

FORMAÇÃO INTELIGÊNCIA ARTIFICIAL E MACHINE LEARNING

MACHINE LEARNING — ESTUDANDO ALGORITMOS ÁRVOES DE DECISÃO PARTE II

Prof. Fernando Amaral –Todos os Diretos Reservados

Criando a Árvore de Decisão?

- > Temos 4 atributos "candidatos" a ser o nó raiz.
- ➤ Qual devemos escolher?
 - > Buscar o que tenha maior ganho de informação!

No.	1: outlook	2: temperature	3: humidity	4: windy	5: play
	Nominal	Nominal	Nominal	Nominal	Nominal
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	normal	FALSE	yes
6	rainy	cool	normal	TRUE	no
7	overcast	cool	normal	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	normal	FALSE	yes
10	rainy	mild	normal	FALSE	yes
11	sunny	mild	normal	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no

Entropia

Teoria da Informação

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 pi$$

Se todas as instancias de S pertencem a mesma classe E(S) = 0

Se S contem o mesmo número de instancia para cada classe, E(s) = 1

Cálculo da Entropia - Classe

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 pi$$

$$E(S) = \left(-\frac{9}{14} \log_2 \left(\frac{9}{14}\right)\right) + \left(-\frac{5}{14} \log_2 \left(\frac{5}{14}\right)\right)$$

$$E(S) = 0.94$$

No.	1: outlook	2: temperature	3: humidity	4: windy	5: play
	Nominal	Nominal	Nominal	Nominal	Nominal
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	normal	FALSE	yes
6	rainy	cool	normal	TRUE	no
7	overcast	cool	normal	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	normal	FALSE	yes
10	rainy	mild	normal	FALSE	yes
11	sunny	mild	normal	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no

Cálculo da Entropia - Outlook

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Outlook (sunny – para yes e no)

$$E(S) = \left(-\frac{2}{5}\log_2\left(\frac{2}{5}\right)\right) + \left(-\frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) = 0.97$$

Outlook (overcast – para yes e no)

$$E(S) = \left(-\frac{4}{4}\log_2\left(\frac{4}{4}\right)\right) + \left(-\frac{0}{4}\log_2\left(\frac{0}{4}\right)\right) = 0$$

Outlook (rainy – para yes e no)

$$E(S) = \left(-\frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) + \left(-\frac{2}{5}\log_2\left(\frac{2}{5}\right)\right) = 0.97$$

No.	1: outlook	2: temperature	3: humidity	4: windy	5: play
	Nominal	Nominal	Nominal	Nominal	Nominal
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	normal	FALSE	yes
6	rainy	cool	normal	TRUE	no
7	overcast	cool	normal	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	normal	FALSE	yes
10	rainy	mild	normal	FALSE	yes
11	sunny	mild	normal	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no

Cálculo da Entropia - Temperature

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Temperature (hot – para yes e no)

$$E(S) = \left(-\frac{2}{4}\log_2\left(\frac{2}{4}\right)\right) + \left(-\frac{2}{4}\log_2\left(\frac{2}{4}\right)\right) = 1$$

Temperature (mild – para yes e no)

$$E(S) = \left(-\frac{4}{6}\log_2\left(\frac{4}{6}\right)\right) + \left(-\frac{2}{6}\log_2\left(\frac{2}{6}\right)\right) = 0.91$$

Temperature (cold – para yes e no)

$$E(S) = \left(-\frac{3}{4}\log_2\left(\frac{3}{4}\right)\right) + \left(-\frac{1}{4}\log_2\left(\frac{1}{4}\right)\right) = 0.81$$

No.	1: outlook	2: temperature	3: humidity	4: windy	5: play
	Nominal	Nominal	Nominal	Nominal	Nominal
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	normal	FALSE	yes
6	rainy	cool	normal	TRUE	no
7	overcast	cool	normal	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	normal	FALSE	yes
10	rainy	mild	normal	FALSE	yes
11	sunny	mild	normal	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no

Cálculo da Entropia - Humidity

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Humidity (high – para yes e no)

$$E(S) = \left(-\frac{3}{7}\log_2\left(\frac{3}{7}\right)\right) + \left(-\frac{4}{7}\log_2\left(\frac{4}{7}\right)\right) = 0.98$$

Humidity (normal – para yes e no)

$$E(S) = \left(-\frac{6}{7}\log_2\left(\frac{6}{7}\right)\right) + \left(-\frac{1}{7}\log_2\left(\frac{1}{7}\right)\right) = 0,59$$

No.	1: outlook	2: temperature	3: humidity	4: windy	5: play
	Nominal	Nominal	Nominal	Nominal	Nominal
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	normal	FALSE	yes
6	rainy	cool	normal	TRUE	no
7	overcast	cool	normal	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	normal	FALSE	yes
10	rainy	mild	normal	FALSE	yes
11	sunny	mild	normal	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no

Cálculo da Entropia - Windy

$$E(S) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Windy (True – para yes e no)

$$E(S) = \left(-\frac{3}{6}\log_2\left(\frac{3}{6}\right)\right) + \left(-\frac{3}{6}\log_2\left(\frac{3}{6}\right)\right) = 1$$

Windy (False – para yes e no)

$$E(S) = \left(-\frac{6}{8}\log_2\left(\frac{6}{8}\right)\right) + \left(-\frac{2}{8}\log_2\left(\frac{2}{8}\right)\right) = 0.81$$

No.	1: outlook	2: temperature	3: humidity	4: windy	5: play
	Nominal	Nominal	Nominal	Nominal	Nominal
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	normal	FALSE	yes
6	rainy	cool	normal	TRUE	no
7	overcast	cool	normal	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	normal	FALSE	yes
10	rainy	mild	normal	FALSE	yes
11	sunny	mild	normal	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no

Ganho de Informação (Information Gain)

$$IG(S,A) = E(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} E(S_i)$$

Outlook sunny overcast rainy $IG(S,A) = 0.94 - \frac{5}{14} * 0.97 - \frac{4}{14} * 0 - \frac{5}{14} * 0.97 = 0.2471$

Outlook

$$|G(S,A) = 0.94 - \frac{5}{14} * 0.97 - \frac{4}{14} * 0 - \frac{5}{14} * 0.97 = 0.2471$$

Entropia Classe Proporção Entropia Proporção Entropia sunny overcast overcast

Proporção rainy rainy

Ganho de Informação (Information Gain)

$$IG(S,A) = Entropia(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} Entropia(S_i)$$

Outlook

Temperatures

$$IG(S,A) = 0.94 - \frac{4}{14} * 1 - \frac{6}{14} * 0.91 - \frac{4}{14} * 0.81 = 0.0328$$

Humidy

$$IG(S,A) = 0.94 - \frac{7}{14} * 0.97 - \frac{7}{14} * 0.59 = 0.16$$

Windy

$$IG(S,A) = 0.94 - \frac{6}{14} * 1 - \frac{8}{14} * 0.81 = 0.048$$

Primeiro nodo

outlook 🕶	temperature 🔻	humidity 🔻	windy 🔻	play
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
rainy	mild	normal	FALSE	yes
rainy	mild	high	TRUE	no

outlook 🕶	temperature 🔻	humidity -	windy	play 🔻
overcast	hot	high	FALSE	yes
overcast	cool	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes

Particionando sunny

outlook 🕶	temperature 🔻	humidity -	windy	play 🔻
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

Entropia Classe $E(sunny) = \left(-\frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) + \left(-\frac{2}{5}\log_2\left(\frac{2}{5}\right)\right) = 0,97$

Cálculo da Entropia - Temperature

outlook 🕶	temperature 🔻	humidity 🔻	windy	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

Temperatura (hot para yes e no)

$$E(S) = \left(-\frac{0}{2}\log_2\left(\frac{0}{2}\right)\right) + \left(-\frac{2}{2}\log_2\left(\frac{2}{2}\right)\right) = 0$$

Temperatura (mild para yes e no)

$$E(S) = \left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) + \left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

Temperatura (cool para yes e no)

$$E(S) = \left(-\frac{1}{1}\log_2\left(\frac{1}{1}\right)\right) + \left(-\frac{0}{1}\log_2\left(\frac{0}{1}\right)\right) = 0$$

Cálculo da Entropia - Humidity

outlook 🕶	temperature 🔻	humidity 🔻	windy	play 🔻
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

Humidity (high para yes e no)

$$E(S) = \left(-\frac{0}{3}\log_2\left(\frac{0}{3}\right)\right) + \left(-\frac{3}{3}\log_2\left(\frac{3}{3}\right)\right) = 0$$

Humidity (normal para yes e no)

$$E(S) = \left(-\frac{2}{2}\log_2\left(\frac{2}{2}\right)\right) + \left(-\frac{0}{2}\log_2\left(\frac{0}{2}\right)\right) = 0$$

Cálculo da Entropia - Windy

outlook 🕶	temperature 🔻	humidity 🔻	windy	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

windy (False para yes e no)

$$E(S) = \left(-\frac{1}{3}\log_2\left(\frac{1}{3}\right)\right) + \left(-\frac{2}{3}\log_2\left(\frac{2}{3}\right)\right) = 0.91$$

Humidity (True para yes e no)

$$E(S) = \left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) + \left(-\frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

Ganho de Informação (Information Gain)

$$IG(S, A) = Entropia(S) - \sum_{i=1}^{n} \frac{|S_i|}{|S|} Entropia(S_i)$$

Temperatures

$$IG(S,A) = 0.97 - \frac{2}{5} * 0 - \frac{2}{5} * 1 - \frac{1}{5} * 0 = 0.57$$

Humidity

IG(S,A) = 0,97
$$-\frac{3}{5} * 0 - \frac{2}{5} * 0 = 0,97$$

Windy

$$IG(S,A) = 0.97 - \frac{3}{5} * 0.91 - \frac{2}{5} * 1 = 0.024$$

outlook 🕶	temperature 🔻	humidity 🔻	windy	play 🔻
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

Próximo nodo

outlook 🕶	temperature 🔻	humidity 🕶	windy 🔻	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no

outlook 🕶	temperature 🔻	humidity 🕶	windy 🔻	play ▼
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

Continuando

Windy = 0.97

Continuando

Finalizando

