1 Suppléments sur les oscillations

1.1 Définition

On appelle l'oscillation d'une permutation π dans S_n la valeur suivante

$$Osc(\pi) = \sum_{k=1}^{n} |\pi(k) - \pi(k+1)|, \text{ avec } \pi(n+1) = \pi(1)$$

On note ainsi \mathcal{O}_n la variable aléatoire correspondant à l'oscillation d'une permutation aléatoire de longueur n. On a $\mathcal{O}_2 = 2$, et $\mathcal{O}_3 = 4$.

1.2 Probabilités

Pour essayer de comprendre le comportement de la variable aléatoire \mathcal{O}_n , nous nous sommes intéressés à la valeur $\mathcal{O}_{n+1} - \mathcal{O}_n$. On pose donc $\varepsilon_{n+1} = \mathcal{O}_{n+1} - \mathcal{O}_n$.

Nous avions conjecturé grâce à des simulations, avec $\varepsilon_n(\Omega) = 2, 4, \dots, 2(n-2)$, que la loi de la variable ε_n était la suivante

$$\forall n \ge 3, \forall k \in \{1, \dots, n-2\}, \quad \mathbb{P}(\varepsilon_n = 2k) = \frac{2(n-1-k)}{(n-1)(n-2)}$$

On montre qu'en fait, ce résultat se trouve directement par dénombrement. L'idée est la suivante. On sait que, si n se trouve à la position k dans π_n , alors on a

$$\varepsilon_n = (n - \pi_n(k-1)) + (n - \pi_n(k+1)) - |\pi_n(k-1) - \pi_n(k+1)|$$

Maintenant, si l'on note $a = \max\{\pi_n(k-1), \pi_n(k+1)\}$, c'est équivalent à dire

$$\varepsilon_n = 2n - 2a$$

On obtient donc une condition sur ε_n qui dépend simplement de a. C'est-à-dire, $\forall k \in \{1, 2, \dots, n-2\}$

$$\varepsilon_n = 2k \iff a = n - k$$

Autrement dit, le maximum des voisins de n dans π_n doit être égal à n-k. Et on peut exprimer cela de manière combinatoire assez simplement, de la façon suivante. On commence par noter qu'il y a 2n façons pour n et n-k d'être côte à côte dans π_n du point de vue de l'oscillation, puisque l'on considère les permutations de manière cyclique (normalement, il y aurait n-1 positions possibles pour un couple dans une permutation de taille n). Ensuite, si n-k doit être le maximum des voisins de n, le second voisin ne doit être pas être compris dans $\{n-k+1,\ldots,n-1\}$.

Si l'on cherche à compter le nombre de permutations de taille n qui satisfont la propriété que n est voisin (d'un point de vue cyclique) de n-k, et que n-k=a au sens de la définition précédente, alors il y en a exactement 2n(n-2-(k-1))(n-3)!. Le terme (n-2-(k-1)) traduit la restriction des valeurs du second voisin de n aux valeurs inférieures à n-k.

On obtient alors les probabilités suivantes, $\forall n \geq 3, \forall k \in \{1, 2, \cdots, n-2\},$

$$\mathbb{P}(\varepsilon_n = 2k) = \frac{2n(n-2-(k-1))(n-3)!}{n!}$$

$$= \frac{2(n-1-k)}{(n-1)(n-2)}$$

Et on retrouve bien les probabilités que nous avions devinées géométriquement à l'aide des simulations.