TFB Transcriptional Regulation in *Halobacterium salinarum*

Genes Directly Regulated by TFBg

Abstract

Transcription factor IIBs, TFBs, are a class of Archaeal general transcription factors responsible for much of the organism's transcriptional regulation and are involved in a wide range of life processes. Through ChIP-chip data and gene expression data, these transcription factors were found to interact with a large range of genes (1220). Furthermore, large transcriptional regulation network between the transcription factors themselves was found. TFBg was then chosen to be overexpressed to observe its impact on the transcription factor regulatory network within the scope of TFBs and the organism's molecular processes. TFBg was chosen due to its size of directly related genes and its importance to the organism.

TFB Clustering Analysis

<u>TFBa</u> **TFBb** <u>TFBc</u> **TFBd** <u>TFBe</u> **TFBf TFBg** 175 658 113 116

Through analysis of ChIP-chip data, a graph of the TFB transcription factors and their regulated genes was produced, demonstrating the extent of genome regulation of TFBs. A standard p-value cutoff of 0.05 was used to determine which genes were directly regulated by the various TFB transcription factors.

TF-TF Networks

interesting to note that TFBe doesn't regulate any TFB genes nor does it regulated by other TFBs. TFBg is regulated by most of the other TFBs, which suggests that it plays an important role in the organism.

The TF-TF network was

created by determining if

any of the directly regulated genes code for another TFB

transcription factor. It is

Figure 2: TFB TFs Network

Figure 3: TFB Hierarchical Clustering with K=8

Gene clustering using gene expression data from the TFBs shown above using the complete linkage hierarchical clustering method with K=8. Through hierarchical clustering of all TFBs, high variance in gene expression between different clusters is shown, suggesting the variability of gene expressions for genes regulated by TFBs (Figure 1). This contrasts with the clustering of TFBg in Figure 4.

TFBg Analysis

Figure 4: TFBg Hierarchical Clustering

Hierarchical complete linkage gene clustering for all genes using gene expression data for transcription factor, TFBg. Compared to the clustering for all TFBs (Figure 3), the TFBg cluster is incredibly precise and specified.

TFBg Heatmaps

Figure 5: TFBg Heat Maps (Green = Overexpression, Red = Underexpression)

TFBg Heatmaps (cont.)

Heatmaps using gene expression data (normalized to wild-type expression levels) from TFBg were generated: one using all genes, one using genes TFBg directly regulated (ChIP-chip data). Genes were organized by hierarchical clustering. Significantly expressed genes were then measured through standard deviations from average gene expression and displayed with non-significantly expressed genes as white bars. Three conditions for the cell affected by TFBg overexpression are shown: lag state, exponential stage, and early stationary phase (going from left to right). As seen on both sets, depending on growth stage, TFBg regulated an isolated set of genes. By comparing the directly regulated and all gene heat maps, TFBg regulates many genes indirectly, through TF-TF networks. In direct regulation, there are certain clusters strongly regulated.

This TF-TF network, through a combination of ChIP-chip and gene expression data, shows how TFBg activates itself, but represses TFBb, thus allowing TFBg to indirectly regulate through TFBb for a total of 362 genes (indirect: 249, direct: 113).

arCOG Analysis

Function	Probability	Expect	Count
Intracellular trafficking; secretion; and vesicular transport	0.002098134	0.071084783	1
Signal transduction mechanisms	0.020430316	0.225101814	1

Table 2: arCOG Analysis

Of the 16 genes directly regulated by TFBg with two standard deviations away from the average gene expression, VNG0255C, VNG0743H, VNG1046H, VNG1088C, VNG1978H, VNG2293G, VNG2335H, VNG2337C, VNG2437G, VNG2585H, VNG2598G, VNG2599H, VNG2600G, VNG2666G, VNG6159H, VNG6293C, only two were found to have known functions. When arCOG analysis was performed for all TFBg directly regulated genes, only three genes were found to have a known gene function, so the genes most strongly regulated were used for certainty of TFBg's function.

Conclusions

From our analysis, the following conclusions can be drawn:

- TFBs directly regulate a total of 1220 genes
- Within TFBs, there is a large TF-TF network with only TFBe being an outlier
- TFBg regulates and thus binds to the promoter of the TFBbencoding gene (represses) as well as its own gene (activates)
- TFBg less strongly, or indirectly, regulates a large number of genes throughout the genome, however due to size limitations and project scope (within TFBs), they are not listed

References

Darnell, Cynthia L., and Amy K. Schmid. "Systems biology approaches to defining transcription regulatory networks in halophilic archaea." Methods 86 (2015):

Facciotti, Marc T., et al. "General transcription factor specified global gene regulation in archaea." Proceedings of the National Academy of Sciences 104.11 (2007): 4630-4635.