Série analyse Discriminante 2CSSIT

Exercice1:

Soit le tableau de données suivant:

X^1	-4	0	4	8	-8	0	4	-4
X^2	0	-4	0	4	-4	4	8	-8

et les groupes $G_1 = \{1, 2, 5, 8\}, G_2 = \{3, 4, 6, 7\}.$

- 1- Calculer V et E.
- 2- Donner la combinaison linéaire $Y(.) = u_1 X^1(.) + u_2 X^2(.)$ en déterminant $u \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ qui maximise $u^t E u$ sous la contrainte $u^t V u = 1$.
- 3- A quel groupe affecteriez-vous le point $w_0=(1,-2)$

On pose, $V = R^t DR$

 ${\bf R}$ est la matrice des vecteurs propres normés de V et D matrice diagonale des valeurs propres de V

- 4- Calculer D et R
- 5- Calculer les vecteurs propres wde $T = D^{\frac{-1}{2}}RER^tD^{-\frac{1}{2}}$

On pose $u = R^t D^{-\frac{1}{2}} w$

6- Calculer la projection des individus sur Δu_1 .

Exercice 2: Soit le tableau de données suivant

X^1	3	5	4	-5	-3	-4
X^2	12	12	12	-11	-12	-13

et les groupes $G_1 = \{1, 2, 3\}, G_2 = \{4, 5, 6\}$

- 1- Calculer la matrice de var-cov inter groupes E et la matrice de var-cov intra-groupe D
- 2- Déterminer les valeurs propres et vecteurs propres de ED⁻¹.
- 3- Donner la projection des individus sur l'axe1.
- 4- A quel groupe affecteriez-vous le point $w_0 = (2, 2)$.

Exercice3:Soit le tableau de données suivant

\mathbf{X}^1	3	5	4	-5	-3	-4
\mathbf{X}^2	12	12	12	-11	-12	-13

et les groupes $G_1 = \{1, 2, 3\}, G_2 = \{4, 5, 6\}$

- 1- Calculer la matrice de variance-covariance V et la matrice de var-cov intra-groupes D.
- 2- Déterminer les valeurs propres et les vecteurs propres de $D^{-1}E$.
- 4- Donner la projection des individus sur l'axe1.

On voudrait affecter l'objet $w_0 = (3, -11)$ à l'un des groupes selon la formule de bayes.

5- Rappeler le principe d'affectation de Bayes.

On pose

$$p(x/G_k) = \frac{1}{(2\pi)^{\frac{p}{2}} |D_k|^{\frac{1}{2}}} \exp(\left(-(x-g_k)^t D_k^{-1} (x-g_k)\right).$$

1

6- Calculer le score $\log p(G_k)(p(x/G_k), \text{pour } k = 1, 2.$

7- Le nouvel objet est affecté au groupe de score maximal, Déduire à quel groupe appartient donc w_0 .

Exercice4:

On désire discriminer au mieux par l'AD, les deux classes $C_1 = \{w_1, w_2, w_3\}$ et $C_2 = \{w_4, w_5\}$ dont les coordonnées des objets se trouvent dans le tableau suivant:

\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3	\mathbf{w}_4	\mathbf{w}_5
2	0	0	3	5
0	1	2	4	4

1- Montrer que

$$\frac{u^t E u}{u^t D u} \max \Leftrightarrow \frac{u^t E u}{u^t V u} \max \Leftrightarrow u^t E u \max \text{ sous la contrainte que } u^t V u = 1.$$

- 2- Comparer entre les valeurs propres de $D^{-1}E$ et $V^{-1}E$.
- 3- Calculer $D^{-1}E$.
- 4- Calculer les valeurs propres et vecteurs propres de la matrice $D^{-1}E$.
- 5- Calculer la projection des individus sur le premier axe discriminant.
- 6- A quelle classe affecteriez-vous le point $\mathbf{w}(\mathbf{1},\mathbf{3})$.? Effectuez ce calcul selon deux manières; géométrique et probabiliste (affectation de bayes paramétrique).