ANALISIS DE LA MEDICIÓN DE RESISTENCIA CON VOLTIMETRO Y AMPERIMETRO

Introducción

Ventajas

-Cuando se trata de medir resistencia variables con el tiempo, la temperatura resulta imprescindible.

Desventajas

- -Conexionado relativamente complejo
- -Provoca error en función de la configuración usada

Introducción

$$R_i = \frac{V_i}{I_i}$$

$$e_{\it m} = \frac{R_{\it i} - R}{R}$$

$$R = \frac{R_i}{1 + e_m}$$

Ri: Resistencia indicada

Vi: Tensión indicada

Ii : Corriente indicada

R: Resistencia verdadera

Hay dos configuraciones posibles

Tensión bien medida

T.B.M

Corriente bien medida C.B.M.

Tensión bien medida

$$R_i = \frac{V_i}{I_i}$$
 Reemplazando Ii $R_i = \frac{V}{I_v + I}$

Dividiendo el segundo miembro por V

$$\frac{1}{R_i} = \frac{I_v}{V} + \frac{I}{V} \Rightarrow \frac{1}{R_i} = \frac{1}{R_v} + \frac{1}{R}$$

$$R_i = \frac{R_v.R}{R_v + R} \quad R = \frac{R_v.R_i}{R_v - R_i}$$

Tensión bien medida

Volviendo a la expresión de error de método

$$e_{m} = \frac{R_{i} - R}{R}$$
 Reemplazamos la expresión de $R = \frac{R_{v}.R_{i}}{R_{v} - R_{i}}$
$$e_{mTBM} = \frac{R_{i} - \frac{R_{v}.R_{i}}{R_{v} - R_{i}}}{\frac{R_{v}.R_{i}}{R_{v} - R_{i}}} \Rightarrow e_{mTBM} = -\frac{R_{i}}{R_{v}}$$

Que conclusiones podemos sacar?

- Que la medición es por defecto
- •Que disminuye con el valor de Ri
- •Disminuye con el aumento de Rv

Resistencia del Voltímetro

Fluke 189

Función	Impedancia de entrada (Nominal)	
Voltios, mV	10 MΩ, < 100 pF	

Tektronix TX3

Cuadro 4: Características del voltaje de CC

Características	Descripción		
Tiempo de establecimiento	3 lecturas (habitual)		
Frecuencia de lectura	5.000 ct.: 4 lecturas por segundo 50.000 ct.: 1 lectura por segundo		
Razón de rechazo			
Modo común	120 dB a CC o 50 Hz o 60 Hz		
Modo normal	60 dB a 50 Hz o 60 Hz		
Impedancia de entrada	10 MΩ (habitual)		

Tensión bien medida

Con:

 $R=1M\Omega$

 $Rv=10M\Omega$

cometemos un error de método del 10%

Corriente bien medida

$$\begin{cases} I_i = I \\ V_i = V + V_A \end{cases}$$

$$R_i = \frac{V_i}{I_i} \longrightarrow R_i = \frac{V + V_A}{I} = \frac{V}{I} + \frac{V_A}{I}$$

$$Ri = R + R_A$$

$$R = Ri - R_A$$

Corriente bien medida

Volviendo a la expresión de error de método

$$e_m = \frac{R_i - R}{R}$$
 Reemplazamos la expresión de $R = Ri - R_A$

$$R = Ri - R_A$$

$$e_m = \frac{R_i - R}{R} = e_m = \frac{R_i - (Ri - R_A)}{Ri - R_A}$$

$$e_{\mathit{mCBM}} = \frac{R_A}{Ri - R_A}$$

 Que la medición es por exceso

Que conclusiones podemos sacar?

- •Que disminuye con el aumento valor de Ri
- •Disminuye junto RA

Resistencia del Amperímetro

Fluke 189

Tensión típica de la carga (A, mA, μA)

Función	Rango	Tensión de la carga (típica)
mA - μA	500,00 μΑ	102 μV / μΑ
	5000 μA	102 μV /μΑ
	50,000 mA	1,8 mV / mA
	400,00 mA	1,8 mV / mA
A	5,0000 A	0,04 V / A
	10,000 A	0,04 V / A

Tektronix TX3

Cuadro 8: Características de corriente de CC

Características	Descripción
Voltaje de carga	5 mA a 5 A: 0,3 V máx. 10 A: 0,5 V máx.
Porcentaje de 4-20 mA (calculado en un rango de 50 mA)	4 mA = 0% 20 mA = 100%
Tiempo de establecimiento	4 lecturas (habitual)
Frecuencia de lectura	5.000 ct.: 4 lecturas por segundo 50.000 ct.: 1 lectura por segundo

Corriente bien medida

Resistencia Crítica

Aplicaremos un metodo para determinar a partir de que valor de resistencia conviene usar un método o el otro.

Asi:

Si Ri < Rc

 $e_{mTBM} < e_{mCBM}$

Si Ri > Rc

 $e_{mTBM} > e_{mCBM}$

Para ellor planteamos que resistencia Ri cumple CmTBM = CmCBM Y a dicha resistencia la llamamos Rc

Resistencia Crítica

$$e_{mTBM} = e_{mCBM} \iff \frac{R_A}{Rc - R_A} = -\frac{R_c}{R_v}$$

$$Rc = \sqrt{R_A \cdot R_V}$$

el método que menor error de método introduce es TBM el método que menor error de método introduce es CBM

Analizemos el caso de los instrumentos propuestos

$$Rv = 10 M\Omega$$

 $Ra = 102 \Omega$

 $Rc = 31622.77\Omega$

м

Resistencia Crítica

Error de método máximo

Error de método máximo

$$e_{mTBM} = -\frac{R_i}{R_v}$$

Reemplazamos Ri por Rc

$$\left| e_{mMAX} \right| = \left| \frac{R_i}{R_v} \right| = \frac{\sqrt{R_A . R_V}}{R_V}$$

$$\left| e_{mMAX} \right| = \sqrt{\frac{R_A}{R_V}}$$

A TRABAJAR !!

- -Procedimiento especifico para la calibración de resistencias de valor medio con Voltímetro y Amperímetro.
- -Generar un informe de calibración.

