PHYS-F203 - Introduction à la Mécanique Quantique

Basé sur les notes de Prof. Massar Serge

Moeil Juian

Abdul Sater Sami

Defossez Anais

Année académique 2020-2021

Table des matières

1	Principe d'incertitude d'Heisenberg	5
1	Applications du Principe d'Incertitude1.1 Application à l'atome d'Hydrogène1.2 Application à l'Oscillateur Harmonique1.3 Application au cas relativiste1.4 Application à la Masse de Planck1.5 Application à la masse des étoiles1.6 Masse de Chandrasekhar	5 6 6 6 7 7
2	L'équation de Schrödinger	8
1	Particule libre	9
2	1	9 10 10
3	Paquet d'onde à une dimension 3.1 Vitesse de phase et vitesse de groupe	11 11
4		12 12 13
5	Approximation semi-classique 5.1 Application à la désintégration alpha des noyaux	15 16
3	Notions mathématiques	17
1	Série de Fourier	17
2	Transformées de Fourier	17
3	Distribution 3.1 Espace de fonctions test 3.2 Opérations sur les distributions 3.3 Distributions tempérées 3.4 Delta de Dirac 3.5 Transformée de Fourier d'une fonction périodique	18 18
4	Formalisme de Dirac	20
4 1	Formalisme de Dirac Expérience de Stern-Gerlach	20 20
		20 21 21 22 22
1	Expérience de Stern-Gerlach Espace mathématique des fonctions d'onde 2.1 Structure de \mathcal{F}	20 21 21 22 22

5	Opérateur adjoint A'	25
	5.1 Propriétés intéressantes	
	5.2 Exemples d'operateurs	20
6	Opérateur Hermitien et observable	2 6
	6.1 Equation aux vecteurs propres	
	6.2 Exemples d'opérateurs	27
5	Postulats de la Mécanique Quantique	28
1	Énoncé des postulats	28
	1.1 Valeur moyenne d'une observable \hat{A}	29
	1.2 Ecart quadratique moyen	
	1.3 Evolution des systèmes dans le temps	
	1.4 Réduction du paquet d'onde	
	1.6 Opérateurs unitaires	
2	Fonction d'Opérateurs/de matrices	32
6	Applications des postulats de la Mécanique Quantique	34
1	Interféromètre de Mech-Zehnder	34
	1.1 Brève description des détecteurs	
	1.2 Lumière classique	
2	Résonance quantique 2.1 Exemple $1:$ l'atome de NH_3	36
	2.1 Exemple 1.1 atome de 1v113	30
3	$\operatorname{Spin} \frac{1}{2}$	36
	3.1 Groupe de rotations	
	5.2 Quantification du moment augulaire	3 C
7	Représentations de la position et de l'impulsion en \mathcal{M} écanique \mathcal{Q} uantique	39
1	Espace vectoriel des opérateurs X et P	39
	1.1 Normalisation	
	1.2 Relation de complétude	
	1.3 Composante d'un ket	
2	Opérateurs X et P	40
		4-4
3	Opérateur translation 3.1 Propriétés générales du commutateur	41 41
4		42
	4.1 Spectre de Q	
	4.2 Invariance par translation	43
5	Relations d'incertitudes	43
8	Oscillateur Harmonique Quantique	44
1	De l'importance de l'Oscillateur Hamonique	44

2	L'Oscillateur Harmonique en Mécanique Quantique	44
	2.1 Valeurs propres de l'Hamiltonien	45
	2.2 Analyse des valeurs et vecteurs propres de N	45
	2.3 Evolution temporelle	47
	2.4 Fonctions d'ondes de l'oscillateur harmonique	47
	2.5 Résolution de l'équation aux valeurs propres par la méthode polynômiale	47
9	Appendice	49
\mathbf{A}	Résultats élémentaires d'Algèbre Linéaire	49
В	Approximation BKW	50
\mathbf{C}	Opérateur parité	50
D	Changement de base dans le formalisme de Dirac	50
	D.1 Changement de base d'un ket et d'un bra	50
	D.2 Changement de base d'un opérateur	
\mathbf{E}	Projecteurs	50

Résumé

Ces notes traitent de l'interprétation de Copenhague de la Mécanique Quantique, telle qu'enseignée dans le cadre du cours PHYS-F203 en 2020-2021.

Remarque 0.1. Le symbole \doteq est employé pour dire "par définition". Les vecteurs x sont indiqués en gras.

Remarque 0.2. Ces notes ont été rédigées par des étudiant.e.s. Aussi, n'hésitez pas à contacter MOEIL Juian pour toute question ou remarque.

Merci à Bellet Björn pour sa relecture.

Première partie

Principe d'incertitude d'Heisenberg

Empiriquement, il est impossible de déterminer à la fois la position x et l'impulsion p d'une particule au delà d'une certaine précision

$$\Delta x \Delta p \ge \frac{\hbar}{2} \tag{1.1}$$

où $\Delta x, \Delta p$ sont les **écart-types** des grandeurs liées. Il s'agit de l'Incertitude de Heisenberg.

Nous avons donc que pour tout état quantique, x et p sont incertains : leurs incertitude obéissent à la relation 1.1. Cela est liée au caractère probabiliste de la Mécanique Quantique : chaque résultat d'une mesure est aléatoire. Cela fait l'objet de la discussion 1.

Notons la relation de longueur d'onde de Broglie :

$$\lambda = \frac{h}{p} \tag{1.2}$$

1 Applications du Principe d'Incertitude

Les différents calculs qui vont suivre servent à déterminer un ordre de grandeur : nous ne prêtons pas attention aux constantes multiplicatives tel que le facteur $\frac{1}{2}$ devant 1.1.

1.1 Application à l'atome d'Hydrogène

Empiquement, nous trouvons que l'énergie d'un atome d'hydrogène est donné par la relation

$$E = \frac{p^2}{2m} - \frac{e^2}{r} \tag{1.3}$$

Où
$$e^2 = \frac{q_e^2}{4\pi\epsilon_0}$$
.

Or, nous avons que l'électron de l'atome sera confiné dans une zone de rayon r. Dès lors, en utilisant 1.1, nous aurons que $\Delta p \approx \frac{\hbar}{r}$. Dès lors,

$$E \approx \frac{\hbar^2}{2mr^2} - \frac{e^2}{r} \tag{1.4}$$

Il suffit alors de dériver cette dernière pour obtenir l'énergie minimale :

$$E_{min} = \frac{d}{dr} \left(\frac{\hbar^2}{2mr^2} - \frac{e^2}{r} \right) = 0$$
$$= -\frac{2\hbar^2}{2mr^3} + \frac{e^2}{r^2} = 0$$
$$= \frac{1}{r^2} \left[e^2 - \frac{\hbar^2}{mr} \right] = 0$$

Il s'ensuit dès lors que

$$r = \frac{\hbar^2}{me^2} \quad E_{min} = -\frac{me^4}{2\hbar^2}$$

Nous pouvons en déduire la valeur du **rayon de Bohr** - soit la distance séparant, dans l'atome d'hydrogène, le proton de l'électron. Il s'agit donc d'un ordre de grandeur du rayon des atomes. Il correspond à

$$a_0 = \frac{\hbar^2}{me^2} \tag{1.5}$$

Similairement, nous avons l'énergie de liaison de l'atome d'Hydrogène - également appelée **énergie de Ryd**berg :

$$R_y = \frac{me^4}{2\hbar^2} \tag{1.6}$$

Nous pouvons retrouver les états liés en suivant

$$E_n = -R_y \frac{1}{n^2} = -\frac{me^4}{2\hbar^2} \frac{1}{n^2} \tag{1.7}$$

Où n = 1,2,3, ...

1.2 Application à l'Oscillateur Harmonique

Soit $E=\frac{p^2}{2m}+\frac{kx^2}{2}$. Posons $w=\sqrt{\frac{k}{m}}$, la fréquence angulaire. Par définition, l'état fondamental est de longueur Δx . Dès lors, 1.1 nous implique que l'impulsion est donnée par $\Delta p=\frac{\hbar}{\Delta x}$. En partant de là,

$$E(\Delta x) = \frac{\hbar^2}{2m\Delta x^2} + \frac{1}{2}k\Delta x^2 \tag{1.8}$$

En dérivant cette dernière équations, nous avons que le minimum d'énergie est donnée en $\Delta x \approx \frac{\hbar^{\frac{1}{2}}}{(mk)^{\frac{1}{4}}}$. Cela implique que

$$E_{min} \approx \sqrt{\frac{k}{m}} \hbar \approx w\hbar$$
 (1.9)

La relation exacte correspond effectivement. En effet

$$E_n = \hbar w \left(n + \frac{1}{2} \right) \tag{1.10}$$

$$E_0 = \frac{1}{2}\hbar w \tag{1.11}$$

Notons que cette dernière est ce que nous appelons l'énergie de point zéro.

1.3 Application au cas relativiste

L'incertitude d'Heisenberg est également valide dans le cas relativiste. La relation de dispersion nous donne que $E^2=m^2c^4+p^2c^2$ pour une particule libre relativiste. En posant $\Delta x\approx\frac{\hbar}{mc}$, nous avons que $\Delta p\approx mc$: il s'agit d'une particule relativiste. Dès lors,

- L'incertitude sur l'énergie sera de l'ordre $\Delta E \approx mc^2$.
- Supposons que nous avons un électron $e^{(-)}$ dans une boite de taille $\approx \frac{\hbar}{mc}$. L'incertitude sur l'énergie permet alors de créer des paires d'électrons et de positrons. La notion de particule perd son sens dans le cadre de la mécanique quantique relativiste. Cette taille est appelée à longueur d'onde de Compton, et vaut exactement $\lambda_C = \frac{\hbar}{mc}$.

1.4 Application à la Masse de Planck

Considérons une particule de masse M confinée dans une boule de rayon R. Nous avons alors plusieurs longueurs charactéristiques intéressantes.

- 1. Première longueur charactéristique. La longueur de Compton : $\lambda_C = \frac{\hbar}{Mc}$.
- 2. Seconde longueur charactéristique. Le rayon de Schwarzschild : $R_S = \frac{2GM}{c^2}$. Il s'agit du rayon que doit prendre un objet de masse M pour devenir un trou noir ; c'est à dire dont la vitesse de libération est de l'ordre c.

La masse de Planck est alors donnée par la relation $M_{Pl}=\sqrt{\frac{\hbar c}{G}}$. En particulier, nous avons que :

- Si M $< M_{Pl}$, alors $\lambda_C > R_S$: nous avons une particule élémentaire.
- Si M > M_{Pl} , nous aurons un trou noir.
- Si M $\approx M_{Pl}$, nous ne connaissons pas la nature de l'objet.

1.5 Application à la masse des étoiles

Soit N le nombre d'atomes d'hydrogène dans une boule de rayon R, soumis à l'attraction gravitationelle. Le volume par atome est de l'ordre $\frac{R^3}{N}$. A partir de là, nous pouvons déduire :

- Le rayon de confinement de chaque électron et proton. $\Delta x_e = \Delta x_p = \frac{R}{N_3^{\frac{1}{3}}}$.
- Le moment de ces mêmes électrons et protons ¹. $\Delta p_e = \Delta p_p = \frac{\hbar N^{\frac{1}{3}}}{R}$.

De ces relations, nous pouvons écrire les énergives cinétiques et gravitationelle de l'objet :

Energie cinétique Energie gravitationelle
$$N\left(m_ec^2 + \frac{1}{2}\frac{\Delta P_e^2}{m_e} + m_pc^2 + \frac{1}{2}\frac{\Delta P_p^2}{m_p}\right) -G\frac{(Nm_p)^2}{R}$$

Notons que nous négligeons le dernier terme de l'énergie cinétique : de fait, $m_p >> m_e$. Dès lors, l'énergie sera donnée par

$$E(R) \approx -G\frac{(Nm_p)^2}{R} + Nm_e c^2 + Nm_p c^2 + \frac{N}{2m_e} \frac{\hbar^2 N^{\frac{2}{3}}}{R^2}$$
(1.12)

Dès lors, l'énergie sera minimum en $R^* \approx \frac{\hbar^2}{Gm_p^2 m_e N^{\frac{1}{3}}}$. Remarquons que lorsque le nombre de particles N augmente, R^* diminue.

Quand est-ce que les électrons deviennent relativistes? Remarquons que $\Delta p_e \approx c m_e = \frac{\hbar N^{\frac{1}{3}}}{R^*} = \frac{G m_e m_p^2 N^{2/3}}{\hbar}$. Nous pouvons en déduire que

$$N = \left(\frac{M_{Pl}}{m_n}\right)^3 \tag{1.13}$$

Lorsque les particules deviennent relativistes, les réactions nucléaires deviennent possibles. Nous avons donc de la fusion nucléaire, ce qui donne une étoile!

Dans une première approximation, nous aurons alors que la masse d'une étoile est donnée par

$$M \approx m_p N \approx m_p \left(\frac{M_{Pl}}{m_p}\right)^3$$
 (1.14)

Donner les ordres de grandeur de ces nombres.

$$\begin{array}{ll} {\rm Masse~de~Planck} & {\rm Masse~d'un~proton} \\ M_{Pl} \approx 10^{19} \frac{GeV}{c^2} & m_p \approx 1 \frac{GeV}{c^2} \end{array}$$

Dès lors, $M_{\odot} \approx 10^{57} \frac{GeV}{c^2}$. La valeur exacte est de $1.0410^{57} \frac{GeV}{c^2}$.

Nous estimons les plus petites étoiles à $M \approx 0.08 M_{\odot}$, et les plus grandes à $M \approx 100 M_{\odot}$.

1.6 Masse de Chandrasekhar

Reprenons E(R) pour N atomes d'hydrogènes dans une boule de rayon R, à température nulle et en tenant compte les effets relativistes.

$$E(R) \approx -\frac{GN^2m_p^2}{R} + Nm_pc^2 + N\sqrt{m_e^2c^4 + \frac{\hbar^2N^{2/3}}{R^2}c^2}$$
 (1.15)

Soit N^* une valeur limite. Lorsque $N=N^*$:

$$\lim_{R \to 0} E(R) = 0 \tag{1.16}$$

$$\lim_{R\to 0} -\frac{GN^2m_p^2}{R} + \frac{N^{\frac{4}{3}}\hbar c}{R} = 0 \tag{1.17}$$

$$N^* = \left(\frac{\hbar c}{G} \frac{1}{m_p^3}\right) = \frac{M_{Pl}^3}{m_p^3} \tag{1.18}$$

A tempéature nulle, si $N > \frac{M_{Pl}^2}{m_p^3} = N^*$, alors la boule ne peut pas résister à son attraction gravitationnelle : elle se collapse en un trou noir.

La masse limite à la masse de Chandrasekhar : elle vaut approximativement $1.4M_{\odot}$. Il s'agit de l'origine des trous noirs et des supernovae.

^{1.} A partir de 1.1.

Deuxième partie

L'équation de Schrödinger

Commençons par rappeler les relations de Plank-Einstein :

$$E = h\nu = \hbar\omega \tag{2.1}$$

$$p = \hbar k \tag{2.2}$$

Où $\lambda = \frac{2\pi}{\|\mathbf{k}\|} = \frac{h}{\|\mathbf{p}\|}$: il s'agit de la relation de L. de Broglie, reflettant la dualité onde-corpusculaire de la matière.

Rappelons également l'équation d'onde :

$$\left(\frac{1}{c^2}\partial_t^2 - \partial_x^2 - \partial_y^2 - \partial_z^2\right)A(t, \boldsymbol{x}) = 0$$
(2.3)

En particulier, une onde plane ² s'exprime par le champ scalaire

$$A(t, \mathbf{x}) = A_0 e^{-i(\omega t - \mathbf{k} \cdot \mathbf{x})}$$
(2.4)

Appliquons l'équation d'une onde plane 2.4 à l'équation de D'Alembert 2.3. En particulier, notons que

$$\frac{1}{c^2}\partial_t A(t, \boldsymbol{x}) = \frac{-iA_0\omega}{c^2} e^{-i(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})} \qquad \frac{1}{c^2} \partial_t^2 A(t, \boldsymbol{x}) = -A_0 \left(\frac{\omega}{c}\right)^2 e^{-i(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})}$$

Rappelons que nous considérons une onde plane : supposons que celle-ci se déplace dans la direction des x. Alors,

$$\partial_x A(t,x) = iA_0 k_x e^{-i(\omega t - xk_x)}$$
 $\partial_x^2 A(t,x) = -A_0 k_x^2 e^{-i(\omega t - xk_x)}$

Où k_x est la composante en x du vecteur $\mathbf{k} = (k_x, k_y, k_z)$. En combinant ces résultats (et en gardant l'hypothèse d'une onde se dirigeant selon l'axe des x), nous obtenons que

$$\left(\frac{1}{c^2}\partial_t^2 - \partial_x^2 - \partial_y^2 - \partial_z^2\right)A(t, x) = 0$$
(2.5)

$$-A_0 \left(\frac{\omega}{c}\right)^2 e^{-i(\omega t - xk_x)} + A_0 k_x^2 e^{-i(\omega t - xk_x)} = 0$$
 (2.6)

$$\left(\frac{\omega}{c}\right)^2 - k_x^2 = 0\tag{2.7}$$

A partir de là ³, nous pouvons montrer que

$$\omega = \frac{i}{4} \partial_t \left(A \right) \tag{2.8}$$

$$k_x = -\frac{i}{A}\partial_x\left(A\right) \tag{2.9}$$

Ce qui implique les relations

$$k_x^2 = -\frac{1}{A}\partial_x^2 A$$
 et $k^2 = -\frac{1}{A}\Delta A$

On pose également les quelques relations suivantes

$$E = \frac{i\hbar}{\psi} \partial_t \psi$$
 $p_X = -\frac{i\hbar}{\psi} \partial_x \psi$ $p^2 = -\frac{\hbar^2}{\psi} \Delta \psi$

Dans le cas d'une particule relativiste, l'énergie respecte la relation de dispersion. En particulier, cela implique

$$-\hbar\partial_t \Phi + c^2 \hbar^2 \Delta \Phi - c^4 m^2 \Phi = 0 \tag{2.10}$$

Il s'agit de l'équation de Klein-Gordon. Nous pouvons obtenir une relation similaire dans le cas non-relativiste. Effectivement, nous avons alors que l'énergie est donnée par la relation

$$E = \frac{p^2}{2m} + V(\mathbf{r}, t) \tag{2.11}$$

Dès lors, nous obtenons l'équation de Schrödinger pour une particule :

$$-\frac{\hbar^2}{2m}\Delta\psi + V(\mathbf{r}, t)\psi \doteq H\psi = i\hbar\frac{\partial\psi}{\partial t}$$
 (2.12)

^{2.} Une onde est dite plane si et seulement si elle ne s'exprime que dans une seule direction.

^{3.} Demander à Prof. d'élaborer les détails.

Note. Nous avons alors que l'opérateur $H \doteq -\frac{\hbar^2}{2m}\Delta + V(\boldsymbol{r},t)$. Remarquons que : — L'équation de Schrödinger est linéaire ⁴ et satisfait les relations de Broglie.

- L'opérateur H est hermitien; cela garantit la conservation de la probabilité, que ses valeurs propres sont réelles et que ses vecteurs propres constituent une base de l'espace considéré. Tous ces éléments font l'objet de la section 4.

1 Particule libre

Dans une première approximation, supposons que le potentiel $V(\mathbf{r},t)$ soit nul. L'équation de Schrödinger (2.12) se réduit alors à $i\hbar\partial_t\psi=-\frac{\hbar^2}{2m}\Delta\psi$. De plus, l'énergie s'exprime alors par $E=\frac{p^2}{2m}$. Cette équation différentielle admet visiblement des solutions de la forme

$$\psi(\mathbf{r},t) = Ce^{i(\mathbf{k}\cdot\mathbf{x} - \omega t)} \tag{2.13}$$

Où C est une constante, et $\omega = \frac{\hbar \|\mathbf{k}\|^2}{2m}$. Par la principe de superposition, toute combinaison linaire d'ondes planes vérifiant l'expression de ω sera également une solution de (2.13). La solution générale est alors donnée

$$\psi(\mathbf{r},t) = \frac{1}{(2\pi)^{\frac{3}{2}}} \int d^3k g(\mathbf{k}) e^{-i\omega t + \mathbf{k} \cdot \mathbf{r}}$$
(2.14)

Où g(\boldsymbol{k}) est la transformation de Fourier de $\psi(\boldsymbol{r},t=0)$:

$$g(\mathbf{k}, t = 0) = \frac{1}{\sqrt{2\pi}} \int \psi(\mathbf{r}, 0) e^{-i\mathbf{k}x} dx$$
 (2.15)

2 Interprétation probabiliste

Soit $\psi(\mathbf{r},t)$ une solution de (2.12). Nous pouvons vérifier que ψ respecte la relation de normalisation

$$\int_{\mathbb{R}^3} d\mathbf{r} \|\psi(\mathbf{r}, t)\|^2 = 1 \tag{2.16}$$

De plus, si cela est vrai pour $\psi(\mathbf{r},t_0)$, alors il en est de même pour tout t.

Posons que $\rho(\mathbf{r},t) \doteq \|\psi(\mathbf{r},t)\|^2 = \bar{\psi}\psi$ la densité de probabilité de trouver la particule en \mathbf{r} à l'instant t.

Proposition 2.1. La densité de probabilité telle que nous venons de la définir respecte l'équation de continuité

$$\partial_t \rho(\mathbf{r}, t) + \nabla \cdot \mathbf{J}(\mathbf{r}, t) = 0 \tag{2.17}$$

 $O\grave{u} \; \boldsymbol{J}(\boldsymbol{r},t) \dot{=} \tfrac{\hbar}{2mi} \Big\{ \overline{\psi} \boldsymbol{\nabla} \psi - \psi \boldsymbol{\nabla} \overline{\psi} \Big\} = \tfrac{\hbar}{m} Im \left[\bar{\psi} \left(\boldsymbol{\nabla} \psi \right) \right] \; est \; un \; courant \; de \; probabilit\acute{e}.$

 $D\acute{e}monstration$. Puisque ψ est hermitique,

$$\hat{H}\psi = \hat{H}\bar{\psi} \tag{2.18}$$

$$i\hbar\partial_t\bar{\psi} = -\frac{\hbar^2}{2m}\Delta\bar{\psi} + V\bar{\psi} \qquad i\hbar\partial_t\psi = -i\hbar\partial_t\bar{\psi} \qquad (2.19)$$

De plus, par définition,

$$\rho = \left\|\psi\right\|^2 = \psi\bar{\psi} \tag{2.20}$$

En dérivant ρ par rapport au temps et en multipliant par $i\hbar$,

$$i\hbar\partial_t \rho = \left[-\frac{\hbar^2}{2m} \Delta \psi \right] \bar{\psi} - \left[-\frac{\hbar^2}{2m} \Delta \bar{\psi} \right] \psi \tag{2.21}$$

$$= -\frac{\hbar^2}{2m} (\bar{\psi}\Delta\psi - \psi\Delta\bar{\psi}) \tag{2.22}$$

$$\rightarrow 0 = \partial_t \rho + \frac{\hbar}{2mi} \nabla \cdot (\bar{\psi} \nabla \psi - \psi \nabla \bar{\psi})$$
 (2.23)

^{4.} Si ψ_1 et ψ_2 sont des solutions de 2.12, alors $\psi_1 + \psi_2$ est également une solution de 2.12.

Nous pouvons alors définir

$$\boldsymbol{J} = \frac{\hbar}{2mi} \left\{ \overline{\psi} \boldsymbol{\nabla} \psi - \psi \boldsymbol{\nabla} \overline{\psi} \right\} = \frac{\hbar}{m} Im \left[\overline{\psi} \left(\boldsymbol{\nabla} \psi \right) \right]$$
 (2.24)

le courant de probabilité. Nous pouvons alors écrire l'équation de probabilité, ce qui conclut la preuve.

L'équation de continuité (2.17) explique que rien ne se perd, rien ne se crée et tout se conserve : en effet, si nous intégrons sur une région A, nous aurons

$$\int_{A} \frac{\partial \rho}{\partial t} dV + \int_{A} \nabla \cdot \boldsymbol{J} dv = \frac{d}{dt} \int_{A} \rho dV + \int_{\partial A} \boldsymbol{J} \cdot \boldsymbol{ds}$$
 (2.25)

$$\frac{d}{dt}P_A = -F_A \tag{2.26}$$

Où P_A est la probabilité de trouver une particule dans la région A, et F_A est le flux de cette particule à travers le bord de la région A. L'équation (2.26) décrit la conservation des particules à travers la surface A.

Nous pouvons également définir les coefficients de réflexion et de transmission comme suit :

$$R = \frac{J_{-}[\leftarrow]}{J_{-}[\rightarrow]}, \qquad T = \frac{J_{+}[\rightarrow]}{J_{-}[\rightarrow]}$$
 (2.27)

Où $J_{-}[\leftarrow]$ est défini comme étant "le courant de probabilité dans la région négative allant vers la gauche."

2.1 Onde plane

Observons que nous pouvons réécrire (2.13) sous la forme $\psi = Ce^{i{\bf k}\cdot{\bf r}}e^{-i\omega t}$. En particulier, nous avons alors que

$$\rho = \|\psi(\mathbf{r}, t)\|^2 = C^2. \tag{2.28}$$

Il s'ensuit que le courant de probabilité est donné par l'expression

$$J = \frac{\mathbf{p}}{m}C^2 = \rho \mathbf{v}. \tag{2.29}$$

Nous pouvons donc bien interpréter une onde plane comme une particule se déplaçant à une vitesse v.

2.2 Born: étude des collisions. Origine de l'interprétation probabiliste

Que se passe-t-il si une onde plane arrive sur un atome? Nous allons essayer de trouver une approximation à cette question.

Une fonction d'onde dont l'énergie potentielle $V(\boldsymbol{r})$ ne dépend pas du temps doit vérifier l'équation de Schrödinger :

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2m}\Delta\psi + V(\mathbf{r})\psi \tag{2.30}$$

On parle alors de potentiel stationnaire. La solution de cette équation est donnée par

$$\psi(\mathbf{r},t) = e^{-\frac{iEt}{\hbar}}\phi(\mathbf{r}) - \frac{\hbar^2}{2m}\Delta\phi + V(\mathbf{r})\phi = E\phi$$
(2.31)

Conditions au bord : pour $x \to -\infty$, $\phi = Ce^{ikx}$.

- Une partie de l'onde est construite tout droite.
- Une partie est diffusée.

A grande distance de l'atome, nous avons que

$$\phi(\mathbf{r}) \approx Ce^{ikx} + \int d^3k\alpha(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{x}}$$

$$\text{Avec } \frac{\hbar^2 \|\mathbf{k}\|^2}{2m} = \hbar\omega.$$
(2.32)

La Mécanique Quantique décrit simultanément **toutes** les diffusions possibles. Or, en laboratoire, nous n'observons qu'une seule direction : Max-Born en déduit que la Mécanique Quantique décrit les **possibilités** de diffusions dans les directions k.

$$P(\text{diffusion dans la direction } \mathbf{k}) \approx \|\alpha(\mathbf{k})\|^2$$
 (2.33)

Paquet d'onde à une dimension 3

3.1Vitesse de phase et vitesse de groupe

Une onde est une perturbation se déplacnt dans le milieu. Il est possible de lui associer deux vitesses : soit la vitesse de phase (ou célérité), et la vitesse de groupe. Elle peuvent être différentes, sous certaines conditions.

Revenons au cas particulier d'une particule libre, dont l'état est décrit par le paquet d'onde à une dimension (2.14). Une onde plane (2.13), respectant la relation de dispersion w(k), se propage avec la vitesse

$$V_{\phi}(k) = \frac{\omega}{Re\{k\}} \tag{2.34}$$

Il s'agit de la vitesse de phase. En paticulier, prenons l'exemple d'une particulier quantique, c'est à dire une particule respectant les équations

$$\omega = \frac{E}{\hbar} = \frac{p^2}{2m\hbar} = \hbar \frac{k^2}{2m}$$

$$k = \frac{p}{\hbar}$$
(2.35)

$$k = \frac{p}{\hbar} \tag{2.36}$$

Dans cet exemple, la vitesse de phase s'écrira alors

$$V_{\phi}(k) = \frac{\hbar k}{2m} = \frac{p}{2m} \tag{2.37}$$

Nous savons que dans le cas d'une onde électromagnétique se propageant dans le vide, $V_{\phi}(k)$ est indépendante de k et se propage à la vitesse de la lumière c. Notons que toutes les ondes composant un paquet d'ondes se déplacent à la même vitesse, de sorte que le paquet se déplace à la vitesse de la lumière c dans le vide. Ce n'est pas le cas dans un milieu dispersif.

Soit $A(t,x) = \int dk q(k,\omega) e^{-i\omega(k)t} e^{ikx}$, où

 $g(k,\omega)$: est centré sur k_0 de faible largeur Δ

$$g(k,\omega) \approx e^{-\frac{1}{2}(\frac{k-\omega}{\Delta})^2}$$

Nous voulons nous rammener à une intégrale gaussienne. Notons que

$$\omega(k) = \omega(k_0) + \partial_k \omega(k - k_0) + \frac{1}{2} \partial_k^2 (k - k_0)$$
(2.38)

Le terme $\partial_k \omega$ représente la vitesse de groupe, et $\partial_k^2 \omega$ représente la dispersion.

Nous avons dès lors que

$$A(t,x) \approx e^{-i\omega(k_0)t} e^{ik_0x} \int dkg(k-k_0)e^{\left[\omega't+x\right]}$$
(2.39)

Nous y négligeons les effets de $\partial_k^2 \omega$ car Δ est très petit.

Il s'ensuit que le centre du paquet d'onde se déplace à la vitesse

$$v_g = \text{Vitesse de groupe} = \frac{\partial \omega}{\partial k} = \omega'$$
 (2.40)

Pour une particule quantique, nous avons alors que $\frac{\partial \omega}{\partial k} = \frac{\hbar k}{m} = \frac{p}{m} = v_{Classique}$. **Note.** Rappelons que la solution à l'intégrale ci-contre, dans le cas où $\mathbf{si} - \frac{\pi}{4} < arg\alpha < +\frac{\pi}{4}$:

$$I(\alpha,\beta) = \int_{-\infty}^{\infty} e^{-\alpha^2(\xi+\beta)^2} d\xi = \frac{\sqrt{\pi}}{\alpha}$$
 (2.41)

Paquet d'onde Gaussien en dim 1

Nous considérons un modèle à une dimension, avec une particule libre ⁵, dont la fonction d'onde à l'instant t=0 s'écrit

$$\psi(x,t=0) = \frac{\sqrt{a}}{(2\pi)^{3/4}} \int_{-\infty}^{+\infty} e^{-\frac{a^2}{4}(k-k_0)^2} e^{ikx} dk$$
 (2.42)

^{5.} Le potentiel V(x) = 0

Ce paquet d'onde est obtenu par superposition d'ondes planes e^{ikx} avec des coefficients

$$\frac{1}{\sqrt{2\pi}}g(k,t=0) = \frac{\sqrt{a}}{(2\pi)^{3/4}}e^{-\frac{a^2}{4}(k-k_0)^2}$$
(2.43)

qui correspondent à une fonction de Gauss, centrée en $k = k_0$. C'est pourquoi nous appelons (2.42) onde gaussienne.

En exploitant le résultat (2.41), nous pouvons alors montrer que 2.42 vaut

$$\left(\frac{2}{\pi a^2}\right)^{\frac{1}{4}} e^{ik_0 x} e^{-\frac{x^2}{a^2}} \tag{2.44}$$

Nous pouvons en déduire la valeur de la densité de probabilité de la fonction d'onde d'une particule libre à l'instant t=0:

$$\|\psi(x,t=0)\|^2 = \sqrt{\frac{2}{\pi a^2}} e^{-2\frac{x^2}{a^2}}$$
 (2.45)

Nous pouvons vérifier que $\int dx \|\psi\|^2$ est bien égale à 1.

Nous remarquons alors que $\Delta x \approx \frac{a}{2}$. Ainsi, $\Delta x \Delta p \geq \frac{\hbar}{2}$. Nous en déduisons en particulier que $\Delta p = \frac{\hbar}{2}$, et donc que la distribution des vitesses est donnée par $\Delta v = \frac{\Delta p}{m} = \frac{\hbar}{ma}$: nous avons un **étalement**.

4 Potentiel stationnaire

Nous nous intéressons ici au comportement d'une onde plongée dans un potentiel indépendant du temps; V(r,t) = V(r). Cela signifie que les effets quantique doivent se produire lorsque le potentiel varie sur des distances plus courtes que la longueur d'onde : celles-ci ne peuvent alors pas être négligées. Nous allons donc étudier le comportement d'une particule placée dans différents "potentiels carrés", c'est à dire des potentiels variant par "marche d'escaliers". Avant de passer à l'étude du potentiel, discutons des propriétés que satisfait l'équation de Schrödinger pour un potentiel indépendant du temps V(r).

4.1 Equation de Schrödinger indépendante du temps

Recherchons les solutions de l'équation de Schrödinger (2.12). Pour ce faire, passons par une séparation des variables. Plus précisément, posons

$$\psi(\mathbf{r},t) = \varphi(\mathbf{r})\kappa(t) \tag{2.46}$$

Il suffit alors de placer cette dernière équations dans (2.12) :

$$i\hbar\varphi(\mathbf{r})\partial_t\kappa(t) = -\frac{\hbar^2}{2m}\kappa(t)\Delta\varphi(\mathbf{r}) + V(\mathbf{r})\kappa(t)\varphi(\mathbf{r})$$
(2.47)

$$\frac{i\hbar}{\kappa(t)}\partial_t \kappa(t) = -\frac{\hbar^2}{2m} \frac{1}{\varphi(r)} \Delta \varphi(r) + V(r)$$
(2.48)

Cette équation indique l'égalité entre une fonction de t (membre de gauche) et une fonction de r (membre de droite). Cette dernière n'est possible que si ils sont en fait tous les deux égales à une constante, que nous poserons (par convention) égale à $\hbar\omega$.

Dans le membre de gauche, nous obtenons une équation différentielle du premier ordre. Elle se résoud trivialement en

$$\kappa(t) = c_1 e^{-i\omega t} \qquad \forall c_1 \in \mathbb{R}$$
 (2.49)

 $En \ développant \ l'égalité \ de \ droite, \ nous \ trouvons \ alors \ l'équation \ de \ Schrödinger \ indépendante \ du \ temps :$

$$-\frac{\hbar^2}{2m}\Delta\varphi(\mathbf{r}) + V(\mathbf{r})\varphi(\mathbf{r}) = \hbar\omega\varphi(\mathbf{r})$$
(2.50)

$$\left[-\frac{\hbar^2}{2m} \Delta + V(\mathbf{r}) \right] \varphi(\mathbf{r}) = E\varphi(\mathbf{r})$$
(2.51)

$$H\varphi(\mathbf{r}) = E\varphi(\mathbf{r}) \tag{2.52}$$

En posant $c_1 = 1$ dans (2.49), nous obtenons alors la fonction

$$\psi(\mathbf{r},t) = \varphi(\mathbf{r})e^{-i\omega t} = \varphi(\mathbf{r})e^{-\frac{i}{\hbar}Et}$$
(2.53)

qui est solution de l'équation de Schrödinger, si $\varphi(r)$ est solution de (2.50). On dit que l'on a séparé les variables de **temps** et d'**espace**.

Remarque 4.1. Dans (2.51), H est un opérateur différentiel linéaire. Effectivement,

$$H\left[\lambda_1 \varphi_1(\mathbf{r}) + \lambda_2 \varphi_2(\mathbf{r})\right] = \lambda_1 H \varphi_1(\mathbf{r}) + \lambda_2 H \varphi_2(\mathbf{r}) \qquad \forall \lambda_1, \lambda_2 \in \mathbb{R}$$
 (2.54)

Remarque 4.2. L'équation (2.52) est une équation aux valeurs propres.

4.2 Potentiels à une dimension : description quantitative

Rappelons l'équation de Schrödinger, elle nous sera utile pour la suite :

$$i\hbar\partial_t\psi(t, \boldsymbol{r}) = -rac{\hbar^2}{2m}\partial_x^2\psi(t, \boldsymbol{r}) + V(\boldsymbol{r})\psi(t, \boldsymbol{r})$$

Où V(r) est constante par morceaux.

Nous allons considérer les problèmes de *puit de potentiel*, et de *barrière de potentiel*. Une question légitime est de se demander les raisons derrière cette étude : la réponse est simple. Ils s'agissent de cas théoriques possédant des solutions analytique, et permettant d'illuster des effets quantiques importants : l'**effet tunnel**, ainsi que les **états liés**. De plus, certaines situations physiques réelles y sont très proches : pensons notamment à la barrière de Josephson (supraconducteurs), et aux points quantiques : elles consistent dès lors en une excellent approximation de ces phénomènes.

4.2.1 Puit de potentiel infini à une dimension

Cette situation correspond à un potentiel prenant les valeurs suivantes, en fonction de sa position ⁶:

$$V(x) = \begin{cases} -\infty \\ 0 \\ +\infty \end{cases} \tag{2.55}$$

respectivement en $x < 0, x \in [0, L]$ et x > L. Appliquons ce potentiel à l'équation de Schrödinger.

Séparation des variables : $\psi(\mathbf{r},t) = \kappa(t)\varphi(\mathbf{r})$. Nous avons un potentiel stationnaire : reprenons le calcul à partir de (2.51).

La solution temporelle provient de (2.48), et donne

$$\kappa(t) = \kappa_0 e^{-i\omega t} \tag{2.56}$$

Il nous reste à déterminer la solution spatiale. Rappelons les conditions aux bords : $\varphi(L) = 0 = \varphi(0)$. Dès lors, nous avons que :

Pour $0 < x < L : -\frac{\hbar^2}{2m} \partial_x^2 \varphi = E \varphi$. Il s'agit d'une équation différentielle linéaire du second ordre. Sa solution générale est de la forme

$$\varphi(\mathbf{r}) = c_1 \cos(kx) + c_2 \sin(kx) \qquad \forall c_1, c_2 \in \mathbb{C}$$
 (2.57)

Afin de respecter les conditions aux bords, nous aurons que

$$c_2 = 0 kL = n\pi (2.58)$$

Dès lors,

$$k_n = \frac{n\pi}{L}$$
 $E_n = \frac{\hbar^2}{2m} \frac{\pi^2 n^2}{L^2}$ (2.59)

^{6.} Insistons sur le fait que le potentiel est considéré invariant par le temps : nous avons bien un potentiel stationnaire du type $V(\mathbf{r},t)=V(x)$.

Nous avons alors la solution mathématique à notre problème :

$$\psi_n(\mathbf{r},t) = \kappa_0 e^{-i\frac{E_n t}{\hbar}} \sin\left(\frac{n\pi}{L}x\right) \tag{2.60}$$

Note. Observons que cette équation implique une quantification de l'énergie. La solution physique sera la superposition de tous les états possible :

$$\psi(\mathbf{r},t) = \sum_{n=1}^{\infty} \kappa_n e^{-i\frac{E_n t}{\hbar}} \sin\left(\frac{n\pi}{L}x\right)$$
(2.61)

4.2.2 Puit de potentiel fini à une dimension

Etudions un cas similaire. Soit $I = \left[-\frac{a}{2}, \frac{a}{2}\right]$. Dans cette situation, nous avons que

$$\begin{cases} V(x > \left\| \frac{a}{2} \right\|) = 0 \\ V(x) = -V_0 \end{cases}$$
 (2.62)

La résolution de l'équation aux valeurs propres (2.51) s'effectue dans chaque zone 7 indépendemment, et donnera

$$\begin{cases} \varphi(x < -\frac{a}{2}) = A_1 e^{\rho x} + A_1' e^{-\rho x} & \rho = \sqrt{-\frac{2mE}{\hbar^2}} \\ \varphi(x \in I) = B_2 e^{ikx} + B_2' e^{-ikx} & k = \sqrt{\frac{2m(V_0 + E)}{\hbar^2}} \\ \varphi(x > \frac{a}{2}) = A_3 e^{\rho x} + A_3' e^{-\rho x} \end{cases}$$
(2.63)

Conditions aux bords. Rappelons que $\varphi(x)$ est bornée en les régions I et III. Nous pouvons alors réécrire les équations sous la forme

$$\begin{cases} \varphi(x) = A_1 e^{\rho x} \\ \varphi(x \in I) = B_2 e^{ikx} + B_2' e^{-ikx} \\ \varphi(x) = A_3' e^{-\rho x} \end{cases}$$

$$(2.64)$$

QUESTION. Comment avons-nous choisi le terme en A'_1 et A_3 pour la simplification?

Conditions de continuité : $\varphi(x)$ et $\partial_x \varphi(x)$ doivent être continue. Dès lors,

— En $\mathbf{x} = -\frac{a}{2}$, nous avons que :

$$\begin{cases}
A_1 e^{-\frac{\rho a}{2}} = B_2 e^{\frac{-ika}{2}} + B_2' e^{\frac{ika}{2}} \\
\rho A_1 e^{-\frac{\rho a}{2}} = ik \left[B_2 e^{-\frac{ika}{2}} - B_2' e^{\frac{ika}{2}} \right]
\end{cases}$$
(2.65)

— En $\mathbf{x} = \frac{a}{2}$, nous avons que :

$$\begin{cases}
A_3' e^{-\frac{\rho a}{2}} = B_2 e^{\frac{-ika}{2}} + B_2' e^{\frac{ika}{2}} \\
\rho A_3' e^{-\frac{\rho a}{2}} = ik \left[B_2 e^{\frac{-ika}{2}} - B_2' e^{\frac{ika}{2}} \right]
\end{cases}$$
(2.66)

Note. Nous possédons 4 équations linéaires à 4 inconnues : la solution est non triviale si det [Matrice associée] = 0.

Note. Les inconnues dans nos équations sont bien A_2, A'_2, B_3 et B'_3 .

En multipliant la première équation de (2.65) par ik, et en additionnant/soustrayant les deux équations, nous pouvons obtenir

$$\begin{cases}
B_2 = \frac{\rho + ik}{2ik} e^{(ik - \rho)\frac{a}{2}} A_1 \\
B'_2 = -\frac{\rho - ik}{2ik} e^{-\frac{a}{2}[\rho + ik]} A_1
\end{cases}$$
(2.67)

Similairement, (2.66) permet de mettre en évidence les relations

$$\begin{cases}
B_2 = -\frac{\rho - ik}{2ik} e^{-\frac{\alpha}{2}(\rho + ik)} A_3' \\
B_2' = \frac{\rho + ik}{2ik} e^{\frac{\alpha}{2}(ik - \rho)} A_3'
\end{cases}$$
(2.68)

Ces deux dernières équations, ensembles, impliquent :

^{7.} Nous notons I la zone tq $x < -\frac{a}{2}$, III la région tq $x > \frac{a}{2}$ et II la région entre les deux.

(...)

Les états d'énergie les plus sont sont alors

$$\approx k = \frac{n\pi}{a} \qquad E \approx \frac{\pi^2 \hbar n^2}{2ma^2} - V_0 \tag{2.69}$$

4.2.3 Potentiel en escalier

Plaçons-nous dans une région telle que le potentiel est stationnaire, c'est à dire dont la variable spatiale $\varphi(\mathbf{r})$ de la solution de l'équation de Schrödinger $\psi(\mathbf{r},t)$ respecte l'équation (2.50). Nous pouvons réécrire cette dernière équation sous la forme

 $\frac{d^2\varphi}{dx^2} + \frac{2m}{\hbar^2}(E - V)\varphi = 0$

Nous pouvons distinguer plusieurs cas.

— E > V. En introduisant le terme positif $k^2 = \frac{2m}{\hbar^2}(E - V) \ge 0$, nous pouvons montrer que les solutions de (2.50) sont de la forme

 $\varphi = Ae^{ikx} + A'e^{-ikx} \tag{2.70}$

Nous parlons d'ondes progessives.

— E < V. Cette condition correspond aux régions classiquement interdites : il s'agit de l'**effet tunnel**. Dans ce cas, nous introduisons la constante ρ définie par $\rho^2 = \frac{2m}{\hbar^2}(V - E) \ge 0$. Nous obtenons alors que la solution est

$$\varphi = Be^{\rho x} + B'e^{-\rho x} \tag{2.71}$$

- $\mathbf{E} = \mathbf{V}$. Dans ce cas, $\varphi(\mathbf{r})$ est une fonction linéaire de x.
- Là où V est discontinue. Dans ce cas, φ est continue et $\partial_x \varphi$ l'est également.

5 Approximation semi-classique

L'approximation semi-classique permet d'obtenir une solution de l'Equation de Schrödinger lorsque \hbar tend vers 0; c'est à dire lorsque la longueur d'onde est beaucoup plus ptite que les autres dimensions considérées. Son idée est simple : l'équation de Schrödinger se dérive de l'équation de propagation des ondes. On doit alors retrouver la mécanique classique dans la limite \hbar tend vers 0, tout comme nous retrouvons l'optique géométrique lorsque λ tend vers 0 dans l'optique ondulatoire.

Notons φ solution stationnaire de l'équation de Schrödinger pour une particule de masse m dans un potentiel V(R). Alors,

$$\left[-\frac{\hbar^2}{2m} \partial_x^2 + V(R) \right] \psi(r) = E \psi(r)$$

Se réécrit, en posant

$$\psi(r) = A(r)e^{i\frac{S(r)}{\hbar}} \qquad \forall A, S \in \mathbb{R}$$
 (2.72)

Nous pouvons alors montrer que les relations

$$2A'S' + AS'' = 0 (2.73a)$$

$$\frac{S'^2}{2m} - \frac{\hbar^2}{2m} \frac{A''}{A} + V = E \tag{2.73b}$$

sont équivalentes à l'équation de Schrödinger (2.50). En particulier, (2.73a) peut se résoudre directement et donne

$$A(x) = \frac{A_0}{\sqrt{S'(r)}} \qquad \forall A_0 \in \mathbb{R}$$
 (2.74)

Nous pouvons vérifier que (2.74) est équivalente à l'équation de continuité (2.17)

$$\partial_t \rho(\boldsymbol{r}, t) + \nabla \boldsymbol{J} = 0$$

pour une solution stationnaire : effectivement, nous avons que $\rho(x,t) = |\psi|^2$ ne dépend pas du temps.

Pour résoudre (2.73b), nous faisons l'hypothèse $\frac{\hbar^2}{2m}\frac{A''}{A}$ est négligeable par rapport aux autres termes. Nous obtenons alors l'équation

$$\frac{S'^2(r)}{2m} + V(r) = E$$

Il s'agit d'une équation bien connue de la mécanique classique : l'équation de **Hamilton-Jacobi**. Ses solutions sont de la forme

$$S'(x) = \pm \rho(r) \qquad \qquad \rho(r) = \sqrt{2m(E - V(r))}$$
 (2.75a)

$$S(x) = \pm \int_{-\infty}^{x} dx' \rho(x') \tag{2.75b}$$

Nous avons alors que

$$\psi(r) = \frac{A_0}{\sqrt{\rho(r)}} e^{\pm i \int^x dx' \frac{\rho(x')}{\hbar}}$$
(2.76)

Nous pouvons en déduire que

- 1. Le nombre d'onde à la position x est donnée par $k(x) = \frac{p(x)}{\hbar}$.
- 2. La longueur d'onde à la position x est donnée par $\lambda(x) = \frac{2\pi\hbar}{p(x)}$.
- 3. La vitesse de groupe est donnée par

$$\frac{1}{V_g} = \frac{\partial k(r)}{\partial \omega} = \frac{\partial p(r)}{\partial E} = \frac{m}{p(r)} = \frac{1}{V_{classique}(r)}.$$
 (2.77)

La vitesse d'un paquet d'onde sera donnée, selon l'approximation semi-classique, par la vitesse $V_{classique}(r)$ de la mécanique classique.

4. Dans une région classiquement interdite,

$$\psi(r) = \frac{1}{\sqrt{\rho(r)}} e^{\pm \int_{-\pi}^{x} dx' \frac{\rho(x')}{\hbar}}$$
 Avec
$$\frac{\rho^{2}(x)}{2m} = V(x) - E$$
 (2.78)

[Graphique]

Nous pouvons montrer que si la solution décroit exponentionellement à grande distance (proche du point de rebroussement) :

$$\psi(r) = \frac{1}{\sqrt{k(x)}} \cos\left(\int_b^x k(x')dx' - \frac{\pi}{4}\right) \qquad \forall x > b$$
 (2.79)

$$\psi(r) = \frac{1}{\sqrt{k(x)}} \cos\left(\int_x^a k(x')dx' + \frac{\pi}{4}\right) \qquad \forall x < a$$
 (2.80)

Nous obtenons la condition de quantification semi-classique :

$$\frac{1}{\hbar} \int_{1}^{a} dx \sqrt{2m(E - V(x))} = (n + \frac{1}{2})\pi \tag{2.81}$$

(Valable uniquement pour E grand).

5.1 Application à la désintégration alpha des noyaux

La particule alpha a une énergie E. Pour $R>R_{\alpha}$, nous avons une énergie V(R)< E et sommes alors dans une région classiquement permise. Malheureusement, la particule va devoir traverser une région classiquement interdite - entre R et R_{α} . La probabilité d'émission par unité de temps est approximée par $\frac{1}{T_{\frac{1}{k}}}\sim \frac{1}{e^{2\gamma}}$, où :

$$\gamma = \frac{1}{\hbar} \int_{R}^{R_{\gamma}} dr \sqrt{2m_{\alpha}(V(r) - E)} \qquad \text{Avec } V(r) = \frac{z_{\alpha}ze^{2}}{4\pi\epsilon_{0}r} \text{ et } E = \frac{z_{\alpha}ze^{2}}{4\pi\epsilon_{0}R_{\alpha}}$$
 (2.82)

$$=\frac{1}{\hbar}\sqrt{\frac{z_{\alpha}ze^2}{4\pi\epsilon_0}}\int_R^{R_{\alpha}}\sqrt{\frac{1}{r}-\frac{1}{R_{\alpha}}}dr$$
(2.83)

$$\gamma \approx \frac{\pi}{2\hbar} \sqrt{2m_{\alpha}} \left[\frac{z_{\alpha} z e^2}{4\pi\epsilon_0} \right] \frac{1}{\sqrt{E}} \tag{2.84}$$

$$\rightarrow \log T_{\frac{1}{2}} = a \frac{z}{\sqrt{E}} + b \tag{2.85}$$

Cette loi est bien vérifiée expérimentalement. Elle explique pourquoi il n'y a pas de désintégration des noyaux les plus lourds.

Troisième partie

Notions mathématiques

1 Série de Fourier

Une série de Fourier est une série de la forme

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} dx f(x) e^{-2\pi i (\frac{n}{T})x}$$
(3.1a)

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n e^{2\pi i (\frac{n}{T})x}$$
(3.1b)

2 Transformées de Fourier

$$\hat{f}(k) = F(k) = \int_{-\infty}^{+\infty} dx f(x) \frac{e^{-i\mathbf{k}}}{\sqrt{2\pi}}$$
(3.2a)

$$f(x) = F^{-1}(\hat{h}) = \int d\mathbf{k} \hat{f}(\mathbf{k} \frac{e^{i\mathbf{k}x}}{\sqrt{2\pi}})$$
(3.2b)

Remarque 2.1. Si f est à support borné et $\{-\frac{T}{2}, \frac{T}{2}\}$ contraint le support, alors $C_n = \frac{\sqrt{2\pi}}{T} \hat{f}(\frac{2\pi n}{T})$.

$$\to f(x) = \sum_{n = -\infty}^{+\infty} \frac{\sqrt{2\pi}}{T} \hat{f}(\frac{2\pi n}{T}) e^{i\frac{2\pi n}{T}x}$$

$$\tag{3.3}$$

$$= \sum_{n=-\infty}^{+\infty} \hat{f}(k_n) \frac{e^{ik_n x}}{\sqrt{2\pi}} \Delta k \qquad k_n = \frac{2\pi n}{T} \text{ et } \Delta k = \frac{2\pi}{T}$$
 (3.4)

$$\approx \int_{-\infty}^{+\infty} dk \hat{f}(k) \frac{e^{ikx}}{\sqrt{2\pi}} \tag{3.5}$$

Remarque 2.2. Ces fonctions suivent certaines propriétés intéressantes. Soit h(x) et $\hat{h}(x)$ deux fonctions reliées par une transformations de Fourier. Dès lors,

- Si h(x) est linéaire, alors $\hat{h}(x)$ l'est également : h(x) = af(x) + bg(x), alors $\hat{h}(k) = a\hat{f}(k) + b\hat{g}(k)$.
- Si $h(x) = f(x x_0)$, alors $\hat{h}(k) = e^{-ikx_0}\hat{f}(k)$. Il s'agit d'une translation. Inversement, la propriété de modulation s'écrit $h(x) = f(x)e^{ik_0x}$, alors $\hat{h}(k) = \hat{f}(k k_0)$.
- Si h(x) = f(ax), le changement d'échelle implique que $\hat{h}(k) = \frac{1}{a}\hat{f}(\frac{k}{a})$.
- La relation de conjuguaison sous une transformation de Fourier est que $h(x) = \bar{f}(x)$ implique $\hat{h}(k) = f(-k)$. Notons que si f(x) est réel, alors $\hat{f}(k) = -\hat{f}(k)$.
- $\hat{f}(0) = \int_{-\infty}^{\infty} dx f(x).$
- La dérivée de $\hat{f}(k)$ est $ik\hat{f}(k)$. Cela se généralise à $f(n) = (ik)^n \hat{f}(k)$. En particulier, si $f(x)x^n$ est intégrable, alors $\hat{f}(k)$ est n-fois dérivable. Inversement, si f(x) est n-fois intégrable, alors $\hat{f}(k)k^n$ est intégrable.
- La propriété de convolution établit que si $h(x) = (f \circ h)(x) = \int dy f(y) g(x-y)$, alors $\hat{h}(k) = \hat{f}(k) \times \hat{g}(k)$.

Théorème 2.3 (Plancherel). Soit f(x) une fonction, et $\hat{f}(k)$ sa transformée de Fourier. Nous avons alors l'équivalence des intégrales :

$$\int dx f(x)\bar{g}(x) = \int dk \hat{f}(k)\bar{\hat{g}}(k)$$
(3.6)

Théorème 2.4 (Égalité de Parceval). Soit f(x) une fonction, et $\hat{f}(k)$ sa transformée de Fourier. Alors,

$$\int dx \|f(x)\|^2 = \int dk \|\hat{f}(k)\|^2$$
(3.7)

3 Distribution

3.1 Espace de fonctions test

Soient D, l'ensemble des fonctions C^{∞} à support compact (distrubution D'), et S - l'ensemble des fonctions C^{∞} à décroissance rapide (distrubtion tempérée S'). Imposons une notion de continuité/topologie sur les fonctions test :

$$\varphi_k = \varphi \text{ si et seulement si } (\partial_x^{(\alpha)} \varphi_x) = (\partial_x^{(\alpha)} \varphi)$$
 (3.8)

uniformément pour tout α .

Soit T des formes linéaires continues sur l'espace des fonctions tests.

Proposition 3.1. Soit $T: D \to \mathbb{R}: \varphi \to T \cdot \varphi$. Si $\varphi_k = \varphi$, alors $T \cdot \varphi_k \to T \cdot \varphi$ généralise la notion de fonction.

3.2 Opérations sur les distributions

Proposition 3.2 (Dérivée d'une distrubution). $T' \cdot \varphi = T \cdot (-\varphi')$

Proposition 3.3 (Multiplication d'une distribution par une fonction test). $\Phi T \cdot \varphi = T \cdot \varphi \Phi$ Nous ne pouvons pas multiplier des distributions entre-elles.

Théorème 3.4 (Théorème de structure). Localement, une distribution est égale à la dérivée α^{eme} d'une fonction continue. Elle est dite tempérée lorsqu'elle est égale à la dérivée α^{eme} d'une fonction continue à croissance lente⁸.

3.3 Distributions tempérées

A partir de maintenant, nous noterons F une transformée de Fourier, et S une invariance sous F.

Définition 3.5. Soit $T \in \mathbb{S}$. Alors, FT existe et est défini par $FT \cdot \Phi = T \cdot F\Phi$.

Si f est une fonction, alors:

$$FT_f \cdot \Phi = T_f \cdot F\Phi$$
 Où $\int dx \left(\int dx \frac{e^{-ikx}}{\sqrt{2\pi}} f(x) \right) \Phi(k)$ et $\int dx f(x) \left(\int dk \frac{e^{-ikx}}{\sqrt{2\pi}} \Phi(k) \right)$ (3.9)

3.4 Delta de Dirac

$$\delta(x) = \begin{cases} +\infty \text{ en } x = 0\\ 0 \text{ en } x \neq 0 \end{cases} \qquad \int_{-\infty}^{+\infty} dx \delta(x) = 1$$
 (3.10)

$$\delta(x) = \lim_{x \to 0} f_{\alpha}(x) \qquad \qquad \int_{-\infty}^{+\infty} dx f_{\alpha}(x) = 1 \qquad (3.11)$$

Où $f_{\alpha}(x)$ est strictement positif.

$$\int_{-\infty}^{+\infty} dx f(x)\delta(x) = f(0) \tag{3.12}$$

$$\int_{-\infty}^{+\infty} dx \delta(\Gamma - x) \delta(x - \zeta) = \delta(\Gamma - \zeta) \tag{3.13}$$

$$\delta'(x): \int_{-\infty}^{+\infty} \delta'(x)f(x) = [\delta(x)f(x)]_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} dx \delta(x)f'(x)$$
(3.14)

$$=-f'(0) \tag{3.15}$$

$$\int_{-\infty}^{+\infty} dx' \delta(x') = \theta(x) \qquad \qquad \int dx f(x) \delta(x-a) = f(a) \qquad (3.16)$$

$$\delta(\alpha x) = \frac{1}{\|\alpha\|} \delta(x) \qquad \qquad \delta(g(x)) = \frac{1}{\|g'(x_0)\|} \delta(x-x_0) \delta(-x) = \delta(x) \qquad (3.17)$$

$$(3.18)$$

^{8.} ne croissant pas plus vite qu'un polynome.

3.5 Transformée de Fourier d'une fonction périodique

Si x(t) est une fonction de période T tel que x(t+T)=x(t). Alors x(t) peut-être représenté comme une série de Fourier.

$$x(t) = \sum_{k = -\infty}^{+\infty} c_k e^{2\pi i k \frac{i}{T}}$$
 (3.19)

Prenons la transformée de Fourier de (3.19).

$$\hat{x}(\omega) = \int dt \frac{e^{-i\omega t}}{\sqrt{2\pi}} x(t) = \int_{k=-\infty}^{+\infty} c_k \int dt \frac{e^{-i\omega t}}{\sqrt{2\pi}} e^{2\pi i k \frac{t}{T}}$$
(3.20)

$$=\sum_{k=-\infty}^{+\infty} \frac{c_k}{2\pi} \delta(\omega - \frac{2\pi k}{T})$$
 (3.21)

Nous appelons $\hat{x}(\omega)$ est la somme des deltas espacés de $\frac{2\pi}{T}$.

Quatrième partie

Formalisme de Dirac

1 Expérience de Stern-Gerlach

L'expérience de Stern-Gerlach (1922) consistait à faire passer des atomes d'argent dans un champ magnétique non uniforme (fig 1). Classiquement, les atomes d'argent, ayant un moment cinétique et un moment magnétique orbital également nul, ne devraient pas subir l'influence du champ magnétique. L'expérience montre que le faisceau se **sépare en deux**. Ce résultat, inexpliqué par la compréhension "classique" de la matière, a trouvé une explication en physique quantique, avec l'introduction du moment cinétique de spin.

FIGURE 1 – Dispositif expérimental de l'expérience de Stern-Gerlach (lien cliquable)

Mathématiquement, rappelons à toute fin utile que :

Moment angulaire
$$\mathbf{L} = m\mathbf{r} \times \mathbf{v}$$
 (4.1)

Moment magnétique
$$m = I \|S\| = \frac{ev}{2\pi r} \pi r^2 = \frac{1}{2} evr = \frac{1}{2} \frac{e}{m} L$$

$$I = \frac{ev}{2\pi r}$$
 (4.2)

$$\boldsymbol{m} = \frac{1}{2} \frac{e}{m} \boldsymbol{L} \tag{4.3}$$

Où I est le courant et \boldsymbol{S} est la surface considérée.

En pratique, les atomes/particules élémentaires suivent cette relation à un facteur prêt : $m = \frac{g}{2} \frac{e}{m} L$, où g est le **facteur de Londé**. Elle prend différentes valeurs en fonction de ce que nous considérons : nous avons g = -2.002 pour un électron, $g_n = -3.8$ et $g_p = 5.6$.

En pratique, nous mettrons en évidence la quantification du moment angulaire en mesurant le moment magnétique. L'énergie d'un moment magnétique dans un champ magnétique sera donnée par l'expression

$$E = \boldsymbol{m} \cdot \boldsymbol{B} \tag{4.4}$$

Lorsque le champ est non-uniforme, nous observons un gradient d'énergie :

$$F = \nabla \cdot (m \cdot B) = \nabla \cdot (E) \tag{4.5}$$

En faisant l'expérience, nous nous attendons donc à observer ce gradient d'énergie - et donc un "gradient de résultats". Ce n'est pas le cas : seul deux tâches sont observées. Chaque électron se comporte comme un aimant à seulement deux directions vertiables possibles : Nord-Sud ou Sud-Nord. Cette propriété quantique s'appelle le spin, et s'écrit :

$$S = \pm \frac{\hbar}{2} \tag{4.6}$$

FIGURE 2 – Une photo des rayons séparés, avec un message. La traduction donne : "Ci-contre, une preuve expérimentale du spin quantique. Nous vous félicitons pour la vérification expérimentale de votre théorie".

2 Espace mathématique des fonctions d'onde

La section actuelle ne figure pas dans les notes de Prof. Massar. Elles sont tirées de l'ouvrage de référence.

Jusqu'à présent, nous avons mentionné les fonctions d'onde à plusieurs reprises sans s'être définis un **espace de fonctions** auxquelles elles appartiennent. Or c'est un objet mathématique, il ne faudrait pas commettre trop de pêchés sans connaître sa nature (même si on est physicien). Nous savons qu'une fonction d'onde doit respecter

$$\int_{\mathbb{R}^3} |\psi(\boldsymbol{r},t)|^2 \, \mathrm{d}^3 \boldsymbol{r} \;,$$

donc nous savons déjà qu'elle doit être de carré sommable.

$$\psi \in L^2$$

L'espace des fonctions de carré sommable est bien trop vaste. Pour décrire des quantités physiques, nous voulons de notre fonction qu'elle soit également continue et infiniment dérivable (afin de ne pas rencontrer de discontinuités à très petite échelle). Nous nommons \mathcal{F} l'espace ainsi obtenu. Cet espace, des fonctions de carré sommable, continues et infiniment dérivables, contient les fonctions partout définies (une particule dans le vide) comme les fonctions à support borné (une particule dans un laboratoire). Nous notons alors $\psi \in \mathcal{F}$.

$$\psi \in \mathcal{F} \subset L^2$$

2.1 Structure de \mathcal{F}

- L'espace des fonctions (c'est la terminologie que nous utiliserons pour \mathcal{F}) est un **espace vectoriel**.
- Un produit scalaire (\cdot, \cdot) est défini sur \mathcal{F} .

$$\forall \varphi, \psi \in \mathcal{F} : (\varphi, \psi) \doteq \int_{\mathbb{R}^3} \varphi^*(\mathbf{r}) \psi(\mathbf{r}) d^3 r$$
 (4.7)

 (φ, ψ) est le produit scalaire de $\psi(\mathbf{r})$ par $\varphi(\mathbf{r})$: elle converge toujours si φ et ψ appartiennent à \mathcal{F} .

Le produit scalaire est sesquilinéaire, et vérifie une égalité similaire à celle de Cauchy-Schwarz :

$$\forall \varphi_1, \varphi_2 : (\varphi_1, \varphi_2) \leq \sqrt{(\varphi_1, \varphi_1)} \sqrt{(\varphi_2, \varphi_2)}$$
.

Ci-contre, une série de propriétés découlant de 4.7 :

$$(\varphi, \psi) = (\psi, \varphi)^*$$
$$(\varphi, \lambda_1 \psi_1 + \lambda_2 \psi_2) = \lambda_1 (\varphi, \psi_1) + \lambda_2 (\varphi, \psi_2)$$
$$(\lambda_1 \varphi_1 + \lambda_2 \varphi_2, \psi) = \lambda_1^* (\varphi_1, \psi) + \lambda_2^* (\varphi_2, \psi)$$

Le produit scalaire est lin'eaire par rapport à la seconde fonction du couple, et anti-lin'eaire par rapport à la première.

Opérateurs linéaires pour \mathcal{F} 2.2

Nous pouvons parler des opérateurs linéaires qui agissent sur des fonctions de \mathcal{F} . A est un tel opérateur si et seulement si

$$\forall \varphi \in \mathcal{F} : A\varphi = \psi \in \mathcal{F}$$

Soient A et B deux tels opérateurs. Alors, nous pouvons les prendre en produit et définir un troisième opérateur AB défini comme suit :

$$AB: \mathcal{F} \to \mathcal{F}: \varphi \longmapsto A[B(\varphi)]$$
.

Similairement, nous pouvons définir

$$BA: \mathcal{F} \to \mathcal{F}: \varphi \longmapsto B[A(\varphi)]$$
,

et si nous faisons ça c'est parce qu'en général, $AB \neq BA$: on dit que les opérateurs ne commutent pas. On en profite pour définir un troisième opérateur, qui lui, prend deux opérateurs et vérifie s'ils commutent :

$$[\cdot,\cdot]:A,B\longmapsto AB-BA$$

et on appelle cet opérateur commutateur de A et de B.

2.3 Bases orthonormées discrètes dans \mathcal{F}

2.3.1 Base? Orthonormée?

Continuons dans notre lancée matheuse! Après avoir parlé de structure, d'opérateurs, parlons de base. Soit une base de \mathcal{F} , $\{u_i(r)\}$. Par définition,

$$\forall \varphi \in \mathcal{F} : \exists \{c_i\}_{i=1,\dots} \text{ t.q } \varphi(\mathbf{r}) = \sum_i c_i u_i(\mathbf{r}),$$
 (4.8)

où les coefficients c_i sont dits qu'ils représentent φ dans la base $\{u_i(r)\}$.

La base est orthonormée pourvu que

$$(u_i, u_j) = \int_{\mathbb{R}^3} u_i^{\star}(\mathbf{r}) u_j(\mathbf{r}) \, \mathrm{d}^3 \mathbf{r} = \delta_{ij} . \tag{4.9}$$

Avec la représentation de toute fonction dans la base, nous pouvons réécrire le produit scalaire entre des fonctions φ et ψ représentés par des coefficients b_i et c_i comme :

$$(\varphi, \psi) = \sum_{i} b_i^{\star} c_i$$

Ceci a pour implication directe

$$(\psi, \psi) = \sum_{i} |c_{i}|^{2} \tag{4.10}$$

2.3.2 Relation de fermeture

La relation de fermeture exprime que $\{u_i(r)\}$ est une base. Elle sera d'application pour vérifier à partir d'un ensemble de fonctions qu'elles forment bien une base de \mathcal{F} .

 $\{u_i(\mathbf{r})\}\$ est une base $\iff \forall \psi \in \mathcal{F}$, on a

$$\psi(\mathbf{r}) = \sum_{i} (u_i, \psi) u_i(r) \tag{4.11}$$

$$= \sum_{i} \left[\int_{\mathbb{R}^3} u_i^{\star}(\mathbf{r}') \psi(\mathbf{r}') \, \mathrm{d}^3 \mathbf{r}' \right] u_i(\mathbf{r})$$
 (4.12)

$$= \int_{\mathbb{R}^3} d^3 \underbrace{\left[\sum_i u_i^*(\mathbf{r}') u_i(\mathbf{r})\right]}_{G(\mathbf{r},\mathbf{r}')} \psi(\mathbf{r}')$$
(4.13)

$$= \int_{\mathbb{R}^3} d^3 G(\mathbf{r}, \mathbf{r}') \psi(\mathbf{r}')$$

$$\iff G(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}')$$
(4.14)

$$\iff G(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}') \tag{4.15}$$

$$\iff \sum_{i} u_i^{\star}(\mathbf{r}')u_i(\mathbf{r}) = \delta(\mathbf{r} - \mathbf{r}')$$
(4.16)

La dernière égalité est la **relation de fermeture**. Nous pouvons alors montrer que toute fonction $\psi(\mathbf{r})$ quelconque peut s'écrire sous la forme

$$\psi(\mathbf{r}) = \int d^3r' \ \psi(\mathbf{r}')\delta(\mathbf{r} - \mathbf{r}') \tag{4.17}$$

2.4 Généralisation de la notion de base

En mécanique quantique, il existe des bases qui n'appartiennent **pas** à \mathcal{F} , sur lesquelles il est tout de même important de compter pour développer des fonctions d'onde. Voici une série d'exemples particulièrement importants.

2.4.1 L'exemple des ondes planes

Un produit scalaire

L'espace des ondes planes,

$$\left\{ v_p(x) = e^{ipx/\hbar} \right\} ,$$

n'est pas de carré sommable. Par contre, si nous commettons un pêché et écrivons un produit scalaire (à une constante près) entre une fonction ψ de \mathcal{F} et un v_p comme s'il était dans \mathcal{F} (soyons fous!) :

$$(\psi, v_p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{\mathbb{R}} \mathrm{d}x \; \psi(x) e^{-ipx/\hbar}$$

Nous voyons que si nous définissons une fonction de p pour l'égalité ci-dessus, notre pêché se serait résumé en une Transformée de Fourier de ψ , soit quelque chose qui existe 9 ! Ceci motive à considérer notre ensemble d'ondes planes comme une base et de considérer la Transformée de Fourier comme un produit scalaire avec un v_p .

$$\bar{\psi}(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{\mathbb{R}} dx \; \psi(x) e^{-ipx/\hbar}$$

Des composantes

D'autre part, nous pouvons interpréter la transformée inverse

$$\psi(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{\mathbb{R}} \mathrm{d}p \; \bar{\psi}(p) e^{ipx/\hbar}$$

comme l'expression de ψ dans la base des v_p , avec comme composantes $\bar{\psi}(p)$, l'équivalent des c_i de l'équation (4.8).

Par l'identité de Parseval, nous avons aussi l'équivalent de la relation (4.10) :

$$(\psi, \psi) = \int_{\mathbb{R}} |\bar{\psi}(p)|^2 dp$$

Une relation d'orthonormalisation

Avec la relation (cf. livre de référence)

$$\frac{1}{2\pi} = \int_{\mathbb{P}} \mathrm{d}k e^{iku} = \delta(u) \;,$$

nous pouvons obtenir une relation qui ressemble à une belle relation d'orthonormalisation :

$$(v_p, v_{p'}) = \dots = \delta(p - p')$$

En comparant à (4.9), nous avons ici des indices continus, et avant on avait des indices discrets. Attention, ici, lorsque p = p', nous n'avons pas 1 : ça diverge. On dit que v_p et $v_{p'}$ sont **orthonormés au sens de Dirac**.

Cet exemple des ondes planes motive l'extension du concept de base à des objets qui ne sont pas dans \mathcal{F} .

^{9.} C'est beau d'être physicien. On fait n'importe quoi tant que ça marche, et ça sera au matheux de vérifier.

2.4.2 L'exemple des fonctions delta

Soit $\mathbf{r_0} = (x_0, y_0, z_0)$. On intrduit un ensemble de fonctions définies par $\zeta_{r_0}(\mathbf{r}) = \delta(\mathbf{r} - r_0)$. L'ensemble $\{\zeta_{r_0}(\mathbf{r})\}$ est la base des fonctions delta centrées en un point $\mathbf{r_0}$; $\zeta_{r_0}(\mathbf{r})$ n'étant pas de carré sommable, nous avons que $\zeta_{r_0}(\mathbf{r}) \notin \mathcal{F}$.

Nous pouvons alors réécrire la relation (4.17) sous la forme

$$\psi(\mathbf{r}) = \int d^3 r_0 \ \psi(\mathbf{r}_0) \zeta_{r_0}(\mathbf{r}) \tag{4.18}$$

$$\psi(\mathbf{r}_0) = \int d^3r \, \zeta_{\mathbf{r}_0}^* \psi(\mathbf{r}) \tag{4.19}$$

2.4.3 Notion générale de base "orthonormée" continue

Une base orthonormée continue sera un ensemble de fonctions qui ont les propriétés suivantes.

- 1. Il s'agit d'un ensemble de fonctions $\{w_{\alpha}(r)\}$ repérées par un indice continu.
- 2. Les fonctions satisfont une relation d'orthonormalisation :

$$(w_{lpha},w_{lpha'}) \doteq \int w_{lpha}(oldsymbol{r})^{\star}w_{lpha'}(oldsymbol{r}) = \delta(w_{lpha}-w_{lpha'})$$

3. Les fonctions satisfont une relation de fermeture :

$$\int w_{\alpha}(\mathbf{r})^{\star}w_{\alpha}(\mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}')$$

3 Notations propre à la Mécanique Quantique

Dans le cadre de la Mécanique Quantique, nous nous placerons dans des expaces de Hilbert \mathbb{H} séparables. Un espace de Hilbert est un espace pré-hilbertien (c'est-à-dire, muni d'un produit scalaire hermitien) dans lequel toute suite de Cauchy converge.

Nous introduisons:

- Vecteur $\in \mathbb{H} : |\Psi\rangle$. Il s'agit d'un vecteur colonne v, appelé le ket.
- Vecteur transposé conjugué $\in \mathbb{H} : \langle \Psi |$. Il s'agit du vecteur ligne \overline{v}^T , appelé le bra.
- Le produit scalaire $\langle \varphi, \Psi \rangle$, appelé le braket.

3.1 Correspondance entre bra et ket

Si $|\Psi\rangle = \alpha |\Phi\rangle + \beta |\Phi'\rangle$, alors $\langle\Psi| = \overline{\alpha} \langle\Phi| + \overline{\beta} \langle\Phi'|$: la correspondance bra \rightarrow ket est donc antilinéaire.

Remarque 3.1. Si λ est un nombre complexe et $|\Psi\rangle$ un ket, alors $\lambda |\Psi\rangle$ est un ket. Nous l'écrirons parfois $|\lambda\Psi\rangle$. Il faudra alors faire attention que la relation entre bra et ket étant anti-linéaire, $\langle \lambda\Psi|=\overline{\lambda}\,|\Psi\rangle$.

Notons que les états quantiques sont :

1. normalis'es:

$$\langle \Psi | \Psi \rangle = 1 \tag{4.20}$$

en raison de l'interprétation probabiliste.

2. définis à une phrase prêt :

$$|\Psi\rangle$$
 $e^{i\varphi}|\Psi\rangle$ (4.21)

représentent le même état quantique.

Nous sommes dans un espace projectif de Hilbert. Dès lors,

$$|\Psi\rangle \sim |\varphi\rangle$$
 quand $|\Psi\rangle = \lambda |\varphi\rangle$

^{10.} Nous pouvons également le voir comme un élément du dual \mathbb{H}^*

3.1.1 Exemples

 $\mathbf{Spin}\ \tfrac{1}{2}: base\ orthonorm\acute{e} = \bigg\{|\!\uparrow\rangle,\!|\!\downarrow\rangle\bigg\}.$

Nous pouvons définir un état arbitraire :

$$|\Psi\rangle = \cos\frac{\theta}{2}|\uparrow\rangle + e^{i\varphi}\sin\frac{\theta}{2}|\downarrow\rangle$$
 (4.22)

Où $\theta \in [0, \pi]$ et $\varphi \in [0, 2\pi]$ et θ, φ appartiennent à la sphère de Bloch.

Si $|\varphi\rangle = \cos\frac{\theta'}{2}|\uparrow\rangle + e^{i\varphi'}\sin\frac{\theta'}{2}|\downarrow\rangle$, alors le produit scalaire donnera

$$\langle \varphi | \Psi \rangle = \cos \frac{\theta}{2} \cos \frac{\cos'}{2} + e^{\varphi - \varphi'} \sin \frac{\theta}{2} \sin \frac{\theta'}{2}$$
 (4.23)

Oscillateur harmonique : base orthonormée = $\left\{|n\rangle: n=0,1,2,\ldots\right\}$ et les états d'énergies sont donnés par $E_n=\hbar\omega\left\{n+\frac{1}{2}\right\}$.

Nous pouvons définir un état arbitraire par $|\Psi\rangle = \sum_n c_n |n\rangle$ avec $\sum_n ||c_n||^2 = 1$.

4 Opérateurs linéaires

Soit $A : \mathbb{H} \to \mathbb{H} : |\Psi\rangle \to A |\Psi\rangle$ un opérateur linéaire, c'est à dire tel quel $A(a |\Psi\rangle + b |\varphi\rangle) = a(A |\Psi\rangle) + b(A |\varphi\rangle)$. Soit B un (autre) isomorphisme ¹¹ sur le même ensemble \mathbb{H} . Nous pouvons définir plusieurs opérations :

- **Produit d'opérateurs** : $(AB) |\Psi\rangle = A(B |\Psi\rangle)$. B agit d'abord sur ket $|\psi\rangle$ pour donner $B |\Psi\rangle$, et A agira ensuite sur $A |\Psi\rangle$.
- En général, $\overrightarrow{AB} \neq BA$, le commutateur [A,B] de A,B est par définition [A,B] = AB-BA.
- Anticommutateur : $\{A, B\} = AB + BA$.

Action de A sur le dual/les bras. Soit $A: \mathbb{H}^* \to \mathbb{H}^*: \langle \varphi | \to \langle \varphi | A \text{ est défini par } \left\{ \langle \varphi | A \right\} | \Psi \rangle = \langle \varphi | \left\{ A | \Psi \rangle \right\},$ pour tout $| \varphi \rangle$, $| \Psi \rangle$. Nous le noterons $\langle \varphi | A | \Psi \rangle$.

Remarque 4.1. Observons que l'ordre dans lequel apparaît les symbols a une importance capital. Seul les nombres complexes peuvent être déplacés sans influencer le résultat.

Exemple 4.2. Soit $|\Psi\rangle$ et $|\Theta\rangle$ deux kets. Ecrivons les dans l'ordre inverse : $\langle\Psi|$ et $\langle\Theta|$. Considérons

$$|\Psi\rangle\langle\Theta|$$
 (4.24)

Prenons un ket $|\gamma\rangle$ tel que

$$|\Psi\rangle\langle\Theta|\gamma\rangle$$
 (4.25)

Nous avons que $\langle \Theta | \gamma \rangle$ est un nombre complexe; par conséquent, nous avons que un bra $\langle \Psi |$ multiplié par un scalaire. Nous avons alors que (4.24) appliqué à un ket donne un nouveau ket.

5 Opérateur adjoint A^{\dagger}

Définition 5.1. Soit $A: \mathbb{H} \to \mathbb{H}$ un opérateur linéaire. Nous définissons l'opérateur adjoint $A^{\dagger}: \mathbb{H} \to \mathbb{H}$ par $\langle \Psi | A^{\dagger} | \varphi \rangle = \langle \varphi | A | \Psi \rangle^*$ pour tout $| \Psi \rangle$, $| \varphi \rangle$.

Si $\{|u_i\rangle\}$ forme une base orthonormée, alors :

- $\langle u_i | A | u_j \rangle = a_{ij}$
- $\langle u_i | A^{\dagger} | u_j \rangle = a_{ij}^*$
- $\rightarrow A^{\dagger} = \overline{A^T}$ est la transposée conjuguée ¹².
 - 11. Demander vérification à Massar.
 - 12. Ask teacher what's up.

Propriétés intéressantes 5.1

Nous donnons ici une série de propriétés de l'opérateur adjoint A^{\dagger} .

- 2. $(\lambda A)^{\dagger} = \lambda^* A^{\dagger}$ pour tout $\lambda \in \mathbb{C}$.
- 3. $(A + B)^{\dagger} = A^{\dagger} + B^{\dagger}$ 4. $(AB)^{\dagger} = A^{\dagger}B^{\dagger}$.
- 5. Si $A = |\alpha\rangle \langle \beta|$, alors $A^{\dagger} = |\beta\rangle \langle \alpha|$.

Exemples d'opérateurs

1. Soit $A = |\alpha\rangle\langle\beta|$. Alors,

$$\langle \varphi | A | \Psi \rangle = \langle \varphi | \left\{ |\alpha\rangle \langle \beta| \right\} | \Psi \rangle \tag{4.26}$$

$$= \langle \varphi | \alpha \rangle \langle \beta | \Psi \rangle \tag{4.27}$$

$$= \langle \varphi | \alpha \rangle \langle \beta | \Psi \rangle$$

$$\text{Et } A | \Psi \rangle = | \alpha \rangle \langle \beta | \Psi \rangle$$

$$(4.27)$$

$$(4.28)$$

2. Soit $\{(u_i)\}$ une base orthonormée. Nous avons que $\langle u_i|u_j\rangle=\delta_{ij}$. De plus, nous appelons éléments de la matrice A l'opérateur

$$\langle u_i | A | u_j \rangle = a_{ij} \tag{4.29}$$

Nous pouvons représenter A dans la base via

$$A = \sum_{i,j} a_{ij} |u_i\rangle \langle u_j| \tag{4.30}$$

6 Opérateur Hermitien et observable

Définition 6.1. Un opérateur A est Hermitien (ou encore Hermitique) lorsque $A = A^{\dagger}$.

Proposition 6.2. En particulier, nous avons alors que $\langle u_i | A | u_i \rangle = a_{ij} = \langle u_i | A^{\dagger} | u_i \rangle = \overline{a_{ii}}$.

Définition 6.3. Un opérateur Hermitien est dit observable lorsqu'il possède une base de vecteurs propres.

6.1Equation aux vecteurs propres

Soit

$$A|\Psi\rangle = \lambda |\Psi\rangle. \tag{4.31}$$

Proposition 6.4. Lorsque $A = A^{\dagger}$ est Hermitien, les valeurs propres sont réelles.

Démonstration.
$$\lambda = \langle \Psi | A | \Psi \rangle = \langle \Psi | A^{\dagger} | \Psi \rangle = \overline{\langle \Psi | A | \Psi \rangle} = \overline{\lambda}$$
.

Proposition 6.5. Lorsqu'un opérateur est Hermitien, alors les vecteurs propres associés à des valeurs propres distinctes sont orthogonaux.

$$A|\Psi\rangle = \lambda |\Psi\rangle$$
 $A|\Phi\rangle = \lambda' |\Phi\rangle$ (4.32)

 $D\'{e}monstration.$

$$\lambda \langle \Phi | \Psi \rangle = \langle \Phi | (A | \Psi \rangle) = \langle \Phi | A^{\dagger} | \Psi \rangle = \langle \Psi | A | \Phi \rangle^{*}$$
$$= \langle \Psi | (\lambda' | \Phi \rangle)^{*} = \lambda'^{*} \langle \Psi | \Phi \rangle^{*} = \lambda' \langle \Phi | \Psi \rangle$$

Nous avons en général que $\lambda - \lambda' \neq 0$. Dès lors, il s'ensuit que $\langle \Phi | \Psi \rangle = 0$: la conclusion s'ensuit.

Proposition 6.6. Pour un opérateur Hermitien A, nous avons que :

- En dimension finie, A possède une base orthonormée de vecteurs propres.
- En dimension infinie, cela n'est pas nécessairement le cas.

Démonstration. Cette propriété n'est pas démontrée. Pour une preuve détaillée, se référer aux notes 2019-2020 de MATH-F102 (second quadrimestre) par Samuel FIORINI.

6.2 Exemples d'opérateurs

— <u>Projecteurs</u>: Soit un opérateur π tel que : $\begin{cases} \pi = \pi^{\dagger} \\ \pi^2 = \pi \end{cases}$. Les valeurs propres sont alors soit 0, soit 1.

 $D\'{e}monstration.$

$$\begin{split} \pi & |\Psi\rangle = \lambda |\Psi\rangle \\ \lambda & \langle \Psi | \Psi \rangle = \langle \Psi | \pi | \Psi \rangle = \langle \Psi | \pi^2 | \Psi \rangle \\ & = (\langle \Psi | \pi) (\pi | \Psi \rangle) \\ & = \lambda \overline{\lambda} \langle \Psi | \Psi \rangle & \lambda \in \mathbb{R} \end{split}$$

Dès lors, nous avons que $\lambda^2 = \lambda$: soit donc $\lambda = 0$ ou $\lambda = 1$.

Nous avons alors que $|\Psi\rangle$ et $\langle\Psi|$ sont des projecteurs $\forall\,|\Psi\rangle$.

Remarque 6.7. Une application linéaire Ψ tel que $\Psi^2 = \Psi$ est dite idempotente.

Définition 6.8. Si $\{|u_i\rangle: i \in \mathbb{N}\}$ est une base orthonomée et si I est un sous-ensemble de \mathbb{N} , alors $\pi = \sum_{i \in I} |u_i\rangle \langle u_i|$ est un projecteur.

- <u>Oscillateur harmonique</u> : Soit $\{ |n\rangle : n \in \mathbb{N} \}$. Nous définissons alors plusieurs opérations :
 - Opérateur destruction : $a|n\rangle = \sqrt{n}|n-1\rangle$ et $a|0\rangle = 0$. En particulier, les éléments de la matrice de a sont donnés par $\langle m|a|n\rangle = \sqrt{n}\delta_m^{n-1}$.
 - Opérateur création : Soit a^{\dagger} l'hermitien conjugué de a. Nous avons alors que $a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$.
- <u>Opérateur identité</u> : Soit $\mathbb{I} |\Psi\rangle = |\Psi\rangle$ pour tout $|\Psi\rangle$ sur une base orthonormée $\{|u_i\rangle : n \in \mathbb{N}\}$. Alors, nous avons que $\mathbb{I} = \sum_i |u_i\rangle \langle u_i|$. Il s'agit de la définition de l'opérateur identité.
- <u>Spin $\frac{1}{2}$ </u>: Soit une base orthonormée $\{|\uparrow\rangle,|\downarrow\rangle\}$.

Cinquième partie

Postulats de la Mécanique Quantique

Dans ce chapitre, nous allons énoncer les postulats de la mécanique quantique selon le formalisme développé en 4. Ils permettront de répondre aux questions suivantes :

- 1. Comment décrire mathématiquement l'état d'un système quantique à un instant donné?
- 2. Comment, cet état étant donné, prévoir les résultats de mesure des diverses grandeurs physiques?
- 3. Comment trouver l'état du système à un instant t quelconque lorsqu'on connait ce état à l'instant t_0 ?

1 Énoncé des postulats

PREMIER POSTULAT - Vecteur d'état $|\Psi\rangle$

A tout système quantique correspond au moins un espace de $\mathcal{H}ilbert$ complexe et séparable \mathbb{H} dans lequel la théorie quantique du système peut-être formulée. Tout état accessible du système quantique correspond alors à un $vecteur\ normé\ |\Psi\rangle$ dans \mathcal{H} dont la phase globale est arbitraire.

Ce postulat a plusieurs implications :

- Tout système quantique est placé dans un esapce vectoriel : cela implique un principe de superposition. De fait, si $|\Psi_1(t)\rangle$ et $|\Psi_2(t)\rangle$ sont des vecteurs d'états, alors $\alpha |\Psi_1(t)\rangle + \beta |\Psi_2(t)\rangle$ est également un vecteur d'état.
- Le produit scalaire $\langle \Psi | \varphi \rangle$ est sesquilinéaire. Nous pouvons alors effectuer des calculs d'angles et de distances dans \mathcal{H} .
- Un état du système est bien défini séparément des grandeurs observables, celles-ci modifiant son état.

SECOND POSTULAT - Observables $|\hat{P}\rangle$

A toute grandeur classique correspond un opérateur hermitien \hat{P} agissant dans \mathcal{H} . Le processus de mesure quantique consiste à relever les propriétés fondamentales de ces opérateurs. En d'autres termes, les résultats de la mesure d'une obserable sont les diverses valeurs propres (réelles) de cette observable.

Lorsque l'opérateur A possède une base de vecteurs propres, nous pouvons écrire A sous la forme

$$A = \sum_{n} a_n P_n \tag{5.1}$$

où a_n est une valeur propre de A et P_n est un projecteur sur le sous-espace propre de A de la valeur propre a_n .

La probabilité d'observer le résultat a_n dans l'état $|\Psi\rangle$ est donnée par $P(a_n) = \langle \Psi | P_n | \Psi \rangle$ où P_n est un projecteur.

Nous pouvons vérifier que cela respecte bien les axiomes de la théorie des probabilités :

- 1. Normalisation : $\sum_{n} P(a_n) = \sum_{n} \langle \Psi | P_n | \Psi \rangle = \langle \Psi | \sum_{n} P_n | \Psi \rangle = \langle \Psi | \mathbb{I} | \Psi \rangle = \langle \Psi | \Psi \rangle = 1.$
- 2. Positivité: $P(a_n) = \langle \Psi | P_n | \Psi \rangle = \langle \Psi | P_n^2 | \Psi \rangle = ||P_n| |\Psi \rangle||^2 \ge 0.$
- 3. Probabilité indépendante de la phase. En effet, lorsque $|\Psi\rangle \to e^{i\varphi} |\Psi\rangle$, $P(a_n)$ ne change pas.

TROISIEME POSTULAT - Interprétation probabiliste

Le résultat d'une mesure sur un opérateur \hat{A} à un instant donné est aléatoire. Si ce résultat est une valeur propre a, la probabilité d'obtenir précisément cette valeur propre plutôt qu'une autre dans le spectre de \hat{A} est donnée par le module carré de la projection de l'état sur l'état propre $|a\rangle$ associé à la valeur propre mesurée.

- Nous ne sommes en mesure que d'effectuer des prédictions probabilistes. Il faut dès lors effectuer un grand nombre d'expériences. Nous n'avons accès qu'aux valeurs moyennes de \hat{A} , et les écart-types associés.
- Le Théorème d'Heinsenberg $\Delta A \Delta B \ge \frac{\|[\hat{A}, \hat{B}]\|}{2}$ implique que deux observables qui ne commutent pas ne peuvent pas être observées en même temps.

- Règle de Born (spectre discret) : La probabilité de transition entre les états $|\Psi\rangle$ et $|\varphi\rangle$ est donnée par $P_{\varphi} = ||\langle \varphi | \Psi \rangle||^2$ lorsque le spectre est discret non-dégénéré.
- $R\`{e}gle \ de \ Born$ (spectre continu) : La probabilité $dP(\alpha)$ d'obtenir un résultat entre α et $\alpha + d\alpha$ est donnée par $dP = \|\langle u_{\alpha} | \psi \rangle\|^2 d\alpha$.

1.1 Valeur moyenne d'une observable \hat{A}

Définition 1.1. La moyenne $\langle \hat{A} \rangle$ d'une observable \hat{A} par rapport à un état $|\psi\rangle$ est donnée par

$$\langle A \rangle = \sum_{n} a_n P(a_n) = \sum_{n} a_n \langle \Psi | P_n | \Psi \rangle = \langle \Psi | \sum_{n} a_n P_n | \Psi \rangle \qquad \langle A \rangle = \langle \psi | A | \psi \rangle \qquad (5.2)$$

1.2 Ecart quadratique moyen

Lemme 1.2. $A^2 = \sum_n a_n^2 P_n$

 $D\'{e}monstration.$

$$A^{2} = (\sum_{n} a_{n} P_{n})(\sum_{n'} a_{n} P_{n}) = \sum_{nn'} a_{n} a_{n'} P_{n} P_{n} = \sum_{n} a_{n}^{2} P_{n}.$$

Effectivement, remarquons que $P_n P_{n'}$ revient à $\delta_{nn'} P'_n$.

Proposition 1.3. L'incertitude d'une observable \hat{A} est donnée par

$$\Delta \hat{A} = \sqrt{\langle \Psi | A^2 | \Psi \rangle - \langle \Psi | A | \Psi \rangle^2} \tag{5.3}$$

Démonstration.

$$\begin{split} \Delta A^2 &= \sum_n a_n^2 P(a_n) - \langle A \rangle^2 \\ &= \sum_n a_n^2 \langle \Psi | P_n | \Psi \rangle - \langle A \rangle^2 \\ &= \sum_n a_n^2 \langle \Psi | P_n | \Psi \rangle - \langle A \rangle^2 \\ &= \langle \Psi | \sum_n a_n^2 P_n | \Psi \rangle - \langle A \rangle^2 \\ &= \langle \Psi | A^2 | \Psi \rangle - \langle \Psi | A | \Psi \rangle^2 \,. \end{split}$$

Remarque 1.4. Nous ne pouvons pas mesurer simultanément des obserbables qui ne commutent pas. A l'inverse, nous pouvons mesurer simultanément des observables qui commutent : [A, B] = 0. Ceci constitue une réécriture et généralisation du principe d'incertitude d'Heinsenberg (1.1).

QUATRIEME POSTULAT - Postulat de la mesure

Si la mesure de l'observable \hat{A} sur le système dans l'état $|\Psi\rangle$ fournit une valeur propre λ (associée au vecteur propre $|\lambda\rangle$), l'état du système immédiatement après la mesure est *projeté* sur le sous-espace propre associé à λ .

- La mesure de $|\Psi\rangle \to \hat{P} |\Psi\rangle \propto |\lambda\rangle$ s'effectue au moyen d'un projetcteur orthogonal $\hat{P}^2 = \hat{P}, \hat{P}^{\dagger} = \hat{P}$.
- C'est un processus *irréversible* qui ne conserve pas la probabilité. Après une mesure, on parle de "perte de la cohérence quantique".
- Aux échelles microscopiques, toute mesure perturbe fortement le système (exemple : Effet Compton).

1.3 Evolution des systèmes dans le temps

CINQUIEME POSTULAT - Évolution des États

A tout système peut-être associé un opérateur hermitien \hat{H} appelé Hamiltonien et représentant l'énergie totale du système. Cet opérateur régit l'évolution temporelle du vecteur d'état $|\Psi(t, \boldsymbol{x})\rangle$ au moyen de l'équation de Schrödinger

$$i\hbar \frac{d}{dt} |\Psi(t, \boldsymbol{x})\rangle = \hat{H} |\Psi(t, \boldsymbol{x})\rangle$$

- L'évolution est *unitaire*, c'est à dire que $|\Psi(t, \boldsymbol{x})\rangle = \hat{U}(t, t_0) |\Psi(t_0, \boldsymbol{x})\rangle$ par conservation de la probabilité.
- Un état stationnaire est un état propre de l'hamiltonien.
- Dans un potentiel stationnaire, l'évolution des états s'écrit

$$U(t,t_0) = e^{-i\omega t} = e^{-\frac{i}{\hbar}Et} \tag{5.4}$$

comme nous l'explique l'équation (2.53).

Soit une base $\{|u_i\rangle\}$ orthonormée. Alors,

$$|\Psi(t)\rangle = \sum_{i} c_i(t) |u_i\rangle$$
 (5.5)

$$H(t) = \sum_{ii'} |u_i\rangle \langle u_{i'}| H_{ii'}(t)$$

$$(5.6)$$

Proposition 1.5. Soit $|\Psi(t)\rangle$ une solution de l'équation de Schrödinger (2.12). Alors, le produit scalaire $\langle \Psi(t)|\Psi(t)\rangle$ est constante.

Démonstration.

$$\frac{d}{dt} \langle \Psi(t) | \Psi(t) \rangle = \left(\frac{d}{dt} \langle \Psi(t) | \right) | \Psi(t) \rangle + \langle \Psi(t) | \left(\frac{d}{dt} | \Psi(t) \rangle \right)$$
(5.7)

Remarquons que H est un opérateur hamiltonien. Dès lors,

$$\langle \Psi(t)|H = -i\frac{d}{dt}\langle \Psi(t)| \qquad \qquad H^{\dagger} = H.$$
 (5.8)

Dès lors,

$$\frac{d}{dt} \langle \Psi(t) | \Psi(t) \rangle = i \langle \Psi(t) | H(t) | \Psi(t) \rangle - i \langle \Psi(t) | H(t) | \Psi(t) \rangle = 0.$$
 (5.9)

Remarque 1.6. Nous prenons $\langle \Psi(t)|\Psi(t)\rangle=1$.

1.4 Réduction du paquet d'onde

Supposons que nous souhaitions mesurer, en un instant t donné, une grandeur physique \mathcal{A} . Si nous connaissons $|\Psi\rangle$, nous pouvons ¹³ obtenir les probabilité des différents résultats possibles. Cependant, en effectuant l'expérience, nous n'obtiendront qu'un seul des résultats possible : ce faisant après avoir obtenu le résultat a_n ¹⁴, on postule que l'état du sytème change : $|\Psi\rangle \rightarrow |u_n\rangle$.

SIXIEME POSTULAT - Réduction du paquet d'onde

Si la mesure de la grandeur physique A, à l'instant t, sur un système représenté par le vecteur $|\Psi\rangle$ donne comme résultat la valeur propre a_n , alors l'état du système immédiatement après la mesure est projecté sur le sous-espace propre associé à a_n .

$$|\Psi'\rangle = \frac{\hat{P}_n |\Psi\rangle}{\sqrt{P(a_n)}}$$

Où $P(a_n)$ est la probabilité de trouver comme résultat la valeur propre a_n , et \hat{P}_n est l'opérateur projecteur défini par $\hat{P}_n = \sum_{k=1}^{g_n} |u_{n,k}\rangle \langle u_{n,k}|$, où g_n est le degré de dégénérescence de la valeur propre a_n et les $|u_{n,k}\rangle$ sont les vecteurs de son sous-espace propre.

1.5 Hamiltonien indépendant du temps

Lorsque l'Hamiltonien ne dépend pas du temps, nous parlons de système conservatif. Rappelons l'équation aux valeurs propres (2.52):

$$H|\varphi_{n,\tau}\rangle = E_n|\varphi_{n,\tau}\rangle$$

^{13.} à travers des techniques qui seront expliquées ultérieurement.

^{14.} on parle de la valeur propre a_n .

Où les $|\varphi_{n,\tau}\rangle$ forment une base de vecteurs propres (H est une observable). En particulier, notons que H étant hermitique, cette dernière égalité peut se réécrire :

$$\langle \varphi_{n,\tau} | H = E_n \langle \varphi_{n,\tau} | \tag{5.10}$$

Nous allons montrer que E_n et $|\varphi_{n,\tau}\rangle$ suffisent à déterminer les solutions de l'équation de Schrödinger.

Notons que $|\varphi_{n,\tau}\rangle$ formant une base, nous pouvons pour chaque valeur de t développer un état du système $|\Psi\rangle$ dans la base :

$$|\Psi(t)\rangle = \sum_{n,\tau} c_{n,\tau}(t) |\varphi_{n,\tau}\rangle$$
 (5.11)

Où $c_{n,\tau}(t) = \langle \varphi_{n,\tau} | \Psi(t) \rangle$. Projetons alors l'équation de Schrödinger sur chacun des états $|\varphi_{n,\tau}\rangle$. Nous obtenons que :

$$i\hbar \frac{\partial}{\partial t} \langle \varphi_{n,\tau} | \Psi(t) \rangle = \langle \varphi_{n,\tau} | H | \Psi(t) \rangle$$
$$i\hbar \partial_t c_{n,\tau}(t) = E_n \langle \varphi_{n,\tau} | \Psi(t) \rangle = E_n c_{n,\tau}$$

Nous obtenons alors l'équation différentielle d'ordre 1 en $c_{n,\tau}(t)$

$$i\hbar\partial_t c_{n,\tau}(t) = E_n c_{n,\tau}. ag{5.12}$$

Sa solution générale est donné par

$$c_{n,\tau}(t) = c_{n,\tau}(t_0)e^{-i\frac{E_n}{\hbar}(t-t_0)}$$
(5.13)

Dès lors, le vecteur d'état $|\Psi(t)\rangle$ vaudra

$$|\Psi(t)\rangle = \sum_{n} c_n(t_0) e^{-i\frac{E_n}{\hbar}(t-t_0)} |\varphi_{n,\tau}\rangle$$
(5.14)

Pour résoudre l'équation de Schrödinger avec un Hamiltonien indépendant du temps, il suffit de <u>diagonaliser</u> l'Hamiltonien et de connaître la décomposition de $|\Psi\rangle$ à l'instant initial dans la base des vecteurs propres de \mathcal{H} .

Remarque 1.7. Nous venons de dériver un résultat obtenu précédemment, précisement dans la discussion autour de l'équation (2.53).

1.6 Opérateurs unitaires

La notion d'unité est introduite en A; plus spécifiquement en les définitions A.4 et en A.5. En utilisant les notations introduites dans en 4, nous pouvons réécrire cela sous la forme

$$U^{-1} = U^{\dagger} \tag{5.15}$$

$$UU^{\dagger} = U^{\dagger}U = \mathbb{I} \tag{5.16}$$

Proposition 1.8. Soit U une application unitaire. Soient $|\Psi\rangle$, $|\varphi\rangle$ deux kets. Notons

$$\begin{split} |\tilde{\Psi}\rangle &= U \, |\Psi\rangle \\ |\tilde{\varphi}\rangle &= U \, |\varphi\rangle \, . \end{split}$$

Alors, le produit scalaire est conservé :

$$\langle \tilde{\Psi} | \tilde{\Psi} \rangle = \langle \Psi | \varphi \rangle. \tag{5.17}$$

Proposition 1.9. Soit $\{|i\rangle\}$ une base orthonormée et U une matrice unitaire. Alors, $\{U|i\rangle\} = |i\rangle\}$ est également une base orthonormée et

$$|\tilde{i}\rangle = U |i\rangle = \sum_{j} |j\rangle \langle j| U |i\rangle = \sum_{j} |j\rangle U_{ji}$$
 (5.18)

est la matrice de changement de base.

Proposition 1.10. Si U et V sont des matrices unitaires, alors UV est unitaire.

Proposition 1.11. Si U est unitaire et $|\Psi\rangle$ est un vecteur propre de U

$$U|\Psi\rangle = \lambda |\Psi\rangle \qquad \rightarrow \|\lambda\|^2 = 1.$$
 (5.19)

De plus, $\lambda = e^{i\varphi}$. Nous pouvons diagonaliser une matrice unitaire

$$U = \sum_{i} e^{i\varphi_{j}} |i\rangle \langle j| \tag{5.20}$$

 $Où \{|j\rangle\}$ est une base orthonormée de vecteurs propres.

Théorème 1.12. Si U est une matrice $n \times n$ telle que $\langle \Psi | U^{\dagger} U | \Psi \rangle = \langle \Psi | \Psi \rangle$ pour tout $| \Psi \rangle$, alors U est unitaire ¹⁵ et donc $U^{\dagger}U = \mathbb{I}$.

Démonstration. En utilisant le premier postulat de la Mécanique Quantique, nous pouvons écrire tout état sous la forme $|\Psi\rangle = |\alpha\rangle + e^{i\varphi} |\beta\rangle$. Dès lors,

$$\begin{split} \langle \Psi | U^\dagger U | \Psi \rangle &= \langle \Psi | \Psi \rangle \\ (|\alpha\rangle + e^{-i\varphi} \, |\beta\rangle) (U^\dagger U) (|\alpha\rangle + e^{i\varphi} \, |\beta\rangle) &= (|\alpha\rangle + e^{-i\varphi} \, |\beta\rangle) (|\alpha\rangle + e^{i\varphi} \, |\beta\rangle) \\ \langle \alpha | U^\dagger U | \alpha\rangle + e^{-i\varphi} \, \langle \beta | U^\dagger U | \alpha\rangle + e^{i\varphi} \, \langle \alpha | U^\dagger U | \beta\rangle + \langle \beta | U^\dagger U | \beta\rangle = \langle \alpha | \alpha\rangle + e^{-i\varphi} \, \langle \beta | \alpha\rangle + e^{i\varphi} \, \langle \alpha | \beta\rangle + \langle \beta | \beta\rangle \end{split}$$

Or, nous avons que

$$\langle \alpha | U^{\dagger} U | \alpha \rangle = \langle \alpha | \alpha \rangle \qquad \langle \beta | U^{\dagger} U | \beta \rangle = \langle \beta | \beta \rangle.$$

Dès lors,

$$\langle \beta | U^{\dagger} U | \alpha \rangle = \langle \beta | \alpha \rangle$$

$$\langle \alpha | U^{\dagger} U | \beta \rangle = \langle \alpha | \beta \rangle$$

$$\forall |\alpha \rangle |\beta \rangle ,$$

$$\forall |\alpha \rangle |\beta \rangle .$$

Ce qui implique alors que $U^{\dagger}U = \mathbb{I}$.

Proposition 1.13. Si $|\Psi\rangle$ est une solution de l'équation de Schrödinger, alors il existe un opérateur linéaire $U(t,t_0)$ tel que

$$|\Psi(t,t_0)\rangle = U(t,t_0)|\Psi(t_0)\rangle. \tag{5.21}$$

En utilisant ce résultat, nous obtenons que

$$i\partial_t U(t, t_0) |\Psi(t_0)\rangle = H(t)U(t, t_0) |\Psi(t_0)\rangle \qquad \forall |\Psi(t_0)\rangle$$
$$i\partial_t U(t, t_0) = H(t)U(t, t_0)$$

Avec la condition initiale $U(t_0, t_0) = \mathbb{I}$.

Proposition 1.14. Comme $\langle \Psi(t_0)|\Psi(t)\rangle$ est indépendant de t, il s'ensuit que

$$\langle \Psi(t_0)|U^{\dagger}(t,t_0)U(t,t_0)|\Psi(t_0)\rangle = \langle \Psi(t_0)|\Psi(t_0)\rangle \qquad \forall |\Psi(t_0)\rangle. \tag{5.22}$$

Nous avons alors que $U(t, t_0)$ est une matrice unitaire.

2 Fonction d'Opérateurs/de matrices

Soit f : $\begin{pmatrix} \mathbb{C} \to \mathbb{C} \\ x \to \sum_{n=0}^{\infty} c_n x^n \end{pmatrix}$ une fonction qui peut-être représentée par une série. Soit $A \in \mathbb{C}^{N \times N}$ une matrice. Alors on étend f à une fonction sur les matrices par

$$f: \begin{pmatrix} \mathbb{C}^{N \times N} & \to & \mathbb{C}^{N \times N} \\ A & \to & \lim_{K \to \infty} \sum_{n=0}^{k} c_n A^n \end{pmatrix}$$
 (5.23)

lorsque cette limite existe.

^{15.} La matrice U appartient à U_n , l'ensemble des matrices de taille $n \times n$ définie en A.4

Proposition 2.1. Si V est une matrice inversible $VV^{-1} = V^{-1}V = \mathbb{I}$, alors $f(V^{-1}AV) = V^{-1}f(A)V$ Démonstration.

$$f(V^{-1}AV) = \sum_{n=0}^{\infty} c_n (V^{-1}AV)^n = \sum_{n=0}^{\infty} c_n V^{-1}A^n V = V^{-1}f(A)V$$

Proposition 2.2. Si D est une matrice diagonale $D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \dots & \lambda_N \end{pmatrix}$, est f(D) est diagonale et $f(D) = \begin{pmatrix} f(\lambda_1) & 0 & \dots & 0 \\ 0 & 0 & \dots & \lambda_N \end{pmatrix}$

$$\begin{pmatrix} f(\lambda_1) & 0 & \dots & 0 \\ 0 & f(\lambda_2) & \dots & 0 \\ 0 & 0 & \dots & f(\lambda_N) \end{pmatrix}.$$

Lemme 2.3. Si A est une matrice diagonalisale, alors il existe V inversible tel que $V^{-1}AV = D$ est diagonal. Alors, $f(A) = V^{-1}f(D)V$.

Lemme 2.4. Si A est hermitien $A = A^{\dagger}$, alors il existe V unitaire $U^{-1} = U^{\dagger}$ tel que $A = U^{\dagger}DU$ où D est diagonal réel. Alors, $f(A) = U^{\dagger}f(D)U$.

Remarque 2.5. En notation de Dirac, $A = \sum_{j} a_{j} |j\rangle \langle j|$ et $f(A) = \sum_{j} f(a_{j}) |j\rangle \langle j|$.

Sixième partie

Applications des postulats de la Mécanique Quantique

1 Interféromètre de Mech-Zehnder

Cet exemple est tiré de l'optique. Nous allons regarder ce qu'il se passe en optique classique, et nous allons ensuite utiliser le formalisme quantique. Ce faisant, nous pourrons mettre en évidence les différences entre les deux.

FIGURE 3 – Représentation du principe de l'interféromètre de Mach-Zehnder. Notons que les longueurs L_i représentent la longueur totale du trajet dans le chemin i suivit.

1.1 Brève description des détecteurs

Au niveau des détecteurs, plusieurs chemins sont possibles, comme l'illustre l'image ci-contre.

FIGURE 4 – Les ondes incidentes arrivants de A_1 et A_2 poursuivent leur chemin, respectivement en A_3 et A_4 .

Nous avons un miroir semi-transparant. Nous envoyons dessus par le port 1 un faiseau de lumière d'amplitude A_1 , et d'intensité $I_1 = \|A_1\|^2$; par le port 2, nous envoyons un faisceau d'amplitude A_2 et d'intensité $I_2 = \|A_2\|^2$. En supposant qu'il n'y a pas de pertes, nous avons que la somme des intensités entrantes est égale à la somme des intensités sortantes : $I_1 + I_2 = I_3 + I_4$. Puisque les équations de l'électromagnétisme sont linéaires, nous avons $A_3 = \alpha A_1 + \beta A_2$, pour tout $\alpha, \beta \in \mathbb{C}$. Nous pouvons facilement mesurer les valeurs absolues de ces coefficients. En posant $A_2 = 0$, nous pouvons mesurer I_3 ; nous trouverons $\|\alpha\|^2$.

Partons de la description d'une onde plane. Nous aurons

$$A_1(t) = A_1 e^{-i\omega t}, (6.1a)$$

$$A_2(t) = A_2 e^{-i\omega t}, (6.1b)$$

pour les ondes incidentes, ainsi que

$$A_3(t) = cA_1e^{-i\omega t} + isA_2e^{-i\omega t} \tag{6.2a}$$

$$A_4(t) = cA_2e^{-i\omega t} + isA_1e^{-i\omega t}$$

$$\tag{6.2b}$$

pour les ondes sortantes. La discussion précédente nous permet de choisir un des coefficients - soit $\|c\|^2$ - en choissisant le miroir semi-transparent. Le coefficient $\|s\|^2$ est alors fixé par

$$||c||^2 + ||s||^2 = 1.$$
 (6.3)

Il nous reste une liberté de phase : nous pouvons redéfinir la phase de $A_1 = e^{i\Phi}A'_1$, et de même pour A_2, A_3 et A_4 . Il s'agit d'une question de convention.

Remarque 1.1. Par convention, les ondes transmises ne subissent aucun déphasage, là où les ondes réfléchies bénéficient d'un déphasage de $\frac{\pi}{2}$. D'autres conventions sont possibles.

Remarque 1.2. Nous pouvons prendre $c = \cos \theta$ et $s = \sin \theta$ pour un argument θ , ce qui explique la notation utilisée.

1.2 Lumière classique

Pour simplifier, prenons $c=\frac{1}{\sqrt{2}}=s$. Notons que nous pouvons introduire un facteur e^{ikL} tenant compte de la distance parcourue, i.e. un point en x=0 peut-être décrit par $A(t)=Ae^{-i\omega t}$ et un point en x=L peut-être décrit par $A'(t)=Ae^{-i\omega t}e^{ikL}$. Notre détecteur repère le courant électrique I(t) selon $I(t)=e\|A(t)\|^2$ - soit

$$A(t) = Ae^{-i\omega t}$$
 $I_0 = ||A(t_0 = 0)||^2 = ||A||^2.$

Nous avons alors que

$$A_2(t) = \frac{A(t)}{\sqrt{2}} \qquad \qquad A_3(t) = i\frac{A(t)}{\sqrt{2}}$$

En particulier, nous pouvons écrire les chemins A_2' et A_3' selon :

$$A_2'(t) = A_2(t)e^{ikL_2} A_3'(t) = A_3(t)e^{ikL_3} (6.4a)$$

De même, les chemins A_4 et A_5 s'écrivent :

$$A_4 = \frac{1}{\sqrt{2}}(A_3' + iA_2') = i\frac{A(t)}{2}(e^{ikL_3} + e^{ikL_2})$$

$$A_5 = \frac{A(t)}{2}(e^{ikL_2} - e^{ikL_3})$$
(6.4b)

En introduisant le terme $\Delta \Phi = kL_3 - kL_2$, nous pouvons conclure que :

$$I_4 = \frac{\|A\|^2}{4} \|e^{ikL_2} + e^{ikL_3}\|^2 = \|A\|^2 \cos^2 \frac{k(L_3 - L_2)}{2} = \|A\|^2 \cos^2 \frac{\Delta\Phi}{2}$$
(6.5a)

$$I_5 = \|A\|^2 \sin^2 \frac{\Delta \Phi}{2} \tag{6.5b}$$

Remarquons que $I_4 + I_5 \doteq I_0$ - soit $I_0 = \|A\|^2$, comme prévu. Hourra.

1.3 Lumière quantique

Le photon peut suivre plusieurs chemin simultanément : par superposition, nous écrivons l'état comme

$$|\psi\rangle = \alpha |1\rangle + \beta |2\rangle + \gamma |3\rangle \tag{6.6}$$

Où $|i\rangle$ décrit le photon dans le chemin i.

Dans un beam splitter tel que décrit par (4), nous décrivons alors les transitions

$$|1\rangle \to c |3\rangle + is |4\rangle$$
, (6.7)

$$|2\rangle \rightarrow is |3\rangle + c |4\rangle$$
. (6.8)

Cette transition est décrite par la matrice $\begin{pmatrix} c & is \\ is & c \end{pmatrix}$, unitaire.

Soit une mesure dans la base $|1\rangle$, $|2\rangle$; donnée par l'était $|\psi\rangle = \alpha |1\rangle + \beta |2\rangle$. Dès lors, les probabilités de détection seront données par $P_1 = \|\alpha\|^2$ et $P_2 = \|\beta\|^2$.

Il s'ensuit que la decription de l'interféromètre 4 sera la suivante :

— Chemins 2 et 3.

$$|\psi\rangle = \frac{1}{\sqrt{2}}|2\rangle + \frac{1}{\sqrt{2}}|3\rangle \tag{6.9}$$

— Chemins 2' et 3'.

$$|\psi\rangle = \frac{e^{ikL_2}}{\sqrt{2}}|2'\rangle + \frac{i}{\sqrt{2}}e^{ikL_3}|3'\rangle \tag{6.10}$$

(6.11)

— Chemins 4 et 5.

$$|\psi\rangle = \frac{1}{2}(e^{ikL_2} - e^{ikL_3})|5\rangle + \frac{i}{2}(e^{ikL_2} + e^{ikL_3})|4\rangle$$
 (6.12)

Dès lors, nous avons que les probabilités de détections en 4 et en 5 seront :

$$P_4 = \cos^2 \frac{\Delta \Phi}{2} \tag{6.13}$$

$$P_5 = \sin^2 \frac{\Delta \Phi}{2} \tag{6.14}$$

Le photon est simultanément dans les chemins 2 et 3.

Remarquons que si nous supprimons le beam splitter à la fin, les probabilités de présence se réduisent à

$$P_4 = \frac{1}{2} = P_5 \tag{6.15}$$

Les delayed choice experiment (Wheeler, 1978) - qui consistent à enlever/remettre le beam splitter, ou à changer la phase $\Delta\Phi$ après que le photon soit entré dans l'interféromètre - nous apprennent que toute interprétation ou l'on suppose que le photon "sait à l'avance ce qu'il doit faire", ne tient pas.

2 Résonance quantique

2.1 Exemple 1 : l'atome de NH_3

Insérer graphique.

Dans la base $\{|1\rangle, |2\rangle\}$, l'Hamiltonien de ce système s'exprime par

$$H = \begin{pmatrix} E_0 & -A \\ -A & E_0 \end{pmatrix} \tag{6.16}$$

Il se trouve que dans la base $D = \{|E_0 - A\rangle, |E_0 + A\rangle\}$ des états propres d'énergie, cette matrice est diagonale. Nous observons alors que l'énergie fondamentale $E_0 > E_0 - A$. Nous en concluons que si l'atome peut effectivement être stable dans l'état non-dégénéré d'énergie E_0 , il l'est encore plus dans l'état doublement dégénéré d'énergie $E_0 - A$. D'autres exemples similaire existent, tel que celui de la molécule de Benzène.

3 Spin $\frac{1}{2}$

Ce chapitre consistue une brève introduction à la quantification du moment angulaire. Débutons par une introduction au concept de groupes de rotations.

3.1 Groupe de rotations

Considérons l'ensemble des matrices $R \in \mathbb{R}^{3\times 3}$ telle que $R^T R = \mathbb{I}$. Si n est un vecteur unitaire de \mathbb{R}^3 et θ un angle, alors $R(\theta, n)$ est la rotation (dans le sens trigonométrique) autour de l'axe n d'angle θ .

$$R(\theta, x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} = \exp(i\theta L_x) \qquad \qquad \text{où } L_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{pmatrix}$$

$$R(\theta, y) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} = \exp(i\theta L_y) \qquad \qquad \text{où } L_y = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$$

$$R(\theta, z) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = \exp(i\theta L_z) \qquad \qquad \text{où } L_z = \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Nous avons alors que $R(\theta, \mathbf{n}) = \exp(i\theta \mathbf{n} \cdot \mathbf{L})$, où $\mathbf{n} \cdot \mathbf{L} = n_i L_i$. Les vecteurs L_x, L_y, L_z sont les générateurs du Groupe des Rotations.

Proposition 3.1. Les générateurs du groupe des rotations commutent selon

$$[L_i, L_j] = L_k \tag{6.17}$$

pour tout $i, j \neq k$.

En physique, de nombreux objets (et non pas seulement les vecteurs) sont invariants ou se transforment sous l'effet d'une rotation. Une autre représentation du \mathcal{G} roupe des \mathcal{R} otations est l'ensemble des 3 opérateurs J_x, J_y, J_z tels que $[J_x, J_y] = J_z$ (et toutes ses permutations cycliques) et tel que, sous toute rotation d'angle θ autour de n, un état $|\psi\rangle$ se transforme en

$$|\psi\rangle \to \exp(i\theta \boldsymbol{n} \cdot \boldsymbol{J}) |\psi\rangle$$
 (6.18)

Exemple 3.2. Les opérateurs

- $J_x = yp_z zp_y$
- $-J_y = zp_x xp_z$ $-J_z = xp_y yp_x$

sont des exemples de représentation du Groupe des Rotations.

Un système est invariant par rotation si

$$\exp(-itH)\exp(i\theta\boldsymbol{n}\cdot\boldsymbol{J})|\psi\rangle = \exp(i\theta\boldsymbol{n}\cdot\boldsymbol{J})\exp(-itH)|\psi\rangle \qquad \forall |\psi\rangle, \forall \boldsymbol{n}, \theta, t \qquad (6.19)$$

Cela revient à dire que faire une rotation et ensuite évoluer dans le temps est identique à évoluer dans le temps et puis faire une rotation.

Proposition 3.3. Pour tout petit angle sur des temps négigeables,

$$[H, J_x] = [H, J_y] = [H, J_z] = 0.$$
 (6.20)

Les conséquences en sont nombreuses. Voici quelques exemples.

Proposition 3.4. $Si | \psi(t) \rangle$ est une solution de l'équation de Schrödinger (2.12), alors

$$\frac{d}{dt} \langle \psi(t) | J_i | \psi(t) \rangle = 0 \tag{6.21}$$

Nous avons en particulier que $\langle \psi(t)|J_i|\psi(t)\rangle = \langle \psi(0)|J_i|\psi(0)\rangle$.

Proposition 3.5. Si $|\psi_0\rangle$ est un vecteur propre de J_i tel que J_i $|\psi_0\rangle = j |\psi_0\rangle$, alors le vecteur $|\psi(t)\rangle = e^{-iHt} |\psi_0\rangle$ est également un vecteur propre de J_i :

$$J_i |\psi(t)\rangle = j |\psi(t)\rangle. \tag{6.22}$$

Le théorème d'Emmy Nöther permet de montrer que la symmétrie de rotation implique la conservation d'une quantité : le moment angulaire.

3.2 Quantification du moment angulaire

Théorème 3.6. Soit $[J_x, J_y] = iJ_z$. Nous avons alors que les valeurs propres de J_z est un demi-entier : $0, \frac{1}{2}, 1, \frac{3}{2}, \dots$

$$J_z |\psi\rangle = m |\psi\rangle$$

Théorème 3.7. Il existe une représentation non triviale du Groupe des Rotations par des matrices $d \times d$. Dans ce cas, $J_z = -\frac{d}{2}, -\frac{d}{2} + 1, ..., +\frac{d}{2}$.

Exemple 3.8. Le cas le plus simple est celle des matrices de Pauli (matrices 2×2):

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mid \sigma_x = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \mid \sigma_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$J_x = \frac{1}{2}\sigma_x \mid J_y = \frac{1}{2}\sigma_y \mid J_z = \frac{1}{2}\sigma_z$$

Nous pouvons vérifier que les différentes relations démontrées ci-dessus sont respectées (exercice).

En particulier, nous pouvons vérifier que

$$\{\sigma_a, \sigma_b\} = 2i\varepsilon_{abc}\sigma_c \mid \{\sigma_a, \sigma_b\} = 2\sigma_{ab}\hat{I} \mid Tr(\sigma_a) = 0 \mid \sigma_a\sigma_b = \delta_{ab}\hat{I} + i\varepsilon_{abc}\sigma_c$$

Les matrices de Pauli sont de valeur propres ± 1 . Les vecteurs propres associés sont

$$\begin{array}{c|c} \psi_x^+ = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \psi_x^- = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \\ \psi_y^+ = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix} & \psi_y^- = \begin{pmatrix} i \\ i \end{pmatrix} \\ \psi_z^+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |\uparrow\rangle & \psi_z^- = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |\downarrow\rangle \end{array}$$

Introduisons le vecteur unitaire associé aux coordonnées sphériques $\mathbf{n} = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta)$. Observons que

$$\mathbf{n} \cdot \boldsymbol{\sigma} = \begin{pmatrix} \cos \theta & \sin \theta e^{-i\varphi} \\ \sin \theta e^{i\varphi} & -\cos \theta \end{pmatrix} \tag{6.23}$$

De même, observons que $\begin{pmatrix} \cos \frac{\theta}{2} \\ \sigma \frac{\theta}{2} e^{i\varphi} \end{pmatrix}$ est le vecteur propre de valeur propre +1. Nous pouvons réécrire, dans la base des vecteurs up and down,

$$\begin{pmatrix} \cos\frac{\theta}{2} \\ \sigma\frac{\theta}{2}e^{i\varphi} \end{pmatrix} = \cos\frac{\theta}{2} \left| \uparrow \right\rangle + \sin\frac{\theta}{2}e^{i\varphi} \left| \downarrow \right\rangle \tag{6.24}$$

Les particules élémentaires ont un spin 1/2. Elles sont munies d'un espace de Hilbert de dimension 2, se transformant sous rotations par $e^{i\frac{\theta}{2}\mathbf{n}\cdot\boldsymbol{\sigma}}$.

Septième partie

Représentations de la position et de l'impulsion en \mathcal{M} écanique \mathcal{Q} uantique

Dans ce chapitre, nous allons de nouveau considérer une particule; en particulier, nous voulons pouvoir définir les notions de position et d'impulsion.

Nous allons travailler dans les espaces de Hilbert $L_2(\mathbb{R})$ ou $L_2(\mathbb{R}^3)$. Nous aurons alors des fonctions de carré sommable. Dans ces espaces, les opérateurs position X et impulsion P n'ont pas de vecteurs propres. Nous pouvons néamoins faire comme si ils en avaient : nous expliqueront ultérieurement comment nous pouvons justifier cette approche.

Dans cette section, nous utiliserons intensément les résultats obtenus en 2.

Introduisons les notations:

- $|x_0\rangle$ Etat propre de l'opérateur X de valeur propre x_0 . Cela correspond à la "fonction d'onde" $\delta(x-x_0)$.
- $|p_0\rangle$ | Etat propre de l'opérateur P de valeur propre p_0 . Cela correspond à la "fonction d'onde" $\frac{1}{\sqrt{2\pi\hbar}}e^{i\frac{p_0x}{\hbar}}$

Nous pouvons effectuer plusieurs opérations sur ces objets.

1 Espace vectoriel des opérateurs X et P

1.1 Normalisation

Nous voulons calculer $\langle x_0|x_0'\rangle$ et $\langle p_0|p_0'\rangle$.

$$\langle x_0 | x_0' \rangle = \int dx \delta(x - x_0) \delta(x - x_0') = \delta(x_0 - x_0)$$

$$\langle p_0 | p_0' \rangle = \int dx \frac{e^{-i\frac{p_0 x}{\hbar}}}{\sqrt{2\pi\hbar}} \frac{e^{i\frac{p_0' x}{\hbar}}}{\sqrt{2\pi\hbar}} = \int du \frac{e^{-i(p_0 - p_0')u}}{2\pi} = \delta(p_0 - p_0')$$

$$u = \frac{x}{\hbar}$$

Ce faisant, nous montrons que les deux bases définies par ces opérations sont orthonormées.

1.2 Relation de complétude

A partir de là, nous obtenons les relations fondamentales suivantes :

Nous avons alors deux relations de complétude, ou de fermeture.

1.3 Composante d'un ket

Considérons un état quantique $|\Psi\rangle$, correspondant à la fonction d'onde $\Psi(x)$. En exploitant les relations de fermetures définies ci-dessus, nous pouvons alors écrire l'état quantique sous les deux formes suivantes :

$$|\Psi\rangle = \int d^3x_0 |x_0\rangle \langle x_0| |\Psi\rangle \tag{7.1}$$

$$|\Psi\rangle = \int d^3 p_0 |p_0\rangle \langle p_0| |\Psi\rangle \tag{7.2}$$

On pose $\psi(x) = \langle x | \psi \rangle$. Observons que

$$|\psi\rangle = \int dx |x\rangle \langle x| |\psi\rangle = \int dx |X\rangle \langle x|\psi\rangle$$
 (7.3)

$$= \int \psi(x) |x\rangle. \tag{7.4}$$

En particulier, en prenant $|\psi\rangle = |p\rangle$, nous avons que

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{i\frac{px}{\hbar}} \tag{7.5}$$

Dès lors,

$$\langle p|\psi\rangle = \langle p|\mathbb{I}|\psi\rangle$$

$$= \langle p|\int dx |x\rangle \langle x||\psi\rangle\rangle$$

$$= \int dx \langle p|x\rangle \langle x|\psi\rangle$$

$$\langle p|\psi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int dx \ e^{i\frac{px}{\hbar}} \psi(x) = \tilde{\psi}(p)$$
(7.6)

Où $\tilde{\psi}(p)$ est par définition la transformée de Fourier de $\psi(r)$.

Pour résumer, nous avons que

$$\langle \boldsymbol{r} | \psi \rangle = \psi(\boldsymbol{r}) \tag{7.7}$$

$$\langle \boldsymbol{p} | \psi \rangle = \tilde{\psi}(\boldsymbol{p}) \tag{7.8}$$

1.4 Produit scalaire de deux vecteurs

En vertue des relations de complétude 1.2, il est possible de retrouver le produit scalaire (4.7).

$$\langle \varphi | \psi \rangle = \langle \varphi | \int dx | x \rangle \langle x | | | \psi \rangle \rangle \qquad \langle \varphi | \psi \rangle = \langle \varphi | \int dp | p \rangle \langle p | | \psi \rangle$$

$$= \int dx \langle \varphi | x \rangle \langle x | \psi \rangle \qquad = \int dp \langle \varphi | p \rangle \langle p | \psi \rangle$$

$$\langle \varphi | \psi \rangle = \int dx \varphi^*(x) \psi(x) \qquad \langle \varphi | \psi \rangle = \int dp \tilde{\varphi}^*(p) \tilde{\psi}(p) \qquad (7.9)$$

2 Opérateurs X et P

Soit $|\psi\rangle$ un ket quelconque et $\langle r|\psi\rangle \doteq \psi(x,y,z)$ la fonction d'onde correspondante. On définit l'opérateur X de sorte que

$$|\psi'\rangle = X |\psi\rangle \tag{7.10}$$

soit définit à travers la base $\{r\}$ par la fonction $\langle r|\psi'\rangle=\psi'(r)$, où

$$\psi'(\mathbf{r}) = x\psi(x, y, z). \tag{7.11}$$

Dans cette base, l'opérateur X représente donc la multiplication par x. De manière analogue, nous introduisons les opérateurs Y et Z:

$$\langle \boldsymbol{r}|X|\psi\rangle = x\,\langle \boldsymbol{r}|\psi\rangle \qquad \qquad \langle \boldsymbol{r}|Y|\psi\rangle = y\,\langle \boldsymbol{r}|\psi\rangle \qquad \qquad \langle \boldsymbol{r}|Z|\psi\rangle = z\,\langle \boldsymbol{r}|\psi\rangle \qquad (7.12)$$

Similairement, on définit l'opérateur P, dont l'action dans la base $|p\rangle$ est donnée par

$$\langle \boldsymbol{p}|P_x|\psi\rangle = p_x\,\langle \boldsymbol{p}|\psi\rangle = p_x\tilde{\psi}(p_x) \qquad \langle \boldsymbol{p}|P_y|\psi\rangle = p_y\,\langle \boldsymbol{p}|\psi\rangle = p_y\tilde{\psi}(p_y) \qquad \langle \boldsymbol{p}|P_z|\psi\rangle = p_z\,\langle \boldsymbol{p}|\psi\rangle = p_z\tilde{\psi}(p_z) \qquad (7.13)$$

Proposition 2.1. $\langle x|P|\psi\rangle = -i\hbar\partial_x\,\langle x|\psi\rangle$.

Démonstration.

$$\langle x|P|\psi\rangle = \int dp \ \langle x|p\rangle \langle p|P|\psi\rangle$$

$$= \int dp \ \frac{e^{i\frac{px}{\hbar}}}{\sqrt{2\pi\hbar}} p\tilde{\psi}(p)$$

$$= -i\hbar\partial_x (\int dp \ \frac{e^{i\frac{px}{\hbar}}}{\sqrt{2\pi\hbar}} \tilde{\psi}(p)$$

$$\langle x|P|\psi\rangle = -i\hbar\partial_x \psi(x) \tag{7.14}$$

40

Proposition 2.2. $[X, P] = i\hbar \mathbb{I}$

Démonstration. La preuve est assez simple :

$$\begin{split} \langle \boldsymbol{r}|[X,P]|\psi\rangle &= \langle \boldsymbol{r}|XP - PX|\psi\rangle \\ &= \langle \boldsymbol{r}|XP|\psi\rangle - \langle \boldsymbol{r}|PX|\psi\rangle \\ &= x \, \langle \boldsymbol{r}|P|\psi\rangle - \frac{\hbar}{i} \frac{\partial}{\partial x} \, \langle \boldsymbol{r}|X|\psi\rangle \\ &= \frac{\hbar x}{i} \frac{\partial}{\partial x} \, \langle \boldsymbol{r}|\psi\rangle - \frac{\hbar}{i} \frac{\partial}{\partial x} x \, \langle \boldsymbol{r}|\psi\rangle \\ &= i\hbar \, \langle \boldsymbol{r}|\psi\rangle \end{split}$$

Cela étant vrai pour tout r et tout ψ , il s'ensuit que $[X, P] = i\hbar$.

Nous pouvons en déduire que

$$[X_i, X_j] = 0$$
 $[P_i, P_j] = 0$ $[X_i, P_j] = i\hbar \delta_{ij}$ (7.15)

Pour tout i, j = 1, 2, 3.

3 Opérateur translation

Définition 3.1. Soit P,Q, deux observables reliées par la relation $[P,Q]=i\hbar\mathbb{I}$. On définit l'opérateur translation $S(\lambda)$ par

$$S(\lambda) = e^{-i\frac{\lambda P}{\hbar}} \tag{7.16}$$

Pour tout $\lambda \in \mathbb{R}$.

Observons que cet opérateur est unitaire : effectivement, $S^{\dagger}(\lambda) = S(-\lambda)$. De plus, $S(\lambda)S(\lambda') = S(\lambda + \lambda')$.

Nous voulons déterminer la valeur de $[X, S(\lambda)]$. Commencons par remarquer les propriétés suivantes de l'opérateur commutateur.

3.1 Propriétés générales du commutateur

Proposition 3.2. Pour tout opérateur A,B et C,

$$[A, BC] = [A, B]C + B[A, C]$$
 (7.17)

Proposition 3.3 (Identité de Jacobi). Le commutateur est un opérateur bilinéaire, antisymétrique et vérifiant l'identité de Jacobi, c'est à dire que

$$[[\hat{A}, \hat{B}], \hat{C}] + [[\hat{B}, \hat{C}], \hat{A}] + [[\hat{C}, \hat{A}], \hat{B}] = 0$$
(7.18)

Théorème 3.4. Pour tout opérateur \hat{A}, \hat{B} commutant avec $[\hat{A}, \hat{B}]$,

$$\exp\left(\hat{A}\right) \times \exp\left(\hat{B}\right) = \exp\left(\hat{A} + \hat{B}\right) \exp\left(\frac{[\hat{A}, \hat{B}]}{2}\right) \tag{7.19}$$

Il s'agit d'un cas particulier de l'identité de Backer-Hausdorff. Elle est parfois appelée formule de Glaubert dans la littérature.

Proposition 3.5. Soit \hat{A}, \hat{B} deux opérateurs commutant avec $[\hat{A}, \hat{B}]$. Alors, pour tout naturel n,

$$[\hat{A}, \hat{B}^n] = n\hat{B}^{n-1}[\hat{A}, \hat{B}] \tag{7.20}$$

Démonstration. Remarquons en particulier que puisque les opérateurs commutent avec $[\hat{A}, \hat{B}]$, nous aurons que

$$\hat{A}[\hat{A}, \hat{B}] = [\hat{A}, \hat{B}]\hat{A}$$
 $\hat{B}[\hat{A}, \hat{B}] = [\hat{A}, \hat{B}]\hat{B}$ (7.21)

Travaillons par récursion. La base s'obtient assez facilement. Passons de suite à l'étape d'induction :

$$[\hat{A}, \hat{B}\hat{B}^n] = [\hat{A}, \hat{B}]\hat{B}^n + \hat{B}[\hat{A}, \hat{B}^n] = \hat{B}^n[\hat{A}, \hat{B}] + n\hat{B}\hat{B}^{n-1}[\hat{A}, \hat{B}] = (n+1)\hat{B}^n[\hat{A}, \hat{B}]$$

Généralisons cette dernière proposition à une fonction analytique; c'est à dire une fonction pouvant être localement développée en série.

Théorème 3.6. Soient \hat{A} , \hat{B} deux opérateurs commutant avec $[\hat{A}, \hat{B}]$ et soit une fonction analytique $F(\hat{B}) \doteq \sum_{n=0}^{\infty} a_n \hat{B}^n$. Alors, pour tout naturel n,

$$[\hat{A}, F(\hat{B})] = [\hat{A}, \hat{B}]F'(\hat{B})$$
 (7.22)

 $D\acute{e}monstration$. Remarquons que les hypothèses de 3.5 sont respectées. Dès lors, l'assertion se démontre sans peine :

$$[\hat{A}, F(\hat{B})] = \sum_{n=0}^{\infty} [\hat{A}, \hat{B}^n] = \sum_{n=0}^{\infty} a_n n \hat{B}^{n-1} [\hat{A}, \hat{B}] \doteq F'(\hat{B}) [\hat{A}, \hat{B}]$$

Cette dernière proposition permet de répondre à la question posée :

$$[X, S(\lambda)] = \lambda S(\lambda). \tag{7.23}$$

Nous pouvons reformuler cette égalité sous la forme

$$QS(\lambda) = S(\lambda)[Q + \lambda]. \tag{7.24}$$

4 Valeurs propres et vecteurs propres de Q

4.1 Spectre de Q

Proposition 4.1. Soit $|x_0\rangle$ le vecteur propre de X, de valeur propre x_0 . Alors,

$$S(\lambda) |x_0\rangle = |x_0 + \lambda\rangle \tag{7.25}$$

Démonstration.

$$XS(\lambda) |x_0\rangle = (S(\lambda)X + \lambda S(\lambda)) |x_0\rangle$$

= $S(\lambda)x_0 |x_0\rangle + \lambda S(\lambda) |x_0\rangle = (x_0 + \lambda)S(\lambda) |x_0\rangle$

Cette propriété exprime que $S(\lambda)|x_0\rangle$ est un autre vecteur propre non nul de X, de valeur propre $(x_0 + \lambda)$. A partir d'un vecteur propre de X, nous pouvons alors en construire un autre : le spectre de X est continu, composé de toutes les valeurs de l'axe réelle.

Proposition 4.2. Si $|\psi\rangle$ est un vecteur de la fonction d'onde Ψ , alors $S(\lambda)|\psi\rangle$ est un ket d ela fonction d'onde $\Psi(x-\lambda)$.

Remarque 4.3. Nous avons vu que $S(\lambda)|x_0\rangle = |x_0 + \lambda\rangle$. Remarquons que l'expression adjointe s'écrit

$$\langle x_0 | S^{\dagger}(\lambda) = \langle x_0 + \lambda | \tag{7.26}$$

Soit alors,

$$\langle x_0 | S(\lambda) = \langle x_0 - \lambda | \tag{7.27}$$

Proposition 4.4. On remarque alors que si $|\psi\rangle$ est un ket de la fonction d'onde $\Psi(x)$, alors $S(\lambda)|\psi\rangle$ est le ket associé à la fonction d'onde $\Psi(x-\lambda)$.

Démonstration.

$$\langle x|\psi\rangle = \Psi(x)$$

$$\langle x|S(\lambda)|\psi\rangle = \langle x-\lambda|\psi\rangle = \Psi(x-\lambda)$$

Ces propriétés de $S(\lambda)$ lui valent le nom de opérateur de translation.

4.2 Invariance par translation

Supposons que le système est invariant par translation, c'est à dire que, pour tout $t, \lambda, |\psi\rangle$:

$$e^{-i\frac{Ht}{\hbar}}S(\lambda)|\psi\rangle = S(\lambda)e^{-i\frac{Ht}{\hbar}}|\psi\rangle \tag{7.28}$$

Nous pouvons alors montrer que $HP|\psi\rangle = PH|\psi\rangle$, c'est à dire que [H,P]=0.

L'invariance de translation implique la conservation du générateur des translations; c'est à dire la conservation de l'impulsion. Ce résultat exploite le Théorème d'Emmy Nöther (pour une démonstration, le lecteur est invité à suivre le cours de Mécanique Analytique - MATH-F204).

5 Relations d'incertitudes

Soient A,B des observables et $|\psi\rangle$ un état.

Remarque 5.1. Nous notons $< A^n >= \langle \psi | A^n | \psi \rangle$, $\Delta A^2 = < A^2 > - < A >^2$. De plus, on intoduit A' = A - < A > afin de pouvoir noter $\Delta A^2 = < A'^2 >$. On note que [A, B] = [A', B'].

Théorème 5.2. Soit A,B deux observables. Alors,

$$\Delta A \Delta B \ge \frac{1}{2} \|\langle [A, B] \rangle \| \tag{7.29}$$

Démonstration. A compléter.

Pour les opérateurs X et P, nous avons alors que [X, P] valent $i\hbar$; il s'ensuit que

$$\Delta X \Delta P \ge \frac{\hbar}{2},$$

ce qui est exactement la relation (1.1).

Huitième partie

Oscillateur Harmonique Quantique

1 De l'importance de l'Oscillateur Hamonique

L'importance de l'Oscillateur Harmonique en Physique ne peut pas être sous-estimé. Des exemples d'applications sont légion; prenont la \mathcal{M} écanique \mathcal{C} lassique pour l'exemple.

Le plus simple reste de considérer une particule de masse m se déplaçant dans un potentiel central de la forme

$$V(x) = \frac{1}{2}kx^2 \qquad \forall k \in \mathbb{R}^+$$
 (8.1)

Dès lors, la particule effectue un mouvement oscillatoire autour du plan x=0, avec une force de rappel

$$F_x = -\frac{dV}{dx} = -kx\tag{8.2}$$

Cette situation est régie par l'équation d'un Oscillateur Harmonique, soit

$$m\ddot{x} = -kx\tag{8.3}$$

On pose alors souvent $\omega = \sqrt{\frac{k}{x}}$; il s'agit de la pulsation du mouvement. La solution générale de cette équation est donnée par la relation

$$x(t) = A\cos(\omega t - \varphi) \qquad \forall A \in \mathbb{R}^+, \forall \varphi \in [0, 2\pi]$$
(8.4)

En particulier, nous avons que l'énergie totale de la particule s'exprime par la relation

$$E = T + V = \frac{1}{2}m\omega^2 A^2 = \frac{p^2}{2m} + \frac{kx^2}{2} \doteq H$$
 (8.5)

Remarque 1.1. L'oscillateur harmonique joue un rôle fondamental en Physique; il permet de décrire (du moins, de manière rapprochée) les mouvements d'oscillations autour d'une position d'équilibre.

Remarque 1.2. En Mécanique Quantique, l'Oscillateur Harmonique est le problème exactement soluble ayant le plus d'applications.

2 L'Oscillateur Harmonique en Mécanique Quantique

Dans les discussions quantiques, nous remplacons les grandeurs classiques x et p par les observables X et P, vérifiant la relation $[X,P]=i\hbar$ (voir le chapitre 7 pour plus de détails et une preuve détaillée). L'Hamiltonien quantique est donc donné par

$$H = \frac{P^2}{2m} + \frac{kX^2}{2}$$

Effectuons - pour facilier les notations - les transformations canoniques suivantes :

$$\hat{X} = \sqrt{\frac{m\omega}{\hbar}}X\tag{8.6a}$$

$$\hat{P} = \frac{1}{\sqrt{m\hbar\omega}}P\tag{8.6b}$$

Dès lors, nous obtenons les relations suivantes.

Proposition 2.1. En vertue des conventions (8.6), la relation de commutation est donnée par

$$[\hat{X}, \hat{P}] = \frac{1}{\hbar} [X, P] = i$$
 (8.7)

Proposition 2.2. L'Hamiltonien est donné par $H = \hbar \omega \hat{H}$, où

$$\hat{H} = \frac{1}{2} \left(\hat{X}^2 + \hat{P}^2 \right). \tag{8.8}$$

Observons que :

- Puisque le potentiel est une fonction paire, les fonctions propres de H possèdent une parité définie. On peut alors rechercher les fonctions propres de H parmi les fonctions ayant une parité définie.
- Le spectre d'énergie est discret.

Nous allons à présent tenter de retrouver ces résultats.

2.1 Valeurs propres de l'Hamiltonien

Nous allons tenter de résoudre l'équation aux valeurs propres

$$H|\psi\rangle = E|\psi\rangle$$
, (8.9)

c'est à dire tenter de déterminer le spectre et les valeurs propres de l'Hamiltonien.

Si \hat{X} et \hat{P} étaient des nombres et non des observables, nous pourrions réécrire leur somme quadratique dans (8.8) sous la forme $(\hat{X} - i\hat{P})(\hat{X} + i\hat{P})$: comme ce sont des opérateurs, ils ne commutent en générale pas ¹⁶. Nous allons montrer que l'introduction d'opérateurs proportionnels à \hat{X} et à \hat{P} permet de simplifier la recherche des vecteurs et valeurs propres de \hat{H} . On pose alors

$$\hat{a} = \frac{1}{\sqrt{2}}(\hat{X} + i\hat{P})$$
 $\hat{X} = \frac{1}{\sqrt{2}}(\hat{a} + \hat{a}^{\dagger})$ (8.10)

$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2}}(\hat{X} - i\hat{P})$$
 $\hat{P} = \frac{i}{\sqrt{2}}(\hat{a}^{\dagger} - \hat{a})$ (8.11)

Il s'agit des opérateurs d'échelle, respectivement opérateurs d'anhilihation et de création. Observons que $[\hat{a}, \hat{a}^{\dagger}] = \mathcal{I}, [\hat{a}, \hat{a}] = 0 = [\hat{a}^{\dagger}, \hat{a}^{\dagger}]$. En introduisant le nombre $N = a^{\dagger}a = \frac{1}{2}(X^2 + P^2 - 1)$, nous avons donc

$$\hat{H} = N + \frac{1}{2}. ag{8.12}$$

Les vecteurs propres de \hat{H} sont les vecteurs propres de N, et inversement. Avant de passer à la détermination du spectre, effectuons quelques observations :

Proposition 2.3. N est hermitien : $N^{\dagger} = a^{\dagger} (a^{\dagger})^{\dagger}$.

Proposition 2.4. Les valeurs propres de N sont positives.

 $D\acute{e}monstration$. Soit $|\varphi\rangle$ une valeur propre de N. Dès lors,

$$\left\langle \varphi | a^{\dagger} a | \varphi \right\rangle = \left\| a \left| \varphi \right\rangle \right\|^2 \geq 0$$

2.2 Analyse des valeurs et vecteurs propres de N

Proposition 2.5. $[N, a] = -a \ et \ [N, a^{\dagger}] = a^{\dagger}$

Démonstration.

$$[N,a] = [a^{\dagger}a,a] = [a^{\dagger},a]a + a^{\dagger}[a,a] = -a$$

$$[N,a^{\dagger}] = [a^{\dagger},a^{\dagger}]a + a^{\dagger}[a,a^{\dagger}] = a^{\dagger}$$

Ce qui prouve l'assertion.

Proposition 2.6. Soit $|\varphi\rangle$ un vecteur propre de N de valeur propre $\nu: N |\varphi\rangle = \nu |\varphi\rangle$. Alors,

- $a |\varphi\rangle$ est vecteur propre de N de valeur propre $\nu 1$.
- $\ Si \ \nu = 0, \ alors \ a \left| \varphi \right\rangle = 0.$

Démonstration.

$$Na |\varphi\rangle = (aN - a) |\varphi\rangle = (a\nu - a) |\varphi\rangle = (\nu - 1)a |\varphi\rangle$$
$$||a |\varphi\rangle|| = \langle \varphi | a^{\dagger} a |\varphi\rangle = \nu \langle \varphi | \varphi\rangle = 0 \iff \nu = 0$$

Remarque 2.7. Cela justifie le nom que porte l'opérateur à : l'opérateur destruction.

Proposition 2.8. Soit $|\varphi\rangle$ un vecteur propre de N de valeur propre $\nu: N |\varphi\rangle = \nu |\varphi\rangle$. Alors,

- $-a^{\dagger}|\varphi\rangle$ est non nul.
- $-a^{\dagger}|\varphi\rangle$ est un vecteur propre de valeur propre $\nu+1$.

^{16.} C'est bien le cas ici ; voir la valeur du commutateur de X et de P.

Démonstration.

$$\begin{split} N\left(a^{\dagger}\left|\varphi\right\rangle\right) &= \left(a^{\dagger}N + a^{\dagger}\right)\left|\varphi\right\rangle = \left(\nu + 1\right)a^{\dagger}\left|\varphi\right\rangle \\ \left\|a\left|\varphi\right\rangle\right\|^{2} &= \left\langle\varphi\left|a^{\dagger}a\right|\varphi\right\rangle = \left\langle\varphi\left|a^{\dagger}a + 1\right|\varphi\right\rangle \\ &= \left\langle\varphi\right|N + 1\left|\varphi\right\rangle = \left(\nu + 1\right)\left\langle\varphi\right|\varphi\right\rangle \geq 0 \end{split}$$

Remarque 2.9. Cela justifie le nom que porte l'opérateur \hat{a}^{\dagger} : l'opérateur création.

Proposition 2.10. Soit $N = aa^{\dagger}$. Alors, le spectre de $N \subseteq \mathbb{N}$.

Démonstration. Supposons par l'absurde que $N |\varphi\rangle = \nu |\varphi\rangle$ et que $n < \nu < n+1$. En vertue de la propriété 2.6, $a^{n+1} |\varphi\rangle$ est non nul et est vecteur propre de N de valeur propre $\nu - n - 1 < 0$: cela constitue une contradiction avec la propriété 2.4. La conclusion s'ensuit.

Corollaire 2.11. Si il existe un vecteur propre $|\varphi\rangle$ de valeur propre $\nu \in \mathbb{N}$, alors le spectre de N est \mathbb{N} .

Proposition 2.12. L'état fondamental d'un oscillateur harmonique est non dégénéré.

 $D\'{e}monstration$. En vertue de 2.6, la valeur propre associ\'ee à l'état fondamental est 0, de sorte que tout vecteur propre fondamental doive respecter

$$a|\varphi\rangle = 0 \tag{8.13}$$

En rappelant les défintions (8.10) et (8.11),

$$\frac{1}{\sqrt{2}} \left(\hat{X} + i \hat{P} \right) |\varphi\rangle = 0$$
$$\frac{1}{\sqrt{2}} \left(x \varphi(x) + \hbar \partial_x \varphi(x) \right) = 0$$

L'unique solution de ce système est donné par

$$\varphi(x) = ce^{-\frac{x^2}{\hbar}} \tag{8.14}$$

où c est une constante d'intégration.

Proposition 2.13. Tous les niveaux d'un oscillateur harmonique sont non dégénérés.

Démonstration. Supposons par l'absurde qu'il existe un niveau $n \in \mathbb{N}$ tel que $|\varphi\rangle$, $|\varphi'\rangle$ sont des vecteurs propres de N, c'est à dire tel que

$$N|\varphi\rangle = n|\varphi\rangle \tag{8.15}$$

$$N|\varphi'\rangle = n|\varphi'\rangle \tag{8.16}$$

$$\langle \varphi | \varphi' \rangle = 0 \tag{8.17}$$

Il s'ensuit que $a | \varphi \rangle$ et $a | \varphi' \rangle$ sont des vecteurs propres de N de valeur propre n-1, orthogonaux.

$$(\langle \varphi' | a^{\dagger}) (a | \varphi \rangle) = \langle \varphi' | N | \varphi \rangle = n \langle \varphi' | \varphi \rangle = 0$$

Par récurrence, on voit que $a^n |\varphi\rangle$ et $a^n |\varphi'\rangle$ sont des vecteurs propres de N de valeur propre 0, orthogonaux. Cela constitue une contradiction avec 2.12.

Nous pouvons constuire une base orthonormée de vecteurs propres selon

$$|n\rangle = \frac{\left(a^{\dagger}\right)^n}{\sqrt{n!}}|0\rangle \tag{8.18}$$

Cela est la construction d'une base orthonormée dans l'espace de \mathcal{H} ilbert : cette base porte le nom de Base de \mathcal{F} ock. Nous avons dès lors la relation de fermeture

$$\sum_{n=0}^{\infty} |n\rangle \langle n| = \mathbb{I} \tag{8.19}$$

De plus, le spectre de l'oscillateur harmonique est donné par

$$\hbar\omega\left(N+\frac{1}{2}\right) \tag{8.20}$$

pour tout $n \in \mathbb{N}$. L'énergie de point zéro, comme nous le montrons en 1.2, est alors donné par

$$E_0 = \frac{1}{2}\hbar\omega \tag{8.21}$$

2.3 Evolution temporelle

Effectuons à présent une directe application du 1.3 de la mécanique quantique. Considérons un oscillateur harmonique dont l'état est donné à l'instant t=0 par

$$|\psi(0)\rangle = \sum_{n=0}^{\infty} c_n |n\rangle \tag{8.22}$$

En vertue du postulat d'évolution des états, nous avons alors que l'état du système à un temps t sera donné par

$$|\psi(t)\rangle = \sum_{n=0}^{\infty} c_n e^{-i\frac{E_n t}{\hbar}} |n\rangle = \sum_{n=0}^{\infty} c_n e^{-i\left(n + \frac{1}{2}\right)\omega t} |n\rangle$$
(8.23)

La valeur moyenne au cours du temps d'une grandeur physique A est alors donnée par

$$\langle \psi(t)|A|\psi(t)\rangle = \sum_{m} \sum_{n} c_m^*(0)c_n(0)A_{mn}e^{i(m-n)\omega t}$$
(8.24)

Je ne comprend pas la suite des notes de cette section.

2.4 Fonctions d'ondes de l'oscillateur harmonique

Une démonstration par récurrence exploitant l'opérateur de création \hat{a}^{\dagger} montre que les états propre de l'opérateur nombre $\hat{N}=\hat{a}^{\dagger}\hat{a}$ s'écrivent

$$|n\rangle = \frac{\left(a^{\dagger}\right)^n}{\sqrt{n!}}|0\rangle \tag{8.25}$$

Dans la représentation position, il suffit de substituer l'expression de \hat{a} et de $\psi_0(x) = \langle x|0\rangle$ pour obtenir l'expression de la fonction d'onde $\psi_n(x) = \langle x|n\rangle$, soit

$$\psi_n(x) = \frac{1}{\sqrt{2^n n!}} (x - \partial_x)^n \psi_0(x) = \frac{1}{\pi^{\frac{1}{4}}} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2^n n!}} H_n(x)$$
(8.26)

où $H_n(x)$ est le polynôme d'Hermite, définie par $H_n(x) = \left(x - \frac{d}{dx}\right)^n$. D'où vient le facteur $\frac{1}{\pi^{\frac{1}{4}}}$?

2.5 Résolution de l'équation aux valeurs propres par la méthode polynômiale

2.5.1 Forme asymptotique de $\psi(x)$

Nous voulons résoudre l'équation de l'oscillateur harmonique analytiquement : nous n'allons pas utiliser les opérateurs de création et de destruction.

Dans la représentation position, l'équation aux valeurs propres de H s'écrit

$$\frac{1}{2} \left(-\frac{d^2}{dx^2} + x^2 \right) \psi = E\psi \tag{8.27}$$

Observons que le potentiel est paire : dès lors, les solutions sont soit paires soit impaires.

Nous pouvons réécrire l'équation (8.27) sous la forme

$$\left\{\frac{d^2}{dx^2} - (x^2 - 2E)\right\}\psi = 0 \tag{8.28}$$

Recherchons des solutions intuitives de cette équation pour des x très grands. Observons que les fonctions

$$G_{\pm}(x) = e^{\pm \frac{x^2}{2}} \tag{8.29}$$

sont solutions des équations différentielles

$$\left\{\frac{d^2}{dx^2} - (x^2 \pm 1)\right\} G_{\pm}(x) = 0 \tag{8.30}$$

Remarque 2.14. Observons que lorsque x tend vers l'infini,

$$x^2 \pm 1 \sim x^2 \sim x^2 - 2E$$

Dès lors, les solutions des équations (8.28) et (8.30) ont la même forme pour des grands x. On s'attend donc que, sous cette hypothèse, que les solutions de (8.28) soient de la forme

$$\varphi_{-}(x) = e^{-\frac{x^2}{2}}$$

$$\underbrace{\varphi_{+}(x) = e^{\frac{x^2}{2}}}_{\text{A exclure!}}$$
(8.31)

En comparant (8.31) et (8.28), nous obtenons le résultat

$$\frac{d^2}{dx^2}\varphi_{-}(x) - 2x\frac{d}{dx}\varphi_{-}(x) + (2E - 1)\varphi_{-}(x) = 0$$
(8.32)

Nous allons à présent montrer une technique de résolution de cette équation différentielle consistant à développer en série $\Psi(x) \doteq \varphi_{-}(x)$.

2.5.2 Calcul de $\Psi(x)$ sous forme d'un développement en série entière

Nous avons vu que les solutions de (8.28) sont soit paires, soit impaires. $\Psi(x)$ étant paire, nous recherchons une solution de la forme

$$\Psi(x) = \sum_{m=0}^{\infty} a_{2m} x^{2m+p} \tag{8.33}$$

Observons alors que

$$\Psi' = \sum_{m=0}^{\infty} (2m+p) a_{2m} x^{2m+p-1} \qquad \qquad \Psi'' = \sum_{m=0}^{\infty} (2m+p) (2m+p-1) a_{2m} x^{2m+p-2}$$
(8.34)

Pour que (8.32) soit satisfaite en vertue de nos résultats, il faut que le développement en série du premier membre soit nul terme à terme, c'est à dire qui vérifie

$$p(p-1)a_0x^{p-2} = 0 (8.35)$$

comme $a_0 \neq 0$, on a soit p = 0, soit p = 1.Les autres termes donnent alors la récurrence

$$(2m+p+2)(2m+p+1)a_{2m+2} = (4m+2p+1-2E)a_{2m}$$
 (8.36)

$$a_{2m+2} = \frac{(4m+2p+1-2E)}{(2m+p+2)(2m+p+1)} a_{2m}$$
(8.37)

Pour de grands m, nous aurons la relation $a_{2m+2} \approx \frac{1}{m} a_{2m}$. Cela correspond au développement en série de e^{x^2} .

$$e^{x^2} = \sum_{m} \frac{x^{2m}}{m!} = \sum_{m} c_{2m} x^{2m}$$
 $\frac{c_{2m+2}}{c_{2m}} = \frac{1}{m}$ (8.38)

Il s'agit d'un comportement asymptotique $e^{-\frac{x^2}{2}}e^{x^2}=e^{\frac{x^2}{2}}$: cela n'est pas acceptable physiquement. La série n'a pas de forme asymptotique si et seulement si la récurrence (8.37) se termine après un nombre fini de termes. On considère alors une énergie E_m tel que $4m+2p+1-2E_m=0$ où p=0,1. Dès lors, nous déduisons la quantification de l'énergie de l'oscillateur harmonique quantique :

$$E_n = n + \frac{1}{2} n = 2m + p (8.39)$$

Remarque 2.15. Le coefficient a_0 n'est pas déterminé par la recurrence : nous le choisissons de sorte à normaliser la solution.

Neuvième partie

Appendice

A Résultats élémentaires d'Algèbre Linéaire

Rappelons une série de résultats classiques d'Algèbre Linéaire pertinents à la Mécanique Quantique.

Définition A.1 (Produit Hermitien). Soit V un espace vectoriel sur \mathbb{C} . On y définit le produit hermitien, c'est à dire une application

$$egin{array}{cccc} V imes V &
ightarrow & \mathbb{C} \ (oldsymbol{x},oldsymbol{y}) &
ightarrow & oldsymbol{x} \cdot oldsymbol{y} \end{array}$$

tel que $\forall x,y,x',y' \in V$, et tout $\lambda \in \mathbb{C}$,

- 1. $y \cdot x = \bar{x} \cdot \bar{y}$
- 2. $(x+x')\cdot y = x\cdot y + x'\cdot y$, et $x\cdot (y+y') = x\cdot y + x\cdot y'$
- 3. $(\lambda x) \cdot y = \lambda (x \cdot y)$ et $x \cdot (\lambda y) = \bar{\lambda}(x \cdot y)$
- 4. $x \cdot x \in \mathbb{R}_{\geq 0} \forall x, etx \cdot x = 0 \text{ si et seulement si } x = 0.$

Un espace hermitien est un espace vectoriel V sur \mathbb{C} muni d'un produit hermitien.

Proposition A.2. Soit V un espace Hermitien de dimension n. Si $E \doteq (e_1, ..., e_n)$ est un ensemble de vecteurs deux à deux orthogonales, alors E est une base de V.

Proposition A.3. Soit V un espace Hermitien. Alors il existe une base orthonormale V.

Nous pouvons utiliser l'algorithme de Gram-Schmidt pour ortogonaliser une base de V d'un espace vectoriel sur \mathbb{C} ou \mathbb{R} .

Définition A.4. Une matrice $a \in GL(V_{\mathbb{C}})$ est unitaire si $a^{-1} = \bar{a}^T$. L'ensemble des matrices unitaires de taille $n \times n$ est dénotée par U_n .

Définition A.5. Une matrice $a \in Mat(\mathbb{C})$ est Hermitienne si $\bar{a}^T = a$.

Remarque A.6. Dans le formalisme de Dirac, un opérateur \hat{A} est dit hermitien si et seulement si $\hat{A}^{\dagger} = \hat{A}$.

Proposition A.7. A est une isométrie si et seulement si a est unitaire (si $V_{\mathbb{C}}$).

Voici une série de propriétés classiques des isométries :

- 1. Les isométries conservent les distances (normes) et les angles.
- 2. Supposons que E est orthonormale. Alors A est une isométrie si et suelement si les vecteur qui forment les colonnes de a sont :
 - (a) deux à deux orthogonaux
 - (b) de norme 1.
- 3. Si λ est une valeur propre de A, alors $||\lambda|| = 1$.
- 4. Si A est une isométrie, alors ||det(a)|| = 1.
- 5. Si E et F sont des bases orthonormales de V, alors il existe une unique isométrie A tel que $A(e_i) = f_i$.
- 6. Tous les éléments de O_3 sont d'un des trois types suivants :
 - (a) Rotations autour d'une droite passant par l'origine.
 - (b) Symétries par rapport à un plan passant par l'origine.
 - (c) Une composition d'isométries de type (I) et (II).

Lemme A.8. Toutes les valeurs propres d'une matrice Hermitienne sont réelles.

Théorème A.9. Soit $a \in Mat_{n \times n}(\mathbb{C})$ Hermitienne. Il existe une base orthonormale de V contenant que des vecteurs propres de a. En d'autres mots, il existe une matrice O, unitaire, tel que

$$O^{-1}aO = \bar{O}^TaO \tag{9.1}$$

Définition A.10. Soit \mathbb{H} un espace de Hilbert. \mathbb{H} est séparable si il possède une base dénombrable.

Remarque A.11. Soit u_i une base $\forall i \in \mathbb{N}$. Par Gram-Schmidt, nous pouvons prendre la base orthonormée $(u_i, u_j) = \delta_{ij}$.

Définition A.12 (Base de Hilbert). On dit que F est une base de Hilbert de H si et seulement si

- F est une famille orthonormale de H;
- la famille est complète, c'est à dire que

$$\forall x \in \mathcal{H}, \exists (\lambda_i)_{i \in I} \ tel \ que \ \sum_{i \in I} \lambda_i e_i = x.$$
 (9.2)

B Approximation BKW

En cours de réaction.

C Opérateur parité

En cours de rédaction.

D Changement de base dans le formalisme de Dirac

Nous allons ici tenter de changer de représentation d'un ket (ou d'un bra, ou encore d'un opérateur) en une autre. Concrètement, nous voulons trouver la relation de changement de base.

Supposons donc que nous souhaitons passer d'une base orthonormée $\{|u_i\rangle\}$ à une autre base orthonormée $\{|e_l\rangle\}$. On définit le changement de base comme la donnée de chaque composante du ket étudié dans l'ancienne et la nouvelle base. On définit alors

$$\hat{U}_{il} = \langle u_i | e_l \rangle \qquad \qquad \hat{U}^{\dagger} = \langle e_l | u_i \rangle \qquad (9.3)$$

où U est la matrice de changement de base. Dans la suite, nous utiliserons les deux relations relations de fermetures

$$\sum_{l} |e_{l}\rangle \langle e_{l}| = \hat{\mathcal{I}} \tag{9.4a}$$

$$\sum_{i} |u_{i}\rangle \langle u_{i}| = \hat{\mathcal{I}} \tag{9.4b}$$

D.1 Changement de base d'un ket et d'un bra

Le calcul est extrêmement simple. Nous insérons la relation de fermeture (9.4) idoine le braket $\langle e_l | \psi \rangle$:

$$\langle e_l | \psi \rangle = \langle e_l | \mathcal{I} | \psi \rangle = \sum_i \langle e_l | u_i \rangle \langle u_l | \psi \rangle = \sum_i \hat{S}^{\dagger} \langle u_l | \psi \rangle$$
 (9.5)

Similairement, nous pouvons démontrer la relation de transformation inverse et la loi de transformation d'un bra

Proposition D.1. Soit $|\psi\rangle$ un ket défini au sein d'un espace de Hilbert. En particulier, les relations de changement de base entre $\{|u_i\rangle\}$ et $\{|e_l\rangle\}$ pour $|\psi\rangle$ et $\langle\psi|$ seront

$$\langle e_l | \psi \rangle = \sum_i \hat{U}_{li}^{\dagger} \langle u_l | \psi \rangle \qquad \langle u_i | \psi \rangle = \sum_l \hat{U}_{il} \langle u_l | \psi \rangle \qquad (9.6)$$

D.2 Changement de base d'un opérateur

E Projecteurs