南京邮电大学 2018/2019 学年第二学期

《高等数学 A(下)》期末试卷(A)

院(系)_	(系)			班级			学号			姓名		
题号		=	Ξ	四	五	六	七	八	九	十	总分	
得分												
得 分		、选择	题(本	大題を	分5小	题,每	题 3 分) ,合	计 15 分	分)		
	1.	二元函	数 <i>f</i> (<i>x</i> ,	$y) = \begin{cases} -\frac{1}{2} & \text{if } y > 0 \\ 0 & \text{if } y > 0 \end{cases}$	$\frac{xy}{x^2 + y^2}$	(x, y) = ($\neq (0,0)$ $= (0,0)$	在点(0	,0)处	()	
2. 曲面 2	(<i>C</i>)	不连续	,偏导	数存在	((<i>B</i>) 连续(<i>D</i>) 不達	连续,偏			()	
2. щщ			y-4=			(B) 2x		=0		(,	
	(<i>C</i>)	4x+3	2y+z	-8=0		(D)4x	+2y+	z+8=	= 0			
3. 设 <i>L</i> 対	り曲线	y = -	$\sqrt{1-x^2}$,	则曲约	 表积分∫	$(x^2 + $	y^2) ds	=		()	
4. 下列约	及数中	收敛的结	级数是			π				()	
(A)	$\sum_{n=1}^{\infty} \sin$	$\frac{1}{n}$	$(B)\sum_{n=1}^{\infty} I$	n^3e^{-n}	$(C)\sum_{n=1}^{\infty}$	$\sum_{n=1}^{\infty} (-1)^n$	$\left(\frac{n}{n+1}\right)$	$\right)^n$	$(D)\sum_{n=1}^{\infty}$	$\frac{\sqrt{n}+(n+1)}{n+1}$	$\frac{-1)^n}{1}$	
5. 已知幂	琴级数	$\sum_{n=1}^{+\infty} a_n(x)$:-1) ⁿ 在	$\hat{x} = -1$	处收敛	,则该组	吸数在フ	x=2处		()	
(A)	绝对收	女敛	(B)	条件收敛	攵	(C)发	散	$(D)^{\frac{1}{2}}$	无法断定	Ē		

得 分

二、填空题(本大题分5小题,每题4分,合计20分)

2. 设 $z = f(2x, \frac{x}{y})$, 其中 f 有二阶连续偏导数,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$

$$\frac{\partial^2 z}{\partial x^2} =$$

3. 设 Ω 是位于锥面 $z = \sqrt{x^2 + y^2}$ 之上、球面 $x^2 + y^2 + z^2 = 2az(a > 0)$ 之内的区域, 三重积分 $\iint_{\Omega} f(x^2 + y^2 + z^2) dx dy dz$ 在球面坐标下化成三次积分为______

4. 设 Σ 是柱面 $x^2 + y^2 = a^2$ 在 $0 \le z \le h$ 之间的部分,则积分 $\iint_{\Sigma} x^2 dS = \underline{\hspace{1cm}}$

5. 函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 $2 < |z| < +\infty$ 内的洛朗级数展开式为 ______

得 分

三、(7分) 在球面 $x^2 + y^2 + z^2 = 20$ ($x, y, z \ge 0$) 上求一点,使得函数 $f(x, y, z) = xyz^3$ 在该点取值最大,并求出该最大值.

得 分

四、(6分) 计算二重积分 $\iint_D \frac{\sin x}{x} dx dy$, 其中 D 是由 y = x 与 $y = x^2$ 所 围成的有界闭区域.

得 分

五、(9分) 计算曲线积分 $\oint_L \frac{ydx-xdy}{x^2+y^2}$, 其中 L 为圆周 $(x-1)^2+y^2=2$,取逆时针方向.

得 分

六、(10 分) 计算曲面积分 $\iint_{\Sigma} x^2 dy dz + y^2 dz dx + z^2 dx dy$, 其中 Σ 是抛

物面 $z = x^2 + y^2$ 被平面 z = 1 所截下的有限部分,取下侧.

得 分

七、(8分) 求幂级数 $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$ 的收敛半径、收敛域与和函数.

八、(8分) 将函数 $f(x) = x(0 \le x \le \pi)$ 展开成以 2π 为周期的余弦级数.

得 分

九、计算下列各题(本大题分2题,每题6分,合计12分)

(1) 讨论复变函数 $f(z) = x^2y + ixy^2$ 的可导性与解析性.

(2) 计算复积分 $\int_C \frac{dz}{z(z+1)^2}$, 其中 C 为正向曲线 |z|=2.

得 分

十、(5分) 已知正项级数 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 收敛,证明 $\sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} \frac{a_n}{k^2 + n^2}\right)$ 收敛.

南京邮电大学 2018/2019 学年第二学期

《高等数学 A(下)》期末试卷(A)参考答案

- 一**、选择题**(本大题分5小题,每小题3分,共15分)

- 1. (C) 2. (A) 3. (C) 4. (B) 5. (A)
- 二、填空题(本大题分5小题,每小题4分,共20分)
- 1. $x(ax^2+bx+c)$ 2. $2f_1 + \frac{1}{v}f_2$, $4f_{11} + \frac{4}{v}f_{12} + \frac{1}{v^2}f_{22}$
- 3. $\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} d\varphi \int_0^{2a\cos\varphi} f(r^2) r^2 \sin\varphi dr$ 4. $\pi a^3 h$ 5. $\sum_{n=0}^{\infty} \frac{2^n 1}{2^{n+1}}$
- 三、(7分)解令 $F(x, y, z) = xyz^3 + \lambda(x^2 + y^2 + z^2 20)$,
- 由于 $f(x, y, z) = xyz^3$ 在球面第一卦限部分上最大值存在,故所求点为(2,2,2 $\sqrt{3}$), 所求最大值为 $f_{\text{max}} = f(2,2,2\sqrt{3}) = 96\sqrt{3}$.
- 四、(6分)解 $\iint_{D} \frac{\sin x}{x} dx dy = \int_{0}^{1} dx \int_{x^{2}}^{x} \frac{\sin x}{x} dy = \int_{0}^{1} (\sin x x \sin x) dx = 1 \sin 1$
- 五、(9分)解 记 $P = \frac{y}{x^2 + y^2}, Q = \frac{-x}{x^2 + y^2}, \quad \text{则} \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = \frac{x^2 y^2}{(x^2 + y^2)^2}.$
- $\text{$f$} l: \begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}, \quad 0 < r << 1, \quad \theta: 0 \to 2\pi$
- 原式= $\int_{l} \frac{ydx xdy}{r^2 + v^2} = \frac{1}{r^2} \int_{l} ydx xdy = \frac{1}{r^2} \cdot (-2) \cdot \pi r^2 = -2\pi$.

六、 $(10 \, \text{分})$ 解 补面S:z=1,取上侧,

由高斯公式,原式=
$$\iint_{\Sigma+S} x^2 dy dz + y^2 dz dx + z^2 dx dy - \iint_{S} x^2 dy dz + y^2 dz dx + z^2 dx dy$$

$$= 2 \iiint_{\Omega} (x+y+z) dv - \iint_{D_{xy}} dx dy = 2 \iiint_{\Omega} z dv - \iint_{D_{xy}} dx dy$$

$$= 2 \int_{0}^{2\pi} d\theta \int_{0}^{1} \rho d\rho \int_{\rho^2}^{1} z dz - \pi = \frac{2}{3}\pi - \pi = -\frac{1}{3}\pi$$

七、(8分)解记
$$u_n = \frac{(-1)^n}{2n+1}x^{2n+1}$$
,则 $\lim_{n\to\infty} \left|\frac{u_{n+1}(x)}{u_n(x)}\right| = x^2$,

当 $x^2 < 1$ 时原级数收敛,当 $x^2 > 1$ 时原级数发散,所求收敛半径 R = 1 又 $x = \pm 1$ 时原级数收敛,故所求收敛域为 [-1,1].

$$\overset{\text{TP}}{\bowtie} s(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1} , \quad x \in [-1,1], \quad s(0) = 0$$

$$s'(x) = \sum_{n=0}^{+\infty} (-1)^n x^{2n} = \frac{1}{1+x^2} ,$$

$$s(x) = s(0) + \int_0^x s'(x) dx = \arctan x , \quad x \in [-1,1].$$

八、 $(8 \, \text{分})$ 解将f(x)偶延拓,再以 2π 为周期作周期延拓,由系数公式

$$b_n = 0, a_0 = \frac{2}{\pi} \int_0^{\pi} x \, d \, \mathbf{x} \, \pi \,,$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} x \cos nx \, dx = \frac{2}{\pi} \cdot \frac{(-1)^n - 1}{n^2} \,,$$

由收敛定理,
$$f(x) = \frac{\pi}{2} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n^2} \cos nx$$
 $(0 \le x \le \pi)$.

九、计算下列各题(本大题分2题,每题6分,合计12分)

(1) 解 记 $u = x^2 y, v = xy^2$ 处处可微,

$$\frac{\partial u}{\partial x} = 2xy$$
, $\frac{\partial u}{\partial y} = x^2$, $\frac{\partial v}{\partial x} = y^2$, $\frac{\partial v}{\partial y} = 2xy$, 根据 $C - R$ 方程得 $x = 0$, $y = 0$,

 $\therefore f(z)$ 在z=0点可导,在复平面上处处不解析.

(2)
$$\Re \operatorname{id} f(z) = \frac{1}{z(z+1)^2} \operatorname{Re} s[f(z), 0] = \lim_{z \to 0} zf(z) = 1$$
,

Re
$$s[f(z), -1] = \lim_{z \to -1} (\frac{1}{z})' = -1$$

原式= $2\pi i \{\text{Re } s[f(z),0] + \text{Re } s[f(z),-1]\} = 0$

十、 (5 分) 证明
$$0 \le u_n = \sum_{k=1}^{\infty} \frac{a_n}{k^2 + n^2} = a_n \sum_{k=1}^{\infty} \frac{1}{k^2 + n^2} \le a_n \sum_{k=1}^{\infty} \int_{k-1}^{k} \frac{1}{x^2 + n^2} dx$$
$$= a_n \int_0^{+\infty} \frac{dx}{x^2 + n^2} = \frac{a_n}{n} \cdot \frac{\pi}{2}$$

因为
$$\sum_{n=1}^{\infty} \frac{a_n}{n}$$
 收敛,由比较判别法得 $\sum_{n=1}^{\infty} u_n$ 收敛.