UCLA	
CS 31: Introduction To Computer Science I	
Howard A. Stahl	
	1
Understanding Numeric Representations	
• Pardon The Slight Diversion Into The Realm Of Mathematics	
	,
Let's Go Visit The Number Line	
Please Think About All The Whole Numbers On The Number Line	
0	

Let	s Go Visit The Number Line
Please Answer	out All The Whole Numbers On The Number Line The Question: Ile Number Are There On The Number Line?
	
	0

Let's Go Visit	The Number Line
Please Answer The Question: How Many Whole Number Are	ole Numbers On The Number Line There On The Number Line? NITE Number Of Whole Numbers On
()

Let's Go Revisit The DataType Chart • This Comes From The Textbook

• This Comes From The Textbook

• 1 Byte = 8 bits 2 Bytes = 16 bits

Let's Go Revisit The DataType Chart

• This Comes From The Textbook

- 1 Byte = 8 bits 2 Bytes = 16 bits
- How Can 16 Bits Be Used To Store An Infinite Number Of Different Possibilities?

Let's Go Revisit The DataType Chart

• This Comes From The Textbook

- 1 Byte = 8 bits 2 Bytes = 16 bits
- How Can 16 Bits Be Used To Store An Infinite Number Of Different Possibilities?

The Answer: It CAN'T!

• This Comes From The Textbook

- 1 Byte = 8 bits 2 Bytes = 16 bits
- How Can 16 Bits Be Used To Store An Infinite Number Of Different Possibilities?

The Answer: It CAN'T! 16 bits Can Only Hold 2^16 - 1 Different Values

Let's Go Revisit The DataType Chart

• This Comes From The Textbook

- 1 Byte = 8 bits 2 Bytes = 16 bits 2 ^ 16 1 = 65,535
- How Can 16 Bits Be Used To Store An Infinite Number Of Different Possibilities?

The Answer: It CAN'T! 16 bits Can Only Hold 2^16 – 1 Different Values

Let's Go Revisit The DataType Chart

• This Comes From The Textbook

- 1 Byte = 8 bits 2 Bytes = 16 bits 2 ^ 16 1 = 65,535
- How Can 16 Bits Be Used To Store An Infinite Number Of Different Possibilities?

The Answer: It CAN'T! 16 bits Can Only Hold 2^16 – 1 Different Values

• This Comes From The Textbook

- 1 Byte = 8 bits 2 Bytes = 16 bits 2 ^ 16 1 = 65,535
- How Can 16 Bits Be Used To Store An Infinite Number Of Different Possibilities?

The Answer: It CAN'T! 16 bits Can Only Hold 2^16 – 1 Different Values

Working With short

- Only A Portion Of The Number Line Is A Possibility
- However, Each Value Can Be Represented Exactly

Working With short

- Only A Portion Of The Number Line Is A Possibility
- However, Each Value Can Be Represented Exactly
- What About The Red Part Of The Number Line?

Working With Floating Point Values	
Please Think About All The Real Numbers On The Number Line	
1	
0	
v	
	1
Working With Floating Point Values	
Please Think About All The Real Numbers On The Number Line	
 Please Answer The Question: How Many Real Numbers Are There Between 0 And 1 On The Number 	
Line?	
←	
0 1	
	1
Working With Floating Point Values	
Please Think About All The Real Numbers On The Number Line Please Answer The Question: Name	
How Many Real Numbers Are There Between 0 And 1 On The Number Line? Answer: An Infinite Number Of Real Numbers Exist Between 0 And 1	
←	
0 1	

• This Comes From The Textbook

Display 1.2	Simple Types	
TYPE NAME	MEMORY USED	
floot	4 bytes	

- 1 Byte = 8 bits 4 Bytes = 32 bits
- How Can 32 Bits Be Used To Store An Infinite Number Of Different Possibilities?

Let's Go Revisit The DataType Chart

• This Comes From The Textbook

- 1 Byte = 8 bits 4 Bytes = 32 bits
- How Can 32 Bits Be Used To Store An Infinite Number Of Different Possibilities?

The Answer: It CAN'T!

Let's Go Revisit The DataType Chart

• This Comes From The Textbook

Display 1.2	Simple Types		
TYPE NAME	MEMORY USED	SIZE RANGE	
float	4 bytes	approximately 10 ⁻¹⁸ to 10 ³⁸	

- 1 Byte = 8 bits 4 Bytes = 32 bits
- How Can 32 Bits Be Used To Store An Infinite Number Of Different Possibilities?

The Answer: It CAN'T!

IEEE Floating Point Formats

• A 32-Bit Floating Point Value Has Three Components

- A Sign Bit: High-Order Bit, Set To Represent A Negative Number
- The Exponent: Represents The Location Of The Decimal Point
- The Mantissa: Represents All The Significant Digits

An Example

- 1.2345678901234567890
- 12.345678901234567890
- 123.45678901234567890
- 1234.5678901234567890
- 12345.678901234567890

Working With float

- Only 32 Bits For Any Given Value
- 1 Bit Reserved For The Sign Bit
- 8 Bits Reserved For The Exponent
 - The Location Of The Decimal Point
- JUST 23 Bits Reserved For All The Significant Digits

Working With float

- Floating Point Values Will Always Be Approximations
 Sometimes, Better Than Others...
- Only The First Leading Digits Will Be Correct...

An Example

- 1.2345678901234567890
- 12.345678901234567890
- 123.45678901234567890
- 1234.5678901234567890
- 12345.678901234567890