Lista de Exercícios:

Linguagens e Autômatos Finitos Determinísticos

Teoria da Computação Prof^a. Jerusa Marchi

1 Linguagens

- (b) Σ^1
- (c) Σ^2
- (d) Σ^3

Qual é o número de elemento de cada conjunto?

- 2. Dê o prefixo, o sufixo e as subcadeias das seguintes cadeias:
 - (a) ab
 - (b) abc
 - (c) bcba

Quantos elementos há em cada conjunto?

- 3. Faça a concatenação das seguintes cadeias:
 - (a) Considerando $\Sigma = \{0, 1\}$, concatene $\Sigma^1.\Sigma^1$
 - (b) Considerando $\Sigma = \{0, 1\}$, concatene $\Sigma^2.\Sigma^3$
 - (c) Considerando $\Sigma = \{a,b\}$ e $\Gamma = \{c,d\}$, concatene:
 - i. $\Sigma^0.\Gamma^1$
 - ii. $\Sigma^1.\Gamma^2$
 - iii. $\Sigma^2.\Gamma^0$
- 4. Construa conjuntos de palavras com número igual de 0's e 1's que tenham comprimento 4. Apresente uma descrição em notação de conjuntos para esta Linguagem.
- 5. Construa conjuntos de palavras da linguagem com todas as palavras consistindo de n 0's seguidos por m 1's. Apresente uma descrição em notação de conjuntos para esta Linguagem.
- 6. Dadas as seguintes Linguagens:

- $L1 = \{w | w \in \Sigma = \{0, 1\}^* \text{ e } | w | = 2\}$
- $L2 = \{w | w \in \Sigma = \{0, 1\}^* \text{ e } | w | = 3\}$
- $L3 = \{w | w \in \Sigma = \{0, 1\}^* \text{ e } w = 0^n 1^n \text{ para } n \ge 0\}$

Apresente palavras e descrições para as seguintes linguagens:

- (a) L1.L2
- (b) $L1 \cup L2$
- (c) $L1 \cap L2$
- (d) L1.L3
- (e) $L1 \cup L3$
- (f) $L1 \cap L3$

2 Autômatos Finitos

7. Apresente o diagrama de transição dos autômatos abaixo e apresente o que se pede:

	δ	l a	l h	δ	a	b
-	$\xrightarrow{0}$	a	do.		q_0	q_1
	$\begin{array}{c} \rightarrow q_0 \\ *q_1 \\ q_2 \end{array}$	q_1	q_0	q_1	q_2	q_3
	η_1	q_2	q_2	q_2	q_1	q_0
	42	41	90	$*q_3$	q_2	q_3

- (a) Quais são os estados iniciais?
- (b) Quais são os conjuntos de estados finais?
- (c) Apresente a computação das máquinas para a entrada *aabb*.
- (d) As máquinas aceitam a palavra vazia ε ?
- (e) Apresente a descrição formal das máquinas.
- 8. Considerando $\Sigma = \{a,b\}$ apresente Autômatos Finitos Determinísticos para as seguintes Linguagens:
 - (a) $L = \{ w \mid w \in \Sigma^* \text{ e } w \text{ começa com } a \text{ e termina com } a \}.$
 - (b) $L = \{w \mid w \in \Sigma^* \text{ e o último símbolo da cadeia seja igual ao primeiro}\}.$
 - (c) $L = \{ w \mid w \in \Sigma^{\star} \text{ e a subcadeia } "bb" \not\in w \}.$
 - (d) $L = \{w \mid w \in \Sigma^* \text{ e o número de ocorrências do símbolo } b \text{ seja par} \}.$
 - (e) $L=\{w\mid w\in \Sigma^{\star} \text{ e o número de ocorrências do símbolo }a \text{ seja divisível por }3\}.$
 - (f) $L=\{w\mid w\in \Sigma^{\star} \text{ e o número de ocorrências da subcadeia }ab \text{ seja igual ao número de ocorrências da subcadeia }ba\}.$
 - (g) $L = \{ w \mid w \in \Sigma^{\star} \text{ e o número de ocorrências dos símbolos } a \text{ e } b \text{ seja par } \}$
 - $\text{(h)} \ \ L = \{ w \mid w \in \Sigma^{\star} \text{ tem um número ímpar de } a's \text{ e termina com } b\text{'s } \}.$
 - (i) $L = \{ w \mid w \in \Sigma^{\star} \text{ tem comprimento par e um número ímpar de } a$'s $\}.$