

Time Series Analytics

110-1 Homework #03 Due at 23h59, October 31, 2021; files uploaded to NTU-COOL

1. (10%) y_t is a stationary process with the autocovariance function γ_k . Define $\bar{y} = \frac{1}{n} \sum_{t=1}^n y_t$. Show that

$$V[\bar{y}] = \frac{\gamma_0}{n} + \frac{2}{n} \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \gamma_k = \frac{1}{n} \sum_{k=-n+1}^{n-1} \left(1 - \frac{|k|}{n} \right) \gamma_k.$$

- 2. (10%) Assume x_t is a stationary process, and define $y_t = \begin{cases} x_t & \text{for odd } t \\ x_t + 3 & \text{for even } t \end{cases}$
 - (a) Show that $COV[y_t, y_{t-k}]$ is independent of t for all lags k.
 - (b) Is y_t stationary?
- 3. (10%) Let y_t be a stationary process with autocovariance function γ_k .
 - (a) Show that $z_t = \nabla y_t = y_t y_{t-1}$ is stationary by finding the mean and autocovariance function for z_t . (b) Show that $w_t = \nabla^2 y_t = z_t z_{t-1} = y_t 2y_{t-1} + y_{t-2}$ is stationary.
- (15%) Let x_t be stationary with $E[x_t] = 0$, $V[x_t] = 1$, autocorrelation function ρ_k . Define μ_t is a nonconstant function and σ_t is a positively nonconstant **function** (that is to say: μ_t and σ_t are deterministic and in function of t). Now we observe a time series formed as

$$y_t = \mu_t + \sigma_t x_t.$$

- (a) Find the mean and autocovariance function of y_t .
- (b) Show that the autocorrelation of y_t depends only on the lag k. Is y_t stationary?
- (c) Find a scenario that y_t is nonstationary but with a constant mean, i.e., $\mu_t = \mu_0$, and with ρ_k independent of *t*?
- 5. (5%) Let x_t be the series of the "expected" measurements during the production process. Because the measuring tool itself won't be perfect, we actually observe $y_t = x_t + e_t$, assuming x_t and e_t are independent. In general, we call x_t the **signal** and e_t the **measurement noise**.

If x_t is stationary with the autocorrelation function ρ_k , show that y_t is also a stationary process with

$$\operatorname{corr}(y_t, y_{t-k}) = \frac{\rho_k}{1 + \frac{\sigma_e^2}{\sigma_x^2}}, \text{ for } k \ge 1.$$

 $\frac{\sigma_{\chi}^2}{\sigma_e^2}$ is usually referred to as the **signal-to-noise ratio**, or **SNR**.

The larger the SNR, the closer the autocorrelation function of the observed series y_t is to the autocorrelation function of the desired signal x_t .

6. (10%) Suppose $y_t = \alpha_0 + \sum_{i=1}^q [\alpha_i \cos(2\pi f_i t) + \beta_i \sin(2\pi f_i t)]$, where $\alpha_0, f_1, f_2, \dots, f_q$ are constants and $\alpha_1, \alpha_2, \dots, \alpha_q, \beta_1, \beta_2, \dots, \beta_q$ are independent random variables with zero means and variances $V[\alpha_i] = V[\beta_i] = V[\beta_i]$ σ_i^2 . Show that y_t is stationary and find its autocovariance function.

(Hint: try to show $COV[y_t, y_s]$ depends only on t - s.)