Sistemas Digitais Aritmética e códigos binários

exercícios propostos - soluções¹

```
1. (a) 10010011_{(c2)} = -109_{(10)}
```

(b)
$$01010101_{(c2)} = 85_{(10)}$$

(c)
$$1111_{(c2)} = -1_{(10)}$$

(d)
$$0111_{(c2)} = 7_{(10)}$$

2. (a)
$$-155_{(10)} = 1101100101_{(c2)}$$

(b)
$$345_{(10)} = 0101011001_{(c2)}$$

(c)
$$-55_{(10)} = 1111001001_{(c2)}$$

(d)
$$32_{(10)} = 0000100000_{(c2)}$$

3.
$$-68_{(10)} + -112_{(10)} = 101111100_{(c2)} + 10010000_{(c2)} = 01001100_{(c2)}$$

- O resultado aparenta ser positivo mas devia ser negativo (o resultado da soma de dois numeros negativos é um numero negativo), o que nos indica que estamos perante um overflow. Não é possível representar o resultado da operação em C2 com 8 bits.
- 4. (a) $78FA_{(16)} + BD3A_{(16)} = 13634_{(16)}$
 - (b) $5678_{10} 1234_{10} = 162E_{E16} 4D2_{(16)} = 115C_{(16)}$
- 5. (a) i. $190_{(10)} 155_{(10)} = 101111110_{(2)} 10011011_{(2)} = 100011_{(2)}$
 - ii. $101010_{(2)}x0111_{(2)} = 100100110_{(2)}$
 - (b) i. $-75_{(10)} + 34_{(10)} = 10110101_{(C2)} + 00100010_{(C2)} = 11010111_{(2)}$
 - ii. $-123_{(10)} 34_{(10)} = 10000101_{(C2)} + 110111110_{(C2)} = 01100011_{(2)}$ (Overflow)
 - (c) i. $1234_{(8)} + 567_{(8)} = 2023_{(8)}$
 - ii. $77654_{(8)} + 3577_{(8)} = 103442_{(8)}$
- 6. (a) $A9F0_{(16)} = 43504_{10} = 01000011010100000100_{(BCD)}$
 - (b) $4725_{(8)} = 2517_{10} = 0010010100010111_{(BCD)}$
- 7. A principal vantagem do código de Gray é existir apenas a diferença de um bit entre duas palavras de código sucessivas.

¹Adaptação do livro Sistemas Digitais, princípios e prática. Morgado Dias. FCA, 2010.