研究背景 | Society 5.0

第五期科学技術基本計画 [1] にて **Society 5.0** が策定

- □ 現実空間からセンサーと loT を通じてあらゆる情報が集積(=ビッグデータ)
- □ Al がビックデータを解析し、 高付加価値を現実空間にフィードバック

センサー, loT への**アクセス制御**による 操作や情報閲覧の**権限管理が重要**

[1] 内閣府. "第五期科学技術基本計画." (2016), [Online]. Available: https://www8. cao.go.jp/cstp/kihonkeikaku/5honbun.pdf

研究背景 | Attribute-Based Access Control (ABAC) への Blockchain の応用

- ABAC:
- 大規模 IoT ネットワークなどに採用
- **属性情報**で構成される規則(ポリシー)によりアクセス制御

Subject Attributes

ID: 20xxxxxT

Org.: Kobe Univ.

. . .

Object Attributes

ID: C0001

Place: Cafeteria

• • •

Policy

Subject	Object	Access	
Org. : Kobe Univ.	Place: Cafeteria	Read: T Write: T Execute: F	

研究背景 | Attribute-Based Access Control (ABAC) への Blockchain の応用

- Blockchain 応用 [2] の利点
- ・参加ノードがシステムデータを保持
- ・互いにデータの整合性を維持
- し 単一故障の回避
- し 改ざんへの堅牢性の高さ
- Blockchain 応用の問題点
 - ・OPCODE に GAS (手数料)
- → 保持するポリシーの量と ポリシー検索コストとの関係は?

[2] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, "Smart contract-based access control for the internet of things," IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1594–1605, 2018.

課題 ABAC への Blockchain 応用に際したポリシー検索の改善

Policy	Subject	Object	Access	
1 Oney	Org.: Kobe Univ.	Place: LR	Read: T Write: T Execute: F	

従来手法[3]:ポリシー検索に**線形探索**を採用

→ ポリシー数増加に伴って

GAS(手数料)・実行時間は増加

課題:GAS,実行時間の削減

- 1. 新規ポリシー追加時の包含判定
- 2. 属性情報をキーとしたポリシー探索

[3] Y. Zhang, M. Yutaka, M. Sasabe, and S. Kasahara, "Attribute-based access control for smart cities: A smart-contract-driven framework," IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6372–6384, 2020.

GAS・実行時間削減のポイント

Blockchain 上のデータを操作するOPCODE

- ◆ Blockchain からの読み込み **SLOAD**
- ◆ Blockchain への書き込み **SSTORE**

はローカルの<u>メモリ領域上で動作する</u> OPCODEより GAS (手数料) が大きい

OPCODE	GAS
MLOAD	3
MSTORE	3
SLOAD	2,100
SSTORE	5,000~20,000

挿入,検索について

計算量と Blockchain 操作を減らすことが重要

Add using Counting Bloom Filter (ACBF) 方式

課題 1:新規ポリシー追加時の包含判定の改善

Counting Bloom Filter (CBF)

- 要素の包含判定が O(K)
- 偽陽性のみ存在する

K:Hash関数の数

ACBF 方式

- 追加ポリシーを CBF で包含判定
- **O** (**K**) でポリシーを追加
- SLOAD は K 回
- SSTORE は K + 1 回

定数 K に従ってポリシーの追加が可能

Get using Ring Buffer (GRB) 方式

課題 2:属性情報をキーとしたポリシー探索

Ring Buffer (RB)

- キャッシュとしての役割を果たす
- 要素 Hit 時は, 先端側へ要素を一つ移動… 消費 GAS が大きいため, LRU ではない
- → 参照頻度が高いポリシーを再参照できる

TOP Swap Add Hit

GRB 方式

- キャッシュにより、再参照を容易に
- **O** (**B**) でポリシーを検索
- SLOAD は B + K 回
- SSTORE は K + 1 回

Hit 時に

定数 B, K に従ってポリシーを取得

B:バッファサイズ K:Hash関数の数

実験・評価|シナリオ

ACBF 方式

- ロ 評価シナリオ
- ▶ 1000 回ポリシーを逐次追加する
- → 保持ポリシー数が**増加していく**

GRB 方式

- ロ評価シナリオ
- 1000 個のポリシーから正規分布に従ってポリシーを 500 個取得する
- → **参照頻度が高い**ポリシーが存在
- □ 実験環境
 - ◆ MacBook Air Mac OS 14.3

結果 | Add using Counting Bloom Filter

ロ 評価シナリオ

- ▶ 1000 回ポリシーを逐次 システムへ追加する
- ▶ K = 7 (偽陽性率の最小化より)

K:Hash関数の数

口 評価方式

- **▶ Policy Management Contract (PMC)**
- し 線形探索を採用. 先行研究での提案手法 [3]
- Add using Counting Bloom Filter
- └ 提案手法

GAS(手数料)(10⁵)

実行時間(s)

追加回数	先行研究	ACBF	先行研究	ACBF
1	2.3	4.2	0.049	0.99
100	7.0 <u>÷1.9</u>	3.6	0.63 <u>÷ 6.3</u>	0.10
500	27 ÷7.5	3.6	2.5 <u>÷ 23</u>	0.11
1000	54 <u>÷15</u>	3.5	6.7 <u>÷ 67</u>	0.10

追加回数の増加に伴い GAS・実行時間を ACBF は 先行研究 より削減

ACBF は追加回数に関係なく GAS・実行時間がほぼ一定

[3] Y. Zhang, M. Yutaka, M. Sasabe, and S. Kasahara, "Attribute-based access control for smart cities: A smart-contract-driven framework," IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6372–6384, 2020.

結果 | Get using Ring Buffer

ロ 評価シナリオ

- 1000 個のポリシーから 正規分布に従ってポリシーを 500 個取得する

口 評価方式

- > Access Control Contract (ACC)
- └ 線形探索を採用. 先行研究での提案手法 [3]
- Get using Ring Buffer
- | 提案手法

累積実行時間 (s × 10^3) 累積 GAS (手数料) (10^9)

標準偏差	先行研究	GRB	先行研究	GRB
10	2.6 ÷ 6.2	0.42	3.5 <u>÷4.0</u>	0.87
50	2.7 <u>÷ 2.3</u>	1.2	3.7 <u>÷1.5</u>	2.4
150	2.9 ÷1.5	2.0	3.7 <u>÷1.3</u>	2.7

GAS・実行時間を GRB は 先行研究 より削減

GRB は参照頻度が高いポリシーが多いほど GAS・実行時間を訓滅

[3] Y. Zhang, M. Yutaka, M. Sasabe, and S. Kasahara, "Attribute-based access control for smart cities: A smartcontract-driven framework," IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6372-6384, 2020.

結果|実際のコスト(ACBF 方式)

 $Cost = GAS \times (Base fee + Priority fee)$

Ethereum では,

Base fee = 20, Priority fee = 1(2/27 現在)

口 ACBF 方式

追加回数	先行研究 (GAS)	ACBF (GAS)	先行研究(円)	ACBF (円)
1	2.3	4.2	2,033	3,713
100	7.0	3.6	6,021 <u>- 2,83</u>	3,183
500	27	3.6	23,874 <u>- 20,6</u>	3,183
1000	54	3.5	47,748 <u>- 44,6</u>	4 3,094

 $(\times 10^{5})$

結果|実際のコスト (GRB 方式)

 $Cost = GAS \times (Base fee + Priority fee)$

Ethereum では,

Base fee = 20, Priority fee = 1(2/27 現在)

□ GRB 方式

標準偏差	先行研究 (GAS)	GRB (GAS)	先行研究 (円/回)	GRB(円/回)
10	2.6	0.42	42,106	- 34,679 7,427
50	2.7	1.2	47,748	<u>- 26,52</u> 7 21,221
150	2.9	2.0	51,285	<u>- 17,432</u> 33,853

 $(\times 10^{9})$

今後の課題

◆ 依然として GAS は高い

→ **手数料の低い** Blockchain を**レイヤー構造**に 導入したフレームワークの提案

Point

セキュリティ面と手数料・スケーラビリティ とのトレードオフを考慮する必要がある

まとめ

- ■目的
 - ◆ Blockchain ベース ABAC フレームワークに関する ポリシー検索コスト・実行時間の削減
- アプローチ
 - **◆ CBF** を用いた包含判定 による**ポリシー追加:ACBF**
 - **◆ CBF**, **RB** を用いた参照頻度を考慮した**ポリシー取得:GRB**
- 結果
 - ◆ ACBF:定数に従った GAS・実行時間でかつ改善
 - ◆ GRB:参照頻度が高いほど GAS・実行時間の改善
- 今後の課題

手数料の低い Blockchain を**レイヤー構造**に導入したフレームワークの提案