SW1-1

a) Storage size of one platter in GB:

1 side of platter contains $20000 \times (2000 + 1000) \text{ sectors}.$ $= 6\times10^{7} \text{ sectors}.$

.. A whole platter has 12×10 sectors.

... Total size =
$$\frac{12 \times 10^{7} \times 512}{10^{9}}$$
 GB
= 61.44 GB. (Ans:)

b) Storage size of the disk =(5×61.44) GB = 307.2 GB (Ans:)

Date:.../..../...../

a) Block is used in DBMS instead of disk segment because when file size is very large, segment storage size is too much and many innumber.

6	Relation	Starting Track No.
	Customer	act 1 100 Md
	product>	10001
	Sale ,>	20001

c) To read/mite, disk arm snings to position head on track and platter spins continually. Data is read/mite on both sides as sector passes under head. Here,

Query	seek No.
Ø1 →	1
B2>	1
Ø3 →	0

Omidon[®]

Effective storage: - 24 TB

6) RAID level 1:

Effective storage: -12 TB

可RAID level 0 has more capacity
图RAID level 0 has more speed.

12 RAID level 1 has more reliability.

richten ()

9W1-4

a) RAID 0 \longrightarrow 48TB

RAID 1 -> 24 TB

RAIDS -> 40TB

b) In order to update a single block in RAID 5, we have to read data from that block alongside the related parity block. So, we read 2 blocks. Then, we write data to that block and parity block. So, we write 2 blocks. Thus, 4 blocks are transferred in a single update.

Omidon[®]