As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.

Learn more: PMC Disclaimer | PMC Copyright Notice

Microbiol Resour Announc. 2020 Sep 24;9(39):e00942-20. doi: 10.1128/MRA.00942-20

Draft Genome Sequences of *Lactobacillales* Isolated from the International Space Station

Achintya R Bharadwaj ^a, Nitin K Singh ^a, Jason M Wood ^a, Marilyne Debieu ^b, Niamh B O'Hara ^{b,c}, Fathi Karouia ^{d,e}, Christopher E Mason ^f, Kasthuri Venkateswaran ^{a,⊠}

Editor: Julie C Dunning Hotopp^g

Author information Article notes Copyright and License information

PMCID: PMC7516158 PMID: <u>32972947</u>

Nineteen strains from the order *Lactobacillales* were isolated from the International Space Station and commercial resupply vehicle, and whole-genome sequences (WGS) were generated. WGS would permit the characterization of these potentially pathogenic bacteria that have been adapting to the extreme conditions of the space environment.

ABSTRACT

Nineteen strains from the order *Lactobacillales* were isolated from the International Space Station and commercial resupply vehicle, and whole-genome sequences (WGS) were generated. WGS would permit the characterization of these potentially pathogenic bacteria that have been adapting to the extreme conditions of the space environment.

ANNOUNCEMENT

The order *Lactobacillales* consists of Gram stain-positive, facultative anaerobes validly described by Ludwig et al. (1). Members of the genus *Enterococcus* are found to possess human pathogenicity characteristics such as antibiotic resistance (2) and therefore pose health concerns for those on Earth and astronauts residing in the International Space Station (ISS). However, *Aerococcus urinaeequi*, a nonpathogenic strain, was first isolated from horse urine (3). Astronauts on long flights are immunocompromised due to microgravity-induced physiological and mental stress. Decreased immune response allows bacteria to take growth advantage due to their adaptability potential in the space environment (4). Understanding the genomic makeup of these potential pathogens will help the development of suitable countermeasure and mitigation strategies. Members of the order *Lactobacillales* isolated from the ISS and the commercial resupply vehicle (CRV) surfaces were *Enterococcus faecalis*, *Enterococcus faecium*, and *Aerococcus urinaeequi* (5, 6). *E. faecalis* and *E. faecium* have been reported as nosocomial isolates harboring vancomycin and ampicillin resistance (5). *A. urinaeequi* was isolated from a chronic kidney disease patient and has also been reported to be resistant to vancomycin (6). Further characterization of the whole-genome sequences (WGS) of these ISS environmental strains, including virulence genes, and subsequent confirmation in animal models are required to decipher their potential pathogenicity.

The strains used for the WGS were collected from three different ISS locations across two flights and seven different surface locations, including one field control on CRV6, and are detailed in Table 1 (7). The samples collected from the ISS were brought back to Earth and aseptically processed, and suitable aliquots of the sample concentrate (100 μ l) were plated onto Reasoner's 2A (R2A) or Trypticase soy agar (TSA) medium and incubated at 25°C for 7 days. A single well-isolated colony on a culture plate was archived at -80°C. Genomic DNA was extracted from the overnight-grown cultures on TSA medium using a ZymoBIOMICS DNA MagBead kit according to the manufacturer's instructions.

Metadata and genome statistics of *Aerococcus* and *Enterococcus* strains isolated from various ISS and CRV6 environmental surfaces during the Microbial Tracking-1 Flight Project^a

TABLE 1.

Sample name	ANI	GenBank accession	Raw	Flight	Location	No. of	G
	(%) <u>b</u>	no.	sequence accession no.	no./ location <u>c</u>	description	contigs	siz
151250015-1-258-55	96(A)	JACGAN000000000	SRR12341118	F1-1	Cupola	35	1,5
151250015-2-258-56	96(A)	<u>JACGAM000000000</u>	SRR12341117	F1-2	WHC	36	1,5
151250009-4-258-51	96(A)	JACGAO0000000000	SRR12341119	F1-4	Dining table	38	1,5
IIF2*SW-B2	99(B)	<u>JACDPC000000000</u>	SRR12341307	F2-2	WHC	26	2,5
IIF2SG-B4	99(B)	JACDPE0000000000	SRR12341300	CRV6-2	Outside capsule	29	2,5
IIF3SG-B2	99(B)	JACDPF000000000	SRR12341299	CRV6-3	Outside capsule	20	2,5
IIF4SG-B3	99(B)	JACDPG0000000000	SRR12341298	CRV6-4	Inside capsule	24	2,5
IIF4SG-B5	99(B)	JACDPH0000000000	SRR12341297	CRV6-4	Inside capsule	22	2,5
IIF5SG-B2	99(B)	JACDPI0000000000	SRR12341296	CRV6-5	Inside capsule	27	2,5
IIF6SG-B1	99(B)	JACDPJ000000000	SRR12341295	CRV6-6	Inside capsule	21	2,5
IIF6SG-B2	99(B)	JACDPK0000000000	SRR12341294	CRV6-6	Inside capsule	23	2,5
IIF6SG-B4	99(B)	JACDPL0000000000	SRR12341293	CRV6-6	Inside capsule	21	2,5
IIF7SG-B2	99(B)	JACDPM0000000000	SRR12341305	CRV6-7	Inside capsule	19	2,5

Sample name	ANI	GenBank accession	Raw	Flight	Location	No. of	G
	(%) <u>b</u>	no.	sequence	no./	description	contigs	siz
			accession no.	location_			
IIF7SG-B3	99(B)	<u>JACDPN000000000</u>	SRR12341304	CRV6-7	Inside	21	2,5
					capsule		
IIF8SG-B1	99(B)	JACDPO0000000000	SRR12341303	CRV6-8	Inside	20	2,5
					capsule		
IIF8SG-B2	99(B)	JACDPP000000000	SRR12341302	CRV6-8	Inside	30	2,5
					capsule		
IIF8SG-B3	99(B)	JACDPQ000000000	SRR12341301	CRV6-8	Inside	20	2,5
					capsule		
IIFCSG-B3	99(B)	JACDPD0000000000	SRR12341306	CRV6-	Field	30	2,5
				FC	control		
IIFCSG-B5	95(C)	JACGAP000000000	SRR12341224	CRV6-	Field	71	2,8
				FC	control		

Open in a new tab

^aAbbreviations: ANI, average nucleotide identity; F1, ISS flight 1; F2, ISS flight 2; WHC, waste and hygiene compartment; FC, field control (a sampling wipe was exposed to the air for 120 s at the center of CRV6); QC, quality control.

^bThe 16S rRNA gene sequences were retrieved from the WGS, and BLAST analysis was conducted against type strains of all 16S rRNA sequences in the NCBI database. The bacterial species identity was determined when the queried sequence showed >97.5% similarity with the 16S rRNA gene sequences of the type strain. The WGS of the nearest neighbor was further selected for ANI evaluation: A, *A. urinaeequi* DSM 20341^T; B, *E. faecalis* DSM 20478^T; C, *E. faecium* DSM 20477^T.

^cHyphenated designations indicate the flight number followed by the location; for example, F1-1 indicates flight 1 and location 1.

The WGS of 19 bacterial isolates were prepared using the Illumina Nextera Flex protocol for library preparation, as used in similar studies (§). The NovaSeq 6000 S4 flow cell paired-end 2×150 -bp platform was used to execute paired-end sequencing. FastQC v0.11.7 was used to validate the quality of the raw sequencing data (9). Adapter trimming and quality filtering were carried out using the software fastp v0.20.0 to perform quality control (10). The cleaned sequences were assembled using SPAdes v3.11.1 (11). The N_{50} values, numbers of contigs, and total genome lengths were

generated using QUAST v5.0.2 and used to assess the quality of the final assembly (12). The average nucleotide identity was calculated by comparing all strains with their respective type strains, and their taxonomic affiliations, as well as genome statistics, are given in Table 1 (13). The NCBI Prokaryotic Genome Annotation Pipeline v4.12 was used for genome annotation. Default parameters were used for all software.

Data availability.

This WGS project has been deposited at DDBJ/ENA/GenBank, and the accession numbers are given in <u>Table 1</u> (BioProject accession no. <u>PRJNA645454</u> with 16 strains and <u>PRJNA649272</u> with 3 strains). The versions described in this paper are the first versions.

ACKNOWLEDGMENTS

Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We thank astronauts Captain Terry Virts for collecting samples aboard the ISS and the implementation team at NASA Ames Research Center for coordinating this effort. We thank Ryan Kemp (Zymo Corporation) for extracting DNA and Dan Butler (Cornell Medicine) for generating shotgun sequencing using NovaSeq.

Government sponsorship is acknowledged. This research was funded by a 2012 Space Biology NNH12ZTT001N grant (no. 19-12829-26) under task order NNN13D111T awarded to K.V., which also funded a postdoctoral fellowship for J.M.W., and a subcontract to Biotia, Inc.

REFERENCES

- 1. Ludwig W, Schleifer KH, Whitman WB. 2009. Order II. *Lactobacillales* ord. nov, p 464 *In* De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (ed), Bergey's manual of systematic bacteriology, 2nd ed, vol 3 The Firmicutes Springer, New York, NY. doi: 10.1002/9781118960608.obm00058. [DOI] [Google Scholar]
- 2. Christoff AP, Sereia AFR, Cruz GNF, Bastiani DCd, Silva VL, Hernandes C, Nascente APM, dos Reis AA, Viessi RG, Marques ASP, Braga BS, Raduan TPL, Martino MDV, de Menezes FG, de Oliveira LFV. 2020. One year cross-sectional study in adult and neonatal intensive care units reveals the bacterial and antimicrobial resistance genes profiles in patients and hospital surfaces. PLoS One 15:e0234127. doi: 10.1371/journal.pone.0234127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Felis GE, Torriani S, Dellaglio F. 2005. Reclassification of *Pediococcus urinaeequi* (ex Mees 1934) Garvie

- 1988 as *Aerococcus urinaeequi* comb. nov. Int J Syst Evol Microbiol 55:1325–1327. doi: 10.1099/ijs.0.63324-0. [DOI] [PubMed] [Google Scholar]
- 4. Taylor PW. 2015. Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect Drug Resist 8:249–262. doi: 10.2147/IDR.S67275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Agudelo Higuita NI, Huycke MM. 2014. Enterococcal disease, epidemiology, and implications for treatment *In* Gilmore MS, Clewell DB, Ike Y, et al. (ed), Enterococci: from commensals to leading causes of drug resistant infection. Eye and Ear Infirmary, Boston, MA: https://www.ncbi.nlm.nih.gov/books/ NBK190429/. [Google Scholar
- 6. Zhou W, Niu D, Zhang Z, Ning M, Shen H, Zhang K. 2014. Vancomycin resistance due to vanA in an *Aerococcus viridans* isolate. Indian J Med Microbiol 32:462–465. doi: 10.4103/0255-0857.142238. [DOI]

 [PubMed] [Google Scholar]
- 7. Checinska Sielaff A, Urbaniak C, Mohan GBM, Stepanov VG, Tran Q, Wood JM, Minich J, McDonald D, Mayer T, Knight R, Karouia F, Fox GE, Venkateswaran K. 2019. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7:50. doi: 10.1186/s40168-019-0666-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Singh NK, Bezdan D, Checinska Sielaff A, Wheeler K, Mason CE, Venkateswaran K. 2018. Multi-drug resistant *Enterobacter bugandensis* species isolated from the International Space Station and comparative genomic analyses with human pathogenic strains. BMC Microbiol 18:175. doi: 10.1186/s12866-018-1325-2.

 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- 10. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. doi: 10.1093/bioinformatics/bty560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi: 10.1089/cmb.2012.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Yoon S-H, Ha S-m, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate

average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. doi: 10.1007/s10482-017-0844-4. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

This WGS project has been deposited at DDBJ/ENA/GenBank, and the accession numbers are given in <u>Table 1</u> (BioProject accession no. <u>PRJNA645454</u> with 16 strains and <u>PRJNA649272</u> with 3 strains). The versions described in this paper are the first versions.

Articles from Microbiology Resource Announcements are provided here courtesy of **American Society for Microbiology (ASM)**