BLINDSHOP

Progetto di Classificazione di Prodotti del Supermercato con MobileNetV2 e Deployment su Android

Andrea Berti

A.A. 2023-2024

INTRODUZIONE

Il progetto sviluppa un'app Android basata su
MobileNetV2 per riconoscere prodotti da
supermercato tramite la fotocamera e
annunciarne il nome con sintesi vocale,
supportando persone non vedenti.

L'app, ottimizzata per dispositivi mobili, facilita la distinzione tra articoli dalla medesima forma ma tipologia o gusto differenti.

DATASET

- Video Prodotti Supermercato
- Estrazione di Frame dai Video e Creazione del Dataset
- Caricamento e Pre-Processing del Dataset
- Image Augmenting

MODELLO Inverted Residual Block Depthwise Separable Convolutions Add Linears Bottleneck Layers Convolutional DepthWise Convolutional 1x1, 3x3, 1x1, Relu Linear Residuals Connections Bottleneck Bottleneck Input Output Classes Dense Batch Dropout Dense Average Normalization (Relu) (P = 0.5)(Softmax) Pooling Probability Convolutional Inverted Residual Block **Custom Layers** Inverted Residual

Design Efficiente per il Deployment su Dispositivi Mobili Training Efficiente per Macchine con Risorse Computazionali Limitate

TRAINING

- Fixed Feature Extraction
- Fine Tuning
- Categorical Crossentropy
- Adam
- EarlyStopping
- ReduceLROnPlateau
- Risultati dell'addestramento

TESTING

• Accuratezza :
$$\frac{TP+TN}{TP+TN+FP+FN} = 97,69\%$$

• Precisione :
$$\frac{TP}{TP+FP} = 98\%$$

• Recall :
$$\frac{TP}{TP+FN} = 98\%$$

• F1-Score:
$$2 * \frac{Precision*Recall}{Precision+Recall} = 98\%$$

Matrice di Confusione

GRAD-CAM

Gradient-weighted Class Activation Map:

- Predizione ed estrazione delle Feature Maps da ogni Layer osservato
- Calcolo dei gradienti di ogni Feature
 Map
- Global Average Pooling sui gradienti per ogni feature map
- Generazione della Heatmap combinando le Feature Maps ponderate secondo i pesi appena ottenuti
- Normalizzazione e visualizzazione

CONVERSIONE MODELLO

- Conversione modello in TensorFlow Lite
- Quantizzazione
- Testing

DEPLOYEMENT SU ANDROID STUDIO

- CameraX
- Kotlin
- Gestures
- Integrazione TF e Android Studio
 - Importazione del Modello
 - Configurazione delle Dipendenze Gradle
 - Interfaccia Utente
 - Pre-processing e Inferenza

CONCLUSIONE

Il progetto ha dimostrato l'efficacia del transfer learning con MobileNetV2 per la classificazione di immagini su dispositivi mobili a risorse limitate.

L'integrazione di TensorFlow Lite in Android Studio ha consentito lo sviluppo di un'app in grado di eseguire inferenze rapide e accurate, sfruttando anche Gestures e Text-To-Speech per un'interazione fluida ma soprattutto accessibile.

Questo conferma il potenziale delle tecnologie di machine learning in contesti reali su piattaforme mobili.

GRAZIE