Linear Programming: (Optional) Duality Proofs

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

■ Prove the duality and complementary slackness theorems.

Last Time

To each linear program, associate a dual program. Find non-negative combination of constraints to put bound on objective.

Duality

Theorem

A linear program and its dual always have the same (numerical) answer.

Duality

Theorem

A linear program and its dual always have the same (numerical) answer.

Today we prove it.

Ball in a well.

Gravity pulls to lowest point.

Force of gravity cancels normal forces.

Linear combination of normal vectors equals downward vector.

- Consider solvability of system $Ax > b, x \cdot v < t$.
- Claim solution unless combination of equations yields $0 \ge 1$.
- Equivalent to original problem.

Consider set \mathcal{C} of combinations

$$c_1E_1+c_2E_2+\ldots+c_mE_m$$

with $c_i \geq 0$.

Consider set C of combinations

$$c_1E_1+c_2E_2+\ldots+c_mE_m$$

with $c_i \geq 0$. Note that C is convex.

Consider set C of combinations

$$c_1E_1+c_2E_2+\ldots+c_mE_m$$

with $c_i \geq 0$. Note that C is convex. If equation $0 \geq 1$ not in C, there is a separating hyperplane.

Consider set C of combinations

$$c_1E_1+c_2E_2+\ldots+c_mE_m$$

with $c_i \geq 0$. Note that C is convex. If equation $0 \geq 1$ not in C, there is a separating hyperplane.

This hyperplane correspond to a solution to the original system!

Consider system:

$$3x - 2y \ge 1$$

$$-x + 2y \ge 1$$

$$2x + 1y \ge 1$$

$$x + 3y \ge 1$$

$$2x + 2y > 1$$

Is there a solution?

Plot equations.

Consider linear combinations.

Find separator.

- All equations of form $ax + by \ge 1$ with a + b > 0.
- If x = y = Big, ax + by = (a + b)Big > 1.
- Have solution x = y = 1!

Complementary Slackness

Theorem

Consider a primal LP:

Minimize $v \cdot x$ subject to $Ax \geq b$,

and its dual LP:

Maximize $y \cdot b$ subject to $y^T A = v$, $y \ge 0$.

Then in the solutions, $y_i > 0$ only if the i^{th}

equation in x is tight.

Proof

- Solution x to primal matching solution y to the dual.
- $\mathbf{x} \cdot \mathbf{v} = \mathbf{t}$.
- Combination of equations $\sum y_i E_i$ yields $x \cdot v \geq t$.
- Since final equation is tight, cannot use non-tight equations in sum.
- For each i, either E_i is tight or $y_i = 0$.