Compliance Assessment Document

Introduction

Objectif : Vérifier que l'architecture développée est conforme aux normes, réglementations et meilleures pratiques définies dans le cadre du projet, en alignant le document avec le cadre TOGAF, l'architecture cible définie, et la roadmap.

1. Description Générale de l'Architecture

Contexte du Projet :

- Client: SCS Magazine
- **Objectif**: Développer une Gestion Électronique de Documents pour améliorer la gestion des articles.
- Attentes Principales : Versionning des articles, suivi des modifications, système de commentaires.

Architecture Cible:

- Front Layer: Utilisation de frameworks modernes (React, Angular) pour un design réactif et des composants réutilisables.
- **Service Layer :** Implémentation en Java avec des principes RESTful, utilisation d'une API Gateway, architecture microservices.
- **Data Layer :** Sécurisation des accès avec des drivers de connexion, utilisation de bases de données hybrides, politiques de sauvegarde et de restauration.
- Déploiement : Utilisation de Docker pour la conteneurisation, Kubernetes pour l'orchestration, CI/CD pour les déploiements automatisés.
- **Sécurité**: Chiffrement via HTTPS, mécanismes robustes d'authentification et d'autorisation, audits de sécurité réguliers.

2. Checklist de Conformité pour l'Architecture Cible

Applications:

- L'approche micro-frontend a-t-elle été correctement respectée en intégrant des composants modulaires et réutilisables ?
- Le backend utilise-t-il des microservices correctement configurés avec Spring Boot et l'api gateway Kong?
- Les interfaces utilisateurs respectent-elles les standards de design responsive et s'adaptent-elles correctement sur mobile, tablette et ordinateurs ?
- L'application dispose-t-elle de toutes les fonctionnalités définies dans le cahier des charges ?
- L'application a-t-elle été testée avec des tests unitaires et d'intégrations afin de garantir une couverture de tests supérieure à 90% ?
- L'application utilise-t-elle le mécanisme de versioning Github?

Gestion des données :

- Les données sont-elles stockées de manière sécurisée et conforme aux réglementations en vigueur tel que la RGPD ?
- Les mécanismes de sauvegarde pour les bases de données tel que PGBackRest sont-ils fonctionnels ?

Sécurité :

- Les communications entre les composants sont-elles chiffrées en HTTPS ?
- Les mécanismes d'authentification et d'autorisation sont-ils robustes et conformes aux standards tels que OAuth2.0 ?

Infrastructures:

- L'infrastructure réseau supporte-t-elle les besoins en bande passante et en latence pour permettre une utilisation fluide du service ?
- Les composants du système sont-ils conteneurisés avec Docker pour assurer la scalabilité et le déploiement efficace ?

Méthodes et outils :

- Les moyens de déploiement sont-ils efficaces et automatisés ?
- Les outils de développement et de test sont-ils alignés avec les meilleures pratiques ?
- Les méthodes de gestion de projet utilisées permettent-elles une adaptation rapide aux changements ?

3. Évaluation des Conformités Techniques et Fonctionnelles

КРІ	Description	Objectif Cible	Fréquence de Mesure
Temps de Réponse des Applications	Temps moyen de réponse des services applicatifs.	< 300 ms	Hebdomadaire
Disponibilité du Système	Pourcentage de disponibilité du système.	99.9%	Mensuel
Taux d'Erreurs	Nombre d'erreurs par transaction.	< 0.1%	Hebdomadaire
Performance des Tests de Charge	Capacité du système à gérer un nombre élevé de transactions simultanées.	10000 transactions/sec	Mensuel
Temps de Déploiement	Durée moyenne pour déployer une nouvelle version du logiciel.	< 30 minutes	Par déploiement
Satisfaction des Utilisateurs	Niveau de satisfaction des utilisateurs finaux (enquêtes de feedback).	> 85%	Trimestriel

Conformité de Sécurité	Nombre de failles de sécurité détectées et corrigées.	100% corrigé	Mensuel
Temps de Restauration	Durée pour restaurer les services après une interruption.	< 1 heure	Par incident
Adoption des Nouveaux Processus	Pourcentage d'utilisateurs utilisant les nouvelles fonctionnalités régulièrement.	> 80%	Trimestriel
Qualité des Données	Taux d'intégrité et de précision des données.	> 99.9%	Mensuel
Couverture de Tests	Pourcentage du code faisant l'objet d'un test pour valider son comportement.	> 90%	Hebdomadaire