M2A 2023-2024

Exercises 3: Stochastic gradient descent

Exercise 1.

The goal of this exercise is to show the following theorem.

Theorem 1. Assume that F is μ -strongly convex, and that the stochastic (sub-)gradients g_t used are almost surely bounded, i.e., $||g_t(\theta)|| \le b$ for any $\theta \in B$ with B a Euclidean ball of radius r. Furthermore, assume that any $\theta^* \in \operatorname{argmin}_{x \in \mathbb{R}^d} f(x)$ belongs to B. If $(\theta_t)_t$ are the projected SGD iterates with steps $\gamma_t = \frac{2}{\mu(t+1)}$, i.e., for all $t \ge 0$,

$$\theta_{t+1} = \operatorname{proj}_B (\theta_t - \gamma_{t+1} g_{t+1}(\theta_t))$$

we have

$$\mathbb{E}F\left(\frac{2}{t(t+1)}\sum_{s=1}^{t}s\theta_{s-1}\right) - F(\theta^{\star}) \le \frac{2b^2}{\mu(t+1)}.$$

This theorem establishes a convergence rate of projected SGD for a particular averaging. We denote by \mathfrak{F}_t the minimal σ -field that makes the first t stochastic gradients measurable. In particular for online optimization with data coming in a streaming fashion, $F(\theta) = \mathbb{E}\left[\ell(Y, f_{\theta}(X))\right]$ and $\mathfrak{F}_t = \sigma((X_1, Y_1), \dots, (X_t, Y_t))$, with $(X_1, Y_1), \dots, (X_t, Y_t)$ the data collected so far. For stochastic algorithms used to minimize an empirical risk function $F = \frac{1}{n} \sum_{i=1}^{n} f_i$, $\mathfrak{F}_t = \sigma(i_1, \dots, i_t)$ with i_1, \dots, i_t the random indices uniformly drawn in $\{1, \dots, n\}$. In both settings, we assume to have access to unbiased gradients, meaning that for all $t \geq 0$,

$$\mathbb{E}\left[g_{t+1}(\theta_t)|\mathcal{F}_t\right] = \nabla F(\theta_t).$$

1. Show that

$$\mathbb{E}[\|\theta_t - \theta^\star\|^2 | \mathcal{F}_{t-1}] \le \|\theta_{t-1} - \theta^\star\|^2 + \gamma_t^2 b^2 - 2\gamma_t \langle \nabla F(\theta_{t-1}), \theta_{t-1} - \theta^\star \rangle.$$

2. With the choice of steps described in the theorem, deduce that

$$\mathbb{E}F(\theta_{t-1}) - F(\theta^*) \le \frac{\mu(t-1)}{4} \mathbb{E}\|\theta_{t-1} - \theta^*\|^2 - \frac{\mu(t+1)}{4} \mathbb{E}\|\theta_t - \theta^*\|^2 + \frac{b^2}{\mu(t+1)}.$$

3. Show that

$$\sum_{s=1}^{t} s \mathbb{E}(F(\theta_{s-1}) - F(\theta^{\star})) \le \frac{b^2}{\mu} t,$$

and conclude.

Exercise 2 (Kaczmarz: a random projection algorithm). We want to solve the linear system $\Phi w = y$, where $\Phi = (\phi(x_1), \dots, \phi(x_n))^{\top} = (\phi_1, \dots, \phi_n)^{\top} \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^n$. In what follows we will note $S \subset \mathbb{R}^d$ the set of solutions of the equation $\Phi w = y$, and we assume that $S \neq \emptyset$.

1. For all $1 \leq i \leq n$, we note $H_i \subset \mathbb{R}^d$ the hyperplane defined by

$$H_i := \{ w \in \mathbb{R}^d \mid \langle \phi_i, w \rangle = y_i \}.$$

Check that S is the intersection of all the H_i 's.

We decide to solve our equation $\Phi w = y$ with the following strategy: starting from some $w^0 \in \mathbb{R}^d$, we chose randomly an hyperplane H_i , and project w^0 onto H_i , which gives us a new point w^1 . We repeat this as many times as needed, projecting each time our current point onto a sampled hyperplane. This method is called $Kaczmarz\ method$, and is an example of a so-called alternated projection algorithm.

In what follows, we will assume that $w^0 = 0$, and that at every iteration, each hyperplane H_i can be sampled with probability $p_i = \frac{\|\phi_i\|}{\sum_i \|\phi_j\|}$.

- 2. Make a drawing illustrating how the algorithm works.
- 3. Write the closed form formula relating w^{t+1} with w^t . You'll need for this the formula for projecting a point onto an hyperplane:

$$(\forall w \in \mathbb{R}^d)$$
 $\operatorname{proj}_{H_i}(w) = w - \frac{\langle \phi_i, w \rangle - y_i}{\|\phi_i\|^2} \phi_i.$

4. Show that, for all $w^* \in S$ and $t \in \mathbb{N}$, we have

$$w^{t+1} - w^* = (I - C_{i_t})(w^t - w^*), \quad avec \quad C_{i_t} = \frac{\phi_{i_t}\phi_{i_t}^\top}{\|\phi_{i_t}\phi_{i_t}^\top\|}.$$

5. Deduce that:

$$||w^{t+1} - w^*||^2 \le \langle (I - C_{i_t})(w^t - w^*), w^t - w^* \rangle.$$

- 6. Compute $C := \mathbb{E}[C_i]$. You must pay attention to what means \mathbb{E} here, in particular with respect to which law we sample $i \in \{1, ..., n\}$.
- 7. Verify that C is a semidefinite positive symmetric matrix, such that Im $C = \text{span } (\phi_i)_i$, and $||C|| \leq 1$.
- 8. Check that for all $t \in \mathbb{N}$, $w^t \in \text{Ker } C^{\perp}$.
- 9. Show that, for all $t \in \mathbb{N}$, and for $w^* \in S \cap \text{Ker } C^{\perp}$ (we assume it exists) we have

$$\mathbb{E}\left[\|\boldsymbol{w}^{t+1} - \boldsymbol{w}^*\|^2\right] \le \theta \ \mathbb{E}\left[\|\boldsymbol{w}^t - \boldsymbol{w}^*\|^2\right],$$

where $\theta = 1 - \sigma_{min}(C)$.

- 10. Explain why $\theta \in [0,1[$. What can be said of the convergence rate for this algorithm? **Exercise 3** (Kaczmarz is a particular case of SGD). We keep here the same context as in Exercise 2. Let $F(w) = \frac{1}{2n} \|\Phi w y\|^2$.
 - 1. Show that we can write F under the form $\frac{1}{n}\sum_{i=1}^{n}f_{i}$, such that
 - if we apply SGD to this sum
 - if we use importance sampling to sample the f_i 's
 - if we use an appropriate stepsize

then we obtain exactly the Kaczmarz method.

- 2. This link between Kaczmarz and SGD being made, what does the class say about the asymptotic behavior of $\mathbb{E}\left[\|w^t w^*\|^2\right]$? Compare and discuss with your answer at the end of Exercise 2.
- 3. What is the value of the stepsize λ_k for the SGD algorithm here?
- 4. Compute \mathcal{L} , the expected smoothness constant of f with respect to the importance sampling. Express λ_k in terms of \mathcal{L} .