

Arquitetura e Organização de Computadores II

Prof. Daniel Stefani Marcon

Apresentação Geral

- Bacharel em Ciência da Computação pela Unisinos
- Mestre em Ciência da Computação pela UFRGS
- Doutor em Ciência da Computação pela UFRGS
 - Área de pesquisa: Redes de Computadores
- Emails: daniel.stefani@gmail.com,

danielstefani@unisinos.br

Resposta em até 72h

Conhecendo a Turma

- Nome
- Quando fizeram Arquitetura e Organização de Computadores I?
- Conhecimento sobre arquitetura e organização de computadores
- Já cursaram essa atividade acadêmica?
- Trabalham?

Informações Importantes

- Sexta-feira à noite (63): 19h30min às 22h23min
- Carga horária: 60 horas/aula
- Frequência mínima: 75% de presença (4 aulas ausentes no máximo!)
 - Não faltar às aulas
 - Controle sua frequência pelo Minha Unisinos
- Celulares devem ficar desligados ou no silencioso e não poderão ser utilizados durante as aulas

Recursos

- Moodle: http://www.moodle.unisinos.br
 - Slides
 - Material de apoio
 - Links
 - Entrega de trabalhos
- Ensino propulsor: a universidade oferece assistência para quem tiver dificuldades em matemática, inglês e português

Recursos

- BIBLIOTECA DA UNISINOS!!!!
 - www.unisinos.br/biblioteca
 - Book express
 - Livros on-line

Configuração do proxy para acesso a livros on-line na biblioteca:
http://www.unisinos.br/biblioteca/pesquisa

Biblioteca da Unisinos

Em São Leopoldo:

Em Porto Alegre: andar -2 (nível biblioteca)

Conhecimentos

- Arquiteturas CISC / RISC
- Pipeline (paralelismo em nível de instrução)
- Arquitetura da família Intel 8086
- Arquiteturas superescalares
- Arquitetura VLIW
- Computadores vetoriais
- Arquiteturas paralelas
- Técnicas de tolerância a falhas
- Hierarquia de memória, memória cache e memória virtual
- Avaliação de desempenho

Competências

- Caracterizar as principais arquiteturas de computadores existentes
- Caracterizar o funcionamento e a operação de arquiteturas multiprocessadas e vetoriais
- Avaliar criticamente as diferentes arquiteturas
- Analisar técnicas de tolerância a falhas no contexto de arquiteturas de computadores
- Identificar os diferentes elementos de uma arquitetura de computador

Metodologia

- Aulas expositivas
 - Temos muito conteúdo para ver
- Leitura/pesquisa de material extraclasse
 - Este tipo de atividade é importante para o aluno atingir os objetivos da disciplina
- Exercícios em aula e extraclasse
 - Sempre mostrar os exercícios realizados e tirar as dúvidas em sala de aula
 - Não negligenciar um conteúdo não entendido ou não praticado
 - Ficar em dia com o conteúdo facilita o aprendizado e a aprovação ao final do semestre

Avaliações

- Duas etapas:
 - Grau A primeira metade do semestre
 - Grau B segunda metade do semestre
- Grau A
 - 13/10 Prova

- Grau C
 - **15/12** Prova

Como se calcula a média final?

Grau B

Média Final =
$$\frac{\text{Grau A} + 2 \times \text{Grau B}}{2}$$

IMPORTANTE: a média na Unisinos é 6.0

Avaliações

Grau A:

– Prova: 7,0

Exercícios: 3,0

Grau B:

– Prova: 6,0

- Trabalho: 4,0

Grau C:

Prova: 10,0

Substitui o GA ou o GB

Avaliações

- Provas individuais e sem consulta
- Prova do GB
 - Todo o conteúdo visto durante o semestre
- Exercícios
 - Em aula ou extraclasse

Bibliografia

• Básica:

- HENNESSY, J.L. PATTERSON, D. A. Arquitetura de Computadores: uma abordagem quantitativa. Rio de Janeiro: Campus, 2003. 827p. ISBN: 85-352-110 85-35285-3.
- HWANG, K. Advanced computer architecture: paralelism, scalability and programability. New Jersey: McGraw-Hill, 1993.
- CULLER, D. E. Parallel Computer Architecture: a hardware/software approach. New York: Morgan Kaufmann, 1998.

Bibliografia

Complementar:

- BUYYA, R. (Ed.). High performance cluster computing: architectures and systems. New Jersey: Prentice Hall, 1999. v. 1.
- BUYYA, R. (Ed.). High performance cluster computing: programming and applications.
 New Jersey: Prentice Hall, 1999. v. 2.
- CRAGON, H. G. Computer architecture and implementation. Cambridge: Cambridge University Press, 1999.
- CULLER, D. E. et al. Parallel computer architecture: a hardware/software approach. New York: Morgan Kaufmann, 1998.
- DOWD, K. High performance computing: RISC architectures, optimization benchmarks.
 Cambridge: O'Reilly e Associates, 1998.
- HAYES, J. P. Computer architecture and organization. New Jersey: WCB/McGraw-Hill, 1998.
- HENNESSY, J. L.; PATTERSON, D. A. Organização e projeto de computadores: a interface hardware/software. Rio de Janeiro: LTC, 2000.
- MULLER, S. M.; WOLFGANG, P. J. Computer architecture: complexity and correctness.
 Springer-Verlag, 2000.
- TANENBAUM, A. Structured computer organization. 4. ed. Upper Saddle River: Prentice Hall, 1998.

Dicas para ser aprovado

- 1) Consultar o material indicado ANTES da aula
- 2) Ler atentamente o que foi pedido
- 3) Fazer **TODOS** os exercícios
- 4) Pegar **livros** sobre a disciplina na biblioteca física ou virtual (e **estudar**)...
- 5) Buscar outros exercícios
- 6) Perguntar ao professor se não entendeu algum conteúdo

Dicas para ser aprovado

- 7) Comunicar-se com o professor o quanto antes, sempre que surgir algum problema ou situação diferente
- 8) Nunca ficar com dúvida sobre o conteúdo: pergunte, pergunte, pergunte...