Instruction set of the Mic1 Macro Language

Binary	Mnemonic	Instruction	Meaning
0000xxxxxxxxxxxx	LODD	Load direct	ac:= m [x]
0001xxxxxxxxxxxx	STOD	Store direct	m [x]:=ac
0010xxxxxxxxxxx	ADDD	Add direct	ac:= ac+ m [x]
0011xxxxxxxxxxxx	SUBD	Subtract direct	ac:= ac- m [x]
0100xxxxxxxxxxx	JPOS	Jump positive	if $ac \ge 0$ then $pc := x$
0101xxxxxxxxxxxx	JZER	Jump zero	if $ac = 0$ then $pc := x$
0110xxxxxxxxxxxx	JUMP	Jump	pc := x
0111xxxxxxxxxxxx	LOCO	Load constant	$ac := x (0 \le x \le 4095)$
1000xxxxxxxxxxx	LODL	Load local	ac := m[sp + x]
1001xxxxxxxxxxxx	STOL	Store local	m[x+sp]:=ac
1010xxxxxxxxxxxx	ADDL	Add local	ac := ac+m[sp+x]
1011xxxxxxxxxxxx	SUBL	Subtract local	ac := ac - m[sp+x]
1100xxxxxxxxxxxx	JNEG	Jump negative	if ac < 0 then pc :=x
1101xxxxxxxxxxxx	JNZE	Jump nonzero	if ac ≠0 then pc :=x
1110xxxxxxxxxxxx	CALL	Call procedure	sp:= sp-1; m[sp]:=pc; pc:=x
11110000000000000	PSHI	Push indirect	sp:= sp-1; m[sp]:= m[ac]
1111001000000000	POPI	Pop indirect	m[ac] := m[sp]; sp := sp + 1
1111010000000000	PUSH	Push onto stack	sp:=sp - 1; m[sp]:=ac
1111011000000000	POP	Pop from stack	ac :=m[sp]; sp := sp +1
1111100000000000	RETN	Return	pc := m[sp]; sp := sp + 1
1111101000000000	SWAP	Swap ac, sp	tmp:=ac;ac:=sp;sp:=tmp
11111100уууууууу	INSP	Increment sp	$sp := sp + y \ (0 \le y \le 255)$
11111110ууууууу	DESP	Decrement sp	$sp := sp - y \ (0 \le y \le 255)$

xxxxxxxxxxx is a 12-bit machine address; in column 4 it is called x. yyyyyyy is an 8-bit constant; in column 4 it is called y.

Powers of 2:

2 to the 10th: 1024 2 to the 11th: 2048 2 to the 12th: 4096 2 to the 13th: 8192 2 to the 14th: 16384 2 to the 15th: 32768 2 to the 16th: 65536

Floating Point Formats:

IEEE 754 Single Precision: 1 Sign bit, 8 bits Base 2 Exponent, 23 bits Mantissa IEEE 754 Double Precision: 1 Sign bit, 11 bits Base 2 Exponent, 52 bits Mantissa IBM Single Precision: 1 Sign bit, 7 bits Base 16 Exponent, 24 bits Mantissa

