# Introduction to Communication Systems - Analog and Digital -

Albert Einstein: "The wireless telegraph is not difficult to understand. The ordinary telegraph is like a very long cat. You pull the tail in New York and it meows in Los Angeles. The wireless is the same, only without the cat."



#### Overview

- A Typical Communications Link
- Signaling Categories
- Communication Channels
- The EM Spectrum and Propagation
- Modulation Techniques
- Digital Communication Systems
- What's Next? Software Radio

# Typical Communications Link: Transmitter Side





Changes x(t) to a waveform suitable for transmission over the given channel (antenna length  $\approx .1 \lambda$ )

## Typical Communications Link: Receiver Side



# Signaling Categories

#### **Baseband Signals, x(t)**

 Spectrum is centered at the origin



 Suitable for transmission over guided transmission media (e.g., phone signals over land lines)

#### **Bandpass signals, x(t)**

 Spectrum is centered at frequencies ± f<sub>0</sub> ≠ 0



 Suitable for transmission over air waves (e.g., radio signals)

# Getting the Signal Where We Want It: Fourier Transform Modulation Property

• Say  $x(t) \rightarrow X(f)$ 



• Then if  $s(t) = x(t) cos(2\pi f_0 t) \rightarrow S(f)$ 



# **Signaling Categories**

Continuous-time
 Signals: value is
 specified for all time,
 over some range of time;
 e.g., voltage, v(t), at some
 point in a circuit, say for 3
 sec.)

Discrete-time Signals:
value is specified only at
discrete points in time:

$$t_0, t_1, t_2, ..., t_n, ...$$

 restricts set of values on horizontal axis





# Nyquist Sampling

- Nyquist Sampling Theorem: Signals band-limited to f<sub>m</sub>
   Hz can be uniquely determined by values sampled at the Nyquist rate f<sub>s</sub> > 2f<sub>m</sub> (samples/sec)
- The time between samples is:  $T_s = 1/f_s$ .



f<sub>m</sub>: maximum frequency content of signal

(band-limited to f<sub>m</sub> Hz)

# Signaling Categories

- **Analog Signals** amplitude can assume any value over a continuous range
  - ∞ # of values can be

assumed by the signal



 restricts set of values on the vertical axis



# Real-World Parameters - Sampling & Quantization -

| Digital<br>System | Frequency<br>Band | Sample Rate,<br>KHz | Quantization,<br>Bits/Sample |
|-------------------|-------------------|---------------------|------------------------------|
| Phone*            | 200 – 3.4K        | 8                   | 8                            |
| CD                | 20 – 20K          | 44.1                | 16                           |

- Voice Signals: Frequency content in range ~ (300 Hz, 4 KHz)
  - Quality: Intelligible speech
  - ~ 24 analog voice signals (say from home phones) digitized and combined and sent over a "T1" line (usually fiber optic)
- Human Hearing Range: ~ 15 Hz − 20 KHz

<sup>\*</sup> POTS: plain old telephone service, via PSTN: Public Switched Telephone Network

### Communications Link: the Channel

- Channel: Medium over which the transmitter output is sent to the receiver
- Channels types:
  - Guided: Signals confined to a closed path
    - Examples: Twisted pair, coaxial cable
    - Baseband signaling is (usually) suitable
  - Unguided: Signals radiate freely in all directions
    - Examples: atmosphere, ocean, outer space
    - Bandpass signaling is (usually) suitable

### Communications Link: the Channel

 Channels are characterized by a transfer function, H(f), the magnitude of which shows the channel gain as a function of frequency:



- Consider the range of frequencies over which the gain is relatively constant.
- The difference between the largest and smallest such frequencies is the channel bandwidth, B

### Communications Link: the Channel

- Channels are characterized by their capacity
  - Capacity: An inherent limit on the rate at which information can be sent "error free"
  - Capacity increases with bandwidth (B) and signal-tonoise ratio (SNR or S/N)



$$C = B \log(1 + S/N)$$

# Radio Frequency Bands

| Band                             | Frequency        | Typical Application |
|----------------------------------|------------------|---------------------|
| Extremely Low<br>Frequency (ELF) | 3 – 30 Hz        | Submarine Comm      |
| Super Low                        | 30 Hz – 300 Hz   | Submarine Comm      |
| Frequency (SLF)                  | 00112 000112     |                     |
| Ultra Low                        | 300 Hz – 3 KHz   | Telephone           |
| Frequency (ULF)                  |                  |                     |
| Very Low                         | 3 KHz – 30 KHz   | Navigation          |
| Frequency (VLF)                  |                  |                     |
| Low Frequency (LF)               | 30 KHz – 300 KHz | Maritime            |
| Medium Frequency                 | 300 KHz – 3 MHz  | AM Radio (535 KHz   |
| (MF)                             |                  | – 1.7 MHz)          |

| Band                              | Frequency                                        | Typical Application                                               |
|-----------------------------------|--------------------------------------------------|-------------------------------------------------------------------|
| High Frequency<br>(HF)            | 3 MHz - 30 MHz                                   | Shortwave &<br>Citizen Band (CB)<br>Radio                         |
| Very High<br>Frequency (VHF)      | 30 MHz - 300 MHz                                 | FM Radio (88 MHz – 108 MHz), Broadcast TV (Ch. 2 – 13)            |
| Ultra High<br>Frequency (UHF)     | 300 MHz – 3 GHz                                  | Broadcast TV, cell phones                                         |
| Super High<br>Frequency (SHF)     | 3 GHz - 30 GHz<br>(Microwave Signals)            | Satellite Bands                                                   |
| Extremely High<br>Frequency (EHF) | 30 GHz - 300 GHz<br>(Millimeter Wave<br>Signals) | Millimeter Wave<br>Radar (35 GHz, 94<br>GHz, 140 GHz, 220<br>GHz) |

# Frequency Bands and Propagation

[Ref: Now You're Talking]

- Ground-wave Propagation: signal travels along the ground, following curvature of the Earth
  - Occurs mostly at lower frequencies (30 Hz 3,000 KHz)
- Sky-wave Propagation (Skip): signal is refracted by ionosphere (charged partical layer), returning to Earth
  - Occurs mostly at frequencies up to 15 MHz or 50 MHz (depending on solar activity)
- Line-of-Sight (LOS) Propagation: signal travels from one antenna to another, in a straight line
  - Occurs in VHF band and higher frequencies

## The Radio Spectrum



# Free-Space Propagation

- Appropriate when a line-of-sight (LOS) path exists between the transmitter and receiver pair
- Received power at distance d (meters) from the transmitter

$$P_{r}(d) = \frac{P_{t}G_{t}G_{r}\lambda^{2}}{(4\pi d)^{2}L}$$

- $\lambda$ : wavelength, meters (c =  $\lambda$  f)
- P<sub>t</sub>: transmitted power
- G<sub>t</sub>: gain of tx antenna
- G<sub>r</sub>: gain of rcvr antenna
- L: system hardware losses

# Propagation Effects vs. Frequency



- Water vapor and oxygen cause energy absorption
- Rain & fog cause energy scattering
- Absorption and scattering frequency dependent, and negligible for f < 5 GHz</li>
- Ref: Satellite Communications Tutorial,
   J.P. Silver, <a href="http://www">http://www</a>. odyseus.
   nildram.co.uk/Systems\_And\_
   Devices\_Files/Sat\_Comms.pdf

## Modulation Techniques [Ref: Martin Roden]

- Carrier signal:  $s_c(t) = A \cos(2 \pi f_c t + \theta)$  (1)
  - Choose f<sub>c</sub> for efficient transmission over the channel
- Modify (1), embedding the message x(t) in the signal
- AM: Embed x(t) in the amplitude of the carrier:
   s(t) = x(t) cos(2 π f<sub>c</sub> t + θ)
- FM: Embed x(t) in the frequency of the carrier
   s(t) = A cos{ 2 π [f<sub>c</sub> + k x(t)] t + θ}
- PM: Embed x(t) in the phase of the carrier:
   s(t) = A cos{ 2 π f<sub>c</sub> t + k x(t)}

### AM & FM Transmitted Waveforms



# Amplitude Modulation (DSB-SC AM) – A Closer Look –

 $s(t) = x(t) cos(2 \pi f_0 t), f_0 = 20 Hz.$ 



June, 2007

D. Van Alphen & S. Katz

# Amplitude Modulation in the Frequency Domain – FFT Magnitude Spectra



# Demodulating the AM Signal

x-hat(t) = LPF'd { s(t) cos(2  $\pi$  f<sub>0</sub> t) }



# Demodulating DSB-SC AM in the Frequency Domain





# Advantages of Digital Communication

 In "reasonable" noise environments, digital signals can be regenerated or cleaned up, eliminating the effect of noise; consider the antipodal signals:



- Digital systems can be computer-controlled, with software. New features can thus be added remotely, even after the initial design.
- More digital circuitry can exist in a given unit of area on a chip.
- Error correcting codes can also be used with digital systems, further improving the noise immunity of digital systems over analog systems
- Elaborate digital signal processing (DSP) and image processing (IP) algorithms can be implemented in software.

# **Digital Transmission**

 Transmit one waveform from a finite set of M possible waveforms every T seconds

M = 2: Binary



2 levels,

R = 1/T bps

M = 4: Quaternary



4 levels,

R = 2/T bps

Data rate or throughput increases with alphabet size M

# Digital vs. Analog Reception

- Digital Receiver
- "Guesses" which of the possible waveforms was transmitted every T seconds
- Performance Measure: Pr(error) = Probability of guessing the incorrect waveform

- Analog Receiver
- Attempts to reproduce the transmitted waveform
- Performance Measure: measure of fidelity (e.g., mean squared error or % distortion between tx'd and rcv'd waveform)

## (Typical) Digital Communication System

[Ref: Bernard Sklar]





Optional blocks



Required Blocks

### The Transmitter Side



m<sub>i</sub>: one of a finite # (2, for binary systems) of possible symbols or messages

s<sub>i</sub>(t): one of a finite # of possibly transmitted waveforms Formatting: changes source information (digital, textual, or analog) to discrete-time digital information

Modulator: maps each symbol to a waveform

# Expanding the Formatting Block



### The Modulator Block

- Say we use Quadrature Phase Shift Keying (QPSK) as our modulation.
- We need M = 4 waveforms, with 4 different phase angles:



## **QPSK Example**

Quantization Levels (-3, -1, 1, 3) Indicated by Horizontal Dotted Lines



# Quaternary Example, Continued



Say  $f_0 = 1000 \text{ Hz}$ , T = 1 ms



D. Van Alphen & S. Katz

### What's Next? - Software Radio

- Several key elements (e.g., modulator, codec for error correction, etc.) implemented in reconfigurable software
- Ideally: can operate in any radio frequency band and receive any type of modulation
  - Change from one mode to another by uploading software
- Major application areas, so far: military communications, cellular systems, and amateur radio

### Questions?

• Claude Shannon, 1948: "The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point."

