

Safe and Efficient In-Context Learning via Risk Control

Metod Jazbec² Charith Peris³ Rinat Khazhiev³ Anqi Liu¹ Andrea Wynn ¹ Daniel Khashabi ¹

¹Department of Computer Science, Johns Hopkins University

²University of Amsterdam

³Amazon Science

Motivation

- We want users to adapt LLMs to new use cases via in-context learning, but not over-adapt to break generalization ability or alignment.
- LLMs overthink on harmful context: accuracy decreases near the final layer.
- We want to make in-context learning safe: context shouldn't hurt performance but should enable gains from helpful demonstrations.

Risk Control for Safe In-Context Learning

Given mixed quality in-context demonstrations and:

- a pretrained LLM $f_{\lambda}(y|x,c)$ returning a class prediction \hat{y} given input x, in-context demos c, and early-exit threshold λ
- a calibration dataset D_{cal} consisting of (x, c, y) tuples
- performance requirements $\epsilon, \delta > 0$

We define a novel in-context learning risk:

$$R_{\mathsf{ICL}}(\lambda) = \mathbb{E}_{(x,y,c)}[\ell(f_{\lambda}(x,c),y) - \ell(f(x),y)] \le \epsilon$$

Then, we return an exit threshold $\hat{\lambda}$ that guarantees:

$$\mathbb{E}_{D_{cal}}[R_{\mathsf{ICL}}(\hat{\lambda})] \le \epsilon$$

Experimental Setup

Tasks: Sentiment Analysis, Hate Speech Detection, Semantic Classification (8 total tasks). All are multiple choice.

Models: (LayerSkip) LLaMA 3 8B and (LayerSkip) LLaMA 2 7B

Results: Risk Control

- We fulfill theoretical guarantees on risk control across all models and tasks with mixed-quality demos.
- When no early exit threshold is safe, we use the zero-shot prediction - our "safe" default behavior.

Results: Efficiency Gains

 Major efficiency improvements compared to previous approach from Fast yet Safe [2]

Discussion

- Our approach maintains safety and achieves greater efficiency even when context may be harmful.
- To achieve this, we (1) apply a novel in-context learning (ICL) loss and (2) ignore harmful context instead of early-exiting.

References & Acknowledgments

[1] Tibshirani et al. Conformal Prediction under Covariate Shift. NeurIPS 2019.

[2] Jazbec et al. Fast yet safe: Early-exiting with risk control. NeurIPS 2024.

Resources used in preparing this research were provided by the Johns Hopkins + Amazon Initiative for Interactive AI, https://ai2ai.engineering.jhu.edu/.