

K.S. SCHOOL OF ENGINEERING AND MANAGEMENT DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Mini Project Presentation

on

FOOD QUALITY DETECTOR

Project Team

- 1. Bhavana S (1KG19EC013)
- 2. Manjunath M (1KG19EC059)
- 3. Samarth Srinivas (1KG19EC085)
- 4. Steffi K Thomas (1KG19EC091)

Under the Guidance of Renuka V Tali (Asst. Professor)

INTRODUCTION

- In modern times the technology is being developed to ease in our day to day work.
- The quality of the food lies in its cleanliness & sustain for long time.
- The quality of the food should be monitored
- It will detect the gas that is released from the spoiled food & tell the user that the food is spoiled or not.

Proposed Idea/Methodology

- The embedded system is based on microcontroller like Arduino UNO which is an prototyping board.
- The Arduino board is interfaced with gas sensors like MQ4 to distinguish gases.
- This senses the gases coming out from the rotten food.
- The results are viewed by the user through a LCD display.

Hardware and software Requirements

THE COMPONENTS FOR THIS PROJECT ARE AS FOLLOWS

Hardware Components

&

Software Requirement

1. ARDUINO IDE

- 1. ARDUINO UNO R3
- 2. MQ4 GAS SENSORS
- 3. 16*2 LCD DISPLAY & I2C MODULE
- 4. LEDs
- 5. BREAD BOARD
- 6. JUMPER WIRES

1. ARDUINO UNO R3

- The Arduino Uno R3 is a microcontroller.
- It has 20 digital input/output pins.
- Programs can be loaded on to it.
- The R3 is the third, and latest, revision of the Arduino Uno.

2. MQ4 GAS SENSOR

- MQ4 Methane Gas Sensor detects the concentration of methane gas in the air and outputs' its reading as an analog voltage.
- 300 ppm to 10,000 ppm.

3. 16*2 LCD & I2C BUS

- In LCD 16×2, the term LCD stands for Liquid Crystal Display that uses a plane panel display technology.
- 16 Columns & 2 Rows so it can display 32 character.
- Each LCD character is displayed in 5X7 pixel matrix.
- I2C Module is used to converts I2C serial data to parallel data for the LCD display.

BLOCK DIAGRAM

WHY MQ4 Sensor?

Products	Gas Emitted
• Channa	• Methane
• Banana	• Ethylene ,Formaldehyde & Methane
• Cowpeas	• Methane
• Apple	• Ethylene ,Formaldehyde & Methane
• Onion	• Sulfoxides Methane(small amount)
• Coriander	• Methane
Green Gram	• Methane
• Rice	• Methane

INTERFACING PINS

1. MQ4 with Arduino UNO R3

MQ4 pins	Arduino uno R3
A0	A0
VCC	5V
GND	GND
D0	NO connection

2. 16*2 LCD & I2C Module

I2C Pins	Arduino board Pins
VCC	5V
GND	GND
SDA	A4
SCL	A5

Testing

FOR FRESH FOOD


```
lcd.clear();
         Serial.begin(9600);
         pinMode(red, OUTPUT);
                                    //sets the re-
         pinMode(green, OUTPUT); //sets the gr
         pinMode(gasA0, INPUT); //sets the ga
   19
   20
  21
Output Serial Monitor X
Message (Ctrl + Enter to send message to 'Arduing Unit of CO)
592
food is good
588
food is good
591
food is good
594
food is good
```


FOR FRESH FOOD

FOR SPOILED FOOD


```
pinMode(red, OUTPUT); //kets t
pinMode(green, OUTPUT); //sets t
pinMode(gasAO, INPUT); //sets t

20 }
21

Output Serial Monitor ×

[Assert Charles and Control of Con
```


FOR SPOILED FOOD

THRESHOLD

FOOD SAMPLES	AMOUNT OF CH4
Banana	416
Onion	482
Channa	543
Custard Apple	448
Coriander Leaves	409
Jamun Fruit	439

Flowchart

Advantages

- Monitors the quality of food.
- Helps in decreasing of food waste.
- Not disruptive to production.
- Prevent faulty goods and services being sold.
- Improved reputation for quality → increase sales in businesses.

Department of ECE, KSSEM

Applications.

The food quality monitoring system is applicable in areas such as:

- Supermarket warehouse
- Food production industry
- Food shipment containers
- Manufacturing of fruit jam and fruit juice

Limitations

- 1)It senses only methane gas, where some foods may emit other gases.
- 2)The process of inspecting the goods costs time and money.

Work completion status

- Literature survey
- Hardware interfacing and testing
- Implementation
- Report

References

- 1. Popa, Alexandru, Mihaela Hnatiuc, Mirel Paun, Oana Geman, D. Jude Hemanth, Daniel Dorcea, Le Hoang Son, and Simona Ghita. "An intelligent IoT-based food quality monitoring approach using low-cost sensors." *Symmetry* 11, no. 3 (2019): 374.
- 2. Ping, Hua, Jihua Wang, Zhihong Ma, and Yuanfang Du. "Mini-review of application of IoT technology in monitoring agricultural products quality and safety." *International Journal of Agricultural and Biological Engineering* 11, no. 5 (2018): 35-45.
- 3. Bouzembrak, Yamine, Marcel Klüche, Anand Gavai, and Hans JP Marvin. "Internet of Things in food safety: Literature review and a bibliometric analysis." *Trends in Food Science & Technology* 94 (2019): 54-64.
- 4. Ying, Fu, and Li Fengquan. "Application of internet of things to the monitoring system for food quality safety." In *2013 Fourth International Conference on Digital Manufacturing & Automation*, pp. 296-298. IEEE, 2013.

Thank You

