CHEMICAL COMPATIBILITY AND HIGH-TEMPERATURE LIMITS FOR STRUCTURAL MATERIALS

Nasr M. Ghoniem

Mechanical and Aerospace Engineering Department
University of California at Los Angles (UCLA)
Los Angeles, CA. 90095-1597

APEX Study Meeting
SANDIA NATIONAL LABS

Albuquerque, N.M. July 27-28, 1998

COOLANT - STRUCTURAL MATERIAL SYSTEMS

COOLANT	STRUCTURAL MATERIAL
 Liquid Lithium Liquid Lithium-Lead Molten Salts (FLiBe) Helium 	 Vanadium Alloys Silicon Carbide Composites Ferritic Steels Refractory Alloys (Ta, Nb, Mo, W)

LIQUID METAL CHEMICAL COMPATIBILITY (Basic Mechanisms)

Dissolution in Liquid Metal

$$\frac{dS}{dt} = \beta (c_{sat} - c_{bulk})$$

$$\frac{dS}{dt} = Ce^{\frac{-\Delta H_{act}}{RT}}$$

 β = mass transfer coefficient

 c_{sat} = element saturation concentration in liquid metal

c_{bulk} = actual element concentration in bulk

 ΔH_{act} = activation energy for dissolution

LIQUID METAL CHEMICAL COMPATIBILITY (Basic Mechanisms) cont.

➤ Exchange due to non-metallic Elements

For oxygen, carbon, and nitrogen, the distribution coefficient is:

$$K = \frac{a_s^o[s]}{a_s^o[l]} e^{\left\{\frac{\Delta G^o(l) - \Delta G^o(s)}{RT}\right\}}$$

a_s° are saturation activities for solid (s) and liquid (l).

- ➤ For K>1, we get pick-up.
- ➤ For K<1, we get loss.

COMPATIBILITY OF VANADIUM ALLOYS WITH LIQUID LITHIUM

- For V-3Ti-1Si and V-15Cr-5Ti at 550°C in flowing lithium (Borgstedt):
 - weight loss: 10⁻³ 3x10⁻³ g/m²hr
 - weight loss is strongly influenced by nitrogen content of the liquid metal.
 - Reaction is parabolic with an activation energy of 180kJ/mol (≈ nitrogen diffusion energy in vanadium)

CALCULATED WEIGHT LOSS IN 1000 m² SYSTEM

Weight Loss for 1000 m² at 550 °C in Flowing Lithium

6 · m - UCLA

MAIN CORROSION MECHANISM FOR REFRACTORY METALS

M = refractory metal

I = interstitial impurity

Electronegativity Chart

	Metal				Impurity	Li	
IV A	VA	VI A	VII A	IV B	V B	VIB	0.98
Ti	٧	Cr		C	N	0	
1.54	1.63	1.66		2.55	3.04	3.44	
Zr	Nb	Мо			•	•	
1.33	1.6	2.16					
Hf	Ta	W	Re				
1.3	1.5	2.36	1.9				

EQUALIZATION OF ELECTRONEGATIVITY

Electronegativity = the relative ability to acquire a negative charge.

CONCEPT OF ELECTRONEGATIVITY

"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive...?"

COMPOUND STABILITY BASED ON ELECTRONEGATIVITY

		Carbides	Nitrides	Oxides	Comments
	Ti	1.01	1.5	1.9	oxide formers
IV A	Zr	1.22	1.71	2.11	(alloying
	Hf	1.25	1.74	2.14	elements)
	V	0.92	1.41	1.81	
VA	Nb	0.95	1.44	1.84	
	Ta	1.05	1.54	1.94	
	Cr	0.89	1.38	1.78	
VI A	Мо	0.39	0.88	1.28	most corrosion
	W	0.19	0.68	1.08	resistant
VII A	Re	0.65	1.14	1.54	

EXPERIMENTAL OBSERVATIONS OF LITHIUM COMPATIBILITY WITH REFRACTORY METALS

Up to lithium velocities of 6m/s, the temperature limit for acceptable corrosion for Nb alloys is ~1250°C, while that for Ta alloys is ~1350°C.*

Corr	osion	Rates	for	Nh-1	1 7 r
OUI	OSIOII	Nates	101	IND	

T (°C)	∆T (°C)	Time (hr)	Li velocity (m/s)	corrosion rate (μm/yr)
1100	200	10,000	3-6	negligible
1200	200	1,550	3-4	negligible
1297	179	3,000	.05	7.5
1073-1143	~10	500	48.5	120
1330	200	500	3-4	1000

*References:

^{1.} A.J. OVERMAN, et al, LCRE Non Nuclear System Test, Final Report PWAC-402, Part IV, Pratt and Whitney Aircraft, Middletown, Connecticut (October 1965).

^{2.} L.G. HAYES, Corrosion of Niobium-1Zr Alloy by Lithium at High Velocities, JPL Technical Report 32-1233 (December 1, 1967).

^{3.} M.S. FREED, Corrosion of Columbian Base and Other Structural Alloys in High Temperature Li, PWCA-3555 (June 30, 1961).

EXPERIMENTAL OBSERVATIONS OF LITHIUM COMPATIBILITY W/ REFRACTORY METALS (cont.)

Corrosion Rates of Tantalum Alloys in Flowing Lithium

Alloy	T (°C)	∆T (°C)	Time (hr)	Li velocity (m/s)	corrosion rate (μm/yr)
T-111	1370	170	3,000	6	< 1.3
T-111	1330	200	5,000	< .05	< 1.3
ASTAR-811	1360	200	5,000	< .05	< 0.3
T-111, ASTAR-811	1150	95	5,000	3	No metal loss or Li attack
T-111	1230	95	10,000	6-6	No metal loss or Li attack

*References cont.:

^{4.} J.E. DEVAN and C.E. SESSIONS, Nucl. App. Tech 3, 102-109 (February 1967).

^{5.} J.E. DEVAN and C.E. SESSIONS, Nucl. App. Tech 9, 250-259 (August 1967).

^{6.} G.W. AUSTON, Lithium Corrosion Investigation of Columbiam-Zironicum Alloy System PWAC-343 (June 27, 1961).

CALCULATED EVOLUTION OF CARBONITRIDE LAYER ON VANADIUM

Thickness of brittle vanadium nitride layer

INTERSTITIAL TRANSPORT IN REFRACTORY METAL-LITHIUM SYSTEM

- Oxygen: Will be transported from all refractories to lithium (except for yltrium, hafnium, and zirconium)
- <u>Carbon</u>: All metals (except for Mo and W) will be a sink for carbon.
- Nitrogen: All metals (except for Mo and W) will getter nitrogen.

COMPATIBILITY OF SIC/SIC COMPOSITES WITH COOLANTS

Corrosion Reactions:

$$SiC(s) + O_2(g) = SiO(g) + CO(g)$$
: Low Po₂

$$SiC(s) + 3/2O_2(g) = SiO_2(s) + CO(g)$$
: High Po_2

$$SiC(s) + 2H2(g) = Si + CH4(g)$$

$$SiC(s) + 2H_zO(g) = SiO(g) + CO(g) + 2H_2(g)$$

$$SiO_2(s) + H_2(g) = SiO(g) + H_2O(g)$$

$$M_2O(I) + SiO_2(s) = M_2SiO_3(s)$$

$$xSiO_2(s) + Na_2SO_4(l) = Na_2O \cdot x(SiO_2)(l) + SO_3(g)$$

Experimental Observations

- For α-SiC exposed to a thin layer of Li (30-60min, T < 500°C), RT fracture strength decreased from 350MPa to 150MPa, and fracture toughness from 4MPa•m¹/² to 2MPa•m¹/².
- Intergranular penetration and crack growth is a result of reduction of the protective SiO₂ glassy phase.
- Flowing Lithium will accelerate corrosion.
- SiC/SiC may not be compatible with lithium.

Molten Salt Effects on SiC/SiC

Figure 4. Possible modes of behavior of SiC in gas-molten-salt environments.

18

Figure 6. Molten salt corrosion data for a) monolithic Si_3N_4 (PNL data) and b) monolithic SiC (Tressler et al.) and SiC/SiC composites (PNL data).

1. <u>Hydrogen and Nitrogen Reactions</u>

$$A_2(g) \Leftrightarrow 2A(in M)$$

Equilibrium
$$\Rightarrow K_p = \frac{a}{\sqrt{P_{A_2}}} = e^{\left[-\frac{\Delta G_s^o}{RT}\right]}$$

K_p = equilibrium constant, a = activity. For dilute solutions ⇒ Sievert's Law:

$$X_{A} = K_{p} \sqrt{P_{A_{2}}} = \sqrt{P_{A_{2}}} e^{\left(\frac{\Delta S_{s}^{o}}{R}\right)} e^{\left(-\frac{\Delta H_{s}^{o}}{RT}\right)}$$

20

2. Oxygen

$$O_2(g) \rightarrow 2O(in M)$$

 $nO(in M) + M(s) \rightarrow MO_n(g)$

$$X_o = \left(KP_{O_2}\right)^{\frac{1}{n}} = \left[K_o P_{O_2} e^{\left(-\frac{\Delta Q}{RT}\right)}\right]^{\frac{1}{n}}$$

$$K_o = \frac{K_{abs}}{K_{des}},$$

$$\Delta Q = Q_{abs} - Q_{des}$$

3. Compound Formation

Gas/metal: $1/2A_2(g) + (m/n)*M(s) \Leftrightarrow (1/n)*M_mA_n(s)$

Saturated solution: $A(in M) + (m/n)*M(s) \Leftrightarrow (1/n)*M_mA_n(s)$

$$K = \frac{1}{X_{A,\text{max}}} = e^{\left(-\frac{\Delta G_f^o}{RT}\right)}$$

 $X_{A.max}$ = maximum solid solubility

$$\Delta G_f^o = \Delta H_f^o - T\Delta S_f^o =$$
 Formation energy

22

 ΔH_s° and ΔH_s° Values in kJ/(g•atom) for Solution of H, N, and O in Solid Refractory Metals or Formation of the Corresponding Metal-Rich Compounds with H, N, O and C.*

	<u>Hydro</u>	<u>ogen</u>	<u>Nitr</u>	<u>ogen</u>	<u>Oxygen</u>		Carbon	
Metal	ΔH_s^{o}	ΔH_f^{o}	ΔH_s^{o}	$\DeltaH_{\scriptscriptstylef}^{o}$	ΔH_s^{o}	ΔH_f^{o}	ΔH_{f}^{o}	
α-Zr	-59.5	-95.3		-364	-619	-541	-185	
α -Hf	-37.6	-65.5		-369	-552	-553		
V	-32.4	-41.5		-282	-422	-432	-147	
Nb	-39.6		-178	-272	-386	-418	-159	
Ta	-36.4		-182	-204	-383	-402	-126	
Mo	52.2		95	-57		-288	-49	
W	100.4		195				-27	

*References:

^{7.} E. Fromm and E. Gebhardt, eds., Gase und Kohlenstoff in Metallen, (Berlin, Springer, 1976)

^{8.} H. Jehn, H. Speck, E. Fromm, W. Hehn and G. Hörz, "Gases and Carbon in Metals (Thermodynamics, Kinetics and Properties)," *Physics Data, Series 5*, Fachinformationszentrum Energie, Physik, Mathematik, Karlsruhe; "Pt. V, GroupIVa Metals (1), Titanium" [no.5-5 (1979), 78 pp.]; "Pt. VI, Group Iva Metals(2), Zirconium, Hafnium" [no.5-6 (1979), 74pp.]; "Pt. VII, Group Va Metals(1), Vanadium" [no.5-7 (1981), 64pp.]; "Pt. VIII, Group Va Metals(2), Niobium" [no. 5-8 (1981), 117pp.]; "Pt. IX, Group Va Metals(3), Tantalum" [no. 5-9 (1981), 74pp.]; "Pt. X, Group Via Metals(1), Chromium, Tungsten" [no. 5-10(1980), 60pp.]; "Pt. XI, Group Via Metals(2) Molybdenum" [no. 5-11(1980) 51pp.]; and "Pt. XII, Group VIIIa Metals, Manganese, Technettium, Rhenium" [no. 5-12(1981), 27pp.].

^{9.} E. Fromm and G. Hörz, "Hydrogen, Nitrogen, Oxygen, and Carbon in Metals," Intern. Met. Rev., Nos. 5 and 6, (1980), pp.269-311.

Rate laws and Activation Energies of Nitrogen Absorption and Desorption for Nb, Ta, Mo and W.*

Metal	Rate Law	\mathbf{Q}_{ab}	\mathbf{Q}_{des}	Temperature
		(kJ/mol)	(kJ/mol)	(°C)
Nb	v=kp _{N2} -k'c _n ²	67	519	1650-2100
Ta		68	562	1480-2730
Мо	$v=k(p_{N^2})^{1/2}-k'c_N$	189	95	1300-2400
W		287	92	>1400

*References:

10. G. Hörz, "Niob," in Ref. 7, pp.460-494.

11. G. Hörz, "Tantal," in Ref. 7, pp. 494-520.

12. H. Jehn, "Molybdän," in Ref. 7, pp. 534-551.

13. H. Jehn, "Wolfram," in Ref. 7, pp. 552-563.

Rate laws and Activation Energies of Nitrogen Absorption or Desorption of Oxygen.*

Metal	Rate Law	Q _{ab} (kJ/mol)	Q _{des} (kJ/mol)	Temperature (°C)
V	$V_{ab} = (kp_{O2})/(1+k'exp(Q_{ab}/RT))$	73.1		1030-1430
V	$v_{des} = k'c_o$		572	>1500
Nb	$V_{des} = k'C_o + k''C_o^2$		543	>1700
Ta	$V_{des} = k'c_o + k''c_o^2$		553	>1700
Ta	$v_{ab} = kp_{o2}(1-\theta)^2$	~0		1000-1700
	$V_{ab} = (1/(1+kc_0)^2)$			

*References:

15. G. Hörz, H. Kanbach, R. Klaiss and H. Vetter, "Influence of the Surface State on the Reactions of Transition Metals with Nitrogen, Oxygen and Hydrocarbons," *Proc. 7th Intern. Vac. Congress and 3rd Intern. Conf. On Solid Surf.*, Vienna, (1977), pp. 999-1002.

^{14.} G. Hörz, "Vanadium," in Ref. 7, pp.441-460.

Values of ΔQ and K_o Determining the Steady-State Relations for the Reaction Systems of Nb and Ta with O_2 and $H_2O.*$

<u>System</u>	Nb-O	$\underline{Nb-H_2}\mathbf{O}$	<u>Ta-O</u>	<u>Ta-H₂O</u>
ΔQ (kJ/mol)	502	480	560	530
Kॢ (at. %•Pa)	9.1x10 ⁻¹⁰	1.5x10 ⁻¹⁰	1.35x10 ⁻¹⁰	6.4x10 ⁻¹⁰

*References:

^{16.} G. Hörz, "Kinetik und Mechanismen," in Ref. 7, pp.1-83.

^{17.} H. Jehn, "Vorgänge beim Glühen der Via- und Va- Metalle in Sauerstoff, Luft und Wasserdampf bei niedrigen Drücken," Metall, 28 (1974), pp. 699-705.

^{18.} K. Schulze and H. Jehn, "Behaviour of Niobium and Tantalum at High Temperatures in Low-Pressure Oxygen-Containing Atmospheres," Proc. 8th Intern. Vacuum Congress, Cannes, France (1980), Vol. II, pp. 554-557.

Experimental Observations and Conclusions

- Nb and Ta show high nitrogen solubilities (between 0.1 and 10 at %) at low pressures (10⁻⁴-10⁻³bar).
- Nitrogen solution is exothermic (concentration decreases with temperature) for Nb, Ta, and V. It is endothermic for W and Mo, with very low solubilities.
- At extremely low oxygen pressures (10⁻⁴⁰-10⁻¹⁰bars), the solubility limit of (3-10 at %) is reached in Ta, Nb, and V.
- General Trend ⇒ Interstitial solubilities decrease in the order: IV A > V A > VI A.
- Because of the embrittlement effects of the interstitial impurities at low concentrations (10's ppm), severe restrictions are expected for helium-cooled systems.

Recommended Maximum Interstitial Impurity Limits for Helium-Cooled Refractory Piping

	Metal Group	С		N		0	
		Solubility Limit	Maximum for	Solubility Limit	Maximum for	Solubility Limit	Maximum for
		(T _m /2)	50 °C shift	(T _m /2)	50 °C shift	(T _m /2)	50 °C shift
VA	V, Nb, Ta	~10,000 wppm	~10,000 wppm	~8%	~4,000 wppm	10%	~2,000wppm
VI A	Cr, Mo, W	~10,000 wppm	~200 wpp,	0.10%	~150 wppm	0.10%	~100wppm

⇒ Note that the most stringent control has to be on oxygen impurities at a level of less than 100wppm.

ESTIMATED UPPER TEMPERATURE LIMITS ON THE BASIS OF COMPATIBILITY

