The Exterior Algebra

Dylan Rupel, Matteo Paz

May 7, 2024

Definition 1 Let V be a vector space over \mathbb{R} .

Define $\wedge^2 V$ as the vector space spanned by elements $v \wedge w$ for $v, w \in V$ subject to the properties:

- 1. $c(v \wedge w) = (cv) \wedge w = v \wedge (cw)$
- 2. $v \wedge w = -w \wedge v$
- 3. $v \wedge (w+x) = v \wedge w + v \wedge x$

A notable property of this vector space is that wedges of parallel vectors and only parallel vectors are zero:

$$\lambda v = w$$

$$v \wedge w = -w \wedge v$$

$$\lambda(v \wedge v) = -\lambda(v \wedge v)$$

$$2\lambda(v \wedge v) = 0$$

$$v \wedge (\lambda v) = 0$$

$$v \wedge w = 0$$

0.1 Bases

Fix a basis e_1, \ldots, e_n of V. Now, write $v = v_1 e_1 + \cdots + v_n e_n$, and $w = w_1 e_1 + \cdots + w_n e_n$. Consider $v \wedge w$:

$$(v_1e_1+\cdots+v_ne_n)\wedge(w_1e_1+\cdots+w_ne_n)$$

The distribution and collecting of terms is left as an exercise. However, the ultimate result is that:

$$v \wedge w = \sum_{i < j} (v_i w_j - w_j v_i) e_i \wedge e_j$$

By inspection, the wedge $v \wedge w$ then encodes all determinants of all 2×2 minors of the matrix:

$$\begin{bmatrix} v_1 & w_1 \\ \vdots & \vdots \\ v_n & w_n \end{bmatrix}$$

Through its coefficients in the basis. This fact is general for any $\wedge^k V$.

0.2 General Exterior Powers

Definition 2 $\wedge^k V$ is the vector space over \mathbb{R} spanned by $v_1 \wedge \cdots \wedge v_k$ for $v_i \in V$ subject to the following:

- 1. $c(v_1 \wedge \cdots \wedge v_k) = v_1 \wedge \cdots \wedge cv_i \wedge \cdots v_k$
- 2. Any odd permutation $\tau \in S_k$ with any $(v_1 \wedge \cdots \wedge v_k) \in \wedge^k V$ yields $v_1 \wedge \cdots \wedge v_k = -v_{\tau(1)} \wedge \cdots \wedge v_{\tau(k)}$
- 3. $v_1 \wedge \cdots \wedge (v_i + w_i) \wedge \cdots \wedge v_k = v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_k + v_1 \wedge \cdots \wedge w_i \wedge \cdots \wedge v_k$