

Numerical Integration - Lecture 01

Dr. Serhat Hosder

Associate Professor of Aerospace Engineering

Mechanical and Aerospace Engineering

290B Toomey Hall

Missouri S&T

Rolla, MO 65409

Phone: 573-341-7239

E-mail: hosders@mst.edu

AE/ME 5830 Spring 2018

Today's Lecture

- Numerical integration plays a key role in many engineering applications. The integration methods that we will examine are:
 - Trapezoidal Rule
 - Simpson's 1/3 Rule
 - Mid-point Rule
 - Romberg Integration
 - Gauss Quadrature
 - Multiple Integrals

Numerical Integration covered in Chapters 21 & 22 of your textbook

AE/ME 5830 Spring 2018

Numerical Integration

In this section, we shall address the evaluation of

$$I = \int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} a_{i} f(x_{i})$$

by **numerical quadrature**.

The scalar I denotes the area under the curve f(x) on [a,b]. A *panel* is the area between two adjacent points. Between the points [a,b] we have n panels.

We shall consider an equally spaced grid in which the width h is given as

$$h = (b-a)/n = constant$$

It is a simple matter to extend the method to an unequally spaced grid.

Composite Trapezoidal Rule

By approximating the function with a straight line between adjacent points, it is clear that the each panel forms a trapezoid.

The area of the *i*th trapezoid formed by the panel is

$$\int_{x_{i-1}}^{x_i} f(x)dx \approx h \frac{\left(f_i + f_{i-1}\right)}{2}$$

Base x Average Height

Thus, the area under the curve on the interval [a,b] is:

$$I \approx \sum_{i=1}^{n} \frac{h}{2} (f_i + f_{i-1})$$
 Composite Trapezoid Rule

Trapezoidal Rule

If the interval does not remain constant, then the formula can be modified to accommodate varying interval widths and becomes

$$I = \sum_{i=1}^{n} \frac{h_i}{2} (f_i + f_{i-1})$$

Accuracy of Trapezoidal Integration

Define

$$I(x) = \int_{a}^{x} f(\xi) d\xi$$

 $I(x_i)$ is the area under the curve from a to x_i .

 $I(x_{i+1})$ is the area under the curve from a to x_{i+1} .

Assume I(x) is analytic in [a,b]. Then the function can be expanded in a Taylor's series, which can be used to obtain the accuracy of the method.

Trapezoidal Rule - Formal Derivation

Expanding $I(x_{i+1})$ about the point x_i , we have

$$I(x_{i+1}) = I(x_i) + hI'(x_i) + \frac{h^2}{2}I''(x_i) + \frac{h^3}{6}I'''(x_i) + \vartheta(h^4)$$

But
$$I'(x_i) = f(x_i) \rightarrow (a)$$

$$I''(x_i) = f'(x_i) \rightarrow (b)$$

$$\Rightarrow f(x_i) = \frac{f_{i+1} - f_i}{h} - \frac{h}{2}f''(x_i) + \vartheta(h^2)$$

Similarly for higher order derivatives

See first order forward difference notes

Substitute (a) and (b) in $I(x_{i+1})$

$$I(x_{i+1}) = I(x_i) + hf_i + \frac{h^2}{2} \left[\frac{f_{i+1} - f_i}{h} - \frac{h}{2} f''(x_i) + \vartheta(h^2) \right] + \frac{h^3}{6} f''(x_i) + \vartheta(h^4)$$

$$I(x_{i+1}) - I(x_i) = h \left[\frac{f_{i+1} + f_i}{2} \right] - \frac{h^3}{12} f''(x_i) + \vartheta(h^4)$$

Exact area under Integral **AE/ME 5830**

Trap. rule for one Local Error for panel

Trapezoidal Rule

Error of the Trapezoidal Rule

Local Error of the Trapezoidal rule is given by

$$-\frac{h^3}{12}f''(\xi_i), \quad x_i \le \xi_i \le x_{i+1}$$

The Global Error is obtained by adding the local errors.

Global Error =
$$\sum_{i=1}^{n} -\frac{h^3}{12} f''(\xi_i) = -\frac{h^3}{12} \sum_{i=1}^{n} f''(\xi_i)$$

If f'' is continuous on [a,b], then there is some $\xi \in [a,b]$ such that

$$\sum_{i=1}^n f''(\xi_i) = nf''(\xi)$$

Thus, using the fact that n=(b-a)/h, we obtain

Global Error
$$= -\frac{h^3}{12} n f''(\xi) = -\frac{h^3}{12} \cdot \frac{(b-a)}{h} f''(\xi) = -\frac{h^2}{12} \cdot (b-a) f''(\xi) = \mathcal{G}(h^2)$$

Simpson's 1/3 Rule

Simpson's Rule passes a parabola through a pair of panels.

$$I_{i+1} = I_i + hf_i + \frac{h^2}{2}f_i' + \frac{h^3}{6}f_i'' + \frac{h^4}{24}f_i''' + \frac{h^5}{120}f_i^{iv} + \frac{h^6}{720}f_i^{v} + \dots$$

$$I_{i-1} = I_i - hf_i + \frac{h^2}{2}f_i' - \frac{h^3}{6}f_i'' + \frac{h^4}{24}f_i''' - \frac{h^5}{120}f_i^{iv} + \frac{h^6}{720}f_i^{v} - \dots$$

Subtractin g

$$I_{i+1} - I_{i-1} = 2 \left[h f_i + \frac{h^3}{3!} f_i'' + \frac{h^5}{5!} f_i^{v} + \frac{h^7}{7!} f_i^{vii} + \dots \right]$$

$$I_{i+1} - I_{i-1} = 2hf_i + \frac{h^3}{3}f_i'' + \frac{h^5}{60}f_i^v + 9(h^7)$$

Replace f_i'' by the central difference approximat ion,

$$f_i'' = \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} - \frac{h^2}{12} f_i^{iv} + 9(h^4)$$

Simpson's 1/3 Rule

Substituting f_i'' into our expression for $I_{i+1} - I_{i-1}$, we obtain

$$I_{i+1} - I_{i-1} = 2hf_i + \frac{h^3}{3} \left[\frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} - \frac{h^2}{12} f_i^{iv} + \mathcal{G}(h^4) \right] + \frac{h^5}{60} f_i^{iv} + \mathcal{G}(h^7)$$

$$I_{i+1} - I_{i-1} = \frac{h}{3} \left[f_{i+1} + 4f_i + f_{i-1} \right] - \frac{h^5}{90} f_i^{iv} + 9(h^7)$$

Simpson's 1/3 Rule for a pair of panel is thus

$$I_{i+1} - I_{i-1} \approx \frac{h}{3} [f_{i+1} + 4f_i + f_{i-1}]$$

The local error term is

$$-\frac{h^5}{90}f_i^{iv}+\mathcal{G}(h^7)$$

Composite Simpson's Rule

For a pair of panels, Simpson's 1/3 rule and error term are:

$$I_{i+1} - I_{i-1} = \frac{h}{3} \left[f_{i+1} + 4f_i + f_{i-1} \right] - \frac{h^5}{90} f_i^{iv} + \mathcal{G}(h^7)$$

Total integral is given as:

$$I = \int_{a}^{b} f(x) dx = \sum_{\substack{i=1 \ i \text{ odd}}}^{n-1} (I_{i+1} - I_{i-1}) - \sum_{\substack{i=1 \ i \text{ odd}}}^{n-1} \frac{h^{5}}{90} f_{i}^{iv}(\xi_{i})$$

$$= \frac{h}{3} [f_0 + 4f_1 + 2f_2 + 4f_3 + ... + 2f_{n-2} + 4f_{n-1} + f_n]$$
 Composite Simpson's Rule

$$-\frac{h^4}{180}(b-a)f^{iv}(\xi)$$
 where $a \le \xi \le b$ **Error term**

This is a very common numerical integral evaluation technique.

Trapezoidal and Simpson's 1/3 Rule Example

Consider the numerical evaluation of

$$I = \int_{1}^{2} \ln x dx = 0.3862943$$
 — Exact value

Trapezoidal:
$$I \approx \frac{1}{2} [\ln(1) + \ln(2)] = 0.3465735$$

Simpson's 1/3:
$$I \approx \frac{1/2}{3} \left[\ln(1) + 4 \ln(1.5) + \ln(2) \right] = 0.3858346$$

Effect of Mesh Refinement

$$I = \int_{1}^{2} \ln x \, dx = 0.3862943$$

# of panels	h	Trapezoidal	Error Trapezoidal	Simpson's 1/3	Error Simpson's 1/3
2	0.5	0.376019	0.010275	0.385835	0.000459759
4	0.25	0.3837	0.00259485	0.38626	0.0000347983
6	0.166667	0.385139	0.00115555	0.386287	7.19784 🖄 0
8	0.125	0.385644	0.000650451	0.386292	2.31765 ⁄ 10 🎉
10	0.1	0.385878	0.000416424	0.386293	9.57315 ⁄ 10 🎗
12	0.0833333	0.386005	0.000289235	0.386294	4.63818 🖾 10 🎗
14	0.0714286	0.386082	0.000212522	0.386294	2.51068 🕬 0 🕅
16	0.0625	0.386132	0.000162723	0.386294	1.47444 🖾 10 🎗
18	0.0555556	0.386166	0.000128578	0.386294	9.21661 ⁄ 10 🎘
20	0.05	0.38619	0.000104151	0.386294	6.05255 ⁄ 10 🎗

Mesh Refinement (1)

2.5

5

7.5

10

Simpson's rule is superior to the Trapezoidal rule in terms of the magnitude of the error and rate of convergence

15

17.5

12.5

20

Mesh Refinement (2)

 $I = \int \ln x dx$

On a log-log plot, the slope of the line indicates the order of the method as h is refined.

Summary

In this lecture we have

- started our discussion on numerical integration
- derived the Trapezoidal rule based on graphical considerations
- developed the truncation error of the trapezoidal rule using Taylor series expansions
- derived Simpson's 1/3 rule and it's error term
- worked on a numerical integration example and analyzed the accuracy of Trapezoidal and Simpson's rule with mesh refinement