Practice setting up numerical solutions to Newton's Laws

Simple Harmonic Oscillator

For the system shown, the system can be described by the position and velocity (x and $v = \dot{x}$). The acceleration of the system is, of course, $a = \ddot{x}$.

- a) Write down Newton's second law:
- b) Separate into two first order equations:
- c) Now replace dt, dv, dx with Δt , Δv , Δx and solve each of the above two equations for Δx and Δv .
- d) Write down the Euler method solution and the Euler-Cromer method solution for this system.