Important examples:
1) Any group Gads on itself by left
multiplication: Yg66, a66,
g. a = ga
This is called the left regular action on 6.
2) Any group Gaets on itself by conjugation:
2) Any group Gaets an itself by conjugation: $\forall g \in G, a \in G, dehne g.a = gag^{-1}.$
orbils of Ms action are called canjugacy classes
Len: For a group Gadting on itself by conjugation,
$\forall a \in G$, $ corb_G(a) = G: C_G(a) $.
Pf: From before, lorbG(a) = 16-Cal.
Ga = {ge6: gag^1=a}(= NG(a)) = CG(a). 13
exs 1: Cayloy's Mr. Any group G is isomerphic to a subgroup of So
Pf: Consider the left regular action of G on itself.
The action is faithful, so the pointation representation
e: G-> S6 is injective. By the let 18un. Many
$G = G/\text{kery} \cong \mathcal{C}(G) \in S_G - \mathcal{D}$ (authority) dun't roully need lives)

```
2) Thus: It p 13 the smallest prime # dividing 161, than
    any subgroup of 6 of index p is normal.
  PF: Suppose H = G, [6: H]=p. Let G act on Me
    quotient space 6/H by left multiplication:
        g. (kH) = (gk) H.
    Let \varphi: G \rightarrow S_p be the associated permutation rep.,

(|G|_{H}) = |G: H|_{=p})
     and let K = ker q.
    Suppose gek. Then g.H=gH=H => geH
      Therefore K=H. Note:
          · By the lst isom Mm:
 C/K= 6(Q) => |Q/K| |26|= b;
 K/ Since pm/p! => m/(p-1)!, and since p
          was the snallest prime dividing (G), we have
          Mat m=1, so K=H. (10:K1[161])
        Since K=H is the kernel of a homen, K&G_10
```

```
J Class equation: If 161< and gr, ..., gr be representatives

for the distinct conjugacy closes of condinality greater than 1.

Then: 161=17(6)1+ [-16: Co(g;)].

Pf: Note that ygeG, (Garting on A=6 by conjugation)

100 bo(g)1=1 € g∈7(6).

Also, ygeG,

10rbo(g)1=16: Co(g)]. (laura from before)

Then

161= [-2(6)] + [-16: Co(g;)]. A

BeAVG

1=1
```