

Cours de Thermique du bâtiment

Vidéo n°1

Analogie électrique

Simon Rouchier Maître de Conférences Polytech Annecy-Chambéry Université de Savoie

vidéo réalisée le 08/10/2015

Température = Tension
Puissance = Intensité

$$\Delta T = R \varphi$$

 $R = \frac{e}{\lambda}$ [m².K/W]

ou
$$\varphi = U\Delta T$$
 avec $U = \frac{1}{R}$ [W/m².K]

$$\Delta T = R_{total} \times \varphi \quad \text{avec} \qquad R_{total} = \frac{1}{h_e} + \frac{e_1}{\lambda_1} + \frac{e_2}{\lambda_2} + \frac{e_3}{\lambda_3} + \frac{1}{h_i}$$

$$\varphi = U\Delta T \quad \text{avec} \quad U = \frac{1}{R_{total}} = \frac{1}{\frac{1}{h_1} + \frac{e_1}{\lambda_1} + \frac{e_2}{\lambda_2} + \frac{e_3}{\lambda_3} + \frac{1}{h_i}}$$

	Variable	Dimension	
\overline{T}	Température	K	
λ	Conductivité	W/m.K	
h	Coeff. surfacique	W/m ² .K	
\overline{R}	Résistance	m².K/W	s'additionne en série
U	Coeff. de transfert	W/m ² .K	ne s'additionne pas en série
$\overline{\varphi}$	Flux surfacique	W/m ²	
φ	Flux total	W	la même chose mais rapportée à la surface

$$\Phi = A.U.(T_e - T_i)$$
[W] [m²]

avec
$$A.U = A_1U_1 + A_2U_2$$

$$U_1 = \frac{1}{R_1} = \frac{\lambda_1}{e_1}$$

$$U_2 = \frac{1}{R_2} = \frac{\lambda_2}{e_2}$$

• Parois en régime non permanent

 $\begin{array}{c} R \\ C \\ \end{array}$

Injection de puissance

 Ecoulements d'air, convection, rayonnement...

Exercice

