Seja f uma função diferenciável em todos os pontos da reta real satisfazendo em todos os pontos a relação $\int_0^x f(t)dt = x \ sen(x\pi)$. A equação da reta tangente ao gráfico da função no ponto de abscissa 4 e ordenada f(4) é igual a:

Escolha uma opção:

- a. Nenhuma das outras alternativas.
- \bigcirc b. $2x+4y\pi=\pi$.
- \odot c. $2x\pi-y=0$.
- \odot d. $2x\pi-y=4\pi$.
- \bigcirc e. $2x\pi + y = 4\pi$.

A resposta correta é: $2x\pi-y=4\pi$

Hipátia estava estudando Cálculo II e notou algo surpreendente. Seja f uma função contínua em $\mathbb R$ tal que que $f(c\cdot d)=f(c)\cdot d^3$ para todo $c,d\in\mathbb R$. Seja F sua primitiva em todo intervalo [a,b], com $a,b\in\mathbb R$. Se para cada natural n não nulo consideramos o número

$$S_n = \left(e^{f(1)}e^{f(2)}e^{f(3)}\cdots e^{f(n-1)}e^{f(n)}\right)^{rac{1}{n^4}}$$

então S_n fica cada vez mais próximo de um certo número ao se tomar n cada vez maior. Que número $\acute{ ext{e}}$ esse?

Escolha uma opção:

- \odot a. $e^{F(1)}/e^{F(0)}$.
- \odot b. e^2 .
- \odot c. e^3 .
- \bigcirc d. F(1) F(0).
- \odot e. $e^{F(1)}-e^{F(0)}$.
- \bigcirc f. $\lim_{n o +\infty} e^{F(n)}$.

A resposta correta é: $e^{F(1)}/e^{F(0)}$

Considere a curva $\gamma:[0,2\pi]\to\mathbb{R}^3$ dada por $\gamma(t)=(\frac{1}{2}sen\,t,\frac{1}{2}\cos t,\frac{\sqrt{3}}{2})$. É FALSO afirmar que:

Escolha uma opção:

- \bigcirc a. $\gamma(t).\gamma'(t)=0$ (produto escalar) para todo $t\in[0,2\pi].$
- $^{\circledcirc}$ b. A curva $ilde{\gamma}(t)=(-rac{1}{2}sen\,t,rac{1}{2}\cos t,rac{\sqrt{3}}{2}),\,t\in[0,2\pi]$ tem a mesma imagem que a curva γ .
- \bigcirc c. A imagem de γ está na esfera de raio 1 e centro (0,0,0).
- \bigcirc d. A imagem da curva γ está no cilindro cuja a base é um disco de centro (0,0) e raio $\frac{1}{2}$ no plano xy.
- $(x,y,z)=(0,rac{1}{2},rac{\sqrt{3}}{2})+\lambda(rac{1}{2},rac{1}{2},0)$, $\lambda\in\mathbb{R}$, é a equação da reta tangente a curva γ no ponto $\gamma(0)$.

A resposta correta é: $(x,y,z)=(0,\frac{1}{2},\frac{\sqrt{3}}{2})+\lambda(\frac{1}{2},\frac{1}{2},0), \lambda\in\mathbb{R}$, é a equação da reta tangente a curva γ no ponto $\gamma(0)$.

Assinale, dentre as alternativas abaixo, aquela que NÃO representa uma interpretação do Teorema do Valor Médio para integrais:

Escolha uma opção:

- O a. Se uma partícula se move em movimento retilíneo e $F:[t_0,t_1] \to \mathbb{R}$ representa a força que atua na partícula no intervalo de tempo entre $t=t_0$ e $t=t_1$, então o impulso $\int_{t_0}^{t_1} F(t) \, dt$ da força F nesse intervalo de tempo coincide com o impulso de uma força com valor constante igual ao valor de F em algum instante entre t_0 e t_1 .
- O b. Se $f: [a,b] \to \mathbb{R}$ é uma função contínua tal que $f(x) \ge 0$ para todo $x \in [a,b]$, a área da região compreendida entre o gráfico de f, o eixo-x e as retas x=a e x=b coincide com a área de um retângulo cuja base é o segmento do eixo-x compreendido entre x=a e x=b e cuja altura é o valor f(c) de f em algum ponto $c \in (a,b)$.
- c. Se uma partícula se move em movimento retilíneo, o valor médio de suas velocidades instantâneas em um certo intervalo de tempo coincide com sua velocidade instantânea em algum instante desse intervalo.
- d. Se uma partícula se move em movimento retilíneo, o valor médio de suas velocidades instantâneas em um certo intervalo de tempo coincide com sua velocidade média durante esse intervalo.

A resposta correta é: Se uma partícula se move em movimento retilíneo, o valor médio de suas velocidades instantâneas em um certo intervalo de tempo coincide com sua velocidade média durante esse intervalo.

Se $\int_{-1}^1 e^{-x^2} dx = k$, então qual das alternativas é a correta sobre o valor de $I = \int_{-1}^0 e^{-x^2} dx$?

Escolha uma opção:

- \bigcirc a. $I=-rac{k}{2}$ pois $f(x)=e^{-x^2}$ é função ímpar.
- \bigcirc b. $I=rac{k}{2}$ e isso independe da função, já que o comprimento do intervalo [-1,0] é metade do comprimento de [-1,1].
- \bigcirc c. $I=-rac{k}{2}$ pela simetria de f no intervalo [-1,0].
- \bigcirc d. Não existe $\int_{-1}^{0}e^{-x^{2}}dx$, pois a primitiva de $f(x)=e^{-x^{2}}$ não é uma função elementar.
- \odot e. $I=rac{k}{2}$ pois $f(x)=e^{-x^2}$ é função par no intervalo [-1,1].
- \bigcirc f. O valor de $\int_{-1}^{0} e^{-x^2} dx$ não depende somente dos dados do enunciado.

A resposta correta é: $I=rac{k}{2}$ pois $f(x)=e^{-x^2}$ é função par no intervalo [-1,1].

Os volumes A e B dos sólidos de revolução obtidos pela rotação da região plana situada no semiplano fechado dos pontos de abscissas não negativas limitado pela reta pela origem com coeficiente angular quatro e pela curva cúbica $y=x^3$ em torno dos eixos de rotação x=6 e y=-4 são respectivamente iguais a:

$$\bigcirc$$
 a. $A=rac{1184\pi}{15}$ e $B=rac{592\pi}{21}$.

$$^{ extstyle O}$$
 b. $A=rac{592\pi}{15}$ e $B=rac{1184\pi}{21}$

c. Nenhuma das outras alternativas.

$$\odot$$
 d. $A=rac{592\pi}{21}$ e $B=rac{1184\pi}{15}$.

$$\bigcirc$$
 e. $A = \frac{296\pi}{15}$ e $B = \frac{592\pi}{21}$

A resposta correta é: $A=rac{592\pi}{15}$ e $B=rac{1184\pi}{21}$

Qual alternativa é uma afirmação correta sobre $\int_1^2 \frac{x^2}{\sqrt{x^5-1}} dx$?

Escolha uma opção:

$$\odot \ \ \text{a.} \ \ \text{Convergente, pois para} \ 1 < x \leq 2 \ \text{temos} \ 0 < \frac{x^2}{\sqrt{x^5-1}} < \frac{4}{\sqrt{s}}. \frac{1}{\sqrt{x-1}} \ \text{e que} \ \int_1^2 \frac{1}{\sqrt{x-1}} dx = \int_0^1 \frac{1}{\sqrt{t}} dt.$$

$$\bigcirc$$
 b. Divergente, pois para $1 < x \le 2$ temos $\frac{x^2}{\sqrt{x^3-1}} > \frac{4}{\sqrt{5}} \cdot \frac{1}{\sqrt{x-1}}$ e que $\int_1^2 \frac{1}{\sqrt{x-1}} dx = \int_0^1 \frac{1}{\sqrt{t}} dt$.

$$\bigcirc$$
 c. Convergente, pois para $1 < x \le 2$ temos $0 < \frac{x^2}{\sqrt{x^2-1}} < \frac{4}{\sqrt{s}} \cdot \frac{1}{\sqrt{x-1}}$ e que $\int_1^2 \frac{1}{\sqrt{x-1}} dx = \int_1^2 \frac{1}{\sqrt{t}} dt$.

$$\bigcirc \ \, \text{d. Divergente, pois para} \ 1 < x \leq 2 \ \text{temos} \ \frac{x^2}{\sqrt{x^3-1}} > \frac{4}{\sqrt{5}} \cdot \frac{1}{\sqrt{x-1}} \ \text{e que} \ \int_1^2 \frac{1}{\sqrt{x-1}} dx = \int_1^2 \frac{1}{\sqrt{t}} dt.$$

A resposta correta é: Convergente, pois para $1 < x \le 2$ temos $0 < \frac{x^2}{\sqrt{x^5-1}} < \frac{4}{\sqrt{5}} \cdot \frac{1}{\sqrt{x-1}}$ e que $\int_1^2 \frac{1}{\sqrt{x-1}} dx = \int_0^1 \frac{1}{\sqrt{t}} dt$

Dada qualquer função f integrável e $\phi(t)=t^2$, considere seguintes afirmações:

• (1)
$$\int_{-1}^{2} 2t f(\phi(t)) dt = \int_{1}^{4} f(t) dt$$
.

• (2)
$$\int_{1}^{2} 2t f(\phi(t)) dt = \int_{1}^{4} f(t) dt$$
.
• (3) $\int_{-1}^{2} f(\phi(t)) dt = \int_{1}^{4} f(t) dt$.
• (4) $\int_{1}^{2} f(\phi(t)) dt = \int_{1}^{4} f(t) dt$.

• (3)
$$\int_{0}^{2} f(\phi(t))dt = \int_{0}^{4} f(t)dt$$

• (4)
$$\int_1^2 f(\phi(t))dt = \int_1^4 f(t)dt$$

Escolha uma opção:

Considere a função $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^2 sen(1/x)$ se $x \neq 0$ e $f(0) = 0$ e considere a função $F: [-1,2] \to \mathbb{R}$ tal que $F(x) = \int_{-1}^x f(x) dx$. Então a alternativa correta é:	
Escolha uma opção:	
\bigcirc a. F é derivável em $[-1,2]$ e $F'(x)=f(x)$ se e somente se $x\in [-1,0)$.	
○ b. Nenhuma das outras respostas é correta.	
\circ c. F é bem definida somente em $[-1,0)$.	
\odot d. F é derivável em $[-1,2]$ e vale $F'(x)=f(x)$ para todo $x\in [-1,2]$.	~
\circ e. $m{F}$ não é derivável em nenhum ponto do domínio.	
\circ f. F é derivável em $[0,2]$ exceto em $x=0$.	
A resposta correta é: F é derivável em $[-1,2]$ e vale $F'(x)=f(x)$ para todo $x\in [-1,2]$.	

Seja R a região do plano-x,y compreendida entre o gráfico de $f:\mathbb{R} \to \mathbb{R}, f(x)=\cos(x)$, e o eixo-x para $3\pi/2 \le x \le 5\pi/2$. Marque a alternativa que dá o volume do sólido obtido quando R gira em torno do eixo-y.

×

Escolha uma opção:

 \bigcirc a. $8\pi^2$.

 \odot b. $2\pi^2$.

 \odot c. $4\pi^2$.

 \odot d. $\pi^2/2$.

 \odot e. π^2 .

A resposta correta é: $8\pi^2$.