Discriminazione dei muoni da decadimenti di B e D

Matteo Abis matteo@latinblog.org

Università degli Studi di Padova Scuola Galileiana di Studi Superiori

2 ottobre 2009

Obiettivi dello studio

rivelatore CMS:

discriminare tra mesoni B e mesoni D in decadimenti

$$B \rightarrow \mu X$$

 $D \rightarrow \mu X$

attraverso le diverse distribuzioni del parametro d'impatto.

Struttura di CMS

Tracker cilindri concentrici di sensori al silicio. Misura l'impulso delle particelle cariche

Calorimetri misurano l'energia di elettroni e fotoni (ECAL) o di altri adroni (HCAL)

Rivelatori μ camere a deriva, solo i muoni sono abbastanza penetranti da raggiungerle.

Sistema di riferimento di CMS

- pseudorapidità $\eta = -\log \tan \theta/2$
- η ha lo stesso segno di z e va da $-\infty$ a $+\infty$

Dati Monte Carlo

un milione di eventi $pp \to \mu X$

Selezione delle tracce ricostruite:

- identificazione dei muoni:
 - ullet hit nell'ultima camera a μ
 - ullet almeno due segmenti compatibili nelle camere a μ
 - ullet segmenti nel $\mathit{tracker}$ ben accoppiati con i segmenti nelle camere a μ
- $p_t > 3 \,\mathrm{GeV/c}$, trigger e campo magnetico di CMS
- $|\eta| < 2.5$

Associazione tracce ricostruite → particelle generate

Non c'è codice appositamente sviluppato al CERN

- minima distanza nello spazio (η, ϕ) . $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
- ullet ulteriore taglio delle coppie con $\Delta R < 0.1$ o $\Delta p_t/p_t < 0.1$

Parametro d'impatto d

Definizione

la minima distanza sul piano trasverso fra la traccia estrapolata e il punto dell'interazione tra i fasci di protoni.

- $au_D = 0.4\,\mathrm{ps}$ e $au_B = 1.6\,\mathrm{ps} o \mathrm{diverse}$ distribuzioni in d
- ullet parametro d'impatto d
 ightarrow discriminare B e D

Distribuzioni in d

Dipendenze analizzate:

- global track e inner track
- p_t minimo
- luminosità integrata (numero di eventi)

Test di Kolmogorov-Smirnov

probabilità che due campioni provengano dalla stessa popolazione

- distribuzioni cumulative
- massima distanza
- probabilità

In funzione del numero di eventi

selezione $p_t > 3 \,\mathrm{GeV/c}$

$$5\sigma \to 7 \cdot 10^{-3} \, \mathrm{pb}^{-1} \ (\approx 250 \,\, 000 \, \mu)$$

In funzione di p_t

il livello di confidenza scende perché diminuisce la significanza statistica del campione.

eliminare la dipendenza dal numero di eventi

 \bullet distribuzione d dei μ che superano la selezione richiesto

eliminare la dipendenza dal numero di eventi

- ullet distribuzione d dei μ che superano la selezione richiesto
- due istogrammi da 10000 GetRandom dalle distribuzioni

eliminare la dipendenza dal numero di eventi

- ullet distribuzione d dei μ che superano la selezione richiesto
- due istogrammi da 10000 GetRandom dalle distribuzioni
- test di Kolmogorov
- si ripete 100 volte, media e RMS sul grafico

eliminare la dipendenza dal numero di eventi

- ullet distribuzione d dei μ che superano la selezione richiesto
- due istogrammi da 10000 GetRandom dalle distribuzioni
- test di Kolmogorov
- si ripete 100 volte, media e RMS sul grafico

Conclusioni

- luminosità integrata $\rightarrow 5\sigma$: $7 \cdot 10^{-3} \, \mathrm{pb^{-1}} \approx 1$ –12 giorni di LHC¹.
- ullet selezione p_t più alto non sembra influenzare la discriminazione
- inner track discrimina meglio di global track

 $^{^1}Stima$ della luminosità istantanea tra $10^{30}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$ e $10^{31}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$