Problem Set 8

D. Zack Garza

November 13, 2019

Contents

1	Prol	Problem 1															1																								
	1.1	Part a																																							1

1 Problem 1

1.1 Part a

Define a map

ev:
$$\hom_R(\mathbb{Z}_m, A) \to A$$

 $(f: \mathbb{Z}_m \to A) \mapsto f(1)$

Then noting that ev is a homomorphism, forcing $f(\overline{0}) = 0_A$ (where $\overline{0} : \mathbb{Z}_m \to A$ is the zero map), we must have

$$0 = f(0) = f(m) = mf(1),$$

we must have mf(1) = 0 in A, i.e. \$