Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Lista M 7

13 listopada 2014 r.

M 7.1. 3 punkty, Włącz komputer! Niech $f(x) = e^{\arctan(x)}$. Rozważyć interpolację w przedziale [a, b] := [-5, 5] w n+1 węzłach równoodległych, gdzie n=10. Znaleźć postać potęgową wielomianu interpolacyjnego $L_n(x)$ oraz naturalną funkcję sklejaną trzeciego stopnia s(x). Podać wartości całek

$$\int_{a}^{b} [f''(x)]^{2} dx, \qquad \int_{a}^{b} [L''_{n}(x)]^{2} dx, \qquad \int_{a}^{b} [s''(x)]^{2} dx.$$

Wyniki należy przedstawić z dokładnością do 8 cyfr dziesiętnych.

M 7.2. 1 punkt Niech będzie $p(x) := 1 + c(x+1)^3$ ($-1 \le x \le 0$), gdzie c jest parametrem rzeczywistym. Wyznaczyć taki wielomian q, żeby wzór

$$s(x) = \begin{cases} p(x) & (-1 \leqslant x \leqslant 0), \\ q(x) & (0 \leqslant x \leqslant 1) \end{cases}$$

definiował naturalną funkcję sklejaną III stopnia, z węzłami -1, 0, 1. Jaka wartość c należy przyjąć, jeśli chcemy, by s(1) = -1?

M 7.3. 1 punkt Dla danego naturalnego n, węzłów t_0, t_1, \ldots, t_n ($a = t_0 < t_1 < \ldots < t_n = b$) oraz punktów na płaszczyźnie $P_i = (x_i, y_i)$ $(i = 0, 1, \ldots, n)$ definiujemy krzywq sklejanq

$$S(t) := [s_x(t), s_y(t)] \qquad (a \leqslant t \leqslant b),$$

gdzie s_x i s_y są dwiema naturalnymi funkcjami sklejanymi III stopnia, o własnościach:

$$s_x(t_i) = x_i, \quad s_y(t_i) = y_i \qquad (i = 0, 1, \dots, n).$$

Sprawdzić, że punkty P_0, P_1, \ldots, P_n leżą na krzywej. Podać oszczędny algorytm konstrukcji krzywej sklejanej S(t).

M 7.4. 1 punkt Wykazać, że jeśli s jest naturalną funkcją sklejaną trzeciego stopnia, interpolującą funkcję f w węzłach x_0, x_1, \ldots, x_n ($a = x_0 < x_1 < \ldots < x_n = b$), to

$$\int_{a}^{b} [s''(x)]^{2} dx = \sum_{k=1}^{n-1} (f[x_{k}, x_{k+1}] - f[x_{k-1}, x_{k}]) M_{k},$$

gdzie $M_k := s''(x_k) \ (k = 0, 1, \dots, n).$

M 7.5. 1 punkt Niech s będzie funkcją określoną w zadaniu **7.4**. Wykazać, że dla węzłów $x_k := a + k \cdot h$ (k = 0, 1, ..., n), gdzie h := (b - a)/n, zachodzi wzór

$$\int_{a}^{b} s(x) dx = h \sum_{k=0}^{n} f(x_{k}) - \frac{h^{3}}{12} \sum_{k=0}^{n} M_{k}.$$

(Symbol \sum'' oznacza sumę, której pierwszy i ostatni składnik należy podzielić przez 2.) Jakie zastosowanie może mieć powyższa równość?

M 7.6. 1,5 punktu Niech s będzie funkcją określoną w zadaniu 7.4. Momenty $M_k := s''(x_k)$ (k = $0, 1, \ldots, n$) spełniają układ

(1)
$$\lambda_k M_{k-1} + 2M_k + (1 - \lambda_k) M_{k+1} = d_k \qquad (k = 1, 2, \dots, n-1),$$

gdzie $M_0 = M_n = 0$ oraz

$$d_k := 6f[x_{k-1}, x_k, x_{k+1}], \quad \lambda_k := \frac{h_k}{h_k + h_{k+1}}, \quad h_k := x_k - x_{k-1} \qquad (k = 1, 2, \dots, n-1).$$

Uzasadnić następujący algorytm rozwiązywania układu (1):

Obliczamy pomocnicze wielkości $p_1, p_2, \ldots, p_{n-1}, q_0, q_1, \ldots, q_{n-1},$ $u_0, u_1, \ldots, u_{n-1}$ w następujący sposób rekurencyjny:

$$q_0 := u_0 := 0,$$

$$p_k := \lambda_k q_{k-1} + 2,$$

$$q_k := (\lambda_k - 1)/p_k,$$

$$u_k := (d_k - \lambda_k u_{k-1})/p_k$$

$$(k = 1, 2, \dots, n-1).$$

Wówczas

$$M_{n-1} = u_{n-1},$$

 $M_k = u_k + q_k M_{k+1}$ $(k = n - 2, n - 3, ..., 1).$

Podać koszt realizacji algorytmu.

M 7.7. $\boxed{1}$ punkt | Wielomiany Bernsteina n-tego stopnia definiujemy następująco

$$B_i^{(n)}(t) := \binom{n}{i} t^i (1-t)^{n-i}, \qquad i = 0, 1, \dots, n, \quad n \geqslant 0.$$

Udowodnić następujące własności:

- a) $\sum_{i=0}^{n} B_i^{(n)}(t) \equiv 1$. b) $B_i^{(n)}(t) \ge 0$ dla $t \in [0, 1]$. c) $B_i^{(n)}(t) = (1 t)B_i^{(n-1)}(t) + tB_{i-1}^{(n-1)}(t)$.
- d) $\left[B_i^{(n)}(t)\right]' = n \left(B_{i-1}^{(n-1)}(t) B_i^{(n-1)}(t)\right).$ e) $B_i^{(n)}(t) = \frac{n+1-i}{n+1}B_i^{(n+1)}(t) + \frac{i+1}{n+1}B_{i+1}^{(n+1)}(t).$

M 7.8. 1,5 punktu Niech $B_i^{(n)}(t)$ oznaczają wielomiany Bernsteina n-tego stopnia. Wyprowadzić wzory na współczynniki $a_k^{(n,i)}, b_k^{(n,i)},$ dla których

$$B_i^{(n)}(t) = \sum_{k=0}^n a_k^{(n,i)} t^k, \qquad t^i = \sum_{k=0}^n b_k^{(n,i)} B_k^{(n)}(t).$$