Primitivt Algebra Brevkursus

Malte Kildelund Rosenkilde 21/02/23

Disclaimer

Jeg kommer nok til at lave en masse fejl så tag ikke alt som værende helt korrekt. Så stil endeligt spørgsmål hvis der er noget der ser forkert ud eller ikke giver mening. Stave fejl er nok også noget der kommer til at være meget af. Alt jeg ved er fra bogen Abstract Algebra, 3rd Edition af David S. Dummit og Richard M. Foote så læs i den hvis der er brug for bedre kilder.

Del 1 21/2

Det er nok et godt sted at starte med at definere de algebraiske strukture vi kommer til at arbejde med.

Teori

Definition 1. Lad G være en mængde, da er en function $*: G \times G \to G$ en binær operation.

Som notation skrives a * b istedet for *(a,b).

En binær operation * kaldes ascosiativ hvis $\forall a, b, c \in G : a * (b * c) = (a * b) * c$.

En binær operation * kaldes kommutativ hvis $\forall a, b \in G : a * b = b * a$.

Definition 2. En tupel (G,*) med en mængde G og en binær operation * kaldes en gruppe hvis:

- (1) * er ascosiativ.
- (2) Der eksistere et element $e \in G$ så $\forall a \in G : a * e = e * a = a$ kaldet det neutrale element.
- (3) For alle elementer $a \in G$ eksistere $a^{-1} \in G$ så $a * a^{-1} = a^{-1} * a = e$ kaldet det inverse element til a.

En gruppe kaldes abelsk hvis * er kommutativ.

Ofte kalder betegner man G for gruppen istedet for (G,*) og da er operationen implicit.

Som notation bruges der ofte \cdot som operation istedet for * og $a \cdot b$ bliver ofte skrevet ab istedet. Det neutrale element bliver så betegnet 1. Dog er det normalt at bruge + for opreationen i abelsek grupper og at bruge -a istedet for a^{-1} . Dog er - ikke en operation her men der skrives stadig a - b istedet for a + -b.

Sætninger

Sætning 1. Neutrale elementer er unikke. Altså givet en gruppe (G,*) og to elementer $e_1, e_2 \in G$ hvor $\forall a \in G : e_1 * a = a * e_1 = a$ og $e_2 * a = a * e_2 = a$ da er $e_1 = e_2$.

Proof.

$$e_1 = e_1 * e_2 = e_2$$

Vis selv

Sætning 2. Invers elementer er unikke. Altså givet en gruppe (G,*) og tre element $a, a_1^{-1}, a_2^{-1} \in G$ hvor $a*a_1^{-1} = a_1^{-1}*a = e$ og $a*a_2^{-1} = a_2^{-1}*a = e$ da er $a_1^{-1} = a_2^{-1}$.

Sætning 3. Givet en gruppe (G,*) og et element $a \in G$ da er $(a^{-1})^{-1} = a$.

Sætning 4. Givet en gruppe (G,*) og to elementer $a,b \in G$ da er $(a*b)^{-1} = a^{-1}*b^{-1}$.