DEL 1 Uten hjelpemidler

Oppgave 1 (20 poeng)

- a) Deriver funksjonene
 - 1) $f(x) = 2x \cdot e^x$
 - 2) $g(x) = 3\sqrt{x^2 1}$
- b) Vis at x = 1 er en løsning av likningen $2x^3 6x^2 2x + 6 = 0$ Bruk polynomdivisjon til å finne de andre løsningene.
- c) Vi har gitt vektorfunksjonen

$$\vec{r}(t) = \left[6t, -5t^2 + 45\right]$$

- 1) Tegn grafen til vektorfunksjonen når $t \in [0, 3]$
- 2) Bestem $\vec{v}(1)$. Tegn fartsvektoren inn på grafen.
- 3) Bestem akselerasjonsvektoren. Kommenter svaret ditt.
- d) En gjeng består av seks gutter og fire jenter. Vi trekker tilfeldig ut to av dem.

 Hva er sannsynligheten for at vi trekker ut én gutt og én jente?
- e) I \triangle ABC er AB=10,0 cm, \angle A =75° og \angle C =90°. Konstruer trekanten.
- f) Bestem grenseverdiene dersom de eksisterer:
 - 1) $\lim_{x \to 2} \frac{x^2 + 4}{x 2}$
 - 2) $\lim_{x \to 2} \frac{x^2 4}{x 2}$

Oppgave 2 (4 poeng)

Figuren ovenfor viser en sirkel med sentrum i S og radius r. Fra et punkt A utenfor sirkelen trekker vi en linje som tangerer sirkelen i punktet T. Linjen som går gjennom A og S, skjærer sirkelen i B og C.

Vi setter AT = x og AB = y

a) Bruk Pytagoras' læresetning i Δ SAT til å vise:

$$x^2 = y \cdot (y + 2r)$$

b) Vi setter $\angle SCT = 30^{\circ}$. Finn y = AB uttrykt ved r i dette tilfellet.

DEL 2 Med hjelpemidler

Oppgave 3 (5 poeng)

Funksjonen f er gitt ved $f(x) = 4x^2 \cdot e^{-x}$

- a) Vis ved regning at $f'(x) = 8x \cdot e^{-x} 4x^2 \cdot e^{-x}$. Tegn grafen til f'.
- b) Bruk grafen til f' til å finne eventuelle topp-, bunn- og vendepunkter på grafen til f.

Oppgave 4 (4 poeng)

Firkanten ABCD er et kvadrat med side a. Punktet P er plassert vilkårlig inne i kvadratet. Høyden i $\triangle ABP$ kaller vi h.

- a) Finn arealene av $\triangle ABP$ og $\triangle PCD$ uttrykt ved a og h.
- b) Finn et uttrykk for summen av arealene til \triangle ABP og \triangle PCD. Beskriv hva du har funnet.

Oppgave 5 (11 poeng)

Punktene A(-1,0), B(7,-2) og C(3,6) er hjørner i en trekant.

a) Bestem koordinatene til vektorene \overrightarrow{AB} og \overrightarrow{AC} . Finn $\angle A$ i $\triangle ABC$ ved regning.

Punktet *D* ligger på *AB* slik at $\overrightarrow{AD} = \frac{3}{4} \cdot \overrightarrow{AB}$.

Punktet *E* ligger på *AC* slik at $\overrightarrow{AE} = \frac{3}{4} \cdot \overrightarrow{AC}$. Se figur 1.

Figur 1

b) Vis at $\overrightarrow{DE} = [-3, 6]$. Forklar at $\overrightarrow{DE} \parallel \overrightarrow{BC}$.

Vi lar nå hjørnet A ha koordinatene (t, 0). Ved å variere verdien til parameteren t kan vi få A til å "gli" fram og tilbake på x-aksen. Figur 2 viser hvordan trekanten ser ut når t = 13.

c) Forklar at \overrightarrow{DE} har samme lengte for alle verdier av t.

- d) Bestem ved regning verdier for t slik at $\angle A = 90^{\circ}$
- e) Finn ved regning, eller ved hjelp av dynamisk programvare, andre verdier for t slik at $\triangle ABC$ blir rettvinklet.

Oppgave 6 (8 poeng)

Du skal svare på enten alternativ I eller alternativ II. De to alternativene teller like mye ved vurderingen.

(Dersom besvarelsen din inneholder deler av begge alternativene, vil bare det du har skrevet på alternativ I, bli vurdert.)

Alternativ 1

Figuren ovenfor viser en terning med side lik 2.

a) Bestem ved regning lengden av linjestykket AG

Punktet P ligger på sidekanten EF. Vi setter PF = x

En maur går fra Atil P og videre til G på overflaten av terningen (se figuren).

b) Forklar at mauren tilbakelegger strekningen s gitt ved

$$s(x) = \sqrt{2^2 + (2-x)^2} + \sqrt{x^2 + 2^2}$$

- c) Bruk kalkulator eller et program på datamaskinen til å finne den korteste strekningen mauren kan gå for å komme fra A til G.
- d) En elev kommer med følgende påstand: "Hvis jeg svinger opp lokket *EFGH* om *EF*, så ser jeg med en gang at $s_{min} = \sqrt{2^2 + 4^2} = \sqrt{20}$ ".

Tegn en figur og forklar hvordan eleven har resonnert og regnet.

Alternativ 2

En teatersal er formet som en regulær sekskant *ABCDEF* med side 16 m. Scenekanten er siden *AB* i sekskanten. Et sete er plassert i punktet S. $\angle ASB = \alpha$.

- a) Finn lengden til BD ved regning.
- b) Forklar at $\alpha = 30^{\circ}$ når setet er plassert i hjørnene *C*, *D*, *E* eller *F* .

Ikke alle er enige om hvor de beste setene i salen er.

- c) Noen mener at det beste setet er der hvor $\alpha=90^{\circ}$. Vis ved hjelp av konstruksjon hvor de beste setene er plassert hvis dette er det eneste kravet.
- d) Vis ved hjelp av en skisse, på frihånd eller med digitalt verktøy, hvor vi kan plassere S slik at $\alpha=45^{\circ}$.

Oppgave 7 (8 poeng)

Figuren ovenfor viser en kvartsirkel med radius 3 og sentrum i origo. En tangent i punktet P skjærer koordinataksene i A og B.

Kvartsirkelen er grafen til funksjonen f gitt ved

$$f(x) = \sqrt{9 - x^2}$$
, $x \in \langle 0, 3 \rangle$

Punktet P har førstekoordinat a. Det kan vises at likningen for tangenten er

$$y = \frac{-a}{\sqrt{9 - a^2}} \cdot x + \frac{9}{\sqrt{9 - a^2}}$$

- a) Bestem koordinatene til punktene A og B uttrykt ved a.
- b) Vis at arealet F av trekanten OAB er $F(a) = \frac{81}{2} \cdot \frac{1}{a\sqrt{9-a^2}}$
- c) Tegn en skisse av grafen til F. Bruk skissen til å finne det minste arealet av $\triangle OAB$ med tilhørende verdi av a.
- d) Bestem F'(a) og bruk denne til å finne den eksakte verdien for a som gjør at arealet av trekanten blir minst mulig.