Contents

\mathbf{G}	lossa	$\mathbf{r}\mathbf{y}$		xiii
\mathbf{A}	crony	yms		xiv
1	Intr	oducti	ion	1
	1.1	Cance	r Research in the Post-Genomic Era	1
		1.1.1	Cancer as a Global Health Concern	2
			1.1.1.1 The Genetics and Molecular Biology of Cancers	3
		1.1.2	The Human Genome Revolution	6
			1.1.2.1 The First Human Genome Sequence	6
			1.1.2.2 Impact of Genomics	7
		1.1.3	Technologies to Enable Genetics Research	7
			1.1.3.1 DNA Sequencing and Genotyping Technologies	7
			1.1.3.2 Microarrays and Quantitative Technologies	8
			1.1.3.3 Massively Parallel "Next Generation" Sequencing	9
			1.1.3.3.1 Molecular Profiling with Genomics Technology .	11
			1.1.3.3.2 Sequencing Technologies	11
			1.1.3.4 Bioinformatics as Interdisciplinary Genomic Analysis .	12
		1.1.4	Follow-up Large-Scale Genomics Projects	13
		1.1.5	Cancer Genomes	14
			1.1.5.1 The Cancer Genome Atlas Project	15
			1.1.5.1.1 Findings from Cancer Genomes	15
			1.1.5.1.2 Genomic Comparisons Across Cancer Tissues .	17
			1.1.5.1.3 Cancer Genomic Data Resources	18
		1.1.6	Genomic Cancer Medicine	18
			1.1.6.1 Cancer Genes and Driver Mutations	18
			1.1.6.2 Personalised or Precision Cancer Medicine	19
			1.1.6.2.1 Molecular Diagnostics and Pan-Cancer Medicine	20
			1.1.6.3 Targeted Therapeutics and Pharmacogenomics	21
			1.1.6.3.1 Targeting Oncogenic Driver Mutations	21
			1.1.6.4 Systems and Network Biology	22
	1.0	A G	1.1.6.4.1 Network Medicine, and Polypharmacology	24
	1.2	~	thetic Lethal Approach to Cancer Medicine	25
		1.2.1	Synthetic Lethal Genetic Interactions	26
		1.2.2	Synthetic Lethal Concepts in Genetics	26 27
		エフス	Studies of Synthetic Lethality	7/

			1.2.3.1 Synthetic Lethal Pathways and Networks
			1.2.3.1.1 Evolution of Synthetic Lethality 2
		1.2.4	Synthetic Lethal Concepts in Cancer
		1.2.5	Clinical Impact of Synthetic Lethality in Cancer
		1.2.6	High-throughput Screening for Synthetic Lethality
			1.2.6.1 Synthetic Lethal Screens
		1.2.7	Computational Prediction of Synthetic Lethality
			1.2.7.1 Bioinformatics Approaches to Genetic Interactions 3
			1.2.7.2 Comparative Genomics
			1.2.7.3 Analysis and Modelling of Protein Data 4
			1.2.7.4 Differential Gene Expression 4
			1.2.7.5 Data Mining and Machine Learning 4
			1.2.7.6 Bimodality
			1.2.7.7 Rationale for Further Development 4
	1.3	E-cadh	nerin as a Synthetic Lethal Target
		1.3.1	The CDH1 gene and it's Biological Functions 4
			1.3.1.1 Cytoskeleton
			1.3.1.2 Extracellular and Tumour Micro-Environment 4
			1.3.1.3 Cell-Cell Adhesion and Signalling 4
		1.3.2	CDH1 as a Tumour (and Invasion) Suppressor 5
			1.3.2.1 Breast Cancers and Invasion
		1.3.3	Hereditary Diffuse Gastric Cancer and Lobular Breast Cancer . 5
		1.3.4	Somatic Mutations
			1.3.4.1 Mutation Rate
			1.3.4.2 Co-occurring Mutations
		1.3.5	Models of <i>CDH1</i> loss in cell lines
	1.4	Summ	ary and Research Direction of Thesis
2	Met	thods a	and Resources 5
	2.1	Bioinfo	ormatics Resources for Genomics Research
		2.1.1	Public Data and Software Packages
			2.1.1.1 Cancer Genome Atlas Data
			2.1.1.2 Reactome and Annotation Data 6
	2.2	Data I	Handling
		2.2.1	Normalisation
		2.2.2	Sample Triage
		2.2.3	Metagenes and the Singular Value Decomposition 6
			2.2.3.1 Candidate Triage and Integration with Screen Data 6
	2.3	Techni	iques
		2.3.1	Statistical Procedures and Tests 6
		2.3.2	Gene Set Over-representation Analysis 6
		2.3.3	Clustering
		2.3.4	Heatmap
		2.3.5	Modeling and Simulations
		0.0	2.3.5.1 Receiver Operating Characteristic (Performance) 6
		2.3.6	Resampling Analysis
		-	

	2.4	Pathw	vay Structure Methods	38
		2.4.1	v	38
		2.4.2	- *	39
		2.4.3		70
		2.4.4		70
	2.5	Implei		71
		2.5.1		71
		2.5.2		72
		2.5.3		75
3	Met	hods l	Developed During Thesis 7	7
	3.1		•	7
	3.2			30
		3.2.1	~	30
		3.2.2	· · · · · · · · · · · · · · · · · · ·	34
	3.3	Detect	ting Simulated Synthetic Lethal Partners	37
		3.3.1		37
		3.3.2	Multivariate Normal Simulation of Synthetic lethality 8	39
				92
			3.3.2.2 Specificity with Query-Correlated Pathways 9	9
			3.3.2.3 Importance of Directional Testing	9
	3.4	Graph	Structure Methods)1
		3.4.1	Upstream and Downstream Gene Detection)1
			3.4.1.1 Permutation Analysis for Statistical Significance 10)2
			3.4.1.2 Hierarchy Based on Biological Context 10)3
		3.4.2	Simulating Gene Expression from Graph Structures 10)4
	3.5	Custo	mised Functions and Packages Developed)8
		3.5.1	Synthetic Lethal Interaction Prediction Tool)8
		3.5.2	Data Visualisation)9
		3.5.3	Extensions to the iGraph Package	.2
			3.5.3.1 Sampling Simulated Data from Graph Structures 11	.2
			3.5.3.2 Plotting Directed Graph Structures	.2
			3.5.3.3 Computing Information Centrality	
			3.5.3.4 Testing Pathway Structure with Permutation Testing . 11	
			3.5.3.5 Metapackage to Install iGraph Functions	.4
4	Syn	thetic	Lethal Analysis of Gene Expression Data 11	5
	4.1	Synthe	etic Lethal Genes in Breast Cancer	
		4.1.1	Synthetic Lethal Pathways in Breast Cancer	
		4.1.2	Expression Profiles of Synthetic Lethal Partners	
			4.1.2.1 Subgroup Pathway Analysis	
	4.2		aring Synthetic Lethal Gene Candidates	
		4.2.1	Primary siRNA Screen Candidates	
		4.2.2	Comparison with Correlation	
		4.2.3	Comparison with Primary Screen Viability	
		4.2.4	Comparison with Secondary siRNA Screen Validation 12	29

		4.2.5	Comparison to Primary Screen at Pathway Level
			4.2.5.1 Resampling Genes for Pathway Enrichment 133
		4.2.6	Integrating Synthetic Lethal Pathways and Screens 136
	4.3	Metag	gene Analysis
		4.3.1	Pathway Expression
		4.3.2	Somatic Mutation
		4.3.3	Synthetic Lethal Pathway Metagenes
		4.3.4	Synthetic Lethality in Breast Cancer
	4.4	Replie	eation in Stomach Cancer
	4.5	Discus	ssion
		4.5.1	Strengths of the SLIPT Methodology
		4.5.2	Synthetic Lethal Pathways for E-cadherin
		4.5.3	Replication and Validation
			4.5.3.1 Integration with siRNA Screening
			4.5.3.2 Replication across Tissues and Cell lines 151
	4.6	Summ	ary
	~		
5	•		Lethal Pathway Structure 155
	5.1	-	etic Lethal Genes in Reactome Pathways
		5.1.1	The PI3K/AKT Pathway
		5.1.2	The Extracellular Matrix
		5.1.3	G Protein Coupled Receptors
		5.1.4	Gene Regulation and Translation
	5.2		ork Analysis of Synthetic Lethal Genes
		5.2.1	Gene Connectivity and Vertex Degree
		5.2.2	Gene Importance and Centrality
			5.2.2.1 Information Centrality
			5.2.2.2 PageRank Centrality
	5.3		onships between Synthetic Lethal Genes
		5.3.1	Hierarchical Pathway Structure
			5.3.1.1 Contextual Hierarchy of PI3K 168
			5.3.1.2 Testing Contextual Hierarchy of Synthetic Lethal Genes 168
		5.3.2	Upstream or Downstream Synthetic Lethality 172
			5.3.2.1 Measuring Structure of Candidates within PI3K 172
			5.3.2.2 Resampling for Synthetic Lethal Pathway Structure 174
	5.4		ssion
	5.5	Summ	ary
6	Sim	ulatio	n and Modeling of Synthetic Lethal Pathways 181
U	6.1		aring methods
	0.1	6.1.1	Performance of SLIPT and χ^2 across Quantiles
		0.1.1	6.1.1.1 Correlated Query Genes affects Specificity 186
		6.1.2	Alternative Synthetic Lethal Detection Strategies
		0.1.4	6.1.2.1 Correlation for Synthetic Lethal Detection
			6.1.2.2 Testing for Bimodality with BiSEp
	6.2	Simul	ations with Graph Structures
	U. /		360000 WIGH VIGOU ON HUGHES

		6.2.1	Performance over a Graph Structure	193
			6.2.1.1 Simple Graph Structures	193
			6.2.1.2 Constructed Graph Structures	195
		6.2.2	Performance with Inhibitions	199
		6.2.3	Synthetic Lethality across Graph Structures	205
		6.2.4	Performance within a Simulated Human Genome	209
	6.3	Simula	ations over pathway-based graphs	215
		6.3.1	Pathway Structures in a Simulated Human Genome	217
	6.4	Discus	ssion	220
		6.4.1	Simulation Procedure	220
		6.4.2	Design and Performance of SLIPT	221
		6.4.3	Simulations from Graph Structures	223
	6.5	Summ	ary	224
7	Disc	cussion		227
	7.1	Synthe	etic Lethality and <i>CDH1</i> Biology	
		7.1.1	Established Functions of <i>CDH1</i>	
		7.1.2	The Molecular Role of <i>CDH1</i> in Cancer	228
	7.2	Signifi	cance	229
		7.2.1	Synthetic Lethality in the Genomic Era	
		7.2.2	Clinical Interventions based on Synthetic Lethality	231
	7.3		ating the Synthetic Lethality Prediction Tool	
		7.3.1	Strength of the Synthetic Lethality Prediction Tool	
		7.3.2	Limitations of the Synthetic Lethality Prediction Tool	
		7.3.3	Comparisons to Alternative Methods	
			7.3.3.1 Combined with Experimental Screening	
			7.3.3.2 Differences to Computational Methods	
	7.4		e Directions	
		7.4.1	Refinements Synthetic Lethality Prediction Methods	
			7.4.1.1 Wider Use of Synthetic Lethality Prediction	
		7.4.2	Validation of Synthetic Lethal Genes and Pathways	
			7.4.2.1 Pre-clinical and Clinical Testing	
		7.4.3	Application to Further Genes and Pathways	234
8	Con	clusio	n	235
	Ref	erence	\mathbf{s}	239
\mathbf{A}	San	nple Q	uality	265
			e Correlation	265
			ate Samples in TCGA Breast	268
В	Soft	ware U	Used for Thesis	272

\mathbf{C}	Mut	tation Analysis in Breast Cancer	281
	C.1	Synthetic Lethal Genes and Pathways	281
	C.2	Synthetic Lethal Expression Profiles	284
	C.3	Comparison to Primary Screen	287
		C.3.1 Resampling Analysis	289
	C.4	Compare SLIPT genes	291
	C.5	Metagene Analysis	293
	C.6	1	
	C.7	Metagene Expression Profiles	297
D	Intr	insic Subtyping	300
${f E}$	Stor	mach Expression Analysis	302
	E.1	Synthetic Lethal Genes and Pathways	302
	E.2	Synthetic Lethal Expression Profiles	305
	E.3	Comparison to Primary Screen	308
		E.3.1 Resampling Analysis	310
	E.4	Metagene Analysis	312
\mathbf{F}	Syn	thetic Lethal Genes in Pathways	313
\mathbf{G}	Pat	hway Connectivity for Mutation SLIPT	321
Н	Info	ormation Centrality for Gene Essentiality	325
Ι	Pat	hway Structure for Mutation SLIPT	328
J	Peri	formance of SLIPT and χ^2	331
		J.0.1 Correlated Query Genes affects Specificity	337
K	Gra	ph Structures	343
	K.1	Simulations from Graph Structures	349
	K.2	Simulations from Inhibiting Graph Structures	354
	K.3	Simulation across Graph Structures	364
	K.4	Graph Structure Simulations with 20K genes	368
		K.4.1 Inhibiting Graph Structure Simulations with 20K genes	
	K.5	Simations from Pathway Graph Structures	387

List of Figures

1.1	Synthetic genetic interactions
1.2	Synthetic lethality in cancer
2.1	Read count density
2.2	Read count sample mean
3.1	Framework for synthetic lethal prediction
3.2	Synthetic lethal prediction adapted for mutation
3.3	A model of synthetic lethal gene expression
3.4	Modeling synthetic lethal gene expression
3.5	Synthetic lethality with multiple genes
3.6	Simulating gene function
3.7	Simulating synthetic lethal gene function
3.8	Simulating synthetic lethal gene expression
3.9	Performance of binomial simulations
3.10	Comparison of statistical performance
3.11	Performance of multivariate normal simulations
3.12	Simulating expression with correlated gene blocks
3.13	Simulating expression with correlated gene blocks
3.14	Synthetic lethal prediction across simulations
3.15	Performance with correlations
3.16	Comparison of statistical performance with correlation structure 97
3.17	Performance with query correlations
3.18	Statistical evaluation of directional criteria
3.19	Performance of directional criteria
	Simulated graph structures
	Simulating expression from a graph structure
3.22	Simulating expression from graph structure with inhibitions 107
3.23	Demonstration of violin plots with custom features
3.24	Demonstration of annotated heatmap
	Simulating graph structures
4.1	Synthetic lethal expression profiles of analysed samples
4.2	Comparison of SLIPT to siRNA
4.3	Compare SLIPT and siRNA genes with correlation
4.4	Compare SLIPT and siRNA genes with correlation
4.5	Compare SLIPT and siRNA genes with viability

4.6	Compare SLIPT genes with siRNA viability	129
4.7	Resampled intersection of SLIPT and siRNA candidates	133
4.8	Pathway metagene expression profiles	140
4.9	Expression profiles for constituent genes of PI3K	142
4.10	Expression profiles for estrogen receptor related genes	143
4.11	Somatic mutation against the PI3K metagene	144
5.1	Synthetic Lethality in the PI3K Cascade	157
5.2	Synthetic Lethality in the Elastic Fibre Formation Pathway	159
5.3	Synthetic Lethality in the Fibrin Clot Formation	160
5.4	Synthetic Lethality and Vertex Degree	163
5.5	Synthetic Lethality and Centrality	166
5.6	Synthetic Lethality and PageRank	167
5.7	Hierarchical Structure of PI3K	169
5.8	Hierarchy Score in PI3K against Synthetic Lethality in PI3K	170
5.9	Structure of Synthetic Lethality in PI3K	172
5.10	Structure of Synthetic Lethality Resampling in PI3K	173
6.1	Performance of χ^2 and SLIPT across quantiles	184
6.2	Performance of χ^2 and SLIPT across quantiles with more genes	185
6.3	Performance of χ^2 and SLIPT across quantiles with query correlation .	186
6.4	Performance of χ^2 and SLIPT across quantiles with query correlation	
	and more genes	187
6.5	Performance of negative correlation and SLIPT	189
6.6	Performance of simulations on a simple graph	194
6.7	Performance of simulations is similar in simple graphs	195
6.8	Performance of simulations on a constructed graph	196
6.9	Performance of simulations on a large graph	198
6.10	Performance of simulations on a simple graph with inhibition	200
	Performance is higher on a simple inhibiting graph	201
6.12	Performance of simulations on a constructed graph with inhibition	203
	Performance is affected by inhibition in graphs	
	Detection of Synthetic Lethality within a Graph Structure	
	Detection of Synthetic Lethality within a Graph Structure with Inhibitions	
	Performance of simulations including a simple graph	210
	Performance on a simple graph improves with more genes	211
	Performance on an inhibiting graph with more genes	212
	Performance on an inhibiting graph improves with more genes	214
	Performance of simulations on the PI3K cascade	216
	Performance of simulations including the PI3K cascade	218
6.22	Performance on pathways improves with more genes	219
A.1	Correlation profiles of removed samples	266
A.2	Correlation analysis and sample removal	267
A.3	Replicate excluded samples	268
A 4	Replicate samples with all remaining	269

A.5	Replicate samples with some excluded	270
	Synthetic lethal expression profiles of analysed samples Comparison of mtSLIPT to siRNA Compare mtSLIPT and siRNA genes with correlation Compare mtSLIPT and siRNA genes with correlation Compare mtSLIPT and siRNA genes with siRNA viability Somatic mutation against PIK3CA metagene Somatic mutation against PI3K protein Somatic mutation against AKT protein Pathway metagene expression profiles Expression profiles for p53 related genes Expression profiles for BRCA related genes	285 287 291 291 292 294 295 296 297 298 299
E.1 E.2	Synthetic lethal expression profiles of stomach samples	307 308
F.1 F.2 F.3 F.4 F.5 F.6 F.7	Synthetic Lethality in the PI3K/AKT Pathway Synthetic Lethality in the PI3K/AKT Pathway in Cancer Synthetic Lethality in the Extracellular Matrix Synthetic Lethality in the GPCRs Synthetic Lethality in the GPCR Downstream Synthetic Lethality in the Translation Elongation Synthetic Lethality in the Nonsense-mediated Decay Synthetic Lethality in the 3' UTR	313 314 315 316 317 318 319 320
G.1 G.2 G.3	Synthetic Lethality and Vertex Degree	321 322 323
H.1	Information centrality distribution	327
I.1 I.2 I.3 I.4	Synthetic Lethality and Heirarchy Score in PI3K	328 329 329 330
J.1 J.2 J.3 J.4 J.5 J.6	Performance of χ^2 and SLIPT across quantiles	331 333 335 337 339
K.1 K.2 K.3	Simple graph structures	343 344 344

K.4	Large constructed graph structure	345
K.5	Branching constructed graph structure	345
K.6	Complex constructed graph structure	347
K.7	Performance of simulations on a simple graph	350
K.8	Performance of simulations on a constructed graph	351
K.9	Performance of simulations on a branching graph	352
K.10	Performance of simulations on a complex graph	353
K.11	Performance of simulations on a simple graph with inhibition	355
K.12	Performance of simulations on a simple graph with inhibition	356
K.13	Performance of simulations on a constructed graph with inhibition	357
K.14	Performance of simulations on a large constructed graph with inhibition	358
K.15	Performance of simulations on a large constructed graph with inhibition	359
K.16	Performance of simulations on a branching graph with inhibition	360
K.17	Performance of simulations on a branching graph with inhibition	361
K.18	Performance of simulations on a complex graph with inhibition	362
K.19	Performance of simulations on a complex graph with inhibition	363
K.20	Detection of Synthetic Lethality within a Graph Structure	364
K.21	Detection of Synthetic Lethality within an Inhibiting Graph Structure .	366
K.22	Detection of Synthetic Lethality within an Inhibiting Graph Structure .	367
K.23	Performance of simulations on a simple graph with more genes	369
K.24	Performance of simulations including a simple graph	370
K.25	Performance of simulations including a constructed graph	371
K.26	Performance of simulations including a large graph	372
K.27	Performance of simulations including a branching graph	373
K.28	Performance of simulations including a complex graph	374
K.29	Performance of simulations including a simple graph with inhibition	376
K.30	Performance of simulations including a simple graph with inhibition	377
K.31	Performance of simulations including a simple graph with inhibition	378
K.32	Performance of simulations including a constructed graph with inhibition	379
K.33	Performance of simulations including a constructed graph with inhibition	380
K.34	Performance of simulations including a large graph with inhibition	381
K.35	Performance of simulations including a large graph with inhibition	382
K.36	Performance of simulations including a branching graph with inhibition	383
K.37	Performance of simulations including a branching graph with inhibition	384
K.38	Performance of simulations including a complex graph with inhibition .	385
K.39	Performance of simulations including a complex graph with inhibition .	386
		387
		388

List of Tables

1.1	Methods for Predicting Genetic Interactions	38
1.2	Methods for Predicting Synthetic Lethality in Cancer	39
1.3	Methods used by Wu et al. (2014)	40
2.1	Excluded Samples by Batch and Clinical Characteristics	61
2.2	Computers used during Thesis	72
2.3	Linux Utilities and Applications used during Thesis	72
2.4	R Installations used during Thesis	73
2.5	R Packages used during Thesis	73
2.6	R Packages Developed during Thesis	75
4.1	Candidate synthetic lethal gene partners of $\mathit{CDH1}$ from SLIPT	117
4.2	Pathways for <i>CDH1</i> partners from SLIPT	119
4.3	Pathway composition for clusters of $\mathit{CDH1}$ partners from SLIPT	123
4.4	Analysis of variance (ANOVA) for Synthetic Lethality and Correlation	
	with <i>CDH1</i>	127
4.5	Comparing SLIPT genes against secondary siRNA screen in breast cancer	130
4.6	Pathway composition for <i>CDH1</i> partners from SLIPT and siRNA screen-	
	ing	132
4.7	Pathways for <i>CDH1</i> partners from SLIPT	135
4.8	Pathways for $CDH1$ partners from SLIPT and siRNA primary screen .	137
4.9	Candidate synthetic lethal metagenes against $CDH1$ from SLIPT	146
5.1	ANOVA for Synthetic Lethality and Vertex Degree	164
5.2	ANOVA for Synthetic Lethality and Information Centrality	166
5.3	ANOVA for Synthetic Lethality and PageRank Centrality	168
5.4	ANOVA for Synthetic Lethality and PI3K Hierarchy	171
5.5	Resampling for pathway structure of synthetic lethal detection methods	175
B.1	R Packages used during Thesis	272
C.1	Candidate synthetic lethal gene partners of $\mathit{CDH1}$ from mtSLIPT	282
C.2	Pathways for <i>CDH1</i> partners from mtSLIPT	283
C.3	Pathway composition for clusters of $\mathit{CDH1}$ partners from mtSLIPT	286
C.4	Pathway composition for $CDH1$ partners from mtSLIPT and siRNA	288
C.5	Pathways for <i>CDH1</i> partners from mtSLIPT	289
C.6	Pathways for $CDH1$ partners from mtSLIPT and siRNA primary screen	290
C.7	Candidate synthetic lethal metagenes against CDH1 from mtSLIPT	293

D.1	Comparison of Intrinsic Subtypes	300
E.1	Synthetic lethal gene partners of CDH1 from SLIPT in stomach cancer	303
E.2	Pathways for CDH1 partners from SLIPT in stomach cancer	304
E.3	Pathway composition for clusters of CDH1 partners in stomach SLIPT	306
E.4	Pathway composition for CDH1 partners from SLIPT and siRNA screen-	
	ing	309
E.5	Pathways for <i>CDH1</i> partners from SLIPT in stomach cancer	310
E.6	Pathways for CDH1 partners from SLIPT in stomach and siRNA screen	311
E.7	Candidate synthetic lethal metagenes against <i>CDH1</i> from SLIPT in	
	stomach cancer	312
G.1	ANOVA for Synthetic Lethality and Vertex Degree	324
G.2	ANOVA for Synthetic Lethality and Information Centrality	324
G.3	ANOVA for Synthetic Lethality and PageRank Centrality	324
H.1	Information centrality for genes and molecules in the Reactome network	326
I.1	ANOVA for Synthetic Lethality and PI3K Hierarchy	328
I.2	Resampling for pathway structure of synthetic lethal detection methods	

Glossary

RNA-Seq Transcriptome data from sequencing RNA.

synthetic lethal Genetic interactions where inactivation of

multiple genes is inviable (or deleterious) when they are viable if inactivated separately.

Acronyms

ANOVA Analysis of Variance.

PAM50 Prediction Analysis of Microarray 50.

SLIPT Synthetic lethal interaction prediction tool.

TCGA The Cancer Genome Atlas (genomics project).

UCSC University of California, Santa Cruz.

References

- Aarts, M., Bajrami, I., Herrera-Abreu, M.T., Elliott, R., Brough, R., Ashworth, A., Lord, C.J., and Turner, N.C. (2015) Functional genetic screen identifies increased sensitivity to weel inhibition in cells with defects in fanconi anemia and hr pathways. *Mol Cancer Ther*, 14(4): 865–76.
- Abeshouse, A., Ahn, J., Akbani, R., Ally, A., Amin, S., Andry, C.D., Annala, M., Aprikian, A., Armenia, J., Arora, A., et al. (2015) The Molecular Taxonomy of Primary Prostate Cancer. Cell, 163(4): 1011–1025.
- Adamski, M.G., Gumann, P., and Baird, A.E. (2014) A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity. *PLoS ONE*, **9**(8): e103917.
- Adler, D. (2005) vioplot: Violin plot. R package version 0.2.
- Agarwal, S., Deane, C.M., Porter, M.A., and Jones, N.S. (2010) Revisiting date and party hubs: Novel approaches to role assignment in protein interaction networks. *PLoS Comput Biol*, **6**(6): e1000817.
- Agrawal, N., Akbani, R., Aksoy, B.A., Ally, A., Arachchi, H., Asa, S.L., Auman, J.T., Balasundaram, M., Balu, S., Baylin, S.B., et al. (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell, 159(3): 676–690.
- Akbani, R., Akdemir, K.C., Aksoy, B.A., Albert, M., Ally, A., Amin, S.B., Arachchi, H., Arora, A., Auman, J.T., Ayala, B., et al. (2015) Genomic Classification of Cutaneous Melanoma. Cell, 161(7): 1681–1696.
- Akobeng, A.K. (2007) Understanding diagnostic tests 3: receiver operating characteristic curves. *Acta Pdiatrica*, **96**(5): 644–647.
- American Cancer Society (2017) Genetics and cancer. https://www.cancer.org/cancer/cancer-causes/genetics.html. Accessed: 22/03/2017.

- American Society for Clinical Oncology (ASCO) (2017) The genetics of cancer. http://www.cancer.net/navigating-cancer-care/cancer-basics/genetics-cancer. Accessed: 22/03/2017.
- Anjomshoaa, A., Lin, Y.H., Black, M.A., McCall, J.L., Humar, B., Song, S., Fukuzawa, R., Yoon, H.S., Holzmann, B., Friederichs, J., et al. (2008) Reduced expression of a gene proliferation signature is associated with enhanced malignancy in colon cancer. Br J Cancer, 99(6): 966–973.
- Araki, H., Knapp, C., Tsai, P., and Print, C. (2012) GeneSetDB: A comprehensive meta-database, statistical and visualisation framework for gene set analysis. *FEBS Open Bio*, **2**: 76–82.
- Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 25(1): 25–29.
- Ashworth, A. (2008) A synthetic lethal therapeutic approach: poly(adp) ribose polymerase inhibitors for the treatment of cancers deficient in dna double-strand break repair. *J Clin Oncol*, **26**(22): 3785–90.
- Audeh, M.W., Carmichael, J., Penson, R.T., Friedlander, M., Powell, B., Bell-McGuinn, K.M., Scott, C., Weitzel, J.N., Oaknin, A., Loman, N., et al. (2010) Oral poly(adp-ribose) polymerase inhibitor olaparib in patients with *BRCA1* or *BRCA2* mutations and recurrent ovarian cancer: a proof-of-concept trial. *Lancet*, **376**(9737): 245–51.
- Babyak, M.A. (2004) What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. *Psychosom Med*, **66**(3): 411–21.
- Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., Flanagan, A., Teague, J., Futreal, P.A., Stratton, M.R., et al. (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer, 91(2): 355–358.
- Barabási, A.L. and Albert, R. (1999) Emergence of scaling in random networks. *Science*, **286**(5439): 509–12.

- Barabási, A.L., Gulbahce, N., and Loscalzo, J. (2011) Network medicine: a network-based approach to human disease. *Nat Rev Genet*, **12**(1): 56–68.
- Barabási, A.L. and Oltvai, Z.N. (2004) Network biology: understanding the cell's functional organization. *Nat Rev Genet*, **5**(2): 101–13.
- Barrat, A. and Weigt, M. (2000) On the properties of small-world network models. The European Physical Journal B - Condensed Matter and Complex Systems, 13(3): 547–560.
- Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehar, J., Kryukov, G.V., Sonkin, D., et al. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483(7391): 603–607.
- Barry, W.T. (2016) safe: Significance Analysis of Function and Expression. R package version 3.14.0.
- Baryshnikova, A., Costanzo, M., Dixon, S., Vizeacoumar, F.J., Myers, C.L., Andrews, B., and Boone, C. (2010a) Synthetic genetic array (sga) analysis in saccharomyces cerevisiae and schizosaccharomyces pombe. *Methods Enzymol*, **470**: 145–79.
- Baryshnikova, A., Costanzo, M., Kim, Y., Ding, H., Koh, J., Toufighi, K., Youn, J.Y., Ou, J., San Luis, B.J., Bandyopadhyay, S., *et al.* (2010b) Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. *Nat Meth*, **7**(12): 1017–1024.
- Bass, A.J., Thorsson, V., Shmulevich, I., Reynolds, S.M., Miller, M., Bernard, B., Hinoue, T., Laird, P.W., Curtis, C., Shen, H., et al. (2014) Comprehensive molecular characterization of gastric adenocarcinoma. *Nature*, **513**(7517): 202–209.
- Bates, D. and Maechler, M. (2016) Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.2-7.1.
- Bateson, W. and Mendel, G. (1909) Mendel's principles of heredity, by W. Bateson. University Press, Cambridge [Eng.].
- Beck, T.F., Mullikin, J.C., and Biesecker, L.G. (2016) Systematic Evaluation of Sanger Validation of Next-Generation Sequencing Variants. *Clin Chem*, **62**(4): 647–654.

- Becker, K.F., Atkinson, M.J., Reich, U., Becker, I., Nekarda, H., Siewert, J.R., and Hfler, H. (1994) E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. *Cancer Research*, **54**(14): 3845–3852.
- Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., et al. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353): 609–615.
- Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society Series B (Methodological)*, **57**(1): 289–300.
- Berx, G., Cleton-Jansen, A.M., Nollet, F., de Leeuw, W.J., van de Vijver, M., Cornelisse, C., and van Roy, F. (1995) E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. *EMBO J*, **14**(24): 6107–15.
- Berx, G., Cleton-Jansen, A.M., Strumane, K., de Leeuw, W.J., Nollet, F., van Roy, F., and Cornelisse, C. (1996) E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. *Oncogene*, **13**(9): 1919–25.
- Berx, G. and van Roy, F. (2009) Involvement of members of the cadherin superfamily in cancer. *Cold Spring Harb Perspect Biol*, **1**: a003129.
- Bitler, B.G., Aird, K.M., Garipov, A., Li, H., Amatangelo, M., Kossenkov, A.V., Schultz, D.C., Liu, Q., Shih Ie, M., Conejo-Garcia, J.R., et al. (2015) Synthetic lethality by targeting ezh2 methyltransferase activity in arid1a-mutated cancers. Nat Med, 21(3): 231–8.
- Blake, J.A., Christie, K.R., Dolan, M.E., Drabkin, H.J., Hill, D.P., Ni, L., Sitnikov, D., Burgess, S., Buza, T., Gresham, C., et al. (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res, 43(Database issue): D1049–1056.
- Boettcher, M., Lawson, A., Ladenburger, V., Fredebohm, J., Wolf, J., Hoheisel, J.D., Frezza, C., and Shlomi, T. (2014) High throughput synthetic lethality screen reveals a tumorigenic role of adenylate cyclase in fumarate hydratase-deficient cancer cells. *BMC Genomics*, **15**: 158.
- Boone, C., Bussey, H., and Andrews, B.J. (2007) Exploring genetic interactions and networks with yeast. *Nat Rev Genet*, **8**(6): 437–49.

- Borgatti, S.P. (2005) Centrality and network flow. Social Networks, 27(1): 55 71.
- Boucher, B. and Jenna, S. (2013) Genetic interaction networks: better understand to better predict. *Front Genet*, 4: 290.
- Breiman, L. (2001) Random forests. *Machine Learning*, **45**(1): 5–32.
- Brin, S. and Page, L. (1998) The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, **30**(1): 107 117.
- Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. (2005) Specific killing of *BRCA2*-deficient tumours with inhibitors of poly*adpribose* polymerase. *Nature*, **434**(7035): 913–7.
- Burk, R.D., Chen, Z., Saller, C., Tarvin, K., Carvalho, A.L., Scapulatempo-Neto, C., Silveira, H.C., Fregnani, J.H., Creighton, C.J., Anderson, M.L., et al. (2017) Integrated genomic and molecular characterization of cervical cancer. Nature, **543**(7645): 378–384.
- Bussey, H., Andrews, B., and Boone, C. (2006) From worm genetic networks to complex human diseases. *Nat Genet*, **38**(8): 862–3.
- Butland, G., Babu, M., Diaz-Mejia, J.J., Bohdana, F., Phanse, S., Gold, B., Yang, W., Li, J., Gagarinova, A.G., Pogoutse, O., et al. (2008) esga: E. coli synthetic genetic array analysis. Nat Methods, 5(9): 789–95.
- Cancer Research UK (2017) Family history and cancer genes. http://www.cancerresearchuk.org/about-cancer/causes-of-cancer/inherited-cancer-genes-and-increased-cancer-risk/family-history-and-inherited-cancer-genes. Accessed: 22/03/2017.
- cBioPortal for Cancer Genomics (cBioPortal) (2017) cBioPortal for Cancer Genomics. http://www.cbioportal.org/. Accessed: 26/03/2017.
- Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., Schultz, N., Bader, G.D., and Sander, C. (2011) Pathway Commons, a web resource for biological pathway data. *Nucleic Acids Res*, 39(Database issue): D685–690.
- Chen, A., Beetham, H., Black, M.A., Priya, R., Telford, B.J., Guest, J., Wiggins, G.A.R., Godwin, T.D., Yap, A.S., and Guilford, P.J. (2014) E-cadherin loss alters

- cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition. $BMC\ Cancer$, 14(1): 552.
- Chen, K., Yang, D., Li, X., Sun, B., Song, F., Cao, W., Brat, D.J., Gao, Z., Li, H., Liang, H., et al. (2015) Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy. Proc Natl Acad Sci USA, 112(4): 1107–1112.
- Chen, S. and Parmigiani, G. (2007) Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol, 25(11): 1329–1333.
- Chen, X. and Tompa, M. (2010) Comparative assessment of methods for aligning multiple genome sequences. *Nat Biotechnol*, **28**(6): 567–572.
- Cherniack, A.D., Shen, H., Walter, V., Stewart, C., Murray, B.A., Bowlby, R., Hu, X., Ling, S., Soslow, R.A., Broaddus, R.R., et al. (2017) Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell, 31(3): 411–423.
- Chipman, K. and Singh, A. (2009) Predicting genetic interactions with random walks on biological networks. BMC Bioinformatics, $\mathbf{10}(1)$: 17.
- Christofori, G. and Semb, H. (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. *Trends in Biochemical Sciences*, **24**(2): 73 76.
- Ciriello, G., Gatza, M.L., Beck, A.H., Wilkerson, M.D., Rhie, S.K., Pastore, A., Zhang, H., McLellan, M., Yau, C., Kandoth, C., et al. (2015) Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 163(2): 506–519.
- Clark, M.J. (2004) Endogenous Regulator of G Protein Signaling Proteins Suppress G o-Dependent -Opioid Agonist-Mediated Adenylyl Cyclase Supersensitization.

 Journal of Pharmacology and Experimental Therapeutics, 310(1): 215–222.
- Clough, E. and Barrett, T. (2016) The Gene Expression Omnibus Database. *Methods Mol Biol*, **1418**: 93–110.
- Collingridge, D.S. (2013) A primer on quantitized data analysis and permutation testing. *Journal of Mixed Methods Research*, **7**(1): 81–97.
- Collins, F.S. and Barker, A.D. (2007) Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. *Sci Am*, **296**(3): 50–57.

- Collins, F.S., Morgan, M., and Patrinos, A. (2003) The Human Genome Project: lessons from large-scale biology. *Science*, **300**(5617): 286–290.
- Collisson, E., Campbell, J., Brooks, A., Berger, A., Lee, W., Chmielecki, J., Beer, D., Cope, L., Creighton, C., Danilova, L., et al. (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature, 511(7511): 543–550.
- Corcoran, R.B., Ebi, H., Turke, A.B., Coffee, E.M., Nishino, M., Cogdill, A.P., Brown, R.D., Della Pelle, P., Dias-Santagata, D., Hung, K.E., et al. (2012) Egfr-mediated reactivation of mapk signaling contributes to insensitivity of BRAF-mutant colorectal cancers to raf inhibition with vemurafenib. Cancer Discovery, 2(3): 227–235.
- Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L., Toufighi, K., Mostafavi, S., et al. (2010) The genetic landscape of a cell. Science, 327(5964): 425–31.
- Costanzo, M., Baryshnikova, A., Myers, C.L., Andrews, B., and Boone, C. (2011) Charting the genetic interaction map of a cell. *Curr Opin Biotechnol*, **22**(1): 66–74.
- Courtney, K.D., Corcoran, R.B., and Engelman, J.A. (2010) The PI3K pathway as drug target in human cancer. *J Clin Oncol*, **28**(6): 1075–1083.
- Creighton, C.J., Morgan, M., Gunaratne, P.H., Wheeler, D.A., Gibbs, R.A., Robertson, A., Chu, A., Beroukhim, R., Cibulskis, K., Signoretti, S., et al. (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499(7456): 43–49.
- Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M.R., et al. (2014) The Reactome pathway knowledge-base. Nucleic Acids Res, 42(database issue): D472D477.
- Crunkhorn, S. (2014) Cancer: Predicting synthetic lethal interactions. *Nat Rev Drug Discov*, **13**(11): 812.
- Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research. *InterJournal*, Complex Systems: 1695.
- Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., et al. (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403): 346–352.

- Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., and Shi, B. (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. *Am J Cancer Res*, **5**(10): 2929–2943.
- Davierwala, A.P., Haynes, J., Li, Z., Brost, R.L., Robinson, M.D., Yu, L., Mnaimneh, S., Ding, H., Zhu, H., Chen, Y., et al. (2005) The synthetic genetic interaction spectrum of essential genes. Nat Genet, 37(10): 1147–1152.
- De Leeuw, W.J., Berx, G., Vos, C.B., Peterse, J.L., Van de Vijver, M.J., Litvinov, S., Van Roy, F., Cornelisse, C.J., and Cleton-Jansen, A.M. (1997) Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. *J Pathol*, **183**(4): 404–11.
- Demir, E., Babur, O., Rodchenkov, I., Aksoy, B.A., Fukuda, K.I., Gross, B., Sumer, O.S., Bader, G.D., and Sander, C. (2013) Using biological pathway data with Paxtools. *PLoS Comput Biol*, **9**(9): e1003194.
- Deshpande, R., Asiedu, M.K., Klebig, M., Sutor, S., Kuzmin, E., Nelson, J., Piotrowski, J., Shin, S.H., Yoshida, M., Costanzo, M., et al. (2013) A comparative genomic approach for identifying synthetic lethal interactions in human cancer. Cancer Res, 73(20): 6128–36.
- Dickson, D. (1999) Wellcome funds cancer database. *Nature*, **401**(6755): 729.
- Dienstmann, R. and Tabernero, J. (2011) BRAF as a target for cancer therapy. Anticancer Agents Med Chem, $\mathbf{11}(3)$: 285–95.
- Dijkstra, E.W. (1959) A note on two problems in connexion with graphs. *Numerische Mathematik*, **1**(1): 269–271.
- Dixon, S.J., Andrews, B.J., and Boone, C. (2009) Exploring the conservation of synthetic lethal genetic interaction networks. *Commun Integr Biol*, **2**(2): 78–81.
- Dixon, S.J., Fedyshyn, Y., Koh, J.L., Prasad, T.S., Chahwan, C., Chua, G., Toufighi, K., Baryshnikova, A., Hayles, J., Hoe, K.L., et al. (2008) Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci U S A, 105(43): 16653–8.
- Dorogovtsev, S.N. and Mendes, J.F. (2003) Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press, USA.

- Dorsam, R.T. and Gutkind, J.S. (2007) G-protein-coupled receptors and cancer. *Nat Rev Cancer*, **7**(2): 79–94.
- Erdős, P. and Rényi, A. (1959) On random graphs I. Publ Math Debrecen, 6: 290–297.
- Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. In *Publ. Math. Inst. Hung. Acad. Sci.*, volume 5, 17–61.
- Eroles, P., Bosch, A., Perez-Fidalgo, J.A., and Lluch, A. (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. *Cancer Treat Rev*, **38**(6): 698–707.
- Ezkurdia, I., Juan, D., Rodriguez, J.M., Frankish, A., Diekhans, M., Harrow, J., Vazquez, J., Valencia, A., and Tress, M.L. (2014) Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. *Human Molecular Genetics*, **23**(22): 5866.
- Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. (2005) Targeting the dna repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035): 917–21.
- Fawcett, T. (2006) An introduction to ROC analysis. *Pattern Recognition Letters*, **27**(8): 861 874. {ROC} Analysis in Pattern Recognition.
- Fece de la Cruz, F., Gapp, B.V., and Nijman, S.M. (2015) Synthetic lethal vulnerabilities of cancer. *Annu Rev Pharmacol Toxicol*, **55**: 513–531.
- Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. *Int J Cancer*, **136**(5): E359–386.
- Fisher, R.A. (1919) Xv.the correlation between relatives on the supposition of mendelian inheritance. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, **52**(02): 399–433.
- Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O'Connor, M.J., et al. (2009) Inhibition of poly(adpribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med, 361(2): 123–34.

- Fong, P.C., Yap, T.A., Boss, D.S., Carden, C.P., Mergui-Roelvink, M., Gourley, C., De Greve, J., Lubinski, J., Shanley, S., Messiou, C., et al. (2010) Poly(adp)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol, 28(15): 2512–9.
- Forbes, S.A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., et al. (2015) COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res, 43(Database issue): D805–811.
- Fraser, A. (2004) Towards full employment: using RNAi to find roles for the redundant. Oncogene, 23(51): 8346–52.
- Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., and Stratton, M.R. (2004) A census of human cancer genes. *Nat Rev Cancer*, 4(3): 177–183.
- Futreal, P.A., Kasprzyk, A., Birney, E., Mullikin, J.C., Wooster, R., and Stratton, M.R. (2001) Cancer and genomics. *Nature*, **409**(6822): 850–852.
- Gao, B. and Roux, P.P. (2015) Translational control by oncogenic signaling pathways. Biochimica et Biophysica Acta, 1849(7): 753–65.
- Gatza, M.L., Kung, H.N., Blackwell, K.L., Dewhirst, M.W., Marks, J.R., and Chi, J.T. (2011) Analysis of tumor environmental response and oncogenic pathway activation identifies distinct basal and luminal features in HER2-related breast tumor subtypes. Breast Cancer Res, 13(3): R62.
- Gatza, M.L., Lucas, J.E., Barry, W.T., Kim, J.W., Wang, Q., Crawford, M.D., Datto, M.B., Kelley, M., Mathey-Prevot, B., Potti, A., et al. (2010) A pathway-based classification of human breast cancer. Proc Natl Acad Sci USA, 107(15): 6994–6999.
- Gatza, M.L., Silva, G.O., Parker, J.S., Fan, C., and Perou, C.M. (2014) An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer. *Nat Genet*, 46(10): 1051–1059.
- Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol, 5(10): R80.

- Genz, A. and Bretz, F. (2009) Computation of multivariate normal and t probabilities. In *Lecture Notes in Statistics*, volume 195. Springer-Verlag, Heidelberg.
- Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., and Hothorn, T. (2016) mvtnorm: Multivariate Normal and t Distributions. R package version 1.0-5. URL.
- Gilbert, W. and Maxam, A. (1973) The nucleotide sequence of the lac operator. *Proceedings of the National Academy of Sciences*, **70**(12): 3581–3584.
- Git, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., Bertone, P., and Caldas, C. (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA, 16(5): 991–1006.
- Globus (Globus) (2017) Research data management simplified. https://www.globus.org/. Accessed: 25/03/2017.
- Graziano, F., Humar, B., and Guilford, P. (2003) The role of the E-cadherin gene (*CDH1*) in diffuse gastric cancer susceptibility: from the laboratory to clinical practice. *Annals of Oncology*, **14**(12): 1705–1713.
- Güell, O., Sagus, F., and Serrano, M. (2014) Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis. *PLoS Comput Biol*, **10**(5): e1003637.
- Guilford, P. (1999) E-cadherin downregulation in cancer: fuel on the fire? *Molecular Medicine Today*, **5**(4): 172 177.
- Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., Taite, H., Scoular, R., Miller, A., and Reeve, A.E. (1998) E-cadherin germline mutations in familial gastric cancer. *Nature*, 392(6674): 402–5.
- Guilford, P., Humar, B., and Blair, V. (2010) Hereditary diffuse gastric cancer: translation of *CDH1* germline mutations into clinical practice. *Gastric Cancer*, **13**(1): 1–10.
- Guilford, P.J., Hopkins, J.B., Grady, W.M., Markowitz, S.D., Willis, J., Lynch, H., Rajput, A., Wiesner, G.L., Lindor, N.M., Burgart, L.J., et al. (1999) E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Hum Mutat, 14(3): 249–55.

- Guo, J., Liu, H., and Zheng, J. (2016) SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. *Nucleic Acids Res*, **44**(D1): D1011–1017.
- Hajian-Tilaki, K. (2013) Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med, 4(2): 627–635.
- Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I.H. (2009) The weka data mining software: an update. *SIGKDD Explor Newsl*, **11**(1): 10–18.
- Hammerman, P.S., Lawrence, M.S., Voet, D., Jing, R., Cibulskis, K., Sivachenko, A., Stojanov, P., McKenna, A., Lander, E.S., Gabriel, S., et al. (2012) Comprehensive genomic characterization of squamous cell lung cancers. *Nature*, **489**(7417): 519–525.
- Han, J.D.J., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F., Zhang, L.V., Dupuy, D., Walhout, A.J.M., Cusick, M.E., Roth, F.P., et al. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 430(6995): 88–93.
- Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100(1): 57–70.
- Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. *Cell*, **144**(5): 646–674.
- Hanna, S. (2003) Cancer incidence in new zealand (2003-2007). In D. Forman, D. Bray
 F Brewster, C. Gombe Mbalawa, B. Kohler, M. Piñeros, E. Steliarova-Foucher,
 R. Swaminathan, and J. Ferlay (editors), Cancer Incidence in Five Continents,
 volume X, 902-907. International Agency for Research on Cancer, Lyon, France.
 Electronic version http://ci5.iarc.fr Accessed 22/03/2017.
- Heiskanen, M., Bian, X., Swan, D., and Basu, A. (2014) caArray microarray database in the cancer biomedical informatics gridTM (caBIGTM). Cancer Research, **67**(9 Supplement): 3712–3712.
- Heiskanen, M.A. and Aittokallio, T. (2012) Mining high-throughput screens for cancer drug targets-lessons from yeast chemical-genomic profiling and synthetic lethality. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(3): 263–272.

- Hell, P. (1976) Graphs with given neighbourhoods i. problémes combinatorics at theorie des graphes. *Proc Coil Int CNRS*, *Orsay*, **260**: 219–223.
- Herschkowitz, J.I., Simin, K., Weigman, V.J., Mikaelian, I., Usary, J., Hu, Z., Rasmussen, K.E., Jones, L.P., Assefnia, S., Chandrasekharan, S., et al. (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol, 8(5): R76.
- Hillenmeyer, M.E. (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. *Science*, **320**: 362–365.
- Hoadley, K.A., Yau, C., Wolf, D.M., Cherniack, A.D., Tamborero, D., Ng, S., Leiserson, M.D., Niu, B., McLellan, M.D., Uzunangelov, V., et al. (2014) Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell, 158(4): 929–944.
- Hoehndorf, R., Hardy, N.W., Osumi-Sutherland, D., Tweedie, S., Schofield, P.N., and Gkoutos, G.V. (2013) Systematic analysis of experimental phenotype data reveals gene functions. *PLoS ONE*, **8**(4): e60847.
- Holm, S. (1979) A simple sequentially rejective multiple test procedure. *Scandinavian Journal of Statistics*, **6**(2): 65–70.
- Holme, P. and Kim, B.J. (2002) Growing scale-free networks with tunable clustering. *Physical Review E*, **65**(2): 026107.
- Hopkins, A.L. (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol, 4(11): 682–690.
- Hu, Z., Fan, C., Oh, D.S., Marron, J.S., He, X., Qaqish, B.F., Livasy, C., Carey, L.A., Reynolds, E., Dressler, L., et al. (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics, 7: 96.
- Huang, E., Cheng, S., Dressman, H., Pittman, J., Tsou, M., Horng, C., Bild, A., Iversen, E., Liao, M., Chen, C., et al. (2003) Gene expression predictors of breast cancer outcomes. Lancet, 361: 1590–1596.
- Illumina, Inc (Illumina) (2017) Sequencing and array-based solutions for genetic research. https://www.illumina.com/. Accessed: 26/03/2017.

- International HapMap 3 Consortium (HapMap) (2003) The International HapMap Project. *Nature*, **426**(6968): 789–796.
- Internation Human Genome Sequencing Consortium (IHGSC) (2004) Finishing the euchromatic sequence of the human genome. *Nature*, **431**(7011): 931–945.
- Jerby-Arnon, L., Pfetzer, N., Waldman, Y., McGarry, L., James, D., Shanks, E., Seashore-Ludlow, B., Weinstock, A., Geiger, T., Clemons, P., et al. (2014) Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell, 158(5): 1199–1209.
- Joachims, T. (1999) Making large-scale support vector machine learning practical. In S. Bernhard, lkopf, J.C.B. Christopher, and J.S. Alexander (editors), Advances in kernel methods, 169–184. MIT Press.
- Ju, Z., Liu, W., Roebuck, P.L., Siwak, D.R., Zhang, N., Lu, Y., Davies, M.A., Akbani, R., Weinstein, J.N., Mills, G.B., et al. (2015) Development of a robust classifier for quality control of reverse-phase protein arrays. Bioinformatics, 31(6): 912.
- Kaelin, Jr, W. (2005) The concept of synthetic lethality in the context of anticancer therapy. *Nat Rev Cancer*, **5**(9): 689–98.
- Kaelin, Jr, W. (2009) Synthetic lethality: a framework for the development of wiser cancer therapeutics. *Genome Med*, **1**: 99.
- Kakiuchi, M., Nishizawa, T., Ueda, H., Gotoh, K., Tanaka, A., Hayashi, A., Yamamoto, S., Tatsuno, K., Katoh, H., Watanabe, Y., et al. (2014) Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet, 46(6): 583–587.
- Kamada, T. and Kawai, S. (1989) An algorithm for drawing general undirected graphs. *Information Processing Letters*, **31**(1): 7–15.
- Kandoth, C., Schultz, N., Cherniack, A.D., Akbani, R., Liu, Y., Shen, H., Robertson, A.G., Pashtan, I., Shen, R., Benz, C.C., et al. (2013) Integrated genomic characterization of endometrial carcinoma. Nature, 497(7447): 67–73.
- Kawai, J., Shinagawa, A., Shibata, K., Yoshino, M., Itoh, M., Ishii, Y., Arakawa, T., Hara, A., Fukunishi, Y., Konno, H., et al. (2001) Functional annotation of a full-length mouse cDNA collection. Nature, 409(6821): 685–690.

- Kelley, R. and Ideker, T. (2005) Systematic interpretation of genetic interactions using protein networks. *Nat Biotech*, **23**(5): 561–566.
- Kelly, S., Chen, A., Guilford, P., and Black, M. (2017a) Synthetic lethal interaction prediction of target pathways in E-cadherin deficient breast cancers. Submitted to BMC Genomics.
- Kelly, S.T. (2013) Statistical Predictions of Synthetic Lethal Interactions in Cancer. Dissertation, University of Otago.
- Kelly, S.T., Single, A.B., Telford, B.J., Beetham, H.G., Godwin, T.D., Chen, A., Black, M.A., and Guilford, P.J. (2017b) Towards HDGC chemoprevention: vulnerabilities in E-cadherin-negative cells identified by genome-wide interrogation of isogenic cell lines and whole tumors. Submitted to Cancer Prev Res.
- Kozlov, K.N., Gursky, V.V., Kulakovskiy, I.V., and Samsonova, M.G. (2015) Sequence-based model of gap gene regulation network. *BMC Genomics*, **15**(Suppl 12): S6.
- Kranthi, S., Rao, S., and Manimaran, P. (2013) Identification of synthetic lethal pairs in biological systems through network information centrality. *Mol BioSyst*, **9**(8): 2163–2167.
- Lander, E.S. (2011) Initial impact of the sequencing of the human genome. *Nature*, **470**(7333): 187–197.
- Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001) Initial sequencing and analysis of the human genome. *Nature*, **409**(6822): 860–921.
- Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol*, **10**(3): R25.
- Latora, V. and Marchiori, M. (2001) Efficient behavior of small-world networks. *Phys Rev Lett*, **87**: 198701.
- Laufer, C., Fischer, B., Billmann, M., Huber, W., and Boutros, M. (2013) Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping. *Nat Methods*, **10**(5): 427–31.

- Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. *Genome Biol*, **15**(2): R29.
- Lawrence, M.S., Sougnez, C., Lichtenstein, L., Cibulskis, K., Lander, E., Gabriel, S.B., Getz, G., Ally, A., Balasundaram, M., Birol, I., et al. (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 517(7536): 576–582.
- Le Meur, N. and Gentleman, R. (2008) Modeling synthetic lethality. *Genome Biol*, **9**(9): R135.
- Le Meur, N., Jiang, Z., Liu, T., Mar, J., and Gentleman, R.C. (2014) Slgi: Synthetic lethal genetic interaction. r package version 1.26.0.
- Lee, A.Y., Perreault, R., Harel, S., Boulier, E.L., Suderman, M., Hallett, M., and Jenna, S. (2010a) Searching for signaling balance through the identification of genetic interactors of the rab guanine-nucleotide dissociation inhibitor gdi-1. *PLoS ONE*, **5**(5): e10624.
- Lee, I., Lehner, B., Vavouri, T., Shin, J., Fraser, A.G., and Marcotte, E.M. (2010b) Predicting genetic modifier loci using functional gene networks. *Genome Research*, **20**(8): 1143–1153.
- Lee, I. and Marcotte, E.M. (2009) Effects of functional bias on supervised learning of a gene network model. *Methods Mol Biol*, **541**: 463–75.
- Lee, M.J., Ye, A.S., Gardino, A.K., Heijink, A.M., Sorger, P.K., MacBeath, G., and Yaffe, M.B. (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. *Cell*, **149**(4): 780–94.
- Lehner, B., Crombie, C., Tischler, J., Fortunato, A., and Fraser, A.G. (2006) Systematic mapping of genetic interactions in caenorhabditis elegans identifies common modifiers of diverse signaling pathways. *Nat Genet*, **38**(8): 896–903.
- Li, X.J., Mishra, S.K., Wu, M., Zhang, F., and Zheng, J. (2014) Syn-lethality: An integrative knowledge base of synthetic lethality towards discovery of selective anticancer therapies. *Biomed Res Int*, **2014**: 196034.
- Linehan, W.M., Spellman, P.T., Ricketts, C.J., Creighton, C.J., Fei, S.S., Davis, C., Wheeler, D.A., Murray, B.A., Schmidt, L., Vocke, C.D., et al. (2016) Comprehen-

- sive Molecular Characterization of Papillary Renal-Cell Carcinoma. N Engl J Med, 374(2): 135-145.
- Lokody, I. (2014) Computational modelling: A computational crystal ball. *Nature Reviews Cancer*, **14**(10): 649–649.
- Lord, C.J., Tutt, A.N., and Ashworth, A. (2015) Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. *Annu Rev Med*, **66**: 455–470.
- Lu, X., Kensche, P.R., Huynen, M.A., and Notebaart, R.A. (2013) Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets. *Nat Commun*, 4: 2124.
- Lu, X., Megchelenbrink, W., Notebaart, R.A., and Huynen, M.A. (2015) Predicting human genetic interactions from cancer genome evolution. *PLoS One*, **10**(5): e0125795.
- Lum, P.Y., Armour, C.D., Stepaniants, S.B., Cavet, G., Wolf, M.K., Butler, J.S., Hinshaw, J.C., Garnier, P., Prestwich, G.D., Leonardson, A., et al. (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell, 116(1): 121–137.
- Luo, J., Solimini, N.L., and Elledge, S.J. (2009) Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction. *Cell*, **136**(5): 823–837.
- Machado, J., Olivera, C., Carvalh, R., Soares, P., Berx, G., Caldas, C., Sercuca, R., Carneiro, F., and Sorbrinho-Simoes, M. (2001) E-cadherin gene (*CDH1*) promoter methylation as the second hit in sporadic diffuse gastric carcinoma. *Oncogene*, **20**: 1525–1528.
- Masciari, S., Larsson, N., Senz, J., Boyd, N., Kaurah, P., Kandel, M.J., Harris, L.N., Pinheiro, H.C., Troussard, A., Miron, P., et al. (2007) Germline E-cadherin mutations in familial lobular breast cancer. J Med Genet, 44(11): 726–31.
- Mattison, J., van der Weyden, L., Hubbard, T., and Adams, D.J. (2009) Cancer gene discovery in mouse and man. *Biochim Biophys Acta*, **1796**(2): 140–161.
- Maxam, A.M. and Gilbert, W. (1977) A new method for sequencing DNA. *Proceedings* of the National Academy of Science, **74**(2): 560–564.

- McCourt, C.M., McArt, D.G., Mills, K., Catherwood, M.A., Maxwell, P., Waugh, D.J., Hamilton, P., O'Sullivan, J.M., and Salto-Tellez, M. (2013) Validation of next generation sequencing technologies in comparison to current diagnostic gold standards for BRAF, EGFR and KRAS mutational analysis. *PLoS ONE*, 8(7): e69604.
- McLachlan, J., George, A., and Banerjee, S. (2016) The current status of parp inhibitors in ovarian cancer. *Tumori*, **102**(5): 433–440.
- McLendon, R., Friedman, A., Bigner, D., Van Meir, E.G., Brat, D.J., Mastrogianakis, G.M., Olson, J.J., Mikkelsen, T., Lehman, N., Aldape, K., et al. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216): 1061–1068.
- Miles, D.W. (2001) Update on HER-2 as a target for cancer therapy: herceptin in the clinical setting. *Breast Cancer Res*, **3**(6): 380–384.
- Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat Methods*, **5**(7): 621–628.
- Muzny, D.M., Bainbridge, M.N., Chang, K., Dinh, H.H., Drummond, J.A., Fowler, G., Kovar, C.L., Lewis, L.R., Morgan, M.B., Newsham, I.F., et al. (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407): 330–337.
- Nagalla, S., Chou, J.W., Willingham, M.C., Ruiz, J., Vaughn, J.P., Dubey, P., Lash, T.L., Hamilton-Dutoit, S.J., Bergh, J., Sotiriou, C., et al. (2013) Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol, 14(4): R34.
- Neeley, E.S., Kornblau, S.M., Coombes, K.R., and Baggerly, K.A. (2009) Variable slope normalization of reverse phase protein arrays. *Bioinformatics*, **25**(11): 1384.
- Novomestky, F. (2012) matrixcalc: Collection of functions for matrix calculations. R package version 1.0-3.
- Oliveira, C., Senz, J., Kaurah, P., Pinheiro, H., Sanges, R., Haegert, A., Corso, G., Schouten, J., Fitzgerald, R., Vogelsang, H., et al. (2009) Germline CDH1 deletions in hereditary diffuse gastric cancer families. Human Molecular Genetics, 18(9): 1545–1555.

- Oliveira, C., Seruca, R., Hoogerbrugge, N., Ligtenberg, M., and Carneiro, F. (2013) Clinical utility gene card for: Hereditary diffuse gastric cancer (HDGC). Eur J Hum Genet, 21(8).
- Pandey, G., Zhang, B., Chang, A.N., Myers, C.L., Zhu, J., Kumar, V., and Schadt, E.E. (2010) An integrative multi-network and multi-classifier approach to predict genetic interactions. *PLoS Comput Biol*, **6**(9).
- Parker, J., Mullins, M., Cheung, M., Leung, S., Voduc, D., Vickery, T., Davies, S., Fauron, C., He, X., Hu, Z., et al. (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. *Journal of Clinical Oncology*, 27(8): 1160–1167.
- Peltonen, L. and McKusick, V.A. (2001) Genomics and medicine. Dissecting human disease in the postgenomic era. *Science*, **291**(5507): 1224–1229.
- Pereira, B., Chin, S.F., Rueda, O.M., Vollan, H.K., Provenzano, E., Bardwell, H.A., Pugh, M., Jones, L., Russell, R., Sammut, S.J., et al. (2016) Erratum: The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun, 7: 11908.
- Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., et al. (2000) Molecular portraits of human breast tumours. Nature, 406(6797): 747–752.
- Pleasance, E.D., Cheetham, R.K., Stephens, P.J., McBride, D.J., Humphray, S.J., Greenman, C.D., Varela, I., Lin, M.L., Ordonez, G.R., Bignell, G.R., et al. (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278): 191–196.
- Polyak, K. and Weinberg, R.A. (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. *Nat Rev Cancer*, **9**(4): 265–73.
- Prahallad, A., Sun, C., Huang, S., Di Nicolantonio, F., Salazar, R., Zecchin, D., Beijersbergen, R.L., Bardelli, A., and Bernards, R. (2012) Unresponsiveness of colon cancer to *BRAF* (v600e) inhibition through feedback activation of egfr. *Nature*, **483**(7387): 100–3.
- R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R version 3.3.2.

- Ravnan, M.C. and Matalka, M.S. (2012) Vemurafenib in patients with *BRAF* v600e mutation-positive advanced melanoma. *Clin Ther*, **34**(7): 1474–86.
- Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Research*, **43**(7): e47.
- Robin, J.D., Ludlow, A.T., LaRanger, R., Wright, W.E., and Shay, J.W. (2016) Comparison of DNA Quantification Methods for Next Generation Sequencing. *Sci Rep*, 6: 24067.
- Robinson, M.D. and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. *Genome Biol*, **11**(3): R25.
- Roguev, A., Bandyopadhyay, S., Zofall, M., Zhang, K., Fischer, T., Collins, S.R., Qu, H., Shales, M., Park, H.O., Hayles, J., et al. (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science, **322**(5900): 405–10.
- Rung, J. and Brazma, A. (2013) Reuse of public genome-wide gene expression data. Nat Rev Genet, 14(2): 89–99.
- Rustici, G., Kolesnikov, N., Brandizi, M., Burdett, T., Dylag, M., Emam, I., Farne, A., Hastings, E., Ison, J., Keays, M., et al. (2013) ArrayExpress update—trends in database growth and links to data analysis tools. Nucleic Acids Res, 41(Database issue): D987–990.
- Ryan, C., Lord, C., and Ashworth, A. (2014) Daisy: Picking synthetic lethals from cancer genomes. *Cancer Cell*, **26**(3): 306–308.
- Sander, J.D. and Joung, J.K. (2014) Crispr-cas systems for editing, regulating and targeting genomes. *Nat Biotechnol*, **32**(4): 347–55.
- Sanger, F. and Coulson, A. (1975) A rapid method for determining sequences in dna by primed synthesis with dna polymerase. *Journal of Molecular Biology*, **94**(3): 441 448.
- Scheuer, L., Kauff, N., Robson, M., Kelly, B., Barakat, R., Satagopan, J., Ellis, N., Hensley, M., Boyd, J., Borgen, P., et al. (2002) Outcome of preventive surgery and screening for breast and ovarian cancer in BRCA mutation carriers. *J Clin Oncol*, **20**(5): 1260–1268.

- Semb, H. and Christofori, G. (1998) The tumor-suppressor function of E-cadherin. *Am J Hum Genet*, **63**(6): 1588–93.
- Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005) Rocr: visualizing classifier performance in r. *Bioinformatics*, **21**(20): 7881.
- Slurm development team (Slurm) (2017) Slurm workload manager. https://slurm.schedmd.com/. Accessed: 25/03/2017.
- Sørlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. *Proc Natl Acad Sci USA*, **98**(19): 10869–10874.
- Stajich, J.E. and Lapp, H. (2006) Open source tools and toolkits for bioinformatics: significance, and where are we? *Brief Bioinformatics*, **7**(3): 287–296.
- Stratton, M.R., Campbell, P.J., and Futreal, P.A. (2009) The cancer genome. *Nature*, **458**(7239): 719–724.
- Ström, C. and Helleday, T. (2012) Strategies for the use of poly(adenosine diphosphate ribose) polymerase (parp) inhibitors in cancer therapy. *Biomolecules*, **2**(4): 635–649.
- Sun, C., Wang, L., Huang, S., Heynen, G.J.J.E., Prahallad, A., Robert, C., Haanen, J., Blank, C., Wesseling, J., Willems, S.M., et al. (2014) Reversible and adaptive resistance to BRAF(v600e) inhibition in melanoma. Nature, **508**(7494): 118–122.
- Taylor, I.W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D., Bull, S., Pawson, T., Morris, Q., and Wrana, J.L. (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. *Nat Biotechnol*, 27(2): 199–204.
- Telford, B.J., Chen, A., Beetham, H., Frick, J., Brew, T.P., Gould, C.M., Single, A., Godwin, T., Simpson, K.J., and Guilford, P. (2015) Synthetic lethal screens identify vulnerabilities in gpcr signalling and cytoskeletal organization in E-cadherin-deficient cells. *Mol Cancer Ther*, **14**(5): 1213–1223.
- The 1000 Genomes Project Consortium (1000 Genomes) (2010) A map of human genome variation from population-scale sequencing. *Nature*, **467**(7319): 1061–1073.

- The Cancer Genome Atlas Research Network (TCGA) (2012) Comprehensive molecular portraits of human breast tumours. *Nature*, **490**(7418): 61–70.
- The Cancer Genome Atlas Research Network (TCGA) (2017a) The Cancer Genome Atlas Project. https://cancergenome.nih.gov/. Accessed: 26/03/2017.
- The Cancer Genome Atlas Research Network (TCGA) (2017b) The Cancer Genome Atlas Project Data Portal. https://tcga-data.nci.nih.gov/. Accessed: 06/02/2017 (via cBioPortal.
- The Cancer Society of New Zealand (Cancer Society of NZ) (2017) What is cancer? https://otago-southland.cancernz.org.nz/en/cancer-information/other-links/what-is-cancer-3/. Accessed: 22/03/2017.
- The Catalogue Of Somatic Mutations In Cancer (COSMIC) (2016) Cosmic: The catalogue of somatic mutations in cancer. http://cancer.sanger.ac.uk/cosmic. Release 79 (23/08/2016), Accessed: 05/02/2017.
- The Comprehensive R Archive Network (CRAN) (2017) Cran. https://cran.r-project.org/. Accessed: 24/03/2017.
- The ENCODE Project Consortium (ENCODE) (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. *Science*, **306**(5696): 636–640.
- The Internation Cancer Genome Consortium (ICGC) (2017) ICGC Data Portal. https://dcc.icgc.org/. Accessed: 06/02/2017.
- The National Cancer Institute (NCI) (2015) The genetics of cancer. https://www.cancer.gov/about-cancer/causes-prevention/genetics. Published: 22/04/2015, Accessed: 22/03/2017.
- The New Zealand eScience Infrastructure (NeSI) (2017) NeSI. https://www.nesi.org.nz/. Accessed: 25/03/2017.
- The Pharmaceutical Management Agency (PHARMAC) (2016) Approval of multiproduct funding proposal with roche.
- Tierney, L., Rossini, A.J., Li, N., and Sevcikova, H. (2015) snow: Simple Network of Workstations. R package version 0.4-2.

- Tiong, K.L., Chang, K.C., Yeh, K.T., Liu, T.Y., Wu, J.H., Hsieh, P.H., Lin, S.H., Lai, W.Y., Hsu, Y.C., Chen, J.Y., et al. (2014) Csnk1e/ctnnb1 are synthetic lethal to tp53 in colorectal cancer and are markers for prognosis. Neoplasia, 16(5): 441–50.
- Tischler, J., Lehner, B., and Fraser, A.G. (2008) Evolutionary plasticity of genetic interaction networks. *Nat Genet*, **40**(4): 390–391.
- Tomasetti, C. and Vogelstein, B. (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. *Science*, **347**(6217): 78–81.
- Tong, A.H., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C.W., Bussey, H., et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science, 294(5550): 2364–8.
- Tong, A.H., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., et al. (2004) Global mapping of the yeast genetic interaction network. Science, 303(5659): 808–13.
- Travers, J. and Milgram, S. (1969) An experimental study of the small world problem. Sociometry, **32**(4): 425–443.
- Tsai, H.C., Li, H., Van Neste, L., Cai, Y., Robert, C., Rassool, F.V., Shin, J.J., Harbom, K.M., Beaty, R., Pappou, E., et al. (2012) Transient low doses of dnademethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell, 21(3): 430–46.
- Tutt, A., Robson, M., Garber, J.E., Domchek, S.M., Audeh, M.W., Weitzel, J.N., Friedlander, M., Arun, B., Loman, N., Schmutzler, R.K., et al. (2010) Oral poly(adpribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet, 376(9737): 235–44.
- van der Meer, R., Song, H.Y., Park, S.H., Abdulkadir, S.A., and Roh, M. (2014) RNAi screen identifies a synthetic lethal interaction between PIM1 overexpression and PLK1 inhibition. *Clinical Cancer Research*, **20**(12): 3211–3221.
- van Steen, K. (2012) Travelling the world of genegene interactions. *Briefings in Bioinformatics*, **13**(1): 1–19.
- van Steen, M. (2010) Graph Theory and Complex Networks: An Introduction. Maarten van Steen, VU Amsterdam.

- Vapnik, V.N. (1995) The nature of statistical learning theory. Springer-Verlag New York, Inc.
- Vargas, J.J., Gusella, G., Najfeld, V., Klotman, M., and Cara, A. (2004) Novel integrase-defective lentiviral episomal vectors for gene transfer. *Hum Gene Ther*, 15: 361–372.
- Vizeacoumar, F.J., Arnold, R., Vizeacoumar, F.S., Chandrashekhar, M., Buzina, A., Young, J.T., Kwan, J.H., Sayad, A., Mero, P., Lawo, S., et al. (2013) A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Mol Syst Biol, 9: 696.
- Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., and Kinzler, K.W. (2013) Cancer genome landscapes. *Science*, **339**(6127): 1546–1558.
- Vos, C.B., Cleton-Jansen, A.M., Berx, G., de Leeuw, W.J., ter Haar, N.T., van Roy, F., Cornelisse, C.J., Peterse, J.L., and van de Vijver, M.J. (1997) E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer, 76(9): 1131–3.
- Wang, K., Singh, D., Zeng, Z., Coleman, S.J., Huang, Y., Savich, G.L., He, X., Mieczkowski, P., Grimm, S.A., Perou, C.M., et al. (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res, 38(18): e178.
- Wang, K., Yuen, S.T., Xu, J., Lee, S.P., Yan, H.H., Shi, S.T., Siu, H.C., Deng, S., Chu, K.M., Law, S., et al. (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet, 46(6): 573–582.
- Wang, X. and Simon, R. (2013) Identification of potential synthetic lethal genes to p53 using a computational biology approach. *BMC Medical Genomics*, **6**(1): 30.
- Wappett, M. (2014) Bisep: Toolkit to identify candidate synthetic lethality. r package version 2.0.
- Wappett, M., Dulak, A., Yang, Z.R., Al-Watban, A., Bradford, J.R., and Dry, J.R. (2016) Multi-omic measurement of mutually exclusive loss-of-function enriches for candidate synthetic lethal gene pairs. BMC Genomics, 17: 65.

- Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W.H.A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., et al. (2015) gplots: Various R Programming Tools for Plotting Data. R package version 2.17.0.
- Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of 'small-world' networks. Nature, **393**(6684): 440–2.
- Weinstein, I.B. (2000) Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. *Carcinogenesis*, **21**(5): 857–864.
- Weinstein, J.N., Akbani, R., Broom, B.M., Wang, W., Verhaak, R.G., McConkey, D., Lerner, S., Morgan, M., Creighton, C.J., Smith, C., et al. (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature, 507(7492): 315–322.
- Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R., Ozenberger, B.A., Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M., Chang, K., et al. (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet, 45(10): 1113–1120.
- Wickham, H. and Chang, W. (2016) devtools: Tools to Make Developing R Packages Easier. R package version 1.12.0.
- Wickham, H., Danenberg, P., and Eugster, M. (2017) roxygen2: In-Line Documentation for R. R package version 6.0.1.
- Wong, S.L., Zhang, L.V., Tong, A.H.Y., Li, Z., Goldberg, D.S., King, O.D., Lesage, G., Vidal, M., Andrews, B., Bussey, H., et al. (2004) Combining biological networks to predict genetic interactions. Proceedings of the National Academy of Sciences of the United States of America, 101(44): 15682–15687.
- World Health Organization (WHO) (2017) Fact sheet: Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/. Updated February 2017, Accessed: 22/03/2017.
- Wu, M., Li, X., Zhang, F., Li, X., Kwoh, C.K., and Zheng, J. (2014) In silico prediction of synthetic lethality by meta-analysis of genetic interactions, functions, and pathways in yeast and human cancer. *Cancer Inform*, **13**(Suppl 3): 71–80.
- Yu, H. (2002) Rmpi: Parallel statistical computing in r. R News, 2(2): 10–14.

- Zhang, F., Wu, M., Li, X.J., Li, X.L., Kwoh, C.K., and Zheng, J. (2015) Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates. *J Bioinform Comput Biol*, **13**(3): 1541002.
- Zhang, J., Baran, J., Cros, A., Guberman, J.M., Haider, S., Hsu, J., Liang, Y., Rivkin, E., Wang, J., Whitty, B., et al. (2011) International cancer genome consortium data portala one-stop shop for cancer genomics data. Database: The Journal of Biological Databases and Curation, 2011: bar026.
- Zhong, W. and Sternberg, P.W. (2006) Genome-wide prediction of c. elegans genetic interactions. *Science*, **311**(5766): 1481–1484.
- Zweig, M.H. and Campbell, G. (1993) Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. *Clinical Chemistry*, **39**(4): 561–577.

Appendix C

Mutation Analysis in Breast Cancer

C.1 Synthetic Lethal Genes and Pathways

SLIPT expression analysis (described in Section 3.1) on TCGA breast cancer data (n = 969) found the following genes and pathways, described in sections 4.1 and 4.1.1.

Table C.1: Candidate synthetic lethal gene partners of $\mathit{CDH1}$ from mtSLIPT

Gene	Observed	Expected	χ^2 value	p-value	p-value (FDR)
TFAP2B	8	36.7	89.5	3.60×10^{-20}	8.37×10^{-17}
ZNF423	15	36.7	78.8	7.89×10^{-18}	1.22×10^{-14}
CALCOCO1	11	36.7	76.8	2.09×10^{-17}	2.59×10^{-14}
RBM5	13	36.7	75.7	3.65×10^{-17}	4.00×10^{-14}
BTG2	7	36.7	71.7	2.72×10^{-16}	1.81×10^{-13}
RXRA	6	36.7	70.5	5.00×10^{-16}	2.97×10^{-13}
SLC27A1	11	36.7	70.3	5.42×10^{-16}	2.97×10^{-13}
MEF2D	12	36.7	69.6	7.86×10^{-16}	3.95×10^{-13}
NISCH	12	36.7	69.6	7.86×10^{-16}	3.95×10^{-13}
AVPR2	9	36.7	69.2	9.36×10^{-16}	4.58×10^{-13}
CRY2	13	36.7	68.9	1.07×10^{-15}	4.98×10^{-13}
RAPGEF3	13	36.7	68.9	1.07×10^{-15}	4.98×10^{-13}
NRIP2	10	36.7	68.2	1.58×10^{-15}	7.18×10^{-13}
DARC	12	36.7	66.4	3.76×10^{-15}	1.54×10^{-12}
SFRS5	12	36.7	66.4	3.76×10^{-15}	1.54×10^{-12}
NOSTRIN	5	36.7	65.1	7.40×10^{-15}	2.70×10^{-12}
KIF13B	12	36.7	63.4	1.69×10^{-14}	5.16×10^{-12}
TENC1	10	36.7	62.5	2.67×10^{-14}	7.40×10^{-12}
MFAP4	12	36.7	60.5	7.17×10^{-14}	1.67×10^{-11}
ELN	13	36.7	59.7	1.07×10^{-13}	2.32×10^{-11}
SGK223	14	36.7	59	1.51×10^{-13}	3.05×10^{-11}
KIF12	11	36.7	58.8	1.74×10^{-13}	3.34×10^{-11}
SELP	11	36.7	58.8	1.74×10^{-13}	3.34×10^{-11}
CIRBP	9	36.7	58.7	1.83×10^{-13}	3.41×10^{-11}
CTDSP1	9	36.7	58.7	1.83×10^{-13}	3.41×10^{-11}

Strongest candidate SL partners for CDH1 by mtSLIPT with observed and expected numbers of CDH1 mutant The Cancer Genome Atlas (TCGA) breast tumours with low expression of partner genes.

Table C.2: Pathways for CDH1 partners from mtSLIPT

Pathways Over-represented	Pathway Size	SL Genes	p-value (FDR)
Eukaryotic Translation Elongation	86	60	2.0×10^{-128}
Peptide chain elongation	83	59	2.0×10^{-128}
Eukaryotic Translation Termination	83	58	2.3×10^{-125}
Viral mRNA Translation	81	57	2.5×10^{-124}
Nonsense Mediated Decay independent of the Exon Junction Complex	88	59	8.6×10^{-124}
Nonsense-Mediated Decay	103	61	5.2×10^{-117}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	103	61	5.2×10^{-117}
Formation of a pool of free 40S subunits	93	58	1.6×10^{-116}
L13a-mediated translational silencing of Ceruloplasmin expression	103	59	1.3×10^{-111}
3' -UTR-mediated translational regulation	103	59	1.3×10^{-111}
GTP hydrolysis and joining of the 60S ribosomal subunit	104	59	6.2×10^{-111}
SRP-dependent cotranslational protein targeting to membrane	104	58	2.9×10^{-108}
Eukaryotic Translation Initiation	111	59	3.0×10^{-106}
Cap-dependent Translation Initiation	111	59	3.0×10^{-106}
Influenza Viral RNA Transcription and Replication	108	57	5.1×10^{-103}
Influenza Infection	117	59	1.5×10^{-102}
Translation	141	64	3.7×10^{-101}
Influenza Life Cycle	112	57	1.4×10^{-100}
GPCR downstream signalling	472	116	1.0×10^{-80}
Hemostasis	422	105	1.4×10^{-78}

Gene set over-representation analysis (hypergeometric test) for Reactome pathways in mtSLIPT partners for CDH1.

The genes and pathways identified in Tables C.1 and C.2 were derived from comparing the expression profiles of potential partners to the mutation status of *CDH1* (as shown in Figure 3.2). Thus the following analysis is only limited the samples for which TCGA provides both expression and somatic mutation data.

C.2 Synthetic Lethal Expression Profiles

Similar to the analysis of synthetic lethal partners against low *CDH1* expression in 4.1.2, the partners detected from *CDH1* mutation were also examined for their expression profiles and the pathway composition of gene clusters. Hierachical clustering was performed on mtSLIPT partners for *CDH1* as showing in Figure C.1. Overrepresentation for Reactome pathways for each of the gene clusters identified is given in Table C.3.

Figure C.1: Synthetic lethal expression profiles of analysed samples. Gene expression profile heatmap (correlation distance) of all samples (separated by CDH1 somatic mutation status) analysed in TCGA breast cancer dataset for gene expression of 3,743 candidate partners of E-cadherin (CDH1) from mtSLIPT prediction (with significant FDR adjusted p < 0.05). Deeply clustered, inter-correlated genes form several main groups, each containing genes that were SL candidates or toxic in an siRNA screen Telford $et\ al.\ (2015)$. Clusters had different sample groups highly expressing the synthetic lethal candidates in CDH1 mutant samples and often lowly expressing CDH1 wildtype samples (which were not tested for), although many of the CDH1 mutant samples had among the lowest CDH1 expression. In contrast to the expression analysis the (predominantly CDH1 wildtype) basal subtype and estrogen receptor negative samples have depleted expression among most candidate synthetic lethal partners.

Table C.3: Pathway composition for clusters of $\mathit{CDH1}$ partners from mtSLIPT

Pathways Over-represented in Cluster 1	Pathway Size	Cluster Genes	p-value (FDR)
Olfactory Signalling Pathway	57	8	7.1×10^{-9}
Assembly of the primary cilium	149	14	8.0×10^{-9}
Sphingolipid metabolism	62	8	9.6×10^{-9}
Signalling by ERBB4	133	12	5.1×10^{-8}
PI3K Cascade	65	7	4.9×10^{-7}
Circadian Clock	33	5	4.9×10^{-7}
Nuclear signalling by ERBB4	34	5	4.9×10^{-7}
Intraflagellar transport	35	5	4.9×10^{-7}
PI3K events in ERBB4 signalling PIP3 activates AKT signalling	87 87	8	4.9×10^{-7} 4.9×10^{-7}
PI3K events in ERBB2 signalling	87	8	4.9×10^{-7}
PI-3K cascade:FGFR1	87	8	4.9×10^{-7}
PI-3K cascade:FGFR2	87	8	4.9×10^{-7}
PI-3K cascade:FGFR3	87	8	4.9×10^{-7}
PI-3K cascade:FGFR4	87	8	4.9×10^{-7}
Deadenylation of mRNA	22	4	5.6×10^{-7}
PI3K/AKT activation	90	8	5.6×10^{-7}
Cargo trafficking to the periciliary membrane	38	5	5.6×10^{-7}
Pathways Over-represented in Cluster 2	Pathway Size	Cluster Genes	p-value (FDR)
$G_{\alpha s}$ signalling events	83	19	5.1×10^{-25}
Extracellular matrix organization	238	30	1.4×10^{-18}
Hemostasis	422	46	2.7×10^{-16}
Aquaporin-mediated transport	32	9	2.7×10^{-16}
Transcriptional regulation of white adipocyte differentiation	56	11	1.7×10^{-15}
Degradation of the extracellular matrix	102	15	1.7×10^{-15}
Integration of energy metabolism	84	13	8.8×10^{-15}
GPCR downstream signalling	472	48	2.8×10^{-14}
$G_{\alpha z}$ signalling events	15	6	5.0×10^{-14}
Molecules associated with elastic fibres	33	8	5.4×10^{-14}
Phase 1 - Functionalization of compounds	67	11	5.6×10^{-14}
Platelet activation, signalling and aggregation	179	20	5.6×10^{-14}
Vasopressin regulates renal water homeostasis via Aquaporins	24	7	6.1×10^{-14}
Elastic fibre formation	37	8	$.03 \times 10^{-13}$
Calmodulin induced events	27	7	3.3×10^{-13}
CaM pathway	27	7	3.3×10^{-13}
cGMP effects	18	6	3.6×10^{-13} 6.3×10^{-13}
$G_{\alpha i}$ signalling events	167	18	
Pathways Over-represented in Cluster 3	Pathway Size	Cluster Genes	p-value (FDR)
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation	Pathway Size	Cluster Genes	p-value (FDR) 1.1×10^{-112}
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation	Pathway Size 86 83	Cluster Genes 55 54	p-value (FDR) 1.1×10^{-112} 1.3×10^{-112}
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation	Pathway Size 86 83 81	Cluster Genes 55 54 53	p-value (FDR) 1.1×10^{-112} 1.3×10^{-112} 1.6×10^{-111}
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation	Pathway Size 86 83	Cluster Genes 55 54	p-value (FDR) 1.1×10^{-112} 1.3×10^{-112}
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination	86 83 81 83	Cluster Genes 55 54 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1\times10^{-112} \\ 1.3\times10^{-112} \\ 1.6\times10^{-111} \\ 7.1\times10^{-110} \\ 1.0\times10^{-108} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex	86 83 81 83 88	55 54 53 53 54	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits	86 83 81 83 88 93	55 54 53 53 54 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1\times10^{-112} \\ 1.3\times10^{-112} \\ 1.6\times10^{-111} \\ 7.1\times10^{-110} \\ 1.0\times10^{-108} \\ 4.1\times10^{-102} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay	86 83 81 83 88 93 103	55 54 53 53 54 53 54 53 54 53 54	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1\times10^{-112} \\ 1.3\times10^{-112} \\ 1.6\times10^{-111} \\ 7.1\times10^{-110} \\ 1.0\times10^{-108} \\ 4.1\times10^{-102} \\ 3.9\times10^{-98} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex	86 83 81 83 88 93 103	55 54 53 54 53 54 53 54 53 54	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Eukaryotic Translation Translation Eukaryotic Translation Translation Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense-Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression	86 83 81 83 88 88 93 103 103	55 54 53 54 54 55 54 55 54 55 54 54 55 54	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation	Pathway Size	55 54 53 54 53 54 53 54 53 54 54 54 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane	86 83 81 83 83 88 93 103 103 103 104	Cluster Genes 55 54 53 53 54 53 54 54 54 54	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 9.6 \times 10^{-93} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation	Pathway Size	Cluster Genes 55 54 53 53 54 53 54 54 54 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 9.6 \times 10^{-93} \\ 4.2 \times 10^{-91} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3 "-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication	Pathway Size	Cluster Genes 55 54 53 54 53 54 54 54 53 54 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-10} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 9.6 \times 10^{-93} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Ethication Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense-Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle	Pathway Size 86 83 81 83 88 93 103 103 103 104 104 108 111 111 112	Cluster Genes 55 54 53 53 54 53 54 54 54 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 9.6 \times 10^{-93} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection	86 83 81 83 88 83 88 93 103 103 103 104 104 108 111 111 112 117	Cluster Genes 55 54 53 54 53 54 54 54 53 54 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-100} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.2 \times 10^{-95} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ 6.2 \times 10^{-88} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation	Pathway Size 86 83 81 83 88 93 103 103 103 104 104 104 1108 111 111 112 117 141	Cluster Genes 55 54 53 54 53 54 54 53 54 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-100} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 9.6 \times 10^{-93} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ 6.2 \times 10^{-88} \\ 3 \times 10^{-81} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eeukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4	Pathway Size	Cluster Genes 55 54 53 54 53 54 54 53 53 53	$ \begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-100} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ 6.2 \times 10^{-88} \\ 3 \times 10^{-81} \\ \hline \textbf{p-value (FDR)} \end{array} $
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay enhanced by the Exon Junction Complex I.13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans	Pathway Size 86 83 81 83 88 93 103 103 104 104 108 111 112 117 141 Pathway Size 66	Cluster Genes 55 54 53 53 54 54 53 54 54 54 55 53 53 53 53 53 53 53 53 53 53 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 9.6 \times 10^{-93} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ 6.2 \times 10^{-88} \\ 3 \times 10^{-81} \\ \\ \textbf{p-value (FDR)} \\ 2.9 \times 10^{-11} \\ \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Ethication Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex	Pathway Size 86 83 81 83 88 93 103 103 104 104 108 111 112 117 141 Pathway Size 66 38	Cluster Genes 55 54 53 53 54 54 54 54 54 53 53 53 53 53 53 53 53 53 53 53 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 9.6 \times 10^{-93} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ 6.2 \times 10^{-88} \\ 3 \times 10^{-81} \\ \textbf{p-value (FDR)} \\ 2.9 \times 10^{-11} \\ 5.1 \times 10^{-10} \\ \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM protocoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism	Pathway Size 86 83 81 83 88 93 103 103 104 104 108 111 112 117 141 Pathway Size 66 38 41	Cluster Genes 55 54 53 54 53 54 54 54 53 53 53 53 53 53 53 53 53 53 53 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ 6.2 \times 10^{-88} \\ 3 \times 10^{-81} \\ \\ \textbf{p-value (FDR)} \\ 2.9 \times 10^{-11} \\ 5.1 \times 10^{-10} \\ 1.1 \times 10^{-9} \\ \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3 '-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gay signalling events	Pathway Size 86 83 81 83 88 93 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149	Cluster Genes 55 54 53 54 53 54 54 54 54 53 53 53 53 53 53 53 53 53 53 53 53 77 7 7 14	P-value (FDR) 1.1 × 10 ⁻¹¹² 1.3 × 10 ⁻¹¹² 1.6 × 10 ⁻¹¹¹ 7.1 × 10 ⁻¹⁰⁰ 1.0 × 10 ⁻¹⁰⁸ 4.1 × 10 ⁻¹⁰⁸ 3.9 × 10 ⁻⁹⁸ 3.9 × 10 ⁻⁹⁸ 1.2 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.2 × 10 ⁻⁹⁵ 4.2 × 10 ⁻⁹¹ 4.2 × 10 ⁻⁹¹ 4.2 × 10 ⁻⁹¹ 1.4 × 10 ⁻⁹⁰ 6.2 × 10 ⁻⁸⁸ 3 × 10 ⁻⁸¹ P-value (FDR) 2.9 × 10 ⁻¹¹ 5.1 × 10 ⁻¹⁰ 1.1 × 10 ⁻⁹ 4.0 × 10 ⁻⁹
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gag signalling events HS-GAG degradation	Pathway Size	Cluster Genes 55 54 53 53 54 54 54 54 53 54 53 53 53 53 53 53 53 53 53 53 53 53 73 70 10 7 7 14 5	P-value (FDR) 1.1 × 10 ⁻¹¹² 1.3 × 10 ⁻¹¹² 1.6 × 10 ⁻¹¹³ 1.0 × 10 ⁻¹⁰⁸ 4.1 × 10 ⁻¹⁰⁹ 3.9 × 10 ⁻⁹⁸ 1.2 × 10 ⁻⁹⁵ 1.2 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.3 × 10 ⁻⁹⁵ 4.2 × 10 ⁻⁹¹ 4.2 × 10 ⁻⁹¹ 4.2 × 10 ⁻⁹¹ 1.4 × 10 ⁻⁹¹ 1.5 × 10 ⁻⁸⁸ 3 × 10 ⁻⁸¹ P-value (FDR) 2.9 × 10 ⁻¹¹ 5.1 × 10 ⁻¹⁰ 1.1 × 10 ⁻⁹ 4.0 × 10 ⁻⁹ 4.5 × 10 ⁻⁹ 4.5 × 10 ⁻⁹
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Elongation Viral mRNA Translation Elongation Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay enhanced by the Exon Junction Complex I.13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gaq signalling events HS-GAG degradation Uptake and actions of bacterial toxins	Pathway Size 86 83 81 83 88 93 103 103 104 104 108 111 112 117 141 Pathway Size 66 38 41 149 21 22	Cluster Genes 55 54 53 53 54 54 54 54 54 54 55 53 53 53 53 53 53 53 53 53 53 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ 6.2 \times 10^{-88} \\ 3 \times 10^{-81} \\ \\ \textbf{p-value (FDR)} \\ 2.9 \times 10^{-11} \\ 5.1 \times 10^{-10} \\ 1.1 \times 10^{-9} \\ 4.0 \times 10^{-9} \\ 4.5 \times 10^{-9} \\ 6.1 \times 10^{-9} \\ 6.1 \times 10^{-9} \\ \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense Mediated Decay Nonsense Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gaay signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK	Pathway Size 86 83 81 83 88 93 103 103 104 104 108 111 112 117 141 Pathway Size 66 38 41 149 21 22 170	Cluster Genes 55 54 53 53 54 54 54 54 53 53 53 53 53 53 53 53 53 53 53 53 73 77 14 77 14 55 5 51 15	$\begin{array}{c} \textbf{p-value (FDR)} \\ 1.1 \times 10^{-112} \\ 1.3 \times 10^{-112} \\ 1.6 \times 10^{-111} \\ 7.1 \times 10^{-110} \\ 1.0 \times 10^{-108} \\ 4.1 \times 10^{-102} \\ 3.9 \times 10^{-98} \\ 3.9 \times 10^{-98} \\ 1.2 \times 10^{-95} \\ 1.2 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 4.3 \times 10^{-95} \\ 9.6 \times 10^{-93} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 4.2 \times 10^{-91} \\ 1.4 \times 10^{-90} \\ 6.2 \times 10^{-88} \\ 3 \times 10^{-81} \\ \\ \textbf{p-value (FDR)} \\ 2.9 \times 10^{-11} \\ 5.1 \times 10^{-10} \\ 1.1 \times 10^{-9} \\ 4.0 \times 10^{-9} \\ 4.5 \times 10^{-9} \\ 6.1 \times 10^{-9} \\ \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM protocglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gaq signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription	Pathway Size 86 83 81 83 88 93 103 103 104 104 108 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64	Cluster Genes 55 54 53 54 53 54 54 54 55 53 53 53 53 53 53 53 53 53 53 77 7 14 5 5 15 8	P-value (FDR)
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Relativitic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense Mediated Decay enhanced by the Exon Junction Complex Li3a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gag signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions	Pathway Size	Cluster Genes 55 54 53 53 54 54 54 55 53 53 53 53 53 53 53 53 53 53 7 7 7 7	$\begin{array}{c} \textbf{p-value (FDR)} \\ \textbf{1.1} \times 10^{-112} \\ \textbf{1.3} \times 10^{-112} \\ \textbf{1.6} \times 10^{-111} \\ \textbf{7.1} \times 10^{-110} \\ \textbf{1.0} \times 10^{-108} \\ \textbf{4.1} \times 10^{-102} \\ \textbf{3.9} \times 10^{-98} \\ \textbf{3.9} \times 10^{-98} \\ \textbf{1.2} \times 10^{-95} \\ \textbf{1.2} \times 10^{-95} \\ \textbf{4.3} \times 10^{-95} \\ \textbf{4.3} \times 10^{-95} \\ \textbf{4.3} \times 10^{-95} \\ \textbf{4.3} \times 10^{-95} \\ \textbf{4.2} \times 10^{-91} \\ \textbf{5.1} \times 10^{-10} \\ \textbf{5.1} \times 10^{-10} \\ \textbf{1.1} \times 10^{-9} \\ \textbf{4.0} \times 10^{-9} \\ \textbf{4.5} \times 10^{-9} \\ \textbf{6.1} \times 10^{-9} \\ \textbf{6.1} \times 10^{-9} \\ \textbf{6.1} \times 10^{-9} \\ \textbf{6.1} \times 10^{-9} \\ \textbf{1.5} \times 10^{-8} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gaq signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions	Pathway Size 86 83 81 83 88 93 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25	Cluster Genes 55 54 53 53 54 54 53 54 53 53 53 53 53 53 53 53 53 53 77 7 14 55 55 15 8 7 7 5	P-value (FDR)
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Ethical Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay enhanced by the Exon Junction Complex I.13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gag; signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions NOTCH1 Intracellular Domain Regulates Transcription	Pathway Size 86 83 81 83 88 93 103 103 104 104 108 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25 40	Cluster Genes 55 54 53 53 54 54 54 54 55 53 53 53 53 53 53 53 53 53 53 53 53	$\begin{array}{c} \textbf{p-value (FDR)} \\ \textbf{1.1} \times 10^{-112} \\ \textbf{1.3} \times 10^{-112} \\ \textbf{1.6} \times 10^{-111} \\ \textbf{7.1} \times 10^{-110} \\ \textbf{1.0} \times 10^{-108} \\ \textbf{4.1} \times 10^{-10} \\ \textbf{3.9} \times 10^{-98} \\ \textbf{3.9} \times 10^{-98} \\ \textbf{1.2} \times 10^{-95} \\ \textbf{1.2} \times 10^{-95} \\ \textbf{4.3} \times 10^{-91} \\ \textbf{4.2} \times 10^{-91} \\ \textbf{4.2} \times 10^{-91} \\ \textbf{4.2} \times 10^{-91} \\ \textbf{4.2} \times 10^{-91} \\ \textbf{5.1} \times 10^{-10} \\ \textbf{5.1} \times 10^{-10} \\ \textbf{1.1} \times 10^{-9} \\ \textbf{4.0} \times 10^{-9} \\ \textbf{4.5} \times 10^{-9} \\ \textbf{6.1} \times 10^{-9} \\ \textbf{1.5} \times 10^{-8} \\ \textbf{1.5} \times 10^{-8} \\ \textbf{2.3} \times 10^{-8} \end{array}$
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense Mediated Decay Nonsense Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex Li3a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gaq signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions Syndecan interactions Syndecan interactions Syndecan interactions Syndecan interactions Synthesis of Leukotrienes and Eoxins	Pathway Size 86 83 81 83 88 93 103 103 104 104 108 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25 40 15	Cluster Genes 55 54 53 53 54 54 54 54 55 53 53 53 53 53 53 53 53 53 53 53 7 7 7 14 5 5 5 15 8 7 7 6 4 4 6 4	P-value (FDR)
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gaq signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions NOTCH1 Intracellular Domain Regulates Transcription Synthesis of Leukotrienes and Eoxins Signalling by NOTCH1	Pathway Size 86 83 81 83 88 93 103 103 104 104 104 108 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25 40 15 59	Cluster Genes 55 54 53 53 54 54 54 54 55 53 53 53 53 53 53 53 53 53 77 7 14 5 8 7 7 15 8 7 5 6 4 7	P-value (FDR)
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gay signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions NOTCH1 Intracellular Domain Regulates Transcription Synthesis of Leukotrienes and Eoxins Signalling by NOTCH1 Regulation of insulin secretion	Pathway Size	Cluster Genes 55 54 53 53 54 54 55 54 55 53 53 53 53 53 53 53 53 53 53 53 77 7 14 55 55 15 8 7 7 5 6 4 7 7	P-value (FDR)
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay enhanced by the Exon Junction Complex Sometiated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gag signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions NOTCH1 Intracellular Domain Regulates Transcription Synthesis of Leukotrienes and Eoxins Signalling by NOTCH1 Regulation of insulin secretion Metabolism of lipids and lipoproteins	Pathway Size 86 83 81 83 88 93 103 103 104 104 104 108 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25 40 15 59	Cluster Genes 55 54 53 53 54 54 54 54 55 53 53 53 53 53 53 53 53 53 77 7 14 5 8 7 7 15 8 7 5 6 4 7	P-value (FDR)
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Eukaryotic Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense Mediated Decay Nonsense Mediated Decay enhanced by the Exon Junction Complex L13a-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational regulation SRP-dependent cotranslational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gay signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions NOTCH1 Intracellular Domain Regulates Transcription Synthesis of Leukotrienes and Eoxins Signalling by NOTCH1 Regulation of insulin secretion	Pathway Size 86 83 81 83 88 93 103 103 103 104 104 108 111 111 112 117 141 Pathway Size 66 38 41 149 21 22 170 64 53 25 40 15 59 44 471	Cluster Genes 55 54 53 53 54 54 53 54 54 53 53 53 53 53 53 53 53 53 53 53 7 7 7 7	P-value (FDR)
Pathways Over-represented in Cluster 3 Eukaryotic Translation Elongation Peptide chain elongation Viral mRNA Translation Termination Nonsense Mediated Decay independent of the Exon Junction Complex Formation of a pool of free 40S subunits Nonsense-Mediated Decay enhanced by the Exon Junction Complex Sometiated Translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational silencing of Ceruloplasmin expression 3'-UTR-mediated translational protein targeting to membrane GTP hydrolysis and joining of the 60S ribosomal subunit Influenza Viral RNA Transcription and Replication Eukaryotic Translation Initiation Cap-dependent Translation Initiation Influenza Life Cycle Influenza Infection Translation Pathways Over-represented in Cluster 4 ECM proteoglycans deactivation of the beta-catenin transactivating complex Arachidonic acid metabolism Gastrin-CREB signalling events HS-GAG degradation Uptake and actions of bacterial toxins Gastrin-CREB signalling pathway via PKC and MAPK RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription Non-integrin membrane-ECM interactions Syndecan interactions NOTCH1 Intracellular Domain Regulates Transcription Synthesis of Leukotrienes and Eoxins Signalling by NOTCH1 Regulation of insulin secretion Metabolism of lipids and lipoproteins Signalling by NOTCH	Pathway Size	Cluster Genes 55 54 53 53 54 54 54 54 55 53 53 53 53 53 53 53 53 53 53 53 53	P-value (FDR)

Pathway over-representation analysis for Reactome pathways with the number of genes in each pathway (Pathway Size), number of genes within the pathway identified (Cluster Genes), and the pathway over-representation p-value (adjusted by FDR) from the hypergeometric test.

C.3 Comparison to Primary Screen

The mutation synthetic lethal partners with *CDH1* were also compared to siRNA primary screen data (Telford *et al.*, 2015), as performed in Section 4.2.1. These are expected to be more concordant with the experimental results performed on a null mutant, however this not the case at the gene level: less genes overlapped with experimental candidates in Figure C.2. This may be affected by lower sample size for mutations in TCGA data or lower frequency (expected value) of *CDH1* mutations compared to low expression.

Figure C.2: Comparison of mtSLIPT to siRNA. Testing the overlap of gene candidates for E-cadherin synthetic lethal partners between computational (SLIPT) and experimental screening (siRNA) approaches. The χ^2 test suggests that the overlap is no more than would be expected by chance (p = 0.281).

Despite a lower sample size (and low number of a predicted partners) for mutation analysis, the pathway composition (Tables C.2 and C.4) is similar to expression analysis, as described in Section 4.2.5. In particular, the resampling analysis (Section C.3.1) supported many of the results of expression analysis (Section 4.2.5.1) with Tables C.5 and C.6 detecting many of the same or functionally-related pathways.

Table siRNA

Predicted only by SLIPT (2901 genes)	Pathway Size	Genes Identified	p-value (FDR
Eukaryotic Translation Elongation	87	57	2.8×10^{-120}
Peptide chain elongation	84	56	3.1×10^{-120}
Eukaryotic Translation Termination	84	55	2.8×10^{-117}
Viral mRNA Translation	82	54	4.1×10^{-116}
Nonsense Mediated Decay independent of the Exon Junction Complex	89	55	3.7×10^{-113}
Formation of a pool of free 40S subunits	94	55	2.8×10^{-109}
Nonsense-Mediated Decay	104	57	8.4×10^{-108}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	104	57	8.4×10^{-108}
L13a-mediated translational silencing of Ceruloplasmin expression	104	56	3.4×10^{-105}
3' -UTR-mediated translational regulation	104	56	3.4×10^{-105}
GTP hydrolysis and joining of the 60S ribosomal subunit	105	56	1.4×10^{-104}
Eukaryotic Translation Initiation	112	56	2.8×10^{-100}
Cap-dependent Translation Initiation	112	56	2.8×10^{-100}
SRP-dependent cotranslational protein targeting to membrane	105	54	2.2×10^{-99}
Influenza Viral RNA Transcription and Replication	109	54	5.3×10^{-97}
Influenza Life Cycle	113	54	9.6×10^{-95}
Influenza Infection	118	55	1.7×10^{-94}
Translation	142	60	3.5×10^{-94}
Infectious disease	349	77	5.9×10^{-62}
Extracellular matrix organization	241	54	3.0×10^{-52}
Detected only by siRNA screen (1752 genes)	Pathway Size	Genes Identified	p-value (FDR
Class A/1 (Rhodopsin-like receptors)	202		4.0 40 50
7 7	282	69	1.9×10^{-59}
GPCR ligand binding	363	78	2.7×10^{-54}
GPCR ligand binding Peptide ligand-binding receptors	363 175	78 41	2.7×10^{-54} 1.5×10^{-42}
GPCR ligand binding Peptide ligand-binding receptors $G_{lpha i}$ signalling events	363 175 184	78 41 41	2.7×10^{-54} 1.5×10^{-42} 1.1×10^{-40}
GPCR ligand binding Peptide ligand-binding receptors G_{ai} signalling events Gastrin-CREB signalling pathway via PKC and MAPK	363 175 184 180	78 41 41 37	2.7×10^{-54} 1.5×10^{-42} 1.1×10^{-40} 1.5×10^{-35}
GPCR ligand binding Peptide ligand-binding receptors $G_{\alpha i}$ signalling events Gastrin-CREB signalling pathway via PKC and MAPK $G_{\alpha q}$ signalling events	363 175 184 180 159	78 41 41 37 34	2.7×10^{-54} 1.5×10^{-42} 1.1×10^{-40} 1.5×10^{-35} 3.7×10^{-35}
GPCR ligand binding Peptide ligand-binding receptors $G_{\alpha i}$ signalling events Gastrin-CREB signalling pathway via PKC and MAPK $G_{\alpha q}$ signalling events DAP12 interactions	363 175 184 180 159	78 41 41 37 34 27	2.7×10^{-54} 1.5×10^{-42} 1.1×10^{-40} 1.5×10^{-35} 3.7×10^{-35} 1.1×10^{-24}
GPCR ligand binding Peptide ligand-binding receptors $G_{\alpha i}$ signalling events Gastrin-CREB signalling pathway via PKC and MAPK $G_{\alpha q}$ signalling events DAP12 interactions VEGFA-VEGFR2 Pathway	363 175 184 180 159 159	78 41 41 37 34 27	2.7×10^{-54} 1.5×10^{-42} 1.1×10^{-40} 1.5×10^{-35} 3.7×10^{-35} 1.1×10^{-24} 1.0×10^{-23}
GPCR ligand binding Peptide ligand-binding receptors $G_{\alpha i}$ signalling events Gastrin-CREB signalling pathway via PKC and MAPK $G_{\alpha q}$ signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction	363 175 184 180 159 159 91	78 41 41 37 34 27 19	2.7×10^{-54} 1.5×10^{-42} 1.1×10^{-40} 1.5×10^{-35} 3.7×10^{-35} 1.1×10^{-24} 1.0×10^{-23} 1.9×10^{-22}
GPCR ligand binding Peptide ligand-binding receptors $G_{\alpha i}$ signalling events Gastrin-CREB signalling pathway via PKC and MAPK $G_{\alpha q}$ signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction Signalling by VEGF	363 175 184 180 159 159 91 146	78 41 41 37 34 27 19 24	2.7×10^{-54} 1.5×10^{-42} 1.1×10^{-40} 1.5×10^{-35} 3.7×10^{-35} 1.1×10^{-24} 1.0×10^{-23} 1.9×10^{-22} 2.6×10^{-22}
GPCR ligand binding Peptide ligand-binding receptors $G_{\alpha i}$ signalling events Gastrin-CREB signalling pathway via PKC and MAPK $G_{\alpha q}$ signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction Signalling by VEGF DAP12 signalling	363 175 184 180 159 159 91 146 99	78 41 41 37 34 27 19 24 19	2.7×10^{-54} 1.5×10^{-42} 1.1×10^{-40} 1.5×10^{-35} 3.7×10^{-35} 1.1×10^{-24} 1.0×10^{-23} 1.9×10^{-22} 2.6×10^{-22} 4.2×10^{-22}
GPCR ligand binding Peptide ligand-binding receptors $G_{\alpha i}$ signalling events Gastrin-CREB signalling pathway via PKC and MAPK $G_{\alpha q}$ signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction Signalling by VEGF DAP12 signalling Organelle biogenesis and maintenance	363 175 184 180 159 159 91 146 99 149	78 41 41 37 34 27 19 24 19 24 34	2.7×10^{-54} 1.5×10^{-42} 1.1×10^{-40} 1.5×10^{-35} 3.7×10^{-35} 1.1×10^{-24} 1.0×10^{-23} 1.9×10^{-22} 2.6×10^{-22} 4.2×10^{-22} 4.3×10^{-20}
GPCR ligand binding Peptide ligand-binding receptors $G_{\alpha i}$ signalling events Gastrin-CREB signalling pathway via PKC and MAPK $G_{\alpha q}$ signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction Signalling by VEGF DAP12 signalling Organelle biogenesis and maintenance Downstream signalling of activated FGFR1	363 175 184 180 159 159 91 146 99 149 264	78 41 41 37 34 27 19 24 19 24 34 21	$\begin{array}{c} 2.7 \times 10^{-54} \\ 1.5 \times 10^{-42} \\ 1.1 \times 10^{-40} \\ 1.5 \times 10^{-35} \\ 3.7 \times 10^{-35} \\ 1.1 \times 10^{-24} \\ 1.0 \times 10^{-23} \\ 1.9 \times 10^{-22} \\ 2.6 \times 10^{-22} \\ 4.2 \times 10^{-22} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \end{array}$
GPCR ligand binding Peptide ligand-binding receptors G_{ai} signalling events Gastrin-CREB signalling pathway via PKC and MAPK G_{aq} signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction Signalling by VEGF DAP12 signalling Organelle biogenesis and maintenance Downstream signalling of activated FGFR1 Downstream signalling of activated FGFR1	363 175 184 180 159 159 91 146 99 149 264 134	78 41 41 37 34 27 19 24 19 24 34 21	$\begin{array}{c} 2.7 \times 10^{-54} \\ 1.5 \times 10^{-42} \\ 1.1 \times 10^{-40} \\ 1.5 \times 10^{-35} \\ 3.7 \times 10^{-35} \\ 1.1 \times 10^{-24} \\ 1.0 \times 10^{-23} \\ 1.9 \times 10^{-22} \\ 2.6 \times 10^{-22} \\ 4.2 \times 10^{-22} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \end{array}$
GPCR ligand binding Peptide ligand-binding receptors G_{ai} signalling events Gastrin-CREB signalling pathway via PKC and MAPK G_{aq} signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction Signalling by VEGF DAP12 signalling Organelle biogenesis and maintenance Downstream signalling of activated FGFR1 Downstream signalling of activated FGFR1	363 175 184 180 159 159 91 146 99 149 264 134	78 41 41 37 34 27 19 24 19 24 34 21	$\begin{array}{c} 2.7 \times 10^{-54} \\ 1.5 \times 10^{-42} \\ 1.1 \times 10^{-40} \\ 1.5 \times 10^{-35} \\ 3.7 \times 10^{-35} \\ 1.1 \times 10^{-24} \\ 1.0 \times 10^{-23} \\ 1.9 \times 10^{-22} \\ 2.6 \times 10^{-22} \\ 4.2 \times 10^{-22} \\ 4.3 \times 10^{-20} \end{array}$
GPCR ligand binding Peptide ligand-binding receptors G_{ai} signalling events Gastrin-CREB signalling pathway via PKC and MAPK G_{aq} signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction Signalling by VEGF DAP12 signalling Organelle biogenesis and maintenance Downstream signalling of activated FGFR1 Downstream signalling of activated FGFR2 Downstream signalling of activated FGFR2 Downstream signalling of activated FGFR2	363 175 184 180 159 159 91 146 99 149 264 134	78 41 41 37 34 27 19 24 19 24 34 21	$\begin{array}{c} 2.7 \times 10^{-54} \\ 1.5 \times 10^{-42} \\ 1.1 \times 10^{-40} \\ 1.5 \times 10^{-35} \\ 3.7 \times 10^{-35} \\ 1.1 \times 10^{-24} \\ 1.0 \times 10^{-23} \\ 1.9 \times 10^{-22} \\ 2.6 \times 10^{-22} \\ 4.2 \times 10^{-22} \\ 4.3 \times 10^{-20} \end{array}$
GPCR ligand binding Peptide ligand-binding receptors G_{ai} signalling events Gastrin-CREB signalling pathway via PKC and MAPK G_{aq} signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction Signalling by VEGF DAP12 signalling Organelle biogenesis and maintenance Downstream signalling of activated FGFR1 Downstream signalling of activated FGFR2 Downstream signalling of activated FGFR3 Downstream signalling of activated FGFR3 Downstream signalling of activated FGFR3	363 175 184 180 159 159 91 146 99 149 264 134 134	78 41 41 37 34 27 19 24 19 24 34 21 21	$\begin{array}{c} 2.7 \times 10^{-54} \\ 1.5 \times 10^{-42} \\ 1.1 \times 10^{-40} \\ 1.5 \times 10^{-35} \\ 3.7 \times 10^{-35} \\ 1.1 \times 10^{-24} \\ 1.0 \times 10^{-23} \\ 1.9 \times 10^{-22} \\ 2.6 \times 10^{-22} \\ 4.2 \times 10^{-22} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \\ 5.3 \times 10^{-20} \\ \end{array}$
GPCR ligand binding Peptide ligand-binding receptors G_{ai} signalling events Gastrin-CREB signalling pathway via PKC and MAPK G_{aq} signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction Signalling by VEGF DAP12 signalling Organelle biogenesis and maintenance Downstream signalling of activated FGFR1 Downstream signalling of activated FGFR2 Downstream signalling of activated FGFR3 Downstream signalling of activated FGFR3 Downstream signalling of activated FGFR4 Signalling by ERBB2	363 175 184 180 159 159 91 146 99 149 264 134 134 134	78 41 41 37 34 27 19 24 19 24 34 21 21	$\begin{array}{c} 2.7 \times 10^{-54} \\ 1.5 \times 10^{-42} \\ 1.1 \times 10^{-40} \\ 1.5 \times 10^{-35} \\ 3.7 \times 10^{-35} \\ 1.1 \times 10^{-24} \\ 1.0 \times 10^{-23} \\ 1.9 \times 10^{-22} \\ 2.6 \times 10^{-22} \\ 4.2 \times 10^{-22} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \\ 5.3 \times 10^{-20} \\ 5.3 \times 10^{-20} \\ 5.3 \times 10^{-20} \end{array}$
GPCR ligand binding Peptide ligand-binding receptors $G_{\alpha i}$ signalling events Gastrin-CREB signalling pathway via PKC and MAPK $G_{\alpha q}$ signalling events DAP12 interactions VEGFA-VEGFR2 Pathway Downstream signal transduction Signalling by VEGF DAP12 signalling Organelle biogenesis and maintenance Downstream signalling of activated FGFR1 Downstream signalling of activated FGFR2 Downstream signalling of activated FGFR3 Downstream signalling of activated FGFR4 Signalling by ERBB2 Signalling by FGFR Signalling by FGFR1	363 175 184 180 159 159 91 146 99 149 264 134 134 134 134	78 41 41 37 34 27 19 24 19 24 34 21 21 21 21 22	$\begin{array}{c} 2.7 \times 10^{-54} \\ 1.5 \times 10^{-42} \\ 1.1 \times 10^{-40} \\ 1.5 \times 10^{-35} \\ 3.7 \times 10^{-35} \\ 1.1 \times 10^{-24} \\ 1.0 \times 10^{-23} \\ 1.9 \times 10^{-22} \\ 2.6 \times 10^{-22} \\ 4.2 \times 10^{-22} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \\ 4.3 \times 10^{-20} \\ 5.3 \times 10^{-20} \\ \end{array}$

Intersection of SLIPT and siRNA screen (450 genes)	Pathway Size	Genes Identified	p-value (FDR)
HS-GAG degradation	21	4	4.9×10^{-6}
Retinoid metabolism and transport	39	5	4.9×10^{-6}
Platelet activation, signalling and aggregation	186	13	4.9×10^{-6}
Signalling by NOTCH4	11	3	4.9×10^{-6}
$G_{\alpha s}$ signalling events	100	8	5.0×10^{-6}
Defective EXT2 causes exostoses 2	12	3	5.0×10^{-6}
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	12	3	5.0×10^{-6}
Class A/1 (Rhodopsin-like receptors)	289	18	2.2×10^{-5}
Signalling by PDGF	173	11	2.9×10^{-5}
Circadian Clock	34	4	2.9×10^{-5}
Signalling by ERBB4	139	9	4.3×10^{-5}
Role of LAT2/NTAL/LAB on calcium mobilization	99	7	4.4×10^{-5}
Peptide ligand-binding receptors	181	11	4.5×10^{-5}
Defective B4GALT7 causes EDS, progeroid type	19	3	4.5×10^{-5}
Defective B3GAT3 causes JDSSDHD	19	3	4.5×10^{-5}
Signalling by NOTCH	80	6	4.5×10^{-5}
$G_{\alpha q}$ signalling events	164	10	5.1×10^{-5}
Response to elevated platelet cytosolic Ca ²⁺	84	6	7.1×10^{-5}
Signalling by ERBB2	148	9	7.1×10^{-5}
Signalling by SCF-KIT	129	8	8.3×10^{-5}

C.3.1 Resampling Analysis

Table C.5: Pathways for CDH1 partners from mtSLIPT

Reactome Pathway	Over-representation	Permutation
Eukaryotic Translation Elongation	3.2×10^{-128}	$< 7.035 \times 10^{-4}$
Peptide chain elongation	3.2×10^{-128}	$<7.035 \times 10^{-4}$
Eukaryotic Translation Termination	3.7×10^{-125}	$<7.035\times 10^{-4}$
Viral mRNA Translation	4.1×10^{-124}	$<7.035 \times 10^{-4}$
Nonsense Mediated Decay independent of the Exon Junction Complex	1.4×10^{-123}	$<7.035 \times 10^{-4}$
Nonsense-Mediated Decay	8.4×10^{-117}	$<7.035 \times 10^{-4}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex	8.4×10^{-117}	$<7.035 \times 10^{-4}$
Formation of a pool of free 40S subunits	2.6×10^{-116}	$<7.035 \times 10^{-4}$
L13a-mediated translational silencing of Ceruloplasmin expression	2.0×10^{-111}	$<7.035 \times 10^{-4}$
3' -UTR-mediated translational regulation	2.0×10^{-111}	$<7.035 \times 10^{-4}$
GTP hydrolysis and joining of the 60S ribosomal subunit	9.9×10^{-111}	$<7.035 \times 10^{-4}$
SRP-dependent cotranslational protein targeting to membrane	4.7×10^{-108}	$<7.035 \times 10^{-4}$
Eukaryotic Translation Initiation	4.8×10^{-106}	$<7.035\times 10^{-4}$
Cap-dependent Translation Initiation	4.8×10^{-106}	$<7.035 \times 10^{-4}$
Influenza Viral RNA Transcription and Replication	8.1×10^{-103}	$<7.035 \times 10^{-4}$
Influenza Infection	2.4×10^{-102}	$<7.035 \times 10^{-4}$
Translation	6.0×10^{-101}	$<7.035 \times 10^{-4}$
Influenza Life Cycle	2.2×10^{-100}	$<7.035 \times 10^{-4}$
Disease	2.1×10^{-90}	0.013347
GPCR downstream signalling	1.6×10^{-80}	0.095478
Hemostasis	2.1×10^{-78}	0.2671
Signalling by GPCR	1.2×10^{-73}	0.44939
Extracellular matrix organization	2.2×10^{-67}	0.054008
Metabolism of proteins	1.4×10^{-66}	0.9607
Signal Transduction	2.1×10^{-66}	0.48184
Developmental Biology	2.5×10^{-66}	0.54075
Innate Immune System	5.3×10^{-66}	0.9589
Infectious disease	9.6×10^{-66}	0.21075
Signalling by NGF	1.1×10^{-62}	0.43356
Immune System	2.8×10^{-62}	0.23052

Over-representation (hypergeometric test) and Permutation p-values adjusted for multiple tests across pathways (FDR). Significant pathways are marked in bold (FDR < 0.05) and italics (FDR < 0.1).

Table C.6: Pathways for CDH1 partners from mtSLIPT and siRNA primary screen

Reactome Pathway	Over-representation	Permutation
Visual phototransduction	1.2×10^{-9}	0.86279
$\mathbf{G}_{lpha s}$ signalling events	2.9×10^{-7}	0.023066
Retinoid metabolism and transport	2.9×10^{-7}	0.299
Acyl chain remodelling of PS	1.1×10^{-5}	0.42584
Transcriptional regulation of white adipocyte differentiation	1.1×10^{-5}	0.53928
Chemokine receptors bind chemokines	1.1×10^{-5}	0.95259
Signalling by NOTCH4	1.2×10^{-5}	0.079229
Defective EXT2 causes exostoses 2	1.2×10^{-5}	0.22292
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	1.2×10^{-5}	0.22292
Platelet activation, signalling and aggregation	1.2×10^{-5}	0.48853
Serotonin receptors	1.4×10^{-5}	0.34596
Nicotinamide salvaging	1.4×10^{-5}	0.70881
Phase 1 - Functionalization of compounds	2×10^{-5}	0.31142
Amine ligand-binding receptors	2.5×10^{-5}	0.34934
Acyl chain remodelling of PE	3.8×10^{-5}	0.42615
Signalling by GPCR	3.8×10^{-5}	0.93888
Molecules associated with elastic fibres	3.9×10^{-5}	0.017982
DAP12 interactions	3.9×10^{-5}	0.71983
Beta defensins	3.9×10^{-5}	0.91458
Cytochrome P_{450} - arranged by substrate type	4.7×10^{-5}	0.83493
GPCR ligand binding	5.7×10^{-5}	0.95258
Acyl chain remodelling of PC	6.1×10^{-5}	0.42584
Response to elevated platelet cytosolic Ca ²⁺	6.4×10^{-5}	0.54046
Arachidonic acid metabolism	6.7×10^{-5}	0.026696
Defective B4GALT7 causes EDS, progeroid type	7.3×10^{-5}	0.24921
Defective B3GAT3 causes JDSSDHD	7.3×10^{-5}	0.24921
Hydrolysis of LPC	7.3×10^{-5}	0.80663
Elastic fibre formation	7.4×10^{-5}	0.0058768
HS-GAG degradation	9.4×10^{-5}	0.0083179
Bile acid and bile salt metabolism	9.4×10^{-5}	0.079905
Netrin-1 signalling	0.00011	0.92216
Integration of energy metabolism	0.00011	0.011152
Dectin-2 family	0.00011	0.10385
Platelet sensitization by LDL	0.00012	0.10363
DAP12 signalling	0.00012	0.62787
Defensins Defensins	0.00012	0.02787
GPCR downstream signalling	0.00012	0.79454
Diseases associated with glycosaminoglycan metabolism	0.00013	0.065927
Diseases of glycosylation	0.00013	0.065927
Signalling by Retinoic Acid	0.00013	0.22292
Signalling by Leptin	0.00013	0.34596
Signalling by SCF-KIT	0.00013	0.70881
Opioid Signalling	0.00013	0.96053
Signalling by NOTCH	0.00015	0.26884
Platelet homeostasis	0.00015	0.4878
Signalling by NOTCH1	0.00016	0.13043
Class B/2 (Secretin family receptors)	0.00016	0.13994
Diseases of Immune System	0.0002	0.0795
Diseases associated with the TLR signalling cascade	0.0002	0.0795
A tetrasaccharide linker sequence is required for GAG synthesis	0.0002	0.42615

Over-representation (hypergeometric test) and Permutation p-values adjusted for multiple tests across pathways (FDR). Significant pathways are marked in bold (FDR < 0.05) and italics (FDR < 0.1).

C.4 Compare SLIPT genes

The mutation synthetic lethal partners with *CDH1* were also compared to siRNA primary screen data (Telford *et al.*, 2015), by correlation and siRNA viability as described in sections 4.2.2 and 4.2.3.

Figure C.3: Compare mtSLIPT and siRNA genes with correlation. The mtSLIPT p-values were compared against Pearson's correlation of expression with *CDH1*. Genes detected by SLIPT or siRNA are coloured according to the legend.

Figure C.4: Compare mtSLIPT and siRNA genes with correlation. Genes detected by mtSLIPT against *CDH1* mutation and siRNA screening were compared against Pearson's correlation of expression with *CDH1*. There were no differences in correlation between the gene groups.

Figure C.5: Compare mtSLIPT and siRNA genes with siRNA viability. Genes detected as candidate synthetic lethal partners by mtSLIPT (in TCGA breast cancer) expression analysis against *CDH1* mutation and experimental screening (with siRNA) were compared against the viability ratio of *CDH1* mutant and wildtype cells in the primary siRNA screen. There were clear no differences in viability between genes detected by mtSLIPT and those not with the differences being primarily due to viability thresholds being used to detect synthetic lethality by Telford *et al.* (2015).

C.5 Metagene Analysis

Metagene analysis was also performed for synthetic lethal candidates for CDH1 mutation. These are described and compared to expression analysis in Section 4.3.3.

Table C.7: Candidate synthetic lethal metagenes against CDH1 from mtSLIPT

Pathway	ID	Observed	Expected	$\chi^2 {\bf value}$	p-value	p-value (FDR)
Neurotoxicity of clostridium toxins	168799	8	36.7	79.4	5.71×10^{-18}	3.14×10^{-15}
Aquaporin-mediated transport	445717	8	36.7	76.3	2.73×10^{-17}	9.01×10^{-15}
Toxicity of botulinum toxin type G (BoNT/G)	5250989	8	36.7	76.3	2.73×10^{-17}	9.01×10^{-15}
ABC-family proteins mediated transport	382556	10	36.7	68.2	1.58×10^{-15}	1.86×10^{-13}
$G_{\alpha z}$ signalling events	418597	10	36.7	59.9	9.97×10^{-14}	5.48×10^{-12}
Regulation of IGF transport and uptake by IGFBPs	381426	9	36.7	56.3	5.88×10^{-13}	2.11×10^{-11}
GP1b-IX-V activation signalling	430116	8	36.7	55.7	8.20×10^{-13}	2.76×10^{-11}
GABA receptor activation	977443	12	36.7	55.1	1.07×10^{-12}	3.26×10^{-11}
Vasopressin regulates renal water homeostasis via Aquaporins	432040	9	36.7	54.1	1.77×10^{-12}	4.88×10^{-11}
Toxicity of botulinum toxin type D (BoNT/D)	5250955	14	36.7	53.4	2.54×10^{-12}	6.64×10^{-11}
Toxicity of botulinum toxin type F (BoNT/F)	5250981	14	36.7	53.4	2.54×10^{-12}	6.64×10^{-11}
STAT6-mediated induction of chemokines	3249367	16	36.7	52.2	4.72×10^{-12}	1.13×10^{-10}
Toxicity of botulinum toxin type B (BoNT/B)	5250958	14	36.7	50.8	9.5×10^{-12}	1.98×10^{-10}
S6K1 signalling	165720	12	36.7	50.2	1.24×10^{-11}	2.5×10^{-10}
$G_{\alpha s}$ signalling events	418555	11	36.7	49.2	2.08×10^{-11}	3.85×10^{-10}
RHO GTPases activate CIT	5625900	14	36.7	48.2	3.34×10^{-11}	5.9×10^{-10}
NADE modulates death signalling	205025	15	36.7	47.4	5.00×10^{-11}	8.32×10^{-10}
Keratan sulfate degradation	2022857	10	36.7	46.6	7.5×10^{-11}	1.15×10^{-9}
Signalling by Retinoic Acid	5362517	10	36.7	46.6	7.5×10^{-11}	1.15×10^{-9}
Adenylate cyclase inhibitory pathway	170670	14	36.7	45.9	1.11×10^{-10}	1.59×10^{-9}
Inhibition of adenylate cyclase pathway	997269	14	36.7	45.9	1.11×10^{-10}	1.59×10^{-9}
Fatty acids	211935	6	36.7	45.7	1.21×10^{-10}	1.72×10^{-9}
Ionotropic activity of Kainate Receptors	451306	13	36.7	44.6	2.03×10^{-10}	2.58×10^{-9}
Activation of Ca-permeable Kainate Receptor	451308	13	36.7	44.6	2.03×10^{-10}	2.58×10^{-9}
RA biosynthesis pathway	5365859	13	36.7	44.6	2.03×10^{-10}	2.58×10^{-9}

Strongest candidate SL partners for CDH1 by mtSLIPT with observed and expected numbers of mutant CDH1 TCGA breast cancer tumours with low expression of partner metagenes.

C.6 Expression of Somatic Mutations

Figure C.6: **Somatic mutation against PIK3CA metagene.** Mutations in *PIK3CA*, *PIK3R1*, *CDH1*, and *TP53* were examined in TCGA breast cancer for their effect on the PIK3CA (Gatza *et al.*, 2014) pathway metagene. The tumour suppressors *CDH1* and *TP53* showed an increase and decrease in the metagene respectively, whereas *PIK3CA* and *PIK3R1* mutations weaker evidence of decrease in metagene levels.

Figure C.7: **Somatic mutation against PI3K protein.** Mutations in PIK3CA, PIK3R1, CDH1, and TP53 were examined in TCGA breast cancer for their effect on the expression of the p110 α protein (encoded by PIK3CA). Protein levels were significantly elevated in samples with PIK3CA or PIK3R1 mutations and lower in samples with TP53 mutations.

Figure C.8: **Somatic mutation against AKT protein.** Mutations in *PIK3CA*, *PIK3R1*, *CDH1*, and *TP53* were examined in TCGA breast cancer for their effect on the expression of the AKT protein (a downstream target of *PIK3CA*). Protein levels were not significantly different in samples mutations in any of these cancer genes.

C.7 Metagene Expression Profiles

Figure C.9: **Pathway metagene expression profiles.** Expression profiles for metagene signatures from Gatza *et al.* (2014) in TCGA breast data, annotated for clinical factors and cancer gene mutations.

Figure C.10: Expression profiles for p53 related genes. Expression profiles the genes contained in the TP53 gene signature from Gatza et al. (2011) in TCGA breast data, annotated for clinical factors and cancer gene mutations. Samples are separated by CDH1 expression status and sorted by the metagene. In both cases, the majority of genes were consistent with the direction of the metagene, with few very exceptions. TP53 mutant samples had low metagene expression, consistent with loss of tumour suppressor functions, and were less likely to have CDH1 or PIK3CA mutations.

Figure C.11: Expression profiles for BRCA related genes. Expression profiles the genes contained in the gene signature related to BRCA1 and BRCA2 functions from Gatza et al. (2014) in TCGA breast data, annotated for clinical factors and cancer gene mutations. Samples are separated by CDH1 expression status and sorted by the metagene. In both cases, the majority of genes were consistent with the direction of the metagene, with few very exceptions. BRCA1 and BRCA2 mutant samples had higher metagene expression than most samples for the ductal subtype, although this was not the case (for the lobular samples for which the metagene was lower). However, the metagene was higher for basal subtype and estrogen receptor negative samples.

Appendix D

Normal-like

Intrinsic Subtyping

The intrinsic subtypes for TCGA breast cancer samples provided by University of California, Santa Cruz (UCSC) (TCGA, 2012) that were derived from microarray analysis have been compared to the Prediction Analysis of Microarray 50 (PAM50) results for performing subtyping from RNA-Seq data (Parker *et al.*, 2009). As shown in Table D.1, these subtypes were highly concordant for samples which had both procedures performed upon them ($\chi^2 = 1305.9$, $p = 2.73 \times 10^{-268}$). The main exception were the luminal A samples some of which were reclassified as luminal B or "normal-like".

Table D.1: Comparison of Intrinsic Subtypes

UCSC Subtype						
Basal-like	HER2-enriched	Luminal A	Luminal B	Normal-like		
100	58	232	128	30		
	PAM50 Subtype					
Basal-like	HER2-enriched	Luminal A	Luminal B	Normal-like		
208	94	314	334	227		

	UCSC Subtype					
PAM50 Subtype	Basal-like	HER2-enriched	Luminal A	Luminal B	Normal-like	
Basal-like	96	4	2	2	1	
HER2-enriched	0	47	5	3	0	
Luminal A	1	0	141	1	0	
Luminal B	2	7	49	121	0	

35

The intrinsic subtypes of TCGA breast samples were compared between those provided by UCSC (TCGA, 2012) from microarray expression to those derived from RNA-Seq data (Parker *et al.*, 2009). Comparisons between these were limited to samples for which both data types were available.

The PAM50 subtypes are potentially more accurate given similarity of these subtypes and that the remainder of the subtypes were accurately recapitulated with RNA-Seq data. Furthermore, UCSC subtypes correctly identified ²²/₂₂ normal samples as "normal-like" and PAM50 subtyping in RNA-Seq data had a success rate of ¹¹²/₁₁₃ (including all of those identified from microarrays). Therefore the PAM50 subtypes (performed on a larger cohort of samples) are appropriate to use for further interpretation, superceeding the UCSC subtypes available for a limited set of samples.

Appendix E

Stomach Expression Analysis

The following results are a replication of the TCGA results (in Chapter 4) with stomach cancer data, using synthetic lethality (SLIPT) against *CDH1* mutation.

E.1 Synthetic Lethal Genes and Pathways

Table E.1: Synthetic lethal gene partners of $\mathit{CDH1}$ from SLIPT in stomach cancer

Gene	Observed	Expected	χ^2 value	p-value	p-value (FDR)
PRAF2	17	50.4	121	3.54×10^{-25}	1.45×10^{-21}
EMP3	17	50.4	115	5.06×10^{-24}	1.48×10^{-20}
PLEKHO1	22	50.4	112	2.14×10^{-23}	4.75×10^{-20}
SELM	20	50.4	111	5.13×10^{-23}	8.09×10^{-20}
GYPC	20	50.4	110	5.77×10^{-23}	8.45×10^{-20}
COX7A1	18	50.4	109	1.15×10^{-22}	1.39×10^{-19}
TNFSF12	20	50.4	106	4.06×10^{-22}	4.38×10^{-19}
SEPT4	17	50.4	106	6.58×10^{-22}	5.91×10^{-19}
LGALS1	19	50.4	105	6.64×10^{-22}	5.91×10^{-19}
RARRES2	27	50.4	105	8.02×10^{-22}	6.85×10^{-19}
VEGFB	16	50.4	104	1.19×10^{-21}	9.74×10^{-19}
PRR24	22	50.4	102	2.96×10^{-21}	2.02×10^{-18}
SYNC	19	50.4	102	3.73×10^{-21}	2.39×10^{-18}
MAGEH1	17	50.4	100	9.52×10^{-21}	5.01×10^{-18}
HSPB2	23	50.4	99.6	1.19×10^{-20}	5.82×10^{-18}
SMARCD3	19	50.4	99	1.59×10^{-20}	7.57×10^{-18}
CREM	13	50.4	98.1	2.48×10^{-20}	1.13×10^{-17}
GNG11	20	50.4	97.3	3.68×10^{-20}	1.59×10^{-17}
GNAI2	17	50.4	96.4	5.75×10^{-20}	2.36×10^{-17}
FUNDC2	22	50.4	95.9	7.39×10^{-20}	2.91×10^{-17}
CNRIP1	21	50.4	95.3	1.0×10^{-19}	3.66×10^{-17}
CALHM2	22	50.4	93.1	2.94×10^{-19}	1.06×10^{-16}
ARID5A	18	50.4	92.7	3.47×10^{-19}	1.22×10^{-16}
ST3GAL3	27	50.4	92.2	4.49×10^{-19}	1.56×10^{-16}
LOC339524	21	50.4	92.1	4.8×10^{-19}	1.59×10^{-16}

SLIPT partners of CDH1 with observed and expected numbers of TCGA stomach cancer samples with low expression of both genes.

Table E.2: Pathways for CDH1 partners from SLIPT in stomach cancer

Pathways Over-represented	Pathway Size	SL Genes	p-value (FDR)
Extracellular matrix organization	241	104	7.5×10^{-140}
Hemostasis	445	138	1.8×10^{-121}
Developmental Biology	432	125	9.2×10^{-107}
Axon guidance	289	94	1.5×10^{-102}
Eukaryotic Translation Termination	84	49	1.9×10^{-99}
GPCR ligand binding	373	108	3.8×10^{-99}
Viral mRNA Translation	82	48	3.3×10^{-98}
Formation of a pool of free 40S subunits	94	51	3.3×10^{-98}
Eukaryotic Translation Elongation	87	49	1.6×10^{-97}
Peptide chain elongation	84	48	7.2×10^{-97}
Class A/1 (Rhodopsin-like receptors)	289	90	2.7×10^{-96}
Nonsense Mediated Decay independent of the Exon Junction Complex	89	49	3.0×10^{-96}
Infectious disease	349	100	2.6×10^{-94}
GTP hydrolysis and joining of the 60S ribosomal subunit	105	52	3.4×10^{-94}
L13a-mediated translational silencing of Ceruloplasmin expression	104	51	2.8×10^{-92}
3' -UTR-mediated translational regulation	104	51	2.8×10^{-92}
Neuronal System	272	84	8.4×10^{-92}
SRP-dependent cotranslational protein targeting to membrane	105	51	9.5×10^{-92}
Eukaryotic Translation Initiation	112	52	2.0×10^{-90}
Cap-dependent Translation Initiation	112	52	2.0×10^{-90}

Gene set over-representation analysis (hypergeometric test) for Reactome pathways in Synthetic Lethal Interaction Prediction Tool (SLIPT) partners for CDH1.

E.2 Synthetic Lethal Expression Profiles

Table E.3: Pathway composition for clusters of $\mathit{CDH1}$ partners in stomach SLIPT

Pathways Over-represented in Cluster 1	Pathway Size	Cluster Genes	- \
Viral mRNA Translation	82	48	1.3×10^{-97}
Formation of a pool of free 40S subunits	94	51	1.3×10^{-97}
Eukaryotic Translation Elongation	87	49	4.8×10^{-97}
Peptide chain elongation	84	48	1.4×10^{-96}
Eukaryotic Translation Termination	84	48	1.4×10^{-96}
GTP hydrolysis and joining of the 60S ribosomal subunit	105	52	7.9×10^{-94}
Nonsense Mediated Decay independent of the Exon Junction Complex	89	48	3.1×10^{-93}
13a-mediated translational silencing of Ceruloplasmin expression	104	51	5.1×10^{-92}
3'-UTR-mediated translational regulation	104	51	5.1×10^{-92}
SRP-dependent cotranslational protein targeting to membrane	105	51	1.7×10^{-91}
Eukaryotic Translation Initiation	112	52	3.3×10^{-90}
Cap-dependent Translation Initiation	112	52	3.3×10^{-90}
Franslation	142	56	3.6×10^{-85}
Vonsense-Mediated Decay	104	48	1.2×10^{-84}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	104	48	1.2×10^{-84} 1.2×10^{-84}
influenza Viral RNA Transcription and Replication	109	48	4.1×10^{-82}
influenza Life Cycle	113	48	3.4×10^{-80}
influenza Infection	118 C:	48	6.4×10^{-78}
Pathways Over-represented in Cluster 2	Pathway Size	Cluster Genes	p-value (FDR
mmunoregulatory interactions between a Lymphoid and a non-Lymphoid cell	65	12	1.3×10^{-15}
Phosphorylation of CD3 and TCR zeta chains	18	6	1.7×10^{-12}
Generation of second messenger molecules	29	7	2.7×10^{-12}
PD-1 signalling	21	6	7.4×10^{-12}
TCR signalling	62	9	4.3×10^{-11}
Franslocation of ZAP-70 to Immunological synapse	16	5	1.1×10^{-10}
nterferon alpha/beta signalling	68	9	1.6×10^{-10}
nitial triggering of complement	17	5	1.6×10^{-10}
KK complex recruitment mediated by RIP1	19	5	5.1 ×10 ⁻¹⁰
TRIF-mediated programmed cell death	10	4	6.2 ×10 ⁻¹⁰
Creation of C4 and C2 activators	11	4	1.3 ×10 ⁻⁹
RHO GTPases Activate NADPH Oxidases	11	4	1.3 ×10 ⁻⁹
nterferon Signalling	175	15	2.3×10^{-9}
Chemokine receptors bind chemokines	52	7	4.0×10^{-9}
nterferon gamma signalling	74	8	1.6×10^{-8}
TRAF6 mediated induction of TAK1 complex	15	4	1.6×10^{-8}
Activation of IRF3/IRF7 mediated by TBK1/IKK epsilon	16	4	2.7×10^{-8}
Downstream TCR signalling	45	6	3.5×10^{-8}
Pathways Over-represented in Cluster 3	Pathway Size	Cluster Genes	p-value (FDF
Uptake and actions of bacterial toxins	22	4	3.5×10^{-6}
Neurotoxicity of clostridium toxins	10	3	3.5×10^{-6}
Activation of PPARGC1A (PGC-1alpha) by phosphorylation	10	3	3.5×10^{-6}
SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription	28	4	1.4×10^{-5}
Assembly of the primary cilium	149	10	2.5×10^{-5}
Serotonin Neurotransmitter Release Cycle	15	3	2.5×10^{-5}
Glycosaminoglycan metabolism	114	8	3.3×10^{-5}
Platelet homeostasis	54	5	3.3×10^{-5}
Norepinephrine Neurotransmitter Release Cycle	17	3	3.3×10^{-5}
Acetylcholine Neurotransmitter Release Cycle	17	3	3.3×10^{-5}
	100	7	5.5×10^{-5}
G _{as} signalling events	19		5.6×10^{-5}
GABA synthesis, release, reuptake and degradation		3	
leactivation of the beta-catenin transactivating complex	39	4	6.7×10^{-5}
Dopamine Neurotransmitter Release Cycle	20	3	6.7×10^{-5}
RS-related events triggered by IGF1R	83	6	7.1×10^{-5}
Generic Transcription Pathway	186	11	7.1×10^{-5}
Fermination of O-glycan biosynthesis	21	3	7.4×10^{-5}
Kinesins	22	3	8.5×10^{-5}
Pathways Over-represented in Cluster 4	Pathway Size	Cluster Genes	p-value (FDF
Extracellular matrix organization	241	97	8.8×10^{-126}
Axon guidance	289	75	8.3×10^{-72}
Iemostasis	445	101	8.3×10^{-72}
Developmental Biology	432	95	3.0×10^{-67}
Response to elevated platelet cytosolic Ca ²⁺	84	37	5.8×10^{-67}
Platelet degranulation	79	36	5.8×10^{-67}
Degradation of the extracellular matrix	104	39	6.7×10^{-63}
Platelet activation, signalling and aggregation	186	52	6.6×10^{-62}
			8.1×10^{-61}
CCM proteoglycans	66	31	
Veuronal System	272	64	5.1×10^{-60}
Signalling by PDGF	173	47	9.7×10^{-57}
ntegrin cell surface interactions	82	31	1.9×10^{-53}
	56	26	1.1×10^{-52}
Collagen biosynthesis and modifying enzymes			1.4×10^{-52}
Collagen biosynthesis and modifying enzymes Collagen formation	67	28	1.4 × 10
	67 289	28 61	2.3×10^{-52}
Collagen formation Class A/1 (Rhodopsin-like receptors)			
Collagen formation	289	61	2.3×10^{-52}

Pathway over-representation analysis for Reactome pathways with the number of genes in each pathway (Pathway Size), number of genes within the pathway identified (Cluster Genes), and the pathway over-representation p-value (adjusted by FDR) from the hypergeometric test.

Figure E.1: Synthetic lethal expression profiles of analysed samples. Gene expression profile heatmap (correlation distance) of all samples (separated by the 1 /3 quantile of CDH1 expression) analysed in TCGA stomach cancer dataset for gene expression of 4,365 candidate partners of E-cadherin (CDH1) from SLIPT prediction (with significant FDR adjusted p < 0.05). Deeply clustered, inter-correlated genes form several main groups, each containing genes that were SL candidates or toxic in an siRNA screen Telford $et\ al.\ (2015)$. Clusters had different sample groups highly expressing the synthetic lethal candidates in CDH1 low samples, notably diffuse and CDH1 mutant samples have elevated expression in one or more distinct clusters, although there was less complexity and variation among candidate synthetic lethal partners than in breast data. CDH1 low samples also contained most of samples with CDH1 mutations.

E.3 Comparison to Primary Screen

The synthetic lethal partners with *CDH1* expression in stoamch cancers were also compared to siRNA primary screen data (Telford *et al.*, 2015), as performed in Section 4.2.1. These are expected to be more concordant with the experimental results performed on a null mutant, however this not the case at the gene level: less genes overlapped with experimental candidates in Figure E.2. This may be affected by lower sample size for mutations in TCGA data or lower frequency (expected value) of *CDH1* mutations compared to low expression.

Figure E.2: Comparison of SLIPT in stomach to siRNA. Testing the overlap of gene candidates for E-cadherin synthetic lethal partners between computational (SLIPT) and experimental screening (siRNA) approaches. The χ^2 test suggests that the overlap is no more than would be expected by chance (p = 0.281).

Table E.4: Pathway composition for CDH1 partners from SLIPT and siRNA screening

Predicted only by SLIPT (3392 genes)	Pathway Size	Genes Identified	p-value (FDR)
Extracellular matrix organization	238	90	3.4×10^{-107}
Eukaryotic Translation Termination	79	46	7.6×10^{-91}
Viral mRNA Translation	77	45	1.2×10^{-89}
Eukaryotic Translation Elongation	82	46	5.8×10^{-89}
Peptide chain elongation	79	45	2.1×10^{-88}
Nonsense Mediated Decay independent of the Exon Junction Complex $$	84	46	9.4×10^{-88}
Formation of a pool of free 40S subunits	89	47	3.3×10^{-87}
GTP hydrolysis and joining of the 60S ribosomal subunit	100	48	3.2×10^{-83}
Axon guidance	284	84	3.9×10^{-82}
Developmental Biology	426	111	4.2×10^{-82}
L13a-mediated translational silencing of Ceruloplasmin expression	99	47	1.4×10^{-81}
3' -UTR-mediated translational regulation	99	47	1.4×10^{-81}
SRP-dependent cotranslational protein targeting to membrane	99	47	1.4×10^{-81}
Nonsense-Mediated Decay	99	47	1.4×10^{-81}
Nonsense Mediated Decay enhanced by the Exon Junction Complex	99	47	1.4×10^{-81}
Hemostasis	438	112	1.2×10^{-80}
Eukaryotic Translation Initiation	107	48	8.0×10^{-80}
Cap-dependent Translation Initiation	107	48	8.0×10^{-80}
Infectious disease	338	90	1.6×10^{-76}
Neuronal System	267	77	1.6×10^{-76}
Detected only by siRNA screen (1803 genes)	Pathway Size	Genes Identified	p-value (FDR)
Class A/1 (Rhodopsin-like receptors)	282	62	8.1×10^{-50}
GPCR ligand binding	363	71	4.9×10^{-46}
Peptide ligand-binding receptors	175	38	7.9×10^{-38}
$G_{\alpha i}$ signalling events	184	37	1.1×10^{-34}

Detected only by siRNA screen (1803 genes)	Pathway Size	Genes Identified	p-value (FDR)
Class A/1 (Rhodopsin-like receptors)	282	62	8.1×10^{-50}
GPCR ligand binding	363	71	4.9×10^{-46}
Peptide ligand-binding receptors	175	38	7.9×10^{-38}
$G_{\alpha i}$ signalling events	184	37	1.1×10^{-34}
Gastrin-CREB signalling pathway via PKC and MAPK	180	35	1.4×10^{-32}
$G_{\alpha q}$ signalling events	159	32	4.8×10^{-32}
DAP12 interactions	159	29	1.4×10^{-27}
Downstream signal transduction	146	26	2.4×10^{-25}
DAP12 signalling	149	26	6.4×10^{-25}
VEGFA-VEGFR2 Pathway	91	19	8.1×10^{-24}
Signalling by PDGF	172	27	5.7×10^{-23}
Signalling by ERBB2	146	24	1.4×10^{-22}
Signalling by VEGF	99	19	2.0×10^{-22}
Visual phototransduction	85	17	1.3×10^{-21}
Downstream signalling of activated FGFR1	134	22	1.3×10^{-21}
Downstream signalling of activated FGFR2	134	22	1.3×10^{-21}
Downstream signalling of activated FGFR3	134	22	1.3×10^{-21}
Downstream signalling of activated FGFR4	134	22	1.3×10^{-21}
Signalling by FGFR	146	23	2.0×10^{-21}
Signalling by FGFR1	146	23	2.0×10^{-21}

Intersection of SLIPT and siRNA screen (547 genes)	Pathway Size	Genes Identified	p-value (FDR)
Class A/1 (Rhodopsin-like receptors)	282	25	3.9×10^{-9}
Platelet activation, signalling and aggregation	182	17	3.9×10^{-9}
Response to elevated platelet cytosolic $\mathrm{Ca}2^+$	82	9	5.5×10^{-8}
Platelet homeostasis	53	7	5.7×10^{-8}
Nucleotide-like (purinergic) receptors	16	4	1.8×10^{-7}
Platelet degranulation	77	8	2.8×10^{-7}
Peptide ligand-binding receptors	175	14	3.8×10^{-7}
Molecules associated with elastic fibres	34	5	7.1×10^{-7}
Amine ligand-binding receptors	35	5	8.6×10^{-7}
$G_{\alpha i}$ signalling events	184	14	9.8×10^{-7}
GPCR ligand binding	363	27	1.1×10^{-6}
Elastic fibre formation	38	5	1.5×10^{-6}
$G_{\alpha q}$ signalling events	159	12	1.9×10^{-6}
Serotonin receptors	12	3	3.8×10^{-6}
P2Y receptors	12	3	3.8×10^{-6}
Signal amplification	16	3	2.3×10^{-5}
Gastrin-CREB signalling pathway via PKC and MAPK	180	12	2.3×10^{-5}
Complement cascade	33	4	2.4×10^{-5}
Glycosaminoglycan metabolism	110	8	2.5×10^{-5}
Glycogen breakdown (glycogenolysis)	17	3	2.7×10^{-5}

E.3.1 Resampling Analysis

Table E.5: Pathways for CDH1 partners from SLIPT in stomach cancer

Reactome Pathway	Over-representation	Permutation
Extracellular matrix organization	7.5×10^{-140}	0.070215
Hemostasis	1.8×10^{-121}	0.25804
Developmental Biology	9.2×10^{-107}	0.53032
Axon guidance	1.5×10^{-102}	0.6704
Eukaryotic Translation Termination	1.9×10^{-99}	$> 1.031 \times 10^{-5}$
GPCR ligand binding	3.8×10^{-99}	0.54914
Viral mRNA Translation	3.3×10^{-98}	$> 1.031 \times 10^{-5}$
Formation of a pool of free 40S subunits	3.3×10^{-98}	$> 1.031 \times 10^{-5}$
Eukaryotic Translation Elongation	1.6×10^{-97}	$> 1.031 \times 10^{-5}$
Peptide chain elongation	7.2×10^{-97}	$> 1.031 \times 10^{-5}$
Class A/1 (Rhodopsin-like receptors)	2.7×10^{-96}	0.58174
Nonsense Mediated Decay independent of the Exon Junction Complex	3×10^{-96}	$> 1.031 \times 10^{-5}$
Infectious disease	2.6×10^{-94}	0.25484
GTP hydrolysis and joining of the 60S ribosomal subunit	3.4×10^{-94}	$> 1.031 \times 10^{-5}$
L13a-mediated translational silencing of Ceruloplasmin expression	2.8×10^{-92}	$> 1.031 \times 10^{-5}$
3' -UTR-mediated translational regulation	2.8×10^{-92}	$> 1.031 \times 10^{-5}$
Neuronal System	8.4×10^{-92}	0.53433
SRP-dependent cotranslational protein targeting to membrane	9.5×10^{-92}	$> 1.031 \times 10^{-5}$
Eukaryotic Translation Initiation	2.0×10^{-90}	$> 1.031 \times 10^{-5}$
Cap-dependent Translation Initiation	2.0×10^{-90}	$> 1.031 \times 10^{-5}$
Nonsense-Mediated Decay	7.4×10^{-90}	$> 1.031 \times 10^{-5}$
Nonsense Mediated Decay enhanced by the Exon Junction Complex	7.4×10^{-90}	$> 1.031 \times 10^{-5}$
Adaptive Immune System	8.1×10^{-88}	0.14116
Translation	1.3×10^{-87}	$> 1.031 \times 10^{-5}$
Platelet activation, signalling and aggregation	1.3×10^{-86}	0.28959
Influenza Infection	1×10^{-82}	$> 1.031 \times 10^{-5}$
Influenza Viral RNA Transcription and Replication	2.4×10^{-82}	$> 1.031 \times 10^{-5}$
Influenza Life Cycle	2×10^{-80}	$> 1.031 \times 10^{-5}$
Response to elevated platelet cytosolic Ca2 ⁺	4.9×10^{-78}	0.50817
Signalling by NGF	1.6×10^{-75}	0.38518
Rho GTPase cycle	5.1×10^{-75}	0.14864
Signalling by PDGF	7.4×10^{-74}	0.40493
Signalling by Rho GTPases	5.1×10^{-73}	0.077217
Glycosaminoglycan metabolism	1.4×10^{-68}	0.52984
$G_{\alpha i}$ signalling events	1.8×10^{-66}	0.9254
Metabolism of carbohydrates	1.1×10^{-65}	0.39501
G_{as} signalling events	2.7×10^{-65}	0.0050293
Potassium Channels	2.7×10^{-65}	0.53359
Transmission across Chemical Synapses	1.8×10^{-64}	0.81833
ECM proteoglycans	3.4×10^{-64}	0.083482
Peptide ligand-binding receptors	4.8×10^{-64}	0.62817
Degradation of the extracellular matrix	1.1×10^{-63}	0.80879
Platelet homeostasis	5.3×10^{-63}	0.53134
NGF signalling via TRKA from the plasma membrane	6.1×10^{-63}	0.5717
Integration of energy metabolism	4.5×10^{-61}	0.10889
Collagen formation	5.4×10^{-61}	0.29896
Integrin cell surface interactions	7×10^{-59}	0.29890
Collagen biosynthesis and modifying enzymes	7×10^{-59} 7×10^{-59}	0.30208
Neurotransmitter Receptor Binding And Downstream Transmission	/ ^ 10	0.50200
In The Postsynaptic Cell	8.7×10^{-57}	0.82522
Signalling by Wnt	8.7×10^{-57}	0.25468

Over-representation (hypergeometric test) and Permutation p-values adjusted for multiple tests across pathways (FDR). Significant pathways are marked in bold (FDR < 0.05) and italics (FDR < 0.1).

Table E.6: Pathways for CDH1 partners from SLIPT in stomach and siRNA screen

Reactome Pathway	Over-representation	Permutation
Platelet activation, signalling and aggregation	3.9×10^{-9}	0.49557
Class A/1 (Rhodopsin-like receptors)	3.9×10^{-9}	0.98432
Response to elevated platelet cytosolic Ca2 ⁺	5.5×10^{-8}	0.54349
Platelet homeostasis	5.7×10^{-8}	0.45017
Nucleotide-like (purinergic) receptors	1.8×10^{-7}	0.36966
Peptide ligand-binding receptors	3.8×10^{-7}	0.91294
Molecules associated with elastic fibres	7.1×10^{-7}	0.0025868
Amine ligand-binding receptors	8.6×10^{-7}	0.43303
$G_{\alpha i}$ signalling events	9.8×10^{-7}	0.99626
GPCR ligand binding	1.1×10^{-6}	0.97733
Elastic fibre formation	1.5×10^{-6}	0.0025868
$G_{\alpha q}$ signalling events	1.9×10^{-6}	0.86089
P2Y receptors	3.8×10^{-6}	0.18795
Serotonin receptors	3.8×10^{-6}	0.37853
Signal amplification	2.3×10^{-5}	0.47856
Gastrin-CREB signalling pathway via PKC and MAPK	2.3×10^{-5}	0.98567
Complement cascade	2.4×10^{-5}	$> 3.4628 \times 10^{-6}$
Glycosaminoglycan metabolism	2.5×10^{-5}	0.38953
Glycogen breakdown (glycogenolysis)	2.7×10^{-5}	0.83772
Defective B4GALT7 causes EDS, progeroid type	4.9×10^{-5}	0.10792
Defective B3GAT3 causes JDSSDHD	4.9×10^{-5}	0.10792
Role of LAT2/NTAL/LAB on calcium mobilization	5.6×10^{-5}	0.35373
Cell surface interactions at the vascular wall	5.6×10^{-5}	0.47642
$G_{\alpha s}$ signalling events	6×10^{-5}	0.019858
Signalling by NOTCH	6×10^{-5}	0.19008
A tetrasaccharide linker sequence is required for GAG synthesis	0.00017	0.47642
Extracellular matrix organization	0.00018	0.0047308
Collagen formation	0.00018	0.19245
Effects of PIP2 hydrolysis	0.0002	0.37779
Syndecan interactions	0.0002	0.37779
Diseases associated with glycosaminoglycan metabolism	0.00023	0.01028
Diseases of glycosylation	0.00023	0.01028
Chondroitin sulfate/dermatan sulfate metabolism	0.00023	0.085541
Integrin alphaIIb beta3 signalling	0.00028	0.76936
Keratan sulfate biosynthesis	0.00034	0.68744
Rho GTPase cycle	0.00034	0.15675
Creation of C4 and C2 activators	0.00035	0.12275
Abacavir transport and metabolism	0.00035	0.12443
Amine compound SLC transporters	0.00037	0.69773
FCERI mediated NF-kB activation	0.00037	0.69846
Fc epsilon receptor (FCERI) signalling	0.00056	0.43303
Defective EXT2 causes exostoses 2	0.00067	0.16053
Defective EXT1 causes exostoses 1, TRPS2 and CHDS	0.00067	0.16053
Collagen biosynthesis and modifying enzymes	0.00071	0.052911
Keratan sulfate/keratin metabolism	0.00073	0.46533
G alpha (12/13) signalling events	0.00078	0.59164
SEMA3A-Plexin repulsion signalling by inhibiting Integrin adhesion		0.038504
Signal attenuation	0.00084	0.37779
Eicosanoid ligand-binding receptors	0.0011	0.11117
SOS-mediated signalling	0.0011	0.25387

Over-representation (hypergeometric test) and Permutation p-values adjusted for multiple tests across pathways (FDR). Significant pathways are marked in bold (FDR < 0.05) and italics (FDR < 0.1).

E.4 Metagene Analysis

Metagene analysis was also performed for synthetic lethal candidates for *CDH1* expression in stomach cancer. These are described and compared to mutation analysis in Section ??.

Table E.7: Candidate synthetic lethal metagenes against *CDH1* from SLIPT in stomach cancer

Pathway	ID	Observed	Expected	χ^2 value	p-value	p-value (FDR)
Cell-Cell communication	1500931	18	50.4	110	7.43×10^{-23}	1.53×10^{-20}
VEGFR2 mediated vascular permeability	5218920	19	50.4	109	1.36×10^{-22}	2.49×10^{-20}
Sema4D in semaphorin signalling	400685	20	50.4	104	1.62×10^{-21}	2.12×10^{-19}
Ion transport by P-type ATPases	936837	17	50.4	100	8.29×10^{-21}	8.06×10^{-19}
Sialic acid metabolism	4085001	19	50.4	95.3	9.95×10^{-20}	7.82×10^{-18}
Synthesis of pyrophosphates in the cytosol	1855167	26	50.4	94	1.86×10^{-19}	1.23×10^{-17}
Keratan sulfate/keratin metabolism	1638074	25	50.4	93.5	2.36×10^{-19}	1.44×10^{-17}
Ion channel transport	983712	19	50.4	92.8	3.37×10^{-19}	1.99×10^{-17}
Keratan sulfate biosynthesis	2022854	26	50.4	91.4	6.79×10^{-19}	3.62×10^{-17}
Arachidonic acid metabolism	2142753	22	50.4	90.6	9.81×10^{-19}	5.07×10^{-17}
RHO GTPases activate CIT	5625900	22	50.4	87	5.80×10^{-18}	2.66×10^{-16}
Stimuli-sensing channels	2672351	25	50.4	85.8	1.03×10^{-17}	4.58×10^{-16}
Synthesis of PI	1483226	19	50.4	85.6	1.15×10^{-17}	4.89×10^{-16}
G-protein activation	202040	19	50.4	85.3	1.34×10^{-17}	5.53×10^{-16}
NrCAM interactions	447038	22	50.4	84.3	2.1×10^{-17}	8.27×10^{-16}
Inwardly rectifying K^+ channels	1296065	24	50.4	83.5	3.19×10^{-17}	1.22×10^{-15}
Calcitonin-like ligand receptors	419812	20	50.4	82.2	6.07×10^{-17}	2.13×10^{-15}
Prostacyclin signalling through prostacyclin receptor	392851	24	50.4	81.8	7.27×10^{-17}	2.5×10^{-15}
Presynaptic function of Kainate receptors	500657	26	50.4	79.7	2.00×10^{-16}	6.34×10^{-15}
ADP signalling through P2Y purinoceptor 12	392170	23	50.4	79.2	2.57×10^{-16}	7.71×10^{-15}
regulation of FZD by ubiquitination	4641263	22	50.4	78.8	3.15×10^{-16}	9.3×10^{-15}
Toxicity of tetanus toxin (TeNT)	5250982	27	50.4	78.7	3.36×10^{-16}	9.75×10^{-15}
Gap junction degradation	190873	21	50.4	78.5	3.66×10^{-16}	1.04×10^{-14}
Nephrin interactions	373753	25	50.4	78.2	4.21×10^{-16}	1.14×10^{-14}
GABA synthesis, release, reuptake and degradation	888590	26	50.4	77	7.69×10^{-16}	1.95×10^{-14}

Strongest candidate SL partners for CDH1 by SLIPT with observed and expected numbers of TCGA stomach cancer samples with low expression of both genes.