EVALYNE LWOBA

DIAML

ASSIGNMENT 4

ANDREW ID: elwoba

Libraries used

import numpy as np

import pandas as pd

import math

from scipy import stats

import matplotlib.pyplot as plt

from scipy.stats import linregress

from scipy.optimize import curve_fit

from scipy.stats import pearsonr

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

import statsmodels.api as sm

import time

from sklearn.metrics import mean_squared_error

import datetime

plt.rcParams["figure.figsize"]=(10,8)

Question 1

a) I used the data from the last assignment (Homework 3) in this homework. I created a sub data frame using only the required columns. Set index and extracted data for the required period. I calculated monthly returns on FTSE100 and Housing data frames. I created a scatter plot of the monthly returns of both data sets.

Using linregress function from scipy I created a linear regression model using FTSE100 and UK monthly house prices as the independent variable. The following statistics were generated from the fitted linear regression model:

```
slope: 0.09324142754349966 p-value 0.6409049000031651
std_err 0.1997058644355541 intercept: 0.004047837686662456 r_value
0.026551295701909915
```

I called the .fit() method on the lin regress model on x variables and generated corresponding y variables by running a prediction on the fit x variables. This was stored on a varible which was used to plot the estimated regression line.

b) I used Pearsons correlation function to calculate the correlation coefficient of the two variables . The result is:

```
Pearsons correlation: 0.0266
```

This result from person correlation infers that the FTSE100 monthly returns has a very weak correlation with the UK monthly house prices. There is possibly no relation between the two variables.

c) In order to do Hypothesis testing I have 2 hypothesis statements:

H0: There IS NOT a significant linear relationship(correlation) between x and y in the population
H1:There IS A SIGNIFICANT LINEAR RELATIONSHIP (correlation) between x and y in the population

From the linregress calculations, we have a **p-value of 0.6409** which is greater that our alpha of alpha of 0.05. this clearly means we accept the null hypothesis infer that there **IS NOT a significant linear** relationship(correlation) between FTSE100 and monthly housing prices in the population.

Result Graph Q1.

Graph 1 Findings

The graph above shows no relationship between the UK monthly house prices and FTSE.

Question 2

Methodology and results

I loaded the required data set and put it in my working environment. I created a sub data frame using the required columns. The general statistics of the data are as below.

OLS Regression Results												
Dep. Varia Model: Method: Date: Time: No. Observ Df Residua Df Model: Covariance	Tu vations:	Least Squar ae, 19 Oct 20 15:22	DLS Adj. F res F-stat D21 Prob :26 Log-Li 777 AIC: 772 BIC:	(F-statistic	ncentered):		0.946 0.946 2707. 0.00 -3243.1 6496. 6519.					
	coef	std err	t	P> t	[0.025	0.975]						
Enroll Outstate Top1Operc		0.001 0.000 0.061	1.251 20.955 -9.795	0.211 0.000 0.000	-0.001 0.003 -0.716	0.004 0.003 -0.477						
Omnibus: Prob(Omnib Skew: Kurtosis:	pus):	0.0 0.1 4.2	157 Prob(3 275 Cond.	e-Bera (JB): JB): No.		1.968 55.792 7.67e-13 1.47e+03						

Using corr() and generated a matrix of correlation of all the required variables.

Correlation Result

	Apps	Enroll	Outstate	Top10perc	Top25perc	Grad.Rate
Apps	1.000000	0.846822	0.050159	0.338834	0.351640	0.146755
Enroll	0.846822	1.000000	-0.155477	0.181294	0.226745	-0.022341
Outstate	0.050159	-0.155477	1.000000	0.562331	0.489394	0.571290
Top10perc	0.338834	0.181294	0.562331	1.000000	0.891995	0.494989
Top25perc	0.351640	0.226745	0.489394	0.891995	1.000000	0.477281
Grad.Rate	0.146755	-0.022341	0.571290	0.494989	0.477281	1.000000

I used backward stepwise regression to choose the best features. This model keeps features that does reduce the model error significantly. Once a feature is dropped, it cannot be added back into the model. The model dropped 1 feature (Top10prec) and retained the other 4 which we used to test model accuracy.

Results

```
Drop Top10perc with p-value 0.446344

Backward stepwise generated useful variables for prediction are: ['Apps', 'Enroll', 'Outstate', 'Top25perc']
```

I also used LassoLars model and BIC criterion to choose the best features. This model dropped the fourth feature (Top25Perc) which had a p value of 0 wchich meants it didn't have any relationship with the graduation rate. The following were the p value results:

To test the accuracy I used 3 different models. The first model using MAPE score on all the 5 features generated an accuracy result as below:

```
MAPE score using all 5 features : 29.31197418109906
```

The second model on best features of backward stepwise generated the following results.

```
MAPE score using backward stepwise useful features: 29.4263004020622
```

The third model on the best BIC features generated the following results:

```
MAPE score using BIC best features: 29.274957446567957
```

From the above the best model is backward stepwise which has the lowest value of the 29.2750

To predict the CMU graduation rate, I used backward stepwise regression model to calculate the predicted graduation rate. This model predicted a value which is greater than the actual value of 74.

```
CMU graduation rate is: [89.082926]
```

Question 3

From the world bank indicators data bank, I downloaded the following data sets and imported into my working environment.

- a. Air transport Freight(Million tons per km)
- b. Trade (% of GDP)

I extracted the 2018 column for both data sets and merged to form a sub dataset. I transposed my data frame to make it easier to manipulate and also have dates as a column. I dropped some rows and renamed the required columns. I then converted my data frames values from an object to numeric values for ability to perform statistical analysis. I plotted a scatter to visualize the pattern.

In order to assess any trends in the data sets, I formed the following hypothesis statements:

H0: There is no significant linear relationship or correlation between air transport freight and the Trade(% of GDP) of a country

H1: There is a significant linear relationship or correlation between air transport freight and the Trade(% of GDP) of a country.

For analysis I performed the following calculation:

a. I used persons correlation from scipy.stats library to calculate the correlation between the two variables. The result is:

```
Pearsons correlation: -0.051
```

From this results we can infer that there is almost no linear correlation between the two variables.

a. I also calculate statistics by using linregress() method from scipy library by passing the x and y variables in the model Fitting on the x variable gave the below output:

```
slope: -0.01986101852061476 p-value 0.8298008337934937
std_err 0.09106172318718633 intercept: 64.38862475299034
r value: -0.05134004996723577
```

To plot a line of regression, I used the following formula:

```
R = c + (x*p) where:
```

R is the line of regression

C is the constant (Intercept)

P is the slope

X is the values from variable x in our dataset

I used the results to plot the regression line with R as the x_v ariable and X as my y_v variable.

b. To do a prediction for 2021, I created 2 models using Lineregressor method from sklearn.Liner_model library:

I reshaped my two varibles (x = trage gdp data while y=air transport) to form a 2D array which I fit in the Linear Regressor model. I created another variable to hold the date values. First model was used to fit date and gdp. I then used the model to do a prediction on 2021 which gave me the predicted gdp value for 2021. Secondly, I fitted the second model with gdp and freight data as my xand y. I used the initial x predicted value(gdp) to predict the Freight value (y predicted). The resulting values are:

```
2021 predicted values are GDP: [[49.21822527]]

Air Freight: [[63.41110067]]
```

To test my hypothesis statements; I used the p value generated from the model above and the given alpha of 0.05. If:

p_value > alpha then we accept the null hypothesis but if

P_value is < alpha then we reject the null hypothesis

In this case p_ value is **p-value 0.8298008337934937** which is greater than **alpha of 0.05**. we therefore accept the null hypothesis and agree that there is not a significant linear relationship between air freight transport and the trade (% of GDP) of a country.

Graph Q3

7

Finding.

The graph shows that there is a very weak negative nonlinear relationship between GDP % Trade and Air freight transportation in 2018.

Question 4.

I downloaded the data from quandl and set the start and end date in order to have a data set with the required date range. I created 2 arrays from the data set and created my X and Y variables. To be able to do some data manipulations, I changed the date column from a string format toa number using the toordinal function from datetime library. The .reshape() from numpy was also essential in creating an array for both variables.

I created a variable to hold the 2020 prediction date and converted it to a number using the toordinal function.

Data fitting is used in python to estimate the best representation of the actual data points through new predicted points. In our case I used a lineregression function from sklearn library to create a model to fit my data. I passed my X and Y variables into the model. To calculate the 2020 unemployement prediction, I passed the prediction date as a variable in the model and stored it in a variable as a 2D array.

The MAPE (mean absolute percentage error) is used to test the accuracy of a model as a percentage of the error. This is calculated by:

```
((y actual - y predicted) / y actual |) * 100
```

A mape of 23% means that there is a 23% variance between the actual and predicted value. A

Results:

```
Intercept: [-221.49399182] slope : [[0.00031561]]
R squared: 0.2113665859769598
```

```
Unemployment rate prediction for 2020 is [[11.36127564]] The MAPE score of the model is: 23.71 \%
```

Findings

MAPE shows the accuracy as a percentage of the model error. This makes it easier to understand the statistics of a model.in our case our MAPE result is For example, if the MAPE is 23.71%, on average, which means the future forecast is off by 23.71%.

Reference

- 1. GDP data: https://data.worldbank.org/indicator/IS.AIR.GOOD.MT.K1
- 2. Air Freight Transport: https://data.worldbank.org/indicator/NE.EXP.GNFS.ZS?view=chart
- 3. Regression: https://machinelearningmastery.com/probabilistic-model-selection-measures/
- 4. Backward stepwise : https://github.com/AakkashVijayakumar/stepwise-regression/blob/master/stepwise-regression/step-reg.py
- 5. MAPE: https://www.statology.org/mape-python/