線形代数学・同演習 B

演習問題 4

- 1. (1) 次元は 3 , 基底は例えば a_1 , a_2 , a_4 . (2) 次元は 2 , 基底は例えば b_1 , b_2 . (考え方) 与えられたベクトルを並べて作った行列を簡約化し,その主成分の数が次元と一致し,主成分がある列に対応するベクトルを選べばそれが基底になる.
- 2^{\dagger} (1) 次元は 2 , 基底は例えば $f_1(x)$ と $f_2(x)$ (2) 次元は 3 , 基底は例えば $g_1(x)$, $g_2(x)$ と $g_4(x)$ (3) 次元は 4 , 基底は例えば $H_0(x),\ldots,H_3(x)^{*1}$. (考え方) 多項式の標準基底 $[x^3,x^2,x,1]$ に関してベクトル表示をして , そのベクトル の組に対して問題 1 と同様の計算を行う . 基底も主成分に対応する列を持ってくれば よいが , 考えている空間が多項式の空間なので , 基底も多項式に戻すことを忘れずに .
- 3^{\dagger} (1) 次元は 1 , 基底は例えば $\begin{pmatrix} -4 \\ -1 \\ 1 \end{pmatrix}$. (2) 次元は 2 , 基底は例えば $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 3 \\ 1 \end{pmatrix}$. (考え方) 解空間は , 与えられた行列を係数行列に持つ連立方程式を解き , その解のパラメータの数が次元 , 解を表すベクトルが基底 . 像空間は問題 1 と同様 .
- 4.~~(1) $\left(egin{array}{ccc} 56 & -17 \\ -23 & 7 \end{array}
 ight)$ (2) $\left(egin{array}{ccc} 13 & -4 & 16 \\ 6 & -1 & 8 \\ 2 & 0 & 3 \end{array}
 ight)$; (考え方) 行列として $([m{u}])^{-1}([\widetilde{m{u}}])$ を計算すればよい .
- 5.~U の二つの基底をそれぞれ $[m{u}_1,\dots,m{u}_n]$ と $[\widetilde{m{u}}_1,\dots,\widetilde{m{u}}_n]$ とし,基底の変換行列を $P=(m{p}_1,\dots,m{p}_n)$ とおく.このとき $[\widetilde{m{u}}_1,\dots,\widetilde{m{u}}_n]=[m{u}_1,\dots,m{u}_n]P$ である.さて, $m{p}_1,\dots,m{p}_n$ の線形独立性を調べるので, $a_1m{p}_1+\dots+a_nm{p}_n=m{0}$ とおく.このとき,

$$\mathbf{0} = [\boldsymbol{u}] \sum_{i=1}^{n} a_i \boldsymbol{p}_i = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_n] P \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = [\widetilde{\boldsymbol{u}}_1, \dots, \widetilde{\boldsymbol{u}}_n] \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = a_1 \widetilde{\boldsymbol{u}}_1 + \dots + a_n \widetilde{\boldsymbol{u}}_n.$$

ここで $\widetilde{u}_1,\dots,\widetilde{u}_n$ は線形独立なので, $a_1=\dots=a_n=0$ でなければならない.よって, p_1,\dots,p_n は線形独立となる.

 6^{\dagger} (1) $m=\dim W$ とおき, v_1,\dots,v_m をその基底とする.すると,これらは V においても線形独立である. $\dim V$ は V から取り出せる線形独立なベクトルの最大個数だったので, $\dim V \geq m=\dim W$ となる.(2) \Leftarrow は明らかなので, \Rightarrow を示す.まず明らかに $W\subset V$ である.(1)と同様に v_1,\dots,v_m を W の基底とする. $\dim V=m$ であるので,V の元は W 個の線形独立なベクトルの線形結合で表すことができるが,そのベクトルとして v_1,\dots,v_m を選べば,V の任意の元は W の元 v_1,\dots,v_m の線形結合で書けることになる.つまり $V\subset W$ となるので,W=V である.

¹⁰月31日分(凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題)

講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017LA.html

 $^{^{*1}}$ 問題 6 より $\mathbb{R}[x]_3$ と一致するので,今の場合は $x^3, x^2, x, 1$ でもよい.