T2-Efeito Fotoelétrico

Rafael Anjo Cavaco *
Departamento de Física e Astronomia
Faculdade de Ciências da Universidade do Porto

8 de novembro de 2021

Resumo

Esta atividade experimental teve como principal objetivo a determinação da constante de Planck, h, e da função trabalho, W, do cátodo Sb-Cs da célula fotoelétrica utilizando-se LEDs como fonte de excitação. Determinou-se h com um erro e incerteza máximos de 24% e 14%, respetivamente, e W com erro e incerteza máximos de 18% e 19%.

^{*}up201907130@fc.up.pt

1 Introdução

Adaptado de [1].

1.1 Objetivos

- -Entender em que consiste o efeito fotoelétrico.
- -Estudar a dependência do potencial de paragem com a frequência da luz incidente.

-Determinar experimentalmente o valor da constante de Planck e do trabalho de extração de um eletrão do cátodo da célula fotoelétrica.

1.2 Introdução teórica

1.2.1 Efeito Fotoelétrico

Quando um fotão constituinte da radiação eletromagnética incide num metal pode ocorrer a remoção de um eletrão. A este fenómeno designa-se por efeito fotoelétrico. Se a energia do fotão, E=hf (onde f corresponde à frequência do feixe e h a constante de Planck), for superior à energia de remoção do eletrão, W, este sai do átomo com uma energia cinética dada por

$$T = \frac{mv^2}{2} = hf - W \tag{1}$$

Caso a energia do fotão seja inferior à função trabalho, W, o eletrão não é removido. Assim, a condição para a existência do efeito fotoelétrico é $hf \ge W$.

No caso do eletrão ser removido, ele vai ser "ejetado" do cátodo (K) e recolhido num elétrodo coletor, originando uma corrente I. Se colocarmos o coletor a uma diferença de potencial inferior ao emissor, podemos anular a corrente, sendo este potencial designado por potencial de paragem, V_0 . Esse potencial é o que anula a energia cinética do eletrão e por isso

$$eV_0 = \frac{mv^2}{2} = hf - W \tag{2}$$

Por outro lado, se o potencial for acelerador, haverá um valor que permite que todos os eletrões cheguem ao cátodo e, por isso, existirá uma corrente máxima designada por corrente de saturação.

2 Atividade experimental

2.1 Método experimental

• Montagem e equipamento

Esta atividade experimental foi dividida em duas partes, ambas com o objetivo de determinar a constante de Planck e a função trabalho do cátodo de Sb-Cs (constituinte da célula fotoelétrica) : na parte A, variamos a resistência no reóstato e registamos o valor da tensão quando se observava que a corrente era zero no elétrometro. Também se retirou valores da tensão e da corrente de modo a se poder construir um gráfico de I(V) para cada LED. Na parte B, o modo de obter o potencial de paragem foi utilizando um condensador em série e registando a tensão nos seus terminais.

Os esquemas experimentais para a parte A e B são, respetivamente, os seguintes:

Figura 1: Esquema experimental utilizado na parte A da atividade.

Figura 2: Esquema experimental utilizado na parte B da atividade.

Os equipamentos utilizados foram os seguintes: um multímetro com a funcionalidade de voltímetro, um eletrómetro que permite medir correntes muito pequenas, um reóstato, uma célula fotoelétrica, um alimentador dos LEDs a 5V dc e um condensador (C=100nF). A célula é constituida por um cátodo(K) de Sb-Cs, tendo sensibilidade máxima para $\lambda=340nm$ e opera essencialmente na gama de $\lambda\in[185,650]nm$ [2]. Tinhamos ao dispor 9 LEDs com diferentes frequências. As suas características são as seguintes:

LED	$\lambda(nm)$	$u(\lambda)(nm)$	$f(10^{14}Hz)$	$u(f) (10^{13} Hz)$
1	376	5	8,0	1
2	396	7	7,6	1
3	457	10	6,6	1
4	468	11	6,4	2
5	523	15	5,7	2
6	590	7	5,08	0,6
7	610	9	4,91	0,7
8	647	9	4,64	0,6
9	840	20	3,57	0,9

Estes valores foram recolhidos através do protocolo [1]. Para incerteza foi utilizado metade da largura da curva quando a potência normalizada é 0,5. Por fim, a frequência foi calculada atavés da relação $f=\frac{c}{\lambda}$ onde c corresponde à velocidade da luz. A incerteza de f é dada pela expressão $u(f)=\frac{cu(\lambda)}{\lambda^2}$.

• Procedimento

Para a realização da parte A começamos por fazer a montagem de acordo com o esquema experimental da figura 1 e verificamos que o eletrómetro estava calibrado. Colocamos o LED junto à célula fotoelétrica e tivemos o cuidado de isolar o conjunto relativamente à luz ambiente dentro de uma caixa. Deste modo, retiramos pares de valores de corrente e tensão elétrica (V,I) de modo a poder construir um gráfico de I(V). Procuramos encontrar um valor aproximado do potencial de paragem fazendo anular a corrente à medida que variávamos a resistência no reóstato. Por fim, seguimos este procedimento para os outros LEDs, onde os trocavamos rodando um botão celetor.

Na Parte B montamos o esquema experimental representado na figura 2 e registamos o valor da tensão elétrica dos terminais do condensador de modo a poder representar o gráfico de $V_0(f)$. Antes de colocar os LEDs fez-se o curto-circuito no condensador para garantir que estava descarregado.

2.2 Resultados experimentais e análise

Começando pela parte A, segue-se os gráficos da corrente elétrica em função do potencial elétrico. Tendo em conta que para valores de corrente muito pequenas o regime é aproximadamente linear, realizando um ajuste linear do gráfico de I(V) podemos descobrir o potencial de paragem V_0 (quando I=0: $I=mV+b \Leftrightarrow V_0=\frac{-b}{m}$).

Figura 3: Gráficos da corrente em função da tensão para os LED's utilizados.

Ma	Matriz de ajuste LED 1			Mat	riz de aj	uste LEI	3
m	44424	55946	b	m	26918	22944	b
dm	2266	2849	$^{ m db}$	$_{ m dm}$	620	526	db
$\mathbf{R^2}$	0,995	7	\mathbf{sy}	$\mathbf{R^2}$	0,998	4	\mathbf{sy}
Matriz de ajuste LED 5			ED 5	Matriz de ajuste LED 7			7
m	48421	28085	b	m	8490	2294	b
dm	1934	1117	db	$_{ m dm}$	580	152	db
$\mathbf{R^2}$	0,994	8	\mathbf{sy}	R^2	0,986	7	\mathbf{sy}
	Matriz de ajust			uste LF	ED 8		
		m	12933	2511	b		
		dm	412	76	db		
		R^2	0,997	6	\mathbf{sy}		

Tabela 1: Matrizes de ajuste referentes aos ajustes com declive positivo.

Os gráficos de resíduos encontram-se em anexo. No entanto, é possível observar que têm uma distribuição aleatória e estão muito próximos de zero o que evidência a realização de um bom ajuste. No caso dos resíduos do ajuste do LED 8 observa-se uma tendência. Podia corrigir esta tendência tirando o primeiro ponto dos dados experimentais do ajuste mas, tendo em conta que já tenho poucos dados não o fiz, até porque os resíduos são muito próximos de zero. Foi considerado um ponto duvidoso no gráfico do LED 1 uma vez que não seguia a tendência linear tal como os restantes pontos (talvez tenha sido um erro de transcrição dos dados).

As barras de erro para o LED 1 e 3 são de dimensão mais reduzida, o que tem sentido pois os respetivos comprimentos de onda estão próximos da sensibilidade máxima da célula fotoelétrica. Pelo contrário, o LED 7 e 8 já têm barras de erro bastante superiores o que é normal pois o comprimento de onda já foge da gama adquada de funcionamento da célula.

Nesta parte A da experiência não foi possível fazer o gráfico de I(V) dos LEDs 2,4,6 e 9. Dos LEDs 2,4 e 6 não obtivemos resultados experimentais, talvez devido à intensidade dos LEDs ser muito reduzida, o que implica que uma corrente muito pequena é gerado e, neste caso, deve ser inferior à sensibilidade do eletrómetro. O LED 9 emite radiação na zona do infravermelho. Ora sendo a frequência deste LED aproximadamente $f=3,57\cdot 10^{14}Hz$ a energia do fotão é $E=hf\approx 1,48eV$. A função trabalho do cátodo pertence sensivelmente ao intervalo $1,43eV\leq W\leq 1,59eV$ e como a energia de um fotão está contida neste intervalo é possível que não tenha ocorrido o efeito fotoelétrico.

Assim, os valores de V_0 obtidos para cada LED são os seguintes:

LED	$V_0(V)$	$u(V_0)$ (V)
1	-1,26	0,09
3	-0,85	0,03
5	-0,58	0,03
7	-0,27	0,03
8	-0,19	0,01

Onde se utilizou a fórmula $u(V_0) = V_0 \cdot \sqrt{(\frac{u(b)}{b})^2 + (\frac{u(m)}{m})^2}$ para calcular a incerteza de V_0 .

Deste modo, podemos fazer o gráfico de $|V_0|(f)$ e calcular a constante de Planck e a função trabalho do cátodo:

Figura 4: Gráfico de $|V_0|$ em função de f.

Figura 5: Resíduo do ajuste do gráfico de $|V_0|$ em função de f.

Novamente os resíduos são aleatórios e próximos de zero tendo em conta a ordem de grandeza de V_0 . As barras de erro são de dimensão reduzida pelo que existe boa relação linear.

A matriz de ajuste é a seguinte:

Matriz de ajuste						
m 3,24E-15 -1,30 b						
dm	9E-17	0,06	$^{\mathrm{db}}$			
R^2	0,997	0,03	\mathbf{sy}			

Assim, com a equação (2) podemos calcular a constante de Planck através do declive, h = m|e|, e a função trabalho através da ordenada na origem, W = -b|e|. Os resultados obtidos foram:

	Valor	incerteza	%incerteza	%erro
$h(10^{-34}m^2kgs^{-1})$	5,2	0,1	2	21
W(eV)	1,30	0,05	4	14

onde $u(h)=u(m)\cdot |e|$ e $u(W)=u(b)\cdot |e|$. O valor considerado verdadeiro para calcular o erro percentual da constante de Planck foi $h_{verdadeiro}=6,626070\cdot 10^{-34}m^2kgs^{-1}$ (com muitas casas decimais de modo a não considerar erro associado a este valor) e o valor verdadeiro para calcular o erro percentual da função trabalho foi a média da amplitude referida anteriormente a que a função trabalho podia pertencer: $W_{verdadeiro}=1,51eV$. O erro percentual foi calculado

através da equação erro%= $\frac{|m_i-m_{verdadeiro}|}{m_{verdadeiro}}\cdot 100 \text{ e a percentagem de incerteza através da equação}$ %inc= $\frac{u(m_i)}{m_i}\cdot 100.$

Para efeitos de comparação, fiz um ajuste linear com os valores de tensão retirados diretamente do multímetro quando I=0:

LED	f (Hz)	$V_0(V)$	$u(V_0(V))$
1	7,97E+14	-1,2594	0,0001
3	7,57E+14	-0,8524	0,0001
5	6,41E+14	-0,5799	0,0001
7	5,74E+14	-0,2700	0,0001
8	5,08E+14	-0,1947	0,0001

Matriz de ajuste					
m	b				
dm	5E-16	0,3	db		
R ²	0,92	0,1	\mathbf{sy}		

(Nota: não coloquei o gráfico pois os valores não seguem particularmente uma tendência linear, o ajuste só serve para termos de comparação.)

Os valores experimentais obtidos foram os seguintes:

	Valor	incerteza	%incerteza	%erro
$h(10^{-34}m^2kgs^{-1})$	5,6	0,8	14	15
W(eV)	1,6	0,3	19	6

Observa-se que neste caso a percentagem de erro é muito superior ao do caso anterior. Isto deve-se essencialmente ao limite de precisão do aparelho e à dificuldade de leitura nele (por vezes, o ponteiro do eletrómetro oscilava e era difícil garantir que o valor de corrente nula correspondesse razoavelmente bem ao valor da tensão registada). Por outro lado, a percentagem de erro, neste caso, foi inferior: 15% na determinação de h e 6% na determinação de W.

Durante esta atividade também recolhemos dados correspondentes ao aumentar o potencial retradador depois de a corrente já ter estagnado (ser nula). É o que se observa no gráfico da figura 3 nas curvas e pontos a laranja ou verde (a corrente foi representada como positiva pois é o que se observa no eletrómetro mas, na realidade, seria negativa). Estendemos uma linha de ajuste até a corrente ser zero e verificamos que, experimentalmente, as duas retas não convergem para o mesmo ponto.

Na realidade, o que pode ter acontecido é que, devido à proximidade do LED da célula fotoelétrica, o efeito fotoelétrico para além de ocorrer no cátodo também podia ocorrer no ânodo. Assim, sendo o potencial retardador, os eletrões ejetados do ânodo vão ser acelerados (enquanto que os ejetados do cátodo vão ser desacelerados). Este efeito vai fazer com que se atinja o regime de corrente nula mesmo antes de efetivamente ter ocorrido tendo em conta apenas os eletrões que saem do cátodo: os eletrões que saem do ânodo contribuem negativamente para a corrente o que faz com que se atinja I=0 mais rapidamente.

Assim, consoante a ocorrência do efeito fotoelétrico no ânodo o potencial pode ser pontual, como se observa razoavelmente bem no gráfico do LED 1, ou um intervalo, como se verifica para os restantes LEDs.

Na parte B desta atividade, excitamos novamente a célula fotoelétrica com os LEDs e associamola em série com um condensador. Neste método determinamos o potencial de paragem que corresponde à tensão nos terminais do condensador (após estabilização). Os gráficos obtidos foram os seguintes:

Matriz de ajuste linear						
m	3,1E-15	-1,23	b			
\mathbf{dm}	1E-16	0,06	db			
\mathbb{R}^2	0,996	0,03	\mathbf{sy}			

Figura 6: Gráfico de $|V_0|$ em função de f com a respetiva matriz de ajuste.

Figura 7: Resíduo do ajuste do gráfico de $|V_0|$ em função de f.

Novamente se obteve resíduos aleatórios e próximos de zero. Considerou-se dois pontos duvidosos correspondentes ao LED 2 e 6 (já tinha referido que estes LEDs não estavam a dar resultados agradáveis e verifica-se) .

Neste caso, utilizando o procedimento anterior obteve-se os seguintes resultados:

	Valor	incerteza	%incerteza	%erro
$h(10^{-34}m^2kgs^{-1})$	5,0	0,2	4	24
W(eV)	1,23	0,06	5	18

3 Discussão e Resultados finais

Em ambos os métodos obtivemos resultados semelhantes na determinação de h e W. O método com menor percentagem de erro foi na parte A, quando retiramos diretamente o potencial de paragem do multímetro. Contudo, é o que tem um maior erro associado. Nas duas outras partes, tanto o erro com a incerteza são muito semelhantes o que me permite concluir que existe fontes de erro comuns aos dois circuitos: este erro pode-se dever aos cabos de ligação que causam erros sistemáticos (afetam essencialmente o valor de W), por exemplo.

Coloquei em causa que a corrente escura da célula pudesse ser uma fonte de erro mas, após ler o documento [2] onde referenciava que a corrente escura a 15V era da ordem do 2,0 pA, apercebi-me que não podia ser pois é uma corrente muito inferior à que trabalhamos ao longo da atividade e nem atingimos uma tensão próxima de 15V.

Embora não tenha feito um estudo específico de como a distância entre a célula e o LED faz variar a corrente e a tensão, observamos que a maneira como colocamos o LED junto da célula influênciava bastante os valores de I e V e, embora tenha tido cuidado em garantir que os LEDs se encontravam todos razoavelmente próximos da célula, pode ter também ocorrido a excitação do ânodo e portanto este fator (a distância à célula) pode ter sido a causa principal de erro tanto na parte A como na parte B.

O isolamente da célula e dos LEDs não me parece um fator relevante para o erro pois ao longo da atividade tivemos em atenção essa variável.

Para uma maior precisão dos resultados, era importante ter feito a análise dos espetros dos LEDs para ter o valor da frequência com maior precisão. Em relação aos ajuste no gráfico de I(V) era essencial ter uma maior gama experimental.

No entanto, é importante referir a importância da utilização de um LED ao invés de uma lâmpada de descarga: o efeito fotoelétrico, tal como descrito na introdução, impõe a existência de uma frequência do feixe bem definida que é o que acontece aproximadamente com o LED; por outro lado, as lâmpadas de descarga emitem radiação numa gama de frequências mais larga pelo que não é aconselhado na utilização desta atividade.

Assim, os resultados finais são:

	$h(10^{-34}m^2kgs^{-1})$	incerteza $(10^{-34}m^2kgs^{-1})$	%incerteza	%erro
Parte $A(V_0 \text{ ajuste})$	5,2	0,1	2	21
Parte $A(V_0 \text{ sem ajsute})$	5,6	0,8	14	15
Parte B	5,0	0,2	4	24

	W(eV)	incerteza (eV)	%incerteza	%erro
Parte $A(V_0 \text{ ajuste})$	1,30	0,05	4	14
Parte $A(V_0 \text{ sem ajsute})$	1,6	0,3	19	6
Parte B	1,23	0,06	5	18

4 Conclusão

Nesta atividade estudou-se o efeito fotoelétrico numa célula fotoelétrica com cátodo Sb-Cs. Determinou-se a constante de Planck e a função trabalho de 2 maneiras diferentes na parte A: utilizando um ajuste linear do gráfico de I(V) para determinar V_0 , obtendo $h=(5,2\pm0,1)10^{-34}m^2kgs^{-1}$ a menos de 2% de incerteza e 21% de erro e $W=(1,30\pm0,05)eV$ a menos de 4% de incerteza e 14% de erro; a partir de V_0 retirado diretamente do voltímetro (quando I=0) obtendo $h=(5,6\pm0,8)10^{-34}m^2kgs^{-1}$ a menos de 14% de incerteza e 15% de erro e $W=(1,6\pm0,3)eV$ a menos de 19% de incerteza e 6% de erro. Na parte B, utilizando o potencial de establização nos terminais do condensador obtive $h=(5,0\pm0,2)10^{-34}m^2kgs^{-1}$ a menos de 4% de incerteza e 24% de erro e $W=(1,23\pm0,06)eV$ a menos de 5% de incerteza e 18% de erro.

Referências

- [1] DFA@FCUP, "Emissão led, quantum de luz e efeito fotoeléctrico," Laboratórios de Física III.
- [2] PHYWE, "Photocell with housing operating instructions,"

Anexo

Parte A

Gráficos de resíduos e dados experimentais:

$$u(V)=0,0001V$$
e $u(I)=15nA$

Parte B
Dados experimentais:

LED	V ₀ (V)
1	1,2095
3	0,8165
4	0,7720
5	0,5720
7	0,2554
8	0,1997
2	1,0063
6	0,1844