Student Name:	

Saint Ignatius' College Riverview

2003
YEAR 12
TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Time allowed 2 hours,
 + 5 minutes reading time
- Write using blue or black pen
- Board-approved calculators and mathaids may be used
- Show all necessary working
- Answer each question in a separate booklet with your name and teacher's name

Total Marks (84)

Attempt Questions 1 – 7

Total marks (84) Attempt Questions 1 – 7 All questions are of equal value

Answer each question in a SEPARATE writing booklet.

QUES	TION 1	(12 Marks)	Use a SEPARATE writing booklet.	Marks
(a)	Find the	acute angle be	tween the lines $y = 2x - 5$ and $y = 6 - 3x$.	2
(b)	Solve x	$\frac{+4}{x}$ < 3.		3
(c)		general solutio Ir answer in ter	ns of the equation $\sin 2\theta = \sin^2 \theta$. ms of π .	4

A right square pyramid ABCDE has a base of length 6cm and a perpendicular height of 8cm.

Find the angle which the slant edge AE makes with the base ABCD.

QUESTION 2 (12 Marks) Use a SEPARATE writing booklet.

Marks

- (a) The point (2, 2) divides the join of (-2, 5) to (a, b) in the ratio 3:2. 2 Find the values of a and b.
- (b) If α, β, γ are the roots of the equation $2x^3 6x^2 + 5x 1 = 0$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} \div \frac{1}{\gamma}$.
- (c) The polynomial equation x²-11x² + px + q = 0 has a double root
 at x = α and a single root at x = α + 2.
 Using the formula for the sum of the roots, or otherwise, find the values of α, p and q.

(d) 3

In the diagram, A, B, C and D lie on a circle. AB is parallel to DC and the tangent at B meets DC produced at E.

Copy or trace the diagram onto your writing page, and join BC and AC.

Prove that $\triangle ABC$ is similar to $\triangle BCE$.

QUESTION 3 (12 Marks) Use a SEPARATE writing booklet.

Marks

- (a) Find the inverse function of the function $f(x) = \frac{5-2x}{3}$, expressing your answer in the form $f^{-1}(x) = \dots$
- (b) Evaluate $\cos^{-1}\left(\frac{1}{2}\tan\frac{2\pi}{3}\right)$.
- (c) Find the exact value of $\sin\left(2\cos^{-1}\frac{2}{3}\right)$.
- (d) Prove $\frac{\cos A \sin A}{\cos A + \sin A} = \frac{\cos 2A}{1 + \sin 2A}.$
- (e) Show that there is only one stationary point on the curve $y = x + \cos^{-1} x$, and determine its nature.

QUESTION 4 (12 Marks) Use a SEPARATE writing booklet.

Marks

(a) From a standard pack of 52 cards, a hand of 4 cards is dealt.

(i) How many different hands can be selected?

1

(ii) What is the probability I will be dealt exactly two aces?

2

(b) The letters of the word CALCULUS are arranged in a row.

(i) How many different arrangements are possible?

2

1

(ii) In how many of the arrangements will the letters U be at each end?

(c)

Points $P(2p, p^2)$ and $Q(2q, q^2)$ lie on the parabola $x^2 = 4y$.

(i) Show that the equation of the chord PQ is (p+q)x-2y-2pq=0.

2

(ii) Find the coordinates of M, the midpoint of PQ.

1

(iii) Hence find the equation of the locus of M if the chord PQ crosses the y axis at (0, 2).

3

QUESTION 5 (12 Marks) Use a SEPARATE writing booklet.

Marks

(a) Find the following indefinite integrals:

(i)
$$\int \frac{1}{4+x^2} dx$$

1

(ii)
$$\int \frac{x}{4+x^2} dx$$

1

(b) Find
$$\int_0^{\frac{x}{6}} \sin^2 x \, dx$$
.

3

(c) Find
$$\int \frac{e^{2x}}{e^x - 2} dx$$
 using the substitution $u = e^x - 2$.

4

3

(d) The acceleration of a particle moving in a straight line at position x is given by $\ddot{x} = -\frac{6}{(x+1)^2}$. Initially it has velocity 4 units when it is at the origin.

Show that the velocity ν at position x is given by $\nu = \pm 2\sqrt{\frac{x+4}{x+1}}$.

QUESTION 6 (12 Marks) Use a SEPARATE writing booklet.

Marks

1

- (a) Use the table of standard integrals to find $\int \frac{1}{\sqrt{x^2 + 16}} dx$.
- (b) Prove by mathematical induction, for positive integers n, that $\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}.$
- (c) Use one application of Newton's method to find an approximation to the root of $2x 4\sin 3x = 0$ near x = 1.

 Write your answer to two decimal places.
- (d) On the same set of axes, sketch the graphs of the equations y = |2x| and $y = x^2 3$.
 - (ii) Hence or otherwise solve the inequality $|2x| > x^2 3.$

- (a) An object is projected from level ground at an angle θ to the horizontal, with a velocity of V m/s. The object returns to the ground after 4 seconds and 100 metres from its point of projection.

 Assume acceleration due to gravity is 10 m/s², and neglect air resistance.
 - (i) From the equations for acceleration in the x and y directions, find expressions for x and y in terms of time $t (t \le 4)$.
 - (ii) Hence find the values of V and θ .
 - (iii) What is the maximum height reached by the object? 2
- (b) Newton's Law of Cooling states that the rate at which a body cools is proportional to the difference between the temperature of the body and that of the surrounding medium.

i.e.
$$\frac{dT}{dt} = -k(T - T_0)$$

where T is the temperature of the body at time t and T_0 is the temperature of the surrounding medium, assumed constant.

- (i) Show that $T = T_0 + Ae^{-kt}$ is a solution to this equation.
- (ii) A body whose temperature is 150°C is cooled by placing it in a liquid at 25°C. In one minute, the temperature of the body had cooled to 100°C.
 How long will it take for the body to cool to 50°C?

End of paper

viauici	natics Extension 1: Question Suggested Solutions	Marks	Marker's Comments
		Awarded	
(a)	1=2x-5 y=6-3x		
	$tan \theta = \frac{2 - (-3)}{1 + 2 \times (-3)}$ $\frac{m_1 - 1}{1 + m_2}$	na)	
		1, m2/	
	Q = 45°		
		2)	
(B)	$\frac{x+4}{x}$ < 3		
	——·		
	31 (x+4) < 3x2		
	$22\ell^2 - 42\ell > 0$		
	$20\ell(x-2)>0$		
	x20, x2	3	
(د)	sin 20 = sin2 0		
(- /	$2 \sin \theta \cos \theta - \sin^2 \theta = 0$		•
	sin 0 (2 cos0 - sin 0)=0		
	sin 0 = 0 or sin 0 = 2 cos 6	,	•
	tan = 2.		
	$\theta = n\pi$, $\theta = n\pi + \tan^{-1}2$,	
	OR NT + 1.11/2017	<u>)</u>	
	<u> </u>	4)	
(d).			
	0/8c		
	H = 3		
	$AF = \sqrt{3^2 + 3^2} = \sqrt{18}$		
	$tan \theta = \frac{EF}{AF} = \frac{8}{IR}$		
	G = 62°04'		
	or 62° (nearest degree)	,	
	•	_	
	(3)	

Mathematics Extension 1: Question 2			
Suggested Solutions	Marks Awarded	Marker's Comm	nents
2(a) $(-2,5)$ (a,b) $3:2$			
$\frac{3a+2(-2)}{3+2}=2; \frac{3xb+2x5}{3+2}=2$ $\alpha = 4\frac{2}{3}; b=0$ (2)			
(b) $2x^{3}-6x^{2}+5x-1=0$			
$= \frac{1}{2}$ $= 5$ $= 5$			
(c) $x^3 - 11x^2 + px + 9 = 0$ Roots are $\alpha, \alpha, \alpha + 2$.			
Sum of roots: $\alpha + \alpha + (\alpha + \bar{\alpha}) = 11$ $\alpha = 3$.			
Roots are 3,3,5.		•	
23+27+A7: 3×3+3×5+3×5=P P=39.			
4/37: 3×3×5=-9 4 9=-45.			
(d). A OF B			
LCBE = LBAC = 0 (alt. segment thm) (A		Atternative:	
LBAC = LACD = 0 (alt.ongles AB//D) LBCD = LCBF + LBFC (ext.ongle of ABCE)		KABC = 4BCE	(arternate as in parallel lines)
$\theta + LACB = \theta + LBEC$ $\therefore LACB = LBEC$ (B)			
From (A), (B), two poirs of angles are			
equal DABCE 3			

Mathematics Extension 1: Question 3		
Suggested Solutions	Marks Awarded	Marker's Comments
3.a) Let $y = \frac{5-2x}{3}$ Inverse is: $x = \frac{5-2y}{3}$ $3x = 5-2y$ $y = \frac{5-3x}{2}$ $\therefore f^{-1}(x) = \frac{5-3x}{2}$		
(b) $\cos^{-1}(\frac{1}{2}\tan\frac{2\pi}{3}) = \cos^{-1}(\frac{1}{2}\times -\frac{1}{3})$ = $\cos^{-1}(-\frac{13}{2})$ = $\frac{5\pi}{6}$ (2)		
(c) $sin(2cos^{-1}\frac{2}{3})$ Let $\theta = cos^{-1}\frac{2}{3}$ = $sin 2\theta$ $cos \theta = \frac{2}{3}$ = $2sin\theta cos \theta$ = $2 \times \frac{\sqrt{5}}{3} \times \frac{2}{3}$ = $\frac{4\sqrt{5}}{9}$		
(d) $\frac{\cos A - \sin A}{\cos A + \sin A} = \frac{\cos A - \sin A}{\cos A + \sin A} \times \frac{\cos A + \sin A}{\cos A + \sin A}$ $= \frac{\cos^2 A - \sin^2 A}{\cos^2 A + \sin^2 A + 2\sin A\cos A}$ $= \frac{\cos 2A}{1 + \sin 2A}$ (2)		
(e) $y = x + \cos^{-1}x$ $\frac{dx}{dx} = 1 - \sqrt{1-x^2} = 1 - (1-x^2)^{-\frac{1}{2}}$ For stat. point: $1 = \sqrt{1-x^2}$: $\sqrt{(1-x^2)} = 1$ $\therefore x = 0$ $\frac{d^2y}{dx^2} = \frac{1}{2}(1-x^2)^{-\frac{1}{2}}(-2x) = \frac{-x}{(1-x^2)^{3/2}}$		
When $x=0$, $\frac{d^2y}{dx^2}=0$. If $x<0$, $\frac{d^2y}{dx^2}>0$; If $x>0$, $\frac{d^2y}{dx^2}<0$ Concavity changes: one stationary Point is a horizontal point of inflexion. 3		

Mathematics Extension 1: Question 4	<u>.</u>	
Suggested Solutions	Marks Awarded	Marker's Comments
$4.(a)(i)$ No. of different hands = $\binom{52}{4}$		
= 270 725 (1)		
(ii) $P(aces) = \frac{\binom{4}{2}\binom{48}{2}}{\binom{52}{4}}$		
= 0.025		
(b) (i) No. of orrangements = \frac{8!}{2!2!2!} = 5040 (2)		
(ii) No. arrgts. with Uatends = $\frac{6!}{2!}$ = 180 (1)		
(c)(i) $PQ: \frac{y-q^2}{x-2q} = \frac{p^2-q^2}{2p-2q} = \frac{p+q}{2}$		
$2y - 2q^2 = (p+q)x - 2q(p+q)$ $2y - 2q^2 = (p+q)x - 2pq - 2q^2$ (p+q)>c - 2y - 2pq = 0 (2)		
(ii) M: $\left(\frac{2P+2q}{2}, \frac{P^2+q^2}{2}\right)$ 1.e. $\left(P+q, \frac{P^2+q^2}{2}\right)$		
(iii) If PG passes through (0,2) Subst. x=0, y=2: 0-2×2-2P9=0 Pq=-2		
$x = P + q$, $y = \frac{P^2 + q^2}{2}$		
$(p+q)^{2} = p^{2} + q^{2} + 2pq$ $x^{2} = 2y + 2 \times (-2)$		
$x^2 = 2y - 4$ Locus of Mis $x^2 = 2y - 4$. 3		
· · · · · · · · · · · · · · · · · · ·		

Mathematics Extension 1: Question 5		
Suggested Solutions	Marks Awarded	Marker's Comments
5. (a) (i) $\int \frac{1}{4+x^2} dx = \frac{1}{2} \tan^{-1} \frac{x}{2} + C$		
$(ii) \int \frac{x}{4+x^2} dx = \frac{1}{2} \int \frac{2x}{4+x^2} dx$		
= \frac{1}{2} \log_e (4+x^2) +C ()		
(b) $\int_{0}^{\frac{\pi}{6}} \sin^{2}x dx = \int_{0}^{\frac{\pi}{6}} \frac{1}{2} (1 - \cos 2x) dx$ = $\frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_{0}^{\frac{\pi}{6}}$		
$=\frac{1}{2}\left[\left(\frac{\pi}{6}-\frac{1}{2}\times\frac{13}{2}\right)-\left(0-0\right)\right]$		
$= \frac{\pi}{12} - \frac{\sqrt{3}}{8} \circ \frac{2\pi - 3\sqrt{3}}{24}$		
(c) $\int \frac{e^{2x}}{e^{x}-2} dx$ $u = e^{x}-2$ $\frac{du}{dx} = e^{x}$		
$= \int \frac{e^{2x}-2}{e^{2x}-2} du = e^{2x} dx$		
$= \int \frac{(u+\lambda) du}{u}$ $= \int \left(1 + \frac{2}{u}\right) du$		
$= u + 2 \ln u + c$ $= e^{x} - 2 + 2 \ln(e^{x} - 2) + c $ 3		
$(d) \qquad \ddot{x} = \frac{-\zeta}{(x+1)^2}$		
$\frac{d}{d\omega} \left(\pm v^{2} \right) = -6 \left(x + 1 \right)^{-2}$ $\pm v^{2} = 6 \left(x + 1 \right)^{-1} + C$		
When 31=0, 5=4. 8=6+C C=2		
$\frac{1}{2} v^2 = \frac{6}{3C+1} + 2$ $= \frac{6+2(x+1)}{x+1}$		
$= \frac{2 \times 48}{\times + 1}$ $= 2 \left(\frac{\times 44}{\times + 1} \right)$		
$v^{2} = 4\left(\frac{x+4}{x+1}\right)$		
$v = \pm 2\sqrt{\frac{x+4}{x+1}} \qquad 4$		

Mathematics Extension 1: Question 6	· · · · · · · · · · · · · · · · · · ·	
Suggested Solutions	Marks Awarded	Marker's Comments
$6(a) \int \frac{1}{\sqrt{x^2 + 16}} dx = log_e(x + \sqrt{x^2 + 16}) + C$		
(b) Prove 1.3 + 3 5 + + (2n-1)(2n+1) = n		
When n=1, LHS = 1.3 = 3, RHS = 1 = 3		
it is true for n=1.		
Assume it is true for n=k.		
1.e. assume 1.3 + 3.5 + + (2k-1)(2k+1) = k		
When $n = k+1$.		
LHS = 1 + 1 + + (2k-1)(2k+1) + (2k+1)(2k+3)		
= $\frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$ by assumption		
$= \frac{k(2k+3) + 1}{(2k+1)(2k+3)}$		
$(ak+1)(ak+3)$ $= ak^2 + 3k+1$		
(2k+1)(2k+3)		
$= \frac{(k+1)(2k+1)}{(2k+1)(2k+3)}$		
$= \frac{k+1}{2(k+1)+1} = \frac{n}{2n+1} \text{ where } n = k+1.$		
: if it is true for n=k, it is true for n=k+1		
Since it is true for n=1, it is true for		
$n=2, n=3, \dots$ (4)		
(c) Let $f(x) = 2x - 4 \sin 3x$ $f'(x) = 2 - 12 \cos 3x$.		
$f(i) = 2 - \mu \sin 3 = 1.4355$		
1'(1)=2-12 cos3 = 13.880		
$Approx'n = 1 - \frac{f(1)}{f'(1)} = 1 - \frac{1 \cdot 4355}{13.880}$ $= 0.90 \ (2dP)$		
(d)(i) 8 13 /A		
23 2		
(ii) $x^2 - 3 = 2x$ $x^2 - 2x - 3 = 0$		
(x-3)(x+1)=0 $x=3, -1$		
A(3,6) $B(-3,6)\therefore 2x > x^2-3 for -3 < x < 3.$		

Mathematics Extension 1: Question 7@		
Suggested Solutions	Marks Awarded	Marker's Comments
$7(a) (i) \ddot{x} = 0 \qquad \qquad \uparrow^{4} A^{V}$		
± = C		
When $t=0$, $\dot{x}=V\cos\theta$ $\therefore c=V\cos\theta$	×	
∴ pè = Veosø		
$3c = V\cos\theta t + c'$		
When $t=0$, $x=0$: $c'=0$		
$\therefore x = V \cos \theta t$		
$ \ddot{y} = -10 \\ \ddot{y} = -10t + k $		
when t=0, y=Vsin0: k=Vsin0		
$\dot{y} = V \sin \theta - i \sigma t$		
$y = V \sin \theta t - s t^2 + k'$		
When t=0, y=0 k'=0		•
-y= Vsinot-st2 2		
(ii) When t=4, y=0, x=100		
$100 = 4 \sqrt{\cos \theta}$ $0 = 4 \sqrt{\sin \theta} - 80$		
$V\cos\theta = 25$ $V\sin\theta = 20$		
Vsin 0 = 20 : tan 0 = 0.8 Veoso 25 : tan 0 = 380 40'.		
Also, V2 cos 0 + V2 sin 0 = 252+202		
γ² (ωs²0 + sin²0) = 1025		
$V = \sqrt{1025} \text{ or } 32.0 \text{ m/s}$ = $5/4/$	2)	
(iii) Maximum height when 4=0 - a		
5 41 sin 38°40'-10t =0	4	
When $t=2$, $y=541 \times \frac{4}{41} \times 2 - 5 \times 2^{2}$		
= 20		
Maximum height is 20m.		
(2)	'	

Mathematics Extension 1: Question 7(b)		
Suggested Solutions	Marks Awarded	Marker's Comments
7.(b) $\frac{dT}{dt} = -k(T - T_0)$		
dt kt		
(i) T = To + A e - Kt		
$\frac{dT}{dt} = -kAe^{-kt}$ $= -k(T-To)$		
$= -k(T-T_0) \qquad \qquad (1)$		
(i) When t=0, T=150, To=25		
150 = 25 + A		
:. A = 125		
:. T = 25 + 125 e		
When t=1, T=100		
100 = 25 + 125 e		
75 = 125 e-t	+	
$e^{k} = \frac{12.5}{7.5}$		
$k = -ln\left(\frac{125}{79}\right)$		
= 0.5108 (4dp) N		-
-0.5108t		
:. T = 25 + 125 e		
When $T = 50$, 50 = 25 + 125 e		
50 = 25 + 125 E -0.5108t		
25 = 125 e -0.5108t		
e = 125 = 5		
0.5108t = ln5	'	
t = <u>ln5</u>		
0.5108		
= 3.15(2dp)		
It takes 3.15 minutes to		
reach 50°.		
③		