DESIGNAND ANALYSIS OF ALGORITHMS

CS 4120/5120
MASTER THEOREM

AGENDA

- Review the generalized recursion tree method of $T(n) = a \cdot T(\frac{n}{b}) + f(n)$
- Master theorem for solving recurrence

RECALL: RECURSION TREE METHOD GENERALIZATION

• Consider recursive function in the

form of
$$T(n) = \mathbf{a} \cdot T\left(\frac{n}{b}\right) + f(n)$$
.
$$T(n) = \Theta\left(n^{\log_b a}\right) + \sum_{j=0}^{\lfloor \log_b n \rfloor - 1} \mathbf{a}^j f(n_j) \text{ } \lfloor \log_b n \rfloor$$

THE MASTER METHOD

- A "cookbook" method for solving recurrence of the form $T(n) = a \cdot T(\frac{n}{b}) + f(n)$.
- Conditions
 - $-a \ge 1$ and b > 1 are constants.
 - -f(n) is an asymptotically **positive** function.
 - f(n) is said to be asymptotically positive if there exists $n_0 \ge 0$ such that f(n) > 0 for all $n \ge n_0$.
 - -T(n) is defined on the nonnegative integers

MASTER THEOREM THE COOKBOOK

• For recurrence $T(n) = \mathbf{a} \cdot T\left(\frac{n}{b}\right) + f(n)$, where we interpret $\frac{n}{b}$ to mean either $\left\lfloor \frac{n}{b} \right\rfloor$ or $\left\lceil \frac{n}{b} \right\rceil$, T(n) has the following asymptotic bounds:

Case I: If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

Case 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log n)$.

Case 3: If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $a \cdot f(\frac{n}{b}) \le c \cdot f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

All three cases of master theorem compare f(n) with $n^{\log_b a}$.

WHY nlogb ap

• Recall the general format of the running time function derived by the recursion-tree method.

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b n \rfloor - 1} a^j f(n_j)$$

• Essentially, the dominating term between $\Theta(n^{\log_b a})$ and $\sum a^j f(n_j)$ will determine the asymptotic bound of T(n).

MASTER THEOREM CASE 1 EXPLAINED

- Case I: If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = O(n^{\log_b a})$.
 - Keep in mind that $T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b n \rfloor 1} a^j f(n_j)$
 - The condition $f(n) = O(n^{\log_b a \epsilon})$ means f(n) is asymptotically smaller than $n^{\log_b a}$ by a factor of n^{ϵ} for some $\epsilon > 0$.

MASTER THEOREM CASE 2 EXPLAINED

- Case 2: If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \lg n)$.
 - Keep in mind that $T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b n \rfloor 1} a^j f(n_j)$
 - The condition $f(n) = O(n^{\log_b a})$ means f(n) and $n^{\log_b a}$ are about the same size.

MASTER THEOREM CASE 3 EXPLAINED

- Case 3: If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $a \cdot f(\frac{n}{b}) = c \cdot f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
 - The condition $f(n) = \Omega(n^{\log_b a + \epsilon})$ means f(n) must be asymptotically larger than $n^{\log_b a}$ by a factor of n^{ϵ} for some $\epsilon > 0$.
 - f(n) must be polynomially larger
 - The regularity condition $a \cdot f\left(\frac{n}{b}\right) = c \cdot f(n)$ restricts the algebraic structure of f(n).

MASTER THEOREM EXAMPLE - 1

- Recall the running time of binary search algorithm $T(n) = T\left(\frac{n}{2}\right) + \Theta(1)$.
- Solve the recurrence using master theorem.
- Step I: $a = 1 \ge 1$, $b = 2 \ge 1$, f(n) = 0(1) that is asymptotically **positive**.
- Step 2: $n^{\log_b a} = \underline{n^{\lg 1} > n^0}$, $f(n) = \underline{\Theta(n^{\lg 1})}$, where $\epsilon = \underline{\hspace{1cm}}$
- Step 3: Case 2 of the master theorem can apply.
 - Checking regularity condition if case 3 condition is met.
 - Show that _____ for constant c < 1 and all sufficiently large n.
 - Solve for $c, c = \underline{\hspace{1cm}}$.
- Step 4: $T(n) = \Theta(n^{\log_b a} \cdot \lg n) = \Theta(\lg n)$.

MASTER THEOREM EXAMPLE - 2

- Recall the running time of binary search algorithm $T(n) = 3\left(\frac{n}{4}\right) + n \lg n$.
- Solve the recurrence using master theorem.
- Step I: $a = 3 \ge 1$, b = 4 > 1, $f(n) = (n \lg n)$ hat is asymptotically **positive**.
- Step 2: $n^{\log_b a} = n^{\log_4 3} < n^1$, $f(n) = n^{\log_4 3 + \epsilon}$, where $\epsilon = 1 \log_4 3 \approx 0$. 2
- **Step 3**: Case <u>3</u> of the master theorem can apply.
 - Checking regularity condition if case 3 condition is met.
 - Show that $3 \cdot f(n/4) \le c \cdot f(n)$ for constant c < 1 and all sufficiently large n.
 - Solve for c, c = 3/4.
- Step 4: $T(n) = \Theta(f(n)) = \Theta(n \log n)$

- Recall the running time of Strassen's square matrix algorithm $T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$
- Solve the recurrence using master theorem.
- Step I: $a = __ \ge __$, $b = ___ > __$, $f(n) = ___$ that is asymptotically $___$.
- Step 2: $n^{\log_b a} =$ _____, f(n) =_____, where $\epsilon =$ ____.
- **Step 3**: Case _____ of the master theorem can apply.
 - Checking regularity condition if case 3 condition is met.
 - Show that _____ for constant c < 1 and all sufficiently large n.
 - Solve for $c, c = \underline{\hspace{1cm}}$.
- Step 4: T(n) =_____.

- Recall the running time of Strassen's square matrix algorithm $T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$
- Solve the recurrence using master theorem.
- Step I: $a = \underline{7} \ge \underline{1}$, $b = \underline{2} > \underline{1}$, $f(n) = \underline{\Theta(n^2)}$ that is asymptotically <u>positive</u>.
- Step 2: $n^{\log_b a} = \underline{n^{\lg 7} > n^{\lg 4}}$, $f(n) = \underline{o(n^{\lg 7 \epsilon})}$, where $\epsilon = \underline{\lg 7 \lg 4 > 0}$.
- **Step 3**: Case ____ of the master theorem can apply.
 - Checking regularity condition if case 3 condition is met.
 - Show that _____ for constant c < 1 and all sufficiently large n.
 - Solve for $c, c = \underline{\hspace{1cm}}$.
- Step 4: $T(n) = \underline{\Theta(n^{\log_b a})} = \underline{\Theta(n^{\lg 7})}$.

- Solve recurrence $T(n) = 3 \cdot T\left(\frac{n}{4}\right) + n$ using master theorem.
- Step I: $a = __ \ge __$, $b = ___ > __$, $f(n) = ___$ that is asymptotically $___$.
- Step 2: $n^{\log_b a} =$ _____, f(n) =_____, where $\epsilon =$ ____.
- Step 3: Case _____ of the master theorem can apply.
 - Checking regularity condition if case 3 condition is met.
 - Show that _____ for constant c < 1 and all sufficiently large n.
 - Solve for $c, c = \underline{\hspace{1cm}}$.
- Step 4: T(n) =_____.

- Solve recurrence $T(n) = 3 \cdot T\left(\frac{n}{4}\right) + n$ using master theorem.
- Step I: $a = 3 \ge 1$, b = 4 > 1, f(n) = n that is asymptotically **positive**.
- Step 2: $n^{\log_b a} = n^{\log_4 3} < n^1$, $f(n) = n^{\log_4 3 + \epsilon}$, where $\epsilon = 1 \log_4 3 > 0$.
- **Step 3**: Case <u>3</u> of the master theorem can apply.
 - Checking regularity condition if case 3 condition is met.
 - Show that $3 \cdot f(n/4) = c \cdot f(n)$ for constant c < 1 and all sufficiently large n.
 - Solve for c, c = 3/4 < 1.
- Step 4: $T(n) = \underline{\Theta(f(n))} = \Theta(n)$

- Recall the running time of merge-sort algorithm $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$
- Solve the recurrence using master theorem.
- Step I: $a = __ \ge __$, $b = ___ > __$, $f(n) = ___$ that is asymptotically $___$.
- Step 2: $n^{\log_b a} =$ ______, f(n) =______, where $\epsilon =$ _____.
- **Step 3**: Case _____ of the master theorem can apply.
 - Checking regularity condition if case 3 condition is met.
 - Show that _____ for constant c < 1 and all sufficiently large n.
 - Solve for $c, c = \underline{\hspace{1cm}}$.
- Step 4: T(n) =_____.

- Recall the running time of merge-sort algorithm $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$
- Solve the recurrence using master theorem.
- Step I: $a = 2 \ge 1$, $b = 2 \ge 1$, f(n) = 0(n) that is asymptotically **positive**.
- Step 2: $n^{\log_b a} = \underline{n^{\lg 2} = n^1}$, $f(n) = \underline{\Theta(n^{\lg 2})}$, where $\epsilon = \underline{\hspace{1cm}}$.
- Step 3: Case 2 of the master theorem can apply.
 - Checking regularity condition if case 3 condition is met.
 - Show that _____ for constant c < 1 and all sufficiently large n.
 - Solve for $c, c = \underline{\hspace{1cm}}$.
- Step 4: $T(n) = \Theta(n^{\log_b a} \cdot \lg n) = \Theta(n \lg n)$.

NEXT UP PRUNE-AND-SEARCH

REFERENCE