実数)が送信側からの通知情報として得られる点 だけが異なっている、図16においては対象となってい るパスの全電力とパネル推定に用いた信号電力の比が例 えば固定値、またはほぼ一定であるようなシステムを対 象としているのに対して、図17では、例えば携帯電話 などの移動端末において、基地局側からこのような情報 が制御チャネルを通じて通知される場合に対応する。

【0111】図18も重み付け合成部43の構成を示 し、例えば図16で乗算器50に与えられるている定数 (実数) が受信機側で算出される点が異なっている。こ こで受信機側での定数としての実数の算出について説明 する。前述のようにα, βを伝搬路係数として持つ2つ のパスを対象として、1つのパスの全電力とチャネル推 定に用いた信号の電力の比を求める。この計算ではA/ D変換された信号の平均電力PAD、チャネル推定用逆拡 散信号の平均電力Pos、および希望信号成分の電力PcH を用いることにする。

【0112】A/D変換された信号の平均電力Paoは次 式によって与えられる。

$$+ N^2 \qquad (2 0)$$

※器の出力からパイロットパターンをキャンセルして電圧 のパスの全電力を表わし、 $N_2$  は雑音の平均電力を表わ 30 平均した信号の電力PcHは、チャネル推定に用いられた 信号の平均電力をS<sup>2</sup> として次式で与えられる。

[0114]

(21)

 $\bigstar$  [0115]

(22)

☆る。

[0116]

【数12】

(23)

平均され、実数としてPosが求められる。

【0119】更にチャネル推定用逆拡散信号としての複 素数から、パイロットパターンキャンセル部59によっ てパイロットパターンがキャンセルされ、電圧平均部6 0によって電圧平均が求められ、その絶対値の2乗が絶 対値2乗部61によって求められ、実数としてのPcnが 求められる。

【0120】減算器62と63によってPanーPos+P

снが求められ、逆数変換部 6 4 によって逆数が取られ、 乗算器65によって絶対値2乗部61の出力としてのP CHとの乗算が行われて実数値が算出される。

19

【0121】以上において本発明の実施形態について詳 細に説明したが、その中で例えばチャネル推定について はQPSK方式を例にとって説明した。しかしながら、 本発明のレイク受信機における干渉抑圧方式はQPSK 変調方式に限定されることなく、直接拡散(DS)方式 のスペクトラム拡散通信システムであれば、どのような 変換方式をとる場合にも適用可能であることは当然であ 10

【0122】 (付記1) スペクトラム拡散通信システム を構成するレイク受信機において、マルチパスのパスタ イミングを検出するパスタイミング検出手段と、該検出 されたパスタイミングを逆拡散のタイミングとして設定 するとともに、任意の2つのパスのタイミングの間の遅 延時間分だけ、該2つのパスのうち一方のパスのタイミ ングを中心として、他方のパスタイミングと時間軸上で 対称の位置にある2つのタイミングを逆拡散のタイミン グとして、2つのパスの組合わせの全てに対して設定す る逆拡散タイミング設定手段と、該設定された各タイミ ングに対応して受信信号の逆拡散信号をそれぞれ求める 複数の相関器手段と、骸複数の相関器手段の出力を合成 する信号合成手段とを備えることを特徴とするレイク受 信機。

【0123】(付記2)前記レイク受信機が送信側から 既知信号を含む信号を受信すると共に、該既知信号と前 記信号合成手段による合成後の信号との2乗平均エラー を最小とするアルゴリズムを用いて信号合成用の重み係 数を生成する重み係数生成手段を更に備え、前記信号合 30 成手段が、該重み係数を用いて前記複数の相関器手段の 出力の重み付け合成を行うことを特徴とする付記1記載 のレイク受信機。

【0124】(付記3)前記逆拡散タイミングを設定手 段が、前記検出されたパスのタイミングと、前記2つの パスの組合わせの全てに対するそれぞれ2つのタイミン グとに加えて、以上の全てのタイミングの前後数チップ 以内の位置のそれぞれ複数のタイミングを逆拡散タイミ ングとして設定することを特徴とする付記1、または2 記載のレイク受信機。

【0125】(付記4)前記逆拡散タイミング設定手段 が、前記検出されたパスのタイミングと、前記2つのパ スの組合わせの全てに対するそれぞれ2つのタイミング とに加えて、前記2つのパスの組合わせの全てに対し て、前記一方のパスのタイミングを起点として、他方の パスのタイミングと逆の方向に前記遅延時間分の2倍以 上の整数倍の距離にある1個以上のタイミングを逆拡散 タイミングとしてそれぞれ設定することを特徴とする付 記1、または2記載のレイク受信機。

を構成するレイク受信機において、マルチパスのパスタ イミングを検出するパスタイミング検出手段と、該検出 されたパスタイミングを逆拡散のタイミングとして設定 するとともに、任意の2つのパスのタイミング間の遅延 時間分だけ、該2つのパスのうちの一方のパスのタイミ ングを中心として、他方のパスタイミングと時間軸上で 対称の位置にある2つのタイミングを逆拡散のタイミン グとして、2つのパスの組合わせの全てに対して設定す る逆拡散タイミング設定手段と、該設定された各タイミ ングに対応して受信信号の逆拡散信号をそれぞれ求める 複数の相関器手段と、該複数の相関器手段の出力する逆 拡散信号の干渉成分の相関を求め、該相関を無くすため の変換行列を生成する変換行列生成手段と該生成された 変換行列を用いて、前記複数の相関器手段の出力を合成 する信号合成手段とを備えることを特徴とするレイク受 信機。

【0127】(付記6)スペクトラム拡散通信システム を構成するレイク受信機において、マルチパスのパスタ イミングと、受信電力最大のパスタイミングとを検出す るパスタイミング検出手段と、該検出されたパスタイミ ングを逆拡散のタイミングとして設定するとともに、任 意のパスと受信電力最大のパスとの2つのパスのタイミ ングの間の遅延時間分だけ、該任意のパスのタイミング を中心として、受信電力最大のパスタイミングと時間軸 上で対称の位置にあるタイミングを逆拡散のタイミング として、受信電力最大のパスを除く任意のパスと受信電 力最大のパスとの組合わせの全てに対して設定する逆拡 散タイミング設定手段と、該設定された各タイミングに 対応して受信信号の逆拡散信号をそれぞれ求める複数の 相関器手段と、該複数の相関器手段の出力を合成する信 号合成手段とを備えることを特徴とするレイク受信機。 【0128】(付記7)スペクトラム拡散通信システム を構成するレイク受信機において、マルチパスのパスタ イミングと、受信電力最大のパスタイミングとを検出す。 るパスタイミング検出手段と、該検出されたパスタイミ ングを逆拡散のタイミングとして設定するとともに、任 意のパスと受信電力最大のパスとの2つのパスのタイミ ングの間の遅延時間分だけ、該任意のパスのタイミング を中心として、受信電力最大のパスのタイミングと時間 軸上で対称の位置にあるタイミングを逆拡散のタイミン グとして、受信電力最大のパスを除く任意のパスと受信 電力最大のパスとの組合わせの全てに対して設定する逆 拡散タイミング設定手段と、該設定された各タイミング に対応して受信信号の逆拡散信号をそれぞれ求める複数 の相関器手段と、前記任意のパスのタイミングと前記対 称の位置にあるタイミングとに対応する2つの相関器手 段の出力の重み付け合成を、前記組合わせの全てに対し て実行する重み付け合成手段と、該重み付け合成手段の 重み付け合成結果の全てと前記受信電力最大のパスのタ 【0126】(付記5)スペクトラム拡散通信システム 50 イミングに対応する相関器手段の出力とを合成する信号

合成手段とを備えることを特徴とするレイク受信機。

【0129】(付記8)前記重み付け合成手段が、前記任意のパスと受信電力最大のパスとのチャネル推定値、送信側から受信した信号のA/D変換結果、およびチャネル推定用信号と1つのパスの信号との電力比を表わす定数を用いて、前記対称の位置にあるタイミングに対応する相関器手段の出力に乗ずべき重み係数を求める重み係数算出手段を更に備えることを特徴とする付記7記載のレイク受信機。

【0130】(付記9)前記重み係数算出手段が、前記 10 定数の値として送信側から通知される値を用いることを特徴とする付記8記載のレイク受信機。(付記10)前記重み係数算出手段が、前記A/D変換結果の信号の平均電力、逆拡散によって求められるべき希望信号成分の電力、およびチャネル推定用逆拡散信号の平均電力を用いて計算される値を前記定数の値として用いることを特徴とする付記8記載のレイク受信機。

#### [0131]

【発明の効果】以上詳細に説明したように、マルチパス 環境におけるスペクトラム拡散通信において、マルチパ 20 スのタイミングで逆拡散した信号に含まれる干渉成分を 抑圧した復調信号を得ることが可能となり、受信信号の 信号品質が向上し、スペクトラム拡散通信の実用性の向 上に寄与するところが大きい。

#### 【図面の簡単な説明】

【図1】本発明のレイク受信機の原理構成ブロック図である。

【図2】逆拡散のタイミングに対して遅れて到着した信号に対する逆拡散の説明図である。

【図3】逆拡散タイミングのずれによる干渉成分の発生 30 を説明する図である。

【図4】本発明の第1の実施形態における復調器の構成 ブロック図である。

【図5】第1の実施形態における逆拡散タイミング制御 部の動作の説明図である。

【図 6】 サーチャによるパスタイミング検出処理のフローチャートである。

【図7】第2の実施形態における復調器の構成プロック図である。

【図8】第2の実施形態における逆拡散タイミング制御 40 部の動作説明図である。

【図9】第3の実施形態における逆拡散タイミング制御 部の動作説明図である。

【図10】第4の実施形態における逆拡散タイミング制 御部の動作説明図である。 【図11】第5の実施形態における復調器の構成プロック図である。

【図12】雑音・干渉の相関行列生成動作の説明図である。

【図13】相関行列対角化・変換行列生成処理のフローチャートである。

【図14】第6の実施形態における復調器の構成ブロック図である。

【図15】第7の実施形態における復調器の構成ブロック図である。

【図16】重み付け合成部の第1の例の構成ブロック図である。

【図17】重み付け合成部の第2の例の構成プロック図である。

【図18】重み付け合成部の第3の例の構成プロック図である。

【図19】受信機側での定数算出回路の構成ブロック図である。

【図20】レイク受信機の従来例の全体構成を示すプロック図である。

【図21】復調器の従来例の構成を示すブロック図である。

【図22】復闢器の他の従来例としてのMMSE受信機の構成例を示す図である。

【図23】マルチパス干渉の説明図である。

#### 【符号の説明】

- 1 レイク受信機
- 2 パスタイミング検出手段
- 3 逆拡散タイミング設定手段
- NO 4 相関器手段:
  - 5 信号合成手段
  - 11 サーチャ
  - 12, 21, 22, 23 逆拡散タイミング制御部
  - 13 拡散符号発生器
  - 14 相関器
  - 15 遅延制御部
  - 16.44 信号合成部
  - 20 最大パス検出部
  - 26 雑音・干渉の相関行列生成部
  - 27 相関行列対角化・変換行列生成部
  - 28 変換行列による入力信号変換および最大比合

成部

- 40 MMSE重み係数生成器
- 41 重み付け信号合成部
- 43 重み付け合成部

[図1]

## 本免明のレイク受信機の原理構成プロック図



【図3】

逆拡散タイミングのずれによる干渉成分の 発生も説明する図



h社パスAとパスBの発展知識だけ逆拡散がずれた時の相関値 bgはパスAとパスBの逆域問題の2倍逆拡散がずれた時の相関値

[図8]

第2の実施形態における逆拡散9イミング制御部の 動作説明図



【図2】

### 逆拡散のタイミングに対して遅れて列着い。 信号に対する逆拡散の説明図



受信信号と遊鉱教育号の相関を取ることで遊鉱教を行う。 受信信号が5チップ連盟している為に正しく遊鉱教されない。

【図4】

本発明の第1の実施形態における復調器の 横成プロック図



【図9】

第3の実施形態における逆拡散タイミング制御部の 動作説明園



【図5】

【図6】

【図12】

雑音・干渉の 相関行列生成動作の説明図

第1の実施形態における 逆拡散タイミング制御部の動作の説明園



サーチャによるパスタイミング 検出処理のフローチャート



【図7】

【図10】

第2の実施形態における復調器の構成プロック団



第4の実施形態における 逆拡散タミング制御部の動作説明因



図11】

## 第5の実施形態における復調器の構成プロック図



【図13】

# 相関行列対角化・変換行列生成処理のフローチャート



【図14】

#### 第6の実施形態における復調器の構成プロック図



【図15】

## 第7の実施形態にかける復調器の構成プロック図



【図16】

## 重ね付け合成部の第1の例の構成ブロック図



【図17】

## 重み付け合成部の第2の例の構成プロック図



[図18]

重み付け合成部の第3の例の構成ブロック図



【図20】

## レイク受信機の従来例の全体構成を示すブロック図



【図19】

## 受信機関での定数算出回路の構成ブロック図



【図21】

## 復調器の従来例の構成を示すブロック図



【図23】

#### マルチパス干渉の説明图



## 【図22】

# 復調器の他の従来例といる MMSE 受信機の 構成例も示す図



フロントページの続き

F ターム(参考) 5K022 EE02 EE31 EE35 5K067 AA02 CC10 CC24 DD25