

**(12) МЕЖДУНАРОДНАЯ ЗАЯВКА, ОПУБЛИКОВАННАЯ В СООТВЕТСТВИИ С
ДОГОВОРОМ О ПАТЕНТНОЙ КООПЕРАЦИИ (РСТ)**

**(19) ВСЕМИРНАЯ ОРГАНИЗАЦИЯ
ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ**
Международное бюро

(43) Дата международной публикации:
27 октября 2005 (27.10.2005)

PCT

(10) Номер международной публикации:
WO 2005/099571 A1

(51) Международная патентная классификация⁷:
A61B 5/0205

(RU) [KUROCHKINA, Larisa Pavlovna, St.Petersburg (RU)].

(21) Номер международной заявки: PCT/RU2005/000198

(81) Указанные государства (если не указано иначе, для каждого вида национальной охраны): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BW, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KM, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) Дата международной подачи:

12 апреля 2005 (12.04.2005)

(25) Язык подачи: русский

(26) Язык публикации: русский

(30) Данные о приоритете:
2004112563 14 апреля 2004 (14.04.2004) RU

(84) Указанные государства (если не указано иначе, для каждого вида национальной охраны): ARIPO патент (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), евразийский патент (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), европейский патент (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), патент OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Заявитель и

(72) Изобретатель: НЕСТЕРОВ Владимир Петрович [RU/RU]; пр. Энгельса, 61, кв. 52, Санкт-Петербург, 194017 (RU) [NESTEROV, Vladimir Petrovich, St.Petersburg (RU)].

(72) Изобретатели; и

(75) Изобретатели/Заявители (только для (US): БУРДЫГИН Антон Игоревич [RU/RU]; ул. Варшавская, 79, кв. 34, Санкт-Петербург, 196240 (RU) [BURDYGIN, Anton Igorevich, St.Petersburg (RU)]; НЕСТЕРОВ Сергей Владимирович [RU/RU]; ул. Байконурская, 7, корп. 1, кв. 423, Санкт-Петербург, 197227 (RU) [NESTEROV, Sergei Vladimirovich St. Petersburg (RU)].

(74) Агент: КУРОЧКИНА Лариса Павловна, Заневский пр., д. 26, корп. 1, кв. 72, Санкт-Петербург, 195112

Опубликована

С отчётом о международном поиске.

В отношении двухбуквенных кодов, кодов языков и других сокращений см. «Пояснения к кодам и сокращениям», публикуемые в начале каждого очередного выпуска Бюллетеня РСТ.

(54) Title: METHOD FOR EVALUATING CARDIOVASCULAR STATUS

(54) Название изобретения: СПОСОБ ОЦЕНКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

(57) Abstract: The invention relates to medicine, more specifically to cardiology. The inventive method for evaluating cardiovascular status of a human being makes it possible, with the aid of a computer and a piezoceramic sensor, continuously during a certain time period to record differential sphygmograms and on the basis thereof to use a coding point determination method for simultaneously carrying out a snap analysis of two main pulse characteristics, i.e. eurhythm and arterial pressure pulse. An automated distribution of coding points on the curve of an averaged cardiac cycle ensures the determination accuracy of amplitude-time parameters on each recognised normal pulsation of a selected pulsogram fragment. Said fragment is used for measuring and analysing a heart rate and all amplitude-time cardio-hemodynamic indexes which characterise a left ventricle myocardial contractility and flexible elasticity of arterial vascular walls. The results of statistic and spectral analysis of the measured results variability make it possible to evaluate the cardiovascular status and the character of a patient anatomic regulation.

[Продолжение на след. странице]

WO 2005/099571 A1

(57) Реферат: Изобретение относится к медицине, а именно - к кардиологии. Способ оценки функционального состояния сердечно-сосудистой системы (ССС) человека и характера ее вегетативной регуляции позволяет с помощью компьютера и пьезокерамического датчика, непрерывно в течение необходимого времени регистрировать дифференциальные сфигмограммы и по ним, используя метод определения «кодирующих» точек, проводить экспресс-анализ одновременно двух основных характеристик пульса: ритмичности и пульсовых колебаний артериального давления. Автоматическая расстановка «кодирующих» точек на усредненном графике кардиоцикла гарантирует точность определения амплитудно-временных параметров на каждой распознанной нормальной пульсации выбранного фрагмента пульсограммы. По этому фрагменту измеряют и анализируют сердечный ритм и все амплитудно-временные кардиогемодинамические показатели, характеризующие сократительную способность миокарда левого желудочка и упруго-эластические свойства стенок сосудов артериального русла. По результатам статистического и спектрального анализов вариабельности измеренных показателей оценивают функциональное состояние и характер вегетативной регуляции ССС обследуемого.

СПОСОБ ОЦЕНКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ

Область техники

5 Изобретение относится к медицине, а именно - к кардиологии, и может быть использовано для неинвазивного экспресс-анализа функционального состояния сердечно-сосудистой системы (ССС) человека и характера ее регуляции вегетативной нервной системой и другими регуляторными системами гомеостаза. На основе изобретения разработано новое диагностическое устройство для комплексного и, в то же время,

10 простого по выполнению обследования ССС человека с использованием компьютерной регистрации и анализа сердечного ритма и колебаний артериальных стенок при прохождении пульсовой волны. Изобретение может быть использовано для диагностики сердечно-сосудистых заболеваний в клинике, при проведении оперативного медицинского контроля за состоянием здоровья различных групп населения, а также в медицинских прогностических исследованиях с целью оценки тенденций развития функциональных доклинических изменений в ССС и вероятности их выхода за допустимые

15 пределы.

Предшествующий уровень техники

20 Разработка и совершенствование методологии и технических средств ранней диагностики состояния ССС человека является чрезвычайно актуальной задачей в современных условиях, поскольку эта система наиболее уязвимая по отношению к физическим и эмоциональным (стрессовым) нагрузкам часть организма и именно сердечно-сосудистая патология в структуре заболеваемости, инвалидизации и смертности занимает устойчивое первое место в развитых странах. Важнейшую роль в регуляции

25 ССС и в адаптации ее функций к меняющимся условиям внешней и внутренней среды играет вегетативная нервная система (ВНС). Поэтому современные системы комплексного обследования ССС должны включать и оценку характера вегетативной регуляции этой системы.

30 До последнего времени системы такого обследования ССС строились преимущественно на основе вариационно-статистического и спектрального анализа кардион-

тервалограммы, получаемой с помощью метода электрокардиографии (ЭКГ) (например, такие известные системы, как “Анкар”, “Инкарт”, “Holter for Windows”, “SphygmoCor Px” и др.).

Известен запатентованный способ диагностики по кардиоритму, использующий 5 ЭКГ для регистрации и накопления кардиоинтервалов за определенный промежуток времени с последующим их анализом [1].

Однако, используемый в таких системах и способах метод ЭКГ, несмотря на его высокую информативность при изучении динамики электрического возбуждения сердца и широкую применяемость при проведении спектрального анализа вариабельности 10 сердечного ритма, не может в достаточной мере оценивать кардиогемодинамику, сократительные свойства миокарда и состояние сосудистого тонуса. В то же время у больных очень часто функциональные нарушения, происходящие в миокарде и кровеносных сосудах, предшествуют изменениям, выявляемым с помощью ЭКГ. Поэтому в последние годы активно разрабатываются системы, в которых используются и другие 15 способы неинвазивного изучения состояния ССС.

Широкое распространение получил метод ультразвуковой эхокардиографии, позволяющий проводить неинвазивную оценку ряда важных кардио- и гемодинамических характеристик ССС. Тем не менее, использование этого метода требует сложной и дорогостоящей аппаратуры, высокой квалификации оператора и значительного времени 20 обследования, что снижает его значимость как метода получения экспресс- информации.

Дальнейший прогресс в этом направлении был связан с созданием специализированных систем анализа ССС, в основе которых лежит регистрация амплитудно-временных параметров пульсовых волн в виде электрических сигналов, возникающих в 25 результате преобразования специальными датчиками механических сигналов от перемещающихся под воздействием волны пульсового давления стенок артерий – сфигмография (СФГ) или от изменяющихся под воздействием пульсирующего притока крови объемов тканей – плеизмография. На основе фото- и импедансных плеизмографических и других датчиков (например, с использованием компрессионной манжеты) были 30 созданы такие системы как “DynaPuls”, “Finapres”, “Portapres” и др. [2], в многом объединяющие плеизмографию со сфигмографией, а сам метод получил название объ-

емной сфигмографии (ОСФГ). В то же время сохраняются высокая стоимость этих устройств и сложность процедуры расшифровки результатов. Например, при использовании относительно недорогой (499 долларов США) системы "DynaPuls" требуется передать первичную информацию по сети «Интернет» в специальный коммерческий аналитический центр в Калифорнии для ее интерпретации, что создает дополнительные трудности и существенно увеличивает стоимость обследования.

Близким к заявленному является «Способ оценки функционального состояния сердечно-сосудистой системы», который осуществляется путем измерения артериального давления крови (АД) и регистрации СФГ в течение одного дыхательного цикла с целью определения средней длительности одного кардиоцикла и времени нарастания пульсового давления (t , мс) [3]. Этот способ позволяет с помощью предложенных эмпирических формул по величине $\langle t \rangle$, диастолическому и пульсовому давлениям дать приблизительную оценку в условных единицах степени выраженности функционального стресса под влиянием физической нагрузки.

Однако, он не может быть использован в качестве метода комплексного обследования ССС из-за ограниченного числа изучаемых параметров и невозможности выявления динамики изменения во времени важных для диагностики показателей, ограничиваясь при анализе лишь несколькими пульсовыми волнами одного дыхательного цикла. По этой же причине запатентованный способ не может быть применен для спектрального анализа вариабельности амплитудно-временных параметров при определении характера вегетативной регуляции ССС.

Наиболее близким по своей сущности к заявленному способу является метод, использующий датчики для регистрации ОСФГ с последующим математическим дифференцированием пульсовых кривых [4]. Недостатком этого метода является то, что регистрируемый при этом сигнал отражает пульсовые изменения и артериального, и капиллярного, и венозного кровенаполнения тканей, по разному изменяющих их объем. Это приводит к демпфированию сигнала, сглаживанию или, наоборот, усложнению контура графика кардиоцикла и к потере ряда существенных деталей на регистрируемой кривой. Дифференцирование такой пульсограммы облегчает процедуру временного анализа графика по «кодирующими» точкам, но не повышает точность и информативность обследования, что в дальнейшем приводит к неопределенности в оценке со-

стояния ССС, а ограниченное число регистрируемых кардиоциклов не позволяет анализировать воздействия регуляторных систем организма на состояние ССС.

Анализ современного состояния проблемы пульсовой диагностики ССС привел 5 к выводу о предпочтительности и перспективности использования генераторных (индукционных и пьезоэлектрических) датчиков для непосредственной регистрации дифференциальных сфигмограмм (ДСФГ) с пульсирующего участка тела над артерией [5]. Эта возможность появилась в последние годы в связи с промышленным созданием малогабаритных и высокочувствительных пьезоэлектрических преобразователей с широкой полосой рабочих частот и высокой собственной резонансной частотой (более 2000 Гц) [6].

Такие датчики принадлежат к числу наиболее точных и позволяют преобразовывать механические воздействия на датчик непосредственно в аналоговый электрический сигнал, который может быть зарегистрирован графически в виде кривой скорости 15 изменения силы воздействия. Развитие вычислительной техники открыло возможность преодоления трудностей, возникающих при количественной обработке и анализе больших массивов получаемой пульсометрической информации [7]. Стало возможным проведение непрерывного мониторинга изменений амплитудно-временных параметров пульсограммы, получение расчетных данных практически в реальном масштабе времени, а также быстрое выполнение сложных математических преобразований для выявления периодических составляющих в колебаниях амплитудно-временных параметров пульсовых кривых с целью оценки значимости их вклада в обеспечение необходимой кардиогемодинамики.

Раскрытие изобретения

25 Задачей изобретения явилось создание способа неинвазивного обследования функционального состояния ССС человека, позволяющего с высокой точностью, непрерывно в течение необходимого времени и не сложно по выполнению регистрировать пульсовые кривые и по ним проводить экспресс-анализ одновременно двух основных характеристик пульса – а) ритмичности и б) пульсовых колебаний артериального 30 давления, вызванных периодическим выбросом ударного объема крови в аорту. С этой целью был разработан компьютерный вариант метода ДСФГ, в котором в качестве дат-

чика использовано не применяемое ранее в этих целях простое и удобное для закрепления на пульсирующем участке тела устройство, выпускаемое промышленностью (звуковой преобразователь типа «ЗП» с металлической мембраной, на внутреннюю сторону которой наклеен пьезокерамический элемент, обеспечивающий такому датчику чувствительность около 0,5 мм рт.ст./с при собственной резонансной частоте более 2600 Гц). Специально разработанные программное обеспечение (ПО) и алгоритм обработки данных сделали несложным для оператора (а также для любого лица, не имеющего медицинского образования, но внимательно соблюдающего инструкцию для пользователя) проведение в автоматизированном режиме регистрации кривой ДСФГ, измерение по выбранному фрагменту пульсограммы ее амплитудно-временных параметров и получение результатов анализа широкого спектра показателей, совокупно характеризующих функциональное состояние ССС и особенности ее регуляции со стороны ВНС и других регуляторных систем.

Краткое описание фигур чертежей

15 Изобретение поясняется чертежами и графиками, на которых представлены:

фиг.1 – изображение структурной схемы устройства для пульсометрического обследования;

фиг.2 – изображение функциональной схемы устройства сопряжения сигнала с ЭВМ;

20 фиг.3 – изображение блок-схемы алгоритма обработки данных;

фиг. 4 – изображение полной пульсограммы и выбранных из нее фрагментов;

фиг. 5 – изображение фрагмента ДСФГ с выделенным набором индивидуальных пульсаций и графиком усредненного кардиоцикла;

фиг. 6 – изображение трех основных типов графиков кардиоцикла.

25 Лучший вариант осуществления изобретения

Устройство для осуществления способа пульсометрического обследования сердечно-сосудистой системы содержит (фиг.1) пьезодатчик 1, выход которого соединен с входом устройства сопряжения 2, подключенного к ЭВМ 3. Информация выводится на

монитор 4. Второй вход ЭВМ 3 соединен с выходом сфигмоманометра 5. Устройство сопряжения 2 состоит из усилителя 6 (фиг. 2), выход которого соединен с входом аналого-цифрового преобразователя 7 (АЦП), связанного с блоком преобразования 8, выход которого через блок согласования 9 соединен с ЭВМ. Тактовые импульсы с выхода генератора тактовых импульсов 10 (ГТИ) подаются на блок преобразования 8. Питание всей схемы осуществляется от источника питания 11. Аналоговый сигнал с датчика, усиленный до необходимой амплитуды, поступает на вход АЦП, где он квантуется с определенной частотой дискретизации (в нашем устройстве используется частота равная 200 Гц и, соответственно, интервал времени между отсчетами или длительность дискрета квантования $\Delta t = 5$ мс) и оцифровывается. Далее информация передается на блок преобразования 8, который по тактовым импульсам от ГТИ, вырабатывает сигналы управления АЦП и готовит данные для передачи через блок согласования 9 по последовательному каналу на вычислитель ЭВМ с соответствующим ПО.

Способ пульсометрического обследования ССС осуществляется следующим образом (фиг. 3). У обследуемого неинвазивно с помощью пьезодатчика, установленного над пульсирующей, поверхностно расположенной центральной (например, сонной) или периферической (например, пальцевой или височной) артерией, снимают сигнал и непрерывно регистрируют его в оперативной памяти ЭВМ. На фиг. 4а в качестве примера представлен растянутый во весь экран монитора график ДСФГ длительностью 25 мин, зарегистрированный с пальцевой артерии большого пальца левой руки молодого (23 г.) мужчины при изучении влияния ортостатической нагрузки на его ССС. В таком виде пульсограмма сохраняется на жестком диске ЭВМ в виде файла для последующего анализа. После этого в этот файл записывают данные о пациенте (ФИО, возраст, пол, артериальное давление, анамнез, предварительный диагноз и др.) и параметры измерения (дата, время, длительность регистрации и др.). На следующем этапе в соответствии с задачей исследования (в представленном случае – при изучении влияния ортостатической нагрузки на ССС) выбирают фрагменты ДСФГ. На фиг. 4б представлен выбранный пятиминутный фрагмент пульсограммы, зарегистрированной в положении лежа (фрагмент 1, условный контроль, 5 мин до подъема), на фиг. 4в – также пятиминутный фрагмент в положении стоя (фрагмент 2, с 15 по 20 минуту ортостатической нагрузки). Эти фрагменты длительностью обычно не менее 2-х минут (стандартная длительность – 5 минут) могут быть сохранены в виде отдельных файлов для последующего анализа.

Для повышения точности сравнительного анализа характеристик отдельно выбранных фрагментов ДСФГ с помощью ПО задают временные границы этих фрагментов, что позволяет вычислять строго соответствующие им показатели. График ДСФГ отражает скорость изменения АД на разных этапах сердечного цикла в течение всего периода обследования и представляет каждый кардиоцикл в виде сложного контура с характерными перегибами. Это позволяет в соответствии с теорией информации с помощью специального компьютерного алгоритма на графике ДСФГ выделять определенные точки: нулевые (пересечение с изолинией), экстремальные и точки перегиба в качестве «кодирующих» (расчетных, опорных) точек и по ним измерять и затем вычислять все амплитудно-временные параметры и показатели. Правильная расстановка таких точек является основным условием точности и достоверности результатов измерения и требует процедуры дополнительного уточнения. С этой целью из выбранного в качестве примера фрагмента ДСФГ (фиг. 5-І) с помощью ЭВМ выделяют все индивидуальные пульсации и укладывают их на график одного кардиоцикла, совмещенного по координате максимального положительного экстремума (фиг. 5-ІІ). Затем по этому набору автоматически строят график усредненной пульсации (фиг. 5-ІІІ) и на нем проставляют «кодирующие» точки, которые пользователь проверяет визуально и, в случае ошибки, корректирует. Выявляют нормальные зубцы на графике ДСФГ и отбрасывают ложные зубцы из набора пульсаций. Для этого вычисляют порог амплитуды (горизонтальная линия на фиг. 5-ІІ), относительно которого производят поиск абсолютного систолического максимума (наибольший положительный экстремум) графика ДСФГ, находящегося выше данного порога. Критерием отбрасывания является резкое отклонение амплитудно-временных параметров анализируемого зубца от средних значений (более чем на 3 среднеквадратичных отклонения). Оставшийся после процедуры отбрасывания набор зубцов считается набором пульсаций, отражающим скорость изменения АД крови обследуемого. Затем принцип уточненной расстановки расчетных точек на графике усредненной пульсации автоматически переносят на каждую распознанную нормальную пульсацию (фиг. 5-ІV).

По положению «кодирующих» точек на графике ДСФГ определяют все временные параметры и показатели. Вычисление амплитудных характеристик сигнала, содержащих информацию о величине АД крови, требует дополнительной процедуры калибровки данных для их перевода в общепринятые единицы измерения АД (мм рт.ст.). Для

этого компьютерная регистрация сигнала от датчика в виде кривой ДСФГ сопровождается параллельным периодическим измерением величин систолического (САД) и диастолического (ДАД) давлений крови с помощью сфигмоманометра. Эти величины вводят в компьютер для расчета среднего значения ПАД (= САД – ДАД) для 5 выбранного периода обследования. Соотнесение этой непосредственно измеренной в мм рт.ст. величины ПАД со средней величиной ПАД, вычисленной в этот же период в условных единицах компьютерной «оцифровки» путем интегрирования по соответствующим площадям выбранного фрагмента кривой ДСФГ, позволяет определить калибровочный коэффициент пропорциональности АД. С учетом этого коэффициента вычисляют в мм рт.ст. величины пульсового прироста АД крови на различных этапах сердечного цикла и по ним рассчитывают все показатели, зависящие от АД крови и характеризующие кардиогемодинамику и упруго-эластические свойства стенок сосудов артериального русла. Это позволяет проводить длительный и непрерывный во времени мониторинг динамики пульсовых колебаний АД крови в течение всего периода обследования 10 в общепринятых единицах измерения – мм рт.ст. При этом обеспечивается необходимый уровень достоверности при статистической обработке измеренных амплитудно-временных показателей и становится возможным проведение спектрального анализа 15 их вариабельности, в том числе при различных воздействиях на организм (нагрузочные тесты, прием лекарственных средств и др.), а также сравнение результатов обследований, выполненных в разное время.

На фиг. 6 показаны примеры трех основных типов встречающихся графиков отдельного кардиоцикла и варианты расположения на этих графиках «кодирующих» точек. Типы (1) и (3) графиков – соответствуют ССС молодых и пожилых людей, тип (2) характерен для большинства взрослых (от 25 до 55 лет) людей.

Графики ДСФГ представляют собой первые производные графиков зависимости изменения АД от времени (СФГ) при прохождении пульсовой волны, что определяет математически однозначное расположение точки *A* как точки начала анакротической фазы изгнания крови, соответствующей моменту открытия аортального клапана. В этой точке АД = ДАД и первая производная СФГ равна нулю, что позволяет провести через 25 эту точку горизонтальную изолинию, определяющую площадь под и/или над кривой 30 графика, и отражающую прирост или уменьшение давления крови в артериях при прохождении пульсовой волны, обусловленной выбросом ударного объема крови из левого

желудочка. Точка **B** соответствует моменту достижения максимальной скорости систолического прироста АД (абсолютный положительный экстремум ДСФГ); точка **C** – моменту достижения максимальной величины АД в результате изгнания крови из левого желудочка в период систолы (точка пересечения изолинии нисходящей частью систолической волны давления, первая производная СФГ в этой точке равна нулю); точка **D** – моменту окончания изгнания крови (закрытие аортального клапана, отрицательный экстремум ДСФГ, предшествующий росту дикротического АД) [4]; точка **F** – моменту достижения максимальной скорости прироста АД, вызванного в начале диастолы дикротической волной давления крови, отраженной от закрытого аортального клапана; точка **G** – моменту достижения максимальной величины вторичного систолического прироста АД за счет ранней (до закрытия аортального клапана) отраженной от периферии первичной волны пульсового давления крови.

Учитывая «Международные стандарты» [8], а также официальные методические рекомендации группы российских кардиологов [9], во временной области по «кодирующим» точкам измеряют и анализируют все основные показатели, характеризующие сердечный ритм и его вариабельность: среднюю длительность выявленных кардиоинтервалов (между смежными точками «**B**» на фиг. 6), среднюю длительность нормализованных кардиоинтервалов – TNN, а также длительности отдельных фаз кардиоцикла, затем оценивают вариабельность выбранных для измерения временных показателей (вычисляют SD, DX, CV, RMSSD, pNN50 и др.).

«Кодирующие» точки используют и для определения (см. фиг. 6) в условных единицах компьютерной «оцифровки» средней для выбранного фрагмента ДСФГ величины ПАД – интегрированием по площадям, покрываемым ординатами между точками **A** и **C**, если площадь между точками **C** и **G** меньше или равна нулю, или между точками **A** и **G**, если площадь между точками **C** и **G** больше нуля. Как уже было сказано, сравнение этой величины ПАД со средней величиной ПАД, измеренной с помощью сфигмоманометра, позволяет перевести условные единицы «оцифровки» в общепринятые единицы – мм рт.ст. и вычислять в этих единицах все показатели, отражающие пульсовые изменения АД крови в определенные периоды кардиоцикла в течение всего времени обследования:

– величину ускоренного анакротического прироста АД в период систолического выброса крови в аорту из левого желудочка $\Delta\text{АДАуск}$ [мм рт.ст.] (интегрированием по площади, покрываемой ординатами между точками **A** и **B**, на фиг. 6 выделена штриховкой с наклоном влево);

5 – величину замедленного анакротического прироста АД в период систолы $\Delta\text{АДAzам}$ [мм рт.ст.] (интегрированием по площади, покрываемой ординатами между точками **B** и **C** или **B** и **G**, см. ниже);

10 – величину дикротического прироста АД крови в фазе его ускоренного возрастания в начальный период диастолы $\Delta\text{АДДуск}$ [мм рт.ст.] (интегрированием по площади, покрываемой ординатами между точками **D** и **F**, на фиг. 6 выделена штриховкой с наклоном вправо). Эта величина, четко выявляемая на всех кривых ДСФГ, отражает тонус стенок сосудов артериального русла, определяющий периферическое сопротивление на уровне артериол, являющееся причиной возникновения отраженных пульсовых волн;

15 – величину вторичного волнообразного прироста АД за счет ранней отраженной от периферического сопротивления волны пульсового давления в период систолы – $\Delta\text{АДОС}$ [мм рт.ст.], проявляющегося или в период катакроты, или в фазе замедленного анакротического выброса крови (определяется интегрированием по площади, покрываемой ординатами между точками **C** и **G**). Отрицательная или нулевая величина интеграла этой площади, соответствующая волнообразному катакротическому изменению АД на графике ДСФГ отдельного кардиоцикла (на фиг. 6-2 эта площадь выделена горизонтальной штриховкой), характерна для здоровых взрослых людей с упругими и в то же время эластичными аортальными стенками. У молодых и, особенно, у физически тренированных людей с очень эластичными стенками аорты эта волна гасится и может быть практически незаметной (фиг. 6-1). Положительные значения интеграла площади **CG** ($\Delta\text{АДОС}$ больше нуля), увеличивающие САД и ПАД и удлиняющие замедленную анакротическую фазу систолы (на фиг. 6-3 эта площадь выделена также горизонтальной штриховкой), указывают на превышение нормальной упругости (жесткости) стенок аорты, появляющееся с возрастом и под воздействием факторов риска сердечно-сосудистых заболеваний (например, таких, как диабет, курение). Этот прирост АД обусловлен тем, что снижение эластичности стенок препятствует расширению аорты под

воздействием приходящей отраженной от периферического сопротивления волны давления крови, а возросшая при этом скорость распространения волны по сосудистой стенке [10] обеспечивает более быстрый ее возврат и более раннее наложение на первичную систолическую волну. С учетом изложенного, в случае, если $\Delta\text{АДОС}$ больше нуля, в целях проведения сравнительных оценок сократительной способности миокарда левого желудочка разных обследуемых определяют величину нормализованного пульсового артериального давления $\text{ПАДн} = \text{ПАД} - \Delta\text{АДОС}$ [мм рт.ст.].

По этим величинам рассчитывают производные кардиогемодинамические показатели:

10 – среднюю скорость систолического прироста АД в период ускоренного анакротического выброса крови в аорту $V_{\text{АДАуск}} = \frac{\Delta\text{АДАуск}}{t_{\text{AB}}} \text{ [мм рт.ст. /с]},$

где t_{AB} – длительность периода ***AB***;

– максимальную скорость этого прироста $V_{\text{максАДА}}$ [мм рт.ст. /с], определяемую по ординате точки ***B***.

15 На эти величины не оказывает заметного влияния (не накладывается) отраженная от периферического сопротивления пульсовая волна давления крови и поэтому они вместе с нормализованной величиной ПАДн отображают именно сократительную способность миокарда левого желудочка и состояние аортального клапана, т.е. характеризуют эффективность насосной (нагнетательной) функции сердца;

20 – кардиогемодинамический индекс КГДИ = $\frac{\Delta\text{АДАуск}}{\Delta\text{АДАзам}},$

который также характеризует эффективность сократительной (насосной) функции миокарда левого желудочка и может служить индикатором развития стеноза аортального клапана и ужесточения стенок аорты.

25 Затем определяют показатели, характеризующие упруго-эластические свойства стенок сосудов артериального русла:

– индекс жесткости стенок аорты ИЖАо = $\frac{\Delta \text{АДОС}}{\text{ПАДн}} \cdot 100\%$, если $\Delta \text{АДОС}$

больше нуля;

– индекс тонуса артериальных стенок ИТАр = $\frac{\Delta \text{АДДуск}}{\Delta \text{АДАуск}}$,

где $\Delta \text{АДДуск}$ – ускоренный дикротический прирост АД крови в начальный период диа-

столы.

В качестве примера в таблице 1 приведены результаты, полученные с помощью заявляемого метода и характеризующие влияние ортостатической нагрузки на сердечный ритм, кардиогемодинамику и упруго-эластические свойства сосудов артериального русла практически здоровых мужчин – молодого (обследуемый-I, 23 г.) и пожилого (обследуемый-II, 69 л.). Из полученных результатов видно, что ортостатическая нагрузка влияет на функциональное состояние ССС и молодого, и пожилого мужчины и характер этого влияния изменяется с возрастом. Нагрузка приводит к возрастанию частоты сердечных сокращений у обоих обследуемых, но у молодого человека это увеличение выражено сильнее и сопровождается повышением вариабельности ритма (существенно снижается амплитуда моды длительности NN интервалов на гистограмме). У обоих обследуемых при сохранении средней скорости анакротического прироста АД в фазе ускоренного изгнания крови из левого желудочка заметно возрастает максимальная скорость прироста АД. При этом выявляется разная направленность изменений кардиогемодинамического индекса (КГДИ) у обследуемых: у первого (КГДИ уменьшился от 1,51 до 1,08) при сохранении величины нормализованного ПАД ортостатическая нагрузка привела к перераспределению относительного вклада ускоренного и замедленного анакротических приростов АД за счет снижения доли $\Delta \text{АДАуск}$ (от 28 до 24 мм рт.ст.); у второго обследуемого (КГДИ увеличился от 0,47 до 0,69) в условиях такой нагрузки необходимый уровень ПАДн был сохранен путем возрастания относительного вклада $\Delta \text{АДАуск}$ (от 15 до 19 мм рт.ст.). На основании этих единичных, приведенных в качестве примера данных, можно высказать предположение о том, что отмеченные возрастные особенности изменения показателей кардиогемодинамики функционально со- пряжены с изменениями упруго-эластических свойств стенок сосудов артериального русла у обследуемых. У молодого человека стенки аорты и артерий эластичны (вели-

чина ИЖАо меньше нуля) и адекватное кровообращение при нагрузке обеспечивается повышением тонуса стенок артерий (величина ИТАр возрастает с 0,308 до 0,743). У пожилого человека с жесткими стенками сосудов адекватное кровообращение в условиях ортостатической нагрузки обеспечивается снижением сосудистого тонуса (величина ИТАр снижается с 0,632 до 0,497). Приведенный пример иллюстрирует преимущества применения заявляемого метода, по сравнению, например, с широко используемым в кардиологической практике методом ЭКГ, возможности которого ограничены получением информации лишь о временных характеристиках сердечного ритма.

Используя алгоритм преобразований Фурье, проводят спектральный анализ кривой ДСФГ как по вариабельности сердечного ритма (по изменчивости длительности NN интервалов – TNN), так и по вариабельности показателей, характеризующих кардиогемодинамику и тонус артериальных сосудов: ПАДн, V_{max}АДА, ΔАДДуск и др., в зависимости от задачи исследования. В таблице 2 приведены результаты спектрального анализа вариабельности сердечного ритма (по величине TNN) и нормализованного пульсового артериального давления (ПАДн) у молодого (I) и пожилого (II) обследуемых. Видно, что в условиях ортостатической нагрузки на организм возрастает вклад симпатического звена ВНС в регуляцию сердечного ритма относительно парасимпатического влияния, и у молодого человека это перераспределение выражено в значительно большей степени, по сравнению с пожилым мужчиной (индекс симпатовагального баланса – SVI у первого возрастает от 1,5 до 8,8, а у второго от 2,6 только до 3,9). Менее значительны по величине и обратны по знаку выявленные изменения симпатовагального баланса вегетативной регуляции ПАДн у этих же обследуемых. Ортостатическая нагрузка не оказала существенного влияния на суммарную спектральную мощность (TP) вариабельности ПАДн молодого человека, но более чем в 2 раза увеличила TP у пожилого человека (от 10,3 до 24,0 [мм рт.ст.]²). При этом можно видеть, что у обоих обследуемых в условиях ортостатической нагрузки происходит значительное перераспределение относительного участия регуляторных систем в поддержании необходимого уровня гемодинамики. Относительно медленная гуморально-метаболическая регуляция, выявляемая в положении лежа в основном в диапазоне ULF (70% и 65% от величин TP у I и II обследуемого, соответственно) уступает место более быстрой нейро-

генной регуляции (в диапазоне LF, например, спектральная мощность колебаний величины ПАДн у обследуемого-I возрастает от 11% до 41%).

Таким образом, заявляемый способ расширяет диапазон изучения характера вегетативной и гуморально-метаболической регуляции ССС человека, открывая возмож-

5 ности исследования физиологических механизмов регуляции кровообращения, в основе которых лежит контроль не только сердечного ритма, но и параметров гемодинамики, сопряженных с пульсовыми изменениями АД крови. Сопоставление результатов спектрального анализа вариабельности разных показателей позволяет получить качественно новую информацию о роли и относительном вкладе симпатического и парасимпатического отделов вегетативной (автономной) нервной системы, а также других регуляторных систем гомеостаза в регуляцию как сердечного ритма, так и функциональных характеристик миокарда и гладкомышечных структур стенок сосудов артериального русла, совместно определяющих динамику пульсового изменения АД для обеспечения физиологически адекватного кровообращения.

15 По результатам статистического и спектрального анализов вариабельности измеренных показателей (выбранных в зависимости от задачи исследования) оценивают функциональное состояние и характер вегетативной регуляции ССС обследуемого путем сравнения измеренных величин показателей со среднестатистическими числовыми значениями этих же показателей, установленными для ССС определенных по возрасту, полу, состоянию здоровья (анамнезу) и условиям внешней среды групп людей, выбранных в качестве контроля. На основе применения специальных методов статистического анализа (дискриминантного, дисперсионного или факторного) эти результаты могут быть использованы для решения вопросов дифференциальной диагностики состояния ССС пациентов.

20

25 Промышленная применимость

Использование пьезокерамического датчика в сочетании с применением компьютерной регистрации и анализа ДСФГ позволило разработать простой по выполнению автоматизированный способ точного количественного экспресс-анализа широкого спектра уже известных и ряда новых показателей, совокупно характеризующих функциональное состояние ССС и особенности ее регуляции со стороны ВНС. На основе разработанного способа может быть создан образец артериального пьезопульсометра,

который в виде автономной компактной и недорогой приставки к компьютеру или в виде составной компоненты универсальной многофункциональной системы кардиосциннинга может обеспечить потребность в оснащении этими приборами отечественных поликлиник, диагностических и спортивно-оздоровительных центров, специализированных санчастией и аналогичных по профилю медицинских учреждений. Простота обслуживания автономного варианта пульсометрической приставки к персональному компьютеру позволяет использовать это устройство как для регулярного индивидуального обследования пациентов, так и для крупномасштабного наблюдения за состоянием ССС у различных групп населения (например, учащихся, военнослужащих, работников предприятий повышенного риска, контингента, работающего в отдалённых точках, и т.д.). Предлагаемый способ делает возможным проведение оперативного контроля состояния ССС человека при стрессорных воздействиях, в условиях неблагоприятной экологической обстановки, а также мониторинг состояния ССС у представителей профессий, связанных с непрерывной и напряженной работой, – авиадиспетчеров, пилотов, космонавтов и др.

Источники информации

1. Патент РФ № 2200461 «Способ диагностики по кардиоритму и устройство для его осуществления» (Алдонин Г.М. и др.), публ. 20.03.2003 г.
2. Langewouters G.J., Settels J.J., Roelandt R., Wesseling K.H. Why use Finapres or Portapres rather than intra-arterial or intermittent non-invasive techniques of blood pressure measurement // J Med Eng Technol. 1998. Vol. 22. P. 37-43.
3. Патент РФ № 2013990 «Способ оценки функционального состояния сердечно-сосудистой системы» (Шейх-Заде Ю.Р. и др.), публ. 15.06.94 г.
4. Н.Р. Палеев и И.М. Каевицер. Атлас гемодинамических исследований в клинике внутренних болезней. – М.: «Медицина», 1975. 238 стр.
5. В.С. Логвинов. Метод диагностики по параметрам колебательных и волновых процессов в сердечно-сосудистой системе // в кн.: Пульсовая диагностика тибетской медицины. – Новосибирск: «Наука», 1988. С. 90-98.

6. В.В. Бороноев, В.Д. Дашинимаев, Э.А. Трубачеев. Датчики пульса для практической диагностики в тибетской медицине // в кн.: Пульсовая диагностика тибетской медицины. – Новосибирск: «Наука», 1988. С. 64-77.

5 7. А.В.Самойленко, В.А.Орлов. Использование вычислительных методов и моделирования при изучении сердечно-сосудистой системы // в сб.: Методы исследования кровообращения. – Ленинград: «Наука», 1976. С. 241-270.

8. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use // European Heart Journal. 1996. Vol. 17, P. 354-381

10 9. Р.М. Баевский, Г.Г. Иванов, Л.В.Чирейкин и др. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем – Москва. 2002. 50 стр.

10. Н.Н. Савицкий Биофизические основы кровообращения и клинические методы изучения гемодинамики – Ленинград: «Медицина», 1974. 311 стр.

Таблица 1

Влияние ортостатической нагрузки на показатели, характеризующие функциональное состояние сердечно-сосудистой системы молодого и пожилого человека.

Показатели	Обследуемый-I (23 г.)		Обследуемый-II (69 л.)	
	Лежа	Стоя	Лежа	Стоя
Сердечный ритм:				
Частота сердечн. сокращений (ЧСС), уд/мин	56	80	57	61
Средн. длит-сть NN-интервалов (TNN), мс	1070	750	1060	980
Станд. отклон-е NN-интервалов (SDNN), мс	51	59	26	21
Мода NN интервалов (MoNN), мс	1080	765	1045	970
Амплитуда моды NN-интервалов (AMoNN), %	44,1	28,0	67,5	51,5
Доля отлич-хся соседних интервалов (pNN50), %	30,8	8,9	0	0
Кардиогемодинамика:				
Нормализованное ПАД (ПАД _н), мм рт.ст.	47	47	45	46
Станд. отклон-е ПАД _н (SDПАД _н), мм рт.ст	5,5	4,6	5,2	7,5
Ускор. анакрот. прирост АД (Δ АД _{Ауск}), мм рт.ст.	28	24	15	19
Средн. скор. прироста АДА (VАД _{Ауск}), мм рт.ст./с	335	352	210	214
Макс. скор. прироста ПАД (V _{max} АДА), мм рт.ст./с	703	801	437	519
Кардиогемодинамический индекс (КГДИ)	1,51	1,08	0,47	0,69
Упруго-эластические свойства сосудов:				
Индекс жесткости аорты (ИЖАо), %	-	-	38,5	23,2
Индекс тонуса артериальных стенок (ИТАр)	0,308	0,743	0,632	0,497

Таблица 2

Влияние ортостатической нагрузки на показатели спектрального анализа, характеризующие особенности вегетативной регуляции сердечно-сосудистой системы молодого и пожилого человека.

Показатели спектрального анализа вариабельности	Обследуемый-I (23 г.)		Обследуемый-II (69 л.)	
	лежка	стоя	лежка	стоя
a) сердечного ритма:				
Суммарная спектральная мощность (TP), мс ²	4000	6681	1297	885
Спектр.мощнсть высоких частот (HF), мс ²	1255	407	100	77
Спектр.мощнсть высоких частот (HF), %	31	6	8	9
Спектр.мощнсть низких частот (LF), мс ²	1845	3576	258	296
Спектр.мощнсть низких частот (LF), %	46	54	20	33
Спектр.мощнсть сверхнизких частот (VLF), мс ²	391	1738	456	203
Спектр.мощнсть сверхнизких частот (VLF), %	10	26	35	23
Спектр.мощнсть ультранизких частот (ULF), мс ²	510	960	483	309
Спектр.мощнсть ультранизких частот (ULF), %	13	14	37	35
Симпатовагальный индекс (SVI)	1,5	8,8	2,6	3,9
б) величины ПАДи:				
Суммарн. спектр. мощность (TP), [мм Hg] ²	29,6	31,9	10,3	24,0
Спектр.мощн-сть высоких частот (HF), [мм Hg] ²	2,9	8,5	1,1	8,0
Спектр.мощность высоких частот (HF), %	9,9	27	11	33
Спектр.мощн-сть низких частот (LF), [мм Hg] ²	3,2	13,1	1,8	9,9
Спектр.мощнность низких частот (LF), %	11	41	17	41
Спектр.мощн.сверхнизких ч-от (VLF), [мм Hg] ²	2,7	7,2	0,7	1,9
Спектр.мощн. сверхнизких частот (VLF), %	9,2	23	7	8
Спектр.мощн. ультранизк. частот (ULF), [мм Hg] ²	20,8	3,1	6,7	4,2
Спектр.мощн. ультранизких частот (ULF), %	70	10	65	18
Симпатовагальный индекс (SVI)	1,1	1,5	1,6	1,2

Формула изобретения.

Способ пульсометрической оценки функционального состояния и характера вегетативной регуляции сердечно-сосудистой системы человека, при котором у обследуемого в состоянии относительного покоя и, при необходимости, в условиях выполнения нагрузочного теста, неинвазивно, методом дифференциальной сфигмографии с помощью соответствующего датчика регистрируют пульсограмму, которую исследуют, используя метод «кодирующих» точек, отличающийся тем, что снимаемый с датчика аналоговый сигнал преобразуют в цифровую форму и непрерывно регистрируют и анализируют с помощью компьютера, при этом параллельно периодически измеряют артериальное давление крови сфигмоманометром, затем в соответствии с задачей исследования выбирают фрагмент пульсограммы длительностью не менее двух минут, который используют для построения графика усредненного кардиоцикла и определения «кодирующих» точек, принцип расстановки которых переносят на каждую распознанную нормальную пульсацию выбранного фрагмента и затем по нему измеряют временные показатели, характеризующие сердечный ритм и его вариабельность, по этому же фрагменту определяют среднюю величину пульсового артериального давления (ПАД) в условных единицах компьютерной «оцифровки» путем интегрирования по соответствующим площадям кардиоциклов и, сравнивая ее со средней величиной ПАД, измеренной в этот же период сфигмоманометром, калибруют и пересчитывают условные единицы в общепринятые единицы измерения артериального давления, которые используют для расчета величин прироста артериального давления крови на различных этапах сердечного цикла, по которым затем определяют амплитудно-временные кардиогемодинамические показатели, характеризующие сократительную способность миокарда левого желудочка, а именно:

– нормализованное пульсовое артериальное давление – ПАДн;

– кардиогемодинамический индекс КГДИ = $\frac{\Delta \text{АДАуск}}{\Delta \text{АДАЗам}}$,

где $\Delta \text{АДАуск}$ и $\Delta \text{АДАЗам}$, соответственно, ускоренный и замедленный анакротические приросты артериального давления;

– среднюю $V_{\text{АДАуск}}$ и максимальную $V_{\text{maxАДA}}$ скорости анакротического прироста АД в фазе ускоренного изгнания крови из левого желудочка;

а также упруго-эластические свойства стенок сосудов артериального русла:

20

$$\text{– индекс жесткости стенок аорты ИЖАо} = \frac{\Delta \text{АДОС}}{\text{ПАДн}} \cdot 100\%,$$

где $\Delta \text{АДОС}$ – прирост артериального давления за счет отраженной от периферии волны пульсового давления в период систолы;

$$\text{– индекс тонуса артериальных стенок ИТАр} = \frac{\Delta \text{АДДуск}}{\Delta \text{АДАуск}},$$

5 где $\Delta \text{АДДуск}$ – ускоренный дикротический прирост артериального давления крови начальный период диастолы,

затем проводят статистическую обработку всех вычисленных показателей и выполняют спектральный анализ вариабельности сердечного ритма и выбранных амплитудно-

10 временных кардиогемодинамических показателей, после чего оценивают функциональное состояние и особенности вегетативной регуляции сердечно-сосудистой системы обследуемого путем сравнения полученных показателей с среднестатистическими контрольными значениями этих же показателей установленными для сердечно-сосудистой системы определенных по возрасту, полу, состоянию здоровья и другим признакам групп людей.

15

20

25

1/5

Фиг.1

Фиг. 2

Заменяющий лист

2/5

Начало

Регистрация сигнала с пьезодатчика в оперативной памяти ЭВМ, параллельное периодическое измерение АД крови и отображение полной зарегистрированной пульсограммы на мониторе ЭВМ

Ввод информации о пациенте (ФИО, возраст, пол, АД, наименование артерии и др.) и параметров измерения (дата, время, длительность регистрации и др.) в файл и сохранение файла на жестком диске ЭВМ

Выделение фрагмента(ов) пульсограммы для анализа в соответствии с поставленной задачей, расстановка «кодирующих» (расчетных) точек и их корректировка, выявление набора нормальных пульсаций

Определение длительности различных периодов кардиоцикла

Сопоставление средних для выбранного фрагмента пульсограммы величин пульсового АД, измеренных в мм рт.ст. и в условных единицах компьютерной «оцифровки», для определения калибровочного коэффициента и оценки величин пульсовых изменений АД в мм рт.ст.

Вычисление всех временных показателей сердечного ритма (RR- и NN-интервалы, ЧСС, выявление аритмий и др.)

Вычисление кардиогемодинамических показателей, основанных на измерении величин пульсовых изменений АД и характеризующих сократительную способность миокарда и упруго-эластические свойства стенок сосудов артериального русла

Вариационно-статистический и спектральный анализ вариабельности сердечного ритма и показателей кардиогемодинамики, оценка функционального состояния и характера вегетативной регуляции сердечно-сосудистой системы обследуемого путем сравнения вычисленных значений показателей с соответствующим контролем

Отображение и печать результатов обследования ССС

Фиг. 3

Заменяющий лист

3/5

Фиг.4

Заменяющий лист

4/5

Фиг. 5

Заменяющий лист

5/5

Фиг. 6

Заменяющий лист

INTERNATIONAL SEARCH REPORT

International application No.

PCT/RU 2005/000198

A. CLASSIFICATION OF SUBJECT MATTER

A61B 5/0205

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61B 5/02-5/029, 5/0452

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PALEEV N. R. et al. Atlas gemodinarnicheskikh issledovany v klinike vnutrennikh boleznei. Moscow, Meditsina, 1975, pages 35, 71-81	1
A	RU 2013990 C1 (SCHEIKH-ZADE JU. R. et al) 15.06.1994	1
A	RU 2106794 C1 (KULIKOV JURY ANATOLIEVICH et al) 20.03.1998	1
A	BG 104324 A (TANEV STOJAN et al.) 31.07.2000 the abstract	1

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier document but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

07 July 2005

(07.07.2005)

Date of mailing of the international search report

14 July 2005

(14.07.2005)

Name and mailing address of the ISA/

RU

Facsimile No.

Authorized officer

Telephone No.

ОТЧЕТ О МЕЖДУНАРОДНОМ ПОИСКЕ

Международная заявка №
PCT/RU 2005/000198

A. КЛАССИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ:

A61B 5/0205

Согласно Международной патентной классификации (МПК-7)

B. ОБЛАСТИ ПОИСКА:

Проверенный минимум документации (система классификации и индексы) МПК-7:

A61B 5/02-5/029, 5/0452

Другая проверенная документация в той мере, в какой она включена в поисковые подборки:

Электронная база данных, использовавшаяся при поиске (название базы и, если, возможно, поисковые термины):

C. ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ:

Категория*	Ссылки на документы с указанием, где это возможно, релевантных частей	Относится к пункту №
A	ПАЛЕЕВ Н.Р. и др. Атлас гемодинамических исследований в клинике внутренних болезней. Москва, Медицина, 1975, стр. 35, 71-81	1
A	RU 2013990 C1 (ШЕЙХ-ЗАДЕ Ю.Р. и др.) 15.06.1994	1
A	RU 2106794 C1 (КУЛИКОВ ЮРИЙ АНАТОЛЬЕВИЧ и др.) 20.03.1998	1
A	BG 104324 A (TANEV STOJAN et al.) 31.07.2000, реферат	1

*последующие документы указаны в продолжении графы С.

□ данные о патентах-аналогах указаны в приложении

* Особые категории ссылочных документов:

- A документ, определяющий общий уровень техники и не считающийся особо релевантным
- E более ранняя заявка или патент, но опубликованная на дату международной подачи или после нее
- L документ, подвергающий сомнению притязание (я) на приоритет, или который приводится с целью установления даты публикации другого ссылочного документа, а также в других целях (как указано)
- O документ, относящийся к устному раскрытию, использованию, экспонированию и т.д.
- P документ, опубликованный до даты международной подачи, но после даты испрашиваемого приоритета

- T более поздний документ, опубликованный после даты международной подачи или приоритета, но приведенный для понимания принципа или теории, на которых основывается изобретение
- X документ, имеющий наибольшее близкое отношение к предмету поиска; заявленное изобретение не обладает новизной или изобретательским уровнем, в сравнении с документом, взятым в отдельности
- Y документ, имеющий наибольшее близкое отношение к предмету поиска; заявленное изобретение не обладает изобретательским уровнем, когда документ взят в сочетании с одним или несколькими документами той же категории, такая комбинация документов очевидна для специалиста & документ, являющийся патентом-аналогом

Дата действительного завершения международного поиска: 07 июля 2005 (07.07.2005)

Дата отправки настоящего отчета о международном поиске: 14 июля 2005 (14.07.2005)

Наименование и адрес Международного поискового органа
Федеральный институт промышленной
собственности
РФ, 123995, Москва, Г-59, ГСП-5, Бережковская наб.,
30,1 Факс: 243-3337, телетайп: 114818 ПОДАЧА

Уполномоченное лицо:

В. Солодова

Телефон № 240-25-91

Форма PCT/ISA/210 (второй лист)(апрель 2005)