1.h

Funktionsegenskaber

Surjektivitet og injektivitet

Definition 1.1 (Surjektiv funktion). Lad $f:A\to B$ være givet. Hvis billedet af A under f opfylder, at

$$f(A) = B$$
,

så siger vi, at f er surjektiv.

Hvis f(A) = B, så betyder det, at værdimængden for f er lig dispositionsmængden for f, altså at Vm(f) = B. Funktionen kan altså ramme alt i dispositionsmængden.

Eksempel 1.2. Funktionen $f: \mathbb{R} \to \mathbb{R}$ givet ved

$$f(x) = 2x + 3$$

er surjektiv, da f(x) kan antage alle reelle tal som værdi.

Eksempel 1.3. Funktionen $f:\{1,\ldots,4\}\to\{1,\ldots,5\}$, der ses af Figur 1 er ikke surjektiv, da elementet $1\in\{1,\ldots,5\}$ ikke ligger i værdimængden for f. Derimod er funktionen $g:\{1,\ldots,4\}\to\{1,2,3\}$ er surjektiv, da alle elementer i dispositionsmængden rammes af g.

Figur 1: Diagram for funktionerne f og g.

Definition 1.4 (Injektiv funktion). Lad $f: A \to B$ være givet. Hvis det for to elementer $f(x_1) \in B$ og $f(x_2) \in B$ i værdimængden for f gælder, at

$$f(x_1) = f(x_2) \implies x_1 = x_2,$$

så siges f at være *injektiv*.

28. januar 2024

1.h

At f er injektiv betyder, at to forskellige værdier i definitionsmængden for f nødvendigvis bliver sendt til to forskellige værdier i værdimængden for f.

Eksempel 1.5. Lad $f: \mathbb{R} \to \mathbb{R}_{\geq 0}$ være givet ved

$$f(x) = x^2.$$

Denne funktion er ikke injektiv, da der til hver funktionsværdi f(x) tilhører to x-værdier - x og -x. Det er eksempelvist opfyldt, at f(2) = f(-2) = 4.

Eksempel 1.6. Funktionen $f: \{1, ..., 4\} \rightarrow \{1, ..., 5\}$, der ses på Figur 2 er injektiv, da der kun er én pil hen til hvert punkt i B, hvorimod $g: \{1, ..., 4\} \rightarrow \{1, ..., 5\}$ er ikke injektiv,da to pile peger hen til punkterne $1, 4 \in \{1, ..., 4\}$.

Figur 2: Diagram for funktionerne f og g.

Definition 1.7 (Bijektiv funktion). En funktion, der båder er injektiv og surjektiv kaldes *bijektiv*.

Definition 1.8 (Invers funktion). For en funktion $f: A \to B$ siges en funktion $g: B \to A$ at være *invers funktion* til g, hvis det gælder, at

$$f \circ g(x) = x$$

og

$$g \circ f(x) = x$$
.

I så fald skriver vi $g = f^{-1}$.

Det kan vises, at en funktion f har en invers funktion hvis og kun hvis den er bijektiv Vi kan se en illustration af en invers funktion på Figur 3.

Figur 3: Funktion f samt invers funktion f^{-1} .

Eksempel 1.9. Funktionen $f: \mathbb{R} \to \mathbb{R}$ givet ved

$$f(x) = 4x + 7$$

er bijektiv. Vi kan finde den inverse funktion til f ved at isolere x i ligningen

$$y = 4x + 7 \Leftrightarrow y - 7 = 4x \Leftrightarrow \frac{y - 7}{4} = x.$$

Derfor er funktionen $f^{-1}: \mathbb{R} \to \mathbb{R}$ givet ved

$$f^{-1}(x) = \frac{x - 7}{4}$$

den inverse funktion til f. Vi kan tjekke dette ved at bestemme den sammensatte funktion $f \circ f^{-1}$:

$$f \circ f^{-1}(x) = f^{-1}(f(x))$$

$$= \frac{4x + 7 - 7}{4}$$

$$= \frac{4x}{4}$$

$$= x.$$

Eksempel 1.10. Hvis vi betragter kvadratfunktionen $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ givet ved

$$f(x) = x^2$$

til første kvadra
nt, så har den kvadratrodsfunktionen $f^{-1}:\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0}$ udtrykt ved

$$f^{-1}(x) = \sqrt{x}$$

som invers funktion, siden

$$\sqrt{x^2} = x.$$

Side 3 af 7

Opgave 1

Afgør, hvilke af følgende der er surjektive, injektive eller bijektive. I fald de er bijektive, bestem så den inverse funktion.

$$b \longrightarrow c$$

$$\alpha \xrightarrow{f} a$$

$$\beta \longrightarrow b$$

$$\zeta \longrightarrow \epsilon$$

$$f$$
 $-3 \longrightarrow 3$

3

Opgave 2

I følgende opgaver kan det være en fordel at tegne funktionerne.

i) Funktionen $f: \mathbb{R} \to \mathbb{R}$ er givet ved

$$f(x) = 10x$$
.

Afgør, om f er surjektiv, injektiv eller bijektiv.

ii) Funktionen $f: \mathbb{R} \to \mathbb{R}$ er givet ved

$$f(x) = x^3.$$

Afgør, om f er surjektiv, injektiv eller bijektiv.

iii) Funktionen $f: \mathbb{R} \to \mathbb{R}$ er givet ved

$$f(x) = x^2 - 3x + 7.$$

Afgør, om f er surjektiv, injektiv eller bijektiv.

iv) Funktionen $f: \mathbb{R} \to \mathbb{R}$ er givet ved

$$f(x) = 2x^3 - 5x^2 - 2.$$

Afgør, om f er surjektiv, injektiv eller bijektiv.

Opgave 3

i) Lad A bestå af alle varer i et supermarked. En funktion $f:A\to\mathbb{R}$ giver prisen på varen. Er funktionen surjektiv, injektiv eller bijektiv?

ii) Lad A være alle elever på Nørre. Funktionen $f:A\to\{15,16,17,18,19,20,21\}$ giver alderen på en elev. Er funktionen surjektiv, injektiv eller bijektiv?

iii) Lad A betegne mængden af alle danskere og B betegner mængden af alle CPR-numre. Funktionen $f:A\to B$ giver CPR-nummeret på en person. Er funktionen surjektiv, injektiv eller bijektiv?

Opgave 4

i) Afgør om funktionen $f:]-2,3] \to [1,3[$ givet ved følgende graf er surjektiv, injektiv eller bijektiv.

ii) Afgør om funktionen $f:[-1,4[\to[0,16[$ givet ved følgende graf er surjektiv, injektiv eller bijektiv.

iii) Afgør om funktionen $f:]1,6[\to]1,4]$ givet ved følgende graf er surjektiv, injektiv eller bijektiv.

iv) Afgør om funktionen $f:[-7,7[\to[-1,1]$ givet ved følgende graf er surjektiv, injektiv eller bijektiv.

Opgave 5

i) Funktionen $f: \mathbb{R} \to \mathbb{R}$ givet ved

$$f(x) = 3x + 1$$

er bijektiv. Bestem en invers funktion $f^{-1}:\mathbb{R}\to\mathbb{R}$ til f.

ii) Funktionen $f: \mathbb{R} \to \mathbb{R}$ givet ved

$$f(x) = -7x - 13$$

er bijektiv. Bestem en invers funktion $f^{-1}: \mathbb{R} \to \mathbb{R}$ til f.

iii) Funktionen $f: \mathbb{R} \to \mathbb{R}$ givet ved

$$f(x) = x^3$$

er bijektiv. Bestem en invers funktion $f^{-1}: \mathbb{R} \to \mathbb{R}$ til f.