

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева Академия базовой подготовки

Институт, группа	К работе допущен	
		(дата, подпись преподавателя)
Студент	Работа выполнена	
		(дата, подпись преподавателя)
Преподаватель	Отчет принят	
-		(пата полнись преполавателя)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № К-9

Изучение температурной зависимости электрического

сопротивления полупроводников и металлов

1. Запишите цель проводимого эксперимента:
2. Как возникают энергетические зоны? Какие бывают зоны?
3. Как с точки зрения зонной теории объяснить характер зависимости сопротивления от температуры для полупроводника?
4. Как с точки зрения зонной теории объяснить характер зависимости сопротивления от температуры для металла?
5. Сформулируйте физический смысл энергии Ферми. Как она связана с шириной запрещенной зоны?
6. Нарисуйте зонные структуры для металла, полупроводника и диэлектрика.

7. Заполните таблицу измерений в лаборатории.

№	Т, К	$\frac{1}{T} \cdot 10^{-4}, \text{K}^{-1}$	металл	полупроводник		
			R, Ом	R, Ом	lnR	
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						

8. График зависимости сопротивления от температуры R(T).

Металл (образец № 2)

Полупроводник (образец № 3)

9. Определение ширины запрещенной зоны аналитическим методом для полупроводника (образец № 3).

№ опытов	T_i , K	R_i , Ом	T_j , K	R_j , Ом	ΔE_{ij} , Дж
<i>i</i> = <i>j</i> =				-	·
i=1 $j=3$					
i=2 $j=4$					
i=5 $j=7$					
i=6 j=9					
i=3 $j=8$					
i=4 $j=6$					

10. Среднее значение энергии:

$$\langle \Delta E \rangle = \frac{\Delta E_{13} + \Delta E_{24} + \Delta E_{57} + \Delta \bar{E}_{69} + \Delta E_{38} + \Delta E_{46}}{6} =$$

- 11. Перевод из **Дж** в э**В:** $\langle \Delta E \rangle = _____$ эВ
- 12. Определение ширины запрещенной зоны графическим методом для полупроводника (образец № 3): график lnR от $\frac{1}{T}$.

Полупроводник (образец № 3)

13. Тангенс угла наклона прямой:

$$tg \beta = \frac{\ln R_2 - \ln R_1}{\left(\frac{1}{T_2} - \frac{1}{T_1}\right) \cdot 10^{-4}} =$$

14. Вычислить ширину запрещенной зоны ($k = 1,38 \cdot 10^{-23}$ Дж/К):

$$\langle \Delta E_{\rm rp} \rangle = 2k \cdot \operatorname{tg} \beta =$$

14. Вычислить степень несовпадения:

$$\delta = \left| \frac{\langle \Delta E \rangle - \langle \Delta E_{\rm rp} \rangle}{\langle \Delta E \rangle} \right| =$$

15. Вычислить абсолютные погрешности:

$$\Delta(\langle \Delta E \rangle) = \langle \Delta E \rangle \cdot \delta = \qquad \qquad \Delta(\Delta E_{\rm rp}) = \langle \Delta E_{\rm rp} \rangle \cdot \delta =$$

15. Записать окончательный результат и по таблице 4 в МУ определить какому полупроводнику или соединению соответствует полученное значение ширины запрещенной зоны:

$$\Delta E = \langle \Delta E \rangle \pm \Delta (\langle \Delta E \rangle)$$
 $\Delta E_{\rm rp} = \langle \Delta E_{\rm rp} \rangle \pm \Delta (\Delta E_{\rm rp})$ $\Delta E =$

Подпись студента

Дата _____