Matrix Transformation

Linear Algebra

Matrix Transformations

• Matrix Transformations are special class of **functions** that arise from a matrix multiplication.

What is a function?

 A function is a rule that associates with each element of a set A one and only one element in a set B.

 Generally, the domain and codomain of a function are sets of real numbers.

 But in Matrix Algebra, we will consider the functions for which the domain is Rⁿ and the codomain is R^m for some positive integers m and n.

Definition of Matrix Transformation

DEFINITION 1 If f is a function with domain R^n and codomain R^m , then we say that f is a *transformation* from R^n to R^m or that f *maps* from R^n to R^m , which we denote by writing

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

In the special case where m = n, a transformation is sometimes called an *operator* on \mathbb{R}^n .

Matrix Transformation

$$w_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}$$

$$w_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$w_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$$

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\mathbf{w} = A\mathbf{x}$$

 $T_A: \mathbb{R}^n \to \mathbb{R}^m$ (Matrix Transformation)

► EXAMPLE 1 A Matrix Transformation from R⁴ to R³

The transformation from R^4 to R^3 defined by the equations

$$w_1 = 2x_1 - 3x_2 + x_3 - 5x_4$$

$$w_2 = 4x_1 + x_2 - 2x_3 + x_4$$

$$w_3 = 5x_1 - x_2 + 4x_3$$

can be expressed in matrix form as

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

• For e.g., if $x = [1 -3 0 2]^T$

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = T_A(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & -3 & 1 & -5 \\ 4 & 1 & -2 & 1 \\ 5 & -1 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 8 \end{bmatrix}$$

EXAMPLE 2 Zero Transformations

If 0 is the $m \times n$ zero matrix, then

$$T_0(\mathbf{x}) = 0\mathbf{x} = \mathbf{0}$$

so multiplication by zero maps every vector in \mathbb{R}^n into the zero vector in \mathbb{R}^m . We call T_0 the **zero transformation** from \mathbb{R}^n to \mathbb{R}^m .

EXAMPLE 3 Identity Operators

If I is the $n \times n$ identity matrix, then

$$T_I(\mathbf{x}) = I\mathbf{x} = \mathbf{x}$$

so multiplication by I maps every vector in \mathbb{R}^n to itself. We call T_I the *identity operator* on \mathbb{R}^n .

Properties of Matrix Transformations

THEOREM 1.8.1 For every matrix A the matrix transformation $T_A: \mathbb{R}^n \to \mathbb{R}^m$ has the following properties for all vectors \mathbf{u} and \mathbf{v} and for every scalar k:

- (a) $T_A(0) = 0$
- (b) $T_A(k\mathbf{u}) = kT_A(\mathbf{u})$ [Homogeneity property]
- (c) $T_A(\mathbf{u} + \mathbf{v}) = T_A(\mathbf{u}) + T_A(\mathbf{v})$ [Additivity property]
- (d) $T_A(\mathbf{u} \mathbf{v}) = T_A(\mathbf{u}) T_A(\mathbf{v})$

THEOREM 1.8.2 $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation if and only if the following relationships hold for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n and for every scalar k:

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ [Additivity property]
- (ii) $T(k\mathbf{u}) = kT(\mathbf{u})$ [Homogeneity property]
- Matrix Transformation = Linear Transformation

In Exercises 1–2, find the domain and codomain of the transformation $T_A(\mathbf{x}) = A\mathbf{x}$.

1. (a) A has size 3×2 .

(b) A has size 2×3 .

(c) A has size 3×3 .

(d) A has size 1×6 .

2. (a) A has size 4×5 .

(b) A has size 5×4 .

(c) A has size 4×4 .

(d) A has size 3×1 .

1a. $T_A(x) = Ax$ maps any vector **x** in R^2 into a vector **w** = Ax in R^3 .

Domain = R^2 , codomain = R^3 ,

2b. Domain = R^4 , codomain = R^5 ,

In Exercises 3-4, find the domain and codomain of the transformation defined by the equations.

3. (a)
$$w_1 = 4x_1 + 5x_2$$
 (b) $w_1 = 5x_1 - 7x_2$ $w_2 = x_1 - 8x_2$ $w_2 = 6x_1 + x_2$

$$w_1 = 4x_1 + 5x_2$$
 (b) $w_1 = 5x_1 - 7x_2$
 $w_2 = x_1 - 8x_2$ $w_2 = 6x_1 + x_2$
 $w_3 = 2x_1 + 3x_2$

4. (a)
$$w_1 = x_1 - 4x_2 + 8x_3$$
 (b) $w_1 = 2x_1 + 7x_2 - 4x_3$
 $w_2 = -x_1 + 4x_2 + 2x_3$ $w_2 = 4x_1 - 3x_2 + 2x_3$
 $w_3 = -3x_1 + 2x_2 - 5x_3$

$$w_1 = x_1 - 4x_2 + 8x_3$$
 (b) $w_1 = 2x_1 + 7x_2 - 4x_3$
 $w_2 = -x_1 + 4x_2 + 2x_3$ $w_2 = 4x_1 - 3x_2 + 2x_3$
 $w_3 = -3x_1 + 2x_2 - 5x_3$

3b. Domain = R^2 , codomain = R^3

In Exercises 5-6, find the domain and codomain of the transformation defined by the matrix product.

5. (a)
$$\begin{bmatrix} 3 & 1 & 2 \\ 6 & 7 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & -1 \\ 4 & 3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

(b)
$$\begin{bmatrix} 2 & -1 \\ 4 & 3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

6. (a)
$$\begin{bmatrix} 6 & 3 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & 1 & -6 \\ 3 & 7 & -4 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

5b. domain = R^2 , codomain = R^3

In Exercises 7–8, find the domain and codomain of the transformation T defined by the formula. <</p>

7. (a)
$$T(x_1, x_2) = (2x_1 - x_2, x_1 + x_2)$$

(b)
$$T(x_1, x_2, x_3) = (4x_1 + x_2, x_1 + x_2)$$

8. (a)
$$T(x_1, x_2, x_3, x_4) = (x_1, x_2)$$

(b)
$$T(x_1, x_2, x_3) = (x_1, x_2 - x_3, x_2)$$

7b. Domain = R^2 , codomain = R^2

8a. Domain = R^4 , codomain = R^2

In Exercises 9–10, find the domain and codomain of the transformation T defined by the formula.

$$9. \ T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 4x_1 \\ x_1 - x_2 \\ 3x_2 \end{bmatrix} \quad 10. \ T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 - x_3 \\ 0 \end{bmatrix}$$

9.Domain = R^2 , codomain = R^3

Standard Matrix

• Every m × n matrix A produces exactly one matrix transformation (multiplication by A)

• Every matrix transformation from Rⁿ to R^m arises from exactly one m × n matrix.

• So, there is a one-to-one correspondence between m × n matrices and matrix transformations from Rn to Rm.

• we call that m x n matrix the standard matrix for the transformation.

EXAMPLE 6 Finding a Standard Matrix

Rewrite the transformation $T(x_1, x_2) = (3x_1 + x_2, 2x_1 - 4x_2)$ in column-vector form and find its standard matrix.

Solution

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + x_2 \\ 2x_1 - 4x_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Thus, the standard matrix is

$$\begin{bmatrix} 3 & 1 \\ 2 & -2 \end{bmatrix}$$

▶ In Exercises 11–12, find the standard matrix for the transformation defined by the equations.

11. (a)
$$w_1 = 2x_1 - 3x_2 + x_3$$
 (b) $w_1 = 7x_1 + 2x_2 - 8x_3$ $w_2 = 3x_1 + 5x_2 - x_3$ $w_2 = -x_2 + 5x_3$

$$w_1 = 7x_1 + 2x_2 - 8x_3$$

$$w_2 = -x_2 + 5x_3$$

$$w_3 = 4x_1 + 7x_2 - x_3$$

12. (a)
$$w_1 = -x_1 + x_2$$

 $w_2 = 3x_1 - 2x_2$
 $w_3 = 5x_1 - 7x_2$

(b)
$$w_1 = x_1$$

 $w_2 = x_1 + x_2$
 $w_3 = x_1 + x_2 + x_3$
 $w_4 = x_1 + x_2 + x_3 + x_4$

 Find the standard matrix for the transformation T defined by the formula.

(a)
$$T(x_1, x_2) = (x_2, -x_1, x_1 + 3x_2, x_1 - x_2)$$

(b)
$$T(x_1, x_2, x_3, x_4) = (7x_1 + 2x_2 - x_3 + x_4, x_2 + x_3, -x_1)$$

(c)
$$T(x_1, x_2, x_3) = (0, 0, 0, 0, 0)$$

(d)
$$T(x_1, x_2, x_3, x_4) = (x_4, x_1, x_3, x_2, x_1 - x_3)$$

13a.

$$T(x_1, x_2) = \begin{bmatrix} x_2 \\ -x_1 \\ x_1 + 3x_2 \\ x_1 - x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \text{ the standard matrix is } \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 3 \\ 1 & -1 \end{bmatrix}$$

15. Find the standard matrix for the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$w_1 = 3x_1 + 5x_2 - x_3$$

$$w_2 = 4x_1 - x_2 + x_3$$

$$w_3 = 3x_1 + 2x_2 - x_3$$

and then compute T(-1, 2, 4) by directly substituting in the equations and then by matrix multiplication.

standard matrix for this operator is
$$\begin{bmatrix} 3 & 5 & -1 \\ 4 & -1 & 1 \\ 3 & 2 & -1 \end{bmatrix}$$
.

By directly substituting (-1,2,4) for (x_1,x_2,x_3) into the given equation we obtain

$$w_1 = -(3)(1) + (5)(2) - (1)(4) = 3$$

$$w_2 = -(4)(1) - (1)(2) + (1)(4) = -2$$

$$w_3 = -(3)(1) + (2)(2) - (1)(4) = -3$$

By matrix multiplication,
$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 3 & 5 & -1 \\ 4 & -1 & 1 \\ 3 & 2 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} -(3)(1) + (5)(2) - (1)(4) \\ -(4)(1) - (1)(2) + (1)(4) \\ -(3)(1) + (2)(2) - (1)(4) \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -3 \end{bmatrix}.$$

31. Let $T_A: R^3 \to R^3$ be multiplication by

$$A = \begin{bmatrix} -1 & 3 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & -3 \end{bmatrix}$$

and let e_1 , e_2 , and e_3 be the standard basis vectors for \mathbb{R}^3 . Find the following vectors by inspection.

- (a) $T_A(\mathbf{e}_1)$, $T_A(\mathbf{e}_2)$, and $T_A(\mathbf{e}_3)$
- (b) $T_A(\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3)$

(c)
$$T_A(7e_3)$$

(a)
$$T_A(\mathbf{e}_1) = \begin{bmatrix} -1\\2\\4 \end{bmatrix}$$
, $T_A(\mathbf{e}_2) = \begin{bmatrix} 3\\1\\5 \end{bmatrix}$, $T_A(\mathbf{e}_3) = \begin{bmatrix} 0\\2\\-3 \end{bmatrix}$.

(b) Since T_A is a matrix transformation,

$$T_A(\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3) = T_A(\mathbf{e}_1) + T_A(\mathbf{e}_2) + T_A(\mathbf{e}_3) = \begin{bmatrix} -1\\2\\4 \end{bmatrix} + \begin{bmatrix} 3\\1\\5 \end{bmatrix} + \begin{bmatrix} 0\\2\\-3 \end{bmatrix} = \begin{bmatrix} 2\\5\\6 \end{bmatrix}.$$

(c) Since T_A is a matrix transformation, $T_A(7e_3) = 7T_A(\mathbf{e}_3) = 7$ $\begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ 14 \\ -21 \end{bmatrix}$.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or false, and justify your answer.

- (a) If A is a 2 × 3 matrix, then the domain of the transformation T_A is R^2 .
- (b) If A is an $m \times n$ matrix, then the codomain of the transformation T_A is R^n .
- (c) There is at least one linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ for which $T(2\mathbf{x}) = 4T(\mathbf{x})$ for some vector \mathbf{x} in \mathbb{R}^n .
- (d) There are linear transformations from Rⁿ to R^m that are not matrix transformations.
- (e) If T_A: Rⁿ → Rⁿ and if T_A(x) = 0 for every vector x in Rⁿ, then A is the n × n zero matrix.
- (f) There is only one matrix transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $T(-\mathbf{x}) = -T(\mathbf{x})$ for every vector \mathbf{x} in \mathbb{R}^n .
- (g) If b is a nonzero vector in Rⁿ, then T(x) = x + b is a matrix operator on Rⁿ.

Basic Matrix Transformations in R² and R³

Reflection Operators

Some of the most basic matrix operators on R² and R³ are those that map each point into its symmetric image about a fixed line or a fixed plane that contains the origin; these are called **reflection operators**.

Table 1

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix	
Reflection about the x-axis $T(x, y) = (x, -y)$	$T(\mathbf{x})$ (x, y) $(x, -y)$	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, -1)$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	
Reflection about the y-axis T(x, y) = (-x, y)	$(-x, y) \qquad \qquad (x, y)$ $T(\mathbf{x}) \qquad \qquad \mathbf{x}$	$T(\mathbf{e}_1) = T(1, 0) = (-1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$	
Reflection about the line $y = x$ T(x, y) = (y, x)	y = x (y, x) $x = x$ (x, y)	$T(\mathbf{e}_1) = T(1, 0) = (0, 1)$ $T(\mathbf{e}_2) = T(0, 1) = (1, 0)$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	

Table 2

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Reflection about the xy-plane T(x, y, z) = (x, y, -z)	x (x, y, z) y $(x, y, -z)$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, -1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
Reflection about the xz-plane T(x, y, z) = (x, -y, z)	(x, -y, z) (x, y, z) (x, y, z)	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, -1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Reflection about the yz-plane T(x, y, z) = (-x, y, z)	$T(\mathbf{x})$ $(-x, y, z)$ (x, y, z) $(-x, y, z)$	$T(\mathbf{e}_1) = T(1, 0, 0) = (-1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Exercise set 4.9

2. Use matrix multiplication to find the reflection of (a, b) about the

(b) y-axis. (c) line
$$y = x$$
.

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ -b \end{bmatrix}$$

(b)
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -a \\ b \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} b \\ a \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} b \\ a \end{bmatrix}$$

- **4.** Use matrix multiplication to find the reflection of (a, b, c) about the
 - (a) xy-plane. (b) xz-plane. (c) yz-plane.

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ b \\ -c \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ -b \\ c \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} -a \\ b \\ c \end{bmatrix}$

Orthogonal Projection Operators

Matrix operators on R² and R³ that map each point into its orthogonal projection onto a fixed line or plane through the origin are called projection operators.

Table 3

Operator	Illustration	Images of e ₁ and e ₂	Standard Matrix	
Orthogonal projection onto the <i>x</i> -axis $T(x, y) = (x, 0)$	$T(\mathbf{x})$ (x, y)	$T(\mathbf{e}_1) = T(1, 0) = (1, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 0)$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	
Orthogonal projection onto the y-axis $T(x, y) = (0, y)$	$(0, y)$ $T(\mathbf{x})$ X (x, y) X	$T(\mathbf{e}_1) = T(1, 0) = (0, 0)$ $T(\mathbf{e}_2) = T(0, 1) = (0, 1)$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	

Table 4

Operator	Illustration	Images of e ₁ , e ₂ , e ₃	Standard Matrix
Orthogonal projection onto the xy-plane T(x, y, z) = (x, y, 0)	x (x, y, z) y $(x, y, 0)$	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 0)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Orthogonal projection onto the xz -plane T(x, y, z) = (x, 0, z)	$(x, 0, z)$ $T(\mathbf{x})$ x (x, y, z) y	$T(\mathbf{e}_1) = T(1, 0, 0) = (1, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 0, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Orthogonal projection onto the yz-plane T(x, y, z) = (0, y, z)	$T(\mathbf{x})$ $T($	$T(\mathbf{e}_1) = T(1, 0, 0) = (0, 0, 0)$ $T(\mathbf{e}_2) = T(0, 1, 0) = (0, 1, 0)$ $T(\mathbf{e}_3) = T(0, 0, 1) = (0, 0, 1)$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Rotation Operator $R_{ heta}$

Matrix operators on R² and R³ that move points along arcs of circles centered at the origin are called rotation operators.

Example 1: Find the standard matrix for the rotation operator T : $R^2 \rightarrow R^2$ that moves points **counterclockwise** about the origin through a positive angle θ .

Solution: $T(\mathbf{e}_1) = T(1,0) = (\cos \theta, \sin \theta)$ and $T(\mathbf{e}_2) = T(0,1) = (-\sin \theta, \cos \theta)$

the standard matrix for
$$T$$
 is $R_{\theta} = A = [T(\mathbf{e}_1) \mid T(\mathbf{e}_2)] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

Table 5

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the origin through an angle θ	(w_1, w_2) θ (x, y) x	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$	$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

Example 2: Find the image of x = (1, 1) under a rotation of pi/6 radians (=30°)about the origin.

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$R_{\pi/6}\mathbf{x} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}-1}{2} \\ \frac{1+\sqrt{3}}{2} \end{bmatrix} \approx \begin{bmatrix} 0.37 \\ 1.37 \end{bmatrix}$$

Practice Questions:

- 1. Use matrix multiplication to find the reflection of (-1, 2) about the
 - (a) x-axis.
- (b) y-axis.
- (c) line y = x.
- 3. Use matrix multiplication to find the reflection of (2, -5, 3) about the
 - (a) xy-plane.
- (b) xz-plane.
- (c) yz-plane.
- 5. Use matrix multiplication to find the orthogonal projection of (2, -5) onto the
 - (a) x-axis.

- (b) y-axis.
- 7. Use matrix multiplication to find the orthogonal projection of (-2, 1, 3) onto the
 - (a) xy-plane.
- (b) xz-plane.
- (c) yz-plane.
- Use matrix multiplication to find the image of the vector
 (3, -4) when it is rotated about the origin through an angle of
 - (a) $\theta = 30^{\circ}$.

(b) $\theta = -60^{\circ}$.

(c) $\theta = 45^{\circ}$.

(d) $\theta = 90^{\circ}$.

Rotations in R³

Operator	Illustration	Rotation Equations	Standard Matrix
Counterclockwise rotation about the positive x -axis through an angle θ	x x	$w_1 = x$ $w_2 = y \cos \theta - z \sin \theta$ $w_3 = y \sin \theta + z \cos \theta$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$
Counterclockwise rotation about the positive y-axis through an angle θ	x w o y	$w_1 = x \cos \theta + z \sin \theta$ $w_2 = y$ $w_3 = -x \sin \theta + z \cos \theta$	$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$
Counterclockwise rotation about the positive z-axis through an angle θ	x w y	$w_1 = x \cos \theta - y \sin \theta$ $w_2 = x \sin \theta + y \cos \theta$ $w_3 = z$	$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$

- 11. Use matrix multiplication to find the image of the vector (2, -1, 2) if it is rotated
 - (a) 30° clockwise about the positive x-axis.
 - (b) 30° counterclockwise about the positive y-axis.
 - (c) 45° clockwise about the positive y-axis.
 - (d) 90° counterclockwise about the positive z-axis.
- 12. Use matrix multiplication to find the image of the vector (2, -1, 2) if it is rotated
 - (a) 30° counterclockwise about the positive x-axis.
 - (b) 30° clockwise about the positive y-axis.
 - (c) 45° counterclockwise about the positive y-axis.
 - (d) 90° clockwise about the positive z-axis.