

Problems on Mean, Median, Mode

Prof. Sarala Mary

Agenda

Formula

Example - Problem on Mean

Example - Problem on Median

Example - Problem on Mode

Formula – To calculate Mean for Grouped data

$$Mean = \overline{X} = \frac{\sum f.x}{\sum f}$$

Example Problem (Mean)

Calculate the mean for the given data:

No. of Defective Bulbs	No. of boxes (f)	Class mark (x)	f.x
0-2	3	1	3
2-4	4	3	12
4-6	5	5	25
6-8	3	7	21
8-10	1	9	9
Total	$\sum (f) = 16$		$\sum (f.x) = 70$

$$Mean = \overline{X} = \frac{\sum f.x}{\sum f}$$

Mean =
$$70/16 = 4.375 \approx 4$$

Formula – To calculate Median for Grouped data

$$Median = L + \left[\frac{\frac{N}{2} - cf}{f}\right]h$$

L - Lower Limit

cf - cumulative frequency of previous class

f - frequency of median class

h - class width

Example Problem (Median)

Calculate the median for the given data:

Class Interval	Frequency (f)	Cumulative Frequency
0-10	5	5
10-20	10	15
20-30	12	27
30-40	15	42
40-50	18	60
Total	$\sum (f) = 60$	

L - Lower Limit

cf - cumulative frequency of previous class

f - frequency of median class

h - class width

$$Median = L + \left[\frac{\frac{N}{2} - cf}{f}\right]h$$

Here N =
$$60$$

N/2 = $60/2 = 30$
L = 30 , cf = 27 , f = 15 , h = 10

After applying the formula **Median =**

Example 2 (Median)

Calculate the Median for the following:

Class Interval	Frequency (f)	Cumulative Frequency
0-20	5	
20-40	8	
40-60	15	
60-80	16	
80-100	6	
Total	\sum (f) =	

$$Median = L + \left[\frac{\frac{N}{2} - cf}{f}\right]h$$

Formula – To calculate Mode for Grouped data

Mode =
$$L + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)h$$

L - Lower Limit

f1 - value of modal class

fo - frequency of previous class

f2 - frequency of next class

h - Class width

Example Problem (Mode)

Calculate the mode for the given data:

Marks	Frequency (f)
0-10	2
10-20	5
20-30	6
30-40	5
40-50	2

L - Lower Limit

f1 - value of modal class

fo - frequency of previous class

f2 - frequency of next class

h - Class width

Mode =
$$L + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)h$$

Here
$$L = 20$$
, $f_0 = 6$, $f_1 = 5$, $f_2 = 5$, $h=10$

Example 3 (Mode)

Calculate the mode for the following:

Class Interval	F-1equency (f)
3-4	1
4-5	7
5-6	28
6-7	78
7-8	84
8-9	45
9-10	28
10-11	7
11-12	2

Mode =
$$L + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)h$$