СБОРНИК ЗАДАЧ ПО ВЫСШЕЙ МАТЕМАТИКЕ. II ЧАСТЬ

О.В. Болотникова, Н.Ю. Кудряшова, Н.В. Мойко

Сборник содержит задания и 30 вариантов контрольных работ по дифференциальному исчислению, интегральному исчислению, функциям нескольких переменных, комплексным числам, дифференциальным уравнениям. Предназначен для студентов, обучающихся по направлению 09.03.01, может быть полезен и студентам других направлений.

СОДЕРЖАНИЕ

І. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
§1. ПРОИЗВОДНАЯ ФУНКЦИИ
§2. ДИФФЕРЕНЦИАЛ ФУНКЦИИ
§3. ВЫЧИСЛЕНИЕ ПРОИЗВОДНЫХ И ДИФФЕРЕНЦИАЛОВ
§4. ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ
§5. ТЕОРЕМЫ О СРЕДНЕМ ДЛЯ ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЙ
§6. ПРАВИЛА ЛОПИТАЛЯ §7. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ
§7. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ
II. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ
§8. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ §9. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ
§9. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ
§10. ИНТЕГРИРОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ
§11. ИНТЕГРИРОВАНИЕ ИРРАЦИОНАЛЬНЫХ ФУНКЦИЙ
§12. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§13. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
§14. ГЕОМЕТРИЧЕСКИЕ И ФИЗИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО
ИНТЕГРАЛА
III. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§15. ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ
§16. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§17. ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ФУНКЦИЙ НЕСКОЛЬКИХ
ПЕРЕМЕННЫХ
§18. ПРОИЗВОДНАЯ ПО НАПРАВЛЕНИЮ. ГРАДИЕНТ ФУНКЦИИ
§19. КАСАТЕЛЬНАЯ ПЛОСКОСТЬ И НОРМАЛЬ К ПОВЕРХНОСТИ
§20. ЧАСТНЫЕ ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ
§21. ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§22. НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ ФУНКЦИИ В КОМПАКТНОЙ
ОБЛАСТИ
§23. УСЛОВНЫЙ ЭКСТРЕМУМ. МЕТОД НЕОПРЕДЕЛЕННЫХ МНОЖИТЕЛЕЙ
ЛАГРАНЖА
§24. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ
IV. КОМПЛЕКСНЫЕ ЧИСЛА
§25. КОМПЛЕКСНЫЕ ЧИСЛА
V. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
§26. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА
§27. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ
§28. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ
§29. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
ОТВЕТЫ
ПРИЛОЖЕНИЯ
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

І. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

§1. ПРОИЗВОДНАЯ ФУНКЦИИ

Пользуясь определением, найти производные функций:

1.1.
$$y = 2x - 5$$
.

1.3.
$$y = \sqrt{x}$$
.

1.2.
$$y = 3x^2$$
.

1.4.
$$y = \frac{1}{x}$$
.

1.5. Написать уравнение касательной и нормали к кривой $y = 3x^2$ в точке с абсциссой x = 1.

§2. ДИФФЕРЕНЦИАЛ ФУНКЦИИ

Пользуясь определением, найти дифференциалы функций:

2.1.
$$y = 3x - 7$$
.

2.3.
$$v = x^3$$
.

2.2.
$$y = \cos x$$
.

2.4.
$$v = \sin x$$
.

§3. ВЫЧИСЛЕНИЕ ПРОИЗВОДНЫХ И ДИФФЕРЕНЦИАЛОВ

Найти производные данных функций:

3.1.
$$y = x^5 - 3x^2 + 2x - 6$$
.

3.8.
$$y = x^2 \log_5 x$$
.

3.2.
$$y = 6x^8 + 3x\sqrt[3]{x} - \frac{2}{3}x$$
.

3.9.
$$y = 5 \arctan x - 8e^x$$
.

3.3.
$$y = \operatorname{tg} x + \cos x$$
.

3.10.
$$y = (x^2 + x - 3) \cdot \arccos x$$
.

3.4.
$$y = \cot x - \sin x$$
.

3.11.
$$y = (\sqrt{x} + 5) \cdot \operatorname{arcctg} x$$
.

3.5.
$$y = \sqrt[8]{x} - \sqrt[5]{2}$$
.

3.12.
$$y = \frac{5+3e^x}{x-e^x}$$
.

3.6.
$$y = \frac{1}{\sqrt[5]{x^4}} - \frac{5}{x^3} + \cos 5.$$

3.13.
$$y = \frac{3^x + 4}{2^x - 3}$$
.

3.7.
$$y = 3 \cdot 4^x + \frac{2}{5} \operatorname{arctg} x$$
.

3.14.
$$y = \sqrt[3]{x} \arcsin x + \frac{\log_4 x}{x^4}$$
.

Найти производные данных функций в точке x_0 :

3.15.
$$y = \frac{x^2}{x+1}$$
, $x_0 = 1$.

3.17.
$$y = x^2 + \cos x$$
, $x_0 = \pi$.

3.16.
$$y = e^x \cdot \ln x$$
, $x_0 = 1$.

3.18.
$$y = x + \sqrt[3]{x}$$
, $x_0 = 8$.

Найти производные функций:

3.19.
$$y = \sin 5x$$
.

3.20.
$$y = \cos^4 x$$
.

3.21.
$$y = \sqrt[3]{\cot x}$$
.

3.22.
$$y = tg^2 \frac{2}{x+1}$$
.

3.23.
$$y = 8^{x^2+5}$$
.

3.24.
$$y = (x+4)^{21}$$
.

3.25.
$$y = \ln(x^3 + 2x)$$
.

$$3.26. y = \arccos \sqrt{x}.$$

3.27.
$$y = \operatorname{arctg} e^x$$
.

3.28.
$$y = \log_7 \arcsin 4x$$
.

3.29.
$$y = \operatorname{arcctg} \frac{x+2}{x-5}$$
.

3.30.
$$y = \ln \sqrt{\frac{1 - \sin x}{1 + \cos x}}$$
.

3.31. Пользуясь правилом дифференцирования обратной функции, найти y'_x для функции:

a)
$$y = \sqrt[3]{x+5}$$
;

6)
$$y = \sqrt[4]{x-2}$$
.

Найти производную функции у, заданной неявно:

3.32.
$$x^2 - y^4 = x^3 y^3$$
.

3.35.
$$x\cos y + y\sin x = 0$$
.

3.33.
$$x^2 + y^3 = \cos(2x + y)$$
.

3.36.
$$\arctan \frac{x}{y} = y \arcsin x$$
.

3.34.
$$e^{xy} + \ln \frac{y}{x} = 7$$
.

3.37.
$$arctg(xy) = y \ln x$$
.

Найти производную y'(x) для заданных параметрически функций y = y(x):

3.38.
$$\begin{cases} x = t^4 + t^2 + 1, \\ y = t^3 + t. \end{cases}$$

3.39.
$$\begin{cases} x = e^t \cos t, \\ y = e^t \sin t. \end{cases}$$

3.40.
$$\begin{cases} x = \cos^4 t, \\ y = \sin^4 t. \end{cases}$$

$$\mathbf{3.41.} \begin{cases} x = 4 \operatorname{ch} t, \\ y = 8 \operatorname{sh} t. \end{cases}$$

3.42.
$$\begin{cases} x = \frac{t+2}{t}, \\ y = \frac{3t-2}{t}. \end{cases}$$

3.43.
$$\begin{cases} x = t - \operatorname{arctg} t, \\ y = t^2 + t. \end{cases}$$

Найти производные функций, используя логарифмическую производную:

3.44.
$$y = x^{\cos x}$$
.

3.48.
$$y = \sqrt[7]{\frac{(x^3 + 2)(x + 1)}{(x - 3)^2}}$$
.

3.45.
$$y = x^{\arctan x}$$
.

3.49.
$$y = \frac{\left(5 - x^4\right) \cdot \cos^4 x}{\sqrt[9]{x^5}}.$$

3.46.
$$y = (x^2 + x)^{\sqrt{x}}$$

3.50.
$$y = \frac{e^{4x} \cdot (x+1)^2}{\sqrt{9x+2}}$$
.

3.47.
$$y = (\operatorname{ctg} x)^{\sin x}$$
.

3.51.
$$y = 8^x \cdot x^4 \cdot \sqrt{x^{12} + x + 3}$$
.

Найти уравнения касательной и нормали к данной кривой в данной точке:

3.52.
$$y = x^5$$
, $x_0 = -1$.

3.53.
$$y = \sin x$$
, $x_0 = \frac{\pi}{6}$.

3.54.
$$x^2 + y^2 = 5$$
, $M_0(1;2)$.

3.55.
$$\begin{cases} x = t^4, \\ y = t^2, \end{cases} t_0 = 2.$$

Найти дифференциал функции:

3.56.
$$y = \arccos \sqrt{x}$$
.

3.58.
$$y = 5^{tgx}$$
.

3.57.
$$y = x^4 \ln x$$
.

3.59.
$$y = \frac{x^2 + 2}{x - 1}$$
.

Вычислить приближённо:

3.60.
$$(1,01)^6$$
.

3.62. arctg 1, 04.

3.61. ln1,01.

3.63. tg 44°.

§4. ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ

Найти производные указанных порядков для следующих функций:

4.1.
$$y = 3^x$$
, $y'' = ?$

4.5.
$$y = tg^2 x$$
, $y'' = ?$

4.2.
$$y = \sin x$$
, $y^{IV} = ?$

4.6.
$$y = \frac{1}{5x+2}$$
, $y''' = ?$

4.3.
$$y = xe^{4x}$$
, $y''' = ?$

4.7.
$$\begin{cases} x = e^{5t}, \\ y = e^{7t}, \end{cases} y''_{xx} = ?$$

4.4.
$$y = -x^2 \cos x$$
, $y'' = ?$

4.8.
$$\begin{cases} x = \sin^3 t, \\ y = \cos^3 t, \end{cases} y''_{xx} = ?$$

4.9. Пользуясь правилом дифференцирования обратной функции, найти y''_{xx} для функции:

a)
$$y = \sqrt[3]{x+5}$$
;

6)
$$y = \sqrt[4]{x-2}$$
.

4.10. Найти производную y''' неявно заданной функции y: $x^2 + y^2 = 7$. Найти дифференциалы указанных порядков для следующих функций:

4.11.
$$y = (x^3 + 2)^4$$
, $d^2y = ?$

4.12.
$$y = \frac{x-1}{3x+4}$$
, $d^2y = ?$

4.13.
$$y = x^2 (\ln x + 5)$$
, $d^3 y = ?$

§5. ТЕОРЕМЫ О СРЕДНЕМ ДЛЯ ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЙ

5.1. Проверить, удовлетворяют ли приведённые функции условиям теоремы Ферма на заданных промежутках:

a)
$$y = -7x^2 + 28$$
, $[-4; -2]$;

6)
$$y = x \ln x$$
, (0;1).

5.2. Проверить справедливость теоремы Ролля для функции f(x) на данном отрезке, найти соответствующее значение c (если оно существует):

a)
$$f(x) = \cos x, \left[\frac{\pi}{2}; \frac{3\pi}{2}\right];$$

6)
$$f(x) = \sqrt[5]{x^2}$$
, $[-1;1]$.

5.3. Проверить справедливость теоремы Лагранжа для функции f(x) на данном отрезке, найти соответствующее значение c (если оно существует):

a)
$$f(x) = \frac{1}{x}, \left[\frac{1}{3}; \frac{1}{2}\right];$$

6)
$$f(x) = |x-1|, [0;3].$$

5.4. Проверить, выполняется ли теорема Коши для функций:

а)
$$f(x) = -x^2 + 10x - 9$$
 и $g(x) = x^3 - 9x^2 + 24x$ на отрезке [0;4];

б)
$$f(x) = \frac{1}{3}x^3 - x$$
 и $g(x) = \frac{x}{x^2 + 1}$ на отрезке [-1;1];

если выполняется, то найти точку x = c.

§6. ПРАВИЛА ЛОПИТАЛЯ

Найти пределы, используя правило Лопиталя:

6.1.
$$\lim_{x \to 3} \frac{x^3 - 2x - 21}{x^5 - 2x^4 - 7x^2 - 18}.$$

6.2.
$$\lim_{x \to \pi} \frac{1 + \cos x}{x - \pi}$$
.

6.3.
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\lg 3x}.$$

6.4.
$$\lim_{x\to 0} \frac{\sin 4x}{\arctan 2x - x}$$

6.5.
$$\lim_{x \to \infty} \frac{5x^3 - 4x + 7}{10x^3 - 3x^2 + 4x - 1}.$$

6.6.
$$\lim_{x\to +\infty}\frac{e^x}{x^2}.$$

6.7.
$$\lim_{x \to 2+0} \frac{\cot \frac{\pi x}{2}}{\ln(x-2)}.$$

6.8.
$$\lim_{x \to +\infty} \frac{\log_3 x}{3^x}$$
.

6.9.
$$\lim_{x \to +\infty} (x^2 \cdot e^{-x}).$$

6.10.
$$\lim_{x\to 0} (\arcsin x \cdot \operatorname{ctg} x).$$

6.11.
$$\lim_{x \to \frac{\pi}{2}} \left[\left(x - \frac{\pi}{2} \right) \operatorname{tg} x \right].$$

6.12.
$$\lim_{x\to 0} (x \cdot \ln \cot x)$$
.

6.13.
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$$
.

6.14.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$$
.

6.15.
$$\lim_{x \to 5} \left(\frac{2}{x-5} - \frac{4x}{x^2 - 25} \right).$$

6.16.
$$\lim_{x \to \frac{\pi}{2} + 0} \left(\frac{1}{\cos x} - \frac{1}{\pi - 2x} \right).$$

6.17.
$$\lim_{x \to 0} \left(\frac{2}{\pi} \arccos x \right)^{\frac{1}{x}}$$
.

6.18.
$$\lim_{x\to +\infty} (1+5^x)^{\frac{1}{x}}$$
.

6.19.
$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{2}{x}}$$
.

6.20.
$$\lim_{x \to \frac{\pi}{2} - 0} (\pi - 2x)^{\cos x}$$
.

§7. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ

- **7.1.** Найти наименьшее и наибольшее значения функции $y = x^4 2x^2 + 3$ на отрезке [-3;2].
- **7.2.** Найти наибольшее значение функции $y = x + 2\sqrt{-x}$ на отрезке [-4;0].

Провести полное исследование и построить графики функций:

7.3.
$$y = \frac{x^3}{9 - x^2}$$
.

7.4.
$$y = \frac{x^2}{1 - x^2}$$
.

7.5.
$$y = \frac{3-x}{(x-5)^2}$$
.

7.7.
$$y = x^2 \cdot e^{\frac{1}{x}}$$
.

7.8.
$$y = x - \ln x$$
.

7.9.
$$y = \ln \frac{x}{x-1}$$
.

7.6.
$$y = (x-2) \cdot e^{2-x}$$
.

7.10. $y = x \cdot \arctan x$.

КОНТРОЛЬНАЯ РАБОТА Вариант 1

1. Найти производные данных функций:

a)
$$y = 2x^5 + 3x^3 - 4\sqrt[5]{x} + 2$$
;

6)
$$y = 7^x \cdot \operatorname{arctg} 3x$$
;

B)
$$y = \frac{\sin 2x}{x^2 + 4x}$$
;

$$\Gamma) y = \cos^3 \ln \frac{\sqrt{x}}{x-1}.$$

- 2. Найти производную функции y, заданной неявно: $e^{xy} + \frac{y}{x} = \operatorname{tg} 4x$.
- 3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x): \begin{cases} x = \frac{t+5}{t}, \\ y = \frac{t}{t-4}. \end{cases}$$

4. Найти производные функций, используя логарифмическую производную:

a)
$$y = \left(\sqrt{x}\right)^{\operatorname{ctg} x}$$
.

6)
$$y = \frac{(1-x^5) \cdot \sin^9 x}{\sqrt[5]{x^4}}$$
.

Вариант 2

a)
$$y = 7x^9 + 11x^4 - \sqrt[8]{x} - 4$$
;

6)
$$y = 8^x \cdot \arccos 4x$$
;

$$y = \frac{\operatorname{ctg} 3x}{x - 7};$$

$$\Gamma) \ \ y = \log_3 \arctan\left(\frac{\sqrt{x}}{x+2}\right).$$

- 2. Найти производную функции y, заданной неявно: $\sin(x+5y) + \frac{y}{x^2} = 6x$.
 - 3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x): \begin{cases} x = e^{-t} \cdot \cos 2t, \\ y = e^{t} \cdot \sin 2t. \end{cases}$$

$$a) y = \left(\sin x\right)^{\frac{5}{x}}.$$

6)
$$y = \frac{(2+x^4) \cdot \cos^6 x}{\sqrt[4]{x^3}}$$
.

Вариант 3

1. Найти производные данных функций:

a)
$$y = 9x^6 + 15x^5 - 2\sqrt[7]{x} + 1$$
;

6)
$$y = 4^{x+1} \cdot \text{ctg } 3x$$
;

B)
$$y = \frac{\ln(5x+1)}{x^2 - x}$$
;

$$\Gamma) \ \ y = \sqrt[7]{\cos^4 \frac{x+5}{x}}.$$

2. Найти производную функции y, заданной неявно: $tg(2x+y) + \frac{y-2}{x} = 2^x$.

3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x): \begin{cases} x = \frac{t^2 - 4t}{t - 2}, \\ y = \frac{t^3 + t}{t^2 - 4}. \end{cases}$$

4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (x^2 + 1)^{\sqrt{\cos x}}$$
.

6)
$$y = \frac{(2+x)\cdot\sqrt[3]{x-9}}{\cos^8 x}$$
.

Вариант 4

a)
$$y = 15x^4 - 2x^3 + 6\sqrt[6]{x} - 4$$
;

6)
$$y = 12^{2x-1} \cdot \arccos 2x$$
;

$$y = \frac{\arctan 4x}{x^2 - 8x};$$

$$\Gamma) y = 8^{ctg^3 \left(\frac{x^2+9}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $x^3y^2 + \frac{y-2}{x^2} = \cos 4x.$
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = \sin^5 t, \\ y = \cos^5 t. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = \left(x + \sqrt{x}\right)^{\sin x}$$
.

6)
$$y = \frac{(1-x^3) \cdot 3^x}{\sqrt[3]{x^4}}$$
.

1. Найти производные данных функций:

a)
$$y = 11x^5 - 5x^4 - 4\sqrt[8]{x} + 3$$
;

6)
$$y = 7^{3x+2} \cdot \log_7(3x+5);$$

B)
$$y = \frac{\cos(2x-1)}{x^2+4x}$$
;

$$r) y = \sqrt[9]{\sin^4\left(\frac{x+2}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $x^3y^2 + \ln\frac{y}{x} = x^4 + y^2.$
 - 3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x): \begin{cases} x = \frac{t^2 + t}{t - 1}, \\ y = \frac{t^3 + t^2}{t + 1}. \end{cases}$$

4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\operatorname{tg} x)^{\sin x}$$
.

6)
$$y = \frac{(1+x^2) \cdot e^x}{\sqrt[3]{x^2 + 2x}}$$
.

Вариант 6

a)
$$y = 4x^3 - 7x^2 + 3\sqrt[6]{x} + 6$$
;

6)
$$y = 5^{3x-2} \cdot tg(4x-1);$$

$$y = \frac{\cos 9x}{\sqrt{x-4}};$$

$$\Gamma) \ \ y = \operatorname{arcctg}^{3} \ln \left(\frac{x}{\sqrt{x+2}} \right).$$

- 2. Найти производную функции y, заданной неявно: $e^{3xy} + \frac{y}{x^2 + 1} = \sin 3x$.
- 3. Найти производную y'(x) для заданной параметрически функции $y=y(x)\colon\begin{cases} x=e^{2t}\cdot\cos 4t,\\ y=e^{-2t}\cdot\sin 4t. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = \left(x^2 + 3x\right)^{\sqrt{x}}$$
.

6)
$$y = \frac{(1+x)^3 \cdot (x^2 + 5x)^4}{\sqrt[5]{3x-1}}$$
.

1. Найти производные данных функций:

a)
$$y = 6x^7 + 2x^3 - 8\sqrt[12]{x} - 1$$
;

6)
$$y = 4^{5x-1} \cdot \text{ctg}(5x-1);$$

B)
$$y = \frac{\ln(3x-4)}{x^2-3x}$$
;

$$\Gamma) \ \ y = 7^{\cos^4\left(\frac{x^2 - 3}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $\sin(5x-2y) + \frac{y-2}{x} = 3^x$.
 - 3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x): \begin{cases} x = \frac{t^2 + 4t}{t - 2}, \\ y = \frac{t^3 - t}{t^2 + 1}. \end{cases}$$

4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\ln x)^{\sqrt{x}}$$
.

6)
$$y = \frac{(1+3x)^2 \cdot (x-2)^3}{2^{3x-1}}$$
.

Вариант 8

a)
$$y = 2x^7 - 13x^2 + 6\sqrt[3]{x} + 5$$
;

6)
$$y = 3^{2x+4} \cdot \sin(4x+2)$$
;

B)
$$y = \frac{\sin(5x+2)}{x^2+5x}$$
;

$$\Gamma) \ \ y = \operatorname{arcctg}^4 \ln \frac{x+3}{\sqrt{x}}.$$

- 2. Найти производную функции y, заданной неявно: $\operatorname{ctg} \left(4x y \right) + \frac{y 2}{x^3} = 2^x.$
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = e^{-3t} \cdot \sin 6t, \\ y = e^{3t} \cdot \cos 6t. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\arcsin x)^{\sqrt{x}}$$
.

6)
$$y = \frac{(3x-4)^3 \cdot e^{3x}}{\sqrt[3]{x^2+2x}}$$
.

1. Найти производные данных функций:

a)
$$y = 3x^5 - x^4 - 15\sqrt[5]{x} - 9$$
;

6)
$$y = 14^{x-3} \cdot \arccos(x-3);$$

B)
$$y = \frac{\log_2(x-1)}{x^2 - 4x}$$
;

$$\Gamma) \ \ y = \sqrt[8]{\mathsf{tg}^5 \left(\frac{x-3}{\sqrt{x+1}} \right)}.$$

- 2. Найти производную функции y, заданной неявно: $\arctan \frac{x}{y} = y \ln x$.
- 3. Найти производную y'(x) для заданной параметрически функции $y = y(x) \colon \begin{cases} x = \sin^6 t, \\ y = \cos^6 t. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = x^{\arcsin x}$$
. 6) $y = \frac{(4x-2)^2 \cdot \sqrt[5]{x^2 - 3x}}{(x-4)^3}$.

Вариант 10

1. Найти производные данных функций:

a)
$$y = 4x^4 + 2x^3 - 3\sqrt[9]{x} + 2$$
;

6)
$$y = 5^{2x-3} \cdot tg(2x-3);$$

B)
$$y = \frac{\cos 12x}{x^2 - 12x}$$
;

$$\Gamma) \ \ y = \log_2 \arcsin\left(\frac{x-4}{\sqrt{x}}\right).$$

- 2. Найти производную функции y, заданной неявно: $\cos(5x-y) \frac{y-2}{x} = 4^x$.
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = \arctan t t, \\ y = \frac{t^4}{4} 2. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\arccos x)^{\operatorname{tg} x}$$
.

6)
$$y = \frac{5^{2x} \cdot \sqrt[4]{x^2 + x}}{(3x - 2)^6}$$
.

Вариант 11

a)
$$y = 2x^7 - 3x^6 - 9\sqrt[12]{x} - 4$$
;

6)
$$y = 2^{3x+1} \cdot \log_2(3x+1);$$

B)
$$y = \frac{\text{ctg} 11x}{x^2 + 11x}$$
;

$$y = tg^4 \cos \sqrt{\frac{x^2 - 1}{x + 2}}.$$

- 2. Найти производную функции y, заданной неявно: $e^{xy} + \frac{y-1}{x+4} = \sin 2x$.
- 3. Найти производную y'(x) для заданной параметрически функции y=y(x): $\begin{cases} x=t\cdot e^t, \\ y=t^2\cdot e^{-t}. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\sin x)^{\arctan x}$$
. 6) $y = \frac{(x+4)^5 \cdot \sqrt[3]{x+9}}{6^{3x-4}}$.

1. Найти производные данных функций:

a)
$$y = 5x^4 - 4x^3 - 8\sqrt[4]{x} - 1$$
;

6)
$$y = 2^{3x-1} \cdot \sin(3x-1)$$
;

B)
$$y = \frac{\ln(9x+1)}{x^2-9x}$$
;

$$\Gamma) \ y = 9^{\cos^3\left(\frac{x^2 - 4}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: arctg $y = x^2 y$.
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = t \cdot \sin t, \\ y = t \cdot \cos t. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

$$a) y = \left(\sin x\right)^{x-2}.$$

$$6) y = \frac{\left(4 + 3x\right)^5 \cdot \sqrt[4]{3x + 2}}{4^{3x}}.$$

Вариант 13

a)
$$y = 5x^3 - 12x^2 + 3\sqrt[8]{x} - 2$$
;

6)
$$y = 6^{2x-7} \cdot \cos 5x$$
;

B)
$$y = \frac{\operatorname{tg}(3x - 4)}{x^2 + 4x}$$
;

$$\Gamma) y = \log_3 \cos \left(\frac{x+6}{\sqrt{x-2}} \right).$$

- 2. Найти производную функции y, заданной неявно: $\sin(3x y) + \frac{y + 2}{x} = 6x^2$.
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = \arctan t + t, \\ y = \frac{t^3}{3} + 3. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\sin x)^{x^2+4}$$
. 6) $y = \frac{(x-4)^5 \cdot \sqrt[5]{x+2}}{(x+3)^2}$.

1. Найти производные данных функций:

a)
$$y = 16x^2 - 3x + 8\sqrt[9]{x} - 6$$
;

6)
$$y = 4^{x+1} \cdot \ln(4x-1);$$

B)
$$y = \frac{\sin 3x}{\sqrt{3x+2}}$$
;

$$\Gamma) \ \ y = \sqrt[9]{\cot^7 \left(\frac{3x+2}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $\cos(x-2y) + \frac{y}{x} = 4^x$.
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = \sin^9 t, \\ y = \cos^9 t. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\operatorname{arctg} x)^x$$
.

6)
$$y = \frac{(1-2x)^4 \cdot (x^2-x)^3}{5^{x-4}}$$
.

Вариант 15

a)
$$y = 11x^3 + x^2 - 3\sqrt[6]{x} + 1$$
;

6)
$$y = 7^x \cdot \ln(5x - 2);$$

B)
$$y = \frac{\text{tg}(3x+1)}{x^2-3x}$$
;

$$\Gamma) y = \sin^4 \cos \sqrt{\frac{x-3}{x+1}}.$$

- 2. Найти производную функции y, заданной неявно: $\ln \frac{y}{x} + \frac{y}{x-2} = 3^x$.
- 3. Найти производную y'(x) для заданной параметрически функции $y=y(x)\colon\begin{cases} x=(t+1)\cdot e^{2t},\\ y=(t+1)^2\cdot e^{-2t}. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (x^2 + 4x)^{\ln x}$$
.

6)
$$y = \frac{(2x-6)^5 \cdot 2^{x+1}}{\sqrt[4]{2x-5}}$$
.

1. Найти производные данных функций:

a)
$$y = 3x^7 - x^6 + 4\sqrt[8]{x} - 11$$
;

6)
$$y = 8^{x-3} \cdot \sin(x-3);$$

B)
$$y = \frac{\text{ctg } 13x}{x^2 - 13x}$$
;

$$\Gamma) \ \ y = \log_4 \arccos\left(\frac{x+3}{\sqrt{x}}\right).$$

- 2. Найти производную функции y, заданной неявно: $tg(2x + y) \frac{y}{x} = 8^x$.
- 3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x): \begin{cases} x = \operatorname{arctg} t + t, \\ y = \frac{t^2}{2} + 1. \end{cases}$$

4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\ln x)^{\sin x}$$
.

6)
$$y = \frac{e^{9x} \cdot \sqrt[3]{x-1}}{(2x+1)^4}$$
.

Вариант 17

a)
$$y = 2x^3 + 5x^2 - 4\sqrt[8]{x} + 3$$
;

6)
$$y = 3^{5x+1} \cdot tg(5x+1);$$

B)
$$y = \frac{\cos(9-x)}{x^2 + x}$$
;

$$\Gamma) y = 12^{\sin^3\left(\frac{x+1}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $arctg y = x^3 y + x$.
- 3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x): \begin{cases} x = \frac{t^2 - 2t}{t+1}, \\ y = \frac{t^3 - t^2}{t^2 - 2}. \end{cases}$$

$$a) y = \left(\cos x\right)^{3x-2}.$$

6)
$$y = \frac{(5-x)^3 \cdot \sqrt[5]{x-1}}{(x^2+x)^4}$$
.

Вариант 18

1. Найти производные данных функций:

a)
$$y = 6x^6 - 3x^3 - 2\sqrt[6]{x} - 19$$
;

6)
$$y = 4^{3x-4} \cdot \arctan(3x-4);$$

B)
$$y = \frac{\cos(3x-8)}{x^2-8x}$$
;

$$\Gamma) \ \ y = \sqrt[5]{\ln^6 \left(\frac{2x-3}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $\sin(x+2y)+\sqrt{y}=\sqrt{x}$.
- 3. Найти производную y'(x) для заданной параметрически функции $y=y(x)\colon \begin{cases} x=t^8e^{2t},\\ y=t^8e^{-2t}. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

$$a) y = x^{\operatorname{tg} 2x}.$$

6)
$$y = \frac{6^{7x+1} \cdot \sqrt[4]{x^2 + x}}{(2x-1)^5}$$
.

Вариант 19

a)
$$y = 6x^4 - 5x^3 - 6\sqrt[3]{x} - 4$$
;

6)
$$y = 8^{3x-2} \cdot \cos(3x-2);$$

B)
$$y = \frac{\cot(5x-2)}{x^2+4x}$$
;

$$\Gamma) y = tg^4 \sin \frac{\sqrt{x-2}}{x+1}.$$

- 2. Найти производную функции y, заданной неявно: $\ln \frac{y}{2x} + x^2 y^2 = x^4$.
- 3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x) : \begin{cases} x = t^3 \cdot e^{5t}, \\ y = t^2 \cdot e^{-4t}. \end{cases}$$

a)
$$y = (x^2 + 4x)^{\sqrt{x}}$$
.

6)
$$y = \frac{(x-1)^2 \cdot \sqrt[5]{5x-1}}{(x+5)^3}$$
.

Вариант 20

1. Найти производные данных функций:

a)
$$y = 4x^9 - x^5 - 12\sqrt[16]{x} - 13$$
;

6)
$$y = 9^{8x-1} \cdot \cos(8x-1);$$

B)
$$y = \frac{\sin 4x}{x^2 + 9x}$$
;

$$\Gamma) \ \ y = \log_5 \arctan\left(\frac{4x - 1}{\sqrt{x}}\right).$$

- 2. Найти производную функции y, заданной неявно: $tg(x+3y) \frac{x}{y} = 3^x$.
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = \arctan 2t + 2t, \\ y = \frac{t^3}{3} 4. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\ln x)^{x^2+1}$$
.

6)
$$y = \frac{e^{8x-1} \cdot \sqrt[5]{3x+2}}{(8x-1)^3}$$
.

Вариант 21

a)
$$y = 7x^8 - 5x^4 - 3\sqrt[9]{x} - 1$$
;

6)
$$y = 5^{3x-2} \cdot \log_5(5x+1);$$

B)
$$y = \frac{\text{tg}(6+x)}{x^2+x}$$
;

$$\Gamma) \ \ y = 6^{\cos^6\left(\frac{x-2}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $\arcsin(y+4x) = x^2y y$.
 - 3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x): \begin{cases} x = \frac{t^2 + 4}{t + 2}, \\ y = \frac{t^2 - t}{t - 2}. \end{cases}$$

a)
$$y = (x^2 - 4)^{\sqrt{3x-2}}$$
.

6)
$$y = \frac{(x+2)^9 \cdot 8^{3x-1}}{\sqrt[5]{x^2 + x}}$$
.

Вариант 22

1. Найти производные данных функций:

a)
$$y = 15x^3 - 2x^2 - 7\sqrt[14]{x} + 21$$
;

6)
$$y = 2^{7-2x} \cdot \cos(7-2x)$$
;

B)
$$y = \frac{\sin(4x-11)}{x^2-11x}$$
;

$$\Gamma) \ \ y = \sqrt[9]{\arctan^4\left(\frac{3x-1}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $\operatorname{ctg}(x+6y)-\sqrt{y}=\sqrt{x}$.
 - 3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x): \begin{cases} x = \frac{e^t}{t}, \\ y = \frac{e^t}{t^2}. \end{cases}$$

4. Найти производные функций, используя логарифмическую производную:

a)
$$y = \left(x^2 - x\right)^{\sqrt{\ln x}}$$
.

6)
$$y = \frac{e^{2x-2} \cdot \sqrt[5]{x-2}}{(x+4)^3}$$
.

Вариант 23

a)
$$y = 5x^5 - 4x^4 - 7\sqrt[7]{x} + 7$$
;

6)
$$y = 3^{9x-1} \cdot \cos(9x-1)$$
;

B)
$$y = \frac{\sin(4-5x)}{x^2-5x}$$
;

$$\Gamma) y = \arctan^5 \cos \frac{3x+2}{\sqrt{x}}.$$

- 2. Найти производную функции y, заданной неявно: $\ln \frac{2y}{x} x^3 y^2 = x$.
- 3. Найти производную y'(x) для заданной параметрически функции $y = y(x) \colon \begin{cases} x = e^{5t} \cdot \cos 5t, \\ y = e^{4t} \cdot \sin 4t. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = \left(\operatorname{tg} 5x\right)^{\sqrt{x-1}}$$
.

6)
$$y = \frac{(3x+2)^4 \cdot 4^{x+2}}{\sqrt[4]{3-2x}}$$
.

1. Найти производные данных функций:

a)
$$y = 6x^3 - 4x^2 - 9\sqrt[6]{x} - 8$$
;

6)
$$y = 3^{5x} \cdot \text{ctg}(5x + 2);$$

B)
$$y = \frac{\cos(x-1)}{x^2 - x}$$
;

$$\Gamma) \ \ y = \log_4 \arcsin\left(\frac{5 - 2x}{\sqrt{x}}\right).$$

- 2. Найти производную функции y, заданной неявно: $\ln(x+3y) \frac{x}{y} = 5^x$.
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = \arctan 4t t, \\ y = \frac{t^5}{5}. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

$$a) y = \left(\cos x\right)^{x-7}.$$

6)
$$y = \frac{3^x \cdot \sqrt[4]{2 - 7x}}{(x + 6)^9}$$
.

Вариант 25

- 1. Найти производные данных функций:
- a) $y = 9x^3 15x^2 9\sqrt[3]{x} + 15$;

6)
$$y = 4^{3-x} \cdot \cos(3-x);$$

B)
$$y = \frac{\ln(2-x)}{x^2-2x}$$
;

$$\Gamma) y = 9^{\cot^4\left(\frac{9-x}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $arcctg \frac{y}{x} = x^2 y^2 y$.
- 3. Найти производную y'(x) для заданной параметрически функции y=y(x): $\begin{cases} x=\sin t^2, \\ y=\cos t^2. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = \left(x^2 + 1\right)^{\sqrt{tgx}}$$
.

6)
$$y = \frac{(x-3)^4 \cdot \sqrt{5x-3}}{(9-3x)^7}$$
.

1. Найти производные данных функций:

a)
$$y = 11x^5 - x^9 - 9\sqrt[27]{x} + 27$$
;

6)
$$y = 8^{x+4} \cdot \text{ctg}(8x+4);$$

B)
$$y = \frac{\cos(6x+6)}{x^2-6x}$$
;

$$\Gamma) y = \log_8 \sin\left(\frac{x+3}{\sqrt{x}}\right).$$

- 2. Найти производную функции y, заданной неявно: $\arcsin(x+y)-x^2y=3x$.
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = \arccos 2t, \\ y = \frac{2t^3}{3} 1. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\operatorname{ctg} x)^{x}$$
. 6) $y = \frac{(x+5)^{9} \cdot \sqrt[3]{x-1}}{(2x+7)^{5}}$.

Вариант 27

a)
$$y = 9x^3 - 4x^2 - 3\sqrt[8]{x} - 1$$
;

6)
$$y = 3^x \cdot \log_3(8 - x);$$

B)
$$y = \frac{\cot(2x+1)}{x^2 + 2x}$$
;

$$\Gamma) \ \ y = \sqrt[3]{\cos^4\left(\frac{x+3}{\sqrt{2x-1}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $\sin(x-3y)-\sqrt{y}=x^2$.
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = \arccos t, \\ y = \arcsin t. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (x^2 - 3)^{\sin x}$$
.

6)
$$y = \frac{3^{x-8} \cdot \sqrt[5]{(x-2)^2}}{(3x-8)^3}$$
.

1. Найти производные данных функций:

a)
$$y = 4x^3 + 9x^7 + 11\sqrt[4]{x} - 4$$
;

6)
$$y = 3^{x+3} \cdot tg(x+3)$$
;

B)
$$y = \frac{\cos(2-5x)}{x^2-5x}$$
;

$$\Gamma) y = \sin^4 \ln \frac{\sqrt{3-x}}{2x+1}.$$

- 2. Найти производную функции y, заданной неявно: $\arctan \frac{y}{6x} \frac{x^2}{y} = 3x$.
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = t \cdot \text{arctgt}, \\ y = t^2 \cdot \text{arcctgt}. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = x^{\sqrt{x+x^3}}$$
. 6) $y = \frac{e^{9x-2} \cdot \sqrt[3]{(x+1)^2}}{(2x-9)^4}$.

Вариант 29

1. Найти производные данных функций:

a)
$$y = 21x^2 + 3x^3 - 5\sqrt[20]{x} - 20$$
;

$$6) y = 11^x \cdot \sin(x+2);$$

B)
$$y = \frac{\text{tg}(2x+6)}{x^2-7x}$$
;

$$\Gamma) \ \ y = 2^{\arccos^4\left(\frac{8+x}{\sqrt{x}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $\frac{y}{x} + \sin(x + y) = x^2$.
- 3. Найти производную y'(x) для заданной параметрически функции y = y(x): $\begin{cases} x = \sin t^3, \\ y = \cos^2 t. \end{cases}$
- 4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (x+1)^{x^3+2}$$
.

6)
$$y = \frac{(2x+7)^2 \cdot e^x}{\sqrt[3]{(2-x)^4}}$$
.

Вариант 30

1. Найти производные данных функций:

a)
$$y = 4x^4 - 2x^2 - 3\sqrt[6]{x} - 5$$
;

$$6) y = 9^x \cdot \arccos(x+1);$$

B)
$$y = \frac{\text{ctg}(x^2 + 1)}{x - 2}$$
;

$$\Gamma y = 9^{\sin^4\left(\frac{9-4x}{\sqrt{x+1}}\right)}.$$

- 2. Найти производную функции y, заданной неявно: $\cos(y+5x) = 9 \sqrt{xy}$.
 - 3. Найти производную y'(x) для заданной параметрически функции

$$y = y(x): \begin{cases} x = \operatorname{arctg} t, \\ y = \frac{t^5}{5} - 4. \end{cases}$$

4. Найти производные функций, используя логарифмическую производную:

a)
$$y = (\sin x)^{\sqrt{igx}}$$
. 6) $y = \frac{2^{4x} \cdot \sqrt{(4x-9)^7}}{(11-2x)^5}$.

ІІ. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

§8. НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

Найти интегралы, используя таблицу:

8.1.
$$\int x^{12} dx$$
.

8.2.
$$\int \frac{dx}{x^4}$$
.

8.3.
$$\int \sqrt[5]{x^4} dx$$
.

8.4.
$$\int \frac{dx}{x^2 - 3}$$
.

8.5.
$$\int \frac{dx}{\sqrt{x^2+5}}$$
.

8.6.
$$\int \frac{dx}{x^2 + 25}$$
.

8.7.
$$\int 3^x dx$$
.

8.8.
$$\int \sin x dx$$
.

8.9.
$$\int \frac{dx}{\cos^2 x}.$$

8.10.
$$\int \frac{dx}{\sqrt{16-x^2}}.$$

Найти интегралы, используя таблицу и основные свойства неопределённого интеграла:

8.11.
$$\int \frac{x^4 + x^3 - 5x}{x^2} dx.$$

8.12.
$$\int \left(\frac{7}{x} + \frac{3}{\sqrt{x}} - \frac{4}{x^2} \right) dx.$$

8.13.
$$\int \cos 4x dx$$
.

8.14.
$$\int (4x-7)^{11} dx.$$

8.15.
$$\int \frac{\sqrt{x^2 + 2} - 4}{\sqrt{x^2 + 2}} dx.$$

8.16.
$$\int \cot x d(\cot x).$$

8.17.
$$\int \frac{6 + \cos^3 x}{\cos^2 x} dx$$
.

8.18.
$$\int \frac{x^2}{x^2 + 16} dx$$
.

Найти интегралы, используя подходящую подстановку:

$$8.19. \int \cos^5 x \sin x dx.$$

8.20.
$$\int e^{x^4} \cdot x^3 dx$$
.

$$8.21. \int \frac{\cos x dx}{\sin x + 8}.$$

$$8.22. \int \frac{\ln^4 x dx}{x}.$$

8.23.
$$\int \frac{\sqrt{\cot x} dx}{\sin^2 x}.$$

8.24.
$$\int \frac{3^{\sqrt{x}} dx}{\sqrt{x}}.$$

8.25.
$$\int \frac{dx}{\arcsin x \cdot \sqrt{1 - x^2}}.$$

8.26.
$$\int \frac{e^{\frac{1}{x}}}{x^2} dx$$
.

8.27.
$$\int \frac{5^x dx}{25^x + 16}.$$

8.28.
$$\int \frac{x^4 dx}{x^{10} + 9}.$$

Найти интегралы, используя интегрирование по частям:

8.29.
$$\int (3x+4)\sin x dx$$
.

$$8.33. \int x \cdot 4^x dx.$$

8.30.
$$\int (5x-2) \cdot e^{2x} dx$$
.

8.34.
$$\int x \cdot \arctan x dx$$
.

8.31.
$$\int \ln^2 x dx$$
.

8.35.
$$\int e^x \cdot \sin x dx.$$

8.32.
$$\int \frac{\ln x dx}{x^3}$$
.

8.36.
$$\int \sin \ln x dx.$$

Найти интегралы, комбинируя методы интегрирования по частям и постановки:

8.37.
$$\int \arctan x dx$$
.

8.38.
$$\int \arcsin x dx$$
.

8.39.
$$\int e^{\sqrt{x}} dx$$
.

§9. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ

9.1.
$$\int \frac{2dx}{x+5}$$
.

9.2.
$$\int \frac{9dx}{(x-5)^3}$$
.

9.3.
$$\int \frac{dx}{x^2 + 4x + 8}.$$

9.4.
$$\int \frac{dx}{x^2 - 6x + 10}$$
.

9.5.
$$\int \frac{4x-3}{x^2-2x+26} dx.$$

9.6.
$$\int \frac{5x+7}{x^2+3x+5} dx.$$

9.7.
$$\int \frac{dx}{(x^2+4)^3}.$$

9.8.
$$\int \frac{4x+3}{\left(x^2+x+5\right)^2} dx.$$

9.10.
$$\int \frac{x+5}{(x+1)(x-4)} dx.$$

9.11.
$$\int \frac{x+2}{x^2-5x+6} dx.$$

9.12.
$$\int \frac{2x-7}{(x^2-1)(x+2)^2} dx.$$

9.13.
$$\int \frac{2x+3}{(x+2)^3} dx.$$

9.14.
$$\int \frac{dx}{x^3 - 8}$$
.

9.15.
$$\int \frac{2x^2 + 3x - 1}{(x+1)(x^2 - 2x + 5)} dx.$$

9.16.
$$\int \frac{x dx}{(x^2 + 1)(x - 1)}.$$

9.17.
$$\int \frac{\left(x^5 + x^4 + 1\right)dx}{x^3 - 4x}.$$

9.9.
$$\int \frac{3x-4}{(x+2)(x-3)(x+1)} dx.$$

9.18.
$$\int \frac{x^2 + 3x}{(x-2)(x-4)} dx.$$

§10. ИНТЕГРИРОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Найти интегралы:

$$10.1. \int \frac{dx}{3\sin x - \cos x + 4}.$$

$$10.2. \int \frac{dx}{\sin x}.$$

$$10.3. \int \frac{dx}{\cos x}.$$

10.4.
$$\int \frac{dx}{4\sin^2 x + 7\cos^2 x}.$$

10.5.
$$\int \cos^3 x dx$$
.

10.6.
$$\int \cos^2 x \sin^5 x dx$$
.

10.13.
$$\int tg^7 x dx$$
.

$$10.7. \int \cos^2 x \sin^2 x dx.$$

10.8.
$$\int \cos^2 x \sin^4 x dx$$
.

10.9.
$$\int \cos^6 x dx$$
.

$$10.10. \int \cos \frac{x}{2} \sin \frac{x}{5} dx.$$

$$10.11. \int \sin \frac{x}{3} \sin \frac{x}{4} dx.$$

10.12.
$$\int ctg^4 \frac{x}{2} dx$$
.

§11. ИНТЕГРИРОВАНИЕ ИРРАЦИОНАЛЬНЫХ ФУНКЦИЙ

11.1.
$$\int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}$$
.

11.2.
$$\int \frac{\sqrt{x} dx}{\sqrt[4]{x^3} + 4}.$$

$$11.3. \int \frac{\sqrt{x+5}}{x} dx.$$

11.4.
$$\int \frac{dx}{\sqrt{3x^2 + 6x + 1}}.$$

11.5.
$$\int \frac{2x+1}{\sqrt{3-x^2+2x}} dx.$$

11.11.
$$\int \frac{dx}{x\sqrt{x^2 - 4}}.$$

11.6.
$$\int \sqrt{x} \left(1 + \sqrt[3]{x} \right)^4 dx.$$

11.7.
$$\int x^5 \sqrt[3]{(1+x^3)^2} dx$$
.

11.8.
$$\int \frac{\sqrt[3]{1+x^3}}{x^2} dx.$$

11.9.
$$\int \frac{x^2 dx}{\sqrt{16-x^2}}$$
.

11.10.
$$\int \frac{dx}{x^2 \sqrt{9 + x^2}}.$$

§12. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Используя формулу Ньютона-Лейбница, найти интегралы:

12.1.
$$\int_{3}^{5} \frac{dx}{4x+3}.$$

12.5.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} tg^2 x dx$$

12.2.
$$\int_{1}^{2} \sqrt{5x-1} dx.$$

12.5.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} tg^2 x dx.$$
12.6.
$$\int_{\frac{\pi}{8}}^{\frac{\pi}{6}} \frac{dx}{1 - \cos 8x}.$$

12.3.
$$\int_{-1}^{0} \frac{5^x - 2^x}{10^x} dx.$$

12.7.
$$\int_{4}^{6} \frac{x^2 + 3}{x - 2} dx$$
.

12.4.
$$\int_{0}^{\frac{\pi}{2}} \cos^{2}\left(x - \frac{\pi}{4}\right) dx$$
.

12.8.
$$\int_{3}^{7} \frac{x+1}{x^3+x} dx.$$

Вычислить интегралы при помощи подстановки:

12.9.
$$\int_{0}^{\ln 4} \frac{dx}{e^{x} + 2}.$$

12.11.
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}.$$

12.10.
$$\int_{1}^{27} \frac{dx}{x + \sqrt[3]{x}}.$$

12.12.
$$\int_{0}^{5} x^{2} \sqrt{25 - x^{2}} dx.$$

Вычислить интегралы при помощи формулы интегрирования по частям:

12.13.
$$\int_{0}^{\frac{1}{4}} xe^{4x} dx.$$

12.15.
$$\int_{0}^{1} 2x \arcsin x dx$$
.

12.14.
$$\int_{0}^{\frac{\pi}{2}} x^2 \sin x dx.$$

12.16.
$$\int_{1}^{e} \ln^2 x dx$$
.

§13. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

Вычислить несобственные интегралы первого рода или установить их расходимость:

13.1.
$$\int_{1}^{+\infty} \frac{dx}{x^{5}}.$$

13.3.
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 6x + 13}.$$

$$13.2. \int_{0}^{0} x \sin x dx.$$

13.4.
$$\int_{-\infty}^{0} xe^{x} dx$$
.

Исследовать на сходимость интегралы:

13.5.
$$\int_{1}^{+\infty} \frac{x+3}{\sqrt[7]{x^3}} dx.$$

13.7.
$$\int_{0}^{+\infty} \frac{x \arctan x dx}{\sqrt{1+x^3}}.$$

13.6.
$$\int_{0}^{+\infty} \frac{\sin x dx}{1+x^2}.$$

Вычислить несобственные интегралы второго рода или установить их расходимость:

13.8.
$$\int_{0}^{4} \frac{dx}{\sqrt{16-x^2}}.$$

13.10.
$$\int_{-1}^{1} \frac{x-1}{\sqrt[3]{x^5}} dx.$$

13.9.
$$\int_{0}^{1} x \ln x dx$$
.

Исследовать на сходимость интегралы:

13.11.
$$\int_{0}^{1} \frac{dx}{5x^2 + \sqrt[4]{x}}.$$

13.13.
$$\int_{0}^{3} \frac{\sin x dx}{\sqrt{3-x}}.$$

13.12.
$$\int_{0}^{1} \frac{x^2 dx}{\sqrt[3]{(1-x^2)^5}}.$$

13.14.
$$\int_{0}^{1} \frac{dx}{\operatorname{tg} x - x}.$$

§14. ГЕОМЕТРИЧЕСКИЕ И ФИЗИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

- **14.1.** Вычислить площадь фигуры, ограниченной линиями $y = \sin x$, $y = 2\sin x$, x = 0, $x = \frac{3\pi}{4}$.
- **14.2.** Вычислить площадь фигуры, ограниченной параболами $y^2 + 8x = 16$ и $y^2 24x = 48$.
- **14.3.** Вычислить площадь фигуры, ограниченной параболами $y = x^2$ и $y = \frac{x^3}{3}$.
- **14.4.** Найти площадь фигуры, ограниченной линией $r = a \sin 2\varphi$ (двулепестковая роза).
- **14.5.** Найти площадь фигуры, ограниченной улиткой Паскаля $r = 2a (2 + \cos \varphi)$.

- **14.6.** Найти площадь фигуры, ограниченной астроидой $\begin{cases} x = a \cos^3 t, \\ y = a \sin^3 t. \end{cases}$
- **14.7.** Найти площадь фигуры, ограниченной кардиоидой $\begin{cases} x = 2a\cos t a\cos 2t, \\ y = 2a\sin t a\sin 2t. \end{cases}$
 - **14.8.** Найти длину дуги линии $y = \ln x$ (от $x_1 = \sqrt{3}$ до $x_2 = \sqrt{8}$).
 - **14.9.** Найти длину астроиды $\begin{cases} x = a \cos^3 t, \\ y = a \sin^3 t. \end{cases}$
 - **14.10.** Найти длину кардиоиды $r = a(1 + \cos \varphi)$.
- **14.11.** Криволинейная трапеция, ограниченная линией $y = xe^x$ и прямыми x = 1 и y = 0, вращается вокруг оси абсцисс. Найти объём тела, которое при этом получается.
- **14.12.** Вычислить объём тела, полученного от вращения фигуры, ограниченной параболой $y = 2x x^2$ и осью абсцисс, вокруг оси ординат.
- **14.13.** Найти площадь поверхности, образованной вращением кардиоиды $r = a(1 + \cos \varphi)$ вокруг полярной оси.
- **14.14.** Скорость движения точки $v = te^{-0.05t}$ м/с. Найти путь, пройденный точкой от начала движения до полной остановки.
- **14.15.** Найти работу, которую нужно затратить, чтобы выкачать жидкость (плотность ρ) из вертикального цилиндрического резервуара высоты H и радиусом основания R.
- **14.16.** Найти статические моменты и моменты инерции однородной дуги (плотность ρ) астроиды $\begin{cases} x = 2\cos^3 t, \\ y = 2\sin^3 t, \end{cases}$ расположенной в первой четверти.
- **14.17.** Найти координаты центра масс первой арки циклоиды $\begin{cases} x = a(t \sin t), \\ y = a(1 \cos t). \end{cases}$

КОНТРОЛЬНАЯ РАБОТА

Вариант 1

$$1. \int \frac{dx}{x^2 + 5}.$$

$$2. \int \frac{xdx}{\left(4-3x^2\right)^5}.$$

$$3. \int \frac{dx}{e^{-x} \left(e^x + 4\right)}.$$

$$4. \int (2x+3)\sin 2x dx.$$

5.
$$\int \arccos(2-x)dx$$
.

$$6. \int \frac{2x+3}{x^3 - x^2 + 3x - 3} dx.$$

7.
$$\int \frac{3x^2 + 4}{(x+1)(x^2 - 4x + 4)} dx.$$

8.
$$\int \frac{dx}{2\sin x - \cos x + 1}$$
.

9.
$$\int tg^3 x dx$$
.

$$10. \int \frac{dx}{1+\sqrt{x+2}}.$$

Найти интегралы:

$$1. \int \frac{dx}{\sqrt{x^2 - 2}}.$$

$$2. \int \frac{x^2 dx}{\sqrt[8]{2+x^3}}.$$

3.
$$\int \frac{\sqrt[3]{\text{arctg } 2x - 4}}{4x^2 + 1} dx$$
.

$$4. \int (3x+1) \cdot 4^x dx.$$

5.
$$\int x \arcsin 2x dx$$
.

6.
$$\int \frac{4x-9}{(x-2)^2(x+1)} dx$$
.

7.
$$\int \frac{x^2 + 4}{(x-1)(x^2 - 4x + 5)} dx.$$

$$8. \int \frac{dx}{2\sin^2 x + 3\cos^2 x}.$$

9.
$$\int ctg^3 x dx$$
.

10.
$$\int \frac{2x-1}{\sqrt{x^2+4x+8}} dx.$$

Вариант 3

$$1. \int \frac{dx}{x^2 - 8}.$$

$$2. \int e^{x^3} \cdot x^2 dx.$$

$$3. \int \frac{x^2 dx}{\sqrt{x^6 + 3}}.$$

$$4. \int (4x-1)\cos 4x dx.$$

5.
$$\int \arctan \sqrt{\frac{x}{2}} dx$$
.

6.
$$\int \frac{4x-9}{(x^2+1)(x-3)} dx.$$

7.
$$\int \frac{3x^2 - 8}{(x+1)^2 (x+2)} dx.$$

8.
$$\int \frac{dx}{\sin x - 2\cos x + 1}$$
.

9.
$$\int tg^4 x dx$$
.

$$10. \int \frac{dx}{3 + \sqrt{1 - x}}.$$

$$1. \int \frac{dx}{\sqrt{9-x^2}}.$$

$$2. \int \frac{\sin x dx}{\cos x - 2}.$$

$$3. \int \frac{dx}{e^{-x} \left(e^{2x} + 25\right)}.$$

$$4. \int \frac{\ln x dx}{x^5}.$$

5.
$$\int (x+2)\operatorname{arctg} x dx$$
.

$$6. \int \frac{x+3}{x^3-x^2+x} dx.$$

7.
$$\int \frac{4x^2 - 5}{(x+1)(x^2 - 6x + 9)} dx.$$

8.
$$\int \frac{dx}{4\sin^2 x + \cos^2 x}$$
.

9.
$$\int ctg^4 x dx$$
.

10.
$$\int \frac{4x+1}{\sqrt{x^2+2x+5}} dx.$$

Найти интегралы:

1.
$$\int 6^{3x+2} dx$$
.

$$2. \int \frac{\arctan x dx}{x^2 + 1}.$$

$$3. \int \frac{\cos\frac{1}{x^2}}{x^3} dx.$$

$$4. \int (8x-1) \cdot e^{\frac{x}{8}} dx.$$

5.
$$\int \arccos(8+x)dx$$
.

6.
$$\int \frac{2x+11}{x^3+4x} dx$$
.

7.
$$\int \frac{2x^2 - 7}{(x+1)(x-5)^2} dx.$$

8.
$$\int \frac{dx}{\sin x - 5\cos x + 3}$$
.

9.
$$\int tg^5 x dx$$
.

10.
$$\int \frac{dx}{1+\sqrt[3]{x+1}}$$
.

Вариант 6

$$1. \int \frac{dx}{\sqrt[3]{x^2}}.$$

2.
$$\int \frac{\arcsin x dx}{\sqrt{1-x^2}}.$$

3.
$$\int \frac{4^x dx}{16^x + 9}$$
.

4.
$$\int x^5 \ln x dx$$
.

5.
$$\int \frac{xdx}{\cos^2 x}$$
.

6.
$$\int \frac{x-12}{x^4+4x^2} dx$$
.

$$7. \int \frac{2x+5}{(x+1)(x-5)} dx.$$

$$8. \int \frac{dx}{5\sin^2 x - 3\cos^2 x + 1}.$$

9.
$$\int ctg^5 x dx$$
.

10.
$$\int \frac{4x+3}{\sqrt{x^2+6x+10}} dx.$$

Найти интегралы:

$$1. \int \frac{dx}{x^2 + 12}.$$

$$2. \int \frac{\arccos x dx}{\sqrt{1-x^2}}.$$

$$3. \int \frac{dx}{e^{-2x} \left(e^{2x} + 1\right)}.$$

4.
$$\int (3x+1)\sin 3x dx.$$

5.
$$\int (x-1) \operatorname{arctg} x dx$$
.

6.
$$\int \frac{x-4}{x^3-2x^2+2x-4} dx.$$

7.
$$\int \frac{2x^2 + 1}{(x-2)(x^2 + 6x + 9)} dx.$$

8.
$$\int \frac{dx}{2\sin x + 1}$$
.

9.
$$\int tg^3 \frac{x}{2} dx.$$

$$10. \int \frac{dx}{6 - \sqrt{3 - x}}.$$

Найти интегралы:

$$1. \int \frac{dx}{\sqrt{x^2 - 3}}.$$

$$2. \int \frac{\ln^6 x dx}{x}.$$

3.
$$\int \frac{\sqrt[4]{\arctan 3x-1}}{9x^2+1} dx$$
.

$$4. \int (2x-1)\cos\frac{x}{2}dx.$$

Вариант 7

Вариант 8

5.
$$\int x \arcsin 3x dx$$
.

6.
$$\int \frac{3x+4}{(x-2)(x+1)^2} dx.$$

7.
$$\int \frac{2x^2 - 9}{(x+3)(x^2 - 6x + 10)} dx.$$

8.
$$\int \frac{dx}{4\sin^2 x - 2\cos^2 x - 3}$$
.

9.
$$\int \operatorname{ctg}^3 \frac{x}{2} dx.$$

10.
$$\int \frac{4x-5}{\sqrt{x^2+2x+10}} dx.$$

Найти интегралы:

$$1. \int \frac{dx}{x^2 - 20}.$$

$$2. \int \frac{\sqrt[4]{\cot x} dx}{\sin^2 x}.$$

$$3. \int \frac{xdx}{x^4 + 16}.$$

$$4. \int (2x+5) \cdot 7^x dx.$$

5.
$$\int \arccos(3-x)dx.$$

6.
$$\int \frac{9x+8}{(x^2+5)(x-1)} dx.$$

7.
$$\int \frac{4x^2 - 3}{(x+2)^2 (x-3)} dx.$$

8.
$$\int \frac{dx}{5\sin x - 4\cos x + 1}$$
.

9.
$$\int tg^4 \frac{x}{2} dx.$$

10.
$$\int \frac{dx}{\sqrt[3]{x+2} + \sqrt{x+2}}$$
.

Вариант 10

$$1. \int \frac{dx}{\sqrt{36 - x^2}}.$$

$$2. \int \frac{\sqrt[3]{\lg x} dx}{\cos^2 x}.$$

$$3. \int \frac{\sin\frac{1}{x^2}}{x^3} dx.$$

$$4. \int (3x-1) \cdot e^{3x} dx.$$

5.
$$\int \arccos(x+1)dx.$$

6.
$$\int \frac{2x+5}{x^3-2x^2+4x} dx.$$

7.
$$\int \frac{2x^2 + 7}{(x-5)(x^2 - 4x + 4)} dx.$$

8.
$$\int \frac{dx}{4\sin^2 x - 6\cos^2 x - 5}$$
.

9.
$$\int \operatorname{ctg}^4 \frac{x}{2} dx.$$

$$10. \int \frac{6x+9}{\sqrt{x^2+4x+5}} dx.$$

1.
$$\int 7^{4x-1} dx$$
.

2.
$$\int \frac{dx}{\arccos x\sqrt{1-x^2}}$$
.

$$3. \int \frac{dx}{e^{-2x} \left(e^{4x} + 4\right)}.$$

$$4. \int x^4 \ln x dx.$$

5.
$$\int \arctan \sqrt{x} dx$$
.

6.
$$\int \frac{4x-3}{x^3+9x} dx$$
.

7.
$$\int \frac{5x^2 + 2}{(x-2)(x+3)^2} dx.$$

$$8. \int \frac{dx}{3\cos x - 4}.$$

9.
$$\int tg^5 \frac{x}{2} dx.$$

10.
$$\int \frac{dx}{x + \sqrt[3]{x^2}}$$
.

Найти интегралы:

$$1. \int \frac{dx}{\sqrt[5]{x^4}}.$$

$$2. \int \frac{\operatorname{arcctg}^2 x dx}{x^2 + 1}.$$

$$3. \int \frac{3^x dx}{9^x + 4}.$$

$$4. \int (7x-1) \cdot e^{\frac{x}{7}} dx.$$

5.
$$\int x \arcsin 4x dx$$
.

$$6. \int \frac{x-1}{x^4 + x^2} dx.$$

$$7. \int \frac{6x-7}{(x-2)(x-4)} dx.$$

$$8. \int \frac{dx}{2\sin^2 x + \cos^2 x - 1}.$$

9.
$$\int \operatorname{ctg}^5 \frac{x}{2} dx.$$

10.
$$\int \frac{8x+3}{\sqrt{x^2+6x+13}} dx$$
.

Вариант 13

$$1. \int \frac{dx}{x^2 + 18}.$$

$$2. \int \frac{2^{\sqrt{x}} dx}{\sqrt{x}}.$$

$$3. \int \frac{dx}{e^{-5x} \left(e^{5x} + 3\right)}.$$

$$4. \int (5x-4)\sin 5x dx.$$

5.
$$\int \arctan \sqrt{\frac{x}{3}} dx$$
.

6.
$$\int \frac{4x-7}{x^3-3x^2+x-3} dx.$$

7.
$$\int \frac{2x^2 - 5}{(x - 2)(x^2 + 2x + 1)} dx.$$

$$8. \int \frac{dx}{5\sin x + 6}.$$

9.
$$\int tg^3 \frac{x}{3} dx.$$

$$10. \int \frac{\sqrt{x+2}}{1+\sqrt{x+2}} dx.$$

Найти интегралы:

$$1. \int \frac{dx}{\sqrt{x^2 + 7}}.$$

$$2. \int \frac{e^{\frac{1}{x^2}}}{x^3} dx.$$

$$3. \int \frac{\sqrt[5]{\text{arctg } 4x + 1}}{16x^2 + 1} dx.$$

$$4. \int (3x+6)\cos\frac{x}{3}dx.$$

5.
$$\int \arccos(4-x)dx$$
.

6.
$$\int \frac{4x+3}{(x-4)^2(x-2)} dx$$
.

7.
$$\int \frac{x^2 - 5}{(x - 3)(x^2 - 8x + 17)} dx.$$

$$8. \int \frac{dx}{3\sin^2 x - 5\cos^2 x - 8}.$$

9.
$$\int \operatorname{ctg}^3 \frac{x}{3} dx.$$

10.
$$\int \frac{10x - 7}{\sqrt{x^2 + 10x + 26}} dx.$$

Вариант 15

$$1. \int \frac{dx}{x^2 - 81}.$$

$$2. \int \frac{\cos x dx}{\sin^3 x}.$$

$$3. \int \frac{x^2 dx}{\sqrt{4 - x^6}}.$$

$$4. \int \frac{6+7x}{5^x} dx.$$

$$5. \int \frac{xdx}{\sin^2 4x}.$$

6.
$$\int \frac{3x-2}{(x^2+4)(x+5)} dx.$$

7.
$$\int \frac{4x^2 + 2}{(x-1)^2 (x-8)} dx.$$

8.
$$\int \frac{dx}{8\sin x - 9\cos x + 10}$$
.

9.
$$\int tg^4 \frac{x}{3} dx.$$

$$10. \int \frac{\sqrt{x+1}}{x} dx.$$

Найти интегралы:

$$1. \int \frac{dx}{\sqrt{49-x^2}}.$$

$$2. \int \frac{\sin x dx}{\left(\cos x + 1\right)^2}.$$

$$3. \int \frac{dx}{e^{-4x} \left(e^{8x} + 1\right)}.$$

4.
$$\int x^2 \ln x dx$$
.

5.
$$\int (7-x) \operatorname{arctg} x dx$$
.

6.
$$\int \frac{2x-5}{x^3-3x^2+5x} dx.$$

7.
$$\int \frac{4x^2 - 5}{(x+1)(x^2 - 6x + 9)} dx.$$

8.
$$\int \frac{dx}{4\sin^2 x + 3\cos^2 x - 5}$$
.

9.
$$\int \operatorname{ctg}^4 \frac{x}{3} dx.$$

10.
$$\int \frac{2x-3}{\sqrt{8-x^2+2x}} dx.$$

Вариант 17

1.
$$\int 2^{5x-3} dx$$
.

$$2. \int \frac{4x^3 dx}{\sqrt[4]{1 + 3x^4}}.$$

$$3. \int \frac{\cos\frac{1}{x^3}}{x^4} dx.$$

$$4. \int (5x+6) \cdot e^{5x} dx.$$

5.
$$\int x \arcsin 5x dx$$
.

6.
$$\int \frac{3x+2}{x^3+16x} dx$$
.

7.
$$\int \frac{4x^2 - 2}{(x - 4)(x + 1)^2} dx.$$

8.
$$\int \frac{dx}{5\sin x - 6\cos x - 8}$$
.

9.
$$\int tg^5 \frac{x}{3} dx.$$

$$10. \int \frac{\sqrt{x+2}}{x} dx.$$

$$1. \int \frac{dx}{\sqrt[8]{x^7}}.$$

$$2. \int \frac{\ln 6x dx}{x}.$$

3.
$$\int \frac{6^x dx}{36^x + 4}$$
.

$$4. \int (4x+7) \cdot e^{\frac{x}{4}} dx.$$

5.
$$\int \arccos(1-x)dx$$
.

6.
$$\int \frac{4x+9}{x^4+3x^2} dx.$$

7.
$$\int \frac{-2x-8}{(x-3)(x+4)} dx$$
.

$$8. \int \frac{dx}{6\sin^2 x - 8\cos^2 x - 7}.$$

9.
$$\int \operatorname{ctg}^5 \frac{x}{3} dx.$$

10.
$$\int \frac{4x - 8}{\sqrt{-11 - x^2 - 12x}} dx.$$

Найти интегралы:

$$1. \int \frac{dx}{x^2 + 48}.$$

$$2. \int e^{-x^5} \cdot x^4 dx.$$

$$3. \int \frac{\sin\frac{1}{x^3}}{x^4} dx.$$

$$4. \int \frac{\ln x}{x^9} dx.$$

5.
$$\int \arctan \sqrt{\frac{x}{4}} dx$$
.

6.
$$\int \frac{5x-4}{x^3-4x^2+x-4} dx.$$

7.
$$\int \frac{x^2 - 5}{(x - 4)(x^2 + 8x + 16)} dx.$$

8.
$$\int \frac{dx}{3\cos x - 2}$$
.

9.
$$\int tg^3 \frac{x}{4} dx.$$

$$10. \int \frac{\sqrt{3-x}}{x} dx.$$

Вариант 20

$$1. \int \frac{dx}{\sqrt{x^2 + 6}}.$$

$$2. \int \cos^6 3x \sin 3x dx.$$

3.
$$\int \frac{\sqrt{\arctan 5x+1}}{25x^2+1} dx.$$

$$4. \int \frac{2-8x}{11^x} dx.$$

$$5. \int \frac{xdx}{\sin^2 2x}.$$

6.
$$\int \frac{5x-1}{(x+3)^2(x-5)} dx$$
.

7.
$$\int \frac{4x^2 - 6}{(x+4)(x^2 - 10x + 26)} dx.$$

$$8. \int \frac{dx}{\sin^2 x - 2\cos^2 x + 9}.$$

9.
$$\int \operatorname{ctg}^3 \frac{x}{4} dx.$$

10.
$$\int \frac{6x+3}{\sqrt{-5-x^2-6x}} dx.$$

Найти интегралы:

$$1. \int \frac{dx}{x^2 - 25}.$$

$$2. \int \frac{\sin x dx}{\cos^4 x}.$$

$$3. \int \frac{x^4 dx}{x^{10} - 9}.$$

$$4. \int \frac{\ln x dx}{x^{10}}.$$

5.
$$\int \arccos(x+5)dx$$
.

6.
$$\int \frac{3x+7}{(x^2+16)(x+5)} dx.$$

7.
$$\int \frac{4x^2 + 9}{(x-9)^2(x-7)} dx.$$

8.
$$\int \frac{dx}{\sin x - 2\cos x + 3}$$

9.
$$\int tg^4 \frac{x}{4} dx.$$

$$10. \int \frac{dx}{\sqrt{x} + \sqrt[4]{x}}.$$

Вариант 22

$$1. \int \frac{dx}{\sqrt{6-x^2}}.$$

$$2. \int \frac{\left(\ln x + 2\right)^3}{x} dx.$$

$$3. \int \frac{dx}{e^{-4x} \left(e^{4x} + 8\right)}.$$

$$4. \int (6x-1)\sin 6x dx.$$

5.
$$\int \arctan \sqrt{2x} dx$$
.

6.
$$\int \frac{3x+1}{x^3-2x^2+2x} dx.$$

7.
$$\int \frac{5x^2 - 2}{(x - 2)(x^2 - 10x + 25)} dx.$$

$$8. \int \frac{dx}{\sin^2 x - 3\cos^2 x - 7}.$$

9.
$$\int \operatorname{ctg}^4 \frac{x}{4} dx.$$

$$10. \int \frac{4x - 8}{\sqrt{-15 - x^2 + 8x}} dx.$$

Найти интегралы:

$$1. \int 21^{x-3} dx.$$

2.
$$\int \frac{x^3 dx}{2x^4 + 1}$$
.

$$3. \int \frac{dx}{e^{-3x} \left(e^{6x} + 9\right)}.$$

$$4. \int \sqrt{x^3} \ln x dx.$$

5.
$$\int x \arcsin 7x dx$$
.

6.
$$\int \frac{2x+13}{x^3+x} dx$$
.

7.
$$\int \frac{5x^2 + 1}{(x - 7)(x + 8)^2} dx.$$

8.
$$\int \frac{dx}{\sin x - 3\cos x - 2}$$
.

9.
$$\int tg^5 \frac{x}{4} dx.$$

$$10. \int \frac{dx}{\sqrt{x} - \sqrt[3]{x}}.$$

Вариант 24

$$1. \int \frac{dx}{\sqrt[1]{x^6}}.$$

$$2. \int \frac{e^{\frac{1}{x^3}}}{x^4} dx.$$

$$3. \int \frac{2^x dx}{4^x + 36}.$$

$$4. \int (5x+4)\cos\frac{x}{5}dx.$$

5.
$$\int \arctan \sqrt{\frac{3x}{2}} dx$$
.

6.
$$\int \frac{-x+2}{x^4+9x^2} dx$$
.

$$7. \int \frac{x-8}{(x-3)(x-4)} dx.$$

$$8. \int \frac{dx}{5\sin^2 x + 8}.$$

9.
$$\int \operatorname{ctg}^5 \frac{x}{4} dx.$$

10.
$$\int \frac{2x+8}{\sqrt{3-x^2+2x}} dx.$$

Найти интегралы:

$$1. \int \frac{dx}{x^2 + 32}.$$

2.
$$\int \frac{\arctan^3 x dx}{x^2 + 1}$$
.

$$3. \int \frac{dx}{e^{-3x} \left(e^{3x} + 4\right)}.$$

$$4. \int (7x+2)\sin 7x dx.$$

$$5. \int \frac{xdx}{\cos^2 2x}.$$

6.
$$\int \frac{7x-3}{x^3-5x^2+x-5} dx.$$

7.
$$\int \frac{6x^2 - 7}{(x - 2)(x^2 + 10x + 25)} dx.$$

$$8. \int \frac{dx}{4\sin x - 3\cos x + 5}.$$

9.
$$\int tg^6 x dx$$
.

$$10. \int \frac{dx}{\sqrt{x} - \sqrt[3]{x^2}}.$$

Вариант 26

$$1. \int \frac{dx}{\sqrt{x^2 - 11}}.$$

$$2. \int \frac{\ln^2 2x dx}{x}.$$

$$3. \int \frac{\sqrt{\arctan 6x - 6}}{36x^2 + 1} dx.$$

$$4. \int \frac{4-x}{9^x} dx.$$

5.
$$\int \arccos(x+6)dx$$
.

6.
$$\int \frac{3x+8}{(x+3)^2(x-4)} dx.$$

7.
$$\int \frac{5x^2 - 3}{(x+3)(x^2 - 4x + 8)} dx.$$

$$8. \int \frac{dx}{3\cos^2 x - 5}.$$

9.
$$\int ctg^6 x dx$$
.

10.
$$\int \frac{x-1}{\sqrt{-1-x^2+4x}} dx$$
.

$$1. \int \frac{dx}{x^2 - 50}.$$

$$2. \int \frac{4x^3 dx}{\left(5 - 2x^4\right)^5}.$$

$$3. \int \frac{xdx}{\sqrt{x^4 - 16}}.$$

$$4. \int (5x+2)\cos\frac{x}{4}dx.$$

5.
$$\int \arctan \sqrt{3x} dx$$
.

6.
$$\int \frac{3x^2 - 1}{(x^2 + 3)(x + 6)} dx.$$

7.
$$\int \frac{x-8}{(x-1)^2(x-4)} dx$$
.

8.
$$\int \frac{dx}{2\sin x + 9}$$
.

9.
$$\int tg^4 2x dx.$$

$$10. \int \frac{\sqrt{x} dx}{\sqrt{x} - \sqrt[4]{x}}.$$

Найти интегралы:

$$1. \int \frac{dx}{\sqrt{27 - x^2}}.$$

$$2. \int \sin^5 5x \cos 5x dx.$$

3.
$$\int \frac{7^x dx}{49^x + 9}$$
.

$$4. \int \left(\frac{4}{3}x + 3\right) \cdot e^{\frac{3x}{4}} dx.$$

5.
$$\int (x+4) \operatorname{arctg} x dx$$
.

6.
$$\int \frac{2x+3}{x^3-3x^2+3x} dx$$
.

7.
$$\int \frac{3x^2 - 4}{(x+5)(x^2 + 2x + 1)} dx.$$

$$8. \int \frac{dx}{4\sin^2 x + 7}.$$

9.
$$\int ctg^4 2xdx$$
.

10.
$$\int \frac{x+6}{\sqrt{1-x^2-4x}} dx.$$

Вариант 29

1.
$$\int 4^{9x+1} dx$$
.

2.
$$\int \frac{3xdx}{\sqrt[9]{4-3x^2}}$$
.

$$3. \int \frac{\cos\frac{1}{x^4}}{x^5} dx.$$

4.
$$\int \sqrt{x} \ln x dx$$
.

5.
$$\int \arcsin^2 x dx$$
.

$$6. \int \frac{11x - 1}{x^3 + 25x} dx.$$

7.
$$\int \frac{3x^2 + 5}{(x+5)(x-2)^2} dx.$$

$$8. \int \frac{dx}{\sin x - 3\cos x - 6}.$$

9.
$$\int tg^5 2x dx$$
.

$$10. \int \frac{x dx}{\sqrt{x} - \sqrt[3]{x}}.$$

$$1. \int \frac{dx}{\sqrt[11]{x^6}}.$$

$$2. \int \frac{5^{\sqrt{x}} dx}{2\sqrt{x}}.$$

$$3. \int \frac{dx}{e^{-5x} \left(e^{10x} + 16\right)}.$$

$$4. \int (11x+4)\sin 11x dx.$$

5.
$$\int (4-x) \operatorname{arctg} x dx$$
.

6.
$$\int \frac{2x+5}{x^4+6x^2} dx.$$

$$7. \int \frac{9x+5}{(x-4)(x-6)} dx.$$

$$8. \int \frac{dx}{\sin^2 x - 3\cos^2 x - 2}.$$

9.
$$\int ctg^5 2xdx$$
.

10.
$$\int \frac{x+3}{\sqrt{7-x^2+2x}} dx$$
.

ІІІ. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

§15. ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

15.1. Дана функция $f(x;y) = \frac{x^2 + y^2}{x + xy}$. Найти:

a)
$$f(1;-2);$$

6)
$$f(-x; y)$$
;

B)
$$f(-1; \frac{y}{x});$$

$$\Gamma) \frac{1}{f(x;y)}.$$

Найти (описать, изобразить) область определения данных функций:

15.2.
$$z = \sqrt{y^2 - 9} + \sqrt{9 - x^2}$$
.

15.3.
$$z = \sqrt{x} + \sqrt{y}$$
.

15.4.
$$z = \arccos \frac{x+y}{x^2+y^2}$$
.

15.5.
$$z = \arcsin \frac{x}{y}$$
.
15.6. $z = \sqrt{x \cos y}$.

15.6.
$$z = \sqrt{x \cos y}$$

15.7.
$$z = \log_2(x^2 + y^2 - 9) + \sqrt{16 - x^2 - y^2}$$
.

Построить линии уровня следующих функций:

15.8.
$$z = x + y$$
.

15.9.
$$z = x^2 - y^2$$
.

15.10.
$$z = \frac{y}{x}$$
.

15.11.
$$z = \sqrt{xy}$$
.

Найти пределы:

15.12.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \left((x + y) \sin \frac{2}{x + y} \right)$$
.

15.13.
$$\lim_{\substack{x \to 1 \\ y \to 2}} \frac{2(x-1)(y-2)}{(x-1)^2 + (y-2)^2}.$$

15.14.
$$\lim_{\substack{x \to 0 \\ y \to -2}} \frac{(y^2 + 4y - 6)\sin x}{x(y^2 + 2)}.$$

15.15.
$$\lim_{\substack{x \to 2 \\ y \to 4}} \frac{(x+y) \operatorname{tg}(2x-y)}{4x^2 - y^2}.$$

15.16.
$$\lim_{\substack{x \to 3 \\ y \to 1}} \frac{x - 3y^2}{\sqrt{25 - x + 3y^2} - 5}.$$

15.17.
$$\lim_{\substack{x \to 3 \\ y \to -3}} \frac{\sqrt{(x-3)^2 + (y+3)^2 + 1} - 1}{x^2 + y^2 - 6x + 6y + 18}.$$

15.18.
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{e^{x^2+y^2}-1}{x^2+y^2}.$$

Найти точки разрыва следующих функций:

15.19.
$$z = \frac{xy}{x+y}$$
.

15.20.
$$z = \sin \frac{1}{xy}$$
.

15.21.
$$z = \ln(1 - x^2 - y^2)$$
.

Доопределить до непрерывной данную функцию в указанной точке:

15.22.
$$f(x;y) = \frac{x(y-1)^2}{6-\sqrt{x(y-1)^2+36}}, M_0(0;1).$$

15.23.
$$f(x;y) = \frac{\ln(1+xy^2)}{3xy^2}$$
, $M_0(0;4)$.

§16. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Найти (описать, изобразить) область определения данных функций:

16.1.
$$u = \sqrt{x} + \sqrt{y} + \sqrt{z}$$
.

16.2.
$$u = \arccos \frac{z}{\sqrt{x^2 + y^2}}$$
.

16.3.
$$u = \ln(-1 - x^2 - y^2 + z^2)$$
.

Найти поверхности уровня следующих функций:

16.4.
$$u = x + y + z$$
.

16.5.
$$u = x^2 + y^2 + z^2$$
.

16.6.
$$u = x^2 + y^2 - z^2$$
.

§17. ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Найти частные и полное приращения данной функции в данной точке и при данных приращениях аргументов:

17.1.
$$z = 2x^2 + xy - y^2$$
; $M_0(1;-1)$; $\Delta x = 0.1$; $\Delta y = -0.2$.

17.2.
$$z = \lg(x^2 + y^2)$$
; $M_0(-3;1)$; $\Delta x = -0.1$; $\Delta y = -0.1$.

Найти частные производные данных функций по каждой из независимых переменных:

17.3.
$$z = x^4 + y^3 - 5x^2y^2$$
.

17.8.
$$z = e^{-\frac{x}{y}}$$
.

17.4.
$$z = x^3 \cos^2 y - y^3 \sin^4 x^2$$
.

17.9.
$$z = \sin \frac{x}{y} \cos \frac{y}{x}$$
.

17.5.
$$z = x\sqrt[4]{y} - \frac{y^3}{\sqrt[5]{x^2}}$$
.

17.10.
$$u = xyz$$
.

17.6.
$$z = \arctan \frac{x}{y}$$
.

17.11.
$$z = \ln\left(x + \frac{y}{2x}\right)$$
 в точке (1;2).

17.7.
$$z = \ln \left(tg \frac{y}{x} \right)$$
.

17.12.
$$u = x^y + (xy)^z + z^{xy}$$
.

Найти частные и полные дифференциалы функций:

17.13.
$$z = \frac{1}{2} \ln(x^2 + y^2)$$
.

17.14.
$$z = \sin(xy)$$
.

17.15.
$$u = x^{yz}$$
.

Вычислить приближённо:

17.16.
$$(0.98)^{1.03}$$
.

17.19.
$$\arctan\left(\frac{1,97}{1,02}-1\right)$$
.

17.17.
$$\sqrt{1,03^3+1,98^3}$$
.

17.20.
$$2,002^2 \cdot 3,998^3 \cdot 1,001^4$$
.

17.18. sin 29° · tg 46°.

Найти
$$\frac{dz}{dt}$$
, если $z = z(x; y)$, $x = x(t)$, $y = y(t)$:

17.21.
$$z = e^{x-2y}$$
, $x = \sin t$, $y = t^3$.

17.22.
$$z = \arcsin(x - y)$$
, $x = 3t$, $y = 4t^3$.

17.23.
$$z = xy \arctan(xy)$$
, $x = t^2 + 1$, $y = t^3$.

17.24.
$$z = \ln(e^x + e^y)$$
. Найти $\frac{dz}{dx}$, если $y = x^3$.

17.25.
$$z = \arcsin \frac{x}{y}$$
. Найти $\frac{dz}{dx}$, если $y = \sqrt{x^2 + 1}$.

17.26.
$$u = x^2 y^3 z$$
, $x = t$, $y = t^2$, $z = \sin t$. Найти $\frac{du}{dt}$.

Для данных z = f(x; y), x = x(u; v), y = y(u; v) найти $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$ и dz:

17.27.
$$z = \cos(xy)$$
, $x = ue^{v}$, $y = v \ln u$.

17.28.
$$z = \operatorname{arctg}(xy), \ x = \sqrt{u^2 + v^2}, \ y = u - v.$$

17.29.
$$z = \sqrt{x + y}$$
, $x = u \operatorname{tg} v$, $y = u \operatorname{ctg} v$.

17.30. Показать, что функция $z = \arctan \frac{x}{y}$, где x = u + v, y = u - v,

удовлетворяет соотношению
$$\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = \frac{u - v}{u^2 + v^2}$$
.

Найти производную $\frac{dy}{dx}$ от функций, заданных неявно:

17.31.
$$x^3y - y^3x = 8$$
.

17.32.
$$xe^y + ye^x - e^{xy} = 0$$
.

17.33.
$$x^2 \ln y - y^2 \ln x = 0.$$

17.34.
$$\sin(xy) - e^{xy} - x^2y = 0.$$

17.35.
$$\arctan \frac{x+y}{2} - \frac{y}{2} = 0.$$

§18. ПРОИЗВОДНАЯ ПО НАПРАВЛЕНИЮ. ГРАДИЕНТ ФУНКЦИИ

18.1.
$$z = x^2 + 3y^2 + 5xy$$
. Найти $\overline{\text{grad}}\ z(4; -2)$.

18.2.
$$z = \sqrt{x^2 + y^2 + 6}$$
. Найти grad $z(-1;3)$.

18.3. Найти точку, в которой градиент функции
$$z = \ln\left(x + \frac{1}{y}\right)$$
 равен

$$\overline{i} - \frac{16}{9}\overline{j}$$
.

- **18.4.** Найти точки, в которых модуль градиента функции $z = (x^2 + y^2)^{\frac{3}{2}}$ равен 2.
- **18.5.** Найти производную функции $u = xy^2 + z^3 xyz$ в точке $M_{(1;1;2)}$ в направлении, образующем с осями координат углы соответственно 60°, 45°, 60°.
- **18.6.** Найти производную функции u = xyz в точке A(5;1;2) в направлении, идущем от этой точки к точке B(9;4;14).
- **18.7.** Найти производную функции $u = x^2 y^2 z^2$ в точке A(1;-1;3) в направлении, идущем от этой точки к точке B(0;1;1).

§19. КАСАТЕЛЬНАЯ ПЛОСКОСТЬ И НОРМАЛЬ К ПОВЕРХНОСТИ

Написать уравнения касательной и нормали к линиям в указанных точках:

19.1.
$$x^3y + y^3x = 3 - x^2y^2$$
 в точке $M(1;1)$.

19.2.
$$\cos(xy) = x + 2y$$
 в точке $M_{(1;0)}$.

Для данных поверхностей найти уравнения касательных плоскостей и нормалей в указанных точках:

19.3.
$$z = 2x^2 - 4y^2$$
 в точке $M(2;1;4)$.

19.4.
$$3x^4 - 4y^3z + 4xyz^2 - 4xz^3 + 1 = 0$$
 в точке $M_{(1;1;1)}$.

19.5.
$$(z^2 - x^2)xyz - y^5 = 5$$
 B TOHKE $M(1;1;2)$.

19.6. К эллипсоиду $x^2 + 2y^2 + z^2 = 1$ провести касательную плоскость, параллельную плоскости x - y + 2z = 0.

§20. ЧАСТНЫЕ ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ

Найти частные производные второго порядка от следующих функций:

20.1.
$$z = e^x (\cos y + x \sin y)$$
.

20.2.
$$z = \arctan \frac{x + y}{1 - xy}$$
.

20.3.
$$u = \sin(x + y + z)$$
.

Найти дифференциалы второго порядка от данных функций:

20.4.
$$z = xy - \frac{y}{x}$$
.

20.6.
$$z = \ln \sqrt{x^2 + y}$$
.

20.5.
$$z = (\sin x)^{\cos y}$$
.

20.7.
$$u = xy + yz + xz$$
.

Найти указанные частные производные:

20.8.
$$\frac{\partial^3 z}{\partial x^2 \partial y}$$
, если $z = x \ln(xy)$.

20.9.
$$\frac{\partial^3 u}{\partial x \partial y \partial z}$$
, если $u = e^{xyz}$.

20.10.
$$\frac{\partial^6 u}{\partial x^3 \partial y^3}$$
, если $u = x^3 \sin y + y^3 \sin x$.

20.11. Дано
$$1 + xy - \ln(e^{xy} + e^{-xy}) = 0$$
. Найти $y''(x)$.

20.12. Найти
$$y''(x)$$
 и $y'''(x)$, если $x^2 + xy + y^2 = 3$.

20.13. Найти
$$y''(x)$$
 и $y'''(x)$ при $x = 0$, $y = 1$, если $x^2 - xy + 2y^2 + x - y - 1 = 0$.

20.14. Найти $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$, если функция z(x;y) задана неявно уравнением $x^2 + 2y^2 + 3z^2 + xy - z - 9 = 0$.

20.15. Показать, что
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
, если $z = e^x (x \cos y - y \sin y)$.

§21. ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Исследовать на экстремум следующие функции:

21.1.
$$f(x; y) = -x^2 + xy - y^2 - 9x + 3y - 20$$
.

21.2.
$$f(x;y) = 6(x-y) - x^2 - y^2$$
.

21.3.
$$f(x;y) = x^4 + y^4 - x^2 - 2xy - y^2$$
.

21.4. Убедиться, что при x = 5, y = 6 функция $z = x^3 + y^2 - 6xy - 39x + 18y + 20$ имеет минимум.

§22. НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ ФУНКЦИИ В КОМПАКТНОЙ ОБЛАСТИ

- **22.1.** Найти наибольшее и наименьшее значения функции $z = x^2 y^2$ в круге $x^2 + y^2 \le 4$.
- **22.2.** Найти наибольшее и наименьшее значения функции $z = x^2 + 2xy 4x + 8y$ в прямоугольнике, ограниченном прямыми x = 0, y = 0, x = 1, y = 2.
- **22.3.** Найти наибольшее и наименьшее значения функции $z = x^2 xy + 3y^2 + 3x + 4y + 2$ в треугольнике, ограниченном прямыми x = 0, y = 0, x + y + 3 = 0.

§23. УСЛОВНЫЙ ЭКСТРЕМУМ. МЕТОД НЕОПРЕДЕЛЕННЫХ МНОЖИТЕЛЕЙ ЛАГРАНЖА

Исследовать на условный экстремум функции:

23.1.
$$z = e^{xy}$$
 при $x + y = 1$.

23.2.
$$z = x^2 + y^2$$
 при $x + y = 2$ ($x \ge 0$, $y \ge 0$).

23.3.
$$z = xy$$
 при $x^2 + y^2 = 2$.

23.4.
$$z = \frac{1}{x} + \frac{1}{v}$$
 при $\frac{1}{x^2} + \frac{1}{v^2} = 1$.

§24. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

24.1. Дана система точек, координаты которых указаны в таблице. Найти уравнение прямой, которая отличалась бы как можно меньше от данной системы точек в смысле наименьших квадратов.

х	0,5	0,7	0,9	1,1	1,3
v	1,02	1,42	1,82	2,24	2,64

24.2. Дана система точек, координаты которых указаны в таблице. Найти уравнение прямой, которая отличалась бы как можно меньше от данной системы точек в смысле наименьших квадратов.

х	-0,2	0,2	0,4	0,6	0,8	1,0
у	3,2	2,9	1,8	1,6	1,2	0,7

КОНТРОЛЬНАЯ РАБОТА

Вариант 1

1. Показать, что функция $z = \ln(e^x + e^y)$ удовлетворяет уравнению

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1.$$

- 2. Дана функция $u=x^2y^2+x^2z^2+y^2z^2$, точки A(1;-1;2) и B(4;1;8). Найти:
 - a) grad u(A);
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
- 3. Исследовать на экстремум функцию $f(x;y) = x^2 2xy + 2y^2 + 2x + 4y 2$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^2 xy + y^2 + x + y + 5$ в треугольнике, ограниченном прямыми x = 0, y = 0, x + y + 2 = 0.
 - 5. Дано $z = \operatorname{arctg} \frac{y}{x}$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z=x^2\sin\frac{y}{x^2}$ удовлетворяет уравнению $x\frac{\partial z}{\partial x}+2y\frac{\partial z}{\partial y}=2z.$
- 2. Дана функция $u=xy^2+\frac{1}{2}\,y^2-yz^2$, точки A(3;-1;1) и B(-1;7;0). Найти:
 - a) $\overline{\text{grad}}\ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = y\sqrt{x} y^2 x + 3y$.
- 4. Найти наибольшее и наименьшее значения функции $z = \frac{1}{2}x^2 + 2xy x + 2y$ в прямоугольнике, ограниченном прямыми x = 0, y = 0, x = -2, y = 3.
 - 5. Дано $z = e^{xy^2}$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

Вариант 3

1. Показать, что функция $z=y\arctan\left(x^2-y^2\right)$ удовлетворяет уравнению $y^2\frac{\partial z}{\partial x}+xy\frac{\partial z}{\partial y}=xz.$

- 2. Дана функция $u=x^2y+3y^2z^2-y$, точки A(1;1;1) и B(7;3;-8). Найти:
- a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 10(x y) x^2 y^2$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^2 + xy 4$ в области, ограниченной линиями y = 0, $y = x^2 4$.
 - 5. Дано $z = \frac{x+y}{x-y}$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

- 1. Показать, что функция $z=4^{x^2+y^2}$ удовлетворяет уравнению $y\frac{\partial z}{\partial x}-x\frac{\partial z}{\partial y}=0.$
 - 2. Дана функция $u = x^2y \frac{1}{3}xy^3 + 3y^2z^2$, точки A(2;-2;-1) и B(-10;2;2).

Найти:

- a) grad u(A);
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = x^3 + y^3 3xy + 1$.
- 4. Найти наибольшее и наименьшее значения функции z = 5x xy + y в треугольнике, ограниченном прямыми x = 0, y = 5, x + y 6 = 0.
 - 5. Дано $z = x \ln(xy)$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

- 1. Показать, что функция $z = \frac{y^2}{3x} + \arccos(xy)$ удовлетворяет уравнению $x^2 \frac{\partial z}{\partial x} xy \frac{\partial z}{\partial y} + y^2 = 0.$
 - 2. Дана функция $u = \frac{1}{3}x^3y^3 xy + 2y^2z^2$, точки A(-1;-1;-1) и B(11;3;2).
- Найти: a) $\overline{\text{grad}} \ u(A)$;
 - б) производную функции в точке A в направлении, идущем от этой точки

к точке B.

- 3. Исследовать на экстремум функцию $f(x; y) = (x-1)^2 + y^2 10$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^3 3xy + y^3$ в прямоугольнике, ограниченном прямыми x = 0, y = 0, x = 2, y = 1.
 - 5. Дано $z = \sin(3x + e^y)$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

Вариант 6

- 1. Показать, что функция $z = xy + x \cdot e^{xy}$ удовлетворяет уравнению $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + z$.
- 2. Дана функция $u=2xy-x^2z^2+y^3z^2$, точки A(4;1;-1) и B(-7;11;1). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
- 3. Исследовать на экстремум функцию $f(x;y) = x^2 + 4xy 2y^2 8x y + 5$.
- 4. Найти наибольшее и наименьшее значения функции z = 2x xy + y в треугольнике, ограниченном прямыми x = 0, y = 2, x + y 3 = 0.
 - 5. Дано $z = x \ln \frac{y}{x}$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z=x^3\cos\frac{y}{x^2}$ удовлетворяет уравнению $x\frac{\partial z}{\partial x}+2y\frac{\partial z}{\partial y}=3z.$
- 2. Дана функция $u=xy^2-x^2z^2+yz^2$, точки A(3;1;-2) и B(6;-1;4). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = y\sqrt{x} 2y^2 2x + 15y$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^2 + xy 9$ в области, ограниченной линиями y = 0, $y = x^2 9$.

5. Дано
$$z = \frac{x^4 - 8xy^3}{x - 2y}$$
. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

- 1. Показать, что функция $z=y\arcsin\left(x^2-y^2\right)$ удовлетворяет уравнению $y^2\frac{\partial z}{\partial x}+xy\frac{\partial z}{\partial y}=xz.$
- 2. Дана функция $u=xy^3-2x^2-yz^2$, точки A(2;-1;-3) и B(-2;7;-4). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 6(x y) x^2 y^2$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^2 + y^2 2x 2y + 2$ в треугольнике, ограниченном прямыми x = 0, y = 0, x + y 2 = 0.
 - 5. Дано $z = \sin(x + \cos y)$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

Вариант 9

- 1. Показать, что функция $z = \sqrt[3]{x^2 + y^2}$ удовлетворяет уравнению $y\frac{\partial z}{\partial x} x\frac{\partial z}{\partial y} = 0$.
- 2. Дана функция $u=3x^2y-y^2z^3-2z$, точки A(-1;-1;1) и B(5;1;-8). Найти:
 - a) grad u(A);
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = x^3 + y^3 6xy + 5$.
- 4. Найти наибольшее и наименьшее значения функции $z = 2x^2 + 3y^2 + 4$ в области, ограниченной линиями y = 0, $y = \sqrt{9 x^2}$.
 - 5. Дано $z = e^{x^2 y}$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z=\frac{y^2}{3x}+e^{xy}$ удовлетворяет уравнению $x^2\frac{\partial z}{\partial x}-xy\frac{\partial z}{\partial y}+y^2=0.$
- 2. Дана функция $u=x^2y^2-\frac{1}{2}x^2z^2+\frac{1}{3}y^3z^3$, точки A(2;-2;-1) и B(-10;2;2). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = (x-4)^2 + 2y^2 + 1$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^3 6xy + y^3$ в прямоугольнике, ограниченном прямыми x = 0, y = 0, x = 3, y = 5.
 - 5. Дано $z = \operatorname{arctg} \frac{x}{y}$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

- 1. Показать, что функция $z = xy + x \cdot \operatorname{arcctg}(xy)$ удовлетворяет уравнению $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = xy + z$.
- 2. Дана функция $u=x^2y^2-\frac{1}{4}x^4y+yz^2$, точки A(1;-2;-1) и B(13;2;2). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
- 3. Исследовать на экстремум функцию $f(x;y) = x^2 3xy 3y^2 6x 5y + 4$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^2 + xy 1$ в области, ограниченной линиями $y = 0, y = x^2 1$.
 - 5. Дано $z = \ln \sqrt{x^2 + y^2}$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

Вариант 12

1. Показать, что функция $z = x^2 \lg \frac{y}{x^2}$ удовлетворяет уравнению

$$x\frac{\partial z}{\partial x} + 2y\frac{\partial z}{\partial y} = 2z.$$

- 2. Дана функция $u=x^2y^2-\frac{1}{2}xy^2+yz^2$, точки A(1;-2;-2) и B(12;8;-4). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 2y\sqrt{x} 2y^2 x + 4y$.
- 4. Найти наибольшее и наименьшее значения функции z = 4x xy + y в треугольнике, ограниченном прямыми x = 0, y = 4, x + y 5 = 0.
 - 5. Дано $z = y \ln \frac{x}{y}$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

- 1. Показать, что функция $z=y\sqrt[5]{x^2-y^2}$ удовлетворяет уравнению $y^2\frac{\partial z}{\partial x}+xy\frac{\partial z}{\partial y}=xz.$
- 2. Дана функция $u=xy-2x^2z^2+3y^2z$, точки A(2;-1;-1) и B(5;1;5). Найти:
 - a) grad u(A);
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 4(x y) x^2 y^2$.
- 4. Найти наибольшее и наименьшее значения функции $z=x^2+y^2-12x-12y+5$ в треугольнике, ограниченном прямыми x=0, $y=0,\ x+y-12=0.$
 - 5. Дано $z = x^3 \sin y + y^3 \sin x$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

- 1. Показать, что функция $z = \arccos\left(x^2 + y^2\right)$ удовлетворяет уравнению $y\frac{\partial z}{\partial x} x\frac{\partial z}{\partial y} = 0.$
- 2. Дана функция $u = xy 3x^2 2y^3z^2$, точки A(1;-3;-3) и B(5;5;-4). Найти:

- a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 2x^3 + 2y^3 6xy + 7$.
- 4. Найти наибольшее и наименьшее значения функции $z=x^2+y^2-4x-4y+1$ в треугольнике, ограниченном прямыми $x=0,\ y=0,\ x+y-4=0.$
 - 5. Дано $z = (x^2 + y^2)e^{x+y}$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z=\frac{y^2}{3x}+\sqrt[9]{x^2y^2}$ удовлетворяет уравнению $x^2\frac{\partial z}{\partial x}-xy\frac{\partial z}{\partial y}+y^2=0.$
- 2. Дана функция $u=x^2y^2-2x^2-yz^2$, точки A(1;-2;-1) и B(-5;0;8). Найти:
 - a) $\overline{\text{grad}}\ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = (x-5)^2 + y^2 + 2$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^3 9xy + y^3$ в прямоугольнике, ограниченном прямыми x = 0, y = 0, x = 3, y = 5.
 - 5. Дано $z = y \ln(xy)$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z = xy + x \cdot 9^{xy}$ удовлетворяет уравнению $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = xy + z$.
- 2. Дана функция $u = x^2y^2 \frac{1}{6}x^2y^3 + \frac{1}{2}y^2z^2$, точки A(3;-1;-1) и B(-9;3;2). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.

- 3. Исследовать на экстремум функцию $f(x; y) = x^2 + xy + 4y^2 x 8y + 7$.
- 4. Найти наибольшее и наименьшее значения функции $z = y^2 + xy 4$ в области, ограниченной линиями x = 0, $x = y^2 4$.

5. Дано
$$z = \cos(2x + e^y)$$
. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

- 1. Показать, что функция $z=x^3\cot\frac{y}{x^2}$ удовлетворяет уравнению $x\frac{\partial z}{\partial x}+2y\frac{\partial z}{\partial y}=3z.$
- 2. Дана функция $u=x^2y^2+2xy+\frac{3}{2}y^2z^2$, точки A(3;-1;-1) и B(-9;3;2). Найти:
 - a) $\overline{\text{grad}}\ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = x\sqrt{y} x^2 + 3x y$.
- 4. Найти наибольшее и наименьшее значения функции z = x xy + 5y в треугольнике, ограниченном прямыми x = 5, y = 0, x + y 6 = 0.

5. Дано
$$z = \frac{y^4 - 8x^3y}{y - 2x}$$
. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z=y\ln\left(x^2-y^2\right)$ удовлетворяет уравнению $y^2\frac{\partial z}{\partial x}+xy\frac{\partial z}{\partial y}=xz.$
- 2. Дана функция $u=-x^2y^2+x^2y-yz^2$, точки A(-3;-2;-1) и B(8;8;1). Найти:
 - a) grad u(A);
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 2(x y) x^2 y^2$.

- 4. Найти наибольшее и наименьшее значения функции $z = x^2 + y^2 6x 6y + 3$ в треугольнике, ограниченном прямыми x = 0, y = 0, x + y 6 = 0.
 - 5. Дано $z = \sin(y + \cos x)$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z=\mathrm{arcctg}\left(x^2+y^2\right)$ удовлетворяет уравнению $y\frac{\partial z}{\partial x}-x\frac{\partial z}{\partial y}=0.$
- 2. Дана функция $u=2x^2y^2-xz+y^2z^2$, точки A(-1;-1;1) и B(2;1;7). Найти:
 - a) grad u(A);
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 3x^3 + 3y^3 18xy + 1$.
- 4. Найти наибольшее и наименьшее значения функции $z = 3x^2 + 2y^2 + 1$ в области, ограниченной линиями y = 0, $y = \sqrt{4 x^2}$.
 - 5. Дано $z = \cos(2x + e^y)$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z=\frac{y^2}{3x}+\sin\left(xy\right)$ удовлетворяет уравнению $x^2\,\frac{\partial z}{\partial x}-xy\frac{\partial z}{\partial y}+y^2=0.$
- 2. Дана функция $u=x^2y^3-2xyz-z^2$, точки A(-2;1;3) и B(2;-7;4). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = x^2 + (y-1)^2 9$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^3 12xy + y^3$ в прямоугольнике, ограниченном прямыми x = 0, y = 0, x = 4, y = 5.

5. Дано
$$z = \ln \sqrt{x^2 + y^2}$$
. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z = xy + x \cdot \arccos(xy)$ удовлетворяет уравнению $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + z$.
- 2. Дана функция $u=x^3y^2-4xy^2-yz^2$, точки A(2;-2;1) и B(-4;0;-8). Найти:
 - a) $\overline{\text{grad}}\ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
- 3. Исследовать на экстремум функцию $f\left(x;y\right) = 2x^2 xy + 3y^2 13x \frac{5}{2}y + 11.$
- 4. Найти наибольшее и наименьшее значения функции $z = x^2 + xy 9$ в области, ограниченной линиями y = 0, $y = x^2 9$.
 - 5. Дано $z = \sin(3x + e^y)$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z=x^4\ln\frac{y}{x^2}$ удовлетворяет уравнению $x\frac{\partial z}{\partial x}+2y\frac{\partial z}{\partial y}=4z.$
- 2. Дана функция $u=\frac{1}{2}x^2y^2-xy^3+2y^2z^2$, точки A(1;-3;-1) и B(-11;1;2). Найти:
 - a) grad u(A);
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = x\sqrt{y} 2x^2 + 15x 2y$.
- 4. Найти наибольшее и наименьшее значения функции z = x xy + 2y в треугольнике, ограниченном прямыми x = 2, y = 0, x + y 3 = 0.
 - 5. Дано $z = \cos(x + 2y^2)$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z=y\sin\left(x^2-y^2\right)$ удовлетворяет уравнению $y^2\frac{\partial z}{\partial x}+xy\frac{\partial z}{\partial y}=xz.$
- 2. Дана функция $u=x^2y-xy^3+\frac{1}{3}y^3z^3$, точки A(2;-3;3) и B(6;9;6). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 12(y x) x^2 y^2$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^2 + y^2 8x 8y + 3$ в треугольнике, ограниченном прямыми x = 0, y = 0, x + y 8 = 0.
 - 5. Дано $z = \operatorname{arcctg} \frac{y}{x}$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

Вариант 24

- $1.\ \Pi \text{оказать, что функция}\ \ z = \arccos \Big(x^2+y^2\Big)\ \text{удовлетворяет уравнению}$ $y\frac{\partial z}{\partial x} x\frac{\partial z}{\partial y} = 0.$
- 2. Дана функция $u=-xy+xz+\frac{1}{2}\,y^2z^2$, точки A(2;-3;-1) и B(12;8;1). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 5x^3 + 5y^3 15xy + 4$.
- 4. Найти наибольшее и наименьшее значения функции $z = 4x^2 + y^2 + 1$ в области, ограниченной линиями y = 0, $y = \sqrt{1 x^2}$.
 - 5. Дано $z = (x^2 + y^2)e^{x+y}$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

- 1. Показать, что функция $z=\frac{y^2}{3x}+\mathrm{tg}\big(xy\big)$ удовлетворяет уравнению $x^2\frac{\partial z}{\partial x}-xy\frac{\partial z}{\partial y}+y^2=0.$
 - 2. Дана функция $u=x^2y^2-2xz+yz$, точки A(2;-1;-2) и B(5;1;4). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = x^2 + (y 4)^2 + 1$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^3 15xy + y^3$ в прямоугольнике, ограниченном прямыми x = 0, y = 0, x = 6, y = 5.
 - 5. Дано $z = x^3 \sin y + y^3 \sin x$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z = xy + x \cdot \cos(xy)$ удовлетворяет уравнению $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + z$.
 - 2. Дана функция $u = x 2x^2y^2 yz^3$, точки A(-1;1;1) и B(3;9;2). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
- 3. Исследовать на экстремум функцию $f(x; y) = 3x^2 4xy y^2 + 2x 6y + 2$.
- 4. Найти наибольшее и наименьшее значения функции z = x xy + 4y в треугольнике, ограниченном прямыми x = 4, y = 0, x + y 5 = 0.
 - 5. Дано $z = \operatorname{arcctg} \frac{x}{y}$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

- 1. Показать, что функция $z=x^4e^{\frac{y}{x^2}}$ удовлетворяет уравнению $x\frac{\partial z}{\partial x}+2y\frac{\partial z}{\partial x}=4z.$
 - 2. Дана функция $u = xy 2yz^2 z^2$, точки A(2;1;-3) и B(-4;3;6). Найти:
 - a) grad u(A);

- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 2x\sqrt{y} 2x^2 + 4x y$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^2 + y^2 10x 10y + 1$ в треугольнике, ограниченном прямыми x = 0, y = 0, x + y 10 = 0.
 - 5. Дано $z = \cos(y + \sin x)$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- 1. Показать, что функция $z=y\left(x^2-y^2\right)^{\frac{7}{3}}$ удовлетворяет уравнению $y^2\frac{\partial z}{\partial x}+xy\frac{\partial z}{\partial y}=xz.$
- 2. Дана функция $u=x^2y^2-xy^3+y^2z^3$, точки A(3;-2;-1) и B(6;10;3). Найти:
 - a) $\overline{\text{grad}}\ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 8(y x) x^2 y^2$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^2 + 4y^2 + 2$ в области, ограниченной линиями y = 0, $y = \sqrt{16 x^2}$.
 - 5. Дано $z = \sin(x + 2y^2)$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

- $1. \ \ \ \ \, \text{Показать, что } \ \ \varphi \text{ункция} \quad z = \cos \left(x^2 + y^2 \right) \ \ \text{удовлетворяет уравнению}$ $y \frac{\partial z}{\partial x} x \frac{\partial z}{\partial y} = 0.$
- 2. Дана функция $u=x^2y^4-4xy^2+\frac{1}{4}y^2z^2$, точки A(1;-2;2) и B(-11;2;5). Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = 3x^3 + 3y^3 9xy + 11$.

- 4. Найти наибольшее и наименьшее значения функции $z = x^2 + xy 1$ в области, ограниченной линиями $y = 0, y = x^2 1$.
 - 5. Дано $z = \cos(x + \sin y)$. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

- 1. Показать, что функция $z=\frac{y^2}{3x}+\mathrm{arcctg}\big(xy\big)$ удовлетворяет уравнению $x^2\frac{\partial z}{\partial x}-xy\frac{\partial z}{\partial y}+y^2=0.$
- 2. Дана функция $u=x^2y^2-xz^3-y^2z^2$, точки $\mathit{A}(2;-2;-2)$ и $\mathit{B}(4;8;9)$. Найти:
 - a) $\overline{\text{grad}} \ u(A)$;
- б) производную функции в точке A в направлении, идущем от этой точки к точке B.
 - 3. Исследовать на экстремум функцию $f(x; y) = x^2 + (y 5)^2 + 3$.
- 4. Найти наибольшее и наименьшее значения функции $z = x^3 18xy + y^3$ в прямоугольнике, ограниченном прямыми x = 0, y = 0, x = 5, y = 6.
 - 5. Дано $z = \frac{x+y}{x-y}$. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

IV. КОМПЛЕКСНЫЕ ЧИСЛА

§25. КОМПЛЕКСНЫЕ ЧИСЛА

25.1. Данные комплексные числа изобразить векторами и записать в тригонометрической и показательной формах:

a)
$$z = 1 + i$$
;

$$\Gamma$$
) $z = -4i$;

6)
$$z = -1 + i\sqrt{3}$$
;

$$\mathbf{J}) \ z = -2\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right).$$

B)
$$z = -1 - i\sqrt{3}$$
;

25.2. Изобразить на комплексной плоскости множества точек, удовлетворяющих следующим условиям:

a)
$$|z| = 1$$
;

д)
$$4 \le |z| \le 9$$
;

6) arg
$$z = \frac{\pi}{6}$$
;

e)
$$|\operatorname{Re} z| \ge 2$$
;

B)
$$0 \le \text{Im } z < 2;$$

ж)
$$\begin{cases} |z| \le 2, \\ \frac{\pi}{4} \le \arg z < \frac{2\pi}{3}. \end{cases}$$

$$\Gamma$$
) Re $z \ge 4$;

25.3. Вычислить:

a)
$$(2-i)\cdot(-4+3i);$$

д)
$$\left(\frac{i^{20}+2}{i^6+2}\right)^7$$
;

6)
$$\frac{3-2i}{2-i}+(1-3i)^2$$
;

e)
$$(1+i)^8$$
;

B)
$$\frac{2-3i}{3-4i} + \frac{1+2i}{3i}$$
;

$$\mathbb{K})\left(-1+i\right)^{5}.$$

$$\Gamma$$
) $i^2 + i^3 + i^4 + i^5 + i^6$;

25.4. Найти все значения корня $\sqrt{-1 + i\sqrt{3}}$.

25.5. Решить уравнения:

a)
$$z^2 - 4z + 8 = 0$$
;

B)
$$z^4 = -16$$
:

6)
$$z^3 - 1 + i\sqrt{3} = 0$$
;

$$z^5 + 32 = 0.$$

КОНТРОЛЬНАЯ РАБОТА

- 1. Даны комплексные числа z_1 , z_2 и z_3 . Выполнить следующие действия:
- а) найти модули и аргументы данных комплексных чисел и изобразить их на чертеже;
- б) записать комплексные числа z_1 и z_2 в тригонометрической форме и найти $z_1 \cdot z_2$, $\frac{z_1}{z_2}$, z_1^3 , $\sqrt[4]{z_2}$;
- в) записать комплексные числа z_1 и z_2 в показательной форме и найти $\frac{z_2}{z_1},\ z_2^4,\ \sqrt[3]{z_2};$
- г) записать комплексное число z_3 в алгебраической форме и найти $z_1+z_3,\ z_2-2z_3,\ z_2\cdot z_3, \frac{z_3}{z_3}.$
 - 2. Решить данное уравнение.

Вариант 1

1.
$$z_1 = \sqrt{2} + i\sqrt{2}$$
, $z_2 = -7 + 7\sqrt{3}i$; $z_3 = -2\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$.

2.
$$z^2 - 4z + 20 = 0$$
.

Вариант 2

1.
$$z_1 = 3\sqrt{2} + 3\sqrt{2}i$$
, $z_2 = -4 + 4\sqrt{3}i$; $z_3 = 6\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$.

2.
$$z^2 + 8z + 41 = 0$$
.

Вариант 3

1.
$$z_1 = -5\sqrt{2} - 5\sqrt{2}i$$
, $z_2 = 2\sqrt{3} + 2i$; $z_3 = 8\left(\sqrt{3} \cdot \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$.

2.
$$z^2 + 2z + 5 = 0$$
.

1.
$$z_1 = 7\sqrt{2} + 7\sqrt{2}i$$
, $z_2 = 6 - 6\sqrt{3}i$; $z_3 = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$.

2.
$$z^2 - 6z + 10 = 0$$
.

1.
$$z_1 = \sqrt{2} - i\sqrt{2}$$
, $z_2 = -7\sqrt{3} - 7i$; $z_3 = -2\left(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right)$.

2.
$$z^2 + 4z + 5 = 0$$
.

Вариант 6

1.
$$z_1 = -3\sqrt{2} - 3\sqrt{2}i$$
, $z_2 = 4 - 4\sqrt{3}i$; $z_3 = 6\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$.

2.
$$z^2 - 10z + 26 = 0$$
.

Вариант 7

1.
$$z_1 = 5\sqrt{2} + 5\sqrt{2}i$$
, $z_2 = -2\sqrt{3} + 2i$; $z_3 = 8\left(\sqrt{3} \cdot \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$.

2.
$$z^2 + 2z + 10 = 0$$
.

Вариант 8

1.
$$z_1 = -7\sqrt{2} - 7\sqrt{2}i$$
, $z_2 = -6 + 6\sqrt{3}i$; $z_3 = -\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{3\pi}{4}\right)$.

2.
$$z^2 - 6z + 13 = 0$$
.

Вариант 9

1.
$$z_1 = -\sqrt{2} + i\sqrt{2}$$
, $z_2 = 7\sqrt{3} - 7i$; $z_3 = 2\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$.

2.
$$z^2 + 4z + 29 = 0$$
.

Вариант 10

1.
$$z_1 = -3\sqrt{2} + 3\sqrt{2}i$$
, $z_2 = 4 + 4\sqrt{3}i$; $z_3 = 6\left(-\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$.

2.
$$z^2 + 8z + 20 = 0$$
.

Вариант 11

1.
$$z_1 = 7\sqrt{2} - 7\sqrt{2}i$$
, $z_2 = -6 - 6\sqrt{3}i$; $z_3 = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$.

2.
$$z^2 - 10z + 29 = 0$$
.

1.
$$z_1 = 4\sqrt{2} + 4\sqrt{2}i$$
, $z_2 = -5\sqrt{3} + 5i$; $z_3 = \sqrt{3} \cdot \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$.

2.
$$z^2 + 12z + 37 = 0$$
.

1.
$$z_1 = -\sqrt{2} - i\sqrt{2}$$
, $z_2 = 7\sqrt{3} + 7i$; $z_3 = -2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$.

2.
$$z^2 + 2z + 17 = 0$$
.

Вариант 14

1.
$$z_1 = 3\sqrt{2} - 3\sqrt{2}i$$
, $z_2 = -4 - 4\sqrt{3}i$; $z_3 = 6\left(-\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right)$.

2.
$$z^2 - 4z + 40 = 0$$
.

Вариант 15

1.
$$z_1 = -4\sqrt{2} - 4\sqrt{2}i$$
, $z_2 = 5\sqrt{3} - 5i$; $z_3 = \sqrt{3} \cdot \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}$.

2.
$$z^2 - 6z + 18 = 0$$
.

Вариант 16

1.
$$z_1 = -7\sqrt{2} + 7\sqrt{2}i$$
, $z_2 = 6 + 6\sqrt{3}i$; $z_3 = \sqrt{2}\left(\cos\frac{3\pi}{4} - i\sin\frac{\pi}{4}\right)$.

2.
$$z^2 + 8z + 25 = 0$$
.

Вариант 17

1.
$$z_1 = 2\sqrt{2} + 2\sqrt{2}i$$
, $z_2 = -3 + 3\sqrt{3}i$; $z_3 = -4\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$.

2.
$$z^2 - 2z + 26 = 0$$
.

Вариант 18

1.
$$z_1 = 4\sqrt{2} - 4\sqrt{2}i$$
, $z_2 = 5\sqrt{3} + 5i$; $z_3 = \cos\frac{\pi}{3} + \sqrt{3} \cdot \sin\frac{\pi}{3} \cdot i$.

2.
$$z^2 + 4z + 53 = 0$$
.

1.
$$z_1 = 6\sqrt{2} - 6\sqrt{2}i$$
, $z_2 = 8\sqrt{3} + 8i$; $z_3 = \cos\frac{4\pi}{3} + i\sin\frac{\pi}{3}$.

2.
$$z^2 + 10z + 41 = 0$$
.

1.
$$z_1 = 8 - 8\sqrt{3}i$$
, $z_2 = 8\sqrt{3} + 8i$; $z_3 = \cos\frac{5\pi}{4} + i\sin\frac{\pi}{4}$.

2.
$$z^2 - 2z + 50 = 0$$
.

Вариант 21

1.
$$z_1 = -2\sqrt{2} - 2\sqrt{2}i$$
, $z_2 = 3 - 3\sqrt{3}i$; $z_3 = 4\left(\cos\frac{5\pi}{6} - i\sin\frac{5\pi}{6}\right)$.

2.
$$z^2 + 6z + 25 = 0$$
.

Вариант 22

1.
$$z_1 = 5\sqrt{2} - 5\sqrt{2}i$$
, $z_2 = -2\sqrt{3} - 2i$; $z_3 = 8\left(-\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$.

2.
$$z^2 - 8z + 32 = 0$$
.

Вариант 23

1.
$$z_1 = -4\sqrt{2} + 4\sqrt{2}i$$
, $z_2 = -5\sqrt{3} - 5i$; $z_3 = \cos\frac{\pi}{3} + \sqrt{3} \cdot \sin\frac{\pi}{3} \cdot i$.

2.
$$z^2 + 12z + 45 = 0$$
.

Вариант 24

1.
$$z_1 = -6\sqrt{2} + 6\sqrt{2}i$$
, $z_2 = -8\sqrt{3} - 8i$; $z_3 = \cos\frac{\pi}{3} + i\sin\frac{5\pi}{3}$.

2.
$$z^2 + 14z + 53 = 0$$
.

Вариант 25

1.
$$z_1 = 2\sqrt{2} - 2\sqrt{2}i$$
, $z_2 = -3 - 3\sqrt{3}i$; $z_3 = 4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$.

2.
$$z^2 - 16z + 65 = 0$$
.

1.
$$z_1 = -5\sqrt{2} + 5\sqrt{2}i$$
, $z_2 = 2\sqrt{3} - 2i$; $z_3 = 8\left(-\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$.

2.
$$z^2 + 6z + 34 = 0$$
.

1.
$$z_1 = 6\sqrt{2} + 6\sqrt{2}i$$
, $z_2 = 8\sqrt{3} - 8i$; $z_3 = \cos\frac{7\pi}{3} + i\sin\frac{5\pi}{3}$.

2.
$$z^2 + 10z + 50 = 0$$
.

Вариант 28

1.
$$z_1 = -8 - 8\sqrt{3}i$$
, $z_2 = 8\sqrt{3} - 8i$; $z_3 = \cos\frac{\pi}{4} + i\sin\frac{9\pi}{4}$.

2.
$$z^2 + 12z + 50 = 0$$
.

Вариант 29

1.
$$z_1 = -2\sqrt{2} + 2\sqrt{2}i$$
, $z_2 = 3 + 3\sqrt{3}i$; $z_3 = 4\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$.

2.
$$z^2 - 14z + 65 = 0$$
.

Вариант 30

1.
$$z_1 = 5\sqrt{2} + 5\sqrt{2}i$$
, $z_2 = -2\sqrt{3} + 2i$; $z_3 = 8\left(\sqrt{3} \cdot \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$.

2.
$$z^2 + 16z + 68 = 0$$
.

V. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

§26. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

Решить дифференциальные уравнения:

26.1.
$$(xy^2 + x)dx + (y - x^2y)dy = 0.$$

26.2.
$$y' = 5^{x-y}$$
.

26.3.
$$dy - y\cos^2 x dx = 0$$
.

26.4.
$$y' + \sin(x + y) = \sin(x - y)$$
.

Найти частные решения дифференциальных уравнений:

26.5.
$$\frac{yy'}{x} + e^y = 0$$
, $y(1) = 0$.

26.6.
$$xy' - \frac{y}{\ln x} = 0$$
, $y(e) = 1$.

Решить дифференциальные уравнения:

26.7.
$$y' = \frac{x+y}{x-y}$$
.

26.8.
$$(x^2 + y^2)dx - xydy = 0.$$

Найти частные решения дифференциальных уравнений, удовлетворяющие данным начальным условиям:

26.9.
$$(xy' - y)$$
 arctg $\frac{y}{x} = x$, $y(1) = 0$.

26.10.
$$y'-1=e^{\frac{y}{x}}+\frac{y}{x}$$
, $y(1)=0$.

Решить дифференциальные уравнения:

26.11.
$$y' + 2xy = xe^{-x^2}$$
.

26.12.
$$y' - \frac{y}{\sin x} = \operatorname{tg} \frac{x}{2}$$
.

26.13.
$$(1+x^2)y' + y = \operatorname{arctg} x$$
.

26.14.
$$y' - \frac{y}{x-1} = \frac{y^2}{x-1}$$
.

26.15. Найти частное решение дифференциального уравнения $y' - 2xy = 1 - 2x^2$, если y(0) = 2.

26.16.
$$(3x - 5x^2y^2)dx + (3y^2 - \frac{10}{3}x^3y)dy = 0.$$

26.17.
$$(x + \sin y)dx + (x\cos y + \sin y)dy = 0.$$

26.18.
$$(3x^2 + 3x^2 \ln y) dx - \left(2y - \frac{x^3}{y}\right) dy = 0.$$

26.19. Найти частное решение дифференциального уравнения
$$(\ln y - 5y^2 \sin 5x) dx + (\frac{x}{y} + 2y \cos 5x) dy = 0$$
, если $y(0) = e$.

§27. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ

Решить дифференциальные уравнения, а там, где имеются начальные условия, найти соответствующие частные решения:

27.1.
$$y''' = \frac{1}{x}$$
.

27.2.
$$y^{IV} = \cos 2x$$
.

27.3.
$$y''' = xe^{-x}$$
, $y(0) = 0$, $y'(0) = 2$, $y''(0) = 2$.

27.4.
$$(1+x^2)y''' + 2xy'' = x^3$$
.

27.5.
$$xy''' - y'' = x^2 e^x$$
.

27.6.
$$y''' = (y'')^3$$
.

27.7.
$$y^2 + (y')^2 - 2yy'' = 0$$
, $y(0) = y'(0) = 1$.

§28. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ

Доказать линейную независимость данных функций на их области определения, найти определитель Вронского:

28.1. 1,
$$x$$
, x^2 .

28.2.
$$e^x$$
, e^{2x} , e^{3x} .

28.3.
$$y'' - 5y' + 6y = 0$$
.

28.4.
$$v'' + 6v' + 25v = 0$$
.

28.5.
$$y'' - 8y' + 16y = 0$$
.

28.6.
$$y^{IV} - 6y''' + 3y'' + 26y' - 24y = 0.$$

28.7.
$$y^{IV} - 5y''' + 6y'' + 4y' - 8y = 0.$$

28.8.
$$y^{V} - y^{IV} + 8y''' - 8y'' + 16y' - 16y = 0.$$

28.9.
$$y'' + 6y' + 9y = (2x - 5)e^{-3x}$$
.

28.10.
$$y'' + 2y' + 5y = 17\sin 2x$$
.

28.11.
$$y'' - 9y' + 20y = x^2 e^{4x}$$
.

28.12.
$$y'' - 3y' + 2y = (x^2 + x)e^{3x}$$
.

28.13.
$$y'' - 2y' + 3y = 41e^{-x}\cos x$$
.

28.14.
$$y'' - 2y' + 5y = 16xe^x \sin 2x + 5x^2 - 5x + 5$$
.

28.15. Найти частное решение дифференциального уравнения $y'' - 2y' = e^x (x^2 + x - 3)$, если y(0) = 0, y'(0) = 2.

Решить уравнения методом вариации произвольных постоянных:

28.16.
$$y'' - y' = \frac{e^{2x}}{\sqrt{1 - e^{2x}}}$$
.

28.17.
$$y'' + 4y = \operatorname{ctg} 2x$$
.

§29. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Решить системы дифференциальных уравнений:

29.1.
$$\begin{cases} x' = y + z, \\ y' = 3x + z, \\ z' = 3x + y. \end{cases}$$

29.2.
$$\begin{cases} x' = -x + y + z, \\ y' = x - y + z, \\ z' = x + y - z. \end{cases}$$

Решить системы дифференциальных уравнений матричным способом:

29.3.
$$\begin{cases} x' = 8y - x, \\ y' = x + y. \end{cases}$$

29.4.
$$\begin{cases} x' = x - y + z, \\ y' = x + y - z, \\ z' = 2x - y. \end{cases}$$

КОНТРОЛЬНАЯ РАБОТА

Вариант 1

1.
$$(3x-1)dy + y^2dx = 0$$
.

2.
$$y' + \frac{y}{x} = \frac{2}{x}$$
.

3.
$$y''' = \cos^2 x$$
.

4.
$$y^{IV} + 2y'' - 8y' + 5y = 0$$
.

5.
$$y'' + 2y' = 5e^{-2x} \sin x$$
.

Решить дифференциальные уравнения:

1.
$$y' = 2^{x-y}$$
.

2.
$$xy' - y = x^2 \cos x$$
.

3.
$$y''' = x^2 + 3x + 1$$
.

4.
$$y^{IV} + 16y''' + 95y'' + 250y' + 250y = 0$$
.

5.
$$y'' - 5y' + 4y = 32x^2$$
.

Вариант 3

Решить дифференциальные уравнения:

1.
$$3x^2ydx + 2\sqrt{4 - x^3}dy = 0$$
.

2.
$$(1+x^2)y' - 2xy = (1+x^2)^2$$
.

3.
$$y''' = \frac{24}{(x+1)^5}$$
.

4.
$$y^{IV} + 2y''' - 2y'' - 6y' + 5y = 0$$
.

5.
$$y'' - 2y' + y = 5xe^{2x}$$
.

Вариант 4

Решить дифференциальные уравнения:

1.
$$y \ln^2 y + y' \sqrt{x+1} = 0$$
.

2.
$$y' \cos x + y = 1 - \sin x$$
.

3.
$$y''' = e^{3x}$$
.

4.
$$y^{IV} + 4y''' + 10y'' + 12y' + 5y = 0$$
.

5.
$$y'' + y' = 10e^x \cos x$$
.

Вариант 5

1.
$$\frac{dx}{x(y-1)} + \frac{dy}{y(x+2)} = 0.$$

2.
$$y'\sqrt{1-x^2} + y = \arcsin x$$
.

3.
$$y''' = \sin^2 x$$
.

4.
$$y^{IV} - 4y''' - 25y'' + 50y' + 250y = 0$$
.

5.
$$y'' + 2y' = 5e^{-2x} \cos x$$
.

Решить дифференциальные уравнения:

1.
$$(4x+1)dy + y^3dx = 0$$
.

2.
$$y' + \frac{2y}{x} = \frac{3}{x^2}$$
.

3.
$$y''' = \frac{1}{\sqrt{x^3}}$$
.

4.
$$y^{IV} + 6y''' + 14y'' + 14y' + 5y = 0$$
.

5.
$$y'' - 2y' = 12(x+3)e^{2x}$$
.

Вариант 7

Решить дифференциальные уравнения:

1.
$$y' = 3^{x-y}$$
.

$$2. y' - \frac{y}{x \ln x} = x \ln x.$$

3.
$$y''' = 2^{-x} + \cos \frac{x}{2}$$
.

4.
$$y^{IV} - 2y''' + y'' - 12y' + 20y = 0$$
.

5.
$$y'' + 4y = 9x \sin x$$
.

Вариант 8

Решить дифференциальные уравнения:

1.
$$4x^3ydx + 3\sqrt{2-x^4}dy = 0$$
.

2.
$$y' \sin x - y \cos x = 1$$
.

$$3. \ y''' = \frac{120}{\left(x-3\right)^6}.$$

4.
$$y^{IV} + 14y''' + 74y'' + 176y' + 160y = 0$$
.

5.
$$y'' - 2y' + y = 2e^{2x} \sin x$$
.

Вариант 9

1.
$$v \ln^3 v + v' \sqrt{x+2} = 0$$
.

2.
$$(1+x^2)y' + 2xy = 3x^2$$
.

3.
$$y''' = e^{9x}$$
.

4.
$$y^{IV} - 7y'' - 4y' + 20y = 0$$
.

5.
$$y'' + 2y' = 4(x+5)e^{-2x}$$
.

Решить дифференциальные уравнения:

1.
$$\frac{dx}{x(y+5)} + \frac{dy}{y(x-4)} = 0.$$

$$2. y' + y \cos x = \sin 2x.$$

3.
$$y''' = \cos x - 6x^2$$
.

4.
$$y^{IV} + 6y''' + 17y'' + 28y' + 20y = 0$$
.

5.
$$y'' - 3y' + 2y = 2e^x \cos x$$
.

Вариант 11

Решить дифференциальные уравнения:

1.
$$(5x-1)dy + y^4dx = 0$$
.

2.
$$y' + \frac{3y}{x} = \frac{2}{x^3}$$
.

3.
$$y''' = \sqrt{x} + \sqrt[3]{x}$$
.

4.
$$y^{IV} - 2y''' - 22y'' + 16y' + 160y = 0$$
.

5.
$$y'' - 2y' = 12(x^2 + 3)$$

Вариант 12

Решить дифференциальные уравнения:

1.
$$y' = 4^{x-y}$$
.

2.
$$xy' + y = 4x^3$$
.

3.
$$y''' = \cos^2 \frac{x}{2}$$
.

4.
$$y^{IV} + 8y''' + 25y'' + 36y' + 20y = 0$$
.

5.
$$y'' + 4y = 9x \cos x$$
.

Вариант 13

1.
$$5x^4ydx - 4\sqrt{2 - x^5}dy = 0$$
.

2.
$$y' + \frac{x}{1 - x^2}y = 2$$
.

3.
$$y''' = \frac{6}{(x-2)^4}$$
.

4.
$$y^{IV} - 4y''' + 2y'' - 12y' + 45y = 0$$
.

5.
$$y'' - 2y' + y = 2e^{2x} \cos x$$
.

Решить дифференциальные уравнения:

1.
$$y \ln^4 y + y' \sqrt{x-1} = 0$$
.

2.
$$y' + \frac{1-2x}{x^2}y = 1$$
.

3.
$$y''' = \sin x - 12x^2$$
.

4.
$$y^{IV} + 12y''' + 55y'' + 144y' + 90y = 0$$
.

5.
$$y'' + 2y' = 12(x^2 + 5)$$
.

Вариант 15

Решить дифференциальные уравнения:

1.
$$\frac{dx}{x(y+5)} + \frac{2dy}{y(x-8)} = 0.$$

2.
$$y' + \frac{y}{x} = xe^{\frac{x}{2}}$$
.

3.
$$y''' = \frac{1}{\sqrt{x^7}}$$
.

4.
$$y^{IV} - 2y''' - 10y'' + 6y' + 45y = 0$$
.

5.
$$y'' - 3y' + 2y = 2e^x \sin x$$
.

Вариант 16

Решить дифференциальные уравнения:

1.
$$(2x+5)dy + y^5dx = 0$$
.

2.
$$y' + \frac{4y}{x} = \frac{3}{x^4}$$
.

3.
$$y''' = 6x^2 + 9x + 4$$
.

4.
$$y^{IV} + 8y''' + 26y'' + 48y' + 45y = 0$$
.

5.
$$y'' - 2y' = 5e^{2x} \cos x$$
.

Вариант 17

1.
$$y' = 10^{x-y}$$
.

2.
$$y'\cos x + y\sin x = 1$$
.

3.
$$y''' = \sin^2 \frac{x}{2}$$
.

4.
$$y^{IV} - 17y'' - 6y' + 90y = 0$$
.

5.
$$y'' + 4y = 10e^x \sin x$$
.

Решить дифференциальные уравнения:

1.
$$6x^5 y dx - 7\sqrt{1 + x^6} dy = 0$$
.

2.
$$y' + \frac{4x}{1+x^2}y = \frac{1}{1+x^2}$$
.

3.
$$v''' = e^{4x}$$
.

4.
$$y^{IV} + 10y''' + 38y'' + 66y' + 45y = 0$$
.

5.
$$y'' + y' = xe^x$$
.

Вариант 19

Решить дифференциальные уравнения:

1.
$$y \ln^5 y + y' \sqrt{x-3} = 0$$
.

2.
$$y' + \frac{1-2x}{x^2}y = 1$$
.

3.
$$y''' = \frac{2}{(x+9)^3}$$
.

4.
$$y^{IV} - 6y''' + 5y'' - 8y' + 80y = 0$$
.

5.
$$y'' - 5y' + 4y = 36xe^x$$
.

Вариант 20

Решить дифференциальные уравнения:

1.
$$\frac{6dx}{x(y-6)} - \frac{5dy}{y(x+1)} = 0.$$

2.
$$y'\cos^2 x + y = \operatorname{tg} x$$
.

3.
$$y''' = e^x - 6x^2$$
.

4.
$$y^{IV} + 10y''' + 38y'' + 64y' + 40y = 0$$
.

5.
$$y'' + 9y = 32x \cos x$$
.

Вариант 21

1.
$$(7x+2)dy + y^6 dx = 0$$
.

2.
$$y' + \frac{5y}{x} = \frac{4}{x^5}$$
.

3.
$$y''' = 4^{-x} + \sin \frac{x}{2}$$
.

4.
$$y^{IV} - 4y''' - 11y'' + 24y' + 80y = 0$$
.

5.
$$y'' - 2y' = 5e^{2x} \sin x$$
.

Решить дифференциальные уравнения:

1.
$$y' = 6^{x-y}$$
.

2.
$$y' - \frac{y}{1 - x^2} - 1 - x = 0$$
.

3.
$$y''' = 12x^2 - 6x + 1$$
.

4.
$$y^{IV} + 10y''' + 37y'' + 72y' + 80y = 0$$
.

5.
$$y'' + 4y = 10e^x \cos x$$
.

Вариант 23

Решить дифференциальные уравнения:

1.
$$7x^6ydx + 6\sqrt{3 + x^7}dy = 0$$
.

2.
$$(2x+1)y' = 4x + 2y$$
.

3.
$$y''' = \frac{1}{\sqrt{x^5}}$$
.

4.
$$y^{IV} + 2y''' - 10y'' - 16y' + 40y = 0$$
.

5.
$$y'' + y' = x^2 + 2$$
.

Вариант 24

Решить дифференциальные уравнения:

1.
$$y \ln^6 y + y' \sqrt{x+6} = 0$$
.

$$2. \ y = x(y' - x\cos x).$$

3.
$$y''' = e^{12x}$$
.

4.
$$y^{IV} + 12y''' + 53y'' + 104y' + 80y = 0$$
.

5.
$$y'' - 5y' + 4y = 10e^x \cos x$$
.

Вариант 25

1.
$$\frac{3dx}{x(y+3)} - \frac{dy}{y(x-7)} = 0.$$

2.
$$x^2y' + xy + 1 = 0$$
.

3.
$$y''' = \sqrt{x} + \frac{60}{x^5}$$
.

4.
$$y^{IV} - 8y''' + 10y'' + 125y = 0$$
.

5.
$$y'' + 9y = 32x \sin x$$
.

Решить дифференциальные уравнения:

1.
$$(8x+9)dy + y^7 dx = 0$$
.

2.
$$y' + \frac{6y}{x} = \frac{5}{x^6}$$
.

3.
$$y''' = 4^{-x} + \cos \frac{x}{4}$$
.

4.
$$y^{IV} + 8y''' + 23y'' + 26y' + 10y = 0$$
.

5.
$$y'' - 3y' + 2y = 2(x^2 + x)e^{3x}$$
.

Вариант 27

Решить дифференциальные уравнения:

1.
$$y' = 8^{x-y}$$
.

2.
$$xy' + y - e^x = 0$$
.

3.
$$y''' = \sqrt[3]{x} + \frac{6}{x^4}$$
.

4.
$$y^{IV} - 6y''' - 10y'' + 50y' + 125y = 0$$
.

5.
$$y'' - 2y' + y = x^2 + 2$$
.

Вариант 28

Решить дифференциальные уравнения:

1.
$$8x^7 y dx + 9\sqrt{5 + x^8} dy = 0$$
.

2.
$$y^2 dx + (x+2) dy = 0$$
.

3.
$$y''' = 6^{-x} + \sin \frac{x}{6}$$
.

4.
$$y^{IV} + 12y''' + 50y'' + 100y' + 125y = 0$$
.

5.
$$y'' + y' = 10e^x \sin x$$
.

Вариант 29

1.
$$y \ln^7 y + y' \sqrt{x-8} = 0$$
.

2.
$$xy' + y - 3x^2 = 0$$
.

3.
$$y''' = \frac{1}{\sqrt{x^3}}$$
.

4.
$$y^{IV} + 4y''' - y'' - 14y' + 10y = 0$$
.

5.
$$y'' - 5y' + 4y = 10e^x \sin x$$
.

1.
$$\frac{dx}{4x(y+3)} - \frac{9dy}{y(x-7)} = 0.$$

2.
$$y' - 2xy = e^{x^2}$$
.

3.
$$y''' = e^{2x} - 12x^2$$
.

4.
$$y^{IV} + 14y''' + 70y'' + 150y' + 125y = 0$$
.

5.
$$y'' + 9y = 9(x^2 + x)$$
.

ОТВЕТЫ

1.1. 2. **1.2.** 6x. **1.3.**
$$\frac{1}{2\sqrt{x}}$$
. **1.4.** $-\frac{1}{x^2}$. **1.5.** $6x - y - 3 = 0$ _M $x + 6y - 19 = 0$. **2.1.**

$$3\Delta x$$
. **2.2.** $(-\sin x)\Delta x$. **2.3.** $3x^2\Delta x$. **2.4.** $(\cos x)\Delta x$. **3.1.** $5x^4-6x+2$. **3.2.**

$$48x^7 + \frac{24\sqrt[7]{x}}{7} - \frac{2}{3}$$
. 3.3. $\frac{1}{\cos^2 x} - \sin x$. 3.4. $-\cos x - \frac{1}{\sin^2 x}$. 3.5. $\frac{1}{8\sqrt[8]{x^7}}$. 3.6.

$$\frac{15}{x^4} - \frac{4}{5x^5\sqrt{x^4}} \cdot 3.7. \ 4^x \ln 64 + \frac{2}{5(x^2+1)} \cdot 3.8. \ \frac{x(2\ln x+1)}{\ln 5} \cdot 3.9. \ \frac{5}{x^2+1} - 8e^x \cdot 3.10.$$

$$(2x+1)\arccos x - \frac{x^2+x-3}{\sqrt{1-x^2}}$$
. 3.11. $\frac{\operatorname{arcctg} x}{2\sqrt{x}} - \frac{\sqrt{x}+5}{x^2+1}$. 3.12. $\frac{e^x(3x+2)-5}{\left(x-e^x\right)^2}$. 3.13.

$$\frac{3^{x}\left(2^{x}-3\right)\ln 3-2^{x}\left(3^{x}+4\right)\ln 2}{\left(2^{x}-3\right)^{2}}.$$
 3.14.
$$\frac{\arcsin x}{3\sqrt[3]{x^{2}}}+\frac{\sqrt[3]{x}}{\sqrt{1-x^{2}}}+\frac{1-4\ln x}{x^{5}\ln 4}.$$
 3.15. $\frac{3}{4}.$ **3.16.**

e. 3.17.
$$2\pi$$
. 3.18. $\frac{13}{12}$. 3.19. $5\cos 5x$. 3.20. $-4\cos^3 x \sin x$. 3.21. $-\frac{\sqrt[3]{\lg^2 x}}{3\sin^2 x}$. 3.22.

$$-\frac{4 \operatorname{tg} \frac{2}{x+1}}{\left(x+1\right)^2 \cos^2 \frac{2}{x+1}} \cdot 3.23. \ 2 \cdot 8^{x^2+5} \cdot x \ln 8. \ 3.24. \ 21(x+4)^{20}. \ 3.25. \ \frac{3x^2+2}{x^3+2x}. \ 3.26.$$

$$-\frac{1}{2\sqrt{x-x^2}}$$
. **3.27.** $\frac{e^x}{1+e^{2x}}$. **3.28.** $\frac{4}{\ln 7\sqrt{1-16x^2} \arcsin 4x}$. **3.29.** $\frac{7}{2x^2-6x+29}$.

3.30.
$$\frac{\cos x + 1 - \sin x}{2(\sin x - 1)(\cos x + 1)}$$
 3.31. a) $\frac{1}{3\sqrt[3]{(x+5)^2}}$; 6) $\frac{1}{4\sqrt[4]{(x-2)^3}}$. **3.32.**

$$\frac{2x - 3x^2y^3}{3x^3y^2 + 4y^3} \cdot \textbf{3.33.} - \frac{2x + 2\sin(2x + y)}{3y^2 + \sin(2x + y)} \cdot \textbf{3.34.} \frac{y(1 - xye^{xy})}{x(1 + xye^{xy})} \cdot \textbf{3.35.} \frac{y\cos x + \cos y}{x\sin y - \sin x}.$$

3.36.
$$\frac{y(\sqrt{1-x^2}-x^2-y^2)}{\sqrt{1-x^2}(x+(x^2+y^2)\arcsin x)}$$
. **3.37.**
$$\frac{y(x^2y^2-x+1)}{x(x-(x^2y^2+1)\ln x)}$$
. **3.38.**
$$\frac{3t^2+1}{4t^3+2t}$$
.

3.39.
$$\frac{\cos t + \sin t}{\cos t - \sin t}$$
. **3.40.** $-\lg^2 t$. **3.41.** $2 \coth t$. **3.42.** -1 . **3.43.** $\frac{\left(t^2 + 1\right)\left(2t + 1\right)}{t^2}$. **3.44.**

$$x^{\cos x}\left(\frac{\cos x}{x}-\sin x\ln x\right), \qquad 3.45. \qquad x^{\arccos x}\left(\frac{\ln x}{x^2+1}+\frac{arctgx}{x}\right), \qquad 3.46.$$

$$\frac{(x^2+x)^{\sqrt{x}}\left((x+1)\ln(x^2+x)+4x+2\right)}{(2x+2)\sqrt{x}}, \qquad 3.47. \quad (\operatorname{ctg} x)^{\sin x}\left(\cos x\ln(\operatorname{ctg} x)-\frac{1}{\cos x}\right).$$

$$3.48. \qquad \frac{1}{7}\sqrt{\frac{(x^3+2)(x+1)}{(x-3)^2}}\cdot\frac{2x^4-11x^3-9x^2-2x-10}{(x^3+2)(x+1)(x-3)}, \qquad 3.49.$$

$$\frac{(x^4-5)\cos^4 x}{\sqrt[3]{x^5}}\left(\frac{4x^3}{5-x^4}+\operatorname{tg} x+\frac{5}{9x}\right), \qquad 3.50. \qquad \frac{e^{4x}\left(x+1\right)\left(72x^2+115x+15\right)}{2(9x+2)\sqrt{9x+2}}, \qquad 3.51.$$

$$\frac{2^{2x-1}x^3}{\sqrt[3]{x^{13}}\ln 64+20x^{12}+x^2\ln 64+(9+6\ln 8)x+24\right)}{\sqrt{x^{12}+x+3}}, \qquad 3.52. \qquad y=5x+4 \qquad \text{if } y=-\frac{x}{5}-\frac{6}{5}, \qquad 3.53. \qquad y=\frac{\sqrt{3}}{2}x-\frac{\sqrt{3}\pi}{12}+\frac{1}{2} \qquad \text{if } y=-\frac{2}{\sqrt{3}}x+\frac{\sqrt{3}\pi}{9}+\frac{1}{2}, \qquad 3.54.$$

$$y=-\frac{1}{2}x+\frac{5}{2}\text{ if } y=2x. \quad 3.55. \quad y=\frac{1}{8}x+2\text{ if } y=-8x+132. \quad 3.56. \quad -\frac{dx}{2\sqrt{x-x^2}}, \quad 3.57.$$

$$x^3\left(4\ln x+1\right)dx, \quad 3.58. \quad \frac{5^{\cos x}\ln 5}{\cos^2 x}dx, \quad 3.59. \quad \frac{x^2-2x-2}{(x-1)^2}dx, \quad 3.60. \quad 1,0.6, \quad 3.61. \quad 0,0.1, \quad 3.62.$$

$$0.805. \quad 3.63. \quad 0.965. \quad 4.1. \qquad 3^x\ln^2 3. \quad 4.2. \quad \sin x, \quad 4.3. \quad 16e^{4x}\left(4x+3\right), \quad 4.4.$$

$$\left(x^2-2\right)\cos x+4x\sin x, \quad 4.5. \quad \frac{4\sin^2 x+2}{\cos^4 x}, \quad 4.6. \quad -\frac{750}{(5x+2)^4}, \quad 4.7. \quad \frac{14}{25e^3}, \quad 4.8.$$

$$\frac{1}{3\sin^4 t\cos t}, \quad 4.9. \quad \text{a)} \quad -\frac{2}{9(x+5)^3}, \quad 6) \quad -\frac{3}{16(x-2)^4}, \quad 4.7. \quad \frac{14}{25e^3}, \quad 4.11.$$

$$12x\left(x^3+2\right)^2\left(11x^3+4\right)dx^2, \quad 4.12. \quad -\frac{42dx^2}{(3x+4)^3}, \quad 4.13. \quad \frac{2dx^3}{x}, \quad 5.1. \quad \text{a) her}; \quad 6) \text{ pa. 5.2.}$$

$$\text{a) справедлива}, \quad c=\pi; \quad 6) \text{ условия теоремы не выполнены, так как } f'(x)=\frac{2}{5\sqrt[3]{x^3}}$$
 He определена в точке $\quad x=0. \quad 5.3. \quad \text{a)} \quad \text{да,} \quad c=\frac{1}{\sqrt{6}}; \quad 6) \text{ условия теоремы не выполнены, так как } f'(x)=\frac{2}{5\sqrt[3]{x^3}}$ He определена в точке $\quad x=0. \quad 5.3. \quad \text{a)} \quad \text{да,} \quad c=\frac{1}{\sqrt{6}}; \quad 6) \text{ условия} \text{ теоремы не выполнены, так как } f'(x)=\frac{2}{5\sqrt[3]{x^3}}$

6.7. $-\infty$. **6.8.** 0. **6.9.** 0. **6.10.** 1. **6.11.** -1. **6.12.** 0. **6.13.** $\frac{1}{2}$. **6.14.** 0. **6.15.** $-\frac{1}{5}$. **6.16.**

$$-\infty$$
. **6.17.** $e^{-\frac{2}{\pi}}$. **6.18.** 5. **6.19.** 1. **6.20.** 1. **7.1.** $y_{\min} = y(-1) = y(1) = 2$,

$$y_{\text{max}} = y(-3) = 66.$$
 7.2. $y_{\text{max}} = y(-1) = 1.$ 8.1. $\frac{x^{13}}{13} + C.$ 8.2. $-\frac{1}{3x^3} + C.$ 8.3.

$$\frac{5x\sqrt[5]{x^4}}{9} + C. \quad \textbf{8.4.} \quad \frac{1}{2\sqrt{3}} \ln \left| \frac{x - \sqrt{3}}{x + \sqrt{3}} \right| + C. \quad \textbf{8.5.} \quad \ln \left| x + \sqrt{x^2 + 5} \right| + C. \quad \textbf{8.6.} \quad \frac{1}{5} \arctan \frac{x}{5} + C.$$

8.7.
$$\frac{3^x}{\ln 3} + C$$
. **8.8.** $-\cos x + C$. **8.9.** $\tan x + C$. **8.10.** $\arcsin \frac{x}{4} + C$. **8.11.**

$$\frac{x^3}{3} + \frac{x^2}{2} - 5\ln|x| + C. \quad \textbf{8.12.} \quad 7\ln|x| + 6\sqrt{x} + \frac{4}{x} + C. \quad \textbf{8.13.} \quad \frac{\sin 4x}{4} + C. \quad \textbf{8.14.}$$

$$\frac{\left(4x-7\right)^{12}}{48}+C. \quad \textbf{8.15.} \quad x-4\ln\left|x+\sqrt{x^2+2}\right|+C. \quad \textbf{8.16.} \quad \frac{\cot^2 x}{2}+C. \quad \textbf{8.17}$$

6tg
$$x + \sin x + C$$
. 8.18. $x - 4\arctan \frac{x}{4} + C$. 8.19. $-\frac{1}{6}\cos^6 x + C$. 8.20. $\frac{1}{4}e^{x^4} + C$. 8.21.

$$\ln \left| \sin x + 8 \right| + C$$
. **8.22.** $\frac{\ln^5 x}{5} + C$. **8.23.** $-\frac{2}{3} \operatorname{ctg}^{\frac{3}{2}} x + C$. **8.24.** $\frac{2 \cdot 3^{\sqrt{x}}}{\ln 3} + C$. **8.25.**

ln arcsin
$$x + C$$
. **8.26.** $-e^{\frac{1}{x}} + C$. **8.27.** $\frac{1}{4 \ln 5} \operatorname{arctg} \frac{5^x}{4} + C$. **8.28.** $\frac{1}{15} \operatorname{arctg} \frac{x^5}{3} + C$. **8.29.**

$$-(3x+4)\cos x + 3\sin x + C.$$
 8.30.
$$\frac{1}{4}(10x-9)e^{2x} + C.$$
 8.31

$$x(\ln^2 x - 2\ln x + 2) + C$$
. **8.32.** $C - \frac{1 + 2\ln x}{4x^2}$. **8.33.** $\frac{4^x(x\ln 4 - 1)}{\ln^2 4} + C$. **8.34.**

$$\frac{(x^2+1)\arctan (x-x)}{2} + C.$$
 8.35.
$$\frac{e^x(\sin x - \cos x)}{2} + C.$$
 8.36.
$$\frac{x}{2}(\sin \ln x - \cos \ln x) + C.$$

8.37.
$$x \arctan x - \frac{1}{2} \ln (x^2 + 1) + C$$
. **8.38.** $x \arcsin x + \sqrt{1 - x^2} + C$. **8.39.**

$$2e^{\sqrt{x}}(\sqrt{x}-1)+C$$
. **9.1.** $2\ln|x+5|+C$. **9.2.** $-\frac{9}{2(x-5)^2}+C$. **9.3.** $\frac{1}{2}\arctan\frac{x+2}{2}+C$.

9.4.
$$\operatorname{arctg}(x-3) + C$$
. **9.5.** $2\ln(x^2 - 2x + 26) + \frac{1}{5}\operatorname{arctg}\frac{x-1}{5} + C$. **9.6.**

$$\frac{5}{2}\ln\left(x^2 + 3x + 5\right) - \frac{\sqrt{11}}{11}\arctan\left(\frac{2x + 3}{\sqrt{11}}\right) + C.$$
 9.7.

$$\frac{3x}{128(x^2+4)} + \frac{x}{16(x^2+4)^2} + \frac{3}{256} \arctan \frac{x}{2} + C.$$
 9.8.

$$\frac{4}{19\sqrt{19}} \arctan \frac{2x+1}{\sqrt{19}} + \frac{2x-37}{19(x^2+x+5)} + C.$$
9.9.
$$\frac{1}{4} \ln|x-3| + \frac{7}{4} \ln|x+1| - 2\ln|x+2| + C.$$
9.10.
$$\frac{9}{5} \ln|x-4| - \frac{4}{5} \ln|x+1| + C.$$
9.11.
$$5 \ln|x-3| - 4 \ln|x-2| + C.$$
9.12.
$$\frac{11}{3x+6} + \frac{9}{2} \ln|x+1| - \frac{5}{18} \ln|x-1| - \frac{38}{9} \ln|x+2| + C.$$
9.13.
$$-\frac{4x+7}{2(x+2)^2} + C.$$
9.14.
$$\frac{1}{12} \ln|x-2| - \frac{1}{24} \ln(x^2+2x+4) - \frac{\sqrt{3}}{12} \arctan \frac{2x+2}{2\sqrt{3}} + C.$$
9.15.
$$\frac{9}{8} \ln(x^2-2x+5) - \frac{1}{4} \ln|x+1| + \frac{5}{4} \arctan \frac{x-1}{2} + C.$$
9.16.
$$\frac{1}{2} \ln|x-1| - \frac{1}{4} \ln(x^2+1) + \frac{1}{2} \arctan x + C.$$
9.17.
$$\frac{x^3}{3} + \frac{x^2}{2} + 4x - \frac{1}{4} \ln|x| + \frac{49}{8} \ln|x-2| - \frac{15}{8} \ln|x+2| + C.$$
9.18.

$$|x+14\ln|x-4|-5\ln|x-2|+C$$
. 10.1. $\frac{\sqrt{6}}{3}\arctan\frac{5\lg\frac{x}{2}+3}{\sqrt{6}}+C$. 10.2. $\ln|\lg\frac{x}{2}|+C$.

9.18.

10.3.
$$\ln \left| \operatorname{tg} \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C$$
. **10.4.** $\frac{\sqrt{7}}{14} \operatorname{arctg} \frac{2 \operatorname{tg} x}{\sqrt{7}} + C$. **10.5.** $\sin x - \frac{\sin^3 x}{3} + C$. **10.6.**

$$-\frac{\cos^7 x}{7} + \frac{2\cos^5 x}{5} - \frac{\cos^3 x}{3} + C.$$
 10.7.
$$\frac{x}{8} - \frac{\sin 4x}{32} + C.$$
 10.8.

$$\frac{x}{16} - \frac{\sin 4x}{64} - \frac{\sin^3 2x}{48} + C. \qquad \textbf{10.9.} \qquad \frac{5x}{16} + \frac{\sin 2x}{4} + \frac{3\sin 4x}{64} - \frac{\sin^3 2x}{48} + C. \qquad \textbf{10.10.}$$

$$\frac{5}{3}\cos\frac{3x}{10} - \frac{5}{7}\cos\frac{7x}{10} + C.$$
 10.11.
$$6\sin\frac{x}{12} - \frac{6}{7}\sin\frac{7x}{12} + C.$$
 10.12.

$$x - \frac{2}{3}\operatorname{ctg}^{3}\frac{x}{2} + 2\operatorname{ctg}\frac{x}{2} + C$$
. **10.13.** $\frac{1}{6}\operatorname{tg}^{6}x - \frac{1}{4}\operatorname{tg}^{4}x + \frac{1}{2}\operatorname{tg}^{2}x + \ln\left|\cos x\right| + C$. **11.1.**

$$2\sqrt{x} - 3\sqrt[3]{x} + 6\sqrt[6]{x} - 6\ln\left|\sqrt[6]{x} + 1\right| + C.$$
 11.2. $\frac{4}{3}\left(\sqrt[4]{x^3} - 4\ln\left(\sqrt[4]{x^3} + 4\right)\right) + C.$ 11.3.

$$2\sqrt{x+5} + \sqrt{5} \ln \left| \frac{\sqrt{x+5} - \sqrt{5}}{\sqrt{x+5} + \sqrt{5}} \right| + C. \quad \mathbf{11.4.} \quad \frac{\sqrt{3}}{3} \ln \left| x + 1 + \sqrt{x^2 + 2x + \frac{1}{3}} \right| + C. \quad \mathbf{11.5.}$$

$$3\arcsin\frac{x-1}{2} - 2\sqrt{3 - x^2 + 2x} + C.$$

$$\frac{2}{3}x\sqrt{x} + \frac{24}{11}x\sqrt[6]{x^5} + \frac{36}{13}x^2\sqrt[6]{x} + \frac{8}{5}x^2\sqrt{x} + \frac{6}{17}x^2\sqrt[6]{x^5} + C.$$
 11.7.

$$\frac{1}{8}\sqrt[3]{(1+x^3)^8} - \frac{1}{5}\sqrt[3]{(1+x^3)^5} + C.$$
 11.8.

$$C - \frac{\sqrt[3]{1+x^3}}{x} + \frac{1}{\sqrt{3}}\arctan \left(\frac{2\sqrt[3]{1+x^3}+x}{x\sqrt{3}} - \frac{1}{3}\ln \left| \frac{\sqrt[3]{1+x^3}+x}{\sqrt[3]{(1+x^3)^2}+x\sqrt[3]{1+x^3}+x^2} \right|. \qquad 11.9.$$
8 агсsin $\frac{x}{4} - \frac{x}{2}\sqrt{16-x^2} + C$. 11.10. $C - \frac{\sqrt{x^2+9}}{9x}$. 11.11. $C - \frac{1}{2}\arcsin\frac{2}{x}$. 12.1. $\frac{1}{4}\ln\frac{23}{15}$. 12.2. $\frac{38}{15}$. 12.3. $\frac{1}{\ln 2} - \frac{4}{\ln 5}$. 12.4. $\frac{2+\pi}{4}$. 12.5. $\sqrt{3} - 1 - \frac{\pi}{12}$. 12.6. $\frac{\sqrt{3}}{24}$. 12.7. 14 + ln 12.8. 12.8. $\frac{1}{2}\ln\frac{49}{45} + \arctan 7 - \arctan 3$. 12.9. $\frac{\ln 2}{2}$. 12.10. $\frac{3\ln 5}{2}$. 12.11. $\frac{\sqrt{3}\pi}{9}$. 12.12. $\frac{625\pi}{16}$. 12.13. $\frac{1}{16}$. 12.14. $\pi - 2$. 12.15. $\frac{\pi}{4}$. 12.16. $e - 2$. 13.1. $\frac{1}{4}$. 13.2. Расходится. 13.3. $\frac{\pi}{2}$. 13.4. -1. 13.5. Расходится. 13.6. Сходится. 13.7. Расходится. 13.8. $\frac{\pi}{2}$. 3.9. $-\frac{1}{4}$. 13.10. Расходится. 13.11. Сходится. 13.12. Расходится. 13.13. Сходится. 13.14. Расходится. 14.1. $\frac{2+\sqrt{2}}{2}$. 14.2. $\frac{32\sqrt{6}}{3}$. 14.3. $\frac{1}{4}$. 14.4. $\frac{\pi a^2}{4}$. 14.5. $18\pi a^2$. 14.6. $\frac{3\pi a^2}{8}$. 14.7. $6\pi a^2$. 14.8. $1 + \frac{1}{2}\ln\frac{3}{2}$. 14.9. $6a$. 14.10. 8a. 14.11. $\frac{\pi}{4}(e^2-1)$. 14.12. $\frac{8\pi}{3}$.14.13. $\frac{32\pi a^2}{5}$. 14.14. 400 м. 14.15. $\frac{1}{2}g\rho\pi R^2H^2$ Дж. 14.16. $S_x = S_y = \frac{12}{5}\rho$, $M_x = M_y = 3\rho$. 14.17. $\left(\pi a; \frac{4a}{3}\right)$. 15.1. а) -5; 6) $-f(x;y)$; в) $-\frac{x^2+y^2}{x^2+xy}$; г) $\frac{x+xy}{x^2+y^2}$. 15.2. Две полуполосы: $|y| \ge 3$, $|x| \le 3$. 15.3. $x \ge 0$, $y \ge 0$. 15.4. Внешность двух окружностей с уравнениями $\left(x-\frac{1}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2 = \frac{1}{2}$ и $\left(x+\frac{1}{2}\right)^2 + \left(y+\frac{1}{2}\right)^2 = \frac{1}{2}$ с исключённой точкой $O(0;0)$. 15.5. $\left|\frac{x}{y}\right| \le 1$. 15.6. Полосы $-\frac{\pi}{2} + 2\pi n \le y \le \frac{\pi}{2} + 2\pi n$, $x \ge 0$; $\frac{\pi}{2} + 2\pi n \le y \le \frac{3\pi}{2} + 2\pi n$, $x \ge 0$, $\frac{\pi}{2} + 2\pi n \le y \le \frac{3\pi}{2} + 2\pi n$, $x \ge 0$, $\frac{\pi}{2} + 2\pi n \le y \le \frac{3\pi}{2} + 2\pi n$, $x \ge 0$, $\frac{\pi}{2} + 2\pi n \le y \le \frac{3\pi}{2} + 2\pi n$, $x \ge 0$, $\frac{\pi}{2} + 2\pi n \le y \le \frac{3\pi}{2} + 2\pi n$, $x \ge 0$, $\frac{\pi}{2} + 2\pi n \le y \le \frac{3\pi}{2} + 2\pi n$, $x \ge 0$, $\frac{\pi}{2} + 2\pi n \le y \le \frac{3\pi}{2} + 2\pi n$, $x \ge 0$, $\frac{\pi}{2} + 2\pi n \le y \le \frac{3\pi}{2} + 2\pi n$, $x \ge 0$, $\frac{\pi}{2} + 2\pi n \le y \le \frac{3\pi}{$

координат без вершины. 15.11. Линии уровня – равносторонние гиперболы xy = c, c > 0 (они расположены в первой и третьей четверти плоскости. График функции – конус. **15.12.** 0. **15.13.** Не существует. **15.14.** $-\frac{5}{3}$. **15.15.** $\frac{3}{4}$. **15.16.** -10. **15.17.** $\frac{1}{2}$. **15.18.** 1. **15.19.** Все точки прямой x + y = 0. **15.20.** Точки, расположенные на осях координат. **15.21.** Точки окружности $x^2 + y^2 = 1$. **15.22.** f(0;1) = -12. **15.23.** $f(0;4) = \frac{1}{2}$. **16.1.** Первый октант $x \ge 0$, $y \ge 0$, $z \ge 0$. **16.2.** Внешность конуса $x^2 + y^2 - z^2 = 0$, включая границу, но без вершины. **16.3.** Внутренность двуполостного гиперболоида $x^2 + y^2 - z^2 = -1$. **16.4.** Плоскости, параллельные плоскости x + y + z = 0. **16.5.** Концентрические сферы радиуса \sqrt{u} , u > 0, с центром в начале координат; начало координат O(0;0;0) при u = 0. **16.6.** Однополостные гиперболоиды с осью Oz, если u > 0 или двуполостные гиперболоиды при u < 0, если u = 0, то $x^2 + y^2 - z^2 = 0$ – конус. **17.1.** $\Delta z_x = 0.32$, $\Delta z_y = -0.64$, $\Delta z_z = -0.34$. **17.2.** $\Delta z_x = 0.026$, $\Delta z_y = -0.008$, $\Delta z = 0.018.$ 17.3. $z'_{y} = 4x^{3} - 10xy^{2},$ $z'_{y} = 3y^{2} - 10x^{2}y.$ **17.4.** $z'_{x} = 3x^{2} \cos^{2} y - 8xy^{3} \sin^{3} x^{2} \cos x^{2},$ $z'_{y} = -2x^{3} \cos y \sin y - 3y^{2} \sin^{4} x^{2}.$ 17.5. $z'_{x} = \sqrt[4]{y} + \frac{2y^{3}}{5x^{5}\sqrt{x^{2}}}, \quad z'_{y} = \frac{x}{\sqrt[4]{y^{3}}} - \frac{3y^{2}}{\sqrt[5]{x^{2}}}.$ 17.6. $z'_{x} = \frac{y}{x^{2} + y^{2}}, \quad z'_{y} = -\frac{x}{x^{2} + y^{2}}.$ 17.7. $z'_{x} = \frac{2}{y \sin \frac{2x}{y}}, \quad z'_{y} = -\frac{2x}{y^{2} \sin \frac{2x}{y}}.$ 17.8. $z'_{x} = -\frac{1}{y}e^{-\frac{x}{y}}, \quad z'_{y} = \frac{x}{y^{2}}e^{-\frac{x}{y}}.$ $z'_{x} = \frac{1}{v}\cos\frac{x}{v}\cos\frac{y}{x} + \frac{y}{x^{2}}\sin\frac{x}{v}\sin\frac{y}{x}, \quad z'_{y} = -\frac{x}{v^{2}}\cos\frac{x}{v}\cos\frac{y}{x} - \frac{1}{x}\sin\frac{x}{v}\sin\frac{y}{x}.$ $u'_x = yz$, $u'_y = xz$, $u'_z = xy$. 17.11. 0, $\frac{1}{4}$. 17.12. $u'_x = yx^{y-1} + y^z zx^{z-1} + yz^{xy} \ln z$, $u'_{y} = x^{y} \ln x + x^{z} z y^{z-1} + x z^{xy} \ln z$, $u'_{z} = (xy)^{z} \ln(xy) + x y z^{xy-1}$. 17.13. $\frac{x dx + y dy}{x^{2} + y^{2}}$. **17.14.** $(xdy + ydx)\cos(xy)$. **17.15.** $x^{yz-1}(yzdx + xz\ln xdy + xy\ln xdz)$. **17.16.** 0,98. **17.17.** 2,975. **17.18.** 0,502. **17.19.** 0,75. **17.20.** 257,152. **17.21.** $e^{\sin t - 2t^3} \left(\cos t - 6t^2\right)$. $\frac{3-12t^2}{\sqrt{1-(3t-4t^3)^2}}$. 17.22. 17.23.

 $-6(\cos x + \cos y)$. **20.11.** $y' = -\frac{y}{x}$, $y'' = \frac{2y}{x^2}$. **20.12.** $y' = -\frac{2x + y}{x + 2y}$

$$y''' = -\frac{18}{(x+2y)^3}, \quad y''' = -\frac{162x}{(x+2y)^5}. \quad \textbf{20.13}. \quad y' = 0, \quad y'' = y'' = -\frac{2}{3}. \quad \textbf{20.14}.$$

$$z''_{x^2} = 2 \cdot \frac{(1-6z)^2 + 3(2x+y)^2}{(1-6z)^3}, \quad z''_{xy} = \frac{(1-6z)^2 + 6(2x+y)(x+4y)}{(1-6z)^3},$$

$$z''_{y^2} = \frac{4(1-6z)^2 + 6(x+4y)^2}{(1-6z)^3}. \quad \textbf{21.1.} \quad f_{\max} = f(-5;1) = 1. \quad \textbf{21.2.} \quad f_{\max} = f(3;-3) = 18.$$

$$\textbf{21.3.} \quad f_{\min} = f(-1;-1) = f(1;1) = -2. \quad \textbf{22.1.} \quad \min_{D} z = z(0;2) = z(0;-2) = -4,$$

$$\max_{D} z = z(2;0) = z(-2;0) = 4. \quad \textbf{22.2.} \quad \min_{D} z = z(1;0) = -3, \quad \max_{D} z = z(1;2) = 17. \quad \textbf{22.3.}.$$

$$\min_{D} z = z(1;1) = 2. \quad \textbf{23.3.} \quad z_{\min} = z(1;-1) = z(-1;1) = -1, \quad z_{\max} = z\left(\frac{1}{2};\frac{1}{2}\right) = \sqrt[3]{e}. \quad \textbf{23.2.}$$

$$\textbf{23.4.} \quad z_{\min} = z\left(-\sqrt{2};-\sqrt{2}\right) = -\sqrt{2}, \quad z_{\max} = z\left(\sqrt{2};\sqrt{2}\right) = \sqrt{2}. \quad \textbf{24.1.} \quad y = 2.03x + 0.001.$$

$$\textbf{24.2.} \quad y = -2,186x + 2,92. \quad \textbf{25.1.} \quad \text{a)} \quad \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \sqrt{2}e^{\frac{i\pi}{4}}; \quad \text{6}$$

$$2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2e^{\frac{i^2\pi}{3}}; \quad \text{B}) \quad 2\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right) = 2e^{-\frac{i^2\pi}{3}}; \quad \text{r}$$

$$4\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right) = 4e^{-\frac{i\pi}{2}}; \quad \pi\right) \quad 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2e^{\frac{i^2\pi}{3}}; \quad \text{r}$$

$$4\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right) = 4e^{-\frac{i\pi}{2}}; \quad \pi\right) \quad 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2e^{\frac{i^2\pi}{3}}; \quad \text{r}$$

$$4\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right) = 4e^{-\frac{i\pi}{2}}; \quad \pi\right) \quad 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2e^{\frac{i^2\pi}{3}}; \quad \text{r}$$

$$4\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right) = 4e^{-\frac{i\pi}{2}}; \quad \pi\right) \quad 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2e^{\frac{i^2\pi}{3}}; \quad \text{r}$$

$$4\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right) = 4e^{-\frac{i\pi}{2}}; \quad \pi\right) \quad 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2e^{\frac{i^2\pi}{3}}; \quad \text{r}$$

$$4\left(\cos\left(-\frac{\pi}{2}\right) + i\sin\left(-\frac{\pi}{2}\right)\right) = 4e^{-\frac{i\pi}{2}}; \quad \pi\right) \quad 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2e^{\frac{i^2\pi}{3}}; \quad \text{r}$$

$$26.1. \quad 1 + y^2 = C(1 - x^2). \quad 26.2. \quad y = \log_2\left(C + 5^2\right). \quad 26.3. \quad y = 2e^{\frac{2x+\sin 2x}{4}}.$$

$$26.1. \quad 1 + y^2 = C(1 - x^2). \quad 26.2. \quad y = \log_2\left(C + 5^2\right). \quad 26.3. \quad y = 2e^{\frac{2x+\sin 2x}{4}}.$$

$$26.4. \quad 2\sin x + \ln\left|\frac{y}{2}\right| = C. \quad 26.5. \quad 2e^{-y}\left(y + 1\right) = x^2 + 1. \quad 26.6. \quad y = \ln x.$$

$$26.7. \quad \arcsin_{x} y = \ln C\sqrt{x^2 + y^2}. \quad 26.8. \quad y^2$$

$$\frac{3}{2}x^{2} - \frac{5}{3}x^{3}y^{2} + y^{3} = C. \qquad 26.17. \qquad \frac{1}{2}x^{2} + x\sin y - \cos y = C. \qquad 26.18.$$

$$x^{3} + x^{3} \ln y - y^{2} = C. \qquad 26.19. \qquad x\ln y + y^{2} \cos 5x = e^{2}. \qquad 27.1.$$

$$y = x^{2} \ln \sqrt{x} + C_{1}x^{2} + C_{2}x + C_{3}. \qquad 27.2. \quad y = \frac{1}{16} \cos 2x + C_{1}x^{3} + C_{2}x^{2} + C_{3}x + C_{4}. \qquad 27.3.$$

$$y = -(x+3)e^{-x} + \frac{3}{2}x^{2} + 3. \qquad 27.4.$$

$$y = \frac{1}{48}x^{4} - \frac{1}{8}x^{2} + C_{1}\left(x \arctan (x - \frac{1}{2}\ln(1 + x^{2})\right) + C_{2}x + C_{3}. \qquad 27.5.$$

$$y = C_{1}x^{3} + C_{2}x + C_{3} + (x-2)e^{x}. \qquad 27.6. \quad y = \frac{1}{3}(C_{1} - 2x)^{\frac{3}{2}} + C_{2}x + C_{3}. \qquad 27.7. \quad y = e^{x}.$$

$$28.3. \quad y = C_{1}e^{2x} + C_{2}e^{3x}. \qquad 28.4. \quad y = (C_{1}\cos 4x + C_{2}\sin 4x)e^{-3x}. \qquad 28.5.$$

$$y = (C_{1} + C_{2}x)e^{4x}. \qquad 28.6. \quad y = C_{1}e^{x} + C_{2}e^{-2x} + C_{3}e^{3x} + C_{4}e^{4x}. \qquad 28.7.$$

$$y = C_{1}e^{x} + (C_{2} + C_{3}x + C_{4}x^{2})e^{2x}. \qquad 28.8.$$

$$y = (C_{1} + C_{2}x)e^{-3x} + x^{2}e^{-3x}\left(\frac{x}{3} - \frac{5}{2}\right). \qquad 28.10.$$

$$y = (C_{1} \sin 2x + C_{2}\cos 2x)e^{-x} + \sin 2x - 4\cos 2x. \qquad 28.11.$$

$$y = (C_{1}\sin 2x + C_{2}\cos 2x)e^{-x} + \sin 2x - 4\cos 2x. \qquad 28.11.$$

$$y = (C_{1}\sin 2x + C_{2}\cos 2x)e^{-x} + x(\sin 2x - 2x\cos 2x)e^{x} + x^{2}(5\cos x - 4\sin x). \qquad 28.14.$$

$$y = (C_{1}\sin 2x + C_{2}\cos 2x)e^{x} + x(\sin 2x - 2x\cos 2x)e^{x} + x^{2} - \frac{x}{5} + \frac{13}{25}. \qquad 28.15.$$

$$y = e^{x}\left(e^{x} - x^{2} - x - 1\right). \qquad 28.16. \quad y = C_{1} + C_{2}x + \sqrt{1 - e^{2x}} + e^{x} \arcsin e^{x}. \qquad 28.17.$$

$$y = C_{1}\cos 2x + C_{2}\sin 2x + \frac{1}{4}\sin 2x \ln 2x. \qquad 29.1. \qquad x = -C_{2}e^{-2t} + \frac{2}{3}C_{3}e^{3t},$$

$$y = C_{1}e^{t} + C_{2}e^{-2t} + C_{3}e^{3t}, z = -C_{1}e^{t} + C_{2}e^{-2t} + C_{3}e^{3t}. \qquad x = 2C_{1}e^{t} + C_{2}e^{-3t},$$

$$y = C_{1}e^{t} + C_{2}e^{-2t}, z = C_{1}e^{t} - (C_{2} + C_{3})e^{-2t}. \qquad 29.2. \qquad x = C_{1}e^{t} + C_{2}e^{-3t}.$$

$$y = C_{1}e^{3t} + C_{2}e^{-3t}. \qquad 29.4. \qquad x = C_{1}e^{t} + C_{2}e^{2t} + C_{3}e^{-t}, \qquad y = C_{1}e^{t} - 3C_{3}e^{-t},$$

 $z = C_1 e^t + C_2 e^{2t} - 5C_2 e^{-t}$.

ПРИЛОЖЕНИЯ

Правила дифференцирования

1. Производная постоянной равна нулю.

$$c'=0$$
.

2. Производная суммы (разности) двух функций равна сумме (разности) производных этих функций, т. е.

$$(u \pm v)' = u' \pm v'.$$

Правило справедливо для любого конечного числа слагаемых.

3. Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго, т. е.

$$(uv)' = u'v + uv'.$$

Следствие 1. Постоянный множитель можно выносить за знак производной:

$$(cu)' = cu'.$$

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные, например,

$$(uvw)' = u'vw + uv'w + uvw'.$$

4. Производная частного двух дифференцируемых функций может быть найдена по формуле

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

(при условии, что $v \neq 0$).

Следствие.
$$\left(\frac{c}{v}\right)' = -\frac{cv'}{v^2}, \text{ где } c = const, \ v \neq 0.$$

- **5.** Пусть функция $u = \varphi(x)$ имеет производную в точке x_0 , а функция y = f(u) в точке $u_0 = \varphi(x_0)$, тогда сложная функция $y = f(\varphi(x))$ также имеет производную в точке x_0 , причем $y'(x_0) = f'(u_0) \cdot u'(x_0)$.
- **6.** Пусть функция y = f(x) непрерывна и строго монотонна в некоторой окрестности точки x_0 и при $x = x_0$ существует производная $f'(x_0) \neq 0$, тогда и обратная функция $x = f^{-1}(y)$ имеет производную в точке

$$y_0 = f(x_0)$$
, причем $\frac{df^{-1}(y_0)}{dy} = \frac{1}{\frac{df(x_0)}{dx}}$ (или $x_y' = \frac{1}{y_x'}$), т. е. производная

обратной функции равна обратной величине производной данной функции.

Таблица производных

$$1.(c)' = 0;$$

2.
$$(u^{\alpha})' = \alpha \cdot u^{\alpha-1} \cdot u'$$
, в частности, $(\sqrt{u})' = \frac{1}{2\sqrt{u}} \cdot u'$;

3.
$$(a^u)' = a^u \cdot \ln a \cdot u'$$
, в частности, $(e^u)' = e^u \cdot u'$;

4.
$$(\log_a u)' = \frac{1}{u \cdot \ln a} \cdot u'$$
, в частности, $(\ln u)' = \frac{1}{u} \cdot u'$;

$$5. \left(\sin u\right)' = \cos u \cdot u';$$

$$6. \left(\cos u\right)' = -\sin u \cdot u';$$

7.
$$(\operatorname{tg} u)' = \frac{1}{\cos^2 u} \cdot u';$$

8.
$$\left(\operatorname{ctg} u\right)' = -\frac{1}{\sin^2 u} \cdot u';$$

9.
$$(\arcsin u)' = \frac{1}{\sqrt{1 - u^2}} \cdot u';$$

10.
$$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} \cdot u';$$

11.
$$(\operatorname{arctg} u)' = \frac{1}{1 + u^2} \cdot u';$$

12.
$$(\operatorname{arcctg} u)' = -\frac{1}{1+u^2} \cdot u';$$

13.
$$(\operatorname{sh} u)' = \operatorname{ch} u \cdot u';$$

$$14. \left(\operatorname{ch} u \right)' = \operatorname{sh} u \cdot u';$$

15.
$$\left(\operatorname{th} u\right)' = \frac{1}{\operatorname{ch}^2 u} \cdot u';$$

$$16. \left(\coth u \right)' = -\frac{1}{\sinh^2 u} \cdot u'.$$

Основные свойства неопределенного интеграла

1. Производная от неопределенного интеграла равна подынтегральной функции, т. е.

$$\left(\int f(x)dx\right)' = f(x).$$

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению, т. е.

$$d\left(\int f(x)dx\right) = f(x)dx.$$

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, т. е.

$$\int dF(x) = F(x) + C,$$

где C – произвольное число.

4. Постоянный множитель можно выносить за знак интеграла, т. е.

$$\int \alpha f(x) dx = \alpha \int f(x) dx, \ \alpha \neq 0.$$

5. Если функции f(x) и g(x) имеют первообразные на промежутке X, то и функции $f(x)\pm g(x)$ также имеют первообразную на X, причем

$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx.$$

Свойство остается справедливым для любого конечного числа слагаемых.

6. Если $\int f(x)dx = F(x) + C$, то $\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$, где a,b – некоторые числа, $a \neq 0$.

7 (инвариантность формулы интегрирования). $Ecnu \int f(x)dx = F(x) + C$, $mo \int f(u)du = F(u) + C$, $c \partial e \ u = \varphi(x)$.

Таблица основных интегралов

$$1. \int 0 \cdot dx = C.$$

$$2. \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ (\alpha \neq -1).$$

В частности,
$$\int dx = x + C$$
, $\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C$, $\int \frac{dx}{x^2} = -\frac{1}{x} + C$.

$$3. \int \frac{dx}{x} = \ln|x| + C.$$

4.
$$\int a^x dx = \frac{a^x}{\ln a} + C \ (a > 0, \ a \ne 1).$$

B частности,
$$\int e^x dx = e^x + C$$
.

$$5. \int \sin x dx = -\cos x + C.$$

$$6. \int \cos x dx = \sin x + C.$$

$$7. \int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C.$$

$$8. \int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C.$$

9.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C, \ (a \neq 0).$$

B частности,
$$\int \frac{dx}{x^2 + 1} = \arctan x + C$$
.

10.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, \ (a > 0).$$

В частности,
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$
.

11.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, \ (a > 0).$$

12.
$$\int \frac{dx}{\sqrt{x^2 + \alpha}} = \ln \left| x + \sqrt{x^2 + \alpha} \right| + C, \ (\alpha \neq 0).$$

$$13. \int \sinh x dx = \cosh x + C.$$

$$14. \int \operatorname{ch} x dx = \operatorname{sh} x + C.$$

$$15. \int \operatorname{tg} x dx = -\ln|\cos x| + C.$$

$$16. \int \operatorname{ctg} x dx = \ln |\sin x| + C.$$

17.
$$\int \frac{dx}{\sin x} = \ln \left| \lg \frac{x}{2} \right| + C.$$

18.
$$\int \frac{dx}{\cos x} = \ln \left| \operatorname{tg} \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C.$$

Методы интегрирования

Одним из основных методов интегрирования является *метод замены переменной* (или *метод подстановки*), описываемый следующей формулой:

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Пусть u = u(x) и v = v(x) — функции, имеющие непрерывные производные, тогда справедлива формула интегрирования по частям:

$$\int u dv = uv - \int v du.$$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Берман, Г.Н. Сборник задач по курсу математического анализа [Текст]: Учебное пособие. Г.Н. Берман. СПб.: Издательство «Лань», 2016. 492 с.: ил. (Учебники для вузов. Специальная литература).
- 2. Бермант, А.Ф. Краткий курс математического анализа [Текст]: Учебник для вузов. А.Ф. Бермант, И.Г. Араманович. 11-е изд., стер. СПб.: Издательство «Лань», 2005. 736 с.: ил. (Учебники для вузов. Специальная литература).
- 3. Болотникова, О.В. Комплексные числа [Текст]: Учебно-методическое пособие / О.В. Болотникова, А.Н. Круглова. Пенза: ПГУАС, 2008. 22 с.
- 4. Болотникова, О.В. Курс высшей математики [Текст]: учеб. пособие: в 2 ч. / О.В. Болотникова. Пенза: Изд-во ПГУ, 2021. II ч. 202 с.
- 5. Болотникова, О.В. Функции нескольких переменных [Текст]: учеб. пособие / О.В. Болотникова, Д.В. Тарасов. Пенза: Изд-во ПГУ, 2013. 116 с.
- 6. Данко, П.Е. Высшая математика в упражнениях и задачах [Текст]: Учеб. пособие для студентов втузов. В 2-х ч. Ч. II / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова. 4-е изд., испр. и доп. —М.: Высш. шк., 1986. 415 с., ил.
- 7. Демидович, Б.П. Сборник задач и упражнений по математическому анализу [Текст]: Учеб. пособие для вузов / Б.П. Демидович. М.: ООО «Издательство Астрель»: ООО «Издательство АСТ», 2005. 558, [2] с.: ил.
- 8. Кремер, Н.Ш. Высшая математика для экономистов [Текст]: учебник для студентов вузов, обучающихся по экономическим специальностям / Н.Ш. Кремер и др.; под ред. проф. Н.Ш. Кремера. 3-е изд. М.: ЮНИТИ-ДАНА, 2012. 479 с. (Серия «Золотой фонд российских учебников»).
- 9. Кудрявцев, Л.Д. Курс математического анализа (в двух томах) [Текст]: Учебник для студентов университетов и втузов / Л.Д. Кудрявцев. М.: Высш. школа, 1981, т. I.-687 с.: ил.
- 10. Письменный, Д.Т. Конспект лекций по высшей математике: Полный курс [Текст]: учеб. для вузов / Д.Т. Письменный. 10-е изд. М.: Айрис-пресс, 2011. 608 с.: ил. (Высшее образование).
- 11. Сборник задач по высшей математике. 1 курс [Текст]: учеб. для вузов / К.Н. Лунгу [и др.]. 7-е изд., перераб. и доп. М.: Айрис-пресс, 2008. 576 с.: ил. (Высшее образование).
- 12. Сборник задач по высшей математике. 2 курс [Текст]: учеб. для вузов / К.Н. Лунгу [и др.]. 6-е изд., перераб. и доп. М.: Айрис-пресс, 2007. 592 с.: ил. (Высшее образование).
- 13. Сборник задач по высшей математике для экономистов [Текст]: Учебное пособие / под ред. В.И. Ермакова М.: ИНФРА-М, 2003. 575 с. (Серия «Высшее образование»).
- 14. Фихтенгольц, Г.М. Основы математического анализа [Текст]: Учебник. Часть 1 / Г.М. Фихтенгольц. 10-е изд., стер. СПб.: Издательство «Лань», 2015. 448 с.: ил. (Учебники для вузов. Специальная литература).
- 15. Фихтенгольц, Г.М. Основы математического анализа [Текст]: Учебник. Часть $2 / \Gamma$.М. Фихтенгольц. 9-е изд., стер. СПб.: Издательство «Лань», 2008. 464 с.: ил. (Учебники для вузов. Специальная литература).