WO 2005/096586 - 22 -

CLAIMS

PCT/EP2004/003409

- 1. A method for controlling distribution of media contents over a network (1), wherein said contents are distributed by making said contents (w_1) available at surrogate servers $(C_1,...,C_n)$, the method including the steps of:
- identifying additional contents (w_2) eligible for distribution;
 - defining a set of categories (mf);

10

15

20

- identifying for each category (mf) at least a
 reference content (RC/CRC);
- associating (PM) said additional contents (w_2) to said predefined categories (mf) based on semantics affinity with said reference content (RC/CRC), said semantics affinity being calculated (Z) as the distance of each of said additional contents (w_2) to said at least a reference content (RC/CRC);
- selecting (Z) at least one of said predefined categories (mf); and
 - making (D) at least one of the additional contents (w_2) associated to said selected predefined category (mf) available for distribution at said surrogate servers $(C_1,...,C_n)$.
- 2. The method according to claim 1, characterized in that said step of calculating (Z) said semantics affinity as the distance of each of said additional contents (w_2) to said at least a reference content (RC/CRC) comprises the step of:
- involving (Z) the use of data mining/artificial intelligence mechanisms.
 - 3. The method according to claim 2, characterized in that said mechanisms include at least a mechanism selected among neural networks, fuzzy logic, decision trees.

- 4. The method according to any of the preceding claims, characterized in that said step of identifying for each category (mf) at least a reference content (RC/CRC) includes the step of using search engines.
- 5. The method according to any of claims 1-3, characterized in that said step of identifying for each category (mf) at least a reference content (RC/CRC) includes the steps of:

5

15

- identifying a set of reference contents (RC) by 10 using search engines; and
 - calculating a central reference content (CRC) of said set of reference contents (RC)..
 - 6. The method according to any of the preceding claims characterized in that said step of associating (PM) said additional contents (w_2) to said predefined categories (mf) based on semantics affinity with said reference content (RC/CRC), comprises the step of:
 - identifying contents already distributed (w₁);
- associating each of said distributed content (w_1) to said predefined categories (mf) based on semantics affinity with said reference content (RC/CRC), said semantics affinity being calculated as the distance of each of said distributed contents (w_1) to said at least a reference content (RC/CRC).
- 7. The method according to claim 6, characterized in that it comprises the steps of:
 - storing (S_1) the classification of said distributed contents (w_1) in a first database; and
 - storing (S_2) the classification of said additional contents (w_2) in a second database;
 - 8. The method according to claim 7, characterized in that said step of selecting (Z) at least one of said predefined categories (mf) comprises the steps of:

- defining an interest threshold representative at least of a frequency of user requests for a given content; and
- extracting from said first database (S_1) category information comprising at least one predefined category (mf) associated to said given content when said interest threshold is exceeded.
 - 9. The method according to any of claims 7-8, characterized in that said step of making (D) at least one of the additional contents (w_2) associated to said selected predefined category (mf) available for distribution at said surrogate servers $(C_1,...,C_n)$ comprises the step of:

10

- extracting from said second database (S_2) 15 contents information related to said at least one additional content (w_2) .
 - 10. The method according to any of claims 7-9, characterized in that it comprises the steps of:
- identifying additional information comprises at least usage information provided by said surrogate servers $(C_1, ..., C_n)$;
 - matching said additional information with said category information provided by said first database (S1);
- generating at least one class template (CL) comprising said matched information;
 - adding (I) to said class template (CL) said contents information provided by said second database (S_2) ; and
- forwarding said at least one modified class template (CL_m) to a distribution system (D).
 - 11. The method according to claim 10, characterized in that said step of adding (I) to said class template (CL) said contents information provided by said second database (S_2) comprises the step of:

- accessing a class/policy template repository(E); and
- modifying said class template (CL) according to said content information.

5

10

15

20

25

- 12. A system (E) for controlling distribution of media contents over a network, including a set of surrogate servers $(C_1, ..., C_n)$ for distributing said contents, by making said contents (w_1) available at said surrogate servers $(C_1, ..., C_n)$, said system (E) including at least:
 - a class matcher module (E1) configured for:
 - receiving as input information at least usage information provided by said surrogate servers $(C_1, ..., C_n)$, category information provided by a first database (S_1) storing a classification in predefined categories (mf) of said distributed contents (w_1) , and a predefined interest threshold, said predefined interest threshold being representative at least of a frequency of the request for a given content belonging to a given category;
 - matching with each other said input information so as to generate a class template (CL) comprising said input information, when said predefined interest threshold is exceeded;
- a class/policy template repository (E2) having a first input for receiving said class template (CL) and a second input for adding to said class template (CL) content information provided by a second database (S2) storing a classification in said predefined categories (mf) of additional contents (w_2), said content information including at least information on an additional content included in said given category; and a command generator to generate control signals
- 35 (r') from said modified class template (CL_{m}), said

WO 2005/096586 PCT/EP2004/003409
- 26 -

control signals (r') being able to control a distribution system (D) in order to make available said at least an additional content (w_1) at said surrogate servers (C_1, \ldots, C_n) .

- 13. A system according to claim 12, characterized in that said usage information comprises at least a usage information selected among:
 - the share for a content in a given geographic area;
- the trend of requests during a given time period;
 - data on users requesting a given content;
 - statistics concerning those contents most frequently requested;
- specific information concerning the most requested content from a given cache server; and
 - meta-data for any specific requested contents.
 - 14. A system according to any of claims 12 or 13, characterized in that said control system (E) is associated to a processing system (PM) comprises a semantic extracted module (Z) configured for:
 - receiving as inputs:

20

- said distributed contents (w₁);
- said additional contents (w2);
- said predefined categories (mf);
- at least a reference content (RC/CRC)
 identified for each category(mf);
- classifying each distributed content (w_1) /additional content (w_2) in at least one categories (mf), said classification of each of said distributed contents (w_1) /additional contents (w_2) being based on semantics affinity among said reference content (RC/CRC) and each of said distributed content (w_1) / additional contents (w_2) , said semantics affinity being calculated as the distance of each of said distributed

content (w_1) /additional content (w_2) to said at least a reference content (RC/CRC); and

- storing said classification of said distributed contents (w_1) in said first database (S_1) and said classification of said additional contents (w_2) in said second database (S_2) .

5

10

- 15. A method for controlling distribution of media contents over a network, including a set of surrogate servers $(C_1, ..., C_n)$ for distributing said contents, by making said contents (w_1) available at said surrogate servers $(C_1, ..., C_n)$, said method including the steps of:
- receiving input information comprising at least usage information provided by said surrogate servers
 (C₁, ..., C_n), category information provided by a first database (S₁) storing a classification in predefined categories (mf) of said distributed contents (w₁), and a predefined interest threshold, said predefined interest threshold being representative at least of a frequency of the request for a given content belonging to a given category;
- matching with each other said input information
 so as to generate a class template (CL) comprising said
 input information, when said predefined interest
 threshold is exceeded,;
 - adding to said class template (CL) content information provided by a second database (S_2) storing a classification in said predefined categories (mf) of additional contents (w_2), said content information including at least information on an additional content included in said given category; and
 - generating control signals (r') from said modified class template (CL_m), said control signals (r') being able to control a distribution system (D) in

WO 2005/096586 PCT/EP2004/003409
- 28 -

order to make available said at least an additional content (w_1) at said surrogate servers $(C_1, ..., C_n)$.

- 16. A network including a set of surrogate servers $(C_1,...,\ C_n)$ for distributing media contents, wherein said contents are distributed by making these contents available at said surrogate servers $(C_1,...,\ C_n)$, characterized in that it includes a control system (E) according to any of claims 12 to 14.
- 17. A computer program product loadable in the memory of at least one computer and comprising software code portions for performing the steps of any of claims 1 to 11.

15

5

20