CORRECTION PARTIEL 2022-2023

Exercice 1.

- 1. En général, si A est un anneau commutatif, les sous-modules de A vu comme A-module sont exactement les idéaux de A. Dans le cas de \mathbb{Z} , on sait que \mathbb{Z} admet des idéaux propres non triviaux : par exemple $2\mathbb{Z}$. Ainsi, \mathbb{Z} n'est pas simple en tant que \mathbb{Z} -module.
- 2. On utilise le même argument qu'à la question précédente. Les corps sont en effet exactement les anneaux qui n'ont aucun idéal propre non trivial.
- 3. On utilise la propriété universelle des modules quotients. Les sous- \mathbb{Z} -modules de $\mathbb{Z}/n\mathbb{Z}$ sont en bijection avec les sous- \mathbb{Z} -modules de \mathbb{Z} contenant $n\mathbb{Z}$, autrement dit les idéaux de \mathbb{Z} contenant $n\mathbb{Z}$, autrement dit les diviseurs de n.
- Si n est premier, les diviseurs de n sont exactement 1 et n, autrement dit les sous-modules de $\mathbb{Z}/n\mathbb{Z}$ sont exactement $\{0\}$ et $\mathbb{Z}/n\mathbb{Z}$.

Si n = pq avec $p \neq 1 \neq q$, alors $n\mathbb{Z} \subsetneq p\mathbb{Z}$ et $p\mathbb{Z}$ induit un sous-module non trivial de $\mathbb{Z}/n\mathbb{Z}$.

On obtient donc que $\mathbb{Z}/n\mathbb{Z}$ est un \mathbb{Z} -module simple si et seulement si n est premier.

4.(a). La condition proposée se reformule en

$$\forall a \in M \setminus \{0\}, \forall b \in M, \ \exists \lambda \in A \mid b = \lambda a \tag{1}$$

(⇒) On suppose que M est simple. Soit $a \in M \setminus \{0\}$, le sous-module engendré par a est un sous-module non trivial de M: il est égal à M car M est simple. Comme le sous-module engendré par a est donné par

$$\langle a \rangle = \{ \lambda a \mid \lambda \in A \}$$

L'assertion $\langle a \rangle = M$ équivaut à

$$\forall b \in M, \exists \lambda \in A \mid \lambda a = b$$

Ceci étant vrai pour tout $a \in M \setminus 0$, on a bien obtenu la condition (??).

- (\Leftarrow) Réciproquement, supposons que M satisfait la condition (??). Soit N un sous-module non trivial de M. On peut choisir $a \in N \setminus \{0\}$. La condition donne en particulier $\langle a \rangle = M$. On a donc $M = \langle a \rangle \leqslant N \leqslant M$, d'où N = M et M est simple.
- (b). Soit M un A-module simple (où A est un corps). Soit $x \in M \setminus \{0\}$. On a $\langle x \rangle = M$ par la question précédente, autrement dit la famille $\{x\}$ est une famille génératrice de M. Par ailleurs la famille $\{x\}$ est libre : si λx est une combinaison linéaire avec $\lambda \neq 0$, alors

$$0 \neq x = \lambda^{-1} \lambda x$$

En multipliant par λ , on obtient $0 \neq \lambda x$. La famille $\{x\}$ est donc une base de M, qui est alors isomorphe à $A^1 = A$.

- 5.(a). Soit $\varphi: M \to N$ une application linéaire non nulle. Par hypothèse, $\ker \varphi \neq M$, donc $\ker \varphi = \{0\}$ car M est un module simple et $\ker \varphi$ est un sous-module de M. De même, $\operatorname{Im} \varphi$ est un sous-module de N non réduit à $\{0\}$, donc $\operatorname{Im} \varphi = N$. Le morphisme φ est donc à la fois injectif et surjectif : il s'agit d'un isomorphisme.
- (b). Comme $\mathbb{Z}/43\mathbb{Z}$ et $\mathbb{Z}/97\mathbb{Z}$ n'ont pas le même cardinal, il ne sont pas isomorphe. L'ensemble $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/43\mathbb{Z},\mathbb{Z}/97\mathbb{Z})$ ne contient donc aucun isomorphisme. Par la question précédente, il est donc réduit à l'application nulle.
- 6.(b). On sait déjà que $\operatorname{Ann}(m)$ est un idéal de A, c'est l'idéal annulateur de m. Comme M est simple (et m est non nul), on a $\langle m \rangle = M$. L'application $a \mapsto a.m$ est alors une application A-linéaire surjective de A dans M, dont le noyau est $\operatorname{Ann}(m)$ par définition. Par le théorème d'isomorphisme, on obtient $A/\operatorname{Ann}(m) \simeq M$ en tant que A-module.

- (a). Par la propriété universelle des quotients, les sous-A-modules de $A/\mathrm{Ann}(m)$ sont en bijection avec les sous-module de A (donc les idéaux) qui contiennent $\mathrm{Ann}(m)$. Comme $A/\mathrm{Ann}(m) \simeq M$, il n'y a que deux tels idéaux : $\mathrm{Ann}(m)$ et A. Autrement dit, $\mathrm{Ann}(m)$ est maximal.
- 7. Une fois encore c'est la propriété universelle des quotients, les sous-A-modules de A/I sont en bijection avec les idéaux de A contenant I. Si I est maximal, on obtient que $\{0\}$ et A/I sont les seuls sous-modules de A: on a bien un module simple.
- 8. Par les questions 6 et 7, les A-modules simples sont (à isomorphismes près) les A modules de la forme A/I où I est un idéal maximal de A. Dans le cas de \mathbb{Z} , on obtient que les \mathbb{Z} -modules simples sont (à isomorphisme près) les modules de la forme $\mathbb{Z}/p\mathbb{Z}$ avec p premier.

Exercice 2. $(i) \Rightarrow (iii)$. En toute généralité, soient M un A-module, et $\{m_1, \ldots, m_n\}$ une famille finie de M. On considère l'application

$$\varphi: \quad \begin{array}{ccc} A^n & \longrightarrow & M \\ (a_1, \dots, a_n) & \longmapsto & \sum_{i=1}^n a_i m_i \end{array}$$

Il s'agit d'une application A-linéaire :

$$\varphi(\lambda(a_i) + b_i) = \sum_{i=1}^n (\lambda a_i + b_i) m_i = \lambda \sum_{i=1}^n a_i m_i + \sum_{i=1}^n b_i m_i = \lambda \varphi(a_i) + \varphi(b_i)$$

Par définition, dire que la famille $\{m_1, \ldots, m_n\}$ est génératrice équivaut à dire que φ est surjective.

- Si M est de type fini, il existe une famille génératrice $\{m_1, \ldots, m_n\}$. L'application induit φ est alors une application surjective de A^n vers M.
- $(ii) \Rightarrow (i)$. Tout quotient d'un module de type fini est à son tour de type fini. Comme A^n est de type fini (car libre), le quotient A^n/N est alors de type fini, de même que M par isomorphisme.
- $(iii) \Leftrightarrow (ii)$ Est immédiat par propriété des quotients, dans le premier cas, l'application φ est donnée par la projection canonique. Dans le second cas, le sous-module N est le noyau de l'application φ .

Exercice 3.

1. On considère l'anneau $A := \mathbb{C}[X_1, \ldots, X_i, \ldots]$ des polynômes à une infinité de variables. Le A-module A est de type fini car libre. On considère le sous-module $M = (X_1, \ldots, X_i, \ldots)$ formé par les polynômes sans terme constant. Le sous-module M n'est pas de type fini. En effet, soit P_1, \ldots, P_n une famille finie de polynômes dans A. Comme la famille est finie, elle ne fait intervenir qu'un nombre fini de variables. Soit donc X_k une variable n'apparaissant dans aucun P_i . Une combinaison linéaire de la forme

$$\sum_{i=1}^{n} Q_i P_i$$

ne peut alors être égale à X_k pour des raisons de degré. Donc P_1, \ldots, P_n ne peut engendré M (car elle n'engendre pas tous ses générateurs).

2. Considérons $A := \mathbb{C}[X,Y]$. Le A-module A est un module libre. Considérons le sous-module M = (X,Y). Le sous-module M n'est ni nul, ni libre de rang 1 (car c'est un idéal non principal). On montre que toute famille de cardinal 2 est non libre : soient P,Q deux polynômes dans M. On a

$$QP - PQ = 0$$

une combinaison linéaire nulle à coefficients non nuls : $\{P,Q\}$ n'est pas une famille libre. Le module M ne peut être libre : il aurait une base de cardinal au moins 2, ce qui est impossible.

3.

4. On a premièrement une application

$$\begin{array}{ccc} \varphi &: M & \longrightarrow & M \otimes_A A \\ & m & \longmapsto & m \otimes 1 \end{array}$$

qui est A-linéaire :

$$\varphi(am+m')=(am+m')\otimes 1=a(m\otimes 1)+(m'\otimes 1)=a\varphi(m)+\varphi(m')$$

Réciproquement, on considère l'application

$$\widetilde{\psi}: \quad M \times A \quad \longrightarrow \quad M \\ (m,a) \quad \longmapsto \quad a.m$$

qui est A-bilinéaire :

- $\widetilde{\psi}(\lambda m + m', a) = a.(\lambda m + m') = \lambda.a.m + a.m' = \lambda \widetilde{\psi}(m, a) + \widetilde{\psi}(m', a)$
- $\widetilde{\psi}(m, \lambda a + a') = (\lambda a + a').m = \lambda.a.m + a'.m = \lambda \widetilde{\psi}(m, a) + \widetilde{\psi}(m, a')$

Par propriété universelle du produit tensoriel, $\widetilde{\psi}$ induit alors une application linéaire $\psi: M \otimes_A A \to M$. Pour $m \in M$, on a $\psi \circ \varphi(m) = \psi(m, 1) = m$. Ensuite, pour $m \otimes a$ un tenseur pur, on a

$$\varphi \circ \psi(m \otimes a) = \varphi \circ \widetilde{\psi}(m, a) = \varphi(am) = (am) \otimes 1 = m \otimes a$$

donc $\varphi \circ \psi$ induit l'identité sur les tenseurs purs. Comme les tenseurs purs engendrent $M \otimes_A A$, on a bien que ψ et φ sont des bijection réciproques l'une de l'autre.