NTIN090 — Základy složitosti a vyčíslitelnosti 3. cvičení

Petr Kučera

3. listopadu 2022

Pomocí w^R označujeme zrcadlové otočení řetězce w.

- 1. Ukažte, že jazyk L_u je m-převoditelný na následující jazyky a tyto jazyky jsou tedy algoritmicky nerozhodnutelné.
 - (a) $S_1 = \{ \langle M \rangle \mid (\exists w \in L(M))[w = w^R] \}$
 - (b) $S_2 = \{ \langle M_1, M_2, x \rangle \mid x \in L(M_1) \cap L(M_2) \}$
 - (c) $S_3 = \{ \langle M_1, M_2 \rangle \mid L(M_1) \cap L(M_2) \neq \emptyset \}$
 - (d) $S_4 = \{\langle M, k \rangle \mid |L(M)| \ge k\}$
- 2. Uvažme jazyk EQ = $\{\langle M, N \rangle \mid L(M) = L(N)\}$, ukažte, že
 - 1. $L_u \leq_m EQ$
 - 2. $\overline{L_u} \leq_m EQ$
- 3. Ukažte, že univerzální jazyk L_u je m-převoditelný na jazyky Fin a Inf, kde

$$\begin{array}{rcl} & \operatorname{Fin} & = & \{\langle M \rangle \mid L(M) \text{ je konečný jazyk} \} \\ & \operatorname{Inf} = & \operatorname{Fin} & = & \{\langle M \rangle \mid L(M) \text{ je nekonečný jazyk} \} \end{array}$$

- 4. Ukažte, že jsou-li A a B dva netriviální (tj. A, $B \neq \emptyset$, Σ^*) rozhodnutelné jazyky, pak $A \leq_m B$.
- 5. Ukažte, že je-li A částečně rozhodnutelný jazyk a $A \leq_m \overline{A}$, pak A je ve skutečnosti rozhodnutelný jazyk.
- 6. Operaci disjunktního sjednocení ⊕ jazyků *A* a *B* nad abecedou {0, 1} definujeme jako

$$A \oplus B = \{a \mid a \in A\} \cup \{b \mid b \in B\}$$

Ukažte následující tvrzení

- (a) $A \leq_m A \oplus B$ a $B \leq_m A \oplus B$
- (b) Předpokládejme, že C je jazyk nad abecedou $\{0,1\}$, přičemž $C \neq \{0,1\}^*$. Předpokládejme dále, že platí $A \leq_m C$ i $B \leq_m C$. Pak rovněž $A \oplus B \leq_m C$.
- 7. Uvažme jazyk $J = L_u \oplus \overline{L_u}$. Ukažte, že J ani \overline{J} nejsou částečně rozhodnutelné jazyky.
- 8. Ukažte, $J \leq_m \overline{J}$.

ZSV, 3. cvičení 3. listopadu 2022

Domácí úkoly

9. (10 bodů) Rozhodněte, zda jazyk $S = \{\langle M, x \rangle \mid (\forall y < x)[M(y) \downarrow]\}$ je rozhodnutelný. Pokud není rozhodnutelný, rozhodněte, zda S nebo \overline{S} je částečně rozhodnutelný jazyk.

10. (20 bodů) Uvažme jazyk

$$S = \left\{ \langle M \rangle \mid (\forall x \in \Sigma^*) \left[x \in L(M) \Leftrightarrow x^R \in L(M) \right] \right\}.$$

- (a) (10 bodů) Ukažte, že $L_u \leq_m S$
- (b) (10 bodů) Ukažte, že $L_u \leq_m \overline{S}$.

Při řešení počítejte s tím, že řetězec x v instanci $\langle M, x \rangle$ jazyka L_u může být palindrom.