Projekt SAP

Tema 2 - Uloga izvoza i uvoza u gospodarstvu

Pavo Matanović, Karla Baričević, Slavko Boldin

Učitavanje podataka i deskriptivna analiza

Na početku učitavamo podatke i analiziramo kako izgledaju podaci.

```
export.data = read.csv("Export_data.csv", fileEncoding="UTF-8-BOM")
# head(export.data)

import.data = read.csv("Import_data.csv", fileEncoding="UTF-8-BOM")
# head(import.data)

gdp.data = read.csv("GDP_data.csv", fileEncoding="UTF-8-BOM")
# head(gdp.data)

gdp.pc.data = read.csv("GDPpercapita_data.csv", fileEncoding="UTF-8-BOM")
# head(gdp.pc.data)
```

Sljedeći blok koda generira dataframe sa brojem upisanih podataka te brojem procjena među upisanim podacima.

```
export.loc.cnt = export.data %>% group_by(LOCATION) %>%
    summarise(exp_n = n(), exp_est = sum(Flag.Codes == 'E')) %>%
    arrange(desc(exp_n), exp_est)
import.loc.cnt = import.data %>% group_by(LOCATION) %>%
    summarise(imp_n = n(), imp_est = sum(Flag.Codes == 'E')) %>%
    arrange(desc(imp_n), imp_est)
gdp.loc.cnt = gdp.data %>% group_by(LOCATION) %>%
    summarise(gdp_n = n(), gdp_est = sum(Flag.Codes == 'E')) %>%
    arrange(desc(gdp_n), gdp_est)
gdp.pc.loc.cnt = gdp.pc.data %>% group_by(LOCATION) %>%
    summarise(gdp_pc_n = n(), gdp_pc_est = sum(Flag.Codes == 'E')) %>%
    arrange(desc(gdp_pc_n), gdp_pc_est)
loc.cnt = merge(merge(export.loc.cnt, import.loc.cnt), merge(gdp.loc.cnt, gdp.pc.loc.cnt))
knitr::kable(
  head(arrange(loc.cnt,
               desc(loc.cnt[,2]), desc(loc.cnt[,4]), desc(loc.cnt[,6]), desc(loc.cnt[,8]),
               loc.cnt[,3], loc.cnt[,5], loc.cnt[,7], loc.cnt[,9]), 20),
  caption = "Broj podataka za pojedinu državu"
```

Table 1: Broj podataka za pojedinu državu

LOCATION	exp_n	\exp_{est}	imp_n	imp_est	gdp_n	gdp_est	gdp_pc_n	gdp_pc_est
CAN	41	0	41	0	41	0	41	0

LOCATION	exp_n	exp_est	imp_n	imp_est	gdp_n	gdp_est	gdp_pc_n	gdp_pc_est
DNK	41	0	41	0	41	0	41	0
FRA	41	0	41	0	41	0	41	0
CHE	41	1	41	1	41	1	41	1
FIN	41	1	41	1	41	1	41	1
DEU	41	12	41	12	41	12	41	12
SWE	41	14	41	14	41	14	41	14
GBR	41	16	41	16	41	0	41	0
AUT	41	16	41	16	41	16	41	16
BEL	41	16	41	16	41	16	41	16
ESP	41	16	41	16	41	16	41	16
GRC	41	16	41	16	41	16	41	16
IRL	41	16	41	16	41	16	41	16
ITA	41	16	41	16	41	16	41	16
NLD	41	16	41	16	41	16	41	16
ISL	41	16	41	16	41	16	41	17
PRT	41	17	41	17	41	17	41	17
AUS	40	0	40	0	40	0	40	0
NOR	40	0	40	0	40	0	40	0
USA	40	0	40	0	40	0	40	0

{{r, include=FALSE}} remove(export.loc.cnt, import.loc.cnt, gdp.loc.cnt, gdp.pc.loc.cnt, loc.cnt)

Odabrane drzave

Odabrali smo USA, Njemačku(DEU) i Grčku(GRC) za analizu.

Deskriptivna statistika

Sredine uvoza

Vidimo da im se čisti uvoz u mil. USD razlikuje jako čak i na logaritamskoj skali.

To možemo potvrditi i statističkim t testom.

```
t.test(log(usa$import.mln_usd), log(deu$import.mln_usd),
       alternative = "g", var.equal = FALSE)
##
##
   Welch Two Sample t-test
## data: log(usa$import.mln_usd) and log(deu$import.mln_usd)
## t = 3.607, df = 76.264, p-value = 0.0002755
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.2795736
## sample estimates:
## mean of x mean of y
   14.01251 13.49321
t.test(log(deu$import.mln_usd), log(grc$import.mln_usd),
       alternative = "g", var.equal = FALSE)
##
##
   Welch Two Sample t-test
##
## data: log(deu$import.mln_usd) and log(grc$import.mln_usd)
## t = 19.365, df = 79.86, p-value < 2.2e-16
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
   2.265246
## sample estimates:
## mean of x mean of y
   13.49321 11.01499
```

```
usa = usa %>% mutate(import.mln_usd, import.growth = import.mln_usd - lag(import.mln_usd))
deu = deu %>% mutate(import.mln_usd, import.growth = import.mln_usd - lag(import.mln_usd))
grc = grc %>% mutate(import.mln_usd, import.growth = import.mln_usd - lag(import.mln_usd))
time = 1979:2019
plot(time, deu$import.growth, type = "h", main = "Rast uvoza (DEU)")
```

Rast uvoza (DEU)

Izvoz

```
boxplot(deu$export.mln_usd,
    usa$export.mln_usd,
    grc$export.mln_usd,
    names = c("DEU", "USA", "GRC"), main = "Sredine izvoza",
    col = c("deepskyblue2", "deepskyblue3", "deepskyblue"),
    ylab = "mln USD (log skala)",
    log = "y")
```

Sredine izvoza

Podaci su slični kao i kod uvoza, SAD prednjači i u izvozu u odnosu na Njemačku i Grčku.

```
usa = usa %>% mutate(export.mln_usd, export.growth = export.mln_usd - lag(export.mln_usd))
deu = deu %>% mutate(export.mln_usd, export.growth = export.mln_usd - lag(export.mln_usd))
grc = grc %>% mutate(export.mln_usd, export.growth = export.mln_usd - lag(export.mln_usd))
time = 1979:2019
plot(time, deu$export.growth, type = "h", main = "Rast izvoza (DEU)")
```

Rast izvoza (DEU)

Za razliku od uvoza koji linearno raste, izvoz više "osjeća" promjene na tržištu (veće fluktuacije), npr. značajan pad izvoza 2009. godine zbog tadašnje svjetske gospodarske krize.

Sredine BDP-a

kod uvoza i izvoza, po čistom BDP-u SAD značajno prednjači, dok je razlika između Njemačke i Grčke veća od one između SAD-a i Njemačke. No, ovaj prikaz možda nije mjerodavan što se tiče razvijenosti. Treba pogledati BDP po stanovniku:

Sredine BDP-a po stanovniku

prikazu BDP-a po stanovniku podaci su normaliziralni brojem stanovnika, razlike nisu toliko značajne, no SAD i dalje prednjači.

Na

```
usa = usa %>% mutate(gdp.mln_usd, gdp.growth = gdp.mln_usd - lag(gdp.mln_usd))
deu = deu %>% mutate(gdp.mln_usd, gdp.growth = gdp.mln_usd - lag(gdp.mln_usd))
grc = grc %>% mutate(gdp.mln_usd, gdp.growth = gdp.mln_usd - lag(gdp.mln_usd))
time = 1979:2019
plot(time, deu$gdp.growth, type = "h", main = "Rast BDP-a (DEU)")
```

Rast BDP-a (DEU)

Njemačke je u stalnom porastu uz fluktuacije, a jedini pad BDP-a koji primjećujemo vezan je uz gospodarsku krizu 2009. godine, kada primjećujemo i značajne padove u uvozu i izvozu. Rast BDP-a po stanovniku bit će proporcionalan.