Beviskontroll med Prolog

alt;

Grupp Lumon

Ludwig Berglind, Simon Severinsson

Functional Dependencies

An FD on a relation R is defined by:

If two tuples of R agree on all attributes $A1, \ldots, An$ then they must also agree on all attributes $B1, \ldots, Bm$. We say that $A1, \ldots, An$ determines $B1, \ldots, Bm$, denoted as $A \rightarrow B$.

A set $K = \{A1, \ldots, An\}$ of attributes is key for reltion R if: - K functionally determine all other attr. of R. - No proper subset of K functionally determines all other attr. of R ,that is, all keys are minimal.

A set of attr. that contains a key is called a superkey.

FD Reasoning

FD's can be inferred from other FD's. - If R(A,B,C) satisfies $A \rightarrow B$ and $B \rightarrow C$ then $A \rightarrow C$ and $A \rightarrow B$, C can be inferred. - If $A1,...,Am \rightarrow B1,...,Bm$ then $A1,...,An \rightarrow B1,...,An \rightarrow Bm$.

Trivial FD's. A constraint on a relation R is trivial if holds for every instance of R, regardless of other constraints. - An FD A -> B is trivial if B is a subset of A. Ex: A1, A2 -> A2 always holds and thusly is trivial.

Attribute Closures If A is a set of attr $\{A1,\ldots,An\}$ and S is a set of FD's then the closure of A under the FD's in S is the set of attributes B such that every relation that satisfies all of S als satisfies A -> B, that is, A -> B follows from the FD's of S. The closure of a A is denoted as $A+^+$