TOM'S HARDWARE: PREDICTING POPULARITY OF TECH TOPICS

Nika Kondzhariya & Julia Nebia

Project Description:

- Predict popularity of the topic
- Use 4 techniques:
 - Lasso
 - Ridge
 - Elastic-Net
 - Random Forest

Data Description:

- n = 28,054
- p = 96 (all numeric, named $\overline{X1-X96}$):
 - Number of discussions, posts, readers
- Response Variable (numeric, named Y):
 -average number of displays of the posts

Distribution of Y

Distribution of log(Y)

BOXPLOTS OF R-SQUARED

TRAIN DATA (n=1000)

TEST DATA (n=27,054)

10-FOLD CV CURVES

BOXPLOTS OF RESIDUALS

ESTIMATED COEFFICIENTS

MORE ON COEFFICIENTS

Lasso/Elastic-Net/Ridge:

- Positive:
 - The number of discussions
 - The average number of authors

• Negative:

- The average length of a discussion
- Measure of burstiness level for a topic

Random Forest:

- Number of new authors

RESULTS

	90% Interval for test R-square	Time to perform (entire dataset)
LASSO	[0.5778227, 0.6015839]	3.241 secs
Elastic-Net	[0.5781852, 0.6024422]	3.615 secs
Ridge	[0.5828034, 0.6027388]	3.813 secs
Random Forest	[0.9770214, 0.9785912]	16.247 mins

Trade-off: The better performance – the more time required to build

Thank you for attention! Do you have any questions?