

Deloitte Analytics.

Self-Organising Maps for Customer Segmentation

Theory and worked examples using census and customer data sets.

Talk for Dublin R Users Group 20/01/2014 Shane Lynn Ph.D. – Data Scientist www.shanelynn.ie / @shane a lynn

Overview

- 1. Why customer segmentation?
- 2. What is a self-organising map?
 - Algorithm
 - Uses
 - Advantages
- 3. Example using Irish Census Data
- 4. Example using Ta-Feng Grocery Shopping Data

Customer Segmentation

- Customer segmentation is the application of clustering techniques to customer data
- Identify cohorts of "similar" customers common needs, priorities, characteristics.

Customer Segmentation

Typical Uses

- Targeted marketing
- Customer retention
- Debt recovery

Techniques

- Single discrete variable
- K-means clustering
- Hierarchical clustering
- Finite mixture modelling
- Self Organising Maps

A Self-Organising Map (SOM) is a form of unsupervised neural network that produces a low (typically two) dimensional representation of the input space of the set of training samples.

- First described by Teuvo Kohonen (1982) ("Kohonen Map")
- Over 10k citations referencing SOMs most cited Finnish scientist.
- Multi-dimensional input data is represented by a 2-D "map" of nodes
- Topological properties of the input space are maintained in map

- The SOM visualisation is made up of several nodes
- Input samples are "mapped" to the most similar node on the SOM.
 All attributes in input data are used to determine similarity.
- Each node has a weight vector of same size as the input space
- There is no variable / meaning to the x and y axes.

All nodes have:

Position

Weight Vector

Associated input samples

- Everyone in this room stands in Croke Park.
- Each person compares attributes e.g. age, gender, salary, height.
- Everyone moves until they are closest to other people with the most similar attributes. (using a Euclidean distance)
- If everyone holds up a card indicating their age – the result is a SOM heatmap

Algorithm

First Choose: Map size, map type

- 1. Initialise all weight vectors randomly.
- Choose a random datapoint from training data and present it to the SOM
- 3. Find the "Best Matching Unit" (BMU) in the map the most similar node.
- 4. Determine the nodes within the "neighbourhood" of the BMU.
 - The size of the neighbourhood decreases with each iteration.
- Adjust weights of nodes in the BMU neighbourhood towards the chosen datapoint.
 - The learning rate decreases with each iteration
 - The magnitude of the adjustment is proportional to the proximity of the node to the BMU.
- 6. Repeat Steps 2-5 for N iterations / convergence.

$$\sigma(t) = \sigma_0 e^{(-t/\lambda)}$$

t = current iteration $\lambda = time$ constant $\sigma_0 = radius$ of the map $\lambda = numIterations / mapRadius$

nisin

st Choose

s randomly.

 $DistFromInput^{2} = \sum_{i=0}^{i=n} (I_{i} - W_{i})^{2}$

I = current input vector

W = node's weight vector

n = number of weights

- Initialise all weight
- Choose a random datas the SOM
- 3. Find the "Best Matching Unit" (MU) in

from training

a and present it to

- similar node.
- 4. Determine the nodes within the "neigh
 - The size of the neighbourhood decreases wit
- 5. Adjust weights of nodes in the BMU neighbourhood towards the chosen datapoint.
 - The learning rate decreases with each iteration
 - The magnitude of the adjustment is proportional to the proximity of the node to the BMU.
- 6. Repeat Steps 2-5 for N iterations / converge

New weight of a node. $W(t+1)=W(t)+\Theta(t)L(t)(I(t)-W(t))$

iteration.

Learning rate.

$$L(t) = L_0 e^{(-t/\lambda)}$$

Distance from BMU.

$$\Theta(t) = e^{(-distFromBMU^2/(2\sigma^2(t)))}$$

Example – Color Classification

- SOM training on RGB values. (R,G,B) (255,0,0)
- 3-D dataset -> 2-D SOM representation
- Similar colours have similar RGB values / similar position

Dublin R / SOMs / Shane Lynn

- On the SOM, actual distance between nodes is not a measure for quantitative (dis)similarity
- Unified distance matrix
 - Distance between node weights of neighbouring nodes.
 - Used to determine clusters of nodes on map
 http://davis.wpi.edu/~matt/courses/soms/applet.html

Dummy Variables

- SOMs only operate with numeric variables
- Categorical variables must be converted to dummy variables.

Heatmaps

- Heatmaps are used to discover patterns between variables
- Heatmaps colour the map by chosen variables – Each node coloured using average value of all linked data points
- Can use variables not in in the training set

Gender		Gender_M	Gender_F
Male		1	0
Female		0	1
Female		0	1
Male		1	0

- "Kohonen" package in R
- Well documented with examples
- Key functions:
 - somgrid()
 - Initialise a SOM node set
 - -som()
 - Can change radius, learning rate, iterations, neighbourhood type
 - plot.kohonen()
 - Visualisation of resulting SOM
 - Supports heatmaps, node counts, properties, u-matrix etc.

Other Software

- Viscovery
- SPSS Modeler
- MATLAB (NN toolbox)
- WEKA
- Synapse
- Spice-SOM

- Data from Census 2011
- Population divided in 18,488 "small areas" (SA)

- 767 variables available on 15 themes.
- Interactive viewing software online.
- Data available via csv download.
- Focusing on Dublin area for this talk.
- Aim to segment based on selected variables.

```
data <- read.csv("../data/census-data-smallarea.csv")</pre>
```

- Data is formatted as person counts per SA
- Need to extract comparable statistics from count data
 - Change count data to percentages / numbers etc.

Change "ranked" variables to numeric values
 i.e. Education: [None, Primary, Secondary, 3rd Level,
 Postgrad] changed to [0,1,2,3,4]
 Allows us to calculate "mean education level"

Calculated features for small areas:

Filtered for Fingal, Dublin City, South Dublin, & Dun Laoghaire (4806 SAs)

SOM creation step

• SOM creation See

rlen=100,

alpha=c(0.05, 0.05)

keep.data = TRUE,

n.hood="circular"

Kohonen functions accept numeric matrices

Params:

- Rlen times to present data
- Alpha learning rate
- Keep.data store data in model

scale() mean centers and

n.hood – neighbourhood shape

Dublin R / SOMs

som_model object

```
>> summary(som_model)
som map of size 20x20 with a hexagonal topology.
Training data included; dimension is 4806 by 4
Mean distance to the closest unit in the map: 0.1158323
```

- Contains all mapping details between samples and nodes.
- Accessible via "\$" operator
- Various plotting options to visualise map results.

plot(som model, type = "changes")

plot(som_model, type = "counts")

- Fan diagram shows distribution of variables across map.
- Can see patterns by examining dominant colours etc.
- This type of representation is useful for SOMs when the number of variables is less than ~ 5
- Good to get a grasp of general patterns in SOM

plot(som_model, type = "property", property = som_model\$codes[,4],
main=names(som_model\$data)[4], palette.name=coolBlueHotRed)

- Very simple to manually identify clusters of nodes.
- By visualising heatmaps, can spot relationships between variables.
- View heatmaps of variables not used to drive the SOM generation.

plotHeatMap(som model, data, variable=0) #interactive window for selection

- Very simple to manually identify clusters of nodes.
- By visualising heatmaps, can spot relationships between variables.
- View heatmaps of variables not used to drive the SOM generation.

plotHeatMap(som model, data, variable=0) #interactive window for selection

- Cluster on som codebooks
- Hierarchical clustering
 - Start with every node as a cluster
 - Combine most similar nodes (once they are neighbours)
 - Continue until all combined
- User decision as to how many clusters suit application

Within cluster sum of squares (WCSS)


```
som cluster <- clusterSOM(ClusterCodebooks=som model$codes,</pre>
                           LengthClustering=nrow(som model$codes),
                           Mapping=som model$unit.classif,
                           MapRow=som model$grid$xdim,
                           MapColumn=som model$grid$ydim,
                           StoppingCluster=2 )[[5]]
plot(som model, type="mapping", bgcol = pretty palette[som cluster], main =
"Clusters")
                                                           Cluster 5
  Cluster 4
    Cluster 3
Clusters
                                                         Cluster 2
numbered from
```

bottom left

- Cluster 1

Census Data Example

Conclusions

- Can build meaningful names
 / stories for clusters in
 population
- Multiple iterations with different variable combinations and heatmaps
- Similar to work by commercial data providers "Experian"

Group	Description	Туре	Description		
Α	Established Elites	A01	Elite Executives		
		A02	Affluent Empty Nesters		
		A03	Professional Urbanites		
В	Upwardly Mobile Enclaves	B04	Aspiring Professional Couples		
		B05	Evolving Diversity		
		B06	Up and Coming		
С	City Centre Mix	C07	City Centre Sophisticates		
		C08	Inner Ring Cosmopolitans		
		C09	Industrious New Comers		
		C10	University Influence		
D	Struggling Society	D11	Striving Large Families		
		D12	Entrenched Hardship		
Ε	Poorer Greys	E13	Ageing Workers		
		E14	Community Stalwarts		
		E15	Town Centre Singles		
F	Industrious Urban Fringe	F16	Settled in Suburbia		
		F17	Working Family Commuters		
		F18	Small Town Simplicity		
G	Careers & Kids	G19	Suburban Progress		
		G20	Successful Families		
		G21	Upscale Commuters		

Source: Experian Mosaic Ireland: New Mosaic Classifications

- More complex and realistic example of customer data
- Data set contains information on
 - 817,741 grocery shopping transactions.
 - 32,266 customers

	customer_	i		product_su	ı			
date	d	age_group	address	bclass	product_id	quantity	asset	price
01/01/2001	141833	F	F	130207	4.71E+12	2	44	52
01/01/2001	1376753	E	Ε	110217	4.71E+12	1	150	129
01/01/2001	1603071	E	G	100201	4.71E+12	1	35	39
01/01/2001	1738667	E	F	530105	4.71E+12	1	94	119
01/01/2001	2141497	Α	В	320407	4.71E+12	1	100	159
01/01/2001	1868685	J	Е	110109	4.71E+12	1	144	190

 Similar steps as with census example, but with some additional requirements

 Feature generation using data.table - Data table has significant speed enhancements over standard data frame, or ddply.

Customer characteristics generated:

Customer ID	Total Spend	Max Item	Num Baskets
Total Items	Items per basket	Mean item cost	Profit per basket
Total Profit	Sales Items (%)	Profit Margin	Budget items (%)
Premium items (%)	Item rankings	Weekend baskets (%)	Max basket cost

- Solution is to cap all variables at 98% percentiles
- This removes extreme outliers from dataset and prevents one node discolouring heatmaps

```
capVector <- function(x, probs = c(0.02,0.98)){
    #remove things above and below the percentiles specified
    ranges <- quantile(x, probs=probs, na.rm=T)
    x[x < ranges[1]] <- ranges[1]
    x[x > ranges[2]] <- ranges[2]
    return(x)
}</pre>
```


 Histograms have more manageable ranges after capping the variables.

sale items percent

0.6

 Explore heatmaps and variable distributions to find patterns

250

200

150

100

Node Counts

Large profit per basket/SOMs/Shane Lynn

Conclusions

- SOMs are a powerful tool to have in your repertoire.
- Advantages include:
 - Intuitive method to develop customer segmentation profiles.
 - Relatively simple algorithm, easy to explain results to non-data scientists
 - New data points can be mapped to trained model for predictive purposes.
- Disadvantages:
 - Lack of parallelisation capabilities for VERY large data sets
 - Difficult to represent very many variables in two dimensional plane
 - Requires clean, numeric data.
- Slides and code will be posted online shortly.

Questions

Deloitte Analytics.

Shane Lynn

www.shanelynn.ie / @shane_a_lynn

Useful links

- Som package
 - http://cran.r-project.org/web/packages/kohonen/kohonen.pdf
- Census data and online viewer
 - http://census.cso.ie/sapmap/
 - http://www.cso.ie/en/census/census2011smallareapopulationstatisticssaps/
- Ta Feng data set download
 - http://recsyswiki.com/wiki/Grocery shopping datasets