# PREVISÃO DE FOGO POSTO EM PORTUGAL 2014-2015

Data Mining I - Trabalho Prático 01 de janeiro de 2023

Trabalho Realizado por

Joana Pereira (201805191)

Pedro Azevedo (201905966)

Pedro Santos (201904529)

Docente:

Rita Ribeiro

## ÍNDICE

- Definição do problema
- Data Understanding
- Data Preparation
- Melhorar o conjunto de dados
- Avaliar features
- Predictive Modelling
- Conclusão

### DATA UNDERSTANDING

#### • Caracteríticas:

Id, region, district, municipality, parish, lat, lon, origin, alert\_date, alert\_hour, extinction\_date, extinction\_hour, firstInterv\_date, firstInterv\_hour, alert\_source, village\_área, vegetation\_área, farming\_área, village\_veget\_área, total area

#### Output

- intentional cause.
- 0:72%
- 1:28%





Pode, ainda, concluir que a grande parte dos fogos são iniciados por fogueira.



Viana do Castelo apresenta a maior taxa de fogo posto.

#### DATA UNDERSTANDING

#### DATA PREPARATION

 Apagar colunas que não tem valores como alert\_source e uma coluna que é muito especifica e que não traria valor.

```
fire_Train_Data <- fire_Train_Data %>% select(-c(alert_source, parish))
```

Descobrir onde existem valores nulos:

```
apply(X = is.na(fire\_Train\_Data), MARGIN = 2, FUN = sum)
```

Coluna region tem poucos e por isso foram preenchidos:

```
fire_Train_Data <- fire_Train_Data %>% mutate(region = ifelse(is.na(region),
"Ribatejo e Oeste", region))
```

#### DATA PREPARATION

• Por fim, apagar linhas com algum valor nulo.

```
y = c("extinction_hour", "firstInterv_date", "firstInterv_hour")
vars <- "y"
fire_Train_Data <- drop_na(fire_Train_Data, any_of(y))</pre>
```

• No caso de teste, os valores foram preenchidos:

```
fire_Test_Data <- fire_Test_Data %>% fill(extinction_date)
fire_Test_Data <- fire_Test_Data %>% fill(extinction_hour)
fire_Test_Data <- fire_Test_Data %>% fill(firstInterv_date)
fire_Test_Data <- fire_Test_Data %>% fill(firstInterv_hour)
```

#### MELHORAR O CONJUNTO DE DADOS

 Usando uma biblioteca externa obteve-se mais características, usando a lat, lon e date do conjunto original de dados adicionou-se mais características, tanto ao conjunto de treino como de teste.

install github("bczernecki/climate", force = TRUE)

- Assim, o conjunto final de dados ficou com as colunas:
  - District, municipality, origin, alert\_date, alert\_hour, extinction\_date, extinction\_hour, firstInterv\_date, firstInterv\_hour, village\_area, vegetation\_area farming\_area, village\_veget\_area, total\_area, TemperatureCAvg, TemperatureCMax, TemperatureCMin, HrAvg, Windkmhlnt, fire\_duration\_e intentional\_cause
- Também houve tratamento de dados.



Foi possível observar as correlações entre as features.

As caraterísticas com mais importância.



# AVALIAR FEATURES

#### PREDICTIVE MODELLING

 Usando as colunas que foram avaliadas como mais importantes:

```
lm_fit2 <- model_lm %>%
```

```
fit(intentional_cause ~ district + TemperatureCMax + WindkmhInt + TemperatureCAvg + TemperatureCMin + village_area + extinction_hour + farming_area + village_veget_area, data = fire_train)
```

 Avaliar Root Mean Squared Error, R-square e Mean absolute Error.

#### PREDICTIVE MODELLING

#### K Nearest-Neighbor Model

- usou-se recipe() como pré-processamento e sem recipe(), ambos com a mesma matriz de confusão, e, 69% de acurácia.

```
model_knn<-
nearest_neighbor(mode="classification")
```

```
knn_fit <- model_knn %>%
fit(intentional_cause ~ district +
TemperatureCMax + WindkmhInt +
TemperatureCAvg + TemperatureCMin +
village_area + extinction_hour + farming_area +
village_veget_area, data = f_train, na.action =
na.exclude
```



# PREDICTIVE MODELLING

- path <- paste( getwd(),
   "/Rdata/Test\_Data\_noNa.rds",sep = "")</pre>
- fire\_Test\_Data <- readRDS(path)</li>
- prev <- predict(knn\_fit, fire\_Test\_Data)</li>
- names(prev)[length(names(prev))]<-"intentional\_cause"
- prev\$id <- fire\_Test\_Data\$id</li>
- prev <- prev[c("id", "intentional\_cause")]</pre>
- write.csv(prev, "grupo I 3\_DMI.csv", row.names=FALSE)



### CONCLUSÃO

- Para ter um melhor resultado, seria melhor ter uma outra abordagem aos dados, e, ao seu processamento.
- Ainda que com algumas dificuldades, foi possível prever resultados e publicalos.
- De salientar, que foi possível aplicar alguns modelos de previsão e, contudo, é de salientar a dificuldade em obter bons modelos de previsão.