PHY-112 PRINCIPLES OF PHYSICS-II

AKIFUL ISLAM (AZW)

Spring-24 | Class-3

ELECTRIC FIELD LINES

They are imaginary lines used to visualize and represent the direction and strength of an electric field.

Note: Electric field lines are not trajectories. No two electric field lines will intersect.

Motion in Uniform $ec{E}$ Field: Straight

Q: Find the direction of motion of the two charges. The charges are placed from rest.

Testing Concepts (1)

Q: An electron traveling parallel to a uniform electric field increases its speed from $2.0\times 10^7\,\mathrm{m\,s^{-1}}$ to $4.0\times 10^7\,\mathrm{m\,s^{-1}}$ over a distance of $1.5\,\mathrm{cm}$. What is the electric field strength?

$$\mathbf{E} = \frac{F_E}{q_e} = \frac{m_e a}{q_e}$$

$$v^2 = v_0^2 + 2ad$$

$$a = \frac{v^2 - v_0^2}{2d}$$

Motion in Uniform $ec{E}$ Field: Parabolic

Q: Find the deflection of the charge off of its main trajectory.

TESTING CONCEPTS (2)

Q: Two charged plates (2 cm wide) are kept 1 cm apart that generates a uniform electric field of intensity $[1 \text{ kN C}^{-1}]\hat{j}$ in between. An electron (proton/neutron) is shot (halfway distant from either plate) perpendicular to \vec{E} with a constant speed $[10^6 \text{ m s}^{-1}]\hat{i}$. Find:

- the direction the electron (proton/neutron) deflects to
- the time the electron (proton/neutron) takes to hit one of the plates, if any
- the horizontal distance covered by the electron (proton/neutron)
- the speed at which it hits

TESTING CONCEPTS (3)

Q: Rank in order, from largest to smallest (descending order), the electric field strengths E_1 to E_4 at points 1 to 4. Try the same in an ascending order.

TESTING CONCEPTS (4)

Q: What are the electric field strengths at points 1, 2, and 3?

TESTING CONCEPTS (5)

Q: q_2 is in equilibrium. What is q_1 ? What type?

/

OUR JOURNEY SO FAR...

Electric Fields

- \blacksquare Q: What makes them? \longrightarrow A: Electric Charge
- Q: What does it do to observers? A: Applies Coulomb Force
- Q: How to measure it? \longrightarrow A: $\frac{\text{Coulomb Force}}{\text{Observer Charge}}$
- All were shown using Discrete Source cases

ONE PROBLEM SOLVING STRATEGY TO RULE THEM ALL

- The electric field/force of a point charge setup and
- The principle of superposition