Correction - DM 6

Exercice 1. 1. A quelle condition sur $X, Y \in \mathbb{R}$ a-t-on

$$X = Y \iff X^2 = Y^2$$

2. On se propose de résoudre l'équation :

$$|\cos(x)| = |\sin(x)|. \tag{1}$$

- (a) Montrer que (1) est équivalent à cos(2x) = 0. (On pourra utiliser la question 1...)
- (b) En déduire les solutions de (1) dans \mathbb{R} puis dans $[-\pi, \pi]$

Correction 1.

- 1. On a $X = Y \iff X^2 = Y^2$ si X et Y sont de même signe.
- 2. Comme $|\cos(x)| \ge 0$ et $|\sin(x)| \ge 0$ l'équation est équivalente à $\cos^2(x) = \sin^2(x)$, soit encorrectione

$$\cos(2x) = 0.$$

On a donc $2x \equiv \frac{\pi}{2}$ [π] ou encorrectione

$$x \equiv \frac{\pi}{4} \quad [\frac{\pi}{2}]$$

Les solutions sur \mathbb{R} sont

$$\mathcal{S} = \bigcup_{k \in \mathbb{Z}} \{ \frac{\pi}{4} + \frac{\pi k}{2} \}$$

Sur $[-\pi, \pi]$ les solutions sont :

$$S \cap [-\pi, \pi] = \{\frac{\pi}{4}, \frac{3\pi}{4}, \frac{-\pi}{4}, \frac{-3\pi}{4}\}$$

Exercice 2. On considère la suite de polynômes $(T_n)_{n\in\mathbb{N}}$ définie par

$$T_0 = 1$$
 et $T_1 = X$ et $\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n$

- 1. Calculer T_2 , T_3 et T_4 .
- 2. Soit $\theta \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$ on a $T_n(\cos(\theta)) = \cos(n\theta)$.
- 3. En déduire que $\forall x \in [-1, 1]$, on a $T_n(x) = \cos(n \arccos(x))$. (La rédaction est importante, les variables ne peuvent pas vivre n'importe où)

Correction 2.

- 1. $T_2 = 2X^2 1$, $T_3 = 4X^3 3X$, $T_4 = 8X^4 8X^2 + 1$
- 2. Montrons le résultat par récurrence. On pose

$$Q(n)$$
: " $\forall \theta \in \mathbb{R}, T_n(\cos(\theta)) = \cos(n\theta) \text{ ET } T_{n+1}(\cos(\theta)) = \cos((n+1)\theta)$ "

Q(0) est vraie par définition de T_0 et T_1

Supposons qu'il existe $n \in \mathbb{N}$ tel que Q(n) soit vrai et montrons Q(n+1). Il suffit de montrer que $\forall \theta \in \mathbb{R}$

$$T_{n+2}(\cos(\theta)) = \cos((n+2)\theta)$$

On a par définition de T_{n+2}

$$T_{n+2}(\cos(\theta)) = 2\cos(\theta)T_{n+1}(\cos(\theta)) - T_n(\cos(\theta))$$

Par hypothèse de récurrence on a $T_{n+1}(\cos(\theta)) = \cos((n+1)\theta)$ et $T_n(\cos(\theta)) = \cos(n\theta)$ donc

$$T_{n+2}(\cos(\theta)) = 2\cos(\theta)\cos((n+1)\theta) - \cos(n\theta)$$

Les formules trigonométriques donnent :

$$2\cos(\theta)\cos((n+1)\theta) = \cos(\theta + (n+1)\theta) + \cos(\theta - (n+1)\theta)$$
$$= \cos((n+2)\theta) + \cos(-n\theta)$$
$$= \cos((n+2)\theta) + \cos(n\theta)$$

Donc

$$T_{n+2}(\cos(\theta)) = \cos((n+2)\theta) + \cos(n\theta) - \cos(n\theta) = \cos((n+2)\theta)$$

Par récurrence, pour tout $\theta \in \mathbb{R}$ et tout $n \in \mathbb{N}$:

$$T_n(\cos(\theta)) = \cos(n\theta)$$

3. Soit $x \in [-1,1]$ on note $x = \cos(\theta)$, avec $\theta \in [0,\pi]$ on a alors $\theta = \arccos(x)$. D'après la question précédente on a donc pour tout $x \in [-1,1]$:

$$T_n(x) = \cos(n\arccos(x))$$

Exercice 3. 1. Résoudre l'inéquation d'inconnue y suivante :

$$\frac{y-3}{2y-3} \le 2y \quad (E_1)$$

2. En déduire les solutions sur $\mathbb R$ de l'inéquation d'inconnue X :

$$\frac{\sin^2(X) - 3}{2\sin^2(X) - 3} \le 2\sin^2(X) \quad (E_2)$$

3. Finalement donner les solutions sur $[0, 2\pi]$ de l'inéquation d'inconnue x:

$$\frac{\sin^2(2x + \frac{\pi}{6}) - 3}{2\sin^2(2x + \frac{\pi}{6}) - 3} \le 2\sin^2(2x + \frac{\pi}{6}) \quad (E_3)$$

Correction 3.

1.

$$\begin{array}{rcl}
\frac{y-3}{2y-3} & \leq 2y \\
\iff & 0 & \leq 2y - \frac{y-3}{2y-3} \\
\iff & 0 & \leq \frac{4y^2 - 7y + 3}{2y-3}
\end{array}$$

 $4y^2 - 7y + 3$ admet pour racines : $y_0 = 1$ et $y_1 = \frac{3}{4}$, donc

$$\iff \begin{array}{rcl} \frac{y-3}{2y-3} & \leq 2y \\ \iff & 0 & \leq \frac{4(y-1)(y-\frac{3}{4})}{2(y-\frac{3}{2})} \end{array}$$

Donc les solutions de (E_1) sont

$$\mathcal{S}_1 = \left[\frac{3}{4}, 1\right] \cup \left]\frac{3}{2}, +\infty\right[$$

2. X est solutions de (E_2) si et seulement si :

$$\sin^2(X) \in \left[\frac{3}{4}, 1\right] \cup \left[\frac{3}{2}, +\infty\right[$$

Comme pour tout $X \in \mathbb{R}$, $\sin(X) \in [-1, 1]$, ceci équivaut à

$$\sin^2(X) \in \left[\frac{3}{4}, 1\right]$$

c'est-à-dire : $\sin^2(X) \ge \frac{3}{4}$, soit $\left(\sin(X) - \frac{\sqrt{3}}{2}\right) \left(\sin(X) + \frac{\sqrt{3}}{2}\right) \ge 0$ On obtient donc

$$\sin(X) \in \left[-1, \frac{-\sqrt{3}}{2}, \right] \cup \left[\frac{\sqrt{3}}{4}, 1\right]$$

On a d'une part $\sin(X) \leq \frac{-\sqrt{3}}{2} \iff X \in \bigcup_{k \in \mathbb{Z}} \left[\frac{4\pi}{3} + 2k\pi, \frac{5\pi}{3} + 2k\pi \right]$ et d'autre part $\sin(X) \geq \frac{\sqrt{3}}{2} \iff$

$$X \in \bigcup_{k \in \mathbb{Z}} \left[\frac{-\pi}{3} + 2k\pi, \frac{2\pi}{3} + 2k\pi \right]$$

Ainsi les solutions de (E_2) sont

$$S_2 = \bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{3} + 2k\pi, \frac{2\pi}{3} + 2k\pi \right] \cup \left[\frac{4\pi}{3} + 2k\pi, \frac{5\pi}{3} + 2k\pi \right]$$

En remarquant que $\frac{4\pi}{3} = \frac{\pi}{3} + \pi$ et $\frac{5\pi}{3} = \frac{2\pi}{3} + \pi$, on peut simplifier les solutions de la manière suivante :

$$S_2 = \bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{3} + k\pi, \frac{2\pi}{3} + k\pi \right]$$

3. x est solution de (E_3) si et seulement si

$$2x + \frac{\pi}{6} \in \bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{3} + k\pi, \frac{2\pi}{3} + k\pi \right]$$

C'est-à-dire

$$2x \in \bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{3} - \frac{\pi}{6} + k\pi, \frac{2\pi}{3} - \frac{\pi}{6} + k\pi \right]$$

On obtient

$$x \in \bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{12} + \frac{k\pi}{2}, \frac{\pi}{4} + \frac{k\pi}{2} \right]$$

Les solutions sur $[0, 2\pi[$ sont donc

$$S_3 = \left[\frac{\pi}{12}, \frac{\pi}{4} \right] \cup \left[\frac{\pi}{12} + \frac{\pi}{2}, \frac{\pi}{4} + \frac{\pi}{2} \right] \cup \left[\frac{\pi}{12} + \pi, \frac{\pi}{2} + \pi \right] \cup \left[\frac{\pi}{12} + \frac{3\pi}{2}, \frac{\pi}{4} + \frac{3\pi}{2} \right]$$