mpi* - lycée montaigne informatique

DM9

L'algorithme *Union-Find* a pour but de gérer dynamiquement une partition d'un ensemble $\{1,2,\ldots,n\}$ fixé. Initialement, on part de la partition maximale $\{\{1\},\{2\},\ldots,\{n\}\}$. En pratique, on représente les partitions de $\{1,\ldots,n\}$ comme suit :

- chaque entier k possède un (seul) parent $p_k \leqslant n$, ce que l'on notera $k \to p_k$; on peut avoir $k = p_k$;
- chaque entier k possède un poids $w_k \in \mathbb{N}$;
- deux entiers distincts k et ℓ ne peuvent être ancêtres l'un de l'autre, et appartiennent au même sous-ensemble si et seulement s'ils ont un ancêtre commun;
- si l'entier k appartient à un singleton, $w_k = 0$.

Question 1. On dit que m est le *chef* de k si m est un ancêtre de k tel que $m=p_m$. Démontrer que tout entier a un unique chef et que deux entiers k et ℓ appartiennent au même sous-ensemble si et seulement s'ils ont le même chef.

L'algorithme est censé gérer trois types de requêtes, en procédant comme suit :

- 1. La requête auxiliaire Chef(k): on recherche le chef de k. Si $k=p_k$, il s'agit de k lui-même. Sinon, il s'agit du chef de p_k , et ce chef devient le nouveau parent de k.
- **2.** La requête $\operatorname{Test}(k,\ell)$: on se demande si k et ℓ appartiennent au même sous-ensemble. Cela revient à identifier les entiers $k' = \operatorname{Chef}(k)$ et $\ell' = \operatorname{Chef}(\ell)$ puis à vérifier si $k' = \ell'$.
- **3.** La requête $\operatorname{Union}(k,\ell)$: on souhaite réunir les sous-ensembles auxquels appartiennent k et ℓ . Cela revient à identifier les entiers $k' = \operatorname{Chef}(k)$ et $\ell' = \operatorname{Chef}(\ell)$, puis :
 - si $w_{k'} > w_{\ell'}$, l'entier k' devient le nouveau parent de ℓ' ;
 - si $w_{\ell'} > w_{k'}$, l'entier ℓ' devient le nouveau parent de k' ;
 - si $k' \neq \ell'$ et $w_{k'} = w_{\ell'}$, l'entier k' devient le nouveau parent de ℓ' et son poids augmente de 1.

On souhaite démontrer que répondre à m de ces requêtes peut se faire en temps $\mathcal{O}\left(m\log^\star(m)\right)$, où \log^\star est la fonction définie par $\log^\star(m)=1$ lorsque $m\leqslant 1$ et $\log^\star(m)=1+\log^\star\left(\log_2(m)\right)$ lorsque m>1.

Question 2. En partant de l'ensemble $\{\{1\}, \{2\}, \{3\}, \{4\}\}$, on effectue successivement les requêtes Union (1, 2), Union (3, 4), Union (2, 4) et Test (2, 4). Indiquer le parent et le poids de chaque entier $k \leq 4$.

Question 3. On note w_k^{∞} le poids d'un entier k à la fin de l'algorithme. Démontrer que $w_u^{\infty} < w_v^{\infty}$ pour tous les entiers $u \neq v$ tels que v a été le parent de u.

Question 4. Démontrer, pour tout entier $\ell \geqslant 1$, qu'il y a au plus $m/2^{\ell-1}$ entiers $k \leqslant n$ pour lesquels $w_k^{\infty} = \ell$.

Question 5. Démontrer que toute requête Test ou Union effectuée au cours de l'algorithme a une complexité majorée par $\mathcal{O}(\log_2(\min\{m,n\}))$.

Question 6. Soit $\mathcal{G}=(V,E)$ le graphe dont les sommets sont les entiers de 1 à n et les arêtes sont les paires (u,v) pour lesquelles $u\neq v$ et v a été le parent de u au cours de l'algorithme, mais pas quand celui-ci se termine. Démontrer que la complexité totale de nos m requêtes est majorée par $\mathcal{O}(m+|E|)$.

Question 7. Soit $(a_\ell)_{\ell\geqslant 0}$ la suite définie par $a_0=0$ et $a_{\ell+1}=2^{a_\ell}$. Pour tout entier $\ell\geqslant 0$, on note V_ℓ l'ensemble des entiers k tels que $a_\ell\leqslant w_k^\infty< a_{\ell+1}$. Démontrer que $\mathcal G$ contient au plus 4m arêtes reliant deux sommets de V_ℓ , et au plus 2m arêtes allant d'un sommet de V_ℓ à un sommet en dehors de V_ℓ .

Question 8. Que conclure sur la complexité de l'algorithme *Union-Find*?