Reinforcement Learning

Lecture 1

Lawrence Carin Duke University

- ☐ Consider an MD, seeking to treat patients in an effective manner, while minimizing costs
- ☐ The state of health for each patient is observed in terms of a set of clinical variables
- ☐ Assume there are a set of actions the MD can perform
- ☐ Each action will impact the health state of the patient (possibly no change in the state)
- ☐ Seek a policy that achieves the best outcomes at the lowest average price
- ☐ Could apply to particular types of patients (e.g., diabetics) or in particular settings within a health system (e.g., operating room)

- \square Assume the set of **actions** that may be taken is $A = \{a_1, ..., a_m\}$
- ☐ There is **randomness** in how a patient in state *s* will respond to a given action
- Let P(s, a, s') represent the *probability* that when a patient is in state s and the MD takes action a, the patients state will change to s'
- Let r(s, a, s') represent the "**reward**" associated with the MD taking action a for a patient in state s, and then the patient transiting to new state of health s'
- ☐ The reward r(s, a, s') may reflect the *immediate* impact for the patient of the change $s \rightarrow s'$ and also the cost of action a

☐ The MD interacts with the patient through a series of actions, patient state
changes, and rewards/costs

...
$$s_{t-1}$$
 a_{t-1} r_{t-1} s_t a_t r_t s_{t+1} ...

 \Box Goal: Develop a **policy** that defines for the MD the optimal action a to take when presented by a patient in state s; the policy may define *standard of care*

☐ The optimal policy will maximize the average reward over time, with reward accounting for patient outcome and costs

☐ The policy should be non-myopic, in that it thinks ahead, to the long-run impact of actions

☐ The policy will typically weight impacts in the near-term more highly than what happens in the long run

Big Challenge

- We typically do not know P(s, a, s')
- How can we learn a policy without this?
- We can just experience/try things, keep a record of outcomes, and adapt and adjust
- Reinforce actions for particular patient states that are rewarding
- Discourage actions that are expensive and yield poor outcomes
- In many ways this is how medicine works, over time

- Reinforcement learning is the formalization of this challenge
- Addresses sequential decision making in an uncertain (stochastic) world

Medicine/Health

- Reinforcement learning is the formalization of this challenge
- Addresses sequential decision making in an uncertain (stochastic) world

Medicine/Health

Monitoring/Maintenance of Factory

- Reinforcement learning is the formalization of this challenge
- Addresses sequential decision making in an uncertain (stochastic) world

Medicine/Health

Monitoring/Maintenance of Factory

Investing

- Reinforcement learning is the formalization of this challenge
- Addresses sequential decision making in an uncertain (stochastic) world

Medicine/Health

Monitoring/Maintenance of Factory

Investing

Illustrative Example

☐ Consider diabetes control

 \Box Assume that the patient state s is defined by the minimum and maximum glucose concentration from previous day

lacktriangledown The action a may be the rate of continuous insulin supply and the bolus dose

Illustrative Example

Consider diabetes control	
\Box Assume that the patient state s is defined by the minimum and maximum glucose concentration from previous da	у
figspace The action a may be the rate of continuous insulin supply and the bolus dose	

 \square r(s, a, s') may be defined to reward (punish) glucose levels that are desirable (undesirable)

 \square Assume that we may specify r(s, a, s')

Consider dishetes control

Solution Setup

- ☐ Assume that the patient state *s* is defined by the minimum and maximum glucose concentration from previous day
 - Discretize the continuous range of the state values into n bins

- \Box The action a may be the rate of continuous insulin supply and the bolus dose
 - Discretize the continuous range of the action values into m bins

Solution Setup

- ☐ Assume that the patient state *s* is defined by the minimum and maximum glucose concentration from previous day
 - Discretize the continuous range of the state values into n bins

- \Box The action a may be the rate of continuous insulin supply and the bolus dose
 - Discretize the continuous range of the action values into m bins

 \square The Q function Q(s, a) is an $n \times m$ matrix, denoting the value of taking action a when in state s

 \square Set initial values of $n \times m$ matrix Q(s,a) based on prior available medical knowledge, or set at random

 \Box After initializing Q(s,a), take an action a when patient is in particular state s, and then observe the new state s'

$$(s,a) \rightarrow s'$$
, $r(s,a,s')$

 \square Set initial values of $n \times m$ matrix Q(s,a) based on prior available medical knowledge, or set at random

 \Box After initializing Q(s,a), take an action a when patient is in particular state s, and then observe the new state s'

$$(s,a) \rightarrow s'$$
, $r(s,a,s')$

 \Box Assume that the prior/old value for the Q function when taking action a in state s is $Q^{old}(s,a)$

 \square Set initial values of $n \times m$ matrix Q(s, a) based on prior available medical knowledge, or set at random

 \Box After initializing Q(s,a), take an action a when patient is in particular state s, and then observe the new state s'

$$(s,a) \rightarrow s'$$
, $r(s,a,s')$

 \Box Assume that the prior/old value for the Q function when taking action a in state s is $Q^{old}(s,a)$

☐ We may consider the update rule:

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [r(s,a,s') - Q^{old}(s,a)], \text{ with } \alpha \in (0,1)$$

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [r(s,a,s') - Q^{old}(s,a)], \text{ with } \alpha \in (0,1)$$

Temporal Difference (TD)

 \square α is called the "learning rate," and controls the relative balance between our old estimate $Q^{old}(s,a)$ and new information provided by r(s,a,s')

If the TD is positive, the inferred value of taking action a in state s is increased; if TD negative, the value of taking action a in state s is diminished

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [r(s,a,s') - Q^{old}(s,a)], \text{ with } \alpha \in (0,1)$$

 \square If the reward r(s, a, s') is large (small) then $Q^{new}(s, a)$ is typically increased (diminished)

$$Q^{new}(s, a) \leftarrow Q^{old}(s, a) + \alpha \cdot [r(s, a, s') - Q^{old}(s, a)], \text{ with } \alpha \in (0,1)$$

 \square If the reward r(s, a, s') is large (small) then $Q^{new}(s, a)$ is typically increased (diminished)

lacktriangledown Problem: This only accounts for the <u>immediate</u> reward r(s,a,s')

lacktriangle Doesn't account for what may happen subsequently once the patient state changes to s'

Example: Problem With Myopic Policy

$$Q^{new}(s, \alpha) \leftarrow Q^{old}(s, \alpha) + \alpha \cdot [r(s, \alpha, s') - Q^{old}(s, \alpha)], \text{ with } \alpha \in (0, 1)$$

 \Box Assume state of patient s corresponds to severe poor health

lacktriangle A particular action a may have probable positive immediate reward r(s,a,s')

☐ However, there may be serious long-term complications (e.g., loss of opportunity to have children)

☐ A policy that only accounts for the immediate reward would not account for long-term, later consequences

☐ Recall our simple solution

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [r(s,a,s') - Q^{old}(s,a)], \text{ with } \alpha \in (0,1)$$

☐ Recall our simple solution

$$Q^{new}(s, a) \leftarrow Q^{old}(s, a) + \alpha \cdot [r(s, a, s') - Q^{old}(s, a)], \text{ with } \alpha \in (0,1)$$

☐ Consider the extension

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [\, r(s,a,s') + \gamma \cdot \max_{a'} \, Q^{old}(s',a') - Q^{old}(s,a)]$$

☐ Recall our simple solution

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [r(s,a,s') - Q^{old}(s,a)], \text{ with } \alpha \in (0,1)$$

☐ Consider the extension

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [\, r(s,a,s') + \gamma \cdot \max_{a'} \, Q^{old}(s',a') - Q^{old}\,(s,a)]$$

☐ Recall our simple solution

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [r(s,a,s') - Q^{old}(s,a)], \text{ with } \alpha \in (0,1)$$

☐ Consider the extension

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [r(s,a,s') + \gamma \cdot \max_{a'} Q^{old}(s',a') - Q^{old}(s,a)]$$
 Expected Future Rewards Based on Optimal Policy

☐ Recall our simple solution

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [r(s,a,s') - Q^{old}(s,a)], \text{ with } \alpha \in (0,1)$$

■ How about extending it as

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \alpha \cdot [r(s,a,s') + \gamma \cdot \max_{a'} Q^{old}(s',a') - Q^{old}(s,a)]$$
Non-Myopic Temporal Difference (TD)

$$Q^{new}(s,a) \leftarrow (1-\alpha) \cdot Q^{old}(s,a) + \alpha \cdot [r(s,a,s') + \gamma \cdot \max_{a'} Q^{old}(s',a')]$$

☐ Based on simple logic and intuition, we have derived an algorithm for a system/MD to learn based on experience

☐ This is actually a widely employed method for reinforcement learning, called Q Learning

$$Q^{new}(s,a) \leftarrow (1-\alpha) \cdot Q^{old}(s,a) + \alpha \cdot [r(s,a,s') + \gamma \cdot \max_{a'} Q^{old}(s',a')]$$

☐ Based on simple logic and intuition, we have derived an algorithm for a system/MD to learn based on experience

☐ This is actually a widely employed method for reinforcement learning, called Q Learning

 \square Based on the learned matrix Q(s,a) the policy that is typically employed is

$$\pi(a; s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_a Q^{old}(s_{t+1}, a)]$$

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_{a} Q^{old}(s_{t+1}, a)]$$

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_{a} Q^{old}(s_{t+1}, a)]$$

$$\downarrow \qquad \qquad \downarrow$$
Learning rate, $\alpha \in [0,1]$

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_{a} Q^{old}(s_{t+1}, a)]$$

Previous Estimate of Value of Action a_t when in state s_t

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_{a} Q^{old}(s_{t+1}, a)]$$

Updated Estimate of Value of Action a_t when in state s_t After Observing r_t

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_a Q^{old}(s_{t+1}, a)]$$

 \square Don't need to actually perform the action defined by $\underset{a}{\operatorname{argmax}} Q^{old}(s_{t+1}, a)$

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_{a} Q^{old}(s_{t+1}, a)]$$

 \square Don't need to actually perform the action defined by $\underset{a}{\operatorname{argmax}} Q^{old}(s_{t+1}, a)$

 \square Next action a_{t+1} may be based on $\operatorname*{argmax} Q^{new}(s_{t+1}, a_{t+1})$, we then observe immediate reward r_{t+1} and new state s_{t+2}

...
$$s_t$$
 a_t r_t s_{t+1} a_{t+1} r_{t+1} s_{t+2} ...

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_{a} Q^{old}(s_{t+1}, a)]$$

 \square Don't need to actually perform the action defined by $\underset{a}{\operatorname{argmax}} \, Q^{old}(s_{t+1},a)$

lacktriangled Next action a_{t+1} may be based on $rgmax Q^{new}(s_{t+1}, a_{t+1})$, we then observe immediate reward r_{t+1} and new state s_{t+2} and a_{t+1}

...
$$s_t$$
 a_t r_t s_{t+1} a_{t+1} r_{t+1} s_{t+2} ...

 \square Sequentially and continually update the Q function $Q^{new}(s_t, a_t)$, which is an $n \times m$ matrix

Dukeuniversity

Learning Rate

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_{a} Q^{old}(s_{t+1}, a)]$$

$$\uparrow$$
Learning rate, $\alpha \in [0,1]$

☐ Convergence guaranteed after sufficient experience, if learning rate diminishes with time

 \Box In practice one may set $\alpha=0.1$

☐ This online Q-learning setup allows one to learn an optimal policy based directly on experience

Q Learning vs. SARSA

☐ **Q-learning**, from previous slides:

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_{a} Q^{old}(s_{t+1}, a)]$$

Assumes access to s_t a_t r_t s_{t+1} (SARS); we don't implement a_{t+1} to update the Q functions

Q Learning vs. SARSA

☐ **Q-learning**, from previous slides:

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_{a} Q^{old}(s_{t+1}, a)]$$

Assumes access to s_t a_t r_t s_{t+1} (SARS); we don't implement a_{t+1} to update the Q functions

☐ SARSA based learning considers the slightly modified

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot Q^{old}(s_{t+1}, a_{t+1})]$$

Assumes access to s_t a_t r_t s_{t+1} a_{t+1} (SARSA); a_{t+1} may be specified by some chosen mechanism

$$Q^{new}(s_t, a_t) \leftarrow (1-\alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot Q^{old}(s_{t+1}, a_{t+1})]$$

 \square Assume we observe s_t a_t r_t s_{t+1}

$$Q^{new}(s_t, a_t) \leftarrow (1-\alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot Q^{old}(s_{t+1}, a_{t+1})]$$

 \square Assume we observe s_t a_t r_t s_{t+1}

 \square Which next action a_{t+1} should we take within Q learning or SARSA?

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot Q^{old}(s_{t+1}, a_{t+1})]$$

 \square Assume we observe s_t a_t r_t s_{t+1}

 \square Which next action a_{t+1} should we take within Q learning or SARSA?

- \square ϵ -Greedy (small ϵ):
 - With probability ϵ , choose a_{t+1} at random
 - With probability 1ϵ , next action $a_{t+1} = \operatorname*{argmax}_a Q^{old}(s_{t+1}, a)$

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot Q^{old}(s_{t+1}, a_{t+1})]$$

 \square Assume we observe s_t a_t r_t s_{t+1}

 \square Which next action a_{t+1} should we take within Q learning or SARSA?

- \square ϵ -Greedy (small ϵ):

 - With probability ϵ , choose a_{t+1} at random With probability $1-\epsilon$, next action $a_{t+1}= \arg\max_{a} Q^{old}(s_{t+1},a)$

Allows exploration with probability ϵ

Reinforcement Learning

Lecture 2

Lawrence Carin Duke University

Limitations of Tabular Q Learning

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot \max_{a} Q^{old}(s_{t+1}, a)]$$

☐ Simple update rule, but

- The Q function is stored as a table/matrix, which is impractical when considering a large number of states and actions
- No real capacity to generalize across sequence types, because the tabular Q function does not have a functional form

Represent Q Function as a Neural Network

☐ The Q-function modeled via a neural network

 \Box The state is input (e.g., an image with N pixels), and at the output we model the Q-function Q(s,a) for each possible action

Represent the neural network model as $Q(s, a; \theta)$ where θ represent the neural network parameters we wish to learn

 \Box After we learn θ the policy is

$$\pi(s) = \operatorname*{argmax}_{a} Q(s, a; \theta)$$

Deep Q Learning (DQN)

 \Box If we update θ like in Q learning, with every new observed s_t a_t r_t s'_{t+1} , at each step we seek to minimize

$$U(\theta; s_t, a_t) = \frac{1}{2} [Q(s_t, a_t; \theta) - [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old})]]^2$$

 \Box If we update θ like in Q learning, with every new observed s_t a_t r_t s'_{t+1} , at each step we seek to minimize

$$U(\theta; s_t, a_t) = \frac{1}{2} [Q(s_t, a_t; \theta) - [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old})]]^2$$

$$\theta^{new} \leftarrow \theta^{old} - \alpha \cdot \nabla_{\theta} U(\theta; s_t, a_t)|_{\theta = \theta^{old}}$$

 \Box If we update θ like in Q learning, with every new observed s_t a_t r_t s'_{t+1} , at each step we seek to minimize

$$U(\theta; s_t, a_t) = \frac{1}{2} [Q(s_t, a_t; \theta) - [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old})]]^2$$

 \Box If we update θ like in Q learning, with every new observed s_t a_t r_t s'_{t+1} , at each step we seek to minimize

$$U(\theta; s_t, a_t) = \frac{1}{2} [Q(s_t, a_t; \theta) - [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old})]]^2$$

$$\theta^{new} \leftarrow \theta^{old} - \alpha \cdot \nabla_{\theta} U(\theta; s_t, a_t)|_{\theta = \theta^{old}}$$

$$\theta^{new} \leftarrow \theta^{old} - \alpha \cdot \left[Q(s_t, a_t; \theta^{old}) - r_t - \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) \right] \nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}}$$

$$\theta^{new} \leftarrow \theta^{old} + \alpha \cdot \left[r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) - Q(s_t, a_t; \theta^{old}) \right] \nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}}$$

Looks a lot like the prior Q learning

$$\theta^{new} \leftarrow \theta^{old} + \alpha \cdot \left[r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) - Q(s_t, a_t; \theta^{old}) \right] \nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}}$$

Modification to account for neural network parameters θ

$$\theta^{new} \leftarrow \theta^{old} + \alpha \cdot \left[r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) - Q(s_t, a_t; \theta^{old}) \right] \nabla_{\theta} Q(s_t, a_t; \theta)_{|_{\theta = \theta^{old}}}$$

$$\text{Looks a lot like the prior Q learning} \qquad \text{Modification to account for neural network parameters } \theta$$

☐ One may show rigorously that this is directly related to the prior sequential Q learning

☐ Details not very difficult (first-order Taylor series expansion), but beyond the scope of our discussion (see Appendix)

lacksquare Seek parameters heta that minimize prediction error

$$U(\theta; s_t, a_t) = \frac{1}{2} [Q(s_t, a_t; \theta) - [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old})]]^2$$

 $lue{}$ Seek parameters heta that minimize prediction error

lacktriangle Seek parameters heta that minimize prediction error

lacksquare Seek parameters heta that minimize prediction error

$$U(\theta; s_t, a_t) = \frac{1}{2} [Q(s_t, a_t; \theta) - [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old})]]^2$$

lacksquare Seek parameters heta that minimize prediction error

$$U(\theta; s_t, a_t) = \frac{1}{2} [Q(s_t, a_t; \theta) - [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old})]]^2$$

lacktriangle Seek parameters heta that minimize prediction error

Atari Games

Final Thoughts

☐ Tabular Q Learning employs the update rule

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q^{old}(s_t, a_t) + \alpha \cdot [r_t + \gamma \cdot Q^{old}(s_{t+1}, a_{t+1})]$$

lacktriangle Deep Q Learning uses a deep neural network with parameters heta to minimize the functional

$$U(\theta; s_t, a_t) = \frac{1}{2} [Q(s_t, a_t; \theta) - [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old})]]^2$$

☐ Reinforcement learning has been studied for decades, and there are many other methods that we have not considered here, and are worth learning about for those interested

☐ There is also a rich theoretical foundation to RL, and therefore much is known about the fundamentals of these methods

Appendix 1

Introduction to Markov Decision Process (MDP)

 \square A set of **states** $S = (s_1, ..., s_n)$

We observe the state of the system/environment/subject

 \square A set of states $S = (s_1, ..., s_n)$ We observe the state of the system/environment/subject

 \square A set of **actions** $A=(a_1,\ldots,a_m)$ We may select an action to take, given that the system is in an observed state s

A set of states $S = (s_1, ..., s_n)$ We observe the state of the system/environment/subject

 \square A set of actions $A = (a_1, ..., a_m)$ We may select an action to take, given that the system is in an observed state s

☐ State-transition probabilities P(s, a, s')Defines the probability of transitioning $s \to s'$ upon taking action a when in state s; $\sum_{s' \in S} P(s, a, s') = 1$

 \square A set of **states** $S = (s_1, ..., s_n)$ We observe the state of the system/environment/subject

 \Box A set of actions $A=(a_1,\ldots,a_m)$ We may select an action to take, given that the system is in an observed state s

□ State-transition probabilities P(s, a, s')Defines the probability of transitioning $s \to s'$ upon taking action a when in state s'; $\sum_{s' \in S} P(s, a, s') = 1$

 \Box Set of **rewards** r(s, a, s') reflecting the *immediate* reward of taking action a in state s and transiting to state s'

A set of states $S = (s_1, ..., s_n)$ We observe the state of the system/environment/subject

 \square A set of actions $A=(a_1,\ldots,a_m)$ We may select an action to take, given that the system is in an observed state s

□ State-transition probabilities P(s, a, s')Defines the probability of transitioning $s \to s'$ upon taking action a when in state s'; $\sum_{s' \in S} P(s, a, s') = 1$

 \Box Set of **rewards** r(s, a, s') reflecting the *immediate* reward of taking action a in state s and transiting to state s'

Discount factor $\gamma \in [0,1)$ Reflects the degree to which future rewards are discounted relative to immediate rewards

Policy

 \square A policy π specifies which action $a \in A$ is taken when in state $s \in S$

 \square The policy may be stochastic, with $\pi(a;s)$ reflecting the *probability* of action a when in state s; $\sum_{i=1}^{m} \pi(a_i;s) = 1$

Policy

 \square A policy π specifies which action $a \in A$ is taken when in state $s \in S$

 \Box The policy may be stochastic, with $\pi(a;s)$ reflecting the *probability* of action a when in state s; $\sum_{i=1}^{m} \pi(a_i;s) = 1$

 \square Consider the sequence $(s_0, a_0, r_0, s_1, a_1, r_1, ..., s_{N-1}, a_{N-1}, r_{N-1}, s_N, a_N, r_N)$

- The total reward for this sequence is $r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots + \gamma^N r_N$
- This total reward is a random variable, because the sequence of states visited is random

We wish to learn the policy π to maximize the <u>expected</u> reward of the "agent" over a sequence of states, actions and rewards

Expected (Average) Reward of a Policy

 \square The state-action value function $Q^{\pi}(s,a)$ of any policy π indicates the expected (average) discounted total reward when taking action a in state s and following the optimal policy thereafter

$$Q^{\pi}(s,a) = E_{a_t \sim \pi; s_t \sim P}(\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, a_0 = a)$$

 \Box We may re-express $Q^{\pi}(s,a)$ as

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s, a, s') \max_{a'} Q^{\pi}(s', a')$$

□ Immediate expected reward $R(s, a) = \sum_{s'} P(s, a, s') r(s, a, s')$

Deterministic Policy

 \Box Assumed the policy selects the single most rewarding action when in state s

$$\pi(s) = \arg\max_{a \in A} Q^{\pi}(s, a)$$

☐ Bellman's equation

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s,a,s') \max_{a' \in A} Q^{\pi}(s',a')$$

☐ Suggests an iterative solution to learn the optimal deterministic policy

Policy Iteration

 \square Initialize the Q functions with $Q_0(s,a)=R(s,a)$

☐ Iterate as

$$Q^{new}(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s,a,s') \max_{a' \in A} Q^{old}(s',a')$$

 \square May be shown that for a large number of steps this iterative solution converges to $Q^{\pi}(s,a)$ for the optimal policy $\pi(a;s)$

Practical Limitations of MDP Policy Learning

$$Q^{new}(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s,a,s') \max_{a' \in A} Q^{old} (s',a')$$

 \square Assumes we have access to a model of the environment, given by P(s, a, s')

☐ Typically we do not have these model parameters

 \square Possible strategy: Estimate P(s, a, s') based on experience with environment

☐ Challenge: May require a lot of such experience to get good estimates

Appendix 2

Alternative Derivation of Q Learning

Learn the Policy as we Experience Environment

$$Q^{new}(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s,a,s') \max_{a' \in A} Q^{old} \left(s',a' \right)$$

Learn the Policy as we Experience Environment

$$Q^{new}(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s,a,s') \max_{a' \in A} Q^{old}(s',a')$$

 \square Based on the definition of R(s,a), this is equivalent to

$$Q^{new}(s,a) \leftarrow \sum_{s' \in S} P(s,a,s') \left[r(s,a,s') + \gamma \max_{a' \in A} Q^{old} \left(s',a' \right) \right]$$

Learn the Policy as we Experience Environment

$$Q^{new}(s,a) \leftarrow R(s,a) + \gamma \sum_{s' \in S} P(s,a,s') \max_{a' \in A} Q^{old}(s',a')$$

 \square Based on the definition of R(s,a) this is equivalent to

$$Q^{new}(s,a) \leftarrow \sum_{s' \in S} P(s,a,s') \left[r(s,a,s') + \gamma \max_{a' \in A} Q^{old} \left(s',a' \right) \right]$$

 \square By the definition of probability, as $K \to \infty$, this is equivalent to

$$Q^{new}(s,a) \leftarrow \frac{1}{T} \sum_{t=1}^{T} \left[r(s,a,s_t') + \gamma \max_{a'} Q^{old}(s_t',a') \right], \quad \text{with each} \quad s_t' \sim P(s,a,s')$$

Learning from Experience

$$Q^{new}(s,a) \leftarrow \frac{1}{T} \sum_{t=1}^{T} \left[r(s,a,s_t') + \gamma \max_{a'} Q^{old}(s_t',a') \right], \quad \text{with each} \quad s_t' \sim P(s,a,s')$$

 \Box We don't know the underlying probability distribution P(s, a, s')

 \square But we can sample from it, from experience; don't need to know or estimate P(s, a, s')

 \square When in state s, try an action $a \in A$, and see what happens, i.e., see what reward r is manifested

☐ Model learns to value, or *reinforce*, actions in a given state that are expected to be valuable

Naïve Q Learning

$$Q^{new}(s,a) \leftarrow \frac{1}{T} \sum_{t=1}^{T} \left[r(s,a,s_t') + \gamma \max_{a'} Q^{old}(s_t',a') \right], \quad \text{with each} \quad s_t' \sim P(s,a,s')$$

☐ Suggests an update rule we implement "on the fly", as we experience the environment

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + [r_t + \gamma \max_{a'} Q^{old}(s'_t,a')]$$
, with $s'_t \sim P(s,a,s')$

Naïve Q Learning

$$Q^{new}(s,a) \leftarrow \frac{1}{T} \sum_{t=1}^{T} \left[r(s,a,s_t') + \gamma \max_{a'} Q^{old}(s_t',a') \right], \quad \text{with each} \quad s_t' \sim P(s,a,s')$$

☐ Suggests an update rule we implement "on the fly", as we experience the environment

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + \left[r_t + \gamma \max_{a'} Q^{old}(s'_t,a')\right] , \qquad \text{with } s'_t \sim P(s,a,s')$$

 \Box The 1/T factor doesn't affect policy (max operation), and therefore we ignore it for simplicity

Q-Learning

☐ The simple/naïve setup is

$$Q^{new}(s,a) \leftarrow Q^{old}(s,a) + [r_t + \gamma \max_{a'} Q^{old}(s'_t,a')]$$

 \square Introduce a "learning rate" $\alpha \in [0,1]$ and modify the update rule as

$$Q^{new}(s,a) \leftarrow (1-\alpha) \cdot Q^{old}(s,a) + \alpha \cdot [r_t + \gamma \max_{a'} Q^{old}(s'_t,a')]$$

☐ This is called Q learning, and it allows one to learn a policy on the life, adaptively, as the environment is experienced

Appendix 3

Connecting Deep Q Learning to Conventional Q Learning

DQN Parameter Update Equation

Recall that in deep Q learning the update equation of the model parameters is:

$$\theta^{new} \leftarrow \theta^{old} + \alpha \cdot \left[r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) - Q(s_t, a_t; \theta^{old}) \right] \nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}}$$

After implementing the parameter update, the Q function may be expressed as

$$Q(s_t, a_t; \theta^{new}) = Q(s_t, a_t; \theta^{old} + \alpha \cdot [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) - Q(s_t, a_t; \theta^{old})] \nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}})$$

Taylor Series Expansion

$$Q(s_t, a_t; \theta^{new}) = Q(s_t, a_t; \theta^{old} + \alpha \cdot [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) - Q(s_t, a_t; \theta^{old})] \nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}})$$

Define

$$\Delta\theta = \alpha \cdot [r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) - Q(s_t, a_t; \theta^{old})] \nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}}$$

from which

$$Q(s, a; \theta^{new}) = Q(s, a; \theta^{old} + \Delta\theta)$$

 \Box First-order Taylor-series expansion, for small $\Delta\theta$:

$$Q(s, a; \theta^{old} + \Delta \theta) \approx Q(s, a; \theta^{old}) + \Delta \theta^T \nabla_{\theta} Q(s, a; \theta)|_{\theta = \theta^{old}}$$

Taylor Series Expansion

lacksquare By the definition of $\Delta heta$

$$Q(s_t, a_t; \theta^{old} + \Delta \theta) \approx Q\left(s_t, a_t; \theta^{old}\right) + \alpha \cdot \left[r_t + \gamma \cdot \max_{a'} Q\left(s'_{t+1}, a'; \theta^{old}\right) - Q\left(s_t, a_t; \theta^{old}\right)\right] ||\nabla_\theta Q(s_t, a_t; \theta)|_{\theta = \theta^{old}}||_2^2$$

 \square Define $\alpha' = \alpha \cdot ||\nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}}||_2^2$, yielding approximately

$$Q(s_t, a_t; \theta^{new}) \leftarrow Q(s_t, a_t; \theta^{old}) \cdot (1 - \alpha') + \alpha' \cdot \left[r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) - Q(s_t, a_t; \theta^{old}) \right]$$

Connecting DQN to Q Learning

☐ The update rule for the model parameters in deep learning is

$$\theta^{new} \leftarrow \theta^{old} + \alpha \cdot \left[r_t + \gamma \cdot \max_{a'} Q\left(s'_{t+1}, a'; \theta^{old}\right) - Q(s_t, a_t; \theta^{old}) \right] \nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}}$$

☐ When viewed from the perspective of the Q function this yields

$$\begin{split} Q(s_t, a_t; \theta^{new}) \leftarrow Q\left(s_t, a_t; \theta^{old}\right) \cdot (1 - \alpha') + \alpha' \cdot \left[r_t + \gamma \cdot \max_{\alpha'} Q\left(s'_{t+1}, \alpha'; \theta^{old}\right) - Q\left(s_t, a_t; \theta^{old}\right)\right] \\ \alpha' = \alpha \cdot ||\nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}}||_2^2 \end{split}$$

☐ Hence, the update rule in deep Q learning for the model parameters corresponds exactly to the update rule in conventional Q learning

Connecting DQN to Q Learning

☐ When doing updates in deep Q learning we do NOT actually implement

$$Q(s_t, a_t; \theta^{new}) \leftarrow Q(s_t, a_t; \theta^{old}) \cdot (1 - \alpha') + \alpha' \cdot \left[r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) - Q(s_t, a_t; \theta^{old}) \right]$$

because now the Q function is not simply a table, as in original Q learning

☐ We implement

$$\theta^{new} \leftarrow \theta^{old} + \alpha \cdot \left[r_t + \gamma \cdot \max_{a'} Q(s'_{t+1}, a'; \theta^{old}) - Q(s_t, a_t; \theta^{old}) \right] \nabla_{\theta} Q(s_t, a_t; \theta)|_{\theta = \theta^{old}}$$

meaning we update the functional model $Q(s, a; \theta)$ for the Q function