C C7120

Total Pages: 1

Reg No.:	Name:
C	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017

Course Code: IT201

Course Name: DIGITAL SYSTEM DESIGN (IT)

Max. Marks: 100 Duration: 3 Hou		Hours		
PART A				
		Answer any two full questions, each carries 15 marks.	Marks	
1	a)	i) $(8745)_{10} = (?)_2$ ii) $(110100101011)_2 = (?)_{10}$	(7)	
		iii) $(9B450)_{16} = (?)_{10}$ iv) $(56363)_{10} = (?)_{16}$		
		v) $(F8E0D)_{16} = (?)_2$ vi) $(10010010)_2 = (?)_8$ vii) $(12534)_8 = (?)_{10}$		
	b)	How negative numbers are represented digitally? Explain arithmetic over	(4)	
		negative numbers in various representations. Explain merits and demerits of		
		different negative number representations.		
	c)	Explain Gray code and Excess -3 Code.	(4)	
2	a)	Minimize the functions using K-map.	(8)	
		$f(A,B,C,D) = \Sigma m(0,1,2,3,4,5) + d(10,11,12,13,14,15)$		
	b)	List out the postulates of Boolean algebra with examples.	(7)	
3	a)	Explain Quine – McClusky method for simplification for logic circuits with	(8)	
		examples.		
	b)	Explain floating point representations and their arithmetic with examples.	(7)	
		PART B		
Answer any two full questions, each carries 15 marks.				
4	a)	Design a 4-bit adder and compare it with carry look ahead adder.	(6)	
	b)	Design a binary to gray code converter.	(4)	
	c)	Design a circuit to generate odd parity bits for decimal numbers represented in	(5)	
_		BCD code.		
5	a)	Distinguish between combinational and sequential circuits.	(4)	
	b)	Explain the working of master slave flip-flop.	(5)	
	c)	Design decimal to binary encoder.	(6)	
6	a)	Describe procedure for converting from one type of flip-flop to another and	(6)	
	1 \	perform i) JK to D ii) D to T iii) RS to JK	(4)	
	b)	Explain how a 3-bit counter can be implemented using a multiplexer.	(4)	
	c)	Explain state reduction with example.	(5)	
PART C				
7	- \	Answer any two full questions, each carries 20 marks.	(10)	
7	a)	Design a serial in parallel out shift register.	(10)	
	b)	Explain different types of ROMs. What are applications for shift registers?	(4)	
8	c)	What are applications for shift registers?	(6)	
0	a) b)	Design and implement ring and Johnson counters. Distinguish between PAL and PLA.	(10)	
	b) c)	Explain different types of error-detecting codes.	(4) (6)	
9	a)	Design a decimal up –down counter with a mode control.	(8)	
I	a) b)	Design and implement a universal shift register.	(8)	
	c)	Explain Booths algorithm with example.	(4)	
	c)	****	(4)	

