

PRÉSENTATION DU CHALLENGE ET DES ENJEUX

<u>PROJET</u>: prédire le code type des produits sur la base de données textuelles (désignation et description & de données images

ENJEUX: Amélioration du **catalogage des produits** selon des **données différentes** (textes et images) pour réaliser des applications diverses -> **recommandation de produits et recherche personnalisée**

Rang	Marques	Visiteurs uniques moyens par mois	Couverture France mensuelle (en % de la pop. Française)	Visiteurs uniques moyens par jour
1	Am azon *	32 566 000	52,0%	6 141 000
2	Cdiscount *	20 965 000	33,5%	2 317 000
3	Fnac*	16 568 000	26,4%	1 313 000
4	E.Leclerc *	13 156 000	21,0%	1 529 000
5	Booking.com	13 109 000	20,9%	1 190 000
6	Carrefour *	12 987 000	20,7%	1 591 000
7	Veepee *	12 658 000	20,2%	2 767 000
8	Vinted *	12 496 000	19,9%	3 395 000
9	Wish	12 327 000	19,7%	2 388 000
10	OUI.sncf *	11 319 000	18,1%	1 237 000
11	eBay *	10 /29 000	17,1%	1 234 000
12	Leroy Merlin *	10 666 000	17,0%	802 000
13	Groupon *	9 631 000	15,4%	1 294 000
14	Rakuten (B)*	9 400 000	15,0%	926 000
15	Airbnb	9 088 000	14,5%	1 030 000

https://www.fevad.com/barometre-trimestriel-de-laudience-du-e-commerce-en-france-enquete-e-commerce-et-confinement/

PRÉSENTATION DES DONNÉES

27 Classes sur 6 thèmes principaux !

8	у	Nombre	Caractéristiques des images
	10	3116	Livres occasion
	2280	4760	Journaux et revues occasion
Livres	2403	4774	Livres, BD et magazines
	2522	4989	Fournitures papeterie et accessoires bureau
	2705	2761	Livres neufs
	40	2508	Jeux videos, CDs, équipements, câbles, neufs
1	50	1681	Accessoires gaming
Jeux	60	832	Consoles de jeux
	2462	1421	Jeux vidéos occasion
	2905	872	Jeux vidéos pour PC
	1140	2671	Figurines, objets pop culture
Γ	1160	3953	Cartes de jeux
Jouets	1180	764	Figurines et jeux de rôles
&	1280	4870	Jouets enfants
figurines	1281	2070	Jeux société enfants
	1300	5045	Modélisme
	1302	2491	Jeux de pleins air, Habits
Meubles	1560	5073	Mobilier général : meubles, matelas, canapés lampes, chaises
Weubles	2582	2589	Mobilier de jardin : meubles et outils pour le jardin
	1320	3241	Puériculture, accessoire bébé
Equipements	2220	824	Animalerie
divers	2583	10209	Piscine et accessoires
	2585	2496	Outillages de jardin, équipements technique extérieur maison et piscines
Déco	1920	4303	Linge de maison, oreillers, coussins
Deco	2060	4993	Décoration
Autres	1301	807	Chaussettes bébés, petites photos
Autres	1940	803	Confiserie

https://challengedata.ens.fr/participants/challenges/35/

Imbalanced datas!

designation

Variables of dataset

imageid

PRÉSENTATION DES DONNÉES

TEXTE: Fortes **disparités** dans la **fréquence** d'apparition des **mots**!

IMAGES : Échantillonnage du dataset

PRÉPARATION DES DONNÉES TEXTE

MACHINE LEARNING TEXTE

Machine Learning

→ Not.Car

- -> Lemmatizer, Steeming, Stopword
- -> Vectorization TfidVectorizer

DEEP LEARNING TEXTE

-> idem Partie Machine Learning

Machine Learning

Car
Not Car

-> + Tf Tokenizer avec Embedding

- -> + Tf hub universal-sentence-encoder
- -> + Spacy Token + Lem

Keras Tokenizer 70000 mots max Phrases < 600 mots

Embed Multilingual-large

Output

PRÉPARATION DES DONNÉES <u>IMAGES</u>

MACHINE LEARNING IMAGES - Classif non supervisée

DEEP LEARNING IMAGES

-> Keras/TF Images data generator

-> PCA

-> Transfer Learning method

-> Clustering

clusters = 3 silhouette score 0.61

MODELES MACHINE LEARNING <u>IMAGES</u>

Screening x modèles Machine Learning - Classification supervisée

Machine Learning

Accuracy Balanced Accuracy ROC AUC F1 Score Time Taken

Model

ExtraTreesClassifier	0.40	0.31	None	0.37	34.78
RandomForestClassifier	0.40	0.31	None	0.37	55.69
LGBMClassifier	0.39	0.30	None	0.36	326.00
XGBClassifier	0.38	0.29	None	0.35	800.33
BaggingClassifier	0.33	0.27	None	0.32	233.55
SVC	0.34	0.25	None	0.30	1520.29
DecisionTreeClassifier	0.27	0.22	None	0.26	38.28
KNeighborsClassifier	0.27	0.22	None	0.25	579.98
LinearDiscriminantAnalysis	0.27	0.22	None	0.26	359.96
RidgeClassifier	0.27	0.21	None	0.24	5.29
RidgeClassifierCV	0.27	0.21	None	0.24	21.89
LogisticRegression	0.26	0.21	None	0.24	28.13

Extremely Randomized Trees

Pour positionnement comparatif vs (Deep) F1 score

Vgg16: 0.26, Xception: 0.51, EffNetB5: 0.66

MODÈLES CRÉÉS PAR <u>CONCATÉNATION</u> MODELES TEXTE & IMAGE

RESULTATS MEILLEURS MODELE

Scoring f1 weighted sur les données test de notre modèle final Concatenate: 0.863

Analyse bonnes prédictions

		f1 weighted																										
Models	weighted	10	1140	1160	1180	1280	1281	1300	1301	1302	1320	1560	1920	1940	2060	2220	2280	2403	2462	2522	2582	2583	2585	2705	2905	40	50	60
EmbedRNN, OneHot, Multilingu, EfficientNetB1 TEST 1	0,8776	0,78	0,86	0,98	0,7	0,76	0,66	0,95	0,92	0,83	0,84	0,85	0,91	0,92	0,81	0,87	0,89	0,87	0,86	0,93	0,77	0,98	0,86	0,91	0,99	0,83	0,89	0,93
EmbedRNN, OneHot, Multilingu, EfficientNetB1 TEST 2	0,878	0,76	0,84	0,98	0,68	0,76	0,67	0,97	0,94	0,84	0,86	0,86	0,93	0,95	0,82	0,88	0,89	0,85	0,84	0,94	0,77	0,98	0,86	0,9	0,99	0,82	0,88	0,92
EmbedRNN, OneHot, Multilingu, EfficientNetB1 TEST 3	0,8783	0,72	0,84	0,98	0,72	0,77	0,67	0,96	0,94	0,86	0,87	0,86	0,93	0,97	0,83	0,88	0,88	0,84	0,85	0,94	0,78	0,98	0,88	0,88	0,99	0,81	0,87	0,93

Certaines classes compliquées à classer (score f1-weighted < 0.8) :

10 (livres d'occasion)

1180 (figurines et jeux de rôles)

1280 (jouets enfants)

1281 (jeux de société enfant)

Analyse mauvaises prédictions

Plusieurs classes + problématiques -> génèrent x erreurs dans les autres classes de thèmes

40 (jeux vidéos), 1280 (jouets enfants), 1320 (puériculture), , 1560 (mobilier général), 1920 (Linge de maison), 2060 (Décoration), 2582 (mobilier de jardin)

Bilan

Panel de compétences & intégration du top 10

Computer Vision Natural Language Processing

Machine Learning

Deep Learning

Réduction de dimension

Classé 9ème

F1-weighted score: 0.86

F1-weighted score image: 0.66

F1-weighted scores texte: [0.81, 0.85]

Etendu F1weighted scores: [0.67, 0.99]

Ouverture

Limites & perspectives

Images similaires 4 classes mal-prédites

Décalage formation – projet

Matériel (GPU)

Temporel

Nouveaux modèles pré-entraînés

(versions, données d'entraînements) Amélioration rétrospective grâce à l'interprétabilité

Inclusion de modèle(s) entraîné(s) uniquement sur classes mal prédites

Techniques d'assemblage de modèles

Procédure d'hyperparamétrisation et de paramétrisation

Rééquilibrage des classes

REGARD CRITIQUE & PERSPECTIVES

DONNÉES DU DATASET CHALLENGE RAKUTEN 2020

- -> Images à fortes similitudes visuelles dans différentes classes, même à l'œil humain!
- -> Doute sur la qualité et/ou uniformité des données textes et images mises à disposition pour les 4 classes les + mals scorées

IMPLÉMENTATION DES MODÈLES DE DEEP

- -> La formation en deep learning était assez loin dans la formation => temps limité pour assimiler et appliquer ces connaissances pratiques au projet
- -> Limites en disponibilité machine et pas de GPU (limites dans le nombre d'époques d'entraînement)

PERSPECTIVES

- -> Tentatives d'améliorations modèle par augmentation des échantillons des classes mal prédites, ceci dans le but d'améliorer leurs scores & tests complémentaires sur la base du meilleur modèle CONCATENATE
- -> Autres approches possible pour ce type de projet : tester la faisabilité d'implémentation de transformeurs viT dans la partie Computer Vision (évaluation si gain versus CNN)

REGARD CRITIQUE & PERSPECTIVES

DONNÉES DU DATASET CHALLENGE RAKUTEN 2020

- -> Images à fortes similitudes visuelles dans différentes classes, même à l'œil humain!
- -> Doute sur la qualité et/ou uniformité des données textes et images mises à disposition pour les 4 classes les + mals scorées

IMPLÉMENTATION DES MODÈLES DE DEEP

- -> La formation en deep learning était assez loin dans la formation => temps limité pour assimiler et appliquer ces connaissances pratiques au projet
- -> Limites en disponibilité machine et pas de GPU (limites dans le nombre d'époques d'entraînement)

PERSPECTIVES

- -> Tentatives d'améliorations modèle par augmentation des échantillons des classes mal prédites, ceci dans le but d'améliorer leurs scores & tests complémentaires sur la base du meilleur modèle CONCATENATE
- → Modèles pré-entraînés non testés
- → Modèles entraînés sur classes mal prédites puis joint à la concaténation
- → Comprendre les features sur lequel les données images sont entraînés et paramétrisés
- → Comprendre les features sur lequel les données textes ...
- -> Autres approches possible pour ce type de projet : tester la faisabilité d'implémentation de transformeurs viT dans la partie Computer Vision (évaluation si gain versus CNN)

CONCLUSION

Bilan technique:

- -> Mise en oeuvre d'une partie significative des modules/connaissances enseignées dans le master Datascientest
- -> Résultat final de scoring dépassant le benchmark, nous positionnant dans le top 10

Bilan projet:

-> Très bonne collaboration et entente entre les différents membres de l'équipe projet

Rankin	g Date	User(s)	Public score
1	Dec. 10, 2020, 9:35 p.m.	elieS	0.9037
2	April 7, 2020, 1:05 p.m.	Shiro	0.8957
3	Nov. 15, 2020, 10:03 a.m.	kobayashi_shu	0.8940
4	Oct. 18, 2020, 9:51 p.m.	julienC	0.8903
5	March 8, 2020, 3:38 p.m.	Binouze & BlueDrey & JojoFlower	0.8852
6	July 16, 2021, 6:30 p.m.	tbierlaire & meriem_e & vincent	0.8841
7	Jan. 22, 2021, 3:46 p.m.	NadirEM	0.8714
8	Jan. 25, 2021, 2:08 a.m.	EmmanuelJunior.WafoWembe	0.8708
9	Aug. 9, 2021, 11:01 a.m.	FEEEScientest	0.8628

