# The geometry of the space of vortex-antivortex pairs

Martin Speight (Leeds) joint with Nuno Romão (Augsburg) arXiv:1807.00712

Math Phys seminar, KIAS Seoul, 20/9/18



#### Motivation

- Vortices: simplest topological solitons in gauge theory (2D, U(1),  $\mathbb{C}$ )
- Nice generalization: Higgs field takes values in a kähler mfd X with hamiltonian action of gauge group G
- G action on X can have more than one fixed point: more than one species of vortex
- Different species can coexist in stable equilibrium but can't coincide
- Noncompact vortex moduli spaces (even on compact domains)
- Completeness? Finite volume? Curvature properties?
- Simplest version already interesting:  $X = S^2$ , G = U(1)

#### $\mathbb{C}P^1$ vortices on a Riemann surface $\Sigma$

- Fix  $\mathbf{e} \in S^2$  (e.g.  $\mathbf{e} = (0, 0, 1)$ ) G = U(1) acts on  $S^2$  by rotations about e
- $P \to \Sigma$  principal G bundle, degree  $n \ge 0$ , connexion A
- **n** section of  $P \times_C S^2$
- Canonical sections  $\mathbf{n}_{\infty}(x) = \mathbf{e}, \ \mathbf{n}_{0}(x) = -\mathbf{e}$
- Two integer topological invariants of a section n:

$$n_+ = \#(\mathbf{n}(\Sigma), \mathbf{n}_{\infty}(\Sigma)), \qquad n_- = \#(\mathbf{n}(\Sigma), \mathbf{n}_0(\Sigma))$$

Constraint:  $n = n_+ - n_-$  (so we're assuming  $n_+ > n_-$ )

Energy

$$E = \frac{1}{2} \int_{\Sigma} \left( |d_A \mathbf{n}|^2 + |F_A|^2 + (\mathbf{e} \cdot \mathbf{n})^2 \right)$$

where, in a local trivialization

$$d_A$$
**n** =  $d$ **n** -  $A$ **e**  $\times$  **n**,  $F_A = dA$ 

Aside:  $\mu(\mathbf{n}) = -\mathbf{e} \cdot \mathbf{n}$  is moment map for gauge action



## (Anti)vortices

"north" vortex



$$n_{+}=1, n_{-}=0$$

#### "south" vortex



$$n_{+}=0, n_{-}=-1$$

#### "north" antivortex



$$n_{+} = -1, \ \underline{n} = 0$$

#### "south" antivortex



$$n_{+}=0, n_{-}=1$$

#### "Bogomol'nyi" bound (Schroers)

• Given (n, A) define a two-form on  $\Sigma$ 

$$\Omega(X,Y) = (\mathbf{n} \times d_A \mathbf{n}(X)) \cdot d_A \mathbf{n}(Y)$$

• Let  $e_1, e_2 = Je_1$  be a local orthonormal frame on  $\Sigma$ . Then

$$\mathcal{E} = \frac{1}{2}(|d_{A}\mathbf{n}(e_{1})|^{2} + |d_{A}\mathbf{n}(e_{2})|^{2}) + \frac{1}{2}|F_{A}|^{2} + \frac{1}{2}(\mathbf{e} \cdot \mathbf{n})^{2}$$

$$= \frac{1}{2}|d_{A}\mathbf{n}(e_{1}) + \mathbf{n} \times d_{A}\mathbf{n}(e_{2})|^{2} + \frac{1}{2}|F_{A} - *\mathbf{e} \cdot \mathbf{n}|^{2}$$

$$+ *(\Omega + \mathbf{e} \cdot \mathbf{n}F_{A})$$

$$\implies E \geq \int_{\Sigma} (\Omega + \mathbf{e} \cdot \mathbf{n}F_{A})$$

• Claim: last integral is a homotopy invariant of (n, A)



#### "Bogomol'nyi" bound

- Suffices to show this in case  $D = \mathbf{n}^{-1}(\{\mathbf{e}, -\mathbf{e}\}) \subset \Sigma$  finite
- On  $\Sigma \backslash D$  have global one-form  $\xi = \mathbf{e} \cdot \mathbf{n} (A \mathbf{n}^* d\varphi)$  s.t.

$$\Omega + \mathbf{e} \cdot \mathbf{n} F_A = d\xi$$

Hence

$$\int_{\Sigma} (\Omega + \mathbf{e} \cdot \mathbf{n} F_A) = \int_{\Sigma \setminus D} (\Omega + \mathbf{e} \cdot \mathbf{n} F_A)$$

$$= \lim_{\varepsilon \to 0} \sum_{p \in D} - \oint_{C_{\varepsilon}(p)} \xi$$

$$= 2\pi (n_+ + n_-)$$

#### "Bogomol'nyi" bound

• Hence  $E \ge 2\pi(n_+ + n_-)$  with equality iff

$$\overline{\partial}_A \mathbf{n} = 0 \quad (V1)$$
  
\* $F_A = \mathbf{e} \cdot \mathbf{n} \quad (V2)$ 

• Note solutions of (V1) certainly have D finite (and  $n_{\pm} \geq 0$ )

#### Existence: Yang $(\mathbb{C})$ /Sibner-Sibner-Yang (compact $\Sigma$ )

• If ∑ compact, there's a "Bradlow" obstruction

$$2\pi(n_+ - n_-) = \int_{\Sigma} F_A = \int_{\Sigma} \mathbf{e} \cdot \mathbf{n} \le \text{Vol}(\Sigma)$$

- **Theorem:** Let  $n_+ \ge n_- \ge 0$  and  $2\pi(n_+ n_-) < \text{Vol}(\Sigma)$ . For each pair of disjoint effective divisors  $D_+, D_-$  in  $\Sigma$  of degrees  $n_+, n_-$  there exists a unique gauge equivalence class of solutions of (V1), (V2) with  $\mathbf{n}^{-1}(\pm \mathbf{e}) = D_{\pm}$ .
- Moduli space of vortices:  $M_{n_+,n_-} \equiv M_{n_+} \times M_{n_-} \setminus \Delta_{n_+,n_-}$
- If  $n_- > 0$ ,  $M_{n_+,n_-}$  is noncompact (in an interesting way)

#### The "Taubes" equation

$$u = \frac{n_1 + in_2}{1 + n_3}, \qquad h = \log|u|^2, \qquad g_{\Sigma} = \Omega(z) dz d\overline{z}$$

- h finite except at  $\pm$  vortices,  $h = \mp \infty$ .
- $(V1) \Rightarrow A_{\bar{z}} = -i\frac{\partial_{\bar{z}}u}{u}$ , eliminate A from (V2)

$$\nabla^2 h - 2\Omega \tanh \frac{h}{2} = 0$$

away from vortex positions

• (+) vortices at  $z_r^+$ ,  $r = 1, \ldots, n_+$ , (-) vortices at  $z_r^-$ ,  $r = 1, \ldots, n_-$ 

$$abla^2 h - 2\Omega \tanh rac{h}{2} = 4\pi \left( \sum_r \delta(z - z_r^+) - \sum_r \delta(z - z_r^-) 
ight)$$

• Consider (1,1) vortex pairs on  $\Sigma = \mathbb{C}$ 



#### Solving the (1,1) Taubes equation (numerically)

$$\nabla^2 h - 2 \tanh \frac{h}{2} = 4\pi \left( \delta(z - \varepsilon) - \delta(z + \varepsilon) \right)$$

• Regularize:  $h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \hat{h}$ 

$$\nabla^2 \hat{h} - 2 \frac{|z - \varepsilon|^2 e^{\hat{h}} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\hat{h}} + |z + \varepsilon|^2} = 0$$

• Rescale:  $z =: \varepsilon w$ 

$$\nabla_{w}^{2} \hat{h} - 2\varepsilon^{2} \frac{|w-1|^{2} e^{\hat{h}} - |w+1|^{2}}{|w-1|^{2} e^{\hat{h}} + |w+1|^{2}} = 0$$

• Solve with b.c.  $\widehat{h}(\infty) = 0$ 















$$\varepsilon = 0.5$$



$$\varepsilon = 0.3$$



$$\varepsilon = 0.15$$



$$\varepsilon = 0.06$$

#### The metric on $M_{n_+,n_-}$

Restriction of kinetic energy

$$T = \frac{1}{2} \int_{\Sigma} (|\dot{\mathbf{n}}|^2 + |\dot{A}|^2)$$

to  $M_{n_+,n_-}$  equips it with a Riemannian metric

• Expand solution h of Taubes eqn about  $\pm$  vortex position  $z_s$ :

$$\pm h = \log |z - z_s|^2 + a_s + \frac{1}{2}\bar{b}_s(z - z_s) + \frac{1}{2}b_s(\bar{z} - \bar{z}_s) + \cdots$$

- $b_r(z_1, \ldots, z_{n_++n_-})$  (unknown) complex functions
- Proposition (Romão-JMS, following Strachan-Samols):

$$g = 2\pi \left\{ \sum_{r} \Omega(|z_r|) |dz_r|^2 + \sum_{r,s} \frac{\partial b_s}{\partial z_r} dz_r d\bar{z}_s \right\}$$

Holds on any Riemann surface (including  $\mathbb{C}$ )



## The metric on $M_{1,1}(\mathbb{C})$

- $M_{1,1} = (\mathbb{C} \times \mathbb{C}) \backslash \Delta = \mathbb{C}_{com} \times \mathbb{C}^{\times}$
- $M_{1,1}^0 = \mathbb{C}^{\times}$

$$g^0 = 2\pi \left(2 + \frac{1}{\varepsilon} \frac{d}{d\varepsilon} (\varepsilon b(\varepsilon))\right) (d\varepsilon^2 + \varepsilon^2 d\psi^2)$$

where 
$$b(\varepsilon) = b_+(\varepsilon, -\varepsilon)$$

- $\varepsilon b(\varepsilon) = \frac{\partial \widehat{h}}{\partial w_1}\Big|_{w=1} 1$
- Can easily extract this from our numerics

## The metric on $M_{1,1}(\mathbb{C})$



$$\varepsilon b(\varepsilon) = \left. \frac{\partial \widehat{h}}{\partial w_1} \right|_{w=1} - 1$$

## The metric on $M_{1,1}(\mathbb{C})$



$$F(\varepsilon) = 2\pi \left(2 + \frac{1}{\varepsilon} \frac{d(\varepsilon b(\varepsilon))}{d\varepsilon}\right)$$

#### The metric on $M_{1,1}(\mathbb{C})$ : conjectured asymptotics





- Suggests  $\widehat{h}_{\varepsilon}(w) \approx \varepsilon f_{*}(\varepsilon w)$  for small  $\varepsilon$ , where  $f_{*}$  is fixed?
- Define  $f_{\varepsilon}(z) := \varepsilon^{-1} \widehat{h}_{\varepsilon}(\varepsilon^{-1}z)$









$$(\nabla^2 \hat{h})(w) = 2\varepsilon^2 \frac{|w-1|^2 e^{\hat{h}(w)} - |w+1|^2}{|w-1|^2 e^{\hat{h}(w)} + |w+1|^2}$$

$$(\nabla^2 \widehat{h})(w) = 2\varepsilon^2 \frac{|w-1|^2 e^{\widehat{h}(w)} - |w+1|^2}{|w-1|^2 e^{\widehat{h}(w)} + |w+1|^2}$$

• Subst  $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$ 

$$(\nabla^2 f_{\varepsilon})(z) = \frac{2}{\varepsilon} \frac{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} + |z + \varepsilon|^2}$$

• Subst  $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$ 

$$(\nabla^2 f_{\varepsilon})(z) = \frac{2}{\varepsilon} \frac{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} - |z + \varepsilon|^2}{|z - \varepsilon|^2 e^{\varepsilon f_{\varepsilon}(z)} + |z + \varepsilon|^2}$$

- Subst  $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit  $\varepsilon \to 0$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst  $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit  $\varepsilon \to 0$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst  $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit  $\varepsilon \to 0$
- Screened inhomogeneous Poisson equation, source  $-4\cos\theta/r$

$$(\nabla^2 f_*)(z) = f_*(z) - \frac{2(z+\bar{z})}{|z|^2}$$

- Subst  $\widehat{h}(w) = \varepsilon f_{\varepsilon}(\varepsilon w)$
- Take formal limit  $\varepsilon \to 0$
- Screened inhomogeneous Poisson equation, source  $-4\cos\theta/r$
- Unique solution (decaying at infinity)

$$f_*(re^{i\theta}) = \frac{4}{r}(1 - rK_1(r))\cos\theta$$





## The metric on $M_{1,1}^0$

• Predict, for small  $\varepsilon$ ,

$$\widehat{h}(w_1+i0)\approx \varepsilon f_*(\varepsilon w_1)=\frac{4}{w_1}(1-\varepsilon w_1K_1(\varepsilon w_1))$$

whence we extract predictions for  $\varepsilon b(\varepsilon)$ ,  $F(\varepsilon)$ 

$$g^0 = F(\varepsilon)(d\varepsilon^2 + \varepsilon^2 d\psi^2)$$

- Conjecture:  $F(\varepsilon) \sim -8\pi \log \varepsilon$  as  $\varepsilon \to 0$
- $M_{1,1}$  is **incomplete**, with unbounded curvature



# Vortices on $S^2$ : $M_{1,1}(S^2)$



- $M_{1,1} = S^2 \times S^2 \setminus \Delta = (0,1) \times SO(3) \sqcup \{1\} \times S^2$
- g is SO(3)-invariant, kähler, and invariant under  $(z_+, z_-) \mapsto (z_-, z_+)$
- Every such metric takes the form

$$g = -\frac{Q'(\varepsilon)}{\varepsilon} (d\varepsilon^2 + \varepsilon^2 \sigma_3^2) + Q(\varepsilon) \left( \frac{1 - \varepsilon^2}{1 + \varepsilon^2} \sigma_1^2 + \frac{1 + \varepsilon^2}{1 - \varepsilon^2} \sigma_2^2 \right),$$

for  $Q:(0,1]\to[0,\infty)$  decreasing with Q(1)=0.



# Vortices on $S^2$ : $M_{1,1}(S^2)$

•  $Vol(M_{1,1}(S^2))$  is finite iff  $Q:(0,1]\to [0,\infty)$  is bounded

$$Vol(M_{1,1}(S^2)) = \left[\lim_{\varepsilon \to 0} 2\pi Q(\varepsilon)\right]^2$$

• How do we extract  $Q(\varepsilon)$ ? Taubes/localization

$$abla^2 h - rac{8R^2}{(1+|z|^2)^2} anhrac{h}{2} = 4\pi \left(\delta(z-arepsilon) - \delta(z+arepsilon)
ight)$$

where 
$$h = \log((1 - \mathbf{e} \cdot \mathbf{n})/(1 + \mathbf{e} \cdot \mathbf{n}))$$

• 
$$\pm h = \log |z - z_s|^2 + a_s + \frac{1}{2}\bar{b}_s(z - z_s) + \frac{1}{2}b_s(\bar{z} - \bar{z}_s) + \cdots$$

$$g = 2\pi \left\{ \sum_{r} \frac{4R^2}{(1+|z_r|^2)^2} |dz_r|^2 + \sum_{r,s} \frac{\partial b_s}{\partial z_r} dz_r d\bar{z}_s \right\}$$

$$abla^2 h - rac{8R^2}{(1+|z|^2)^2} anhrac{h}{2} = 4\pi \left(\delta(z-arepsilon) - \delta(z+arepsilon)
ight)$$

$$abla^2 h - rac{8R^2}{(1+|z|^2)^2} anh rac{h}{2} = 4\pi \left(\delta(z-arepsilon) - \delta(z+arepsilon)
ight)$$

• Regularize: 
$$h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \hat{h}$$

$$abla^2 h - rac{8R^2}{(1+|z|^2)^2} anhrac{h}{2} = 4\pi \left(\delta(z-arepsilon) - \delta(z+arepsilon)
ight)$$

- Regularize:  $h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \hat{h}$
- Rescale:  $z =: \varepsilon w$

$$\nabla_{w}^{2} \widehat{h} - \frac{8R^{2} \varepsilon^{2}}{(1 + \varepsilon^{2} |w|^{2})^{2}} \frac{|w - 1|^{2} e^{\widehat{h}} - |w + 1|^{2}}{|w - 1|^{2} e^{\widehat{h}} + |w + 1|^{2}} = 0$$

- Regularize:  $h = \log \left( \frac{|z \varepsilon|^2}{|z + \varepsilon|^2} \right) + \hat{h}$
- Rescale:  $z =: \varepsilon w$

$$-\Delta_{S^2} \widehat{h} + 8R^2 \varepsilon^2 \left( \frac{1 + |w|^2}{1 + \varepsilon^2 |w|^2} \right)^2 \frac{|w - 1|^2 e^{\widehat{h}} - |w + 1|^2}{|w - 1|^2 e^{\widehat{h}} + |w + 1|^2} = 0$$

- Regularize:  $h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \hat{h}$
- Rescale:  $z =: \varepsilon w$

$$-\Delta_{S^2}\widehat{h} + 8R^2\varepsilon^2G(\varepsilon, w)F(w, \hat{h}) = 0$$

- Regularize:  $h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \widehat{h}$
- Rescale:  $z =: \varepsilon w$
- ullet  $G:\mathbb{R} imes S^2 o\mathbb{R}$ ,  $F:S^2 imes\mathbb{R} o\mathbb{R}$  smooth

$$-\Delta_{S^2}\widehat{h} + 8R^2\varepsilon^2G(\varepsilon, w)F(w, \hat{h}) = 0$$

- Regularize:  $h = \log\left(\frac{|z-\varepsilon|^2}{|z+\varepsilon|^2}\right) + \hat{h}$
- Rescale:  $z =: \varepsilon w$
- ullet  $G:\mathbb{R} imes S^2 o\mathbb{R}$ ,  $F:S^2 imes\mathbb{R} o\mathbb{R}$  smooth
- $\bullet \ \varepsilon b(\varepsilon) = \hat{h}_{\mathsf{x}}(1,0) 1$

$$-\Delta_{S^2}\widehat{h} + 8R^2\varepsilon^2G(\varepsilon, w)F(w, \hat{h}) = 0$$

- Regularize:  $h = \log \left( \frac{|z \varepsilon|^2}{|z + \varepsilon|^2} \right) + \hat{h}$
- Rescale:  $z =: \varepsilon w$
- $G: \mathbb{R} \times S^2 \to \mathbb{R}$ ,  $F: S^2 \times \mathbb{R} \to \mathbb{R}$  smooth
- $\bullet \ \varepsilon b(\varepsilon) = \hat{h}_{x}(1,0) 1$
- $Q(\varepsilon) = -2\pi \left(1 + 2R^2 + \varepsilon b(\varepsilon) \frac{4R^2}{1 + \varepsilon^2}\right)$

### The regularized (1,1) Taubes equation on $S^2$

$$-\Delta_{S^2}\widehat{h} + 8R^2\varepsilon^2G(\varepsilon, w)F(w, \hat{h}) = 0 \qquad (*)$$

- Elliptic estimates
- $\widetilde{h}(z) = \widehat{h}(z/\varepsilon)$ ,  $*F_A = -\frac{1}{2}\Delta_{S^2}\widetilde{h}$  $\|\widetilde{h}\|_{H^2(S^2)}^2 \le C\|\Delta_{S^2}\widetilde{h}\|_{L^2}^2 = C\|F_A\|_{L^2}^2 \le C$
- Sobolev:  $\|\widehat{h}\|_{C^0} = \|\widetilde{h}\|_{C^0} \le C\|\widetilde{h}\|_{H^2} \le C$
- Allows us to prove more refined estimate

$$\|\hat{h}\|_{H^1(S^2)}^2 \leq C\langle \hat{h}, -\Delta_{S^2} \hat{h} \rangle \leq C\varepsilon$$

whence (diff (\*) wrt x, estimate on a disk around (1,0))

$$\|\partial_{\mathsf{x}}\hat{h}\|_{H^2(\mathbb{D})} \leq C\varepsilon$$

• Sobolev again:  $\|\hat{h}_{\mathsf{x}}\|_{C^0(\mathbb{D})} \leq C\varepsilon^{1/2} \Rightarrow |\partial_{\mathsf{x}}\widehat{h}(1,0)| \leq C\varepsilon^{1/2}$ 

# The regularized (1,1) Taubes equation on $S^2$

- Hence  $\lim_{\varepsilon \to 0} \varepsilon b(\varepsilon) = -1$
- Hence  $\lim_{\varepsilon \to 0} Q(\varepsilon) = 4\pi R^2$
- Theorem (Romão, JMS) Let  $\Sigma$  be a round two-sphere. Then

$$Vol(M_{1,1}(\Sigma)) = (2\pi Vol(\Sigma))^2.$$

#### Completeness?

- Need to know length of radial geodesic  $0 < \varepsilon \le 1$  in  $M_{1,1}(S^2)$
- $M_{1,1}^0(S^2) = S^2 \setminus \{(0,0,1)\}$

$$g^0 = F(\varepsilon)(\mathrm{d}\varepsilon^2 + \varepsilon^2 \mathrm{d}\psi^2)$$

- $L = \int_0^1 \sqrt{F(\varepsilon)} d\varepsilon$
- $F(\varepsilon)/2\pi = \frac{8R^2}{(1+\varepsilon^2)^2} + \frac{1}{\varepsilon} \frac{d(\varepsilon b(\varepsilon))}{d\varepsilon}$
- $\varepsilon b(\varepsilon) + 1 = \partial_x \widehat{h}(0,1)$
- Need to control  $\partial_x \partial_{\varepsilon} \hat{h}$  at (0,1)

## The regularized (1,1) Taubes equation on $S^2$

$$-\Delta_{S^2}\widehat{h}_{\varepsilon} + 8R^2\varepsilon^2 G(\varepsilon, w)F(w, \hat{h}_{\varepsilon}) = 0 \qquad (*)$$

$$\bullet \ u_{\varepsilon} := \partial \hat{h}_{\varepsilon}/\partial \varepsilon : S^{2} \to \mathbb{R}$$

$$-\Delta_{S^{2}} u_{\varepsilon} + G_{1}(\varepsilon, w, \widehat{h}_{\varepsilon}) u_{\varepsilon} + G_{2}(\varepsilon, w, \widehat{h}_{\varepsilon}) = 0$$

- Elliptic estimates:  $\|\partial_{\mathsf{x}} u_{\varepsilon}\|_{H^{2}(\mathbb{D})} \leq C \varepsilon^{-1/2}$
- Conformal factor

$$\frac{F(\varepsilon)}{2\pi} = \frac{8R^2}{(1+\varepsilon^2)^2} + \frac{1}{\varepsilon} \partial_{\mathsf{x}} u_{\varepsilon} \bigg|_{(1,0)} \leq C(1+\varepsilon^{-3/2})$$

- Radial geodesic has length  $L = \int_0^1 \sqrt{F(\varepsilon)} d\varepsilon < \infty$
- Theorem (Romão, JMS)  $M_{1,1}(S^2)$  is geodesically incomplete



## The volume of $M_{n,n}(S^2)$

- $M_{n,n}(S^2) = \{ \text{disjoint pairs of } n\text{-divisors on } S^2 \} = (\mathbb{P}^n \times \mathbb{P}^n) \setminus \Delta$
- Consider gauged linear sigma model:
  - fibre C²
  - ullet gauge group  $\widetilde{U}(1) imes U(1) : (arphi_1, arphi_2) \mapsto (e^{i(\widetilde{ heta} + heta)} arphi_1, e^{i\widetilde{ heta}} arphi_2)$

$$E_{\tilde{e}} = \frac{1}{2} \int_{\Sigma} \left\{ \frac{|\tilde{F}|^2}{\tilde{e}^2} + |F|^2 + |d_{\tilde{A}}\varphi|^2 + |d_{A}\varphi|^2 + \frac{\tilde{e}^2}{4} (4 - |\varphi_1|^2 - |\varphi_2|^2)^2 + \frac{1}{4} (2 - |\varphi_1|^2)^2 \right\}$$

• For any  $\tilde{e} > 0$ , has compact moduli space of (n, n)-vortices

$$M_{n,n}^{lin} = \mathbb{P}^n \times \mathbb{P}^n$$

- Baptista found a formula for  $[\omega_{L^2}]$  of  $M_{n_1,n_2}^{lin}(\Sigma)$
- Can compute  $Vol(M_{n,n}^{lin}(S^2))$  by evaluating  $[\omega_{L^2}]$  on  $\mathbb{P}^1 \times \{p\}$ ,  $\{p\} \times \mathbb{P}^1$

# The volume of $M_{n,n}(S^2)$

$$E_{\widetilde{e}} = \frac{1}{2} \int_{\Sigma} \left\{ \frac{|\widetilde{F}|^2}{\widetilde{e}^2} + |F|^2 + |d_{\widetilde{A}}\varphi|^2 + |d_{A}\varphi|^2 + \frac{\widetilde{e}^2}{4} (4 - |\varphi_1|^2 - |\varphi_2|^2)^2 + \frac{1}{4} (2 - |\varphi_1|^2)^2 \right\}$$

- Take formal limit  $\tilde{e} \rightarrow 0$ :
  - $|\varphi_1|^2 + |\varphi_2|^2 = 4$  pointwise
  - ullet  $\widetilde{A}$  frozen out, fibre  $\mathbb{C}^2$  collapses to  $S^3/\widetilde{U}(1)=\mathbb{P}^1$
  - E-L eqn for  $\widetilde{A}$  is algebraic: eliminate  $\widetilde{A}$  from  $E_{\infty}$

$$E_{\infty} = \frac{1}{2} \int_{\Sigma} |F|^2 + 4 \frac{|\mathrm{d}u - iAu|^2}{(1 + |u|^2)^2} + \left(\frac{1 - |u|^2}{1 + |u|^2}\right)^2$$

where 
$$u = \varphi_1/\varphi_2$$

• Exactly our P<sup>1</sup> sigma model!



#### The volume of $M_{n,n}(S^2)$

Leads us to conjecture that

$$Vol(M_{n,n}(S^2)) = \lim_{\widetilde{e} \to \infty} Vol(M_{n,n}^{lin}(S^2)) = \frac{(2\pi Vol(S^2))^{2n}}{(n!)^2}$$

Agrees with  $M_{1,1}(S_R^2)$ .

• Can generalize to  $n_+ > n_-$ :

$$Vol(M_{n,m}(S^2)) = \frac{(2\pi)^{n+m}}{n! \, m!} (Vol(S^2) - \pi(n-m))^n (Vol(S^2) + \pi(n-m))^m$$
and to  $genus(\Sigma) > 0$ 

- Similar conjectures for Einstein-Hilbert action...
- Similar limit ( $\mathbb{C}^k$  fibre, U(1) gauge  $\to ungauged \mathbb{P}^{k-1}$  model) studied rigorously by Chih-Chung Liu.
- Thermodynamics of vortex gas mixture

#### Summary / What next?

- Case  $\Sigma = \mathbb{C}$  is most interesting
- $M_{1,1}(\mathbb{C}) = \mathbb{C} \times \mathbb{C} \backslash \Delta = \mathbb{C}_{com} \times \mathbb{C}^{\times}$
- Numerics: metric on SoR  $\mathbb{C}^{\times}$ ,  $g^0 = F(\varepsilon)(d\varepsilon^2 + \varepsilon^2 d\psi^2)$
- ullet Conjectured asymptotics in small arepsilon region

$$F(\varepsilon) \sim -8\pi \log \varepsilon$$

- Would imply  $M_{1,1}(\mathbb{C})$  is incomplete with unbounded scalar curvature
- Can we prove it?
- We can shift the vacuum manifold:

$$\mu(\mathbf{n}) = \tau - \mathbf{e} \cdot \mathbf{n}$$

Case  $0 < \tau < 1$  very sparsely explored

