Review Session 3

10/13/2017

Corn Remote Connections

- VNC Issues?
- Try X11 Forwarding
 - Windows:
 - PuTTY: http://www.putty.org/
 - Xming: https://sourceforge.net/projects/xming/
 - MAC:
 - XQuartz: https://www.xquartz.org/

Windows: SSH with X11 Forwarding

 Run Xming, then connect to corn through PuTTY

Windows: SSH with X11 Forwarding

Windows: SSH with X11 Forwarding

- In the shell that opens:
 - Log in.

Load virtuoso like usual (as if you are logging

through corn.)

MAC: X11 Forwarding

MAC: X11 Forwarding

- Lunch XQuartz. In a terminal, type:
 - ssh -X corn.stanford.edu -l msawaby

HW3

Submission through Gradescope

Q1: T/F

Q2: ADC Performance

Q3: Switch ON Resistance

Q4: Switch Non-Idealities

Q5: CAD

Q6: Bottom-Plate Sampling

Q2 Hint

- Plot spectrum, get input freq.
- Calculate SNR, SNDR, ENOB, THD: write your own code!
- Part e) the ADC has ideal $\Delta^2/12$ quantization noise. Noise sources are thermal and quantization.

Q3 Review: Tracking Nonlinearity

Q3 Review: Tracking Nonlinearity

Transmission gate

 added pmos, same
 dimensions as nmos

Bootstrapped NMOS

added vdc to set Vgs=Vdd

Q3 Hint

- Simulation using Cadence
- Recall how t-gate works (lecture 5-6, slide 31)
- Recommend to start this problem early in case corn goes down

NMOS || PMOS

100

- Suggestion: plot using Matlab
- Condition to minimize variation?
 - Theory
 - From sims: Ron variation = max(Ron)/min(Ron) (use ron = 1/gds and not ron directly!)
 - No need to re-simulate: scale Ron!

Q4 Review

- Calculate Noise (std deviation of signal), charge injection and clock feedthrough.
- Let's solve this example:

Switched Cap Noise Example

• During Φ_1 after redistribution in Φ_2 :

$$-\frac{kT}{C_1} \left(\frac{C_1}{C_1 + C_2}\right)^2 + \frac{kT}{C_2} \left(\frac{C_2}{C_1 + C_2}\right)^2$$

• During Φ_2 , C_1 and C_2 are in series:

$$-\frac{kT}{\frac{C_{1}C_{2}}{C_{1}+C_{2}}} \left(\frac{C_{1}}{C_{1}+C_{2}}\right)^{2}$$

Adding all we get:

$$-\frac{kT}{C_2}$$

Problem 6

- Hand calculate, then simulate bottom plate sampling circuit
 - Charge injection, Noise, Distortion
 - For NMOS parameters, run DC simulation then plot DC op through (results -> print -> DC Operating Points) then click on the transistor. (or assume: $Cox=10fF/\mu m^2$, Vt=0.6V)
- Noise simulation: pss, pnoise
 - Models as LPTV circuit, gets a result using a single simulation
 - Downside: simulation is slow, because you need so many sidebands (due to high N)

Problem 6

- Can also simulate using .noise
 - One simulation for each phase; add up the powers
 - Simulation files are switch_cap_ckt_noise in ee315 library

 Different capacitances and OTA input-referred noise so these numbers differ from your homework

Schematic

Two Phases

Noise due to switches

Noise due to amplifier and switches

Reference: Murmann, Solid-State Circuits Magazine, 6/2012

Phase 1: Tracking

- Interested in the total noise charge at input to the OTA
- What do we know?
 - Capacitance
 - Voltage
- We will have to calculate the charge ourselves with voltage-controlled voltage sources (VCVS)
- Qtot = Cs*Vs + Cx*Vx + Cf*Vf
 - Vs = voltage across capacitor Cs
 - Cx adds to the total noise charge (Also affects feedback factor!)
- Note: we'll find single-ended noise, then double it to get differential noise

Phase 1: How to measure Qx

- VCVS produces an output equal to:
 - Vout = egain*(V+ V-)
- With egain=C, the output "voltage" is really representing the charge
- Example: voltage across Cs will be vbm-vtm

Phase 1: Switch configuration

 Easily change clock phases from ADE L window

Phase 1: Schematic summary

- Summary so far...
 - We want to sum up the charge at node X
 - To do this, we use VCVS to measure the voltage across each capacitor, and use Q=CV to calculate the charge across that capacitor
- Next
 - Set up the .noise analysis

Phase 1: Tracking

- Design variables copied from the pss/pnoise analysis from before
 - Add "phi1 = 1"
- Noise analysis:
 - Sweep freq 1M-10T
 - Output from /qx to /gnd!
 - No input source

Phase 1: Calculating output noise

- The output from .noise is the charge noise power at node X (units are Coulomb^2/Hz)
 - Cadence thinks the units are V^2/Hz, but it's wrong. Recall we scaled the capacitor voltages by capacitance, so it's really charge noise that we're getting
- V^2 = Q^2 / C^2, so we get output-referred voltage noise using

```
VN2() / pow(VAR("cf") 2)
```

Phase 1: Plotting output noise

Phase 1: Hand calcs

- Recall factor of 2 to get differential noise
- Hand calculation: 1.14 * 10^-7 V^2
- Simulation: 1.20 * 10^-7 V^2

Phase 2: Configuration

- Change variable phi1=0 to put us in phase 2
- Change .noise output to /vod to /gnd! (differential noise)
- Output no longer needs scaling by Cf^2

```
iinteg(VN2())
```

Phase 2: Plotting

Phase 2: Hand calcs

- Hand calculation: 6.6 * 10^-8 V^2
- Simulation: 5.9 * 10^-8 V^2

PSS Simulation

PSS Simulation Setup

Comparison

	Phase 1 noise	Phase 2 noise	Total noise
Hand calculation	1.14e-7	6.6e-8	1.80e-7
Simulation .noise	1.20e-7	5.9e-8	1.79e-7
Simulation .pnoise (500 sidebands)	1.07e-7	5.6e-8	1.63e-7
Simulation .pnoise (2000 sidebands)	1.15E-7	5.6e-8	1.71e-7