Allele

JK

2019 9 27

BRCA result

- BRCA1 mutation: Positive p.Glu649Ter (c.1945G>T)
- Variant allele frequency 63.84%
- Tumor cell percentage: 70%
- BRCA negative in blood sample

Question

Is it possible 64% allele frequency of somatic mutation?

JK Allele 2019 9 27 3 / 16

Variant allele frequency in clinical tumor sample

Variant allele frequency in clinical tumor sample

- Germline vs somatic
- Tumor cell proportion
- Copy number
- Loss of heterozygosity

Germline variant, Two copy, Heterozigosity, Tumor cellularity 25%

6/16

Germline variant, One copy, LOH, Tumor cellularity 100%

Allele frequency 100% hetero germline variant

JK Allele 2019 9 27 7/16

Allele frequency in Somatic vs Germline in tumor only sample¹

Allele frequency in Somatic vs Germline in tumor only sample

- BRCA1 mutation: Positive p.Glu649Ter (c.1945G>T)
- Variant allele frequency 63.84%
- Tumor cell percentage: 70%

Allele frequency¹

$$AF_{germline} = \frac{pV + 1 - p}{pC + 2(1 - p)} \ AF_{somatic} = \frac{pV}{pC + 2(1 - p)}$$

- Given copy number (C)
- Variant allele count (V)
- Sample purity (p)
- Variant status (somatic or germline)

JK Allele 2019 9 27

10 / 16

Table of expected mutational allele frequencies¹

сору	LOH	status of	p: sample purity																				
number	status	variant	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
		V=0 germline	50	49	47	46	44	43	41	39	38	35	33	31	29	26	23	20	17	13	9	5	0
C=1	LOH	V=1 somatic	0	3	5	8	11	14	18	21	25	29	33	38	43	48	54	60	67	74	82	90	100
		V=1 germline	50	51	53	54	56	57	59	61	63	65	67	69	71	74	77	80	83	87	91	95	100
	LOH	V=0 germline	50	48	45	43	40	38	35	33	30	28	25	23	20	18	15	13	10	. 8	. 5	3	. 0
		V=2 somatic	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
C=2		V=2 germline	50	53	55	58	60	63	65	68	70	73	75	78	80	83	85	88	90	93	95	98	100
					-	-																	
	het	V=1 somatic	0	3	5	8	10	13	15	18	20	23	25	28	30	33	35	38	40	43	45	48	50
		V=1 germline	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
		V=0 germline	50	46	43	40	36	33	30	28	25	22	20	18	15	13	11	9	7	5	3	2	0
	LOH	V=0 germine V=3 somatic	0	7	14	21	27	33	39	45	50	55	60	65	69	74	78	82	86	89	93	97	100
		V=3 somatic V=3 germline	50	54	57	60	64	67	70	72	75	78	80	82	85	87	89	91	93	95	97	98	100
		v-5 germine	30	34	37	00	04	67	70	12	/3	70	00	02	03	0/	03	31	93	33	31	30	100
C=3	het	V=1 somatic	0	2	5	7	9	11	13	15	17	18	20	22	23	25	26	27	29	30	31	32	33
		V=1 germline	50	49	48	47	45	44	43	43	42	41	40	39	38	38	37	36	36	35	34	34	33
		V=2 somatic	0	5	10	14	18	22	26	30	33	37	40	43	46	49	52	55	57	60	62	64	67
		V=2 germline	50	51	52	53	55	56	57	57	58	59	60	61	62	62	63	64	64	65	66	66	67
		-																					
		V=0 germline	50	45	41	37	33	30	27	24	21	19	17	15	13	11	9	7	. 6	4	3	. 1	. 0
	LOH	V=4 somatic	0	10	18	26	33	40	46	52	57	62	67	71	75	79	82	86	89	92	95	97	100
		V=4 germline	50	55	59	63	67	70	73	76	79	81	83	85	88	89	91	93	94	96	97	99	100
	het	V=1 somatic	0	2	5	7	8	10	12	13	14	16	17	18	19	20	21	21	22	23	24	24	25
C=4		V=1 germline	50	48	45	43	42	40	38	37	36	34	33	32	31	30	29	29	28	27	26	26	25
		V=3 somatic	0	7	14	20	25	30	35	39	43	47	50	53	56	59	62	64	67	69	71	73	75
		V=3 germline	50	52	55	57	58	60	62	63	64	66	67	68	69	70	71	71	72	73	74	74	75

JK Allele 2019 9 27 11 / 16

Limited information

- What we know
 - Tumor cell percentage
 - Variant allele frequency
- What we don't know
 - Copy number
 - LOH

Error

- Tumor cell percentage
- Allele frequency

 $Allele frequency \not\approx Read count$

JK Allele 2019 9 27 13/16

Allele frequency in Somatic vs Germline in tumor only sample

- BRCA1 mutation: Positive p.Glu649Ter (c.1945G>T)
- Variant allele frequency 63.84%
- Tumor cell percentage: 70% -> 80%

$$AF_{somatic} = \frac{pV}{pC + 2(1-p)} = 0.67$$

JK Allele 2019 9 27 14 / 16

BRCA somatic mutation with LOH²

Table 3 BRCA1/2 Defects in the COBRA Cohort

ID	Histology	Gene	cDNA change*†	Amino acid change [‡]	Т%	VAF tumor	VAF normal	LOH wild-type allele
Germline v	ariants							
p18	HGSC	BRCA1	c.1881C>G [§]	p.Val627 =	70	0.80	NA	Yes
p32	HGSC	BRCA1	c.2685_2686delAA	p.Pro897fs	85	0.98	NA	Yes
p56	HGSC	BRCA1	c.5277+1G>A	p.?	80	0.74	NA	Yes
p30	HGSC	BRCA2	c.4576dupA	p.Thr1526fs	80	0.97	0.48	Yes
p62	HGSC	BRCA2	c.5117A>C§	p.Asn1706Thr	80	0.54	NA	No
CNV-MLPA,	germline							
p41	HGSC	BRCA1	Deletion of exon 22	p.?	30	NAP	NAP [¶]	Yes
Somatic va	riants							
p24	HGSC	BRCA1	c.3718C>T	p.Gln1240*	80	0.76	Not present	Yes
p11	HGSC	BRCA1	c.3858_3861delTGAG	p.Ser1286fs	70	0.56	Not present	Yes
p52 **	HGSC	BRCA1	c.4868C>G [§]	p.Ala1623Gly	40	0.37	Not present	Yes ^{††}
p39	HGSC	BRCA1	c.5366C>T§	p.Ala1789Val	95	0.65	Not present	Uncertain
p12	HGSC	BRCA2	c.209_210delCT	p.Ser70fs	70	0.82	QCF	Yes
MS-MLPA								
p7	HGSC	BRCA1	Promoter hypermethylation	p.?	80	NAP	NA	Uncertain
p15	HGSC	BRCA1	Promoter hypermethylation	p.?	35	NAP	NA	Yes
p17	HGSC	BRCA1	Promoter hypermethylation	p.?	80	NAP	NA	Yes
p23	HGSC	BRCA1	Promoter hypermethylation	p.?	85	NAP	NAP	Yes
p25	HGSC	BRCA1	Promoter hypermethylation	p.?	70	NAP	NAP	Yes
p36	HGSC	BRCA1	Promoter hypermethylation	p.?	95	NAP	NAP	Yes
p58	HGSC	BRCA1	Promoter hypermethylation	p.?	70	NAP	NA	Uncertain
p59	HGSC	BRCA1	Promoter hypermethylation	p.?	70	NAP	NA	Uncertain

All variants had a coverage well above 100 reads, reaching >1000 reads in 10 of 11 cases (91%).

^{*}Only class 3 (variant of unknown significance), class 4 (likely pathogenic), and class 5 (pathogenic) variants are reported.

[†]Reference sequences: NM_007294.3 for BRCA1 and NM_000059.3 for BRCA2.

†NP_009225.1 for BRCA1 and NP_000059.3 for BRCA2.

[§]Variant of unknown significance.

CNV-MLPA not performed on normal DNA sample.

DNA concentration too low to perform MS-MLPA.

**Not enough tumor to perform CNV-MLPA.

References

- 1. Sun, J.X., He, Y., Sanford, E., Montesion, M., Frampton, G.M., Vignot, S., Soria, J.-C., Ross, J.S., Miller, V.A., Stephens, P.J., et al. (2018). A computational approach to distinguish somatic vs. Germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal. PLOS Computational Biology *14*, e1005965.
- 2. Jonge, M.M. de, Ruano, D., Eijk, R. van, Stoep, N. van der, Nielsen, M., Wijnen, J.T., Haar, N.T. ter, Baalbergen, A., Bos, M.E.M.M., Kagie, M.J., et al. (2018). Validation and Implementation of BRCA1/2 Variant Screening in Ovarian Tumor Tissue. The Journal of Molecular Diagnostics 20, 600–611.

JK Allele 2019 9 27 16 / 16