Вопрос №1

1. Пространство решений, вероятностная модель и постулируемое соотношение между ними.

Пусть D — пространство решений d относительно наблюдаемого малого объекта и ρ =h P_0 , Θ \in H, ξ -семейство возможных p1ешений X. Принятие решения —d об исследуемом объекте соотносится с проблемой утверждения по значению Θ вероятностной модели. Если значение Θ известно, то принимается правильное безошибочное решение d. Это соотношение сводит проблему принятия решения к точкам заданной мат. стат-ки, как параметрическая оценка, проверка гипотез.

2.Случайная выборка и выборочные данные.

Случайная выборка $X^{(n)}$ =($X_1,...,X_n$) объёма n — есть случайный вектор, состоящий из независимых одинаково распределённых случайных величин, имеющих некоторое общее распределение P_{Θ} из вероятноотносительной модели. X_k = X(ω_k). Значение X-это значение при некотором исходе. Выбор данных $X^{(n)}$ =($X_1,...,X_n$) — результат наблюдений случайных величин X.

3. Распределение случайной выборки (статическая модель).

Если $f(X|\Theta)$ - функция плотности наблюдений случайных в. X, то n-мерная функция плотности случайной выборки $X^{(n)}$: $f_n(x_1 \dots x_n|\Theta) = \prod_{k=1}^n f(x_k|\Theta)$. Это так , потому что выборка состоит из независимых случайно распределённых величин.

4.Статистика и ее распределение

Статистикой $T = T(X^{(n)})$ называется любая измеримая функция от случайной выборки $X^{(n)}$. Пусть $(\mathfrak{I},\mathcal{B})$ — некоторое измеримое пространство. $\forall B \in \mathcal{B}: \ P_{\theta}(T \in B) = \int_{B} f_{n}\left(X^{(n)}(\theta)\right) d\mu_{n}\left(X^{(in)}\right)$

5. Функция потерь.

Функция $L(\theta, d)$ определяет потери в определенных единицах измерения, которая несет статистику о принятии решения d, когда θ представляет истинное значение параметра.

6. Решающая функция и функция риска.

Каждое из решений d статистик принимает на основе результата $x^{(n)}=x_1,...,x_n$ наблюдений над независимыми копиями $X^{(n)}=(X_1,...,X_n)$ случайной величины X. Строится измеримое отображение $\delta=\delta(\cdot)$ пространства возможных значений $X^{(n)}$ в пространстве решений \mathcal{D} , с помощью которого принимается решение $d=\delta(x^{(n)})$. Это отображение называется решающей функцией.

Функция $R(\theta,\delta)=E_{\theta}L\left(\theta,\delta\!\left(X^{(n)}\right)\right)$ называется функцией риска.

7. Вариационный ряд и эмпирическая функция распределения.

Пусть X_1, \ldots, X_n — случайный вектор, заданный на измеримом пространстве (Ω, \mathcal{A}) , с независимыми одинаково распределенными с плотностью f(x) по мере Лебега компонентами. Вектор $X_{(1)}, \ldots, X_{(n)}$, полученный из исходного вектора упорядочиванием его компонент при каждом фиксированном $\omega \in \Omega$, называется вариационным рядом.

Таким образом, при каждом фиксированном $\omega \in \Omega$ компоненты вариационного ряда удовлетворяют неравенствам $X_{(1)}(\omega) \leq \cdots \leq X_{(n)}(\omega)$, и если $x_1 = X_1(\omega), \ldots, x_n = X_n(\omega)$, то $x_{(1)} = \min\{x_1, \ldots, x_n\}$, $x_{(2)}$ второй по величине, и т.д., $x_{(n)} = \max\{x_1, \ldots, x_n\}$

Вариационному ряду соответствуют упорядоченные выборочные данные $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$, по которым строится эмпирическая функция распределения $F_n(x) = \frac{\sum_{i=1}^n I(X_i < x)}{n}$.

Таким образом $F_n(x)$ – ступенчатая функция, возрастающая скачками величины $\frac{1}{n}$.

8. Выборочные аналоги сред. значения и дисперсии наблюдаемой случ. величины.

Аналог EX-выборочное среднее: $\bar{\mathbf{x}} = \frac{1}{n} \sum_{1}^{n} \mathbf{x}_{k}$

Аналог DX-выборочная дисперсия: $S^2 = \frac{1}{n} \sum_{1}^{n} (x_k - \bar{x})^2$

9. Выборочные аналоги центральных моментов для распределения наблюдаемой случайной величины

$$\mu_i = E(x - EX)^i = \frac{1}{n} \sum_{k=1}^n (x_k - \bar{x})^i \ i = 2,3..$$

 \bar{X} — выборочное среднее.

10. Выборочный коэффициент корреляции

Пусть $(x_1,y_1,...x_n,y_n)$ случайная выборка из распределения двумерного вектора (X,Y). Выборочный коэффициент корреляции есть выборочный аналог коэффициента корреляции $\rho=\frac{\text{cov}(x,y)}{\sigma_x\sigma_y}$ между случайными величинами X и Y.

Аналог определяется как:

$$r = \frac{\frac{1}{n} \sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})}{\sqrt{\frac{1}{n} \sum_{k=1}^{n} (x_k - \bar{x})^2 \frac{1}{n} \sum_{k=1}^{n} (y_k - \bar{y})^2}}$$

11. Выборочные квантиль и медиана

Пусть случайная величина X имеет непрерывную функцию распределения F(x), р-квантиль распределения.

F определяется как корень x_p решения уравнения F(x)=p.

Квантиль $X_{0,5}=m$ называется медианой распределения F. $\widehat{x_p}=X_{([np])}$, где $X_{(k)}-k$ -ый член вариационного ряда k=[np], т.е. $\widehat{m}=X_{[\frac{1}{2}]}$.

12. Распределение эмпирической функции распределения при каждом фикс. значении ее аргумента

 $nF_n(x)$ имеет бином. распределение $\mathcal{B}(n,F(x))$ с n испытаниями и вероятностью p=F(x), где F(x)- ф-я распределения наблюдаемой случ. величины.

13) Гистограмма как оценка функции плотности наблюдаемой случайной величины

Гистограмма состоит из r >= 2 разбиений пространства X наблюдения с.в. x - есть реализация случ. вектора $v = (v_1, ..., v_r)$, где наблюдаемое значение $v_i -$ кол-во выбор. данных попавших в i-ый интервал разбиения x, i = 1 ... n

Т.о. гистограмма g(x), $x \in X$ - принимает значения при $x \in A_i$, как $\frac{n_i}{n}$ т.е. оценки вер-ей попадания с.в. x в интервал A_i . Т.о. статистика $\frac{v_i}{n}$ есть оценка вероятностей $\int_{A_i} f(x) d(\mu(x))$.

При увеличении числа разбиения r и сужение интервала разбиения гистогр. g(x) служит оценкой фии пл-ти f(x)

14. Совместное распределение частот попаданий выборочных данных в интервалы разбиений области значений наблюдаемой с.в., когда строится гистограмма

Совместное распределение частот $v = (v_1, ..., v_r)$ мультиномиальное распределение $M(r, n, \bar{p})$. $p = (p_1, ..., p_r)$

 p_i – вер-ть того, что с.в. X принадлежит і интервалу

15) Опр. достаточной статистики для семейства распределения случайной выборки. Теорема факторизации

Достаточная статистика для параметра $\Theta \in \Theta$ определяющая некоторое семейство F_{θ} распределений вероятности - статистика T=T(X) такая, что условная вероятность выборки $X=X1, X2, \ldots, Xn$ при данном значении не зависит от параметра Θ . То есть выполняется равенство:

$$\mathbb{P}(X \in ar{X} | \mathrm{T}(X) = t, heta) = \mathbb{P}(X \in ar{X} | \mathrm{T}(X) = t),$$

Теорема факторизации:

Пусть T(X) — некоторая статистика, а $f_{\theta}(x)$ — условная функция плотности или функция вероятности (в зависимости от вида распределения) для вектора наблюдений X. Тогда T(X) является достаточной статистикой для параметра $\Theta \in \Theta$, если и только если существуют такие измеримые функции h и g, что можно записать:

$$f_{ heta}(x) = h(x) \, g(heta, \mathrm{T}(x))$$

16) Достаточная статистика и ее распределение, когда выбор идет в схеме испытаний Бернули

Пусть X1, X2, ..., Xn - последовательность случайных величин, что равны 1 с вероятностью *p* и равны 0 с вероятностью 1-р (то есть, имеют распределение

$$\mathbb{P}(x_1, \dots x_n | p) = p^{\sum x_i} (1-p)^{n-\sum x_i} = p^{\mathrm{T}(x)} (1-p)^{n-\mathrm{T}(x)},$$

Бернулли). Тогда

если взять T(X) = X1 + ... + Xn

Тогда данная статистика является достаточной согласно теореме факторизации, если обозначить

$$egin{aligned} g(p,\mathrm{T}(x_1,\ldots x_n)) &= p^{\mathrm{T}(x_1,\ldots x_n)} (1-p)^{n-\mathrm{T}(x_1,\ldots x_n)}, \ h(x_1,\ldots x_n) &= 1. \end{aligned}$$

17. Достаточная статистика и ее распределение в случае выбора из распределение Пуассона.

 $X^n = (X_1 \dots X_n)$ - случ. Выбор из распределения с ф-ей плотности $P(X|\lambda) = \frac{\lambda^x e^{-\lambda}}{\alpha!}$, $x = 0,1,2 \dots$, то достаточной статистикой явл-ся $T=\sum_i^n X_k$. Статистика T имеет также распред. Пуассона только с подм. $n \lambda$.

$$g(t|\lambda) = \frac{(n\lambda)^t e^{-n\lambda}}{t!}, t = 0, 1, 2 \dots$$

18. Достаточная статистика в случае выбора из гамма-распределения.

Если $X^n=(X_1\dots X_n)$ -выборка из Гамма-распределения $f(X|\theta)=\frac{1}{r(\lambda)a\lambda}X^{\lambda-1}e^{-\frac{X}{a}}, x>0, a, \lambda>0$, то достаточная статистика для парам. Вектора $\theta = (a, \lambda)$ случайная статистика $(\sum_{i=1}^{n} X_k; \sum_{i=1}^{n} \ln X_k)$ 19. Достаточная статистика и ее распределение в случае выбора из равномерного на интервале (0,0)

распределения.

Если $X^n = (X_1 ... X_n)$ -выборка из равномерного-распределения $n(0, \theta)$ на $(0, \theta)$, то достаточная статистика явл-ся крайний член вариац. ряда.

$$X_{(n)}=\max_{1\leq k\leq n}X_k;$$
 Статистика $X_{(n)}$ имеет распределение $F(\alpha)=rac{X^n}{ heta^n},$

20. Достаточная статистика и ее распределение в случае выбора из нормального распределения ее распределения.

Если $X_{(n)}$ – выборка из норм распределения $M(\mu,\delta^2)$, то статистика $T=T(\overline{X},S^2)$

1. Пространство решений при оценки параметра вероятностной модели наблюдаемой случайной величины

Пусть распределение $X^{(n)} \in \mathbb{P} = \{\mathbb{P}_{a}, \theta \in \mathbb{n}\}$

Задачи оценивания значения параметра θ по наблюдению случайной вероятности $X^{(n)} = \{X_1, \dots, X_n\}$ совпадает с Д= Θ

2. Определение правила оценивания

Оценки значения параметра θ вероят модели по случайной выборке $X^{(n)} = \{X_1, \dots, X_n\}$ определяется заданием статистики $T = \widehat{\theta_n}(X^{(n)})$, которая принимает значения в параметр пространстве Θ

3. Несмещенность оценки

Оценка $\widehat{\theta_n} = \widehat{\theta_n}(X^{(n)})$ значения параметра θ называется несмещенной ,если среднее значение T_{θ} $\widehat{\theta_n}(X^{(n)}) = \theta$, $\theta \in \Theta$ то есть тождественно

4.Состоятельность оценки

Оценка $\hat{\theta}_n = \hat{\theta}_n(\mathbf{X}^{(n)})$ называется состоятельной оценкой параметра θ ,

если
$$\hat{\theta}_n(\mathbf{X}^{(\mathrm{n})}) \underset{P_{\theta}}{\rightarrow} \theta$$
, $\forall \; \theta \in \Theta$, т.е. $\forall \; \varepsilon > 0$: $\lim_{n \rightarrow \infty} P_{\theta} \left(\left| \hat{\theta}_n \left(\mathbf{X}^{(\mathrm{n})} \right) - \theta \right| > \varepsilon \right) = 0$.

5) Метод моментов для оценки параметров вероятностной модели.

Пусть \mathcal{P} ={ P_{θ} , $\theta \in \Theta$ }- семейство возможных распределений наблюдаемой случайной величины X, где $\theta = (\theta_1, ..., \theta_n)$ - n-мерные параметр. Для построения векторной оценки $\widehat{\theta_{\mathrm{T}}}\big(X^{(n)}\big) = (\widehat{\theta_{1n}}, ..., \widehat{\theta_{mn}})$ вычисляется m- теоретических моментов случайной величины X: $\alpha_k = \alpha_k(\theta) = E_{\theta}X^k$, $\theta \in \Theta$ и соответствующие им выборочные моменты : $\alpha_k = \frac{1}{n}\sum_{i=1}^n x_i^k$, $k = \overline{1,m}$. Оценкой параметра θ по методу моментов называется любое решение системы уравнений $\alpha_k(\theta) = \alpha_k$, $k = \overline{1,m}$ относительно параметра θ .

6)Оценка по методу моментов для вероятности успеха в схеме испытаний Бернулли и ее распределение.

Оценка по методу моментов для вероятности успеха в схеме испытаний Бернулли : $\widehat{p_n}(X^{(n)}) = \frac{1}{n} \sum_{k=1}^n X_k$ И ее распределение: $n\widehat{p_n}(X^{(n)}) \sim B(n,p)$

7)Оценка по методу моментов для параметра распределения Пуассона и ее распределение.

Оценка по методу моментов для параметра распределения Пуассона: $\widehat{\lambda_n}\big(X^{(n)}\big) = \bar{X} = \frac{1}{n}\sum_{k=1}^n X_k$ и ее распределение : $n\widehat{\lambda_n} \sim P(n,\lambda)$.

9. Несмещенные оценки среднего значения и дисперсии наблюдаемой случайной величины.

Пусть X-случайная величина с распределением Р. Пусть $\mu = EX$, $\sigma^2 = DX$.

Тогда: $\overline{X} = \hat{\mu}n$ – несмещенная оценка μ ,

$$rac{n}{n-1}S^2 = rac{1}{n-1} \sum_1^n (X_k - \overline{X})^2 = \widehat{\sigma_n^2}$$
 – несмещенная оценка σ^2

10. Оценки по методы моментов для параметров нормального распределения и их совместное распределение.

Если $X^{(n)}$ – выборка из нормального распределения $\mu(\mu,\sigma^2)$. Тогда выборочное среднее \overline{X} и выборочная дисперсия σ^2 есть выборочные оценки μ,σ^2 по методу моментов. Эти оценки – независимые статистики $\overline{X} \sim N(\mu,\frac{\sigma^2}{n})$

$$\frac{nS^2}{\sigma^2} \sim X_{n-1}^2$$

12. Функция правдоподобия и ее интерпретация в терминах выборочных данных

Пусть $X^{(n)}$ случайная выборка из распределения с функцией плотности $f(x|\theta)$ зависящая от параметра θ , тогда функция правдоподобия:

$$L(\theta|x^{(n)}) = \prod_{k=1}^{n} f(x_k|\theta), \, \theta \in \Theta$$

Если x^n результат выборки X^n , то $L(\theta, X^{(n)})$ при каждом фиксированном θ , есть правдоподобия значения θ для данных X^n .

В случае дискретного распределения $Lig(heta \,|\, x^{(n)}ig) = P_{ heta}(X^{(n)} = x^{(n)}).$

13. Метод максимального правдоподобия в оценке параметров вероятностной модели.

Оценка $\hat{\theta}(X^{(n)})$ по методу максимального правдоподобия определяется точкой достижения максимума у функции плотности случайной выборки, то есть $\hat{\theta}(X^{(n)})$ = arg $\max_{\theta \in \Theta} f_n(X^{(n)}|\theta)$.

14. Параметры асимптотической нормальности оценки максимального правдоподобия.

Оценка максимального правдоподобия $\hat{\theta}(X^{(n)})$ со среднем θ и дисперсией $\frac{1}{ni(\theta)}$, $i(\theta) = E_{\theta}(\frac{\partial \ln f_n(X^{(n)}|\theta)}{\partial \theta})^2$, то есть $\lim_{n \to \infty} P_{\theta}((\hat{\theta}_n - \theta)\sqrt{\text{ni}(\theta)} < x) = \Phi(x)$.

15.Оценка максимального правдоподобия для вероятности успеха в схеме испытаний Бернулли и ее распределение.

 $ar{x}$ наблюд. двухточесная величина

$$\mathsf{X} = egin{cases} 1, p \\ 0. \ 1-p \end{cases}$$
 , объем выборки $X^{(n)} = (X_1, \dots, X_n) \ \mathsf{L}(\mathsf{P} \,|\, X^{(n)}) = p^{\sum_1^n X_k} (1-p)^{n-\sum_1^n X_k}$

$$\hat{\theta}_n = \frac{1}{n} \sum_{1}^{n} X_k$$
, $n\hat{\theta}_n = B(n,p)$

Пусть X_1, \dots, X_n — выборка объема Π из распределения Пуассона Π_{λ} ,

где $\lambda > 0$ Найдем ОМП $\hat{\lambda}$ неизвестного параметра λ .

$$P_{\lambda}(X_1 = y) = \frac{\lambda^y}{y!} e^{-\lambda}, y = 0,1,2,...$$

$$f(X,\lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i}}{X_i!} e^{-\lambda} = \frac{\lambda \sum X_i}{\prod X_i!} e^{-n\lambda} = \frac{\lambda n \overline{X}}{\prod X_i!} e^{-n\lambda}.$$

Поскольку эта функция при всех $\lambda>0$ непрерывно дифференцируема по λ , можно искать точки экстремума, приравняв к нулю частную производную по λ . Но удобнее это делать для логарифмической функции правдоподобия:

$$L(X,\lambda) = \ln \left(\frac{\lambda^{n\bar{X}}}{\prod X_i!} e^{-n\lambda} \right) = n\bar{X} \ln \lambda - \ln \prod_{i=1}^n X_i! - n\lambda$$

Тогда

$$\frac{\partial}{\partial \lambda} L(X, \lambda) = \frac{n\overline{X}}{\lambda} - n,$$

и точка экстремума $\widehat{\lambda}$ — решение уравнения: $\frac{n\overline{X}}{\lambda}-n=0$, то есть $\widehat{\lambda}=\overline{X}$. 17.Оценка максимального правдоподобия для параметра Θ равномерного на интервале (0, Θ) распределения.

Оценка параметра положения равномерного распределения $U(0,\theta)$.

Равномерное на отрезке $[0;\theta]$ распределение имеет функцию плотности

 $f(x|\theta)=\theta^{-1}$, если $0\leq x\leq \theta$, u $f(x|\theta)=0$ вне этого отрезка. Следовательно, функция $L(\theta|X^n)$ отлична от нуля и равна θ^{-n} только в области $\theta\geq X_n=\max_{1\leq k\leq n}X_k$

Ее максимум по $\,\, heta\,$ достигается в граничной точке $\, heta=X_n\,$, так что наибольшее значение $X_n\,$ выборки $X^n\,$ есть оценка максимального правдоподобия параметра $\, heta\,$.

18.Оценки максимального правдоподобия для параметров нормального распределения и их совместное распределение.

$$\bar{x}, s^2, \bar{x} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \frac{ns^2}{\sigma^2} \sim x_{n-1}^2 L\left(\theta | x^{(n)}\right) = \frac{1}{(2\pi)^{\frac{n}{2}} \sigma^n} \exp\left[-\frac{1}{2\sigma} \sum_{1}^{n} (x - \mu)^2\right]$$

19.Оценки параметров структурированного среднего в случае выбора из нормального распределения (метод наименьших квадратов).

Наблюдаемая случайная величина у ,которая связана с объяснительной переменной x в виде соотношения $\varepsilon \sim N(0, \sigma^2)$, $y \sim N(bx + a, \sigma^2)$

$$(y_1, x_1) \dots (y_n, x_n)$$

Оценка параметров в нормальном распределении проводится по методу максимального правдоподобия. Выберем:

$$\frac{y - \bar{y}}{s_y} = \rho \frac{x - \bar{x}}{s_x}$$

Можно описать метод наименьших квадратов

$$\sum_{1}^{n}(y_{i}-ax_{i}-b)^{2}$$

20.Оценка параметров наилучшего в среднем квадратическом прогноза в случае выбора из двумерного нормального распределения

Наблюдаемая выборка (X_1,Y_1) ... (X_n,Y_n) из двумерного нормального распределения: $N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$

Наилучший прогноз Y на X, обе величины являются случайными

Y = aX + b, где a и b — оценки по методу максимального правдоподобия. Для того, чтобы решить задачу нужно найти параметры a и b по методу макс. правдоподобия.

$$\frac{Y-ar{Y}}{S_Y}=rrac{X-ar{X}}{S_X}$$
 – оценка параметров.

В случае нормального распределения линейный прогноз обладает свойством оптимальности с точки зрения малости средней квадратичной ошибки и совпадает с кривой средней квадратичной регрессии.

1 Понятие оптимальной оценки.

Опр. Оценка $\hat{\theta}_n(X^{(n)})$ - называется оптимальной, если на ней достигается минимум среднеквадратической оценки $E_{\theta}(\hat{\theta}_n(X^{(n)}) - \theta)^2$.

Если оценка несмещенная, то оптимальная оценка – это оценка имеющая минимальную дисперсию $E_{\theta}\hat{\theta}_{n}(\lambda^{(n)}) = \theta, \forall \theta \in \Theta$

2 Нижняя граница для квадратичного риска оценки.

$$rac{\left[rac{1}{d_0}E_ heta\widehat{ heta}\ \left(X^{(n)}
ight)
ight]^2}{ni(heta)}$$
, где $i(heta)=E_ heta\left(rac{\partial hf(lpha| heta)}{\partial heta}
ight)^2$ — информация по Фишеру.

3 Нижняя граница для дисперсии несмещенной оценки параметрической функции.

Если $f(\theta)$ — функция параметра θ и необходимо оценить $\hat{\theta}_n(X^{(n)})$, тогда ее среднеквадратичный риск $E_{\theta}(\hat{\theta}_n\big(X^{(n)}\big)-\theta)^2 \geq D_{\theta}\hat{\theta}_n\big(X^{(n)}\big) = \frac{[d\gamma(\theta)/d\theta]^2}{nI(\theta)}$

4 Эффективность оценки по отношению к нижней границе квадратичного риска

Оценка $\theta_n(X^{(n)})$ называется эффективной, если её среднеквадратичный риск равен нижней границе $\frac{\left[\frac{d}{d\theta}E_{\theta}(\theta^n(X^{(n)}))\right]^n}{n_i(\theta)}$

5) Эффективная оценка параметра показательного распределения.

Выборка X1...Xn, $f(x|\theta) = \frac{1}{\theta} e^{-\frac{X}{\theta}}$, $x \geqslant 0$, $\theta > 0$ - функция плотности показательного распределения. Выборочное среднее \overline{X} есть эффективная оценка параметра θ , на ней достигается нижняя (достижимая) граница квадратичного риска оценки.

6) Эффективность оценки метода максимального правдоподобия.

T-ма. Если существует эффективная оценка (её квадратичный риск достигает нижней границы), то она почти наверное достигает оценки максимального правдоподобия.

7) Определение доверительного множества

Подмножество $\Delta_n = \Delta_n \left(X^{(n)} \right)$ параметрического пространства Θ , размеры у конфигурации которого определяются по выборочным данным, называется $(1-\alpha)$ – доверительной областью, если оно с вероятностью не меньше, чем $(1-\alpha)$ накрывает истинное неизвестное значение параметра θ , т.е. $P_{\theta} \left(\Delta_n \left(X^{(n)} \right) \ni \theta \right) \geq (1-\alpha), \ \ \forall \ \theta \in \Theta$

8 Доверительный коэффициент и доверительный уровень

Доверительный коэффициент-наибольшее значение вероятности доверительного множества $sup_n\ P_{\theta}\big(\Delta_n(X^{(n)}\big)\ni\theta\big)=Q$

Доверительный уровень $(1-\alpha)$ есть заданная ограниченная снизу на доверительный коэффициент. Множество Δ_n называется $(1-\alpha)$ доверительным, если $Q \ge 1-\alpha$ (т.е. коэффициент Q).

9. Определение верхней доверительной границы.

Статистика $\bar{\theta}(X^{(n)})$ называется верхней $(1-\alpha)$ доверительной границей, если $P_{\theta}(\bar{\theta}(X^{(n)}) \geq \theta) \geq 1-\alpha$, $\forall \; \theta \in \Theta$ (большое тетта).

10. Доверительный интервал для среднего значения нормального распределения при известном значении дисперсии.

Пусть $X^{(n)}$ выборка из $N(\mu,\sigma^2)$, где σ^2 известно. Интервал с концами $\overline{X}\pm\lambda_{\alpha}\frac{\sigma}{\sqrt{n}}$, где $\lambda_{\alpha}=\Phi^{-1}(1-\frac{\alpha}{2})$. Является $(1-\alpha)$ доверительным интервалом для μ , т.е. $P_{\mu}(\overline{X}-\lambda_{\alpha}\frac{\sigma}{\sqrt{n}}\leq\mu\leq\overline{X}+\lambda_{\alpha}\frac{\sigma}{\sqrt{n}}=1-\alpha)$.

11. Верхняя доверительная граница для дисперсии нормального распределения при известном среднем значении.

При выборе из $N(\mu,\sigma^2)$ распределения с известным средним значением μ метод максимального правдоподобия приводит к несмещенной оценке $\widetilde{\sigma_n^2} = \frac{1}{n} \sum_{k=1}^n (X_k - \mu)^2$ параметра $\overline{\sigma^2} \big(X^{(n)} \big)$. И значение верхней доверительной границы соответственно равно:

$$P\left(\frac{\widetilde{\sigma_n^2}}{\sigma^2}>\lambda\right)=P\left(\frac{\sum_1^n\left(\frac{x_k-\mu}{\sigma}\right)^2}{n}>\lambda\right)=1-K_n(n\lambda)=1-lpha$$
, где $\lambda=rac{1}{n}K_n^{-1}(lpha).$

12 Совместное распределение выборочного среднего и выборочной дисперсии при выборе из нормального распределения

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 $\frac{nS^2}{\sigma} \sim \mathcal{X}_{n-1}^2$

13) Распределение выборочного среднего при выборе из нормального распределения

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

14) Распределение выборочной дисперсии при выборе из нормального распределения

$$\frac{nS^2}{\sigma} \sim X_{n-1}^2$$

15) Верхняя доверительная граница для дисперсии нормального распределения при неизвестном среднем значении

Распределение опорной функции

$$\frac{nS^2}{\sigma^2} = \frac{\sum_{1}^{n} (X_k - \bar{X})^2}{\sigma^2} = \sum_{i=1}^{n} \left(\frac{X_k - \mu}{\sigma} - \frac{1}{n} \sum_{i=1}^{n} \frac{X_i - \mu}{\sigma} \right)^2 = \sum_{1}^{n} (Y_k - \bar{Y})^2$$

есть хи-квадрат распределение с n-1 степенью свободы. Следовательно , верхняя (1- α) доверительная граница определяется квантилью $\lambda_{\alpha}=K_{n-1}^{-1}(\alpha)$ хи-квадрат распределения – корнем уравнения

$$P\left(\frac{nS^2}{\sigma^2} \ge \lambda\right) = 1 - K_{n-1}(\lambda) = 1 - \alpha,$$

и доверительное утверждение $\sigma^2 \leq \overline{\sigma}_n^2 = nS^2/K_{n-1}^{-1}(\alpha)$ выполняется с заданной вероятностью 1- α .

16) Доверительный интервал для среднего значения нормального распределения при неизвестном значении дисперсии

$$\bar{X} \sim N(\mu, \sigma^2), \bar{X} + t_{\alpha} * \frac{s}{\sqrt{n}}$$

где \overline{X} - выборочное среднее,

$$S^2 = \frac{1}{n} \sum_{1}^{n} (X_k - \bar{X})^2$$
, $\bar{X} = \frac{1}{n} \sum_{1}^{n} X_k$, $t_\alpha = S_{n-1}^{-1} \left(1 - \frac{\lambda}{2} \right)$.

17. Асимптотически доверительный интервал для вероятности успеха в испытаниях Бернулли.

Оптимальной несмещенной оценкой р для испытаний Бернулли является выборочное среднее $\overline{X}=n^{-1}\sum_{1}^{n}X_{k}$. Статистика $n\overline{X}$ имеет биномиальное распределение B(n,p), и это позволяет насчитать таблицы доверительных пределов для р при различных значениях доверительного уровня 1- α , объёма выборки n и числа успешных исходов $n\overline{x}$.

Выборочное среднее асимптотически нормально со средним р и дисперсией p(1-n)/n. Следовательно, (1- α) – доверительная область $\Delta_n = \{p: 0 \le p \le 1, |\overline{X} - p| \le \lambda_\alpha \sqrt{p(1-p)/n}\}.$

Получаем доверительный интервал $\frac{n}{n+\lambda_{\alpha}^2} \bigg(\overline{X} + \frac{\lambda_{\alpha}^2}{2n} \pm \lambda_{\alpha} \, \sqrt{\frac{\overline{X}(1-\overline{X})}{n} + \frac{\lambda_{\alpha}^2}{4n^4}}\bigg),$

который при больших объёмах испытаний п мало отличается от доверительного интервала

$$\overline{X}\pm\lambda_{lpha}\,\sqrt{rac{\overline{X}(1-\overline{X})}{n}}$$
, полученного заменой $\sigma^2(p)=p(1-p)$ на её оценку $\overline{X}ig(1-\overline{X}ig)$.

18. Асимптотически доверительный интервал для параметра распределения Пуассона.

Распределение Пуассона Р(Ө) с функцией плотности

$$f(x|\theta) = P_{\theta}(X = x) = \theta^{x} e^{\theta}/x!, x=0,1,2...$$

индексируется положительным параметром Θ и определяется выборочным средним \overline{X} .

Оценка \overline{X} асимптотически нормальна (Θ , Θ /n), что позволяет определить асимптотически доверительную область $\Delta_n = \{\theta \colon \theta \geq 0, |\overline{X} - \theta| \leq \lambda_\alpha \sqrt{\Theta/n}\}$.

Решение неравенств в фигурных скобках относительно Θ даёт асимптотически доверительный интервал $\overline{X} + \frac{\lambda_{\alpha}^2}{2n} \pm \lambda_{\alpha} \sqrt{\frac{\overline{X}}{n} + \frac{\lambda_{\alpha}^2}{4n^2}}.$

Наконец, заменяя $\sigma^2(\theta)=\theta$ её оценкой \overline{X} , получаем также асимптотический доверительный, но, как показывают числовые расчеты, менее точный интервал $\overline{X}\pm\lambda_{\alpha}\sqrt{\frac{\overline{X}}{n}}$.

19. Общий подход к построению асимптотически доверительных областей на основе оценки значения параметра.

$$\Theta \varphi = \{P_{\theta}, \Theta \in \mathbb{N}\}\$$

$$\widehat{\theta_n}(x^{(n)})$$
 состоятельная, асимптотически нормальны $N(\theta, \frac{\sigma^2(\theta)}{n})$ довер. интерв. $\frac{\widehat{\theta_n}(x^{(n)}) - \theta}{\sigma(\widehat{\theta_n}(x^{(n)}))} \sqrt{n} \sim N(0, 1)$

$$\widehat{\theta_n}(x^{(n)}) \pm \frac{\sigma(\widehat{\theta_n}(x^{(n)}))}{\sqrt{n}}.$$

20. Распределение Стьюдента и его использование в задачах математической статистики.

$$\xi$$
 ~ N(0,1) , η - X_n^2 , Тогда с.в. τ = $\frac{\xi}{\sqrt{\eta}}\sqrt{n}$

имеют распределение Стьюдента с S_n – степенью свободы.

Используется в построении доверительных интервалов и крит. значимости, проверки гипотез среднего значения нормального распределения при неизвестной дисперсии

Стьюдента $T = \frac{\overline{X} - M}{S} \sqrt{n-1}$, когда каждое значение параметра имеет распределение Стьюдента с n-1 степенями свободы.

1. Двухточечное пространство решений и его соотношение с параметрическим простанством верятностной модели. Нулевая и альтернативная гипотезы.

2. Критерий и способ его задания.

Критерий есть правило по которому принимается или отвергается нулевая гипотеза. Это правило задается с помощью крит. Области S-подмн-во $X^{(n)}$ — пространство значений случ. выборки $X^{(n)}=(X_1,\dots,X_n)$. Критерий как правило гласит, если результат $X^{(n)}$ попадает в область S ($X^{(n)}\in S$), то гипотеза H_0 отвергается , принимается H_1 .

3.Критическая область и область принятия нулевой гипотезы.

Крит. обл. S- подоб. Выборочного пр-ва $X^{(n)}$, если X попадает в область, то H_0 отвергается. $A=X^{(n)}\setminus S=S^c$

4. Уровень значимости $\alpha \in (0,1)$.

Есть требуемое ограничение на критерий ограничений вер-ть отклонить гипотезу, когда она верна.

5. Функция мощности критерия.

 $m(\theta)$ = вероятности отклонить нулевую гипотезу H_0 , когда θ истинное значение параметра. $m(\theta) = P_{\theta}(X^{(n)} \in S \mid \theta \in \Theta)$

6. Размер критерия.

Наибольшее значение вероятности ошибки 1—го рода, вероятность $\alpha(\theta)$ отклонения нулевой гипотезы H₀, когда гипотеза верна $\overline{\alpha} = \sup P_{\theta} (X^{(n)} \in S) = \sup \alpha(\theta)$

7. Вероятность ошибки первого рода.

Вероятность ошибки 1-го рода $\alpha(\theta)$, $\theta \in \Theta$ — вероятность отвергнуть нулевую гипотезу H_0 , если на самом деле она верна.

$$\alpha$$
 (θ) = $P_{\theta}(X^{(n)} \in S)$, $\theta \in \Theta_0$

8. Вероятность ошибки второго рода.

Вероятность ошибки 2-го рода β (θ) — вероятность принять нулевую гипотезу H_0 , если на самом деле верна альтернатива H_1 .

$$\beta(\theta) = P_{\theta}(X^{(n)} \in A), \theta \in \Theta_0$$

9)Построение критерия заданного уровня значимости с помощью оценки парамета

Пусть $\widehat{\theta_n}(x^{(n)})$ – состоятельная оценка параметра θ , $P=\{$ $\}$ - вероятностные модели. Известно распределение статистики или асимптотическое распределение, тогда критерий заданного уровня значимости строится с помощью статистики $\widehat{\theta_n}(x^{(n)})$ – θ_0 граничная точка. H_0 : $\theta \leq \theta_0$, H_1 : $\theta > \theta_0$ Тогда $\widehat{\theta_n}(x^{(n)})$ – $\theta_0 > C$,

критическая const $C = \sup_{\theta \leq \theta_0} P_{\theta}(\widehat{\theta_n}(x^{(n)}) - \theta_0 > C) \leq \alpha$

10) Проверка гипотезы о величине среднего значения нормального распределения при известной дисперсии

Пусть $x^{(n)}$ выборка из нормального распределения $N(\mu, \sigma^2)$

 H_0 : $\mu \leq \mu_0$ H_1 : $\mu > \mu_1$, критическая область $S = \{x^{(n)}: \bar{x} > C\}$. C определена из соотношения $\mathrm{P}_{\mu}(\bar{x} > C) = 1 - \Phi\left(\frac{\mathrm{C} - \mu_0}{\sigma}\sqrt{n}\right) = \alpha$

T.e.
$$C_{\alpha} = \mu_0 + \Phi^{-1}(1 - \alpha) \frac{\sigma}{\sqrt{n}}$$

11)Минимальный объем выборки из нормального (μ, σ^2) распредления (значение σ^2 известно), необходимый для различения гипотез $H_0: \mu \leq \mu_0$ и $H_1: \mu \geq \mu_1$ с заданными отграничениями на вероятности ошибок первого и второго рода.

$$\mu_1 > \mu_0, \alpha, \beta \ n \geq \frac{[\Phi^{-1}(1-\alpha) + \Phi^{-1}(1-\beta)]^2}{(\mu_1 - \mu_0)^2}$$

12) проверка гипотез о величине дисперсии нормального распределения при неизвестном среднем значении.

 $S^2 = n^{-1} \sum_{1}^{n} (X_k - \bar{X})^2$ есть состоятельная оценка σ^2 , распределение не зависит от μ . $\frac{nS^2}{\sigma^2} \sim$ хи — квадрат с N-1 степенями свободы. Критерий с критической областью $nS^2 < C$, $C = \sigma_0^2 K_{n-1}^{-1}(\alpha)$, следующей из соотношения $P_{\mu,\sigma}\left(\frac{nS^2}{\sigma^2} \le \frac{C}{\sigma^2}\right) = \alpha$

13. Проверка гипотезы о величине среднего значения нормального распределения при неизвестной дисперсии (одновыборочный критерий Стьюдента).

Условия применения t- критерия: случайная выборка $X_1,...,X_n$ получена из нормального распределения c неизвестным средним μ и неизвестной дисперсией σ^2 .

 H_0 : $\mu \leq \mu_0$

 H_1 : $\mu > \mu_0(H1: \mu < \mu_0)$ или H_1 : $\mu \neq \mu_0$

Уровень значимости:α

Так как \overline{X} состоятельная оценка значения μ ; то статистика Стьюдента

$$T=rac{\overline{X}_{}^{}-\mu 0}{S_{}}*\sqrt{n-1}$$
,где $\overline{X}_{}^{}-$ выборочное среднее, $S_{}^{}-$ выборочная дисперсия (смещенная оценка), n – объем выборки.

статистика T имеет распределение Стьюдента $S_{n-1}(C)$ с (n-1)-ой степенью свободы. Распределение Стьюдента симметрично — $S_{n-1}(-C) = 1 - S_{n-1}(C)$. С=С(α)-критическая константа. Для критерия T > С,свободного от неизвестного значения σ , C= S_{n-1}^{-1} (1- α). Для двусторонней альтернативы с критической областью |T|>С C= S_{n-1}^{-1} (1- α /2).

Альтернатива	Размер критерия	Функция мощности
		m(μ; σ)
$\mathbf{H}_1: \mu - \mu_0 > 0$	$=1-S_{n-1}(C)$	$= \mathbf{P}\{T > C\}$
$\mathbf{H}_1: \mu - \mu_0 < 0$	$=S_{n-1}(C)$	$= \mathbf{P}\{T < C\}$
$\mathbf{H}_1: \mu - \mu_0 \neq 0$	$= 2(1 - S_{n-1}(C))$	$= \mathbf{P}\{ T > C\}$

14.Проверка гипотез о средних значениях двух нормальных распределений с общей неизвестной дисперсией (двухвыборочный критерий Стьюдента).

Условия применения критерия: случайные выборки $X_1,...,X_n$ и $Y_1,...,Y_m$ имеют нормальное распределение с неизвестными средними μ_1 и μ_2 и общей неизвестной дисперсией σ^2 . H_0 : $\mu_1 = \mu_2$; H_1 : $\mu_1 \neq \mu_2$ или H_1 : $\mu_1 > \mu_2$ ($\mu_1 < \mu_2$)

Уровень значимости:α; Вычисляется статистика Стьюдента.

$$T = \frac{\overline{x} - \overline{y}}{\sqrt{ns_x^2 + m \ s_y^2}} \sqrt{\frac{nm(n + m - 2)}{n + m}},$$

статистика T имеет распределение $S_{n_1+n_2-2}(t)$ с (n+m-2) степенями свободы. $C(\alpha)=S_{n+m-2}^{-1}$ (1- α).При альтернативе H_1 : $\mu_1\neq\mu_2$ критическая константа $C(\alpha)=S_{n+m-2}^{-1}$ (1- α /2).

15. Проверка гипотез о значениях дисперсий двух нормальных распределений при неизвестных средних (критерий Фишера).

Условия применения критерия: две независимые случайные выборки $X_1,...,X_n$ и $Y_1,...,Y_m$ из нормальных распределений с неизвестными средними μ_1 и μ_2 и с дисперсиями σ_1^2 и σ_2^2 .

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$.

 H_1 : $\sigma_1^2 \neq \sigma_2^2$ или H_1 : $\sigma_1^2 > \sigma_2^2$.

Уровень значимости:α

Значения несмещенных выборочных дисперсий S_x^2 и S_y^2 .

Рассмотреть критерий, основанный на статистике $F = nS_x^2/mS_y^2$, которая распределена как $(\mathcal{X}_{n-1}^2/\mathcal{X}_{m-1}^2)^*(\sigma_1^2/\sigma_2^2)$

Функция мощности критерия F > C (который называется критерием Фишера или F - критерием)

$$m(\sigma_1^2 / \sigma_2^2) = P_{\mu_1,\mu_2,\sigma_1,\sigma_2}(F > C) = P((\mathcal{X}_{n-1}^2 / \mathcal{X}_{m-1}^2) > C^*(\sigma_2^2 / \sigma_1^2))$$

есть монотонно возрастающая функция отношения дисперсий σ_1^2 / σ_2^2 .

Для ее вычисления необходимо знать распределение отношения двух независимых случайных величин, распределенных по закону хи-квадрат с n-1

и m -1 степенями свободы. Это распределение Фишера

 $F_{n-1:m-1}$, плотность которого

$$f_{n-1;m-1}(x) = \frac{\Gamma(\frac{n+m-2}{2})}{\Gamma(\frac{n-1}{2})\Gamma(\frac{m-1}{2})} * \frac{x^{\frac{n-1}{2}-1}}{(x+1)^{\frac{n+m-2}{2}}}, x > 0$$

Критическая константа С критерия Фишера заданного размера определяется как квантиль этого распределения: $C(\alpha) = F_{n-1,m-1}^{-1}$ (1- α).

16. Проверка гипотез о вероятности успеха в испытаниях Бернулли.

Обозначим через T=числу успехов в n независимых наблюдениях. По т.Муавра-Лапласа статистика T в пределе при $n \to \infty$ имеет нормальное распределение со средним np и дисперсией np(1-p). Таким образом,

$$\mathbf{P}_{\theta} \left\{ \frac{T - np}{\sqrt{np(1-p)}} < x \right\} \to \Phi(x) .$$

Положив в последнем соотношении $x=t^{\alpha}=\Phi^{-1}(1-\alpha)$ и разрешив неравенство под знаком вероятности относительно p , получим нижнюю границу для p .

17. Проверка гипотез о вероятности успеха в испытаниях Бернулли (асимптотический критерий значимости)

При больших объемах выборки n используют нормальные аппроксимации биномиального распределения, получая таким образом критерий, размер которого асимптотически ($n \to \infty$) равен α . Статистика T асимптотически нормальна со средним np и дисперсией np(1-p), поэтому для определения критической константы имеем асимптотический аналог

$$\Phi\left(\frac{C - np_0}{\sqrt{np_0(1 - p_0)}}\right) \leqslant \alpha,$$

откуда $C(\alpha) \approx np_0 - \Phi^{-1}(1-\alpha)\sqrt{np_0(1-p_0)}$. Такой метод построения критериев асимптотического уровня α применим для любой критической области, в задании которой используется асимптотически нормальная оценка тестируемого параметра.

18. Соотношение между задачами доверительного оценивания и проверки гипотез.

Если имеется состоятельный критерий проверки гипотезы $\theta = \theta_0$ при двусторонней альтернативе $\theta \neq \theta_0$, то его области принятия соответствует двусторонний доверительный интервал. Если же альтернативная гипотеза носит односторонний характер, то при альтернативе $\theta < \theta_0$ мы получаем верхнюю доверительную границу, а при $\theta > \theta_0$ — нижнюю. Принцип двойственности применим и к доверительным интервалам, как статистическим правилам проверки гипотез: гипотеза $\theta \in \Theta_0$ отвергается тогда. и только тогда, когда $(1-\alpha)$ -доверительная область принадлежит подмножеству Θ_1 , и такое статистическое правило (критерий) гарантирует заданное ограничение α на вероятность ошибки первого рода.

19.Как построить $(1-\alpha)$ -доверительную область для параметра θ , имея семейство критериев заданного уровня α для проверки простой гипотезы $\theta=\theta_0$ $\theta\in\Theta$

Пусть $A(\theta_0)$ -обл. принятия некот. критерия уровня α и пусть для $\forall \ \theta_0 \in \Theta$ определена

$$P_{\theta_0}(x^{(n)} \in A(\theta_0)) = \alpha.$$

Тогда подобласть параметра пр-ва $A_{\theta}(x^{(n)}) = \{\theta : x^{(n)} \in A(\theta)\}$ яв-ся $(1-\alpha)$ довер. областью.

20.Как проверить гипотезу $\theta \in \theta_0$ с заданным уровнем значимости α , располагая (1- α)-доверительной областью.

Если имеется обл. $\operatorname{bn}(x^{(n)})$ и $x^{(n)} = X^{(n)}$, то гипотеза H_0 отв-ся только в том случае если $x^{(n)}$ лежит в области альтернативной.

1. Наиболее мощный критерий заданного уровня для проверки простой гипотезы при простой альтернативе

Пусть X — случайная величина. Гипотеза $H_0: \varphi_0(x), H_1: \varphi_1(x).$

Критерий проверки H_0 при альтернативе H_1 основан на статистике правдоподобия (при выборке $X^{(n)}$). $L(X^{(n)}) = \prod_{k=1}^n \frac{\varphi_1(X_k)}{\varphi_0(X_k)}$

Гипотеза H_0 отвергается, если $\mathrm{L}\big(X^{(n)}\big) > \mathcal{C}$, где критическая константа C определяется как корень уравнения $P_{\theta}(\mathrm{L}\big(\alpha^{(n)}\big) > \mathcal{C}) \leq \alpha$

Этот критерий имеет наибольшую мощность, когда выборка из распред. ϕ из всех критериев, размер которых не превосходит размер критерия отношения правдоподобия.

2.Понятие равномерно наиболее мощного критерия

Критерий ϕ называется равномерно наиболее мощным среди заданных критериев условия α , если есть вероятность отклонен. гипотезу H_0 не больше, чем у всех других критериев

3.Постановка задачи о тестировании надежности в рамках модели "отсутствие последействия" для распределения долговечности изделий.

Пусть X — долговечность изделия, t_0 — срок службы. $P_{\theta}(X>t_0)$ — изделие считается надёжным, если эта вероятность больше заданного P_0 $P_{\theta}(X>t_0)>P_0$. Если X имеет показат. распределение $F(X(\theta)=\varphi-e^{\frac{-x}{\theta}})$, то утверждение о надёжности изделия эквивалентны

4. Критическая область равномерно наиболее мощного критерия тестирования надежности в случае показательном распределении долговечности

Критическая область $\sum X_k > C$, где $C = G_n^{-1}(1-\alpha)$, где G_n^{-1} – квантиль гамма-распределения с параметром формы п

5. Функция мощности равномерно наиболее мощного критерия при проверке гипотезы надежности при показательном распределении долговечности

Функции мощности критерия φ^* как критерия различения исходных сложных гипотез $H_0: \theta < \theta_0$ и $H_1: \theta \geq \theta_0$, равна

$$m(\theta) = E_{\theta} \varphi^* \left(X^{(n)} \right) = P_{\theta} \left(T_n > C(\alpha) \right) = 1 - G_n \left(\frac{G_n^{-1} (1 - \alpha) \theta_0}{\theta} \right), \theta > 0$$

6. Определение равномерно наиболее точной верхней доверительной границы

Верхняя $(1-\alpha)-$ доверительная граница $\overline{\theta_n}$ называется равномерно наиболее точной, если она равномерно по всем θ и θ' , удовлетворяющим неравенству $\theta'>\theta$, минимизирует вероятность

$$P_{\theta}(\overline{\theta_n}(X^{(n)}) \ge \theta')$$

7. Критерий хи-квадрат для проверки простой гипотезы о распределении наблюдаемой случайной величины

$$X^2 = \sum_{i=1}^r \frac{(\nu_i - np_i)^2}{np_i}$$

где v_i – количество в i-ой области разбиения, p_i – теоретическая вероятность попадания в эту область. Гипотеза H отвергается, если $x^2 \geq C$, C – критическая константа.

8. Критерий хи-квадрат для проверки гипотезы о распределении наблюдаемой случайной величины, когда распределение зависит от параметров с неизвестными значениями

$$X^2 = \sum_{i=1}^r rac{(
u_i - np_i(heta))^2}{np_i(heta)} > \mathcal{C}$$
, где ищется минимум

$$heta(
u_1 ...
u_n)$$
 есть r-s-1 распределение

10 Критерий хи-квадрат независимости признаков (критерий сопряженности)

Наблюдается п объектов и объект имеет два признака. 1й признак имеет s уровней, а 2й объект n уровней. s>=2, n>=2 Пусть p_{ij} вероятность того, что объект имеет i-й признак по 1 и j-q признак по 2. Проверяется гипотеза p_{ij} = p_i * p_j

11 Критерий однородности хи-квадрат

Имеется s популяция $M(n_i, \dot{p}_i, r)$, i=1,s c r исходами вектора вероятности $\dot{p}_i=(\dot{p}_{i1}, ... \dot{p}_{r1})$ и количество n_i наблюдений

Проверяется гипотеза совпадения вероятности исходов $\dot{p}_1 = ... \dot{p}_n$