Tests for the relativistic Boris pusher with RR

K. Krylov¹, S. Rykovanov²

¹National Research Nuclear University "MEPhI"

²Helmholtz Institute Jena

Helmholtz Insitute Jena, 2017

Equation

Assumptions:

- RR is much smaller than Lorentz force in the electron's rest frame
- $\quad \blacksquare \ \gamma \gg 1$

Equation

Assumptions:

- RR is much smaller than Lorentz force in the electron's rest frame
- $\gamma \gg 1$

Equation to solve: 12

$$\begin{split} \frac{d\mathbf{p}}{dt} &= \mathbf{F}_L - K\mathbf{v}, \\ \mathbf{F}_L &= -(\mathbf{E} + \mathbf{v} \times \mathbf{B}), \quad K \equiv \varepsilon_{\mathrm{rad}} \gamma^2 [\mathbf{F}_L^2 - (\mathbf{v} \cdot \mathbf{F}_L)^2], \\ \varepsilon_{\mathrm{rad}} &\equiv \frac{4\pi}{3} \frac{r_{\mathrm{e}}}{\lambda} \approx 1.18 \cdot 10^{-8} \text{ for } \lambda = 1 \mu \mathrm{m} \end{split}$$

¹Tamburini et al. 2010.

 $^{^2}$ units: $m_e=e=c=1$, time measured in $1/\omega$

 $lackbox{Leap-frog scheme:} \ rac{\mathbf{p}^{(n+1/2)} - \mathbf{p}^{(n-1/2)}}{\Delta t} = \mathbf{F}^{(n)}$

- Leap-frog scheme: $\frac{\mathbf{p}^{(n+1/2)} \mathbf{p}^{(n-1/2)}}{\Delta t} = \mathbf{F}^{(n)}$
- Find $\mathbf{p}_{\mathrm{L}}^{(n+1/2)}$ using ordinary Boris pusher³

- lacktriangle Leap-frog scheme: $rac{\mathbf{p}^{(n+1/2)} \mathbf{p}^{(n-1/2)}}{\Delta t} = \mathbf{F}^{(n)}$
- lacksquare Find $\mathbf{p}_{\mathrm{L}}^{(n+1/2)}$ using ordinary Boris pusher³
- ${\color{red} \blacksquare}$ Step with RR:4 ${\bf p}^{(n+1/2)} = {f p}_{
 m L}^{(n+1/2)} + {f F}_{
 m R}^{(n)} \Delta t$

³Birdsall and Langdon 2004.

⁴Tamburini et al. 2010.

- Leap-frog scheme: $\frac{\mathbf{p}^{(n+1/2)} \mathbf{p}^{(n-1/2)}}{\Delta t} = \mathbf{F}^{(n)}$
- lacktriangle Find $\mathbf{p}_{\mathrm{L}}^{(n+1/2)}$ using ordinary Boris pusher³
- \blacksquare Step with RR:4 $\mathbf{p}^{(n+1/2)} = \mathbf{p}_{\mathrm{L}}^{(n+1/2)} + \mathbf{F}_{\mathrm{R}}^{(n)} \Delta t$
- Estimate $\mathbf{p}^{(n)} \approx \frac{\mathbf{p}_{\mathrm{L}}^{(n+1/2)} + \mathbf{p}^{(n-1/2)}}{2}$,

$$\mathbf{v}^{(n)} pprox \frac{\mathbf{p}^{(n)}}{\gamma^{(n)}}, \quad \gamma^{(n)} = \sqrt{1 + (\mathbf{p}^{(n)})^2}$$

³Birdsall and Langdon 2004.

⁴Tamburini et al. 2010.

Tests: 1. Constant magnetic field

$$\begin{split} dt &= 0.005\\ \mathsf{time} &= 200 \!\cdot\! 2\pi\\ p_{0x} &= -100\\ B_z &= 100 \end{split}$$

Tests: 1. Constant magnetic field

Tests: 1. Constant magnetic field

Tests: 2. Linearly polarized gaussian plane wave

$$dt = 0.005$$

$$p_{0x} = -100$$

$$\sigma = 10 \cdot 2\pi$$

$$a_0 = 100$$

Tests: 2. Linearly polarized gaussian plane wave

Tests: 2. Linearly polarized gaussian plane wave

Pomeranchuk solved it in 1939 for arbitrary fields and $\gamma\gg 1$ ⁵

⁵Landau and Lifshitz 1994, § 76

Tests: 3. Zel'dovich problem⁶

⁶Zel'dovich 1975.

Tests: 3. Zel'dovich problem

Thank you for your attention!

References

C. K. Birdsall and A. B. Langdon, *Plasma physics via computer simulation*, Series in Plasma Physics and Fluid Dynamics (Taylor & Francis, 2004).

L. D. Landau and E. M. Lifshitz, *The classical theory of fields*, 4th ed., Vol. 2, Course of Theoretical Physics (Butterworth–Heinemann, 1994).

M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, and A. Macchi, New J. Phys. 12, 123005 (2010).

Ya. B. Zel'dovich, Soviet Physics Uspekhi 18, 79 (1975).