

80V N-Channel Enhancement Mode MOSFET

Voltage	80 V	RDSON	3.4 mΩ
Current	161 A	Q _G (TYP)	103.5 nC

Feature:

- $R_{DS(ON) Max}$, $V_{GS}@10V$, $I_D@50A<3.4m \Omega$
- $R_{DS(ON) Max}$, $V_{GS}@7V$, $I_D@25A<5m\Omega$
- 100% Avalanche Tested
- 100% Rg Tested
- Lead free in compliance with EU RoHS 2.0
- Green molding compound as per IEC 61249 standard

Mechanical Data

• Case: TO-263 package

• Terminals: Solderable per MIL-STD-750, Method 2026

• Approx. Weight: 1.38 grams

Application

• BMS, BLDC. SMPS SR.

TO-263 Drain Gate Source

Absolute Maximum Ratings (T_A = 25 °C unless otherwise specified)

PARAMETER	SYMBOL	LIMIT	UNITS		
Drain-Source Voltage		V_{DS}	80		
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Brain Current	Tc=25°C (Note 3)		161	^	
Continuous Drain Current	Tc=100°C	- I _D	102	Α	
Pulsed Drain Current	T _C =25°C	I _{DM}	480	Α	
Single Pulse Avalanche Current (Note 5)	·	I _{AS}	38	Α	
Single Pulse Avalanche Energy (Note 5)		E _{AS}	722	mJ	
Dower Discipation	Tc=25°C	- PD	156	W	
Power Dissipation	T _C =100°C	PU	62.5	VV	
Operating Junction and Storage Temperature Ra	ange	T _J ,T _{STG}	-55~150	°C	

Thermal Characteristics

PARAM	ETER	SYMBOL	MAXIMUM	UNITS
	Junction-to-Case	$R_{ heta JC}$	0.8	°C/W
Thermal Resistance	Junction-to-Ambient (Note 4)	R _{θJA}	62.5	°C/W

Electrical Characteristics (T_A = 25 °C unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
Static						
Drain-Source Breakdown Voltage	BV _{DSS} (Note 7)	V _{GS} =0V, I _D =250uA 80		-	-	
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	2.25	3.2	3.75	V
Drain-Source On-State Resistance	0	V _{GS} =10V, I _D =50A	-	3	3.4	mΩ
(Note 1)	R _{DS(on)}	V _{GS} =7V, I _D =25A	-	3.5	5	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =80V, V _{GS} =0V	-	-	1	uA
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA
Dynamic (Note 6)						
		V _{DS} =40V, I _D =50A,		70	-	nC
Total Gate Charge	Qg	V _{GS} =7V	-	76		
			-	103.5	-	
Gate-Source Charge	Qgs	V _{DS} =40V, I _D =50A,	-	34.1	-	
Gate-Drain Charge	Qgd	V _{GS} =10V	-	20.9	-	
Input Capacitance	Ciss	101/11/101/	-	7430	-	pF
Output Capacitance	Coss	V _{DS} =40V, V _{GS} =0V,	-	1483	-	
Reverse Transfer Capacitance	Crss	F=1MHz	-	89	-	
Turn-On Delay Time	td(on)		-	70.6	-	
Turn-On Rise Time	t _r	V _{DD} =40V, I _D =50A,	-	103	-	
Turn-Off Delay Time	td _(off)	$V_{GS}=10V, R_{G}=2\Omega$ (Note 2)	-	122	-	ns
Turn-Off Fall Time	tf	(Note 2)	-	48.5	-	
Gate Resistance	Rg	f=1.0MHz	-	3.2	-	Ω
Drain-Source Diode						
Diode Forward Voltage	V _{SD}	I _S =50A, V _{GS} =0V	-	0.88	1.2	V
Reverse Recovery Charge	Qrr	Is=50A	-	114	-	nC
Reverse Recovery Time	T _{rr}	di/dt=100A/µs	-	69	-	ns

NOTES:

- 1. Pulse width<580us,
- 2. Essentially independent of operating temperature typical characteristics.
- 3. The maximum current rating is silicon limited.
- 4. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. Mounted on a 1 inch² with 2oz.square pad of copper.
- 5. The test condition is L=1mH, I_{AS}=38A, V_{DD} =40V, V_{GS} =10V, R_{G} =25ohm, Starting T_{J} =25 $^{\circ}$ C
- 6. Guaranteed by design, not subject to production testing.
- 7. BVDSS is over 85V during mass production.

TYPICAL CHARACTERISTIC CURVES

PSMB032N08NS1

TYPICAL CHARACTERISTIC CURVES

Fig.7 Gate-Charge Characteristics

Fig.8 Breakdown Voltage Variation vs. Temperature

Fig.9 Threshold Voltage Variation with Temperature

Fig.10 Source-Drain Diode Forward Voltage

Fig.11 Maximum Safe Operating Area

Fig.12 Normalized Transient Thermal Impedance

TYPICAL CHARACTERISTIC CURVES

Fig.13 Drain Current vs. Case Temperature

Product and Packing Information

Part No.	Package Type	Packing Type	Marking
PSMB032N08NS1	TO-263	50pcs / Tube	032N08NS
F SIVIBUSZINUONS I	10-203	800pcs / Reel	0321106113

Packaging Information & Mounting Pad Layout

Marking Diagram

PJ 032N08NS YWLL x Y = Year Code

W = Week Code (A~Z)

LL = Lot Code (00~99)

x = Production Line Code

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no
 representation or warranty that such applications will be suitable for the specified use without further testing
 or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.