COMS21202: Symbols, Patterns and Signals

Lab 4: Maximum Likelihood Estimation

NOTE: You will need to refer to lecture 4 and Matlab help pages to complete this exercise.

1. You believe that your data follows a normal distribution. Assuming the standard deviation (σ) is 0.5, you wish to estimate the mean μ of the normal distribution representing your data. You thus have a model with a single parameter μ you wish to tune/train. Discuss with your lab partner how the likelihood $p(D|\mu)$ for some observations $D = \{d_1, \dots, d_N\}$ can be represented by (assuming independent observations):

$$p(D|\theta) = \prod_{i} \mathcal{N}(d_i|\theta, 0.25)$$

$$= \prod_{i} \frac{2}{\sqrt{2\pi}} e^{-2(d_i - \mu)^2}$$
(2)

$$= \prod_{i} \frac{2}{\sqrt{2\pi}} e^{-2(d_i - \mu)^2} \tag{2}$$

- 2. Use the Maximum Likelihood Estimate (MLE) recipe to find μ_{ML} . [Note: This is done on paper, not using Matlab]
- 3. In this lab, we aim to help you understand MLE by experimenting with different values of μ to find $\mu_{ML} = arg \max_{\mu} p(D|\mu)$.
 - (a) Load the data from file 'data1.dat' and plot a histogram of the data.
 - (b) Write a function *computeLikelihood(mu)* that takes a value of μ (e.g. $\mu = 0$), and computes $p(D|\mu)$ using Equation (2) for the data in 'data1.dat'. Note: Do NOT use a for loop. You may use the matlab function prod in the calculation.
 - (c) Write a function *loopLikelihood()* that loops through possible values of $\mu \in \{0.00, 0.01, 0.02, ..., 1.00\}$, calls computeLikelihood(mu) for each value and stores an array of all likelihood values. You can use a loop for this function.
 - (d) Based on your calculation, what would $\max p(D|\mu)$ be? What would $\arg \max_{\mu} p(D|\mu)$ be?

Discuss: Make sure you understand the difference between the two.

- (e) Plot μ against $p(D|\mu)$ for different μ values. Can you visually spot μ_{ML} .
- (f) Assume you have prior knowledge of what μ_{ML} should be, $p(\mu) = \mathcal{N}(0.5, 0.01)$. Write functions computePosterior(mu) and loopPosterior() to find $\mu_{MAP} = \arg \max_{\mu} p(D|\mu)p(\mu).$
- (g) plot μ against both $p(D|\theta)$ and $p(D|\theta)p(\theta)$ similar to the graph below.

(h) Repeat the above calculations for 'data2.dat' and 'data3.dat' and explain your observations.

EXTRA: Until now, you assumed $\sigma = 0.5$. Remove this assumption and estimate $\theta_{MAP} = [\mu_{MAP}, \sigma_{MAP}]$ experimentally by looping through possible values of μ and σ . Assume the prior probability for $p(\sigma)$ is $\mathcal{N}(0.5, 0.16)$.

EXTRA: Plot (μ, σ) against $p(D|\theta)p(\theta)$ similar to the mesh graph below (use the function meshc in Matlab)

