# ДВОЙСТВЕННЫЙ МАТРОИД

Пусть M = M(E) — произвольный матроид.

Для  $X \subseteq E$  через X будем обозначать, как обычно, его теоретико-множественное дополнение  $E \setminus X$ .

Для произвольной базы  $B \in Bs$  матроида M множество B будем называть его *кобазой*.

Через  $Bs^*$  обозначим множество всех кобаз матроида M, т. е.

$$Bs^* = \{ \overline{B} \mid B \in Bs \}.$$

**Теорема 1.** Множество  $Bs^*$  всех кобаз матроида удовлетворяет аксиомам баз (B.1) и (B.2).

#### Доказательство.

Поскольку для любых  $X, Y \subseteq E$  условия  $X \subseteq Y$  и  $X \supseteq Y$  эквивалентны, аксиома (B.1) очевидно выполняется для  $Bs^*$ .

## Проверим теперь аксиому Штейница о замене для кобаз (В. 2).

Пусть теперь  $B_1$  и  $B_2$  — две кобазы и  $p \in B_1$ . Так как  $p \notin B_1$ , в множестве  $B_1 \cup p$  имеется точно один цикл C.

Поскольку цикл C не лежит в  $B_2$ , существует  $q \in C \cap B_2$ . Множество  $(B_1 \cup p) \setminus q$  не содержит циклов, так как мы разрушили единственный цикл, удалив элемент q.

Поэтому это множество независимо и его мощность равна мощности базы  $B_1$ . Следовательно,  $(B_1 \cup p) \setminus q$  — база. Тогда для соответствующей кобазы выполняется

$$(\overline{B_1 \cup p) \setminus q} = (\overline{B_1 \cup p}) \cup q = (\overline{B_1} \setminus p) \cup q,$$

где  $q \notin B_2$ , и **терема доказана**.

В силу доказанной теоремы семейство кобаз Bs\* задает на E матроид, в котором исходные кобазы играют роль баз. Этот матроид называется **двойственным** к матроиду M и обозначается через  $M^* = M^*(E)$ . Конечно,  $(M^*)^* = M$ .

Зависимые и независимые множества, циклы матроида  $M^*$  называются соответственно *козависимыми* и *конезависимыми* множествами, *коциклами* матроида M.

Ранговая функция матроида  $M^*$  называется *коранговой* функцией матроида M и обозначается через  $r^*$ . Очевидно,

$$r(M) + r*(M) = |E|.$$

Другие копонятия: козамыкание, козамкнутые множества или колисты.

Пусть имеется некоторое утверждение о произвольном матроиде.

Если в нем заменить все используемые матроидные понятия на соответствующие копонятия и наоборот, то мы получим утверждение, которое называется *двойственным* к исходному утверждению.

### Очевидно справедлив

**Принцип двойственности.** *Если некоторое утверждение верно для любого матроида, то двойственное к нему утверждение также верно для любого матроида.* 

Следующая лемма легко вытекает из определений.

**Лемма 1.** Произвольное подмножество элементов матроида зависимо iff, когда оно имеет непустое пересечение с каждой кобазой.

В силу принципа двойственности верно следующее двойственное утверждение.

**Лемма 1\*.** Произвольное подмножество элементов матроида козависимо iff, когда оно имеет непустое пересечение с каждой базой.

**Лемма 2.** Для любого непустого независимого множества  $I \subseteq E$  матроида M существует такой коцикл  $C^*$ , что  $|I \cap C^*| = 1$ .

**Доказательство.** Продолжим множество I до некоторой базы B. Возьмем  $p \in I$ .

Тогда  $B \cup p$  содержит точно один коцикл  $C^*$ , для которого выполняется

$$C^* \cap B = \{p\} = C^* \cap I.$$

Лемма доказана.



# **Лемма 3.** Для любого цикла C и любого коцикла $C^*$ выполняется условие $|C \cap C^*| \neq 1$ .

**Доказательство.** Предположим, от противного, что  $C \cap C^* = \{p\}$ . Поскольку в силу леммы 2 коцикл  $C^*$  — это минимальное подмножество из E, имеющее непустое пересечение с каждой базой, множество  $\overline{C^*}$  — это максимальное подмножество из E, не

содержащее баз. Следовательно,  $C^* \cup p$  содержит некоторую базу B. Множество  $C \setminus p$ 

независимо и лежит в  $C^* \cup p$ . По аксиоме независимости (I.2') существует база  $B_1$  такая, что

$$C \setminus p \subseteq B_1 \subseteq C^* \cup p$$

(поскольку  $C^* \cup p$  содержит базу B, любое максимальное независимое подмножество из

 $C^*$  ∪ p является базой матроида). Так как  $C^*$  не содержит баз, имеем  $p \in B_1$ .

Следовательно,  $C \subseteq B_1$ , что невозможно.

Лемма доказана.

**Теорема 2.** Подмножество  $X \subseteq E$  является циклом матроида M iff, когда X есть минимальное множество среди непустых подмножеств из E, удовлетворяющих свойству:

 $|X \cap C^*| ≠ 1$  для любого коцикла  $C^*$ .

**Доказательство.** Если *X* является циклом матроида, то силу леммы 3 он удовлетворяет требуемому свойству, а в силу леммы 2 имеет место необходимая минимальность.

Обратно, пусть X — минимальное множество среди непустых подмножеств из E, удовлетворяющих указанному свойству.

В силу леммы 2 множество X зависимо и, следовательно, содержит некоторый цикл C.

На основании леммы 3 и минимальности X получаем X = C.

Теорема доказана.

Пусть E — конечное непустое множество.

Если в качестве единственной базы взять множество E, то получим, очевидно, матроид, который называют *свободным* или *дискретным матроидом* на E.

Для свободного матроида выполняется  $\operatorname{Ind} = \mathcal{P}(E), r(A) = |A| \ (A \subseteq E)$  и  $\operatorname{Ccl} = \emptyset$ .

Матроид на E, двойственный к свободному матроиду, называется *тривиальным матроидом*.

Он имеет единственное независимое множество и единственную базу — пустое множество, поэтому r(A) = 0 для любого  $A \subseteq E$ .

Его циклами являются одноэлементные подмножества из E.

Пусть G — ненулевой (n, m, k)-граф. Рассмотрим *матроид циклов* M = M(G) графа G на множестве E = EG.

Базы этого матроида — это множества ребер графа, составляющие его остовы, ранг r(M) = n - k есть ранг графа G, а его коранг  $r^*(M) = m - r(M) = m - n + k$  совпадает с цикломатическим числом графа G.

Пусть B — база матроида M(G). Соответствующую кобазу B называют *коостовом* (это множество ребер графа, которые нужно отбросить, чтобы получить его остов).

В силу леммы  $1^*$  козависимые множества матроида M(G) — это те и только те множества ребер графа, которые имеют непустое пересечение с каждой базой.

Следовательно, козависимые множества из M(G) – это те и только те множества ребер, при удалении которых в графе G разрушаются все остовы, т. е. увеличивается число компонент связности.

Таким образом, козависимые множества из M(G) — это в точности разрезающие множества ребер графа, а коциклы — это разрезы.

Следовательно, циклы и разрезы графа — это взаимно двойственные объекты! Матроид  $M^*(G)$ , двойственный к M(G), называют *матроидом разрезов* графа G. Отметим, что для любого дерева T матроид M(T) свободен, а матроид  $M^*(T)$  тривиален.

**Пример.** Рассмотрим матроид циклов следующего графа G = (V, E):



Тогда

- 1)  $E = \{e_1, e_2, e_3, e_4, e_5\}$  основное множество матроида циклов M(G) графа G;
- 2)  $B_1 = \{e_2, e_3, e_4\}, B_2 = \{e_1, e_3, e_4\}, B_3 = \{e_1, e_2, e_4\}$  множество баз (остовов);
- 3)  $\overline{B}_1 = \{e_1, e_5\}, \overline{B}_2 = \{e_2, e_5\}, \overline{B}_3 = \{e_3, e_5\}$  множество кобаз (коостовов);
- 4)  $C_1^* = \{e_1, e_2\}, C_2^* = \{e_1, e_3\}, C_3^* = \{e_2, e_3\}, C_4^* = \{e_4\}$  множество коциклов, совпадающее с множеством разрезов этого графа G.