Lemma 0.1 (ultrafilter lemma) Let S be a set. Every filter on S is contained in an ultrafilter.

Corollary 0.2 (nonprincipal ultrafilter) For any infinite set S, there is an ultrafilter U on S that is not generated by a singleton. Such a U is nonprincipal.

Proof. Consider the cofinite filter on S:

$$F = \{X \subseteq S : |X| \geqslant \aleph_0\}$$

Then F is contained in a nonprincipal ultrafilter.

Definition 0.3 (ultrapower) Suppose M_i is a model over language \mathcal{L} for each $i \in I$. Let U be a nonprincipal ultrafilter on I. Consider

$$\prod M_i/U$$

where quotienting by U is understood to mean quotienting by the equivalence relation ~ where

$$(x_i)_{i \in I} = (y_i)_{i \in I}$$

iff the set of indices i such that $x_i = y_i$ is in U. (Equality by vote).

We can make $\prod M_i/U$ into a model over \mathcal{L} . Interpret the constant symbol c as the equivalence class of

$$(c|_{M_i})_{i\in I}$$

with $c|_{M_i}$ indicating interpretation (of c) in M_i .

Similarly, interpret the function f(x) by

$$f((x_i)_{i \in I}) = [(f(x_i)|_{M_i})]$$

where [-] denotes 'equivalence class of'.

Finally, interpret the predicate $\phi(x)$ by

$$\varphi\big((x_i)_{i\in I}\big)\iff \{i\in I: \varphi(x_i)\}\in U$$

which is truth by vote. Because U is an ultrafilter, the law of the excluded middle will in fact hold as either

$$\{i \in I : p|_i \text{ holds}\} \in U$$

or

$$\{i \in I : (\neg p)|_i \text{ holds}\} = U - \{i \in I : p|_i \text{ holds}\} \in U \in U$$

Theorem 0.4 (compactness theorem) If every finite subtheory of Φ has a model, then Φ has a model.

Proof. Let $fin(\Phi)$ be the set of finite subtheories of Φ . By assumption, for each $F \in fin(\Phi)$, there is a model M_F of F. For appropriate choice of utlrafilter U on $fin(\Phi)$, I claim

$$\prod_{F \in \mathsf{fin}(\Phi)} M_F/U$$

models Φ . To see this, pick an arbitrary $\varphi \in \Phi$. Define

$$H_{\Phi} = \{F \subseteq fin(\Phi) : M_F \models \phi\}$$

to be the set of models where ϕ holds. Consider

$$F = \{H_{\Phi} : \Phi \in \Phi\}$$

Then F is a filter on $fin(\Phi)$. By the ultrafilter lemma, F is contained in some ultrafilter U. Hence we have chosen a U such that, for each $\varphi \in \Phi$, the set $\{f \in fin(\Phi) : M_f \models \varphi\}$ is in U. Then

$$\prod_{F \in \mathsf{fin}(\Phi)} M_F / U \models \Phi$$

Corollary 0.5 The ultrafilter lemma implies the compactness theorem.

The converse is also true:

Theorem o.6 The compactness theorem implies ultrafilter lemma.

Proof. Suppose F is a filter on S. We can encode this assertion in a theory. Let \mathcal{L} be the language of set theory with constant symbols S and F. Let set be the axioms of set theory. To encode the statement F is a filter on S, define the theory

$$\begin{split} \Phi &= \mathsf{set} \cup \big\{ \\ S \in \mathsf{F}, \\ \forall \mathsf{A}, \mathsf{B}(\mathsf{A} \in \mathsf{F} \land \mathsf{B} \in \mathsf{S} \implies \mathsf{A} \cap \mathsf{B} \in \mathsf{F}), \\ \varnothing \notin \mathsf{F}, \\ \forall \mathsf{A}, \mathsf{B}(\mathsf{A} \in \mathsf{F} \land \mathsf{A} \subseteq \mathsf{B} \implies \mathsf{B} \in \mathsf{F}) \\ \big\} \end{split}$$

Then Φ has a model iff we can find a filter F on S. Define the language \mathcal{L}' by adding a constant symbol x_s for each $s \subseteq S$. Now define the theory Φ' over \mathcal{L}' by

$$\Phi' = \Phi \cup \{x_s \subseteq S : s \subseteq S\}$$
$$\cup \{x_s \in F \lor S - x_s \in F : s \subseteq S\}$$

By compactness theorem, Φ' has a model M. This M has a copy of S and U. They may contain extra elements, but

$$\{X \cap S : X \subseteq U\} - \emptyset$$

gives an ultrafilter on S containing F.

