

Embedded Systems Exercise 1 - HS 2020 21./23.10.2020

Stefan Draskovic

Exercise structure

- Goal of today's exercise:
 - Cyclic Executive Scheduling
- Agenda:
 - Wednesday 16:15 17:00 Introduction and solving a sample question (recorded)
 - Friday 16:15 17:00 Solutions (recorded)
- Available assistants:
 - Stefan Drašković
 - Julian Keller

Exercise structure

• Interactions:

- Exercise Zoom: Questions can be asked throughout the exercise in this room by raising your hand. Please feel free to write in the chat in case we oversee your question.
- Help Zoom: Student assistants are available after the session for questions and 1-on-1 meetings.
- Matrix Chatroom: Questions that are relevant for everyone can be asked in the Matrix chatroom where the responsible assistants can answer as quickly as possible.

Content of today's exercise

Cyclic Executive Scheduling: Analyze one schedule and construct another

• Q: Consider the following task-set:

$$\tau_1$$
: $T_1 = 4$, $D_1 = 3$, $C_1 = 2$, $\Phi_1 = 0$

$$\tau_2$$
: $T_2 = 6$, $D_2 = 3$, $C_2 = ?$, $\Phi_2 = 0$

What is the largest value of C_2 such that a feasible schedule exists?

• Q: Consider the following task-set:

$$\tau_1$$
: $T_1 = 4$, $D_1 = 3$, $C_1 = 2$, $\Phi_1 = 0$

$$\tau_2$$
: $T_2 = 6$, $D_2 = 3$, $C_2 = ?$, $\Phi_2 = 0$

What is the largest value of C_2 such that a feasible schedule exists?

• **A:** Both tasks have to finish execution by time 3. Since $C_1 = 2$, we have $C_2 \le 1$.

• Q: Consider the following task-set:

$$\tau_1$$
: $T_1 = 4$, $D_1 = 3$, $C_1 = 2$

$$\tau_2$$
: $T_2 = 5$, $D_2 = 4$, $C_2 = 2$

Cyclic-executive is used to schedule the task-set with: f=1, P=20. Select the conditions for a valid cyclic-executive schedule which are violated.

• Q: Consider the following task-set:

$$\tau_1$$
: $T_1 = 4$, $D_1 = 3$, $C_1 = 2$

$$\tau_2$$
: $T_2 = 5$, $D_2 = 4$, $C_2 = 2$

Cyclic-executive is used to schedule the task-set with: f=1, P=20. Select the conditions for a valid cyclic-executive schedule which are violated.

• A: Violated: Tasks start and finish within a single frame.

• Q: Consider the following task-set:

$$\tau_1$$
: $T_1 = 4$, $D_1 = 3$, $C_1 = 2$

$$\tau_2$$
: $T_2 = 5$, $D_2 = 4$, $C_2 = 2$

Cyclic-executive is used to schedule the task-set with: f=3, P=20. Select the conditions for a valid cyclic-executive schedule which are violated.

• Q: Consider the following task-set:

$$\tau_1$$
: $T_1 = 4$, $D_1 = 3$, $C_1 = 2$

$$\tau_2$$
: $T_2 = 5$, $D_2 = 4$, $C_2 = 2$

Cyclic-executive is used to schedule the task-set with: f=3, P=20. Select the conditions for a valid cyclic-executive schedule which are violated.

A: Violated: P is a multiple of f.
 Between release time and deadline of any task, there is at least one full frame.

• Q: Consider the following task-set:

$$\tau_1$$
: $T_1 = 4$, $D_1 = 3$, $C_1 = 2$

$$\tau_2$$
: $T_2 = 5$, $D_2 = 4$, $C_2 = 2$

Cyclic-executive is used to schedule the task-set with: f=4, P=20. Select the conditions for a valid cyclic-executive schedule which are violated.

• Q: Consider the following task-set:

$$\tau_1$$
: $T_1 = 4$, $D_1 = 3$, $C_1 = 2$

$$\tau_2$$
: $T_2 = 5$, $D_2 = 4$, $C_2 = 2$

Cyclic-executive is used to schedule the task-set with: f=4, P=20. Select the conditions for a valid cyclic-executive schedule which are violated.

• A: Violated: Between release time and deadline of any task, there is at least one full frame.

• Q: Consider the following task-set:

$$\tau_1$$
: $T_1 = 4$, $D_1 = 3$, $C_1 = 2$

$$\tau_2$$
: $T_2 = 5$, $D_2 = 4$, $C_2 = 2$

Cyclic-executive is used to schedule the task-set with: f=2, P=20. Select the conditions for a valid cyclic-executive schedule which are violated.

• Q: Consider the following task-set:

$$\tau_1$$
: $T_1 = 4$, $D_1 = 3$, $C_1 = 2$

$$\tau_2$$
: $T_2 = 5$, $D_2 = 4$, $C_2 = 2$

Cyclic-executive is used to schedule the task-set with: f=2, P=20. Select the conditions for a valid cyclic-executive schedule which are violated.

• A: All conditions are satisfied!

Definitions

Γ: Task-set, or the set of all tasks

 τ_i : Task

 $\tau_{i,j}$: Job, or the j^{th} instance of task τ_i

 $r_{i,j}$: Release time of job $\tau_{i,j}$

 $d_{i,j}$: Absolute deadline of job $\tau_{i,j}$

 D_i : Relative deadline of task τ_i , $D_i = d_{i,j} - r_{i,j}$

 C_i : Worst case execution time of task τ_i

Time-triggered Cyclic-executive Scheduling

Assumption: Tasks are periodic, but may have different periods.
 Task τ_i has period T_i, and phase Φ_i.

$$r_{i,j} = \Phi_i + (j-1)T_i$$

 $d_{i,j} = \Phi_i + (j-1)T_i + D_i$

Objective: Schedule the task-set using a simple scheduling scheme

Time-triggered Cyclic-executive Scheduling

The period P of the system is divided into frames f

- Assignment of jobs to frames is made off-line
- Timer interrupts regularly every frame start, and releases the jobs for this frame

Conditions for P and f

1. A task executes at most once within frame

$$\forall \tau_i: f \leq T_i$$

- 2. P is a multiple of f
- 3. Tasks start and complete within a single frame

$$\forall \tau_i: f \geq C_i$$

4. Between the release time and deadline of every task there is at least one full frame

$$\forall \tau_i$$
: $2f - \gcd(T_i, f) \leq D_i$

Γ	T_i	Фі	Di	Ci	frame
$ au_{ extsf{1}}$	12	2	8	2.8	
$ au_2$	12	3	9	3	
$ au_3$	4	0	4	1	

Γ	T_i	Фі	Di	Ci	frame
$ au_{ extsf{1}}$	12	2	8	2.8	
$ au_2$	12	3	9	3	
$ au_3$	4	0	4	1	

Γ	T_i	Фі	Di	Ci	frame
$ au_{ extsf{1}}$	12	2	8	2.8	2
$ au_2$	12	3	9	3	
$ au_3$	4	0	4	1	

Γ	T_i	Фі	Di	Ci	frame
$ au_{ extsf{1}}$	12	2	8	2.8	2
$ au_2$	12	3	9	3	
$ au_3$	4	0	4	1	

Γ	T_i	Фі	Di	Ci	frame
$ au_{ extsf{1}}$	12	2	8	2.8	2
$ au_2$	12	3	9	3	3
$ au_3$	4	0	4	1	

Γ	T_i	Фі	Di	Ci	frame
$ au_{ extsf{1}}$	12	2	8	2.8	2
$ au_2$	12	3	9	3	3
$ au_3$	4	0	4	1	

Γ	T_i	Фі	Di	Ci	frame
$ au_{ extsf{1}}$	12	2	8	2.8	2
$ au_2$	12	3	9	3	3
$ au_3$	4	0	4	1	1, 2, 3

Correctness of Schedule

let f_{ij} note a frame in which that job $\tau_{i,j}$ executes

- Is P a common multiple of all periods T_i ? Is P a multiple of f?
- Is the frame sufficiently long?

$$\sum_{\{i|f_{ij}=k\}} C_i \le f \qquad \forall 1 \le k \le \frac{P}{f}$$

Are release times respected? or
 Determine offsets such that instances start after release time

$$\forall \tau_i: \qquad \Phi_i = \min_{1 \leq j \leq \frac{P}{T_i}} \left\{ (f_{ij} - 1)f - (j-1)T_i \right\}$$

Are deadlines respected?

$$\forall au_i, \ 1 \leq j \leq \frac{P}{T_i}: \qquad (j-1)T_i + \Phi_i + D_i \geq f_{ij}f_{\text{Stefan Draskovic}}$$
 21./23.10.

Task 1: Check Schedule Correctness!

let f_{ii} note a frame in which that job $\tau_{i,i}$ executes

- Is P a common multiple of all periods T_i ? Is P a multiple of f?
- Is the frame sufficiently long?

$$\sum_{\{i|f_{ij}=k\}} C_i \le f \qquad \forall 1 \le k \le \frac{P}{f}$$

Are release times respected? or
 Determine offsets such that instances start after release time

$$\forall \tau_i: \qquad \Phi_i = \min_{1 \leq j \leq \frac{P}{T_i}} \left\{ (f_{ij} - 1)f - (j-1)T_i \right\}$$

Are deadlines respected?

$$\forall au_i, \ 1 \leq j \leq \frac{P}{T_i}: \qquad (j-1)T_i + \Phi_i + D_i \geq f_{ij}f$$
Stefan Draskovic

Task 2: Find Schedule

Task	Period	Deadline	Execution Time
$ au_1$	15	3	3
$ au_2$	10	5	3
$ au_3$	6	6	3

Questions?

Stefan Draskovic

ETZ G81

+41 44 63 27033

stefan.draskovic@tik.ee.ethz.ch