หุ่นยนต์ติดตามบุคคลและตรวจจับการล้มสำหรับผู้ป่วยอัมพาตครึ่งซีก

A Robot to Track and Detect Falls in Hemiplegia Patients

จิรณัฐ โลหะประธาน, นิสารัตน์ วงค์เหล็ก, โสภา โพธิกันยา, มโนชัย อภิเลิศโสภณ, อัสลัมภ์ มีชัย, ฑีฆพันธุ์ เจริญพงษ์ สาขาวิชาวิศวกรรมชีวการแพทย์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ

บทคัดย่อ

ปัญหาที่สำคัญสำหรับผู้ป่วยอัมพาตครึ่งซีกคือการหกล้ม รายงานชุดนี้นำเสนอแนวทางในการพัฒนาหุ่นยนต์เพื่อติดตาม ผู้ป่วยอัมพาตครึ่งซีกและตรวจจับการล้มของผู้ป่วยจาก ภาพต่อเนื่อง เพื่อติดตามผู้ป่วยไปสถานที่ต่างๆ ตรวจจับการ ล้ม และแจ้งเตือนเพื่อให้ความช่วยเหลือได้ทันท่วงทีเมื่อเกิด การล้ม การพัฒนาระบบแบ่งออกเป็น 2 ส่วนหลัก คือ 1) การ ควบคุมหุ่นยนต์ และ 2) การติดตามและตรวจจับการล้มด้วย การประมวลผลภาพถ่าย การออกแบบหุ่นยนต์จะใช้ราสพ์ เบอร์รีพาย (Raspberry Pi) เป็นอุปกรณ์ในการควบคุมหุ่นยนต์ และประมวลผลตรวจจับการล้ม การตรวจจับการล้มจะคำนวณ จากจุดศูนย์กลางมวลของผู้ป่วยเปรียบเทียบกับตำแหน่งของ ฐานรองรับการทรงตัว และ อัตราเร็วในการลดลงของลำตัว ผู้ป่วย สำหรับการทคลองเพื่อทคสอบประสิทธิภาพของระบบ จะตรวจจับผู้ป่วยจากการหกล้มในทิศทางต่างๆ ระหว่าง 0 ถึง 360 องศา ทั้งหมด 8 ทิศทาง ค่าความถกต้องเท่ากับ 96.00 เปอร์เซ็นต์ ข้อคืของระบบนี้เมื่อเปรียบเทียบกับวิธีการอื่นใน ปัจจุบันคือ สามารถติดตามผู้ป่วยไปภายนอกที่พักอาศัยได้ และ สามารถตรวจจับการล้มใค้ทุกรูปแบบ

คำสำคัญ: หุ่นยนต์ติดตาม การล้ม สมองขาดเลือด อัมพาต

1. ที่มาและความสำคัญ

อัมพาตเป็นอาการอ่อนแรงของร่างกาย อาการนี้อาจจะ เป็นชั่วคราวหรือถาวรก็ได้ พบได้หลายลักษณะ เช่น อัมพาต ทั้งตัว (quadriplegia), อัมพาตครึ่งตัว (paraplegia) หรือ อัมพาต ครึ่งซีก (hemiplegia) เป็นต้น [1, 2] โดยสาเหตุหลักเกิดจาก การที่สมองขาดเลือดอย่างเฉียบพลัน (Stroke) การ กายภาพบำบัดเป็นวิธีการหนึ่งในการฟื้นฟูทักษะการ เคลื่อนใหวในผู้ป่วยกลุ่มคังกล่าว โดยเฉพาะผู้ป่วยกลุ่มอัมพาต ครึ่งซีก [1] อันตรายที่สำคัญต่อผู้ป่วยที่เข้ารับการฟื้นฟูการ เคลื่อนใหว คือ การหกล้ม ซึ่งประมาณ 50 เปอร์เซ็นต์ของ จำนวนผู้ป่วยทั้งหมด จะเกิดการหกล้มในสัปดาห์แรกของการ ฟื้นฟูการเคลื่อนใหว [3]

งานวิจัยหลายฉบับได้ศึกษาความเสี่ยงในการเกิดการหก ล้มของผู้ป่วยสมองขาดเลือดอย่างเฉียบพลับ เพื่อหาวิธีการลด อันตรายจากเหตุการณ์ดังกล่าว [4-9] อัตราการหกล้มของ ผู้ป่วยในประเทศแถบตะวันตกอยู่ระหว่าง 8.9/1000 [5] ถึง 15.9/1000 [10] คนต่อวัน ในประเทศไทยและจีนมีอัตราการ ล้มที่น้อยกว่า อยู่ระหว่าง 3.4/1000 [11] ถึง 5.5/1000 [12] คน ต่อวัน ตามลำดับ และอัตราการหกล้มจะเพิ่มสูงขึ้นเมื่อผู้ป่วยมี อายุมากกว่า 60 ปี [13, 14]

เพื่อลดอันตรายและบรรเทาการบาดเจ็บจากการหกล้ม งานวิจัยหลายฉบับ ได้พัฒนาเทคโนโลยีสำหรับการตรวจจับ การหกล้ม เพื่อให้ความช่วยเหลือเบื้องต้น โดยงานวิจัยใน ปัจจุบันสามารถแบ่งเทคโนโลยีสำหรับการตรวจจับการล้ม ออกเป็น 3 กลุ่ม [15] คือ 1) ตรวจจับการล้มจากอุปกรณ์สวม ใส่ [16, 17, 18] 2) ตรวจจับการล้มจากอุปกรณ์ตรวจวัด สภาพแวดล้อม [19, 20, 21, 22] และ 3) ตรวจจับการล้มด้วย กล้อง [23, 24, 25]

สำหรับการตรวจจับการล้มจากอุปกรณ์สวมใส่ Gaetano A. และ คณะ [16] นำมาตรวัดความเร่ง 3 แกน (Tri-axial accelerometer) มาใช้ในการตรวจจับการหกล้ม โดยอุปกรณ์จะ ติดไว้กับเครื่องแบบบริเวณลำตัว การตรวจจับการล้มจะใช้ค่า ความเร็วจากการหมุนของมาตรการวัด โดยอุปกรณ์ชุดนี้ ทำงานผ่านระบบเครือข่าย เพื่อลดจำนวนข้อมูลในการส่งผ่าน เครือข่าย ระบบสมองกลผังตัว ได้ถูกนำมาประยุกต์ใช้ [17] เพื่อประมวลผลสัญญาณหลักในอุปกรณ์พกพา Sricharan, K.S.

ภาพที่1 การทำงานของหุ่นยนต์ติดตามและตรวจจับการล้มสำหรับผู้ป่วยอัมพาตครึ่งซึก

และ คณะ ใค้ออกแบบตัวเก็บประจุและนำมาใช้ร่วมกับ อุปกรณ์มาตรวัดความเร่ง [18] ซึ่งอุปกรณ์นี้จะติดไว้กับผู้ป่วย เช่นกัน อย่างไรก็ตามอุปกรณ์พกพาต้องพึ่งพาการส่งข้อมูลมา ที่หน่วยประมวลผลหลัก ซึ่งตำแหน่งในการติดตั้งอาจส่งผลให้ การส่งข้อมูลขาดหายได้ เนื่องจากข้อจำกัดดังกล่าวทำให้ไม่ สะดวกใช้กับผู้สูงอายุ [15]

สำหรับการตรวจจับการล้มจากอุปกรณ์ตรวจวัด สภาพแวดล้อม เช่นการใช้ข้อมูลเสียง [19] และภาพร่วมกัน [20] หรือ การใช้ข้อมูลการสั่นของพื้น [21] มาเป็นข้อมูลใน การตรวจจับการที่มีบุคคลล้มกระแทกพื้น โดยการจำแนก รูปแบบการสั่นของพื้น Bogdan K. และ คณะ [22] ประยุกต์ใช้ ข้อมูล 3 มิติ ร่วมกับมาตรวัดความเร่งไร้สาย ในการตรวจจับ การล้ม อย่างไรก็ตามข้อเสียของเทคโนโลยีกลุ่มนี้คือ สัญญาณ รบกวนสำหรับข้อมูลเสียง รวมถึงอุปกรณ์เซ็นเซอร์คุณภาพดีมี ราคาสูง เช่น เซ็นเซอร์วัดความดัน (Pressure Sensor) [15] หรือ ในกรณีของอุปกรณ์ใร้สายก็มีข้อจำกัดในการส่งสัญญาณดังได้ กล่าวมาแล้วข้างต้น

สำหรับการตรวจจับการล้มด้วยกล้อง เป็นวิธีที่แพร่หลาย ในปัจจุบัน Chen, Y.T. และ คณะ [23] ได้นำเสนอการตรวจจับ การล้มจากภาพต่อเนื่อง ด้วยวิธีหาคุณสมบัติสเกเลตอน (Skeleton) ร่วมกับรูปร่างของคนในภาพ การประมาณรูปร่าง ด้วยวงรีนำมาใช้ในการประเมินรูปร่างและการเอียงของบุคคล ในภาพ การเอียงของวงรีเป็นค่าที่ใช้ในการบ่งชี้การล้มของ บุคคลนั้น วิธีการนี้เหมาะสมกับการที่กล้องติดตั้งอยู่ในแนว ระดับเดียวกับผู้ป่วย Caroline R. และ คณะ [24] ได้พัฒนา วิธีการตรวจจับคนล้มด้วยวิธีการเปลี่ยนแปลงรูปร่างของบุคคล

โดยแบ่งเป็น 3 ขั้นตอน คือ 1) การจำแนกบุคคลจากฉากหลัง ด้วยการเปรียบเทียบข้อมูลกับฐานข้อมูล 2) คำนวณรูปร่างของ บุคคลที่เปลี่ยนแปลงไปจากภาพขาว-คำ และ 3) ตรวจจับการ ล้มด้วยวิธีเก๋าส์เซี่ยนมิคเจอร์ โมเคล (Gaussian Mixture Model) วิธีนี้เหมาะสมกับกล้องวงจรปิดติดตั้งภายในอาคาร ซึ่งถ่ายเป็น มุมก้มจากเพดานห้อง Simin, W. และ คณะ [25] ได้นำเสนอ วิธีจดจำท่าทางสำหรับการตรวจจับการล้มจากภาพนิ่ง โดยเริ่ม จากการกำหนดขอบเขตส่วนต่างๆ ของร่างกาย ประเมินท่าทาง ของบุคคลจากการเรียงตัวของข้อมูลขอบเขต เพื่อนำมา วิเคราะห์การล้ม อย่างไรก็ตาม การตรวจจับการล้มจากกล้อง เป็นวิธีการที่มีประสิทธิภาพมากกว่าวิธีการอื่น กล้องมีราคาถูก และสามารถถ่ายภาพในมุมกว้างได้ [15] แต่ข้อจำกัดหนึ่งของ งานวิจัยในปัจจุบันคือกล้องวงจรปิดอาจเกิดการบดบังจากสิ่ง กีดขวางอื่นได้ และไม่เหมาะสมกับการตรวจจับนอกสถานที่ที่ ไม่มีการติดตั้งระบบตรวจจับการล้มไว้

จากงานวิจัยที่ผ่านมา การตรวจจับการล้มด้วยจากภาพถ่าย เป็นวิธีที่เหมาะสมที่สุดในการพัฒนาสู่การใช้จริง ข้อจำกัด หนึ่งของตรวจจับการล้มด้วยกล้องคือ การบดบังจากสิ่งกีด ขวางอื่น และ ไม่สามารถใช้กับบริเวณที่ไม่ได้ติดตั้งกล้องไว้ ได้นั้น เพื่อแก้ปัญหาดังกล่าว งานวิจัยชิ้นนี้จึงนำเสนอการ ออกแบบหุ่นยนต์เพื่อติดตามผู้ป่วยอัมพาตกรึ่งซีกและตรวจจับ การล้มของผู้ป่วยด้วยกล้อง เพื่อให้หุ่นยนต์สามารถติดตาม ผู้ป่วยไปสถานที่ต่างๆ ได้ ตรวจจับการล้ม และสามารถแจ้ง เตือน ขอกวามช่วยเหลือในกรณีที่ผู้ป่วยเกิดการล้ม

ภาพที่ 2 ขั้นตอนการทำงานการติดตามและตรวจจับการล้ม

หัวข้อต่อไปของรายงานชุดนี้ประกอบด้วย วิธีการ ออกแบบหุ่นยนต์และการตรวจจับการล้ม การทดลอง การ อภิปรายผล และ สรุปในหัวข้อสุดท้าย

การควบคุมหุ่นยนต์ติดตามและการตรวจจับการ ล้ม

ระบบโดยรวมของหุ่นยนต์ติดตามและตรวจจับการล้ม ประกอบด้วยส่วนที่สำคัญ 2 ส่วน คือ 1) การควบคุมหุ่นยนต์ 2) การติดตามและตรวจจับการล้มด้วยการประมวลผลภาพถ่าย หัวข้อนี้จะอธิบายระบบโดยรวมของหุ่นยนต์ต่อไป

2.1 การควบคุมหุ่นยนต์

สำหรับวงจรในการควบคุมหุ่นยนต์ ประกอบด้วย โมคูล กล้อง (Camera Module), หน่วยประมวลผล คือ ราสพ์เบอร์รี่ พาย หน่วยความจำ 512 MB รุ่น บีพลัส (Raspberry Pi 512MB Model B+), วงจรขับมอเตอร์ (Drive motor circuit), อแคปเตอร์ไวไฟ รุ่น Edimax (Wifi adapter: Edimax), หุ่นยนต์ โดยมีหลักการทำงานตามภาพที่ 1 นี้

จากภาพที่ 1 ระบบของหุ่นยนต์ติดตามและตรวจจับการ ล้มของผู้ป่วยอัมพาตครึ่งซีกจะรับภาพผู้ป่วยด้วยกล้องและส่ง ข้อมูล ไปประมวลผลด้วยราสพ์เบอร์รี่พาย ซึ่งหน่วย ประมวลผลจะทำหน้าที่ 4 ประเภท คือ 1) ติดตามผู้ป่วย 2) การ ควบคุมการเคลื่อนที่ของหุ่นยนต์ 3) ตรวจจับการล้ม และ 4) การแจ้งเตือนเมื่อเกิดการล้ม โดยมีการทำงานดังนี้

ภาพที่ 3 การจำแนกถ้าตัวและเท้าเพื่อหาตำแหน่งถ้าตัวและ ฐานรองรับการทรงตัว

สำหรับวงจรควบคุมการเคลื่อนที่ของหุ่นยนต์ จะใช้วงจร เอชบริคจ์ (H-Bridge) เพื่อควบคุมมอเตอร์ 2 ตัว โดยวงจร สามารถควบคุมมอเตอร์ได้ 2 ตัว วงจรนี้จะควบคุมการหมุน ของมอเตอร์ เพื่อให้หุ่นยนต์สามารถติดตามการเคลื่อนที่ของ ผู้ป่วยได้กล่องตัวที่สุด ชุดประมวลผลจะควบคุมให้หุ่นยนต์ เคลื่อนที่ด้านหน้า เคลื่อนที่ไปถอยหลัง การเลี้ยวซ้าย และ การ เลี้ยวขวา ได้ ตามการเคลื่อนที่ของผู้ป่วย

2.2 การติดตามและตรวจจับการล้มด้วยการประมวลผล ภาพถ่าย

ในหัวข้อนี้จะอธิบายขั้นตอนการทำงานของการติดตาม ผู้ป่วยและการตรวจจับการล้ม การติดตามผู้ป่วยและการ ตรวจจับการล้มจะคำนวณจากตำแหน่งของผู้ป่วยในภาพ สำหรับการติดตามและเปรียบเทียบตำแหน่งของลำตัวผู้ป่วย กับตำแหน่งของเท้าสำหรับการตรวจจับการล้มเบื้องต้น โดย ขั้นตอนการประมวลผลภาพถ่ายสำหรับการติดตามและ ตรวจจับการล้มแสดงดังภาพที่ 2 ขั้นตอนที่สำคัญประกอบด้วย 3 ขั้นตอน คือ 1) การจำแนกลำตัวและเท้าของผู้ป่วย 2) การหา ตำแหน่งจุดสูนย์กลางมวลและตำแหน่งฐานรองรับการทรงตัว และ 3) การติดตามและตรวจจับการล้ม

การจำแนกลำตัวและฐานรองรับการทรงตัวของผู้ป่วย: การจำแนกลำตัวและและเท้า จะจำแนกจากสีเสื้อและรองเท้า จากค่าสีที่กำหนด โดยภาพจะแปลงจากระบบสี RGB เป็น HSV สีเสื้อและเท้าของผู้ป่วยจะกำหนดจากช่วงสีฮิว (Hue: H) และ ช่วงสีเซททูเรชั่น (Saturation: S) เนื่องจากการจำแนกสีจะ

ก) สถาวะปกติ (ไม่ล้ม)

ข) สถาวะเกิดการล้ม

ภาพที่ 4 จุดศูนย์กลางมวลในแนวนอน (CM_{χ}) และ ตำแหน่ง ฐานรองรับการทรงตัวในแนวแนว (R_{χ} และ L_{χ}) โดยตำแหน่ง R_{χ} และ L_{χ} คือ ตำแหน่งซ้ายและขาวของฐานรองรับการทรงตัว เกิดกลุ่มข้อมูล (Blob) หลายกลุ่ม ระบบติดตามผู้ป่วยนี้จะเลือก กลุ่มข้อมูลที่มีสมาชิกมากที่สุดของแต่ละสีเป็นตำแหน่งของ ผู้ป่วยและตำแหน่งของฐานรองรับในภาพ โดยจุดศุนย์กลาง ของตำแหน่งสำตัวผู้ป่วยจะนำมาคำนวณสำหรับการติดตาม ผู้ป่วยและควบคุมการเคลื่อนที่ของหุ่นยนต์ ลำตัวและ ฐานรองรับที่จำแนกได้จากภาพในระบบสี RGB จะแสดงดัง ภาพที่ 3

การหาตำแหน่งจุดศูนย์กลางมวลและตำแหน่งฐานรองรับ การทรงตัว: การตรวจจับการล้มจะหาจากการเปรียบเทียบจุด ศูนย์กลางมวล (Center of Mass) และ ตำแหน่งของเท้า ซึ่งเป็น ฐานรองรับสำหรับการทรงตัว (Base of Support) การหาจุด ศนย์กลางมวลใช้ตำแหน่งของสีเลื้อ จำนวนสามาชิกในกลุ่ม ข้อมูลสีเสื้อที่มีมากที่สุดจะกำหนดเป็นเสื้อผู้ป่วยที่จำแนกได้ และใช้โมเมนต์ในการหาตำแหน่งจดสนย์กลางของเลื้อ

สำหรับการหาฐานรองรับจะใช้วิธีเดียวกับการหาสีเสื้อ โดยตำแหน่งซ้ายสุดและขวาสุดของฐานรองรับหรือเท้าที่ติด พื้น จะกำหนดให้เป็นขอบของฐานรองรับ

การติดตามและตรวจจับการล้ม: การติดตามจะควบคุมให้ หุ่นยนต์เคลื่อนที่ เพื่อให้จุดศูนย์กลางมวลอยู่ในบริเวณกลาง ภาพ ส่วนการตรวจจับการล้ม จากภาพการทคลอง ทิศทางการ ล้มจะมี 2 กลุ่ม คือ 1) การล้มไปทางซ้ายและขวาของกล้อง และ 2) การล้มเข้าหากล้องและล้มออกห่างจากกล้อง

สำหรับการล้มไปทางซ้ายและทางขวาของกล้อง การ ตรวจจับการล้มจะคูจากสมคุลของร่างกาย ด้วยการ เปรียบเทียบจุคศูนย์กลางมวลในแนวนอน หรือ แกน X กับ ขอบของฐานรองรับ ถ้าจุดศูนย์กลางมวลอยู่ภายนอกตำแหน่ง ขอบของฐานรองรับ แสดงว่าเกิดการเสียสมคุลและมีโอกาส ล้มสูง

การล้มเข้าหากล้องและล้มออกห่างจากกล้อง การล้มจะ คำนวณจากความเร็วของจุดศูนย์กลางมวลที่เปลี่ยนแปลงไปใน แนวตั้ง โดยเทียบจากพิกัดจุดศูนย์กลางมวลของเฟรม i-1 และ i ถ้าเร็วกว่าเกณฑ์ความเร็วที่กำหนด จะกำหนดว่าเกิดการล้ม ขึ้น ดังแสดงในภาพที่ 4 โดยที่แสดงการล้มไปทางค้านซ้าย หรือขวาของภาพ

ในกรณีที่ความเร็วไม่เกินที่กำหนด แต่อยู่ภายนอก ฐานรองรับ สามารถคาดการณ์ได้ 2 กรณี คือบุคคลกำลังจะล้ม กับกำลังนั่งบนเก้าอี้ ทั้ง 2 กรณีสามารถจำแนกได้จากระยะการ ลดตำแหน่งลงของจุดศูนย์กลาง ถ้าจุดศูนย์กลางมวลลดต่ำลง เข้าใกล้ฐานรองรับมากกว่าเกณฑ์ที่กำหนดจะกำหนดให้เป็น การล้ม และระบบจะแจ้งเตือนในลำดับต่อไป

3. ผลการทดลอง

สำหรับขั้นตอนการทดสอบประสิทธิภาพของวิธีที่ใช้ใน การตรวจจับการล้มจากสมคุลการทรงตัวและความเร็วในการ ล้ม ตัวอย่างในการทดลองทั้งหมดมีจำนวน 25 ตัวอย่าง สวม เสื้อสีแดงและรองเท้าสีเหลือง ถ่ายภาพจากทิศทางการล้ม ทั้งหมด 8 ทิศ คือ 0, 45, 90, 135, 180, 225, 270, และ 315 องศา ข้อมูลทั้งหมดมี 200 ข้อมูล พบว่าผลการทดลองการ ตรวจจับการล้มค้วยวิธีที่นำเสนอ มีค่าความถูกต้องเฉลี่ยอยู่ที่ 96.00% ดังแสดงในตารางที่ 1

ในขณะเดียวกันผู้วิจัย ได้ทำการทดสอบประสิทธิภาพของ วิธีการตรวจจับการล้ม สำหรับกรณีเปลี่ยนท่าทางจากยืนเป็น นั่ง และจากนั่งเป็นยืน โดยการทดลองทั้งหมด 8 ทิศทาง แสดงผลตามตารางที่ 1 พบว่ามีค่าความถูกต้องเฉลี่ย 96.00%

ตารางที่ 1 ความถูกต้องของการตรวจจับการล้มสำหรับ ทิศทางการล้มจะ 0 องศา ถึง 315 องศา

ท่า ทาง	ความถูกต้องของระบบสำหรับทิศทางการล้มใน องศาท่างๆ (%)								เฉลี่ย (%)
	0	45	90	135	180	225	270	315	(70)
ล้ม	92	96	96	92	92	100	100	100	96.00
นั่ง	92	96	96	100	100	96	88	100	96.00
เฉลี่ย	92	96	96	96	96	98	94	100	96.00

4. อภิปรายผล

จากผลการทคลองจะเห็นว่า วิธีการที่นำเสนอมีความ ถูกต้องเป็นที่น่าพอใจ ซึ่งข้อผิดพลาดที่เกิดขึ้น มีสาเหตุหลักอยู่ 3 ประการ คือ 1) ระยะห่างระหว่างผู้ทคลองกับกล้อง และ 2) ระดับความสูงของผู้ทคลอง 3) ความสว่างของห้องทคลอง

4.1 ระยะห่างระหว่างผู้ทดลองกับกล้อง

นอกจากนี้ ถ้าตำแหน่งการยืนอยู่ใกลจากกล้องมากเกินไป ทำให้โปรแกรมคำนวณความเร็วในการล้มได้ช้ำกว่าความจริง จึงทำให้ระบบไม่สามารถตรวจจับการล้มได้ การปรับปรุงคือ การหาความสัมพันธ์ระหว่างระยะกล้องกับความเร็วในการล้ม ที่เกไลี่ยบแปลงไป

4.2 ความสูงของผู้ทดลอง

ในการตรวจจับการล้ม พบว่าเมื่อตัวอย่างบางคนล้ม แต่ไม่ มีการแจ้งเตือน เป็นคนที่มีรูปร่างก่อนข้างสูงกว่าเกณฑ์ทั่วไป ทำให้ล้มช้ากว่าเกณฑ์ความเร็วที่ตั้งไว้ การตรวจจับการล้มจาก ความเร็วจึงผิดพลาด การปรับปรุงคือ หาความสัมพันธ์ของ เกณฑ์ความเร็วให้เหมาะสมกับส่วนสูงของแต่ละบุคคล

4.3 ความสว่างของห้องทดลอง

ในการตรวจจับการล้ม พบว่าเมื่อตัวอย่างบางคนล้มใน ห้องทดลองที่มีแสงแคดจากภายนอกห้องลอดเข้ามา ภาพที่ เกิดขึ้นมีสีที่สว่างเกินไป ทำให้ไม่สามารถตรวจจับจุด CM_x ได้แม่นยำ มีผลทำให้การประมวลผลการล้มเกิดการผิดพลาด ได้ การปรับปรุงคือการหาความสัมพันธ์ระหว่างความสว่างกับ สีที่เกิดขึ้น

5. สรุป

รายงานชุดนี้นำเสนอแนวทางในการพัฒนาหุ่นยนต์เพื่อ ติดตามผู้ป่วยอัมพาตครึ่งซีกและตรวจจับการล้มของผู้ป่วยจาก ภาพต่อเนื่อง การพัฒนาระบบแบ่งออกเป็น 2 ส่วนหลัก คือ 1) การควบคุมหุ่นยนต์ และ 2) การติดตามและตรวจจับการล้ม ด้วยการประมวลผลภาพถ่าย สำหรับการทคลองเพื่อทคสอบ ประสิทธิภาพของระบบ โดยการตรวจจับผู้ป่วยจากการหกล้ม ในทิศทางต่างๆ ระหว่าง 0 ถึง 360 องศา ทั้งหมด 8 ทิศทาง ค่า ความถูกต้องเท่ากับ 96.00 เปอร์เซ็นต์ ข้อผิดพลาดที่เกิดขึ้นมี 3 สาเหตุ คือ 1) ระยะห่างระหว่างผู้ทดลองกับกล้อง และ 2) ระดับความสูงของผู้ทคลอง 3) ความสว่างของห้องทคลอง ข้อดีของระบบนี้เมื่อเปรียบเทียบกับวิธีการอื่นในปัจจุบันคือ สามารถติดตามผู้ป่วยไปภายนอกที่พักอาศัยได้ และ สามารถ ตรวจจับการล้มได้ทุกรูปแบบ การแนวทางการทำงานทั้งหมด และความก้าวหน้าในการพัฒนาหุ่นยนต์ที่ผ่านมา ทีมผู้ทดลอง ้มีความมั่นใจ ว่าจะสามารถพัฒนาหุ่นยนต์ให้มีระบบสมบูรณ์ ได้ในระยะที่กำหนด ต่อไป

เอกสารอ้างอิง

- [1] วิยะคา ศักดิ์ศรี, สุรัตน์ ธนานุภาพไพสาล, "คู่มือ กายภาพบำบัดผู้ป่วยอัมพาตครึ่งซีก," อัมรินทร์สุขภาพ, ISBN: 9786115290000.
- [2] กฤษณี ศรีวิชา, ถำพวน มะประโพธิ์, อัมพร จิตอารี, "คุณภาพชีวิตของผู้ป่วยอัมพาตครึ่งซีกที่พูดได้ในชุมชน รอบบริเวณ รพ. พุทธชินราช จ. พิษณุโลก," Community Research.
- [3] Lee JE., Stokic DS., "Risk factors for falls during inpatient rehabilitation," Am J Phys Med Rehabil. 2008, May; 87(5): 341-350; quiz 351, 422. doi: 10.1097/PHM.0b013e31816ddc01.
- [4] Atzmon Ts., Zvi S., "Falls in stroke patients: risk factors and risk management," Isr Med Assoc J. 2010 Apr;12(4):216-9.

- [5] Vlahov D, Myers AH, Al-Ibrahim MS. "Epidemiology of falls among patients in a rehabilitation hospital." Arch Phys Med Rehabil 1990; 71: 8-12.
- [6] Forster A, Young J. "Incidence and consequences of falls due to a stroke: a systematic inquiry." BMJ 1995; 311: 83-6.
- [7] Tutuarima JA, Van Der Meulen JH, De Haan RJ, Van Straten A, Limburg M. "Risk factors for falls of hospitalized stroke patients." *Stroke* 1997; 28: 297-301.
- [8] Teasell R, McRaeM, Foley N, Bhardwaj A. "The incidence and consequences of falls in stroke patients during inpatient rehabilitation: factors associated with high risk." Arch Phys Med Rehabil 2002; 83: 329-33.
- [9] Ramnemark A, Nyberg L, Borssen B, Olsson T, Gustafson Y. "Fractures after stroke." Osteoporos Int 1998; 8: 92-5.
- [10] Nyberg L, Gustafson Y. Patient falls in stroke rehabilitation. "A challenge to rehabilitation strategies." *Stroke* 1995; 26: 838-42.
- [11] Sze KH, Wong E, Leung HY, Woo J. "Falls among Chinese stroke patients during rehabilitation." Arch Phys Med Rehabil 2001; 82: 1219-25.
- [12] Chaiwanichsiri D, Jiamworakul A, Kitisomprayoonkul W. "Falls among stroke patients in a Thai Red Cross rehabilitation center." *J Med Assoc Thai* 2006; 89(Suppl 3): S47-52.
- [13] Ugur C, Gucuyener D, Uzuner N, Ozcan S, Ozdemir G.
 "Characteristics of falling in patients with stroke." J
 Neurol Neurosurg Psychiatry 2000; 69(5):649-51.
- [14] Gucuyener D, Ugur C, Uzuner N, Ozdemir G. "The importance of falls in stroke patients." *Ann Saudi Med* 2000; 30(3-4): 322-3.
- [15] Muhammad M., Ling Sh., and Luke S., "A Survey on fall detection: Principles and approaches," Neurocomputing 100(2013) 144-152.

- [16] Anania, G.; Tognetti, A.; Carbonaro, N.; Tesconi, M.; Cutolo, F.; Zupone, G.; De Rossi, D., "Development of a novel algorithm for human fall detection using wearable sensors," *Sensors*, 2008 IEEE, pp.1336,1339, 26-29 Oct. 2008
- [17] Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G., "Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring," *Information Technology in Biomedicine, IEEE Transactions on*, vol.10, no.1, pp.156,167, Jan. 2006.
- [18] Sricharan, K.S.; Srikrishna, C., "Automated human fall detection system using a fluid dielectric, capacitive, multi axial acceleration sensor," *Instrumentation Control and Automation (ICA)*, 2013 3rd International Conference on , pp.74,79, 28-30 Aug. 2013.
- [19] Zhuang, X., Huang, J., Potamianos, G., Hasegawa-Johnson, M., "Acoustic fall detection using Gaussian mixture models and GMM super-vectors," IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 69-72, 2009.
- [20] Tabar, A.M., Keshavarz, A., Aghajan, H., "Smart home care network using sensor fusion and distributed visionbased reasoning," 4th ACM Int. Workshop on Video Surveillance and Sensor Networks, 2006.
- [21] Alwan, M.; Rajendran, P.J.; Kell, S.; Mack, D.; Dalal, S.; Wolfe, M.; Felder, R., "A Smart and Passive Floor-Vibration Based Fall Detector for Elderly," *Information and Communication Technologies*, 2006. ICTTA '06. 2nd, pp.1003-1007.
- [22] Kwolek, B., Kepski, M., "Human fall detection on embedded platform using depth maps and wireless accelerometer," Computer Methods and Programs in Biomedicine, Vol. 117, Issue 3, Dec. 2014, pp. 489-501.

- [23] Yie-Tarng Chen; Yu-Ching Lin; Wen-Hsien Fang, "A hybrid human fall detection scheme," *Image Processing* (ICIP), 2010 17th IEEE International Conference on, vol., no., pp.3485,3488, 26-29 Sept. 2010.
- [24] Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J., "Robust Video Surveillance for Fall Detection Based on Human Shape Deformation," *Circuits and Systems for Video Technology, IEEE Transactions on*, Vol.21, No.5, pp.611,622, May 2011.
- [25] Simin, W., Salim, Z., and Bastian, L., "Lying Pose Recognition for Elderly Fall Detection," Robotics: Science and Systems VII. 2011.