decent exposure

deforestation and physical assets

Rob Norris, Martina Kaplanová

Can we use location and type of industrial assets to predict deforestation?

Overview of project

- Product: tool for deforestation assessment of an asset portfolio

- Data:
 - Industrial assets
 - Deforestation

- Tech Stack:
 - <u>Geospatial</u>: GeoPandas, Rasterio, rioxarray, Cartopy
 - <u>Modelling</u>: scikit-learn, XGBoost
 - App: Streamlit

Overview of task and stakeholders

our goal vs Climate & Co. goal

- EU regulation:

- Declare how business practices relate to deforestation
- Includes financial institutions
- How to assess "riskiness" of a portfolio?

- <u>Climate & Company:</u>

- Work with Swedish Pension Fund
- Divest deforestation-related assets

- Our interest:

- Geospatial
- Climate-related
- ML exercise

Geospatial ESG (Environment, Social, Governance)

The location/s of an **asset** or a company's asset and their suppliers' assets are geolocated. Known as **asset data**, once defined these locations or areas can be compared or modelled with **observational data** - datasets that provide insight.

Within the environmental space, these might provide insights into variables such as a factory's heat profile as a proxy for power usage, methane emissions, or direct impacts to the natural world such as by considering overlays with protected areas, deforestation, habitat fragmentation, endangered species, habitat connectivity, biodiversity, etc.

Data

Data I: Deforestation

TIFF (Tag Image File Format): stores raster graphics and image information.

GeoTIFF: allows georeferencing information to be embedded within a TIFF file.

The potential additional information includes:

- map projection
- coordinate systems
- ..

Data I: Deforestation

- Global Forest Change 2000-2022:
 - time-series of Landsat images
 - global forest extent and change

- Information included (GeoTIFF layers of 10 x 10 degrees):
 - treecover2000: Tree canopy cover for year 2000
 - lossyear: Year of gross forest cover loss event

Data II: Asset Data

3 sources suggested by Climate & Co.:

- Global Energy Monitor (GEM): energy-related assets
- Climate Trace (CLT): mining assets
- Spatial Finance Initiative (SFI): heavy industry assets

EDA

EDA I: Deforestation

- Global Forest Change 2000-2022:
 - 60+GB of data, globally
 - Each GeoTIFF file covers 10 x 10 degrees in 40K x 40K pixels

- Initial plan: time-series
 - ~2 hours processing time on MacBook Pro (Retina, 15-inch, Mid 2015)

- Final plan: Regression
 - Top 15 countries with the most deforestation, plus USA and China.
 - ~30 mins download, and ~5 mins processing time on MacBook Pro (Retina, 15-inch, Mid 2015)

EDA II: Asset Data

- In total: ~24k assets

- Focus on at-risk areas of deforestation: 16,029 assets

- Information included in GEM data:
 - asset ID and asset owner
 - latitude and longitude
 - sector
 - year of start of operation
 - size/subunits of industrial asset

Assets from GEM data

EDA III: Combined data

Subset to areas with:

- 1) with non-zero tree cover in 2000
- 2) with non-zero deforestation between 2000 and 2022

Summary stats:

- 25+% assets: no deforestation in a 3-year window
- 75+% assets: <1% of area deforestation

Product: tool for deforestation assessment of an asset portfolio

tool for deforestation assessment of an asset portfolio

- Start: list of assets in the portfolio

- Goal: deforestation by asset
 - in an X sqkm area around the assets
 - in a Y years around the start of operation of the asset

- **Idea:** identifies the clearing the forest in the vicinity of the asset

- Value: heuristic of assets' exposure to deforestation

Machine Learning Exercise

Does introduction of a new industrial asset contribute to deforestation in the area?

(1) Does this differ by
sector? → YES

(2) Can we predict the deforestation with confidence? \rightarrow NO :(

Method description: asset info to predict canopy loss

- 1. How to choose a right outcome variable?
- 2. How to choose the right timing?
- ightarrow TRADE OFF: number of observations vs intensity of deforestation

Results

Baseline: the prediction is the mean

Tried:

- Different models
- Feature engineering
- Outcome engineering
- Hyperparameter tuning

	1x1 km	8x8 km
MSE	0.00486	0.00035
R2	<0.00001	-0.00092

Best model: XGBRegression with regression trees

	1x1 km	8x8 km
MSE	0.00431	0.00027
R2	0.11387	0.21565

Results

Tried:

- Different models
- Feature engineering
- Outcome engineering
- Hyperparameter tuning

Further suggestion

- cover more areas of deforestation
- gather data on other types of assets from other datasets
- include more data on asset surrounding (geography, distance to infrastructure, distance to urban areas)
- alt. outcome: distance to closest area of deforestation

Challenges

- (1) Data limitations
 - Value chain of the assets vs the operations of the asset itself
 - → accessible data does not mean relevant or usable data
- (2) <u>Time series or not?</u>
 - → planning helps, but dead ends are sometimes inevitable!
- (3) Own feels: we do only (poorly predicting) regression
 - A little anticlimactic after the course
 - \rightarrow we have done a <u>lot</u> of processing work
 - → some things are not easy to model without better data/more time :)

Thank you for your attention!