	Формулы динамики	
Название	Формула	Обозначения
Первый закон Ньютона	$\sum \vec{F} = 0$	$\Sigma \vec{F}$ – векторная сумма всех сил
Плотность вещества	$\rho = \frac{m}{V}$	р - плотность веществаm – масса веществаV – объем тела
Второй закон Ньютона	$\vec{a} = \frac{\vec{F}}{m}$	а - ускорение телаF - равнодействующая силm - масса тела
Третий закон Ньютона	$\overrightarrow{F_1} = -\overrightarrow{F_2}$	F_1 – сила, с которой действует тело F_2 – сила, с которой действуют на тело
Закон всемирного тяготения	$\mathbf{F} = \mathbf{G} \frac{m_1 m_2}{r^2}$	 F - сила притяжения G - гравитационная постоянная m₁ - масса 1 тела m₂ - масса 2 тела r - радиус между центрами тел
Первая космическая скорость	$v = \sqrt{gR}$ $v = \sqrt{\frac{GM}{R+H}}$	 v - скорость g - ускорение свободного падения R - радиус планеты G - гравитационная постоянная M - масса планеты H - расстояние над поверхностью планеты
Сила тяжести	F = mg	F - сила тяжестиm - масса телаg - ускорение свободногопадения
Ускорение свободного падения	$g = G\frac{M}{R^2}$	G – гравитационная постоянная M – масса планеты g – ускорение свободного падения R – расстояние между телами
Сила упругости	F = k∆x	F – сила упругости k – жесткость пружины x – удлинение пружины
Сила трения	F = μN	F – сила тренияμ - коэффициент тренияN – сила реакции опоры