Least-Squares

To "solve" an inconsistent system AR=15, we may instead minimize ||Ax-till (a square root of a sum of squares, hence "least-squares solution". By the Best Approximation Theorem, this occurs when Ax= project A to, which is to say when Ax-be (Col A)1

Since (Col A) = NUIAT, the condition is AT(Ax-To)=0 or $A^T A \hat{x} = A^T \hat{b}^2$.

- Thm For mxn A, the following are equivalent:

 1. $A\vec{x} = \vec{b}$ has a unique least-squares solution for each \vec{b} .
 - 2. rank A=n
 - 3. rank ATA = n (hence ATA invertible)

So if any is true, $\hat{x} = (A^TA)^{-1}A^Tb^2$ is the unique least-squares solution.

||Ar-Till is called the least-squares error or residual.

Alternative methods:

1. If A has orthogonal columns, solve $A\widehat{x} = \operatorname{project}_{A} \widehat{b}$ instead.

2. I A= QR is a QR factorization,

projer A = QQTB (since Col A = Col Q)

QRX=QQTE = QQQTE

=> Rx = QTb. Use back-substitution or &= R-1QTb.

Inner Product Spaces

We can speak of orthogonality once we have an inver product (like the dot product).

det An inner product on a vector space V is a function associating a real number to each pair (\vec{u},\vec{v}), with \vec{u},\vec{v}=V, which satisfies (for all \vec{u},\vec{v},\vec{w}) = V and CEIR),

l. 〈ぴ,ኖ〉= 〈マ,ਢン

3. (cū, v) = c(ū, v)

4. (0,0770

5. if (スカ)=0, ひ=ぴ.

A vector space with a particular inner product is an inner product space

First, let us examine $\langle \vec{u}, \vec{v} \rangle = \vec{v} \cdot \vec{v}$, the standard innor product on \mathbb{R}^n . If we forgot vectors had entries, $\langle \vec{e}_i, \vec{v} \rangle = v_i$

So the inner product can recover them. A transformation $T: \mathbb{R}^n \to \mathbb{R}$ is called a dual vector. Its matrix is a $1 \times n$ matrix, say \overrightarrow{w}^T . Then $T(\overrightarrow{x}) = \langle \overrightarrow{w}, \overrightarrow{x} \rangle$. So every dual vector is an inner product transformation.

In fact, then if $\vec{w} = c_1\vec{e}_1 + \cdots + c_n\vec{e}_n$, $\vec{x} > = c_1 \vec{e}_1 + \cdots + c_n \vec{e}_n \cdot \vec{x} > = c_1 x_1 + \cdots + c_n x_n$ But the point is, the dual vector space has dimension n, too.

What about madrices? $\langle \vec{y}, A\vec{x} \rangle = \vec{y}^T A \vec{x} = (\vec{A} \vec{y})^T \vec{x}$ = $\langle \vec{A} \vec{y}, \vec{x} \rangle$

This is an adjointness relation. Either apply the dual vector for \vec{y} on $A\vec{x}$ or apply the dual vector for $A^T\vec{y}$ on \vec{x} .

A need not be square! R^m inner prod to R^n inner prod!

If we want entry i of $A\vec{x}$, $\langle \vec{c}; A\vec{x} \rangle = \langle A\vec{c}; \vec{x} \rangle$ = $\langle \vec{r}; \vec{x} \rangle$, where \vec{r} is row i of A. This is how we compute it already!

Note: we are very close to the idea of "tensor" here, but let's save that for <u>multilinear</u> algebra.

A symmetric matrix A has $A = A^T$ It is set-adjoint: $\langle \vec{y}, A\vec{x} \rangle = \vec{y}^T A\vec{x} = \vec{y}^T A^T \vec{x} = \langle A\vec{y}, \vec{x} \rangle$. This is important for eigenvectors. Say $A\vec{x} = \lambda \vec{x}$ and $A\vec{y} = \mu \vec{y}$. $\langle \vec{y}, A\vec{x} \rangle = \langle \vec{y}, \lambda \vec{x} \rangle = \lambda \langle \vec{y}, \vec{x} \rangle$. $\langle (A\vec{y}, \vec{x}) = \langle \mu \vec{y}, \vec{x} \rangle = \mu \langle \vec{y}, \vec{x} \rangle$. So $(\lambda - \mu) \langle \vec{y}, \vec{x} \rangle = 0$. Either $\lambda = \mu$ or \vec{x}, \vec{y} orthogonal. (this is part of the upcoming spectral theorem).

A common nonstandard inner product on IR^n is $(\vec{x}, \vec{y}) = \vec{x}^T A \vec{y}$ where A is now positive definite

matrix. That is, A must be a matrix where this is

an inner product! Checking $\vec{x}^T A \vec{x} > 0$ for $\vec{x} \neq \vec{0}$ is

sufficient. This means every vector & has Az within 90° of it. So, A = (6-1) is not positive definite: $\nabla A \nabla = [x_1 \ x_2] A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = [x_1 \ x_2] \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} = 0$ If A is diagonal with positive diagonal entires, it is postdet.
6.7 Ex 1 is $A = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$. Lenoth/norm, distance, projection, orthogonal/orthonormal sets, Gram-Schmidt: these all carry over since they relied only on inner product properties, not dot product properties. $V = |P_2|$, $\langle p(x), q(x) \rangle = \langle [P(-1)], [q(-1)] \rangle$ is pullback of std. inner prod on \mathbb{R}^3 to \mathbb{R}_2 using evaluation transformation. Orthogonal basis of V? 1, x, x2 basis alverdy orthogonal $\langle 1, \times \rangle = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} = 0$ $\langle 1, x^2 \rangle = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 2$ <1,1>= | | | | | = 3 $\langle x, x^2 \rangle = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$ $\chi^2 - \frac{2}{3}$ is third vector. 1, x, x2-3 is orthogonal basis.

ex On
$$C([0,1])$$
 $\langle 5,9 \rangle = \int_0^1 f(t)g(t)dt$ is an inner product.

if
$$N=m$$
, $=\frac{1}{2}\int_{0}^{1}(1-\cos((n+m)\pi x))dx$
 $=\frac{1}{2}\left[x-\frac{1}{\pi(n+m)}\sin((n+m)\pi x)\right]_{0}^{1}$

if
$$n \neq m = \frac{1}{2} \left[\frac{1}{\pi(n-m)} \sin((n-m)\pi x) - \frac{1}{\pi(n+m)} \sin((n+m)\pi x) \right]_0$$

So orthogonal. Can also check $cos(n\pi x)$ are orthat of these, and to each other.