NASA TECHNICAL MEMORANDUM

NASA TM X-2528

AFWL (DOUL) KIRTLAND AFB.

NOISE GENERATED BY QUIET ENGINE FANS

I - Fan B

by Francis J. Montegani Lewis Research Center Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . MARCH 1972

TECH LIBRARY KAFB, NM

	 ,
1 (8 1))) 8 1 (8)	(1861 611 0 1 1864 1881
1 10011) 40101	

1. Report No.		0204	130
	2. Government Accession No.	3. Recipient's Catalog	No.
NASA TM X-2528	***************************************		
4. Title and Subtitle		5. Report Date	
NOISE GENERATED BY QUIET	ENGINE FANS	March 1972	
I - FAN B		6. Performing Organiz	zation Code
7. Author(s)		8. Performing Organiz	ation Report No.
Francis J. Montegani		E-6652	
		10. Work Unit No.	
9. Performing Organization Name and Address		762-73	
Lewis Research Center	•	11. Contract or Grant	No
National Aeronautics and Space	Administration	11. Contract or Grant	140.
Cleveland, Ohio 44135	•		
, , , , , , , , , , , , , , , , , , ,		13. Type of Report ar	nd Period Covered
12. Sponsoring Agency Name and Address		Technical Me	morandum
National Aeronautics and Space	Administration	14. Sponsoring Agency	/ Code
Washington, D. C. 20546			,
		<u> </u>	
15. Supplementary Notes			
	•		
16. Abstract			
A significant effort within the N	IASA Quiet Engine Program is dev	oted to acoustical	testing at
the Lewis Research Center noi	se test facility of a family of full-s	cale fans designe	d and built
	ny. This report, part I of a multip	_	
fans tested, documents the nois	se results obtained with fan B. Th	e fan is described	and some
			and bonne
aerodynamic operating data are	e given. Far-field noise around th	e fan was measur	
	e given. Far-field noise around the		ed for a
variety of configurations over a	a range of operating conditions. C	omplete results o	ed for a f 1/3-octave
variety of configurations over a		omplete results o	ed for a f 1/3-octave
variety of configurations over a band analysis of the data are pa	n range of operating conditions. Cresented in tabular form. Included	omplete results o also are power s	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	n range of operating conditions. Cresented in tabular form. Included	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are pr sideline perceived noise levels	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are p	omplete results o also are power s resented graphic ed.	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are po- sideline perceived noise levels sample graphs of continuous na	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are prow-band spectra are also provide	omplete results o also are power s presented graphic ed.	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are provided in the sideline perceived noise levels sample graphs of continuous national statements of continuous for the sample graphs of continuous national statements of the sample graphs of continuous national statements of the sample graphs of continuous national statements of the sample graphs of the data are provided and sample graphs of continuous national sample graphs of continuou	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are prow-band spectra are also provide are also provident. 18. Distribution Statement. Unclassified -	omplete results o also are power s presented graphic ed.	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are provided in the sideline perceived noise levels sample graphs of continuous national sample grap	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are prow-band spectra are also provide	omplete results o also are power s presented graphic ed.	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are provided in the sideline perceived noise levels sample graphs of continuous national statements of continuous for the sample graphs of continuous national statements of the sample graphs of continuous national statements of the sample graphs of continuous national statements of the sample graphs of the data are provided and sample graphs of continuous national sample graphs of continuou	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are prow-band spectra are also provide are also provident. 18. Distribution Statement. Unclassified -	omplete results o also are power s presented graphic ed.	ed for a f 1/3-octave spectra and
variety of configurations over a band analysis of the data are provided in the sideline perceived noise levels sample graphs of continuous national sample grap	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are prow-band spectra are also provide are also provident. 18. Distribution Statement. Unclassified -	omplete results o also are power s presented graphic ed.	ed for a f 1/3-octave spectra and ally, and
variety of configurations over a band analysis of the data are provided in the sideline perceived noise levels sample graphs of continuous national sample grap	range of operating conditions. Cresented in tabular form. Included. Some 1/3-octave band data are prow-band spectra are also provide are also provident. 18. Distribution Statement. Unclassified -	omplete results o also are power s presented graphic ed.	ed for a f 1/3-octave spectra and

 $^{^{*}}$ For sale by the National Technical Information Service, Springfield, Virginia 22151

NOISE GENERATED BY QUIET ENGINE FANS

I - FAN B

by Francis J. Montegani Lewis Research Center

SUMMARY

A significant effort within the NASA Quiet Engine Program is devoted to acoustical testing at the Lewis Research Center noise test facility of a family of full-scale fans designed and built by the General Electric Company. This report, part I of a multipart series covering all the fans tested, documents the noise results obtained with fan B. The fan is described and some aerodynamic operating data are given. Far-field noise around the fan was measured for a variety of configurations over a range of operating conditions. Complete results of 1/3-octave band analysis of the data are presented in tabular form. Included also are power spectra and sideline perceived noise levels. Some 1/3-octave band data are presented graphically, and sample graphs of continuous narrow-band spectra are also provided.

INTRODUCTION

The NASA Quiet Engine Program is directed towards developing technology which has direct application in the alleviation of noise from subsonic commercial aircraft. The most tangible result of the program will be a demonstration high-bypass-ratio turbofan engine which by the incorporation of such technology will be markedly quieter than currently available engines.

A significant effort within the Quiet Engine Program is devoted to aerodynamic and acoustical evaluation of a family of full-scale component fans. The designs of these fans have been chosen to develop a better understanding of the mechanisms of fan noise generation and to permit choosing ultimately a minimum-noise design for incorporation in the quite engine. Three such fans have been built, each being designed to meet propulsion system requirements but varying significantly in aerodynamic design parameters which are considered to be noise related. In addition, all fans possess the accepted low-noise features of being single stage, having no inlet guide vanes, having extended

rotor-stator spacing, and having an appropriate vane/blade ratio.

The three fans have been letter designated as A, B, and C. All three fans were designed and built by the General Electric Company. A comparative summary of their more pertinent design characteristics is given in table I. Of these, fan B is the first to have completed an extensive acoustical test program at Lewis Research Center. This report documents the more significant noise data obtained in that program.

Interpretation of the data is subject to the ultimate interests of the user; further, it is facilitated by a comparison of data among all fans tested, only one of which is being reported here. For these reasons and to expedite dissemination of the data, no attempt is made at interpretation from any point of view, but rather emphasis is placed on completeness and convenience of format for all potential users.

FAN B CHARACTERISTICS

A complete discussion of the aerodynamic and mechanical design details of fan B is given in reference 1. Only a brief description of the more apparent features of the design is given here, as well as some details peculiar to the acoustical test setup.

Fan B among the three fans in the program is characterized generally as being a low-speed, low-aspect-ratio fan with a low number of blades. Its design characteristics are given in table I. The blades are cantilevered and have no splitters, dampers, or tip shrouds. The fan flow is divided between the bypass duct and the core downstream of the fan component. An equal number of outlet guide vanes as in the bypass duct exist in the core duct but at less than two-chord spacing. A cutaway pictorial representation of a typical fan configuration for acoustical testing is shown in figure 1. The fan was shaft driven from the front, as illustrated. Also shown is acoustical treatment in the flow passages. The fan assemblies were designed with sound-absorbing liners within the fan frame proper, that is, confined in axial extent approximately from planes 41 centimeters upstream of the fan face to 61 centimeters downstream, as shown in figure 2. Details of the kind and extent of the treatment are given in reference 1.

For acoustical testing, the core flow was simply ducted aft and passed through a core nozzle sized to cause the hub portion of the fan to operate as closely to engine conditions as possible. To minimize emission of core-duct-generated noise, a core suppressor was installed as illustrated in figure 2. The suppressor consisted of 1.626 square meters of 5.1-centimeter-thick polyurethane foam held in place in the core duct outer wall by a perforated metal facing sheet of 23-percent open area. Since the core jet flow represented about one-fifth of the bypass flow and its velocity was also less, the noise from the core jet flow was presumed to make small contribution to the noise data compared with the bypass jet.

FAN B PERFORMANCE

Extensive aerodynamic testing of the fan was conducted elsewhere, and the detailed results are given in reference 2. A performance map based on fan bypass flow is given in figure 3. The constant speed lines shown are from the aerodynamic tests in reference 2. For the tests in the noise facility, a minimal amount of aerodynamic instrumentation was used, from which the fan operating lines were derived for the various nozzle areas employed. During the test program, small adjustments in nozzle areas were made which are discussed in the section Nozzles. However, such adjustments were sufficiently small so that precise delineation in figure 3 is not warranted and the operating lines reflect nominal performance of all the nozzles employed.

ACOUSTICAL TEST PROGRAM

Configurations

The fan was run in a variety of configurations which varied with regard to (1) the condition of the inlet, (2) the condition of the fan-frame treatment, (3) the condition of the bypass exhaust duct, and (4) the size of the bypass and core nozzles. The variations employed in each of these items and the terminology used are explained in the following sections.

Inlet. - The fan was run with the inlet in either a hard, a suppressed, or a taped condition. The hard inlet was comprised of a bellmouth and a 103-centimeter-long cylindrical inlet section mated to the fan frame. Alternately, an inlet suppressor employing three splitter rings was used in place of the straight section. The details of the inlet suppressor design have been reported in reference 3.

To appraise the effects of the inlet suppressor splitters as flow disturbance sources and hence noise generators, a test was conducted with the inlet suppressor installed but with the acoustical treatment taped over and rendered nonfunctional by means of adhesive-backed aluminum tape. This is referred to as the taped inlet suppressor.

<u>Fan frame</u>. - The fan was run with the frame treatment both functioning and deactivated by the use of aluminum tape, as for the inlet suppressor. These conditions were considered as being with or without fan-frame treatment and are referred to as soft and taped fan-frame conditions, respectively. Under all conditions, the fan-frame treatment in the core passage remained functional because of the lack of convenient access to that area for taping.

Exhaust duct. - The fan was run in both the hard and suppressed exhaust conditions. The hard exhaust condition refers to the bypass duct with no sound-absorbing

treatment. Alternately, a bypass exhaust duct suppressor with a splitter was employed. The arrangement and dimensions of the suppressor are given in figure 2. The absorbing material was comprised of 0.95-centimeter-thick aluminum hexagonal-cell honeycomb faced with 0.051-centimeter-thick perforated aluminum sheet with 8-percent open area in the walls and $4\frac{1}{2}$ percent in the splitter.

<u>Nozzles</u>. - Three separate bypass exhaust nozzles were used. These are generally referred to as nominal, large, and small. Preliminary fan runs were made for purposes of trimming the nozzles to size to ensure that the fan operating lines achieved during acoustical testing were as close as possible to those of aerodynamic tests which were conducted elsewhere. The nominal nozzle had an exit area of 1.188 square meters. The small and large nozzle areas deviated approximately 7 percent from nominal. The core nozzle area was also adjusted during the test program for fan performance considerations.

The geometric variables of the nozzles which relate to jet noise generation are given in table II. Data are given for the nozzles both before and after trimming. The bypass nozzle exit plane was situated upstream of that of the core. The axial distances between the two exit planes are also given in table II.

Data Acquired

A tabulation of the configurations for which acoustical data are being reported is given in table III. Each configuration was run at various speeds. For every test, farfield noise was measured. However, in some cases the principal reason for the test was different, such as to acquire aerodynamic data for purposes of trimming the nozzles or to acquire inlet-duct acoustic probe measurements. These are so denoted in table III. For example, acoustical data were taken during nozzle trim runs with the three nozzles, but these were tests of opportunity and did not yield regular sets of acoustical data at the usual speeds since the operating points were dictated by aerodynamic operating requirements. Nevertheless, these data are included here as they reflect effects of small nozzle changes at some speeds and give some insight to the repeatability of the data. In other cases, instrumentation was introduced into the air streams, and the far-field acoustical data are also included here as they afford the opportunity to investigate the effects caused by the instrumentation. No acoustical data obtained by means of probes are presented in this report.

The inlet acoustic probes, when employed, were 1.91 centimeters in diameter and projected radially into the inlet airstream a maximum of 36 centimeters. They were offset tangentially from one another to avoid wake interference. One probe was located 49 centimeters upstream of the fan face; the other was at 135 centimeters. Both were

employed simultaneously. The aerodynamic rakes, in the bypass exhaust stream only, consisted of multiple sensing elements protruding upstream from five radial airfoil struts which created a minimal disturbance of the flow.

DATA ACQUISITION AND ANALYSIS

Test Site

The acoustical tests were conducted at the outdoor full-scale-fan acoustic test facility at Lewis Research Center, shown in figure 4. A plan view of the area is given in figure 5. The facility abuts the 10- by 10-Foot Supersonic Wind Tunnel drive motor building and utilizes the wind tunnel drive motors as the fan prime mover through a speed-increasing gearbox. The fan pedestal was located sufficiently far from the building to permit far-field microphones on a 30.5-meter radius arc every 10°, from 10° to 160° with respect to the fan inlet axis. The 120° and 160° microphone distances were actually greater than 30.5 meters by 0.9 and 1.4 meters, respectively, because of the presence of a pedestrian walkway through the microphone field. The fan axis was 6.7 meters from the ground, and the microphones were in the same horizontal plane. The ground plane was asphalt pavement. The exterior wall of the drive building was treated with sound-absorbing material to minimize reflections to the microphone array. There were no other major reflecting surfaces in the near vicinity of the site.

It should be noted, for the data reported here, that the center of the microphone arc intersected the fan axis near the nozzle exit planes. The actual dimension of the center of the arc from the fan component, which is the more customary arc center, was 3.5 meters (see fig. 5). This situation resulted from the evolutionary process of developing the test facility and is not significant in itself. Care, however, should be exercised in making detailed comparisons of the data, particularly one-to-one angular comparisons, with data obtained from assemblies whose fan component is at the center of the arc.

Test Procedure

The instrumentation employed had a flat frequency response over the frequency range of interest (50 to 20 000 Hz). Prior to the set of tests for each configuration, a pistonphone signal was impressed on each far-field microphone for absolute calibration of each channel. Data signals were FM recorded from all channels simultaneously on magnetic tape. Air temperature, pressure, and relative humidity were logged before

and after testing; and wind velocity and direction were logged at each data point. To minimize problems with ambient noise and unfavorable wind conditions, tests were usually conducted in early morning hours prior to sunrise, when weather conditions were calm and stable. No acoustical data were taken under condition of fog or precipitation or with wind or gusts in excess of 5.1 meters per second (10 knots).

Corrected fan speeds were used which corresponded with 60, 70, 80, and 90 percent of standard-day cruise design speed. For this reason, the fan physical speeds employed varied from day to day with ambient temperature variations. The 60- and 90-percent speed points approximately represent fan operation for a four-engine aircraft at approach and takeoff conditions, respectively. Generally, the fan was run over the speed range three times, and three nonconsecutive 100-second noise samples for each speed were recorded.

One-Third-Octave Band Analysis

<u>Data reduction system.</u> - Each of the three samples for a given speed was reduced separately using a 1/3-octave band analyzer, and the resulting sound pressure levels were arithmetically averaged. The analysis system employed a 4-second averaging time and stepped sequentially through the angles from 10⁰ to 160⁰. The 4-second averaging time was a compromise to accommodate all angles within a 100-second sample while preserving analyzer repeatability. All three-sample averages for each frequency and angle were examined statistically, and the standard deviations of the great bulk of the data were less than 1 decibel.

Adjustments to measured data. - Results of 1/3-octave band analysis yielded data taken under ambient conditions of the test day at the microphone locations. The data were referred back to the source (i.e., the effect of atmospheric absorption was removed) by computing atmospheric absorption for the test conditions over the propagation path and adjusting the data accordingly.

Atmospheric absorption was computed by using continuous frequency-dependent functions derived from reference 4. The application procedures set forth in reference 4 were not used, as they presuppose a spectrum typical of engine jet noise. In the present case, the general shape of the measured spectrum was accounted for and the 1/3-octave band attenuations were obtained by integrating the continuous absorption functions over each band.

For reference purposes, and to permit extrapolation of data provided here to other distances, a tabulation of standard-day atmospheric absorption values is given in table IV. These values are based on the assumption of a flat 1/3-octave band spectrum, and therefore are not precisely those computed for any real spectra. However, the

values are nominally those employed in the data adjustments and are sufficiently accurate for estimating noise projections to other distances.

The data referred to the source were adjusted to constant radius and acoustic power, and directivity index calculations were made. No directivity index data referred to the source are presented here, but they may be readily derived from the data (see the section DATA PRESENTATION). For power calculations, the sound pressure levels were presumed to be axisymmetric and were integrated over an enclosing hemisphere. Implicit in this procedure was that the ground plane was perfectly reflective in the sense that acoustic intensity was doubled in the far field. No account was made of signal interference effects at the microphones because of ground reflections.

Using data referred to the source, calculations of atmospheric absorption for a standard day of 15°C and 70-percent relative humidity were made and the data so adjusted to standard-day conditions. All tabulated sound pressure level data reported herein are adjusted to standard-day conditions.

Narrow-Band Analysis

Continuous narrow-band spectral analyses of the noise signals were also performed. The analysis system employed a 20-hertz constant-bandwidth filter over the frequency range from 0 to 10 000 hertz. The narrow-band spectra were not adjusted in any way and reflect the signals at the microphones under test-day conditions.

Narrow-band spectra constitute a highly detailed examination of the data and may reveal features which are otherwise not evident but which aid in understanding the noise-generating mechanisms. In this sense they reflect a specialized interest in the data and do not share in the wide practical utility of 1/3-octave band data. For this reason only a limited number of narrow-band spectra are presented herein as general information.

DATA PRESENTATION

Tabulations

All standard-day 1/3-octave band data on a 30.5-meter arc which were obtained from the acoustical test program are presented in tabular form. Table III lists the data presented. The actual data appear in tables V to XV inclusive in increasing order of configuration number. Each table is identified by configuration number and speed and contains descriptive information about the configuration.

The principal table entries are standard-day sound pressure levels (SPL referred to 0.00002 N/sq m) in each 1/3-octave band for each angle on a 30.5-meter radius. OVERALL sound pressure levels which were computed from the 1/3-octave band data are also given.

Using the data referred to the source, calculations of PWL (power level) were made by multiplying the sound intensity at each angle by its respective incremental area on the surface of a hemisphere and summing the increments of power so obtained. Radiation through axis areas for which no data were obtained was neglected. Power levels are presented in the tables referred to 10^{-13} watt (0.1 pW).

Each power level has associated with it an AVERAGE SPL (sound pressure level) which is the sound pressure level produced by a source emitting the same acoustic power but radiating uniformly in all directions. For the individual frequency bands, average sound pressure level may be used to quickly compute directivity index. Since average sound pressure level is referred to the source and the table entries include standard-day atmospheric absorption, directivity index is obtained by subtracting atmospheric absorption for 30.5 meters (table IV) from the average sound pressure level and subtracting the result from the table entries at all angles. Unfortunately, there is no direct way to compute the directivity index for the overall sound pressure levels by using the data provided.

For all cases, projections were made to a sideline 61 meters parallel to the fan axis, and perceived noise levels in PNdB were computed in accordance with reference 5. These perceived noise levels are also provided in the tables and permit a quick and practical comparison among all the noise data of the relative noise generated. In addition, sideline perceived noise levels are provided at 113 meters for the approach-speed case (60 percent) and at 305 meters for the takeoff case (90 percent). These distances typify FAA regulated noise certification distances (see ref. 5), and the data indicate generally the community noise levels to be expected from the fan compared with FAA regulations. Note that the data provided are for a single fan and that the perceived noise levels for n fans may be obtained very closely by adding 10 log n to the single fan values.

Graphical Data

One-third-octave band data. - For many configurations, the 1/3-octave band data are qualitatively similar. For this reason, data from only selected configurations are presented graphically to illustrate general features. Detailed comparisons may be made using the tabulated data. Configurations 101 to 108 are in this category; and, for these, the data of configuration 106 are presented in figure 6 as typical. Configurations 109 and 110 are significantly different, and the data from these are presented in figures 7

and 8, respectively. Graphical data presentations consist of standard-day 1/3-octave band sound pressure levels at a 30.5-meter radius for all angles and speeds.

Narrow-band data. - Because of their special nature, only representative samples of narrow-band spectra are presented to illustrate their general character. Spectra at or near the peak noise angles front and rear at 60- and 90-percent speeds have been selected. These are presented for configurations 106 and 110 in figures 9 and 10, respectively.

CONCLUDING REMARKS

Fan B has completed a program of noise tests at the Lewis Research Center. The fan is characterized generally as having a low tip speed and 26 low-aspect-ratio blades. It is one of three full-scale fans built under the NASA Quiet Engine Program, each of which varies signficantly in design characteristics which may be noise related. Acoustical tests were conducted over a range of aerodynamic operating conditions and with various arrangements of suppressive liners. Complete far-field noise results obtained in the tests are presented without interpretation. The data are presented in tabular form in a format intended to be useful to the majority of interested users. These results, and the results with the other full-scale fans in the program, should contribute measurably to a better understanding of the mechanisms of fan noise generation and aid in directing further efforts in the alleviation of noise from turbofan propulsion systems.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, December 20, 1971, 762-73.

REFERENCES

- 1. Anon.: Experimental Quiet Engine Program. Vol. 1. Phase 1: Engine Design Report. General Electric Co. (NASA CR-72967), Mar. 15, 1970.
- Giffen, R. G.: Experimental Quiet Engine Program Aerodynamic and Aeromechanical Performance of Fan B. General Electric Company, Cincinnati, Ohio, August 1971. NASA CR-72993, 1971.
- 3. Rice, Edward J.; Feiler, Charles E.; and Acker, Loren W.: Acoustic and Aerodynamic Performance of a 6-Foot Diameter Fan for Turbofan Engines. III: Performance with Noise Suppressors. NASA TN D-6178, 1971.

- 4. Anon.: Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise. Aerospace Recommended Practice No. 866, SAE, Aug. 1964.
- 5. Anon.: Noise Standards: Aircraft Type Certification. Vol. III, Part 36 of Federal Aviation Regulations.

TABLE I. - DESIGN CHARACTERISTICS OF FANS A, B, AND C

Characteristic	Fan A	Fan B	Fan C
Corrected rotor tip speed, m/sec	354	354	472
Inlet hub/tip radius ratio	0.465	0.465	0.360
Rotor inlet tip diameter, m	1.86	1.86	1.73
Corrected airflow, kg/sec	431	431	415
Inlet corrected specific flow, kg/sec/sq m	202	202	202
Number of rotor chords axially separating rotor and outer outlet guide vanes	2.0	2.0	2.0
Number of rotor chords axially separating rotor and inner outlet guide vanes	1.25	1.25	1.25
Bypass-portion total pressure ratio	1.50	1.50	1.60
Hub-portion total pressure ratio	1.32	1.43	1.49
Bypass ratio	5.6	5.4	5.0
Rotor aspect ratio	2.32	1.71	2.09
Rotor solidity: Outside diameter Inside diameter	1.45 2.50	1.30 2.16	1.40 2.45
Number of rotor blades	40	26	26
Number of outer outlet guide vanes	90	60	60
Number of inner outlet guide vanes	90	60	60

TABLE II. - NOZZLE GEOMETRY

(a) Before trimming

	Вура	ss nozz	le	Core
	Nominal	Large	Small	nozzle
Area, sq m	1.163	1.232	1.090	0.354
Outside diameter, m	1.654	1.765	1.630	. 861
Annulus height, m	. 271	. 276	.254	. 161
Axial distance (bypass to core), m	. 613	1.005	.655	

(b) After trimming

Area, sq m	1.188	1.268	1.103	0.319
Outside diameter, m	1.654	1.783	1.631	. 861
Annulus height, m	. 271	. 283	. 257	. 141
Axial distance (bypass to core), m	. 613	1.044	.642	

TABLE III. - ONE-THIRD-OCTAVE BAND FAR-FIELD NOISE DATA PRESENTED

Configu-		Со	nfiguration (descriptio	n		Purpose of test	Table
ration	Inlet	Fan frame	Exhaust	Bypass nozzle	Bypass area, sq m	Core area, sq m		
101	Hard	Soft	Hard	Large	1.232	0.354	Nozzle trim	V
102				Small	1.090		Nozzle trim	VI
103				Nominal	1.163		Nozzle trim	VII
104				Small	1.103		Far-field noise	VIII
105				Large	1.268	↓		IX
a, b ₁₀₆				Nominal	1.188	. 319		x
107	Taped suppressor							ΧI
108	Hard	Taped						XII
a 109	Hard	Soft	Suppressor					XIII
109	Hard	Soft	Suppressor				Inlet duct noise, exhaust aero- dynamic data	ХIV
a, b ₁₁₀	Suppressor	Soft	Suppressor	*	†	*	Far-field noise	xv

^aData presented graphically also (figs. 6 to 8).

bSamples of narrow-band analysis also presented (figs. 10 and 11).

TABLE IV. - STANDARD-DAY ATMOSPHERIC
ABSORPTION

[Computed for a flat 1/3-octave band spectrum; temperature, 15°C; relative humidity, 70 percent.]

Band center	Per 100 meters	At 30.5 meters
frequency,	Atten	uation,
nz	d.	
50	0	0
63	1	1
80		
100	. ♦	
125	.1	
160		
200		
250	\	
315	. 2	.1
400	. 2	1
500	. 2	
630	.3	
800	. 4	*
1 000	. 5	. 2
1 250	.6	. 2
1 600	.8	. 2
2 000	1.0	. 3
2 500	1.4	. 4
3 150	1.8	. 5
4 000	2.5	.8
5 000	3.6	1.1
6 300	5.1	1.6
8 000	7.4	2.3
10 000	10.6	3.2
12 500	15.1	4.6
16 000	21.4	6.5
20 000	30.3	9.2

TEST PURPOSE - NOZZLE TRIM

[Data adjusted to standard day of $15^{\rm o}$ C and 70 percent relative humidity; SPL re 0.00002 N/m²; PWL re 0.1 pW.]

(a) Percent speed, 60; fan physical speed, 2070 rpm; fundamental blade passage frequency, 897 hertz.

POWER	(PWL)		122.9 123.1 123.7	126.2 126.4 125.8	124.1 126.0 126.4	127.1 126.6 127.4	136.1 136.6 128.9	133.1 135.0 133.5	133.4 134.1 134.6	133.5 133.0 133.0	133.0 132.8 133.2	146.2	
AVERAGE	3.P.C		75.5 75.7 76.3	78.8 79.0 78.4	76.7 78.6 79.0	79.7 79.2 80.0	88.7 89.2 81.5	85.7 87.6 86.1	86.0 86.7 87.2	86.1 85.6 85.6	85.6 85.8 85.8	7.86	
	160		79.0 80.1 81.5	82.2 81.2 78.5	77.4	77.0	83.5 84.3 76.9	78.6 80.4 79.1	78.5 79.4 80.0	78.4 76.5 74.7	74.0 71.8 68.9	93.5	86.5
	150		78.6 78.3 81.3	82.2 82.3 79.8	79.0 80.1 79.0	79.3 78.4 77.5	86.2 86.9 80.2	83.8 86.2 84.0	84.1 83.7 84.0	82.7 80.9 79.3	78.3 76.0 72.9	96.4	94.9
	140	orus	77.4 78.1 80.5	82.2 81.8 80.3	78.8 81.0 80.0	81.4 80.9 81.1	89.8 90.2 83.5	88.5 90.7 88.3	88.4 88.2 88.4	86.5 84.2 83.3	82.3 80.0 77.5	7.66	101.2
	130	R RA	75.3 76.4 78.5	81.2 80.1 78.4	78.2 80.3 80.0	82.1 81.5 82.8	88.8, 89.4 84.7	88.7 90.0 89.0	89.4 88.9 89.5	87.5 85.2 83.8	82.1 79.2 75.9	99.8	103.6
	120	5-METE	76.7 75.7 77.7	80.4 80.0 79.0	77.3 80.0 79.8	82.0 81.0 82.6	86.6 86.5 83.4	85.4 86.6 86.4	87.1 86.9 87.5	85.9 83.6 82.7	80.7 78.7 76.0	97.9	102.8
<u> </u>	110	OR ND	77.8 76.8 77.1	80.8 81.1 80.1	77.0 80.6 80.5	82.1 80.9 82.3	86.5 86.9 82.8	85.0 86.5 85.7	85°3 85°9 86°4	84.4 83.1 81.6	80.1 78.4 75.8	1 97.4 LEVELS	102.8
	100	(SPL)	76.9 75.8 75.3	78.0 79.3 79.8	77.5 79.6 79.1	79.6 79.5 80.3	84.0 84.5 80.0	82.7 84.2 83.3	82.9 83.4 83.2	81.4 79.9 78.8	76.8 75.5 73.0	95. ISE	100.9
E, DEG	06	LEVEL	73.8 75.6 74.0	77.0 78.3 77.9	75.2 77.8 79.3	78.9 78.5 79.1	83.6 83.9 79.3	81.3 82.7 81.3	81.1 82.1 81.5	79.2 77.9 76.5	75.1 72.9 70.9	93.7 IVED NO	99.7
ANGLE	96	SSURE	75.8 75.3 74.3	76.0 77.8 77.8	75.0 76.1 78.0	77.9	84.0 84.4 77.7	80.7 81.8 75.8	78.8 80.4 78.3	76.4 74.7 73.1	711.6	92.8 PERCEI	98.0
	70	UND PRE	73.8 73.8 71.8	74.2 76.6 77.6	75.2 75.3 77.7	76.8 76.9 77.3	84.0 84.2 76.5	79.7 81.3 79.2	78.1 80.1 78.0	76.2 74.9 73.6	71.8 69.4 66.8	92.3 EL INE	97.1
	9	AND SOUR	72.1 73.4 71.1	76.8 75.6 76.9	74.8 75.0 77.2	76.6 76.7 76.6	86.5 86.9 77.3	81.5 83.5 82.0	80.4 82.4 82.2	80.5 80.2 79.3	78.8 76.4 73.9	94.5	98.4
	20	AVE B	70.9 72.3 69.8	75.8 75.3 76.1	74.8 75.8 78.2	76.4 77.2 77.1	90.7 91.4 79.8	85.2 87.5 85.3	84.9 86.1 86.4	85.3 84.4 83.8	82.8 80.0 77.9	98.2	100.5
	40	/3-0CT/	71.3 69.8 69.0	76.0 76.1 76.4	75.8 77.0 78.3	77.4 77.5 78.5	93.3 93.7 81.5	88.C 90.2 88.7	87.8 89.1 89.5	88.5 88.0 87.3	85.8 83.9 81.5	101.0	101.3
	30	1	70.9 70.4 69.0	73.5 76.8 77.4	76.3 77.8 78.0	77.6 78.2 79.6	92.5 93.4 82.7	90.0 91.8 89.5	88.4 89.7 89.5	88.3 87.8 87.0	85.3 83.2 80.9	101.2	99.2
	20		71.9 73.9 72.6	74.5 76.6 77.1	77.8 80.1 79.3	79.9 78.9 80.0	94.3 94.7 83.7	89.3 91.3 89.3	88.3 89.1 89.5	88.3 88.2 87.6	86.6 85.0 83.0	101.7	95.0
	10		72.8 75.8 74.8	73.774.9	77.2	75.6 75.0 8C.0	94.0 94.7 82.5	91.0 86.8	86.1 86.2 86.7	87.5 87.2 86.3	85.1 82.2 81.9	101.3	86.3
FREQUENCY			28 63	10C 125 16C	20C 250 315	400 500 630	80C 100C 125C	160C 200C 25CC	31.50 4000 8000	630C 80CC 1C0C	12500 16000 2000	CVERALL	61 PETERS 113 PETERS

TABLE V. - Concluded.

70; fan physical speed, 2473 rpm; fundamental blade passage frequency, 1071 hertz.

Percent speed,

<u>a</u>

133.2 145.8 139.0 127.6 127.3 129.3 131.2 131.0 131.7 133.9 141.0 137.3 139.4 137.8 138.6 137.6 137.2 136.5 136.2 136.1 136.3 130.9 131.4 130.4 130.6 130.8 POWER LEVEL (PWL) 151.2 AVERAGE SPL 80.2 79.9 81.9 83.5 84.0 83.0 82.0 83.2 83.4 85.8 98.4 86.5 93.6 89.9 92.0 90.4 91.2 90.2 88.8 91.6 103.8 89.1 86.3 86.4 89.1 89.6 87.6 86.0 84.2 84.5 82.5 82.4 81.2 80.5 81.3 90.9 85.0 80.7 85.4 83.0 84.7 84.1 85.5 84.3 83.8 82.3 81.6 79.9 77.1 66.2 92.2 160 83.9 85.0 87.9 88.6 85.6 85.8 84.8 87.6 84.9 81.6 79.4 76.3 7.86 89.4 84.2 83.3 82.4 83.1 94.5 87.9 86.3 83.2 83.1 88.7 86.1 101.0 150 88.0 87.4 85.4 89.9 85.4 82.4 83.5 85.4 86.4 85.6 85.7 85.4 96.8 90.9 86.6 93.7 91.1 103.3 104.4 90.1 91.2 91.3 86.7 140 RADIUS 86.5 86.6 85.1 84.6 90.6 95.5 94.2 93.8 86.7 84.2 81.3 108.1 109.2 82.3 82.7 85.1 86.5 89.6 92.6 88.9 105.3 87.2 92.1 130 30.5-METER 85.3 83.5 81.3 102.9 80.0 80.0 82.0 84.1 85.3 83.3 83.0 84.9 88.5 93.9 88.2 92.6 91.2 92.9 91.5 92.0 90.8 86.1 86.5 0.06 87.5 120 102.9 105.4 106.2 107.8 84.2 81.6 84.6 85.8 87.3 91.0 90.1 89.6 86.4 87.7 95.5 60.68 91.1 86.7 84.7 83.4 80.8 102.4 110 PERCEIVED NOISE LEVELS 8 82.7 83.6 82.2 83.3 84.3 85.5 90.3 87.8 89.0 87.3 88.7 86.9 86.2 83.7 81.9 80.2 77.5 1001 79.9 78.4 80.1 84.7 85.2 92.2 87.1 (SPL) 100 ANGLE, DEG 9.66 78.3 76.5 77.4 80.9 82.9 82.7 84.6 93.2 87.4 87.6 88.8 86.3 87.8 86.2 87.5 85.2 80.4 77.9 75.9 80.1 82.1 83.6 83.2 84.4 82.0 LEVEL 90 75.5 82.1 81.7 PRESSURE 76.8 75.5 75.8 79.5 81.3 81.7 82.9 92.0 85.6 82.5 87.8 84.0 85.3 83.5 82.0 76.5 78.4 ဥ SIDELINE 104.2 102.3 78.4 75.5 75.8 78.4 81.6 81.7 79.8 80.8 82.7 81.3 88.0 83.0 85.1 83.2 84.3 80.2 76.6 98.2 86.4 78.2 2 SOUND 88.8 86.0 86.8 81.9 77.4 74.9 79.1 76.5 80.7 81.1 79.3 79.4 80.8 80.5 80.7 81.2 83.2 98.9 90.8 82.3 91.2 85.6 85.2 82.9 101.7 9 BAND 106.7 105.7 75.2 79.2 80.9 80.3 83.6 100.7 92.8 83.8 94.8 88.6 92.5 89.2 89.8 85.2 82.5 79.8 75.8 19.4 88.4 79.3 86.4 104.0 20 1/3-OCTAVE 76.3 73.9 74.1 81.0 80.8 81.6 85.1 103.4 95.8 94.8 92.2 92.1 90.9 88.1 86.4 83.9 75.4 79.6 80.6 81.0 82.0 82.4 86.6 98.3 91.8 106.8 40 104.0 75.1 79.1 80°8 85.9 95.0 87.6 85.4 83.1 74.3 90.5 89.2 107.3 87.1 97.7 92.1 30 66.3 90°6 89°7 76.4 79.7 80.9 81.5 81.6 82.9 82.3 86.2 102.7 87.3 97.0 92.0 94.6 91.8 74.4 92.0 106.2 20 90.06 87.3 96.0 90.3 90.0 85.7 82.5 81.7 81.1 82.2 82.0 92.6 85.7 86.6 87.9 87.1 104.9 01.4 9 61 PETERS FRECLENCY CVERALL DISTANCE 50 63 80 1600 2000 2500 0000 100 125 166 1250C 1600C 260CC 100C 3150 4000 5000 eaac

(c) Percent speed, 90; fan physical speed, 3180 rpm; fundamental blade passage frequency, 1378 hertz.

BMCG 3	J Q.		135.6 136.5 138.8	140.6 140.6 139.6	138.7 139.7 139.2	139.7 139.2 140.0	140.9	146.5 142.7 148.9	147.1 145.9 145.7	144.3	141.5	157.8	
AVERAGE	j 5		88.2 89.1 91.4	93.2 93.2 92.2	91.3 92.3 91.8	92.3 91.8 92.6	93.5 93.7 102.8	99.1 95.3 101.5	99.7 98.5 98.3	96.9 95.8 94.8	94.1 93.7 93.7	110.4	
	160		95.1 97.8 100.1	100.0 97.9 95.5	94.8 94.7 92.8	92.3 90.9 89.9	89.8 89.8 94.1	91.4 88.9 93.1	92.5 90.6 90.8	89.9 87.4 85.7	84.2 82.1 79.4	108.2	100.4
	150		93.2 95.7 98.4	100.1 99.5 96.4	96.1 96.3 94.8	94.2 92.9 91.7	92.1 92.1 95.5	93.1 91.7 96.0	96.8 93.3 93.8	93.0 90.6 89.1	87.9 85.5 82.9	109.2	107.3
	140	rus	92.4 94.1 96.6	98.2 97.5 96.4	96.2 97.2 96.2	95.9 94.9 93.9	94.2 94.6 98.7	96.4 94.9 102.8	101.4 97.1 97.2	95.8 94.2 92.1	91.1 89.8 87.0	110.9	113.4
	130	R RADI	89.9 90.4 93.2	95.8 95.5 94.4	94.3 95.5 94.6	95.2 94.7 94.6	95.4 97.3 99.3	97.6 97.9 107.3	104.8 100.5 101.3	99.1 96.6 94.6	92.5 90.0 87.1	112.8	118.0
	120	5-METE	86.5 88.0 90.6	93.2 94.2 92.0	92.2 94.1 93.5	94.7 93.9 95.2	96.4 96.1 101.6	99.2 97.5 103.3	101.4 100.8 100.6	98.4 96.8 94.8	92.6 90.2 87.7	111.4	117.0
	110	ON 30.	90.1 89.4 91.4	92.9 93.7 92.6	91.6 93.1 92.9	93.9 93.5 94.9	96.1 95.8 98.7	97.0 97.0 101.1	100.1 99.7 99.5	97.4 96.1 94.1	92.0 89.9 87.3	110.2 VFI S	116
	100	(SPL)	85.4 84.9 87.6	91.1 92.0 91.3	89.6 91.8 91.6	92.6 91.7 93.2	93.9 94.2 99.0	96.3 95.0 98.0	96.9 96.8 96.8	95.2 93.1 91.1	89.4 87.6 84.9	108.1	114.3
E, 0EG	06	LEVEL	84.9 83.4 85.4	89.4 91.2 91.4	88.6 90.5 90.8	91.1 91.0 91.9	92.3 92.4 98.8	95.6 93.4 97.1	96.1 95.0 95.1	93.9 91.9 90.1	88.2 86.0 83.4	107.0 VFD ND	4
ANGLE	80	SSURE	85.9 82.7 83.4	87.3 89.7 90.3	86.9 89.1 89.9	89.7 89.7 90.4	90.9 91.1 97.8	94.6 91.5 94.5	93.3 92.5 92.6	91.1 88.9 87.1	84.2 81.9 8C.0	105.2 PFRCF1	11:1
	70	NO PRE	84.6 82.6 82.1	86.3 89.3 90.3	87.3 87.8 89.1	88.6 88.9 90.1	91.4 90.6 100.2	96.4 91.5 95.6	93.6 93.5 92.6	91.3 89.6 87.2	84.3 81.5 78.6	106.0	6.
	99	ND SOUN	83.6 81.7 81.4	85.6 87.8 89.4	87.4 87.1 88.3	88.5 88.5 99.9	90.9 90.9 105.2	100.9 92.8 98.0	96.1 96.5 94.5	92.9 91.4 89.4	87.C 84.2 81.1	0.601	
	50	AVE BA	84.7 82.1 81.4	84.6 87.0 89.4	87.6 87.0 87.4	88.2 88.2 90.7	92.1 91.4 107.7	103.6 95.7 101.3	98.9 98.3 96.3	94.7 93.1 90.6	88.0 84.7 81.6	1111.3	113.6
	40	/3-0CT	84.2 81.4 80.6	85.3 86.3 88.1	87.9 87.6 87.4	88.6 89.9 90.7	92.4 91.7 106.0	101.9 95.9 102.0	99.3 99.5 97.8	96.1 94.7 92.7	90.0 87.7 85.1	110.8	112.2
	30	1	82.6 81.7 80.6	84.1 86.5 88.3	88.4 87.5 87.3	88.6 89.0 91.6	92.4 91.7 107.2	102.1 95.7 102.1	98.9 99.5 97.0	95.2 93.7 91.9	89.0 85.9 82.9	11111	109.6
	20		81.4 82.7 82.7	86.1 85.8 87.8	88.1 87.3 86.3	87.1 87.7 91.2	90.6 91.1 105.2	100.8 94.9 100.8	97.9 97.7 96.0	94.3 93.2 91.1	88.9 86.5 83.8	109.6	104.2
	01		85.2 81.4 81.6	86.3 86.7 87.6	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	86.4 87.0	90.6 90.7 102.8	96.9 1 92.5 101.0	96.1 97.0 94.3	92.2	86.7 82.7 81.2	106.3	95.3
FRECUENCY			863	100 125 160	200 25C 315	400 500 630	80C 10CC 1250	160C 200C 250C	3150 4000 5000	630C 800C 1000C	12500 16000 20000	GVERALL	FETER

TABLE VI. - NOISE OF FAN B CONFIGURATION 102 (HARD INLET, SOFT FAN FRAME, HARD EXHAUST, SMALL NOZZLE)

TEST PURPOSE + NOZZLE TRIM.

[Data adjusted to standard day of $15^{\rm O}$ C and 70 percent relative humidity; SPL re 0.00002 N/m 2 ; PWL re 0.1 pW.]

(a) Percent speed, 82; fan physical speed, 2930 rpm; fundamental blade passage frequency, 1269 hertz.

10 20 30 40 50 60 70 10 110 120 130 140 150 160 150 160 171 173 174	FRECUENCY								ANGLE	E, DEG								AVERAGE	POWER
173-OCTANE BAND SQUAD PRESSLAR LEVEL (SPL) ON 30.5-WETER RADIUS 6.2 8.7.9 8.7.9 8.7.4 8.7.2 8.4.6 8.2. 84.2 84.2 85.0 84.1 87.2 89.9 91.2 97.3 96.4 91.8 91.8 91.8 91.8 91.8 91.8 91.8 91.8		01	20	30	40	20	09	10	BC	06	100	110	7	130	140	Ś	ø	345	
125 187.2 193.9 195.7 194.6 194.6 195.0 194.2 195.2 195.0 195.1 195.2 195.9				"	/3-0C	AVE B	S	D P.R	SURE	EVEL	SPL)	30	5-METE	RADI	SO				
11C 86.2 85.0 86.9 87.5 88.5 84.5 88.7 84.6 88.7 89.6 93.1 94.6 97.6 88.3 1 94.4 97.6 88.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50			5.0	8.0	4.0	1.	6.0	4:	3. 1.	4.	ທີ່ທີ	6.	7.	80	2:0	2.4	50	93
10.5 84.2 85.4 85.4 85.5 84.5 84.5 87.5 84.5 87.5	80	•	•	8	ė.	æ	6	9.	ပံ	5	•	٠.	œ	·	ě	•		60	35.
1125 84.0 86.5 86.4 86.5 87.0 86.0 86.5 87.8 86.0 89.9 91.5 92.1 93.0 94.9 96.2 95.3 90.7 11 116C 86.0 86.5 86.7 85.4 84.5 87.0 86.0 87.8 88.9 89.0 91.5 92.1 93.0 94.9 96.2 95.3 90.7 11 22C 86.0 86.5 86.7 85.4 86.2 85.4 86.2 86.2 86.2 89.2 91.6 92.0 91.7 91.7 91.7 91.7 91.7 91.7 91.8 88.8 11 23C 86.2 86.5 86.7 85.4 85.9 86.5 85.4 86.2 86.2 86.2 91.6 92.0 91.6 92.0 91.9 91.5 91.9 91.0 91.8 91.8 91.8 91.8 91.8 91.8 91.8 91.8	100			•	4	Š.	5	*	•		æ	0	ö	2	· 2	9		0	38
25C	125	4 4		6 9	* 6	÷ ;	• •	÷:	<u>- ۲</u>	6 8	<i>.</i> .	-:0	2:	ë.	4 W	9 %	. 2	06	138.1
25C 88.2 86.4 85.2 85.7 85.4 85.2 85.4 87.5 87.9 88.9 91.0 91.5 91.9 93.2 92.0 89.8 89.3 91.6 88.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.1 85.4 85.2 85.4 85.1 85.2 85.4 85.1 85.2 85.4 85.1 85.2 85.4 85.1 85.2 85.4 85.1 85.2 85.4 85.1 85.2 85.4 85.1 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.4 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2		,									١,	, (•	•			
4CC 84.3 84.2 85.4 85.2 85.7 85.4 85.5 87.5 87.5 87.5 98.9 91.0 91.5 91.9 92.2 92.0 89.8 89.3 140.6 86.0 85.6 85.4 85.1 87.8 89.0 90.6 91.4 91.6 92.0 90.0 87.4 86.9 85.6 85.2 85.0 85.1 85.4 85.1 85.4 85.1 85.4 85.1 87.8 89.0 90.6 91.4 91.6 92.0 90.0 87.4 86.9 85.6 85.2 85.1 85.2 85.1 87.8 89.0 90.6 91.4 91.6 92.0 90.0 87.4 86.9 85.2 85.1 85.2 85.1 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2	0 K		•	ເ	v, r	, ,	ຕໍ່ເ	. נ	, v	· •		÷ -	6	: <	. 4	, r		. o	137.3
40C 84.4 85.0 85.1 86.0 85.5 86.1 87.3 88.1 89.4 91.3 92.0 91.9 92.8 90.9 88.5 88.9 88.9 89.3 10.8 81.4 85.0 85.1 86.0 85.0 85.1 86.0 87.4 85.0 87.4 85.0 90.6 91.4 91.6 92.0 90.0 87.4 88.9 10.8 85.1 86.0 85.0 85.1 86.0 87.4 85.0 87.8 87.9 91.0 92.3 91.4 91.6 92.0 90.0 87.4 88.9 10.0 92.0 92.3 91.4 91.6 91.0 92.0 92.3 91.2 87.8 87.9 87.3 87.2 92.9 92.8 91.4 91.6 87.9 86.7 91.0 91.0 91.0 92.3 91.2 91.0 92.3 91.2 91.0 92.3 91.2 91.2 91.0 92.3 91.2 91.2 91.0 92.3 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2	` ~	1 5		Š	, 10				. ~		. 8	::		1.		· 2			36.
86.0 84.6 85.0 85.1 86.0 86.0 85.5 86.1 87.0 87.0 87.0 90.6 91.4 91.6 91.0 90.0 87.4 88.9 1186.9 86.0 86.5 85.4 85.0 86.0 86.5 85.4 86.0 87.7 88.9 90.0 92.0 92.3 91.9 91.0 88.5 86.2 86.2 86.2 86.5 86.2 87.4 86.3 87.1 86.9 86.5 87.4 90.8 91.3 92.9 91.1 91.6 88.4 86.3 90.5 1186. 92.0 92.4 90.5 91.3 91.1 92.4 92.9 93.1 91.6 88.4 86.3 90.5 1186. 92.0 92.4 90.5 91.3 91.1 92.4 92.9 93.1 91.1 92.4 92.9 93.2 93.2 93.1 91.1 92.4 92.9 93.2 93.2 93.1 91.1 92.4 92.9 93.8 93.2 92.2 93.2 93.2 93.2 93.2 93.2 93.2	460	,	4	4	Ŋ.	5	Š	•	,	8	6	-	2.	-	2		8	6	36.
80.0 85.5 86.0 86.5 85.4 85.0 86.0 87.7 88.9 90.0 92.0 92.3 91.9 91.0 88.5 86.2 89.3 1 1000 81.4 85.5 86.0 86.9 86.3 87.4 86.9 86.3 87.3 88.1 89.6 91.3 93.6 94.0 93.1 91.6 88.4 86.3 90.5 1 1000 1000 1000 100.2 92.0 92.4 90.2 87.4 80.5 87.5 87.4 90.8 92.2 93.3 94.1 95.0 92.3 89.0 86.7 91.9 1 1000 100.7 101.0 100.2 108.8 100.9 100.3 98.8 100.3 98.8 100.3 91.1 93.4 93.9 93.8 91.3 87.6 85.8 103.8 103.8 100.3 91.0 97.9 93.8 91.3 97.9 93.8 91.3 87.6 85.5 91.7 1 100.0 102.0 103.7 100.0 99.0 99.0 97.2 97.3 97.2 97.3 97.9 97.3 97.2 97.3 97.2 97.3 97.2 97.3 97.2 97.3 97.2 97.3 97.2 97.3 97.2 97.3 97.2 97.3 100.2 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97.3	200	•	5	T.	•	•	3	•	-		6		:	-	2		~	8	36
125C 101-6 109-3 108-8 109-4 90-5 87-5 87-5 87-5 87-6 97-2 99-3 94-10 99-10 99-3 99-9 9	069	41	Š	•	•	ŝ	ŝ	è		8	ċ	2	2.	-	÷	•	•	6	36.
1000 96.7 92.2 92.0 92.4 90.5 87.5 85.4 90.8 92.2 93.3 94.1 95.0 92.3 89.0 86.7 91.9 1 125C 165.6 109.3 108.8 109.8 106.9 100.3 98.8 100.3 98.4 97.1 99.1 100.7 101.3 97.9 95.3 95.8 103.6	900	87.4	87.1	86.9		•	•	-		•	91.3	3.			-:	8	Ġ	•	37.
160C 91.4 92.9 93.2 93.5 91.2 87.3 88.6 90.3 91.1 93.4 93.9 93.8 91.3 87.6 85.5 91.7 1 160C 91.4 92.9 93.2 93.5 91.2 87.2 87.3 89.1 91.0 92.8 94.3 95.6 95.7 92.3 88.5 85.9 92.2 1 200C 90.3 90.3 90.7 90.8 88.2 87.2 87.3 89.1 91.0 92.8 94.3 95.6 95.7 92.3 88.5 85.9 92.2 1 215C 91.4 92.8 93.1 93.8 90.3 88.6 87.3 88.6 97.7 98.3 103.8 103.5 94.8 93.2 90.3 100.2 1 216C 95.3 90.3 90.7 100.0 98.0 98.0 93.2 92.5 94.8 97.7 98.3 103.8 103.5 94.8 95.2 90.3 100.2 1 216C 95.5 97.7 97.3 98.5 95.9 92.8 89.4 88.4 91.4 92.5 95.9 96.0 94.6 89.8 86.6 93.4 1 216CC 95.0 95.7 97.3 98.5 95.9 92.8 89.4 88.4 91.4 92.5 95.9 96.0 94.6 89.5 87.0 95.4 1 226CC 96.1 92.2 92.2 88.5 86.1 82.8 87.5 87.6 91.5 93.4 94.4 92.2 87.8 87.9 88.9 87.6 94.4 92.5 92.6 90.6 86.1 82.9 93.4 1 226CC 86.2 89.9 90.2 92.2 88.5 86.5 81.5 87.6 91.1 91.7 91.4 89.8 85.4 81.4 92.9 11.0 91.7 91.7 91.4 89.8 85.4 81.4 92.9 92.0 92.0 92.0 92.0 92.0 92.0 92.0	1000	96.7	92.2	95.0	2	ċ				ċ	92.2	9	94.	5.	2	è.	•	91.	39
160C 90.4 92.9 93.2 93.5 91.2 87.6 87.3 88.6 90.3 91.1 93.4 93.9 93.8 91.3 87.6 85.5 91.7 1 1 1 10.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1250	9	60	0	60	•	ċ	8	•	æ	97.1	è.	2.00	01.		ŝ	5	03.	51.
200C 9(-3 90-3 90-7 90-8 88-2 87-2 87-3 89-1 91-0 92-8 94-3 95-6 95-7 92-3 88-5 85-9 92-2 100-2 101-7 101-0 102-0 103-7 100-0 98-0 93-2 92-5 94-8 97-7 98-3 103-8 103-5 99-8 93-2 90-3 100-2 100-2 101-7 101-0 102-0 103-7 100-0 98-0 93-2 94-8 97-7 98-3 103-8 103-8 103-5 99-8 93-2 90-3 100-2 11-2 101-7 101-4 92-8 93-9 11-2 92-8 93-9 11-2 92-8 93-9 11-2 92-8 93-9 92-2 91-5 93-9 92-5 95-0 94-5 92-2 87-9 92-8 88-4 91-5 91-7 93-7 93-3 97-2 94-5 94-5 94-6 89-8 86-9 93-8 11-2 92-8 94-0 92-1 92-8 94-0 92-1 92-8 94-0 92-1 92-8 94-0 92-1 92-8 94-0 92-1 92-8 94-0 92-1 92-8 94-0 92-1 92-8 94-0 92-1 92-8 94-0 92-1 92-8 94-0 92-1 92-8 94-0 92-1 92-9 92-1 92-1 92-1 92-1 92-1 92-1	9	91.4		93.2	ě	Ξ.	٠,		å		_:	ě	3	3.	1.		5.	-	39.
2500 101.7 101.0 102.0 103.7 100.0 98.0 93.2 92.5 94.8 97.7 98.3 103.8 103.5 99.8 93.2 90.3 100.2 11 215C 91.4 92.8 93.1 93.8 90.3 88.6 87.3 88.6 91.6 93.3 95.3 97.3 96.9 94.6 89.8 86.6 93.8 86.6 93.8 400.0 95.5 91.0 95.7 97.3 97.2 94.5 89.5 87.0 96.4 100.4 96.4 94.9 91.0 89.7 91.7 93.7 95.5 97.3 97.2 94.5 89.5 87.0 96.4 100.4 96.4 92.8 89.4 88.4 91.4 92.5 95.0 96.5 96.0 94.0 89.2 86.9 86.9 87.0 95.4 11 63CC 92.0 95.7 97.3 98.5 95.9 92.8 89.4 88.4 91.4 92.5 95.0 96.5 96.0 94.0 89.2 86.9 86.9 86.9 86.9 86.1 82.9 86.1 82.9 93.4 11 63CC 86.1 92.8 94.0 96.1 93.4 90.5 87.5 87.5 87.5 88.1 89.3 92.3 93.2 92.6 90.6 86.1 82.9 93.4 11 10CC 86.5 89.9 90.2 92.2 88.5 86.5 81.5 81.4 84.7 85.9 88.9 89.2 89.2 89.2 89.5 79.6 92.9 11 125CC 86.5 89.9 90.2 92.2 88.5 83.6 75.0 75.0 82.9 84.0 86.7 87.5 87.5 86.2 81.9 78.0 92.0 11 125CC 86.2 85.8 85.5 87.7 82.9 80.9 76.7 77.2 80.5 81.7 84.5 84.6 84.7 84.9 79.2 75.4 11 10E.4 111.0 111.0 112.1 109.1 105.1 103.1 103.8 104.4 105.4 107.3 109.2 109.3 107.8 105.8 105.6 108.5 11 10ETARK 94.4 102.2 108.4 112.3 111.1 110.3 108.1 104.8 110.7 112.4 113.4 115.7 114.4 110.7 112.3 111.1 110.3 108.1 104.8 110.7 112.4 113.4 115.7 114.4 110.7 112.3 103.3 108.1 104.8 110.7 112.4 113.4 115.7 114.4 110.7 112.3 103.3 107.3 109.2 109.3 107.8 105.3 47.3	8	6	90.	40.0	90.	å	-	۲.	6	•	5	•	92.6	95.	2	æ,	5	92.	39
315C 91.4 92.8 93.1 93.8 90.3 88.6 87.3 88.6 91.6 93.3 95.3 97.2 94.6 89.8 86.6 93.8 186.6 95.4 100.4 96.4 96.4 96.4 91.0 89.7 91.7 93.7 95.5 97.2 94.5 89.5 87.0 96.4 1 96.4 100.4 96.4 96.4 91.0 89.7 91.7 93.7 95.5 97.2 94.5 89.5 87.0 96.4 1 96.4 100.2 91.0 85.7 91.7 93.7 95.5 97.2 94.5 89.5 87.0 96.4 1 96.4 1 92.8 89.4 88.4 91.0 86.1 89.4 92.5 95.0 96.5 96.0 94.0 89.2 86.9 86.9 86.1 86.9 86.1 87.6 91.1 91.7 91.4 89.8 85.4 81.4 97.9 93.4 1 92.9 92.6 90.6 86.1 82.9 93.4 1 100.0 112.1 109.1 105.1 103.1 103.8 104.4 105.4 107.3 109.2 109.3 107.8 105.8 105.6 1 108.5 1 108.5 1 108.8 110.3 104.2 108.4 112.1 111.1 110.3 103.1 104.8 110.7 112.4 113.4 115.7 114.4 110.2 103.4 97.3	20	5	01.	102.0	03.	ċ	æ	ě	2.	•		œ		03.	°.	e.	ċ	8	47.
400C 95.5 98.0 99.7 100.4 96.4 94.9 91.0 85.7 91.7 93.7 95.5 97.3 97.2 94.5 89.5 87.0 96.4 1 50.0 69.7 100.4 96.4 94.9 91.0 89.7 91.7 91.4 92.5 95.0 96.5 96.0 94.0 89.2 86.9 95.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15	-:	2	93.1		·	8	7.	e,	ij	3	5		•	•	•	•	3	41.
630C 92.0 95.7 97.3 98.5 95.9 92.8 89.4 88.4 91.4 92.5 95.0 96.5 96.0 94.0 89.2 86.9 95.4 1 630C 92.0 95.7 97.3 98.5 95.9 92.8 89.4 88.4 91.4 92.5 95.0 96.5 96.0 94.0 89.2 86.9 93.9 1 630C 86.2 97.0 96.1 92.3 89.8 86.1 85.6 88.1 89.3 92.3 93.2 92.6 90.6 86.1 82.9 93.4 1 1000 88.3 91.3 92.9 94.2 90.4 87.9 83.6 83.7 86.9 87.6 91.1 91.7 91.4 89.8 85.4 81.4 92.9 1 1250C 86.5 89.9 90.2 92.2 88.5 86.5 81.5 81.5 81.5 87.6 91.1 91.7 91.7 91.4 89.8 85.4 81.4 92.9 1 1250C 86.2 87.9 87.5 89.9 85.8 83.8 79.0 75.0 82.9 84.0 86.7 87.5 87.5 87.5 79.6 92.3 1 1250C 86.2 85.8 85.5 87.7 82.9 80.9 76.7 77.2 80.5 81.7 84.5 84.6 84.7 84.9 79.2 75.4 92.4 1 106.4 111.0 111.0 112.1 109.1 105.1 103.1 103.8 104.4 105.4 107.3 109.2 109.3 107.8 105.8 105.6 108.5 1 DISTANCE STORM AND	8		œ :	2.66	00	•	÷.	-	ς,	:	6	ŝ			÷.	6	Ļ,	9	143.8
63CC 86:0 92.6 93.4 95.0 96.1 93.4 90.5 87.5 87.4 90.2 91.5 93.4 94.6 94.4 92.2 87.9 84.9 93.9 1 100.0 86:1 92.8 94.0 96.1 92.3 89.8 86.1 85.6 88.1 89.3 92.3 92.5 92.6 90.6 86.1 82.9 93.4 110.0 111.0 110.3 108.1 108.8 110.7 112.4 113.4 115.7 114.4 113.4 115.7 114.4 110.2 103.4 97.3 108.1 108.8 110.7 112.4 113.4 115.7 114.4 110.3 109.2 109.3 107.8 105.2 103.4 97.3 110.3 109.7 112.4 113.4 115.7 114.4 110.2 103.4 97.3 109.3 107.8 105.3 107.3 109.2 103.4 97.3 108.5 110.3 109.7 112.4 113.4 115.7 114.4 110.2 103.4 97.3 109.2 103.4 97.3 109.3 107.8 105.8 105.6 108.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	ဗ္ဗ	•	Š	91.3	æ	ň	5.	6	e.		2	Š	ċ	÷	•	•	ċ	Š	4 2•
000C 86:1 92.8 94.0 96.1 92.3 89.8 86.1 85.6 88.1 89.3 92.3 93.2 92.6 90.6 86.1 82.9 93.4 11000C 86:3 91.3 92.9 94.2 90.4 87.9 83.6 83.7 86.9 87.6 91.1 91.7 91.4 89.8 85.4 81.4 92.9 11250C 86.5 87.9 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5	30	·		30	•	ů	ó	-	-	ċ		3	,	4	2		4	3.	41.
125CC 86.5 89.9 9C.2 92.2 88.5 86.5 81.4 84.7 85.9 88.9 89.2 89.2 83.5 79.6 92.3 11.00 11.0 112.1 109.1 105.1 103.8 104.4 105.4 113.4 115.7 114.4 110.2 103.4 97.3 109.5 10.8 105.8 105.8 105.6 108.5 11.0 11.0 112.3 111.1 110.3 108.1 108.8 110.7 112.4 113.4 115.7 114.4 110.2 103.4 97.3	8	4.0	•	40	٠	٠,	٠,	• •	٠, د	. 8	6.	٠;	e.	٠,	· .	9 u	٠.	e c	140.8
1250C 86.5 89.9 90.2 92.2 88.5 86.5 81.4 84.7 85.9 88.9 89.2 89.2 83.5 79.6 92.3 1 1 160.2 84.2 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5	3		•	v	•	•	•	n	•	•	•	-	-	:	•	•	-	•	•
1600C 84.2 87.9 87.5 89.9 85.8 83.8 79.0 75.0 82.9 84.0 86.7 87.5 87.5 87.5 87.5 87.9 78.0 92.0 1 2000C 85.2 85.8 85.5 87.7 82.9 76.7 77.2 80.5 81.7 84.5 84.6 84.7 84.9 79.2 75.4 92.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	250	•	6	ຶ່	2.	8	•	-	-	*	3	æ.	6	6	6	3.	6	2	39.
CVERALL 106.4 111.0 111.0 112.1 109.1 105.1 103.8 104.4 105.4 107.3 109.2 109.3 107.8 105.8 105.6 108.5 1015.1 AFTERS 94.6 104.2 108.4 112.3 111.1 110.3 108.1 108.8 110.7 112.4 113.4 115.7 114.4 110.2 103.4 97.3	900	4 "	. 5	- 5	6.6	, ,	m d	6.9	5 6	'nć	÷ -	• 4	. 4	. 4	• 4	- 6	ພູ	2.0	139.4
CVERALL 106.4 111.0 111.0 112.1 109.1 105.1 103.8 104.4 105.4 107.3 109.2 109.3 107.8 105.8 105.6 108.5 1 DISTANCE NETHER 94.6 104.2 108.4 112.3 111.1 110.3 108.1 108.8 110.7 112.4 113.4 115.7 114.4 110.2 103.4 97.3		•	•	•		;	;	,	•	•	•	•	•	•	•	,	`	,	,
DISTANCE 1 104.2 108.4 112.3 111.1 110.3 108.1 108.8 110.7 112.4 113.4 115.7 114.4 110.2 103.4 97.5	ER I	96.	=	=	2	60	05.	03.	03.8	04.4	05.4	07.	2.60	09.3	07.8	05.8	05.	08.	155.9
1 #FTFRS 94.6 104.2 108.4 112.3 111.1 110.3 108.1 108.8 110.7 112.4 113.4 115.7 114.4 110.2 103.4 97.	ISTANC						2	EL INE	CE 1	2	ISE LE	VEL	l						
	61 PETERS	94.6	104.2	108.4	112.3	1111	110.3	108.1	106.8	110.7	112.4	113.4	115.7	14.4	10.2	103.4	97.3		

(b) Percent speed, 70; fan physical speed, 2417 rpm; fundamental blade passage frequency, 1047 hertz.

FRECUENCY								ANGLE	E, DEG								AVERAGE	aw Cd
	10	50	30	0,4	20	09	2	80	96	100	110	120	130	140	150	160	SPL	(P W.L.)
			1	/3-0CT	AVE BA	AND SOU	UND PRE	SSURE	LEVEL	(SPL)	ON 30.	S-METE	R RADI	ns				
25	41.1		•••		ıç.	٠.					٠,	6	· .	6,1	4.	ا ف		27.
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	86.2	76.2	76.7	74.5	75.8	76.3	75.8	76.8	78.0	79.1	80.2	83.1	84.9	86.8	85.4	89.2	82.5	129.9
100		•	•	•			8	်		9	•	3.	æ		æ	ċ	*	31.
125 160	81.5	82.4	80.7	80.9 81.8	80.4	81.7	81.7	82.5	83.9 82.8	84.5 83.8	85.7	85.9	88.2 86.5	87.7	88.0 85.7	88.6 86.1	84.8	132.2
						(9
255	81.5	83.3	81.7	80.4	80.2	79.5	80.0	81.5	80.7	81.0	82.7	m w	99	85.9	85.0	84.6	82.5	131.1
-	4	4	5	9	:	-	:	2	3	•	4	•	86.7	ŝ				31.
400		*	(4)	3	2	-	-:	-:	6		•	9		٠ <u>.</u>	•	2	4	31.
500	0.78	83.5	82.9	80 0 80 4 4 0	81.5	80°	80.9	81.9	83.0	84.4	85.0	85.0	87.2	84.7	82.9	000	83.8	131.2
900	•	•	ח	ń	-	•	•	•	•	•	ċ	•	•	•	-	•	•	• • •
80		87.	87.	~ 1	85.	4	8	e e	4.	5	-	8	6	8.	2	-	•	33
1250	9.56	103.9	105.2	105.9	102.8	99.8	96.6	91.46	92.7	95.7	93.0	95.2	98.0	94.9	92.2	91.0	90.0	147.0
3	-	•	•	•	:	•	•	•	•	•	•	•	•	•	•	•	•	•
1600	86.7	88.5	88.2	88.3	84.7	2.	-	•	4	85.8			90.8	•	2	6	•	34.
200		•	@ c		ů,	92.0	89.0	87.5	87.7	90.0	7.26	93.0	•	95.6	87.7		40	141.4
2	•	•	_		:	• •	,	5	'n	•	<u>~</u>	→	•	•	•	•	•	9
31.50	· v		6	5	2.	œ	•	4		ac i		~	Š	•	9	5		39.
4000	00 a	91.9	91.5	92.6	89.	86.0	83.0	63.9	86.0	87.6	90.1	91.1	93.8	90.8	85.6	82.2	90.2	137.6
	•	•	•	•	•	•	•	•	•	5	•	ų.	•	•	•	•	•	0
9300		90.9	9		9	5	•	٠.	\$	۴,	0	0	ζ.		Š	۶.	•	37.
10000	86.0	89.2	88.7	90.7		84.7	80.5	80.2	83.4	85.2	88.0	88.2	89.8	87.9	84.0	80.3	90.0	137.4
12500		,	_	6	Ś	~	ó	•		4	4	•	7	٤	,		ď	7
16000	82.2	85.9	84.4	87.1	83.7	80.7	76.6	76.9	80.2	81.7	83.7	83.9	85.0	84.9	79.9	77.6	89.4	136.8
20002		9	_	÷	ċ	~	9	•	•		ċ	0	:	:	•	•	6	36.
OVERALL	103.7	106.7	107.4	108.2	105.1	102.2	99.5	97.5	99.2	101.1	102.5	103.2	105.8	102.9	100.2	66.3	104.3	151.7
DISTANCE						810	EL INE	PERCE I VED	VED NO	1 SF	LEVELS							
61 PETERS	85.5	7.66	103.9	107.4	106.1	104.6	102.9	102.6	104.8	106.4	108.1	108.1	109.3	104.5	97.8	91.1		
							-								•			

TABLE VII. - NOISE OF FAN B CONFIGURATION 103 (HARD INLET, SOFT FAN FRAME, HARD EXHAUST, NOMINAL NOZZLE)

TEST PURPOSE - NOZZLE TRIM

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/m²; PWL re 0.1 pW.]

(a) Percent speed, 70; fan physical speed, 2478 rpm; fundamental blade passage frequency, 1073 hertz.

POWER			127.7 126.9 128.6	130.1 131.3 131.3	130.5 132.0 132.3	132.5 132.2 132.6	134.7 146.7 141.1	135.6 140.7 138.2	139.4 138.1 138.9	138.1 138.1 138.0	138.0 138.0 138.5	152.1	
AVERAGE			80.3 79.5 81.2	82.7 83.9 83.9	83.1 84.6 84.9	85.1 84.8 85.2	87.3 99.3 93.7	88.2 93.3 90.8	92.0 90.7 91.5	90.7	90.6	104.7	
	160		86.3 86.3	89.5 88.3 86.7	85.3	83.4 81.9 81.8	82.8 89.7 86.0	82.1 84.9 83.0	83.9 82.8 83.0	82.1 81.0 79.5	78.2 76.6 74.1	99.3	91.9
	150		82.8 82.3 85.1	87.6 88.1 86.4	84.8 86.6 85.4	8 8 8 8 5 4 8	86.1 93.9 89.6	85.2 88.8 87.6	88.8 87.6 87.9	86.7 85.9 84.2	83.0 81.3 78.8	101.2	9*66
	140	ns	79.6 79.6 82.8	83.8 84.6 83.6	82.8 84.3 83.9	84.0 83.5 83.6	85.1 92.6 88.1	84.8 88.3 87.9	88.6 87.6 87.6	86.7 86.2 84.4	83.3 81.3 79.3	100.2	101.6
	130	R RADIUS	81.8 81.6 83.6	85.3 85.8 85.4	86.6 88.3 87.9	88.7 87.7 88.6	90.4 99.5 94.8	91.8 95.0 94.7	95.1 93.7 93.8	92.5 91.4 89.5	87.9 85.2 82.3	105.9	109.4
	120	5-METE	77.3 77.0 78.8	80.9 81.3 82.1	79.6 82.9 82.4	83.8 83.8 83.8	85.6 91.6 88.4	86.5 89.8 89.2	89.1 87.4 88.5	86.8 85.8 83.9	82.0 80.8 78.3	100.0	104.8
	110	ON 30.	80.3 79.3 79.8	82.6 83.3 83.6	81.3 83.6 83.9	84.5 84.0 84.1	86.9 92.9 88.6	87.0 90.3 88.6	89.6 88.1 88.4	86.9 85.4 84.5	82.3 80.3 78.3	100.6	EVELS 106.2
	100	(SPL)	78.3 77.6 77.8	80.3 81.1 81.9	79.6 81.8 82.6	83.0 82.5 83.3	84.6 90.6 86.9	85.3 87.5 86.4	87.1 85.4 85.9	84.5 83.4 82.0	80.5 78.8 76.5	98.4	NOISE LE 2 104.4
E, DEG	90	LEVEL	75.8 74.6 76.1	77.6 80.3 79.9	77.1 79.3 80.4	81.2 81.0 82.1	82.9 88.6 84.4	82.5 85.3 84.1	84.6 83.1 83.9	82.1 81.4 79.9	78.5 76.5 74.8	96.3	
ANGLE,	80	SSURE	78.3 77.1 75.1	80.3 82.8 83.6	81.6 83.3 83.6	83.5 83.7 84.1	85.4 93.6 89.3	85.4 88.6 96.4	86.4 85.4 86.5	84.0 82.8 80.9	79.5 77.7 75.8	66.5	PERCEIVED 104.6 102
	7.0	ND PRE	77.1	79.6 82.3 83.1	81.3 82.3 84.0	83.2 83.6 83.6	85.8 97.3 91.1	84.7 90.0 86.1	86.8 85.2 86.1	84.4 82.8 81.0	79.6 77.3 74.9	101.0	EL INE 104.6
	9	AND SOUND	80.1 79.3 78.6	79.3 82.8 83.8	82.1 83.1 83.5	83.2 84.0 83.6	86.1 99.1 93.6	86.7 92.6 88.5	90.4 88.7 89.6	88.C 87.4 86.4	85.3 83.3 80.3	103.2	S1D 106.4
	20	AVE B	79.6 78.4 78.1	80.9 83.2 84.6	83.9 86.4 86.3	86.2 86.5 86.5	89.0 102.9 97.1	89.6 95.8 92.6	93.6 92.2 92.8	91.6 90.8 89.9	88.8 86.3 83.9	106.7	108.3
	40	/3-0CT	82.3 80.3 81.1	81.3 83.6 84.6	84.3 85.8 87.1	87.0 87.3 87.4	90.3 105.7 99.1	91.7 98.3 94.7	96.4 94.4 95.0	94.0 93.9 93.2	91.8 90.4 87.9	109.2	108.8
	30	-	77.8 75.1 78.6	79.1 82.8 83.6	85.1 84.6 86.4	86.0 86.2 86.3	88.9 103.6 97.6	90.5 97.3 93.4	94.6 93.7 94.5	93.1 92.7 92.1	90.3 88.5 86.6	107.6	104.8
	20		83.2 82.2 82.9	84.6 85.6 85.6	87.6 87.4 88.6	88.0 87.5 87.6	90.6 104.6 99.0	92.7 98.0 94.4	95.9 94.5 94.3	93.5 93.2 92.6	91.5 89.7 88.0	108.6	101.7
	2	•	85.2 84.1 86.1	85.3 86.6 87.6	86.9 86.1 86.8	87.6 87.6	91.1 102.7 97.5	92.1 98.1 93.7	95.3 93.9 94.0	92.1 92.9 92.2	91.3 85.4 87.8	101.7	93.3
FRECUENCY			35 S S S S S S S S S S S S S S S S S S S	10C 125 16C	20C 25C 315	40C 50C 63C	80C 1000 125C	160C 200C 250C	3150 4000 5000	6300 6000 10000	1250C 1600C 2000C	CVERALL	DISTANCE 61 PETERS

(b) Percent speed, 75; fan physical speed, 2600 rpm; fundamental blade passage frequency, 1126 hertz.

	GE POWER	u Q		134.4 134.0 134.9	136.4 137.3 136.6	134.9 136.8 136.8	137.0 136.4 136.6	138.2 146.7 149.1	139.4 142.4 143.2	142.0 140.4 141.1	140.0 139.5 138.8	138.2 138.2	155.0		
	AVERA	, ,	<u> </u>	87.0 86.6 87.5	89.0 89.2 89.2	87.5	89.6 89.0	90.8 99.3 101.7	92.0	94.6 93.0 93.7	92.6 92.1 91.4	90.9 90.8 91.0	107.6	, (
o ner co.		160		90.7 90.8 93.3	94.8 94.5 92.2	89.8 90.0 89.2	87.8 86.6 85.3	86.2 90.6 92.7	85.2 86.6 86.7	86.0 85.0 85.2	83.8 82.6 81.1	79.5 77.7 75.5	103.5		95.2
cy, 1120		150		89.0 89.5 91.6	93.4 93.5 91.8	90.3 91.1 90.1	89.2 87.9	88.1 92.1 94.2	87.1 89.0 89.6	89.1 87.9 88.4	87.4 86.3 84.9	83.3 81.6 78.7	104.0		101.4
11 equency		140	orus	0 88.3 6 89.6 6 90.9	7 92.9 3 92.6 5 92.0	9 91.1 5 92.1 8 91.1	7 90.7 7 89.9 9 89.4	6 90.0 9 94.9 3 97.0	9 89.6 7 92.4 3 93.0	6 93.1 1 91.6 0 91.7	4 90.6 5 89.7 1 87.8	0 86.3 1 85.4 0 82.9	2 105.8		5 106.8
passage		130	TER RA	2 84. 9 85. 3 88.	8 91. 6 92. 1 91.	5 89. 4 92. 0 91.	3 92. 5 91. 0 91.	7 93. 8 98. 4 100.	0 93. 5 96. 6 97.	4 96. 4 95. 3 95.	9 93. 0 92. 0 90.	3 88. 3 85. 4 83.	1 108.		1 111.
orane p		120	10.5-ME	8 89. 5 89. 7 89.	6 89. 6 91. 0 91.	6 88. 0 92. 0 92.	1 92. 4 91. 8 92.	1 93. 6 97. 7 99.	4 95. 0 97. 6 97.	7 97. 1 95. 2 95.	9 93. 3 92.	2 87. 7 85. 0 82.	3 108.		7 113.
midamentar		0 110	L) ON 3	.3 8C.	.2 89 .3 90 .8 90	.1 87. .8 90. .5 90.	.4 90. .9 89.	.8 92. .1 96. .7 97.	.3 92. .0 95. .1 95.	.4 94. .9 93. .7 93.	.5 91. .0 90.	.0 86. .1 83. .6 81.	.7 106.	LEVELS	.3 111.
pin, tund	DEG	0 10	EL (SP	.5 86 .3 84 .1 86	.6 87 .1 88 .0 87	.8 86 .8 87	.9 88 .0 87	5 89 4 94 8 95	.1 90 .0 92 .8 92	.4 91 .1 89	.7 88 .5 87	.2 83 .9 81	•2 103	NO I SE	.5 109
rd 7 0002	NGLE,	6 Ja	SURE LEV	7.3 83 6.6 81 6.7 82	.9 85 .5 87	6.1 84 7.1 86 7.8 87	.1 87 .9 87	7.3 88 5.1 94 7.7 96	7.9 89 9.9 91 5.5 90	8.1 90 6.6 89 7.2 89	5.3 87 3.5 85 1.6 83	3 81 4 78 1 76	3.2 103	CEIVED	.5 108
speed,		3 02	PRES	2.00 0.00 0.00 0.00	4.4 86 6.1 87 6.3 87	3.8 86 5.0 87 5.8 87	5.6 87 5.7 86 5.3 86	6.8 8.3 9.0 9.0	6.6 9.7 8 0.6 8	8.6 6.4 8 7.5	6.0 8 4.2 8 2.1 8	0.2 79 7.8 77 5.5 75	3.3 10	INE PER	7.2 107
puyarcar		09	O SOUND	87.6 8 86.6 8 85.7 8	86.7 8 88.8 8 87.5 8	84.9 8 87.3 8	86.9 8 86.3 8	88.5 99.6 02.3	90.1 8 93.0 8 94.3 9	91.5 8 90.2 8 91.0 8	89.2 8.8 86.2 8.8	85.5 8 82.9 7	06.5 10	SIDEL	09.7 10
o, tan p		20	AVE BAN	86.1 84.8 83.6	84.4 86.1 87.0	85.8 88.5 89.1	89.1 89.0 88.8	91.0 102.9 105.3 1	92.9 96.4 97.6	95.2 93.2 93.9	92.1 91.5 90.1	88.3 85.7 82.9	109.4 1		11111
apecu, i		0	/3-0CT	85.5 84.0 81.7	83.4 87.5 87.1	85.1 87.5 88.5	89.4 89.7 89.1	91.5 104.1 106.8	94.1 98.2 99.5	96.9 94.9 95.7	94.3 93.7 92.3	90.5 88.9 86.6	110.8 1		110.7
Creent R		30	-	85.6 83.5 81.7	84.1 87.8 86.8	86.8 88.1 88.8	90.1 89.4 89.8	91.8 103.9 106.8	94.6 98.2 99.0	96.9 94.6 95.5	93.7 93.0 92.1	90.0 88.1 85.4	110.7		108.2
1 (2)		20		88.1 87.0 86.2	86.6 89.0 89.0	89.8 89.8 90.8	90.9 90.5 90.6	92.8 102.9 105.2	94.9 97.9 98.6	96.6 95.1 95.4	93.7 93.0 91.3	90.2 88.8 86.2	110.0		103.7
		0.		88 84 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	86.6 87.8	88.51.3	85.1 86.5 87.9	91.3 100.4 102.7	96.5	92.5	91.2 91.2	85.2 87.4 85.8	106.2		94.1
	FRECKENCY			55 63 0 0	100 125 160	200 250 315	50C 50C 50C	8CC 1000 125C	1600 2000 2500	315C 400C 50CC	630C 800C 1C0CC	1250C 160CC 2C00C	GVERALL	DISTANCE	61 METERS

TABLE VII. - Concluded.

fan physical speed, 3000 rpm; fundamental

85;

(c) Percent speed,

blade passage frequency, 1300 hertz.

POWER LEVEL (PWL) 134.0 133.5 136.4 139.3 140.2 139.2 137.5 139.1 138.8 138.9 138.6 138.8 139.9 141.5 154.1 143.0 141.7 149.6 143.7 146.1 144.6 143.1 142.2 141.7 140.7 140.1 140.2 158.2 AVERAGE SPL 95.6 94.3 102.2 86.6 86.1 89.0 91.9 92.8 91.8 90.1 91.7 91.4 91.5 91.2 91.4 92.5 94.1 106.7 96.3 98.7 97.2 95.7 94.8 94.3 93.3 92.7 92.8 110.8 94.2 93.2 96.5 88.7 89.2 97.8 89.3 88.7 93.5 89.1 88.7 88.6 82.1 79.8 77.3 7.66 85.1 160 95.1 96.1 93.9 91.9 88.0 99.1 99.6 91.7 90.5 91.0 97.9 105.4 90.1 108.1 93.5 94.5 103.1 96.4 97.6 94.6 96.1 95.2 93.7 94.3 00.8 96.5 95.6 96.1 112.8 109.9 140 ON 30.5-METER RADIUS 96.4 97.0 103.1 99.0 98.8 97.9 110.7 116.5 115.2 94.9 95.0 96.1 94.4 93.4 91.2 88.2 85.6 94.1 94.1 93.2 93.1 95.1 94.5 103.3 130 97.1 97.6 103.1 86.3 86.6 88.8 92.7 93.9 92.7 94.4 93.8 94.4 96.0 99.5 100.1 98.6 96.7 94.6 93.0 90.4 88.4 86.1 1111.0 120 95.0 95:2 103.8 95.9 96.1 89.9 87.3 84.6 111.4 107.7 106.4 106.9 107.9 109.8 105.7 110.4 113.5 115.1 114.4 112.3 111.9 112.9 114.5 115.9 86.0 85.8 88.3 89.9 91.9 91.7 92.4 92.0 93.5 98.5 95.6 93.8 92.1 91.1 92.4 92.1 110 SIDELINE PERCEIVED NOISE LEVELS 93.5 94.2 101.4 94.2 94.8 99.6 87.7 85.5 83.0 83.8 84.2 86.3 88.7 90.8 91.4 95.4 95.5 94.8 (SPL) 89.7 91.3 91.1 93.1 91.7 89.6 100 ANGLE, DEG 84.3 82.5 83.4 87.7 90.6 91.2 87.9 90.4 90.7 90.3 90.5 90.8 92.9 93.3 97.1 94.0 94.6 93.6 92.1 90.2 88.6 86.1 83.7 81.1 LEVEL 9 90.4 91.5 102.6 84.7 82.0 79.5 86.4 89.9 89.7 87.1 88.8 89.7 86.8 85.3 85.5 92.5 91.3 96.6 90.3 88.7 87.2 1/3-DCTAVE BAND SOUND PRESSURE 91.7 93.1 91.9 S 89.4 91.3 105.0 82.7 80.5 80.3 84.6 87.3 88.7 85.9 87.4 88.5 88.2 92.9 90.1 98.4 91.5 95.0 92.7 90.8 89.5 87.2 84.4 81.5 78.6 20 82.2 79.8 80.1 88.9 92.0 109.5 88.0 84.6 87.1 88.7 86.6 87.4 87.5 95.7 91.0 102.3 93.2 98.3 95.5 94.0 92.4 90.9 88.1 85.7 82.4 9 97.3 92.3 105.1 95.0 100.3 97.4 112.8 82.8 80.5 80.4 84.9 86.9 87.9 85.9 86.9 88.0 88.3 93.7 89.8 86.6 84.0 87.9 95.3 93.5 92.7 110.6 20 89.5 93.8 1111.1 97.5 92.8 104.8 95.7 101.6 98.6 83.2 80.0 80.1 85.2 85.6 87.4 86.1 86.9 87.4 86.9 87.8 88.0 96.7 95.9 94.2 91.4 89.2 86.5 113.3 40 88.5 93.7 1111.0 85.4 85.3 87.6 85.9 86.9 86.9 86.3 86.7 88.7 7.16 92.6 95.0 94.5 113.0 95.5 30 98.5 93.9 103.4 82.3 82.0 83.8 88.4 88.4 88.7 90.5 95.4 99.6 96.7 94.6 93.0 91.7 89.6 87.0 84.7 112.1 84.7 87.1 88.2 8.60 20 97.2 85.6 86.9 88.4 86.2 83.8 86.5 85.0 85.0 96.9 96.6 7.48 99.00 99.7 92°C 92°4 90°4 2 6.1 PETERS CVERALL DISTANCE FRECLENCY 160C 200C 250C 100 125 160 31.50 4000 5000 930C 80CC 1250C 160CC 2C0CC 2000

(d) Percent speed, 90; fan physical speed, 3186 rpm; fundamental blade passage frequency, 1380 hertz.

N.C.	(PWL)		136.1 135.7 138.5	141.3	139.9 141.4 140.9	141.1 140.6 140.8	142.1 142.7 151.7	148.4	146.7	144.6	141.9 141.3 141.5	158.7	-	
AVERAGE	ا ا		88.3 88.3 91.1	93.9 94.8 93.9	92.5 94.0 93.5	93.7 93.2 93.4	94.7 95.3 104.3	101.0 96.3 101.7	100.1 99.3 98.3	97.2 96.2 95.3	94.5 93.9 94.1	111.3		
	160		96.2 96.5 99.1	1001.1	96.0	93.5 91.9 90.8	91.2	92.8 89.8 92.5	92.2 90.3 89.5	88.8 86.8 85.0	83.6 81.6 79.3	109.0		100.7
	150		94.4 94.3 98.3	101.1 100.9 98.7	97.6 98.9 96.9	96.0 94.8 93.6	93.6 93.7 96.6	94.6 92.9 95.3	95.6 93.0 93.0	92.6 90.6 89.5	87.6 86.0 83.0	110.1		107.3 87.4
	140	ıus	92.4 92.3 96.3	98.9 1 100.1 98.2	97.5 98.9 98.1	98.0 96.3 95.7	95.8 96.3 98.6	96.6 95.7 102.4	101.0 96.2 96.7	95.6 93.9 92.2	90.9 89.1 88.1	111.4		94.6
	130	R RADIU	89.9 90.6 93.4	96.2 96.9 96.0	95.5 97.4 96.9	97.1 96.3 96.2	97.3 98.7 101.8	99.9 99.0 103.9	102.7 100.0 100.3	98.9 96.8 95.0	93.3 90.5 87.3	112.4		116.8 98.2
	120	5-METEI	88.4 88.0 91.2	94.2 95.5 94.8	93.5 95.5 95.5	96.1 95.6 95.8	97.7 97.3 102.6	100.0 98.8 102.9	101.7	98.1 96.1 94.3	91.9 89.7 87.2	1111.8		117.2
	110	ON 30.	87.4 87.4 89.3	92.6 94.8 94.0	92:0 94.1 94.2	94.5 94.3 95.6	96.9 97.1 101.8	99.2 98.0 101.6	100.7 101.0 99.6	97.2 95.6 93.7	91.6 88.8 86.3	111.0	VELS	117.1
	100	(SPL)	86.8 84.9 87.8	91.4 92.8 92.9	90.5 92.6 92.7	93.3 92.8 93.4	94.9 95.2 99.1	96.9 95.9 100.4	98.4 97.2 96.3	94.9 93.1 91.3	89.3 87.2 84.7	108.8	ISE LE	115.7
E, DEG	06	LEVEL	86.8 84.8 85.9	90.1 92.8 92.7	90.8 92.6 92.6	92.5 92.5 92.9	93.3 94.4 100.3	97.4 95.2 98.1	96.6 95.5 94.6	93.5 91.6 89.5	87.6 85.2 82.8	108.1	VED NO	114.4
ANGL	80	SSURE	86.6 83.9	87.7 90.8 91.7	88.8 90.4 91.2	90.8 91.0 91.4	92.1 92.6 100.6	97.2 93.2 96.1	94.7 94.0 53.0	92.0 90.3 88.5	86.2 83.3 80.8	106.9	PERCEI	112.6
	70	ND PRE	84.9 83.6 83.1	86.2 89.9 90.5	88.5 89.6 90.1	89.6 89.5 89.6	91.3 91.6 101.3	97.7 92.9 97.1	95.6 95.5 93.3	92.1 90.3 88.0	85.1 82.5 79.8	107.1	EL INE	112.5
	09	ND SOUND	84.1 82.4 82.4	86.1 88.8 89.9	88.1 88.1 88.7	89.5 89.7 89.2	91.6 92.1 106.0	102.6 93.7 100.6	98.1 97.5 95.5	94.0 92.9 90.7	88.4 85.7 82.3	110.2	STD	114.2
	50	AVE BAI	83.8 82.8 82.6	85.4 88.8 90.2	88.6 88.3 89.1	89.8 90.7 90.9	93.3 93.9 108.0	104.1 95.7 103.3	100.4 100.2 97.8	96.1 94.8 92.8	90.1 86.8 83.8	112.2		115.1
	40	/3-0CT	82.3 81.4 81.4	85.9 87.4 89.2	88.3 88.9 89.1	89.8 91.0 91.2	93.9 93.8 108.3	104.4 96.0 103.4	101.1 100.7 98.5	97.1 95.9 93.8	91.1 88.5 86.0	112.5		113.6 94.3
	30	-	83.8 83.1 81.3	84.6 87.3 89.2	88.1 88.9 88.1	89.3 89.8 91.1	93.4 94.4 109.1	105.2 96.0 103.8	101.1 101.2 98.5	97.0 95.6 93.8	91.1 88.2 85.5	113.0		111.2
	20		84.3 84.6 85.3	86.4 87.8 89.9	89.5 89.6 89.2	89.1 89.5 91.2	92.9 94.8 108.0	105.1 96.0 103.1	100.6 100.2 97.3	96.3 94.9 93.0	90:7 88.5 85.5	112.4		106.5 85.1
	10		86.4 84.8	86.1 85.6 85.9	90°3 85°8 85°8	96.3	92.1 94.4 106.6	104.1 96.0 102.6	100.2 95.7 96.8	95.1 92.9 91.8	85.5 87.3 85.3	1111.5		97.8 72.7
FRECLENCY			0 6 3 C	100 125 160	20C 25C 315	40C 50C 63C	80C 100C 1250	160C 200C 250C	315C 40CC 50CC	6300 8000 10000	1250C 160CC 2C0CC	GVERALL	DISTANCE	61 PETERS 3C5 PETERS

TABLE VIII. - NOISE OF FAN B CONFIGURATION 104 (HARD INLET, SOFT FAN FRAME, HARD EXHAUST, SMALL NOZZLE)

TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15° C and 70 percent relative humidity; SPL re 0.00002 N/m²; PWL re 0.1 pW.]

(a) Percent speed, 60; fan physical speed, 2089 rpm; fundamental blade passage frequency, 905 hertz.

		ı						ANGL	E, DEG							1	AVERAGE SPL	POWER LEVEL
10 20 30 40 50	30 40	40		20	l	90	2	ec o	96	100	110	120	130	140	150	160	!	۵.
1/3-OCTAVE BAN	/3-OCTAVE BA	/3-OCTAVE BA	3-OCTAVE BA	VE BA	Z	ONDOS OF	PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METER	R RADIUS	SI				
7 75.2 77.9 74.2 73.9	.2 77.9 74.2 73.9 6 77.1 72.1 72.6	9 74.2 73.9	4.2 73.9	0,4		75.9	74.1	76.9	76.2	76.1	78.9	76.7	79.7	79.1	82.6	82.3	7.77	125.1
E.O 77.2 76.0 72.2 71.8 7	.2 76.0 72.2 71.8 7	.0 72.2 71.8 7	2.2 71.8 7	0 80	- ~	m		9	. 10	. 9	. 6		2	5			. œ	26.
7 2.97 7.77 2.67 0.08 2.3	7 2.97 7.77 76.5 7	7 7.7 76.5 7	7 76.5 7	6.5 7		•	9		8	å.	Ξ,	2	÷.	4 1	•	5	= (28.
82.2 83.5 82.5 80.1 79.5 78 82.6 82.6 80.7 80.6 79.2 78	7 82.5 80.1 19.5 7 .6 80.7 80.6 79.2 7	7 5.97 19.8 C.2 0.7 80.6 79.2 7	.6 79.2 7	9.5 7		4 ~	79.2	79.4	80.2	81.4 80.1	82.2	83.1	84.5	83.2	84.2	84.7	82.3	129.6
2.9 83.3 81.3 79.8 77.1 76	.3 81.3 79.8 77.1 76	1.3 79.8 77.1 76	9.8 77.1 76	7.1 76	•	4	•		7	æ	·	•	2	2		Ξ.	•	27.
84.4 85.2 83.9 82.9 80.6 79. 85.1 86.0 84.5 84.0 81.0 79.	.2 83.9 82.9 80.6 79 .0 84.5 84.0 81.0 79	3.9 82.9 80.6 79 4.5 84.0 81.0 79	2.9 80.6 79 4.0 81.0 79	0.6 79 1.0 79	9	á rů	79.2	80.2 80.5	80.7 80.8	82.4	83.6 82.8	84.0 83.4	84.9 84.3	84.7 83.6	84.6 83.1	81.6	82.7 82.5	130.1
5.3 86.7 85.3 84.3 81.7 79.	.7 85,3 84,3 81,7 79.	5.3 84.3 81.7 79.	4.3 81.7 79.	1.7 79.	•	m	•	Š		6	Š	4	•	4	<u>«</u>	·		30.
85.4 86.7 85.0 84.5 81.7 80.	.7 85.0 84.5 81.7 80.	5.0 84.5 81.7 80.	4.5 81.7 80.	1.7 80.	÷ 0	00	0.08	8C • 7	81.9	82.9	83.9	84.0	86.2	84.5	82.2	79.4	83.4	130.8
	00 6.20 0.40 0.00 0.	0.0 04.0 02.3 00	4.6 62.9 80			, ,	• •	•	•	i i	•		•	•	•	•	•	
**************************************	**	6.8 98.3 96.4 92	8.3 96.4 97	6.4 92	, ~	y (1)	89.8	88.6	87.9	89.3	91.4	91.9	92.4	91.6	87.6	85.5	93.0	140.4
E-2 89.3 88.8 87.3 84.7 81.	•3 88.8 87.3 84.7 81.	8.8 87.3 84.7 81.	7.3 84.7 81.	4.7 81.	: :	. ~			2.	4	•	-		•	'n	6	Š	33.
C.C 91.5 91.0 89.7 86.5 83.	.5 91.0 89.7 86.5 83.	1.0 89.7 86.5 83.	9.7 86.5 83.	6.5 83.	'n.	~	0	-	5	Š.	•	80		9	ش د	6.		34.
92.0 93.5 93.4 92.1 89.9 86.	.7 91.0 90.7 87.5 83.	3.4 92.7 89.9 86. 1.0 90.7 87.5 83.	2.1 89.9 86. 0.7 87.5 83.	7.5 83.	9.6	~ ∞	82.5	82.5	83.3	85.7	88.0	89.8 89.1	91.5	88.2	84.5	80.1	88.0	135.4
.5 91.8 91.1 91.6 88.0 84	.8 91.1 91.6 88.0 84	1.1 91.6 88.0 84	1.6 88.0 84	8.0 84	4	_	·	•	5			6	.	•	•	6	8	35
90.8 92.3 91.6 92.1 88.8 85. 91.5 93.0 91.9 92.9 89.9 86.	.3 91.6 92.1 88.8 85 .0 91.9 92.9 89.9 86	1.6 92.1 88.8 85 1.9 92.9 89.9 86	2.1 88.8 85 2.9 89.9 86	8.8 9.9 86	ر م	- 4	81.6	81.1	82.9 83.0	84.4	87.1 87.7	88 89.0	90.4	87.7 88.4	84.6	80.4	88.5 89.4	135.9
.e 92.3 91.1 92.6 88.9 85.	.3 91.1 92.6 88.9 85.	1.1 92.6 88.9 85.	2.6 88.9 85.	8.9 85	ľ		6	\$	-	9	•	٠	6	•	4	6	8	36.
9(.9 92.6 91.6 92.6 89.1 85. 9(.7 92.2 91.2 92.7 88.9 85.	.6 91.6 92.6 89.1 85. .2 91.2 92.7 88.9 85.	1.6 92.6 89.1 85. 1.2 92.7 88.9 85.	2.6 89.1 85. 2.7 88.9 85.	9.1 85 8.9 85	ທັທັ	4 60	78.9	78.9	80.4 79.2	82.0	85.2	85.2	87.7 86.5	85.7	82.9	77.9	89.2 89.7	136.6
5.7 91.1 90.2 91.9 87.9 84.	1 90.2 91.9 87.9 84.	0.2 91.9 87.9 84	1.9 87.9 84	7.9 84	4		•	٠.	æ 1	ė	e.	4	'n.	*	-:		•	37.
87.6 89.8 88.4 89.9 85.6 83. 85.5 87.3 86.0 87.4 82.2 80.	.8 88.4 89.9 85.6 83. .3 86.0 87.4 82.2 80.	8.4 89.9 85.6 83. 6.0 87.4 82.2 80.	9.9 85.6 83. 7.4 82.2 80.	2.2 80	m o	- 4	74.9	74.9	74.6	78.8	78.3	82.1 79.3	82.8	79.9	76.1	72.2	90.3	137.7
103.4 104.5 104.0 104.7 101.9 98.	.5 104.0 104.7 101.9 98	4.0 104.7 101.9 98	04.7 101.9 98	01.9 98	80	ľ	95.4	95.4	96.1	97.8	6.66	100.8	102.4	100.5	98.4	95.8	101.8	149.2
						STOE	EL INE	PERCEI	VED NO	ISE LE	VELS						-	
86.5 98.1 101.8 104.7 103.6 101 75.5 90.6 94.9 97.8 96.8 94	.1 101.8 104.7 103.6 10 .6 94.9 97.8 96.8 9	1.8 104.7 103.6 10 4.9 97.8 96.8 9	04.7 103.6 10 97.8 96.8 9	03.6 10 96.8 9	0	1.6	99.4	95.8 93.4	101.4 95.0	103.2 96.8	104.9 98.5	105.5 99.0	105.9	101.6 94.8	96.3	88.3 80.8		
					١.	!	1											

(b) Percent speed, 70; fan physical speed, 2432 rpm; fundamental blade passage frequency, 1053 hertz.

및	uΔ		128.3 128.4 130.8	132.6 133.5 132.5	131.5 133.3 132.9	133.5 133.5 133.8	136.1 146.6 139.4	136.6 141.1 138.9	140.2 139.2 140.2	139.7	140.7	153.0		
AVERAGE			80.9 81.0 83.4	85.2 86.1 85.1	84.1 85.9 85.5	86.1 86.1 86.4	88.7 99.2 92.0	89.2 93.7 91.5	92.8 91.8 92.8	92.3 92.7 92.8	93.3 93.3	105.6		
	160		87.0 87.2 90.0	90.5 89.7 87.4	85.4 85.9	83.7 82.4 81.7	82.9 91.0 84.8	82.0 84.2 83.2	83.6 82.5 83.8	82.4 82.3 80.8	80.1 78.3 75.5	0.001	1 1	92.0
	150		86.0 87.7 90.5	91.8 91.5 89.1	88.8 87.8	86.8 86.2 85.5	86.3 92.4 87.6	85.8 88.3 87.4	87.9 87.4 87.8	86.9 86.5 85.1	83.9 82.1 79.2	102.3		666
	140	กร	83.8 84.3 87.8	89.8 89.0 86.8	87.4 87.8 87.3	87.3 87.0 86.3	88.2 95.1 90.2	88.3 91.6 90.6	91.1 90.0 90.6	89.4 88.8 87.8	87.2 85.6 83.0	103.3		104.6
	130	ER RADI	84.0 85.2 87.2	88.8 89.0 87.8	86.9 88.7 87.8	89.0 89.7 89.8	92.2 100.1 94.1	92.8 96.1 95.7	95.8 93.9 94.3	92.7 91.8 90.4	89.1 87.1 84.0	106.7		110.2
	120	5-METE	81.4 81.2 83.7	85.5 86.9 85.6	84.3 86.8 85.8	87.6 87.3 88.1	90.6 95.2 91.9	90.9 94.1 93.2	93.7 92.0 92.3	91.2 90.3 88.8	87.3 85.4 83.4	104.2	ļ ļ	109.2
	110	OK NO.	80.5 79.3 81.8	85.0 86.5 85.5	83.7 87.0 86.3	87.3 86.7 88.0	90.2 95.6 91.6	90.1 93.0 92.6	92.4 91.2 92.0	90.9 90.1 88.6	87.4 85.7 82.9	103.8	EVEL S	109.3
	100	(SPL)	79.6 78.3 80.3	83.5 85.7 84.6	82.1 85.0 85.0	85.7 85.7 86.3	87.8 93.4 88.7	88.1 90.5 89.2	89.6 88.0 89.0	87.4 86.8 85.5	84.6 82.9 80.6	101.3	-	107.1
E, 0EG	06	LEVEL	77.5 76.8 78.0	82.1 84.3 84.0	81.2 83.5 83.7	84.5 84.5 85.2	86.7 93.1 87.6	86.5 88.3 87.4	87.8 86.4 87.6	85.7 85.1 83.6	83.1 81.7 79.0	100.0	VED N	105.7
ANGL	98	SSURE	77.5	80.0 83.2 83.0	8C.9 82.9 82.8	83.5 83.5 84.0	85.8 94.2 87.2	85.5 87.6 85.2	85.3 84.2 85.6	83.3 82.5 81.5	86.7 79.4 77.3	99.2	PERCEI	103.8
	70	IND PRE	77.1 75.8 75.5	78.6 82.3 82.8	80.6 82.7 82.3	82.3 82.9 82.5	85.0 93.4 87.4	84.1 88.0 84.7	85.3 84.7 85.8	84.2 83.3 82.5	81.7 79.6 76.7	6.86	EL IN	103.2
	99	UND SOUND	77.6 75.8 76.0	78.6 82.0 83.6	80.6 83.2 82.5	83.2 83.9	86.0 98.1 89.7	86.0 91.3 87.4	89.3 88.4 90.0	88.5 89.0 88.3	87.6 85.7 82.7	102.5	SID	105.6
	20	AVE BA	77.0	78.0 82.2 83.0	81.2 85.0 84.2	84.3 84.9 84.9	87.8 101.4 92.9	88.5 94.3 90.9	93.1 92.2 93.1	92.4 92.7 92.0	91.2 88.7 85.9	105.6		107.5
	40	/3-0CT	77.8 76.0 76.5	78.1 82.7 83.0	83.6 86.4 86.7	86.3 86.7 87.2	90.3 106.6 97.1	91.5 98.6 94.1	97.0 95.7 96.5	96.1 96.2 95.5	94.9 92.7 90.0	109.9		109.2
	30	1	76.5 74.7 76.8	77.8 82.7 82.1	83.9 85.2 86.2	86.2 86.0 86.5	89.0 103.1 95.2	90.6 97.0 92.6	95.1 94.2 95.0	94.2 93.9 94.0	92.6 90.6 87.9	107.4		104.8
	20		77.6	79.6 83.8 85.0	86.4 86.8 87.5	87.5 87.2 87.4	90.7 103.9 95.9	91.8 97.3 93.6	95.3 95.2 95.5	94.7 94.9 94.5	93.6 92.5 90.3	108.2		101.1
	10	İ	81.8 86.2 81.5	82.1 83.7 84.6	84.9 87.0 81.8	87.7 86.5 86.4	96.2 95.6 93.7	91.1	94.1 93.9 94.0	92°.7 92°.7 92°.3	92.7 90.6 86.6	106.3		91.R
FRECUENCY			90 08 08	100 125 160	20C 25C 315	400 500 630	80C 100C 125C	1600 2000 2500	315C 400C 50CC	930C 80CC 1CCC	1250C 1600C 2CCCC	CLERALL	DISTANCE	61 PETERS

TABLE VIII. - Concluded.

133.4 133.3 135.7

137.9 138.3 136.9

136.2 137.4 136.9

142.9

156.3

136.9 136.9 137.0 139.1 140.8 146.5 141.7 141.4 141.0 POWER LEVEL (PWL) 138.5 142.1 152.0 141.8 142.7 140.8 140.7 140.5 AVERAGE SPL 86.0 85.9 88.3 90.5 90.9 89.5 88.8 90.0 89.5 108.9 89.5 89.5 89.6 91.1 91.7 99.1 94.4 95.3 95.5 94.3 94.0 93.6 93.4 93.3 04.6 92.7 92.9 95.5 96.7 95.1 92.2 92.0 91.5 90.1 86.3 86.3 86.7 87.5 94.3 85.2 86.1 89.8 85.1 81.3 79.8 6.96 2780 rpm; fundamental blade passage frequency, 1204 hertz 104.8 160 97.3 97.4 94.8 94.3 93.0 90.5 91.3 97.2 96.1 92.2 91.3 88.8 90.3 90.7 90.3 90.5 89.3 88.0 85.5 83.2 80.3 94.1 107.1 105.1 150 89.6 90.9 93.3 95.3 94.7 93.0 92.8 93.6 92.7 88.5 87.4 84.3 113.7 109.9 92.4 91.5 92.5 98.4 90.6 9.66 93.0 92.8 93.6 91.4 107.5 140 RADIUS 93.6 96.3 101.5 87.6 88.7 90.9 91.6 93.1 92.5 92.2 92.2 92.0 94.6 90.1 87.9 84.8 97.5 96.8 96.5 94.5 109.3 101.6 130 30.5-METER 0.001 89.5 87.2 84.4 91.4 91.7 90.5 89.7 92.4 90.8 93.2 93.9 96.8 95.8 95.8 94.0 108.3 91.6 113.7 101.1 120 93.0 94.5 100.0 87.4 86.5 90.6 91.7 90.5 89.5 91.3 91.0 91.2 90.8 92.0 96.0 95.2 95.3 94.2 89.3 87.4 84.0 107.6 111.5 108.7 108.0 110.1 112.1 113.4 93.1 91.1 110 LEVELS S 91.6 93.5 100.5 87.1 88.9 89.2 (SPL) 88.3 89.7 89.3 89.4 89.8 92.0 93.5 92.8 93.1 92.0 87.1 85.7 82.8 106.2 90.4 96.1 89.3 100 NOISE ANGLE, DEG 83.6 80.9 83.1 86.3 88.6 88.3 85.6 88.1 88.0 98.9 89.3 91.0 90.0 85.8 83.9 81.3 87.9 89.3 91.0 90.8 91.3 LEVEL 93.6 104.4 9 PERCEIVED BAND SOUND PRESSURE 83.5 86.7 87.0 83.8 86.1 86.8 66.98 87.6 90.5 98.5 87.8 88.3 87.9 88.2 88.5 86.6 85.5 82.8 80.9 75.1 102.8 86.1 84.1 BC 80; fan physical speed, 87.6 91.0 101.7 83.5 79.6 78.8 82.8 85.9 86.6 84.5 85.1 86.0 87.1 87.5 93.8 87.9 83.0 80.9 77.6 SIDELINE 86.2 104.4 86.0 2 82.8 80.1 79.6 83.0 86.5 84.5 85.9 86.0 88.8 94.3 88.9 89.8 98.1 91.0 94.0 93.5 86.4 89.1 86.0 106.2 91.4 108.4 9 81.0 79.9 78.8 84.6 85.9 86.5 96.6 82.5 86.6 86.8 91.1 93.4 96.3 96.3 91.0 88.0 84.8 109.3 111.7 112.4 86.1 110.6 100.9 20 1/3-OCTAVE c) Percent speed, 84.1 81.1 80.4 83.0 85.2 85.6 85.3 86.6 87.0 86.9 88.0 91.3 97.3 92.5 93.8 95.5 98.2 98.3 93.5 91.5 88.8 3.601 101.9 111.6 96.2 88.2 96.7 6 82.0 78.9 78.3 82.8 85.1 85.6 85.6 86.9 87.0 90.3 98.0 110.0 92.9 94.2 101.9 87.1 88.2 88.0 94.5 90.3 88.2 85.3 93.9 1111.9 95.1 30 82.5 80.6 81.6 84.5 85.4 86.5 86.6 87.9 88.8 87.9 89.0 88.9 91.0 97.8 109.5 93.8 94.5 95.2 97.3 96.5 91.5 90.0 87.6 95.1 105.1 94.5 101.4 111.6 95.8 20 86.1 87.8 87.5 96.0 95.5 106.2 84.3 86.4 81.3 92.0 94.2 95.76 85.1 86.9 84.3 86.7 6.001 105.2 87.4 9 61 PETERS DISTANCE CVERALL FRECUENCY S 60 80 100 125 160 200 250 315 80C 100C 125C 1600 2000 2500 31.5c 4000 5000 40C 50C 63C 160CC 2000

136.5 137.1 139.9 142.1 142.2 141.2 140.4 141.3 140.7 140.9 140.4 140.6 141.7 142.5 152.6 146.3 142.8 149.4 145.7 146.4 145.7 144.6 144.0 143.5 143.1 143.0 143.0 POWER LEVEL (PWL) 158.8 AVERAGE SPL 94.1 93.0 94.3 95.1 105.2 98.9 102.0 98.3 99.0 98.3 95.7 95.6 95.6 9.96 1.96 1111.4 90; fan physical speed, 3127 rpm; fundamental blade passage frequency, 1355 hertz. 89.5 101.6 99.8 93.2 91.8 90.9 90.8 90.8 95.7 91.2889.0 95.6 89.5 87.1 96.2 108.4 100.6 88.9 80.0 7.06 109.2 160 102.4 101.7 99.4 96.0 96.8 100.2 99.2 99.6 98.2 97.0 95.7 95.0 95.0 94.9 99.0 94.6 93.5 95.4 93.5 93.7 92.6 91.3 90.2 88.5 86.6 83.8 1111.3 97.5 92.5 93.8 99.4 97.7 98.3 97.6 97.3 96.2 95.0 95.5 95.9 98.3 95.3 100.8 97.8 95.3 96.0 94.8 93.3 92.2 91.0 89.8 87.4 107.4 110.7 114.1 115.7 115.4 112.9 112.1 113.3 114.8 116.4 116.8 116.7 112.5 86.2 91.4 95.0 96.9 97.1 94.9 94.3 95.5 97.0 98.5 98.6 98.1 93.5 110.8 140 ON 30.5-METER RADIUS 96.7 97.9 102.8 101.3 99.2 99.9 90.8 92.2 95.2 97.0 97.2 96.0 96.4 97.1 96.1 96.0 98.8 98.2 97.9 96.5 94.9 93.0 91.1 87.8 96.4 104.2 112.2 130 100.4 92.9 90.8 88.0 87.9 89.1 92.3 94.8 93.8 95.9 95.2 96.1 95.3 95.9 97.6 101.6 98.4 98.2 100.0 97.7 96.0 94.9 102.4 1111.4 97.6 97.2 101.0 101.5 98.8 98.5 87.8 88.2 90.9 94.0 94.7 93.9 92.7 94.6 94.2 95.3 96.7 96.7 98.2 97.1 95.7 94.0 92.0 89.9 86.9 110.6 107.3 106.0 107.1 108.5 110.4 93.7 SIDELINE PERCEIVED NOISE LEVELS 8.66 86.8 86.0 88.5 92.0 7.06 92.9 93.1 93.1 93.8 94.5 96.0 96.3 96.3 96.2 94.3 93.3 91.9 90.2 89.0 85.9 (SPL) 100 95.0 93.2 89.5 87.6 85.2 DEG 86.6 84.3 86.0 90.2 92.1 92.0 89.2 91.6 91.6 91.5 91.7 92.0 92.2 99.3 94.4 95.3 94.4 93.0 92.2 90.9 LEVEL 7.96 9 84.5 83.5 83.7 87.7 90.2 91.2 91.0 91.5 95.6 92.6 93.5 92.4 91.3 90.7 89.5 88.0 86.5 85.4 SOUND PRESSURE 88.7 96.1 94.1 91.7 96.3 90.1 90.1 ဥ 85.3 82.8 82.7 86.7 89.4 90.5 89.5 88.9 89.5 90.9 91.4 102.5 95.5 91.0 98.5 93.6 95.2 93.5 87.7 86.3 84.2 87.7 89.1 89.7 92.1 91.2 89.7 2 106.5 99.3 93.2 103.2 84.8 83.0 83.0 86.9 88.7 90.4 97.1 6.96 88.2 87.9 89.4 89.6 89.6 89.6 95.1 94.2 92.2 90.5 88.1 85.7 9 1/3-OCTAVE BAND 109.3 85.0 82.8 82.9 89.5 89.7 89.8 101.8 93.9 98.9 100.8 98.5 85.7 88.1 90.0 87.9 88.9 92.0 104.7 92.2 89.6 86.4 97.1 94.4 112.7 20 109.8 102.6 d) Percent speed, 87.9 88.7 90.0 89.8 84.6 83.5 84.0 88.7 89.6 88.9 90.4 92.9 99.1 7.66 98.5 94.2 91.8 88.9 104.2 113.2 40 92.0 93.7 110.3 102.6 94.7 103.5 86.0 83.0 82.2 86.2 87.6 89.2 87.9 89.0 88.6 90.3 98.1 96.9 95.3 94.0 88.1 98.4 91.5 89.1 86.3 113.0 30 103.3 95.9 88.4 88.6 89.9 89.9 89.0 90.0 91.7 92.8 110.1 98.9 98.3 97.0 92.4 82.8 84.1 85.1 88.4 104.7 113.3 20 101.0 94.2 103.2 91.3 91.4 87.8 83.7 83.9 87.0 86.6 88.9 85.4 87.9 87.6 93.0 93.0 92.0 90.0 86.9 84.4 2 61 PETERS 305 PETERS FRECLENCY DISTANCE GVERALL 200 250 315 315c 400c 500c 12500 1600C 2C0CC 50 80 80 80 100 125 160 800 1000 1250 160C 200C 2500 6300 e000 2000

TABLE IX. - NOISE OF FAN B CONFIGURATION 105 (HARD INLET, SOFT FAN FRAME, HARD EXHAUST, LARGE NOZZLE)

TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of $15^{\rm O}$ C and 70 percent relative humidity; SPL re 0.00002 N/m 2 ; PWL re 0.1 pW.]

(a) Percent speed, 60; fan physical speed, 2072 rpm; fundamental blade passage frequency, 897 hertz.

FRECLENCY								ANGLE	E, DEG								AVERAGE	(n)
	10	20	30	40	50	99	70	96	06	100	110	120	130	140	150	160	SPL	(PWL)
			-	/3-0CT	AVE B	AND SOUND	PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METER	R RADIUS	Sn				
80 80	74.1 76.3 73.7	73.8 72.8 72.5	71.0	71.1 69.5 69.3	70.3 70.6 69.8	71.5	71.8 70.5 69.8	72.8 76.1 71.3	73.8 73.1	73.3 73.6 75.2	79.0 78.1 79.7	75.4 75.4 77.6	77.3	77.8 80.1 82.2	78.5 79.6 82.2	80.2 81.2 83.4	75.3 75.8 77.2	122.7 123.2 124.6
100 125 160	76.6	75.0 76.9 77.4	75.5 77.8 77.0	74.0 76.5 76.5	74.8 76.0 77.0	75.8 77.3	74.5 77.1 77.4	75.6 78.1 78.2	77.3 78.6 78.9	78.5 80.0 79.2	80.1 81.3 79.9	80.9 80.7 79.8	82.3 81.5 79.9	83.5 83.1 81.4	83.3 82.8 80.5	83.7 82.5 79.9	79.3 79.8 78.9	126.7 127.2 126.3
200 250 315	78.5 8C.C 81.0	78.3 78.9 79.2	77.1 78.4 79.2	75.6 77.4 78.3	75.5 76.7 78.5	75.0 76.0 77.5	74.8 75.9 78.2	75.0 76.9 78.5	75.8 78.9 79.8	76.8 80.2 80.0	78.1 81.0 81.0	78.6 81.1 80.6	79.3 81.4 81.0	80.6 81.7 81.2	79.6 80.2 79.3	79.0 79.1 77.9	77.4 79.3 79.6	124.8 126.7 127.0
400 500 630	8C.8 8C.3 81.4	80.1 79.7 80.6	78.6 79.2 80.6	77.8 78.3 79.6	77.3 77.3 78.3	77.1 76.8 77.3	77.1 77.2 77.9	77.6 78.2 77.9	78.8 79.3 79.6	80.6 79.8 80.8	82.5 81.5 83.1	82.6 81.8 82.7	82.8 82.8 83.9	81.5 81.0 80.6	78.6 78.2 77.4	77.4 76.1 75.7	80.1 79.8 80.6	127.5 127.2 128.0
800 1000 1250	94.9	90.0 95.4 87.6	93.5 94.4 83.6	92.4 93.9 82.2	92.9 93.7 80.7	87.7 88.6 77.7	86.2 87.2 77.7	83.9 84.4 77.8	84.4 84.7 79.8	85.5 85.7 81.1	88.2 88.9 83.3	88 88 8.4 4.4	88.7 89.7 86.1	86.2 87.9 83.8	82.9 83.9 79.3	81.9 82.6 76.3	88.8 90.1 82.5	136.2 137.5 129.9
1600 2000 2500	86.4 90.7 81.9	86.9 91.4 88.1	89.4 91.9 88.7	87.5 90.2 88.2	85.7 88.0 85.2	81.5 83.4 81.4	80.2 81.7 79.0	80.0 81.0 80.0	81.3 82.5 82.4	84.2 86.2 84.4	86.5 88.5 86.0	86.8 88.0 87.6	89.2 90.9 90.0	86.0 89.0 88.0	81.7 84.7 82.9	78.3 80.4 78.4	85.6 87.9 86.2	133.0 135.3 133.6
3150 4000 5000	87.5 87.6 82.1	88.8 88.8 88.8	88.4 88.7 89.3	87.5 88.2 89.4	85.4 86.6 87.8	81.0 82.7 83.6	78.5 80.2 79.8	75.7 80.4 75.9	81.4 82.1 81.9	83.5 83.4 83.9	85.9 86.1 87.3	88.0 87.7 88.6	90.2 90.4 91.1	88.2 87.7 88.9	83.4 83.1 84.6	78.6 79.3 80.4	86.3 86.8 87.9	133.7 134.2 135.3
630C 800C 100CC	8 8 8	87.5 86.9 85.6	88.1 88.1 87.5	89.1 88.5 87.8	87.0 86.8 86.5	82.4 82.1 81.6	78.1 77.4 76.5	77.7 76.9 75.8	80.3 79.5 78.3	82.4 81.2 80.5	85.6 84.5 83.5	87.0 85.5 84.1	89.2 87.0 85.8	57.0 85.9 84.6	83.1 81.9 80.8	79.2 77.8 77.1	87.0 86.7 86.8	134.4 134.1 134.2
12500 16000 20000	888	83.7 81.4 78.8	86.3 83.9 81.4	87.5 85.6 82.7	85.5 83.1 79.6	81.5 78.9 76.2	75.8 73.9 71.4	75.0 73.3 71.9	77.7 75.8 73.4	79.3 77.8 74.8	82.0 79.4 76.8	82.6 80.4 77.5	84.5 81.4 78.1	83.5 81.1 78.3	79.8 77.1 74.0	76.5 74.3 71.2	87.2 86.8 86.7	134.6 134.2 134.1
GVERALL	101.1	100.9	101.4	100.9	6*66	95.6 SID	93.6 EL INE	92.9 PERCEI	.9 94.3 CEIVED NO	96.	0 98.5 LEVELS	0.66	100.9	99.2	95.8	94.0	4.66	146.8
PETE PETE	86.3	94.7	99.3	100.9	101.3	99.0	97.7	98.2	100.0	101.6	103.6	97.3	104.6	101.0	94.3	86.6		

(b) Percent speed, 70; fan physical speed, 2417 rpm; fundamental blade passage frequency, 1047 hertz.

0.1	(PWL)		127.3 127.8 129.9	131.6 132.2 131.1	129.9 131.1 131.3	131.8 .131.2 131.7	133.6 147.0 137.6	134.0 141.4 136.8	139.2 137.6 138.6	137.7 137.7 137.4	137.3 136.8 136.5	151.7		
AVERAGE	, A.		79.9 80.4 82.5	84.2 84.8 83.7	82.5 83.7 83.9	83.48 4.38	86.2 99.6 90.2	86.6 94.0 89.4	91.8 90.2 91.2	90.3	89.9 89.4 89.1	104.3		
	160		86.7 87.1 89.2	90.4 88.6 86.1	84.6 84.4 83.2	82.6 80.9 80.5	81.4 91.0 82.6	79.9 84.6 81.5	82.9 82.2 83.4	82.2 81.7 80.3	79.3	99.3		91.1
	150		84.6 85.4 88.3	88.8 88.0 85.7	85.9 85.8 84.7	84.0 82.9 81.9	82.8 92.2 84.7	82.2 87.7 84.9	86.2 85.6 86.6	85.9 85.1 84.0	82.6 79.9 76.7	100.2		97.8
	140	Sn	83.0 85.2 86.8	88.3 87.7 86.2	85.9 86.2 85.8	85.9 84.7 84.4	85.3 94.9 87.9	86.0 92.6 90.2	91.8 90.8 91.3	90.4 89.6 87.9	86.6 84.9 81.9	102.9	;	104.5
	130	R RADI	83.5 84.9 86.7	88.5 88.2 86.5	86.0 86.8 86.7	87.4 87.2 87.2	89.8 98.9 91.9	90.8 96.9 94.4	95.0 93.8 94.0	92.4 91.4 89.8	87.8 85.0 81.7	105.8	;	109.3
	120	5-METE	79.6 80.1 83.1	85.3 85.9 84.6	83.6 85.8 84.9	86.4 85.8 86.3	88.1 95.2 89.5	88.8 93.0 91.4	92.6 91.1 92.1	90.5 89.7 88.2	86.1 83.9 80.9	103.2	;	108.1
	110	ON 30.	79.8 80.2 82.2	84.7 85.7 84.5	82.7 85.0 84.7	86.5 85.0 86.4	87.6 93.9 88.7	87.7 92.7 89.7	91.5 90.1 91.3	90.3 89.7 88.0	86.5 83.7 80.7	102.5	VELS	108.1
	100	(SPL)	78.1 76.7 79.7	83.2 84.5 83.8	81.0 84.0 84.3	84.9 84.4 85.1	85.8 95.7 87.4	85.8 90.0 87.2	88.8 87.6 88.8	87.3 86.6 85.2	84.0 81.7 78.9	101.1	SF LE	106.4
E, DEG	06	LEVEL	77.0 76.4 78.0	81.2 83.9 82.8	80.7 82.7 83.5	83.0 83.0 83.4	84.1 92.7 85.7	84.3 87.7 85.9	87.0 86.0 87.5	85.6 84.7 83.4	82.3 80.2 77.7	99.2	ED NO	104.8
ANGL	BC	SSLRE	76.5 75.2 76.8	8C.0 82.5 82.7	75.5 81.5 82.5	81.5 81.9 82.1	83.1 91.6 84.4	82.3 87.5 83.2	84.5 83.1 84.5	82.2 81.4 80.2	76.9 76.9 74.5	91.5	ERCE1	102.6
	7.0	ND PRE	76.0 74.7 75.8	78.3 81.7 81.2	79.5 80.0 81.8	81.2 80.9 81.6	83.3 96.6 86.2	81.3 89.0 82.7	85.0 83.3 84.8	82.7 81.6 80.5	79.0 76.6 73.7	99.5	L I NE	102.9
	09	annos an	76.1 74.7 76.3	77.5 81.7 81.8	79.5 79.7 81.5	81.4 80.5 81.9	84.C 99.8 88.7	82.3 92.0 84.6	88.5 86.0 87.0	85.6 85.5 84.7	83.5 80.7 77.4	102.2	018	104.6
	50	AVE' BAI	75.3 74.0 75.8	76.3 80.4 80.7	79.4 80.2 81.3	82.2 81.5 81.9	85.2 102.8 91.7	84.7 95.1 87.9	92.3 89.1 90.5	89.1 89.0 87.7	86.3 83.7 80.4	105.1		106.1
	40	/3-0CT	76.1 74.5 74.5	76.8 80.9 81.8	80.4 81.5 83.2	83.C 83.4 83.9	87.2 105.9 94.7	88.3 99.0 90.9	95.0 92.6 92.6	91.6 91.3 90.7	89.5 87.1 84.0	108.2		107.4
	30	1	76.8 76.2 76.7	76.7 80.7 81.0	81.4 81.7 82.2	83.4 82.9 83.7	87.3 105.2 94.9	88.2 98.0 90.4	93.8 91.5 91.6	89.8 89.5 88.7	87.0 84.4 81.4	107.4		103.9
	50		76.1 76.9 76.2	77.5 82.4 81.5	82.2 83.3 84.5	84.4 83.5 83.9	87.8 103.9 94.2	88.5 97.4 90.7	94.7 91.9 92.1	90.9 90.1 89.2	87.8 85.9 83.2	106.7		7.66
	10		76.0 75.2 86.2	77.3 86.9 81.5	81.5 82.3 84.0	885.0 82.0 95.0 95.0	86.2 95.9	86.7 95.7 86.2	92.0 85.3 85.1	87.6 86.9 86.0	84.8 82.2 75.8	103.7		85.5
FRECUENCY			28 58 26	100 125 160	20C 25C 315	40C 50C 63C	80C 10CC 125C	160C 200C 250C	315C 400C 500C	630C 800C 100C	1250C 1600C 2C0CC	CVERALL	DISTANC	61 PETERS

TABLE IX. - Concluded.

(c) Percent speed, 80; fan physical speed, 2762 rpm; fundamental blade passage frequency, 1196 hertz.

FRECUENCY								ANGL	E, DEG								AVERAGE	POWER
	01	20	30	40	20	99	0,	90	06	100	110	120	130	140	150	160	, ,	u a.
			-	1/3-0CT	AVE B	AND SOUND	NO PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METER	RAD	105	İ			
50	E1	80.1	•	5		~	2	4.	١.	2.		4.	9	80		::	3	33.
63	76.5	78.1	78.1	77.8	78.1	78.0	78.1	79.0	79.5	81.0	86.1	85.0	87.8	9.68	9.06	92.7	84.9	132.3
3 8	ů	78.8	÷	7.	•	æ	æ	Š	:	8		۲.	•	-	•	÷	۲.	34.
100		2	•	•	ö	-	;	•			6	ö	٠,	ě	4	4	80	36.
125	83.8	83.4	83.4	83.6	4	85.4	84.8	85.8	87.6	87.6	89.9	90.2	91.6	92.9	93.9	95.8	88.9	136.3
160	4	•	4	•	•	2	S.	÷	ġ	7	6	6	ċ	2 •		:	æ	35.
0	•		4	e,	3	3.	2	4	4	ĸ.	7.	8		1.		6	7	34.
250	84.0	84.3	84.6	84.3	83.5	84.8	84.0	85,3	86.5	88.0	89.3	90.4	8.06	92.1	91.6	89.5	88.1	135.5
-		•	e.	•	4.	.	3	ů.	•	۲.	6	•		1:	•	-	۲.	35.
O	•	•	÷	•	•	Š	4	•	•	œ	•	•	-		6	•	œ	35.
200	87.3	91.0	91.3	91.7	œ	85.5	84.8	86.0	87.3	88.5	90.2	90.1	90.5	0.06	88.3	85.6	89.0	136.4
3	÷	•	•	~	•	5	2.	٠		8	_:	ċ	ċ	•	-	•	æ	35.
800	r-	•			•	•		÷		6		1:	۲.	6	۲.	Ŋ	•	36.
1000	41	99.3	5	~	S	93.0	40.4	•	89.7	\sim	95.5	93.1	ŝ	91.0	•	•	3	•
1250	106.7	111.4	•	6	•	•	•	98.2	~	•	٠,	7.6	100.6	5	92.6	93.1	3.	151.3
9	5	91.3		0	œ	•	'n.	•			-	2	3	•	•		6	37.
2000	91.4	92.2	91.9	91.7	89.9	88.0	86.5	87.5	89.0	91.5	94.2	95.0		95.5	88.0	84.6	~	139.6
20	w	100.2	ċ	100.7	•	•	2.	5	5	•	۲.	0.6	2.0	ċ	2.	6	•	46.
15	17	93.8	~	3.	•	6		-	6	2	4	•		3.	æ	5	6	40.
4000	93.4	95.4	6.46	95.6	94.3	91.6	87.8	87.8	89.8	91.9	94.9	95.9	6.96	93.8	89.3	86.0	94.2	141.6
8		94.4	S	ġ	•		6	æ	ċ	2	Š	5	•	2	ċ	•	Š	45.
30	٠	92.1	~		•	•		-	8	-	3	4	•	•	æ	'n	3	40.
8000	85.2	7.16	4.0	94.2	91.9	89.7	86.5	86.0	87.7	90.0	93.0	93.0	93.7	91.7	87.5	84.3	93.2	140.6
2	•	•	•	•	•	•	•	•	•	•	-	•	•		•	ń	•	•
250	W1 0	∞ ⋅	∞ t	=	6	9,	6	e.	5	•	61	6.	0	61	5	~	۲.	39.
2000	8C.0	83.0	81.7	84.7	82.5	80.5	77.5	78.9	80.2	82.3	84.2	84.2	84.4	94.48	79.5	76.9	91.9	138.9
CVERALL	106.6	112.5	109.1	111.4	109.4	106.6	103.6	102.6	102.9	105.2	106.6	107.5	109.7	106.9 1	104.7 1	103.5	108.1	155.5
DISTANCE						STD	EL INE	PERCE1	EIVED NO!	SE LE	VELS		 					
61 PETERS	94.3	105.3	106.6	1111.1	1111	109.8	107.8	108.0	108.7	111.2	112.8	112.9	115.1	109.9	102.7	95.9		
	:		1															

(d) Percent speed, 90; fan physical speed, 3107 rpm; fundamental blade passage frequency, 1346 hertz.

POWER	 		135.6 136.2 138.6	140.6 140.5 139.9	138.7 139.6 139.3	139.6 139.4 140.2	141.1	144.2	146.0 145.8 146.2	144.3 143.8 143.2	142.8 142.4 142.0	158.1	
AVERAGE	٠,		88.8 88.8 91.2	93.2 93.1 92.5	91.3 92.2 91.9	92.2 92.0 92.8	93.7 94.0 103.8	96.8 96.1 102.6	98. 98. 98.8	96.9 96.4 95.8	95.4 95.0 94.6	110.7	
	160		95.7 97.3 99.6	99.7 98.2 96.2	94.9 94.8 92.8	91.9 90.4 89.4	89.5 89.2 94.8	89.4 88.8 93.2	91.7 90.4 91.1	89.7 88.9 87.2	86.2 83.8 80.9	108.1	100.3
	150		93.4 95.3 98.0	99.5 98.3 96.8	96.3 96.1 94.9	94.1 92.9 92.2	92.0 91.8 96.6	92.0 91.7 95.3	94.9 93.1 93.5	92.3 91.3 90.1	89.0 86.6 83.5	108.9	106.4
	140	NS	91.8 93.8 96.4	98.0 97.3 96.1	96.0 96.6 95.9	95.1 94.2 93.4	94.1 94.6 98.8	94.7 94.7 104.3	99.8 96.8 97.6	96.2 94.5 93.4	92.5 90.7 88.0	110.9	113.9
	130	R RADI	89.3 91.3 93.9	96.2 95.7 94.1	94.3 95.4 95.1	95.0 94.7 95.0	95.8 97.5 102.8	98.2 98.4 108.3	102.8 100.8 102.5	98.5 97.5 95.5	93.7 91.1 87.8	113.3	118.7
	120	5-METE	87.4 87.9 91.8	93.8 94.1 93.1	92.4 94.1 93.8	94.6 93.7 94.8	96.4 96.1 100.9	97.1 97.6 103.7	100.8 100.1 100.3	97.8 96.6 95.0	93.0 90.8 87.5	11111	117.0
	110	ON 30.	88.3 87.3 89.7	93.0 93.8 92.5	91.5 93.4 93.1	94.5 93.4 94.9	95.8 95.8 101.1	96.7 97.7 102.3	99.7 99.8 99.8	97.9 96.5 94.9	93.0 91.0 87.8	110.6	1117
	100	(SPL)	86.1 85.0 87.4	91.2 92.2 91.6	89.3 91.9 91.6	92.2 91.7 93.0	93.6 94.0 99.4	94.9 95.2 99.0	96.4 96.6 97.0	94.7 93.6 92.5	90.9 89.2 86.2	108.2	114.7
E, DEG	06	LEVEL	85.4 83.1 85.2	88.8 91.0 91.0	88.3 90.4 90.6	90.8 91.1 91.5	92.0 92.8 100.8	94.5 93.9 99.0	95.4 95.8 95.5	93.8 92.6 91.4	90.0 88.0 85.4	107.6	114.
ANGL	98	SSURE	87.3 83.3 83.4	87.5 90.2 91.3	88.0 85.1 89.9	89.5 90.4 90.2	90.8 91.0 99.8	93.4 92.4 95.6	93.1 93.5 93.5	91.8 90.6 89.4	87.7 85.8 83.3	106.0	11.9
	2	IND PRE	83.6 82.1 82.0	87.8 89.2 89.8	87.3 87.9 88.9	88.7 89.9 90.0	91.0 91.0 102.9	94.9 93.2 97.6	93.9 94.5 94.0	91.9 91.0 88.7	86.7 84.0 81.0	107.2 Et the	112.
	909	ND SOUN	83.4 82.3 81.7	87.8 88.5 91.0	87.2 87.6 87.9	88.8 89.7 91.2	91.6 91.3 105.3	96.7 95.0 99.8	95.4 95.8 95.8	93.5 92.1 90.2	88.5 85.8 82.2	109.0	113.3
	20	AVE BA	83.1 81.1 81.2	85.7 87.7 90.3	87.5 87.1 88.2	88.8 90.6 91.9	92.5 92.5 106.6	98.4 97.2 102.3	97.6 97.8 97.5	95.0 94.0 92.0	89.5 86.6 82.7	110.5	113.9
	40	1/3-OCT	85.3 81.3 81.2	86.0 86.8 90.0	87.5 88.1 88.2	89.0 90.4 93.4	94.8 93.5 108.3	99.8 97.5 103.1	98.2 99.8 98.3	96.9 96.0 94.2	92.2 89.1 85.7	111.9	113.1
	30		85.1 81.3 79.7	84.5 86.2 88.1	87.3 87.1 87.2	88.3 89.4 91.7	93.1 93.0 108.1	99.5 96.5 103.0	97.4 98.0 96.8	94.7 93.6 91.7	89.2 86.1 82.5	111.2	109.8 89.9
	20		81.4 83.0 83.0	86.3 88.0	88.2 87.2 86.7	87.8 89.6 91.0	92.3 92.7 107.4	99.0 96.2 102.6	97.1 97.6 96.6	94.1 93.8 91.9	89.7 87.0 84.0	110.8	105.3
	10		87.3 82.0 82.0	87.0 87.3 86.0	87.7 86.6 87.1	87.8 85.9 85.5	92.5 92.3 105.1	97.7 95.4 102.6	97.39	93.7 92.3 96.7	86.2 84.8 81.9	105.8	91.1
FRECUENCY			8 6 8	10C 125 16C	200 250 315	400 500 630	866 1000 1250	1600 2000 2500	315C 400C 500C	8300 800C	12500 1600C 2000C	GVERALL	PETER

TABLE X. - NOISE OF FAN B CONFIGURATION 106 (HARD INLET, SOFT FAN FRAME, HARD EXHAUST, NOMINAL NOZZLE)

TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of $15^{\rm o}$ C and 70 percent relative humidity; SPL re $0.00002~{\rm N/m}^2$; PWL re $0.1~{\rm pW}$.]

(a) Percent speed, 60; fan physical speed, 2135 rpm; fundamental blade passage frequency, 925 hertz.

FRECLENCY	 _							ANGLE,	.E, DEG								AVERAGE	B. C.
	0	20	30	40	20	9	20	ec	96	100	110	120	130	140	150	160	۲ ۲	(PWL)
				1/3-0CT	AVE B	AND SOUND	IND PRE	SSURE	LEVEL	(SPL)	ON 30.	S-METER	RADI	Sn				
12 0 80 12 0 10	72.7	74.5	75.1	71.4 69.6 70.2	72.2 71.2 72.4	71.6	72.1	73.2	73.3 72.8 73.8	73.7	77.2 76.6 78.0	76.2 75.7 78.1	81.1 77.5 82.2	78.2 79.6 82.0	79.6 80.6 83.2	81.0 81.8 84.2	76.1 75.6 77.8	123.5 123.0 125.2
100	74.2	74.7 77.0 77.2	75.1 76.8 77.4	73.2 77.1	74.4 76.9 77.6	74.4 76.6 77.7	74.7 77.3 77.6	75.6 78.1 78.6	76.8 78.8 79.3	78.4 80.3 79.9	79.9 81.8 80.9	81.1 82.0 81.0	83.9 84.3 82.6	83.9 83.3 81.4	84.7 84.6 81.7	85.1 83.5 80.3	79.8 80.6 79.7	127.2 128.0 127.1
20C 25C 315	77.9 79.0 79.4	77.4 78.7 79.7	76.9 78.5 79.9	76.6 78.6 78.7	76.2 77.8 78.4	74.9 76.6 76.9	75.2 76.5 77.2	75.7 77.0 78.1	75.8 77.9 77.8	76.6 79.6 78.7	78.2 81.3 80.7	78.8 81.7 81.1	82.2 84.3 83.4	80.9 82.1 81.6	81.2 82.1 80.9	79.5 79.3 77.9	78.1 80.0 79.7	125.5 127.4 127.1
400 500 630	86.5 86.9 86.8	80.3 80.4 80.8	80.0 79.7 80.8	79.2 79.7 80.3	78.0 78.9 78.9	76.7 76.9 76.9	76.5 77.1 76.9	77.9 78.7 78.4	79.0 79.1 79.6	80.5 79.7 80.6	82.4 81.6 82.8	83.1 82.8 83.9	85.2 85.6 86.4	82.0 81.6 81.6	80.7 79.6 79.1	77.6 76.6 76.3	80.8 80.7 81.3	128.2 128.1 128.1
866 1000 1250	86.8 96.3 84.6	90.0 97.7 84.6	91.1 99.1 84.6	90.6 99.0 84.4	88.9 96.3 82.6	83.9 91.0 79.6	82.9 90.3 78.3	82.3 88.1 75.8	82.8 88.1 80.3	83.8 88.0 82.3	85.8 90.5 84.8	87.5 92.1 86.2	89.3 93.8 89.5	84.9 90.6 84.6	81.9 86.8 80.4	79.8 85.4 77.0	86.8 93.5 84.0	134.2 140.9 131.4
166C 200C 250C	86.8 91.0 87.6	87.0 92.2 87.9	87.1 93.3 88.3	86.1 92.2 88.4	84.1 90.2 86.1	80.1 84.5 81.8	78.3 82.0 78.8	79.9 82.8 8C.6	81.3 84.3 82.2	83.3 86.0 84.4	84.9 88.3 87.3	87.0 89.1 89.1	30.4 94.7 92.1	84.8 89.7 86.9	80.6 84.7 82.8	77.0 80.1 78.0	895 895 895 865	132.4 136.9 134.3
215C 40CC 50CC	89.0 88.6 89.0	89.3 89.6 89.9	89.4 90.6 91.0	89.7 90.8 91.5	87.2 88.6 89.3	82.2 84.5 84.6	79.7 82.5 82.6	86.2 82.3 82.1	81.8 83.5 83.9	84.3 84.3 85.0	86.9 87.5 88.5	89.5 88.8 89.3	92.9 92.1 92.5	88.0 87.3 87.8	83.5 83.5 84.1	78.8 79.6 80.4	87.8 88.3 89.1	135.2 135.7 136.5
630C 800C 1COCC	86.3 86.3	89.0 88.8 88.4	89.3 89.3	90°5 90°0 89°5	87.8 87.6 86.9	82.8 82.5 81.6	78.7 76.9 75.3	78.2 76.0 74.4	80.6 78.3 77.2	82.2 79.8 78.4	85.9 83.0 81.4	87.1 84.6 83.0	90.6 87.5 85.9	85.9 83.7 82.1	82.6 79.8 78.8	77.1 75.2 72.9	87.7 87.0 87.0	135.1 134.4 134.4
12500 16000 2000	86.9 85.1	86.9 84.9 83.1	86.9 84.7 82.7	88.6 86.7 84.1	85.9 83.7 81.1	80.7 78.7 75.8	73.5 71.0 68.5	72.5 70.7 68.9	75.4 73.5 71.2	76.7 74.9 72.9	80.0 78.2 76.1	81.0 79.4 76.9	84.2 81.9 79.0	81.4 79.2 77.4	77.5 74.9 72.3	71.9	87.1 87.0 87.4	134.5 134.4 134.8
CVERALL	101.4	102.2	103.1	103.2	100.8	96.1	94.4	94.0 9	6 4 0	96.1 ISF LE	98.7 VELS	100.0	103.1	99.1	96.4	94.3	100.4	147.8
61 PETERS 113 PETERS	86.2	95.4	100.3	102.8	102.6	99.9	98.8	95.4	100.8	102.1	104.1	105.0	107.0	100.8	94.6	86.6		

(b) Percent speed, 70; fan physical speed, 2498 rpm; fundamental blade passage frequency, 1082 hertz.

TABLE X. - Concluded.

80; fan physical speed, 2855 rpm; fundamental blade passage frequency, 1237 hertz

(c) Percent speed,

133.6 132.9 135.5 135.8 136.9 138.2 138.0 136.9 136.5 135.8 135.6 141.8 140.5 139.6 138.7 138.0 136.7 139.4 151.3 138.0 139.4 141.2 143.2 142.7 POWER LEVEL (PWL) 138.4 155.7 146.7 136.4 AVERAGE SPL 108.3 90.6 92.0 90.6 92.0 99.3 93.1 86.2 85.5 88.1 89.5 89.1 88.2 88.2 93.8 95.8 95.3 91.3 90.6 91.0 80.5 78.2 75.8 73.1 9.46 85.2 85.9 85.8 85.4 92.1 92.3 95.3 86.3 85.0 85.6 92.2 83.5 84.7 88.5 6.96 91.1888.8 104.1 160 95 83.0 80.2 77.2 105.9 97.3 95.9 93.5 93.2 93.5 92.2 88.9 89.5 89.7 89.8 89.4 91.2 89.7 88.7 88.7 93.4 85.1 103.5 150 88.0 86.4 87.1 109.9 108.0 108.0 109.8 111.2 114.0 114.1 114.2 109.9 88.7 89.9 92.7 95.3 94.9 92.7 93.5 93.0 92.4 90.9 90.2 90.7 91.4 97.8 90.1 92.0 99.6 93.6 94.0 94.8 92.0 107.5 7.06 140 30.5-METER RADIUS 93.0 95.2 102.0 94.4 96.3 102.1 87.7 89.0 91.9 93.4 92.4 92.2 96.0 89.5 86.4 109.7 94.5 93.7 92.3 92.5 93.8 93.0 98.3 98.0 97.3 91.9 130 92.2 93.4 100.8 100.9 108.4 84.7 84.9 88.7 88.2 86.0 83.5 92.0 89.0 91.3 90.7 91.5 90.9 90.7 93.6 97.1 97.8 96.3 94.8 8.06 120 91.5 92.4 100.8 91.6 94.0 100.1 88.0 84.9 82.2 107.6 94.9 92.2 89.9 87.5 85.4 87.7 91.4 88.5 90.5 90.2 90.4 89.4 90.4 95.3 95.7 95.3 110 SIDELINE PERCEIVED NOISE LEVELS 8 90.9 89.9 91.5 95.6 103.5 105.1 84.2 82.2 84.4 89.7 88.2 87.9 87.9 92.5 92.2 92.3 82.5 (SPL) 86.5 88.3 88.2 91.1 87.4 100 ANGLE, DEG 87.0 88.2 88.5 88.6 90.0 93.9 91.0 90.7 91.0 90.6 1/3-OCTAVE BAND SOUND PRESSURE LEVEL 85.5 87.3 87.2 87.2 86.9 97.0 84.2 81.5 78.7 82.7 80.7 82.7 86.4 85.0 85.3 86.3 88°3 89°0 89°3 89.2 86.7 83.9 81.0 75.0 76.5 102.8 87.5 85°9 85°4 86.5 88.2 98.5 87.1 88.3 91.6 0 83.8 85.9 87.3 85.2 84.8 86.2 84.9 86.0 88.2 99.8 86.6 87.3 92.9 87.5 89.7 89.0 103.3 83.2 79.7 80.2 84.9 86.7 83.9 78.4 85.7 89.7 2 81.7 80.2 81.2 84.5 85.9 87.3 85.0 85.8 85.5 86.2 89.9 103.3 85.7 85.4 87.3 87.8 96.9 89.3 93.8 92.5 91.1 85.7 82.4 79.2 106.1 84.2 9 87.0 93.7 109.0 82.5 80.7 79.9 83.0 84.7 86.5 84.5 84.8 85.5 90.8 90.8 103.1 95.0 93.4 89.2 85.9 82.4 1111.1 113.2 85.7 85.7 92.4 97.8 97.0 91.4 20 86.7 93.9 109.3 90.8 90.3 100.6 86.5 79.7 80.4 83.8 84.1 85.8 85.5 85.5 84.7 84.7 85.7 85.4 92.5 98.5 97.0 95.2 1111.1 95.2 103.9 106.1 110.9 92.1 40 85.5 91.7 106.5 85.2 80.4 78.4 83.5 83.7 85.0 84.2 85.0 83.7 84.2 89.1 89.3 99.6 90.8 96.0 94.8 92.7 90.9 89.4 87.0 84.5 81.7 108.7 84.4 30 93.8 108.8 86.3 83.9 80.8 86.1 84.9 85.7 85.6 85.9 85.1 85.8 86.4 91.5 96.9 95.1 92.9 91.2 89.5 84.8 86.4 95.5 110.5 20 85.2 76.7 86.4 87.0 84.9 85.0 85.2 87.7 93.4 06.0 96.8 96.8 106.1 91.4 92.4 92.5 93.5 9¢.2 8£.7 86.58 8.59 8.09 8.09 87.1 105.6 2 61 PETERS FREGLENCY DISTANCE CVERALL 50 63 80 100 125 160 200 250 315 80C 10CC 630C 800C 000C 125CC 1600C 2000C 160C 200C 250C 3150 4000 5000

(d) Percent speed, 90; fan physical speed, 3209 rpm; fundamental blade passage frequency, 1390 hertz.

	LEVEL (PWL)		136.7 136.6 139.5	141.8 142.0 141.0	139.9 140.8 140.3	140.4 139.9 140.1	141.1 141.5 150.4	148.3 143.1 148.9	148.1 146.6 145.6	145.2 143.8 142.7	141.9 141.1 141.1	158.4	
	AVEKAGE SPL		89.3 89.2 92.1	94.4 94.6 93.6	92.5 93.4 92.9	93.0 92.5 92.7	93.7 94.1 103.0	100.9 95.7 101.5	100.7 99.2 98.2	97.8 96.4 95.3	94.5 93.7 93.7	111.0	
ner ca.	160		96.3 97.4 100.5	101.2 99.2 95.9	94.5 95.2 93.4	92.2 91.1 89.6	89.4 89.6 94.3	92.6 88.8 92.4	92.3 89.5 9.9	88.8 86.7 84.2	82.3 80.0 77.0	108.6	100.3
, 1000	150		94.8 96.0 99.7	101.4 101.0 99.0	97.7 98.3 97.0	96.1 94.5 93.4	93.3 93.6 96.1	94.5 92.4 96.1	96.7 93.4 93.1	93.1 90.5 89.2	87.4 84.6 81.4	110.3	107.8 87.8
educiicy	140	IUS	92.6 93.7 96.7	99.5 99.3 97.2	97.2 98.0 97.2	96.6 95.3 94.9	94.7 95.1 97.4	96.0 94.6 99.8	99.7 95.6 95.6	95.4 93.1 91.4	89.9 87.9 86.5	110.5	112.3
age II	130	R RAD	92.0 91.1 95.5	98.0 98.3 96.8	96.8 98.0 97.3	97.6 97.2 96.9	97.8 98.4 102.6	100.9 99.6 107.1	106.2 101.4 102.0	100.9 98.0 96.2	94.4 91.6 88.7	114.1	118.9
auc pun	120	5-METE	88.8 88.8 91.7	94.6 95.1 94.7	93.4 94.9 94.8	94.7 94.4 94.8	95.9 96.3 100.0	98.8 97.4 102.4	101.7 100.2 100.3	98.7 96.5 94.3	91.9 89.6 87.0	111.2	116.7
Cilear Di	110	ON 30	87.5 87.5 89.7	93.4 94.5 93.3	92.2 94.0 93.0	93.8 93.0 94.4	95.2 95.0 99.1	97.5 96.9 101.5	100.7 100.4 99.1	97.9 96.1 93.9	91.7 89.1 86.1	110	116.7 98.5
	100	(SPL)	86.8 85.7 87.5	91.5 92.7 92.7	89.7 92.0 91.8	92.1 91.7 92.2	93.5 94.2 99.9	97.7 95.1 99.5	98.7 97.8 96.3	95.3 93.5 91.2	89.4 87.1 84.2	108.7	115.3 97.4
, [.E. DEG	LEVEL	86.3 84.7 85.7	89.4 91.7 91.8	89.7 90.8 91.2	91.0 91.3 90.9	91.8 92.5 99.1	97.4 93.1 96.6	96.1 95.9 94.5	94.1 92.1 90.1	87.9 85.4 82.6	107.	113.5 95.6
	ANGL 80	SSURE	86.1 84.2 84.0	88.2 90.8 91.7	85.5 85.5 90.5	90.5 90.3 90.2	91.3 91.7 95.3	97.7 91.9 96.1	94.9 93.9 92.5	92.6 90.8 88.7	86.2 83.6 81.2	2.90	112.4 94.7
napade 11	70	ND PRE	86.5 83.8 82.7	86.7 89.2 90.2	88.7 88.3 89.2	89.5 89.5 90.2	91.3 90.9 102.1	100.0 93.1 96.3	95.2 95.6 93.1	93.3 91.1 88.9	86.0 82.7 79.7	107.	112.4 94.9
puy sica	09	ND SCUN	85.0 83.5 82.7	86.0 88.3 91.0	88.0 88.0 88.8	88.8 88.7 89.2	91.3 91.1 105.1	102.7 94.2 98.5	96.9 96.9 95.5	94.4 93.1 90.5	87.9 84.7 81.4	v l •	510 113.3 95.7
,	20	AVE BA	84.5 83.3 82.7	85.2 87.7 90.2	88.5 87.3 88.2	88.5 88.7 90.0	91.0 92.2 106.6	104.0 95.3 102.5	100.7 99.8 96.6	96.3 94.5 92.1	89.6 86.4 83.2	111.4	114.4
, bood	40	/3-0CT	87.5 82.8 82.3	85.2 87.7 89.0	88.1 88.1 87.8	88.1 89.5 90.5	92.2 91.9 106.8	104.4 95.9 102.5	101.2 100.1 97.3	96.9 95.5 93.4	91.1 88.1 85.2	111.7	112.9
	30	1	86.5 83.2 80.5	84.2 86.7 88.7	88.2 87.3 87.0	88.0 88.5 90.9	92.7 92.2 106.9	104.7 95.8 102.0	100.2 100.3 96.8	95.9 94.5 92.4	89.7 86.4 84.0	111.6	109.8
	20		87.5 83.5 82.1	85.6 87.9 88.8	88.7 87.8 87.3	88.2 88.6 90.6	92.6 92.6 105.9	103.9 95.4 102.1	100.4 99.9 96.3	95.3 93.9 91.8	89.3 86.2 83.7	11111	105.5 83.8
	10		86.5 83.7 83.7	83 0.0 8.3 8.8	85.2 86.1 87.5	86.3 86.7 90.4	92.5 92.7 104.9	103.0 94.9 102.1	10C.4 95.4 95.8	94.6 93.1 91.1	86.1 86.1 82.4	116.5	97.0
10	MEGLENL		0 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 125 160	200 250 315	, 40c 50c 53c	800 1000 1250	160C 200C 250C	315C 4000 500C	6360 8000 1000	125CC 1600C 2CCOC	GVERAL	DISTANCE 61 PETERS 3C5 PETERS

TABLE XI. - NOISE OF FAN B CONFIGURATION 107 (TAPED INLET SUPPRESSOR, SOFT FAN FRAME, HARD EXHAUST, NOMINAL NOZZLE)

TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of $15^{\rm o}$ C and 70 percent relative humidity; SPL re 0.00002 N/m²; PWL re 0.1 pW.]

(a) Percent speed, 60; fan physical speed, 2126 rpm; fundamental blade passage frequency, 921 hertz.

및	ا 9 ع	TER RADIUS	9 78.0 77.5 80.2 80.9 75.7 123.1 9 78.3 78.0 80.5 80.4 75.3 122.7 7 80.8 81.5 83.0 82.7 77.2 124.6	3 82.2 82.8 85.5 84.2 79.3 126.7 3 82.4 83.1 84.6 83.4 80.5 127.9 8 81.4 81.0 83.2 81.7 80.3 127.7	1 80.5 80.2 82.2 79.7 78.5 125.9 7 82.7 81.9 83.1 80.3 80.5 127.9 8 82.0 81.5 81.9 79.3 80.7 128.1	5 84.5 83.1 82.1 79.2 81.9 129.3 3 84.7 83.2 81.7 79.4 82.2 129.6 3 86.0 83.5 81.2 78.9 83.0 130.4	0 89.9 88.6 85.1 81.6 88.0 135.4 5 93.7 94.4 90.9 86.1 93.1 140.5 1 88.4 86.4 83.0 79.6 85.2 132.6	5 89.2 86.5 83.4 78.8 85.8 133.2 1 92.5 91.5 87.3 82.1 89.7 137.1 2 90.6 88.1 85.1 79.5 87.1 134.5	9 91.1 88.6 85.9 80.3 87.7 135.1 4 90.1 87.9 85.1 80.9 87.7 135.1 8 90.3 88.7 86.7 81.1 88.4 135.8	2 88.2 86.4 84.4 78.9 87.0 134.4 9 85.3 83.8 82.2 76.9 86.2 133.6 2 83.4 82.1 80.4 75.2 87.3 134.7	2 81.9 80.7 78.7 73.4 86.6 134.0 8 78.9 78.7 76.0 71.0 85.8 133.2 6 76.7 75.6 72.7 68.0 86.7 134.1	3 101.7 100.5 98.4 94.9 100.3 147.7	7 105.2 101.8 06.8 88.0
ANGLE, DEG	90 100 110 120	E LEVEL (SPL) ON 30.5-ME	7 73.7 73.2 75.2 75. 0 72.2 73.0 74.5 75. 6 73.0 75.0 76.5 77.	5 76.5 78.5 78.7 80. 6 79.6 80.3 81.1 81. 4 78.8 79.5 80.8 80.	5 77.0 77.5 78.7 79. 1 79.8 80.3 81.8 81. 2 79.8 80.0 82.3 81.	3 80.7 82.0 84.0 83. 5 81.5 81.5 84.0 83. 4 82.5 82.0 84.5 84.	4 85.3 86.3 88.8 89. 2 89.3 89.6 93.3 94. 9 83.0 83.6 86.8 86.	2 82.2 83.7 86.4 86. 5 84.1 86.1 88.7 89. 5 83.0 84.3 87.8 88.	2 82.6 84.1 88.1 88. 3 82.8 83.8 87.6 88. 5 83.1 84.1 87.8 88.	7 81.0 82.0 86.0 86. 2 78.7 79.5 83.0 83. 9 77.7 77.7 81.7 82.	9 76.6 76.4 79.9 80 6 74.1 74.1 77.3 77. 7 71.7 71.5 74.2 75.	5 95.9 96.7 99.8 100.	6 101-1 102-1 105
ent speed, oo, ran pri steat speed	0 40 50 60 70 80	1/3-OCTAVE BAND SOUND PRESSUR	.3 74.3 71.5 71.3 77.3 72. .7 73.2 70.8 71.0 75.5 71. .0 72.0 71.5 71.6 75.3 72.	.7 74.C 72.0 74.0 77.2 75. .7 77.1 75.9 76.9 81.1 78. .5 78.7 78.0 79.0 82.0 79.	.8 77.0 75.8 76.3 78.8 76. .1 78.2 77.2 77.4 81.2 78. .2 79.4 79.2 79.0 82.0 75.	.6 79.6 79.1 78.3 82.0 79. .7 80.7 79.8 79.5 83.2 8C. .4 81.5 80.4 79.9 83.7 81.	.9 88.6 87.1 85.9 87.7 84. .9 94.7 93.4 91.4 91.2 87. .5 85.C 83.4 81.9 85.1 81.	.9 87.2 84.5 82.7 84.7 81. .5 93.0 88.8 86.3 87.5 83. .6 88.0 85.6 83.5 84.8 81.	.2 89.2 86.1 83.2 84.9 81. .9 89.6 86.8 84.3 85.4 81. .2 90.0 87.7 84.7 85.2 81.	.6 89.3 85.6 82.5 83.2 78. .0 88.8 85.0 82.1 81.7 77. .1 89.8 86.0 82.8 81.6 75.	.3 87.5 83.4 80.7 79.7 73. .9 84.0 79.5 76.3 75.9 71. .7 80.9 76.9 73.6 73.5 68.	.8 101.5 98.9 96.5 98.1 54.	7 102 5 101 3 100 5 102 8 66
RECLENCY	10 20 30		5C 72.5 72.0 74. 62 71.0 72.7 73. 8C 7C.5 73.3 73.	100 72.5 74.3 74. 125 75.1 77.2 77. 160 71.0 79.5 79.	20C 76.5 78.8 78. 25C 75.6 80.1 80. 315 77.0 80.0 80.	4CC 76.5 81.8 81. 5CC 76.5 81.7 81. 63C 8C.0 83.4 83.	80C 87.6 91.4 91. 100C 94.1 97.4 97.	160C 85.7 88.9 88. 200C 9C.1 94.1 93. 25CC 86.8 89.8 89.	315C 86.9 89.7 90. 40CC 86.1 89.8 89. 50CC 86.9 89.8 90.	630C 86.2 88.7 88. 80CC 86.5 88.1 88.	250C 85.3 87.2 86. 60CC 85.6 84.6 82. C0CC 9C.2 82.5 80.	ERALL 101.C 102.7 102.	TER A

(b) Percent speed, 90; fan physical speed, 3189 rpm; fundamental blade passage frequency, 1381 hertz.

H.C	(PWL)		135.7 135.6 138.1	140.6 141.2 140.2	139.2	140.3	142.1 142.9 148.7	146.2	146.9 146.3 145.8	145.3 143.7 142.6	142.1 142.5 142.1	157.9		
AVERAGE	SPL		88.3 88.2 90.7	93.2 93.8 92.8	91.8 93.1 92.6	92.9 92.8 93.7	94.7 95.5 101.3	98.8 96.6 100.7	99.5 98.9	97.9 96.3 95.2	94.7 95.1 94.7	110.4		
	160		95.4 95.9 99.2	100.0 98.4 95.2	94.2 94.2 93.0	92.4 91.3 90.8	91.5 91.8 92.9	91.5 90.4 93.7	92.9 90.8 90.5	90.5 88.2 86.0	84.1 81.8 78.4	108.1		100.7
	150		94.8 95.0 97.6	100.7 99.7 97.4	97.7 97.5 95.7	95.4 94.0 93.6	93.6 93.7 96.0	94.5 93.1 95.6	96.4 93.5 93.8	94.0 91.3 89.7	87.6 85.1 81.9	1.601		107.6 87.3
	140	ns	90.5 92.0 94.6	96.8 97.2 95.6	95.7 96.8 95.8	95.4 94.4 93.9	94.4 94.9 97.5	96.1 95.1 98.3	98.2 95.3 96.2	95.5 93.1 91.0	89.1 87.3 84.8	109.5		111.2
	130	R RADI	91.2 90.7 93.8	96.0 96.8 95.4	94.8 96.1 95.2	95.7 95.5 95.9	97.1 97.9 103.3	101.3 99.5 104.8	103.3 100.3 101.2	99.5 96.4 94.7	92.6 89.8 87.0	112.8		117.2
	120	S-METE	87.1 87.6 90.0	92.9 94.8 93.4	92.1 94.6 93.9	94.6 94.8 95.2	96.9 97.4 100.9	99.4 99.1 103.0	101.3 100.2 100.0	98.4 96.3 94.4	91.7 89.3 86.3	1111.3		117.0
	110	ON 30.	86.2 86.7 89.3	92.7 94.0 92.4	91.3 93.5 93.2	94.4 94.2 95.3	96.4 97.1 101.0	99.0 98.8 101.4	100.2 100.7 99.6	98.8 96.6 94.2	91.8 88.8 86.2	110.9	VELS	116.9
	100	(SPL)	85.7 85.0 87.1	90.7 92.8 92.6	89.8 92.1 92.3	92.7 92.7 93.4	95.1 95.4 98.0	96.1 96.5 97.9	97.2 97.0 96.1	95.3. 93.8 91.2	89.3 87.1 84.0	108.3	ISE LE	114.5
E, DEG	06	LEVEL	86.5 85.5 88.4	91.5 92.5 91.6	91.2 93.5 92.8	93.4 93.2 94.3	95.4 96.4 99.0	97.0 97.1 99.9	99.4 99.9 98.3	97.4 94.9 93.0	91.0 89.6 89.0	109.7	VED NO	116.5 98.4
ANGL	98	SSURE	84.5 82.8 82.8	87.2 90.7 90.1	87.8 85.8 90.2	85.9 90.0 91.9	92.6 93.4 96.3	94.0 92.8 94.9	93.7 93.5 92.3	92.1 85.9 87.8	85.9 84.0 81.0	105.5	PERCEI	1111.5
	70	OUND PRE	87.7 85.7 84.9	88.5 92.2 93.4	90.7 92.1 93.2	92.5 93.2 94.9	95.6 95.8 100.7	98.1 96.3 100.1	98.2 96.7 95.8	95.8 93.1 91.0	88.9 87.5 84.0	109.1	EL INE	115.2 97.3
	09	ND S	84.3 82.0 81.6	85.2 88.2 89.6	87.2 88.1 89.2	88.2 89.0 90.6	91.6 91.6 97.8	95.3 92.0 96.9	95.0 94.3 93.0	93.0 90.6 88.3	87.0 86.8 82.1	105.9	810	1111.1
	20	AVE BA	84.0 81.2 80.4	85.2 87.2 89.4	87.2 87.6 88.5	88.4 89.5 91.1	90.9 92.3 99.2	96°3 93°0 99°3	97.0 96.0 94.6	94.0 92.1 89.7	88.8 89.2 84.1	107.1		1111.4
	40	/3-0CT	83.7 81.3 80.3	84.7 87.0 89.1	87.7 89.3 88.8	89.4 89.5 91.9	91.6 93.9 103.2	100.3 95.0 100.8	99.0 99.5 98.0	97.3 95.6 93.5	92.8 92.5 87.6	109.9		1111.6
	30	1	83.5 82.0 81.3	84.0 86.2 88.9	88.2 88.6 88.2	88.7 89.4 91.6	93.4 94.9 106.5	103.3 95.4 100.6	98.5 98.9 97.0	95.7 93.6 91.7	90.0 89.2 85.5	110.9		109.0
	20		80.3 82.2 83.6	81.8 85.3 87.4	87.7 87.8 87.3	87.7 87.9 90.1	91.4 94.1 106.5	103.0 95.0 101.8	99.5 99.3 96.8	95.3 93.8 91.7	90.5 90.4 86.8	111.0		105.2
	10		8C .3 82.2 83.6	8 6 7 6 8 6 9 7 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9	81.1 81.3	87.7 87.9 9C.1	91.4 94.1 106.5	102.9 94.9 101.8	96.3	95.3	90.5 90.4 86.9	110.9		96.7
FRECUENCY			5C 63 8C	100 125 160	200 250 315	400 500 630	800 1000 1250	1606 2000 2500	315C 40CC 50CC	630C 800C 1C0CC	1250C 160CC 2COCC	GVERBLL	DISTANCE	61 PETERS 3C5 PETERS

TABLE XII. - NOISE OF FAN B CONFIGURATION 108 (HARD INLET, TAPED FAN FRAME, HARD EXHAUST, NOMINAL NOZZLE)

TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15 $^{\rm O}$ C and 70 percent relative humidity; SPL re 0.00002 N/m 2 ; PWL re 0.1 pW.]

(a) Percent speed, 60; fan physical speed, 2130 rpm; fundamental blade passage frequency, 923 hertz.

FRECLENCY	 							ANGLE,	E, DEG								AVERAGE	3
	10	20	30	40	90	09	70	28	06	100	110	120	130	140	150	160	ر د د	(PWL)
				1/3-0CT	AVE BA	ONDOS ON	PRE	SSURE	LEVEL	(36F) (ON 30.	S-METE	R RADIUS	ns				
55 63 98	72.4 71.0 71.9	69.6 72.0 71.2	72.3 70.7 69.6	71.3 69.5 69.9	71.9 69.9 69.9	70.9 71.2 71.4	71.3 71.4 69.7	72.8 71.4 70.9	72.8 71.5 72.1	73.1 73.3 74.3	74.6 74.0 76.1	76.2 75.1 77.5	76.3 77.3 79.6	76.8 77.8 80.8	79.3 79.5 82.6	79.7 80.1 82.2	74.5 74.4 76.3	121.9 121.8 123.7
100 125 160	74.6	74.3 76.1 77.1	76.2 76.2 17.1	72.3 75.4 75.9	72.1 75.2 76.1	76.6 75.1 76.6	75.9 76.2 76.8	74.3 76.6 77.3	75.1 77.6 78.1	77.3 78.8 78.3	78.8 80.8 80.1	80.0 80.3 79.5	82.1 81.8 79.6	82.3 82.8 80.8	84.3 83.3 80.8	83.2 81.9 78.5	78.8 79.2 78.4	126.2 126.6 125.8
260 250 315	76.8 76.6 79.4	77.6 80.1 80.2	76.8 78.4 79.4	75.1 76.8 78.2	75.4 75.9 76.7	74.3 75.4 76.1	74.9 75.1 76.1	74.8 75.8	74.8 76.8 76.8	76.1 77.6 78.1	77.1 80.1 80.1	78.2 80.5 80.8	79.1 80.8 80.8	80.1 81.6 80.8	80.6 81.3 79.8	78.2 78.2 77.7	77.0 78.6 78.7	124.4 126.0 126.1
204 207 200 200	8C.3 81.2 82.1	81.0 81.9 82.9	81.0 81.4 83.4	78.5 80.2 80.9	77.3 77.1 79.1	76.0 76.4 76.9	75.8 76.2 76.4	76.3 77.7	78.2 78.8 79.3	79.5 79.3 80.1	81.6 81.0 82.1	82.7 81.6 83.3	82.2 82.8 83.8	81.2 81.3 81.1	79.7 79.0 78.8	76.6 75.9 75.7	79.8 79.9 80.8	127.2 127.3 128.2
80C 100C 125C	96.0 96.2 86.4	91.3 98.4 88.1	91.5 98.4 88.9	89.6 96.7 87.3	87.5 94.6 84.8	83.6 89.4 81.6	82.0 86.6 80.6	82.1 87.2 82.0	83.6 89.5 83.0	84.6 90.2 84.0	87.1 92.5 87.3	87.4 92.0 87.7	88.1 93.5 88.3	86.9 93.5 86.0	82.1 87.7 82.0	79.8 85.1 78.4	86.8 93.0 85.7	134.2 140.4 133.1
1600 2000 2500	86.6 92.1 85.1	89.6 94.1 90.9	90.3 94.6 91.1	89.1 93.6 91.1	87.3 91.7 88.9	83.8 87.2 85.1	82.1 85.4 82.4	83.6 86.1 83.1	84.4 87.8 84.7	86.2 89.1 86.5	88.9 92.1 89.5	89.9 92.0 91.4	90.7 94.1 91.7	88.2 93.8 88.9	83.2 87.1 83.5	79.6 82.2 80.2	87.6 91.4 88.8	135.0 138.8 136.2
315C 40CC 50CC	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91.0 90.9 90.8	91.3 91.6 91.3	91.6 91.8 92.2	88.8 89.3 88.7	84.3 84.6 84.7	81.8 82.3 81.3	82.6 82.9 82.0	84.7 84.5 83.9	86.2 85.3 84.9	89.5 88.5 88.4	90.9 90.2 90.0	91.7 90.3 90.7	89.5 88.3 4.88	84.0 84.0 84.2	80.9	0.88 0.89 0.0	136.4 136.2 136.4
63CC 80GC 1COGC	87.3 87.2	89.6 89.5 89.0	90.5 90.2 89.3	91.3 90.8 90.3	87.5 87.1 85.8	82.8 82.7 81.8	78.4 76.9 75.4	78.9 76.9 75.6	81.3 80.0 78.8	83.0 81.0 79.5	86.0 84.2 82.8	87.9 86.5 84.8	88.3 87.0 85.3	86.5 84.7 83.5	82.3 81.0 79.8	78.1 78.1 76.9	87.8 87.6 87.5	135.2 135.0 134.9
1250C 1600C 2C0CC	81.5 83.5 83.5 83.2	88.5 87.0 84.5	88.8 87.0 84.8	89.3 87.8 85.3	84.8 83.1 80.1	81.1 78.9 76.3	74.5 72.3 69.4	73.6 72.0 69.1	76.5 75.0 71.8	78.0 76.2 73.6	81.2 78.9 75.8	83.4 81.3 78.1	83.5 81.4 78.6	82.5 80.2 77.3	78.5 76.2 73.7	75.6 73.9 70.4	87.9 88.0 88.1	135.3 135.4 135.5
DISTANCE	101.6	103.5	103.8	103.2	100.6	96.4	93.9 EL INE	94.6 PERCEI	96.3 IVED NOT	37.4 SE LE	100.2 VELS	101.1	102.0	100.8	7.96	94.1	100.9	148.3
61 PETERS	87.0	97.0	101.6	103.7	103.1	100.5	99.2	100.3	102.1	103.2 1	105.7	106.1	105.6	102.7	95.3	87.7		

(b) Percent speed, 70; fan physical speed, 2486 rpm; fundamental blade passage frequency, 1077 hertz.

FRECUENCY								ANGL	E, DEG								AVERAGE	BWC.
	10	20	30	40	20	99	70	80	06	100	110	120	130	140	150	160	r	(P.M.E.)
			•	1/3-OCT	AVE BA	ND SOUN	D PRE	SSURE	LEVEL	(SPL)	ON 30.	5-METER	R RADII	us				
N 9 8	76.1 73.7	74.1 75.8 79.2	75.6	75.8	75.4	75.6	76.6	77.8	77.4	77.6	79.6 79.0 82.2	82.2 80.8 84.1	80.9 81.7 85.0	82.6 83.7 86.5	85.1 86.3 88.7	86.2 86.3 89.3	79.8 79.7 82.3	127.2
, ,	,		,	, ,		,	. ,	, ,	. ,	,		:	•	,	•			
125	76.1 86.0	76.1 80.0	76.3 80.6	75.3	74.8	76.5	77.1 81.1	75.1	80.8 83.1	82.3 84.1	84.6 86.0	85.6 86.7	87.0 87.6	88.5	89.8 90.1	89.8 88.3	83.9 84.8	131.3
Ø	Š	ċ	:	ċ	•	-:		2•	2.	9	4	5.	5.	•	•	S.	ë	31.
O	:	ö		ċ	6	6	6	6	•	•	2.	4	5	5	•	.	2	29.
315	81.6 82.1	81.9	82.9	80.9	79.9	79.1	79.6	8C.6 81.1	81.9 82.1	82.6 82.8	84.9	86.0 85.6	86.4 85.8	86.1 85.6	86.9 85.5	84.5	83.5	130.9
C		,		,	_	ď	ć	-	,	,		Š	Š	Ľ	4	,	,	
200	80.00	83.8	84.0	82.8	82.1	81.1	81.0	81.5	82.3	83.0	85.0	9.98	86.5	85.1	83.6	80.8	83.8	131.2
(L)	61	4	5	3	2	•	•	-	2	ě	•	•		4	m	0	4	31.
ပ		87.	å	•	5	3	3	3	4	Š		•	6	2	6	÷	•	33.
1000	91.5	100.5	102.7	666	7.66	97.4	93.0	92.3	92.1	95.5	95.6	9.56	99.5	92.6	89.5	91.5	97.1	144.5
25	•	•	96	4.	3.	;	۲.	7	8	9.	2•	2.	•	·	•	5.	2.	39.
9	٠,	•	•	·	6	•	5	÷	-		1.	2	2	8	4		6	36.
2000	93.9	96.2	98.7	98.7	95.7	92.7	90.4	90.9	92.1	95.6	94.7	96.2	96.4	94.2	88.2	84.7	94.9	142.3
?	•	j	•	•	•	•	•	•	•	•	•	ň	ů	:	•	'n	•	,
3150		94.3	•	•	4.	•	7.		6.0	-: (•	ġ.	Š	•	-	e 6	~	40
38	90.8	ä.	94.1	94.6	92.5	89.3	87.0		89.1	89.6	93.3	94.5	94.0	90.8	86.6	83.8	92.7	140.1
5	٠,	-	2	•	-		•	•					ζ,	6	Š	_		9.6
10000	85.7	91.4	93.1	93.9	90.7	87.2 86.0	82.1 80.5	82.7 80.6	85.5 83.5	86.7 85.1	89.6 88.0	91.5	91.3	88.7	84.3 83.1	80.4	91.5	138.9
250		•		,	ď	5	•	œ	ζ,	- 60	ģ	ď	ά	2		٦,	-	8
10000	87.7	88.7	89.9	90.5	86.7	83.0	76.9	77.4	19.9	81.0	83.9	85.9	85.7	83.5	79.5	76.3	91.4	138.8
2	•	ċ	•	•	'n	•	•	•	•	œ.	•	,	,	•	ċ	÷	:	χ. α
OVERALL	103.5	105.6	107.3	106.6	104.8	102.0	0.66	95.1	100.5	101.3	104.1	105.3 1	106.0 1	103.3 1	9.001	99.3	104.7	152.0
DISTANCE						SIDE	EL INE F	PERCEIV	VED NO	ISE LE	VELS							-
61 PETERS	86.9	99.2	105.1	107.5	107.6	105.7	104.1	105.0	106.8	107.6	11011	110.7	109.4	104.8	98.5	91.6		

TABLE XII. - Concluded.

(c) Percent speed, 80; fan physical speed, 2841 rpm; fundamental blade passage frequency, 1231 hertz.

10 20 30 40 50 60 70 80 90 100	ANGLE, DEG 0 40 50 60 70 80 90 1	ANGLE, DEG 60 70 80 90 1	ANGLE, DEG 70 80 90 1	ANGLE, DEG	DEG 1	DEG 1	100	1	110	120	130	140	150	160	AVERAGE SPL	POWER LEVEL (PWL)
1/3-OCTAVE BAND SOUND PRE	13-OCTAVE BAND SOUND PRE	TAVE BAND SOUND PRE	ND SOUND PRE	PRE		SSURE	LEVEL	(SPL)	ON 30.	5-METER	R RADIL	108				
82.4 80.2 81.2 81.4 80.0 83.4 83.2 72.1 80.1 79.7 77.7 78.9 77.1 78.7 76.7 76.7 76.7 77.8 77.8	.2 81.4 80.0 83.4 83. .7 77.1 78.9 77.7 78. .8 77.3 77.5 77.8 77.	80.0 83.4 83. 78.9 77.7 78. 77.5 77.8 77.	.4 83. 7 78. 8 77.			82.0 78.7 79.0	82.0 80.1 80.7	82.7 81.1 83.5	84.0 83.2 85.5	84.9 85.3 87.4	85.9 86.7 90.0	87.4 88.4 91.5	89.0 90.7 93.5	91.7 91.9 94.6	84.6 84.3 86.7	132.0 131.7 134.1
84.4 83.1 82.6 80.3 80.8 81.9 82.3 83.0 82.5 83.2 82.2 83.2 84.2 84.7 84.2 84.6 84.9 84.6 84.7 85.7 86.4	.6 80.3 80.8 81.9 82. .2 82.2 83.2 84.2 84. .9 84.6 84.7 85.7 86.	80.8 81.9 82. 83.2 84.2 84. 84.7 85.7 86.	1.9 82. 4.2 84. 5.7 86.			83.1 86.0 86.4	85.3 87.7 87.6	87.3 88.2 87.9	89.4 90.5 89.4	91.0 91.3 90.3	91.8 92.0 89.9	93.8 93.5 92.1	95.6 95.3 92.6	96.3 94.1 91.6	89.5 88.5 88.5	136.7 136.9 135.9
84.7 84.6 85.4 84.1 83.4 83.7 83.9 84.4 84.6 86.3 85.6 85.3 84.1 83.9 84.1 84.7 84.6 84.1 83.7 83.6 84.9	.4 84.1 83.4 83.7 83. .3 85.6 85.3 84.1 83. .6 84.1 83.7 83.6 84.	83.4 83.7 83. 85.3 84.1 83. 83.7 83.6 84.	3.7 83. 4.1 83. 3.6 84.	w w 4		83.7 84.8 85.1	84.4 86.3 86.4	85.1 87.6 87.4	87.4 89.9 89.4	89.3 90.7 90.2	90.4 90.9 90.6	91.2 92.4 91.2	92.1 92.3 91.2	90.3 90.1 88.6	87.3 88.4 87.8	134.7 135.8 135.2
85.4 85.3 86.4 83.9 84.1 84.4 84.1 84.2 84.4 85.4 84.4 84.1 84.1 84.2 84.9 85.1 85.9 84.9 84.3 83.4 84.1	.4 83.9 84.1 84.4 84. .4 84.4 84.1 84.1 84. .9 84.9 84.3 83.4 84.	84.1 84.4 84. 84.1 84.1 84.	4.4 84. 4.1 84. 3.4 84.	4 4 4		84.9 85.1 84.6	86.1 86.2 86.6	87.4 87.1 87.4	89.4 89.2 89.9	90.9 90.5 90.4	90.6 90.4 90.1	90.8 90.2 88.9	90.6 89.1 87.9	87.0 85.8 84.5	87.9 87.5 87.4	135.3 134.9 134.8
87.5 87.1 88.3 88.0 86.5 85.5 85.8 90.6 93.5 95.0 94.3 93.0 89.5 89.1 02.1 108.4 109.2 108.9 108.1 102.6 102.1	.3 88.0 86.5 85.5 85. .0 94.3 93.0 89.5 89. .2 108.9 108.1 102.6 102.	86.5 85.5 85. 93.0 89.5 89. 108.1 102.6 102.	85.5 85. 89.5 89. 02.6 102.	85. 89. 02.		86.1 88.0 97.9	87.3 89.5 99.4	89.0 91.0	91.0	92.6 93.4 101.8 1	91.6 94.0 102.2	89.5 90.6 98.4	87.6 88.1 95.4	84.7 85.2 92.1	88.9 91.9 104.0	136.3 139.3 151.4
95.C 90.8 92.0 91.0 90.0 87.3 86.7 90.1 90.9 91.9 91.2 89.9 87.6 87.7 94.7 100.2 100.1 101.7 100.6 95.7 93.7	.0 91.0 90.0 87.3 86.7 .9 91.2 89.9 87.6 87.7 .1 101.7 100.6 95.7 93.7	90.0 87.3 86.7 89.9 87.6 87.7 100.6 95.7 93.7	7.3 86.7 7.6 87.7 5.7 93.7	~~~		87.2 88.5 92.1	88.9 90.9 97.1	90.4 92.4 97.7	92.2 94.7 98.9	93.8 96.0 101.3	93.2 95.5 100.2	89.7 91.0 95.6	86.7 87.5 91.4	83.9 84.8 88.3	90.6 92.3 98.7	138.0 139.7 146.1
89.9 92.0 92.4 92.7 91.4 88.2 87.5 92.5 95.3 96.2 97.7 96.5 92.3 89.5 9C.8 93.4 95.5 96.1 94.3 91.3 89.0	.4 92.7 91.4 88.2 87. .2 97.7 96.5 92.3 89. .5 96.1 94.3 91.3 89.	91.4 88.2 87. 96.5 92.3 89. 94.3 91.3 89	8.2 87. 2.3 89. 1.3 89.	6.6		88.4 85.8 85.3	91.7 92.7 92.3	92.7 93.0 92.6	95.5 96.8 95.5	97.2 98.5 97.5	96.2 96.6 95.8	91.9 93.7 92.8	87.9 89.2 88.8	85.0 86.0 86.0	93.4 95.6 94.8	140.8 143.0 142.2
8f.7 91.6 93.7 95.1 92.8 90.4 88.1 87.7 90.6 92.7 94.6 91.2 89.2 86.1 8f.7 89.3 91.3 92.8 89.5 87.2 83.5	.7 95.1 92.8 90.4 88. .7 94.6 91.2 89.2 86. .3 92.8 89.5 87.2 83.	92.8 90.4 88. 91.2 89.2 86. 89.5 87.2 83.	0.4 88. 9.2 86. 7.2 83.	30.0		88.0 86.2 84.1	91.1 89.4 87.2	91.7 90.9 88.8	95.1 93.4 91.7	95.8 94.8 93.2	94.4 93.7 92.3	91.7 91.1 89.7	88.1 86.9 86.0	85.4 83.6 82.1	94.1 93.6 92.9	141.5 141.0 140.3
82.6 85.8 87.8 89.3 85.8 83.6 79.4 81.0 83.1 85.0 85.6 82.3 79.9 76.5	.0 91.¢ 88.3 86.¢ 81.6 .8 89.3 85.8 83.¢ 79.4 .0 85.¢ 82.3 79.¢ 76.5	88.3 86.0 81.6 85.8 83.6 79.4 82.3 79.9 76.5	6.0 81.6 3.6 79.4 9.9 76.5	1.6 9.4 6.5		82.3 8C.4 77.1	86.1 83.6 80.3	87.3 85.1 81.6	89.8 87.4 83.9	91.2 89.1 85.8	90.9 88.4 85.1	88.5 86.3 83.5	84.8 82.4 79.1	80.8 78.7 75.4	92.8 92.4 91.8	140.2 139.8 139.2
05.8 110.0 110.8 110.5 109.9 105.3 104.4 1	.8 110.5 109.9 105.3 104.4	109.9 105.3 104.4	05.3 104.4	04.4	~	102.4	104.8	106.1	107.4	109.0	108.5	106.2	105.0	103.7	108.2	155.6
SIDELINE 2 108 8 108 6	SIDELINE TILL A 108 A 108 A	SIDELINE	SIDELINE	w 4		i w I o	2 4	SE L	EVELS	4	4		100	4 40		
1.0 103.2 100.1 110.0 111.3 100.0 100.0	0.001 0.001 0.001 1.	0.001 0.001 0.111	0.601			۲.	6.11	7.7	0.0	0	•	:	20	93.0		

135.4 135.5 138.4 138.8 139.9 139.5 139.4 138.9 139.2 POWER LEVEL (PWL) 140.4 141.0 139.9 140.3 140.8 149.2 146.7 142.1 146.7 145.7 145.2 144.1 144.2 143.6 143.1 143.0 142.6 141.9 157,3 AVERAGE SPL 88.0 88.1 91.0 93.0 93.6 92.5 91.4 92.5 92.1 92.0 91.5 91.8 92.9 93.4 101.8 99.3 94.7 99.3 98.3 97.8 96.7 96.8 96.2 95.7 95.6 95.2 94.5 109.9 95.9 96.6 100.4 99.9 98.4 95.1 94.2 94.5 93.0 91.4 89.9 88.5 88.7 88.6 90.6 89.1 87.1 88.9 89.4 88.7 87.9 88.3 87.2 85.4 84.7 82.2 78.9 98.4 107.7 fan physical speed, 3196 rpm; fundamental blade passage freguency, 1384 hertz 160 92.7 93.7 97.6 99.6 99.9 96.9 96.6 97.4 96.1 92.1 91.9 94.7 92.7 90.7 90.0 88.0 85.7 83.1 105.4 94.8 93.5 92.1 93.1 91.5 108.7 150 117.9 115.5 110.2 99.6 96.6 90.8 90.7 92.2 95.2 97.4 97.2 96.0 96.6 95.5 94.7 93.6 94.1 95.2 93.5 96.0 96.6 94.7 94.2 94.0 93.3 92.0 89.2 92.6 93.4 109.1 140 30.5-METER RADIUS 89.6 90.7 93.7 96.2 96.2 94.7 94.2 95.7 95.2 95.2 95.4 96.8 100.6 98.8 9.16 96.6 91.9 94.6 97.1 101.7 99.1 1111.2 102.1 130 96.7 96.7 103.0 102.4 102.1 100.3 101.2 97.9 104.0 88.6 89.1 91.6 94.3 95.9 94.3 93.3 95.0 94.8 95.1 94.6 95.0 99.3 98.2 96.6 95.3 92.9 89.3 112.4 120 100.6 95.3 91.6 101.4 100.4 11C.7 113.4 114.0 116.9 92.6 95.5 96.1 98.8 87.7 86.8 89.6 93.1 94.4 93.2 91.6 93.7 93.1 93.5 92.7 93.9 98.8 98.5 92.6 0.46 91.4 103.1 104.9 107.0 108.2 111.2 110 PERCEIVED NOISE LEVELS NO 92.6 93.1 100.6 98.3 94.5 97.4 96.6 96.6 95.5 85.7 84.0 85.9 90.9 91.0 90.5 91.3 90.8 88.6 85.4 90.1 91.9 91.4 88.9 95.7 94.3 92.7 (SPL) 100 94.9 94.5 90.0 87.8 84.3 85.4 83.8 84.7 89.2 91.5 91.5 90.4 90.3 90.3 90.6 91.4 92.4 98.1 96.1 93.5 97.1 LEVEL 89.2 95.7 0 ANGLE, 85.0 89.0 88.9 86.2 83.0 82.7 88.9 88.7 90.4 94.6 91.6 93.2 92.4 93.1 91.7 90.1 84.6 1/3-OCTAVE BAND SOUND PRESSURE 87.1 89.9 6.58 9 SIDELINE 85.8 83.1 79.9 85.9 88.2 90.0 87.6 88.6 94.6 91.0 93.7 92.4 92.2 90.7 90.8 106.3 104.5 110.7 109.8 92.4 91.9 84.6 82.2 81.7 88.3 88.0 88.3 89.4 97.1 89.4 90.1 20 87.3 84.8 81.1 98.1 91.8 96.2 90.6 85.1 82.5 81.2 85.2 87.7 89.2 87.6 86.9 87.6 88.0 87.7 88.3 90.0 94.1 92.9 91.9 90.1 92.2 9 88.5 85.6 82.4 82.7 82.2 81.9 90.5 101.4 92.6 110.2 111.3 91.2 93.0 84.2 86.4 89.2 87.7 88.7 88.8 94.7 93.2 91.8 90.1 108.6 87.1 88.1 89.9 96.4 50 90: 90.9 91.0 104.6 101.7 83.9 86.5 88.0 87.9 88.0 88.7 90.8 93.4 94.3 88.8 85.1 83.6 82.2 81.2 88.2 97.1 97.2 94.7 95.0 109.4 d) Percent speed, 0 108.2 103.4 106.6 83.4 82.7 81.2 84.6 86.9 89.0 88.6 89.1 88.4 88.7 89.3 90.3 94.3 94.3 93.3 91.9 97.4 96.2 90.3 88.1 84.4 110.4 30 102.4 93.1 98.9 103.2 82.2 91.4 92.0 104.9 93.0 92.1 89.3 87.1 83.9 80.7 83.5 83.4 82.9 85.2 88.2 88.6 87.7 87.1 87.3 88.3 89.9 97.1 95.1 90.6 109.2 20 92.1 86.2 82.0 82.6 84.6 87.5 87.0 87.9 86.9 86.1 86.8 87.2 88.4 90.6 91.1 01.9 95.2 85.9 86.9 87.6 85.3 86.1 94.7 95.4 92.2 107.0 2 61 PETERS 305 PETERS FRECUENCY CVERBLL DISTANCE 800 1000 1250 569 125 200 250 315 400 500 630 1600 2000 2500 315C 40CC 50CC 63CC 800C COCC 12500 16000 20000

39

TABLE XIII. - NOISE OF FAN B CONFIGURATION 109 (HARD INLET, SOFT FAN FRAME, EXHAUST SUPPRESSOR, NOMINAL NOZZLE)

TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15^{0} C and 70 percent relative humidity; SPL re $0.00002~\mathrm{N/m}^{2}$; PWL re $0.1~\mathrm{pW}$.]

(a) Percent speed, 60; fan physical speed, 2122 rpm; fundamental blade passage frequency, 919 hertz.

(b) Percent speed, 70; fan physical speed, 2476 rpm; fundamental blade passage frequency, 1072 hertz.

J MC	LEVEL (PWL)	•	129.7 129.7 131.6	133.6 134.4 133.3	132.1 133.9 133.6	133.8 133.7 133.1	134.6 146.8 140.9	134.9 140.6 136.9	138.1 136.9 138.7	137.4 137.7 138.4	139.7	152.4		
AVERAGE	SPL		82.3 82.3 84.2	86.2 87.0 85.9	84.7 86.5 86.2	86.4 86.3 85.7	87.2 99.4 93.5	87.5 93.2 89.5	90.7 89.5 91.3	90.0	92.3 92.7 93.0	105.0		
	160		88.4 88.7 91.5	92.3 91.1 89.1	87.4 87.1 85.8	84.9 83.8 82.7	83.1 90.1 85.3	80.6 83.1 80.1	80.4 79.1 82.1	79.1 78.2 76.9	77.2 76.3 74.4	9.001	91.0	
	150		86.5 87.8 90.7	92.1 91.3 88.9	88.8 89.3 87.8	87.4 85.9 85.2	85.3 91.7 86.6	82.9 85.0 82.3	82.4 81.8 84.0	81.8 81.4 80.1	80.5 79.9 77.5	101.3	96.8	
	140	us	84.7 85.5 88.7	90.6 90.2 88.3	87.5 89.0 87.8	87.9 86.8 86.3	86.5 91.1 87.1	84.2 86.5 84.5	84.4 84.6 86.1	84.3 83.6 82.7	83.8 83.2 81.2	101.2	100.5	
	130	R RADÍ	83.3 84.2 86.3	88.6 88.5 87.1	86.3 88.3 87.1	88.0 87.4 86.8	87.5 92.1 88.6	85.9 88.7 86.3	85.8 85.6 87.6	85.2 84.3 83.2	84.1 83.5 81.2	101.2	103.1	
	120	5-METER	81.6 82.8 84.3	87.3 88.6 86.4	84.8 86.9 86.9	87.3 86.5 85.4	85.9 91.0 86.7	84.5 85.6 85.0	84.6 84.6 87.6	84.5 83.9	84.4 84.4 82.2	100.3	103.6	
	110	ON 30.	81.2 81.3 83.0	86.1 87.2 86.4	84.2 87.2 86.5	86.5 86.3 85.7	85.7 91.6 86.9	83.9 83.5	83.8 83.3	83.0 82.5 82.4	83.6 83.0 81.2	8.66	VELS 103.9	
	100	(SPL)	81.7 79.3 80.8	84.1 86.0 85.1	82.7 85.7 85.6	84.9 84.8 84.5	84.3 92.4 86.9	83.0 84.8 82.2	81.8 81.5 85.1	80.7 79.8 79.9	81.3 81.2 79.7	98.8	ISE LE	
E, DEG	90	LEVEL	80.8 79.8 80.2	83.7 86.7 85.6	83.2 84.8 85.0	84.2 84.8 83.8	84.0 92.9 87.1	83.4 85.3 82.2	81.9 81.6 86.0	81.2 79.3 79.2	80.6 79.9 78.9	98.9	VED NO	
ANGL	90	SSURE	86.0 77.7 77.7	81.1 83.5 83.4	81.8 83.2 83.8	82.9 82.9 81.7	83.2 93.6 87.3	82.0 85.3 82.0	81.9 80.6 85.0	80.2 78.4 78.2	75.3 78.7 77.7	98.2	PERCEI 102.1	
	02	D PRE	79.0 78.3 78.0	80.2 82.7 83.3	81.5 82.2 83.1	82.4 83.4 82.2	83.7 97.0 89.9	82.9 88.5 84.3	84.9 83.1 87.5	83.3 81.7 80.6	80.7 79.4 77.5	100.4	EL INE 103.9	
	09	ND SOUN	79.8 79.3 80.2	80.7 83.7 83.1	81.5 83.5 83.5	83.7 84.6 83.7	85.8 101.0 94.1	85.9 92.8 88.3	89.9 88.1 90.1	87.9 87.3 87.1	86.9 85.4 82.8	104.2	\$10	
	20	AVE BAI	79.2 78.5 78.8	79.6 82.7 83.3	81.8 85.2 84.8	85.9 86.3 86.2	88.3 103.3 96.4	89.0 96.2 92.0	93.9 92.1 93.1	91.6 91.3 91.1	90.5 88.6 86.0	106.9	108.3	
	0,	/3-0CT	80.0 79.2 77.8	81.6 85.2 85.6	84.2 87.9 87.6	88.5 89.1 88.2	91.2 105.7 99.8	92.7 99.8 95.5	96.8 95.3 95.8	95.1 94.8 94.8	94.5 92.6 89.6	109.8	109.6	
	30	1	83.3 81.7 80.8	82.2 85.7 85.6	86.0 87.4 88.5	88.7 88.8 89.2	91.7 104.7 99.3	93.4 99.3 95.5	96.4 94.8 95.8	94.5 94.3 94.1	93.9 91.9 89.4	109.2	106.7	
	20		81.8 81.7 81.7	82.6 86.2 86.4	87.3 88.0 88.8	89.2 89.8 89.3	92.0 104.5 99.3	93.2 98.3 94.8	95.6 94.4 95.3	94.1 93.7 93.5	93.0 91.6 89.4	108.9	102.1	
	10		84.2 82.2 83.0	84.1 85.8	8 8 8 8 8 9 6 0 9	86.9 8.3 8.8	91.0	92.0 93.9 93.3	92.9 92.6 92.8	92.1 92.2 92.0	91.7 96.1 87.9	106.9	95.5	
FRECLENCY			90 80 80	10C 125 160	200 250 315	204 500 500 500	800 1000 1250	160C 200C 250C	31.5C 400C 200C	6360 8000 1000	1256C 1600C 2C00C	CVERALL	DISTANCE 61 PETERS	

TABLE XIII. - Concluded.

1

134.7 134.0 135.9 138.3 138.7 137.9 136.9 136.5 135.7 137.8 137.9 144.9 139.4 139.5 139.6 136.6 137.8 137.1 137.0 141.1 152.8 139.9 139.1 138.8 POWER LEVEL (PWL) 138.2 141.2 140.9 156.0 AVERAGE SPL 89.6 93.7 105.4 89.5 89.1 88.3 90.8 93.8 93.5 87.3 86.6 88.5 90.9 91.3 90.5 89.2 90.4 89.7 90.4 90.5 97.5 92.5 91.4 92.0 92.1 92.2 108.6 93.8 94.2 96.0 89.2 87.9 86.2 84.3 84.3 86.6 82.6 82.8 84.0 83.7 81.0 79.8 95.7 92.2 92.1 90.2 86.3 87.1 94.3 79.4 77.8 75.8 95.7 80; fan physical speed, 2829 rpm; fundamental blade passage frequency, 1225 hertz 105.1 160 91.6 93.0 95.0 96.6 97.3 95.0 87.1 87.0 89.2 85.8 86.0 86.4 93.9 94.7 93.0 92.1 91.2 89.8 89.9 90.0 86.0 84.3 83.2 82.4 80.7 78.6 106.1 105.4 101.7 150 95.8 95.5 93.8 92.8 91.7 90.7 90.1 91.3 93.3 93.2 94.3 93.0 91.4 88.2 89.2 91.2 87.8 88.1 88.3 87.5 86.4 85.5 85.6 84.7 82.8 106.0 140 ON 30.5-METER RADIUS 87.5 88.8 91.5 93.6 93.6 92.5 92.6 92.0 90.8 89.3 87.9 87.2 86.7 85.6 83.3 92.0 93.5 92.2 91.9 92.9 98.0 90.7 91.3 95.6 90.4 89.8 90.0 106.1 108.8 109.2 130 85.7 85.6 88.8 92.2 92.9 91.8 90.3 91.9 91.3 90.6 88.5 89.8 93.5 88 88 89 5 88.7 86.8 86.2 85.3 83.3 91.1 90.5 104.7 86.3 85.2 87.3 91.0 91.5 91.2 89.0 91.0 90.5 90.1 90.0 89.2 89.6 90.2 95.5 88.1 89.2 91.1 88.0 88.0 89.4 88.8 86.3 85.3 83.1 105.8 110.3 113.4 112.6 111.4 110.0 107.5 107.9 106.7 108.3 86.2 103.9 110 SIDELINE PERCEIVED NOISE LEVELS 88.0 87.8 87.2 85.3 82.7 85.2 88.3 89.5 89.0 88.8 89.0 87.8 88.5 96.5 86.6 87.0 89.0 85.0 85.0 86.7 86.5 83.9 83.6 82.8 81.3 102.3 (SPL) 100 ANGLE, DEG 84.5 83.5 85.5 89.0 89.6 90.0 89.7 88.8 87.8 87.8 87.0 87.9 89.5 87.2 87.3 90.0 85.3 85.5 87.4 87.4 83.6 82.5 82.8 82.2 80.5 87.4 103,3 LEVEL 90 86.6 82.2 82.7 86.0 88.7 88.5 86.3 86.5 85.3 86.6 86.0 90.4 86.2 82.9 81.5 81.4 8C.2 78.6 1/3-DCTAVE BAND SOUND PRESSURE 86.4 86.5 87.5 86.4 89.2 99.5 84.1 85.6 86.5 102.9 80 84.5 80.7 80.5 84.5 87.1 88.0 86.5 87.2 87.3 86.6 87.0 86.0 87.4 91.5 103.8 87.9 87.0 94.7 86.6 90.1 89.8 88.6 86.2 83.2 81.1 78.9 105.9 84.0 70 85.8 82.5 81.7 84.0 86.0 87.5 87.6 93.5 106.3 85.5 86.0 86.8 86.3 86.0 85.7 89.2 88.7 98.2 89.6 94.1 93.0 91.6 90.3 89.0 87.5 85.4 82.4 108.3 9 91.9 91.9 101.1 85.6 80.7 80.8 82.5 85.8 87.0 85.5 86.5 87.0 87.0 89.6 96.2 90.1 87.5 84.3 93.1 96.6 96.0 94.3 93.3 91.0 110.9 87.1 20 94.6 94.4 103.2 87.8 81.3 79.8 82.5 85.3 86.2 86.4 88.0 87.7 88.2 91.6 98.7 111.8 87.5 95.6 99.3 98.7 96.8 95.8 93.6 91.2 87.5 (c) Percent speed, 113.6 6 90.8 98.4 111.5 83.3 81.2 79.3 84.0 86.3 87.7 95.0 98.1 97.2 87.0 87.3 87.5 88.1 88.3 88.7 95.2 94.7 102.2 95.2 93.9 93.0 91.5 89.2 86.5 113.1 30 86.3 82.5 82.7 85.8 86.3 87.3 88.6 89.2 88.7 98.2 110.5 95.2 6.101 88.5 95.1 98.6 96.5 94.2 90.6 88.4 85.9 88.4 112.4 20 96.0 92.9 85.8 86.5 86.7 87.0 87.5 87.3 88.1 87.0 87.5 0.301 95.7 95.7 93.3 96.5 94.5 92.4 86°5 87°9 83°9 116.2 2 61 PETERS FRECUENCY DISTANCE CVERALL 50.00 100 125 160 8CC 100C 125C 9900 9000 1000 1000 1250C 1600C 2000C 200 250 315 160C 200C 250C 500 500 630 3150 4000 5000

148.0 141.9 147.0 POWER LEVEL (PWL) 137.5 137.6 140.0 142.4 142.7 141.9 141.7 141.0 140.6 140.2 141.3 141.9 152.6 144.4 144.4 142.8 142.7 141.9 141.5 141.8 141.8 141.9 140.7 158.2 AVERAGE SPL 95.0 95.3 94.5 93.3 94.3 93.8 93.6 93.2 92.8 93.9 94.5 94.5 99.6 97.0 97.0 95.4 95.3 94.5 94.1 90.1 90.2 92.6 94.4 110.8 101.3 100.5 98.9 97.0 92.6 90.8 88.2 89.1 88.1 86.5 86.3 86.4 85.2 83.3 82.5 80.9 78.8 99.1 97.5 98.1 101.2 7.06 94.3 109.3 (d) Percent of speed, 90; fan physical speed, 3170 rpm; fundamental blade passage frequency, 1373 hertz. 160 95.2 96.7 99.3 101.5 101.8 99.2 98.5 98.8 97.5 96.5 95.2 93.9 94.0 90.8 89.2 88.9 88.6 87.6 86.4 85.8 84.3 82.1 105.2 86.7 95.9 91.1 110.1 94.1 150 109.0 99.8 98.9 97.7 97.5 95.6 95.6 93.7 91.2 91.1 90.7 89.4 88.7 88.8 87.8 85.4 92.8 94.0 97.0 96.1 6.96 93.9 93.8 109.6 140 30.5-METER RADIUS 112.8 91.3 92.7 95.3 98.0 97.8 96.7 96.2 97.8 97.2 96.9 96.4 95.8 96.4 95.1 98.3 96.2 93.5 93.3 92.2 90.0 88.8 86.4 96.2 91.1 109.9 99.1 130 113.1 95.3 93.5 93.3 95.6 89.8 89.2 87.0 108.6 89.1 88.9 92.6 95.5 96.4 94.1 95.7 95.4 95.5 94.8 95.0 95.2 95.3 94.4 91.1 120 112.7 89.2 89.3 91.5 95.6 93.2 95.3 94.5 94.4 95.2 93.9 95.6 88.1 86.0 94.5 94.2 94.5 98.6 93.7 92.1 92.3 92.7 90.6 89.7 108.0 110 NOTSE LEVELS S 106.1 1111.0 87.8 86.9 84.6 88.3 87.2 88.5 92.8 93.8 93.7 92.9 92.1 91.8 92.6 92.5 97.1 91.4 91.3 89.7 90.0 90.7 88.6 88.1 (SPL) 91.7 93.3 93.2 100 ANGLE, DEG 111.2 92.4 92.5 100.3 96.2 91.9 93.0 91.3 90.0 89.3 90.6 88.3 87.4 86.8 85.6 84.1 88.7 86.8 88.0 93.6 91.3 93.1 93.0 106.7 LEVEL 92.4 9 PERCETVED 111.3 91.8 91.0 89.4 106.5 91.6 89.6 88.1 86.4 86.2 84.5 82.6 87.7 86.2 86.3 85.8 90.6 91.7 90°.7 96.7 91.3 94.3 PRESSURE 90.3 92.1 92.7 101.1 80 112.7 86.6 84.5 82.0 90.9 91.5 103.1 94.3 94.1 92.4 86.8 85.3 84.5 90.4 89.8 90.1 90.5 89.6 98.5 92.6 97.3 92.2 90.4 88.5 107.7 SIDELINE 2 SCUND 114.4 110.3 87.3 84.8 84.3 88.5 89.8 91.3 92.7 106.4 101.7 94.6 100.6 97.3 97.7 94.2 92.8 90.7 89.1 86.8 83.7 89.7 89.5 90.2 89.4 90.1 9 BAND 114.9 104.4 95.8 102.5 94.9 112.7 99.3 99.7 97.2 88.8 85.3 86.5 84.7 83.8 89.3 89.3 89.6 90.0 90.6 94.2 109.3 50 1/3-OCTAVE 105.4 97.8 104.1 114.7 101.5 101.9 99.6 91.8 88.3 85.3 85.2 90.2 91.0 91.5 91.9 94.9 110.1 98.7 97.6 96.0 114.0 89.1 7.06 0 112.0 106.2 97.3 104.1 100.7 90.2 89.6 89.8 95.6 96.8 87.2 84.5 83.7 89.4 90.8 91.7 114.4 111.3 30 107.5 86.9 105.9 96.9 103.8 100.5 92.8 89.9 87.0 84.8 84.7 84.8 94.4 110.6 97.4 113.9 88.4 90.7 90.1 89.3 90.4 91.1 1.96 20 96.1 103.0 95.8 5.501 10C.2 95.2 92.9 1111.6 85.8 87.2 86.3 85.1 90.0 90.0 90.4 93.4 91.1 86.3 85.4 20 PETERS PETERS DISTANCE BVERALL FRECUENCY 10C 125 16C 200 250 315 800 1000 1250 1600 2000 2500 3150 4000 5000 8000 12500 160002 5000 81

TEST PURPOSE - INLET DUCT NOISE; EXHAUST AERODYNAMIC DATA

[Data adjusted to standard day of 15^{0} C and 70 percent relative humidity; SPL re 0.00002 N/m 2 ; PWL re 0.1 pW.]

(a) Percent speed, 60; fan physical speed, 2111 rpm; fundamental blade passage frequency, 914 hertz.

J JAKE	(PWL)		127.4 126.9 127.3	129.0 129.8 129.1	127.8 130.0 129.8	130.0 130.1 130.0	135.7 139.8 131.7	132.0 135.3 132.4	133.0 133.5 134.5	133.9 134.4 135.0	136.0 136.7 137.5	147.8		
AVERAGE	> > > > > > > > > > > > > > > > > > >		80.0 79.5 79.9	81.6 82.4 81.7	80.4 82.6 82.4	82.6 82.7 82.6	88.3 92.4 84.3	84.6 87.9 85.0	85.6 86.1 87.1	86.5 87.0 87.6	88.6 89.3 90.1	100.4		
	160		82.7 82.5 84.6	85.5 84.1 82.7	81.2 81.6 80.2	80.6 80.2 79.4	81.6 84.0 78.6	77.1	76.1 77.0 77.2	76.1 75.4 74.6	75.1	94.9		86.4
	150		83.3 83.6 84.7	86.1 85.9 83.4	82.5 83.2 82.5	82.4 81.8 81.3	82.7 85.3 80.9	79.1 80.9 78.1	78.5 79.0 80.0	78.5 78.1 77.1	77.8 77.5 75.2	96.3		92.3 85.5
	140	ns	81.2 81.6 82.3	84.3 84.7 82.2	82.2 84.7 83.5	83.7 83.8 83.0	84.5 86.4 83.1	81.7 84.1 80.9	81.1 81.5 82.7	81.0 80.0 79.9	80.8 81.5 79.6	97.1		96.9
	130	R RADI	80.5 80.6 82.0	83.5 83.9 82.4	81.8 85.0 83.5	84.2 83.6 83.1	84.9 86.8 82.4	81.6 83.6 81.3	81.3 81.7 82.9	81.2 79.9 80.2	81.7 81.1 78.9	97.0		98.6
	120	5-METE	79.9 79.1 79.8	82.2 82.3 81.6	80.1 82.9 82.6	82.6 82.9 81.9	83.5 85.9 81.8	81.3 82.7 80.2	80.3 81.2 81.8	79.5 79.1 79.8	80.3 80.8 79.1	95.9		99.0
	110	ON 30.	82.5 82.0 82.0	82.6 82.4 81.4	80.5 82.7 81.9	82.5 82.6 82.3	83.9 86.1 82.1	80.9 82.1 79.9	79.6 80.4 80.7	78.0 78.2 79.0	80.7 80.6 78.4	0.96	VELS	99.4
	100	(SPL)	78.7 77.3 77.1	79.6 80.4 80.4	77.8 81.0 81.0	81.0 81.6 81.1	83.4 85.4 80.9	79.7 80.4 77.9	77.5 78.0 77.5	75.5 75.7 77.2	77.3 77.5 76.8	94.2	ISE LE	97.8 91.6
E, DEG	96	LEVEL	78.8 77.8 77.8	80.1 81.9 81.7	79.3 81.9 81.7	81.2 82.0 82.1	84.7 87.3 81.9	80.1 80.8 78.6	77.8 78.4 77.5	75.2 75.2 76.5	76.8 77.5 76.4	95.0	VED NO	98.5
ANGL	BC	SSURE	75.3 75.8 74.8	77.6 75.7 80.4	78.7 80.7 81.0	79.7 80.6 81.0	84.7 87.9 81.1	75.2 80.4 77.8	77.5	74.9	75.5	54.2	PERCEI	97.6
	70	OUND PRE	75.3 75.6 74.7	77.5 80.0 80.5	78.3 79.5 80.4	79.4 80.1 80.5	85.6 89.4 81.7	80.7 82.9 79.3	79.1 79.7 79.3	77.4 77.0 76.8	76.7 75.1 73.9	95.1	ELINE	98.6 92.4
	99	ND S	76.7 75.3 76.2	79.8 80.2 80.2	78.5 81.4 82.0	81.4 81.5 81.5	88.4 92.9 83.9.	82.6 86.1 83.1	83.3 83.9 84.2	83.5 83.0 82.1	81.9 80.5 78.1	98.1	STD	101.1
	20	AVE BA	79.8 79.0	79.3 82.4 81.7	79.5 82.4 82.9	833.4 833.4 83.5	92.2 96.3 86.2	86.7 90.6 87.6	88.1 88.7 89.7	88.5 88.2 87.8	87.2 85.4 82.5	101.9		103.9
·]	40	/3-0CT	82.5 81.0 80.2	80.5 81.9 81.5	79.3 81.5 82.2	82.5 82.6 83.5	93.7 99.1 86.9	88.9 93.1 90.1	91.1 91.2 92.0	91.0 91.0 90.6	89.9 88.4 85.9	104.2		104.2
	30	1	75.3 74.1 74.0	78.5 82.2 81.9	81.8 83.7 84.2	84.7 84.6 85.1	92.9 97.4 88.9	90.7 94.4 91.3	91.6 91.9 92.5	91.9 91.7 91.3	90.4 88.7 87.3	104.3		102.3 95.3
	20		78.3 78.0	80.0 83.5 83.4	84.0 85.0 85.0	85.7 85.6 85.8	92.7 96.6 89.7	90.9 94.4 91.1	91.3 91.5 92.4	91.2 91.2 90.8	90.0 88.5 86.7	104.1		98.2
	10		88.47 6.00 6.00 6.00 6.00	84.5 85.7 86.9	86.4 86.4	87.0 86.6 86.3	92.6 96.3 85.4	96.2 92.6 85.9	9°96 9°96 9°96	0°06 0°06 88°9	85.2 87.4 86.1	103.7		85.2 8C.7
FRECUENCY			5 6 8 8 0	100 125 160	200 250 315	24 CC SCC SCC	80C 100C 125C	1600 2000 2500	3150 4000 5000	630C 800C 1C00C	1250C 16000 2000C	GVERALL	DISTANCE	61 PETERS 113 PETERS

(b) Percent speed, 80; fan physical speed, 2818 rpm; fundamental blade passage frequency, 1221 hertz.

FRECUENCY								ANGLE	E, DEG								AVERAGE	E SE
	10	20	30	40	20	09	70	80	90	100	110	120	130	140	150	160	7	(PWL)
			-	/3-0CT	AVE BA	AND SOUND	IND PRE	SSLRE	LEVEL	(SPL)	ON 30.	5-METE	R RADI	ns.		!		
8 6 N	82.5 80.0 80.5	81.0 79.1 79.8	87.4 79.0 79.0	86.9 80.3 80.5	87.9 80.6 80.6	83.9 79.8 81.0	82.2 80.0 80.5	86.7 80.6 81.6	84.2 80.8 82.1	83.5 83.5	85.2 84.6 86.5	84.4 85.2 88.4	86.5 88.1 90.8	88.2 90.0 92.1	89.9 91.1 93.8	91.7	86.2 85.1 87.4	133.6 132.5 134.8
125	80 80 80 61 4 81 4 0 80	84.4 83.4 85.1	83.9 85.9 86.3	84.4 85.9 86.8	84.9 86.2 87.0	85.9 87.0 86.8	84.9 87.0 87.1	86.0 87.2 87.3	86 88 5 88 5 8	87.9 89.2 88.6	90.0 91.0 90.1	91.1 91.8 90.4	92.9 92.7 91.1	94.7 94.5 92.6	96.2 95.9 93.0	96.4 94.9 92.5	90.2 90.5 89.3	137.6 137.9 136.7
200 250 315	87.1 86.0 86.3	86.1 86.5 85.8	86.6 87.0 87.5	86.1 87.9 87.7	85.6 87.2 87.2	85.1 87.0 86.5	85.3 87.5 86.8	84.6 86.9 87.0	86.1 88.5 87.8	86.1 88.9 88.2	88.3 90.9 90.3	89.4 92.0 90.6	91.3 92.7 91.7	92.3 93.4 92.0	92.8 92.9 91.2	91.0 91.4 89.5	88 89.9 89.0	135.7 137.3 136.4
400 500 630	9 8 8 6 4 4 6 6 4	87.8 86.9 87.0	90.3 88.1 88.8	88.5 88.1 89.2	87.6 87.3 88.2	86.6 86.3 87.7	86.5 86.6 87.8	86.8 86.8 88.0	87.8 87.3 88.3	88.6 88.1 88.5	90.8 90.1 90.2	91.4 90.0 89.9	91.8 91.4 91.0	91.8 90.6 90.5	91.3 90.1 90.0	89.2 87.8 87.7	89.5 88.7 89.1	136.9 136.1 136.5
80C 100C 1250	96.1 94.5 106.3	89.6 97.2 110.8	91.1 98.3 110.4	91.7 98.3 110.3	91.4 96.8 108.8	88.9 93.6 105.4	87.9 91.6 102.4	88.7 90.5 100.1	89.2 90.3 96.8	89.4 90.5 94.8	90.2 91.5 96.4	90.5 91.4 96.2	91.6 92.3 96.4	90.7 91.5 95.6	89.6 90.1 95.1	87.4 88.0 94.2	90.1 93.8 104.6	137.5 141.2 152.0
1600 2000 2500	91.8	93.0 92.8 101.4	94.8 95.0 102.9	94.3 94.8 103.5	92.0 92.5 101.5	89.8 89.3 96.9	88.2 87.8 94.4	88.0 87.1 90.4	88.3 88.5 90.0	88.4 88.6 90.2	89.4 90.0 91.5	89.5 90.1 93.0	90.2 91.0 94.2	88.5 89.8 91.4	87.2 87.5 89.0	85.2 85.4 87.1	90.5 90.9 97.5	137.9 138.3 144.9
3150 4000 5000	92.0	94.1 97.2 95.6	95.5 99.0 97.7	95.6 99.2 99.2	93.3 96.9 96.4	89.5 92.9 92.9	87.0 89.0 89.3	85.5 86.2 87.3	85.8 85.7 87.6	87.0 86.4 87.9	88.8 88.7 89.8	89.3 89.0 89.7	89.6 89.4 90.3	88.8 88.2 89.1	86.6 86.2 86.8	83.7 83.8 84.7	91.0 93.7 93.8	138.4 141.1 141.2
630C 80CC 1C0CC	91.5 90.1 86.8	93.6 92.4 90.6	95.8 94.6 92.6	96.8 95.4 93.8	94.3 92.9 91.6	91.3 89.3 87.9	88.1 85.7 83.6	86.3 83.9 82.4	86.6 83.7 83.0	86.6 84.4 83.6	88.8 86.6 85.5	88.1 87.0 85.7	89.0 87.3 86.3	88.4 87.3 85.8	85.7 84.1 82.8	83.7 81.6 79.7	92.4 91.5 91.0	139.8 138.9 138.4
1250C 160CC 2C00C	87.7 85.2 83.0	89.0 87.2 84.7	91.2 88.9 86.5	92.3 90.4 87.8	90.0 87.5 84.6	86.2 84.5 82.5	82.2 80.8 79.2	81.4 81.0 75.4	82.5 82.5 81.6	83.5 83.3 81.9	85.2 84.5 82.5	85.0 84.5 82.8	85.9 84.5 82.9	85.3 86.9 83.6	81.4 80.5 78.5	79.0 78.0 76.2	91.2 91.8 92.3	138.6 139.2 139.7
CVERALL	106.8	112.2	112.5	112.6	110.9	107.6	105.0	103.4	102.5	102.4	104.1	104.4	105.3	105.3	105.2	104.3	108.1	155.5
DISTANC	,	,		, ا		0 0	EL IN	ERC	VED N	SE LE	VELS		8	١	;	۱ ,		
61 PETERS	94.7	105.3	110.0	112.8	112.8	110.9	109.2	10801	107.3	107.4	108.6	108.5	108.3	105.3	101.3	45.7		

TABLE XIV. - Concluded.

speed,

136.8 136.9 139.3 140.0 141.2 140.7 140.5 141.5 142.0 151.7 147.2 142.2 147.1 144.2 144.4 142.9 142.1 141.4 141.0 141.1 141.5 142.6 141.6 142.1 141.3 140.6 157.7 POWER LEVEL (PWL) AVERAGE SPL 96.8 97.0 95.5 94.7 94.0 93.6 89.4 89.5 91.9 93.1 92.9 93.2 99.8 94.8 99.7 110.3 94.2 94.7 93.9 92.6 93.8 93.3 94.6 94.1 95.2 97.0 97.7 100.3 99.9 88.7 87.7 87.6 86.8 85.8 84.3 83.8 83.5 83.1 99.6 6.96 96.6 93.9 92.5 91.6 91.7 92.0 89.6 89.9 109.1 3167 rpm; fundamental blade passage frequency, 1372 hertz 160 94.6 96.0 99.0 100.8 101.0 98.9 98.0 98.3 96.7 91.9 90.4 90.1 88.9 84.9 83.8 82.0 97.6 105.9 111.6 114.1 115.6 114.7 112.4 111.3 111.9 111.1 112.2 112.9 112.1 109.0 105.6 72.6 85.0 92.3 95.1 96.8 96.5 94.5 94.0 94.4 93.6 94.5 95.1 94.0 90.4 86.6 96.3 94.5 94.6 94.4 94.5 96.3 93.6 92.5 92.7 86.3 109.8 95.2 95.3 96.6 92.1 93.5 97.3 99.2 98.7 97.7 96.9 98.0 97.5 96.7 95.6 94.7 94.1 94.0 94.3 93.6 91.9 92.1 90.9 89.9 89.0 89.1 88.3 87.3 109.5 140 ON 30.5-METER RADIUS 95.9 93.1 93.1 90.5 91.3 94.1 97.2 97.2 95.7 95.8 95.8 95.2 95.9 95.2 97.7 109.3 95.9 96.3 98.6 91.6 90.2 89.5 89.1 87.5 85.5 95.7 96.7 96.2 130 88.2 87.8 86.9 108.2 87.9 88.8 91.1 94.6 95.6 95.0 93.5 95.8 94.8 94.4 94.8 95.4 97.2 95.2 94.5 98.0 95.0 92.9 93.1 91.4 90.4 89.2 95.1 120 90.3 90.3 91.0 93.8 93.6 4.4 110.1 107.4 106.3 106.8 106.1 107.3 91.9 90.0 89.0 88.8 87.6 86.0 93.5 94.5 94.1 94.2 94.0 94.6 96.8 94.2 94.0 95.2 93.4 92.4 92.6 95.4 110 SIDELINE PERCEIVED NOISE LEVELS 86.9 86.5 85.5 (SPL) 86.3 85.5 87.6 91.5 93.4 92.6 90.7 92.8 92.7 92.3 92.0 92.2 93.2 93.5 97.8 94.4 92.8 93.3 92.1 90.7 90.3 89.4 88.2 87.5 100 ANGLE, DEG 87.0 85.8 87.0 91.0 92.5 92.7 91.9 91.1 90.6 87.8 90.8 93.4 93.6 92.3 93.0 92.9 90.2 88.7 88.2 87.7887.6 LEVEL 94.0 94.4 99.3 95.5 93.3 94.2 90 90.5 90.6 91.7 86.1 85.0 84.0 1/3-OCTAVE BAND SOUND PRESSURE 86.3 84.5 84.3 85.3 90.9 91.1 92.7 92.5 100.8 96.4 92.2 94.5 92.1 90.9 90.3 89.4 88.7 87.2 96.5 90.5 90.7 ၁ 92.5 92.5 102.3 87.5 89.7 90.6 90.7 89.5 90.0 91.2 97.9 92.8 96.8 63.6 94.9 91.6 90.0 88.0 86.4 84.5 82.6 88.2 2 90; fan physical 89.5 90.1 91.7 92.7 93.2 105.6 85.8 83.8 82.6 88.0 89.0 90.0 101.0 94.8 101.4 98.4 95.6 94.2 92.9 91.1 89.1 88.2 89.7 91.2 85.1 9 96.5 100.1 100.2 98.2 91.7 89.0 86.0 85.8 88.0 90.1 88.0 89.5 90.8 92.9 94.2 108.3 104.0 96.5 95.2 93.6 112.4 103.4 87.7 20 95.0 95.9 109.3 104.5 97.5 103.7 100.4 101.6 98.7 88.0 82.8 81.8 90.5 92.3 93.4 92.9 90.5 87.9 85.8 88.5 89.9 88.7 91.0 90.7 97.6 95.8 94.5 113.2 (c) Percent speed, 6 87.3 83.7 81.5 86.0 88.5 89.9 105.4 103.9 100.2 9.86 89.4 89.3 89.5 90.5 91.3 92.6 94.9 95.7 97.4 92.7 90.4 88.0 113.8 110.5 94.6 30 84.0 83.2 83.5 86.3 87.0 89.2 108.5 103.9 95.5 99.1 99.4 89.2 88.3 88.2 88.7 89.3 92.1 92.7 94.7 95.6 94.5 92.6 90.7 88.5 86.1 112.1 102.4 20 85°5 86°5 86°5 102.7 85.9 86.7 84.3 86.8 86.2 89.7 85.5 90.0 90.7 92.2 94.0 107.1 95.2 95.4 96.4 94.7 93.4 91.8 111.3 2 61 PETERS 3C5 PETERS DISTANCE FRECLENCY CVERALL 20C 250 315 8CC 10CC 1250 1600 2000 2500 50 63 80 100 125 160 400 500 630 3150 4000 5000 6300 8000 10000 1250C 160CC 2C0CC

TEST PURPOSE - FAR-FIELD NOISE

[Data adjusted to standard day of 15^{0} C and 70 percent relative humidity; SPL re 0.00002 N/m 2 ; PWL re 0.1 pW.]

(a) Percent speed, 60; fan physical speed, 2098 rpm; fundamental blade passage frequency, 909 hertz.

EDECTERCY								a IONA	250							AVEDACE	3
יאניינייניי									•							S TO S	¥ 14 7 4 1
	0.2	30	40	50	09	70	80	0.5	100	110	120	130	140	150	160	,	(PWL)
			1	/3-0CT	AVE BAI	ND SCUND	ID PRES	SURE L	.EVEL (SPL) C	ON 30.5	5-METER	RADIUS	Sí			
3 <u>6</u>	.	•	ı,	δ.	5.	4.	*	<u>.</u> ;	m·	6	2.	÷.	6.1	6	œ 1	'n.	32.
င် ၁	76.1	78.1	74.8	74.3	80.1	83.2	81.9	75.3	80.8	87.9	81.5	84.3	88.4	87.6	87.5	83.6	130.9
0	•		ູ້		6	2	٠,		•	Ġ	2	•					30.
125	76.5	79.1	78.3	77.8	80.8	82.6	82.1	86.1	80.3	84.6	85.8	84.4	86.4	86.3	85.6	85.8	130.1
S	ů	•	ထီ	•	6	:	ċ	•	6	2	_	5		•	'n	:	28•
200	•	8	-		6	•	6	•	7	2	6	ŗ	E)	2	-:	ċ	27.
250	86.6	78.7	78.2	7.77	79.9	80.1	79.7	75.6	79.6	83.2	82.3	83.6	84.2	83.1	81.8	81.3	128.6
316	•	ž.	ž.	•	;	•	•	•	•	-	:		÷	2	•	•	• , ,
400	5	•		•			•	ė.	6	2.	:	9	e.	•	6	·	27.
200	76.8	2.17	77.0	76.6	77.5	77.0	77.5	78.1	79.0	81.3	80.7	82.6	83.0	80.5	7.77	9.62	126.9
JE9	بد	•	÷	•	ģ		•	-	.		•	· .	-		Š	*	26.
800		•	7	•	7.		•	å	6	ċ		2.	3	•	•	6	27.
1000	84.2	82.7	79.6	77.9	78.9	77.7	78.1	75.1	79.9	82.2	82.2	83.6	84.4	81.6	77.8	81.2	128.5
3621	•	•	•	•	•	•	•	٠	•		*	•	-	•	•	•	
9	•	•	9		*	•	•	10	•	•	•	•	0	•	2.		24.
2000	9.5.5	75.7	73.2	72.2	71.5	71.8	71.7	73.3	74.2	77.3	80.1 77.5	82.0 80.2	79.7	75.2	73.7	76.1	123.4
4			u		,	r	,	,		٠							ć
4000	82.4	82.9	80.7	78.9	78.2	78.4	78.2	78.9	10.62	80.7	80.9	81.9	80.3	78.7	76.0	80.9	128.2
8	•	•	-	æ	7	•	5	•		6		2.	.	•	Š	•	28.
36	•	•	2	8	•	2		•		•	80	ं	2.			•	28.
10000	87.8 96.5	87.1 90.0	84.0	79.8	78.0	74.1	72.6	73.6	74.3	77.6	78.6	79.4	80.6	76.6	72.9	82.4	129.7
							,			٠,		٠,	٠.				;
12500	ů,		. u	m -		•	•	•	•	ے ہے	ċ	ċ	: .		'n.	٠,	34.
20002	84.8	84.3	82.5	78.5	77.3	73.2	74.4	75.2	76.2	80.5	78.5	77.3	78.0	73.5	70.07	88.1	135.4
CVERALL	97.8	97.3	95.1	92.5	93.2	93.2	93.1	92.3	93.2	97.3	95.1	9.96	98.3	97.1	0.96	97.1	144.4
DISTANCE						SIDE	EL INE P	ERCEI	VED NOT	SE LEV	/ELS						
61 PETERS 113 PETERS	85.0 86.4	92.7	93.5	93.7	95.0	95.7	96.0	96.5	96.9	99.1 92.6	97.9 91.2	98.2 91.4	96.9 90.1	91.5	84.5		

TABLE XV. - Continued.

POWER LEVEL (PWL) 132.4 132.8 131.7 130.8 130.3 129.7 128.2 129.6 128.1 128.7 129.6 133.6 131.3 132.1 134.5 131.8 131.3 131.8 130.5 131.4 131.0 130.2 137.9 147.0 AVERAGE SPL 84.5 84.0 84.5 85.1 85.5 84.4 83.5 82.9 82.4 82.9 86.0 82.6 80.9 82.3 80.8 81.3 82.2 86.3 84.0 84.8 87.2 90.6 83.2 84.1 83.7 9.66 (b) Percent speed, 70; fan physical speed, 2455 rpm; fundamental blade passage frequency, 1063 hertz. 88.4 88.1 89.2 90.0 88.4 86.3 83.0 81.2 79.7 79.9 82.5 78.9 87.2 85.2 85.1 83.1 76.8 77.4 75.6 76.1 80.0 76.4 74.6 75.4 74.1 72.1 98.1 85.6 86.9 88.1 90.3 88.8 86.9 85.1 83.9 83.1 86.2 87.1 85.7 82.9 4.61 81.7 4.61 8.62 80.2 79.9 78.1 77.4 74.8 8.86 94.1 150 RADIUS 87.6 87.9 89.3 86.4 85.9 85.8 83.6 89.8 88.8 87.2 86.3 85.7 88.4 85.7 83.2 85.8 84.2 84.0 8.66 100.5 140 30.5-METER 86.4 86.9 88.3 88.6 89.2 87.9 87.0 87.9 87.3 87.1 86.9 86.3 87.7 86.3 84.8 85.3 87.0 84.9 83.5 83.1 82.5 80.6 86.5 100.8 102.4 130 86.7 85.5 85.2 86.3 83.7 85.7 85.3 85.7 85.0 84.8 84.9 83.1 83.8 83.4 86.0 84.4 84.5 99.1 86.5 102.3 120 PERCEIVED NOISE LEVELS Š 102.6 87.4 86.3 86.3 86.8 85.5 84.5 85.1 85.0 84.9 84.3 84.1 83.8 87.7 83.2 81.9 82.0 81.5 83.0 82.9 80.8 98.8 86.3 (SPL) 86.1 81.7 DEG 78.5 78.2 78.6 86.2 85.3 85.1 85.1 85.8 84.5 82.3 83.9 83.8 83.7 82.9 82.5 82.3 84.6 81.9 80.8 80.8 79.0 79.0 79.3 83.5 80.5 100.8 80.5 79.0 97.1 LEVEL 100 ANGLE, 100.3 83.6 81.9 81.8 82.3 84.2 83.7 81.3 82.6 82.5 82.2 81.9 81.5 81.3 83.1 80.7 80.7 78.2 76.3 79.0 83.7 78.2 79.8 95.7 SOUND PRESSURE 78.3 05 66.3 82.7 81.6 80.3 81.4 83.3 82.7 81.1 80.4 80.6 79.3 82.4 78.9 78.8 76.5 77.4 79.3 78.2 77.4 80.5 76.7 94.7 SIDELINE 80.2 80 98.6 79.6 78.1 76.6 77.9 80.7 81.0 78.5 79.9 80.0 79.6 79.6 78.6 83.9 7.77 77.8 77.6 76.7 80.8 78.1 76.5 93.8 19.3 76.2 77.7 84.2 78.3 2 BAND 77.9 76.4 76.1 97.8 76.9 79.8 81.4 79.6 79.9 80.6 79.6 79.2 78.2 78.3 83.9 19.5 79.3 85.5 94.5 0.67 77.2 76.3 6.61 79.0 84.1 9 1/3-OCTAVE 75.9 75.3 75.5 75.6 79.8 80.4 79.3 79.6 80.2 79.7 79.3 78.3 76.9 8.5 81.6 7.96 19.3 83.2 84.2 95.1 20 9.96 76.1 79.5 80.0 79.2 79.9 80.2 78.8 81.5 86.0 91.6 79.6 79.3 78.6 78.8 97.9 40 6.46 75.9 75.3 75.3 75.8 81.0 80.5 79.8 80.4 80.5 80.4 79.8 79.3 78.2 80.2 78.3 86.9 88.2 90.6 79.5 82.2 83.5 87.7 92.3 88.9 86.3 99.1 86.7 30 75.9 81.C 82.7 81.8 81.7 86.9 86.3 75.7 82.3 85.4 100.2 91.4 81.2 8C.1 8C.3 81.3 0,7 PETERS FRECUENCY OVERALL DISTANCE 630C 800C 100CC 800 1000 1250 3150 4000 5000 12500 16000 20000 50 63 80 100 125 160 400 500 630 1600 2000 2500 91

(c) Percent speed, 80; fan physical speed, 2806 rpm; fundamental blade passage frequency, 1215 hertz.

			•														
FRECUENCY								ANGLE	E, DEG							AVERAGE	E S
	0.2	30	40	20	09	70	80	26	100	110	120	130	140	150	160	7	(P %E)
			1	/3-0CT	AVE BAN	ND SOUN	D PRE	SSURE	LEVEL	(SPL)	ON 30.	S-METE	R RADI	ns			
26	17	1.	2.	2	3	e.	ŝ	4	5	6		6		3.	2.		35.
	81.7	80.0	80.6	78.8	81.0	80°C	82.7	81.5	83.5	88.8	87.6	0.06	91.5	92.3	93.2	86.9	134.2
	<u>.</u>	œ	æ	٠,	6	æ	5	<u>.</u>	•	œ	æ	5	3	•	•	&	35.
100			6	6		÷	4	N,	•	8	•			7.96		6	•
125	83.2	81.9	82.2	83.2	83.9	84.7	86.2	86.6	6	1.06	91.0	2	3		3	89.6	36
•	C)	•	6	4	5	Š	• 9	7.	•	9.	6	ċ	2	3.	92.2	8	•
	61	6	m	6	4	3	4	4	5	,		-	2.	ς.	d	,	35.
250	84.5	83.0	83.2	83.0	84.0	83.5	85.5	86.6	87.5	89.6	90.4	92.3	92.6	92.6	90.2	88.6	
_	61	2.	m	ë.	4	4	5	ę.		8	6	:	2.	1:	&	7	3
ပ		2	m	ě	4	9	4	S.		œ	ė,		-	•	,		34.
200	87.5	82.5	82.7	83.0	84.2	83.7	84.7	86.0	86.5	88.3	88.6	0	90.5	0	85.7	87.0	4
9		2.	2	2.	2	2.	3.	K)	•			•	6	•	4	•	33.
0		2	2	6	4	e e	4	ري	•		6	-	6	,	4	•	34.
8	4	4	6	3	4	9	4	•	9		6	_	6	,	4		34.
1250	92.0	95.5	90.3	86.3	87.0	87.3	85.5	87.8	88.0	0	4.06	93.4	91.3	88.1	85.7	90.1	137.4
9	,	:	-	ä	5	2	3	R.	5			6	7.	•	-	5	32.
2002	"	_	;	81.6	82.1		83.8			87.9	88.8	90.1	88.1	85.2	82.1		33
2500	86.4	•		ë.	2.	82.5	3.	4	Š	œ	ċ	ë.	6	5		7	•
15	4	9	_;	•	·	•	1.		'n	•	8	æ	7	4	•	5.	32.
4000	87.3	85.8	84.1	82.1	81.6	80.3	81.3	85.6	83.3	86.7	87.7	89.2	87.2	83.9	80.4	85.8	133.1
8	ů.	9.	8	•	•	5	5.	ę.	•	6	6	9.	7	5.	2	œ	36.
30	ů		æ	•	5.	4	4	E)	4			8		4	-	80	35.
æ	86.3	87.8	87.1	84.3	84.1	81.6	81.8	85.9	83.3	86.4	86.9	87.1	85.8	85.8	79.4	87.4	134.7
8	÷		•	4	e e	6	•	5	5	ທໍ	•	ģ	4	;		٠.	35.
2,50	•	•	1.		~	2	2.	2.	2	•	Š	•	4	•	7	-	38.
16000	90.8	90.0	89.5	87.5	86.3	82.0	81.5	82.4	82.5	84.9	85.7	86.1	84.2	79.2	76.9	92.2	139.5
		•	,	•	•	•		:	•	• 1	• •	•	• • •		•	•	
CVERALL	100.8	101.1	1.56	98.2	98.4	97.5	98.4	86.3	100.2	102.5	103.0	104.8	104.6	104.6	103.3	102.7	150.0
DISTANCE						SIDE	EL INE	PERCE 1	VED NO	ISE LE	VELS				·		
81 PETERS	92.1	97.8	4.66	100.0	101.6	101.8	102.9	104.0	104.5	106.6	106.8	107.5	104.1	99.3	92.3		

TABLE XV. - Concluded.

speed, 3157 rpm; fundamental blade passage frequency, 1368 hertz

fan physical

90.

(d) Percent speed,

POWER LEVEL (PWL) 136.6 136.6 138.4 140.9 140.9 139.9 139.1 139.8 139.5 139.1 138.5 138.1 137.5 137.5 139.2 137.6 136.7 137.9 138.8 137.8 138.1 139.8 142.5 141.1 138.4 138.7 139.7 153.4 AVERAGE SPL 89.3 89.3 91.1 93.5 93.6 92.6 91.8 92.5 92.2 90.2 90.2 91.9 90.3 89.4 90.6 91.5 90.5 90.8 92.5 95.2 93.8 91.8 91.2 90.8 106.1 95.9 96.2 99.0 100.1 98.3 96.1 95.2 94.8 93.0 91.8 86.3 86.3 85.7 85.6 84.2 84.2 84.7 83.2 81.5 80.5 79.4 77.2 7.77 88.7 88.7 88.7 107.3 160 95.5 96.0 98.5 97.6 89.3 87.6 87.9 83.7 82.6 80.6 90.66 95.4 93.9 92.9 92.3 92.6 91.8 89.8 89.9 89.3 86.1 84.8 111.0 107.8 103.6 92.8 89.1 85.2 101.0 108.8 RADIUS 92.9 93.8 95.6 98.2 97.9 96.4 87.1 86.3 86.7 97.1 96.0 95.9 94.9 94.3 94.1 92.5 89.9 90.6 89.7 88.2 87.7 108.4 140 30.5-METER 90.0 91.6 93.6 95.6 94.7 95.3 93.8 93.4 96.4 90°8 89°6 89°5 96.5 96.1 108.3 88.5 89.1 91.4 94.6 94.7 93.5 93.9 93.1 93.2 94.2 92.7 93.0 96.6 888.8 88.2 86.2 107.6 108.6 110.8 111.7 90.0 91.0 93.0 93.8 93.9 90.1 107.2 120 LEVELS 8 90.5 90.5 90.8 92.7 93.8 93.1 93.2 92.4 92.5 92.8 91.3 92.2 93.6 91.7 90.9 92.1 91.8 89.9 89.9 89.4 88.8 86.9 (SPL) 106.1 110 NOISE 87.2 85.0 86.6 91.1 91.2 90.9 91.3 91.1 91.1 90.0 90.5 89.9 88.8 87.9 89.1 89.3 87.6 87.0 90.5 89.8 104.2 LEVEL 100 **PERCEIVED** ANGLE, 88.9 90.8 91.6 85.7 85.8 85.9 89.4 85.8 89.8 85.9 85.0 85.2 88.8 86.6 85.7 86.9 85.8 102.9 PRESSURE 26 87.0 84.6 84.3 89.8 88.2 88.8 88.7 88.4 88.6 88.8 89.4 88.3 88.0 87.4 86.2 85.4 86.9 88.2 86.2 85.0 85.0 84.8 82.7 102.7 104.5 104.5 106.3 84.0 86.0 86.9 88.6 101.9 SIDEL INE 80 SCUND 83.8 85.1 80.6 86.7 84.5 82.5 85.9 88.3 89.7 87.8 88.0 89.4 86.9 86.7 85.9 84.6 85.8 88.5 86.0 83.8 101.1 2 BAND 85.0 87.9 89.6 86.0 83.1 81.5 87.1 87.8 87.7 87.1 87.8 88.1 88.9 87.3 86.2 86.3 85.0 85.4 87.1 89.7 87.5 86.2 87.0 88.6 82.7 101.5 9 1/3-OCTAVE 82.5 86.9 88.2 86.9 87.1 87.2 86.1 87.3 87.5 90.1 86.9 85.2 86.4 84.7 85.6 86.8 89.2 87.2 85.9 87.7 90.3 83.7 101.1 20 101.5 83.7 81.3 79.8 82.5 85.9 87.2 86.8 86.0 86.4 86.1 86.5 90.3 86.6 85.2 86.8 90.2 93.3 86.0 86.1 86.7 85.7 87.1 88.6 91.0 89.4 88.2 101.9 40 84.0 82.0 80.0 87.3 86.7 85.7 85.9 86.2 85.9 99.2 86.1 86.5 91.9 87.4 84.7 87.7 86.4 88.1 89.6 90.7 89.7 89.2 91.2 93.1 86.1 102.2 30 86.5 81.8 81.8 85.6 85.7 85.1 87.7 85.3 85.9 96.68 86.5 86.6 92.1 95.6 102.5 0,2 61 PETERS 305 PETERS DISTANCE FRECLENCY UVERALL 1250C 1600C 200C 100 125 160 20C 25C 315 800 1000 1250 3150 4000 5000 800C 800C 400 500 630 160C 20CC 250C

Figure 1. - Cutaway view of fan assembly.

Figure 2. - Arrangement of flow passages and sound-absorbing surfaces.

Figure 3. - Fan performance map for acoustical tests.

Figure 4. - Fill-scale-fan acoustic test facility.

Figure 5. - Plan view of full-scale-fan acoustic test facility.

Figure 6. - Standard-day 1/3-octave band spectra on 30.5-meter radius at each angle. Configuration 106: hard inlet, soft fan frame, hard exhaust, and nominal nozzle.

Figure 6. - Continued.

Figure 6. - Concluded.

Figure 7. - Standard-day 1/3-octave band spectra on 30.5-meter radius at each angle. Configuration 109: hard inlet, soft fan frame, exhaust suppressor, nominal nozzle.

Figure 7. - Continued.

Figure 7. - Concluded.

Figure 8. - Standard-day 1/3-octave band spectra on 30.5-meter radius at each angle. Configuration 110: Inlet suppressor, soft fan frame, exhaust suppressor, nominal nozzle.

Figure 8. - Continued.

gure 8. - Concluded.

Figure 9. - Continuous 20-hertz constant bandwidth spectra at peak noise angles of 50° and 140° for configuration 106 (hard inlet, soft fan frame, hard exhaust, nominal nozzle).

Figure 10. - Continuous 20-hertz constant bandwidth spectra at peak noise angles of 50^{0} and 140^{0} for configuration 110 (inlet suppressor, soft fan frame, exhaust suppressor, nominal nozzle).

018B 01 C2 UL 28 720218 S00903DS 720401
DEPT OF THE AIR FORCE
AF WEAPONS LAB (AFSC)
TECH LIBRARY/WLOL/
ATTN: E LOU BOWMAN, CHIEF
KIRTLAND AFB NM 87117

POSTMASTER: If Undeliverable (Section 15

"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546