Chapter 4

Solutions to Even-Numbered Exercises

MohamadAli Khajeian*

Faculty of Engineering Sciences, University of Tehran, Iran

November 13, 2024

Abstract

This document presents the solution of "Quantum Computing Explained by David McMAHON" exercises.

Exercise 4.2

The basis states for $H \equiv \mathbb{C}^4$ can be constructed by using $|+\rangle, |-\rangle$ as the basis for H_1 and H_2 .

$$|w_1\rangle = |+\rangle|+\rangle$$

$$|w_2\rangle = |+\rangle|-\rangle$$

$$|w_3\rangle = |-\rangle|+\rangle$$

$$|w_4\rangle = |-\rangle|-\rangle$$

we have

$$\langle w_3 | w_4 \rangle = (\langle -|\langle +|)(|-\rangle| - \rangle) = \langle -|-\rangle \langle +|-\rangle = (1)(0) = 0$$
$$\langle w_4 | w_3 \rangle = (\langle -|\langle -|)(|-\rangle| + \rangle) = \langle -|-\rangle \langle -|+\rangle = (1)(0) = 0$$

Exercise 4.4

To calculate the tensor product of

$$|\psi\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$
 and $|\phi\rangle = \frac{1}{2} \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix}$

we have

$$|\psi\rangle\otimes|\phi\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \otimes \frac{1}{2} \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \otimes \begin{pmatrix} 1\\\sqrt{3} \end{pmatrix}$$

then

$$|\psi\rangle\otimes|\phi\rangle = rac{1}{2\sqrt{2}} \begin{pmatrix} 1\\\sqrt{3}\\1\\\sqrt{3} \end{pmatrix}.$$

^{*}khajeian@ut.ac.ir

Exercise 4.6

No we can't.

Exercise 4.8

To show that $(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$, assume

$$|x\rangle = |x_1\rangle \otimes |x_2\rangle \tag{1}$$

$$|y\rangle = |y_1\rangle \otimes |y_2\rangle \tag{2}$$

when you apply the operator $A \otimes B$ to a product state, say $|i\rangle \otimes |j\rangle$, it acts as follows

$$(A \otimes B)(|i\rangle \otimes |j\rangle) = A|i\rangle \otimes B|j\rangle.$$

now using 1 and 2,

$$\langle y|(A\otimes B)|x\rangle = \langle y_1|A|x_1\rangle \cdot \langle y_2|B|x_2\rangle. \tag{3}$$

we know

$$\langle x|(A\otimes B)^{\dagger}|y\rangle = \langle y|(A\otimes B)|x\rangle^*.$$

using 3,

$$\langle x|(A\otimes B)^{\dagger}|y\rangle = \langle y|(A\otimes B)|x\rangle^{*}$$

$$= \langle y_{1}|A|x_{1}\rangle^{*} \cdot \langle y_{2}|B|x_{2}\rangle^{*}$$

$$= \langle x_{1}|A^{\dagger}|y_{1}\rangle \cdot \langle x_{2}|B^{\dagger}|y_{2}\rangle.$$

we have

$$\langle x|(A^{\dagger}\otimes B^{\dagger})|y\rangle = \langle x_1|A^{\dagger}|y_1\rangle \cdot \langle x_2|B^{\dagger}|y_2\rangle = \langle x|(A\otimes B)^{\dagger}|y\rangle.$$

since both expressions yield the same result, we conclude that

$$(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}.$$

Exercise 4.10

Let's write down the Pauli matrices

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

now we have

$$X \otimes Y = \begin{pmatrix} (0)Y & (1)Y \\ (1)Y & (0)Y \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}.$$