Negative Types

by Sven Nilsen, 2020

In this paper I show that there is a way of modeling negative types in Path Semantical Logic.

A negative type is a non-existence of some type membership.

In normal Propositional Logic^[1], one can prove the following:

a, A, B:
a=>A =>
$$(a=>(A\neg=B))=(a=>\neg B)$$

Since this holds in Propositional Logic, it also holds Path Semantical Logic^[2]:

(a) (A, B):
a(A) =>
$$a(A \neg = B) = a(\neg B)$$

Here, the tuple \hat{a} has level 1 and the tuple \hat{A} has level 0. The notation \hat{a} means \hat{a} where \hat{A} is at a lower level.

The expression $a(A \neg = B)$ means that a is a proof of the types A and B being unequal. In Path Semantical Logic, when a is a proof of the types A and B being unequal, it means that no equality can be expressed between any two members of A and B without leading to a contradiction.

However, since the $a(A \neg B) = a(\neg B)$ is true in the context of a(A), it means one can simply write $a(\neg B)$ in any context where a has some type.

In Type Theory^[3], one could write $\neg(a : B)$ to express a negative type. In Path Semantical Logic, this is written $a(\neg B)$.

References:

- [1] "Propositional calculus"
 Wikipedia
 https://en.wikipedia.org/wiki/Propositional calculus
- [2] "Path Semantical Logic"
 AdvancedResearch, reading sequence on Path Semantics
 https://github.com/advancedresearch/path_semantics/blob/master/sequences.md#path-semantical-logic
- [3] "Type Theory"
 Wikipedia
 https://en.wikipedia.org/wiki/Type_theory