BITS-Pilani, Hyderabad Campus FIRST SEMESTER 2020-2021

Course Handout Part II

Date: August 03rd, 2021

In addition to Part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : MEL G611

Course Title : IC Fabrication Technology

Units : 5 (3 2 5)

Instructor-in-charge : Dr. Parikshit Sahatiya Instructor : Dr. Parikshit Sahatiya Lab Teaching Assistants : Mr. Pavan Sai Kumar

Description: Material properties; crystal growth and doping; diffusion; oxidation; epitaxy; ion implantation; deposition of films using CVD, LPCVD and sputtering techniques; wet and dry etching and cleaning; lithographic process; device and circuit fabrication; process modeling and simulation

1. COURSE DESCRIPTION:

The course describes both theoretical and practical aspects of Integrated Circuit (IC) fabrication technology. Conversion of a single crystal of silicon into an IC requires several fabrication steps such as epitaxy, oxidation, chemical vapor deposition, metallization, ion implantation, diffusion, etching, lithography etc. All these process steps will be discussed. Further, modelling of each processing step would be discussed in details.

2. SCOPE AND OBJECTIVE:

The objective of the course is not only to introduce the basic principles involved in IC fabrication but also to discuss the processing technology. Fabrication of integrated circuits is a joint venture by electrical engineers, chemical engineers, materials scientists and physicists. This interdisciplinary course builds bridges across various disciplines.

3. TEXT BOOK:

T1: Plummer, James D. Silicon VLSI technology: Fundamentals, Practice and Modeling. Pearson Education India, 2009.

4. REFERENCE BOOKS:

R1: Sze S. M., VLSI Technology, McGraw-Hill, 2nd ed., 1980.

R2: Campbell S A, The science and Engineering of microelectronic fabrication, Oxford 2001.

R3: Gandhi, Sorab K. VLSI fabrication principles: silicon and gallium arsenide. John Wiley, 1994.

5. Schedule:

Lecture: Mon, Wed, Fri, 10 am - 10.50 am. Labs: Mon, Wed, 3 pm - 5 pm.

6. COURSE PLAN

Section	Lecture #	Topic	Brief	Reference
I	1 - 2	Introduction to IC Fabrication Technology	A brief overview of the course and basic fabrication steps.	Lect notes/slides
II	3-5	CMOS Technology	CMOS Process flow	Lecture Notes/Slides/Ch .2 Plummer
III	6- 8	Crystal structures, defects, directions, planes	Basic Solid State Physics for understanding of Silicon fundamentals	Lect notes/ slides/Ch. 3, Plummer
IV	9-11	Single crystal growth to Wafer preparation, dopant distribution	To learn the art of wafer preparation and some of the basic properties of these wafers.	Lect Notes/Slides/Ch .3, Plummer
V	12	Semiconductor Manufacturing	Introduction to Clean room and wafer cleaning process (RCA)	Lect Notes/Slides/Ch .4, Plummer
VI	13-17	Oxidation and Si/SiO ₂ interface	Focus primarily on the thermal oxidation process and the properties at the Si/SiO ₂ interface.	Lect Notes/Slides /Ch. 6, Plummer
VII	17-21	Lithography	Learn how to print the patterns on the wafer using optical exposure systems. Basics of Optical systems	Lect Notes/Slides /Ch. 5, Plummer's
VIII	22-26	Dopant Diffusion (Doping process)	Understand the doping concept by diffusion method.	Lect Notes/Slides /Ch. 7, Plummer
IX	17-30	Ion Implantation (Doping process)	Understand the doping concept by Ion Implantation method	Lect Notes/Slides /Ch. 8, Plummer
X	31-32	Annealing of damages and masking during implantation	How annealing helps to recover damages and how the thickness of the masking layer improves the masking efficiency.	Ch. 8, Plummer's book
XI	33-35	Thin Film Deposition	Understand different techniques to deposit thin films (Chemical/Physical Vapor Deposition systems)	Lect Notes/Slides /Ch. 9, Plummer
XII	36-38	Etching	Introducing various etching mechanism involved in CMOS device fabrication	Lect Notes/Slides /Ch. 10,

				Plummer
XIII	39-40	Epitaxy	To introduce the topic	Ch.2, Sze
XIV	41-42	Metallization and conclude	How devices are connected to the outside	Ch. 11
		the course	world.	Plummer

7. EVALUATION SCHEME:

		Weightage			
Component	Duration (min)	%	Marks	Date &Time	Remarks
Mid Semester	90	30	90	As per Timetable	OB
Project	-	10	30	Comment 1	
Lab	-	15	45	Comment 2	
Quizzes	-	10	30	Will be announced	
Comprehensive Exam	120	35	105	As per Timetable	ОВ
Total		100	300		

- Comment 1: Details regarding the Project evaluation will be announced separately.
- Comment 2: Regular labs will be as per schedule and details regarding the lab reports will be announced separately.
- OB → Open Book

8. LIST OF EXPERIMENTS

- i. To study/observe clean room formation, various components, reliability.
- ii. Study the poly-di-methyl-siloxane (PDMS) based fabrication and its testing
- iii. To study the 3D printing based device fabrication and its testing
- iv. Characterization Lab -1 (XRD and XPS)
 - a. Study the crystal structure using XRD
 - b. Study the chemical composition and oxidation state using XPS
- v. Characterization Lab 2 (UV-vis and FESEM)
 - a. Study the UV-visible spectroscopy and calculating the optical bandgap
 - b. Study the Surface Morphology using Scanning Electron Microscopy
- vi. Demonstration of the Thermal Oxidation Process
- vii. Demonstration of the Positive/Negative Photolithography process and wet-etching
- viii. Demonstration of the Chemical Vapour Deposition (CVD Technique)
- ix. Demonstration of the Metallization Process using E-Beam Evaporator/Thermal Evaporator
- x. Demonstration of the IV Characterization using Semiconductor Parameter Analyzer
- **9. CHAMBER CONSULTATION HOUR:** To be announced in the class.
- **10. Makeup Policy:** Make-up only to those who apply before start of test (genuine reason). Those who apply after the start of test will not be granted any make-up. No make-up for Comprehensive test, Project, Quiz and Lab Evaluations.
- 11. Academic Honesty and Integrity Policy: Academic honesty and integrity are to be

maintained by all the students the dishonesty will not be acceptable	roughout the	semester	and any	mode o	f academic
					or-in-charge MEL G611