Porównanie symulatorów ruchu miejskiego

Zuzanna Brzezińska, Agnieszka Szynalik March 2023

1 Analiza problemu i dziedziny

1.1 Modele i systemy

Modele dzielimy ze względu na ich szczegółowość - wyróżniamy modele mikro, mezo i makroskopowe.

- Modele mikroskopowe symulują każdy pojedynczy pojazd. Ich logika zawiera algorytmy opisujące jak pojazdy poruszają się oraz jak wchodzą w interakcje z innymi obiektami. Symulacja uwzględnia pozycję, prędkość przyspieszenie i wiele innych parametrów dla każdego pojedynczego pojazdu. Takie modele pozwalają również na symulowanie innych cech otoczenia pojazdów, takich jak sygnalizacja świetlna czy piesi.
- Modele mezoskopowe stanowi niejako model pośredni między mikro i makroskopowym. Symulacja jest obliczana dla grup pojazdów, jednak pojazdy mogą mieć indywidualne cechy.
- Modele makroskopowe symulują przepływ ruch. Uwzględniają średnią prędkość oraz gęstość strumienia pojazdów, bez symulowania pojedynczych obiektów.

System może być dyskretny oraz ciągły. W systemie dyskretnym update stanu odbywa się w określonych odstępach czasowych, a zmiany mają charakter dyskretny, a w systemie ciągłym zmiany zachodzą w sposób ciągły.

Model Car-Following - opisuje jak pojazd podąża za innym pojazdem za pomocą równań różniczkowych. Parametrami wejściowymi w tym modelu są prędkość danego pojazdu, prędkość pojazdu przed nim oraz odległość między tymi dwoma pojazdami. Na ich podstawie obliczane są położenia oraz prędkości każdego z samochodów. Przykładami takich modeli są np. model Gippsa czy model Wiedemanna.

Rysunek 1: Car Following Model

1.2 Przegląd istniejących symulatorów ruchu drogowego

Nazwa	Model	System	Parametry	Cechy	Wady
MOVSIM	mikro	dyskretny	wielopasmowość		tylko skala
			sygnalizacja	configuration,	mikro
			świetlna,	GUI, csv	
			możliwość	output	
			używania		
			różnych		
			modeli (IDM,		
			Gipps,		
			Krauss, etc)		
SUMO	mikro (model	ciągły	wielopasmowość	, model ruchu	?
(Simulation	Kraussa)		sygnalizacja	może być	
for Urban	/		świetlna, piesi	zdefiniowany	
MObility)			i rowery, VSL	przez	
			(Variable	użytkownika,	
			Speed Limit),	xml-based	
			Rerouter	output	
AIMSUN	mikro (oparty	ciągły	pojazdy mogą	GUI,	komercyjny
(Advanced	na Gipps)	010(81)	zmieniać	animowany	nomercy jny
Interactive	na Gipps)		wybraną trasę	output 2D i	
Microscopic			na podstawie	3D	
Simulator for			natężenia	3D	
Urban and			ruchu, wielo-		
Non-Urban			pasmowość,		
Networks)			przejścia dla		
Networks)			- "		
			pieszych, VSL		
			(VMS), różne		
17.	1 / 1 1	• 1	typy dróg	COM	1 .
Vissim	mikro (model	ciągły	dużo	COM	komercyjny
	Wiedemann)		rodzajów	(Component	
			pojazdów	Object	
				Model)	
				programming	
				interface -	
				umożliwia	
				użytkowni-	
				kowi	
				implementa-	
				cję symulacji	
				przy użyciu	
				różnych	
				języków pro-	
				gramowania	

SMARTS (Scalable Microscopic Adaptive Road Traffic Simulator)	mikro (IDM model)	dyskretny	planowanie trasy pojazdów, sygnalizacja świetlna, transport piubliczny, generowanie ruchu, blokowanie dróg	OSM, możliwość wizualizacji wyników	-
MATSim (Multi-Agent Transport Simulation)	mezo (Krauss model)	${ m dys}{ m kretny}$	transport publiczny, planowanie trasy pojazdów, sygnalizacja świetlna	plik konfiguracyjny XML, paczki rozszerzające zakres funkcjonalnści, graficzne wyświetlanie wyników	brak wizualizacji
Visum	makro	dyskretny / ciągły	różne modele (Wiedemann, Krauss, etc), użytkowanie gruntów, sygnalizacja świetlna, trasport publiczny, czynniki środowiskowe	integracja GIS, analiza wydajności, optymaliza- cja, prognozowa- nie	komercyjny, złożony, wymaga zacznej wiedzy technicznej
TRANSIMS (Transporta- tion Analysis and Simulation)	mikro (Nagel- Schreckenberg model)	dyskretny	syteza populacji, generowanie aktywności, parametryza- cja pojazdów, sygalizacja świetlna, transport publiczny, pogoda	wydajny, import map z różnych źródeł, wiele bibliotek, optymalizacja i prognozowa- nie	złożony, wymaga wielu danych wejściowych

• SUMO - output: raw vehicle positions dump (pozycje wszystkich pojazdów w czasie i ich prędkości), full output (informacje o pasach i pojazdach i krawędziach), Floating Car Data Output

Rerouter changes the route of a vehicle as soon as the vehicle moves onto a specified edge.

2 Bibliografia

- Simulation Approaches in Transportation Analysis 2005 Jaume Barcelo, Jordi Casas
- CAR-FOLLOWING MODELS. COMPARISON BETWEEN MODELS USED BY VISSIM AND AIMSUN Ionuț-Sorin MITROI, Ana-Maria CIOBÎCĂ, Mihaela POPA
- Car Following Models Lecture Notes in Transportation Systems Engineering Prof. Tom V. Mathew
- A Comparative Study of Urban Road Traffic Simulators Mustapha Saidallah, Abdeslam El Fergougui and Abdelbaki Elbelrhiti Elalaoui 2016