<u>CLAIMS</u>

What is claimed is:

1	1.	A method for execution by a microprocessor in response to receiving a single
2		instruction, the method comprising:
3		receiving a first plurality of numbers and a second plurality of numbers, each
4		of the first plurality of numbers pointing to one of a plurality of
5		entries, each of the plurality of entries being in one of a plurality of
6		look-up tables; and
7		replacing simultaneously the plurality of entries in the plurality of look-up
8		tables with the second plurality of numbers;
9		wherein the above operations are performed in response to the
10		microprocessor receiving the single instruction.
1	2.	A method as in claim 1 wherein the first plurality of numbers are received
2		from a first entry in a register file; and the second plurality of numbers are
3		received from a second entry in the register file; and wherein the
4		microprocessor is a media processor integrated with a memory controller on
5		a single integrate circuit.
1	3.	A method as in claim 2 wherein the single instruction specifies indices of the
2		first and second entries in the register file.

1	4.	A method for execution by a microprocessor in response to receiving a single
2		instruction, the method comprising:
3		replacing at least one entry in at least one of a plurality of look-up units in a
4		microprocessor unit with at least one number using a Direct Memory
5		Access (DMA) controller;
6		wherein the above operations are performed in response to the
7		microprocessor receiving the single instruction.
1	5.	A method for execution by a microprocessor in response to receiving a single
2		instruction, the method comprising:
3		replacing at least one entry for each of a plurality of look-up units in a
4		microprocessor with a plurality of numbers using a Direct Memory
5		Access (DMA) controller;
6		wherein the above operations are performed in response to the
7		microprocessor receiving the single instruction.
1	6.	A method as in claim 5 wherein a single index encoded in the instruction
2		specifies a location of the at least one entry in the plurality of look-up units.
1	7.	A method as in claim 5 wherein a single index encoded in the instruction
2		specifies a total number of the at least one entry for each of a plurality of
3		look-up units.

1	8.	A method as in claim 5 wherein a source address of the pluranty of humbers
2		is specified in an entry of a register file.
1	9.	A method as in claim 8 wherein the single instruction specifies an index of
2		the entry in the register file.
1	10.	A method as in claim 5 wherein an identity number encoded in the single
2		instruction specifies the DMA controller.
1	11.	A method for execution by a microprocessor in response to receiving a single
2		instruction, the method comprising:
3		receiving a plurality of numbers;
4		partitioning look-up memory into a plurality of look-up tables;
5		looking up simultaneously a plurality of elements from the plurality of look-
6		up tables, each of the plurality of elements being in one of the
7		plurality of look-up tables and being pointed to by one of the plurality
8		of numbers;
9		wherein the above operations are performed in response to the
10		microprocessor receiving the single instruction.
1	12.	A method as in claim 11 wherein the receiving a plurality of numbers
2		comprises:

- partitioning a string of bits into a plurality of segments to generate the
 plurality of numbers.
- 1 13. A method as in claim 12 wherein the single instruction specifies format
- 2 information in which the plurality of numbers are stored in the string of bits.
- 1 14. A method as in claim 11 wherein the look-up memory comprises a plurality
- of look-up units, and wherein said partitioning look-up memory comprises:
- 3 configuring the plurality of look-up units into the plurality of look-up tables.
- 1 15. A method as in claim 11 wherein the string of bits is received from an entry
- 2 of a register file.
- 1 16. A method as in claim 15 wherein the single instruction specifies an index of
- 2 the entry.
- 1 17. A method as in claim 11 further comprising:
- 2 storing the plurality of elements in an entry of a register file.
- 1 18. A method as in claim 17 wherein the single instruction specifies an index of
- 2 the entry.

- 1 19. A method as in claim 17 wherein the single instruction specifies format
- 2 information in which the plurality of elements are stored in the entry.
- 1 20. A method as in claim 14 wherein each of the plurality of look-up units
- 2 comprises 256 8-bit entries.
- 1 21. A method as in claim 11 wherein the single instruction specifies a total
- 2 number of entries contained in each of the plurality of look-up tables.
- 1 22. A method as in claim 21 wherein the total number of entries is one of:
- a) 256;
- 3 b) 512; and
- 4 c) 1024.
- 1 23. A method as in claim 11 wherein the single instruction specifies a total
- 2 number of bits used by each entry contained in the plurality of look-up tables.
- 1 24. A method as in claim 21 wherein the total number of bits is one of:
- 2 a) 8;
- 3 b) 16; and
- 4 c) 24.

1	25.	A machine readable media containing an executable computer program
2		instruction which when executed by a digital processing system causes said
3		system to perform a method comprising:
4		receiving a first plurality of numbers and a second plurality of numbers, each
5		of the first plurality of numbers pointing to one of a plurality of
6		entries, each of the plurality of entries being in one of a plurality of
7		look-up tables; and
8		replacing simultaneously the plurality of entries in the plurality of look-up
9		tables with the second plurality of numbers;
10		wherein the above operations are performed in response to the
11		microprocessor receiving the single instruction.
1	26.	A media as in claim 25 wherein the first plurality of numbers are received
2		from a first entry in a register file; and the second plurality of numbers are
3		received from a second entry in the register file.
1	27.	A media as in claim 26 wherein the single instruction specifies indices of the
	21.	
2		first and second entries in the register file.
1	28.	A machine readable media containing an executable computer program
2		instruction which when executed by a digital processing system causes said
3		system to perform a method comprising:

4		replacing at least one entry in at least one of a plurality of look-up units in a
5		microprocessor unit with at least one number using a Direct Memory
6		Access (DMA) controller;
7		wherein the above operations are performed in response to the
8		microprocessor receiving the single instruction.
1	29.	A machine readable media containing an executable computer program
2		instruction which when executed by a digital processing system causes said
3		system to perform a method comprising:
4		replacing at least one entry for each of a plurality of look-up units in a
5		microprocessor with a plurality of numbers using a Direct Memory
6		Access (DMA) controller;
7		wherein the above operations are performed in response to the
8		microprocessor receiving the single instruction.
1	30.	A media as in claim 29 wherein a single index encoded in the instruction
2		specifies a location of the at least one entry in the plurality of look-up units.
1	31.	A media as in claim 29 wherein a single index encoded in the instruction
2		specifies a total number of the at least one entry for each of a plurality of
3		look-up units.

1	32.	A media as in claim 29 wherein a source address of the plurality of numbers
2		is specified in an entry of a register file.
1	33.	A media as in claim 32 wherein the single instruction specifies an index of
2		the entry in the register file.
1	34.	A media as in claim 29 wherein an identity number encoded in the single
2		instruction specifies the DMA controller.
1	35.	A machine readable media containing an executable computer program
2		instruction which when executed by a digital processing system causes said
3		system to perform a method comprising:
4		receiving a plurality of numbers;
5		partitioning look-up memory into a plurality of look-up tables;
6		looking up simultaneously a plurality of elements from the plurality of look-
7		up tables, each of the plurality of elements being in one of the
8		plurality of look-up tables and being pointed to by one of the plurality
9		of numbers;
10		wherein the above operations are performed in response to the
11		microprocessor receiving the single instruction.

1	36.	A media as in claim 35 wherein said receiving a plurality of numbers
2		comprises:
3		partitioning a string of bits into a plurality of segments to generate the
4		plurality of numbers.
1	37.	A media as in claim 36 wherein the single instruction specifies format
2		information in which the plurality of numbers are stored in the string of bits.
1	38.	A media as in claim 35 wherein the look-up memory comprises a plurality of
2		look-up units, and wherein said partitioning look-up memory comprises:
3		configuring the plurality of look-up units into the plurality of look-up tables.
1	39.	A media as in claim 35 wherein the string of bits is received from an entry of
2		a register file.
1	40.	A media as in claim 39 wherein the single instruction specifies an index of

the entry.

2

1

2

41.

A media as in claim 35 wherein the method further comprises:

storing the plurality of elements in an entry of a register file.

- 1 42. A media as in claim 41 wherein the single instruction specifies an index of
- 2 the entry.
- 1 43. A media as in claim 41 wherein the single instruction specifies format
- 2 information in which the plurality of elements are stored in the entry.
- 1 44. A media as in claim 38 wherein each of the plurality of look-up units
- 2 comprises 256 8-bit entries.
- 1 45. A media as in claim 35 wherein the single instruction specifies a total
- 2 number of entries contained in each of the plurality of look-up tables.
- 1 46. A media as in claim 45 wherein the total number of entries is one of:
- a) 256;
- 3 b) 512; and
- 4 c) 1024.
- 1 47. A media as in claim 35 wherein the single instruction specifies a total
- 2 number of bits used by each entry contained in the plurality of look-up tables.
- 1 48. A media as in claim 47 wherein the total number of bits is one of:
- 2 a) 8;

- 3 b) 16; and
- 4 c) 24.