





## by Kumaran Ponnambalam F on Skillshare

This course focuses on the **Statistics** for Data Science. It goes through basic concepts of statistics that are required for performing data engineering and machine learning operations as a part of this series.

## 5 Lessons (1h 1m)

**URL:** https://www.skillshare.com/classes/Applied-Data-Science-2-Statistics/1621177206

## 1. About Applied Data Science Series

## 8:12

### Course goal

- Train students to be full-fledged data science practitioners who could execute end-to-end data science projects to achieve business results
- The course is oriented towards existing software professionals
  - Heavily focused on programming and solution building
  - · Limited, as-required exposure to math and statistics
  - Overview of ML concepts, with focus on using existing tools to develop solutions

#### **Achievements**

- Understand the concepts and life cycle of Data Science
- Develop proficiency to use R for all stages of analytics
- Learn Data Engineering tools and techniques
- Acquire knowledge of different machine learning techniques and know when and how to use them.
- Become a full-fledged Data Science Practitioner who can immediately contribute to real-life Data Science projects

#### **Course structure**

- Concepts of Data Science
- Data Science Life Cycle
- Statistics for Data Science
- R Programming
  - Examples
- Data Engineering
- Modeling and Predictive Analytics
  - Use cases
- Advanced Topics
- Resource Bundle

# 2. Types of Data

## #4 Types of Data

- There are 4 types of data that you would deal with
- · They differ in meaning and what operations you can do on them
- Types
  - Categorical or nominal
  - Ordinal
  - Interval
  - Ratio

## **Categorical (nominal)**

- · Represents categories or types
- Fixed list of values
- No implicit ordering or sequencing
- Examples :
  - · Fruits: apples, oranges, grapes
  - · Players : defender, mid-fielder, forward
  - · Cars: sedan, coupe, SUV
  - · Gender: Male, female
  - Eye color: Blue, green, brown
  - · Hair color: Blonde, black, brown, grey, other
  - Blood type: O-, O+, A-, A+, B-, B+, AB-, AB+
  - Political Preference: Republican, Democrat, Independent
  - Place you live: City, suburbs, rural

### **Ordinal**

- Represents categories
- But there is ordering among the values
- Represents a scale.
- Comparison possible (greater than, less than)
- Examples
  - · Review Rating: Outstanding, Very Good, Good, Fair, Bad
  - Pain Levels: 1 10 (10 being the highest)
  - · Student Grades: A, B, C, D, F
  - Satisfaction: Very unsatisfied, unsatisfied, neutral, satisfied, very satisfied
  - Socioeconomic status: Low income, medium income, high income
  - Workplace status: Entry Analyst, Analyst I, Analyst II, Lead Analyst
  - Degree of pain: Small amount of pain, medium amount of pain, high amount of pain

#### Interval

- Numeric Data
- Measurement where the difference is meaningful
- Represents time, distance, temperature etc.
- · Addition, Subtraction possible
- Multiplication, division not possible
- Examples
  - · Time of Day
  - Dates
  - · Distance between two points
  - Temperature
  - Temperature: Measured in Fahrenheit or Celcius
  - Credit Scores: Measured from 300 to 850
  - SAT Scores: Measured from 400 to 1,600

#### Ratio

- Numeric Data
- · All arithmetic operations possible
- True Zero possible
- Examples
  - Weight
  - Speed
  - Amount
  - Height: Can be measured in centimeters, inches, feet, etc. and cannot have a value below zero.
  - Weight: Can be measured in kilograms, pounds, etc. and cannot have a value below
  - Length: Can be measured in centimeters, inches, feet, etc. and cannot have a value below zero.

## **Table of comparison**

| Operations             | Nominal | Ordinal | Interval | Ratio |  |
|------------------------|---------|---------|----------|-------|--|
| Discrete Values        | Yes     | Yes     | Yes      | Yes   |  |
| Continuous Values      | No      | No      | Yes      | Yes   |  |
| Frequency Distribution | Yes     | Yes     | Yes      | Yes   |  |
| Median and Percentiles | No      | Yes     | Yes      | Yes   |  |
| Add / Subtract         | No      | No      | Yes      | Yes   |  |
| Multiply / Divide      | No      | No      | No       | Yes   |  |
| Mean, Std. Deviation   | No      | No      | Yes      | Yes   |  |
| Ratios                 | No      | No      | No       | Yes   |  |
| True Zero              | No      | No      | No       | Yes   |  |

### + ref:

https://blocnotes.iergo.fr/breve/nominales-ordinales-intervalles-et-ratios/https://www.statology.org/tutorials/

# 3. Summary Statistics

## **Statistics for Data Science (the basics)**

#### **Summary statistics**

- · Describe a set of observations
- Observations have a number of data points; Summary statistics are used to characterize them
- Describe
  - Central Tendency
    - · Mean, Median, Mode
  - Variation
    - · Variance, Standard Deviation
  - Skew
    - Quartiles

## Central Tendency (mean, median, mode)

- · Mean: The average
  - · Add all number and divide by their count
- · Median: The middle value
  - · Order the numbers and find the middle value
  - · If the count is even, find average of the two middle values
- · Mode: The most occurring value
  - · The value that occurs most
- + Range: diffrence between the lowest and highest values

#### Ex.

- Observations: 1, 3, 4, 5, 5, 7, 8, 9, 9, 9
- Count: 10
- Sum: 60
- Mean: Sum / Count = 60/10 = 6
- Median : Middle Value = (5 + 7) / 2 = 6
- Mode: 9
- + *Range* = 8

The bell curve is commonly seen in statistics as a tool to understand standard deviation.



#### **Variance & Standard deviation**

- Describes how values are distributed around the mean
  - If most values are closer to mean, low variance
  - If significant differences in values, then high variance
- · To compute
  - · Find the mean
  - · Square the differences from the mean
  - · Sum of Squares
  - Divide by count

| Values       | Mean –<br>Value | Square |      |
|--------------|-----------------|--------|------|
| 4            | 0               | 0      |      |
| 6            | -2              | 4      |      |
| 3            | 1               | 1      |      |
| 5            | -1              | 1      |      |
| 2            | 2               | 4      |      |
| Mean = 4     |                 | Sum=10 | 10 / |
| V            | 5               |        |      |
| <b>o</b> Std | $\sqrt{2}$      |        |      |

Standard Deviation is Square Root of variance

Variance tells us that how far away are the values from the mean.

A <u>low</u> <u>Standard Deviation</u> tells us that fewer numbers are far away from the mean.

A <u>high standard deviation</u> tells us that more numbers are <u>far away</u> from the mean.

#### Quartiles

- Describes the central tendency, distribution, range and skew in one set of measures
- Given a set of observations, we divide them into 4 equal sets.
- The boundaries form the quartiles



The Box Plot plots the 5-number summary of a variable: minimum, first quartile, median, third quartile and maximum.

Ex. of distribution and reading of a box plot

| Min | 1 <sup>st</sup> | Median | 3 <sup>rd</sup> | Max | Comments                     |
|-----|-----------------|--------|-----------------|-----|------------------------------|
| 1   | 3               | 5      | 8               | 10  | Evenly distributed           |
| 1   | 4               | 5 ₽    | 6               | 10  | Most values closer to center |
| 1   | 2               | 3      | 7               | 10  | Skewed to the left           |
| 1   | 6               | 7      | 9               | 10  | Skewed to the right          |

#### **Outliers**

- · An Odd value occurring in a dataset
- Typically towards the min end or max end of the list
- Outliers tend to distort the summary statistics of a dataset
- Example
  - Observations: 1,2,4,5,20
  - Outlier: 20
  - With outlier, mean= 6.4, Std. Dev=6.94
  - Without outlier, mean= 3, Std. Dev=1.58

# 4. Statistical Distributions

# 19:05

## **Distributions (summarizing trends)**

- Distributions show how data values are spread in a given observation set
- · Distributions contain a set of bins
- Data is grouped in bins based on
  - · Values (categorical, ordinal)
  - · Value ranges (interval, ratio)



## Ex. building a distribution with bins

6 9 8





2

## **Distribution shapes**



## **Probability distributions**

- Assigns a probability to each measurable subset of the possible outcomes of an experiment
- Each possible outcome (or range) plotted on the x-axis
- Probability (0 1) plotted on the y-axis

0,05

· Discrete or continuous









Ways to test a normal distribution: <a href="https://towardsdatascience.com/6-ways-to-test-for-a-normal-distribution-which-one-to-use-9dcf47d8fa93">https://towardsdatascience.com/6-ways-to-test-for-a-normal-distribution-which-one-to-use-9dcf47d8fa93</a>
+ python sample codes...

#### **Binomial distribution**

- Describes the probability of a Boolean outcome (Yes/No)
- · If
  - n is the number of trials
  - p is the probability of success
  - k is the number of successes
- Plots the probabilities of all values of k.



+ ref. https://fr.wikipedia.org/wiki/Loi binomiale

## Ex. pile ou face



# 5. Statistics Correlations

## 10:09

## **Correlation (relationships)**

- Correlation: a mutual relationship or connection between two or more things
- Interdependence
- Correlation between 2 sets of data how much does one change when the other changes
- The basis of data science



#### **Measuring correlation**

- · Pearson's Correlation co-efficient
- Values range from -1 to +1



### **Causation vs. Correlation**

- Causation: The reason for a change in value
- Correlation does not imply causation
- Correlation might be due to
  - Causation
  - Common cause
  - Incidental

 An analysis needed to establish why you see what you see



Ex. false correlation between two things