Mat 115 Worksheet 6 Thursday, Oct 19 2017

Name:

Important info: Welcome to the mat 115 workshops! My name is Diego Avalos (avalosgalvez@cpp.edu), and I will be your workshop facilitator. We meet on Tuesdays and Thursdays from 4 to 5:50 pm. My office hour is on Mondays from 11:30 am to 12:30 pm in room 94-219. All worksheets and solutions may be found at the website www.diegoavalos.net/teaching/mat115workshop2017.

1. Compute the following indefinite integrals.

(a)
$$\int (2x+1)^2 dx$$

(d)
$$\int \sec 2x \tan 2x \, dx$$

(g)
$$\int \sqrt[4]{x^3} + \sqrt{x^5} \, dx$$

(b)
$$\int \frac{1}{x^2} - \frac{2}{x^{5/2}} dx$$

(e)
$$\int \frac{12}{x} dx$$

(h)
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

(c)
$$\int 1 + \cos 3x \, dx$$

$$(f) \int \frac{1}{x^2 + 1} \, dx$$

2. Find the function with the following properties

(a)
$$f'(t) = \sin t + 2t$$
, and $f(0) = 5$

(b)
$$h'(x) = \sin^2 x$$
, and $h(1) = 1$

3. Evaluate
$$\int_0^4 \sqrt{8x - x^2} \, dx$$
.

4. Evaluate the following definite integrals

(a)
$$\int_{-2}^{2} 3x^4 - 2x + 1 dx$$

(d)
$$\int_0^1 \frac{1}{\sqrt{4-x^2}} dx$$

(g)
$$\int_{2}^{3} \frac{x^2 + 2x - 2}{x^3 + 3x^2 - 6x} dx$$

(b)
$$\int_0^2 (x+1)^3 dx$$

(e)
$$\int_0^3 \frac{x}{\sqrt{25 - x^2}} \, dx$$

(h)
$$\int_0^{1-e^{-2}} \frac{\ln(1-x)}{1-x} dx$$

(c)
$$\int_0^1 \sqrt{x} (\sqrt{x} + 1) dx$$

(f)
$$\int_0^{\pi} \sin^2 5x \, dx$$

5. Assume
$$f'$$
 is continuous on [2, 4], $\int_{1}^{2} f'(2x) dx = 10$, and $f(2) = 4$. Evaluate $f(4)$.

6. Compute f'(x) for each of the following functions

(a)
$$f(x) = \int_0^x (1+t^2)^{-3} dt$$

(b)
$$f(x) = \int_0^{x^2} (1+t^2)^{-3} dt$$
 (c) $f(x) = \int_{x^3}^{x^2} (1+t^2)^{-3} dt$

(c)
$$f(x) = \int_{x^3}^{x^2} (1+t^2)^{-3} dt$$

7. The acceleration of an object moving along a line is given by $a(t) = 2\sin\left(\frac{\pi t}{4}\right)$. The initial velocity and position are $v(0) = -8/\pi$ and s(0) = 0. (a) Find the velocity and position for $t \ge 0$. (b) What are the minimum and maximum values of s(t)? (c) Find the average velocity and average position over the interval [0,8].

8. Find the area of the region bounded by $y = x^2$, $y = 2x^2 - 4x$, and y = 0.

9. Find the area of the region in the first quadrant bounded by y = x/6 and y = 1 - |x/2 - 1|.