ECE 3150: Microelectronics

Spring 2015

Homework 8

Due on April 09, 2015 at 5:00 PM

Suggested Readings:

a) Lecture notes

Important Notes:

1) MAKE SURE THAT YOU INDICATE THE UNITS ASSOCIATED WITH YOUR NUMERICAL ANSWERS. OTHERWISE NO POINTS WILL BE AWARDED.

2) Unless noted otherwise, always assume room temperature.

Problem 8.1: (A cascode current source/mirror)

Consider the following cascade current source/mirror:

Assume that all NFETs are identical and their characteristics are given by:

$$W = 10 \mu \text{m}$$

 $L = 1 \mu \text{m}$
 $\mu_n C_{0x} = 200 \mu \text{A}/\text{V}^2$
 $\lambda_n = 0.11/\text{V}$
 $V_{DD} = 5.0 \text{ V}$
 $V_{TN} = 0.5 \text{ V}$

$$I_{REF} = 1 \, mA$$

a) Find the voltages V_1 and V_2 .

b) What is the relationship between voltages V_3 and V_{OUT} ?

It might be obvious that if $V_{OUT} = V_1$ then $I_{OUT} = I_{REF}$. However, when $V_{OUT} \neq V_1$ then $I_{OUT} \neq I_{REF}$.

- c) What is the lowest value of V_{OUT} at which at least one NFET goes into the linear region? Which NFET?
- d) Using the values of voltages V_1 and V_2 found in part (a), calculate and plot (not sketch) I_{OUT} vs V_{OUT} with V_{OUT} in the range 0 and 5 Volts.
- e) Draw a small signal circuit of the current source when looking in from the output terminals.
- f) Use the small signal circuit of part (e) to find and expression for the output resistance r_{oc} of the current source.
- g) Assuming $V_{OUT} = V_1$, find the actual numerical value of the output resistance r_{OC} using the expression found in part (f).

Problem 8.2: (A common gate amplifier)

Consider the following FET common gate amplifier. The two current sources shown have output resistances equal to r_{oc} . In answering the following parts, DO NOT MAKE ANY APPROSIMATIONS.

- a) Find the open circuit voltage gain $A_V = V_{out}/V_{in}$.
- b) Find the input resistance R_{in} assuming a load resistor R_L is connected at the output.
- c) Find the output resistance R_{out} assuming that the input voltage source v_{in} is replaced by a voltage source v_s is in series with a resistor R_s .

Problem 8.3: (Double Wilson BJT current source/mirror)

Consider the following BJT current source. All BJTs are identical and their V_{BE-ON} and V_{CE-SAT} are known.

- a) Find an expression for the small signal output resistance r_{oc} of the current source.
- b) What is the lowest voltage value V_{OUT} can take before at least one of the BJTs goes into the saturation region?

Problem 8.4: (A BJT current source)

Consider the following BJT current source. All BJTs are identical and their V_{BE-ON} and V_{CE-SAT} are known.

a) Find an expression for the small signal output resistance r_{oc} of the current source.

b) What is the lowest voltage value V_{OUT} can take before at least one of the BJTs goes into the saturation region (your answer could depend on I_{OUT})?