Sprint Planning Document (Sprint 1)

January 18 - February 18 2025

Olivia Monteiro, Alicia Reed, Danny Steuer, Archer Taylor, Eli Weber

High-level Project Overview

Project Mission:

Provide a client-server architecture to develop educational systems to support
STEM interest in K-12 students

Problems We Are Solving:

- There is limited previous work in the field of quadruped research in K-12 students
- Development of interesting, child-friendly educational resources
- Develop STEM interest in young students

Project Overview (High-Level Features):

- Cloud Server
 - Cloud connection to link the microphone & voice files with the PuppyPi
 - Support for quadruped control, sending and receiving commands, sending and receiving sensor data

Voice Recognition Using LLM

 Using a large language model to recognize & process voice data into words to transmit as commands to PuppyPi

• ROS Programming

- Using action groups to take the PuppyPi through a series of preprogrammed motions
 - Sit, lay down, moonwalk, shake

Sprint 1 Planning

Sprint 1 Goals:

- 1. Research tools to be used in this project
- 2. Connect PuppyPi to WiFi
- 3. Create API
- 4. Create cloud transcription service
- 5. Reverse engineer PuppyPi app
- 6. Programming PuppyPi with ROS

Sprint 1 Deliverables:

- Research tools to be used in this project
 - Assigned: All team members
 - Read PuppyPi, docker, ROS documentation and familiarize
- Connect PuppyPi to WiFi
 - Assigned: Archer Taylor, Eli Weber, Olivia Monteiro
 - Change PuppyPi from AP mode to LAN mode
- Create API
 - Assigned: Archer Taylor, Danny Steuer
 - Rest API for PuppyPi to interface with the cloud services
- Create cloud transcription service
 - o Assigned: Archer Taylor, Danny Steuer
 - AWS Service to process voice data
- Reverse engineer PuppyPi app
 - o Assigned: Alicia Reed
 - Look at app provided by HiWonder and see if there is anything helpful in the code for our project
- Programming PuppyPi with ROS
 - Assigned: Eli Weber, Olivia Monteiro
 - Dig into the already existing code and figure out how to run it through VNC
 - Bypass Docker/VIM constraints and run edited code
 - o Freely program PuppyPi with walking & action groups