PHY101: Introduction to Physics I

Monsoon Semester 2024 Lecture 19

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR

Previous Lecture

Driven harmonic motion

This Lecture

Energy involved in harmonic motion Bound system in a potential Small oscillation

Energy associated with a particle in one-dimension motion

Consider a one-dimensional system with a given energy E (conserved) and potential energy U(x).

Energy conservation gives the kinetic energy as

$$K(x) = E - U(x)$$

$$\Rightarrow v = \sqrt{\frac{2}{m}(E - U(x))}$$

As KE cannot be negative (v cannot be imaginary) the motion must be restricted to a region where $E \ge U(x)$.

Energy associated with a particle in S. H. M.

Consider the potential energy associated with Simple Harmonic Motion (S.H.M.)

$$U(x) = \frac{1}{2}kx^2; \ k > 0$$

If E is the total energy, then

$$K(x) = E - U(x) = E - \frac{1}{2}kx^2$$

As $U(x) \ge 0$, for a positive K(x) we must have E > 0 for this system.

(E = 0 is not of our interest)

Bound system in a potential (the general expression)

Consider a bound system with potential energy U(x).

The equilibrium (stable) point is obtained for

$$\frac{dU(x)}{dx}\Big]_{x=x_0} \equiv U'(x_0) = 0$$

Assuming that U(x) is a well behaved function, it can be Taylor-expanded around x_0 , i.e.,

$$U(x) = U(x_0) + (x - x_0)U'(x_0) + \frac{1}{2!}(x - x_0)^2U''(x_0) + \cdots$$

Bound system in a potential (in presence of small perturbation)

Since
$$U'(x_0) = 0$$
, we get
$$U(x) = U(x_0) + \frac{1}{2!}(x - x_0)^2 U''(x_0) + \frac{1}{3!}(x - x_0)^3 U'''(x_0) + \cdots$$

Consider small displacement around the equilibrium point x_0 , i.e., $x - x_0 \sim 0$. Then we may neglect $(x - x_0)^3$ and higher order terms,

$$U(x) = U(x_0) + \frac{1}{2!}(x - x_0)^2 U''(x_0)$$

 $U(x_0)$ is just a constant, U(x) can be shifted to absorb it.

Potential energy associated with S. H. M.

Thus we have

$$U(x) = \frac{1}{2}U''(x_0)(x - x_0)^2$$

Comparing this with the potential energy associated with a simple harmonic oscillator with natural length position x_0 and spring constant k,

$$U(x) = \frac{1}{2}k(x - x_0)^2,$$

we conclude that $\mathbf{k} = \mathbf{U}''(\mathbf{x_0}) = \frac{d^2U(x)}{dx^2}\Big]_{x=x_0}$

Dependence of important parameters on U"(x) for S. H. M.

Thus, for small oscillations around x_0 :

Spring constant,
$$k = U''(x_0) = \frac{d^2 U(x)}{dx^2}\Big|_{x=x_0}$$
.

Angular frequency,
$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{U''(x_0)}{m}}$$

Linear frequency,
$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{U''(x_0)}{m}}$$

Time period,
$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{U''(x_0)}}$$

Bound system in a potential (general property)

Nearly all bound systems oscillate like a simple harmonic oscillator when slightly perturbed from its equilibrium position: The potential energy curve looks like a simple harmonic potential (parabolic).

Questions

A particle of mass m is constrained to move along the positive x-axis under the influence of a single force whose potential energy function is

$$U(x) = -a x^2 \exp(-x^2/b^2),$$

where a, b are positive constants. (a) Find the equilibrium point(s). (b) For each stable equilibrium, calculate the frequency of small oscillations.

Solution: (a) At the equilibrium point(s),
$$F = -\frac{dU}{dx} = 0$$

$$\Rightarrow -\frac{d}{dx} \left(-ax^2 e^{-\frac{x^2}{b^2}} \right) = 0$$

$$\Rightarrow \frac{2ae^{-\frac{x^2}{b^2}}}{b^2} x(b^2 - x^2) = 0$$

$$\Rightarrow x = 0, x = -b, x = b.$$

These are the equilibrium points.

Stability analysis:

We have
$$\frac{d^2U}{dx^2} = -\frac{2ae^{-\frac{x^2}{b^2}}}{b^4}(b^4 - 5b^2x^2 + 2x^4).$$

Therefore,
$$\left[\frac{d^2U}{dx^2}\right]_{x=0} = -2a < 0$$
, since $a > 0$.

 \Rightarrow x= 0 is a point of unstable equilibrium.

$$\left[\frac{d^2U}{dx^2}\right]_{x=+b} = \frac{4a}{e} > 0, \text{ since } a > 0.$$

 \Rightarrow Both x=-b and x=b are a points of stable equilibrium.

(b) Time period of small oscillations around the equilibrium point (x_0) is given by

$$T=2\pi\sqrt{\frac{m}{\left|\frac{d^2U}{dx^2}\right|_{x=x_0}}}$$
 Here $\mathbf{x}_0=\pm b$ and $\left|\frac{d^2U}{dx^2}\right|_{x=\pm b}=\frac{4a}{e}$, so $T=2\pi\sqrt{\frac{e\,m}{4a}}$.

Next Lecture

Centre of Mass