Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Университет ИТМО»

Факультет информационных технологий и программирования

Дополнительные главы физики

Задача от лектора № 2

Моделирование сферы Блоха

Выполнили студенты группы М32071:

Хапчаев Тимур Русланович Алейников Иван Витальевич

Проверила:

Ефремова Екатерина Александровна

Задание:

Пользователь задаёт начальное положение на сфере блоха (углы θ и ϕ), ось вокруг которой будет происходить вращение единичным вектором направления \vec{n} и угол поворота вокруг этой оси α . Программа должна визуализировать начальное положение, заданное пользователем, ось и движение конца вектора состояния по поверхности сферы Блоха и его конечное состояние на сфере Блоха, с указанием вектора состояния.

Решение:

Волновая функция $|\psi>=c_0|0>+c_1|1>$, $c_0,c_1\in\mathbb{C}$, $|c_0|^2+|c_1|^2=1$, описывающая состояние кубита, может быть представлена как суперпозиция двух его базовых состояний $|0>=\begin{bmatrix}1\\0\end{bmatrix}$ и $|1>=\begin{bmatrix}0\\1\end{bmatrix}$.

Исходное состояние квантовой системы, состоящей из одного кубита, может быть эквивалентным образом описано с помощью двух вещественных параметров – углов θ и ϕ :

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) \end{bmatrix}.$$

Операторы, используемые для поворота сферы Блоха на углы θ , $-\theta$ вокруг оси y и на углы ϕ , $-\phi$, α вокруг оси z:

$$r_{y}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}, \quad r_{z}(\phi) = \begin{bmatrix} e^{-\frac{i\phi}{2}} & 0 \\ 0 & e^{\frac{i\phi}{2}} \end{bmatrix};$$

$$r_{y}(-\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}, \quad r_{z}(-\phi) = \begin{bmatrix} e^{\frac{i\phi}{2}} & 0 \\ 0 & e^{-\frac{i\phi}{2}} \end{bmatrix};$$

$$r_{z}(\alpha) = \begin{bmatrix} \cos\frac{\alpha}{2} & -\sin\frac{\alpha}{2} \\ \sin\frac{\alpha}{2} & \cos\frac{\alpha}{2} \end{bmatrix};$$

- **1.** В момент запуска программы кубит находится в состоянии $|0>=\begin{bmatrix}1\\0\end{bmatrix}$.
- **2.** Вектор начального состояния кубита (состояния, введённого пользователем) получается из состояния |0> путём последовательного применения операторов $r_v(\theta)$ и $r_z(\phi)$:

$$|\psi>=r_z(\phi)(r_y(\theta)|0>)$$
,

где $|\psi>-$ начальное состояние, задаваемое пользователем, а |0>- состояние $\begin{bmatrix}1\\0\end{bmatrix}$.

- **3.** Выполняется проверка длины вектора \vec{n} , введённого пользователем, если данная величина не равна 1, то программа завершается аварийно.
- **4.** Выполняется алгоритм вращения вектора состояния кубита вокруг оси, задаваемой вектором единичной длины \vec{n} на угол α .

Алгоритм вращения вектора состояния кубита вокруг оси, задаваемой вектором единичной длины \vec{n} на угол α выглядит следующим образом:

- 1) С помощью функции cartesian_to_polar определяются сферические координаты вектора, введённого пользователем (далее углы $\theta_{\vec{n}}$ и $\phi_{\vec{n}}$);
- 2) Вектор \vec{n} сопоставляется с осью z с помощью последовательного выполнения операторов $r_z(-\phi_{\vec{n}})$ и $r_v(-\theta_{\vec{n}})$;
- 3) Выполняется вращение вектора состояния кубита на угол α вокруг оси z (сопоставленной с вектором единичной длины \vec{n} : $r_z(\alpha)$;
- 4) Последовательно выполняются операторы $r_y(\theta_{\vec{n}})$ и $r_z(\phi_{\vec{n}})$, приводящие сферу Блоха в изначальное состояние, только с повёрнутым вектором состояния кубита относительно вектора \vec{n} на угол α .

Таким образом, последовательность применяемых операторов к начальному вектору состояния кубита можно определить следующим образом:

$$\left|\psi'\right> = r_z(\phi_{\vec{n}})r_y(\theta_{\vec{n}})r_z(\alpha)r_y(-\theta_{\vec{n}})r_z(-\phi_{\vec{n}})\right|\psi>,$$

где $|\psi'>$ – конечное состояние кубита, а $|\psi>$ – начальное состояние кубита.

Пример использования программы:

Входные параметры:
$$\theta = \frac{\pi}{3}$$
, $\phi = \frac{\pi}{2}$, $\vec{n} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$, $\alpha = \pi$.

Вывод программы, где чёрная стрелка — это ось, задаваемая вектором единичной длины \vec{n} , зелёная стрелка — начальное положение, задаваемое пользователем, синяя стрелка — конечное положение после поворота):

